《电磁场与波 B》课程设计

电子科学与工程学院 傅宣登 (2016030102010)

2018年6月23日

关于均匀平面波与圆极化波能否同时存在的探讨

一、均匀平面波

1 一般波动方程

对于电容率为 ε , 磁导率为 μ , 电导率为 σ 的无源均匀媒质, 麦克斯韦方程是

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \tag{1}$$

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} \tag{2}$$

$$\nabla \cdot \boldsymbol{B} = 0 \tag{3}$$

$$\nabla \cdot \boldsymbol{D} = \rho \tag{4}$$

其中 $J = \sigma E$, $B = \mu H$, $D = \varepsilon E$, $\rho = 0$. 于是有

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \tag{5}$$

$$\nabla \times \boldsymbol{H} = \sigma \boldsymbol{E} + \varepsilon \frac{\partial \boldsymbol{E}}{\partial t} \tag{6}$$

$$\nabla \cdot \boldsymbol{H} = 0 \tag{7}$$

$$\nabla \cdot \boldsymbol{E} = 0 \tag{8}$$

上述方程只与两个变量 (E 和 H) 有关,进一步可得出一个变量的方程. 对式 (5) 两边取旋度得

$$\nabla \times \nabla \times \mathbf{E} = -\mu \nabla \times \left(\frac{\partial \mathbf{H}}{\partial t}\right) \tag{9}$$

由矢量恒等式

$$\nabla \times \nabla \times \mathbf{E} = \nabla(\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} \tag{10}$$

以及 $\nabla \cdot \mathbf{E} = 0$ 得

$$\nabla \times \nabla \times \mathbf{E} = -\nabla^2 \mathbf{E} \tag{11}$$

在直角坐标系下

$$\nabla^2 = \nabla^2 E_x \boldsymbol{a}_x + \nabla^2 E_y \boldsymbol{a}_y + \nabla^2 E_z \boldsymbol{a}_z \tag{12}$$

其中拉普拉斯算子为

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 (13)

改变对空间和时间微分的顺序,式(9)重写为

$$\nabla^2 \boldsymbol{E} = \mu \frac{\partial}{\partial t} \left[\nabla \times \boldsymbol{H} \right]$$

将式 (6) 带入上式得

$$\nabla^2 \mathbf{E} = \mu \sigma \frac{\partial \mathbf{E}}{\partial t} + \mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$$
 (14)

同理可得

$$\nabla^2 \mathbf{H} = \mu \sigma \frac{\partial \mathbf{H}}{\partial t} + \mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$$
 (15)

上述两个方程即是一般波动方程支配着无源均匀导电媒质中电磁场的行为.

- 2 介质中的平面波
- 二、圆极化波
- 1 极化的概念
- 2 圆极化
- 三、同时满足两种性质