Analysis Qualifying Exam - August 2012 (Korten / Volok)

1. Let $\{f_k\}$ and f be non-negative measurable functions on E such that $f_k \to f$ μ -a.e. in E. Prove that if $\int_E f_k d\mu \leq M$ for all k, then $\int_E f d\mu \leq M$.

2. Use Fubini's theorem to prove that $\int_{\mathbb{R}^n} \exp(-|x|^2) dx = \pi^{n/2}$.

3. Let f, $\{f_k\} \in L^p$. Show that if $||f_k - f||_p \to 0$ then $||f_k||_p \to ||f||_p$.

,

•

.

4. Let B(0,1) be the unit ball in \mathbb{R}^n , χ its indicator function, λ_n the Lebesgue measure in \mathbb{R}^n . Let $K(x) = \frac{\chi(x)}{\lambda_n(B(0,1))}$ for $x \in \mathbb{R}^n$, and $K_{\epsilon}(x) = \frac{1}{\epsilon^n}K(x/\epsilon)$. Let $L^1_{loc}(\mathbb{R}^n)$ stand for the set of Lebesgue measurable functions that are integrable over each compact subset of \mathbb{R}^n . Prove in detail that for every $f \in L^1_{loc}(\mathbb{R}^n)$ and every Lebesgue point x of f

$$\lim_{\epsilon \to 0} (f * K_{\epsilon})(x) = f(x).$$

(Def.: A point x at which $\lim_{r\to 0} \frac{1}{\lambda_n(B(0,r))} \int_{B(0,r)} |f(y)-f(x)| dy = 0$ is called a Lebesgue point of f.).

5. Let f(z) be a bounded entire function, and let

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

be its Taylor expansion at the origin. Use the Cauchy Integral Formula to show that

$$c_1=c_2=\cdots=0,$$

thus deducing Liouville theorem.

6. Let
$$a \in \mathbb{D} = \{z : |z| < 1\}$$
 and let

$$f(z) = \frac{z - a}{1 - z\bar{a}}.$$

Use the Maximum Modulus Principle to prove that f maps $I\!\!D$ into itself.

7. How many roots does the polynomial $p(z) = z^3 + 3z + 1$ have in the annulus $\{z : 1 < |z| < 2\}$?

8. Calculate using residues

$$\int_0^\infty \frac{x^2}{1+x^4} dx.$$