ETSI TS 138 101-1 V16.4.0 (2020-07)

5G; NR;

User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (3GPP TS 38.101-1 version 16.4.0 Release 16)

Reference RTS/TSGR-0438101-1vG40 Keywords 5G

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommitteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020. All rights reserved.

DECT™, **PLUGTESTS™**, **UMTS™** and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP™** and **LTE™** are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Legal Notice

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	ectual Property Rights	2
Legal	Notice	2
Moda	ıl verbs terminology	2
Forew	vord	14
1	Scope	16
2	References	16
3	Definitions, symbols and abbreviations	
3.1	Definitions	
3.2	Symbols	17
3.3	Abbreviations	19
4	General	
4.1	Relationship between minimum requirements and test requirements	
4.2	Applicability of minimum requirements	21
4.3	Specification suffix information	21
5	Operating bands and channel arrangement	21
5.1	General	
5.2	Operating bands	
5.2A	Operating bands for CA	
5.2A.0	1 0	
5.2A.1	Intra-band CA	25
5.2A.2	2 Inter-band CA	26
5.2A.2		
5.2A.2		
5.2A.2		
5.2B	Operating bands for DC	
5.2C	Operating band combination for SUL	
5.2D	Operating bands for UL MIMO	
5.2E	Operating band for V2X	32
5.2E.1	V2X operating bands	32
5.2E.2	V2X operating bands for concurrent operation	32
5.3	UE channel bandwidth	33
5.3.1	General	33
5.3.2	Maximum transmission bandwidth configuration	33
5.3.3	Minimum guardband and transmission bandwidth configuration	
5.3.4	RB alignment	
5.3.5	UE channel bandwidth per operating band	35
5.3.6	Asymmetric channel bandwidths	
5.3A	UE channel bandwidth for CA	
5.3A.1	General	39
5.3A.2	Maximum transmission bandwidth configuration for CA	39
5.3A.3		
5.3A.4		
5.3A.5	UE channel bandwidth per operating band for CA	41
5.3E	Channel bandwidth for V2X	41
5.3E.1		
5.3E.2		
5.4	Channel arrangement	
5.4.1	Channel spacing	
5.4.1.1		
5.4.2	Channel raster	
5.4.2.1		
5.4.2.2		
5.4.2.3		

5.4.3	Synchronization raster	45
5.4.3.1	Synchronization raster and numbering	45
5.4.3.3	Synchronization raster entries for each operating band	45
5.4A	Channel arrangement for CA	47
5.4A.1	Channel spacing for CA	47
5.4A.2	Channel raster for CA	48
5.4A.3	Synchronization raster for CA	48
5.4A.4	Tx-Rx frequency separation for CA	48
5.4B	Void	48
5.4C	Void	48
5.4D	Void	48
5.4E	Channel arrangement for V2X	48
5.4E.1	Channel spacing	48
5.4E.2	Channel raster	48
5.4E.2.1	NR-ARFCN and channel raster	48
5.4E.2.2	Channel raster to resource element mapping	49
5.4E.2.3	Channel raster entries for each operating band	49
5.4E.3	Synchronization raster for V2X	49
5.5	Void	49
5.5A	Configurations for CA	49
5.5A.0	General	49
5.5A.1	Configurations for intra-band contiguous CA	50
5.5A.2	Configurations for intra-band non-contiguous CA	
5.5A.3	Configurations for inter-band CA	54
5.5A.3.1	Configurations for inter-band CA (two bands)	
5.5A.3.2	Configurations for inter-band CA (three bands)	
5.5A.3.3	Configurations for inter-band CA (four bands)	
5.5B	Configurations for DC	
5.5C	Configurations for SUL	88
6 Tr	ansmitter characteristics	01
6.1	General	
6.1A	General	
6.2	Transmitter power	
6.2.1	UE maximum output power	
6.2.2	UE maximum output power reduction	
6.2.3	UE additional maximum output power reduction	
6.2.3.1	General	
6.2.3.2	A-MPR for NS_04	
6.2.3.3	A-MPR for NS_10	
6.2.3.4	A-MPR for NS_05 and NS_05U	
6.2.3.5	A-MPR for NS_40	
6.2.3.6	A-MPR for NS 43 and NS 43U	
6.2.3.7	A-MPR for NS_03 and NS_03U	
6.2.3.8	A-MPR for NS_37	
6.2.3.9	A-MPR for NS_38	
6.2.3.10	A-MPR for NS_39	
6.2.3.11	A-MPR for NS_41	
6.2.3.12	A-MPR for NS_42	
6.2.3.13	A-MPR for NS_18	
6.2.3.14	A-MPR for NS_21	
6.2.3.15	A-MPR for NS_24	111
6.2.3.16	A-MPR for NS_27	
6.2.3.17	A-MPR for NS_46	
6.2.3.18	A-MPR for NS_47	
6.2.3.19	A-MPR for NS_50	
6.2.3.20	A-MPR for NS_44	
6.2.3.21	A-MPR for NS_12	
6.2.3.22	A-MPR for NS_13	116
6.2.3.23	A-MPR for NS_14	116
6.2.3.24	A-MPR for NS_15	117
6 2 3 25	A-MPR for NS 45	117

6.2.3.26	A-MPR for NS_48	117
6.2.3.27	A-MPR for NS_49	
6.2.3.28	A-MPR for NS_51	
6.2.4	Configured transmitted power	
6.2A	Transmitter power for CA	
6.2A.1	UE maximum output power for CA	
6.2A.1.1	Void	
6.2A.1.2	Void	
6.2A.1.3	UE maximum output power for Inter-band CA	
6.2A.1.4	UE maximum output power for Intra-band contiguous CA	
6.2A.1.5	UE maximum output power for Intra-band contiguous CA	
6.2A.2	UE maximum output power reduction for CA	
6.2A.2.1	Void	
6.2A.2.2	Void	126
6.2A.2.3	UE maximum output power reduction for Inter-band CA	
6.2A.2.4	UE maximum output power reduction for Intra-band contiguous CA	
6.2A.3	UE additional maximum output power reduction for CA	
6.2A.3.1.		
6.2A.3.1.		
6.2A.3.1.		
6.2A.4	Configured output power for CA	
6.2A.4.1	Configured transmitted power level	
6.2A.4.1.	<u>.</u>	
6.2A.4.1.		
6.2A.4.1.		
6.2A.4.1.4		
6.2A.4.2	$\Delta T_{\mathrm{IB,c}}$ for CA	
6.2A.4.2.	,	
6.2A.4.2.		
6.2A.4.2.		
6.2A.4.2.4		
6.2A.4.2.		
6.2.B	Transmitter power for NR-DC	
6.2B.0	General	
6.2B.1	UE maximum output power for NR-DC	
6.2B.2	UE maximum output power reduction for NR-DC	
6.2B.3	UE additional maximum output power reduction for NR-DC	
6.2B.4.1	Configured transmitted power level for NR-DC	
6.2B.4.2	$\Delta T_{\mathrm{IB,c}}$ for NR-DC	
6.2C	Transmitter power for SUL	
6.2C.1	Configured transmitted power for SUL	
6.2C.2	$\Delta T_{ m IB,c}$	
6.2D	Transmitter power for UL MIMO	
6.2D.1	UE maximum output power for UL MIMO	
6.2D.2	UE maximum output power reduction for UL MIMO	
6.2D.3	UE additional maximum output power reduction for UL MIMO	
6.2D.4	Configured transmitted power for UL MIMO	
6.2E	Transmitter power for V2X	
6.2E.1	UE maximum output power for V2X	
6.2E.1.1	General	
6.2E.1.2	UE maximum output power for V2X con-current operation	
6.2E.2	UE maximum output power reduction for V2X	
6.2E.2.1	General	
6.2E.2.2	MPR for Power class 3 V2X UE	
6.2E.2.3	MPR for Power class 3 V2X con-current operation	
6.2E.3	UE additional maximum output power reduction for V2X	
6.2E.3.1	General	
6.2E.3.2	A-MPR for Power class 3 V2X UE by NS_33	
6.2E.3.3	A-MPR for Power class 3 V2X UE by NS_52	
6.2E.3.4	A-MPR for power class 3 V2X con-current operation	
6.2E.4	Configured transmitted power for V2X	
6.2E.4.1	General	

6.2E.4.2	Configured transmitted power for V2X con-current operation	155
6.3	Output power dynamics.	156
6.3.1	Minimum output power	156
6.3.2	Transmit OFF power	156
6.3.3	Transmit ON/OFF time mask	157
6.3.3.1	General	
6.3.3.2	General ON/OFF time mask	157
6.3.3.3	Transmit power time mask for slot and short or long subslot boundaries	157
6.3.3.4	PRACH time mask	157
6.3.3.5	Void	
6.3.3.6	SRS time mask	
6.3.3.7	PUSCH-PUCCH and PUSCH-SRS time masks	
6.3.3.8	Transmit power time mask for consecutive slot or long subslot transmission and short subslot	t
	transmission boundaries	
6.3.3.9	Transmit power time mask for consecutive short subslot transmissions boundaries	
6.3.4	Power control	162
6.3.4.1	General	
6.3.4.2	Absolute power tolerance	162
6.3.4.3	Relative power tolerance	162
6.3.4.4	Aggregate power tolerance	163
6.3A	Output power dynamics for CA	163
6.3A.1	Minimum output power for CA	
6.3A.1.1	Void	163
6.3A.1.2	Void	163
6.3A.1.3	Minimum output power for inter-band CA	163
6.3A.1.4	Minimum output power for intra-band contiguous CA	
6.3A.2	Transmit OFF power for CA	164
6.3A.2.1	Void	164
6.3A.2.2	Void	164
6.3A.2.3	Transmit OFF power for inter-band CA	164
6.3A.2.4	Transmit OFF power for intra-band contiguous CA	164
6.3A.3	Transmit ON/OFF time mask for CA	164
6.3A.3.1	Void	164
6.3A.3.2	Void	
6.3A.3.3	Transmit ON/OFF time mask for inter-band CA	
6.3A.3.3.		164
6.3A.3.3.		
6.3A.3.4	Transmit ON/OFF time mask for intra-band contiguous CA	165
6.3A.4	Power control for CA	
6.3A.4.1	Void	165
6.3A.4.2	Void	
6.3A.4.3	Power control for inter-band CA	
6.3A.4.4	Power control for intra-band contiguous CA	
6.3A.4.4.	1	
6.3A.4.4.	4	
6.3A.4.4.	1	166
6.3A.4.4.	4	166
6.3A.4.4.		
6.3B	Output power dynamics for NR-DC	166
6.3C	Output power dynamics for SUL	166
6.3C.1	Void	166
6.3C.2	Void	
6.3C.3	Transmit ON/OFF time mask for SUL	
6.3C.3.1	Time mask for switching between two uplink carriers	
6.3D	Output power dynamics for UL MIMO	
6.3D.1	Minimum output power for UL MIMO	
6.3D.2	Transmit OFF power for UL MIMO	
6.3D.3	Transmit ON/OFF time mask for UL MIMO	
6.3D.4	Power control for UL MIMO	
6.3E	Output power dynamics for V2X	
6.3E.1	Minimum output power for V2X	
6.3E.1.1	General	168

6.3E.1.2	Minimum output power for V2X con-current operation	
6.3E.2	Transmit OFF power for V2X	169
6.3E.2.1	General	
6.3E.2.2	Transmit OFF power for V2X con-current operation	169
6.3E.3	Transmit ON/OFF time mask for V2X	169
6.3E.3.1	General	
6.3E.3.2	General time mask	169
6.3E.3.3	S-SSB time mask	
6.3E.3.4	Transmit ON/OFF time mask for V2X con-current operation	170
6.3E.4	Power control for V2X	170
6.3E.4.1	General	170
6.3E.4.2	Absolute power tolerance	170
6.3E.4.3	Power control for V2X con-current operation	170
6.4	Transmit signal quality	170
6.4.1	Frequency error	170
6.4.2	Transmit modulation quality	171
6.4.2.1	Error Vector Magnitude	171
6.4.2.2	Carrier leakage	172
6.4.2.3	In-band emissions	172
6.4.2.4	EVM equalizer spectrum flatness	173
6.4.2.4.1	Requirements for Pi/2 BPSK modulation	174
6.4A	Transmit signal quality for CA	175
6.4A.1	Frequency error for CA	175
6.4A.1.1	Void	175
6.4A.1.2	Void	175
6.4A.1.3	Frequency error for inter-band CA	175
6.4A.1.4	Frequency error for intra-band contiguous CA	175
6.4A.2	Transmit modulation quality for CA	
6.4A.2.1	Void	176
6.4A.2.2	Void	176
6.4A.2.3	Transmit modulation quality for inter-band CA	176
6.4A.2.4	Transmit modulation quality for intra-band contiguous CA	176
6.4A.2.4.	1 Error Vector Magnitude	176
6.4A.2.4.2		
6.4B	Transmit signal quality for NR-DC	178
6.4D	Transmit signal quality for UL MIMO	179
6.4D.1	Frequency error for UL MIMO	
6.4D.2	Transmit modulation quality for UL MIMO	
6.4D.3	Time alignment error for UL MIMO	
6.4D.4	Requirements for coherent UL MIMO	180
6.4E	Transmit signal quality for V2X	
6.4E.1	Frequency error for V2X	180
6.4E.1.1	General	
6.4E.1.2	Frequency error for V2X con-current operation	181
6.4E.2	Transmit modulation quality for V2X	181
6.4E.2.1	General	
6.4E.2.2	Error Vector Magnitude for V2X	181
6.4E.2.3	Carrier leakage for V2X	
6.4E.2.4	In-band emissions for V2X	
6.4E.2.5	EVM equalizer spectrum flatness for V2X	
6.4E.2.6	Transmit modulation quality for V2X con-current operation	
6.5	Output RF spectrum emissions.	
6.5.1	Occupied bandwidth	
6.5.2	Out of band emission	
6.5.2.1	General	
6.5.2.2	Spectrum emission mask	
6.5.2.3	Additional spectrum emission mask	
6.5.2.3.1	Requirements for network signalling value "NS_35"	
6.5.2.3.2	Requirements for network signalling value "NS_04"	
6.5.2.3.3	Requirements for network signalling value "NS_03" and "NS_21"	
6.5.2.3.4	Requirements for network signalling value "NS_06"	
6.5.2.3.5	Void	186

6.5.2.3.6	Void	
6.5.2.3.7	Void	
6.5.2.3.8	Requirements for network signalled value "NS_27"	186
6.5.2.4	Adjacent channel leakage ratio	186
6.5.2.4.1	NR ACLR	186
6.5.2.4.2	UTRA ACLR	187
6.5.3	Spurious emissions	
6.5.3.1	General spurious emissions	
6.5.3.2	Spurious emissions for UE co-existence	
6.5.3.3	Additional spurious emissions	
6.5.3.3.1	Requirement for network signalling value "NS_04"	
6.5.3.3.2	Requirement for network signalling value "NS_17"	
6.5.3.3.3		
	Requirement for network signalling value "NS_18"	
6.5.3.3.4	Requirement for network signalling value "NS_05"	
6.5.3.3.5	Requirement for network signalling value "NS_43"	
6.5.3.3.6	Requirement for network signalling value "NS_37"	196
6.5.3.3.7	Requirement for network signalling value "NS_38"	196
6.5.3.3.8	Requirement for network signalling value "NS_39"	196
6.5.3.3.9	Requirement for network signalling value "NS_40"	
6.5.3.3.10	Requirement for network signalling value "NS_41"	
6.5.3.3.11	Requirement for network signalling value "NS_42"	
6.5.3.3.12	Requirement for network signalling value "NS_21"	197
6.5.3.3.13	Requirement for network signalling value "NS_24"	197
6.5.3.3.14	Requirement for network signalling value "NS_27"	198
6.5.3.3.15	Requirement for network signalling value "NS_47"	198
6.5.3.3.16	Requirement for network signalling value "NS_50"	
6.5.3.3.17	Requirement for network signalled value "NS_12"	
6.5.3.3.18	Requirement for network signalled value "NS_13"	
6.5.3.3.19	Requirement for network signalled value "NS_14"	
6.5.3.3.20	Requirement for network signalled value "NS_15"	
6.5.3.3.21	Requirement for network signalled value "NS_45"	
6.5.3.3.22	Requirement for network signalled values "NS_48" and "NS_51"	
6.5.3.3.23	Requirement for network signalled value "NS_49"	
6.5.3.3.24	Requirement for network signalled value "NS_49"	
	_	
6.5.4	Transmit intermodulation	
	tput RF spectrum emissions for CA	
6.5A.1	Occupied bandwidth for CA	
6.5A.1.1	Void	
6.5A.1.2	Void	202
6.5A.1.3	Occupied bandwidth for Inter-band CA	
6.5A.2	Out of band emission for CA	
6.5A.2.1	General	
6.5A.2.2	Spectrum emission mask	
6.5A.2.2.1	Void	202
6.5A.2.2.2	Void	202
6.5A.2.2.3	Spectrum emission mask for Inter-band CA	202
6.5.A.2.2.4	Spectrum emission mask for intra-band contiguous C	203
6.5A.2.3	Additional spectrum emission mask	
6.5A.2.3.1	Void	
6.5A.2.3.2	Void	203
6.5A.2.3.3	Additional spectrum emission mask for Inter-band CA	
6.5A.2.4	Adjacent channel leakage ratio	
6.5A.2.4.1	NR ACLR	
6.5A.2.4.1.4	NR ACLR for intra-band contiguous CA	
6.5A.2.4.2	UTRA ACLR	
6.5A.3	Spurious emission for CA	
6.5A.3.1	General spurious emissions	
6.5A.3.1		
6.5A.3.2.1	Spurious emissions for UE co-existence	
6.5A.3.2.2	Void	
6.5A.3.2.3	Spurious emissions for UE co-existence for Inter-band CA	
6.5A.3.2.4	Spurious emissions for UE co-existence for intra-band contiguous CA	216

6.5.A.3.2.	5 Spurious emissions for UE co-existence for intra-band contiguous CA	217
6.5A.3.2.6	Transmit intermodulation for intra-band contiguous CA	218
6.5A.4	Transmit intermodulation for CA	219
6.5A.4.2.1	Void	219
6.5A.4.2.2	2 Void	219
6.5A.4.2.3	Transmit intermodulation for Inter-band CA	219
6.5B	Output RF spectrum emissions for NR-DC	219
6.5D	Output RF spectrum emissions for UL MIMO	
6.5D.1	Occupied bandwidth for UL MIMO	
6.5D.2	Out of band emission for UL MIMO	
6.5D.3	Spurious emission for UL MIMO	
6.5D.4	Transmit intermodulation for UL MIMO	
6.5E	Output RF spectrum emissions for V2X	
6.5E.1	Occupied bandwidth for V2X	
6.5E.1.1	General	
6.5E.1.2	Occupied bandwidth for V2X con-current operation	
6.5E.2	Out of band emission for V2X.	
6.5E.2.1	General	
6.5E.2.2	Spectrum emission mask	
6.2E.2.2.1	•	
6.5E.2.2.2		
6.5E.2.2 6.5E.2.3	Additional Spectrum emission mask	
6.5E.2.3 6.5E.2.3.1	•	221
6.5E.2.3.1	Requirements for network signated value NS_55	221
	<u> </u>	
6.5E.2.4	Adjacent channel leakage ratio	
6.5E.2.4.1		
6.5E.2.4.2	1	
6.5E.3	Spurious emissions for V2X	
6.5E.3.1	General spurious emissions	
6.5E.3.2	Spurious emissions for UE co-existence	
6.5E.3.3	Spurious emissions for UE co-existence for V2X con-current operation	
6.5E.3.4	Additional spurious emissions requirements for V2X	
6.5E.3.4.1		
6.5E.3.4.2		
6.5E.3.4.3		
6.5E.4	Transmit intermodulation	
6.5E.4.1	General	
6.5E.4.2	Transmit intermodulation for V2X con-current operation	
6.6	Time alignment error	225
7 Re	ceiver characteristics	226
7.1		
	General	
7.1A		
7.2	Diversity characteristics	
7.3	Reference sensitivity	
7.3.1	General	
7.3.2	Reference sensitivity power level	
7.3.3	$\Delta R_{\mathrm{IB,c}}$	
7.3A	Reference sensitivity for CA	
7.3A.1	General	
7.3A.2	Reference sensitivity power level for CA	
7.3A.2.1	Reference sensitivity power level for Intra-band contiguous CA	
7.3A.2.2	Reference sensitivity power level for Intra-band non-contiguous CA	
7.3A.2.3	Reference sensitivity power level for Inter-band CA	
7.3A.2.4	Reference sensitivity power level for SDL bands	
7.3A.3	$\Delta R_{IB,c}$ for CA	
7.3A.3.1	General	
7.3A.3.2	$\Delta R_{IB,c}$ for Inter-band CA	
7.3A.3.2.	<i>r</i> ·	239
7.3A.3.2.2	2 Void	242
7.3A.3.2.3	$\Delta R_{IB,c}$ for three bands	242
73A324	4 ARing for four hands	244

7.3A.4	Reference sensitivity exceptions due to UL harmonic interference for CA	245
7.3A.5	Reference sensitivity exceptions due to intermodulation interference due to 2UL CA	
7.3A.6	Reference sensitivity exceptions due to cross band isolation for CA	255
7.3B	Void	257
7.3C	Reference sensitivity for SUL	257
7.3C.1	General	
7.3C.2	Reference sensitivity power level for SUL	
7.3C.3	$\Delta R_{IB,c}$ for SUL	
7.3C.3.1	General	
7.3C.3.2	SUL band combination	260
7.3C.3.2.1	12,0	
7.3D	Reference sensitivity for UL MIMO	
7.3E	Reference sensitivity for V2X	
7.3E.1	General	
7.3E.2	Minimum requirements	
7.3E.3	Reference sensitivity power level for V2X con-current operation	
7.3F	Reference sensitivity for NR-DC	
7.4	Maximum input level	
7.4A	Maximum input level for CA	
7.4A.1	Maximum input level for Intra-band contiguous CA	
7.4A.2	Maximum input level for Intra-band non-contiguous CA	
7.4A.3	Maximum input level for Inter-band CA	
7.4B	Maximum input level for NR-DC	
7.4D	Maximum input level for UL MIMO	
7.4E	Maximum input level for V2X	
7.4E.1	General	
7.4E.2	Maximum input level for V2X con-current operation	
7.5	Adjacent channel selectivity	
7.5A	Adjacent channel selectivity for CA	
7.5A.1	Adjacent channel selectivity for Intra-band contiguous CA	
7.5A.2	Adjacent channel selectivity Intra-band non-contiguous CA	
7.5A.3	Adjacent channel selectivity Inter-band CA	
7.5B	Adjacent channel selectivity for NR-DC	
7.5D 7.5E	Adjacent channel selectivity for UL MIMO	
7.5E.1	General	
7.5E.1 7.5E.2	Adjacent channel selectivity for V2X con-current operation	
7.5E.2 7.6	Blocking characteristics	
7.6.1	General	
7.6.2	In-band blocking	
7.6.3	Out-of-band blocking	
7.6.4	Narrow band blocking	
7.6A	Blocking characteristics for CA	
7.6A.1	General	
7.6A.2	In-band blocking for CA	
7.6A.2.1	In-band blocking for Intra-band contiguous CA	
7.6A.2.2	In-band blocking for Intra-band non-contiguous CA	
7.6A.2.3	In-band blocking for Inter-band CA	
7.6A.3	Out-of-band blocking for CA	
7.6A.3.1	Out-of-band blocking for Intra-band contiguous CA	
7.6A.3.2	Out-of-band blocking for Intra-band non-contiguous CA	
7.6A.3.3	Out-of-band blocking for Inter-band CA	
7.6A.4	Narrow band blocking for CA	
7.6A.4.1	Narrow band blocking for Intra-band contiguous CA	
7.6A.4.2	Narrow band blocking for Intra-band non-contiguous CA	
7.6A.4.3	Narrow band blocking for Inter-band CA	
7.6B	Blocking characteristics for NR-DC	
7.6C	Blocking characteristics for SUL	
7.6C.1	General	289
7.6C.2	In-band blocking for SUL	289
7.6C.3	Out-of-band blocking for SUL	
7.6C.4	Narrow band blocking for SUL	289

7.6D	Blocking characteristics for UL MIMO	
7.6E	Blocking characteristics for V2X	290
7.6E.1	General	290
7.6E.2	In-band blocking	290
7.6E.2.1	General	290
7.6E.2.2	In-band blocking for V2X con-current operation	290
7.6E.3	Out-of-band blocking	291
7.6E.3.1	General	
7.6E.3.2	Out-of-band blocking for V2X con-current operation	
7.7	Spurious response	
7.7A	Spurious response for CA	
7.7A.1	Spurious response for Intra-band contiguous CA	
7.7A.2	Spurious response for Intra-band non-contiguous CA	
7.7A.3	Spurious response for Inter-band CA	
7.7B	Spurious response for NR-DC	
7.7 D 7.7D	Spurious response for UL MIMO	
7.7E 7.7E	Spurious response for V2X	
7.7.E.1	General General	
7.7.E.1 7.7E.2		
	Spurious response for V2X con-current operation	
7.8	Intermodulation characteristics	
7.8.1	General	
7.8.2	Wide band Intermodulation	
7.8A	Intermodulation characteristics for CA	
7.8A.1	General	
7.8A.2	Wide band intermodulation for CA	
7.8A.2.1	Wide band intermodulation for Intra-band contiguous CA	297
7.8A.2.2	Wide band intermodulation for Intra-band non-contiguous CA	298
7.8A.2.3	Wide band intermodulation for Inter-band CA	298
7.8B	Intermodulation characteristics for NR-DC	298
7.8D	Intermodulation characteristics for UL MIMO	299
7.8E	Intermodulation characteristics for V2X	299
7.8E.1	General	
7.8E.2	Wide band Intermodulation	
7.8E.3	Intermodulation for V2X con-current operation	
7.9	Spurious emissions	
7.9A	Spurious emissions for CA	
7.9A.1	Void	
7.9A.2	Void	
7.9A.3	Spurious emissions for Inter-band CA	
7.9B	Spurious emissions for NR-DC	
	•	
	A (normative): Measurement channels	
	L reference measurement channels	
A.2.1	General	
A.2.2	Reference measurement channels for FDD	
A.2.2.1	DFT-s-OFDM Pi/2-BPSK	302
A.2.2.2	DFT-s-OFDM QPSK	305
A.2.2.3	DFT-s-OFDM 16QAM	308
A.2.2.4	DFT-s-OFDM 64QAM	311
A.2.2.5	DFT-s-OFDM 256QAM	314
A.2.2.6	CP-OFDM QPSK	
A.2.2.7	CP-OFDM 16QAM	
A.2.2.8	CP-OFDM 64QAM	
A.2.2.9	CP-OFDM 256QAM	
A.2.3	Reference measurement channels for TDD.	
A.2.3.1	DFT-s-OFDM Pi/2-BPSK	
A.2.3.1 A.2.3.2	DFT-s-OFDM QPSK	
A.2.3.3	DFT-s-OFDM 16QAM	
A.2.3.4	DFT-s-OFDM 64QAM	
A.2.3.4 A.2.3.5	DFT-s-OFDM 04QAMDFT-s-OFDM 256OAM	
(1.4.))	D1 1-9-01 D181 4JUU/D181	

A.2.3.	~	K	
A.2.3.		AM	
A.2.3.		AM	
A.2.3.	9 CP-OFDM 2560	QAM	353
A.3	DL reference measure	ement channels	356
A.3.1			
A.3.2		rement channels for FDD	
A.3.2.			
A.3.2.		r requirements for QPSK	
A.3.2. A.3.2.		um input level for 64QAMum input level for 256 QAM	
A.3.3		irement channels for TDD	
A.3.3.		irement channels for 1DD	
A.3.3.		r requirements for QPSK	
A.3.3.		um input level for 64QAM	
A.3.3.		um input level for 256 QAM	
A.4	CSI reference measur	rement channels	376
A.5		oise Generator (OCNG)	
A.5.1		FDD	
A.5.1.		tern 1: Generic OCNG FDD Pattern for all unused REs	
A.5.2		TDD	
A.5.2.	I OCNG IDD pat	ttern 1: Generic OCNG TDD Pattern for all unused REs	3/6
A.6	Void		377
A	D (: f 4:)	Void	270
Anne	x B (informative):	v 01a	3/8
Anne	x C (informative):	Downlink physical channels	379
C.1			
C.2	Setup		379
C.3	Connection		370
C.3.1		ceiver Characteristics	
0.5.1	Tricusarement of Ite	oct for Characteristics	
Anne	x D (normative):	Characteristics of the interfering signal	381
D 1 C	leneral		381
D.2	Interference signals		381
Anno	x E (normative):	Environmental conditions	292
E.1	General		383
E.2	Environmental		383
E.2.1			
E.2.2			
E.2.3	•		
	T ()	m 4 114	205
Anne	x F (normative):	Transmit modulation	385
F.0	General		385
F.1	Maggirament Doint		295
F.1 F.2		Iagnitude measurement	
F.3		ons measurement	
F.4		er test	
	<u> </u>		
F.5	C		
	Timina off4		200
F.5.1 F.5.2			

F.5.3	Window length for i	normal CP	388
F.5.4	Window length for l	normal CP Extended CP	390
F.5.5	Window length for l	PRACH	390
F.6	Averaged EVM		391
F.7	Spectrum Flatness		392
Anne	ex G (informative):	Void	394
Anne	ex H (informative):	Void	394
Anne	ex I (informative):	Void	394
Anne	ex J (informative):	Void	394
Anne	ex K (informative):	Void	394
Anne	ex L (informative):	Change history	395
Histo	ry		407

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

In the present document, modal verbs have the following meanings:

shall indicates a mandatory requirement to do somethingshall not indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.

The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.

should indicates a recommendation to do something

should not indicates a recommendation not to do something

may indicates permission to do something

need not indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.

can indicates that something is possiblecannot indicates that something is impossible

The constructions "can" and "cannot" are not substitutes for "may" and "need not".

will indicates that something is certain or expected to happen as a result of action taken by an agency

the behaviour of which is outside the scope of the present document

will not indicates that something is certain or expected not to happen as a result of action taken by an

agency the behaviour of which is outside the scope of the present document

might indicates a likelihood that something will happen as a result of action taken by some agency the

behaviour of which is outside the scope of the present document

might not indicates a likelihood that something will not happen as a result of action taken by some agency

the behaviour of which is outside the scope of the present document

In addition:

is (or any other verb in the indicative mood) indicates a statement of fact

is not (or any other negative verb in the indicative mood) indicates a statement of fact

The constructions "is" and "is not" do not indicate requirements.

1 Scope

The present document establishes the minimum RF requirements for NR User Equipment (UE) operating on frequency Range 1.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

For a specific reference, subsequent revisions do not apply.

For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone".
[3]	3GPP TS 38.101-3: "NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios".
[4]	3GPP TS 38.521-1: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone".
[5]	Recommendation ITU-R M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
[6]	3GPP TS 38.211: "NR; Physical channels and modulation".
[7]	3GPP TS 38.331: "Radio Resource Control (RRC) protocol specification".
[8]	3GPP TS 38.213: "NR; Physical layer procedures for control".
[9]	ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain".
[10]	3GPP TS 38.214: "NR; Physical layer procedures for data".
[11]	3GPP TS 36.101: Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception;
[12]	ETSI TS 102 792: "Intelligent Transport Systems (ITS); Mitigation techniques to avoid interference between European CEN Dedicated Short Range Communication (CEN DSRC) equipment and Intelligent Transport Systems (ITS) operating in the 5 GHz frequency range".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Carrier aggregation band: A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

Carrier aggregation bandwidth class: A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

Carrier aggregation configuration: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

Contiguous carriers: A set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous resource allocation: A resource allocation of consecutive resource blocks within one carrier or across contiguously aggregated carriers. The gap between contiguously aggregated carriers due to the nominal channel spacing is allowed.

Contiguous spectrum: Spectrum consisting of a contiguous block of spectrum with no sub-block gaps.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

Sub-block: This is one contiguous allocated block of spectrum for transmission and reception by the same UE. There may be multiple instances of sub-blocks within an RF bandwidth.

Sub-block bandwidth: The bandwidth of one sub-block.

Sub-block gap: A frequency gap between two consecutive sub-blocks within an RF bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation.

UE transmission bandwidth configuration: Set of resource blocks located within the UE channel bandwidth which may be used for transmitting or receiving by the UE.

Vehicular UE: A UE embedded in a vehicle, permanently connected to an embedded antenna system that radiates externally for NR operating bands.

NOTE: Vehicular UE does not refer to other UE form factors placed inside the vehicle.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

 $\begin{array}{ll} \Delta F_{Global} & Granularity \ of \ the \ global \ frequency \ raster \\ \Delta F_{Raster} & Band \ dependent \ channel \ raster \ granularity \\ \Delta f_{OOB} & \Delta \ Frequency \ of \ Out \ Of \ Band \ emission \end{array}$

 $\begin{array}{lll} \Delta F_{TX-RX} & \Delta \ Frequency \ of \ default \ TX-RX \ separation \ of \ the \ FDD \ operating \ band \\ \Delta MPR_c & Allowed \ Maximum \ Power \ Reduction \ relaxation \ for \ serving \ cell \ c \\ \Delta P_{PowerClass} & Adjustment \ to \ maximum \ output \ power \ for \ a \ given \ power \ class \end{array}$

 $\Delta_{RB} \qquad \qquad \text{The starting frequency offset between the allocated RB and the measured non-allocated $RB\Delta R_{IB,c}$}$

Allowed reference sensitivity relaxation due to support for inter-band CA operation, for serving

cell c

 $\Delta R_{IB,4R}$ Reference sensitivity adjustment due to support for 4 antenna ports

 Δ_{Shift} Channel raster offset

 $\Delta T_{\rm C}$ Allowed operating band edge transmission power relaxation

 $\Delta T_{C,c}$ Allowed operating band edge transmission power relaxation for serving cell c

ΔT_{IB,c} Allowed maximum configured output power relaxation due to support for inter-band CA

operation, inter-band EN-DC operation and due to support for SUL operations, for serving cell c

BW_{Channel} Channel bandwidth

 $BW_{Channel,block} \qquad \text{Sub-block bandwidth, expressed in MHz. } BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} - F_{edge,block,low} - F_{edge,block,high} - F_{edge,block,low} - F_{edge,block,high} - F_{e$

BW_{Channel_CA} Aggregated channel bandwidth, expressed in MHz

BW_{Channel,max} Maximum channel bandwidth supported among all bands in a release

 BW_{GB} max($BW_{GB,Channel(k)}$)

 $BW_{GB,Channel(k)}$ Minimum guard band defined in clause 5.3A.1 of carrier k

 $\begin{array}{ll} BW_{DL} & Channel \ bandwidth \ for \ DL \\ BW_{UL} & Channel \ bandwidth \ for \ UL \\ BW_{interferer} & Bandwidth \ of \ the \ interferer \end{array}$

 $F_{C,block, high}$ Fc of the highest transmitted/received carrier in a *sub-block* Fc.block, low Fc of the lowest transmitted/received carrier in a *sub-block*

 $\begin{array}{lll} F_{C,low} & The \ Fc \ of \ the \ lowest \ carrier, \ expressed \ in \ MHz \\ F_{C,high} & The \ Fc \ of \ the \ highest \ carrier, \ expressed \ in \ MHz \\ F_{DL_low} & The \ lowest \ frequency \ of \ the \ downlink \ operating \ band \\ F_{UL_low} & The \ lowest \ frequency \ of \ the \ uplink \ operating \ band \\ F_{UL_high} & The \ highest \ frequency \ of \ the \ uplink \ operating \ band \\ \hline \end{array}$

$$\begin{split} F_{\text{edge,block,low}} & \quad \text{The lower } \textit{sub-block} \text{ edge, where } F_{\text{edge,block,low}} = F_{\text{C,block,low}} - F_{\text{offset, low.}} \\ F_{\text{edge,block,high}} & \quad \text{The upper } \textit{sub-block} \text{ edge, where } F_{\text{edge,block,high}} = F_{\text{C,block,high}} + F_{\text{offset, high.}} \end{split}$$

 $\begin{array}{ll} F_{\text{edge, low}} & \text{The } \textit{lower edge} \ \text{of } \textit{aggregated channel bandwidth}, \ \text{expressed in MHz.} \ F_{\text{edge,low}} = F_{\text{C,low}} - F_{\text{offset,low.}} \\ F_{\text{edge, high}} & \text{The } \textit{higher edge} \ \text{of } \textit{aggregated channel bandwidth}, \ \text{expressed in MHz.} \ F_{\text{edge,high}} = F_{\text{C,high}} + F_{\text{offset,high.}} \\ F_{\text{Interferer}} (\text{offset}) & \text{Frequency offset of the interferer (between the center frequency of the interferer and the carrier} \\ \end{array}$

frequency of the carrier measured)

F_{Interferer} Frequency of the interferer

F_{Ioffset} Frequency offset of the interferer (between the center frequency of the interferer and the closest

edge of the carrier measured)

 F_{offset} Frequency offset from F_{C_high} to the *higher edge* or F_{C_low} to the *lower edge*.

 $F_{offset,high} \hspace{1.5cm} Frequency \hspace{0.1cm} offset \hspace{0.1cm} from \hspace{0.1cm} F_{C,high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{RF} \hspace{0.1cm} \textit{Bandwidth} \hspace{0.1cm} \textit{edge}, \hspace{0.1cm} or \hspace{0.1cm} from \hspace{0.1cm} F_{C,block,\hspace{0.1cm} high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{RF} \hspace{0.1cm} \textit{Bandwidth} \hspace{0.1cm} \textit{edge}, \hspace{0.1cm} or \hspace{0.1cm} from \hspace{0.1cm} F_{C,block,\hspace{0.1cm} high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{RF} \hspace{0.1cm} \textit{Bandwidth} \hspace{0.1cm} \textit{edge}, \hspace{0.1cm} or \hspace{0.1cm} from \hspace{0.1cm} F_{C,block,\hspace{0.1cm} high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{RF} \hspace{0.1cm} \textit{Bandwidth} \hspace{0.1cm} \textit{edge}, \hspace{0.1cm} or \hspace{0.1cm} from \hspace{0.1cm} F_{C,block,\hspace{0.1cm} high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{RF} \hspace{0.1cm} \textit{Bandwidth} \hspace{0.1cm} \textit{edge}, \hspace{0.1cm} or \hspace{0.1cm} from \hspace{0.1cm} F_{C,block,\hspace{0.1cm} high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{IS} \hspace{0.1cm} \textit{All} \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{All} \hspace{0.1cm} \textit{IS} \hspace{0.1cm} \textit{I$

sub-block edge

 $F_{offset,low} \qquad \qquad Frequency \ offset \ from \ F_{C,low} \ to \ the \ lower \ \textit{UE RF Bandwidth edge}, \ or \ from \ F_{C,block, \ low} \ to \ the \ lower \ degree \ from \ F_{C,block, \ low} \ to \ the \ lower \ degree \ from \ F_{C,block, \ low} \ to \ the \ lower \ degree \ from \ F_{C,block, \ low} \ to \ the \ lower \ degree \ from \ fr$

sub-block edge

F_{OOB} The boundary between the NR out of band emission and spurious emission domains

 $\begin{array}{ll} F_{REF} & RF \ reference \ frequency \\ F_{REF-Offs} & Offset \ used \ for \ calculating \ F_{REF} \end{array}$

F_{REF,Shift} RF reference frequency for Supplementary Uplink (SUL) bands and for the uplink for all FDD

bands

 F_{uw} (offset) The frequency separation of the center frequency of the carrier closest to the interferer and the

center frequency of the interferer

GB_{Channel} Minimum guard band defined in clause 5.3.3

L_{CRB} Transmission bandwidth which represents the length of a contiguous resource block allocation

expressed in units of resources blocks

Max()The largest of given numbersMin()The smallest of given numbers n_{PRB} Physical resource block number

NR_{ACLR} NR ACLR

N_{RB} Transmission bandwidth configuration, expressed in units of resource blocks

 N_{RB_agg} The number of the aggregated RBs within the fully allocated aggregated channel bandwidth

 $N_{RB_{agg}} = \sum_{1}^{j} N_{RB_{j}} * 2^{\mu_{j}}$ for carrier 1 to j, where μ is defined in TS 38.211 [6]

N_{RB,c} The transmission bandwidth configuration of component carrier c, expressed in units of resource

blocks

 $N_{RB,cj} = N_{RB_i} * 2^{\mu_j}$ for carrier j, where μ is defined in TS 38.211 [6]

 $N_{RB,largest\;BW}$ The largest transmission bandwidth configuration of the component carriers in the bandwidth

combination, expressed in units of resource blocks

 $N_{RB,low}$ The transmission bandwidth configurations according to Table 5.3.2-1 for the lowest assigned

component carrier in clause 5.3A.1

N_{RB,high} The transmission bandwidth configurations according to Table 5.3.2-1 for the highest assigned

component carrier in clause 5.3A.1

NR Absolute Radio Frequency Channel Number (NR-ARFCN)

 $N_{REF-Offs}$ Offset used for calculating N_{REF}

P_{CMAX} The configured maximum UE output power

 $P_{CMAX, c}$ The configured maximum UE output power for serving cell c

 $P_{CMAX, f, c}$ The configured maximum UE output power for carrier f of serving cell c in each slot

P_{EMAX} Maximum allowed UE output power signalled by higher layers

 $P_{EMAX, c}$ Maximum allowed UE output power signalled by higher layers for serving cell c

P_{Interferer} Modulated mean power of the interferer

Plargest BW Power of the largest transmission bandwidth configuration of the component carriers in the

bandwidth combination

 $P_{PowerClass} \qquad \qquad P_{PowerClass} \ is \ the \ nominal \ UE \ power \ (i.e., \ no \ tolerance)$

 $\begin{array}{ll} \text{P-MPR}_c & \text{Maximum allowed UE output power reduction for serving cell } c \\ \text{P}_{\text{RB}} & \text{The transmitted power per allocated RB, measured in dBm} \\ \text{P}_{\text{UMAX}} & \text{The measured configured maximum UE output power} \end{array}$

Puw Power of an unwanted DL signal Pw Power of a wanted DL signal

RB_{start} Indicates the lowest RB index of transmitted resource blocks

RB_{start CA} Indicates the lowest RB index of transmitted resource blocks for intra-band continguous CA

SCS_c SCS for the component carrier c

SCS_{largest BW} SCS for the largest transmission bandwidth configuration of the component carriers in the

bandwidth combination

SCS_{low} SCS for the lowest assigned component carrier in clause 5.3A.1 SCS_{high} SCS for the highest assigned component carrier in clause 5.3A.1

 $T(P_{CMAX}, f, c)$ Tolerance for applicable values of P_{CMAX}, f, c for configured maximum UE output power for carrier

f of serving cell c

T_{L.c} Absolute value of the lower tolerance for the applicable *operating band* as specified in clause 6.2.1

SS_{REF} SS block reference frequency position

UTRA_{ACLR} UTRA ACLR

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

A-MPR Additional Maximum Power Reduction

BS Base Station
BW Bandwidth
BWP Bandwidth Part
CA Carrier Aggregation

CA_nX-nY Inter-band CA of component carrier(s) in one sub-block within Band X and component carrier(s)

in one sub-block within Band Y where X and Y are the applicable NR operating band

CC Component Carriers
CG Carrier Group
CP-OFDM Cyclic Prefix-OFDM
CW Continuous Wave
DC Dual Connectivity

DFT-s-OFDM Discrete Fourier Transform-spread-OFDM

DM-RS Demodulation Reference Signal

DTX Discontinuous TransmissionE-UTRA Evolved UTRA

EIRP Equivalent Isotropically Radiated Power

EVM Error Vector Magnitude
FR Frequency Range
FRC Fixed Reference Channel
FWA Fixed Wireless Access

GSCN Global Synchronization Channel Number

IBB In-band Blocking

IDFT Inverse Discrete Fourier Transformation ITS Intelligent Transportation System

ITU-R Radiocommunication Sector of the International Telecommunication Union

MBW Measurement bandwidth defined for the protected band

MCG Master Cell Group MOP Maximum Output Power

MPR Allowed maximum power reduction
MSD Maximum Sensitivity Degradation

NR New Radio

NR-ARFCN NR Absolute Radio Frequency Channel Number

NS Network Signalling

OCNG OFDMA Channel Noise Generator

OOB Out-of-band

P-MPR Power Management Maximum Power Reduction

PRB Physical Resource Block

PSCCH Physical Sidelink Control CHannel PSSCH Physical Sidelink Shared CHannel QAM Quadrature Amplitude Modulation

RE Resource Element
REFSENS Reference Sensitivity
RF Radio Frequency

RMS Root Mean Square (value)

RSRP Reference Signal Receiving PowerRx Receiver

SC Single Carrier

SCG Secondary Cell Group
SCS Subcarrier spacing
SDL Supplementary Downlink
SEM Spectrum Emission Mask

SL Sidelink

SL-MIMO Sidelink-Multiple Antenna transmission

SNR Signal-to-Noise Ratio

SRS Sounding Reference SymbolSUL Supplementary uplink

SS Synchronization Symbol
TAE Time Alignment Error
TAG Timing Advance Group

Tx Transmitter

UL MIMO Uplink Multiple Antenna transmission

V2X Vehicle to Everythin

4 General

4.1 Relationship between minimum requirements and test requirements

The present document is a Single-RAT specification for NR UE, covering RF characteristics and minimum performance requirements. Conformance to the present specification is demonstrated by fulfilling the test requirements specified in the conformance specification 3GPP TS 38.521-1 [4].

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 38.521-1 [4] defines test tolerances. These test tolerances are individually calculated for each test. The test tolerances are used to relax the minimum requirements in this specification to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined by the shared risk principle.

The shared risk principle is defined in Recommendation ITU-R M.1545 [5].

4.2 Applicability of minimum requirements

- a) In this specification the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The spurious emissions power requirements are for the long-term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal
- d) All the requirements for intra-band contiguous and non-contiguous CA apply under the assumption of the same slot format indicated by UL-DL-configuration-common in the PCell and SCells for NR SA.

4.3 Specification suffix information

Unless stated otherwise the following suffixes are used for indicating at 2nd level clause, shown in Table 4.3-1.

 Clause suffix
 Variant

 None
 Single Carrier

 A
 Carrier Aggregation (CA)

 B
 Dual-Connectivity (DC)

 C
 Supplement Uplink (SUL)

 D
 UL MIMO

 E
 V2X

Table 4.3-1: Definition of suffixes

A terminal which supports the above features needs to meet both the general requirements and the additional requirement applicable to the additional clause (suffix A, B, C, D and E) in clauses 5, 6 and 7. Where there is a difference in requirement between the general requirements and the additional clause requirements (suffix A, B, C, D and E) in clauses 5, 6 and 7, the tighter requirements are applicable unless stated otherwise in the additional clause.

A terminal which supports more than one feature in clauses 5, 6 and 7 shall meet all of the separate corresponding requirements.

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly. For a terminal that supports SUL, the current version of the specification assumes the terminal is not configured with UL MIMO on SUL carrier.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NR can operate according to this version of the specification are identified as described in Table 5.1-1.

Table 5.1-1: Definition of frequency ranges

Frequency range designation	Corresponding frequency range
FR1	410 MHz – 7125 MHz
FR2	24250 MHz – 52600 MHz

The present specification covers FR1 operating bands.

5.2 Operating bands

NR is designed to operate in the FR1 operating bands defined in Table 5.2-1.

Table 5.2-1: NR operating bands in FR1

onereting.	NR Uplink (UL) operating band Downlink (DL) operating band erating BS receive / UE transmit BS transmit / UE receive		Duplex Mode
operating band	F _{UL low} - F _{UL high}		Wode
Danu	and Ful_low - Ful_high FDL_low - FDL_high		
n1			FDD
n2			FDD
n3			FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD
n7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD
n14	788 MHz – 798 MHz	758 MHz – 768 MHz	FDD
n18	815 MHz – 830 MHz	860 MHz – 875 MHz	FDD
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD
n26	814 MHz – 849 MHz	859 MHz – 894 MHz	FDD
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD
n29	N/A	717 MHz – 728 MHz	SDL
n30 ³	2305 Mhz – 2315 MHz	2350 MHz – 2360 MHz	FDD
n34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD
n38 ¹⁰	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
n40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD
n41			TDD
n47 ¹¹			TDD ¹⁰
n48 3550 MHz – 3700 MHz 3550 MHz – 3700 MHz		TDD	
		1432 MHz – 1517 MHz	TDD ¹
	n51 1427 MHz – 1432 MHz 1427 MHz – 1432 MHz		TDD
	n53 2483.5 MHz – 2495 MHz 2483.5 MHz – 2495 MHz		TDD
	n65 1920 MHz – 2010 MHz 2110 MHz – 2200 MHz		FDD ⁴
	n66 1710 MHz – 1780 MHz 2110 MHz – 2200 MHz		FDD
n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
	n71 663 MHz – 698 MHz 617 MHz – 652 MHz		FDD
	n74 1427 MHz – 1470 MHz 1475 MHz – 1518 MHz		FDD
n75			SDL
n76	N/A	1427 MHz – 1432 MHz	SDL
n77 ¹²	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD
n79	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n80	1710 MHz – 1785 MHz	N/A	SUL
n81	880 MHz – 915 MHz	N/A	SUL
n82	832 MHz – 862 MHz	N/A	SUL
n83	703 MHz – 748 MHz	N/A	SUL
n84	1920 MHz – 1980 MHz	N/A	SUL
n86	1710 MHz – 1780 MHz	N/A	SUL
n89			SUL
n90	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD ⁵
n91	832 MHz – 862 MHz	1427 MHz – 1432 MHz	FDD ⁹
n92	832 MHz – 862 MHz	1432 MHz – 1517 MHz	FDD ⁹
n93	880 MHz – 915 MHz	1427 MHz – 1432 MHz	FDD ⁹
n94	880 MHz – 915 MHz	1432 MHz – 1517 MHz	FDD ⁹
n95 ⁸	2010 MHz – 2025 MHz	N/A	SUL

- NOTE 1: UE that complies with the NR Band n50 minimum requirements in this specification shall also comply with the NR Band n51 minimum requirements.
- NOTE 2: UE that complies with the NR Band n75 minimum requirements in this specification shall also comply with the NR Band n76 minimum requirements.
- NOTE 3: Uplink transmission is not allowed at this band for UE with external vehiclemounted antennas.
- NOTE 4: A UE that complies with the NR Band n65 minimum requirements in this specification shall also comply with the NR Band n1 minimum requirements.
- NOTE 5: Unless otherwise stated, the applicability of requirements for Band n90 is in accordance with that for Band n41; a UE supporting Band n90 shall meet the requirements for Band n41. A UE supporting Band n90 shall also support band n41.
- NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating band.
- NOTE 7: A UE that supports NR Band n66 and CA operation in any CA band shall also comply with the minimum requirements specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification.
- NOTE 8: This band is applicable in China only.
- NOTE 9: Variable duplex operation does not enable dynamic variable duplex configuration by the network, and is used such that DL and UL frequency ranges are supported independently in any valid frequency range for the band.
- NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions.
- NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band.
- NOTE 12: In the USA this band is restricted to 3700 3980 MHz.

5.2A Operating bands for CA

5.2A.0 General

CA operating bands including Band n90 are defined by the corresponding CA operating bands including Band n41 with Band n90 replacing Band n41. For brevity the said CA operating bands including Band n90 are not listed in the tables below but are covered by this specification.

5.2A.1 Intra-band CA

NR intra-band carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.1-1 and Table 5.2A.1-2, where all operating bands are within FR1.

Table 5.2A.1-1: Intra-band contiguous CA operating bands in FR1

NR CA Band	NR Band (Table 5.2-1)	
CA_n1	n1	
CA_n7	n7	
CA_n40	n40	
CA_n41	n41	
CA_n48	n48	
CA_n66	n66	
CA_n71	n71	
CA_n77	n77	
CA_n78	n78	
CA_n79	n79	

NOTE 1: The minimum requirements only apply for non simultaneous Tx/Rx between all carriers for TDD combinations.

Table 5.2A.1-2: Intra-band non-contiguous CA operating bands in FR1

NR CA Band	NR Band (Table 5.2-1)	
CA_n3(*)	n3	
CA_n7(*)	n7	
CA_n25(*)	n25	
CA_n41(*)	n41	
CA_n48(*)	n48	
CA_n66(*)	n66	
CA_n77(*)	n77	
CA_n78(*)	n78	

NOTE 1: The minimum requirements only apply for non simultaneous Tx/Rx between all carriers for

TDD combinations.

NOTE 2: The notation CA_nX(*) in this table indicates intra-band non-contiguous CA for band nX.

The configurations for each band are in 5.5A.2.

5.2A.2 Inter-band CA

NR inter-band carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.2.1-1, 5.2A.2.2-1 and Table 5.2A.2.3-1, where all operating bands are within FR1.

Table 5.2A.2-1: Void

Table 5.2A.2-2: Void

Table 5.2A.2-3: Void

5.2A.2.1 Inter-band CA (two bands)

Table 5.2A.2.1-1: Inter-band CA operating bands involving FR1 (two bands)

NR CA Band	NR Band
	(Table 5.2-1)
CA_n1-n3	n1, n3
CA_n1-n7 CA_n1-n8	n1, n7
CA_n1-n8 CA_n1-n28	n1, n8
CA_III-II26 CA_n1-n40	n1, n28 n1, n40
CA_n1-n41	n1, n41
CA_n1-n77	n1, n77
CA_n1-n78	n1, n78
CA_n1-n79	n1, n79
CA_n2-n5	n2, n5
CA_n2-n48	n2, n48
CA_n2-n66	n2, n66
CA_n2-n77	n2, n77
CA_n2-n78	n2, n78
CA_n3-n7	n3, n7
CA_n3-n8	n3, n8
CA_n3-n28	n3, n28
CA_n3-n38	n3, n38
CA_n3-n40	n3, n40
CA_n3-n41 CA_n3-n77 ¹	n3, n41 n3, n77
CA_n3-n78 ¹	n3, n78
CA_n3-n79 ¹	n3, n79
CA_n5-n7	n5, n7
CA_n5-n66	n5, n66
CA_n5-n77	n5, n77
CA_n5-n78	n5, n78
CA_n5-n79	n5, n79
CA_n7-n25	n7, n25
CA_n7-n28	n7, n28
CA_n7-n66	n7, n66
CA_n7-n78	n7, n78
CA_n8-n39 ¹	n8, n39
CA_n8-n40	n8, n40
CA_n8-n41 CA_n8-n75 ¹	n8, n41 n8, n75
CA_116-11751 CA n8-n781	n8, n78
CA_n8-n79 ¹	n8, n79
CA_n20-n28 ²	n20. n28
CA_n20-n75	n20, n75
CA_n20-n78	n20, n78
 CA_n25-n41	n25, n41
CA_n25-n66	n25, n66
CA_n25-n71	n25, n71
CA_n25-n78	n25,n78
CA_n28-n40	n28, n40
CA_n28-n41	n28, n41
CA_n28-n50	n28, n50
CA_n28-n75 ² CA_n28-n77	n28, n75
CA_n28-n77 CA_n28-n78 ¹	n28, n77 n28, n78
CA_n29-n66	n29, n66
CA_n29-n70	n29, n70
CA_n38-n66	n38, n66
CA_n38-n78 ¹	n38, n78
CA_n39-n40	n39, n40
CA_n39-n41	n39, n41
CA_n39-n79 ¹	n39, n79
 CA_n40-n41	n40, n41
CA_n40-n78	n40, n78
CA_n40-n79 ^{1,4}	n40, n79
CA_n41-n50 ¹	n41, n50
CA_n41-n66	n41, n66

CA_n41-n71 ¹	n41, n71
CA_n41-n78	n41, n78
CA_n41-n79 ^{1,3}	n41, n79
CA_n48-n66	n48, n66
CA_n50-n78	n50, n78
CA_n66-n70	n66, n70
CA_n66-n71	n66, n71
CA_n66-n77	n66, n77
CA_n66-n78	n66, n78
CA_n70-n71	n70, n71
CA_n75-n78 ¹	n75, n78
CA_n76-n78 ¹	n76, n78
CA_n77-n79	n77, n79
CA_n78-n79 ⁵	n78, n79
CA_n78-n92	n78, n92
CA_n78-n92	n78, n92

- NOTE 1: Applicable for UE supporting inter-band carrier aggregation with mandatory simultaneous Rx/Tx capability.
- NOTE 2: The frequency range in band n28 is restricted for this band combination to 703-733 MHz for the UL and 758-788 MHz for the DL.
- NOTE 3: The frequency range below 2506 MHz for Band n41 is not used in this combination.
- NOTE 4: Applicable for frequency range above 4800 MHz for Band n79 in this combination.
- NOTE 5: Simultaneous Rx/Tx capability does not apply for UEs supporting band n78 with a n77 implementation.

5.2A.2.2 Inter-band CA (three bands)

Table 5.2A.2.2-1: Inter-band CA operating bands involving FR1 (three bands)

NR CA Band	NR Band	
NIX CA Ballo	(Table 5.2-1)	
CA_n1-n3-n7	n1, n3, n7	
CA_n1-n3-n8	n1, n3, n8	
CA_n1-n3-n28	n1, n3, n28	
CA_n1-n3-n41 n1, n3, n41		
CA_n1-n3-n78	n1, n3, n78	
CA_n1-n7-n28	n1, n7, n28	
CA_n1-n7-n78	n1, n7, n78	
CA_n1-n8-n78	n1, n8, n78	
CA_n1-n28-n78	n1, n28, n78	
CA_n1-n40-n78	n1, n40, n78	
CA_n3-n7-n28	n3, n7, n28	
CA_n3-n7-n78	n3, n7, n78	
CA_n3-n8-n78	n3, n8, n78	
CA_n3-n28-n77	n3, n28, n77	
CA_n3-n28-n78	n3, n28, n78	
CA_n3-n40-n41	n3, n40, n41	
CA_n3-n41-n79	n3, n41, n79	
CA_n5-n66-n78	n5, n66, n78	
CA_n7-n25-n66	n7, n25, n66	
CA_n7-n28-n78	n7, n28, n78	
CA_n7-n66-n78		
CA_n8-n39-n41 n8, n39, n41		
CA_n8-n41-n79 n8, n41, n79		
CA_n20-n28-n78	n20, n28, n78	
CA_n25-n41-n66	n25, n41, n66	
CA_n25-n41-n71	n41, n66, n71	
CA_n25-n66-n71	n25, n66, n71	
CA_n25-n66-n78		
CA_n28-n40-n78	n28, n40, n78	
CA_n28-n41-n78	n28, n41, n78	
CA_n29-n66-n70	n29, n66, n70	
CA_n39-n41-n79	n39, n41, n79	
CA_n40-n41-n79 ^{1,2} n40, n41, n79		
CA_ n41-n66-n71		
CA_n66-n70-n71 n66, n70, n71		
NOTE 1: The frequency range below 2506 MHz for Band		

NOTE 1: The frequency range below 2506 MHz for Band n41 is not used in this band combination.

NOTE 2: Applicable for frequency range above 4800 MHz for Band n79 in this band combination.

5.2A.2.3 Inter-band CA (four bands)

Table 5.2A.2.3-1: Inter-band CA operating bands involving FR1 (four bands)

NR CA Band	NR Band (Table 5.2-1)	
CA_n1-n3-n7-n28	n1, n3, n7, n28	
CA_n1-n3-n7-n78	n1, n3, n7, n78	
CA_n1-n3-n8-n78	n1, n3, n8, n78	
CA_n1-n3-n28-n78	n1, n3, n28, n78	
CA_n3-n7-n28-n78	n3, n7, n28, n78	
CA_n7-n25-n66-n78	n7, n25, n66, n78	

5.2B Operating bands for DC

The operating bands are specified in clause 5.5B for operation with NR dual connectivity configured, where all operating bands are within FR1.

5.2C Operating band combination for SUL

NR operation is designed to operate in the operating band combination defined in Table 5.2C-1 and Table 5.2C-2, where all operating bands are within FR1.

Table 5.2C-1: Operating band combination for SUL in FR1

NR Band combination for SUL	NR Band (Table 5.2-1)	
SUL_n41-n80	n41, n80	
SUL_n41-n81	n41, n81	
SUL_n41-n95	n41, n95	
SUL_n77-n80 ²	n77, n80	
SUL_n77-n84 ²	n77, n84	
SUL_n78-n80 ²	n78, n80	
SUL_n78-n81 ²	n78, n81	
SUL_n78-n82 ²	n78, n82	
SUL_n78-n83 ²	n78, n83	
SUL_n78-n84 ²	n78, n84 n78, n86	
SUL_n78-n86 ²		
SUL_n79-n80 ²	n79, n80	
SUL_n79-n81 ²	n79, n81	
SUL_n79-n84	n79, n84	
SUL_n79-n95	n79, n95	
NOTE 1: If a UE is configured with both NR UL and NR SUL carriers in a cell, the switching time between NR UL carrier and NR SUL carrier is		

0 us.

NOTE 2: For UE supporting SUL band combination simultaneous Rx/Tx capability is mandatory.

For UE supporting SUL band combination, UL MIMO is not configured on SUL carrier

Table 5.2C-2: Operating SUL band combination with downlink CA in FR1

	d combination for SUL	NR Band (Table 5.2-1)
CA_n78(*)_SUL_n78-n86 ²	n78, n86
NOTE 1:		red with both NR UL and NR
		cell, the switching time
	between NR UL of	carrier and NR SUL carrier is
	0 us.	
NOTE 2: For UE supporting		g SUL band combination
simultaneous Rx/		Tx capability is mandatory.
NOTE 3: For UE supportin		g SUL band combination, UL
MIMO is not conf		gured on SUL carrier.
NOTE 4:	The notation CA_	nX(*) in this table indicates
	intra-band non-co	ontiguous CA for band nX.
	The configuration	s for each band are in table
	5.5C-2.	

5.2D Operating bands for UL MIMO

NR is designed to support UL MIMO where all of the operating bands are in FR1 defined in Table 5.2D-1.

Table 5.2D-1: NR operating bands for UL MIMO in FR1

NR operating band			
n1			
n2			
n3			
n7			
n25			
n30 ¹			
n34			
n38			
n39			
n40			
n41			
n48			
n66			
n70			
n71 ²			
n77			
n78			
n79			
NOTE 1: Uplink transmission is not allowed at this band			

NOTE 1: Uplink transmission is not allowed at this band for UE with external vehicle-mounted antennas.

NOTE 2: UL MIMO is targeted for FWA form factor.

5.2E Operating band for V2X

5.2E.1 V2X operating bands

NR V2X is designed to operate in the operating bands in FR1 defined in Table 5.2E.1-1.

Table 5.2E.1-1 V2X operating bands in FR1

V2X Operating	Sidelink (SL) Transmission operating band	Sidelink (SL) Reception operating band	Duplex	Interface
Band	Ful_low - Ful_high	FDL_low - FDL_high	Mode	
n38¹	2570 MHz - 2620 MHz	2570 MHz - 2620 MHz	HD	PC5
n47	5855 MHz - 5925 MHz	5855 MHz - 5925 MHz	HD	PC5

Note 1: In NR licensed bands, the NR V2X UE shall be operated synchronuous with adjacent NR UE in the licensed band.

5.2E.2 V2X operating bands for concurrent operation

NR V2X operation is designed to operate concurrent with NR uplink/downlink on the operating bands combinations listed in Table 5.2E.2-1.

Table 5.2E.2-1 Inter-band con-current V2X operating bands

V2X con-current operating Band	NR or V2X Operating Band	Interface		
V2X n71-n47	n71	Uu		
VZA_II/ I-II4/	n47	PC5		

5.3 UE channel bandwidth

5.3.1 General

The UE channel bandwidth supports a single NR RF carrier in the uplink or downlink at the UE. From a BS perspective, different UE channel bandwidths may be supported within the same spectrum for transmitting to and receiving from UEs connected to the BS. Transmission of multiple carriers to the same UE (CA) or multiple carriers to different UEs within the BS channel bandwidth can be supported.

From a UE perspective, the UE is configured with one or more BWP / carriers, each with its own UE channel bandwidth. The UE does not need to be aware of the BS channel bandwidth or how the BS allocates bandwidth to different UEs.

The placement of the UE channel bandwidth for each UE carrier is flexible but can only be completely within the BS channel bandwidth.

The relationship between the channel bandwidth, the guardband and the maximum transmission bandwidth configuration is shown in Figure 5.3.1-1.

Figure 5.3.1-1: Definition of the channel bandwidth and the maximum transmission bandwidth configuration for one NR channel

5.3.2 Maximum transmission bandwidth configuration

The maximum transmission bandwidth configuration N_{RB} for each UE channel bandwidth and subcarrier spacing is specified in Table 5.3.2-1.

Table 5.3.2-1: Maximum transmission bandwidth configuration N_{RB}

SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
	N _{RB}												
15	25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A	N/A
30	11	24	38	51	65	78	106	133	162	189	217	245	273
60	N/A	11	18	24	31	38	51	65	79	93	107	121	135

5.3.3 Minimum guardband and transmission bandwidth configuration

The minimum guardband for each UE channel bandwidth and SCS is specified in Table 5.3.3-1,

Table 5.3.3-1: Minimum guardband for each UE channel bandwidth and SCS (kHz)

SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
15	242.5	312.5	382.5	452.5	522.5	592.5	552.5	692.5	N/A	N/A	N/A	N/A	N/A
30	505	665	645	805	785	945	905	1045	825	965	925	885	845
60	N/A	1010	990	1330	1310	1290	1610	1570	1530	1490	1450	1410	1370

NOTE: The minimum guardbands have been calculated using the following equation: (BW_{Channel} x 1000 (kHz) - N_{RB} x SCS x 12) / 2 - SCS/2, where N_{RB} are from Table 5.3.2-1.

Figure 5.3.3-1: Void

The number of RBs configured in any channel bandwidth shall ensure that the minimum guardband specified in this clause is met.

Figure 5.3.3-2: UE PRB utilization

In the case that multiple numerologies are multiplexed in the same symbol due to BS transmission of SSB, the minimum guardband on each side of the carrier is the guardband applied at the configured channel bandwidth for the numerology that is received immediately adjacent to the guard.

If multiple numerologies are multiplexed in the same symbol and the UE channel bandwidth is >50 MHz, the minimum guardband applied adjacent to 15 kHz SCS shall be the same as the minimum guardband defined for 30 kHz SCS for the same UE channel bandwidth.

Figure 5.3.3-3 Guard band definition when transmitting multiple numerologies

NOTE: Figure 5.3.3-3 is not intended to imply the size of any guard between the two numerologies. Internumerology guard band within the carrier is implementation dependent.

5.3.4 RB alignment

For each numerology, its common resource blocks are specified in Clause 4.4.4.3 in TS 38.211 [6], and the starting point of its transmission bandwidth configuration on the common resource block grid for a given channel bandwidth is indicated by an offset to "Reference point A" in the unit of the numerology. The *UE transmission bandwidth configuration* is indicated by the higher layer parameter *carrierBandwidth* [7] and will fulfil the minimum UE guardband requirement specified in Clause 5.3.3.

5.3.5 UE channel bandwidth per operating band

The requirements in this specification apply to the combination of channel bandwidths, SCS and operating bands shown in Table 5.3.5-1. The transmission bandwidth configuration in Table 5.3.2-1 shall be supported for each of the specified channel bandwidths. The channel bandwidths are specified for both the TX and RX path.

NR band / SCS / UE Channel bandwidth NR SCS 5 10 15 30 40 50 70 80 90 100 20MHz MHz MHz kHz MHz **Band** Yes Yes Yes 15 Yes Yes Yes Yes Yes n1 30 Yes Yes Yes Yes Yes Yes Yes 60 Yes Yes Yes Yes Yes Yes Yes Yes 15 Yes Yes Yes n2 30 Yes Yes Yes 60 Yes Yes Yes Yes Yes 15 Yes Yes Yes Yes Yes n3 30 Yes Yes Yes Yes Yes Yes Yes 60 Yes Yes Yes Yes Yes 15 Yes Yes Yes Yes n5 30 Yes Yes Yes 60 Yes Yes Yes Yes Yes Yes 15 Yes Yes 30 Yes Yes Yes Yes n7 Yes Yes Yes Yes Yes Yes Yes 60 Yes Yes Yes 15 Yes Yes Yes Yes n8 30 Yes Yes Yes 60 15 Yes Yes Yes 30 Yes Yes n12 60 15 Yes Yes n14 30 Yes 60 15 Yes Yes Yes n18 30 Yes Yes 60 Yes Yes 15 Yes Yes n20 30 Yes Yes Yes 60 Yes Yes Yes 15 Yes Yes Yes Yes 30 Yes Yes Yes n25 Yes Yes Yes 60 Yes Yes Yes Yes Yes Yes 15 Yes Yes Yes Yes n26 30 Yes Yes Yes

Table 5.3.5-1 Channel bandwidths for each NR band

	NR band / SCS / UE Channel bandwidth													
NR	SCS	5	10	15 MU-	20MHz	25	30	40	50	60	70	80	90	100
Band	kHz 15	MHz	MHz	MHz	Yes ⁷	MHz	MHz Yes ⁷	MHz	MHz	MHz	MHz	MHz	MHz	MHz
n28	30	Yes	Yes Yes	Yes Yes	Yes ⁷		Yes ⁷							
1120	60		103	163	163		163							
	15	Yes	Yes											
n29	30	163	Yes											
1123	60		103											
	15	Yes	Yes											
n30	30	103	Yes											
1130	60		103											
	15	Yes	Yes	Yes										
n34	30	100	Yes	Yes										
110-4	60		Yes	Yes										
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
n38	30	100	Yes	Yes	Yes	Yes	Yes	Yes						
1100	60		Yes	Yes	Yes	Yes	Yes	Yes						
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
n39	30	100	Yes	Yes	Yes	Yes	Yes	Yes						
1100	60		Yes	Yes	Yes	Yes	Yes	Yes						
	15	Yes ⁹	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes		
	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes		
	15		Yes	Yes	Yes		Yes	Yes	Yes					
n41	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	Yes
	60		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	Yes
	15	Yes ⁵	Yes	Yes	Yes			Yes	Yes ⁶					
n48	30		Yes	Yes	Yes			Yes	Yes ⁶	Yes ⁶		Yes ⁶	Yes ^{6,4}	Yes ⁶
	60		Yes	Yes	Yes			Yes	Yes ⁶	Yes ⁶		Yes ⁶	Yes ^{6,4}	Yes ⁶
	15		Yes		Yes		Yes	Yes						
n47 ¹⁰	30		Yes		Yes		Yes	Yes						
	60		Yes		Yes		Yes	Yes						
	15	Yes ⁵	Yes	Yes	Yes		Yes	Yes	Yes					
n50	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes ³		
	60		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes ³		
	15	Yes												
n51	30													
	60													
	15	Yes	Yes											
n53	30		Yes											
	60		Yes											
	15	Yes	Yes	Yes	Yes				Yes					
n65	30		Yes	Yes	Yes				Yes					
	60		Yes	Yes	Yes				Yes					
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
n66	30		Yes	Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes	Yes						
	15	Yes	Yes	Yes	Yes ³	Yes ³								
n70	30		Yes	Yes	Yes ³	Yes ³								
	60		Yes	Yes	Yes ³	Yes ³								
	15	Yes	Yes	Yes	Yes									
n71	30		Yes	Yes	Yes									
	60													
	15	Yes	Yes	Yes	Yes									
n74	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
n75	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					

					NR band	d / SCS	/ UE C	hannel	bandwid	dth				
NR Band	SCS kHz	5 MHz	10 MHz	15 MHz	20MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
	15	Yes												
n76	30													
	60													
	15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
n77	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes ⁴	Yes	Yes ⁴	Yes
	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes ⁴	Yes	Yes ⁴	Yes
	15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes ⁴	Yes	Yes	Yes
	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes ⁴	Yes	Yes	Yes
	15							Yes	Yes					
n79	30							Yes	Yes	Yes		Yes		Yes
	60							Yes	Yes	Yes		Yes		Yes
	15	Yes	Yes	Yes	Yes	Yes	Yes							
n80	30		Yes	Yes	Yes	Yes	Yes							
	60		Yes	Yes	Yes	Yes	Yes							
	15	Yes	Yes	Yes	Yes									
n81	30		Yes	Yes	Yes									
	60													
	15	Yes	Yes	Yes	Yes									
n82	30		Yes	Yes	Yes									
	60													
	15	Yes	Yes	Yes	Yes									
n83	30		Yes	Yes	Yes									
	60													
	15	Yes	Yes	Yes	Yes									
n84	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
	15	Yes	Yes	Yes	Yes			Yes						
n86	30		Yes	Yes	Yes			Yes						
	60		Yes	Yes	Yes			Yes						
	15	Yes	Yes	Yes	Yes									
n89	30		Yes	Yes	Yes									
	60													
	15		Yes	Yes	Yes		Yes	Yes	Yes					
n90	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	Yes
	60		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	Yes
	15	Yes	Yes ⁸											
n91	30													
	60													
	15	Yes	Yes	Yes	Yes									
n92	30		Yes	Yes	Yes									
	60													
	15	Yes	Yes ⁸											
n93	30													
	60		.,		.,									
	15	Yes	Yes	Yes	Yes									1
n94	30		Yes	Yes	Yes									
	60		.,											
	15	Yes	Yes	Yes										1
n95	30		Yes	Yes										1
	60		Yes	Yes										

NR band / SCS / UE Channel bandwidth														
NR	SCS	5	10	15	20MHz	25	30	40	50	60	70	80	90	100
Band	kHz	MHz	MHz	MHz	ZUIVII IZ	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NOTE	1: Void	d.												
NOTE:	2: Void	d.												
NOTE:	3: This	s UE ch	annel b	andwid	th is applic	cable or	nly to do	wnlink.						
NOTE -	4: This	s UE ch	annel b	andwid	th is option	nal in th	is relea	se of the	e specific	cation.				
NOTE:	5: For	this bar	ndwidth	i, the mi	nimum re	quireme	ents are	restricte	ed to ope	eration w	hen car	rier is co	nfigured a	as an
	SC	ell part o	of DC o	r CA co	nfiguration	٦.								
NOTE	6: For	this bar	ndwidth	i, the mi	nimum re	quireme	ents are	restricte	ed to ope	eration w	hen car	rier is co	nfigured a	as an
					configura									
NOTE					n, the mini									onfined
					728-738 N									
	specified for NR UL transmission bandwidth configuration confined to either 703-733 or 718-748 MHz.													
	NOTE 8: This UE channel bandwidth is applicable only to uplink.													
NOTE	9: For	this bar	ndwidth	i, the mi	nimum re	quireme	ents are	restricte	ed to ope	eration w	hen car	rier is co	nfigured a	as an
	SC	ell part d	of DC o	r CA co	nfiguration	า								

5.3.6 Asymmetric channel bandwidths

NOTE 10: This UE channel bandwidth is applicable only to sidelink operation.

The UE channel bandwidth can be asymmetric in downlink and uplink. In asymmetric channel bandwidth operation, the narrower carrier shall be confined within the frequency range of the wider channel bandwidth.

In FDD, the confinement is defined as a deviation to the Tx-Rx carrier center frequency separation (defined in table 5.4.4-1) as following:

$$\Delta F_{TX-RX} = |(BW_{DL} - BW_{UL})/2|$$

The operating bands and supported asymmetric channel bandwidth combinations are defined in table 5.3.6-1.

Table 5.3.6-1: FDD asymmetric UL and DL channel bandwidth combinations

NR Band	Channel bandwidths for UL (MHz)	Channel bandwidths for DL (MHz)	Asymmetric channel bandwidth combination set					
	5, 10	20, 40	0					
n66	20	40						
1100	5, 10	20, 25, 30, 40	1					
	20, 25, 30	40						
n70	5	10, 15	0					
1170	5, 10, 15	20, 25						
	5	10	0					
n71	10	15						
	15	20						
n91 ¹	10	5	0					
n92 ¹	5	10, 15, 20	0					
	10	15, 20						
n93 ¹	10	5	0					
n94 ¹	5	10, 15, 20	0					
	10	15, 20						
NOTE 1: The	NOTE 1: The assignment of the paired UL and DL channels are subject to a TX-							

RX separation as specified in clause 5.4.4.

In TDD, the operating bands and supported asymmetric channel bandwidth combinations are defined in table 5.3.6-2.

Table 5.3.6-2: TDD asymmetric UL and DL channel bandwidth combinations

N	NR Band	Channel	Channel						
		bandwidths for UL (MHz)	bandwidths for DL (MHz)						
	n50	60	80						
NC		Both centre frequency and BWP-ID shall match between DL and UL carriers as defined in TS							
NC	OTE 2: In a BWI	38.331 [7] cl. 6.3.2 and TS 38.213 [8] section 12. In a case a UE is configured with a full width of BWP within both UL/ DL channels, the centre							
NC	OTE 3: A po	uency of UL/ DL channel osition of Point A is comn carriers as defined in TS	non between UL and						

5.3A UE channel bandwidth for CA

5.3A.1 General

Figure 5.3A.1-1: Void

Figure 5.3A.1-2: Void

5.3A.2 Maximum transmission bandwidth configuration for CA

For carrier aggregation, the maximum transmission bandwidth configuration is defined per component carrier and the requirement is specified in clause 5.3.2.

5.3A.3 Minimum guardband and transmission bandwidth configuration for CA

For intra-band contiguous carrier aggregation, *Aggregated Channel Bandwidth* and *Guard Bands* are defined as follows, see Figure 5.3A.3-1.

Figure 5.3A.3-1: Definition of Aggregated Channel Bandwidth for intra-band carrier aggregation

The aggregated channel bandwidth, BWChannel_CA, is defined as

 $BW_{Channel_CA} = F_{edge,high} - F_{edge,low} \ (MHz).$

The lower bandwidth edge $F_{\text{edge, low}}$ and the upper bandwidth edge $F_{\text{edge, high}}$ of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

$$F_{edge,low} = F_{C,low} - F_{offset,low}$$

$$F_{edge,high} = F_{C,high} + F_{offset,high}$$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$\begin{split} F_{offset,low} &= (N_{RB,low}*12 + 1)*SCS_{low}/2 + BW_{GB} \, (MHz) \\ F_{offset,high} &= (N_{RB,high}*12 - 1)*SCS_{high}/2 + BW_{GB} \, (MHz) \\ BW_{GB} &= max(BW_{GB,Channel(k)}) \end{split}$$

 $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier, SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier respectively. SCS_{low} , SCS_{high} , $N_{RB,low}$, $N_{RB,high}$, and $BW_{GB,Channel(k)}$ use the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1 and $BW_{GB,Channel(k)}$ is the minimum guard band for carrier k according to Table 5.3.3-1 for the said μ value.

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.3A.3-2.

Figure 5.3A.3-2: Definition of sub-block bandwidth for intra-band non-contiguous spectrum

The lower sub-block edge of the Sub-block Bandwidth (BW_{Channel,block}) is defined as

$$F_{edge,block, low} = F_{C,block,low} - F_{offset, low}$$

The upper sub-block edge of the Sub-block Bandwidth is defined as

$$F_{edge,block,high} = F_{C,block,high} + F_{offset,high}.$$

The Sub-block Bandwidth, BW_{Channel,block}, is defined as follows:

$$BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} (MHz)$$

The lower and upper frequency offsets $F_{offset,block,low}$ and $F_{offset,block,high}$ depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

$$\begin{split} F_{offset,block,low} = & \ (N_{RB,low}*12+1)*SCS_{low}/2 + BW_{GB} \, (MHz) \\ F_{offset,block,high} = & \ (N_{RB,high}*12-1)*SCS_{high}/2 + BW_{GB} \, (MHz) \\ BW_{GB} = & \ max(BW_{GB,Channel(k)}) \end{split}$$

where $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier within a sub-block, respectively. SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier within a sub-block, respectively. SCS_{low} , SCS_{high} , $N_{RB,low}$, $N_{RB,high}$, and $BW_{GB,Channel(k)}$ use the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1 and $BW_{GB,Channel(k)}$ is the minimum guard band for carrier k according to Table 5.3.3-1 for the said μ value.

The sub-block gap size between two consecutive sub-blocks W_{gap} is defined as

$$W_{gap} = F_{edge,block n+1,low} - F_{edge,block n,high} (MHz)$$

5.3A.4 Void

5.3A.5 UE channel bandwidth per operating band for CA

The requirements for carrier aggregation in this specification are defined for carrier aggregation configurations.

For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class with associated bandwidth combination sets specified in clause 5.5A.1. For each carrier aggregation configuration, requirements are specified for all aggregated channel bandwidths contained in a bandwidth combination set, a UE can indicate support of several bandwidth combination sets per carrier aggregation configuration. For intra-band non-contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting two or more sub-blocks, each supporting a carrier aggregation bandwidth class.

For inter-band carrier aggregation, a carrier aggregation configuration is a combination of operating bands, each supporting a carrier aggregation bandwidth class.

NR CA bandwidth class **Number of contiguous** Aggregated channel bandwidth Fallback group CC BW_{Channel} ≤ BW_{Channel,max} Α 1 В 20 MHz ≤ BW_{Channel_CA} ≤ 100 MHz 2 100 MHz < BW_{Channel_CA} ≤ 2 x 2 BW_{Channel,max} 200 MHz < BW_{Channel_CA} ≤ 3 x D 3 BW_{Channel,max} Ε 300 MHz < BW_{Channel CA} ≤ 4 x 4 BW_{Channel,max} 100 MHz < BW_{Channel_CA} \le 150 MHz 2 G Н $150 \text{ MHz} < BW_{Channel_CA} \le 200 \text{ MHz}$ 4 $200 \text{ MHz} < BW_{Channel_CA} \le 250 \text{ MHz}$ 5 $250 \text{ MHz} < \text{BW}_{\text{Channel_CA}} \le 300 \text{ MHz}$ J 6 $300 \text{ MHz} < B_{\text{W}_{\text{Channel_CA}}} \le 350 \text{ MHz}$ K 7 $350 \text{ MHz} < BW_{Channel_CA} \le 400 \text{ MHz}$

Table 5.3A.5-1: NR CA bandwidth classes

NOTE 1: BW_{Channel, max} is maximum channel bandwidth supported among all bands in a release

NOTE 2: It is mandatory for a UE to be able to fallback to lower order NR CA bandwidth class configuration within a fallback group. It is not mandatory for a UE to be able to fallback to lower order NR CA bandwidth class configuration that belong to a different fallback group

5.3E Channel bandwidth for V2X

5.3E.1 General

NR V2X operation channel bandwidths for each operating band is specified in Table 5.3.5-1 in subclause 5.3.5. The same (symmetrical) channel bandwidth is specified for both the transmission and reception path.

5.3E.2 Channel bandwidth for V2X concurrent operation

For NR V2X inter-band con-current operation in FR1, the NR V2X channel bandwidths for each operating band is specified in Table 5.3E.2-1.

Table 5.3E.2-1: Inter-band con-current V2X configurations

V2X con-current operating band Configuration	NR Bands	SCS kHz	5 MHz	10 MHz	15 MHz	20 MHz	30 MHz	40 MHz	50 MHz	Maximum bandwidth [MHz]	Bandwidth combination set
		15	Yes	Yes	Yes	Yes				60	0
	n71	30		Yes	Yes	Yes					
\/O\/ = 74 A = 47 A		60									
V2X_n71A-n47A		15		Yes		Yes	Yes	Yes			
	n47	30		Yes		Yes	Yes	Yes			
		60		Yes		Yes	Yes	Yes			

5.4 Channel arrangement

5.4.1 Channel spacing

5.4.1.1 Channel spacing for adjacent NR carriers

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent NR carriers is defined as following:

- For NR operating bands with 100 kHz channel raster,

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2$

- For NR operating bands with 15 kHz channel raster,

 $Nominal\ Channel\ spacing = (BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-5\ kHz,\ 0\ kHz,\ 5\ kHz\}\ for\ \Delta F_{Raster}\ equals\ 15\ kHz\}$

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-10 \text{ kHz}, 0 \text{ kHz}, 10 \text{ kHz}\}\$ for ΔF_{Raster} equals 30 kHz

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective NR carriers. The channel spacing can be adjusted depending on the channel raster to optimize performance in a particular deployment scenario.

5.4.2 Channel raster

5.4.2.1 NR-ARFCN and channel raster

The global frequency channel raster defines a set of RF reference frequencies $F_{REF.}$ The RF reference frequency is used in signalling to identify the position of RF channels, SS blocks and other elements.

The global frequency raster is defined for all frequencies from 0 to 100 GHz. The granularity of the global frequency raster is ΔF_{Global} .

RF reference frequencies are designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) in the range (0...2016666) on the global frequency raster. The relation between the NR-ARFCN and the RF reference frequency F_{REF} in MHz is given by the following equation, where $F_{REF-Offs}$ and $N_{Ref-Offs}$ are given in table 5.4.2.1-1 and N_{REF} is the NR-ARFCN.

 $F_{REF} = F_{REF\text{-}Offs} + \Delta F_{Global} \ (N_{REF} - N_{REF\text{-}Offs})$

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster

Frequency range (MHz)	ΔF _{Global} (kHz)	F _{REF-Offs} (MHz)	N _{REF-Offs}	Range of NREF
0 – 3000	5	0	0	0 - 599999
3000 – 24250	15	3000	600000	600000 - 2016666

The channel raster defines a subset of RF reference frequencies that can be used to identify the RF channel position in the uplink and downlink. The RF reference frequency for an RF channel maps to a resource element on the carrier. For each operating band, a subset of frequencies from the global frequency raster are applicable for that band and forms a channel raster with a granularity ΔF_{Raster} , which may be equal to or larger than ΔF_{Global} .

For SUL bands except n95 and for the uplink of all FDD bands defined in Table 5.2-1 and for Band n90

$$F_{REF. shift} = F_{REF} + \Delta_{shift}$$
, $\Delta_{shift} = 0$ kHz or 7.5 kHz.

where Δ_{shift} is signalled by the network in higher layer parameter frequencyShift7p5khz [7].

The mapping between the channel raster and corresponding resource element is given in Clause 5.4.2.2. The applicable entries for each operating band are defined in Clause 5.4.2.3

5.4.2.2 Channel raster to resource element mapping

The mapping between the RF reference frequency on the channel raster and the corresponding resource element is given in Table 5.4.2.2-1 and can be used to identify the RF channel position. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL. The mapping must apply to at least one numerology supported by the UE.

Table 5.4.2.2-1: Channel raster to resource element mapping

	N_{RB} mod2 = 0	N _{RB} mod2 = 1
Resource element index k	0	6
Physical resource block number $n_{ m PRB}$	$n_{\text{PRB}} = \left\lfloor \frac{N_{\text{RB}}}{2} \right\rfloor$	$n_{\text{PRB}} = \left\lfloor \frac{N_{\text{RB}}}{2} \right\rfloor$

k, n_{PRB} , N_{RB} are as defined in TS 38.211[6].

5.4.2.3 Channel raster entries for each operating band

The RF channel positions on the channel raster in each NR operating band are given through the applicable NR-ARFCN in Table 5.4.2.3-1, using the channel raster to resource element mapping in clause 5.4.2.2.

For NR operating bands with 100 kHz channel raster, $\Delta F_{Raster} = 20 \times \Delta F_{Global}$. In this case every 20^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as <20>.

For NR operating bands with 15 kHz channel raster below 3GHz, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{3,6\}$. Every I^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as < I >.

For NR operating bands with 15 kHz channel raster above 3GHz, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{1,2\}$. Every I^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in table 5.4.2.3-1 is given as < I >.

In frequency bands with two ΔF_{Raster} , the higher ΔF_{Raster} applies to channels using only the SCS that is equal to or larger than the higher ΔF_{Raster} and SSB SCS is equal to the higher ΔF_{Raster} .

Table 5.4.2.3-1: Applicable NR-ARFCN per operating band

NR	ΔF _{Raster}	Uplink	Downlink
operating band	(kHz)	Range of N _{REF} (First – <step size=""> – Last)</step>	Range of N _{REF} (First – <step size=""> – Last)</step>
n1	100	384000 - <20> - 396000	422000 - <20> - 434000
n2	100	370000 - <20> - 382000	386000 - <20> - 398000
n3	100	342000 - <20> - 357000	361000 - <20> - 376000
n5	100	164800 - <20> - 169800	173800 - <20> - 178800
n7	100	500000 - <20> - 514000	524000 - <20> - 538000
n8	100	176000 - <20> - 183000	185000 - <20> - 192000
n12	100	139800 - <20> - 143200	145800 - <20> - 149200
n14	100	157600 - <20> - 159600	151600 - <20> - 153600
n18	100	163000 - <20> - 166000	172000 – <20> – 175000
n20	100	166400 - <20> - 172400	158200 - <20> - 164200
n25	100	370000 - <20> - 383000	386000 - <20> - 399000
n26	100	162800 - <20> - 169800	171800 – <20> – 178800
n28	100	140600 - <20> - 149600	151600 - <20> - 160600
n29	100	N/A	143400 - <20> - 145600
n30	100	461000 - <20> - 463000	470000 - <20> - 472000
n34	100	402000 - <20> - 405000	402000 - <20> - 405000
n38	100	514000 - <20> - 524000	514000 - <20> - 524000
n39	100	376000 - <20> - 384000	376000 - <20> - 384000
n40	100	460000 - <20> - 480000	460000 - <20> - 480000
n41	15	499200 - <3> - 537999	499200 - <3> - 537999
1141	30	499200 - <6> - 537996	499200 - <6> - 537996
n47	15	790334 - <1> - 795000	790334 - <1> - 795000
n/10	15	636667 - <1> - 646666	636667 - <1> - 646666
n48	30	636668 - <2> - 646666	636668 - <2> - 646666
n50	100	286400 - <20> - 303400	286400 - <20> - 303400
n51	100	285400 - <20> - 286400	285400 - <20> - 286400
n53	100	496700 - <20> - 499000	496700 - <20> - 499000
n65	100	384000 - <20> - 402000	422000 - <20> - 440000
n66	100	342000 - <20> - 356000	422000 - <20> - 440000
n70	100	339000 - <20> - 342000	399000 - <20> - 404000
n71	100	132600 - <20> - 139600	123400 - <20> - 130400
n74	100	285400 - <20> - 294000	295000 - <20> - 303600
n75	100	N/A	286400 - <20> - 303400
n76	100	N/A	285400 - <20> - 286400
77	15	620000 - <1> - 680000	620000 - <1> - 680000
n77	30	620000 - <2> - 680000	620000 - <2> - 680000
-70	15	620000 - <1> - 653333	620000 - <1> - 653333
n78	30	620000 - <2> - 653332	620000 - <2> - 653332
-70	15	693334 - <1> - 733333	693334 - <1> - 733333
n79	30	693334 - <2> - 733332	693334 - <2> - 733332
n80	100	342000 - <20> - 357000	N/A
n81	100	176000 - <20> - 183000	N/A
n82	100	166400 - <20> - 172400	N/A
n83	100	140600 - <20> -149600	N/A
n84	100	384000 - <20> - 396000	N/A
n86	100	342000 - <20> - 356000	N/A
n89	100	164800 - <20> - 169800	N/A
	15	499200 - <3> - 537999	499200 - <3> - 537999
n90	30	499200 - <6> - 537996	499200 - <6> - 537996
	100	499200 - <20> - 538000	499200 - <20> - 538000
n91	100	166400 - <20> - 172400	285400 - <20> - 286400
n92	100	166400 - <20> - 172400	286400 - <20> - 303400
n93	100	176000 - <20> - 183000	285400 - <20> - 286400
n94	100	176000 - <20> - 183000	286400 - <20> - 303400
n95	100	402000 - <20> - 405000	N/A

5.4.3 Synchronization raster

5.4.3.1 Synchronization raster and numbering

The synchronization raster indicates the frequency positions of the synchronization block that can be used by the UE for system acquisition when explicit signalling of the synchronization block position is not present.

A global synchronization raster is defined for all frequencies. The frequency position of the SS block is defined as SS_{REF} with corresponding number GSCN. The parameters defining the SS_{REF} and GSCN for all the frequency ranges are in Table 5.4.3.1-1.

The resource element corresponding to the SS block reference frequency SS_{REF} is given in clause 5.4.3.2. The synchronization raster and the subcarrier spacing of the synchronization block is defined separately for each band.

Table 5.4.3.1-1: GSCN parameters for the global frequency raster

Frequency range	SS Block frequency position SS _{REF}	GSCN	Range of GSCN				
0 – 3000 MHz	N * 1200kHz + M * 50 kHz, N=1:2499, M ε {1,3,5} (Note 1)	3N + (M-3)/2	2 – 7498				
3000 – 24250 MHz 3000 MHz + N * 1.44 MHz 7499 + N 7499 – 22255							
NOTE 1: The default value for operating bands with which only support SCS spaced channel raster(s) is M=3.							

5.4.3.2 Synchronization raster to synchronization block resource element mapping

The mapping between the synchronization raster and the corresponding resource element of the SS block is given in Table 5.4.3.2-1.

Table 5.4.3.2-1: Synchronization raster to SS block resource element mapping

Resource element index k	120

k is the subcarrier number of SS/PBCH block defined in TS 38.211 clause 7.4.3.1 [6].

5.4.3.3 Synchronization raster entries for each operating band

The synchronization raster for each band is give in Table 5.4.3.3-1. The distance between applicable GSCN entries is given by the <Step size> indicated in Table 5.4.3.3-1.

Table 5.4.3.3-1: Applicable SS raster entries per operating band

NR operating band	SS Block SCS	SS Block pattern ¹	Range of GSCN (First – <step size=""> – Last)</step>
n1	15 kHz	Case A	5279 - <1> - 5419
n2	15 kHz	Case A	4829 - <1> - 4969
n3	15 kHz	Case A	4517 - <1> - 4693
	15 kHz	Case A	2177 - <1> - 2230
n5	30 kHz	Case B	2183 - <1> - 2224
n7	15 kHz	Case A	6554 - <1> - 6718
n8	15 kHz	Case A	2318 - <1> - 2395
n12	15 kHz	Case A	1828 – <1> – 1858
n14	15 kHz	Case A	1901 – <1> – 1915
n18	15 kHz	Case A	2156 - <1> - 2182
n20	15 kHz	Case A	1982 – <1> – 2047
n25	15 kHz	Case A	4829 - <1> - 4981
n26	15 kHz	Case A	2153 - <1> - 2230
n28	15 kHz	Case A	1901 – <1> – 2002
n29	15 kHz	Case A	1798 – <1> – 1813
n30	15 kHz	Case A	5879 - <1> - 5893
n34	15 kHz	Case A	5030 - <1> - 5056
n38	15 kHz	Case A	NOTE 2
1130	30 kHz	Case C	6437 - <1> - 6538
n39	15 kHz	Case A	4706 - <1> - 4795
n40	30 kHz	Case C	5762 - <1> - 5989
n41	15 kHz	Case A	6246 - <3> - 6717
114 1	30 kHz	Case C	6252 - <3> - 6714
n48	30 kHz	Case C	7884 – <1> – 7982
n50	30 kHz	Case C	3590 - <1> - 3781
n51	15 kHz	Case A	3572 - <1> - 3574
n53	15 kHz	Case A	6215 - <1> - 6232
n65	15 kHz	Case A	5279 - <1> - 5494
n66	15 kHz	Case A	5279 - <1> - 5494
	30 kHz	Case B	5285 - <1> - 5488
n70	15 kHz	Case A	4993 - <1> - 5044
n71	15 kHz	Case A	1547 – <1> – 1624
n74	15 kHz	Case A	3692 - <1> - 3790
n75	15 kHz	Case A	3584 - <1> - 3787
n76	15 kHz	Case A	3572 - <1> - 3574
n77	30 kHz	Case C	7711 – <1> – 8329
n78	30 kHz	Case C	7711 – <1> – 8051
n79	30 kHz	Case C	8480 - <16> - 8880
n90	15 kHz	Case A	6246 - <1> - 6717
	30 kHz	Case C	6252 - <1> - 6714
n91	15 kHz	Case A	3572 - <1> - 3574
n92	15 kHz	Case A	3584 - <1> - 3787
n93	15 kHz	Case A	3572 - <1> - 3574
n94	15 kHz	Case A	3584 - <1> - 3787

NOTE 1: SS Block pattern is defined in clause 4.1 in TS 38.213 [8].

NOTE 2: The applicable SS raster entries are GSCN = {6432, 6443, 6457, 6468, 6479, 6493, 6507, 6518, 6532, 6543}

5.4.4 TX-RX frequency separation

The default TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation for operating bands is specified in Table 5.4.4-1.

Table 5.4.4-1: UE TX-RX frequency separation

NR Operating Band TX - RXcarrier centre frequency separation 190 MHz n1 80 MHz

95 MHz n3 45 MHz n5 120 MHz n7 n8 45 MHz n12 30 MHz n14 -30 MHz n18 45 MHz n20 -41 MHz n25 80 MHz n26 45 MHz 55 MHz n28 n30 45 MHz n65 190 MHz n66 400 MHz 295,300¹ MHz n70 n71 -46 MHz 48 MHz n74 n91 570 MHz - 595 MHz (NOTE 2) n92 $575 \text{ MHz} - 680 \text{ MHz} (\mu = 0)$ $580 \text{ MHz} - 675 \text{ MHz} (\mu = 1)$ (NOTE 2) 517 MHz - 547 MHz n93 (NOTE 2) $522 \text{ MHz} - 632 \text{ MHz} (\mu = 0)$ n94 $527 \text{ MHz} - 627 \text{ MHz} (\mu = 1)$

NOTE 1: Default TX-RX carrier centre frequency separation. NOTE 2: The range of TX-RX frequency separation given paired UL and DL channel bandwidths BW_{UL} and BW_{DL} is given by the respective lower and upper limit $F_{DL_low} - F_{UL_high} + 0.5(BW_{DL} + BW_{UL})$ and $F_{DL_high} F_{UL_low} - 0.5 (BW_{DL} + BW_{UL})$. The UL and DL channel bandwidth combinations specified in Table 5.3.5-1 and 5.3.6-1 depend on the subcarrier spacing configuration μ [6].

(NOTE 2)

5.4A Channel arrangement for CA

5.4A.1 Channel spacing for CA

For intra-band contiguous carrier aggregation with two or more component carriers, the nominal channel spacing between two adjacent NR component carriers is defined as the following unless stated otherwise:

For NR operating bands with a 100 kHz channel raster:

Nominal channel spacing =
$$\left[\frac{BW_{Channel (1)} + BW_{Channel (2)} - 2 \left| GB_{Channel (1)} - GB_{Channel (2)} \right|}{0.6} \right] 0.3 [MHz]$$

while for NR operating bands without a 100 kHz channel raster:

with

 $n = \mu_0$

where BW_{Channel(1)} and BW_{Channel(2)} are the channel bandwidths of the two respective NR component carriers according to Table 5.3.2-1 with values in MHz, μ_0 is the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1 and $GB_{Channel(i)}$ is the minimum guard band for channel bandwidth i according to Table 5.3.3-1 for the said μ value with μ as defined in TS 38.211. In case there is no common μ value for both of the channel bandwidths, μ_0 =1 is selected and $GB_{Channel(i)}$ is the minimum guard band for channel bandwidth i according to Table 5.3.3-1 for μ =1 with μ as defined in TS 38.211.

The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of least common multiple of channel raster and sub-carrier spacing less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation, the channel spacing between two NR component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this clause.

5.4A.2 Channel raster for CA

For inter-band and intra-band contiguous carrier aggregation, the channel raster requirements in subclause 5.4.2 apply for each operating band.

5.4A.3 Synchronization raster for CA

For inter-band and intra-band contiguous carrier aggregation, the synchronization raster requirements in subclause 5.4.3 apply for each operating band.

5.4A.4Tx-Rx frequency separation for CA

For inter-band carrier aggregation, the Tx-Rx frequency separation requirements in clause 5.4.4 apply for each operating band.

For intra-band contiguous carrier aggregation, the same TX-RX frequency separation as specified in Table 5.4.4-1 is applied to PCC and SCC, respectively.

- 5.4B Void
- 5.4C Void
- 5.4D Void

5.4E Channel arrangement for V2X

5.4E.1 Channel spacing

For NR V2X, the channel spacing requirements in clause 5.4.1 apply for each operating band.

5.4E.2 Channel raster

5.4E.2.1 NR-ARFCN and channel raster

For NR V2X, the NR-ARFCN and channel raster requirements in clause 5.4.2.1 apply for each operationg band.

For NR V2X UE, the reference frequency can be shifted by configuration.

$$F_{REF\ V2X} = F_{REF} + \Delta_{shift} + N * 5 \text{ kHz}$$

where

 $\Delta_{\text{shift}} = 0 \text{ kHz or } 7.5 \text{ kHz indicated in IE } (frequencyShift7p5khz), and$

N can be set as one of following values {-1, 0, 1}, which are signalled by the network in higher layer parameters or configured by pre-configuration parameters.

5.4E.2.2 Channel raster to resource element mapping

For NR V2X, the channel raster to resource element mapping requirements in clause 5.4.2.2 apply for each operating band.

5.4E.2.3 Channel raster entries for each operating band

For NR V2X, the channel raster entries, the channel raster entries requirements in clause 5.4.2.3 apply for each operating band.

The RF channel positions on the channel raster in each NR V2X operating band are given through the applicable NR-ARFCN in Table 5.4.2.3-1, using the channel raster to resource element mapping in subclause 5.4E.2.2.

For NR V2X operating band n47, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{1\}$. Every I^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as $\langle I \rangle$.

5.4E.3 Synchronization raster for V2X

There is no synchronization raster definition for NR V2X for both licensed bands and unlicensed bands.

5.5 Void

5.5A Configurations for CA

5.5A.0 General

The configurations for CA operating band including Band n41 also apply for the corresponding CA operating bands with Band n90 replacing Band n41 but with otherwise identical parameters. For brevity the said configuration for CA operating bands with Band n90 are not listed in the tables below but are covered by this specification.

Non-contiguous resource allocation and almost contiguous allocation are not applicable for each NR carrier of intra-band contiguous and non-contiguous CA configurations.

5.5A.1 Configurations for intra-band contiguous CA

Table 5.5A.1-1: NR CA configurations and bandwidth combination sets defined for intra-band contiguous CA

		NR (CA configurati	ion / Bandwid	th combination	n set		
NR CA configuratio n	Uplink CA configur ations	Channel bandwidths for carrier (MHz)	Channel bandwidth s for carrier (MHz)	Channel bandwidth s for carrier (MHz)	Channel bandwidth s for carrier (MHz)	Channel bandwidth s for carrier (MHz)	Maximum aggregate d bandwidt h (MHz)	Bandwidth combination set
		10	10,15					
CA_n1B	-	15	15,20				40	0
		20	20					
CA_n7B	CA_n7B	10, 15, 20	10, 15, 20, 30, 35, 40				50	0
CA_n40B	_	20	80				100	0
O/ (_II+0B		50	50				100	O .
CA_n41B	CA_n41B	10, 20, 30, 40, 50	10, 20, 30, 40, 50				100	0
		40	80, 100				180	0
CA_n41C	CA_n41	50, 60, 80	60, 80, 100				100	0
6/ <u>C</u> 6	С	10, 15, 20, 40, 50, 60, 80, 90	15, 20, 40, 50, 60, 80, 90, 100				190	1
		5, 10	10, 15, 20					
	CA_n48B	15, 20	5, 10, 15, 20				40	0
	CA_II46B		20				40	U
CA_n48B			50, 60, 80,					
_		10	90					
	_	15, 20	40, 50, 60, 80				100	1
		40	40, 50, 60				100	·
		10	100					
		15	90,100					
		20	90, 100					
		40	80, 90, 100					
CA_n48C	-	40	80, 90, 100				140	0
		5 ¹	20, 40					
		10	15, 20, 40					
CA_n66B	-	15	10, 15, 20				50	0
		20	5 ¹ , 10, 15					
		40	5 ¹ , 10					
		5	20					
		10	15				25	_
CA ::74D		15	10				25	0
CA_n71B	-	20	5					
		10	20				25	4
		15	15, 20				35	1

		20	10, 15				
		50	60, 80, 100				
		60	60, 80, 100				_
		80	80, 100			200	0
CA_n77C	CA_n77 C	100	100			<u> </u>	
_	C	10, 15, 20, 25, 30, 40, 50, 60, 70,80,90, 100	10, 15, 20, 25, 30, 40, 50, 60, 70,80,90, 100			200	1
CA_n77D	-	100	100	100		300	0
CA_n78B	-	20	50			70	0
		50	60, 80, 100				
		60	60, 80, 100			000	0
		80	80, 100			200	0
CA_n78C	CA_n78 C	100	100				
		10, 15, 20, 25, 30, 40, 50, 60, 70,80,90, 100	10, 15, 20, 25, 30, 40, 50, 60, 70,80,90, 100			200	1
CA_n78D	-	100	100	100		300	0
		50	60, 80, 100				
CA_n79C	CA_n79	60	60, 80, 100			200	0
0A_II/90	C	80	80, 100			200	0
		100	100				
CA_n79D	-	100	100	100		300	0
NOTE 1: 5 M	Hz is not app	licable for 30/60	kHz SCS.				

Table 5.5A.1-2: Void

5.5A.2 Configurations for intra-band non-contiguous CA

Table 5.5A.2-1: NR CA configurations and bandwidth combination sets defined for intra-band non-contiguous CA

NR CA Configuration	Uplink Configurations	Channel bandwidths for carrier	Channel bandwidths for carrier		Channel bandwidths for carrier	Maximum Aggregated bandwidth	Bandwidth combination set
		(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	
CA_n3(2A)	-	5, 10, 15, 20	5, 10, 15, 20			40	0
CA_n7(2A)	-	5, 10, 15, 20	5, 10, 15, 20			40	0
CA_n25(2A)	-	5, 10, 15, 20	5, 10, 15, 20			40	0
		40, 50, 60, 80, 100	40, 50, 60, 80, 100			180	0
CA_n41(2A)	-	10, 15, 20, 40, 50, 60, 80, 90, 100	10, 15, 20, 40, 50, 60, 80, 90, 100			190	1
CA_n48(2A)	-	10, 15, 20, 40, 50, 60, 80, 90, 100	10, 15, 20, 40, 50, 60, 80, 90, 100			140 ²	0
CA_n48(3A)	-	10, 15, 20, 40,50, 60, 80, 90, 100	10, 15, 20, 40,50, 60, 80, 90, 100	10, 15, 20, 40,50, 60, 80, 90, 100		140 ²	0
CA_n48(4A)	-	10, 15, 20, 40, 50, 60, 80, 90, 100	10, 15, 20, 40, 50, 60, 80, 90, 100	10, 15, 20, 40, 50, 60, 80, 90, 100	10, 15, 20, 40, 50, 60, 80, 90, 100	135²	0
CA_n66(2A)	-	5, 10, 15, 20, 40	5, 10, 15, 20, 40			60	0
CA_n77(2A)	-	20, 40, 80, 100	20, 40, 80, 100			200	0
		10, 20, 40, 50, 60, 80, 90, 100	10, 20, 40, 50, 60, 80, 90, 100			200	0
CA_n78(2A)	-	10, 20, 25, 30, 40, 50, 60, 80, 90, 100	10, 20, 25, 30, 40, 50, 60, 80, 90, 100			200	1
		10, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	10, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100			200	2

NOTE 1: Void.

NOTE 2: Parameter value accounts for both, the maximum frequency range of band n48 (150 MHz), and the minimum frequency gaps in between NR non-contiguous component carriers.

5.5A.3 Configurations for inter-band CA

Table 5.5A.3-1: Void

Table 5.5A.3-2: Void

Table 5.5A.3-3: Void

5.5A.3.1 Configurations for inter-band CA (two bands)

Table 5.5A.3.1-1: NR CA configurations and bandwith combinations sets defined for inter-band CA (two bands)

NR CA configuration	Uplink CA configuration	NR Band	SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Bandwidth combination set
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										
CA =4A =2A	CA =4A =2A		60		Yes	Yes	Yes										0
CA_n1A-n3A	CA_n1A-n3A		15	Yes	Yes	Yes	Yes	Yes	Yes								0
		n3	30		Yes	Yes	Yes	Yes	Yes								
			60		Yes	Yes	Yes	Yes	Yes								
		n1				See (CA_n1B	Bandwic	th Comb	ination S	Set 0 in T	able 5.5	A.1-1				
CA_n1B-n3A	CA_n1A-n3A		15	Yes	Yes	Yes	Yes	Yes	Yes								0
CA_IIID-II3A	CA_IIIA-IISA	n3	30		Yes	Yes	Yes	Yes	Yes								U
			60		Yes	Yes	Yes	Yes	Yes								
			15	Yes	Yes	Yes	Yes										
CA n1A n2(2A)	CA 21A 22A	n1	30		Yes	Yes	Yes										0
CA_n1A-n3(2A)	CA_n1A-n3A		60		Yes	Yes	Yes										0
		n3				See C	A_n3(2/	A) bandw	idth com	bination	set 0 in	Table 5.	5A.2-1				
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										
CA_n1A-n7A	CA_n1A-n7A		60		Yes	Yes	Yes										0
CA_IIIA-IIIA	CA_IIIA-IIIA		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						U
		n7	30		Yes												
			60		Yes												
			15	Yes	Yes	Yes	Yes										
CA_n1A-n7B		n1	30		Yes	Yes	Yes										0
CA_IIIA-III	-		60		Yes	Yes	Yes										U
		n7				S	ee CA_r	n7B Band	dwidth C	ombinati	on Set 0	in Table	5.5A.1-	1			
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										
CA_n1A-n8A	CA_n1A-n8A		60		Yes	Yes	Yes										0
		n8	15	Yes	Yes	Yes	Yes										
		110	30		Yes	Yes	Yes										

			60														
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										
04 44 004	04 44 004		60		Yes	Yes	Yes										•
CA_n1A-n28A	CA_n1A-n28A		15	Yes	Yes	Yes	Yes										0
		n28	30		Yes	Yes	Yes										
			60														
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										
			60		Yes	Yes	Yes										_
CA_n1A-n40A	CA_n1A-n40A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
		n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
		1110	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
			15	Yes	Yes	Yes	Yes	100	100	100	100	163		163			
		n1	30	103	Yes	Yes	Yes										
			60		Yes	Yes	Yes										
CA_n1A-n41A	CA_n1A-n41A		15	Yes	Yes	Yes	Yes			Yes	Yes						0
		n41	30	100	Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										
CA = 4A = 77A			60		Yes	Yes	Yes										0
CA_n1A-n77A	-		15		Yes	Yes	Yes			Yes	Yes						0
		n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										
CA_n1A-n78A	CA_n1A-n78A		60		Yes	Yes	Yes										0
CA_IIIA-IIIOA	CA_IIIA-IIIOA		15		Yes	Yes	Yes			Yes	Yes						U
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes										
CA_n1A-n78(2A)	CA_n1A-n78A	n1	30		Yes	Yes	Yes										0
			60		Yes	Yes	Yes										U
		n78				See	CA_n78(2A) Band	width Cor	nbination	Set 0 in 7	Table 5.5A	1.2-1				
			15	Yes	Yes	Yes	Yes										
CA_n1A-n78C	CA_n1A-n78A	n1	30		Yes	Yes	Yes										0
CA_IIIA-IIIOC	CA_IIIA-IIIOA		60		Yes	Yes	Yes										U
		n78		_				Bandwi	dth Com	bination	Set 0 in	Table 5.5	5A.1-1	_			
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										
CA_n1A-n79A	CA_n1A-n79A		60		Yes	Yes	Yes										0
		n79	15							Yes	Yes						
			30							Yes	Yes	Yes		Yes		Yes	

			60							Yes	Yes	Yes		Yes		Yes	
			15	Yes	Yes	Yes	Yes			100	100	100		100		100	
		n1	30	100	Yes	Yes	Yes										
CA_n1A-n79C	CA_n1A-n79A		60		Yes	Yes	Yes										0
		n79	- 00					Bandwi	dth Com	bination	Set 0 in	Table 5.5	5A.1-1			1	
			15	Yes	Yes	Yes	Yes										
		n2	30		Yes	Yes	Yes										
CA 224 254	CA 224 254		60		Yes	Yes	Yes										0
CA_n2A-n5A	CA_n2A-n5A		15	Yes	Yes	Yes	Yes										0
		n5	30		Yes	Yes	Yes										
			60														
			15	Yes	Yes	Yes	Yes									Ì	
		n2	30		Yes	Yes	Yes										
CA_n2A-n48A	CA_n2A-n48A		60		Yes	Yes	Yes										0
0A_112A-1140A	0A_112A-1140A		15	Yes	Yes	Yes	Yes			Yes	Yes ¹						U
		n48	30		Yes	Yes	Yes			Yes	Yes ¹	Yes ¹		Yes ¹	Yes ¹	Yes ¹	
			60		Yes	Yes	Yes			Yes	Yes ¹	Yes ¹		Yes ¹	Yes ¹	Yes ¹	
			15	Yes	Yes	Yes	Yes										
CA_n2A-n48C	CA_n2A-n48A	n2	30		Yes	Yes	Yes										0
07(_1127(11100	CA_n48C		60		Yes	Yes	Yes		L		L	L					Ü
		n48			I			<u>Bandwi</u>	dth Com	<u>bination</u>	Set 0 in	Table 5.	5A.1-1	1	1		
			15	Yes	Yes	Yes	Yes										
		n2	30		Yes	Yes	Yes										
CA_n2A-n66A			60	.,	Yes	Yes	Yes			.,							0
	-	0.0	15	Yes	Yes	Yes	Yes			Yes							-
		n66	30		Yes	Yes	Yes			Yes							
			60	V	Yes	Yes	Yes			Yes							
		0	15 30	Yes	Yes	Yes	Yes Yes										
		n2	60		Yes Yes	Yes Yes	Yes		1	-		1		1		-	
CA_n2A-n77A	CA_n2A-n77A		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					-	0
		n77	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
		1177	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	162	162	162	169	162	165	162	162	162	
		n2	30	163	Yes	Yes	Yes										
		112	60		Yes	Yes	Yes										
CA_n2A-n78A	CA_n2A-n78A		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
		117.0	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	. 00			. 00	. 55			. 55	. 55	
		n2	30		Yes	Yes	Yes										
CA_n2A-n78(2A)	CA_n2A-n78A	·· <u>-</u>	60		Yes	Yes	Yes										0
		n78		1				A) Bandv	vidth Cor	nbinatio	n Set 1 ir	Table 5	.5A.2-1	I	1	1	

			15	Yes	Yes	Yes	Yes	Yes	Yes								
		n3	30	100	Yes	Yes	Yes	Yes	Yes								
		110	60		Yes	Yes	Yes	Yes	Yes								
CA_n3A-n7A	CA_n3A-n7A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
		n7	30	169	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		117	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes						
			15	Voc						res	res						
			30	Yes	Yes	Yes	Yes Yes	Yes Yes	Yes								
CA_n3A-n7B	-	n3	60		Yes	Yes			Yes								0
		7	60		Yes	Yes	Yes	Yes	Yes		2-4-0 : 7	 	A 4 4				
		n7	4.5	\/	V			Bandwid		ination s	Set U in i	able 5.5	A.1-1				
			15	Yes	Yes	Yes	Yes	Yes	Yes								
		n3	30		Yes	Yes	Yes	Yes	Yes								
CA_n3A-n8A	CA_n3A-n8A		60		Yes	Yes	Yes	Yes	Yes								0
<u> </u>	G/ (/ \/ \		15	Yes	Yes	Yes	Yes										· ·
		n8	30		Yes	Yes	Yes										
			60											ļ			
			15	Yes	Yes	Yes	Yes	Yes	Yes								
		n3	30		Yes	Yes	Yes	Yes	Yes								
CA_n3A-n28A	CA n3A-n28A		60		Yes	Yes	Yes	Yes	Yes								0
OA_IIOA-IIZOA	OA_IIOA-IIZOA		15	Yes	Yes	Yes	Yes										O
		n28	30		Yes	Yes	Yes										
			60														
			15	Yes	Yes	Yes	Yes	Yes	Yes								
		n3	30		Yes	Yes	Yes	Yes	Yes								
04 04 004			60		Yes	Yes	Yes	Yes	Yes								
CA_n3A-n38A	CA_n3A-n38A		15	Yes	Yes	Yes	Yes	100		Yes							0
		n38	30	103	Yes	Yes	Yes			Yes							
		1100	60		Yes	Yes	Yes			Yes							
			15	Yes	Yes	Yes	Yes	Yes	Yes	103							
		n3	30	163	Yes	Yes	Yes	Yes	Yes								
		110	60		Yes	Yes	Yes	Yes	Yes								
CA_n3A-n40A	CA_n3A-n40A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
		n40	30	163	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
		1140	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
			15	Yes	Yes	Yes	Yes	Yes	Yes	162	162	162		162			
		n3	30	165	Yes	Yes	Yes	Yes	Yes								
		113	60		Yes	Yes	Yes		Yes								
			15			Yes		Yes	res	Vaa	V						0
		11			Yes		Yes			Yes	Yes	V		Vaa	V	Vaa	
CA 224 244	CA 224 2444	n41	30 60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
CA_N3A-N41A	_n3A-n41A			\/	Yes	Yes	Yes	V	\/	Yes	Yes	Yes		Yes	Yes	Yes	
		0	15	Yes	Yes	Yes	Yes	Yes	Yes					1			
		n3	30		Yes	Yes	Yes	Yes	Yes					-			
			60		Yes	Yes	Yes	Yes	Yes	.,	.,			1			1
		n41	15		Yes	Yes	Yes		ļ	Yes	Yes	ļ .,		1			
			30		Yes	Yes	Yes			Yes	Yes	Yes					

			60		Yes	Yes	Yes			Yes	Yes	Yes			1		
			15	Yes	Yes	Yes	Yes	Yes	Yes	100	100	100					
		n3	30	100	Yes	Yes	Yes	Yes	Yes								
CA_n3A-n41C	CA_n3A-n41A	110	60		Yes	Yes	Yes	Yes	Yes								0
		n41	- 00	l .	100				dth Com	bination	Set 0 in	Table 5.	5A.1-1	L			
			15	Yes	Yes	Yes	Yes	Yes	Yes								
0.4 0.4 44(0.4)	04 04 444	n3	30		Yes	Yes	Yes	Yes	Yes								•
CA_n3A-n41(2A)	CA_n3A-n41A		60		Yes	Yes	Yes	Yes	Yes								0
		n41		,	,	See CA	_n41(2/	A) Bandv	vidth Cor	nbinatio	n Set 0 ir	Table 5	5.5A.2-1	•	•	•	
			15	Yes	Yes	Yes	Yes	Yes	Yes								
		n3	30		Yes	Yes	Yes	Yes	Yes								
04 04 774	04 04 774		60		Yes	Yes	Yes	Yes	Yes								0
CA_n3A-n77A	CA_n3A-n77A		15		Yes	Yes	Yes			Yes	Yes						0
		n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes								
CA = 2A = 77(2A)	CA = 2A = 77A	n3	30		Yes	Yes	Yes	Yes	Yes								0
CA_n3A-n77(2A)	CA_n3A-n77A		60		Yes	Yes	Yes	Yes	Yes								0
		n77				See C/	n77(2/	A) Bandv	vidth Cor	nbinatio	Set 0 ir	Table 5	5.5A.2-1				
			15	Yes	Yes	Yes	Yes	Yes	Yes								
		n3	30		Yes	Yes	Yes	Yes	Yes								
04 04 704	04 04 704		60		Yes	Yes	Yes	Yes	Yes								•
CA_n3A-n78A	CA_n3A-n78A		15		Yes	Yes	Yes			Yes	Yes						0
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes								
04 04 700	04 04 704	n3	30		Yes	Yes	Yes	Yes	Yes								•
CA_n3A-n78C	CA_n3A-n78A		60		Yes	Yes	Yes	Yes	Yes								0
		n78				See C	A_n78C	Bandwi	dth Com	bination	Set 0 in	Table 5.	5A.1-1			•	
			15	Yes	Yes	Yes	Yes	Yes	Yes								
CA =2A =70(2A)		n3	30		Yes	Yes	Yes	Yes	Yes								0
CA_n3A-n78(2A)	-		60		Yes	Yes	Yes	Yes	Yes								0
		n78				See C/	1_n78(2/	A) Bandv	vidth Cor	nbinatio	n Set 0 ir	Table 5	5.5A.2-1			•	
			15	Yes	Yes	Yes	Yes	Yes	Yes								
		n3	30		Yes	Yes	Yes	Yes	Yes								
CA 524 5704	CA 224 2704		60		Yes	Yes	Yes	Yes	Yes								0
CA_n3A-n79A	CA_n3A-n79A		15							Yes	Yes						0
		n79	30							Yes	Yes	Yes		Yes		Yes	
			60							Yes	Yes	Yes		Yes		Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes								
OA = 2A = 700	OA =0A =70A	n3	30		Yes	Yes	Yes	Yes	Yes								0
CA_n3A-n79C	CA_n3A-n79A		60		Yes	Yes	Yes	Yes	Yes								0
		n79		•	•	See C	A_n79C	Bandwi	dth Com	bination	Set 0 in	Table 5.	5A.1-1				

			15	Yes	Yes	Yes	Yes										
		n5	30		Yes	Yes	Yes										
		110	60		100	100	100										
CA_n5A-n7A	-		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
		n7	30	100	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		'''	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes						
			15	Yes	Yes	Yes	Yes	100	100	100	100						
		n5	30	100	Yes	Yes	Yes										
CA_n5A-n7B	-	110	60		100	100	100										0
		n7	- 00	1		See CA	n7R R	ı andwidt	h Comb	nination	Set 0 in	Table !	<u>.</u> 5 5Δ 1-1	1	1		
		117	15	Yes	Yes	Yes	Yes	I			1	Table	J.O/ (. 1)				
		n5	30	100	Yes	Yes	Yes										
04 54 004	04 54 004		60														•
CA_n5A-n66A	CA_n5A-n66A		15	Yes	Yes	Yes	Yes			Yes							0
		n66	30		Yes	Yes	Yes			Yes							
			60		Yes	Yes	Yes			Yes							
			15	Yes	Yes	Yes	Yes										
		n5	30		Yes	Yes	Yes										
CA_n5A-n77A	CA_n5A-n77A		60			.,	.,	.,									0
			15		Yes	Yes	Yes	Yes	Yes	Yes	Yes	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					-
		n77	30 60		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
			15	Yes	Yes	Yes	Yes	res	res	res	res	res	res	res	res	res	
		n5	30	163	Yes	Yes	Yes										
		110	60		103	103	103										
CA_n5A-n78A	CA_n5A-n78A		15		Yes	Yes	Yes			Yes	Yes						0
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes										
CA_n5A-n78C	CA_n5A-n78A	n5	30		Yes	Yes	Yes										0
0/_n0/\ n/00	0/1_110/111/0/1		60				<u> </u>	L									O
		n78					1	Bandwi	dth Com	<u>bination</u>	Set 0 in	Table 5.	5A.1-1		1		
			15	Yes	Yes	Yes	Yes										
		n5	30 60		Yes	Yes	Yes										
CA_n5A-n79A	CA_n5A-n79A		15							Yes	Yes						0
		n79	30	 				 	 	Yes	Yes	Yes		Yes	 	Yes	
		117.3	60							Yes	Yes	Yes		Yes		Yes	
			15	Yes	Yes	Yes	Yes							. 00		. 55	
04 54 700	04 54 704	n5	30	1	Yes	Yes	Yes										•
CA_n5A-n79C	CA_n5A-n79A		60														0
		n79				See C	CA_n79C	Bandwi	dth Com	bination	Set 0 in	Table 5.	5A.1-1				
CA_n7A-n25A	CA_n7A-n25A	n7	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							0
OA_III A-II23A	OA_III A-IIZJA	117	30		Yes	Yes	Yes	Yes	Yes	Yes							U

					Yes	Yes	Yes	Yes	Yes	Yes							
			60 15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
		n25	30	103	Yes	Yes	Yes	Yes	Yes	Yes							
		1123	60		Yes	Yes	Yes	Yes	Yes	Yes							
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
		n7	30	103	Yes	Yes	Yes	Yes	Yes	Yes							
CA_n7A-n25(2A)	CA_n7A-n25A	117	60		Yes	Yes	Yes	Yes	Yes	Yes							0
	-	n25	- 00		103	See CA					n Set 0 in	Table 5	5Δ 2-1				
		1120	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes		i i abie 5	.5/1.2-1				
		n25	30	103	Yes	Yes	Yes	Yes	Yes	Yes							
CA_n7(2A)-n25A	CA_n7A-n25A	1120	60		Yes	Yes	Yes	Yes	Yes	Yes							0
	-	n7	- 00		103						Set 0 in	L Table 5 ^l	5Δ 2-1				
CA_n7(2A)-		n7									Set 0 in						
n25(2A)	CA_n7A-n25A	n25									Set 0 in						0
TIZO(ZI I)		1120	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Table 5.	0/ \.Z 1				
		n7	30	163	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		117	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes						
CA_n7A-n28A	CA_n7A-n28A		15	Yes	Yes	Yes	Yes	163	163	163	163						0
		n28	30	163	Yes	Yes	Yes										
		1120	60		163	163	163										
		n7	00			See (^Λ n7R	Randwid	th Comb	ination 9	et 0 in T	able 5.5	Λ 1_1				
	-	117	15	Yes	Yes	Yes	Yes	Dariuwic	tii Coiiid	illation	Jet O III I	able 3.3	Λ. 1-1				
CA_n7B-n28A	-	n28	30	163	Yes	Yes	Yes										0
		1120	60		162	162	162										
			15	Yes	Yes	Yes	Yes										
		n7	30	163	Yes	Yes	Yes										
		117	60		Yes	Yes	Yes										
CA_n7A-n66A	CA_n7A-n66A		15		Yes	Yes	Yes			Yes							0
		n66	30		Yes	Yes	Yes			Yes							
		1100	60		Yes	Yes	Yes			Yes							
+			15	Yes	Yes	Yes	Yes			163							
		n7	30	163	Yes	Yes	Yes										
		117	60		Yes	Yes	Yes										
CA_n7A-n78A	CA_n7A-n78A		15		Yes	Yes	Yes			Yes	Yes						0
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
		1170	60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	103		103	100	103	
		n7	30	100	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
CA_n7A-n78(2A)	CA_n7A-n78A	117	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
	-	n78	- 00	<u>I</u>	100						n Set 0 in	Table 5	5A 2-1				
		n7									Set 0 in						
		117	15		Yes	Yes	Yes	Dariuw	au Con	Yes	Yes	i abie J.	U1 1.∠- I				
CA_n7(2A)-n78A	CA_n7A-n78A	n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	0
_ ` ', '		117 0															
_ ` ',			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	

CA_n7(2A)- n78(2A)		n78				See CA	A_n78(2/	A) Bandv	vidth Cor	mbinatio	n Set 0 ir	n Table 5.	5A.2-1				
117 0(271)			15	Yes	Yes	Yes	Yes										
		n8	30		Yes	Yes	Yes										
			60														
CA_n8A-n39A	CA_n8A-n39A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							0
		n39	30		Yes	Yes	Yes	Yes	Yes	Yes							
			60		Yes	Yes	Yes	Yes	Yes	Yes							
			15	Yes	Yes	Yes	Yes										
		n8	30		Yes	Yes	Yes										
04 04 404			60														
CA_n8A-n40A	CA_n8A-n40A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
		n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
			15	Yes	Yes	Yes	Yes										
		n8	30		Yes	Yes	Yes										
			60														•
			15		Yes	Yes	Yes			Yes	Yes						0
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
04 04 444			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
CA_n8A-n41A	CA_n8A-n41A		15	Yes	Yes	Yes	Yes										
		n8	30		Yes	Yes	Yes										
			60														
			15		Yes	Yes	Yes			Yes	Yes						1
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes					
			60		Yes	Yes	Yes			Yes	Yes	Yes					
			15	Yes	Yes	Yes	Yes										
		n8	30		Yes	Yes	Yes										
04 04 754			60														
CA_n8A-n75A	-		15	Yes	Yes	Yes	Yes										0
		n75	30		Yes	Yes	Yes										
			60		Yes	Yes	Yes	1	1								
			15	Yes	Yes	Yes	Yes										
		n8	30		Yes	Yes	Yes										
04 04 704	04 04 704		60														
CA_n8A-n78A	CA_n8A-n78A		15		Yes	Yes	Yes			Yes	Yes						0
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	1	1								
		n8	30		Yes	Yes	Yes										
04 -04 704	04 -04 -704	-	60					1	1								^
CA_n8A-n79A	CA_n8A-n79A		15		Yes	Yes	Yes			Yes	Yes						0
		n79	30		Yes	Yes	Yes	1	1	Yes	Yes	Yes		Yes		Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes		Yes	
CA_n20A-n28A		n20	15	Yes	Yes	Yes	Yes	İ	İ								0

			30		Yes	Yes	Yes										
			60		100	100	100										
	CA_n20A-		15	Yes	Yes	Yes	Yes										
	n28A	n28	30	100	Yes	Yes	Yes										
		1120	60		103	103	100										
			15	Yes	Yes	Yes	Yes										
		n20	30	100	Yes	Yes	Yes										
		1120	60		100	100	100										
CA_n20A-n75A	-		15	Yes	Yes	Yes	Yes										0
		n75	30	163	Yes	Yes	Yes										
		117.5	60		Yes	Yes	Yes										
			15	Yes	Yes	Yes	Yes										
		n20	30	163	Yes	Yes	Yes										
	CA_n20A-	1120	30		163	163	163										
CA_n20A-n78A	n78A		15		Yes	Yes	Yes			Yes	Yes						0
	117 07 (n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
		1170	60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes			163	163	163		163	163	163	
		n25	30	163	Yes	Yes	Yes										
	CA_n25A-	1123	60		Yes	Yes	Yes										
CA_n25A-n41A	n41A		15		Yes	Yes	Yes			Yes	Yes						0
	11417	n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
		1141	60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
		n25	- 00	1	103			l Bandw	ridth Cor	mbination			5Δ 2-1	100	103	1 100	
CA_n25(2A)-	CA_n25A-	1123	15		Yes	Yes	Yes	t) Danuv	l col	Yes	Yes	l lable c	.5/1.2-1				
n41A	n41A	n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	0
11717	11717	1171	60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes			163	163	163		163	163	163	
	CA_n25A-	n25	30	103	Yes	Yes	Yes										
CA_n25A-n41C	n41A	1120	60		Yes	Yes	Yes										0
	11117	n41	- 00	1	103			Bandwi	th Com	bination	Set 0 in	Table 5	<u></u>	1		1	
			15	Yes	Yes	Yes	Yes	Barrawi		Diriation		l abio o.	J, (. 1				
CA_n25A-	CA_n25A-	n25	30	1.00	Yes	Yes	Yes							<u> </u>			
n41(2A)	n41A	1120	60		Yes	Yes	Yes										0
(271)		n41	- 00		100	See CA		A) Bandw	idth Coi	nbination	n Set 1 in	Table 5	5A 2-1	1		ı	
		1171	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes		i i abie c					
		n25	30	. 55	Yes	Yes	Yes	Yes	Yes	Yes							
	CA_n25A-	1120	60		Yes	Yes	Yes	Yes	Yes	Yes				<u> </u>			
CA_n25A-n66A	n66A		15	Yes	Yes	Yes	Yes	100	Yes	Yes				 		 	0
	1100/1	n66	30	100	Yes	Yes	Yes		Yes	Yes				<u> </u>			
		1100	60		Yes	Yes	Yes		Yes	Yes				<u> </u>			
		1	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes				<u> </u>			
CA_n25A-	CA_n25A-	n25	30	100	Yes	Yes	Yes	Yes	Yes	Yes							
n66(2A)	n66A	1120	60		Yes	Yes	Yes	Yes	Yes	Yes							0
1100(2/1)	1100/1	n66	- 00	1	100					mbination	n Set Oir	Table 5	5A 2-1	1	1	-	
		1100				366 OF	_1100(27	y Danuw	natii Ool	וואווומווטו	1 Oct 0 II	i i abie c	.UA.Z-1				

		n25				See CA	n25(2/	A) Bandw	idth Cor	nbinatior	n Set 0 in	Table 5	5.5A.2-1				
CA_n25(2A)-	CA_n25A-		15		Yes	Yes	Yes	,	Yes	Yes			<u> </u>				
n66Å	n66A	n66	30		Yes	Yes	Yes		Yes	Yes							0
			60		Yes	Yes	Yes		Yes	Yes							
CA_n25(2A)-	CA_n25A-	n25		l.				A) Bandw			Set 0 in	Table 5	5.5A.2-1			I	•
n66(2A)	_ n66A	n66						A) Bandw									0
, ,			15	Yes	Yes	Yes	Yes										
		n25	30		Yes	Yes	Yes										
CA_n25A-n71A	CA_n25A-		60		Yes	Yes	Yes										0
CA_IIZSA-III IA	n71A		15	Yes	Yes	Yes	Yes										0
		n71	30		Yes	Yes	Yes										
			60														
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
		n25	30		Yes	Yes	Yes	Yes	Yes	Yes							
CA_n25A-n78A	CA_n25A-		60		Yes	Yes	Yes	Yes	Yes	Yes							0
UA_1123A-1170A	n78A		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes						U
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
CA_n25A-	CA_n25A-	n25	30		Yes	Yes	Yes	Yes	Yes	Yes							0
n78(2A)	n78A		60		Yes	Yes	Yes	Yes	Yes	Yes							Ü
		n78						A) Bandw									
		n25		1		See C/		A) Bandw				Table 5	5.5A.2-1			ı	
CA_n25(2A)-	CA_n25A-		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
n78A	n78A	n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	· ·
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
CA_n25(2A)-	CA_n25A-	n25						A) Bandw									0
n78(2A)	n78A	n78			.,			A) Bandw	lath Cor	nbinatior	n Set 1 in	i able 5	5.5A.2-1			1	
			15	Yes	Yes	Yes	Yes										
		n28	30		Yes	Yes	Yes										
CA n28A-n40A	CA_n28A-		60		Yes	Yes	Yes										0
OA_IIZOA-II 4 0A	n40A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						O
		n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
			15	Yes	Yes	Yes	Yes										
		n28	30		Yes	Yes	Yes										
CA =20A =44A	CA_n28A-		60														0
CA_n28A-n41A	n41A		15	Yes	Yes	Yes	Yes			Yes	Yes						0
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
	_		15	Yes	Yes	Yes	Yes										
	CA 520A	n28	30		Yes	Yes	Yes										
CA_n28A-n50A	CA_n28A- n50A		60														0
	HOUA	n50	15	Yes	Yes	Yes	Yes			Yes	Yes						
		1130	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes ¹			

			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes ¹			
			15	Yes	Yes	Yes	Yes			100	103	103		103			
		n28	30	163	Yes	Yes	Yes										
		1120	60		163	163	163										
CA_n28A-n75A	-		15	Yes	Yes	Yes	Yes										0
		n75	30	169	Yes	Yes	Yes										
		11/5	60		Yes	Yes	Yes										
			15	Yes	Yes	Yes	Yes										
			30	res	Yes	Yes	Yes										
		n28			res	res	res										
CA_n28A-n75A	-		60	\/	\/	\/	\/	\/	\/	\/	V						1
_		7.5	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n75	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes						
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes						
			15	Yes	Yes	Yes	Yes										
		n28	30		Yes	Yes	Yes										
CA_n28A-n77A	CA_n28A-		60														0
O/(_1120/(111///(n77A		15		Yes	Yes	Yes			Yes	Yes						· ·
		n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes										
CA_n28A-	CA_n28A-	n28	30		Yes	Yes	Yes										0
n77(2A)	n77A		60														U
		n77				See C/	_n77(2	A) Bandv	vidth Cor	nbinatior	n Set 0 in	Table 5	5.5A.2-1				
			15	Yes	Yes	Yes	Yes										
		n28	30		Yes	Yes	Yes										
	CA_n28A-		60														
CA_n28A-n78A	n78A		15		Yes	Yes	Yes			Yes	Yes						0
	111 07 1	n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
		""	60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes			100	103	100		100	100	103	
CA_n28A-	CA_n28A-	n28	30	163	Yes	Yes	Yes										0
n78(2A)	n78A	- 70	30		165			A) Dandu	المالية		- C-t O :	Table C				l	U
		n78	4.5	V	V	See C/	1_0/8(2 <i>i</i>	n) Bandv	viatn Cor T	nomation	Set 0 in	i rabie 5).5A.2-1	1	1		
		00	15	Yes	Yes				-				-	-			
		n29	30		Yes												
CA_n29A-n66A	_		60														0
			15	Yes	Yes	Yes	Yes			Yes							-
		n66	30		Yes	Yes	Yes			Yes							
			60		Yes	Yes	Yes			Yes							
			15	Yes	Yes												
CA_n29A-n66B	_	n29	30		Yes												0
OA_1123A-1100D	_		60														U
		n66			_	See C	CA_n66E	Bandwi	dth Com	bination	Set 0 in	Table 5.	5A.1-1				
				\ /	1/												
04 - 004			15	Yes	Yes												
CA_n29A- n66(2A)	-	n29	15 30	Yes	Yes												0

		n66				See CA	n66(2/	A) Bandv	vidth Cor	mbination	n Set 0 in	Table 5	5.5A.2-1				
			15	Yes	Yes												
		n29	30		Yes												
CA 2004 2704			60														0
CA_n29A-n70A	-		15	Yes	Yes	Yes	Yes ¹	Yes ¹									0
		n70	30		Yes	Yes	Yes ¹	Yes ¹									
			60		Yes	Yes	Yes ¹	Yes ¹									
			15	Yes	Yes	Yes	Yes										
		n38	30		Yes	Yes	Yes										
CA_n38A-n66A	CA_n38A-		60		Yes	Yes	Yes										0
CA_IISOA-IIOOA	n66A		15	Yes	Yes	Yes	Yes		Yes	Yes							O
		n66	30		Yes	Yes	Yes		Yes	Yes							
			60		Yes	Yes	Yes		Yes	Yes							
			15	Yes	Yes	Yes	Yes										
		n38	30		Yes	Yes	Yes										
04 -004 704	CA_n38A-		60		Yes	Yes	Yes										•
CA_n38A-n78A	n78A		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	103	100	103	103	103		103	.00	103	
		20	30	163	Yes	Yes	Yes										
CA_n38A-	CA_n38A-	n38															0
n78(2A)	n78A		60		Yes	Yes	Yes										-
		n78				See (CA_n78((2A) Ban	dwidth C	ombinati	ion 0 in T	able 5.5	A.2-1				
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
		n39	30		Yes	Yes	Yes	Yes	Yes	Yes							
CA_n39A-n40A	CA_n39A-		60		Yes	Yes	Yes	Yes	Yes	Yes							0
CA_1139A-1140A	n40A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						U
		n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
		n39	30		Yes	Yes	Yes	Yes	Yes	Yes							
CA_n39A-n41A	CA_n39A-		60		Yes	Yes	Yes	Yes	Yes	Yes							0
0/_1100/\\ 1111/\\	n41A		15		Yes	Yes	Yes			Yes	Yes						· ·
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
CA_n39A-n41C	CA_n39A-	n39	30		Yes	Yes	Yes	Yes	Yes	Yes							0
51100, . 11 110	n41A		60		Yes	Yes	Yes	Yes	Yes	Yes		=	<u> </u>				Č
		n41								bination	Set 0 in	Table 5.	5A.1-1		T		
		1	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
CA_n39A-	CA_n39A-	n39	30		Yes	Yes	Yes	Yes	Yes	Yes							0
n41(2A)	n41A	<u> </u>	60		Yes	Yes	Yes	Yes	Yes	Yes	<u> </u>		<u> </u>				Ü
<u> </u>		n41				See CA				nbination	Set 0 in	Table 5	5.5A.2-1		Г		
CA_n39A-n79A		n39	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							0

			30		Voc	Yes	Yes	Yes	Yes	Yes							
			60		Yes Yes	Yes	Yes	Yes	Yes	Yes							
	CA_n39A-		15		168	165	165	165	168	Yes	Yes						
	n79A	n79	30							Yes	Yes	Yes		Yes		Yes	
		1179															
			60	V	Vaa	Vaa	V	V	Vaa	Yes	Yes Yes	Yes		Yes		Yes	
		40	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes		\/		\/			
		n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			0
			15		Yes	Yes	Yes			Yes	Yes	.,		.,		.,	
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
CA_n40A-n41A	CA_n40A-		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
O/ (n41A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
		n40	30		Yes	Yes	Yes	Yes	Yes	Yes							
			60		Yes	Yes	Yes	Yes	Yes	Yes							1
			15		Yes	Yes	Yes			Yes	Yes						•
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes					
		<u> </u>	60		Yes	Yes	Yes			Yes	Yes	Yes					
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
CA = 40A = 70A	CA_n40A-		60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			0
CA_n40A-n78A	n78A		15		Yes	Yes	Yes			Yes	Yes						0
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
CA_n40A-	CA_n40A-	n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
n78(2A)	n78A	11-0	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			0
117 0(271)	1170/1	n78	00		163	See CA					n Set 1 in		EA 2.1	165			
		11/0	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	i rabie s	.5A.Z-1		1	1	
		n40	30	res	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			
		1140															
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes			0
		70	15							Yes	Yes						
		n79	30							Yes	Yes	Yes		Yes		Yes	
CA_n40A-n79A	CA_n40A-		60	.,		.,	.,	.,	.,	Yes	Yes	Yes		Yes		Yes	
	n79A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
		n40	30		Yes	Yes	Yes	Yes	Yes	Yes							
			60		Yes	Yes	Yes	Yes	Yes	Yes							1
			15							Yes	Yes						•
		n79	30							Yes	Yes	Yes		Yes		Yes	
			60							Yes	Yes	Yes		Yes		Yes	
			15		Yes	Yes	Yes			Yes	Yes						
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
CA_n41A-n50A	CA_n41A-		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	0
CA_114 1A-1150A	n50A		15	Yes	Yes	Yes	Yes			Yes	Yes						0
		n50	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes ¹			
		1100			100	1 00	1 00			100	100	100		103		1	

			15		Yes	Yes	Yes			Yes	Yes						
ļ		n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
ļ	CA_n41A-	1141	60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
CA_n41A-n66A	n66A		15	Yes	Yes	Yes	Yes			Yes	162	162		162	162	162	0
ļ	HOOA	- CC	30	res													
ļ		n66			Yes	Yes	Yes Yes			Yes Yes							
		- 44	60		Yes	Yes		A\ D =l-	: - 4 -		. 0-44:		<u> </u>			l	
2		n41						A) Bandi	wiath Col		n Set 1 ii	n i abie 5	.5A.2-1	1	1	1	
CA_n41(2A)-	-		15	Yes	Yes	Yes	Yes			Yes							0
n66A		n66	30		Yes	Yes	Yes			Yes							-
			60		Yes	Yes	Yes			Yes							
ļ		n41			1			Bandwi	dth Comb		Set 0 in	Table 5.	5A.1-1	1			
CA_n41C-n66A	_		15	Yes	Yes	Yes	Yes			Yes							0
O/(_114101100/1		n66	30		Yes	Yes	Yes			Yes							O
			60		Yes	Yes	Yes			Yes							
			15		Yes	Yes	Yes			Yes	Yes						
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
CA_n41A-n71A	CA_n41A-		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	0
CA_114 TA-117 TA	n71A		15	Yes	Yes	Yes	Yes										U
ļ		n71	30		Yes	Yes	Yes										
ļ			60														
			15		Yes	Yes	Yes		Yes	Yes	Yes						
		n41	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	Yes	0
CA_n41A-n71B	-		60		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	Yes	-
ļ		n71		1				Bandwid			Set 0 in		5A.1-1				
		n41				See C	A n410	Bandwi	dth Com	bination	Set 0 in	Table 5.	5A.1-1				
ļ			15	Yes	Yes	Yes	Yes						1				
CA_n41C-n71A	-	n71	30	1.00	Yes	Yes	Yes										0
ļ		''' '	60		100	103	103										
		n41	- 00			So	$n \cap N$	11/2A\ R	andwidth	Combin	ation Se	t 1 in Tal	hlo 5 5 1	2-1	<u> </u>	l.	
CA_n41(2A)-		1171	15	Yes	Yes	Yes	Yes	(ZA) D	I	Combin							
n71A	-	n71	30	163	Yes	Yes	Yes									 	0
117.17		117 1	60		169	162	165										
CA_n41(2A)-	_	n 11	60			Coo CA	n/1/2/	N Dondu	ridth Con	ahinatiar	n Set 1 in	Toble /	F F A O 1			l.	
CA_1141(2A)- n71B	-	n41 n71															0
											Set 0 in						
CA_n41C-n71B	-	n41									Set 0 in						0
		n71	4.5					Bandwid	ath Comi		Set 0 in	l able 5.	5A.1-1		1	1	
ļ			15		Yes	Yes	Yes			Yes	Yes						
ļ		n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes		Yes	
CA_n41A-n78A	CA_n41A-		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes		Yes	0
27	n78A		15		Yes	Yes	Yes			Yes	Yes						J
	1	n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
i				1	\ \/	Yes	Yes		1	Yes	Yes	Yes	1	Yes	Yes	Yes	
			60		Yes							100		163	162	169	
	CA n41A-		15		Yes	Yes	Yes		Yes	Yes	Yes						
CA_n41A-n78A	CA_n41A- n78A	n41							Yes Yes Yes			Yes Yes		Yes Yes	Yes Yes	Yes Yes	1

			15	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
		1170	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15		Yes	Yes	Yes	163	163	Yes	Yes	163	163	163	163	163	
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
		''-	60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15		163	163	163			Yes	Yes	163		163	163	163	0
		n79	30							Yes	Yes	Yes		Yes		Yes	
	CA_n41A-	117.5	60							Yes	Yes	Yes		Yes		Yes	
CA_n41A-n79A	n79A		15		Yes	Yes	Yes			Yes	Yes	103		103		103	
	117 07 (n41	30		Yes	Yes	Yes			Yes	Yes	Yes					
		''-	60		Yes	Yes	Yes			Yes	Yes	Yes					
			15		100	100	103			Yes	Yes	103					1
		n79	30							Yes	Yes	Yes		Yes		Yes	
		117.5	60							Yes	Yes	Yes		Yes		Yes	
		n41	00	1		Soo C	·Λ n/11C	` Bandwi	dth Com		Set 0 in		 5Λ 1 ₋ 1	163		163	
	CA_n41A-	1141		1		366 (/	Danuwi		Yes	Yes	l able 5.	JA. 1-1	1			
CA_n41C-n79A	n79A	n79								Yes	Yes	Yes		Yes		Yes	0
	CA_n41C	1179								Yes	Yes	Yes		Yes		Yes	
			15	Yes	Yes	Yes	Yes			Yes	Yes ¹	169		162		162	
		n48	30	162	Yes	Yes	Yes			Yes	Yes ¹	Yes ¹		Yes ¹	Yes ¹	Yes ¹	
	CA_n48A-	1140	60		Yes	Yes	Yes			Yes	Yes ¹	Yes ¹		Yes ¹	Yes ¹	Yes ¹	
CA_n48A-n66A	n66A		15	Yes	Yes	Yes	Yes			Yes	169	162		162	162	162	0
	HOOA	n66	30	162	Yes	Yes	Yes			Yes							
		1100	60		Yes	Yes	Yes			Yes							
		n48	60	l	165) Dondwi	dth Com		Set 0 in	Tabla F I	<u> </u> =			l.	
	CA_n48A-	1140	15	Yes	Yes	Yes	Yes) Dariuwi	uin Com	Yes	Secom	l able 5.	JA. 1-1				
CA_n48C-n66A	n66A	n66	30	165	Yes	Yes	Yes			Yes							0
	HOOH	1100	60		Yes	Yes	Yes			Yes							
		n48	60		res	See CA		A) Bandu	ridth Cor		n Set 0 ir	Toblo 5	F A O 1			l	
CA =40(2A)	CA 540A	1140	15	Yes	Yes	Yes	Yes	A) Banuv T	liain Coi	Yes	II Set U II	Table 5).5A.Z-1				
CA_n48(2A)- n66A	CA_n48A- n66A	n66	30	res	Yes	Yes	Yes			Yes							0
HOOA	HOOA	1100	60		Yes	Yes	Yes			Yes							
			15	Voo	Yes	Yes	Yes		Voc	Yes	Yes						
		n50	30	Yes	Yes	Yes	Yes		Yes Yes	Yes	Yes	Yes		Yes ¹			
	CA 5504	1150	60	-	Yes	Yes	Yes			Yes		Yes					
CA_n50A-n78A	CA_n50A- n78A		15		Yes	Yes	Yes		Yes	Yes	Yes Yes	res		Yes ¹			0
	II/OA	70	_									V		\/	\/	\/	
		n78	30 60	-	Yes	Yes	Yes		-	Yes	Yes	Yes		Yes	Yes	Yes	
				\/	Yes	Yes	Yes		 	Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	1	<u> </u>	Yes				1			
		n66	30		Yes	Yes	Yes			Yes							
CA_n66A-n70A	-		60	\/	Yes	Yes	Yes	V = -1	-	Yes							0
_		70	15	Yes	Yes	Yes	Yes ¹	Yes ¹									-
		n70	30	ļ	Yes	Yes	Yes ¹	Yes ¹	ļ								
		1	60		Yes	Yes	Yes ¹	Yes1				l		1			

		n66				See C	CA n66E	Bandwi	dth Com	bination	Set 0 in	Table 5.5	5A.1-1				
04 000 704			15	Yes	Yes	Yes	Yes ¹	Yes ¹									•
CA_n66B-n70A	-	n70	30		Yes	Yes	Yes ¹	Yes ¹									0
			60		Yes	Yes	Yes ¹	Yes ¹									
		n66		,	,	See C/		A) Bandv	vidth Cor	nbinatio	n Set 0 ir	Table 5	5.5A.2-1			,	
CA_n66(2A)-			15	Yes	Yes	Yes	Yes ¹	Yes1									0
n70À	-	n70	30		Yes	Yes	Yes1	Yes ¹									0
			60		Yes	Yes	Yes ¹	Yes ¹									
			15	Yes	Yes	Yes	Yes			Yes							
		n66	30		Yes	Yes	Yes			Yes							
CA_n66A-n71A	CA_n66A-		60		Yes	Yes	Yes			Yes							0
CA_IIOOA-II/ IA	n71A		15	Yes	Yes	Yes	Yes										U
		n71	30		Yes	Yes	Yes										
			60														
		n66				See C/	1_n66(2	A) Bandv	vidth Cor	nbinatio	n Set 0 ir	Table 5	5.5A.2-1				
CA_n66(2A)-	CA_n66A-		15	Yes	Yes	Yes	Yes										0
n71À	n71A	n71	30		Yes	Yes	Yes										U
			60														
		n66				See C	CA_n66E	Bandwi	dth Com	bination	Set 0 in	Table 5.5	5A.1-1				
CA n66D n71A	CA_n66A-		15	Yes	Yes	Yes	Yes										0
CA_n66B-n71A	n71A	n71	30		Yes	Yes	Yes										0
			60														
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
		n66	30		Yes	Yes	Yes	Yes	Yes	Yes							
CA 2664 2774	CA_n66A-		60		Yes	Yes	Yes	Yes	Yes	Yes							0
CA_n66A-n77A	n77A		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
		n77	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes			Yes							
		n66	30		Yes	Yes	Yes			Yes							
CA_n66A-n78A	CA_n66A-		60		Yes	Yes	Yes			Yes							0
CA_IIOOA-III OA	n78A		15		Yes	Yes	Yes			Yes	Yes						U
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes		Yes	Yes							
CA_n66A-	CA_n66A-	n66	30		Yes	Yes	Yes		Yes	Yes							0
n78(2A)	n78A		60		Yes	Yes	Yes		Yes	Yes							0
, ,		n78		I		See CA	l l	A) Bandv			n Set 1 ir	Table 5	5.5A.2-1	1	1	1	
		n66						A) Bandv									
CA_n66(2A)-	CA_n66A-		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes						
n78A	n78A	n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	<u> </u>	Yes	Yes	Yes	0
111.01	111.07	11/0	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	-	Yes	Yes	Yes	
OA =00(0A)	OA ::00A		UØ		res									res	162	res	
CA_n66(2A)-	CA_n66A-	n66						A) Bandy									0
n78(2A)	n78A	n78	45	V	V			A) Bandy	viath Coi	mbinatio	n Set 1 ir	ı ıable 5	.5A.2-1	1	1		
CA_n70A-n71A		n70	15	Yes	Yes	Yes	Yes ¹	Yes ¹				l	1				0

			30		Yes	Yes	Yes1	Yes1									
			60		Yes	Yes	Yes ¹	Yes ¹									
	CA_n70A-		15	Yes	Yes	Yes	Yes										
	n71A	n71	30		Yes	Yes	Yes										
			60														
			15	Yes	Yes	Yes	Yes										
		n75	30		Yes	Yes	Yes										
04 754 704			60		Yes	Yes	Yes										•
CA_n75A-n78A	-		15		Yes	Yes	Yes			Yes	Yes						0
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes										
CA_n75A-		n75	30		Yes	Yes	Yes										•
n78(2A)	-		60		Yes	Yes	Yes										0
, ,		n78			l.	See C/	n78(2	A) Bandv	idth Cor	nbinatio	n Set 1 ir	Table 5	5.5A.2-1				
			15	Yes				[
		n76	30														
04 704 704			60														
CA n76A-n78A	-		15		Yes	Yes	Yes			Yes	Yes						0
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15		Yes	Yes	Yes			Yes	Yes						
		n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
04 774 7042			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
CA_n77A-n78A ²			15		Yes	Yes	Yes			Yes	Yes						0
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15		Yes	Yes	Yes			Yes	Yes						
		n77	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
04 774 704			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	0
CA_n77A-n79A	-		15							Yes	Yes						0
		n79	30							Yes	Yes	Yes		Yes		Yes	
			60							Yes	Yes	Yes		Yes		Yes	
			15		Yes	Yes	Yes			Yes	Yes						
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
04 -704 -704			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	0
CA_n78A-n79A	-		15							Yes	Yes						0
		n79	30							Yes	Yes	Yes		Yes		Yes	
			60							Yes	Yes	Yes		Yes		Yes	

70

			15		Yes	Yes	Yes			Yes	Yes						
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
CA_n78A-n92A	CA_n78A-		60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	0
CA_III/OA-II9ZA	n92A		15	Yes	Yes	Yes	Yes										U
		n92	30		Yes	Yes	Yes										
			60														
04 70(04)	04 704	n78				See CA	_n78(2/	A) Bandv	idth Cor	nbinatior	n Set 0 in	Table 5	.5A.2-1				
CA_n78(2A)- n92A	CA_n78A- n92A		15	Yes	Yes	Yes	Yes										0
n92A	n92A	n92	30		Yes	Yes	Yes										0
			60														

NOTE 1: This UE channel bandwidth is applicable only to downlink.

NOTE 2: The minimum requirements for intra-band contiguous or non-contiguous CA apply.

5.5A.3.2 Configurations for inter-band CA (three bands)

Table 5.5A.3.2-1: NR CA configurations and bandwith combinations sets defined for inter-band CA (three bands)

NR CA configuration	Uplink CA configuration	NR Band	SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Bandwidth combination set
			15	Yes	Yes	Yes	Yes									
		n1	30		Yes	Yes	Yes									
			60		Yes	Yes	Yes									
			15	Yes	Yes	Yes	Yes	Yes	Yes							
CA_n1A-n3A-n7A	-	n3	30		Yes	Yes	Yes	Yes	Yes							0
			60		Yes	Yes	Yes	Yes	Yes							
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
		n7	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
			15	Yes	Yes	Yes	Yes									
		n1	30		Yes	Yes	Yes									
			60		Yes	Yes	Yes									
CA_n1A-n3A-n7B	-		15	Yes	Yes	Yes	Yes	Yes	Yes							0
		n3	30		Yes	Yes	Yes	Yes	Yes							
			60		Yes	Yes	Yes	Yes	Yes							
		n7		1	See	CA n7	B Bandw	idth Con	nbination	Set 0 ir	Table	5.5A.1-	1	l	1	
			15	Yes	Yes	Yes	Yes			1		1	İ			
		n1	30		Yes	Yes	Yes									
			60		Yes	Yes	Yes									
			15	Yes	Yes	Yes	Yes	Yes	Yes							
CA_n1A-n3A-n8A	-	n3	30		Yes	Yes	Yes	Yes	Yes							0
			60		Yes	Yes	Yes	Yes	Yes							
			15	Yes	Yes	Yes	Yes									
		n8	30		Yes	Yes	Yes									
			60													
			15	Yes	Yes	Yes	Yes									
		n1	30		Yes	Yes	Yes									
			60		Yes	Yes	Yes									
CA_n1A-n3A-			15	Yes	Yes	Yes	Yes	Yes	Yes							
n28A	-	n3	30		Yes	Yes	Yes	Yes	Yes							0
HZUA			60		Yes	Yes	Yes	Yes	Yes							
			15	Yes	Yes	Yes	Yes ²									
		n28	30		Yes	Yes	Yes ²									
			60							1						
			15	Yes	Yes	Yes	Yes									
CA_n1A-n3A-		n1	30		Yes	Yes	Yes									0
n41A			60		Yes	Yes	Yes			1						J
		n3	15	Yes	Yes	Yes	Yes	Yes	Yes							

	CA_n1A-n3A		30		Yes	Yes	Yes	Yes	Yes							
	CA_n1A-		60		Yes	Yes	Yes	Yes	Yes							
	n41A		15		Yes	Yes	Yes	1.00	Yes	Yes	Yes					
	CA_n3A-		30		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	n41A	n41	60		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes									
		n1	30		Yes	Yes	Yes									
			60		Yes	Yes	Yes									
04 44 04			15	Yes	Yes	Yes	Yes	Yes	Yes							
CA_n1A-n3A-	-	n3	30		Yes	Yes	Yes	Yes	Yes							0
n78A			60		Yes	Yes	Yes	Yes	Yes							
			15		Yes	Yes	Yes			Yes	Yes					
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes									
		n1	30		Yes	Yes	Yes									
			60		Yes	Yes	Yes									
			15	Yes	Yes	Yes	Yes									
CA_n1A-n8A-	_	n8	30		Yes	Yes	Yes									0
n78A			60													· ·
			15		Yes	Yes	Yes			Yes	Yes					
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes			1.00	100	100		100		
		n1	30	100	Yes	Yes	Yes									
	CA_n1A-n7A		60		Yes	Yes	Yes									
	CA_n1A-		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
CA_n1A-n7A-	n28A	n7	30	100	Yes	Yes	Yes	Yes	Yes	Yes	Yes					0
n28A	CA_n7A-	'''	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					Ü
	n28A		15	Yes	Yes	Yes	Yes ²	1.00	100	1.00	100					
		n28	30	100	Yes	Yes	Yes ²									
		1.20	60		100	100	100									
			15	Yes	Yes	Yes	Yes									
		n1	30		Yes	Yes	Yes									
	CA_n1A-n7A		60		Yes	Yes	Yes									
	CA_n1A-n/A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
CA_n1A-n7A-	n78A	n7	30	100	Yes	Yes	Yes	Yes	Yes	Yes	Yes					0
n78A	CA_n7A-	'''	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes		<u> </u>			•
	n78A		15		Yes	Yes	Yes	. 55	100	Yes	Yes		<u> </u>			
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes ¹	Yes	
		, 0	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes ¹	Yes	
			15	Yes	Yes	Yes	Yes			163	163	103	163	100	100	
CA_n1A-n7A-		n1	30	163	Yes	Yes	Yes						<u> </u>			0
n78(2A)		'''	60		Yes	Yes	Yes						<u> </u>			3
	I	l	0		100	100	5			1	1		1			

	CA_n1A-n7A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	CA_n1A-	n7	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes					1
	n78A		60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					1
	CA_n7A- n78A	n78		See C	A_n78(2A) Baı	ndwidth C	ombinat	ion Set 0	in Table	e 5.5A.2	2-1 in T	S 38.10	1-1		ı
			15	Yes	Yes	Yes	Yes									·
		n1	30		Yes	Yes	Yes									1
			60		Yes	Yes	Yes									1
0.4 4.4 00.4			15	Yes	Yes	Yes	Yes ²									1
CA_n1A-n28A-	-	n28	30		Yes	Yes	Yes ²									0
n78A			60													1
			15		Yes	Yes	Yes			Yes	Yes					1
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1
			15	Yes	Yes	Yes	Yes									
		n1	30		Yes	Yes	Yes									i
			60		Yes	Yes	Yes									1
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					1
CA_n1-n40-n78	-	n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes					0
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					1
			15		Yes	Yes	Yes			Yes	Yes					1
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1
			15	Yes	Yes	Yes	Yes	Yes	Yes							
		n3	30		Yes	Yes	Yes	Yes	Yes							1
			60		Yes	Yes	Yes	Yes	Yes							1
CA_n3A-n7A-			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					1
n28A	-	n7	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes					0
HZOA			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					,
			15	Yes	Yes	Yes	Yes									1
		n28	30		Yes	Yes	Yes									1
			60													
			15	Yes	Yes	Yes	Yes	Yes	Yes							1
		n3	30		Yes	Yes	Yes	Yes	Yes							ı
CA_n3A-n7B-	_		60		Yes	Yes	Yes	Yes	Yes							0
n28A		n7			See	CA_n7	B Bandw	idth Con	nbination	Set 0 in	Table	5.5A.1-	1			1
			15	Yes	Yes	Yes	Yes									1
		n28	30		Yes	Yes	Yes									1
			60													1
			15	Yes	Yes	Yes	Yes	Yes	Yes							
CA =24 = 74		n3	30		Yes	Yes	Yes	Yes	Yes							1
CA_n3A-n7A-	-		60		Yes	Yes	Yes	Yes	Yes							0
n78A		n7	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					1
		n7	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes					1

			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
			15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
		1170	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	100	100	100	100	100	100	
		0	30	100	Yes	Yes	Yes	Yes	Yes							
CA_n3A-n7B-		n3	60		Yes	Yes	Yes	Yes	Yes							0
_ n78A	-	n7			Soo	CA n7	I 'B Bandwi	idth Con	nhination	Set 0 in	Table	<u>Ι</u> 5 5Λ 1-	<u> </u> 1		l	
		117	15		Yes	Yes	Yes	Yes	Yes	Yes	Yes	J.JA. 1-				
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
		1170	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	103	103	103	103	103	103	
		n3	30	100	Yes	Yes	Yes	Yes	Yes							
		110	60		Yes	Yes	Yes	Yes	Yes							
	CA_n3A-n8A		15	Yes	Yes	Yes	Yes	103	100							
CA_n3A-n8A-	CA_3A-n78A	n8	30	103	Yes	Yes	Yes									0
n78A	CA_n8A-	110	60		100	100	100									o o
	n78A		15		Yes	Yes	Yes			Yes	Yes					
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
		1170	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	103	103	103	103	103	103	
		n3	30	103	Yes	Yes	Yes	Yes	Yes							
	CA_n3A-	110	60		Yes	Yes	Yes	Yes	Yes							
	n28A		15	Yes	Yes	Yes	Yes	103	100							
CA_n3A-n28A-	CA_n3A-	n28	30	100	Yes	Yes	Yes									0
n77A	n77A	1120	60		100	100	100									o o
	CA_n28A-		15		Yes	Yes	Yes			Yes	Yes					
	n77A	n77	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	100	100	100	100	100	100	
	CA_n3A-	n3	30		Yes	Yes	Yes	Yes	Yes							
	n28A		60		Yes	Yes	Yes	Yes	Yes							
CA_n3A-n28A-	CA_n3A-		15	Yes	Yes	Yes	Yes	. 55								0
n77(2A)	n78A	n28	30		Yes	Yes	Yes									5
	CA_n28A-		60													
	n78A	n77	55	l .	See C	A n77	2A) Band	width Co	ombinatio	n Set ∩	in Tabl	e 5.5A	2-1	l .		
			15	Yes	Yes	Yes	Yes				, α.δ.		_ ·			
		n3	30		Yes	Yes	Yes									
			60		Yes	Yes	Yes									
CA_n3A-n28A-			15	Yes	Yes	Yes	Yes ²									_
n78A	-	n28	30		Yes	Yes	Yes ²									0
		0	60			. 55										
		i l		<u> </u>	1		!	1		1		i	1	!		
		n78	15		Yes	Yes	Yes			Yes	Yes					

			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes			100	100	100	100	100	100	
		n3	30	100	Yes	Yes	Yes									
			60		Yes	Yes	Yes									
CA_n3A-n28A-	_		15	Yes	Yes	Yes	Yes ²									0
n78(2A)		n28	30		Yes	Yes	Yes ²									ŭ
		20	60			100	100									
		n78		l	See C	:A n78(2A) Band	lwidth C	ombinatio	n Set 0	in Tabl	e 5 5A	2-1	l	ı	
			15	Yes	Yes	Yes	Yes	Yes	Yes			1	 			
		n3	30		Yes	Yes	Yes	Yes	Yes							
	CA_n3A-		60		Yes	Yes	Yes	Yes	Yes							
	n40A		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
CA_n3A-n40A-	CA_n3A-	n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			0
n41A	n41A		60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			-
	CA_n40A-		15		Yes	Yes	Yes			Yes	Yes					
	n41A	n41	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes							
		n3	30		Yes	Yes	Yes	Yes	Yes							
			60		Yes	Yes	Yes	Yes	Yes							
			15		Yes	Yes	Yes			Yes	Yes					
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	0
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	
			15							Yes	Yes					
		n79	30							Yes	Yes	Yes	Yes		Yes	
CA_n3A-n41A-			60							Yes	Yes	Yes	Yes		Yes	
n79A	-		15	Yes	Yes	Yes	Yes	Yes	Yes							
		n3	30		Yes	Yes	Yes	Yes	Yes							
			60		Yes	Yes	Yes	Yes	Yes							
			15		Yes	Yes	Yes			Yes	Yes					
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes			1
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes			
			15							Yes	Yes					
		n79	30							Yes	Yes	Yes	Yes		Yes	
			60							Yes	Yes	Yes	Yes		Yes	
			15	Yes	Yes	Yes	Yes	ļ								
	CA_n5A-	n5	30		Yes	Yes	Yes	ļ								
	n66A,		60													
CA_n5A-n66A-	CA n5A-		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
n78A	n78A,	n66	30		Yes	Yes	Yes	Yes	Yes	Yes						0
111 0/1	CA_n66A-		60		Yes	Yes	Yes	Yes	Yes	Yes						
	n78A		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
		n7	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					0

		1						T 1/	\ /	1 1/					1	
	.		30		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	CA_n7A-		60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
04 74 074	n25A,	0.5	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
CA_n7A-n25A-	CA_n7A-	n25	30		Yes	Yes	Yes	Yes	Yes	Yes						
n66A	n66A,		60		Yes	Yes	Yes	Yes	Yes	Yes						
	CA_n25A-		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
	n66A	n66	30		Yes	Yes	Yes	Yes	Yes	Yes						
			60		Yes	Yes	Yes	Yes	Yes	Yes						
		_	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
		n7	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
CA_n7A-n28A-			15	Yes	Yes	Yes	Yes									_
n78A	-	n28	30		Yes	Yes	Yes									0
-			60													
			15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
		n7			See	CA_n7	B Bandw	idth Con	nbination	Set 0 in	Table	5.5A.1-	1			
			15	Yes	Yes	Yes	Yes									
CA n7B-n28A-		n28	30		Yes	Yes	Yes									
n78A	-		60													0
III OA			15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	a	n7	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	CA_n7A-		60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
04 -74 -004	n66A,		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
CA_n7A-n66A- n78A	CA_n7A- n78A,	n66	30		Yes	Yes	Yes	Yes	Yes	Yes						0
1176A	CA_n66A-		60		Yes	Yes	Yes	Yes	Yes	Yes						
	n78A		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	1170A	n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	a	n7	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	CA_n7A-		60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
CA_n7A-n66A-	n66A,		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
n78(2A)	CA_n7A-	n66	30		Yes	Yes	Yes	Yes	Yes	Yes						0
,	n78A,		60		Yes	Yes	Yes	Yes	Yes	Yes						
	CA_n66A- n78A	n78			S	ee CA_	n78(2A) l	Bandwid	lth Combi	nation S	Set 1 in	Table 5	i.5A.2-1			
CA 50 500A			15	Yes	Yes	Yes	Yes									
CA_n8-n39A-	-	n8	30		Yes	Yes	Yes									0
n41A			60													

			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n39	30	162	Yes	Yes	Yes	Yes	Yes	Yes						
		1139	60		Yes	Yes	Yes	Yes	Yes	Yes						
			15					res	res		Voc					
		11			Yes	Yes	Yes			Yes	Yes	Vaa	Vaa		Vaa	
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	
			60	\/	Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	
			15	Yes	Yes	Yes	Yes									
		n8	30		Yes	Yes	Yes									
			60													
		00	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n39	30		Yes	Yes	Yes	Yes	Yes	Yes						1
			60		Yes	Yes	Yes	Yes	Yes	Yes						
			15		Yes	Yes	Yes			Yes	Yes					
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes				
			60	.,	Yes	Yes	Yes			Yes	Yes	Yes				
			15	Yes	Yes	Yes	Yes			1						
		n8	30		Yes	Yes	Yes			1						
			60													
			15		Yes	Yes	Yes			Yes	Yes					
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	0
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	
			15							Yes	Yes					
		n79	30							Yes	Yes	Yes	Yes		Yes	
CA_n8A-n41A-	_		60							Yes	Yes	Yes	Yes		Yes	
n79A	_		15	Yes	Yes	Yes	Yes									
		n8	30		Yes	Yes	Yes									
			60													
			15		Yes	Yes	Yes			Yes	Yes					
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes				1
			60		Yes	Yes	Yes			Yes	Yes	Yes				
			15							Yes	Yes					
		n79	30							Yes	Yes	Yes	Yes		Yes	
			60							Yes	Yes	Yes	Yes		Yes	
			15	Yes	Yes	Yes	Yes									
		n20	30		Yes	Yes	Yes									
			60													
04 -004 004			15	Yes	Yes	Yes	Yes									
CA_n20A-n28A-	-	n28	30		Yes	Yes	Yes									0
n78A			60													
			15		Yes	Yes	Yes		Yes	Yes	Yes					
		n78	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
		-	60		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes			1	1.00					
CA_n25A-n41A-	_	n25	30		Yes	Yes	Yes									0
n66A		0	60		Yes	Yes	Yes									Ŭ
		1		l	. 00	. 00	. 00	1		1	1		1		l	

			15		Yes	Yes	Yes		Yes	Yes	Yes					
		n41	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes		100	Yes		100	100	100	1.00	
		n66	30	100	Yes	Yes	Yes			Yes						
		1100	60		Yes	Yes	Yes			Yes						
			15	Yes	Yes	Yes	Yes									
		n25	30		Yes	Yes	Yes									
CA_n25A-n41C-			60		Yes	Yes	Yes									0
n66A	-	n41		S	ee CA_	n41C B	andwidth	Combin	ation Set	0 in 38.	101-1	able 5.	5A.1-1			-
		200	15	Yes	Yes	Yes	Yes			Yes						
		n66	30		Yes	Yes	Yes			Yes						
			60		Yes	Yes	Yes			Yes						
			15	Yes	Yes	Yes	Yes									
		n25	30		Yes	Yes	Yes									
CA_n25A-			60		Yes	Yes	Yes									0
n41(2A)-n66A	-	n41		See	e CA_n	41(2A) I	Bandwidt	h Combi	nation Se	t 1 in 38	3.101-1	Table 5	5.5A.2-1			v
		00	15	Yes	Yes	Yes	Yes			Yes						
		n66	30		Yes	Yes	Yes			Yes						
			60		Yes	Yes	Yes			Yes						
			15	Yes	Yes	Yes	Yes									
		n25	30		Yes	Yes	Yes									
			60		Yes	Yes	Yes									
CA_n25A-n41A-			15		Yes	Yes	Yes		Yes	Yes	Yes					
n71A	-	n41	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	0
11/1/			60		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes									
		n71	30		Yes	Yes	Yes									
			60					<u> </u>								
			15	Yes	Yes	Yes	Yes									
		n25	30		Yes	Yes	Yes									
CA_n25A-n41C-			60		Yes	Yes	Yes]								
n71A	-	n41			ee CA_			Combin	ation Set	0 in 38.	101-1	able 5.	5A.1-1			0
117 173			15	Yes	Yes	Yes	Yes									
		n71	30		Yes	Yes	Yes									
			60													
			15	Yes	Yes	Yes	Yes									
CA_n25A-n66A-	_	n25	30		Yes	Yes	Yes									0
n71A	-		60		Yes	Yes	Yes	<u> </u>								J
		n66	15	Yes	Yes	Yes	Yes			Yes						

			30		Yes	Yes	Yes			Yes						
			60		Yes	Yes	Yes			Yes						
			15	Yes	Yes	Yes	Yes			165						
		74	30	165												
		n71			Yes	Yes	Yes									
			60					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
		0.5	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
	CA_n25A-	n25	30		Yes	Yes	Yes	Yes	Yes	Yes						
	n66A,		60		Yes	Yes	Yes	Yes	Yes	Yes						
CA_n25A-n66A-	CA_n25A-		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						_
n78A	n78A,	n66	30		Yes	Yes	Yes	Yes	Yes	Yes						0
57.1	CA_n66A-		60		Yes	Yes	Yes	Yes	Yes	Yes						
	n78A -		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	6. 1	n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes									
	04 004	n28	30		Yes	Yes	Yes									
	CA_n28A-		60													
04 = 004 = 444	n41A		15		Yes	Yes	Yes		Yes	Yes	Yes					
CA_n28A-n41A-	CA_n41A-	n41	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	0
n78A	n78A		60		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	
	CA_n28A-		15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	n78A	n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	1.00	100	1.00					100	
		n28	30	100	Yes	Yes	Yes									
		1120	60		Yes	Yes	Yes									
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
CA n28-n40-n78		n40	30	163	Yes	Yes	Yes	Yes	Yes	Yes	Yes					0
CA_1120-1140-1170	_	1140	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes					U
			15				Yes	162	162							
		70			Yes	Yes	Yes			Yes	Yes	V	Vaa	V	V	
		n78	30		Yes	Yes				Yes	Yes	Yes	Yes	Yes	Yes	
			60	\/	Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
		00	15	Yes	Yes	Yes	Yes									
		n28	30		Yes	Yes	Yes									
			60		.,		.,		.,	.	.,					
CA_n28A-n41A-			15		Yes	Yes	Yes		Yes	Yes	Yes					_
n78A	-	n41	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	0
57.1			60		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	
			15		Yes	Yes	Yes	Yes	Yes	Yes	Yes					
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes											
CA_n29A-n66A-		n29	30		Yes											0
n70A	-		60									_				U
		n66	15	Yes	Yes	Yes	Yes			Yes						

		ı	- 00	l	\/	\/	\\	1		\/			ı		1	
			30		Yes	Yes	Yes	1		Yes						
			60	.,	Yes	Yes	Yes), 1		Yes						
			15	Yes	Yes	Yes	Yes ¹	Yes ¹								
		n70	30		Yes	Yes	Yes ¹	Yes ¹								
			60		Yes	Yes	Yes ¹	Yes ¹								
			15	Yes	Yes											
		n29	30		Yes											
CA_n29A-n66B-			60													
n70A	-	n66			CA_n66	6B Ban			on Set 0 i	n Table	5.5A.1	1 in TS	38.101	-1		0
ШОА			15	Yes	Yes	Yes	Yes ¹	Yes ¹								
		n70	30		Yes	Yes	Yes ¹	Yes ¹								
			60		Yes	Yes	Yes ¹	Yes ¹								
			15	Yes	Yes											
		n29	30		Yes											
04 004			60													
CA_n29A-	-	n66		See C	A_n66(2A) Ba	ndwidth C	Combina	tion Set 0	in Tabl	e 5.5A.	2-1 in T	S38.10	1-1		0
n66(2A)-n70A			15	Yes	Yes	Yes	Yes ¹	Yes ¹								-
		n70	30		Yes	Yes	Yes1	Yes ¹								
			60		Yes	Yes	Yes ¹	Yes ¹								
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n39	30	100	Yes	Yes	Yes	Yes	Yes	Yes						
		1100	60		Yes	Yes	Yes	Yes	Yes	Yes						
			15		Yes	Yes	Yes	100	100	Yes	Yes					
		n41	30		Yes	Yes	Yes	+		Yes	Yes	Yes	Yes	Yes		0
		1141	60		Yes	Yes	Yes	1		Yes	Yes	Yes	Yes	Yes		U
			15		162	162	162			Yes	Yes	165	165	169		
		n79	30							Yes	Yes	Yes	Yes	Yes		
CA =20A = 44A		1179	60							Yes						
CA_n39A-n41A- n79A	-		15	V	Vaa	Vaa	V	V	Vaa	Yes	Yes	Yes	Yes	Yes		
1179A	-	-20	30	Yes	Yes	Yes	Yes	Yes	Yes							
		n39			Yes	Yes	Yes	Yes	Yes	Yes						
			60		Yes	Yes	Yes	Yes	Yes	Yes	\/					
			15		Yes	Yes	Yes			Yes	Yes					4
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes				1
			60		Yes	Yes	Yes			Yes	Yes	Yes				
			15							Yes	Yes					
		n79	30							Yes	Yes	Yes	Yes	Yes		
			60					1		Yes	Yes	Yes	Yes	Yes		
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
	CA_n40A-	n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
	n41A		60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
CA_n40A-n41A-	CA_n40A-		15		Yes	Yes	Yes			Yes	Yes					0
n79A	n79A	n41	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	U
	CA_n41A-		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	
	n79A	n79	15							Yes	Yes					
		11/9	30							Yes	Yes	Yes	Yes		Yes	

			60							Yes	Yes	Yes	Yes		Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n40	30		Yes	Yes	Yes	Yes	Yes	Yes						
			60		Yes	Yes	Yes	Yes	Yes	Yes						
			15		Yes	Yes	Yes			Yes	Yes					
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes				1
			60		Yes	Yes	Yes			Yes	Yes	Yes				
			15							Yes	Yes					
		n79	30							Yes	Yes	Yes	Yes		Yes	
			60							Yes	Yes	Yes	Yes		Yes	
			15		Yes	Yes	Yes		Yes	Yes	Yes					
		n41	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
CA_n41A-n66A-			15	Yes	Yes	Yes	Yes			Yes						0
n71A	-	n66	30		Yes	Yes	Yes			Yes						U
			60		Yes	Yes	Yes			Yes						
		n71	15	Yes	Yes	Yes	Yes									
		117 1	30		Yes	Yes	Yes									
		n41		See	e CA_n	41(2A) I	Bandwidtl	n Combi	nation Se	t 1 in 38	3.101-1	Table 5	5.5A.2-1			
			15	Yes	Yes	Yes	Yes			Yes						
CA_n41(2A)-		n66	30		Yes	Yes	Yes			Yes						
n66A-n71A	-		60		Yes	Yes	Yes			Yes						0
1100A-117 TA			15	Yes	Yes	Yes	Yes									
		n71	30		Yes	Yes	Yes									
			60													
		n41		Se	ee CA_ı		andwidth	Combin	ation Set	0 in 38.	101-1 T	able 5.	5A.1-1			
			15	Yes	Yes	Yes	Yes			Yes						
CA_n41C-n66A-		n66	30		Yes	Yes	Yes			Yes						
n71A	-		60		Yes	Yes	Yes			Yes						0
117 17			15	Yes	Yes	Yes	Yes									
		n71	30		Yes	Yes	Yes									
			60													
			15	Yes	Yes	Yes	Yes			Yes						
	CA_n66A-	n66	30		Yes	Yes	Yes			Yes						
	n71A		60		Yes	Yes	Yes			Yes						
CA_n66A-n70A-	CA_n70A-		15	Yes	Yes	Yes	Yes ¹	Yes ¹								0
n71A	n71A	n70	30		Yes	Yes	Yes ¹	Yes ¹								Ü
			60		Yes	Yes	Yes ¹	Yes ¹								
		n71	15	Yes	Yes	Yes	Yes									
			30		Yes	Yes	Yes	L		L		L				
	CA_n66A-	n66							on Set 0 ir	<u>Table</u>	5.5A.1-	1 in TS	38.101	-1		
CA_n66B-n70A-	n71A		15	Yes	Yes	Yes	Yes ¹	Yes ¹								_
n71A	CA_n70A-	n70	30		Yes	Yes	Yes ¹	Yes ¹								0
,,,	n71A		60		Yes	Yes	Yes ¹	Yes ¹								
		n71	15	Yes	Yes	Yes	Yes									

			30		Yes	Yes	Yes								
	CA ~CCA	n66		See C	A_n66(2A) Bar	ndwidth C	ombinat	ion Set 0	in Table	e 5.5A.2	2-1 in T	S 38.10	1-1	
	CA_n66A-		15	Yes	Yes	Yes	Yes ¹	Yes ¹							
CA_n66(2A)- n70A-n71A	n71A	n70	30		Yes	Yes	Yes ¹	Yes ¹							0
n70A-n71A	CA_n70A- n71A		60		Yes	Yes	Yes ¹	Yes ¹							U
	111/17	n71	15	Yes	Yes	Yes	Yes								
		117 1	30		Yes	Yes	Yes								

NOTE 1: This UE channel bandwidth is applicable only to downlink
NOTE 2: For the 20 MHz bandwidth, the minimum requirements are specified for NR UL carrier frequencies confined to either 713-723 MHz or 728-738 MHz.

5.5A.3.3 Configurations for inter-band CA (four bands)

Table 5.5A.3.3-1: NR CA configurations and bandwith combinations sets defined for inter-band CA (four bands)

NR CA configuration	Uplink CA configuration	NR Band	SCS (kHz	5 MH	10 MH	15 MH	20 MH	25 MH	30 MH	40 MH	50 MH	60 MH	70 MH	80 MH	90 MH	100 MH	Bandwidth combination
- comgananon	- comgananon	Jana)	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	set
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										
			60	.,	Yes	Yes	Yes	.,	.,								
			15	Yes	Yes	Yes	Yes	Yes	Yes								
CA =4A =2A		n3	30 60		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes								ł
CA_n1A-n3A- n7A-n28A	-		15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						0
III A-IIZOA		n7	30	res	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		117	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes						
			15	Yes	Yes	Yes	Yes	163	163	163	163						
		n28	30	163	Yes	Yes	Yes										1
		1120	60		103	103	103										
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										†
			60		Yes	Yes	Yes										†
			15	Yes	Yes	Yes	Yes	Yes	Yes								†
CA n1A-n3A-		n3	30		Yes	Yes	Yes	Yes	Yes								
n7B-n28A	-		60		Yes	Yes	Yes	Yes	Yes								0
		n7			Se	e CA_	n7B Ba	ndwidth	Comb	ination	Set 0 ir	Table	5.5A.1-	·1			
			15	Yes	Yes	Yes	Yes										
		n28	30		Yes	Yes	Yes										
			60														
			15	Yes	Yes	Yes	Yes										
CA_n1A-n3A-	_	_ n1	30		Yes	Yes	Yes										0
n7A-n78A	_		60		Yes	Yes	Yes										J
		n3	15	Yes	Yes	Yes	Yes	Yes	Yes								

			30		Yes	Yes	Yes	Yes	Yes								
			60		Yes	Yes	Yes	Yes	Yes								
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n7	30	163	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		117	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes						
			15		Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
		1170	15		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	163	163	163	163	163	163	163	163	163	
		n1	30	103	Yes	Yes	Yes										
		111	60		Yes	Yes	Yes										
			15	Yes	Yes	Yes	Yes	Yes	Yes								
CA_n1A-n3A-		n3	30	163	Yes	Yes	Yes	Yes	Yes								
n7B-n78A	-	113	60		Yes	Yes	Yes	Yes	Yes								0
III D-III OA		n7	00				n7B Ba			ination	Set 0 in	Table	5 5Δ 1 ₋	.1		<u> </u>	
		117	15		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Table	0.07.1	1			
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
		1170	15		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	100	100	100	100	100	100	100	100	100	
		n1	30	100	Yes	Yes	Yes										
			60		Yes	Yes	Yes										
			15	Yes	Yes	Yes	Yes	Yes	Yes								
		n3	30	100	Yes	Yes	Yes	Yes	Yes								
		110	60		Yes	Yes	Yes	Yes	Yes								
CA_n1A-n3A-			15	Yes	Yes	Yes	Yes	100	100								_
n8A-n78A	-	n8	30	100	Yes	Yes	Yes										0
		1.0	60			100											
			15		Yes	Yes	Yes			Yes	Yes						
			30												Yes		
		n78			Yes	Yes	Yes			Yes	Yes	Yes		Yes	1	Yes	
			60		.,	.,	.,			.,	.,	.,		.,	Yes	.,	,
					Yes	Yes	Yes			Yes	Yes	Yes		Yes	1	Yes	
			15	Yes	Yes	Yes	Yes										
		n1	30		Yes	Yes	Yes										
			60		Yes	Yes	Yes										•
			15	Yes	Yes	Yes	Yes	Yes	Yes								•
		n3	30		Yes	Yes	Yes	Yes	Yes								
CA_n1A-n3A-			60		Yes	Yes	Yes	Yes	Yes								0
n28A-n78A	-		15	V			Yes										0
				Yes	Yes	Yes	2										
		n28	30		Vos	Vos	Yes										
					Yes	Yes	2	<u> </u>		<u> </u>	<u></u>	<u></u>	<u> </u>	<u></u>		<u> </u>	
			60														
		n78	15		Yes	Yes	Yes			Yes	Yes						

			30		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes 1	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes		Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes								
		n3	30		Yes	Yes	Yes	Yes	Yes								
			60		Yes	Yes	Yes	Yes	Yes								
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n7	30		Yes												
CA_n3A-n7A-	_		60		Yes						0						
n28A-n78A	_		15	Yes	Yes	Yes	Yes										U
		n28	30		Yes	Yes	Yes										
			60														
			15		Yes												
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes							
			15		Yes	Yes	Yes	Yes	Yes	Yes							
			15	Yes	Yes	Yes	Yes	Yes	Yes								
		n3	30		Yes	Yes	Yes	Yes	Yes								
			60		Yes	Yes	Yes	Yes	Yes								
		n7		1		ee CA_ı		ndwidth	Comb	ination	Set 0 ir	Table	5.5A.1-	1	1		
CA_n3A-n7B-	-		15	Yes	Yes	Yes	Yes										0
n28A-n78A		n28	30		Yes	Yes	Yes										
			60														
			15		Yes												
		n78	30		Yes	Yes	Yes	Yes	Yes	Yes							
			15		Yes	Yes	Yes	Yes	Yes	Yes							
		_	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
		n7	30		Yes												
			60		Yes												
			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
CA_n7A-		n25	30		Yes	Yes	Yes	Yes	Yes	Yes							
n25A-n66A-	-		60		Yes	Yes	Yes	Yes	Yes	Yes							0
n78A			15	Yes	Yes	Yes	Yes	Yes	Yes	Yes							-
		n66	30		Yes	Yes	Yes	Yes	Yes	Yes							
			60		Yes	Yes	Yes	Yes	Yes	Yes	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
			15		Yes												
		n78	30 60		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	

NOTE 1: This UE channel bandwidth is optional in this release of the specification.

NOTE 2: For the 20 MHz bandwidth, the minimum requirements are specified for NR UL carrier frequencies confined to either 713-723 MHz or 728-738 MHz.

5.5B Configurations for DC

For an NR DC configuration specified in 5.5B.1-1, the bandwidth combination sets for the corresponding NR CA configuration in 5.5A.3,i.e.,dual uplink inter-band carrier aggregation with uplink assigned to two NR bands, are applicable to Dual Connectivity.

Table 5.5B.1-1: Inter-band NR DC configurations (two bands)

NR DC configuration	Uplink NR DC configuration
DC_n2A-n5A	DC_n2A-n5A

5.5C Configurations for SUL

Table 5.5C-1: Supported channel bandwidths per SUL band combination

SUL configuration	NR Band	Subcarrier spacing (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Bandwidth combination set
		15		Yes	Yes	Yes			Yes	Yes					
SUL_n41A-n80A	n41	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
30L_1141A-1100A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	U
	n80	15	Yes	Yes	Yes	Yes	Yes	Yes							
		15		Yes	Yes	Yes			Yes	Yes					
SUL_n41A-n81A	n41	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
30L_1141A-1101A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n81	15	Yes	Yes	Yes	Yes	Yes	Yes							
		15		Yes	Yes	Yes		Yes	Yes	Yes					
	n41	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
CIII = 44.4 = 0.5.4		60		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	
SUL_n41A-n95A		15	Yes	Yes	Yes										0
	n95	30		Yes	Yes										1
		60		Yes	Yes										
		15		Yes	Yes	Yes			Yes	Yes					
0 ==4 004	n77	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1
SUL_n77A-n80A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n80	15	Yes	Yes	Yes	Yes	Yes	Yes							
		15		Yes	Yes	Yes			Yes	Yes					
	n77	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
SUL_n77A-n84A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n84	15	Yes	Yes	Yes	Yes									
	1.0.	15		Yes	Yes	Yes			Yes	Yes					
	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
SUL_n78A-n80A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n80	15	Yes	Yes	Yes	Yes	Yes	Yes							
	1.00	15		Yes	Yes	Yes			Yes	Yes					
	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
SUL_n78A-n81A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n81	15	Yes	Yes	Yes	Yes									
		15		Yes	Yes	Yes			Yes	Yes					
	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1
SUL_n78A-n82A	0	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n82	15	Yes	Yes	Yes	Yes			100	100	100	100	100	100	
	1102	15		Yes	Yes	Yes			Yes	Yes					
	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
SUL_n78A-n83A	117.0	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n83	15	Yes	Yes	Yes	Yes		 	163	100	100	100	163	100	
	1103	15	169	Yes	Yes	Yes			Yes	Yes					
	n78	30		Yes	Yes	Yes		1	Yes	Yes	Yes	Yes	Yes	Yes	
SUL_n78A-n84A	1176	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n84	15	Yes	Yes	Yes	Yes			162	162	162	162	162	162	1
	1104	15	168	168	168	168	l	1	1	1		1	1	l	l

		15		Yes	Yes	Yes			Yes	Yes					
CIII	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
SUL_n78A-n86A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n86	15	Yes	Yes	Yes	Yes									
		15							Yes	Yes					
SUL_n79A-n80A	n79	30							Yes	Yes	Yes	Yes		Yes	0
30L_11/9A-1180A		60							Yes	Yes	Yes	Yes		Yes	U
	n80	15	Yes	Yes	Yes	Yes	Yes	Yes							
		15							Yes	Yes					
SUL_n79A-n81A	n79	30							Yes	Yes	Yes	Yes		Yes	0
30L_11/9A-1101A		60							Yes	Yes	Yes	Yes		Yes	U
	n81	15	Yes	Yes	Yes	Yes									
		15							Yes	Yes					
SUL_n79A-n84A	n79	30							Yes	Yes	Yes	Yes		Yes	0
30L_III 9A-II04A		60							Yes	Yes	Yes	Yes		Yes	U
	n84	15	Yes	Yes	Yes	Yes									
		15							Yes	Yes					
	n79	30							Yes	Yes	Yes	Yes		Yes	
SUL_n79A-n95A		60							Yes	Yes	Yes	Yes		Yes	0
30L_III 9A-1193A		15	Yes	Yes	Yes										U
	n95	30		Yes	Yes										
		60		Yes	Yes										

Table 5.5C-2: Supported channel bandwidths per SUL band combination with downlink CA

	SUL band combination with downlink CA	SUL configuration	NR Band	Subcarrier spacing (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Bandwidth combination set
Ī	CA_n78(2A)_SUL_n78A-	SUL_n78A-	n78		Se	e CA_r	78(2A)	Bandw	idth Cor	nbinatio	n Set 0	in Tabl	le 5.5A.	2-1			0
	n86A	n86A	n86	15	Yes	Yes	Yes	Yes									U

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single or multiple transmit antenna(s). For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

Transmitter requirements for UL MIMO operation apply when the UE transmits on 2 ports on the same CDM group. The UE may use higher MPR values outside this limitation.

The applicability of transmitter requirements for Band n90 is in accordance with that for Band n41; a UE supporting Band n90 shall meet the minimum requirements for Band n41.

6.1A General

The minimum requirements for band combinations including Band n41 also apply for the corresponding band combinations with Band n90 replacing Band n41 but with otherwise identical parameters. For brevity the said band combinations with Band n90 are not listed in the tables below but are covered by this specification.

6.2 Transmitter power

6.2.1 UE maximum output power

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth of NR carrier unless otherwise stated. The period of measurement shall be at least one sub frame (1ms).

Table 6.2.1-1: UE Power Class

NR band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)
n1	, ,	` ′	•	` '	23	±2
n2					23	±2 ³
n3					23	±2 ³
n5					23	±2
n7					23	±2 ³
n8					23	±2 ³
n12					23	±2 ³
n14	31	+2/-3			23	±2 ³
n18					23	±2
n20					23	±2 ³
n25					23	±2 ³
n26					23	±2 ³
n28					23	+2/-2.5
n30					23	±2
n34					23	±2
n38					23	±2
n39					23	±2
n40					23	±2
n41			26	+2/-33	23	±2 ³
n47					23	±2
n48					23	+2/-3
n50					23	±2
n51					23	±2
n53					23	±2
n65					23	±2
n66					23	±2
n70					23	±2
n71					23	+2/-2.5
n74					23	±2
n77			26	+2/-3	23	+2/-3
n78			26	+2/-3	23	+2/-3
n79			26	+2/-3	23	+2/-3
n80					23	±2
n81					23	±2
n82					23	±2
n83					23	±2/-2.5
n84					23	±2
n86					23	±2
n89					23	±2
n91					23	±2 ^{3, 4}
n92					23	±2 ^{3, 4}
n93					23	±2 ^{3, 4}
n94					23	±2 ^{3, 4}
n95					23	±2
	P _{PowerClass} is	the maximum	UE powers	specified witho	ut taking int	to account the

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 2: Power class 3 is default power class unless otherwise stated

NOTE 3: Refers to the transmission bandwidths confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} , the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB.

NOTE 4: The maximum output power requirement is relaxed by reducing the lower tolerance limit by 0.3 dB

If a UE supports a different power class than the default UE power class for the band and the supported power class enables the higher maximum output power than that of the default power class:

- if the field of UE capability *maxUplinkDutyCycle-PC2-FR1* is absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than 50% (The exact evaluation period is no less than one radio frame); or

- if the field of UE capability *maxUplinkDutyCycle-PC2-FR1* is not absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than *maxUplinkDutyCycle-PC2-FR1* as defined in TS 38.331 (The exact evaluation period is no less than one radio frame); or
- if the IE P-Max as defined in TS 38.331 [7] is provided and set to the maximum output power of the default power class or lower;
- shall apply all requirements for the default power class to the supported power class and set the configured transmitted power as specified in clause 6.2.4;
- else if the IE *P-Max* as defined in TS 38.331 [7] is not provided or set to the higher value than the maximum output power of the default power class and the percentage of uplink symbols transmitted in a certain evaluation period is less than or equal to *maxUplinkDutyCycle-PC2-FR1* as defined in TS 38.331; or
- if the IE *P-Max* as defined in TS 38.331 [7] is not provided or set to the higher value than the maximum output power of the default power class and the percentage of uplink symbols transmitted in a certain evaluation period is less than or equal to 50% when *maxUplinkDutyCycle-PC2-FR1* is absent. (The exact evaluation period is no less than one radio frame):
- shall apply all requirements for the supported power class and set the configured transmitted power as specified in clause 6.2.4.

6.2.2 UE maximum output power reduction

UE is allowed to reduce the maximum output power due to higher order modulations and transmit bandwidth configurations. For UE power class 2 and 3, the allowed maximum power reduction (MPR) is defined in Table 6.2.2-2 and Table 6.2.2-1, respectively for channel bandwidths that meets both following criteria:

Channel bandwidth ≤ 100 MHz.

Relative channel bandwidth \leq 4 % for TDD bands and \leq 3 % for FDD bands. Unless otherwise stated, the Δ MPR is set to zero.

If the relative channel bandwidth is larger than 4% for TDD bands or 3% for FDD bands, the Δ MPR is defined in Table 6.2.2-3.

Where relative channel bandwith = $2*BW_{Channel}/(F_{UL\ low} + F_{UL\ high})$

The allowed MPR for SRS, PUCCH formats 0, 1, 3 and 4, and PRACH shall be as specified for QPSK modulated DFT-s-OFDM of equivalent RB allocation. The allowed MPR for PUCCH format 2 shall be as specified for QPSK modulated CP-OFDM of equivalent RB allocation.

Table 6.2.2-1 Maximum power reduction (MPR) for power class 3

M - d-	latia		MPR (dB)	
Modu	iation	Edge RB allocations	Outer RB allocations	Inner RB allocations
	Pi/2 BPSK	≤ 3.5 ¹	≤ 1.2 ¹	≤ 0.2 ¹
	FI/Z DESK	≤ 0.5 ²	≤ 0.5 ²	0^{2}
DFT-s-OFDM	QPSK		≤ 1	0
	16 QAM		≤ 2	≤ 1
	64 QAM		≤ 2.5	
	256 QAM		≤ 4.5	
	QPSK		≤ 3	≤ 1.5
CP-OFDM	16 QAM		≤ 3	≤ 2
	64 QAM		≤ 3.5	
	256 QAM		≤ 6.5	

NOTE 1: Applicable for UE operating in TDD mode with Pi/2 BPSK modulation and UE indicates support for UE capability powerBoosting-pi/2BPSK and if the IE powerBoostPi/2BPSK is set to 1 and 40 % or less slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79. The reference power of 0 dB MPR is 26 dBm.

NOTE 2: Applicable for UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77, n78 and n79 with Pi/2 BPSK modulation and if the IE *powerBoostPi2BPSK* is set to 0 and if more than 40 % of slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79.

Table 6.2.2-2 Maximum power reduction (MPR) for power class 2

Modu	lation		MPR (dB)	
		Edge RB allocations	Outer RB allocations	Inner RB allocations
	Pi/2 BPSK	≤ 3.5	≤ 0.5	0
DFT-s-	QPSK	≤ 3.5	≤ 1	0
OFDM	16 QAM	≤ 3.5	≤ 2	≤ 1
	64 QAM	≤ 3.5	≤ 2	2.5
	256 QAM		≤ 4.5	
	QPSK	≤ 3.5	≤ 3	≤ 1.5
CP-OFDM	16 QAM	≤ 3.5	≤ 3	≤ 2
	64 QAM		≤ 3.5	
	256 QAM		≤ 6.5	

Table 6.2.2-3: △MPR

NR Band	Power class	Channel bandwidth	∆MPR (dB)
n28	Power class 3	30 MHz	0.5

Where the following parameters are defined to specify valid RB allocation ranges for Outer and Inner RB allocations:

 N_{RB} is the maximum number of RBs for a given Channel bandwidth and sub-carrier spacing defined in Table 5.3.2-1. $RB_{Start,Low} = max(1, floor(L_{CRB}/2))$

where max() indicates the largest value of all arguments and floor(x) is the greatest integer less than or equal to x.

$$RB_{Start,High} = N_{RB} - RB_{Start,Low} - L_{CRB}$$

The RB allocation is an Inner RB allocation if the following conditions are met

$$RB_{Start,Low} \leq RB_{Start} \leq RB_{Start,High},$$
 and

$$L_{CRB} \leq ceil(N_{RB}/2)$$

where ceil(x) is the smallest integer greater than or equal to x.

An Edge RB allocation is the one for which the RB(s) is (are) allocated at the lowermost or uppermost edge of the channel with $L_{CRB} \le 2$ RBs.

The RB allocation is an Outer RB allocation for all other allocations which are not an Inner RB allocation or Edge RB allocation.

If CP-OFDM allocation satisfies following conditions, it is considered as almost contiguous allocation

$$N_{RB~gap} / (N_{RB~alloc} + N_{RB~gap}) \le 0.25$$

and $N_{RB_alloc} + N_{RB_gap}$ is larger than 106, 51 or 24 RBs for 15 kHz, 30 kHz or 60 kHz respectively where N_{RB_gap} is the total number of unallocated RBs between allocated RBs and N_{RB_alloc} is the total number of allocated RBs. The size and location of allocated and unallocated RBs are restricted by RBG parameters specified in clause 6.1.2.2 of TS 38.214 [10]. For these almost contiguous signals in power class 2 and 3, the allowed maximum power reduction defined in Table 6.2.2-1 is increased by

CEIL{
$$10 log_{10}(1 + N_{RB_gap}/N_{RB_alloc}), 0.5$$
 } dB,

where CEIL $\{x,0.5\}$ means x rounding upwards to closest 0.5dB. The parameters of $RB_{Start,Low}$ and $RB_{Start,High}$ to specify valid RB allocation ranges for Outer and Inner RB allocations are defined as following:

$$RB_{Start,Low} = max(1, floor((N_{RB alloc} + N_{RB gap})/2))$$

$$RB_{Start, High} = N_{RB} - RB_{Start, Low} - N_{RB_alloc} - N_{RB_gap}$$

For the UE maximum output power modified by MPR, the power limits specified in clause 6.2.4 apply.

6.2.3 UE additional maximum output power reduction

6.2.3.1 General

Additional emission requirements can be signalled by the network. Each additional emission requirement is associated with a unique network signalling (NS) value indicated in RRC signalling by an NR frequency band number of the applicable operating band and an associated value in the field *additionalSpectrumEmission*. Throughout this specification, the notion of indication or signalling of an NS value refers to the corresponding indication of an NR frequency band number of the applicable operating band, the IE field *freqBandIndicatorNR* and an associated value of *additionalSpectrumEmission* in the relevant RRC information elements [7].

To meet the additional requirements, additional maximum power reduction (A-MPR) is allowed for the maximum output power as specified in Table 6.2.1-1. Unless stated otherwise, the total reduction to UE maximum output power is max(MPR, A-MPR) where MPR is defined in clause 6.2.2. Outer and inner allocation notation used in clause 6.2.3 is defined in clause 6.2.2 In absense of modulation and waveform types the A-MPR applies to all modulation and waveform types.

Table 6.2.3.1-1 specifies the additional requirements with their associated network signalling values and the allowed A-MPR and applicable operating band(s) for each NS value. In case of a power class 3 UE, when IE *powerBoostPi2BPSK* is set to 1, power class 2 A-MPR values apply. The mapping of NR frequency band numbers and values of the *additionalSpectrumEmission* to network signalling labels is specified in Table 6.2.3.1-1A.

For almost contiguous allocations in CP-OFDM waveforms in power class 3, the allowed A-MPR defined in clause 6.2.3 is increased by CEIL{ $10 \log_{10}(1 + N_{RB_gap}/N_{RB_alloc}), 0.5$ } dB, where N_{RB_gap} is the total number of unallocated RBs between allocated RBs and N_{RB_alloc} is the total number of allocated RBs, and the parameter L_{CRB} is replaced by $N_{RB_alloc} + N_{RB_gap}$ in specifying the RB allocation regions.

Table 6.2.3.1-1: Additional maximum power reduction (A-MPR)

Network signalling label	Requirements (clause)	NR Band	Channel bandwidth (MHz)	Resources blocks (<i>N</i> _{RB})	A-MPR (dB)
NS_01		Table 5.2-1	5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	Table 5.3.2-1	N/A
NS_03	6.5.2.3.3	n2, n25, n66, n70, n86			Clause 6.2.3.7
NS_03U	6.5.2.3.3, 6.5.2.4.2	n2, n25, n66, n86			Clause 6.2.3.7
NS_04	6.5.2.3.2, 6.5.3.3.1	n41	10, 15, 20, 30, 40, 50, 60 80, 90, 100		Clause 6.2.3.2
NS_05	6.5.3.3.4	n1, n65, n84	5, 10, 15, 20 (NOTE 2)		Clause 6.2.3.4
NS_05U	6.5.3.3.4, 6.5.2.4.2	n1, n65, n84	5, 10, 15, 20		Clause 6.2.3.4
NS_06	6.5.2.3.4	n12	5, 10, 15		N/A
143_00	0.5.2.5.4	n14	5,10		
NS_10		n20	15, 20	Table 6.2.3.3-1	Table 6.2.3.3-1
NS_12	6.5.3.3.17	n26			
NS_13	6.5.3.3.18	n26			
NS_14	6.5.3.3.19	n26			
NS_15	6.5.3.3.20	n26			
NS_17	6.5.3.3.2	n28, n83	5,10	Table 5.3.2-1	N/A
			5		Table 6.2.3.13-1, A1
			10, 15, 20		Table
NS_18	6.5.3.3.3	n28, n83	10, 13, 20		6.2.3.13-1, A2 Table
			30		6.2.3.13-1, A3, A4, A5
NS_21	6.5.3.3.12	n30	5, 10		Clause 6.2.3.14
NS_24	6.5.3.3.13	n65 (NOTE 4)	5, 10, 15, 20	Table 6.2.3.15-1	Clause 6.2.3.15
NS_27	6.5.2.3.8 6.5.3.3.14	n48	5, 10, 15, 20, 40	Table 6.2.3.16-1	Table 6.2.3.16-2
NS_35	6.5.2.3.1	n71	5, 10, 15, 20	Table 5.3.2-1	N/A
NS_37	6.5.3.3.6	n74 (NOTE 3)	10, 15	Table 6.2.3.8-1	Table 6.2.3.8-1
NS_38	6.5.3.3.7	n74	5, 10, 15, 20	Table 6.2.3.9-1	Table 6.2.3.9-1
NS_39	6.5.3.3.8	n74	10, 15, 20	Table 6.2.3.10-1	Table 6.2.3.10-1
NS_40	6.5.3.3.9	n51	5		Table 6.2.3.5-1
NS_41	6.5.3.3.10	n50	5, 10, 15, 20, 30, 40, 50, 60		Table 6.2.3.11-1
NS_42	6.5.3.3.11	n50	5, 10, 15, 20, 30, 40, 50, 60		Table 6.2.3.12-1
NS_43	6.5.3.3.5	n8, n81	5, 10, 15		Clause 6.2.3.6
NS_43U	6.5.3.3.5, 6.5.2.4.2	n8, n81	5, 10, 15		Clause 6.2.3.6
NS_44	6.5.3.3.24	n38	25, 30, 40	Table 6.2.3.20-1	Table 6.2.3.20-1
NS_45	6.5.3.3.21	n53	5, 10		Clause 6.2.3.25
NS_46	6.5.3.2	n7	25, 30, 40, 50	Table 6.2.3.17-1	Table 6.2.3.17-2
NS_47	6.5.3.3.15	n41 (Note 5)	30	Table 6.2.3.18-1	Table 6.2.3.18-2

NS_48	6.5.3.3.22	n1	25, 30, 40, 50	Table 6.2.3.26-1	Table 6.2.3.26-1
NS_49	6.5.3.3.23	n1	25, 30, 40, 50	Table 6.2.3.27-1	Table 6.2.3.27-1
NS_50	6.5.3.3.16	n39	25, 30, 40		Clause 6.2.3.19
NS_51	6.5.3.3.22	n65	50	Table 6.2.3.28-1	Table 6.2.3.28-2
NS_100	6.5.2.4.2	n1, n2, n3, n5, n8, n18, n25, n26, n65, n66, n80, n81, n84, n86, n89 (NOTE 1)			Table 6.2.3.1-2

NOTE 1: This NS can be signalled for NR bands that have UTRA services deployed NOTE 2: No A-MPR is applied for 5 MHz BW_{Channel} where the lower channel edge is ≥ 1930 MHz,10 MHz BW_{Channel} where the lower channel edge is ≥ 1950 MHz and 15 MHz BW_{Channel} where the lower channel edge is ≥ 1955 MHz.NOTE 3: Applicable when the NR carrier is within 1447.9 - 1462.9 MHz

NOTE 4: Applicable when the upper edge of the channel bandwidth frequency is greater than 1980 MHz.

NOTE 5: Applicable when the NR carrier is within 2545 – 2575 MHz

[The NS_01 label with the field additionalPmax [7] absent is default for all NR bands.]

Table 6.2.3.1-1A: Mapping of network signaling label

NR band	Value of additionalSpectrumEmission											
	0	1	2	3	4	5	6	7				
n1	NS_01	NS_100	NS_05	NS_05U	NS_48	NS_49						
n2	NS_01	NS_100	NS_03	NS_03U								
n3	NS_01	NS_100										
n5	NS_01	NS_100										
n7	NS_01	NS_46										
n8	NS_01	NS_100	NS_43	NS_43U								
n12	NS_01	NS_06										
n14	NS_01	NS_06										
n18	NS_01	NS_100										
n20	NS_01	Void	NS_10									
n25	NS_01	NS_100	NS_03	NS_03U								
n26	NS_01	NS_100	NS_12	NS_13	NS_14	NS_15						
n28	NS_01	NS_17	NS_18									
n30	NS_01	NS_21										
n34	NS_01											
n38	NS_01	NS_44										
n39	NS_01	NS_50										
n40	NS_01											
n41	NS_01	NS_04	NS_47									
n48	NS_01	NS_27										
n50	NS_01	NS_41	NS_42									
n51	NS_01	NS_40										
n53	NS_01	NS_45										
n65	NS_01	NS_24	NS_100	NS_05	NS_05U	NS_51						
n66	NS_01	NS_100	NS_03	NS_03U								
n70	NS_01	NS_03										
n71	NS_01	NS_35										
n74	NS_01	NS_37	NS_38	NS_39								
n77	NS_01											
n78	NS_01											
n79	NS_01											
n80	NS_01	NS_100										
n81	NS_01	NS_100	NS_43	NS_43U								
n82	NS_01	Void										
n83	NS_01	NS_17	NS_18									
n84	NS_01	NS_100	NS_05	NS_05U								
n86	NS_01	NS_100	NS_03	NS_03U								
n89	NS_01	NS_100										
n91	NS_01											
n92	NS_01											
n93	NS_01							1				
n94	NS_01							1				
n95	NS_01							1				

NOTE: additional Spectrum Emission corresponds to an information element of the same name defined in clause 6.3.2 of TS 38.331 [7].

Modulation/Waveform Outer (dB) Pi/2 BPSK ≤ 2 DFT-s-OFDM QPSK ≤ 2 **16 QAM** ≤ 2.5 64 QAM ≤ 3 256 QAM ≤ 4.5 **QPSK** ≤ 4 CP-OFDM **16 QAM** ≤ 4 64 QAM ≤ 4 256 QAM ≤ 6.5 NOTE 1: NOTE 2: Void

Table 6.2.3.1-2: A-MPR for NS_100 (UTRA protection)

6.2.3.2 A-MPR for NS_04

For NS_04, A-MPR is not added to MPR. Also, when NS_04 is signalled, MPR shall be set to zero in the P_{CMAX} equations to avoid double counting MPR.

Allowed maximum power reduction is defined as A-MPR = max(MPR, A-MPR'),

Note that A-MPR' = 0 dB means only MPR is applied,

where A-MPR' is defined as

```
if RBstart \leq fstart,max,IMD3 / (12·SCS) and LCRB \leq AWmax,IMD3 / (12·SCS) and Fc - BWchannel/2 < FUL_low + offsetIMD3, then the A-MPR' is defined according to Table 6.2.3.2-2 PC3_A2 relative to 23 dBm for power class 3 and PC2_A4 relative to 26 dBm for power class 2, else, if RBstart \leq LCRB/2 + \Deltastart / (12·SCS) and LCRB \leq AWmax,regrowth / (12·SCS) and Fc - BWchannel/2 < FUL_low + offsetregrowth, then the A-MPR' is defined according to Table 6.2.3.2-2 PC3_A1 relative to 23 dBm for power class 3 and PC2_A3 relative to 26 dBm for power class 2, else A-MPR' = 0 dB and apply MPR.
```

With the parameters defined in Table 6.2.3.2-1.

Table 6.2.3.2-1: Parameters for region edges and frequency offsets

Parameter	Cymhal	Val	lue	Related condition
Parameter	Symbol	CP-OFDM	DFT-s-OFDM	Related Condition
Max allocation start in IMD3 region	f _{start,max,IMD3}	0.33 B\	VChannel	RB _{start} ≤ f _{start,max,IMD3} / (12SCS)
Max allocation BW in IMD3 region	AW _{max,IMD3} 4 MHz		lHz	L _{CRB} ≤ AW _{max,IMD3} / (12SCS)
Freq. offset required to avoid A-MPR in IMD3 region	offset _{IMD3}	BW _{Channel}	– 6 MHz	Fc - BW _{Channel} /2 ≥ F _{UL_low} + offset _{IMD3}
Right edge of regrowth region	Δ_{start}	0.08 B\	VChannel	$RB_{start} \le L_{CRB}/2 + \Delta_{start} / (12SCS)$
Max allocation BW in regrowth region	AW _{max,regrowth}	100	MHz	L _{CRB} ≤ Min(L _{CRB,Max} , AW _{max,regrowth} / (12SCS))
Freq. offset required to avoid A-MPR in regrowth region	offset _{regrowth}	Max (10 MHz, 0.25* BW _{Channel} MHz)	Max (10 MHz, 0.45* BW _{Channel} MHz)	F_C - $BW_{Channel}/2 \ge F_{UL_low} + offset_{regrowth}$

Table 6.2.3.2-2: A-MPR' values Access

Modulo	tion/Waveform	A-MPR' (dB)						
Wiodula	ion/waverorm	PC3_A1	PC3_A2	PC2_A3	PC2_A4			
	Pi/2-BPSK	≤ 3.5	≤ 3.5	≤ 3.5	≤ 5.5			
	QPSK	≤ 4	≤ 4	≤ 4.5	≤ 6			
DFT-s-OFDM	16 QAM	≤ 4	≤ 4	≤ 5	≤ 6			
	64 QAM	≤ 4	≤ 4.5	≤ 5	≤ 6.5			
	256 QAM	≤ 4.5	≤ 6	≤ 6.5	≤ 8			
	QPSK	≤ 5.5	≤ 5.5	≤ 6.5	≤ 7.5			
CD OEDM	16 QAM	≤ 5.5	≤ 5.5	≤ 6.5	≤ 7.5			
CP-OFDM	64 QAM	≤ 5.5	≤ 5.5	≤ 6.5	≤ 7.5			
	256 QAM	≤ 6.5	≤ 8	≤ 7.5	≤ 10			

6.2.3.3 A-MPR for NS_10

Table 6.2.3.3-1: A-MPR for NS_10

Channel bandwidth (MHz)	Parameters	Region A							
	RB _{start}	0 – 10							
15	L _{CRB} (RBs)	1 – 20							
	A (dB)	≤ 3 ⁶							
	RB _{start}	0 – 15							
20	L _{CRB} (RBs)	1 – 20							
	A (dB)	≤ 6 ⁶							
	NOTE 1: RB _{start} indicates the lowest RB index of transmitted resource blocks								
NOTE 2: LCRR is th	e length of a contiguous re	source block allocation							

NOTE 3: For intra-subframe frequency hopping which intersects Region A, notes 1 and 2 apply on a per slot basis. For intra-slot or intra-subslot frequency hopping which intersects Region A, notes 1 and 2 apply on a T_{no_hopping} basis.

NOTE 4: For intra-subframe frequency hopping which intersect Region A, the larger A-MPR value may be applied for both slots in the subframe. For intra-slot frequency hopping which intersects Region A, the larger A-MPR value may be applied for the slot. For intra-subslot frequency hopping which intersects Region A, the larger A-MPR value may be applied for the subslot.

NOTE 5: The A-MPR for DFT-s-OFDM is the total backoff and is obtained by taking the maximum value of MPR + A-MPR specified in Table 6.2.3-1 and Table 6.2.4-1 in TS 36.101 and A value specified in Table 6.2.3.3-1.

NOTE 6: The A-MPR for CP-OFDM is the total backoff and is obtained by adding the A value in Table 6.2.3.3-1 to the corresponding MPR specified in Table 6.2.2-1.

6.2.3.4 A-MPR for NS_05 and NS_05U

Table 6.2.3.4-1: A-MPR regions for NS_05 and NS_05U

Channel	Carrier Centre	Re	gion A		F	Region B		Re	gion C	
Bandwidt h (MHz)	Frequency, Fc (MHz)	RB _{start}	L _{CRB}	A- MPR	RB _{start}	L _{CRB}	A- MPR	RB _{star}	L _{CRB}	A- MPR
5	1922.5 ≤ F _C < 1927.5	< 1.62 MHz/12/SCS	> 2.52 MHz/12/SCS	А3						
10	1925 ≤ F _C < 1935	< 1.62 MHz/12/SCS	> 0	A1	> 1.62 MHz/12/SCS ≤ 3.60 MHz/12/SCS	> 5.4 MHz/12/SCS	A7	≥ 7.2 MHz/12/SCS	≤ 1.08 MHz/12/SCS	A2
10	1935 ≤ F _C < 1945		> 4.5 MHz/12/SCS	A4						
15	1927.5 ≤ F _C < 1932.5	< 3.24MHz/12/SCS	> 0	A1	> 3.24 MHz/12/SCS ≤ 5.40 MHz/12/SCS	> 8.1 MHz/12/SCS	A7	≥ 10.08 MHz/12/SC S	≤ 1.08 MHz/12/SCS	A2
15	1932.5 ≤ F _C < 1942.5	< 1.62 MHz/12/SCS	> 0	A1				≥ 12.24 MHz/12/SCS	≤ 1.08 MHz/12/SCS	A2
15	1942.5 ≤ F _C < 1947.5		> 7.2 MHz/12/SCS	A5						
20	1930 ≤ F _C < 1950	< 4.86 MHz/12/SCS	> 0	A1	> 4.86 MHz/12/SCS ≤ 7.20 MHz/12/SCS	> 9.0 MHz/12/SCS	A7	≥ 13.68 MHz/12/SCS	≤ 1.08 MHz/12/SCS	A2
20	1950 ≤ F _C < 1960		> 9.0 MHz/12/SCS	A6						

NOTE 1: The A-MPR values are specified in Table 6.2.3.4-2, 6.2.3.4-3 and 6.2.3.4-10. NOTE 2: Void

Table 6.2.3.4-2: A-MPR for NS_05 and NS_05U

Modulation	/Waveform	A1 (dB)	A2 (dB)	A3 (dB)					
Wodulation	/waveioiiii	Outer/Inner	Outer/Inner	Outer	Inner					
	Pi/2 BPSK	≤ 10	≤ 5	≤ 4						
DFT-s-	QPSK	≤ 10	≤5	≤ 4.5						
OFDM	16 QAM	≤ 10	≤ 5	≤ 6						
	64 QAM	≤ 11	≤ 5	≤ 6						
	256 QAM	≤ 13	≤ 5	≤ 7						
	QPSK	≤ 10	≤ 5	≤ 7.5	≤ 2					
CP-OFDM	16 QAM	≤ 10	≤ 5	≤ 7.5						
	64 QAM	≤ 11	≤ 5	≤ 8						
	256 QAM	≤ 13		≤ 10						
NOTE 1: Vo	NOTE 1: Void									
NOTE 2: Vo	oid									

Table 6.2.3.4-3: A-MPR for NS_05

Modulation/	Mayafarm	A4 (dB)	A5 (dB)	A6 (dB)	A7 (dB)	
Wiodulation/	wavelonii	Outer	Inner	Outer	Inner	Outer	Inner	Outer/Inner	
	Pi/2 BPSK	≤ 1		≤ 1		≤ 1		≤ 6	
DFT-s-OFDM	QPSK			≤ 1.5		≤ 1.5		≤ 6	
	16 QAM							≤ 6	
	64 QAM							≤ 6	
	256 QAM		N/A				N/A	≤ 6	
	QPSK	≤ 3.5		≤ 3.5		≤ 3.5		≤ 6	
CP-OFDM	16 QAM	≤ 3.5		≤ 3.5		≤ 3.5		≤ 6	
CF-OFDIVI	64 QAM				≤ 4			≤ 6	
	256 QAM							≤ 6	
NOTE 1: Void	NOTE 1: Void								
NOTE 2: Void									

Table 6.2.3.4-4 - Table 6.2.3.4-9: Void

Table 6.2.3.4-10: A-MPR for modulation and waveform type for NS_05U

Modulation/\	Novoform	A4 (dB)	A5 (dB)	A6 (dB)	A7 (dB)		
Wodulation/	vaveioiiii	Outer	Inner	Outer	Inner	Outer	Inner	Outer/Inner		
	Pi/2 BPSK	≤ 2		≤ 2		≤ 2		≤6		
DFT-s-OFDM	QPSK	≤ 2		≤ 2		≤ 2		≤ 6		
	16 QAM	≤ 2.5		≤ 2.5		≤ 2.5		≤ 6		
	64 QAM	≤ 3		≤ 3		≤ 3		≤ 6		
	256 QAM	≤ 4.5	N/A	≤ 4.5		≤ 4.5	N/A	≤ 6		
	QPSK	≤ 4		≤ 4		≤ 4		≤ 6		
CP-OFDM	16 QAM	≤ 4		≤ 4		≤ 4		≤ 6		
CF-OFDIVI	64 QAM	≤ 4		≤ 4	≤ 4	≤ 4		≤ 6		
	256 QAM	≤ 6.5		≤ 6.5		≤ 6.5		≤ 6.5		
NOTE 1: Void	NOTE 1: Void									
NOTE 2: Void	t									

6.2.3.5 A-MPR for NS_40

Table 6.2.3.5-1: A-MPR for NS_40

Modulatio	n/ Waveform	A (dl	B)
		Channel bandv	vidth: 5 MHz
		Outer	Inner
	QPSK	≤ 15.5	≤ 12
DFT-s-OFDM	16 QAM	≤ 14.5	≤ 11
DL 1-2-OLDIAI	64 QAM	≤ 14.5	≤ 10
	256 QAM	≤ 12.5	≤ 7.5
	QPSK	≤ 14.5	≤ 10
CP-OFDM	16 QAM	≤ 14.5	≤ 10
CF-OFDIVI	64 QAM	≤ 14	≤ 8
	256 QAM	≤ 11	≤ 5.5

NOTE 1: The A-MPR for NS_40 is the total backoff and is obtained by taking the maximum value of MPR + A-MPR specified in Table 6.2.3-1 and Table 6.2.4-30a in TS 36.101 and MPR + A specified in Table 6.2.2-1 and Table 6.2.3.5-1.

6.2.3.6 A-MPR for NS_43 and NS_43U

Table 6.2.3.6-1: A-MPR regions for NS_43

Channel	Carrier Centre		Region A		Region B			
Bandwidth (MHz)	Frequency, Fc (MHz)	RB _{start}	L _{CRB}	A-MPR	RB _{start}	L _{CRB}	A-MPR	
5 MHz	$902.5 \le F_C < 912.5$		> 15	A1				
10 MHz F _C = 910		> 40	A2		> 5.4 MHz/12/SCS	A4		
	FC = 910		> 45	А3		> 7.2 MHz/12/SCS	A5	
15 MHz	F _C = 907.5	< 1.8 MHz /12/SCS > 12.24 MHz/12/SCS	> 0	A6	> 1.8 MHz/12/SCS < 6.12 MHz/12/SCS	≥ 7.2 MHz/12/SCS	A6	

NOTE 1: The A-MPR values are specified in Table 6.2.3.6-2.

NOTE 2: 15 kHz SCS unless otherwise stated

NOTE 3: Void

Table 6.2.3.6-2: A-MPR for NS_43

		A1 (dB)	A2 (dB)	A3 (dB)	A4 (dB)	A5 (dB)	A6 (dB)
Modulation	/Waveform	Outer	Inner	Outer	Inner	Outer	Inner	Outer	Inner	Outer	Inner	Outer / Inner
	Pi/2 BPSK			≤ 1.5								≤ 9
DET -	QPSK	≤ 2						≤ 2.5				≤ 9
DFT-s- OFDM	16 QAM									≤ 2.5		≤ 9
OFDIVI	64 QAM					≤ 2.5						≤ 9
	256 QAM		N/A		N/A				N/A		N/A	≤ 9
	QPSK	≤ 3.5								≤ 4		≤ 9
CP-OFDM	16 QAM	≤ 3.5]							≤ 4		≤ 9
CF-OFDIN	64 QAM]			≤ 4						≤ 9
	256 QAM											≤ 9

Table 6.2.3.6-3: Void

When NS_43U is signalled for 5 and 10 MHz channel bandwidths A-MPR is defined in Table 6.2.3.1-2 except for DFT-s-OFDM QPSK when $L_{CRB} > 5.4$ MHz/12/SCS the A-MPR is 2.5 dB. For 15 MHz channel bandwidth Table 6.2.3.6-4 applies.

Table 6.2.3.6-4: A-MPR for for NS_43U

Modulation	15 MHz Outer / Inner (dB)		
	Pi/2 BPSK	≤ 9	
DFT-s-	QPSK	≤ 9	
OFDM	16 QAM	≤ 9	
OFDIVI	64 QAM	≤ 9	
	256 QAM	≤ 9	
	QPSK	≤ 9	
CP-OFDM	16 QAM	≤ 9	
CF-OFDIVI	64 QAM	≤ 9	
	256 QAM	≤ 9	

6.2.3.7 A-MPR for NS_03 and NS_03U

Table 6.2.3.7-1 A-MPR for NS_03

Table 6.2.3.7-1 A-MPR for NS_03

Modulation/Waveform		Outer (dB)	Inner (dB)		
DFT-s-OFDM	PI/2 BPSK	≤ 1.5			
	QPSK	≤ 2			
	16 QAM	≤ 3			
	64 QAM	≤ 3.5			
	256 QAM	≤ 5.5	N/A		
CP-OFDM	QPSK	≤ 4			
	16 QAM	≤ 4			
	64 QAM	≤ 4.5			
	256 QAM	≤ 7.5			
NOTE 2	1: Void 2: Void				

In case UE operates in a band where NS_03U applies and it receives *additionalSpectrumEmission* value of 3 then A-MPR values specified in Table 6.2.3.7-1 apply with an exception that DFT-s-OFDM Pi/2 BPSK A-MPR is 2 dB.

6.2.3.8 A-MPR for NS_37

Table 6.2.3.8-1: A-MPR regions for B11/B21 protection (NS_37) (1447.9 - 1462.9 MHz)

	Carrier		Region A		F	Region B		F	Region C	
Channel Bandwid th (MHz)	Bandwid Frequen		(Outer/Inner)		(Outer/Inner)		(Outer/Inner)			
(2)	/B/III-\	RB _{start}	L _{CRB}	A- MPR	RB _{start}	L _{CRB}	A- MPR	RB _{start}	L _{CRB}	A- MPR

10	1452.9 < F _C ≤ 1457.9	≥ 0	> 7.2 MHz/12/SCS	≤ A1	N/A	N/A	N/A	N/A	N/A	N/A
15	F _C = 1455.4	≥ 0	> 9.9 MHz/12/SCS	≤ A1	< 0.54 MHz/12/SC S	< 1.08 MHz/12/SC S	≤ A2	> 13.86 MHz/12/SC S	< 1.08 MHz/12/SC S	≤ A2

NOTE 1: The A-MPR values are specified in Table 6.2.3.8-2 NOTE 2: Void

NOTE 3: Void

NOTE 4: No A-MPR for SCS = 60 kHz for region B and C only.

Table 6.2.3.8-2: A-MPR for NS_37

Madulatian M	las rafa ma	A1 (c	IB)	A2 (dB)
Modulation/W	raverorm	Outer	Inner	Outer/Inner
	Pi/2 BPSK	≤ 1		≤ 3
	QPSK	≤ 1.5		≤ 3
DFT-s-OFDM	16 QAM	≤ 2.5] [≤ 3
	64 QAM	≤ 3		≤ 3
	256 QAM		N/A	
	QPSK	≤ 3.5] [≤ 3
CD OFDM	16 QAM	≤ 3.5] [≤ 3
CP-OFDM	64 QAM] [
	256 QAM		i i	

NOTE 1: Void NOTE 2: Void

6.2.3.9 A-MPR for NS_38

Table 6.2.3.9-1: A-MPR for EESS (NS_38) Protection (1430 – 1470 MHz)

Channel Bandwidth	Carrier Centre	•	Region A Outer/Inner				
(MHz)	Frequency, Fc (MHz)	RB _{start}	Lcrb	A-MPR (dB)	RB _{start} +L _{CRB}	A-MPR (dB)	
10	1435 ≤ F _C < 1442	≤ -1.8 MHz/12/SCS + L _{CRB} /2	> 3.6 MHz/12/SCS	≤ 12	≤ 2.16 MHz/12/SCS	≤ 9	
15	1437.5 ≤ F _C < 1447.5	≤ -1.8 MHz/12/SCS + L _{CRB} /2	> 3.6 MHz/12/SCS	≤ 13	≤ 3.6 MHz/12/SCS	≤ 10	
20	1440 ≤ F _C < 1450	≤ -1.8 MHz/12/SCS + > 3.6 L _{CRB} /2 MHz/12/SCS		≤ 13	≤ 5.4 MHz/12/SCS	≤ 10	
NOTE 1 - 4:	Void		•	•			

6.2.3.10 A-MPR for NS_39

Table 6.2.3.10-1: A-MPR for own RX (NS_39) Protection (1440 – 1470 MHz)

Channel	Carrier Centre	Region A (Outer/Inner)				
Bandwidth, MHz	Frequency, Fc, MHz	RB _{start} +L _{CRB}	A-MPR (dB)			
10	1462 < F _C ≤ 1465	> 7.9 MHz/12/SCS	≤ 6			
15	$1456.3 < F_C \le 1462.5$	> 11.2 MHz/12/SCS	≤ 6			
20	1450.8 < F _C ≤ 1460	> 14.4 MHz/12/SCS	≤ 6			
NOTE 1 - 4: Void						

6.2.3.11 A-MPR for NS_41

Table 6.2.3.11-1: A-MPR for NS_41

Channel Bandwidth	Carrier Centre Frequency, F _c		egion A ter/Inner		Region B Outer/Inner		
(MHz)	(MHz)	RB _{start}	Lcrb	A-MPR (dB)	RB _{start} +L _{CRB}	A-MPR (dB)	
5	-	-	-	-	-	-	
10	1437 ≤ F _C < 1442	≤ -4.5 MHz/12/SCS + L _{CRB}	> 4.5 MHz/12/SCS	≤ 9	< 1.8 MHz/12/SCS	≤ 9	
15	1439.5 ≤ F _C < 1447.5	≤ -5.4 MHz/12/SCS + L _{CRB}	> 5.4 MHz/12/SCS	≤ 11	< 3.42 MHz/12/SCS	≤ 9	
20	1442 ≤ F _C < 1450	≤ -5.4 MHz/12/SCS + L _{CRB}	> 5.4 MHz/12/SCS	≤ 12	< 5.04 MHz/12/SCS	≤ 9	
30	1452 ≤ F _C < 1502	≤ -7.2MHz/12/SCS + L _{CRB}	> 7.2 MHz/12/SCS	≤ 13.5	< 11.7 MHz/12/SCS	≤ 13.5	
40	1452 ≤ F _C < 1497	≤ -7.2 MHz/12/SCS + L _{CRB}	> 7.2 MHz/12/SCS	≤ 13.5	< 11.7 MHz/12/SCS	≤ 13.5	
50	1457 ≤ F _C < 1492	≤ -7.2 MHz/12/SCS + L _{CRB}	> 7.2 MHz/12/SCS	≤ 13.5	< 15.12 MHz/12/SCS	≤ 13.5	
60	1462 ≤ F _C < 1487	≤ -7.2 MHz/12/SCS + L _{CRB}	> 7.2 MHz/12/SCS	≤ 13.5	< 18.72 MHz/12/SCS	≤ 13.5	
NOTE 1 - 4:	Void	•				•	

6.2.3.12 A-MPR for NS_42

Table 6.2.3.12-1: A-MPR for NS_42

Channel	Carrier Centre	Region	Α		Region B		
Bandwidth (MHz)	Frequency, Fc (MHz)	RB _{start} +L _{CRB}	A-MPR Outer/Inner (dB)	RB _{start}	RB _{start} +L _{CRB}	A- MPR Inner (dB)	A-MPR Outer (dB)
5	1512 ≤ F _C ≤ 1514.5	> 3.1 MHz / 12 / SCS	≤ 7	< 0.90 MHz / 12 / SCS	≤ 3.1 MHz / 12 / SCS	≤ 1.5	≤ 4
10	1497 ≤ F _C ≤ 1512	> 6.2 MHz / 12 / SCS	≤ 8	< 0.90 MHz / 12 / SCS	≤ 6.2 MHz / 12 / SCS	≤ 1.5	≤ 5
15	1502 ≤ F _C ≤ 1509.5	> 9.3 MHz / 12 / SCS	≤ 8	< 3.06 MHz / 12 / SCS	≤ 9.3 MHz / 12 / SCS	≤ 1.5	≤ 5
20	1497 ≤ F _C ≤ 1507	> 12.4 MHz / 12 / SCS	≤ 8	< 4.50 MHz / 12 / SCS	≤ 12.4 MHz / 12 / SCS	≤ 1.5	≤ 5
30	1477 ≤ F _C ≤ 1502	> 24.8 MHz / 12 / SCS	≤ 8	< 5.40 MHz / 12 / SCS	≤ 24.8 MHz / 12 / SCS	≤ 1.5	≤ 5
40	1477 ≤ F _C ≤ 1497	> 24.8 MHz / 12 / SCS	≤ 8	< 5.40 MHz / 12 / SCS	≤ 24.8 MHz / 12 / SCS	≤ 1.5	≤ 5
50	1467 ≤ F _C ≤ 1492	> 31 MHz / 12 / SCS	≤ 8	< 7.20 MHz / 12 / SCS	≤ 31 MHz / 12 / SCS	≤ 1.5	≤ 5
60 1462 ≤ Fc ≤ 148		> 37.2 MHz / 12 / SCS	≤ 8	< 7.20 MHz / 12 / SCS	≤ 37.2 MHz / 12 / SCS	≤ 1.5	≤ 5
NOTE 1 - 5:	Void						

6.2.3.13 A-MPR for NS_18

Table 6.2.3.13-0: Band n28 30MHz A-MPR regions for NS_18

Channel	Frequency range of		Regions			
Bandwidth, MHz	UL transmission bandwidth configuration, MHz	RB _{start} *12*SCS MHz	L _{CRB} *12*SCS MHz	A-MPR		
30	703~733	>(L _{CRB} *12*SCS)/2+ 5.22	≥Max(0, 12*SCS*N _{RB} – 1.8 – RBstart*12*SCS)	А3		
30	703~733	≤(L _{CRB} *12*SCS)/2+ 5.22	≥5.4	A4		

Table 6.2.3.13-1: A-MPR for NS_18

	A1	(dB)	A2 (dB)	A3	A4	A5
Modulation/Waveform	Outer Inner		Inner/Outer	Outer/Inne	Outer/Inner	Outer/Inner
				r		

	Pi/2 BPSK	≤2		≤ 5	3	8	3				
DFT-s-	QPSK	≤ 2		≤ 5	3	8	3				
OFDM	16 QAM	≤ 3		≤ 6	3	8	3				
OFDIVI	64 QAM	≤ 4		≤ 7	3	8	4.5				
	256 QAM	≤ 6	N/A	≤ 9	3	8	5.5				
	QPSK	≤ 5		≤ 6.5	4.5	9.5	5				
CP-OFDM	16 QAM	≤ 5		≤ 7	4.5	9.5	5				
CF-OFDIVI	64 QAM	≤ 5.5		≤ 8.5	4.5	9.5	5.5				
	256 QAM	≤ 8.5		≤ 11.5	4.5	9.5	7.5				
NOTE 1: Voi	NOTE 1: Void										
NOTE 2: Voi	NOTE 2: Void										

6.2.3.14 A-MPR for NS_21

Table 6.2.3.14-1: A-MPR for "NS_21"

Channel Bandwidth (MHz)	Modulation/Wave form		$\begin{tabular}{llll} Region A1a \\ Region A1a \\ RB_{start} \le \\ 1.44MHz/12/ \\ SCS \\ L_{CRB} \le [0.54] \\ MHz/12/SCS \\ MHz/12/SCS \\ L_{CRB} \le \\ 2.16MHz/12/ \\ SCS \\ Outer/Inner \\ \end{tabular}$		Region A2 L _{CRB} > 5.4MHz/12/SC S	Region A3b RBend ≥ 7.74MHz/12/ SCS LCRB > [0.54] MHz/12/SCS LCRB ≤ 2.16MHz/12/ SCS	Region A3a RBend ≥ 7.74MHz/12/ SCS LCRB ≤ [0.54] MHz/12/SCS	
			Outer	/inner	Outer	Outer/Inner		
	DFT-	PI/2 BPSK	6	3	4	3	6	
	s-	QPSK	6	3	4	3	6	
	OFD	16 QAM	6	3	4	3	6	
40	M	64 QAM	6	3	4	3	6	
10		256 QAM	6	3	4	3	6	
	CD	QPSK	6	4	5.5	4	6	
	CP-	16 QAM	6	4	5.5	4	6	
	OFD M	64 QAM	6	4	5.5	4	6	
	IVI	256 QAM	6	4	5.5	4	6	

6.2.3.15 A-MPR for NS 24

Table 6.2.3.15-1: A-MPR for NS_24

Channel		F	Region A		R	egion B		R	egion C	1
Bandwidth, MHz	Carrier Centre Frequency, Fc, MHz	Rbend*12 *SCS MHz	LCRB*12* SCS MHz	A- MPR	Rbend*12* SCS MHz	LCRB*12* SCS MHz	A- MPR	Rbend*12* SCS MHz	LCRB*12* SCS MHz	A- MPR
5MHz	Fc=1992.5		>3.24	A7						
5MHz	Fc=1997.5		>3.24	A4						
5MHz	Fc=2002.5		>2.16	A1	>3.78	≤1.98	A2	≤3.6	≤1.98	A3
10MHz	Fc=1985	>5.4		A4						
10MHz	Fc=1995		>4.5	A1	>7.56	≤4.32	A2	≤7.38	≤4.32	A3
10MHz	Fc=2000	>6.84		A5	<2.88		A5	≥3.06 ≤6.66	>1.44	A6
15MHz	Fc=1987.5		>7.02	A1	>11.52	≤6.84	A2	≤11.34	≤6.84	A3
15MHz	Fc=1997.5	>9.36		A5	<3.6		A5	≥3.78 ≤9.18	>1.44	A6
20MHz	Fc=1990	>13.5		A5	<4.5		A5	≥4.68 ≤13.32	>2.16	A6
20MHz	Fc=1995	>12.6		A5	<5.4		A5	≥5.58 ≤12.42	>1.44	A6

NOTE 1: The A-MPR values are listed in Table 6.2.3.15-2. NOTE 2: For any undefined region, MPR applies

Table 6.2.3.15-2: A-MPR for modulation and waveform type

Modulation/Waveform	A1	A2	А3	A4	A5	A6	A7
Wodulation/wavelorm	Outer/Inner	Outer/Inner	Outer/Inner	Outer	Outer/Inner	Outer/Inner	Outer
DFT-s-OFDM PI/2 BPSK	≤ 11	≤ 5	≤ 4	≤ 8.5	≤ 18	≤ 10	≤ 3.5
DFT-s-OFDM QPSK	≤ 11	≤ 5	≤ 4	≤ 8.5	≤ 18	≤ 10	≤ 3.5
DFT-s-OFDM 16 QAM	≤ 11	≤ 5	≤ 4	≤ 8.5	≤ 18	≤ 10	≤ 3.5
DFT-s-OFDM 64 QAM	≤ 11	≤ 5	≤ 4	≤ 8.5	≤ 19	≤ 10	≤ 3.5
DFT-s-OFDM 256 QAM	≤ 11	≤ 5		≤ 8.5	≤ 20	≤ 10	
CP-OFDM QPSK	≤ 13	≤ 6.5	≤ 4	≤ 8.5	≤ 19	≤ 12	≤ 5.5
CP-OFDM 16 QAM	≤ 13	≤ 6.5	≤ 4	≤ 8.5	≤ 19	≤ 12	≤ 5.5
CP-OFDM 64 QAM	≤ 13	≤ 6.5	≤ 4	≤ 8.5	≤ 19	≤ 12	≤ 5.5
CP-OFDM 256 QAM	≤ 13	≤ 6.5		≤ 8.5	≤ 20	≤ 12	

NOTE 1: The backoff applied is max(MPR, A-MPR) where MPR is defined in Table 6.2.2-1

NOTE 2: Outer and inner allocations are defined in clause 6.2.2

6.2.3.16 A-MPR for NS_27

Table 6.2.3.16-1: A-MPR for NS_27

Channel	Corrier Contro		Regio	n A		Regio	n B
Bandwidth, MHz	Carrier Centre Frequency, Fc, MHz	RBstart*12* SCS	RBend*12* SCS	LCRB*12* SCS	A-MPR	LCRB*12* SCS	A-MPR
15 MHz	$3557.5 \le F_C < 3562.5$	<1.8 MHz			A3	≥10.8 MH	A3
13 IVII IZ	$3687.5 < F_C \le 3692.5$	>11.52 MHz			A3	Z	AS
	$3562.5 \le F_C < 3567.5$	≤1.08 MHz		<1.44 MH		≥11.52 M	
15 MHz	3682.5 < F _C ≤ 3687.5		≥13.22 MH z	Z Z	A4	Hz	[2]
20 MHz	3560 ≤ F _C < 3570	<3.6 MHz			A5	≥10.8 MH	A5
ZU IVITIZ	3680 < F _C ≤ 3690	>12.96 MHz			AS	Z	AS
20 MHz	3570 ≤ F _C < 3580	≤2.16 MHz		<1.44 MH	A6	≥14.4 MH	[2]
ZU IVII IZ	3670 < F _C ≤ 3680		≥16.92	Z	Au	Z	[2]
		<11.34 MHz			A7]	
		≥11.34 MHz		≥18 MHz	A2		
	3570 ≤ F _C < 3600	, ≤31.0 MHz		<18 MHz	A1		
		>31.0 MHz		<1.8 MHz	A7		
40 MHz			>24.48 MH z		A7		
	3650 < F _C ≤ 3680		≤24.48 MH	≥18 MHz	A2		
	3050 < FC ≤ 3080		z, ≥6.48 MHz	<18 MHz	A1		
			<6.48 MHz	<1.8 MHz	A7		
40 MHz	3600 ≤ F _C ≤ 3650	≤6.12 MHz	-	<1.44 MH	A8		[4.5]
40 MINZ	3000 ≥ 10 ≥ 3030		≥ 32.76	Z	Ao	>[20] MHz	[4.5]
NOTE 1: Vo	id						

NOTE 1: Void NOTE 2: Void

Table 6.2.3.16-2: A-MPR for modulation and waveform type

Modulati	on/Waveform	A1	A2	A3	A4	A5	A6	A7	A8
Wodulati	On, wavelonin	Outer	Outer	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner
	PI/2 BPSK	[4.5]	[6]	4	4	4	4	10.5	4
DET a	QPSK	[4.5]	[6]	4	4	4	4	10.5	4
DFT-s- OFDM	16 QAM	[4.5]	[6]	5	4	5	4	11	4
OFDIVI	64 QAM	[4.5]	[6]	5	4	5	4	11	4
	256 QAM		[6]					11	
	QPSK	[5.5]	[7]	6	4	6	4	11.5	4
CP-	16 QAM	[5.5]	[7]	6	4	6	4	11.5	4
OFDM	64 QAM	[5.5]	[7]	6	4	6	4	11.5	4
	256 QAM		[7]					11.5	

NOTE 1: The backoff applied is max (MPR, A-MPR) where MPR is defined in Table 6.2.2-1

NOTE 2: Outer and inner allocations are defined in clause 6.2.2

6.2.3.17 A-MPR for NS_46

Table 6.2.3.17-1: A-MPR regions for NS_46

Channel	Couries Coutes		Regions	
Bandwidth, MHz	Carrier Center Frequency, Fc, MHz	RB _{end} *12*SCS MHz	L _{CRB} *12*SCS MHz	A-MPR
15 MHz	$2558.5 \le F_C \le 2562.5$		Note 1	A1
20 MHz	2547 ≤ F _C ≤ 2560		Note 1	A2
25 MHz	$2534.5 \le F_C < 2557.5$		Note 1	A3
		≥0, <1.44	>0	A4
		≥1.44, <13.5	>max (0, 12*SCS*RB _{end} -1.8)	A5
30 MHz	2515 ≤ F _C ≤ 2555	≥13.5, <19.8	>11.52	A6
		≥19.8, <25.92	>6.3	A7
		≥25.92	>0	A8
		≥0, <4.14	>0	A4
		≥4.14, <18	>max (0, 12*SCS*RB _{end} - 4.5)	A5
40 MHz	2520 ≤ F _C ≤ 2550	≥18, <25.74	>13.5	A6
		≥25.74, <32.4	>12.6	A7
		≥32.4	>0	A8
		≥0, <9	>0	A4
		≥9, <21.6	>max (0, 12*SCS*RB _{end} - 7.2)	A5
50 MHz	$2525 \le F_C \le 2545$	≥21.6, <31.5	>18	A6
		≥31.5, <39.6	>16.2	A7
		≥39.6	>0	A8

NOTE 1: 9.72 MHz for DFT-s-OFDM, > 16.02 MHz for CP-OFDM. CP-OFDM threshold only applies for 20 and 25 MHz bandwidths.

Table 6.2.3.17-2: A-MPR for NS_46

Moduloti	on/Waveform	A1	A2	A3	A4	A5	A6	A7	A8
Wodulati	On wave on m	Outer	Outer	Outer	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner
	PI/2 BPSK	3.5	4	4.5	5	2	3.5	6	10
DFT-s-	QPSK	3.5	4	4.5	5	2	3.5	6	10
OFDM	16 QAM	3.5	4	4.5	5	2	3.5	6	10
OFDIN	64 QAM	3.5	4	4.5	5		3.5	6	10
	256 QAM							6	10
	QPSK	3.5	5.5	6	5	3.5	5.5	7	11
CP-	16 QAM	3.5	5.5	6	5	3.5	5.5	7	11
OFDM	64 QAM	3.5	5.5	6	5	3.5	5.5	7	11
	256 QAM			6				7	11

6.2.3.18 A-MPR for NS_47

Table 6.2.3.18-1: A-MPR regions and types for NS_47

Channel Bandwidth, (MHz)	Carrier Centre Frequency, Fc, (MHz)	RBstart*12*SCS (MHz)	LCRB*12*SCS (MHz)	A-MPR				
		≤5.04	≤1.44	A1				
			>5.04, ≤9.6	≤1.44	A2			
		>24.48	≤1.44	A3				
30MHz	Fc=2560-2560.020	40.0	>21	A2				
		≤9.6	>14.4, <21	A4				
		46 10	>10, ≤14.4	A4				
		≤6.12	>1.44, <10	A2				
NOTE: Th								

Table 6.2.3.18-2: A-MPR for modulation and waveform type

	A1(dB)	A2(dB)	A3(dB)	A4(dB)
Modulation/Waveform	PC3	PC2	PC3	PC2	PC3	PC2	PC3	PC2
Wiodulation/wavelorm	Outer/	Outer/	Outer/	Outer/	Outer/	Outer/	Outer/	Outer/
	Inner	Inner	Inner	Inner	Inner	Inner	Inner	Inner
DFT-s-OFDM PI/2 BPSK	≤ 7	≤ 10	≤ 5.5	≤ 8.5	≤ 2	≤5	≤ 3	≤ 6
DFT-s-OFDM QPSK	≤ 7	≤ 10	≤ 5.5	≤ 8.5	≤ 2	≤5	≤ 3	≤ 6
DFT-s-OFDM 16 QAM	≤ 7	≤ 10	≤ 5.5	≤ 8.5		≤5	≤ 3	≤ 6
DFT-s-OFDM 64 QAM	≤7	≤ 10	≤ 6	≤ 8.5		≤5	≤ 3	≤ 6
DFT-s-OFDM 256 QAM	≤ 7	≤ 10	≤ 6	≤ 8.5		≤ 5		≤ 6
CP-OFDM QPSK	≤ 7	≤ 10	≤ 7	≤ 10		≤5	≤ 4	≤ 7
CP-OFDM 16 QAM	≤7	≤ 10	≤ 7	≤ 10		≤ 5	≤ 4	≤ 7
CP-OFDM 64 QAM	≤7	≤ 10	≤ 7	≤ 10		≤ 5		≤7
CP-OFDM 256 QAM	≤7	≤ 10	≤ 7	≤ 10				≤7

6.2.3.19 A-MPR for NS_50

Table 6.2.3.19-1: A-MPR regions for NS_50

Channel Bandwidth (MHz)	RB _{start} *12*SCS (MHz)	L _{CRB} *12*SCS (MHz)	A-MPR
25 MHz	≤ L _{CRB} *12*SCS - 5	> 5	A7
25 IVII 12	≤ 20	≤ 1.44	A8
	≤ L _{CRB} *12*SCS - 5	> 5	A7
30 MHz	≤ 25	≤ 1.44	A8
	≥ 25	≤ 3.6	A9
	≤ 4.32	> 0	A1
	> 4.32, ≤ 10.44	≤ 10.8	A3
40 MHz	> 4.32, ≤ 18	> 10.8	A2
	> 18, ≤ 31.68	> max (31.68 - RB _{start} *12*SCS, 0)	A6
	> 31.68	> 0	A5
NOTE 1: The A-I	MPR values are specified	in Table 6.2.3.19-2.	

Table 6.2.3.19-2: A-MPR for NS_50

Modulation	Moveform	A1 (dB)	A2 (dB)	A3 (dB)	A5 (dB)	A6 (dB)	A7 (dB)	A8 (dB)
Wiodulation	vvaveioiiii	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner
	Pi/2 BPSK	≤ 11	≤ 7	≤3	≤ 5	≤ 2	≤ 4	≤ 2
DFT-s-	QPSK	≤ 11	≤ 7	≤3	≤5	≤ 2	≤ 5	≤ 2
OFDM	16 QAM	≤ 11	≤ 7	≤3	≤5	≤ 2	≤ 5	≤ 2.5
OFDIVI	64 QAM	≤ 11	≤ 7	≤3	≤5		≤ 5	
	256 QAM	≤ 11	≤ 7		≤5		≤ 5	
	QPSK	≤ 12	≤8	≤ 4.5	≤5	≤ 3.5	≤ 6.5	
CP-OFDM	16 QAM	≤ 12	≤8	≤ 4.5	≤5	≤ 3.5	≤ 6.5	
CF-OFDIVI	64 QAM	≤ 12	≤8	≤ 4.5	≤5		≤ 6.5	
	256 QAM	≤ 12	≤ 8				≤ 6.5	

6.2.3.20 A-MPR for NS_44

Table 6.2.3.20-1: A-MPR regions for NS_44

Channel	Carrier Center		Regions	
Bandwidth, MHz	Frequency, Fc, MHz	RB _{end} *12*SCS MHz	L _{CRB} *12*SCS MHz	A-MPR
		<18.0	>max(0, 12*SCS* RB _{end} - 3.6)	А3
25 MHz	$2582.5 \le F_C \le 2602.5$	≥18.0	<7.2	А3
		≥18.0	≥7.2	A6
		<21.6	>max(0, 12*SCS* RB _{end} - 3.6)	А3
30 MHz	$2585 \le F_C \le 2600$	≥21.6	<12.6	А3
		≥21.6	≥12.6	A6
		≥0, <2.88		
	2590 ≤ F _C ≤ 2595	≥2.88, <14.4	>max (0, 12*SCS*RB _{end} - 3.6)	A2
40 MHz	2390 3 1 (; 3 2393	≥14.4, <23.4	>10.8	A3
		≥23.4, <32.4	>16.2	A4
		≥32.4	>0	A5

Table 6.2.3.20-2: A-MPR for NS_44

Moduloti	on/Waveform	A1	A2	А3	A4	A5	A6
Wodulati	on/wavelonin	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner
	PI/2 BPSK	5	2	3	7	12	4
DET a	QPSK	5	2	3	7	12	
DFT-s- OFDM	16 QAM	5	2	3	7	12	4
OFDIVI	64 QAM	5		3	7	12	4
	256 QAM	5			7	12	
	QPSK	5	4	5	8	12	
CP-	16 QAM	5	4	5	8	12	
OFDM	64 QAM	5	4	5	8	12	
	256 QAM				8	12	

6.2.3.21 A-MPR for NS_12

Table 6.2.3.21-1: A-MPR regions for NS_12

Channel BW	RB _{Start} *12*SCS (MHz)	L _{CRB} *12*SCS (MHz)	A-MPR
5MHz	≤1.8	>0	A1
10MHz	≤3.6	>0	A1

Table 6.2.3.21-2: A-MPR for NS_12

Modulation/Waveform	A1
Wodulation/wavelorm	Outer/Inner
DFT-s-OFDM PI/2 BPSK	≤ 5
DFT-s-OFDM QPSK	≤ 5
DFT-s-OFDM 16 QAM	≤ 5.5
DFT-s-OFDM 64 QAM	≤ 5.5
DFT-s-OFDM 256 QAM	≤ 6
CP-OFDM QPSK	≤ 7
CP-OFDM 16 QAM	≤ 7
CP-OFDM 64 QAM	≤ 7
CP-OFDM 256 QAM	≤ 8

6.2.3.22 A-MPR for NS_13

Table 6.2.3.22-1: A-MPR regions for NS_13

Channel BW	Carrier Frequency, Fc, MHz	RB _{Start} *12*SCS (MHz)	LCRB*12*SCS (MHz)	A-MPR
5MHz	819.5 ≤ Fc < 821.5	≤1.44	<1.08	A1
SIVITZ	819.5 ≤ FC < 821.5	≤1.44	≥1.08	A2
5MHz	Fc ≥ 821.5	≤0.54	<1.08	A1
SIVITZ	FU ≥ 021.5		≥3.24	A3

Table 6.2.3.22-2: A-MPR for NS_13

Modulation/Waveform	A1	A2	A3
Wodulation/wavelorm	Outer/Inner	Outer/Inner	Outer
DFT-s-OFDM PI/2 BPSK	≤ 3.5	≤ 4.5	≤ 3
DFT-s-OFDM QPSK	≤ 3.5	≤ 4.5	≤ 3
DFT-s-OFDM 16 QAM	≤ 3.5	≤ 5	≤ 3
DFT-s-OFDM 64 QAM	≤ 4.5	≤ 5	≤ 3
DFT-s-OFDM 256 QAM	≤6	≤ 6	
CP-OFDM QPSK	≤ 5	≤ 6.5	≤ 4.5
CP-OFDM 16 QAM	≤ 5	≤ 6.5	≤ 4.5
CP-OFDM 64 QAM	≤ 6	≤ 6.5	≤ 4.5
CP-OFDM 256 QAM	≤ 8	≤ 8	

6.2.3.23 A-MPR for NS_14

Table 6.2.3.23-1: A-MPR regions for NS_14

Channel BW	RB _{Start} *12*SCS (MHz)	L _{CRB} *12*SCS (MHz)	A-MPR
10MHz	≤0.18	<1.08	A1
IUIVITZ	>0	≥9	A2
15MHz	≤1.8	<1.8	A1
TOWINZ	>0	≥9	A2
20MHz	≤3.42	<1.8	A1
ZUIVITZ	>0	≥9	A2

Table 6.2.3.23-2: A-MPR for NS_14

Modulation/Waveform	A1	A2
wodulation/wavelorm	Outer/Inner	Outer
DFT-s-OFDM PI/2 BPSK	≤ 3	≤ 2
DFT-s-OFDM QPSK	≤ 3	≤ 2
DFT-s-OFDM 16 QAM	≤ 3	≤ 2
DFT-s-OFDM 64 QAM	≤ 3	
DFT-s-OFDM 256 QAM		
CP-OFDM QPSK	≤ 5	≤ 4
CP-OFDM 16 QAM	≤ 5	≤ 4
CP-OFDM 64 QAM	≤ 6	
CP-OFDM 256 QAM	≤ 8	

6.2.3.24 A-MPR for NS_15

Table 6.2.3.24-1: A-MPR regions for NS_15

Channel BW	Carrier Frequency, Fc, MHz	RB _{end} *12*SCS (MHz)	L _{CRB} *12*SCS (MHz)	A-MPR
		≥3.24	>0	A1
5MHz	840.5 < Fc ≤ 846.5	<3.24, ≥2.52	≥1.44	A2
		<0.9	≤0.36	A3
		≥5.76	>0	A1
	840 < Fc ≤ 844	<5.76, ≥4.14	≥2.7	A2
40141-		<2.52	≤0.36	A3
10MHz		≥7.2	>0	A1
	835 < Fc ≤ 840	<7.2, ≥5.22	≥4.32	A2
		<1.08	≤0.36	A3
		≥9.36	>0	A1
	837.5 < Fc ≤ 841.5	<9.36, ≥4.68	≥3.6	A2
		<3.96	≤0.36	A3
		≥10.8	>0	A1
15MHz	831.5 < Fc ≤ 837.5	<10.8, ≥6.48	≥3.6	A2
		<2.7	≤0.36	A3
		≥13.14	>0	A1
	Fc ≤ 831.5	<13.14, ≥7.92	≥3.6	A2
		<0.72	≤0.36	A3
		≥12.24	>0	A1
	835 < Fc ≤ 839	<12.24, ≥8.46	≥5.4	A2
20MHz		<5.58	≤0.36	A3
ZUIVII IZ		≥13.68	>0	A1
	Fc ≤ 835	<13.68, ≥8.46	≥5.4	A2
		<4.32	≤0.36	A3

Table 6.2.3.24-2: A-MPR for NS_15

Modulation/Waveform	A1	A2	A3
Wiodulation/wavelorm	Outer/Inner	Outer/Inner	Outer/Inner
DFT-s-OFDM PI/2 BPSK	≤ 9	≤ 5	≤ 4
DFT-s-OFDM QPSK	≤ 9	≤ 5	≤ 4
DFT-s-OFDM 16 QAM	≤ 9	≤ 5	≤ 4
DFT-s-OFDM 64 QAM	≤ 9	≤ 5	≤ 4
DFT-s-OFDM 256 QAM	≤ 9	≤ 5	
CP-OFDM QPSK	≤ 10.5	≤ 6.5	≤ 4
CP-OFDM 16 QAM	≤ 10.5	≤ 6.5	≤ 4
CP-OFDM 64 QAM	≤ 10.5	≤ 6.5	≤ 4
CP-OFDM 256 QAM	≤ 10.5	≤ 6.5	

6.2.3.25 A-MPR for NS_45

Table 6.2.3.25-1: A-MPR for NS_45

Modulation/W	Outer	
	Pi/2 BPSK	≤ [1.5]
DFT-s-OFDM	QPSK	≤ [2]
DL 1-2-OLDINI	16 QAM	≤ [2.5]
	64 QAM	≤ [3]

6.2.3.26 A-MPR for NS_48

Table 6.2.3.26-1: A-MPR regions for NS_48

Channel	Carrier Center		Regions	
Bandwidth, MHz	Frequency, Fc, MHz	RB _{end} *12*SCS MHz	L _{CRB} *12*SCS MHz	A-MPR
25 MHz	1932.5≤ F _C ≤ 1967.5	≥0	≥9.72	A3
ZO IVITZ	1932.32 FC 2 1907.3	≥18.72	<1.08	A3
30 MHz	1935 ≤ Fc ≤ 1965	≥0	≥13.5	A3
30 IVII 12	1933 3 FC 3 1903	≥21.6	<1.08	A5
		≥0, <2.88	≥0	A2
		≥2.88, <17.1	≥max (0, 12*SCS*RB _{end} - 3.6)	A3
40 MHz	1940 ≤ F _C ≤ 1960	≥17.1, <27.36	≥13.5	A4
40 IVII 12		≥27.36, <34.56	≥13.5	A2
		≥27.36, <34.56	<1.08	A3
		≥34.56	≥0	A1
		≥0, <6.12	>0	A2
	1945 ≤ Fc ≤ 1955	≥6.12, <20.7	≥max (0, 12*SCS*RB _{end} - 3.6)	A4
50 MHz	1949 = 10 = 1999	≥20.7, <41.04	≥17.1	A2
		≥33.84, <41.04	<1.08	A5
		≥41.04	>0	A1

Table 6.2.3.26-2: A-MPR for NS_48

Modulation/Waveform		A1	A2	A3	A4	A5
Wodulati	OII/ WavelOIIII	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner
	PI/2 BPSK	≤10	≤6	≤3	≤4	≤5
DET	QPSK	≤10	≤6	≤3	≤4	≤5
DFT-s- OFDM	16 QAM	≤10	≤6	≤3	≤4	≤5
	64 QAM	≤10	≤6	≤3	≤4	≤5
	256 QAM	≤10	≤6	≤3	≤4	≤5
	QPSK	≤11	≤7	≤4.5	≤5.5	≤5
CP-	16 QAM	≤11	≤7	≤4.5	≤5.5	≤5
OFDM	64 QAM	≤11	≤7	≤4.5	≤5.5	≤5
	256 QAM	≤11	≤7	≤4.5	≤5.5	≤5

6.2.3.27 A-MPR for NS_49

Table 6.2.3.27-1: A-MPR regions for NS_49

Channel	Carrier Center		Regions	
Bandwidth,	Frequency, Fc, MHz	RB _{end} *12*SCS	L _{CRB} *12*SCS	A-MPR
MHz	r requericy, r c, minz	MHz	MHz	
		≥0	≥9.72	А3
25 MHz	1932.5≤ F _C ≤ 1967.5	≥18.72		A3
		≤3.96		A3
		≥0, <3.6	≥0	A1
		≥3.6, <6.48	≥0	A5
30 MHz	1935 ≤ F _C ≤ 1965	≥6.48, <14.4	≥max (0,12*SCS* RB _{end} - 3.6)	A3
00 WII 12		≥14.4, <21.6	≥10.8	A4
		≥21.6	≥10.8	A2
		≥21.6		A5
		≥0, <7.2	≥0	A1
		≥7.2, <10.44	<1.08	A5
		≥7.2, <18	≥max (0, 12*SCS*RB _{end} - 3.6)	A4
40 MHz	1940 ≤ F _C ≤ 1960	≥18, <34.56	≥14.4, <28.8	A2
		≥27.36, <34.56	<1.08	A5
		<34.56	≥28.8	A1
		≥34.56	≥0	A1
		≥7.74, <14.4	< min [1.08, max(0,12*SCS*	A5
		·	RB _{end} -7.74)]	7.10
		≥36, <39.6	<1.08	A5
50 MHz	1945 ≤ F _C ≤ 1955	<39.6	≥18, <max (0,="" 12*scs*rb<sub="">end</max>	A2
30 IVITZ		< 39.0	– 7.74)	7,2
		<39.6	≥max (0, 12*SCS*RB _{end} -	A1
		<38.0	7.74)	Α1
		≥39.6	>0	A1

Table 6.2.3.27-2: A-MPR for NS_49

Madulation ///ovetorm		A1	A2	А3	A4	A5
Modulati	Modulation/Waveform		Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner
	PI/2 BPSK	≤10	≤6	≤3	≤4	≤5
DET a	QPSK	≤10	≤6	≤3	≤4	≤5
DFT-s- OFDM	16 QAM	≤10	≤6	≤3	≤4	≤5
OFDIVI	64 QAM	≤10	≤6	≤3	≤4	≤5
	256 QAM	≤10	≤6	≤3	≤4	≤5
	QPSK	≤11	≤7	≤4.5	≤5.5	≤5
CP-	16 QAM	≤11	≤7	≤4.5	≤5.5	≤5
OFDM	64 QAM	≤11	≤7	≤4.5	≤5.5	≤5
	256 QAM	≤11	≤7	≤4.5	≤5.5	≤5

6.2.3.28 A-MPR for NS_51

Table 6.2.3.28-1: A-MPR regions for NS_51

Channel	Carrier Center		Regions	
Bandwidth, MHz	Frequency, Fc, MHz	RB _{end} *12*SCS MHz	L _{CRB} *12*SCS MHz	A-MPR
		≤ 4.5	> 0	A7
EO MILIT	F < 1045	>4.5, < 32.4	≥ max(0, 12*SCS*RB _{end} - 14.4)	A4
50 MHz	F _c ≤ 1945	< 32.4	< max(0, 12*SCS*RB _{end} - 14.4)	A5
		≥ 32.4	> 0	A6
		< 27	≥ max(0, 12*SCS*RB _{end} - 14.4)	A1
50 MHz	1945 < F _c ≤ 1980	< 27	< max(0, 12*SCS*RB _{end} - 14.4)	A2
		≥ 27	> 0	A3

Moduloti	Modulation/Waveform		A2	A3	A4	A5	A5	A7
woodiation/waveform		Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner	Outer/Inner
	PI/2 BPSK	15	12.5	22	7	4.5	16	14
DFT-s-	QPSK	15	12.5	22	7	4.5	16	14
OFDM	16 QAM	15	12.5	22	7	4.5	16	14
OFDIVI	64 QAM	15	12.5	22	7	4.5	16	14
	256 QAM	15	12.5	22	7	4.5	16	14
	QPSK	15	12.5	22	8.5	4.5	17	14
CP-	16 QAM	15	12.5	22	8.5	4.5	17	14
OFDM	64 QAM	15	12.5	22	8.5	4.5	17	14
	256 QAM	15	12.5	22	8.5	4.5	17	14

Table 6.2.3.28-2: A-MPR for NS_51

6.2.4 Configured transmitted power

The UE is allowed to set its configured maximum output power $P_{CMAX,f,c}$ for carrier f of serving cell c in each slot. The configured maximum output power $P_{CMAX,f,c}$ is set within the following bounds:

$$P_{CMAX_L,f,c} \leq \, P_{CMAX,f,c} \, \leq \, P_{CMAX_H,f,c} \, \, with \, \,$$

$$\begin{split} P_{CMAX_L,f,c} = MIN \; \{ P_{EMAX,c} - \Delta T_{C,c}, \;\; (P_{PowerClass} - \Delta P_{PowerClass}) - MAX(MAX(MPR_c + \Delta MPR_c, \; A-MPR_c) + \Delta T_{IB,c} + \Delta T_{C,c} + \Delta T_{RxSRS}, P-MPR_c) \; \} \end{split}$$

$$P_{CMAX_H,f,c} = MIN \{P_{EMAX,c}, P_{PowerClass} - \Delta P_{PowerClass}\}$$

where

P_{EMAX,c} is the value given by either the *p-Max* IE or the field *additionalPmax* of the *NR-NS-PmaxList IE*, whichever is applicable according to TS 38.331[7];

P_{PowerClass} is the maximum UE power specified in Table 6.2.1-1 without taking into account the tolerance specified in the Table 6.2.1-1;

When the IE powerBoostPi2BPSK is set to 1, $P_{EMAX,c}$ is increased by +3 dB for a power class 3 capable UE operating in TDD bands n40, n41, n77, n78, and n79 with PI/2 BPSK modulation and UE indicates support for UE capability powerBoosting-pi2BPSK and 40% or less symbols in certain evaluation period are used for UL transmission when $P_{EMAX,c} \ge 20$ dBm (The exact evaluation period is no less than one radio frame).

When the IE *powerBoostPi2BPSK* is set to 1, $\Delta P_{PowerClass} = -3$ dB for a power class 3 capable UE operating in TDD bands n40, n41, n77, n78, and n79 with Pi/2 BPSK modulation and UE indicates support for UE capability *powerBoosting-pi2BPSK* and 40% or less slots in radio frame are used for UL transmission.

ΔP_{PowerClass} = 3 dB for a power class 2 capable UE when P-max of 23 dBm or lower is indicated; or when the field of UE capability *maxUplinkDutyCycle-PC2-FR1* is absent and the percentage of uplink symbols transmitted in a certain evalutation period is larger than 50%; or when the field of UE capability *maxUplinkDutyCycle-PC2-FR1* is not absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than *maxUplinkDutyCycle-PC2-FR1* as defined in TS 38.331 (The exact evaluation period is no less than one radio frame); otherwise ΔP_{PowerClass} = 0 dB;

 $\Delta T_{IB,c}$ is the additional tolerance for serving cell c as specified in clause 6.2A.4.2 for NR CA, clause 6.2C.2 for SUL, or TS 38.101-3 clause 6.2B.4.2 for EN-DC; $\Delta T_{IB,c} = 0$ dB otherwise;

 $\Delta T_{C,c} = 1.5 dB$ when NOTE 3 in Table 6.2.1-1 in 38.101-1 applies for a serving cell c, otherwise $\Delta T_{C,c} = 0 dB$;

MPR_c and A-MPR_c for serving cell c are specified in clause 6.2.2 and clause 6.2.3, respectively;

 Δ MPR_c for serving cell c is specified in clause 6.2.2.

 ΔT_{RxSRS} is applied when UE transmits SRS to other than first SRS port when the SRS-TxSwitch capability is indicated as '1T2R', '1T4R' or, '1T4R/2T4R' with UE configured with 4 SRS resources in the SRS resource set, and when UE transmits SRS to other than first or second SRS port when the SRS-TxSwitch capability is indicated as '2T4R' or '1T4R/2T4R' with the UE configured with 2 SRS resources in the SRS resource set. The value of ΔT_{RxSRS} is 4.5dB for n79 and 3 dB for bands whose F_{UL_high} is lower than the F_{UL_low} of n79.

For other SRS transmissions ΔT_{RxSRS} is zero;

P-MPR_c is the allowed maximum output power reduction for

- a) ensuring compliance with applicable electromagnetic energy absorption requirements and addressing unwanted emissions / self desense requirements in case of simultaneous transmissions on multiple RAT(s) for scenarios not in scope of 3GPP RAN specifications;
- b) ensuring compliance with applicable electromagnetic energy absorption requirements in case of proximity detection is used to address such requirements that require a lower maximum output power.

The UE shall apply P-MPR $_c$ for serving cell c only for the above cases. For UE conducted conformance testing P-MPR $_c$ shall be 0 dB

- NOTE 1: P-MPRc was introduced in the P_{CMAX,f,c} equation such that the UE can report to the gNB the available maximum output transmit power. This information can be used by the gNB for scheduling decisions.
- NOTE 2: P-MPRc may impact the maximum uplink performance for the selected UL transmission path.

 T_{REF} and T_{eval} are specified in Table 6.2.4-1. For each T_{REF} , the $P_{CMAX,L,c}$ for serving cell c are evaluated per T_{eval} and given by the minimum value taken over the transmission(s) within the T_{eval} ; the minimum $P_{CMAX,L,f,c}$ over one or more T_{eval} is then applied for the entire T_{REF}

Table 6.2.4-1: Evaluation and reference periods for Pcmax

T _{REF}	T _{eval}	T _{eval} with frequency hopping
Physical channel length	Physical channel length	$Min(T_{no_hopping}, Physical\ Channel)$

The measured configured maximum output power P_{UMAX,f,c} shall be within the following bounds:

$$P_{CMAX_L,f,c} \ - \ MAX\{T_{L,c}, T(P_{CMAX_L,f,c})\} \ \leq \ P_{UMAX,f,c} \ \leq \ P_{CMAX_H,f,c} \ + \ T(P_{CMAX_H,f,c}).$$

where the tolerance $T(P_{CMAX,f,c})$ for applicable values of $P_{CMAX,f,c}$ is specified in Table 6.2.4-1. The tolerance $T_{L,c}$ is the absolute value of the lower tolerance for the applicable operating band as specified in Table 6.2.1-1.

Table 6.2.4-1: P_{CMAX} tolerance

P _{CMAX,f,c} (dBm)	Tolerance T(P _{CMAX,f,c}) (dB)
23 < P _{CMAX,c} ≤ 33	2.0
21 ≤ P _{CMAX,c} ≤ 23	2.0
20 ≤ P _{CMAX,c} < 21	2.5
19 ≤ P _{CMAX,c} < 20	3.5
18 ≤ P _{CMAX,c} < 19	4.0
13 ≤ P _{CMAX,c} < 18	5.0
8 ≤ P _{CMAX,c} < 13	6.0
-40 ≤ P _{CMAX,c} < 8	7.0

6.2A Transmitter power for CA

6.2A.1 UE maximum output power for CA

6.2A.1.1 Void

6.2A.1.2 Void

6.2A.1.3 UE maximum output power for Inter-band CA

For inter-band carrier aggregation with one uplink carrier assigned to one NR band, the transmitter power requirements in clause 6.2 apply.

For inter-band carrier aggregation with uplink assigned to two NR bands, UE maximum output power shall be measured over all component carriers from different bands. If each band has separate antenna connectors, maximum output power is measured as the sum of maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1 ms). The maximum output power is specified in Table 6.2A.1.3-1.

For PC3 inter-band carrier aggregation with one uplink component carrier assigned to one NR band in NR band n41, n77, n78, and n79, the requirements for power class 2 are not applicable and the corresponding requirements for a power class 3 UE shall apply.

Table 6.2A.1.3-1 UE Power Class for uplink inter-band CA (two bands)

Uplink CA Configuration	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
CA_n1A-n3A	(4.2)	(0.2)	(42)	()	23	+2/-32	(4.2)	(5.2)
CA_n1A-n7A					23	+2/-32		
CA_n1A-n8A					23	+2/-32		
CA_n1A-n28A					23	+2/-32		
CA_n1A-n40A					23	+2/-32		
CA_n1A-n41A					23	+2/-32		
CA_n1A-n78A					23	+2/-32		
CA n1A-n79A					23	+2/-32		
CA_n2A-n5A					23	+2/-32		
CA_n2A-n48A					23	+2/-32		
CA_n2A-n77A					23	+2/-32		
CA_n2A-n78A					23	+2/-32		
CA_n3A-n7A					23	+2/-32		
CA_n3A-n8A					23	+2/-32		
CA_n3A-n28A					23	+2/-32		
CA_n3-n38A					23	+2/-32		
CA_n3A-n40A					23	+2/-32		
CA_n3A-n41A					23	+2/-32		
CA_n3A-n77A					23	+2/-32		
CA_n3A-n78A					23	+2/-3 ²		
CA_n3A-n78A CA_n3A-n79A					23	+2/-3 ² +2/-3 ²		
						+2/-3 ²		
CA_n5A-n66A					23			
CA_n5A-n77A					23	+2/-32		
CA_n5A-n78A					23	+2/-32		
CA_n5A-n79A					23	+2/-32		
CA_n7A-n25A					23	+2/-32		
CA_n7A-n28A					23	+2/-32		
CA_n7A-n66A					23	+2/-32		
CA_n7A-n78A					23	+2/-32		
CA_n8A-n39A					23	+2/-32		
CA_n8A-n40A					23	+2/-32		
CA_n8A-n41A					23	+2/-32		
CA_n8A-n77A					23	+2/-32		
CA_n8A-n78A					23	+2/-32		
CA_n8A-n79A					23	+2/-32		
CA_n20A-n28A					23	+2/-32		
CA_n20A-n78A					23	+2/-32		
CA_n25A-n41A					23	+2/-32		
CA_n25A-n66A					23	+2/-32		
CA_n25A-n78A					23	+2/-32		
CA_n28A-n40A					23	+2/-32		
CA_n28A-n41A					23	+2/-32		
CA_n28A-n50A					23	+2/-32		
CA_n28A-n77A					23	+2/-32		
CA_n28A-n78A					23	+2/-32		
CA_n38A-n66A					23	+2/-32		
CA_n38A-n78A					23	+2/-32		
CA_n39A-n40A					23	+2/-32		
CA_n39A-n41A					23	+2/-32		
CA_n39A-n79A					23	+2/-32		
CA_n40A-n41A					23	+2/-32		
CA_n40A-n78A					23	+2/-32		
CA_n40A-n79A					23	+2/-32		
CA_n41A-n66A					23	+2/-32		
CA_n41A-n71A					23	+2/-32		
CA_n41A-n78A					23	+2/-32		
CA_n41A-n79A					23	+2/-32		
CA_n41A-n50A					23	+2/-32		
CA_n48A-n66A					23	+2/-32		
CA_n50A-n78A					23	+2/-32		
CA HOUA-HIOA I								-
					23	+2/-32		
CA_n66A-n71A CA_n66A-n77A					23 23	+2/-3 ² +2/-3 ²		

CA_n70A-n71A			23	+2/-32	
CA_n78A-n92A			23	+2/-3 ²	
NOTE 1: Void					

NOTE 2: 2 refers to the transmission bandwidths confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} , the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 3: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 4: For inter-band carrier aggregation the maximum power requirement should apply to the total transmitted power over all component carriers (per UE).

NOTE 5: Power class 3 is the default power class unless otherwise stated

6.2A.1.4 UE maximum output power for Intra-band contiguous CA

For uplink intra-band contiguous carrier aggregation, the maximum output power is specified in Table 6.2A.1.4-1. For downlink intra-band contiguous carrier aggregation with a single uplink component carrier configured in the NR band, the maximum output power is specified in Table 6.2.2-1.

Table 6.2A.1.4-1: UE Power Class for intraband contiguous CA

NR CA Configuration	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
CA_n7B					23	+2/-2		
CA_n41C					23	+2/-2 ¹		
CA_n48B					23	+2/-2		
CA_n77C					23	+2/-2		
CA_n78C					23	+2/-2		
CA_n79C					23	+2/-2		

NOTE 1: If all transmitted resource blocks over all component carriers are confined within Fullow and Fullow + 4 MHz or/and Fullhigh - 4 MHz and Fullhigh, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 2: PPowerClass is the maximum UE power specified without taking into account the tolerance

NOTE 3: For intra-band contiguous carrier aggregation the maximum power requirement shall apply to the total transmitted power over all component carriers (per UE).

6.2A.1.5 UE maximum output power for Intra-band contiguous CA

For uplink intra-band contiguous carrier aggregation the maximum output power is specified in Table 6.2A.1.5-12. For downlink intra-band contiguous carrier aggregation with a single uplink component carrier configured in the NR band, the maximum output power is specified in Table 6.2.2-1.

Table 6.2A.1.5-1: UE Power Class for intraband contiguous CA

NR CA	Class 1	Tolerance	Class 2	Tolerance	Class 3	Tolerance	Class 4	Tolerance
Configuration	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)
CA_n7B					23	+2/-2		
CA_n41C					23	+2/-2 ¹		
CA_n48B					23	+2/-2		
CA_n77C					23	+2/-2		
CA_n78C								

NOTE 1: If all transmitted resource blocks over all component carriers are confined within F_{UL_low} and F_{UL_low} + 4 MHz or/and F_{UL_high} – 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 2: PpowerClass is the maximum UE power specified without taking into account the tolerance

NOTE 3: For intra-band contiguous carrier aggregation the maximum power requirement shall apply to the total transmitted power over all component carriers (per UE).

6.2A.2 UE maximum output power reduction for CA

6.2A.2.1 Void

6.2A.2.2 Void

6.2A.2.3 UE maximum output power reduction for Inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the requirements in clause 6.2.2 apply for each uplink component carrier.

6.2A.2.4 UE maximum output power reduction for Intra-band contiguous CA

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2A.1.4-1 with contiguous RB allocation is specified in Table 6.2A.2.4-1 for UE power class 3 CA bandwidth classes B and C.

In case the modulation format is different on different component carriers then the MPR is determined by the rules applied to higher order of those modulations.

Modulatio	n	MPR for	r bandwidth class B(dB)	MPR for	bandwidth class C(dB)
		inner	outer	inner	outer
DFT-s-	Pi/2 BPSK	1.0	3.5	2.5	7
OFDM	QPSK	1.0	3.5	2.5	7
	16QAM	1.5	3.5	2.5	7
	64QAM	3.0	4.0	5	7
	256QAM	5.5	6.0	7	7.5
CP-	QPSK	2.0	4.0	3.5	8
OFDM	16QAM	2.5	4.0	3.5	8
	64QAM	3.5	4.0	5	8
	256OAM	6.5	6.5	7	8

Table 6.2A.2.4-1: Contiguous RB allocation for Power Class 3

For CA bandwidth class B and bandwidth class C with contiguous RB allocation, the following parameters are defined to specify valid RB allocation ranges for Inner and Outer RB allocations:

Contiguous RB allocation is defined as $RB_{Start1} + L_{CRB1} = N_{RB1}$, and $RB_{Start2} = 0$, where RB_{Start1} , L_{CRB1} , and N_{RB1} are for CC1, RB_{Start2} , L_{CRB2} , and N_{RB2} are for CC2, CC1 is the component carrier with lower frequency.

In contiguous CA, a contiguous allocation is an inner allocation if

$$RB_{Start,Low} \leq RB_{Start_CA} \leq RB_{Start,High}, and N_{RB_alloc} \leq ceil(N_{RB,agg}/2),$$

where

$$RB_{Start,Low} = max(1, floor(N_{RB_alloc}/2)) \;, \; RB_{Start,High} = N_{RB,agg} - RB_{Start,Low} - N_{RB,alloc}, \; line = 100 \; line$$

with

$$N_{RB_alloc} = (N_{RB1} - RB_{Start1}) \cdot 2^{\wedge}\mu_1 + (RB_{Start2} + L_{CRB2}) \cdot 2^{\wedge}\mu_2, \ N_{RB,agg} = N_{RB1} \cdot 2^{\wedge}\mu_1 + N_{RB2} \cdot 2^{\wedge}\mu_2.$$

If
$$L_{CRB1} = 0$$
, $RB_{Start_CA} = N_{RB1} \cdot 2^{\mu_1} + RB_{Start_2} \cdot 2^{\mu_2}$,

if
$$L_{CRB1} > 0$$
, $RB_{Start_CA} = RB_{Start1} \cdot 2^{\mu_1}$.

A contiguous allocation that is not an Inner contiguous allocation is an Outer contiguous allocation

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2A.1.5-1 with non-contiguous RB allocation is specified in Table 6.2A.2.4-2 for UE power class 3 CA bandwidth classes B and C.

Table 6.2A.2.4-2: non-contiguous RB allocation for Power Class 3

Modulatio	Modulation		for bandwidth c	elass B(dB)	MPR	for bandwidth c	lass C(dB)
		inner	Outer1 ¹	Outer2 ²	inner	Outer1 ¹	Outer2 ²
DFT-s-	Pi/2 BPSK	2	5.5	11.5	2.5	6	13
OFDM	QPSK	2	5.5		2.5	6	
	16QAM	2.5	5.5		3	6	
	64QAM	4.5	6		5	6	
	256QAM	6	6.5		6.5	6.5	
CP-	QPSK	2.5	6.5	12	3.5	7	14
OFDM	16QAM	3	7		3.5	7	
	64QAM	5	7		5	7	
	256QAM	7.5	7.5		7.5	7.5	

NOTE 1: Outer 1 MPR is reduced by 3dB for aggregated allocation bandwidth > 10MHz

NOTE 2: Outer 2 MPR is reduced by 4.5dB for aggregated allocation bandwidth > 10MHz

For CA bandwidth classes B and C with non-contiguous RB allocation, the following parameters are defined to specify valid RB allocation ranges for Inner, Outer1 and Outer2 RB allocations:

Non-Contiguous RB allocation is defined as $RB_{Start1} + L_{CRB1} < N_{RB1}$, or $RB_{Start2} > 0$, where RB_{Start1} , L_{CRB1} , and N_{RB1} are for CC1, RB_{Start2} , L_{CRB2} , and N_{RB2} are for CC2, CC1 is the component carrier with lower frequency.

In contiguous CA, a non-contiguous RB allocation is a non-contiguous Inner RB allocation if the following conditions are met:

 $RB_{Start,Low} \le RB_{Start_CA} \le RB_{Start,High}$ and $N_{RB_alloc} \le ceil((BW_{Channel_CA} / 3 - BW_{gap}) / 0.18MHz)$,

where

$$N_{RB\ alloc} = (N_{RB1} - RB_{Start1}) \cdot 2^{h}\mu_1 + (RB_{Start2} + L_{CRB2}) \cdot 2^{h}\mu_2 \cdot RB_{Start\ CA} = RB_{Start1} \cdot 2^{h}\mu_1 + (RB_{Start2} + L_{CRB2}) \cdot 2^{h}\mu_2 \cdot RB_{Start\ CA} = RB_{Start1} \cdot 2^{h}\mu_1 + (RB_{Start2} + L_{CRB2}) \cdot 2^{h}\mu_2 \cdot RB_{Start\ CA} = RB_{Start1} \cdot 2^{h}\mu_1 + (RB_{Start2} + L_{CRB2}) \cdot 2^{h}\mu_2 \cdot RB_{Start\ CA} = RB_{Start1} \cdot 2^{h}\mu_1 + (RB_{Start2} + L_{CRB2}) \cdot 2^{h}\mu_2 \cdot RB_{Start\ CA} = RB_{Start1} \cdot 2^{h}\mu_1 + (RB_{Start2} + L_{CRB2}) \cdot 2^{h}\mu_2 \cdot RB_{Start\ CA} = RB_{Start1} \cdot 2^{h}\mu_1 + (RB_{Start2} + L_{CRB2}) \cdot 2^{h}\mu_2 \cdot RB_{Start\ CA} = RB_{Start\ CA} = RB_{Start\ CA} + RB_{Start\ CA} = RB_{Start\ CA} + RB_{Start\$$

$$RB_{Start,Low} = max(1, floor(N_{RB_alloc} + (BW_{gap} - BW_{GB,low})/0.18MHz))$$

$$RB_{Start, High} = floor((BW_{Channel_CA} - 2 \cdot BW_{gap} - BW_{GB, low}) / 0.18MHz - 2 \cdot N_{RB_alloc})$$

$$BW_{GB,low} = F_{offset,low} - (N_{RB1} 12+1) SCS_1/2$$

 BW_{gap} is the bandwidth of the gap between N_{RB1} and N_{RB2} possible allocations of CC1 and CC2 respectively.

In contiguous CA, a non-contiguous RB allocation is a non-contiguous outer 1 RB allocation if the following conditions are met:

$$RB_{Start,Low} \leq RB_{Start_CA} \leq RB_{Start,High} \ and \ N_{RB_alloc} \leq ceil((3\ BW_{Channel_CA} \ / \ 5 - BW_{gap}) \ / \ 0.18MHz)$$

where

$$RB_{Start,Low} = max(1, 2 \cdot N_{RB_alloc} - floor(\ (BW_{Channel_CA} - 2 \cdot BW_{gap} + BW_{GB,low}) / 0.18MHz)),$$

$$RB_{Start,High} = floor((2 \cdot BW_{Channel_CA} - 3 \cdot BW_{gap} - BW_{GB,low}) \ / \ 0.18MHz - 3 \cdot N_{RB_alloc})$$

 N_{RB_alloc} , RB_{Start_CA} , BW_{gap} and $BW_{GB,low}$ are as defined for the Inner region.

In contiguous CA, a non-contiguous allocation is an Outer 2 allocation if it is neither an non-contiguous Inner allocation nor an Outer 1 allocation.

6.2A.3 UE additional maximum output power reduction for CA

6.2A.3.1.1 Void

6.2A.3.1.2 Void

6.2A.3.1.3 UE additional maximum output power reduction for Inter-band CA

Unless otherwise stated, for inter-band carrier aggregation with uplink assigned to two NR bands, the requirements in clause 6.2.3 apply for each uplink component carrier.

6.2A.4 Configured output power for CA

6.2A.4.1 Configured transmitted power level

6.2A.4.1.1 Void

6.2A.4.1.2 Void

6.2A.4.1.3 Configured transmitted power for Inter-band CA

For uplink carrier aggregation the UE is allowed to set its configured maximum output power $P_{CMAX,c}$ for serving cell c and its total configured maximum output power P_{CMAX} .

The configured maximum output power $P_{CMAX,c}$ on serving cell c shall be set as specified in clause 6.2.4.

For uplink inter-band carrier aggregation, MPR_c and A-MPR_c apply per serving cell c and are specified in clause 6.2.2 and clause 6.2.3, respectively. P-MPR_c accounts for power management for serving cell c. P_{CMAX,c} is calculated under the assumption that the transmit power is increased independently on all component carriers.

The total configured maximum output power P_{CMAX} shall be set within the following bounds:

$$P_{CMAX L} \leq P_{CMAX} \leq P_{CMAX H}$$

For uplink inter-band carrier aggregation with one serving cell c per operating band when same slot symbol pattern is used in all aggregated serving cells,

$$\begin{split} P_{CMAX_L} = MIN ~ \{10log_{10} \sum MIN ~ [~ p_{EMAX,c} / ~ (\Delta t_{C,c}), ~ p_{PowerClass} / (MAX(mpr_c, \Delta mpr_c, a-mpr_c) \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c} \cdot \Delta t_{RxSRS,c}) ~, \\ p_{PowerClass} / pmpr_c], ~ P_{EMAX,CA}, ~ P_{PowerClass} \} \end{split}$$

$$P_{CMAX_H} = MIN\{\,10\,log_{10}\,\sum p_{EMAX,c}\,,\,P_{EMAX,CA},\,P_{PowerClass}\}$$

where

- p_{EMAX,c} is the linear value of P_{EMAX,c} which is given by IE *P-Max* for serving cell c in [7];
- P_{PowerClass} is the maximum UE power specified in Table 6.2A.1.3-1 without taking into account the tolerance specified in the Table 6.2A.1.3-1; p_{PowerClass} is the linear value of P_{PowerClass};
- mpr_c and a-mpr_c are the linear values of MPR_c and A-MPR_c as specified in clause 6.2.2 and clause 6.2.3, respectively;
- Δ mpr_c is the linear value of Δ MPR_c as specified in clause 6.2.2;
- pmpr_c is the linear value of P-MPR_c;
- $\Delta t_{RxSRS,c}$ is the linear value of $\Delta T_{RxSRS,c}$;
- $\Delta t_{C,c}$ is the linear value of $\Delta T_{C,c}$. $\Delta t_{C,c} = 1.41$ when NOTE 2 in Table 6.2A.1.3-1 applies for a serving cell c, otherwise $\Delta t_{C,c} = 1$;

- $\Delta t_{IB,c}$ is the linear value of the inter-band relaxation term $\Delta T_{IB,c}$ of the serving cell c as specified in Table 6.2A.4.2.3-1; otherwise $\Delta t_{IB,c} = 1$;
- P_{EMAX,CA} is p-UE-FR1 value signaled by RRC and defined in [38.331];

For uplink inter-band carrier aggregation with one serving cell c per operating band when at least one different numerology/slot pattern is used in aggregated cells, the UE is allowed to set its configured maximum output power $P_{\text{CMAX},c(i),i}$ for serving cell c(i) of slot numerology type i, and its total configured maximum output power P_{CMAX} .

The configured maximum output power $P_{CMAX,c(i),i}(p)$ in slot p of serving cell c(i) on slot numerology type i shall be set within the following bounds:

$$P_{CMAX_L,f,c(i),i}\left(p\right) \leq P_{CMAX,f,c(i),i}\left(p\right) \leq P_{CMAX_H,f,c(i),i}\left(p\right)$$

where $P_{CMAX_L,f,c\ (i),i}\ (p)$ and $P_{CMAX_H,f,c(i),i}\ (p)$ are the limits for a serving cell c(i) of slot numerology type i as specified in clause 6.2.4.

The total UE configured maximum output power $P_{CMAX}(p,q)$ in a slot p of slot numerology or symbol pattern i, and a slot q of slot numerology or symbol pattern j that overlap in time shall be set within the following bounds unless stated otherwise:

$$P_{CMAX_L}(p,q) \le P_{CMAX}(p,q) \le P_{CMAX_H}(p,q)$$

When slots p and q have different transmissions lengths and belong to different cells on different bands:

$$P_{CMAX_L}(p,q) = MIN \ \{10 \ log_{10} \ [p_{CMAX_L,f,c(i),i}(p) + p_{CMAX_L,f,c(i),j}(q)], \ P_{PowerClass}\}$$

$$P_{CMAX_H}(p,q) = MIN \{10 log_{10} [p_{CMAX_H,f,c(i),i}(p) + p_{CMAX_H,f,c(i),j}(q)], P_{PowerClass} \}$$

where $p_{CMAX_L,f,c}$ (i),i and $p_{CMAX_H,f,c(i),i}$ are the respective limits $P_{CMAX_L,f,c}$ (i),i and $P_{CMAX_H,f,c(i),i}$ expressed in linear scale.

 T_{REF} and T_{eval} are specified in Table 6.2A.4.1.3-0 when same and different slot patterns are used in aggregated carriers. For each T_{REF} , the P_{CMAX_L} is evaluated per T_{eval} and given by the minimum value taken over the transmission(s) within the T_{eval} ; the minimum P_{CMAX_L} over the one or more T_{eval} is then applied for the entire T_{REF} . $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

Table 6.2A.4.1.3-0: P_{CMAX} evaluation window for different slot and channel durations

T _{REF}	T _{eval}	T _{eval} with frequency hopping
T _{REF} of largest slot duration over	Physical channel	Min(T _{no_hopping} , Physical
both UL CCs	length	Channel Length)

If the UE is configured with multiple TAGs and transmissions of the UE on slot i for any serving cell in one TAG overlap some portion of the first symbol of the transmission on slot i+1 for a different serving cell in another TAG, the UE minimum of P_{CMAX_L} for slots i and i+1 applies for any overlapping portion of slots i and i+1. $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

The measured maximum output power P_{UMAX} over all serving cells with same slot pattern shall be within the following range:

$$\begin{split} P_{CMAX_L} - MAX\{T_L, T_{LOW}(P_{CMAX_L}) \ \} \ \leq \ P_{UMAX} \leq \ P_{CMAX_H} + \ T_{HIGH}(P_{CMAX_H}) \end{split}$$

$$P_{UMAX} = 10 \ log_{10} \ \sum p_{UMAX_c}$$

where $p_{UMAX,c}$ denotes the measured maximum output power for serving cell c expressed in linear scale. The tolerances $T_{LOW}(P_{CMAX})$ and $T_{HIGH}(P_{CMAX})$ for applicable values of P_{CMAX} are specified in Table 6.2A.4.1.3-1. The tolerance T_L is the absolute value of the lower tolerance for applicable NR CA configuration as specified in Table 6.2A.1.3-1-2 for inter-band carrier aggregation.

The measured maximum output power P_{UMAX} over all serving cells, when at least one slot has a different transmission numerology or symbol pattern, shall be within the following range:

$$\begin{split} P'_{CMAX_L} - \ MAX\{T_L, \, T_{LOW} \left(P'_{CMAX_L} \right) \} & \leq \ P'_{UMAX} \leq \ P'_{CMAX_H} + T_{HIGH} \left(P'_{CMAX_H} \right) \\ \\ P'_{UMAX} & = 10 \ log_{10} \ \sum \ p'_{UMAX,c} \end{split}$$

where $p'_{UMAX,c}$ denotes the average measured maximum output power for serving cell c expressed in linear scale over T_{REF} . The tolerances $T_{LOW}(P'_{CMAX})$ and $T_{HIGH}(P'_{CMAX})$ for applicable values of P'_{CMAX} are specified in Table 6.2A.4.1.3-1 for inter-band carrier aggregation. The tolerance T_L is the absolute value of the lower tolerance for applicable NR CA configuration as specified in Table 6.2A.1.3-1 for inter-band carrier aggregation.

where:

 $P'_{CMAX_L} = MIN\{\ MIN\ \{10log_{10}\sum(\ p_{CMAX_L,f,c(i),i}),\ P_{PowerClass}\}\ over\ all\ overlapping\ slots\ in\ T_{REF}\}$

 $P'_{CMAX_H} = MAX\{ MIN\{10 \log_{10} \sum p_{EMAX,c}, P_{PowerClass} \}$ over all overlapping slots in $T_{REF}\}$

Table 6.2A.4.1.3-1: P_{CMAX} tolerance for uplink inter-band CA (two bands)

P _{CMAX} (dBm)	Tolerance T _{LOW} (P _{CMAX}) (dB)	Tolerance Thigh(Pcmax) (dB)			
P _{CMAX} = 23	3.0	2.0			
22 ≤ P _{CMAX} < 23	5.0	2.0			
21 ≤ P _{CMAX} < 22	5.0	3.0			
20 ≤ P _{CMAX} < 21	6.0	4.0			
16 ≤ P _{CMAX} < 20	5	.0			
11 ≤ P _{CMAX} < 16	6.0				
-40 ≤ P _{CMAX} < 11	7	.0			

6.2A.4.1.4 Configured transmitted power for Intra-band contiguous CA

For uplink carrier aggregation the UE is allowed to set its configured maximum output power $P_{CMAX,c}$ for serving cell c and its total configured maximum output power P_{CMAX} .

The configured maximum output power $P_{CMAX,c}$ on serving cell c shall be set as specified in subclause 6.2.4, MPR_c and A- MPR_c are determined by subclause 6.2.2. There is one power management term for the UE, denoted P-MPR, and P- MPR_c = P-MPR.

The total configured maximum output power P_{CMAX} shall be set within the following bounds:

$$P_{CMAX_L} \leq P_{CMAX} \leq P_{CMAX_H}$$

For uplink intra-band contiguous carrier aggregation when same slot pattern is used in all aggregated serving cells,

 $P_{CMAX_L} = MIN\{10 \ log_{10} \sum p_{EMAX,c} - \Delta T_C, P_{EMAX,CA}, P_{PowerClass} - MAX(MAX(MPR, A-MPR) + \Delta T_{IB,c} + \Delta T_C + \Delta T_{RxSRS}, P-MPR_c)\}$

$$P_{CMAX_H} = MIN\{10 log_{10} \sum p_{EMAX,c}, P_{EMAX,CA}, P_{PowerClass}\}$$

where

- $p_{EMAX,c}$ is the linear value of $P_{EMAX,c}$ which is given by IE *P-Max* for serving cell *c* in [7];
- $P_{PowerClass}$ is the maximum UE power without taking into account the tolerance;
- MPR and A-MPR are specified in subclause 6.2A.2 respectively;
- $\Delta T_{IB,c}$ is the additional tolerance for serving cell c as specified in Table 6.2A.4.2.3-1;
- P-MPR is the power management term for the UE;
- ΔT_C is the highest value $\Delta T_{C,c}$ among all serving cells c;
- ΔT_{RxSRS} is the highest value among all serving cells c.

For uplink intra-band contiguous carrier aggregation, when at least one different numerology/slot pattern is used in aggregated cells, the UE is allowed to set its configured maximum output power $P_{CMAX,c(i),i}$ for serving cell c(i) of slot numerology type i, and its total configured maximum output power P_{CMAX} .

The configured maximum output power $P_{CMAX,c(i),i}(p)$ in slot p of serving cell c(i) on slot numerology type i shall be set within the following bounds:

$$P_{CMAX_L,f,c(i),i}(p) \le P_{CMAX,f,c(i),i}(p) \le P_{CMAX_H,f,c(i),i}(p)$$

where $P_{CMAX_L,f,c\ (i),i}\ (p)$ and $P_{CMAX_H,f,c(i),i}\ (p)$ are the limits for a serving cell c(i) of slot numerology type i as specified in subclause 6.2.4.

The total UE configured maximum output power $P_{CMAX}(p,q)$ in a slot p of slot numerology or symbol pattern i, and a slot q of slot numerology or symbol pattern j that overlap in time shall be set within the following bounds unless stated otherwise:

$$P_{CMAX_L}(p,q) \leq \, P_{CMAX}(p,q) \, \leq \, P_{CMAX_H}(p,q)$$

When slots p and q have different transmissions lengths and belong to different cells on different or same bands:

$$P_{CMAX_L}(p,q) = MIN \ \{10 \ log_{10} \ [p_{CMAX_L,f,c(i),i}(p) + p_{CMAX_L,f,c(i),j}(q)], \ P_{PowerClass}, \ P_{EMAX,CA}\}$$

$$P_{CMAX_{-}H}(p,q) = MIN \{10 log_{10} [p_{CMAX_{-}H,f,c(i),i}(p) + p_{CMAX_{-}H,f,c(i),j}(q)], P_{PowerClass}, P_{EMAX,CA} \}$$

where $p_{CMAX_L,f,c\ (i),i}$ and $p_{CMAX_H,f,c(i),i}$ are the respective limits $P_{CMAX_L,f,c\ (i),i}$ and $P_{CMAX_H,f,c(i),i}$ expressed in linear scale.

 T_{REF} and T_{eval} are specified in Table 6.2A.4.1.3-0 when same and different slot patterns are used in aggregated carriers. For each T_{REF} , the P_{CMAX_L} is evaluated per T_{eval} and given by the minimum value taken over the transmission(s) within the T_{eval} ; the minimum P_{CMAX_L} over the one or more T_{eval} is then applied for the entire T_{REF} . $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

Table 6.2A.4.1.4-0: P_{CMAX} evaluation window for different slot and channel durations

T _{REF}	T _{eval}	T _{eval} with frequency hopping
T _{REF} of largest slot duration over	Physical channel	Min(T _{no_hopping} , Physical
both UL CCs	length	Channel Length)

If the UE is configured with multiple TAGs and transmissions of the UE on slot i for any serving cell in one TAG overlap some portion of the first symbol of the transmission on slot i+1 for a different serving cell in another TAG, the UE minimum of P_{CMAX_L} for slots i and i+1 applies for any overlapping portion of slots i and i+1. $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

The measured maximum output power P_{UMAX} over all serving cells with same slot pattern shall be within the following range:

$$\begin{split} P_{CMAX_L} - MAX\{T_L,\,T_{LOW}(P_{CMAX_L})~\} & \leq P_{UMAX} \leq P_{CMAX_H} + \; T_{HIGH}(P_{CMAX_H}) \\ \\ P_{UMAX} = 10 \; log_{10} \sum p_{UMAX,c} \end{split}$$

where $p_{UMAX,c}$ denotes the measured maximum output power for serving cell c expressed in linear scale. The tolerances $T_{LOW}(P_{CMAX})$ and $T_{HIGH}(P_{CMAX})$ for applicable values of P_{CMAX} are specified in Table 6.2A.4.1.3-1. The tolerance T_L is the absolute value of the lower tolerance for applicable NR CA configuration as specified in Table 6.2A.1.3-1-2 for inter-band carrier aggregation.

The measured maximum output power P_{UMAX} over all serving cells, when at least one slot has a different transmission numerology or slot pattern, shall be within the following range:

$$\begin{split} P'_{CMAX_L} - \ MAX\{T_L, \, T_{LOW} \left(P'_{CMAX_L} \right) \} \leq \ P'_{UMAX} \leq P'_{CMAX_H} + T_{HIGH} \left(P'_{CMAX_H} \right) \\ P'_{UMAX} = 10 \ log_{10} \sum_{P'_{UMAX_C}} p'_{UMAX_C} \end{split}$$

where $p'_{UMAX,c}$ denotes the average measured maximum output power for serving cell c expressed in linear scale over T_{REF} . The tolerances $T_{LOW}(P'_{CMAX})$ and $T_{HIGH}(P'_{CMAX})$ for applicable values of P'_{CMAX} are specified in Table 6.2A.4.1.3-1 for inter-band carrier aggregation. The tolerance T_L is the absolute value of the lower tolerance for applicable NR CA configuration as specified in Table 6.2A.1.3-1 for inter-band carrier aggregation.

where:

$$P'_{CMAX_L} = MIN\{ MIN \{ 10log_{10} \sum (p_{CMAX_L,f,c(i),i}), P_{PowerClass} \}$$
 over all overlapping slots in $T_{REF} \}$

 $P'_{CMAX_H} = MAX\{\ MIN\{10\ log_{10} \sum p_{EMAX,c}\,,\, P_{PowerClass}\}\ over\ all\ overlapping\ slots\ in\ T_{REF}\}$

Table 6.2A.4.1.4-1: P_{CMAX} tolerance for uplink intra-band contiguous CA

P _{CMAX} (dBm)	Tolerance T _{LOW} (P _{CMAX}) (dB)	Tolerance Thigh(Pcmax) (dB)		
21 ≤ P _{CMAX} ≤ 23	2.0			
20 ≤ P _{CMAX} < 21	2.5			
19 ≤ P _{CMAX} < 20	3.5			
18 ≤ P _{CMAX} < 19	4.0			
13 ≤ P _{CMAX} < 18	5.0			
8 ≤ P _{CMAX} < 13	6.0			
-40 ≤ P _{CMAX} < 8	7.0			

6.2A.4.2 ΔT_{IB,c} for CA

For the UE which supports inter-band NR CA configuration, $\Delta T_{IB,c}$ in tables below applies. Unless otherwise stated, $\Delta T_{IB,c}$ is set to zero.

6.2A.4.2.1 Void

6.2A.4.2.2 Void

6.2A.4.2.3 ΔT_{IB,c} for Inter-band CA (two bands)

Table 6.2A.4.2.3-1: $\Delta T_{IB,c}$ due to NR CA (two bands)

Inter-band CA combination	NR Band	ΔT _{IB,c} (dB)		
CA_n1-n3	n1	0.3		
G/EIII III	n3	0.3		
CA_n1-n7	<u>n1</u>	0.5		
_	n7	0.6		
CA_n1-n8	n1 n8	0.3 0.3		
	n1	0.3		
CA_n1-n28	n28	0.6		
CA n1 n40	n1	0.5		
CA_n1-n40	n40	0.5		
CA_n1-n41	n1	0.5		
5 , <u>_</u>	n41	0.5		
CA_n1-n77	n1 n77	0.6		
	n1	0.8		
CA_n1-n78	n78	0.8		
04 0 5	n2	0.3		
CA_n2-n5	n5	0.3		
CA_n2-n48	n2	0.6		
OA_112-1140	n48	0.8		
CA_n2-n66	n2	0.5		
	n66	0.5		
CA_n2-n77 —	n2 n77	0.6 0.8		
	n2	0.6		
CA_n2-n78	n78	0.8		
04	n3	0.5		
CA_n3-n7	n7	0.5		
CA_n3-n8	n3	0.3		
GA_113-110	n8	0.3		
CA_n3-n28	n3	0.3		
_	n28 n3	0.3 0.5		
CA_n3-n38	n38	0.5		
	n3	0.5		
CA_n3-n40	n40	0.5		
	n3	0.5		
CA_n3-n41	n41	0.34		
		0.85		
CA_n3-n77	n3	0.6		
	n77	0.8		
CA_n3-n78	<u>n3</u> n78	0.6 0.8		
	n3	0.3		
CA_n3-n79	n79	0.8		
CA_n5-n7	n5	0.3		
OA_IIO-III	n7	0.3		
CA_n5-n66	n5	0.3		
	n66	0.3		
CA_n5-n77	n5 n77	0.6 0.8		
	n5	0.6		
CA_n5-n78	n78	0.8		
CA =7 = 05	n7	0.5		
CA_n7-n25	n25	0.5		
CA_n7-n28	n7	0.3		
G/(_III =IIZ0	n28	0.3		
CA_n7-n66	n7	0.5		
	n66	0.5 0.5		
CA_n7-n78	n7 n78	0.5		
	n8	0.8		
CA_n8-n39	n39	0.3		
		1 0.0		

CA_n8-n40	n8	0.3
OA_110-11 4 0	n40	0.3
CA_n8-n41	n8	0.6
	n41	0.3
CA n8-n75	n8	0.3
CA n8-n78	n8	0.6
CA 116-1176	n78	0.8
CA 28 270	n8	0.3
CA_n8-n79	n79	8.0
CA 202 202	n20	0.5
CA_n20-n28	n28	0.5
CA_n20-n75	n20	0.3
CA 20 270	n20	0.6
CA_n20-n78	n78	0.8
	n25	0.5
CA_n25-n41	- 44	0.4 ⁶
	n41	0.97
04 705 700	n25	0.5
CA_n25-n66	n66	0.5
04 05 74	n25	0.3
CA_n25-n71	n71	0.6
04 33 13	n28	0.3
CA_n28-n40	n40	0.3
0.1 00 11	n28	0.3
CA_n28-n41	n41	0.3
2	n28	0.3
CA_n28-n50	n50	0.4
CA_n28-n75	n28	0.3
	n28	0.5
CA_n28-n77	n77	0.8
	n28	0.5
CA_n28-n78	n78	0.8
CA_n29-n66	n66	0.3
CA_n29-n70	n70	0.3
	n38	0.5
CA_n38-n66	n66	0.5
	n38	0.3
CA_n38-n78	n78	0.8
	n39	0^{2}
_	n41	02
CA_n39-n41	n39	0.53
	n41	0.53
	n39	0.3
CA_n39-n79	n79	0.8
	n40	0.53
CA_n40-n41	n41	0.53
	n40	0
CA_n40-n78	n78	0.5
	n40	0.3
CA_n40-n79	n79	0.8
	n41	0.3
CA_n41-n50	n50	0.4
+		0.86
CA_n41-n66	n41	1.3 ⁷
CA_1141-1100	n66	0.5
	n41	0.3
CA_n41-n71	n71	0.6
	n41	0.8
CA_n41-n78 ¹	n78	0.8
	n41	0.8
CA_n41-n79	n79	0.8
+	n/9	0.8
CA_n48-n66	n66	0.6
	n50	0.6
CA_n50-n78		0-
G/ (_1100 11/ 0	n78	J U-

n50	0.5 ³
n78	0.5^{3}
n66	0.5
n70	0.5
n66	0.3
n71	0.3
n66	0.6
n77	0.8
n66	0.6
n78	0.8
n70	0.3
n71	0.6
n78	0.8
n78	0.8
n77	0.5
n79	0.5
n70	0.5
1170	1.5 ⁸
70	0.5
11/9	1.5 ⁸
n78	0.8
n92	0.6
	n78 n66 n70 n66 n71 n66 n77 n66 n78 n70 n71 n78 n70 n71 n78 n78 n78 n77 n79 n78

- NOTE 1: The requirements only apply when the sub-frame and Tx-Rx timings are synchronized between the component carriers. In the absence of synchronization, the requirements are not within scope of these specifications.
- NOTE 2: Only applicable for UE supporting inter-band carrier aggregation with uplink in one NR band and without simultaneous Rx/Tx.
- NOTE 3: Applicable for UE supporting inter-band carrier aggregation without simultaneous Rx/Tx.
- NOTE 4: The requirement is applied for UE transmitting on the frequency range of 2515-2690 MHz. NOTE 5: The requirement is applied for UE transmitting on the frequency range of 2496-2515 MHz.
- NOTE 6: The requirement is applied for UE transmitting on the frequency range of 2545-2690 MHz.
- NOTE 7: The requirement is applied for UE transmitting on the frequency range of 2496-2545 MHz.
- NOTE 8: The requirements only apply for UE supporting inter-band carrier aggregation with simultaneous Rx/Tx capability, and NR UL carrier frequencies are confined to 3700 MHz-3800MHz for n78 and 4400 MHz-4500MHz for n79. Simultaneous Rx/Tx capability does not apply for UEs supporting band n78 with a n77 implementation.

Table 6.2A.4.2.3-2: Void

Table 6.2A.4.2.3-3: Void

6.2A.4.2.4 $$\Delta T_{\text{IB,c}}$$ for Inter-band CA (three bands)

Table 6.2A.4.2.4-1: $\Delta T_{IB,c}$ due to NR CA (three bands)

Inter-band CA combination	NR Band	ΔT _{IB,c} (dB)		
	n1	0.6		
CA_n1-n3-n7	n3	0.6		
	n7	0.6		
	n1	0.3		
CA_n1-n3-n8	n3	0.3		
	n8	0.3		
	n1	0.3		
CA_n1-n3-n28	n3	0.3		
	n28	0.6		
	n1	0.5		
CA_n1-n3-n41	n3	0.5		
G/(_111 116 11 11	n41	0.35		
	1171	0.86		
	n1	0.6		
CA_n1-n3-n78	n3	0.6		
	n78	0.8		
	n1	0.3		
CA_n1-n8-n78	n8	0.6		
	n78	0.8		
	n1	0.3		
CA_n1-n28-n78	n28	0.6		
	n78	0.8		
	n3	0.6		
CA_n3-n8-n78	n8	0.6		
	n78	0.8		
	n1	0.5		
CA_n1-n7-n28	n7	0.6		
	n28	0.6		
	n1	0.6		
CA_n1-n7-n78	n7	0.6		
	n78	0.8		
	<u>n1</u>	0.3		
CA_n1-n40-n78	n40	0.5		
	n78	0.8		
	<u>n3</u>	0.5		
CA_n3-n7-n28	n7	0.5		
	n28	0.3		
	n3	0.6		
CA_n3-n7-n78	n7	0.6		
	n78	0.8		
04 = 0 = 00 = 77	n3	0.6		
CA_n3-n28-n77	n28	0.5		
	n77	0.8		
CA 52 520 570	n3	0.5		
CA_n3-n28-n78	n28	0.3		
	n78	0.8		
<u> </u>	n3 n40	0.5 0.5		
CA_n3-n40-n41	H 4 U	0.5 0.5 ^{1,3}		
	n41	0.5%		
	n3			
<u> </u>	IIO	0.3 0.3 ¹		
CA_n3-n41-n79	n41	0.82		
-	n79	0.8		
	n5	0.6		
CA_n5_n66-n78	n66	0.6		
OA_113_1100-1176	n78	0.8		
	n7	0.8		
CA_n7_n25-n66	n25	0.5		
OA_117_1123-1100	n66	0.5		
	noo	0.3		
CA_n7_n28-n78	n28	0.3		
0,7,11,1120,1170	n78	0.8		
	1170	0.0		

	n7	0.5
CA_n7_n66-n78	n7 n66	0.6
CA_117_1100-1176	n78	0.8
-	n8	0.6
CA no nao nat		0.6 0.5 ⁴
CA_n8-n39-n41	n39	
	n41	0.54
CA =0 =44 =70	n8	0.6
CA_n8-n41-n79	n41	0.3
	n79	0.8
04 00 00 70	n20	0.6
CA_n20-n28-n78	n28	0.5
	n78	0.8
	n25	0.5
CA_n25-n41-n66	n41	0.85
		1.3 ⁶
	n66	0.5
	n25	0.5
CA_n25-n41-n71	n41	0.5
	n71	0.6
	n25	0.5
CA_n25-n66-n71	n66	0.5
	n71	0.6
	n25	0.6
CA_n25-n66-n78	n66	0.6
	n78	0.8
	n28	0.5
CA_n28-n40-n78	n40	0.3
	n78	0.8
	n28	0.5
CA_n28-n41-n78	n41	0.3
	n78	0.8
	n29	0
CA_n29-n66-n70	n66	0.5
	n70	0.5
	n39	0.3
CA_n39-n41-n79	n41	0.34
_	n79	0.84
	n40	0.5^{3}
CA_n40-n41-n79	n41	0.5^{3}
_	n79	0.8
		0.81
	n41	1.32
CA_n41-n66-n71	n66	0.5
	n71	0.3
	n66	0.5
CA n66-n70-n71	n70	0.5
5/1.100 II/ 0 II/ 1	n71	0.6
	117 1	0.0

NOTE 1: The requirement is applied for UE transmitting on the frequency range of 2515-2690 MHz.

NOTE 2: The requirement is applied for UE transmitting on the frequency range of 2496-2515 MHz.

NOTE 3: Only applicable for UE supporting inter-band carrier aggregation without simultaneous Rx/Tx among band 40 and 41.

NOTE 4: Applicable for UE supporting inter-band carrier aggregation without simultaneous Rx/Tx between n39 and n41.

NOTE 5: The requirement is applied for UE transmitting on the frequency range of 2545 - 2690 MHz.

NOTE 6: The requirement is applied for UE transmitting on the frequency range of 2496 - 2545 MHz.

6.2A.4.2.5 $\Delta T_{IB,c}$ for Inter-band CA (four bands)

Table 6.2A.4.2.5-1: ΔT_{IB,c} due to NR CA (four bands)

Inter-band CA combination	NR Band	ΔT _{IB,c} (dB)
	n1	0.6
CA n1 n2 n7 n20	n3	0.6
CA_n1-n3-n7-n28	n7	0.6
	n28	0.6
	n1	0.7
CA_n1-n3-n7-n78	n3	0.7
CA_111-113-117-1176	n7	0.7
	n78	0.8
	n1	0.6
CA_n1-n3-n8-n78	n3	0.6
CA_111-113-116-1176	n8	0.6
	n78	0.8
	n1	0.6
CA_n1-n3-n28-n78	n3	0.6
CA_111-113-1120-1170	n28	0.6
	n78	0.8
	n3	0.6
CA_n3-n7-n28-n78	n7	0.6
CA_113-117-1120-1176	n28	0.6
	n78	0.6
	n7	0.5
CA_n7-n25-n66-n78	n25	0.6
GA_117-1125-1100-1176	n66	0.6
	n78	0.8

6.2.B Transmitter power for NR-DC

6.2B.0 General

The requirements apply for inter-band NR-DC with one uplink serving cell configured per CG.

6.2B.1 UE maximum output power for NR-DC

For inter-band NR-DC with one uplink carrier assigned per NR band, the transmitter power requirements in clause 6.2 apply per band.

For inter-band NR-DC with one uplink assigned per band, the UE maximum output power shall be measured over all component carriers from different bands. If each band has separate antenna connectors, the maximum output power is measured as the sum of maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1 ms). The maximum output power is specified in Table 6.2B.1.3-1.

Table 6.2B.1.3-1 UE Power Class for inter-band NR-DC

Uplink Configu	_	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
DC_n2A	∖-n5A					23	+2/-3 ¹		
NOTE 1: For transmission bandwidths confined within Fullow and Fullow + 4 MHz or Full high - 4 MHz and Full high within each CG, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB									

NOTE 2: P_{PowerClass} is the maximum UE power specified without account o the tolerance

NOTE 3: The maximum power requirement applies to the total transmitted power over both the MCG and SCG.

NOTE 4: Power class 3 is the default power class unless otherwise stated.

6.2B.2 UE maximum output power reduction for NR-DC

For inter-band NR-DC with one uplink assigned per band, the requirements in clause 6.2.2 apply for each uplink component carrier.

6.2B.3 UE additional maximum output power reduction for NR-DC

For inter-band NR-DC with one uplink assigned per band, the requirements in clause 6.2.3 apply for each uplink component carrier.

6.2B.4.1 Configured transmitted power level for NR-DC

The UE is allowed to set its configured maximum output power $P_{CMAX,f,c,MCG}$ and $P_{CMAX,f,c,SCG}$ for the respective MCG and SCG and its total configured maximum output power for NR-DC operation $P_{Total}^{NR-DC} = 10log10(\hat{P}_{Total}^{NR-DC})$ with \hat{P}_{Total}^{NR-DC} as specified in clause 7.6.2 of [8]. The UE is configured with an inter-CG power sharing mode by NR-DC-PC-mode. The requirements apply for one uplink serving cell configured per CG and for asynchronous and synchronous NR-DC if not otherwise stated.

Unless otherwise stated, the configured maximum output power $P_{CMAX,f,c,MCG}(q)$ in physical-channel q for carrier f of serving cell c shall be set within the bounds if contained in the MCG,

$$P_{\text{CMAX_L,f,c,MCG}}(q) \le P_{\text{CMAX,f,c,MCG}}(q) \le P_{\text{CMAX_H,f,c,MCG}}(q)$$

and the corresponding $P_{CMAX_L,f,c,SCG}(q)$ for a serving cell contained in the SCG,

$$P_{\text{CMAX_L,f,c,SCG}}(q) \leq P_{\text{CMAX,f,c,SCG}}(q) \leq P_{\text{CMAX_H,f,c,SCG}}(q)$$

where $P_{CMAX_L,f,c,MCG}$, $P_{CMAX_L,f,c,MCG}$, $P_{CMAX_L,f,c,SCG}$ and $P_{CMAX_H,f,c,SCG}$ are the limits for a serving cell c as specified in clause 6.2.4 modified as follows:

$$\begin{split} P_{CMAX_L,f,c,MCG} = MIN\{MIN(P_{EMAX,c} \ , \ P_{EMAX,NR\text{-}DC}, \ P_{NR}) - \Delta T_{C,c}, \ (P_{PowerClass} - \Delta P_{PowerClass}) - MAX(MAX(MPR_c, \ A-MPR_c) + \Delta T_{IB,c} + \Delta T_{C,c} + \Delta T_{RxSRS}, \ P-MPR_c)\} \end{split}$$

$$P_{CMAX_H,f,c,MCG} = MIN\{P_{EMAX,c},\,P_{EMAX,NR\text{-}DC},\,P_{NR},\,P_{PowerClass} - \Delta P_{PowerClass}\}$$

for the MCG and

$$\begin{split} P_{CMAX_L,f,c,SCG} = MIN\{MIN(P_{EMAX,c}\;,\;P_{EMAX,NR\text{-}DC},\;P_{NR}) - \Delta T_{C,c},\;(P_{PowerClass} - \Delta P_{PowerClass}) - MAX(MAX(MPR_c,\;A-MPR_c) + \Delta T_{IB,c} + \Delta T_{C,c} + \Delta T_{RxSRS},\;P\text{-}MPR_c)\} \end{split}$$

$$P_{CMAX_H,f,c,SCG} = MIN\{P_{EMAX,c},P_{EMAX,NR\text{-}DC},P_{NR},P_{PowerClass} - \Delta P_{PowerClass}\}$$

for the SCG, where

- P_{EMAX,NR-DC} is the value given by the field *p-UE-FR1* of the *PhysicalCellGroupConfig* IE for the MCG as defined in [7];
- P_{NR} is the value given by the field *p-NR-FR1* of the *PhysicalCellGroupConfig* IE as defined in [7];

For a UE provided with NR-DC-PC-mode = Semi-static-mode1,

$$P_{Total}^{NR-DC} = MIN\{P_{EMAX, NR-DC}, P_{PowerClass}\} + 0.3 dB$$

with $P_{PowerClass}$ set to power class 3 in case the UE indicates a higher power class in any CG. The UE determines the maximum transmission power for the MCG and the SCG using the respective configured maximum power $P_{CMAX,f,c,MCG}$ and $P_{CMAX,f,c,SCG}$.

If for synchronous NR-DC operation a UE is provided NR-DC-PC-mode = Semi-static-mode = 2, the P_{Total}^{NR-DC} is determined as above and

- if at least one symbol of slot i₁ of the MCG/SCG is indicated as uplink or flexible to a UE by tdd-UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigurationDedicated, if provided, overlaps with a symbol for any ongoing transmission overlapping with slot i₂ of the SCG/MCG, the UE determines a maximum power for the transmission on the SCG/MCG overlapping with slot i₂ using the configured maximum power P_{CMAX,f,c,MCG} or P_{CMAX,f,c,MCG} for the SCG or MSG, respectively,
- otherwise (i.e. an ongoing transmission overlapping with slot i_2 of the SCG/MCG overlaps with only semi-static downlink symbols within slot i_1 of the MCG/SCG), the UE determines amaximum power for the transmission on MCG or the SCG overlapping with slot i_2 using the configured maximum power as specified in clause 6.2.4.

If a UE indicates a capability for dynamic power sharing between the MCG and the SCG and is provided with NR-DC-PC-mode = Dynamic,

$$P_{Total}^{NR-DC} = MIN\{P_{EMAX, NR-DC}, P_{PowerClass}\}$$

with $P_{PowerClass}$ set to power class 3 in case the UE indicates a higher power class in any CG. The UE determines the maximum transmission power for the MCG and the SCG using the respective configured maximum power $P_{CMAX,f,c,MCG}$ and $P_{CMAX,f,c,SCG}$ except

if UE transmission(s) in slot i₁ of the MCG or in slot i₂ of the SCG do not overlap in time with any UE transmission(s) on the SCG or the MCG, respectively, the UE determines a maximum transmission power in slot i₁ of the MCG or in slot i₂ of the SCG using the configured maximum power as specified in clause 6.2.4.

If a UE indicates a capability to determine a total transmission power on the SCG at a first symbol of a transmission occasion on the SCG by determining transmissions on the MCG as specified in clause 7.6.2 of [8], and is provided with NR-DC-PC-mode = Dynamic,

$$P_{\textit{Total}}^{\textit{NR-DC}} = MIN\{P_{\textit{EMAX}, \, \textit{NR-DC}}, \, P_{\textit{PowerClass}}\}$$

with $P_{PowerClass}$ set to power class 3 in case the UE indicates a higher power class in any CG. The UE determines the maximum transmission power for the MCG and the SCG using the respective configured maximum power $P_{CMAX,f,c,MCG}$ and $P_{CMAX,f,c,SCG}$.

The measured total maximum output power P_{UMAX} over both CGs measured over the transmission reference time duration is

$$P_{UMAX} = 10 \log_{10} (p_{UMAX,c,MCG} + p_{UMAX,c,SCG}),$$

where $p_{UMAX,c,MSG}$ and $p_{UMAX,c,SCG}$ denote the measured output power of serving cells c contained in the respective MSG and SCG expressed in linear scale.

The measured total configured maximum output power P_{UMAX} shall be within the following bounds:

$$P_{CMAX_L} \text{ --} T_{LOW} \left(P_{CMAX_L} \right) \ \leq \ P_{UMAX} \ \leq \ P_{CMAX_H} + T_{HIGH} \left(P_{CMAX_H} \right)$$

with the tolerances T_{LOW}(P_{CMAX,H}) and T_{HIGH}(P_{CMAX,H}) for applicable values of P_{CMAX} specified in Table 6.2B.4.1.3-2.

When a subframe p on the MSG overlap with a physical-channel q on the SCG, then for P_{UMAX} evaluation, the subframe p on the MCG is taken as reference period T_{REF} and always considered as the reference measurement duration and the following rules are applicable.

 T_{REF} and T_{eval} are specified in Table 6.2B.4.1.3-1 when same or different subframe and physical-channel durations are used on the carriers. The $P_{\text{PowerClass}}$ shall not be exceeded by the UE during any evaluation period of time.

Table 6.2B.4.1.3-1: P_{CMAX} evaluation window

Transmission duration	T _{REF}	T _{eval}
Different transmission duration in different CG carriers	MCG subframe	MIN(<i>T_{no_hopping}</i> , Physical Channel Length)

For each T_{REF} , the P_{CMAX_H} is evaluated per T_{eval} and given by the maximum value over the transmission(s) within the T_{eval} as follows:

$$P_{\text{CMAX H}} = \text{MAX}\{P_{\text{CMAX NR-DC H}}(p,q), P_{\text{CMAX NR-DC H}}(p,q+1), \dots, P_{\text{CMAX NR-DC H}}(p,q+n)\}$$

where $P_{CMAX_NR-DC_H}$ entries are the applicable upper limits for each overlapping scheduling unit pairs (p,q), (p,q+1), up to (p,q+n) for each applicable T_{eval} duration, where q+n is the last physical-channel on the SCG overlapping with subframe p on the MCG, while P_{CMAX_L} is computed as follows:

$$P_{\text{CMAX_L}} = \text{MIN}\{P_{\text{CMAX_NR-DC_L}}(p,q), P_{\text{CMAX_NR-DC_L}}(p,q+1), \dots, P_{\text{CMAX_NR-DC_L}}(p,q+n)\}$$

where $P_{\text{CMAX_NR-DC_L}}$ entries are the applicable lower limits for each overlapping scheduling unit pairs (p,q), (p,q+1) up to (p,q+n) for each applicable T_{eval} duration, where q+n is the last physical-channel on the SCG overlapping with subframe p on the MCG.

For a UE provided with NR-DC-PC-mode = Semi-static-mode 1 and configured with $p_{NR,MCG} + p_{NR,SCG} \le \hat{P}_{Total}^{NR-DC}$ with $p_{NR,MCG}$ and $p_{NR,SCG}$ the values of the P_{NR} for the respective MCG and SCG expressed in linear scale

$$P_{\text{CMAX_NR-DC_L}}(p,q) = 10 \log_{10} \left[p_{\text{CMAX_L,f,c,MCG}}(p) + p_{\text{CMAX_L,f,c,SCG}}(q) \right]$$

$$P_{\text{CMAX_NR-DC_H}}(p,q) = 10 \log_{10} \left[p_{\text{CMAX_H,f,c,MCG}}(p) + p_{\text{CMAX_H,f,c,SCG}}(q) \right]$$

with $p_{CMAX_L,f,c,MCG}$, $p_{CMAX_L,f,c,MCG}$, $p_{CMAX_L,f,c,SCG}$ and $p_{CMAX_H,f,c,SCG}$ the values of the respective $P_{CMAX_L,f,c,MCG}$, $P_{CMAX_L,f,c,MCG}$, $P_{CMAX_L,f,c,MCG}$, and $P_{CMAX_H,f,c,SCG}$ expressed in linear scale, while the measured configured maximum power P_{UMAX} for each CG shall meet the requirements as specified in subclause 6.2.4 but with bounds for $P_{CMAX,f,c,MCG}$ (p) and $P_{CMAX,f,c,SCG}$ as specified in this subclause.

If for synchronized NR-DC a UE is provided with NR-DC-PC-mode = Semi-static-mode 2 and configured with $p_{NR,MCG} + p_{NR,SCG} \le \hat{P}_{Total}^{NR-DC}$ with $p_{NR,MCG}$ and $p_{NR,SCG}$ the linear-scale values of the p_{NR} for the respective MCG and SCG

$$P_{\text{CMAX_NR-DC_L}}(p,q) = 10 \log_{10} \left[p_{\text{CMAX_L,f,c,MCG}}(p) + p_{\text{CMAX_L,f,c,SCG}}(q) \right]$$

$$P_{\text{CMAX NR-DC H}}(p,q) = 10 \log_{10} \left[p_{\text{CMAX H,f,c,MCG}}(p) + p_{\text{CMAX H,f,c,SCG}}(q) \right]$$

while the measured configured maximum power P_{UMAX} for each CG shall meet the requirements specified in Table 6.2.4-2 but with bounds for $P_{CMAX,f,c,MCG}(p)$ and $P_{CMAX,f,c,SCG}$ as specified in this subclause except

- if an ongoing transmission overlapping with physical channel *q* of the SCG or subframe *p* of the MCG overlaps with only semi-static downlink symbols within the respective subframe *p* of the MCG or physical channel *q* of the SCG as indicated to a UE by *tdd-UL-DL-ConfigurationCommon* and *tdd-UL-DL-ConfigurationDedicated*, if provided,

then the measured configured maximum power P_{UMAX} for the transmission subframe p on the MCG or physical channel q on the SCG shall meet the requirements as specified in subclause 6.2.4 and with bounds for $P_{CMAX,f,c,MCG}(p)$ or $P_{CMAX,f,c,SCG}$ as specified in subclause 6.2.4.

For a UE provided with NR-DC-PC-mode = Dynamic,

$$P_{\text{CMAX_NR-DC_L}}(p,q) = \text{MIN} \{10 \log_{10} \left[p_{\text{CMAX_L,f,c,MCG}}(p) + p_{\text{CMAX_L,f,c,SCG}}(q) \right], P_{Total}^{NR-DC} \}$$

$$P_{\text{CMAX_NR-DC_H}}(p,q) = \text{MIN}\{10 \log_{10} [p_{\text{CMAX_H,f,c,MCG}}(p) + p_{\text{CMAX_H,f,c,SCG}}(q)], P_{\text{Total}}^{NR-DC}\}$$

while the measured configured maximum power P_{UMAX} on the MCG shall meet the requirements as specified in subclause 6.2.4-2 but with bounds for $P_{CMAX,f,c,MCG}(p)$ as specified in this subclause, and the P_{UMAX} on the SCG shall be within

$$P_{CMAX_L,f,c} \ - \ MAX\{T_{L,c}, \ T(P_{CMAX_L,f,c})\} \ \leq \ P_{UMAX,f,c} \ \leq \ P_{CMAX_H,f,c} \ + \ T(P_{CMAX_H,f,c}).$$

where

$$P_{\text{CMAX_L,f,c}} = \text{MIN}\{P_{\text{CMAX_L,f,c,SCG}}(p), 10 \log_{10} (\hat{P}_{Total}^{NR-DC} - p_{\text{NR,MSG}})\}$$

$$P_{\text{CMAX_H,f,c}} = \text{MIN}\{P_{\text{CMAX_H,f,c,SCG}}(p), 10 \log_{10}(\hat{P}_{Total}^{NR-DC} - p_{\text{NR,MSG}})\}$$

with limits as specified in Table 6.2.4-2 and p_{NR,MCG} the value of the P_{NR} for the MCG expressed in linear scale.

Table 6.2B.4.1.3-2: P_{CMAX} tolerance for NR-DC

P _{CMAX} (dBm)	Tolerance T _{LOW} (P _{CMAX_L}) (dB)	Tolerance Thigh (Pcmax_h) (dB)			
23 ≤ P _{CMAX} ≤ 33	3.0	2.0			
22 ≤ P _{CMAX} < 23	5.0	2.0			
21 ≤ P _{CMAX} < 22	5.0	3.0			
20 ≤ P _{CMAX} < 21	6.0	4.0			
16 ≤ P _{CMAX} < 20	,	5.0			
11 ≤ P _{CMAX} < 16	6.0				
-40 ≤ P _{CMAX} < 11		7.0			

NOTE 1: For UEs provided with NR-DC-PC-mode = Semi-static-mode1 or with NR-DC-PC-mode = Semi-static-mode2, the upper tolerance T_{high} shall be reduced by 0.3 dB for $P \ge 20$ dBm.

6.2B.4.2 $\Delta T_{IB,c}$ for NR-DC

For inter-band NR-DC with one uplink carrier assigned per NR band, the $\Delta T_{IB,c}$ for the corresponding inter-band CA configuration as specified in subclause 6.2A.4.2 applies.

6.2C Transmitter power for SUL

6.2C.1 Configured transmitted power for SUL

When a UE is configured with both NR UL and NR SUL carriers in a serving cell with active transmission either on the UL carrier or SUL carrier, the configured transmit power requirements specified in clause 6.2.4 are applicable for the UL carrier and the SUL carrier, respectively.

$6.2C.2\Delta T_{IB.c}$

For the UE which supports SUL band combination, $\Delta T_{IB,c}$ in Tables below applies. Unless otherwise stated, $\Delta T_{IB,c}$ is set to zero.

Table 6.2C.2-1: ΔT_{IB,c} due to SUL

Band combination for SUL	NR Band	ΔT _{IB,c} (dB)
	- 44	0.31
SUL_n41-n80	n41	0.82
	n80	0.5
SUL_n41-n81	n41	0.3
	n81	0.3
CIII n77 n90	n77	0.8
SUL_n77-n80	n80	0.6
CIII n77 n94	n77	0.8
SUL_n77-n84	n84	0.6
CIII n70 n00	n78	0.8
SUL_n78-n80	n80	0.6
CI II - 70 - 04	n78	0.8
SUL_n78-n81	n81	0.6
CIII = 70 = 00	n78	0.8
SUL_n78-n82	n82	0.6
CIII = 70 = 00	n78	0.8
SUL_n78-n83	n83	0.5
CIII n70 n04	n78	0.8
SUL_n78-n84	n84	0.3
CIII = 70 = 00	n78	0.8
SUL_n78-n86	n86	0.6

NOTE 1: The requirement is applied for UE transmitting on the frequency range of 2515 – 2690 MHz.

NOTE 2: The requirement is applied for UE transmitting on the frequency range of 2496 - 2515 MHz.

6.2D Transmitter power for UL MIMO

6.2D.1UE maximum output power for UL MIMO

For power class 2 UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the maximum output power for any transmission bandwidth within the channel bandwidth is specified in Table 6.2D.1-1. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1-2. For UE supporting UL MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1 ms).

The requirements shall be met with the UL MIMO configurations of using 2-layer UL MIMO transmission with codebook of $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. DCI Format for UE configured in PUSCH transmission mode for uplink single-user MIMO shall be used.

Table 6.2D.1-1: UE Power Class for UL MIMO in closed loop spatial multiplexing scheme

NR band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
n1					23	+2/-3		
n2					23	+2/-3 ¹		
n3					23	+2/-3 ¹		
n7					23	+2/-3 ¹		
n25					23	+2/-3 ¹		
n30					23	+2/-3		
n34					23	+2/-3		
n38					23	+2/-3		
n39					23	+2/-3		
n40					23	+2/-3		
n41			26	+2/-3 ¹	23	+2/-3 ¹		
n48					23	+2/-3		
n66					23	+2/-3		
n70					23	+2/-3		
n71					23	+2/-3		
n77			26	+2/-3	23	+2/-3		
n78			26	+2/-3	23	+2/-3		
n79			26	+2/-3	23	+2/-3		

NOTE 1: The transmission bandwidths confined within Fullow and Fullow + 4 MHz or Fullhigh - 4 MHz and Fullhigh, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB NOTE 2: Power class 3 is the default power class unless otherwise stated

Table 6.2D.1-2: UL MIMO configuration in closed-loop spatial multiplexing scheme

Transmission scheme	DCI format	Codebook Index
Codebook based uplink	DCI format 0_1	Codebook index 0

If UE is configured for transmission on single-antenna port, the requirements in clause 6.2.1 apply.

6.2D.2UE maximum output power reduction for UL MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2D.1-1 is specified in Table 6.2.2-1. The requirements shall be met with UL MIMO configurations defined in Table 6.2D.1-2. For UE supporting UL MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector.

For the UE maximum output power modified by MPR, the power limits specified in clause 6.2D.4 apply.

If UE is configured for transmission on single-antenna port, the requirements in clause 6.2.2 apply.

6.2D.3UE additional maximum output power reduction for UL MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the A-MPR values specified in clause 6.2.3 shall apply to the maximum output power specified in Table 6.2D.1-1. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1-2. For UE supporting UL MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For the UE maximum output power modified by A-MPR, the power limits specified in clause 6.2D.4 apply.

If UE is configured for transmission on single-antenna port, the requirements in clause 6.2.3 apply.

6.2D.4Configured transmitted power for UL MIMO

For UE supporting UL MIMO, the transmitted power is configured per each UE.

The definitions of configured maximum output power $P_{CMAX,c}$, the lower bound $P_{CMAX_L,c}$, and the higher bound $P_{CMAX_H,c}$ specified in clause 6.2.4 shall apply to UE supporting UL MIMO, where

- $P_{PowerClass}$, $\Delta P_{PowerClass}$ and $\Delta T_{C,c}$ are specified in clause 6.2D.1;
- MPR_c is specified in clause 6.2D.2;
- A-MPR_c is specified in clause 6.2D.3.

The measured configured maximum output power $P_{UMAX,c}$ for serving cell c shall be within the following bounds:

$$P_{CMAX_L,c} - \ MAX\{T_L, T_{LOW}(P_{CMAX_L,c})\} \ \leq \ P_{UMAX,c} \leq P_{CMAX_H,c} + \ T_{HIGH}(P_{CMAX_H,c})$$

where $T_{LOW}(P_{CMAX_L,c})$ and $T_{HIGH}(P_{CMAX_H,c})$ are defined as the tolerance and applies to $P_{CMAX_L,c}$ and $P_{CMAX_H,c}$ separately, while T_L is the absolute value of the lower tolerance in Table 6.2D.1-1 for the applicable operating band.

For UE with two transmit antenna connectors in closed-loop spatial amultiplexing scheme, the tolerance is specified in Table 6.2D.4-1. The requirements shall be met with UL MIMO configurations specified in Table 6.2D.1-2.

P _{CMAX,c} (dBm)	Tolerance TLOW(PCMAX_L,c) (dB)	Tolerance Thigh(Pcmax_h,c) (dB)	
$P_{CMAX,c} = 26$	3.0	2.0	
23 ≤ P _{CMAX,c} < 26	3.0	2.0	
22 ≤ P _{CMAX,c} < 23	5.0	2.0	
21 ≤ P _{CMAX,c} < 22	5.0	3.0	
20 ≤ P _{CMAX,c} < 21	6.0	4.0	
16 ≤ P _{CMAX,c} < 20	5	.0	
11 ≤ P _{CMAX,c} < 16	6	.0	
-40 ≤ PcMax c < 11	7	.0	

Table 6.2D.4-1: P_{CMAX,c} tolerance in closed-loop spatial multiplexing scheme

If UE is configured for transmission on single-antenna port, the requirements in clause 6.2.4 apply.

6.2E Transmitter power for V2X

6.2E.1 UE maximum output power for V2X

6.2E.1.1 General

When NR V2X UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands specified in Table 5.2E-1, the allowed NR V2X UE maximum output power for shall be applied in Table 6.2.1-1 in subclause 6.2.1.

When a UE is configured for NR V2X sidelink transmissions in NR Band n47, the V2X UE shall meet the following additional requirements for transmission within the frequency ranges 5855-5925 MHz:

- The maximum mean power spectral density shall be restricted to 23 dBm/MHz EIRP when the network signaling value NS 33 or NS 34 is indicated.

where the network signaling values are specified in clause 6.2E.3.

NOTE: The PSD limit in EIRP shall be converted to conducted requirement depend on the supported post antenna connector gain $G_{post\ connector}$ declared by the UE following the principle described in annex I in [11].

For power class 2 NR V2X UE with two transmit antenna connectors, the maximum output power for any transmission bandwidth within the channel bandwidth is specified in Table 6.2E.1.1-1. The requirements shall be met with the SL MIMO configurations specified in Table 6.2D.1-2. For NR V2X UE supporting SL MIMO, the maximum output power

is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1 ms).

Table 6.2E.1.1-1: NR V2X UE Power Class for SL-MIMO and Transmit Diversity

NR band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
n38			26	+2/-3	23	+2/-3		
n47			26	+2/-3	23	+2/-3		

If the UE transmits on one antenna connector at a time, the requirements in Table 6.2.1-1 shall apply to the active antenna connector.

6.2E.1.2 UE maximum output power for V2X con-current operation

For the inter-band con-current NR V2X operation, the maximum output power is specified in Table 6.2E.1.1-1. The period of measurement shall be at least one sub frame (1ms).

Table 6.2E.1.2-1: Con-current NR V2X UE Power Class for uplink inter-band combination (two bands)

NR V2X con- current operating band Configuration	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)	
V2X_n71A-n47A					23	+2/-32			
NOTE 1: The con	NOTE 1: The con-current band combinations is used for NR V2X Service.								

NOTE 2: PPowerClass is the maximum UE power specified without taking into account the tolerance

NOTE 3: For inter-band con-current aggregation the maximum power requirement apply to the total transmitted power over all component carriers (per UE).

NOTE 4: 4 refers to the transmission bandwidths (Figure 5.6-1) confined within Ful_low and Ful_low + 4 MHz or Ful_high -4 MHz and Fullhigh, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

6.2E.2 UE maximum output power reduction for V2X

6.2E.2.1 General

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands specified in Table 5.2E-1, this subclause specifies the allowed Maximum Power Reduction (MPR) power for V2X physical channels and signals due to PSCCH/PSCCH, PSFCH and S-SSB transmission.

6.2E.2.2 MPR for Power class 3 V2X UE

For contiguous allocation of PSCCH and PSSCH simultaneous transmission, the allowed MPR for the maximum output power for NR V2X physical channels PSCCH and PSSCH shall be as specified in Table 6.2E.2.2-1 for Power class 3 NR V2X UE.

Table 6.2E.2.2-1: Maximum Power Reduction (MPR) for power class 3 NR V2X

		Channel bandwidth/MPR (dB)				
Mod	ulation	Outer RB allocations	Inner RB allocations			
	QPSK	≤ 4.5	≤ 2.5			
CP-	16QAM	≤ 4.5	≤ 2.5			
OFDM	64 QAM	≤ 4.5				
	256 QAM	≤ 7.0				

Where the following parameters are defined to specify valid RB allocation ranges for Outer and Inner RB allocations:

N_{RB} is the maximum number of RBs for a given Channel bandwidth and sub-carrier spacing defined in Table 5.3.2-1.

$$RB_{Start,Low} = max(1, floor(L_{CRB}/2))$$

where max() indicates the largest value of all arguments and floor(x) is the greatest integer less than or equal to x.

$$RB_{Start, High} = N_{RB} - RB_{Start, Low} - L_{CRB}$$

The RB allocation is an Inner RB allocation if the following conditions are met

$$RB_{Start,Low} \leq RB_{Start} \leq RB_{Start,High},$$
 and
$$L_{CRB} \leq ceil(N_{RB}/2)$$

where ceil(x) is the smallest integer greater than or equal to x.

The RB allocation is an Outer RB allocation for all other allocations which are not an Inner RB allocation.

For PSFCH with single RB transmission for PC3 NR V2X UE, the required MPR is defined as follow

$$MPR_{PSFCH} = 3.5 dB$$

For contiguous and non-contiguous allocation for simultaneous PSFCH transmission for PC3 NR V2X UE, the required MPR are specified as follow

$$MPR_{PSFCH} = CEIL \{M_{A PSFCH}, 0.5\}$$

Where M_{A PSFCH} is defined as follows

$$\begin{split} M_{A_PSFCH} = \ 7.5 & ; 0.00 < N_{Gap}/N_{RB} \leq 0.55 \\ = & 12.0 & ; 0.55 < N_{Gap}/N_{RB} \leq 1.0 \end{split}$$

Where,

 N_{Gap} is the gap RB amount between RB_{start} and RB_{end} for contiguous and non-contiguous allocation simultaneous PSFCH transmission. ($N_{\text{Gap}} = RB_{\text{end}} - RB_{\text{start}}$)

CEIL $\{M_A, 0.5\}$ means rounding upwards to closest 0.5dB.

The allowed MPR for the maximum output power for NR V2X physical channels on S-SSB transmission shall be specified in Table 6.2E.2.2-2.

Table 6.2E.2.2-2: Maximum Power Reduction (MPR) for S-SSB transmission for power class 3 NR V2X

	MPR _{S-SSB} (dB)				
Channel	Outer RB allocations ¹	Inner RB allocations ¹			
S-SSB	≤ 6.0	≤ 2.5			

For NR V2X UE with two transmit antenna connectors, the allowed Maximum Power Reduction (MPR) values specified in clause 6.2E.2 shall apply to the maximum output power specified in Table 6.2E.1.1-1. The requirements shall be met with SL MIMO configurations defined in Table 6.2D.1-2. For UE supporting SL MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector.

For the UE maximum output power modified by MPR, the power limits specified in clause 6.2E.4 apply.

6.2E.2.3 MPR for Power class 3 V2X con-current operation

For the inter-band con-current NR V2X operation, the allowed maximum power reduction (MPR) for the maximum output power shall be applied per each component carrier. The MPR requirements in subclause 6.2.2 apply for NR Uu operation in licensed band, and the MPR requirements in in subclause 6.2E.2 apply for NR sidelink operation in Band n47.

6.2E.3 UE additional maximum output power reduction for V2X

6.2E.3.1 General

For the applied maximum output power reduction is obtained by taking the maximum value of MPR requirements specified in subclause 6.2E.2 and A-MPR requirements specified in subclause 6.2E.3.

Additional emission requirements can be indicated by the network or pre-configured radio parameters. Each additional emission requirement is associated with a unique network signalling (NS) value indicated in RRC signalling by an NR frequency band number of the applicable operating band and an associated value in the field [additionalSpectrumEmission]. Throughout this specification, the notion of indication or signalling of an NS value refers to the corresponding indication of an NR V2X frequency band number of the applicable operating band, the IE field [freqBandIndicatorNR] and an associated value of [additionalSpectrumEmission] in the relevant RRC information elements [7].

To meet the additional requirements, additional maximum power reduction (A-MPR) is allowed for the maximum output power as specified in Table 6.2.1-1. Unless stated otherwise, the total reduction to UE maximum output power is max(MPR, A-MPR) where MPR is defined in clause 6.2E.2. Outer and inner allocation notation used in clause 6.2E.3 is defined in clause 6.2E.2. In absense of modulation and waveform types the A-MPR applies to all modulation and waveform types.

Table 6.2E.3.1-1: Additional Maximum Power Reduction (A-MPR) for PC3 NR V2X

Network Signalling value	Requirements (subclause)	NR Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01		Table 5.2E-1	10, 20, 30, 40	Table 5.3.2-1	N/A
NS_33	6.5E.2.2.1 (A-SEM) 6.5.3.2 (A-SE)	n47	10	Clause 6.2E.3.2	
NS_52	6.5E.2.2.2 (A-SEM)	n47	40	Clause 6.2E.3.3	

Table 6.2E.3.1-2: Mapping of network signaling label

NR V2X	Value of additionalSpectrumEmission									
operating bands	0	1	2	3	4	5	6	7		
n38	NS_01									
n47	NS_01	NS_33	NS_52							
	6.3.2 of TS 38.	.331 [7].								

For UE with two transmit antenna connectors, the A-MPR values specified in clause 6.2.3 shall apply to the maximum output power specified in Table 6.2E.1-1. The requirements shall be met with the SL MIMO configurations specified in Table 6.2D.1-2. For UE supporting SL MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For the UE maximum output power modified by A-MPR, the power limits specified in clause 6.2E.4 apply.

6.2E.3.2 A-MPR for Power class 3 V2X UE by NS_33

When NS_33 is indicated by the network or pre-configured radio parameters for NR V2X UE, the additional maximum output power reduction specified as

$$A$$
-MPR = CEIL { M_A , 0.5}

Where M_A is defined as follows

$$M_A = A-MPR_{Base} + G_{post\ connector} * A-MPR_{Step}$$

CEIL $\{M_A, 0.5\}$ means rounding upwards to closest 0.5dB.

A-MPR_{Base} and A-MPR_{Step} are specified in Tables 6.2E.3-1, 6.2E.3-2 is allowed when network signalling value is provided. A-MPR_{Base} is the default A-MPR value when no $G_{post\ connector}$ is declared. The supported post antenna connector gain $G_{post\ connector}$ is declared by the UE following the principle described in annex I in [11]. The A-MPR_{step} is the increase in A-MPR allowance to allow UE to meet tighter conducted A-SE and A-SEM requirements with higher value of declared $G_{post\ connector}$.

For the contiguous PSSCH and PSCCH transmission when NS_33 is indicated by the network or pre-configured radio parameters for NR V2X UE, the NR UE allow the follow A-MPR requirements.

Table 6.2E.3.2-1: A-MPR for PSSCH/PSCCH by NS_33 (at Fc =5860MHz)

Carrier	Resources	Start	A-MPR _{Base} (dB)			
frequency [MHz]	Blocks (L _{CRB})	Resource Block	QPSK/16QAM	64QAM	256QAM	
	> 10 and < 15	0		≤ 24		
	≥ 10 and ≤ 15	≥ 1 and ≤ 3		≤19		
	≥ 10 and ≤ 15	≥ 26 and ≤ 38		≤6		
		≥ 12 and ≤ 14		≤11		
	≥ 10 and ≤ 20	≥ 15 and ≤ 19	≤9.5			
		≥ 20 and ≤ 25	≤8.0			
	≥ 10 and ≤ 30	≥ 4 and ≤7	≤ 16			
5860	≥ 10 and ≤ 30	≥ 8 and ≤ 11	≤ 13.5			
	≥ 20 and ≤ 30	≥ 0 and ≤ 3	≤ 22			
	25 and 30	≥ 16 and ≤ 21	≤ 9.5			
	25 and 50	≥ 22 and ≤ 27	≤ 8.0			
	≥ 25 and ≤ 40	≥ 12 and ≤ 15	≤ 12			
		0 and 1		≤ 19		
	40 and 45	≥ 2 and ≤ 5	≤ 16			
		≥ 6 and ≤ 11	≤ 13.5			
	≥ 50	≥ 0		≤ 16		

NOTE 1: A-MPR_{step} = 1.2 dB is applied for RB_{start} 0 and 1 and A-MPR_{step} = 0.7 dB is applied for all other RB_{start}

NOTE 2: Applicable for Channel Bandwidth = 10 MHz

Table 6.2E.3.2-2: A-MPR for PSSCH/PSCCH by NS_33 (at other carrier frequency)

Corrior	RB	A-MPR _{Base} (dB)			A-MPR _{step} (dB)	
Carrier frequency [MHz]	allocations	QPSK	16QAM	64QAM	256QAM	
5870, 5880, 5890,	Inner	≤ 3.0		7.5.0	\ G O	0.5
5900, 5910, 5920	Outer		4.5	≤ 5.0	≤ 6.0	0.5

NOTE 1: Inner and Outer RB allocations are defined in sub-clause 6.2E.2.1

NOTE 2: Applicable for Channel Bandwidth = 10 MHz

6.2E.3.3 A-MPR for Power class 3 V2X UE by NS_52

When NS_52 is indicated by the network or pre-configured radio parameters for NR V2X UE, the additional maximum output power reduction specified as

 $A-MPR = CEIL \{M_A, 0.5\}$

Where M_A is defined as follows

 $M_A = A\text{-}MPR$

CEIL $\{M_A, 0.5\}$ means rounding upwards to closest 0.5dB.

For the contiguous PSSCH and PSCCH transmission when NS_52 is indicated by the network or pre-configured radio parameters for NR V2X UE, the NR UE allow the follow A-MPR requirements.

Table 6.2E.3.3-1: A-MPR for PSSCH/PSCCH by NS_52

Corrior		A-MPR(dB)			
Carrier frequency(MHz)	Modulation	Region 1	Region 2	Region 3	
	QPSK		≤ 8.0	≤ 5.5	
5005	16QAM	≤ (10.0 + Δ ^{Note1})	≤ 8.0	≤ 5.5	
5885	64QAM		≤ 8.5	≤ 5.5	
	256QAM		≤ 8.5	≤ 6.0	
Note1: Δ is 0, 3, and 5 for 60kHz, 30kHz, and 15kHz SCS, respectively.					

Where the following parameters are defined to specify valid RB allocation ranges for Region1 and Region2 according to RB allocations:

 N_{RB} is the maximum number of RBs for a given Channel bandwidth and sub-carrier spacing defined in Table 5.3.2-1 [3].

$$RB_{Start,Low} = max(1, floor(N_{RB}/3.5))$$

where max() indicates the largest value of all arguments and floor(x) is the greatest integer less than or equal to x.

$$RB_{Start,High} = N_{RB} - RB_{Start,Low} - L_{CRB}$$

The RB allocation is in Region 3 if the following conditions are met

$$RB_{Start,Low} \leq RB_{Start} \leq RB_{Start,High}$$
 , and

$$L_{CRB} \le ceil(N_{RB}/3.5)$$

where ceil(x) is the smallest integer greater than or equal to x.

An Region 1 RB allocation is the one for which the RB(s) is (are) allocated at the lower or upper edge of the channel with $L_{CRB} \leq floor(N_{RB}*0.2)$ RBs.

The RB allocation is in Region 2 allocation for all other allocations which are not an Region1 or Region3 allocation.

For the simultaneous PSFCH transmission when NS_52 is indicated by the network or pre-configured radio parameters for NR V2X UE, the NR UE allow the follow A-MPR requirements

Table 6.2E.3.3-2: A-MPR for simultaneous PSFCH by NS_52

Channel Bandwidth [MHz]	Carrier frequency [MHz]	A-MPR (dB)
40 MHz	<u>5885</u>	<u>23.5</u>

For the S-SSB transmission when NS_52 is indicated by the network or pre-configured radio parameters for NR V2X UE, the NR UE allow the follow A-MPR requirements

Table 6.2E.3.2-3: A-MPR for S-SSB transmission by NS_52

Carrier Frequency [MHz]	RB _{Start} * 12*SCS [MHz]	A-MPR (dB)
	≤ 7	≤ 16
	> 7 and ≤ 12	≤ 10.5
5885	> 12 and ≤ 19	≤ 4.0
	> 19 and ≤ 25	≤ 10.5
	> 25	≤ 16

6.2E.3.4 A-MPR for power class 3 V2X con-current operation

For the inter-band con-current NR V2X operation, the allowed additional maximum power reduction (A-MPR) for the maximum output power shall be applied per each component carrier. The A-MPR requirements in subclause 6.2.3 apply for NR Uu operation in licensed band, and the A-MPR requirements in in subclause 6.2E.3 apply for NR sidelink operation in Band n47.

6.2E.4 Configured transmitted power for V2X

6.2E.4.1 General

The NR V2X UE is allowed to set its configured maximum output power $P_{CMAX,c}$ for carrier f of serving cell c in each slot. The configured maximum output power $P_{CMAX,c}$ is set within the following bounds:

$$P_{CMAX_L,f,c} \leq P_{CMAX,f,c} \leq P_{CMAX_H,f,c}$$
 with

 $P_{CMAX_H,f,c} = MIN \{P_{EMAX,c}, (P_{PowerClass} - \Delta P_{PowerClass}), P_{Regulatory,c} \}$

where

- -P_{CMAX,f,c} is configured for PSSCH\PSCCH, S-SSB and PSFCH, respectively;
- For the total transmitted power $P_{CMAX,PSSCH/PSCCH}$, $P_{CMAX,S-SSB}$ and $P_{CMAX,PSFCH}$, $P_{EMAX,c}$ is the value given by IE maxTxPower, defined by [TS 38.331], when the UE is not associated with a serving cell on the NR V2X carrier.
- P_{PowerClass} is the maximum UE power specified in Table 6.2.1-1 without taking into account the tolerance specified in the Table 6.2.1-1;
- MPR $_c$ and A-MPR $_c$ for serving cell c are specified in subclause 6.2E.2 and subclause 6.2E.3 for PSSCH\PSCCH, S-SSB and PSFCH, respectively;
 - $\Delta T_{IB,c}$, $\Delta T_{C,c}$, ΔT_{RxSRS} , $\Delta P_{Poweclass}$ and P-MPR_c are specified in subclause 6.2.4
 - $P_{Regulatory,c} = 10$ $G_{post\ connector}\ dBm$ the V2X UE is within the protected zone [12] of CEN DSRC tolling system and operating in Band n47; $P_{Regulatory,c} = 33$ $G_{post\ connector}\ dBm$ otherwise.

The maximum output power $P_{CMAX,PSSCH}$ and $P_{CMAX,PSSCH}$ are derived from $P_{CMAX,c}$ based on 0dB PSD offset between PSSCH and PSCCH.

For the measured configured maximum output power $P_{UMAX,c}$ for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions, the same requirement as in subclause 6.2.4 shall be applied.

For NR V2X UE supporting SL MIMO, the transmitted power is configured per each UE.

For NR V2X UE with two transmit antenna connectors, the tolerance is specified in Table 6.2E.4.1-1. The requirements shall be met with SL MIMO configurations specified in Table 6.2D.1-2.

If the UE transmits on two antenna connectors at the same time, the tolerance is specified in Table 6.2E.4.1-1 V2X UE.

P_{CMAX,c} Tolerance **Tolerance** (dBm) $T_{LOW}(P_{CMAX_L,c})$ (dB) THIGH(PCMAX_H,c) (dB) $P_{CMAX,c} = 26$ 3.0 2.0 3.0 2.0 $23 \le P_{CMAX,c} < 26$ 5.0 2.0 $22 \le P_{CMAX,c} < 23$ 3.0 $21 \le P_{CMAX,c} < 22$ 5.0 6.0 4.0 $20 \le P_{CMAX,c} < 21$

5.0

6.0 7.0

Table 6.2E.4.1-1: P_{CMAX,c} tolerance schemes for MIMO and Tx diversity

6.2E.4.2 Configured transmitted power for V2X con-current operation

When a UE is configured for simultaneous NR V2X sidelink and NR uplink transmissions for inter-band con-current operation, the UE is allowed to set its configured maximum output power $P_{CMAX,c,NR}$ and $P_{CMAX,c,V2X}$ for the configured NR uplink carrier and the configured NR V2X carrier, respectively, and its total configured maximum output power $P_{CMAX,c}$.

The configured maximum output power $P_{CMAX c,NR}(p)$ in slot p for the configured NR uplink carrier shall be set within the bounds:

$$P_{\text{CMAX_L},c,\textit{NR}}\left(p\right) \leq \ P_{\text{CMAX_c},\textit{NR}}\left(p\right) \leq \ P_{\text{CMAX_H},c,\textit{NR}}\left(p\right)$$

where P_{CMAX_L,c,NR} and P_{CMAX_H,c,NR} are the limits for a serving cell c as specified in subclause 6.2.4.

The configured maximum output power $P_{CMAX c, V2X}(q)$ in slot q for the configured NR V2X carrier shall be set within the bounds:

$$P_{CMAX,c,V2X}(q) \leq P_{CMAX_H,c,V2X}(q)$$

where $P_{CMAX H.c.V2X}$ is the limit as specified in subclause 6.2E.4.

 $16 \le P_{CMAX,c} < 20$

 $11 \le P_{CMAX,c} < 16$

 $-40 \le P_{\text{CMAX},c} < 11$

The total UE configured maximum output power $P_{CMAX}(p,q)$ in a slot p of NR uplink carrier and a slot q of NR V2X sidelink that overlap in time shall be set within the following bounds for synchronous and asynchronous operation unless stated otherwise:

$$P_{CMAX_L}(p,q) \le P_{CMAX}(p,q) \le P_{CMAX_H}(p,q)$$

with

$$P_{CMAX_L}(p,q) = P_{CMAX_L,c,NR}(p)$$

$$P_{\text{CMAX_H}}(p,q) = 10 \log_{10} \left[p_{\text{CMAX_H},c,NR}(p) + p_{\text{CMAX_H},c,V2X}(q) \right]$$

where $p_{CMAX_H,c,V2X}$ and $p_{CMAX_H,c,NR}$ are the limits $P_{CMAX_H,c,V2X}(q)$ and $P_{CMAX_H,c,NR}(p)$ expressed in linear scale.

The measured total maximum output power P_{UMAX} over both the NR uplink and NR V2X carriers is

$$P_{UMAX} = 10 \log_{10} [p_{UMAX,c,NR} + p_{UMAX,c,V2X}],$$

where $p_{UMAX,c,NR}$ denotes the measured output power of serving cell c for the configured NR uplink carrier, and $p_{UMAX,c,V2X}$ denotes the measured output power for the configured NR V2X carrier expressed in linear scale.

When a UE is configured for synchronous V2X sidelink and uplink transmissions,

$$P_{\text{CMAX_L}}(p, q) - T_{\text{LOW}}(P_{\text{CMAX_L}}(p, q)) \le P_{\text{UMAX}} \le P_{\text{CMAX_H}}(p, q) + T_{\text{HIGH}}(P_{\text{CMAX_H}}(p, q))$$

where $P_{CMAX_L}(p,q)$ and $P_{CMAX_H}(p,q)$ are the limits for the pair (p,q) and with the tolerances $T_{LOW}(P_{CMAX})$ and $T_{HIGH}(P_{CMAX})$ for applicable values of P_{CMAX} specified in Table 6.2E.4-1. P_{CMAX_L} may be modified for any overlapping portion of slots (p,q) and (p+1,q+1).

6.3 Output power dynamics

6.3.1 Minimum output power

The minimum controlled output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

The minimum output power is defined as the mean power in at least one sub-frame 1 ms. The minimum output power shall not exceed the values specified in Table 6.3.1-1.

Channel bandwidth Minimum output power Measurement bandwidth (MHz) (dBm) (MHz) 5 -40 4.515 10 -40 9.375 15 -40 14.235 -40 19.095 20 25 -39 23.955 28.815 30 -38.2 40 -37 38.895 50 -36 48.615 58.35 60 -35.2 68.07 70 -34.6 78.15 80 -34 90 -33.5 88.23 98.31 100 -33

Table 6.3.1-1: Minimum output power

6.3.2 Transmit OFF power

Transmit OFF power is defined as the mean power in the channel bandwidth when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit on any of its ports..

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1 ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.2-1.

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
5	-50	4.515
10	-50	9.375
15	-50	14.235
20	-50	19.095
25	-50	23.955
30	-50	28.815
40	-50	38.895
50	-50	48.615
60	-50	58.35
70	-50	68.07
80	-50	78.15
90	-50	88.23
100	-50	98.31

Table 6.3.2-1: Transmit OFF power

6.3.3 Transmit ON/OFF time mask

6.3.3.1 General

The transmit power time mask defines the transient period(s) allowed

- between transmit OFF power as defined in clause 6.3.2 and transmit ON power symbols (transmit ON/OFF)
- between continuous ON-power transmissions with powerchange or RB hopping is applied.

In case of RB hopping, transition period is shared symmetrically.

Unless otherwise stated the requirements in clause 6.5 apply also in transient periods.

In the following clauses, following definitions apply:

- A slot or long subslot transmission is a transmission with more than 2 symbols.
- A short subslot transmission is a transmission with 1 or 2 symbols.

6.3.3.2 General ON/OFF time mask

The general ON/OFF time mask defines the observation period between transmit OFF and ON power and between transmit ON and OFF power for each SCS. ON/OFF scenarios include: contiguous, and non-contiguous transmission, etc

The OFF power measurement period is defined in a duration of at least one slot excluding any transient periods. The ON power is defined as the mean power over one slot excluding any transient period.

Figure 6.3.3.2-1: General ON/OFF time mask for NR UL transmission in FR1

6.3.3.3 Transmit power time mask for slot and short or long subslot boundaries

The transmit power time mask for slot and a long subslot transmissionboundaries defines the transient periods allowed between slot and long subslot PUSCH transmissions. For PUSCH-PUCCH and PUSCH-SRS transitions and multiplexing the time masks in clause 6.3.3.7 apply.

The transmit power time mask for slot or long subslot and short subslot transmission boundaries defines the transient periods allowed between slot or long subslot and short subslot transmissions. The time masks in clause 6.3.3.8 apply.

The transmit power time mask for short subslot transmissiona boundaries defines the transient periods allowed between short subslot transmissions. The time masks in clause 6.3.3.9 apply.

6.3.3.4 PRACH time mask

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.3.4-1. The measurement period for different PRACH preamble format is specified in Table 6.3.3.4-1.

C2

NOTE:

PRACH SCS (kHz) Measurement period (ms) preamble format 1.25 0.903125 0 1.25 2.284375 1 1.25 3.352604 3 0.903125 15 0.142708 A1 30 0.071354 15 0.285417 A2 30 0.142708 15 0.428125 АЗ 30 0.2140625 15 0.140365 B1 30 0.070182 0.83046875 15 B4 30 0.415234375 0.142708 ms for first six occasion 15 0.140365 ms for the last occasion A1/B1 0.071354 ms for first six occasion 30 0.070182 ms for the last occasion 0.285417 ms for first two occasion 15 0.278385 ms for the third occasion A2/B2 0.142708 ms for first two occasion 30 0.1391925 ms for the third occasion 0.428125 ms for the first occasion 15 0.41640625 ms for the second occasion A3/B3 0.2140625 ms for the first occasion 30 0.208203125 ms for the second occasion 15 0.10703125 C0 30 0.053515625

Table 6.3.3.4-1: PRACH ON power measurement period

For PRACH on PRACH occasion start from the beginning of 0.5 ms or span the boundary of 0.5 ms of the subframe, the measurement period will plus 0.032552 µs

0.333333

0.166667

15

30

Figure 6.3.3.4-1: PRACH ON/OFF time mask

6.3.3.5 Void

6.3.3.6 SRS time mask

For SRS transmission mapped to one OFDM symbol, the ON power is defined as the mean power over the symbol duration excluding any transient period; See Figure 6.3.3.6-1

Figure 6.3.3.6-1: Single SRS time mask for NR UL transmission

For SRS transmission mapped to two or more OFDM symbols the ON power is defined as the mean power for each symbol duration excluding any transient period. For consecutive SRS transmissions without power change, Figure 6.3.3.6-2 applies.

Figure 6.3.3.6-2: Consecutive SRS time mask for the case when no power change is required with SRS usage other than antenna switching.

When power change between consecutive SRS transmissions is required, then Figure 6.3.3.6-3 and Figure 6.3.3.6-4 apply.

Figure 6.3.3.6-3: Consecutive SRS time mask for the case when power change is required and when 15 kHz and 30 kHz SCS is used in FR1 with SRS usage other than antenna switching.

Figure 6.3.3.6-4: Consecutive SRS time mask for the case when power change is required and when 60 kHz SCS is used in FR1

Figure 6.3.3.6-5: FR1 Time mask for 15 kHz and 30 kHz SCS for the case when consecutive SRS switching usage is between antenna switching & other sets

where "other sets" belongs to a "usage set" other than the set for antenna switching. The usage sets for SRS switching are defined in clause 6.2.1 of TS 38.214 [10].

The above transient period applies to all the transmit CCs in CA with the CC sounding SRS. UE RF requirements do not apply during this transient period.

6.3.3.7 PUSCH-PUCCH and PUSCH-SRS time masks

The PUCCH/PUSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PUSCH/PUCCH symbol and subsequent UL transmissions. The time masks apply for all types of frame structures and their allowed PUCCH/PUSCH/SRS transmissions unless otherwise stated.

Figure 6.3.3.7-1: PUCCH/PUSCH/SRS time mask when there is a transmission before or after or both before and after SRS, when sounded on the same antenna (Ant 'x')

Figure 6.3.3.7-2: PUCCH/PUSCH/SRS time mask when there is a transmission before or after or both before and after SRS, when sounded on a different antenna (Ant 'x' and Ant 'y' are different antenna ports)

This transient period of 15 usec applies before and after SRS transmission to all the transmit CCs in CA with the CC sounding SRS. UE RF requirements do not apply during this transient period.

When there is no transmission preceding SRS transmission or succeeding SRS transmission, then the same time mask applies as shown in Figure 6.3.3.7-1.

6.3.3.8 Transmit power time mask for consecutive slot or long subslot transmission and short subslot transmission boundaries

The transmit power time mask for consecutive slot or long subslot transmission and short slot transmission boundaries defines the transient periods allowed between such transmissions.

Figure 6.3.3.8-1: Consecutive slot or long subslot transmission and short subslot transmission time mask

6.3.3.9 Transmit power time mask for consecutive short subslot transmissions boundaries

The transmit power time mask for consecutive short subslot transmission boundaries defines the transient periods allowed between short subslot transmissions.

The transient period shall be equally shared as shown on Figure 6.3.3.9-2.

Figure 6.3.3.9-1: Void

Figure 6.3.3.9-2: Consecutive short subslot transmissions time mask

Figure 6.3.3.9-3: Consecutive short subslot (1 symbol gap) time mask for the case when transient period is required on both sides of the symbol and when 60 kHz SCS is used in FR1

6.3.4 Power control

6.3.4.1 General

The requirements on power control accuracy apply under normal conditions.

6.3.4.2 Absolute power tolerance

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame (1 ms) at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20 ms. The tolerance includes the channel estimation error.

The minimum requirement specified in Table 6.3.4.2-1 apply in the power range bounded by the minimum output power as specified in clause 6.3.1 and the maximum output power as specified in clause 6.2.1.

Table 6.3.4.2-1: Absolute power tolerance

Conditions	Tolerance
Normal	± 9.0 dB

6.3.4.3 Relative power tolerance

The relative power tolerance is the ability of the UE transmitter to set its output power in a target sub-frame (1 ms) relatively to the power of the most recently transmitted reference sub-frame (1 ms) if the transmission gap between these sub-frames is less than or equal to 20 ms.

The minimum requirements specified in Table 6.3.4.3-1 apply when the power of the target and reference sub-frames are within the power range bounded by the minimum output power as defined in clause 6.3.1 and the measured P_{UMAX} as defined in clause 6.2.1.

To account for RF Power amplifier mode changes, 2 exceptions are allowed for each of two test patterns. The test patterns are a monotonically increasing power sweep and a monotonically decreasing power sweep over a range bounded by the requirements of minimum power and maximum power specified in clauses 6.3.1 and 6.2.1, respectively. For those exceptions, the power tolerance limit is a maximum of \pm 6.0 dB in Table 6.3.4.3-1.

Table 6.3.4.3-1: Relative power tolerance

Power step ΔP (Up or down) (dB)	All combinations of PUSCH and PUCCH transitions (dB)	All combinations of PUSCH/PUCCH and SRS transitions between sub- frames (dB)	PRACH (dB)
ΔP < 2	± 2.0 (NOTE)	± 2.5	± 2.0
2 ≤ ΔP < 3	± 2.5	± 3.5	± 2.5
3 ≤ ΔP < 4	± 3.0	± 4.5	± 3.0
4 ≤ ΔP < 10	± 3.5	± 5.5	± 3.5
10 ≤ ΔP < 15	± 4.0	± 7.0	± 4.0
15 ≤ ΔP	± 5.0	± 8.0	± 5.0

NOTE: For PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods: for a power step $\Delta P \le 1$ dB, the relative power tolerance for transmission is \pm 0.7 dB.

6.3.4.4 Aggregate power tolerance

The aggregate power control tolerance is the ability of the UE transmitter to maintain its power in a sub-frame (1 ms) during non-contiguous transmissions within 21 ms in response to 0 dB commands with respect to the first UE transmission and all other power control parameters as specified in TS 38.213 [8] kept constant.

The minimum requirement specified in Table 6.3.4.4-1 apply in the power range bounded by the minimum output power as specified in clause 6.3.1 and the maximum output power as specified in clause 6.2.2.

Table 6.3.4.4-1: Aggregate power tolerance

TPC command	UL channel	Aggregate power tolerance within 21 ms
0 dB	PUCCH	± 2.5 dB
0 dB	PUSCH	± 3.5 dB

6.3A Output power dynamics for CA

For inter-band carrier aggregation with one uplink carrier assigned to one NR band, the output power dynamics requirements in clause 6.3 apply.

6.3A.1 Minimum output power for CA

6.3A.1.1 Void

6.3A.1.2 Void

6.3A.1.3 Minimum output power for inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the minimum output power is defined per carrier and the requirement is specified in clause 6.3.1.

6.3A.1.4 Minimum output power for intra-band contiguous CA

For intra-band contiguous carrier aggregation, the minimum output power is defined per carrier and the requirement is specified in clause 6.3.1.

6.3A.2 Transmit OFF power for CA

6.3A.2.1 Void

6.3A.2.2 Void

6.3A.2.3 Transmit OFF power for inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the transmit OFF power specified in clause 6.3.2.1 is applicable for each component carrier when the transmitter is OFF on all component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit on any of its ports.

6.3A.2.4 Transmit OFF power for intra-band contiguous CA

For intra-band contiguous carrier aggregation, the transmit OFF power specified in clause 6.3.2.1 is applicable for each component carrier when the transmitter is OFF on all component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit on any of its ports.

6.3A.3 Transmit ON/OFF time mask for CA

6.3A.3.1 Void

6.3A.3.2 Void

6.3A.3.3 Transmit ON/OFF time mask for inter-band CA

6.3A.3.3.1 General

For inter-band carrier aggregation with uplink assigned to two NR bands, the general output power ON/OFF time mask specified in clause 6.3.3.1 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in clause 6.3.3.1 shall only be applicable for each component carrier when all the component carriers are OFF.

6.3A.3.3.2 Time mask for switching between two uplink carriers

In addition to the requirements in 6.3A.3.3.1 and the maximum output power requirement specified in Table 6.2A.1.3-1 with uplink assigned to two NR bands, the switching time mask specified in this sub-clause is applicable for an uplink band pair of a inter-band UL CA configuration when the capability *uplinkTxSwitchingPeriod* is present, and is only applicable for uplink switching mechanisms specified in sub-clause 6.1.0 of TS 38.214 [10], where NR UL carrier 1 is capable of one transmit antenna connector and NR UL carrier 2 is capable of two transmit antenna connectors with 3dB boosting on the maximum output power when the capability *uplinkTxSwitchingPowerBoosting* is present and the IE *powerboostingTxSwitching* is set to 1, and the two uplink carriers are in different bands with different carrier frequencies. The UE shall support the switch between single layer transmission with one antenna port and two-layer transmission with two antenna ports on the two uplink carriers following the scheduling commands and rank adaptation, i.e., both single layer and two-layer transmission with 2 antenna ports, and single layer transmission with 1 antenna port shall be supported on NR UL carrier 2.

The switching periods described in Figure 6.3A.3.3.2-1a and Figure 6.3A.3.3.2-1b are located in either NR carrier 1 or carrier 2 as indicated in RRC signalling *uplinkTxSwitchingPeriodLocation* [7], and the length of uplink switching period *X* is less than the value indicated by UE capability *uplinkTxSwitchingPeriod*.

Figure 6.3A.3.3.2-1a: Time mask for switching between UL carrier 1 and UL Carrier 2, where the switching period is located in carrier 1

Figure 6.3A.3.3.2-1b: Time mask for switching between UL carrier 1 and UL Carrier 2, where the switching period is located in carrier 2

The requirements apply for the case of co-located and synchronized network deployment for the two uplink carriers.

The requirements apply for the case of single TAG for the two uplink carriers, i.e., the same uplink timing for the two carriers as described in sub-clause 4.2 of TS 38.213 [8].

6.3A.3.4 Transmit ON/OFF time mask for intra-band contiguous CA

For s intra-band contiguous carrier aggregation, the general output power ON/OFF time mask specified in clause 6.3.3.1 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in clause 6.3.3.1 shall only be applicable for each component carrier when all the component carriers are OFF.

6.3A.4 Power control for CA

6.3A.4.1 Void

6.3A.4.2 Void

6.3A.4.3 Power control for inter-band CA

No requirements unique to CA operation are defined.

6.3A.4.4 Power control for intra-band contiguous CA

6.3A.4.4.1 Absolute power tolerance

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap on each

active component carriers larger than 20ms. The requirement can be tested by time aligning any transmission gaps on the component carriers.

6.3A.4.4.1.1 Minimum requirements

For intra-band contiguous carrier aggregation the absolute power control tolerance per component carrier is given in Table 6.3.4.2-1.

6.3A.4.4.2 Relative power tolerance

6.3A.4.4.2.1 Minimum requirements

For intra-band contiguous carrier aggregation, the requirements apply when the power of the target and reference subframes on each component carrier exceed the minimum output power as defined in subclause 6.3A.1 and the total power is limited by P_{UMAX} as defined in subclause 6.2A.4. The UE shall meet the following requirements for transmission on both assigned component carriers when the average transmit power per PRB is aligned across both assigned carriers in the reference sub-frame:

- a) for all possible combinations of PUSCH and PUCCH transitions per component carrier, the corresponding requirements given in Table 6.3.4.2-1;
- b) for SRS transitions on each component carrier, the requirements for combinations of PUSCH/PUCCH and SRS transitions given in Table 6.3.4.2-1 with simultaneous SRS of constant SRS bandwidth allocated in the target and reference subrames;
- c) for RACH on the primary component carrier, the requirements given in Table 6.3.4.2-1 for PRACH.

For a) and b) above, the power step ΔP between the reference and target subframes shall be set by a TPC command and/or an uplink scheduling grant transmitted by means of an appropriate DCI Format.

6.3A.4.4.3 Aggregate power control tolerance

For intra-band contiguous carrier aggregation, the aggregate power tolerance per component carrier is given in Table 6.3.4.2-1. The average power per PRB shall be aligned across both assigned carriers before the start of the test. The requirement can be tested with the transmission gaps time aligned between component carriers.

6.3B Output power dynamics for NR-DC

For inter-band NR-DC with one uplink carrier assigned per NR band, the output power dynamics for the corresponding inter-band CA configuration as specified in subclause 6.3A applies.

6.3C Output power dynamics for SUL

- 6.3C.1 Void
- 6.3C.2 Void

6.3C.3 Transmit ON/OFF time mask for SUL

6.3C.3.1 Time mask for switching between two uplink carriers

The switching time mask specified in this sub-clause is applicable for an uplink band pair of a SUL configuration when the capability *uplinkTxSwitchingPeriod* is present, is only applicable for uplink switching mechanisms specified in sub-clause 6.1.0 of TS 38.214 [10], where NR SUL carrier 1 is capable of one transmit antenna connector and NR UL carrier 2 is capable of two transmit antenna connectors, and the two uplink carriers are in different bands with different carrier frequencies. The UE shall support the switch between single layer transmission with one antenna port and two-layer transmission with two antenna ports on the two uplink carriers following the scheduling commands and rank

adaptation, i.e., both single layer and two-layer transmission with 2 antenna ports, and single layer transmission with 1 antenna port shall be supported on NR UL carrier 2.

The switching periods described in Figure 6.3C.3.1-1a and Figure 6.3C.3.1-1b are located in either NR carrier 1 or carrier 2 as indicated in RRC signalling *uplinkTxSwitchingPeriodLocation* [7], and the length of uplink switching period *X* is less than the value indicated by UE capability *uplinkTxSwitchingPeriod*.

Figure 6.3C.3.1-1a: Time mask for switching between SUL carrier 1 and UL Carrier 2, where the switching period is located in carrier 1

Figure 6.3C.3.1-1b: Time mask for switching between SUL carrier 1 and UL Carrier 2, where the switching period is located in carrier 2

The requirements apply for the case of co-located and synchronized network deployment for the two uplink carriers.

The requirements apply for the case of single TAG for the two uplink carriers, i.e., the same uplink timing for the two carriers as described in sub-clause 4.2 of TS 38.213 [8].

6.3D Output power dynamics for UL MIMO

6.3D.1 Minimum output power for UL MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the minimum output power is defined as the sum of the mean power at each transmit connector in one sub-frame (1 ms). The minimum output power shall not exceed the values specified in Table 6.3.1-1.

If UE is configured for transmission on single-antenna port, the requirements in clause 6.3.1 apply

6.3D.2Transmit OFF power for UL MIMO

The transmit OFF power is defined as the mean power at each transmit antenna connector in a duration of at least one sub-frame (1 ms) excluding any transient periods.

The transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3.2-1.

6.3D.3Transmit ON/OFF time mask for UL MIMO

For UE supporting UL MIMO, the ON/OFF time mask requirements in clause 6.3.3 apply at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the general ON/OFF time mask requirements specified in clause 6.3.3.1 apply to each transmit antenna connector. The requirements shall be met with the UL MIMO configurations described in clause 6.2D.1.

If UE is configured for transmission on single-antenna port, the requirements in clause 6.3.3 apply.

6.3D.4Power control for UL MIMO

For UE supporting UL MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in clause 6.3.4 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL MIMO configurations described in clause 6.2D.1.

If UE is configured for transmission on single-antenna port, the requirements in clause 6.3.4 apply

6.3E Output power dynamics for V2X

6.3E.1 Minimum output power for V2X

6.3E.1.1 General

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands in Table 5.2E-1, the minimum output power is specified in Table 6.3E.1.1-1. The minimum output power is defined as the mean power in at least one sub-frame 1 ms.

Channel bandwidth Minimum output power Measurement bandwidth (MHz) (dBm) (MHz) 9.375 10 -30 20 -30 19.095 30 -28.2 28.815 40 38.895 -27

Table 6.3E.1.1-1: Minimum output power

For NR V2X UE with two transmit antenna connectors, the minimum output power is defined as the sum of the mean power at each transmit connector in one sub-frame (1 ms). The minimum output power shall not exceed the values specified for single carrier.

If the UE transmits on one antenna connector at a time, the requirements specified for single carrier shall apply to the active antenna connector.

6.3E.1.2 Minimum output power for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 6.3.1 shall apply for the uplink in licensed band and the requirements specified in subclause 6.3E.1 shall apply for the sidelink in Band n47.

6.3E.2 Transmit OFF power for V2X

6.3E.2.1 General

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands in Table 5.2E-1, the requirements specified in clause Table 6.3.2 apply.

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
10	-50	9.375
20	-50	19.095
30	-50	28.815
40	-50	38.895

Table 6.3E.2.1-1: Transmit OFF power

For NR V2X UE supporting SL MIMO, the transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3E.2.1-1 for single carrier. Transmit off power is defined as the mean power in at least one sub-frame 1 ms.

6.3E.2.2 Transmit OFF power for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 6.3.2 shall apply for the uplink in licensed band and the requirements specified in subclause 6.3E.2 shall apply for the sidelink in Band n47.

6.3E.3 Transmit ON/OFF time mask for V2X

6.3E.3.1 General

For NR V2X UE, additional requirements on ON/OFF time masks for V2X physical channels and signals are specified in this clause.

6.3E.3.2 General time mask

The General ON/OFF time mask defines the observation period between the Transmit OFF and ON power and between Transmit ON and OFF power for PSCCH, and PSSCH transmissions in a slot wherein the last symbol is punctured to create a guard period.

Figure 6.3E.3.2-1: General PSCCH/PSSCH time mask for NR V2X UE

6.3E.3.3 S-SSB time mask

The S-PSS/S-SSS/S-PBCH time mask is for NR V2X UE defines the observation period between transmit OFF and ON S-PSS power and between transmit ON PSBCH and OFF power in a slot wherein the last symbol is punctured to create a guard period.

Figure 6.3E.3.3-1: S-SSB time mask for NR V2X UEFor NR V2X UE supporting SL MIMO, the ON/OFF time mask requirements apply at each transmit antenna connector.

For UE with two transmit antenna connectors, the general ON/OFF time mask requirements specified in clause 6.3E.3 apply to each transmit antenna connector. The requirements shall be met with the SL MIMO configurations described in clause 6.2D.1.

If the UE transmits on one antenna connector at a time, the general ON/OFF time mask requirements apply to the active antenna connector.

6.3E.3.4 Transmit ON/OFF time mask for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 6.3.3 shall apply for the uplink in licensed band and the requirements specified in subclause 6.3E.3 shall apply for the sidelink in Band n47.

6.3E.4 Power control for V2X

6.3E.4.1 General

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands in Table 5.2E-1, the following requirements are applied for NR V2X sidelink transmission.

For NR V2X UE supporting SL MIMO, the power control tolerance for single carrier shall apply to the sum of output power at each transmit antenna connector.

If the UE transmits on one -antenna connector at a time, the requirements for single carrier shall apply to the active antenna connector.

6.3E.4.2 Absolute power tolerance

The requirements in subclause 6.3.4.2 shall apply for NR V2X transmission.

6.3E.4.3 Power control for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 6.3.4 shall apply for the uplink in licensed band and the requirements specified in subclause 6.3E.4 shall apply for the sidelink in Band n47.

6.4 Transmit signal quality

6.4.1 Frequency error

The UE basic measurement interval of modulated carrier frequency is 1 UL slot. The mean value of basic measurements of UE modulated carrier frequency shall be accurate to within \pm 0.1 PPM observed over a period of 1 ms of cumulated measurement intervals compared to the carrier frequency received from the NR Node B.

6.4.2 Transmit modulation quality

Transmit modulation quality defines the modulation quality for expected in-channel RF transmissions from the UE. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage
- In-band emissions for the non-allocated RB

All the parameters defined in clause 6.4.2 are defined using the measurement methodology specified in Annex F.

In case the parameter 3300 or 3301 is reported from UE via *txDirectCurrentLocation* IE (as defined in TS 38.331 [7]), carrier leakage measurement requirement in clause 6.4.2.2 and 6.4.2.3 shall be waived, and the RF correction with regard to the carrier leakage and IQ image shall be omitted during the calculation of transmit modulation quality.

6.4.2.1 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in clause 6.4.2.4. For DFT-s-OFDM waveforms, the EVM result is defined after the front-end FFT and IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and one slotfor PUCCH and PUSCH in the time domain. The EVM measurement interval is reduced by any symbols that contains an allowable power transient in the measurement interval, as defined in clause 6.3.3.

The RMS average of the basic EVM measurements over 10 subframes for the average EVM case, and over 60 subframes for the reference signal EVM case, for the different modulation schemes shall not exceed the values specified in Table 6.4.2.1-1 for the parameters defined in Table 6.4.2.1-2. For EVM evaluation purposes, all 13 PRACH preamble formats and all 5 PUCCH formats are considered to have the same EVM requirement as QPSK modulated..

Table 6.4.2.1-1: Requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	30
QPSK	%	17.5
16 QAM	%	12.5
64 QAM	%	8
256 QAM	%	3.5

Table 6.4.2.1-2: Parameters for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥ Table 6.3.1-1
UE Output Power for 256 QAM	dBm	≥ Table 6.3.1-1 + 10 dB
Operating conditions		Normal conditions

6.4.2.2 Carrier leakage

Carrier leakage is an additive sinusoid waveform whose frequency is the same as the modulated waveform carrier frequency. The measurement interval is one slot in the time domain.

In the case that uplink sharing, the carrier leakage may have 7.5 kHz shift with the carrier frequency.

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.4.2.2-1.

Table 6.4.2.2-1: Requirements for Carrier Leakage

Parameter	Relative Limit (dBc)
	` '
Output power > 10 dBm	-28
0 dBm ≤ Output power ≤ 10 dBm	-25
-30 dBm ≤ Output power < 0 dBm	-20
-40 dBm ≤ Output power < -30 dBm	-10

6.4.2.3 In-band emissions

The in-band emission is defined as the average emission across 12 sub-carriers and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain; however, the minimum requirement applies when the in-band emission measurement is averaged over 10 sub-frames. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one or more symbols, accordingly.

The average of the basic in-band emission measurement over 10 sub-frames shall not exceed the values specified in Table 6.4.2.3-1.

Table 6.4.2.3-1: Requirements for in-band emissions

Parameter description	Unit		Limit (NOTE 1)	Applicable Frequencies
General	dB	$\max \left\{ -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB}, \\ -57 \ dBm + 10 \log_{10} \left(SCS / 15 \ kHz \right) - \overline{P_{RB}} \right\}$		Any non-allocated (NOTE 2)
IQ Image	dB	-28	Image frequencies when output power > 10 dBm	Image
		-25	Image frequencies when output power ≤ 10 dBm	frequencies (NOTES 2, 3)
	dBc	-28	Output power > 10 dBm	Corrier leekees
Carrier leakage		-25	0 dBm ≤ Output power ≤ 10 dBm	Carrier leakage frequency
		-20	-30 dBm ≤ Output power < 0 dBm	(NOTES 4, 5)
		-10	-40 dBm ≤ Output power < -30 dBm	(1401234, 3)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of $\overline{P_{RB}}$ 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. $\overline{P_{RB}}$ is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit depend on the parameter *txDirectCurrentLocation* in *UplinkTxDirectCurrent* IE, and are those that are enclosed either in the RB containing the carrier leakage frequency, or in the two RBs immediately adjacent to the carrier leakage frequency but excluding any allocated RB.
- NOTE 6: LCRB is the Transmission Bandwidth (see clause 5.3).
- NOTE 7: *N_{RB}* is the Transmission Bandwidth Configuration (see clause 5.3).
- NOTE 8: EVM is the limit specified in Table 6.4.2.1-1 for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth.
- NOTE 10: P_{RB} is an average of the transmitted power over 10 sub-frames normalized by the number of allocated RBs, measured in dBm.
- NOTE 11: For almost contiguous allocations defined in sub-clause 6.2.2, $L_{CRB} = N_{RB_alloc} + N_{RB_gap}$ with no in-gap emission requirement.

6.4.2.4 EVM equalizer spectrum flatness

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex F) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block. The basic measurement interval is the same as for EVM.

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4.2.4-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 5 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.4.2.4-1).

The EVM equalizer spectral flatness shall not exceed the values specified in Table 6.4.2.4-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.4.2.4-1).

Table 6.4.2.4-1: Requirements for EVM equalizer spectrum flatness (normal conditions)

Frequency range	Maximum ripple (dB)				
Ful_Meas - Ful_Low ≥ 3 MHz and Ful_High - Ful_Meas ≥ 3 MHz	4 (p-p)				
(Range 1)					
Ful_Meas - Ful_Low < 3 MHz or Ful_High - Ful_Meas < 3 MHz	8 (p-p)				
(Range 2)					
NOTE 1: F _{UL_Meas} refers to the sub-carrier frequency for which the equalizer coefficient is					
evaluated					
NOTE 2: FUL_Low and FUL_High refer to each NR frequency ban-	d specified in Table 5.2-1				

Table 6.4.2.4-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

Frequency range	Maximum Ripple (dB)
Ful_Meas - Ful_Low ≥ 5 MHz and Ful_High - Ful_Meas ≥ 5 MHz (Range 1)	4 (p-p)
FUL_Meas - FUL_Low < 5 MHz or FUL_High - FUL_Meas < 5 MHz (Range 2)	12 (p-p)
NOTE 1: FUL_Meas refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
NOTE 2: Ful_Low and Ful_High refer to each NR frequency band	specified in Table 5.2-1

Figure 6.4.2.4-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement are within brackets).

6.4.2.4.1 Requirements for Pi/2 BPSK modulation

These requirements apply if the IE *powerBoostPi2BPSK* is set to 1 for power class 3 capable UE operating in TDD bands n40, n41, n77, n78 and n79 with Pi/2 BPSK modulation and UE indicates support for UE capability *powerBoosting-pi2BPSK* and 40 % or less slots in radio frame are used for UL transmission. Otherwise the requirements for EVM equalizer spectrum flatness defined in clause 6.4.2.4 apply.

The EVM equalizer coefficients across the allocated uplink block shall be modified to fit inside the mask specified in Table 6.4.2.4.1-1 for normal conditions, prior to the calculation of EVM. The limiting mask shall be placed to minimize the change in equalizer coefficients in a sum of squares sense.

Table 6.4.2.4.1-1: Mask for EVM equalizer coefficients for Pi/2 BPSK, normal conditions

Frequency range	Parameter	Maximum ripple (dB)		
$ F_{UL_Meas} - F_{center} \le X MHz$ (Range 1)	X1	6 (p-p)		
F _{UL_Meas} - F _{center} > X MHz (Range 2)	X2	14 (p-p)		
NOTE 1: F _{UL_Meas} refers to the sub-carrier frequency for which the equalizer coefficient is evaluated				
NOTE 2: F _{center} refers to the center frequency of an allocated block of PRBs				
NOTE 3: X, in MHz, is equal to 25% of the bandwidth of the PRB allocation				
NOTE 4: See Figure 6.4.2.4.1-1 for description of X1, X2				

Figure 6.4.2.4.1-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation.

For Pi/2 BPSK modulation the UE shall be allowed to employ spectral shaping and the shaping filter shall be restricted so that the impulse response of the shaping filter itself shall meet

$$\begin{aligned} \left| \tilde{a}_{t}(t,0) \right| &\geq \left| \tilde{a}_{t}(t,\tau) \right| \quad \forall \tau \neq 0 \\ \\ &20log_{10} \left| \tilde{a}_{t}(t,\tau) \right| < -15 \text{ dB} \quad 1 < \tau < M - 1, \end{aligned}$$

where $|\tilde{a}_{t}(t,\tau)| = IDFT\{ |\tilde{a}_{t}(t,f)| e^{j\varphi(t,f)}\}$, f is the frequency of the M allocated subcarriers, $\tilde{a}(t,f)$ and $\varphi(t,f)$ are the amplitude and phase response.

0 dB reference is defined as $20log_{10} \mid \tilde{a}_t(t,0) \mid$.

6.4A Transmit signal quality for CA

6.4A.1 Frequency error for CA

6.4A.1.1 Void

6.4A.1.2 Void

6.4A.1.3 Frequency error for inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the frequency error requirements defined in clause 6.4.1 shall apply on each component carrier with all component carriers active.

6.4A.1.4 Frequency error for intra-band contiguous CA

For intra-band contiguous carrier aggregation the UE modulated carrier frequencies per band shall be accurate to within ± 0.1 PPM observed over a period of one timeslot compared to the carrier frequency of primary component carrier received in the corresponding band.

6.4A.2 Transmit modulation quality for CA

6.4A.2.1 Void

6.4A.2.2 Void

6.4A.2.3 Transmit modulation quality for inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the transmit modulation quality requirements shall apply on each component carrier as defined in clause 6.4.2 with all component carriers active: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

6.4A.2.4 Transmit modulation quality for intra-band contiguous CA

For intra-band contiguous carrier aggregation, the requirements in subclauses 6.4A.2.3.1, 6.4A.2.3.2 applies.

The requirements in this clause apply with PCC and SCC in the UL configured and activated: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

6.4A.2.4.1 Error Vector Magnitude

For the intra-band contiguous carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirements only apply with PRB allocation in one of the component carriers. Similar transmitter impairment removal procedures are applied for CA waveform before EVM calculation as is specified for non-CA waveform in sub-section 6.4.2.1.

When a single component carrier is configured Table 6.4.2.1-1 apply.

The EVM requirements are according to Table 6.4A.2.4.1-1 if CA is configured in uplink with the parameters defined in Table 6.4.2.1-2.

Table 6.4A.2.4.1-1: Minimum requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level per CC
Pi/2-BPSK	%	30
QPSK	%	17.5
16 QAM	%	12.5
64 QAM	%	8
256 QAM	%	3.5

6.4A.2.4.2 In-band emissions

For intra-band contiguous carrier aggregation, the requirements in Table 6.4A.2.4.2-1 and 6.4A.2.4.2-2 apply within the aggregated transmission bandwidth configuration with both component carrier (s) active and one single contiguous PRB allocation of bandwidth $L_{\it CRB}$ at the edge of the aggregated transmission bandwidth configuration.

The inband emission is defined as the interference falling into the non allocated resource blocks for all component carriers. The measurement method for the inband emissions in the component carrier with PRB allocation is specified in annex F.3. For a non allocated component carrier a spectral measurement is specified.

Table 6.4A.2.4.2-1: Minimum requirements for in-band emissions (allocated component carrier)

Parameter	Unit	Limit		Applicable Frequencies	
	dB	$\max \left\{ -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right) \right\},$			
General		$20 \cdot \log_{10} EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB}$,		Any non-allocated (NOTE 2)	
		– 57 <i>dBm</i>	$m + 10 \log_{10} (SCS / 15 kHz) - \overline{P_{RB}}$		
IQ Image	dB	-28	Output power > 10 dBm	Image frequencies	
		-25	0≤ Output power ≤ 10 dBm	(NOTE 3)	
Carrier leakage	dBc	-28	Output power > 10 dBm		
		-25	0 dBm ≤ Output power ≤ 10 dBm	Carrier leakage frequency	
		-20	-30 dBm ≤ Output power ≤ 0 dBm	(NOTE 4,5)	
		-10	-40 dBm ≤ Output power < -30 dBm		

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of $\overline{P_{RB}}$ 30 dB dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. $\overline{P_{RB}}$ is defined in NOTE 10. The limit is evaluated in each non-allocated RB.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RRs
- NOTE 4: Exceptions to the general limit are allowed for up to two contiguous non-allocated RBs. The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in the non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit depend on the parameter txDirectCurrentLocation in UplinkTxDirectCurrent IE, and are those that are enclosed either in the RB containing the carrier leakage frequency, or in the two RBs immediately adjacent to the carrier leakage frequency but excluding any allocated RB.
- NOTE 6: $L_{\it CRB}$ is the Transmission Bandwidth (see section 5.3) not exceeding $\lfloor N_{\it RB}/2-1 \rfloor$.
- NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see section 5.3) of the component carrier with RBs allocated.
- NOTE 8: EVM is the limit specified in Table 6.4.2.1-1 for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB outside of the allocated bandwidth).
- NOTE 10: P_{RB} is an average of the transmitted power over 10 sub-frames normalized by the number of allocated RBs, measured in dBm.

Table 6.4A.2.4.2-2: Minimum requirements for in-band emissions (not allocated component carrier)

Para- meter	Unit	Meas BW NOTE 1		Limit	remark	Applicable Frequencies
General	dB	BW of 1 RB	20 · log 10	$ \frac{25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}),}{EVM - 3 - 5 \cdot (\left \Delta_{RB}\right - 1) / L_{CRB}}, \\ + 10 \log_{10} \left(SCS / 15 kHz\right) - \overline{P_{RB}} \right\} $	The reference value is the average power per allocated RB in the allocated component carrier	Any RB in the non allocated component carrier. The frequency raster of the RBs is derived when this component carrier is allocated with RBs
	IQ Image dB	BW of 1 RB	-28	NOTE 2	The reference value is the average power per allocated	The frequencies of the $L_{\it CRB}$ contiguous non-allocated
IQ Image			Output power > 10 dBm		RB in the allocated component	RBs are unknown. The frequency
			-25	0≤ Output power ≤ 10 dBm	carrier	raster of the RBs is derived when this component carrier is allocated with RBs
	dBc	BW of 1 RB		NOTE 3	The reference	The frequencies of
Carrier leakage			-28	Output power > 10 dBm	value is the total power of the allocated RBs in the allocated component carrier	the up to 2 non-allocated RBs are unknown. The frequency raster of the RBs is derived when this component carrier is allocated with RBs
			-25	0 dBm ≤ Output power ≤ 10 dBm		
			-20	-30 dBm ≤ Output power ≤ 0 dBm		
			-10	-40 dBm ≤ Output power < -30 dBm		
NOTE1: Resolution BWs smaller than the measurement BW may be integrated to achieve the measurement						

bandwidth.

NOTE 2: Exceptions to the general limit is are allowed for up to $L_{\it CRB}$ +1 RBs within a contiguous width of $L_{\it CRB}$ +1 non-allocated RBs.

NOTE 3: Two Exceptions to the general limit are allowed for up to two contiguous non-allocated RBs

NOTE 4: NOTES 1, 5, 6, 7, 8, 9 from Table 6.4A.2.3.1-1 apply for Table 6.4A.2.3.2-2 as well.

NOTE 5: Δ_{RB} for measured non-allocated RB in the non allocated component carrier may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.

6.4B Transmit signal quality for NR-DC

For inter-band NR-DC with one uplink carrier assigned per NR band, the transmit signal quality for the corresponding inter-band CA configuration as specified in subclause 6.4A applies.

6.4D Transmit signal quality for UL MIMO

6.4D.1 Frequency error for UL MIMO

For UE(s) supporting UL MIMO, the basic measurement interval of modulated carrier frequency is 1 UL slot. The mean value of basic measurements of UE modulated carrier frequency at each transmit antenna connector shall be accurate to within \pm 0.1 PPM observed over a period of 1 ms of cumulated measurement intervals compared to the carrier frequency received from the NR Node B.

6.4D.2Transmit modulation quality for UL MIMO

For UE supporting UL MIMO, the transmit modulation quality requirements are specified at each transmit antenna connector.

If UE is configured for transmission on single-antenna port, the requirements specified for single carrier apply.

The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

In case the parameter 3300 or 3301 is reported from UE via *txDirectCurrentLocation* IE (as defined in TS 38.331 [7]), carrier leakage measurement requirement in clause 6.4D.2.2 and 6.4D.2.3 shall be waived, and the RF correction with regard to the carrier leakage and IQ image shall be omitted during the calculation of transmit modulation quality.

6.4D.2.1 Error Vector Magnitude

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Error Vector Magnitude requirements specified in Table 6.4.2.1-1 which is defined in clause 6.4.2.1 apply at each transmit antenna connector. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1-2

6.4D.2.2 Carrier leakage

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Relative Carrier Leakage Power requirements specified in Table 6.4.2.2-1 which is defined in clause 6.4.2.2 apply at each transmit antenna connector. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1-2

6.4D.2.3 In-band emissions

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the In-band Emission requirements specified in Table 6.4.2.3-1 which is defined in clause 6.4.2.3 apply at each transmit antenna connector. The requirements shall be met with the uplink MIMO configurations specified in Table 6.2D.1-2

6.4D.2.4 EVM equalizer spectrum flatness for UL MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the EVM Equalizer Spectrum Flatness requirements specified in Table 6.4.2.4-1 and Table 6.4.2.4-2 which are defined in clause 6.4.2.4 apply at each transmit antenna connector. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1-2

6.4D.3Time alignment error for UL MIMO

For UE(s) with multiple transmit antenna connectors supporting UL MIMO, this requirement applies to frame timing differences between transmissions on multiple transmit antenna connectors in the closed-loop spatial multiplexing scheme.

The time alignment error (TAE) is defined as the average frame timing difference between any two transmissions on different transmit antenna connectors.

For UE(s) with multiple transmit antenna connectors, the Time Alignment Error (TAE) shall not exceed 130 ns.

6.4D.4Requirements for coherent UL MIMO

For coherent UL MIMO, Table 6.4D.4-1 lists the maximum allowable difference between the measured relative power and phase errors between different antenna ports in any slot within the specified time window from the last transmitted SRS on the same antenna ports, for the purpose of uplink transmission (codebook or non-codebook usage) and those measured at that last SRS. The requirements in Table 6.4D.4-1 apply when the UL transmission power at each antenna port is larger than 0 dBm for SRS transmission and for the duration of time window.

Table 6.4D.4-1: Maximum allowable difference of relative phase and power errors in a given slot compared to those measured at last SRS transmitted

Difference of relative phase error	Difference of relative power error	Time window
40 degrees	4 dB	20 msec

The above requirements when all the following conditions are met within the specified time window:

- UE is not signaled with a change in number of SRS ports in SRS-config, or a change in PUSCH-config
- UE remains in DRX active time (UE does not enter DRX OFF time)
- No measurement gap occurs
- No instance of SRS transmission with the usage antenna switching occurs
- Active BWP remains the same
- EN-DC and CA configuration is not changed for the UE (UE is not configured or de-configured with PSCell or SCell(s))

6.4E Transmit signal quality for V2X

6.4E.1 Frequency error for V2X

6.4E.1.1 General

The UE modulated carrier frequency for NR V2X sidelink transmissions in Table 5.2E-1, shall be accurate to within ± 0.1 PPM observed over a period of 1 ms compared to the absolute frequency in case of using GNSS synchronization source. The same requirements applied over a period of 1 ms compared to the carrier frequency received from the gNB or V2X synchronization reference UE in case of using the gNB or V2X synchronization reference UE sidelink synchronization signals.

For NR V2X UE supporting SL MIMO, the UE modulated carrier frequency at each transmit antenna connector shall be accurate to within ± 0.1 PPM observed over a period of 0.5 ms in case of using GNSS synchronization source. The same requirements applied over a period of 0.5 ms compared to the relative frequency in case of using the NR gNode B or V2X UE sidelink synchronization signals.

If the UE transmits on one antenna connector at a time, the requirements for single carrier shall apply to the active antenna connector.

6.4E.1.2 Frequency error for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 6.4.1 shall apply for the uplink in licensed band and the requirements specified in subclause 6.4E.1 shall apply for the sidelink in Band n47.

6.4E.2 Transmit modulation quality for V2X

6.4E.2.1 General

The transmit modulation quality requirements in this clause apply to V2X sidelink transmissions.

For NR V2X UE supporting SL MIMO, the transmit modulation quality requirements for single carrier shall apply to each transmit antenna connector.

If V2X UE transmits on one-antenna connector at a time, the requirements specified for single carrier apply to the active antenna connector.

6.4E.2.2 Error Vector Magnitude for V2X

For V2X sidelink physical channels PSCCH and PSSCH, the Error Vector Magnitude requirements shall be as specified for PUSCH in Table 6.4.2.1-1 except pi/2-BPSK for NR V2X operating bands in Table 5.2E-1. When sidelink transmissions are shortened due to transmission gap of 1 symbol at the end of the slot, the EVM measurement interval is reduced by one symbol, accordingly.

6.4E.2.3 Carrier leakage for V2X

Carrier leakage of NR V2X sidelink transmission, the requirements for NR PUSCH in Table 6.4.2.2-1 shall be applied.

6.4E.2.4 In-band emissions for V2X

For V2X sidelink physical channels PSCCH, PSSCH and PSBCH, the In-band emissions requirements shall be as specified for PUSCH in subclause 6.4.2.3 for the corresponding modulation and transmission bandwidth. When V2X transmissions are shortened due to transmission gap of 1 symbol at the end of the subframe, the In-band emissions measurement interval is reduced by one symbol, accordingly.

6.4E.2.5 EVM equalizer spectrum flatness for V2X

For V2X sidelink physical channels PSCCH, PSSCH and PSBCH, the EVM equalizer spectrum flatness requirements shall be as specified for PUSCH in subclause 6.4.2.4 for the corresponding modulation and transmission bandwidth.

6.4E.2.6 Transmit modulation quality for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 6.4.2 shall apply for the uplink in licensed band and the requirements specified in subclause 6.4E.2 shall apply for the sidelink in Band n47.

6.5 Output RF spectrum emissions

6.5.1 Occupied bandwidth

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.5.1-1.

Table 6.5.1-1: Occupied channel bandwidth

			NR channel bandwidth										
	5	10	15	20	25	30	40	50	60	70	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Occupied channel bandwidth (MHz)	5	10	15	20	25	30	40	50	60	70	80	90	100

6.5.2 Out of band emission

6.5.2.1 General

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an adjacent channel leakage power ratio.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.2 Spectrum emission mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth. For frequencies offset greater than Δf_{OOB} , the spurious requirements in clause 6.5.3 are applicable.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

The power of any UE emission shall not exceed the levels specified in Table 6.5.2.2-1 for the specified channel bandwidth.

Table 6.5.2.2-1: General NR spectrum emission mask

				Sı	pectrum	n emiss	ion limi	t (dBm)	/ Chanr	nel band	dwidth			
Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0-1	-13	-13	-13	-13	-13	-13	-13							1 % channel bandwidth
± 0-1								-24	-24	-24	-24	-24	-24	30 kHz
± 1-5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	
± 5-6 ± 6-10	-13 -25	-13	-13	40										
± 10-15		-25	1	-13	-13	-13								
± 15-20			-25			-13	-13							
± 20-25				-25			-13	-13						
± 25-30					-25			-13	-13					
± 30-35						-25			-13	-13				
± 35-40										-13	-13			
± 40-45							-25				-13	-13		
± 45-50												-13	-13	1 MHz
± 50-55								-25					-13	1 1011 12
± 55-60														
± 60-65									-25					
± 65-70														
± 70-75										-25]			
± 75-80]		
± 80-85											-25			
± 85-90														
± 90-95												-25		
± 95-100														
± 100-105													-25	

6.5.2.3 Additional spectrum emission mask

6.5.2.3.1 Requirements for network signalling value "NS_35"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_35" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.1-1.

Table 6.5.2.3.1-1: Additional requirements for "NS_35"

Δf _{OOB} (MHz)		nnel band rum emiss	Measurement bandwidth						
	5	10	15	20					
± 0-0.1	-15	-18	-20	-21	30 kHz				
± 0.1-6	-13	-13	-13	-13	100 kHz				
± 6-10	-25 ¹	-13	100 kHz						
± 10-15		-25 ¹	100 kHz						
± 15-20			-25 ¹	-13	100 kHz				
± 20-25				-25	1 MHz				
NOTE 1: T	OTE 1: The measurement handwidth shall be 1 MHz								

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.3.2 Requirements for network signalling value "NS_04"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

The n41 SEM transition point from -13 dBm/MHz to -25 dBm/MHz is based on the emission bandwidth. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Since the 26-dB emission bandwidth is implementation dependent, the maximum transmission bandwidths in MHz (N_{RB} * SCS * 12 / 1,000,000) is used for the SEM.

Table 6.5.2.3.2-1: n41 maximum transmission bandwidth for CP-OFDM

SCS	Cha	Channel bandwidth (MHz) / Maximum transmission bandwidth (MHz)										
(kHz)	10	15	20	30	40	50	60	80	90	100		
15	9.36	14.22	19.08	28.80	38.88	48.6	N/A	N/A	N/A	N/A		
30	8.64	13.68	18.36	28.08	38.16	47.88	58.32	78.12	88.02	98.28		
60	7.92	12.96	17.28	27.36	36.72	46.8	56.88	77.04	87.12	97.20		

Table 6.5.2.3.2-2: n41 maximum transmission bandwidth for DFT-S-OFDM

SCS	Ch	nannel b	andwidt	h (MHz)	/ Maxim	num tran	smissic	n band	width (M	Hz)
(kHz)	10	15	20	30	40	50	60	80	90	100
15	9.00	13.50	18.00	28.80	38.88	48.60	N/A	N/A	N/A	N/A
30	8.64	12.96	18.00	27.00	36.00	46.08	58.32	77.76	87.48	97.20
60	7.20	12.96	17.28	25.92	36.00	46.08	54.00	72.00	86.40	97.20

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.2-3.

Table 6.5.2.3.2-3: n41 SEM with "NS 04"

Δfooв	Chanr	nel bandv	width (I	MHz) /	Spect	rum e	emiss	ion lii	mit (d	Bm)	Measurement			
MHz	10	15	20	30	40	50	60	80	90	100	bandwidth			
± 0 - 1	-10	-10	-10	-10	-10								1	2 % channel bandwidth
						-10					1 MHz			
±1-5			•	•	-10	•								
± 5 - X					-13						1 MHz			
± X - (BW _{Channel} + 5 MHz)	-25													
NOTE: X is defined in Table 6.5.2.3.2-1 for CP-OFDM and 6.5.2.3.2-2 for DFT-S-OFDM														

6.5.2.3.3 Requirements for network signalling value "NS_03" and "NS_21"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_03" or "NS_21", is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.3-1.

Channel bandwidth (MHz) / Spectrum emission limit (dBm) Δfоов Measurement MHz bandwidth 5 10 15 20 25 30 40 1 % of channel BW -13 -13 -13 -13 -13 -13 -13 $\pm 0-1$ -13 -13 -13 -13 -13 -13 -13 1 MHz ± 1-6 -13 -13 -25 -13 -13 -13 -13 1 MHz $\pm 6-10$ -25 -13 -13 -13 -13 -13 1 MHz ± 10-15 -25 -13 $\pm 15-20$ -13 -13 -13 1 MHz -25 ± 20-25 -13 -13 -13 1 MHz -25 -13 -13 1 MHz $\pm 25 - 30$ 1 MHz \pm 30-35 -25 -13 -13 1 MHz $\pm 35-40$ ± 40-45 -25 1 MHz

Table 6.5.2.3.3-1: Additional requirements for "NS_03" and "NS_21"

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

Table 6.5.2.3.3-2: Void

6.5.2.3.4 Requirements for network signalling value "NS 06"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_06" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.4-1.

Δf _{OOB}		channel bandwidth (MHz) / Spectrum emission limit (dBm)							
(IVITZ)	5	10	15	bandwidth					
± 0 – 0.1	-15	-18	-20	30 kHz					
± 0.1 – 1	-13	-13	-13	100 kHz					
±1-6	-13								
±6- 10	-25	-13	-13						
± 10 – 15		-25		1 MHz					
± 15 – 20			-25						

Table 6.5.2.3.4-1: Additional requirements for "NS 06"

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.3.5	Void

6.5.2.3.6 Void

6.5.2.3.7 Void

6.5.2.3.8 Requirements for network signalled value "NS_27"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_27" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.8-1.

Channel bandwidth (MHz) / Spectrum emission limit (dBm) Measurement Δfоов bandwidth MHz 5 20 10 15 40 1 % channel bandwidth ±0-1 -13 ±1-X -13 1 MHz < - X or > X when-25 $3540 \text{ MHz} < \Delta f_{OOB} < 3710 \text{ MHz}$

Table 6.5.2.3.8-1: Additional requirements for "NS_27"

NOTE:

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.4 Adjacent channel leakage ratio

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.4.1 NR ACLR

NR Adjacent Channel Leakage power Ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent NR channel frequency at nominal channel spacing.

The assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.5.2.4.1-1.

If the measured adjacent channel power is greater than -50 dBm then the NR_{ACLR} shall be higher than the value specified in Table 6.5.2.4.1-2.

Table 6.5.2.4.1-1: NR ACLR measurement bandwidth

	NR channel bandwidth / NR ACLR measurement bandwidth												
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
NR ACLR	1911 12	IVIIIZ	IVIIIZ	1911 12	1911 12	IVIIIZ	1911 12						
measurement bandwidth (MHz)	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	68.07	78.15	88.23	98.31

Table 6.5.2.4.1-2: NR ACLR requirement

	Power class 2	Power class 3
NR ACLR	31 dB	30 dB

6.5.2.4.2 UTRA ACLR

UTRA adjacent channel leakage power ratio (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA_{ACLR} is specified for the first adjacent UTRA channel (UTRA_{ACLR1}) which center frequency is \pm 2.5 MHz from NR channel edge and for the 2^{nd} adjacent UTRA channel (UTRA_{ACLR2}) which center frequency is \pm 7.5 MHz from NR channel edge.

The UTRA channel power is measured with a RRC filter with roll-off factor $\alpha = 0.22$ and bandwidth of 3.84 MHz. The assigned NR channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.5.2.4.1-1.

If the measured adjacent channel power is greater than -50 dBm then the $UTRA_{ACLR1}$ and $UTRA_{ACLR2}$ shall be higher than the value specified in Table 6.5.2.4.2-1.

Table 6.5.2.4.2-1: UTRA ACLR requirement

	Power class 3
UTRA _{ACLR1}	33 dB
UTRA _{ACLR2}	36 dB

UTRA ACLR requirement is applicable when signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*.

6.5.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements in line with SM.329 [9] and NR operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.3.1 General spurious emissions

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.1-2 apply for all transmitter band configurations (N_{RB}) and channel bandwidths.

Table 6.5.3.1-1: Boundary between NR out of band and general spurious emission domain

Channel bandwidth	OOB boundary F _{OOB} (MHz)
BW _{Channel}	BW _{Channel} + 5

Table 6.5.3.1-2: Requirement for general spurious emissions limits

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	4
	-25 dBm	1 MHz	3
12.75 GHz ≤ f < 5 th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2

NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHz

NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz

NOTE 3: Applies for Band n41, CA configurations including Band n41, and EN-DC configurations that include n41 specified in clause 5.2B of TS 38.101-3 [3] when NS 04 is signalled.

NOTE 4: Does not apply for Band n41, CA configurations including Band n41, and EN-DC configurations that include n41 specified in subclause 5.2B of TS 38.101-3 [3] when NS_04 is signalled.

6.5.3.2 Spurious emissions for UE co-existence

This clause specifies the requirements for NR bands for coexistence with protected bands.

Table 6.5.3.2-1: Requirements for spurious emissions for UE co-existence

	Spurio	Spurious emission for UE co-existence						
NR Band	Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	NOTE	
n1, n84	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76, NR Band n78, n79	F _{DL_low}	•	F_{DL_high}	-50	1		
	NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2	
	E-UTRA Band 3, 34	F _{DL_low}	-	F _{DL_high}	-50	1	15	
	Frequency range	1880	-	1895	-40	1	15, 27	
	Frequency range	1895	1	1915	-15.5	5	15, 26, 27	
	Frequency range	1915	-	1920	+1.6	5	15, 26, 27	

	Spurio	ous emiss	ion fo	r UE co-ex	istence		
NR Band	Protected band	Frequen	icy rar	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
n2	E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 24, 26, 27, 28, 29, 30, 41, 42, 48, 50, 51, 53, 66, 70, 71, 74, 85	$F_{DL_{L}low}$	1	F _{DL_high}	-50	1	
	E-UTRA Band 2, 25	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 43, NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2
n3, n80	E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 40, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73,74, 75, 76. NR Band n79	F _{DL_low}	1	F _{DL_high}	-50	1	
	E-UTRA Band 3	F_{DL_low}	-	F_{DL_high}	-50	1	15
	E-UTRA Band 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 22, 42, 52, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n5, n89	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 18, 19, 24, 25, 26, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 48, 50, 51, 53, 65, 66, 70, 71, 73, 74, 85 NR Band n79	F _{DL_low}		F _{DL_high}	-50	1	
	E-UTRA Band 41, 52, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 11, 21	F_{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n7	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	2570	-	2575	+1.6	5	15, 21, 26
	Frequency range	2575	1	2595	-15.5	5	15, 21, 26
	Frequency range	2595	-	2620	-40	1	15, 21
n8, n81	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 3, 7, 22, 41, 42, 43, 52, NR Band n77, n78, n79	F _{DL_low}	1	F _{DL_high}	-50	1	2
	E-UTRA 8	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n12	E-UTRA Band 2, 5, 13, 14, 17, 24, 25, 26, 27, 30, 41, 48, 50, 51, 53, 71, 74	F _{DL_low}	1	F _{DL_high}	-50	1	
	E-UTRA Band 4, 10, 66, 70, NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 12, 85	F _{DL_low}	-	F _{DL_high}	-50	1	15

	Spurio	ous emiss	ion fo	r UE co-exi	istence		
NR Band	Protected band	Frequen	cy rar	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
n14	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 29, 30, 41, 48, 53, 66, 70, 71, 85	FD _{L_low}	-	FD _{L_high}	-50	1	
	NR Band n77	F_{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	769	-	775	-35	0.0062 5	12, 15
	Frequency range	799	-	805	-35	0.0062 5	11, 12, 15
n18	E-UTRA Band 1, 3, 11, 21, 34, 42, 65 NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	758	-	799	-50	1	
	Frequency range	799	-	803	-40	1	
	Frequency range	860	-	890	-40	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	2545	_	2575	-50	1	
	Frequency range	2595		2645	-50	1	
n20, n82	E-UTRA Band 1, 3, 7, 8, 22, 31, 32, 33, 34, 40, 42, 43, 50, 51, 65, 67, 68, 72, 74, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 20	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 38, 42, 52, 69, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	758	-	788	-50	1	
n25	E-UTRA Band 4, 5, 10,12, 13, 14, 17, 24, 26, 27, 28, 29, 30, 41, 42, 48, 53, 66, 70, 71, 85	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 2	F_{DL_low}	-	F_{DL_high}	-50	1	15
	E-UTRA Band 25	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 43, NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2
n26	E-UTRA Band 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 17, 18,19, 21, 24, 25, 26, 29, 30, 31, 34, 39, 40, 42, 43, 48, 50, 51, 53, 65, 66, 70, 71, 73,74, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 41, NR Band n77, n78, n79	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	703	-	799	-50	1	
	Frequency range	799	-	803	-40	1	15
	Frequency range	945	-	960	-50	1	_
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n28, n83	E-UTRA Band 1, 4, 10, 22, 32, 42, 43, 50, 51, 52, 65, 66, 73, 74, 75, 76, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 1	F _{DL_low}	-	F _{DL_high}	-50	1	19, 25
	E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 39, 40, 41, 66, 72, NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	19, 24
	Frequency range	470	-	694	-42	8	15, 35
	Frequency range	470	-	710	-26.2	6	34
	Frequency range	662	-	694	-26.2	6	15
	Frequency range	758	-	773	-32	1	15
	Frequency range	773	-	803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8, 19

	Spurious emission for UE co-existence						
NR Band	Protected band	Frequen	icy ran	ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
n30	E-UTRA Band 2, 4, 5, 7, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77	F _{DL_low}	-	F_{DL_high}	-50	1	
n34	E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38,39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n78, n79	FDL_low	-	FDL_high	-50	1	5
	NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n38	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85	F _{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	2620	-	2645	-15.5	5	15, 22, 26
	Frequency range	2645	-	2690	-40	1	15, 22
n39	E-UTRA Band 1, 8, 22, 26, 28, 34, 40, 41, 42, 44, 45, 50, 51, 52, 74, NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1805	-	1855	-40	1	33
	Frequency range	1855	-	1880	-15.5	5	15, 26, 33
n40	E-UTRA Band 1, 3, 5, 7, 8, 20, 22, 26, 27, 28, 31, 32, 33, 34, 38, 39, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 74, 75, 76, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	2
n41	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 34, 39, 42, 44, 45, 48, 50, 51, 52, 65, 66, 70, 71, 73, 74, 85, NR Band 177, n78	FDL_low	-	FDL_high	-50	1	
	NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	
n47	Frequency range E-UTRA Band 1, 3, 5, 7, 8, 22, 26, 28, 34, 39, 40, 41, 42, 44, 45, 47, 65, 68, 72, 73	1884.5 FDL_low	-	1915.7 FDL_high	-41 -50	1	8
	NR Band n47, n77, n78, n79	FDL_low	-	FDL_high	-50	1	
n48	E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 50, 51, 66, 70, 71, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
n50	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 17, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 65, 66, 67, 68	F _{DL_low}	-	F_{DL_high}	-50	1	
n51	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 17, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 52, 65, 66, 67, 68, 85	F _{DL_low}	-	F _{DL_high}	-50	1	

	Spurious emission for UE co-existence						
NR Band	Protected band	Frequen	icy ran	ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
n53	E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 48, 66, 70, 71, 85, NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	
n65	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 50, 51, 65, 68, 69, 72, 74, 75, 76, NR Band n78, n79	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 34	F _{DL_low}	-	F _{DL_high}	-50	1	43
	Frequency range	1900	-	1915	-15.5	5	15, 26, 27
	Frequency range	1915	-	1920	+1.6	5	15, 26, 27
n66, n86	E-UTRA Band 2, 4, 5, 7, 10, 12, 13, 14, 17, 25, 26, 27, 28, 29, 30, 38, 41, 43, 50, 51, 53, 66, 70, 71, 74, 85	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	E-UTRA Band 42, 48, NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2
n70	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 48, 66, 70, 71, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2
n71	E-UTRA Band 4, 5, 12, 13, 14, 17, 24, 26, 30, 48, 53, 66, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 2, 25, 41, 70, NR Band n77	F _{DL_low}	1	F _{DL_high}	-50	1	2
	E-UTRA Band 29	F _{DL_low}	-	F _{DL_high}	-38	1	15
	E-UTRA Band 71	F _{DL_low}	-	F _{DL_high}	-50	1	15
n74	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 17, 18, 19, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 52, 65, 66, 67, 68, 85 NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n79	F _{DL_low}	ı	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	1400	-	1427	-32	27	15, 41
	Frequency range	1475	-	1488	-50	1	42
	Frequency range	1488	-	1518	-50	1	15
n77	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 41, 53, 65, 66, 70, 71, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n79	E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 42, 65, 74	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n95	E-UTRA Band 1, 3, 5, 8, 28, 39, 40, 41, NR Band n78, n79	F_{DL_low}	-	F_{DL_high}	-50	1	5
	NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8

- NOTE 1: F_{DL_low} and F_{DL_high} refer to each frequency band specified in Table 5.2-1 in TS 38.101-1 or Table 5.5-1 in TS 36.101
- NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2 MHz + N x L_{CRB} x RB_{size} kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 3: 15 kHz SCS is assumed when RB is mentioned in the note when channel bandwidth is less than or equal to 50 MHz, lowest SCS is assumed when channel bandwidth is larger than 50 MHz. The transmission bandwidth in terms of RB position and range is not limited to 15 kHz SCS and shall scale with SCS accordingly.
- NOTE 4: Void
- NOTE 5: For non-synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band
- NOTE 6: N/A
- NOTE 7: Void
- NOTE 8: Applicable when co-existence with PHS system operating in 1884.5 1915.7 MHz.
- NOTE 9: Void
- NOTE 10: Void
- NOTE 11: Void
- NOTE 12: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB
- NOTE 13: Void
- NOTE 14: Void
- NOTE 15: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.
- NOTE 16: Void
- NOTE 17: Void
- NOTE 18: Void
- NOTE 19: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
- NOTE 20: Void
- NOTE 21: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 22: This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth within the range 2570 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when the carrier centre frequency is within the range 2605.5 2607.5 MHz and for carriers of 20 MHz bandwidth when the carrier centre frequency is within the range 2597 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max.
- NOTE 23: Void
- NOTE 24: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.1-1) for which the 2nd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 25: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.1-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 26: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 27: This requirement is applicable for channel bandwidths up to 20 MHz within the range 1920 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when the carrier centre frequency is within the range 1927.5 1929.5 MHz and for carriers of 20 MHz bandwidth when the carrier centre frequency is within the range 1930 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 28: Void
- NOTE 29: Void
- NOTE 30: Void

	Spurio	ous emission for UE co-ex	istence			
NR Band	Protected band	Frequency range (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE	
NOTE 31:	Void	•		•		
NOTE 32:	Void					
	This requirement is only applicable 1885-1920 MHz (requirement for caspecified). This requirement applies RB for carriers of 15 MHz bandwidt 1894.5 MHz and for carriers of 20 Magnetic 1894.5 MHz and 1894.5 MHz	arriers with at least 1RB conf s for an uplink transmission b h when carrier center freque	ined within 188 candwidth less ncy is within th	30 - 1885 N than or eq ne range 18	/IHz is not ual to 54 392.5 -	
NOTE 34:	range 1895 - 1903 MHz. NOTE 34: This requirement is applicable for 5 and 10 MHz NR channel bandwidth allocated within 718-728 MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with RB _{start} > 1 and RB _{start} < 48.					
	This requirement is applicable in the			hin 703 MH	Hz and	
	733 MHz, otherwise the requiremen					
NOTE 36:	· · · · · · · · · · · · · · · · · · ·					
NOTE 37:	Void					
NOTE 38:	Void					
NOTE 39:	Void					
NOTE 40:	Void					
	Applicable for cases and when the lifequency is greater than or equal to bandwidth, and when the lower edg greater than or equal to 1440 MHz	o 1427 MHz + the channel B ie of the assigned NR UL cha for 15 and 20 MHz bandwidt	W assigned fo annel bandwid h.	or 5 and 10 th frequenc	MHz cy is	
NOTE 42:	Applicable for 5 MHz bandwidth, an bandwidth frequency is less than or the upper edge of the assigned NR 1463.8 MHz for 15 MHz bandwidth, bandwidth frequency is less than or This requirement is applicable for N	d when the upper edge of the equal to 1467 MHz assigne UL channel bandwidth frequand when the upper edge of equal to 1460.8 MHz for 20	e assigned NF d for 10 MHz b lency is less th f the assigned MHz bandwid	eandwidth, nan or equa NR UL cha th.	and when al to annel	

NOTE: To simplify Table 6.5.3.2-1, E-UTRA band numbers are listed for bands which are specified only for E-UTRA operation or both E-UTRA and NR operation. NR band numbers are listed for bands which are specified only for NR operation.

6.5.3.3 Additional spurious emissions

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5.3.3.1 Requirement for network signalling value "NS_04"

When "NS 04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.1-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.1-1: Additional requirements for "NS_04"

Frequency range (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 10, 15, 20, 30, 40, 50, 60, 80, 90, 100 MHz	Measurement bandwidth
2495 ≤ f < 2496	-13	1 % of Channel BW
2490.5 ≤ f < 2495	-13	1 MHz
0.009 < f < 2490.5	-25	1 MHz

6.5.3.3.2 Requirement for network signalling value "NS_17"

When "NS_17" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.2-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.2-1: Additional requirements for "NS_17"

Frequency range (MHz)	range Spectrum emission limit (dBm) (MHz) 5, 10		NOTE			
470 ≤ f ≤ 710	-26.2	6 MHz	1			
	NOTE 1: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.					

6.5.3.3.3 Requirement for network signalling value "NS_18"

When "NS_18" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3. 3-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3-1: Additional requirements for "NS_18"

Frequency range (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15, 20, 30	Measurement bandwidth	
692-698	-26.2	6 MHz	

6.5.3.3.4 Requirement for network signalling value "NS_05"

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.4-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.4-1: Additional requirements for "NS_05"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15, 20	Measurement bandwidth	
1884.5 ≤ f ≤ 1915.7	-41	300 kHz	

6.5.3.3.5 Requirement for network signalling value "NS_43"

When "NS 43" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.5-1: Additional requirement for "NS_43"

Frequency range (MHz) (MHz) Channel bandwidth (MHz) / Spectrum emission limit (dBm) $5, 10, 15$ $60 \le f \le 890$ -40		Measurement bandwidth				
860 ≤ f ≤ 890	-40	1 MHz				
	NOTE 1: Applicable for 5 MHz and 15 MHz channel BW confined between 900 MHz and 915 MHz and					

6.5.3.3.6 Requirement for network signalling value "NS_37"

When "NS_37" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.6-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.6-1: Additional requirement for "NS_37"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15,20	Measurement bandwidth
1475.9 ≤ f ≤ 1510.9	-35	1 MHz

6.5.3.3.7 Requirement for network signalling value "NS_38"

When "NS_38" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.7-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.7-1: Additional requirements for "NS 38"

Frequency band (MHz)	• • • • • • • • • • • • • • • • • • • •			
	5, 10, 15, 20			
	5, 10, 15, 20			
1400 ≤ f ≤ 1427	-32	27 MHz		
NOTE 1: This requirement shall be verified with UE transmission power of 15 dBm.				

6.5.3.3.8 Requirement for network signalling value "NS_39"

When "NS_39" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.8-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.8-1: Additional requirements for "NS_39"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth
	5, 10, 15, 20	
1475 ≤ f ≤ 1488	-28	1 MHz

6.5.3.3.9 Requirement for network signalling value "NS 40"

When "NS_40" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.9-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.9-1: Additional requirements for NR channels assigned within 1427-1452 MHz for "NS 40"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5	Measurement bandwidth		
1400 ≤ f ≤ 1427	-32	27 MHz		
NOTE 1: This requirement shall be verified with UE transmission power of 15 dBm.				

6.5.3.3.10 Requirement for network signalling value "NS_41"

When "NS_41" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.10-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.10-1: Additional requirements for NR channels assigned within 1432-1517 MHz for "NS 41"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth		
	5, 10, 15, 20, 40, 50, 60			
1400 ≤ f ≤ 1427	-32	27 MHz		
NOTE 1: This requirement shall be verified with UE transmission power of 15 dBm.				

6.5.3.3.11 Requirement for network signalling value "NS_42"

When "NS_42" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.11-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.11-1: Additional requirements for NR channels assigned within 1432-1517 MHz for "NS 42"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15, 20, 40, 50, 60 MHz	Measurement bandwidth	
1518 ≤ f ≤ 1520	-0.8	1 MHz	
1520 < f ≤ 1559	-30	1 MHz	

6.5.3.3.12 Requirement for network signalling value "NS_21"

When "NS_21" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.12-1. These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.12-1: Additional requirements for "NS_21"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10	Measurement bandwidth
, ,	,	
2200 ≤ f < 2288	-40	1 MHz
2288 ≤ f < 2292	-37	1 MHz
2292 ≤ f < 2296	-31	1 MHz
2296 ≤ f < 2300	-25	1 MHz
2320 ≤ f < 2324	-25	1 MHz
2324 ≤ f < 2328	-31	1 MHz
2328 ≤ f < 2332	-37	1 MHz
2332 ≤ f ≤ 2395	-40	1 MHz

6.5.3.3.13 Requirement for network signalling value "NS_24"

When "NS 24" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.13-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.13-1: Additional requirements

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth		
	5 MHz, 10 MHz, 15 MHz, 20 MHz			
2010 ≤ f ≤ 2025	-50	1 MHz		
NOTE 1: This requirement applies at a frequency offset equal or larger than 5 MHz from the upper edge of the channel bandwidth, whenever these frequencies overlap with the specified frequency band.				

6.5.3.3.14 Requirement for network signalling value "NS_27"

When "NS 27" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.14-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.14-1: Additional requirements for "NS_27"

Frequency range (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15, 20, 40	Measurement bandwidth
9 kHz – 3530 MHz	-40	
3530 MHz - 3540 MHz	-25	1 MHz
3710 MHz – 3720 MHz	-25	I IVI□Z
3720 MHz – 12.75 GHz	-40	

6.5.3.3.15 Requirement for network signalling value "NS_47"

When "NS_47" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.15-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.15-1: Additional requirements for NR channels assigned within 2545 - 2575 MHz for "NS 47"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth
	30	
2530 ≤ f ≤ 2535	-25	1 MHz
2505 ≤ f ≤ 2530	-30	1 MHz

6.5.3.3.16 Requirement for network signalling value "NS_50"

When "NS_50" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.16-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.16-1: Additional requirements for "NS_50"

Protected band	and Frequency range (MHz)		Maximum Level (dBm)	MBW (MHz)	NOTE		
Frequency range	1805	-	1855	-40	1	1	
Frequency range	1855	-	1880	-15.5	5	1, 2, 3	
for 25MHz a NOTE 2: The requiren Table 6.6.3.	NOTE 1: This requirement is applicable for carriers with aggregated channel bandwidths confined in 1885-1920 MHz for 25MHz and 30MHz channel BWs and confined in 1880-1920 MHz for 40MHz channel BW. NOTE 2: The requirement also applies for the frequency ranges that are less than F _{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth. NOTE 3: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in						

6.5.3.3.17 Requirement for network signalled value "NS_12"

When "NS_12" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.17-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.17-1: Additional requirements NS_12

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth	
	5 MHz, 10 MHz		
806 ≤ f ≤ 813.5	-42	6.25 kHz	
NOTE 1: The require above 814	ment applies for E-UTRA carriers with lower char MHz.	nnel edge at or	
	ons measurement shall be sufficiently power aver viation < 0.5 dB.	aged to ensure a	

6.5.3.3.18 Requirement for network signalled value "NS_13"

When "NS_13" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.18-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.18-1: Additional requirements NS_13

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5 MHz	Measurement bandwidth			
806 ≤ f ≤ 816	-42	6.25 kHz			
NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 817 MHz.					
NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.					

6.5.3.3.19 Requirement for network signalled value "NS_14"

When "NS_13" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.19-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.19-1: Additional requirements NS_14

Frequency band	Channel bandwidth /	Measurement
(MHz)	Spectrum emission limit	bandwidth
, ,	(dBm)	
	5 MHz. 10 MHz. 15 MHz. 20MHz	

806 ≤ f ≤ 816		-42	6.25 kHz
NOTE 1:	nnel edge at or		
	above 817 MH	Z.	
NOTE 2:	The emissions	measurement shall be sufficiently power aver	aged to ensure a
	standard devia	tion < 0.5 dB	

6.5.3.3.20 Requirement for network signalled value "NS_15"

When "NS_13" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.20-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.20-1: Additional requirements NS_15

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5 MHz, 10 MHz, 15 MHz, 20 MHz	Measurement bandwidth	
851 ≤ f ≤ 859	-53	6.25 kHz	
NOTE 1: The emissions measurement shall be sufficiently power averaged to ensure a			

6.5.3.3.21 Requirement for network signalled value "NS_45"

When "NS_45" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Tables 6.5.3.3.17-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.17-1: Additional requirements

Frequency band (MHz)	Channel b Spectrum limit (Measurement bandwidth	
(<u>-</u>	5 MHz	10 MHz	banaman.
0.009 < f ≤ 2473.5	-25	-25	1 MHz
2473.5 < f ≤ 2477.5	-25	-13	1 MHz
2477.5 < f ≤ 2478.5	-13	-13	1 MHz
2478.5< f ≤ 2483.5	-10	-10	1 MHz
2495 ≤ f < 2496	-13	-13	1% of Channel Bandwidth
2496 ≤ f < 2501	-13	-13	1 MHz
2501 < f ≤ 2505	-25	-13	1 MHz
2505 ≤ f ≤ 5 th harmonic of the upper frequency edge of the UL operating band	-25	-25	1 MHz

6.5.3.3.22 Requirement for network signalled values "NS_48" and "NS_51"

When "NS_48" or "NS_51" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.22-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.22-1: Additional requirements for "NS_48"

Protected band	Frequen	cy rai	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
E-UTRA band 34 – NR band n34	F _{DL_low}	-	F_{DL_high}	-50	1	
Frequency range	1900	-	1915	-15.5	5	1
Frequency range	1915	-	1920	+1.6	5	1
NOTE 1: For these adjacent hands, the emission limit could imply risk of harmful interference to LIE(s) operating in						

NOTE 1: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.5.3.3.23 Requirement for network signalled value "NS_49"

When "NS_49" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.23-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.23-1: Additional requirements for "NS 49"

Protected band	Frequen	cy ra	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
E-UTRA band 34 - NR band n34	F _{DL_low}	-	F _{DL_high}	-50	1	
Frequency range	1880	-	1895	-40	1	
Frequency range	1895		1915	-15.5	5	1
Frequency range	1915	-	1920	1.6	5	1

NOTE 1: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.5.3.3.24 Requirement for network signalled value "NS_44"

When "NS_44" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.24-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.24-1: Additional requirements for "NS_44"

Protected band	Frequency range (MHz)		ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
Frequency range	2620	-	2645	-15.5	5	1, 2
Frequency range	2645	-	2690	-40	1	1

NOTE 1: This requirement is applicable for carriers confined in 2570-2615 MHz.

NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.5.4 Transmit intermodulation

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

UE transmit intermodulation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each transmitter antenna port with the other antenna port(s) if any terminated. Both the wanted signal power and the intermodulation product power are measured through NR rectangular filter with measurement bandwidth shown in Table 6.5.4-1.

The requirement of transmit intermodulation is specified in Table 6.5.4-1.

Table 6.5.4-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW	Channel	
Interference signal frequency offset from channel center	BW _{Channel}	2*BWchannel	
Interference CW signal level	-40 dBc		
Intermodulation product	< -29 dBc	< -35 dBc	
Measurement bandwidth	The maximum transmission bandwidth configuration among the different SCS's for the channel BW as defined in Table 6.5.2.4.1-1		
Measurement offset from channel center	BW _{Channel} and 2*BW _{Channel}	2*BWchannel and 4*BWchannel	

6.5A Output RF spectrum emissions for CA

For inter-band carrier aggregation with one uplink carrier assigned to one NR band, the output RF spectrum emissions requirements in clause 6.5 apply.

6.5A.1 Occupied bandwidth for CA

6.5A.1.1 Void

6.5A.1.2 Void

6.5A.1.3 Occupied bandwidth for Inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the occupied bandwidth is defined per component carrier. Occupied bandwidth is the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on assigned channel bandwidth on the component carrier. The occupied bandwidth shall be less than the channel bandwidth specified in Table 6.5.1-1.

6.5A.2 Out of band emission for CA

6.5A.2.1 General

This clause contains requirements for out of band emissions for UE configured of carrier aggregation.

6.5A.2.2 Spectrum emission mask

6.5A.2.2.1 Void

6.5A.2.2.2 Void

6.5A.2.2.3 Spectrum emission mask for Inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the spectrum emission mask of the UE is defined per component carrier while both component carriers are active and the requirements are specified in clauses 6.5.2.1 and 6.5.2.2. If for some frequency spectrum emission masks of component carriers overlap then spectrum emission mask allowing higher power spectral density applies for that frequency. If for some frequency a component carrier spectrum emission mask overlaps with the channel bandwidth of another component carrier, then the emission mask does not apply for that frequency.

6.5.A.2.2.4 Spectrum emission mask for intra-band contiguous C

For intra-band contiguous carrier aggregation the spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the aggregated channel bandwidth. For intra-band contiguous carrier aggregation, the power of any UE emission shall not exceed the levels specified in Table 6.5A.2.2.43-1 for the specified channel bandwidth.

Table 6.5A.2.2.4-1: General NR CA spectrum emission mask

Δf _{00В} (MHz)	Spectrum emission limit(dBm)	MBW(MHz)
± 0 - 1	-13	Min(0.01*BW _{channel_CA} , 0.4)
±1-5	-10	1MHz
± 5 – BW _{channel_CA}	-13	1MHz
±BW _{channel_CA} - BW _{channel_CA} +5	-25	1MHz

6.5A.2.3	Additional spectrum emission mask
0.07 (12.0	, taditional operation of modern mark
6.5A.2.3.1	Void
6.5A.2.3.2	Void
6.5A.2.3.3	Additional spectrum emission mask for Inter-band CA
6.5A.2.4	Adjacent channel leakage ratio
6.5A.2.4.1	NR ACLR
6.5A.2.4.1.1	Void
6.5A.2.4.1.2	Void
6.5A.2.4.1.3	NR ACLR for Inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the NR Adjacent Channel Leakage power Ratio (NRACLR) is defined per component carrier while both component carriers are active and the requirement is specified in clause 6.5.2.4.1.

6.5A.2.4.1.4 NR ACLR for intra-band contiguous CA

For intra-band contiguous carrier aggregation the carrier aggregation the Adjacent Channel Leakage power Ratio is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent aggregated channel bandwidth at nominal channel spacing. The assigned aggregated channel bandwidth power and adjacent aggregated channel bandwidth power are measured with rectangular filters with measurement bandwidths specified in Table 6.5A.2.4.1.3-1. If the measured adjacent channel power is greater than –50dBm then the NR_{ACLR} shall be higher than the value specified in Table 6.5A.2.4.1.3-1.

Table 6.5A.2.4.1.4-1: General requirements for intra-band contiguous CA ACLR

	ACLR / Measurement bandwidth					
CA ACLR	30 dB					
CA Measurement bandwidth (NOTE 1)	Nominal channel space+MBW _{ACLR,low} /2+ MBW _{ACLR,high} /2					
Adjacent channel centre frequency offset (in MHz)	+ BWchannel_CA / - BWchannel_CA					
Difference between ACLR MBW center and Fc,low	MBW _{shift} = (MBW _{ACLR_CA} -MBW _{ACLR,low})/2					
NOTE 1: MBW _{ACLR,low} and MBW _{ACLR,high} are the single-channel ACLR measurement bandwidths specified for channel bandwidths BW _{channel(low)} and BW _{channel(high)} in 6.5.2.4.1, respectively.						

6.5A.2.4.2 UTRA ACLR

6.5A.2.4.2.1 Void

6.5A.2.4.2.2 Void

6.5A.2.4.2.3 UTRA ACLR for Inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the UTRA Adjacent Channel Leakage power Ratio (UTRAACLR) is defined per component carrier while both component carrier are active and the requirement is specified in clause 6.5.2.4.2.

6.5A.3 Spurious emission for CA

6.5A.3.1 General spurious emissions

For inter-band carrier aggregation with uplink assigned to two NR bands, the spurious emission requirement Table 6.5.3.1-2 apply for the frequency ranges that are more than F_{OOB} as defined in Table 6.5.3.1-1 away from edges of the assigned channel bandwidth on a component carrier. If for some frequency a spurious emission requirement of individual component carrier overlaps with the spectrum emission mask or channel bandwidth of another component carrier then it does not apply.

NOTE: For inter-band carrier aggregation with uplink assigned to two NR bands the requirements in Table 6.5.3.1-2 could be verified by measuring spurious emissions at the specific frequencies where second and third order intermodulation products generated by the two transmitted carriers can occur; in that case, the requirements for remaining applicable frequencies in Table 6.5.3.1-2 would be considered to be verified by the measurements verifying the one uplink inter-band CA spurious emission requirement.

For intra-band contiguous carrier aggregation the spurious emission limits apply for the frequency ranges that are more than FOOB (MHz) in Table 6.5A.3.1-1 from the edge of the aggregated channel bandwidth. For frequencies $\Delta fOOB$ greater than FOOB as specified in Table 6.5A.3.1-1 the spurious emission requirements in Table 6.5.3.1-2 are applicable.

Table 6.5A.3.1-1: Boundary between out of band and spurious emission domain for intra-band contiguous carrier aggregation

Aggregated Channel bandwidth	OOB boundary F _{OOB} (MHz)
BW _{Channel_CA}	BWchannel_ca + 5

6.5A.3.2 Spurious emissions for UE co-existence

6.5A.3.2.1 Void

6.5A.3.2.2 Void

6.5A.3.2.3 Spurious emissions for UE co-existence for Inter-band CA

For inter-band carrier aggregation with the uplink assigned to two NR bands, the requirements in Table 6.5A.3.2.3-1 apply on each component carrier with all component carriers are active.

NOTE: For inter-band carrier aggregation with uplink assigned to two NR bands the requirements in Table 6.5A.3.2.3-1 could be verified by measuring spurious emissions at the specific frequencies where second and third order intermodulation products generated by the two transmitted carriers can occur; in that case, the requirements for remaining applicable frequencies in Table 6.5A.3.2.3-1 would be considered to be verified by the measurements verifying the one uplink inter-band CA UE to UE co-existence requirements.

Table 6.5A.3.2.3-1: Requirements for uplink inter-band carrier aggregation (two bands)

NR CA	Spurious emission										
combination	Protected Band			ge (MHz)	Maximum Level	MBW (MHz)	NOTE				
CA_n1-n3	E-UTRA Band 1, 5, 7, 8, 11,				(dBm)						
OA_III-II3	18, 19, 20, 21, 26, 27, 28, 31, 32, 38, 40, 41, 43, 44, 50, 51,	F _{DL low}	_	F _{DL high}	-50	1					
	65, 67, 68, 69, 72, 73, 74, 75, 76 NR Band n79	. 52_0		- 52_mgn		•					
	E-UTRA band 3, 34	F _{DL_low}	-	F _{DL_high}	-50	1	4				
	E-UTRA band 22, 42, 52				-50	1	2				
	NR Band n77, n78	F _{DL_low}	-	F _{DL_high}							
	Frequency range	1884.5	-	1915.7	-41 -40	0.3	17				
	Frequency range Frequency range	1880 1895	-	1895 1915	- 4 0 -15.5	<u>1</u> 5	4,6 4, 6, 7				
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7				
CA_n1-n7	E-UTRA Band 1, 5, 7, 8, 20,	1010		1020	11.0		1, 0, 7				
	22, 26, 27, 28, 31,32, 40, 42,										
	43, 50, 51, 52, 65, 67, 68, 72,	F_{DL_low}	-	F _{DL_high}	-50	1					
	74, 75, 76										
	NR Band n78, n79	E _e		C ·	50	4	2				
	band n77 band 3, 34	F _{DL_low}	-	F _{DL_high}	-50 -50	<u>1</u> 1	2 4				
	Frequency range	F _{DL_low} 1880	-	F _{DL_high}	-40	1	4, 6				
	Frequency range	1895		1915	-15.5	5	4. 7, 6				
	Frequency range	1915		1920	+1.6	5	4. 7, 6				
	Frequency range	2570	-	2575	+1.6	5	4, 7, 18				
	Frequency range	2575	-	2595	-15.5	5	4, 7, 18				
	Frequency range	2595	-	2620	-40	1	4, 18				
CA_n1-n8	E-UTRA Band 20, 28, 31, 32, 38, 40, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1					
	E-UTRA Band 3, 7, 22, 41, 42, 43 NR Band n77, n78, n79	F _{DL_low}	-	F _{DL_high}	-50	1	2				
	E-UTRA Band 1, 8, 34	F_{DL_low}	-	F _{DL_high}	-50	1	4				
	E-UTRA Band 11, 21	F_{DL_low}	-	F_{DL_high}	-50	1	5				
	Frequency range	1884.5	-	1915.7	-41	0.3	3				
	Frequency range	1880	-	1895	-40	1	4, 6				
	Frequency range	1895	-	1915	-15.5	5	4, 6, 7				
CA n1 n20	Frequency range E-UTRA Band 5, 7, 8, 18, 19,	1915	-	1920	+1.6	5	4, 6, 7				
CA_n1-n28	20, 26, 27, 31, 32, 38, 40, 41, 50, 51, 72, 74	F_{DL_low}	-	F _{DL_high}	-50	1					
	E-UTRA Band 42, 43, 75, 76 NR band n78	F_{DL_low}	-	F _{DL_high}	-50	1	2				
	E-UTRA Band 3, 34	F _{DL_low}	-	F _{DL_high}	-50	1	4				
	E-UTRA Band 11, 21	F _{DL_low}	-	FDL_high	-50	1	11, 15				
	E-UTRA Band 1, 65	F _{DL_low}	-	F _{DL_high}	-50	1	11, 12				
	Frequency range	470 470	-	694 710	-42 -26.2	<u>8</u> 6	4, 14 15				
	Frequency range Frequency range	758	-	773	-30	1	4				
	Frequency range	773	-	803	-50	1	-				
	Frequency range	662	-	694	-26.2	6	4				
	Frequency range	1880	-	1895	-40	1	4, 6				
	Frequency range	1895	-	1915	-15.5	5	4, 6, 7				
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7				
	Frequency range	1839.9	-	1879.9	-50	1	4				
	Frequency range	1884.5	-	1915.7	-41	0.3	11, 17				
CA_n1-n40	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72,	F_{DL_low}	-	F _{DL_high}	-50	1					
	73, 74, 75, 76										
	Band 3, 34	F_{DL_low}	-	F _{DL_high}	-50	1	4				

	Frequency range	1880		1895	-40	1	4, 14
	Frequency range	1895		1915	-15.5	5	4, 7, 14
	Frequency range	1915		1920	+1.6	5	4, 7, 14
CA_n1-n41	E-UTRA Band 1, 3, 5, 8, 26, 27, 28, 42, 44, 45, 50, 51, 52, 65, 73, 74 NR Band n78	F _{DL_low}	-	F _{DL_high}	-50	1	, ,
	E-UTRA band 34	F _{DL_low}	-	F _{DL_high}	-50	1	4
	NR Band n77, n79	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	10
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 10
	Frequency range	1880	-	1895	-40	1	4,6
	Frequency range	1895	-	1915	-15.5	5 5	4, 6, 7
CA_n1-n78	Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34,	1915 F _{DL_low}	-	1920 F _{DL_high}	+1.6 -50	1	4, 6, 7
	40, 41, 65	4000		4005	40		4.0
	Frequency range	1880	-	1895	-40	1	4, 6
	Frequency range	1895	-	1915	-15.5	5	4, 6, 7
CA_n1-n79	Frequency range E-UTRA Band 1, 3, 5, 7, 8,	1915	-	1920	+1.6	5	4, 6, 7
CA_III-II/9	11, 18, 19, 21, 26, 28, 34, 40, 41, 42, 65	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1880	-	1895	-40	1	4, 6
	Frequency range	1895	-	1915	-15.5	5	4, 6, 7
04 0 5	Frequency range	1915	-	1920	+1.6	5	4, 6, 7
CA_n2-n5	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 25, 26, 28, 29, 30, 42, 48, 50, 51, 53, 66, 70, 71, 74, 85,	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 41, 43, NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2
CA_n2-n48	E-UTRA Band 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 50, 51, 53, 66, 70, 71, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
CA_n2-n77	E-UTRA Band 4, 5, 12, 13, 14, 17, 26, 29, 30, 41, 65, 66, 70, 71	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 2, 25	FDL_low	-	FDL_high	-50	1	2
CA_n2-n78	E-UTRA Band 5, 7, 12, 13, 26, 28, 41, 66	F _{DL_low}	-	F _{DL_high}	-50	1	
04 0 7	E-UTRA Band 2, 25	F _{DL_low}	-	F _{DL_high}	-50	1	4
CA_n3-n7	E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 40, 43, 44, 50, 51, 65, 67, 72, 74, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 3	F _{DL_low}	-	F _{DL_high}	-50	1	4
	E-UTRA band 22, 42, 52 NR-band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	2570	-	2575	+1.6	5 F	4, 7, 18
	Frequency range	2575	-	2595 2620	-15.5 -40	5 1	4, 7, 18
CA_n3-n8	Frequency range E-UTRA Band 1, 20, 28, 31,	2595	-	2020	-40	1	4, 18
CA_113-110	32, 33, 34, 38, 39, 40, 44, 50, 51, 65, 67, 72, 73, 74, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 3, 8	F _{DL_low}	-	F _{DL_high}	-50	1	2, 4
	E-UTRA band 11, 21 E-UTRA band 7, 22, 41, 42, 43, 52	F _{DL_low}	-	F _{DL_high}	-50 -50	1	2
	NR Band n77, n78, n79	4004 =		4015		2.5	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n3-n38	Frequency range E-UTRA Band 1, 5, 8, 20, 27,	860	-	890	-40	1	4, 5
	28, 31, 32, 33, 34, 40, 43, 50, 51, 65, 67, 68, 72, 74, 75, 76	F _{DL_low}	-	FDL_high	-50	1	4.5
	E-UTRA band 3	F _{DL_low}		F _{DL_high}	-50	1	15

	TELITRAL 1.00 40 50	_	1	-	50	1 4	
	E-UTRA band 22, 42, 52	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	13
	Frequency range	2620	-	2645	-15.5	5	15, 22, 26
04 0 00	Frequency range	2645	-	2690	-40	1	15, 22
CA_n3-n28	E-UTRA Band 5, 7, 8, 18, 19, 20, 26, 27, 31, 32, 38, 40, 41, 50, 51, 72, 74	F _{DL_low}	ı	F _{DL_high}	-50	1	
	E-UTRA Band 42, 43, 75, 76 NR band n78	F_{DL_low}	1	F_{DL_high}	-50	1	2
	E-UTRA Band 3, 34	F _{DL low}	-	F _{DL_high}	-50	1	4
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	11, 15
	E-UTRA Band 1, 65	F_{DL_low}	-	F_{DL_high}	-50	1	11, 12
	Frequency range	470	-	694	-42	8	4, 14
	Frequency range	470	-	710	-26.2	6	15
	Frequency range	758	-	773	-30	1	4
	Frequency range	773	-	803	-50	1	
	Frequency range	662	-	694	-26.2	6	4
	Frequency range	1880	-	1895	-40	1	4, 6
	Frequency range	1895	-	1915	-15.5	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7
	Frequency range	1839.9	-	1879.9	-50	1	4
	Frequency range	1884.5	-	1915.7	-41	0.3	11, 17
CA_n5-n66	E-UTRA Band 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 17, 24, 25, 28, 29, 30, 34, 38, 40, 43, 45, 50, 51, 65, 66, 70, 71, 85	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 26	859	-	869	-27	1	
	E-UTRA Band 41, 42, 48, 52	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 18, 19	F _{DL_low}	-	F _{DL_high}	-40	1	
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n5-n77	E-UTRA Band 2, 4, 12, 13, 14, 17, 25, 26, 28, 29, 30, 65, 66, 70, 71	F _{DL_low}		F _{DL_high}	-50	1	
	E-UTRA Band 41	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n3-n40	E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76	$F_{DL_{Llow}}$	ı	F_{DL_high}	-50	1	
	E-UTRA Band 3	F_{DL_low}	ı	F_{DL_high}	-50	1	4
	UTRA Band 22, 42, 52 NR Band n77, n78, n79	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	13
CA_n3-n41	E-UTRA Band 1, 5, 8, 20, 26, 27, 28, 34, 39, 40, 44, 45, 50, 51, 65, 73, 74	F _{DL_low}		F _{DL_high}	-50	1	
	E-UTRA Band 3	F _{DL_low}	-	F _{DL_high}	-50	1	4
	E-UTRA Band 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	9, 10
	E-UTRA Band 42, NR Band n77, n78, n79	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n3-n77	E-UTRA Band 1, 3, 5, 7, 8,	F _{DL_low}	-	F _{DL_high}	-50	1	
	11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65			-		·	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n3-n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n3-n79	E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1	
i	E-UTRA Band 42	F _{DL_low}	-	F _{DL_high}	-50	1	2
						0.3	3

04 5 70	TELITE A. D		1	<u> </u>			I
CA_n5-n78	E-UTRA Band 1, 2, 3, 4, 5, 7,						
	8, 10, 12, 13, 14, 17, 24, 25,	F_{DL_low}	-	F _{DL high}	-50	1	
	28, 29, 30, 31, 34, 38, 40, 45,	_		_ 0			
	65, 66, 70	050	-	000	07	4	
	E-UTRA Band 26	859 945	-	869 960	-27 -50	1 1	
	Frequency range		-		-30 -41		3
	Frequency range	1884.5	-	1915.7		0.3	3
	Frequency range	2545 2595	1	2575	-50	-	
	Frequency range E-UTRA Band 41		-	2645	-50 -50	1 1	7
CA_n5-n79		F _{DL_low}	-	F_{DL_high}	-30	· '	/
CA_IIS-II/9	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 24, 25,						
	28, 29, 30, 31, 34, 38, 40, 42,	FDL low	_	F _{DL high}			
	43, 45, 48, 50, 51, 65, 66, 70,	I DL_IOW	_	I DL_nign			
	71, 73, 74, 85						
	E-UTRA Band 26	859	-	869	-27	1	
	E-UTRA Band 41, 52	F _{DL_low}	_	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n7-n25	E-UTRA Band 4, 5, 7, 10,	F _{DL_low}	-	F _{DL_high}	-50	1	
070	12, 13, 14, 17, 26, 27,	· DL_IOW		· DL_IIIgII			
	28, 29, 30, 42, 66, 85						
	· ·						
	NR Band n78	- ·	-	E	50	1	2
	E-UTRA Band 43	F _{DL_low}	-	F _{DL_high}	-50	1	4
	E-UTRA Band 2, 25	F _{DL_low} 2570	-	F _{DL_high} 2575	-50 1.6	5	4, 7, 18
	Frequency range			2575			
	Frequency range	2575	-		-15.5	5	4, 7, 18
CA_n7-n28	Frequency range	2595	-	2620	-40	1	4, 18
CA_117-1120	E-UTRA Band 2, 3, 5, 7, 8, 20, 26, 27, 31, 34, 40 72	F_{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 1, 4, 10, 42,						
	43, 50, 51, 65, 66, 74, 75, 76	F _{DL_low}	_	F _{DL_high}	-50	1	2
	NR band n78	L Dr low	-	□DL_nign	-30	'	
	E-UTRA Band n1	F _{DL_low}	_	F _{DL_high}	-50	1	11, 12
	Frequency range	758	_	773	-32	1	4
	Frequency range	773	-	803	-50	1	7
	Frequency range	2570	<u> </u>	2575	+1.6	5	4, 7, 18
	Frequency range	2575	<u> </u>	2595	-15.5	5	4, 7, 18
	Frequency range	2595	<u> </u>	2620	-40	1	4, 18
CA_n7-n66	E-UTRA Band 2, 4, 5, 7, 10,	2000		2020	10		1, 10
G/1_111 1100	12, 13, 14, 17, 26, 27, 28, 29,				-50	1	
	30, 43, 66, 71, , 85	F _{DL_low}	-	F _{DL_high}		-	
	E-UTRA Band 42	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	2570	-	2575	+1.6	5	4, 7, 18
	Frequency range	2575	-	2595	-15.5	5	4, 7, 18
	Frequency range	2595	-	2620	-40	1	4, 18
CA_n7-n78	E-UTRA Band 1, 2, 3, 4, 5, 7,		1				,
	8, 10, 11, 18, 19, 20, 21, 26,						
	27, 28, 31, 32, 33, 34, 40, 50,				-50	1	
	51, 65, 66, 67, 68, 72, 74, 75,						
	76	F_{DL_low}	-	F_{DL_high}		<u> </u>	
	Frequency range	2570		2575	+1.6	5	4, 7, 18
	Frequency range	2575	-	2595	-15.5	5	4, 7, 18
	Frequency range	2595	-	2620	-40	1	4, 18
CA_n8-n39	E-UTRA Band 1, 34, 40, 50,	F _{DL_low}	-	F _{DL_high}	-50	1	
	51, 74	i DL_IOW		ו טר_nign	-50	'	
	E-UTRA Band 22, 41, 42	F_{DL_low}	_	F _{DL_high}	-50	1	2
	NR Band n77, n78, n79			-			
	E-UTRA 8	F _{DL_low}	-	F _{DL_high}	-50	1	4
CA_n8-n40	E-UTRA Bands 1, 20, 28, 31,						
	32, 33, 34, 38, 39, 45, 50, 51,	F _{DL low}	_	F _{DL_high}	-50	1	
	65, 67, 68, 69, 72, 73, 74, 75,	· DL_IUW		· DL_IIIGII			
	76						
	UTRA Bands 3, 7, 22, 41, 42,						
	43, 52	F _{DL_low}	-	F _{DL_high}	-50	1	2
	NR Bands n77, n78, n79			_ 5			
i .	T .		i	ı		Ĭ.	Ī

	Dond 0	_			<u> </u>		
	Band 8	F _{DL_low}	-	F _{DL_high}	-50	1	4
	Frequency range	860	-	890	-40	1	4, 5
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 5
CA_n8-n41	E-UTRA Band 1, 28, 34, 39,	_					
		F_{DL_low}	-	F_{DL_high}	-50	1	
		F _{DL_low}	-	F _{DL_high}	-50	1	2
CA_n8-n78 CA_n8-n79 CA_n20-n28 CA_n20-n78 CA_n25-n41	E-UTRA band 11, 21	F_{DL_low}	-	F _{DL_high}	-50	1	5
	Frequency range	1884.5		1915.7	-41	0.3	3
CA_n8-n78	E-UTRA Band 1, 8, 20, 28,	_		_	50	4	
_	34, 39, 40, 65	FDL_low	-	□ DL_high	-50	1	
	E-UTRA Band 3, 7, 41	F _{DL low}	-	F _{DL high}	-50	1	2
			-		-50	1	5
			-			1	4,5
			-			0.3	3
CA n8-n79							
0/10/11/0		F_{DL_low}	-	F_{DL_high}	-50	1	
		En	_	En. E.E	-50	1	2
						1	5
			_				
			-			1	4, 5
	, , ,	1884.5	-	1915./	-41	0.3	3
CA n20-n28		FDL low	-	FDI high	-50	1	
0710	=	. 22_10#		· DL_mgn			
CA_n20-n78		FDL low	_	FDL bigh	-50	1	
		F _{DL_low}	•			1	4
		F _{DL_low}	-	F _{DL_high}	-50	1	2
CA_n25-n41							
	, 14, 17, 24, 26, 27, 28, 29,	F_{DL_low}	-	F_DL_high	-50	1	
	30, 42, 48, 66, 70, 71,85						
	E-UTRA Band 2, 25	F _{DL_low}	ı	F _{DL_high}	-50	1	4
	NR Band n77	F_{DL_low}	-	F_{DL_high}	-50	1	2
CA_n25-n66	E-UTRA Band 4, 5, 7, 10, 12,						
	13, 14, 17, 24, 26, 27, 28, 29,						
	30, 38, 41, 50, 51, 53, 66, 70,	F_{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n78						
	E-UTRA Band 42, 43, 48,	_		_	=0	_	
		FDL_low	-	►DL_high	-50	1	2
		FDL low	-	FDL high	-50	1	4
CA_n25-n71		· DL_IOW		· DE_High		-	-
071_11_0 111 1		FDL low	_	FDL bigh	-50	1	
		I DL_IOW		I DE_High	00		
		Fp	_	For high	-50	1	2
						1	4
		_				1	4
CA_n25-n78	40, 45, 50, 51, 65, 73, 74, NR band n77, n78, n79 E-UTRA band 3, 42, 52 FDL_low - FDL_high -50 Frequency range 1884.5 - 1915.7 -41 (9 19 19 19 19 19 19 1	1	+				
CA_1123-1176		F_DL_low	-	F _{DL_high}	-50	1	
		Es			5 0	4	A
CA = 00 = 40		►DL_low	-	□ DL_high	-50	1	4
CA_n28-n40		FDL low	-	F _{DL hiah}	-50	1	
		=		3			
		_		_	=0		
		FDL_low	-	►DL_high	-50	1	2
04 00 11							
CA_n28-n41		FDL low	_	F _{DL high}	-50	1	
				9			
		_		_			
		F _{DL_low}	-	FDL_high	-50	1	2
	E-UTRA Band 18, 19		-	FDL_high		1	10
	Frequency range	470	-	694		8	4, 14
	Frequency range	470	-	710	-26.2	6	13
	Frequency range	662	-	694		6	4
		758	-	773	-32	1	4

	Frequency range	773	_	803	-50	1	
	Frequency range	1884.5	_	1915.7	-41	0.3	3, 10, 11
CA_n28-n50	E-UTRA Band 2, 3, 5, 7, 8,	1004.5	_	1913.7	-41	0.0	3, 10, 11
OA_1120-1130	18, 19, 25, 26, 27, 31, 34, 38,						
	39, 40, 41, 48, 52, 72	F_DL_low	-	F _{DL_high}	-50	1	
	NR Band n79						
	E-UTRA Band 4, 10, 22, 42,						
	43, 52, 65, 66, 73	F _{DL} low	_	FDL high	-50	1	2
	NR Band n77, n78	i DL_low		· DL_nigh	00		_
	E-UTRA Band 1	F _{DL_low}	-	F _{DL_high}	-50	1	10, 11
	Frequency range	470	_	694	-42	8	4, 14
	Frequency range	470	-	710	-26.2	6	13
	Frequency range	662	-	694	-26.2	6	4
	Frequency range	758	_	773	-32	1	4
	Frequency range	773	_	803	-50	1	·
	Frequency range	1884.5	_	1915.7	-41	0.3	3, 11
CA_n28-n77	E-UTRA Band 3, 5, 7, 8, 18,	1004.0		1010.7		0.0	0, 11
O/_1120 1111	19, 20, 26, 34, 39, 40, 41	F_{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 65	F _{DL} low	_	F _{DL_high}	-50	1	
	E-UTRA Band 1	FDL low	_	F _{DL_high}	-50	1	11
	E-UTRA Band 11, 21	F _{DL_low}	_	FDL_high	-50	1	11
	Frequency range	758	_	773	-32	1	- ''
	Frequency range	773		803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 11
CA_n28-n78	E-UTRA Band 3, 5, 7, 8, 18,	1004.5	_	1913.1	-41	0.5	3, 11
OA_1120-1170	19, 20, 26, 34, 39, 40, 41	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 65	F _{DL} low	-	F _{DL_high}	-50	1	
	E-UTRA Band 1	F _{DL_low}	-	FDL_high	-50	1	11
	E-UTRA Band 11, 21	F _{DL_low}	_	FDL_high	-50	1	11
	Frequency range	758		773	-32	1	- ''
	Frequency range	773	_	803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 11
CA_n38-n66	E-UTRA Band 2, 4, 5, 10, 12,		-		-50	1	3, 11
CA_1130-1100	13, 14, 17, 25, 27, 28, 29, 30,	$F_{DL_{low}}$	_	F _{DL_high}	-30	'	
	43, 50, 51, 66, 74, 85						
	E-UTRA Band 42	F _{DL_low}	_	F _{DL_high}	-50	1	2
	Frequency range	2620	-	2645	-15.5	5	5, 7, 19
	Frequency range	2645	-	2690	-40	1	5, 19,
CA_n38-n78	E-UTRA Band 1, 3, 5, 8, 20,	2070		2000			5, 15,
CA_1130-1170	28, 34, 40, 65,	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	_	1915.7	-41	0.3	3
	Frequency range	2620	-	2645	-15.5	5	15, 22, 26
	Frequency range	2645	_	2690	-40	1	15, 22
CA_n39-n40	E-UTRA Band 1, 8, 22, 26,	2040		2000	+0	'	10, 22
O/ (_1100=11 1 0	28, 34, 41, 42, 44, 45, 50, 51,	F _{DL_low}	_	F _{DL_high}	-50	1	
	52, 73, 74	I DL_IOW	_	i DL_nign	30	'	
	NR Band n77, n78, n79	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1805		1855	-40	1	8
	Frequency range	1855		1880	-15.5	5	4, 7, 8
	i roquonoy range	1000		1000	10.0	J	7, 1, 0

CA = 20 = 44	E LITDA Donal 4 0 00 00		1			1	I
CA_n39-n41	E-UTRA Band 1, 8, 26, 28,	F_DL_low	-	F _{DL_high}	-50	1	
	34, 40, 42, 44, 45, 50, 51, 74 NR Band n77, n78, n79			F _{DL high}	-50	1	2
		F _{DL_low}	-		-50 -40	1	4
	Frequency range	1805		1855		5	
CA 20 270	Frequency range	1855	-	1880	-15.5	5	4, 7, 8
CA_n39-n79	E-UTRA Band 1, 8, 28, 34, 40, 41, 44, 45	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n78	1005		1055	40	1	4.0
	Frequency range	1805	-	1855	-40	1	4, 8
CA_n40-n41	Frequency range	1855	-	1880	-15.5	5	4, 7, 8
CA_1140-1141	E-UTRA Band 1, 3, 5, 8, 26, 27, 28, 34, 39, 42, 44, 45, 50, 51, 65, 73, 74,	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n77, n78	F		Г	F0	1	2
	NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	2 10
CA = 40 = 70	Frequency range	1884.5	-	1915.7	-41	0.3	3, 10
CA_n40-n78	UTRA Band 1, 3, 5, 7, 8, 20, 22, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 42, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76	F _{DL_low}	-	F_{DL_high}	-50	1	
	NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	2
CA_n40-n79	E-UTRA Band 1, 3, 5, 8, 28, 34, 39, 41, 42, 65,	F _{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 10
CA_n41-n50	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 20, 25, 26, 27, 28, 29, 30, 31, 34, 39, 40, 42, 43, 44, 48, 52, 65, 66, 67, 68, 70, 71, 73, 85 NR Band n77, n78	F_{DL_low}	-	F_{DL_high}	-50	1	
	NR Band n79	F _{DL_low}	_	F _{DL_high}	-50	1	2
CA_n41-n66	E-UTRA Band 2, 4, 5, 10, 12,	I DL_IOW		I DL_nign	- 30		
6/_\!\4\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 50, 51, 66, 70, 71, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 42, 48	F _{DL_low}	-	F _{DL_high}	-50	1	2
CA_n41-n71	E-UTRA Band 4, 5, 12, 13, 14, 17, 24, 26, 30, 48, 66, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 2, 25, 70	F _{DL_low}	-	F _{DL_high}	-50	1	2
	NR Band n71	F _{DL_low}	-	F _{DL_high}	-50	1	4
	E-UTRA Band 29	F _{DL_low}	-	F _{DL_high}	-38	1	4
CA_n41-n78	E-UTRA Band 1, 3, 5, 8, 26,	F _{DL_low}	_	F _{DL_high}	-50	1	
	28, 34, 39, 65	I DL_IOW	_	I DL_nign			
	E-UTRA Band 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	10
CA_n41-n79	E-UTRA Band 1, 3, 5, 8, 9, 11, 18, 19, 21, 28, 34, 40, 42, 44, 45, 65	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n48-n66	E-UTRA Band 2, 4, 5, 7, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 41, 50, 51, 66, 70, 71, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
CA_n50-n78	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 17, 20, 25, 26, 27, 28, 29, 31, 33, 34, 38, 39, 40, 41, 44, 65, 66, 67, 68, 69, 72, 73, 85 NR Band n79	F _{DL_low}	-	FDL_high	-50	1	
CA_n66-n71	E-UTRA Band 4, 5, 7, 10, 12, 13, 14, 17, 26, 27, 30, 43, 50, 51, 53, 66, 70, 71, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 2, 25, 41, 42, 48, NR Band n77	F_{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 29	F _{DL_low}	-	F _{DL_high}	-38	1	4
<u> </u>	_ = 0.1101. Dana 20	· DL_IUW	1	- Pr_nign		· · · · · · · · · · · · · · · · · · ·	<u>'</u>

	E-UTRA Band 71	F _{DL_low}	-	F _{DL_high}	-50	1	4
CA_n66-n77	E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 26, 29, 30, 41, 65, 66, 70, 71	F _{DL_low}	-	F_{DL_high}	-50	1	
CA_n66-n78	E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 29, 26, 28, 41, 66, 71	F _{DL_low}	-	F _{DL_high}	-50	1	
CA_n70-n71	E-UTRA Band 4, 5, 7, 10, 12, 13, 14, 17, 26, 27, 29, 30, 48, 66, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 2, 25, 41, 70, NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 29	F _{DL_low}	-	F _{DL_high}	-38	1	4
	E-UTRA Band 71	F _{DL_low}	-	F _{DL_high}	-38	1	4
CA_n78-n92	E-UTRA Band 1, 3, 7, 8, 34, 40, 65	F_{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 20	F _{DL_low}	-	F_{DL_high}	-50	1	4
	E-UTRA Band 38, 69	F _{DL_low}	-	F _{DL_high}	-50	1	2

- NOTE 1: F_{DL_low} and F_{DL_high} refer to each frequency band specified in Table 5.2-1 in TS 38.101-1 or Table 5.5-1 in TS 36.101
- NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2 MHz + N x L_{CRB} x 180kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 3: Applicable when co-existence with PHS system operating in 1884.5 -1915.7 MHz
- NOTE 4: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.
- NOTE 5: This requirement is applicable only for the following cases: A: for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 902.5 MHz ≤ F_c < 907.5 MHz with an uplink transmission bandwidth less than or equal to 20 RB; B: for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 907.5 MHz ≤ F_c ≤ 912.5 MHz without any restriction on uplink transmission bandwidth; D: for carriers of 10 MHz channel bandwidth when carrier centre frequency (F_c) is F_c = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RB_{start} > 3.
- NOTE 6: This requirement is applicable for any channel bandwidths within the range 1920 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 7: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 8: This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz (requirement for carriers with at least 1RB confined within 1880 1885 MHz is not specified). This requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for carriers of 15 MHz bandwidth when carrier center frequency is within the range 1892.5 1894.5 MHz and for carriers of 20 MHz bandwidth when carrier center frequency is within the range 1895 1903 MHz.
- NOTE 9: This requirement applies for 5, 10, 15 and 20 MHz NR channel bandwidth allocated within 1744.9 MHz and 1784.9 MHz.
- NOTE 10: This requirement applies when the NR carrier is confined within 2545 2575 MHz or 2595 2645vMHz and the channel bandwidth is 10 or 20 MHz.
- NOTE 11: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
- NOTE 12: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.1-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 13: This requirement is applicable for 5 and 10 MHz NR channel bandwidth allocated within 718 728 MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with RBstart > 1 and Rbstart < 48.
- NOTE 14: This requirement is applicable in the case of a 10 MHz NR carrier confined within 703 MHz and 733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.
- NOTE 15: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 17: Applicable when NS_05 in clause 6.6.3.3.1 is signalled by the network.
- NOTE 18: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 19: This requirement is applicable for power class 3 UE for any channel bandwidths within the range 2570 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For power class 2 UE for any channel bandwidths within the range 2570 2615 MHz, NS_44 shall apply. For power class 2 or 3 UE for carriers with channel bandwidth overlapping the frequency range 2615 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max.
 - NOTE: To simplify Table 6.5A.3.2.3-1, E-UTRA band numbers are listed for bands which are specified only for E-UTRA operation or both E-UTRA and NR operation. NR band numbers are listed for bands which are specified only for NR operation.

6.5A.3.2.4 Spurious emissions for UE co-existence for intra-band contiguous CA

This clause specifies the requirements for the specified intra-band contiguous carrier aggregation configurations for coexistence with protected bands, the requirements in Table 6.5A.3.2.4-1 apply.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5A.3.2.4-1: Requirements for uplink intra-band contiguous carrier aggregation

NR CA		Spurious emission											
combination	Protected Band			ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE						
CA_n7	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1							
	Frequency range	2570	-	2575	+1.6	5	1, 2, 3						
	Frequency range	2575	-	2595	-15.5	5	1, 2, 3						
	Frequency range	2595	-	2620	-40	1	1, 2						
CA_n41	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 34, 39, 42, 44, 45, 48, 50, 51, 52, 65, 66, 70, 71, 73, 74, 85, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1							
	NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	4						
	E-UTRA Band 9, 11, 18, 19, 21	F_{DL_low}	-	F_{DL_high}	-50	1	6						
	Frequency range	1884.5		1915.7	-41	0.3	5, 6						
CA_n48	E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 50, 51, 66, 70, 71, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1							
CA_n77	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1							
	Frequency range	1884.5	-	1915.7	-41	0.3	5						
CA_n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1							
	Frequency range	1884.5	-	1915.7	-41	0.3	5						
CA_n79	E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 42, 65	F _{DL_low}	-	F _{DL_high}	-50	1							
	Frequency range	1884.5	-	1915.7	-41	0.3	5						

- NOTE 1: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.
- NOTE 2: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 3: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 4: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2 MHz + N x L_{CRB} x RB_{size} kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 5: Applicable when co-existence with PHS system operating in 1884.5 1915.7 MHz.
- NOTE 6: This requirement applies when the NR carrier is confined within 2545 2575 MHz or 2595 2645 MHz and the channel bandwidth is 10 or 20 MHz

6.5.A.3.2.5 Spurious emissions for UE co-existence for intra-band contiguous CA

This clause specifies the requirements for the specified intra-band contiguous carrier aggregation configurations for coexistence with protected bands, the requirements in Table 6.5A.3.2.5-1 apply.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5A.3.2.5-1: Requirements for uplink intra-band contiguous carrier aggregation

NR CA	Spurious emission											
combination	Protected Band	Frequer	icy ran	ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE					
CA_n7	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1						
	Frequency range	2570	-	2575	+1.6	5	1, 2, 3					
	Frequency range	2575	-	2595	-15.5	5	1, 2, 3					
	Frequency range	2595	-	2620	-40	1	1, 2					
CA_n41	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 34, 39, 42, 44, 45, 48, 50, 51, 52, 65, 66, 70, 71, 73, 74, 85, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1						
	NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	4					
	E-UTRA Band 9, 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	6					
	Frequency range	1884.5		1915.7	-41	0.3	5, 6					
CA_n48	E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 50, 51, 66, 70, 71, 74, 85	F_{DL_low}	-	$F_{DL_{high}}$	-50	1						
CA_n77, CA_n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1						
	Frequency range	1884.5	-	1915.7	-41	0.3	5					

- NOTE 1: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.
- NOTE 2: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 3: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 4: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2 MHz + N x L_{CRB} x RB_{size} kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 5: Applicable when co-existence with PHS system operating in 1884.5 1915.7 MHz.
- NOTE 6: This requirement applies when the NR carrier is confined within 2545 2575 MHz or 2595 2645 MHz and the channel bandwidth is 10 or 20 MHz

6.5A.3.2.6 Transmit intermodulation for intra-band contiguous CA

For intra-band contiguous carrier aggregation the requirement of transmitting intermodulation is specified in Table 6.5A.3.2.6-1.

Table 6.5A.3.2.6-1: Transmit Intermodulation

CA bandwidth class(UL)	B and C							
Interference Signal Frequency Offset	BWChannel_CA	2*BWChannel_CA						
Interference CW Signal Level	-40dBc							
Intermodulation Product	-29dBc	-35dBc						
Measurement bandwidth (NOTE1)	space+ME	Nominal channel space+MBW _{ACLR,low} /2+ MBW _{ACLR,high} /2						
Measurement offset from channel center	BW _{Channel_CA} and 2*BW _{Channel_CA}	2*BW _{Channel_CA} and 4*BW _{Channel_CA}						
NOTE 1: MBW _{ACLR,low} and MBW _{ACLR,high} are the single- channel ACLR measurement bandwidths specified for								

channel bandwidths BWchannel(low) and BWchannel(high) in

6.5A.4 Transmit intermodulation for CA

6.5A.4.2.1 Void

6.5A.4.2.2 Void

6.5A.4.2.3 Transmit intermodulation for Inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the transmit intermodulation requirement is specified in Table 6.5.4-1 which shall apply on each component carrier with both component carriers active.

6.5B Output RF spectrum emissions for NR-DC

6.5.2.4.1, respectively.

For inter-band NR-DC with one uplink carrier assigned per NR band, the output RF spectrum emissions for the corresponding inter-band CA configuration as specified in subclause 6.5A applies.

6.5D Output RF spectrum emissions for UL MIMO

6.5D.1 Occupied bandwidth for UL MIMO

For UE supporting UL MIMO, the requirements for occupied bandwidth is specified at each transmit antenna connector. The occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the occupied bandwidth at each transmitter antenna shall be less than the channel bandwidth specified in table 6.5.1-1. The requirements shall be met with UL MIMO configurations described in clause 6.2D.1.

If UE is configured for transmission on single-antenna port, the requirements in clause 6.5.1 apply

6.5D.2 Out of band emission for UL MIMO

For UE supporting UL MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclasuse 6.5.2 apply to each transmit antenna connector. The requirements shall be met with UL MIMO configurations described in clause 6.2D.1.

If UE is configured for transmission on single-antenna port, the requirements in clause 6.5.2 apply.

6.5D.3 Spurious emission for UL MIMO

For UE supporting UL MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements specified in subclasuse 6.5.3 apply to each transmit antenna connector. The requirements shall be met with the UL MIMO configurations described in clause 6.2D.1.

If UE is configured for transmission on single-antenna port, the requirements in clause 6.5.3 apply.

6.5D.4 Transmit intermodulation for UL MIMO

For UE supporting UL MIMO, the transmit intermodulation requirements are specified at each transmit antenna connector and the wanted signal is defined as the sum of output power at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements specified in clause 6.5.4 apply to each transmit antenna connector. The requirements shall be met with the UL MIMO configurations described in clause 6.2D.1.

If UE is configured for transmission on single-antenna port, the requirements in clause 6.5.4 apply.

6.5E Output RF spectrum emissions for V2X

6.5E.1 Occupied bandwidth for V2X

6.5E.1.1 General

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands specified in Table Table 5.2E-1, the requirements in subclause 6.5.1 apply for NR V2X sidelink transmission.

For NR V2X UE with two transmit antenna connectors, the occupied bandwidth at each transmitter antenna shall be less than the channel bandwidth specified in table 6.5.1-1. The requirements shall be met with SL MIMO configurations described in clause 6.2D.1.

If V2X UE transmits on one antenna connector at a time, the requirements specified for single carrier shall apply to the active antenna connector.

6.5E.1.2 Occupied bandwidth for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 6.5.1 shall apply for the uplink in licensed band and the requirements specified in subclause 6.5E.1 shall apply for the sidelink in Band n47.

6.5E.2 Out of band emission for V2X

6.5E.2.1 General

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands specified in Table Table 5.2E-1, the requirements in subclause 6.5E.2 apply for NR V2X sidelink transmission.

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier shall apply to each transmit antenna connector. The requirements shall be met with SL MIMO configurations described in clause 6.2D.1.

6.5E.2.2 Spectrum emission mask

6.2E.2.2.1 General

For NR V2X UE, the existing NR general spectrum emission mask in subclause 6.5.2.2 applied for all supporting NR V2X channel bandwidths. The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth. For frequencies greater than (Δf_{OOB}), the power of any UE emission shall not exceed the levels specified in Table 6.5.2.2-1 for the specified channel bandwidth for NR V2X operating bands in Table 5.2E-1.

6.5E.2.2.2 Spectrum emission mask for V2X con-current operation

For the inter-band con-current NR V2X operation, the general/additional SEM requirements specified in subclause 6.5.2 shall apply for the uplink in licensed band and the general/additional SEM requirements specified in subclause 6.5E.2 shall apply for the sidelink in Band n47.

6.5E.2.3 Additional Spectrum emission mask

6.5E.2.3.1 Requirements for network signalled value "NS_33"

The additional spectrum mask in Table 6.5E.2.2.1-1 applies for NR V2X UE within 5 855 MHz to 5 950 MHz according to ETSI EN 302 571. Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_33" is indicated in the cell or pre-configured radio parameters, the power of any V2X UE emission shall not exceed the levels specified in Table 6.5E.2.2.1-1.

Spectrum emission limit (dBm EIRP)/ Channel bandwidth										
Δf _{OOB} (MHz)	10 MHz	Measurement bandwidth								
± 0-0.5	$[-13-12\left(\frac{ \Delta fOOB }{MHz}\right)]$	100 kHz								
± 0.5-5	$[-19 - \frac{16}{9} \left(\frac{ \Delta \text{fOOB} }{MHz} - 0.5 \right)]$	100 kHz								
± 5-10	$[-27 - 2(\Delta \text{fOOB} /_{MH_Z} - 5.0)]$	100 kHz								

Table 6.5E.2.2.1-1: Additional spectrum mask requirements for 10MHz channel bandwidth

- NOTE 1: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.
- NOTE 2: Additional SEM for NR V2X overrides any other requirements in frequency range 5855-5950MHz.
- NOTE 3: The EIRP requirement is converted to conducted requirement depend on the supported post antenna connector gain G_{post connector} declared by the UE following the principle described in annex I in [11].

6.5E.2.3.2 Requirements for network signalled value "NS_52"

The additional spectrum mask in Table 6.5E.2.2.2-1 applies for NR V2X UE within 5 765 MHz to 6 005 MHz according to FCC regualtion. Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_52" is indicated in the cell or pre-configured radio parameters, the power of any V2X UE emission shall not exceed the levels specified in Table 6.5E.2.3.2-1.

Table 6.5E.2.3.2-1: Additional spectrum mask requirements for 40MHz channel bandwidth (fc = 5885MHz)

Δf _{OOB} (MHz)	Emission Limit (dBm)	Measurement Bandwidth
±0-2	-32	100kHz
±2-10	-36	100kHz
±10-20	-38	100kHz
±20-40	-43	100kHz
±40-100	-50	100kHz

6.5E.2.4 Adjacent channel leakage ratio

6.5E.2.4.1 General

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

For NR V2X UE, the existing ACLR requirement for NR uplink transmission in subclause 6.5.2.4 are applied for NR V2X UE for NR V2X operating bands in 5.2E-1.

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier shall apply to each transmit antenna connector. The requirements shall be met with SL MIMO configurations described in clause 6.2D.1.

If V2X UE transmits on one antenna connector at a time, the requirements specified for single carrier shall apply to the active antenna connector.

6.5E.2.4.2 ACLR for V2X con-current operation

For the inter-band con-current NR V2X operation, the ACLR requirement specified in subclause 6.5.2.4 shall apply for the uplink in licensed band and the ACLR requirement specified in subclause 6.5E.2.4 shall apply for the sidelink in Band n47.

6.5E.3 Spurious emissions for V2X

6.5E.3.1 General spurious emissions

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands specified in Table Table 5.2E-1, the general spurious emission requirements in subclause 6.5.3.1 apply for NR V2X sidelink transmission.

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier shall apply to each transmit antenna connector. The requirements shall be met with the SL MIMO configurations described in clause 6.2D.1.

6.5E.3.2 Spurious emissions for UE co-existence

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands specified in Table Table 5.2E-1, the requirements in subclause 6.5.3.2 apply for NR V2X sidelink transmission.

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier shall apply to each transmit antenna connector. The requirements shall be met with the SL MIMO configurations described in clause 6.2D.1.

6.5E.3.3 Spurious emissions for UE co-existence for V2X con-current operation

For the inter-band con-current NR V2X operation, the UE-coexistence requirements in Table 6.5E.3.1.1-1 apply for the corresponding inter-band con-current operation with transmission assigned to both uplink in licensed band and sidelink in Band n47.

Table 6.5E.3.1.1-1: Requirements for inter-band con-current V2X operation

V2X con-	Spurious emission											
current operating band cofiguration	Protected band		ency (MHz	range)	Maximum Level (dBm)	MBW (MHz)	NOTE					
V2X_n71A-	E-UTRA Band 5, 26, 53	F _{DL_low}	-	F _{DL_high}	-50	1						
n47A	E-UTRA Band 41	F _{DL_low}	-	F _{DL_high}	-50	1	1					
	NR Band n5, n47, n71	F _{DL_low}	-	F _{DL_high}	-50	1						
	Frequency range	5925	-	5950	-30	1	3, 4					
	Frequency range	5815	-	5855	-30	1	3					

- NOTE 1: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. In case the exceptions are allowed due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x Lcrb x 180kHz), where N is 2, 3 or 4 for the 2nd, 3rd or 4th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 2: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.
- NOTE 3: Applicable when NS_33 is configured by the pre-configured radio parameters for power class 3 V2X UE.
- NOTE 4: In the frequency range x-5950MHz, SE requirement of -30dBm/MHz should be applied; where x = max (5925, fc + 15), where fc is the channel centre frequency.

6.5E.3.4 Additional spurious emissions requirements for V2X

6.5E.3.4.1 General

This section specifies additional spurious emission requirements for V2X operation

6.5E.3.4.2 Requirements for network signalled value "NS 33"

Table 6.5.3.4.2-1: Additional requirements for "NS 33"

Protected band		Frequenc	cy range (MHz)	Maximum Level (EIRP ²)	MBW (MHz)	NOTE
Frequency range	5925	5925 - 5950 -30		1	1	
Frequency range	5815	-	5855	-30	1	3

NOTE 1: In the frequency range x-5950MHz, SE requirement of -30dBm/MHz should be applied; where x = max (5925, fc + 15), where fc is the channel centre frequency.

NOTE 2: The EIRP requirement is converted to conducted requirement depend on the supported post antenna connector gain G_{post connector} declared by the UE following the principle described in annex I in [11].

NOTE 3: Resolution BW is 10% of the measurement BW and the result should be integrated to achieve the measurement bandwidth. The sweep time shall be set larger than (symbol length)*(number of points in sweep) to improve the measurement accuracy.

When "NS_33" is configured from pre-configured radio parameters or the cell, and the indication from upper layers has indicated that the UE is within the protection zone of CEN DSRC devices or HDR DSRC devices, the power of any NR V2X UE emission shall fulfil either one of the two sets of conditions.

Table 6.5.3.4.2-2: Requirements for spurious emissions to protect CEN DSRC for V2X UE

	Maximum Transmission Power (dBm EIRP)	Emission Limit in Frequency Range 5795-5815 (dBm/MHz EIRP)
Condition 1	10	-65
Condition 2	10	-45

6.5E.3.4.3 Requirements for network signalled value "NS_52"

Table 6.5E.3.4.3-1: Additional requirements for "NS_52"

Protected band	Frequency range (MHz)			Maximum Level (EIRP²)	MBW (MHz)	NOTE
Frequency range	5925	-	5950	-30	1	1
Frequency range	5815	-	5855	-30	1	3

NOTE 1: In the frequency range x-5950MHz, SE requirement of -30dBm/MHz should be applied; where x = max (5925, fc + 15), where fc is the channel centre frequency.

NOTE 2: The EIRP requirement is converted to conducted requirement depend on the supported post antenna connector gain G_{post connector} declared by the UE following the principle described in annex I in [11].

NOTE 3: Resolution BW is 10% of the measurement BW and the result should be integrated to achieve the measurement bandwidth. The sweep time shall be set larger than (symbol length)*(number of points in sweep) to improve the measurement accuracy.

When "NS_52" is configured from pre-configured radio parameters or the cell and the indication from upper layers has indicated that the UE is within the protection zone of CEN DSRC devices or HDR DSRC devices, the power of any NR V2X UE emission shall fulfil either one of the two set of conditions.

Table 6.5E.3.4.3-2: Requirements for spurious emissions to protect CEN DSRC for V2X UE

	Maximum Transmission Power (dBm EIRP)	Emission Limit in Frequency Range 5795-5815 (dBm/MHz EIRP)
Condition 1	10	-65
Condition 2	10	-45

6.5E.4 Transmit intermodulation

6.5E.4.1 General

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands specified in Table Table 5.2E-1, the requirements in subclause 6.5.4 apply for NR V2X sidelink transmission.

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier shall apply to each transmit antenna connector. The requirements shall be met with the SL MIMO configurations described in clause 6.2D.1.

6.5E.4.2 Transmit intermodulation for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 6.5.4 shall apply for the uplink in licensed band and the requirements specified in subclause 6.5E.4 shall apply for the sidelink in Band n47.

6.6 Time alignment error

For V2X UE(s) with two transmit antenna connectors in SL MIMO or Transmit Diversity scheme, this requirement applies to slot timing differences between transmissions on two transmit antenna connectors. The Time Alignment Error (TAE) shall not exceed 260 ns.

7 Receiver characteristics

7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective clauses below.

The applicability of receiver requirements for Band n90 is in accordance with that for Band n41; a UE supporting Band n90 shall meet the minimum requirements for Band n41.

With the exception of clause 7.3, the requirements shall be verified with the network signalling value NS_01 configured (Table 6.2.3-1).

All the parameters in clause 7 are defined using the UL reference measurement channels specified in Annexes A.2.2 and A.2.3, the DL reference measurement channels specified in Annex A.3.2 and using the set-up specified in Annex C.3.1.

The minimum requirements specified in clauses 7.5, 7.6, 7.7 and 7.8 for NR band n48 refer to the minimum requirements for NR bands < 2.7 GHz.

For the additional requirements for intra-band non-contiguous carrier aggregation of two or more sub-blocks, an in-gap test refers to the case when the interfering signal is located at a negative offset with respect to the assigned lowest channel frequency of the highest sub-block and located at a positive offset with respect to the assigned highest channel frequency of the lowest sub-block.

For the additional requirements for intra-band non-contiguous carrier aggregation of two or more sub-blocks, an out-of-gap test refers to the case when the interfering signal(s) is (are) located at a positive offset with respect to the assigned channel frequency of the highest carrier frequency, or located at a negative offset with respect to the assigned channel frequency of the lowest carrier frequency.

For the additional requirements for intra-band non-contiguous carrier aggregation of two or more sub-blocks with channel bandwidth larger than or equal to 5 MHz, the existing adjacent channel selectivity requirements, in-band blocking requirements (for each case), and narrow band blocking requirements apply for in-gap tests only if the corresponding interferer frequency offsets with respect to the two measured carriers satisfy the following condition in relation to the sub-block gap size $W_{\rm gap}$ for at least one of these carriers j=1,2, so that the interferer frequency position does not change the nature of the core requirement tested:

Wgap
$$\geq 2 |\text{FInterferer (offset)}_{,j}| - \text{BWChannel}(_{j})$$

where $F_{\text{Interferer (offset)},j}$ for a sub-block with a single component carrier is the interferer frequency offset with respect to carrier j as specified in clause 7.5, clause 7.6.2 and clause 7.6.4 for the respective requirement and $BW_{Channel(j)}$ the channel bandwidth of carrier j. $F_{\text{Interferer (offset)},j}$ for a sub-block with two or more contiguous component carriers is the interference frequency offset with respect to the carrier adjacent to the gap is specified in clause 7.5A, 7.6A.2 and 7.6A.3. The interferer frequency offsets for adjacent channel selectivity, each in-band blocking case and narrow-band blocking shall be tested separately with a single in-gap interferer at a time.

7.1A General

The minimum requirements for band combinations including Band n41 also apply for the corresponding band combinations with Band n90 replacing Band n41 but with otherwise identical parameters. For brevity the said band combinations with Band n90 are not listed in the tables below but are covered by this specification.

The minium requirements specified in clauses 7.5A, 7.6A, 7.7A and 7.8A for NR band n48 refer to the minimum requirements for NR bands < 2.7 GHz.

7.2 Diversity characteristics

The UE is required to be equipped with a minimum of two Rx antenna ports in all operating bands except for the bands n7, n38, n41, n77, n78, n79 where the UE is required to be equipped with a minimum of four Rx antenna ports. This requirement applies when the band is used as a standalone band or as part of a band combination.

For the requirements in Clause 7, the UE shall be verified with two Rx antenna ports in all supported frequency bands. Additional requirements for four Rx ports shall be verified in operating bands where the UE is equipped with four Rx antenna ports.

The above rules apply for all clauses with the exception of clause 7.9.

7.3 Reference sensitivity

7.3.1 General

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

In later clauses of Clause 7 where the value of REFSENS is used as a reference to set the corresponding requirement:

in all bands, the UE shall be verified against those requirements by applying the REFSENS value in Table 7.3.2-1 with 2 Rx antenna ports tested;

for bands where the UE is required to be equipped with 4 Rx antenna ports, the UE shall additionally be verified against those requirements by applying the resulting REFSENS value derived from the requirement in Table 7.3.2-2 with 4 Rx antenna ports tested.

7.3.2 Reference sensitivity power level

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2.2, A.2.3.2, A3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.2-1 and Table 7.3.2-2.

Table 7.3.2-1: Two antenna port reference sensitivity QPSK PREFSENS

				Ор	erating ban	d/SCS/	Channel	bandwid	th / Dup	lex-mode)				
ating nd	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	70 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	D ₁
	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6	-89.6						
1	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7	-89.7						ı
	60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9	-89.7						
	15	-98.0	-94.8	-93.0	-91.8										
2	30		-95.1	-93.1	-92.0										I
	60		-95.5	-93.4	-92.2										
3	15	-97.0	-93.8	-92.0	-90.8	-89.7	-88.9	-82.3							
	30		-94.1	-92.1	-91.0	-89.8	-89.0	-82.4							ı
	60		-94.5	-92.4	-91.2	-90.0	-89.1	-82.6							
	15	-98.0	-94.8	-93.0	-86.8										
5	30		-95.1	-93.1	-88.6										I
	60														
	15	-98.0	-94.8	-93.0	-91.8	-90.7	-89.9	-88.6	-81.5						
71	30		-95.1	-93.1	-92.0	-90.8	-90.0	-88.7	-81.5						ı
	60		-95.5	-93.4	-92.2	-91.0	-90.1	-88.9	-81.5						
8	15	-97.0	-93.8	-91.4	-85.8										Γ.
	30		-94.1	-91.7	-87.2										1 '

			1		erating ban								T	T	
ating nd	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	70 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	D ₁
	60	()	()	(()	()	(,	(0.2.11)	(,	()	()	()	()	()	
	15	-97.0	-93.8	-84.0											
2	30		-94.1	-84.1											1
	60														1
	15	-97.0	-93.8												
4	30		-94.1												
	60														l
	15	-100.0	-96.8	-95.0											
8	30		-97.1	-95.1											
	60														l
	15	-97.0	-93.8	-91.0	-89.8										
<u>'</u> 0	30		-94.1	-91.1	-90.0										
	60														l
	15	-96.5	-93.3	-91.5	-90.3	-89.3	-82.2	-79.5							
<u>!</u> 5	30	00.0	-93.6	-91.6	-90.5	-89.4	-82.3	-79.6							l
	60		-94.0	-91.9	-90.7	-89.6	-82.4	-79.7							l
	15	-97.5 ⁶	-94.5 ⁶	-92.7 ⁶	-87.6	00.0	02								
!6	30	07.10	-94.8 ⁶	-92.7 ⁶	-87.7										
			00	<u> </u>	· · · ·										
															l
	15	-98.5	-95.5	-93.5	-90.8		-78.5								
!8	30	00.0	-95.6	-93.6	-91.0		-78.6								l
	60		3010		0.110										l
	15	-99.0	-95.8												
Ю	30		-96.1												l
	60														l
	15	-100.0	-96.8	-95.0											
4	30		-97.1	-95.1											l
	60		-97.5	-95.4											l
-	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6							
8 ¹	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7							l
	60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9							l
	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6							
19	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7							l
	60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9							l
	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6	-89.6						
-0	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7	-89.7	-88.9		-87.6			l
	60	1	-97.5	-95.4	-94.2	-93.0	-92.1	-90.9	-89.8	-89.1		-87.6			l
	15		-94.8	-93.0	-91.8		-89.9	-88.6	-87.6						
1 ¹	30		-95.1	-93.1	-92.0		-90.0	-88.7	-87.7	-86.9		-85.6	-85.1	-84.7	l
	60		-95.5	-93.4	-92.2		-90.1	-88.9	-87.8	-87.1		-85.6	-85.1	-84.7	l
	15	-99	-95.8	-94.0	-92.7			-89.6	-88.6 ⁵						
8 ¹	30		-96.1	-94.1	-92.9			-89.7	-88.7 ⁵	-87.9 ⁵		-86.6 ⁵	-86.1 ⁵	-85.6 ⁵	l
	60		-96.5	-94.4	-93.1			-89.9	-88.8 ⁵	-88.0 ⁵		-86.7 ⁵	-86.2 ⁵	-85.7 ⁵	l
	15	-100.0	-96.8	-95.0	-93.8		-91.9	-90.6	-89.6						
i0	30		-97.1	-95.1	-94.0		-92.0	-90.7	-89.7	-88.9		-87.6			l
	60	1	-97.5	-95.4	-94.2		-92.1	-90.9	-89.8	-89.1		-87.6			l
	15	-100.0													
i1	30								1						l
	60														l

					erating bar				-						
ating nd	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	70 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	D
	15	-100.0	-96.8	•	,				•	,			,		
3	30		-97.1												1
	60		-97.5												
	15	-99.5	-96.3	-94.5	-93.3				-89.2						
5	30		-96.6	-94.6	-93.5				-89.3						
	60		-97.0	-94.9	-93.7				-89.4						
	15	-99.5	-96.3	-94.5	-93.3	-92.2	-91.4	-90.1							
6	30		-96.6	-94.6	-93.5	-92.3	-91.5	-90.2							
	60		-97.0	-94.9	-93.7	-92.5	-91.6	-90.4							
	15	-100.0	-96.8	-95.0	-93.8	-92.7									
0	30		-97.1	-95.1	-94.0	-92.8									
	60		-97.5	-95.4	-94.2	-93.0									
	15	-97.2	-94.0	-91.6	-86.0										
1	30		-94.3	-91.9	-87.4										
	60														
	15	-99.5 ³	-96.3 ³	-94.5 ³	-89.3 ³										
4	30		-96.6 ³	-94.6 ³	-89.5 ³										
	60		-97.0 ³	-94.9 ³	-89.6 ³										
	15		-95.3	-93.5	-92.2	-91.2	-90.4	-89.1	-88.1						
1,4	30		-95.6	-93.6	-92.4	-91.3	-90.5	-89.2	-88.2	-87.4	-86.7	-86.1	-85.6	-85.1	
	60		-96.0	-93.9	-92.6	-91.5	-90.6	-89.4	-88.3	-87.5	-86.8	-86.2	-85.7	-85.2	
	15		-95.8	-94.0	-92.7	-91.7	-90.9	-89.6	-88.6						
B ¹	30		-96.1	-94.1	-92.9	-91.8	-91	-89.7	-88.7	-87.9	-87.2	-86.6	-86.1	-85.6	1 .
	60		-96.5	-94.4	-93.1	-92	-91.1	-89.9	-88.8	-88.0	-87.3	-86.7	-86.2	-85.7	
	15							-89.6	-88.6						
9 ¹	30							-89.7	-88.7	-87.9		-86.6		-85.6	1 .
	60							-89.9	-88.8	-88.0		-86.7		-85.7	1
	15	-100													1
1	30														
	60														1
	15	-100	-96.8	-95.0	-93.8										1
2	30		-97.1	-95.1	-94.0										
	60														1
	15	-100													
3	30					1									
	60					1									1
	15	-100	-96.8	-95.0	-93.8										\vdash
4	30		-97.1	-95.1	-94.0	1									
	60														1

- 1: Four Rx antenna ports shall be the baseline for this operating band except for two Rx vehicular UE.
- E 2: The transmitter shall be set to P_{UMAX} as defined in clause 6.2.4
- 3: The requirement is modified by -0.5 dB when the assigned NR channel bandwidth is confined within 1475.9 1510.9 MHz.
- 4: The requirement is modified by -0.5 dB when the assigned UE channel bandwidth is confined within 3300 3800 MHz.
- 5: For these bandwidths, the minimum requirements are restricted to operation when carrier is configured as a downlink carrier part of CA configuration.
- 6: Values are modified by -0.5dB when carrier channel BW is between 865MHz and 894MHz

For UE(s) equipped with 4 Rx antenna ports, reference sensitivity for 2Rx antenna ports in Table 7.3.2-1 shall be modified by the amount given in $\Delta R_{IB,4R}$ in Table 7.3.2-2 for the applicable operating bands.

Table 7.3.2-2: Four antenna port reference sensitivity allowance $\Delta R_{IB,4R}$

Operating band	ΔR _{IB,4R} (dB)					
n28, n71	-2.7 ¹					
n1, n2, n3, n30, n40, n7, n34, n38, n39, n41, n66, n70	-2.7					
n48, n77, n78, n79	-2.2					
NOTE 1: 4 Rx operation is targeted for FWA form factor						

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.2-1 and Table 7.3.2-2 shall be met with uplink transmission bandwidth less than or equal to that specified in Table 7.3.2-3.

Table 7.3.2-3: Uplink configuration for reference sensitivity

				Ope	rating band	/scs/	Channe	el band	width /	Duple	mode				
Operating Band	SCS kHz	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Duplex Mode
	15	25	50 ¹	75 ¹	100 ¹	128 ¹	128 ¹	128 ¹	128 ¹						
n1	30		24	36 ¹	50 ¹	64 ¹	64 ¹	64 ¹	64 ¹						FDD
	60		10 ¹	18	24	30 ¹	30 ¹	30 ¹	30 ¹						
	15	25	50 ¹	50 ¹	50 ¹										
n2	30	10 ¹	24	24 ¹	24 ¹										FDD
	60		10 ¹	10 ¹	10 ¹										
	15	25	50 ¹	50 ¹	50 ¹	50 ¹	50 ¹	50 ¹							
n3	30		24	24 ¹	24 ¹	24 ¹	24 ¹	24 ¹							FDD
	60		10 ¹	10 ¹	10 ¹	10 ¹	10 ¹	10 ¹							
	15	25	25 ¹	20 ¹	20 ¹										
n5	30		12 ¹	10 ¹	10 ¹										FDD
	60														
	15	25	50 ¹	75 ¹	75¹	72¹	64 ¹	45 ¹	45 ¹						
n7	30		24	36 ¹	36¹	36¹	32 ¹	20 ¹	20 ¹						FDD
	60		10 ¹	18	18 ¹	18 ¹	16 ¹	10 ¹	10 ¹						
	15	25	25 ¹	20 ¹	20 ¹										
n8	30		12 ¹	10 ¹	10 ¹										FDD
	60														
	15	20 ¹	20 ¹	20 ¹											FDD
n12	30		10 ¹	10 ¹											
	60														
	15	20 ¹	20 ¹												
n14	30		10 ¹												FDD
	60														
	15	25	25 ¹	25 ¹											
n18	30		10 ¹	10 ¹											FDD
	60														
	15	25	20 ¹	20 ²	20 ²										
n20	30		10 ¹	10 ²	10 ²										FDD
	60														
	15	25	50 ¹	50 ¹	50 ¹	50 ¹	48 ¹	40 ¹							
n25	30		24	24 ¹	24 ¹	24 ¹	24 ¹	20 ¹							FDD
	60		10 ¹	10 ¹	10 ¹	10 ¹	10 ¹	10 ¹							
n26	15	25	25 ¹	25 ¹	25 ¹										FDD
1120	30		12 ¹	12 ¹	12 ¹										םם ו
	15	25	25 ¹	25 ¹	25 ¹		25 ¹								
n28	30		10 ¹	10 ¹	10¹		10 ¹							FD	FDD
	60														
n30	15	20 ¹	20 ¹												FDD

Operating	SCS	5	10	15	erating band 20	25	30	40	50	60	70	80	90	100	Duplex
Band	kHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	Mode
	30		10 ¹												
	60														
	15	25	50	75											
n34	30		24	36											TDD
	60		10	18											
	15	25	50	75	100	128	160	216							
n38	30		24	36	50	64	75	100							TDD
	60		10	18	24	30	36	50							
	15	25	50	75	100	128	160	216							
n39	30		24	36	50	64	75	100							TDD
	60		10	18	24	30	36	50							
	15	25	50	75	100	128	160	216	270						
n40	30		24	36	50	64	75	100	128	162		216			TDD
	60		10	18	24	30	36	50	64	75		100			
	15		50	75	100		160	216	270						
n41	30		24	36	50		75	100	128	162		216	243	270	TDD
	60		10	18	24		36	50	64	75		100	120	135	
	15	25	50	75	100			216							
n48	30		24	36	50			100							TDD
	60		10	18	24			50							
	15	25	50	75	100		160	216	270						
n50	30		24	36	50		75	100	128	162		NOTE 3			TDD
	60		10	18	24		36	50	64	75		NOTE 3			
	15	25													
n51	30														TDD
	60														
	15	25	50												
n53	30		24												TDD
	60		10												
	15	25	50 ¹	75¹	100 ¹				128 ¹						
n65	30		24	36 ¹	50 ¹				64 ¹						FDD
	60		10 ¹	18	24				30 ¹						
	15	25	50 ¹	75¹	100 ¹	128 ¹	160	216							
n66	30		24	36 ¹	50 ¹	64 ¹	75 ¹	100 ¹							FDD
	60		10 ¹	18	24	30 ¹	36 ¹	50 ¹							
	15	25	50¹	75 ¹	NOTE 3	NOTE 3									
n70	30		24	36 ¹	NOTE 3	NOTE 3									FDD
	60		10 ¹	18	NOTE 3	NOTE 3									
	15	25	25 ¹	20 ¹	20 ¹										FDD
n71	30		12 ¹	10 ¹	10 ¹										
	60														
	15	25	25 ¹	25 ¹	25 ¹										
n74	30		10 ¹	10 ¹	10 ¹										FDD
	60		5 ¹	5 ¹	5 ¹										
	15		50	75	100	128	160	216	270						
n77	30		24	36	50	64	75	100	128	162	180	216	243	270	0 TDD
** *	60		10	18	24	30	36	50	64	75	90	100	120	135	
n78	15		50	75	100	128	160	216	270		1		<u> </u>		TDD

	Operating band / SCS / Channel bandwidth / Duplex mode														
Operating Band	SCS kHz	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Duplex Mode
	30		24	36	50	64	75	100	128	162	180	216	243	270	
	60		10	18	24	30	36	50	64	75	90	100	120	135	
	15							216	270						
n79	30							100	128	162		216		270	TDD
	60							50	64	75		100		135	
	15	25 ⁴	201,4												
n91	30														FDD
	60														
	15	25	20 ¹	20 ¹	20 ¹										
n92	30		10 ¹	10 ¹	10 ¹										FDD
	60														
	15	25 ⁴	25 ^{1,4}												
n93	30														FDD
	60														
	15	25	25¹	20 ¹	20 ¹							_			
n94	30		12 ¹	10 ¹	10 ¹										FDD
110 1	60														

- NOTE 1: UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.3.2-1).
- NOTE 2: For Band 20; for 15 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 11 and in the case of 20 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16; for 30 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 6 and in the case of 20 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 8; for 60 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 3 and in the case of 20 MHz channel bandwidth, the UL resource blocks shall be located at RBstart 4;
- NOTE 3: For DL channel bandwidths that do not have symmetric UL channel bandwidth, highest valid UL configuration with lowest TX-RX separation (Table 5.4.4-1) shall be used.
- NOTE 4: For band n91 and n93, largest supported UL bandwidth configuration shall be used.

Unless given by Table 7.3.2-4, the minimum requirements specified in Tables 7.3.2-1 and 7.3.2-2 shall be verified with the network signalling value NS_01 (Table 6.2.3-1) configured.

Table 7.3.2-4: Network signaling value for reference sensitivity

Operating band	Network Signalling
	value
n2	NS_03
n12	NS_06
n14	NS_06
n25	NS_03
n30	NS_21
n48	NS_27
n53	NS_45
n66	NS_03
n70	NS_03
n71	NS_35

7.3.3 ΔR_{IB.c}

For a UE supporting CA, SUL or DC band combination, the minimum requirement for reference sensitivity in Table 7.3.2-1 shall be increased by the amount given by $\Delta R_{IB,c}$ defined in clause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [3] for the applicable operating bands.

In case the UE supports more than one of band combinations for CA, SUL or DC, and an operating band belongs to more than one band combinations then

- When the operating band frequency range is ≤ 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the average value for all band combinations defined in clause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [3], truncated to one decimal place that apply for that operating band among the supported band combinations. In case there is a harmonic relation between low band UL and high band DL, then the maximum $\Delta R_{IB,c}$ among the different supported band combinations involving such band shall be applied
- When the operating band frequency range is > 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the maximum value for all band combinations defined in clause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [3] for the applicable operating bands.

7.3A Reference sensitivity for CA

7.3A.1 General

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3A.2 Reference sensitivity power level for CA

7.3A.2.1 Reference sensitivity power level for Intra-band contiguous CA

For intra-band contiguous carrier aggregation, the throughput of each component carrier shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2.2, A.2.3.2, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.2-1, Table 7.3.2-2, and Table 7.3.2-3.

For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.2-3 and the downlink PCC carrier center frequency shall be configured closer to uplink operating band than any of the downlink SCC center frequency.

7.3A.2.2 Reference sensitivity power level for Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation with one uplink carrier and two or more downlink sub-blocks, throughput of each downlink component carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) and parameters specified in Table 7.3.2-1, Table 7.3.2-2, and Table 7.3A.2.2-1 with the reference sensitivity power level increased by ΔR_{BNC} given in Table 7.3A.2.2-1 for the SCC(s). For aggregation of two or more downlink FDD carriers with one uplink carrier the reference sensitivity is defined only for the specific uplink and downlink test points which are specified in Table 7.3A.2.2-1. The requirements apply with all downlink carriers active. Unless given by Table 7.3.2-4, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.3.1-1) configured.

Table 7.3A.2.2-1: Intra-band non-contiguous CA with one uplink configuration for reference sensitivity

CA configuration	SCS (kHz)	Aggregated channel bandwidth (PCC+SCC)	W _{gap} / [MHz]	UL PCC allocation	ΔR _{IBNC} (dB)	Duplex mode
CA_n3(2A)	15	25RB+25RB	$W_{gap} = 65.0$	12 ⁵	4.7	FDD
CA_II3(ZA)	13	23NB+23NB	$W_{gap} = 45.0$	25 ⁵	0.0	FDD
CA 57(2A)	15	52RB+25RB	$W_{gap} = 55$	32 ⁵	0.0	FDD
CA_n7(2A)	15	32KD+23KD	$W_{gap} = 30$	50 ⁵	0.0	FDD
CA =25(2A)	15	25RB+25RB	$W_{gap} = 55.0$	10 ⁵	5.0	FDD
CA_n25(2A)	15	23KD+25KB	$W_{gap} = 30.0$	25	0.0	רטט

CA_n41(2A)	N/A	NOTE 1	NOTE 2	NOTE 3	0.0	TDD
CA_n66(2A)	N/A	NOTE 1	NOTE 2	NOTE 3, NOTE 4	0.0	FDD
CA_n77(2A)		NOTE 1	NOTE 2	NOTE 3	0.0	TDD
CA n78(2A)		NOTE 1	NOTE 2	NOTE 3	0.0	TDD

- NOTE 1: All combinations of channel bandwidths defined in Table 5.5A.2-1.
- NOTE 2: All applicable sub-block gap sizes.
- NOTE 3: The PCC allocation is same as Transmission bandwidth configuration N_{RB} as defined in Table 5.3.2-1.
- NOTE 4: The carrier center frequency of PCC in the DL operating band is configured closer to the UL operating band.
- NOTE 5: Refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission.
- NOTE 6: W_{gap} is the sub-block gap between the two sub-blocks.
- NOTE 7: The carrier centre frequency of SCC in the DL operating band is configured closer to the UL operating band.

7.3A.2.3 Reference sensitivity power level for Inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band the throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2.2, A.2.3.2, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1 with parameters specified in Table 7.3.2-1, Table 7.3.2-2 and Table 7.3.2-3 modified in accordance with clause 7.3A.3.2. The reference sensitivity is defined to be met with all downlink component carriers active and one of the uplink carriers active. Exceptions to reference sensitivity are allowed in accordance with clause 7.3A.4.

7.3A.2.4 Reference sensitivity power level for SDL bands

For band combinations including operating bands without uplink band (as noted in Table 5.2-1), the requirements are specified in Table 7.3A.2.4-1 and for any band with uplink the uplink configuration specified in Table 7.3.2-3. The throughput of each carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels, as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one-sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal, as described in Annex A.5.1.1/A.5.2.1). The reference sensitivity is defined to be met with all downlink component carriers active and one of the uplink carriers active. The reference sensitivity requirements specified in Table 7.3A.2.4-1 also apply to any higher order CA inter-band SDL CA configurations defined in sub-clause 5.5A.3. Exceptions to reference sensitivity are allowed in accordance with clause 7.3A.4.

Table 7.3A.2.4-1: Reference sensitivity for SDL bands

					NR Ban	d/Channe	el bandwi	dth						
NR CA Configuration	NR band	SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
•		. ,	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
		15	-97.0	-93.8	-91.4	-85.8								
	n8	30		-94.1	-91.7	-87.2								
CA nOA n75A		60												
CA_n8A-n75A		15	-100	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6	-89.6				
	n75	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7	-89.7				
		60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9	-89.8				
		15	-97.0	-93.8	-91.0	-89.8								
	n20	30		-94.1	-91.1	-90.0								
CA_n20A-n75A		60												
CA_IIZUA-III JA		15	-100	-96.8	-95.0	-93.8								
	n75	30		-97.1	-95.1	-94.0								
		60		-97.5	-95.4	-94.2								
		15	-98.5	-95.5	-93.5	-90.8								
	n28	30		-95.6	-93.6	-91.0								
CA_n28A-n75A		60												
		15	-100	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6	-89.6				
	n75	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7	-89.7				
		60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9	-89.8				
		15	-97.0	-93.8										
	n29	30		-94.1										
CA =20A =20CA		60		0 11 1										
CA_n29A-n66A		15	-99.5	-96.3	-94.5	-93.3			-90.1					
	n66	30		-96.6	-94.6	-93.5			-90.2					
		60		-97.0	-94.9	-93.7			-90.4					
		15	-97.0	-93.8										
	n29	30		-94.1										
04 004 704		60												
CA_n29A-n70A		15	-100	-96.8	-95.0	-93.8	-92.7							
	n70	30		-97.1	-95.1	-94.0	-92.8							
		60		-97.5	-95.4	-94.2	-93.0							
		15	-100	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6	-89.6				
	n75	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7	-89.7	1			
CA_n75A-n78A ¹		60	1	-97.5	-95.4	-94.2	-93.0	-92.1	-90.9	-89.8				
CA_III 3A-III 6A'		15	1	-95.8	-94.0	-92.7			-89.6	-88.6				
	n78	30	1	-96.1	-94.1	-92.9			-89.7	-88.7	-87.9	-86.6	-86.1	-85.6
		60		-96.5	-94.4	-93.1			-89.9	-88.8	-88.0	-86.7	-86.2	-85.7
0. -00.:4		15	-100											
CA_n76A-n78A ¹	n76	30				1	 			1	1		 	
		30]		1]	1	1]	1	1

	60										
	15	-95.8	-94.0	-92.7		-89.6	-88.6				
n78	30	-96.1	-94.1	-92.9		-89.7	-88.7	-87.9	-86.6	-86.1	-85.6
	60	-96.5	-94.4	-93.1		-89.9	-88.8	-88.0	-86.7	-86.2	-85.7

NOTE 1: The transmitter shall be set to Pumax, as defined in clause 6.2.4.

NOTE 2: Four Rx antenna ports shall be the baseline for this operating band, except for two Rx vehicular UE.

7.3A.3 $\Delta R_{IB.c}$ for CA

7.3A.3.1 General

For a UE supporting a CA configuration, the $\Delta R_{IB,c}$ applies for both SC and CA operation.

7.3A.3.2 ΔR_{IB,c} for Inter-band CA

For the UE which supports inter-band carrier aggregation, the minimum requirement for reference sensitivity in clause 7.3A.2 shall be increased by the amount given by $\Delta R_{IB,c}$ defined in clause 7.3A.3.2 for the applicable operating bands. Unless otherwise stated, $\Delta R_{IB,c}$ is set to zero.

In case the UE supports more than one of band combinations for CA, SUL or DC, and an operating band belongs to more than one band combinations then

- When the operating band frequency range is ≤ 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the average value for all band combinations defined in clause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [3], truncated to one decimal place that apply for that operating band among the supported band combinations. In case there is a harmonic relation between low band UL and high band DL, then the maximum $\Delta R_{IB,c}$ among the different supported band combinations involving such band shall be applied
- When the operating band frequency range is > 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the maximum value for all band combinations defined in clause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [3] for the applicable operating bands.

 $7.3A.3.2.1~\Delta R_{IB,c}$ for two bands

Table 7.3A.3.2.1-1: $\Delta R_{\text{IB,c}}$ due to CA (two bands)

Inter-band CA combination	NR Band	ΔR _{IB,c} (dB)
CA_n1-n28	n28	0.2
_	n1	0.2
CA_n1-n77	n77	0.5
CA_n1-n78	n78	0.5
	n2	0.2
CA_n2-n48	n48	0.5
0.1 0.00	n2	0.3
CA_n2-n66	n66	0.3
04 0 77	n2	0.2
CA_n2-n77	n77	0.5
04 0 70	n2	0.2
CA_n2-n78	n78	0.5
04 - 0 - 44		04
CA_n3-n41	n41	0.55
04 0 77	n3	0.2
CA_n3-n77	n77	0.5
04 0 70	n3	0.2
CA_n3-n78	n78	0.5
CA_n3-n79	n79	0.5
	n5	0.2
CA_n5-n77	n77	0.5
04 5 ==	n5	0.2
CA_n5-n78	n78	0.5
	n7	0.5
CA_n7-n66	n66	0.5
24	n7	0.5
CA_n7-n78	n78	0.5
24 27 22	n25	0.3
CA_n25-n66 -	n66	0.3
	n8	0.2
CA_n8-n78	n78	0.5
	n25	0.2
CA_n25-n78	n78	0.5
CA_n8-n79	n79	0.5
CA_n20-n78	n78	0.5
CA_n25-n71	n71	0.3
CA_n28-n75	n28	0.2
	n28	0.2
CA_n28-n77	n77	0.5
04 00 70	n28	0.2
CA_n28-n78 -	n78	0.5
04 00 00	n38	0.5
CA_n38-n66 -	n66	0.5
OA :-00 :: 70	n38	0.4
CA_n38-n78 -	n78	0.5
OA = 00 = 40	n39	0.3
CA_n39-n40 -	n40	0.3
	n39	0.22
04 00 11	n41	0.22
CA_n39-n41	n39	0.23
	n41	0.23
CA_n39-n79	n79	0.5
	n40	0.4
CA_n40-n78	n78	0.5
CA_n40-n79	n79	0.5
		0.5^{6}
CA_n41-n66	n41	17
	n66	0.5
CA_n41-n71	n71	0.2
CA_n41-n78 ¹	n78	0.5
	n41	0.5
CA_n41-n79	n79	0.5
CA_n48-n66	n48	0.5

	n66	0.2
	n50	0.2^{2}
CA n50-n78	n78	0.2^{2}
CA_1150-1176	n50	0.2^{3}
	n78	0.2^{3}
CA 266 277	n66	0.2
CA_n66-n77	n77	0.5
CA 266 270	n66	0.2
CA_n66-n78	n78	0.5
CA_n75-n78	n78	0.5
CA_n76-n78	n78	0.5
CA_n78-n92	n78	0.5

- NOTE 1: The requirements only apply when the sub-frame and Tx-Rx timings are synchronized between the component carriers. In the absence of synchronization, the requirements are not within scope of these specifications.
- NOTE 2: Only applicable for UE supporting inter-band carrier aggregation with uplink in one NR band and without simultaneous Rx/Tx.
- NOTE 3: Applicable for UE supporting inter-band carrier aggregation without simultaneous Rx/Tx.
- NOTE 4: The requirement is applied for UE transmitting on the frequency range of 2515 2690 MHz.
- NOTE 5: The requirement is applied for UE transmitting on the frequency range of 2496 2515 MHz.
- NOTE 6: The requirement is applied for UE transmitting on the frequency range of 2545-2690 MHz.
- NOTE 7: The requirement is applied for UE transmitting on the frequency range of 2496-2545 MHz

Table 7.3A.3.2.1-2: void

7.3A.3.2.2 Void

7.3A.3.2.3 $\Delta R_{IB,c}$ for three bands

Table 7.3A.3.2.3-1: $\Delta R_{\text{IB,c}}$ due to CA (three bands)

Inter-band CA combination	NR Band	ΔR _{IB,c} (dB)
	n1	0
CA_n1-n3-n7	n3	0
	n7	0
CA_n1-n3-n28	n28	0.2
CA_n1-n3-n41	n41	05
6/ <u></u>		0.56
	<u>n1</u>	0.2
CA_n1-n3-n78	<u>n3</u>	0.2
	n78	0.5
CA =4 =7 =20	n1	0
CA_n1-n7-n28	n7	0 0.2
	n28	0.2
CA n1 n7 n70	n1	0.2
CA_n1-n7-n78	n7	
	n78 n1	0.5
CA_n1-n8-n78	n8	0.2
CA_111-110-1176	n78	0.5
	n1	0.3
CA_n1-n28-n78	n28	0.2
OA_111-1120-1170	n78	0.5
	n1	0
CA_n1-n40-n78	n40	0
0/(_111 1140 11/0	n78	0.5
	n3	0.5
CA_n3-n7-n28	n7	0
-	n28	0
	n3	0.2
CA_n3-n7-n78	n7	0.2
	n78	0.5
	n3	0.2
CA_n3-n8-n78	n8	0.2
	n78	0.5
	n3	0.2
CA_n3-n28-n77	n28	0.2
	n77	0.5
	n3	0
CA_n3-n28-n78	n28	0.2
	n78	0.5
CA_n3-n40-n41	n41	01,3
CA_113-1140-1141	1141	$0.5^{2,3}$
CA_n3-n41-n79	n41	0.5
OA_113-1141-1179	n79	0.5
	n5	0.5
CA_n5_n66-n78	n66	0.2
	n78	0.5
<u> </u>	n7	0.5
CA_n7_n25-n66	n25	0.3
	<u>n66</u>	0.5
	<u>n7</u>	0
CA_n7_n28-n78 _	n28	0
	n78	0.5
04 = 7 00 = 0	n7	0.5
CA_n7_n66-n78 _	n66	0.5
	n78	0.5
CA_n8-n39-n41	n39	0.24
_	n41	0.24
CA po p44 =70	~11	0.5
CA_n8-n41-n79	n41	0.5
	n79	0.5
CA_n20-n28-	n20	0
n78	n28	0.2
	n78	0.5

	n25	0.3				
CA_n25-n41-		0.5 ⁵				
n66	n41	1 ⁶				
	n66	0.3				
CA =25 =44	n25	0				
CA_n25-n41-	n41	0				
117 1	n71	0.2				
CA 225 266	n25	0.3				
CA_n25-n66- n71	n66	0.3				
117 1	n71	0.3				
CA 225 266	n25	0.3				
CA_n25-n66- n78	n66	0.3				
1176	n78	0.5				
CA n20 n40	n28	0				
CA_n28-n40- n78	n40	0				
1176	n78	0.5				
CA n20 n44	n28	0.2				
CA_n28-n41- n78	n41	0				
1176	n78	0.5				
04 00 44	n39	0.34				
CA_n39-n41-	n41	0.34				
n79	n79	0.8				
CA_n40-n41-	n40	08				
_	n41	0.58				
n79	n79	0.5				
	n.41	0.5 ¹				
CA_n41-n66-	n41	12				
n71	n66	0.5				
	n71	0				

NOTE 1: Applicable for the frequency range of 2515-2690 MHz.

NOTE 2: Applicable for the frequency range of 2496-2515 MHz.

NOTE 3: Only applicable for UE supporting inter-band carrier aggregation without simultaneous Rx/Tx among band 40 and 41.

NOTE 4: Applicable for UE supporting inter-band carrier aggregation without simultaneous Rx/Tx between n39 and n41.

NOTE 5: The requirement is applied for UE transmitting on the frequency range of 2545 - 2690 MHz.

NOTE 6: The requirement is applied for UE transmitting on the frequency range of 2496 - 2545 MHz.

NOTE 7: Void. NOTE 8: Void.

7.3A.3.2.4 $\Delta R_{IB,c}$ for four bands

Table 7.3A.3.2.4-1: ΔR_{IB,c} due to CA (four bands)

Inter-band CA combination	NR Band	ΔR _{IB,c} (dB)
CA_n1-n3-n7-n28	n28	0.2
	n1	0.3
CA n1-n3-n7-n78	n3	0.3
CA_111-113-117-1176	n7	0.3
	n78	0.5
	n1	0.2
CA_n1-n3-n8-n78	n3	0.2
CA_111-113-110-1176	n8	0.2
	n78	0.5
CA n1 n2 n20	n1	0.2
CA_n1-n3-n28- n78	n3	0.2
11/0	n28	0.2

	n78	0.5
	n3	0.2
CA_n3-n7-n28-	n7	0.2
n78	n28	0.2
	n78	0.5
	n7	0.5
CA_n7-n25-n66-	n25	0.6
n78	n66	0.6
	n78	0.8

7.3A.4 Reference sensitivity exceptions due to UL harmonic interference for CA

Sensitivity degradation is allowed for a band in frequency range 1 if it is impacted by UL harmonic interference from another band in frequency range 1 of the same CA configuration. Reference sensitivity exceptions are specified in Table 7.3A.4-1 with uplink configuration specified in Table 7.3A.4-2.

Table 7.3A.4-1: Reference sensitivity exceptions due to UL harmonic for NR CA FR1

				MSD d	ue to ha	rmonic	except	ion for t	he DL ba	ınd			
UL band	DL band	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
4	n77 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
n1	n77³		1.1	0.8	0.3								
n2	n48 ^{1, 2}	27.1	23.9	22.1	20.9			17.9	16.9 ¹²	16.1 ¹²	14.8 ¹²	14.3 ¹²	13.8 ¹²
IIZ	n48 ³	1.9	1.1	0.8	0.3								
n2	n77 ^{1, 2}		23.9	22.1	20.9	19.8	19.0	17.9	16.8	16.0	15.5	14.8	14.3
112	n77 ³		1.1	8.0	0.3	0.1							
2	n78 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
	n78 ³		1.1	8.0	0.3								
	n77 ^{1,2}		23.9	22.1	20.9			17.9	16.9	16.1	14.8	14.3	13.8
n3	n77 ³		1.1	8.0	0.3								
''	n78 ^{1,2}		23.9	22.1	20.9			17.9	16.9	16.1	14.8	14.3	13.8
	n78 ³		1.1	8.0	0.3								
n5	n77 ^{4, 5}		10.5	8.9	7.8	7.2	6.5	5.1	4.2	3.5	2.8	2.3	2.1
n5	n77 ^{6,7}		10.4	8.9	7.8	7.4	6.5	4.7	3.7	3	2.35	1.7	1.2
n5	n78 ^{4,5}		10.5	8.9	7.8			5.4	4.2	3.5	2.3	2.1	1.4
n8	n3 ¹¹	N/A	N/A	N/A	N/A	N/A	N/A						
	n41 ^{8,9}		13.0	11.3	10.1			7.0	6.1	5.5	4.3	3.9	3.5
	n78 ^{4,5}		10.8	9.1	8.0			5.1	4.2	3.5	2.3	2.1	1.4
	n79 ^{6,7}							6.8	6.2	5.6	4.9		4.4
n20	n78 ^{4,5}		10.8	9.1	8			6	4.0	3.2	2.0	1.5	1.0
25	n78 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
23	n78 ³		1.1	8.0	0.3								
	n1 ^{8,9}	10.2	7.6	6.2	5.3								
	n50 ^{1,2}		19.8	18.0	16.8			13.8	12.8	12.0	10.8		
n28	n75 ^{1,2}	28.1	25.3	24.0	22.8	21.8	21.0	19.7	18.7				
	n77 ^{6,7}		10.4	8.9	7.8			4.7	3.7	3	1.7	1.2	0.7
	n78 ^{6,7}		10.4	8.9	7.8			4.7	3.7	3	1.7	1.2	0.7
n66	n48 ^{1, 2}	27.1	23.9	22.1	20.9			17.9	16.9 ¹²	16.1 ¹²	14.8 ¹²	14.3 ¹²	13.8 ¹²
1100	n48 ³	1.9	1.1	8.0	0.3								
n66	n77 ^{1, 2}		23.9	22.1	20.9	19.8	19.0	17.9	16.8	16.0	15.3	14.8	14.3
1100	n77 ³		1.1	8.0	0.3	0.1							
n66	n78 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
1100	n78 ³		1.1	8.0	0.3								
	n25 ¹⁰	10	7.5	6	5.1								
n71	n41 ^{4,5}		10.8	9.1	8.0			5.1	4.2	3.5	2.3	2.1	1.4
	n70 ^{8,9}	9.9	7.1	6.7	4.9	4.1							
n92	n78 ^{4,5}		10.8	9.1	8			6	4.0	3.2	2.0	1.5	1.0

- NOTE 1: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band and a range ΔF_{HD} above and below the edge of this downlink transmission bandwidth. The value ΔF_{HD} depends on the band combination: ΔF_{HD} = 10 MHz for CA_n1-n77, CA_n2-n78, CA_n3-n77, CA_n3-n78, CA_n2-n48, CA_n25-n78, CA_n48-n66, CA_n66-n78.
- NOTE 2: The requirements should be verified for UL NR-ARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.2 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the lower band
- NOTE 3: The requirements are only applicable to channel bandwidths no larger than 20 MHz and with a carrier frequency at $\frac{\pm \left(20 + BW_{Channel}^{HB} \ / \ 2\right)}{Channel}$ MHz offset from $\frac{2f_{UL}^{LB}}{D}$ in the victim (higher band) with $F_{UL_low}^{LB} + BW_{Channel}^{LB} \ / \ 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} \ / \ 2$, where $\frac{BW_{Channel}^{LB}}{D}$ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively.
- NOTE 4: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of a low band for which the 4th transmitter harmonic is within the downlink transmission bandwidth of a high band.
- NOTE 6: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of a low band for which the 5th transmitter harmonic is within the downlink transmission bandwidth of a high band.
- frequency of a high band in MHz and $^{BW^{LB}_{Channel}}$ the channel bandwidth configured in the low band. NOTE 8: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 3nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 9: The requirements should be verified for UL NR-ARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.3 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the lower band.
- NOTE 10: These requirements apply when the lower edge frequency of the 10 MHz, 15 MHz, or 20 MHz uplink channel in Band 71 is located at or below 668 MHz and the downlink channel in Band n25 is located with its upper edge at 1995 MHz.
- NOTE 11: No requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the low band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of the high band. The reference sensitivity for all active downlink component carriers is only verified when this is not the case (the requirements specified in clause 7.3.2 apply unless otherwise specified).
- NOTE 12: For these bandwidths, the minimum requirements are restricted to operation when carrier is configured as a downlink carrier part of CA configuration.

Table 7.3A.4-2: Uplink configuration for reference sensitivity exceptions due to UL harmonic interference for NR CA, FR1

				NR Ba	nd / Cha	annel ba	andwidt	h of the h	nigh ban	d			
UL band	DL band	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
n1	n77		25	36	50			100	100	100	100	100	100
n2	n48	25	50	50	50			50	50	50	50	50	50
n2	n77		25	36	50	50	50	50	50	50	50	50	50
n2	n78		25	36	50			50	50	50	50	50	50
n3	n77		25	36	50			50	50	50	50	50	50
n3	n78		25	36	50			50	50	50	50	50	50
n5	n77		16	25	25	25	25	25	25	25	25	25	25
n5	n78		16	25	25			25	25	25	25	25	25
n8	n41		16	25	25			25	25	25	25	25	25
n8	n78		16	25	25			25	25	25	25	25	25
n8	n79							25	25	25	25		25
n20	n78		16	25	25			25	25	25	25	25	25
n25	n78		25	36	50			50	50	50	50	50	50
n28	n1	8	16	25	25								
n28	n50		25	25	25			25	25	25	25		
n28	n75	12	25	36	50	50	50	50	50				
n28	n77		10	15	20			25	25	25	25	25	25
n28	n78		10	15	20			25	25	25	25	25	25
n66	n48	12	25	36	50			100	128	160	200	200	200
n66	n77		25	36	50	64	80	100	100	100	100	100	100
n66	n78		25	36	50			100	100	100	100	100	100
n71	n25	84	84	84	84								
n71	n41		16	25	25			25	25	25	25	25	25
n71	n70	8	16	20	20	20							
n92	n78		16	25	25			25	25	25	25	25	25

NOTE 1: 15 kHz SCS is assumed for UL band.

NOTE 2: The UL configuration applies regardless of the channel bandwidth of the low band unless the UL resource blocks exceed that specified in Table 7.3.2-3 for the uplink bandwidth in which case the allocation according to Table 7.3.2-3 applies.

NOTE 3: Unless stated otherwise, UL resource blocks shall be centred within the transmission bandwidth configuration for the channel bandwidth.

NOTE 4: These requirements apply when the lower edge frequency of the uplink channel in Band n71 is located at or below 668 MHz and the downlink channel in Band n25 is located with its upper edge at 1990 MHz.

Table 7.3A.4-3: Void

Table 7.3A.4-3a: Void

Sensitivity degradation is allowed for a band if it is impacted by receiver harmonic mixing due to another band part of the same CA configuration. Reference sensitivity exceptions are specified in Table 7.3A.4-4 with uplink configuration specified in Table 7.3A.4-4a.

Table 7.3A.4-4: Reference sensitivity exceptions due to harmonic mixing for CA in NR FR1

	NR Band / Channel bandwidth of the affected DL band													
UL band	DL band	5 MHz (dB)	10 MHz (dB)	15 MHz (dB)	20 MHz (dB)	25 MHz (dB)	30 MHz (dB)	40 MHz (dB)	50 MHz (dB)	60 MHz (dB)	70 MHz (dB)	80 MHz (dB)	90 MHz (dB)	100 MHz (dB)
n25	n71 ^{3,4}	26.5	23.3	20.9	15.3									
n40	n28 ⁴	37.8	34.8	33	30.3									
n40	n78¹		8.3	8.0	6.9			3.9	3	2.3		1.2		0.4
n41	n78¹		8.3	8.0	6.9			3.9	3	2.3		1.2		0.4
n77	n2	6.7	5.0	4.0	3.7									
n77	n5	5.7	4.0	3.0	2.7									
n78	n40²	10.4	10.4	10.4	10.4			7.2	6.2	5.5		4.5		
n78	n41 ²		10.4	10.4	10.4			8.2	7.6	7.3		6.6	6.4	6.3

- NOTE 1: The requirements should be verified for UL NR-ARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.15 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $\frac{BW_{Channel}^{LB}}{BW_{Channel}^{LB}}$ the channel bandwidth configured in the lower band.
- NOTE 2: The requirements should be verified for UL NR-ARFCN of the aggressor (high) band (superscript HB) such that $f_{UL}^{LB} = \begin{bmatrix} 1.5 * f_{DL}^{HB} \end{bmatrix} 0.1$ in MHz and $F_{UL_low}^{HB} + BW_{Channel}^{HB}$ $/ 2 \le f_{UL_high}^{HB} \le f_{UL_high}^{HB} BW_{Channel}^{HB}$ with f_{DL}^{LB} carrier frequency in the victim (lower) band in MHz and $F_{Channel}^{HB}$ the channel bandwidth configured in the higher band.
- NOTE 3: These requirements apply when there is at least one individual RE within the downlink transmission bandwidth of the victim (lower) band for which the 3rd harmonic is within the uplink transmission bandwidth or the uplink adjacent channel's transmission bandwidth of an aggressor (higher) band.
- NOTE 4: The requirements should be verified for UL NR-ARFCN of the aggressor (higher) band (superscript HB) such that $f_{DL}^{LB} = \left \lfloor f_{UL}^{HB} / 0.3 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{LB} the carrier frequency in the victim (lower) band and $BW_{Channel}^{HB}$ the channel bandwidth configured in the higher band

Table 7.3A.4-4a: Uplink configuration for reference sensitivity exceptions due to receiver harmonic mixing for CA in NR FR1

	NR Band / SCS / Channel bandwidth of the affected DL band														
UL band	DL band	SC S (kH z)	5 MH z	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MH z	100 MHz
n25	n71	15	25	50	75	100									
n40	n28	15	25	50	75	100									
n40	n78	30		24	24	24			24	24	24		24		24
n41	n78	30		24	24	24			24	24	24		24		24
n77	n2	15	25	50	75	100									
n77	n5	25	25	20	20										
n78	n40	30	50	50	50	50			50	50	50		50		
n78	n41	30		50	50	50		50	50	50	50		50	50	50

NOTE 1: The UL configuration applies regardless of the channel bandwidth of the UL band unless the UL resource blocks exceed that specified in Table 7.3.2-3 for the uplink bandwidth in which case the allocation according to Table 7.3.2-3 applies.

7.3A.5 Reference sensitivity exceptions due to intermodulation interference due to 2UL CA

For inter-band carrier aggregation with uplink assigned to two NR bands given in Table 7.3A.5-1 and Table 7.3A.5-2 the reference sensitivity is defined only for the specific uplink and downlink test points specified in Table 7.3A.5-1 and Table 7.3A.5-1 and Table 7.3A.5-2. For these test points the reference sensitivity requirement specified in Table 7.3.2-1 and Table 7.3.2-2 are relaxed by the amount of the corresponding parameter MSD given in Table 7.3A.5-1 and Table 7.3A.5-2.

Table 7.3A.5-1: 2DL/2UL interband Reference sensitivity QPSK P_{REFSENS} and uplink/downlink configurations

	Band / C	hannel ban	dwidth / N _R	₃ / Duplex n	node			
NR CA Configuration	NR band	UL Fc (MHz)	UL/DL BW (MHz)	UL C _{LRB}	DL F _c (MHz)	MSD (dB)	Duplex mode	Source of IMD
CA_n1A-n3A	n1	1950	5	25	2140	23	FDD	IMD3
CA_n1B-n3A CA_n1A-n3(2A)	n3	1760	5	25	1855	N/A	TDD	N/A
CA_n1A-n8A	n1	1965	5	25	2155	6.0	FDD	IMD4
	n8	887.5	5	25	932.5	N/A	FDD	N/A
CA_n1A-n78A CA_n1A-n78(2A)	n1	1950	5	25	2140	8.0 10.7 ⁵	FDD	IMD4
CA_n1A-n78C	n78	3710	10	50	3710	N/A	TDD	N/A
CA_n2A-n48A	n2	1852.5	5	25	1932.5	12	FDD	IMD4
CA_n2A-n48C	n48	3625	20	100	3625	N/A	TDD	N/A
	n2	1855	5	25	1935	26 28.7 ⁵	FDD	IMD2
	n77	3790	10	50	3790	N/A	TDD	N/A
CA_n2A-n77A	n2	1885	5	25	1965	8.0 10.7 ⁵	FDD	IMD4
	n77	3690	10	50	3690	N/A	TDD	N/A
	n2	1885	5	25	1965	5	FDD	IMD5
	n77	3790	10	50	3790	N/A	TDD	N/A
CA_n2A-n78A	n2	1855	5	25	1935	26 28.7 ⁵	- FDD	IMD2 ⁴
CA_n2A-n78(2A)	n78	3790	10	50	3790	N/A	TDD	N/A
CA = 2A = 7A	n3	1730	5	25	1825	N/A	FDD	N/A
CA_n3A-n7A	n7	2535	10	50	2655	10.2	FDD	IMD4
	n3	1755	10	50	1850	N/A	FDD	N/A
CA_n3A-n8A	n8	900	5	25	945	8	FDD	IMD4 ⁴
CA_IISA-IIOA	n3	1747.5	10	50	1842.5	6.4	FDD	IMD5
	n8	897.5	5	25	942.5	N/A	FDD	N/A
CA_n3A-n38A	n3	1713	5	25	1808	8.2	FDD	IMD4
	n38	2617	5	25	2617	N/A	TDD	N/A
CA_n3A-n41A	n3	1740	5	25	1835	8.2	FDD	IMD4
CA_n3A-n41C CA_n3A-n41(2A)	n41	2657.5	10	50	2657.5	N/A	TDD	N/A
	n3	1740	5	25	1835	26 28.7 ⁴	FDD	IMD2 ⁴
CA_n3A-n77A CA_n3A-n77(2A)	n77	3575	10	50	3575	N/A	TDD	N/A
	n3	1765	5	25	1860	8.0 10.7 ⁴	FDD	IMD4 ⁴
	n77	3435	10	50	3435	N/A	TDD	N/A
CA_n3A-n78A	n3	1740	5	25	1835	26 28.7 ⁵	FDD	IMD2 ⁴
CA_n3A-n78C	n78	3575	10	25	3575	N/A	TDD	N/A
CA_n3A-n78(2A)	n3	1765	5	25	1860	8.0 10.7 ⁵	FDD	IMD4 ⁴
	n78	3435	10	25	3435	N/A	TDD	N/A
04 54 - 004	n5	838	5	25	883	30	FDD	IMD2 ⁴
CA_n5A-n66A	n66	1721	5	25	2121	N/A	FDD	N/A
	5	844	5	25	889	8.3	FDD	IMD4
CA_n5A-n77A	n77	3421	10	50	3421	N/A	TDD	N/A
	5	829	5	25	875	5.5	FDD	IMD5

n77	3600	10	50	3600	N/A	TDD	N/A
n5	844	5	25	889	8.3	FDD	IMD4
n78	3421	10	50	3421	N/A	TDD	N/A
n7	2535	10	50	2655	15	FDD	IMD4
n66	1730	5	25	2130	N/A	FDD	N/A
n8	882.5	5	25	927.5	12.1	FDD	IMD3 ⁴
n41	2685	10	50	2685	N/A	TDD	N/A
n8	897.5	5	25	942.5	8.3	FDD	IMD4
n78	3635	10	50	3635	N/A	TDD	N/A
n8	897.5	5	25	942.5	4.8	FDD	IMD5
n79	4532.5	40	216	4532.5	N/A	TDD	N/A
n20	850	5	25	809	11	FDD	IMD4
n78	3359	10	50	3359	N/A	TDD	N/A
n66	1775	5	25	2175	N/A	FDD	N/A
							IMD3
				2112.5		FDD	IMD3
				1992.5		FDD	N/A
					4	FDD	IMD5
					N/A	FDD	N/A
							IMD2 ⁴
0							2
n78	3790	10	50	3790	N/A	TDD	N/A
0	0.00	. •		0.00	,, .		, .
n28	730	10	50	775	15.3	FDD	IMD2
n50	1500	10	50	1500		TDD	N/A
n28	740	10	50	785	6.0	FDD	IMD4 ⁴
	1500	10	50		N/A	TDD	N/A
n28						FDD	IMD5
n77/n78	3582.5	10	50	3582.5	N/A	TDD	N/A
n41	2614	5	25	2614	N/A	TDD	N/A
n71	665	5	25	619	11	FDD	IMD4
n48	3660	5	25	3660	N/A	TDD	N/A
n66	1730	5	25	2130	5.0	FDD	IMD5
n66	1750	5	25	2150	5	FDD	IMD4
n71	675	5	25	629	N/A	FDD	N/A
n66	1775	5	25	2175	31	FDD	IMD2
							N/A
							IMD5
							N/A
							IMD5
		J		2.00	0.0	. 55	N/A
n78	3660	10	50	3660	N/A	TDD	14//1
3		. •					
n70	1697.5	5	25	1997.5	5	FDD	IMD4
n71	695.5	5	25	649.5	N/A	FDD	N/A
	n5 n78 n77 n66 n8 n41 n8 n78 n8 n79 n20 n78 n66 n25 n66 n25 n66 n25 n66 n25 n66 n25 n78 n8 n77/n78 n41 n71 n48 n66 n66 n71 n66 n77 n66 n77	n5 844 n78 3421 n7 2535 n66 1730 n8 882.5 n41 2685 n8 897.5 n78 3635 n8 897.5 n79 4532.5 n20 850 n78 3359 n66 1775 n25 1855 n66 1775 n25 1912.5 n66 1750 n25 1883.3 n25 1880.5 n78 3790 n28 740 n50 1500 n28 740 n50 1500 n28 740 n50 1500 n28 740 </td <td>n5 844 5 n78 3421 10 n7 2535 10 n66 1730 5 n8 882.5 5 n41 2685 10 n8 897.5 5 n78 3635 10 n8 897.5 5 n79 4532.5 40 n20 850 5 n79 4532.5 40 n20 850 5 n79 4532.5 40 n20 850 5 n78 3359 10 n66 1775 5 n25 1855 5 n66 1712.5 5 n25 1883.3 5 n25 1855 5</td> <td>n5 844 5 25 n78 3421 10 50 n7 2535 10 50 n66 1730 5 25 n8 882.5 5 25 n8 882.5 5 25 n41 2685 10 50 n8 897.5 5 25 n78 3635 10 50 n8 897.5 5 25 n79 4532.5 40 216 n20 850 5 25 n79 4532.5 40 216 n20 850 5 25 n78 3359 10 50 n66 1775 5 25 n25 1855 5 25 n66 17712.5 5 25 n25 1883.3 5 25 n25 1883.3 5 25</td> <td>n5 844 5 25 889 n78 3421 10 50 3421 n7 2535 10 50 2655 n66 1730 5 25 2130 n8 882.5 5 25 927.5 n41 2685 10 50 2685 n8 897.5 5 25 942.5 n78 3635 10 50 3635 n8 897.5 5 25 942.5 n78 3635 10 50 3635 n8 897.5 5 25 942.5 n79 4532.5 40 216 4532.5 n20 850 5 25 809 n78 3359 10 50 3359 n66 1775 5 25 2175 n25 1855 5 25 1935 n66 17750 5</td> <td>n5 844 5 25 889 8.3 n78 3421 10 50 3421 N/A n7 2535 10 50 2655 15 n66 1730 5 25 2130 N/A n8 882.5 5 25 927.5 12.1 n41 2685 10 50 2685 N/A n8 897.5 5 25 942.5 8.3 n78 3635 10 50 3635 N/A n8 897.5 5 25 942.5 4.8 n79 4532.5 40 216 4532.5 N/A n20 850 5 25 942.5 4.8 n79 4532.5 40 216 4532.5 N/A n20 850 5 25 809 11 n78 3359 10 50 3359 N/A</td> <td>n5 844 5 25 889 8.3 FDD n78 3421 10 50 3421 N/A TDD n7 2535 10 50 2655 15 FDD n66 1730 5 25 2130 N/A FDD n8 882.5 5 25 2130 N/A FDD n8 882.5 5 25 942.5 12.1 FDD n8 887.5 5 25 942.5 8.3 FDD n78 3635 10 50 3635 N/A TDD n8 897.5 5 25 942.5 4.8 FDD n79 4532.5 40 216 4532.5 N/A TDD n79 4532.5 40 216 4532.5 N/A TDD n79 4532.5 10 50 3359 N/A TDD n78 3352.</td>	n5 844 5 n78 3421 10 n7 2535 10 n66 1730 5 n8 882.5 5 n41 2685 10 n8 897.5 5 n78 3635 10 n8 897.5 5 n79 4532.5 40 n20 850 5 n79 4532.5 40 n20 850 5 n79 4532.5 40 n20 850 5 n78 3359 10 n66 1775 5 n25 1855 5 n66 1712.5 5 n25 1883.3 5 n25 1855 5	n5 844 5 25 n78 3421 10 50 n7 2535 10 50 n66 1730 5 25 n8 882.5 5 25 n8 882.5 5 25 n41 2685 10 50 n8 897.5 5 25 n78 3635 10 50 n8 897.5 5 25 n79 4532.5 40 216 n20 850 5 25 n79 4532.5 40 216 n20 850 5 25 n78 3359 10 50 n66 1775 5 25 n25 1855 5 25 n66 17712.5 5 25 n25 1883.3 5 25 n25 1883.3 5 25	n5 844 5 25 889 n78 3421 10 50 3421 n7 2535 10 50 2655 n66 1730 5 25 2130 n8 882.5 5 25 927.5 n41 2685 10 50 2685 n8 897.5 5 25 942.5 n78 3635 10 50 3635 n8 897.5 5 25 942.5 n78 3635 10 50 3635 n8 897.5 5 25 942.5 n79 4532.5 40 216 4532.5 n20 850 5 25 809 n78 3359 10 50 3359 n66 1775 5 25 2175 n25 1855 5 25 1935 n66 17750 5	n5 844 5 25 889 8.3 n78 3421 10 50 3421 N/A n7 2535 10 50 2655 15 n66 1730 5 25 2130 N/A n8 882.5 5 25 927.5 12.1 n41 2685 10 50 2685 N/A n8 897.5 5 25 942.5 8.3 n78 3635 10 50 3635 N/A n8 897.5 5 25 942.5 4.8 n79 4532.5 40 216 4532.5 N/A n20 850 5 25 942.5 4.8 n79 4532.5 40 216 4532.5 N/A n20 850 5 25 809 11 n78 3359 10 50 3359 N/A	n5 844 5 25 889 8.3 FDD n78 3421 10 50 3421 N/A TDD n7 2535 10 50 2655 15 FDD n66 1730 5 25 2130 N/A FDD n8 882.5 5 25 2130 N/A FDD n8 882.5 5 25 942.5 12.1 FDD n8 887.5 5 25 942.5 8.3 FDD n78 3635 10 50 3635 N/A TDD n8 897.5 5 25 942.5 4.8 FDD n79 4532.5 40 216 4532.5 N/A TDD n79 4532.5 40 216 4532.5 N/A TDD n79 4532.5 10 50 3359 N/A TDD n78 3352.

NOTE 1: Both of the transmitters shall be set min(+20 dBm, P_{CMAX_L,f,c}) as defined in clause 6.2A.4

NOTE 2: RB_{START} = 0, 15 kHz SCS is assumed.

NOTE 3: No requirements apply when there is at least one individual RE within the intermodulation generated by the dual uplink is within the downlink transmission bandwidth of the FDD band. The reference sensitivity should only be verified when this is not the case (the requirements specified in clause 7.3 apply).

NOTE 4: This band is subject to IMD5 also which MSD is not specified.

NOTE 5: Applicable only if operation with 4 antenna ports is supported in the band with carrier aggregation configured.

Table 7.3A.5-2: 3DL/2UL interband Reference sensitivity QPSK PREFSENS and uplink/downlink configurations

	Band / C	hannel ban	dwidth / N _{RI}	₃ / Duplex r	node			
NR CA Configuration	NR band	UL F _c (MHz)	UL/DL BW (MHz)	UL C _{LRB}	DL F _c (MHz)	MSD (dB)	Duplex mode	Source of IMD
	n1	1977.5	5	25	2167.5	N/A	FDD	N/A
CA_n1A-n3A-n41A	n3	1712.5	5	25	1807.5	N/A	FDD	N/A
	n41	2507.5	10	25	2507.5	5.0	TDD	IMD5
	n1	1950	5	25	2140	N/A	FDD	N/A
	n3	1750	5	25	1845	N/A	100	N/A
	n78	3700	10	52	3700	28.4	TDD	IMD2
	n1	1950	5	25	2140	N/A	FDD	N/A
CA_n1A-n3A-n78A	n3	1770	5	25	1865	N/A	FDD	N/A
	n78	3360	10	52	3360	11.2	TDD	IMD4
	n1	1950	5	25	2140	N/A	FDD	N/A
	n3	1735	5	25	1830	27.9	רטט	IMD2
	n78	3780	10	52	3780	N/A	TDD	N/A
	n1	1935	5	25	2125	N/A	FDD	N/A
	n7	2533	10	50	2653	30.0	FDD	IMD2
CA n1A n7A n20A	n28	718	5	25	773	N/A	FDD	N/A
CA_n1A-n7A-n28A	n1	1935	5	25	2125	N/A	FDD	N/A
	n7	2510	10	50	2630	N/A	FDD	N/A
	n28	730	10	50	785	4.5	FDD	IMD5
	n1	1977.5	5	25	2167.5	N/A	FDD	N/A
	n7	2507.5	5	25	2627.5	9.1	FDD	IMD4
	n78	3305	10	50	3305	N/A	TDD	N/A
	n1	1950	5	25	2140	8.7	FDD	IMD4
CA_n1A-n7A-n78A	n7	2510	10	50	2630	N/A	FDD	N/A
	n78	3580	10	50	3580	N/A	TDD	N/A
	n1	1970	5	25	2160	N/A	FDD	N/A
	n7	2520	5	25	2640	N/A	FDD	N/A
	n78	3390	10	50	3390	10.1	TDD	IMD4
	n3	1730	5	25	1825	N/A	FDD	N/A
	n8	910	5	25	955	N/A	FDD	N/A
	n78	3550	10	50	3550	16.1	TDD	IMD3
CA_n3A-n8A-n78A	<u>n3</u>	1730	5	25	1825	N/A	FDD	N/A
CA_IISA-IIOA-III OA	n8 n78	910 3370	5 10	25 50	955 3370	N/A 4.5	FDD TDD	N/A IMD5
	n3	1725	5	25	1820	15.7	FDD	IMD3
	n8	910	5	25	955	N/A	FDD	N/A
	n78	3640	10	50	3640	N/A	TDD	N/A
	n3	1720	5	25	1815	N/A	FDD	N/A
	n28	733	5	25	788	N/A	FDD	N/A
	n77 n28	4173 735	10 5	50 25	4173 790	15.9 N/A	TDD FDD	IMD3 N/A
CA_n3A-n28A-n77A	n77	3320	10	50	3320	N/A	TDD	N/A
	n3	1755	5	25	1850	17.0	FDD	IMD3
	n3	1712.5	5	25	1807.5	N/A	FDD	N/A
	n77	4195	10	50	4195	N/A	TDD	N/A
	n28	715	5	25	770	15.3 N/A	FDD	IMD3
	n28 n78	735 3320	5 10	25 50	790 3320	N/A N/A	FDD TDD	N/A IMD3
04 04 00::	n3	1755	5	25	1850	17.3	FDD	N/A
CA_n3A-n28A-n78A	n3	1750	5	25	1845	N/A	FDD	N/A
	n28	743	5	25	798	N/A	FDD	N/A
	n78	3764	10	50	3764	4.5	TDD	IMD5
04 -0 404 444	n3	1747.5	5	25	1842.5	1.0	FDD	IMD5
CA_n3-40A-n41A	n40	2347.5	5	25 50	2347.5	N/A	TDD	N/A
	n41 n5	2600 830	10 5	50 25	2600 875	N/A N/A	TDD FDD	N/A N/A
CA_n5A-n66A-n78A	n66	1720	5	25	2120	N/A	FDD	N/A

	n78	3380	10	50	3380	16.1	TDD	IMD3		
	n5	830	5	25	875	N/A	FDD	N/A		
CA 254 2664 2784			5				FDD			
CA_n5A-n66A-n78A	n66	1720		25	2120	13.2		IMD3		
	n78	3780	10	50	3780	N/A	TDD	N/A		
CA_n7A-n66A-n78A,	n7	2560	5	25	2680	N/A	FDD	N/A		
CA_n7A-n66A-	n66	1730	5	25	2130	N/A	FDD	N/A		
n78(2A)	n78	3390	10	50	3390	16.1	TDD	IMD3		
CA_n7A-n66A-n78A,	n7	2550	5	25	2670	N/A	FDD	N/A		
CA_n7A-n66A-	n66	1750	5	25	2150	8.7	FDD	IMD4		
n78(2A)	n78	3625	10	50	3625	N/A	TDD	N/A		
	n25	1880	5	25	1960	N/A	FDD	N/A		
CA_n25A-n66A-n78A	n66	1740	5	25	2140	N/A	FDD	N/A		
	n78	3620	10	50	3620	29.4	TDD	IMD2		
	n28	738	5	25	793	N/A	FDD	N/A		
	n78	3380	10	50	3380	N/A	TDD	N/A		
	n41	2642	5	25	2642	29.5	TDD	IMD2		
	n41	2642	5	25	2642	N/A	TDD	N/A		
CA_n28A-n41A-n78A	n78	3440	10	50	3440	N/A	TDD	N/A		
	n28	743	5	25	798	30.8	FDD	IMD2 ¹		
	n41	2565	5	25	2565	N/A	TDD	N/A		
	n28	745	5	25	800	N/A	FDD	N/A		
	n78	3310	10	50	3310	29.7	TDD	IMD2 ²		
	n40	2340	5	25	2340	N/A	TDD	N/A		
CA_n40A-n41A-n79A	n41	2600	10	50	2600	N/A	TDD	N/A		
_	n79	4940	40	216	4940	30.5	TDD	IMD2		
NOTE 1: This hand is a	NOTE 1: This hand is subject to IMD5 also which MSD is not specified									

NOTE 1: This band is subject to IMD5 also which MSD is not specified. NOTE 2: This band is subject to IMD4 also which MSD is not specified.

7.3A.6 Reference sensitivity exceptions due to cross band isolation for CA

Sensitivity degradation is allowed for a band if it is impacted by UL of another band part of the same NR CA configuration due to cross band isolation issues. Reference sensitivity exceptions for the victim band are specified in Table 7.3A.6-1 with uplink configuration of the agressor band specified in Table 7.3A.6-2.

Table 7.3A.6-1: Reference sensitivity exceptions (MSD) due tocross band isolation for NR CA FR1

			NR	Band A	/ Chanr	nel band	dwidth	of the a	ffected	DL ba	nd			
UL band	DL ban d	5 MHz (dB)	10 MHz (dB)	15 MHz (dB)	20 MHz (dB)	25 MHz (dB)	30 MHz (dB)	40 MHz (dB)	50 MHz (dB)	60 MHz (dB)	70 MHz (dB)	80 MHz (dB)	90 MHz (dB)	100 MHz (dB)
n1	n3	3	2.2	1.9	1.7	1.6	1.5							
n40	n1	8.3	8.3	8.3	8.3									
n1	n40	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6		6.6		
n41	n1	9.1	9.1	9.1	9.1									
n1	n41		6.1	6.1	6.1			6.1	6.1	6.1		6.1	6.1	6.1
n3	n41		0.7	0.7	0.7			0.7	0.7	0.7		0.7	0.7	0.7
n41	n3	0.6	0.6	0.6	0.6	0.6	0.6							
n41	n25	0.6	0.6	0.6	0.6									
n38	n78		8.3	8.3	8.3	7.3	6.5	6.3	5.3	4.5		4.0	3.9	3.8
n78	n38	3.3	3.3	3.3	3.3									
n78	n40¹	4.5	4.5	4.5	4.5			4.5	4.5	4.5		4.5		
n41 ¹	n66	3.5	3.5	3.5	3.5			3.5						
n41	n78		8.3	8.3	8.3	7.3	6.5	6.3	5.3	4.5	4.3	4.0	3.9	3.8
n78	n41 ¹		4.5	4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
n78	n7¹	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5					
n78	n79								2	2	2	2		2
n79	n78		2.6	2.6	2.6				2.6	2.6	2.6	2.6	2.6	2.6

NOTE 1: Applicable only when harmonic mixing MSD for this combination is not applied.

NOTE 2: Void

NOTE 3: The requirements only apply for UEs supporting inter-band carrier aggregation. The requirements only apply for UEs supporting inter-band carrier aggregation with simultaneous Rx/Tx capability. Simultaneous Rx/Tx capability does not apply for UEs supporting band n78 with a n77 implementation.

Table 7.3A.6.2: Uplink configuration for reference sensitivity exceptions due to cross band isolation for NR CA FR1

			NR	Band /	SCS/C	hannel	bandw	idth of	the affe	cted DI	band				
UL band	DL band	SCS of UL band (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
n1	n3	15	25	25	25	25	25	25							
n40	n1	30	25	50	75	100									
n1	n40	15	25	50	75	100	100	100	100	100	100		100		
n41	n1	30	128	128	128	128									
n1	n41	15		100	100	100			100	100	100		100	100	100
n3	n41	15		50	50	50			50	50	50		50	50	50
n38	n78	15		100	100	100	100	100	100	100	100		100	100	100
n78	n38	30	270	270	270	270									
n41	n3	30	160	160	160	160	160	160							
n41	n25	15	160	160	160	160									
n41	n66	30	128	128	128	128			128						
n41	n78	15		100	100	100	100	100	100	100	100	100	100	100	100
n78	n7	30	270	270	270	270	270	270	270	270					
n78	n40	30	270	270	270	270			270	270	270		270		
n78	n41	30		270	270	270		270	270	270	270		270	270	270
n78	n79	30							270 ³	270 ³	270 ³		270 ³		270 ³
n79	n78	30		270 ³	270 ³	270 ³			270 ³	270 ³	270 ³		270 ³	270 ³	270 ³

- NOTE 1: The UL configuration applies regardless of the channel bandwidth of the UL band unless the UL resource blocks exceed that specified in Table 7.3.2-3 for the uplink bandwidth in which case the allocation according to Table 7.3.2-3 applies.
- NOTE 2: Refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth in Table 5.3.2-1.
- NOTE 3: The requirements only apply for UEs supporting inter-band carrier aggregation with simultaneous Rx/Tx capability. Simultaneous Rx/Tx capability does not apply for UEs supporting band n78 with a n77 implementation.

7.3B Void

7.3C Reference sensitivity for SUL

7.3C.1 General

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3C.2 Reference sensitivity power level for SUL

For SUL operation, the reference receive sensitivity (REFSENS) requirement for downlink bands specified in Table 7.3.2-1 and Table 7.3.2-2 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.2-3 or supplementary uplink transmission bandwidth less than or equal to that specified in Table 7.3C.2-1 with reference measurement channels as specified in Annexes A.2.2.2, A.2.3.2, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1), unless sensitivity degradation is allowed in this clause of this specification. These exceptions also apply to any higher order CA or DC combination containing one of the exception combinations in this clause as subset.

For SUL operation with downlink CA, the reference receive sensitivity (REFSENS) requirement for downlink bands specified in clause 7.3A.2 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.2-3 or supplementary uplink transmission bandwidth less than or equal to that specified in Table 7.3C.2-1 with reference measurement channels as specified in Annexes A.2.2.2, A.2.3.2, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1), unless sensitivity degradation is allowed in this clause of this specification. These exceptions also apply to any higher order CA or DC combination containing one of the exception combinations in this clause as subset.

Table 7.3C.2-1: Supplementary uplink configuration for reference sensitivity

		N	R Band	d / SCS (of SUL b	and / Ch	annel b	andwid	dth of the	DL band	d / N _{RB}			
DL band	SUL band	SCS of SUL	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
		band (kHz)												
n41	n80	15		160	160	160			160	160	160	160	160	160
n41	n81	15		100	100	100			100	100	100	100	100	100
n41	n95	15		75	75	75		75	75	75	75	75	75	75
n77	n80	15		160	160	160			160	160	160	160	160	160
n77	n84	15		100	100	100			100	100	100	100	100	100
n78	n80	15		160	160	160			160	160	160	160	160	160
n78	n81	15		100	100	100			100	100	100	100	100	100
n78	n82	15		100	100	100			100	100	100	100	100	100
n78	n83	15		100	100	100			100	100	100	100	100	100
n78	n84	15		100	100	100			100	100	100	100	100	100
n78	n86	15		216	216	216			216	216	216	216	216	216
n79	n80	15							160	160	160	160		160
n79	n81	15			·				100	100	100	100		100
n79	n84	15		_	_				100	100	100	100		100
n79	n95	15			·				75	75	75	75		75

For the UE that supports any of the SUL operation given in Table 7.3C.2-2, exceptions to the requirements specified in Table 7.3.2-1 are allowed when the uplink is active in a lower frequency band and is within a specified frequency range such that transmitter harmonics fall within the downlink transmission bandwidth assigned in a higher band as noted in Table 7.3C.2-2. For these exceptions, the UE shall meet the requirements specified in Table 7.3C.2-2 and Table 7.3C.2-3.

Table 7.3C.2-2: Reference sensitivity for SUL operation (exceptions due to harmonic issue)

			N	IR Band	/ Chanr	nel band	lwidth o	f the hig	h band				
UL	DL	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
band	band												
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
n80	n77 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
	n77³		1.1	0.8	0.3								
n80	n78 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
	n78 ³		1.1	0.8	0.3								
	n41 ^{8,9}		13	11.3	10.1			7.0	6.1	5.5	4.3	3.9	3.5
n81	n78 ^{4,5}		10.8	9.1	8			5.1	4.2	3.5	2.3	1.5	1.4
	n79 ^{6,7}							6.8	6.2	5.6	4.9		4.4
n82	n78 ^{4,5}		10.8	9.1	8			6	4.0	3.2	2.0	1.5	1.0
n83	n78 ^{6,7}		10.4	8.9	7.8			4.7	3.7	3	1.7	1.2	0.7
n01	n77 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
n84	n77³		1.1	0.8	0.3								
~0C	n78 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
n86	n78³		1.1	0.8	0.3								

- NOTE 1: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band and a range ΔF_{HD} above and below the edge of this downlink transmission bandwidth. The value ΔF_{HD} depends on the band combination: $\Delta F_{HD} = 10$ MHz for SUL_n78-n80, SUL_n78-n86.
- NOTE 2: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \lfloor f_{DL}^{HB}/0.2 \rfloor$ 0.1 in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB}/2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB}/2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $g_{Channel}^{HB}$ the channel bandwidth configured in the lower band.
- NOTE 3: The requirements are only applicable to channel bandwidths no larger than 20 MHz and with a carrier frequency at $\frac{\pm \left(20 + BW_{Channel}^{HB} \ / \ 2\right)}{2}$ MHz offset from $\frac{2f_{UL}^{LB}}{2}$ in the victim (higher band) with $F_{UL_low}^{LB} + BW_{Channel}^{LB} \ / \ 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} \ / \ 2$, where $\frac{BW_{Channel}^{LB}}{2}$ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively.
- NOTE 4: These requirements apply when there is at least one individual RÉ within the uplink transmission bandwidth of the aggressor (lower) band for which the 4th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 6: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 5th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 7: The requirements should be verified for UL NR-ARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.5 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $\frac{BW_{Channel}^{LB}}{BW_{Channel}}$ the channel bandwidth configured in the lower band.
- NOTE 8: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 9 The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LBsuch that $f_{UL}^{LB} = \left\lfloor f_{DL}^{HB} / 0.3 \right\rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with the carrier frequency in the victim (higher) band in MHz and the channel bandwidth configured in the low band.

Table 7.3C.2-3: Supplementary uplink configuration (exceptions due to harmonic issue)

				NR Ban	d / Chan	nel band	lwidth of	the high	n band				
UL band	DL band	5 MHz (N _{RB})	10 MHz (N _{RB})	15 MHz (N _{RB})	20 MHz (N _{RB})	25 MHz (N _{RB})	30 MHz (N _{RB})	40 MHz (N _{RB})	50 MHz (N _{RB})	60 MHz (N _{RB})	80 MHz (N _{RB})	90 MHz (N _{RB})	100 MHz (N _{RB})
n80	n77		25	36	50			50	50	50	50	50	50
n80	n78		25	36	50			50	50	50	50	50	50
n81	n41		16	25	25			25	25	25	25	25	25
n81	n78		16	25	25			25	25	25	25	25	25
n81	n79							25	25	25	25		25
n82	n78		16	20	20			20	20	20	20	20	20
n83	n78		10	15	20			25	25	25	25	25	25
n84	n77		25	36	50			100	100	100	100	100	100
n86	n78		25	36	50			100	100	100	100	100	100

NOTE 1: 15 kHz SCS is assumed for UL band.

NOTE 2: The UL configuration applies regardless of the channel bandwidth of the low band

NOTE 3: Unless stated otherwise, UL resource blocks shall be centered within the transmission bandwidth configuration for the channel bandwidth.

Sensitivity degradation is allowed for a band if it is impacted by UL of another band part of the same SUL configuration due to cross band isolation issues. Reference sensitivity exceptions are specified in Table 7.3C.2-4 with uplink configuration specified in Table 7.3C.2-5.

Table 7.3C.2-4: Reference sensitivity exceptions due to cross band isolation

UL band	DL band	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)
n80	n41		4.3	4.0	3.9			3.9	3.5	3.3	3.2	3.1	3.0
n95	n41		6.1	6.1	6.1		6.1	6.1	6.1	6.1	6.1	6.1	6.1

NOTE 1: The B41 requirements are modified by -0.5dB when carrier frequency of the assigned E-UTRA channel bandwidth is within 2515 – 2690 MHz.

Table 7.3C.2-5: Uplink configuration for reference sensitivity exceptions due to cross band isolation

UL	DL	5 MHz	10	15	20	25	30	40	50	60	80	90	100
band	band	(dBm)	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
			(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
n80	n41		50	50	50			50	50	50	50	50	50
n95	n41		75	75	75		75	75	75	75	75	75	75
NOTE:	15 VUz C(اد مددا	ımad far l	II hand									

NOTE: 15 kHz SCS is assumed for UL band.

7.3C.3 $\Delta R_{IB,c}$ for SUL

7.3C.3.1 General

For a UE supporting a SUL configuration, the $\Delta R_{IB,c}$ applies for both SC and SUL operation.

7.3C.3.2 SUL band combination

For the UE which supports SUL band combiantion, the minimum requirement for reference sensitivity in clause 7.3C.2 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in clause 7.3C.3.2 for the applicable operating bands. Unless otherwise stated, $\Delta R_{IB,c}$ is set to zero.

In case the UE supports more than one of band combinations for CA, SUL or DC, and an operating band belongs to more than one band combinations then

- When the operating band frequency range is ≤ 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the average value for all band combinations defined in clause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [3], truncated to one decimal place that apply for that operating band among the supported band combinations. In case there is a harmonic relation between low band UL and high band DL, then the maximum $\Delta R_{IB,c}$ among the different supported band combinations involving such band shall be applied
- When the operating band frequency range is > 1 GHz, the applicable additional ΔR_{IB,c} shall be the maximum value for all band combinations defined in clause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [3] for the applicable operating bands.

7.3C.3.2.1 $\Delta R_{\rm IB.c}$ for two bands

Table 7.3C.3.2.1-1: ΔR_{IB,c} due to SUL (two bands)

Band combination for SUL	NR Band	ΔR _{IB,c} (dB)
SUL_n41-n80	n41	0.5 ^(note)
SUL_n41-n95	n41	0.2
SUL_n77-n80	n77	0.5
SUL_n77-n84	n77	0.5
SUL_n78-n80	n78	0.5
SUL_n78-n81	n78	0.5
SUL_n78-n82	n78	0.5
SUL_n78-n83	n78	0.5
SUL_n78-n84	n78	0.5
SUL_n78-n86	n78	0.5

NOTE: The requirement is applied for UE transmitting on the frequency range of 2496 – 2515 MHz.

7.3D Reference sensitivity for UL MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in clause 7.3 shall be met with the UL MIMO configurations described in clause 6.2D.1 and the reference measurement channels as specified in Annexes A.2.2 and A.2.3 for CP-OFDM waveforms shall apply. For UL MIMO, the parameter P_{UMAX} is the total transmitter power over the two transmits power over the two transmit antenna connectors.

7.3E Reference sensitivity for V2X

7.3E.1 General

The reference sensitivity power level $P_{REFSENS_V2X}$ is the minimum mean power applied to each one of the UE antenna ports for V2X UE, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3E.2 Minimum requirements

When UE is configured for NR V2X reception non-concurrent with NR uplink transmissions for NR V2X operating bands specified in Table 5.2E-1, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.8 with parameters specified in Table 7.3E.2-1.

Table 7.3E.2-1: Reference sensitivity of NR V2X Bands (PC5)

		Ch	annel ban	dwidth / Pa	REFSENS_V2X	dBm)
NR V2X Band	SCS kHz	10 MHz	20 MHz	30 MHz	40 MHz	Duplex Mode
	15	-96.8	-93.8		-90.6	HD
n38	30	-97.1	-94.0		-90.7	HD
	60	-97.5	-94.2		-90.9	HD
	15	-92.8	-89.7	-87.9	-86.6	HD
n47	30	-93.1	-89.9	-88.0	-86.7	HD
	60	-93.5	-90.1	-88.1	-86.9	HD

NOTE 1: Reference measurement channel is defined in A.8.

NOTE 2: The signal power is specified per antenna port.

NOTE 3: Additional $\Delta R_{REFSENS}$ shall be added to the reference sensitivity when any target SNR/RB number/diversity gain/Noise figure values are changed from those used to

derive the REFSENS in the above table.

Table 7.3E.2-2: Sidelink TX configuration for reference sensitivity of NR V2X Bands (PC5)

	NR Band / SCS / Channel bandwidth / Duplex mode										
NR V2X Band	SCS kHz	10 MHz	20 MHz	30 MHz	40 MHz	Duplex Mode					
	15	52	106		216	HD					
n38	30	24	51		106	HD					
	60	11	24		51	HD					
	15	52	106	160	216	HD					
n47	30	24	51	78	106	HD					
	60	11	24	38	51	HD					

NOTE 1: The sidelink allocated RB (LCRB) size could be adjusted according to resource pool configuration in [7].

7.3E.3 Reference sensitivity power level for V2X con-current operation

When UE is configured for NR V2X reception on V2X carrier con-current with NR uplink and downlink, NR V2X sidelink throughput for the carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes 8.2 with parameters specified in Table 7.3E.3-1. Also the NR downlink throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.3.

For the inter-band con-current NR V2X operation, and the UE also supports a NR downlink inter-band con-current configuration in Table 7.3E.3-2, the minimum requirement for reference sensitivity shall be increased by the amount given in $\Delta R_{IB,c}$ in Table 7.3E.3-2 for the corresponding NR V2X inter-band combinations.

Table 7.3E.3-1: Reference sensitivity for V2X Communication QPSK PREFSENS

Inter-ba rece	nd V2X otion	Channel bandwidth								
NR V2X Band	NR band	NR Band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	Duplex Mode
			15	-97.2	-94.0	-91.6	-86.0			FDD
		n71	30		-94.3	-91.9	-87.4			
n47	n71		60							
1147	117 1	n47	15		-92.8		-89.7	-87.9	-86.6	
			30		-93.1		-89.9	-88.0	-86.7	HD
			60		-93.5		-90.1	-88.1	-86.9	

NOTE 1: Reference measurement channel is defined in A.8.

NOTE 2: The signal power is specified per antenna port.

NOTE 3: Additional $\Delta R_{REFSENS}$ shall be added to the reference sensitivity when any target SNR/RB number/diversity gain/Noise figure values are changed from those used to derive the REFSENS in the above table

Table 7.3E.3-2: ΔR_{IB,c} (two bands)

V2X inter-band con-current band Combination	NR Band	ΔR _{IB,c} [dB]
V2X_n71-n47	n71	0.0

The reference sensitivity is defined to be met with NR uplink assigned to one band (that differs from the V2X operating band) and all NR downlink carriers active. The NR uplink resource blocks shall be located as close as possible to NR V2X operating band but confined within the transmission bandwidth configuration for the channel. The uplink configuration for the NR operating band is specified in Table 7.3E.3-3 and 7.3E.3-4. The REFSENS of Uu downlink and PC5 sidelink will be tested at the same time.

Table 7.3E.3-3: Uplink configuration for REFSENS of NR V2X Bands (PC5)

Inter-band NR V2X con-current band configuration		NR UL band / SCS/ Channel BW / Duplex mode						
NR V2X band (PC5)	NR V2X band (Uu)	NR V2X UL band (Uu)	SCS (kHz)	Channel Bandwidth (MHz)	N _{RB}	Duplex Mode		
			15	10	52			
n47	n71	n71	30	10	24	FDD		
			60	10	11			

Table 7.3E.3-4: Sidelink TX configuration for REFSENS of NR V2X Bands (Uu)

Inter-band NR V2 band confi		NR UL band / SCS/ Channel BW / Duplex mode							
NR V2X band (PC5)			SCS (kHz)	Channel Bandwidth (MHz)	N _{RB}	Duplex Mode			
			15	10	52				
n47	n71	n47	30	10	24	HD			
			60	10	11				
NOTE 1: The side	NOTE 1: The sidelink allocated RB (LCRB) size could be adjusted according to resource pool configuration in [7].								

7.3F Reference sensitivity for NR-DC

For inter-band NR-DC configurations, the reference sensitivity for the corresponding inter-band CA configuration as specified in subclause 7.3A applies.

7.4 Maximum input level

Maximum input level is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel. The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexs A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4-1.

Table 7.4-1: Maximum input level

Rx	Units		Channel bandwidth											
Parameter		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
		IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ
Power in			-25 ²			-24 ²	-23 ²	-22 ²	-21 ²			-20 ²		
Transmission Bandwidth Configuration	dBm		-27 ³			-26 ³	-25 ³	-24 ³	-23 ³			-22 ³		

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum uplink configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} as defined in clause 6.2.4.

NOTE 2: Reference measurement channel is A.3.2.3 or A.3.3.3 for 64 QAM. NOTE 3: Reference measurement channel is A.3.2.4 or A.3.3.4 for 256 QAM.

7.4A Maximum input level for CA

7.4A.1 Maximum input level for Intra-band contiguous CA

For intra-band contiguous carrier aggregation maximum input level is defined as the maximum mean power received at the UE antenna port, over the Transmission bandwidth configuration of each CC.

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexs A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4A.1-1 for each component carrier.

Table 7.4A.1-1: Maximum input level for Intra-band contiguous CA

Rx Parameter	Units	NR CA Bandwidth Class						
		В	С	D				
Power in largest transmission		-23 ²	-23 ²	-25 ²				
bandwidth configuration CC, Plargest BW	dBm	-25 ³	-25 ³	-27 ³				
Power in each other CC	dBm	Plargest BV	v +10*log{(N _{RB,c} *SC	Sc)/(NRB,largest BW*SC	CSlargest BW)}			

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum uplink configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} as defined in clause 6.2.4.

NOTE 2: Reference measurement channel is A.3.2.3 or A.3.3.3 for 64 QAM. NOTE 3: Reference measurement channel is A.3.2.4 or A.3.3.4 for 256 QAM.

7.4A.2 Maximum input level for Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation with one uplink carrier and two or more downlink sub-blocks, each larger than or equal to 5 MHz, the maximum input level requirements are defined with the uplink configuration in accordance with 7.3A.2.2-1. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in Table 7.4-1 and Table 7.4A.1-1 for one component carrier and two component carriers per sub-block, respectively. The throughput of each downlink component carrier shall be \geq 95% of the maximum throughput of the specified reference measurement channel as specified in Annex A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1 and A.5.2.1. The requirements apply with all downlink carriers active.

7.4A.3 Maximum input level for Inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band, the maximum input level is defined with the uplink active on the band(s) other than the band whose downlink is being tested. For NR CA configurations including an operating band without uplink band or an operating band with an unpaired DL part (as noted in Table 5.2-1), the requirements for all downlinks shall be met with the single uplink carrier

active in each band capable of UL operation. The UE shall meet the requirements specified in clause 7.4 for each component carrier while all downlink carriers are active.

The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexs A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) for each component carrier.

Maximum input level for NR-DC 7.4B

For inter-band NR-DC configurations, the maximum input level for the corresponding inter-band CA configuration as specified in subclause 7.4A applies.

7.4D Maximum input level for UL MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing, the minimum requirements specified in clause 7.4 shall be met with the UL MIMO configurations described in clause 6.2D.1. For UL MIMO, the parameter P_{CMAX} L is defined as the total transmitter power over the two transmit antenna connectors.

7.4E Maximum input level for V2X

7.4E.1 General

Maximum input level is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel. The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexs A.8 with parameters specified in Table 7.4E.1-1.

Table 7.4E.1-1: Maximum input level of NR V2X

Rx Parameter	Units							
		10 MHz	20 MHz	30 MHz	40 MHz			
Power in Transmission Bandwidth Configuration	dBm	-25 ¹	-25 ¹	-23 ¹	-22 ¹			
Danawati Comiguration		-27 ²	-27 ²	-25 ²	-24 ²			
NOTE 1: Reference measurement channel is A.8 for 64 QAM.								

NOTE 2: Reference measurement channel is A.8 for 256 QAM.

7.4E.2 Maximum input level for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 7.4E shall apply for the NR sidelink reception in Band n47 and the requirements specified in subclause 7.4 shall apply for the NR downlink reception in licensed band while all downlink carriers are active.

7.5 Adjacent channel selectivity

Adjacent channel selectivity (ACS) is a measure of a receiver's ability to receive an NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The UE shall fulfil the minimum requirements specified in Table 7.5-1 for NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL~high}$ < 2700 MHz and the minimum requirements specified in Table 7.5-2 for NR bands with $F_{DL~low} \ge 3300$ MHz and F_{UL_low} ≥ 3300 MHz. These requirements apply for all values of an adjacent channel interferer up to -25 dBm and for any SCS specified for the channel bandwidth of the wanted signal. However, it is not possible to directly measure the ACS; instead the lower and upper range of test parameters are chosen as in Table 7.5-3 and Table 7.5-4 for verification of the requirements specified in Table 7.5-1, and as in Table 7.5-5 and Table 7.5-6 for verification of the

requirements specified in Table 7.5-2. For these test parameters, the throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1). For operating bands with an unpaired DL part (as noted in Table 5.2-1), the requirements only apply for carriers assigned in the paired part.

Table 7.5-1: ACS for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

RX parameter	Units		Channel bandwidth					
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz		
ACS	dB	33	33	30	27	26		
RX parameter	Units		Channel bandwidth					
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz		
ACS	dB	25.5	24	23	22.5	21		
RX parameter	Units		Cha	nnel bandw	idth			
		90 MHz	100 MHz					
ACS	dB	20.5	20					

Table 7.5-2: ACS for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units		Channel bandwidth						
		10 MHz	15 MHz	20 MHz	25 MHz	30 MHz			
ACS	dB	33	33	33	33	33			
RX parameter	Units		Channel bandwidth						
		40 MHz	50 MHz	60 MHz	70 MHz	80 MHz			
ACS	dB	33	33	33	33	33			
RX parameter	Units		Cha	annel bandw	idth				
		90 MHz	100 MHz						
ACS	dB	33	33						

Table 7.5-3: Test parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 1

RX parameter	Units		CI	nannel bandwid	lth			
-		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz		
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В			
Pinterferer	dBm	REFSENS + 45.5 dB	REFSENS + 45.5 dB	REFSENS + 42.5 dB	REFSENS + 39.5 dB	REFSENS + 38.5 dB		
BWinterferer	MHz	5	5	5	5	5		
Finterferer (offset)	MHz	5 / -5	7.5 / -7.5	10 / -10	12.5 / -12.5	15 / -15		
RX parameter	Units	-	Channel bandwidth					
•		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz		
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В			
Pinterferer	dBm	REFSENS + 38 dB	REFSENS + 36.5 dB	REFSENS + 35.5 dB	REFSENS + 35 dB	REFSENS + 33.5 dB		
BWinterferer	MHz	5	5	5	5	5		
Finterferer (offset)	MHz	17.5 / -17.5	22.5 / -22.5	27.5 / -27.5	32.5 / -32.5	42.5 / -42.5		
RX parameter	Units			nannel bandwid	lth			
		90 MHz	100 MHz					
Power in transmission bandwidth configuration	dBm	REFSEN:	S + 14 dB					
Pinterferer	dBm	REFSENS + 33 dB	REFSENS + 32.5 dB					
BW _{interferer}	MHz	5	5					
Finterferer (offset)	MHz	47.5 / -47.5	52.5 / -52.5					

NOTE 1: The transmitter shall be set to 4 dB below $P_{CMAX_L,f,c}$ at the minimum UL configuration specified in Table 7.3.2-3 with $P_{CMAX_L,f,c}$ defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(F_{interferer} \mid /SCS \mid + 0.5)_{SCS}$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with 15 kHz SCS.

NOTE 3: The interferer consists of the NR interferer RMC specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1.

Table 7.5-4: Test parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 2

RX parameter	Units		С	hannel bandwic	ith		
-		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	
Power in	dBm	-56.5	-56.5	-53.5	-50.5	-49.5	
transmission							
bandwidth							
configuration							
Pinterferer	dBm			-25			
BWinterferer	MHz	5	5	5	5	5	
Finterferer (offset)	MHz	5	7.5	10	12.5	15	
		/	/	/	/	/	
		-5	-7.5	-10	-12.5	-15	
RX parameter	Units		С	hannel bandwic	dth		
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	
Power in	dBm	-49	-47	-46.5	-46	-44.5	
transmission							
bandwidth							
configuration							
Pinterferer	dBm			-25			
BW _{interferer}	MHz	5	5	5	5	5	
Finterferer (offset)	MHz	17.5	22.5	27.5	32.5	42.5	
, ,		/	/	/	/	/	
		-17.5	-22.5	-27.5	-32.5	-42.5	
RX parameter	Units			hannel bandwic	dth		
		90 MHz	100 MHz				
Power in	dBm						
transmission		-44	-43.5				
bandwidth		-44	-43.3				
configuration							
Pinterferer	dBm	-25					
BWinterferer	MHz	5	5				
Finterferer (offset)	MHz	47.5	52.5				
		/	/				
		-47.5	-52.5				

NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer} | / SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with 15 kHz SCS.

NOTE 3: The interferer consists of the RMC specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1

Table 7.5-5: Test parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 1

RX parameter	Units	Channel bandwidth					
-		10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	lB		
Pinterferer	dBm		RI	EFSENS + 45.5	dB		
BWinterferer	MHz	10	15	20	25	30	
Finterferer (offset)	MHz	10	15	20 /	25 /	30	
DV maramatar	Units	-10	-15	-20	-25	-30	
RX parameter	Units	40 MHz	50 MHz	nannel bandwid 60 MHz	70 MHz	80 MHz	
Power in	dBm	40 IVITZ	30 IVITZ	OU WITZ	70 IVITIZ	OU WITZ	
transmission bandwidth configuration	аып	REFSENS + 14 dB					
Pinterferer	dBm	REFSENS + 45.5 dB	REFSENS + 45.5 dB	REFSENS + 45.5 dB	REFSENS + 45.5 dB	REFSENS + 45.5 dB	
BW _{interferer}	MHz	40	50	60	70	80	
Finterferer (offset)	MHz	40 / -40	50 / -50	60 / -60	70 / -70	80 / -80	
RX parameter	Units			nannel bandwid		-00	
rot parameter	•	90 MHz	100 MHz				
Power in transmission bandwidth configuration	dBm		6 + 14 dB		1	,	
Pinterferer	dBm	REFSENS + 45.5 dB	REFSENS + 45.5 dB				
BWinterferer	MHz	90	100				
Finterferer (offset)	MHz	100 / -90	100 / -100				

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset $F_{\text{interferer}}$ (offset) shall be further adjusted to $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1.

Table 7.5-6: Test parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

RX parameter	Units	Channel bandwidth						
		10 MHz	15 MHz	20 MHz	25 MHz	30 MHz		
Power in	dBm							
transmission				-56.5				
bandwidth				-30.3				
configuration								
Pinterferer	dBm			-25				
BWinterferer	MHz	10	15	20	25	30		
Finterferer (offset)	MHz	10	15	20	25	30		
		/	/	/	/	/		
		-10	-15	-20	-25	-30		
RX parameter	Units			nannel bandwid				
		40 MHz	50 MHz	60 MHz	70 MHz	80 MHz		
Power in	dBm							
transmission				-56.5				
bandwidth				30.5				
configuration								
Pinterferer	dBm	-25	-25	-25	-25	-25		
BWinterferer	MHz	40	50	60	70	80		
Finterferer (offset)	MHz	40	50	60	70	80		
		/	/	/	/	/		
		-40	-50	-60	-70	-80		
RX parameter	Units			nannel bandwid	<u>lth</u>			
		90 MHz	100 MHz					
Power in	dBm							
transmission			6.5					
bandwidth			0.5					
configuration								
Pinterferer	dBm	-25	-25					
BW _{interferer}	MHz	90	100					
Finterferer (offset)	MHz	90	100					
		/	/					
		-90	-100	l		1		

- NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(|F_{interferer}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1.

7.5A Adjacent channel selectivity for CA

7.5A.1 Adjacent channel selectivity for Intra-band contiguous CA

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. The UE shall fulfil the minimum requirement specified in Table 7.5A.1-1 and 7.5A.1-1a for an adjacent channel interferer on either side of the aggregated downlink signal at a specified frequency offset and for an interferer power up to -25 dBm.

The throughput of each carrier shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.5A.1-2, 7.5A.1-2a, 7.5A.1-3 and 7.5A.1-3a.

Table 7.5A.1-1: ACS for intra-band contiguous CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

		NR CA bandwidth class					
Rx Parameter	Units	В	С	D			
ACS	dB	26.0	33.0	25.2			

Table 7.5A.1-1a: ACS for intra-band contiguous CA with F_{DL_low} < 2700 MHz and F_{UL_low} < 2700 MHz

		NR CA bandwidth class			
Rx Parameter	Units	В	С		
ACS	dB	20.0	17.0		

Table 7.5A.1-2: Test parameters for intra-band contiguous CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 1

Rx Parameter	Units		NR CA bandwidth class			
		В	С	D		
Pw in Transmission Bandwidth Configuration, per CC	dBm	REFSENS + 14 dB	REFSENS + 14 dB	REFSENS + 14 dB		
PInterferer	dBm	Aggregated power + 24.5	Aggregated power + 31.5	Aggregated power + 23.7		
		dB	dB	dB		
BW _{Interferer}	MHz	20	BW _{channel} CA	50		
Finterferer (offset)	MHz	10 + Foffset	BW _{channel} CA	25 + F _{offset}		
		/	/	/		
		-10 - Foffset	-BW _{channel} CA	-25 -Foffset		

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} define in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $([F_{interferer} | / SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the carrier closest to the interferer in MHz. The interferer is an NR signal with an SCS equal to that of the closest carrier.

NOTE 3: The interferer consists of the RMC specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1.

Table 7.5A.1-2a: Test parameters for intra-band contiguous CA with F_{DL_low} <2700 MHz and F_{UL_low} <2700 MHz, case 1

Rx Parameter	Units	NR CA bandwidth class		
		В	С	
Pw in Transmission Bandwidth Configuration, per CC	dBm	REFSENS + 14 dB	REFSENS + 14 dB	
PInterferer	dBm	Aggregated power + 18.5 dB	Aggregated power + 15.5 dB	
BWInterferer	MHz	5	5	
F _{Interferer} (offset)	MHz	2.5 + F _{offset}	2.5 + F _{offset}	
		/	/	
		-2.5 - F _{offset}	-2.5 - F _{offset}	

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 .

NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(|F_{interferer}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the carrier closest to the interferer in MHz. The interferer is an NR signal with 15 kHz SCS.

NOTE 3: The interferer consists of the RMC specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1.

Table 7.5A.1-3: Test parameters for intra-band contiguous CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

Rx Parameter	Units	NR CA bandwidth class					
		В	С	D			
Pw in Transmission Bandwidth Configuration, per CC	dBm	-49.5 + 10log(N _{RB,c} /N _{RB_} _{agg})	-56.5	-48.7 + 10log(N _{RB,c} /N _{RB_agg})			
P _{Interferer}	dBm	-25	-25	-25			
BW _{Interferer}	MHz	20	BW _{channel CA}	50			
F _{Interferer} (offset)	MHz	10 + F _{offset} / -10 -F _{offset}	BW _{channel} CA / -BW _{channel} CA	25 + F _{offset} / -25 - F _{offset}			

- NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(F_{interferer} | / SCS | + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the carrier closest to the interferer in MHz. The interferer is an NR signal with an SCS equal to that of the closest carrier.
- NOTE 3: The interferer consists of the RMC specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1.

Table 7.5A.1-3a: Test parameters for intra-band contiguous CA with F_{DL_low} <2700 MHz and F_{UL_low} <2700 MHz, case 2

Rx Parameter	Units	NR CA Bandwidth Class			
		В	С		
Pw in Transmission Bandwidth Configuration, per CC	dBm	-43.5 + 10log(N _{RB,c} /N _{RB_agg})	-40.5 + 10log(N _{RB,c} /N _{RB_agg})		
PInterferer	dBm	-25	-25		
BW _{Interferer}	MHz	5	5		
F _{Interferer} (offset)	MHz	2.5 + F _{offset}	2.5 + F _{offset}		
		/	/		
		-2.5 - F _{offset}	-2.5 - F _{offset}		

- NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer}] / SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the carrier closest to the interferer in MHz. The interferer is an NR signal with 15 kHz SCS.
- NOTE 3: The interferer consists of the RMC specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1.

7.5A.2 Adjacent channel selectivity Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation with F_{DL_low} < 2700 MHz and F_{UL_low} < 2700 MHz with one uplink carrier and two or more downlink sub-blocks, each larger than or equal to 5 MHz, the adjacent channel selectivity requirements are defined with the uplink configuration in accordance with Table 7.3A.2.2-1. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in clauses 7.5 and 7.5A.1 for one component carrier and two component carriers per sub-block, respectively. The UE shall fulfil the minimum requirements all values of a single adjacent channel interferer in-gap and out-of-gap up to a –25 dBm interferer power while all downlink carriers are active. For the lower range of test parameters (Case 1), the interferer power $P_{interferer}$ shall be set to the maximum of the levels given by the carriers of the respective sub-blocks as specified in Table 7.5-3 and Table 7.5A.1-2a for one component carrier and two component carriers per sub-block, respectively. The wanted signal power levels for the carriers of each sub-block shall then be adjusted relative to $P_{interferer}$ in accordance with the ACS requirement for each sub-block (Table 7.5-1 and Table 7.5A.1-1a). For the upper range of test parameters (Case 2) for which the interferer power $P_{interferer}$ is -25 dBm (Table 7.5-4 and Table 7.5A.1-3a) the wanted signal power levels for the carriers of each sub-block shall be adjusted relative to $P_{interferer}$ like for Case 1.

For intra-band non-contiguous carrier aggregation with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz with one uplink carrier and two or more downlink sub-blocks, each larger than or equal to 5 MHz, the adjacent channel selectivity requirements are defined with the uplink configuration in accordance with Table 7.3A.2.2-1. For this uplink

configuration, the UE shall meet the requirements for each sub-block as specified in clauses 7.5 and 7.5A.1 for one component carrier and two component carriers per sub-block, respectively. The UE shall fulfil the minimum requirements all values of a single adjacent channel interferer in-gap and out-of-gap up to a –25 dBm interferer power while all downlink carriers are active. For the lower range of test parameters (Case 1), the interferer power Pinterferer shall be set to the maximum of the levels given by the carriers of the respective sub-blocks as specified in Table 7.5-5 and Table 7.5A.1-2 for one component carrier and two component carriers per sub-block, respectively. The wanted signal power levels for the carriers of each sub-block shall then be adjusted relative to Pinterferer in accordance with the ACS requirement for each sub-block (Table 7.5-2 and Table 7.5A.1-1). For the upper range of test parameters (Case 2) for which the interferer power Pinterferer is -25 dBm (Table 7.5-6 and Table 7.5A.1-3) the wanted signal power levels for the carriers of each sub-block shall be adjusted relative to Pinterferer like for Case 1.

The throughput of each carrier shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.5A.3 Adjacent channel selectivity Inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band, the adjacent channel requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. For NR CA configurations including an operating band without uplink operation or an operating band with an unpaired DL part (as noted in Table 5.2-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. The UE shall meet the requirements specified in clause 7.5 for each component carrier while all downlink carriers are active.

The throughput of each carrier shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.5B Adjacent channel selectivity for NR-DC

For inter-band NR-DC configurations, the adjacent channel selectivity for the corresponding inter-band CA configuration as specified in subclause 7.5A applies.

7.5D Adjacent channel selectivity for UL MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in clause 7.5 shall be met with the UL MIMO configurations described in clause 6.2D.1. For UL MIMO, the parameter P_{CMAX} L is defined as the total transmitter power over the two transmit antenna connectors.

7.5E Adjacent channel selectivity for V2X

7.5E.1 General

Adjacent channel selectivity (ACS) is a measure of a receiver's ability to receive an NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The UE shall fulfil the minimum requirements specified in Table 7.5E.1-1 for NR V2X UE. These requirements apply for all values of an adjacent channel interferer up to -25 dBm and for any SCS specified for the channel bandwidth of the wanted signal. However, it is not possible to directly measure the ACS; instead the lower and upper range of test parameters are chosen as in Table 7.5E.1-2 and Table 7.5E.1-3 for verification of the requirements specified in Table 7.5E.1-1. For these test parameters, the throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.8.

In licensed band, the minimum requirements shall reuse the same ACS values with NR UE.

Table 7.5E.1-1: Adjacent channel selectivity for NR V2X

RX parameter	l luite		Channel b	andwidth	
	Units	10 MHz	20 MHz	30 MHz	40 MHz
ACS	dB	33.0	27.0	25.5	24.0

Table 7.5E.1-2: Test parameters for Adjacent channel selectivity for V2X, Case 1

DV marrameter	l linita	Channel bandwidth				
RX parameter	Units	10 MHz	20 MHz	30 MHz	40 MHz	
Power in transmission bandwidth configuration	dBm	Prefsens_v2x + 14 dB				
Pinterferer	dBm	Prefsens_v2X + 45.5 dB	Prefsens_v2X + 39.5 dB	Prefsens_v2X + 38.0 dB	Prefsens_v2X + 36.5 dB	
BW _{interferer}	MHz	10	10	10	10	
F _{interferer} (offset)	MHz	10 / -10	15 / -15	20 / -20	25 / -25	

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used.

NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $([F_{interferer} \mid /SCS \mid + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with 15 kHz SCS.

Table 7.5E.1-3: Test parameters for Adjacent channel selectivity for V2X, Case 2

RX parameter	Units	Channel bandwidth				
KA parameter	Ullits	10 MHz	20 MHz	30 MHz	40 MHz	
Power in transmission bandwidth configuration	dBm	-56.5	-50.5	-49.0	-47.5	
Pinterferer	dBm		-2	25		
BWinterferer	MHz	10	10	10	10	
Finterferer (offset)	MHz	10 / -10	15 / -15	20 / -20	25 / -25	

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used.

NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with 15 kHz SCS.

7.5E.2 Adjacent channel selectivity for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 7.5E shall apply for the NR sidelink reception in Band n47 and the requirements specified in subclause 7.5 shall apply for the NR downlink reception in licensed band while all downlink carriers are active.

7.6 Blocking characteristics

7.6.1 General

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs.

7.6.2 In-band blocking

For NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz in-band blocking (IBB) is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band. The throughput of the wanted signal shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.2-1 and Table 7.6.2-2. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 5.2-1), the requirements only apply for carriers assigned in the paired part.

Table 7.6.2-1: In-band blocking parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

RX parameter	Units	Channel bandwidth					
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	
Power in	dBm	R	EFSENS + char	nel bandwidth sp	pecific value belo	w	
transmission	dB	6	6	7	9	10	
bandwidth							
configuration							
BWinterferer	MHz			5			
Floffset, case 1	MHz			7.5			
Floffset, case 2	MHz			12.5			
RX parameter	Units			hannel bandwid	lth		
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	
Power in	dBm	R	EFSENS + char	nel bandwidth sp	pecific value belo)W	
transmission							
bandwidth	dB	11	12	13	14	15	
configuration							
BWinterferer	MHz			5			
Floffset, case 1	MHz			7.5			
Floffset, case 2	MHz			12.5			
RX parameter	Units			hannel bandwid	lth		
		90 MHz	100 MHz				
Power in	dBm	REESENS	S + channel				
transmission							
bandwidth		bandwidth specific value below					
configuration							
	dB	15.5	16				
BWinterferer	MHz		5				
Floffset, case 1	MHz		7.5				
Floffset, case 2	MHz		2.5			.6. 1.	

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The interferer consists of the RMC specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1 and 15 kHz SCS.

Table 7.6.2-2: In-band blocking for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

NR band	Parameter	Unit	Case 1	Case 2	Case 3	Case 4
	Pinterferer	dBm	-56	-44	-15	-38
	F _{interferer} (offset)	MHz	-BW _{Channel} /2 -	≤ -BW _{Channel} /2 -		-BW _{Channel} /2-11
			Floffset, case 1	Floffset, case 2		
			and	and		
			BW _{Channel} /2 +	≥ BW _{Channel} /2 +		
			Floffset, case 1	Floffset, case 2		
n1, n2, n3, n5, n7, n8,	Finterferer	MHz	NOTE 2	F _{DL_low} – 15 to		
n12, n14,				F _{DL_high} + 15		
n18, n20,				I DL_nigh + 13		
n25, n26,						
n28,n34,						
n38,n39,						
n40, n41,						
n48 ³ , n50,						
n51, n53,						
n65, n66,						
n70, n74,						
n75, n76,						
n91, n92,						
n93, n94						
n30	Finterferer	MHz	NOTE 2	F _{DL_low} – 15		F _{DL_low} – 11
				to		
				F _{DL_high} + 15		
n71	F _{interferer}	MHz	NOTE 2	$F_{DL_{low}} - 12 \text{ to}$	F _{DL_low} – 12	
				FDI high + 15		

NOTE 1: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to $(|F_{\text{interferer}}|/|SCS|] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with 15 kHz SCS.

NOTE 3: n48 follows the requirement in this frequency range according to the general requirement defined in Clause 7.1.

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz in-band blocking (IBB) is defined for an unwanted interfering signal falling into the UE receive band or into an immediately adjacent frequency range up to $3*BW_{Channel}$ below or above the UE receive band where $BW_{Channel}$ is the bandwidth of the wanted signal. The throughput of the wanted signal shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1)] with parameters specified in Table 7.6.2-3 and Table 7.6.2-4. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

NOTE 2: For each carrier frequency, the requirement applies for two interferer carrier frequencies: a: -BW_{Channel}/2 - F_{loffset, case 1}; b: BW_{Channel}/2 + F_{loffset, case 1}

Table 7.6.2-3: In-band blocking parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz
MHz

RX parameter	Units		С	hannel bandwid	th			
		10 MHz	15 MHz	20 MHz	25 MHz	30 MHz		
Power in	dBm	REFSENS + channel bandwidth specific value below						
transmission	dB			6				
bandwidth								
configuration								
BWinterferer	MHz	10	15	20	25	30		
Floffset, case 1	MHz	15	22.5	30	37.5	45		
Floffset, case 2	MHz	25	37.5	50	62.5	75		
RX parameter	Units		С	hannel bandwid	th			
		40 MHz	50 MHz	60 MHz	70 MHz	80 MHz		
Power in	dBm	R	EFSENS + char	nel bandwidth sp	pecific value belo)W		
transmission	dB			6				
bandwidth								
configuration								
BWinterferer	MHz	40	50	60	70	80		
Floffset, case 1	MHz	60	75	90	105	120		
Floffset, case 2	MHz	100	125	150	175	200		
RX parameter	Units	Channel bandwidth						
		90 MHz	100 MHz					
Power in	dBm	REFSENS	+ channel					
transmission		bandwidth s	pecific value					
bandwidth		be	low					
configuration	dB	(5					
BWinterferer	MHz	90	100					
Floffset, case 1	MHz	135	150					
Floffset, case 2	MHz	225	250					

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The interferer consists of the RMC specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1

Table 7.6.2-4: In-band blocking for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Case 1	Case 2
	Pinterferer	dBm	-56	-44
n77, n78,	Finterferer (offset)	MHz	-BW _{Channel} /2 -	≤ -BW _{Channel} /2 -
n79			Floffset, case 1	Floffset, case 2
			and	and
			BW _{Channel} /2 +	≥ BW _{Channel} /2 +
			Floffset, case 1	Floffset, case 2
	Finterferer			F _{DL_low} –
				3*BW _{Channel}
			NOTE 2	to
				F _{DL_high} +
				3*BW _{Channel}
			ferer offset Finterfere	
	further adjusted to ($F_{\text{interferer}}$ /	SCS = 0.5 SCS MH	Iz with SCS the
	sub-carrier spacing o	of the wan	ted signal in MHz. Ti	ne interferer is an
			o that of the wanted	
NOTE 2:	For each carrier freq	uency, the	e requirement applies	s for two interferer
			nel/2 - Floffset, case 1; b:	
	Floffset, case 1		,	
NOTE 3:	BWchannel denotes th	e channel	bandwidth of the wa	inted signal

7.6.3 Out-of-band blocking

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range 15 MHz below or above the UE receive band. The throughput of the wanted signal shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in

Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3-1 and Table 7.6.3-2. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 5.2-1), the requirements only apply for carriers assigned in the paired part.

Table 7.6.3-1: Out-of-band blocking parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

DV noromotor	Units		С	hannel bandwid	ith			
RX parameter	Units	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz		
Power in	dBm		REFSENS +	- channel specific	c value below			
transmission bandwidth configuration	dB	6	6	7	9	10		
DV noromotor	Units		С	hannel bandwic	ith			
RX parameter	Units	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz		
Power in transmission	dBm	R	REFSENS + channel bandwidth specific value below					
bandwidth configuration	dB	11	12	13	14	15		
DV naramatar	Unito	Channel bandwidth						
RX parameter	Units	90 MHz	100 MHz					
Power in	dBm	REFSENS	+ channel					
transmission		bandwidth s	pecific value					
bandwidth		be	low					
configuration								
-	dB	15.5	16					
			B below P _{CMAX_L} , ed in clause 6.2.		n UL configuratio	n specified in		

Table 7.6.3-2: Out of-band blocking for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

NR band	Parameter	Unit	Range 1	Range 2	Range 3
n1, n2, n3,	Pinterferer	dBm	-44	-30	-15
n5, n7, n8,	Finterferer (CW)	MHz			
n12, n14,					
n18, n20,					
n25, n26,					
n28, n30,					
n34, n38,					1 ≤ f ≤ F _{DL low} – 85
n39, n40,			$-60 < f - F_{DL_{low}} < -15$	$-85 < f - F_{DL_low} \le -60$	Or 05
n41, n48 ⁵ ,			or	or	F _{DL_high} + 85 ≤ f
n50, n51,			$15 < f - F_{DL_high} < 60$	$60 \le f - F_{DL_high} < 85$	≤ 12750
n53 ⁶ , n65,					= 12750
n66, n70,					
n71, n74,					
n75, n76,					
n91, n92,					
n93, n94					

- NOTE 1: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm for F_{Interferer} > 6000 MHz.
- NOTE 2: For band 51 the F_{DL_high} of band 50 is applied as F_{DL_high} for band 51. For band 50, the F_{DL_low} of band 51 is applied as F_{DL_low} for band 50.
- NOTE 3: For band 76 the F_{DL_high} of band 75 is applied as F_{DL_high} for band 76. For band 75, the F_{DL_low} of band 76 is applied as F_{DL low} for band 75.
- NOTE 4: For UEs supporting both bands 38 and 41, the F_{DL_high} and F_{DL_low} of band 41 is applied as F_{DL_high} and F_{DL_low} for band 38.
- NOTE 5: n48 follows the requirement in this frequency range according to the general requirement defined in Clause 7.1. The power level of the interferer ($P_{Interferer}$) for Range 3 shall be modified to -20 dBm for $F_{Interferer} > 2700$ MHz and $F_{Interferer} < 4800$ MHz.
- NOTE 6: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to [-20 dBm] for F_{Interferer} > [2580 MHz] and F_{Interferer} < [2775 MHz].
- NOTE 7 For UE supporting both bands 25 and 70, the F_{DL_high} of band 70 is applied as F_{DL_high} for band 25, and the F_{DL_low} of band 25 is applied as F_{DL_low} for band 70.
- NOTE8: For bands 91 and 93 the F_{DL_high} of bands 92 and 94 are applied as F_{DL_high} for bands 91 and 93. For bands 92 and 94, the F_{DL_low} of bands 91 and 93 are applied as F_{DL_low} for bands 92 and 94

For interferer frequencies across ranges 1, 2 and 3 in Table 7.6.3-2, a maximum of

$$\left[\max\left\{24,6\cdot\left\lceil n\cdot N_{RB} / 6\right\rceil\right\} / \min\left\{\left\lceil n\cdot N_{RB} / 10\right\rceil,5\right\}\right]$$

exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min(\lfloor BW_{channel} / 2 \rfloor, 5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, BW_{Channel} the bandwidth of the frequency channel in MHz and n = 1, 2, 3 for SCS = 15, 30, 60 kHz, respectively. For these exceptions, the requirements in clause 7.7 apply.

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range up to $3*BW_{Channel}$ below or from $3*BW_{Channel}$ above the UE receive band, where $BW_{Channel}$ is the channel bandwidth. The throughput of the wanted signal shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3-3 and Table 7.6.3-4. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.6.3-3: Out-of-band blocking parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

-	Channel bandwidth						
	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz		
dBm	R	EFSENS + char	nel bandwidth sp	ecific value belo	W		
dB	6	7	9	9	9		
Units		С	hannel bandwid	th			
Ī	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz		
dBm	R	EFSENS + char	nel bandwidth sp	ecific value belo	w		
dB	9	9	9	9	9		
Units		С	hannel bandwid	th			
	90 MHz	100 MHz					
dBm	REFSENS + channel bandwidth specific value below						
dB	9	9					
	dB Units dBm dB Units dBm	dB 6 Units 40 MHz dBm R dB 9 Units 90 MHz dBm REFSENS bandwidth s bel dB 9	dB 6 7 Units CI dBm REFSENS + chan dB 9 9 Units CI 90 MHz 100 MHz dBm REFSENS + channel bandwidth specific value below dB 9 9	dB 6 7 9 Units Channel bandwid 40 MHz 50 MHz 60 MHz dBm REFSENS + channel bandwidth sp dB 9 9 Units Channel bandwidth 90 MHz 100 MHz dBm REFSENS + channel bandwidth specific value below dB 9 9	dB 6 7 9 9 Units Channel bandwidth 40 MHz 50 MHz 60 MHz 70 MHz dBm REFSENS + channel bandwidth specific value below 9 9 9 Units Channel bandwidth 90 MHz 100 MHz 400 MHz <		

NOTE: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

Table 7.6.3-4: Out of-band blocking for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Range1	Range 2	Range 3
n77, n78	Pinterferer	dBm	-44	-30	-15
(NOTE 3)	Finterferer (CW)	MHz	-60 < f − F _{DL_low} ≤ -3*BW _{Channel} or 3*BW _{Channel} ≤ f − F _{DL_high} < 60	-200 < f − F _{DL_low} ≤ - MAX(60,3*BW _{Channel}) or MAX(60,3*BW _{Channel}) ≤ f − F _{DL_high} < 200	$\begin{array}{l} 1 \leq f \leq F_{DL_low} - \\ MAX(200,3^*BW_{Channel} \\) \\ or \\ F_{DL_high} \\ + \\ MAX(200,3^*BW_{Channel} \\) \\ \leq f \leq 12750 \end{array}$
n79 (NOTE 4)	Finterferer (CW)	MHz	N/A	-150 < f − F _{DL_low} ≤ - MAX(60,3*BW _{Channel}) or MAX(60,3*BW _{Channel}) ≤ f − F _{DL_high} < 150	$\begin{array}{l} 1 \leq f \leq F_{DL_low} - \\ MAX(150,3^*BW_{Channel}) \\ or \\ F_{DL_high} \\ + \\ MAX(150,3^*BW_{Channel}) \\ \leq f \leq 12750 \end{array}$

NOTE 1: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm for F_{Interferer} > 6000 MHz.

NOTE 2: BW_{Channel} denotes the channel bandwidth of the wanted signal

NOTE 3: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 2700 MHz and F_{Interferer} < 4800 MHz. For BW_{Channel} > 15 MHz, the requirement for Range 1 is not applicable and Range 2 applies from the frequency offset of 3*BW_{Channel} from the band edge. For BW_{Channel} larger than 60 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3*BW_{Channel} from the band edge.

NOTE 4: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 3650 MHz and F_{Interferer} < 5750 MHz. For BW_{Channel} ≥ 40 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3*BW_{Channel} from the band edge.

For interferer frequencies across ranges 1, 2 and 3 in Table 7.6.3-4, a maximum of

$$\left| \max \left\{ 24,6 \cdot \left\lceil n \cdot N_{RB} / 6 \right\rceil \right\} / \min \left\{ \left\lceil n \cdot N_{RB} / 10 \right\rceil, 5 \right\} \right|$$

exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min(\lfloor BW_{channel}/2 \rfloor, 5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission

bandwidth configuration, BW_{Channel} the bandwidth of the frequency channel in MHz and n = 1, 2, 3 for SCS = 15, 30, 60 kHz, respectively. For these exceptions, the requirements in clause 7.7 apply.

7.6.4 Narrow band blocking

This requirement is measure of a receiver's ability to receive a NR signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

The relative throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.4-1. For operating bands with an unpaired DL part (as noted in Table 5.2-1), the requirements only apply for carriers assigned in the paired part.

Table 7.6.4-1: Narrow Band Blocking

NR band	Parameter	Unit		•	•	•	•	Channel E	Bandwidth				•	•
			5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
n1, n2, n3,	Pw	dBm					Prefse	_{NS} + channel	-bandwidth	specific value	below			•
n5, n7, n8,			16	13	14	16	16	16	16	16	16	16	16	16
n12, n14,	Puw (CW)	dBm	-55	-55	-55	-55	-55	-55	-55	-55	-55	-55	-55	-55
n18, n20, n25, n26,	F _{uw} (offset SCS= 15 kHz)	MHz	2.7075	5.2125	7.7025	10.2075	13.0275	15.6075	20.5575	25.7025	NA	NA	NA	NA
n28, n30, n34, n38, n39, n40, n41, n48, n50, n51, n53, n65, n66, n70, n71, n74, n75, n76	Fuw (offset SCS= 30 kHz)	MHz	NA	NA	NA	NA	NA	NA	NA	NA	30.855	40.935	45.915	50.865

NOTE 1: The transmitter shall be set a 4 dB below PCMAX_L,f,c at the minimum UL configuration specified in Table 7.3.2-3 with PCMAX_L,f,c defined in clause 6.2.4

NOTE 2: Reference measurement channel is specified in Annexes A.3.2 and A.3.3 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

NOTE 3: The Prefsens power level is specified in Table 7.3.2-1 and Table 7.3.2-2 for two and four antenna ports, respectively.

7.6A Blocking characteristics for CA

7.6A.1 General

7.6A.2 In-band blocking for CA

7.6A.2.1 In-band blocking for Intra-band contiguous CA

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. The UE shall fulfil the minimum requirement specified in Table 7.6A.2.1-1 and 7.6A.2.1-1a for an adjacent channel interferer on either side of the aggregated downlink signal at a specified frequency offset and for an interferer power up to -25 dBm. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

Table 7.6A.2.1-1: In-band blocking parameters for intra-band contiguous CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

Rx Parameter	Unit		NR CA bandwidth class						
	s	В	С	D					
Pw in Transmission		RE	REFSENS + CA bandwidth class specific value below						
Bandwidth Configuration, per CC	dB	10.0	6	13.8					
BW _{Interferer}	MHz	20	BW _{channel} CA	50					
Floffset, case 1	MHz	30	BW _{channel} CA+ BW _{channel} CA/2	75					
F _{loffset, case 2}	MHz	50	BW _{Interferer} + F _{Ioffset, case 1}	125					

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} define in clause 6.2.4.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annexes A.3.2 and A.3.3 with one sided dynamic OCNG Pattrn OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

Table 7.6A.2.1-1a: In-band blocking parameters for intra-band contiguous CA with F_{DL_low} < 2700 MHz and F_{UL_low} < 2700 MHz

Rx Parameter	Units	NR CA bandwidth class			
		В	С		
Pw in Transmission		REFSENS + NR CA bandwidth class specific value below			
Bandwidth Configuration, per CC	dBm	16.0	19.0		
BW _{Interferer}	MHz	5	5		
Floffset, case 1	MHz	7.5	7.5		
Floffset, case 2	MHz	12.5	12.5		

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annexes A.3.2 and A.3.3 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

Table 7.6A.2.1-2: In-band blocking for intra-band contiguous CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Case 1	Case 2				
	Pinterferer	dBm	-56	-44				
n77, n78,	Finterferer (offset)	MHz	-BW _{channel CA} /2 -F _{loffset, case 1}	≤ -BW _{channel} CA/2 -Floffset, case 2				
n79			and	and				
			BW _{channel CA} /2 +F _{loffset, case 1}	≥ BW _{channel CA} /2 +F _{loffset, case 2}				
	F _{interferer}	MHz		F _{DL_low} - 3BW _{channel CA}				
			NOTE 2	to				
				F _{DL_high} + 3BW _{channel CA}				
NOTE 1: T	NOTE 1: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to							
([0.7) 0.00 1411	14 000 4 I	to the term of the term				

 $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the carrier closest to the interferer in

MHz. The interferer is an NR signal with an SCS equal to that of the closest carrier.

NOTE 2: For each carrier frequency, the requirement applies for two interferer carrier frequencies: a: -BW_{channel CA}/2 -

Floffset, case 1; b: BWchannel CA/2 + Floffset, case 1

NOTE 3: BWchannel CA denotes the aggregated channel bandwidth of the wanted signal

Table 7.6A.2.1-2a: In-band blocking for intra-band contiguous CA with F_{DL_low} < 2700 MHz and F_{UL_low} < 2700 MHz

NR	Parameter	Unit	Case 1	Case 2	Case 3
band	Pinterferer	dBm	-56	-44	
n41,	Finterferer	MHz	-BWchannel CA/2 -Floffset, case 1	≤ -BW _{channel CA} /2 -F _{loffset, case 2}	
n66,	(offset)		and	and	
n48 ⁴ ,			BW _{channel CA} /2 +F _{loffset, case 1}	≥ BW _{channel CA} /2 +F _{loffset, case 2}	
n40	Finterferer	MHz		F _{DL_low} – 15	
			NOTE 2	to	
				F _{DL_high} + 15	
n71	Finterferer	MHz		F _{DL_low} – 12	F _{DL_low} - 12
			NOTE 2	to	
				F _{DL_high} + 15	

NOTE 1: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to

 $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the carrier closest to the interferer in MHz. The interferer is an NR signal with 15 kHz SCS.

NOTE 2: For each carrier frequency, the requirement applies for two interferer carrier frequencies: a: -BW_{channel CA}/2 - F_{loffset, case 1}; b: BW_{channel CA}/2 + F_{loffset, case 1}

NOTE 3: BW_{channel CA} denotes the aggregated channel bandwidth of the wanted signal

NOTE 4: n48 follows the requirement in this frequency range according to the general requirement defined in Clause 7.1A.

7.6A.2.2 In-band blocking for Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation with one uplink carrier and two or more downlink sub-blocks, each larger than or equal to 5 MHz, the in-band blocking requirements are defined with the uplink configuration in accordance with Table 7.3A.2.2-1. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in clause 7.6.2 and 7.6A.2.1 for one component carrier and two component carriers per sub-block, respectively. The requirements apply for in-gap and out-of-gap interferers while all downlink carriers are active.

The throughput of each carrier shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.6A.2.3 In-band blocking for Inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band, the in-band blocking requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in clause 7.6.2 for each component carrier while all downlink carriers are active.

For the UE which supports inter-band CA configuration in Table 7.3A.3.2, $P_{interferer}$ power defined in Table 7.6.2-2 and 7.6.2-4 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3A.3.2.

For E-UTRA CA configurations including an operating band without uplink operation or an operating band with an unpaired DL part (as noted in Table 5.2-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. The requirements for the component carrier configured in the operating band without uplink operation are specified in Table 7.6A.2.3-1.

Table 7.6A.2.3-1: In-band blocking parameters for additional NR operating bands for carrier aggregation with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

NR band	Parameter	Unit	Case 1	Case 2	
	Pinterferer	dBm	-56	-44	
	Finterferer (offset)	MHz	-BW _{Channel} /2 -	≤ -BW _{Channel} /2 -	
			Floffset, case 1	Floffset, case 2	
			and	and	
			BW _{Channel} /2 +	≥ BW _{Channel} /2 +	
			Floffset, case 1	Floffset, case 2	
n29	Finterferer	MHz	NOTE 2	F _{DL_low} – 15	
				to	
				F _{DL_high} + 15	
NOTE 1: For certain bands, the unwanted modulated interfering signal may not					
fa	fall inside the UE receive band, but within the first 15 MHz below or				
а	above the UE receive band				
NOTE 2: For each carrier frequency, the requirement applies for two interferer					
C	carrier frequencies: a: -BW _{Channel} /2 - F _{loffset, case 1} ; b: BW _{Channel} /2 +				
F	Floffset, case 1				
NOTE 3: The absolute value of the interferer offset Finterferer (offset) shall be					
fu	further adjusted to $(\lceil F_{\text{interferer}} \mid / SCS \rceil + 0.5)SCS$ MHz with SCS the				
s	sub-carrier spacing of the wanted signal in MHz. The interferer is an				
	NR signal with an SCS equal to that of the wanted signal				
	BW _{Channel} denotes the channel bandwidth of the wanted signal				

The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.6A.3 Out-of-band blocking for CA

7.6A.3.1 Out-of-band blocking for Intra-band contiguous CA

For intra-band contiguous carrier aggreagation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test.

The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.6A.3-1 and Table 7.6A.3-2 being on either side of the aggregated signal. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

Table 7.6A.3-1: Out-of-band blocking parameters for intra-band contiguous CA

Uni	CA bandwidth class			
ts	В	С	D	
dB	REFSENS + CA bandwidth class specific value below			
m	·			
dB	9	9	9	
	ts dB m	ts B dB RE	ts B C dB REFSENS + CA bandwi	ts B C D dB REFSENS + CA bandwidth class specific m

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

Table 7.6A.3-1a: Void

Table 7.6A.3-2: Out of-band blocking for intra-band contiguous CA

NR band	Parameter	Unit	Range1	Range 2	Range 3
	Pinterferer	dBm	-45	-30	-15
n41,n66,n 71,n48 ⁵ ,n 40	Finterferer (CW)	MHz	$-60 < f - F_{DL_low} < -15$ or $15 < f - F_{DL_high} < 60$	$-85 < f - F_{DL_low} \le -60$ or $60 \le f - F_{DL_high} < 85$	$1 \le f \le F_{DL_low} - 85$ or $F_{DL_high} + 85 \le f$ ≤ 12750
n77, n78 (NOTE 3)	Finterferer (CW)	MHz	N/A	N/A	$\begin{array}{c} 1 \leq f \leq F_{DL_low} - \\ MAX(200,3^*BW_{Channel_CA}) \\ or \\ F_{DL_high} + MAX(200,3^*BW_{Channel_CA}) \\ \leq f \leq 12750 \end{array}$
n79 (NOTE 4)	Finterferer (CW)	MHz	N/A	N/A	$\begin{array}{c} 1 \leq f \leq F_{DL_low} - \\ MAX(150,3^*BW_{Channel_CA}) \\ or \\ F_{DL_high} + MAX(150,3^*BW_{Channel_CA}) \\ \leq f \leq 12750 \end{array}$

- NOTE 1: The power level of the interferer (PInterferer) for Range 3 shall be modified to -20 dBm for FInterferer > 6000 MHz.
- NOTE 2: BWChannel_CA denotes the aggregated channel bandwidth of the wanted signal
- NOTE 3: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 2700 MHz and F_{Interferer} < 4800 MHz. For BW_{Channel_CA} > 15 MHz, the requirement for Range 1 is not applicable and Range 2 applies from the frequency offset of 3*BW_{Channel_CA} from the band edge. For BW_{Channel_CA} larger than 60 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3*BW_{Channel_CA} from the band edge.
- NOTE 4: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 3650 MHz and F_{Interferer} < 5750 MHz. For BW_{Channel_CA}≥ 40 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3*BW_{Channel_CA} from the band edge.
- NOTE 5: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm for F_{Interferer} > 2700 MHz and F_{Interferer} < 4800 MHz

Table 7.6A.3-2a: Void

7.6A.3.2 Out-of-band blocking for Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation with one uplink carrier and two or more downlink sub-blocks, the out-of-band blocking requirements are defined with the uplink configuration in accordance with table 7.3A.2.2-1. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in clauses 7.6.3 and 7.6A.3.1 for one component carrier and two component carriers per sub-block, respectively. The requirements apply with all downlink carriers active.

The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.6A.3.3 Out-of-band blocking for Inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band, the out-of-band blocking requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. For NR CA configurations including an operating band without uplink band or an operating band with an unpaired DL part (as noted in Table 5.2-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. The UE shall meet the requirements specified in clause 7.6.3 for each component carrier while all downlink carriers are active.

For inter-band carrier aggregation with uplink assigned to two NR bands, the out-of-band blocking requirements specified in clause 7.6.3 shall be met with the transmitter power for the uplink set to 7 dB below $P_{CMAX_L,f,c}$ for each serving cell c.

For the UE which supports inter-band CA configuration in Table 7.3A.3.2.1-1, $P_{interferer}$ power defined in Table 7.6.3-2 and 7.6.3-4 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3A.3.2.1-1.

For inter-band CA combination listed in Table 7.6A.3.3-1, exceptions to the requirement specified in Table 7.6A.3.3-2 are allowed when the second order intermodulation product of the lower frequency band UL carrier and the CW interfering signal fully or partially overlaps with the higher frequency band DL carrier.

Table 7.6A.3.3-1: CA band combination with exceptions allowed

CA band combination			
CA_n5-n79			
CA_n8-n78			
CA_n8-n79			
CA_n20-n78			
CA_n28-n77			
CA_n78-n92			

Table 7.6A.3.3-2: Requirement for out-of-band blocking exceptions

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44 ¹
		, , , , , , , , , , , , , , , , , , ,

NOTE 1: The requirement applies when $\left|f_{Interferer} \pm f_{UL}^{LB} - f_{DL}^{HB}\right| \le (BW_{UL}^{LB} + BW_{DL}^{HB})/2$, where f_{UL}^{LB} and f_{DL}^{HB} are the carrier frequencies for lower frequency band UL and higher frequency band DL, respectively. BW_{UL}^{LB} and BW_{DL}^{HB} are the channel bandwidths configured for lower frequency band UL carrier and higher frequency band DL carrier in MHz, respectively.

For all interferer frequency ranges specified in clause 7.6.3 a maximum of

$$\left[\max\left\{24,6\cdot\left\lceil n\cdot N_{RB} / 6\right\rceil\right\}/\min\left\{\left\lceil n\cdot N_{RB} / 10\right\rceil,5\right\}\right]$$

exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min(\lfloor BW_{channel} / 2 \rfloor, 5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, $BW_{Channel}$ the bandwidth of the frequency channel in MHz and n = 1, 2, 3 for SCS = 15, 30, 60 kHz, respectively. For these exceptions, the requirements in clause 7.7 apply.

The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.6A.4 Narrow band blocking for CA

7.6A.4.1 Narrow band blocking for Intra-band contiguous CA

For intra-band contiguous carrier aggregation, the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.6A.4.1-1 with the uplink configuration. For UE(s) supporting one uplink, the uplink configuration of the PCC shall be in accordance with Table 7.3.2-3. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.6A.4.1-1 being on either side of the aggregated signal. The throughput of each carrier shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6A.4.1-1.

 F_{uw} (offset for $\Delta f = 30$

kHz)

NR CA bandwidth class NR **Parameter** Unit В band REFSENS + NR CA Bandwidth Class specific value below Pw in Transmission Bandwidth dBm 16 16 Configuration, per CC n1. n41. P_{uw} (CW) dBm -55 -55 n66, - F_{offset} -0.2- 0.2 F_{offset} n71,n48, F_{uw} (offset for $\Delta f = 15$ MHz n40 kHz) + Foffset + 0.2 + Foffset + 0.2

Table 7.6A.4.1-1: Narrow-band blocking for intra-band contiguous CA

- NOTE 1: The transmitter shall be set a 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: Reference measurement channel is specified in Annexes A.3.2 and A3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.
- NOTE 3: The PREFSENS power level is specified in Table 7.3.2-1 and Table 7.3.2-2 for two and four antenna ports, respectively.
- NOTE 4: The F_{uw} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the interferer and shall be further adjusted to
 - $\lfloor F_{\text{interferer}} / 0.015 + 0.5 \rfloor 0.015 + 0.0075$ MHz to be offset from the sub-carrier raster.

7.6A.4.2 Narrow band blocking for Intra-band non-contiguous CA

MHz

For intra-band non-contiguous carrier aggregation with F_{DL_low} < 2700 MHz and F_{UL_low} < 2700 MHz with one uplink carrier and two or more downlink sub-blocks, the narrow band blocking requirements are defined with the uplink configuration in accordance with Table 7.3A.2.2-1. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in clauses 7.6.4 and 7.6A.4.1 for one component carrier and two component carriers per sub-block, respectively. The requirements apply for in-gap and out-of-gap interferers while all downlink carriers are active.

The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.6A.4.3 Narrow band blocking for Inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band, the narrow band blocking requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. For NR CA configurations including an operating band without uplink band or an operating band with an unpaired DL part (as noted in Table 5.2-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. The UE shall meet the requirements specified in clause 7.6.4 for each component carrier while all downlink carriers are active.

For the UE which supports inter-band CA configuration in Table 7.3A.3.2.1-1, P_{UW} power defined in Table 7.6.4-1 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3A.3.2.1-1.

The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.6B Blocking characteristics for NR-DC

For inter-band NR-DC configurations, the blocking characteristics for the corresponding inter-band CA configuration as specified in subclause 7.6A applies.

7.6C Blocking characteristics for SUL

7.6C.1 General

7.6C.2 In-band blocking for SUL

For SUL operation, the in-band blocking requirement for downlink bands specified in clause 7.6.2 shall be met.

For SUL operation with downlink CA, the in-band blocking requirement for downlink bands specified in clause 7.6A.2 shall be met.

7.6C.3 Out-of-band blocking for SUL

For SUL operation, the out-of-band blocking requirement for downlink bands specified in clause 7.6.3 shall be met. For SUL operation with downlink CA, the out-of-band blocking requirement for downlink bands specified in clause 7.6A.3 shall be met. For operation band combination listed in Table 7.6C.3-1, exceptions to the requirement specified in Table 7.6C.3-2 are allowed when the second order intermodulation product of the SUL carrier and the CW interfering signal fully or partially overlaps with the DL carrier.

Table 7.6C.3-1: SUL operating band combination with exceptions allowed

NR Band combination for SUL
SUL_n78-n81
SUL_n78-n82
SUL_n78-n83
SUL_n79-n81

Table 7.6C.3-2: Requirement for out-of-band blocking exceptions

Parameter	Unit	Level				
P _{Interferer} (CW)	dBm	-44 ¹				
NOTE 1: The requirement applies when $ f_{Interferer} \pm f_{SUL} - f_{DL} \le (BW_{SUL} +$						
BW_{DL})/2, where BW_{SUL} and BW_{DL} are the channel bandwidths configured for						
SUL and DL (vic	tim) bands in MHz, respectiv	ely.				

For all interferer frequency ranges specified in clause 7.6.3 a maximum of

$$\left[\max\left\{24,6\cdot\left\lceil n\cdot N_{RB} / 6\right\rceil\right\}/\min\left\{\left\lceil n\cdot N_{RB} / 10\right\rceil,5\right\}\right]$$

exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min(\lfloor BW_{channel} / 2 \rfloor, 5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, $BW_{Channel}$ the bandwidth of the frequency channel in MHz and n = 1, 2, 3 for SCS = 15, 30, 60 kHz, respectively. For these exceptions, the requirements in clause 7.7 apply.

7.6C.4Narrow band blocking for SUL

Narrow band blocking is not specified for SUL band combination.

7.6D Blocking characteristics for UL MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in clause 7.6 shall be met with the UL MIMO configurations described in clause 6.2D.1. For UL MIMO, the parameter P_{CMAX_L} is defined as the total transmitter power over the two transmit antenna connectors.

7.6E Blocking characteristics for V2X

7.6E.1 General

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs.

7.6E.2 In-band blocking

7.6E.2.1 General

The throughput of the wanted signal shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.8 with parameters specified in Table 7.6E.2.1-1 and Table 7.6E.2.1-2. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.6E.2.1-1: In-band blocking parameters for NR V2X

BV parameter	Units		Channel b	pandwidth		
RX parameter	Units	10 MHz	20 MHz	30 MHz	40 MHz	
Power in transmission	dBm	Prefsens_v2x + channel bandwidth specific value below				
bandwidth configuration	dB	6	9	11	12	
BW _{interferer}	MHz	10				
Floffset, case 1	MHz	15				
Floffset, case 2	MHz		25			

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used.

Table 7.6E.2.1-2: In-band blocking for NR V2X

NR band	Parameter	Unit	Case 1	Case 2
n38, n47	P _{interferer}	dBm	-44	-44
			-BW/2 - F _{loffset, case 1}	≤ -BW/2 - F _{loffset, case 2}
	Finterferer (offset)	MHz	and	and
			BW/2 + Floffset, case 1	≥ BW/2 + Floffset, case 2
				F _{DL_low} - 30
	Finterferer	MHz	NOTE 2	to
				F _{DL_high} + 30

- NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band.
- NOTE 2: For each carrier frequency the requirement is valid for two frequencies:
 - a. the carrier frequency -BW/2 Floffset, case 1 and
 - b. the carrier frequency +BW/2 + F_{loffset, case 1}
- NOTE 3: F_{Interferer} range values for unwanted modulated interfering signal are interferer center frequencies
- NOTE 4: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(|F_{interferer}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with 15 kHz SCS.

7.6E.2.2 In-band blocking for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 7.6E2 shall apply for the NR sidelink reception in Band n47 and the requirements specified in subclause 7.6.2 shall apply for the NR downlink reception in licensed band while all downlink carriers are active.

7.6E.3 Out-of-band blocking

7.6E.3.1 General

For NR V2X bands out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range 30 MHz below or above the UE receive band. The throughput of the wanted signal shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.8 with parameters specified in Table 7.6E.3.1-1 and Table 7.6E.3.1-2. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.6E.3.1-1: Out-of-band blocking parameters for NR V2X

DV parameter	Units		Channel k	oandwidth		
RX parameter	Ullits	10 MHz	20 MHz	30 MHz	40 MHz	
Power in transmission	dBm	Prefsens_v2x + channel bandwidth specific value below			value below	
bandwidth configuration	dB	6	9	11	12	
NOTE: Reference measurement channel is A.8.						

Table 7.6E.3.1-2: Out of-band blocking for NR V2X

NR band	Parameter	Units	Range 1	Range 2	Range 3
n47	Pinterferer	dBm	-44	-30	-15
	Finterferer (CW)	MHz	F _{DL_low} -30 to	F _{DL_low} -60 to	F _{DL_low} -85 to
			F _{DL_low} -60	F _{DL_low} -85	1 MHz
			F _{DL_high} +30 to	F _{DL_high} +60 to	F _{DL_high} +85 to
			F _{DL_high} + 60	F _{DL_high} +85	+12750 MHz
n38	Pinterferer	dBm	-44	-30	-15
	Finterferer (CW)	MHz	F _{DL_low} -30 to	F _{DL_low} -60 to	F _{DL_low} -85 to
			F _{DL_low} -60	F _{DL_low} -85	1 MHz

NOTE 1: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm for F_{Interferer} > 4400 MHz.

7.6E.3.2 Out-of-band blocking for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 7.6E3 shall apply for the NR sidelink reception in Band n47 and the requirements specified in subclause 7.6.3 shall apply for the NR downlink reception in licensed band while all downlink carriers are active.

7.7 Spurious response

Spurious response is a measure of the ability of the receiver to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency for which a response is obtained, i.e. for which the out-of-band blocking limit as specified in clause 7.6.3 is not met.

The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters for the wanted signal as specified in Table 7.7-1 for NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz and in Table 7.7-1a for NR bands with $F_{DL_high} \geq 3300$ MHz and for the interferer as specified in Table 7.7-2. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 5.2-1), the requirements only apply for carriers assigned in the paired part.

Table 7.7-1: Spurious response parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

DV noromotor	Units		С	hannel bandwid	lth		
RX parameter	Units	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	
Power in	dBm	R	EFSENS + char	nel bandwidth s	pecific value belo	w	
transmission bandwidth configuration	dB	6	6	7	9	10	
DV naramatar	Units	Channel bandwidth					
RX parameter	Units	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	
Power in	dBm	R	EFSENS + char	nnel bandwidth specific value below			
transmission bandwidth configuration	dB	11	12	13	14	15	
DV naramatar	Units		С	hannel bandwid	lth		
RX parameter	Ullits	90 MHz	100 MHz				
Power in	dBm	REFSENS	+ channel				
transmission		bandwidth specific value					
bandwidth		be	below				
configuration	dB	15.5	16				

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

Table 7.7.1-1a: Spurious response parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units		Channel bandwidth				
		10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	
Power in	dBm	R	EFSENS + chan	nel bandwidth sp	pecific value belo)W	
transmission	dB	6	7	9	9	9	
bandwidth configuration							
RX parameter	Units		CI	hannel bandwid	th		
•		40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	
Power in	dBm	R	EFSENS + chan	nel bandwidth specific value below			
transmission bandwidth	dB	9	9	9	9	9	
configuration							
RX parameter	Units		CI	hannel bandwid	th		
		90 MHz	100 MHz				
Power in	dBm	REFSENS	+ channel				
transmission		bandwidth specific value					
bandwidth		be	low				
configuration	dB	9	9				

NOTE 1: The transmitter shall be set to 4 dB below $P_{CMAX_L,f,c}$ at the minimum UL configuration specified in Table 7.3.2-3 with $P_{CMAX_L,f,c}$ defined in clause 6.2.4.

Table 7.7-2: Spurious response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
FInterferer	MHz	Spurious response frequencies

7.7A Spurious response for CA

7.7A.1 Spurious response for Intra-band contiguous CA

Table 7.7A-1: Spurious response parameters for intra-band contiguous CA

RX parameter	Units	NR CA bandwidth class					
		В	С	D			
Power in transmission	dBm	REFSENS + CA bandwidth class specific value below					
bandwidth configuration	dB	9	9	9			

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

Table 7.7A-2: Spurious response for CA

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
FInterferer	MHz	Spurious response frequencies

Table 7.7A-3: Void

Table 7.7A-4: void

7.7A.2 Spurious response for Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation with one uplink carrier and two or more downlink sub-blocks, the spurious response requirements are defined with the uplink configuration in accordance with Table 7.3A.2.2-1. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in clauses 7.7 and 7.7A.1 for one component carrier and two component carriers per sub-block, respectively. The requirements apply with all downlink carriers active.

The throughput of each carrier shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.7A.3 Spurious response for Inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band, the spurious response are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in clause 7.7 for each component carrier while all downlink carriers are active.

For the UE which supports inter-band CA configuration in Table 7.3A.3.2.1-1, $P_{interferer}$ power defined in Table 7.7-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3A.3.2.1-1.

The throughput of each carrier shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.7B Spurious response for NR-DC

For inter-band NR-DC configurations, the spurious response for the corresponding inter-band CA configuration as specified in subclause 7.7B applies.

7.7D Spurious response for UL MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in clause 7.7 shall be met with the UL MIMO configurations described in clause 6.2D.1. For UL MIMO, the parameter P_{CMAX_L} is defined as the total transmitter power over the two transmit antenna connectors.

7.7E Spurious response for V2X

7.7.E.1 General

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency for which a response is obtained, i.e. for which the out-of-band blocking limit as specified in clause 7.6E.3 is not met.

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.8 with parameters for the wanted signal as specified in Table 7.7E.1-1 and Table 7.7E.1-2 for NR V2X bands. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.7E.1-1: Spurious response parameters for NR V2X

RX parameter	Units	Channel bandwidth				
KA parameter	Units	10 MHz	20 MHz	30 MHz	40 MHz	
Power in transmission	r in transmission dBm Prefsens_v2x + channel bandwidth specific value I				value below	
bandwidth configuration	dB	6	9	11	12	
NOTE 1: Reference measurement channel is A.8						

Table 7.7E.1-2: Spurious response for NR V2X

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
Finterferer	MHz	Spurious response frequencies

7.7E.2 Spurious response for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 7.7E shall apply for the NR sidelink reception in Band n47 and the requirements specified in subclause 7.7 shall apply for the NR downlink reception in licensed band while all downlink carriers are active.

7.8 Intermodulation characteristics

7.8.1 General

Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal

7.8.2 Wide band Intermodulation

The wide band intermodulation requirement is defined using a CW carrier and modulated NR signal as interferer 1 and interferer 2 respectively.

The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.2-1 for NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz and Table 7.8.2-2 for NR bands with $F_{DL_low} \geq 3300$ MHz and $F_{UL_low} \geq 3300$ MHz. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 5.2-1), the requirements only apply for carriers assigned in the paired part.

Table 7.8.2-1: Wide band intermodulation parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

Rx parameter	Units					С	hannel b	andwidt	h				
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
P _w in					REFSE	NS + cha	annel bar	ndwidth s	pecific va	lue belo	W		
Transmission Bandwidth Configuration, per CC	dBm	6	6	7	9	10	11	12	13	14	15	15	16
PInterferer 1 (CW)	dBm						-4	6					
P _{Interferer 2} (Modulated)	dBm						-4	6					
BWInterferer 2	MHz						5						
F _{Interferer 1} (Offset)	MHz		-BW/2 - 7.5 / +BW/2 + 7.5										
F _{Interferer 2} (Offset)	MHz		2*FInterferer 1										

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: Reference measurement channel is specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1 and 15 kHz SCS.
- NOTE 4: The F_{interferer 1} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the CW interferer and F_{interferer 2} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the modulated interferer.

Table 7.8.2-2: Wide band intermodulation parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

Dv		Channel bandwidth												
Rx parameter	Units	10 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz					
P _w in Transmission Bandwidth Configuration , per CC	dBm				REFS	SENS + 6								
P _{Interferer 1} (CW)	dBm					-46								
P _{Interferer 2} (Modulated)	dBm					-46								
BW _{Interferer 2}	MHz					BW								
F _{Interferer 1} (Offset)	MHz		-2BW / +2BW											
F _{Interferer 2} (Offset)	MHz		2*FInterferer 1											

- NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: Reference measurement channel is specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1 and the same SCS as the wanted signal.
- NOTE 4: The F_{interferer 1} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the CW interferer and F_{interferer 2} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the modulated interferer.

7.8A Intermodulation characteristics for CA

7.8A.1 General

7.8A.2 Wide band intermodulation for CA

7.8A.2.1 Wide band intermodulation for Intra-band contiguous CA

Table 7.8A.2.1-1: Wide band intermodulation parameters for intra-band contiguous CA with $F_{DL_low} \ge 3300 \text{ MHz}$ and $F_{UL_low} \ge 3300 \text{ MHz}$

By parameter	Units		NR CA bandy	width class					
Rx parameter	Units	В	С	D					
P _w in Transmission Bandwidth Configuration, per CC	dBm	REFSENS + 10	REFSENS + 6	REFSENS + 13.8					
PInterferer 1 (CW)	dBm		-46	3					
P _{Interferer 2} (Modulated)	dBm		-46	5					
BW _{Interferer 2}	MHz	20	BW _{Channel_CA}	50					
F _{Interferer 1} (Offset)	MHz	-F _{offset} -30 / F _{offset} +30	-2BW _{Channel_CA} / +2BW _{Channel_CA}	-F _{offset} -75 / F _{offset} +75					
F _{Interferer 2} (Offset)	MHz	2*F _{Interferer 1}							
	NOTE 2: NOTE 3: NOTE 4:	The transmitter shall be s in Table 7.3.2-3 with P _{CM} . Reference measurement one sided dynamic OCNO A.5.1.1/A.5.2.1). The modulated interferer Annexes A.3.2.2 and A.3 DL-signal as described in The F _{interferer 1} (offset) is the to the interferer and the c frequency separation of the center frequency of the mass of the mass of the content of the mass	AX_L,f,c defined in clause 6 channel is specified in AG Pattern OP.1 FDD/TDE consists of the Reference 3.2 with one sided dynamic Annex A.5.1.1/A.5.2.1 and frequency separation contenter frequency of the Che center frequency of the channel is specified and the content of the center frequency of the content of the center frequency of the channel is specified and the center frequency of the channel is specified and the content of the center frequency of the content of the center frequency of the content of the center frequency of the content of the center frequency of the content of the center frequency of the center frequen	3.2.4. Annexes A.2.2, A.2.3, A	A.3.2, and A.3.3 (with described in Annex nel specified in P.1 FDD/TDD for the the closest carrier. y of the carrier closest erer 2 (offset) is the				

Table 7.8A.2.1-2: Wide band intermodulation parameters for intra-band contiguous CA with F_{DL_low} < 2700 MHz and F_{UL_low} < 2700 MHz

Dy noromator	Unit	NR CA band	dwidth class
Rx parameter	s	В	С
P _w in Transmission Bandwidth Configuration, per CC	dBm	REFSENS + 16	REFSENS + 19
P _{Interferer 1} (CW)	dBm	-46	-46
P _{Interferer 2} (Modulated)	dBm	-46	-46
BW _{Interferer 2}	MHz	5	5
F _{Interferer 1} (Offset)	MHz	-F _{offset} -7.5 / F _{offset} +7.5	-F _{offset} -7.5 / F _{offset} +7.5
F _{Interferer 2} (Offset)	MHz	2*FInterferer 1	2*FInterferer 1

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: Reference measurement channel is specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in Annexes A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1 and the same SCS as the 15 kHz SCS.
- NOTE 4: The F_{interferer 1} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the CW interferer and F_{interferer 2} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the modulated interferer

7.8A.2.2 Wide band intermodulation for Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation with one uplink carrier and two or more downlink sub-blocks, the wide band intermodulation requirements are defined with the uplink configuration in accordance with Table 7.3A.2.2-1. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in clause 7.8.2 and 7.8A.2.1 for one component carrier and two component carriers per sub-block, respectively. The requirements apply for out-of-gap interferers while all downlink carriers are active.

The throughput of each carrier shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.8A.2.3 Wide band intermodulation for Inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band, the wide band intermodulation requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in clause 7.8 for each component carrier while all downlink carriers are active.

For the UE which supports inter-band CA configuration in Table 7.3A.3.2.1-1, $P_{interferer}$ power defined in Table 7.8.2-1 and 7.8.2-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3A.3.2.1-1.

The throughput of each carrier shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2, and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.8B Intermodulation characteristics for NR-DC

For inter-band NR-DC configurations, the intermodulation characteristics for the corresponding inter-band CA configuration as specified in subclause 7.8A applies.

7.8D Intermodulation characteristics for UL MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in clause 7.8 shall be met with the UL MIMO configurations described in clause 6.2D.1. For UL MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

7.8E Intermodulation characteristics for V2X

7.8E.1 General

Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

7.8E.2 Wide band Intermodulation

The wide band intermodulation requirement is defined using modulated NR carrier and a CW signal as interferer 1 and interferer 2 respectively. The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.8 with parameters specified in Table 7.8E.2-1 for NR V2X bands. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.8E.2-1: Wide band intermodulation parameters for NR V2X

NR band	Rx parameter	Units	Channel bandwidth								
ININ Dallu	KX parameter	Ullits	10 MHz	20 MHz	30 MHz	40 MHz					
	Power in Transmission	dBm	Prefsens_v2X	+ channel ban	dwidth specific	value below					
	Bandwidth Configuration	иын	6	9	11	12					
	Pinterferer 1 (CW)	dBm	-46								
	P _{Interferer 2} (Modulated)	dBm		-46							
n38, n47	BW _{Interferer 2}	MHz	10MHz								
				-BW/2	2 – 15						
	Finterferer 1 (Offset)	MHz			/						
	, ,			+BW/	2 + 15						
	F _{Interferer 2} (Offset)	MHz		2 * F _{In}	terferer 1						

NOTE 1: Reference measurement channel is A.8

NOTE 2: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used.

7.8E.3 Intermodulation for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 7.8E shall apply for the NR sidelink reception in Band n47 and the requirements specified in subclause 7.8 shall apply for the NR downlink reception in licensed band while all downlink carriers are active.

7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9-1

Table 7.9-1: General receiver spurious emission requirements

Frequency range	Measurement bandwidth	Maximum level	NOTE
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm	
1 GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	
12.75 GHz ≤ f ≤ 5 th harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 dBm	2
12.75 GHz – 26 GHz	1 MHz	-47 dBm	3

NOTE 1: Unused PDCCH resources are padded with resource element groups with power level given

by PDCCH as defined in Annex C.3.1.

NOTE 2: Applies for Band that the upper frequency edge of the DL Band more than 2.69 GHz. NOTE 3: Applies for Band that the upper frequency edge of the DL Band more than 5.2 GHz.

7.9A Spurious emissions for CA

7.9A.1 Void

7.9A.2 Void

7.9A.3 Spurious emissions for Inter-band CA

For inter-band carrier aggregation including an operating band without uplink band, the UE shall meet the Rx spurious emissions requirements specified in clause 7.9 for each component carrier while all downlink carriers are active.

7.9B Spurious emissions for NR-DC

For inter-band NR-DC configurations, the spurious emissions for the corresponding inter-band CA configuration as specified in subclause 7.9A applies.

Annex A (normative): Measurement channels

A.1 General

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per datastream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all datastreams (codewords).

The UE category entry in the definition of the reference measurement channel in Annex A is only informative and reveals the UE categories, which can support the corresponding measurement channel. Whether the measurement channel is used for testing a certain UE category or not is specified in the individual minimum requirements.

A.2 UL reference measurement channels

A.2.1 General

The measurement channels in the following clauses are defined to derive the requirements in clause 6 (Transmitter Characteristics) and clause 7 (Receiver Characteristics). The measurement channels represent example configurations of physical channels for different data rates.

A.2.2 Reference measurement channels for FDD

A.2.2.1 DFT-s-OFDM Pi/2-BPSK

Table A.2.2.1-1: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	15	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	5	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	15	15	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	15	15	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	20	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	20	15	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	25	15	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	25	15	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	30	15	80	11	pi/2 BPSK	0	1/4	2472	16	2	1	10560	10560
	30	15	160	11	pi/2 BPSK	0	1/4	4872	24	2	2	21120	21120
	40	15	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	40	15	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
<u>-</u>	50	15	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
	50	15	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.1-2: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 30 kHz SCS

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size	Transport block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulated symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	30	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	5	30	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	10	30	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	10	30	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	15	30	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	15	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	20	30	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	20	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	25	30	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	25	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	30	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	30	30	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	40	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	40	30	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	50	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	50	30	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	60	30	81	11	pi/2 BPSK	0	1/4	2536	16	2	1	10692	10692
	60	30	162	11	pi/2 BPSK	0	1/4	5000	24	2	2	21384	21384
	80	30	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	80	30	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	90	30	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	90	30	243	11	pi/2 BPSK	0	1/4	7560	24	2	2	32076	32076
	100	30	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
	100	30	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.1-3: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	10	60	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	10	60	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	15	60	9	11	pi/2 BPSK	0	1/4	288	16	2	1	1188	1188
	15	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	20	60	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	20	60	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	25	60	15	11	pi/2 BPSK	0	1/4	480	16	2	1	1980	1980
	25	60	30	11	pi/2 BPSK	0	1/4	984	16	2	1	3960	3960
	30	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	30	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	40	60	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	40	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	50	60	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	50	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	60	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	60	60	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	80	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	80	60	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	90	60	60	11	pi/2 BPSK	0	1/4	1864	16	2	1	7920	7920
	90	60	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	100	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	100	60	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.2 DFT-s-OFDM QPSK

Table A.2.2.2-1: Reference Channels for DFT-s-OFDM QPSK for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	48	16	2	1	264	132
	5	15	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	5	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	10	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	15	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	15	15	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	15	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	20	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	20	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	20	15	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	25	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	15	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	25	15	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	30	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2: Reference Channels for DFT-s-OFDM QPSK for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-100	30	1	11	QPSK	2	1/6	48	16	2	1	264	132
	5	30	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	5	30	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	15	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	20	30	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	30	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	25	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	30	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	30	30	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	40	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	40	30	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	50	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	50	30	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	80	30	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	90	30	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	90	30	243	11	QPSK	2	1/6	12040	24	2	4	64152	32076
	100	30	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	100	30	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2-3: Reference Channels for DFT-s-OFDM QPSK for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	48	16	2	1	264	132
	10	60	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	10	60	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	15	11	QPSK	2	1/6	768	16	2	1	3960	1980
	25	60	30	11	QPSK	2	1/6	1544	16	2	1	7920	3960
	30	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	30	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	40	60	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	40	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	50	60	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	50	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	60	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	60	60	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	80	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	80	60	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	90	60	60	11	QPSK	2	1/6	3104	16	2	1	15840	7920
	90	60	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	100	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.3 DFT-s-OFDM 16QAM

Table A.2.2.3-1: Reference Channels for DFT-s-OFDM 16QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	15	15	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	15	15	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	20	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	20	15	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	25	15	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	25	15	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.3-2: Reference Channels for DFT-s-OFDM 16QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-100	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	5	30	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	15	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	20	30	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	20	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	25	30	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	25	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	30	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	30	30	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	40	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	40	30	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	50	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	50	30	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	80	30	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
-	90	30	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
·	90	30	243	11	16QAM	10	1/3	43032	24	1	6	128304	32076
-	100	30	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	100	30	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.3-3: Reference Channels for DFT-s-OFDM 16QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	10	60	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	15	11	16QAM	10	1/3	2664	16	2	1	7920	1980
	25	60	30	11	16QAM	10	1/3	5248	24	1	1	15840	3960
	30	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	30	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	40	60	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	40	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	50	60	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	50	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	60	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	60	60	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	80	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	80	60	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	90	60	60	11	16QAM	10	1/3	10504	24	1	2	31680	7920
	90	60	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
	100	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.4 DFT-s-OFDM 64QAM

Table A.2.2.4-1: Reference Channels for DFT-s-OFDM 64QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	18	1/2	9992	24	1	2	19800	3300
	10	15	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	15	15	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	20	15	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	25	15	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	30	15	160	11	64QAM	18	1/2	63528	24	1	8	126720	21120
•	40	15	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.4-2: Reference Channels for DFT-s-OFDM 64QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	10	30	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	15	30	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	20	30	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	25	30	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	30	30	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	40	30	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	50	30	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	60	30	162	11	64QAM	18	1/2	64552	24	1	8	128304	21384
	80	30	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	90	30	243	11	64QAM	18	1/2	96264	24	1	12	192456	32076
	100	30	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.4-3: Reference Channels for DFT-s-OFDM 64QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	15	60	18	11	64QAM	18	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	25	60	30	11	64QAM	18	1/2	12040	24	1	2	23760	3960
	30	60	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	40	60	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	50	60	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	60	60	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	80	60	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	90	60	120	11	64QAM	18	1/2	48168	24	1	6	95040	15840
	100	60	135	11	64QAM	18	1/2	54296	24	1	7	106920	17820

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.5 DFT-s-OFDM 256QAM

Table A.2.2.5-1: Reference Channels for DFT-s-OFDM 256QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	15	15	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	20	15	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	25	15	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.5-2: Reference Channels for DFT-s-OFDM 256QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	20	30	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	25	30	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	30	30	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	40	30	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	50	30	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
	80	30	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	90	30	243	11	256QAM	20	2/3	172176	24	1	21	256608	32076
	100	30	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.5-3: Reference Channels for DFT-s-OFDM 256QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	30	11	256QAM	20	2/3	21000	24	1	3	31680	3960
	30	60	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	40	60	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	50	60	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	60	60	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	80	60	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	90	60	120	11	256QAM	20	2/3	83976	24	1	10	126720	15840
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.6 CP-OFDM QPSK

Table A.2.2.6-1: Reference Channels for CP-OFDM QPSK for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	48	16	2	1	264	132
	5	15	13	11	QPSK	2	1/6	672	16	2	1	3432	1716
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	10	15	52	11	QPSK	2	1/6	2600	16	2	1	13728	6864
	15	15	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	15	15	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	20	15	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	20	15	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	25	15	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	25	15	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.6-2: Reference Channels for CP-OFDM QPSK for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-100	30	1	11	QPSK	2	1/6	48	16	2	1	264	132
	5	30	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	5	30	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	15	30	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	20	30	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	20	30	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	25	30	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	25	30	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	30	30	39	11	QPSK	2	1/6	2024	16	2	1	10296	5148
	30	30	78	11	QPSK	2	1/6	3848	24	2	2	20592	10296
	40	30	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	40	30	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	50	30	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	50	30	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	109	11	QPSK	2	1/6	5384	24	2	2	28776	14388
	80	30	217	11	QPSK	2	1/6	10752	24	2	3	57288	28644
	90	30	123	11	QPSK	2	1/6	6152	24	2	2	32472	16236
	90	30	245	11	QPSK	2	1/6	12296	24	2	4	64680	32340
	100	30	137	11	QPSK	2	1/6	6792	24	2	2	36168	18084
NOTE 4. D	100	30	273	11	QPSK	2	1/6	13576	24	2	4	72072	36036

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.6-3: Reference Channels for CP-OFDM QPSK for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	48	16	2	1	264	132
	10	60	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	10	60	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	16	11	QPSK	2	1/6	808	16	2	1	4224	2112
	25	60	31	11	QPSK	2	1/6	1544	16	2	1	8184	4092
	30	60	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	30	60	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	40	60	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	40	60	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	50	60	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	50	60	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	60	60	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	60	60	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	80	60	54	11	QPSK	2	1/6	2664	16	2	1	14256	7128
	80	60	107	11	QPSK	2	1/6	5256	24	2	2	28248	14124
	90	60	61	11	QPSK	2	1/6	3104	16	2	1	16104	8052
	90	60	121	11	QPSK	2	1/6	6024	24	2	2	31944	15972
	100	60	68	11	QPSK	2	1/6	3368	16	2	1	17952	8976
NOTE 4 D	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.7 CP-OFDM 16QAM

Table A.2.2.7-1: Reference Channels for CP-OFDM 16QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	13	11	16QAM	10	1/3	2280	16	2	1	6864	1716
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	10	15	52	11	16QAM	10	1/3	9224	24	1	2	27456	6864
	15	15	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	15	15	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	20	15	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	20	15	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	25	15	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	25	15	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.7-2: Reference Channels for CP-OFDM 16QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-100	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	5	30	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	15	30	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	20	30	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	20	30	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	25	30	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	25	30	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	30	30	39	11	16QAM	10	1/3	6784	24	1	1	20592	5148
	30	30	78	11	16QAM	10	1/3	13576	24	1	2	41184	10296
	40	30	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	40	30	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	50	30	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	50	30	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	109	11	16QAM	10	1/3	18960	24	1	3	57552	14388
	80	30	217	11	16QAM	10	1/3	37896	24	1	5	114576	28644
	90	30	123	11	16QAM	10	1/3	21504	24	1	3	64944	16236
	90	30	245	11	16QAM	10	1/3	43032	24	1	6	129360	32340
	100	30	137	11	16QAM	10	1/3	24072	24	1	3	72336	18084
	100	30	273	11	16QAM	10	1/3	48168	24	1	6	144144	36036

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.7-3: Reference Channels for CP-OFDM 16QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz		-				Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	10	60	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	16	11	16QAM	10	1/3	2792	16	2	1	8448	2112
	25	60	31	11	16QAM	10	1/3	5376	24	1	1	16368	4092
	30	60	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	30	60	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	40	60	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	40	60	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	50	60	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	50	60	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	60	60	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	60	60	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	80	60	54	11	16QAM	10	1/3	9480	24	1	2	28512	7128
	80	60	107	11	16QAM	10	1/3	18960	24	1	3	56496	14124
	90	60	61	11	16QAM	10	1/3	10760	24	1	2	32208	8052
	90	60	121	11	16QAM	10	1/3	21000	24	1	3	63888	15972
	100	60	68	11	16QAM	10	1/3	11784	24	1	2	35904	8976
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.8 CP-OFDM 64QAM

Table A.2.2.8-1: Reference Channels for CP-OFDM 64QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	19	1/2	9992	24	1	2	19800	3300
	10	15	52	11	64QAM	19	1/2	21000	24	1	3	41184	6864
	15	15	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	20	15	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
	25	15	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	30	15	160	11	64QAM	19	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	19	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	19	1/2	108552	24	1	13	213840	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.8-2: Reference Channels for CP-OFDM 64QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	10	30	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	15	30	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	20	30	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	25	30	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	30	30	78	11	64QAM	19	1/2	31240	24	1	4	61776	10296
	40	30	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
	50	30	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	60	30	162	11	64QAM	19	1/2	64552	24	1	8	128304	21384
	80	30	217	11	64QAM	19	1/2	86040	24	1	11	171864	28644
	90	30	245	11	64QAM	19	1/2	98376	24	1	12	194040	32340
	100	30	273	11	64QAM	19	1/2	108552	24	1	13	216216	36036

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.8-3: Reference Channels for CP-OFDM 64QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	15	60	18	11	64QAM	19	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	25	60	31	11	64QAM	19	1/2	12296	24	1	2	24552	4092
	30	60	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	40	60	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	50	60	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	60	60	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	80	60	107	11	64QAM	19	1/2	43032	24	1	6	84744	14124
	90	60	121	11	64QAM	19	1/2	48168	24	1	6	95832	15972
	100	60	135	11	64QAM	19	1/2	54296	24	1	7	106920	17820

A.2.2.9 CP-OFDM 256QAM

Table A.2.2.9-1: Reference Channels for CP-OFDM 256QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	52	11	256QAM	20	2/3	36896	24	1	5	54912	6864
	15	15	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	20	15	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	25	15	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
•	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
•	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.9-2: Reference Channels for CP-OFDM 256QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	20	30	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	25	30	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	30	30	78	11	256QAM	20	2/3	55304	24	1	7	82368	10296
	40	30	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	50	30	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
	80	30	217	11	256QAM	20	2/3	151608	24	1	18	229152	28644
	90	30	245	11	256QAM	20	2/3	172176	24	1	21	258720	32340
	100	30	273	11	256QAM	20	2/3	192624	24	1	23	288288	36036

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.9-3: Reference Channels for CP-OFDM 256QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	31	11	256QAM	20	2/3	22032	24	1	3	32736	4092
	30	60	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	40	60	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	50	60	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	60	60	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	80	60	107	11	256QAM	20	2/3	75792	24	1	9	112992	14124
	90	60	121	11	256QAM	20	2/3	86040	24	1	11	127776	15972
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

A.2.3 Reference measurement channels for TDD

TDD slot patterns defined for reference sensitivity tests will be used for UL RMCs defined below.

A.2.3.1 DFT-s-OFDM Pi/2-BPSK

Table A.2.3.1-1: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	15	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	5	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	15	15	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	15	15	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	20	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	20	15	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	25	15	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	25	15	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	30	15	80	11	pi/2 BPSK	0	1/4	2472	16	2	1	10560	10560
	30	15	160	11	pi/2 BPSK	0	1/4	4872	24	2	2	21120	21120
	40	15	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	40	15	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	50	15	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
	50	15	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

Table A.2.3.1-2: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-100	30	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	30	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	5	30	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	10	30	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	10	30	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	15	30	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	15	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	20	30	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	20	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	25	30	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	25	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	30	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	30	30	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	40	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	40	30	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	50	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	50	30	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	60	30	81	11	pi/2 BPSK	0	1/4	2536	16	2	1	10692	10692
	60	30	162	11	pi/2 BPSK	0	1/4	5000	24	2	2	21384	21384
	80	30	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	80	30	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	90	30	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	90	30	243	11	pi/2 BPSK	0	1/4	7560	24	2	2	32076	32076
	100	30	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
<u>-</u>	100	30	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

Table A.2.3.1-3: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz			1/2 2201/			Bits	Bits			Bits	
	10-100	60	1 -	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	10	60	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	10	60	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	15	60	9	11	pi/2 BPSK	0	1/4	288	16	2	1	1188	1188
	15	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	20	60	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	20	60	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	25	60	15	11	pi/2 BPSK	0	1/4	480	16	2	1	1980	1980
	25	60	30	11	pi/2 BPSK	0	1/4	984	16	2	1	3960	3960
	30	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	30	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	40	60	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	40	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	50	60	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	50	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	60	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	60	60	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	80	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	80	60	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	90	60	60	11	pi/2 BPSK	0	1/4	1864	16	2	1	7920	7920
	90	60	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	100	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	100	60	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820

A.2.3.2 DFT-s-OFDM QPSK

Table A.2.3.2-1: Reference channels for DFT-s-OFDM QPSK for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	48	16	2	1	264	132
	5	15	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	5	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	10	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	15	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	15	15	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	15	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	20	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	20	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	20	15	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	25	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	15	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
-	25	15	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
-	30	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
-	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
-	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
-	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
-	50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

Table A.2.3.2-2: Reference channels for DFT-s-OFDM QPSK for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-100	30	1	11	QPSK	2	1/6	48	16	2	1	264	132
	5	30	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	5	30	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	15	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	20	30	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	30	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	25	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	30	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	30	30	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	40	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	40	30	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	50	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	50	30	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	80	30	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	90	30	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	90	30	243	11	QPSK	2	1/6	12040	24	2	4	64152	32076
	100	30	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	100	30	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

Table A.2.3.2-3: Reference channels for DFT-s-OFDM QPSK for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	48	16	2	1	264	132
	10	60	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	10	60	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	15	11	QPSK	2	1/6	768	16	2	1	3960	1980
	25	60	30	11	QPSK	2	1/6	1544	16	2	1	7920	3960
	30	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	30	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	40	60	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	40	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	50	60	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	50	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	60	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	60	60	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	80	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	80	60	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	90	60	60	11	QPSK	2	1/6	3104	16	2	1	15840	7920
	90	60	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	100	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

A.2.3.3 DFT-s-OFDM 16QAM

Table A.2.3.3-1: Reference channels for DFT-s-OFDM 16QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	15	15	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	15	15	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	20	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	20	15	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	25	15	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	25	15	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Table A.2.3.3-2: Reference channels for DFT-s-OFDM 16QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-100	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	5	30	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	15	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	20	30	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	20	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	25	30	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	25	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	30	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	30	30	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	40	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	40	30	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	50	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	50	30	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	80	30	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	90	30	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
	90	30	243	11	16QAM	10	1/3	43032	24	1	6	128304	32076
	100	30	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	100	30	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.3-3: Reference channels for DFT-s-OFDM 16QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	10	60	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	15	11	16QAM	10	1/3	2664	16	2	1	7920	1980
	25	60	30	11	16QAM	10	1/3	5248	24	1	1	15840	3960
	30	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	30	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	40	60	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	40	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	50	60	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	50	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	60	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	60	60	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	80	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	80	60	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	90	60	60	11	16QAM	10	1/3	10504	24	1	2	31680	7920
	90	60	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
	100	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

A.2.3.4 DFT-s-OFDM 64QAM

Table A.2.3.4-1: Reference channels for DFT-s-OFDM 64QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	18	1/2	9992	24	1	2	19800	3300
	10	15	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	15	15	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	20	15	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	25	15	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	30	15	160	11	64QAM	18	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

Table A.2.3.4-2: Reference channels for DFT-s-OFDM 64QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	10	30	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	15	30	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	20	30	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	25	30	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	30	30	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
`	40	30	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
`	50	30	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
<u>-</u>	60	30	162	11	64QAM	18	1/2	64552	24	1	8	128304	21384
	80	30	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	90	30	243	11	64QAM	18	1/2	96264	24	1	12	192456	32076
	100	30	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.4-3: Reference channels for DFT-s-OFDM 64QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	15	60	18	11	64QAM	18	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	25	60	30	11	64QAM	18	1/2	12040	24	1	2	23760	3960
	30	60	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	40	60	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	50	60	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	60	60	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	80	60	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	90	60	120	11	64QAM	18	1/2	48168	24	1	6	95040	15840
	100	60	135	11	64QAM	18	1/2	54296	24	1	7	106920	17820

A.2.3.5 DFT-s-OFDM 256QAM

Table A.2.3.5-1: Reference channels for DFT-s-OFDM 256QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	15	15	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	20	15	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	25	15	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [10].

Table A.2.3.5-2: Reference channels for DFT-s-OFDM 256QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	20	30	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	25	30	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	30	30	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
· 	40	30	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
`	50	30	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
	80	30	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	90	30	243	11	256QAM	20	2/3	172176	24	1	21	256608	32076
	100	30	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.5-3: Reference channels for DFT-s-OFDM 256QAM for 60 kHz SCS

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulated symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	30	11	256QAM	20	2/3	21000	24	1	3	31680	3960
	30	60	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	40	60	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	50	60	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	60	60	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	80	60	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	90	60	120	11	256QAM	20	2/3	83976	24	1	10	126720	15840
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

NOTE 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [10].

A.2.3.6 CP-OFDM QPSK

Table A.2.3.6-1: Reference channels for CP-OFDM QPSK for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	48	16	2	1	264	132
	5	15	13	11	QPSK	2	1/6	672	16	2	1	3432	1716
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	10	15	52	11	QPSK	2	1/6	2600	16	2	1	13728	6864
	15	15	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	15	15	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	20	15	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	20	15	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	25	15	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	25	15	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Table A.2.3.6-2: Reference channels for CP-OFDM QPSK for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-100	30	1	11	QPSK	2	1/6	48	16	2	1	264	132
	5	30	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	5	30	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	15	30	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	20	30	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	20	30	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	25	30	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	25	30	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	30	30	39	11	QPSK	2	1/6	2024	16	2	1	10296	5148
	30	30	78	11	QPSK	2	1/6	3848	24	2	2	20592	10296
	40	30	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	40	30	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	50	30	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	50	30	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	109	11	QPSK	2	1/6	5384	24	2	2	28776	14388
	80	30	217	11	QPSK	2	1/6	10752	24	2	3	57288	28644
	90	30	123	11	QPSK	2	1/6	6152	24	2	2	32472	16236
	90	30	245	11	QPSK	2	1/6	12296	24	2	4	64680	32340
	100	30	137	11	QPSK	2	1/6	6792	24	2	2	36168	18084
	100	30	273	11	QPSK	2	1/6	13576	24	2	4	72072	36036

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.6-3: Reference channels for CP-OFDM QPSK for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz		4.4	0.001/		4.0	Bits	Bits			Bits	400
	10-100	60	1	11	QPSK	2	1/6	48	16	2	1	264	132
	10	60	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	10 15	60 60	11 9	11 11	QPSK QPSK	2	1/6 1/6	552 456	16 16	2	1	2904 2376	1452 1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	16	11	QPSK	2	1/6	808	16	2	1	4224	2112
	25	60	31	11	QPSK	2	1/6	1544	16	2	1	8184	4092
	30	60	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	30	60	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	40	60	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	40	60	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	50	60	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	50	60	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	60	60	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	60	60	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	80	60	54	11	QPSK	2	1/6	2664	16	2	1	14256	7128
	80	60	107	11	QPSK	2	1/6	5256	24	2	2	28248	14124
	90	60	61	11	QPSK	2	1/6	3104	16	2	1	16104	8052
	90	60	121	11	QPSK	2	1/6	6024	24	2	2	31944	15972
	100	60	68	11	QPSK	2	1/6	3368	16	2	1	17952	8976
	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

A.2.3.7 CP-OFDM 16QAM

Table A.2.3.7-1: Reference channels for CP-OFDM 16QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	13	11	16QAM	10	1/3	2280	16	2	1	6864	1716
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	10	15	52	11	16QAM	10	1/3	9224	24	1	2	27456	6864
	15	15	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	15	15	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	20	15	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	20	15	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	25	15	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	25	15	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Table A.2.3.7-2: Reference channels for CP-OFDM 16QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-100	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	5	30	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	15	30	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	20	30	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	20	30	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	25	30	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	25	30	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	30	30	39	11	16QAM	10	1/3	6784	24	1	1	20592	5148
	30	30	78	11	16QAM	10	1/3	13576	24	1	2	41184	10296
	40	30	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	40	30	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	50	30	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	50	30	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	109	11	16QAM	10	1/3	18960	24	1	3	57552	14388
	80	30	217	11	16QAM	10	1/3	37896	24	1	5	114576	28644
	90	30	123	11	16QAM	10	1/3	21504	24	1	3	64944	16236
	90	30	245	11	16QAM	10	1/3	43032	24	1	6	129360	32340
	100	30	137	11	16QAM	10	1/3	24072	24	1	3	72336	18084
	100	30	273	11	16QAM	10	1/3	48168	24	1	6	144144	36036

Table A.2.3.7-3: Reference channels for CP-OFDM 16QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	10	60	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	16	11	16QAM	10	1/3	2792	16	2	1	8448	2112
	25	60	31	11	16QAM	10	1/3	5376	24	1	1	16368	4092
	30	60	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	30	60	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	40	60	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	40	60	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	50	60	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	50	60	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	60	60	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	60	60	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	80	60	54	11	16QAM	10	1/3	9480	24	1	2	28512	7128
	80	60	107	11	16QAM	10	1/3	18960	24	1	3	56496	14124
	90	60	61	11	16QAM	10	1/3	10760	24	1	2	32208	8052
	90	60	121	11	16QAM	10	1/3	21000	24	1	3	63888	15972
	100	60	68	11	16QAM	10	1/3	11784	24	1	2	35904	8976
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

A.2.3.8 CP-OFDM 64QAM

Table A.2.3.8-1: Reference channels for CP-OFDM 64QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	19	1/2	9992	24	1	2	19800	3300
	10	15	52	11	64QAM	19	1/2	21000	24	1	3	41184	6864
	15	15	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	20	15	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
	25	15	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	30	15	160	11	64QAM	19	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	19	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	19	1/2	108552	24	1	13	213840	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

Table A.2.3.8-2: Reference channels for CP-OFDM 64QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	10	30	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	15	30	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	20	30	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	25	30	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	30	30	78	11	64QAM	19	1/2	31240	24	1	4	61776	10296
•	40	30	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
•	50	30	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	60	30	162	11	64QAM	19	1/2	64552	24	1	8	128304	21384
•	80	30	217	11	64QAM	19	1/2	86040	24	1	11	171864	28644
	90	30	245	11	64QAM	19	1/2	98376	24	1	12	194040	32340
•	100	30	273	11	64QAM	19	1/2	108552	24	1	13	216216	36036

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.8-3: Reference channels for CP-OFDM 64QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39and	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits		, , , , , , , , , , , , , , , , , , ,	Bits	
	10	60	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	15	60	18	11	64QAM	19	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	25	60	31	11	64QAM	19	1/2	12296	24	1	2	24552	4092
	30	60	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	40	60	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	50	60	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
·	60	60	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	80	60	107	11	64QAM	19	1/2	43032	24	1	6	84744	14124
	90	60	121	11	64QAM	19	1/2	48168	24	1	6	95832	15972
	100	60	135	11	64QAM	19	1/2	54296	24	1	7	106920	17820

A.2.3.9 CP-OFDM 256QAM

Table A.2.3.9-1: Reference channels for CP-OFDM 256QAM for 15 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	52	11	256QAM	20	2/3	36896	24	1	5	54912	6864
	15	15	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	20	15	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	25	15	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
,	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [10].

Table A.2.3.9-2: Reference channels for CP-OFDM 256QAM for 30 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	20	30	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	25	30	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	30	30	78	11	256QAM	20	2/3	55304	24	1	7	82368	10296
`	40	30	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	50	30	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
· 	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
·	80	30	217	11	256QAM	20	2/3	151608	24	1	18	229152	28644
	90	30	245	11	256QAM	20	2/3	172176	24	1	21	258720	32340
	100	30	273	11	256QAM	20	2/3	192624	24	1	23	288288	36036

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [10].

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.9-3: Reference channels for CP-OFDM 256QAM for 60 kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	31	11	256QAM	20	2/3	22032	24	1	3	32736	4092
	30	60	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	40	60	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	50	60	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	60	60	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	80	60	107	11	256QAM	20	2/3	75792	24	1	9	112992	14124
	90	60	121	11	256QAM	20	2/3	86040	24	1	11	127776	15972
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

A.3 DL reference measurement channels

A.3.1 General

Unless otherwise stated, Tables A.3.2.2-1, A.3.2.2-2, A.3.2.2-3, A.3.3.2-1, A.3.3.2-2 and A.3.3.2-3 are applicable for measurements of the Receiver Characteristics (clause 7) with the exception of clauses 7.4 (Maximum input level).

Unless otherwise stated, Tables A.3.2.3-1, A.3.2.3-2, A.3.2.3-3, A.3.3.3-1, A.3.3.3-2 and A.3.3.3-3 are applicable for clauses 7.4 (Maximum input level) and for UE not supporting PDSCH 256QAM,

Unless otherwise stated, Tables A.3.2.4-1, A.3.2.4-2, A.3.2.4-3, A.3.3.4-1, A.3.3.4-2 and A.3.3.4-3 are applicable for clauses 7.4 (Maximum input level) and for UE supporting PDSCH 256QAM,

Unless otherwise stated, Tables A.3.2.2-1, A.3.2.2-2, A.3.2.2-3, A.3.3.2-1, A.3.3.2-2 and A.3.3.2-3 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.

Table A.3.1-1. Common reference channel parameters

Para	meter	Unit	Value
CORESET frequency doma	ain allocation		Full BW
CORESET time domain allo			2 OFDM symbols at the begin of each slot
PDSCH mapping type			Type A
PDSCH start symbol index	(S)		2
Number of consecutive PD	SCH symbols (L)		12
PDSCH PRB bundling		PRBs	2
Dynamic PRB bundling			false
Overhead value for TBS de	termination		0
First DMRS position for Typ	e A PDSCH mapping		2
DMRS type			Type 1
Number of additional DMRS	3		2
FDM between DMRS and F	PDSCH		Disable
CSI-RS for tracking	First subcarrier index in the PRB used for CSI-RS (k0)		0 for CSI-RS resource 1,2,3,4
	OFDM symbols in the		I ₀ = 6 for CSI-RS resource 1 and 3
	PRB used for CSI-RS		l ₀ = 10 for CSI-RS resource 2 and 4
	Number of CSI-RS ports		1 for CSI-RS resource 1,2,3,4
	CDM Туре		'No CDM' for CSI-RS resource 1,2,3,4
	Density (ρ)		3 for CSI-RS resource 1,2,3,4
	CSI-RS periodicity	Slots	15 kHz SCS: 10 for CSI-RS resource 1,2,3,4 30 kHz SCS: 20 for CSI-RS resource 1,2,3,4 60 kHz SCS: 40 for CSI-RS resource 1,2,3,4
	CSI-RS offset	Slots	15 kHz SCS: 0 for CSI-RS resource 1 and 2 1 for CSI-RS resource 3 and 4
			30 kHz SCS: 1 for CSI-RS resource 1 and 2 2 for CSI-RS resource 3 and 4
			60 kHz SCS: 2 for CSI-RS resource 1 and 2 3 for CSI-RS resource 3 and 4
	Frequency Occupation		Start PRB 0 Number of PRB = BWP size
	QCL info		TCI state #0
PTRS configuration			PTRS is not configured

A.3.2 DL reference measurement channels for FDD

A.3.2.1 General

Table A.3.2.1-1 Additional reference channels parameters for FDD

Parameter	Unit	Value
Number of HARQ Processes		4
K1 value		2 for all slots

A.3.2.2 FRC for receiver requirements for QPSK

Table A.3.2.2-1 Fixed reference channel for receiver requirements (SCS 15 kHz, FDD, QPSK 1/3)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	160	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		9	9	9	9	9	9	9	9
MCS Index		4	4	4	4	4	4	4	4
MCS Table for TBS determination				6	4QAM				
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slots 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,3,4,5,6,7,8,9	Bits	1672	3368	5120	6912	8712	10504	14088	17424
Transport block CRC	Bits	16	16	24	24	24	24	24	24
LDPC base graph		2	2	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slots 0,1	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,3,4,5,6,7,8,9	CBs	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot									
For Slots 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,3,4,5,6,7,8,9	Bits	5400	11232	17064	22896	28728	34560	46656	58320
Max. Throughput averaged over 1 frame	Mbps	1.338	2.694	4.096	5.530	6.970	8.403	11.27 0	13.93 92

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot #0 of each frame

NOTE 4: Slot i is slot index per frame

Table A.3.2.2-2 Fixed reference channel for receiver requirements (SCS 30 kHz, FDD, QPSK 1/3)

ameter	Unit						Va	lue			
I bandwidth	MHz	5	10	15	20	25	30	40	50	60	80
configuration μ		1	1	1	1	1	1	1	1	1	1
blocks		11	24	38	51	65	78	106	133	162	217
ource block		12	12	12	12	12	12	12	12	12	12
-rame		19	19	19	19	19	19	19	19	19	19
		4	4	4	4	4	4	4	4	4	4
determination			•				64QAM				
		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
1		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
it Payload per Slot											
	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Bits	736	1608	2472	3368	4224	4992	6912	8712	10504	14088
С	Bits	16	16	16	16	24	24	24	24	24	24
		2	2	2	2	1	1	1	1	1	1
de Blocks per Slot											
-	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	CBs	1	1	1	1	1	1	1	2	2	2
nel Bits per Slot											
-	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Bits	2376	5184	8208	11016	14040	16848	22896	28728	34992	46872
/eraged over 1 frame	Mbps	1.251	2.734	4.202	5.726	7.181	8.486	11.750	14.810	17.857	23.950

al parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

nan one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

I block is transmitted in slot #0 of each frame

lot index per frame

Table A.3.2.2-3 Fixed reference channel for receiver requirements (SCS 60 kHz, FDD, QPSK 1/3)

Parameter Innel bandwidth	Unit MHz	Value									
		10	15	20	25	30	40	50	60	80	
sing configuration μ		2	2	2	2	2	2	2	2	2	
irce blocks		11	18	24	31	38	51	65	79	107	
resource block		12	12	12	12	12	12	12	12	12	
per Frame		38	38	38	38	38	38	38	38	38	
		4	4	4	4	4	4	4	4	4	
TBS Determination		64QAM									
		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	C
Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	
per of HARQ transmissions		1	1	1	1	1	1	1	1	1	
n Bit Payload per Slot											
2,3	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
,39	Bits	736	1192	1608	2024	2472	3368	4224	5120	6912	
CRC	Bits	16	16	16	16	16	16	24	24	24	
ıph		2	2	2	2	2	2	1	1	1	
f Code Blocks per Slot											
,3	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
,39	CBs	1	1	1	1	1	1	1	1	1	
hannel Bits per Slot											
,3	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
,39	Bits	2376	3888	5184	6696	8208	11016	14040	17064	23112	2
ut averaged over 1 frame	Mbps	2.650	4.291	5.789	7.286	8.899	12.125	15.206	18.432	24.883	2

tional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

ore than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

'BCH block is transmitted in slot #0 of each frame

i is slot index per frame

A.3.2.3 FRC for maximum input level for 64QAM

Table A.3.2.3-1 Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, FDD, 64QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	160	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		9	9	9	9	9	9	9	9
MCS Index		24	24	24	24	24	24	24	24
MCS Table for TBS determination				6	4QAM				
Modulation		64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slots 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,3,4,5,6,7,8,9	Bits	12296	25608	38936	52224	64552	77896	10657 6	13117 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slot 0,1	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,3,4,5,6,7,8,9	CBs	2	4	5	7	8	10	13	16
Binary Channel Bits per Slot									
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,3,4,5,6,7,8,9	Bits	16200	33696	51192	68688	86184	10368 0	13996 8	17496 0
Max. Throughput averaged over 1 frame	Mbps	9.837	20.48 6	31.14 9	41.77 9	51.64 2	62.31 7	85.26 1	104.9 41

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame

Table A.3.2.3-2 Fixed reference channel for maximum input level receiver requirements (SCS 30 kHz, FDD, 64QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		19	19	19	19	19	19	19	19	19	19	19
MCS Index		24	24	24	24	24	24	24	24	24	24	24
MCS Table for TBS determination							64QAM					
Modulation		64	64	64	64	64	64	64	64	64	64	64
		QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0,1,2	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 3,,19	Bits	5376	11784	18432	25104	31752	37896	52224	64552	79896	106576	135296
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slot2 0,1,2	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 3,,19	CBs	1	2	3	3	4	5	7	8	10	13	17
Binary Channel Bits per Slot												
For Slots 0,1,2	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 3,,19	Bits	7128	15552	24624	33048	42120	50544	68688	86184	104976	140616	176904
Max. Throughput averaged over 1 frame	Mbps	9.139	20.033	31.334	42.677	53.978	64.423	88.781	109.73 8	135.82 3	181.17 9	230.00

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame

Table A.3.2.3-3 Fixed Reference Channel for Maximum input level receiver requirements (SCS 60 kHz, FDD, 64QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		38	38	38	38	38	38	38	38	38	38
MCS Index		24	24	24	24	24	24	24	24	24	24
MCS Table for TBS determination						640	QAM				
Modulation		64	64	64	64	64	64	64	64	64	64
		QAM	QAM	QAM	QAM						
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1,2,3	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 4,,39	Bits	5376	8712	11784	15112	18432	25104	31752	38936	52224	65576
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1,2,3	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 4,,39	CBs	1	2	2	2	3	3	4	5	7	8
Binary Channel Bits per Slot											
For Slots 0,1,2,3	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 4,,39	Bits	7128	11664	15552	20088	24624	33048	42120	51192	69336	87480
Max. Throughput averaged over 1 frame	Mbps	19.354	31.363	42.422	54.403	66.355	90.374	114.30 7	140.17 0	188.00 6	236.07 4

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot #0 of each frame

NOTE 4: Slot i is slot index per frame

A.3.2.4 FRC for maximum input level for 256 QAM

Table A.3.2.4-1 Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, FDD, 256QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	160	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		9	9	9	9	9	9	9	9
MCS Index		23	23	23	23	23	23	23	23
MCS Table for TBS determination					64C	(MA)			
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slots 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,3,4,5,6,7,8,9	Bits	16896	34816	53288	71688	90176	10855 2	14340 0	18037 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slot 0,1	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,3,4,5,6,7,8,9	CBs	3	5	7	9	12	14	18	23
Binary Channel Bits per Slot									
For Slots 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,3,4,5,6,7,8,9	Bits	21600	44928	68256	91584	11491 2	13824 0	18662 4	23328 0
Max. Throughput averaged over 1 frame	Mbps	13.51 7	27.85 3	42.63 0	57.35 0	72.14 1	86.84 2	114.7 20	144.3 10

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame

Table A.3.2.4-2 Fixed reference channel for maximum input level receiver requirements (SCS 30 kHz, FDD, 256QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		19	19	19	19	19	19	19	19	19	19	19
MCS Index		23	23	23	23	23	23	23	23	23	23	23
MCS Table for TBS determination							256QAM					
Modulation		256	256	256	256	256	256	256	256	256	256	256
		QAM										
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0,1,2	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 3,,19	Bits	7424	16136	25608	33816	44040	52224	71688	90176	108552	147576	184424
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0,1,2	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 3,,19	CBs	1	3	4	5	6	7	9	12	14	19	23
Binary Channel Bits per Slot												
For Slots 0,1,2	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 3,,19	Bits	9504	20736	32832	44064	56160	67392	91584	114912	139968	187488	235872
Max. Throughput averaged over 1 frame	Mhna	10.601	27 424	12 521	E7 407	74.000	88.781	121.87	153.29	184.53	250.87	313.52
- · ·	Mbps	12.621	27.431	43.534	57.487	74.868	00./81	0	9	8	9	1

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame

Table A.3.2.4-3 Fixed reference channel for maximum input level receiver requirements (SCS 60 kHz, FDD, 256QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		38	38	38	38	38	38	38	38	38	38
MCS Index		23	23	23	23	23	23	23	23	23	23
MCS Table for TBS determination						2560	QAM	•		•	
Modulation		256	256	256	256	256	256	256	256	256	256
		QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1,2,3	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 4,,39	Bits	7424	12040	16136	21000	25608	33816	44040	53288	71688	90176
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1,2,3	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 4,,39	CBs	1	2	3	3	4	5	6	7	9	12
Binary Channel Bits per Slot											
For Slot 0,1,2,3	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 4,,39	Bits	9504	15552	20736	26784	32832	44064	56160	68256	92448	116640
Max. Throughput averaged over 1 frame	Mbps	26.726	43.344	58.090	75.600	92.189	121.73 8	158.54 4	191.83	258.07	324.63 4

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot #0 of each frame

NOTE 4: Slot i is slot index per frame

DL reference measurement channels for TDD A.3.3

A.3.3.1 General

Table A.3.3.1-1 Additional reference channels parameters for TDD

D	arameter		Value	
Pi	arameter	SCS 15 kHz (µ=0)	SCS 30 kHz (µ=1)	SCS 60 kHz (µ=2)
TDD Slot Conf (Note 1)	figuration pattern	DDDSU	7DS2U	14DS ₁ S ₂ 4U
Special Slot C	onfiguration (Note 2)	10D+2G+2U	6D+4G+4U	S ₁ =12D+2G, S ₂ =6G+8U
referenceSubo	carrierSpacing	15 kHz	30 kHz	60 kHz
UL-DL configuration	dl-UL- TransmissionPerio dicity	5 ms	5 ms	5 ms
	nrofDownlinkSlots	3	7	14
	nrofDownlinkSymb ols	10	6	12
	nrofUplinkSlot	1	2	4
	nrofUplinkSymbols	2	4	8
Number of HA	RQ Processes	8	8	16
	f slots between orresponding HARQ- on (Note 3)	K1 = 4 if mod(i,5) = 0 K1 = 3 if mod(i,5) = 1 K1 = 2 if mod(i,5) = 2 where i is slot index per frame; i = {0,,9}	$K1 = 8 \text{ if } mod(i,10) = 0 \\ K1 = 7 \text{ if } mod(i,10) = 1 \\ K1 = 6 \text{ if } mod(i,10) = 2 \\ K1 = 5 \text{ if } mod(i,10) = 3 \\ K1 = 4 \text{ if } mod(i,10) = 4 \\ K1 = 3 \text{ if } mod(i,10) = 5 \\ K1 = 2 \text{ if } mod(i,10) = 6 \\ \text{where } i \text{ is slot index per } \\ \text{frame; } i = \{0,,19\}$	K1 = 13 if mod(i,20) = 2 K1 = 12 if mod(i,20) = 3 K1 = 11 if mod(i,20) = 4 K1 = 10 if mod(i,20) = 5 K1 = 9 if mod(i,20) = 6 K1 = 8 if mod(i,20) = 7 K1 = 7 if mod(i,20) = 8 K1 = 6 if mod(i,20) = 9 K1 = 6 if mod(i,20) = 10 K1 = 6 if mod(i,20) = 11 K1 = 6 if mod(i,20) = 12 K1 = 6 if mod(i,20) = 13 where i is slot index per frame; i = {0,,39}

NOTE 1: D denotes a slot with all DL symbols; S denotes a slot with a mix of DL, UL and guard symbols; U denotes a slot with all UL symbols. The field is for information.

NOTE 2: D, G, U denote DL, guard and UL symbols, respectively. The field is for information.

NOTE 3: i is the slot index per frame.

A.3.3.2 FRC for receiver requirements for QPSK

Table A.3.3.2-1 Fixed reference channel for receiver requirements (SCS 15 kHz, TDD, QPSK 1/3)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	160	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		5	5	5	5	5	5	5	5
MCS Index		4	4	4	4	4	4	4	4
MCS Table for TBS determination					64C	QAM			
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slots 0,1,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,5,6,7	Bits	1672	3368	5120	6912	8712	10504	14088	17424
Transport block CRC	Bits	16	16	24	24	24	24	24	24
LDPC base graph		2	2	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slots 0,1,3,4,8,9	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,5,6,7	CBs	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot									
For Slots 0,1,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,5,6,7	Bits	5400	11232	17064	22896	28728	34560	46656	58320
Max. Throughput averaged over 1 frame	Mbps	0.669	1.347	2.048	2.765	3.485	4.202	5.635	6.970

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame NOTE 4: Slot i is slot index per frame

Table A.3.3.2-2 Fixed reference channel for receiver requirements (SCS 30 kHz, TDD, QPSK 1/3)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration $^{\mu}$		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		13	13	13	13	13	13	13	13	13	13	13
MCS Index		4	4	4	4	4	4	4	4	4	4	4
MCS Table for TBS determination							64QAM					
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0,1,2 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{3,,19\}$	Bits	736	1608	2472	3368	4224	4992	6912	8712	10504	14088	17928
Transport block CRC	Bits	16	16	16	16	24	24	24	24	24	24	24
LDPC base graph		2	2	2	2	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0,1,2 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{3,,19\}$	CBs	1	1	1	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot												
For Slots 0,1,2 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{3,,19\}$	Bits	2376	5184	8208	11016	14040	16848	22896	28728	34992	46872	58968
Max. Throughput averaged over 1 frame	Mbps	0.810	2.1.769	2.719	3.705	4.646	5.491	7.603	9.583	11.554	15.497	19.721

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot #0 of each frame

NOTE 4: Slot i is slot index per frame

Table A.3.3.2-3 Fixed reference channel for receiver requirements (SCS 60 kHz, TDD, QPSK 1/3)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		26	26	26	26	26	26	26	26	26	26
MCS Index		4	4	4	4	4	4	4	4	4	4
MCS Table for TBS determination						64C	QAM				
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1,2,3 and Slot i, if mod(i, 20) = {14,15,16,17,18,19} for i from {0,,39}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 20) = $\{0,, 13\}$ for i from $\{4,,39\}$	Bits	736	1192	1608	2024	2472	3368	4224	5120	6912	8712
Transport block CRC	Bits	16	16	16	16	16	16	24	24	24	24
LDPC base graph		2	2	2	2	2	2	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1,2,3 and Slot i, if mod(i, 20) = {14,15,16,17,18,19} for i from {0,,39}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 20) = $\{0,, 13\}$ for i from $\{4,,39\}$	CBs	1	1	1	1	1	1	1	1	1	2
Binary Channel Bits per Slot											
For Slots 0,1,2,3 and Slot i, if mod(i, 20) = {14,15,16,17,18,19} for i from {0,,39}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 20) = $\{0,,13\}$ for i from $\{4,,39\}$	Bits	2376	3888	5184	6696	8208	11016	14040	17064	23112	29160
Max. Throughput averaged over 1 frame	Mbps	1.766	3.2.861	3.859	4.858	5.933	8.083	10.138	12.288	16.589	20.909

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot #0 of each frame

NOTE 4: Slot i is slot index per frame

A.3.3.3 FRC for maximum input level for 64QAM

Table A.3.3.3-1 Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, TDD, 64QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	160	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		5	5	5	5	5	5	5	5
MCS Index		24	24	24	24	24	24	24	24
MCS Table for TBS determination					640	QAM			
Modulation		64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slots 0,1,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,5,6,7	Bits	12296	25608	38936	52224	64552	77896	10657 6	13117 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slots 0,1,3,4,8,9	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,5,6,7	CBs	2	4	5	7	8	10	13	16
Binary Channel Bits per Slot									
For Slots 0,1,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,5,6,7	Bits	16200	33696	51192	68688	86184	10368 0	13996 8	17496 0
Max. Throughput averaged over 1 frame	Mbps	4.918	10.24 3	15.57 4	20.89 0	20.89 0	31.15 8	42.63 0	52.47 0

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame

Table A.3.3.3-2 Fixed reference channel for maximum input level receiver requirements (SCS 30 kHz, TDD, 64QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		13	13	13	13	13	13	13	13	13	13	13
MCS Index		24	24	24	24	24	24	24	24	24	24	24
MCS Table for TBS determination							64QAM					
Modulation		64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0,1,2 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{3,,19\}$	Bits	5376	11784	18432	25104	31752	37896	52224	64552	79896	106576	135296
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0,1,2 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{3,,19\}$	CBs	1	2	3	3	4	5	7	8	10	13	17
Binary Channel Bits per Slot												
For Slots 0,1,2 and Slot i, if $mod(i, 10) = \{7,8,9\}$ for i from $\{0,,19\}$	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{3,,19\}$	Bits	7128	15552	24624	33048	42120	50544	68688	86184	104976	140616	176904
Max. Throughput averaged over 1 frame	Mbps	5.914	12.962	20.275	27.614	34.927	41.686	57.446	71.007	87.886	117.23 4	148.82 6

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot #0 of each frame

Table A.3.3.3-3. Fixed reference channel for maximum input level receiver requirements (SCS 60 kHz, TDD, 64QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		26	26	26	26	26	26	26	26	26	26
MCS Index		24	24	24	24	24	24	24	24	24	24
MCS Table for TBS determination						640	QAM				
Modulation		64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1,2,3 and Slot i, if mod(i, 20) = {14,15,16,17,18,19} for i from {0,,39}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 20) = $\{0,, 13\}$ for i from $\{4,,39\}$	Bits	5376	8712	11784	15112	18432	25104	31752	38936	52224	65576
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1,2,3 and Slot i, if mod(i, 20) = {14,15,16,17,18,19} for i from {0,,39}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 20) = \{0,, 13\}$ for i from $\{4,,39\}$	CBs	1	2	2	2	3	3	4	5	7	8
Binary Channel Bits per Slot											
For Slots 0,1,2,3 and Slot i, if mod(i, 20) = {14,15,16,17,18,19} for i from {0,,39}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 20) = $\{0,, 13\}$ for i from $\{4,,39\}$	Bits	7128	11664	15552	20088	24624	33048	42120	51192	69336	87480
Max. Throughput averaged over 1 frame	Mbps	12.902	20.909	28.282	36.269	44.237	60.250	76.205	93.446	125.33 8	157.38 2

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot #0 of each frame

NOTE 4: Slot i is slot index per frame

A.3.3.4 FRC for maximum input level for 256 QAM

Table A.3.3.4-1 Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, TDD, 256QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	160	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		5	5	5	5	5	5	5	5
MCS Index		23	23	23	23	23	23	23	23
MCS table for TBS determination					2560	QAM			
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slots 0,1,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,5,6,7	Bits	16896	34816	53288	71688	90176	10855 2	14340 0	18037 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slots 0,1,3,4,8,9	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,5,6,7	CBs	3	5	7	9	12	14	18	23
Binary Channel Bits per Slot									
For Slots 0,1,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,5,6,7	Bits	21600	44928	68256	91584	11491 2	13824 0	18662 4	23328 0
Max. Throughput averaged over 1 frame	Mbps	6.758	13.92 6	21.31 5	28.67 5	36.07 0	43.42 1	57.36 0	72.15 0

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame

Table A.3.3.4-2 Fixed Reference channel for maximum input level receiver requirements (SCS 30 kHz, TDD, 256QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		13	13	13	13	13	13	13	13	13	13	13
MCS Index		23	23	23	23	23	23	23	23	23	23	23
MCS Table for TBS determination							256QAM					
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0,1,2 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{3,,19\}$	Bits	7424	16136	25608	33816	44040	52224	71688	90176	108552	147576	184424
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0,1,2 and Slot i, if $mod(i, 10) = \{7,8,9\}$ for i from $\{0,,19\}$	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{3,,19\}$	CBs	1	1	1	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot												
For Slots 0,1,2 and Slot i, if $mod(i, 10) = \{7,8,9\}$ for i from $\{0,,19\}$	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{3,,19\}$	Bits	9504	20736	32832	44064	56160	67392	91584	114912	139968	187488	235872
Max. Throughput averaged over 1 frame	Mbps	8.166	17.750	28.169	37.198	48.444	57.446	78.857	99.194	119.40 7	162.33 4	202.86 6

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot #0 of each frame

Table A.3.3.4-3 Fixed reference channel for maximum input level receiver requirements (SCS 60 kHz, TDD, 256QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		26	26	26	26	26	26	26	26	26	26
MCS Index		23	23	23	23	23	23	23	23	23	23
MCS Table for TBS determination						2560	QAM				
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1,2,3 and Slot i, if mod(i, 20) = {14,15,16,17,18,19} for i from {0,,39}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 20) = \{0,, 13\}$ for i from $\{4,,39\}$	Bits	7424	12040	16136	21000	25608	33816	44040	53288	71688	90176
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1,2,3 and Slot i, if mod(i, 20) = {14,15,16,17,18,19} for i from {0,,39}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 20) = $\{0,, 13\}$ for i from $\{4,,39\}$	CBs	1	2	3	3	4	5	6	7	9	12
Binary Channel Bits per Slot											
For Slots 0,1,2,3 and Slot i, if mod(i, 20) = {14,15,16,17,18,19} for i from {0,,39}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 20) = \{0,, 13\}$ for i from $\{4,,39\}$	Bits	9504	15552	20736	26784	32832	44064	56160	68256	92448	116640
Max. Throughput averaged over 1 frame	Mbps	17.818	28.896	38.726	50.400	61.459	81.158	105.69 6	127.89 1	172.05 1	216.42 2

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot #0 of each frame

NOTE 4: Slot i is slot index per frame

A.4 CSI reference measurement channels

A.5 OFDMA Channel Noise Generator (OCNG)

A.5.1 OCNG Patterns for FDD

A.5.1.1 OCNG FDD pattern 1: Generic OCNG FDD Pattern for all unused REs

Table A.5.1.1-1: OP.1 FDD: Generic OCNG FDD Pattern for all unused REs

OCNG Appliance OCNG Parameters	Control Region (Core Set)	Data Region			
Resources allocated	All unused REs (Note 1)	All unused REs (Note 2)			
Structure	PDCCH	PDSCH			
Content	Uncorrelated pseudo random QPSK modulated data	Uncorrelated pseudo random QPSK modulated data			
Transmission scheme for multiple antennas ports transmission	Single Tx port transmission	Spatial multiplexing using any precoding matrix with dimensions same as the precoding matrix for PDSCH			
Subcarrier Spacing	Same as for RMC PDCCH in the active BWP	Same as for RMC PDSCH in the active BWP			
Power Level	Same as for RMC PDCCH	Same as for RMC PDSCH			

NOTE 1: All unused REs in the active CORESETS appointed by the search spaces in use.

NOTE 2: Unused available REs refer to REs in PRBs not allocated for any physical channels, CORESETs, synchronization signals or reference signals in channel bandwidth.

A.5.2 OCNG Patterns for TDD

A.5.2.1 OCNG TDD pattern 1: Generic OCNG TDD Pattern for all unused REs

Table A.5.2.1-1: OP.1 TDD: Generic OCNG TDD Pattern for all unused REs

OCNG Appliance	Control Region	Data Region
OCNG Parameters	(Core Set)	
Resources allocated	All unused REs (Note 1)	All unused REs (Note 2)
Structure	PDCCH	PDSCH
Content	Uncorrelated pseudo random QPSK modulated data	Uncorrelated pseudo random QPSK modulated data
Transmission scheme for multiple antennas ports transmission	Single Tx port transmission	Spatial multiplexing using any precoding matrix with dimensions same as the precoding matrix for PDSCH
Subcarrier Spacing	Same as for RMC PDCCH in the active BWP	Same as for RMC PDSCH in the active BWP
Power Level	Same as for RMC PDCCH	Same as for RMC PDSCH
NOTE 4. All concentrations of DE- in the continue O	ODEOETO	ala ana ana antono ana a

NOTE 1: All unused REs in the active CORESETS appointed by the search spaces in use.

NOTE 2: Unused available REs refer to REs in PRBs not allocated for any physical channels, CORESETs, synchronization signals or reference signals in channel bandwidth.

A.6 Void

Annex B (informative): Void

Annex C (informative): Downlink physical channels

C.1 General

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.2 Setup

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Table C.2-1: Downlink Physical Channels required for connection set-up

Physical Channel
PBCH
SSS
PSS
PDCCH
PDSCH
PBCH DMRS
PDCCH DMRS
PDSCH DMRS
CSI-RS

C.3 Connection

C.3.1 Measurement of Receiver Characteristics

Unless otherwise stated, Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Parameter	Unit	Value
SSS transmit power	W	Test specific
EPRE ratio of PSS to SSS	dB	0
EPRE ratio of PBCH to SSS	dB	0
EPRE ratio of PBCH to PBCH DMRS	dB	0
EPRE ratio of PDCCH to SSS	dB	0
EPRE ratio of PDCCH to PDCCH DMRS	dB	0
EPRE ratio of PDSCH to SSS	dB	0
EPRE ratio of PDSCH to PDSCH DMRS (Note 1)	dB	-3
EPRE ratio of CSI-RS to SSS	dB	0
EPRE ratio of PTRS to PDSCH	dB	Test specific
EPRE ratio of OCNG DMRS to SSS	dB	0
EPRE ratio of OCNG to OCNG DMRS (Note 1)	dB	0

NOTE 1: No boosting is applied to any of the channels except PDSCH DMRS. For PDSCH DMRS, 3 dB power boosting is applied assuming DMRS Type 1 configuration when DMRS and PDSCH are TDM'ed and only half of the DMRS REs are occupied.

NOTE 2: Number of DMRS CDM groups without data for PDSCH DMRS configuration for OCNG is set to 1.

Annex D (normative): Characteristics of the interfering signal

D.1 General

Some RF performance requirements for the NR UE receiver are defined with interfering signals present in addition to the wanted signal.

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, a modulated 5 MHz full bandwidth NR down link signal, and in some cases an additional CW signal, are used as interfering signal. For intra-band contiguous CA bandwidth class B and C, a modulated 5 MHz NR downlink signal is used. And for some cases an additional CW signal is used.

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, a modulated NR downlink signal which equals to channel bandwidth of the wanted signal for single carrier and inter-band CA cases is used as interfering signal. For intra-band contiguous CA bandwidth Class C, a modulated NR downlink signal which equals to the aggregated channel bandwidth of the wanted signal is used. For intra-band contiguous CA bandwidth class D and E cases, a modulated 50 MHz NR downlink signal is used. And for some cases an additional CW signal is used.

D.2 Interference signals

Table D.2-1 and Table D.2-4 describes the modulated interferer for different channel bandwidth options for NR band lower than 2700MHz.

Table D.2-1: Description of modulated NR interferer for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

			Channel	bandwidth					
	5 MHz	10MHz	15 MHz	20 MHz	25 MHz	30 MHz			
RB		NOTE 1							
BW _{Interferer}		5 MHz							
	Channel bandwidth								
	40 MHz 50 MHz 60 MHz 80 MHz 90					100 MHz			
RB			NO	TE 1					
BWInterferer	5 MHz								
NOTE 1: The RB configured for interfering signal is the same as maximum RB									
nur	nber defined	d in Table 5	5.3.2-1 for e	each sub-car	rier spacin	g.			

Table D.2-2 and Table D.2-3 describe the modulated interferer for different channel bandwidth options for NR band higher than 3300MHz.

Table D.2-2: Description of modulated NR interferer for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

		Channel bandwidth								
	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	
RB		NOTE 1								
BW _{Interferer}	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	
NOTE 1: The RB configured for interfering signal is the same as maximum RB number defined in Table 5.3.2-1 for										
eac	each sub-carrier spacing.									

Table D.2-3: Description of modulated NR interferer for NR bands with F_{DL_low}≥ 3300 MHz and F_{UL_low}≥ 3300 MHz for Intra-band contiguous CA

	Aggregated Channel bandwidth of Bandwdith Class C								
	110 MHz	120 MHz	130 MHz	140 MHz	150 MHz	160 MHz	180 MHz	200 MHz	Class D/E
RB(SCS=30 kHz)	NOTE 1								133
RB(SCS=60 kHz)		NOTE 1							
BWInterferer	110 MHz	120 MHz	130 MHz	140 MHz	150 MHz	160 MHz	180 MHz	200 MHz	50MHz

NOTE 1: The interfering signal shall be configured in the same way as the aggregated bandwidth of the wanted signal. The RB configurations for each component carrier are defined in Table 5.3.2-1 for each sub-carrier spacing.

Table D.2-4: Description of modulated NR interferer for NR bands with F_{DL_low} < 2700 MHz and F_{UL_low} < 2700 MHz for Intra-band contiguous CA

	Bandwidth Class B	Bandwidth Class C						
RB	NOTE 1	NOTE 1						
BWInterferer	5 MHz	5 MHz						
NOTE 1: The DR config	NOTE 1: The PR configured for interfering signal is the same as maximum PR number defined in Table 5.2.2.1 for							

NOTE 1: The RB configured for interfering signal is the same as maximum RB number defined in Table 5.3.2-1 for each sub-carrier spacing.

Annex E (normative): Environmental conditions

E.1 General

This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

E.2 Environmental

The requirements in this clause apply to all types of UE(s).

E.2.1 Temperature

The UE shall fulfil all the requirements in the full temperature range of:

Table E.2.1-1: Temperature conditions

+15°C to +35°C	For normal conditions (with relative humidity of 25 % to 75 %)
-10°C to +55°C	For extreme conditions (see IEC publications 68-2-1 and 68-2-2)

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation.

E.2.2 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

Table E.2.2-1: Voltage conditions

Power source	Lower extreme voltage	Higher extreme voltage	Normal conditions voltage
AC mains	0,9 * nominal	1,1 * nominal	nominal
Regulated lead acid battery	0,9 * nominal	1,3 * nominal	1,1 * nominal
Non regulated batteries:			
Leclanché	0,85 * nominal	Nominal	Nominal
Lithium	0,95 * nominal	1,1 * Nominal	1,1 * Nominal
Mercury/nickel & cadmium	0,90 * nominal		Nominal

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

E.2.3 Vibration

The UE shall fulfil all the requirements when vibrated at the following frequency/amplitudes.

Table E.2.3-1: Vibration conditions

Frequency	ASD (Acceleration Spectral Density) random vibration
5 Hz to 20 Hz	$0.96~\mathrm{m}^2/\mathrm{s}^3$
20 Hz to 500 Hz	0.96 m ² /s ³ at 20 Hz, thereafter –3 dB/Octave

Outside the specified frequency range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 38.101-1 for extreme operation.

Annex F (normative): Transmit modulation

F.0 General

While measuring the transmit modulation quality of carriers, an existence of the carrier leakage needs to be taken into account indicated by the parameter *txDirectCurrentLocation* in *UplinkTxDirectCurrent* IE.

F.1 Measurement Point

Figure F.1-1 shows the measurement point for the unwanted emission falling into non-allocated RB(s) and the EVM for the allocated RB(s).

Figure F.1-1: EVM measurement points

F.2 Basic Error Vector Magnitude measurement

The EVM is the difference between the ideal waveform and the measured waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\sum_{v \in T_m} |z'(v) - i(v)|^2}{|T_m| \cdot P_0}},$$

where

 T_m is a set of $|T_m|$ modulation symbols with the considered modulation scheme being active within the measurement period,

z'(v) are the samples of the signal evaluated for the EVM,

i(v) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

The basic EVM measurement interval is defined over one slot in the time domain for PUCCH and PUSCH and over one preamble sequence for the PRACH.

F.3 Basic in-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks. The in-band emission requirement is evaluated for PUCCH and PUSCH transmissions. The in-band emission requirement is not evaluated for PRACH transmissions.

The in-band emissions are measured as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{max(f_{min}, f_{t}+12 \cdot \Delta_{RB} * \Delta f) \\ min(f_{max}, f_{h}+12 \cdot \Delta_{RB} * \Delta f)}} |Y(t, f)|^{2}, \Delta_{RB} < 0 \\ \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{f_{h}+(12 \cdot \Delta_{RB} -11) * \Delta f \\ f_{h}+(12 \cdot \Delta_{RB} -11) * \Delta f}} |Y(t, f)|^{2}, \Delta_{RB} > 0 \end{cases}$$

where

 T_s is a set of $|T_s|$ OFDM symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB),

 f_{\min} (resp. f_{\max}) is the lower (resp. upper) edge of the UL UE channel bandwidth,

 f_{\perp} and f_{\perp} are the lower and upper edge of the allocated BW, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the clause (ii)

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{\left|T_{s}\right| \cdot N_{RB}} \sum_{t \in T_{s}}^{f_{t} + (12N_{RB} - 1)\Delta f} \left|Y(t, f)\right|^{2}}$$

where

 N_{RR} is the number of allocated RBs

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one OFDM symbol, accordingly.

In the evaluation of in-band emissions, the timing is set according to $\Delta \widetilde{t} = \Delta \widetilde{c}$, where sample time offsets $\Delta \widetilde{t}$ and $\Delta \widetilde{c}$ are defined in clause F.4.

F.4 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments.

The DFT-s-OFDM modulated signals or PRACH signal under test is modified and, in the case of DFT-s-OFDM modulated signals, decoded according to:

$$Z'(t,f) = IDFT \left\{ \frac{FFT \left\{ z(v - \Delta \widetilde{t}) \cdot e^{-j2\pi \Delta \widetilde{f}v} \right\} e^{j2\pi j\Delta \widetilde{t}}}{\widetilde{a}(t,f) \cdot e^{j\widetilde{\varphi}(t,f)}} \right\}$$

where

z(v) is the time domain samples of the signal under test.

The CP-OFDM modulated signals or PUSCH demodulation reference signal or PUCCH data signal under test is equalised and, in the case of CP-OFDM modulated signals decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\}e^{j2\pi f\Delta \tilde{t}}}{\tilde{a}(t,f) \cdot e^{j\tilde{\varphi}(t,f)}}$$

where

z(v) is the time domain samples of the signal under test.

To minimize the error, the signal under test should be modified with respect to a set of parameters following the procedure explained below.

Notation:

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal.

 $\Delta \widetilde{f}$ is the RF frequency offset.

 $\widetilde{\varphi}(t, f)$ is the phase response of the TX chain.

 $\tilde{a}(t, f)$ is the amplitude response of the TX chain.

In the following $\Delta \widetilde{c}$ represents the middle sample of the EVM window of length W (defined in the next clauses) or the last sample of the first window half if W is even.

The EVM analyser shall

- detect the start of each slot and estimate $\Delta \tilde{t}$ and $\tilde{\Delta}$,
- determine $\Delta \widetilde{c}$ so that the EVM window of length W is centred
 - on the time interval determined by the measured cyclic prefix minus 16κ samples of the considered OFDM symbol for symbol 1 for subcarrier spacing configuration μ in a subframe, with l=0 or $l=7*2^{\mu}$ for normal CP, i.e. the first 16κ samples of the CP should not be taken into account for this step. In the determination of the number of excluded samples, a sampling rate of $1/T_c$ is assumed. If a different sampling rate is used, the number of excluded samples is scaled linearly.
 - on the measured cyclic prefix of the considered OFDM symbol symbol for all other symbols for normal CP and for symbol 0 to 11 for extended CP.
 - on the measured preamble cyclic prefix for the PRACH

To determine the other parameters a sample timing offset equal to $\Delta \widetilde{c}$ is corrected from the signal under test. The EVM analyser shall then

- correct the RF frequency offset $\Delta \widetilde{f}$ for each time slot, and
- apply an FFT of appropriate size. The chosen FFT size shall ensure that in the case of an ideal signal under test, there is no measured inter-subcarrier interference.

The carrier leakage shall be removed from the evaluated signal before calculating the EVM and the in-band emissions; however, the removed relative carrier leakage power also has to satisfy the applicable requirement.

At this stage the allocated RBs shall be separated from the non-allocated RBs. In the case of PUCCH and PUSCH EVM, the signal on the non-allocated RB(s), Y(t, f), is used to evaluate the in-band emissions.

Moreover, the following procedure applies only to the signal on the allocated RB(s).

- In the case of PUCCH and PUSCH, the UL EVM analyzer shall estimate the TX chain equalizer coefficients $\tilde{a}(t,f)$ and $\tilde{\varphi}(t,f)$ used by the ZF equalizer for all subcarriers by time averaging at each signal subcarrier of the amplitude and phase of the reference and data symbols. The time-averaging length is 1 slot. This process creates an average amplitude and phase for each signal subcarrier used by the ZF equalizer. The knowledge of data modulation symbols may be required in this step because the determination of symbols by demodulation is not reliable before signal equalization.
- In the case of PRACH, the UL EVM analyzer shall estimate the TX chain coefficients $\widetilde{a}(t)$ and $\widetilde{\varphi}(t)$ used for phase and amplitude correction and are seleted so as to minimize the resulting EVM. The TX chain coefficients are not dependent on frequency, i.e. $\widetilde{a}(t,f) = \widetilde{a}(t)$ and $\widetilde{\varphi}(t,f) = \widetilde{\varphi}(t)$. The TX chain coefficient are chosen independently for each preamble transmission and for each $\Delta \widetilde{t}$.

At this stage estimates of $\Delta \widetilde{f}$, $\widetilde{a}(t,f)$, $\widetilde{\varphi}(t,f)$ and $\Delta \widetilde{c}$ are available. $\Delta \widetilde{t}$ is one of the extremities of the window W, i.e. $\Delta \widetilde{t}$ can be $\Delta \widetilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$ or $\Delta \widetilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$, where $\alpha = 0$ if W is odd and $\alpha = 1$ if W is even. The EVM analyser shall then

- calculate EVM₁ with $\Delta \tilde{t}$ set to $\Delta \tilde{c} + \alpha \left\lfloor \frac{W}{2} \right\rfloor$,
- calculate EVM_h with $\Delta \tilde{t}$ set to $\Delta \tilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$.

F.5 Window length

F.5.1 Timing offset

As a result of using a cyclic prefix, there is a range of $\Delta \tilde{t}$, which, at least in the case of perfect Tx signal quality, would give close to minimum error vector magnitude. As a first order approximation, that range should be equal to the length of the cyclic prefix. Any time domain windowing or FIR pulse shaping applied by the transmitter reduces the $\Delta \tilde{t}$ range within which the error vector is close to its minimum.

F.5.2 Window length

The window length W affects the measured EVM and is expressed as a function of the configured cyclic prefix length. In the case where equalization is present, as with frequency domain EVM computation, the effect of FIR is reduced. This is because the equalization can correct most of the linear distortion introduced by the FIR. However, the time domain windowing effect can't be removed.

F.5.3 Window length for normal CP

Table F.5.3-1, F.5.3-2, F.5.3-3 below specify the EVM window length (W) for normal CP.

Table F.5.3-1: EVM window length for normal CP for NR, FR1, 15 kHz SCS

Channel Bandwidth (MHz)	FFT size	Cyclic prefix length for symbols 1-6 and 8-13 in FFT samples	EVM window length <i>W</i>	Ratio of <i>W</i> to total CP length for symbols 1-6 and 8-13 ¹ (%)
5	512	36	18	50
10	1024	72	36	50
15	1536	108	54	50
20	2048	144	72	50
25	2048	144	72	50
30	3072	216	108	50
40	4096	288	144	50
50	4096	288	144	50

NOTE 1: These percentages are informative and apply to a slot's symbols 1 to 6 and 8 to 13. Symbols 0 and 7 have a longer CP and therefore a lower percentage.

Table F.5.3-2: EVM window length for normal CP for NR, FR1, 30 kHz SCS

Channel Bandwidth (MHz)	FFT size	Cyclic prefix length for symbols 1-13 in FFT samples	EVM window length <i>W</i>	Ratio of <i>W</i> to total CP length for symbols 1-13 ¹ (%)
5	256	18	9	50
10	512	36	18	50
15	768	54	27	50
20	1024	72	36	50
25	1024	72	36	50
30	1536	108	54	50
40	2048	144	72	50
50	2048	144	72	50
60	3072	216	108	50
70	3072	216	108	50
80	4096	288	144	50
90	4096	288	144	50
100	4096	288	144	50

NOTE 1: These percentages are informative and apply to a slot's symbols 1 through 13. Symbol 0 has a longer CP and therefore a lower percentage.

Table F.5.3-3: EVM window length for normal CP for NR (60 kHz SCS)

Channel Bandwidth (MHz)	FFT size	Cyclic prefix length for symbols in FFT samples	EVM window length <i>W</i>	Ratio of W to total CP length ¹ (%)
10	256	18	9	50
15	384	27	14	50
20	512	36	18	50
25	512	36	18	50
30	768	54	27	50
40	1024	72	36	50
50	1024	72	36	50
60	1536	108	54	50
70	1536	108	54	50
80	2048	144	72	50
90	2048	144	72	50
100	2048	144	72	50

NOTE 1: These percentages are informative and apply to all OFDM symbols within subframe except for symbol 0 of slot 0 and slot 2. Symbol 0 of slot 0 and slot 2 may have a longer CP and therefore a lower percentage.

F.5.4 Window length for Extended CP

Table F.5.4-1 below specifies the EVM window length (*W*) for extended CP. The number of CP samples excluded from the EVM window is the same as for normal CP length.

Table F.5.4-1: EVM window length for extended CP for NR, FR1, 60 kHz SCS

Channel Bandwidth (MHz)	FFT size	Cyclic prefix length in FFT samples	EVM window length <i>W</i>	Ratio of <i>W</i> to total CP length ¹ (%)
10	256	64	54	84.4
15	384	96	80	83.3
20	512	128	106	82.8
25	512	128	110	85.9
30	768	192	164	85.4
40	1024	256	220	85.9
50	1024	256	220	85.9
60	1536	384	330	85.9
70	1536	384	330	85.9
80	2048	512	440	85.9
90	2048	512	440	85.9
100	2048	512	440	85.9
NOTE 1: Th	ese percentag	es are informat	ive.	

F.5.5 Window length for PRACH

The table below specifies the EVM window length for PRACH preamble formats for L_{RA} = 839 and $\Delta f^{RA} \in \{1.25,5\}$ kHz

Table F.5.5-1 EVM window length for PRACH formats for L_{RA} = 839

Preamble format	Cyclic prefix length <i>NcP</i>	Nominal FFT size ¹	EVM window length W in FFT samples	Ratio of W to CP ²
0	3168	24576	2307	72.8%
1	21024	24576	20163	95.9%
2	4688	24576	3827	81.6%
3	3168	6144	2952	93.2%

NOTE 1: The use of other FFT sizes is possible as long as appropriate scaling of the window length is applied

NOTE 2: These percentages are informative

The table below specifies the EVM window length for PRACH preamble formats for L_{RA} = 139 and $\Delta f^{RA} = 15 \cdot 2^{\mu}$ kHz where $\mu \in \{0,1,2\}$.

Table F.5.5-2 EVM window length for PRACH formats for L_{RA} = 139

Preamble format	Cyclic prefix length N _{CP}	Nominal FFT size ¹	EVM window length W in FFT samples	Ratio of W to CP ²
A1	288·2 ^{-μ}	2048·2 ^{-μ}	144·2 ^{-μ}	50.0%
A2	576·2 ^{-μ}	2048·2 ^{-μ}	432·2 ⁻	75.0%
A3	864·2 ^{-μ}	2048·2 ^{-μ}	720·2 ⁻	83.3%
B1	216·2 ^{-μ}	2048·2 ^{-μ}	72·2 ⁻ µ	33.3%
B2	360·2 ⁻ µ	2048·2 ^{-μ}	216·2 ^{-μ}	60.0%
B3	504·2 ^{-μ}	2048·2 ^{-μ}	360·2 ⁻ µ	71.4%
B4	936·2 ^{-μ}	2048·2 ^{-μ}	792·2 ⁻ µ	84.6%
C0	1240·2 ⁻ µ	2048·2 ^{-μ}	1096·2 ⁻ µ	88.4%
C2	2048·2 ^{-μ}	2048·2 ^{-μ}	1904·2 ^{-μ}	93.0%

NOTE 1: The use of other FFT sizes is possible as long as appropriate scaling of the window length is applied

NOTE 2: These percentages are informative

F.6 Averaged EVM

The general EVM is averaged over basic EVM measurements for n slots in the time domain.

$$\overline{EVM} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} EVM_{i}^{2}},$$

where n is

$$n = \begin{cases} 10, for \ 15 \ kHz \ SCS \\ 20, for \ 30 \ kHz \ SCS \\ 40, for \ 60 \ kHz \ SCS \end{cases}$$

for PUCCH, PUSCH.

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_{1}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_{l}$ in the expressions above and $\overline{\text{EVM}}_{h}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_{h}$.

Thus we get:

$$EVM = \max(\overline{EVM}, \overline{EVM}_n)$$

The calculation of the EVM for the demodulation reference signal, EVM_{DMRS} , follows the same procedure as calculating the general EVM, with the exception that the modulation symbol set T_m defined in clause F.2 is restricted to symbols containing uplink demodulation reference signals.

The basic EVM_{DMRS} measurements are first averaged over n slots in the time domain to obtain an intermediate average \overline{EVM}_{DMRS} .

$$\overline{EVM}_{DMRS} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} EVM_{DMRS,i}^{2}}$$

In the determination of each $EVM_{DMRS,i}$, the timing is set to $\Delta \tilde{t} = \Delta \tilde{t}_i$ if $EVM_1 > EVM_h$, and it is set to $\Delta \tilde{t} = \Delta \tilde{t}_i$ otherwise, where EVM_1 and EVM_h are the general average EVM values calculated in the same n slots over which the intermediate average EVM_1 is calculated. Note that in some cases, the general average EVM may be calculated only for the purpose of timing selection for the demodulation reference signal EVM.

Then the results are further averaged to get the EVM for the demodulation reference signal, EVM_{DMRS} ,

$$EVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{j=1}^{6} \overline{EVM}_{DMRS,j}^{2}}$$

The PRACH EVM, *EVM* _{PRACH} , is averaged over 2 preamble sequence measurements for long preamble formats as defined in table 6.3.3.1-1 in [6] and averaged over 10 preamble sequence measurements for short preamble formats as defined in table 6.3.3.1-2 in [6].

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_{\text{PRACH, 1}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_{l}$ and $\overline{\text{EVM}}_{\text{PRACH, h}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_{h}$.

Thus we get:

$$EVM_{PRACH} = \max(\overline{EVM_{PRACH}}, \overline{EVM_{PRACH}})$$

F.7 Spectrum Flatness

The data shall be taken from FFT coded data symbols and the demodulation reference symbols of the allocated resource block.

Annex G (informative): Void	
Annex H (informative): Void	
Annex I (informative): Void	
Annex J (informative): Void	
Annex K (informative): Void	

Annex L (informative): Change history

						Change history	
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	New versio n
2017-08	RAN4#84	R4-				Initial Skeleton	0.0.1
2017-10	RAN4#84 Bis	1708909 R4- 1709958				Added approved TPs in RAN4-NR-AH#3 R4-1709948, TP for TS 38.101-1: minimum output power, Huawei R4-1709454, TP for TS 38.101-1:UE Tx spurious emission for range	0.1.0
2017-10	RAN4#84 Bis	R4- 1711978				1, ZTE Corporation Embedded approved TPs in RAN4#84Bis R4-1711556, "TP to TS 38.101: Draft CR to Transmitter power clause", Nokia R4-1710962, "TP to TS 38.101-1: Draft CR to Output RF spectrum emissions" Nokia R4-1711608, "TP for TS38.101-1 on conducted UE transmitter intermodulation for FR1(section 6.5)" ZTE Corporation Number of TPs by editors	0.2.0
2017-12	RAN4#85	R4- 1713805				Approved TPs in RAN4#85 R4-1713204, TP on general parts for 38.101-1 NR FR1, Ericsson R4-1714047, WF on MPR for sub6GHz, NTT DOCOMO, INC. R4-1714052, TP for TS 38.101-1 introduction of band n71 for transmitter characteristics, T-Mobile USA Inc. R4-1714162, TP to 38.101-1: ACS, Ericsson R4-1714163, TP to 36.101-1: In-band blocking, Ericsson R4-1714446, TP to 36.101-1: Out-of-band blocking and exceptions for spurious response, Ericsson R4-1714369, TP for NBB requirement for FR1, Intel Corporation R4-1714529, TP on introducing operating bands for NR-LTE DC including SUL band combinations in 38.101-1, Huawei R4-1714097, TP for TS 38.101-1: UE RF requirements for standalone SUL, Huawei R4-1714536, TP for TS 38.101-1: Channel Bandwidth Definition, Qualcomm Incorporated (Note, this TP was further discussed and edited in the reflector) R4-1714114, TP for TS 38.101-1: Channel Arrangement, Qualcomm Incorporated (Note, this TP was further discussed and edited in the reflector) R4-1714029, Sub6 Reference Sensitivity, Qualcomm Incorporated R4-1714329, TP to TR 38.101-01 v0.2.0: ON/OFF mask design for NR UE transmissions for FR1, Ericsson Band list according to R4-1714542, List of bands and band combinations to be introduced into RAN4 NR core requirements by December 2017, RAN4 Chairmen Input from: R4-1714479, TP for TR 38.817-01 NR channel bandwidth, Huawei,	0.3.0
2017-12	RAN4#85	R4- 1714569				HiSilicon Further corrections and alignments with 38.104 after email review	0.4.0
2017-12	RAN#78	RP-172475				v1.0.0 submitted for plenary approval. Contents same as 0.4.0	1.0.0
2017-12	RAN#78					Approved by plenary – Rel-15 spec under change control	15.0.0
2018-03	RAN#79	RP-180264	0003		F	Implementation of endorced CRs to 38.101-1 Endorsed draft CRs F: R4-1800400, Editorial corrections for 38.101-1, Qualcomm B: R4-1801102, Draft CR for 30 MHz CBW support, Huawei F: R4-1800032, 38.101-1 n71 draft CR for section 6.2.3 - UE A-MPR - NS values, T-Mobile USA Inc. B: R4-1801121, Draft pCR for TS 38.101-1 version 15.0.0: Remaining ON/OFF masks for FR1 NR UE transmissions, Ericsson F: R4-1800417, Correction of NR SEM table and additional requirements table, vivo F: R4-1800033, 38.101-1 n71 draft CR for section 6.5.3.2 Spurious emissions for UE co-existence, T-Mobile USA Inc. F: R4-1801114, Proposal on protected band numbering in UE specs, Sprint Corporation	15.1.0

F: R4-1800407, Draft CR for TS 38.101-1: Mandatory 4Rx antenna performance for NR UE, Vodafone Group Pic F: R4-1800415 Draft CR for TS 38.101-1: Clarification of 4Rx NR bands, Huawei, HiSilicon F: R4-1801136, Draft CR for TS 38.101-1: REFSENS for NR bands, Huawei, HiSilicon F: R4-1801137, Draft CR: n71 REFSENS, Dish Network F: R4-1800395, Draft CR to 38.101-1: corrections to ACS and inband blocking, Ericsson F: R4-1800396, Draft CR to 38.101-1: corrections to out-of-band blocking, Ericsson F: R4-1800397, Draft CR to 38.101-1: corrections to spurious response, Ericsson F: R4-1800395, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-18012, Draft CR to 38.101-1: Clarifications to UE spectrum utilization section 5.3. Ericsson
F: R4-1800451 Draft CR for TS 38.101-1: Clarification of 4Rx NR bands, Huawei, HiSilicon F: R4-1801136, Draft CR for TS 38.101-1: REFSENS for NR bands, Huawei, HiSilicon F: R4-1801137, Draft CR: n71 REFSENS, Dish Network F: R4-1800395, Draft CR to 38.101-1: corrections to ACS and inband blocking, Ericsson F: R4-1800396, Draft CR to 38.101-1: corrections to out-of-band blocking, Ericsson F: R4-1800397, Draft CR to 38.101-1: corrections to spurious response, Ericsson F: R4-1800395, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
bands, Huawei, HiSilicon F: R4-1801136, Draft CR for TS 38.101-1: REFSENS for NR bands, Huawei, HiSilicon F: R4-1801137, Draft CR: n71 REFSENS, Dish Network F: R4-1800395, Draft CR to 38.101-1: corrections to ACS and inband blocking, Ericsson F: R4-1800396, Draft CR to 38.101-1: corrections to out-of-band blocking, Ericsson F: R4-1800397, Draft CR to 38.101-1: corrections to spurious response, Ericsson F: R4-1800305, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
F: R4-1801136, Draft CR for TS 38.101-1: REFSENS for NR bands, Huawei, HiSilicon F: R4-1801137, Draft CR: n71 REFSENS, Dish Network F: R4-1800395, Draft CR to 38.101-1: corrections to ACS and inband blocking, Ericsson F: R4-1800396, Draft CR to 38.101-1: corrections to out-of-band blocking, Ericsson F: R4-1800397, Draft CR to 38.101-1: corrections to spurious response, Ericsson F: R4-1800305, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
Huawei, HiSilicon F: R4-1801137, Draft CR: n71 REFSENS, Dish Network F: R4-1800395, Draft CR to 38.101-1: corrections to ACS and inband blocking, Ericsson F: R4-1800396, Draft CR to 38.101-1: corrections to out-of-band blocking, Ericsson F: R4-1800397, Draft CR to 38.101-1: corrections to spurious response, Ericsson F: R4-1800395, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800473, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
F: R4-1801137, Draft CR: n71 REFSENS, Dish Network F: R4-1800395, Draft CR to 38.101-1: corrections to ACS and inband blocking, Ericsson F: R4-1800396, Draft CR to 38.101-1: corrections to out-of-band blocking, Ericsson F: R4-1800397, Draft CR to 38.101-1: corrections to spurious response, Ericsson F: R4-1800305, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1: Clarifications to UE spectrum
band blocking, Ericsson F: R4-1800396, Draft CR to 38.101-1: corrections to out-of-band blocking, Ericsson F: R4-1800397, Draft CR to 38.101-1: corrections to spurious response, Ericsson F: R4-1800305, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
F: R4-1800396, Draft CR to 38.101-1: corrections to out-of-band blocking, Ericsson F: R4-1800397, Draft CR to 38.101-1: corrections to spurious response, Ericsson F: R4-1800305, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1; Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
blocking, Ericsson F: R4-1800397, Draft CR to 38.101-1: corrections to spurious response, Ericsson F: R4-1800305, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1; Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
F: R4-1800397, Draft CR to 38.101-1: corrections to spurious response, Ericsson F: R4-1800305, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
response, Ericsson F: R4-1800305, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
F: R4-1800305, Draft CR for NR FR1 wide band intermodulation requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
requirements, MediaTek Inc. F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Hauwei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
F: R4-1800320, Draft CR to 38.101-1: Rx Spurious emission for NR FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
FR1 (section 7.9), ZTE Corporation F: R4-1800473, Draft CR on UE RF requirements for SUL in TS 38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
38.101-1, Huawei F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
F: R4-1800965, Draft CR to TS 38.101-1: Asymmetric CH BW operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
operation, Dish Network F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
F: R4-1800882, Draft CR for correction of UE channel bandwidth for Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
Bands n77 and n78 for TS 38.101-1, Orange UK F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
F: R4-1801012, Draft CR to 38.101-1: Clarifications to UE spectrum
utilization section 5.3. Ericsson
F: R4-1800030, 38.101-1 n71 draft CR for section 5.4.4 - TX–RX
frequency separation, T-Mobile USA Inc
F: R4-1801228, Draft CR to 38.101-1: Channel spacing for CA for NR FR1(section 5.4.1.2), ZTE Corporation
F: R4-1801231, Correction CR for channel spacing:38.101-1,
Samsung
F: R4-1801235, Draft CR to TS 38.101-1: Corrections on channel
raster calculation in section 5.4.2, ZTE Corporation
F: R4-1801318, Draft CR on synchronization raster, Huawei
RAN4#86:
R4-1803053, Draft CR for new spec structure of 38.101-1, Ericsson
R4-1801479, Draft CR to 38.101-1: Default Tx-RX frequency
separation for NR FR1(section 5.4.4), ZTE
R4-1801581, Draft CR for TS 38.101-1 update of 4Rx bands,
Huawei Technologies France
R4-1802211, draft CR TS 38.101-1 Uplink configuration for FR1 NR
REFSENS, Skyworks Solutions Inc. R4-1802342, Draft CR for NR FR1 ACS case 2 transmitter power
setting correction (Note 1), MediaTek Inc.
R4-1802509, Draft CR on 38.101-1 v15.0.0: Remaining ON/OFF
masks for FR1 NR UE transmissions, Ericsson
R4-1802566, Draft CR to TS 38.101-1: Clarification of mixed
numerology guardband size, Ericsson
R4-1802978, Draft CR to TS 38.101-1: Corrections on channel raster in Section 5.4.2.3, Intel Corporation
R4-1803064, Draft CR for 38.101-1: Correction of errors, Sprint
Corporation
R4-1803065, Draft CR for 38.101-1 Introduction of n41requirements,
Sprint Corporation
R4-1803242, Draft CR to 38.101-1: Corrections to n66, Dish
Network P4.1903395 Proft CB to 39.101.1: Correction to CH PWo without
R4-1803285, Draft CR to 38.101-1: Correction to CH BWs without symmetric uplink Dish Network, Skyworks Solutions Inc.
R4-1803436, Introduction of UL subcarrier alignment for additional
bands, AT&T
R4-1803456, Draft CR for 38.101-1: Spurious Emissions for UE
Coexistence, Sprint Corporation
R4-1803461, CR on configured transmitted power for TS 38.101-1, Huawei
R4-1803452, draft CR for introduction of completed band
combinations from 37.865-01-01 into 38.101-1, Ericsson
R4-1803567, Draft CR for TS 38.101-1: Sync raster offset in re-
farming bands (5.4.3), Ericsson
R4-1803365, CR to introduce MPR for PC2 and PC3 and A-MPR for
UTRA protection, Nokia 2018-06 RAN#80 RP-181262 0011 F CR to TS 38.101-1: Implementation of endorsed draft CRs from 15.2
2018-06 RAN#80 RP-181262 0011
TO WAY 17 WOOD GOOD WAY 17 WAY 17 WOOD
R4-1803900, Draft CR into TS 38.101-1 Introduction of band
combinations for SUL, Huawei

	R4-1804021 CR for clarifications for NR FR1 CA BW Classes
	Nokia, Nokia Shanghai Bell R4-1804140 CR for Narrow Band Blocking requirement for FR1
	Intel Corporation
	R4-1804219 Draft CR for 38.101-1: n41 SEM and additional
	spurious emissions SPRINT Corporation
	R4-1804266 Draft CR to 38.101-1 MPR channel bandwidth
	criteria Skyworks Solutions Inc. R4-1804267 Draft CR to 38.101-1 n3,n5,n8 REFSENS levels
	Skyworks Solutions Inc.
	R4-1804268 Draft CR to 38.101-1: Corrrection to n41 uplink
	configuration for reference sensitivity Skyworks Solutions Inc.
	R4-1804370 Draft CR to add missing NR inter-band DL CA in FR1 for TS 38.101-1 NTT DOCOMO, INC.
	R4-1804581 Draft CR to 38.101-1: On EVM Wording Qualcomm,
	Inc.
	R4-1804948 Corrections to 5.3.3 in TS 38.101-1 Nokia, Nokia
	Shanghai Bell R4-1804877 draft CR introduction completed band combinations
	37.865-01-01 -> 38.101-1 Ericsson
	R4-1805444 Draft CR to TS 38.101-1: Asymmetric CH BW
	operation Dish Network
	R4-1805447 drfat CR for including SRS antenna switching in configured output power Qualcomm Incorporated
	R4-1805462 Editorial corrections to UE RF requirements in
	38.101-1 Qualcomm Incorporated
	R4-1805659 Draft CR for CBW for n50 for 38.101-1 Huawei
	R4-1805664 Draft CR to 38.101-1: Addition of Annex F Rohde & Schwarz
	R4-1805665 Correction to inner and outer definitions for MPR
	Qualcomm Incorporated
	R4-1805684 Draft CR to TS38.101-1: Channel Raster to
	Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.3.4) ZTE Corporation
	R4-1805698 Draft CR for 38.101-1 for Rx(Ch7) of Band n77, n78
	and n79 RF requirements CMCC
	R4-1805699 Draft CR to 38.101-1:introduction of Tx/Rx
	requirements for inter-band CA ZTE Corporation R4-1805751 Draft CR on UE-to-UE coexistence requirements to
	protect band 29 from NR band 71 LG Electronics France
	R4-1805783 Draft CR for 38.101-1 for Tx(Ch6) of Band n77, n78
	and n79 RF requirements CMCC R4-1805902 Draft CR into TS 38.101-1 Correction on SUL_n78-
	n80 Huawei, HiSilicon
	R4-1805904 Draft CR into TS 38.101-1 Introduction of new band
	combinations for SUL Huawei, HiSilicon
	R4-1805921 Draft CR on NR UE REFSENS SNR FRC for FR1 Intel Corporation
	R4-1805981 Draft CR for TS38.101-1:Sync raster Samsung
	R4-1804548 Draft CR for CA BW class for FR1 NTT DOCOMO,
	INC.
	R4-1806170 Draft CR on frequency error for TS 38.101-1 ZTE Corporation
	R4-1806481 Draft CR for Environmental conditions in TS 38.101-
	1 Annex NTT DOCOMO, INC.
	R4-1806657 Draft CR to 38.101-1: Measurement BW for min and
	off power Skyworks Solutions Inc. R4-1806669 Draft CR to TS38.101-1_introduction of completed
	band combinations for inter-band 2UL CA ZTE Corporation
	R4-1806673 Draft CR to TS38.101-1_Remove brackets from Tx
	and Rx spurious emission table ZTE Corporation
	R4-1806677 Draft CR on including CA bandwidth class and band combinations for intra-band CA LG Electronics France
	R4-1806719 Introduction of 7.5 kHz frequency shift for Band n71
	Ericsson, T-Mobile
	R4-1806844 Draft CR for 38.101-1 for Tx(Ch6): missing
	maximum power requirements for n1 and n8 SoftBank Corp. R4-1806945 Draft CR for TS 38.101-1: Channel raster and NR-
	ARFCN clarification (5.4.2) Ericsson
	R4-1807039 Intra-band CA terminology for UE ZTE Corporation
	R4-1807178 Corrections to n70 TX/RX frequency separation Dish
	Network R4-1807181 Corrections to spurious emissions UE co-existence
	table Dish Network
	R4-1807234 Draft CR into TS 38.101-1 Some Corrections for
	SUL Huawei, HiSilicon

•						
					R4-1807269 Corrections to Wide band intermodulation table	
					<pre><2700MHz Dish Network</pre>	
					R4-1807392 to remove the brackets for SU in 38.101-1 Huawei,	
					HiSilicon R4-1807647 Draft CR to TS 38.101-1: Correction to Asymmetric	
					CH BW operation Dish Network	
					R4-1807680 Draft CR on 38.101-1 on channel raster to achieve	
					alignment of data and SSB subcarrier grids Nokia, Nokia Shanghai	
					Bell, Ericsson	
					R4-1807705 CR for TS 38.101-1 A-MPR for n51 Huawei,	
					Hisilicon	
					R4-1807814 Draft CR for 38.101-1: SEM correction for n41	
					Sprint Corporation	
					R4-1807851 Draft CR for 38.101-1: UE spurious emission protection requirements for n5 Sprint Corporation	
					R4-1807920 General requirements for downlink inter-band CA	
					Qualcomm Incorporated	
					R4-1807923 Resolution bandwidth for ACLR Qualcomm	
					Incorporated	
					R4-1808084 Introduction of n12 into TS 38.101-1 Nokia	
					R4-1808087 Draft CR 38.101-1: Introduction of n2, n25, n66	
					and n70 Sprint Corporation, Dishnetwork	
					R4-1808090 Draft CR to TS 38.101-1: Inclusion of	
					Simultaneous RxTx UE capability for some band combinations Ericsson, Vodafone, Orange	
					R4-1808107 Draft CR to TS38.101-1_corrections on UE	
					coexistence ZTE Corporation	
					R4-1808111 TP to TS38.101-1 - UE ON/OFF masks Ericsson	
					R4-1808116 Draft CR to 38.101-1: introduction of Band	
					n34,n39 and n40 RF requirements	
					R4-1808136 Draft CR to 38.101-1: FR1 UE Power Control	
					Qualcomm Incorporated	
					R4-1808141 Correction to MPR for PC2 and spectrum emission mask measurement bandwidth Qualcomm Incorporated	
					R4-1808142 Draft CR for 38.101-1 n41 A-MPR Sprint	
					Corporation, Nokia, Nokia Shanghai Bell, Ericsson	
					R4-1808143 Draft CR for TS 38.101-1 A-MPR for n20	
					Huawei, HiSilicon	
					R4-1808155 Draft CR for TS 38.101-1: to correct reqirements	
					for n71 Samsung	
					R4-1808178 Addition parameters about n50 & n51 in TS	
					38.101-1 Huawei, Hisilicon, Etisalat (editors note: n50 not implemented per chairmans aggreement)	
					R4-1808182 Draft CR for TS 38.101-1 A-MPR for n28	
					Huawei, HiSilicon	
					R4-1808187 CR for RF requirements for Coherent UL MIMO for	
					FR1 Qualcomm Austria RFFE GmbH	
					R4-1808207 Draft CR to 38.101-1: On EVM Averaging Length,	
					Wording , Qualcomm	
					R4-1808209 Draft CR for 38.101-1 for Tx (Ch6) of HPUE	
					Qualcomm R4-1808466 Draft CR on UL RMC and OCNG pattern for FDD	
					REFSENS tests RD session	
					R4-1808493 Draft CR for TS 38.101-1: Channel and sync	
					raster corrections (5.4) Ericsson	
					R4-1808507 Draft CR for TS38.101-1 on addition of new	
					90MHz UE CBW for n41/n78 LG Electronics Inc., LG Uplus,	
					Samsung	
					R4-1808176, Draft CR for 38.101-1 : Introduction of A-MPR for n8, SoftBank	
					R4-1808201, Draft CR for 38.101-1: Introduction of A-MPR for n1,	
					SoftBank	
					R4-1807101, draft CR introduction completed band combinations	
		<u> </u>	<u> </u>		37.865-01-01 -> 38.101-1, Ericsson	
2018-09	RAN#81	RP-181896	0025	F	Big CR for 38.101-1	15.3.0
					Endowed desti ODs force DANIAND ALL 1997	
					Endorced draft CRs from RAN4#NR-AH-1807	
					R4-1809335, Draft CR on UL RMC for FR1 RF tests, Qualcomm Incorporated	
					R4-1809337, Draft CR on NR UE REFSENS SNR FRC for FR1, Intel	
					Corporation	
					R4-1809339, Draft CR on measurement of receiver characteristics	
					for FR1 RF Tests, Qualcomm Incorporated	
					R4-1809396, Draft CR on NR UE maximum input level FRC for FR1,	
1					Intel	
		Ì	I		R4-1809567, Draft CR on OCNG pattern for FR1 REFSENS tests,	
					Qualcomm Incorporated, Rohde & Schwarz	

Endorced draft CRs from RAN4#88
R4-1809714, Draft CR to correct in-band blocking parameters for FR1, Anritsu Corporation
R4-1809784, Draft CR to 38.101-1: Corrections on CA bandwidth
classes for FR1, ZTE Corporation R4-1809785, Draft CR to TS 38.101-1 for Corrections on UE
transmitter power, ZTE Corporation R4-1809793, Draft CR to 38.101-1: Corrections on additional
spectrum emission mask, ZTE Corporation
R4-1809919, Correction on UE receiver requirement for FR1, CATT R4-1810091, Draft CR TS 38.101-1 - UE ON-OFF mask clean up,
Ericsson R4-1810210, Draft CR for TS 38.101-1: MPR inner and outer RB
allocations formula correction, MediaTek, Inc.
R4-1810229, Draft CR for TS 38.101-1: Spurious emission for UE coexistence table corrections, MediaTek, Inc.
R4-1810230, Draft CR for TS38.101-1 to correct 90MHz UE CBW,
LG Electronics, Inc. R4-1810232, Draft CR for TS 38.101-1: Table 7.3.2-1 n77 reference
sensitivity corrections, MediaTek, Inc. R4-1810369, Draft CR to 38.101-1: Corrections on symbols and
abbreviations in section 3, ZTE Corporation
R4-1810376, Draft CR: General corrections to n71 requirements, Dish Network
R4-1810428, Draft CR on TS38.101-1 for UE maximum output power for UL MIMO, OPPO
R4-1810552, Correction of reference tables, OPPO
R4-1810729, Draft CR for introduction of Band n74 for TS 38.101-1, NTT DOCOMO, Inc.
R4-1810862, Draft CR to 38.101-1: Updates to Transmit Modulation
Annex, Rohde & Schwarz R4-1810892, CR to update Table 6.2D.1-2 for FR1, Qualcomm
Incorporated R4-1810961, CR on ACS minimum requirement, Intel Corporation
R4-1810965, CR on Out-of-Band Blocking minimum requirement,
Intel Corporation R4-1810967, CR on Rx Intermodulation characteristics for CA, Intel
Corporation R4-1810974, Annex lettering change for 38.101-1, Qualcomm
Incorporated
R4-1811189, CR to add more details to Coherent UL MIMO spec for FR1, Qualcomm Incorporated
R4-1811280, Corrections of NR receiver characteristics titles, Vivo R4-1811455, Draft CR on DL Physical Channel for FR1 RF tests,
Qualcomm Europe Inc. (Spain)
R4-1811457, NS numbering, Qualcomm Incorporated R4-1811459, Correction on UE transmitter requirement for FR1,
CATT
R4-1811463, Draft CR for 38.101-1: Addition of missing NR CA configurations n8-n75 and n28-n75, VodafoneItalia SpA
R4-1811472, Addition parameters about n51 in TS 38.101-1, Huawei, Hisilicon, Etisalat
R4-1811474, CR CP- OFDM almost contiguous allocation, Nokia,
Nokia Shanghai Bell R4-1811477, Draft CR to 38.101-1: FR1 Power Control, Qualcomm
Incorporated R4-1811478, A-MPR correction for n20 and n28, Huawei, HiSilicon
R4-1811490, Draft CR to 38.101-1: Addition of Carrier Leakage
table, Rohde & Schwarz R4-1811491, Draft CR for TS38.101-1 on transmit signal quality,
OPPO
R4-1811493, CR to TS 38.101-1: pi/2 BPSK with Spectrum Shaping, Indian Institute of Tech (M),Indian Institute of Tech (H), CEWiT,
Nokia R4-1811513, A proposal on 2UL co-ex table modification, SoftBank
Corp.
R4-1811514, Draft CR to TS 38.101-1: Clarification on OCNG, Keysight Technologies UK Ltd
R4-1811516, Draft CR on NR DL FRCs for FR1 UE RF requirements, Intel Corporation
R4-1811550, Draft CR to TS 38.101-1 on channel bandwidth and
spacing descriptions, Ericsson R4-1811553, Draft CR to 38.101-1: Corrections on description of
channel raster entries, ZTE Corporation
R4-1811783, Measurement period of PRACH time mask, CATT

INC. R-1811798, Premix for inter-band NR CA FR1, Qualcomm Incorporated R-1811798, Premix for inter-band NR CA FR1 draft CR, mpt 181812, Date CR to 38 101-1. On FR1 AMPR Band n41 NS_04, Qualcomm Incorporated R-1811896, Draft CR to 38 101-1. On FR1 AMPR Band n41 NS_04, Qualcomm Incorporated R-1811896, Draft CR for TS 38, 101-1. n41 CSCN range R-1811896, Draft CR for TS 38, 101-1. n41 CSCN range R-1811896, Draft CR for TS 38, 101-1. n41 CSCN range R-1811896, Draft CR for TS 38, 101-1. n41 CSCN range R-1811285, Draft CR TS 38, 101-1. n5, Qu 4 AMPR and spurious emission corrections. Sprint R-1811280, Draft CR for TS 38, 101-1. n5, Qu 4 AMPR and spurious emission corrections. Sprint R-1811280, Draft CR for Inter-band CA operating bands table in TS 38, 101-1, Notice. R-1812050, CR Simplification of NR NS, Qs. Nokia, R-1812079, Graft CR in Inter-band CA operating bands table in TS 38, 101-1, Nokia. R-1812079, Graft CR in Inter-band CA operating bands table in TS 38, 101-1, Nokia. R-1812079, Graft CR no Noted Corrections in 38, 101 RX tests, Qualcomm CR 1812121, Draft CR no Noted Corrections in 38, 101 RX tests, Qualcomm CR 1812121, Draft CR not Noted Corrections in 38, 101 RX tests, Qualcomm CR 1812121, Draft CR not Noted Corrections on the descriptions of UE charents bandwidth for CA, 2TE Carporation R-1812122, Draft CR not Noted Corrections on the descriptions of UE charents bandwidth for CA, 2TE Carporation CR 1812220, Draft CR for TS 38, 101-1; Blocking characteristics for SUL, Model Tek Inc. R-1812320, Draft CR for TS 38, 101-1; Blocking characteristics for SUL, Model Tek Inc. R-1812320, Draft CR for TS 38, 101-1; Corrections on channel raster & SS raster for operating bands, 2TE Corporation R-1812322, Draft CR for TS 38, 101-1; Corrections on the decidional R-1812320, Draft CR for TS 38, 101-1; Corrections on UE additional R-18123320, Draft CR for TS 38, 101-1; Draft CR for Ans. R-1812360, Draft CR for TS 38, 101-1; Corrections on UE additional R-1812361, Draft CR for CR ACS/BB for Bandwidth class C, Qualcom								
R-1917/98, Draft CR for Pemax for FR1, Qualcomm Incorporated R-1917/98, Pranx for inter-band RC A FR1 draft CR, InterCipital, Inc. R-1917/98, Pranx for inter-band RC A FR1 draft CR, InterCipital, Inc. R-1917/98, Pranx for inter-band RC A FR1 draft CR for R1917/98, Pranx for Inter-band RC R1917/98, Pranx for R1917/98, Pranx f							R4-1811792, Draft CR for A-MPR revision for n1, NTT DOCOMO,	
InterCipital, Inc. RA-1811812, Draft CR to 38.101-1: On FR1 AMPR Band n41 NS_04, Qualcomm Incorporated RR-1811816, CR to update the definition of Long and Short subsiot for FR1; Qualcomm RR-181180, Draft CR for 138.101-1: n41 GSCN range RR-181180, Draft CR for 138.101-1: n41 GSCN range modification, Media Tak Inc. R-181180, Draft CR To 38.101-1: NS_04 A-MPR and spurious emission corrections, Spint F Endorsed draft CRs from RAM/#88Bis: 15.4.0 RR-1812050, CR Simplification of NR NS_08, Notice							R4-1811798, Draft CR for Pcmax for FR1, Qualcomm Incorporated	
R-181812, Draft CR to 38.101-1: On FRI AMPR Band n41 NS_04, Qualcomm Incorporates about n50 in T5.38.101-1. Husweil R-1811816, CR to update the definition of Long and Short subsolt for FR1, Qualcomn parameters about n50 in T5.38.101-1. Husweil R-1811836, Draft CR for T5.38.101-1: NS_04 A-MPR and spurious emission corrections, Sprint R-1811285, Draft CR T5.38.101-1: NS_04 A-MPR and spurious emission corrections, Sprint R-181285, Craft CR T5.38.101-1: NS_04 A-MPR and spurious emission corrections, Sprint R-1812054, Correction for Inter-band CA operating bands table in T5.38.101-1: Notice R-1812079, CR Simplification of NR NS_08, Notice R-1812079, Graft CR to introduce asymmetric UL DL channel BW combinations for r71, T-Mobile USA Inc. R-18121210, Draft CR on Note1 Corrections in 38.101 RX tests, Qualcomm R-18121210, Draft CR on Note1 Corrections in 38.101 RX tests, Qualcomm R-18121210, Draft CR to T5.38.101-1: Add clarification note to PC3 MRR table, Intel Corporation R-18121210, Draft CR to T5.38.101-1: Corrections on the descriptions of UE channel bandwidth for CA. ZTE Corporation R-1812310, Draft CR for T5.38.101-1: Corrections on the descriptions of UE channel bandwidth for CA. ZTE Corporation R-1812320, Draft CR for T5.38.101-1: Solicking characteristics for SULL, Media for kin. R-1812330, Draft CR for T5.38.101-1: Solicking characteristics for SULL, Media for kin. R-1812330, Draft CR for T5.38.101-1: Solicking characteristics for SULL, Media for kin. R-1812330, Draft CR for T5.38.101-1: Solicking characteristics for SULL, Media for kin. R-1812330, Draft CR for T5.38.101-1: Solicking characteristics for SULL, Media for kin. R-1813400, Draft CR for T5.38.101-1: Solicking characteristics for SULL, Media for kin. R-1813400, Draft CR for T5.01-1: Some corrections for inter-band CA combinations, ZTE Corporation R-1813400, Draft CR for T5.01-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R-1813411, Draft CR for R5.01-1: Corrections on UE additional maximum output power reduction, Z								
RA-1811816, CR to update the definition of Long and Short subsidit for FR1, Qualcormin R4-1911894, Addition parameters about n50 in TS 38.101-1, Huswei R4-1811896, Parid CR for TS 38.101-1; n41 GSCN range modification, Media Telt, Inc. 2018-12 RAN882 RP-182836 0029 1 F F Endorced draft CRs from RAN4488Bis: 15.4.0 RAN882 RP-182836 0029 1 F F Endorced draft CRs from RAN4488Bis: 15.4.0 RAN882 RP-182836 0029 1 F F Endorced draft CRs from RAN4488Bis: 15.4.0 RAN882 RP-182836 0029 RS-1812050, CR Simplification of NR NS_08, Nokia R4-1812050, CR Graft CR to introduce asymmetric UL DL channel BW combinations for r71, T-Mobile USA Inc. RA-1812070, Graft CR to introduce asymmetric UL DL channel BW combinations for r71, T-Mobile USA Inc. RA-1812200, Orath CR on Note To-Gradt CR to Introduce asymmetric UL DL channel BW combinations for r71, T-Mobile USA Inc. RA-1812200, Orath CR on To-S80, AM UL power requirement, Intel Corporation RA-1812217, Draft CR to TS 38.101-1 Ref Service to to CG AM RA-1812220, Draft CR for TS 38.101-1 Corrections on the descriptions of UE channel bendwith for CA, 2TE Corporation RA-1812230, Draft CR for TS 38.101-1 Corrections on the descriptions of UE channel bendwith for CA, 2TE Corporation RA-1812300, Draft CR for TS 38.101-1 Society Graft CR for TS 38.101-1 Ref Service Ref RA-1812300, Draft CR for TS 38.101-1 Society Graft CR for TS 38.101-1 Ref Service Ref RA-1812300, Draft CR for TS 38.101-1 Society Graft Rate Ref RA-1812300, Draft CR for TS 38.101-1 Society Graft Rate Ref RA-1812300, Draft CR for TS 38.101-1 Society Graft Rate Ref RA-1812300, Draft CR for TS 38.101-1 Corrections on channel raster & RA-1812300, Draft CR for TS 38.101-1 Society Graft Rate Ref Rate Rate Rate Rate Rate Rate Rate Rate							o ,	
Part 1998								
RA-1811894, Addition parameters about 160 in TS 38.101-1, Huswel RA-1811896, Drift CR for TS 38.101-1; Modia Tek Inc. RA-1811826, Drift CR TS 38.101-1; NS_04 A-MPR' and spurious emission corrections, Sprint 2018-12 RAN#82 RP-182836 0029 1 F F Endorsed draft CRs from RAN4#88Bis: 15.4.0 RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812050, CR Simplification of NR NS_08, Nokia RA-1812360, CR Simplification of NR NS_08,								
modification, MediaTek Inc. R4-181285, Draft CR TS 38.101-1: NS_04 A-MPR' and spurious emission corrections. Sprint R4-1812856, Draft CR TS 38.101-1: NS_04 A-MPR' and spurious emission corrections. Sprint R4-1812056, Correction for Inter-band CA operating bands table in R4-1812056, Correction for Inter-band CA operating bands table in R4-1812056, Correction for Inter-band CA operating bands table in R4-1812057, draft CR to Interdudue asymmetric UL DL channel BW combinations for n71, T-Mobile USA Inc. R4-1812121, Draft CR n0 total Corrections in 38.101 RX tests, Qualcomm R4-1812121, Draft CR n0 total Corrections in 38.101 RX tests, Qualcomm R4-1812120, Draft CR to TS 38.101-1 Corrections on the descriptions of USE channel bandwidth for CA, ZTE Corporation St. USE channel bandwidth for CA, ZTE Corporation on the descriptions of USE channel bandwidth for CA, ZTE Corporation on Corrections, MediaTek Inc. R4-1812320, Draft CR for TS 38.101-1: Out-of-band blocking exceptions for CA, MediaTek Inc. R4-1812332, Draft CR for TS 38.101-1: Draft Corporation on Corrections for CA, MediaTek Inc. R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm incorporated R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm incorporated R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm incorporated R4-1812397, Clarification for CR to 38.101-1: Support 4Rx for n38, Huawel R4-1813398, draftCR on applicability of TDD configuration for CA in TS 38.101-1, Huawel R4-1813398, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawel R4-1813391, Draft CR for TS 38.101-1: Drorections on Use additional maximum output power reduction, ZTE Corporation R4-1813391, Draft CR for TS 38.101-1: Drorections on Use additional maximum output power reduction, ZTE Corporation R4-1813391, Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz AB, Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz AB, Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz AB, Draft CR for TS 38.101-1: Update of Annex F								
RA-181283 (Date CR TS 38.101-1: NS_04 A-MPR' and spurious emisions corrections, Sprint Biblists. RR-182836 (D029 1 F Endorced draft CRs from RAM-#898is: 15.4.0 R4-1812050, CR Simplification of NR NS_08, Nokia R4-1812054, Correction for Inter-band CA operating bands table in TS 38.101-1, Nokia. R4-1812054, Correction for Inter-band CA operating bands table in TS 38.101-1, Nokia. R4-1812079, draft CR to Introduce asymmetric UL DL channel BW controlled to the Corrections in 38.101 RX tests, Qualcomm. R4-1812109, Draft CR on Nokel Corrections in 38.101 RX tests, Qualcomm. R4-1812128, draft(CR on 256QAM UL power requirement, Intel Corporation R4-1812210, Intel CR on Nokel Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812219, Draft CR to TS 38.101-1: Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation corrections, MedTafe Inc. R4-18122319, Draft CR for TS 38.101-1: REFSENS UL configuration corrections, MedTafe Inc. R4-1812232, Draft CR for TS 38.101-1: Blocking characteristics for SUL, Media Tek Inc. R4-1812232, Draft CR for TS 38.101-1: Support Applications on R4-1812321, Draft CR for TS 38.101-1: Support 4Rx for n38, R4-1812322, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawet R4-181339, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawet R4-181339, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawet R4-181339, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawet R4-181339, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawet R4-181339, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawet R4-181339, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawet R4-181339, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawet R4-181339, Draft CR for TS 38.101-1: Draft CR for R5 8.101-1 Corrections on UE additional maximum output power reduction, ZTE Corporation R4-181381, Draft CR for TS 38.101-1: Draft CR for R6 R7 R7 R7 R7 R7 R7 R7 R7 R7 R7 R7 R7 R7								
2018-12 RAN#82 RP-182836 0029 1 F Endorcad facth CRs from RAN#86Bis: 15.4.0 R4-1812050, CR Simplification of NR NS_08, Nokia R4-1812050, Horricotion for Inter-band CA operating bands table in TS_38_101-1, Nokia. R4-1812079, draft CR to introduce asymmetric ULD L channel BW combinations for n7.1. Thioble USA inc. R4-1812121, Draft CR on Note! Corrections in 38.101 RX tests, Outations m. R4-1812120, Draft CR to TS_38_101-1 Add clarification note to PC3 MPR table, Intel Corporation R4-1812120, Draft CR to TS_38_101-1 Add clarification note to PC3 MPR table, Intel Corporation R4-181219, Draft CR for TS_38_101-1 RESENS UL configuration or R4-1812200, Draft CR for TS_38_101-1 RESENS UL configuration corrections, MediaTek Inc. R4-1812200, Draft CR for TS_38_101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812200, Draft CR for TS_38_101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812200, Draft CR for TS_38_101-1: Blocking characteristics for SUL, MediaTek Inc. R4-181230, Draft CR for TS_38_101-1: Blocking characteristics for SUL, MediaTek Inc. R4-181230, Draft CR for TS_38_101-1: Blocking characteristics for SUL, MediaTek Inc. R4-181230, Draft CR for TS_38_101-1: Blocking characteristics for SUL, MediaTek Inc. R4-181230, Draft CR for TS_38_101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812361, Draft CR for TS_38_101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1813459, Draft CR for TS_38_101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS_38_101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS_38_101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS_38_101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS_38_101-1: Draft Creditions on UE additional maximum output power reduction, ZTE Corporation R4-1813451, Draft CR to 38_101-1: Draft CR to 38_101-1: Draft CR to 38_101-1: Draft CR to 38_101-1: Draft CR to 38_101-1: Draft CR to 38_101-1: Draft CR to 38_101-1: Draft CR to 38_101-1: Draft CR to 38_101-1: Draft CR to 38_101-1: Draft CR to 38_								
R4-1812054, Correction for Inter-band CA operating bands table in TS 38,10-11, Nokia. R4-1812079, draft CR to introduce asymmetric UL DL channel BW combinations for n71. T-Mobile USA Inc R4-1812121, Draft CR on Note1 Corrections in 38.101 RX tests, Qualcomm R4-1812120, Draft CR on Note1 Corrections in 38.101 RX tests, Qualcomm R4-1812120, Draft CR on S8.004 UL power requirement, Intel Oct. Activation of the Corporation R4-181217, Draft CR to TS 38.101-1 Add clarification note to PC3 MFR table, Intel Corporation R4-1812139, Draft CR for TS 38.101-1: Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812319, Draft CR for TS 38.101-1: Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812320, Draft CR for TS 38.101-1: Cut-of-band blocking exceptions for CA, MediaTek Inc R4-1812320, Draft CR for TS 38.101-1: Blocking characteristics for SUL, MediaTek Inc R4-1812327, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812597, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813469, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1; Huawei R4-1813459, Draft CR for TS 38.101-1: Crections on UE additional maximum output power reduction, ZTE Corporation R4-1813451, Addition of TC, c for single carrier formax for FR1, vivo R4-1813452, Addition of TC, c for single carrier formax for FR1, vivo R4-1814159, Draft CR for TS 38.101-1: Crections on UE additional maximum output power reduction, ZTE Corporation R4-1813451, Draft CR for TS 38.101-1: Draft control in Intel. Qualcomm incorporated R4-1813459, Draft CR for TS 38.101-1: Draft on Traft on R4-181469, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1813843, Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz R4-1814840, R							•	
R4-1812054, Correction for Inter-band CA operating bands table in TS 38,101-11, Nokia. R4-1812079, draft CR to introduce asymmetric UL DL channel BW combinations for n71, "T-Mobile USA Inc. R4-1812121, Draft CR on Note1 Corrections in 38.101 RX tests, Qualcomm R4-1812128, draftCR on 256QAM UL power requirement, Intel Corporation R4-1812200, Draft CR to TS 38.101-1 Add ciarification note to PC3 MPR table, intel Corporation R4-1812217, Draft CR to TS 38.101-1 Corrections on the descriptions of UE ochannel bandwidth for CA, ZTE Corporation R4-1812319, Draft CR for TS 38.101-1: REFSENS UL configuration corrections, MediaTek Inc. R4-1812320, Draft CR for TS 38.101-1: Dlocking characteristics for SM 1912222, Draft CR for TS 38.101-1: Dlocking characteristics for SM 1912222, Draft CR for TS 38.101-1: Dlocking characteristics for SM 1912222, Draft CR for TS 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-181239, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for SS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for 38.101-1: Corrections on CA in TS 38.101-1; Huawei R4-1813451, Addition of T7C, c for single carrier Pornax for FR1, vivo R4-1813810, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Corrections on UE additional maximum output power event equation, ZTE Corporation R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR to 38.101-1: Corrections on UE additional maximum output power event equation, ZTE Corporation R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813845, Carro CR on Spurious emission limits, Qualcomm R4-1813845, Carroccorporated R4-1813845, Draft CR to 78.101-11; Update of Annex F, Rohde & Schwarz R4-1813845, Carroccion for IV2 PBSK requirements, Nokia R4-1814859, Changes to Max input power UL and DL configu	2018-1	2 RAN#82	RP-182836	0029	1	F	Endorced draft CRs from RAN4#88Bis:	15.4.0
R4-1812054, Correction for Inter-band CA operating bands table in TS 38,101-11, Nokia. R4-1812079, draft CR to introduce asymmetric UL DL channel BW combinations for n71, T-Mobile USA Inc. R4-1812121, Draft CR on Note1 Corrections in 38.101 RX tests, Qualcomm R4-1812128, draftCR on 256QAM UL power requirement, Intel Corporation R4-1812200, Draft CR to TS 38.101-1 Add ciarification note to PC3 MPR table, intel Corporation R4-1812217, Draft CR to TS 38.101-1. Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812319, Draft CR for TS 38.101-1: Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812319, Draft CR for TS 38.101-1: Dut-of-band blocking exceptions for CA, MediaTak Inc. R4-1812320, Draft CR for TS 38.101-1: Dut-of-band blocking exceptions for CA, MediaTak Inc. R4-1812320, Draft CR for TS 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-181236, Draft CR for TS 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for 38.101-1: Corrections on LE additional maximum output power reduction, ZTE Corporation R4-1813459, draftCR on applicability of TDD configuratin for CA in TS 38.101-1, Huawei R4-1813469, draftCR on applicability of TDD configuration for Air IS 38.101-1; Corrections on LE additional maximum output power reduction, ZTE Corporation R4-1813810, Draft CR to 38.101-1: Corrections on LE additional maximum output power reduction, ZTE Corporation R4-1813810, Draft CR to 38.101-1: Corrections for LE reference sensitivity power levels, Skyworks Solutions Inc. R4-1813810, Draft CR for TS 38.101-1: Corrections on LP 2 reference sensitivity power levels, R5-1800-1800-1800-1800-1800-1800-1800-180							R4-1812050 CR Simplification of NR NS 08 Nokia	
R4-1812079, draft CR to Introduce asymmetric UL DL channel BW combinations for n71, Thobbile USA Inc. R4-1812121, Draft CR on Note1 Corrections in 38.101 RX tests, Qualcomm R4-1812128, draftCR on 2560AM UL power requirement, Intel Corporation R4-1812200, Draft CR to TS 38.101-1 Add clarification note to PC3 MPR table, Intel Corporation R4-1812217, Draft CR to TS 38.101-1 Corrections on the descriptions of UE ochannel bandwidth for CA, ZTE Corporation R4-1812219, Draft CR for TS 38.101-1: REFSENS UL configuration corrections, Media Tek Inc. R4-1812320, Draft CR for TS 38.101-1: Dut-of-band blocking exceptions for CA, Media Tek Inc. R4-1812320, Draft CR for TS 38.101-1: Dut-of-band blocking exceptions for CA, Media Tek Inc. R4-1812320, Total CR for TS 38.101-1: Dut-of-band blocking exceptions for CA, Media Tek Inc. R4-1812320, Total CR for TS 38.101-1: Dut-of-band blocking exceptions for CA, Media Tek Inc. R4-1812397, Clarificated Corporation on channel raster & SS raster for operating bands, ZTE Corporation At-1812611, Draft CR to 38.101-1: Some corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for SS 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR to 38.101-1: Corrections for L92 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813814, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813459, Draft CR for SS 8.101-1 pt/2 PSK in p41, CMCC R4-1814859, Can on Spurious emissions for UE co-existence, Intel Corporation R4-181369, CR on Spurious emissions for HEC existen								
combinations for n71, T-Mobile USA Inc. R4-1812(12), Draft CR on Note1 Corrections in 38.101 RX tests, Qualcomm R4-1812(18), draftCR on 256QAM UL power requirement, Intel Corporation R4-1812(20), Draft CR to TS 38.101-1 Add clarification note to PC3 MPR table, Intel Corporation R4-1812(217), Draft CR to 38.101-1: Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812(319, Draft CR for TS 38.101-1: REFSENS UL configuration corrections, MediaTek Inc. R4-1812(320, Draft CR for TS 38.101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812(322), Draft CR for TS 38.101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812(327), Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812(397), Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812(598, Draft CR to 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812(511), Draft CR to 38.101-1: Support 4Rx for n38, Huawei R4-18134(9), draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei R4-18134(9), draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei R4-1813(312), Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813(312), Draft CR to 38.101-1: Correction to 12 reference sensitivity power levels, Slywwks Solutions Inc. R4-1813(12), Band n41 spurious emission limits, Qualcomm Incorporated R4-1814(15), Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, MCC R4-1814(15), Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813(342), Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813(343), Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813(345), Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813(345), Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813(345), Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813(345), Draft CR for TS 38.101-1: Update of Annex F,								
R4-181212, Draft CR on Note1 Corrections in 38.101 RX tests, Qualcomm R4-1812128, draftCR on 256QAM UL power requirement, Intel Corporation R4-1812200, Draft CR to TS 38.101-1 Add clarification note to PC3 MPR table, Intel Corporation R4-1812217, Draft CR to 38.101-1: Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812319, Draft CR for TS 38.101-1: REFSENS UL configuration corrections, Media Tek Inc. R4-1812320, Draft CR for TS 38.101-1: Out-of-band blocking exceptions for CA, Media Tek Inc. R4-1812320, Draft CR for TS 38.101-1: Blocking characteristics for SUL, Media Tek Inc. R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812598, Draft CR to 38.101-1: Storections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812611, Draft CR to 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813469, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813521, Addition of 7TC, c for single carrier Pomax for FR1, vivo R4-1813521, Addition of 7TC, c for single carrier Pomax for FR1, vivo R4-1813521, Addition of 7TC, c for single carrier Pomax for FR1, vivo R4-1813811, Draft CR to 38.101-1; Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1; Corrections on UE additional maximum output power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813840, Cr on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Oraft CR for TS 38.101-1: PMax for 5G NR HPUE, CMCC R4-1814459, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814590, Oraft CR for Na, R4, R59 R4-1815940, ACR on TS38, 101-1; PV2 PSSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1815960, ACR on TS38, 101-1; PV2 PSSK requirements, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-								
R4-181229, Oraft CR to TS 38.101-1 Add clarification note to PC3 MPR table, Intel Corporation R4-1812217, Draft CR to TS 38.101-1 Add clarification note to PC3 MPR table, Intel Corporation R4-1812217, Draft CR to 38.101-1; Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812319, Draft CR for TS 38.101-1; REFSENS UL configuration corrections, Media Fish Inc. R4-1812320, Draft CR for TS 38.101-1; Out-of-band blocking exceptions for CA, Media Tek Inc. R4-1812322, Draft CR for TS 38.101-1; Blocking characteristics for SUL, Media Tek Inc. R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812509, Draft CR to 38.101-1; Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812611, Draft CR to 38.101-1; Support 4Rx for n38, Huawei R4-1813469, Draft CR for TS 38.101-1; Support 4Rx for n38, Huawei R4-1813469, Draft CR for TS 38.101-1; Support 4Rx for n38, Huawei R4-1813469, Draft CR to 38.101-1; Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813621, Addition of YTC, C for single carrier Pormax for FR1, vivo R4-1813621, Addition of YTC, C for single carrier Pormax for FR1, vivo R4-1813811, Draft CR to 38.101-1; Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1; Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n4 spurious emission limits, Qualcomm Incorporated R4-1813812, Band n41 spurious emission limits, Qualcomm R4-1813813, Draft CR for TS 38.101-1; Update of Annex F, Rohde & Schwarz R4-1813843, Oraft CR for TS 38.101-1; Update of Annex F, Rohde & Schwarz R4-1813843, Oraft CR for RAN4#89 R4-1815960, GCR on TS38, 101-1 inerging draft CRs from RAN4#89 R4-1815960, GCR on TS38, 101-1 inerging draft CRs from RAN4#89 R4-1816960, GCR on TS38, 101-1 inerging draft CRs from RAN4#89 R4-1816950, GCR on TS38, 101-1, INT DOCOMO, INC. R4-1814970, NN FRT relative power tolerance CR, Nokia R4-1								
Corporation R4-1812200, Draft CR to TS 38.101-1 Add clarification note to PC3 MPR table, Intel Corporation R4-1812217, Draft CR to 38.101-1; Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812319, Draft CR for TS 38.101-1; Cut-of-band blocking exceptions for CA, MediaTek Inc. R4-1812320, Draft CR for TS 38.101-1; Out-of-band blocking exceptions for CA, MediaTek Inc. R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812508, Draft CR to 38.101-1; Some corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812611, Draft CR to 38.101-1; Some corrections for inter-band CA combinations, ZTE Corporation R4-1813459, Draft CR for TS 38.101-1; Support 4Rx for n38, Huswei R4-1813459, Draft CR for TS 38.101-1; Support 4Rx for n38, Huswei R4-1813459, Draft CR for S8.101-1; Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813611, Draft CR to 38.101-1; Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813611, Draft CR to 38.101-1; Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813613, Draft CR to 38.101-1; Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813613, Draft CR to 38.101-1; Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813613, Draft CR to 38.101-1; Correction to 112 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813613, Draft CR to 38.101-1; Correction to 112 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813613, Draft CR to 38.101-1; P-Max for SG NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1813613, Draft CR to 38.101-1 merging draft CRs from RAM88BIS, Qualcomm Incorporated R4-1813645, Correction for Pl/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1813645, Ochem R5, Ochem R6, Ochem R6, Ochem R6, Ochem R6, Ochem R6, Ochem R6, Ochem R6, Ochem R6, Ochem R6, Ochem							Qualcomm	
R4-181220, Draft CR to TS 38.101-1 Add clarification note to PC3 MPR table, Intel Corporation R4-1812217, Draft CR to 38.101-1: Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812319, Draft CR for TS 38.101-1: REFSENS UL configuration corrections, MediaTek Inc. R4-1812320, Draft CR for TS 38.101-1: Out-of-band blocking exceptions for CA, MediaTek Inc. R4-1812322, Draft CR for TS 38.101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcormi Incorporated R4-1812508, Draft CR to 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812611, Draft CR to 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawel R4-1813469, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-181398, Draft CR to R5.81.01-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to R5.81.01-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-18141458, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1813845, Correction for Pl/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1813845, Correction for Pl/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-18139815, Oran TS38.101-1: Update of Annex F, Rohde & Schwarz R4-1813985, Changes to Max input power UL and DL configurations in FR1, OPPO R4-1814972, AMPR rous So 30 and NS_030 and re-formulation of NS_10, Nokia R4-1814972, AMPR for NS_03 and NS_030 and re-formulation of NS_100, Nokia R4-1814972, ORA FCR CR								
R4-1812217, Draft CR to 38.101-1: Corrections on the descriptions of UE channel bandwidth for CA, ZTE Corporation R4-1812319, Draft CR for TS 38.101-1: REFSENS UL configuration corrections, MediaTek Inc. R4-1812320, Draft CR for TS 38.101-1: Out-of-band blocking exceptions for CA, MediaTek Inc. R4-1812322, Draft CR for TS 38.101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812506, Draft CR to 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812611, Draft CR to 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation R4-1812611, Draft CR to 38.101-1: Support 4Rx for n38, Huawel R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawel R4-1813469, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1; Huawel R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-1813799, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-18141458, CR on Spurious emission for UE co-existence, Intel Corporation R4-181459, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-181459, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-181459, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-181459, Oran TS38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#898 R4-1815950, dCR on TS38.101-1: update of Annex F, Rohde & Schwarz R4-1814959, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm Incorporated R4-1814959, Draft CR for CA ACS/IBB and Draft CR form RAN4#898 R4-1815950, dCR on TS38.101-1: update to NS_04 and re-formulation of NS_100, Nokia R4-181								
of UE channel bandwidth for CA, ZTE Corporation R4-1812319, Draft CR for TS 38.101-1: REFSENS UL configuration corrections. MediaTek Inc. R4-1812320, Draft CR for TS 38.101-1: Out-of-band blocking exceptions for CA, MediaTek Inc. R4-1812322, Draft CR for TS 38.101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812508, Draft CR to 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812611, Draft CR to 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation R4-181361, Draft CR to 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813498, draftCR on applicability of TDD configuratin for CA in TS 38.101-1, Huawei R4-1813381, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813319, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813813, Draft CR to 38.101-1: P-Max for 56 NR HPUE, CMCC R4-181361, Draft CR for TS 38.101-1: P-Max for 56 NR HPUE, CMCC R4-181459, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-181459, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-181459, Oraft CR for CR as 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813930, JCR on TS38.101-1 in merging draft CRs from RAM4#888 R4-1813595, dCR on TS38.101-1 in merging draft CRs from RAM4#888 R4-1813595, Carporation in FR1, OPPO R4-1814752, Draft CR for Adding note about the fallback of NR CA in FR1 for TS 38.101-1, NR FR1 relative power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814950, Changes to Max input power UL and DL configurations in FR1, OPPO								
R4-1812319. Draft CR for TS 38.101-1: REFSENS UL configuration corrections. MediaTek Inc. R4-1812320. Draft CR for TS 38.101-1: Out-of-band blocking exceptions for CA, MediaTek Inc. R4-1812322. Draft CR for TS 38.101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812397. Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812508, Draft CR fo 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812610, Draft CR to 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813469, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei R4-1813521, Addition of TC., c for single carrier Pcmax for FR1, vivo R4-1813798, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813511, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1813813, Draft CR for SD SR SHOW Requirements, Nokia R4-1813459, Draft CR for SD SR SHOW Requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1813454, Correction for PI/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1813595, dCR on TS38.101-1 incorporated R4-1814759, Draft CR to SB SR 101-1 pi/2 BPSK in n41, CMCC R4-1814824, 650 AMPR, Qualcomm Incorporated R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia								
R4-1812320, Draft CR for TS 38.101-1: Out-of-band blocking exceptions for CA, MediaTek Inc. R4-1812322, Draft CR for TS 38.101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812508, Draft CR to 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812619, Draft CR to 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation R4-1813469, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813469, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei R4-181369, draftCR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813813, Draft CR for TS 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813813, Draft CR for TS 38.101-1: Draft for SG NR HPUE, CMCC R4-1814815, CR on Spurious emissions limits, Qualcomm Incorporated R4-1813813, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813845, Correction for PI/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1813950, dCR on TS38.101-1 update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1813950, dCR on TS38.101-1 pi/2 BPSK in n41, CMCC R4-1814924, h50 A-MPR, Qualcomm Incorporated R4-1814790, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1815960, Draft CR to 33.101-1; Update to NS_04 requirements,							R4-1812319, Draft CR for TS 38.101-1: REFSENS UL configuration	
exceptions for CA, MediaTek Inc. R4-1812322 Draft CR for TS 38.101-1: Blocking characteristics for SUL, MediaTek Inc. R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812508, Draft CR to 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812611, Draft CR to 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation R4-1813451, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-18133459, draftCR on applicability of TDD configuratin for CA in TS 38.101-11, Huawei R4-1813321, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-1813393, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Syworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-18134159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813430, Draft CR for TS 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1814854, Draft CR on Spurious emission for UE and DL configurations in FR1, OPPO R4-1814972, A-MPR, Qualcomm Incorporated R4-1814924, n50 A-MPR, Qualcomm Incorporated R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1814972, Draft CR to TS.01-11. Update to NS_04 requirements,								
R4-1812322, Draft CR for TS 38.101-1: Blocking characteristics for SUL, MediaTesk Inc. R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812508, Draft CR to 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812611, Draft CR to 38.101-1: Sume corrections for inter-band CA combinations, ZTE Corporation R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813469, draftCR on applicability of TDD configuratin for CA in TS 38.101-1, Huawei R4-1813361, Draft CR for TS 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813512, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G RN HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1813445, Oraft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813454, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-181452, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A.MPR, Qualcomm Incorporated R4-1814950, Changes to Max input power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815960, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1. INTT DoCOMO, INC.							·	
R4-1812397, Clarification for almost contiguous CP-OFDM, Qualcomm Incorporated R4-1812508, Draft CR to 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812611, Draft CR to 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation R4-181361, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-181369, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-1813798, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813415, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, Draft CR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814950, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815960, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-18159CQ, Draft CR to 38.101-1: Update to NS_04 requirements,								
Qualcomm Incorporated RA-1812508, Draft CR to 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation RA-1812611, Draft CR to 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation RA-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei RA-1813469, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei RA-181379, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation RA-1813811, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation RA-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. RA-1813812, Band n41 spurious emission limits, Qualcomm Incorporated RA-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC RA-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation RA-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm RA-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz RA-1813845, Correction for Pl/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 RA-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated RA-1814959, Changes to Max input power UL and DL configurations in FR1, OPPO RA-1814870, NR FR1 relative power tolerance CR, Nokia RA-1814959, Changes to Max input power UL and DL configurations in FR1, OPPO RA-1814970, NR FR1 relative power tolerance CR, Nokia RA-1814959, Changes to Max input power UL and DL configurations in FR1, OPPO Nokia RA-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCCOMO, INC. RA-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCCOMO, INC.								
R4-1812508, Dráft CR to 38.101-1: Corrections on channel raster & SS raster for operating bands, ZTE Corporation R4-1812611, Dráft CR to 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation R4-1813459, Dráft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813459, Dráft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-1813798, Dráft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813311, Dráft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-181454, Correction for PI/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1813845, Correction for PI/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-181590, Oraft CR to 38.101-1, NTT DOCOMO, INC.								
R4-1812611, Draft CR to 38.101-1: Some corrections for inter-band CA combinations, ZTE Corporation R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813469, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-1813798, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814929, Changes to Max input power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia							R4-1812508, Draft CR to 38.101-1: Corrections on channel raster &	
CA combinations, ZTE Corporation R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813469, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-1813798, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814952, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814952, Changes to Max input power UL and DL configurations in Fr1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815990, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC.								
R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38, Huawei R4-1813469, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-1813798, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC CR4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-18144159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requirements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814924, R50 A-MPR, Qualcomm Incorporated R4-1814925, DraftCR to TS 38.101-1 by I2 BPSK in n41, CMCC R4-1814824, R50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-18149500, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815500, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1813469, draftCR on applicability of TDD configuratiin for CA in TS 38.101-1, Huawei R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-1813798, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-18149752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-18149759, Ohanges to Max input power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 33.101-1: Update to NS_04 requirements,							R4-1813459, Draft CR for TS 38.101-1: Support 4Rx for n38,	
TS 38.101-1, Huawei R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-1813798, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo R4-1813798, Draft CR to 38.101-1: Corrections on UE additional maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Correction to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, NGKia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,							, , , , ,	
maximum output power reduction, ZTE Corporation R4-1813811, Draft CR to 38.101-1: Corrrection to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814959, Changes to Max input power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814970, Nokia R4-1814970, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-181592, Draft CR to 38.101-1: Update to NS_04 requirements,							R4-1813521, Addition of ?TC,c for single carrier Pcmax for FR1, vivo	
R4-1813811, Draft CR to 38.101-1: Corrrection to n12 reference sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-181592, Draft CR to 38.101-1: Update to NS_04 requirements,							,	
sensitivity power levels, Skyworks Solutions Inc. R4-1813812, Band n41 spurious emission limits, Qualcomm Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814972, PraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814959, Changes to Max input power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
Incorporated R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1813813, Draft CR for TS 38.101-1: P-Max for 5G NR HPUE, CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for Pl/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
CMCC R4-1814158, CR on Spurious emissions for UE co-existence, Intel Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814970, ToaffCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814999, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,							·	
Corporation R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configurations in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-181590, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1814159, Draft CR for CA ACS/IBB for Bandwidth class C, Qualcomm R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,							, , , , , , , , , , , , , , , , , , , ,	
R4-1813843, Draft CR to 38.101-1: Update of Annex F, Rohde & Schwarz R4-1813845, Correction for Pl/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
Schwarz R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1813845, Correction for PI/2 PBSK requriements, Nokia Endorsed draft CR's from RAN4#89 R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1815950, dCR on TS38.101-1 merging draft CRs from RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,							Endarced draft CP's from PANA#90	
RAN4#88Bis, Qualcomm Incorporated R4-1814752, DraftCR to TS 38.101-1 pi/2 BPSK in n41, CMCC R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1814824, n50 A-MPR, Qualcomm Incorporated R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,							RAN4#88Bis, Qualcomm Incorporated	
R4-1814959, Changes to Max input power UL and DL configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
configuratgions in FR1, OPPO R4-1814970, NR FR1 relative power tolerance CR, Nokia R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1814972, A-MPR for NS_03 and NS_03U and re-formulation of NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,							configuratgions in FR1, OPPO	
NS_100, Nokia R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1815060, draft CR for adding note about the fallback of NR CA in FR1 for TS 38.101-1, NTT DOCOMO, INC. R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,								
R4-1815392, Draft CR to 38.101-1: Update to NS_04 requirements,							R4-1815060, draft CR for adding note about the fallback of NR CA in	
							R4-1619392, Draft CR to 36.101-1. Opdate to NS_04 requirements, Rohde & Schwarz	

						R4-1815563, Draft CR to 38.101-1 on Clarification on 7.5 KHz raster	
						shift in NR re-farmed bands, Ericsson	
						R4-1815863, Draft CR for 38.101-1: Nominal carrier spacing for 30	
						kHz raster, SPRINT Corporation	
						R4-1815898, draft CR on CA configuration on bandwidth class F, Huawei	
						R4-1815917, draftCR on DL RMC for TS 38.101-1, Huawei	
						R4-1816162, Draft CR on introduction of SRS switch IL in FR1,	
						OPPO	
						R4-1816199, Draft CR on FR1-FR2 UE-to-UE coexistence for	
						TS38.101-1, LG Electronics France	
						R4-1816200, Draft CR to 38.101-1 on intra-band contiguous CA	
						configurations for FR1, ZTE Corporation R4-1816240, Transient period for SRS Antenna Switching for FR1.	
						Qualcomm	
						R4-1816243, Draft CR to TS38.101-1_Clarifications on MSD and UL	
						configuration tables for inter-band CA, ZTE Corporation	
						R4-1816466, Draft CR on some changes for SUL band combinations	
						to TS 38.101-1, Huawei	
						R4-1816468, Support of 7.5 kHz carrier shift for additional operating	
						bands, Ericsson R4-1816604, TDD configuration for UE Tx test in FR1, Ericsson	
						R4-1816663, Draft CR to 38.101-1 (5.3.4) RB alignment, Huawei	
						R4-1816755, CR to 38.101-1: ACS and IBB intra-band contiguous	
						CA, Intel Corporation	
1						Further changes in RAN#82	
						- 7.5 kHz frequency shift is specified for all FDD bands in clause	
2018-12	RAN#82	RP-182814	0030	2	F	5.4.2.1 Company CR on 2Rx exception for NR vehicular UE at FR1	15.4.0
2019-03		RP-190403	0034		F	CR to TS 38.101-1: Implementation of endorsed draft CRs from	15.5.0
					-	RAN4#90	
						Endorced draft CR from Ran4#90	
						R4-1900032, Editorial corrections for 38.101-1, Qualcomm Incorporated	
						R4-1900031, draftCR on SRS IL for CA, Qualcomm Incorporated	
						R4-1900161, CR on Relative power tolerance, Intel Corporation	
						R4-1900162, CR on Minimum output power, Intel Corporation	
						R4-1900274, Draft CR to TS 38.101-1 on NR general spectrum	
						emission mask, ZTE Corporation	
						R4-1900275, Draft CR to TS 38.101-1 on spurious emisssion for network signalled value NS_40, NS_41 and NS_42, ZTE	
						Corporation	
						R4-1900424, Correction of table references and other typos,	
						Ericsson	
						R4-1900508, Draft CR to TS 38.101-1 on UE transmitter power and	
						some other editorial corrections, ZTE Corporation	
						R4-1900723, Draft CR on editorial error of TS38.101-1, LG Electronics Inc.	
						R4-1900727, Update to PRACH EVM window length for FR1, Rohde	
						& Schwarz	
						R4-1900840, Draft CR for 38.101-1 modification of Transmit	
						intermodulation requirement, Huawei	
1						R4-1900848, [RAN5 LS]Draft CR for 38.101-1: adding note for inter-	
						band CA spurious emissions, Huawei R4-1901033, Alignment of Foob related description for 38.101-1,	
1						lvivo	
						R4-1901273, Correction of HARQ-ACK transmission timing for DL	
						RMC for FR1 TDD SCS=60kHz, Ericsson	
						R4-1901766, draft_CR TS 38.101-1 Correction to UL configuration	
						for reference sensitivity, Skyworks Solutions Inc.	
						R4-1901823, draft CR on spurious requirment for TS 38.101-1, Huawei, HiSilicon	
						R4-1901835, draftCR on MSD for CA_n41-n78 for TS 38.101-1,	
						Huawei	
1						R4-1901847, Draft CR for 38.101-1: Addition of default power class,	
						Sprint Corporation	
						R4-1901873, Receiver requirement RMC references, Qualcomm Incorporated	
						R4-1901925, Draft CR to 38.101-1 to update and clarify Rx wide	
						band intermod and spurious requirments for BW class C, D, E,	
1						Qualcomm Incorporated	
						R4-1901992, Draft CR to 38.101-1. Correct FR1 NS_41 AMPR for	
						n50, Huawei R4-1902001, Draft CR to 38.101-1 on n41 – B40 coexistence,	
1				1		Qualcomm Incorporated	
						ICHalcomm incorporated	

					R4-1902150, Draft CR to TS38.101-1_Clarifications on MSD and UL configuration tables for inter-band CA, ZTE Corporation R4-1902166, Tx ON/OFF time mask for FR1, Qualcomm Inc R4-1902174, Draft CR to 38.101-1: On FR1 A-MPR NS_08 for n8, Qualcomm Incorporated R4-1902175, Draft CR on AMPR requirements for NS_05U and NS_08U to TS 38.101-1, Huawei R4-1902194, [41 DL]Draft CR for 38.101-1 adding DL intra-band CA requirements for frequency less than 2700MHz, Huawei R4-1902196, Draft CR for 7.9A Spurious emissions for CA, CMCC R4-1902223, UE optional bandwidth for FR1, Nokia R4-1902225, CR to 38.101-1 on CA BW Classes fallback groups, Intel Corporation R4-1902233, Draft CR to 38.101-1: SUL clarifications, Nokia R4-1902339, Draft CR to TS 38.101-1 on FR1 extension, Ericsson R4-1902455, Completion of the Pcmax specification: additional P-max and P_NR, Ericsson R4-1902468, Draft CR: Introduction of Annex on Characteristics of the Interfering Signal, Samsung R4-1902479, Draft CR on some errors to TS 38.101-1, Huawei R4-1902480, Draft CR for 38.101-1 modification of requirements for network signalled value NS_04, Huawei R4-1902655, CR to 38.101-1 on NR Uplink RBs location, Intel Corporation R4-1901610, Draft CR for 38.101-1 REFSENS for UL MIMO, Huawei Editorial changes after RAN#83 To align the annex numbering with other specifications (TS 38.101-x	
					series), annexes J and K were added and Change history was numbered as annex L.	
2019-06	RAN#84	RP-191240	0047	F	CR to TS 38.101-1: Implementation of endorsed draft CRs from RAN4#90bis and RAN4#91	15.6.0
					Endorced draft CRs from RAN4#90Bis R4-1902826, Draft CR for 38.101-1 modification of ACS test parameters case 2 for intra-band contiguous CA, Huawei R4-1902926, Draft CR to TS 38.101-1 Correction to Pcmax, Intel Corporation R4-1902975, Draft CR on PRACH and PUCCH format description for EVM in FR1, Anritsu corporation R4-1903032, Draft CR on editorial error of TS38.101-1, LG Electronics France R4-1903120, Draft CR on DL power allocation for TS 38.101-1, Intel Corporation R4-1903124, Draft CR on b41-n40 coexistence, Intel Corporation R4-1903151, Draft CR to TS38.101-1_removing DC sections, ZTE Corporation R4-1903195, Draft CR for 38.101-1: remove the bracket of UE capability "powerBoosting-pi2BPSK", Huawei R4-1903392, Draft CR for TS 38.101-1: Corrections to EVM equalizer spectrum flatness requirements, MediaTek Inc. R4-1903473, Draft CR to TS 38.101-1 on spurious emissions for UE co-existence, ZTE Corporation R4-1903453, Draft CR to TS 38.101-1 on spurious emissions for UE co-existence, ZTE Corporation R4-1904460, Draft CR for 38.101-1 CA Pcmax, Huawei R4-1904450, Draft CR for TR 38.101-1 CA Pcmax, Huawei R4-1904537, Draft CR for TR 38.101-1 CA Pcmax, Huawei R4-1904554, Draft CR for 38.101-1: FR1 power dynamics DTX removal, Qualcomm Incorporated R4-1904927, Draft CR to 18.101-1: FR1 power dynamics DTX removal, Qualcomm Incorporated R4-1904929, draft Rel-15 CR for editorial corrections in 38.101-1, Ericsson R4-1904929, draft Rel-15 CR for editorial corrections in 38.101-1, Ericsson R4-1904941, draft CR to 38.101-1 — Update to EVM averaging, Rohde & Schwarz R4-1904958, Draft CR for TR38.101-1 — Update to EVM averaging, Rohde & Schwarz R4-1904969, Draft CR for TR38.101-1 — Update to spectrum flatness, Rohde & Schwarz R4-1904969, Draft CR for TR38.101-1 — Update to spectrum flatness, Rohde & Schwarz R4-1904969, Draft CR for TR38.101-1 — Update to spectrum flatness, Rohde & Schwarz R4-1904969, Draft CR for TR38.101-1 — Update to spectrum flatness, Rohde & Schwarz	

_		T	1				
						Endorsed draft CPs from PANIA#01	
						Endorced draft CRs from RAN4#91 R4-1905339 removal of A-MPR brackets in FR1 Nokia	
						R4-1905503 Change description 4.2(d) in Applicability of	
						minimum requirements for TS 38.101-1 vivo	
						R4-1905524 [Rx]Draft CR for 38.101-1 Removing the brackets in	
						Rx requirements Huawei	
						R4-1905526 [Rx]Draft CR for 38.101-1 defining NBB	
						requirements<2.7GHz Huawei	
						R4-1905772 Draft CR to TS38.101-1 Almost contiguous MPR	
						Intel Corporation	
						R4-1905795 Correction to a description of PRB for in-band	
						emission in FR1 Anritsu Corporation	
						R4-1905797 Correction to power control in FR1 Anritsu	
						Corporation	
						R4-1906140 draft CR for TS 38.101-1 Rx requirement for CA	
						Huawei	
						R4-1906153 Draft CR for TS 38.101-1: Editorial corrections to	
						intra-band contiguous CA ACS and in-band blocking requirements	
						MediaTek Inc.	
						R4-1906154 Draft CR for TS 38.101-1: Adding symbol definitions	
						for intra-band contiguous CA Rx maximum input level and ACS	
						requirements MediaTek Inc.	
						R4-1906871 Draft CR for TS 38.101-1 UE optional bandwidth for FR1 Huawei	
						R4-1907131 Draft CR to 38.101-1. Clarification to FR1 NS_43 AMPR frequency ranges Qualcomm Incorporated	
						R4-1907135 Draft CR to 38.101-1 rel. 15 to fix missing	
						Exceptions for Out-of-band Blocking Apple	
						R4-1907419 Draft CR for TS 38.101-1: Editorial improvement to	
						EVM equalizer spectrum flatness requirements for Pi/2 BPSK	
						MediaTek Inc.	
						R4-1907429 Draft CR to TS38.101-1 A-MPR for Inter-band CA	
						Intel Corporation	
						R4-1907434 [Rx]Draft CR for 38.101-1 modifying characteristics	
						of the interfering signal in Annex D Huawei	
						R4-1907435 Draft CR to TS38.101-1_introduction of n41C and	
						corrections on Rx requirements for NR intra-band contiguous CA	
						ZTE Corporation	
						R4-1907439 Draft CR to TS 38.101-1 on CA bandwidth class	
						description ZTE Corporation	
						R4-1907471 Draft CR to 38.101-1. Clarify all RB reference so	
						transmission BW applies for all SCS Qualcomm Incorporated	
						R4-1907474 Draft CR for TS 38.101-1 Correction of channel	
						bandwidth set for NR CA Huawei	
						R4-1907477 Draft CR to TS 38.101-1 on maximum aggregated	
						bandwidth for NR CA configurations ZTE Corporation	
						R4-1907481 Correction of RefSens exceptions due to UL	
						harmonic interference for NR CA in 38.101-1 vivo	
2040.00	D A NITIO 4	DD 404040	0007	4	Ĺ	R4-1907687 Correction to CA carrier spacing Ericsson	10.00
2019-06		RP-191248		1	В	Introduction of n48 in to TS 38.101-1	16.0.0
2019-06	RAN#84	RP-191241	0040		В	CR to REL-16 TS 38.101-1: Implementation of endorsed draft CRs	16.0.0
2040.00	D A NITIO 4	DD 404040	00.44	4	ר	on NR combinations and dual Connectivity combinations	10.00
2019-06	RAN#84	RP-191242	0041	1	В	CR to TS 38.101-1: Introduction of band n14 – Endorsed R4-	16.0.0
0040.00	DANUGA	DD 404040	00.40	4	Ľ	1904008 in RAN4#90b	40.00
2019-06	RAN#84	RP-191246	0042	1	В	CR to TS 38.101-1: Introduction of band n30 + editorial in table	16.0.0
2040.00	D V VITO 4	DD 404044	0040	4	D	7.6.2-2	16.0.0
2019-06		RP-191244		1	В	CR to introduce n18 to TS 38.101-1	16.0.0
2019-06		RP-191250		1	В	n65 introduction to 38.101-1	16.0.0
2019-06		RP-191251	0045		В	Addition channel bandwidth of 30MHz for n50 in TS 38.101-1	16.0.0
2019-06	RAN#84	RP-191252	0046	1	В	Introduction of a new NR band for LTE/NR spectrum sharing in Band	16.0.0
0010	D 4 1 1 1 1 1	DD 121	00.15		_	41/n41	46.5.
2019-06		RP-191241	0048		В	CR on introducing NR inter-band CA of 3DL Bands and 1UL band	16.0.0
2019-06	RAN#84	RP-191241	0049		В	CR to reflect the completed NR inter-band CA/DC combinations into	16.0.0
0040.00	DANUGA	DD 404041	0050		Ĺ	Rel16 TS38.101-1	40.00
2019-06	RAN#84	RP-191241	0050		В	CR to reflect the completed NR inter-band CA/DC combinations for 3	16.0.0
2040.00	D A NITIO 4	DD 404044	0054		Ĺ	bands DL with 2 bands UL into Rel16 TS38.101-1	10.00
2019-06	RAN#84	RP-191241	0051		В	CR introduction completed band combinations 38.716-01-01 ->	16.0.0
2040.00	DANHOE	DD 400000	0050		_	38.101-1	10.4.0
2019-09		RP-192038			F	Correction to FR1 ASEM NS_27	16.1.0
2019-09		RP-192032		_	В	Addition of NS information on 30MHz support for n41	16.1.0
2019-09		RP-192031		1	В	Addition of new channel bandwidths for n7 into TS 38.101-1	16.1.0
2019-09		RP-192027	0055	_	В	CR on introducing NR intra-band CA for 3DL Bands and 1UL band	16.1.0
2019-09	RAN#85	RP-192027	0057	1	F	Minor corrections of intra-band non-contiguous CA operating bands	16.1.0
2040.00	DANHOE	DD 400007	0050	4	_	in TS 38.101-1	10.4.0
2019-09	RAN#85	RP-192027	0058	1	F	Adding DeltaFHD for CA_n1-n77 refersense requirments	16.1.0

2019-09 RANN85 RP-190207 0062 1 B Characteristics of Interfering signal for Contiguous Intra-band CA 16.1.0	0015		BB 46			_	Iona de la companya della companya d	40
Class B RAN855 RP-192027 0062 1 F Correction Inter-hand CA portingurations 16.10	2019-09			0060		В	CR to introduce 30MHz bandwidth of n41 into TS 38.101-1	16.1.0
2019-09 RANBS RP-192027 0062 1 F Correction Inter-hand CA Configurations 16.1.0	2019-09	RAN#85	KP-192026	0061	1	В		16.1.0
2019-09 RANNES RP-192027 0063 1 F Finalizing Generic Intra-band Contiguous CA Class B requirements 6.1.0	2010-00	P 4 N # 8 5	PP-102027	0062	1	F		16 1 0
2019-09 RANNES RP-192032 0066 F SULIC RA DUL band combinations into Rel-16 TS 38.101-1 16.1.0								
2019-09 RANH86 RP-192027 0066 F SULL CR on SULL band combinations into Rel-16 TS 38.101-1 16.1.0								
2019-09 RANH6S RP-192026 0069 P.					- '-			
2019-09 RANHES RP-192006 0076 F CR ros 30.101-1. Revamp CA ACS and IBB tables to differentiate by band numbers and not frequency 16.10								
2019-09 RANNES RP-192036 0070 1 F CR to 38.101-1. Revamp CA ACS and IBB tables to differentiate by 16.1.0					2	F	Correction to Band n66	
2019-09 RAN#85 RP-192036 0071 F CR to 33.101-1. Add missing AMPR to NS27 15.10						F	CR to 38.101-1. Revamp CA ACS and IBB tables to differentiate by	
2019-09 RAN#85 RP-192026 0072 B CR for 38.101-1 Rx regurement for NR intra-band non-contiguous 16.1.0 CA								
CA Case Ca								
2019-09 RAN#85 RP-192036 0073 F CR for 38.101-1: Correction to the Spurious Emission for UE 16.1.0	2019-09	RAN#85	RP-192026	0072		В	·	16.1.0
Coexistence table for n14 Coexistence table for n14 F. CR for 38.101-1: Correction to the Spurious Emission for UE 16.1.0	2040.00	D 4 N 140 E	DD 400000	0070		_		4040
2019-09 RANIFES RP-192027 O75 B CR for 38.101-1; Correction to the Spurious Emission for UE 16.1.0	2019-09	KAIN#85	RP-192036	0073		F		16.1.0
Coexistence table for n30 Stroth Coexistence ta	2019-09	RAN#85	RP-192037	0074		F		16 1 0
Beach Beac	2010 00	10.00	102007	007.		•		10.1.0
DR 19-99 RAN#85 RP-192027 0076 B CR to reflect the completed NR inter band CA DC combinations for 2 16.1.0 bands DL with up to 2 bands UL into Rel16 TS 38.101-1	2019-09	RAN#85	RP-192027	0075		В		16.1.0
Dands DL with up to 2 bands UL into Rel16 TS 38.101-1								
DR 19-99 RAN#85 RP-192027 0077 B CR to reflect the completed NR inter band CA DC combinations for 3 16.1.0 bands DL with 2 ban	2019-09	RAN#85	RP-192027	0076		В		16.1.0
Dands DL with 2 bands DL wit							•	
2019-09 RAN#86 RP-192049 0079 A CR to TS 38.101-1; Implementation of endorsed draft CRs from 16.1.0 RAN#892 (Rel-16) - Mirrors changes in R4-1910350 (of RAN4#92) for Rel-15 TS 38.101-1 1.0 - Mirrors changes in R4-1910350 (of RAN4#92) for Rel-15 TS 38.101-1 1.0 - Mirrors changes in R4-1910350 (of RAN4#92) for Rel-15 TS 38.101-1 1.0 - Mirrors changes in R4-1910350 (of RAN4#92) for Rel-15 TS 38.101-1 1.0 - Mirrors changes in R4-1910350 (of RAN4#92) for Rel-15 TS 38.101-1 1.0 - Mirrors changes in R4-1910350 (of RAN4#92) for Rel-15 TS - Mirrors changes in R4-1910350 (of RAN4#92) for Rel-15 TS - Mirrors changes in R4-1910350 (of RAN4#92) for Rel-15 TS - Mirrors changes in R4-1910350 (of RAN4#92) for RAN4#86 RP-193028 (of RP-193015 of 103 - Mirrors changes in R4-1910350 (of RAN4#92) for RAN4#86 RP-193028 (of RP-193028 of 110 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 114 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 114 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 114 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 114 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 114 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 114 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 121 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 121 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 124 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 124 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 124 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 124 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 124 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 124 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 128 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 128 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 128 - Mirrors changes in R4-191042 (of RAN4#96 RP-193028 of 128 - Mirrors changes in R4-191042 (of RAn	2019-09	RAN#85	RP-192027	0077		В		16.1.0
RANA#92 (Rel-16)	2010.00	D A NI#OF	DD 102040	0070		٨		16 1 0
- Mirrors changes in R4-1910350 (of RAN4#92) for Rel-15 TS 3 8.101-1	2019-09	CO#NIAN	RP-192049	0079		А		16.1.0
38.101-1								
Center of band 48.							38.101-1	
2019-12 RAN#868 RP-193028 0099 A CR for 38.101-1 RX Out-of-Band Blocking for B38 and B41 16.2.0 2019-12 RAN#86 RP-193013 0105 1 B Introduction of 2010-2025MHz SUL band into Rel-16 TS 38.101-1 16.2.0 2019-12 RAN#86 RP-193015 0110 B Addition of 25, 30 and 40 MHz to NR band n25 in TS 38.101-1 16.2.0 2019-12 RAN#86 RP-193028 0112 A Sync raster to SSE resource element mapping 16.2.0 2019-12 RAN#86 RP-193028 0114 A CR to TS 38.101-1 Minost contiguous A-MPR (R16) 16.2.0 2019-12 RAN#86 RP-193028 0118 A CR to TS 38.101-1 (Rel-16) to clarify measurement interval and observation window on frequency error 16.2.0 2019-12 RAN#86 RP-193020 0119 D Format misalignment on NS_47 protection requirement table 16.2.0 2019-12 RAN#86 RP-193012 0125 B CR to reflect the completed NR inter band CA DC combinations for 2 bands DL with up to 2 bands DL into Rel16 TS 38.101-1 16.2.0 2019-12 RAN#86 RP-193012 0125 B CR to reflect the completed NR inter band CA DC combinat	2019-12	RAN#86	RP-193022	0097		F		16.2.0
2019-12 RAN#86 RP-193013 0105 1 B Introduction of 2010-2025MHz SUL band into Rel-16 TS 38.101-1 16.2.0								
2019-12 RAN#86 RP-193013 0105 1 B Introduction of 2010-2025MHz SUL band into Rel-16 TS 38.101-1 16.2.0 2019-12 RAN#86 RP-193028 0112 A Sync raster to SSB resource element mapping 16.2.0 2019-12 RAN#86 RP-193028 0114 A CR to TS 38.101-1 (Rel-16) to Calrify measurem interval and observation window on frequency error 16.2.0 2019-12 RAN#86 RP-193020 0119 D Format misalignment on NS_47 protection requirement table 16.2.0 2019-12 RAN#86 RP-193020 0121 A CR to TS 38.101-1 (Rel-16) to Calrify measurem interval and observation window on frequency error 16.2.0 2019-12 RAN#86 RP-193020 0121 A CR to TS 38.101-1 (Rel-16) to Calrify measurem interval and observation window on frequency error 16.2.0 2019-12 RAN#86 RP-193020 0121 A CR to TS 38.101-1 (Rel-16) to Calrify measurem interval and observation window on frequency error 16.2.0 2019-12 RAN#86 RP-193012 0124 B CR to TS 38.101-1: Rel-16 to Calrify the State of Calrify the State of Calrify the State of								
2019-12 RAN#86 RP-193025 0110 B Addition of 25, 30 and 40 MHz to NR band n25 in TS 38.101-1 16.2.0								
2019-12 RAN#86 RP-193028 0112 A Sync raster to SSB resource element mapping 16.2.0 2019-12 RAN#86 RP-193028 0114 A CR to TS 38.101-1 Almost contiguous A-MPR (R16) 16.2.0 2019-12 RAN#86 RP-193028 0118 A CR to TS 38.101-1 Almost contiguous A-MPR (R16) 16.2.0 2019-12 RAN#86 RP-193020 0119 D Format misalignment on NS, 47 protection requirement table 16.2.0 2019-12 RAN#86 RP-193020 0119 D Format misalignment on NS, 47 protection requirement table 16.2.0 2019-12 RAN#86 RP-193012 0124 B CR to TS 38.101-1: Replace CBW with symbols defined in the specification 16.2.0 2019-12 RAN#86 RP-193012 0124 B CR to reflect the completed NR inter band CA DC combinations for 2 16.2.0 2019-12 RAN#86 RP-193012 0125 B CR to reflect the completed NR inter band CA DC combinations for 3 16.2.0 2019-12 RAN#86 RP-193012 0126 F CR to remove square brackets for n90 in TS38.101-1 16.2.0 2019-12 RAN#86 RP-193012 0126 F CR to remove square brackets for n90 in TS38.101-1 16.2.0 2019-12 RAN#86 RP-193029 0133 B Adding band n71 and n28 to 4 Rx antenna ports support in 38.101-1 16.2.0 2019-12 RAN#86 RP-193029 0133 B Adding band n71 and n28 to 4 Rx antenna ports support in 38.101-1 16.2.0 2019-12 RAN#86 RP-193029 0136 A CR for TS 38.101-1 on A-MPR table cleanup (Rel-16) 16.2.0 2019-12 RAN#86 RP-193029 0144 A CR for TS 38.101-1 in and n28 to 4 Rx antenna ports support in 38.101-1 16.2.0 2019-12 RAN#86 RP-193029 0146 A CR for TS 38.101-1 in and n28 to 4 Rx antenna ports support in 38.101-1 16.2.0 CR n78D/E, and CA n79D/E 16.2.0 RAN#86 RP-193029 0144 A CR for TS 38.101-1 in and n28 to 4 Rx antenna ports support in 38.101-1 16.2.0 CR n78D/E, and CA n79D/E 16.2.0 RAN#86 RP-193029 0146 A CR for TS 38.101-1 in and n28 to 4 Rx antenna ports support in 38.101-1 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0					1			
A								
2019-12 RAN#86 RP-193028 0118 A CR to 38.101-1 (Rel-16) to clarify measurement interval and observation window on frequency error observation window on frequency error							, , , , , , , , , , , , , , , , , , , ,	
Description window on frequency error					ļ			
2019-12 RAN#86 RP-193028 0121 D Format misalignment on NS_47 protection requirement table 16.2.0	2019-12	KAN#86	RP-193028	0118		А		16.2.0
RAN#86 RP-193028 0121	2019-12	RAN#86	RP-193020	0119		D		16.2.0
Specification Specificatio								
bands DL with up to 2 bands UL into Rel16 TS 38.101-1								
RAN#86 RP-193012 0125 B CR to reflect the completed NR inter band CA DC combinations for 3 16.2.0 bands DL with 2 bands UL into Rel16 TS 38.101-1 16.2.0	2019-12	RAN#86	RP-193012	0124		В		16.2.0
bands DL with 2 bands UL into Rel16 TS 38.101-1 16.2.0								
2019-12 RAN#86 RP-193012 0126 F CR to remove square brackets for n90 in TS38.101-1 16.2.0	2019-12	RAN#86	RP-193012	0125		В	· ·	16.2.0
2019-12 RAN#86 RP-193028 A CR for TS38.101-1, Clarification and Editorial corrections 16.2.0	2010 12	D / NI#06	DD 102012	0126		_		16 2 0
Bands and 1UL band for 38.101-1								
38.101-1 38.101-1								
2019-12 RAN#86 RP-193029 0133 B Adding band n71 and n28 to 4 Rx antenna ports support in 38.101-1 16.2.0	2013 12	11/111/11/00	100012	0102				10.2.0
2019-12 RAN#86 RP-193028 0137 A CR for TS 38.101-1: Editorial correction for n2 uplink configuration note index in Table 7.3.2-3 16.2.0	2019-12	RAN#86	RP-193029	0133		В		16.2.0
2019-12 RAN#86 RP-193029 0140 A CR to TS 38.101-1 on A-MPR table cleanup (Rel-16) 16.2.0						Α		
RAN#86 RP-193029 0140 A CR for TS 38.101-1: Removing CA configurations for CA_n77D/E, CA_n78D/E, and CA_n79D/E							note index in Table 7.3.2-3	
CA_n78D/E, and CA_n79D/E						Α		
2019-12 RAN#86 RP-193029 0144 A CR for TS 38.101-1: Fix out-of-band blocking issue for n50 and n75 16.2.0 2019-12 RAN#86 RP-193029 0146 A CR to TS 38.101-1 on corrections to channel raster entries for NR band (Rel-16) 16.2.0 2019-12 RAN#86 RP-193029 0150 A CR to transmit modulation quality in FR1 16.2.0 2019-12 RAN#86 RP-193012 0151 F Corrections Intra-band CA simultaneous TX/RX requirements 16.2.0 2019-12 RAN#86 RP-193029 0153 F Removal of brackets from reciever requirements in 38.101-1 REL-16 16.2.0 2019-12 RAN#86 RP-193012 0155 B Extension of CA BW class B 16.2.0 2019-12 RAN#86 RP-193029 0157 A CR to 38.101-1: Editorial correction of UL RMCs 16.2.0 2019-12 RAN#86 RP-193012 0164 B CR for 38.101-1 introduce SUL band combination 16.2.0 2019-12 RAN#86 RP-193010 0165 F CR for 38.101-1 - Band n75 - wider CBW	2019-12	RAN#86	RP-193029	0140		Α		16.2.0
2019-12 RAN#86 RP-193029 0146 A CR to TS 38.101-1 on corrections to channel raster entries for NR band (Rel-16) 16.2.0 2019-12 RAN#86 RP-193029 0150 A CR to transmit modulation quality in FR1 16.2.0 2019-12 RAN#86 RP-193012 0151 F Corrections Intra-band CA simultaneous TX/RX requirements 16.2.0 2019-12 RAN#86 RP-193029 0153 F Removal of brackets from reciever requirements in 38.101-1 REL-16 16.2.0 2019-12 RAN#86 RP-193012 0155 B Extension of CA BW class B 16.2.0 2019-12 RAN#86 RP-193029 0157 A CR to 38.101-1: Editorial correction of UL RMCs 16.2.0 2019-12 RAN#86 RP-193012 0164 B CR for 38.101-1 introduce SUL band combination 16.2.0 2019-12 RAN#86 RP-193010 0165 F CR for 38.101-1: add BCS1 configurations for CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193018 0167 B CR for TS 38.101-1: Addition of channel bandwidth for band n38	221212	D.441//00	55 46666	2444				1000
band (Rel-16) 2019-12								
2019-12 RAN#86 RP-193029 0150 A CR to transmit modulation quality in FR1 16.2.0 2019-12 RAN#86 RP-193012 0151 F Corrections Intra-band CA simultaneous TX/RX requirements 16.2.0 2019-12 RAN#86 RP-193029 0153 F Removal of brackets from reciever requirements in 38.101-1 REL-16 16.2.0 2019-12 RAN#86 RP-193012 0155 B Extension of CA BW class B 16.2.0 2019-12 RAN#86 RP-193029 0157 A CR to 38.101-1: Editorial correction of UL RMCs 16.2.0 2019-12 RAN#86 RP-193012 0164 B CR for 38.101-1 introduce SUL band combination CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193010 0165 F CR for 38.101-1: add BCS1 configurations for CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193018 0167 B CR for TS 38.101-1 Band n75 - wider CBW 16.2.0 2019-12 RAN#86 RP-193016 0168 B CR to 38.101-1: Addition of channel bandwidth for band n38 16.2.0 <td>∠∪19-12</td> <td>KAN#86</td> <td>KP-193029</td> <td>0146</td> <td></td> <td>А</td> <td></td> <td>16.2.0</td>	∠∪19-12	KAN#86	KP-193029	0146		А		16.2.0
2019-12 RAN#86 RP-193012 0151 F Corrections Intra-band CA simultaneous TX/RX requirements 16.2.0 2019-12 RAN#86 RP-193029 0153 F Removal of brackets from reciever requirements in 38.101-1 REL-16 16.2.0 2019-12 RAN#86 RP-193012 0155 B Extension of CA BW class B 16.2.0 2019-12 RAN#86 RP-193029 0157 A CR to 38.101-1: Editorial correction of UL RMCs 16.2.0 2019-12 RAN#86 RP-193012 0164 B CR for 38.101-1 introduce SUL band combination CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193010 0165 F CR for 38.101-1: add BCS1 configurations for CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193017 0166 B CR to 38.101-1 - Band n75 - wider CBW 16.2.0 2019-12 RAN#86 RP-193018 0167 B CR for TS 38.101: adding wider channel bandwidths 16.2.0 2019-12 RAN#86 RP-193010 0168 B CR to 38.101-1: Addition of channel bandwidth for band n38 16.2.0	2019-12	RAN#86	RP-193020	0150		Δ		1620
2019-12 RAN#86 RP-193029 0153 F Removal of brackets from reciever requirements in 38.101-1 REL-16 16.2.0 2019-12 RAN#86 RP-193012 0155 B Extension of CA BW class B 16.2.0 2019-12 RAN#86 RP-193029 0157 A CR to 38.101-1: Editorial correction of UL RMCs 16.2.0 2019-12 RAN#86 RP-193012 0164 B CR for 38.101-1 introduce SUL band combination CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193010 0165 F CR for 38.101-1: add BCS1 configurations for CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193017 0166 B CR to 38.101-1 - Band n75 - wider CBW 16.2.0 2019-12 RAN#86 RP-193018 0167 B CR for TS 38.101: adding wider channel bandwidths 16.2.0 2019-12 RAN#86 RP-193016 0168 B CR to 38.101-1: Addition of channel bandwidth for band n38 16.2.0 2019-12 RAN#86 RP-193012 0169 B CR introduction completed band combinations 38.716-01-01 -> 16.2.0								
2019-12 RAN#86 RP-193012 0155 B Extension of CA BW class B 16.2.0 2019-12 RAN#86 RP-193029 0157 A CR to 38.101-1: Editorial correction of UL RMCs 16.2.0 2019-12 RAN#86 RP-193012 0164 B CR for 38.101-1 introduce SUL band combination CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193010 0165 F CR for 38.101-1: add BCS1 configurations for CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193017 0166 B CR to 38.101-1 - Band n75 - wider CBW 16.2.0 2019-12 RAN#86 RP-193018 0167 B CR for TS 38.101: adding wider channel bandwidths 16.2.0 2019-12 RAN#86 RP-193016 0168 B CR to 38.101-1: Addition of channel bandwidth for band n38 16.2.0 2019-12 RAN#86 RP-193012 0169 B CR introduction completed band combinations 38.716-01-01 -> 38.716-01-01 -> 38.101-1 16.2.0 2019-12 RAN#86 RP-193012 0170 B CR introduction completed band combinations 38.716-04-01 -> 16.2.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2019-12 RAN#86 RP-193029 0157 A CR to 38.101-1: Editorial correction of UL RMCs 16.2.0 2019-12 RAN#86 RP-193012 0164 B CR for 38.101-1 introduce SUL band combination CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193010 0165 F CR for 38.101-1: add BCS1 configurations for CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193017 0166 B CR to 38.101-1 - Band n75 - wider CBW 16.2.0 2019-12 RAN#86 RP-193018 0167 B CR for TS 38.101: adding wider channel bandwidths 16.2.0 2019-12 RAN#86 RP-193016 0168 B CR to 38.101-1: Addition of channel bandwidth for band n38 16.2.0 2019-12 RAN#86 RP-193012 0169 B CR introduction completed band combinations 38.716-01-01 -> 38.716-01-01 -> 38.101-1 16.2.0 2019-12 RAN#86 RP-193012 0170 B CR introduction completed band combinations 38.716-04-01 -> 16.2.0								
2019-12 RAN#86 RP-193012 0164 B CR for 38.101-1 introduce SUL band combination CA_n78(2A)_SUL_n78A-n86A 16.2.0 2019-12 RAN#86 RP-193010 0165 F CR for 38.101-1: add BCS1 configurations for CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193017 0166 B CR to 38.101-1 - Band n75 - wider CBW 16.2.0 2019-12 RAN#86 RP-193018 0167 B CR for TS 38.101: adding wider channel bandwidths 16.2.0 2019-12 RAN#86 RP-193016 0168 B CR to 38.101-1: Addition of channel bandwidth for band n38 16.2.0 2019-12 RAN#86 RP-193012 0169 B CR introduction completed band combinations 38.716-01-01 -> 38.101-1 16.2.0 2019-12 RAN#86 RP-193012 0170 B CR introduction completed band combinations 38.716-04-01 -> 16.2.0								
CA_n78(2A)_SUL_n78A-n86A							CR for 38.101-1 introduce SUL band combination	
2019-12 RAN#86 RP-193010 0165 F CR for 38.101-1: add BCS1 configurations for CA_n78(2A) 16.2.0 2019-12 RAN#86 RP-193017 0166 B CR to 38.101-1 - Band n75 - wider CBW 16.2.0 2019-12 RAN#86 RP-193018 0167 B CR for TS 38.101: adding wider channel bandwidths 16.2.0 2019-12 RAN#86 RP-193016 0168 B CR to 38.101-1: Addition of channel bandwidth for band n38 16.2.0 2019-12 RAN#86 RP-193012 0169 B CR introduction completed band combinations 38.716-01-01 -> 38.101-1 16.2.0 2019-12 RAN#86 RP-193012 0170 B CR introduction completed band combinations 38.716-04-01 -> 16.2.0								
2019-12 RAN#86 RP-193018 0167 B CR for TS 38.101: adding wider channel bandwidths 16.2.0 2019-12 RAN#86 RP-193016 0168 B CR to 38.101-1: Addition of channel bandwidth for band n38 16.2.0 2019-12 RAN#86 RP-193012 0169 B CR introduction completed band combinations 38.716-01-01 -> 38.101-1 16.2.0 2019-12 RAN#86 RP-193012 0170 B CR introduction completed band combinations 38.716-04-01 -> 16.2.0							CR for 38.101-1: add BCS1 configurations for CA_n78(2A)	
2019-12 RAN#86 RP-193016 0168 B CR to 38.101-1: Addition of channel bandwidth for band n38 16.2.0 2019-12 RAN#86 RP-193012 0169 B CR introduction completed band combinations 38.716-01-01 -> 38.101-1 16.2.0 2019-12 RAN#86 RP-193012 0170 B CR introduction completed band combinations 38.716-04-01 -> 16.2.0								
2019-12 RAN#86 RP-193012 0169 B CR introduction completed band combinations 38.716-01-01 -> 38.101-1 16.2.0 2019-12 RAN#86 RP-193012 0170 B CR introduction completed band combinations 38.716-04-01 -> 16.2.0 16.2.0								
38.101-1 38.101-1 2019-12 RAN#86 RP-193012 0170 B CR introduction completed band combinations 38.716-04-01 -> 16.2.0								
2019-12 RAN#86 RP-193012 0170 B CR introduction completed band combinations 38.716-04-01 -> 16.2.0	2019-12	RAN#86	RP-193012	0169		В		16.2.0
	2040.40	D V V1#00	DD 402040	0170		D		1600
	2019-12	KAIN#86	KP-193012	0170		R	38.101-1	10.2.0

2019-12		1				Ţ	
	RAN#86	RP-193021	0171		С	CR for 38.101-1: Making 90 MHz channel bandwidth mandatory for n41, n78 and n90	16.2.0
2019-12	RAN#86	RP-193020	0172		В	CR for 38.101-1: adding 30 MHz CHBW to NS_04 for n41	16.2.0
2019-12		RP-193029		1	A	CR to 38.101-1-g10 Corrections to Transient Time Masks	16.2.0
2019-12		RP-193010		1	F	CR for intra-band DL contiguous CA RF requirements	16.2.0
2019-12		RP-193010			В	Introduction of almost contiguous MPR for PC2	16.2.0
2019-12		RP-193029			A	CR for asynchronous operation for NR CA n78-n79	16.2.0
2019-12				1	Α	CR to 38.101-1: DMRS Exceptions	16.2.0
2020-03	RAN#87	RP-200408		1	F	Corrections to n65	16.3.0
2020-03	RAN#87	RP-200377	0201	1	F	CR for 38.101-1 to introduce BCS1 for CA_n77C and CA_n78C	16.3.0
2020-03	RAN#87	RP-200394	0203		A	CR to TS 38.101-1 on corrections to network signalling value (Rel-	16.3.0
						16)	
2020-03	RAN#87	RP-200484	0208	1	Α	CR for 38.101- n39 NS flag change due to conflict	16.3.0
2020-03	RAN#87	RP-200394	0210		Α	Mirror CR for 38.101-1: n41 and n25 corrections	16.3.0
2020-03	RAN#87		0211	2	F	CR for 38.101-1: Corrections to intra-band CA tables	16.3.0
2020-03	RAN#87	RP-200387	0212		F	CR for 38.101-1: Missing 70 MHz for NS_01	16.3.0
2020-03	RAN#87	RP-200381	0215		В	CR for 38.101-1: Introduction of n26	16.3.0
2020-03	RAN#87		0216		F	CR to TS 38.101-1: Corrections on MSD tables for CA_n20-n78 and	16.3.0
						CA_n66-n78	
2020-03	RAN#87	RP-200394	0218		Α	CR to TS 38.101-1: corrections on ACS for intra-band contiguous	16.3.0
						CA	
2020-03	RAN#87	RP-200380	0219	1	F	CR to TS 38.101-1: Improvement on NR 3DL inter-band CA	16.3.0
			<u></u>			combination	
2020-03	RAN#87	RP-200394	0221		Α	CR to TS 38.101-1: Replace CBW with symbols defined in the	16.3.0
						specification.	
						NOTE: The CR is based on something else than the latest	
						version of the specification and therefore it is not	
						implemented, e.g. Tables 6.2.3.1-1, 7.6.2-2 and Table	
						7.6.2-4 in CR0221 are different compared to those in	
						38.101-1 v16.2.0.	
2020-03	RAN#87	RP-200380	0222		В	CR to reflect the completed NR inter band CA DC combinations for 2	16.3.0
						bands DL with up to 2 bands UL into Rel16 TS 38.101-1	
2020-03	RAN#87	RP-200380	0223		В	CR to reflect the completed NR inter band CA DC combinations for 3	16.3.0
						bands DL with 2 bands UL into Rel16 TS 38.101-1	
2020-03	RAN#87	RP-200394		1	В	Introduction of n53 into TS 38.101-1	16.3.0
2020-03	RAN#87	RP-200394	0229		Α	CR for TS38.101-1, Remove notes for UE channel bandwidth	16.3.0
2020-03	RAN#87	RP-200394	0231		Α	CR for TS38.101-1, Correction of IE RF-Parameters name of	16.3.0
						maxUplinkDutyCycle	
2020-03	RAN#87	RP-200380	0234	1	В	Introducing NR inter-band CA for 3DL Bands and 1UL band for	16.3.0
						38.101-1	
2020-03	RAN#87	RP-200377	0239	1	F	CR for TS 38.101-1: Corrections for n48 receiver requirements	1620
2020-03	RAN#87	DD 000000					16.3.0
		RP-200386	0240	1	В	CR for TS 38.101: adding wider channel bandwidths for n66	16.3.0
2020-03	RAN#87		0240	1	B F	CR for TS 38.101: adding wider channel bandwidths for n66 Maintenance on the UE BW for n92 and n94	
2020-03 2020-03			0241				16.3.0
		RP-200392	0241 0242		F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms	16.3.0 16.3.0
2020-03	RAN#87	RP-200392 RP-200392	0241 0242 0244		F F	Maintenance on the UE BW for n92 and n94	16.3.0 16.3.0 16.3.0
2020-03 2020-03	RAN#87 RAN#87	RP-200392 RP-200392 RP-200394 RP-200389	0241 0242 0244		F F A	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1	16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87	RP-200392 RP-200392 RP-200394 RP-200389	0241 0242 0244 0247	1	F F A F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87	RP-200392 RP-200392 RP-200394 RP-200389	0241 0242 0244 0247	1	F F A F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200392 RP-200394 RP-200389 RP-200384	0241 0242 0244 0247 0249 0250	1	F A F B	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385	0241 0242 0244 0247 0249 0250 0252	1 1 1	F F A F B	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380	0241 0242 0244 0247 0249 0250 0252 0260	1 1 1 1	F F A F B	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377	0241 0242 0244 0247 0249 0250 0252 0260 0263	1 1 1 1	F A A F B B B F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265	1 1 1 1 1 1 1	F A F B B F A	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394 RP-200377	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266	1 1 1 1 1	F A F B B F A F F A F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394 RP-200391	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266 0273	1 1 1 1 1 1 1	F A F B B A F F A F F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements CR for 38.101-1: Mandatory support for n41 by UEs that support n90	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394 RP-200377	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266	1 1 1 1 1 1 1	F A F B B F A F F A F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394 RP-200391	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266 0273	1 1 1 1 1 1 1	F A F B B A F F A F F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements CR for 38.101-1: Mandatory support for n41 by UEs that support n90 CR for [agreed] asynchronous operation for NR CA n78-n79	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394 RP-200391	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266 0273	1 1 1 1 1 1 1	F A F B B A F F A F F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements CR for 38.101-1: Mandatory support for n41 by UEs that support n90 CR for [agreed] asynchronous operation for NR CA n78-n79 NOTE: The CR is based on something else than the latest	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394 RP-200391	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266 0273	1 1 1 1 1 1 1	F A F B B A F F A F F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements CR for 38.101-1: Mandatory support for n41 by UEs that support n90 CR for [agreed] asynchronous operation for NR CA n78-n79 NOTE: The CR is based on something else than the latest version of the specification and therefore it is not	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394 RP-200391	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266 0273	1 1 1 1 1 1 1	F A F B B A F F A F F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements CR for 38.101-1: Mandatory support for n41 by UEs that support n90 CR for [agreed] asynchronous operation for NR CA n78-n79 NOTE: The CR is based on something else than the latest version of the specification and therefore it is not implemented, e.g. Tables 6.2A.4.2.3-1, Table 7.3A.6-1,	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394 RP-200391	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266 0273	1 1 1 1 1 1 1	F A F B B A F F A F F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements CR for 38.101-1: Mandatory support for n41 by UEs that support n90 CR for [agreed] asynchronous operation for NR CA n78-n79 NOTE: The CR is based on something else than the latest version of the specification and therefore it is not implemented, e.g. Tables 6.2A.4.2.3-1, Table 7.3A.6-1, 7.3A.6.2 and table notes are different compared to those	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394 RP-200391	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266 0273	1 1 1 1 1 1 1	F A F B B A F F A F F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements CR for 38.101-1: Mandatory support for n41 by UEs that support n90 CR for [agreed] asynchronous operation for NR CA n78-n79 NOTE: The CR is based on something else than the latest version of the specification and therefore it is not implemented, e.g. Tables 6.2A.4.2.3-1, Table 7.3A.6-1,	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200385 RP-200385 RP-200377 RP-200394 RP-200377 RP-200391 RP-200394	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266 0273	1 1 1 1 1 1 1	F A F B B A F F A F F	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements CR for 38.101-1: Mandatory support for n41 by UEs that support n90 CR for [agreed] asynchronous operation for NR CA n78-n79 NOTE: The CR is based on something else than the latest version of the specification and therefore it is not implemented, e.g. Tables 6.2A.4.2.3-1, Table 7.3A.6-1, 7.3A.6.2 and table notes are different compared to those in 38.101-1 v16.2.0.	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03 2020-03	RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87 RAN#87	RP-200392 RP-200394 RP-200389 RP-200384 RP-200383 RP-200385 RP-200380 RP-200377 RP-200394 RP-200391	0241 0242 0244 0247 0249 0250 0252 0260 0263 0265 0266 0273	1 1 1 1 1 1 1	F F A F B B B F F A F F A	Maintenance on the UE BW for n92 and n94 Maintenance on the Rx-Tx separation terms CR for 38.101-1: to remove fallback group 1 in table 5.5A.1-1 CR for 38.101-1: to correct CA_n8A-n75A REFSENS CR for 38.101-1: to introduce UE RF requirements for adding wider channel bandwidth in band n28 CR to 38.101-1 Band n1 - wider CBW - Additional Channel BW CR to 38.101-1 Band n38 - wider CBW - Additional Channel BW Editorial corrections CR for alomost contiguous allocation applicability CR for inter-band CA Tx requirement CR for intra-band CA configuration and DL RF requirements CR for 38.101-1: Mandatory support for n41 by UEs that support n90 CR for [agreed] asynchronous operation for NR CA n78-n79 NOTE: The CR is based on something else than the latest version of the specification and therefore it is not implemented, e.g. Tables 6.2A.4.2.3-1, Table 7.3A.6-1, 7.3A.6.2 and table notes are different compared to those	16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0 16.3.0

In UL CA and SUL	2020.06	D V V1#00	DD 204220	0202	T 4	D	CD to TC 20 101 1. Cuitabing time most between two unlink commerce	16.4.0
2020-06 RAN#88 RP-200985 0300 A CR to asymmetric CBW operation in FR1 16.4.0	2020-06	RAN#88	RP-201338	0293	4	В		16.4.0
16.40	2020-06	RAN#88	RP-200959	0294		F	Corrections to CA n48	16.4.0
December Part Par	2020-06	RAN#88	RP-200985	0300		Α	CR to asymmetric CBW operation in FR1	16.4.0
2020-06 RAM#88 RP-200959 0307 F CR Coexistence cleanup for 38101-1 Rel16 16.4.0	2020-06	RAN#88	RP-200985	0302		Α	CR on ACLR MBW definition in FR1	16.4.0
A CR to TS 38.101-1 R16: corrections on ACS for intra-band 16.4.0	2020-06	RAN#88	RP-200959	0305		В		16.4.0
A CR to TS 38.101-1 R16: corrections on ACS for intra-band 16.4.0	2020-06	RAN#88	RP-200959	0307		F	CR Coexistence cleanup for 38101-1 Rel16	16.4.0
2020-06 RANWB8 RP-200986 0311	2020-06	RAN#88	RP-200985	0310		Α		16.4.0
2020-06 RAN-W88 RP-200985 0315 F Update 4Rx Requirement for Band n30 16.4.0							contiguous CA	
2020-06 RAN#88 RP-200956 0317	2020-06	RAN#88	RP-200966	0311		F	CR for TS 38.101-1: UL harmonic MSD and OOBB exception	16.4.0
2020-06 RAN-888 RP-200985 0327	2020-06	RAN#88	RP-200981	0315		F	Update 4Rx Requirement for Band n30	16.4.0
2020-06 RAN#88 RP-200974 Gosta F Endorsed CR on default AMPR signaling for not not not not not not not not not not	2020-06	RAN#88	RP-200958	0317		В	CR on NR V2X UE RF requirements for single carrier in TS38.101-1	16.4.0
2020-06 RAN#88 RP-20085 0331 A Update of CSI-RS definition for FR1 DL RMCs 16.4.0	2020-06	RAN#88	RP-200985	0327		Α	Maintenance CR to 38101-1 on relative power tolerance R16	16.4.0
2020-06 RAN#88 RP-200986 0335 A Correction to FRI OPSK UL RMC 16.4.0 2020-06 RAN#88 RP-200985 0336 B CR to TS38.101-1: Introduction of NR DC(Clauses 3 16.4.0 2020-06 RAN#88 RP-200985 0338 A CR to TS 38.101-1: Correction on the CA nominal channel spacing 16.4.0 16.4.0 2020-06 RAN#88 RP-200985 0340 A CR to TS 38.101-1: Correction on the CA nominal channel spacing 16.4.0 16.4.0 2020-06 RAN#88 RP-200985 0341 B CR to TS 38.101-1: Correction on the CA nominal channel spacing 16.4.0 16.4.0 2020-06 RAN#88 RP-200985 0341 A CR to TS 18.101-1 16.4.0 2020-06 RAN#88 RP-200985 0345 A DEED Manks 18.101-1 16.4.0 2020-06 RAN#88 RP-200985 0354 A IBE measurements for Pi2 PSFX with spectrum shaping 16.4.0 16.4.0 2020-06 RAN#88 RP-200985 0361 B CR introduction completed NR inter band CA DC combinations for 3 16.4.0 16.4.0	2020-06	RAN#88	RP-200974	0329		F	Endorsed CR on default AMPR signaling for n91 n92 n93 and n94	16.4.0
2020-06 RAN#88 RP-200985 0338 B CR to TS38.101-1: Introduction of NR DC(Clauses 3 16.4.0	2020-06	RAN#88	RP-200985	0331		Α	Update of CSI-RS definition for FR1 DL RMCs	16.4.0
A	2020-06	RAN#88	RP-200985	0335		Α	Correction to FR1 QPSK UL RMC	16.4.0
A	2020-06	RAN#88	RP-200966	0336		В	CR to TS38.101-1: Introduction of NR DC(Clauses 3	16.4.0
Specification. Spec	2020-06	RAN#88	RP-200985	0338		Α	CR to TS 38.101-1: Correction on the CA nominal channel spacing	16.4.0
B	2020-06	RAN#88	RP-200985	0340		Α	CR to TS 38.101-1: Replace CBW with symbols defined in the	16.4.0
Deads DL with up to 2 bands UL into Rel16 TS 38.101-1								
2020-06 RAN#88 RP-200985 0345	2020-06	RAN#88	RP-200959	0341		В	CR to reflect the completed NR inter band CA DC combinations for 2	16.4.0
2020-06 RAN#88 RP-200985 0347								
2020-06 RAN#88 RP-200959 0354 A IBE measurements for Pi/2 BPSK with spectrum shaping 16.4.0 2020-06 RAN#88 RP-200959 0357 B CR to reflect the completed NR inter band CA DC combinations for 3 bands DL with 2 bands UL into Rel16 TS 38.101-1 16.4.0 2020-06 RAN#88 RP-200959 0360 B CR introduction completed band combinations 38.716-04-01 - 16.4.0 16.4.0 2020-06 RAN#88 RP-200959 0364 B CR introduction completed band combinations 38.716-04-01 - 16.4.0 16.4.0 2020-06 RAN#88 RP-200959 0364 B CR introduction of completed band combinations 38.716-04-01 - 16.4.0 16.4.0 2020-06 RAN#88 RP-201045 0365 F CR for of 11-10 introduce BCS2 for CA_n78(2A). 16.4.0 2020-06 RAN#88 RP-200985 0367 A CR for 38.101-1 to odd the REFSENS exception for inter band CA with SDL (mirror CR) 16.4.0 2020-06 RAN#88 RP-200985 0369 A IBE requirement for almost contiguous allocations 16.4.0 2020-06 RAN#88 RP-20098				0345		Α		
2020-06 RAN#88 RP-200959 0357 B CR to reflect the completed NR inter band CA DC combinations for 3 bands DL with 2 bands UL into Rel16 TS 38.101-1 16.4.0 2020-06 RAN#88 RP-200959 0360 B CR introduction completed band combinations 38.716-01-01 - 16.4.0 16.4.0 2020-06 RAN#88 RP-200959 0364 B CR introduction completed band combinations 38.716-04-01 - 16.4.0 16.4.0 2020-06 RAN#88 RP-200959 0364 B CR no Introduction completed band combinations into TS 38.101-1 16.4.0 2020-06 RAN#88 RP-20145 0365 F CR for 38.101-1 to introduce BCS2 for CA_n78(2A). 16.4.0 2020-06 RAN#88 RP-200985 0367 A CR for 38.101-1 to emove the NR CA configuration for REFSENS exception due to cross band isolation for CA (mirror CR) 16.4.0 2020-06 RAN#88 RP-200985 0369 A CR for 38.101-1 to add the REFSENS exception for inter band CA with SDL (mirror CR) 16.4.0 2020-06 RAN#88 RP-200985 0379 A IBE requirement for almost contiguous allocations 16.4.0		1				Α		
bands DL with 2 bands UL into Rel16 TS 38.101-1				0354		Α		
2020-06 RAN#88 RP-200959 0361 B CR introduction completed band combinations 38.716-04-01 - 16.4.0 16.4.0 2020-06 RAN#88 RP-200959 0364 B CR on Introduction of completed SUL band combinations into TS 38.101-1 16.4.0 2020-06 RAN#88 RP-201045 0365 F CR for 38.101-1 to introduce BCS2 for CA_n78(2A). 16.4.0 2020-06 RAN#88 RP-200985 0367 A CR for 38.101-1 to remove the NR CA configuration for REFSENS exception due to cross band isolation for CA (mirror CR) 16.4.0 2020-06 RAN#88 RP-200985 0369 A CR for 38.101-1 to add the REFSENS exception for inter band CA with SDL (mirror CR) 16.4.0 2020-06 RAN#88 RP-200985 0379 A IBE requirement for almost contiguous allocations 16.4.0 2020-06 RAN#88 RP-200985 0385 A OOB blocking for n70 adjacent to n25 16.4.0 2020-06 RAN#88 RP-200985 0394 F CR for TS 38.101-1 IE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 03	2020-06	RAN#88	RP-200959	0357		В		16.4.0
2020-06 RAN#88 RP-200959 0364 B CR on Introduction of completed SUL band combinations into TS 38.101-1 16.4.0 2020-06 RAN#88 RP-201045 0365 F CR for 38.101-1 to introduce BCS2 for CA_n78(2A). 16.4.0 2020-06 RAN#88 RP-200985 0367 A CR for 38.101-1 to remove the NR CA configuration for REFSENS exception due to cross band isolation for CA (mirror CR) 16.4.0 2020-06 RAN#88 RP-200999 0373 F CR for 38.101-1 to add the REFSENS exception for inter band CA with SDL (mirror CR) 16.4.0 2020-06 RAN#88 RP-200995 0379 A IBE requirement for almost contiguous allocations 16.4.0 2020-06 RAN#88 RP-200985 0394 F CR for TS 38.101-1 UE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 0394 F CR for TS 38.101-1 UE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 0400 A TS38.101-1 UE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 0404	2020-06	RAN#88	RP-200959	0360		В	CR introduction completed band combinations 38.716-01-01 -	16.4.0
38.101-1 38.101-1	2020-06	RAN#88	RP-200959	0361		В	CR introduction completed band combinations 38.716-04-01 -	16.4.0
2020-06 RAN#88 RP-200985 0367 A CR for 38.101-1 to remove the NR CA configuration for REFSENS exception due to cross band isolation for CA (mirror CR) 16.4.0 2020-06 RAN#88 RP-200985 0369 A CR for 38.101-1 to add the REFSENS exception for inter band CA with SDL (mirror CR) 16.4.0 2020-06 RAN#88 RP-200979 0373 F CR on introduce delta-MPR for inter-band CA in band n28 and review value with brackets 16.4.0 2020-06 RAN#88 RP-200985 0379 A IBE requirement for almost contiguous allocations 16.4.0 2020-06 RAN#88 RP-200985 0385 A OOB blocking for n70 adjacent to n25 16.4.0 2020-06 RAN#88 RP-200985 0394 F CR for TS 38.101-1 UE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 0400 A TS38.101-1 RFC corrections (R16) 16.4.0 2020-06 RAN#88 RP-200985 0404 A TS38.101-1 con 30KHz SSB SCS for n40(Rel-16) 16.4.0 2020-06 RAN#88 RP-200985 0343 1<	2020-06	RAN#88	RP-200959	0364		В		16.4.0
2020-06 RAN#88 RP-200985 0367 A CR for 38.101-1 to remove the NR CA configuration for REFSENS exception due to cross band isolation for CA (mirror CR) 16.4.0 2020-06 RAN#88 RP-200985 0369 A CR for 38.101-1 to add the REFSENS exception for inter band CA with SDL (mirror CR) 16.4.0 2020-06 RAN#88 RP-200979 0373 F CR on introduce delta-MPR for inter-band CA in band n28 and review value with brackets 16.4.0 2020-06 RAN#88 RP-200985 0379 A IBE requirement for almost contiguous allocations 16.4.0 2020-06 RAN#88 RP-200985 0385 A OOB blocking for n70 adjacent to n25 16.4.0 2020-06 RAN#88 RP-200985 0394 F CR for TS 38.101-1 UE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 0400 A TS38.101-1 RFC corrections (R16) 16.4.0 2020-06 RAN#88 RP-200985 0404 A TS38.101-1 con 30KHz SSB SCS for n40(Rel-16) 16.4.0 2020-06 RAN#88 RP-200985 0343 1<	2020-06	RAN#88	RP-201045	0365		F	CR for 38.101-1 to introduce BCS2 for CA_n78(2A).	16.4.0
2020-06 RAN#88 RP-200985 0369 A CR for 38.101-1 to add the REFSENS exception for inter band CA with SDL (mirror CR) 16.4.0 2020-06 RAN#88 RP-200979 0373 F CR on introduce delta-MPR for inter-band CA in band n28 and review value with brackets 16.4.0 2020-06 RAN#88 RP-200985 0379 A IBE requirement for almost contiguous allocations 16.4.0 2020-06 RAN#88 RP-200985 0385 A OOB blocking for n70 adjacent to n25 16.4.0 2020-06 RAN#88 RP-200985 0394 F CR for TS 38.101-1 UE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 0400 A TS38.101-1 RFC corrections (R16) 16.4.0 2020-06 RAN#88 RP-200985 0400 A TS38.101-1 RFC corrections (R16) 16.4.0 2020-06 RAN#88 RP-200985 0404 A TS38.101-1 RFC corrections (R16) 16.4.0 2020-06 RAN#88 RP-200985 0404 A CR for 38.101-1 RFC corrections (R16) 16.4.0	2020-06	RAN#88	RP-200985	0367		Α		16.4.0
2020-06 RAN#88 RP-200979 0373 F CR on introduce delta-MPR for inter-band CA in band n28 and review value with brackets 16.4.0 2020-06 RAN#88 RP-200985 0379 A IBE requirement for almost contiguous allocations 16.4.0 2020-06 RAN#88 RP-200985 0385 A OOB blocking for n70 adjacent to n25 16.4.0 2020-06 RAN#88 RP-200985 0394 F CR for TS 38.101-1 UE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 0396 F CR for 38.101-1 RFC corrections (R16) 16.4.0 2020-06 RAN#88 RP-200985 0400 A TS38.101-1 CR on 30KHz SSB SCS for n40(Rel-16) 16.4.0 2020-06 RAN#88 RP-200985 0318 1 F CR to add simultaneous RXTX capability for CA_n41-n79 16.4.0 2020-06 RAN#88 RP-200985 0343 1 A CR for 38.101-1: to add some missing sub-clause title for NR interband CA 16.4.0 2020-06 RAN#88 RP-200985 0343 1 A	2020-06	RAN#88	RP-200985	0369		Α		16.4.0
2020-06 RAN#88 RP-200985 0379 A IBE requirement for almost contiguous allocations 16.4.0 2020-06 RAN#88 RP-200985 0385 A OOB blocking for n70 adjacent to n25 16.4.0 2020-06 RAN#88 RP-200985 0394 F CR for TS 38.101-1 UE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 0396 F CR for 38.101-1 RFC corrections (R16) 16.4.0 2020-06 RAN#88 RP-200985 0400 A TS38.101-1 CR on 30KHz SSB SCS for n40(Rel-16) 16.4.0 2020-06 RAN#88 RP-200995 0318 1 F CR to add simultaneous RXTX capability for CA_n41-n79 16.4.0 2020-06 RAN#88 RP-200985 0404 A CR for 38.101-1: to add some missing sub-clause title for NR interband CA 16.4.0 2020-06 RAN#88 RP-200985 0343 1 A CR for [agreed] asynchronous operation for NR CA n78-n79 16.4.0 2020-06 RAN#88 RP-201045 0387 1 B CR on FR1 UL contiguous	2020-06	RAN#88	RP-200979	0373		F	CR on introduce delta-MPR for inter-band CA in band n28 and	16.4.0
2020-06 RAN#88 RP-200985 0385 A OOB blocking for n70 adjacent to n25 16.4.0 2020-06 RAN#88 RP-200985 0394 F CR for TS 38.101-1 UE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 0396 F CR for 38.101-1 RFC corrections (R16) 16.4.0 2020-06 RAN#88 RP-200985 0400 A TS38.101-1 CR on 30KHz SSB SCS for n40(Rel-16) 16.4.0 2020-06 RAN#88 RP-200959 0318 1 F CR to add simultaneous RXTX capability for CA_n41-n79 16.4.0 2020-06 RAN#88 RP-200985 0404 A CR for 38.101-1: to add some missing sub-clause title for NR interband CA 16.4.0 2020-06 RAN#88 RP-200985 0343 1 A CR for Igareed] asynchronous operation for NR CA n78-n79 16.4.0 2020-06 RAN#88 RP-201045 0387 1 B CR on FR1 UL contiguous CA requirement 16.4.0 2020-06 RAN#88 RP-201045 0380 1 B CR for TS 38.101	2020-06	RAN#88	RP-200985	0379		Α		16.4.0
2020-06 RAN#88 RP-200985 0394 F CR for TS 38.101-1 UE co-existence correction (R16) 16.4.0 2020-06 RAN#88 RP-200985 0396 F CR for 38.101-1 RFC corrections (R16) 16.4.0 2020-06 RAN#88 RP-200985 0400 A TS38.101-1 CR on 30KHz SSB SCS for n40(Rel-16) 16.4.0 2020-06 RAN#88 RP-200959 0318 1 F CR to add simultaneous RXTX capability for CA_n41-n79 16.4.0 2020-06 RAN#88 RP-200985 0404 A CR for 38.101-1: to add some missing sub-clause title for NR interband CA 16.4.0 2020-06 RAN#88 RP-200985 0343 1 A CR for [agreed] asynchronous operation for NR CA n78-n79 16.4.0 2020-06 RAN#88 RP-201045 0387 1 B CR on FR1 UL contiguous CA requirement 16.4.0 2020-06 RAN#88 RP-201045 0380 1 B Addition of mutual UE coexistence between US bands and NR Band Info.4.0 16.4.0 2020-06 RAN#88 RP-200977 0356								
2020-06 RAN#88 RP-200985 0396 F CR for 38.101-1 RFC corrections (R16) 16.4.0 2020-06 RAN#88 RP-200985 0400 A TS38.101-1 CR on 30KHz SSB SCS for n40(Rel-16) 16.4.0 2020-06 RAN#88 RP-200959 0318 1 F CR to add simultaneous RXTX capability for CA_n41-n79 16.4.0 2020-06 RAN#88 RP-200985 0404 A CR for 38.101-1: to add some missing sub-clause title for NR interband CA 16.4.0 2020-06 RAN#88 RP-200985 0343 1 A CR for [agreed] asynchronous operation for NR CA n78-n79 16.4.0 2020-06 RAN#88 RP-201045 0387 1 B CR on FR1 UL contiguous CA requirement 16.4.0 2020-06 RAN#88 RP-201045 0380 1 F CR on blocking requirements for n91 n92 n93 and n94 16.4.0 2020-06 RAN#88 RP-201045 0380 1 B Addition of mutual UE coexistence between US bands and NR Band n77 16.4.0 2020-06 RAN#88 RP-200997 0356 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1						
2020-06 RAN#88 RP-200959 0318 1 F CR to add simultaneous RXTX capability for CA_n41-n79 16.4.0 2020-06 RAN#88 RP-200985 0404 A CR for 38.101-1: to add some missing sub-clause title for NR interband CA 16.4.0 2020-06 RAN#88 RP-200985 0343 1 A CR for [agreed] asynchronous operation for NR CA n78-n79 16.4.0 2020-06 RAN#88 RP-201045 0387 1 B CR on FR1 UL contiguous CA requirement 16.4.0 2020-06 RAN#88 RP-200974 0325 1 F CR on blocking requirements for n91 n92 n93 and n94 16.4.0 2020-06 RAN#88 RP-201045 0380 1 B Addition of mutual UE coexistence between US bands and NR Band 16.4.0 16.4.0 2020-06 RAN#88 RP-200977 0356 1 B CR for TS 38.101: adding 50 MHz CBW for n1 16.4.0 2020-06 RAN#88 RP-200980 0358 1 B CR to TS 38.101-1 - Add 40 MHz CBW in band n3 16.4.0 2020-06 RAN#88						F		
2020-06 RAN#88 RP-200959 0318 1 F CR to add simultaneous RXTX capability for CA_n41-n79 16.4.0 2020-06 RAN#88 RP-200985 0404 A CR for 38.101-1: to add some missing sub-clause title for NR interband CA 16.4.0 2020-06 RAN#88 RP-200985 0343 1 A CR for [agreed] asynchronous operation for NR CA n78-n79 16.4.0 2020-06 RAN#88 RP-201045 0387 1 B CR on FR1 UL contiguous CA requirement 16.4.0 2020-06 RAN#88 RP-200974 0325 1 F CR on blocking requirements for n91 n92 n93 and n94 16.4.0 2020-06 RAN#88 RP-201045 0380 1 B Addition of mutual UE coexistence between US bands and NR Band n77 16.4.0 2020-06 RAN#88 RP-200977 0356 1 B CR for TS 38.101: adding 50 MHz CBW for n1 16.4.0 2020-06 RAN#88 RP-200980 0358 1 B CR to TS 38.101-1 - Add 40 MHz CBW in band n3 16.4.0 2020-06 RAN#88	2020-06	RAN#88	RP-200985	0400		Α	TS38.101-1 CR on 30KHz SSB SCS for n40(Rel-16)	16.4.0
2020-06 RAN#88 RP-200985 0404 A CR for 38.101-1: to add some missing sub-clause title for NR interband CA 16.4.0 2020-06 RAN#88 RP-200985 0343 1 A CR for [agreed] asynchronous operation for NR CA n78-n79 16.4.0 2020-06 RAN#88 RP-201045 0387 1 B CR on FR1 UL contiguous CA requirement 16.4.0 2020-06 RAN#88 RP-200974 0325 1 F CR on blocking requirements for n91 n92 n93 and n94 16.4.0 2020-06 RAN#88 RP-201045 0380 1 B Addition of mutual UE coexistence between US bands and NR Band n77 16.4.0 2020-06 RAN#88 RP-200977 0356 1 B CR for TS 38.101: adding 50 MHz CBW for n1 16.4.0 2020-06 RAN#88 RP-200980 0358 1 B CR to TS 38.101-1 - Add 40 MHz CBW in band n3 16.4.0 2020-06 RAN#88 RP-200985 0405 F Corrections of UE co-ex tables for Japan-related bands (R16) 16.4.0 2020-06 RAN#88 RP-20	2020-06			0318	1	F		
2020-06 RAN#88 RP-201045 0387 1 B CR on FR1 UL contiguous CA requirement 16.4.0 2020-06 RAN#88 RP-200974 0325 1 F CR on blocking requirements for n91 n92 n93 and n94 16.4.0 2020-06 RAN#88 RP-201045 0380 1 B Addition of mutual UE coexistence between US bands and NR Band n77 16.4.0 2020-06 RAN#88 RP-200977 0356 1 B CR for TS 38.101: adding 50 MHz CBW for n1 16.4.0 2020-06 RAN#88 RP-200980 0358 1 B CR to TS 38.101-1 - Add 40 MHz CBW in band n3 16.4.0 2020-06 RAN#88 RP-200982 0359 1 B CR to TS 38.101-1 - Add 50 MHz CBW in band n65 16.4.0 2020-06 RAN#88 RP-200985 0405 F Corrections of UE co-ex tables for Japan-related bands (R16) 16.4.0 2020-06 RAN#88 RP-201045 0320 2 B CR to 38.101-1: Introduce an operating band list and NR bands to UL MIMO	2020-06					Α	CR for 38.101-1: to add some missing sub-clause title for NR inter-	16.4.0
2020-06 RAN#88 RP-201045 0387 1 B CR on FR1 UL contiguous CA requirement 16.4.0 2020-06 RAN#88 RP-200974 0325 1 F CR on blocking requirements for n91 n92 n93 and n94 16.4.0 2020-06 RAN#88 RP-201045 0380 1 B Addition of mutual UE coexistence between US bands and NR Band n77 16.4.0 2020-06 RAN#88 RP-200977 0356 1 B CR for TS 38.101: adding 50 MHz CBW for n1 16.4.0 2020-06 RAN#88 RP-200980 0358 1 B CR to TS 38.101-1 - Add 40 MHz CBW in band n3 16.4.0 2020-06 RAN#88 RP-200982 0359 1 B CR to TS 38.101-1 - Add 50 MHz CBW in band n65 16.4.0 2020-06 RAN#88 RP-200985 0405 F Corrections of UE co-ex tables for Japan-related bands (R16) 16.4.0 2020-06 RAN#88 RP-201045 0320 2 B CR to 38.101-1: Introduce an operating band list and NR bands to UL MIMO	2020-06	RAN#88	RP-200985	0343	1	Α		16.4.0
2020-06 RAN#88 RP-200974 0325 1 F CR on blocking requirements for n91 n92 n93 and n94 16.4.0 2020-06 RAN#88 RP-201045 0380 1 B Addition of mutual UE coexistence between US bands and NR Band n77 16.4.0 2020-06 RAN#88 RP-200977 0356 1 B CR for TS 38.101: adding 50 MHz CBW for n1 16.4.0 2020-06 RAN#88 RP-200980 0358 1 B CR to TS 38.101-1 - Add 40 MHz CBW in band n3 16.4.0 2020-06 RAN#88 RP-200982 0359 1 B CR to TS 38.101-1 - Add 50 MHz CBW in band n65 16.4.0 2020-06 RAN#88 RP-200985 0405 F Corrections of UE co-ex tables for Japan-related bands (R16) 16.4.0 2020-06 RAN#88 RP-201045 0320 2 B CR to 38.101-1: Introduce an operating band list and NR bands to UL MIMO 16.4.0								
2020-06 RAN#88 RP-201045 0380 1 B Addition of mutual UE coexistence between US bands and NR Band n77 16.4.0 2020-06 RAN#88 RP-200977 0356 1 B CR for TS 38.101: adding 50 MHz CBW for n1 16.4.0 2020-06 RAN#88 RP-200980 0358 1 B CR to TS 38.101-1 - Add 40 MHz CBW in band n3 16.4.0 2020-06 RAN#88 RP-200982 0359 1 B CR to TS 38.101-1 - Add 50 MHz CBW in band n65 16.4.0 2020-06 RAN#88 RP-200985 0405 F Corrections of UE co-ex tables for Japan-related bands (R16) 16.4.0 2020-06 RAN#88 RP-201045 0320 2 B CR to 38.101-1: Introduce an operating band list and NR bands to UL MIMO 16.4.0								
2020-06 RAN#88 RP-200977 0356 1 B CR for TS 38.101: adding 50 MHz CBW for n1 16.4.0 2020-06 RAN#88 RP-200980 0358 1 B CR to TS 38.101-1 - Add 40 MHz CBW in band n3 16.4.0 2020-06 RAN#88 RP-200982 0359 1 B CR to TS 38.101-1 - Add 50 MHz CBW in band n65 16.4.0 2020-06 RAN#88 RP-200985 0405 F Corrections of UE co-ex tables for Japan-related bands (R16) 16.4.0 2020-06 RAN#88 RP-201045 0320 2 B CR to 38.101-1: Introduce an operating band list and NR bands to UL MIMO 16.4.0							Addition of mutual UE coexistence between US bands and NR Band	
2020-06 RAN#88 RP-200980 0358 1 B CR to TS 38.101-1 - Add 40 MHz CBW in band n3 16.4.0 2020-06 RAN#88 RP-200982 0359 1 B CR to TS 38.101-1 - Add 50 MHz CBW in band n65 16.4.0 2020-06 RAN#88 RP-200985 0405 F Corrections of UE co-ex tables for Japan-related bands (R16) 16.4.0 2020-06 RAN#88 RP-201045 0320 2 B CR to 38.101-1: Introduce an operating band list and NR bands to UL MIMO 16.4.0	2020-06	RAN#88	RP-200977	0356	1	В		16.4.0
2020-06 RAN#88 RP-200982 0359 1 B CR to TS 38.101-1 - Add 50 MHz CBW in band n65 16.4.0 2020-06 RAN#88 RP-200985 0405 F Corrections of UE co-ex tables for Japan-related bands (R16) 16.4.0 2020-06 RAN#88 RP-201045 0320 2 B CR to 38.101-1: Introduce an operating band list and NR bands to UL MIMO 16.4.0								
2020-06 RAN#88 RP-200985 0405 F Corrections of UE co-ex tables for Japan-related bands (R16) 16.4.0 2020-06 RAN#88 RP-201045 0320 2 B CR to 38.101-1: Introduce an operating band list and NR bands to UL MIMO 16.4.0								
2020-06 RAN#88 RP-201045 0320 2 B CR to 38.101-1: Introduce an operating band list and NR bands to UL MIMO								
					2		CR to 38.101-1: Introduce an operating band list and NR bands to	
	2020-06	RAN#88	RP-200966	0362	1	В	CR to 38.101-1 for Introduction of requirements for NR-DC	16.4.0

History

	Document history						
V16.4.0	July 2020	Publication					