NAME: SID:

Problem 1: For each pseudocode below, give the number of letters printed as a function of n, using the Θ -notation. For the first three programs give a recurrence and its solution. For the last two programs, give the solution and a brief justification (at most 20 words).

pseudocode	Solution and recurrence or justification
procedure PrintAs(n) if $n > 1$ then print("A") PrintAs($n/3$)	$A(n) = A(n/3) + 1$ $A(n) = \Theta(\log n)$
procedure $PrintBs(n)$ if $n > 1$ then for $j \leftarrow 1$ to $4n$ do $print("B")$ PrintBs(n/3) PrintBs(n/3)	$B(n) = 2B(n/3) + 4n$ $B(n) = \Theta(n)$
procedure $PrintCs(n)$ if $n > 1$ then for $j \leftarrow 1$ to n^2 do $print("C")$ for $i \leftarrow 1$ to 5 do PrintCs(n/2)	$C(n) = 5C(n/2) + n^2$ $C(n) = \Theta(n^{\log 5})$
$\begin{array}{c} \mathbf{procedure} \ \mathrm{PrintDs}(n) \\ \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \\ k \leftarrow 1 \\ \mathbf{while} \ k < n \ \mathbf{do} \\ \mathrm{print}(\mathrm{"D"}) \\ k \leftarrow 2k \end{array}$	$D(n) = \Theta(n \log n)$ internal loop makes $\Theta(\log n)$ iterations because k doubles at each step
procedure PrintEs (n) for $i \leftarrow 1$ to n^2 do for $j \leftarrow 1$ to $2n$ do print("E")	$E(n) = \Theta(n^3)$ for each of n^2 iterations of external loop internal loop makes $2n$ iterations

Problem 2: (a) Explain how the RSA cryptosystem works by filling in the table below.

zation	Determine $p, q, \text{ and } n$:	p,q are different primes and $n=pq$		
Initiali	$\begin{array}{c c} \hline p, q, \text{ and } n \colon & p, q \text{ are different primes and } n = pq \\ \hline \\ Formula \\ \text{for } \phi(n) \colon & \phi(n) = (p-1(q-1)) \end{array}$			
	Determine e and d :	e can be any number between 1 and n that is relatively prime to $\phi(n)$, and $d=e^{-1}\pmod{\phi(n)}$		
	Public and secret keys: $P = (n, e), S = d$			
Encryption: $E(M)$		$M(M) = M^e \pmod{n}$ Decryption: $D(C) = C^d \pmod{n}$		

(b) Below you are given five choices of parameters p, q, e, d of RSA. For each choice tell whether these parameters are correct¹ (write YES/NO). If yes, give an encoding of M=3. If not, give a brief justification (at most 10 words).

p	q	e	d	correct?	justify if not correct / encode $M=3$ if correct
5	7	5	5	Y	Computing modulo 35: $3^5 = 243 = 33$
11	27	13	55	N	27 is not a prime
17	5	5	13	Y	Computing modulo 85: $3^5 = 243 = 73$
11	11	3	67	N	p and q cannot be equal
7	11	5	27	N	$5^{-1} \not\equiv 27 \pmod{60}$

¹To clarify, correctness refers to whether these parameters satisfy the conditions in the algorithm.

Problem 3: (a) Give a complete statement of Fermat's Little Theorem.

Theorem: Let p be a prime number and $a \in \{1, 2, ..., p-1\}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

(b) Use Fermat's Little Theorem to compute the following values. In the second example, show your work.

 $35^{130} \operatorname{rem} 131 = 1$

 $3^{14074} \operatorname{rem} 71 = 10$

Computing modulo 71: $3^{14074} = 3^{14070} \cdot 3^4 = 1 \cdot 81 = 10$.

Problem 4: For each $n \ge 0$ we define a binary tree T_n as follows. T_0 is a single node and T_1 is also a single node. For $n \ge 2$, T_n is obtained by creating two new nodes and adding copies of T_{n-1} and T_{n-2} as their subtrees, as in the picture below on the left:

The picture on the right shows tree T_3 (with subtrees T_2 and T_1 marked).

Let A_n be the number of leaves in T_n . (For example, $A_0 = A_1 = 1$, $A_2 = 3$ and $A_3 = 7$, as can be seen in the picture above.) Give a formula for A_n . You need to show your work, all steps. First, give a recurrence equation with a brief justification. Then solve this recurrence. At each step explain what you are computing.

The recurrence is

$$A_n = 2A_{n-1} + A_{n-2} \quad \text{for } n \ge 2$$

$$A_0 = 1$$

$$A_1 = 1$$

Justification for the recurrence: the leaves of T_n are either the leaves of two subtrees T_{n-1} or one subtree T_{n-2} .

The characteristic equation is $x^2 - 2x - 1 = 0$. The roots are $1 + \sqrt{2}$ and $1 - \sqrt{2}$. So the general solution is

$$A_n = \alpha_1 (1 + \sqrt{2})^n + \alpha_2 (1 - \sqrt{2})^n.$$

Using the initial conditions, we get equations:

$$\alpha_1 + \alpha_2 = 1$$

$$\alpha_1(1+\sqrt{2}) + \alpha_2(1-\sqrt{2}) = 1$$

The solution is $\alpha_1 = \alpha_2 = \frac{1}{2}$. So the final solution is

$$A_n = \frac{1}{2}(1+\sqrt{2})^n + \frac{1}{2}(1-\sqrt{2})^n.$$

Problem 5: The Duggars are about to buy t-shirts for their 19 children, one for each. They need

- at least 2 blue t-shirts,
- at least 5 red t-shirts,
- at least 1 pink t-shirt, and
- at least 2 and not more than 10 yellow t-shirts.

How many different choices of t-shirt colors satisfy these requirements?

The answer is the number of non-negative integral solutions of

$$b+r+p+y=19$$

$$2 \le b$$

$$5 \le r$$

$$1 \le p$$

$$2 \le y \le 10$$

After eliminating lower bounds (by substitutions), this reduces to computing the number of non-negative integral solutions of

$$b + r + p + y = 9$$
$$y \le 8$$

Let S be the number of all non-negative integral solutions and S(P) the number of non-negative integral solutions that satisfy condition P. Then

$$S(y \le 8) = S - S(y \ge 9) = {12 \choose 3} - {3 \choose 3} = 220 - 1 = 119.$$

So the answer is 119.

Problem 6: (a) Give Euler's inequality for planar graphs, and use it to show that the graph below is not planar.

Euler's inequality: In a planar graph with $n \geq 3$ vertices the number of edges m satisfies $m \leq 3n-6$.

In this graph we have n=7 and m=16. These numbers do not satisfy Euler's inequality, so G is not planar.

(b) Determine which of the following two graphs are planar. Justify your answer and show your work.

Graph H is planar. The picture below on the left shows a planar drawing of H. Graph G is not planar, because it contains a sub-division of K_5 , shown below on the right.

NAME: SID:

Problem 7: Use induction to prove that $\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2$ for all integers $n \ge 1$.

Base case: For n = 1, the left-hand side is $\sum_{k=1}^{1} k^3 = 1$ and the right-hand side is $\frac{1}{4}1^2(1+1)^2 = 1$ as well.

Inductive step: Assume that $\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2$. We want to show that this equation holds for the next value of n, that is $\sum_{k=1}^{n+1} k^3 = \frac{1}{4}(n+1)^2(n+2)^2$. Starting from the left-hand side, and using the inductive assumption, we proceed as follows:

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3$$
$$= \frac{1}{4} n^2 (n+1)^2 + (n+1)^3$$
$$= \frac{1}{4} (n+1)^2 [n^2 + 4(n+1)]$$
$$= \frac{1}{4} (n+1)^2 (n+2)^2.$$

as needed.

NAME: SID:

Problem 8: We have a set of 2n players in a chess tournament, where $n \ge 1$. Let f(n) be the number of ways to divide them into pairs for the first round of the tournament. Prove that

$$f(n) = \frac{(2n)!}{2^n n!}.$$

For example, consider the case when n=2, that is have four players. Lets call them A, B, C, D. There are three possible pairings: (AB, CD), (AC, BD), and (AD, BC). This agrees with the formula, because $f(2) = (2 \cdot 2)!/(2^2 \cdot 2!) = 4!/(4 \cdot 2) = 3$.

Hint: One way to approach this is to derive a recurrence equation for f(n) and then prove that the above formula is its solution. Another way is to show a relation between pairings and permutations of the players.

Solution 1: For n = 1 we have two players and one pairing, so f(1) = 1. Consider some n > 1. The last player can be paired with any of the other 2n - 1 players. Once we choose the pairing for the last player, the remaining players can be paired in f(n-1) ways. Thus we have the recurrence

$$f(1) = 1$$

$$f(n) = (2n - 1)f(n - 1)$$

It remains to verify that the formula above satisfies this recurrence. Indeed:

$$(2n-1) \cdot f(n-1) = (2n-1) \frac{(2(n-1))!}{2^{n-1}(n-1)!}$$

$$= \frac{(2n-1)(2n-2)!}{2^{n-1}(n-1)!} = \frac{2n(2n-1)(2n-2)!}{2^n n!} = \frac{(2n)!}{2^n n!} = f(n),$$

as claimed.

Solution 2: Consider any of the (2n)! permutations of the players, say $x_1, x_2, ..., x_{2n}$. This permutation defines a pairing where each odd-numbered player is paired with the next player: $x_1x_2, x_3x_4, ..., x_{2n-1}x_{2n}$. However, each pairing can be obtained in many ways from this construction: in each pair the two players can be exchanged in two ways, for the total of 2^n ways, and the n pairs themselves can be obtained in any order, and there are n! such orders. Therefore the number of pairings will be (2n)! divided by $2^n n!$, which is exactly our formula.

Solution 3: Let's try brute force: pick the pairs one by one. The first pair can be selected in $\binom{2n}{2} = 2n(2n-1)/2$ ways. Once we choose this pair, the second pair can be chosen in (2n-2)(2n-3)/2 ways, and so on. This will give us

$$\frac{2n(2n-1)(2n-2)...1}{2^n} = \frac{(2n)!}{2^n}$$

ways to choose the pairings. However, the n pairs in each pairing can be selected in all possible orderings, and there are n! such orderings. Thus we need to divide the above value by n!, which gives us $f(n) = (2n)!/(2^n n!)$.