Летняя математическая школа ЛНМО Поставы, 2022г.

Алгебраическая геометрия и теория чисел

In nature, poisonous creatures will develop bright colors to warn others of their toxicity

Конспект по материалам лекций, прочитанных М.И. Магиным 11-му математическому классу

Содержание

Алгебраическая геометрия и теория чисел

Содержание

1.	Нормированные поля		
	1.1	Нормированное поле. Неархимедовы нормы.	
2.	р-а д	цические числа	
	2.1	Кольцо целых p -адических чисел	
	2.2	Локализация и поле частных колцьа	
	2.3	Поле p -адических чисел, как поле частных кольца \mathbb{Z}_p	
	2.4	Эквивалентные нормы	
	2.5	Пополнение метрических пространств.	
	2.6	Пополнение нормированного поля	
	2.7	Поле <i>p</i> -алических чисел, как пополнение.	

1. Нормированные поля

1.1 Нормированное поле. Неархимедовы нормы.

Здесь и вдальнейшем будем полагать F полем, хотя многие вещи работают и для кольца (а для области целостности существует единственное продолжение на поле частных).

Definition 1. Нормой (нормированием, абсолютным значением) на поле F называют отображение $\|\cdot\|$: $F \to \mathbb{R}_{>0}$, удовлетворяющее следующим свойствам:

- 1. $||x|| = 0 \Leftrightarrow x = 0$.
- 2. $\forall x, y \in F ||xy|| = ||x|| ||y||$.
- 3. $\exists C > 0 \colon \forall x, y \in F \colon$

$$||x + y|| \le C \cdot \max(||x||, ||y||)$$

Пара $(F, \|\cdot\|)$ называется нормированным полем.

Remark 1. Тем, кто уже до этого видел определение нормы, это определение может показаться странным, так как обычно вместо третьего свойства требуют неравенство треугольника:

$$\forall x, y \in F \ ||x + y|| \le ||x|| + ||y||$$

Ясно, что третье свойство следует из неравенства треугольника с C=2. Ниже мы покажем и обратную импликацию.

Ясно, что любая норма задаёт метрику d(x,y) = ||x-y||, а любая метрика индуцирует топологию стандартным образом.

Example 1. Ecau $F \leq \mathbb{C}$, mo nodxodum $|\cdot|$ (модуль комплексного числа). Ecau $F \leq \mathbb{R}$ или $F \leq \mathbb{Q}$, то nodxodum $|\cdot|$.

Example 2. На любом поле можно ввести тривиальную норму (иногда соответствующую ей метрику называют метрикой лентяя):

$$||x|| = \begin{cases} 0, x = 0 \\ 1, x \neq 0 \end{cases}$$

Theorem 1. Если в определении 1 постоянная C равна 2, то норма удовлетворяет неравенству треугольника.

Доказательство. Сначала отметим, что если $n,m\in\mathbb{N},\ n\leq 2^m,$ то в случае произвольной постоянно C выполняется оценка:

$$||x_1 + x_2 + \ldots + x_n|| \le C^m \cdot ||\max_{1 \le k \le n} ||x_k||$$

В самом деле, достаточно просто расписать дерево неравенств.

Отсюда следует неравенство

$$||x_1 + \ldots + x_n|| \le (2n)^{c_0} \max_{1 \le k \le n} (||x_k||), \quad c_0 = \log_2 C$$

В самом деле, $(2n)^{\log_2 C} = C \cdot n^{\log_2 C}$. Это также даёт удобную оценку: $||n|| \leq (2n)^{c_0}$.

Теперь заметим, что в нашем случае $c_0 = \log_2 C = \log_2 2 = 1$, а значит, мы можем провести вот такую оценку:

$$||x+y||^n = ||(x+y)^n|| = \left\| \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \right\| \le 2(n+1) \max_{0 \le k \le n} \left\| \binom{n}{k} x^k y^{n-k} \right\| \le 2(n+1) \max_{0 \le k \le n} \left(2\binom{n}{k} ||x||^k ||y||^{n-k} \right) \le 4(n+1)(||x|| + ||y||)^n$$

Преобразуем это неравенство

$$\left(\frac{\|x+y\|}{\|x\|+\|y\|}\right)^n \le 4(n+1) \leftrightarrow \frac{\|x+y\|}{\|x\|+\|y\|} \le 4^{\frac{1}{n}} \cdot (n+1)^{\frac{1}{n}}$$

В пределе при $n \to \infty$ получаем:

$$\frac{\|x+y\|}{\|x\|+\|y\|} \le 1 \Leftrightarrow \|x+y\| \le \|x\|+\|y\|$$

 $Remark\ 2$. Пример $F=\mathbb{C}$ с нормой $\|\cdot\|=|\cdot|^{\alpha},\ \alpha>1$ показывает, что константу C=2 нельзя улучшить.

Remark 3. Тем самым, мы показали, что норму можно понимать, как функтор из категории Field в категорию Metr.

Corollary 1. Норма непрерывна.

Definition 2. Нормы, с постойнной C = 1 в определении 1 называют неархимедовыми. Нормы, не являющиеся неархимедовыми, называют архимедовыми.

Example 3. Тривиальная норма на любом поле F является неархимедовой.

Definition 3. Acho, что любое $x \in \mathbb{Q}$ представимо в виде $x = p^n \cdot \frac{a}{b}$, где $a, b \in \mathbb{Z}$, $a \not: p$, $a \not: p$, a : p, a : p

Definition 4. (Самое важное)

 $\Pi y cm b \ p - n p o cm o e ч u c n o . Тогда норму$

$$||x||_p = \begin{cases} 0, x = 0\\ p^{-\nu_p(x)}, x \neq 0 \end{cases}$$

на поле $\mathbb Q$ называют p-адической нормой.

Remark~4.~ Ясно, что подоходит $r^{-v_p(x)}$, где r>1, но p брать удобно, так как для $x\in\mathbb{Q}^*$ справедлива формула произведения

$$1 = \prod_{p} |x| \cdot ||x||_p$$

Lemma 1. Если норма неархимедова, то для $x, y: ||x|| \neq ||y||$ выполняется $||x + y|| = \max ||x||, ||y||$.

Corollary 2. Рассмотрим $(F, \|\cdot\|)$, где норма $\|\cdot\|$ неархимедова. Тогда, если $b \in B_r(a)$, то $B_r(a) = B_r(b)$.

Corollary 3. (Забавное)

Если на поле F введена неархимедова норма F, то $\forall x,y,z\in F$ по крайней мере два числа из $\|x-y\|,\ \|x-z\|,\ \|y-z\|$ равны.

Иными словами, в метрическом пространстве (F,d) (d(x,y) = ||x-y||) все треугольники равнобедренные.

2. р-адические числа 4

2. *р*-адические числа

2.1 Кольцо целых p-адических чисел.

Прежде чем давать какие-либо определения, рассмотрим следующий мотивирующий пример. Рассмотрим сравнение $x^2 \equiv 2 \pmod{7^n}, n \in \mathbb{N}$. Если n = 1, то ясно, что

$$x_0 \equiv \pm 3 \pmod{7}$$

Теперь рассмотрим n=2. $x^2 \equiv 2 \pmod{7^2} \Rightarrow x^2 \equiv 2 \pmod{7}$, а значит, рещения сравнения с n=2 надо искать в виде x_0+7t_1 .

Займемся поиском решений вида $x_1 = 3 + 7t_1$. Подставим:

$$(3+7t_1)^2 \equiv 2 \pmod{7^2} \Leftrightarrow 9+6\cdot 7t_1+7^2t_1^2 \equiv 2 \pmod{7^2} \Rightarrow 1+6t_1 \equiv 0 \pmod{7} \Rightarrow t_1 \equiv 1 \pmod{7}$$

Отсюда имеем решение $x_1 \equiv 3 + 7 \cdot 1 \pmod{7^2}$.

При n=3 мы получим $x_2=x_1+7^2t_2$ и подставляя

$$(3+7+7^2t_2)^2 \equiv 2 \pmod{7^3}$$

мы найдём $t_2 \equiv 2 \pmod{7}$, а значит,

$$x_2 \equiv 3 + 7 \cdot 1 + 7^2 \cdot 2 \pmod{7^3}$$

Продолжая этот процесс, получим последовательность $x_0, x_1, x_2, \ldots, x_n, \ldots$ со свойствами

$$x_0 \equiv 3 \pmod{7}$$
, $x_n \equiv x_{n-1} \pmod{7^n}$, $x_n^2 \equiv \pmod{7^{n+1}}$

Процесс построения этой последовательности может напонмить внимательному читателю процесс вычисления $\sqrt{2}$ при помощи приблиэения рациональными числами. Там мы тоже строим последовательность рациональных чисел r_1, r_2, \ldots, r_n , квадраты которых становятся сколь угодно близки к 2, например, $|r_n^2 - 2| < 1/10^n$.

Если мы зафиксируем простое число p будем считать два целых числа близкими, если их разность делится на достаточно большую степени p (то есть, близкими в смысле p-адической метрики):

$$d_p(x,y) = ||x - y||_p = p^{-\upsilon_p(x-y)}$$

В конкретном примере выше,

$$\forall \varepsilon > 0 \ \exists N \colon \forall n \ge N \ d_7(x_n^2, 2) < \varepsilon$$

Как мы помним, задание последовательности рациональных чисел $\{r_n\}$ определяет вещественное число $\sqrt{2}$. Проводя аналогию, здесь мы также можем предположить, что последовательность $\{x_n\}$ определяет некоторое число α совершенно новой природы.

Заметим также, что если у нас есть такая последовательность рациональных чисел $\{r'_n\}$, что $\forall \varepsilon > 0$ $N: \forall n > N \ |r_n - r'_n| < \varepsilon$, то её пределом также будет $\sqrt{2}$ (и в этом смысле определение корректно). Соответсвенно, здесь нам также будет естественно предположить, что последовательность $\{x'_n\}$, для которой $x_n \equiv x'_n \pmod{7^{n+1}}$ определяет то же самое число α .

Remark 5. В общем, во всей этой аналогии мы просто заменили метрику на p-адическую.

Definition 5. Пусть p — некоторое простое число. Последовательность целых чисел $\{x_n\}$, обладающих свойством

$$x_n \equiv x_{n-1} \pmod{p^n} \ \forall n \ge 1$$

определяет новый объект, называемый p-адическим числом. Две последовательности $\{x_n\}$ и $\{x_n'\}$ определяют одно и то же целое p-адическое число, когда $x_n \equiv x_n' \pmod{p^{n+1}} \ \forall n \geq 0$.

 $To \ ecmb, \ uenue \ p-aduчecкие \ числа - npeden no p-aduчecкое норме uenux.$

Множество всех целых p-адических чисел мы будем обозначать через \mathbb{Z}_p .

Обычные целые числа (не р-адические) будем с этого момента называть целыми рациональными.

Заметим, что каждому целому рациональному числу x можно сопоставить целое p-адиеческое число, определяемое последовательностью $\{x, x, x, \ldots\}$. Такое целое p-адическое число мы будем обозачать той же буквой x. Таким образом, мы получили естественное вложение $\mathbb{Z} \hookrightarrow \mathbb{Z}_p$ (инективность вполне очевидна).

Remark 6. Канонический способ задания *p*-адического числа.

Пусть целое p-адическое число задается последовательностью $\{x_n\}$. Обозначим наименьшее неотрицательное число, сравнимое с x_n по модулю p^{n+1} за $\overline{x_n}$.

$$x_n \equiv \overline{x_n} \pmod{p^{n+1}}, \ 0 \le \overline{x_n} < p^{n+1}$$

Ясно, что

$$\overline{x_n} \equiv x_n \equiv x_{n-1} \equiv \overline{x_{n-1}} \pmod{p^n}$$

То есть, последовательность $\{\overline{x_n}\}$ определяют то же целое p-адическое число, что и $\{x_n\}$. Заметим, что если две последовательности $\{\overline{x_n}\}$ и $\overline{y_n}$ определяют одно и то же целое p-адическое число, то в силу

$$\overline{x_n} \equiv \overline{y_n} \pmod{p^{n+1}}, \ 0 \le \overline{x_n} < p^{n+1}, \ 0 \le \overline{y_n} < p^{n+1}$$

мы имеем $\overline{x_n} = \overline{y_n}$, то есть, такое представление единственно. Его мы и будем называть каноническим представлением.

Заметим, что $\overline{x^n} \equiv \overline{x_{n-1}} \pmod{p^n}$, а так как $0 \leq \overline{x_n} < p^{n+1}$, вся каноническая последовательность имеет вид

$$\{a_0, a_0 + a_1p, a_0 + a_1p + a_2p^2, \ldots\}, 0 \le a_i < p$$

 ${\bf C}$ другой стороны, ясно, что каждая последовательность такого вида задаёт некоторое целое p-адическое число.

Ясно, что операции сложения и умножения на p-адических числах определяются поточечными операциями с соответствующими последовательностями.

Все свойства операций очевидны, значит, \mathbb{Z}_p — коммутативное кольцо. Поймём что-нибудь про множество обратимых элементов кольца.

Theorem 2. Целое p-адическое число α , определяемое последовательностью $\{x_0, x_1, \ldots, x_n, \ldots\}$ я тогда и только тогда, когда $x_0 \not\equiv 0 \pmod p$.

Доказательство. Путь $\alpha \in \mathbb{Z}_p^*$. Тогда существует такое целое p-адическое число β , что $\alpha\beta=1$. Пусть β определяется последовательностью $\{y_n\}$. Тогда

$$x_n y_n \equiv 1 \pmod{p^{n+1}}$$

В частности, $x_0y_0\equiv 1\pmod p$ $\Rightarrow x_0\not\equiv 0\pmod p$. И обратно, так как $x_0\not\equiv 0\pmod p$ и $x_n\equiv x_{n-1}\pmod {p^n}$ мы имеем

$$x_n \equiv x_{n-1} \equiv \ldots \equiv x_0 \pmod{p} \Rightarrow x_n \not\equiv 0 \pmod{p}$$

Значит, так как p — простое, $\forall n \; \exists y_n \colon x_n y_n \equiv 1 \pmod{p^{n+1}}$.

$$x_n \equiv x_{n-1} \pmod{p^n}, \ x_n y_n \equiv x_{n-1} y_{n-1} \pmod{p^n} \Rightarrow y_n \equiv y_{n-1} \pmod{p^n}$$

а значит, $\{y_n\}$ определяет некоторое целое p-адическое число β .

Таким образом,
$$\alpha\beta = 1 \Rightarrow \alpha \in \mathbb{Z}_p^*$$
.

Theorem 3. Любое отличное от нуля целое p-адическое число α можно единственным образом представить ϵ виде

$$\alpha = p^m \cdot \varepsilon, \quad \varepsilon \in \mathbb{Z}_p^*, \ m \in \mathbb{N}$$

Доказательство. Если $\alpha \in \mathbb{Z}_p^*$, то равенство справедливо при m=0.

Пусть теперь $\alpha \notin \mathbb{Z}_p^*$ и $\{x_n\} \to \alpha$. Тогда, по предыдущей теореме $x_0 \equiv 0 \pmod p$. Так как $\alpha \neq 0$, $\exists N \in \mathbb{N} : \forall n \geq N \ x_n \not\equiv 0 \pmod p^{n+1}$. Пусть m — наимеьший индекс, для которого

$$x_m \not\equiv 0 \pmod{p^{m+1}}$$

Заметим, что в таком случае $\forall s \geq 0$

$$x_{m+s} \equiv x_{m-1} \equiv 0 \pmod{p^m} \Rightarrow y_s = \frac{x_{m+s}}{p^m} \in \mathbb{Z}$$

$$p^{m}y_{s} - p^{m}y_{s-1} = x_{m+s} - x_{m+s-1} \equiv 0 \pmod{p^{m+s}} \Rightarrow y_{s} \equiv y_{s-1} \pmod{p^{s}}$$

То есть, последовательность $\{y_s\}$ тоже определяет некоторое p-адическое число $\varepsilon \in \mathbb{Z}_p$. Заметим, что $y_0 = x_m/p^m \not\equiv 0 \pmod{p} \Rightarrow \varepsilon \in \mathbb{Z}_p^*$.

Из сравнения

$$p^m y_s = x_{m+s} \equiv x_s \pmod{p^{s+1}}$$

следует, что $\alpha = p^m \cdot \varepsilon$. Покажем теперь единственность. Предположим, что $\alpha = p^k \xi, \ k \ge 0, \ \xi \in \mathbb{Z}_p^*$. Пусть $\{z_s\} \to \xi$.

$$p^m y_s \equiv p^k z_s \pmod{p^{s+1}} \ \forall s \ge 0$$

Так как ε и ξ — обратимые элементы кольца, по предыдущей теореме $y_s \not\equiv 0 \pmod p$, $z_s \not\equiv 0 \pmod p$. Подставим в предыдущее сравнения s = m:

$$p^m y_m \equiv p^k z_m \not\equiv 0 \pmod{p^{m+1}} \Rightarrow k \le m$$

Так как мы можем проделать то же самое абсолютно симметрично для k, мы также имеем $k \ge m$, а значит k = m. То есть, мы получили, что $y_{m+s} \equiv z_{m+s} \pmod{p^{s+1}}$, а так как $y_{s+1} \equiv y_s \pmod{p^{s+1}}$, $z_{s+1} \equiv z_s \pmod{p^{s+1}}$, мы имеем $z_s \equiv y_s \pmod{p^{s+1}}$ $\forall s \ge 0 \Rightarrow \varepsilon = \xi$.

Corollary 4. \mathbb{Z}_p — область целостности.

Доказательство. Упражнение в листочке.

Теперь ясно, что число m в представлении $\alpha = p^m \varepsilon - p$ -адический показатель α ($v_p(\alpha)$). В терминах p-адического показателя легко вырадать свойства делимости p-адических чисел.

Corollary 5. Целое *p*-адическое число α делится на целое *p*-адическое число β тогда и только тогда, когда $v_p(\alpha) \geq v(\beta)$.

Резюмируя всё это, мы получили, что в кольце \mathbb{Z}_p всего один (с точностью до ассоциированности) простой элемент — число p, а все остальные (отличные от нуля) — его степени, домноженные на обратимые.

2.2 Локализация и поле частных колцьа.

Вообще, эта тема совершенно никак не относится к программе курса, но, прочитать всё равно надо. Идея: уметь обращать набор элементов кольца *универсальным* образом.

Remark 7. Отметим, что обратимый элемент не может являться делителем нуля, поэтому, если мы хотим обращать делители нуля, все элементы, которые в произведении с ним дают 0 должны перейти в 0. Кроме того, если два элемента обратимы, то их произведение обратимо. Кроме того, если мы добавим в множество, которое хотим обращать единицу, то ничего не изменится, так как умножение на единицу ничего не меняет.

Таким образом, будем заниматься обращением множеств, замкнуты относительно умножения и содержат единицу (будем называть такие множества мультипликативными).

Тут можно рассказать, с чего бы это называется локализацией, но как-то лень, если время останется, расскажу.

Definition 6. Пусть S — мультипликативное подмножество кольца R. Локализацией кольца R в S называется кольцо $S^{-1}R$ вместе с локализационным гомоморфизмом $\lambda_s: R \to S^{-1}R$, удовлетворяющее свойствам

- 1. $\forall s \in S \ \lambda_s(s)$ обратим в $S^{-1}R$.
- 2. Для любого гомоморфизма $\varphi \colon R \to A$, при котором $\varphi(s) \in A^*$ для всех S существует единственный гомоморфизм $\psi \colon S^{-1}R \to A$ такой, что $\psi \circ \lambda_s = \varphi$. Иными словами, коммутативна диаграмма

Как и всегда, определение объекта через универсальное свойство ничего не говорит о существовании объекта, поэтому сейчас мы будем больно и мучительно строить локализацию.

Построение локализации:

Определим отношение \sim на множестве $R \times S$ по правилу

$$(r_1, s_1) \sim (r_2, s_2) \iff ss_2r_1 = ss_1r_2$$

Remark 8. Здесь мы домножаем на s как раз за тем, чтоб делители нуля ушли в ноль.

Statement 1. \sim — отношение эквивалентности.

Доказательство. Рефлексивность и симметричность очевидны.

Самое неприятное — транзитивность.

Пусть $(r_1, s_1) \sim (r_2, s_2)$ и $(r_2, s_2) \sim (r_3, s_3)$, то есть

$$sr_1s_2 = sr_2s_1, \quad s'r_2s_3 = s'r_3s_2, \ s, s' \in S$$

Домножим первое равенство $s's_3$, а второе ss_1 , получим

$$sr_1s_2 = sr_2s_1 \rightarrow s's_3sr_1s_2 = s's_3sr_2s_1, \qquad s'r_2s_3 = s'r_3s_2 \rightarrow ss_1s'r_2s_3 = ss_1s'r_3s_2$$

Остается заметить, что

$$ss's_2 \in S \Rightarrow (r_1, s_1) \sim (r_3, s_3)$$

то есть, транзитивность доказана.

Теперь, положим $S^{-1}R = R \times S / \sim$. Класс эквивалентности, содержащий представитель (r, s) будем обозначать $\frac{r}{s}$.

Определим локализационный гомоморфизм $\lambda_s: R \to S^{-1}R$ формулой $\lambda_S(r) = \frac{r}{1}$.

Теперь, научимся складывать дроби.

Theorem 4. Пусть S — мультипликативное подмножество кольца R. Определим на $S^{-1}R$ операции следующим образом

$$\frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1 r_2}{s_2 s_2}, \quad \frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{s_1 r_2 + s_2 r_1}{s_1 s_2}$$

Тогда $S^{-1}R$ — локализация R в мультипликативном подмножестве S с локализицонном гомоморфизмом λ_s (как написано выше).

Доказательство. Докажем сначала, что наше определение сложения и умножения не зависит от выбора представителя.

Пусть выплияются равенства

$$\frac{r_1'}{s_1'} = \frac{r_1}{s_1} \leftrightarrow sr_1s_1' = sr_1's_1, \quad \frac{r_2'}{s_2'} = \frac{r_2}{s_2} \leftrightarrow s'r_2s_2' = s'r_2's_2$$

Перемножим последние равенства

$$ss'r_1s_1'r_2s_2' = ss'r_1's_1r_2's_2$$

Отсюда имеем

$$\frac{r_1 r_2}{s_1 s_2} = \frac{r_1' r_2'}{s_1' s_2'}$$

Далее, будет некоторая боль, а именно, надо доказать

$$\frac{r_1s_2 + r_2s_1}{s_1s_2} = \frac{r_1's_2' + r_2's_1'}{s_1's_2'}$$

Если Вы немного помедитируете на формулы ниже, станет понятно, почему это так:

Вообще, честно говоря, также нужно доказывать ассоциативность сложения, коммутативность и дистрибутивность. Давайте непосредственно проврим ассоциативность сложения

$$\left(\frac{r_1}{s_1} + \frac{r_2}{s_2}\right) + \frac{r_3}{s_3} = \frac{r_1s_2 + r_2s_1}{s_1s_2} + \frac{r_3}{s_3} = \frac{r_1s_2s_3 + r_2s_1s_3 + r_3s_1s_2}{s_1s_2s_3}$$

$$\frac{r_1}{s_1} + \left(\frac{r_2}{s_2} + \frac{r_3}{s_3}\right) = \frac{r_1}{s_1} + \frac{r_2s_3 + r_3s_2}{s_2s_3} = \frac{r_1s_2s_3 + r_2s_3s_1 + r_3s_2s_1}{s_1s_2s_3}$$

Нейтральным элементом по сложению будет $\frac{0}{1} = \frac{0}{s}$, обратным по сложению к $\frac{r}{s} - -\frac{r}{s}$. Нейтральным элементом по умножению $-\frac{1}{1} = \frac{s}{s}$. Проверим свочтва локализации:

$$\lambda_s(s) \cdot \frac{1}{s} = \frac{s}{1} \cdot \frac{1}{s} = 1$$

то есть, первое свойство выполнено.

Пусть $\varphi \colon R \to A$ — такой гомоморфизм колец, что $\varphi(s) \in A^* \ \forall s \in S$. Определим отображение $\psi \colon S^{-1}R \to A$ равенством $\psi(\frac{r}{s}) = \varphi(r)\varphi(s)^{-1}$.

Если $\frac{r'}{s'} = \frac{r}{s}$, то по определению

$$\frac{r'}{s'} = \frac{r}{s} \Leftrightarrow r's = rs', \ s'' \in S \Rightarrow \varphi(s'')\varphi(r')\varphi(s) = \varphi(s'')\varphi(r)\varphi(s')$$

Домножим на $\varphi(s'')^{-1}\varphi(s')^{-1}\varphi(s')^{-1}$, получим

$$\varphi(r')\varphi(s')^{-1} = \varphi(r)\varphi(s)^{-1}$$

а значит, ψ определён корректно. Так как $\varphi(1)=1$, имеем $\varphi=\psi\circ\lambda_S$. Ясно, что ψ — гомоморфизм.

Равенство $\varphi = \psi \circ \lambda_S$ однозначно задаёт $\psi(\frac{r}{1}) = \varphi(r)$. Так как ψ должен быть гомоморфизмом,

$$\varphi(r) = \psi(\frac{r}{1}) = \psi(\frac{r}{s} \cdot \frac{s}{1}) = \psi(\frac{r}{s}) \cdot \varphi(s)$$

Так как по условию $\varphi(s) \in A^*$, имеем $\psi(\frac{r}{s}) = \varphi(r)\varphi(s)^{-1}$, что завершает доказательство.

Примеры локализации:

- 1. Для $s \in R$ положим $\langle s \rangle = \{s^n \mid n \in \mathbb{N}\}$. Локализация $\langle s \rangle^{-1}R$ обозначается через R_s и называется главной локализацией в элементе s (по аналогии с главным идеалом).
- 2. Если P простой идеал кольца R, то $R \setminus P$ является мультипликативным подмножеством. В этом случае локализация $R_P = (R \setminus P)^{-1}R$ называется локализацией R в простом идеале P. R_P является локальным кольцом (т.е. кольцом с единственным максимальным идеалом).
- 3. S множество всех элементов R, не являющийся делителями нуля. Тогда $S^{-1}R$ называется полным кольцом частных кольца R. Это максимальная локализация, для которой гомоморфизм локализации инъективен.

Если R — область целостности, то $\{0\}$ — простой идеал. Локализация в этом идеале, очевидно, будет полем, которое называется полем частных кольца R.

Иными словами, поле частных — это полное кольцо частных области целостности. Локализационный гомоморфизм — это универсальное вложение в следующем смысле:

Lemma 2. Пусть R — область целостности, а $S = R\{0\}$. Тогда $F = S^{-1}R$ является полем, а гомоморфизм локализации $\lambda_S \colon R \to F$ инъективен, а λ_S удовлетворяет следующему универсальному свойству: для любого поля K и мономорфизма $R \to K$ существует единственный мономорфизм $\psi \colon F \to K$, что $\varphi = \psi \circ \lambda_S$.

2.3 Поле p-адических чисел, как поле частных кольца \mathbb{Z}_p .

Как мы уже выяснили, кольцо \mathbb{Z}_p — область целостности, его можно вложить в поле частных, используя конструкцию локализации.

В нашем случае это сводится к рассмотрению дробей α/p^k , где $\alpha\in\mathbb{Z}_p,\ k\geq 0.$

Definition 7. Дробь вида α/p^k , где $\alpha \in \mathbb{Z}_p$, а $k \geq 0$ называется дробным p-адмическим числом или просто p-адическим числом.

Remark 9. Две дроби α/p^k и β/p^m определяют одно и то же p-адическое число, если $\alpha p^m = \beta p^k$.

Definition 8. Полем p-адических чисел \mathbb{Q}_p называется поле частных кольца целых p-адических чисел \mathbb{Z}_p .

Theorem 5. Всякое p-адическое число $\xi \neq 0$ единственным образом представляется в виде

$$\xi = p^m \cdot \varepsilon, \quad m \in \mathbb{Z}, \ \varepsilon \in \mathbb{Z}_p^*$$

Доказательство. Пусть $\xi = \alpha/p^k$, $\alpha \in \mathbb{Z}_p$. По теореме 3 α можно представить в виде $p^\ell \varepsilon$, $\ell \geq 0, \varepsilon \in \mathbb{Z}_p^*$. Тогда $\xi = p^m \varepsilon, m = \ell - k$.

Единственность вытеакет из единственности представления для 3.

2.4 Эквивалентные нормы.

Пока не знаю, буду ли рассказывать.

2.5 Пополнение метрических пространств.

Definition 9. Пусть (X, d_X) — метрическое пространство, $\mathcal{F}(X)$ — множество всех ограниченных функций из X в \mathbb{R} . Тогда введём расстояние d_{∞} между функциями $f, g \in \mathcal{F}(X)$:

$$d_{\infty}(f,g) \stackrel{\text{def}}{=} \sup\{|f(x) - g(x)|, x \in X\}$$

Заметим, что определение корректно, так как функции ограничены.

Lemma 3. $(\mathcal{F}(X), d_{\infty})$ — метрическое пространство.

Доказательство. Проверим три аксиомы метрики:

- 1. Пусть f = g. Тогда |f(x) g(x)| = 0 для всякого $x \in X$, так что $d_{\infty}(f,g) = 0$. Если же наоборот $d_{\infty}(f,g) = 0$, то $0 \le |f(x) g(x)| \le \sup = 0$, а значит f(x) = g(x) для всех $x \in X$, что и означает $f \equiv g$.
- 2. Так как |f(x) g(x)| = |g(x) f(x)|, то и $d_{\infty}(f,g) = d_{\infty}(g,f)$.
- 3. Рассмотрим три ограниченные функции $f, g, h \in \mathcal{F}(X)$, и покажем, что

$$d_{\infty}(f,g) + d_{\infty}(g,h) \ge d_{\infty}(f,h)$$

Мы знаем, что:

$$\forall x \in X : |f(x) - g(x)| + |g(x) - h(x)| \ge |f(x) - h(x)|$$

в силу неравенства треугольника для стандартной метрики на \mathbb{R} . Для всякого $\varepsilon > 0$ мы можем взять x_0 такой, что $|f(x_0) - h(x_0)| \ge \sup\{|f(x) - h(x)|, x \in X\} - \varepsilon$. Получаем, что

$$d_{\infty}(f,h) - \varepsilon = \sup\{|f(x) - h(x)|, x \in X\} - \varepsilon \le |f(x_0) - h(x_0)| \le \varepsilon$$

$$\leq |f(x_0) - g(x_0)| + |g(x_0) - h(x_0)| \leq d_{\infty}(f, g) + d_{\infty}(g, h)$$

а раз это верно для любого $\varepsilon > 0$, то искомое неравенство доказано.

Lemma 4. $\mathcal{F}(X)$ — полно.

Доказательного. Пусть f_n — фундаментальная последовательность функций. Тогда $\forall x_0 \in X: \{f_n(x_0)\}$ — также фундаментальная последовательность, так как $|f_n(x_0) - f_m(x_0)| \leq \sup\{|f_n(x) - f_m(x)|, x \in X\}$. Следовательно,

$$\forall x_0 \in X : \exists \lim_{n \to \infty} f_n(x_0)$$

и сходимость по всем точкам равномерна, так как не зависит от выбора точки x_0 . Иными словами,

$$\exists f(x) : \forall \varepsilon > 0 : \exists N : \forall n > N : d_{\infty}(f_n, f) < \varepsilon$$

где $f(x_0)$ определяется как предел $\lim_{n\to\infty} f_n(x_0)$. Так что f(x) — функция, являющаяся пределом искомой последовательности функций.

Definition 10. Пусть (X, d_X) — метрическое пространство, $\mathcal{F}(X)$ — множество ограниченных функций из X в \mathbb{R} . Построим изометрическое вложение $k: X \to \mathcal{F}(X)$ следующим образом:

1. Если X — ограничено, то определим $k(x) = d_x$, где

$$\forall y \in X : d_x(y) \stackrel{\text{def}}{=} d_X(x,y)$$

 Φ ункция d_x ограничена, так как X ограничено. Заметим также, что

$$d_{\infty}(d_x, d_y) = \sup_{z} |d_x(z) - d_y(z)| = \sup_{z} (d_X(x, z) - d_X(z, y)) \le d_X(x, y)$$

однако равенство достигается при z = y, так что $d_{\infty}(d_x, d_y) = d_X(x, y)$, а значит вложение изометрическое.

2. Пусть X, возможно, не ограничено. Тогда определим $k(x) = d_x - d_{x_0}$ для некоторой фиксированной точки $x_0 \in X$, где

$$\forall y \in X : (k(x))(y) \stackrel{\text{def}}{=} d_x(y) - d_{x_0}(y) = d_X(x,y) - d_X(y,x_0)$$

что есть ограниченная функция, так как $\forall y \in X : d_X(x,y) - d_X(y,x_0) \le d_X(x,x_0)$. Заметим, что это аналогичным образом будет изометрическим вложением:

$$d_{\infty}(d_x - d_{x_0}, d_y - d_{x_0}) = \sup_{z} |d_x(z) - d_{x_0}(z) - d_y(z) + d_{x_0}(z)| =$$

$$= \sup_{z} (d_X(x, z) - d_X(z, y)) \le d_X(x, y)$$

rде равенство достигается $npu \ z = y$.

Любое метрическое пространство (X, d_X) имеет пополнение $(\overline{X}, d_{\overline{X}})$, то есть такое метрическое пространство \overline{X} , что выполнено:

- 1. $X \subseteq \overline{X}$
- 2. X всюдю плотно в \overline{X}
- 3. $d_{\overline{X}}|_{X}=d_{X},$ то есть вложение из X в \overline{X} является изометрическим
- 4. $(\overline{X}, d_{\overline{X}})$ полно.

Доказательство. Возьмём изометрическое вложение Куратовского $k: X \to \mathcal{F}(X)$, и возьмём его замыкание в топологическом пространстве $\mathcal{F}(X)$ с топологией, индуцированной метрикой d_{∞} — назовём это замыкание \overline{X} . Заметим, что

- 1. $X \subseteq \overline{X}$ естественным образом
- $2. \ X$ всюду плотно в \overline{X} , так как любое множество всюду плотно в своём замыкании
- 3. Вложение X в \overline{X} изометрическое, так как оно изометрическое и во всё пространство $\mathcal{F}(x)$
- 4. \overline{X} полно как замкнутое подмножество полного пространства.

Remark 10. Пополнение метрического пространства единственно с точностью до изометрии.

 $Remark\ 11.$ Выражение $X\subseteq \overline{X}$ тоже подразумевается с точностью до изометрии.

2.6 Пополнение нормированного поля.

Теперь мы умеем пополнять метрические пространства, но нам никто не гарантирует, что при пополнении поля по норме получится поле.

Definition 11. Пополнением нормированного поля $(F_0, \|\cdot\|_0)$ называется нормированное поле $(F, \|\cdot\|_0)$, уловлетворяющее следующим свойствам

- 1. Существует вложение $i: F_0 \hookrightarrow F$, сохраняющее норму (изометрическое), то есть $||i(x)|| = ||x||_0$.
- 2. $(F, \|\cdot\|)$ полно, как метрическое пространство.
- 3. $i(F_0)$ всюду плотно в F, то есть, $\forall x, \varepsilon > 0 \exists x_0 \in F_0 \colon ||x i(x_0)|| < \varepsilon$.

Example 4. *Us курса анализа ясно, что* $(\mathbb{R}, |\cdot|)$ — *пополнение* $(\mathbb{Q}, |\cdot|)$.

Theorem 6. Для любого нормированного поля существует пополнение.

Доказательство. Будем рассматривать случай нормы с неравенством треугольника.

Пусть \mathfrak{A} — множество всех последовательностей Коши $\{x_n\}_{n=1}^{\infty}$ в пространстве $(F_0, \|\cdot\|_0)$.

На $\mathfrak A$ можно естествиным образом определить операции сложения и умножения (поточечно), а также ввести норму $\|\cdot\|$, как $\|\{x_n\}\| = \lim_{n\to\infty} \|x_n\|_0$.

Это определение корректно, так как предел всегда существует в силу неравенства треугольника и того, что $\{x_n\}$ — последовательность Коши

$$|||x_n||_0 - ||x_m||_0| \le ||x_n - x_m||_0$$

Ясно, что остальные свойства нормы также выполняются.

Введём на $\mathfrak A$ отношение эквивалентности \sim :

$$\{x_n\} \sim \{y_n\} \Leftrightarrow \lim_{n \to \infty} ||x_n - y_n||_0 = 0$$

Нетрудно заметить, что это отношение эквивалентности «уважает» арифметические действия и норму, то есть

- 1. $\{x_n\} \sim \{u_n\}, \{y_n\} \sim \{v_n\} \Rightarrow \{x_n + y_n\} \sim \{u_n + v_n\}, \{x_n y_n\} \sim \{u_n v_n\}.$
- 2. $\{x_n\} \sim \{y_n\} \Rightarrow \|\{x_n\}\| = \|\{y_n\}\|.$

В качестве поля F возьмем фактормножество \mathfrak{A}/\sim . Приведенные выше свойства естественно индуцируют арифметические операции и норму с A на F:

- $[\{x_n\}] + [\{y_n\}] = [\{x_n + y_n\}].$
- $[\{x_n\}] \cdot [\{y_n\}] = [\{x_n \cdot y_n\}].$
- $\|[\{x_n\}]\| = \|\{x_n\}\|.$

Аксиомы кольца вполне очевидны, проверим существование обратного по умножению элемента. Если $[\{x_n\}] \neq 0$, то $\lim \|x_n\|_0 > 0 \Rightarrow \forall n \geq n_0 \|x_n\|_0 > \delta > 0$ для некоторого δ .

Тогда в качестве $[\{x_n\}]^{-1}$ возьмем класс $[\{y_n\}]$, где

$$y_n = \begin{cases} 0, & n < n_0 \\ \frac{1}{x_n}, & n \ge n_0 \end{cases}$$

Осталось проверить, что мы получили пополнение.

В качестве вложения возьмем i(x) = [(x, x, ...)]. Ясно, что $i(F_0)$ плотно в F, так как, если $X = [\{x_n\}] \in F$, то $i(x_n) \to X$ в пространстве $(F, \|\cdot\|)$.

Теперь проверим полноту. Пусть $X^{(n)} = [(x_1^{(n)}, x_2^{(n)}, \ldots)] \in F$ — последовательность Коши. Возьмем такую последовательность $k_n \in \mathbb{N}$, что

$$\sup_{k,\ell \ge k_n} \|x_k^{(n)} = x_\ell^{(n)}\|_0 < \frac{1}{n}$$

Покажем, что в качестве предела можно взять $X=[\{x_{k_n}^{(n)}\}].$ Пусть $N\geq k_n,\ M\geq k_m,\ K\geq \max\{k_n,k_m\}.$

$$\|x_N^{(n)} - x_M^{(m)}\|_0 \le \|x_N^{(n)} - x_K^{(n)}\|_0 + \|x_K^{(n)} - x_K^{(m)}\|_0 \le \frac{1}{n} + \|x_K^{(n)} - x_K^{(m)}\|_0 + \frac{1}{m}$$

Устремим K к бесконечности и получим

$$\|x_N^{(n)} - x_M^{(m)}\|_0 \le \|X^{(n)} - X^{(m)}\| + \frac{1}{n} + \frac{1}{m}$$

Положим $N=k_n,\ M=k_m$ и получим, что $x_{k_n}^{(n)}$ — последовательность Коши, а её класс эквивалентности — искомый предел.

Далее отождествим $i(F_0)$ с F_0 и будем считать, что $F \subseteq F$.

В неархимедовом случае можно сказать даже несколько больше.

Пусть $(F, \|\cdot\|)$ — неархимедово нормированное поле. Если $\{x_n\} \to x, \ x \in F^*$, то для достаточно больших $n \|x_n\| = \|x\|$.

Lemma 5. Пусть $(F, \|\cdot\|)$ — пополнение неархимедова поля $(F_0, \|\cdot\|_0)$. Тогда

- 1. $(F, \|\cdot\|)$ неархимедово.
- 2. $Im(\|\cdot\|) = Im(\|\cdot\|_0)$.

2.7 Поле *р*-адических чисел, как пополнение.