

Details of the project :

Dataset Overview

Train Data Volume	80K
Test Data Volume	20K
Type of Problem	Classification

TABLE OF CONTENTS

- 01
- About the project

To assess the credit risk for the profile and decide whether the loan would be Fully Paid or Charged-off

02

Major requirements

To understand more on the different fields in the dataset and analyze the same to apply the preprocessing and modeling

03

Project goals

To find the result of test data and compare with the Actual Data

Understanding the Data

data.describe()

√ 0.1s

Python

	annual_inc	emp_length	fico_range_high	fico_range_low	int_rate	loan_amnt	num_actv_bc_tl	mort_acc	tot_cur_bal	open_acc	I
count	8.000000e+04	80000.000000	80000.000000	80000.000000	80000.000000	80000.000000	80000.000000	80000.000000	8.000000e+04	80000.000000	80000
mean	7.604614e+04	6.196537	699.987975	695.987813	13.232898	14403.867813	3.633262	1.670701	1.414381e+05	11.605675	0
std	6.902006e+04	3.698757	31.734840	31.734075	4.771705	8703.826298	2.208597	1.971422	1.554119e+05	5.483362	0
min	0.000000e+00	0.000000	664.000000	660.000000	5.310000	750.000000	0.000000	0.000000	0.000000e+00	1.000000	0
25%	4.600000e+04	3.000000	674.000000	670.000000	9.750000	7925.000000	2.000000	0.000000	3.112450e+04	8.000000	0
50%	6.500000e+04	7.000000	694.000000	690.000000	12.740000	12000.000000	3.000000	1.000000	9.302100e+04	11.000000	0
75%	9.000000e+04	10.000000	714.000000	710.000000	15.990000	20000.000000	5.000000	3.000000	2.036260e+05	14.000000	0
max	7.141778e+06	10.000000	850.000000	845.000000	30.990000	40000.000000	32.000000	32.000000	5.172185e+06	80.000000	24

Understanding the Data

Inference : No any Duplicates Found


```
data.isna().sum()
[148]
      ✓ 0.1s
     addr_state
                                  0
     annual_inc
     earliest_cr_line
     emp_length
                               5846
     emp_title
                               6396
     fico_range_high
                                  0
     fico_range_low
                                  0
     grade
     home_ownership
                                  0
     application_type
     initial_list_status
                                  0
     int_rate
     loan_amnt
     num_actv_bc_tl
                               4959
     mort_acc
                               3475
     tot_cur_bal
                               4959
     open_acc
                                  0
     pub_rec
                                  0
     pub_rec_bankruptcies
                                 42
                                  0
     purpose
```


Fixing NA

```
data['emp_length'] = data['emp_length'].fillna(data['emp_length'].mode()[0])

$\square 0.0s$
```

Title of the column has large number of values and looks it is not significant with the result data hence we are dropping the column from the dataset

```
data.drop(columns="emp_title",inplace=True)

$\square$ 0.0s

Python
```

To fill na for column No. of Active Banks we can go with group by emp_length and then take the mean to arrive at the No. of Active Cards

```
data['num_actv_bc_tl'] = data.groupby(['emp_length'])['num_actv_bc_tl'].transform(lambda x : x.fillna(x.mean()))

// 0.0s
Python
```

```
data['tot_cur_bal'] = data.groupby(['emp_length'])['tot_cur_bal'].transform(lambda x : x.fillna(x.mean()))
✓ 0.0s
  data['pub_rec_bankruptcies'] = data['pub_rec_bankruptcies'].fillna(data['pub_rec_bankruptcies'].mode()[0])
✓ 0.0s
  data['revol_util'] = data.groupby(['emp_length'])['revol_util'].transform(lambda x : x.fillna(x.mean()))
✓ 0.0s
  data['title'] = data['title'].fillna(data['title'].mode()[0])
✓ 0.0s
```



```
sns.countplot(data=data,x='verification_status',hue='loan_status')
/ 0.2s
```

<AxesSubplot:xlabel='verification_status', ylabel='count'>

Analysis of the Input Data

PreProcessing

```
data.drop(columns="title",inplace=True)
 ✓ 0.1s
   data.drop(columns="addr_state",inplace=True)
 ✓ 0.0s
   data['earliest_cr_line'].value_counts()
 ✓ 0.0s
Oct-2001
            701
Aug-2001
            686
Sep-2003
            683
Sep-2004
            680
Sep-2002
            668
Jul-2015
May-1959
Nov-1961
Jun-2015
Dec-1959
Name: earliest_cr_line, Length: 644, dtype: int64
```

PreProcessing

data['months']

Modification of earliest cr line Column

```
data['new_earliest_cr_line'] =pd.to_datetime(data["earliest_cr_line"])
 ✓ 0.0s
   data['new_earliest_cr_line'].dtypes
 ✓ 0.0s
dtype('<M8[ns]')</pre>
   data['months'] = (pd.to_datetime('today') - data['new_earliest_cr_line'])/np.timedelta64(1, 'M')
 ✓ 0.0s
```

PreProcessing

Result by comparing the Results with the Actuals

Note: Algorithm Used: Decision Tree
For Categorical Columns used Simple Imputer and One Hot Encoding
For Numerical Columns used Simple Imputer and Standard Scaler

Total matching Records ==13974

Total matching Records with Fully Paid==12781

Total matching Records with Charged Off==1193

Multi Model Run Comparison


```
pipe_lr=Pipeline(steps=[
    ('prepro', preprocess_full),
    ('lr', LogisticRegression())
pipe_dt=Pipeline(steps=[
    ('prepro', preprocess_full),
    ('dt',DecisionTreeClassifier())
pipe_knn=Pipeline(steps=[
    ('prepro', preprocess_full),
    ('knn', KNeighborsClassifier())
1)
pipe_rf=Pipeline(steps=[
    ('prepro', preprocess_full),
    ('rf', RandomForestClassifier())
0.0s
```


Analysis of data Multi Model Run Comparison

	Model	Accuracy
0	Log_reg	-0.622968
1	knn	-0.629090
2	decisiontree	-0.897077
3	RandomForest	-0.599040

Analysis of data

Results post sampling with Decision Tree

Total matching Records ==14106
 Total matching Records with Fully Paid==12989
 Total matching Records with Charged Off==1117

