

Department of Foundation Year

Most Common and famous logical Equivalences

1. Identity Law : $a. p \land T \equiv p$

2. Domination Law

 $a. p \lor T \equiv T$ $b. p \land F \equiv F$

 $b.p \lor F \equiv p$

 $b.p \land q \equiv q \land p$

3. Idempotent Law : $a. p \lor p \equiv p$ $b. p \land p \equiv p$

4. Double Negation Law: $\neg(\neg p) \equiv p$

5. Commutative Law : $a. p \lor q \equiv q \lor p$

6. Associative Law : $a.(p \lor q) \lor r \equiv p \lor (q \lor r)$ $b.(p \land q) \land r \equiv p \land (q \land r)$

7. Distributive Law : $a.p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $b.p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

8. De Morgan's Law : $a. \neg (p \land q) \equiv \neg p \lor \neg q$ $b. \neg (p \lor q) \equiv \neg p \land \neg q$

9. Absorption Law : $a.p \lor (p \land q) \equiv p$ $b.p \land (p \lor q) \equiv p$

Logical Equivalences Involving Conditional Statements

1.
$$p \Rightarrow q \equiv \neg p \lor q$$

2.
$$p \Rightarrow q \equiv \neg q \lor \neg p$$

3.
$$p \lor q \equiv \neg p \Rightarrow q$$

4.
$$p \land q \equiv \neg(q \Rightarrow \neg p)$$

5.
$$\neg(p \Rightarrow q) \equiv p \land \neg q$$

6.
$$(p \Rightarrow q) \land (q \Rightarrow r) \equiv p \Rightarrow (q \land r)$$

7.
$$(p \Rightarrow r) \lor (q \Rightarrow r) \equiv (p \lor q) \Rightarrow r$$

8.
$$(p \Rightarrow q) \lor (p \Rightarrow r) \equiv p \Rightarrow (q \lor r)$$

9.
$$(p \Rightarrow r) \lor (q \Rightarrow r) \equiv (p \land q) \Rightarrow r$$

Logical Equivalences Involving Bi-conditionals Statements

1.
$$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

2.
$$p \Leftrightarrow q \equiv \neg p \Leftrightarrow \neg q$$

3.
$$p \Leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

4.
$$\neg(p \Leftrightarrow q) \equiv p \Leftrightarrow \neg q$$

Part of Exercises

Show that all statements below are true

1.
$$p \Rightarrow (q \land r) \equiv (p \Rightarrow q) \land (p \Rightarrow r)$$

2.
$$(p \land q) \Rightarrow r \equiv (p \Rightarrow r) \lor (q \Rightarrow r)$$

3.
$$p \land \neg p \Longrightarrow q$$

4.
$$(\neg p \Rightarrow q) \Rightarrow p$$

5.
$$(p \land q) \equiv \neg(\neg p \lor \neg q)$$

- 1. Show that $2024^n + 2024^m \geq 2\sqrt{2024^{n+m}}$ all $m,n \in \mathbb{R}$
- 2. Show that $(p \lor \neg (p \land q))$ is Tautology
- 3. Show that $(p \land q) \land \neg (p \lor q)$ is Contradiction
- 4.If $p \lor \neg p$ is tautology show that $(p \land \neg p) \lor \neg (p \land \neg p)$ is tautology
- 5. Show that $p \Rightarrow (q \land r) \equiv (p \Rightarrow q) \land (p \Rightarrow r)$
- **6.Show that** $p \Rightarrow (q \Rightarrow r) \neq (p \Rightarrow \neg r) \land \neg q$
- 7. Show that n^3-n can divide by 3 all n is integer number

Draw the truth table of all statements below

1.
$$(p \lor \neg q) \Leftrightarrow (q \Rightarrow \neg p)$$

$$2.[p \land (\neg q \Rightarrow p)] \land \neg [(p \Leftrightarrow \neg q) \Rightarrow (q \lor \neg p)]$$

$$3.[q \Leftrightarrow (r \Rightarrow \neg p)] \lor [(\neg q \Rightarrow p) \Leftrightarrow r]$$

$$4. (p \Leftrightarrow \neg q) \Leftrightarrow (q \Rightarrow p)$$

Simplify statements below

$$\left[\neg q \land (p \Rightarrow q)\right] \Rightarrow \neg p$$