

Chapitre II. Tests paramétriques à un échantillon

Cours de Tests paramétriques

Deuxième Année - IUT STID - Olivier Bouaziz

2018-2019

2.1.1 Introduction

- On se limitera dans cette partie qu'aux tests sur l'espérance d'un échantillon.
- On s'intéresse ici à un (ou plusieurs) caractère(s) quantitatif(s) X d'une population \mathcal{P} d'espérance $\mathbb{E}(X) \stackrel{\text{def}}{=} \mu$ et de variance $\sigma^2 \stackrel{\text{def}}{=} \operatorname{Var}(X)$.
- lci le paramètre sur lequel on veut faire des tests étant l'espérance μ .
- ▶ On dispose pour celà d'observations (x_1, \dots, x_n) constituées des mesures du caractère X faites sur un échantillon : on considère (x_1, \dots, x_n) comme la réalisation d'un n-uplet (X_1, \dots, X_n) de v.a. indépendantes et de même loi que X. On dira que (X_1, \dots, X_n) est un n-échantillon de (la loi de) X.

2.1.1 Introduction

- Faire un test de comparaison d'une moyenne observée avec une espérance théorique (ou moyenne théorique) revient à répondre à la question suivante : la variable quantitative X a-t-elle une espérance μ égale à une valeur μ_0 (donnée à l'avance)?
- ▶ Il s'agit donc de juger de la pertinence de l'hypothèse

$$(H_0): \mu = \mu_0,$$

où μ_0 est l'espérance théorique (ou la moyenne théorique).

On appelle ce type de test un test de conformité.

Exemple 1

Pour apaiser un certain type de maux de tête, on a l'habitude de traiter les malades avec un médicament A. Une étude statistique a montré que la durée de disparition de la douleur chez les malades traités avec A est une v.a. de loi normale de moyenne $\mu_0=30$ mn. Un laboratoire pharmaceutique a conçu un nouveau médicament B et désire tester son efficacité. Pour celà, le nouveau médicament a été administré à n malades cobayes, et on a mesuré la durée de disparition de la douleur pour chacun d'eux : $x_1,...,x_n$. On suppose que cette durée est une v.a. de loi normale de moyenne μ (inconnue) et d'écart-type σ (inconnu). Peut-on mettre le nouveau médicament B sur le marché? On veut faire un test d'hypothèses avec n=12, $\alpha=0.05$ et les observations suivantes :

25; 28; 20; 32; 17; 24; 41; 28; 25; 30, 27; 24.

Introduction

L'effet du nouveau médicament se traduit par :

- $\ll \mu = \mu_0 \gg$: le médicament B a en moyenne le même effet que A.
- $\ll \mu < \mu_0 \gg$: le médicament B est en moyenne efficace que A.
- « $\mu > \mu_0$ » : le médicament B est en moyenne efficace que A.
- Pour savoir s'il faut commercialiser B, il faut trancher en ces trois hypothèses.
- L'important est de ne pas se tromper si on décide de changer de médicament : il vaux mieux conserver un médicament moins performant que le nouveau plutôt que d'adopter un médicament moins performant que l'ancien.
- Il faut donc que l'hypothèse . . . corresponde au rejet de (H_0) .
- Par conséquent il faut donc tester (H₀):..... contre (H₁):..... au vu de ce qu'on observe.

Idée pour faire le test

On suppose, pour fixer les idées, que notre hypothèse nulle est :

$$(H_0): \mu = \mu_0.$$

lacksquare On estime μ par

qui est un « bon » estimateur car il est et

- ▶ Il est naturel de rejeter (*H*₀) si
- La difficulté est de quantifier l'écart acceptable dû à l'aléa de l'estimateur.
- Il va s'agir de reconnaître un faible écart dû à l'aléa de l'estimateur, d'un écart significatif non expliquable par les simples fluctuations de l'estimateur.

Introduction

- \triangleright Quelle est l'alternative qui nous intéresse quand on doit rejeter (H_0) ?
 - 1. (H'_1) : $\mu > \mu_0$ une alternative unilatérale à droite?
 - 2. (H_1'') : $\mu < \mu_0$ une alternative unilatérale à gauche?
 - 3. (H_1) : $\mu \neq \mu_0$ ou une alternative bilatérale?
 - Si (H_0) est rejetée au profit de :
 - 1. (H_1') , on rejetera (H_0) pour les valeurs de $\bar{X} \mu_0$,
 - 2. (H_1'') , on rejetera (H_0) pour les valeurs de $\bar{X} \mu_0$,
 - 3. (H_1) , on rejetera (H_0) pour les valeurs de l'écart absolu $|\bar{X} \mu_0|$.

2.1 Comparaison d'une moyenne observée à une moyenne théorique

Introduction

Question : Quelle est alors la loi de $\bar{X} - \mu_0$ sous (H_0) ? (nécessaire pour faire le test)

Pour répondre à cette question, en pratique, on va distinguer deux cas (comme c'est le cas pour les intervalles de confiance) selon les questions suivantes :

- A-t-on un grand échantillon de loi quelconque pour utiliser le TCL?
- Ou un petit échantillon de loi normale?

Par ailleurs les résultats théoriques sont différents si la variance σ^2 de X est connue ou inconnue cependant, en pratique, on ne connait jamais la variance de X et donc seul le cas de variance inconnue est intéressant.

Chapitre II. Tests paramétriques à un échantillon $\cup 2.1$ Comparaison d'une moyenne observée à une moyenne théorique $\cup Introduction$

 $\mathsf{Rappel} : \mathsf{TCL}$

☐ Grands échantillons de loi quelconque

2.1.2. Grands échantillons de loi quelconque

▶ Pour un \ll grand échantillon \gg (c'est-à-dire pour n grand), on peut appliquer le TCL et ainsi

$$\dfrac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$$
 suit approximativement une loi $\mathcal{N}(0,1).$

Sous l'hypothèse (H_0) : $\mu=\mu_0$ on a alors

$$T_n \stackrel{\text{def}}{=} \frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma}$$
 suit approximativement une loi $\mathcal{N}(0, 1)$. (1)

- Mais la statistique de test T_n est inutilisable si on ne connait pas la vraie valeur de σ (ce qui est toujours le cas en pratique!).
- Pour pallier cet inconvénient, on utilise la même procédure que pour les intervalles de confiance : on remplace σ par son estimateur.

Chapitre II. Tests paramétriques à un échantillon

2.1 Comparaison d'une moyenne observée à une moyenne théorique

☐Grands échantillons de loi quelconque

(a) Si la variance σ^2 était connue

Chapitre II. Tests paramétriques à un échantillon

└2.1 Comparaison d'une moyenne observée à une moyenne théorique

Grands échantillons de loi quelconque

Exercice 1

Une petite usine fabrique des portes dont la hauteur est une v.a. d'espérance $\mu=2,5$ mètres et de variance $\sigma^2=10^{-4}.$ Pour vérifier si ses machines sont bien réglées, le nouveau directeur de l'usine fait mesurer les hauteurs de cents portes tirées au hasard et observe $\bar{x}_{100}=2,4$ mètres. Les machines sont-elles bien réglées? (on prendra comme niveau de test $\alpha=5\%$). Calculer la p-valeur du test.

Grands échantillons de loi quelconque

(b) Cas où la variance σ^2 est inconnue

- \blacktriangleright Lorsque σ^2 est inconnue, on ne peut plus utiliser la même statistique de test.
- On remplace σ^2 par son estimateur

....., ou,

ou tout autre estimateur consistant de σ^2 . On choisit le plus souvent qui est un estimateur sans biais de σ^2 .

Résultat :

...........

- -2.1 Comparaison d'une moyenne observée à une moyenne théorique
 - Grands échantillons de loi quelconque

Remarque

On peut aussi effectuer les tests

$$(H_0): \mu \leq \mu_0$$
 contre $(H_1): \mu > \mu_0$

ou encore

$$(\mathit{H}_0): \mu \geq \mu_0 \quad \text{contre} \quad (\mathit{H}_1): \mu < \mu_0.$$

- Pour le premier test : la construction est basée sur le choix de c_{α} tel que $\mathbb{P}_{H_0}(T_n>c_{\alpha})=\alpha_{\mu}$; le risque dépend de μ , et sous (H_0) , μ peut prendre toutes les valeurs réelles telles que $\mu\leq\mu_0$. Mais en fait, α correspond au risque maximum que l'on accepte de prendre en rejetant (H_0) à tort, càd $\alpha=\sup_{\mu\in(H_0)}\alpha_{\mu}$.
- On construira donc finalement la zone de rejet en utilisant la valeur μ₀ seule qui correspond au risque le plus élevé.
- Le niveau du test α est la valeur la plus élevée du risque atteinte en $\mu=\mu_0$.

☐ Grands échantillons de loi quelconque

Exercice 2

Le bénéfice mensuel moyen d'une succursale d'une chaîne de magasins est égal à 300 000 euros. Afin d'augmenter ses marges, cette chaîne de magasins a décidé d'adopter une nouvelle politique de gestion des stocks pour l'ensemble de ses succursales. On note X_i la v.a. représentant le bénéfice de la $i^{\text{ème}}$ succursale. Une étude menée sur 50 succursales a donné les valeurs observées suivantes :

$$\bar{x} = \frac{1}{50} \sum_{i=1}^{50} x_i = 314 \ 600 \ \text{euros}$$
 $\sqrt{\frac{1}{49} \sum_{i=1}^{50} (x_i - \bar{x})^2} = 25 \ 000 \ \text{euros}$

La nouvelle politique est-elle plus efficace que l'ancienne?

└ Petits échantillons de loi Normale

2.1.3. Petits échantillons de loi Normale

- Lorsque l'on a affaire à des petits échantillons, on ne peut plus appliquer le TCL.
- ▶ Il faut donc une hypothèse supplémentaire sur la loi des X_i , pour connaître la loi de T_n sous (H_0) .
- ▶ On suppose maintenant que l'on a un *n*-échantillon $(X_1, ..., X_n)$ gaussien, $X_i \sim \mathcal{N}(\mu, \sigma^2) \quad \forall 1 \leq i \leq n$.
- Sous (H_0) , on connaît alors la loi exacte (et non plus une approximation de la loi) de $\overline{X_n}$ et par conséquent de T_n aussi.
- ▶ Sous (*H*₀),

$$T_n = rac{\sqrt{n}(\overline{X_n} - \mu_0)}{\sigma} \sim \mathcal{N}(0, 1)$$
 (loi exacte)

A nouveau, T_n n'est utilisable directement comme statistique de test (càd comme fonction des observations) que si σ^2 est connue (ce qui n'est jamais le cas en pratique!).

- Chapitre II. Tests paramétriques à un échantillon
- 2.1 Comparaison d'une moyenne observée à une moyenne théorique
 - └ Petits échantillons de loi Normale

(i) Si la variance σ^2 était connue

Dans ce cas T_n serait utilisable directement comme statistique de test (càd comme fonction des observations) et on procèderait comme dans la section 2.1.2. (a).

Chapitre II. Tests paramétriques à un échantillon $\cup 2.1$ Comparaison d'une moyenne observée à une moyenne théorique

└ Petits échantillons de loi Normale

(ii) Cas où la variance σ^2 est inconnue

2.2 Comparaison d'une proportion observée à une proportion théorique

- ▶ On s'intéresse cette fois à une proportion p inconnue d'individus possèdant un caractère X dans une population \mathcal{P} .
- Par exemple, la proportion d'intentions de votes favorables à un candidat.
- La variable X est définie par $\{X=1\}$ si l'individu possède la propriété en question (dans l'exemple, s'il est favorable au candidat) et $\{X=0\}$ sinon (défavorable).
- ▶ On a $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 p$, et $X \sim \mathcal{B}(p)$.
- ► Ce cadre est donc un cas particulier de test d'espérance avec cette fois un n-échantillon (X_1, \ldots, X_n) de X de loi $\mathcal{B}(p)$, d'espérance $\mu \stackrel{\text{def}}{=} \mathbb{E}(X) = p$ et de variance $\sigma^2 \stackrel{\text{def}}{=} \operatorname{Var}(X) = p(1-p)$.

2.2. Comparaison d'une proportion observée à une proportion théorique

On teste

- ▶ (H_0) : $p = p_0$ contre (H_1) : $p \neq p_0$
- Le test va être construit autour de l'estimateur $\overline{X_n}$ de p, plus exactement à partir de la différence $\overline{X_n} p_0$.
- ▶ On dispose d'un échantillon suffisamment grand (n > 30) et on suppose également que $np_0 \ge 5$ et $n(1 p_0) \ge 5$. On peut alors appliquer le théorème central limite pour approcher la loi de p par une loi normale :

▶ On pourrait estimer la variance p(1-p) par un estimateur consistant $(\overline{X_n}(1-\overline{X_n})$ par exemple) mais c'est inutile puisque sous (H_0) , $p=p_0$, et donc sous (H_0) , $p(1-p)=p_0(1-p_0)$.

2.2. Comparaison d'une proportion observée à une proportion théorique

On construit donc le test à partir de la statistique de test

$$T_n = \frac{\sqrt{n}(\overline{X_n} - p_0)}{\sqrt{p_0(1 - p_0)}}$$

Et sous (H_0) ,

- Règle de décision :
 - \triangleright si on rejette (H_0) ,
 - \triangleright si on ne rejette pas H_0 .
- Le seuil c_{α} est tel que La valeur du seuil c_{α} se lit dans la table de la loi $\mathcal{N}(0,1)$.
- Si on note p_n la réalisation de P_n sur l'échantillon, et $t_n = \sqrt{n}(\hat{p} p_0)/\sqrt{p_0(1-p_0)}$ celle de T_n , on rejetera (H_0) si

On procède de la même manière pour les autres formes d'hypothèse alternative (H_1) .

2.2. Comparaison d'une proportion observée à une proportion théorique

Exercice 3

Une machine doit être mise à la casse si elle produit strictement plus de 10% de pièces défectueuses. Pour savoir si l'on doit remplacer une certaine machine, on prélève au hasard 70 pièces fabriquées par cette machine, et on constate que 8 d'entre elles sont défectueuses. On notera p la proportion de pièces défectueuses fabriquées par cette machine.

Doit-on acheter une nouvelle machine? (test à 5%)

└2.2. Comparaison d'une proportion observée à une proportion théorique

Exercice 4

En 2008, 42% des franciliens travaillaient à plus de 30 km de leur domicile. Pour estimer la proportion de franciliens qui, en 2011, travaillent à plus de 30 km de leur domicile, on a effectué un sondage sur 2 000 franciliens; parmi les 2 000 personnes interrogées, 860 d'entre elles ont déclaré travailler à plus de 30 km de leur domicile. La proportion de franciliens travaillant à plus de 30 km de leur domicile a-t-elle évolué de manière significative entre 2008 et 2011?

2.3. Test d'égalité d'une variance à une valeur fixe

On considère donc un *n*-échantillon (X_1, \ldots, X_n) de X d'espérance $\mathbb{E}(X_i) = \mathbb{E}(X) = \mu$ et de variance $\mathbb{V}(X_i) = \mathbb{V}(X) = \sigma^2$.

- ▶ On souhaite à présent comparer la variance σ^2 à une valeur fixe σ_0^2 donnée à l'avance.
- Nous allons effectuer le test de l'hypothèse nulle

$$(H_0) : \sigma^2 = \sigma_0^2$$

où σ_0^2 est une valeur fixée, contre les alternatives : $\sigma^2 > \sigma_0^2$, $\sigma^2 < \sigma_0^2$, ou $\sigma^2 \neq \sigma_0^2$.

► Tests souvent utilisés dans les procédures de contrôle de qualité : Le contrôle cherche à mettre en évidence, par exemple, si la variabilité de la dimension (épaisseur, longueur, poids, etc.) des pièces produites dépasse, ou non, une valeur maximale \(\sigma_0^2 \) tolérée.

2.3. Test d'égalité d'une variance à une valeur fixe

ightharpoonup Ce test est basé sur l'estimation de la variance σ^2 par l'estimateur

$$\widetilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2,$$

quand μ est connue et par l'estimateur

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2,$$

quand μ est inconnue.

▶ On suppose dans la suite que $\mathbb{E}(X_i^4)$ existe et est finie. Comme précédemment, nous allons distinguer le cas des grands échantillons de lois quelconques des petits échantillons gaussiens.

(i) Cas où μ est connue

- La variance σ^2 peut être estimée par $\widetilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$.
- Notons $Z_i \stackrel{\text{def}}{=} (X_i \mu)^2$. Ainsi, \widetilde{S}^2 s'écrit en fonction des variables Z_i puisque $\widetilde{S}^2 = \overline{Z_n}$.
- ▶ De plus, les variables aléatoires Z_i sont *i.i.d.*, d'espérance σ^2 et de variance finie. On peut donc appliquer le TCL aux variables Z_i et obtenir que

$$\frac{\sqrt{n}(\widetilde{S}^2 - \sigma^2)}{\sqrt{\frac{1}{n-1}\sum_{i=1}^n (Z_i - \overline{Z_n})^2}} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0,1).$$

- Tester une égalité sur la variance de X_i revient à tester une égalité sur la moyenne de Z_i.
- On construit donc le test de la même façon, à partir de la statistique de test

$$T_n = rac{\sqrt{n}(\widetilde{S}^2 - \sigma_0^2)}{\sqrt{rac{1}{n-1}\sum_{i=1}^n(Z_i - \overline{Z_n})^2}}.$$

${\bf Cas\ où\ }\mu\ {\bf est\ connue}$

- La variance σ^2 peut être estimée par \widetilde{S}^2 .
- On utilise la statistique de test suivante :

$$T_n = \frac{n\,\widetilde{S}^2}{\sigma_0^2}$$

En effet sous (H_0) cette statistique suit une loi du chi-deux à n degrés de liberté.

- L_2.3. Comparaison d'une variance observée à une variance théorique
 - └ 2.3.2. Cas des petits échantillons de loi gaussienne

Cas où μ est inconnue

On utilise la statistique de test $(n-1)S^2/\sigma_0^2$. En effet, sous (H_0) cette statistique suit une loi du chi-deux à n-1 degrés de liberté.

Exercice 5

Lors des premiers réglages d'une machine neuve qui remplit des paquets de café, les techniciens du contrôle de qualité souhaitent vérifier si l'écart-type des contenances dépasse 1,5 gramme. Les poids de 31 paquets contrôlés au hasard sont consignés dans le tableau suivant :

248	247	255	244	252	249	250	251	254	249	251
250	251	250	249	252	253	252	249	247	250	252
250	248	249	248	248	249	248	252	250		

On suppose que le poids des paquets suit une loi gaussienne. Pour répondre à la question des techniciens, faire un test de niveau 2,5% sur l'écart type du poids des paquets remplis par la machine.

Tests de conformité sur l'espérance

On teste l'hypothèse nulle (H_0) : $\mu = \mu_0$

		Loi de T_n sous (H_0)	Loi de T_n sous (H_0)	
Variance	Statistique de test	Cas gaussien	Cas non gaussien	
connue/inconnue		avec n qcq	avec n grand	
σ^2 connue	$T_n = \frac{\overline{X}_n - \mu_0}{\sigma / \sqrt{n}}$	cas $1: \mathcal{T}_n \sim \mathcal{N}(0,1)$	$\mathbf{cas} \ 1 \ \mathbf{bis} : T_n \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0,1)$	
$(H_1): \mu > \mu_0$		$R_{\alpha} = [z_{1-\alpha}; +\infty[$	ldem cas 1	
$(H_1): \mu < \mu_0$		$R_{\alpha} =]-\infty; z_{\alpha}]$	ldem cas 1	
$(H_1): \mu \neq \mu_0$		$R_{\alpha} =]-\infty; -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}; +\infty[$	ldem cas 1	
σ^2 inconnue	$T_n = \frac{\overline{X}_n - \mu_0}{S/\sqrt{n}}$	truc $\frac{cas\; 2: T_n \sim \mathcal{T}(n-1)}{Idem\; cas\; 1 \; avec\; t_{\alpha}^{n-1} \; au \; lieu \; de\; z_{\alpha}}$	cas 2 bis : $T_n \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0,1)$	
		α	ldem cas 1	
$X \sim Ber(p)$			$\operatorname{cas} \; 3 : T_n \overset{\mathcal{L}}{\underset{n \to \infty}{\longrightarrow}} \mathcal{N}(0,1)$	
$(H_0): p = p_0$	$T_n = \frac{\overline{X}_n - \rho_0}{\sqrt{\frac{\rho_0(1 - \rho_0)}{n}}}$	777	ldem cas 1	

 z_{α} est le quantile d'ordre α de la loi $\mathcal{N}(0,1)$ t_{α}^{n} est le quantile d'ordre α de la loi $\mathcal{T}(n)$

Tests de conformité sur la variance

On teste l'hypothèse nulle (H_{0}) : $\sigma = \sigma_{0}$

		Loi de T_n sous (H_0)		
Espérance	Statistique de test	Cas gaussien	Cas non gaussien	
connue/inconnue		avec n qcq	avec n grand	
μ connue	$T_n = \frac{n\tilde{S}^2}{\sigma_0^2}$	$\cos 1: T_n \sim \chi^2(n)$	On utilise les Z_i voir cours	
$(H_1): \sigma > \sigma_0$ $(H_1): \sigma < \sigma_0$ $(H_1): \sigma \neq \sigma_0$		$\begin{aligned} R_{\alpha} &= [x_{1-\alpha}^{n}; +\infty[\\ R_{\alpha} &= [0; x_{\alpha}^{n}]\\ R_{\alpha} &= [0; x_{2}^{n}] \cup [x_{1-\alpha}^{n}; +\infty[\end{aligned}$		
μ inconnue	$T_n = \frac{(n-1)S^2}{\sigma_0^2}$	$\cos 2: T_n \sim \chi^2(n-1)$ Idem cas 1	?????	
		en remplaçant la loi $\chi^2(n)$ par $\chi^2(n-1)$?????	

 x_{α}^{n} est le quantile d'ordre α de la loi $\chi^{2}(n)$.

Retour sur l'exemple

- > x=c(25, 28, 20, 32, 17, 24, 41, 28, 25,30,27,24)
- > t.test(x,mu=30,alternative="less")

One Sample t-test

data : x, t = -1.8526, df = 11, p-value = 0.04547 alternative hypothesis : true mean is less than 30 95 percent confidence interval : -Inf 29.90056 sample estimates : mean of x : 26.75

► Le test est significatif au niveau 5%!

Retour sur l'exercice 3

> > prop.test(8,70,p=0.1,alternative="greater")

1-sample proportions test with continuity correction data: 8 out of 70, null probability 0.1 X-squared = 0.039683, df = 1, p-value = 0.4211 alternative hypothesis: true p is greater than 0.1 95 percent confidence interval: 0.06033258 1.00000000 sample estimates: p=0.1142857

- p-valeur très élevée, on ne rejette pas (H₀)!
- Pour obtenir le même test que celui vu en cours, rajouter l'option "correct=FALSE" dans la commande prop.test.