PRÁTICA 02b - SIMULADOR DE CIRCUITOS ...

Voltar à home Aula Anterior - Próxima Aula

OBJETIVOS

- Apresentar o simulador de circuitos digitais para uso na disciplina (remota);
- Conhecer a álgebra de Boole;
- Conhecer a variedade de portas lógicas disponíveis e suas combinações;
- Verificar os métodos de criação e simplificação da Tabela da verdade;

Material Necessário:

Simulador de circuitos digitais DigitalSim;

Operações e Portas Lógicas Operação E (AND)

- É a primeira das três operações fundamentais da Álgebra Booleana;
- Pode ser interpretada como:
 - verdade (1) apenas quando ambos os operadores forem verdadeiros
- Representa a operação E lógico:
- Representações alternativas:
 - ∘ E, AND, . (ponto), ∧
 - Em expressões/funções Booleanas, a ausência de operador significa que o operador E deve ser inferido

Tabela Verdade:

Α	В	A (e) B
0	0	0
0	1	0
1	0	0
1	1	1

Operação OU (OR)

- Segunda operação fundamental. Pode ser interpretada como:
 - "verdade (1) quando qualquer dos operadores for verdadeiro"
- Representa o OU lógico;
- Representações alternativas:
 - OU, OR, +, v

Tabela Verdade:

Α	В	A (ou) B	
0	0	0	

Α	В	A (ou) B
0	1	1
1	0	1
1	1	1

Operação NÃO (NOT)

- Terceira e última das operações fundamentais;
- Pode ser interpretada como:
 - o "complemento ou inverso do valor atual"
- Representa o NÃO lógico;
- Representações alternativas:
 - NÃO, NOT, ~, ¬
- Há uma notação muito usada na qual a operação "não" é representada com uma barra sobre a variável Booleana. Ex: Ā

Tabela Verdade:

Α	não A
0	1
1	0

Questionário pré-laboratório

- 1. Quais são as funções lógicas básicas da álgebra de Boole?
- 2. Descreva as principais propriedades das operações da álgebra de Boole.
- 3. Quais funções lógicas básicas podem representar todas as outras funções lógicas básicas

PARTE 1 - IMPLEMENTAÇÃO DE CIRCUITO LÓGICO

Represente a expressão lógica correspondente ao circuito a seguir. Preencha também sua tabela verdade.

A	В	C	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Implementar o circuito acima no DigitalSim.

PARTE 2 - CONVERSÃO DE CIRCUITO LÓGICO PARA NAND E NOR

CONVERSÃO DE CIRCUITO LÓGICO PARA NAND

Faça a conversão do circuito lógico para portas NAND. Use os exemplos a seguir:

EXPRESSÃO LÓGICA : _____

CONVERSÃO DE CIRCUITO LÓGICO PARA NOR

Implemente a expressão lógica e o circuito equivalente utilizando portas NOR a seguir:

EXPRESSÃO LÓGICA : _____

CIRCUITO (NOR)

IMPLEMENTAÇÃO DO CIRCUITO COM PORTAS NAND E NOR

Implemente o circuito modificado com portas NAND e NOR no DigitalSim.