Question 1. Given any unit vector \boldsymbol{n} (i.e. $||\boldsymbol{n}|| = 1$), we define the hyperplane $\mathcal{H}_{\boldsymbol{n}} := \{\boldsymbol{x} : \boldsymbol{n}^{\top} \boldsymbol{x} = 0\}$ for which \boldsymbol{n} is known as the normal vector. For any vector \boldsymbol{x} , we define its projection into $\mathcal{H}_{\boldsymbol{n}}$ as $\pi_{\boldsymbol{n}}(\boldsymbol{x}) = \boldsymbol{x} - (\boldsymbol{x}^{\top} \boldsymbol{n}) \boldsymbol{n}$.

- 1. Given two vectors $\boldsymbol{x}_1 \neq \boldsymbol{x}_2$, take $\boldsymbol{n} = \frac{\boldsymbol{x}_2 \boldsymbol{x}_1}{||\boldsymbol{x}_2 \boldsymbol{x}_1||}$. Show that $\pi_{\boldsymbol{n}}(\boldsymbol{x}_1) = \pi_{\boldsymbol{n}}(\boldsymbol{x}_2)$.
- 2. Let \boldsymbol{w} be a vector and define $y_1 := \boldsymbol{x}_1^{\top} \boldsymbol{w}$ and $y_2 := \boldsymbol{x}_2^{\top} \boldsymbol{w}$. Show that $y_1 = y_2$ if and only if $\boldsymbol{w} \in \mathcal{H}_n$.
- *3. Let X be a n by p matrix whose rows $X_{i,:}$ are all distinct. Show that there exists a vector w of length p such that the scalars $(Xw)_i$ are all distinct.

Answer 1. 1.

$$m{n} = rac{m{x}_2 - m{x}_1}{||m{x}_2 - m{x}_1||} \implies m{x}_1 = m{x}_2 - ||m{x}_2 - m{x}_1||m{n}$$

$$egin{aligned} \pi_{oldsymbol{n}}(oldsymbol{x}_1) &= oldsymbol{x}_1 - (oldsymbol{x}_1^ op oldsymbol{n}) oldsymbol{n} \ &= (oldsymbol{x}_2 - ||oldsymbol{x}_2 - oldsymbol{x}_1||oldsymbol{n}) - [(oldsymbol{x}_2 - ||oldsymbol{x}_2 - oldsymbol{x}_1||oldsymbol{n}) - [(oldsymbol{x}_2 - ||oldsymbol{x}_2 - oldsymbol{x}_1||oldsymbol{n}) - [(oldsymbol{x}_2 - oldsymbol{x}_1||oldsymbol{n}) - (oldsymbol{x}_1 - oldsymbol{x}_1|) - [(oldsymbol{x}_1 - oldsymbol{n}) - (oldsymbol{x}_1 - oldsymbol{x}_1 - oldsymbol{n}) - (oldsymbol{x}_1 -$$

$$\therefore \pi_{\boldsymbol{n}}(\boldsymbol{x}_1) = \pi_{\boldsymbol{n}}(\boldsymbol{x}_2)$$

- 2. $y_2 y_1 = \boldsymbol{x}_2^{\top} \boldsymbol{w} \boldsymbol{x}_1^{\top} \boldsymbol{w} = (\boldsymbol{x}_2^{\top} \boldsymbol{x}_1^{\top}) \boldsymbol{w} = (\boldsymbol{x}_2 \boldsymbol{x}_1)^{\top} \boldsymbol{w} = ||\boldsymbol{x}_2 \boldsymbol{x}_1|| (\boldsymbol{n}^{\top} \boldsymbol{w})$ (where $\boldsymbol{n} = \frac{\boldsymbol{x}_2 \boldsymbol{x}_1}{||\boldsymbol{x}_2 \boldsymbol{x}_1||}$) $\therefore y_2 - y_1 = 0 \iff \boldsymbol{n}^{\top} \boldsymbol{w} = 0$ $\therefore y_1 = y_2$ if and only if $\boldsymbol{w} \in \mathcal{H}_{\boldsymbol{n}}$.
- 3. We showed in 2 that $(\boldsymbol{X}\boldsymbol{w})_i$ and $(\boldsymbol{X}\boldsymbol{w})_j$ are equal if and only if $\boldsymbol{w} \in \mathcal{H}_{i,j}$, where $\mathcal{H}_{i,j} := \{\boldsymbol{w} : (\boldsymbol{X}_{j,:} \boldsymbol{X}_{i,:})^\top \boldsymbol{w} = 0\}$ i.e. \boldsymbol{w} is in the hyperplane normal to $\boldsymbol{X}_{j,:} \boldsymbol{X}_{i,:}, \forall i, j \in \{1,...,n\}, i \neq j$, i.e. when \boldsymbol{w} is not in any of the $\binom{n}{2}$ hyperplanes. Since each hyperplane spans in a space which is one dimension lesser than the dimension of the vectors p, the $\binom{n}{2}$ hyperplanes cannot cover the full p-dimensional space. Hence, such a \boldsymbol{w} exists (provided n is finite).

Question 2. Recall the variance of X is $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$.

- 1. Let X be a random variable with finite mean. Show $Var(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$.
- 2. Let X and Z be random variables on the same probability space. Show that : $Var(X) = \mathbb{E}_Z[Var(X|Z)] + Var_Z(\mathbb{E}[X|Z])$. (Hint : $\mathbb{E}[X] = \mathbb{E}_Y[\mathbb{E}[X|Y]]$.)

Answer 2. 1. $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[(X^2 - 2X\mathbb{E}[X] + \mathbb{E}[X]^2)] = \mathbb{E}[X^2] - 2\mathbb{E}[X]^2 + \mathbb{E}[X]^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

2.
$$\mathbb{E}_{Z}[\operatorname{Var}(X|Z)] + \operatorname{Var}_{Z}(\mathbb{E}[X|Z])$$

$$= \mathbb{E}_{Z}[\mathbb{E}[X^{2}|Z] - \mathbb{E}[X|Z]^{2}] + \mathbb{E}_{Z}[\mathbb{E}[X|Z]^{2}] - \mathbb{E}_{Z}[\mathbb{E}[X|Z]]^{2}$$

$$= \mathbb{E}_{Z}[\mathbb{E}[X^{2}|Z]] - \mathbb{E}_{Z}[\mathbb{E}[X|Z]^{2}] + \mathbb{E}_{Z}[\mathbb{E}[X|Z]^{2}] - \mathbb{E}_{Z}[\mathbb{E}[X|Z]]^{2}$$

$$= \mathbb{E}_{Z}[\mathbb{E}[X^{2}|Z]] - \mathbb{E}_{Z}[\mathbb{E}[X|Z]]^{2}$$

$$= \mathbb{E}[X^{2}] - E[X]^{2} = \operatorname{Var}(X)$$

Question 3. Let $X \in \mathcal{X}$ be a random variable with density function f_X , and $g : \mathcal{X} \to \mathcal{Y}$ be continuously differentiable, where \mathcal{X} and \mathcal{Y} are subsets of \mathbb{R} . Let Y := g(X), which is continuously distributed with density function f_Y .

- 1. Show that if g is monotonic, $f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|$.
- 2. Let $f_X(x) = \mathbf{1}_{x \in [0,1]}(x)$ and $f_Y(y) = \mathbf{1}_{y \in [0,2]}(y) \cdot \frac{y}{2}$. Find a monotonic mapping g that translates f_X and f_Y .
- *3. Let $N_Y = \{y \in \mathcal{Y} : g(x) = y, g(x)' = 0 \text{ for some } x \in \mathcal{X}\}$. Show that in general if g'(x) = 0 at most finitely many times, for $y \in \mathcal{Y} \setminus N_Y$,

$$f_Y(y) = \sum_{x \in \{x: g(x) = y\}} \frac{f_X(x)}{|g'(x)|}$$

4. Let $X \sim \mathcal{N}(0,1)$, i.e. $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$, and $g(x) = x^2$. Determine $f_Y(y)$.

Answer 3.

Question 4. Let Q and P be univariate normal distributions with mean and variance μ , σ^2 and m, s^2 , respectively. Derive the entropy H(Q), the cross-entropy H(Q, P), and the KL divergence $D_{\mathrm{KL}}(Q||P)$.

Answer 4. Entropy:

$$\begin{split} H(Q) &= -\int q(x) \ln q(x) dx \\ &= -\int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \ln\left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\right) dx \\ &= -\left(\int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \ln(\frac{1}{\sqrt{2\pi\sigma^2}}) dx + \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) (-\frac{(x-\mu)^2}{2\sigma^2}) dx\right) \\ &= -\left(\ln(\frac{1}{\sqrt{2\pi\sigma^2}}) \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx - \frac{1}{2\sigma^2} \int (x-\mu)^2 \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx\right) \\ &= \ln(\sqrt{2\pi\sigma^2}) \cdot 1 + \frac{1}{2\sigma^2} \cdot \sigma^2 \\ &= \frac{1}{2} \ln(2\pi\sigma^2) + \frac{1}{2} \\ &= \frac{1}{2} \ln(2\pi\sigma^2) \end{split}$$

Cross-Entropy:

$$\begin{split} H(Q,P) &= -\int q(x) \ln p(x) dx \\ &= -\int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \ln\left(\frac{1}{\sqrt{2\pi s^2}} \exp\left(-\frac{(x-m)^2}{2s^2}\right)\right) dx \\ &= -\left(\int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \ln(\frac{1}{\sqrt{2\pi s^2}}) dx + \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) (-\frac{(x-m)^2}{2s^2}) dx\right) \\ &= -\left(\ln(\frac{1}{\sqrt{2\pi s^2}}) \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx - \frac{1}{2s^2} \int (x-m)^2 \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx\right) \\ &= \ln(\sqrt{2\pi s^2}) \cdot 1 + \frac{1}{2s^2} \int ((x-\mu) + (\mu-m))^2 \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx \\ &= \frac{1}{2} \ln(2\pi s^2) + \frac{1}{2s^2} \left(\int (x-\mu)^2 \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx\right) \\ &+ 2(\mu-m) \int (x-\mu) \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx + (\mu-m)^2 \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx\right) \\ &= \frac{1}{2} \ln(2\pi s^2) + \frac{1}{2s^2} \left(\sigma^2 + 2(\mu-m) \cdot 0 + (\mu-m)^2 \cdot 1\right) \\ &= \frac{1}{2} \ln(2\pi s^2) + \frac{\sigma^2 + (\mu-m)^2}{2s^2} \end{split}$$

KL Divergence :

$$\begin{split} D_{\mathrm{KL}}(Q||P) &= -\int q(x) \ln \frac{p(x)}{q(x)} dx \\ &= -\int q(x) \ln p(x) dx + \int q(x) \ln q(x) dx \\ &= H(Q, P) - H(Q) \\ &= \frac{1}{2} \ln(2\pi s^2) + \frac{\sigma^2 + (\mu - m)^2}{2s^2} - \frac{1}{2} \ln(2\pi e \sigma^2) \\ &= \frac{1}{2} \ln(2\pi s^2) + \frac{\sigma^2 + (\mu - m)^2}{2s^2} - \frac{1}{2} \ln(2\pi \sigma^2) - \frac{1}{2} \\ &= \ln\left(\frac{s}{\sigma}\right) + \frac{\sigma^2 + (\mu - m)^2}{2s^2} - \frac{1}{2} \end{split}$$