Correction

Partie I

1.a Soit D = D(O, r).

 $\forall A, B \in D$. Soit $M \in [A, B]$. Il existe $\lambda \in [0,1]$ tel que $M = \text{bar}((A, \lambda), (B, (1 - \lambda)))$.

 $\overrightarrow{OM} = \lambda \overrightarrow{OA} + (1 - \lambda) \overrightarrow{OB}$ donc $OM \leq \lambda OA + (1 - \lambda)OB \leq r$ puis $M \in D$ et finalement $[A, B] \subset D$.

Ainsi D est convexe.

1.b Soit F un demi-plan délimité par une droite \mathcal{D} .

 $\forall A, B \in F$. Si A = B alors $[A, B] \subset F$.

Si $A \neq B$ alors notons $\Delta = (AB)$.

Si $\Delta /\!/ \mathcal{D}$ alors $\Delta \subset F$ puis $[A, B] \subset F$.

Sinon Δ coupe la droite $\mathcal D$ en un point O et $\Delta \cap F$ est une demi-droite d'origine O.

Les points A et B étant dans F sont sur cette demi-droite et le segment [A,B] étant alors inclus dans la demi-droite est inclus dans F. Finalement F est convexe.

Notons qu'on peut aussi résoudre cette question en visualisant F par l'intermédiaire d'un paramétrage ou sous tout autre forme valable.

1.c Soit $C = conv(A_1, A_2, ..., A_n)$.

 $\forall A,B \in C \text{ . On peut \'ecrire } A = \mathrm{bar} \big((A_i,\alpha_i) \big)_{1 \leq i \leq n} \text{ et } B = \mathrm{bar} \big((A_i,\beta_i) \big)_{1 \leq i \leq n} \text{ avec } \alpha_i \geq 0 \text{ et } \beta_i \geq 0 \text{ tels que } \alpha_1 + \dots + \alpha_n = 1 \text{ et } \beta_1 + \dots + \beta_n = 1 \text{ .}$

Soit $M \in [A, B]$. Il existe $\lambda \in [0,1]$ tel que $M = \text{bar}((A, \lambda), (B, 1 - \lambda))$.

Par associativité du barycentre :

$$M = \mathrm{bar} \big((A_i, \lambda \alpha_i + (1-\lambda)\beta_i) \big)_{1 \leq i \leq n} \ \text{avec} \ \lambda \alpha_i + (1-\lambda)\beta_i \geq 0 \ \text{et} \ \sum_{i=1}^n \lambda \alpha_i + (1-\lambda)\beta_i = 1 \ .$$

Donc $M \in C$ puis $[A, B] \subset C$.

Finalement C est convexe.

2.a $\forall A, B \in \mathcal{C} \cap \mathcal{C}'$, on a $[A, B] \subset \mathcal{C}$ et $[A, B] \subset \mathcal{C}'$ car \mathcal{C} et \mathcal{C}' convexes. Donc $[A, B] \subset \mathcal{C} \cap \mathcal{C}'$.

Finalement $C \cap C'$ est convexe.

2.b Par récurrence sur $n \in \mathbb{N}^*$.

Pour n=1: Une combinaison convexe d'un point est égal à ce point et la propriété est donc immédiate. Supposons la propriété établie au rang $n \ge 1$.

Soit A_1, \dots, A_n, A_{n+1} des points de C et M une combinaison convexe des ces points.

On peut écrire
$$M = \text{bar}((A_i, \alpha_i))_{1 \le i \le n+1}$$
 avec $\alpha_i \ge 0$ et $\sum_{i=1}^{n+1} \alpha_i = 1$.

Si $\alpha_1 + \cdots + \alpha_n = 0$ alors $M = A_{n+1} \in \mathcal{C}$.

Sinon $\lambda = \alpha_1 + \cdots + \alpha_n \neq 0$.

Posons
$$N=\mathrm{bar}\big((A_i,\alpha_i)\big)_{1\leq i\leq n}$$
. On a $N=\mathrm{bar}\bigg((A_i,\frac{\alpha_i}{\lambda})\bigg)_{1\leq i\leq n}$ et par HR, $N\in\mathcal{C}$.

 $\text{Par associativit\'e du barycentre}: M = \text{bar}\big((N,\alpha_1+\dots+\alpha_n),(A_{\scriptscriptstyle n+1},\alpha_{\scriptscriptstyle n+1})\big) \ \text{donc} \ \ M \in \big[N,A_{\scriptscriptstyle n+1}\big] \subset \mathcal{C} \ .$

Récurrence établie.

- 3.a F_1, F_2, F_3 sont des convexes contenant les points A_1, A_2, A_3 donc $F_1 \cap F_2 \cap F_3$ est un convexe qui contient aussi A_1, A_2, A_3 . En vertu de I.2.b, toute combinaison convexe de A_1, A_2, A_3 appartient encore à $F_1 \cap F_2 \cap F_3$ et donc $T \subset F_1 \cap F_2 \cap F_3$.
- 3.b Dans \mathcal{R} on a: $A_1(0,0), A_2(1,0)$ et $A_3(0,1)$. Par suite $F_1: x+y \le 1, F_2: x \ge 0$ et $F_3: y \ge 0$.

3.c Soit
$$M(x,y) \in F_1 \cap F_2 \cap F_3$$
. On a $x,y \ge 0$, $x+y \le 1$ et $\overline{A_1M} = x\overline{A_1A_2} + y\overline{A_1A_3}$. Donc $(1-(x+y))\overline{A_1M} + x\overline{A_2M} + y\overline{A_2M} = \vec{o}$ ce qui donne $M = \mathrm{bar}\big((A_1,\alpha_1),(A_2,\alpha_2),(A_3,\alpha_3)\big)$ avec $\alpha_1 = 1-(x+y) \ge 0, \alpha_2 = x$ et $\alpha_3 = y \ge 0$.

M est donc une combinaison convexe des points A_1,A_2,A_3 et donc $M\in\mathcal{T}$.

Ainsi $F_1 \cap F_2 \cap F_3 \subset \mathcal{T}$ puis $F_1 \cap F_2 \cap F_3 = \mathcal{T}$.

On a $\overrightarrow{A_1O} + \overrightarrow{A_2O} + \overrightarrow{A_2O} = \overrightarrow{o}$. 4.a

Si $O \in (A_1 A_2)$ alors $A_3 \in (A_1 A_2)$ car $\overrightarrow{OA_3} = \overrightarrow{A_1 O} + \overrightarrow{A_2 O}$.

Ceci est exclu car A_1, A_2, A_3 sont supposés non alignés. Ainsi $O \notin (A_1A_2)$.

De même $O \not\in (A_1A_3)$ et $O \not\in (A_1A_3)$

Posons $r = \min \{ d(O, (A_1 A_2), d(O, (A_2 A_3), d(O, (A_1 A_3))) \} > 0.$ 4.b

On a $D(O,r) \subset F_1, F_2, F_3$ donc $D(O,r) \subset F_1 \cap F_2 \cap F_3 = \mathcal{T}$.

Partie II

- Si M = O alors $\forall A \in \mathcal{A}, (\overrightarrow{OO} \mid \overrightarrow{OA}) = 0 < 1$ donc $M = O \in \mathcal{A}^*$. 1.a $\forall M, N \in \mathcal{A}^*$. Soit $P \in [M, N]$. Il existe $\lambda \in [0,1]$ tel que $P = \text{bar}((M, \lambda), (N, 1 - \lambda))$. $\forall A \in \mathcal{A}, (\overrightarrow{OP} \mid \overrightarrow{OA}) = (\lambda \overrightarrow{OM} + (1 - \lambda)\overrightarrow{ON} \mid \overrightarrow{OA}) = \lambda (\overrightarrow{OM} \mid \overrightarrow{OA}) + (1 - \lambda)(\overrightarrow{ON} \mid \overrightarrow{OA}) \le \lambda + (1 - \lambda) = 1.$ Donc $P \in \mathcal{A}^*$ puis $[M,N] \subset \mathcal{A}^*$. Finalement \mathcal{A}^* est un convexe.
- Supposons $A \subset \mathcal{B}$. Soit $M \in \mathcal{B}^*$. $\forall A \in \mathcal{B}$ on a $(\overrightarrow{OM} \mid \overrightarrow{OA}) \leq 1$ donc a fortior $\forall A \in \mathcal{A}$ on a 1.b $(\overrightarrow{OM} \mid \overrightarrow{OA}) \leq 1$ d'où $M \in \mathcal{A}^*$. Finalement $\mathcal{B}^* \subset \mathcal{A}^*$.
- Soit $A \in \mathcal{A}$. $\forall M \in \mathcal{A}^*$ on a $(\overrightarrow{OM} \mid \overrightarrow{OA}) \leq 1$ i.e. $(\overrightarrow{OA} \mid \overrightarrow{OM}) \leq 1$ donc $A \in \mathcal{A}^{**}$. 1.c
- $\mathcal{P}^* = \left\{ M \in \mathcal{P} / \forall A \in \mathcal{P}, (\overrightarrow{OM} \mid \overrightarrow{OA}) \leq 1 \right\}.$ 2.a

Soit $M \in \mathcal{P}$.

Si $M \neq O$ alors en prenant A tel que $\overrightarrow{OA} = \frac{2}{OM^2} \overrightarrow{OM}$ on a $(\overrightarrow{OM} \mid \overrightarrow{OA}) = 2 > 1$ et donc $M \notin \mathcal{P}^*$.

Si M = O alors $\forall A \in \mathcal{P}, (\overrightarrow{OO} \mid \overrightarrow{OA}) = 0 \le 1$ donc $M = O \in \mathcal{P}^*$.

Finalement $\mathcal{P}^* = \{O\}$.

$$\{O\}^* = \mathcal{P}^{**} \supset \mathcal{P} \quad \text{ donc } \{O\}^* = \mathcal{P}.$$

2.b Soit $M \in (D(O,r))^*$.

Si M = O alors $M \in D(O, 1/r)$.

Si $M \neq O$ alors considérons A le point déterminé par $\overrightarrow{OA} = \frac{r}{OM} \overrightarrow{OM}$.

On a $A \in D(O,r)$ donc $(\overrightarrow{OM} \mid \overrightarrow{OA}) \le 1$ ce qui donne $r \times OM \le 1$. Par suite $M \in D(O,1/r)$ Finalement $(D(O,r))^* \subset D(O,1/r)$.

Inversement, pour $M \in D(O, 1/r)$, $\forall A \in D(O, r)$ on a $(\overrightarrow{OM} \mid \overrightarrow{OA}) \leq OM \cdot OA \leq r \frac{1}{r} = 1$.

Ainsi $M \in (D(O,r))^*$. Finalement $(D(O,r))^* = D(O,1/r)$.

Soit K le point déterminé par $\overrightarrow{OK} = \frac{\overrightarrow{OH}}{\overrightarrow{OH}^2}$. On a $(\overrightarrow{OK} \mid \overrightarrow{OH}) = 1$ donc $K \in \mathcal{D}$. D'autre part $K \in (OH)$. 3.a

Pour $M \in \mathcal{P}$ on a:

$$\begin{aligned} M \in \mathcal{D} &\Leftrightarrow (\overrightarrow{OM} \mid \overrightarrow{OH}) = (\overrightarrow{OK} \mid \overrightarrow{OH}) \\ &\Leftrightarrow (\overrightarrow{KM} \mid \overrightarrow{OH}) = 0 \end{aligned}$$

Donc \mathcal{D} est la droite passant par K et de vecteur normal \overrightarrow{OH} . Finalement \mathcal{D} est la perpendiculaire à (OH) en K.

3.b Soit
$$\vec{i} = \frac{\overrightarrow{OK}}{OK}$$
 et \vec{j} un vecteur unitaire directeur de \mathcal{D} .

Considérons le repère orthonormé $(K; \vec{i}, \vec{j})$.

Soit $M \in \mathcal{P}$.

On peut écrire $\overrightarrow{KM} = x \cdot \overrightarrow{i} + y \cdot \overrightarrow{j}$.

$$(\overrightarrow{OM} \mid \overrightarrow{OH}) = (\overrightarrow{OK} \mid \overrightarrow{OH}) + (\overrightarrow{KM} \mid \overrightarrow{OH}) = OK \cdot OH + x \cdot OH = 1 + x \cdot OH$$
.

Donc $M \in \{H\}^* \Leftrightarrow 1 + x \cdot OH \leq 1 \Leftrightarrow x \leq 0$.

Ainsi $\left\{H\right\}^*$ est le demi-plan d'équation $x\leq 0$, ce qui correspond au demi-plan délimité par $\mathcal D$ et contenant le point O.

4. Notons K le projeté orthogonal de O sur \mathcal{D} et posons H le point déterminé par $\overrightarrow{OH} = \frac{1}{OK^2}\overrightarrow{OK}$. Par l'étude qui précède $\{H\}^*$ est le demi-plan contenant O délimité par la droite orthogonale à (OH) passant par K, i.e. la droite \mathcal{D} . Ainsi $\{H\}^* = F$.

Partie III

- 1.a Si $I = \emptyset$ alors $\forall i \in \{1,...,n\}, \delta \subset F_i$ donc $\delta \subset \mathcal{C}$. Or \mathcal{C} est borné. C'est donc impossible!
- $\begin{array}{ll} \text{1.b} & \text{Si } i \in J \text{ alors } \delta \subset F_i \text{ donc } A_{i_0} \in F_i \text{.} \\ & \text{Si } i \in I \text{ alors } A_{i_0} \in [OA_i] \subset F_i \text{ car } A_{i_0} \in \delta \text{ et } OA_{i_0} \leq OA_i \text{.} \end{array}$
- $\begin{aligned} \text{1.c} & \quad \text{On a } O \in \mathcal{C} \ \text{ et } A_{i_0} \in \bigcap_{1 \leq i \leq n} F_i = \mathcal{C} \ \text{donc} \left[OA_{i_0} \right] \subset \mathcal{C} \ . \ \text{De plus} \left[OA_{i_0} \right] \subset \delta \ \text{donc} \left[OA_{i_0} \right] \subset \delta \cap \mathcal{C} \ . \end{aligned}$ $\text{Inversement, } \delta \cap \mathcal{C} \subset (\delta \cap F_{i_0}) = \left[O, A_{i_0} \right] . \ \text{Finalement} \ \delta \cap \mathcal{C} = \left[O, A_{i_0} \right].$
- 2. Si $\mathcal{D} \cap \mathcal{C} = \varnothing$: ok Sinon, soit $O \in \mathcal{D} \cap \mathcal{C}$ et δ_1 , δ_2 les deux demi-droites d'origine O, constituant \mathcal{D} . D'après 1.c, $\delta_i \cap C$ est un segment $[O,A_i]$ où A_i est un point d'une arête de \mathcal{C} . $\mathcal{D} \cap \mathcal{C} = (\delta_1 \cap \mathcal{C}) \cup (\delta_2 \cap \mathcal{C}) = [OA_1] \cup [OA_2] = [A_1A_2].$
- 3.a Par intersection de convexes, $\mathcal C$ est un convexe. De plus P_1,\ldots,P_m sont des points de $\mathcal C$ donc toute combinaison convexe de P_1,\ldots,P_m appartient à $\mathcal C$. Par suite $\mathcal C'\subset\mathcal C$.
- 3.b Soit M un point d'une arête de $\mathcal C$. $M \ \text{ appartient à un segment dont les extrémités sont des sommets } P_i \text{ et } P_j \text{ de } \mathcal C$. $\mathcal C' \ \text{ étant convexe, } \left[P_i,P_j\right] \subset \mathcal C' \text{ , puis on a } M \in \mathcal C' \text{ et le résultat voulu.}$
- 3.c Soit O un point intérieur à $\mathcal C$ et $\mathcal D$ une droite passant par O. $\mathcal D\cap\mathcal C$ est un segment, contenant O, dont les extrémités sont sur les arêtes de $\mathcal C$. Par 3.b, les extrémités de ce segment appartiennent à $\mathcal C'$ et donc $O\in\mathcal C'$. Finalement $\mathcal C\subset\mathcal C'$ puis $\mathcal C=\mathcal C'$.
- $4. \text{a} \qquad M \not\in \mathcal{C} = \bigcap_{1 \leq i \leq n} F_i \ \text{ donc il existe } \ i \in \big\{1, \ldots, n\big\} \ \text{ tel que } \ M \not\in F_i \,.$
- 4.b $H \in \{H\}^{**} = F_i^* \subset \mathcal{C}^*$ en vertu des propriétés II.1.b et II.1.c
- $\text{4.c} \qquad M \not\in F_i = \left\{H\right\}^* \text{, or } \left\{H\right\} \subset \mathcal{C}^* \text{ donc } \mathcal{C}^{**} \subset \left\{H\right\}^* \text{ puis } M \not\in \mathcal{C}^{**} \,.$
- 4.d Suite à ce raisonnement : $\mathcal{C}^{**} \subset \mathcal{C}$.

 Inversement, on a toujours $\mathcal{C} \subset \mathcal{C}^{**}$ donc $\mathcal{C} = \mathcal{C}^{**}$.

- 5.a Puisque $A_1,A_2,...,A_n$ ne sont pas alignés, il existe trois points A_i,A_j et A_k qui ne sont par alignés. Considérons $\mathcal{T}=Conv(A_i,A_j,A_k)$. On a $\mathcal{T}\subset\mathcal{C}=Conv(A_1,...,A_n)$. D'après I.4.b, pour O isobarycentre de A_i,A_j,A_k , il existe r>0 tel que $D(O,r)\subset\mathcal{T}\subset\mathcal{C}$.
- $5. \text{b} \qquad \forall i \in \big\{1, \dots, n\big\}, \big\{A_i\big\} \subset \mathcal{C} \ \text{donc} \ \mathcal{C}^* \subset \big\{A_i\big\}^* \ \text{puis} \ \mathcal{C}^* \subset \bigcap_{1 \leq i \leq n} \big\{A_i\big\}^* \ .$

Inversement, soit $M \in \bigcap_{1 \leq i \leq n} \left\{ A_i \right\}^*$.

 $\forall A \in \mathcal{C} \text{ , on peut \'ecrire } A = \mathrm{bar} \big((A_{\scriptscriptstyle i}, \alpha_{\scriptscriptstyle i}) \big)_{1 \leq i \leq n} \text{ avec } \alpha_{\scriptscriptstyle i} \geq 0 \text{ et } \alpha_1 + \dots + \alpha_n = 1 \text{ .}$

$$(\overrightarrow{OM} \,|\: \overrightarrow{OA}) = \sum_{i=1}^n \alpha_i (\overrightarrow{OM} \,|\: \overrightarrow{OA_i}) \leq \sum_{i=1}^n \alpha_i = 1 \ \text{donc} \ M \in \mathcal{C}^* \ .$$

- 5.c \mathcal{C}^* est intersection d'un nombre fini de demi-plan, c'est donc un polyèdre convexe. $D(O,r) \subset \mathcal{C}$ donc $\mathcal{C}^* \subset D(O,1/r)$ puis \mathcal{C}^* est borné. C'est donc un polygone convexe.
- 5.d Introduisons $P_1, ..., P_m$ les sommets du polygones C^* .

On a $\mathcal{C}^* = Conv(P_1,...,P_m)$, en vertu de III.3, donc $\mathcal{C} = \mathcal{C}^{**} = \bigcap_{1 \leq i \leq n} \left\{P_i\right\}^*$ comme ci-dessus.

Par suite C est un polyèdre convexe.

Pour R suffisamment grand, $A_1, ..., A_n \in D(O, R)$ et puisque D(O, R) est convexe, $\mathcal{C} \subset \mathcal{D}(O, R)$. Ainsi \mathcal{C} est un polygone convexe.