

A New Global Constraint

Let's see a new (strange) global constraint

REGULAR(X, T, s_0, F)

- The constraint ensures that the sequence of the X variables...
- ...Is compliant with a given Deterministic Finite Automaton (DFA)
 - T specifies the valid state transitions: (s_{cur}, v, s_{next})
 - lacksquare s_0 is the initial state
 - F is the set of accepting states

In detail, the constrain is satisfied iff:

- All transitions are valid
- When the sequence ends, the DFA is in an accepting state

Consider this example:

- The starred state is s_0 (initial state)
- \blacksquare The double-circled states are those in F (accepting states)

This is an example of a valid sequence (6 variables)

	X_0	X_1	X_2	X_3	X_4	X_5	_
	0	0	1	1	1	0	
state:	0	0	0	1	2	2	0

Consider this example:

- The starred state is s_0 (initial state)
- \blacksquare The double-circled states are those in F (accepting states)

This an invalid sequence (forbidden transition)

Consider this example:

- The starred state is s_0 (initial state)
- \blacksquare The double-circled states are those in F (accepting states)

This an invalid sequence (the last state is not in F)

Consider this example:

- The starred state is s_0 (initial state)
- \blacksquare The double-circled states are those in F (accepting states)

As usual, the **regular** constraint is capable of filtering

■ In particular, it can enforce GAC on the X variables

The constraint can sometimes be very useful:

Main example: complex regulations (laws) in work shift scheduling
 Hover, the constraint is not always provided by solvers

The reason is that REGULAR can be decomposed

- We introduce a state variable Y_i for each X_i ...
- \blacksquare ...Plus an additional Y_n variable for the finale state
- We enforce valid transitions by posting multiple TABLE constraints
- Each TABLE constraint regulates a single transition

Or-tools provides REGULAR via the API:

slv.TransitionConstraint(X, T, s0, F)

Where:

- \blacksquare **x** is a list with the X_i variables
- **T** is a "matrix" (list of lists) with the allowed transitions
- **so** is the index of the initial state
- F is a list with the accepting states

The solver builds the decomposition automatically

Constraint Systems

A Shift-Scheduling Problem

Consider the following problem (by Tim Curtois):

We need to plan the working shifts for the employees of a company

The planning horizon eoh is known (in days)

Each type of working shift k:

- Has a given duration l_k (in minutes)
- lacktriangle Cannot be followed by shifts in a given list I_k

Each worker i:

- Works a single shift type per day j (or takes a day off)
- Should work at most $M_{i,k}$ shifts of type k
- Should work at most D_i and at least d_i minutes overall

Again, each worker:

- Should work at most w_i week ends
 - For week-end days we have $j \mod 7 = 5$ or 6
 - A week end is worked if there is a shift on Saturday or Sunday
- Should work at least c_i and at most C_i consecutive shifts
- \blacksquare Should take at least g_i consecutive days off
- Has a set of mandatory days off V_i (vacation)

There are positive preferences h over shifts:

• If worker i_h does not take shift k_h on day j_h , we pay a penalty w_h^p

There are negative preferences h over shifts:

• If worker i_h does take shift k_h on day j_h , we pay a penalty w_h^n

There are cover requirements h for shifts and days:

- Let y_h be the number of shifts k_h on day j_h
- If y_h is less than a given requirement r_h , we pay $w_h^u(r_h y_h)$
- If y_h is greater than a given requirement r_h , we pay $w_h^o(y_h r_h)$
- The penalty u_h is much greater than the penalty o_h

About the number of entities:

- Let n_e be the number of workers
- Let n_s be the number of shift types
- Let n_p be the number of positive preferences
- Let n_n be the number of negative preferences
- Let n_c be the number of cover requirements

This is a rather complex problem

- Writing a model takes time (more than we have in this session)...
- So we will see one possible approach together

The main variables are:

$$x_{i,j} \in \{0..n_s\}$$
 $\forall i = 0..n_e - 1, j = 0..eoh - 1$
 $w_{i,j} \in \{0, 1\}$ $\forall i = 0..n_e - 1, j = 0..eoh - 1$

- $x_{i,j}$ is the shift type for worker i on day j
- $x_{i,j} = n_s$ for a day off
- $w_{i,j} = 1$ if worker i does not take a day off on j

Chaining constraints:

$$w_{i,j} = (x_{i,j} \neq n_s)$$
 $\forall i = 0..n_e - 1, j = 0..eoh - 1$

Compatibility constraints between subsequent shifts:

TABLE([
$$x_{i,j}, x_{i,j+1}$$
], T) $\forall i = 0..n_e - 1, j = 0..eoh - 2$

■ Where T contains all the valid transitions, i.e.

$$(k', k") \in T \text{ iff } k' = n_s \lor k " = n_s \lor k " \notin I_{k'}$$

Maximum number of shift types per worker:

$$GCC(X_{i,:}, [0..n_s], [0..0], [M_{i,0}, M_{i,1}, \dots \infty])$$
 $\forall i = 0..n_e - 1$

Limits on the number of minutes per worker $(l_{n_s} = 0)$:

$$\sum_{j=0..eoh-1} l_{x_{i,j}} \le D_i \qquad \forall i = 0..n_e - 1$$

$$\sum_{j=0..eoh-1} l_{x_{i,j}} \ge d_i \qquad \forall i = 0..n_e - 1$$

Maximum number of weekends:

First we introduce a set of additional variables

$$W_{i,h}^{we} \in \{0, 1\}$$
 $\forall i = 0..n_e - 1, h = 0..^{eoh}/_7$

- $W_{i,h}^{we} = 1$ if worker i works on the h-th weekend
- Then we define the variable via the constraints:

$$W_{i,h}^{we} = \max(W_{i,7(h+1)-2}, W_{i,7(h+1)-1}) \qquad \forall i = 0..n_e - 1, h = 0..^{eoh}/_7$$

■ Then we constraint the sum:

$$\sum_{h=0..^{eoh}/_7} W_{i,h}^{we} \le w_i$$

Mandatory days off:

$$x_{i,j} = n_s$$
 $\forall i = 0..n_e - 1, j \in V_i$

Constraint on consecutive days:

REGULAR on the $W_{i,j}$ variables for each worker i

- doX = X days off
- doe = enough days off ("doe" stands for a number)
- wdX = X working days
- wdm = min working days ("wdm" stands for a number)
- wdM = max working days ("wdM" stands for a number)

Constraint on consecutive days:

REGULAR on the $W_{i,j}$ variables for each worker I

- Once we reach doe, we stop counting the days off
- No working day allowed in doX before doe is reached
- No day off allowed in wdX before wdm is reached
- No working day allowed one wdM is reached

Constraint on consecutive days:

REGULAR on the $W_{i,j}$ variables for each worker I

- HP: infinite days off before and after the planning period
- Hence, doe is the initial state...
- ...And all doX and doe state are accepting...
- ...But only states between wdm and wdM are accepting

The penalty for not satisfying positive preferences:

$$z_p = \sum_{h=0..n_p-1} w_h^p(x_{i_h,j_h} \neq k_h)$$

The penalty for not satisfying negative preferences:

$$z_n = \sum_{h=0..n_n-1} w_h^n(x_{i_h,j_h} = k_h)$$

The penalty for not satisfying cover preferences:

COUNT
$$(X_{:,j}, k_h, y_h)$$
 $\forall h = 0..n_c - 1$

$$z_o = \sum_{h=0..n_c-1} w_h^o \max(y_h - r_h, 0)$$

$$z_u = \sum_{h=0..n_c-1} w_h^u \max(r_h - y_h, 0)$$

The overall cost function is:

$$\min z = z_p + z_n + z_o + z_u$$

The model and two instances are available on the start-kit

- Change the search strategy and solve Instance1 to optimality
 - Pick the branching variables, select the var/value strategy...
 - ...Order the variables based on your ideas
- Then try to find the best possible solution for Instance2
 - The optimal solution is 828...
 - See how close you can get!

NOTE: both tasks are difficult!