## **Definition** – $\mathbb{Z}$ -Functor

Define  $\mathbb{M} := \mathbb{Z}\mathbf{Alg}^{op}$ . The *category of*  $\mathbb{Z}$ -*functors*  $\mathbb{M}\mathbf{Set}$  is define to be the category of presheaves of sets on  $\mathbb{M}$ . For  $X \in \mathbb{M}\mathbf{Set}$  and  $A^{op} \in \mathbb{M}$ , elements of  $X(A^{op})$  are called *morphisms from*  $A^{op}$  *to* X.

Define  $\operatorname{Sp}: \mathbb{M} \to \mathbb{M}$  Set to be the fully faithful Yoneda embedding  $A^{op} \mapsto \mathbb{M}(-, A^{op})$ . For  $A \in \mathbb{Z}$  Alg,  $\operatorname{Sp} A$  is called the *spectrum of* A. The *category of affine schemes* is defined to be the essential image of  $\operatorname{Sp}$ . We will denote it with Aff.

## Proposition - Yoneda

The following are true:

- ("Morphisms from  $A^{op}$  to X are Morphisms from  $\operatorname{Sp} A$  to X") For  $X \in \mathbb{M}$ Set and  $A^{op} \in \mathbb{M}$ ,

$$\mathbb{M}\mathbf{Set}(\operatorname{Sp} A, X) \xrightarrow{\sim} X(A^{op})$$

by  $\alpha \mapsto \alpha_{A^{op}}(\mathbb{1}_{A^{op}})$ . Furthermore, this is functorial in  $A^{op}$  and X.

– (Density of Representables / "The data of X is precisely how test spaces map into it") For  $X \in \mathbb{M}\mathbf{Set}$ , X is the colimit of the diagram  $\mathrm{Sp} \downarrow X \to \mathbb{M}\mathbf{Set}$ , i.e. morphisms out of X are determined by restricting along morphisms from affine schemes to X.

*Proof.* Straightforward.

## Proposition - Affine Line

Let  $n \in \mathbb{N}$ . Define affine n-space to be  $\mathbb{A}^n \in \mathbb{M}$ Set sending  $A^{op} \mapsto A^n$ . Then

- $\mathbb{A}^n$  is representable by  $\mathbb{Z}[T_1,\ldots,T_n]^{op}$ . Hence  $\mathbb{A}^n\in\mathbf{Aff}$ .
- for n = 1,  $\mathbb{A}^1$  is a ring object in MSet. Hence for  $X \in M$ Set,  $\mathcal{O}(X) := M$ Set $(X, \mathbb{A}^1) \in \mathbb{Z}$ Alg. This is called the *ring of global functions on* X and gives a functor  $\mathcal{O}(\star) : M$ Set $\to \mathbb{Z}$ Alg<sup>op</sup>. We call elements of  $\mathcal{O}(X)$  functions on X.

Concretely on morphisms  $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$ , the corresponding ring morphism  $\varphi^{\flat} : \mathcal{O}(X) \to \mathcal{O}(Y)$  is given by  $f \mapsto f \circ \varphi$ , i.e. pulling back along  $\varphi$ .

- (Spec, Global Function Adjunction)

$$MSet(-, Sp \star) \cong \mathbb{Z}Alg(\star, \mathcal{O}(-))$$

– (Canonical Choice of Spectrum for Affine Schemes) for  $X \in \mathbb{M}$ , X is affine if and only if  $\mathbb{1}^{\perp}_{\mathcal{O}(X)}: X \to \operatorname{Sp} \mathcal{O}(X)$  is an isomorphism of  $\mathbb{Z}$ -functors, where  $\mathbb{1}^{\perp}_{\mathcal{O}(X)}$  is the adjunct of  $\mathbb{1}_{\mathcal{O}(X)}$  under the previous adjunction.

*Proof.* (Spec, Global Function Adjunction) Follows from this chain of bijections functorial in A and X given by

the density of representables:

$$\begin{split} \mathbb{M}\mathbf{Set}(X,\operatorname{Sp}A) &\cong \varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} \mathbb{M}\mathbf{Set}(\operatorname{Sp}B,\operatorname{Sp}A) \cong \varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} \mathbb{Z}\mathbf{Alg}(A,B) \cong \mathbb{Z}\mathbf{Alg}\left(A,\varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} B\right) \\ &\cong \mathbb{Z}\mathbf{Alg}\left(A,\varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} \mathbb{M}\mathbf{Set}(\operatorname{Sp}B,\mathbb{A}^1)\right) \cong \mathbb{Z}\mathbf{Alg}(A,\mathbb{M}\mathbf{Set}(X,\mathbb{A}^1)) = \mathbb{Z}\mathbf{Alg}(A,\mathcal{O}(X)) \end{split}$$

(*Affine Schemes*) The reverse implication is clear. Let  $X \xrightarrow{\sim} \operatorname{Sp} A$  be an isomorphism in  $\mathbb{M}\mathbf{Set}$ . The adjunction  $\mathbb{M}\mathbf{Set}(X,\operatorname{Sp} A) \cong \mathbb{Z}\mathbf{Alg}(A,\mathcal{O}(X)) \cong \mathbb{M}\mathbf{Set}(\operatorname{Sp} \mathcal{O}(X),\operatorname{Sp} A)$  gives the commutative diagram :



where the dashed has the composition of the other two morphisms as an inverse, and hence an isomorphism.

*Remark* – *Intuition of Affine n-Space.* For a smooth manifold X, a smooth map  $\varphi: X \to \mathbb{R}^n$  is equivalent to the data of n global smooth functions  $f_1, \ldots, f_n$  on X, i.e.

$$C^{\infty}\mathbf{Mfd}(X,\mathbb{R}^n) \cong C^{\infty}(X)^n$$

" $\mathbb{R}^n$  is the classifying space of n-tuples of global smooth functions." In the functorial POV of algebraic geometry, we take this as our definition of affine n-space.

## **Proposition – Categorical Properties of** Z**-Functors**

The following are true:

– (Completeness and Cocompleteness)  $\mathbb{M}\mathbf{Set}$  has all (small) limits and colimits, all computed pointwise.

In particular, a morphism  $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$  is respectively a mono/epi/isomorphism if and only if for all  $A \in \mathbb{M}^{op}$ ,  $\varphi_A : Y(A) \to X(A)$  is injective/surjective/bijective.

- (Base Change) For  $K \in \mathbf{CRing}$ , define the *category of K-functors* to be the over-category  $\mathbb{M}\mathbf{Set}/\operatorname{Sp} K$ . In particular, we call  $\mathbf{Aff}/\operatorname{Sp} K$  the *category of affine K-schemes*.

Then we have for  $\varphi \in \mathbb{M}\mathbf{Set}(\operatorname{Sp} L, \operatorname{Sp} K)$ , we have the following adjunction

$$(\mathbb{M}\mathbf{Set}/\operatorname{Sp} L)(-,\operatorname{Sp} L\times_{\operatorname{Sp} K}(\star))\cong (\mathbb{M}\mathbf{Set}/\operatorname{Sp} K)(-,\star)$$

Furthermore, this restricts to an adjunction between  $\mathbf{Aff}/\operatorname{Sp} L$  and  $\mathbf{Aff}/\operatorname{Sp} K$ , i.e. the pullback of affine schemes is affine.

 ${\it Proof.}$  ( ${\it Base Change}$ ) The first adjunction is categorical. For the restriction to affine schemes over  ${\it K}$  and  ${\it L}$ , note that for any  ${\it K}$ -algebra  ${\it A}$ ,

$$\operatorname{Sp} L \times_{\operatorname{Sp} K} \operatorname{Sp} A$$
 "="  $\operatorname{Sp} (L \otimes_K A)$