BABEŞ-BOLYAI UNIVERSITY Faculty of Computer Science and Mathematics

ARTIFICIAL INTELLIGENCE

Solving search problems

Informed local search strategies
Evolutionary Algorithms

Topics

A. Short introduction in Artificial Intelligence (AI)

A. Solving search problems

- A. Definition of search problems
- **B.** Search strategies
 - A. Uninformed search strategies
 - B. Informed search strategies
 - c. Local search strategies (Hill Climbing, Simulated Annealing, Tabu Search, Evolutionary algorithms, PSO, ACO)
 - D. Adversarial search strategies

c. Intelligent systems

- A. Rule-based systems in certain environments
- B. Rule-based systems in uncertain environments (Bayes, Fuzzy)
- c. Learning systems
 - A. Decision Trees
 - **B.** Artificial Neural Networks
 - c. Support Vector Machines
 - Evolutionary algorithms
- D. Hybrid systems

Content

- Solving problems by search
 - Informed search strategies
 - Local strategies
 - Evolutionary algorithms

Useful information

- Chapter 14 of C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- Chapter 7.6 of A. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- Chapter 9 of T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

Local search

Typology

- Simple local search a single neighbour state is retained
 - □ Hill climbing → selects the best neighbour
 - □ Simulated annealing → selects probabilistic the best neighbour
 - □ Tabu search → retains the list of visited solutions
- Beam local search more states are retained (a population of states)
 - Evolutionary algorithms
 - Particle swarm optimisation
 - Ant colony optmisation

Nature-inspired search

- Best method for solving a problem
 - Human brain
 - Has created the wheel, car, town, etc.
 - Mechanism of evolution
 - Has created the human brain
- Simulation of nature
 - By machines' help → the artificial neural networks simulate the brain
 - Flying vehicles, DNA computers, membrane-based computers
 - By algorithms' help
 - Evolutionary algorithms simulate the evolution of nature
 - Particle Swarm Optimisation simulates the collective and social behaviour
 - Ant Colony Optimisation

Evolutionary Algorithms (EAs) – Basic elements

- Simulation of nature
 - Fly of bats
 - Leonardo da Vinci sketch of a flying machine
 - Flies of birds and planes
 - Flies of birds and wind-turbines

- Main characteristics of EAs
 - Iterative and parallel processes
 - Based on random search
 - Bio-inspired involve mechanisms as:
 - Natural selection
 - Reproduction
 - Recombination
 - Mutation

Historical points

- Jean Baptise de Lamark (1744-1829)
 - Has proposed in 1809 an explanation For origin of species in the book Zoological Philosophy:
 - Needs of an organism determine the evolving characteristics
 - Useful characteristics could be transferred to offspring
 - use and disuse law

Historical points

- Charles Darwin (1807-1882)
 - In the book Origin of Species he proved that all the organisms have evolved based on:
 - Variation
 - Overproduction of offspring
 - Natural selection
 - Competition (generation of constant size)
 - Fitness survival
 - Reproduction
 - Occurrence of new species

Historical points

- Modern theory of evolution
 - Darwin's theory is improved by mechanism of genetic inheritance
 - Genetic variance is produced by
 - Mutation and
 - Sexual recombination
 - L. Fogel 1962 (San Diego, CA) Evolutionary Programming (EP)
 - J. Holland 1962 (Ann Arbor, MI) → Genetic Algorithms (GAs)
 - I. Rechenberg & H.-P. Schwefel 1965 (Berlin, Germany) → Evolution Strategies (ESs)
 - J. Koza 1989 (Palo Alto, CA) → Genetic Programming (GP)

Evolutionary metaphor

Natural evolution		Problem solving
Individual	\leftrightarrow	Possible solution
Population	\leftrightarrow	Set of possible solutions
Chromosome	\leftrightarrow	Coding of a possible solution
Gene	\longleftrightarrow	Part of coding
Fitness	\longleftrightarrow	Quality
Crossover and Mutation	\longleftrightarrow	Search operators
Environment	\leftrightarrow	Problem

EAs - algorithm

General sketch

Design

EAs - algorithm

- General sketch of an EA
 - Generational ————>
 - Steady-state ----->

EAs - algorithm

Design

- Chromosome representation
- Population model
- Fitness function
- Genetic operators
 - Selection
 - Mutation
 - Crossover
- Stop condition

- 2 levels of each possible solution
 - External level → phenotype
 - Individual original object in the context of the problem
 - The possible solutions are evaluated here
 - Ant, knapsack, elephant, towns, ...

- Internal level → genotype
 - Chromosome code associated to an object
 - Composed by genes, located in loci (fix positions) and having some values (alleles)
 - The possible solutions are searched here
 - One-dimensional vector (with numbers, bits, characters), matrix, ...

- Representation must be representative for:
 - Problem
 - Fitness function and
 - Genetic operators

Typology of chromosome's representation

- Linear
 - Discrete
 - □ Binary → knapsack problem
 - Not-binary
 - Integers
 - Random → image processing
 - Permutation → travelling salesman problem (TSP)
 - Class-based → map colouring problem
 - Continuous (real) → function optimization
- □ Tree-based → regression problems

- □ Linear discrete and binary representation chromosome
 - Genotype
 - Bit-strings

- Linear discrete and binary representation
 - Genotype
 - Bit-strings
 - Phenotype
 - Boolean elements
 - Eg. Knapsack problem selected objects for the bag

- Linear discrete and binary representation
 - Genotype
 - Bit-strings
 - Phenotype
 - Boolean elements
 - Eg. Knapsack problem selected objects for the bag

Integers

- Linear discrete and binary representation
 - Genotype
 - Bit-strings
 - Phenotype
 - Boolean elements
 - Example: Knapsack problem selected objects for the bag

- Integers
- Real numbers from a range (ex. [2.5, 20.5])

Genotype Phenotype

1 0 1 0 0 0 1 1 = 13.9609

$$x = 2.5 + \frac{163}{256}(20.5 - 2.5) = 13.9609$$

Transformation of real values from binary representation

- □ Let be $z \in [x,y] \subseteq \mathcal{R}$ represented as $\{a_1,...,a_L\} \in \{0,1\}^L$
- □ Function $[x,y] \rightarrow \{0,1\}^{\perp}$ must be inverse (a phenotype corresponds to a genotype)
- Function $\Gamma: \{0,1\}^{\perp} \to [x,y]$ defines the representation $\Gamma(a_1,...,a_L) = x + \frac{y-x}{2^L-1} \cdot (\sum_{j=0}^{L-1} a_{L-j} \cdot 2^j) \in [x,y]$
- Remarks
 - 2^L values can be represented
 - L maximum precision of solution
 - For a better precision → long chromosomes → slowly evolution

- Linear discrete non-binary integer random representation
 - Genotype
 - Vector of integers from a given range
 - Phenotype
 - Utility of numbers in the problem
 - Example: Pay a sum S by using different n coins
 - □ Genotype → vector of n integers from range [0, S/value of current coin]
 - □ Phenotype → how many coins of each type must be considered

- Linear discrete non-binary integer permutation representation
 - Genotype
 - Permutation of n elements (n number of genes)
 - Phenotype
 - Utility of permutation in problem
 - Example Traveling Salesman Problem
 - □ Genotype → permutation of n elements
 - □ Phenotype \rightarrow visiting order of towns (each town has associated a number from $\{1,2,...,n\}$)

- Linear discrete non-binary integer class-based representation
 - Similarly to integer one, but labels are used instead numbers
 - Genotype
 - Vector of labels from a given set
 - Phenotype
 - Labels' meaning
 - Example Map colouring problem
 - □ Genotype → vector of n colours (n number of countries)
 - □ Phenotype → what colour has to be used for each country

- Linear continuous (real) representation
 - Genotype
 - Vector of real numbers
 - Phenotype
 - Number meaning
 - Example Function optimisation f:Rⁿ → R
 - □ Genotype \rightarrow more real numbers $X = [x_1, x_2, ..., x_n], x_i \in \mathbb{R}$
 - □ Phenotype → values of function f arguments

- Tree-based representation
 - Genotype
 - Trees than encode S-expressions
 - □ Internal nodes → functions (F)
 - Mathematical
 - Arithmetic operators
 - Boolean operators
 - Statements
 - Of a given programming language
 - Of other language type
 - Leaf → terminals (T)
 - Real or Boolean values, constants or variables
 - Sub-programs
 - Phenotype
 - Meaning of S-expressions
 - Example Computing the circle area

Population – concept

- Aim
 - To keep a collection of possible solutions (candidate solutions)
 - Repetitions are allowed
- Properties
 - \Box (usually) fixed dimension μ
 - Diversity
 - Number of different fitnesses/phenotypes/genotypes
- Remarks
 - Represents the basic unit that evolves
 - The entire population evolves, not only the individuals!!!

- Population initialisation
 - Uniformly distributed in the search space (if it is possible)
 - Binary strings
 - Randomly generation of 0 and 1 with a 0.5 probability (fifty-fifth)
 - Arrays of real numbers uniformly generated (in a given range)
 - Permutations
 - Generation of identical permutation and making some changes

- Population initialisation
 - Uniformly distributed in the search space (if it is possible)
 - Trees
 - Full method complete trees
 - Nodes of depth d < D_{max} are randomly initialised by a function from function set F
 - nodes of depth $d = D_{max}$ are randomly initialised by a terminal from the terminal set T
 - Grow method incomplete trees
 - Nodes of depth $d < D_{max}$ are randomly initialised by an element from F U T
 - nodes of depth $d = D_{max}$ are randomly initialised by a terminal from the terminal set T
 - Ramped half and half method
 - ½ of population is initialised by Full methods
 - ½ of population is initialised by Grow methods
 - By using different depths

Population model:

- Generational EA
 - Each generation creates μ offspring
 - Each individual survives a generation only
 - Set of parents is totally replaced by set of offspring
- Steady-state EA
 - Each generation creates a single offspring
 - A single parent (the worst one) is replaced by the offspring

Generation Gap

- Proportion of replaced population
- $1 = \mu/\mu$, for generational model
- $1/\mu$, for steady-state model

EAs - algorithm Design – fitness function

- Aim
 - Reflects the adaptation to environment
 - Quality function or objective function
 - Associates a value to each candidate solution
 - □ Consequences over selection → the more different values, the better
- Properties
 - Costly stage
 - Un changed individuals could not be re-evaluated
- Typology:
 - Number of objectives
 - One-objective
 - Multi-objective → Pareto fronts
 - Optimisation direction
 - Maximisation
 - Minimisation
 - Degree of precision
 - Deterministic
 - Heuristic

EAs - algorithm Design – fitness function

Examples

- Knapsack problem
 - □ Representation → linear, discrete and binary
 - □ Fitness → abs(knapsack's capacity weight of selected objects) → min
- Problem of paying sum s by using different coins
 - □ Representation → linear, discrete and integer
 - □ Fitness → abs(sum to be paid sum of selected coins) → min
- TSP
 - □ Representation → linear, discrete, integer, permutation
 - □ Fitness → cost of path → min
- Numerical function optimization
 - □ Representation → linear, continuous, real
 - Fitness → value of function → min/max
- Computing the circle's area
 - Representation → tree-based
 - Fitness → sum of square errors (difference between the real value and the computed value for a given set of examples) → min

EAs - algorithm Design - selection

Aim:

- Gives more reproduction/survival chances to better individuals
 - Weaker individuals have chances also because they could contain useful genetic material
- Orients the population to improve its quality

Properties

- Works at population-level
- Is based on fitness only (is independent to representation)
- Helps to escape from local optima (because its stochastic nature)

EAs - algorithm Design – selection

Typology

- Aim
 - Parent selection (from current generation) for reproduction
 - Survival selection (from parents and offspring) for next generation
- Winner strategy
 - Deterministic the best wins
 - Stochastic the best has more chances to win

Mechanism

- Selection for recombination
 - Proportional selection (based on fitness)
 Based on entire population
 - Rank-based selection
 - Tournament selection ----> Based on a part of population
- Survival selection
 - Age-based selection
 - Fitness-based selection

EAs - algorithm Design – recombination selection

- Proportional selection (fitness-based selection) PS
 - Main idea
 - Roulette algorithm for entire population
 - Estimation of the copies # of an individual (selection pressure)

$$E(n_i) = \mu \frac{f(i)}{\langle f \rangle}$$
 , where:

- $\mu = \text{size of population}$,
- f(i) = fitness of individual i,
- $\langle f \rangle$ = mean fitness of population
- Better individuals
 - Have more space on roulette
 - Have more chances to be selected
- Ex. A population of μ = 3 individuals

	f(i)	P _{selPS} (i)		
Α	1	1/10=0.1		
В	5	5/10=0.5		
С	4	4/10=0.4		
Suma	10	1		

Best

EAs - algorithm Design – recombination selection

Proportional selection (fitness-based selection) - PS

- Advantages
- Simple algorithm
- Disadvantages
- Premature convergence
 - Best chromosomes predispose to dominate the population
- Low selection pressure when fitness functions are very similar (at the end of a run)
- Real results are different to theoretical probabilistic distribution
- Works at the entire population level
- Solutions
- Fitness scaling
 - Windowing
 - $f'(i) = f(i) \beta^t$, where β is a parameter that depends on evolution history
 - eg. β is the fitness of the weakest individual of current population (the tth generation)
 - Sigma scaling (Goldberg type)
 - $f'(i) = \max\{f(i) (\langle f \rangle c * \sigma_f), 0.0\}$, where:
 - C a constant (usually, 2)
 - (f) average fitness of population
 - $\sigma_{\rm f}$ standard deviation of population fitness
 - Normalisation
 - Starts by absolute (initial) fitnesses
 - Standardize these fitnesses such as the fitnesses:
 - Belong to [0,1]
 - Best fitness is the smallest one (equal to 0)
 - Sum of them is 1
- Another selection mechanism

EAs - algorithm Design – selection for recombination

Ranking selection – RS

- Main idea
 - Sort the entire population based on fitness
 - Increases the algorithm complexity, but it is negligible related to the fitness evaluation
 - Each individual receives a rank
 - Computes the selection probabilities based on these ranks
 - Best individual has rank μ
 - Worst individual has rank 1
 - Tries to solve the problems of proportional selection by using relative fitness (instead of absolute fitness)

EAs - algorithm Design – selection for recombination

Ranking selection - RS

- Ranking procedures
 - □ Linear (LR) $P_{lin_rank}(i) = \frac{2-s}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$
 - s selection pressure
 - Measures the advantages of the best individual
 - 1.0 < *s* ≤ 2.0
 - In the generational algorithm s represents the copies number of an individual
 - Eg. For a population of $\mu = 3$ individuals

	f(i)	P _{selPS} (i)	Rank	P _{selLR} (i) for s=2	P _{selRL} (i) for s=1.5
Α	1	1/10=0.1	1	0.33	0.33
В	5	5/10=0.5	3	1.00	0.33
С	4	4/10=0.4	2	0.67	0.33
Sum	10	1			

- □ Exponential (ER) $P_{\exp_{-rank}}(i) = \frac{1 e^{-i}}{c}$
 - Best individual can have more than 2 copies
 - C normalisation factor
 - Depends on the population size (μ)
 - Must be choose such as the sum of selection probabilities to be 1

- Ranking selection RS
 - Advantages
 - Keep the selection pressure constant
 - Disadvantages
 - Works with the entire population
 - Solutions
 - Another selection procedure

EAs - algorithm Design – selection for recombination

Tournament selection

- Main idea
 - Chooses k individuals → sample of k individuals (k tournament size)
 - Selects the best individual of the sample
 - Probability of sample selection depends on
 - Rank of individual
 - Sample size (k)
 - The larger k is, the greater selection pressure is
 - Choosing manner with replacement (steady-state model) or without replacement
 - Selection without replacement increases the selection pressure
 - For k = 2 the time required by the best individual to dominate the population is the same to that from linear ranking selection with s = 2 * p, p selection probability of the best individual from population

Winners f=9

Tournament selection

Advantages

- Does not work with the entire population
- Easy to implement
- Easy to control the selection pressure by using parameter k

Disadvantages

 The real results of this selection are different to theoretical distribution (similarly to roulette selection)

EAs - algorithm Design – survival selection

- Survival selection (selection for replacement)
 - Based on age
 - Eliminates the oldest individuals
 - Based on fitness
 - Proportional selection
 - Ranking selection
 - Tournament selection
 - Elitism
 - Keep the best individuals from a generation to the next one (if the offspring are weaker than parents, then keep the parents)
 - GENITOR (replaces the worst individual)
 - Elimination of the worst λ individuals

EAs - algorithm Design – variation operators

Aim :

Generation of new possible solutions

Properties

- Works at individual level
- Is based on individual representation (fitness independent)
- Helps the exploration and exploitation of the search space
- Must produce valid individuals

Typology

- Arity criterion
 - □ Arity 1 → mutation operators
 - □ Arity > 1 → recombination/crossover operators

EAs - algorithm Design – mutation

Aim

- Reintroduces in population the lost genetic material
- Unary search operator (continuous space)
- Introduces the diversity in population (discrete space)

Properties

- Works at genotype level
- Based on random elements

- Responsible to the exploration of promising regions of the search space
- Responsible to escape from local optima
- Must introduce small and stochastic changes for an individual
- Size of mutation must be controllable
- Can probabilistic take place (by a given probability p_m) at the gene level

EAs - algorithm Design – mutation

Typology

- Binary representation
 - Strong mutation bit-flipping
 - Weak mutation
- Integer representation
 - Random resetting
 - Creep mutation
- Permutation representation
 - Insertion mutation
 - Swap mutation
 - Inverse mutation
 - scramble mutation
 - K-opt mutation
- Real representation
 - Uniform mutation
 - Non-uniform mutation
 - Gaussian mutation
 - Cauchy mutation
 - Laplace mutation
- Tree-based representation → future lecture
 - Grow mutation
 - Shrink mutation
 - Switch mutation
 - Cycle mutation
 - Koza mutation
 - Mutation for numerical terminals

EAs - algorithm Design – mutation (binary representation)

- □ A chromosome $c=(g_1,g_2,...,g_L)$ becomes $c'=(g_1',g_2',...,g_L')$, where $g_i, g_i' \in \{0,1\}$, for i=1,2,...,L
- Strong mutation bit flipping
 - Main idea
 - Changes by probability p_m (mutation rate) all the genes in their complement
 - $1 \rightarrow 0$
 - $0 \rightarrow 1$
 - \blacksquare Eg. A chromosome of L=8 genes, $p_m=0.1$

EAs - algorithm Design – mutation (binary representation)

□ A chromosome $c=(g_1,g_2,...,g_L)$ becomes $c'=(g_1',g_2',...,g_L')$, where $g_i,g_i'\in\{0,1\}$, for i=1,2,...,L

Weak mutation

- Main idea
 - $flue{}$ Changes by probability p_m (mutation rate) some of the genes in 0 or 1
 - $1 \to 0/1$
 - $0 \to 1/0$
 - \blacksquare Eg. A chromosome of L=8 genes, $p_m=0.1$

EAs - algorithm Design – mutation (integer representation)

□ A chromosome $c=(g_1,g_2,...,g_L)$ becomes $c'=(g_1',g_2',...,g_L')$, where $g_i, g_i' \in \{val_1, val_2,...,val_k\}$ for i=1,2,...,L

- Random resetting mutation
 - Main idea
 - □ The value of a gene is changed (by probability p_m) into another value (from the definition domain)

EAs - algorithm Design – mutation (integer representation)

- □ A chromosome $c=(g_1,g_2,...,g_L)$ becomes $c'=(g_1',g_2',...,g_L')$, where g_i , $g_i' \in \{val_1, val_2, ..., val_k\}$, for i=1,2,...,L
- Creep mutation
 - Main idea
 - □ The value of a gene is changed (by probability p_m) by adding a positive/negative value
 - New value follows a 0 symmetric distribution
 - The performed change is very small

Design – mutation (permutation representation

□ A chromosome $c=(g_1,g_2,...,g_L)$ with $g_i\neq g_i$ for all $i\neq i$ becomes $c'=(g_1',g_2',...,g_L')$, where $g_i,g_i'\in\{val_1,val_2,...,val_L\}$, for i=1,2,...,L s.a. $g_i'\neq g_i'$ for all $i\neq i$.

□ Swap mutation

- Main idea
 - Randomly choose 2 genes and swap their values

Design – mutation (permutation representation

Insertion mutation

- Main idea
 - □ Randomly choose 2 genes g_i and g_j with j > i
 - □ Insert gene gj after gene gi s.a. $g_i'=g_i$, $g_{i+1}'=g_j$, $g_{k+2}'=g_{k+1}$, for k=i, i+1, i+2, ...

Design – mutation (permutation representation

Inversion mutation

- Main idea
 - Randomly choose 2 genes and inverse the order of genes between them (sub-string of genes)

Design – mutation (permutation representation

□ scramble mutation

- Main idea
 - Randomly choose a (continuous or discontinuous)
 sub-array of genes and re-organise that genes

Design – mutation (permutation representation)

□ A chromosome $c=(g_1,g_2,...,g_L)$ with $g_i\neq g_i$ for all $i\neq i$ becomes $c'=(g_1',g_2',...,g_L')$, where $g_i,g_i'\in\{val_1,val_2,...,val_L\}$, for i=1,2,...,L s.a. $g_i'\neq g_i'$ for all $i\neq i$.

K-opt mutation

- Main idea
 - Choose 2 disjoint sub-strings of length k
 - Interchange 2 elements of these sub-strings

EAs - algorithm Design – mutation (real representation)

□ A chromosome $c=(g_1,g_2,...,g_L)$ becomes $c'=(g_1',g_2',...,g_L')$, where g_i , $g_i' \in [LI_i, LS_i]$, for i=1,2,...,L

Uniform mutation

- Main idea
 - g_i is changed by probability p_m into a new value that is randomly uniform generated in $[LI_i, LS_i]$ range

EAs - algorithm Design – mutation (real representation)

□ A chromosome $c=(g_1,g_2,...,g_L)$ becomes $c'=(g_1',g_2',...,g_L')$, where $g_i, g_i' \in [LI_i, LS_i]$, for i=1,2,...,L

Non-uniform mutation

Main idea

The value of a gene is changed by adding a positive/negative value with a given probability (p_m)

- The added value belongs to a distribution of type
 - $N(\mu, \sigma)$ (Gaussian) with $\mu = 0$
 - Cauchy (x₀, γ)
 - Laplace (µ, b)
- And it is re-introduced in [LI_i, LS_i] range (if it is necessary) clamping

EAs - algorithm Design – recombination

- Aim
 - Mix the parents' information
- Properties
 - The offspring has to inherit something from both parents
 - Selection of mixed information is randomly performed
 - Operator for exploitation of already discover possible solutions
 - The offspring can be better, the same or weaker than their parents
 - Its effects are reducing while the search converges

EAs - algorithm Design – recombination

Typology

- Binary and integer representation
 - With cutting points
 - Uniforme

Permutation representation

- Order crossover (version 1 and version 2)
- Partially Mapped Crossover
- Cycle crossover
- Edge-based crossover

Real representation

- Discrete
- Arithmetic
 - Singular
 - Simple
 - Complete
- Geometric
- Shuffle crossover
- Simulated binary crossover

Tree-based representation

Sub-tree based crossover → future lecture

Design – recombination (binary and integer representation)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - where $g_i^1, g_i^2, g_i', g_i'' \in \{0,1\} / \{val_1, val_2, ..., val_k\}$, for i=1,2,...,L

N-cutting point crossover

- Main idea
 - Choose n cutting-points (n < L)</p>
 - Cut the parents through these points
 - Put together the resulted parts, by alternating the parents

March, 2017

Design – recombination (binary and integer representation)

- N cutting point crossover
 - Properties
 - Average of values encoded by parents = average of values encoded by offspring
 - Eg binary representation on 4 bits of integer numbers XO with n=1 after second bit
 - $p_1 = (1,0,1,0), p_2 = (1,1,0,1)$
 - $c_1 = (1,0,0,1), c_2 = (1,1,1,0)$
 - $val(p_1) = 10$, $val(p_2) = (13) \rightarrow (val(p_1) + val(p_2))/2 = 23/2 = 11.5$
 - $val(c_1) = 9$, $val(c_2) = (14) \rightarrow (val(c_1) + val(c_2))/2 = 23/2=11.5$
 - Eg. Binary representation on 4 bits for knapsack problem (K=10, 4 items of weight and value: (2,7), (1,8), (3,1), (2,3))
 - $p_1 = (1,0,1,0), p_2 = (1,1,0,1)$
 - $c_1 = (1,0,0,1), c_2 = (1,1,1,0)$
 - $val(p_1) = 8$, $val(p_2) = 18 \rightarrow (val(p_1) + val(p_2))/2 = 26/2=13$
 - $val(c_1) = 10$, $val(c_2) = 16 \rightarrow (val(c_1) + val(c_2))/2 = 26/2=13$
 - Probability of $\beta \approx 1$ is the largest one $\beta = \frac{val(d_1) val(d_2)}{val(p_1) val(p_2)}$
 - Contracting crossover β < 1
 - Offspring values are between parent values
 - Expanding crossover β > 1
 - Parent values are between offspring values
 - Stationary crossover β = 1
 - Offspring values are equal to parent values

Design – recombination (binary and integer representation)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - where $g_i^1, g_i^2, g_i', g_i'' \in \{0,1\} / \{val_1, val_2, ..., val_k\}$, for i=1,2,...,L
- Uniform crossover
 - Main idea
 - Each gene of an offspring comes from a randomly and uniform selected parent:
 - For each gene a uniform random number r is generated
 - If r < probability p (usually, p=0.5), c_1 will inherit that gene from p_1 and c_2 from p_2 ,
 - otherwise, c₁ will inherit p₂ and c₂ will inherit p₁

- □ From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

- Main idea
 - Offspring keep the order of genes from parents
 - Choose a substring of genes from the parent p_1
 - Copy the substring from p_1 into offspring d_1 (on corresponding positions)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_1^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_1^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_1')$ and $c_2 = (g_1'', g_2'', ..., g_1'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

- Main idea
 - Offspring keep the order of genes from parents
 - Choose a substring of genes from the parent p_1
 - Copy the substring from p_1 into offspring d_1 (on corresponding positions)
 - Copy the genes of p_2 in offspring d_1 :
 - Starting with the first position after sub-string
 - Respecting gene's order from p_2 and
 - Re-loading the genes from start (if the end of chromosome is reached)

Design – recombination (permutation representation)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_1^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_1^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_1')$ and $c_2 = (g_1'', g_2'', ..., g_1'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

Order crossover

- Main idea
 - Offspring keep the order of genes from parents
 - Choose a substring of genes from the parent p_1
 - Copy the substring from p_1 into offspring d_1 (on corresponding positions)
 - Copy the genes of p_2 in offspring d_1 :
 - Starting with the first position after sub-string
 - Respecting gene's order from p_2 and
 - Re-loading the genes from start (if the end of chromosome is reached)

Artificial Intelligence - local search methods (EAs)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_1^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_1^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_1')$ and $c_2 = (g_1'', g_2'', ..., g_1'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L
- Order crossover
 - Main idea
 - Offspring keep the order of genes from parents
 - Choose a substring of genes from the parent p_1
 - Copy the substring from p_1 into offspring d_1 (on corresponding positions)
 - Copy the genes of p_2 in offspring d_1 :
 - Starting with the first position after sub-string
 - Respecting gene's order from p_2 and
 - Re-loading the genes from start (if the end of chromosome is reached)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_1^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_1^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_1')$ and $c_2 = (g_1'', g_2'', ..., g_1'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

- Main idea
 - Offspring keep the order of genes from parents
 - Choose a substring of genes from the parent p_1
 - Copy the substring from p_1 into offspring d_1 (on corresponding positions)
 - Copy the genes of p_2 in offspring d_1 :
 - Starting with the first position after sub-string
 - Respecting gene's order from p_2 and
 - Re-loading the genes from start (if the end of chromosome is reached)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_1^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_1^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_1')$ and $c_2 = (g_1'', g_2'', ..., g_1'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

- Main idea
 - Offspring keep the order of genes from parents
 - Choose a substring of genes from the parent p_1
 - Copy the substring from p_1 into offspring d_1 (on corresponding positions)
 - Copy the genes of p_2 in offspring d_1 :
 - Starting with the first position after sub-string
 - Respecting gene's order from p_2 and
 - Re-loading the genes from start (if the end of chromosome is reached)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

- Main idea
 - Offspring keep the order of genes from parents
 - Choose a substring of genes from the parent p_1
 - Copy the substring from p_1 into offspring d_1 (on corresponding positions)
 - Copy the genes of p_2 in offspring d_1 :
 - Starting with the first position after sub-string
 - Respecting gene's order from p_2 and
 - Re-loading the genes from start (if the end of chromosome is reached)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_1^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_1^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_1')$ and $c_2 = (g_1'', g_2'', ..., g_1'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

- Main idea
 - Offspring keep the order of genes from parents
 - Choose a substring of genes from the parent p_1
 - Copy the substring from p_1 into offspring d_1 (on corresponding positions)
 - Copy the genes of p_2 in offspring d_1 :
 - Starting with the first position after sub-string
 - Respecting gene's order from p_2 and
 - Re-loading the genes from start (if the end of chromosome is reached)
 - Repeat all the previous steps for the second offspring d_2 .

Design – recombination (permutation representation)

- □ From 2 parent chromosomes
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

Partially mapped XO

- Main idea
 - Choose a substring of genes from parent p₁
 - $lue{}$ Copy the sub-string into offspring d_1 (on corresponding positions)
 - Take elements i from substring of p_2 that do not belong to substring from p_1 and determine the element j that was copied instead of it from p_1
 - Put *i* in d_1 on position of *j* in p_2 (if that place is empty)
 - If the place of j in p_2 is already filled by element k in d_1 , then i will be put in the position of k in p_2
 - All the other elements are copied from p_2 into d_1

Design – recombination (permutation representation)

- From 2 parent chromosomes
 - $p_1 = (q_1^1, q_2^1, ..., q_1^1)$ and $p_2 = (q_1^2, q_2^2, ..., q_1^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_1')$ and $c_2 = (g_1'', g_2'', ..., g_1'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

Partially mapped XO

- Main idea
 - Choose a substring of genes from parent p₁
 - \square Copy the sub-string into offspring d_1 (on corresponding positions)
 - Take elements i from substring of p_2 that do not belong to substring from p_1 and determine the element j that was copied instead of it from p_1
 - Put *i* in d_i on position of *j* in p_2 (if that place is empty)
 - If the place of j in p_2 is already filled by element k in d_1 , then i will be put in the position of k in p_2
 - \blacksquare All the other elements are copied from p_2 into d_1

$$p_1 = (g_1^1, g_2^1, ..., g_L^1) \text{ and } p_2 = (g_1^2, g_2^2, ..., g_L^2)$$

- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

Partially mapped XO

Main idea

- Choose a substring of genes from parent p₁
- Copy the sub-string into offspring d_1 (on corresponding position).
- Take elements i from substring of p_2 that do not belong to substring from p_1 and determine the element j that was copied instead of it from p_1
- Put *i* in d_1 on position of *j* in p_2 (if that place is empty)
- If the place of j in p_2 is already filled by element k in d_1 , then i will be put in the position of k in p_2
- All the other elements are copied from p_2 into d_1
- \blacksquare Repeat the procedure for d_2 by swapping the parents

1

- □ From 2 parent chromosomes
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L
- Cycle crossover
 - Main idea
 - 1. Initialy, k = 1
 - 2. Create a cycle:
 - Add into the cycle the gene from position k from p₁ (g_k¹)
 - Take the gene of position k from p_2 (g_k^2)
 - Select the gene of p_1 whose value is equal to g_k^2 (g_r^1) and include it in the cycle
 - Take the gene of position r from p_2 (g_r^2)
 - Repeat the previous steps until the gene of position k from p_1 is considered
 - 3. Copy the genes of cycle into d_1 (by respecting the appearance positions in p_1)
 - 4. Increase k and compose an new cycle with the genes from p_2
 - Copy the genes of cycle into d_1 (by respecting the appearance positions in p_2)
 - Repeat steps 2-5 until k = L

- □ From 2 parent chromosomes
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L
- Cycle crossover
 - Main idea
 - 1. Initialy, k = 1
 - 2. Create a cycle:
 - Add into the cycle the gene from position k from p_1 (g_k^1)
 - Take the gene of position k from p_2 (g_k^2)
 - Select the gene of p_1 whose value is equal to g_k^2 (g_r^1) and include it in the cycle
 - Take the gene of position r from p_2 (g_r^2)
 - Repeat the previous steps until the gene of position k from p_t is considered
 - 3. Copy the genes of cycle into d_1 (by respecting the appearance positions in p_1)
 - 4. Increase k and compose an new cycle with the genes from p_2
 - Copy the genes of cycle into d_1 (by respecting the appearance positions in p_2)
 - Repeat steps 2-5 until k = L

- □ From 2 parent chromosomes
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L
- Cycle crossover
 - Main idea
 - 1. Initialy, k = 1
 - 2. Create a cycle:
 - Add into the cycle the gene from position k from p_1 (g_k^1)
 - Take the gene of position k from p_2 (g_k^2)
 - Select the gene of p_1 whose value is equal to g_k^2 (g_r^1) and include it in the cycle
 - Take the gene of position r from p_2 (g_r^2)
 - Repeat the previous steps until the gene of position k from p_t is considered
 - 3. Copy the genes of cycle into d_1 (by respecting the appearance positions in p_1)
 - 4. Increase k and compose an new cycle with the genes from p_2
 - Copy the genes of cycle into d_1 (by respecting the appearance positions in p_2)
 - Repeat steps 2-5 until k = L

- From 2 parent chromosomes
 - $p_1 = (q_1^1, q_2^1, ..., q_1^1)$ and $p_2 = (q_1^2, q_2^2, ..., q_1^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_1')$ and $c_2 = (g_1'', g_2'', ..., g_1'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L
- Edge-based crossover
 - See Whitley, Darrell, Timothy Starkweather, D'Ann Fuguay (1989). "Scheduling problems and traveling salesman: The genetic edge recombination operator". International Conference on Genetic Algorithms. pp. 133-140 link

Design – recombination (real representation)

- □ From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L
- Discrete crossover
 - Main idea

March, 2017

- □ Each gene offspring is taken (by the same probability, p = 0.5) from one of the parents
- Similarly to uniform crossover for binary/integer representation
- The absolute values of genes are not changed (no new information is created)

Artificial Intelligence - local search methods (EAs)

79

Design – recombination (real representation)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1) \text{ and } p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

Arithmetic crossover

- Main idea
 - □ Create offspring between parents → arithmetic crossover
 - $z_i = \alpha x_i + (1 \alpha) y_i$ where $\alpha : 0 \le \alpha \le 1$.
 - Parameterl α can be:
 - Constant → uniform arithmetic crossover
 - Variable → eg. Depends on the age of population
 - Random → generated for each new XO that is performed
 - New values of a gene can appear
- Typology
 - Singular arithmetic crossover
 - Simple arithmetic crossover
 - Complete arithmetic crossover

Design – recombination (real representation)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L
- Singular arithmetic crossover
 - Choose one gene from two parents (of the same position k) and combine them
 - $g_{k}' = \alpha g_{k}^{1} + (1-\alpha)g_{k}^{2}$
 - $g_{k}'' = (1-\alpha)g_{k}^{1} + \alpha g_{k}^{2}$
 - The rest of genes are unchanged
 - $g_i' = g_i^1$
 - $g_{i}'' = g_{i}^{2}$, for i = 1, 2, ..., L and $i \neq k$

[LI,LS] = [-2.5, +3]
k=3

$$\alpha = 0.6$$
0.3 -1.5 3.2 2.4 -1.1 0.6 2.0 -1.7

-2.1 1.3 0.2 -1.4 1.1 -0.3 1.0 1.7

Design – recombination (real representation)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L
- Simple arithmetic crossover
 - Select a position k and combine all the genes after that position
 - $\square g_i' = \alpha g_i^1 + (1-\alpha)g_i^2$
 - $g_{i}'' = (1-\alpha)g_{i}^{1} + \alpha g_{i}^{2}$, for i=k, k+1, ..., L
 - Genes from positions < k rest unchanged</p>
 - $\square g_i' = g_i^1$
 - $g_i'' = g_i^2$, for i = 1, 2, ..., k-1

$$[LI,LS] = [-2.5, +3]$$

$$\alpha = 0.6$$
 0.3 -1.5 3.2 2.4 -1.1 0.6 2.0 -1.7

1.1

0.06

March, 2017

1.3

0.2

Design – recombination (real representation)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L
- Complete arithmetic crossover
 - All of the genes are combined
 - $g_i' = \alpha g_i^1 + (1-\alpha)g_i^2$
 - $g_{i}'' = (1-\alpha)g_{i}^{1} + \alpha g_{i}^{2}$, for i=1,2,...,L

March, 2017

Design – recombination (real representation)

- □ From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L

Geometric crossover

- Main idea
 - Each gene of an offspring represents the product between parent's genes, each of them by a given exponent ω and 1-ω, respectively (where ω is a real positive number <=1)
 - $g_i' = (g_i^1)^{\omega} (g_i^2)^{1-\omega}$
 - $g_i''=(g_i^1)^{1-\omega}(g_i^2)^{\omega}$

0.3^{0.7}+2.1^{1-0.7}=1.68

1.68

0.7 0.3 1.5 3.2 2.4 1.1 0.6 2.0 1.7

2.1 1.3 0.2 1.4 1.1 0.3 1.0 1.7

Artificial Intelligence - local search methods (EAs)

2.41

2.87

 $0.3^{1-0.7}+2.1^{0.7}=2.38$

2.10

1.40

2.62

2.62

Design – recombination (real representation)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 1 offspring is obtained
 - $\mathbf{c}_1 = (g_1', g_2', ..., g_L')$
 - Where g_i^1 , $g_i' \in [LI_i, LS_i]$, for i=1,2,...,L
- Blend crossover BLX
 - Main idea
 - A single offspring is created
 - Offspring's genes are randomly generated from $[Min_i-I^*a, Max_i+I^*a]$ range, where:
 - $Min_i = min\{g_i^1, g_i^2\}, Max_i = max\{g_i^1, g_i^2\}$
 - I = Max Min, a parameter from [0,1]

$$\begin{bmatrix} \mathsf{LII}, \mathsf{LS} \end{bmatrix} = \begin{bmatrix} -2.5, \ +3 \end{bmatrix} \\ \mathsf{a} = 0.7 \\ 0.3 \\ 1.5 \\ 3.2 \\ 2.4 \\ 1.1 \\ 0.6 \\ 2.0 \\ 1.7 \\ \hline \\ 2.1 \\ 1.3 \\ 0.2 \\ 1.4 \\ 1.1 \\ 0.3 \\ 1.0 \\ 1.7 \\ \hline \\ \mathsf{Max} \\ 2.1 \\ 1.5 \\ 3.2 \\ 2.4 \\ 1.1 \\ 0.6 \\ 2.0 \\ 1.7 \\ \hline \\ \mathsf{I} \\ 0.8 \\ 0.2 \\ 3.0 \\ 1.0 \\ 0 \\ 0 \\ 0.3 \\ 1.0 \\ 0.$$

Min-	ia i	-0.26	1.16	-1.90	0.70	1.10	0.09	0.30	1.70
Max+	Ia	2.66	1.50	3.20	2.40	1.10	0.60	2.00	1.70

1.25 | 1.45 | -1.11 | 2.37 | 1.10 | 0.11 | 0.70 | 1.70

Design – recombination (real representation)

- From 2 parent chromosomes
 - $p_1 = (g_1^1, g_2^1, ..., g_L^1)$ and $p_2 = (g_1^2, g_2^2, ..., g_L^2)$
- 2 offspring are obtained
 - $c_1 = (g_1', g_2', ..., g_L')$ and $c_2 = (g_1'', g_2'', ..., g_L'')$,
 - Where $g_i^1, g_i^2, g_i', g_i'' \in [LI_i, LS_i]$, for i=1,2,...,L
- Simulated binary crossover
 - Main idea
 - Each gene of an offspring is a combination of parent's genes

$$d_1 = \frac{p_1 + p_2}{2} - \beta \frac{p_2 - p_1}{2}, \quad d_2 = \frac{p_1 + p_2}{2} + \beta \frac{p_2 - p_1}{2}$$

- Such as the two properties of n-cutting point XO to be respected (for binary representation)
 - Average of parent values = average of offspring values
 - Probability of a spread factor $\beta \approx 1$ is greater to any other factor

Multiple recombination

- Based on the value's frequencies from parents (general uniform XO)
- Based on segmentation and crossover (general XO with diagonal cutting points)

 Based on numeric operations that are specific to real values (XO based on gravity center, general arithmetic XO)

Design – recombination or mutation?

Intense debates

- Questions:
 - Which is the best operator?
 - Which is the most necessary operator?
 - Which is the most important operator?
- Answers:
 - Depend on problem, but,
 - In general, is better to use both operators
 - Each of them having another role (purpose).
 - EAs with mutation only are possible, but EAs with crossover only are not possible

Search aspects:

- Exploration → discovering promising regions in the search space (accumulating useful information about the problem)
- Exploitation \rightarrow optimising in a promising region of the search space (by using the existent information)
- Cooperation and competition mut exist between these 2 aspects

Recombination

- Exploitation operator → performs a large jump into a region somewhere between the regions associated to parents
 - Effects of exploitation decrease while AE is converging
- Binary/n-ary operator that can combine information from 2/more parents
- Operator that does not change the frequency of values from chromosome at the population level

Mutation

- Exploration operator → performs small random diversions, remaining in a neighbourhood of parent
 Local optima escape
- Operator that can introduce new genetic information
- Operator that change the frequency of values from chromosome at the population level

EAs – algorithm Design – stop condition

- Choosing a stop condition
 - An optimal solution was found
 - The physical resources were ended
 - A given number of fitness evaluation has been performed
 - The user resources (time, patience) were ended
 - Several generation without improvements have been born

EAs – algorithm Evaluation

- Performance evaluation of an EA
 - After more runs
 - Statistical measures are computed
 - Average of solutions
 - Median of solutions
 - Best solution
 - Worst solution
 - Standard deviation of solutions for comparisons
 - The number of independent runs must be large enough

EAs

- Analyse of complexity
 - The most costly part → fitness evaluation

EAs

Advantages

- AEs have a general sketch for all the problems
 - Only
 - representation
 - fitness function
 - are changed
- AEs are able to give better results than classical optimisation methods because
 - They do not require linearization
 - They are not based on some presumptions
 - They do not ignore some possible solutions
- AEs are able to explore more possible solutions than human can

AEs

- Disadvantages
 - Large running time

AEs

Applications

- Vehicle design
 - Material composition
 - Vehicle shape
- Engineering design
 - Structural and organisational optimisation of constructions (buildings, robots, satellites, turbines)
- Robotics
 - Design and components optimisation
- Hardware evolution
 - Digital circuits optimisation
- Telecommunication optimisation
- Cross-word game generation
- Biometric inventions (inspired by natural architectures)
- Traffic and transportation routing
- PC games
- Cryptography
- Genetics
- Chemical analyse of kinematics
- Financial and marketing strategies

AEs

Typology

- Evolutionary strategies
- Evolutionary programming
- Genetic algorithms
- Genetic programming

Next lecture

A. Short introduction in Artificial Intelligence (AI)

A. Solving search problems

- A. Definition of search problems
- **B.** Search strategies
 - A. Uninformed search strategies
 - B. Informed search strategies
 - Local search strategies (Hill Climbing, Simulated Annealing, Tabu Search, Evolutionary algorithms, PSO, ACO)
 - D. Adversarial search strategies

c. Intelligent systems

- A. Rule-based systems in certain environments
- B. Rule-based systems in uncertain environments (Bayes, Fuzzy)
- c. Learning systems
 - A. Decision Trees
 - **B.** Artificial Neural Networks
 - c. Support Vector Machines
 - · Evolutionary algorithms
- D. Hybrid systems

Next lecture – Useful information

- Chapter 16 of C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- James Kennedy, Russel Eberhart, Particle Swarm Optimisation, Proceedings of IEEE International Conference on Neural Networks. IV. pp. 1942–1948, 1995 (04_ACO_PSO/PSO_00.pdf)
- Marco Dorigo, Christian Blum, Ant colony optimization theory: A survey, Theoretical Computer Science 344 (2005) 243 – 27 (04_ACO_PSO/Dorigo05_ACO.pdf)

- Presented information have been inspired from different bibliographic sources, but also from past AI lectures taught by:
 - PhD. Assoc. Prof. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - PhD. Assoc. Prof. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - PhD. Prof. Horia F. Pop www.cs.ubbcluj.ro/~hfpop