Теория и реализация языков программирования.

Задание 4: Замкнутость регулярных языков, теорема Майхилла-Нероуда и минимальные автоматы

Сергей Володин, 272 гр. задано 2013.09.25

Упражнение 1

Задача 1

Задача 2

Задача 3

Задача 4

1. $\Sigma = \{0,1\}$. Докажем, что $L(\mathcal{A}) = \{w \mid |w|_1 = 2t, t \in \mathbb{Z}\}, \ \mathcal{A}:$

Докажем утверждение $P(n) = [\forall w \in \Sigma^* : |w| = n \hookrightarrow (q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2)].$

- (a) Докажем P(0). Поскольку $|w|=0\Rightarrow w=\varepsilon,$ $P(0)=\left[q_0\stackrel{\varepsilon}{\longrightarrow}q_i\Rightarrow i=|\varepsilon|_1\mod 2\right]$. Поскольку $\delta(q_0,\varepsilon)=q_{\underline{0}},$ и $\underline{0}=|\varepsilon|_1,$ получаем P(0)
- (b) Пусть доказано P(n), докажем P(n+1). $P(n) = \left[\forall w \in \Sigma^* \colon |w| = n \hookrightarrow \left(q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2 \right) \right]$. Фиксируем $w \in \Sigma^*, |w| = n+1, w = w_0 \sigma, |w_0| = n |\sigma| = 1$. \mathcal{A} полный $\Rightarrow (q_0, w) \equiv (q_0, w_0 \sigma) \vdash^* (q_i, \sigma) \vdash (q_j, \varepsilon)$. $|w_0| = n \overset{P(n)}{\Rightarrow} i = |w_0|_1 \mod 2$. $i \in \{0, 1\}, \sigma \in \{0, 1\} \Rightarrow$ рассмотрим четыре случая:
 - a. $(i = 0, \sigma = 0)$
 - b. $(i = 0, \sigma = 1)$
 - c. $(i = 1, \sigma = 0)$
 - d. $(i = 1, \sigma = 1)$

Задача 5

Задача 6