PSY9511: Seminar 4

Testing, resampling, and splitting

Esten H. Leonardsen 26.10.23

Fits x models with m datapoints each, sampled from the original dataset with replacement.

- + Uses all data to train models
- + Provides a smooth distribution of model performance
- Versatile: Can be used for other things, e.g. getting a confidence interval for model parameters
- Different choices of k (and exact splits) yields different results

Model assessment: Summary

- · Model assessment should always happen out-of-sample
- If n is big (\geq 10000), a single train/validation split is often sufficient
- For smaller samples, k-fold cross-validation with 5 \leq k \leq 10 is a good trade-off between bias and variance
- The bootstrap is an effective way of getting confidence intervals for model parameters

Model selection and assessment

Model selection and assessment

- Model assessment via cross-validation is sufficient if we want to estimate the out-of-sample error of a known model.
- Very often we want to know whether a set of predictors are informative for an outcome given the best possible model
- In that case, we have to both choose the best model, and estimate its performance
- If we choose the model based on regular cross-validation, the performance estimate will likely be inflated

Model selection and assessment

- Model assessment via cross-validation is sufficient if we want to estimate the out-of-sample error of a known model.
- Very often we want to know whether a set of predictors are informative for an outcome given the best possible model
- In that case, we have to both choose the best model, and estimate its performance
- If we choose the model based on regular cross-validation, the performance estimate will likely be inflated
- ightarrow We need a more advanced strategy

Model selection and assessment: Nested cross-validation

Model selection and assessment: Summary

- Whenever a choice is made on the basis of performance in a dataset, the performance of the chosen model on that dataset is going to be biased.
- If n is big (≥ 10000), a single train/validation/test split is often sufficient
- If possible, use nested cross-validation to select the best model and estimate the out-of-sample error

