Розпізнавання людської руки на відео

студент 4-го курсу КА-21, Одобеску Владислав

Інститут прикладного системного аналізу керівник: доц. Дідковська Марина Віталіївна

Актуальність роботи

Сфери використання:

- Computer-human interaction systems;
- Робота з мовою жестів;
- Динамічні рухові додатки.

Актуальність роботи полягає у тому, що:

- Виводить взаємодію з ПК на новий рівень;
- У зв'язку з розвиненням сфери віртуальної да доповненої реальностей, з'являється потреба у винайдені оптимальних шляхів взаємодії користувача та системи;
- Використовується нова камера Intel Realsense F200.

Постановка задачі

Мета роботи

Розробка системи розпізнавання людської руки на відео

Об'єкт дослідження

Цифровий відеопотік з RGB чи depth камери

Предмет дослідження

Методи локалізації людської руки на відео

Загальний підхід

Підходи

Попередня обробка зображень

- морфологічні операції над зображенням ерозія та дилація
- зглажування прямокутний та гаусівський фільтри.

Виділення людської руки

- Віднімання фону;
- Байесовський класифікатор;
- Обробка відеопотоку з depth камери;

Алгоритми

- 🚺 Віднімання фону (медіана, Гауса)
- Байесовський класифікатор
 - Класична реалізація
 - Поправки ймовірностей
 - Удосконалений метод навчання
- Розпізнавання на основі сенсора глибини (Intel Realsense F200 camera)

Віднімання фону

Байесовський класифікатор

$$P(S|C) = \frac{P(C|S) * P(S)}{P(C)} \tag{1}$$

подія S - колір являється кольором людської руки подія C - колір приймає значення C де $\frac{P(S)}{P(C)}$ можна вважати деякою константою

Фільтрація ймовірностей байесовського класифікатора, сусіди

Цей підхід враховує лише факт нявності у деякої ймовірності сусідів у колі з радіусом *R*.

- Підрахування кількості сусідів виконується згорткою з ядром у формі круга з радіусом R, заповненого одиницями.
- У матриці ймовірностей зануляються усі ймовірності, які мають менше сусідів ніж задане порогове значення.

Фільтрація ймовірностей байесовського класифікатора, зглажування

Цей підхід заснований на проведенні зглажування матриці ймовірностей та проводиться в 2 етапи:

- ① Зглажування матриці ймовірностей A за допомоги гаусівського ядра. $B = [b]_{ij}$ результуюча матриця;
- ② $(bij < eps) => (a_{ij} = 0).$

Фільтрація ймовірностей, до

Фільтрація ймовірностей, після

Фільтрація ймовірностей, результати

Таким чином була повністю видалена область з малими ймовірностями (обведена червоним кольором) та відфільтрована область, яка відповідає за основні кольори шкіри.

Відеопотік камери глибини

Удосконалення методу навчання

- Звичайним методом навчання байесовського класифікатора є отримання бази фотографій людських рук та виділення їх вручну у графічному редакторі.
- Запропонований метод навчання використувує синхронізовані потоки RGB та depth камери Intel Realsense F200 та дозволяє навчити класифікатор за менше ніж 2 хвилини.

Критерії оцінки якості роботи системи

- Критерій 1 : відсоток пікселів, що належать руці та були помічені алгоритмом як ті, що належать руці
- Критерій 2 : відсоток пікселів, які не належать руці, проте були помічені алгори- тмом як ті, що належать

Результати реалізованих підходів по розпізнаванню людської руки на відео

Порівняння підходів

Підхід	Переваги	Недоліки
Віднімання фону	Хороша точність - 95% Відсутність складних обчислень	Помічає усі рухомі об'єкти Чутливий до змін освітлення Нестійкий до зміни положення камери
Байесовський класифікатор	Достатня точність - 85%	Чутливий до змін освітлення
	Рух камери не впливає на класифікацію	Помічає усі ділянки зі шкірою
Камера глибини	Найкраща точність - 97%	Потрібна спеціальна камера
	Рух камери не впливає на класифікацію	Складні обчислення у разі синхронізації двох відеопотоків

Результати роботи

Реалізована система по розпізнаванню людської руки із вибором одного з трьох підходів:

- Віднімання фону;
- Байесовський класифікатор;
- Використання камери глибини.

Реалізомані окремі модулі навчання байесовського класифікатора:

- Навчання з папки;
- Швидке навчання на базі Intel Realsense F200.

Висновки

- Запропоновані модифікації баейсовського класифікатора на основі фільтрації ймовірностей покращують точність класифікатора на 5% з початкових 80%.
- За допомоги камери глибини Intel Realsense F200 реалізований метод навчання класифікатора який потребує менш ніж 2 хвилини на навчання. Класичний метод навчання зводиться до виділення рук в зображенні вручну, що значно довше.

Шляхи подальшого розвитку

- реалізація адаптивності байесовського класифікатора до умов освітлення;
- інтеграція запропонованої систими у систему по розпізнаванню статичних та динамічних жестів.

Дякую за увагу.

