Tarea 5: Dependencias y Normlización

Fudamentos de Bases de Datos

Hernández Ferreiro Enrique Ehecatl (315020904) López Soto Ramses Antonio (315319974) Miguel Torres Eric Giovanni (315230190) Quintero Villeda Erik (315199345)

28 de octubre de 2019

1. Preguntas de repaso

- ¿Qué es una dependencia funcional y cómo se define?
 - **R.** Las dependencias funcionales son conexiones entre uno o más atributos y ayudan a especificar formalmente cuándo un diseño es correcto.
- ¿Para qué sirve el concepto de **dependencia** en la normalización?
 - **R.** La dependencia (funcional) se usa principalmente para dar un significado a las tablas y para definir restricciones sobre ellas.
- Sea A una llave R(A, B, C). Indica **todas** las dependencias funcionales que implica A.

R.
$$A \to B$$
 $A \to C$ $A \to BC$

- ¿Qué es una forma normal? ¿Cuál es el objetivo de normalizar un modelo de datos?
 - R. Las formas normales son las encargadas de proporcionar los criterior para determinar qué tan vulnerable es una tabla a inconsitencias y anomalías.

Y el objetivo principal de la normalización es evitar la redundancia de datos, pues se podrías presentar anomalias en la modificación de dichos datos.

- ¿En qué casos es preferible lograr **3NF** en vez de **BCNF**?
 - **R.** Si se desea desea preservar información de una tabla anterior y/o preservar la dependencia de la relación, es preferible obtener la 3NF.

- 2. Proporciona algunos ejemplos que demuestran que las siguientes reglas no son válidos.
 - **a.** Si $A \to B$, entonces $B \to A$

$$A \to B \begin{vmatrix} A & B \\ a_1 & b_1 \\ a_2 & b_1 \\ a_3 & b_2 \\ a_4 & b_2 \end{vmatrix}$$

$$\begin{array}{c|cccc}
 & B & A \\
\hline
 & b_1 & a_1 \\
 & b_1 & a_2 \\
 & b_2 & a_3 \\
 & b_2 & a_4
\end{array}$$

b. Si $AB \to C$, entonces $A \to C$ y $B \to C$

$$\begin{array}{c|cccc}
 & A & C \\
\hline
 a_1 & c_1 \\
 a_2 & c_2 \\
 a_1 & c_3 \\
 a_2 & c_4
\end{array}$$

$$B \to C \begin{vmatrix} B & C \\ b_1 & c_1 \\ b_2 & c_2 \\ b_2 & c_3 \\ b_1 & c_4 \end{vmatrix}$$

c. Si $A \rightarrow C$, entonces $A \rightarrow C$

$$A \to C \begin{vmatrix} A & B & C \\ a_1 & b_1 & c_1 \\ a_1 & b_1 & c_2 \\ a_2 & b_2 & c_3 \\ a_2 & b_2 & c_4 \end{vmatrix}$$

$$\begin{array}{c|ccccc}
 & A & B & C \\
\hline
 a_1 & b_1 & c_1 \\
 a_1 & b_1 & c_2 \\
 a_2 & b_2 & c_3 \\
 a_2 & b_2 & c_4
\end{array}$$

- 3. Para cada uno de los esquemas que se muestran a continuación:
 - **a.** R(A, B, C, D, E) con $F = \{AB \rightarrow CD, E \rightarrow C, D \rightarrow B\}$
 - Especifica de ser posible dos DF no triviales que se puedan derivar de las dependencias funcionales dadas.

$$AB \to CD$$
 $E \to C$

• Indica alguna llave candidata para R.

• Especifica todas las violaciones a la BCF.

$$AB \to CD$$
 $E \to C$ $D \to B$

• Normaliza de acuerdo a BCNF, asegúrate de indicar cuáles son las relaciones resultantes con sus respectivas dependencias funcionales.

Primero buscamos una llave para R calculando la cerradura de cada miembro

$$\{AB\}^+ = \{ABCD\}$$
 $\{E\}^+ = \{EC\}$ $\{D\}^+ = \{DB\}$

2

Al no haber una llave que cubra todos los elementos de R, significa que todas las dependencias funcionales son violaciones.

Elegimos la violación $E \to D$: $\{E\}^+ = \{ED\}$

Dividimos R:

$$R_1(E,D) \operatorname{con} \left[E \to D \right] \checkmark \Leftarrow ya \operatorname{est\'a} \operatorname{en} BCNF$$

$$R_2(A, B, C, E) \text{ con } \{AB \to CD, D \to B\} \oslash$$

 $\{AB \to CD, D \to B\}$ son violaciones para R_2 .

Elegimos la violación $D \to B$: $\{D\}^+ = \{DB\}$.

Dividimos R_2 :

$$R_3(D,B) \operatorname{con} \boxed{D \to B} \checkmark \Leftarrow ya \operatorname{est\'a} \operatorname{en} BCNF$$

$$R_4(A, C, D) \text{ con } \{AB \to CD\} \oslash$$

 $\{AB \to CD\}$ es violación para R_4

Elegimos la violación $\{AB \to CD\}$: $\{AB\}^+ = \{ABCD\}$

Dividimos R_4

$$R_5(A, B, C, D)$$
 con $AB \to CD$ $\checkmark \Leftarrow ya está en BCNF$
 $R_6(A, B)$ con $AB \to AB$ $\checkmark \Leftarrow ya está en BCNF$

b.
$$R(A, B, C, D, E)$$
 con $F = \{AB \to C, DE \to C, B \to D\}$

• Especifica de ser posible dos DF no triviales que se puedan derivar de las dependencias funcionales dadas.

$$AB \to C$$
 $DE \to C$

• Indica alguna llave candidata para R.

• Especifica todas las violaciones a la BCF.

$$AB \rightarrow C$$
 $DE \rightarrow C$ $B \rightarrow D$

• Normaliza de acuerdo a BCNF, asegúrate de indicar cuáles son las relaciones resultantes con sus respectivas dependencias funcionales.

Primero buscamos una llave para R calculando la cerradura de cada miembro de F.

$$\{AB\}^+ = \{ABC\}$$
 $\{DE\}^+ = \{DEC\}$ $\{B\}^+ = \{BD\}$

Al no haber una llave que cubra todos los elementos de R, significa que todas las dependencias funcionales son violaciones.

Elegimos la violación $AB \to C$: $\{AB\}^+ = \{ABC\}$

Dividimos R:

$$R_1(A, B, C)$$
 con $AB \to C$ $\checkmark \Leftarrow ya \ est \acute{a} \ en \ BCNF$
 $R_2(D, E, A, B)$ con $\{DE \to C, B \to D\} \oslash$

$$\{DE \to C, B \to D\}$$
 son violaciones para R_2

Elegimos la violación
$$DE \to C$$
: $\{DE\}^+ = \{DEC\}$

Dividimos R_2 :

$$R_3(D, E, C)$$
 con $DE \to C$ $\checkmark \Leftarrow ya \ est \acute{a} \ en \ BCNF$
 $R_4(A, B, D, E)$ con $\{B \to D\} \oslash$

$$\{B \to D\}$$
 es una violación para R_4 .

Elegimos la violación
$$B \to D$$
: $\{B\}^+ = \{BD\}$.

Dividimos R_4 :

$$R_5(B,D)$$
 con $B \to D$ $\checkmark \Leftarrow ya$ está en $BCNF$
 $R_6(A,E,B)$ con $AEB \to AEB$ $\checkmark \Leftarrow ya$ está en $BCNF$

- 4. Para cada una de las siguientes relaciones con su respectivo conjunto de dependencias funcionales
 - a. R(A, B, C, D, E, F) con $F = \{B \rightarrow D, B \rightarrow E, D \rightarrow F, AB \rightarrow C\}$
 - Indica todas las violaciones a la 3NF

$$B \to D$$
 $D \to F$

pues tendríamos $B\to F\oslash$

• Normaliza de acuerdo a la 3NF

Notemos que
$$F = \{B \to DE, D \to F, AB \to C\}$$
 (regla de unión)

Verificamos si F tiene superfluos.

a) Superfluos por la izquierda: $AB \to C$

$$iA$$
 es superfluo?

Tenemos
$$B \to C \Rightarrow \{B\}^+ = \{BDE\}$$

Notemos que C no aparece en $\{B\}+ :: A$ no es superfluo.

 ξB es superfluo?

Tenemos
$$A \to C \Rightarrow \{A\}^+ = \{A\}$$

Notemos que C no aparece en $\{A\}+$: B no es superfluo.

b) Superfluos por la derecha: $B \to DE$

$$LD$$
 es superfluo?

Tenemos
$$B \to E \Rightarrow \{B\}^+ = \{BE\}$$

Notemos que D no parece en $\{B\}^+$... D no es superfluo.

 ξE es superfluo?

Tenemos
$$B \to D \Rightarrow \{B\}^+ = \{BDF\}$$

Notemos que E no aparece en $\{B\}^+$: E no es superfluo.

Entonces,
$$F_{min} = \{B \to DE, D \to F, AB \to C\}.$$

Tenemos las siguientes relaciones:

$$S(B, D, E)$$
 $T(D, F)$ $U(A, B, C)$

Ahora calculamos las llaves:

$$\{B\}^+ = \{BDE\}$$
 $\{D\}^+ = \{DF\}$ $\{AB\}^+ = \{ABCDEF\}$

 $\therefore AB$ es una llave para R.

Así,
$$R_1(B, D, E)$$
, $R_2(D, F)$, $R_3(A, B, C)$ $\checkmark \Leftarrow ya está en 3NF$

b.
$$R(A, B, C, D, E)$$
 con $F = \{A \rightarrow BC, B \rightarrow D, CD \rightarrow E, E \rightarrow A\}$

• Indica todas las violaciones a la 3NF

$$CD \to E \qquad E \to A$$

pues tendríamos $CD \to A \oslash$

• Normaliza de acuerdo a la 3NF

Verificamos si F tiene superfluos.

a) Superfluos por la izquierda: $CD \rightarrow E$

iC es superfluo?

Tenemos $D \to E \Rightarrow \{D\}^+ = \{DE\} :: C$ es superfluo.

Entonces,
$$F' = \{A \to BC, B \to D, D \to E, E \to A\}$$

b) Superfluos por la derecha: $A \to BC$

 ξB es superfluo?

Tenemos
$$A \to C \Rightarrow \{A\}^+ = \{AC\}$$

Notemos que B no aparece en $\{A\}^+$... B no es superfluo.

 $\cite{c}C$ es superfluo?

Tenemos
$$A \to B \Rightarrow \{A\}^+ = \{ABDE\}$$

Notemos que C no aparece en $\{A\}^+$... C no es superfluo.

Entonces
$$F_{min} = \{A \rightarrow BC, B \rightarrow D, D \rightarrow E, E \rightarrow A\}$$

Tenemos las siguientes relaciones:

$$S(A, B, C)$$
 $T(B, D)$ $U(D, E)$ $V(E, A)$

Ahora calculamos las llaves:

$$\{A\}^+ = \{ABCDE\}$$
 $\{B\}^+ = \{BD\}$ $\{D\}^+ = \{DE\}$ $\{E\}^+ = \{EA\}$

 $\therefore A$ es una llave para R.

Así,
$$R_1(A, B, C)$$
, $R_3(B, D)$, $R_3(D, E)$, $R_4(E, A)$ \leftarrow ya está en 3NF

5. Sea el esquema:

$$R(A, B, C, D, E, F)$$
 con $F = \{BD \rightarrow E, CD \rightarrow A, E \rightarrow C, B \rightarrow D\}$

- ¿Qué puedes decir de {A}+ y {F}+?
 No tenemos {A}+, {F}+ pues no tenemos a A del lado izquierda de ninguna de las DF, y F ni siquiera aparece.
- Calcula $\{B\}^+$, ¿qué puedes decir de esta cerradura? $\{B\}^+ = \{BDECA\}, \text{ cubre casi todos los elementos de } R, \text{ pues falta } F. \text{ Además genera lo mismo que } \{BD\}^+$
- Obtén todas las llaves candidatas.

BF

- iR cumple con **BCNF**? iC cumple con **3NF**? (en caso contrario normaliza). Verificamos si F tiene superfluos.
 - a) Superfluos por la izquierda: $BD \to E, CD \to A$

3NF

B es superfluo?

Tenemos $D \to E \Rightarrow \{D\}^+ = \{DE\}, \therefore B$ es superfluo.

Entonces
$$F' = \{D \to E, CD \to A, E \to C, B \to D\}$$

Tenemos $D \to A \Rightarrow \{D\}^+ = \{DA\} : C$ es superfluo.

Entonces
$$F'' = \{D \to E, D \to A, E \to C, B \to D\}$$

$$\therefore F_{min} = \{D \to EA, E \to C, B \to D\}$$

Tenemos las siguientes relaciones:

$$S(D, E, A)$$
 $T(E, C)$ $U(B, D)$

Ahora calculamos su llaves:

$$\{D\}^+ = \{DEAC\}$$
 $\{E\}^+ = \{EC\}$ $\{B\}^+ = \{BD\}$

Agregamos una relación más para que sea la llave de R: V(B,F).

Así,
$$R_1(D, E, A)$$
 $R_2(E, C)$ $R_3(B, D)$ $R_4(B, F)$ $\Rightarrow ya \ está \ en \ 3NF$

BCNF

Buscamos una llave para R calculando la cerradura de cada miembro.

$$\{BD\}^+ = \{BDECA\}$$
 $\{CD\}^+ = \{CDA\}$ $\{E\}^+ = \{EC\}$ $\{B\}^+ = \{BDECA\}.$

Al no haber una llave que cubra todos los elementos de R, todas las dependencias funcionales son violaciones.

Elegimos una violación: $E \to C$

Dividimos R:

$$R_1(E,C)$$
 con $E \to C$ $\checkmark \Leftarrow ya \ est \'a \ en \ BCNF$
 $R_2(A,B,D,F,E)$ con $\{BD \to E,CD \to A,B \to D\} \oslash$

Elegimos la violación $CD \to E$: $\{CD\}^+ = \{CDA\}$.

Dividimos R_2 :

$$R_3(C, D, A)$$
 con $BD \to E$ $\checkmark \leftrightarrow ya$ está en $BCNF$ $R_4(B, F, E, C, D)$ con $\{BD \to E, B \to D\}$ \oslash

Elegimos la violación $B \to D$: $\{B\}^+ = \{BDECA\}$

Dividimos R_4 :

$$R_5(B,D) \operatorname{con} \boxed{B \to D} \checkmark \Leftarrow ya \operatorname{est\'a} \operatorname{en} BCNF$$

 $R_6(B,F) \operatorname{con} BD \to E \oslash$

Elegimos la violación $BD \to E$: $\{BD\}^+ = \{BDECA\}$

Dividimos R_6 :

$$R_7(B,D,E)$$
 con $BD \to E$ $\checkmark \Leftarrow ya$ está en $BCNF$
 $R_8(B,D,F)$ con $BDF \to BDF$ $\checkmark \Leftarrow ya$ está en $BCNF$

- Se ha decidido dividir R en las siguientes relaciones S(A, B, C, D, F) y T(C, E), ¿se puede recuperar la información de R?
- 6. Para cada uno de los esquemas, con su respectivo conjunto de dependencias multivaluadas, resuelve los siguientes puntos:

7

a.
$$R(A, B, C, D)$$
 con $DMV = \{AB \twoheadrightarrow C, B \rightarrow D\}$

• Encuentra todas las violaciones a la 4NF.

$$B \to D$$

• Normaliza de acuerdo a la 4NF.

Buscamos una llave para R:

$$\{B\}^+ = \{BD\} :: B :: D$$
 es una violación.

Elegimos la violación: $B \to D$ y dividimos R.

$$S(B,D)$$
 con $B \to D$ \checkmark $T(A,B,C)$ con $AB \twoheadrightarrow C \checkmark$ Así $S(B,D)$ y $T(A,B,C)$ ya están normalizadas.

- **b.** R(A, B, C, D, E) con $DMV = \{A \rightarrow B, AB \rightarrow C, A \rightarrow D, AB \rightarrow E\}$
 - Encuentra todas las violaciones a la 4NF.

$$A \to D$$

• Normaliza de acuerdo a la 4NF.

Notése que
$$DMV = \{A \twoheadrightarrow B, AB \rightarrow CE, A \rightarrow D\}$$

Elegimos la violación $A \to D$ y dividimos R.

$$S(A,D) \operatorname{con} \left[A \to D \right] \checkmark$$

$$T(A, B, C, E) \text{ con } \{A \rightarrow B, AB \rightarrow CE\} \oslash$$

Ahora tomamos $A \rightarrow B$:

$$U(A,B) \operatorname{con} \overline{A \to B} \checkmark$$

$$V(A, B, C, E) \text{ con } AB \to CE \checkmark$$

Asi, S(A, D), U(A, B) y V(A, B, C, E) ya están normalzadas.

7. Se tiene la siguiente relación:

 $R(idEnfermo, idCirujano, fechaCirugia, nombreEnfermo,\\ direccionEnfermo, nombreCirujano, nombreCirugia,\\ medicinaSuministrada, efectosSecundarios)$

 $E := idEnfermo \quad C := idCirujano \quad F := fechaCirugia \quad N := nombreEnfermo \\ D := direccionEnfermo \quad B := nombreCirujano \quad G := nombreCirugia \\ M := medicinaSuministrada \quad S := efectosSecundarios$

• Expresa las siguientes restricciones es forma de **dependencias funcionales**.

"A un enfermo se le da una medicina después de la operación. Si existen efectos secundarios, éstos dependen sólo de la medicina suministrada. Sólo puede existir un efecto secundario por medicamento."

$$CBFG \rightarrow MEN \quad M \twoheadrightarrow S \quad M \rightarrow S$$

• Especifica otras **otras dependencias funcionales o multivaluadas** que deban satisfacerse en la relación R. Por cada una que definas, deberá aparecer **un enunciado en español** como en el inciso anterior.

"Un cirujano puede operar a más de un paciente"

$$CB \twoheadrightarrow E$$

 $"Para\ programar\ una\ operaración,\ el\ enfermo\ debe\ pertenecer\ al\ sector\ correspondiente"$

$$END \rightarrow FG$$

"Las ciruqías puedes causar efectos secundarios"

$$G \twoheadrightarrow S$$

 Normaliza utilizando el conjunto de dependencias establecido en puntos anteriores.

$$R(E,C,F,N,D,B,G,M,S)$$
 con $F = \{CBFG \rightarrow MEN,M \twoheadrightarrow S,M \rightarrow S,CB \twoheadrightarrow E,END \rightarrow FG,G \twoheadrightarrow S\}$

Buscamos llave para R:

$$\{CBFG\}^+ = \{CBFGMENS\}$$
 $\{END\}^+ = \{ENDFG\}$ $\{M\}^+ = \{MS\}$

Una llave para R es $\{CBFG\}$.

Elegimos la violación $M \to S$ y dividimos R.

$$S(M,S)$$
 con $M \to S, M \twoheadrightarrow S \checkmark$

$$T(M, E, C, F, N, D, B, G)$$
 con $\{CBFG \rightarrow MEN, CB \twoheadrightarrow E, END \rightarrow FG, G \twoheadrightarrow S\} \oslash$

Elegimos la violación $END \to FG$ y dividimos T.

$$U(E, N, D, F, G) \text{ con } END \to FG \checkmark$$

$$V(E, N, D, M, B, C)$$
 con $\{CBFG \rightarrow MEN, CB \rightarrow E, G \twoheadrightarrow S\} \oslash$

Elegimos la violación $CB \to E$ y dividimos V

$$W(C, B, E) \text{ con } CB \to E \checkmark$$

$$X(C, B, N, D, M) \text{ con } \{CBFG \rightarrow E, G \twoheadrightarrow S\}$$

Dividimos:

$$Y(G,S) \text{ con } G \twoheadrightarrow S \checkmark$$

$$Z(G, C, B, N, D, M) \text{ con } \{CBFG \rightarrow E\} \oslash$$

Dividimos por ultima vez:

$$A(C, B, F, G, E) \text{ con } CBFG \to E \checkmark$$

$$R_1(M,S)$$
 $R_2(C,B,E)$ $R_3(E.N.D.F.G)$ $R_4(G,S)$ $R_5(C,B,F,G,E)$ va están nomralizadas.