Дискретная математика, Коллоквиум 2

Балюк Игорь @lodthe, GitHub

2019-2020

Материалы взяты из учебника Александра Рубцова.

Содержание

1	Опр	еделения
	1.1	Деление целых чисел с остатком
	1.2	Сравнения по модулю. Основные свойства
	1.3	Арифметика остатков (вычетов). Обратимые остатки (вычеты).
	1.4	Малая теорема Ферма
	1.5	Функция Эйлера. Теорема Эйлера.
	1.6	Наибольший общий делитель. Алгоритм Евклида.
	1.7	Расширенный алгоритм Евклида нахождения решения линейного диофантова уравнения.
	1.8	Простые числа, формулировка основной теоремы арифметики
	1.9	Равномощные множества
	1.10	Счётные множества.
	1.11	Множества мощности континуум.
	1.12	Основные определения элементарной теории вероятностей: исходы, события, вероятность
		события.
	1.13	Формулировка формулы включений и исключений для вероятностей
	1.14	Условная вероятность
	1.15	Независимые события. Основные свойства независимых событий
	1.16	Формула полной вероятности.
	1.17	Случайная величина и математическое ожидание. Линейность математического ожидания
	1.18	Формулировка неравенства Маркова.
	1.19	Определение схемы в некотором функциональном базисе. Представление схем графами
	1.20	Полный базис. Примеры полных и неполных базисов.
	1.21	Полином Жегалкина (в стандартном виде)
	1.22	
		росы на знание доказательств
	2.1	Сравнение $ax \equiv 1 \pmod N$ имеет решение тогда и только тогда, когда $\mathrm{HOД}(a,N) = 1$
	2.2	Малая теорема Ферма
	2.3	Теорема Эйлера.
	2.4	Корректность алгоритма Евклида и расширенного алгоритма Евклида
	2.5	Основная теорема арифметики.
	2.6	Китайская теорема об остатках.
	2.7	Мультипликативность функции Эйлера. Формула для функции Эйлера
	2.8	Формула Байеса. Формула полной вероятности
	2.9	Парадокс дней рождения (математическое ожидание числа людей с совпавшими днями
		рождения)
	2.10	Неравенство Маркова
	2.11	Нижняя оценка на максимальное количество ребер в разрезе
	2.12	Любое бесконечное множество содержит счётное подмножество. Любое подмножество счёт-
		ного множества конечно или счётно
	2.13	Конечное или счётное объединение конечных или счётных множеств конечно или счётно

2.14	Счётность декартова произведения счетных множеств. Счётность множества рациональ-	
	ных чисел.	10
2.15	Равномощность отрезков, интервалов, лучей и прямых (явные биекции)	10
2.16	Несчетность множества бесконечных двоичных последовательностей	10
2.17	Теорема Кантора-Бернштейна	10
2.18	Нижняя оценка на число монотонных булевых функций: монотонных булевых функций от	
	$2n$ переменных не меньше $2^{\frac{2^n}{2n+1}}$	10
2.19	Существование и единственность полинома Жегалкина (в стандартном виде) для любой	
	булевой функции.	10
2.20	Разложение в ДНФ и КНФ булевой функции.	10
2.21	Верхняя оценка $O(n2^n)$ схемной сложности булевой функции от n переменных	1.
2.22	Булевы схемы для сложения и умножения п-битовых чисел. Оценка размера	11
2.23	Булева схема для задачи о связности графа. Оценка размера	11
2.24	Задача об угадывании числа. Верхняя и нижняя оценки.	11
2.25	Задача о сортировке нижняя оценка.	11
2.26	Задача о нахождении самой тяжелой монеты. Верхние и нижние оценки	11

1 Определения

Контрольный вопрос на понимание определений включает в себя формулировку одного определения из списка ниже и контрольный вопрос по этому определению. Пример: «Определение полного прообраза. Пусть $f(x) = x^2$ — функция из \mathbb{Z} в \mathbb{Z} . Найдите полный прообраз множества $\{1,2,3,4\}$.

1. Деление целых чисел с остатком.

Говорят, что целое число a делится на целое число b, если a = bk для некоторого целого числа k. В этом случае говорят также «a кратно b», и «b является делителем числа a».

Теперь определим деление остатком. Пусть b — целое положительное число. Деля на b с остатком, мы связываем предметы в пачки по b в каждой, пока это возможно: количество полных пачек называется частным (говорят ещё «неполное частное», чтобы отличать от частного как дроби), и сколько-то предметов останется, их количество и называют остатком.

Формально: разделить целое a на целое положительное b означает найти такое целое q (vacmhoe) и такое r (vacmhoe), что

$$a = b \cdot q + r; \quad 0 \le r < b.$$

2. Сравнения по модулю. Основные свойства.

Если два числа a и b дают одинаковые остатки при делении на положительное число N, то говорят, что они *сравнимы* по модулю N, и пишут $a \equiv b \pmod{N}$.

Эквивалентное определение: a и b сравнимы по модулю N, если разность a-b делится на N.

Рассмотрим основные свойства:

- 1. $a \equiv b \pmod{c} \iff b \equiv a \pmod{c}$
- 2. $a \equiv d \pmod{c} \iff (a_x) \equiv (b-x) \pmod{c}$
- 3. $x \equiv a \pmod{m}, y \equiv b \pmod{m} \implies xy \equiv ab \pmod{m}$
- 4. $a \equiv 0 \pmod{c} \iff c \mid a$
- 5. $a \equiv b \pmod{d}, b \equiv c \pmod{c} \iff a \equiv c \pmod{d}$

Например, можно найти $2^{100} \mod 7$ (остаток от деления 2^{100} на 7): поскольку $2^3=8\equiv 1\pmod 7$, то $2^{99}=(2^3)^{33}\equiv 1^{33}=1\pmod 7$, так что $2^{100}=2^{99}\cdot 2\equiv 1\cdot 2=2\pmod 7$.

3. Арифметика остатков (вычетов). Обратимые остатки (вычеты).

Остаток (вычет) по модулю N называется **обратимым**, если в произведении с каким-то другим остатком он даёт 1. Другими словами, a обратим, если уравнение $a \cdot x \equiv 1 \pmod{N}$ имеет решение.

4. Малая теорема Ферма.

Теорема. Eсли p-npocmoe число, mo

$$a^{p-1} \equiv 1 \pmod{p}$$

при любом а, не делящемся на р.

5. Функция Эйлера. Теорема Эйлера.

Теорема. Пусть N > 1 — произвольное целое число, а $\varphi(N)$ равно количеству остатков среди $0, 1, \ldots, N-1$, взаимно простых с N. Пусть a — один из этих остатков. Тогда

$$a^{\varphi(N)} \equiv 1 \pmod{N}$$
.

Функцию φ называют функцией Эйлера и традиционно обозначают буквой φ . Если N простое, то $\varphi(N) = N - 1$, и теорема Эйлера превращается в малую теорему Ферма.

6. Наибольший общий делитель. Алгоритм Евклида.

Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей. Пример: для чисел 54 и 24 наибольший общий делитель равен 6.

Алгоритм Евклида помогает найти НОД двух целых чисел.

- Геометрическая интерпретация. Пусть даны два отрезка длины *а* и *b*. Вычтем из большего отрезка меньший и заменим больший отрезок полученной разностью. Повторяем эту операцию, пока отрезки не станут равны. Если это произойдёт, то исходные отрезки соизмеримы, и последний полученный отрезок есть их наибольшая общая мера. Если общей меры нет, то процесс бесконечен и отрезки несоизмеримы.
- Алгебраическая интерпретация. Пусть нам даны два целых числа *a* и *b*. Вычтем из большего числа меньшее и заменим большее на полученную разность. Повторяем эту операцию, пока числа не станут равны. Последнее полученное число будет их наибольшим общим делителем. Это можно записать в виде следующей системы:

$$\begin{cases} a_0 = q_1 \cdot a_1 + a_2 \\ a_1 = q_2 \cdot a_2 + a_3 \\ \vdots \\ a_{k-2} = q_{k-1} \cdot a_{k-1} + a_k \\ a_{k-1} = q_k \cdot a_k. \end{cases}$$

Тогда $q_k = \text{HOД}(a_0, a_1)$.

Алгоритм можно ускорить с помощью деления:

- 1. Большее число делим на меньшее.
- 2. Если делится без остатка, то меньшее число и есть НОД (следует выйти из цикла).
- 3. Если есть остаток, то большее число заменяем на остаток от деления.
- 4. Переходим к пункту 1.

7. Расширенный алгоритм Евклида нахождения решения линейного диофантова уравнения.

Если с делится на HOД(a,b), ДУ имеет бесконечно много решений. В противном случае, оно не имеет решений вообще.

Если x_0, y_0 — какое-то частное решение диофантова уравнения, то тогда общее решение выражается следующим образом:

$$\begin{cases} x = x_0 + k \cdot \frac{b}{\text{HOД}(a, b)}, & k \in \mathbb{Z}, \\ y = y_0 - k \cdot \frac{a}{\text{HOД}(a, b)}, & k \in \mathbb{Z}, \end{cases}$$

Расширенный алгоритм Евклида — алгоритм, который находит НОДдвух чисел и коэффициенты, с помощью которых он выражается через эти числа, то есть такие x, y, что ac + by = НОД(a, b). Чтобы получить решение диофантова уравнения, можно домножить x и y на $\frac{c}{\text{НОД}(a, b)}$.

Расширенный алгоритм Евклида представляет собой применение обычного алгоритма Евклида, а потом прохода «обратно», пользуясь следующим свойством: если пара (x_1, y_1) является решением уравнения $b \bmod a \cdot x_1 + a \cdot y_1 = \text{HOД}(a, b)$, то пара (x, y), такая что

$$\begin{cases} x = y_1 - \left\lfloor \frac{b}{a} \right\rfloor \cdot a \\ y = x_1 \end{cases}$$

является решением уравнения ax + by = HOД(a, b).

Тем самым, надо выполнять алгоритм Евклида для чисел (a,b), а потом восстановить все предыдущие (x_k,y_k) зная (x_{k+1},y_{k+1}) .

8. Простые числа, формулировка основной теоремы арифметики.

Целое число p > 1 называется простым, если оно не разлагается в произведение меньших чисел (то есть не имеет положительных делителей, кроме 1 и p).

Теорема. Всякое целое положительное число, большее 1, разлагается на простые множители, причём единственным образом: любые два разложения отличаются только перестановкой сомножителей.

9. Равномощные множества.

Множество A называется равномощным множеству B, если существует биекция множества A в множество B.

10. Счётные множества.

Множество называется счётным, если оно равномощно множеству натуральных чисел N.

11. Множества мощности континуум.

Множество имеет мощность **континуум**, если оно равномощно \mathbb{R} .

12. Основные определения элементарной теории вероятностей: исходы, события, вероятность события.

Вероятностным пространством называется конечное множество U, его элементы называются возможными исходами. Событием называется произвольное подмножество $A \subseteq U$.

На вероятностном пространстве задана функция $Pr:U\to [0;1],$ такая что $\sum_{x\in U} Pr[x]=1.$ Функция Pr называется вероятностным распределением, а число Pr[x] называется вероятностью исхода

 $x \in U.$ Вероятностью события A называется число $Pr[A] = \sum Pr[x].$

13. Формулировка формулы включений и исключений для вероятностей.

В равновозможной модели для произвольных множеств $A_1, \ldots, A_n \subseteq U$ верно

$$Pr[A_1 \cup A_2 \cup \dots \cup A_n] = \sum_{i} Pr[A_i] - \sum_{i < j} Pr[A_i \cap A_j] + \dots = \sum_{\emptyset \neq I \subseteq \{1, 2, \dots, n\}} (-1)^{|I|+1} Pr \left[\bigcap_{i \in I} A_i \right].$$

14. Условная вероятность.

Помимо вероятностей тех или иных событий бывает нужным говорить и о вероятностях одних событий при условии других. Неформально говоря, мы хотим определить вероятность выполнения события Aв том случае, когда событие B выполняется.

В терминах вероятностного пространства определение этого понятия довольно естественное: нужно сузить вероятностное пространство на множество B. Так, для равновозможной модели мы получаем, что вероятность A при условии B есть просто $\frac{|A\cap B|}{|B|}$, то есть число благоприятных исходов поделенное на число всех исходов (после сужения всего вероятностного пространства до B).

В случае произвольного вероятностного пространства нужно учесть веса исходов, то есть нужно сложить вероятности исходов в $A \cap B$ и поделить на сумму вероятностей исходов в B.

Таким образом, мы приходим к формальному определению. **Условной вероятностью** события Aпри условии В называется число

$$Pr[A \mid B] = \frac{Pr[A \cap B]}{\Pr[B]}.$$

15. Независимые события. Основные свойства независимых событий.

События A и B называются независимыми, если

$$Pr[A] = Pr[A \mid B].$$

Из определения условной вероятности мы сразу получаем эквивалентное определение независимостей событий. Событие A не зависит от события B, если

$$Pr[A \cap B] = Pr[A] \cdot Pr[B].$$

16. Формула полной вероятности.

Лемма. Пусть B_1, B_2, \ldots, B_n — разбиение вероятностного пространства, то есть $U = B_1 \cup B_2 \cup B_n$ $\cdots \cup B_n$, где $B_i \cap B_j = \varnothing$ при $i \neq j$. Пусть также $Pr[B_i] > 0$ для всякого i. Тогда для всякого события A

$$Pr[A] = \sum_{i=1}^{n} Pr[A \mid B_i] \cdot Pr[B_i].$$

17. Случайная величина и математическое ожидание. Линейность математического ожидания.

Случайная величина — это числовая функция на вероятностном пространстве, то есть функция вида $\xi: U \to \mathbb{R}$. То есть, по сути, случайная величина — это обычная числовая функция, но теперь на её аргументах задано вероятностное распределение.

Математическим ожиданием случайной величины $\xi:U \to \mathbb{R}$ называется число

$$E[\xi] = \sum_{u \in U} \xi(u) \cdot Pr[u]$$

Лемма. (линейность математического ожидания) Пусть $\xi: U \to \mathbb{R} \ u \ g: U \to \mathbb{R} \ - \ d$ ве случайные величины на одном u том же вероятностном пространстве. Тогда

$$E[f+g] = E[f] + E[g].$$

18. Формулировка неравенства Маркова.

Пемма. Пусть ξ — случайная величина, принимающая только **неотрицательные** значения. Тогда для всякого x>0 верно

$$Pr[\xi \geqslant x] \leqslant \frac{E[\xi]}{x}.$$

То есть, вероятность того, что случайная величина ξ сильно больше своего математического ожидания, не слишком велика (заметим, что лемма становится содержательной, когда $x > E[\xi]$).

19. Определение схемы в некотором функциональном базисе. Представление схем графами.

Полным базисом называется набор связок, если через эти связки выражается любая булева функция

Стандартным базисом назовём набор из операций конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ).

Булевой схемой от переменных x_1, \ldots, x_n мы будем называть последовательность булевых функций g_1, \ldots, g_s , в которой всякая g_i получается из предыдущих функций последовательности и переменных применением одной из логических операций из выбранного базиса для этой схемы.

В булевой схеме задано некое число $m\geqslant 1$ и члены последовательности g_{s-m+1},\dots,g_s называются выходами схемы. Число m называют числом выходов схемы.

Мы говорим, что схема вычисляет булеву функцию $f: \{0,1\}^n \to \{0,1\}^m$, если для всякого $x \in \{0,1\}^n$ верно $f(x) = (g_{s-m+1}(x), \dots, g_s(x))$.

Размером схемы называют число s.

Рассмотрим представление схемы графом:

Рис. 1: Схема функции $x_1 \oplus x_2$

20. Полный базис. Примеры полных и неполных базисов.

Полным базисом называется набор связок, если через эти связки выражается любая булева функция.

Стандартным базисом назовём набор из операций конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ).

Примеры полных базисов:

- 1. Базис $\{\land,\lor,\lnot\}$ полный, так как всякую булеву функцию можно выразить через ДНФ.
- 2. Базис $\{\neg, \land\}$ полный, так как $x_1 \lor x_2 = \neg(\neg x_1 \land \neg x_2)$.

- 3. Базис $\{\neg, \lor\}$ полный, так как $x_1 \land x_2 = \neg(\neg x_1 \lor \neg x_2)$.
- 4. Базис {|} (штрих Шеффера) полный, так как $\neg x = x \mid x$ и $x_1 \land x_2 = \neg(x_1 \mid x_2) = (x_1 \mid x_2) \mid (x_1 \mid x_2)$.
- 5. Базис $\{1, \oplus, \wedge\}$ полный, так как всякую булеву функцию можно выразить многочленом Жегалкина.

Примеры неполных базисов:

- 1. Базис $\{\land,\lor\}$ неполный, так как он монотонный.
- 2. Базис $\{\oplus, \wedge\}$.
- 3. Базис $\{\lor, \to\}$.

21. Полином Жегалкина (в стандартном виде).

Многочленом Жегалкина называется формула вида

$$\bigoplus_{S\subseteq\{1,\dots,n\}}a_S\bigwedge_{i\in S}x_i,\quad a_S\in\{0,1\}.$$

Примеры многочлена Жегалкина:

$$1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus (x_1 \wedge x_2) \oplus (x_1 \wedge x_3) \oplus (x_2 \wedge x_3) \oplus (x_1 \wedge x_2 \wedge x_3);$$
$$x_3 \oplus (x_1 \wedge x_3) \oplus (x_2 \wedge x_3) \oplus (x_1 \wedge x_2 \wedge x_3).$$

Для простоты чтения ∧ можно опускать:

$$1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_1x_2 \oplus x_1x_3 \oplus x_2x_3 \oplus x_1x_2x_3;$$

22. Схемная сложность функции (размер схемы).

Схемная сложность булева отображения $f: \{0,1\}^n \to \{0,1\}^m$ (в частности, булевой функции) — это наименьший размер (количество присваиваний) схемы, вычисляющей это выражение.

2 Вопросы на знание доказательств

1. Сравнение $ax \equiv 1 \pmod{N}$ имеет решение тогда и только тогда, когда HOД(a, N) = 1.

Теорема. Сравнение $ax \equiv 1 \pmod{N}$ имеет решение тогда и только тогда, когда $HO\mathcal{A}(a,N) = 1$.

Доказательство. Докажем теорему в обе стороны.

• \Leftarrow : Пусть НОД(a,N)=1. Следовательно, $\exists k_1,k_2:k_1a+k_2N=1$ (следует из алгоритма Евклида). Вычислим остаток при делении на N обеих частей:

$$\begin{cases} k_1 a + k_2 N & \equiv k_1 a \pmod{N} \\ 1 & \equiv 1 \pmod{N} \end{cases}$$

$$\downarrow \downarrow$$

$$k_1 a \equiv 1 \pmod{N}.$$

Следовательно, k_1 и есть искомый x, при котором $ax \equiv 1 \pmod{N}$.

• \Rightarrow : Пусть $\exists x: ax \equiv 1 \pmod{N}$. Тогда $\exists t: ax - tN = 1$. Требуется доказать, что в этом случае HOД(a,N) = 1. Докажем от противного.

Пусть НОД(a,N)=d>1. Тогда $\exists k_1,k_2:a=k_1d$ и $N=k_2d$. Подставим эти произведения в выражение

$$k_1 dx - k_2 dt = 1 \implies d(k_1 x - k_2 t) = 1.$$

Это возможно только при d=1. Следовательно, HOД(a,N)=1.

2. Малая теорема Ферма.

7

Теорема. Если p-npocmoe число, то

$$a^{p-1} \equiv 1 \pmod{p}$$

при любом а, не делящемся на р.

Доказательство.

Сначала докажем нужную для доказательства лемму.

Лемма. Умножение остатков 1, 2, ..., p-1 на а даст те же остатки, но в другом порядке.

Доказательство. Докажем от противного. Пусть нашлись каких-то два числа ax и ay, дающих одинаковый остаток при делении на p (x, y — остатки). Тогда $a \cdot (x - y)$ делится на p, что невозможно (так как a не делится на p). Тогда нет совпадающих остатков, так как произведений и остатков p-1.

Рассмотрим произведение a, 2a, 3a, ..., (p-1)a. Тогда

$$a \cdot 2a \cdot \dots \cdot (p-1)a \equiv a^{p-1} \cdot (p-1)! \pmod{p}$$
.

С другой стороны, по лемме это эквивалентно (p-1)! по модулю p (произведение остатков в другом порядке). Тогда $a^{p-1} \equiv 1 \pmod{p}$, что и требовалось доказать.

3. Теорема Эйлера.

Теорема. Пусть N > 1 — произвольное целое число, а $\varphi(N)$ равно количеству остатков среди $0, 1, \ldots, N-1$, взаимно простых с N. Пусть a — один из этих остатков. Тогда

$$a^{\varphi(N)} \equiv 1 \pmod{N}$$
.

Доказательство. Заметим, что достаточно рассматривать остаток от деления a на n.

Рассмотрим граф, где каждой вершине соответствует какой-то остаток, взаимно простой с n, а ребром из x в y будем называть преобразование $x\mapsto y$. Тогда в графе будет $\varphi(n)$ вершин. Так как a взаимно просто с n, то

- Для каждой вершины графа x получаем, что ax взаимно просто с n (так как x взаимно просто с n по построению). Из этого следует, что всегда возможно провести ребро $x \mapsto ax$, если его нет.
- Уравнение $ax \equiv b \pmod n$ имеет единственное решение (по модулю n) для любого b. Из этого следует, что из каждой вершины графа выходит ровно одно ребро и в каждую вершину входит ровно одно ребро.

Тогда граф обязан разбиться на циклы, так как иначе процесс умножения можно продолжать сколь угодно долго и условие на количество ребер нарушится.

Пусть k — степень такая, что $a^k \equiv 1 \pmod{n}$. Заметим, что она существует, так как для единицы существует цикл:

$$1 \mapsto a \mapsto a^2 \mapsto \cdots \mapsto a^k$$
.

Докажем, что все циклы имеют одинаковую длину. Очевидно, что длину, большую k цикл иметь не может (так как $b \cdot a^k \equiv b \pmod{n}$ и цикл замкнётся). Пусть для какого-то b есть цикл длины l < k.

Тогда $b \cdot a^l \equiv b \pmod n$ и (так как b взаимно просто с n, то у него есть обратный элемент) $a^l \equiv 1 \pmod n$.

Приходим к противоречию. Тогда $\varphi(n)=km$ для какого-то m и

$$a^{\varphi(n)} \equiv a^{km} \equiv 1^m = 1 \pmod{n},$$

что и требовалось доказать.

4. Корректность алгоритма Евклида и расширенного алгоритма Евклида.

5. Основная теорема арифметики.

Теорема. Всякое целое положительное число, большее 1, разлагается на простые множители, причём единственным образом: любые два разложения отличаются только перестановкой сомножителей.

Доказательство.

- Существование. Докажем существование разложения числа n на простые множители, предполагая, что оно уже доказано для любого другого числа, меньшего n. Если n простое, то существование доказано. Если n составное, то оно может быть представлено в виде произведения двух чисел a и b, каждое из которых больше 1, но меньше n. Числа a и b либо являются простыми, либо могут быть разложены в произведение простых (уже доказано ранее). Подставив их разложение в $n = a \cdot b$, получим разложение исходного числа n на простые.
- \bullet Единственность. Пусть некоторое число N имеет два разложения:

$$N = p_1 \cdot p_2 \cdot \dots \cdot p_n = q_1 \cdot q_2 \cdot \dots \cdot q_m.$$

Сократим общие сомножители, если они есть. Если сократится не всё, то получим два разложения одного числа, не имеющих общих сомножителей (для удобства оставим n и m):

$$p_1 \cdot p_2 \cdot \cdots \cdot p_n = q_1 \cdot q_2 \cdot \cdots \cdot q_m.$$

Докажем следующее утверждение: если p — простое число, то произведение чисел, каждое из которых не делится на p, не может делиться на p. Действительно, если $a \not\equiv 0 \pmod p$ и $b \not\equiv 0 \pmod p$, то и $a \cdot b \not\equiv 0 \pmod p$.

Правая часть равенства выше — это произведение чисел, каждое из которых не делится на p_1 , следовательно, все произведение не делится на p_1 . Приходим к противоречию, когда $q_1 \cdots q_m = n$, но $n \not\equiv 0 \pmod{p_1}$. Следовательно, разложение числа N на простые множители единственно.

6. Китайская теорема об остатках.

Теорема. Пусть числа m_1, m_2, \dots, m_k попарно взаимно просты. Рассмотрим следующую систему сравнений:

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \dots \\ x \equiv a_k \pmod{m_k} \end{cases}$$

Определим целые числа M, M_i, b_I следующим образом:

$$M = \prod_{i=1}^{k} a_i; \quad M_i = \frac{M}{m_i}; \quad M_i \cdot b_i \equiv a_i \pmod{m_i}, 1 \leqslant i \leqslant k.$$

После чего определим x_0 следующим образом:

$$x_o = \sum_{i=1}^k M_i \cdot b_i.$$

Тогда множество целых чисел, удовлетворяющих системе сравнений, составляет класс вычетов $x \equiv x_0 \pmod{M}$.

Доказательно существует и x_0 также существует.

Покажем, что x_0 соответствует системе сравнений. Так как $m_i \mid M_j$ при $j \neq i$, то $x_0 \equiv M_i \cdot b_i \equiv a_i \pmod{m_i}$ для $1 \leqslant i \leqslant k$. Тогда систему можно переписать в следующем виде:

$$\begin{cases} x \equiv x_0 \pmod{m_1} \\ x \equiv x_0 \pmod{m_2} \\ \dots \\ x \equiv x_0 \pmod{m_k} \end{cases}$$

Тогда $m_i \mid (x-x_0)$ при $1 \leqslant i \leqslant k$. Так как все m_i попарно взаимно просты, то эти сравнения будут верны только для тех x, что $M \mid (x-x_0)$, что равносильно $x \equiv x_0 \pmod{M}$.

- 7. Мультипликативность функции Эйлера. Формула для функции Эйлера.
- 8. Формула Байеса. Формула полной вероятности.
- 9. Парадокс дней рождения (математическое ожидание числа людей с совпавшими днями рождения)

Рассмотрим n случайных людей и посмотрим на количество совпадений дней рождения у них, то есть на количество пар людей, имеющих день рождения в один день. Каким в среднем будет это число?

Сформулируем вопрос точно. Вероятностное пространство: всюду определённая функция из n-элементного множества людей $\{x_1,\ldots,x_n\}$ в 365-элементное множество дней в году. Все исходы равновозможные.

Обозначим случайную величину, равную количеству пар людей с совпадающими днями рождения, через ξ . Нам требуется посчитать математическое ожидание случайной величины ξ . Но при этом случайная величина довольно сложная, и подсчитывать математическое ожидание непосредственно из определения трудно.

Идея состоит в следующем: давайте разобьём сложную случайную величину ξ в сумму нескольких простых случайных величин. Тогда мы сможем подсчитать отдельно математические ожидания всех простых величин, а затем, пользуясь линейностью математического ожидания, просто сложить результаты.

Обозначим через I_{ij} случайную величину, равную 1, если у людей x_i и x_j дни рождения совпадают, и равную 0 в противном случае. Тогда можно заметить, что

$$\xi = \sum_{i < j} I_{ij}.$$

Подсчитаем математическое ожидание случайной величины I_{ij} . Нетрудно увидеть, что вероятность того, что у двух случайных людей дни рождения совпадают, равна $\frac{1}{365}$, так что с вероятностью $\frac{1}{365}$ случайная величина равна 1, и с вероятностью $1-\frac{1}{365}$ равна 0.

Получаем, что $\mathrm{E}[I_{ij}] = \frac{1}{365}$ (для всякой пары i, j). Для математического ожидания ξ из линейности получаем

$$E[\xi] = E\left[\sum_{i < j} I_{ij}\right] = \sum_{i < j} 1 \cdot \frac{1}{365} = \frac{n \cdot (n-1)}{2 \cdot 365}.$$

Например, если число людей n больше 27, то $E[\xi] > 1$, то есть естественно ожидать, что будет не меньше одного совпадения дней рождения.

- 10. Неравенство Маркова.
- 11. Нижняя оценка на максимальное количество ребер в разрезе.
- 12. Любое бесконечное множество содержит счётное подмножество. Любое подмножество счётного множества конечно или счётно.
- 13. Конечное или счётное объединение конечных или счётных множеств конечно или счётно
- 14. Счётность декартова произведения счетных множеств. Счётность множества рациональных чисел.
- 15. Равномощность отрезков, интервалов, лучей и прямых (явные биекции).
- 16. Несчетность множества бесконечных двоичных последовательностей.
- 17. Теорема Кантора-Бернштейна.
- 18. Нижняя оценка на число монотонных булевых функций: монотонных булевых функций от 2n переменных не меньше $2^{\frac{2^n}{2n+1}}$
- 19. Существование и единственность полинома Жегалкина (в стандартном виде) для любой булевой функции.
- 20. Разложение в ДНФ и КНФ булевой функции.

- **21.** Верхняя оценка $O(n2^n)$ схемной сложности булевой функции от n переменных.
- 22. Булевы схемы для сложения и умножения п-битовых чисел. Оценка размера.
- 23. Булева схема для задачи о связности графа. Оценка размера.
- 24. Задача об угадывании числа. Верхняя и нижняя оценки.
- 25. Задача о сортировке нижняя оценка.
- 26. Задача о нахождении самой тяжелой монеты. Верхние и нижние оценки.