COMP2521 19T0 lec05

cs2521@ jashankj@

PQueue

Graphs

COMP2521 19T0 Week 3, Tuesday: Graphic Content (I)!

Jashank Jeremy
jashank.jeremy@unsw.edu.au

priority queues graph fundamentals

Pitfalls and Pointers (I)

PQueu

Strings in C are pointers to arrays of characters;
 following the last character is a NUL terminator: '\0'
 there won't be multiple NUL characters in a string

```
    To store "hello\n": 7 bytes —
    ... {'h', 'e', 'l', 'l', 'o', '\n', '\0'}
    ... referring to the string "\0" is redundant
```

sizeof is a static property; string length is a dynamic property.
... in (e.g.,) textbuffer_new:
... sizeof text = sizeof (char *) = 4
... sizeof *text = sizeof (char) = 1
... use strlen(3) or strnlen(3) or similar

Pitfalls and Pointers (II)

- Making a (heap-allocated, mutable) copy of a string?
 ... strdup(3), strndup(3) get it right did you?
- Splitting a string using strsep(3) or strtok(3)?
 ... do you know what's going on?
- HINT read the forum answers!
 ... they tend to be filled with all kinds of useful wisdom
- ANTI-HINT the challenge exercises are challenging
 ... you will need to do your own reading and thinking
 ... undo/redo hint: see week01thu lecture
 ... diff hint: Levenshtein, but is it optimal?
- Cryptic crossword hint: 'shaken players shift the load'.

COMP2521 19T0 lec05 cs2521@ jashankj@

PQueues

Granh

Priority Queues

Graphs

Not all queues are created equal... ever been to a hospital?

FIFO doesn't always cut it! Sometimes, we need to process in order of *key* or *priority*.

Priority Queues (PQueues or PQs) provide this with altered enqueue and dequeue.

Graph:

 $\texttt{ENPQUEUE}:: \mathcal{Q}' \to (\texttt{Item}, \texttt{prio}) \to \texttt{void}$ join or requeue an item with a priority to pqueue \mathcal{Q}'

 $\begin{array}{c} \text{DEPQUEUE} :: \mathcal{Q}' \to \text{Item} \\ \text{remove the item with highest priority from pqueue } \mathcal{Q}' \\ \text{(potentially including the priority;} \to (\text{Item}, \text{prio})) \end{array}$

```
COMP2521
                                                             Priority Queue
19T0 Jec05
cs2521@
                                                                     <pqueue.h>
iashanki@
         typedef struct pqueue *P0ueue;
POueues
         typedef int pq_prio;
          /** Create a new, empty POueue. */
         POueue paueue new (void a):
         /** Destroy a PQueue, releasing its resources. */
         void paueue drop (POueue pa);
         /** Add an item with a priority to a PQueue. */
         void pqueue en (PQueue pq, Item it, pq prio prio);
          /** Remove the highest-priority item from a PQueue. */
         Item pqueue de (PQueue pq, pq prio *prio);
         /** Get the number of items in a POueue. */
         size t pqueue size (PQueue pq);
```

Graph:

ordered array or ordered list: insert O(n), delete O(1)

unordered array or unordered list: insert O(1), delete O(n)

there must be a better way!

Graph:

Heaps are a good solution. Commonly viewed as trees; commonly implemented with arrays.

Two important properties:
 heap order property,
a 'top-to-bottom' ordering of values;
 complete tree property,
every level is as filled as possible

Graphs

Binary search trees have left-to-right ordering.

Heaps have a top-to-bottom ordering: for all nodes, both subtrees are ≤ the root (i.e., the root contains the largest value)

Inserting [m, t, h, q, a, k] into a BST and heap:

Heaps of Fun
Complete Tree Property

PQueues

Graphs

Heaps are complete trees: every level is filled before adding nodes to the next level nodes in a given level are filled left-to-right, with no breaks

POueues

BSTs are typically implemented as linked data structures.

Heaps can be implemented as linked structures... but are more commonly implemented as arrays. complete tree \Rightarrow array implementation

$$\operatorname{LEFT}\left(i\right) := 2i \quad \operatorname{RIGHT}\left(i\right) := 2i + 1 \quad \operatorname{PARENT}\left(i\right) := i/2$$

Insertion into an Array Heap (I)

PQueues

Graphs

Insertion is a two-step process:

- add new element at the bottom-most, right-most position (to ensure it is still a complete tree)
- reorganise values along the path to the root (to ensure it is still maintains heap order)


```
Grapn
```

```
// move value at a[k] to correct position
void heap_fixup (Item a[], size_t k)
    while (k > 1 \&\& item\_cmp (a[k/2], a[k]) < 0) {
        swap (a, k, k/2);
        k /= 2; // integer division!
```

Graphs

Deletion is a three-step process:

- swap root value with bottom-most, right-most value
- remove bottom-most, right-most value (to ensure it is still a complete tree)
- (3) reorganise values along path from root (to ensure it is still maintains heap order)

Heap Implementation

Deletion from an Array Heap (II)

PQueues

```
Graph
```

```
// move value at a[k] to correct position
void heap fixdown (Item a[], size t k)
    while (2 * k \le N) {
        size t j = 2 * k; // choose greater child
        if (j < N \&\& item\_cmp (a[j], a[j+1]) < 0)
            j++;
        if (item_cmp (a[k], a[j]) \geq 0)
            break:
        swap (a, k, j);
        k = j;
```

Granh

Lots of work, surely?

height: always $|\log_2 n|$ (complete!)

insert: fixup is $O(\log_2 n)$ delete: fixdown is $O(\log_2 n)$

... worth it!

POueues

Exercise: Heaps of Fun!

Show the construction of the max-heap produced by inserting

[H, E, A, P, S, F, U, N]

Delete an item. What does the heap look like now?

Delete another item. What does the heap look like now?

PQueue:

Graphs

Types of Graphs

Graph Fundamentals

Graphs

Types of Graphs Graph Terminolog

Collections of Related Things

Up to this point, we've seen a few collection types...

lists: a linear sequence of items each node knows about its next node trees: a branched hierarchy of items each node knows about its child node(s)

what if we want something more general? ...each node knows about its *related* nodes

... Related Nodes? (I)

PQueue

Graphs

Graph Terminolog

Many applications need to model relationships between items.

... on a map: cities, connected by roads

... on the Web: pages, connected by hyperlinks

... in a game: states, connected by legal moves

... in a social network: people, connected by friendships

... in scheduling: tasks, connected by constraints

... in circuits: components, connected by traces

... in networking: computers, connected by cables

... in programs: functions, connected by calls

... etc. etc. etc.

... Related Nodes? (II)

Queue

Graphs

Graph Terminolog

Questions we could answer with a graph:

- what items are connected? how?
- are the items fully connected?
- is there a way to get from A to B?
 what's the best way? what's the cheapest way?
- in general, what can we reach from A?
- is there a path that lets me visit all items?
- can we form a tree linking all vertices?
- are two graphs "equivalent"?

Queue

Graphs

Types of Graphs
Graph Terminolog

	ADL	BNE	CBR	DRW	MEL	PER	SYD
ADL	_	2055	1390	3051	732	2716	1605
BNE	2055	_	1291	3429	1671	4771	982
CBR	1390	1291	_	4441	658	4106	309
DRW	3051	3429	4441	_	3783	4049	4411
MEL	732	1671	658	3783	_	3448	873
PER	2716	4771	4106	4049	3448	_	3972
SYD	1605	982	309	4411	873	3972	_

Road Distances

cs2521@ jashankj@

PQueues

Graphs

Types of Graphs
Graph Terminology

PQueue

Graphs

Types of Graphs
Graph Terminology

PQueue

Graphs

Types of Graphs Graph Terminology

A graph G is a set of vertices V and edges E. $E := \{(v, w) | v, w \in V, (v, w) \in V \times V\}$

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \begin{cases} e_1 &:= (v_1, v_2), \\ e_2 &:= (v_2, v_3), \\ e_3 &:= (v_3, v_4), \\ e_4 &:= (v_1, v_4), \\ e_5 &:= (v_1, v_3) \end{cases}$$

Graphs
Types of Graphs

PQueue

Graph:

Types of Graphs

Graph

Types of Graphs

If edges in a graph are directed, the graph is a directed graph or digraph.

The edge $(v,w) \neq (w,v)$. A digraph with V vertices can have at most V^2 edges. Digraphs can have self loops $(v \to v)$

Unless otherwise specified, graphs are undirected in this course.

POHEHE

Graph

Types of Graphs
Graph Terminolog

Multi-Graphs...
allow multiple edges between two
vertices
(e.g., callgraphs; maps)

Weighted Graphs... each edge has an associated weight (e.g., maps; networks)

Grapiis

Types of Graphs
Graph Terminology

At this point, we'll only consider simple graphs:

- a set of vertices
- · a set of undirected edges
- no self loops
- · no parallel edges

$$|V| = 7$$
; $|E| = 11$.

How many edges can a 7-vertex simple graph have?

$$7 \times (7-1)/2 = 21$$

Graph Terminology

For a simple graph:

$$|E| \le (|V| \times (|V| - 1))/2$$

- if |E| closer to $|V|^2$, dense
- if |E| closer to |V|, sparse
- if |E| = 0, we have a set

These properties affect our choice of representation and algorithms.

$$|V| = 7$$
; $|E| = 11$.

A complete graph is a graph where every vertex is connected to all other vertices:

$$|E| = (|V| \times (|V| - 1))/2$$

PQueu

Graph:

Types of Graphs Graph Terminology

A vertex v has degree deg(v) of the number of edges incident on that vertex.

$$deg(v) = 0$$
 — an isolated vertex $deg(v) = 1$ — a pendant vertex

Two vertices v and w are adjacent if an edge e:=(v,w) connects them; we say e is incident on v and w

Graphs

Types of Graphs
Graph Terminology

A subgraph is a subset of vertices and associated edges

Graph Terminology

POHEHE

Graphs

Types of Graphs

Graph Terminology

A path is a sequence of vertices and edges ... 1, 0, 6, 5

a path is simple if it has no repeating vertices

a path is a cycle if it is simple except for its first and last vertex, which are the same.

Graph Terminology

A connected graph has a path from every vertex to every other vertex

A connected graph with no cycles is a tree.

A tree has exactly one path between each pair of vertices.

Graphs

Types of Graphs Graph Terminology

A graph that is not connected consists of a set of connected components: maximally connected subgraphs

Graph Terminology

PQueue

Graphs

Types of Graphs Graph Terminology A spanning tree of a graph is a subgraph that contains all its vertices and is a single tree

A spanning forest of a graph is a subgraph that contains all its vertices and is a set of trees

There isn't necessarily only one spanning tree/forest for a graph.

Graphs

Types of Graphs
Graph Terminology

A clique is a complete subgraph.

