Прикладной вейвлет-анализ

Лабораторная работа №1 Быстрое преобразование Фурье

Постановка задачи

Написать программу, которая реализует функцию быстрого преобразования Фурье fft, а также обратную к ней ifft, указанным в варианте способом. Язык программирования может быть любым, но должен иметь библиотеку или встроенные функции для вычисления быстрого преобразования Фурье (эту функцию обозначим truefft и будем использовать для проверки результатов).

Провести вычислительные эксперименты по следующей схеме. Для $n=2^k, k=1,2,\ldots,16$ сгенерировать случайный вектор $x^n\in\mathbb{C}^n$ и вычислить для него векторы $y^n=\mathtt{fft}(x^n),\ \tilde{x}^n=\mathtt{ifft}(y^n)$ и $z^n=\mathtt{truefft}(x^n)$. Вычислить $\epsilon^n=\|x^n-\tilde{x}^n\|$ и $\delta^n=\|y^n-z^n\|$. Время вычисления вектора y^n обозначим t^n_y , время вычисления вектора z^n обозначим t^n_z .

Требования к содержанию отчета

- 1) Векторы $x^{8}, \tilde{x}^{8}, y^{8}, z^{8}, \epsilon^{8}, \delta^{8}$.
- 2) Точечные графики t_y^n и t_z^n (на одной координатной плоскости).
- 3) Таблицу, каждая строчка которой содержит $k, \epsilon^n, \delta^n, t_y^n, t_z^n$
- 4) Ваши комментарии и выводы.
- 5) Исходный код программы.

Отчет о работе печатается на принтере. Титульный лист не нужен! В заголовке работы указывается номер и тема лабораторной работы, имя и фамилия автора, а также скриншот требований к содержанию из настоящего документа. Листы отчета должны быть скреплены!

Вместе с отчетом на защиту лабораторной работы приносится ноутбук с разработанной программой, которую нужно будет выполнить.

Варианты

Вариант 1

1) Предварительное задание: сгенерировать в явном виде матрицу F_8 и ее факторизацию Кули-Тьюки (вывести на печать и занести в отчет).

Проверить тождество $F_8 = A_3 A_2 A_1 P_8^T$. 2) Выполнить основное задание с использованием *рекурсивного* алгоритма БПФ.

Вариант 2

Реализовать алгоритм БПФ на основе факторизации Кули-Тьюки. Перестановку P_n^T рекомендуется вычислять с помощью бит-реверсии.