Revisiting Post-Quantum Fiat-Shamir

Qipeng Liu & Mark Zhandry (Princeton & NTT Research)

Lattice Crypto ≠ Post-Quantum Crypto

Typical Lattice Crypto Thm:

Alg for lattice problems

Lattice problems are quantum hard

Post-Quantum Crypto

Lattice problems are quantum hard

Lattice Crypto → PQ Crypto?

[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z'11]

Classical reduction

Most proofs

ROM

[van de Graaf'97, Ambainis-Rosmanis-Unruh'14]

Quantum reduction

PQ Signatures from Lattices?

Standard Model

[Cash-Hofheinz-Kiltz-Peikert'09,...]

Hash-an z-sign

[Gentry ei'

Vaiku atha

ROM
[BDFLSZ'11,...]

One-way Funcs
[Rompe + [Ajtai'96]

Partial Solutions

[Kiltz-Lyubashevsky-Schaffner'17, Unruh'14,17,...]

This Work

Thm: Fiat-Shamir is PQ secure in the ROM

(Concurrently with [Don-Fehr-Majenz-Schaffner'19])

New techniques for quantum rewinding

Cor: [Lyubashevsky'11] is PQ secure assuming LWE

Quantum Background

Classical Stochastic Process

W(path p) := Π (probabilities along path) = Pr[p]

$$\Pr[y] = \sum_{p:s \to y} W(p)$$

Quantum Process

W(path p) := Π (weights along path)

$$Pr[y] = |\sum_{p:s \to y} W(p)|^2$$

Main Diff between Quantum and Classical:

Paths can interfere constructively or destructively, amplifying probabilities or eliminating them

Intermediate Observation in Stochastic Process

Intermediate Observation in Quantum Process

Paths for different x can no longer interfere

Observer effect: Learning anything about quantum system disturbs it

QM is Reversible?

Quantum Reversibility?

Transition matrices → Unitary → Invertible preserve 2-norm

but...

Quantum Irreversibility:

Is CM Reversible?

Classical Irreversibility? Transition matrices preserve 1-norm Stochastic Singular but...

Classical Reversibility:

Can always observe state at any point in time

Doesn't affect output distribution

Can "rewind" and return to prior state

Part 1:Fiat-Shamir In the Quantum Random Oracle Model

The Fiat-Shamir Transform [Fiat-Shamir'87]

Also: Identification protocols → signatures

PQ Fiat-Shamir Problem 1: ROM

For many schemes (including FS), can't base security on concrete hash function property

PQ Fiat-Shamir Problem 1: ROM

Solution ([Bellare-Rogaway'93]): Model hash as random oracle

Classical Fiat-Shamir Proof

Assume:

Classical Fiat-Shamir Proof

The Quantum Random Oracle Model (QROM)

[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z'11]

Now standard in post-quantum crypto

A Path View of Quantum Query Algs

Query: $(x,y) \rightarrow (x,y\oplus H(x))$

Problems with Fiat-Shamir in QROM

Query extraction:

On-the-fly simulation:

Adaptive Programming:

Can only set **H(com**_{i*}) after queries already made

Typical solution:

Committee entire

H at Leginning

Main Theorem: Fiat-Shamir preserves knowledge soundness in the quantum random oracle model. Also signatures from ID protocols.

Tool: [Z'19b]

Equal prob. on all oracles

Equal weight on all oracles

Paths for difference

H can't interfere

Quantum-ifying **H** has no effect on output distribution

A Path View of [Z'19b]

Primal Domain: function H

Fourier Domain: Current Parity_{path}

$$Parity_{path}(x) := \bigoplus_{(x,y) \in path} y$$

How to Extract from Quantum Queries

Lemma (informal): If $Parity_{path}(x)=0^n$, path has no knowledge of H(x)

Corollary: Any successful path must have Parity_{path}(com)≠0ⁿ at the end

(In particular must have queried **com**)

A Useful Tool

Observation Lemma ([Boneh-Z'13]): If observing **x** gives **†** possible outcomes,

Pr[y | x observed] ≥ Pr[y]/t

(simple consequence of Cauchy-Schwartz/Jensen)

Note: Doesn't work in other direction

Generalization

Lemma: Let $P = \{P_i\}_{i \in [t]}$ be a partition of possible paths.

Pr[y | i observed] ≥ Pr[y]/t

Our (First) Partition

- $P_i = \{$ successful paths where
- •Parity_{path}(com)=Oⁿ just before query i
- •Parity
 path(com)≠On after all queries j≥i}

Must __ Loose extra

factor of q

Algorithm to sample P_i (assuming i known)

- When making i-th query,
 - Observe com
 - Observe if Parity_{path}(com)=0ⁿ. If not, abort
- For j-th query, j>i, observe if Parity_{path}(com)=0ⁿ. If so, abort
- At end, if **adv** doesn't output **com**, abort

How to Adaptively Program

Adaptive Programming:

We now know **com**, but how do we embed **ch** into **H**?

Idea: Just before query i,
Parity_{path}(com)=0ⁿ

Can replace about H(com)

contents with ch

Problem: No more access to Parity path (com)

An Alternative Partition?

```
P<sub>i</sub> = {successful paths where

•Parity<sub>path</sub>(com)=0<sup>n</sup> after all queries j<i

•Parity<sub>path</sub>(com)≠0<sup>n</sup> after query i}
```

Problem:

Need to know **com** at beginning

but

com isn't observed until query **i**

How to Adaptively Program

Takeaway: Need partition that doesn't check Parity_{path}(com) once programmed

Takeaway: Need partition that doesn't check Parity_{path}(com) before com observed

Yet Another "Partition"?

```
Q<sub>i</sub> = {successful paths where

•Parity<sub>path</sub>(com)=0<sup>n</sup> just before query i

•Parity<sub>path</sub>(com)≠0<sup>n</sup> just after query i}
```

Problem: some paths counted multiple times

$$k = \begin{cases} \text{number of times } Parity_{path}(com) \\ \text{switches from } O^n \text{ to } \neq O^n \end{cases}$$

$$path \text{ will then be in } k \text{ of the } Q_i$$

Yet Another "Partition"?

```
Q<sub>i</sub> = {successful paths where

•Parity<sub>path</sub>(com)=0<sup>n</sup> just before query i

•Parity<sub>path</sub>(com)≠0<sup>n</sup> just after query i}
```

 R_i counts = Q_i over-counts

```
R<sub>i</sub> = {successful paths where

•Parity<sub>path</sub>(com)≠O<sup>n</sup> just before query i

•Parity<sub>path</sub>(com)=O<sup>n</sup> just after query i}
```

Generalization of [Boneh-Z'13]

Thm: Let $P = \{P_i\}_{i \in [t]}$ be a *collection* of sets of paths. Suppose $\exists \{\alpha_i\}$ s.t. for all p, $\sum_{i:p \in P_i} \alpha_i = 1$.

Pr[y | P_i, i uniformly random] ≥ Pr[y]/poly(t)

Relation to [Don-Fehr-Majenz-Schaffner'19]

[Liu-Z'19]:

We actually use much larger set $\{R_i\}$

worse reduction

[Don-Fehr-Majenz-Schaffner'19]: Direct algorithm+analysis, essentially same algorithm using the presented $\{R_i\}$

Takeaway

Most major ROM techniques/results now ported to QROM

Perhaps explains why known counterexamples are so contrived

[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z'11]: Relies on timing [Zhang-Yu-Feng-Fan-Zhang'19]: Doesn't correspond to natural crypto task

Part 2:

New Techniques for Quantum Rewinding

PQ Fiat-Shamir Problem 2: Rewinding

Special Soundness: Can extract witness from (com_0, ch_0, res_0) , (com_1, ch_1, res_1) s.t. $com_0 = com_1$

Typically easy to prove

Knowledge Soundness

Classical Reduction

Classical Reduction

Quantum Rewinding?

Problem ([van de Graaf'97, Ambainis-Rosmanis-Unruh'14]):

Extracting **res**₀ alters adversary's state

Adversary may no longer work on **ch**₁

[Ambainis-Rosmanis-Unruh'14]: Separation relative to quantum oracle

[Amos-Georgiou-Kiayias-Z'19]: Relative to classical oracle

Solution?

Good news: No standard model separations known

But: Special soundness still not enough to prove anything

Solution: Add additional properties that allow proof

Prior Work

[Unruh'12]:

Special Soundness + Strict Soundess

[Unruh'17]:

Statistical Soundness

[Alkim-Bindel-Buchmann-Dagdelen-

Eaton-Gutoski-Krämer-Pawlega'17, Kiltz-

Lyubashevsky-Schaffner'17]:

Special Soundness + Lossy Keys

[Unruh'15]:

Alternative Construction

Limitation of Prior Work

Limitation: Ensuring extra properties or modifying scheme often makes protocols inefficient

In particular, does not apply to [Lyubashevsky'11] or the most efficient schemes based on it

Idea Behind [Unruh'12]

Assume Weaker Guarantee (for now):

If we only observe whether adversary succeeds (but not **res**), then rewinding works

Strict Soundness:

res unique, given (com,ch)

+

Obs. Lemma with t=1

Can observe **res** without affecting success probability

Knowledge Soundness

Idea Behind [Unruh'12]

Thm [Unruh'12]: Weaker Guarantee holds

Segue: Collapsing Hash Functions [Unruh'16a]

By observer effect, second message different from first message

"right" generalization of collision resistance for post-quantum

Idea: Collapsing Sigma Protocols

Idea: Collapsing Sigma Protocols

Thm:

Collapsing + Knowledge
Special Soundness
Soundness

Proof:

Essentially same as [Unruh'12], except observing **res** now computational

(Also in [Don-Fehr-Majenz-Schaffner'19])

Final Piece: Collapsing Protocols

For this talk: focus on simpler problem of collapsing hash functions

Existing Collapsing Hash Functions?

From Random Oracles

[Unruh'16a, Unruh'17b, Czajkowski-Bruinderink-Hülsing-Schaffner-Unruh'18]

From Lossy Functions
[Unruh'16b]

SIS contains neither a random oracle nor a lossy function!

Our Solution: Associated Lossy Functions

Our Solution: Associated Lossy Functions

Thm:H has associated lossy func → H is collapsing

Associated Lossy Functions for SIS

Thm (informal): Assuming LWE, SIS has associated lossy functions

Associated Lossy Functions for SIS

Gen_{lossy}(y):

$$f_{B}(x): \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} u \\ x \end{bmatrix} \cdot \begin{bmatrix} x \\ x \end{bmatrix} + \begin{bmatrix} e \\ x \end{bmatrix} \cdot \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} u \\ x \end{bmatrix} \cdot \begin{bmatrix} x \\ x \end{bmatrix}$$

Associated Lossy Functions for SIS

Gen_{inj}(y):

Caveat

Correctness of **Gen**_{lossy} needs super-poly **q**

But, most efficient protocols have poly **q**

Solution:

Relax assoc. lossy func

Relaxed notion of collapsing

Good enough for rewinding

Works for any polynomial **q**

Takeaway

any assoc. lossy function implies collapsing

Collapsing probably much more common than previously thought (can potentially use crazy tools like iO)

Maybe unsurprising that collapsing counterexamples are hard to find

[Z'19a]: Counterexamples useful for quantum money