المادة: رياضيات ــ لغة فر الشهادة؛ الثانه بة العامة الفرع: الآداب والانسانيات نموذج رقم: 2 / 2019 المدّة: ساعة واحدة

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

Exercice 1.

Une urne contient 9 boules comme suit :

Trois boules rouges numérotées 1, 2, 3,

Quatre boules bleues numérotées 4, 5, 6, 7,

Deux boules noires numérotées 8, 9.

Partie A

Une boule est tirée de l'urne au hasard.

On considère les évènements suivants :

R : La boule tirée est rouge.

B : La boule tirée est bleue.

N: La boule tirée est noire.

E: La boule tirée porte un nombre pair .

1- a) Calculer P(B) et P(E).

b) Montrer que $P(B \cup E) = \frac{2}{3}$.

2- Calculer P(B/E).

3- Sachant que la boule tirée porte un nombre supérieur à 4, calculer la probabilité pour que la boule choisie soit noir.

Partie B

Dans cette partie, on suppose que deux boules sont tirées de l'urne au hasard, l'une après l'autre sans remise.

1- Calculer la probabilité pour que les deux boules tirées sont non rouges.

2- Calculer la probabilité que l'une des boules soit rouge et la seconde boule porte un nombre pair.

Exercice 2.

Rima a une somme de 39 000 LL.

Cette somme est formée de billets de 5 000 LL et d'autres de 1 000 LL.

Le nombre de billets de 5 000 LL est $\frac{2}{3}$ celui des billets de 1 000 LL .

1- Résoudre les système suivant $\begin{cases} 5x + y = 39 \\ 3x - 2y = 0 \end{cases}$

2- a) Montrer que le texte donné est modélisé par le système dans la question 1).

b) Déterminer le nombre de billets de chaque catégorie.

3- Rima veut acheter une calculatrice qui coute 40 000 LL, mais cette calculatrice subit une réduction du prix de 20 %.

Elle décide de l'acheter après la réduction de son prix en utilisant des billets de catégories mentionnées précédemment.

Comment peut-elle le faire ?

Exercice 3.

La courbe suivante (C) est celle de la fonction f définie sur \mathbb{R} - $\{0\}$ par :

$$f(x) = ax + b + \frac{c}{x}.$$

- 1- a) Ecrire une équation d'une asymptote verticale à (C).
 - b) Ecrire une équation d'une asymptote oblique à (C). Déduire que a = -1 et b = 2.
 - c) Utiliser que L(1,0) est sur (C), puis calculer c.
- 2- a) Calculer f'(1) et f'(-1) graphiquement.
 - b) Résoudre graphiquement $f(x) \ge 0$.
- 3- Soit (d) la droite joignant les sommets de (C) (Max et min).
 - a) Montrer que y = -2x + 2 est une équation de (d).
 - b) Résoudre graphiquement f(x) + 2x > 2.
- 4- a) Vérifier que $f(x) = \frac{-x^2 + 2x 1}{x}$.
 - b) Dresser le tableau de variations de f.
- 5- a) Montrer que $f'(x) = -1 + \frac{1}{x^2}$
 - b) Ecrire une équation de (T), la tangent à (C) au point A avec $x_A = \frac{1}{2}$.
 - c) Déterminer un autre point B de (C) où la tangente en B à (C) est parallèle (T).

المادة: رياضيات – لغة فرنسية الشهادة: الثانوية العامة الفرع: الآداب والانسانيات نموذج رقم: 2 / 2019 المدّة: ساعة واحدة

الهيئة الأكاديمية المشتركة قسم: الرياضيات

سس التصحيح

QI	<u>Réponses</u>	<u>pts</u>
1-a)	$P(B) = \frac{4}{9}$; $P(E) = \frac{4}{9}$.	0,5
b)	$P(B \cup E) = P(B) + P(E) - P(B \cap E) = \frac{8}{9} - \frac{2}{9} = \frac{2}{3}.$	1
2-	$P(B/\overline{E}) = \frac{P(B \cap \overline{E})}{P(\overline{E})} = \frac{2}{5}.$	1
3-	$P(Noir/n > 4) = \frac{P(Noir \cap (n > 4))}{P(n > 4)} = \frac{2}{5}.$	1
4-a)	$P(\overline{RR}) = \frac{6}{9} \times \frac{5}{8} = \frac{5}{12}.$	0.75
b)	$P(R, E > 3) + P(E > 3, R) = \frac{3}{9} \times \frac{3}{8} + \frac{3}{9} \times \frac{3}{8} = \frac{1}{4}$	0.75

QII	<u>Réponses</u>	<u>pts</u>
1	x = 6, y = 9	1
2-a)	x = nombre des billets de 5 000 LL. y = nombre des billets de 1 000 LL. x = 6 et $y = 95 000 x + 1 000 y = 39 000 ou 5x + y = 39x = \frac{2}{3}y donc 3x - 2y = 0 (vérifié)$	1
2-b)	6 billets de 5 000 et 9 billets de 1 000.	1
3-	Prix réduit = $40000 \times 0.8 = 32000$ Rima peut payer : $6 \times 5000 + 2 \times 1000$ or $5 \times 5000 + 7 \times 1000$	2

QIII	<u>Réponses</u>	<u>pts</u>
1-a)	(y'y) ou $x = 0$ est une asymptote verticale.	0,5
b)	(y = -x + 2) est une équation de l'asymptote oblique mais $y = ax + b$ est une équation de l'asymptote oblique.	1
	donc $a = -1$ et $b = 2$.	

		1
c)	$f(x) = -x + 2 + \frac{c}{x}$ mais (1,0) est sur (C)	
	donc $0 = -1 + 2 + c$ D'où $c = -1$	0,5
	alors $f(x) = -x + 2 - \frac{1}{x}$	
2-a)	f'(1) = 0 = f'(-1) Graphiquement (Tangente parallèle à $x'x$).	0,5
b)	$f(x) \ge 0$ donc $x < 0$ ou $x = 1$.	1
3-a)	Min $(-1,4)$ et Max $(1,0)$ donc $y = -2x + 2$.	0,5
b)	f(x) + 2x > 2 alors f(x) > -2x + 2.	1
	On considère la partie de (C) au-dessus de (d) alors $-1 < x < 0$ ou $x > 1$.	
4-a)	$f(x) = -x + 2 - \frac{1}{x} = \frac{-x^2 + 2x - 1}{x}$.	0,5
b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5
5-a)	$f'(x) = -1 + \frac{1}{x^2}$	1
b)	$A(\frac{1}{2}, -\frac{1}{2})$ et $f'(\frac{1}{2}) = 3$. $(T): y + \frac{1}{2} = 3(x - \frac{1}{2})$ et $y = 3x - 2$	1
c)	$f'(x) = 3$ alors $\frac{1}{x^2} = 4$; $x^2 = \frac{1}{4}$ et $x = -\frac{1}{2}$.	1
	alors $B(-\frac{1}{2}, \frac{9}{2})$.	