Concepts in CUTLASS.CuTe

Basics

IntTuple

- rank(IntTuple) / tuple_size : number of elements
- get<I>(IntTuple)
- depth(IntTuple)
- size(InputTuple) : product of all elements of the IntTuple

Layout=(Shape, Stride)

• Layout can be considered as a mapping from coordinates to indices

Special cases:

- vector: any layout with rank = 1
- matrix: any layout with rank = 2

Tensor

• Tensor mainly consists of a layout and a data pointer

Layout Concepts

Layout Compatibility

layout A is **compatible** with layout B if the shape of A is compatible with the shape of B.

Shape A is compatible with shape B if

- the size of A is equal to the size of B and
- all coordinates within A are valid coordinates within B.

Compatible is a weak partial order on Shapes as it is **reflexive**, **antisymmetric**, **and transitive**.

Layout Coordinates 🛭

Every Layout accepts coordinates for any Shape that is compatible with it.

- 1-D coordinate space
- R-D coordinate space, where R is the rank of the layout
- h-D (natural) coordinate space, where h is "hierarchical"

Layouts provide two fundamental mappings:

- the map from an input coordinate to the corresponding natural coordinate via the Shape , and
- \bullet the map from a natural coordinate to the index via the $\mbox{\tt Stride}$.

Input Coordinate → **Natural Coordinate**

Example:

Shape (3, (2,3)) has three coordinate sets, 1D, 2D, and Natural:

1-D	2-D	Natural	1-D	2-D	Natural
0	(0,0)	(0,(0,0))	9	(0,3)	(0,(1,1))
1	(1,0)	(1,(0,0))	10	(1,3)	(1,(1,1))
2	(2,0)	(2,(0,0))	11	(2,3)	(2,(1,1))
3	(0,1)	(0,(1,0))	12	(0,4)	(0,(0,2))
4	(1,1)	(1,(1,0))	13	(1,4)	(1,(0,2))
5	(2,1)	(2,(1,0))	14	(2,4)	(2,(0,2))

6	(0,2)	(0,(0,1))	15	(0,5)	(0,(1,2))
7	(1,2)	(1,(0,1))	16	(1,5)	(1,(1,2))
8	(2,2)	(2,(0,1))	17	(2,5)	(2,(1,2))

- For this shape, 1D coordinates goes from 0 to size(Shape)-1=3x2x3-1=17
- How to translate 1D coordinate to 2D/Natural coordinates?

"The map from an input coordinate to a natural coordinate is the application of a colexicographical order (reading right to left, instead of "lexicographical," which reads left to right) within the Shape."

"generalized-column-major order"

```
Shape (3, (2, 3)), 1D coordinate 16 → 2D coordinate (1, 5) → Naturla (3D) coordinate (1, (1, 2))
16 div 3 = 5 ··· 1, 2D coordinate is (1, 5),
5 div 2 = 2 ··· 1, 3D coordinate is (1, (1, 2))
```

• API: cute::idx2crd(idx, shape)

Natural Coordinate → Index

The map from a natural coordinate to an index is performed by taking the inner product of the natural coordinate with the Layout 's Stride.

- Layout = (Shape, Stride) = ((3,(2,3),(3,(12,1)))), natural coordinate $(i,(j,k)) \rightarrow index i*3 + j*12 + k*1$
- Example:

• API: cute::crd2idx(coord, shape, stride)

Layout Manipulation

- sublayout
- · concat
- grouping and flattening
- slicing