Pumping Lemma

Given a regular language L, \exists a number p such that \underline{any} string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0.$
- 2. |y| > 0.
- 3. $|xy| \leq p$.

Proof Blueprint

Claim: The language L = < some language > is not regular.

Proof: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = \langle \mathsf{TODO} \rangle$: Select s that will work with $s \in L$ and $|s| \geq p \rangle$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

<TODO: Find conditions on what y must equal>

Consider the string $s' = xy^{< TOD0: Select i>} z = < TOD0: Show what s' equals>$

<TODO: Show s' is not in L>

 \Rightarrow s' \notin L, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.