Collaborators: Shawn Vembenil

1) $a) f(n) = n - 100 \ g(n) = n - 200$ Answer: f = $\Theta(g)$

b)
$$f(n) = n^{1/2}$$
 $g(n) = n^{2/3}$
Answer: f = O(g)

c)
$$f(n) = 100n + log(n)$$
 $g(n) = n + (log(n))^2$
Answer: $f = \Theta(g)$

$$d)f(n) = nlog(n) g(n) = 10nlog(10n)$$

Answer: $f = \Theta(g)$

e)
$$f(n) = log(2n) g(n) = log(3n)$$

Answer: $f = \Theta(g)$

f)
$$f(n) = 10log(n) g(n) = log(n^2)$$

Answer: f = $\Theta(g)$

g)
$$f(n) = n^{1.01} g(n) = nlog^{2}(n)$$

Answer: f = $\Omega(g)$

h)
$$f(n) = \frac{n^2}{\log(n)} g(n) = n(\log(n))^2$$

Answer: f = $\Omega(g)$

i)
$$f(n) = n^{0.1} g(n) = (log(n))^{10}$$

Answer: $f = \Omega(g)$

j)
$$f(n) = (log(n))^{log(n)} g(n) = \frac{n}{log(n)}$$

Answer: $f = \Omega(g)$

2)

T(0)	T(1)	T(2)	T(3)	T(4)	T(5)
1	2	4	8	16	32

We see that there is a pattern with T(n) which is 1,2,4,8,16,32 for the first 6 values of n.

If we look at this pattern we can see that the number of times that a * is printed is 2^n . We can prove this by using induction:

Base case: $T(0) = 1 = 2^0$ Induction step:

> Assume $T(n) = 2^n$, now prove that $T(n+1) = 2^{n+1}$ Let S = the set of T(n) values

$$S = 2^0 + 2^1 + 2^3 + \dots + 2^n$$

Now if we multiply this set by 2 we get 2S which grows to 2^{n+1}

When we subtract these sets: 2S - S we find that they grow to $2^{n+1}-2^0$

This simplifies to $1 + 2^{n+1} - 1 = 2^{n+1}$

We have proven that T(n+1) is equat to 2^{n+1}

By induction we have proven that T(n) is equal to 2^n

3) We can say that $f(n) \in \theta(g(n))$ if there are constants c, C, and $n_0 > 0$.

If we have these we can conclude $cg(n) \leq f(n) \leq Cg(n)$.

Because $max(f(n), g(n)) \le f(n) + g(n) \le 2max(f(n), g(n))$ for all n, we can see that $max(f(n), g(n)) = \theta(f(n) + g(n))$

4)

- a) Is $2^{2n} = O(2^n)$? No it is not equal
- b) They are not equal because:
 - i) To assume they are equal, c > 0 must exist => 0 \leq 2 2n \leq c * 2 n for all n when n \geq n_0
 - ii) $2^n * 2^n \le c * 2^n$, if we cancel one 2^n from both sides we get $2^n \le c$ which is a contradiction

By this we have proven that $2^{2n} \neq O(2^n)$