Optimización de Mezclas Industriales con Restricciones Técnicas

Arnau Sastre linkedin.com/in/arnausastre

August 9, 2025

Abstract

Este artículo presenta un modelo de optimización para la formulación de mezclas industriales, cuyo objetivo es minimizar el coste de producción garantizando el cumplimiento de especificaciones técnicas y operativas. Se aplica programación lineal clásica para determinar las proporciones óptimas de varios ingredientes, considerando propiedades fisicoquímicas, límites de toxicidad y restricciones industriales realistas.

1 Introducción

En sectores como alimentación, química o materiales, la formulación de productos requiere equilibrar costes y calidad cumpliendo especificaciones técnicas estrictas. Este proyecto desarrolla un modelo de optimización de mezclas que:

- Determina las proporciones óptimas de cada ingrediente.
- Minimiza el coste de producción.
- Cumple con requisitos de pureza, densidad y toxicidad.
- Permite simular escenarios con restricciones industriales adicionales.

2 Datos y supuestos

Ingredientes

Ingrediente	Coste (€/kg)	Pureza (%)	Densidad (g/cm^3)	Toxicidad (%)
A	2.0	80	1.2	1.0
В	3.0	60	1.0	3.0
\mathbf{C}	4.0	90	0.8	0.5
D	1.5	50	1.5	4.0

Requisitos del producto final

- Pureza $\geq 70\%$.
- Densidad entre 1.0 y 1.3 g/cm³.
- Toxicidad $\leq 2\%$.
- Total mezcla = 100%.

3 Formulación del modelo

Variables de decisión

Sea x_A, x_B, x_C, x_D la proporción de cada ingrediente en la mezcla, con:

$$x_A + x_B + x_C + x_D = 1, \quad x_i \ge 0$$

Función objetivo

Minimizar el coste total:

$$\min Z = 2.0x_A + 3.0x_B + 4.0x_C + 1.5x_D$$

Restricciones técnicas

Pureza: $80x_A + 60x_B + 90x_C + 50x_D \ge 70$

Densidad: $1.0 \le 1.2x_A + 1.0x_B + 0.8x_C + 1.5x_D \le 1.3$

Toxicidad: $1.0x_A + 3.0x_B + 0.5x_C + 4.0x_D \le 2.0$

4 Escenarios analizados

Caso base

Sin restricciones adicionales sobre mínimos o máximos por ingrediente.

Escenario avanzado

Restricciones industriales añadidas:

$$x_A \le 0.60, \quad x_B \le 0.60, \quad x_C \le 0.60, \quad x_D \le 0.60$$

 $x_B \ge 0.10, \quad x_C \ge 0.10$

5 Resultados

Caso base

• Proporción A: 0.75

• Proporción B: 0.00

• Proporción C: 0.00

• Proporción D: 0.25

• Coste mínimo: 1.88 €/kg

• Pureza final: 72.50%

• Densidad final: 1.27 g/cm³

• Toxicidad final: 1.75%

Escenario avanzado

• Proporción A: 0.55

• Proporción B: 0.10

• Proporción C: 0.10

• Proporción D: 0.25

• Coste mínimo: 2.18 €/kg

• Pureza final: 71.50%

• Densidad final: 1.22 g/cm³

• Toxicidad final: 1.90%

6 Interpretación

• El caso base concentra la mezcla en el ingrediente más barato (A), manteniendo los requisitos técnicos.

• Las restricciones adicionales del escenario avanzado fuerzan una mezcla más equilibrada, aumentando el coste pero garantizando factibilidad industrial.

7 Aplicaciones empresariales

- Diseño de formulaciones en industrias alimentaria, química, cosmética y materiales.
- Evaluación de impacto de restricciones técnicas en el coste de producción.
- Simulación de escenarios de ajuste por disponibilidad de ingredientes o regulaciones.

8 Conclusiones

La programación lineal es una herramienta eficaz para optimizar mezclas industriales, permitiendo cumplir especificaciones técnicas y minimizar costes. La inclusión de restricciones adicionales refleja mejor las condiciones reales de producción y facilita la toma de decisiones estratégicas.

Contacto

Para más información o implementación de este modelo, puede contactarme vía **LinkedIn** o consultar otros proyectos en mi **GitHub**.