# КАФЕДРА №

| ГЧЕТ<br>ЩИЩЕН С ОЦЕНКОЙ        |                                          |                       |
|--------------------------------|------------------------------------------|-----------------------|
| РЕПОДАВАТЕЛЬ                   |                                          |                       |
| должность, уч. степень, звание | подпись, дата                            | инициалы, фамилия     |
| ОТЧЕТ С                        | ) ЛАБОРАТОРНОЙ 1                         | РАБОТЕ № 2            |
| Общие принципы прог            | раммного управления<br>серии STM32F303xC | я микроконтроллером   |
| по курсу: Прог                 | раммирование встрое                      | енных приложений      |
|                                |                                          |                       |
|                                |                                          |                       |
|                                |                                          |                       |
| БОТУ ВЫПОЛНИЛ                  |                                          |                       |
| ТУДЕНТ гр. №                   | подпись, дата                            | <br>инициалы, фамилия |

Цель работы: Привитие практических навыков по работе с ИСР Keil, ПВВ микроконтроллера и технической документацией.

Задание на лабораторную работу:

- 1) Изучить принципы настройки линии порта в режим вывода.
- 2) Создать проект с подключением библиотеки CMSIS. В файлах проекта найти определение стека и области памяти с неупорядоченным хранением данных ('heap'), изменить размеры стека и 'heap' согласно варианту задания (см. табл. 1.1.).
- 3) Написать на языке «си» программу и отладить её работу по переключению уровня сигнала на двух линиях в/в микроконтроллера. Частота получаемых на линиях сигналов типа меандр настраивается согласно варианту (см. табл. 1.1). Значение частоты контролировать осциллографом на выводах отладочной платы. В программе один из выводов настраивать через адреса регистров управления ПВВ, второй с использованием библиотеки CMSIS. Значение счётчика задержки, под заданную вариантом частоту переключения линии в/в, подбирать вручную или рассчитать (частота тактирования 8МГц). Сохранить эпюры напряжения для каждой линии в/в.
- 4) Оформить отчёт.

#### Вариант 24:

| Номер    | Размер      | Размер                | Линии в/в | Частота          |
|----------|-------------|-----------------------|-----------|------------------|
| варианта | стека, байт | ' <i>heap</i> ', байт |           | переключений, Гц |
|          |             |                       |           |                  |
| 24       | 2560        | 9472                  | PD6, PD14 | 3720; 7440       |

Перед использованием ПВВ D (GPIOD) необходимо включить его в работу и вывести из состояния сброса. Для этого в подсистеме RCC (RM0316 [1] стр. 123) — сброса и управления тактированием, имеется несколько регистров управления. В спецификации DS9118 [2], на странице 13 рисунок 1, показано, что все ПВВ подключены к шине AHB2:



Для управления тактированием шины AHB2 используется регистр RCC\_AHBENR (RM0316 стр. 148 подраздел 9.4.6) в котором имеются следующие управляющие биты:

| 23                             | 22          | 21          | 20          | 19          | 18          | 17          | 16                         |
|--------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------------------|
| GPIO<br>G<br>EN <sup>(1)</sup> | GPIOF<br>EN | GPIOE<br>EN | GPIOD<br>EN | GPIOC<br>EN | GPIOB<br>EN | GPIOA<br>EN | GPIOH<br>EN <sup>(1)</sup> |
| rw                             | rw          | rw          | rw          | rw          | rw          | rw          | rw                         |

#### В пояснении указано:

Bit 20 GPIODEN: I/O port D clock enable (бит 20 разрешает тактирование ППВ D)

Set and cleared by software. (Устанавливается и очищается ПО)

0: I/O port D clock disabled (0: тактирование порта в/в запрещено)

1: I/O port D clock enabled (1: тактирование порта в/в разрешено)

Таким образом, для включения в работу необходимо ПВВ(порт ввода/вывода) D необходимо установить единицу в 20 бит регистра RCC AHBENR

Выясним адрес этого регистра и изменим состояние 20-го бита на единицу. Сначала выясним раздел памяти, в котором находиться этот регистр. По таблице 20 на странице 54 спецификации DS9118, в разделе № 5 Memory mapping (карта памяти), находим область памяти подсистемы RCC:

| AHB1 |                           |     |          |
|------|---------------------------|-----|----------|
|      | 0x4002 1400 - 0x4002 1FFF | 3 K | Reserved |
|      | 0x4002 1000 - 0x4002 13FF | 1 K | RCC      |

Как видно из таблицы, адрес начала области памяти подсистемы RCC - 0x4002 1000. Далее из описания регистра RCC\_AHBENR (RM0316 стр.148 подраздел 9.4.6), находим поле Address offset: 0x14 (Адрес смещения).

## 9.4.6 AHB peripheral clock enable register (RCC\_AHBENR)

Address offset: 0x14

Зная смещение, вычисляем адрес регистра RCC\_AHBENR:  $0x4002\ 1000 + 0x0000\ 0014 = 0x4002\ 1014$ .

Здесь в выражении используется оператор '|=', а не простое присваивание '=', поскольку в регистре уже имеются установленные в единицу биты и их обнуление может привести к системному сбою. uint32\_t соответствует типу unsigned int. В общем виде получится программа:

```
#include "RTE_Components.h"
#include CMSIS_device_header
int main()
{
          *(uint32_t*)(0x40021014) |= 0x00100000;
          while(1){}
}
```

Теперь посмотреть регистры подсистемы RCC, что поменялся 20 бит(GPIODEN) в

**AHBENR** 



Таким образом, записав единицу в 20 байт мы включили в работу порт ввода/вывода D.

Теперь установим высокий уровень на PD6. Выделяем из таблицы 72 на странице 230 RM0316 [1], нужный нам режим:

| The state of the s |           |                     |   |              |                   |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|---|--------------|-------------------|---------|
| MODER(i)<br>[1:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OTYPER(i) | OSPEEDR(i)<br>[1:0] |   | DR(i)<br>:0] | I/O configuration |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         |                     | 0 | 0            | GP output         | PP      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         |                     | 0 | 1            | GP output         | PP + PU |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         |                     | 1 | 0            | GP output         | PP + PD |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | SPEED               | 1 | 1            | Reserved          |         |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 1 14.03             | _ | _            |                   |         |

Table 72. Port bit configuration table<sup>(1)</sup>

Названия колонок в таблице соответствует названиям управляющих регистров ПВВ, за исключением последней, что сокращённо описывает сам режим. Выбираем режим работы линии в/в «GP output + PP», что означает General-Purpose output Push-Pull – режим двухтактного выхода.

Для настройки в этот режим PD6 необходимо:

1) В регистр GPIOD\_MODER в поле MODER6[1:0] записать 01 (RM0316 стр.237 подраздел 11.4.1), т.е. в 12-ый бит записать единичку, а в 13-ый бит нолик:



- 2) В регистр GPIOD\_OTYPER в 1-й бит записать ноль, но так как после сброса МК он обнуляется, соответственно там и так ноль. Этот шаг можно пропустить.
- 3) Регистр GPIOD\_OSPEEDR настраивает скорость нарастания(спада) фронта сигнала при высоких скоростях переключения вывода (свыше 100КГц), поскольку мы работаем на низких частотах пропускаем и эту настройку.
- 4) В регистр GPIOD\_PUPDR записать нули в биты 12 и 13, но так как после сброса в регистре нули и этот шаг пропускаем. Получается, что для настройки линии PD6 в режим вывода достаточно настроить только один регистр GPIOD\_MODER записав в поле MODER6[1:0] значение 0x01, т.е. единицу в 2-й бит. Определим адрес регистра GPIOD\_MODER используя ранее рассмотренную таблицу 20 (DS9118 стр. 54):

| П |       |                           |     |       |
|---|-------|---------------------------|-----|-------|
|   | AHRO  | 0x4800 0C00 - 0x4800 0FFF | 1 K | GPIOD |
| - | ALIDZ |                           |     |       |

Адрес начала области памяти ПВВ GPIOD –  $0x4800\ 0C00$ . Смещение (Address offset) регистра GPIOD\_MODER: 0x00. Получаем адрес регистра GPIOD MODER:

 $0x4800\ 0C00 + 0x000\ 0000 = 0x4800\ 0C00$ .

И в код программы добавим строчку:

Настроив логику работы линии в/в PD6 на вывод, перейдём к непосредственному управлению состоянием сигнала на линии. Используем регистр GPIOD\_ODR (RM0316 стр.239 п. 11.4.6) – биты которого управляют состоянием линий, настроенных в режим выхода. Установка 1-го бита этого регистра в единицу – установит на линии PD6 высокий уровень, а сброс в ноль – низкий уровень. Таким образом, управляя состоянием этого бита, мы будем управлять состоянием линии PD6. Так как смещение этого регистра: 0x14, получаем адрес GPIOD ODR: 0x4800 0C00 + 0x14=0x4800 0C14.

#### Исходный код:

```
#include "RTE_Components.h"
#include CMSIS_device_header
void delay(volatile uint32_t count){
  while(count--)
    __NOP();
}
int main()
  // Включаем GPIOD
  *((volatile uint32_t*)0x40021014) \mid= (1 << 20);
  // Устанавливаем PD6 и PD14 в режим вывода
  *((volatile uint32_t*)0x48000C00) |= ((1 << (6 * 2)) | (1 << (14 * 2)));
while(1){
  // Устанавливаем "1" на PD6 и "0" на PD14
  *((volatile uint32_t*)0x48000C14) ^= (1 << 6);
  *((volatile uint32_t*)0x48000C14) ^= (1 << 14);
  delay(64);
  // Устанавливаем "1" на PD14
  *((volatile uint32_t*)0x48000C14) ^= (1 << 14);
  delay(64);
  }
```

```
main.c startup_stm32f303xc.s 2.map
   1 #include "RTE Components.h"
   2 #include CMSIS device header
   4 - void delay(volatile uint32_t count) {
   5
        while(count--)
   6
            <u>NOP();</u>
   7
      }
   8 L
  9 int main()
  10 □ {
          // Включаем GPIOD
  11
          *((volatile uint32 t*)0x40021014) |= (1 << 20);
  12
  13
  14
          // Устанавливаем PD6 и PD14 в режим вывода
          *((volatile uint32 t*)0x48000C00) |= ((1 << (6 * 2)) | (1 << (14 * 2)));
  15
  16
  17 = while(1){
  18
          // Устанавливаем "1" на PD6 и "0" на PD14
  19
  20
          *((volatile uint32_t*)0x48000C14) ^= (1 << 6);
          *((volatile uint32_t*)0x48000C14) ^= (1 << 14);
  21
  22
          delay(64);
  23
          // Устанавливаем "1" на PD14
  24
  25
          *((volatile uint32_t*)0x48000C14) ^= (1 << 14);
  26
          delay(64);
  27
          }
  28 }
  29
```

### Таблица трассировки заданных выводов STM32F303xC:

| Номер<br>вывода | Обозначение согласно DS9118, стр. 34 | Номер разъёмов и выводов на отладочной плате                                      |
|-----------------|--------------------------------------|-----------------------------------------------------------------------------------|
| 82              | PD6                                  | 28 штырь на двухрядном штыревом разъёме P2:    P2                                 |
| 56              | PD14                                 | 46 штырь на двурядном штыревом разъёме P1:  P1  1 2 3V 3V 3V 3V 13V 144 PD14  PC7 |

## Таблица используемых регистров STM32F303xC с расчётом адресов:

| В           | D "                                          | Г                  |
|-------------|----------------------------------------------|--------------------|
| Регистр     | Расчёт адреса и ссылки на документацию       | Биты и их значение |
|             |                                              | согласно           |
|             |                                              | документации       |
|             |                                              |                    |
| RCC_AHBENR  | $0x4002\ 1000 + 0x0000\ 0014 = 0x4002\ 1014$ | Bit 20 GPIODEN –   |
|             | DS9118 стр. 54                               | разрешает работу   |
|             | 0x4002 1000 - 0x4002 13FF 1 K RCC            | GPIOD              |
|             | RM0316 crp. 151 Address offset: 0x14         |                    |
| GPIOD_MODER | 0x4800 0C00 + 0x000 0000=0x4800 0C00         | Bits 3, 2          |
| OFIOD_MODEK |                                              | ,                  |
|             | DS9118, ctp. 54                              | MODER[1:0] -       |
|             | AHB2 0x4800 0C00 - 0x4800 0FFF 1 K GPIOD     | управляет режимом  |
|             | RM0316 ctp. 240 Address offset:0x00          | работы 1 линии     |
|             |                                              | ПВВ                |
| GPIOD_ODR   | 0x4800 0C00 + 0x14=0x4800 0C14               | Управляя           |
|             | RM0316 ctp. 151 Address offset: 0x14         | состоянием этого   |
|             |                                              | бита, мы будем     |
|             |                                              | управлять          |
|             |                                              | состоянием линии   |
|             |                                              | PD1                |

Выписка из 25 с указанием размера стека, 'heap', затрат оперативной и постоянной памяти проекта:

| HEAP                 | 0x20000060 Section        | 9472 startup stm32f303xc.o(HEAP)          |
|----------------------|---------------------------|-------------------------------------------|
| Heap_Mem             | 0x20000060 Data           | 9472 startup_stm32f303xc.o(HEAP)          |
| STACK                | 0x20002560 Section        | 2560 startup_stm32f303xc.o(STACK)         |
| Stack_Mem            | 0x20002560 Data           | 2560 startup_stm32f303xc.o(STACK)         |
| initial_sp           | 0x20002f60 Data           | <pre>0 startup_stm32f303xc.o(STACK)</pre> |
|                      |                           |                                           |
| 500 T-1-1 PO 51      | (S-1- , DO D-1-)          | 075 ( 0.051-0)                            |
| 609 Total RO Size (  | Code + RO Data)           | 976 ( 0.95kB)                             |
| 610 Total RW Size (  | (RW Data + ZI Data)       | 12128 ( 11.84kB)                          |
| 611 Total ROM Size ( | Code + RO Data + RW Data) | 976 ( 0.95kB)                             |

# Эпюры напряжений выходов STM32F303xC с указанием амплитуды, частоты, периода каждого сигнала:





| Характеристика | Линия PD6 |
|----------------|-----------|
| Период         | 0.27 мс   |

| Частота, Гц  | 3640 |
|--------------|------|
| Амплитуда, В | 3    |

| Характеристика | Линия PD14 |
|----------------|------------|
| Период         | 0.14 мс    |
| Частота, Гц    | 7280       |
| Амплитуда, В   | 3          |