

Predicting the Spread of COVID-19

DSE 6300: Data Science Application Development

By: Kyle W. Brown

Overview

- Project Proposal
- Project Schedule
- Data
- Pipeline
- Models
- Visualization
- Summary

Project Proposal

- Build a functional dashboard in Shiny or Tableau presenting COVID19 virus predictions and data.
- Stream COVID data using Kafka or Spark Streaming.
- Visualization of predictive analytics model and data.
- Predictions or time series analysis based on COVID19, environmental, and economic factors.

Abstract:

Implement a predictive model to identify which factors have the greatest impact on the spread and strength of the COVID-19 virus in a geographic area.

Project Schedule

Shortened Agile Framework

- 2 (1) week iterations
- 2 checkpoints indicating updates
- Checkpoint 2 is midterm
- Agile Schedule used for task list tracking

Project Schedule

Project Task List

	Completed
Objectives	٧
Data	٧
Pipeline	٧
Machine learning	٧
Visualization	٧
Dashboard	٧
Integration	

Final Week Schedule

Thu	Fri	Sat	Sun	Mon	Tue
4/16/2020	4/17/2020	4/18/2020	4/19/2020	4/20/2020	4/21/2020
Final Modeling	Model update, submit models by 7:00 p.m.	 Group model selection Kafka setup	Start pptKafka topics, records, cluster	Finish ppt partsFinish pipeline	Finalize ppt

Data

John Hopkins University, GitHub repo

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports_us

Daily Reports for United States

												Mortality_	Testing_	
Province State	Last_Update	Lat	Long_	Confirm	Deaths	Recovered	Active	FIPS	Incident_Rate	People_Tested	People_Hospitalized	Rate	Rate	Hospitalization_Rate
Alabama	4/15/2020 22:56	32.3182	-86.9023	4075	118	0	3957	1	86.91	34077	525	2.90	726.76	12.88
Alaska	4/15/2020 22:56	61.3707	-152.404	293	9	106	284	2	49.02	8664	34	3.07	1449.44	11.60
American Samoa	4/15/2020 22:56	-14.271	-170.132	0	0	0	0	60	0	3	0	0	5.39	0
Arizona	4/15/2020 22:56	33.7298	-111.431	3964	142	385	3822	4	54.46	45310	590	3.58	622.50	14.88
Arkansas	4/15/2020 22:56	34.9697	-92.3731	1569	33	489	1536	5	60.60	21834	130	2.10	843.33	8.29
California	4/15/2020 22:56	36.1162	-119.682	26686	861	0	25825	6	68.06	216486	5163	3.23	552.14	19.35
Colorado	4/15/2020 22:56	39.0598	-105.311	7956	328	0	7628	8	140.40	39580	1556	4.12	698.45	19.56
Connecticut	4/15/2020 22:56	41.5978	-72.7554	14755	868	0	13887	9	413.85	50143	1908	5.88	1406.42	12.93

Data

NY Times COVID-19, GitHub

date	county	state	fips	cases	deaths
1/21/2020	Snohomish	Washington	53061	1	0
1/22/2020	Snohomish	Washington	53061	1	0
1/23/2020	Snohomish	Washington	53061	1	0
1/24/2020	Cook	Illinois	17031	1	0
1/24/2020	Snohomish	Washington	53061	1	0
1/25/2020	Orange	California	6059	1	0
1/25/2020	Cook	Illinois	17031	1	0
1/25/2020	Snohomish	Washington	53061	1	0

https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv

Data

STATWORX COVID19 API

date	day	month	year	cases	deaths	country	code	population	cases_cum	deaths_cum
4/16/2020	16	4	2020	30148	4928	United_States_of_America	US	327167434	639664	30985
4/15/2020	15	4	2020	26922	2408	United_States_of_America	US	327167434	609516	26057
4/14/2020	14	4	2020	25023	1541	United_States_of_America	US	327167434	582594	23649
4/13/2020	13	4	2020	27620	1500	United_States_of_America	US	327167434	557571	22108
4/12/2020	12	4	2020	28391	1831	United_States_of_America	US	327167434	529951	20608
4/11/2020	11	4	2020	35527	2087	United_States_of_America	US	327167434	501560	18777
4/10/2020	10	4	2020	33901	1873	United_States_of_America	US	327167434	466033	16690
4/9/2020	9	4	2020	33323	1922	United_States_of_America	US	327167434	432132	14817
4/8/2020	8	4	2020	30613	1906	United_States_of_America	US	327167434	398809	12895

Kafka Pipeline

Kafka directory to Wayne State's Grid

[gd3384@cehg ~]\$ cd \$KAFKA HOME

Creating a COVID19 Test Topic

[gd3384@cehg kafka-broker]\$ bin/kafka-topics.sh --zookeeper cehpn:2181 --create --topic COVID19-kafka-test --replication-factor 1 --partitions 1 Created topic "COVID19-kafka-test".

Quick Test and Consumer contents for Topic in command

```
[gd3384@cehg kafka-broker]$ bin/kafka-console-producer.sh --broker-list cehpn:90 92 --topic COVID19-kafka-test >bin/kafka-console-consumer.sh --zookeeper cehpn:2181 --topic COVID19-kafka-test --from-beginning >
```


Connecting SparkR and Kafka to WSU Grid

Connected SparkR and Kafka to Grid

```
sc <- spark_connect(master = "local", config = list(
   sparklyr.shell.packages = "org.apache.spark:spark-sql-kafka-0-10_2.11:2...))
> sc <- spark_connect(master = "local", config = list(
   + sparklyr.shell.packages = "org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.0"
   + ))
* Using Spark: 2.4.3</pre>
```

Example setup for reading Kafka stream with SparkR in Grid

```
stream_read_kafka(
    sc,
    options = list(
        kafka.bootstrap.server = "host1:9092, host2:9092",
        subscribe = "<topic-name>"
    )
)
```


Models

- Regressions
 - Linear
 - Mulivariate
 - Non-Linear
- Principal Component Analysis
- Time Series
- AutoML Deep Learning

Multivariable Regression

```
# Linear Regression of JHU Time Series
# Mortal Rate as the Predictor
mortaluSlm <- read.csv("https://raw.githubusercontent.com/worldCapital/COVID19-Project/master/COVID-19/JHU_county
mortalUSlm <- lm(Mortality_Rate ~ Confirmed + Deaths + Recovered + FIPS + Incident_Rate + People_Tested + People
confint(mortalUSlm)
summary(mortalUSlm)
#F-statistic: 4.334 on 9 and 18 DF, p-value: 0.003951
mse = mean(mortalUSlm$residuals^2)
print(paste0("MSE= ", mse))
#[1] "MSE= 0.717658874682637"
print(paste0("RMSE= ", RMSE(mortalUSlm$residuals)))
#[1] "RMSE= 0.847147492873961"
```


Non-Linear Regressions

```
#Non-Linear Model NY Times using Deaths
nyTimesNLM <- read.csv("https://raw.githubusercontent.com/worldCapital/COVID19-Project/master/COVID-19/nyt-us-col
nyTimesNLM <- lm(deaths ~ fips + cases, I(cases^2), data = ny_Times_Counties)</pre>
confint(nyTimesNLM)
summary(nyTimesNLM)
#Residual standard error: 0.6038 on 55656 degrees of freedom
#(3543 observations deleted due to missingness)
#F-statistic: 3.51e+05 on 2 and 55656 DF, p-value: < 2.2e-16
mse = mean(nyTimesNLM$residuals^2)
print(paste0("MSE= ". mse))
#[1] "MSE= 0.364578917674488"
print(paste0("RMSE= ", RMSE(nyTimesNLM$residuals)))
#[1] "RMSE= 0.603803707900579"
```


AutoML Models

```
split_h2o \leftarrow h2o.splitFrame(conv_data.hex, c(0.6, 0.2), seed = 1234)
train_conv_h2o <- h2o.assign(split_h2o[[1]], "train" ) # 60%</pre>
valid_conv_h2o <- h2o.assign(split_h2o[[2]], "valid" ) # 20%</pre>
test_conv_h2o <- h2o.assign(split_h2o[[3]], "test" ) # 20%</pre>
target <- "cases cum"
predictors <- setdiff(names(train_conv_h2o), target)</pre>
automl h2o models <- h2o.automl(</pre>
 x = predictors.
 y = target,
 training_frame
                    = train_conv_h2o,
  leaderboard frame = valid conv h2o
```


Model Results

Model	r^2	rmse	mse
DeepLearning_grid2_AutoML_20200419_000459_model_6	99.80%	87.24%	76.10%
GBM_grid1_AutoML_20200419_000459_model_3	99.80%	84.66%	71.67%
GBM_grid1_AutoML_20200419_000459_model_19	99.80%	80.01%	64.02%
GBM_grid1_AutoML_20200419_000459_model_11	99.80%	75.51%	57.02%
GBM_grid1_AutoML_20200419_000459_model_14	99.80%	75.48%	56.97%
GBM_grid1_AutoML_20200419_000459_model_17	99.80%	74.26%	55.15%
Mortality_Rate_JHU_lm	52.64%	71.77%	84.72%
cases_cum_gbm_AutoML	99.81%	67.69%	82.16%
deaths_cum_gbm_AutoML	99.76%	49.60%	70.25%
Deaths_JHU_nlm	92.65%	36.46%	60.38%

GBM Multinomial AutoML Leader

cases_cum_gbm_model

COVID-19 U.S.A. Dashboard

Province State	Confirmed	Deaths	Recovered	Active	Fips	Incident Rate	People Tested	
Alabama	5593	196	0	5397	1	119.28	48760	^
Alaska	335	9	196	326	2	56.04	12159	
Arizona	5473	231	1265	5242	4	75.19	56601	
Arkansas	2276	42	863	2234	5	87.91	29713	
California	37344	1421	0	35923	6	95.24	465327	
Colorado	10891	506	0	10385	8	192.19	48704	
Connecticut	22469	1544	0	20925	9	630.22	69918	
Delaware	3200	89	599	3111	10	328.62	16553	
District of Columbia	3206	127	645	3079	11	454.27	15502	
Florida	28309	893	0	27416	12	133.33	288627	V
C	21214	040	^	20266	10	200.22	04072	Ţ

Summary

- Provided analysis of COVID19 pandemic to determine any relationships or trends.
- Followed shortened Agile framework for project schedule using checkpoints.
- Created COVID19 test topic with Kafka pipeline and setup SparkR to read the Kafka stream into WSU's Grid.
- Selected GBM Multinomial model based AutoML model based on 0% training error, 99% R-Squared, and 82.16% RMSE.
- Designed Tableau dashboard to display COVID-19 pandemic data.

Any Questions or Comments?

Thank you