NIKHIL AGARWAL

DATA SCIENTIST

+1 (847) 271-9942

nikagarwal@niks.me

1521 SW Westview Dr. Ankeny, IA 50023 USA

linkedin.com/in/nik-agarwal

GitHub.com/nikdata

SKILLS

Methods

- · App/web analytics
- Market basket analysis
- Machine learning

Packages

- ggplot, dplyr, ranger, caret, h2o, xgboost, shiny
- pandas, seaborn, numpy, sklearn, matplotlib

Languages/Software

- · R, Python
- · Tableau, Databricks

EDUCATION

MS Data Science

Northwestern University Evanston, IL 2015-2018

BS Industrial Engineering

Northern Illinois University DeKalb, IL 2006-2008

ACHIEVEMENTS

- 2018 John Deere Ag & Turf President's Award Winner
- IIE-published research paper: A Case Study on the Facility Location Problem for a Large-Scale Emergency Service

PROFILE

Knowledgeable **Data Scientist** with over 11 years of experience in the agriculture industry and strength in analyzing and utilizing data to support decision-making. Record of success includes leveraging data and statistical models to save analysis/process time, assist in identification of best practices and equipment, and expedite reporting. Able to distill complex results and concepts into accessible information for non-technical teams. Able to effectively utilize large databases and data sets.

PROFESSIONAL EXPERIENCE

John Deere

Data Scientist (multiple teams)

September 2015 - Present

- Developed a new model to classify level of digital solution engagement by customer.
 Resulted in a reclassification of over 60% of users and enabled marketing teams to better understand customers' disconnect with solutions offered by Deere.
- Developed and led training workshops with product owners and dev teams to think about analytic needs within a business context. Resulted in reduced iterations for analytics and improved relations between product teams and data scientists.
- Developed descriptive text analytics to help compare John Deere digital solutions to comparable solutions from competitors and non-competitors. This was accomplished with sentiment analysis using social media and customer feedback.
- Developed a clickstream model to describe customer behavior while navigating John Deere digital solutions and used hierarchical agglomerative clustering to segment customers
- Developed R package that combines data from several sources to determine last known location of any John Deere machine and the closest servicing dealer
- Designed Shiny application to summarize specific dealers' parts/labor revenues by specific work orders and job types, as well as provide an easy-to-understand summary for non-technical users.
- Conducted text analytics (with pairwise correlations) on dealer work orders and developed Shiny application to identify prospective ExpertJobs (pre-defined tasks to help dealers deliver a more consistent invoice to customers and standardized work instructions)
- Developed Shiny application that enables users to correlate machine error codes with repaired/replaced part numbers by cross-referencing dealer work orders and factory solutions; tool also enables users to identify ExpertAlerts (proactive alerts sent to dealers for machines that will experience unscheduled downtime) for any product line. Resulted in a savings of 35 minutes (average) required to correlate part number to error code.
- Analyzed fuel usage of 2,000+ customers worldwide; used statistical sampling to model customer machine behavior and machine usage. Findings resulted in engineering teams designing 'expandable' fuel tanks vs. one larger tank.

John Deere

Industrial Engineer (multiple teams)

June 2008 - September 2015

- Supervised third-shift operations of five employees as the only John Deere representative on-site at the Miami facility in the absence of the facility manager.
- Analyzed pick trip and load building data and recommended system modifications that reduced overfills by almost 80% and drove projected labor time savings of 12+ minutes per employee per day.
- Developed parameters for pick-trip building software by using AutoCAD to reduce non-value added travel time by average of 10% resulting in projected labor savings of more than \$20,000 per quarter.
- Identified and reduced NVA assembly work content (through process audits) by 35% resulting in projected savings of \$300,000 per year.
- Reduced assembly process inefficiencies by 25% (combination of body travel analysis and work bench placement analysis) resulting in projected operational savings of \$100,000 annually