ຫົວບົດສອບເສັງທຶນການສຶກສາລັດຖະບານຍີ່ປຸ່ນ (MEXT) ສຶກຮຽນປີ 2018

ຄຳຖາມສອບເສັງ

ລະດັບ ປະລິນຍາຕີ

ວິຊາຄະນິດສາດ (A)

ໝາຍເຫດ: ເວລາ **60 ນາທີ**

ວິຊາຄະນິດສາດ (A) (2018)

ສັນຊາດ		ເລກທີ	
-602	(ຂຽນຊື່ແທ້ ແລະ ນ	ມາມສະກຸນ	, ຂີດກ້ອງນາມສະກຸນ)

ຄະແນນ			
	ຄະແນນ		

- 1. ຈຶ່ງຕອບຄຳຖາມຕໍ່ໄປນີ້ ແລ້ວຕື່ມຄຳຕອບໃສ່ຫ້ອງຫວ່າງດັ່ງກ່າວໃນເຈ້ຍຄຳຕອບ.
- (1) ຈຳນວນຂອງຕົວເລກຂອງ 7^{2677} ແມ່ນເທົ່າກັບ $\fbox{[1-1]}$ ແລະ ຕົວເລກສຸດທ້າຍແມ່ນເທົ່າກັບ $\fbox{[1-2]}$ ເມື່ອ $\log_{10}3=0.4771,\log_{10}7=0.8451.$
- (3) ກຳນຶດໃຫ້ $0 < \theta < \frac{\pi}{4}$. ຖ້າວ່າ $\sin 2\theta = \frac{1}{4}$, ສະນັ້ນ, ໄດ້ $\frac{\sin \theta + \cos \theta}{-\sin \theta + \cos \theta} = \boxed{[1-4]}$.
- (4) ໃຫ້ P_1, P_2, P_3, P_4, P_5 ແລະ P_6 ເປັນຈອມຂອງຮູບຫົກແຈສະເໝີໜຶ່ງໂດຍຂຽນຕາມທິດທວນ ເຂັມໂມງ. ໂຍນລຸກເຕົ້າໜ່ວຍໜຶ່ງສາມຄັ້່ງ ແລະ ຂຽນຜົນອອກຄື: (i;j;k). ໃນກໍລະນີນີ້, ຄ່າກະຕວງທີ່ ວ່າສາມເມັດ P_i, P_j, P_k ປະກອບເປັນຮູບສາມແຈໜຶ່ງແມ່ນເທົ່າກັບ $\frac{[1-5]}{9}$.
- (5) ສຳລັບສື່ມຜືນ $4^x 2^x 12 = 0$, ໃຈຜືນຈິງແມ່ນເທົ່າກັບ $x = \boxed{[1-6]}$.
- (6) ສໍາລັບຮຸບປີຣະມິດ OABC, ເມັດຕັດກັນຂອງສາມເສັ້ນຈອມກາງຂອງຮູບສາມແຈ OAB,OBC ແລະ OCA ແມ່ນ F,G ແລະ H ຕາມລໍາດັບ. ສໍາລັບເມັດຕັດກັນຂອງສາມເສັ້ນຈອມກາງ P ຂອງຮູບສາມແຈ FGH, ເວັກເຕີ \overrightarrow{OP} ແມ່ນກໍານິດດ້ວຍ

$$\overrightarrow{OP} = \frac{2}{\boxed{[1-7]}} (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}).$$

- (7) ໃຫ້ເມັດ O ເປັນເມັດເຄົ້າເທິງແຜ່ນພຽງ xy. ກຳນົດໃຫ້ສີ່ເມັດ A(1;0), B(1;1), C(2;1), D(3;1) ຢູ່ເທິງພຽງດັ່ງກ່າວ. ໂດຍການເລີ່ມຈາກເມັດ C, ຂີດເສັ້ນຊື່ຜ່ານເມັດໜຶ່ງເທິງເສັ້ນຊື່ OA ແລ້ວຂີດເສັ້ນຊື່ ຜ່ານເມັດໜຶ່ງເທິງເສັ້ນຊື່ OB ແລະ ຂີດຮອດເມັດ D ໂດຍໃຊ້ເສັ້ນທາງທີ່ມີໄລຍະຫ່າງສັ້ນທີ່ສຸດ. ໃນເສັ້ນທາງນີ້, ເມັດເທິງເສັ້ນຊື່ OA ແມ່ນ ($\boxed{[1-8]}$; $\boxed{[1-9]}$), ເມັດເທິງເສັ້ນຊື່ OB ແມ່ນ ($\boxed{[1-10]}$; $\boxed{[1-11]}$), ໄລຍະຫ່າງຂອງເສັ້ນທາງດັ່ງກ່າວແມ່ນເທົ່າກັບ $\boxed{[1-12]}$.
- (8) ກຳນົດໃຫ້ຈຳນວນຖ້ວນ m ແລະ n ຕອບສະໜອງ $2|m|+3|n-1|\leq 7$. m+n ມີຄ່າໃຫ່ຍສຸດ ເມື່ອ $(m;n)=\left(3;\overline{[1-13]}\right)$, $\left(\overline{[1-14]};\overline{[1-15]}\right)$ ແລະ ຄ່າໃຫ່ຍສຸດດັ່ງກ່າວແມ່ນເທົ່າກັບ $\overline{[1-16]}$.
- (9) ຖ້າວ່າຕຳລາຂັ້ນສອງ f(x) ມີຄ່າໃຫ່ຍສຸດຢູ່ທີ່ x=1 ແລະ ຄ່າໃຫ່ຍສຸດດັ່ງກ່າວແມ່ນເທົ່າກັບ 5 ແລ້ວ ຕອບສະໜອງ f(-2)=-22. ສະນັ້ນ,

$$f(x) = [1-17]x^2 + [1-18]x + [1-19].$$

(10) ເມື່ອຈຳນວນຖ້ວນ k ແລະ n ຕອບສະໜອງ $1 \leq k \leq n$. ເຮົາມີ

$$\sum_{l=k}^{n} 2^{l} = 2^{\frac{[1-20]}{[1-20]}} - 2^{\frac{[1-21]}{[1-21]}}.$$

ສະນັ້ນ, ເຮົາໄດ້

$$\sum_{k=1}^{n} k 2^{k} = \sum_{k=1}^{n} \sum_{l=k}^{n} 2^{l} = ([1-22]) 2^{[1-23]} + 2.$$

(11) ເລກທົດສະນິຍົມ 123456 ແມ່ນຂຽນເປັນເລກຖານສາມໄດ້ຄື: [1 – 24]. (ຈຶ່ງຂຽນພຽງແຕ່ຜົນອອກຂອງເລກຖານສາມນັ້ນ ໂດຍທີ່ບໍ່ຂຽນເຄື່ອງໝາຍທີ່ບໍ່ງບອກວ່າເປັນເລກຖານ ສາມ.)

- 2. ສໍາລັບຕໍາລາຂັ້ນສາມ $f(x) = x^3 3ax^2 + 3bx 2$. ຈົ່ງຕອບຄໍາຖາມຕໍ່ໄປນີ້ໃສ່ໃນຫ້ອງຫວ່າງທີ່ເ ໝາະສືມໃນເຈ້ຍຄໍາຕອບ.
- (1) ຖ້າວ່າ x=1;3 ເປັນເມັດໜ້ອຍສຸດ ແລະ ໃຫ່ຍສຸດຕາມລຳດັບຂອງ f(x) ແລ້ວໄດ້ $a=\boxed{[2-1]}$ ແລະ $b=\boxed{[2-2]}$. ໃນກໍລະນີນີ້, ໃຈຜືນຂອງ f(x)=0 ສາມາດຈັດລຽງໄດ້ຄື: $\boxed{[2-3]}<\boxed{[2-4]}<\boxed{[2-5]}$ ແຕ່ໜ້ອຍຫາຫຼາຍ.
- (2) ກຳນຶດໃຫ້ a=b. ຖ້າວ່າຕຳລາ f(x) ເປັນຕຳລາຂຶ້ນ ແລ້ວໄດ້ $\overline{[2-6]} \leq a \leq \overline{[2-7]}$.

3. ໃນລະບົບຕົວປະສານ xyz, ກຳນົດຮຸບກ້ອນ A ດ້ວຍ

$$\frac{1}{9}x^2 + \frac{1}{4}y^2 \le z^4 \quad (0 \le z \le 1).$$

ຈຶ່ງຕອບຄຳຖາມຕໍ່ໄປນີ້ໃສ່ໃນຫ້ອງຫວ່າງທີ່ເໝາະສົມໃນເຈ້ຍຄຳຕອບ.

(1) ກຳນຶດຮູບກ້ອນ B ດ້ວຍ

$$x^2 + y^2 \le z^4 \quad (0 \le z \le 1)$$

ບໍລິມາດຂອງຮູບກ້ອນ B ແມ່ນເທົ່າກັບ $\overline{[3-1]}$.

- (2) ຮູບກ້ອນ A ແມ່ນປະກອບຂຶ້ນໂດຍການແບຮູບກ້ອນ B $\boxed{[3-2]}$ ເທື່ອຕາມແກນ x ແລະ $\boxed{[3-3]}$ ເທື່ອຕາມແກນ y.
- (3) ບໍລິມາດຂອງຮູບກ້ອນ A ແມ່ນເທົ່າກັບ $\overline{[3-4]}$ ເທື່ອຂອງຮູບກ້ອນ B .
- (4) ບໍລິມາດຂອງຮູບກ້ອນ A ແມ່ນເທົ່າກັບ $\overline{[3-5]}$.