Dimensionality reduction techniques

Sanzhar Askaruly (San)

Ulsan National Institute of Science and Technology Ph.D. Candidate in Biomedical Engineering

CodeSeoul MLA December 10, 2022

Overview

- Motivation
- 2 Background mathematics
 - Population vs sample
 - Mean, standard deviation, variance
 - Covariance, covariance matrix
 - Eigenvectors, eigenvalues
- 3 Dimensionality reduction techniques
 - PCA (Principal component analysis)
 - SNE (Stochastic neighbor embedding)
- 4 Visualizations
 - IRIS dataset
 - MNIST dataset
- Summary
 - Conclusion
 - Practicum

Motivation

• Relationships between data

Population vs sample

Population vs sample

Population mean

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} \tag{1}$$

N is number of items in the population

Sample mean

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{2}$$

n is number of items in the sample

Let's take a look on two samples:

Here, $\bar{A}=\bar{B}=35.$ Unfortunately, mean doesn't tell us a lot except for a middle point.

For our two sets, $A=[10\ 20\ 40\ 70]$ and $B=[30\ 33\ 37\ 40]$, we would be more interested in the *spread* of the data. So, how do we calculate it?

Standard deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{(n-1)}}$$
 (3)

In plain English, it is the "average distance from the mean of the data set to a point."

Set 1:
$$A=[10\,20\,40\,70]$$
, and $\bar{A}=35$

Let's calculate standard deviation:

\overline{A}	$(A - \bar{A})$	$(A-\bar{A})^2$
10	-25	625
20	-15	225
40	5	25
70	35	1,225
Total		2,100
Divided by (n-1)		700
Square root		26.4575

Set 2:
$$B = [30 \ 33 \ 37 \ 40]$$
, and $\bar{B} = 35$

Let's calculate standard deviation:

\overline{B}	$(B-\bar{B})$	$(B-\bar{B})^2$
30	-5	25
33	-2	4
37	2	4
40	5	25
Total		58
Divided by (n-1)		19.333
Square root		4.397

Variance

Similar to standard deviation So, how do we calculate it?

Variance

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{(n-1)}$$
 (4)

Almost identical to the standard deviation (there is no square root in the formula).

Covariance

Previous measures are 1-dimensional. How do we check relationship between the dimensions?

Covariance

Variance

$$var(X) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})}{(n-1)}$$
 (5)

Covariance

$$covar(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$
 (6)

How much dimensions vary from the mean with respect to each other.

Covariance between one dimension and itself gives variance.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ から(で)

Covariance

Covariance

Exercise: Find covariance between 2-dimensional dataset

Item number:	1	2	3	4	5
X	10	39	19	23	28
у	43	13	32	21	20

Ans: -120.55

Covariance matrix

When we have more than two dimensions, covariances between individual dimensions could be described in covariance matrix

Covariance matrix

$$C^{n \times n} = (c_{i,j} : c_{i,j} = cov(Dim_i, Dim_j))$$
(7)

where $C^{m \times n}$ is a matrix with n rows and m columns. Example for three dimensions:

$$c = \begin{pmatrix} cov(x, x) & cov(x, y) & cov(x, z) \\ cov(y, x) & cov(y, y) & cov(y, z) \\ cov(z, x) & cov(z, y) & cov(z, z) \end{pmatrix}$$
(8)

Since cov(a,b) = cov(b,a), the matrix is symmetrical about the main diagonal.

Covariance matrix

Exercise: Find covariance matrix for the 3-dimensional dataset

1	2	3
1	-1	4
2	1	3
1	3	-1
	1 1 2 1	1 2 1 -1 2 1 1 3

Ans:
$$\begin{pmatrix} 4.222 & 1.667 & -3.333 \\ 1.667 & 0.667 & -1.333 \\ -3.333 & -1.333 & 2.667 \end{pmatrix}$$

Eigenvectors

• Eigenvectors (red) do not change direction when a linear transformation (e.g. scaling) is applied to them. Other vectors (yellow) do.

Eigenvectors

An example of non-eigenvector:

$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 11 \\ 5 \end{pmatrix} \tag{9}$$

An example of eigenvector:

$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4 \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} \tag{10}$$

Eigenvalues

The amount by which the original vector was scaled after multiplication by the square matrix

$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = \boxed{4} \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} \tag{11}$$

PCA

19/33

26 / 33

Adagrad

Experiment

Experiment

Experiment

Conclusion

Practicum

Thank you for your attention!

- Workshop contents: https://github.com/CodeSeoul/machine-learning/tree/master/ 221210-pca
- Follow-up QA? http://discord.com/users/tuttelikz

References

- Sebastian Ruder. "An overview of gradient descent optimization algorithms". In: arXiv preprint arXiv:1609.04747 (2016).
- Mykola Novik. torch-optimizer collection of optimization algorithms for PyTorch. Version 1.0.1. Jan. 2020.