

Approaches to the Pacemaker Challenge problem

John.Fitzgerald@ncl.ac.uk
Newcastle University

Work with Hugo Macedo (Minho), Peter Gorm Larsen (IHA), Marcel Oliveira & Artur Gomes (Rio Grande do Norte)

VSRnet Workshop at ABZ 2008, 15 September 2008

Approaches to the Pacemaker Challenge

- Background: a little cardiology
- The Pacemaker Challenge
- Work so far:
 - In Z: Gomes and Oliveira [GO08]
 - In VDM: Macedo, Larsen and Fitzgerald [MLF08]
- Future Work, and a Call to Participate!

Background: the natural pacemakers

I am not a cardiologist!

Blood flows into atria, to ventricles and out again.

Atrium

Ventricle

Sino-Atrial (SA Node). Cells depolarise, creating action potentials.

Atrial muscle contracts

Signal reaches ...

Atrio-Ventricular (AV Node). "Secondary Pacemaker"

Bundle of His

Reaches Ventricular walls, and the ventricular muscles contract.

Image: Prinzip der EKG-Darstellung, Wikipedia Commons

Background: the natural pacemakers

Failures include:

- Conduction disturbances (heart block): SA to AV or after the AV.
- Arrhythmia
- Slow SA node (bradycardia and tachycardia)

Different pacing modes for different conditions, e.g.

- Regular pace of a ventricle
- Pace of the ventricle in response to a sensed AV signal
- Inhibit a pace in response to a detected signal

Background: artificial pacemakers

Small implanted device Internal battery 1-2-3 leads (biploar) 10-15 years

Lead passed through a vein to the right ventricle or atrium.

Device is implanted between skin and chest wall.

Modes and parameters configured just after implantation.

Image: Pacemaker image by Steven Fruitsmaak; X-Ray image; both Wikipedia Commons, 2007.

Background: artificial pacemakers

Telemetry

Device Controller Monitor

(DCM)

Parameter setting, updating, monitoring functions.

- Software is increasingly significant in medical devices (US FDA, UK MHRA)
- How can our formal techniques aid certification as well as design and code quality?
- North American Software Certification Consortium
- McMaster University (Maibaum, Lawford and Wassyng)
- SCORE Programming Competition at ICSE

- Challenge revolves round a requirements document.
- Participants invited to contribute partial or complete developments.
- An artificial certification framework to be created.
- A reference platform has been developed.
- We're free to contribute in any area. There are no rules (yet!)

- Requirements Document (Boston Scientific)
- 35 pages, informal natural language (English) and tables
- Main areas:
 - System: DCM, leads, pacing pulse, brady modes and state.
 - Diagnostics: monitoring, ECGs etc.
 - Bradycardia therapy: definition of userprogrammable parameters (e.g. rate limits, delays).

	I	II	III	IV (optional)	
Category	Chambers Paced	Chambers Sensed	Response to Sensing	Rate Modulation	
Code	O – None A – Atrium V – Ventricle D – Dual	O – None A – Atrium V – Ventricle D – Dual	O – None T – Triggered I – Inhibited D – Tracked	R – Rate Modulation	

- Objective of the Pulse Generator is to maintain AV synchrony
- 23 programmable pacing modes, e.g.
 - VOO: ventricle paced, no sensing (and no response to sensing)
 - VVI: ventricle paced and sensed. Reaction to sensing a QRS is to inhibit the pace.
 - AAI: atrium paced, atrium sensed. Reaction to a sensed P is to inhibit the pace.

	1	II	III	IV (optional)	
Category	Chambers Paced	Chambers Sensed	Response to Sensing	Rate Modulation	
Code	O – None A – Atrium V – Ventricle D – Dual	O – None A – Atrium V – Ventricle D – Dual	O – None T – Triggered I – Inhibited D – Tracked	R – Rate Modulation	

- Objective of the Pulse Generator is to maintain AV synchrony
- 23 programmable pacing modes, e.g.
 - DDD: both chambers paced and sensed. Sensed P and QRS can inhibit a pace, sensed P can trigger a ventricular pace.
 - XXXR: Mode XXX with rate modulation (based on accelerometer input).

	Range	Inc.	Nominal	Tol.
Lower Rate Limit	30-50 ppm	5 ppm	60 ppm	±8 ms
	50-90 ppm	1 ppm		
	90-175 ppm	5 ppm		
Upper Rate Limit	50-175 ppm	5 ppm	120 ppm	±8 ms
Maximum Sensor	50-175 ppm	5 ppm	120 ppm	±4ms
Rate				
Fixed AV Delay	70-300 ms	10 ms	150 ms	±8 ms
Dynamic AV Delay	Off, On	_	Off	_
Minimum Dynamic	30-100 ms	10 ms	50 ms	
AV Delay				
Sensed AV Delay	Off, -10 to -100 ms	-10 ms	Off	±1 ms
Offset				
A or V Pulse Ampli-	Off, 0.5-3.2V	0.1V	3.5V	±12%
tude Regulated				
	3.5-7.0 V	0.5V		
A 1/ D 1 A 1:	OK 105 05 075 50/		2.751/	

25 programmable parameters

4 measured parameters(lead impedance, P and R wave measurements, battery power).

- Artur Gomes and Marcel Oliveira [GO08]
- A classical Z approach: system (moding and state requirements)
- Reasoning using ProofPower Z

```
LRL
lower_rate_limit : N (*ppm*)
inc_lower_rate_limit : N (*ms*)
tol_lower_rate_limit : N (*ms*)
lower\_rate\_limit \in 30..175;
(30 \le lower\_rate\_limit < 50) \Rightarrow (inc\_lower\_rate\_limit = 5)
\land (50 \leq lower_rate_limit < 90) \Rightarrow (inc_lower_rate_limit = 1)
\land (90 \leq lower_rate_limit \leq 175) \Rightarrow (inc_lower_rate_limit = 5);
tol_lower_rate_limit = 8
```

```
SWITCH ::= ON | OFF
```

CHAMBERS ::= C_NONE | ATRIUM | VENTRICLE | C_DUAL

RESPONSE ::= R_NONE | TRIGGERED | INHIBITED | TRACKED

BOM.

switch: SWITCH;

chambers_paced : CHAMBERS;

chambers_sensed : CHAMBERS;

response_to_sensing : RESPONSE;

rate_modulation : B

```
BOM

switch = ON;

chambers_paced = C_DUAL;

chambers_sensed = TRACKED;

rate_modulation = TRUE
```

Over 170 schemas.

Key decisions in structuring:

- modularisation of brady.
 operating modes
- inclusion of telemetry in pulse generator

Covers all main brady modes, focussing on consistent use of valid parameters.

Proof of initialisation theorems.

Will add responsive mode pacing, event markers etc.

- Hugo Macedo, Peter Gorm Larsen and John Fitzgerald [MLF08, Fitz08]
- Part of a drive towards entry-level formal methods with tool support [FLS08] <u>www.vdmportal.org/</u>
- Purpose was to assess an incremental approach to model production [FL+07]
- For (distributed) real-time applications
- Approach was staged modelling of a subset of requirements

- 1. Abstract VDM model defining functionality of brady modes as relations on sensed and reaction timelines.
- 2. Executable sequential model structured into environment and system components.
- 3. Executable concurrent model.
- 4. Executable RT model (with distribution)

Covered 8 modes and 18 of the controlling variables.

Validation by test.


```
SenseTimeline = set of (Sense * Time);
ReactionTimeline = set of (Reaction * Time)
```

functions

- Sequential model introduces environment/system division
- Environment class controls production of stimuli via a Leads class (lock-step)
- Concurrent model frees Environment class (but it still manages time)
- Identifies concurrency issues

- Distributed RT model
- Threads are defined with periodicity, jitter etc.
- Time annotations (durations) model durations of particular actions.

```
dischargePulse: Pulse * Chamber ==> ()
dischargePulse(p,c) ==
    if c = <ATRIUM>
    duration(40) World`env.handleEvent(p,c,time)
```

VDM tool "plugin" for Visualisation of model executions with validation conjecture checking ...

RTL-like validation conjectures [FL+07]

- Both have identified numerous questions against requirements
 - Operating mode consistency
 - Modelling errors (race conditions)
- Complementary coverage

Future Work

- Work required (urgently!) on spec derivation from requirements
- We'll improve coverage of the models
- Proof-based validation
- Co-simulation with heart models
- Continuous/Discrete boundary
- Design of specific algorithms (e.g. rate smoothing)
- Evidence for certification

Future Work

Reference implementation platforms are available (CDN\$350) from McMaster, or designs are available on line.

Pacemaker wiki:

http://sqrl.mcmaster.ca/pacemaker.htm

http://www.cas.mcmaster.ca/wiki/index.php/Pacemaker

Information Sources

PACEMAKER System Specification, Boston Scientific, 2007. Available at http://sqrl.mcmaster.ca/pacemaker.htm

[GO08] Artur Gomes and Marcel Oliveira, *Modelling the Pacemaker: early results on the pulse generator,* in *Workshop on Pilot Projects for the Grand Challenge in Verified Software* at FM 2008.

[FLS08] John Fitzgerald, Peter Gorm Larsen and Shin Sahara, VDMTools: advances in support for formal modeling in VDM, ACM SIGPLAN Notes 43(2), February 2008, pp. 3-11.

[Fit08] J. S. Fitzgerald, *The Grand Challenges and VDM: an update on the Pacemaker, Posix and Mondex,* in *Workshop on Pilot Projects for the Grand Challenge in Verified Software* at FM 2008.

[MLF08] H. D. Macedo, P. G. Larsen and J. S. Fitzgerald, *Incremental Development of a Distributed Real-Time Model of A Cardiac Pacing System using VDM*, in Proc. FM 2008, 15th Intl. Symp. on Formal Methods, Aabo Akademi, Finland, Springer LNCS May 2008.

[FL+07] J. S. Fitzgerald, P. G. Larsen, S. Tjell and M. Verhoef. *Validation Support for Distributed Real-Time Embedded Systems in VDM*++. in Bojan Cukic and Jing Dong (Eds.), Proc. 10th IEEE High Assurance Systems Engineering Symposium, November, 2007, Dallas, Texas, pp. 331-340.