CS5322 Database Security

Limitations with DAC

Global policy:

- DAC lets users to decide the access control policies on their data, regardless of whether those policies are consistent with the global policies.
- Information flow:
 - Information can be copied from one object to another.
 - The owner of the original may not have control over the copy.
 - This is a major concern in certain domains, e.g., military.
- Mandatory access control (MAC) could mitigate these limitations

Mandatory Access Control (MAC)

- In DAC, users have the discretion to specify policy themselves
- In MAC, a system-wide policy decides who is allowed to have access; individual users cannot alter the policy
- There are several different models for MAC
 - We will consider multi-level security (MLS)

Multi-Level Security

Three key concepts related to objects: security level, compartment, and label

- Each object has a security level that indicates its sensitivity
 - E.g., unclassified, confidential, secret, top secret
- Each object may belong to some compartments (i.e., categories)
 - E.g., finance, manufacture, agriculture
- The security level and compartment of an object form the label of the object
- Example: a label (confidential, {finance, Europe}) means that
 - The object concerns finance in Europe
 - Its security level is confidential

Multi-Level Security (MLS) Cach subject also has a label

- Example: If a user has a label (secret, {finance, Asia}), then
 - She has clearance to access secret documents concerning finance and/or Asia
- Multi-level Security:
 - A subject S may access an object O, if S's has clearance to access information in O's compartments and at O's security level
- Example: A user with a label (secret, {finance, Asia})
 - Can read a document with a label (confidential, {Asia})
 - Cannot read a document with a label (confidential, {finance, Europe})

Multi-Level Security

- MLS)
 More formally, a subject with a label can read an object with a label, if and only
 - i.e., dominates
- means:
 - The security level of is lower than or equal to that of
 - The set of compartments in is a subset of or equal to the set of compartments in
- Example: (confidential, {Asia}) (secret, {Asia, finance}), because
 - confidential <= secret</p>
 - {Asia} {Asia, finance}
- Example 2: (confidential, {}) (secret, {finance})
- Example 3: (confidential, {Asia, finance}) (secret, {finance})

BLP Model

- Bell and LaPadula 1973] proposes a formal mathematical model of MLS
- Prove that information cannot leak to subjects not cleared for it, if the following two properties are ensured:
 - "No read up": S can read O iff
 - This is intuitive
 - "No write down": S can write O iff
 - This may seem counter-intuitive
- Why no write down?
- To prevent illegal information flow

BLP Model

- Suppose that a user account, President, has clearance to access top secret documents
- If we allow President to write unclassified documents, then the following information flow is possible:
 - President reads top secret document T
 - President writes information from T to an unclassified document U (intentionally or unintentionally)
 - A user without top-secret clearance reads U
- The "no write down" rule prevents this

Information Flow under BLP

Applying MAC to Databases

- Idea:
 - Attach a label to each database object and subject
 - Conduct access controls based on the labels
- Possible granularities of access control:
 - One label for each table
 - One label for each tuple
 - This is a common choice in commercial databases
 - One label for each value in a tuple
 - We will consider this case

- A relation $R(A_1, A_2, ..., A_d)$ is extended to an ML relation $R'(A_1, C_1, A_2, C_2, ..., A_d, C_d, TC)$, where
 - C_i is an attribute that represents the security levels associated with A_i
 - TC is an attribute that represents the security levels associated with the tuples
 - For a tuple, the value of TC should be the highest security level among all of its attributes

Example:

- □ A relation Grades(Name, Gender, Grade) is extended to Grades'(Name, C₁, Gender, C₂, Grade, C₃, TC)
- A tuple (Alice, female, 90) can be extended to (Alice, unclassified, female, unclassified, 90, confidential, confidential)
- A tuple (Bob, male, 40) can be extended to (Bob, unclassified, male, unclassified, 40, secret, secret)

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	С	Female	С	70	С	С
Dave	S	Male	S	60	S	S

We use the following notations:

U: unclassified

C: confidential

S: secret

TS: top secret

U < C < S < TS</p>

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	С	Female	С	70	С	С
Dave	S	Male	S	60	S	S

- U < C < S < TS</p>
- Level U users can see only the first two tuples
- Level C users can see only the first three tuples
- Level S users can see only the first four tuples

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	U	Male	С	60	S	S

- U < C < S < TS</p>
- Now what can level U users see?
- Intuitively, we should let them see Cath and Dave's names, but not the other information
- Let's use NULL for this purpose

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	U	Male	С	60	S	S

What level U users see:

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	NULL	U	NULL	U	U
Dave	U	NULL	U	NULL	U	U

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	U	Male	С	60	S	S

Level C users see...

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	U	Male	С	60	S	S

Level C users see...

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	U	Male	С	NULL	U	С

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S

Now level U users see...

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	C	Male	С	60	S	S

Now level U users see...

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	NULL	U	NULL	U	U

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S

- Why don't level U users see the following?
- Because the primary key Name can never have NULL

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	NULL	U	NULL	U	U
NULL	U	NULL	U	NULL	U	U

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S

- Suppose that a level U user sees the table below, and tries to insert (Dave, U, Male, U, 100, U, U)
- What should we do?

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	NULL	U	NULL	U	U

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S

- A level U user inserting (Dave, U, Male, U, 100, U, U)
- Option 1: Deny the insertion
- Problem: the user learns that a higher-level tuple for Dave exists

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	NULL	U	NULL	U	U

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S

- A level U user inserting (Dave, U, Male, U, 100, U, U)
- Option 2: Modify the C-level tuple for Dave
- Problem: Dave's grade is changed to 100!

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	NULL	U	NULL	U	U

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S

- A level U user inserting (Dave, U, Male, U, 100, U, U)
- Option 3: Insert the tuple while keeping the C-level tuple
- Problem: Two tuples have the same primary key
- Solution: Polyinstantiation

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	NULL	U	NULL	U	U

Polyinstantiation:

nuttee telogathe original primary key + TC as the new primary key

- Note: later we will see that even this is not enough
- Example below: (Name, TC) as the new primary key
- As such, we may have different instances of the same tuple for different security levels
- This works, but will make things a lot more "interesting"

<u>Name</u>	C1	Gender	C2	Grade	C3	<u>TC</u>
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S
Dave	U	Male	U	100	U	U

Issues in

Bondeinsteantiations second tuple as (Bob, U, Male, U, 100, C, C)

- Option 1: Directly modify the second tuple
- Problem: Level U users would learn that Bob's grade now has a higher security level
- Solution: Keep the second tuple while inserting (Bob, U, Male, U, 100, C, C)

<u>Name</u>	C1	Gender	C2	Grade	C3	<u>TC</u>
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S
Dave	U	Male	U	100	U	U

Issues in

- Psoppointial that ionsert a new tuple (Alice, U, Female, U, 100, S, S)
- Should it be denied due to the first tuple?
- No; recall that the primary key is Name+TC
- The tuple will be inserted

<u>Name</u>	C1	Gender	C2	Grade	C3	<u>TC</u>
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S
Dave	U	Male	U	100	U	U

Psopyinstaintiation Psopyinstaintiation DELETE FROM Grades WHERE Name = 'Alice'

- What will happen?
- Nothing will happen, since Alice's tuple needs to remain for level U and level C users

<u>Name</u>	C1	Gender	C2	Grade	C3	<u>TC</u>
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S
Dave	U	Male	U	100	U	U

Polyipstantiation the 4-th tuple to (Dave, C, Female, S, 60, S, S)

- Option 1: Change the 4-th tuple accordingly
- Problem: Level C users would learn that Dave's gender now has a higher security level

<u>Name</u>	C1	Gender	C2	Grade	C3	<u>TC</u>
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S
Dave	U	Male	U	100	U	U

Polyipstantiation the 4-th tuple to (Dave, C, Female, S, 60, S, S)

- Option 2: Deny the update
- Problem: Legitimate updates should not be denied

<u>Name</u>	C1	Gender	C2	Grade	C3	<u>TC</u>
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S
Dave	U	Male	U	100	U	U

Issues in

the 4-th tuple to (Dave, C, Female, S, 60, S, S)

- Option 3: Insert (Dave, C, Female, S, 60, S, S) into the table
- Problem: This violates the primary key constraint since there is already a tuple with primary key (Dave, S)
- Solution: Do not use (Name, TC) as the primary key
 - Instead, use (Name, C1, C2, C3, TC) as the primary key

<u>Name</u>	C1	Gender	C2	Grade	C3	<u>TC</u>
Alice	U	Female	U	90	U	U
Bob	U	Male	U	80	U	U
Cath	U	Female	С	70	С	С
Dave	С	Male	С	60	S	S
Dave	U	Male	U	100	U	U

Formalization of

- Polyinstantiation
 Towards a Multilevel Secure Relational Data Model. Proceedings of the ACM International Conference on Management of Data (SIGMOD), pages 50-59, 1991.
- A more sophisticated version of polyinstantiation that uses the original primary + all security levels as the new primary key
- Allows instances like the following

<u>Name</u>	<u>C1</u>	Gender	<u>C2</u>	Grade	<u>C3</u>	<u>TC</u>
Sam	С	Female	U	60	U	С
Sam	С	Male	С	60	U	С
Sam	С	Female	U	90	С	С
Sam	С	Male	С	90	С	С

Formalization of Polyinstantiation

- Which version is used more frequently in practice?
- Neither version is used much
 - Probably because of their complexities

<u>Name</u>	C1	Gender	C2	Grade	C3	<u>TC</u>
Sam	С	Female	U	60	U	С
Sam	С	Male	С	60	U	С
Sam	С	Female	U	90	С	С
Sam	С	Male	С	90	С	С

Multilevel Relations

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
NULL	U	Male	U	80	U	U
Cath	S	Female	С	70	С	С
Alice	U	NULL	U	NULL	U	U

Can you identify all problems in the above multilevel relation?

Multilevel Relations

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
NULL	U	Male	U	80	U	U
Cath	S	Female	С	70	С	С
Alice	U	NULL	U	NULL	U	U

Problem 1:

The second tuple has NULL for Name, which is the primary key

Problem 2:

The TC value of the third tuple is C, and yet, the Name value of the tuple has level S

Multilevel Relations

<u>Name</u>	C1	Gender	C2	Grade	C3	TC
Alice	U	Female	U	90	U	U
NULL	U	Male	U	80	U	U
Cath	S	Female	С	70	С	С
Alice	U	NULL	U	NULL	U	U

Problem 3:

- Level C users see the third tuple as (NULL, C, Female C, 70, C, C), which is incorrect since the primary key cannot be NULL
- Problem 4:
 - The first and fourth tuples have the same (Name, C1, C2, C3, TC) combination