Graph Theory

 ${\rm Jeremy\ Le-UNSW\ MATH3711\ 25T1}$

Contents

1	The Mathematical Language of Symmetry	2
2	Matrix Groups and Subgroups	3

1 The Mathematical Language of Symmetry

Definition 1.1 (Isometry). A function $f: \mathbb{R}^n \to \mathbb{R}^n$ is an isometry if ||f(x) - f(y)|| = ||x - y|| for all $x, y \in \mathbb{R}^n$. i.e. preserves distances.

Definition 1.2 (Symmetry). Let $F \subseteq \mathbb{R}^n$, a symmetry of F is a (surjective) isometry $T : \mathbb{R}^n \to \mathbb{R}^n$ such that T(F) = F.

Properties 1.3. Let S, T be symmetries of $F \subseteq \mathbb{R}^n$. Then $S \cdot T : \mathbb{R}^n \to \mathbb{R}^n$ is also a symmetry of F.

Proof. Given $x, y \in \mathbb{R}^n$.

$$||STx - STy|| = ||Tx - Ty||$$

$$= ||x - y||.$$
(S is an isometry)
$$(T \text{ is an isometry})$$

Therefore ST is an isometry. Clearly ST is surjective as both S and T are surjective. Also,

$$ST(F) = S(F)$$
 $(T(F) = F)$
= F . $(S(F) = F)$

So ST is a symmetry of F.

Properties 1.4. If $G = \text{set of symmetries of } F \subseteq \mathbb{R}^n$, then G satisfies:

- i) Composition is associative, ST(R) = S(TR) for all $S, T, R \in G$.
- ii) $id_{\mathbb{R}^n} \in G$ $(id_{\mathbb{R}^n}(x) = x$ for all $x \in \mathbb{R}^n$). Also, $id_G T = T$ and $T id_G = T$ for all $T \in G$.
- iii) If $T \in G$, then T is bijective and $T^{-1} \in G$.

Proof. If Tx = Ty, then ||Tx - Ty|| = 0. So ||x - y|| = 0, x = y, therefore T is injective. By definition T is surjective, hence, T is bijective and therefore T^{-1} is surjective.

To prove T^{-1} is an isometry.

$$||T^{-1}x - T^{-1}y|| = ||TT^{-1}x - TT^{-1}y||$$

$$= ||id x - id y||$$

$$= ||x - y||.$$

To prove symmetry, $T^{-1}F = F$:

$$T^{-1}F = T^{-1}(T(F)) = F.$$

Thus $T^{-1} \in G$.

Definition 1.5 (Group). A group is a set G equipped with a "multiplication map" $\mu: G \times G \to G$ such that

- 1) Associativity: (gh)k = g(hk) for all $g, h, j \in G$.
- 2) Existence of identity: There exists $1 \in G$ such that 1g = g and g1 = g for all $g \in G$.

3) Existence of inverses: $\forall g \in G$, there exists $h \in G$ such that gh = 1 and hg = 1. Denoted by g^{-1} .

Properties 1.6. Basic facts about groups.

• "Generalised Associativity". When multiplying three or more elements, the bracketing does not matter. E.g. (a(b(cd)))e = (ab)(c(de)).

Proof. Mathematical Induction as for matrix multiplication.

• Cancellation Law. If gh = gk then h = k for all $g, h, k \in G$.

Proof.
$$gh = gk \implies g^{-1}(gh) = g^{-1}(gk) \implies (g^{-1}g)h = (g^{-1}g)k \implies 1h = 1k \implies h = k.$$

2 Matrix Groups and Subgroups

Recall $GL_n(\mathbb{R})$ and $GL_n(\mathbb{C})$ which represent the set of real/complex invertible $n \times n$ matrices.

Proposition 2.1. $GL_n(\mathbb{R})$ and $GL_n(\mathbb{C})$ are groups when endowed with matrix multiplication.

Proof. Product of real invertible matrices is in $GL_n(\mathbb{R})$.

- i) matrix multiplication is associative.
- ii) identity matrix $I_n: I_n m = m$ and $mI_n = m$ for all $m \in GL_n(\mathbb{R})$
- iii) if $m \in GL_n(\mathbb{R})$ then m^{-1} . $mm^{-1} = I$ and $m^{-1}m = I$.

Proposition 2.2. Let G = group.

1) Identity is unique i.e. suppose 1, e are both identities then 1 = e.

Proof.
$$1 = 1 \cdot e = e$$
.

2) Inverses are unique.

Proof. If
$$g \in G$$
, $gh = hg = 1$ and $gk = kg = 1$ then $h = k$.

3) For $g, h \in G$ we have $(gh)^{-1} = h^{-1}g^{-1}$.

Proof.
$$(gh)(h^{-1}g^{-1}) = ghh^{-1}g^{-1} = g1g^{-1} = gg^{-1} = 1$$
. Similarly, $(h^{-1}g^{-1}(gh) = 1)$.

Definition 2.3 (Subgroup). Let G be a group with multiplication μ . A subset $H \subseteq G$ is called a subgroup of G (denoted $H \subseteq G$) if it satisfies:

- i) $1_G \in H$ (contains identity),
- ii) if $g, h \in H$ then $gh \in H$ (closed under multiplication),
- iii) if $g \in H$ then $g^{-1} \in H$ (closed under inverse).

Proposition 2.4. H is a group with the induced multiplication map $\mu_H: H \times H \to H$ by $\mu_H(g,h) = \mu(g,h)$.

Proof. (ii) tells us that μ_H makes sense. μ_H is associative because μ is. H has an identity from (i). H has inverses from (iii).

Proposition 2.5. Set of orthogonal matrices $O_n(\mathbb{R}) = \{M \in GL_n(\mathbb{R}) : M^T = M^{-1}\} \leq GL_n(\mathbb{R})$ forms a group. Namely the set of symmetries of an n-1 sphere, i.e. an n dimensional circle.

Proof. Check axioms.

- i) $I_n \in O_n(\mathbb{R})$
- ii) If $M, N \in O_n(\mathbb{R})$ then $(MN)^T = N^T M^T = N^{-1} M^{-1} = (MN)^{-1}$, so $MN \in O_n(\mathbb{R})$.
- iii) If $M \in O_n(\mathbb{R})$ then $(M^{-1})^T = (M^T)^{-1} = (M^{-1})^{-1}$ so $M^{-1} \in O_n(\mathbb{R})$.

Proposition 2.6. Basic subgroup facts.

- i) Any group G has two trivial subgroups: itself and $1 = \{1_G\}$.
- ii) If $J \leq H$ and $H \leq G$ then $J \leq G$.

Here are some notations. For $g \in G$ where G is a group.

- i) If n positive integer, define $g^n = g \cdot g \cdots g$ (n times)
- ii) $q^0 = 1$
- iii) *n* positive: $g^{-n} = (g^{-1})^n$ or $(g^n)^{-1}$.
- iv) For $m, n \in \mathbb{Z}$, $g^m \cdot g^n = g^{m+n}$ and $(g^m)^n = g^{mn}$.

Definition 2.7. The order of a group G, denoted |G| is the cardinality of G. For $g \in G$, the order of g is the smallest positive integer n such that $g^n = 1$. If no such integer exists, order is ∞ .