Galois Theory

Course Notes

22 February 2016 – 24 April 2016

1 About This Course

1.1 Suggested Reading

- S. Lang, *Algebra* (3rd ed., 2002) Contains many exercises. Parts V, VI, and VII are especially relevant.
- R. Elkik, Cours d'algebre (2002) In French. Closest in content to this course.
- J. S. Milne, *Fields and Galois Theory* (2015) Course notes. Available for free on the Web at http://www.jmilne.org/math/CourseNotes/ft.html. The last three chapters contain "interesting and important material" not covered in the course.
- I. Stewart, Galois Theory (2015) Less technically ambitious than this course, but includes history, and other applications such as ruler-and-compass constructions.

2 Week 1 Notes: 22 Feb - 28 Feb

2.1 Field extensions. Examples.

This course assumes a basic knowledge of abstract algebra (groups, rings, fields, modules), and linear algebra. All rings we consider will be associative, commutative, and with unity.

2.1.1 Two definitions of field extension.

Let K and L be fields.

Definition 1. We say that L is an **extension of** K if $K \subset L$. That is, K is a subfield of L. Equivalently, L is an extension of K if L is a K-algebra—in other words, if we have $(k_1\mathbf{a_1})(k_2\mathbf{a_2}) = k_1k_2\mathbf{a_1a_2}$ for $k_i \in K$ and $\mathbf{a_i} \in A$.

Why are these definitions equivalent? In fact, given a K-algebra structure on a ring A, this is the same as having a homomorphism of rings $f: K \to A$. So if we have a K-algebra, define a homomorphism f by setting $f(k) = k\mathbf{1}$ for $k \in K$. Conversely, given an arbitrary homomorphism $f: K \to A$, set $k\mathbf{a} = f(k)\mathbf{a}$ for $\mathbf{a} \in A$.

Suppose now that A = L a field. Then any homomorphism $f : K \to L$ is injective. There are several ways to see this; for example, we can show that f(k) is always invertible. Indeed, $\mathbf{1} = f(1) = f(kk^{-1}) = f(k)f(k^{-1})$ for any $k \neq 0$, so $f(k) \neq \mathbf{0}$ whenever k is nonzero. Alternatively, we know that the kernel of f is always an ideal. But L is a field, so the only ideals of L are (0) and (1) = K.

2.1.2 Three examples.

Example 1. \mathbb{C} is an extension of \mathbb{R} , and \mathbb{R} is an extension of \mathbb{Q} .

Example 2. If L is a field, then either (a) $1 + 1 + \ldots + 1 \neq 0$ for any sum of 1's. Then L has characteristic 0 and so we have $\mathbb{Z} \subset L$, which means $\mathbb{Q} \subset L$. Then L is an extension of \mathbb{Q} . Alternatively, suppose (b) $1 + 1 + \cdots + 1 = 0$ for some finite m number of terms. The minimal such number for which this is true turns out to necessarily be a prime, p. We then say that L has characteristic p, and so we have $\mathbb{Z}/p\mathbb{Z} \subset L$; $\mathbb{Z}/p\mathbb{Z}$ is a field, and we denote it (with field structure) by \mathbb{F}_p . In this case L is an extension of \mathbb{F}_p . We call \mathbb{Q} and \mathbb{F}_p the **prime fields**: any field is an extension of a prime field, and prime fields don't contain any proper subfields.

Example 3. Take K[x]/(P), the ring of polynomials in one variable over K, modded out by the ideal of an irreducible polynomial P. This is a field. Suppose $Q \notin (P)$, then gcd(Q, P) = 1, so for some polynomials A, B we have AP + BQ = 1 by Bézout's identity. Hence $BQ \equiv 1 \pmod{P}$, that is, B is an inverse of Q in K[x]/(P).

2.2 Algebraic elements. Minimal polynomial.

We continue with the previous example: the quotient K[x]/(P) is a field. Rather than Bézout's identity, we can say that (P) is a **maximal ideal** of K[x], and the quotient of a ring by a maximal ideal is always a field. The proof of this fact uses the same identity.

This field is an extension of K in the obvious way: it is a K-algebra!

2.2.1 A concrete example.

Let $K = \mathbb{F}_2 = \{0,1\} = \mathbb{Z}/2\mathbb{Z}$, and $P = x^2 + x + 1$. Then K[x]/(P) contains four elements: 0, 1, the class containing x (denoted by \bar{x} , and the class containing x + 1 (denoted by $\overline{x+1}$). We have that $\bar{x}^2 = -\bar{x} - 1 = \overline{x+1}$ since K has characteristic 2. Similarly $(\overline{x+1})^2 = \bar{x}$. Moreover, these elements are inverses of each other: $\bar{x}(\overline{x+1}) = \bar{x}^2 + \bar{x} = -1 = 1$. Since |K[x]/(P)| = 4, we write $K[x]/(P) = \mathbb{F}_4$. This notation seems presumptuous, implying that there is "only" one field with four elements: in fact every field with a given finite number of elements is isomorphic, so this is true. A proof will come later.

2.2.2 Algebraic elements of a field extension.

Example 4. Given a field extension $K \subset L$ and an element $\alpha \in L$, we say that α is **algebraic** if there exists some polynomial $P \in K[x]$ such that $P(\alpha) = 0$; if no such polynomial exists, we say that α is **transcendental**.

Lemma 1. If α is algebraic, then there exists a unique unitary polynomial P of minimal degree with $P(\alpha) = 0$. P is irreducible, and for any Q such that $Q(\alpha) = 0$, then Q is divisible by P.

Definition 2. We call such a polynomial P the **minimal polynomial of** α **over K**, denoted $P_{\min}(\alpha, K)$.

Proof of lemma. We know that K[x] is a **principal ideal domain**, and the polynomials $I = \{Q \in K[x] : Q(\alpha) = 0 \text{ forms an ideal. Thus } I \text{ has a generator, so } I = (P) \text{ for some } P.$ This generator is a

unique (up to a constant) element of minimal degree in I. Furthermore, if P was not irreducible—if P = QR—then $P(\alpha) = Q(\alpha)R(\alpha)$ and so at least one of $Q(\alpha) = 0$ or $R(\alpha) = 0$. This would contradict the minimal-degree condition on P.

2.3 Algebraic elements. Algebraic extensions.

2.3.1 An important bit of notation.

Definition 3. We denote by $K(\alpha)$ the smallest subfield of L containing α . We say that $K[\alpha]$ (note the square braces) is the smallest subring (or K-algebra) containing K and α .

 $K[\alpha]$ is generated, as a vector space over K, by $1, \alpha, \alpha^2, \ldots, \alpha^n, \ldots$

Example 5. $\mathbb{C} = \mathbb{R}(i)$ as a field, but also $\mathbb{C} = \mathbb{R}[i]$ as a ring. Every $z \in \mathbb{C}$ can be written z = x + iy; this is a vector subspace generated by 1, i.

Proposition 1. The following are equivalent: (1) α is algebraic over K; (2) $K[\alpha]$ is a finite dimensional vector space over K; (3) $K[\alpha] = K(\alpha)$.

Proof. (1) \Rightarrow (2): We have that $\alpha^d + a_{d-1}\alpha^{d-1} + \ldots + \alpha_1\alpha + a_0 = 0$ for $a_i \in K$ (this is just the minimal polynomial). Then $\alpha^d = -\left(\sum_{k=0}^{d-1} a_k \alpha^k\right)$, a linear combination of the lower powers of α . Therefore $K[\alpha]$ is generated by $1, \alpha, \ldots, \alpha^{d-1}$ over K: it is finite-dimensional.

 $(2) \Rightarrow (3)$: It is enough to prove that $K[\alpha]$ is a field, since $K[\alpha] \subset K(\alpha)$. Let $x \in K[\alpha]$ nonzero. We want to show that x is invertible. Consider the operation of multiplication by x, that is, $y \mapsto xy$ for $y \in K[\alpha]$: this is an injective homomorphism of vector spaces over K. But as $K[\alpha]$ is finite-dimensional, this is also a surjection, so there exists $z \in K[\alpha]$ such that xz = 1. Hence x is invertible, and so $K[\alpha]$ is a field.

(3) \Rightarrow (1): If α is not algebraic, then there exists no polynomial P such that $P(\alpha) = 0$. This means that the natural homomorphism $i: K[x] \to L$ defined by $P \mapsto P(\alpha)$ is injective, but $K[\alpha]$ is not a field, and the image of i is a field. Contradiction!

2.3.2 Definition and properties of algebraic extensions.

Definition 4. L is called **algebraic** over K if every element of L is algebraic over K.

Proposition 2. If L is algebraic over K, then any K-subalgebra of L is a field.

Proof. Let $L' \subset L$ be a subalgebra. We know that $\alpha \in L'$ algebraic. Then $K[\alpha] \subset L$ is a field, so α is invertible (when nonzero). This holds for any such (nonzero) α , so L' is a field.

Proposition 3. If $K \subset L \subset M$, and $\alpha \in M$ is algebraic over K, then α is algebraic over L and its minimal polynomial $P_{\min}(\alpha, L)$ divides $P_{\min}(\alpha, K)$.

Proof. Consider $P_{\min}(\alpha, K)$ as an element of L[x].

- 2.4 Finite extensions. Algebraicity and finiteness.
- 2.5 Algebraicity in towers. An example.
- 2.6 A digression: Gauss lemma, Eisenstein criterion.