Decision Trees and Boosting

Mengye Ren

NYU

Nov 14, 2023

Overview

- Our first inherently non-linear classifier: decision trees.
- Ensemble methods: bagging and boosting.

Decision Trees

Regression trees: Predicting basketball players' salaries

Regression trees: Predicting basketball players' salaries

Classification trees

• Can we classify these points using a linear classifier?

Classification trees

- Can we classify these points using a linear classifier?
- Partition the data into axis-aligned regions recursively (on the board)

 We focus on binary trees (as opposed to multiway trees where nodes can have more than two children)

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

- We focus on binary trees (as opposed to multiway trees where nodes can have more than two children)
- Each node contains a subset of data points

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

- We focus on binary trees (as opposed to multiway trees where nodes can have more than two children)
- Each node contains a subset of data points
- The data splits created by each node involve only a *single* feature

- We focus on binary trees (as opposed to multiway trees where nodes can have more than two children)
- Each node contains a subset of data points
- The data splits created by each node involve only a *single* feature
- For continuous variables, the splits are always of the form $x_i \leqslant t$

A general tree structure root node internal (split) node terminal (leaf) node

- We focus on binary trees (as opposed to multiway trees where nodes can have more than two children)
- Each node contains a subset of data points
- The data splits created by each node involve only a single feature
- For continuous variables, the splits are always of the form $x_i \leqslant t$
- For discrete variables, we partition values into two sets (not covered today)

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

- We focus on binary trees (as opposed to multiway trees where nodes can have more than two children)
- Each node contains a subset of data points
- The data splits created by each node involve only a *single* feature
- For continuous variables, the splits are always of the form $x_i \leqslant t$
- For discrete variables, we partition values into two sets (not covered today)
- Predictions are made in terminal nodes

Goal Find boxes R_1, \ldots, R_J that minimize $\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$, subject to complexity constraints.

Goal Find boxes R_1, \ldots, R_J that minimize $\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$, subject to complexity constraints.

Problem Finding the optimal binary tree is computationally intractable.

Goal Find boxes R_1, \ldots, R_J that minimize $\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$, subject to complexity constraints.

Problem Finding the optimal binary tree is computationally intractable.

Solution Greedy algorithm: starting from the root, and repeating until a stopping criterion is reached (e.g., max depth), find the non-terminal node that results in the "best" split

Goal Find boxes R_1, \ldots, R_J that minimize $\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$, subject to complexity constraints.

Problem Finding the optimal binary tree is computationally intractable.

Solution Greedy algorithm: starting from the root, and repeating until a stopping criterion is reached (e.g., max depth), find the non-terminal node that results in the "best" split

• We only split regions defined by previous non-terminal nodes

Goal Find boxes $R_1, ..., R_J$ that minimize $\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$, subject to complexity constraints.

Problem Finding the optimal binary tree is computationally intractable.

Solution Greedy algorithm: starting from the root, and repeating until a stopping criterion is reached (e.g., max depth), find the non-terminal node that results in the "best" split

We only split regions defined by previous non-terminal nodes

Prediction Our prediction is the mean value of a terminal node: $\hat{y}_{R_m} = \text{mean}(y_i \mid x_i \in R_m)$

Goal Find boxes R_1, \ldots, R_J that minimize $\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$, subject to complexity constraints.

Problem Finding the optimal binary tree is computationally intractable.

Solution Greedy algorithm: starting from the root, and repeating until a stopping criterion is reached (e.g., max depth), find the non-terminal node that results in the "best" split

We only split regions defined by previous non-terminal nodes

Prediction Our prediction is the mean value of a terminal node: $\hat{y}_{R_m} = \text{mean}(y_i \mid x_i \in R_m)$

 A greedy algorithm is the one that make the best local decisions, without lookahead to evaluate their downstream consequences

Goal Find boxes $R_1, ..., R_J$ that minimize $\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$, subject to complexity constraints.

Problem Finding the optimal binary tree is computationally intractable.

Solution Greedy algorithm: starting from the root, and repeating until a stopping criterion is reached (e.g., max depth), find the non-terminal node that results in the "best" split

• We only split regions defined by previous non-terminal nodes

Prediction Our prediction is the mean value of a terminal node: $\hat{y}_{R_m} = \text{mean}(y_i \mid x_i \in R_m)$

- A greedy algorithm is the one that make the best **local** decisions, without lookahead to evaluate their downstream consequences
- This procedure is not very likely to result in the globally optimal tree

Prediction in a Regression Tree

• We enumerate all features and all possible split points for each feature. There are infinitely many split points, but...

- We enumerate all features and all possible split points for each feature. There are infinitely many split points, but...
- Suppose we are now considering splitting on the *j*-th feature x_j , and let $x_{j(1)}, \ldots, x_{j(n)}$ be the sorted values of the *j*-th feature.

- We enumerate all features and all possible split points for each feature. There are infinitely many split points, but...
- Suppose we are now considering splitting on the *j*-th feature x_j , and let $x_{j(1)}, \ldots, x_{j(n)}$ be the sorted values of the *j*-th feature.
- We only need to consider split points between two adjacent values, and any split point in the interval $(x_{j(r)}, x_{(j(r+1)})$ will result in the same loss

- We enumerate all features and all possible split points for each feature. There are infinitely many split points, but...
- Suppose we are now considering splitting on the *j*-th feature x_j , and let $x_{j(1)}, \ldots, x_{j(n)}$ be the sorted values of the *j*-th feature.
- We only need to consider split points between two adjacent values, and any split point in the interval $(x_{j(r)}, x_{(j(r+1)})$ will result in the same loss
- It is common to split half way between two adjacent values:

$$s_j \in \left\{ \frac{1}{2} \left(x_{j(r)} + x_{j(r+1)} \right) \mid r = 1, \dots, n-1 \right\}.$$
 $n-1 \text{ splits}$ (1)

• What will happen if we keep splitting the data into more and more regions?

- What will happen if we keep splitting the data into more and more regions?
 - Every data point will be in its own region—overfitting.

- What will happen if we keep splitting the data into more and more regions?
 - Every data point will be in its own region—overfitting.
- When should we stop splitting? (Controlling the complexity of the hypothesis space)

- What will happen if we keep splitting the data into more and more regions?
 - Every data point will be in its own region—overfitting.
- When should we stop splitting? (Controlling the complexity of the hypothesis space)
 - Limit total number of nodes.

- What will happen if we keep splitting the data into more and more regions?
 - Every data point will be in its own region—overfitting.
- When should we stop splitting? (Controlling the complexity of the hypothesis space)
 - Limit total number of nodes.
 - Limit number of terminal nodes.

- What will happen if we keep splitting the data into more and more regions?
 - Every data point will be in its own region—overfitting.
- When should we stop splitting? (Controlling the complexity of the hypothesis space)
 - Limit total number of nodes.
 - Limit number of terminal nodes.
 - Limit tree depth.

- What will happen if we keep splitting the data into more and more regions?
 - Every data point will be in its own region—overfitting.
- When should we stop splitting? (Controlling the complexity of the hypothesis space)
 - Limit total number of nodes.
 - Limit number of terminal nodes.
 - Limit tree depth.
 - Require minimum number of data points in a terminal node.

- What will happen if we keep splitting the data into more and more regions?
 - Every data point will be in its own region—overfitting.
- When should we stop splitting? (Controlling the complexity of the hypothesis space)
 - Limit total number of nodes.
 - Limit number of terminal nodes.
 - Limit tree depth.
 - Require minimum number of data points in a terminal node.

- What will happen if we keep splitting the data into more and more regions?
 - Every data point will be in its own region—overfitting.
- When should we stop splitting? (Controlling the complexity of the hypothesis space)
 - Limit total number of nodes.
 - Limit number of terminal nodes.
 - Limit tree depth.
 - Require minimum number of data points in a terminal node.
 - Backward pruning (the approach used in CART; Breiman et al 1984):

- What will happen if we keep splitting the data into more and more regions?
 - Every data point will be in its own region—overfitting.
- When should we stop splitting? (Controlling the complexity of the hypothesis space)
 - Limit total number of nodes.
 - Limit number of terminal nodes.
 - Limit tree depth.
 - Require minimum number of data points in a terminal node.
 - Backward pruning (the approach used in CART; Breiman et al 1984):
 - **1** Build a really big tree (e.g. until all regions have ≤ 5 points).

- What will happen if we keep splitting the data into more and more regions?
 - Every data point will be in its own region—overfitting.
- When should we stop splitting? (Controlling the complexity of the hypothesis space)
 - Limit total number of nodes.
 - Limit number of terminal nodes.
 - Limit tree depth.
 - Require minimum number of data points in a terminal node.
 - Backward pruning (the approach used in CART; Breiman et al 1984):
 - **1** Build a really big tree (e.g. until all regions have ≤ 5 points).
 - Prune the tree back greedily, potentially all the way to the root, until validation performance starts decreasing.

Pruning: Example

What Makes a Good Split for Classification?

Our plan is to predict the majority label in each region.

Which of the following splits is better?

Split 1
$$R_1:8+/2 R_2:2+/8-$$

Split 2
$$R_1:6+/4 R_2:4+/6-$$

What Makes a Good Split for Classification?

Our plan is to predict the majority label in each region.

Which of the following splits is better?

Split 1
$$R_1:8+/2 R_2:2+/8-$$

Split 2 $R_1:6+/4 R_2:4+/6-$

How about here?

Split 1
$$R_1:8+/2 R_2:2+/8-$$

Split 2 $R_1:6+/4 R_2:0+/10-$

What Makes a Good Split for Classification?

Our plan is to predict the majority label in each region.

Which of the following splits is better?

Split 1
$$R_1:8+/2 R_2:2+/8-$$

Split 2 $R_1:6+/4 R_2:4+/6-$

How about here?

Split 1
$$R_1:8+/2 R_2:2+/8-$$

Split 2 $R_1:6+/4 R_2:0+/10-$

Intuition: we want to produce pure nodes, i.e. nodes where most instances have the same class.

Misclassification error in a node

- Let's consider the multiclass classification case: $\mathcal{Y} = \{1, 2, ..., K\}$.
- Let node m represent region R_m , with N_m observations

- Let's consider the multiclass classification case: $y = \{1, 2, ..., K\}$.
- Let node m represent region R_m , with N_m observations
- We denote the proportion of observations in R_m with class k by

$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{\{i: x_i \in R_m\}} \mathbb{1}[y_i = k].$$

- Let's consider the multiclass classification case: $\mathcal{Y} = \{1, 2, ..., K\}$.
- Let node m represent region R_m , with N_m observations
- We denote the proportion of observations in R_m with class k by

$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{\{i: x_i \in R_m\}} \mathbb{1}[y_i = k].$$

• We predict the majority class in node *m*:

$$k(m) = \arg\max_{k} \hat{p}_{mk}$$

• Three measures of **node impurity** for leaf node *m*:

- Three measures of **node impurity** for leaf node *m*:
 - Misclassification error

$$1-\hat{p}_{mk(m)}$$
.

- Three measures of **node impurity** for leaf node *m*:
 - Misclassification error

$$1-\hat{p}_{mk(m)}$$
.

• The Gini index encourages \hat{p}_{mk} to be close to 0 or 1

$$\sum_{k=1}^K \hat{p}_{mk}(1-\hat{p}_{mk}).$$

- Three measures of **node impurity** for leaf node *m*:
 - Misclassification error

$$1-\hat{p}_{mk(m)}$$
.

• The Gini index encourages \hat{p}_{mk} to be close to 0 or 1

$$\sum_{k=1}^K \hat{p}_{mk}(1-\hat{p}_{mk}).$$

Entropy / Information gain

$$-\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}.$$

- Three measures of **node impurity** for leaf node *m*:
 - Misclassification error

$$1-\hat{p}_{mk(m)}$$
.

• The Gini index encourages \hat{p}_{mk} to be close to 0 or 1

$$\sum_{k=1}^K \hat{\rho}_{mk} (1 - \hat{\rho}_{mk}).$$

• Entropy / Information gain

$$-\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}.$$

• The Gini index and entropy are numerically similar to each other, and both work better in practice than the misclassification error.

Impurity Measures for Binary Classification

(p is the relative frequency of class 1)

Quantifying the Impurity of a Split

Scoring a potential split that produces the nodes R_L and R_R :

• Suppose we have N_L points in R_L and N_R points in R_R .

Quantifying the Impurity of a Split

Scoring a potential split that produces the nodes R_L and R_R :

- Suppose we have N_L points in R_L and N_R points in R_R .
- Let $Q(R_L)$ and $Q(R_R)$ be the node impurity measures for each node.

Quantifying the Impurity of a Split

Scoring a potential split that produces the nodes R_L and R_R :

- Suppose we have N_L points in R_L and N_R points in R_R .
- Let $Q(R_L)$ and $Q(R_R)$ be the node impurity measures for each node.
- We aim to find a split that minimizes the weighted average of node impurities:

$$\frac{N_L Q(R_L) + N_R Q(R_R)}{N_L + N_R}$$

Discussion: Interpretability of Decision Trees

• Trees are easier to visualize and explain than other classifiers (even linear regression)

Discussion: Interpretability of Decision Trees

- Trees are easier to visualize and explain than other classifiers (even linear regression)
- Small trees are interpretable large trees, maybe not so much

Discussion: Trees vs. Linear Models

Trees may have to work hard to capture linear decision boundaries, but can easily capture certain nonlinear ones:

Discussion: Review

Decision trees are:

- Non-linear: the decision boundary that results from splitting may end up being quite complicated
- Non-metric: they do not rely on the geometry of the space (inner products or distances)
- Non-parametric: they make no assumptions about the distribution of the data

Discussion: Review

Decision trees are:

- Non-linear: the decision boundary that results from splitting may end up being quite complicated
- Non-metric: they do not rely on the geometry of the space (inner products or distances)
- Non-parametric: they make no assumptions about the distribution of the data

Additional pros:

• Interpretable and simple to understand

Discussion: Review

Decision trees are:

- Non-linear: the decision boundary that results from splitting may end up being quite complicated
- Non-metric: they do not rely on the geometry of the space (inner products or distances)
- Non-parametric: they make no assumptions about the distribution of the data

Additional pros:

Interpretable and simple to understand

Cons:

- Struggle to capture linear decision boundaries
- They have high variance and tend to overfit: they are sensitive to small changes in the training data (The ensemble techniques we discuss next can mitigate these issues)

Bagging and Random Forests

• We observe data $\mathcal{D} = (x_1, x_2, \dots, x_n)$ sampled i.i.d. from a parametric distribution $p(\cdot \mid \theta)$

- We observe data $\mathcal{D} = (x_1, x_2, \dots, x_n)$ sampled i.i.d. from a parametric distribution $p(\cdot \mid \theta)$
- A statistic $s = s(\mathcal{D})$ is any function of the data:

- We observe data $\mathcal{D} = (x_1, x_2, \dots, x_n)$ sampled i.i.d. from a parametric distribution $p(\cdot \mid \theta)$
- A statistic $s = s(\mathcal{D})$ is any function of the data:
 - E.g., sample mean, sample variance, histogram, empirical data distribution

- We observe data $\mathcal{D} = (x_1, x_2, \dots, x_n)$ sampled i.i.d. from a parametric distribution $p(\cdot \mid \theta)$
- A statistic $s = s(\mathcal{D})$ is any function of the data:
 - E.g., sample mean, sample variance, histogram, empirical data distribution
- A statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ is a point estimator of θ if $\hat{\theta} \approx \theta$

- Statistics are random, so they have probability distributions.
- The distribution of a statistic is called a sampling distribution.
- The standard deviation of the sampling distribution is called the **standard error**.

- Statistics are random, so they have probability distributions.
- The distribution of a statistic is called a sampling distribution.
- The standard deviation of the sampling distribution is called the standard error.
- Some parameters of the sampling distribution we might be interested in:

$$\begin{array}{c} \mathsf{Bias} \ \mathsf{Bias}(\hat{\theta}) \stackrel{\mathrm{def}}{=} \mathbb{E} \left[\hat{\theta} \right] - \theta. \\ \mathsf{Variance} \ \mathsf{Var}(\hat{\theta}) \stackrel{\mathrm{def}}{=} \mathbb{E} \left[\hat{\theta}^2 \right] - \mathbb{E}^2 \left[\hat{\theta} \right]. \end{array}$$

- Statistics are random, so they have probability distributions.
- The distribution of a statistic is called a sampling distribution.
- The standard deviation of the sampling distribution is called the standard error.
- Some parameters of the sampling distribution we might be interested in:

$$\begin{array}{c} \mathsf{Bias} \ \mathsf{Bias}(\hat{\theta}) \stackrel{\mathrm{def}}{=} \mathbb{E}\left[\hat{\theta}\right] - \theta. \\ \mathsf{Variance} \ \mathsf{Var}(\hat{\theta}) \stackrel{\mathrm{def}}{=} \mathbb{E}\left[\hat{\theta}^2\right] - \mathbb{E}^2\left[\hat{\theta}\right]. \end{array}$$

• Why does variance matter if an estimator is unbiased?

- Statistics are random, so they have probability distributions.
- The distribution of a statistic is called a sampling distribution.
- The standard deviation of the sampling distribution is called the standard error.
- Some parameters of the sampling distribution we might be interested in:

$$\begin{array}{c} \mathsf{Bias} \ \mathsf{Bias}(\hat{\theta}) \stackrel{\mathrm{def}}{=} \mathbb{E}\left[\hat{\theta}\right] - \theta. \\ \mathsf{Variance} \ \mathsf{Var}(\hat{\theta}) \stackrel{\mathrm{def}}{=} \mathbb{E}\left[\hat{\theta}^2\right] - \mathbb{E}^2\left[\hat{\theta}\right]. \end{array}$$

• Why does variance matter if an estimator is unbiased?

- Statistics are random, so they have probability distributions.
- The distribution of a statistic is called a sampling distribution.
- The standard deviation of the sampling distribution is called the standard error.
- Some parameters of the sampling distribution we might be interested in:

$$\begin{array}{c} \mathsf{Bias} \ \mathsf{Bias}(\hat{\theta}) \stackrel{\mathrm{def}}{=} \mathbb{E}\left[\hat{\theta}\right] - \theta. \\ \mathsf{Variance} \ \mathsf{Var}(\hat{\theta}) \stackrel{\mathrm{def}}{=} \mathbb{E}\left[\hat{\theta}^2\right] - \mathbb{E}^2\left[\hat{\theta}\right]. \end{array}$$

- Why does variance matter if an estimator is unbiased?
 - $\hat{\theta}(\mathcal{D}) = x_1$ is an unbiased estimator of the mean of a Gaussian, but would be farther away from θ than the sample mean.

- Let $\hat{\theta}(\mathcal{D})$ be an unbiased estimator with variance σ^2 : $\mathbb{E}\left[\hat{\theta}\right] = \theta$, $\mathsf{Var}(\hat{\theta}) = \sigma^2$.
- So far we have used a single statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ to estimate θ .

- Let $\hat{\theta}(\mathcal{D})$ be an unbiased estimator with variance σ^2 : $\mathbb{E}\left[\hat{\theta}\right] = \theta$, $\mathsf{Var}(\hat{\theta}) = \sigma^2$.
- So far we have used a single statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ to estimate θ .
- Its standard error is $\sqrt{\mathsf{Var}(\hat{\theta})} = \sigma$

- Let $\hat{\theta}(\mathcal{D})$ be an unbiased estimator with variance σ^2 : $\mathbb{E}\left[\hat{\theta}\right] = \theta$, $\mathsf{Var}(\hat{\theta}) = \sigma^2$.
- So far we have used a single statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ to estimate θ .
- Its standard error is $\sqrt{\text{Var}(\hat{\theta})} = \sigma$
- Consider a new estimator that takes the average of i.i.d. $\hat{\theta}_1, \dots, \hat{\theta}_n$ where $\hat{\theta}_i = \hat{\theta}(\mathcal{D}^i)$.

- Let $\hat{\theta}(\mathcal{D})$ be an unbiased estimator with variance σ^2 : $\mathbb{E}\left[\hat{\theta}\right] = \theta$, $\mathsf{Var}(\hat{\theta}) = \sigma^2$.
- So far we have used a single statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ to estimate θ .
- Its standard error is $\sqrt{\text{Var}(\hat{\theta})} = \sigma$
- Consider a new estimator that takes the average of i.i.d. $\hat{\theta}_1, \dots, \hat{\theta}_n$ where $\hat{\theta}_i = \hat{\theta}(\mathcal{D}^i)$.

Variance of a Mean

- Let $\hat{\theta}(\mathcal{D})$ be an unbiased estimator with variance σ^2 : $\mathbb{E}\left[\hat{\theta}\right] = \theta$, $Var(\hat{\theta}) = \sigma^2$.
- So far we have used a single statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ to estimate θ .
- Its standard error is $\sqrt{\mathsf{Var}(\hat{\theta})} = \sigma$
- Consider a new estimator that takes the average of i.i.d. $\hat{\theta}_1, \dots, \hat{\theta}_n$ where $\hat{\theta}_i = \hat{\theta}(\mathcal{D}^i)$.
- The average has the same expected value but smaller standard error (recall that $Var(cX) = c^2 Var(X)$, and that the $\hat{\theta}_i$ -s are uncorrelated):

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \theta \qquad \text{Var}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \frac{\sigma^{2}}{n}$$
 (2)

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 23 / 111

Averaging Independent Prediction Functions

• Suppose we have B independent training sets, all drawn from the same distribution $(\mathcal{D} \sim p(\cdot \mid \theta))$.

Averaging Independent Prediction Functions

- Suppose we have B independent training sets, all drawn from the same distribution $(\mathcal{D} \sim p(\cdot \mid \theta))$.
- Our learning algorithm gives us B prediction functions: $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_B(x)$

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 24/111

Averaging Independent Prediction Functions

- Suppose we have B independent training sets, all drawn from the same distribution $(\mathcal{D} \sim p(\cdot \mid \theta))$.
- Our learning algorithm gives us B prediction functions: $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_B(x)$
- We will define the average prediction function as:

$$\hat{f}_{\text{avg}} \stackrel{\text{def}}{=} \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b \tag{3}$$

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 24 / 111

Averaging Reduces Variance of Predictions

• The average prediction for x_0 is

$$\hat{f}_{avg}(x_0) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x_0).$$

- $\hat{f}_{avg}(x_0)$ and $\hat{f}_b(x_0)$ have the same expected value, but
- $\hat{f}_{avg}(x_0)$ has smaller variance:

$$\operatorname{Var}(\hat{f}_{\mathsf{avg}}(x_0)) = \frac{1}{B} \operatorname{Var}\left(\hat{f}_1(x_0)\right)$$

25 / 111 CSCI-2565 Nov 14, 2023

Averaging Reduces Variance of Predictions

• The average prediction for x_0 is

$$\hat{f}_{avg}(x_0) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x_0).$$

- $\hat{f}_{avg}(x_0)$ and $\hat{f}_b(x_0)$ have the same expected value, but
- $\hat{f}_{avg}(x_0)$ has smaller variance:

$$\operatorname{Var}(\hat{f}_{\mathsf{aVg}}(x_0)) = \frac{1}{B} \operatorname{Var}\left(\hat{f}_{\mathsf{1}}(x_0)\right)$$

• Problem: in practice we don't have B independent training sets!

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 25 / 111

How do we simulate multiple samples when we only have one?

• A **bootstrap sample** from $\mathcal{D}_n = (x_1, \dots, x_n)$ is a sample of size n drawn with replacement from \mathcal{D}_n

How do we simulate multiple samples when we only have one?

- A **bootstrap sample** from $\mathcal{D}_n = (x_1, ..., x_n)$ is a sample of size n drawn with replacement from \mathcal{D}_n
- Some elements of \mathcal{D}_n will show up multiple times, and some won't show up at all

How do we simulate multiple samples when we only have one?

- A **bootstrap sample** from $\mathcal{D}_n = (x_1, ..., x_n)$ is a sample of size n drawn with replacement from \mathcal{D}_n
- Some elements of \mathcal{D}_n will show up multiple times, and some won't show up at all
- Each x_i has a probability of $(1-1/n)^n$ of not being included in a given bootstrap sample

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 26 / 111

How do we simulate multiple samples when we only have one?

- A bootstrap sample from $\mathcal{D}_n = (x_1, \dots, x_n)$ is a sample of size n drawn with replacement from \mathcal{D}_n
- Some elements of \mathcal{D}_n will show up multiple times, and some won't show up at all
- Each x_i has a probability of $(1-1/n)^n$ of not being included in a given bootstrap sample
- For large n,

$$\left(1 - \frac{1}{n}\right)^n \approx \frac{1}{e} \approx .368. \tag{4}$$

• So we expect ~63.2% of elements of \mathcal{D}_n will show up at least once.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 26 / 111

Definition

A **bootstrap method** simulates B independent samples from P by taking B bootstrap samples from the sample \mathcal{D}_n .

Definition

A **bootstrap method** simulates B independent samples from P by taking B bootstrap samples from the sample \mathfrak{D}_n .

• Given original data \mathcal{D}_n , compute B bootstrap samples D_n^1, \ldots, D_n^B .

Definition

A **bootstrap method** simulates B independent samples from P by taking B bootstrap samples from the sample \mathfrak{D}_n .

- Given original data \mathcal{D}_n , compute B bootstrap samples D_n^1, \ldots, D_n^B .
- For each bootstrap sample, compute some function

$$\phi(D_n^1), \ldots, \phi(D_n^B)$$

Definition

A **bootstrap method** simulates B independent samples from P by taking B bootstrap samples from the sample \mathfrak{D}_n .

- Given original data \mathcal{D}_n , compute B bootstrap samples D_n^1, \ldots, D_n^B .
- For each bootstrap sample, compute some function

$$\phi(D_n^1), \ldots, \phi(D_n^B)$$

- Use these values as though D_n^1, \ldots, D_n^B were i.i.d. samples from P.
- This often ends up being very close to what we'd get with independent samples from P!

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 27 / 111

Independent Samples vs. Bootstrap Samples

- Point estimator $\hat{\alpha} = \hat{\alpha}(\mathcal{D}_{100})$ for samples of size 100, for a synthetic case where the data generating distribution is known
- Histograms of $\hat{\alpha}$ based on
 - 1000 independent samples of size 100 (left), vs.
 - 1000 bootstrap samples of size 100 (right)

Figure 5.10 from ISLR (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 28 / 111

Key ideas:

 In general, ensemble methods combine multiple weak models into a single, more powerful model

- In general, ensemble methods combine multiple weak models into a single, more powerful model
- Averaging i.i.d. estimates reduces variance without changing bias

- In general, ensemble methods combine multiple weak models into a single, more powerful model
- Averaging i.i.d. estimates reduces variance without changing bias
- We can use bootstrap to simulate multiple data samples and average them

- In general, ensemble methods combine multiple weak models into a single, more powerful model
- Averaging i.i.d. estimates reduces variance without changing bias
- We can use bootstrap to simulate multiple data samples and average them
- Parallel ensemble (e.g., bagging): models are built independently

- In general, ensemble methods combine multiple weak models into a single, more powerful model
- Averaging i.i.d. estimates reduces variance without changing bias
- We can use bootstrap to simulate multiple data samples and average them
- Parallel ensemble (e.g., bagging): models are built independently
- Sequential ensemble (e.g., boosting): models are built sequentially

Key ideas:

- In general, ensemble methods combine multiple weak models into a single, more powerful model
- Averaging i.i.d. estimates reduces variance without changing bias
- We can use bootstrap to simulate multiple data samples and average them
- Parallel ensemble (e.g., bagging): models are built independently
- Sequential ensemble (e.g., boosting): models are built sequentially
 - We try to find new learners that do well where previous learners fall short

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 29 / 111

• We draw B bootstrap samples D^1, \ldots, D^B from original data $\mathfrak D$

- We draw B bootstrap samples D^1, \ldots, D^B from original data \mathcal{D}
- Let $\hat{f}_1, \hat{f}_2, \dots, \hat{f}_B$ be the prediction functions resulting from training on D^1, \dots, D^B , respectively

- We draw B bootstrap samples D^1, \ldots, D^B from original data \mathcal{D}
- Let $\hat{f}_1, \hat{f}_2, \dots, \hat{f}_B$ be the prediction functions resulting from training on D^1, \dots, D^B , respectively
- The bagged prediction function is a combination of these:

$$\hat{f}_{\mathsf{avg}}(x) = \mathsf{Combine}\left(\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_B(x)\right)$$

• Bagging is a general method for variance reduction, but it is particularly useful for decision trees

- Bagging is a general method for variance reduction, but it is particularly useful for decision trees
- For classification, averaging doesn't make sense; we can take a majority vote instead

- Bagging is a general method for variance reduction, but it is particularly useful for decision trees
- For classification, averaging doesn't make sense; we can take a majority vote instead
- Increasing the number of trees we use in bagging does not lead to overfitting

- Bagging is a general method for variance reduction, but it is particularly useful for decision trees
- For classification, averaging doesn't make sense; we can take a majority vote instead
- Increasing the number of trees we use in bagging does not lead to overfitting
- Is there a downside, compared to having a single decision tree?

- Bagging is a general method for variance reduction, but it is particularly useful for decision trees
- For classification, averaging doesn't make sense; we can take a majority vote instead
- Increasing the number of trees we use in bagging does not lead to overfitting
- Is there a downside, compared to having a single decision tree?
- Yes: if we have many trees, the bagged predictor is much less interpretable

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 31/111

Aside: Out-of-Bag Error Estimation

- Recall that each bagged predictor was trained on about 63% of the data.
- The remaining 37% are called **out-of-bag (OOB)** observations.

Aside: Out-of-Bag Error Estimation

- Recall that each bagged predictor was trained on about 63% of the data.
- The remaining 37% are called out-of-bag (OOB) observations.
- For ith training point, let

$$S_i = \{b \mid D^b \text{ does not contain } i \text{th point}\}$$

• The OOB prediction on x_i is

$$\hat{f}_{OOB}(x_i) = \frac{1}{|S_i|} \sum_{b \in S_i} \hat{f}_b(x_i)$$

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 32 / 111

Aside: Out-of-Bag Error Estimation

- Recall that each bagged predictor was trained on about 63% of the data.
- The remaining 37% are called **out-of-bag (OOB)** observations.
- For ith training point, let

$$S_i = \{b \mid D^b \text{ does not contain } i \text{th point}\}$$

• The OOB prediction on x_i is

$$\hat{f}_{OOB}(x_i) = \frac{1}{|S_i|} \sum_{b \in S_i} \hat{f}_b(x_i)$$

- The OOB error is a good estimate of the test error
- Similar to cross validation error: both are computed on the training set

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 32 / 111

• Input space $\mathfrak{X}=\mathsf{R}^5$ and output space $\mathfrak{Y}=\{-1,1\}$. Sample size n=30.

From HTF Figure 8.9

• Input space $\mathfrak{X}=\mathsf{R}^5$ and output space $\mathfrak{Y}=\{-1,1\}$. Sample size n=30.

• Each bootstrap tree is quite different: different splitting variable at the root!

• Input space $\mathfrak{X}=\mathsf{R}^5$ and output space $\mathfrak{Y}=\{-1,1\}$. Sample size n=30.

- Each bootstrap tree is quite different: different splitting variable at the root!
- **High variance**: small perturbations of the training data lead to a high degree of model variability

• Input space $\mathfrak{X}=\mathsf{R}^5$ and output space $\mathfrak{Y}=\{-1,1\}$. Sample size n=30.

- Each bootstrap tree is quite different: different splitting variable at the root!
- High variance: small perturbations of the training data lead to a high degree of model variability
- Bagging helps most when the base learners are relatively unbiased but have high variance (exactly the case for decision trees)

Recall the motivating principle of bagging:

• For
$$\hat{\theta}_1, \dots, \hat{\theta}_n$$
 i.i.d. with $\mathbb{E}\left[\hat{\theta}\right] = \theta$ and $\operatorname{Var}\left[\hat{\theta}\right] = \sigma^2$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \frac{\sigma^{2}}{n}.$$

Recall the motivating principle of bagging:

• For $\hat{\theta}_1, \dots, \hat{\theta}_n$ *i.i.d.* with $\mathbb{E}\left[\hat{\theta}\right] = \theta$ and $\operatorname{Var}\left[\hat{\theta}\right] = \sigma^2$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \frac{\sigma^{2}}{n}.$$

• What if $\hat{\theta}$'s are correlated?

Recall the motivating principle of bagging:

• For $\hat{\theta}_1, \dots, \hat{\theta}_n$ *i.i.d.* with $\mathbb{E}\left[\hat{\theta}\right] = \theta$ and $\operatorname{Var}\left[\hat{\theta}\right] = \sigma^2$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \frac{\sigma^{2}}{n}.$$

- What if $\hat{\theta}$'s are correlated?
- For large n, the covariance term dominates, limiting the benefits of averaging

34 / 111 Mengve Ren (NYU) CSCI-2565 Nov 14, 2023

Recall the motivating principle of bagging:

• For $\hat{\theta}_1, \dots, \hat{\theta}_n$ *i.i.d.* with $\mathbb{E}\left[\hat{\theta}\right] = \theta$ and $\operatorname{Var}\left[\hat{\theta}\right] = \sigma^2$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \frac{\sigma^{2}}{n}.$$

- What if $\hat{\theta}$'s are correlated?
- \bullet For large n, the covariance term dominates, limiting the benefits of averaging
- Bootstrap samples are

Recall the motivating principle of bagging:

• For $\hat{\theta}_1, \dots, \hat{\theta}_n$ *i.i.d.* with $\mathbb{E}\left[\hat{\theta}\right] = \theta$ and $\operatorname{Var}\left[\hat{\theta}\right] = \sigma^2$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \frac{\sigma^{2}}{n}.$$

- What if $\hat{\theta}$'s are correlated?
- For large n, the covariance term dominates, limiting the benefits of averaging
- Bootstrap samples are
 - independent samples from the training set, but

Recall the motivating principle of bagging:

• For $\hat{\theta}_1, \dots, \hat{\theta}_n$ *i.i.d.* with $\mathbb{E}\left[\hat{\theta}\right] = \theta$ and $\operatorname{Var}\left[\hat{\theta}\right] = \sigma^2$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \frac{\sigma^{2}}{n}.$$

- What if $\hat{\theta}$'s are correlated?
- For large n, the covariance term dominates, limiting the benefits of averaging
- Bootstrap samples are
 - independent samples from the training set, but
 - not independent samples from $P_{\mathfrak{X} \times \mathfrak{Y}}$

Recall the motivating principle of bagging:

• For $\hat{\theta}_1, \dots, \hat{\theta}_n$ *i.i.d.* with $\mathbb{E}\left[\hat{\theta}\right] = \theta$ and $\operatorname{Var}\left[\hat{\theta}\right] = \sigma^2$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}_{i}\right] = \frac{\sigma^{2}}{n}.$$

- What if $\hat{\theta}$'s are correlated?
- \bullet For large n, the covariance term dominates, limiting the benefits of averaging
- Bootstrap samples are
 - independent samples from the training set, but
 - not independent samples from $P_{X \times Y}$
- Can we reduce the dependence between \hat{f}_i 's?

Key idea

Use bagged decision trees, but modify the tree-growing procedure to reduce the dependence between trees.

• Build a collection of trees independently (in parallel), as before

Key idea

Use bagged decision trees, but modify the tree-growing procedure to reduce the dependence between trees.

- Build a collection of trees independently (in parallel), as before
- When constructing each tree node, restrict choice of splitting variable to a randomly chosen subset of features of size *m*
 - This prevents a situation where all trees are dominated by the same small number of strong features (and are therefore too similar to each other)

Key idea

Use bagged decision trees, but modify the tree-growing procedure to reduce the dependence between trees.

- Build a collection of trees independently (in parallel), as before
- When constructing each tree node, restrict choice of splitting variable to a randomly chosen subset of features of size *m*
 - This prevents a situation where all trees are dominated by the same small number of strong features (and are therefore too similar to each other)
- We typically choose $m \approx \sqrt{p}$, where p is the number of features (or we can choose m using cross validation)

Key idea

Use bagged decision trees, but modify the tree-growing procedure to reduce the dependence between trees.

- Build a collection of trees independently (in parallel), as before
- When constructing each tree node, restrict choice of splitting variable to a randomly chosen subset of features of size *m*
 - This prevents a situation where all trees are dominated by the same small number of strong features (and are therefore too similar to each other)
- We typically choose $m \approx \sqrt{p}$, where p is the number of features (or we can choose m using cross validation)
- If m = p, this is just bagging

Random Forests: Effect of m

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Review

• The usual approach is to build very deep trees—low bias but high variance

Review

- The usual approach is to build very deep trees—low bias but high variance
- Ensembling many models reduces variance
 - Motivation: Mean of i.i.d. estimates has smaller variance than single estimate

- The usual approach is to build very deep trees—low bias but high variance
- Ensembling many models reduces variance
 - Motivation: Mean of i.i.d. estimates has smaller variance than single estimate
- Use bootstrap to simulate many data samples from one dataset
 - Bagged decision trees

- The usual approach is to build very deep trees—low bias but high variance
- Ensembling many models reduces variance
 - Motivation: Mean of i.i.d. estimates has smaller variance than single estimate
- Use bootstrap to simulate many data samples from one dataset
 - ⇒ Bagged decision trees
- But bootstrap samples (and the induced models) are correlated

- The usual approach is to build very deep trees—low bias but high variance
- Ensembling many models reduces variance
 - Motivation: Mean of i.i.d. estimates has smaller variance than single estimate
- Use bootstrap to simulate many data samples from one dataset
 - ⇒ Bagged decision trees
- But bootstrap samples (and the induced models) are correlated
- Ensembling works better when we combine a diverse set of prediction functions
 - Random forests: select a random subset of features for each decision tree

Boosting

Bagging Reduce variance of a low bias, high variance estimator by ensembling many estimators trained in parallel (on different datasets obtained through sampling).

Bagging Reduce variance of a low bias, high variance estimator by ensembling many estimators trained in parallel (on different datasets obtained through sampling).

Boosting Reduce the error rate of a high bias estimator by ensembling many estimators trained in sequence (without bootstrapping).

Bagging Reduce variance of a low bias, high variance estimator by ensembling many estimators trained in parallel (on different datasets obtained through sampling).

Boosting Reduce the error rate of a high bias estimator by ensembling many estimators trained in sequence (without bootstrapping).

• Like bagging, boosting is a general method that is particularly popular with decision trees.

Bagging Reduce variance of a low bias, high variance estimator by ensembling many estimators trained in parallel (on different datasets obtained through sampling).

Boosting Reduce the error rate of a high bias estimator by ensembling many estimators trained in sequence (without bootstrapping).

- Like bagging, boosting is a general method that is particularly popular with decision trees.
- Main intuition: instead of fitting the data very closely using a large decision tree, train gradually, using a sequence of simpler trees

- A weak/base learner is a classifier that does slightly better than chance.
- Weak learners are like rules of thumb:
 - "Inheritance" ⇒ spam
 - From a friend ⇒ not spam

- A weak/base learner is a classifier that does slightly better than chance.
- Weak learners are like rules of thumb:
 - "Inheritance" ⇒ spam
 - From a friend ⇒ not spam
- Key idea:

- A weak/base learner is a classifier that does slightly better than chance.
- Weak learners are like rules of thumb:
 - ullet "Inheritance" \Longrightarrow spam
 - From a friend \implies not spam
- Key idea:
 - Each weak learner focuses on different training examples (reweighted data)

- A weak/base learner is a classifier that does slightly better than chance.
- Weak learners are like rules of thumb:
 - "Inheritance" ⇒ spam
 - From a friend \implies not spam
- Key idea:
 - Each weak learner focuses on different training examples (reweighted data)
 - Weak learners make different contributions to the final prediction (*reweighted classifier*)

- A weak/base learner is a classifier that does slightly better than chance.
- Weak learners are like rules of thumb:
 - "Inheritance" ⇒ spam
 - \bullet From a friend \Longrightarrow not spam
- Key idea:
 - Each weak learner focuses on different training examples (reweighted data)
 - Weak learners make different contributions to the final prediction (reweighted classifier)
- A set of smaller, simpler trees may improve interpretability

- A weak/base learner is a classifier that does slightly better than chance.
- Weak learners are like rules of thumb:
 - "Inheritance" ⇒ spam
 - \bullet From a friend \Longrightarrow not spam
- Key idea:
 - Each weak learner focuses on different training examples (reweighted data)
 - Weak learners make different contributions to the final prediction (reweighted classifier)
- A set of smaller, simpler trees may improve interpretability
- We'll focus on a specific implementation, AdaBoost (Freund & Schapire, 1997)

AdaBoost: Setting

• Binary classification: $\mathcal{Y} = \{-1, 1\}$

AdaBoost: Setting

- Binary classification: $y = \{-1, 1\}$
- Base hypothesis space $\mathcal{H} = \{h : \mathcal{X} \to \{-1, 1\}\}.$

AdaBoost: Setting

- Binary classification: $y = \{-1, 1\}$
- Base hypothesis space $\mathcal{H} = \{h : \mathcal{X} \to \{-1, 1\}\}.$
- Typical base hypothesis spaces:
 - Decision stumps (tree with a single split)
 - Trees with few terminal nodes
 - Linear decision functions

Weighted Training Set

Each base learner is trained on weighted data.

- Training set $\mathcal{D} = ((x_1, y_1), \dots, (x_n, y_n)).$
- Weights $(w_1, ..., w_n)$ associated with each example.

Weighted Training Set

Each base learner is trained on weighted data.

- Training set $\mathcal{D} = ((x_1, y_1), \dots, (x_n, y_n)).$
- Weights (w_1, \ldots, w_n) associated with each example.
- Weighted empirical risk:

$$\hat{R}_n^W(f) \stackrel{\text{def}}{=} \frac{1}{W} \sum_{i=1}^n w_i \ell(f(x_i), y_i)$$
 where $W = \sum_{i=1}^n w_i$

• Examples with larger weights affect the loss more.

AdaBoost: Schematic

From ESL Figure 10.1

AdaBoost: Sketch of the Algorithm

• Start with equal weights for all training points: $w_1 = \cdots = w_n = 1$

AdaBoost: Sketch of the Algorithm

- Start with equal weights for all training points: $w_1 = \cdots = w_n = 1$
- Repeat for m = 1, ..., M (where M is the number of classifiers we plan to train):

AdaBoost: Sketch of the Algorithm

- Start with equal weights for all training points: $w_1 = \cdots = w_n = 1$
- Repeat for m = 1, ..., M (where M is the number of classifiers we plan to train):
 - Train base classifier $G_m(x)$ on the weighted training data; this classifier may not fit the data well

AdaBoost: Sketch of the Algorithm

- Start with equal weights for all training points: $w_1 = \cdots = w_n = 1$
- Repeat for m = 1, ..., M (where M is the number of classifiers we plan to train):
 - Train base classifier $G_m(x)$ on the weighted training data; this classifier may not fit the data well
 - Increase the weight of the points misclassified by $G_m(x)$ (this is the key idea of boosting!)

AdaBoost: Sketch of the Algorithm

- Start with equal weights for all training points: $w_1 = \cdots = w_n = 1$
- Repeat for m = 1, ..., M (where M is the number of classifiers we plan to train):
 - Train base classifier $G_m(x)$ on the weighted training data; this classifier may not fit the data well
 - Increase the weight of the points misclassified by $G_m(x)$ (this is the key idea of boosting!)
- Our final prediction is $G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$

AdaBoost: Classifier Weights

- Our final prediction is $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.
- We would like α_m to be:
 - Nonnegative
 - Larger when G_m fits its weighted training data well
- The weighted 0-1 error of $G_m(x)$ is

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}[y_i \neq G_m(x_i)]$$
 where $W = \sum_{i=1}^n w_i$.

• $\operatorname{err}_m \in [0, 1]$

AdaBoost: Classifier Weights

• The weight of classifier $G_m(x)$ is $\alpha_m = \ln\left(\frac{1 - \text{err}_m}{\text{err}_m}\right)$

AdaBoost: Classifier Weights

• The weight of classifier $G_m(x)$ is $\alpha_m = \ln\left(\frac{1 - \text{err}_m}{\text{err}_m}\right)$

• Higher weighted error \implies lower weight

- We train G_m to minimize weighted error; the resulting error rate is err_m
- Then $\alpha_m = \ln\left(\frac{1 \operatorname{err}_m}{\operatorname{err}_m}\right)$ is the weight of G_m in the final ensemble

We want the next base learner to focus more on examples misclassified by the previous learner.

- We train G_m to minimize weighted error; the resulting error rate is err_m
- Then $\alpha_m = \ln\left(\frac{1 \operatorname{err}_m}{\operatorname{err}_m}\right)$ is the weight of G_m in the final ensemble

We want the next base learner to focus more on examples misclassified by the previous learner.

• Suppose w_i is the weight of example x_i before training:

- We train G_m to minimize weighted error; the resulting error rate is err_m
- ullet Then $lpha_m=\ln\left(rac{1- ext{err}_m}{ ext{err}_m}
 ight)$ is the weight of G_m in the final ensemble

We want the next base learner to focus more on examples misclassified by the previous learner.

- Suppose w_i is the weight of example x_i before training:
 - If G_m classifies x_i correctly, keep w_i as is

- We train G_m to minimize weighted error; the resulting error rate is err_m
- ullet Then $lpha_m=\ln\left(rac{1-{
 m err}_m}{{
 m err}_m}
 ight)$ is the weight of G_m in the final ensemble

We want the next base learner to focus more on examples misclassified by the previous learner.

- Suppose w_i is the weight of example x_i before training:
 - If G_m classifies x_i correctly, keep w_i as is
 - Otherwise, increase wi:

$$w_i \leftarrow w_i e^{\alpha_m}$$

$$= w_i \left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \right)$$

- We train G_m to minimize weighted error; the resulting error rate is err_m
- ullet Then $lpha_m=\ln\left(rac{1- ext{err}_m}{ ext{err}_m}
 ight)$ is the weight of G_m in the final ensemble

We want the next base learner to focus more on examples misclassified by the previous learner.

- Suppose w_i is the weight of example x_i before training:
 - If G_m classifies x_i correctly, keep w_i as is
 - Otherwise, increase w_i:

$$w_i \leftarrow w_i e^{\alpha_m}$$

$$= w_i \left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}\right)$$

• If G_m is a strong classifier overall, then its α_m will be large; this means that if x_i is misclassified, w_i will increase to a greater extent

AdaBoost: Algorithm

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

• Initialize observation weights $w_i = 1, i = 1, 2, ..., n$.

AdaBoost: Algorithm

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- Initialize observation weights $w_i = 1, i = 1, 2, ..., n$.
- 2 For m = 1 to M:
 - Base learner fits weighted training data and returns $G_m(x)$

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- 1 Initialize observation weights $w_i = 1, i = 1, 2, ..., n$.
- 2 For m = 1 to M:
 - Base learner fits weighted training data and returns $G_m(x)$
 - 2 Compute weighted empirical 0-1 risk:

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}[y_i \neq G_m(x_i)]$$
 where $W = \sum_{i=1}^n w_i$.

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- 1 Initialize observation weights $w_i = 1, i = 1, 2, ..., n$.
- ② For m = 1 to M:
 - Base learner fits weighted training data and returns $G_m(x)$
 - 2 Compute weighted empirical 0-1 risk:

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}[y_i \neq G_m(x_i)]$$
 where $W = \sum_{i=1}^n w_i$.

• Compute classifier weight: $\alpha_m = \ln\left(\frac{1 - \text{err}_m}{\text{err}_m}\right)$.

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- Initialize observation weights $w_i = 1, i = 1, 2, ..., n$.
- ② For m = 1 to M:
 - Base learner fits weighted training data and returns $G_m(x)$
 - 2 Compute weighted empirical 0-1 risk:

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}[y_i \neq G_m(x_i)]$$
 where $W = \sum_{i=1}^n w_i$.

- Compute classifier weight: $\alpha_m = \ln\left(\frac{1 \text{err}_m}{\text{err}_m}\right)$.
- Update example weight: $w_i \leftarrow w_i \cdot \exp\left[\alpha_m \mathbb{1}[y_i \neq G_m(x_i)]\right]$

AdaBoost: Algorithm

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- 1 Initialize observation weights $w_i = 1, i = 1, 2, ..., n$.
- 2 For m = 1 to M:
 - Base learner fits weighted training data and returns $G_m(x)$
 - 2 Compute weighted empirical 0-1 risk:

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}[y_i \neq G_m(x_i)]$$
 where $W = \sum_{i=1}^n w_i$.

- Compute classifier weight: $\alpha_m = \ln\left(\frac{1 \text{err}_m}{\text{err}_m}\right)$.
- Update example weight: $w_i \leftarrow w_i \cdot \exp\left[\alpha_m \mathbb{1}[y_i \neq G_m(x_i)]\right]$
- **3** Return voted classifier: $G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

AdaBoost with Decision Stumps

• After 1 round:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness represents preference for blue class.

KPM Figure 16.10

AdaBoost with Decision Stumps

After 3 rounds:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness represents preference for blue class.

KPM Figure 16.10

AdaBoost with Decision Stumps

• After 120 rounds:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness represents preference for blue class.

KPM Figure 16.10

Does AdaBoost overfit?

- Does a large number of rounds of boosting lead to overfitting?
- If we were overfitting, the learning curves would look like:

From Rob Schapire's NIPS 2007 Boosting tutorial.

Learning Curves for AdaBoost

- AdaBoost is usually quite resistant to overfitting
- The test error continues to decrease even after the training error drops to zero!

From Rob Schapire's NIPS 2007 Boosting tutorial.

AdaBoost for Face Detection

- Famous application of boosting: detecting faces in images (Viola & Jones, 2001)
- A few twists on standard algorithm

AdaBoost for Face Detection

- Famous application of boosting: detecting faces in images (Viola & Jones, 2001)
- A few twists on standard algorithm
 - Pre-define weak classifiers, so optimization=selection

AdaBoost for Face Detection

- Famous application of boosting: detecting faces in images (Viola & Jones, 2001)
- A few twists on standard algorithm
 - Pre-define weak classifiers, so optimization=selection
 - Smart way to do inference in real-time (in 2001 hardware)

Harr wavelet basis functions

- A simple way to generate rectangular weights.
- Over 180,000 filters on a small image (subwindow) of 24x24.

Figure 1: Example rectangle features shown relative to the enclosing detection window. The sum of the pixels which lie within the white rectangles are subtracted from the sum of pixels in the grey rectangles. Two-rectangle features are shown in (A) and (B). Figure (C) shows a three-rectangle feature, and (D) a four-rectangle feature.

Integral image

- How to efficiently compute [image * weights] (hint: the sum of an area of the image).
- Compute an "integral image"
- Store a 2-D array: S[i, j] = Sum of the image from (0,0) to (i,j).
- D = ABCD AB AC + A

- Review AdaBoost again here, with a slightly different but equivalent setup.
- Given example images $(x_1, y_1), \dots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive.

- Review AdaBoost again here, with a slightly different but equivalent setup.
- Given example images $(x_1, y_1), \dots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive.
- Initialize example weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives.

- Review AdaBoost again here, with a slightly different but equivalent setup.
- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive.
- Initialize example weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives.
- For t = 1, ..., T:
 - **1** Normalize the example weights, $w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{i'=1}^{n} w_{t,i'}}$

- Review AdaBoost again here, with a slightly different but equivalent setup.
- Given example images $(x_1, y_1), \dots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive.
- Initialize example weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives.
- For t = 1, ..., T:
 - **1** Normalize the example weights, $w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{i'=1}^{n} w_{t,i'}}$
 - ② For each feature j, train a classifier h_i . Evaluate weighted error $\epsilon_i = \sum_i w_i |h_i(x_i) y_i|$.

- Review AdaBoost again here, with a slightly different but equivalent setup.
- Given example images $(x_1, y_1), \dots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive.
- Initialize example weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives.
- For t = 1, ..., T:
 - **1** Normalize the example weights, $w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{i'=1}^{n} w_{t,i'}}$
 - ② For each feature j, train a classifier h_j . Evaluate weighted error $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
 - **3** Choose the classifier h_t , with the lowest error ϵ_t .

- Review AdaBoost again here, with a slightly different but equivalent setup.
- Given example images $(x_1, y_1), \dots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive.
- Initialize example weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives.
- For t = 1, ..., T:
 - **①** Normalize the example weights, $w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{i'=1}^{n} w_{t,i'}}$
 - ② For each feature j, train a classifier h_j . Evaluate weighted error $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
 - **3** Choose the classifier h_t , with the lowest error ϵ_t .
 - ① Update the example weights: $w_{t+1} = w_{t,i} \beta_t^{1-e_i}$, $\beta_t = \frac{\epsilon_t}{1-\epsilon_t}$, $e_i = 0$ if correct else 1,

- Review AdaBoost again here, with a slightly different but equivalent setup.
- Given example images $(x_1, y_1), \dots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive.
- Initialize example weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives.
- For t = 1, ..., T:
 - **1** Normalize the example weights, $w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{i'=1}^{n} w_{t,i'}}$
 - ② For each feature j, train a classifier h_j . Evaluate weighted error $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
 - **3** Choose the classifier h_t , with the lowest error ϵ_t .
 - Update the example weights: $w_{t+1} = w_{t,i} \beta_t^{1-e_i}$, $\beta_t = \frac{\epsilon_t}{1-\epsilon_t}$, $e_i = 0$ if correct else 1,

Cascaded Processing for Faster Speed

- Object detection: A large number of subwindows to process.
- Do we need to run all the weak classifiers at test time?

Cascaded Processing for Faster Speed

- Object detection: A large number of subwindows to process.
- Do we need to run all the weak classifiers at test time?
- Threshold can be adjusted so that there is almost no false negative.
- False positive is ok. We can reject the windows later.

Cascaded Processing for Faster Speed

- Object detection: A large number of subwindows to process.
- Do we need to run all the weak classifiers at test time?
- Threshold can be adjusted so that there is almost no false negative.
- False positive is ok. We can reject the windows later.
- Stop processing if one weak classifier says no.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 58 / 111

AdaBoost Face Detection Results

• Boosting is used to reduce bias from shallow decision trees

- Boosting is used to reduce bias from shallow decision trees
- Each classifier is trained to reduce errors of its previous ensemble.

- Boosting is used to reduce bias from shallow decision trees
- Each classifier is trained to reduce errors of its previous ensemble.
- AdaBoost is a very powerful off-the-self classifier.

- Boosting is used to reduce bias from shallow decision trees
- Each classifier is trained to reduce errors of its previous ensemble.
- AdaBoost is a very powerful off-the-self classifier.
- A real-time face detection algorithm made by AdaBoost.

- Boosting is used to reduce bias from shallow decision trees
- Each classifier is trained to reduce errors of its previous ensemble.
- AdaBoost is a very powerful off-the-self classifier.
- A real-time face detection algorithm made by AdaBoost.
 - What is the objective function of AdaBoost?

- Boosting is used to reduce bias from shallow decision trees
- Each classifier is trained to reduce errors of its previous ensemble.
- AdaBoost is a very powerful off-the-self classifier.
- A real-time face detection algorithm made by AdaBoost.
 - What is the objective function of AdaBoost?
 - Generalizations to other loss functions

- Boosting is used to reduce bias from shallow decision trees
- Each classifier is trained to reduce errors of its previous ensemble.
- AdaBoost is a very powerful off-the-self classifier.
- A real-time face detection algorithm made by AdaBoost.
 - What is the objective function of AdaBoost?
 - Generalizations to other loss functions
 - Gradient Boosting

Gradient Boosting

- Another way to get non-linear models in a linear form—adaptive basis function models.
- A general algorithm for greedy function approximation—gradient boosting machine.
 - Adaboost is a special case.

Motivation

Recap: Adaboost

AdaBoost: Algorithm

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- 1 Initialize observation weights $w_i = 1, i = 1, 2, ..., n$.
- ② For m = 1 to M:
 - Base learner fits weighted training data and returns $G_m(x)$
 - 2 Compute weighted empirical 0-1 risk:

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}[y_i \neq G_m(x_i)]$$
 where $W = \sum_{i=1}^n w_i$.

- Compute classifier weight: $\alpha_m = \ln\left(\frac{1 \text{err}_m}{\text{err}_m}\right)$.
- Update example weight: $w_i \leftarrow w_i \cdot \exp\left[\alpha_m \mathbb{1}[y_i \neq G_m(x_i)]\right]$
- **3** Return voted classifier: $G(x) = \text{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$. Why not learn G(x) directly?

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 64 / 111

Nonlinear Regression

• How do we fit the following data?

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 65 / 111

• Fit a linear combination of transformations of the input:

$$f(x) = \sum_{m=1}^{M} v_m h_m(x),$$

where h_m 's are called **basis functions** (or feature functions in ML):

$$h_1,\ldots,h_M:\mathfrak{X}\to\mathsf{R}$$

• Fit a linear combination of transformations of the input:

$$f(x) = \sum_{m=1}^{M} v_m h_m(x),$$

where h_m 's are called **basis functions** (or feature functions in ML):

$$h_1,\ldots,h_M:\mathfrak{X}\to\mathsf{R}$$

• Example: polynomial regression where $h_m(x) = x^m$.

• Fit a linear combination of transformations of the input:

$$f(x) = \sum_{m=1}^{M} v_m h_m(x),$$

where h_m 's are called **basis functions** (or feature functions in ML):

$$h_1, \ldots, h_M : \mathfrak{X} \to \mathsf{R}$$

- Example: polynomial regression where $h_m(x) = x^m$.
- Can we use this model for classification?

• Fit a linear combination of transformations of the input:

$$f(x) = \sum_{m=1}^{M} v_m h_m(x),$$

where h_m 's are called **basis functions** (or feature functions in ML):

$$h_1,\ldots,h_M:\mathcal{X}\to\mathsf{R}$$

- Example: polynomial regression where $h_m(x) = x^m$.
- Can we use this model for classification?
- Can fit this using standard methods for linear models (e.g. least squares, lasso, ridge, etc.)

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 66 / 111

• Fit a linear combination of transformations of the input:

$$f(x) = \sum_{m=1}^{M} v_m h_m(x),$$

where h_m 's are called **basis functions** (or feature functions in ML):

$$h_1,\ldots,h_M:\mathcal{X}\to\mathsf{R}$$

- Example: polynomial regression where $h_m(x) = x^m$.
- Can we use this model for classification?
- Can fit this using standard methods for linear models (e.g. least squares, lasso, ridge, etc.)
 - Note that h_m 's are fixed and known, i.e. chosen ahead of time.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 66 / 111

Adaptive Basis Function Model

• What if we want to learn the basis functions? (hence adaptive)

Adaptive Basis Function Model

- What if we want to learn the basis functions? (hence adaptive)
- Base hypothesis space \mathcal{H} consisting of functions $h: \mathcal{X} \to \mathbb{R}$.
- An adaptive basis function expansion over \mathcal{H} is an ensemble model:

$$f(x) = \sum_{m=1}^{M} v_m h_m(x), \tag{5}$$

where $v_m \in \mathbb{R}$ and $h_m \in \mathcal{H}$.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 67 / 111

Adaptive Basis Function Model

- What if we want to learn the basis functions? (hence adaptive)
- Base hypothesis space \mathcal{H} consisting of functions $h: \mathcal{X} \to \mathbb{R}$.
- An adaptive basis function expansion over $\mathcal H$ is an ensemble model:

$$f(x) = \sum_{m=1}^{M} v_m h_m(x), \tag{5}$$

where $v_m \in \mathbb{R}$ and $h_m \in \mathcal{H}$.

Combined hypothesis space:

$$\mathfrak{F}_{M} = \left\{ \sum_{m=1}^{M} v_{m} h_{m}(x) \mid v_{m} \in \mathbb{R}, h_{m} \in \mathfrak{H}, m = 1, \dots, M \right\}$$

• What are the learnable?

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 67 / 111

Empirical Risk Minimization

• What's our learning objective?

$$\hat{f} = \underset{f \in \mathcal{F}_M}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)),$$

for some loss function ℓ .

Empirical Risk Minimization

• What's our learning objective?

$$\hat{f} = \underset{f \in \mathcal{F}_M}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)),$$

for some loss function ℓ .

• Write ERM objective function as

$$J(v_1,...,v_M,h_1,...,h_M) = \frac{1}{n} \sum_{i=1}^n \ell\left(y_i, \sum_{m=1}^M v_m h_m(x)\right).$$

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 68 / 111

Empirical Risk Minimization

• What's our learning objective?

$$\hat{f} = \underset{f \in \mathcal{F}_M}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)),$$

for some loss function ℓ .

• Write ERM objective function as

$$J(v_1, ..., v_M, h_1, ..., h_M) = \frac{1}{n} \sum_{i=1}^n \ell\left(y_i, \sum_{m=1}^M v_m h_m(x)\right).$$

• How to optimize *J*? i.e. how to learn?

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 68 / 111

• Suppose our base hypothesis space is parameterized by $\Theta = \mathbb{R}^b$:

$$J(v_1,\ldots,v_M,\theta_1,\ldots,\theta_M) = \frac{1}{n} \sum_{i=1}^n \ell\left(y_i, \sum_{m=1}^M v_m h(x;\theta_m)\right).$$

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 69 / 111

• Suppose our base hypothesis space is parameterized by $\Theta = \mathbb{R}^b$:

$$J(v_1,\ldots,v_M,\theta_1,\ldots,\theta_M) = \frac{1}{n}\sum_{i=1}^n \ell\left(y_i,\sum_{m=1}^M v_m h(x;\theta_m)\right).$$

• Can we optimize it with SGD?

• Suppose our base hypothesis space is parameterized by $\Theta = \mathbb{R}^b$:

$$J(v_1,\ldots,v_M,\theta_1,\ldots,\theta_M) = \frac{1}{n}\sum_{i=1}^n \ell\left(y_i,\sum_{m=1}^M v_m h(x;\theta_m)\right).$$

- Can we optimize it with SGD?
 - Can we differentiate J w.r.t. v_m 's and θ_m 's?

69 / 111 Mengve Ren (NYU) CSCI-2565 Nov 14, 2023

• Suppose our base hypothesis space is parameterized by $\Theta = \mathbb{R}^b$:

$$J(v_1,\ldots,v_M,\theta_1,\ldots,\theta_M) = \frac{1}{n}\sum_{i=1}^n \ell\left(y_i,\sum_{m=1}^M v_m h(x;\theta_m)\right).$$

- Can we optimize it with SGD?
 - Can we differentiate J w.r.t. v_m 's and θ_m 's?
- For some hypothesis spaces and typical loss functions, yes!
 - Neural networks fall into this category! (h_1, \ldots, h_M) are neurons of last hidden layer.)

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 69 / 111

What if base hypothesis space $\ensuremath{\mathcal{H}}$ consists of decision trees?

What if base hypothesis space \mathcal{H} consists of decision trees?

- Can we even parameterize trees with $\Theta = \mathbb{R}^b$?
- Even if we could, predictions would not change continuously w.r.t. $\theta \in \Theta$, so certainly not differentiable.

What if base hypothesis space ${\mathcal H}$ consists of decision trees?

- Can we even parameterize trees with $\Theta = \mathbb{R}^b$?
- Even if we could, predictions would not change continuously w.r.t. $\theta \in \Theta$, so certainly not differentiable.

What about a greedy algorithm similar to Adaboost?

What if base hypothesis space \mathcal{H} consists of decision trees?

- Can we even parameterize trees with $\Theta = \mathbb{R}^b$?
- Even if we could, predictions would not change continuously w.r.t. $\theta \in \Theta$, so certainly not differentiable.

What about a greedy algorithm similar to Adaboost?

- Applies to non-parametric or non-differentiable basis functions.
- But is it optimizing our objective using some loss function?

Today we'll discuss gradient boosting.

- Gradient descent in the function space.
- It applies whenever
 - our loss function is [sub]differentiable w.r.t. training predictions $f(x_i)$, and
 - ullet we can do regression with the base hypothesis space ${\mathcal H}.$

History

Kearns, Valiant (1989): Can weak learners (e.g., 51% accuracy) be transformed to strong learners (e.g., 99.9% accuracy)?

History

Kearns, Valiant (1989): Can weak learners (e.g., 51% accuracy) be transformed to strong learners (e.g., 99.9% accuracy)?

Schapire (1990) & Freund (1995): Yes, weak learners can be iteratively improved to a

strong learner.

Kearns, Valiant (1989): Can weak learners (e.g., 51% accuracy) be transformed to strong learners (e.g., 99.9% accuracy)?

Schapire (1990) & Freund (1995): Yes, weak learners can be iteratively improved to a

strong learner.

Freund, Schapire (1996): And here is a practical algorithm—Adaboost.

Kearns, Valiant (1989): Can weak learners (e.g., 51% accuracy) be transformed to strong learners (e.g., 99.9% accuracy)?

Schapire (1990) & Freund (1995): Yes, weak learners can be iteratively improved to a strong learner.

Freund, Schapire (1996): And here is a practical algorithm—Adaboost.

Breiman (1996 & 1998): Yes, it works! Boosting is the best off-the-shelf classifier in the world.

Kearns, Valiant (1989): Can weak learners (e.g., 51% accuracy) be transformed to strong learners (e.g., 99.9% accuracy)?

Schapire (1990) & Freund (1995): Yes, weak learners can be iteratively improved to a strong learner.

Freund, Schapire (1996): And here is a practical algorithm—Adaboost.

Breiman (1996 & 1998): Yes, it works! Boosting is the best off-the-shelf classifier in the world.

(Attempts to explain why Adaboost works and improvements)

Kearns, Valiant (1989): Can weak learners (e.g., 51% accuracy) be transformed to strong learners (e.g., 99.9% accuracy)?

Schapire (1990) & Freund (1995): Yes, weak learners can be iteratively improved to a strong learner.

Freund, Schapire (1996): And here is a practical algorithm—Adaboost.

Breiman (1996 & 1998): Yes, it works! Boosting is the best off-the-shelf classifier in the world.

(Attempts to explain why Adaboost works and improvements)

Friedman, Hastie, Tibshirani (2000): Actually, boosting fits an additive model.

Kearns, Valiant (1989): Can weak learners (e.g., 51% accuracy) be transformed to strong learners (e.g., 99.9% accuracy)?

Schapire (1990) & Freund (1995): Yes, weak learners can be iteratively improved to a strong learner.

Freund, Schapire (1996): And here is a practical algorithm—Adaboost.

Breiman (1996 & 1998): Yes, it works! Boosting is the best off-the-shelf classifier in the world.

(Attempts to explain why Adaboost works and improvements)

Friedman, Hastie, Tibshirani (2000): Actually, boosting fits an additive model.

Friedman (2001): Furthermore, it can be considered as gradient descent in the function space.

Forward Stagewise Additive Modeling

Forward Stagewise Additive Modeling (FSAM)

Goal fit model $f(x) = \sum_{m=1}^{M} v_m h_m(x)$ given some loss function.

Approach Greedily fit one function at a time without adjusting previous functions, hence "forward stagewise".

• After m-1 stages, we have

$$f_{m-1} = \sum_{i=1}^{m-1} v_i h_i.$$

Forward Stagewise Additive Modeling (FSAM)

Goal fit model $f(x) = \sum_{m=1}^{M} v_m h_m(x)$ given some loss function.

Approach Greedily fit one function at a time without adjusting previous functions, hence "forward stagewise".

• After m-1 stages, we have

$$f_{m-1} = \sum_{i=1}^{m-1} v_i h_i.$$

• In m'th round, we want to find $h_m \in \mathcal{H}$ (i.e. a basis function) and $v_m > 0$ such that

$$f_m = \underbrace{f_{m-1}}_{\text{fixed}} + v_m h_m$$

improves objective function value by as much as possible.

Let's plug in our objective function.

- Initialize $f_0(x) = 0$.
- ② For m = 1 to M:

Let's plug in our objective function.

- Initialize $f_0(x) = 0$.
- 2 For m=1 to M:
 - Compute:

$$(v_m, h_m) = \underset{v \in \mathbb{R}, h \in \mathcal{H}}{\text{arg min}} \frac{1}{n} \sum_{i=1}^n \ell \left(y_i, f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right).$$

Let's plug in our objective function.

- Initialize $f_0(x) = 0$.
- 2 For m=1 to M:
 - Compute:

$$(v_m, h_m) = \underset{v \in \mathbb{R}, h \in \mathcal{H}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell \left(y_i, f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right).$$

9 Set $f_m = f_{m-1} + v_m h_m$.

Let's plug in our objective function.

- Initialize $f_0(x) = 0$.
- 2 For m=1 to M:
 - Compute:

$$(v_m, h_m) = \underset{v \in \mathbb{R}, h \in \mathcal{H}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell \left(y_i, f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right).$$

- **2** Set $f_m = f_{m-1} + v_m h_m$.
- \odot Return: f_M .

Binary classification

- Outcome space $\mathcal{Y} = \{-1, 1\}$
- Action space A = R (model outoput)
- Score function $f: \mathcal{X} \to \mathcal{A}$.
- Margin for example (x, y) is m = yf(x).
 - $m > 0 \iff$ classification correct
 - Larger *m* is better.
- Concept check: What are margin-based loss functions we've seen?

• Introduce the **exponential loss**: $\ell(y, f(x)) = \exp\left(-\underbrace{yf(x)}_{\text{margin}}\right)$.

 Mengye Ren (NYU)
 CSCI-2565
 Nov 14, 2023
 77 / 111

Forward Stagewise Additive Modeling with exponential loss

Recall that we want to do FSAM with exponential loss.

- Initialize $f_0(x) = 0$.
- ② For m=1 to M:
 - Compute:

$$(v_m, h_m) = \underset{v \in \mathbb{R}, h \in \mathcal{H}}{\arg\min} \frac{1}{n} \sum_{i=1}^n \ell_{\exp} \left(y_i, f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right).$$

- **9** Set $f_m = f_{m-1} + v_m h_m$.
- \odot Return: f_M .

FSAM with Exponential Loss: objective function

- Base hypothesis: $\mathcal{H} = \{h: \mathcal{X} \to \{-1, 1\}\}.$
- Objective function in the *m*'th round:

FSAM with Exponential Loss: objective function

- Base hypothesis: $\mathcal{H} = \{h: \mathcal{X} \to \{-1, 1\}\}.$
- Objective function in the *m*'th round:

$$J(v,h) = \sum_{i=1}^{n} \exp\left[-y_i \left(f_{m-1}(x_i) + vh(x_i)\right)\right]$$
 (6)

$$= \sum_{i=1}^{n} w_i^m \exp\left[-y_i v h(x_i)\right] \qquad \qquad w_i^m \stackrel{\text{def}}{=} \exp\left[-y_i f_{m-1}(x_i)\right] \qquad (7)$$

$$= \sum_{i=1}^{n} w_i^m \left[\mathbb{I}(y_i = h(x_i)) e^{-v} + \mathbb{I}(y_i \neq h(x_i)) e^{v} \right] \quad h(x_i) \in \{1, -1\}$$
 (8)

$$= \sum_{i=1}^{n} w_{i}^{m} \left[(e^{v} - e^{-v}) \mathbb{I}(y_{i} \neq h(x_{i})) + e^{-v} \right] \qquad \qquad \mathbb{I}(y_{i} = h(x_{i})) = 1 - \mathbb{I}(y_{i} \neq h(x_{i}))$$

(9)

• Objective function in the *m*'th round:

$$J(v,h) = \sum_{i=1}^{n} w_i^m \left[(e^v - e^{-v}) \mathbb{I}(y_i \neq h(x_i)) + e^{-v} \right].$$
 (10)

• Objective function in the *m*'th round:

$$J(v,h) = \sum_{i=1}^{n} w_i^m \left[(e^v - e^{-v}) \mathbb{I}(y_i \neq h(x_i)) + e^{-v} \right].$$
 (10)

• If v > 0, then

$$\underset{h \in \mathcal{H}}{\operatorname{arg\,min}} J(v, h) = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \sum_{i=1}^{n} w_{i}^{m} \mathbb{I}(y_{i} \neq h(x_{i}))$$

$$\tag{11}$$

(13)

• Objective function in the *m*'th round:

$$J(v,h) = \sum_{i=1}^{n} w_i^m \left[(e^v - e^{-v}) \mathbb{I}(y_i \neq h(x_i)) + e^{-v} \right].$$
 (10)

• If v > 0, then

$$\underset{h \in \mathcal{H}}{\arg\min} J(v, h) = \underset{h \in \mathcal{H}}{\arg\min} \sum_{i=1}^{n} w_i^m \mathbb{I}(y_i \neq h(x_i))$$
(11)

$$h_m = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \sum_{i=1}^n w_i^m \mathbb{I}(y_i \neq h(x_i))$$
(12)

(13)

• Objective function in the *m*'th round:

$$J(v,h) = \sum_{i=1}^{n} w_i^m \left[(e^v - e^{-v}) \mathbb{I}(y_i \neq h(x_i)) + e^{-v} \right].$$
 (10)

• If v > 0, then

$$\underset{h \in \mathcal{H}}{\arg\min} J(v, h) = \underset{h \in \mathcal{H}}{\arg\min} \sum_{i=1}^{n} w_i^m \mathbb{I}(y_i \neq h(x_i))$$
(11)

$$h_m = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n w_i^m \mathbb{I}(y_i \neq h(x_i))$$
(12)

$$= \arg\min_{h \in \mathcal{H}} \frac{1}{\sum_{i=1}^{n} w_i^m} \sum_{i=1}^{n} w_i^m \mathbb{I}(y_i \neq h(x_i)) \quad \text{multiply by a positive constant}$$
(13)

• Objective function in the *m*'th round:

$$J(v,h) = \sum_{i=1}^{n} w_i^m \left[(e^v - e^{-v}) \mathbb{I}(y_i \neq h(x_i)) + e^{-v} \right].$$
 (10)

• If v > 0, then

$$\underset{h \in \mathcal{H}}{\arg\min} J(v, h) = \underset{h \in \mathcal{H}}{\arg\min} \sum_{i=1}^{n} w_i^m \mathbb{I}(y_i \neq h(x_i))$$
(11)

$$h_m = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n w_i^m \mathbb{I}(y_i \neq h(x_i))$$
(12)

$$= \arg\min_{h \in \mathcal{H}} \frac{1}{\sum_{i=1}^{n} w_i^m} \sum_{i=1}^{n} w_i^m \mathbb{I}(y_i \neq h(x_i)) \quad \text{multiply by a positive constant}$$

(13)

i.e. h_m is the minimizer of the weighted zero-one loss.

• Define the weighted zero-one error:

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{n} w_{i}^{m} \mathbb{I}(y_{i} \neq h(x_{i}))}{\sum_{i=1}^{n} w_{i}^{m}}.$$
 (14)

• Define the weighted zero-one error:

$$err_{m} = \frac{\sum_{i=1}^{n} w_{i}^{m} \mathbb{I}(y_{i} \neq h(x_{i}))}{\sum_{i=1}^{n} w_{i}^{m}}.$$
 (14)

• Exercise: show that the optimal v is:

$$v_m = \frac{1}{2} \log \frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \tag{15}$$

• Define the weighted zero-one error:

$$err_{m} = \frac{\sum_{i=1}^{n} w_{i}^{m} \mathbb{I}(y_{i} \neq h(x_{i}))}{\sum_{i=1}^{n} w_{i}^{m}}.$$
 (14)

• Exercise: show that the optimal v is:

$$v_m = \frac{1}{2} \log \frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \tag{15}$$

• Same as the classifier weights in Adaboost (differ by a constant).

• Define the weighted zero-one error:

$$err_{m} = \frac{\sum_{i=1}^{n} w_{i}^{m} \mathbb{I}(y_{i} \neq h(x_{i}))}{\sum_{i=1}^{n} w_{i}^{m}}.$$
 (14)

• Exercise: show that the optimal v is:

$$v_m = \frac{1}{2} \log \frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \tag{15}$$

- Same as the classifier weights in Adaboost (differ by a constant).
- If $err_m < 0.5$ (better than chance), then $v_m > 0$.

• Weights in the next round:

$$w_i^{m+1} \stackrel{\text{def}}{=} \exp\left[-y_i f_m(x_i)\right] \tag{16}$$

(19)

• Weights in the next round:

$$w_i^{m+1} \stackrel{\text{def}}{=} \exp\left[-y_i f_m(x_i)\right]$$

$$= w_i^m \exp\left[-y_i v_m h_m(x_i)\right]$$

$$f_m(x_i) = f_{m-1}(x_i) + v_m h_m(x_i)$$
(16)

$$= w_i^m \exp\left[-v_m \mathbb{I}(y_i = h_m(x_i)) + v_m \mathbb{I}(y_i \neq h_m(x_i))\right]$$
 (18)

$$= w_i^m \exp\left[2v_m \mathbb{I}\left(y_i \neq h_m(x_i)\right)\right] \underbrace{\exp^{-v_m}}_{\text{scaler}} \tag{19}$$

• Weights in the next round:

$$w_{i}^{m+1} \stackrel{\text{def}}{=} \exp\left[-y_{i}f_{m}(x_{i})\right]$$

$$= w_{i}^{m} \exp\left[-y_{i}v_{m}h_{m}(x_{i})\right]$$

$$= w_{i}^{m} \exp\left[-y_{i}v_{m}h_{m}(x_{i})\right]$$

$$= w_{i}^{m} \exp\left[-v_{m}\mathbb{I}\left(y_{i} = h_{m}(x_{i})\right) + v_{m}\mathbb{I}\left(y_{i} \neq h_{m}(x_{i})\right)\right]$$

$$(16)$$

$$(17)$$

$$= w_{i}^{m} \exp\left[-v_{m}\mathbb{I}\left(y_{i} = h_{m}(x_{i})\right) + v_{m}\mathbb{I}\left(y_{i} \neq h_{m}(x_{i})\right)\right]$$

$$(18)$$

$$= w_i^m \exp\left[2v_m \mathbb{I}\left(y_i \neq h_m(x_i)\right)\right] \underbrace{\exp^{-v_m}}_{\text{scaler}}$$
(19)

• The constant scaler will cancel out during normalization.

• Weights in the next round:

$$w_i^{m+1} \stackrel{\text{def}}{=} \exp\left[-y_i f_m(x_i)\right]$$

$$= w_i^m \exp\left[-y_i v_m h_m(x_i)\right]$$

$$f_m(x_i) = f_{m-1}(x_i) + v_m h_m(x_i)$$
(16)

$$= w_i^m \exp\left[-v_m \mathbb{I}(y_i = h_m(x_i)) + v_m \mathbb{I}(y_i \neq h_m(x_i))\right]$$
 (18)

$$= w_i^m \exp\left[2v_m \mathbb{I}\left(y_i \neq h_m(x_i)\right)\right] \underbrace{\exp^{-v_m}}_{\text{scaler}}$$
(19)

- The constant scaler will cancel out during normalization.
- $2v_m = \alpha_m$ in Adaboost.

Why Exponential Loss

•
$$\ell_{\text{exp}}(y, f(x)) = \exp(-yf(x))$$
.

Why Exponential Loss

- $\ell_{\text{exp}}(y, f(x)) = \exp(-yf(x))$.
- Exercise: show that the optimal estimate is

$$f^*(x) = \frac{1}{2} \log \frac{p(y=1 \mid x)}{p(y=0 \mid x)}.$$
 (20)

Why Exponential Loss

- $\ell_{\text{exp}}(y, f(x)) = \exp(-yf(x))$.
- Exercise: show that the optimal estimate is

$$f^*(x) = \frac{1}{2} \log \frac{p(y=1 \mid x)}{p(y=0 \mid x)}.$$
 (20)

• How is it different from other losses?

AdaBoost / Exponential Loss: Robustness Issues

• Exponential loss puts a high penalty on misclassified examples.

AdaBoost / Exponential Loss: Robustness Issues

- Exponential loss puts a high penalty on misclassified examples.
 - \implies not robust to outliers / noise.
- Empirically, AdaBoost has degraded performance in situations with
 - high Bayes error rate (intrinsic randomness in the label)

AdaBoost / Exponential Loss: Robustness Issues

- Exponential loss puts a high penalty on misclassified examples.
 - $\bullet \implies$ not robust to outliers / noise.
- Empirically, AdaBoost has degraded performance in situations with
 - high Bayes error rate (intrinsic randomness in the label)
- Logistic/Log loss performs better in settings with high Bayes error.
- Exponential loss has some computational advantages over log loss though.

Review

We've seen

- Use basis function to obtain nonlinear models: $f(x) = \sum_{i=1}^{M} v_m h_m(x)$ with known h_m 's.
- Adaptive basis function models: $f(x) = \sum_{i=1}^{M} v_m h_m(x)$ with unknown h_m 's.
- Forward stagewise additive modeling: greedily fit h_m 's to minimize the average loss.

We've seen

- Use basis function to obtain nonlinear models: $f(x) = \sum_{i=1}^{M} v_m h_m(x)$ with known h_m 's.
- Adaptive basis function models: $f(x) = \sum_{i=1}^{M} v_m h_m(x)$ with unknown h_m 's.
- Forward stagewise additive modeling: greedily fit h_m 's to minimize the average loss.

But,

- We only know how to do FSAM for certain loss functions.
- Need to derive new algorithms for different loss functions.

Next, how to do FSAM in general.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 85 / 111

Gradient Boosting / "Anyboost"

FSAM with squared loss

• Objective function at m'th round:

$$J(v,h) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \left[f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right] \right)^2$$

FSAM with squared loss

• Objective function at *m*'th round:

$$J(v,h) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \left[f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right] \right)^2$$

• If \mathcal{H} is closed under rescaling (i.e. if $h \in \mathcal{H}$, then $vh \in \mathcal{H}$ for all $h \in \mathbb{R}$), then don't need v.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 87 / 111

• Objective function at *m*'th round:

$$J(v,h) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \left[f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right] \right)^2$$

- If $\mathcal H$ is closed under rescaling (i.e. if $h \in \mathcal H$, then $vh \in \mathcal H$ for all $h \in R$), then don't need v.
- Take v = 1 and minimize

$$J(h) = \frac{1}{n} \sum_{i=1}^{n} \left(\left[\underbrace{y_i - f_{m-1}(x_i)}_{i} \right] - h(x_i) \right)^2$$

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 87 / 111

• Objective function at m'th round:

$$J(v,h) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \left[f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right] \right)^2$$

- If $\mathcal H$ is closed under rescaling (i.e. if $h \in \mathcal H$, then $vh \in \mathcal H$ for all $h \in R$), then don't need v.
- Take v = 1 and minimize

$$J(h) = \frac{1}{n} \sum_{i=1}^{n} \left(\left[\underbrace{y_i - f_{m-1}(x_i)}_{\text{residual}} \right] - h(x_i) \right)^2$$

FSAM with squared loss

• Objective function at m'th round:

$$J(v,h) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \left[f_{m-1}(x_i) \underbrace{+vh(x_i)}_{\text{new piece}} \right] \right)^2$$

- If $\mathcal H$ is closed under rescaling (i.e. if $h \in \mathcal H$, then $vh \in \mathcal H$ for all $h \in R$), then don't need v.
- Take v = 1 and minimize

$$J(h) = \frac{1}{n} \sum_{i=1}^{n} \left(\left[\underbrace{y_i - f_{m-1}(x_i)}_{\text{residual}} \right] - h(x_i) \right)^2$$

- This is just fitting the residuals with least-squares regression!
- Example base hypothesis space: regression stumps.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 87 / 111

L^2 Boosting with Decision Stumps: Demo

- Consider FSAM with L^2 loss (i.e. L^2 Boosting)
- For base hypothesis space of regression stumps

Plot courtesy of Brett Bernstein.

L^2 Boosting with Decision Stumps: Results

L^2 Boosting with Decision Stumps: Results

L^2 Boosting with Decision Stumps: Results

• Objective: $J(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$.

- Objective: $J(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$.
- What is the residual at $x = x_i$?

$$\frac{\partial}{\partial f(x_i)}J(f) = \tag{21}$$

- Objective: $J(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$.
- What is the residual at $x = x_i$?

$$\frac{\partial}{\partial f(x_i)}J(f) = -2(y_i - f(x_i)) \tag{21}$$

- Gradient w.r.t. f: how should the output of f change to minimize the squared loss.
- Residual is the negative gradient (differ by some constant).

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 92 / 111

- Objective: $J(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$.
- What is the residual at $x = x_i$?

$$\frac{\partial}{\partial f(x_i)}J(f) = -2(y_i - f(x_i)) \tag{21}$$

- Gradient w.r.t. f: how should the output of f change to minimize the squared loss.
- Residual is the negative gradient (differ by some constant).
- At each boosting round, we learn a function $h \in \mathcal{H}$ to fit the residual.

$$f \leftarrow f + vh$$
 FSAM / boosting (22)

(23)

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 92 / 111

- Objective: $J(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$.
- What is the residual at $x = x_i$?

$$\frac{\partial}{\partial f(x_i)}J(f) = -2(y_i - f(x_i)) \tag{21}$$

- Gradient w.r.t. f: how should the output of f change to minimize the squared loss.
- Residual is the negative gradient (differ by some constant).
- At each boosting round, we learn a function $h \in \mathcal{H}$ to fit the residual.

$$f \leftarrow f + vh$$
 FSAM / boosting (22)

$$f \leftarrow f - \alpha \nabla_f J(f)$$
 gradient descent (23)

• *h* approximates the gradient (step direction).

"Functional" Gradient Descent

• We want to minimize

$$J(f) = \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$

• In some sense, we want to take the gradient w.r.t. f.

"Functional" Gradient Descent

We want to minimize

$$J(f) = \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$

- In some sense, we want to take the gradient w.r.t. f.
- J(f) only depends on f at the n training points.

"Functional" Gradient Descent

We want to minimize

$$J(f) = \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$

- In some sense, we want to take the gradient w.r.t. f.
- J(f) only depends on f at the n training points.
- Define "parameters"

$$f = (f(x_1), \ldots, f(x_n))^T$$

and write the objective function as

$$J(\mathsf{f}) = \sum_{i=1}^{n} \ell(y_{i}, \mathsf{f}_{i}).$$

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 93 / 111

Functional Gradient Descent: Unconstrained Step Direction

• Consider gradient descent on

$$J(\mathsf{f}) = \sum_{i=1}^{n} \ell(y_i, \mathsf{f}_i).$$

Functional Gradient Descent: Unconstrained Step Direction

Consider gradient descent on

$$J(\mathsf{f}) = \sum_{i=1}^{n} \ell(y_i, \mathsf{f}_i).$$

• The negative gradient step direction at f is

$$-g = -\nabla_{\mathbf{f}} J(\mathbf{f})$$

=
$$-(\partial_{\mathbf{f}_1} \ell(y_1, \mathbf{f}_1), \dots, \partial_{\mathbf{f}_n} \ell(y_n, \mathbf{f}_n))$$

which we can easily calculate.

ullet $-g \in \mathbb{R}^n$ is the direction we want to change each of our n predictions on training data.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 94 / 111

Functional Gradient Descent: Unconstrained Step Direction

Consider gradient descent on

$$J(\mathsf{f}) = \sum_{i=1}^{n} \ell(y_i, \mathsf{f}_i).$$

• The negative gradient step direction at f is

$$-g = -\nabla_{\mathbf{f}} J(\mathbf{f})$$

=
$$-(\partial_{\mathbf{f}_1} \ell(y_1, \mathbf{f}_1), \dots, \partial_{\mathbf{f}_n} \ell(y_n, \mathbf{f}_n))$$

which we can easily calculate.

- $-g \in \mathbb{R}^n$ is the direction we want to change each of our n predictions on training data.
- With gradient descent, our final predictor will be an additive model: $f_0 + \sum_{m=1}^{M} v_t(-g_t)$.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 94 / 111

Functional Gradient Descent: Projection Step

• Unconstrained step direction is

$$-g = -\nabla_{\mathbf{f}} J(f) = -\left(\partial_{f_1} \ell\left(y_1, f_1\right), \dots, \partial_{f_n} \ell\left(y_n, f_n\right)\right).$$

• Also called the "pseudo-residuals". (For squared loss, they're exactly the residuals.)

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 95 / 111

Functional Gradient Descent: Projection Step

• Unconstrained step direction is

$$-\mathbf{g} = -\nabla_{\mathbf{f}} J(\mathbf{f}) = -\left(\partial_{\mathbf{f}_{1}} \ell\left(y_{1}, \mathbf{f}_{1}\right), \dots, \partial_{\mathbf{f}_{n}} \ell\left(y_{n}, \mathbf{f}_{n}\right)\right).$$

- Also called the "pseudo-residuals". (For squared loss, they're exactly the residuals.)
- Problem: only know how to update at n points. How do we take a gradient step in \mathcal{H} ?

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 95 / 111

Functional Gradient Descent: Projection Step

• Unconstrained step direction is

$$-g = -\nabla_{\mathbf{f}} J(f) = -\left(\partial_{f_1} \ell\left(y_1, f_1\right), \dots, \partial_{f_n} \ell\left(y_n, f_n\right)\right).$$

- Also called the "pseudo-residuals". (For squared loss, they're exactly the residuals.)
- Problem: only know how to update at n points. How do we take a gradient step in \mathcal{H} ?
- Solution: approximate by the closest base hypothesis $h \in \mathcal{H}$ (in the ℓ^2 sense):

$$\min_{h \in \mathcal{H}} \sum_{i=1}^{n} \left(-\mathsf{g}_{i} - h(x_{i}) \right)^{2}.$$
 least square regression (24)

• Take the $h \in \mathcal{H}$ that best approximates -g as our step direction.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 95 / 111

• Objective function:

$$J(f) = \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$
 (25)

Objective function:

$$J(f) = \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$
 (25)

• Unconstrained gradient $g \in R^n$ w.r.t. $\mathbf{f} = (f(x_1), \dots, f(x_n))^T$:

$$g = \nabla_{\mathbf{f}} J(f) = (\partial_{f_1} \ell(y_1, f_1), \dots, \partial_{f_n} \ell(y_n, f_n)). \tag{26}$$

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 96 / 111

Objective function:

$$J(f) = \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$
 (25)

• Unconstrained gradient $g \in R^n$ w.r.t. $\mathbf{f} = (f(x_1), \dots, f(x_n))^T$:

$$g = \nabla_{\mathbf{f}} J(f) = (\partial_{f_1} \ell(y_1, f_1), \dots, \partial_{f_n} \ell(y_n, f_n)). \tag{26}$$

• Projected negative gradient $h \in \mathcal{H}$:

$$h = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} (-g_i - h(x_i))^2.$$
 (27)

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 96 / 111

Objective function:

$$J(f) = \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$
 (25)

• Unconstrained gradient $g \in \mathbb{R}^n$ w.r.t. $\mathbf{f} = (f(x_1), \dots, f(x_n))^T$:

$$g = \nabla_{\mathbf{f}} J(f) = (\partial_{f_1} \ell(y_1, f_1), \dots, \partial_{f_n} \ell(y_n, f_n)). \tag{26}$$

• Projected negative gradient $h \in \mathcal{H}$:

$$h = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} (-g_i - h(x_i))^2.$$
 (27)

Gradient descent:

$$f \leftarrow f + vh \tag{28}$$

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 96 / 111

Functional Gradient Descent: hyperparameters

• Choose a step size by line search.

$$v_m = \underset{v}{\arg\min} \sum_{i=1}^n \ell\{y_i, f_{m-1}(x_i) + vh_m(x_i)\}.$$

- \bullet Not necessary. Can also choose a fixed hyperparameter v.
- Regularization through shrinkage:

$$f_m \leftarrow f_{m-1} + \lambda v_m h_m \quad \text{where } \lambda \in [0, 1].$$
 (29)

- Typically choose $\lambda = 0.1$.
- Choose *M*, i.e. when to stop.
 - Tune on validation set.

Mengye Ren (NYU)

Gradient boosting algorithm

- Initialize f to a constant: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^n \ell(y_i, \gamma)$.
- For m from 1 to M:
 - Compute the pseudo-residuals (negative gradient):

$$r_{im} = -\left[\frac{\partial}{\partial f(x_i)}\ell(y_i, f(x_i))\right]_{f(x_i) = f_{m-1}(x_i)}$$
(30)

- **9** Fit a base learner h_m with squared loss using the dataset $\{(x_i, r_{im})\}_{i=1}^n$.
- **9** [Optional] Find the best step size $v_m = \arg\min_v \sum_{i=1}^n \ell(y_i, f_{m-1}(x_i) + vh_m(x_i))$.
- Update $f_m = f_{m-1} + \lambda v_m h_m$
- \odot Return $f_{M}(x)$.

Mengve Ren (NYU) CSCI-2565 Nov 14, 2023 98 / 111

The Gradient Boosting Machine Ingredients (Recap)

- Take any loss function [sub]differentiable w.r.t. the prediction $f(x_i)$
- Choose a base hypothesis space for regression.
- Choose number of steps (or a stopping criterion).
- Choose step size methodology.
- Then you're good to go!

BinomialBoost: Gradient Boosting with Logistic Loss

• Recall the logistic loss for classification, with $\mathcal{Y} = \{-1, 1\}$:

$$\ell(y, f(x)) = \log\left(1 + e^{-yf(x)}\right)$$

BinomialBoost: Gradient Boosting with Logistic Loss

• Recall the logistic loss for classification, with $\mathcal{Y} = \{-1, 1\}$:

$$\ell(y, f(x)) = \log\left(1 + e^{-yf(x)}\right)$$

• Pseudoresidual for i'th example is negative derivative of loss w.r.t. prediction:

$$r_i = -\frac{\partial}{\partial f(x_i)} \ell(y_i, f(x_i)) \tag{31}$$

$$= -\frac{\partial}{\partial f(x_i)} \left[\log \left(1 + e^{-y_i f(x_i)} \right) \right]$$
 (32)

$$=\frac{y_i e^{-y_i f(x_i)}}{1 + e^{-y_i f(x_i)}} \tag{33}$$

$$=\frac{y_i}{1+e^{y_if(x_i)}}\tag{34}$$

BinomialBoost: Gradient Boosting with Logistic Loss

• Pseudoresidual for *i*th example:

$$r_i = -\frac{\partial}{\partial f(x_i)} \left[\log \left(1 + e^{-y_i f(x_i)} \right) \right] = \frac{y_i}{1 + e^{y_i f(x_i)}}$$

BinomialBoost: Gradient Boosting with Logistic Loss

• Pseudoresidual for *i*th example:

$$r_i = -\frac{\partial}{\partial f(x_i)} \left[\log \left(1 + e^{-y_i f(x_i)} \right) \right] = \frac{y_i}{1 + e^{y_i f(x_i)}}$$

• So if $f_{m-1}(x)$ is prediction after m-1 rounds, step direction for m'th round is

$$h_m = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \sum_{i=1}^n \left[\left(\frac{y_i}{1 + e^{y_i f_{m-1}(x_i)}} \right) - h(x_i) \right]^2.$$

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 101 / 111

BinomialBoost: Gradient Boosting with Logistic Loss

• Pseudoresidual for *i*th example:

$$r_i = -\frac{\partial}{\partial f(x_i)} \left[\log \left(1 + e^{-y_i f(x_i)} \right) \right] = \frac{y_i}{1 + e^{y_i f(x_i)}}$$

• So if $f_{m-1}(x)$ is prediction after m-1 rounds, step direction for m'th round is

$$h_m = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \sum_{i=1}^n \left[\left(\frac{y_i}{1 + e^{y_i f_{m-1}(x_i)}} \right) - h(x_i) \right]^2.$$

• And $f_m(x) = f_{m-1}(x) + vh_m(x)$.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 101 / 111

Gradient Tree Boosting

One common form of gradient boosting machine takes

$$\mathcal{H} = \{\text{regression trees of size } S\},$$

where S is the number of terminal nodes.

- S = 2 gives decision stumps
- HTF recommends $4 \leqslant S \leqslant 8$ (but more recent results use much larger trees)
- Software packages:
 - Gradient tree boosting is implemented by the gbm package for R
 - as GradientBoostingClassifier and GradientBoostingRegressor in sklearn
 - xgboost and lightGBM are state of the art for speed and performance

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 102 / 111

Sinc Function: Our Dataset

From Natekin and Knoll's "Gradient boosting machines, a tutorial"

Minimizing Square Loss with Ensemble of Decision Stumps

Decision stumps with 1,10,50, and 100 steps, shrinkage $\lambda = 1$.

Figure 3 from Natekin and Knoll's "Gradient boosting machines, a tutorial"

Mengye Ren (NYU)

CSCI-2565 Nov 14, 2023 104 / 111

Gradient Boosting in Practice

Prevent overfitting

- Boosting is resistant to overfitting. Some explanations:
 - Implicit feature selection: greedily selects the best feature (weak learner)
 - As training goes on, impact of change is localized.
- But it can of course overfit. Common regularization methods:
 - Shrinkage (small learning rate)
 - Stochastic gradient boosting (row subsampling)
 - Feature subsampling (column subsampling)

Step Size as Regularization

- (continued) sinc function regression
- Performance vs rounds of boosting and shrinkage. (Left is training set, right is validation set)

Figure 5 from Natekin and Knoll's "Gradient boosting machines, a tutorial"

Rule of Thumb

- The smaller the step size, the more steps you'll need.
- But never seems to make results worse, and often better.
- So set your step size as small as you have patience for.

Stochastic Gradient Boosting

- For each stage,
 - choose random subset of data for computing projected gradient step.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 109 / 111

Stochastic Gradient Boosting

- For each stage,
 - choose random subset of data for computing projected gradient step.
- Why do this?
 - Introduce randomization thus may help overfitting.
 - Faster; often better than gradient descent given the same computation resource.

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 109 / 111

Stochastic Gradient Boosting

- For each stage,
 - choose random subset of data for computing projected gradient step.
- Why do this?
 - Introduce randomization thus may help overfitting.
 - Faster; often better than gradient descent given the same computation resource.
- We can view this is a minibatch method.
 - Estimate the "true" step direction using a subset of data.

Introduced by Friedman (1999) in Stochastic Gradient Boosting.

Mengye Ren (NYU)

CSCI-2565

Nov 14, 2023

109 / 111

Column / Feature Subsampling

- Similar to random forest, randomly choose a subset of features for each round.
- XGBoost paper says: "According to user feedback, using column sub-sampling prevents overfitting even more so than the traditional row sub-sampling."
- Speeds up computation.

Summary

- Motivating idea of boosting: combine weak learners to produce a strong learner.
- The statistical view: boosting is fitting an additive model (greedily).
- The numerical optimization view: boosting makes local improvement iteratively—gradient descent in the function space.
- Gradient boosting is a generic framework
 - Any differentiable loss function
 - Classification, regression, ranking, multiclass etc.
 - Scalable, e.g., XGBoost

Mengye Ren (NYU) CSCI-2565 Nov 14, 2023 111 / 111