Trapezoidal rule:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} \Big(f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \Big)$$

where
$$x_i = a + \frac{i(b-a)}{n}$$
, $i = 0, 1, 2, ..., n$.

Example 1. Use the trapezoidal rule with n = 3 to approximate the integral $\int_{-1}^{2} \frac{2}{\sqrt{x^2 + 1}} dx$. Given that $\sqrt{5} \approx 2.236$ and $\sqrt{2} \approx 1.414$.

Simpson's rule:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{3n} \Big(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \Big)$$

where *n* is an even integer and $x_i = a + \frac{i(b-a)}{n}$, i = 0, 1, 2, ..., n.

Example 2. Use the Simpson's rule with n = 4 to approximate the integral $\int_{-2}^{2} \frac{dx}{x^2 + 1}.$