MAT4400: Notes on Linear analysis

Morten Tryti Berg and Isak Cecil Onsager Rukan.

February 14, 2024

3 σ -Algebras

Definition 3.0.1 (Borel). The σ -algebra $\sigma(\mathcal{O})$ generated by the open sets $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ of \mathbb{R}^n is called **Borel** σ -algebra, and its members are called **Borel sets** or **Borel measurable sets**.

5 Uniqueness of Measures

Lemma 5.1. A Dynkin system D is a σ -algebra iff it is stable under finite intersections, i.e. $A, B \in D \Rightarrow A \cap B \in D$.

Theorem 5.2 (Dynkin). Assume X is a set, S is a collection of subsets of X closed under finite intersections, that is, if $A, B \in S \Rightarrow A \cap B \in S$. Then $D(S) = \sigma(S)$.

Theorem 5.3 (uniqueness of measures). Let (X, B) be a measurable space, and $S \subset P(X)$ be the generator of B, i.e. $B = \sigma(S)$. If S satisfies the following conditions:

- 1. S is stable under finite intersections (\cap -stable), i.e. $A, C \in S \Rightarrow A \cap C \in S$.
- 2. There exists an exhausting sequence $(G_n)_{N\in\mathbb{N}}\subset with\ G_N\uparrow X$. Assume also that there are two measures μ,ν satisfying:
- 3. $\mu(A) = \nu(A), \ \forall A \in S$.
- 4. $\mu(G_n) = \nu(G_n) < \infty$.

Then $\mu = \nu$.

6 Existence of Measures

Theorem 6.1 (Carathéodory). Let $S \subset P(X)$ be a semi-ring and $\mu : S \to [0,\infty)$ a pre-measure. Then μ has an extension to a measure μ^* on $\sigma(S)$, i.e. that $\mu(s) = \mu^*(s)$, $\forall s \in \sigma(S)$.

Also, if S contains an exhausting sequence, $S_n \uparrow X$, s.t. $\mu(S_n) < \infty$, then the extension is unique.

7 Measurable Mappings

We consider maps $T: X \to X'$ between two measurable spaces (X, \mathcal{A}) and (X', \mathcal{A}') which respects the measurable structurs, the σ -algbras on X and X'. These maps are useful as we can transport a measure μ , defined on (X, \mathcal{A}) , to (X', \mathcal{A}') .

Definition 7.0.1. Let (X, \mathcal{A}) , (X', \mathcal{A}') b measurable spaces. A map $T: X \to X'$ is called \mathcal{A}/\mathcal{A}' -measurable if the pre-imag of every measurable set is a measurable set:

$$T^{-1}(A') \in \mathcal{A}, \quad \forall A' \in \mathcal{A}'.$$
 (1)

- A $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^m)$ measurable map is often called a Borel map.
- The notation $T:(X,\mathcal{A})\to (X',\mathcal{A}')$ is often used to indicate measurability of the map T.

Lemma 7.1. Let (X, A), (x', A') be measurable spaces and let $A' = \sigma(G')$. Then $T: X \to X'$ is A/A'-measurable iff $T^{-1}(G') \subset A$, i.e. if

$$T^{-1}(G') \in \mathcal{A}, \ \forall G' \in \mathcal{G}'.$$
 (2)

Theorem 7.2. Let (X_i, A_i) , i = 1, 2, 3, be measurable spaces and $T : X_1 \to X_2$, $S : X_2 \to X_3$ be A_1/A_2 and A_2/A_3 -measurable maps respectively. Then $S \circ T : X_1 \to X_3$ is A_1/A_3 -measurable.

Definition 7.2.1. (and lemma) Let $(T_i)_{i\in I}$, $T_I: X \to X_i$, be arbitrarily many mappings from the same space X into measurable spaces (X_i, A_i) . The smallest σ -algebra on X that makes all T_i simultaneously measurable is

$$\sigma(T_i: i \in I) := \sigma\left(\bigcup_{i \in I} T_i^{-1}(\mathcal{A}_i)\right)$$
(3)

Theorem 7.3. Let (X, A), (X', A') be measurable spaces and $T: X \to X'$ be an A/A'-measurable map. For every measurable μ on (X, A),

$$\mu'(A') := \mu(T^{-1}(A')), \quad A' \in \mathcal{A}',$$
 (4)

defines a measure on (X', A').

Definition 7.3.1. The measure $\mu'(\cdot)$ in the above theorem is called the push forward or image measure of μ under T and it is denoted as $T(\mu)(\cdot)$, $T_{*\mu}(\cdot)$ or $\mu \circ T^{-1}(\cdot)$.

Theorem 7.4. If $T \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\lambda^n = T(\lambda^n)$.

Theorem 7.5. Let $S \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

$$S(\lambda^n) = |\det s^{-1}|\lambda^n = |\det S|^{-1}\lambda^n.$$
(5)

Corollary 7.5.1. Lebesgue measure is invariant under motions: $\lambda^n = M(\lambda^n)$ for all motions M in \mathbb{R}^n . In particular, congruent sets have the same measure. Two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry

8 Measurable Functions

A measurable function is a measurable map $u: X \to \mathbb{R}$ from some measurable space (X, \mathscr{A}) to $(\mathbb{R}, \mathscr{B}(\mathbb{R}^1))$. They play central roles in the theory of integration.

We recall that $u:X\to\mathbb{R}$ is $\mathscr{A}/\mathscr{B}(\mathbb{R}^1)\text{-measurable}$ if

$$u^{-1}(B) \in \mathscr{A}, \ \forall B \in \mathscr{B}(\mathbb{R}^1).$$
 (6)

Moreover from a lemma from chapter 7, we actually only need to show that

$$u^{-1}(G) \in \mathcal{A}, \ \forall G \in \mathcal{G} \text{ where } \mathcal{G} \text{ generates } \mathcal{B}(\mathbb{R}^1).$$
 (7)