

The Yield Curve (1 of 2)

- Term Structure of Interest Rates
 - A listing of bond maturity dates and the interest rates that correspond with each date
- Yield Curve
 - Plot of relationship between bond yields to maturity and time to maturity (generally upward sloping because longer maturities pose greater Interest Rate Risk)

The Yield Curve (2 of 2)

Treasury strips are bonds that make a single payment. The yields on Treasury strips in November 2015 show that investors received a higher yield on longer term bonds.

- Example using Yield Curve
 - 1 Year Yield To Maturity (r) 0.5%
 - 5 Year YTM 1.5%
 - 10 Year YTM 2.4%
- All are Treasury Securities, so....
 - the only difference in risk is the maturity
 - remember, assumption is no Default Risk

- Example using Yield Curve
 - 1 Year YTM (r) 0.5%
 - 5 Year YTM 1.5%
 - 10 Year YTM 2.4%
- Our model will call the 1 Year Yield the Risk-Free Rate (r_f)

- Example using Yield Curve
 - 1 Year YTM (r) 0.5%
 - 5 Year YTM 1.5%
 - 10 Year YTM 2.4%
- 5 Year Maturity Risk Premium (r_{mp}):

Market needs additional 1% to go 5 years

- Example using Yield Curve
 - 1 Year YTM (r) 0.5%
 - 5 Year YTM 1.5%
 - 10 Year YTM 2.4%
- 10 Year Maturity Risk Premium (r_{mp}):

$$2.4\% - 0.5\% = 1.9\%$$

Market needs additional 1.9% to go 10 years

Yield Curve

```
- 1 Year YTM (r) 0.5% r_{mp} 0.00%
```

$$-$$
 10 Year YTM 2.4% r_{mp} 1.90%

- Greater the maturity, greater the Interest
 Rate Risk, higher the risk premium
- Upward sloping Yield Curve

The Yield Curve

Treasury strips are bonds that make a single payment. The yields on Treasury strips in November 2015 show that investors received a higher yield on longer term bonds.

Our model for Treasury r

- r_{τ} = Risk-Free Rate + Maturity Risk Premium
- $_{\mathsf{T}} = \mathbf{r}_{\mathsf{f}} + \mathbf{r}_{\mathsf{mp}}$
- Now you can calculate r on your own (for Treasury securities)

Corporate Debt

Think of the best company in the world: let's say Apple Computer

Think of the worst company in the world: let's say Sears-Kmart

What is the one thing they have in common?

Corporate Debt

They both MIGHT default on their debt

But, as assumed before, the U.S. Government won't ever, for any maturity, default on its debt

Corporate Debt

So, therefore, what is the one difference in RISK between Treasury Debt and Corporate Debt?

Default Risk

And what do investors do with Risk?

Require a Risk Premium

r_C = Risk-Free Rate + Maturity Risk Premium + Default Risk Premium

$$r_{C} = r_{f} + r_{mp} + r_{dp}$$

$$r_{C} = r_{f} + r_{mp} + r_{dp}$$

Or, alternately,

$$\mathbf{r}_{\mathrm{C,x}} = \mathbf{r}_{\mathrm{T,x}} + \mathbf{r}_{\mathrm{dp}}$$

(x denotes maturity)

Find a Treasury of identical maturity and add the Default Risk Premium

Treasury securities and Corporate debt securities, YTM returns plotted against maturity

$$\mathbf{r}_{\mathrm{C,x}} = \mathbf{r}_{\mathrm{T,x}} + \mathbf{r}_{\mathrm{dp}}$$

Compare Corp X Bond to 5-year Treasury; compare Corp Y Bond to 10-year Treasury; compare Corp Z Bond to 18-year Treasury

The difference in yields? Since the maturities match, it must be due to Default Risk

The Market needs a Default Risk Premium

$$\mathbf{r}_{\mathrm{C,x}} = \mathbf{r}_{\mathrm{T,x}} + \mathbf{r}_{\mathrm{dp}}$$

Example: 5-year Treasury has a current Yield-To-Maturity of 1.5%, while a 5-year Corporate Bond (rated BBB) has a current YTM of 3.6%

Why are the yields different?

Default Risk

What is the BBB
$$r_{dp}$$
? 3.6% - 1.5% = 2.1%

Now bring it all together: what price should you pay for a 10-year Corporate Bond with a coupon rate of 4.60% and a rating of BBB?

Step One: What return ("r") do you need?

Step Two: Use that required return ("r") to discount the Bond's cash flows.

Step One: What return ("r") do you need?

Risk-Free Rate (r_f) 0.50%

10-Yr Maturity Risk Premium (r_{mp-10}) 1.90%

BBB Default Risk Premium (r_{dp-BBB}) 2.10%

r = 0.50% + 1.90% + 2.10% = 4.50%

Step Two: Use that required return ("r") to discount the Bond's cash flows.

$$P_0 = \$1,007.91$$
 see Excel