ASSIGNMENT 4 **MTH102A**

(1) Let $\{w_1, w_2, ..., w_n\}$ be a basis of a finite dimensional vector space V. Let v be a non zero vector in V. Show that there exists w_i such that if we replace w_i by v in the basis it still remains a basis of V.

Solution. Let $v = \sum_{i=1}^{n} a_i w_i$ for some $a_1, ..., a_n \in \mathbb{F}$, since v is non-zero at least one $a_i \neq 0$ for some $1 \leq i \leq n$. Assume $a_1 \neq 0$. Write $w_1 = \frac{1}{a_1}v - \sum_{i=1}^{n} \frac{a_i}{a_1}w_i$. Replace w_1 by v. Clearly $\{v, w_1, ..., w_n\}$ spans V.

Now we show that this set is L.I.. Let $b_1, ..., b_n$ be such that $b_1v + \sum_{j=1}^{n} b_jw_j = 0, \Rightarrow$ $b_1 \sum_{i=1}^{n} a_i w_i + \sum_{i=1}^{n} b_i w_i = 0 \Rightarrow b_1 a_1 w_1 + \sum_{i=1}^{n} (b_1 a_i + b_i) w_i = 0, \Rightarrow b_1 a_1 = 0, b_1 a_i + b_i = 0$ 0 for $2 \le j \le n$. Since $a_1 \ne 0 \Rightarrow b_j = 0$ for all $1 \le j \le n$. Hence done.

- (2) Find the dimension of the following vector spaces:
 - (i) $X = \{A : A \text{ is } n \times n \text{ real upper triangular matrices} \}$
 - (ii) $Y = \{A : A \text{ is } n \times n \text{ real symmetric matrices} \},$
 - (iii) $Z = \{A : A \text{ is } n \times n \text{ real skew symmetric matrices} \}$
 - (iv) $W = \{A : A \text{ is } n \times n \text{ real matrices with } Tr(A) = 0\}$

Solution. Let E_{ij} be the matrix with ij^{th} entry one and others are zero, F_{ij} be matrix with ij^{th} and ji^{th} entries are 1 and others are zero and for $i \neq j$ define D_{ij} be the matrix with ij^{th} entry is 1, ji^{th} entry is -1 and others are zero.

- (i) Set $\{E_{ij}; i \leq j\}$ forms a basis for X. Hence $dim(X) = n + \frac{n^2 n}{2} = \frac{n(n+1)}{2}$. (ii) Set $\{F_{ij}; i \leq j\}$ is a basis for Y, hence $dim(Y) = \frac{n(n+1)}{2}$.
- (iii) For a real skew-symmetric matrix all diagonal entries are zero. Then the set $\{D_{ij}; i < j\}$. Hence $dim(Z) = \frac{n^2 - n}{2} = \frac{n(n-1)}{2}$.
- (iv) Let A be any matrix with trace zero, then $\sum_{i=1}^{n} a_{ii} = 0, \Rightarrow a_{11} = -(a_{22} + ... + a_{22} + .$ a_{nn}). Hence Set $dim(W) = n^2 - 1$.
- (3) Let $\mathcal{P}(X,\mathbb{R})$ be vector space of all single variable polynomials with real coefficients and $\mathcal{P}_n(X,\mathbb{R})$ be the subspace of all polynomials with degree less or equal to n. Find a basis of $\mathcal{P}_n(X,\mathbb{R})$. Prove that $S=\{X+1,X^2-X+1,X^2+X-1\}$ is a basis of $\mathcal{P}_2(X,\mathbb{R})$. Hence, determine the coordinates of following elements: $2X - 1, 1 + X^2, X^2 + 5X - 1.$

Solution. $P = \{1, X, X^2, ..., X^n\}$ is a basis(every polynomial is a linear combination of elements of P and the set is L.I.).

First we show that the set S is L.I..Let $a_0, a_1, a_2 \in \mathbb{R}$ such that $a_0(X+1) + a_1(X^2 - X+1) + a_2(X^2 + X - 1) = 0$, $\Rightarrow a_0 + a_1 - a_2 + (a_0 - a_1 + a_2)X + (a_1 + a_2)X^2 = 0$. We get $a_0 + a_1 - a_2 = 0$, $a_0 - a_1 + a_2 = 0$, solving this system of equation we get $a_0, a_1, a_2 = 0$.

Let $p(X) = a_0 + a_1 X + a_2 X^2$ be any element in $\mathcal{P}_2(X, \mathbb{R})$. Let $b_0, b_1, b_2 \in \mathbb{R}$ such that $p(X) = a_0 + a_1 X + a_2 X^2 = b_0(X+1) + b_1(X^2 + X - 1) + b_3(X^2 - X + 1)$ then we get $b_0 = \frac{a_0 + a_1}{2}, b_1 = \frac{a_0 - a_1 + 2a_2}{4}, b_2 = \frac{a_1 - a_0 + 2a_2}{4}$. Hence S spans $\mathcal{P}_2(X, \mathbb{R})$. $2X - 1 = \frac{1}{2}(X+1) - \frac{3}{4}(X^2 - X + 1) + \frac{3}{4}(X^2 + X - 1)$. $1 + X^2 = \frac{1}{2}(X+1) + \frac{3}{4}(X^2 - X + 1) + \frac{1}{4}(X^2 + X - 1)$. $X^2 + 5X - 1 = 2(X+1) - 1(X^2 - X + 1) + (X^2 + X - 1)$.

- (4) Let W be a subspace of a finite dimensional vector space V
 - (i) Show that there is a subspace U of V such that V = W + U and $W \cap U = \{0\}$,
 - (ii) Show that there is no subspace U of V such that $W \cap U = \{0\}$ and dim(W) + dim(U) > dim(V).

Solution.

(i) Let $\dim(V)=n$, since V is finite dimensional W is also finite dimensional. Let $\dim(W)=k$ and $B_w=\{w_1,...,w_k\}$ be a basis for W.In case k=n nothing to prove, so assume k< n. Now we can extend B_w to a basis B for V. Let $B=\{w_1,...,w_k,v_{k+1},...,v_n\}$. Let U be a subspace of V generated by $\{v_{k+1},...,v_n\}$. Let $v\in V$ be any. Then there exist scalars $a_1,...,a_n\in\mathbb{F}$ such that $v=a_1w_1+...+a_kw_k+a_{k+1}v_{k+1}+...+a_nv_n=(a_1w_1+...+a_kw_k)+(a_{k+1}v_{k+1}+...+a_nv_n)\in W+U$.

Now we show that $W \cap U = \{0\}$. Let $v \in W \cap U, \Rightarrow v \in W$ and $v \in U$. Then there exist scalars $a_1, ..., a_k$ and $b_{K+1}, ..., b_n$ such that $a_1w_1 + ... + a_kw_k = v = b_{k+1}v_{k+1} + + b_nv_n, \Rightarrow a_1w_1 + ... + a_kw_k - b_{k+1}v_{k+1} - - b_nv_n = 0, \Rightarrow a_1, ..., a_k, b_{k+1}, ..., b_n = 0$, as B is L.I.. Hence $W \cap U = \{0\}$.

- (ii) Let $W \cap U = \{0\}$ and dim(W) + dim(U) > dim(v), $\Rightarrow dim(W) + dim(U) 0 > dim(V)$, $\Rightarrow dim(W) + dim(U) dim(W \cap U) > dim(V)$, $\Rightarrow dim(W + U) > dim(V)$, which is a contradiction as W + U is a subspace of V so its dimension has to be less or equal to n.
- (5) Let $W_1 = L(\{(1,0,-1),(1,0,1)\})$ and $W_2 = L(\{(0,1,2),(0,1,-1)\})$ be two subspaces of \mathbb{R}^3 . Prove that $W_1 + W_2 = \mathbb{R}^3$. Given an example $v \in \mathbb{R}^3$ such that v can be written in two different ways of the form $v = w_1 + w_2$ where $w_1 \in W_1, w_2 \in W_2$.

Solution. Let $(x,y,z) \in \mathbb{R}^3$ be any. Let $a,b,c,d \in \mathbb{R}$ be such that (x,y,z) =

ASSIGNMENT 4 MTH102A 3

a(1,0,-1)+b(1,0,1)+c(0,1,2)+d(0,1,-1). First assume that $c=0,\Rightarrow (x,y,z)=a(1,0,-1)+b(1,0,1)+d(0,1,-1)=(a,b+c,-a-c), \Rightarrow a=\frac{x-y-z}{2},b=\frac{x+y+z}{2}$ and $d=y,\Rightarrow (x,y,z)\in W_1+W_2$. So $\mathbb{R}^3=W_1+W_2$.

Now (x,y,z)=p(1,0,-1)+q(1,0,1)+r(0,1,2)+s(0,1,-1), assume s=0, then (x,y,z)=p(1,0,-1)+q(1,0,1)+r(0,1,2), $\Rightarrow p=\frac{x+2y-z}{2}, q=\frac{x-2y+z}{2}$ and r=y. Let v=(1,2,3). Write (1,2,3)=a(1,0,-1)+b(1,0,1)+d(0,1,-1), $\Rightarrow (1,2,3)=-2(1,0,-1)+3(1,0,1)+2(0,1,-1)=(1,0,5)+(0,2,-2)\in W_1+W_2.$ Let $(1,2,3)=p(1,0,-1)+q(1,0,1)+r(0,1,2)=(1,0,-1)+0(1,0,1)+2(0,1,2)=(1,0,-1)+(0,2,4)\in W_1+W_2.$

- (6) Decide which of the followings are linear transformation:
 - (i) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + 2y, z, |x|),
 - (ii) Let $M_n(\mathbb{R})$ be set of all $n \times n$ real matrices. $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ defined by
 - (a) $T(A) = A^T$,
 - (b) T(A) = I + A, where I is identity matrix of order n,
 - (c) $T(A) = BAB^{-1}$, where $B \in M_n(\mathbb{R})$ is an invertible matrix.

Solution.

(i) Not a linear transformation.

Take x = (1,0,1) and $a = -1 \in \mathbb{R}$. Then $T(ax) = T(-1,0,-1) = (-1,-1,1) \neq aT(x) = -1(1,1,1) = (-1,-1,-1)$.

(ii) (a) Linear Transformation.

Let $A, B \in M_n(\mathbb{R})$ and $a \in \mathbb{R}$. Then $T(A + aB) = A + aB^T = A^T + aB^T$.

(b) Not a linear transformation.

Let O be zero matrix, then $T(o) = I \neq O$.

(c) Linear transformation.

Let $P, Q \in M_n(\mathbb{R})$ and $a \in \mathbb{R}$, then $T(P + aQ) = B(P + aQ)B^{-1} = BPB^{-1} + aBQB^{-1} = T(P) + aT(Q)$.

(7) Let $T: \mathbb{C} \to \mathbb{C}$ defined by $T(z) = \overline{z}$, is \mathbb{R} -linear but not \mathbb{C} -linear.

Solution. Let $a+ib, c+id \in \mathbb{C}$ and $\alpha \in \mathbb{R}$, then $T((a+ib)+\alpha(c+id))=T(a+\alpha c+i(b+\alpha d))=a+\alpha c-i(b+\alpha d)=(a-ib)+\alpha(c-id)=T(a+ib)+\alpha T(c+id)$, hence T is \mathbb{R} -linear.

Let $T(i(i)) = T(-1) = -1 \neq iT(i) = i(-i) = 1$, hence not \mathbb{C} -linear.

(8) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(1,0,0) = (1,0,0), T(1,1,0) = (1,1,1), T(1,1,1) = (1,1,0). Find T(x,y,z), Ker(T), R(T) (Range of T). Prove that $T^3 = T$.

Solution. Let $(x, y, z) \in \mathbb{R}^3$. Then $(x, y, z) = (x - y)(1, 0, 0) + (y - z)(1, 1, 0) + z(1, 1, 1), \Rightarrow T((x, y, z)) = (x - y)T(1, 0, 0) + (y - z)T(1, 1, 0) + zT(1, 1, 1) = (x - y)(1, 0, 0) + (y - z)(1, 1, 1) + z(1, 1, 0) = (x, y, y - z).$

Let $x = (a, b, c) \in Ker(T)$, then T(x) = (a, b, b - c) = (0, 0, 0), $\Rightarrow (a, b, c) = (0, 0, 0)$. Hence $Ker(T) = \{(0, 0, 0)\}$.

$$R(T) = \{(x, y, y - z); x, y, z \in \mathbb{R}\} = <\{(1, 0, 0), (0, 1, 1), (0, 0, -1)\} > .$$

$$T^{3}((x, y, z)) = T^{2}((x, y, y - z)) = T((x, y, y - (y - z))) = T((x, y, z)).$$

(9) Find all linear transformations from \mathbb{R}^n to \mathbb{R} .

Solution. For all set of $\{a_1, ..., a_n \in \mathbb{R}\}$, there exist a linear transformation $T : \mathbb{R}^n \to \mathbb{R}$ such that $T((x_1, ..., x_n)) = a_1x_1 + + a_nx_n$.

(10) Let V and W be two finite dimensional vector spaces over k, where $k = \mathbb{R}$ or \mathbb{C} . Prove that set L(V, W) of all linear transformations from V to W is a vector space over k of dimension dim(V).dim(W).

Solution. Let dim(V) = n, dim(W) = m and Let $B_v = \{v_1, ..., v_n\}, B_w = \{w_1, ..., w_m\}$ be ordered basis for V and W respectively. Define a map $\phi: L(V, W) \to M_{m \times n}$ as $\phi(T) = [T]_{B_v}^{B_w}$, where $[T]_{B_v}^{B_w}$ is matrix of linear transformation T with respect to B_v and B_w . We show that ϕ is an isomorphism. Let $T, U \in L(V, W)$, then $\phi(T + U) = [T + U]_{B_v}^{B_w} = [T]]_{B_v}^{B_w} + [U]_{B_v}^{B_w} = \phi(T) + \phi(U)$ and for $\alpha \in k, \phi(\alpha T) = [\alpha T]_{B_v}^{B_w} = \alpha [T]_{B_v}^{B_w}$. So ϕ is linear.

To show ϕ to be one-one and onto, we show that for each $A \in M_{m \times n}$ there exist a unique $T \in L(V, W)$ such that $\phi(T) = A$. Consider

$$T_A(v_j) = \sum_{i=1}^m a_{ij} w_i \qquad 1 \le i \le n.$$

where a_{ij} is ij^{th} entry of A. This T_A is linear and $\phi(T_A) = A$. We now need to show that T_A is unique. Let $U \in L(V, W)$ such that $U(v_j) = \sum_{i=1}^m a_{ij} w_i$. Let $x \in V$ be any, then there exist $b_1, ..., b_n \in k$ such that $v = b_1 v_1 + ... + b_n v_n$ Then $U(x) = U(b_1 v_1 + ... + b_n v_n) = \sum_{i=1}^m a_{ij} w_i b_j = T_A(x)$. Hence $T_A = U$.

Hence $L(V, W) \cong M_{m \times n}, \Rightarrow L(V, W)$ is a vector space of dimension mn as $M_{m \times n}$ is a vector space of dimension of mn = dim(W).dim(V).