Solution (a) (i) single Linkage

O we denote that d(i,j) is the distant between i and j

(2) $d(A,B) = \min \{d_{0,3}, d_{0,9}, d_{2,3}, d_{2,9}, d_{5,3}, d_{6,9}\}$ = $\min \{3,9,1,7,3,3\}$

= 1

 $d(A,C) = min\{do, 11, d_{2,11}, d_{5,11}\}$ = $min\{11, 9, 5\}$

= 5 d(B,C)=min\$d 3,11, d 9,11) = min \$ 8,23 = 2.

	A	В	
A	G		
В		D	
C	5	2	6

@1<2<5

So, the cluster A and chuster B nill be merged at the next iteration.

(2) Complete Cinkage

O we denote that d(i,j) is the distant between i and j

(2) d(A,B) = max fdo,3, do,9, dz,3, dz,9, d 6,3, d6,9)

= max 93,9,1,7,3,3}

= 9

 $d(A,C) = \max\{d_{0,11}, d_{2,11}, d_{5,11}\}$ = $\max\{11, 9, 5\}$

d(B,C)=max { d 3,11 , d 9,11 } = max { 8,2}

- 8

	Á	В	
A	O		
В	9	D	
C	[]	8	6

3 8c9c11

So, the cluster B and chuster C nill be merged at the next iteration.

(b) (i) we denote distant between samples and claster centroids as d(i,j), if [5,7,19,12], je(1,2)

Samples	5	[7	10	[12
C1=3	2	4	7	9
Cz = 13	8,	6	3	1
Assign	Cil	CI	CZ	CZ

So we assign \$5,7 to C, and assign \$(0,12) to C2

(2) new controids

(c)(i) O object: The mean squre error (MSE) of the projected data is minimized and the variance of the projected data is maximized. 3 To learn the best low-dimensional subspace for data projection 3 achieve: APPLY SVD to the data matrix. Select the unit weight vector ut from the U matrix and calculate CVK xi)VK (ii) pcl is the eigenvector with the largest eigon value; it defines the direction along which the data show waximum variance All subsequent PCs are orthogonal to PCI and to each other each englaing the greatest remaining variance ciii) D Learning target: PCA is ansupervised Linear regre ssion is supervised. 2 Optimisation criterion: PCA max variance and min MSE; regression min residual variance of the responce

(d)(i)

$$O(k=1) = 4$$
, $N(k=0) = 4$,

 $P(k=1) = p(k=0) = 0.5$
 $P(\alpha=1|k=1) = 0.5$
 $P(\alpha=1|k=0) = 0.5$
 $P(b=1|k=0) = 0.25$
 $P(b=1|k=0) = 0.5$
 $P(b=1|k=0) = 0.5$
 $P(c=0|k=1) = 0.5$
 $P(c=0|k=0) = 0.25$

= 0,0625

$$= p(a=1,b=1,c=0 | k=0) p(k=0) + p(a=1,b=1,c=0 | k=1) p(k=1)$$

$$= p(a=1 | k=0) p(b=1 | k=0) p(c=0 | k=0) p(k=0)$$

$$+ p(a=1 | k=1) p(b=1 | k=1) p(c=0 | k=1) p(k=1)$$

$$= \frac{2}{4} \times \frac{2}{4} \times \frac{1}{4} \times \frac{4}{8} + \frac{2}{4} \times \frac{1}{4} \times \frac{2}{4} \times \frac{4}{8}$$

$$= \frac{1}{33} + \frac{1}{33}$$

3
$$P(k=1 \mid a=1, b=1, c=0)$$

= $\frac{P(a=1,b=1,c=0|k=1)}{P(a=1,b=1,c=0)}$

= $\frac{P(a=1 \mid k=1)}{P(b=1 \mid k=1)} P(c=0 \mid k=1) P(k=1)}{P(a=1,b=1,c=0)}$

= $\frac{0.5 \times 0.25 \times 0.5}{0.0625}$

(ii) ①
$$p(a=1,b=1)$$

= $p(a=1,b=1 | k=0) p(k=0) + p(a=1,b=1 | k=1) p(k=1)$

= $p(a=1 | k=0) p(b=1 | k=0) p(k=0) + p(a=1 | k=1) p(b=1 | k=1) p(k=1)$

= $\frac{2}{4} \times \frac{2}{4} \times \frac{4}{8} + \frac{2}{4} \times \frac{1}{4} \times \frac{4}{8}$

= $\frac{1}{8} + \frac{1}{16}$

= $\frac{3}{16}$

= 0.1875

2)
$$p(k=0 | a=1, b=1)$$

= $p(0=1, b=1 | k=0) p(k=0)$
 $p(a=1, b=1)$
= $p(a=1 | k=0) \times p(b=1 | k=0) p(k=0)$
 $p(a=1, b=1)$
= $\frac{0.5 \times 0.5}{0.(875)}$
= $\frac{2}{3}$

- 0.6667