Matematické modelovanie a počítačová animácia fyzikálnych procesov

Lucia Budinská, Juraj Holas, ZS 2015/2016

Numerické riešenie diferenciálnych rovníc

Diferenciálna rovnica

Diferenciálna rovnica je rovnica, ktorá obsahuje okrem konštánt, premenných a funkcií, aj derivácie funkcií. Rád diferenciálnej rovnice určujeme podľa najvyššieho rádu derivácie funkcie v rovnici.

Diferenciálnu rovnicu vieme zapísať v tvare:

$$F(x, y, y', ..., y^{(n)}),$$

kde n je rád derivácie (a teda aj diferenciálnej rovnice), x je premenná a y je funkcia premennej.

Poznáme viacero typov diferenciálnych rovníc, nás budú zaujímať iba obyčajné diferenciálne rovnice (ODR), čo sú rovnice, ktoré obsahujú derivácie iba jednej premennej.

V počítačovej animácii sa diferenciálne rovnice používajú pri animovaní pohybu častíc. Poznáme polohu častice v čase t_0 a diferenciálnu rovnicu F(p,t), kde p je pozícia a t je čas, ktorá modeluje pohyb častíc.

Na riešenie ODR sa používajú:

1. Explicitné metódy:

- a. Eulerova dopredná metóda
- b. Mid Point metóda
- c. Runge Kutta metóda

2. Implicitné metódy:

a. Implicitná Eulerova metóda

V nasledujúcich častiach bližšie opíšeme explicitné metódy.

Eulerova (explicitná / dopredná) metóda

Eulerova explicitná metóda vychádza z toho, že máme zadanú pozíciu častice v čase t_0 , t.j. $p(t_0)$, a využitím Taylorovho rozvoja vieme nájsť pozíciu v čase t_0+h , t.j. $p(t_0+h)$:

$$p(t_0 + h) = p(t_0) + hp'(t_0) + O(h^2)$$
$$p'(t_0) = F(p(t_0), t_0)$$

Posúvame sa teda po dotyčniciach krivky v daných bodoch. Numericky pohyb častice vieme vypočítať pomocou vzťahu:

$$p_{n+1} = p_n + hF(p_n, t_n),$$

ak máme zadané p_0 , t.j. počiatočnú polohu častice.

Výhodou Eulerovej explicitnej metódy je to, že je veľmi jednoduchá, rýchla a ľahká na implementáciu, problémom je veľká chyba - $O(h^2)$ pre jeden krok. V každom ďalšom kroku máme chybu aj z predchádzajúcich krokov, takže chyba sa kumuluje a z toho dôvodu môže byť táto metóda nestabilná. Zlepšením môže byť voľba pomerne malého h.

Matematické modelovanie a počítačová animácia fyzikálnych procesov

Lucia Budinská, Juraj Holas, ZS 2015/2016

MidPoint metóda

Myšlienka MidPoint metódy je podobná ako explicitnej Eulerovskej metódy. Tiež sa posúvame po krokoch, ale používame iba približnú deriváciu p(t) a to: $p'\left(t+\frac{h}{2}\right)$. Zase používame Taylorov rozvoj a algoritmus môžeme zapísať pomocou vzťahu:

$$p(t+h) = p(t) + hF\left(p(t) + \frac{h}{2}p'(t), t + \frac{h}{2}\right) + O(h^3)$$

Numericky to vieme zapísať ako:

$$p_{n+1} = p_n + hF\left(p_n + \frac{h}{2}F(p_n, t_n), t_n + \frac{h}{2}\right)$$

Výhody sú podobné ako pri explicitnej Eulerovej metóde – jednoduchosť, rýchlosť a ľahká implementácia. Chyba MidPoint metódy je menšia ako pri Eulerovej metóde - $O(h^3)$. Nevýhodou je viac výpočtov, keďže F musíme v každom kroku počítať dvakrát.

Runge-Kutta metóda

Pri Runge-Kutta metóde 4. rádu musíme, ako už z názvu vyplýva, vypočítať najprv 4 kroky:

$$k_1 = hF(p(t_0), t_0)$$

$$k_2 = hF\left(p(t_0) + \frac{k_1}{2}, t_0 + \frac{h}{2}\right)$$

$$k_3 = hF\left(p(t_0) + \frac{k_2}{2}, t_0 + \frac{h}{2}\right)$$

$$k_4 = hF(p(t_0) + k_3, t_0 + h)$$

Následne dostávame pozíciu častice v čase $t_0 + h$:

$$p(t_0 + h) = p(t_0) + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} + O(h^5)$$

Výhodou je veľmi malá chyba jedného kroku riešenia – iba $O(h^5)$, nevýhodou tejto metódy je ale veľa počítania v každom kroku.

Podmienky stability na voľby časového kroku

Stabilitu môžeme testovať pomocou tzv. lineárnej testovacej rovnice:

$$p'(t) = \lambda p(t),$$

kde $\lambda \in \mathbb{C}$. Rovnica je stabilná ak $Real(\lambda) \leq 0$.

Eulerova explicitná metóda je stabilná, ak $|1 + h\lambda| \le 1$.

Runge-Kutta metóda je stabilná, ak $\left|1+h\lambda+\frac{h^2\lambda^2}{2}+\frac{h^3\lambda^3}{6}+\frac{h^4\lambda^4}{24}\right|\leq 1.$

Matematické modelovanie a počítačová animácia fyzikálnych procesov

Lucia Budinská, Juraj Holas, ZS 2015/2016

Sily odozvy

Pri časticiach rozlišujeme niekoľko dynamických vlastností:

- Hmotnosť (*m*) parameter
- Pozíciu (p) dp = v
- Rýchlosť (v) dv = a
- Hybnosť (L) L = mv
- Zrýchlenie (a) $a = m^{-1}F$
- Silu (F) F = ma = dL

Newtonova dynamika sa riadi troma základnými Newtonovými zákonmi pohybu:

- 1. **Zákon zotrvačnosti:** "Každý hmotný bod zotrváva v pokoji alebo v rovnomernom priamočiarom pohybe, kým nie je nútený vonkajšími silami tento svoj stav zmeniť."
- 2. **Zákon sily:** "V inerciálnej vzťažnej sústave sa výsledná sila pôsobiaca na hmotný bodrovná prvej derivácii hybnosti hmotného bodu podľa času."
- 3. **Zákon akcie a reakcie**: "Dva hmotné body na seba pôsobia rovnako veľkými silami opačného smeru, ktoré súčasne vznikajú a súčasne zanikajú"

Na animáciu časticového systému musíme v každom kroku:

- 1. Vyrátať novú pozíciu pre každú časticu (využitím napr. niektorej z metód v predchádzajúcich podkapitolách).
- 2. Následne detekovať kolízie medzi časticami.
- 3. Vypočítať silu odozvy pre každú kolíziu.
- 4. A využitím zákona akcie a reakcie distribuovať silu odozvy na častice v kolízii.

Pri kolízii dvoch častíc sa využíva Newtonov model:

$$u_n(t^+) = -e_n u_n(t^-),$$

kde $u_n(t^-)$ je relatívne normálna rýchlosť pred kolíziou, $u_n(t^+)$ je relatívne normálna rýchlosť po kolízii. $0 \le e_n \le 1$ je koeficient obnovy (predchádzajúceho stavu). Pri plastických kolíziách je $e_n = 0$, pri elastických kolíziách $e_n = 1$.

Kolízny rozklad sily na základe impulzu vypočítame ako integrál odpudivých síl počas kolízie:

$$j(t) = \int_{t}^{t+h} f(a)da$$