

ABB - Session 2

Software 2.0, Data Engineering, & Machine Learning

Shaw Talebi

Today's Session

1. Housekeeping

- 1.1. Homework 1
- 1.2. Software 1.0
- 2. Software 2.0 ☐
 - 2.1. Machine Learning
 - 2.2. Data Engineering
- 3. Example Code []
 - 3.1. ETL of Survey Data
 - 3.2. Training an ML Model

Live Events - Next week!

Build End-to-End LLM Solutions

TDE Podcast & Live Q&A

Paul Iusztin
Founder @ Decoding ML

Maxime Labonne
Head of Post-training @ Liquid AI

Thurs, Jan 23rd 2025 1:00PM CST

Hosted live from:

Building RAG Apps for Production

TDE Podcast & Live Q&A

A conversation with

Jason Liu

ML Consultant @ 567 Labs

Hosted live from:

YouTube 🔼

Sat, Jan 25th 2025 11:30AM CST

Homework 1

AC Milan Reminder

Saijai Osika

Mindbody Scraper

Rod Morrison

Automated Emailer

Christopher Briggs

Textbook Chapter Splitter

Bryce

Ebay iPhone Scraper

Rakesh Bidhar

Stock Price Alert System

Sangeeta Bahri

Product Data ETL

Andy Yeo

Real Estate Image Finder

Adam Rosenkoetter

Automated Birthday Emailer

Mathew Olajide

Automated Email Reminders

Divya Mani

Software 1.0

Rules are explicitly programmed into computer

You can do a lot with Software 1.0

But writing robust logic is hard...

... if possible.

Software 1.0

Rules are explicitly programmed into computer

But writing robust logic is hard...

... if possible.

What happened?

Speech to text

Self-driving

Software 2.0

Software 2.0

Programming computers by example (i.e. with data)

Gather spam/not spam examples

Pass to ML algorithm

ML Model

Machine Learning

Programming computers by example (i.e. with data)

Gather spam/not spam examples

Pass to ML algorithm

ML Model

Machine Learning

Programming computers by example (i.e. with data)

3 Flavors of ML

1) Classification

2) Regression

3) Clustering

Flavor 1: Classification

Labeling data with known categories

Training Data

Techniques

12 [2][3] ABB #2 - Winter 2025

Flavor 1: Classification

Example: Fraud Detection

Ratio to Median Purchase

Flavor 2: Regression

Predicting a continuous value

Training Data

Techniques

[3] [4] ABB #2 - Winter 2025

Flavor 2: Regression

Example: Estimating Arrival Times

Clear weather?

15 **[3]** ABB #2 - Winter 2025

Clear

Thunderstorms

-10

45

950

1100

Flavor 3: Clustering

Grouping data based on similarity

No target needed!

Training Data

Techniques

Flavor 3: Clustering

Example: Customer Segmentation

Age	Sex	Country
25	Male	USA
30	Female	Canada
22	Female	UK
28	Male	Australia
35	Female	Germany
40	Male	France
27	Female	USA
33	Male	Canada
29	Female	UK
31	Male	Australia

Cluster
2
1
2
1
3
3
2
1
1
1

1 = Middle-aged, non-European/US

2 = Young, US/UK

3 = Middle-aged, European

Data Engineering

Data Engineering

Making data available for analytics and ML applications

Data Pipeline

Getting data from point A to point B

Data Pipeline

Getting data from point A to point B

Data Pipeline

Getting data from point A to point B

E: Extract

Acquiring data from its source

Custom Extracts

Scraping Public Webpages

Docs from File System

Sensor Data

T: Transform

Translating data into a useful form

Common Tasks

- Managing data types and ranges
- Deduplication
- Imputing missing values

- Handling special characters and values
- Feature engineering

L: Load

Making data available for ML training or inference

Project Directory

MB-scale, 1 use (unstructured + structured data)

Simple Storage

GB-scale, few uses (unstructured data)

Database

GB-scale, many uses (structured data)

Data Warehouse

TB-scale, many uses (structured data)

Data Lake

PB-scale, endless uses (unstructured + structured data)

ETL of Al Job Data (Overview)

Feature engineering and data labelling

ETL of Al Job Data (Flowchart)

ETL of Al Job Data (Example)

Training Al Job Classifier (Overview)

Dataset of DS and MLE job descriptions

Logistic Regression Trainer Logistic Regression Model

Training Al Job Classifier (Flowchart)

Training Al Job Classifier (Example)

Homework 2

Project -

Build a Simple ETL Pipeline

Bonus: train a ML model with it!

Pre-work 🚣

Session 3: Introduction to LLMs

Session 3: Prompt Engineering

Session 3: OpenAl API

Live Events - Next week!

Build End-to-End LLM Solutions

TDE Podcast & Live Q&A

Paul Iusztin
Founder @ Decoding ML

Maxime Labonne
Head of Post-training @ Liquid AI

Thurs, Jan 23rd 2025 1:00PM CST

Hosted live from:

Building RAG Apps for Production

TDE Podcast & Live Q&A

A conversation with **Jason Liu**ML Consultant @ 567 Labs

Hosted live from:

YouTube 🔼

Sat, Jan 25th 2025 11:30AM CST

References

- [1] Machine learning: the power and promise of computers that learn by example
- [2] sklearn Classifier Comparison
- [3] An Introduction to Decision Trees | Gini Impurity & Python Code
- [4] sklearn Supervised Learning
- [5] sklearn Unsupervised Learning
- [6] How Data Engineering Works
- [7] How to Build Data Pipelines for ML Projects (w/ Python Code)