Spring Semester 2020

Numerical Methods I

Syllabus

Summary

Phone:

This course covers calculus-based numerical methods, in particular root finding, interpolation, approximation, quadrature (numerical integration), and a first introduction to the numerical solution of differential equations.

Contact Information

Instructor: Prof. Tobias Preusser

Email: <u>t.preusser@jacobs-university.de</u>

200-3241 (@ Jacobs University) 218-59005 (@ Fraunhofer MEVIS)

Office hours: By appointment in Research I, 132

TA/grader: Ahmed Ali

Email: ah.ali@jacobs-university.de

Time and Place

Lectures: Mo 11:15 – 12:30 Lecture Hall Research II

We 11:15 – 12:30 Lecture Hall Research II

Textbook

- D. Kincaid and W. Cheney: Numerical Analysis: Mathematics of Scientific Computing, Any Brooks/Cole Publishing Company, 1991.
- W. Boehm and H. Prautzsch: Numerical Methods, AK Peters, 1993 (further reading)

Grading

The final grade will be computed as a percentage average with the following weights:

Homework:	40%
Final Exam:	60%

To compute the final grade the individual percentages for homework and final exams will be weighted accordingly.

Homework

In <u>each class</u> marked in the second column of the schedule below, an <u>assignment sheet</u> is given. The following rules apply:

- Solutions are due at the **beginning**, i.e. 11:15 sharp, of the class meeting indicated in the syllabus below.
- There will be **5** assignment sheets in total comprising **10** exercise problems.
- An assignment sheet will comprise further exercises for practice but without grading.
- Late homework submission leads to a deduction of 5 points per day

- (assuming 30 points per homework).
- With an **official excuse of up to 4 days**, the deadline for the respective homework is **extended** by the same amount of days.
- With an **official excuse of more than 4 days**, the respective homework will **not count**.

Class Schedule

Class #	Assign- ment #	Date	Topic
1		Mo, 03. Feb. 2020	Introduction and some examples
2	1	We, 05. Feb. 2020	Number representations
3		Mo, 10. Feb. 2020	Systems of linear equations, Gaussian Elimination
4	2 (due 1)	We, 12. Feb. 2020	Pivoting; LU decomposition;
5		Mo, 17. Feb. 2020	Cholesky decomposition; Non-linear equations; Bisection method,
6	3 (due 2)	We, 19. Feb. 2020	Order of convergence; Newton's method;
7		Mo, 24. Feb. 2020	Secant method; Systems of nonlinear equations
8	4 (due 3)	We, 26. Feb. 2020	Polynomial interpolation; Lagrange interpolation
9		Mo, 02. Mar. 2020	Newton interpolation; Error analysis; Piecewise interpolation;
10	5	We, 04. Mar. 2020	Spline interpolation;
11	(due 4)	Mo, 09. Mar. 2020	Least squares approximation
12	6 (due 5)	We, 11. Mar. 2020	Difference schemes; Richardson extrapolation
13		Mo, 16. Mar. 2020	Quadrature rules;
14	(due 6)	We, 18. Mar. 2020	Wrap-up and preparation for final exam
15		We, 15. April 2020	Final Exam (in East Wing + Conference Hall, IRC)