Problem 2.26

Due: 1/14/18

Pseudo Code

```
1"finding height of rocket as a piecewise function
3def timeLess15(time):
      "this function produces a height if time less than 15 height
Before15 = 38.1454*t + 0.13743*t*t*t
       return heightBefore15
 8 def timeBetween15and33(time):
      "this function produces a height if time between 15 and 33 heightBefore33 = 1036 + 130.909*(time-15) + 6.18425*(time-15)*(time-15) - .428*(time-15)*(time-15)*(time-15)
10
11
       return heightBefore33
12
13 def timeAfter33(time):
       "this function produces a height if time is greater than 33
      heightAfter33 = 2900 - 62.468*(time-33) - 16.9274*(time-33)*(time-33) + .41796*(time-33)*(time-33)*(time-33)
15
16
      return heightAfter33
17
18 "passing time into correct heigh equation
19 if time < 0:
20
      height = 0
21
      print(height)
22else if 0 <= time <15
23 height = timeLess15(time)
24
      print(height)
25 else if 15 <= time < 33
26
      height = timeBetween15and33(time)
27
      print(height)
28 else
29
      height = timeAfter33(time)
      if height < 0:
30
31
         height = 0
32
           return height
33
      print(height)
```

Problem 3 Taylor series parts 1 and 2

$\int_{1}^{\infty} (x)' = e^{x}$	Series is missing of (a) (x-a)	Juis Needham A01874339 + (0) (x-0) + f'(0) (x-0) + f''o(x) - 1! Z!
f(x") = ex if	X:=0	Lecons $e \times + e \times -0 + e \times -0$
	Chich	is $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} \dots \frac{x^n}{n!} \dots$
3.A21		
$f'(x) = 1 - x + \frac{x^{2}}{2!} - f(x) = 1 + x + \frac{x^{3}}{2!}$ $f''(x) = 1 + x + \frac{x^{3}}{2!}$ $f'''(x) = 1 + x + \frac{x^{3}}{2!} + \frac{x^{3}}{3!}$	3 !	Actual (1) = e = .3678 True vale - Approx _ 100 = % err
O Order Approx; (1)	5) = .5	3678 - 1 -172%
3+ order Approx S(1) = 1-(1) = 0		3678 - 0 <100 = 100 %
2 nd orde Aprox 1(1) & 1-(1)1 (1) = .5		.3678-15 -3678 X100 =-35,9%
$\frac{3^{n} \text{ orden } Approx}{f(a) = 1 = (a) + \frac{4}{2!}}$ $\frac{3^{n} \text{ orden } Approx}{3^{n} \text{ orden } Approx}$	117	.3678- \frac{1}{3} \times \(100 = 9.39 \frac{9}{6}\)

Taylor Series 3.B(f(x) = 20x3.5x2 + 7x-80 f'(x) = (00x2 - 10x + 7 ["(+) = 170 x - 10 [M (x) = 120 Taylor Series $f(x) \simeq \cdots f^{\alpha} (x-\alpha)^{\alpha} + \cdots$ @ Order Approximation; h=-1 - (1) = -2 f(-1) = 20(4) -5(4) + 7(4) -80 1st Order Approx f(-1) = -58 +[60(1) - 10(1) +7 /-2) ~ -172 2nd Order Approx f(-1) = -172 + [120(1)-10](-2) ~ 48 3rd Orden £(-1) ≈ 48 + 120 (-2)3 ~ -112

The Value
$$f(-1) = -1/2$$

$$= -1/2$$
The Value - Approx \times 100%

The

$$-1/2 \cdot (.58) \times 100 = 48.2\%$$

$$-1/2 \cdot (.42) \times 100 = 93\%$$

$$-1/2 \cdot (.48) \times 100 = 93\%$$

$$-1/2 \cdot (.48) \times 100 = 93\%$$