MATH 512 - Project 3

Kanav Malhotra, Longzhe Yang

Wasif Ahmed, Haoxiang Deng, Jacob Fein-Ashley,

Question 1 Overview

- Let W_t be a standard Wiener process, with drift parameter zero and variance parameter $\sigma^2 = 1$.
- We divide the interval [0, 2] into L subintervals $[t_i, t_{i+1}]$, where $t_i = i\delta t$ and $\delta t = 2/L$.
- Let $W_i = W(t_i)$ and $\delta W_i = W_{i+1} W_i$.
- We verify numerically that:

 - $\sum_{\substack{i=0\\i=0}}^{L-1} |\delta W_i|$ is unbounded as δt goes to zero. $\sum_{\substack{i=0\\i=0}}^{L-1} \delta W_i^2$ converges to 2 in probability as δt goes to zero.

Question 1 Response

Refer to Figure 1

Figure: Stochastic Plots

Notice that as the *L* parameter increases, the $|\delta W_i|$ term is unbounded while δW_i^2 converges to 2 in probability.

Question 2a

Figure: 2a

Question 2b

Figure: 2b

Question 2c

Figure: 2c

Question 2d

Figure: 2d

Question 2e

Figure: 2e

Question 2f

Figure: 2f

Question 5

```
Algorithm for computing the mean exit time function \tau(x) for
x \in [0.5, 3]:
   for i = 1 to 1000 do
        dw \leftarrow \sqrt{dt} \times \text{randn}()
        x \leftarrow x_0
        for j = 1 to n do
             x \leftarrow \text{euler\_maruyama}(x, dt, dw)
             dw \leftarrow \sqrt{dt} \times \text{randn}()
             if x < a or x > b then
                  exit_times[i] \leftarrow j \times dt
                   break
             end if
        end for
   end for
```

Question 5 Continued

Figure: 2e

