MRIQC. automatic prediction of quality and visual reporting of MRI scans

Using MRIQC

An step-by-step introduction, examples, and discussion on MRI quality control.

fMRI meeting 11/7/2018

University of Denver

Alexander.Dufford@du.edu

What is mriqc?

- Developed by Poldrack Lab at Stanford and Center for Reproducible Neuroscience (Oscar Esteban, Krzysztof Gorgolewski, Russ Poldrack)
- Written in python (nipype)
- A quality control pipeline that extracts multiple Image Quality Metrics (IQMs) that can be used for automated prediction of quality and generate group and individual visual reports
- What goals of an MRI researcher does mriqc help with?
- 1. Find systematic errors in acquisition
- 2. Maximize quality of ongoing studies
- 3. Find subpar images
- 4. Prevent biasing analysis

What is mriqc?

Open source and built upon the following principles:

- 1. modularity and integrability: uses nipype under the hood to call several softwares (FSL, ANTs, AFNI)
- 2. minimal preprocessing: should be as much as possible on the original data (off the scanner)
- 3. Interoperability and standards: based on brain imaging data structure (BIDS)
- 4. reliability and robustness: robustness tested on OpenfMRI data

Step 1. BIDS your data

- What is BIDS?
- Stands for brain imaging data structure
- http://bids.neuroimaging.io/
- A standard file structure and naming for MRI researchers to share data
- "your primary collaborator is yourself 6 months from now, and your past self doesn't answer emails"

Tools to automate BIDS-ifying your data:

https://github.com/nipy/heudiconv **

https://github.com/cbedetti/Dcm2Bids

sub-control01

- anat
 - sub-control01_T1w.nii.gz
 - sub-control01_T1w.json
 - sub-control01_T2w.nii.gz
 - sub-control01_T2w.json
- o func
 - sub-control01_task-nback_bold.nii.gz
 - sub-control01_task-nback_bold.json
 - sub-control01_task-nback_events.tsv
 - sub-control01_task-nback_physio.tsv.gz
 - sub-control01_task-nback_physio.json
 - sub-control01_task-nback_sbref.nii.gz
- o dwi
 - sub-control01_dwi.nii.gz
 - sub-control01_dwi.bval
 - sub-control01_dwi.bvec
- o fmap
 - sub-control01_phasediff.nii.gz
 - sub-control01_phasediff.json

Step 2: Run mriqc! (3 options possibly in order of recommendation)

• 1. Compiled locally: available on DU's HPC, use this module: tools/mriqc-20170630-without-ImageMath

• 2. Run in docker container

Run in OpenNeuro (requires data sharing)

Step 2: Run mriqc!

How to mriqc on HPC:

After loading the module type:

mriqc bids-root/ output-folder participant

This will run on T1w and bold images found in bids-root to extract first level (participant IQMs)

Change 'participant' to 'group' to generate your group reports and group IQMs

Step 2: Run mriqc! Functional workflow

- Sanitize (revise data types and xforms) input data, read associated metadata and discard non-steady state frames.
- HMC based on 3dvolreg from AFNI hmc_afni().
- Skull-stripping of the time-series (AFNI) fmri_bmsk_workflow().
- Calculate mean time-series, and tSNR.
- Spatial Normalization to MNI (ANTs) epi_mni_align()
- Extraction of IQMs compute_iqms().
- Individual-reports generation individual_reports().

Step 2: Run mriqc! Anatomical workflow

- Conform (reorientations, revise data types) input data and read associated metadata.
- Skull-stripping (AFNI).
- Calculate head mask headmsk_wf().
- Spatial Normalization to MNI (ANTs)
- Calculate air mask above the nasial-cerebellum plane airmsk_wf().
- Brain tissue segmentation (FAST).
- Extraction of IQMs compute_iqms().
- Individual-reports generation individual_reports().

Step 3: Look at your visual reports

- Functional IQMS: read more in mriqc documentation
- DVARS: temporal derivative of timecourses, VARS referring to TMS variance over voxels, rate of change of BOLD signal across the entire brain at each frame of data
- Framewise Displacement: instantaneous head motion
- Gives you fd_mean, fd_num (number above FD thresh) and fd_perc: percentage of FDs above threshold
- The threshold is set at 0.2 mm
- Caveat: am I despiking, censoring, or scrubbing? *potential topic for another meeting

Step 3: Look at your visual reports (group)

MRIQC: group functional report

Summary

Date and time: 2017-02-05, 12:27.

Step 3: Look at your visual reports (individual)

Step 3: Look at your visual reports (individual)

Step 3. Look at your visual reports

MRIQC: group anatomical report

Summary

Step 4: Make decisions about quality

- Plot your group data! Find out who the outliers are, mark them for later?
- Set a threshold before collecting data about your IQMs
- Anatomical data: can use random forest classifier to use your IQMs and compare to a multi-site data set (N=1102), you can also train on your scanner's data (a Boulder classifer, Anschutz classifer)
- Returns a recommendation for pass/fail
- Functional data: see how different participants fall on several IQMs
- Can have an idea of quality before preprocessing, feed into afniproc or fMRIprep

Advantages vs. Disadvantages

Disadvantages:

- 1. My preprocessing already does all of that!
- 2. Data must be BIDS-compliant
- 3. I have to install all of those imaging packages I don't normally use (perhaps docker is the way to go)
- Doesn't provide you information on task
- 4. Cases not yet support: animal MRI, infant MRI, certain types of pathology

Advantages vs. Disadvantages

Advantages:

- 1. Can give you a rough estimate of the quality of a scan (especially while collecting data), you can run it quickly the next day
- This can help catch acquisition errors, hardware failures, participant artifacts (don't wait until all your data is collected to find out)
- 2. Gives you multiple IQMs and then summarizes them in the group plot
- 3. May introduce less bias into your QC, especially for anatomical images (raters can be unreliable)
- 4. Automated, can run several steps with one command
- 5. Great documentation and responsive developers: https://mriqc.readthedocs.io/en/stable/index.html

Let's do some examples! Starting w/ func

MRIQC: group bold report

Summary

- Date and time: 2017-08-16, 21:08.
- MRIQC version: 0.9.7+22.ge7624d3.

Problematic participant (resting)

Maybe participant (resting)

Great participant (resting)

Now T1, identified by classifier as exclude

Great T1

Maybe T1

Not suggested to exclude

No real problems, include!

Depends on your own criteria and scientific question!

Discussion

• 1. Any other steps/ tricks or tips people suggest?

• 2. What are some ways the field can begin to be consistent as far as QC across studies?

Strategies for when to run initial QC versus more detailed QC?