Problem 1)

Find the Laplace transform of the following function:

$$I(t) = t^n e^{-at}, \quad a > 0 \text{ and even } n.$$
 (1)

The Laplace transform of a function f(t) is generally given as

$$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st} dt, \qquad (2)$$

where the values of s are such that the integral is convergent. Thus,

$$\mathcal{L}\{I(t)\} = \int_0^\infty t^n e^{-(a+s)t} dt = (-1)^n \frac{d^n}{d(a+s)^n} \int_0^\infty e^{-(a+s)t} dt$$
$$= (-1)^n \frac{d^n}{d(a+s)^n} \frac{1}{a+s} = \frac{n!}{(a+s)^{n+1}}.$$
 (3)

This matches the result we have in our library. That is, $\mathcal{L}\{t^n\} = n!/s^{n+1}$ and for a general function f(t), $\mathcal{L}\{f(t)e^{-at}\} = F(s+a)$. Collecting these results, we end up with the same solution, which is that

$$\mathcal{L}\{t^n e^{-at}\} = \frac{n!}{(s+a)^{n+1}}. (4)$$

Problem 2)

Solve the following equation by the Laplace transform

$$\ddot{y} + 2\lambda\dot{y} + \omega_0^2 y = 0, (5)$$

where y(0) = 0 and $\dot{y}(0) = v$.

If we take the Laplace transform of the equation¹, we find

$$\mathcal{L}\{\ddot{y} + 2\lambda\dot{y} + \omega_0^2 y\} = [s^2 Y(s) - sv] + 2\lambda[sY(s)] + \omega_0^2 Y(s) = 0.$$
 (6)

Solving for Y(s) gives

$$Y(s) = \frac{sv}{s^2 + 2\lambda s + \omega_0^2} = \frac{sv}{(s+\lambda)^2 + (\omega_0^2 - \lambda^2)}.$$
 (7)

From our "library" we have

$$\mathcal{L}\{e^{-at}\cos bt\} = \frac{s+a}{(s+a)^2 + b^2}$$
 (8)

$$\mathcal{L}\{e^{-at}\sin bt\} = \frac{b}{(s+a)^2 + b^2}.$$
 (9)

¹Strictly speaking, this means that if we have a differential equation Df = g, where D is a linear differential operator, then its "Laplace transform" is $\mathcal{L}\{Df\} = G(s)$.

Thus, if we write $a = \lambda$ and $b = \sqrt{\omega_0^2 - \lambda^2}$, then

$$Y(s) = v \left[\frac{s+a}{(s+a)^2 + b^2} - \frac{a}{(s+a)^2 + b^2} \right].$$
 (10)

Problem 3)

A unit vector $\hat{\boldsymbol{n}}$ makes angles θ and α with the Cartesian axes z and x, respectively, and a unit vector $\hat{\boldsymbol{n}}'$ makes angles θ' and α' with z and x, respectively. Find $\cos \varphi$, where φ is the angle between $\hat{\boldsymbol{n}}$ and $\hat{\boldsymbol{n}}'$.

Problem 4)

Find a scalar function $\varphi(r)$ of $r = |\vec{r}|$ which satisfies the equation

$$\vec{\nabla} \cdot [\varphi(r)\vec{r}] = 0. \tag{11}$$

Problem 5)

Calculate the following: (1) $\vec{\nabla} \cdot [(\vec{a} \cdot \vec{r})\vec{b}]$, (2) $\vec{\nabla} \times [(\vec{a} \cdot \vec{r})\vec{b}]$, (3) $\vec{\nabla} \cdot \vec{a} \times \vec{r}$, (4) $\vec{\nabla} \times (\vec{a} \times \vec{r})$, (5) $\vec{\nabla} \cdot [\vec{r} \times (\vec{a} \times \vec{r})]$, where \vec{a} and \vec{b} are constant vectors.