Chapter 1

Groups and Rings

Lectured by Someone Typed by Yu Coughlin Autumn 2024

Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

Contents

1	Gro	Groups and Rings		
	1	Quotie	nt groups	
		1.1	Group homomorphisms $\dots \dots \dots$	
		1.2	Normal subgroups	
		1.3	Quotient groups	
		1.4	Isomorphism theorems	
		1.5	Centres	
		1.6	Commutators	
		1.7	Torsion and p -primary subgroups	
		1.8	Generators	
		1.9	Classification of finitely generated Abelian groups	
	2	Group	actions	
		2.1	Actions	
		2.2	Orbit-stabiliser theorem	
		2.3	Jordan's theorem	
	3	Rings		
		3.1	Rings	
		3.2	Ring homomorphisms	
		3.3	Ideals	
	4	Integra	al domains	
		4.1	Integral domains	
		4.2	Charateristic	
		4.3	Vector spaces	
	5	PIDs a	and UFDs	
		5.1	Polynomial rings	
		5.2	Euclidian domains	
		5.3	Principal ideal domains	
		5.4	Unique factorisation domains	
	6	Fields	7	
		6.1	Field extensions	
		6.2	Constructing fields	
		6.3	Existence of finite fields	

1 Quotient groups

1.1 Group homomorphisms

Definition 1.1.1 (Group isomorphism). Given groups G, H, a function $f: G \to H$ is a **group isomorphism** if it is a bijective group homomorphism. If there exists an isomorphism between groups, G is **isomorphic** to H written $G \cong H$.

Definition 1.1.2 (Group automorphism). Given G a group, an isomorphism $f: G \xrightarrow{\sim} G$ is a **group automorphism**.

Theorem 1.1.3. Aut G (the set of automorphisms of a group G) is a group under function composition.

Proof.

Theorem 1.1.4. Given groups G, H, if $f: G \xrightarrow{\sim} H$ then $f^{-1}: H \xrightarrow{\sim} G$.

Proof.

1.2 Normal subgroups

Definition 1.2.1 (Normal subgroup). A sugroup N of G is **normal**, written $N \leq G$, if it satisfies any of these equal properties:

- (N1) N is the kernel of some homomorphism,
- (N2) N is stable under conjugations $(\forall n \in N \text{ and } g \in G, gng^{-1} \in N)$,
- (N3) for all $g \in G$ gN = Ng.

Proof of equivalence. \Box

1.3 Quotient groups

Definition 1.3.1 (Quotient groups). Let $N \subseteq G$, the quotient group of G modulo N, written G/N, is the group with elements as left cosets of N in G with $(g_1N) \cdot (g_2N) = (g_1g_2N)$.

Proof. One can easily check this satisfies all of the group axioms.

Remark 1.3.2. By Lagrange's theorem |G/N| = |G|/|N|.

Definition 1.3.3 (Simple group). A group G is **simple** if it has no normal subgroups except $\{e_G\}$ and G.

1.4 Isomorphism theorems

Theorem 1.4.1 (First isomorphism theorem). If $f: G \to H$ is a group homomorphism, $G/\ker f \cong \operatorname{im} f$.

Proof. Have $\phi: G/\ker f \to \operatorname{im} f$ with $\phi: g \ker f \mapsto f(g)$.

Theorem 1.4.2 (Universal property of quotients). Let $N \subseteq G$ and $f: G \to H$ be a group homomorphism such that $N \subseteq \ker f$. There exists a *unique* homomorphism $\tilde{f}: G/N \to H$ such that the diagram

commutes, (here $\pi: G \to G/N$ is the projection map with $\pi: g \to gN$).

Proof. The proof follows Theorem 1.4.1 with $H = \operatorname{im} f$.

Definition 1.4.3 (Frobenius product). Given $A, B \subseteq G$ a group, the **(Frobenius) product** of A and B is

$$AB := \{ab \in G : a \in A, b \in B\}.$$

Lemma 1.4.4. Given $H, N \leq G$ a group, N is normal $\implies HN \leq G$ and N, H normal $\implies HN \leq G$.

Proof.

Theorem 1.4.5 (Second isomorphism theorem). If $H \leq G$ and $N \leq G$, $H/(H \cap N) \cong (HN)/N$. This is ometimes called the *diamond theorem* due to the shape of the subgroup lattice it produces:

where arrows point to subgroups.

Note 1.4.6. There are third and fourth isomorphism theorems that will not appear in this module.

1.5 Centres

Definition 1.5.1 (Inner automorphisms). Given the group G the conjugations by elements of G form the group $Inn G \subseteq Aut G$.

Proof.

Definition 1.5.2 (Centre of group). Given the group G the elements of G that commute with all other elements form the **centre** of G, $Z(G) \subseteq G$.

Proof of normality. Have $\phi: G \to \operatorname{Aut} G$ with $\phi: g \mapsto \operatorname{conjugation} \operatorname{by} g, \ker \phi = Z(G)$.

Theorem 1.5.3. If G/Z(G) is cyclic, G is Abelian.

Proof.

Definition 1.5.4 (p-group). A finite group G is a p-group is the order of G is a power of prime p.

Theorem 1.5.5. Let G be a p-group, $Z(G) \neq \{e_G\}$.

1.6 Commutators

Definition 1.6.1 (Commutator). For $a, b \in G$ a group, we have $[a, b] := aba^{-1}b^{-1}$ the **commutator** of a and b. [G, G] is the smallest subgroup of G containing all commutators of elements of G, called the **commutator** of G.

Remark 1.6.2. A group G is Abelian iff $[G, G] = e_G$.

Theorem 1.6.3. Given G a group, $[G,G] \triangleleft G$ with its quotient in G Abelian.

Theorem 1.6.4. Let $N \subseteq G$, G/N is Abelian iff $[G, G] \subseteq N$.

Theorem 1.6.5. Given a group G with $A, B \subseteq G$, $A \cap B = \{e_G\}$ and AB = G; $A \times B \cong G$.

1.7 Torsion and p-primary subgroups

Definition 1.7.1 (Torsion subgroup). Given an abelian group G, the set of elemnts of G with finite order form the **torsion subgroup** of G, denoted G_{tors} . When $G = G_{tors}$, we call G a **torsion Abelian group**.

Definition 1.7.2 (*p*-primary subgroups). Given an abelian group G, the set of elements of g with order p (a prime) is the p-primary subgroup of G, written $G\{p\}$. When $G = G_G\{p\}$, we call G a p-primary torsion Abelian group.

Theorem 1.7.3. Let the prime factorisation of $n \in \mathbb{N}$ be $p_1^{a_1} p_2^{a_2} \dots p_m^{a_m}$ with C_n the cyclic group of order

$$C_n \cong C_{p_1^{a_1}} \times C_{p_2^{a_2}} \times \cdots \times C_{p_m^{a_m}}.$$

Proof.

1.8 Generators

Lemma 1.8.1. Given an indexing set \mathcal{I} , and a sequence of subgroups $(H_i)_{i \in \mathcal{I}} \leq H$, $\bigcap_{i \in \mathcal{I}} H_i \leq G$.

Definition 1.8.2 (Subgroup generated by a set). Given $S \subseteq G$ a group,

$$\langle S \rangle := \left(\bigcap_{S \subseteq H \le G} H \right) \le G$$

is the subgroup of G generated by S. If $\langle S \rangle = G$ then we say S generates G and G is finitely generated is S is finite.

1.9 Classification of finitely generated Abelian groups

Definition 1.9.1 (Free Abelian group of rank n). The Free Abelian group of rank n is the group \mathbb{Z}^n under addition. The free abelian group of rank 0 is the trivial group.

Lemma 1.9.2. If $\mathbb{Z}^m \cong \mathbb{Z}^n$ then n=m, so the rank of a free abelian group is well defined.

Lemma 1.9.3. Any subgroup of \mathbb{Z}^n is isomorphic to some \mathbb{Z}^m for some $m \leq m$.

Theorem 1.9.4. Every finitely generated Abelian group is isomorphic to a product of finitely many cyclic groups.

Theorem 1.9.5. Every finitely generated Abelian group is isomorphic to a product of finitely many infinite cyclic groups and finitely many cyclic groups of prime order. The number of ininfite cyclic factors and the number of cclic factors of order p^r , where p is primse and $r \in \mathbb{N}$ is determined solely by the group.

Theorem 1.9.6. A finitely generated Abelian group, G, is not cyclic iff there exists a prime p such that $G \cong C_p \times C_p$.

2 Group actions

2.1 Actions

Definition 2.1.1 (Actions). Given a group G and a set X, a group action is: a binary operation

$$\begin{array}{cccc} \cdot & : & G \times X & \longrightarrow & X \\ & (g,x) & \longmapsto & g \cdot x \end{array}$$

with $e_G \cdot x = x$ for all $x \in X$ and $(g_1g_2) \cdot x = g_1 \cdot (g_2x)$ for all $g_1, g_2 \in G$ and $x \in X$; or, equivalently, a homomorphism $\rho : G \to \operatorname{Sym}(X)$.

Definition 2.1.2 (Faithful set). An action of a group G on a set X is **faithful** if the map $\rho: G \to \operatorname{Sym}(X)$ is injective.

2.2 Orbit-stabiliser theorem

Definition 2.2.1 (Orbit). Given a group G acting on a set X, the G-orbit of $x \in X$ is

$$G(x):=\{g\cdot x:g\in G\}\subseteq X.$$

Orbits partition X into X/G.

Definition 2.2.2 (Stabiliser). Given a group G acting on a set X, the stabiliser of $x \in X$ is

$$\operatorname{Stab}_G(x) := \{ g \in G : g \cdot x = x \} \subseteq G.$$

Stabilisers also partition G.

Lemma 2.2.3. Given a group G acting on a set X, $\operatorname{Stab}_G(g \cdot x) = g \operatorname{Stab}_G(x) g^{-1}$

Theorem 2.2.4 (Orbit-stabiliser theorem). Given a group G acting on a set X. For all $x \in X$, we have $\phi_x : G/\operatorname{Stab}(x) \xrightarrow{\sim} G(x)$ by $\phi_x : g\operatorname{Stab}(x) \mapsto g \cdot x$, giving $|G(x)| = |G| \cdot |\operatorname{Stab}(x)| = |G| / |\operatorname{Stab}(x)|$.

Proof. asdfsd \Box

Corollary 2.2.5.
$$|X| = \sum_{i=1}^{n} |G(x_i)| = \sum_{i=1}^{n} [G : Stab(x_i)].$$

Corollary 2.2.6 (Cayley's theorem). Let G be a finite group of order n. Then S_n contains a finite subgroup isomorphic to G.

Corollary 2.2.7 (Cauchy's theorem). Let G be a finite group of order n and let p be a prime factor of n. Then G contains an element of order p.

2.3 Jordan's theorem

Definition 2.3.1 (Transitive action). Given a group G acting on a set X, if X is a G-orbit then we say G acts **transitively** on X.

Definition 2.3.2 (Fixed points). Given a group G acting on a set X, an element $x \in X$ is a fixed point of $g \in G$ iff $g \cdot x = x$. We have $Fix(g) \subseteq X$ the set of fixed points of $g \in G$ satisfying:

$$\mathrm{Stab}(x) \xleftarrow[\pi_G]} \{(x,g) \in X \times G; \ g \cdot x = x\} \xrightarrow[\pi_X]{} \mathrm{Fix}(g)$$
 .

Theorem 2.3.3 (Jordan's theorem). Let G act transitively on a finite set X, we have

$$\sum_{g \in G} |\operatorname{Fix}(g)| = |G|,$$

with there being some element $g \in G$ such that $Fix(g) = \emptyset$.

Corollary 2.3.4 (Burnside's lemma). Given a group G acting on a finite set X:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$$

3 Rings

3.1 Rings

Definition 3.1.1 (Ring). A ring (with 1) is a set R with elements 0, 1 and binary operations $+, \times$ such that

- 1. (R, +) is an abelian group with identity 0,
- 2. (R, \times) is a semigroup with 1 as the identity,
- 3. both left and right multiplication are distributive over addition.

Examples 3.1.2. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all rings with their normal operations. $\mathbb{R}[x]$ is the set of real-valued polynomials and is also a ring.

Definition 3.1.3 (Subring). A subset of a ring wich is itself a ring under the same operators with the same 1 is a **subring**.

Definition 3.1.4 (Commutative ring). A ring, R, is commutative iff a + b = b + a for all $a, b \in \mathbb{R}$.

Definition 3.1.5 (Invertible). An element x of a ring R is invertible if there exists $y, z \in R$ with yx = zx = 1.

Definition 3.1.6 (Division ring). A ring R is called a **division ring** if $R \setminus \{0\}$ is a group under multiplication with identity 1.

Remark 3.1.7. A commutative division ring is a field.

- 3.2 Ring homomorphisms
- 3.3 Ideals
- 4 Integral domains
- 4.1 Integral domains
- 4.2 Charateristic
- 4.3 Vector spaces
- 5 PIDs and UFDs
- 5.1 Polynomial rings
- 5.2 Euclidian domains
- 5.3 Principal ideal domains
- 5.4 Unique factorisation domains
- 6 Fields
- 6.1 Field extensions
- 6.2 Constructing fields
- 6.3 Existence of finite fields