Orthogonalization of Block Variables by Subspace-Projection for Quantitative Structure Property Relationship (QSPR) Research

Yiping Du, †,§ Yizeng Liang, *,‡ Boyan Li,‡ and Chengjian Xu‡

Institute of Chemometrics and Chemical Sensing Technology, Hunan University, Changsha 410082, P. R. China, and College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China, and College of Chemical Engineering, Shandong University of Science and Technology, ZiBo, 255012, P. R. China

Received February 7, 2002

A subspace-projection method is developed to construct orthogonal block variable, which is originally from some kinds of series of topological indices or quantum chemical parameters. With the help of canonical correlation analysis, the orthogonal block variables were used to establish the structure-retention index correlation model. The regression of only few new orthogonal variables obtained by canonical correlation analysis against retention index shows significant improvement both in fitting and prediction ability of the correlation model. Moreover, the quantitative intercorrelation between the different block variables of topological indices can also be evaluated with the help of the subspace-projection technique proposed in this work.

INTRODUCTION

To evaluate quantitatively the degree of similarity or dissimilarity of chemical structures or to find correlations between structure and activities or properties (QSAR or QSPR) one needs to translate structures into numbers. Beginning with Wiener,¹ numerical molecular descriptors, named topological indices (TIs) by Hosoya,² have gained gradual acceptance along with other descriptors used in QSAR and QSPR studies. However, the multiplication of TIs, as pointed out by Balaban,³ caused worry in some parts of the scientific community, due also to the fact that the physical meaning of these descriptors was not clear, and it was also shown that many TIs were intercorrelated; details can be found in several references.⁴⁻⁷

There are many descriptors, such as topological indices and quantum chemical parameters, in QSAR/QSPR study. For instance, software CODESSA,⁸ designed by Kartritzky et al., may calculate 400 molecular descriptors. How to select proper descriptors from these many candidates becomes the first important task encountered in QSAR/QSPR studies. It is well-known that if too few variables are considered, it will cause underfitting of the model and result in low correlation between structure and activities or properties (QSAR or QSPR). However, if too many variables are included in the regression model it will cause overfitting of the model and result in an unstable model with bad prediction. The task is important and difficult. Selection of descriptors (variables), in our opinion, is to investigate the possible combinations of variables for finding a best model.

The exhausting search for all possible combinations of variables is the most reliable method for variable selection. It is unfortunate that the method is not applicable when the number of variables is more than 20, since one needs to calculate 2ⁿ-1 (here n is the number of variables) times for exhausting searches. Thus, several strategies were suggested for variable selection, such as stepwise approaches, 9 leaps-and-bounds regression, 10 genetic algorithm, 11-13 and others. 8,14-18 However, if one has too many variables at hand, it is still a very difficult task for the above methods to deal with

It is worth noting that many descriptors are similar or even almost the same. They may represent "duplicated" information of the molecular structure. Balaban et al.5 have investigated the relationship among some commonly used topological indices. They found that some topological indices are quite similar. By accounting for correlation among them, they divided these topological indices into two groups. The Wiener index¹ W, Hosoya index² Z, and Randic index¹⁹ ¹ χ were considered as one group, while the Balaban's center indices C and C' 20 were considered as another group. Topological indices in one group represent high related, i.e., some of them are redundant because they have most of the duplicated information with their similar descriptors. Randic²¹ first introduced orthogonalized molecular descriptors in QSAR studies. He illustrated the approach of orthogonalization considering Hosoya's Z index2 as a property and connectivity indices, 22 $^{1}\chi$, $^{2}\chi$, $^{3}\chi_{p}$, $^{4}\chi_{p}$ as molecular descriptors, and evaluated the role of the descriptors in the regression, similarities, and differences among molecular descriptors.²¹ Later, Trinajstic^{23–25} and Xu²⁶ used orthogonalized molecular descriptors to study descriptor-property correlation and variable selection in QSAR/QSPR. The regression models using orthogonal variables have some interesting features, such as possessing the same correlation coefficient R, the standard error S, and the F-test value as the regression model

^{*} Corresponding author phone: 86-731-8825637; fax: 86-731-8825637; e-mail: yzliang@public.cs.hn.cn. Corresponding address: Institute of Chemometrics and Intelligent Analytical Instruments, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.

[†] Hunan University.

[‡] Central South University.

[§] Shandong University of Science and Technology.

using nonorthogonal variables and the stability of the regression coefficients.²¹

In fact, a series of topological indices (not individual index) with similar calculation strategy was often encountered, such as the molecular connectivity chi indices²² (${}^{0}\chi, {}^{1}\chi, {}^{2}\chi, {}^{3}\chi_{p}, {}^{3}\chi_{c}, {}^{4}\chi_{p}, \ldots$), Kappa indices²⁷ (${}^{0}\kappa, {}^{1}\kappa, {}^{2}\kappa, {}^{3}\kappa, \ldots$). A series of descriptors generally was defined by accounting for more molecular structure information and less redundancy. Thus, a series of descriptors might be considered as an ensemble named block descriptor (variable), which includes all individual descriptors in this series. Being similar to the orthogonalization of individual descriptor mentioned above, orthogonal block descriptors (variables) would also be obtained easily. The advantage of using block descriptor is that one may work with only a few block variables instead of many individual variables.

Canonical correlation analysis (CCA) is an extension of multiple regression. ²⁸ CCA is to establish the maximum correlation among sets of variables. With the help of CCA, one may find out a so-called canonical correlation variable for the block variable, which possesses the maximum correlation with the property (see Theory and Methodology section). This canonical correlation variable captures almost full information of the original block variable. Therefore, the canonical correlation variable that is only one variable (a new variable) can be used to substitute the original block variable that includes more than one individual variables. In this case, the model established between descriptors and property will be simplified with fewer variables but without losing correlation information.

In this work, eight block variables of topological and quantum chemical descriptors, including up to 32 individual descriptors, are selected to investigate the orthogonal variables for every block variable. First, a new subspace-projection procedure is developed to construct orthogonal block variable. The new canonical variables, which could represent the corresponding whole block variables, were extracted with the help of canonical correlation analysis. Then, the structure-retention index correlation model including these new canonical variables is also established. The regression model obtained in this way shows significant improvement both in fitting and prediction ability. Moreover, the intercorrelation between the different block variables of topological indices is also evaluated with the help of the subspace-projection technique proposed in this work.

THEORY AND METHODOLOGY

Orthorgonalization of Block Variables. It seems to be necessary to outline first the procedure of orthogonalization for individual variables developed by Randic²¹ before we go into the details of orthogonalization for block variables. Suppose we have n variables (descriptors) \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_n , each one of them being a vector containing m elements corresponding to m samples, and a property vector \mathbf{y} with m elements. We will orthogonalize these variables to obtain their orthogonal variables denoted by ω_1 , ω_2 , ..., ω_n . A commonly used procedure of orthogonalization^{21,26} is described briefly as follows.

First, select a variable, such as, \mathbf{x}_1 as the first orthogonal variable ω_1 . Then, the second orthogonal variable ω_2 will be calculated by making the second variable, such as, \mathbf{x}_2

Figure 1. Illustration of the geometric sense of orthogonalization between the individual variables and block variables.

orthogonalize to \mathbf{x}_1 , which is the residuals of the regression of \mathbf{x}_2 against \mathbf{x}_1 , i.e., values of calculated \mathbf{x}_2 from the regression subtracted from original \mathbf{x}_2 . In the same way, the orthogonal parts of other variables \mathbf{x}_3 ,..., \mathbf{x}_n to \mathbf{x}_1 can be calculated, which are denoted by ω_{31} ,..., ω_{n1} , respectively. Third step is calculating ω_3 , which is made by orthogonalizing ω_{31} to ω_2 , i.e., constructing the regression of ω_{31} against ω_2 and considering the residuals of ω_{31} as the third orthogonal variable ω_3 . This process continues step by step until obtaining all orthogonal variables ω_1,ω_2 ,..., ω_n . Because of the orthogonality of these new variables, the correlation coefficient R can be easily calculated by the following formula

$$R^2 = \sum_{p}^{i=1} R_i^2 \tag{1}$$

where R_i is the correlation coefficient for the regression of the property **y** against the *i*th orthogonal variable ω_i , and R is the correlation coefficient against p orthogonal variables $\omega_1, \omega_2, ..., \omega_p$.

Similar to the above procedure, the calculation of orthogonal block variable corresponding to a series of descriptors can be processed. Note that a block variable corresponds to a submatrix of variable matrix \mathbf{X} . Suppose that we have n submatrixes, say $\mathbf{X}_1, ..., \mathbf{X}_n$. When we want to orthogonalize \mathbf{X}_i to \mathbf{X}_j , where \mathbf{X}_i and \mathbf{X}_j are $m \times n_i$ and $m \times n_j$ matrixes, respectively, whose rows correspond variables, the orthogonalized submatrix $\mathbf{X}_{i|j}$ denoted by Ω_i can be simply calculated by the following equation

$$\Omega_{i} = \mathbf{X}_{i|j} = (\mathbf{I} - \mathbf{X}_{j}(\mathbf{X}_{j}^{t} \mathbf{X}_{j})^{-1} \mathbf{X}_{j}^{t}) \mathbf{X}_{i}$$
 (2)

Here $\mathbf{X}_{i|j}$ is the orthogonal supplementary part to \mathbf{X}_j but from \mathbf{X}_i , meaning that every vector in $\mathbf{X}_{i|j}$ or their linear combinations, say $\mathbf{x}_a = \mathbf{X}_{i|j}\mathbf{a}$, is orthogonal to every vector in \mathbf{X}_j or their linear combinations, say $\mathbf{x}_b = \mathbf{X}_j\mathbf{b}$, that is, $\mathbf{x}_a^t\mathbf{x}_b = 0$. The geometric sense of this orthogonal projection is illustrated in Figure 1.

For n nonorthogonal submatrixes of \mathbf{X}_1 , \mathbf{X}_2 , ..., \mathbf{X}_n , the procedure to obtain their corresponding orthogonal matrixes Ω_1 , Ω_2 ,..., Ω_n is similar to that for individual variable discussed above. The procedure starts by selecting a nonorthogonal matrix, such as \mathbf{X}_1 as the first orthogonal matrix Ω_1 . Ω_2 can be calculated through eq 2, where $\Omega_2 = \mathbf{X}_{2|1}$ with $\mathbf{X}_j = \mathbf{X}_1$, and $\mathbf{X}_i = \mathbf{X}_2$. When constructing new matrixes of \mathbf{X}_j and \mathbf{X}_i in the way $\mathbf{X}_j = [\Omega_1 \ \Omega_2]$, $\mathbf{X}_i = \mathbf{X}_3$, Ω_3 (equals to $\mathbf{X}_{i|j}$) will be calculated by eq 2. Constructing \mathbf{X}_j with Ω_1 and Ω_2 together can ensure the calculated value of $\mathbf{X}_{i|j}$ being orthogonal not only to Ω_1 but also to Ω_2 . Other orthogonal matrixes can also be computed by eq 2 through the same

procedure. Matrixes such obtained, say Ω_1 , Ω_2 , ..., Ω_n , are orthogonal with each other. Therefore, the correlation coefficient R for using p orthogonal matrixes can also be obtained from the correlation coefficient R_i for using individual orthogonal matrixes by eq 1. Orthogonalized block variables can be derived from original block variables by this subspace-projection procedure.

Canonical Correlation Analysis (CCA). Notice that either original block variable or orthogonalized block variable is just a matrix that contains more than one variable. Even if we consider a series of descriptors (a block descriptor) as an ensemble, the block still contains several individual descriptors. The dimensionality of regression model is still the same as before, if one simply uses them to establish the regression model. Is it possible for us to reduce the dimension of the model with the help of the obtained orthogonalized block variables? As we know, principal component regression (PCR) is an efficient technique to reduce the data dimensionality. Original variables might be substituted by a few principal components that explain most of the variance of the data matrix X. The components corresponding to minimum eigenvalues are removed which are considered as experimental errors. But in OSAR/OSPR study, structural descriptor data, such as topological indices and quantum chemical calculation parameters, are obtained by calculation based on certain procedures. They have no any experimental errors! Every component of PCR for the data without experimental errors should contain some information from the descriptor data matrix and may be helpful to improve the regression against the property. It is dangerous to remove any component even if its corresponding eigenvalue is small! (See Results and Discussion section for more details.) Thus, we use canonical correlation analysis (CCA), instead of PCR, to reduce the dimension for every block variable.

The general mathematical problem of CCA is to establish the maximum correlation among sets of variables. For two matrixes $m \times p$ **X** and $m \times q$ **Y**, CCA is to find two linear combinations for **X** and **Y**, i.e., **Xa**₁ and **Yb**₁, respectively. CCA will give the maximum correlation between **Xa**₁ and **Yb**₁. **Xa**₁ and **Yb**₁ are called canonical correlation variables. This can be indicated by

$$R(\mathbf{X}\mathbf{a}_1, \mathbf{Y}\mathbf{b}_1) = \max R(\mathbf{X}\mathbf{a}, \mathbf{Y}\mathbf{b})$$
 (3)

Subject to the constrains

$$v(\mathbf{Xa}) = 1 \text{ and } v(\mathbf{Yb}) = 1 \tag{4}$$

where $R(\cdot)$ denotes correlation coefficient, and $v(\cdot)$ denotes variance. \mathbf{Xa}_1 and \mathbf{Yb}_1 is the first pair of canonical correlation variable. Similar calculations can be conducted to find the second pair, the third pair, and so forth. The standard statistical method²⁸ to solve this problem may result from the calculation of eigenvalues and eigenvectors of the matrix \mathbf{K}

$$\mathbf{K} = (\mathbf{V}_{XX}^{-1/2})\mathbf{V}_{XY}(\mathbf{V}_{YY}^{-1/2}) \tag{5}$$

where V denotes the covariance matrix

$$\mathbf{V}_{\mathbf{X}\mathbf{X}} = \mathbf{E}(\mathbf{X} - \bar{\mathbf{X}})(\mathbf{X} - \bar{\mathbf{X}})^{t} \tag{6}$$

$$\mathbf{V}_{\mathbf{X}\mathbf{Y}} = \mathbf{E}(\mathbf{X} - \bar{\mathbf{X}})(\mathbf{Y} - \bar{\mathbf{Y}})^{t} \tag{7}$$

$$\mathbf{V}_{\mathbf{Y}\mathbf{Y}} = \mathbf{E}(\mathbf{Y} - \bar{\mathbf{Y}})(\mathbf{Y} - \bar{\mathbf{Y}})^{t} \tag{8}$$

where

$$\bar{\mathbf{X}} = \begin{bmatrix} \bar{\mathbf{x}}_1 & \bar{\mathbf{x}}_2 & \cdots & \cdots & \bar{\mathbf{x}}_p \\ \bar{\mathbf{x}}_1 & \bar{\mathbf{x}}_2 & \cdots & \cdots & \bar{\mathbf{x}}_p \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \bar{\mathbf{x}}_1 & \bar{\mathbf{x}}_2 & \cdots & \cdots & \bar{\mathbf{x}}_p \end{bmatrix}, \, \bar{\mathbf{Y}} = \begin{bmatrix} \bar{\mathbf{y}}_1 & \bar{\mathbf{y}}_2 & \cdots & \cdots & \bar{\mathbf{y}}_q \\ \bar{\mathbf{y}}_1 & \bar{\mathbf{y}}_2 & \cdots & \cdots & \bar{\mathbf{y}}_q \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \bar{\mathbf{y}}_1 & \bar{\mathbf{y}}_2 & \cdots & \cdots & \bar{\mathbf{y}}_q \end{bmatrix}$$

with $\bar{\mathbf{x}}_i = 1/m \sum_{j=1}^m x_{ji}$, (i = 1, 2, ..., p), and $\bar{\mathbf{y}}_i = 1/m \sum_{j=1}^m y_{ji}$, (i = 1, 2, ..., q), and t indicates transpose of the matrix. One could obtain the scores \mathbf{u}_i and loadings \mathbf{v}_i with the help of the singular value decomposition of the matrix \mathbf{K} , such that

$$\mathbf{K} = [\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_r] \mathbf{S} [\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r]^{t}$$
 (9)

Here S is the diagonal matrix of singular values of the matrix K which is degressive, then the canonical correlation variables will be calculated by the formulas

$$\mathbf{b_i} = \mathbf{V_{XX}^{-1/2}} \mathbf{u_i} \tag{10}$$

$$\mathbf{a_i} = \mathbf{V_{YY}^{-1/2} \mathbf{v_i}} (i=1, 2, ...r)$$
 (11)

 $\mathbf{X}\mathbf{a}_i$ and $\mathbf{Y}\mathbf{b}_i$ are the *i*th pair of canonical correlation variables. In the case of Y being a vector y, such as the property of retention index encountered in this work, r equals to 1, i.e., there will exist only one pair of canonical correlation variable Xa_1 and Yb_1 because the matrix K has rank one. Note that \mathbf{a}_1 is a vector of the same number of elements as the number of variables in X, while b_1 is a scalar. The regression of Xa_1 against Y will give almost the same correlation coefficient as the regression of **X** against **y**. Thus, the canonical correlation variable, which is a vector instead of a matrix, may be used to replace the original variable set (a matrix) without losing information of the original variable set. In this way, the canonical correlation analysis might provide a new way to reduce the dimensionality of QSAR/ QSPR model. The study of descriptor-property correlation will be therefore simplified by introducing only a few canonical correlation variables.

Outline of the Procedure of Calculation. (1) Split all given descriptors into a few subsets based on a certain criterion, such as considering a series of descriptors proposed by same authors as a subset, which was adopted in this paper, to get block variables $X_1, X_2, ..., X_n$.

- (2) The block variables \mathbf{X}_1 , \mathbf{X}_2 , ..., \mathbf{X}_n were centered by subtracting their means.
- (3) Orthogonalize block variables by eq 2. The order of variables strongly impacts on the orthogonalization result.²⁶ Here we use the "based on R_i "²⁶ approach to orthogonalize variables. First pick up a block variable in the set of \mathbf{X}_1 , \mathbf{X}_2 , ..., \mathbf{X}_n with maximum correlation coefficient R against the property \mathbf{y} as the first orthogonal block variables to Ω_1 by eq 2 and select the orthogonal block variables with maximum R in the left ones as the second orthogonal block variables Ω_2 for the remaining block variables. The third orthogonal block variable Ω_3 is such orthogonal one to Ω_1 and Ω_2 that have

compd no.	RT (min)	p_1	p_2	p_3	$^{1}\chi$	$^{2}\chi$	$^{3}\chi$	Н	H'	Η"
1	8.62	36	54	62	11.6201	9.9599	7.6915	223.927	242.345	653.763
2	11.29	35	52	59	11.5286	9.8109	7.6362	212.376	229.643	618.050
3	13.48	37	55	64	12.0059	10.1667	7.9717	232.493	246.244	656.946
4	14.47	34	50	56	11.4370	9.6717	7.5559	201.179	217.065	582.375
5	16.21	36	53	61	11.9143	10.0177	7.9147	220.664	233.465	621.205
6	18.53	38	56	66	12.3916	10.3735	8.2520	241.291	250.197	660.134
7	17.15	42	62	69	13.3744	11.2305	8.3520	275.474	295.748	798.776
8	20.73	41	60	66	13.2828	11.0816	8.2967	263.338	282.988	763.050
9	22.74	43	63	71	13.8292	11.3689	8.6830	284.587	299.697	801.957
10	24.14	40	58	63	13.1913	10.9424	8.2164	251.554	270.353	727.364
11	25.97	42	61	68	13.6686	11.2884	8.5752	272.171	286.860	766.210
12	27.08	44	64	73	14.1459	11.6442	8.9125	293.931	303.700	805.150

Table 1. Topological Indices and Experimental Retention Times of Anthocyanins (Data Set 1, from Ref 23)

maximum R in the remaining ones. Other orthogonal block variables have the same calculation procedure.

- (4) For variables \mathbf{X} and \mathbf{Y} , their canonical correlation variables, say $\mathbf{X}\mathbf{a}_i$ and $\mathbf{Y}\mathbf{b}_i$, can be calculated by using eqs 5–11. In this work, \mathbf{Y} is actually the property vector \mathbf{y} , so \mathbf{b}_1 is a scalar, and there is only one pair of canonical correlation variable, say $\mathbf{X}\mathbf{a}_1$ and $\mathbf{Y}\mathbf{b}_1$. Here we calculate canonical correlation variables for orthogonal block variables and get new variables ω_1 , ω_2 , ..., ω_n , corresponding to the orthogonal block variables.
- (5) Establish regression models of the property \mathbf{y} against every orthogonal canonical correlation variable derived from block variables. Select a few variables with maximum correlation coefficient R_i to establish the descriptor-property correlation model.

DATA SETS

Data Set 1. This data set is collected from Amic et al.²³ who calculated the HPLC retention times (RT) of 12 anthocyanidin malonylglucosides by using several structure—property models based on three different types of orthogonalized topological indices, say path numbers (path counts) p_1 , p_2 , and p_3 , molecular connectivity indices ${}^{1}\chi$, ${}^{2}\chi$, and ${}^{3}\chi$, and Harary indices H, H', and H". They found the best agreement between the experimental and calculated values with path numbers. Here we consider the three types of topological indices as three block variable (three matrixes), say **P**, χ , and **H**, and then study the relationship between their orthogonal variable matrixes and retention time. The retention time and original topological indices of the 12 compounds are listed in Table 1.

Data Set 2. This data set contains a GC retention index, 26 topological indices, and 6 quantum chemical descriptors of 149 alkane molecules. The retention index data are collected from a GC retention index database established in our laboratary.²⁹ Topological indices used are molecular connectivity series indices²² ${}^{1}\chi, {}^{2}\chi$, ${}^{2}\chi_{p}$, ${}^{2}\chi_{c}$; kappa series indices, 27 say $^{0}\kappa$, $^{1}\kappa$, $^{2}\kappa$, $^{3}\kappa$; path counts series indices 30 p₁, p₂, p₃, p₄; walk counts series indices³⁰ w₁, w₂, w₃, w₄; path/ walk counts series indices³⁰ pw₁, pw₂, pw₃, pw₄; the indices proposed and used by Schultz, 31,32 say molecular topological index (MTI), the principal eigenvalue of the distance matrix (PED), the principal eigenvalue of the adjacency-plusdistance matrix (PEAD), the logarithm of determinant of the adjacency-plus-distance matrix (DET); the indices Yx³³ and EAID³⁴ proposed by Xu and co-workers. The quantum chemical descriptors are heat of formation, electronic energy, core-core repulsion energy, dipole moment, ionization potential, and LUMO energy. Eight capital bold characters X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , and X_8 are used to denote these eight series of descriptors (block variables), respectively. The quantum chemical descriptors were calculated by using the MOPAC method in Chem3D software. The routines for calculating the topological indices were programmed in our laboratory using MATLAB language of version 5.3. This data set is given in Table 2.

RESULTS AND DISCUSSION

Improvement of Correlation by using CCA for Data Set 1. There are three types of topological indices in data set 1. Every one of them has three individual topological indices. Table 3 gives the regression results of the model between retention times and orthogonal variables of every type of topological indices. They reveal some features of orthogonalization procedure. The standard error S and the correlation coefficient R do not change with the orthogonalization, and the regression coefficients are constant (see the columns 4-7 in Table 3). The model with three path numbers p_1 , p_2 , and p_3 is superior to others, which was considered as being quite satisfactory for experimental chemists²³ with R = 0.9989 and S = 0.3260.

Is it possible to further improve the model without including more variables into the model? Here we consider the three types of descriptors as three block variables, say **P**, χ , and **H**. Following the calculation procedure stated in the Theory and Methodology section, three orthogonal canonical correlation variables corresponding to the three block variables are obtained. The correlation model including these three variables is then established with significantly improved results, say R = 0.9997 and S = 0.1680, respectively (see Table 4). The comparison of the residuals between the model including p₁, p₂, and p₃ and the model including the three canonical correlation variables of orthogonal block variables **P**, χ , and **H** is shown in Table 5. From this table one can easily see that residuals corresponding to the latter correlation model are much less than those of the former model for almost all compounds. The reason for this, in our opinion, is that these three new canonical orthogonal variables collect all the information from the original nine variables in the data. They are something like the principal components extracted from nine variables, but not being based only on their variation of themselves, as done by classical principal component analysis. This point will be further explained in the following paragraphs.

Limitation of PCR for Data Set 2. The data set 2 contains 32 individual variables (descriptors). Classical PCR was

Table 2. Block Descriptors and Retention Index of Alkanes (Data Set 2)

$oxed{X_1}$		\mathbf{X}_2			X ₃				\mathbf{X}_4				\mathbf{X}_5							
compd	-1χ	2χ	³ χ _p	-3χ _c	0 _K	¹ к	² κ	3 _K	p ₁	p ₂		p ₄	$\overline{\mathbf{w}_1}$	W ₂	-	W4	$\overline{pw_1}$	pw ₂	pw ₃	pw ₄
22334m5C5	4.1934		3.3764		7.3645		2.56	1.9911	9		15	6	9	24	54	132	10	6.5675	3.6921	0.6857
2233m4C4 2233m4C6	3.25	4.5 4.8839	2.25 2.9053	2.5	1.9538	8 10	1.75 2.9388	2.2222 2.6509	7 9	12 14	9 13	0 6	7 9	19 23	40 50	97 121	8 10	5.3571	2.5714 3.3644	0 0.8583
2233m4C5		4.4874		2.2071		9	2.3195	2.0307	8	13	12	3	8	21	46	111	9		3.2357	0.45
			2.5981		4.729		2.56	3.1111	9	15	12	9	9	24	51	129	10	6.5		0.8571
2234m4C5 2235m4C6		4.3987 4.8966	2.366 2.3034	1.866 1.9784	6.5548 7.9666	9 10	2.7222 3.4083	2.88 4.48	8 9	12 13	10 10	6 7	8	20 22	42 45	100 106	9 10	5.6083 6.0714	2.7393 2.6968	0.7286 0.8431
223m3-3eC5	4.3713	4.5178	3.3713	1.9786	7.3645	10	2.9388	1.9911	9	14	15	7	9	23	52	126	10	6.1841	3.8638	1.013
223m3C4 223m3C7		3.5207 4.4093	1.7321	1.6547 1.5701		7 10	1.8519 4	2.6667 4.48	6 9	9 12	6 10	0 6	6 9	15 21	30 43	69 98	7 10	4.4167 5.7548	2 2.8091	0 0.8126
223m3C6			2.2001			9	3.2397	3.5556	8	11	9	5	8	19	39	90	9		2.6145	
223m3C5 2244m4C6		3.6753 5.2552		1.5701			2.52 2.9388	2.8125	7 9	10 14	8	3 10	7 9	17 23	35 46	81 117	8 10	4.8214	2.4574 2.3754	
2244m4C5	3.7071		1.0607				2.3195		8	13	6	9	8	21	40	105	9	5.65	1.5	0.9
2245m4C6		4.9861		2.1297			3.4083		9	13	9	8	9	22	44	105	10	6.0643		
224m3-3eC5 224m3C7		4.6248 4.6586	1.7423		7.9666 8.5686	10	3.4083 4	3.1111 7	9	13 12	12 8	11 9	9	22 21	47 41	114 97	10 10	5.9833 5.6643	3.1641 2.216	1.4165 1.1649
224m3C6	3.9545	4.2782	1.6578	1.8493	7.1568	9	3.2397	5.8776	8	11	7	7	8	19	37	88	9	5.231	2.0624	0.8796
224m3C5 2255m4C6		4.1586 5.6213	1.0206	1.9689 3.1213			2.52 2.9388	7.2 9.1429	7 9	10 14	5 7	6 6	7 9	17 23	32 44	78 109	8 10	4.7476 6.2333	1.436 1.8566	0.7773 0.5641
225m3C7	4.4545	4.6128	2.0841	1.8493	8.5686	10	4	7	9	12	8	6	9	21	41	94	10	5.7833	2.3454	0.7003
225m3C6 226m3C7			1.4717 1.7083		6.5548	9 10	3.2397	8 9.1429	8	11 12	6 7	5 6	8	19 21	36 40	84 92	9 10	5.3 5.8	1.7465 1.9371	0.5952 0.658
			2.3547			10		3.7025	9	12	11	9	9	21	44	103	10	5.6417		
			2.2103				3.2397	2.88	8	11	10	7	8	19	40	94	9	5.2083	2.9	1.1
22m2-4eC6 22m2C3	4.4925 2	4.4473	2.0557	1.7648	7.3645 1.0866	10	4	5.5309	9 4	12	9	9	9 4	21 10	42 16	99 40	10 5	5.6643 3	2.5871	0
22m2C4	2.5607	2.9142	1.0607	1.5607	3.2375	6	1.6327	5.3333	5	7	3	0	5	12	22	51	6	3.55	1.2	0
22m2C7 22m2C6			1.5303 1.2803				3.92 3.1111	8	8 7	10	6 5	5 4	8 7	18 16	34 30	77 69	9 8	4.95 4.45	1.8095 1.6	0.6982 0.625
22m2C5		3.3107		1.5607		7	2.3438	6	6	8	4	3	6	14	26	61	7	3.95	1.3639	0.5417
			1.7803					9.1429	9	11	7	6	9	20	38	85	10	5.45		0.8174
2334m4C6 2334m4C5		4.2854 4.1308	2.9761	1.4035 1.488	8.7959 4.9758		3.4083 2.7222	2.2857	9 8	13 12	14 12	7 4	9 8	22 20	49 44	114 102	10 9	5.6667	3.7286 3.2857	0.9832 0.5714
2335m4C6	4.3599	4.7413		1.7474			3.4083		9	13	11	8	9	22	46	109	10	6.0595	2.9419	0.9717
233m3C7 233m3C6	4.504 4.004	4.2468 3.8933	2.7376 2.4573	1.3392	8.7959 7.3841	10	4 3.2397	3.7025 2.88	9 8	12 11	11 10	6 5	9 8	21 19	44 40	100 92	10 9	5.7619 5.2619	3.0901 2.8924	0.8457
233m3C5	3.504	3.4968	2.4742	1.3392	6.0206	8	2.52	2.2222	7	10	9	2	7	17	36	82	8	4.8619	2.7563	0.3761
2344m4C6 234m3-3eC5	4.4147 4.4474	4.3748 4.1688	3.1439 3.3997	1.5505			3.4083 3.4083	2.6509	9	13 13	13 15	8	9	22 22	48 50	113 117	10 10		3.4806 3.9192	1.0249
234m3C6		3.4887			7.9861	9	3.92	2.88	8	10	10	6	8	18	38	83	9	5.1381		0.9248
234m3C5			2.1031				3.1111		7	9	8	4	7 8	16	33 36	72	8 9		2.4791	0.6154 0.8373
235m3C6 236m3C7		3.8508 4.1925	1.9813 2.3374	0.9773	7.3841 8.7959		3.92 4.7603	4.5 5.5309	8 9	10 11	9	6	9	18 20	40	79 86	10	5.15 5.6833	2.3929 2.637	0.8373
	4.5647	3.9123			9.3979		4	2.6509	9	12	13	8	9	21	46	106	10	5.6833	3.5715	1.2914
			3.0092 2.8439				3.2397 4.7603		8	11 11	12 12	5 9	8	19 20	42 43	96 95	9 10	5.2833 5.5429	3.4429 3.4586	
23m2C4	2.6427	2.488	1.3333	0.6667	1.6586	6	2.2222	3	5	6	4	0	5	11	21	43	6	3.4667	1.6	0
23m2C7 23m2C6	4.1807 3.6807		2.1511 1.8821		7.9861 6.6227		4.8395 3.9375		8 7	9 8	8 7	5 4	8 7	17 15	34 30	71 63	9 8		2.5103 2.3015	
23m2C5		2.6295		0.569	5.3136	7	3.0612	2.6667	6	7	6	2	6	13	26	54	7	3.9	2.1333	0.4167
			2.4011 1.8876		9.3979	10 10		5.5309 5.5309	9	10 12	9	6 10	9	19 21	38 42	79 100	10 10	5.3333 5.631		0.8859 1.3595
244m3C6			1.9179				3.2397		8	11	8	7	8	19	38	90	9	5.231	2.3224	
			1.7475				4.7603	7	9	11	8	9	9	20	39	87	10		2.2222	
		3.5601 4.3094	2.184 2.3094	0.8027 1.1111			3.92 4	2.88 3.1111	8 9	10 12	10 12	8 12	8 9	18 21	38 45	85 105	9 10	5.8667	2.9286 3.2	1.25/1
24m2-4eC6	4.5378	4.1157	2.6082	1.335	8.1938	10	4	3.7025	9	12	11	9	9	21	44	103	10	5.6762	3.0808	1.2603
24m2C7 24m2C6	4.1639 3.6639		1.6552	0.6969			4.8395 3.9375		8 7	9 8	7 6	7 5	8 7	17 15	33 29	71 62	9 8	4.75	2.1361 1.9745	1.1168
24m2C5			0.9428				3.0612		6	7	4	4	6	13	24	52	7		1.3333	
24m2C8			1.9243 2.3556					7 5.5309	9	10 12	8	8	9	19 21	37	79 06	10	5.25	2.3643 2.6079	1.1944
			2.3336			10 10			9	11	9 10	6 9	9	20	42 41	96 91	10 10		2.8599	
25m2C7	4.1639	3.4846	1.9337	0.6969	7.9861	9	4.8395	5.8776	8	9	7	5	8	17	33	69	9	4.85	2.2393	0.7267
25m2C6 25m2C8	3.6259 4.6639			0.8165 0.6969			3.9375 5.76	7.2	9	8 10	5 8	4 7	7 9	15 19	28 37	59 78	8 10	4.3667 5.2833	1.6263	0.5989 1.06
26m2C7	4.1259	3.7186	1.5629	0.8165	4.9758	9	4.8395	8	8	9	6	5	8	17	32	67	9	4.8667	1.8318	0.6791
26m2C8 27m2C8			2.1753 1.8129				5.76 5.76	7 9.1429	9 9	10 10	8 7	6 6	9	19 19	37 36	77 75	10 10	5.35 5.3667		0.8256
			3.3371		6.5352			1.9911	9	12	15	9	9	21	48	111	10		4.0909	
			2.3957		9.3979			4.48	9	10	10	8	9	19	39	83	10		2.9722	
2m-3eC6 2m-3eC5	4.2187 3.7187		2.1267 1.9916		7.9861 5.4185		4.8395 3.9375		8 7	9 8	9 8	7 5	8 7	17 15	35 31	75 66	9 8		2.7777 2.6205	
			2.3346										9	20		94	10	5.525		1.5086

Table 2 (Continued)

Table 2 (C)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u></u>				\mathbf{X}_2			X	C ₃				\mathbf{X}_4				\mathbf{X}_5	
compd	-1χ	2χ	$\frac{3}{\chi_p}$	-3χ _c		¹ <i>K</i>	² κ	3 _K	$\overline{p_1}$	p ₂		p ₄	$\overline{\mathbf{w}_1}$			W ₄	$\overline{pw_1}$	pw ₂	pw ₃	pw ₄
2m-4eC7		3.6925	2.079	0.6124	9.3979	10	5.76	5.5309	9	10	9	9	9	19	38	82	10	5.1833	2.6579	1.4327
2m-4eC6		3.3121 3.6537	1.9594		6.782	9	4.8395	4.5 5.5309	8	9 10	8	7 7	8	17 19	34 38	73 80	9 10	4.75	2.5095 2.7537	1.1667
2m-5eC7 2mC3		1.7321		0.6124 0.5774	8.1938 .9769	10 4	5.76 1.3333	0	3	3	0	0	3	6	9	18	4	2	0	0
2mC4	2.2701	1.8021	.8165		2.8928	5	2.25	4	4	4	2	0	4	8	14	27	5	2.5833		0
2mC7 2mC10		2.8896 3.9503	1.385 2.135	0.4082 0.4082	6.6227 10.8533	8 11	5.1429 8.1	7.2 10	7 10	7 10	5 8	4 7	7 10	14 20	26 38	52 76	8 11		1.6921 2.4421	0.6943 1.0631
2mC6		2.5361		0.4082	5.3136	7	4.1667	6	6	6	4	3	6	12	22	44	7		1.4659	
2mC9	4.7701	3.5967	1.885	0.4082	9.3979	10	7.1111	9.1429	9	9	7	6	9	18	34	68	10	5.0167	2.1921	0.9381
2mC12 2mC5		4.6574 2.1825	2.635	0.4082 0.4082	13.8792 4.0668	13	10.0833	12 5.3333	12 5	12 5	10	9	12 5	24 10	46 18	92 36	13 6	6.5167 3.0167	2.9421	1.3131 0.4675
2mC8		3.2432		0.4082	7.9861	9	6.125	8	8	8	6	5	8	16	30	60	9		1.9421	
3344m4C6	4.3713	4.4749		1.9142	6.9897	10	2.9388	1.9911	9	14	15	6	9	23	52	125	10	6.2		0.8674
334m3C7 334m3C6	4.542 4.042	4.0319 3.6514		1.2546 1.2546	9.3979 7.9861	10 9	4 3.2397	3.1111 2.3802	9 8	12 11	12 11	7 5	9 8	21 19	45 41	103 94	10 9	5.7 5.2667	3.3532 3.2056	1.0838
335m3C7			2.5551		9.3979		4	4.48		12	10	8	9	21	43	100	10		2.9306	
	4.58	3.8556		1.1948	8.1938	10	4	2.6509		12	13	9	9	21	46	107	10		3.6413	
33m2C7 33m2C6	4.1213 3.6213		2.1642 1.8839		7.9861 6.6227	9	3.92 3.1111	4.5 3.6735	8 7	10 9	8 7	5 4	8 7	18 16	36 32	81 73	9 8		2.4776 2.2637	
33m2C5			1.9142		4.1095	7	2.3438	2.6667	6	8	6	1	6	14	28	63	7		2.1167	
33m2C8			2.4142		9.3979		4.7603	5.5309	9	11	9	6	9	20	40	89	10		2.6872	
33e2C6 33e2C5		3.3107 2.9142	3.0303	0.7071	7.1373 3.7717	10	4.7603 3.92	2.6509 2	9 8	11 10	13 12	9 6	9 8	20 18	44 40	100 90	10 9	5.3 4.9	3.7287	1.6047 1.2
344m3C7	4.542		2.8408		9.3979		4	3.1111	9	12	12	8	9	21	45	104	10		3.3369	
34m2-3eC6					8.7959	10	4	2.2857	9	12	14	8	9	21	47	108	10		3.8857	
34m2C7 34m2C6			2.3594 2.2593		8.5882 4.8165	9	4.8395 3.9375	3.5556 2.8125	8 7	9 8	9 8	6 4	8 7	17 15	35 31	74 65	9 8		2.8111 2.6538	
34e2C6			2.7642		4.5815		5.76	3.1111	9	10	12	10	9		41	89	10	5.1429	3.6	1.7544
35m2C7	4.2019	3.2625 3.6213	2.1986		6.1799	9	4.8395	4.5	8	9	8	6 7	8	17 20	34 42	72 94	9	4.8	2.5934 3.2291	0.9196
3m-3eC7 3m-3eC6	4.682 4.182		2.5607	0.9268	8.7959 7.3841	9	4.7603 3.92	3.7025 2.88	9 8	11 10	11 10	6	8	18	38	86	10 9		3.0313	
3m-3eC5	3.682	2.8713	2.5607	0.9268	4.362	8	3.1111	2.2222	7	9	9	3	7	16	34	76	8	4.4786	2.8952	
3m-4eC6 3m-5eC7			2.4974 2.5873		7.3841 8.7959	9	4.8395	2.88 4.48	8	9 10	10 10	7 8	8	17 19	36 39	77 83	9 10	4.7381	3.131 3.1123	1.2817
3mC7			1.7474		7.2247	8	5.76 5.1429	5	7	7	6	4		14	27	54	8	3.2333 4		0.7515
3mC6			1.4784		5.9157	7	4.1667	3.84	6	6	5	3		12	23	46	7	3.5		0.6653
3mC9 3mC12			2.2474		10 14.4813	10	7.1111 10.0833	7 9.9174	9 12	9 12	8 11	6	9 12	18 24	35 47	70 94	10 13	5 6.5		0.9647 1.3328
3mC5			1.3938		3.4648	6	3.2	3	5	5	4	1	5	10	19	37	6		1.6857	
3mC8			1.9974		8.5882	9	6.125	5.8776	8	8	7	5			31	62	9	4.5		0.8464
3eC7 3eC6			2.1206 1.8516		7.3841 6.0206	9	6.125 5.1429	4.5 3.6735	8 7	8 7	8	6 5	8	16 14	32 28	65 57	9 8		2.6269 2.4182	
3eC5	3.3461	2.0908	1.7321	0.2041	3.053	7	4.1667	2.6667	6	6	6	3	6	12	24	48	7	3.5	2.25	0.75
3eC8			2.3706			10	7.1111	5.5309	9	9	9	7 7		18	36	73	10		2.8531 2.4056	
44m2C7 44m2C8			1.8536 2.1339		6.1799 9.3979	9 10	3.92 4.7603	4.5 5.5309	8	10 11	8	8		18 20	36 40	83 91	9 10	5.3333		
4pC7	4.8461	3.2321	2.0908	0.2041	5.7059	10	7.1111	5.5309	9	9	9	9	9	18	36	75	10	4.8	2.7238	1.6299
4m-3eC7 4m-4eC7	4.7567 4.682		2.5975	0.4024 0.9268	8.7959	10 10	5.76 4.7603	3.7025 3.7025	9	10 11	11 11	9	9	19	40 42	86 96	10 10		3.2794 3.1627	
4mC7			1.5629		5.4185	8	5.1429	5.7023	7	7	6	5		14		55	8		2.0419	
4mC9	4.8081	3.3896	2.082	0.2887	10	10	7.1111	7	9	9	8	7	9		35	71	10		2.4963	
4mC12 4mC8		4.4503 3.0361		0.2887 0.2887	14.4813 8.5882	13	10.0833 6.125	9.9174 5.8776	12	12	11 7	10	12 8	24 16		95 63	13 9		3.2463 2.2701	
4eC7			1.9712		6.782	9	6.125	4.5	8	8	8	7		16		66	9		2.5754	
4eC8				0.2041		10	7.1111	5.5309	9	9	9	8	9	18	36	74	10		2.7841	
4ipC7 5mC9		3.3896	2.2617	0.5 0.2887	7.5918 7.5918		5.76 7.1111	4.48 7	9	10 9	10 8	9 7		19 18	35	84 71	10 10		2.9253 2.4983	
5mC12		4.4503			14.4813		10.0833	9.9174				10	12			95	13		3.2245	
6mC12		4.4503		0.2887	14.4813		10.0833	9.9174		12	11	10	12	24	47	95	13		3.2007	
C3 C4	1.4142	0.7071	0.5	0	.8293 1.2041	3 4	2 3	0 4	2	1 2	0	0	2	3 5	4	6 13	3 4	1 1.6667	0 .6667	0
C7	3.4142	2.0607	1.2071	0	4.1095	7	6	6	6	5	4	3	6	11	20	37	7		1.5357	
C10			1.9571		6.9897		9	9.1429	9	8	7	6		17		61	10		2.2857	
C6 C9			0.9571 1.7071		2.8627 6.1799	6 9	5 8	5.3333 8	5 8	4 7	3 6	2 5	5 8	15	16 28	29 53	6 9		1.2857 2.0357	
C12	5.9142	3.8284	2.4571	0	9.3378	12	11	11.1111	11	10	9	8	11	21	40	77	12	5.6667	2.7857	1.3095
C16			3.4571		14.4494			15.0769				12		29		109	16		3.7857	
C13 C14	6.4142 6.9142		2.7071 2.9571		10.8689 11.8314			12 13.0909		11 12	10		12 13	23 25	44 48	85 93	13 14		3.0357 3.2857	
C15	7.4142	4.8891	3.2071	0	13.4269	15	14	14	14	13	12	11	14	27	52	101	15	7.1667	3.5357	1.6845
C11 C5		3.4749 1.3536	2.2071 .7071		8.445 2.2907	11 5	10 4	10 4	10 4	9	8 2	7 1	10 4	19	36 12	69 21	11 5	5.1667 2.1667	2.5357	1.1845 0.3333
C8			1.4571		4.8165	8	7	7.2	7	6	5	4		13		45	8		1.7857	
C2	1	0	0	0	0	2	0	0	1	0	1	0	1	1	1	1	2		2	0

Table 2 (Continued)

Table 2 (Col	IIIIIIue		Y .			\mathbf{X}_7			\mathbf{X}_8				
compd	MTI	PED	$\frac{\mathbf{X}_6}{\text{PEAD}}$	DET	Y_x	EAID	heat form.	elec. energy		ion energy	dinole	HUMO	retention index
22334m5C5	390							-10359.75	8775.176	10.6757	.01136	3.566	953.4
22334H3C3 2233m4C4	214						-40.89208	-7334.599	6061.211	10.0737	.0003	3.619	728.69
2233m4C6	416						-49.85479	-10184.86	8600.009	10.81639	.02406	3.597	928.8
2233m4C5	298	18.844	20.2756				-45.31129	-8744.597	7315.479	10.85189	.00424	3.61	855.13
22344m5C5 2234m4C5	402 312						-44.50718 -47.21812	-10298.45 -8660.957	8713.832 7231.757	10.68827 10.799	.02712	3.532 3.6	921.7 822.07
2235m4C6	446						-56.17962	-9956.045	8370.919	10.8477	.0083	3.557	873.3
223m3-3eC5	396						-47.96047	-10288.09	8703.325	10.60393	.02938	3.593	965.7
223m3C4 223m3C7	156 472	12.3945 27.013	13.8023 28.5623				-40.31712 -59.41519	-5901.524 -9726.869	4783.7 8141.603	10.96893	.01124	3.651 3.564	641.46 914.4
223m3C6	334	21.225	28.3023	4.773			-59.41519 -52.5564	-9720.809 -8440.196	7010.765	10.91321 10.91405	.01203	3.586	823.18
223m3C5	230						-45.7546	-7168.514	5894.916	10.94434	.00713	3.628	738.98
2244m4C6	432		26.0746				-50.73219	-10054.49	8469.602	10.73394	.03091	3.545	888.6
2244m4C5 2245m4C6	322 450	20.1263 25.572		4.1242			-46.37195 -55.2219	-8617.877 -9924.192	7188.713 8339.107	10.84266 10.85359	.03158	3.616 3.529	774.77 872.1
224m3-3eC5	414						-49.32553	-10167.72	8582.889	10.83339	.02394	3.546	903.9
224m3C7	476						-59.38599	-9710.798	8125.532	10.86166	.02109	3.552	875.7
224m3C6	342						-52.5686	-8412.023	6982.592	10.91496	.02438	3.588	790.60
224m3C5 2255m4C6	242 464	17.0338 26.116	18.5101 27.6594		3.516	16.847	-46.77102 -57.7112	-7108.715 -9866.361	5835.073 8281.169	11.00219 10.9892	.01496	3.65 3.603	691.55 820.2
225m3C7	488						-61.44294	-9642.028	8056.674	10.95924	.00715	3.573	878.1
225m3C6	358					19.6122	-55.55449	-8299.761	6870.199	11.03712	.01606	3.608	777.07
226m3C7	508	28.667	30.253	4.772	4.063		-62.44179	-9549.044	7963.646	10.97658	.01417	3.584	873
22m2-3eC6 22m2-3eC5	440 318						-57.65448 -50.82289	-9931.48 -8571.786	8346.29 7142.43	10.80742 10.8455	.01895 .01823	3.572 3.61	902.1 824.28
22m2-4eC6	456	26.101					-58.77768	-9914.725	8329.485	10.84355	.01602	3.574	881.3
22m2C3	64	6.6056	8	2.1072	2.5809	8.8515	-32.83527	-3528.125	2721.7	11.53374	.00009	3.905	412.57
22m2C4	106			2.6665			-37.71373	-4631.849	3669.675	11.18348	.00502	3.752	537.77
22m2C7 22m2C6	380 260		25.5329				-58.2038 -51.34291	-8111.55 -6916.208	6681.874 5642.368	11.02231 11.03788	.00948	3.621 3.657	816.16 720.17
22m2C5	170	13.6353					-44.48559	-5751.119	4633.113	11.09381	.00789	3.713	626.55
22m2C8	534						-65.06525	-9344.763	7759.251	11.01967	.01297	3.59	914.9
2334m4C6	414						-52.34581	-10131.5	8546.545	10.70593	.01201	3.549	949.1
2334m4C5 2335m4C6	304 434						-46.5384 -54.76602	-8698.136 -10004.06	7268.965 8418.996	10.77915 10.80911	.01342	3.593 3.518	861.15 903.3
233m3C7	460						-58.46761	-9791.058	8205.832	10.86492	.02361	3.556	931.7
233m3C6	326						-51.60917	-8488.587	7059.197	10.85973	.01938	3.579	841.89
233m3C5	226		17.4976				-44.85519	-7204.111	5930.551	10.90266	.01942	3.623	761.71
2344m4C6 234m3-3eC5	418 402		25.4963 24.6664				-51.48589 -49.67133	-10100 -10244.79	8515.08 8659.945	10.69922 10.58441	.0295 .02111	3.504 3.584	935 969.4
234m3C6	332	21.197	22.6797				-53.75174	-8436.201	7006.718	10.77514	.01169	3.536	850.88
234m3C5	236						-47.86289	-7112.205	5838.515	10.82493	.00176	3.59	754.14
235m3C6	348						-55.06606	-8365.301	6935.76	10.89763	.01732	3.556	813.05
236m3C7 23m2-3eC6	494 428	28.117	29.6824 26.2807				-62.51926 -54.72075	-9585.047 -10040.06	7999.646 8455.002	10.91229 10.66324	.01066	3.53 3.575	919 949.4
23m2-3eC5	310						-47.99347	-8644.609	7215.376	10.70035	.02189	3.612	875.00
23m2-4eC6	442		27.0397				-58.02816	-9937.877	8352.671	10.74124	.01698	3.554	930.6
23m2C4	108	10					-38.8557	-4607.479	3645.256	11.05099	.0167	3.723	568.32
23m2C7 23m2C6	254						-58.44774 -51.58796	-8147.541 -6938.178	6717.854 5664.326	10.93728 10.95772	.02129	3.579 3.611	855.34 760.79
23m2C5			15.0731				-44.76133	-5761.819	4643.802	11.05977	.01857	3.663	672.28
23m2C8	520						-65.30891	-9387.703	7802.181	10.91738	.01932	3.553	952.1
244m3C7 244m3C6	460 334						-59.20395 -52.44712	-9780.46 -8450.309	8195.202 7020.881	10.87702 10.89239	.01596	3.539 3.574	889.4 809.56
244m3C0 246m3C7							-63.25566	-9624.39	8038.957	10.89239	.00972	3.524	870.1
24m2-3eC5							-51.25299	-8531.783	7102.408	10.65053	.03613	3.58	838.17
24m2-3ipC5	420	24.219	25.6902				-48.93039	-10124.45	8539.641	10.62554	.04698	3.536	915.1
24m2-4eC6 24m2C7							-56.09631 -58.48207	-9979.855 -8137.65	8394.732 6707.962	10.70683 10.95256	.01501	3.586 3.551	920.7 821.28
24m2C6							-51.66034	-6914.026	5640.171	11.0251	.01966	3.587	732.69
24m2C5	176	14.176	15.6472	3.2833	3.3137	12.7196	-45.75026	-5703.545	4585.485	11.12265	.01742	3.631	630.25
24m2C8		29.529					-65.34251	-9392.599	7807.075	10.92806	.01948	3.527	915.8
255m3C7 25m2-3eC6	476 458		28.6/17 27.8591		4.0018 3.961		-60.18868 -59.64742	-9710.834 -9863.368	8125.534 8278.092	10.96445 10.77954	.01845	3.567 3.527	891.7 891.4
25m2C7	378						-59.24589	-8097.021	6667.3	10.77934	.01081	3.568	833.21
25m2C6	270	19.1115	20.6428	3.8366	3.6242	14.9164	-53.37681	-6830.822	5556.894	11.05755	.00024	3.604	728.82
25m2C8							-66.06484	-9373.651	7788.096	10.93027	.00467	3.536	921.8
26m2C7 26m2C8							-60.25541 -66.13414	-8014.733 -9328.573	6584.968 7743.015	11.00163 10.93965	.00672	3.589 3.55	827.46 931.5
27m2C8							-67.11765	-9328.373 -9234.642	7649.041	11.02139	.02196	3.565	931.3
2m-33e2C5	408	23.7103	25.1647	4.8028	3.8538	21.9335	-49.1577	-10216.2	8631.379	10.60048	.06617	3.582	984
2m-3eC7							-63.36866	-9641.531	8056.093	10.87932	.01557	3.595	941
2m-3eC6 2m-3eC5			23.7242				-56.51208 -49.68597	-8341.148 -7067.82	6911.546 5794.051	10.90291 10.87628	.01216	3.63 3.677	844.75 762.57
2m-3ipC6							-54.33541	-9923.896	8338.85	10.62574	.03415	3.578	915.5

Table 2 (Continued)

Table 2 (C	onunue		\mathbf{X}_6			\mathbf{X}_7			\mathbf{X}_8				
compd	MTI	PED	PEAD	DET	Y_x	EAID	heat form.	elec. energy	core energy	ion energy	dinole	HUMO	retention index
2m-4eC7			29.4461				-64.46569	-9631.298	8045.813	10.92379	.01548	3.585	907.4
2m-4eC6			24.1368				-57.62773	-8306.392	6876.741	10.92373	.01834	3.619	824.88
2m-5eC7			30.1974				-64.29136	-9529.33	7943.852	10.87701	.0179	3.576	924
2mC3 2mC4	36 68	4.6458 7.4593	6 9 9525	1.6812 2.2455	2.2279	5.9437 8.0168	-29.42095 -35.45876	-2501.393 -3459.122	1850.654 2652.583	11.29216 11.19864	.00968	3.834 3.747	365.61 475.34
2mC7		20.4792				14.1687	-56.00821	-6668.959	5394.916	11.19804	.01298	3.622	764.95
2mC10			41.6629				-76.59119		8553.864	11.03033	.01108	3.549	1062.3
2mC6			16.9205				-49.14733	-5546.744	4428.536	11.06544	.01107	3.656	666.89
2mC9 2mC12			34.4198 58.2516				-69.73028 -90.3129	-9047.42 -12893.23	7461.706 10840.01	11.03547 11.00102	.01301	3.569 3.518	963.9 1264.1
2mC5			12.5154				-90.3129 -42.28732	-4472.773	3510.4	11.00102	.01103	3.7	570.07
2mC8			27.8796				-62.86934	-7837.876	6407.998	11.03852	.01113	3.593	864.86
3344m4C6			24.4764				-49.66267		8645.975	10.71371	.00565	3.577	983.7
334m3C7 334m3C6			27.1231 21.7797			22.3821	-57.44845 -50.63471	-9880.618 -8543.778	8295.437 7114.431	10.81671 10.84068	.01221	3.557 3.6	936.6 855.25
335m3C7			27.662			21.8998	-57.18019	-9831.447	8246.277	10.84008	.02293	3.543	907.7
33m2-4eC6			26.0248			22.2137	-52.34786		8471.642	10.66368	.03666	3.596	937.8
33m2C7			24.2083				-55.98761	-8252.36	6822.78	10.98146	.01333	3.607	837.09
33m2C6 33m2C5			18.9193 14.4942			15.9681	-49.12979 -42.37236	-7023.271 -5827.91	5749.526 4709.996	10.98769 11.10235	.00914	3.645 3.697	744.81 660.39
33m2C8			30.2966			21.0528	-42.37230 -62.8485	-9503.495	7918.08	10.95726	.01023	3.577	932
33e2C6			26.7631				-53.97946		8450.349	10.69107	.06001	3.622	954.1
33e2C5			21.8425				-47.31306	-8636.945	7207.742	10.68934	.05316	3.665	880.34
344m3C7			26.9318				-57.37407	-9898.987	8313.81	10.8048	.01354	3.564	932.2
34m2-3eC6 34m2C7		22.6789	25.8251 24 199			17.0667	-53.07305 -57.60669	-10107.53 -8236.623	8522.538 6806.973	10.68526 10.87213	.0147 .01526	3.594 3.579	964.6 859.56
34m2C6			19.1471				-50.77153	-6993.059	5719.243	10.92834	.01135	3.623	771.84
34e2C6			27.5509				-60.60211	-9889.468	8304.149	10.8173	.02543	3.601	945.8
35m2C7			24.5995				-63.85483	-8597.404	7140.171	10.96583	.02732	3.575	834.26
3m-3eC7 3m-3eC6			28.4646 22.8207				-58.69095 -52.46083	-9929.194 -8499.878	8343.959 7070.451	10.65178 10.69321	.02638	3.653 3.677	953 855.42
3m-3eC5			18.1096				-45.74374	-7192.715	5919.117	10.74486	.00829	3.69	776.13
3m-4eC6	338	21.7527	23.2408	4.3796	3.7509	16.9702	-54.8406	-8375.911	6946.381	10.85269	.01559	3.58	856.16
3m-5eC7			29.1905				-61.30532	-9773.897	8188.549	10.71181	.01249	3.647	924
3mC7 3mC6			21.3026 16.3497				-54.39288 -48.26163	-6804.25 -5614.455	5530.277 4496.286	10.91392 10.98817	.00561	3.644 3.667	772.67 676.60
3mC9			33.4197			18.2377	-68.10435	-9251.791	7666.147	10.85035	.00955	3.62	969.62
3mC12			56.9787			24.3416	-88.68764		11107.68	10.84349	.00889	3.577	1270.1
3mC5			12.1719			9.9767	-41.43589	-4520.207	3557.871	11.07902	.00815	3.699	584.70
3mC8 3eC7			26.9977 25.6486			16.18	-61.24434 -60.33007	-8003.184 -8157.519	6573.375 6727.75	10.85159 10.84026	.00857	3.632 3.621	870.35 867.45
3eC6			20.2794			14.0048	-54.20422	-6874.462	5600.497	10.91421	.00197	3.643	773.10
3eC5			15.7492				-47.37917	-5689.736	4571.604	11.00171	.00611	3.681	686.80
3eC8			31.8041				-67.18213	-9428.95	7843.347	10.80058	.00824	3.613	964
44m2C7 44m2C8		27.9952	23.7886			18.4386 20.9201	-55.88533 -62.74371	-8283.897 -9568.881	6854.322 7983.47	10.9544 10.93572	.00123	3.602 3.569	828.71 918
4pC7			30.4392				-66.48675	-9611.935	8026.361	10.88716	.01408	3.585	906
4m-3eC7			28.644			19.1099	-61.60451	-9742.1	8156.738	10.78757	.01358	3.554	940.5
4m-4eC7			27.8691				-59.32462	-9809.879	8224.616	10.77674	.01162	3.608	937.6
4mC7 4mC9		19.542 31.2641	21.0738 32.879			14.0661 18 1891	-54.98279 -68.70417	-6755.896 -9179.29	5481.897 7593.621	11.00483 10.9493	.01211	3.598 3.543	767.48 960
4mC12			56.1224				-89.287	-13061.63	11008.45	10.90795	.01206	3.496	1258.3
4mC8			26.5968				-61.84335	-7951.1	6521.266	10.97348	.01262	3.567	863.16
4eC7			25.2175				-60.04227	-8136.145	6706.389	10.8722	.00392	3.586	857.82
4eC8 4ipC7			31.0402 28.8787				-66.89917 -62.29878	-9423.204 -9688.523	7837.612 8103.132	10.84146 10.85306	.0103 .02841	3.562 3.515	951.5 925
5mC9			32.7089				-68.70337	-9196.188	7610.518	10.94881	.01683	3.541	957.4
5mC12			55.5987				-89.28639		11050.26	10.90097	.01268	3.491	1252.4
6mC12		53.6556		6.4466			-89.28254		11069.78	10.89464	.01135	3.489	1249.9
C3 C4	16 38	2.7321 5.1623	4 6.5311	1.7782	1.7404	4.0019 5.7397	-24.3021 -31.17807	-1635.942 -2454.979	1140.963 1804.164	11.32464 11.17192	.00428	3.92 3.829	300 400
C7			18.1783				-51.75943	-5404.033	4285.712	11.07227	.00643	3.682	700
C10			36.0037				-72.34198	-8866.062	7280.234	11.06314	.00051	3.577	1000
C6			13.6116				-44.89873	-4353.036	3390.55	11.08452	.00034	3.736	600
C9 C12			29.3729 51.3375			15.3724 21.2144	-65.48109 -86.06287	-7666.323 -11381.7	6236.332 9484.198	11.06405 11.05911	.00645	3.605 3.537	900 1200
C16			90.3119				-113.5067	-16796.89	14276.06	10.9727	.00109	3.488	1600
C13	1346	58.3139	60.042	6.5035	4.7932	23.1511	-92.924	-12691.11	10637.77	11.03233	.0065	3.521	1300
C14			69.439			25.0807	-99.78485		11822.33	11.00937	.00095	3.509	1400
C15 C11			79.5288 43.3249			27.0042 19.2722	-106.6458 -79.20287	-15400.72 -10105.7	13035.72 8364.034	10.98969 11.06302	.0064 .0064	3.498 3.555	1500 1100
C5	74	8.2882				7.6364	-38.03782	-3366.513	2559.863	11.11116	.00619	3.775	500
C8	306	21.8364	23.4316	3.9771	3.747	13.4156	-58.62032	-6510.521	5236.364	11.06658	.00032	3.639	800
C2	4	1	2	.6021	.9542	2.2927	-17.44032	-930.5031	591.3596	11.766	.00008	4.117	200

-4.4981 -20.1174

Table 3. Regression Results with Orthogonal Variables (Vectors) of the Three Types of Topological Indices

	2 1			0					
st	tatistical	data				regressi	on (coefficie	nts
F	R	S		p ₁		p_2		p ₃	constant
22.362	22.3620 0.8313 3.4		60	1.43	62				-37.6432
211.672	29 0.989	95 0.94	01	1.43	62	-7.180	8(-37.6432
1195.7	0.998	89 0.32	60	1.43	62	-7.180	8(0.6295	-37.6432
sta	tistical da	nta			r	egression	1 00	efficient	S
F	R	S		¹ χ		2χ		³ χ	constant
39.7598	0.8939	2.7710	5.	3497		49.5685			
72.4536	0.9703	1.5756	5.	3497	-3	36.4782		49.5685	
44.9390	0.9716	1.6356	5.	3497	-3	36.4782	-	-2.7314	-49.5685
sta	tistical da	nta			r	egression	ı cc	efficient	s
F	R	S		Н		H′		H"	constant
17.6527	0.7990	3.7171	0.	1553	-2	20.1174			
9.5747	0.8248	3.6842	0.	1553	-	-0.3276	-/	20.1174	

Table 4. Regression Results with Orthogonal Variable Matrix of the Three Types of Topological Indices

-0.3276

14.3894 0.9188 2.7326 0.1553

sta	tistical da	ta	regression coefficients								
F	R	S	P	χ	Н	constant					
4484.05	0.9989	0.2916	5.8870			18.3675					
2207.27	0.9990	0.2939	5.8870	0.08136		18.3675					
4511.24	0.9997	0.1680	5.8870	0.08136	0.2239	18.3675					

Table 5. Residuals of the Regressions of Retention Time against Descriptors p_1 , p_2 , and p_3 and against Three Canonical Correlation Variables of Orthogonal Block Variables P, γ , and H

	resi	dual		resi	dual
compd no.	p_1, p_2, p_3	Ρ, χ, Η	compd no.	p_1, p_2, p_3	Ρ, χ, Η
1	0.2853	0.1026	7	-0.3863	-0.0787
2	-0.2087	-0.0558	8	0.0297	0.0509
3	0.1613	-0.0431	9	0.2197	0.0001
4	-0.1927	0.1317	10	0.2757	-0.1317
5	-0.2727	-0.2615	11	0.2857	0.2665
6	0.2273	0.1261	12	-0.4243	-0.1071

Table 6. Correlation Coefficient and Standard Error of the Retention-Component in PCR

pc	R	S	pc	R	S	pc	R	S
1	0.9689	47.8761	12	0.0202	193.5115	23	0.0065	193.5470
2	0.2043	189.4675	13	0.0009	193.5510	24	0.0024	193.5505
3	0.0667	193.1196	14	0.0130	193.5348	25	0.0081	193.5448
4	0.0723	193.0450	15	0.0160	193.5264	26	0.0050	193.5487
5	0.0218	193.5050	16	0.0150	193.5294	27	0.0052	193.5485
6	0.0591	193.2128	17	0.0009	193.5510	28	0.0019	193.5507
7	0.0347	193.4345	18	0.0320	193.4521	29	0.0000	193.5511
8	0.0082	193.5446	19	0.0044	193.5492	30	0.0000	193.5511
9	0.0121	193.5369	20	0.0036	193.5498	31	0.0000	193.5511
10	0.0113	193.5387	21	0.0062	193.5474	32	0.0000	193.5511
11	0.0375	193.4149	22	0.0024	193.5505			

made for the data set of 32 descriptors. Table 6 shows the correlation coefficients R and the standard errors S of the regression model between retention index (property) and all the individual principal components, respectively. From this table one can see that the first two principal components describe most of systematic variation (variance) of the data set and also explain most of the property retention index with R = 0.9689 and 0.2043. Others contribute small with very closed correlation coefficients R and having almost the same standard errors S. In this case, can we say the first two

Figure 2. Relationships of cross-validation (leave-one-out) and F test vs the number of principal components.

principal components have explained "full" of the property? According to eq 1, the first two principal components can only reach 0.9902 correlation (i.e., $\sqrt{0.9689^2+0.2043^2}$) (for orthogonal variables, $R_{(x,y)}^2 = \sum_{i=1}^n R_{(xi,y)}^2$, where $R_{(xi,y)}$ is the correlation coefficient of **y** against a variable **x**_i, $R_{(x,y)}$ against all variables, say \mathbf{x}_1 , \mathbf{x}_2 ,..., \mathbf{x}_n), while all 32 variables can reach 0.9997 correlation. So, additional principal components should be introduced into the regression model in order to improve the correlation furthermore. But the principal components of third to 32th (Table 6) show closed R and S, and the order of the values of R does not match the order of the principal components by their corresponding eigenvalues, e.g. the fourth R > the third R, the sixth R > the fifth R, and so forth. Thus, it is hard to select reasonably the number of principal components. If one selects the principal component according to the order of their corresponding eigenvalues (variances), one needs to select 22 principal components such obtained and the regression correlation coefficient will reach 0.9996 at this time. The cross-validation (leaveone-out) and F-test were also chosen to select number of components in this work. The results are shown in Figure 2. From this plot, the reasonable conclusion can hardly be made. From the results obtained by cross-validation, one can see that if one includes more than 25 principal components into regression model, the prediction will be unaccepted. However, there are several minima in the PRESS curve, where which one is the best point is really difficult to decide. The same situation is met for F-tests. Is it possible for one to include only a few orthogonal variables to get a better correlation model for this data set?

Selection of Orthogonal Block Variables for the Data Set 2. In the data set 2, there are eight block variables X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , and X_8 . Their orthogonal matrixes Ω_1 , Ω_2 , Ω_3 , Ω_4 , Ω_5 , Ω_6 , Ω_7 , and Ω_8 can be calculated following the calculation procedure (3) in the section of Theory and Methodology. The order of variables to orthogonalize impacts on results strongly. We use the greedy procedure "based on R_i " to ascertain the order of the block variables, which is 3, 6, 8, 1, 5, 4, 7, 2 (first column in Table 7). Based on this order, we obtain the orthogonal block variables. The second column in Table 7 shows the correlation coefficients of the retention index against these orthogonal block variables. To improve the correlation, we investigate the combination of the orthogonal block variables by

Table 7. Correlation Coefficients of Regressions for Various Combinations of Eight Orthogonal Block Variables against Retention Index

block var.a	R_i	orth. var. comb.a	R	F-test	CCA var. comb.a	R	F-test
\mathbf{X}_3	0.99653	Ω_3	0.99653	5156.7	ω_3	0.99653	21056.6
\mathbf{X}_6	0.06468	$\Omega_3\Omega_6$	0.99863	6348.0	$\omega_3\omega_6$	0.99862	26480.2
\mathbf{X}_8	0.04153	$\Omega_3\Omega_6\Omega_8$	0.99949	9332.1	$\omega_3\omega_6\omega_8$	0.99949	47124.8
\mathbf{X}_1	0.01944	$\Omega_3\Omega_6\Omega_8\Omega_1$	0.99968	11161.4	$\omega_3\omega_6\omega_8\omega_1$	0.99968	55635.2
\mathbf{X}_{5}	0.00630	$\Omega_3\Omega_6\Omega_8\Omega_1\Omega_7$	0.99970	9429.3	$\omega_3\omega_6\omega_8\omega_1\omega_7$	0.99968	44214.0
\mathbf{X}_4	0.00576	$\Omega_3\Omega_6\Omega_8\Omega_1\Omega_7\Omega_5$	0.99972	8172.4	$\omega_3\omega_6\omega_8\omega_1\omega_7\omega_5$	0.99968	36587.4
\mathbf{X}_7	0.00685	$\Omega_3\Omega_6\Omega_8\Omega_1\Omega_7\Omega_5\Omega_4$	0.99974	8129.6	$\omega_3\omega_6\omega_8\omega_1\omega_7\omega_5\omega_4$	0.99970	33583.3
\mathbf{X}_2	0.00434	$\Omega_3\Omega_6\Omega_8\Omega_1\Omega_7\Omega_5\Omega_4\Omega_2$	0.99975	7131.7	$\omega_3\omega_6\omega_8\omega_1\omega_7\omega_5\omega_4\omega_2$	0.99970	29209.2

^a Term of block var., orth. var. comb. and CCA var. comb. mean block variables, orthogonal block variable combination, and canonical correlation variable combination.

Figure 3. Relationships of cross validation (leave-one-out) vs the number of eight canonical orthogonal components with the same order as listed in Table 7.

selecting those with maximum values of R_i . The third and fourth columns in Table 7 show the combinations and correlation coefficients R. From this table, one can see that an increase of R slows down when selecting more than four variables. So the four block variables Ω_3 , Ω_6 , Ω_8 , and Ω_1 might be used to establish the regression model, which can explain the retention index with R = 0.99968. To reduce the number of the variables, we calculate further the canonical correlation variables for the eight orthogonal block variables. With the help of canonical correlation analysis, eight new orthogonal variables (vectors), say $\omega_1, \omega_2, ..., \omega_8$ are obtained. The combinations of these eight new variables and their contributions to explain retention index with R are listed in the fifth and sixth columns in Table 7. From the results listed in Table 7, it is clearly seen that the eight new orthogonal variables (vectors), say ω_1 , ω_2 , ..., ω_8 , can provide almost the same information as eight orthogonal block variables do. To check the prediction ability of the correlation model with the eight new orthogonal variables, crossvalidation of leave-one-out and F-test are also made, which are shown in Figure 3 and Table 7, respectively. These two results are quite agreement with each other. Both crossvalidation (minimum point at 4, see Figure 3) and F-test value (with maximum value of 55635.2) seem to suggest that the correlation model of four orthogonal variables, say ω_1 , ω_3 ω_6 , and ω_8 , will show the best behavior both in fitting and prediction.

Intercorrelation between the Different Descriptor Variables. The reason selection of variables will be so difficult, in our opinion, lies in that many descriptors are similar and/

Table 8. Correlation Coefficients of Retention Index against Block Variables and Their Corresponding Orthogonal Block Variables

	1	2	3	4	5	6	7	8
1	0.9952	0.0794	0.0764	0.0806	0.0689	0.0738	0.0121	0.0633
2	0.0877	0.9945	0.0892	0.0846	0.0810	0.0408	0.0436	0.0621
3	0.0560	0.0622	0.9965	0.0412	0.0413	0.0647	0.0315	0.0380
4	0.0874	0.0831	0.0744	0.9946	0.0808	0.0895	0.0413	0.0591
5	0.0674	0.0705	0.0648	0.0719	0.9953	0.0808	0.0178	0.0540
6	0.1179	0.0934	0.1238	0.1238	0.1233	0.9909	0.0413	0.0925
7	0.2733	0.2739	0.2797	0.2740	0.2740	0.2604	0.9570	0.2675
8	0.1170	0.1102	0.1176	0.1097	0.1131	0.0989	0.0820	0.9903

or represent "duplicated" information of the molecular structure. Thus, how to reasonably evaluate the intercorrelation between the different descriptor variables or even between the different block variables of topological indices will become very helpful for QSAR/QSPR studies. With the help of the subspace-projection technique proposed in this work, this task seems to be possible to fulfill. Table 8 gives correlation coefficients of retention index against block variables (variable matrix) and their corresponding orthogonal block variables. The numbers in the first row and the first column in table denote the number of the block variables. Values in the position of row i and column j in Table 8 are correlation coefficients of the regression between the retention index and the block variable obtained after subspace-projection orthogonalizing the *i*th block variable to the ith block variable. While, the diagonal values give the correlation coefficients of regression of the retention index against the *i*th or *j*th block variable (i=j) without orthogonalization.

From the table, we can see that regression of retention index against every individual block variable gives the following values of correlation coefficients R (see the diagonals in Table 8): 0.9952, 0.9945, 0.9965, 0.9946, 0.9953, 0.9909, 0.9570, 0.9903, respectively. All these values except the seventh one are more than 0.99, which explain most of the property retention index. For instance, if we select the third block variable (path variables, say p₁, p₂, ..., p₄) to establish the regression model against the retention index (see the row of i = 3 in Table 8) with R = 0.9965, additional descriptors should be introduced in order to improve further the correlation. How much can the candidates of the other seven block variables improve the regression? Here we consider orthogonalized block variables to the third one, to avoid the duplication between the orthogonal block variables and the third block variable. The contributions of the orthogonal block variables give the values for R = 0.0560(χ variables, say $^{1}\chi$, $^{2}\chi_{p}$, $^{3}\chi_{p}$, and $^{3}\chi_{c}$), 0.0622 (Kappa variables, say $^{0}\kappa$, $^{1}\kappa$, $^{2}\kappa$, and $^{3}\kappa$), 0.0412 (walk account

variables, say w₁, w₂, ..., w₄), 0.0413 (path/walk account variables, say pw₁, pw₂, ..., pw₄), 0.0647 (the indices proposed and used by Schultz, say MTI, PED, PEAD, DET), 0.0315 (the indices proposed by Xu and co-workers, say Yx and EAID), and 0.0380 (quantum chemical descriptors, say heat form., elec. energy, core energy, ion. energy, dipole, HUMO), respectively. They are much smaller than that of the third block variable. This fact illustrates that the third one explains most of the retention index, while other orthogonal block variables after subspace-projection by it explain only a little. It is worth noting that the orthogonal block variables after subspace-projection by the third block variable (path variables, say $p_1, p_2, ..., p_4$) are essentially the remaining portions after removing the "overlapping part" with the path variables. This indicates that the overlapping between the block variables is very serious. The information for explaining the retention index from different block variables is almost duplicated. From the discussion above, one can see that the duplicated parts of all the seven other block variables with the third block variable for explaining retention of alkanes investigated in this work seem to be the following, that is, (0.9952-0.0560) = 0.9292; (0.9945-0.0560) = 0.9292; 0.0622) = 0.9323; (0.9946-0.0412) = 0.9534; (0.9953-0.0622)0.0413) = 0.9540; (0.9909-0.0647) = 0.9252; (0.9570-0.0315) = 0.9255; (0.9903-0.0380) = 0.9523, respectively. These numbers suggest that the overlapping between the path account variables and the other seven block variables can be roughly estimated by them. They may be further classified into two groups, in which one embraces walk account variables (0.9534), path/walk account variables (0.9540), and quantum chemical descriptors (0.9523) and the other may include χ variables (0.9292), Kappa variables (0.9323), the indices proposed and used by Schultz (0.9252), and the indices proposed by Xu and co-workers (0.9255). However, all these eight block variables are quite similar in providing molecular description for alkanes. How to evaluate reasonably and quantitatively the similarity between the block variables is just conducted in our laboratory.

ACKNOWLEDGMENT

The project is financially supported by the National Nature Foundation Committee of P. R. China (No. 20175036).

REFERENCES AND NOTES

- (1) Wiener, H. Structural determination of paraffin boiling points. *J. Am. Chem. Soc.* **1947**, *69*, 17–20.
- (2) Hosoya, H. Topological index. A newly proposed quantity characterizing topological nature of structural isomers of saturated hydrocarbons. *Bull. Chem. Soc. Jpn.* 1971, 44, 2332–2339.
- (3) Balaban, A. T.; Ivanciuc, O. Historical development of topological indices. *Topological indices and related descriptors in QSAR and QSPR*; Devillers, J., Balaban, A. T., Eds.; Gordon and Breach Science Publishers: The Netherlands, 1999; pp 21–57.
- (4) Motoc, I.; Balaban A. T. Toplogical indices: Intercorrelations, physical meaning, correlational indices ability. Rev. Roum. Chim. 1981, 26, 593-600
- (5) Motoc, I.; Balaban, A. T.; Mekenyan, O.; Bonchev, D. Topological indices: inter-relations and composition. MATCH (Commun. Math. Chem.) 1982, 13, 369–404.
- (6) Basak, S. C.; Niemi, G. J.; Regal, R. R.; Veith, G. D. Topological indices: Their nature relatedness, and applications. *Math Modelling Sci. Technol.* 1987, 8, 300–305.

- (7) Morales, D. A.; Araujo, O. On the search for best correlation between graph theoretical invariants and physicochemical properties. *J. Math. Chem.* 1993, 13, 95–106.
- (8) Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA Version 2.0 Reference Manual; University of Florida: Gainesville, FL, 1994.
- (9) Draper, N. R.; Smith, H. Applied Regression Analysis; John Wiley and Sons: New York, 1981.
- (10) Furnival, G. M.; Wilson, R. W. Regressions by leaps and bounds. Technometrics 1974, 16, 499–511.
- (11) Goldberg, D. E. Genetic Algorithms in Search, Optimization & Machine Learning; Addison-Wesley: New York, 1989.
- (12) Hibbert, D. B. Genetic algorithm in chemistry. Chemom. Intell. Lab. Syst. 1993, 19, 277–93.
- (13) Hasegawa, K.; Funatsu, K. GA strategy for variable selection in QSAR studies: GAPLS and D-optimal designs for predictive QSAR model. J. Mol. Struct. (THEOCHEM) 1998, 425, 255–262.
- (14) Wikel, J. H.; Dow, E. R. The use of neural networks for variable selection in QSAR. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 645–51.
- (15) Sutter, J. M.; Dixon, S. L.; Jurs, P. C. Automated descriptor selection for quantitative-structure—activity relationships using generalized simulated annealing. J. Chem. Inf. Comput. Sci. 1995, 35, 77–84.
- (16) Lucic, B.; Trinajstic, N. A. New Efficient Approach for Variable Selection Based on Multiregression: Prediction of Gas Chromatographic Retention Times and Response Factors. *J. Chem. Inf. Comput.* Sci. 1999, 39, 610–621.
- (17) Taraviras, S. L.; Ivanciuc, O.; Bass, D. C. Identification of Groupings of Graph Theoretical Molecular Descriptors Using a Hybrid Cluster Analysis Approach. J. Chem. Inf. Comput. Sci. 2000, 40, 1128–1146.
- (18) Ivanciuc, O.; Taraviras, S. L.; Cabrol-Bass, D.Quasi-orthogonal Basis Sets of Molecular Graph Descriptors as a Chemical Diversity Measure. J. Chem. Inf. Comput. Sci. 2000, 40, 126-134.
- (19) Randic, M. On characterization of molecular branching. *J. Am. Chem. Soc.* **1975**, *97*, 6609–6615.
- (20) Balaban, A. T. Chemical graphs. XXXIV. Five new topological indexes for the branching of tree-like graphs. *Theor. Chim. Acta* 1979, 53, 355–75
- (21) Randic, M. Resolution of ambiguities in structure—property studies by use of orthogonal descriptors. J. Chem. Inf. Comput. Sci. 1991, 31, 311–320.
- (22) Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and Drug Research; Academic Press: New York, 1976.
- (23) Amic, D.; Davidovic-Amic, D.; Trinajstic, N. Calculation of retention times of anthocyanins with orthogonalized topological indices *J. Chem. Inf. Comput. Sci.* **1995**, *35*, 136–139.
- (24) Lucic, B.; Nikolic, S.; Trinajstic, N.; Juretic, D. The structure—property models can be improved using the orthogonalized descriptors J. Chem. Inf. Comput. Sci. 1995, 35, 532–538.
- (25) Soskic, M.; Plavsic, D.; Trinajstic, N. 2-Difluoromethylthio-4,6-bis-(monoalkylamino) -1,3,5-triazines as inhibitors of Hill reaction: A QSAR study with orthogonal descriptors. J. Chem. Inf. Comput. Sci. 1996, 36, 829–832.
- (26) Xu, L.; Zhang, W. J. Comparison of different methods for variable selection Anal. Chim. Acta 2001, 446, 477–483.
- (27) Kier, L. B.; Hall, L. H. The kappa indices for modeling molecular shape and flexibility. *Topological Indices and Related Descriptors in QSAR and QSPR*; Devillers, J., Balaban, A. T., Eds; Gordon and Breach Science Publishers: The Netherlands, 1999; pp 455–489.
- (28) Mardia, K. V.; Kent, J.; Bibby, J. *Multivariate Analysis*; Academic Press: New York: 1979.
- (29) Du, Y. P.; Liang, Y. Z.; Wu, C. J. Database construction of GC retention index and correction of mistakes in it. Chinese 8th computers and applied chemistry conference, Huangshan, 2001; pp 147–149.
- (30) Randic, M.; Zupan, J. On Interpretation of well-known topological indices *J. Chem. Inf. Comput. Sci.* **2001**, *41*, 550–560.
- (31) Schultz, H. P. Topological organic chemistry. 1. Graph theory and topological indices of alkanes. J. Chem. Inf. Comput. Sci. 1989, 29, 227–228.
- (32) Schultz, H. P.; Schultz, E. B.; Schultz, T. P. Topological organic chemistry. 2. Graph theory, matrix determinants and eigenvalues, and topological indices of alkanes. *J. Chem. Inf. Comput. Sci.* 1990, 30, 27–29.
- (33) Yao, Y. Y.; Xu, L.; Yuan, X. S. A new topological index for research on structure—property relationship of alkanes. *Chinese Acta Chimica Sinica* 1993, 51, 463–469.
- (34) Hu, C. Y.; Xu, L. On highly discriminating molecular topological index. J. Chem. Inf. Comput. Sci. 1996, 36, 82–90.

CI020283+