MIT OpenCourseWare http://ocw.mit.edu

1.010 Uncertainty in Engineering Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1.010 – Mini-Quiz #4

(40 min – open books and notes)

Problem 1 (30 Points)

Consider two variables X_1 and X_2 , each with possible values -1 and 1. The joint probability mass function of X_1 and X_2 is shown in the figure below. (Notice that the distribution is concentrated at four points, with equal probability 0.25 at each point)

- (a) Are X_1 and X_2 independent?
- (b) Are X₁ and X₂ uncorrelated? Justify your answers

Problem 2 (30 Points)

The time T (in hours) for a car to travel 50 miles of a highway is given by $T = \frac{50}{V}$, where V is the car speed in miles/hour. Suppose that V has mean value $m_V = 60$ miles/hour and standard deviation $\sigma_V = 10$ miles/hour. Find in approximation the mean value and standard deviation of T.

Problem 3 (40 Points)

Consider the two columns shown in the figure below, where X_1 and X_2 are random load variables.

The loads Y_1 and Y_2 at the base of the columns are given by:

$$Y_1 = 2X_1$$
$$Y_2 = X_1 + X_2$$

Suppose that X_1 and X_2 have common mean value m and common standard deviation σ and denote by ρ their correlation coefficient.

- (a) Find the variances of Y_1 and Y_2 .
- (b) What effect does ρ have on the variance of Y_2 ?
- (c) Explain in intuitive ways the results for $\rho = -1$ and $\rho = 1$. Also compare with the variance of Y_1 . (Notice that for $X_1 = X_2$ the load on the two columns is the same).