Сортировки

- Квадратичные сортировки
- Сортировка выбором, вставками, пузырьковая + её варианты
- Сортировки за nlog(n)
- Сортировка слиянием и быстрая сортировка
- Принцип разделяй и властвуй

Что входит в сортировку?

- $\{a_1, a_2, ..., a_n\} \rightarrow \{a_1 \le a_2 \le ... \le a_n\}$ или $\{a_1 \ge a_2 \ge ... \ge a_n\}$
- Сортируем только те элементы к которым применима операция сравнения.
- Процесс сортировки состоит из операции сравнения и перестановки. Так же мы будем прибегать к операции поиска минимума.
- Операция сравнения всегда тяжелее операции перестановки, поэтому в некоторых случаях мы будем сравнивать количество перестановок и количество сравнений.
- Зачем вообще сортировать? Представление в пользовательском интерфейсе. Упрощает поиск.

Ключ сортировки

Элементы сортируемой последовательности могут иметь любые типы данных.

Обязательное условие — наличие ключа.

Например последовательность:

(Москва, 10000000), (Нью-Йорк, 12000000), (Париж, 9000000), (Токио, 20000000), (Лондон, 10000000), (Дели, 9000000)

Ключ - число жителей.

Устойчивость сортировки

Алгоритм сортировки устойчивый, если он сохраняет относительный порядок элементов.

Начальная последовательность:

(**Москва**, 10000000), (Нью-Йорк, 12000000), (Париж, 9000000), (Токио, 20000000), (**Лондон**, 10000000), (Дели, 9000000)

Устойчивая сортировка:

(Токио, 20000000), (Нью-Йорк, 12000000), (**Москва**, 10000000), (**Лондон**, 10000000), (Париж, 9000000), (Дели, 9000000)

Неустойчивая сортировка:

(Токио, 20000000), (Нью-Йорк, 12000000), (**Лондон**, 10000000), (**Москва**, 10000000), (Париж, 9000000), (Дели, 9000000)

Selection sort

Ищем наименьший элемент в неотсортированной части

Алгоритм

- Делим массив на две части. Слева пустая отсортированная часть, справа не отсортированная.
- На каждой итерации нам необходимо **найти минимум** в правой части массива и перенести ее в конец левой части.
- После каждого нахождения наименьшего элемента справа сдвигаем границу вправо на 1
- Другими словами на каждой итерации мы увеличиваем отсортированную часть и уменьшаем неотсортированную

Инварианты

```
{ 5, 3, 15, 7, 6, 2, 11, 13 }
{ <u>2</u>, 3, 15, 7, 6, 5, 11, 13 }
{ <u>2</u>, <u>3</u>, 15, 7, 6, 5, 11, 13 }
{ <u>2, 3, 5</u>, 7, 6, 15, 11, 13 }
{ <u>2, 3, 5, 6, 7, 15, 11, 13</u> }
{ <u>2</u>, <u>3</u>, <u>5</u>, <u>6</u>, <u>7</u>, 15, 11, 13 }
{ 2, 3, 5, 6, 7, 11, 15, 13 }
{ 2, 3, 5, 6, 7, 11, 13, 15 }
{ 2, 3, 5, 6, 7, 11, 13, 15 }
```

```
function selectionSort(arr) {
   len = len(arr)
   for i = 0 .. len-1 {
       min = i
       for j = i+1 .. len {}
           if arr[j] < arr[min] {</pre>
                swap(arr[j], arr[min])
```

Особенности

- Выбор каждого элемента требует прохода по правой части.
- Для сортировки массива из N элементов требуется N-1 проход (Почему -1? Последний элемент, который останется справа будет являться минимальным, так как он единственный)
- На каждой итерации проходим n-i элементов
- Массив может быть уже частично отсортирован и тогда нам потребуются только операции сравнения.

Выводы

- Во всех случаях сложность O(n²)
- Алгоритм устойчив.
- in-place.
- Количество операций обмена O(n) может пригодиться для сортировок массивов с большими элементами.

Insertion sort

Берём первый элемент в неотсортированной части и вставляем на своё место в отсортированной части

Алгоритм

- Делим массив на две части. Слева отсортированная часть, справа не отсортированная.
- На каждой итерации берём первый не отсортированный элемент, и вставляем в отсортированную часть сдвигая вправо элементы которые больше.
- После вставки сдвигаем границу вправо на 1.
- Другими словами на каждой итерации мы увеличиваем отсортированную часть и уменьшаем неотсортированную.

Инварианты

{ <u>5</u>, **3**, 4, 6, 1, 3 } { <u>3</u>, <u>5</u>, **4**, 6, 1, 3 } { <u>3</u>, <u>4</u>, <u>5</u>, **6**, 1, 3 } { <u>3</u>, <u>4</u>, <u>5</u>, <u>6</u>, **1**, 3 } { <u>1</u>, <u>3</u>, <u>4</u>, <u>5</u>, <u>6</u>, **3** } { <u>1</u>, <u>3</u>, <u>3</u>, <u>4</u>, <u>5</u>, <u>6</u> }

Наивная реализация.

В дальнейшем надо будет реализовать вставку с использованием бинарного поиска.

```
function insertionSort(arr) {
   for i = 1 ... len(arr) {
       j = i
       while j > 0 {
           if arr[j-1] > arr[j] {
               swap(arr[j-1], arr[j])
```

Особенности

- Сортировка упорядоченного массива требует O(n). Будет произведено 0 перестановок и n-1 сравнение.
- В худшем случае O(n²), если массив отсортирован по убыванию.
 Количество сравнений тогда равно: O(n²) <= на 1-ой итерации 1, на 2 2, на 3-ей 3 => 1 + 2 + ... + n-1 = n*(n-1)/2.
 Количество копирований O(n²) <= 2*(n-1)+(1+2+...+n-1)=2*(n-1)+n*(n-1)/2
- В среднем случае O(n²)

Выводы

- В среднем сложность O(n²)
- Алгоритм устойчив.
- **in-place**, число дополнительных переменных не зависит от размера.
- Позволяет упорядочивать массив при динамическом добавлении новых элементов — online-алгоритм.

Сортировка пузырьком bubble sort

Самый "лёгкий" элемент всплывает как пузырёк воздуха в воде

Алгоритм

- Один из простейших в реализации алгоритмов.
- Основная идея: до тех пор, пока соседние элементы не в порядке, меняем их местами.
- Элемент всплывает наверх, обмениваясь с соседними местами.
 Отсюда и название.

Инварианты

```
{ 5, 3, 15, 7, 6, 2, 11, 13}
{ 3, 5, 15, 7, 6, 2, 11, 13}
{ 3, 5, 15, 7, 6, 2, 11, 13}
{ 3, 5, 7, 15, 6, 2, 11, 13}
{ 3, 5, 7, 6, 15, 2, 11, 13}
{ 3, 5, 7, 6, 2, 15, 11, 13}
{ 3, 5, 7, 6, 2, 11, 15, 13}
{ 3, 5, 7, 6, 2, 11, 13, <u>15</u>}
{ 3, 5, 6, 2, 7, 11, <u>13, 15</u>}
{ 3, 5, 2, 6, 7, <u>11, 13, 15</u>}
{ 3, 2, 5, 6, <u>7, 11, 13, 15</u>}
{ 2, 3, 5, <u>6, 7, 11, 13, 15</u>}
```

```
function bubblesort(int a[]) {
  bool sorted = false
  while !sorted {
       sorted = true
      for i = 0..len(arr)-1 {
           if (arr[i] > arr[i+1]) {
               swap(arr[i], arr[i+1])
               sorted = false
```

Особенности

- Малоэффективный алгоритм, который используется исключительно в тренировочных целях.
- Имеет множество вариаций и улучшений.
- Учитывая, что сравнения долгие операции, а перемещения быстрые, то сортировка вставками более предпочтительна.

Выводы

- Крайне проста в реализации и понимании.
- Алгоритм устойчив.
- **in-place**, сортирует на месте.
- Сложность в наилучшем случае O(n).
- Сложность в наихудшем случае O(n²)

Быстрые сортировки

- Квадратичные устойчивые сортировки слишком медленны для того, чтобы сортировать большие последовательности.
- Мечта: а что, если бы мы имели два отсортированных массива, за какое время можно получить отсортированный массив, содержащий элементы обоих массивов?
- Разделяй и властвуй!

Разделяй и властвуй

и раздели её на несколько небольших задач

Merge sort

Слияние — объединение отсортированных массивов.

Алгоритм

- Делим массив пополам.
- Сортируем каждую половину независимо.
- Объединяем две отсортированные последовательности.
- Алгоритм слияния два указателя.

Инварианты

разделяй и властвуй, нисходящая версия сверху вниз


```
function mergeSort(arr) {
   if len(arr) < 2 {
       return arr
   mid = len(arr) / 2
   leftSide = arr[0, mid]
   rightSide = arr[mid, len(arr)]
   return merge (mergeSort (leftSide),
                mergeSort(rightSide))
```

слияние (два указателя)

```
function merge(a, b) {
  result = [], i = 0; j = 0
  while i < len(a) and j < len(b) {
      if a[i] < b[i] {
           result.append(a[i]); i++
       } else {
           result.append(b[j]); j++
  while i < len(a) {</pre>
       result.append(a[i]); i++
  while j < len(b) {
       result.append(b[j]); j++
   return result
```

Особенности

Принцип разделяй и властвуй — мастертеорема в действии.

$$T(N) = T\left(\left\lceil \frac{N}{2} \right\rceil\right) + T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + \Theta(N)$$

Количество делений = log n На каждое слияние нужно N операций

Сложность = n log n

Выводы

- Требует добавочно Θ(n) памяти.
- Сложность не зависит от входа и равна всегда Θ(n log n).
- Устойчива!
- Прекрасно подходит для внешней сортировки.
- Прекрасно подходит для параллельной сортировки.

Быстрая сортировка Quick sort

Выбираем опорный элемент, всё что меньше переносим влево, всё что больше переносим вправо. Рекурсивно повторяем для каждой части.

Алгоритм

- Выбираем опорный элемент pivot. В идеале медиану.
- Разбиваем массив "in place" на меньшие и больше значения.
- Повторяем алгоритм для большей и меньшей части.

Медиана — элемент, который находился бы в середине упорядоченного массива.

Median($\{1, 1, 1, 1, 1, 10\}$) = 1.0

Average($\{1, 1, 1, 1, 1, 10\}$) = 2.5

Инварианты

{10, 5, 14, 7, 3, 2, 18, 4, 5, 13, 6, **8**} {5, 7, 3, 2, 4, **5**, 6, 8}{10, 14, 18, 13} {5, 3, 2, 4, 5}{7, 6, 8}

Наивная реализация.

В дальнейшем надо будет реализовать поиск медианы.

```
void qsortRecursive(arr[]) {
   i = 0, j = len(arr)-1
   pivot = arr[len(arr) / 2];
   while(i \le j) {
       while(arr[i] < pivot) i++;</pre>
       while(arr[j] > pivot) j--;
       if (i <= j) {
           swap(arr[i], arr[j])
           i++; j--
   if(j > 0)
       qsortRecursive(arr, j + 1);
   if (i < len(arr))</pre>
       qsortRecursive(&arr[i], len(arr) - i);
```

Особенности

- Худший случай: ведущим выбирается минимальный или максимальный элемент.
- Вероятность такого события крайне мала.
- Один из способов его избежать выбор медианы из трёх случайных элементов.

Быстрая сортировка

Выводы

- Может проводиться на месте.
- Сложность в наихудшем случае O(n²), но с крайне малой вероятностью.
- Сложность в среднем O(n log n).
- В прямолинейной реализации использует до O(n) стека.

Быстрее быстрой сортировки?

 Если использовать особые свойства ключей мы можем сортировать со сложностью меньшей O(nlog n)

Counting sort

Подсчитываем количество элементов каждого номинала

Алгоритм

- Пусть множество значений ключей ограничено $D(k) = \{k_{min}, \dots, k_{max}\}.$
- Тогда при наличии добавочной памяти в |D(k)| ячеек сортировку можно произвести за O(n).
- Заранее известно, что значения массива натуральные числа, которые не превосходят 20.
- Заводим массив F[1..20], содержащий счетчики каждого значения.

 $S'=\{2, 3, 4, 5, 5, 6, 7, 8, 10, 13, 14, 18\}$

Инварианты

```
Сортируем массив S = \{10, 5, 14, 5, 3, 2, 7, 4, 18, 13, 6, 8\}
F_0 = [0000000000000000000000]
F_2 = [000010000100000000000]
F_3 = [0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0]
F_{A} = [0\ 0\ 0\ 0\ 2\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0]
```

Выводы

- Ключи должны быть перечислимы.
- Пространство значений ключей должно быть ограниченным.
- Требуется дополнительная память O(|D(k)|).
- Сложность O(n) + O(|D(k)|).

Radix sort

Сравнения происходят по каждому разряду отдельно

Алгоритм

- Разобьём ключ на фрагменты разряды и представим его как массив фрагментов.
- Все ключи должны иметь одинаковое количество фрагментов.
- Устойчиво сортируем массив по каждому разряду отдельно.

Инварианты

Сортируем массив $S = \{153, 266, 323, 614, 344, 993, 23\}$

```
{{1, 5, 3}, {2, 6, 6}, {3, 2, 3}, {6, 1, 4}, {3, 4, 4}, {9, 9, 3}, {0, 2, 3}}} {{1, 5, 3}, {3, 2, 3}, {9, 9, 3}, {0, 2, 3}, {3, 4, 4}, {6, 1, 4}, {2, 6, 6}} {{6, 1, 4}, {3, 2, 3}, {0, 2, 3}, {3, 4, 4}, {1, 5, 3}, {2, 6, 6}, {9, 9, 3}}
```

 $S' = \{\{0, 2, 3\}, \{1, 5, 3\}, \{2, 6, 6\}, \{3, 2, 3\}, \{3, 4, 4\}, \{6, 1, 4\}, \{9, 9, 3\}\}\}$

Выводы

- Требует ключи, которые можно трактовать как множество перечислимых фрагментов.
- Требуется дополнительная память O(D(k_i)) на сортировку фрагментов.
- Сложность О(n ⋅ D(k_i)).

Итоги

Алгоритм	Лучший случай	Средний случай	Худший случай	Доп. память	Устойчивая?
Пузырьком	O(N)	O(N ²)	O(N ²)	O(1)	Да
Шелла	O(N ^{7/6})	O(N ^{7/6})	O(N ^{4/3})	O(1)	Нет
Вставкой	O(N)	O(N ²)	O(N ²)	O(1)	Да
Выбором	O(N)	O(N ²)	O(N ²)	O(1)	Да
Быстрая	O(N log N)	O(N log N)	O(N ²)	O(1)	Нет/Да
Слияния	O(N log N)	O(N log N)	O(N log N)	O(N)	Да
Пирамида	O(N log N)	O(N log N)	O(N log N)	O(1)	Нет
Подсчетом	O(N)	O(N)	O(N)	O(D)	Да
Поразрядная	O(N)	O(N)	O(N)	O(R+N)	Да/Нет

Спасибо!