EXPERIMENT NO:1

s<=a xor b;

```
Half Adder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity adder is
    Port (a:in STD_LOGIC;
             b:in STD_LOGIC;
             s:out STD_LOGIC;
             c:out STD_LOGIC);
end adder;
architecture Behavioral of adder is
begin
```

c<=a and b;

end Behavioral;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

- -- Uncomment the following library declaration if using
- -- arithmetic functions with Signed or Unsigned values
- --USE ieee.numeric_std.ALL;

```
ENTITY hadder IS
END hadder;
ARCHITECTURE behavior OF hadder IS
    -- Component Declaration for the Unit Under Test (UUT)
    COMPONENT adder
    PORT(
          a: IN std_logic;
          b: IN std_logic;
          s:OUT std_logic;
          c:OUT std_logic
         );
    END COMPONENT;
   --Inputs
   signal a : std_logic := '0';
   signal b : std_logic := '0';
       --Outputs
   signal s : std_logic;
```

signal c : std_logic;

```
-- No clocks detected in port list. Replace <clock> below with
   -- appropriate port name
   --constant <clock>_period : time := 10 ns;
BEGIN
       -- Instantiate the Unit Under Test (UUT)
   uut: adder PORT MAP (
            a => a,
            b => b,
            s => s,
            c => c
          );
   -- Clock process definitions
     <clock>_process :process
     begin
               <clock> <= '0';
               wait for <clock>_period/2;
               <clock> <= '1';
               wait for <clock>_period/2;
     end process;
```

```
-- Stimulus process
    stim_proc: process
    begin
a<='0';
b<='0';
        -- hold reset state for 100 ns.
        wait for 100 ns;
a<='0';
b<='1';
        -- hold reset state for 100 ns.
       wait for 100 ns;
a<='1';
b<='0';
        -- hold reset state for 100 ns.
        wait for 100 ns;
a<='1';
b<='1';
        -- hold reset state for 100 ns.
        wait for 100 ns;
        --wait for <clock>_period*10;
        -- insert stimulus here
        wait;
```

end process;

END;

Full Adder

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity fulladder is
    Port ( x : in STD_LOGIC;
             y:in STD_LOGIC;
             z:in STD_LOGIC;
             s:out STD_LOGIC;
             c:out STD_LOGIC);
end fulladder;
```

architecture Behavioral of fulladder is

```
begin
```

```
s<=(x xor y)xor z;
c<=((x xor y) and z) or (x and z);</pre>
```

end Behavioral;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

- -- Uncomment the following library declaration if using
- -- arithmetic functions with Signed or Unsigned values

```
--USE ieee.numeric_std.ALL;
ENTITY fadder IS
END fadder;
ARCHITECTURE behavior OF fadder IS
    -- Component Declaration for the Unit Under Test (UUT)
    COMPONENT fulladder
    PORT(
          x: IN std_logic;
          y: IN std_logic;
          z: IN std_logic;
          s:OUT std_logic;
          c:OUT std_logic
         );
    END COMPONENT;
   --Inputs
   signal x : std_logic := '0';
   signal y : std_logic := '0';
   signal z : std_logic := '0';
```

```
--Outputs
   signal s : std_logic;
   signal c : std_logic;
   -- No clocks detected in port list. Replace <clock> below with
   -- appropriate port name
   --constant <clock>_period : time := 10 ns;
BEGIN
       -- Instantiate the Unit Under Test (UUT)
   uut: fulladder PORT MAP (
            x => x,
            y => y,
             z => z,
             s => s,
            c => c
          );
   -- Clock process definitions
     <clock>_process :process
     begin
                <clock> <= '0';
                wait for <clock>_period/2;
                <clock> <= '1';
```

```
wait for <clock>_period/2;
-- end process;
    -- Stimulus process
    stim_proc: process
    begin
x<='0';
y<='0';
z<='0';
        -- hold reset state for 100 ns.
       wait for 100 ns;
x<='0';
y<='1';
z<='0';
        -- hold reset state for 100 ns.
        wait for 100 ns;
x<='0';
y<='0';
z<='1';
        -- hold reset state for 100 ns.
       wait for 100 ns;
x<='0';
y<='1';
z<='1';
```

```
-- hold reset state for 100 ns.
        wait for 100 ns;
x<='1';
y<='0';
z<='0';
        -- hold reset state for 100 ns.
        wait for 100 ns;
x<='1';
y<='0';
z<='1';
        -- hold reset state for 100 ns.
        wait for 100 ns;
x<='1';
y<='1';
z<='0';
        -- hold reset state for 100 ns.
        wait for 100 ns;
x<='1';
y<='1';
z<='1';
        -- hold reset state for 100 ns.
        wait for 100 ns;
        --wait for <clock>_period*10;
```

-- insert stimulus here

wait;

end process;

END;


```
net "x" loc = "p101";
net"y"loc="p100";
net"z"loc="p97";
net"s"loc="p171";
net"c"loc="p172";
```

*		Final Report					
======							
Final Re	sults						
RTL Top	Level Output File Name	: fulladder.ngr					
Top Level Output File Name		: fulladder					
Output Format		: NGC					
Optimization Goal		: Speed					
Keep Hierarchy		: No					
Design S	tatistics						
# IOs		: 5					
Cell Usa	ge:						
# BELS		: 2					
#	LUT3	: 2					
# IO Buffers		:5					
#	IBUF	: 3					
#	OBUF	: 2					
======							
Device utilization summary:							

Selected Device: 3s400pq208-4

Number of Slices:	1	out of	3584	0%				
Number of 4 input LUTs:	2	out of	7168	0%				
Number of IOs:	5							
Number of bonded IOBs:	5	out of	141	3%				
Partition Resource Summary:								
No Partitions were found in this design.								
	====	======	======					
TIMING REPORT								
NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.								
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT								
GENERATED AFTER PLACE-and-ROUTE								
Clock Information:								
No clock signals found in this design								

Asynchronous Control Signals Information:							
No asynchronous c	ontrol signals found in this design						
Timing Summary:							
Speed Grade: -4							
Minimum perio	od: No path found						
Minimum input arrival time before clock: No path found							
Maximum outp	out required time after clock: No path found						
Maximum com	binational path delay: 9.033ns						
Timing Detail:							
All values displayed	l in nanoseconds (ns)						
Timing constraint: I	Default path analysis						
Total number of	paths / destination ports: 6 / 2						
Delay:	9.033ns (Levels of Logic = 3)						
Source:	z (PAD)						
Destination:	c (PAD)						

Data Path: z to c

		G	Gate	Net			
Cell:in->out	fanout	Delay	Delay	Logical Name (Net	Name)		
IBUF:I->O	:	2 0.82	1 1.23	l6 z_IBUF (z_IBUF)		
LUT3:I0->O		1 0.55	0.8	01 c1 (c_OBUF)			
OBUF:I->O		5.6	44	c_OBUF (c)			
Total		9.03	9.033ns (7.016ns logic, 2.017ns route)				
(77.7% logic, 22.3% ro							

Total REAL time to Xst completion: 4.00 secs

Total CPU time to Xst completion: 3.66 secs

-->

Total memory usage is 4493176 kilobytes

Number of errors : 0 (0 filtered)

Number of warnings: 0 (0 filtered)

Number of infos : 0 (0 filtered)