Основы глубинного обучения

Лекция 11

Рекуррентные модели

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2021

Seq2seq

Seq2seq Machine Translation

Seq2seq Machine Translation

Проблемы seq2seq-архитектуры

- Нужно сжать весь текст в один вектор
- Теряется информация о первых словах
- Декодер тоже может терять информацию по мере генерации последовательности

- Можно использовать BiLSTM, но тогда будет теряться информация о словах в середине
- И непонятно, как им декодировать

- Во время генерации каждого слова будем смотреть на всю входную последовательность
- Усредним все скрытые состояния?

Seq2seq Machine Translation

- Во время генерации каждого слова будем смотреть на всю входную последовательность
- Усредним все скрытые состояния?
- Плохо, не сможем сделать акцент на одном из входных слов

- Скрытое состояние декодировщика: $h_t^d = g(\hat{y}_{t-1}, h_{t-1}^d, c_t)$
- Релевантность j-го входного слова t-му выходному слову: $s(h_j^e,h_{t-1}^d)$; обычно это полносвязная нейросеть
- Распределение на входных словах: $\alpha_{jt} = \operatorname{softmax}\left(s(h_j^e, h_{t-1}^d)\right)$ (берётся по всем j)
- $c_t = \sum_j \alpha_{jt} h_j^e$

Что почитать

- https://jalammar.github.io/illustrated-transformer/
- https://arxiv.org/abs/1706.03762

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Кодировщик в трансформере

- Будем для каждого слова x_i обучать три вектора:
 - Запрос (query) $q_i = W_Q x_i$
 - Ключ (key) $k_j = W_K x_j$
 - Значение (value) $v_j = W_V x_j$
- «Важность» слова x_i для слова x_j : $\langle q_j, k_i \rangle$

• Вклад слова x_i в новое представление слова x_j :

$$w_{ij} = \frac{\exp\left(\frac{\langle q_j, k_i \rangle}{\sqrt{d}}\right)}{\sum_{p=1}^{n} \exp\left(\frac{\langle q_j, k_p \rangle}{\sqrt{d}}\right)}$$

- d размерность векторов q_j и k_i
- n число слов во входной последовательности

Новое представление слова x_j :

$$z_j = \sum_{p=1}^n w_{pj} v_p$$

То же самое, но в матричном виде:

$$Z = \operatorname{softmax}\left(\frac{1}{\sqrt{d}}QK^T\right)V$$

- Механизм работает хорошо
- Если настакать его, станет ещё лучше, наверное

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

X

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Thinking Machines

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

- Сейчас у модели нет информации о порядке слов
- Попробуем её добавить путём прибавки чего-нибудь ко входным векторам

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

Кодировщик в трансформере

Кодировщик в трансформере

Деодировщик в трансформере

Encoder-Decoder Attention

- Векторы k_j и v_j получаются домножением матриц K_{encdec} и V_{encdec} соответственно на выходы последнего кодировщика
- Векторы q_j получаются стандартным образом из предыдущего слоя декодировщика

Self-attention в декодировщике

• Разрешается использовать только предыдущие слова

Выходной блок

Выходной блок

В случае с машинным переводом — «авторегрессионное» применение:

- Сначала декодировщик выдаёт одно слово
- Затем два (первое подаётся как вход)
- Затем три (первые два подаются ему как вход)
- И т.д.

Число параметров

	N	$d_{ m model}$	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	params ×10 ⁶
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
(C)	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids									4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213