Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer Presenter: Shijia Wang

Noam Shazeer¹ Azalia Mirhoseini¹ Krzysztof Maziarz² Andy Davis¹ Quoc Le¹ Geoffrey Hinton¹ Jeff Dean¹

¹Google Brain, noam,azalia,andydavis,qvl,geoffhinton,jeff@google.com, ²Jagiellonian University, Cracow, krzysztof.maziarz@student.uj.edu.pl

ICLR, 2017

Outline

- Introduction
 - Conditional Computation
- The Mixture-of-Experts Layer (MoE)
 - Approach
 - Structure
 - Performance Challenges
 - Balancing Expert Utilization
- Conclusion
 - Experiments

Outline

- Introduction
 - Conditional Computation
- 2 The Mixture-of-Experts Layer (MoE)
 - Approach
 - Structure
 - Performance Challenges
 - Balancing Expert Utilization
- Conclusion
 - Experiments

Problem

- When datasets are large, increasing the number of parameters of neural networks can give much better prediction accuracy.
- Roughly quadratic growth in training cost as both the model size and the number of training examples increase

Previous Solutions

- Conditional computation schemes parts of a network are used depending on the example
- Gating decisions could be binary or sparse and continuous, stochastic or deterministic
- Various forms of reinforcement learning and back-propagation for training the gating decisions
- None has demonstrated massive improvements

Challenges

- Most computing devices are much faster at arithmetic than branching
- Conditional computing reduces the batch sizes due to the conditionally active chunk
- Network bandwidth speed is slower than computation speed
- Loose information to achieve the desired level of sparsity.
- Small model capacity for acceptable datasets

Outline

- Introduction
 - Conditional Computation
- The Mixture-of-Experts Layer (MoE)
 - Approach
 - Structure
 - Performance Challenges
 - Balancing Expert Utilization
- Conclusion
 - Experiments

The Mixture-of-Experts Layer

- Consists of a number of experts, each a simple feed-forward neural network
- A trainable gating network which selects a combination of the experts to process each input
- All parts are trained jointly by back-propagation

MoE Diagram

Figure 1: A Mixture of Experts (MoE) layer embedded within a recurrent language model. In this case, the sparse gating function selects two experts to perform computations. Their outputs are modulated by the outputs of the gating network.

Outline

- Introduction
 - Conditional Computation
- The Mixture-of-Experts Layer (MoE)
 - Approach
 - Structure
 - Performance Challenges
 - Balancing Expert Utilization
- Conclusion
 - Experiments

Consituents

- A set of n expert networks $E_1, ..., E_n$
- A gating network G that outputs a sparse n-dimensional vector

Output of the MoE Module

- Given input x
- G(x) the output of the gating network
- $E_i(x)$ the output of the *i*-th expert
- The output *y* is:

$$y = \sum_{i=1}^{n} G(x)_i E_i(x)$$
 (1)

• Whenever $G(x)_i = 0$, the $E_i(x)$ does not need to be calculated

Large Number of Experts

- Reduce branching factor by creating a two-level hierarchy of experts
- Each expert itself is a MoE

Softmax Gating

• Gating function with trainable weight matrix W_g :

$$G_{\sigma}(x) = Softmax(x * W_g)$$
 (2)

Noisy Top-K Gating

• Add sparsity and noise to the Softmax gating network:

$$G(x) = Softmax(KeepTopK(H(x), k))$$
 (3)

$$H(x)_i = (x * W_g)_i + StandardNormal() * Softplus((x * W_{noise})_i)$$
 (4)

$$KeepTopK(v,k)_i = \begin{cases} v_i, & \text{if } v_i \text{ is in the top } k \text{ elements of } v. \\ -\infty, & \text{otherwise.} \end{cases}$$
 (5)

Training the Gating Network

- Back-propagation with the rest of the model
- The gate values of the top experts have nonzero derivatives with respect to the weights of the gating network
- Gradients also back-propagate through the gating network to its inputs

Outline

- Introduction
 - Conditional Computation
- The Mixture-of-Experts Layer (MoE)
 - Approach
 - Structure
 - Performance Challenges
 - Balancing Expert Utilization
- Conclusion
 - Experiments

Shrinking Batch Problem

- Want large batch sizes
- If the gating chooses k out of n experts for a batch of b examples, each expert receives a batch of approximately $kb/n \ll b$ examples
- Extremely large batch sizes limited by memory

Mixing Data Parallelism and Model Parallelism

- Solution: run the standard layers in parallel with different batches of data
- Feed into only 1 shared MoE layer
- Each expert receives a combined batch from all the parallel inputs
- If there are d parallel devices, each expert receives kbd/n examples

Taking Advantage of Convolutionality

- Solution: wait until all timesteps of the previous layer finish
- Experts receive a big batch from all the timesteps

Increasing Batch Size for a Recurrent MoE

- Solution: wait until all timesteps of the previous layer finish
- Experts receive a big batch from all the timesteps

Network Bandwidth

- Problem: overhead cost for communcating inputs and outputs
- Use a larger hidden layer or more hidden layers within memory limit

Outline

- Introduction
 - Conditional Computation
- The Mixture-of-Experts Layer (MoE)
 - Approach
 - Structure
 - Performance Challenges
 - Balancing Expert Utilization
- Conclusion
 - Experiments

Favors Few Experts

- Could converge to a state that favors a few experts
- Favored experts train more rapidly and are selected even more

Soft Constraint

• Batch-wise sum of the gate values for an expert:

$$Importance(X) = \sum_{x \in X} G(x)$$
 (6)

 Loss added to the overall loss, where CV is the coefficient of variance function:

$$L_{importance}(X) = w_{importance} * CV(Importance(X))^{2}$$
 (7)

As the gating favors a few experts, the overall loss increases

Outline

- Introduction
 - Conditional Computation
- The Mixture-of-Experts Layer (MoE)
 - Approach
 - Structure
 - Performance Challenges
 - Balancing Expert Utilization
- Conclusion
 - Experiments

- 829 million words, with a vocabulary of 793,471 words
- Flat MoEs containing 4, 32, and 256 experts
- Hierarchical MoEs containing 256, 1024, and 4096 experts
- Each expert had about 1 million parameters

Figure 2: Model comparison on 1-Billion-Word Language-Modeling Benchmark. On the left, we plot test perplexity as a function of model capacity for models with similar computational budgets of approximately 8-million-ops-per-timestep. On the right, we plot test perplexity as a function of computational budget. The top line represents the LSTM models from (Jozefowicz et al.) [2016). The bottom line represents 4-billion parameter MoE models with different computational budgets.

Table 1: Summary of high-capacity MoE-augmented models with varying computational budgets, vs. best previously published results (Jozefowicz et al.) 2016). Details in Appendix C

	Test	Test	#Parameters	ops/timestep	Training	TFLOPS
	Perplexity	Perplexity	excluding embedding		Time	/GPU
	10 epochs	100 epochs	and softmax layers		10 epochs	
Best Published Results	34.7	30.6	151 million	151 million	59 hours, 32 k40s	1.09
Low-Budget MoE Model	34.1		4303 million	8.9 million	15 hours, 16 k40s	0.74
Medium-Budget MoE Model	31.3		4313 million	33.8 million	17 hours, 32 k40s	1.22
High-Budget MoE Model	28.0		4371 million	142.7 million	47 hours, 32 k40s	1.56

 For a larger training set, high capacities would continue to produce significant quality improvements

Figure 3: Language modeling on a 100 billion word corpus. Models have similar computational budgets (8 million ops/timestep).

- The WMT14 EnFr with 36M sentence pairs
- The EnDe with 5M sentence pairs
- BLEU (bilingual evaluation understudy) higher is better

Machine Translation (Single Language Pair)

Table 2: Results on WMT'14 En→ Fr newstest2014 (bold values represent best results).

Model	Test	Test	ops/timenstep	Total	Training
	Perplexity	BLEU		#Parameters	Time
MoE with 2048 Experts	2.69	40.35	85M	8.7B	3 days/64 k40s
MoE with 2048 Experts (longer training)	2.63	40.56	85M	8.7B	6 days/64 k40s
GNMT (Wu et al., 2016)	2.79	39.22	214M	278M	6 days/96 k80s
GNMT+RL (Wu et al., 2016)	2.96	39.92	214M	278M	6 days/96 k80s
PBMT (Durrani et al., 2014)		37.0			
LSTM (6-layer) (Luong et al., 2015b)		31.5			
LSTM (6-layer+PosUnk) (Luong et al., 2015b)		33.1			
DeepAtt (Zhou et al., 2016)		37.7			
DeepAtt+PosUnk (Zhou et al., 2016)		39.2			

Machine Translation (Single Language Pair)

Table 3: Results on WMT'14 En \rightarrow De newstest2014 (bold values represent best results).

Model	Test	Test	ops/timestep	Total	Training
	Perplexity	BLEU		#Parameters	Time
MoE with 2048 Experts	4.64	26.03	85M	8.7B	1 day/64 k40s
GNMT (Wu et al., 2016)	5.25	24.91	214M	278M	1 day/96 k80s
GNMT +RL (Wu et al., 2016)	8.08	24.66	214M	278M	1 day/96 k80s
PBMT (Durrani et al., 2014)		20.7			
DeepAtt (Zhou et al., 2016)		20.6			

Machine Translation (Single Language Pair)

Table 4: Results on the Google Production $En \rightarrow Fr$ dataset (bold values represent best results).

Model	Eval	Eval	Test	Test	ops/timestep	Total	Training
	Perplexity	BLEU	Perplexity	BLEU		#Parameters	Time
MoE with 2048 Experts	2.60	37.27	2.69	36.57	85M	8.7B	1 day/64 k40s
GNMT (Wu et al., 2016)	2.78	35.80	2.87	35.56	214M	278M	6 days/96 k80s

Multilingual Machine Translation

About 3B sentence pairs

Multilingual Machine Translation

Table 5: Multilingual Machine Translation (bold values represent best results).

GNMT-Mono	GNMT-Multi	MoE-Multi	MoE-Multi vs.
			GNMT-Multi
278M / model	278M	8.7B	
212M	212M	102M	
various	21 days, 96 k20s	12 days, 64 k40s	
	4.14	3.35	-19%
36.47	34.40	37.46	+3.06
31.77	31.17	34.80	+3.63
23.41	21.62	25.91	+4.29
25.42	22.87	28.71	+5.84
44.40	42.53	46.13	+3.60
38.00	36.04	39.39	+3.35
35.37	34.00	36.59	+2.59
26.43	23.15	24.53	+1.38
23.66	21.10	22.78	+1.68
19.75	18.41	16.62	-1.79
38.40	37.35	37.90	+0.55
34.50	34.25	36.21	+1.96
	278M / model 212M various 36.47 31.77 23.41 25.42 44.40 38.00 35.37 26.43 23.66 19.75 38.40	278M / model 212M 212M 212M 212M 36.47 34.40 31.77 31.17 23.41 21.62 25.42 22.87 44.40 42.53 38.00 36.04 35.37 34.00 26.43 23.15 23.66 21.10 19.75 18.41 38.40 37.35	278M / model 278M 8.7B 212M 212M 102M various 21 days, 96 k20s 12 days, 64 k40s 36.47 34.40 37.46 31.77 31.17 34.80 23.41 21.62 25.91 25.42 22.87 28.71 44.40 42.53 46.13 38.00 36.04 39.39 35.37 34.00 36.59 26.43 23.15 24.53 23.66 21.10 22.78 19.75 18.41 16.62 38.40 37.35 37.90

Summary

- Algorithmic and engineering solution
- Focused on text experiments but can be applied for other situations