- Si H es un subespacio del espacio con producto interno V, entonces
 - i) H^{\perp} es un subespacio de V.
 - ii) $H \cap H^{\perp} = \{0\}.$
 - iii) dim $H^{\perp} = n \dim H$ si dim $V = n < \infty$.
- Teorema de proyección

Sea H un subespacio de dimensión finita del espacio con producto interno V y suponga que $\mathbf{v} \in V$. Entonces existe un par único de vectores \mathbf{h} y \mathbf{p} tales que $\mathbf{h} \in H$, $\mathbf{p} \in H^{\perp}$, y

$$v = h + p$$

donde $\mathbf{h} = \operatorname{proy}_{H} \mathbf{v}$.

Si V tiene dimensión finita, entonces $\mathbf{p} = \operatorname{proy}_{H^{\perp}} \mathbf{v}$.

• Teorema de aproximación en norma

Sea H un subespacio de dimensión finita de un espacio con producto interno V y sea y un vector en V. Entonces, en H, proy H v es la mejor aproximación a v en el sentido siguiente: si h es cualquier otro vector en H, entonces

$$|\mathbf{v} - \operatorname{proy}_H \mathbf{v}| < |\mathbf{v} - \mathbf{h}|$$

AUTOEVALUACIÓN 6.3

Complete las siguientes afirmaciones con el inciso correcto.

- I) En $C[0, 1], (x, x^3) = \underline{\hspace{1cm}}$

- a) $\frac{1}{2}$ b) $\frac{1}{3}$ c) $\frac{1}{4}$ d) $\frac{1}{5}$

- II) En $C[0, 1], ||x^2||^2 = \underline{\hspace{1cm}}$
- a) $\frac{1}{2}$ b) $\frac{1}{3}$ c) $\frac{1}{4}$ d) $\frac{1}{5}$

- III) En \mathbb{C}^2 , $\langle (1+i, 2-3i), (2-i, -1+2i) \rangle = \underline{\hspace{1cm}}$.

- a) -7 + 2i b) 7 + 8i c) 4 3i d) 4 + 3i e) -2 + 5i
- IV) En \mathbb{C}^2 , $||(1+i, 2-3i)|| = \underline{\hspace{1cm}}$.
 - **a)** -5 10i **b)** 15 **c)** $\sqrt{15}$ **d)** 7

Indique si los enunciados siguientes son falsos o verdaderos.

- V) Si H es un subespacio de dimensión finita del espacio con producto interno V y si $\mathbf{v} \in V$, entonces existen vectores $\mathbf{h} \in H$ y $\mathbf{p} \in H^{\perp}$ tales que $\mathbf{v} = \mathbf{h} + \mathbf{p}$.
- **VI)** En el problema V, $\mathbf{h} = \operatorname{proy}_H \mathbf{v} \ \mathbf{y} \ \mathbf{p} = \operatorname{proy}_{H^{\perp}} \mathbf{v}$.

Respuestas a la autoevaluación

- **I)** *d*)
- **II**) *d*)
- **III**) *a*)
- **IV**) *c*)
- **V)** V
- VI) F (verdadero sólo si dim V es finita)