Resolution with Small Symmetries

Nikita Gaevoy

Technion - Israel Institute of Technology

April 2, 2024

Definitions

- $\varphi \colon \{\mathsf{Lit}\} \to \{\mathsf{Lit}\}\ \mathsf{is}\ \mathsf{a}\ \mathit{k}\text{-symmetry function}\ \mathsf{iff}$:
 - 1 It is an automorphism of literals.
 - ② All variables except k mapped to themselves (i.e. $\varphi(x) = x$).

Definitions

Definition

 $\varphi \colon \{\mathsf{Lit}\} \to \{\mathsf{Lit}\}\ \mathsf{is}\ \mathsf{a}\ \mathit{k}\text{-symmetry function}\ \mathsf{iff}$:

- 1 It is an automorphism of literals.
- 2 All variables except k mapped to themselves (i.e. $\varphi(x) = x$).

Definition

Resolution with *k***-symmetries** has two rules:

Resolution rule.

$$\frac{A \lor x \quad B \lor \neg x}{A \lor B}$$

Symmetry rule.

$$\frac{\varphi(B_1),\varphi(B_2),\ldots,\varphi(B_l)}{\varphi(A)}$$

where φ is a k-symmetry and $B_1, B_2, \dots, B_l \vdash^* A$ was inferred before.

Types of symmetries

- A **global** symmetry is a symmetry that uses the entire input formula as premises in the symmetry rule.
- A local symmetry is a symmetry that uses parts of input formula as premises in the symmetry rule.
- Dynamic symmetries have no additional restrictions.

Types of symmetries

- A global symmetry is a symmetry that uses the entire input formula as premises in the symmetry rule.
- A local symmetry is a symmetry that uses parts of input formula as premises in the symmetry rule.
- Dynamic symmetries have no additional restrictions.
- Resolution with global, local and dynamic symmetries are called SRC-I, SRC-II, and SRC-III, correspondingly.

$$SRC-III \xrightarrow{\text{(Arai and Urquhart 2000)}} SRC-II \xrightarrow{\text{(Urquhart 1999)}} SRC-I$$

Types of symmetries

- A global symmetry is a symmetry that uses the entire input formula as premises in the symmetry rule.
- A local symmetry is a symmetry that uses parts of input formula as premises in the symmetry rule.
- Dynamic symmetries have no additional restrictions.
- Resolution with global, local and dynamic symmetries are called SRC-I, SRC-II, and SRC-III, correspondingly.

$$\mathsf{SRC}\text{-III} \xrightarrow{\mathsf{(Arai\ and\ Urquhart\ 2000)}} \mathsf{SRC}\text{-III} \xrightarrow{\mathsf{(Urquhart\ 1999)}} \mathsf{SRC}\text{-I}$$

- Any formula that is hard for Resolution can be transformed into a formula that is hard for SRC-II (Szeider 2005).
- Superpolynomial lower bounds for SRC-III is a long-standing open problem.

$$(x_1 \lor x_7) \land (x_2 \lor \neg x_7) \land (x_3 \lor \neg x_2) \land (\neg x_1 \lor x_7) \land (x_4 \lor \neg x_7) \land (x_5 \lor \neg x_4) \land (x_4 \lor x_6)$$

• Use the resolution rule:

$$\frac{x_1 \lor x_7 \quad x_2 \lor \neg x_7}{\underbrace{x_1 \lor x_2}} \quad x_3 \lor \neg x_2}{\underbrace{x_1 \lor x_3}}$$

$$(x_1 \lor x_7) \land (x_2 \lor \neg x_7) \land (x_3 \lor \neg x_2) \land (\neg x_1 \lor x_7) \land (x_4 \lor \neg x_7) \land (x_5 \lor \neg x_4) \land (x_4 \lor x_6)$$

• Use the resolution rule:

$$\frac{x_1 \lor x_7 \quad x_2 \lor \neg x_7}{\underbrace{x_1 \lor x_2}} \quad x_3 \lor \neg x_2}{x_1 \lor x_3}$$

• Use a local 5-symmetry that negates x_1 and swaps $x_2 \leftrightarrow x_4$ and $x_3 \leftrightarrow x_5$:

$$\frac{\neg x_1 \lor x_7 \qquad x_4 \lor \neg x_7 \qquad x_5 \lor \neg x_4}{\neg x_1 \lor x_5}$$

$$(x_1 \lor x_7) \land (x_2 \lor \neg x_7) \land (x_3 \lor \neg x_2) \land (\neg x_1 \lor x_7) \land (x_4 \lor \neg x_7) \land (x_5 \lor \neg x_4) \land (x_4 \lor x_6)$$

Use the resolution rule:

$$\frac{x_1 \lor x_7 \quad x_2 \lor \neg x_7}{\underbrace{x_1 \lor x_2}} \quad x_3 \lor \neg x_2}{x_1 \lor x_3}$$

• Use a local 5-symmetry that negates x_1 and swaps $x_2 \leftrightarrow x_4$ and $x_3 \leftrightarrow x_5$:

$$\frac{\neg x_1 \lor x_7 \qquad x_4 \lor \neg x_7 \qquad x_5 \lor \neg x_4}{\neg x_1 \lor x_5}$$

• This symmetry is not global because of the last clause.

$$(x_1 \lor x_7) \land (x_2 \lor \neg x_7) \land (x_3 \lor \neg x_2) \land (\neg x_1 \lor x_7) \land (x_4 \lor \neg x_7) \land (x_5 \lor \neg x_4) \land (x_4 \lor x_6)$$

• Use the resolution rule:

$$\frac{x_1 \lor x_7 \quad x_2 \lor \neg x_7}{\underbrace{x_1 \lor x_2}} \quad x_3 \lor \neg x_2}{x_1 \lor x_3}$$

• Use a local 5-symmetry that negates x_1 and swaps $x_2 \leftrightarrow x_4$ and $x_3 \leftrightarrow x_5$:

$$\frac{\neg x_1 \lor x_7 \qquad x_4 \lor \neg x_7 \qquad x_5 \lor \neg x_4}{\neg x_1 \lor x_5}$$

- This symmetry is not global because of the last clause.
- Infer $\frac{x_3 \vee \neg x_2}{x_3 \vee x_5}$ $\frac{x_1 \vee x_2}{x_3 \vee x_5}$ by applying to the inference of $\neg x_1 \vee x_5$ a dynamic 5-symmetry φ defined as follows:

$$\varphi(x_1) = \neg x_3$$
 $\varphi(x_3) = x_4$

$$\varphi(x_7) = \neg x_2$$

$$\varphi(x_2) = \neg x_7$$

$$\varphi(x_4) = x_1$$

Connection to the practice

- Many sets of practical formulas have symmetries. One example is formulas that emerge from bounded model checking.
- Two main approaches to exploiting those symmetries in CDCL-based solvers are:
 - Symmetry breaking (Puget 1993; Sakallah 2009).
 - Symmetry handling, also known as symmetry exploitation (Devriendt, Bogaerts, and Bruynooghe 2017; Ivrii and Strichman 2021).

Connection to the practice

- Many sets of practical formulas have symmetries. One example is formulas that emerge from bounded model checking.
- Two main approaches to exploiting those symmetries in CDCL-based solvers are:
 - Symmetry breaking (Puget 1993; Sakallah 2009).
 - ▶ Symmetry handling, also known as symmetry exploitation (Devriendt, Bogaerts, and Bruynooghe 2017; Ivrii and Strichman 2021).

Symmetry breaking	Symmetry handling
Adds clauses that "break" symmetries	Adds clauses that are symmetric to the inferred ones
Maintains equisatisfiability, but removes satisfying assignments	Preserves the set of satisfying assignments
Restricted to global symmetries	Works with local and dynamic symmetries
Usually performs better when suitable	Essential for the best results in some specialized cases

The power of small symmetries

Preliminary results:

• Resolution with global $\mathcal{O}(\log n)$ -symmetries polynomially refutes the binary pigeonhole principle, which is hard for SDT (decision trees with symmetries).

The power of small symmetries

Preliminary results:

- Resolution with global $\mathcal{O}(\log n)$ -symmetries polynomially refutes the binary pigeonhole principle, which is hard for SDT (decision trees with symmetries).
- Resolution with local 3-symmetries (or global 4-symmetries) polynomially refutes Tseitin formulas on a rectangle grid, which are hard for constant-depth Frege.

• Proofs lines ("entries"): $\langle \text{clause } C, \text{symmetry graph } G \rangle$.

- Proofs lines ("entries"): $\langle \text{clause } C, \text{symmetry graph } G \rangle$.
- Symmetry graphs are directed acyclic graphs with the following properties:
 - Each vertex of the graph is labeled with a symmetry.
 - ▶ There is a source (every other vertex is reachable from it).
 - ▶ The source is labeled with the trivial symmetry.
- Going along an edge in a symmetry graph corresponds to applying the symmetry function of the head of this edge to the clause.

- Proofs lines ("entries"): $\langle \text{clause } C, \text{symmetry graph } G \rangle$.
- Symmetry graphs are directed acyclic graphs with the following properties:
 - Each vertex of the graph is labeled with a symmetry.
 - ▶ There is a source (every other vertex is reachable from it).
 - ▶ The source is labeled with the trivial symmetry.
- Going along an edge in a symmetry graph corresponds to applying the symmetry function of the head of this edge to the clause.
- Inference rules are:
 - ► The resolution rule: $\frac{\langle A \lor x, G \rangle \qquad \langle B \lor \neg x, G \rangle}{\langle A \lor B, G \rangle}.$
 - ▶ A set of rules that modify the symmetry graphs.

- Proofs lines ("entries"): $\langle \text{clause } C, \text{symmetry graph } G \rangle$.
- Symmetry graphs are directed acyclic graphs with the following properties:
 - Each vertex of the graph is labeled with a symmetry.
 - ▶ There is a source (every other vertex is reachable from it).
 - ▶ The source is labeled with the trivial symmetry.
- Going along an edge in a symmetry graph corresponds to applying the symmetry function of the head of this edge to the clause.
- Inference rules are:
 - ► The resolution rule: $\frac{\langle A \lor x, G \rangle \qquad \langle B \lor \neg x, G \rangle}{\langle A \lor B, G \rangle}.$
 - A set of rules that modify the symmetry graphs.
- Proof size measures (equivalent):
 - ▶ The number of entries.
 - ► The total bit length.

Symmetry rule

Let A be a clause, and φ be a symmetry function.

Edge addition

Let A and B be clauses, and φ be a symmetry function such that $\varphi(B) = A$.

Edge addition

Let A and B be clauses, and φ be a symmetry function such that $\varphi(B) = A$.

To make this rule the inverse of the symmetry rule, we add the graph combining rule:

$$\frac{\langle C,G\rangle \quad \langle C,H\rangle}{\langle C,(G+H)/_{\mathsf{src}(G)=\mathsf{src}(H)}\rangle}$$

Gluing rule

Assume that V and U are isomorphic subgraphs of the symmetry graph.

• The syntactic version allows us to formulate restrictions on interactions between symmetries.

- The syntactic version allows us to formulate restrictions on interactions between symmetries.
- For example, we can restrict us to layered graphs (i.e., graphs with a rank-function ρ on vertices such that an edge $v \to u$ exists iff $\rho(v) < \rho(u)$).
- Resolution with 1-symmetries with this additional restriction forms* a new proof system that we call G_2 -Frege.

- The syntactic version allows us to formulate restrictions on interactions between symmetries.
- For example, we can restrict us to layered graphs (i.e., graphs with a rank-function ρ on vertices such that an edge $v \to u$ exists iff $\rho(v) < \rho(u)$).
- Resolution with 1-symmetries with this additional restriction forms* a new proof system that we call G_2 -Frege.
- An alternative definition of G₂-Frege:
 - $G_2(x_1, x_2, \ldots, x_k) := \sum_i x_i \ge 2$.
 - ▶ Proof lines are disjunctions of literals and G_2 -functions with the additional property that each literal can participate in each lemma only once.
 - ▶ The inference rules are the resolution rule and the distributive law for the **last** G_2 -function.

- The syntactic version allows us to formulate restrictions on interactions between symmetries.
- For example, we can restrict us to layered graphs (i.e., graphs with a rank-function ρ on vertices such that an edge $v \to u$ exists iff $\rho(v) < \rho(u)$).
- Resolution with 1-symmetries with this additional restriction forms* a new proof system that we call G_2 -Frege.
- An alternative definition of G_2 -Frege:
 - $G_2(x_1, x_2, \ldots, x_k) := \sum_i x_i \ge 2.$
 - ▶ Proof lines are disjunctions of literals and G_2 -functions with the additional property that each literal can participate in each lemma only once.
 - ▶ The inference rules are the resolution rule and the distributive law for the **last** G_2 -function.
- Examples of the inference rules:

$$\frac{G_2(x,y) \lor z \lor t \qquad G_2(x,y) \lor \neg t}{G_2(x,y) \lor z} \quad \frac{G_2(x,y) \lor G_2(z,t,s)}{G_2(x,y) \lor z \lor t \lor \neg s}$$

$$\frac{G_2(x,y) \lor z \lor t \qquad G_2(x,y) \lor \neg z \lor t \qquad G_2(x,y) \lor z \lor \neg t}{G_2(x,y) \lor G_2(z,t)}$$

- The syntactic version allows us to formulate restrictions on interactions between symmetries.
- For example, we can restrict us to layered graphs (i.e., graphs with a rank-function ρ on vertices such that an edge $v \to u$ exists iff $\rho(v) < \rho(u)$).
- Resolution with 1-symmetries with this additional restriction forms* a new proof system that we call G_2 -Frege.
- An alternative definition of G₂-Frege:
 - $G_2(x_1, x_2, \ldots, x_k) := \sum_i x_i \ge 2.$
 - ▶ Proof lines are disjunctions of literals and G_2 -functions with the additional property that each literal can participate in each lemma only once.
 - ▶ The inference rules are the resolution rule and the distributive law for the **last** G_2 -function.
- G_2 -Frege is p-simulated by Res(2).

Further research

• Proving lower bounds for Resolution with 1-symmetries and then generalizing them to bigger symmetries. How does the power of Resolution with k-symmetries depend on the value of k?

Further research

- Proving lower bounds for Resolution with 1-symmetries and then generalizing them to bigger symmetries. How does the power of Resolution with k-symmetries depend on the value of k?
- Finding a proof system stronger than Resolution that is simple enough to be simulated by symmetry handling techniques but also oblivious to the formula encoding.

Further research

- Proving lower bounds for Resolution with 1-symmetries and then generalizing them to bigger symmetries. How does the power of Resolution with k-symmetries depend on the value of k?
- Finding a proof system stronger than Resolution that is simple enough to be simulated by symmetry handling techniques but also oblivious to the formula encoding.
- Onstructing practical symmetry handling heuristics for the special classes of formulas with suitable structures of symmetries.