

Università degli Studi di Trento Fisica Computazionale

Corso di Laurea Triennale in Fisica

Relazione di laboratorio

Progetto finale: Equazione di Schrödinger in 1D

January 10, 2025

Candidato:

Giorgio Micaglio, giorgio.micaglio@studenti.unitn.it Matricola 227051

Docente:

Prof. Alessandro Roggero

Anno Accademico 2023-2024

1 Introduzione

L'obiettivo di questo progetto è risolvere numericamente l'equazione di Schrödinger in una dimensione:

$$i\frac{\partial}{\partial t}\psi(x,t) = \left[-\frac{\partial^2}{\partial x^2} + V(x)\right]\psi(x,t). \tag{1}$$

Per semplicità, si sono posti $\hbar = m = 1$. Si è interessati alla regione $x \in [-L, L]$ e si impongono le condizioni al contorno $\psi(-L, t) = \psi(L, t) = 0$.

2 Metodo di Eulero esplicito

Il primo approccio è quello di utilizzare il metodo di Eulero esplicito. Per prima cosa, si usano le differenze finite per stimare le derivate della funzione d'onda che compaiono in (1). Siano $x = x_0 + \Delta x$ e $t = t_0 + \Delta t$, si ottiene:

$$\begin{split} \frac{\partial \psi(x,t)}{\partial t} &= \frac{\psi(x_0,t_0+\Delta t) - \psi(x_0,t_0)}{\Delta t} + \mathcal{O}(\Delta t) \,, \\ \frac{\partial^2 \psi(x,t)}{\partial x^2} &= \frac{\psi(x_0+\Delta x,t_0) - 2\psi(x_0,t_0) + \psi(x_0-\Delta x,t)}{\Delta x^2} + \mathcal{O}(\Delta x^2) \,. \end{split}$$

L'equazione di Schrödinger diventa quindi:

$$i\frac{\psi(x_0,t_0+\Delta t)-\psi(x_0,t_0)}{\Delta t} = -\frac{\psi(x_0+\Delta x,t_0)-2\psi(x_0,t_0)+\psi(x_0-\Delta x,t_0)}{\Delta x^2} + V(x_0)\psi(x_0,t_0).$$

Prendendo $\Delta x = 2L/(N+1)$, si possono definire la funzione d'onda e il potenziale calcolati sui punti della griglia come

$$\psi_i^k = \psi(-L + i\Delta x, t_0 + k\Delta t)$$
 $i = 0, 1, ..., N + 1$ $k = 0, 1, ..., M$
 $V_i = V(-L + i\Delta x)$ $i = 0, 1, ..., N + 1$

e si può scrivere l'equazione in modo più chiaro:

$$i \frac{\psi_i^{k+1} - \psi_i^k}{\Delta t} = - \frac{\psi_{i+1}^k - 2\psi_i^k + \psi_{i-1}^k}{\Delta x^2} + V_i \psi_i^k \; .$$

Isolando il termine ψ_i^{k+1} e semplificando, si ottiene

$$\psi_i^{k+1} = \eta \psi_{i+1}^k + (1 - 2\eta + \Delta \tau V_i) \psi_i^k + \eta \psi_{i-1}^k,$$
(2)

dove $\Delta \tau = -i\Delta t$ e $\eta = -\Delta \tau/\Delta x^2$. L'equazione (2) rappresenta l'evoluzione temporale della funzione d'onda. Come ultimo passaggio, si può definire il vettore

$$\boldsymbol{\psi}_k = (\psi_1^k, \psi_2^k, \dots, \psi_N^k)^T$$

e l'equazione (2) diventa

$$\psi_{k+1} = A\psi_k$$

con

$$A = \begin{pmatrix} 1 - 2\eta + \Delta \tau V_1 & \eta & 0 & \cdots & 0 \\ \eta & 1 - 2\eta + \Delta \tau V_2 & \eta & \cdots & 0 \\ 0 & \eta & 1 - 2\eta + \Delta \tau V_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \eta \\ 0 & 0 & 0 & \eta & 1 - 2\eta + \Delta \tau V_N \end{pmatrix}.$$

La matrice A è tridiagonale: ciò semplifica molto la computazione della moltiplicazione matrice per vettore.

3 Simulazione di particella libera

Il caso in cui V(x)=0 è quello di particella libera. Si usa come condizione iniziale $\psi(0,0)=1$ e $\psi(x,0)=0 \ \forall x\neq 0$.