Chapitre 22

Espaces vectoriels

Dans tout ce chapitre, la lettre K désignera le corps \mathbb{R} ou \mathbb{C} .

Soit X un ensemble. Une famille d'élements de X indexée par un ensemble I est une application $x: I \longrightarrow X$, que l'on note $(x_i)_{i \in I}$, où $x_i = x(i)$. L'ensemble I est l'ensemble d'indexation ou encore l'ensemble des indices.

Par exemple si $I = \mathbb{N}$, on a une suite d'éléments de X, et si I est un ensemble fini à p éléments, la famille est finie. On note alors aussi $(x_i)_{1 \leq i \leq p}$ (si $I = \{1, \ldots, p\}$), et la famille est souvent confondue avec le p-uplet (x_1, \ldots, x_p) .

Une sous-famille d'une famille $(x_i)_{i\in I}$ est une famille $(x_i)_{i\in J}$, où J est un sous-ensemble de I.

Une sur-famille d'une famille $(x_i)_{i\in I}$ est une famille $(x_i)_{i\in J}$, où J est un ensemble tel que $I\subset J$.

Cas particulier : une famille de scalaires est une famille d'éléments de K. Une telle famille $(\lambda_i)_{i\in I}$ est à support fini si au plus un nombre fini de λ_i sont non nuls. Lorsque $I=\mathbb{N}$, la famille est à support fini (ou presque nulle) s'il existe $n\in\mathbb{N}$ tel que $\lambda_i=0$ pour i>n.

1 Espaces vectoriels

1.1 Définition

Définition 1.1 (Espace vectoriel)

Un K-espace vectoriel est un triplet $(E, +, \cdot)$ où (E, +) est un groupe commutatif muni d'une application $\cdot : K \times E \longrightarrow E$ (multiplication par les scalaires) telle que, pour tous, $x, y \in E$ et $\lambda, \mu \in K$, on ait

1.
$$\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x = (\mu \lambda) \cdot x = \mu \cdot (\lambda \cdot x)$$
.

- 2. $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$.
- 3. $\lambda \cdot (x +_E y) = \lambda \cdot x + \lambda \cdot y$.
- 4. $1 \cdot x = x$, où $1 \in K$ est l'élément neutre pour la multiplication.

Les éléments de E sont appelés vecteurs, et ceux de K les scalaires.

Remarques.

- 1. Pour alléger les notations, on note en général λx au lieu de $\lambda \cdot x$.
- 2. Rappelons que $\lambda\mu$ signifie $\lambda \times \mu$, où \times est la multiplication dans le corps K. À ne pas confondre avec la notation précédente. À chaque étape des calculs vous devez vérifier si vous avez bien compris de quelle multiplication il est question.
- 3. Il ne faut pas confondre les deux additions (de K et de E). Il est fortement conseillé de vérifier à chaque étape si vous avez bien compris de quelle opération il s'agit.
- 4. De même, les deux groupes commutatifs (E, +) et (K, +) ont un élément neutre pour l'addition, noté 0 dans les deux cas. Il ne faut pas les confondre. Parfois, on note $+_K$, $+_E$, 0_K et 0_E lorsqu'on veut insister sur la différence, mais de telles notations sont lourdes.

Proposition 1.2

Soit $(E, +, \cdot)$ un K-espace vectoriel. Pour tout $x \in E$ et $\lambda \in K$, on a

$$0 \cdot x = 0$$
 et $\lambda \cdot 0 = 0$.

Remarque.

Cette proposition est un excellent exercice de "reconnaissance" : qui sont les "+" et les "0"?

Proposition 1.3

Soit $(E, +, \cdot)$ un K-espace vectoriel. Pour tout $x \in E$, on a (-1).x = -x.

1.2 Sous-espaces vectoriels

Définition 1.4 (Sous-espace vectoriel)

Soit $(E, +, \cdot)$ un K-espace vectoriel. Un sous-espace vectoriel de E est un sous-ensemble non vide F de E tel que pour tous $\lambda \in K$ et $x, y \in F$,

- 1. $\lambda x \in F$ (F est stable par multiplication par les scalaires).
- 2. $x + y \in F$ (F est stable par addition).

Proposition 1.5

Soit F un sous-espace vectoriel de E. Alors $0 \in F$.

Méthode 1.6

Pour montrer que F est non vide, on montre souvent que l'élément neutre 0 du groupe (E, +) est dans F.

Proposition 1.7

Soit $(E, +, \cdot)$ un K-espace vectoriel. Un sous-ensemble F de E est un sous-espace vectoriel de E si et seulement si F est un sous-groupe de (E, +) stable par multiplication par les scalaires.

Proposition 1.8

Un sous-espace vectoriel F d'un K-espace vectoriel $(E, +, \cdot)$ est un K-espace vectoriel pour les lois induites.

Méthode 1.9

Pour montrer qu'un ensemble est muni d'une structure d'espace vectoriel, on montre souvent que c'est un sous-espec vectoriel d'un espace connu.

Proposition 1.10 (Caractérisation d'un sous-espace vectoriel)

Soit $(E, +, \cdot)$ un K-espace vectoriel, et F un sous-ensemble non vide de E. Alors F est un sous-espace vectoriel de E si et seulement si

$$\forall \lambda, \mu \in K, \ \forall x, y \in F, \ \lambda x + \mu y \in F.$$

(On dit que F est stable par combinaisons linéaires), ou encore si et seulement si

$$\forall \lambda \in K, \ \forall x, y \in F, \ \lambda x + y \in F.$$

Proposition 1.11 (Intersections de sous-espace vectoriel)

L'intersection d'une famille quelconque de sous-espaces vectoriels de E est un sous-espace vectoriel de E.

Remarque.

C'est fux pour l'union, cf td.

2 Exemples fondamentaux

2.1 Ensembles de fonctions

Dans tout ce paragraphe, on fixe un ensemble non vide X, un corps K (généralement \mathbb{R} ou \mathbb{C}), et un K-espace vectoriel E.

On rappelle que K^X et $\mathcal{F}(X,K)$ désigne l'ensemble des fonctions de X vers K.

Définition 2.1

Soient $f, g \in E^X$, et $\lambda \in K$.

1. La somme f + g est la fonction de X vers E définie par :

$$\forall x \in X, (f+g)(x) = f(x) + g(x).$$

2. La fonction λf est la fonction de X vers E définie par :

$$\forall x \in X, (\lambda f)(x) = \lambda f(x).$$

Remarques.

- 1. Ici, il est très important de bien savoir quelles sont ces opérations "+", " \times ", " \cdot " qu'on utilise : c'est dans K? Dans E? Cela demande un peu travail pour que la réponse vienne facilement.
- 2. Les opérations que l'on vient de définir sont les "lois usuelles" sur E^X et sur K^X . Ce sont les additions et multiplications "point par point".
- 3. Un cas particulier important : E = K! En effet, K est bien un K-espace vectoriel.

Proposition 2.2

L'ensemble E^X muni des lois usuelles est un K-espace vectoriel. L'élément neutre pour l'addition est la fonction identiquement nulle.

Remarque.

En prenant E = K dans le 1, on voit aussi que K^X est un K-espace vectoriel pour les lois usuelles.

Il est temps de faire des exemples d'exemples...

2.2 Espaces vectoriels de polynômes

On fixe un corps K.

Proposition 2.3

L'ensemble K[X] muni des lois usuelles est un K-espace vectoriel.

Proposition 2.4

Soit $n \in \mathbb{N}$. L'ensemble $K_n[X]$ muni des lois usuelles est un sous-espace vectoriel de K[X].

2.3 Produit cartésien

Proposition 2.5 (Produit d'espaces vectoriels)

1. Soit E et F deux K-espaces vectoriels. Le produit cartésien $E \times F$ de E et F est muni d'une structure d'espace vectoriel avec, pour $(x, y), (x', y') \in E \times F$ et $\lambda \in K$

$$(x,y) + (x',y') = (x+x',y+y')$$
 et $\lambda(x,y) = (\lambda x, \lambda y)$.

2. Plus généralement, le produit cartésien de $n \in \mathbb{N}^*$ K-espaces vectoriels E_1, \ldots, E_n est muni d'une structure de K-espace vectoriel avec , pour $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in E_1 \times \cdots \times E_n$ et $\lambda \in K$,

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n), \qquad \lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n).$$

3 Combinaisons linéaires, sous-espace vectoriel engendré par des vecteurs

Dans ce parapgraphe, on fixe un K-espace vectoriel E. On rappelle qu'un sous-espace vectoriel d'un espace vectoriel E est lui-même un espace vectoriel. Les résultats qui suivent s'appliquent donc aussi aux sous-espaces vectoriels de E.

3.1 Combinaisons linéaires, sous-espace vectoriel engendré

Définition 3.1 (Combinaisons linéaires, sous-espace vectoriel engendré)

1. Les combinaisons linéaires de $p \in \mathbb{N}$ vecteurs x_1, \ldots, x_p de E sont les vecteurs de E de la forme

$$\sum_{i=1}^{p} \lambda_i x_i, \quad (\lambda_1, \dots, \lambda_p) \in K^p.$$

On note $\text{vect}(x_1, \dots, x_p)$ l'ensemble des combinaisons linéaires des vecteurs x_i . C'est le sous-espace vectoriel engendré par les x_i .

2. Les combinaisons linéaires d'une famille $(x_i)_{i\in I}$ de vecteurs de E sont les vecteurs de la forme

$$\sum_{i \in I} \lambda_i x_i,$$

où $(\lambda_i)_{i\in I}$ est une famille de scalaire à support fini. On note $\text{vect}(x_i)_{i\in I}$ l'ensemble des combinaisons linéaires des vecteurs x_i . C'est le sous-espace vectoriel engendré par les x_i .

Remarques.

- 1. On ne peut pas ajouter une infinité de vecteurs. Faîtes bien attention, dans le cas d'une famille infinie, à avoir une famille de scalaires à support fini.
- 2. Une famille finie est toujours à support fini. Inutile alors d'en parler.
- 3. L'ensemble des combinaisons linéaires de 0 vecteurs (ou de la famille vide) (cas p=0) est $\{0\}$.
- 4. Il n'y a pas unicité des coefficients λ_i . Prenons par exemple un vecteur non nul x et soit y = 2x. Alors

$$x + y = 3x = -x + 2y$$

par exemple, prouvant qu'en général

$$\sum_{i=1}^{p} \lambda_i x_i = \sum_{i=1}^{p} \mu_i x_i$$

n'implique **pas** $\lambda_i = \mu_i$ pour tout i.

Proposition 3.2

Un sous-espace vectoriel est stable par combinaisons linéaires.

Définition 3.3 (Sous-espace vectoriel engendré par une partie)

Soit $X \subset E$. Le sous-espace vectoriel engendré par X est l'ensemble des combinaisons linéaires des vecteurs de X. On le note vect(X).

Remarque.

On vérifie facilement que vect(X) est effectivement un sous-espace vectoriel de E.

Méthode 3.4

Soit $X \subset E$. Alors vect(X) est le plus petit sous-espace vectoriel de E contenant X. Cela signifie que si F est un sous-espace vectoriel de E, alors F = vect(X) si et seulement si

- 1. $X \subset F$
- 2. Si G est un sous-espace vectoriel de E contenant X, alors $F \subset G$.

Proposition 3.5

Soient $(x_i)_{i\in I}$ et $(y_j)_{j\in J}$ des familles de vecteurs de E (où I t J sont des ensembles d'indexation) tel que $(x_i)_{i\in I} \subset \text{vect}(y_j)_{j\in J}$. Alors $\text{vect}(x_i)_{i\in I} \subset \text{vect}(y_j)_{j\in J}$

Proposition 3.6

Soient (x_1, \ldots, x_p) une famille finie de vecteurs de E.

- 1. $\operatorname{vect}(x_1,\ldots,x_p)$ ne change pas si à l'un des vecteurs on rajoute une combinaison linéaire des autres.
- 2. Si $\lambda_1, \ldots, \lambda_p$ sont des scalaires **tous non nul**, $\text{vect}(x_1, \ldots, x_p) = \text{vect}(\lambda_1 x_1, \ldots, \lambda_p x_p)$. De même, si $(x_i)_{i \in I}$ est une famille de vecteurs de E, alors
- 1. $\operatorname{vect}(x_i)_{i\in I}$ ne change pas si à l'un des vecteurs on rajoute une combinaison linéaire des autres.
- 2. Si $(\lambda_i)_{i\in I}$ est une famille de scalaires **tous non nul**, alors $\text{vect}(x_i)_{i\in I} = \text{vect}(\lambda_i x_i)_{i\in I}$.

Remarque.

Attention, pas de combinaison linéaire du type $x_i + (-x_i)!!!$

4 Familles libres, génératrices. Bases

4.1 Familles génératrices

Définition 4.1 (Famille génératrice)

1. Un sous-espace vectoriel A de E est engendré par une famille finie de vecteurs (x_1, \ldots, x_p) de A si $A = \text{vect}(x_1, \ldots, x_p)$, ou encore si

$$\forall x \in A, \exists \lambda_1, \dots, \lambda_p \in K, x = \sum_{k=1}^p \lambda_k x_k,$$

ou encore si **les** éléments de A sont **les** combinaisons linéaires des x_i . La famille (x_1, \ldots, x_p) est alors une famille génératrice de A.

2. Un sous-espace vectoriel A de E est engendré par une famille de vecteurs $(x_i)_{i\in I}$ de A si $A = \text{vect}(x_i)_{i\in I}$, ou encore si

$$\forall \ x \in A, \ \exists \ (\lambda_i)_{i \in I} \in K \ \text{à support fini} \ , \ x = \sum_{i \in I} \lambda_i x_i,$$

ou encore si **les** éléments de A sont **les** combinaisons linéaires des x_i . La famille $(x_i)_{i \in I}$ est alors une famille génératrice de A.

Méthode 4.2

Pour montrer qu'une famille finie (e_1, \ldots, e_n) est une famille génératrice d'un sous-espace vectoriel A de E, on montre que pour tout $i = 1, \ldots, n$, on a $e_i \in A$, et que si $x \in A$, il existe $\lambda_1, \ldots, \lambda_n \in K$ tels que $x = \sum_{i=1}^{n} \lambda_i e_i$.

Méthode 4.3

Pour montrer qu'une famille infinie $(e_i)_{i\in I}$ est une famille génératrice d'un sous-espace vectoriel A de E, on montre que pour tout $i\in I$, on a $e_i\in A$, et que si $x\in A$, il existe une famille de scalaires $(\lambda_i)_{i\in I}$, à support fini, telle que $x=\sum_{i\in I}\lambda_i e_i$.

Dans le cas particulier où $I = \mathbb{N}$, on montre que pour tout $i \in \mathbb{N}$, on a $e_i \in A$, et que si $x \in A$, il existe $n \in \mathbb{N}$ et $(\lambda_0, \dots, \lambda_n) \in K^{n+1}$, tel que $x = \sum_{i=0}^n \lambda_i e_i$. Attention : l'entier n dépend de x.

Remarque.

On voit finalement que, dans le cas d'une famille infinie, tout se passe comme avec les familles finies, puisqu'on ne travaille à chaque qu'avec une sous-famille finie.

Proposition 4.4 (Sur-famille d'une famille génératrice)

Une sur-famille d'une famille génératrice de E est une famille génératrice de E.

Proposition 4.5

- 1. Soit (x_1, \ldots, x_p) une famille génératrice de E. Une famille (y_1, \ldots, y_n) de E est génératrice de E si et seulement si tout x_i $(i = 1, \ldots, p)$ est combinaison linéaire des y_j $(j = 1, \ldots, n)$.
- 2. Soit $(x_i)_{i\in I}$ une famille génératrice de E. Une famille $(y_j)_{j\in J}$ de E est génératrice de E si et seulement si tout x_i $(i \in I)$ est combinaison linéaire des $(y_j)_{j\in J}$.
- 3. Autrement dit : soit \mathcal{F} une famille génératrice de E. Une famille \mathcal{G} est génératrice de E si et seulement si $\mathcal{F} \subset \text{vect}(\mathcal{G})$.

Corollaire 4.6

1. Soit (x_1, \ldots, x_{n+1}) une famille génératrice de E. Si $x_{n+1} \in \text{vect}(x_1, \ldots, x_n)$, alors (x_1, \ldots, x_n) est une famille génératrice de E.

2. Soit $(x_i)_{i \in I}$ une famille génératrice de E, et $(x_i)_{i \in J}$ une sous-famille telle que, pour tout $j \in J$, $x_j \in \text{vect}(x_i)_{i \in I \setminus J}$. Alors $(x_i)_{i \in I \setminus J}$ est une famille génératrice de E.

4.2 Familles libres, liées

Définition 4.7 (Famille libre, liée)

1. Une famille (x_1, \ldots, x_p) de vecteurs de E est libre ou linéairement indépendante si

$$\forall (\lambda_1, \dots, \lambda_p) \in K^p, \left(\sum_{i=1}^p \lambda_i x_i = 0_E \Longrightarrow \lambda_1 = \dots = \lambda_p = 0_K\right).$$

Elle est liée dans le cas contraire, i.e. s'il existe $(\lambda_1, \dots, \lambda_p) \in K^p$ non tous nuls tels que

$$\sum_{i=1}^{p} \lambda_i x_i = 0.$$

2. Une famille infinie de vecteurs de E est libre si toute sous-famille finie est libre. Elle est liée si elle admet une sous-famille finie liée.

Méthode 4.8

- 1. Pour montrer qu'une famille (x_1, \ldots, x_n) de vecteurs de E est libre, on considère n scalaires $(\lambda_1, \ldots, \lambda_n) \in K^n$ tels que $\sum_{k=1}^n \lambda_k x_k = 0$. On montre alors que $\lambda_1 = \cdots = \lambda_n = 0$.
- 2. Pour montrer qu'une famille infinie $(x_i)_{i\in I}$ est libre, on montre que toute sous-famille finie est libre, en utilisant 1.
- 3. Dans le cas d'une suite de vecteurs $(x_i)_{i\in\mathbb{N}}$, on montre que pour tout $n\in\mathbb{N}$, la famille $(x_i)_{0\leqslant i\leqslant n}$ est libre.
- 4. Pour montrer qu'une famille de fonctions (f_1, \ldots, f_n) est libre, on considère n scalaires $(\lambda_1, \ldots, \lambda_n) \in K^n$ tels que $\sum_{k=1}^n \lambda_k f_k = 0$. Cela signifie que pour tout x dans le domaine de définition, on a $\sum_{k=1}^n \lambda_k f_k(x) = 0$. On montre alors que $\lambda_1 = \cdots = \lambda_n = 0$. Pour cela, on peut obtenir des équa-
- 5. Pour montrer qu'une famille infinie de fonctions $(f_i)_{i\in I}$ est libre, on montre que toute sous-famille finie est libre, en utilisant 4.

tions en prenant des valeurs particulières de x dans l'égalité précédente.

6. Dans le cas d'une suite de fonctions $(f_i)_{i\in\mathbb{N}}$, on montre que pour tout $n\in\mathbb{N}$, la famille $(f_i)_{0\leqslant i\leqslant n}$ est libre.

Méthode 4.9

1. Pour montrer qu'une famille (x_1, \ldots, x_n) de vecteurs de E est liée, on exhibe n scalaires $(\lambda_1, \ldots, \lambda_n) \in K^n$ non tous nuls tels que $\sum_{k=1}^n \lambda_k x_k = 0$.

- 2. Pour montrer qu'une famille infinie $(x_i)_{i\in I}$ est liée, on montre qu'elle admet une sous-famille finie liée, en utilisant 1.
- 3. Dans le cas d'une suite de vecteurs $(x_i)_{i\in\mathbb{N}}$, on montre qu'il existe $n\in\mathbb{N}$, telle que la famille $(x_i)_{0\leqslant i\leqslant n}$ soit liée, en utilisant 1.
- 4. Pour montrer qu'une famille de fonctions (f_1, \ldots, f_n) est liée, on exhibe n scalaires $(\lambda_1, \ldots, \lambda_n) \in K^n$ non tous nuls tels que $\sum_{k=1}^n \lambda_k f_k = 0$, *i.e.* tels que pour tout x dans le domaine de définition, on ait $\sum_{k=1}^n \lambda_k f_k(x) = 0$.
- 5. Pour montrer qu'une famille infinie de fonctions $(f_i)_{i\in I}$ est liée, on montre qu'elle admet une sous-famille finie liée, en utilisant 4.
- 6. Dans le cas d'une suite de fonctions $(f_i)_{i\in\mathbb{N}}$, on montre qu'il existe $n\in\mathbb{N}$, telle que la famille $(f_i)_{0\leqslant i\leqslant n}$ soit liée, en utilisant 4.

Proposition 4.10

Une famille de polynômes non nuls de degrés deux à deux distincts est libre.

Proposition 4.11

- 1. Une famille est liée si et seulement si un des vecteurs est combinaison linéaire des autres.
- 2. Soit \mathcal{F} une famille libre de E, et $x \in E$. La famille $\mathcal{F} \cup \{x\}$ est liée si et seulement si $x \in \text{vect}(\mathcal{F})$, i.e. si et seulement si x est combinaison linéaire des vecteurs de \mathcal{F} .

Proposition 4.12

Toute sous-famille d'une famille libre est libre, et toute sur-famille d'une famille liée est liée.

Autrement dit, si à une famille liée on ajoute des éléments, la nouvelle famille est encore liée, et si à une famille libre on enlève des éléments, la nouvelle famille est encore libre.

Proposition 4.13

1. Soit (x_1, \ldots, x_p) une famille de E. Cette famille est libre si et seulement si

$$\forall (\lambda_1, \dots, \lambda_p), (\mu_1, \dots, \mu_p) \in K^p, \left(\sum_{i=1}^p \lambda_i x_i = \sum_{i=1}^p \mu_i x_i \Longrightarrow \forall i = 1, \dots, p, \lambda_i = \mu_i\right),$$

autrement dit si et seulement si l'écriture d'un vecteur de $\text{vect}(x_1, \dots, x_n)$ comme combinaison linéaire des x_i est unique.

2. Soit $(x_i)_{i \in I}$ une famille de E. Cette famille est libre si et seulement si

$$\forall \ (\lambda_i)_{i \in I}, \ (\mu_i)_{i \in I}, \in K \text{ à supports finis }, \ \Big(\sum_{i \in I} \lambda_i x_i = \sum_{i \in I} \mu_i x_i \Longrightarrow \forall \ i \in I, \ \lambda_i = \mu_i\Big),$$

autrement dit si et seulement si l'écriture d'un vecteur de $\text{vect}(x_i)_{i \in I}$ comme combinaison linéaire des x_i est unique.

Remarque.

Cette proposition signifie donc qu'il y a unicité de l'écriture de x comme combinaison linéaire des éléments d'une famille **libre**. Voir aussi la proposition 4.15.

4.3 Bases

Définition 4.14 (Base)

Une base de E est une famille libre et génératrice de E.

Proposition 4.15 (Composantes dans une base)

Soit $\mathcal{F} = (e_1, \dots, e_p)$ une famille de E. La famille \mathcal{F} est une base de E si et seulement si pour tout $x \in E$, il existe un unique p-uplet $(x_1, \dots, x_p) \in K^p$ tel que

$$x = \sum_{i=1}^{p} x_i e_i.$$

Dans ce cas, (x_1, \ldots, x_p) sont les *composantes* de x dans la base \mathcal{F} .

Remarques.

- 1. On écrit en général les composantes verticalement : $\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$.
- 2. Les composantes changent quand on change de base.

Méthode 4.16

- 1. Pour montrer qu'une famille est une base, on peut procéder en deux temps : montrer que c'est une famille libre et génératrice, à l'aide des méthodes précédentes.
- 2. Dans le cas d'une famille finie, on peut en une fois montrer qu'une famille (e_1, \ldots, e_n) est une base et trouver les composantes de tout vecteur x dans cette base. Il suffit de fixer un vecteur x, et pour $(a_1, \ldots, a_n) \in K^n$, résoudre le système $x = \sum_{k=1}^n a_i e_i$ d'inconnues (a_1, \ldots, a_n) . Si le système admet, pour tout x, un unique n-uplet solution, la famille (e_1, \ldots, e_n) est une base et les composantes de x dans cette base sont justement (a_1, \ldots, a_n) .

Remarque.

- 1. Si le système n'admet pas de solution pour certains vecteurs x, cela signifie que la famille (e_1, \ldots, e_n) n'est pas génératrice.
- 2. Si le système admet une infinité de solutions pour certains vecteurs x, cela signifie que la famille (e_1, \ldots, e_n) n'est pas libre.

Proposition 4.17

Soit (v_1, \ldots, v_p) une base de E, et $x \in E$ tel que

$$x = v_1 + \sum_{k=2}^{p} \lambda_k v_k, \quad \lambda_2, \dots, \lambda_p \in K.$$

Alors (x, v_2, \ldots, v_p) est une base de E.

Proposition 4.18 (Base d'un produit cartésien)

Soient (e_1, \ldots, e_p) une base de E et (f_1, \ldots, f_n) une base de F. Alors la famille

$$((e_1, 0_F), \dots, (e_p, 0_F), (0_E, f_1), \dots, (0_E, f_n))$$

est une base de $E \times F$.

5 Somme de sous-espaces vectoriels

Dans ce paragraphe, on fixe un K-espace vectoriel E.

5.1 Somme de deux sous-espaces vectoriels

Définition 5.1 (Somme de deux sous-espaces vectoriels)

La somme A + B de deux sous-espaces vectoriels A et B de E est est le sous-espace vectoriel

$$A + B = \{x + y, \ x \in A, \ y \in B\}.$$

Proposition 5.2

Soient A, B deux sous-espaces vectoriels de E. Alors $\operatorname{vect}(A \cup B) = A + B$.

Remarque.

La somme de A et B est donc l'ensemble des combinaisons linéaires des éléments de A et de B.

5.2 Somme directe de deux sous-espaces vectoriels

Définition 5.3 (Somme directe, sous-espaces supplémentaires)

- 1. Deux sous-espaces vectoriels A et B de E sont en somme directe si tout vecteur de A+B s'écrit de manière unique comme somme d'un élément de A et d'un élément de B. On note alors $A+B=A\oplus B$.
- 2. Deux sous-espaces vectoriels A et B de E sont supplémentaires si $E = A \oplus B$, *i.e.* s'ils sont en somme directe et si la somme vaut E.

3. Soit A un sous-espace vectoriel de E. Un supplémentaire de A dans E est un sous-espace vectoriel B de E tel que $E = A \oplus B$.

Remarque.

L'unicité de l'écriture signifie que, pour $a, a' \in A$ et $b, b' \in B$, on a $a + b = a' + b' \Longrightarrow (a, b) = (a', b')$.

Proposition 5.4 (Caractérisation d'une somme directe)

Deux sous-espaces vectoriels A et B de E sont en somme directe si et seulement si $A \cap B = \{0\}$.

Méthode 5.5 (Montrer que des sous-espaces sont supplémentaires)

Soient A, B, deux sous-espaces vectoriels de E. Pour montrer qu'ils sont supplémentaires on peut, au choix, montrer que :

- 1. $A \cap B = \{0\}$ et $\forall x \in E, \exists a \in A, b \in B, x = a + b$.
- 2. $\forall x \in E, \exists a \in A, b \in B, x = a + b \text{ et } \forall a, a' \in A, b, b' \in B, a + b = a' + b' \Longrightarrow a = a' \text{ et } b = b'.$
- 3. $A \cap B = \{0\} \text{ et vect}(A \cup B) = E$.

5.3 Familles libres, génératrices d'une somme

Proposition 5.6 (Famille génératrice d'une somme)

Soient A et B deux sous-espaces vectoriels de E, \mathcal{F} une famille génératrice de A et \mathcal{G} une famille génératrice de B. Alors la famille $\mathcal{F} \cup \mathcal{G}$ est une famille génératrice de A + B.

Remarque.

On a bien sûr $\text{vect}(A \cup B) = \text{vect}(\mathcal{F} \cup \mathcal{G})$.

Proposition 5.7 (Famille libre d'une somme directe)

Soient A et B deux sous-espaces vectoriels de E en somme directe, \mathcal{F} une famille libre de A et \mathcal{G} une famille libre de B. Alors la famille $\mathcal{F} \cup \mathcal{G}$ est une famille libre de $A \oplus B$.

Remarque.

On verra une application en terme de dimension dans un chapitre ultérieur.

Corollaire 5.8 (Base d'une somme directe)

Soient A et B deux sous-espaces vectoriels de E en somme directe, \mathcal{F} une base de A, et \mathcal{G} une base de B. Alors $\mathcal{F} \cup \mathcal{G}$ est une base de $A \oplus B$.

Autre écriture : (a_1, \ldots, a_p) une base de A, (b_1, \ldots, b_n) une base de B. Alors $(a_1, \ldots, a_p, b_1, \ldots, b_n)$ est une base de $A \oplus B$.

Remarque.

Ce corollaire permet de construire une base de E par "blocs" dans le cas où A et B sont supplémentaires.

5.4 Somme d'un nombre fini de sous-espaces vectoriels

Définition 5.9 (Somme de sous-espaces vectoriels)

Soient $n \in \mathbb{N}^*$ et E_1, \dots, E_n des sous-espaces vectoriels de E. La somme de ces sous-espaces vectoriels est le sous-espace vectoriel

$$E_1 + \cdots + E_n = \{x_1 + \cdots + x_n, x_k \in E_k, k = 1, \dots, n\}$$

de E.

Proposition 5.10

Soient $n \in \mathbb{N}^*$ et E_1, \ldots, E_n des sous-espaces vectoriels de E. Alors

$$\operatorname{vect}(E_1 \cup \cdots \cup E_n) = E_1 + \cdots + E_n.$$

Autrement dit, $E_1 + \cdots + E_n$ est l'ensemble des combinaisons linéaires des éléments des E_k , $k = 1, \ldots, n$.

Définition 5.11 (Somme directe de sous-espaces vectoriels)

Soient $n \in \mathbb{N}^*$ et E_1, \ldots, E_n des sous-espaces vectoriels de E. La somme de ces sous-espaces vectoriels est directe si la décomposition de tout vecteur de $E_1 + \cdots + E_n$ sous la forme $x_1 + \cdots + x_n$, avec $x_k \in E_k$ pour $k = 1, \ldots, n$, est unique.

Proposition 5.12 (Caractérisation d'une somme directe)

Soient $n \in \mathbb{N}^*$ et E_1, \dots, E_n des sous-espaces vectoriels de E. La somme de ces sous-espaces vectoriels est directe si et seulement si,

$$\forall (x_1, \dots, x_n) \in E_1 \times \dots \times E_n, \ x_1 + \dots + x_n = 0 \Longrightarrow (x_1, \dots, x_n) = (0, \dots, 0).$$

Remarque.

- 1. Attention : $E_1 \cap \cdots \cap E_n = \{0\}$ ne suffit pas!! Regardez l'exemple de trois droites dans le plan.
- 2. De même, $\forall i, j \in [1, n]$, $i \neq j \Longrightarrow E_i \cap E_j = \emptyset$ ne suffit pas non plus. L'exemple de trois droites dans le plan, deux à deux concourantes, est un exemple où les intersections sont 2 à 2 réduite à 0, mais pourtant les droites ne sont pas en somme directe.

Proposition 5.13 (Famille génératrice d'une somme)

Soient $n \in \mathbb{N}^*$ et E_1, \ldots, E_n des sous-espaces vectoriels de E, et $\mathcal{F}_1, \ldots, \mathcal{F}_n$ des familles génératrices respectives de E_1, \ldots, E_n . Alors $\mathcal{F}_1 \cup \cdots \cup \mathcal{F}_n$ est une famille génératrice de $E_1 + \cdots + E_n$

Proposition 5.14 (Famille libre d'une somme directe)

Soient $n \in \mathbb{N}^*$ et E_1, \ldots, E_n des sous-espaces vectoriels de E en somme directe, et $\mathcal{F}_1, \ldots, \mathcal{F}_n$ des familles libres respectives de E_1, \ldots, E_n . Alors $\mathcal{F}_1 \cup \cdots \cup \mathcal{F}_n$ est une famille libre de $E_1 \oplus \cdots \oplus E_n$

Proposition 5.15 (Base d'une somme directe)

Soient $n \in \mathbb{N}^*$ et E_1, \ldots, E_n des sous-espaces vectoriels de E en somme directe, et $\mathcal{F}_1, \ldots, \mathcal{F}_n$ des bases respectives de E_1, \ldots, E_n . Alors $\mathcal{F}_1 \cup \cdots \cup \mathcal{F}_n$ est une base de $E_1 \oplus \cdots \oplus E_n$

6 Espaces vectoriels de dimension finie

Dans ce paragraphe, n, m, p, \dots désigneront des entiers naturels.

Définition 6.1 (Espace vectoriel de dimension finie)

Un espace vectoriel est de dimension finie s'il admet une famille génératrice finie, de dimension infinie sinon.

Lemme 6.2

Dans un espace vectoriel E, une famille libre finie a moins d'éléments qu'une famille génératrice finie.

Théorème 6.3

Soit E un espace vectoriel de dimension finie.

- 1. L'espace vectoriel E admet au moins une base finie.
- 2. Toutes les bases sont finies et ont même nombre d'éléments.

Définition 6.4

La dimension d'un K-espace vectoriel de dimension finie est le nombre d'éléments de ses bases.

Proposition 6.5

Soient E un espace vectoriel de dimension finie, et $n = \dim(E)$. Soit \mathcal{F} une famille de E. Alors

- 1. Si \mathcal{F} est libre, on a $\operatorname{card}(\mathcal{F}) \leq n$, et \mathcal{F} est une base si et seulement si $\operatorname{card}(\mathcal{F}) = n$.
- 2. Si \mathcal{F} est génératrice, on a $\operatorname{card}(\mathcal{F}) \geqslant n$, et \mathcal{F} est une base si et seulement si $\operatorname{card}(\mathcal{F}) = n$.

Remarque.

C'est une proposition très utile pour déterminer si une famille est une base une fois qu'on sait qu'elle est libre ou génératrice. Il suffit de compter son nombre d'éléments.

Théorème 6.6 (Théorème de la base extraite)

Soit E un espace vectoriel de dimension finie. De toute famille génératrice on peut extraire une base. Autrement dit, toute famille génératrice admet une sous-famille qui est une base.

Théorème 6.7 (Théorème de la base incomplète)

Soit E un espace vectoriel de dimension finie. Une famille libre peut être complétée en une base de E. Autrement dit, si $n = \dim(E)$, $r \in \mathbb{N}^*$ et $\mathcal{F} = (y_1, \dots, y_r)$ est une famille libre de E, il existe une famille (y_{r+1}, \dots, y_n) de E telle que la famille (y_1, \dots, y_n) soit une base de E.

Corollaire 6.8

Soient y_1, \ldots, y_p des vecteurs d'un espace vectoriel F (pas nécessairement de dimension finie), combinaisons linéaires d'une famille (x_1, \ldots, x_n) avec n < p. Alors (y_1, \ldots, y_p) est liée.

Méthode 6.9 (Déterminer la dimension d'un espace vectoriel)

- 1. Déterminer une base, et en compter le nombre d'éléments : c'est la dimension.
- 2. Majorer la dimension par un entier n, et exhiber une famille libre à n éléments : n est alors la dimension.
- 3. Minorer la dimension par un entier n, et exhiber une famille génératrice à n éléments : n est alors la dimension.

Méthode 6.10 (Montrer qu'une famille est une base)

On considère un espace de dimension $n \in \mathbb{N}$. On veut montrer qu'une famille est une base.

- 1. Comme avant : libre et génératrice, ou en résolvant un système.
- 2. On montre qu'elle est libre et qu'elle a n éléments.
- 3. On montre qu'elle est génératrice et qu'elle a n éléments.

Proposition 6.11

Un espace vectoriel E est de dimension infinie si et seulement si pour tout $n \in \mathbb{N}^*$, il existe une famille libre à n éléments.

7 Dimension d'un sous-espace vectoriel en dimension finie

Proposition 7.1

Soit E un espace vectoriel de dimension finie n et F un sous-espace vectoriel de E. Alors F est de dimension finie $p \leq n$. De plus, E = F si et seulement si p = n.

Définition 7.2

Un hyperplan d'un espace vectoriel E de dimension finie est un sous-espace vectoriel de E de dimension $\dim(E) - 1$.

Méthode 7.3 (Montrer que deux sous-espaces vectoriels sont égaux)

Soit un espace de dimension finie E, et deux sous-espaces vectoriels F et G de E. Alors F=G si et seulement si

- 1. $\dim(F) = \dim(G)$.
- 2. $F \subset G$.

Méthode 7.4 (Montrer que deux sous-espaces vectoriels sont égaux bis)

Soit un espace de dimension finie E, et deux sous-espaces vectoriels F et G de E. Alors F = G si et seulement si

- 1. $\dim(F) = \dim(G)$.
- 2. Une famille génératrice de F est incluse dans G. Cas particulier : une base de F est incluse dans G.

Définition 7.5 (Système d'équations dans une base)

Soit E un K-espace vectoriel de dimension finie n, \mathcal{B} une base de E, et F un sous-espace vectoriel de E. Un système d'équation de F dans la base \mathcal{B} est un système S de p équations $(p \leq n)$ à n inconnues (x_1, \ldots, x_n) tel qu'un vecteur v est dans F si et seulement si ses composantes (x_1, \ldots, x_n) dans \mathcal{B} sont solutions du système S.

Méthodes pour déterminer des bases des sous-espaces vectoriels de K^n

Méthode 7.6 (Déterminer une base d'un sous-espace vectoriel dont on a un système d'équations)

On considère un K-espace vectoriel E de dimension finie n, \mathcal{B} une base de E, et F un sous-espace vectoriel de E. On supppose qu'on a un système d'équations S de F dans \mathcal{B} . Pour déterminer une base de F, on résout le système S, où certaines composantes vont s'exprimer en fonction d'autres. Cela fourni une base, et donc la dimension : cf. les exemples.

Premier exemple : dans K^n

Soit $F = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \mid x_1 + 2x_4 - x_5 = 2x_1 + 2x_2 - x_3 + x_4 = 0\} \subset \mathbb{R}^5$. Pour montrer que F est un sous-espace vectoriel de \mathbb{R}^5 , et en déterminer une base, on procède ainsi : pour $(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$, on a

$$(x_1, x_2, x_3, x_4, x_5) \in F \iff \begin{cases} x_1 + 2x_4 - x_5 = 0 \\ 2x_1 + 2x_2 - x_3 + x_4 = 0 \end{cases}$$

On choisit alors deux des coordonnées (parce qu'on a deux équations) qui vont devenir des inconnues du système, qu'on va résoudre, en exprimant ces deux coordonnées en fonctions des trois autres : ici, on choisit par exemple x_3 et x_5 , et donc

$$(x_1, x_2, x_3, x_4, x_5) \in F \iff \begin{cases} x_1 + 2x_4 - x_5 = 0 \\ 2x_1 + 2x_2 - x_3 + x_4 = 0 \end{cases}$$

$$\iff \begin{cases} x_5 = x_1 + 2x_4 \\ x_3 = 2x_1 + 2x_2 + x_4 \end{cases}$$

$$\iff (x_1, x_2, x_3, x_4, x_5) = (x_1, x_2, 2x_1 + 2x_2 + x_4, x_4, x_1 + 2x_4)$$

$$\iff (x_1, x_2, x_3, x_4, x_5) = x_1(1, 0, 2, 0, 1) + x_2(0, 1, 2, 0, 0) + x_4(0, 0, 1, 1, 2),$$

et F = vect((1,0,2,0,1),(0,1,2,0,0),(0,0,1,1,2)), et il reste plus qu'à montrer que la famille est libre. On peut remarquer que dans cette méthode, on se ramène à la forme paramétrée.

Parfois, le choix des coordonnées qui deviennent les inconnues mènent à un blocage : on ne peut pas résoudre le système. Il faut alors faire un autre choix.

Deuxième exemple : dans un espace vectoriel quelconque On considère un espace vectoriel E muni d'une base $(e_1, e_2, e_3, e_4, e_5)$. Soit

$$F = \{x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4 + x_5e_5 \in E \mid x_1 + 2x_4 - x_5 = 2x_1 + 2x_2 - x_3 + x_4 = 0\} \subset E.$$

Pour montrer que F est un sous-espace vectoriel de \mathbb{R}^5 , et en déterminer une base, on procède ainsi : pour $x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4 + x_5e_5 \in E$, on a

$$x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4 + x_5e_5 \in F \iff \begin{cases} x_1 + 2x_4 - x_5 = 0\\ 2x_1 + 2x_2 - x_3 + x_4 = 0 \end{cases}$$

On choisit alors deux des coordonnées (parce qu'on a deux équations) qui vont devenir des inconnues du système, qu'on va résoudre, en exprimant ces deux coordonnées en fonctions des trois autres : ici, on choisit par exemple x_3 et x_5 , et donc

$$x_{1}e_{1} + x_{2}e_{2} + x_{3}e_{3} + x_{4}e_{4} + x_{5}e_{5} \in F$$

$$\iff \begin{cases} x_{1} + 2x_{4} - x_{5} = 0 \\ 2x_{1} + 2x_{2} - x_{3} + x_{4} = 0 \end{cases}$$

$$\iff \begin{cases} x_{5} = x_{1} + 2x_{4} \\ x_{3} = 2x_{1} + 2x_{2} + x_{4} \end{cases}$$

$$\iff x_{1}e_{1} + x_{2}e_{2} + x_{3}e_{3} + x_{4}e_{4} + x_{5}e_{5} = x_{1}e_{1} + x_{2}e_{2} + (2x_{1} + 2x_{2} + x_{4})e_{3} + x_{4}e_{4} + (x_{1} + 2x_{4})e_{5} \end{cases}$$

$$\iff x_{1}e_{1} + x_{2}e_{2} + x_{3}e_{3} + x_{4}e_{4} + x_{5}e_{5} = x_{1}(e_{1} + 2e_{3} + e_{5}) + x_{2}(e_{2} + 2e_{3}) + x_{4}(e_{3} + e_{4} + 2e_{5}),$$

et $F = \text{vect}(e_1 + 2e_3 + e_5, e_2 + 2e_3, e_3 + e_4 + 2e_5)$, et il reste plus qu'à montrer que la famille est libre. On peut remarquer que dans cette méthode, on se ramène à la forme paramétrée.

Parfois, le choix des coordonnées qui deviennent les inconnues mènent à un blocage : on ne peut pas résoudre le système. Il faut alors faire un autre choix.

Méthode 7.7 (Déterminez une base d'un sous-espace vectoriel donné sous forme paramétrée)

Premier exemple : dans K^n

Soit $F = \{(x, y, 2x + 2y + z, z, x + 2z) \mid (x, y, z) \in \mathbb{R}^3\} \subset \mathbb{R}^5$. Pour montrer que F est un sous-espace vectoriel de \mathbb{R}^5 et pour en déterminer une base, on écrit que pour tout triplet (x, y, z), on a

$$(x, y, 2x + 2y + z, z, x + 2z) = x(1, 0, 2, 0, 1) + y(0, 1, 2, 0, 0) + z(0, 0, 1, 1, 2).$$

Alors F = vect((1,0,2,0,1),(0,1,2,0,0),(0,0,1,1,2)). Il reste à vérifier que la famille en question est libre pour avoir une base.

Deuxième exemple : dans un espace vectoriel quelconque

On considère un espace vectoriel E muni d'une base $(e_1, e_2, e_3, e_4, e_5)$. Soit

$$F = \{xe_1 + ye_2 + (2x + 2y + z)e_3 + ze_4 + (x + 2z)e_5 \mid (x, y, z) \in \mathbb{R}^3\} \subset E.$$

Pour montrer que F est un sous-espace vectoriel de E et pour en déterminer une base, on écrit que pour tout triplet (x, y, z), on a

$$xe_1 + ye_2 + (2x + 2y + z)e_3 + ze_4 + (x + 2z)e_5 = x(e_1 + 2e_3 + e_5) + y(e_2 + 2e_3) + z(e_3 + e_4 + 2e_5).$$

Alors $F = \text{vect}(e_1 + 2e_3 + e_5, e_2 + 2e_3, e_3 + e_4 + 2e_5)$. Il reste à vérifier que la famille en question est libre pour avoir une base.

Méthodes pour déterminer un système d'équation d'un sous-espace vector

Méthode 7.8 (Déterminer un système d'équations d'un sous-espace vectoriel dont on a une base)

On considère un K-espace vectoriel E de dimension finie n, \mathcal{B} une base de E, et F un sous-espace vectoriel de E. On supppose qu'on a une base \mathcal{B}_F de F, dont les vecteurs sont exprimés dans la base \mathcal{B} . Pour déterminer un système d'équations de F dans \mathcal{B} , on exprime un vecteur de E dans la base \mathcal{B} , et on détermine des cns sur ses composantes pour qu'il soit dans F.

Voici un exemple : on suppose que E admet pour base (e_1, e_2, e_3, e_4) et soit $F = \text{vect}(e_1 - e_2, 2e_2 + e_3 + e_4)$. On considère un vecteur $u = xe_1 + ye_2 + ze_3 + te_4 \in E$ (noté, il est quelconque dans E), avec $x, y, z, t \in K$. On cherche une cns pour que $u \in F$. Or,

$$u \in F \iff \exists a, b \in K \mid u = a(e_1 - e_2) + b(2e_2 + e_3 + e_4).$$

On fixe alors $a, b \in K$ (afin d'éviter d'avoir à écrire toujours " $\exists a, b \in K$ "..), et on résout le système par équivalences (les inconnues sont a et b):

$$u = a(e_1 - e_2) + b(2e_2 + e_3 + e_4) \iff u = ae_1 + (2b - a)e_2 + be_3 + be_4$$

$$\iff \begin{cases} a = x \\ 2b - a = y \\ b = z \end{cases} \iff \begin{cases} a = x \\ b = z \\ 2z - x = y \\ z = t \end{cases}$$

et ce système admet donc un couple (a,b) solution si et seulement si $\begin{cases} 2z-x=y\\ z=t \end{cases}$: c'est un système d'équations de F dans la base (e_1,e_2,e_3,e_4) de E.

Méthode 7.9 (Déterminer un système d'équations d'un sous-espace vectoriel donné sous forme paramé

On considère un espace vectoriel E muni d'une base (e_1, e_2, e_3, e_4) . Soit

$$F = \{xe_1 + ye_2 + (2x + 2y + z)e_3 + (x + 2z)e_4 \mid (x, y, z) \in K^3\} \subset E.$$

Fixons un vecteur $u = ae_1 + be_2 + ce_3 + de_4 \in E$ (noté qu'il est dans E, pas dans F), avec $a, b, c, d \in K$. Alors

$$u \in F \iff \exists x, y, z \in K \mid u = xe_1 + ye_2 + (2x + 2y + z)e_3 + (x + 2z)e_4$$

On fixe alors $x, y, z \in K$, et on résout le système d'inconnues x, y, z:

$$u = xe_1 + ye_2 + (2x + 2y + z)e_3 + (x + 2z)e_4 \iff \begin{cases} x = a \\ y = b \\ 2x + 2y + z = c \\ x + 2z = d \end{cases} \iff \begin{cases} x = a \\ y = b \\ z = c - 2a - 2b \\ a + 2(c - 2a - 2b) = d \end{cases}$$

donc le système admet une solution, i.e. $u \in F$, si et seulement si a + 2(c - 2a - 2b) = d, qui est une équation de F dans la base (e_1, e_2, e_3, e_4) de E.

8 Rang d'une famille de vecteurs

Définition 8.1 (Rang)

Le rang d'une famille de vecteurs $(x_1, \ldots, x_p) \in E$ est la dimension du sous-espace vectoriel engendré par ces vecteurs :

$$\operatorname{rang}(x_1,\ldots,x_p) = \dim(\operatorname{vect}(x_1,\ldots,x_p)).$$

Proposition 8.2

Soient $x_1, \ldots, x_p, x \in E$. Alors $x \in \text{vect}(x_1, \ldots, x_p)$ si et seulement si $\text{rang}(x_1, \ldots, x_p, x) = \text{rang}(x_1, \ldots, x_p)$.

Proposition 8.3

Soient $p, q \in \mathbb{N}^*$ et (x_1, \dots, x_p) , (y_1, \dots, y_q) deux familles de vecteurs de E. Si $\text{vect}(x_1, \dots, x_p) = \text{vect}(y_1, \dots, y_q)$, alors $\text{rang}(x_1, \dots, x_p) = \text{rang}(y_1, \dots, y_q)$.

Remarque.

La réciproque est fausse!

Proposition 8.4

On a rang $(x_1, \ldots, x_p) \leq p$, avec égalité si et seulement si x_1, \ldots, x_p sont linéairement indépendants. De plus, si cette famille contient r vecteurs linéairement indépendants, alors rang $(x_1, \ldots, x_p) \geq r$.

Proposition 8.5

Le rang ne change pas lorsque qu'on ajoute à un vecteur une combinaison linéaire des autres, si on multiplie un des vecteurs par un scalaire non nul, si on échange deux vecteurs.

9 Sommes et produits de sous-espaces vectoriels en dimension finie

9.1 Somme de deux sous-espaces vectoriels, formule de Grassmann

Proposition 9.1

Soit E un espace vectoriel de dimension finie n.

- 1. Soit (e_1, \ldots, e_n) une base de E et $1 \leq p \leq n$. Alors $A = \text{vect}(e_1, \ldots, e_p)$ et $B = \text{vect}(e_{p+1}, \ldots, e_n)$ sont supplémentaires. De plus, (e_1, \ldots, e_p) est une base de A et (e_{p+1}, \ldots, e_n) une base de B.
- 2. Soient A et B deux sous-espace vectoriels supplémentaires d'un espace vectoriel E de dimension finie n, (a_1, \ldots, a_p) une base de A $(p = \dim(A))$, et (b_1, \ldots, b_q) une base de B $(q = \dim(B))$. Alors $(a_1, \ldots, a_p, b_1, \ldots, b_q)$ est une base de E.

Corollaire 9.2

Soit E un espace vectoriel de dimension finie n. Alors tout sous-espace vectoriel de E admet un supplémentaire.

Remarque.

Vrai aussi en dimension infinie.

Proposition 9.3 (Dimension d'une somme directe)

Soient A et B deux sous-espace vectoriels de E en somme directe. Alors

$$\dim(A \oplus B) = \dim(A) + \dim(B).$$

En particulier, si A et B sont supplémentaires, alors $\dim(E) = \dim(A) + \dim(B)$.

Proposition 9.4

Soit E un espace vectoriel de dimension finie. Tout sous-espace vectoriel de E admet au moins un supplémentaire. De plus, si F et G sont supplémentaires, alors

$$\dim(E) = \dim(F) + \dim(G).$$

Proposition 9.5 (Formule de Grassmann)

Soient F, G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie. Alors

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

Proposition 9.6 (Caractérisation des sous-espaces vectoriels supplémentaires)

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel de dimension finie E. Alors

$$E = F \oplus G \iff E = F + G \text{ et } \dim(E) = \dim(F) + \dim(G)$$

 $\iff F \cap G = \{0\} \text{ et } \dim(E) = \dim(F) + \dim(G).$

Proposition 9.7 (Cas d'un hyperplan)

Soit H un hyperplan de E, et $u \in E$ tel que $u \notin H$. Alors $E = H \oplus \text{vect}(u)$.

Remarque.

Attention, le résultat est faux si H n'est pas un hyperplan de E. On peut par exemple considérez une droite H de l'espace, et deux vecteurs u, v non nuls tels que $u, v \notin H$, mais $u + v \in H$: H et vect(u, v) ne sont pas en somme directe.

9.2 Dimension des sommes et produits d'espaces vectoriels

Proposition 9.8 (Dimension d'un produit)

1. Soient E et F deux espaces vectoriels de dimension finie. Alors $E \times F$ est de dimension finie et on a

$$\dim(E \times F) = \dim(E) + \dim(F).$$

2. Soient $(E_i)_{1 \leq i \leq n}$ une famille de $n \in \mathbb{N}^*$ espaces vectoriels de dimension finie. Alors $E_1 \times \cdots \times E_n$ est de dimension finie et

$$\dim (E_1 \times \cdots \times E_n) = \sum_{i=1}^n \dim(E_i).$$

Proposition 9.9

Soit E un espace vectoriel de dimension finie n.

- 1. Soit $(p_i)_{0 \le i \le m}$ une famille d'entiers telle que $0 = p_0 < p_1 < \dots < p_{m-1} < p_m = n$. Les sous-espaces vectoriels $A_i = \text{vect}(e_{p_{i-1}+1}, \dots, e_{p_i})$ $(i = 1, \dots, m)$ vérifient $E = \bigoplus_{i=1}^m A_i$.
- 2. Soient $(A_i)_{1 \leqslant i \leqslant m}$ des sous-espaces vectoriels de E tels que $E = \bigoplus_{i=1}^m A_i$. Soit $(p_i)_{1 \leqslant i \leqslant m}$ les dimensions respectives des A_i , et $(e_{1i}, \ldots, e_{p_i i})$ une base de A_i . Alors $(e_{11}, \ldots, e_{p_1 1}, e_{12}, \ldots, e_{p_2 2}, \ldots, e_{1m}, \ldots, e_{p_m m})$ est une base de E.

Remarque.

Rappelons que l'union de familles libres de sous-espaces vectoriels en somme directe est une famille libre.

Corollaire 9.10 (Dimension d'une somme directe)

Soient $(A_i)_{1 \leq i \leq m}$ des sous-espaces vectoriels en somme directe d'un espace vectoriel E de dimension finie n. Alors

$$\dim\left(\bigoplus_{i=1}^{m} A_i\right) = \sum_{i=1}^{m} \dim(A_i).$$

Proposition 9.11 (Dimension d'une somme)

Soit $(E_i)_{1 \le i \le n}$ une famille de $n \in \mathbb{N}^*$ sous-espaces vectoriels de dimension finie d'un espace vectoriel E. Alors $\sum_{i=1}^n E_i$ est de dimension finie, et dim $\left(\sum_{i=1}^n E_i\right) \le \sum_{i=1}^n \dim(E_i)$, avec égalité si et seulement si la somme est directe.