Lab 1: KNN and cancer classification

(Statistical Learning, BST 263)

Practice problems (Individual activity – 10 minutes)

(Problems 1 and 2 are to be handed in on paper during class.)

Suppose f(x) is a real-valued function on \mathbb{R}^n , i.e., $f(x) \in \mathbb{R}$ for $x \in \mathbb{R}^n$. The gradient of f, denoted $\nabla f(x)$, is the column vector in \mathbb{R}^n with kth entry

$$(\nabla f(x))_k = \frac{\partial}{\partial x_k} f(x).$$

1. If $A \in \mathbb{R}^{m \times n}$ and $f(x) = x^{\mathsf{T}} A^{\mathsf{T}} A x$, then what is $\nabla f(x)$?

Hint:
$$f(x) = \sum_{i} (\sum_{j} A_{ij} x_{j})^{2}$$
.

The Hessian of f, denoted $\nabla^2 f(x)$, is the $n \times n$ matrix with (k, ℓ) th entry

$$(\nabla^2 f(x))_{k\ell} = \frac{\partial^2}{\partial x_k \partial x_\ell} f(x).$$

2. If $A \in \mathbb{R}^{m \times n}$ and $f(x) = x^{\mathsf{T}} A^{\mathsf{T}} A x$, then what is $\nabla^2 f(x)$?

KNN and cancer classification (Team activity)

Form teams of 2 to 4 people. Download lab-1.r from Files/Labs on Canvas, and follow the instructions in the file. Submit your completed R code file to the Lab 1 assignment on Canvas. Only one person per team should submit the file.