CpE 313: Microprocessor Systems Design

Handout 01 Fundamentals of Computer Design

August 24, 2003 Shoukat Ali

shoukat@umr.edu

Overview

- administrative matters
- short history of computers
- a definition of computer architecture
- some useful terms about integrated circuits
- technology trends

CpE 313: What Is It About?

- Computer from a programmer's view
 - What the programmer writes
 - How it is converted to something the computer understands
 - How the computer interprets the program
 - How can programs be run faster? What is benchmarking?
- Learn big ideas in computer engineering
 - 5 classic components of a computer
 - Principles/pitfalls of performance measurement
 - Principle of locality, exploited via a memory hierarchy (cache)
 - Greater performance by exploiting parallelism (pipeline)
 - Multiprocessors

3

What CpE 313 Is Not

- Learning C
- Assembly language programming
 - This is a skill you will pick up, as a side effect of understanding the big Ideas
 - CpE 213 teaches that
- Hardware design
 - Only a little bit of physical logic to give things perspective
 - CpE 111 and 112 teach that

Typical Lecture Format

- 5 minute review of the previous lecture
 - presented by a student
 - will be graded and will count towards the final score
- 35 minute lecture
- 5 minute break (water, stretch)
- 30 minute lecture
- I will come to class early & stay after to answer questions
- in some lectures, slides will have to be filled in by students in class

5

Will Work in Groups (Leader in Blue)

Acinelli,Todd Michael Bubenik,David

Chen, Zheng

Wright,Eric M Smith,Zachary J

Clement, Clifford Chad Schaefer, Keith J Freiberger, Thomas Vincent Gann, Matthew Edward

Kalyani,Radha Padma

Hendren,Matthew Reed Keeven,Patrick Wayne Kubilay,Ibrahim Atakan

Langford,Quinton M Lavallee,Adam Dennis

Lorenz, Joshua Phillip

Lorenz,Timothy Donald Mansker,Evan R Middendorf,David James Muir,Jeffrey D

Ellebrecht, Michael Scott Schulte, Scott Alan Seem, Vidhi Sietins, Alexis Bolster

Soman, Arun

Bilbrey Jr,Randall C Stallard,William Christopher Underwood,Ryan Charles Vernon,Alexander Richard

Wang, Keyou

Course Lecture Outline

- 25 lectures (not including exams and review sessions)
 - 1 week on performance measurement and quantitative principles
 - 1.5 week on design of instruction set architecture
 - 1.5 week on simple pipelining
 - 1 week on simple caches
 - 1 week on precise exceptions and branch prediction
 - 2.5 weeks on dynamic scheduling and superscalar processors
 - 1 week on a case study
 - 2 weeks on advanced issues in caches and memory design
 - 1 week on multiprocessors

7

Course Exams

- Two midterms and a final
- Will test knowledge versus speed writing
- Can bring 2 letter size pages as crib sheets to all exams

Homework Assignments

- Two types of assignments
 - Exercises from the text book
 - Software assignments (will use SimpleScalar toolset)
 - Collaboration encouraged
- May give a brief (15 minute) quiz on assignment material in lecture
 - Must understand assignment to do quiz
 - 50% credit on assignments 24 hours or less late
 - 0% credit after 24 hours

What You Should Already Know From 111 and 213

- Basic machine structure
 - processor, memory, I/O
- Read and write basic C programs
- Read and write in an assembly language
 - will get familiar with a little bit of MIPS assembly
- Logic design
 - logical equations, schematic diagrams, FSMs, decoders, muxes, etc.

9

A Short History of Computers

- 1960s era of large mainframes, machines costing millions of dollars, stored in computer rooms, and run by multiple operators
 - typical applications: business data processing and large-scale scientific computing
- 1970s era of minicomputers, smaller-sized machines mostly used by multiple users in a "time share" fashion
 - each user would access the machine through a dumb terminal
- 1980s era of desktop computers based on microprocessors
 - personal computers and workstations
 - individually owned, no time-sharing
 - led to servers, computers that provided larger-scale services such as reliable, longterm file storage (file servers) and more computing power (compute servers)
- 1990s era of the Internet and the World Wide Web

Three Types of Computers Currently Important

- desktop, server, and embedded computers
- embedded computers: computers lodged in other devices where the presence of the computers is not immediately obvious

Feature	Desktop	Server	Embedded
Price of system	\$1000-\$10,000	\$10,000-\$10,000,000	\$10-\$100,000 (including network routers at the high end)
Price of microprocessor module	\$100-\$1000	\$200–\$2000 (per processor)	\$0.20-\$200 (per processor)
Microprocessors sold per year (estimates for 2000)	150,000,000	4,000,000	300,000,000 (32-bit and 64-bit processors only)
Critical system design issues	Price-performance, graphics performance	Throughput, availability, scalability	Price, power consumption, application-specific performance

11

What is "Computer Architecture"

- Computer Architecture =
 - Instruction Set Architecture
 - the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure and functional behavior

PLUS

- Machine Organization
 - functional units and connections, pipeline configuration, location & configuration of caches

Why Do ISA's Differ?

 different companies have different customers, and are trying to satisfy them

ISA 1	ISA 2	
temp = v[k]; v[k] = v[k+1]; v[k+1] = temp;	temp = v[k]; v[k] = v[k+1]; v[k+1] = temp;	
lw \$reg0,mem1 lw \$reg1,mem2 sw\$reg1,mem1 sw\$reg0,mem2	xchg mem1, mem2	
		15

Transition: Some Useful Terms About ICs

Some Useful Terms About ICs - Feature Size

- the size of a transistor or the width of the wires connecting transistors on the chip
- state of the art chips are using sub-micron feature sizes from 0.25 micron (1997) to 0.13 micron (2003)
- the smaller the feature size, the more transistors there are available on a given chip area
 - Pentium 3, 018 micron, 28 million transistors
 - Pentium 4, 0.13 micron, 55 million transistors
- also means that a smaller-feature-size microprocessor
 - will be smaller,
 - run faster, and
 - use less power
- because more of these smaller chips can be obtained from a single wafer, each chip will cost less

Some Useful Terms About ICs - Die Size

• why not increase the number of transistors on a chip by increasing the die size, i.e., the area of silicon used for each chip?

Some Useful Terms About ICs - Die Size

- why not increase the number of transistors on a chip by increasing the die size, i.e., the area of silicon used for each chip?
- reason: it will decrease the yield of "good" chips
- silicon is converted into circular "wafers," and then chips are cut off that wafer
- a fixed number of faults occur randomly on a wafer of given area
- a single fault will render an individual chip useless
- 8 inch diameter

 Microprocessor Chip

 Silicon Wafer
- example: if a wafer were to contain 40 chips and ten faults occur randomly, then up to 10 of the 40 chips may be useless giving up to 25% wastage
- with 200 (smaller) chips, there would still be 10 faulty chips, i.e., 5% wastage
- there is a trade-off between die size and yield, i.e. a larger die size leads to a decrease in yield

Transition: Technology Trends

21

Tell Me How to Design a New Computer!

- ok, I am interested, now tell me how to design a new computer
- if a new design has to be successful, it must survive changes in computer technology
- an architect must plan for technology changes
- let us look at past technology trends to plan the future

Technology Trends: Semiconductor DRAM

- density (memory cells/area) increases 40%--60% every year
- access time reduced by 1/3 in last ten years (slow!)
- bandwidth/chip increased by about 2/3 in last ten years

year	size(Megabit)			
1980	0.0625			
1983	0.25			
1986	1			
1989	4			
1992	16			
1996	64			
1999	256			

if density increases 1.6 X/yr, it doubles every 1.5 years:

23

Technology Trends: IC Logic Technology

- density (trans./area) increases by 35% every year
- die size increases by 10%--20% every year (why not by 200%?)
- combined effect: trans. count/chip increases by 55%

Alpha 21264: 15 million Pentium Pro: 5.5 million PowerPC 620: 6.9 million Alpha 21164: 9.3 million Sparc Ultra: 5.2 million

apprx 2X transistors/chip Every 1.5 years

Called "Moore's Law":

24

Technology Trends: Magnetic Disk

- disk density improving by 100% every year since 1990
- access time improved by 1/3 in past ten years (slow!)

27

Summary: Dramatic Changes in Computer Technology

- Processor
 - 2X in speed every 1.5 years
 - 2X in transistor count every 1.5 years
- Memory
 - DRAM capacity: 2X / 1.5 years
 - access time reduced by 1/3 is last ten years
 - bandwidth/chip increased by about 2/3 in last ten years
- Disk
 - density: 100% every year since 1990
 - access time improved by 1/3 in past ten years

Application Trends

- Numerical, scientific → commercial, entertainment
- Few, large → ubiquitous, small
 - mainframes → minis → microprocessors → handheld→embedded
- Increasing memory requirements for both main memory and disk storage
- Standalone → networked

29

Example Applications

- Scientific/Numerical
 - Computational Fluid Dynamics, Weather Prediction, ECAD
 - Long word length, floating point arithmetic
- Commercial
 - inventory control, billing, payroll, decision support
 - byte oriented, fixed point, high I/O, large secondary storage
- Home Computing
 - multimedia, entertainment
 - high bandwidth data movement, graphics,
 - encryption, compression/decompression

Cost Trends

- cost of a computer component decreases over time
- factors
 - learning curve cost to manufacture decreases over time
 - volume increasing volume of production decreases the time to learn, cost of purchasing raw materials, etc.
 - commodities essentially identical products sold by multiple vendors in large volumes, e.g., DRAMs, disks, keyboards
 - competition drives the cost down

31

Integrated Circuit Cost

Dies per Wafer =
$$\frac{\pi \text{ (Wafer_diameter/2)}^2}{\text{Die Area}} - \frac{\pi \text{ (Wafer_diameter)}}{\left[2 * \text{Die Area}\right]^{\frac{1}{2}}}$$

Die Yield = Wafer Yield *
$$\left(\frac{\text{Defects per unit area * Die_Area}}{\alpha}\right)^{-\alpha}$$

Where α is a parameter inversely proportional to the number of mask levels, which is a measure of the manufacturing complexity. For today's 6-metal CMOS process, good estimate is α = 4

33

Real World Examples

Chip	Metal Layers	Wafer Cost (\$)	Defects/ cm ²	Area (mm²)	Dies/ Wafer	Yield	Die Cost (\$)
386DX	2	900	1.0	43	360	71	4
486DX2	3	1200	1.0	81	181	54	12
PowerPC 601	4	1700	1.3	121	115	28	53
HP PA 7100	3	1300	1.0	196	66	27	73
DEC Alpha	3	1500	1.2	234	53	19	149
SuperSPARC	3	1700	1.6	256	48	13	272
Pentium	3	1500	1.5	296	40	9	417

From "Estimating IC Manufacturing Costs," by Linley Gwennap, *Microprocessor Report*, August 2, 1993, p. 15

34