DesHall Ticket No.:																	SR	IT	R	19	
SRINIVASA	ŀ	RA	M	AN	UJ	Al	N]	[N	ST	Tľ	'UT	\mathbf{E}	OF	' T	E (CH	N(ΟI	O	G	Y

(AUTONOMOUS) II B. Tech II Sem – Semester End Examinations – Supplementary – Jun 2022

COMPUTER ORGANIZATION [194GA05404]

(Computer Science & Engineering)

Time: 3 hours Max. Marks: 70

PART-A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - What are the different types of computers? a)
 - Differentiate Multiprocessor and Multicomputer. b)
 - Classify phases of an Instruction Cycle. c)
 - Define interrupt. d)
 - What is meant by RTL? e)
 - What is meant by control memory? f)
 - Classify types of ROM. g)
 - What is address space and memory space? h)
 - Classify interconnection structures. i)
 - Define pipelining. i)

PART-B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT-1

- Explain various number systems and number representations used in system. 2 [5M] a)
 - Dividend A=01110 Divisor B=10001. Explain flowchart for divide operation. [5M] b)

(OR)

- 3 Convert the (256)₁₀ into following codes [5M] a)
 - i) Binary Coded Decimal (BCD) ii) Signed magnitude
 - iii) Signed 2's complement iv) Hexa Decimal Code
 - Explain addition and subtraction algorithms for data represented in signed magnitude and b) [5M] signed 2's complement.

UNIT-2

- Describe the purpose of the following Instructions with one example for each 4 [5M]a) i) BUN
 - ii) BSA and iii) ADD
 - Distinguish the characteristics of CISC and RISC. b) [5M]

[5M]

- 5 Write register transfers statements for the fetch phase. [5M] a)
 - What are the three types of data manipulation instructions? b)

UNIT-3

Show the block diagram of hardware that implements the following register transfer [5M] 6 a) statements:

 $T2=R2 \leftarrow R1$, $R1 \leftarrow R2$

Explain the following with neat sketches i) 4 bit Binary adder ii) Binary Adder - [5M] Subtractor.

(OR)

7	a)	Design Bus System for four registers and briefly explain register transfer.	[5M]
	b)	Explain the following with respect to logic micro operations. i) Selective Set ii) Selective Complement iii) Selective Clear iv) Mask	[5M]
		UNIT-4	
8	a)	Explain the role of memory hierarchy in Computer Organization	[5M]
	b)	Explain the following mapping techniques used for cache mapping i) Associative	[5M]
		mapping cache ii) Direct mapping cache iii) Block-set-associative mapping cache.	
0	,	(OR)	.
9	a)	What is the problem with programmed I/O? Explain the alternate for it. Also using block diagram explain DMA data transfer.	[5M]
	b)	Illustrate interrupt driven IO in Computer Organization.	[5M]
		UNIT-5	
10	a)	Identify the need for Arithmetic Pipeline and draw the pipeline for addition and subtraction.	[5M]
	b)	Identify the sequential steps involved in instruction pipe line and draw four-segment CPU pipeline.	[5M]
		(OR)	
11	a)	Explain Vector processing with example.	[5M]
	b)	Draw a space-time diagram for a six segment pipeline showing the time it takes to process eight tasks.	[5M]
