Dynamic Programming - Matrix Chain Parenthesization

COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Problem: Matrix-Multiplication

1 Input: Matrices A, B with A.columns = B.rows

② Output: Matrix product $A \times B$

Problem: Matrix-Multiplication

1 Input: Matrices A, B with A.columns = B.rows

2 Output: Matrix product $A \times B$

Example:

Problem: MATRIX-MULTIPLICATION

1 Input: Matrices A, B with A.columns = B.rows

2 Output: Matrix product $A \times B$

Example:

Problem: MATRIX-MULTIPLICATION

1 Input: Matrices A, B with A.columns = B.rows

2 Output: Matrix product $A \times B$

Example:

$$p\begin{pmatrix} 2 & 3 \\ 1 & 0 \\ 2 & 6 \\ 0 & 9 \end{pmatrix} \times \begin{pmatrix} r \\ 0 & 1 & 2 \\ 2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 2 & 4 \\ 0 & 1 & 2 \\ 12 & 2 & 4 \\ 18 & 0 & 0 \end{pmatrix} p$$

Notation: $p \times q$ matrix: p rows and q columns

Problem: MATRIX-MULTIPLICATION

1 Input: Matrices A, B with A.columns = B.rows

2 Output: Matrix product $A \times B$

Example:

$$p\begin{pmatrix} 2 & 3 \\ 1 & 0 \\ 2 & 6 \\ 0 & 9 \end{pmatrix} \times \begin{pmatrix} r \\ 0 & 1 & 2 \\ 2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 2 & 4 \\ 0 & 1 & 2 \\ 12 & 2 & 4 \\ 18 & 0 & 0 \end{pmatrix} p$$

Notation: $p \times q$ matrix: p rows and q columns

• $p \times q$ matrix times $q \times r$ matrix gives a $p \times r$ matrix

Problem: MATRIX-MULTIPLICATION

1 Input: Matrices A, B with A.columns = B.rows

2 Output: Matrix product $A \times B$

Example:

$$p\begin{pmatrix} 2 & 3 \\ 1 & 0 \\ 2 & 6 \\ 0 & 9 \end{pmatrix} \times \begin{pmatrix} r \\ 0 & 1 & 2 \\ 2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 2 & 4 \\ 0 & 1 & 2 \\ 12 & 2 & 4 \\ 18 & 0 & 0 \end{pmatrix} p$$

Notation: $p \times q$ matrix: p rows and q columns

- $p \times q$ matrix times $q \times r$ matrix gives a $p \times r$ matrix
- $(A \times B)_{i,j} = \text{row } i \text{ of } A \text{ times column } j \text{ of } B$

Algorithm: $(A \times B)_{i,j} = \text{row } i \text{ of } A \text{ times column } j \text{ of } B$

```
Require: Matrices A, B with A.columns = B.rows

Let C be a new A.rows \times B.columns matrix

for i \leftarrow 1 \dots A.rows do

for j \leftarrow 1 \dots B.columns do

C_{ij} \leftarrow 0

for k \leftarrow 1 \dots A.columns do

C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj}

return C
```

Algorithm MATRIX-MULTIPLY (A, B)

Algorithm: $(A \times B)_{i,j} = \text{row } i \text{ of } A \text{ times column } j \text{ of } B$

```
Require: Matrices A, B with A.columns = B.rows

Let C be a new A.rows \times B.columns matrix

for i \leftarrow 1 \dots A.rows do

for j \leftarrow 1 \dots B.columns do

C_{ij} \leftarrow 0

for k \leftarrow 1 \dots A.columns do

C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj}

return C
```

Algorithm MATRIX-MULTIPLY (A, B)

Runtime:

Algorithm: $(A \times B)_{i,j} = \text{row } i \text{ of } A \text{ times column } j \text{ of } B$

```
Require: Matrices A, B with A.columns = B.rows

Let C be a new A.rows \times B.columns matrix

for i \leftarrow 1 \dots A.rows do

for j \leftarrow 1 \dots B.columns do

C_{ij} \leftarrow 0

for k \leftarrow 1 \dots A.columns do

C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj}

return C
```

Algorithm MATRIX-MULTIPLY (A, B)

Runtime:

• Three nested loops: $O(A.rows \cdot B.columns \cdot A.columns)$

Algorithm: $(A \times B)_{i,j} = \text{row } i \text{ of } A \text{ times column } j \text{ of } B$

```
Require: Matrices A, B with A.columns = B.rows

Let C be a new A.rows \times B.columns matrix

for i \leftarrow 1 \dots A.rows do

for j \leftarrow 1 \dots B.columns do

C_{ij} \leftarrow 0

for k \leftarrow 1 \dots A.columns do

C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj}

return C
```

Algorithm MATRIX-MULTIPLY (A, B)

Runtime:

- Three nested loops: $O(A.rows \cdot B.columns \cdot A.columns)$
- Number of Multiplications: A.rows · B.columns · A.columns

Algorithm: $(A \times B)_{i,j} = \text{row } i \text{ of } A \text{ times column } j \text{ of } B$

```
Require: Matrices A, B with A.columns = B.rows

Let C be a new A.rows \times B.columns matrix

for i \leftarrow 1 \dots A.rows do

for j \leftarrow 1 \dots B.columns do

C_{ij} \leftarrow 0

for k \leftarrow 1 \dots A.columns do

C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj}

return C
```

Algorithm MATRIX-MULTIPLY (A, B)

Runtime:

- Three nested loops: $O(A.rows \cdot B.columns \cdot A.columns)$
- Number of Multiplications: A.rows · B.columns · A.columns
- Multiplying two $n \times n$ matrices: runtime $O(n^3)$

History: Multiplying two $n \times n$ matrices

• before 1969: $O(n^3)$

- before 1969: $O(n^3)$
- 1969: Strassen $O(n^{2.8074})$ (divide-and-conquer)

- before 1969: $O(n^3)$
- 1969: Strassen $O(n^{2.8074})$ (divide-and-conquer)
- 1990: Coppersmith-Winograd $O(n^{2.3755})$

- before 1969: $O(n^3)$
- 1969: Strassen $O(n^{2.8074})$ (divide-and-conquer)
- 1990: Coppersmith-Winograd $O(n^{2.3755})$
- 2010: Stothers $O(n^{2.374})$

- before 1969: $O(n^3)$
- 1969: Strassen $O(n^{2.8074})$ (divide-and-conquer)
- 1990: Coppersmith-Winograd $O(n^{2.3755})$
- 2010: Stothers $O(n^{2.374})$
- 2011: Virginia Williams $O(n^{2.3728642})$

- before 1969: $O(n^3)$
- 1969: Strassen $O(n^{2.8074})$ (divide-and-conquer)
- 1990: Coppersmith-Winograd $O(n^{2.3755})$
- 2010: Stothers $O(n^{2.374})$
- 2011: Virginia Williams $O(n^{2.3728642})$
- 2014: Le Gall $O(n^{2.3728639})$

History: Multiplying two $n \times n$ matrices

- before 1969: $O(n^3)$
- 1969: Strassen $O(n^{2.8074})$ (divide-and-conquer)
- 1990: Coppersmith-Winograd $O(n^{2.3755})$
- 2010: Stothers $O(n^{2.374})$
- 2011: Virginia Williams $O(n^{2.3728642})$
- 2014: Le Gall $O(n^{2.3728639})$

Important Problem:

History: Multiplying two $n \times n$ matrices

- before 1969: $O(n^3)$
- 1969: Strassen $O(n^{2.8074})$ (divide-and-conquer)
- 1990: Coppersmith-Winograd $O(n^{2.3755})$
- 2010: Stothers $O(n^{2.374})$
- 2011: Virginia Williams $O(n^{2.3728642})$
- 2014: Le Gall $O(n^{2.3728639})$

Important Problem:

Many algorithms rely on fast matrix multiplication

History: Multiplying two $n \times n$ matrices

- before 1969: $O(n^3)$
- 1969: Strassen $O(n^{2.8074})$ (divide-and-conquer)
- 1990: Coppersmith-Winograd $O(n^{2.3755})$
- 2010: Stothers $O(n^{2.374})$
- 2011: Virginia Williams $O(n^{2.3728642})$
- 2014: Le Gall $O(n^{2.3728639})$

Important Problem:

- Many algorithms rely on fast matrix multiplication
- Better bound for matrix multiplication improves many algorithms

Problem: Matrix-Chain-Multiplication

Problem: Matrix-Chain-Multiplication

1 Input: A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$

Problem: Matrix-Chain-Multiplication

1 Input: A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$

② Output: The product $A_1 \times A_2 \times A_3 \times \cdots \times A_n$

Problem: Matrix-Chain-Multiplication

1 Input: A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$

② Output: The product $A_1 \times A_2 \times A_3 \times \cdots \times A_n$

Discussion:

Problem: Matrix-Chain-Multiplication

- **1 Input:** A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$
- **② Output:** The product $A_1 \times A_2 \times A_3 \times \cdots \times A_n$

Discussion:

• $A_i.columns = A_{i+1}.rows$ for every $1 \le i < n$

Problem: Matrix-Chain-Multiplication

- **1 Input:** A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$
- **2 Output:** The product $A_1 \times A_2 \times A_3 \times \cdots \times A_n$

Discussion:

- $A_i.columns = A_{i+1}.rows$ for every $1 \le i < n$
- Assume A_i has dimension $p_{i-1} \times p_i$, for vector $p[0 \dots n]$

Problem: Matrix-Chain-Multiplication

- **1 Input:** A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$
- **2 Output:** The product $A_1 \times A_2 \times A_3 \times \cdots \times A_n$

Discussion:

- $A_i.columns = A_{i+1}.rows$ for every $1 \le i < n$
- Assume A_i has dimension $p_{i-1} \times p_i$, for vector $p[0 \dots n]$
- Matrix product is associative:

$$(A_1 \times A_2) \times A_3 = A_1 \times (A_2 \times A_3)$$

Problem: Matrix-Chain-Multiplication

- **1 Input:** A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$
- **Output:** The product $A_1 \times A_2 \times A_3 \times \cdots \times A_n$

Discussion:

- $A_i.columns = A_{i+1}.rows$ for every $1 \le i < n$
- Assume A_i has dimension $p_{i-1} \times p_i$, for vector $p[0 \dots n]$
- Matrix product is associative:

$$(A_1 \times A_2) \times A_3 = A_1 \times (A_2 \times A_3)$$

Exploit Associativity:

Problem: Matrix-Chain-Multiplication

- **1 Input:** A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$
- **Output:** The product $A_1 \times A_2 \times A_3 \times \cdots \times A_n$

Discussion:

- $A_i.columns = A_{i+1}.rows$ for every $1 \le i < n$
- Assume A_i has dimension $p_{i-1} \times p_i$, for vector $p[0 \dots n]$
- Matrix product is associative:

$$(A_1 \times A_2) \times A_3 = A_1 \times (A_2 \times A_3)$$

Exploit Associativity: Parenthesize $A_1 \times A_2 \times A_3 \times ... A_n$ so as to minimize the number of scalar multiplications (and thus the runtime)

Example:

Example: Three matrices A_1, A_2, A_3 with dimensions

$$A_1: 10 \times 100$$
 $A_2: 100 \times 5$ $A_3: 5 \times 50$

$$(p_0 = 10, p_1 = 100, p_2 = 5, p_3 = 50)$$

Example: Three matrices A_1, A_2, A_3 with dimensions

$$A_1: 10 \times 100 \quad A_2: 100 \times 5 \quad A_3: 5 \times 50$$

$$(p_0 = 10, p_1 = 100, p_2 = 5, p_3 = 50)$$

Computation of $(A_1 \times A_2) \times A_3$:

Example: Three matrices A_1, A_2, A_3 with dimensions

$$A_1: 10 \times 100 \quad A_2: 100 \times 5 \quad A_3: 5 \times 50$$

$$(p_0 = 10, p_1 = 100, p_2 = 5, p_3 = 50)$$

Computation of $(A_1 \times A_2) \times A_3$:

• $A_1 \times A_2 = A_{12}$ requires $10 \cdot 100 \cdot 5 = 5000$ multiplications

Example: Three matrices A_1, A_2, A_3 with dimensions

$$A_1: 10 \times 100 \quad A_2: 100 \times 5 \quad A_3: 5 \times 50$$

$$(p_0 = 10, p_1 = 100, p_2 = 5, p_3 = 50)$$

Computation of $(A_1 \times A_2) \times A_3$:

- $A_1 \times A_2 = A_{12}$ requires $10 \cdot 100 \cdot 5 = 5000$ multiplications
- $A_{12} \times A_3$ requires $10 \cdot 5 \cdot 50 = 2500$ multiplications

Example: Three matrices A_1 , A_2 , A_3 with dimensions

$$A_1: 10 \times 100$$
 $A_2: 100 \times 5$ $A_3: 5 \times 50$

$$(p_0 = 10, p_1 = 100, p_2 = 5, p_3 = 50)$$

Computation of $(A_1 \times A_2) \times A_3$:

- $A_1 \times A_2 = A_{12}$ requires $10 \cdot 100 \cdot 5 = 5000$ multiplications
- $A_{12} \times A_3$ requires $10 \cdot 5 \cdot 50 = 2500$ multiplications
- Total: 7500 multiplications

Example: Three matrices A_1, A_2, A_3 with dimensions

$$A_1: 10 \times 100 \quad A_2: 100 \times 5 \quad A_3: 5 \times 50$$

$$(p_0 = 10, p_1 = 100, p_2 = 5, p_3 = 50)$$

Computation of $(A_1 \times A_2) \times A_3$:

- $A_1 \times A_2 = A_{12}$ requires $10 \cdot 100 \cdot 5 = 5000$ multiplications
- $A_{12} \times A_3$ requires $10 \cdot 5 \cdot 50 = 2500$ multiplications
- Total: 7500 multiplications

Computation of $A_1 \times (A_2 \times A_3)$:

Example: Three matrices A_1 , A_2 , A_3 with dimensions

$$A_1: 10 \times 100 \quad A_2: 100 \times 5 \quad A_3: 5 \times 50$$

$$(p_0 = 10, p_1 = 100, p_2 = 5, p_3 = 50)$$

Computation of $(A_1 \times A_2) \times A_3$:

- $A_1 \times A_2 = A_{12}$ requires $10 \cdot 100 \cdot 5 = 5000$ multiplications
- $A_{12} \times A_3$ requires $10 \cdot 5 \cdot 50 = 2500$ multiplications
- Total: 7500 multiplications

Computation of $A_1 \times (A_2 \times A_3)$:

• $A_2 \times A_3 = A_{23}$ requires $100 \cdot 5 \cdot 50 = 25000$ multiplications

Example: Three matrices A_1, A_2, A_3 with dimensions

$$A_1: 10 \times 100$$
 $A_2: 100 \times 5$ $A_3: 5 \times 50$

$$(p_0 = 10, p_1 = 100, p_2 = 5, p_3 = 50)$$

Computation of $(A_1 \times A_2) \times A_3$:

- $A_1 \times A_2 = A_{12}$ requires $10 \cdot 100 \cdot 5 = 5000$ multiplications
- $A_{12} \times A_3$ requires $10 \cdot 5 \cdot 50 = 2500$ multiplications
- Total: 7500 multiplications

Computation of $A_1 \times (A_2 \times A_3)$:

- $A_2 \times A_3 = A_{23}$ requires $100 \cdot 5 \cdot 50 = 25000$ multiplications
- $A_1 \times A_{23}$ requires $10 \cdot 100 \cdot 50 = 50000$ multiplications

Example: Three matrices A_1 , A_2 , A_3 with dimensions

$$A_1: 10 \times 100$$
 $A_2: 100 \times 5$ $A_3: 5 \times 50$

$$(p_0 = 10, p_1 = 100, p_2 = 5, p_3 = 50)$$

Computation of $(A_1 \times A_2) \times A_3$:

- $A_1 \times A_2 = A_{12}$ requires $10 \cdot 100 \cdot 5 = 5000$ multiplications
- $A_{12} \times A_3$ requires $10 \cdot 5 \cdot 50 = 2500$ multiplications
- Total: 7500 multiplications

Computation of $A_1 \times (A_2 \times A_3)$:

- $A_2 \times A_3 = A_{23}$ requires $100 \cdot 5 \cdot 50 = 25000$ multiplications
- $A_1 \times A_{23}$ requires $10 \cdot 100 \cdot 50 = 50000$ multiplications
- Total: 75000 multiplications

Problem: Matrix-Chain-Parenthesization

Problem: Matrix-Chain-Parenthesization

1 Input: A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$

Problem: Matrix-Chain-Parenthesization

- **1 Input:** A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$
- **Quantification** Output: A parenthesization of $A_1 \times A_2 \times A_3 \times \cdots \times A_n$ that minimizes the number of scalar multiplications

Problem: Matrix-Chain-Parenthesization

- **1 Input:** A sequence (chain) of *n* matrices $A_1, A_2, A_3, \ldots, A_n$
- **Quantification** Output: A parenthesization of $A_1 \times A_2 \times A_3 \times \cdots \times A_n$ that minimizes the number of scalar multiplications

How many Parenthesizations P(n) are there?

Problem: Matrix-Chain-Parenthesization

- **1 Input:** A sequence (chain) of *n* matrices $A_1, A_2, A_3, \ldots, A_n$
- **Q Output:** A parenthesization of $A_1 \times A_2 \times A_3 \times \cdots \times A_n$ that minimizes the number of scalar multiplications

How many Parenthesizations P(n) are there?

• We write: A_{ij} for the product $A_i \times A_{i+1} \times \cdots \times A_j$

Problem: Matrix-Chain-Parenthesization

- **1 Input:** A sequence (chain) of *n* matrices $A_1, A_2, A_3, \ldots, A_n$
- **Q** Output: A parenthesization of $A_1 \times A_2 \times A_3 \times \cdots \times A_n$ that minimizes the number of scalar multiplications

How many Parenthesizations P(n) are there?

- We write: A_{ij} for the product $A_i \times A_{i+1} \times \cdots \times A_j$
- There is a final matrix multiplication: $A_{1k} \times A_{(k+1)n}$, for some $1 \le k \le n-1$.

Problem: Matrix-Chain-Parenthesization

- **1 Input:** A sequence (chain) of *n* matrices $A_1, A_2, A_3, \ldots, A_n$
- **Q Output:** A parenthesization of $A_1 \times A_2 \times A_3 \times \cdots \times A_n$ that minimizes the number of scalar multiplications

How many Parenthesizations P(n) are there?

- We write: A_{ij} for the product $A_i \times A_{i+1} \times \cdots \times A_j$
- There is a final matrix multiplication: $A_{1k} \times A_{(k+1)n}$, for some $1 \le k \le n-1$. Hence:

$$P(n) = \begin{cases} 1 & \text{if } n = 1 \ , \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \geq 2 \ . \end{cases}$$

Problem: Matrix-Chain-Parenthesization

- **1 Input:** A sequence (chain) of n matrices $A_1, A_2, A_3, \ldots, A_n$
- **② Output:** A parenthesization of $A_1 \times A_2 \times A_3 \times \cdots \times A_n$ that minimizes the number of scalar multiplications

How many Parenthesizations P(n) are there?

- We write: A_{ij} for the product $A_i \times A_{i+1} \times \cdots \times A_j$
- There is a final matrix multiplication: $A_{1k} \times A_{(k+1)n}$, for some $1 \le k \le n-1$. Hence:

$$P(n) = \begin{cases} 1 & \text{if } n = 1 \ , \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \geq 2 \ . \end{cases}$$

Example: Four matrices A_1, A_2, A_3, A_4

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_{4}$

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_4$

Example (continued): Four matrices A_1, A_2, A_3, A_4

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_4$

P(3)

$$A_1\times A_{24} \quad A_{12}\times A_{34} \quad A_{13}\times A_4$$

$$P(3) = \sum_{k=1}^{2} P(k)P(n-k)$$

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_4$

$$P(3) = \sum_{k=1}^{2} P(k)P(n-k) = P(1)P(2) + P(2)P(1)$$

Example (continued): Four matrices A_1, A_2, A_3, A_4

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_4$

$$P(3) = \sum_{k=1}^{2} P(k)P(n-k) = P(1)P(2) + P(2)P(1) = 2$$

P(4)

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_4$

$$P(3) = \sum_{k=1}^{2} P(k)P(n-k) = P(1)P(2) + P(2)P(1) = 2$$

$$P(4) = \sum_{k=1}^{3} P(k)P(n-k)$$

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_4$

$$P(3) = \sum_{k=1}^{2} P(k)P(n-k) = P(1)P(2) + P(2)P(1) = 2$$

$$P(4) = \sum_{k=1}^{3} P(k)P(n-k) = P(1)P(3) + P(2)P(2) + P(3)P(1)$$

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_4$

$$P(3) = \sum_{k=1}^{2} P(k)P(n-k) = P(1)P(2) + P(2)P(1) = 2$$

$$P(4) = \sum_{k=1}^{3} P(k)P(n-k) = P(1)P(3) + P(2)P(2) + P(3)P(1)$$

$$= P(3) + 1 + P(3)$$

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_4$

$$P(3) = \sum_{k=1}^{2} P(k)P(n-k) = P(1)P(2) + P(2)P(1) = 2$$

$$P(4) = \sum_{k=1}^{3} P(k)P(n-k) = P(1)P(3) + P(2)P(2) + P(3)P(1)$$

$$= P(3) + 1 + P(3) = 2P(3) + 1$$

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_4$

$$P(3) = \sum_{k=1}^{2} P(k)P(n-k) = P(1)P(2) + P(2)P(1) = 2$$

$$P(4) = \sum_{k=1}^{3} P(k)P(n-k) = P(1)P(3) + P(2)P(2) + P(3)P(1)$$

$$= P(3) + 1 + P(3) = 2P(3) + 1 = 5.$$

$$A_1 \times A_{24}$$
 $A_{12} \times A_{34}$ $A_{13} \times A_4$

$$P(3) = \sum_{k=1}^{2} P(k)P(n-k) = P(1)P(2) + P(2)P(1) = 2$$

$$P(4) = \sum_{k=1}^{3} P(k)P(n-k) = P(1)P(3) + P(2)P(2) + P(3)P(1)$$

$$= P(3) + 1 + P(3) = 2P(3) + 1 = 5.$$

$$\bullet A_{1} \times ((A_{2} \times A_{3}) \times A_{4})$$

$$\bullet A_{1} \times ((A_{2} \times (A_{3} \times A_{4})))$$

$$\bullet (A_{1} \times A_{2}) \times (A_{3} \times A_{4})$$

$$\bullet ((A_{1} \times A_{2}) \times A_{3}) \times A_{4}$$

$$\bullet (A_{1} \times (A_{2} \times A_{3})) \times A_{4}$$

A Bound on the Number of Parenthesizations:

$$P(n) = \begin{cases} 1 & \text{if } n = 1 \ , \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2 \ . \end{cases}$$

 $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, \dots$

A Bound on the Number of Parenthesizations:

$$P(n) = \begin{cases} 1 & \text{if } n = 1 \ , \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2 \ . \end{cases}$$

 $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, \dots$

• It can be seen that there are $\Omega(2^n)$ possibilities

A Bound on the Number of Parenthesizations:

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text{if } n \ge 2. \end{cases}$$

 $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, \dots$

- It can be seen that there are $\Omega(2^n)$ possibilities
- An efficient algorithm thus cannot try out all possibilities

A Bound on the Number of Parenthesizations:

$$P(n) = \begin{cases} 1 & \text{if } n = 1 \ , \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2 \ . \end{cases}$$

 $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, \dots$

- It can be seen that there are $\Omega(2^n)$ possibilities
- An efficient algorithm thus cannot try out all possibilities

Dynamic Programming!

Optimal Substructure

Optimal Substructure

We say that a problem P exhibits *optimal substructure* if:

An optimal solution to P contains within it optimal solutions to subproblems of P.

Optimal Substructure

We say that a problem P exhibits optimal substructure if:

An optimal solution to P contains within it optimal solutions to subproblems of P.

Optimal Substructure in Matrix-Chain-Parenthesization

Optimal Substructure

We say that a problem P exhibits optimal substructure if:

An optimal solution to P contains within it optimal solutions to subproblems of P.

Optimal Substructure in Matrix-Chain-Parenthesization

Consider optimal solution to instance of size n

Optimal Substructure

We say that a problem P exhibits optimal substructure if:

An optimal solution to P contains within it optimal solutions to subproblems of P.

Optimal Substructure in Matrix-Chain-Parenthesization

- Consider optimal solution to instance of size n
- Suppose that last product is $A_{1k} \times A_{(k+1)n}$

Optimal Substructure

We say that a problem P exhibits optimal substructure if:

An optimal solution to P contains within it optimal solutions to subproblems of P.

Optimal Substructure in Matrix-Chain-Parenthesization

- Consider optimal solution to instance of size n
- Suppose that last product is $A_{1k} \times A_{(k+1)n}$
- Then the optimal solution contains optimal parenthesizations of $A_1 \times A_2 \times \cdots \times A_k$ and $A_{k+1} \times A_{k+2} \times \cdots A_n$

Optimal Substructure

We say that a problem P exhibits optimal substructure if:

An optimal solution to P contains within it optimal solutions to subproblems of P.

Optimal Substructure in Matrix-Chain-Parenthesization

- Consider optimal solution to instance of size n
- Suppose that last product is $A_{1k} \times A_{(k+1)n}$
- Then the optimal solution contains optimal parenthesizations of $A_1 \times A_2 \times \cdots \times A_k$ and $A_{k+1} \times A_{k+2} \times \cdots A_n$

Proof.

Optimal Substructure

We say that a problem P exhibits optimal substructure if:

An optimal solution to P contains within it optimal solutions to subproblems of P.

Optimal Substructure in Matrix-Chain-Parenthesization

- Consider optimal solution to instance of size n
- Suppose that last product is $A_{1k} \times A_{(k+1)n}$
- Then the optimal solution contains optimal parenthesizations of $A_1 \times A_2 \times \cdots \times A_k$ and $A_{k+1} \times A_{k+2} \times \cdots A_n$

Proof. Suppose it did not contain optimal parenthesizations of $A_1 \times A_2 \times \cdots \times A_k$ and of $A_{k+1} \times A_{k+2} \times \cdots A_n$.

Optimal Substructure

Optimal Substructure

We say that a problem P exhibits optimal substructure if:

An optimal solution to P contains within it optimal solutions to subproblems of P.

Optimal Substructure in Matrix-Chain-Parenthesization

- Consider optimal solution to instance of size n
- Suppose that last product is $A_{1k} \times A_{(k+1)n}$
- Then the optimal solution contains optimal parenthesizations of $A_1 \times A_2 \times \cdots \times A_k$ and $A_{k+1} \times A_{k+2} \times \cdots A_n$

Proof. Suppose it did not contain optimal parenthesizations of $A_1 \times A_2 \times \cdots \times A_k$ and of $A_{k+1} \times A_{k+2} \times \ldots A_n$. Then picking optimal parenthesizations of the two subproblems would give better solution to initial instance.

Optimal Solution to Subproblem:

• m[i,j]: minimum number of scalar multiplications needed to compute $A_i \times A_{i+1} \times \cdots \times A_j = A_{ij}$

- m[i,j]: minimum number of scalar multiplications needed to compute $A_i \times A_{i+1} \times \cdots \times A_j = A_{ij}$
- Observe that m[i, i] = 0 (chain consists of single matrix A_i)

- m[i,j]: minimum number of scalar multiplications needed to compute $A_i \times A_{i+1} \times \cdots \times A_j = A_{ij}$
- Observe that m[i, i] = 0 (chain consists of single matrix A_i)
- Suppose j > i. Suppose last multiplication in optimal solution is: $A_{ik} \times A_{(k+1)j}$, for some k

- m[i,j]: minimum number of scalar multiplications needed to compute $A_i \times A_{i+1} \times \cdots \times A_j = A_{ij}$
- Observe that m[i, i] = 0 (chain consists of single matrix A_i)
- Suppose j > i. Suppose last multiplication in optimal solution is: $A_{ik} \times A_{(k+1)j}$, for some k
- Then: cost of multiplying $A_{ik} \times A_{(k+1)j}$ $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$ $(A_{ik}: p_{i-1} \times p_k \text{ matrix}, A_{(k+1)j}: p_k \times p_j \text{ matrix})$

- m[i,j]: minimum number of scalar multiplications needed to compute $A_i \times A_{i+1} \times \cdots \times A_i = A_{ij}$
- Observe that m[i, i] = 0 (chain consists of single matrix A_i)
- Suppose j > i. Suppose last multiplication in optimal solution is: $A_{ik} \times A_{(k+1)j}$, for some k
- Since we do not know k, we try out all possibilities and choose the best solution:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} & \text{if } i < j. \end{cases}$$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i < j. \end{cases}$$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

Algorithmic Considerations:

ullet As in Pole-Cutting, we could implement this recursive formula directly. ullet exponential runtime

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

- ullet As in Pole-Cutting, we could implement this recursive formula directly. ullet exponential runtime
- Instead, we compute the table m[i,j] bottom up

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i < j. \end{cases}$$

- ullet As in Pole-Cutting, we could implement this recursive formula directly. ullet exponential runtime
- Instead, we compute the table m[i,j] bottom up
- Observe that there are less than n^2 subproblems m[i,j] (i and j take values in $\{1,\ldots,n\}$)

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i < j. \end{cases}$$

- ullet As in Pole-Cutting, we could implement this recursive formula directly. ullet exponential runtime
- Instead, we compute the table m[i,j] bottom up
- Observe that there are less than n^2 subproblems m[i,j] (i and j take values in $\{1,\ldots,n\}$)
- We will see that computing one value m[i,j] takes O(n) time

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i < j. \end{cases}$$

- ullet As in Pole-Cutting, we could implement this recursive formula directly. ullet exponential runtime
- Instead, we compute the table m[i,j] bottom up
- Observe that there are less than n^2 subproblems m[i,j] (i and j take values in $\{1,\ldots,n\}$)
- We will see that computing one value m[i,j] takes O(n) time
- This yields an $O(n^3)$ time algorithm

Dynamic Programming Algorithm

```
Require: Integer n, vector of dimensions of matrices p so that
   matrix A_i has dimensions p_{i-1} \times p_i
   Let m[1 \dots n, 1 \dots n] be a new array
  for i \leftarrow 1 \dots n do
      m[i,i] \leftarrow 0
  for \ell \leftarrow 2 \dots n do {chain length}
      for i \leftarrow 1 \dots n - \ell + 1 do {left position}
        i \leftarrow i + \ell - 1 {right position}
         m[i,j] \leftarrow \infty
         for k \leftarrow i \dots i-1 do
            m[i,j] \leftarrow \min\{m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_i\}
   return
```

Algorithm MATRIX-CHAIN-VALUE(n, p)

Dynamic Programming Algorithm

```
Require: Integer n, vector of dimensions of matrices p so that
   matrix A_i has dimensions p_{i-1} \times p_i
   Let m[1 \dots n, 1 \dots n] be a new array
  for i \leftarrow 1 \dots n do
      m[i,i] \leftarrow 0
  for \ell \leftarrow 2 \dots n do {chain length}
      for i \leftarrow 1 \dots n - \ell + 1 do {left position}
        i \leftarrow i + \ell - 1 {right position}
         m[i,j] \leftarrow \infty
         for k \leftarrow i \dots i-1 do
            m[i,j] \leftarrow \min\{m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_i\}
   return
```

Algorithm MATRIX-CHAIN-VALUE(n, p)

Runtime: $O(n^3)$

Dynamic Programming Algorithm

```
Require: Integer n, vector of dimensions of matrices p so that
   matrix A_i has dimensions p_{i-1} \times p_i
   Let m[1 \dots n, 1 \dots n] be a new array
  for i \leftarrow 1 \dots n do
      m[i,i] \leftarrow 0
  for \ell \leftarrow 2 \dots n do {chain length}
      for i \leftarrow 1 \dots n - \ell + 1 do {left position}
        i \leftarrow i + \ell - 1 {right position}
         m[i, j] \leftarrow \infty
         for k \leftarrow i \dots i-1 do
            m[i, j] \leftarrow \min\{m[i, j], m[i, k] + m[k+1, j] + p_{i-1}p_kp_i\}
   return
```

Algorithm Matrix-Chain-Value(n, p)

Runtime: $O(n^3)$ (by evaluating $\sum_{\ell=2}^n \sum_{i=1}^{n-\ell+1} \sum_{k=1}^{i+\ell-2} O(1)$)

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} O(1)$$

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} O(1) = O(1) \cdot \sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} 1$$

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} O(1) = O(1) \cdot \sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} 1$$

$$\leq O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} 1$$

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} O(1) = O(1) \cdot \sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} 1$$

$$\leq O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} 1 = O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} n$$

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} O(1) = O(1) \cdot \sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} 1$$

$$\leq O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} 1 = O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} n = O(1) \cdot n \sum_{l=1}^{n} \sum_{i=1}^{n} 1$$

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} O(1) = O(1) \cdot \sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} 1$$

$$\leq O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} 1 = O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} n = O(1) \cdot n \sum_{l=1}^{n} \sum_{i=1}^{n} 1$$

$$= O(1) \cdot n \sum_{l=1}^{n} n$$

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} O(1) = O(1) \cdot \sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} 1$$

$$\leq O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} 1 = O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} n = O(1) \cdot n \sum_{l=1}^{n} \sum_{i=1}^{n} 1$$

$$= O(1) \cdot n \sum_{l=1}^{n} n = O(1) \cdot n^{2} \sum_{l=1}^{n} 1$$

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} O(1) = O(1) \cdot \sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} 1$$

$$\leq O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} 1 = O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} n = O(1) \cdot n \sum_{l=1}^{n} \sum_{i=1}^{n} 1$$

$$= O(1) \cdot n \sum_{l=1}^{n} n = O(1) \cdot n^{2} \sum_{l=1}^{n} 1 = O(1) \cdot n^{2} \cdot n = O(1)n^{3}$$

$$\sum_{i=a}^{b} 1 = b - a + 1$$

$$\sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} O(1) = O(1) \cdot \sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=1}^{i+l-2} 1$$

$$\leq O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} 1 = O(1) \cdot \sum_{l=1}^{n} \sum_{i=1}^{n} n = O(1) \cdot n \sum_{l=1}^{n} \sum_{i=1}^{n} 1$$

$$= O(1) \cdot n \sum_{l=1}^{n} n = O(1) \cdot n^{2} \sum_{l=1}^{n} 1 = O(1) \cdot n^{2} \cdot n = O(1)n^{3}$$

$$= O(n^{3}).$$

for
$$i \leftarrow 1 \dots n$$
 do $m[i, i] \leftarrow 0$

Example
$$n = 4$$
 and $p = 3$ 7 6 2 9

for
$$i \leftarrow 1 \dots n$$
 do $m[i, i] \leftarrow 0$

```
\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do } \{ \text{left position} \} \\ & j \leftarrow i + l - 1 \{ \text{right position} \} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \textbf{ do} \\ & m[i,j] \leftarrow \min \{ m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \end{aligned}
```

$$I = 2, i = 1, j = 2$$

$$\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do } \{ \text{left position} \} \\ & j \leftarrow i + l - 1 \; \{ \text{right position} \} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \; \textbf{do} \\ & m[i,j] \leftarrow \min \{ m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \end{aligned}$$

$$l = 2, i = 1, j = 2$$

 $m[1, 2] = m[1, 1] + m[2, 2] + p_0 p_1 p_2 = 0 + 0 + 3 \cdot 7 \cdot 6 = 126$

```
\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do } \{ \text{left position} \} \\ & j \leftarrow i + l - 1 \; \{ \text{right position} \} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \; \textbf{do} \\ & m[i,j] \leftarrow \min \{ m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \end{aligned}
```

$$I = 2, i = 2, j = 3$$

$$\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do } \{ \text{left position} \} \\ & j \leftarrow i + l - 1 \; \{ \text{right position} \} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \; \textbf{do} \\ & m[i,j] \leftarrow \min \{ m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \end{aligned}$$

$$l = 2, i = 2, j = 3$$

 $m[2,3] = m[2,2] + m[3,3] + p_1p_2p_3 = 0 + 0 + 7 \cdot 6 \cdot 2 = 84$

```
\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do } \{ \text{left position} \} \\ & j \leftarrow i + l - 1 \ \{ \text{right position} \} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \textbf{ do} \\ & m[i,j] \leftarrow \min \{ m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \end{aligned}
```

$$I = 2, i = 3, j = 4$$

$$\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do} \text{ {left position}} \\ & j \leftarrow i + l - 1 \text{ {right position}} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \textbf{ do} \\ & m[i,j] \leftarrow \min\{m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} \end{aligned}$$

$$l = 2, i = 3, j = 4$$

 $m[3, 4] = m[3, 3] + m[4, 4] + p_2 p_3 p_4 = 0 + 0 + 6 \cdot 2 \cdot 9 = 108$

```
\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do } \{ \text{left position} \} \\ & j \leftarrow i + l - 1 \ \{ \text{right position} \} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \textbf{ do} \\ & m[i,j] \leftarrow \min \{ m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \end{aligned}
```

$$I = 3, i = 1, j = 3$$

$$\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do } \{ \text{left position} \} \\ & j \leftarrow i + l - 1 \; \{ \text{right position} \} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \textbf{ do} \\ & m[i,j] \leftarrow \min \{ m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \end{aligned}$$

$$I = 3, i = 1, j = 3$$

$$m[1,1] + m[2,3] + p_0p_1p_3 = 0 + 84 + 3 \cdot 7 \cdot 2 = 84 + 42 = 106$$

 $m[1,2] + m[3,3] + p_0p_2p_3 = 126 + 0 + 3 \cdot 6 \cdot 2 = 126 + 36 = 162$

```
\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do } \{ \text{left position} \} \\ & j \leftarrow i + l - 1 \; \{ \text{right position} \} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \; \textbf{do} \\ & m[i,j] \leftarrow \min \{ m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \end{aligned}
```

$$I = 3, i = 2, j = 4$$

$$\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do } \{ \text{left position} \} \\ & j \leftarrow i + l - 1 \; \{ \text{right position} \} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \textbf{ do} \\ & m[i,j] \leftarrow \min \{ m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \end{aligned}$$

$$I = 3, i = 2, j = 4$$

$$m[2,2] + m[3,4] + p_1p_2p_4 = 0 + 108 + 7 \cdot 6 \cdot 9 = 108 + 378 = 486$$

 $m[2,3] + m[4,4] + p_1p_3p_4 = 84 + 0 + 7 \cdot 2 \cdot 9 = 84 + 36 = 210$

```
\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do} \text{ {left position}} \\ & j \leftarrow i + l - 1 \text{ {right position}} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \textbf{ do} \\ & m[i,j] \leftarrow \min\{m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} \end{aligned}
```

$$I = 4, i = 1, j = 4$$

```
\begin{aligned} & \textbf{for } l \leftarrow 2 \dots n \textbf{ do} \\ & \textbf{for } i \leftarrow 1 \dots n - l + 1 \textbf{ do } \{ \text{left position} \} \\ & j \leftarrow i + l - 1 \; \{ \text{right position} \} \\ & m[i,j] \leftarrow \infty \\ & \textbf{for } k \leftarrow i \dots j - 1 \textbf{ do} \\ & m[i,j] \leftarrow \min \{ m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \end{aligned}
```

$$m[1,1] + m[2,4] + p_0p_1p_4 = 0 + 210 + 3 \cdot 7 \cdot 9 = 399$$

 $m[1,2] + m[3,4] + p_0p_2p_4 = 126 + 108 + 3 \cdot 6 \cdot 9 = 396$
 $m[1,3] + m[4,4] + p_0p_3p_4 = 106 + 0 + 3 \cdot 2 \cdot 9 = 160$

Example:
$$n = 4$$
 and $p = 3$ 7 6 2 9

Example:
$$n = 4$$
 and $p = 3$ 7 6 2 9

• Algorithm outputs value of optimal solution: m[1, 4] = 160

Example:
$$n = 4$$
 and $p = 3$ 7 6 2 9

- Algorithm outputs value of optimal solution: m[1,4] = 160
- We would like to know the optimal parenthesization as well

$$((A_1 \times A_2) \times A_3) \times A_4$$

Example: n = 4 and p = 3 7 6 2 9

- Algorithm outputs value of optimal solution: m[1,4] = 160
- We would like to know the optimal parenthesization as well

$$((A_1 \times A_2) \times A_3) \times A_4$$

 \rightarrow Modify algorithm to keep track of parameters that give minimum in array \emph{s}

Keep Track of Optimal Choices

```
Require: Integer n, vector of dimensions of matrices p so that
  matrix A_i has dimensions p_{i-1} \times p_i
  Let m[1 \dots n, 1 \dots n] be a new array
  for i \leftarrow 1 \dots n do
     m[i,i] \leftarrow 0
  for l \leftarrow 2 \dots n do {chain length}
     for i \leftarrow 1 \dots n - l + 1 do {left position}
        i \leftarrow i + l - 1 {right position}
        m[i,j] \leftarrow \infty
        for k \leftarrow i \dots i-1 do
           m[i,j] \leftarrow \min\{m[i,j], m[i,k] + m[k+1,j] + p_{i-1}p_kp_i\}
  return m, s
```

Algorithm MATRIX-CHAIN-VALUE(n, p)

Keep Track of Optimal Choices

```
Require: Integer n, vector of dimensions of matrices p so that
   matrix A_i has dimensions p_{i-1} \times p_i
   Let m[1 \dots n, 1 \dots n] and s[1 \dots n, 2 \dots n] be new arrays
  for i \leftarrow 1 \dots n do
      m[i,i] \leftarrow 0
  for l \leftarrow 2 \dots n do {chain length}
     for i \leftarrow 1 \dots n - l + 1 do {left position}
        i \leftarrow i + l - 1 {right position}
         m[i,j] \leftarrow \infty
         for k \leftarrow i \dots j-1 do
            q \leftarrow m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
            if q < m[i, j] then
               m[i,i] \leftarrow a
               s[i,j] \leftarrow k
   return
              m
```

Algorithm Matrix-Chain-Order (A, B)

Print Optimal Parenthesization

Using s to find Optimal Parenthesization

```
Require: Array s, positions i, j

if i = j then

print "A_i"

else

print "("

PRINT-OPTIMAL-PARENS(s, i, s[i, j])

PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)

print ")"
```

Algorithm PRINT-OPTIMAL-PARENS(s, i, j)

Call Print-Optimal-Parens(s, 1, n) to obtain parenthesization