Функан. ДЗ 8.

ПРОХОРОВ ЮРИЙ, 776

Задача 1.3 (из задавальника)

Исследовать последовательность $\{x_n\}_{n=1}^{\infty} \subset \ell_{\infty}$ вида

$$x_n(k) = \begin{cases} \cos k, & k \le n \\ \sin k, & k > n \end{cases}$$

- (a) на слабую сходимость в ℓ_{∞} ;
- (b) на слабую* сходимость в $\ell_{\infty} = \ell_1^*$.

Я не придумал простого решения, поэтому пришлось пойти сложным путем. Сначала приведу вспомогательные факты.

Опр. Пусть S — произвольное множество. Через B(S) будем обозначать ЛНП всех ограниченных на S скалярных функций:

$$B(S) = \left\{ f: S \to \mathbb{C} \ \middle| \ \sup_{x \in S} |f(x)| < +\infty \right\}, \qquad \|f\| = \sup_{x \in S} |f(x)|$$

Опр. Будем говорить, что последовательность функций $\{f_n\}_{n=1}^{\infty}, f_n: S \to \mathbb{C}$ квазиравномерно сходится к функции f, если

- $\{f_n\}$ сходится к f поточечно;
- $\forall \varepsilon > 0 \ \ \forall N \in \mathbb{N} \ \ \exists$ конечный набор $k_1, \dots, k_n \geq N$, такой, что

$$\min_{i=1,\dots,n} \left| f_{k_i}(x) - f(x) \right| < \varepsilon, \qquad \forall x \in S$$

Следующая теорема даст критерий слабой сходимости в ℓ_{∞} . Она приведена в книге "Linear operators. Part 1: General Theory", авторы N. Dunford, J. Schwartz, теорема IV.6.31.

Теорема

Пусть S — произвольное множество. Последовательность $\{f_n\}_{n=1}^\infty\subset B(S)$ сходится слабо к $f\in B(S)$ тогда и только тогда, когда

- (a) последовательность $\{f_n\}_{n=1}^{\infty}$ ограничена;
- (b) любая подпоследовательность $\{f_n\}$ сходится к f квазиравномерно.

Из этой теоремы получается удобное следствие для пространства $B(S) = \ell_{\infty}$, если взять $S = \mathbb{N}$.

Следствие (критерий слабой сходимости в ℓ_{∞})

Последовательность $\{x_n\}_{n=1}^{\infty} \subset \ell_{\infty}$ сходится слабо к $x \in \ell_{\infty}$ тогда и только тогда, когда

- (a) последовательность $\{x_n\}_{n=1}^{\infty}$ ограничена;
- (b) любая подпоследовательность $\{x_n\}$ сходится к x квазиравномерно.

Решение:

(a) Покажем, что $\{x_n\}$ не сходится слабо.

Во-первых, для пространств последовательностей, из слабой сходимости следует покоординатная сходимость: достаточно в качестве $f \in \ell_{\infty}^*$ взять f(x) = x(k) для произвольного $k \in \mathbb{N}$. Тогда

$$x_n \xrightarrow{w} x \implies f(x_n) = x_n(k) \longrightarrow x(k) = f(x)$$

Данная нам последовательность $\{x_n\}$ покоординатно сходится к $x(k) = \cos k$, поэтому она может слабо сходится только к этому же x (в силу единственности покоординатного предела).

Покажем, что $\{x_n\}$ не сходится квазиравномерно к x. Тогда из критерия слабой сходимости в ℓ_∞ будет следовать, что $\{x_n\}$ не сходится слабо к x.

Нужно показать, что $\exists \varepsilon > 0 \ \exists N \in \mathbb{N}$, такие, что для любого конечного набора $k_1, \dots, k_n \geq N$ существует номер $m \in \mathbb{N}$, такой, что

$$\min_{i=1,\dots,n} \left| x_{k_i}(m) - \cos m \right| \ge \varepsilon$$

Возьмем $\varepsilon = \frac{1}{2}, \ N = 1.$ Пусть $k_1 < \ldots < k_n$ — произвольные натуральные числа. Тогда при любом $m > k_n$:

$$\min_{i=1} \left| x_{k_i}(m) - \cos m \right| = \left| \sin m - \cos m \right|$$

Множество предельных точек последовательности $\{\sin m - \cos m\}_{m=1}^{\infty}$ совпадает с отрезком $[-\sqrt{2},\sqrt{2}]$, и можно найти сколько угодно большое m, выполняющее неравенство

$$\left|\sin m - \cos m\right| \ge \frac{1}{2}$$

(b) Покажем, что $\{x_n\}$ слабо* сходится к x в $\ell_{\infty} = \ell_1^*$.

Пусть $f_n \in \ell_1^*$ — функционал, реализуемый последовательностью x_n :

$$f_n(y) = \sum_{k=1}^n y(k) \cos k + \sum_{k=n+1}^{\infty} y(k) \sin k, \quad y \in \ell_1,$$

а f — функционал, реализуемый x. Пусть $y \in \ell_1$ — произвольный. Тогда

$$\left| f_n(y) - f(y) \right| = \left| \sum_{k=n+1}^{\infty} y(k) \left(\sin k - \cos k \right) \right| \le \sum_{k=n+1}^{\infty} \left| y(k) \right| \left| \sin k - \cos k \right| \le 2 \sum_{k=n+1}^{\infty} \left| y(k) \right| \longrightarrow 0$$

Значит, $x_n \xrightarrow{w*} x$.

Задача 1.7 (из задавальника)

Пусть X — рефлексивное банахово пространство, Y — ЛНП, оператор $A \in L(X,Y)$. Доказать, что множество $A(B_1(0))$ сильно замкнуто в Y.

Решение:

Пусть $y \in [AB_1(0)]$. Тогда существует последовательность $\{y_n\} \subset AB_1(0)$, то есть

$$\exists \{x_n\} \subset B_1(0): \quad Ax_n = y_n \xrightarrow{Y} y$$

Теорема Какутани. ЛНП X рефлексивно $\iff B_1(0)$ является слабым компактом.

"Functional Analysis and Infinite-Dimensional Geometry", M. Fabian, P. Habala, теорема 3.31.

По теореме Какутани, $B_1(0)$ является слабым компактом, поэтому существует подпоследовательность $\{x_n'\}\subset\{x_n\}$, слабо сходящаяся к $x\in B_1(0)$.

Последний факт можно получить другим способом, если предположить, что X сепарабельно.

По теореме Банаха-Тихонова, из $\{x_n\} \subset B_1(0)$ можно выделить слабо сходящуюся подпоследовательность. Единичный шар $B_1(0) \subset X$ выпукл и сильно замкнут, поэтому, по теореме Мазура, он слабо (топологически) замкнут.

Из слабой замкнутости следует слабая секвенциальная замкнутость, поэтому предел слабо сходящейся подпоследовательности x лежит в $B_1(0)$.

Без ограничения общности будем считать, что сама последовательность $\{x_n\}$ слабо сходится к x.

Рассмотрим сопряженный оператор $A^* \in L(Y^*, X^*)$:

$$g(Ax) = (A^*g)(x), \quad \forall x \in X, \quad \forall g \in Y^*$$

Тогда для произвольного $g \in Y^*$ с одной стороны в силу непрерывности g:

$$Ax_n \longrightarrow y \Longrightarrow g(Ax_n) \longrightarrow g(y)$$

И с другой стороны, так как $A^*g \in X^*$, в силу слабой сходимости $x_n \stackrel{w}{\to} x$:

$$g(Ax_n) = (A^*g)(x_n) \longrightarrow (A^*g)(x) = g(Ax)$$

Тогда получаем, что

$$g(Ax) = g(y), \quad \forall g \in Y^*$$

откуда, по следствию из теоремы Хана-Банаха, получаем Ax = y, то есть $y \in B_1(0)$.

Задача §10.3

Пусть $\{f_n\}_{n=1}^{\infty} \subset \mathbb{L}_2[-\pi,\pi]$:

$$f_n(x) = \sin nx, \qquad -\pi \le x \le \pi$$

Доказать, что $\{f_n\}_{n=1}^{\infty}$ сходится слабо, но не сильно.

Решение:

(a) Покажем, что $\{f_n\}$ сходится слабо к $f \equiv 0$.

Пространство $X=\mathbb{L}_2[-\pi,\pi]$ является гильбертовым, поэтому, по теореме Рисса-Фреше, для любого $G\in X^*$ существует единственный элемент $g\in X$, такой что

$$G(f) = \int_{-\pi}^{\pi} f(x)g(x)dx$$

Тут комплексное сопряжение в скалярном произведении уже учтено в функции g. Лемма Лебега-Римана. Если $q \in \mathbb{L}_1(\mathbb{R})$, то $\int q(x) \sin nx \, dx \to 0$ при $n \to \infty$.

Так как отрезок $[-\pi,\pi]$ имеет конечную меру, то справедливо вложение $\mathbb{L}_2[-\pi,\pi] \subset \mathbb{L}_1[-\pi,\pi]$ (либо можно было воспользоваться неравенством Коши-Буняковского). Продлим g на \mathbb{R} нулем, вне отрезка $[-\pi,\pi]$. Тогда по лемме Лебега-Римана:

$$G(f_n) = \int_{-\pi}^{\pi} g(x) \sin nx \, dx \longrightarrow 0 = G(0), \quad \forall G \in X^*$$

Значит, $f_n \stackrel{w}{\longrightarrow} 0$.

(b) Покажем, что $\{f_n\}$ не сходится сильно.

Из сильной сходимости следует слабая, и слабый предел единственен, поэтому достаточно проверить, что $\{f_n\}$ не сходится сильно к нулю: