Assumptions of the La	3 estimator
Non-linearity: a) In variables:	Slide 13
$y'_{1} = \beta_{1} + \beta_{2} \times \frac{2}{2} + u_{1}$ linearization	
$\times_{2_{i}}^{2} = \times_{2_{i}}^{3}$	
b) In parameters:	
yi = 132 x2; + 4i	X
Fixed explanatory varia	ables:
$E(X) = X$ $E[(X^TX)^{-1}X^T] = (X^TX)^{-1}$	
	Slide 24
Heteroscedasticity:	Slide L7

 $Var(u_i) = \zeta_i^2$

Autocorrelation:

Slide 23

ls about <u>covariance</u> or <u>correlation</u> between stochastic variable u and <u>lagged</u> stochastic variable u, i.e.:

	, i	زر
_{f}	Ut	Ut -1
1	U ₁	
2	Uz	ly
3	u_3	u _z
4	Uy	u ₃
5	US	Uq

Assumption 8, example: Slide 33

$$y_i = b_1 + b_2 \times z_i + e_i$$
, $var(x_2) = 0$

Then $x_{2i} = \overline{x}_{2i}, \forall i$:

$$b_2 = \frac{\sum_i (x_{2i} - \overline{x_2})(y_i - \overline{y})}{\sum_i (\underline{x_{2i}} - \overline{x_2})^2}$$
 not defined

and

$$b_1 = \overline{y} - b_2 \overline{x}_z$$
 not defined.

Assumption 10:	Slide 37
Consequences of perfect (n	nulti) collinearity:
1) det (XTX) = 0. 2) matrix XTX is singular non-invertible. 3) b = (XTX)-1XTy is no	- and Haus
non-invertible.	of old by a
3) 0 = (\(\cdot\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	or all his or.

Sample properties of the LS estimator Slide 43 Unbiasedness: $\frac{1}{6} = \frac{1}{5} + \left(\times T \times \right)^{-1} \times T u$ Slide 44 Efficiency: $b-\beta=(\chi^T\chi)^{-1}\chi^Tu$ $(b-B)^T = uT \times (xTx)^{-1}$

 $\delta^2 \cdot (X^T X)^{-1}$

	• /		1 4	•	•
	lid	n i	ч		•
-	uv	~	•	U	-

Assume a trivariate regression model:

$$Y_i = b_1 + (b_2) \times x_2 + b_3 \times x_3 + e_i$$
 (SRM)

Stide 47:

BLUE or

(most efficient)

Variance "