ĐẠI HỌC QUỐC GIA THÀNH PHỐ HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

ĐÒ ÁN MÔN HỌC:

NHẬN DẠNG THỊ GIÁC VÀ ỨNG DỤNG

Đề tài:

XÂY DỰNG HỆ THỐNG TÌM KIẾM ẢNH DÙNG PHƯƠNG PHÁP BAG OF VISUAL WORDS

GVHD: TS. Lê Đình Duy

TS. Nguyễn Tấn Trần Minh Khang

HỌC VIÊN: Nguyễn Anh Tú – CH1601020

Lớp: Cao học khóa 11

TP. HÒ CHÍ MINH - NĂM 2017

MỤC LỤC

CHƯƠNG 1: MỤC TIÊU, PHẠM VI VÀ QUY TRÌNH THỰC HIỆN	1
1.1. Mục tiêu và phạm vi đề tài	
1.2. Quy trình thực hiện	1
1.2.1. Chuẩn bị môi trường	
1.2.2. Xây dựng hệ thống truy vấn	1
1.2.3. Xây dựng hệ thống nhận và trả kết quả	1
CHƯƠNG 2: CHI TIẾT CÁC BƯỚC XÂY DỰNG HỆ THỐNG	2
2.1. Sơ đồ thực hiện tổng quan	
2.2. Sơ đồ chi tiết các bước của hệ thống truy vấn IR	2
2.2.1. Training dataset	2
2.2.2. Truy vấn ảnh	4
2.3. Xây dựng hệ thống	5
2.3.1. Xây dựng trên Matlab	5
2.3.2. Xây dựng giao diện trên Matlab	8
CHƯƠNG 3: CÀI ĐẶT VÀ KẾT QUẢ THỰC NGHIỆM	15
3.1. Hướng dẫn cài đặt	15
3.2. Kết quả thực nghiệm	15
CHƯƠNG 4: KẾT QUẢ ĐẠT ĐƯỢC VÀ HƯỚNG PHÁT TRIỀN	21
4.1. Kết quả đạt được	21
4.2. Hướng phát triển	21
TÀI LIÊU THAM KHẢO	22

LỜI NÓI ĐẦU

Trong lĩnh vực nhận dạng thị giác và ứng dụng thì tìm kiếm thông tin bằng hình ảnh là một trong những bài toán được ứng dụng nhiều của khoa học máy tính. Việc tra cứu bằng cách đưa vào một tấm ảnh, sau đó hệ thống sẽ phân tích những đặc trưng và truy tìm trong cơ sở dữ liệu hình ảnh để đưa ra danh sách các hình ảnh có những điểm tương đồng là một bài toán mà đã có nhiều giải pháp thực hiện, sau đây em xin trình bày một hệ thống truy tìm hình ảnh mà em đã tìm hiểu và thực hiện.

Em xin chân thành cảm ơn TS. Lê Đình Duy, TS. Nguyễn Tấn Trần Minh Khang, những tiết giảng về lý thuyết cũng như thực hành quý báu của quý Thầy đã cung cấp cho em những kiến thức nền tảng về các bước trong lĩnh vực nhận dạng thông tin thị giác.

Dù có nhiều cố gắng nhưng do những điều kiện khách quan cũng như năng lực xây dựng đồ án này còn chưa được hoàn hảo, mong được quý Thầy góp ý thêm cho em có đi hướng tốt hơn.

Một lần nữa em xin chân thành cảm ơn!

Thành phố Hồ Chí Minh, ngày 31 tháng 12 năm 2017

Học viên thực hiện

Nguyễn Anh Tú

CH1601020 - KHMT K11

CHƯƠNG 1: MỤC TIÊU, PHẠM VI VÀ QUY TRÌNH THỰC HIỆN

1.1. Mục tiêu và phạm vi đề tài

- Xây dựng hệ thống truy vấn tìm các ảnh có nội dung tương tự trong dataset Oxford bao gồm 5063 ảnh (Oxford Building (5K)).
- Input đầu vào là một ảnh truy vấn (ảnh có nội dung thuộc tập Groundtruth Queries của dataset Oxford), output là danh sách ảnh được sắp xếp từ thấp đến cao theo mức độ tương đồng với ảnh truy vấn.

1.2. Quy trình thực hiện

1.2.1. Chuẩn bị môi trường

- Cài đặt Matlab 2017a.
- Cài đặt Visual Studio 2008.
- Download kho dữ liệu hình ảnh từ địa chỉ
 https://drive.google.com/a/gm.uit.edu.vn/file/d/1SE9WTKXznrNy1zxtHpx0GWG
 YsGI0gXAV/view?usp=sharing

(nguồn ảnh: http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/)

1.2.2. Xây dựng hệ thống truy vấn

- Thực hiện việc training cho dataset gồm 5063 ảnh: rút trích đặc trưng của dataset này thành tập tin feature.bin, ngoài ra ta cũng xây dựng Visual Words (dictionary), tính WordID, Inverted file (file chỉ mục ngược) và lưu thành các tập tin để sử dụng trong bước truy vấn.
- Thực hiện truy vấn ảnh: input ảnh query đầu vào, rút trích đặc trưng, tính Word-ID và xây dựng ranked list và trả ra kết quả các ảnh tương tự cho ảnh truy vấn.

1.2.3. Xây dựng hệ thống nhận và trả kết quả

- Xây dựng thư mục ảnh làm ảnh query (ảnh tra cứu).
- Xây dựng giao diện tra cứu hình ảnh.
- Tra cứu bằng một tấm ảnh.

CHƯƠNG 2: CHI TIẾT CÁC BƯỚC XÂY DỰNG HỆ THỐNG

2.1. Sơ đồ thực hiện tổng quan

Mô tả: Input vào hệ thống website V, hệ thống V sẽ gửi thông tin và hệ thống IR, IR sẽ rút trích đặc trưng sau đó so khóp với các đặc trưng đã được lưu trữ ở bước training. Hệ thống truy vấn IR sẽ trả kết quả các ảnh có độ tương đồng được sắp xếp từ lớn đến nhỏ và hiển thị lên giao diện V.

2.2. Sơ đồ chi tiết các bước của hệ thống truy vấn IR

2.2.1. Training dataset

Bước 1: Rút trích đặc trưng

- Sử dụng Hessian-Affine region detector để rút trích các keypoint.
- Tính đặc trưng SIFT trên các keypoint.
- Số chiều đặc trưng: 128.

Bước 2: Xây dựng Visual Words (dictionary)

- Sử dụng thuật toán gom cụm Approximate K-Mean (AKM).
- Số lượng cluster: 1.000.000.
- Số lượng k-d tree: 8.
- Số lần lặp: 5.

Bước 3: Tính Word-ID cho từng ảnh trong dataset

- Ở bước này ta sẽ chuyển các khái niệm của xử lý ảnh sang bài toán xử lý văn bản hay ngôn ngữ tự nhiên:
 - + visual words → dictionary
 - + feature →word
 - + index của feature →word ID
 - + ånh → documents
- Với mỗi word trong từng document, ta tìm Word-ID của word dựa trên dictionary đã xây dựng ở bước 2.

Bước 4: Xây dựng Inverted file

- Theo thứ tự bình thường, với mỗi document, ta sẽ biết được trong document này có các word nào.
- Inverted file: với mỗi word, ta sẽ lưu danh sách những document có chứa nó, trọng số 'tf-idf': các visual word xuất hiện ở nhiều lớp của document thì càng ít có vai trò để phân loại một document nên được đánh trọng số thấp hơn. Các visual word xuất hiện ở càng ít ở các lớp của document thì có trọng số cao hơn.

2.2.2. Truy vấn ảnh

Bước 5: phát hiện và rút trích đặc trưng SIFT sử dụng Hessian-Affine region detector (tương tự bước 1).

Bước 6: tính Word-ID cho từng feature trong ảnh query (tương tự bước 3).

Bước 7: Tính ranked list

- Sử dụng inverted file để so sánh query document với tất cả các document trong trong inverted file →list score distance.
- Sắp xếp list score theo tự giảm dần.

2.3. Xây dựng hệ thống

2.3.1. Xây dựng trên Matlab

- Training dataset:

Bước 1: Rút trích đặc trưng và lưu thành file feature.bin

```
%% Load dac trung SIFT
        if ~exist('oxford\feat\5k\feature.bin', 'file')
        features = zeros(128, 2000000);
        nfeat = 0;
        files = dir(fullfile(datasetDir, '*.jpg'));
        nfiles = length(files);
        features per image = zeros(1,nfiles);
        for i=1:nfiles
            fprintf('Extracting features %d/%d\n', i, nfiles);
            imgPath = strcat(datasetDir, files(i).name);
            I = im2single(rgb2gray(imread(imgPath)));
            I = imresize(I, 0.6);
            [frame, sift] = vl covdet(I, 'method', 'Hessian',
'estimateAffineShape', true);
            if nfeat+size(sift,2) > size(features,2)
                features = [features zeros(128,1000000)];
            features(:,nfeat+1:nfeat+size(sift,2)) = sift;
            nfeat = nfeat+size(sift,2);
            features per image(i) = size(sift, 2);
        end
        features = features(:,1:nfeat);
        fid = fopen('oxford\feat\5k\feature.bin', 'w');
        fwrite(fid, features, 'float');
        fclose(fid);
        save('oxford\feat\5k\feat info.mat', 'features per image',
'files');
        end
        fprintf('Loading SIFT features:\n');
        file = dir('oxford\feat\5k\feature.bin');
        fid = fopen('oxford\feat\5k\feature.bin', 'r');
        fclose(fid);
        load('oxford\feat\5k\feat info.mat');
```

Bước 2: Sử dụng thuật toán gom cụm Approximate K-Mean (AKM) để xây dựng dictionary và lưu thành file dict.mat

Bước 3: Tính Word-ID cho từng ảnh trong dataset và lưu thành file words.mat

```
dict = ccvBowGetWordsInit(dict words, 'flat', 'akmeans', [],
dict params);
    if exist('oxford\feat\5k\words.mat', 'file')
        load('oxford\feat\5k\words.mat');
        words = cell(1, num images);
        for i=1:num images
            if i==1
                bIndex = 1;
            else
                bIndex = sum(features per image(1:i-1))+1;
            eIndex = bIndex + features per image(i)-1;
            words{i} = ccvBowGetWords(dict words, features(:,
bIndex:eIndex), [], dict);
        end;
        save('oxford\feat\5k\words.mat', 'words');
    end
```

Bước 4: Xây dựng Inverted file

```
% Tao inverted file for the images
fprintf('Creating and searching an inverted file\n');
inv_file = ccvInvFileInsert([], words, num_words);
ccvInvFileCompStats(inv file, if weight, if norm);
```

- Truy vấn ảnh:

Bước 5: truyền ảnh truy vấn (ảnh truy vấn là 1 trong 55 file trong folder **queryImg** được xây dựng dựa trên thông tin tập groundtruth của The Oxford Buildings Dataset), phát hiện và rút trích đặc trưng SIFT sử dụng Hessian-Affine region detector, tham số k được truyền vào là thứ tự của ảnh query trong tập groundtruth.

```
%% Query images
k = str2num(strtok(filename,'.jpg'));
```

```
q files = dir(fullfile('oxford\groundtruth', '*query.txt'));
   ntop = 0;
   % load anh query
   fid = fopen(strcat('oxford\groundtruth\', q files(k).name), 'r');
   str = fgetl(fid);
   [image name, remain] = strtok(str, ' ');
   fclose(fid);
   numbers = str2num(remain);
   x1 = numbers(1);
   y1 = numbers(2);
   x2 = numbers(3);
   y2 = numbers(4);
   file = strcat('oxford\images\', image name(6:end), '.jpg');
   I = im2single(rgb2gray(imread(file)));
   % Tinh dac trung SIFT cho anh query
    [frame, sift] = vl_covdet(I, 'method', 'Hessian',
'estimateAffineShape', true);
   sift = sift(:, (frame(1,:) \le x2) & (frame(1,:) >= x1) & (frame(2,:)
\neq y2) & (frame(2,:) >= y1));
```

Bước 6: tính Word-ID cho feature trong ảnh query

```
% Tinh Word-ID
q_words = cell(1,1);
    q_words{1} = ccvBowGetWords(dict_words, double(sift), [], dict);
    [ids dists] = ccvInvFileSearch(inv_file, q_words(1), if_weight,
if_norm, if_dist, ntop);
```

Bước 7: Tính ranked list (các file *.txt trong thư mục result sẽ là độ chính xác của các ảnh truy vấn) và trả về danh sách (listResultImg) các ảnh có độ tương tự từ cao đến thấp với ảnh truy vấn.

2.3.2. Xây dựng giao diện trên Matlab

- Xử lý nút mở ảnh truy vấn:

```
% Xu ly nut load anh
function btnImgBrowser_Callback(hObject, eventdata, handles)
% hObject handle to btnImgBrowser (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)
global filename;
[filename pathname] = uigetfile({'*.jpg';'*.bmp';'*.png'},'File
Selector');
image = strcat(pathname, filename);
axes(handles.queryImg);
imshow(image);
```

- Xử lý nút tìm kiếm ảnh:

```
% Xu ly nut tim kiem
function btnSearch_Callback(hObject, eventdata, handles)
        %% Khai bao bien
    global files;
    global ids;
    global img;
    addpath('AKM');
    run('vlfeat\toolbox\vl_setup.m');
    datasetDir = 'oxford\images\';
    num_words = 10000000;
    num iterations = 5;
```

```
num trees = 8;
   dim = 128;
   if weight = 'tfidf'; if norm = 'll';
   if dist = '11';
   global filename;
   %% Load dac trung SIFT
       if ~exist('oxford\feat\5k\feature.bin', 'file')
       features = zeros(128, 2000000);
       nfeat = 0;
       files = dir(fullfile(datasetDir, '*.jpg'));
       nfiles = length(files);
       features per image = zeros(1,nfiles);
       for i=1:nfiles
           fprintf('Extracting features %d/%d\n', i, nfiles);
           imgPath = strcat(datasetDir, files(i).name);
           I = im2single(rgb2gray(imread(imgPath)));
           I = imresize(I, 0.6);
            [frame, sift] = vl covdet(I, 'method', 'Hessian',
'estimateAffineShape', true);
           if nfeat+size(sift,2) > size(features,2)
                features = [features zeros(128,1000000)];
           end
           features(:,nfeat+1:nfeat+size(sift,2)) = sift;
           nfeat = nfeat+size(sift,2);
           features per image(i) = size(sift, 2);
       end
       features = features(:,1:nfeat);
       fid = fopen('oxford\feat\5k\feature.bin', 'w');
       fwrite(fid, features, 'float');
       fclose(fid);
       save('oxford\feat\5k\feat info.mat', 'features per image',
'files');
       end
       fprintf('Loading SIFT features:\n');
       file = dir('oxford\feat\5k\feature.bin');
       fid = fopen('oxford\feat\5k\feature.bin', 'r');
       fclose(fid);
       load('oxford\feat\5k\feat info.mat');
   %% Chay AKM de xay dung tu dien
   num images = length(files);
   dict params = {num iterations, 'kdt', num trees};
   % build the dictionary
   if exist('oxford\feat\5k\dict.mat', 'file')
       load('oxford\feat\5k\dict.mat');
   else
       randIndex = randperm(size(features,2));
       dict words = ccvBowGetDict(features(:,randIndex(1:100000)),
[], [], num words, 'flat', 'akmeans', ...
            [], dict params);
       save('oxford\feat\5k\dict.mat', 'dict words');
   end
   %% Tinh toan sparse frequency vector
```

```
dict = ccvBowGetWordsInit(dict words, 'flat', 'akmeans', [],
dict params);
    if exist('oxford\feat\5k\words.mat', 'file')
        load('oxford\feat\5k\words.mat');
    else
        words = cell(1, num images);
        for i=1:num images
            if i==1
                bIndex = 1;
            else
                bIndex = sum(features per image(1:i-1))+1;
            end
            eIndex = bIndex + features per image(i)-1;
            words{i} = ccvBowGetWords(dict words, features(:,
bIndex:eIndex), [], dict);
        end;
        save('oxford\feat\5k\words.mat', 'words');
    end
    %% Tao inverted file for the images
    inv file = ccvInvFileInsert([], words, num words);
    ccvInvFileCompStats(inv file, if weight, if norm);
    %% Query images
    k = str2num(strtok(filename,'.jpg'));
    q files = dir(fullfile('oxford\groundtruth', '*query.txt'));
    ntop = 0;
    % load anh query
    fid = fopen(strcat('oxford\groundtruth\', q files(k).name), 'r');
    str = fgetl(fid);
    [image name, remain] = strtok(str, ' ');
    fclose(fid);
    numbers = str2num(remain);
    x1 = numbers(1);
    y1 = numbers(2);
    x2 = numbers(3);
    v2 = numbers(4);
    file = strcat('oxford\images\', image name(6:end), '.jpg');
    I = im2single(rgb2gray(imread(file)));
    % Tinh dac trung SIFT cho anh query
    [frame, sift] = vl covdet(I, 'method', 'Hessian',
'estimateAffineShape', true);
    sift = sift(:, (frame(1,:) \le x2) & (frame(1,:) >= x1) & (frame(2,:)
\neq y2) & (frame(2,:) >= y1));
    % Tinh Word-ID
    q \text{ words} = \text{cell}(1,1);
    q words{1} = ccvBowGetWords(dict words, double(sift), [], dict);
    [ids dists] = ccvInvFileSearch(inv file, q words(1), if weight,
if norm, if dist, ntop);
    fid = fopen('oxford\groundtruth\rank list.txt', 'w');
    imq = 1;
              axes(handles.axes1);
```

```
imshow(imread(fullfile('oxford\images\',
files(ids{1}(img)).name)));
set(handles.txtImg1, 'String', num2str(files(ids{1}(img)).name));
              axes(handles.axes2);
              imshow(imread(fullfile('oxford\images\',
files(ids{1}(img+1)).name)));
              set(handles.txtImg2,'String',files(ids{1}(img+1)).name);
              axes(handles.axes3);
              imshow(imread(fullfile('oxford\images\',
files(ids{1}(img+2)).name)));
              set(handles.txtImg3, 'String', files(ids{1}(img+2)).name);
              axes(handles.axes7);
              imshow(imread(fullfile('oxford\images\',
files(ids{1}(img+3)).name)));
              set(handles.txtImq4,'String',files(ids{1}(img+3)).name);
              axes(handles.axes8);
              imshow(imread(fullfile('oxford\images\',
files(ids{1}(img+4)).name)));
              set(handles.txtImg5, 'String', files(ids{1}(img+4)).name);
              if(size(ids{1},2) <=5)
                 set(handles.btnNext, 'Enable', 'off');
              end
                 set(handles.btnBack, 'Enable', 'off');
    for i=1:size(ids{1},2)
        fprintf(fid, '%s\n', files(ids{1}(i)).name(1:end-4));
    end
    fclose(fid);
    script = ['oxford\groundtruth\Test.exe oxford\groundtruth\', ...
        q files(k).name(1:end-10), ...
        ' oxford\groundtruth\rank list.txt',...
        ' >oxford\result\', image name(6:end), '_result.txt'];
    system(script);
    r files = dir(fullfile('oxford\result\', '*.txt'));
    acc = [];
    for i=1:length(r files)
        file = ['oxford\result\' r files(i).name];
        fid = fopen(file, 'r');
        acc = [acc fscanf(fid, '%f')];
        fclose(fid);
    end
    set(handles.txtAcc,'String',num2str(mean(acc)*100,'%g%%'));%Hien
thi do chinh xac
% clear inv file
ccvInvFileClean(inv file);
% Xu ly nut lui
function btnBack Callback(hObject, eventdata, handles)
% hObject handle to btnBack (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

```
global files;
   global ids;
   global img;
set(handles.btnNext, 'Enable', 'on');
imq=imq-5;
axes(handles.axes1);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img)).name)));
set(handles.txtImg1, 'String', files(ids{1}(img)).name);
axes(handles.axes2);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img+1)).name)));
set(handles.txtImg2, 'String', files(ids{1}(img+1)).name);
axes(handles.axes3);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img+2)).name)));
set(handles.txtImg3,'String',files(ids{1}(img+2)).name);
axes(handles.axes7);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img+3)).name)));
set (handles.txtImq4, 'String', files (ids{1} (img+3)).name);
axes(handles.axes8);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img+4)).name)));
set(handles.txtImg5, 'String', files(ids{1}(img+4)).name);
if(img==1)
    set(handles.btnBack, 'Enable', 'off');
end
      - Xử lý nút Next (mở tiếp 5 ảnh kết quả)
function btnNext Callback(hObject, eventdata, handles)
% hObject handle to btnNext (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
            structure with handles and user data (see GUIDATA)
% handles
   global files;
   global ids;
   global img;
set(handles.btnBack, 'Enable', 'on');
img=img+5;
axes(handles.axes1);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img)).name)));
set(handles.txtImg1, 'String', files(ids{1}(img)).name);
if (img+1<size(ids{1},2))</pre>
    axes(handles.axes2);
    imshow(imread(fullfile('oxford\images\',
files(ids{1}(img+1)).name)));
```

```
set(handles.txtImg2, 'String', files(ids{1}(img+1)).name);
else
    cla(handles.axes2);
    set(handles.btnNext, 'Enable', 'off');
end
if (img+2<size(ids{1},2))</pre>
    axes(handles.axes3);
    imshow(imread(fullfile('oxford\images\',
files (ids\{1\} (img+2)).name)));
    set(handles.txtImg3,'String',files(ids{1}(img+2)).name);
else
    cla(handles.axes3);
    set(handles.btnNext, 'Enable', 'off');
end
if (img+3<size(ids{1},2))</pre>
    axes(handles.axes7);
    imshow(imread(fullfile('oxford\images\',
files(ids{1}(imq+3)).name)));
    set(handles.txtImg4, 'String', files(ids{1}(img+3)).name);
else
    cla(handles.axes7);
    set(handles.btnNext, 'Enable', 'off');
end
if (img+4<size(ids{1},2))</pre>
    axes(handles.axes8);
    imshow(imread(fullfile('oxford\images\',
files(ids{1}(img+4)).name)));
    set(handles.txtImg5, 'String', files(ids{1}(img+5)).name);
else
    cla(handles.axes8);
    set(handles.btnNext, 'Enable', 'off');
end
         Xử lý nút Back (lùi lai 5 ảnh kết quả)
% Xu ly nut lui
function btnBack Callback(hObject, eventdata, handles)
            handle to btnBack (see GCBO)
% hObject
% eventdata reserved - to be defined in a future version of MATLAB
% handles
             structure with handles and user data (see GUIDATA)
   global files;
   global ids;
   global img;
set(handles.btnNext, 'Enable', 'on');
imq=imq-5;
axes(handles.axes1);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img)).name)));
```

```
set (handles.txtImg1, 'String', files (ids{1} (img)).name);
axes(handles.axes2);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img+1)).name)));
set(handles.txtImg2,'String',files(ids{1}(img+1)).name);
axes(handles.axes3);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img+2)).name)));
set(handles.txtImg3,'String',files(ids{1}(img+2)).name);
axes(handles.axes7);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img+3)).name)));
set(handles.txtImg4,'String',files(ids{1}(img+3)).name);
axes(handles.axes8);
imshow(imread(fullfile('oxford\images\', files(ids{1}(img+4)).name)));
set(handles.txtImg5,'String',files(ids{1}(img+4)).name);
if (img==1)
    set(handles.btnBack, 'Enable', 'off');
end
```

CHƯƠNG 3: CÀI ĐẶT VÀ KẾT QUẢ THỰC NGHIỆM

3.1. Hướng dẫn cài đặt

❖ Tåi project theo đường dẫn https://github.com/pleasecall113/VRA.NguyenAnhTu/tree/master/VRA.Final.NguyenAnhTu/ImageRetrieval

Truy cập đường dẫn

https://drive.google.com/drive/u/1/folders/17ZTTyshUIrBTnZwZ73CPzqXtNDkQfLjS và tải, cài đặt các file theo hướng dẫn:

- Copy file feature.bin vào ...\ImageRetrieval\oxford\feat\5k (nếu không tải có thể chạy code để build nhưng mất thời gian khá lâu).
- Giải nén file images.rar vào ...\ImageRetrieval\oxford\images.

Demo

https://youtu.be/Ziw5u6D56js

3.2. Kết quả thực nghiệm

- Độ chính xác 55 ảnh truy vấn

STT	Ảnh truy vấn	Độ chính xác (%)
	44 4 00004	13.2353
1	all_souls_000013	
2	all apple 000026	24.1878
2	all_souls_000026	70.2202
3	all_souls_000051	70.2383
		65.5927
4	ashmolean_000000	
		35.8484
5	ashmolean_000007	
	1 1 000070	13.4377
6	ashmolean_000058	20.4402
7	ashmolean_000269	38.4492
		41.355
8	ashmolean_000305	
	1 11 1 000071	55.1061
9	balliol_000051	0.05040
10	balliol_000167	9.25049
	<u> </u>	27.5947
11	balliol_000187	

		52.5821
12	balliol_000194	32.3021
13	bodleian_000107	6.48962
14	bodleian 000108	45.3897
15	bodleian_000132	75.1373
16	bodleian 000163	30.9107
17	bodleian_000407	1.95648
18	christ_church_000179	65.0525
19	christ church 000999	42.1939
20	christ church 001020	57.6323
21	cornmarket_000019	58.6491
22	cornmarket 000047	67.7209
23	cornmarket_000105	34.1662
24	cornmarket 000131	41.7364
25	hertford_000015	40.3121
26	hertford_000027	47.7073
27	hertford_000063	60.6072
28	keble_000028	29.9738
29	keble_000055	41.6912
30	keble_000214	83.6021
31	keble_000227	73.1399
32	keble_000245	83.5473
33	magdalen_000058	7.83035
34	magdalen_000078	2.88389

	Trung bình	40.19316
55	radcliffe_camera_000523	72.5166
54	radcliffe_camera_000519	53.7545
53	radcliffe_camera_000095	
52	pitt_rivers_000153	43.8671
51	pitt_rivers_000119	24.1262
50	pitt_rivers_000087	69.5235
49	pitt_rivers_000058	54.0919
48	pitt_rivers_000033	67.0156
47	oxford_003410	17.3579
	_	28.7112
46	oxford 003335	8.57126
45	oxford_002985	29.1903
44	oxford_002904	44.6879
43	oxford_002734	39.434
42	oxford_002562	8.37262
41	oxford_002416	
40	oxford_001753	53.4233
39	oxford_001752	46.2445
38	oxford_001115	51.1139
37	oxford_000545	2.04692
	_	30.599
36	oxford 000317	11.4865
35	magdalen_000560	9.28085

- 10 ảnh truy vấn có độ chính xác cao nhất:

STT	Tên ảnh	Độ chính xác (%)
1	keble_000214	83.6021
2	keble_000245	83.5473
3	bodleian_000132	75.1373
4	keble_000227	73.1399
5	radcliffe_camera_000523	72.5166
6	all_souls_000051	70.2383
7	pitt_rivers_000119	69.5235
8	cornmarket_000047	67.7209
9	pitt_rivers_000058	67.0156
10	ashmolean_000000	65.5927

- 10 ảnh truy vấn có độ chính xác thấp nhất:

STT	Tên ảnh	Độ chính xác (%)
1	oxford_000317	11.4865
2	magdalen_000560	9.28085
3	balliol_000167	9.25049
4	oxford_003335	8.57126
5	oxford_002562	8.37262
6	magdalen_000058	7.83035
7	bodleian_000107	6.48962
8	magdalen_000078	2.88389
9	oxford_001115	2.04692
10	bodleian_000407	1.95648

- Một số hình ảnh giao diện:

Chọn ảnh từ thư mục queryImg

Load ảnh lên

Kết quả truy vấn ảnh

CHƯƠNG 4: KẾT QUẢ ĐẠT ĐƯỢC VÀ HƯỚNG PHÁT TRIỂN

4.1. Kết quả đạt được

- Xây dựng, phân tích được hệ thống truy vấn hình ảnh dựa trên tập dataset Oxford Building 5k.
- Trả về kết quả các ảnh có độ tương tự từ cao đến thấp của một ảnh truy vấn.
- Xây dựng giao hiển thị hình ảnh.
- Tính độ chính xác của ảnh truy vấn.

4.2. Hướng phát triển

- Tìm kiếm ảnh bằng cách chọn một vùng trên ảnh truy vấn.
- Sử dụng đặc trưng rootSIFT để tăng độ chính xác so với đặc trưng SIFT.
- Cần cập nhật hình ảnh vào để hệ thống IR có thể học được.
- Cải tiến các thuật toán để thực hiện nhanh hơn.
- Xây dựng hệ thống Web để hiển thị.
- Đánh giá kết quả với các câu query được cung cấp trong bộ dữ liệu Oxford Building, so sánh với kết quả của các phương pháp khác đã công bố.

TÀI LIỆU THAM KHẢO

Tiếng việt

[1] Bài giảng môn Nhận dạng thị giác và ứng dụng, TS. Lê Đình Duy, TS. Nguyễn Tấn Trần Minh Khang.

Tiếng Anh

[2] http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

Tài liệu Website

- [3] https://github.com/nvtiep/Instance-Search
- [4] http://www.vlfeat.org/benchmarks/overview/retrieval.html
- [5] http://viet.wordnet.vn/wnms