

HW901B-485 姿态角度传感器说明书

产品规格书:SPECIFICATION

型 号: HWT901B-485

描述: 高精度 10 轴姿态角度传感器

生产执行标准参考

企业质量体系标准: ISO9001:2016 标准

倾角开关生产标准: GB/T191SJ 20873-2016

产品试验检测标准: GB/T191SJ 20873-2016

修 订 日 期: 2019.11.20

www.wit-motion.com

版本号	版本更新内容	更改人	日期
V1.0	发布	章小宝	20170918
V1.1	更新连线方式和通讯	方立基	20190402
	协议		
V1.2	更新指令 (CRC 校	方立基	20190425
	验)		
V1.3	更新上位机图片,错	胡名林	20191120
	误更改		

目录

1	产品概	既述.		- 5 -
2	性能参	曑数.		- 6 -
3	产品区	计5	(单位 mm)	· 6 -
4	线色功	力能.		- 7 -
5	轴向说	说明.		- 7 -
6	硬件连	接接	方法	- 8 -
	6.	1.1	连接线路图	- 8 -
	6.	1.2	连接方法	- 8 -
7	上位机	几使月	用方法	. 9 -
	7.1	使用]方法	10 -
	7.2	恢复	夏出厂设置	12 -
	7.3	模块	P校准	12 -
	7.	3.1	加计校准	12 -
	7.	3.2	磁场校准	14 -
	7.	3.3	高度置零	15 -
	7.4	设置	置通信波特率	15 -
	7.5	记录	是数据	16 -
	7.6	安装	長方向	18 -
	7.7	休眼	民及解休眠	18 -
	7.8	测量	量带宽设置	18 -
8	MODI	BUS	通信协议	18 -
	8. 1	MU	DBUS 主机写从机数据格式:	19 -
	8.2	设置	<u>- </u>	20 -
	8.3	MU	DBUS 主机读取从机数据格式:	22 -
	8.4	输出	<u> </u>	23 -
	8.5	输出	· 数据解算	24 -

	8.5.1	时间输出:
	8.5.2	加速度输出:24 -
	8.5.3	角速度输出:25 -
	8.5.4	角度输出:25 -
	8.5.5	磁场输出:25 -
	8.5.6	气压、高度输出:26-
	8.5.7	四元素输出:26-
	8.6 寄存	字器列表 26 -
9	应用领域	29 -

1 产品概述

本产品内置 10 轴传感和 RM3100 模块,通信协议及具体参数请参考资料:

https://pan.baidu.com/s/144AO-QsHKfV-CGS mvd4TA#list/path=%2Fsharelink2638 468214-879133681492883%2FHWT901B%E8%B5%84%E6%96%99%2F%E4%BD %BF%E7%94%A8%E8%AF%B4%E6%98%8E%E4%B9%A6&parentPath=%2Fsharelink2638468214-879133681492883

- ◆ 模块集成高精度的陀螺仪、加速度计、RM3100 地磁场传感器,采用高性能的微处理器和先进的动力学解算与卡尔曼动态滤波算法,能够快速求解出模块当前的实时运动姿态。
- ◆ 采用先进的数字滤波技术,能有效降低测量噪声,提高测量精度。
- ◆ 模块内部集成了姿态解算器,配合动态卡尔曼滤波算法,能够在动态环境下准确输出模块的当前姿态,姿态测量精度 0.05 度,稳定性极高,性能甚至优于某些专业的倾角仪!
- ◆ 模块内部自带电压稳定电路,工作电压 9v~36v。
- ◆ 支持串口 TTL/232 数字接口。方便用户选择最佳的连接方式。串口速率 2400bps~921600bps 可调。
- ◆ 最高 200Hz 数据输出速率。输入内容可以任意选择,输出速率可调节。
- ◆ 4 层 PCB 板工艺, 更薄、更小、更可靠。

内置核心模块-10轴传感器

2 性能参数

- 1、电压: 9V~36V
- 2、电流: <40mA
- 3、体积: 55mm X 36.8mm X 24mm
- 4、测量维度: 加速度: 3 维, 角速度: 3 维, 磁场: 3 维, 角度: 3 维, 气压:1 维。
- 5、量程: 加速度:±16g, 角速度:±2000°/s, 角度±180°。
- 6、稳定性:加速度: 0.01g,角速度 0.05°/s。
- 7、测量误差: XY轴 0.05°, Z轴1°(磁场校准好,且没有被磁场干扰)。
- 8、数据输出内容:时间、加速度、角速度、角度、磁场、气压、高度。
- 9、数据输出频率 0.1Hz~200Hz。
- 10、数据接口: 串口(TTL/232 电平,波特率支持 2400、4800、9600(默认)、19200、38400、57600、115200、230400、460800、921600)。

RM3100模块参数

Parameter	Cycle Counts				
Parameter	50	100	200		
Field Measurement Range	-800	μT to +800	μΤ		
Noise	30 nT	20 nT	15 nT		
Gain @ 3V (LSB/ µ T)	20 nT	38 nT	75 nT		
Linearity over ±200 μT	0.5 % (typical)				
Sensitivity	50 nT	26 nT	13 nT		
Max 3 Axis Sample Rate	534 µA	284 µA	147 µA		
Current Usage @ 8 Hz, 3 Axes	70 µA	135 µA	260 μА		
Circuit Oscillation Frequency	180 kHz				
Bias Resistor (RB)		121 Ω			

3 产品尺寸(单位 mm)

4 线色功能

线色	红色	黄色	绿色	黑色
	RED	YELLOW	GREEN	BLACK
功能	VCC 9-36V 供电电源正极	A	В	GND 电源负极

5 轴向说明

如上图所示,模块的轴向在上图的,向左为X轴,向上Y轴,垂直于纸面向外为Z轴。旋转的方向按右手法则定义,即右手大拇指指向轴向,四指弯曲的方向即为绕该轴旋转的方向。X轴角度即为绕X轴旋转方向的角度,Y轴角度即为绕Y轴旋转方向的角度,Z轴角度即为绕Y轴旋转方向的角度。

6 硬件连接方法

6.1.1 连接线路图

6.1.2 连接方法

与计算机连接,需要 USB 转 485 电平的串口模块。推荐以下两款 USB 转串口模块:

三合一购买链接:

https://item.taobao.com/item.htm?id=574767679001&spm=2014.21600712.0.0 六合一购买链接:

https://item.taobao.com/item.htm?id=553416023259&spm=2014.21600712.0.0

输入输出口 485芯片 232芯片

六合一

(1) 六合一串口模块连接 HWT905 模块的方法是: USB 串口的拨码开关 1, 2 的拨码 开关拨至 ON,开关 S1 拨至下(上图中靠近 232-485 丝印),A 接模块的黄色线,B 接模块的绿色线。

电源供电: 9-36 正极接模块红色线, 9-36 负极接模块黑色线 拨码开关图:

(2) 三合一接法:

电源供电: 9-36 正极接模块红色线, 9-36 负极接模块黑色线。

模块的 A----三合一的 A。

模块的 B----三合一的 B。

7 上位机使用方法

7.1 使用方法

注意,上位机无法运行的用户请下载安装.net framework4.0:

http://www.microsoft.com/zh-cn/download/details.aspx?id=17718

通过 USB 串口模块连接上电脑打开上位机,安装好串口模块对应的驱动 CP210X 或者 CH340 以后,可以再设备管理器中查询到对应的端口号,下图安装的是 CH340 驱动设备管理器显示如下:

三合一驱动程序为 CH340, 如下:

https://pan.baidu.com/s/1LWxOTc6XmGvoxi7f9ltfhA#list/path=%2F

六合一驱动为 CP2102 如下:

http://pan.baidu.com/s/106Rleae?frm=fujian

打开 MiniIMU.exe 软件,在【资料包/上位机】中,点击串口选择菜单,选择刚才设备管理器里面看到的 COM 号,然后选择波特率,默认 9600。点击打开,左下角出现 port success等字样,表示串口打开成功,然后点击搜索,出现 0x50 字样,双击 0x50,即可出现数据。

当本次采集数据与上一次采集数据间隔时间较长时,图表更新会比较慢,此时可以右键点击图像,弹出清图栏,点击清图选项加快数据刷新速率。

点击三维按钮,可以调出三维显示界面,显示模块的三维姿态。

7.2 恢复出厂设置

上位机操作方法:将 HWT901B 模块和电脑通过 USB 转 485 模块连接好,点击配置选项,打开配置栏,点击"默认设置"即可。恢复出厂设置以后,需对模块重新上电。(此方法需要提前知道模块的波特率,如果波特率不匹配指令将无法生效。)

7.3 模块校准

注意:模块校准和配置要在上位机配置栏右下角显示在线状态下进行,如下图所示, 离线说明上位机没有控制到模块。

模块使用前,需要对模块进行校准。模块的校准包括加计校准、磁场校准。

7.3.1 加计校准

加计校准用于去除加速度计的零偏。传感器在出厂时都会有不同程度的零偏误差,需要手动进行校准后,测量才会准确。

加计校准方法如下:

- 1.首先使模块保持水平静止,点击配置栏里的加速度,会弹出一个校准界面。
- 2.把自动计算选项勾上,上位机会自动计算加速度零偏值,再点击写入参数。

 $3.1\sim2$ 秒后模块加速度三个轴向的值会在 0 0 1 左右,X 和 Y 轴角度在 0 ° 左右。校准后 XY 轴角度就跟精确了。

7.3.2 磁场校准

磁场校准用于去除磁场传感器的零偏。通常磁场传感器在制造时会有较大的零点误差,如果不进行校准,将会带来很大的测量误差,影响航向角 Z 轴角度测量的准确性。

磁场校准方法如下:

- 1.校准时,先连接好模块和电脑,将模块放置于远离干扰磁场的地方(**即远离磁和铁等物质 20CM 以上**),再打开上位机软件。
- 2. 在设置页面中,点击校准栏下的磁场按钮,就可以进入磁场校准模式,这时弹出 MagCal 窗口,在此窗口下点击开始校准。

3. 然后缓慢绕三个轴转动模块,让数据点在三个平面内画点,可以多转几圈,等画出 比较规则的椭圆以后,就可以停止校准了。校准完成后点击写入参数。

注意:数据点尽量在椭圆以内,不能再椭圆外面,如果不能画出椭圆,请远离磁场干扰,再参考校准视频,把模块放在地球磁场南北轴线上缓慢转圈。

校准视频: https://pan.baidu.com/s/1kVN0EZP

7.3.3 高度置零

高度置零是对模块输出的高度进行归 0 的操作。模块的高度输出是根据气压计算出来的,高度归 0 操作就是将当前气压值作为零高度位置进行计算。操作方法是点击配置栏里的"高度"选项即可。

7.4 设置通信波特率

模块支持多种波特率,默认波特率为9600。设置模块的波特率需要在软件与模块正确连接的基础上,在配置栏的通信速率下拉框中选择需要更改的波特率。

注意: 更改以后,模块在原来的波特率下已经不输出数据了,要重新在上位机上选择已经更改过的波特率,才会输出数据。

7.5 记录数据

传感器模块内部不带存储芯片,数据可以通过上位机来记录保存。 使用方法:点记录按钮—开始可以将数据保存为文件,点击结束可以结束记录数据。

点击停止后出现如下弹窗:

点击确定,即可打开保存的文件。保存的文件在上位机程序的目录下 Data.txt: 文件开头有标明数据对应的值,Time 代表时间,ax ay az 分别表示 x y z 三个轴向上的加速度,wx wy wz 分别表示 x y z 三个轴向上的角速度,Anglex Angley Anglez 分别表示 x y z 三个轴向的角度,T 代表时间,hx hy hz 分别表示 x y z 三个轴向上的磁场。

■ Data191120100511.txt - 记事本									
文件(<u>F</u>) 编	文件(F) 编辑(E) 格式(Q) 查看(V) 帮助(H)								
StartTime	e: 2019-11-	20 09:50:30).323						^
address	Time(s)	ChipTime	ax(g)	ay(g)	az(g)	wx(deg/s) wy(deg/s)) WZ	
(deg/s)	AngleX(d	eg)	AngleY(d	eg)	AngleZ(d	eg)	T(°)	hx	
hy	hz	D0	D1	D2	D3	Pressure(Pa)	Altitude	
(m)	Lon(deg)	Lat(deg)	GPSHeigh	nt(m)	GPSYaw(deg)	GPSV(km	/h)	
q0	q1	q2	q3	SV	PDOP	HDOP	VDOP		
0x50	10:05:11.7	794	00:20:43.9	950	-0.2813	-0.2070	1.0059	-0.0610	
0.0000	0.1221	-11.6290	15.2820	-4.2407	46.0600	226	2862	-1002	
1	1290	1883	2159	102097	-64.11	0.000000	00		
0.0000000	00	0.0	0.0	0.000	-0.98581	0.09546	-0.13589	0.02301	
0	0.00	0.00	0.00						
0x50	10:05:11.9	925							
0x50	10:05:11.9	925	00:20:44.0	080	-0.2817	-0.2080	1.0049	-0.2441	
0.0610	0.1831	-11.6455	15.2875	-4.2188	46.0500	230	2862	-1000	
1	1289	1881	2158	102097	-64.08	0.000000	00		
0.0000000	00	0.0	0.0	0.000	-0.98581	0.09561	-0.13596	0.02280	
0	0.00	0.00	0.00						
0x50	10:05:12.0	056							
0x50	10:05:12.0	056	00:20:44.2	210	-0.2827	-0.2075	1.0054	-0.3662	
0.0610	0.2441	-11.6840	15.3149	-4.1913	46.0200	232	2861	-1000	
1	1288	1881	2156	102097	-64.08	0.000000	00		
0.000000	nn	0.0	0.0	0.000 第1行, 第1		n nasas Window		U U U D J V U	~

7.6 安装方向

模块默认安装方向为水平安装,当模块需要垂直放置时,可以用垂直安装设置。

垂直安装方法:垂直安装时,把模块绕 X 轴旋转 90°垂直放置,在上位机配置栏里面"安装方向"选项中选择"垂直"。设置完成后要进行校准才能使用。

垂直安装

7.7 休眠及解休眠

休眠:模块暂停工作,进入待机状态。休眠后可以降低功耗。

解休眠:模块从待机状态进入工作状态。

使用方法:模块默认为工作状态,在上位机配置栏里面点击"休眠"选项,进入休眠状态,再点击"休眠"选项,模块解除休眠。

7.8 测量带宽设置

测量带宽:模块只输出测量带宽以内的数据,大于带宽的数据会自动滤除。

使用方法:在上位机配置栏里面点击"测量带宽"选项,即可设置。默认为 20HZ。

8 MODBUS 通信协议

电平: RS485

波特率: 2400、4800、9600(默认)、19200、38400、57600、115200、230400、460800、921600,停止位 1,校验位 0。发送的指令为 HEX 码。

模块可以完全通过 485 进行访问, 默认地址为 0x50, 可以通过串口指令或者 modbus 写地址的方式更改。

8.1 MUDBUS 主机写从机数据格式:

设备地	0x06	regH	regL	dataH	dataL	CRCH	CRCL
址							
0x50 (默	写功能	寄存器	寄存器	数据高	数据低	CRC 校验	CRC 校验
认)	码	高位	低位	位	位	高位	低位

注意: 1. 设备地址(modbus 地址)可以根据 5. 2 更改的,模块出厂默认的是 0x50,用户可以根据自己的需要更改,设备地址范围: 0x00-0xFF.

2. CRC 校验和需要计算:

(1) http://www.23bei.com/tool-59.html 可在网址里在线计算

计算

Eg:

16进制(CRC16)(MODBUS RTU通讯)校验码在线计算器_三贝计算网	_23bei.com					
字节数(10进制)	6					
字节数(16进制)	06					
CRC-16(MSB-LSB)	4B44					
CRC-16(Modbus)	444B					
50 06 00 04 00 02						

清除

根据这个数据格式可以设置波特率、回传速率等。

1) 设置波特率:

dataH:0x00

dataL

0x00: 2400

0x01: 4800

0x02: 9600 (默认)

0x03: 19200

0x04: 38400

0x05: 57600

0x06: 115200

0x07: 230400

0x08: 460800

0x09: 921600

示例:

0x50 0x06 0x00 0x04 0x00 0x02 0x44 0x4B 设置波特率为 9600;

0x50 0x06 0x00 0x04 0x00 0x01 0x04 0x4A 设置波特率为 4800;

更改其它请参考主机写从机数据格式,dataL数据内容与JY-901通信协议设置内容一致。

8.2 设置

MODADDR: modbus 地址 (默认 0X50)

注意:如果更改了 modbus 地址,那么对应的 CRC 校验码也需要更改

分类	功能	参数	指令
	恢复出厂		MODADDR 06 00
			00 00 01 45 8B
	休眠		MODADDR 06 00
			22 00 01 E5 81
	算法	九轴算法	MODADDR 06 00
		六轴算法	24 00 00 C4 40
			MODADDR 06 00
系统			24 00 01 05 80
水 乳	安装方向	水平	MODADDR 06 00
		垂直	23 00 00 75 81
			MODADDR 06 00
			23 00 01 B4 41
	指令启动	Yes	MODADDR 06 00
		No	2D 00 0014 42
			MODADDR50 06
			00 2d 00 01 D5 82
	加计校准	加计校准	MODADDR 06 00
		完成	01 00 01 14 4B
			MODADDR50 06
			00 01 00 00 D5 8B
			MODADDR 06 00
			00 00 00 84 4B
	磁场校准	磁场校准	MODADDR 06 00
		完成	01 00 07 94 49
			MODADDR 06 00
校准			01 00 00 D5 8B
12.1			MODADDR 06 00
			00 00 00 84 4B
	计		MODADDD 06 00
	高度清零		MODADDR 06 00
	吃調 か 台 斗 松	Vac	01 00 03 95 8A
	陀螺仪自动校 准	Yes No	MODADDR 06 00 63 00 00 74 55
	1庄	INU	MODADDR 06 00
			63 00 01 B5 95
	设置角度参考		MODADDR 06 00 01 00 08 D4 4D
			01 00 08 04 40

I I			www.wit-motion.com
	Z 轴角度归 0		MODADDR 06 00
	I)+- r >-	_	01 00 04 D4 48
	加速度	2g	MODADDR 06 00
		4g	21 00 00 D4 41
		8g	MODADDR 06 00
		16g	21 00 01 15 81
			MODADDR 06 00
			21 00 02 55 80
			MODADDR 06 00
			21 00 03 94 40
	角速度	250deg/s	MODADDR 06 00
		500deg/s	20 00 00 85 81
		1000deg/s	MODADDR 06 00
		2000deg/s	20 00 01 44 41
			MODADDR 06 00
			20 00 02 04 40
			MODADDR 06 00
范围			20 00 03 C5 80
10 p			
	带宽	256HZ	MODADDR 06 00
		184HZ	1F 00 00 B5 B8
		94HZ	MODADDR 06 00
		44HZ	1F 00 01 74 4D
		21HZ	MODADDR 06 00
		10HZ	1F 00 02 34 4C
		5HZ	MODADDR 06 00
			1F 00 03 F5 8C
			MODADDR 06 00
			1F 00 04 B4 4E
			MODADDR 06 00
			1F 00 05 75 8E
			MODADDR 06 00
			1F 00 06 35 8F
L 63			
内容	通 <i>色</i> 速变	DALID SHILL	MODADDD 04 00
	通信速率	BAUD: 波特	MODADDR 06 00
	(蓝牙 2.0 无)	率设置	04 00 00 C5 8A
		0x00:	MODADDR 06 00
\Z /2-		2400	04 00 01 04 4A
通信		2400 0x01:	04 00 01 04 4A MODADDR 06 00
通信		2400 0x01: 4800	04 00 01 04 4A MODADDR 06 00 04 00 02 44 4B
通信		2400 0x01: 4800 0x02:	04 00 01 04 4A MODADDR 06 00 04 00 02 44 4B MODADDR 06 00
通信		2400 0x01: 4800	04 00 01 04 4A MODADDR 06 00 04 00 02 44 4B

	0x04: 38400	04 00 04 C4 49
	0x05: 57600	MODADDR 06 00
	0x06: 115200	04 00 05 05 89
	0x07: 230400	MODADDR 06 00
	0x08: 460800	04 00 06 45 88
	0x09: 921600	
		MODADDR 06 00
		04 00 07 84 48
		MODADDR 06 00
		04 00 08 C4 4C
		MODADDR 06 00
		04 00 09 05 8C
地址	MODADDRL:	MODADDR 06 00
	modbus 地址	1a 00 MODADDRL
	0x00-0xff	CRCH CRCL
	1	

8.3 MUDBUS 主机读取从机数据格式:

设备地	0x03	regH	regL	regNumH	regNumL	CRCH	CRCL
址							
0x50 (默	读功能	第一个寄	第一个寄	寄存器个	寄存器个	CRC 校验	CRC 校验
认)	码	存器高位	存器低位	数高位	数低位	高位	低位
		的地址	的地址				

示例:

读取XYZ角度

0x50 0x03 0x00 0x3d 0x00 0x03 0x99 0x86

(0x99 0x86 需要通过计算,参考通讯协议中 CRC 计算部分)

从机答应数据格式:

0x50	0x03	0xN	DataH	DataL		CRCH	CRCL
设备地	读功能	寄存器	第一个	第一个	N个	CRC 校验	CRC 校验
址	码	字节数	数据高	数据低	数据	高位	低位
		N = (0 - 0x)	位	位			
		FF)					

示例:

读取 X Y Z 角度:180° 90° 30° 0x50 0x03 0x06 0x80 0x00 0x40 0x00 0x15 0x55 0x14 0x49

8.4 输出

MODADDR: modbus 地址(默认 0X50)

注意:如果更改了 modbus 地址,那么对应的 CRC 校验码也需要更改

内容	明细	
时间	YY MM DD HH MM	发送: MODADDR 03 00
	SS	30 00 03 08 45
		回传: MODADDR 03 06
		YY MM DD HH MM SS
		CRCH CRCL
加速度	ax:	发送: MODADDR 03 00
	ay:	34 00 03 49 84
	az:	回传: MODADDR 03 06
	a :	AxH AxL AyH AyL AzH AzL
		CRCH CRCL
角速度	wx:	发送: MODADDR 03 00
	wy:	37 00 03 B9 84
	wz:	
	w :	
角度	X:	发送: MODADDR 03 00
	Y:	3d 00 03 99 86
	Z:	
	T:	
磁场	Hx:	发送: MODADDR 03 00
	Hy:	3a 00 04 69 85
	Hz:	
	H :	
气压及高度	P:	发送: MODADDR 03 00
	H:	45 00 04 58 5D
端口	D0:	发送: MODADDR 03 00
	D1:	41 00 04 19 9C
	D2:	
	D3:	
四元素	q0:	发送: MODADDR 03 00
	q1:	51 00 04 18 59
	q2:	
	q3:	
	- 23	

- 23

电话: 0755-33185882 邮箱: wit@wit-motion.com 网站: www.wit-motion.com

经纬度	Lon: Lat:	发送: MODADDR 03 00 49 00 04 98 5E
地速	GPSH: GPSYaw: GPSV:	发送: MODADDR 03 00 4d 00 04 D9 9F
定位精度	SVM: PDOP: HDOP: VDOP:	发送: MODADDR 03 00 55 00 04 59 98

8.5 输出数据解算

以 8.4 读取指令为例, 从机应答数据如下:

8.5.1 时间输出:

MODADDR	0X03	0X06	YY	MM	DD	НН	MM	SS	CRCH	CRCL

YY: 年, 20YY年

MM: 月

DD: ∃

HH: 时

MM: 分

SS: 秒

CRCH: CRC 校验高位 CRCL: CRC 校验低位

8.5.2 加速度输出:

MODADDR	0X03	0X06	AxH	AxL	AyH	AyL	AzH	AzL	CRCH	CRCL
---------	------	------	-----	-----	-----	-----	-----	-----	------	------

计算方法:

a_x=((AxH<<8)|AxL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_y=((AyH<<8)|AyL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

 a_z =((AzH<<8)|AzL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

CRCH: CRC 校验高位

CRCL: CRC 校验低位

说明:

- 1、 数据是按照 16 进制方式发送的,不是 ASCII 码。
- 2、每个数据分低字节和高字节依次传送,二者组合成一个有符号的 short 类型的数据。例如 X 轴加速度数据 Ax,其中 AxL 为低字节,AxH 为高字节。转换方法如下:假设 Data 为实际的数据, DataH 为其高字节部分, DataL 为其低字节部分,那么:

Data=(short)(DataH<<8|DataL)。这里一定要注意 DataH 需要先强制转换为一个有符号的 short 类型的数据以后再移位,并且 Data 的数据类型也是有符号的 short 类型,这样才能表示出负数。

详细解算示例:

 $\underline{\text{http://www.openedv.com/forum.php?mod=viewthread\&tid=79352\&page=1\&extra=\#pid450195}$

8.5.3 角速度输出:

MODADDR 0X03 0X06	wxH w	xL wyH	wyL	wzH	wzL	CRCH	CRCL
-------------------	-------	--------	-----	-----	-----	------	------

计算方法:

 $w_x = ((wxH << 8)|wxL)/32768*2000(^{\circ}/s)$

 $w_y = ((wyH << 8)|wyL)/32768*2000(^{\circ}/s)$

 $w_z = ((wzH << 8)|wzL)/32768*2000(^{\circ}/s)$

CRCH: CRC 校验高位 CRCL: CRC 校验低位

8.5.4 角度输出:

MODADDR	0X03	0X06	RollH	RollL	PitchH	Pitch	Yaw	YawL	CRCH	CRCL
						L	Н			

计算方法:

滚转角(x轴)Roll=((RollH<<8)|RollL)/32768*180(°)

俯仰角(y轴)Pitch=((PitchH<<8)|PitchL)/32768*180(°)

偏航角(z轴)Yaw=((YawH<<8)|YawL)/32768*180(°)

CRCH: CRC 校验高位 CRCL: CRC 校验低位

注:

- 1. 姿态角结算时所使用的坐标系为东北天坐标系,正方向放置模块。欧拉角表示姿态时的坐标系旋转顺序定义为为 z-y-x, 即先绕 z 轴转,再绕 y 轴转,再绕 x 轴转。
- 2. 滚转角的范围虽然是±180度,但实际上由于坐标旋转顺序是 Z-Y-X, 在表示姿态的时候, 俯仰角 (Y轴)的范围只有±90度, 超过 90度后会变换到小于 90度, 同时让 X轴的角度大于180度。详细原理请大家自行百度欧拉角及姿态表示的相关信息。
- 3. 由于三轴是耦合的,只有在小角度的时候会表现出独立变化,在大角度的时候姿态 角度会耦合变化,比如当 Y 轴接近 90 度时,即使姿态只绕 Y 轴转动, X 轴的角度 也会跟着发生较大变化,这是欧拉角表示姿态的固有问题。

8.5.5 磁场输出:

MODADDR	0X03	0X06	HxH	HxL	НуН	HyL	HzH	HzL	CRCH	CRCL
---------	------	------	-----	-----	-----	-----	-----	-----	------	------

计算方法:

磁场 (x 轴) Hx=((HxH<<8)|HxL) 磁场 (y 轴) Hy=((HyH <<8)|HyL) 磁场 (z 轴) Hz =((HzH<<8)|HzL)

CRCH: CRC 校验高位 CRCL: CRC 校验低位

8.5.6 气压、高度输出:

MODAD	0X0	0X0	P0	P1	P2	Р3	Н0	H1	H2	Н3	CRC	CRC
DR	3	8									Н	L

计算方法:

气压 P = (P2 << 24) | (P3 << 16) | (P0 << 8) | P1 (Pa)

高度 H = (H2<<24)| (H3<<16)| (H0<<8)| H1 (cm)

CRCH: CRC 校验高位 CRCL: CRC 校验低位

8.5.7 四元素输出:

MODAD	0X0	0X0	Q0H	Q0L	Q1H	Q1	Q2H	Q2	Q3H	Q3L	CRC	CRC
DR	3	8				L		L			Н	L

计算方法:

Q0=((Q0H<<8)|Q0L)/32768

Q1=((Q1H<<8)|Q1L)/32768

Q2=((Q2H<<8)|Q2L)/32768

Q3=((Q3H<<8)|Q3L)/32768

CRCH: CRC 校验高位 CRCL: CRC 校验低位

8.6 寄存器列表

模块的每个地址内的数据均为 16 位数据,占 2 个字节。寄存器的地址及含义如下表:

地址 RegAddr	符号	含义
0x00	SAVE	保存当前配置
0x01	CALSW	校准
0x02	RSW	回传数据内容
0x03	RATE	回传数据速率
0x04	BAUD	串口波特率
0x05	AXOFFSET	X 轴加速度零偏

		www.wit-motion.com
0x06	AYOFFSET	Y 轴加速度零偏
0x07	AZOFFSET	Z 轴加速度零偏
0x08	GXOFFSET	X 轴角速度零偏
0x09	GYOFFSET	Y 轴角速度零偏
0x0a	GZOFFSET	Z 轴角速度零偏
0x0b	HXOFFSET	X 轴磁场零偏
0x0c	HYOFFSET	Y 轴磁场零偏
0x0d	HZOFFSET	Z 轴磁场零偏
0x0e	D0MODE	D0 模式
0x0f	D1MODE	D1 模式
0x10	D2MODE	D2 模式
0x11	D3MODE	D3 模式
0x12	D0PWMH	D0PWM 高电平宽度
0x13	D1PWMH	D1PWM 高电平宽度
0x14	D2PWMH	D2PWM 高电平宽度
0x15	D3PWMH	D3PWM 高电平宽度
0x16	D0PWMT	D0PWM 周期
0x17	D1PWMT	D1PWM 周期
0x18	D2PWMT	D2PWM 周期
0x19	D3PWMT	D3PWM 周期
0x1a	IICADDR	IIC 地址
0x1b	LEDOFF	关闭 LED 指示灯
0x1c	GPSBAUD	GPS 连接波特率
0x30	YYMM	年、月
0x31	DDHH	日、时
0x32	MMSS	分、秒
0x33	MS	毫秒
0x34	AX	X 轴加速度
0x35	AY	Y 轴加速度
0x36	AZ	Z 轴加速度
0x37	GX	X 轴角速度
0x38	GY	Y 轴角速度
0x39	GZ	Z 轴角速度
0x3a	HX	X 轴磁场
0x3b	HY	Y 轴磁场
0x3c	HZ	Z 轴磁场
0x3d	Roll	X 轴角度
0x3e	Pitch	Y 轴角度
0x3f	Yaw	Z 轴角度
0x40	TEMP	模块温度
0x41	D0Status	端口 D0 状态
0x42	D1Status	端口 D1 状态

0x43	D2Status	端口 D2 状态
0x44	D3Status	端口 D3 状态
0x45	PressureL	气压低字
0x46	PressureH	气压高字
0x47	HeightL	高度低字
0x48	HeightH	高度高字
0x49	LonL	经度低字
0x4a	LonH	经度高字
0x4b	LatL	纬度低字
0x4c	LatH	纬度高字
0x4d	GPSHeight	GPS 高度
0x4e	GPSYaw	GPS 航向角
0x4f	GPSVL	GPS 地速低字
0x50	GPSVH	GPS 地速高字
0x51	Q0	四元素 Q0
0x52	Q1	四元素 Q1
0x53	Q2	四元素 Q2
0x54	Q3	四元素 Q3

9 应用领域

农业机械

太阳能

医疗器械

地质监测

物联网

电力监控

工程机械

深圳维特智能科技有限公司

WitMotion ShenZhen Co., Ltd

高精度 10 轴姿态角度传感器

电话: 0755-33185882

邮箱: wit@wit-motion.com 网站: www.wit-motion.com

店铺: https://robotcontrol.taobao.com

地址: 广东省深圳市宝安区松岗镇星际家园宏海大厦