复习要点

Ch1

- 1. 数据结构相关的基本概念
- 2. 面向对象的基本概念和原则,The Open-Closed Principle, Subclass Substitution Rule
- 3. 编程基础 (C++)

Ch2

- 1. 容器的基本概念
- 2. 基于连续结构(array)和链接结构(linked-list)实现基本的容器的原理
- 3. 迭代器的概念与迭代器的实现

Ch3

- 1. 算法时间复杂度的概念
- 2. 代码段和常见算法时间复杂度 WorstTime(n)的计算

Ch4

- 1. 递归的基本概念、递归函数的基本形式和执行过程
- 2. 简单递归算法的编程实现
- 3. 递归的时间复杂度

Ch₅

- 1. vector 和 deque 的定义和实现原理(逻辑结构和存储结构)
- 2. vector, deque 容器类的使用(声明对象,调用方法,存储元素)
- 3. 使用 vector, deque 实现特定的算法

Ch6

- 1. list 的定义和实现原理(逻辑结构和存储结构)
- 2. list 容器类的使用(声明对象,调用方法,存储元素)
- 3. 使用 list 实现特定的算法

Ch7

- 1. 容器适配器(container adapter)的概念和实现原理
- 2. queue 和 stack 的定义和实现原理(逻辑结构和存储结构)
- 3. queue, stack 容器类的使用(声明对象,调用方法,存储元素)
- 4. 应用:使用 queue, stack 实现特定的算法:利用队列实现排队,利用栈实现 表达式的转换(infix->>postfix, prefix)、递归程序改写为非递归程序
- 5. 应用 container adapter 思想改造已有容器

Ch8

- 1. 二叉树 (binary tree) 的基本概念及相关概念 (root, leaf, path, height, depth, child, parent...)
- 2. 二叉树常见操作的递归实现(计算树中的节点数、叶子、树高...)
- 3. 特殊二叉树的概念、性质及公式(two-tree, full-tree, complete-tree)
- 4. 二叉树的遍历及操作的实现(pre-order, in-order, post-order, breadth-first)
- 5. 二叉搜索树(binary search tree)的概念和实现原理(BinSearchTree class)
- 6. 二叉搜索树的查找、插入、删除基本操作算法。

Ch9

- 1. 平衡的二叉树的概念
- 2. AVL 树的基本概念
- 3. 二叉树的四种旋转操作过程

Ch10

- 1. 红黑树(red-black tree)的基本概念
- 2. 红黑树的查找、插入、删除操作过程
- 3. 基于红黑树实现的 4 种容器类(map, set, multi-set, multi-map)的作用
- 4. map, set 容器的声明和操作使用

Ch11

- 1. 优先级队列的概念和实现方式(基于堆)
- 2. 堆的概念(上下有序的二叉树)和堆的存储实现(数组)
- 3. 堆的插入、删除操作过程

Ch13

- 1. 哈希(hash)的概念和作用,哈希处理核心内容(哈希函数和冲突处理机制)
- 2. 哈希函数的面向对象实现(函数类)
- 3. 哈希冲突处理机制(链式哈希和开放地址哈希-双哈希)的原理。

《类库与数据结构》考试题型

- I. Answer the following questions. (10 items, 3 Points for each, 30 points total)
- 1. What is a container adapter? Give an illustration.
- 2. Using C++ to declare(声明) a iterator of the list whose item type is the string.
- 3. Using C++ to declare a set object BATT, the type of each item is integer and order is decreasing order (降序).
- 4. Write he recursive algorithm(递归算法) of height(t) which calculate(计算) the height of a binary tree t.
- 5. What is the WorstTime(n) (时间复杂度) of loop:

- II. Analysis and draw diagrams(4 items, 5 points for each, 20 points total)
- 1. Delete the 76 from the following Binary Search Tree, draw the diagram of the new tree.

2. Insert 130 into the following red-black tree (the circled nodes are red), and fix after insertion, draw the diagram of the new tree.

1. Suppose the input is following:

cout << *itr1 << endl;</pre>

III.Read the programs and answer the questions (4 items, 5 points for each, 20 points total)

```
Red
Blue
White
Grey
Brown
***
Code segment:
BinSearchTree<string> words;
BinSearchTree<string>::Iterator itr1;
string word;
cout << "Please enter a word; the sentinel is ***: ";</pre>
cin >> word;
while (word != "***")
{
   words.insert (word);
   cout << "Please enter a word; the sentinel is ***: ";</pre>
   cin >> word;
} // while
for (itr1 = words.begin(); itr1 != words.end(); itr1++)
  cout << *itr1 << endl;</pre>
words.erase (words.find ("Grey"));
words.erase (words.begin());
```

for (itr1 = words.begin(); itr1 != words.end(); itr1++)

IV. Algorithm Description or proof (10 points)

1.	Describe implement structure (实现结构) of the list container in STL, and describe the main step of the insert operation of the list.
2.	Try to proof: As h is the height of a full tree T, the number of items in T is 2^{h+1} -1.
V.	Programming (2 items, 20 points total)
1.	Try to implement a stack based on container provided in STL, whose push and pop operation at the front of container. (10 points)
2.	Try to implement a recursive method preorder_traversal of the BinSearch tree class, which accesses the binary search tree in preorder(先序遍历). (10 points)