

ARABIC SENTIMENT ANALYSIS ON TWITTER

Azouz saoussen ¹ Haffar Nafaa ² Zrigui Mounir ²

¹Polytech University, ²the faculty of science of Monastir

Introduction

My study involves providing the current state of the art in Arabic sentiment analysis as well as testing the most commonly used approach in the ASA which is the ML approch. The majority of studies found that the SVM and NB were the two most efficient classifiers in the ML technique. A new NLP toolkit has been developed to aid in the pre-processing step of ASA. My purpose was to conduct my own comparition study on eight ML classifiers and to test this toolkit..

Positive

Negative

Neutral

State of the Art ML approach

Purpose	Accuracy	Used algorithms	References
tackling the DA and SA for MSA	60.32%	SVIM	Al-Subaihin and Al-Khalif 2014
SA on Arabizi	86.9%	SVM and NB	Duwairi et al. 2016
SA for Arabic tweets	84.62%	SVM, NB, TF-IDF and BTO	Al-Rubaiee et al.2016
Senti lexicon for SA and create a Corpus (MASC)		SVIM, KNIN	Al-Moslmi et al. 2017

Data collection and pre-processing

I used a dataset with 55k tweet Ids. Then the tweets were extracted using Twitter API and four python modules (Tweepy, tqdm, pandas and pickle) And then for cleaning data, i created a model based on Farasapy, here are the steps:

- remove emails
- remove underscore
- remove phone numbers
- remove all punctuations
- remove non arabic words
- remove URLs
- remove extra spaces
- strip tashkeel and tatweel

Model and features

My model consists of combination of multiple classifiers. And for features i used *TfidfVectorizer* from sklearn converts a collection of raw documents to a matrix of TF-IDF features. Below, some of classifiers that i used and their confusion matrices:

Results & Conclusions

Algorithm	Accuracy(%)
LogisticRegression	77,8
Naïve Bayes	80,1
Linear SVM	78,1
RBF SVM	77,7
Random Forest	76
MLP	79,5
AdaBoost	72
GradientBoosting	72