1 Situation de recherche

Voici l'enregistrement de la vitesse à chaque instant d'une monoplace lors du Grand Prix de Monaco.

- 1. Lors de son passage sur la ligne de départ, la voiture était-elle arrêtée ou lancée?
- 2. Recopier et compléter : "Ce graphique représente les variations de la de la voiture en fonction du
- **3.** Lire la vitesse de la voiture au bout de 5*s* 20*s* 40*s* 80*s*.
- 4. Lire les instants aux la voiture à roulé à 300 km/h, 250 km/h et 25 km/h.

2 Exercice d'application

Le graphique ci-dessous donne la puissance (exprimée en kW) délivrée par une éolienne selon la vitesse du vent (exprimée en m/s).

Répondre aux questions suivantes avec la précision permise par le graphique.

- 1. Pour quelles vitesses du vent l'éolienne produit-elle de l'électricité?
- 2. Quelle est la puissance maximale délivrée par l'éolienne?
- 3. La vitesse du vent augmente jusqu'à atteindre 100 km/h. Expliquer par une phrase ce qui se passe.

3 Chercher, Communiquer

Aux États-Unis, la température se mesure en de- gré Fahrenheit (en °F). En France, elle se mesure en degré Celsius (en °C). Pour faire les conversions d'une unité à l'autre, on a utilisé un tableur. Voici une copie de l'écran obtenu ci-contre.

	A	В				
1	Conversions					
	Températures	Températures				
2	en °C	en °F				
3	-5	23				
4	0	32				
5	5	41				
6	10	50				
7	15	59				
8	20	68				
9	25	77				

- 1. Quelle température en °F correspond à une température de 20 °C?
- 2. Quelle température en °C correspond à une température de 41 °F?
- **3.** Pour convertir la température de °C en °F, il faut multiplier la température en °C par 1,8 puis ajouter 32. On a écrit une formule en B3 puis on l'a recopiée vers le bas. Quelle formule a-t-on pu saisir dans la cellule B3?

Vu au brevet Pondichery 2017

On considère le programme de calcul cicontre dans lequel x, Étape 1, Étape 2 et Résultat sont quatre variables.

- 1. (a) Julie a fait fonctionner ce programme en choisissant le nombre 5. Vérifier que ce qui est dit à la fin est : « J'obtiens finalement 20 ».
 - (b) Que dit le programme si Julie le fait fonctionner en choisissant au départ le nombre 7?
- **2.** Julie fait fonctionner le programme, et ce qui est dit à la fin est : « J'obtiens finalement 8 ». Quel nombre Julie a-t-elle choisi au départ?
- **3.** Si l'on appelle x le nombre choisi au départ, écrire en fonction de x l'expression obtenue à la fin du programme, puis réduire cette expression autant que possible.
- 4. Maxime utilise le programme de calcul ci-dessous :
 - Choisir un nombre.
 - Lui ajouter 2
 - Multiplier le résultat par 5

Peut-on choisir un nombre pour lequel le résultat obtenu par Maxime est le même que celui obtenu par Julie?

Vu au brevet Centres étrangers 2017

Pour réaliser une étude sur différents isolants, une société réalise 3 maquettes de maison strictement identiques à l'exception près des isolants qui diffèrent dans chaque maquette. On place ensuite ces 3 maquettes dans une chambre froide réglée à 6 °C. On réalise un relevé des températures ce qui permet de construire les 3 graphiques suivants :

- 1. Quelle était la température des maquettes avant d'être mise dans la chambre froide?
- 2. Cette expérience a-t-elle duré plus de 2 jours? Justifier votre réponse.
- 3. Quelle est la maquette qui contient l'isolant le plus performant? Justifier votre réponse.

Partie 2 :

Pour respecter la norme RT2012 des maisons BBC (Bâtiments Basse Consommation), il faut que la résistance thermique des murs notée R soit supérieure ou égale à 4. Pour calculer cette résistance thermique, on utilise la relation :

$$R = \frac{e}{c}$$

où *e* désigne l'épaisseur de l'isolant en mètre et *c* désigne le coefficient de conductivité thermique de l'isolant. Ce coefficient permet de connaître la performance de l'isolant.

- 1. Noa a choisi comme isolant la laine de verre dont le coefficient de conductivité thermique est : c = 0,035. Il souhaite mettre 15 cm de laine de verre sur ses murs.
 - Sa maison respecte-t-elle la normé RT2012 des maisons BBC?
- **2.** Camille souhaite obtenir une résistance thermique de 5 (R = 5). Elle a choisi comme isolant du liège dont le coefficient de conductivité thermique est : c = 0,04.
 - Quelle épaisseur d'isolant doit-elle mettre sur ses murs?

Exercice d'application

On donne la fonction f définie par le programme de calcul suivant, ainsi que sa représentation \mathscr{C}_f dans un repère orthogonal

- Choisir un nombre.
- · L'élever au cube.
- Lui soustraire le double du carré du nombre de départ.
- Ajouter 3.
- Donner le résultat.

1. Recopie et complète le tableau suivant.

x	-3	-2	0	1	2	3	10
f(x)	0						

- **2.** 1 a-t-il des antécédents par f? Lesquels éventuellement? Justifie ta réponse.
- **3.** Donner l'expression algébrique de f(x).
- **4.** Placer dans le repère ci-dessus le point M(0,5; 2,5). Ce point semble-t-il appartenir à la courbe \mathcal{C}_f ?
- 5. Calculer $f\left(\frac{1}{2}\right)$. Que peut-on conclure quant à la question précédente?
- **6.** Déterminer graphiquement un antécédent par f de 4 avec la précision permise par le graphique.
- 7. Peut-on répondre à la question précédente autrement que graphiquement?