

Jan Wilhelm

Regensburg Center for Ultrafast Nanoscopy University of Regensburg

How do we pass the atomic geometry to CP2K?

Input:

- atomic coordinates {R_A}
- unit cell (lattice constants, angles)
- number of electrons N (usually charge = 0)

Software packages:

and many more ...

Output:

- electron density $n(\mathbf{r})$ and energy E_0 of electrons and nuclei of ground state
- optimized positions of atoms to minimize E₀ (geometry & cell optimization)
- statistical average over atomic positions (molecular dynamics; for liquids)
- electronic band structure of a crystal
- And much more ...

How do I define the atomic coordinates and the cell in CP2K?

Input:

atomic coordinates {R_A}

```
&COORD

Mo 0.0000 0.0000 9.0635
S 1.5920 0.9191 10.6271
S 1.5920 0.9191 7.5000
&END COORD
```


unit cell (lattice constants, angles)

```
ABC 3.184 3.184 18.127

ALPHA_BETA_GAMMA 90 90 120

PERIODIC XY

&END CELL
```

Where do I get atomic coordinates and the cell shape from?

For many materials, atomic coordinates are available from databases (often as CIF files which can be read by CP2K):

2D Materials Database (https://c2db.fysik.dtu.dk/material/1MoS2-1)

- Crystallography Open Database (https://www.crystallography.net)
- Materials project (for example https://nextgen.materialsproject.org/materials/mp-27734/)

Are the atomic coordinates unique?

No! Atomic coordinates can be shifted:

&COOH	RD		
Мо	0.0000	0.0000	9.0635
S	1.5920	0.9191	10.6271
S	1.5920	0.9191	7.5000
&END	COORD		

&COORD

Мо	2.0000	0.0000	9.0635
S	3.5920	0.9191	10.6271
S	3.5920	0.9191	7.5000

&END COORD

equivalent to:

How do we compute the ground state energy E_0 ?

We use Kohn-Sham density functional theory (KS-DFT) with periodic boundary conditions:

$$\left[-\frac{\hbar^2}{2m} \, \nabla^2 + v_{\rm ext}(\mathbf{r}) + v_{\rm H}[n](\mathbf{r}) + v_{\rm xc}[n](\mathbf{r}) \right] \psi_{j\mathbf{k}}(\mathbf{r}) = \varepsilon_{j\mathbf{k}} \, \psi_{j\mathbf{k}}(\mathbf{r})$$
 Self-consistent field (SCF) loop Electron density
$$n(\mathbf{r}) = \sum_{j}^{\rm occ} \frac{1}{N_k} \sum_{\mathbf{k}} |\psi_{j\mathbf{k}}(\mathbf{r})|^2$$

Once electron density n is known: compute ground state energy E_0 from total energy functional E[n]:

$$E_0 = E[n]$$

Which CP2K input parameters control the KS equations & the SCF?

SCF via "Diagonalization":

SCF via "Orbital Transformation" (OT, if SCF convergence problems):

```
&SCF
                         &SCF
 SCF GUESS ATOMIC
                            SCF GUESS ATOMIC
 EPS SCF 1.0E-7
                            MAX SCF 50
 MAX SCF 200
                            TO3
                              PRECONDITIONER FULL SINGLE_INVERSE
  &MIXING
   METHOD BROYDEN MIXING
                              MINIMIZER CG
   ALPHA 0.1
                              LINESEARCH 3PNT
    BETA 1.5
                            &END
    NBROYDEN 8
                            EPS SCF 1.0E-7
                            &OUTER SCF
  &END
                               MAX SCF 20
&END SCF
                               EPS SCF 1.0E-7
                            &END
```

&END SCF

64 k-points (for 2D crystal)

&KPOINTS

SCHEME MONKHORST-PACK 8 8 1

&END KPOINTS

For large unit cells (e.g., liquids):

Do not put &KPOINTS at all to use only a single k-point (Γ-point only)

How does the SCF look like in the CP2K output?

CP2K output:

SCF WAVEFUNCTION OPTIMIZATION

Step	Update method	Time	Convergence	Total energy	Change
	oMix/Diag. 0.10E+00 roy./Diag. 0.10E+00	0.6 0.7	2.12775093 0.03335901	-89.0857269257 -90.7724221181	
• •	•				
56 B	roy./Diag. 0.10E+00	0.6	6.8529E-10	-88.7583628545	4.43E-09
***	SCF run converged in	56	steps ***		

Total energy:

 $E_0 = E[n]$ -88.75836285449478 (unit: Hartree)

How can we print the band structure with CP2K?

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + v_{\text{ext}}(\mathbf{r}) + v_{\text{H}}[n](\mathbf{r}) + v_{\text{xc}}[n](\mathbf{r}) \right] \psi_{j\mathbf{k}}(\mathbf{r}) = \varepsilon_{j\mathbf{k}} \psi_{j\mathbf{k}}(\mathbf{r})$$
band structure

Plot band structure along k-path in Brillouin zone:

Fig. 13. Brillouin zone of HEX lattice. Path: Γ -M-K- Γ -A-L-H-A|K-H. An example of band structure using this path is given in Fig. 38.

\times b ₁	$ imes oldsymbol{b}_2$	×b ₃	
0	0	0	Γ
1/3	1/3	0	K
1/2	0	0	M

CP2K input:

```
&PRINT

&BAND_STRUCTURE

ADDED_MOS 10

FILE_NAME bandstructure.bs

&KPOINT_SET

NPOINTS 49

SPECIAL_POINT GAMMA 0.0 0.0 0.0

SPECIAL_POINT M 0.5 0.0 0.0

SPECIAL_POINT K 0.33 0.33 0.0

SPECIAL_POINT GAMMA 0.0 0.0 0.0

&END KPOINT_SET

&END BAND_STRUCTURE

&END PRINT
```

W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010) https://www.sciencedirect.com/science/article/abs/pii/S0927025610002697

How can we reformulate KS-DFT to get matrix equations? (drop k-index)

Basis set:
$$\psi_n(\mathbf{r}) = \sum_{\nu=1}^{N_{\text{basis}}} C_{\nu n} \, \phi_{\nu}(\mathbf{r})$$

 $\phi_{\scriptscriptstyle V}({f r})$: atom-centered Gaussian basis function

Example: Gaussian-type s-function:

$$\phi_{\nu}(\mathbf{r}) = \left(\frac{\pi}{\alpha}\right)^{3/2} \exp\left(-\alpha|\mathbf{r} - \mathbf{R}_A|^2\right)$$

Also p-, d-, ... functions, typically 30 basis functions per atom: $N_{\text{basis}} \approx 30 N_{\text{atom}}$

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + v_{\text{ext}}(\mathbf{r}) + v_{\text{H}}(\mathbf{r}) + v_{\text{xc}}(\mathbf{r}) \right] \psi_n(\mathbf{r}) = \varepsilon_n \psi_n(\mathbf{r})$$

$$\int \phi_{\mu}(\mathbf{r}) \left[-\frac{\hbar^2}{2m} \nabla^2 + v_{\text{ext}}(\mathbf{r}) + v_{\text{H}}(\mathbf{r}) + v_{\text{xc}}(\mathbf{r}) \right] \sum_{\nu} C_{\nu n} \phi_{\nu}(\mathbf{r}) d\mathbf{r} = \varepsilon_n \int \phi_{\mu}(\mathbf{r}) \sum_{\nu} C_{\nu n} \phi_{\nu}(\mathbf{r}) d\mathbf{r}$$

$$\sum_{\nu} h_{\mu\nu} C_{\nu n} = \sum_{\nu} S_{\mu\nu} C_{\nu n} \varepsilon_n \longrightarrow \mathbf{h} \mathbf{C} = \mathbf{S} \mathbf{C} \varepsilon$$

Kohn-Sham equations in Gaussian basis $\phi_{\nu}(\mathbf{r})$ is a matrix equation (input: \mathbf{h} , \mathbf{S} matrix; output: \mathbf{C} , $\mathbf{\epsilon}$)

How do we define the Gaussian basis functions in the CP2K input?

Basis set:
$$\psi_n(\mathbf{r}) = \sum_{\nu=1}^{N_{\text{basis}}} C_{\nu n} \, \phi_{\nu}(\mathbf{r})$$

 $\phi_{\scriptscriptstyle V}({f r})$: atom-centered Gaussian basis function

Example: Gaussian-type s-function:

$$\phi_{\nu}(\mathbf{r}) = \left(\frac{\pi}{\alpha}\right)^{3/2} \exp\left(-\alpha|\mathbf{r} - \mathbf{R}_A|^2\right)$$

CP2K input:

. . .

BASIS SET FILE NAME BASIS MOLOPT

. . .

&KIND S

BASIS SET DZVP-MOLOPT-GTH

POTENTIAL GTH-PBE

&END KIND

&KIND Mo

BASIS_SET DZVP-MOLOPT-SR-GTH

POTENTIAL GTH-PBE

&END KIND

CP2K basis sets:

https://github.com/cp2k/cp2k/tree/master/data

for example BASIS_MOLOPT:

- S SZV-MOLOPT-GTH
- S DZVP-MOLOPT-GTH
- S TZVP-MOLOPT-GTH
- S TZV2P-MOLOPT-GTH
- S TZV2PX-MOLOPT-GTH

Increasing size

Increasing completeness

How can we efficiently compute the Hartree potential $v_{\mu\nu}^{\rm H}$?

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + v_{\text{ext}}(\mathbf{r}) + v_{\text{H}}[n](\mathbf{r}) + v_{\text{xc}}[n](\mathbf{r}) \right] \psi_j(\mathbf{r}) = \varepsilon_j \psi_j(\mathbf{r})$$

$$v_{\rm H}(\mathbf{r}) = \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

$$\mathbf{n}(\mathbf{r}) = \sum_{i=1}^{\rm occ} |\psi_{i}(\mathbf{r})|^{2}$$

$$n(\mathbf{r}) = \sum_{j=1}^{\text{occ}} |\psi_{j}(\mathbf{r})|$$

$D_{\mu\nu} = \sum C_{\mu n} C_{\nu n}$

Gaussian and plane-waves scheme (GPW)

Compute electron density on real-space grid points $\{\mathbf{r}_i\}$:

(CP2K source code: qs_collocate_density.F)

 $n(\mathbf{r}_i) = \sum D_{\mu\nu} \phi_{\mu}(\mathbf{r}_i) \, \phi_{\nu}(\mathbf{r}_i)$

Fast Fourier Transform (FFT) of electron density:

 $n(\mathbf{G}_k) = \sum e^{i\mathbf{G}_k\mathbf{r}_j} n(\mathbf{r}_j)$

Compute Hartree potential:

 $v_{\mathrm{H}}(\mathbf{G}_k) = \frac{4\pi \, n(\mathbf{G}_k)}{|\mathbf{G}_k|^2}$

FFT back to real space:

 $v_{\rm H}(\mathbf{r}_j) = \sum_k e^{-i\mathbf{G}_k\mathbf{r}_j} v_{\rm H}(\mathbf{G}_k)$

Projection in Gaussian basis:

$$v_{\mu\nu}^{\rm H} = \int \phi_{\mu}(\mathbf{r}) \ v_{\rm H}(\mathbf{r}) \ \phi_{\nu}(\mathbf{r}) \ d\mathbf{r}$$

A hybrid Gaussian and plane wave density functional scheme G Lippert, J Hutter, M Parrinello Molecular Physics 92 (3), 477-487 1782 1997

Can we do Fourier transforms of core level functions efficiently? No.

FFT
$$n(\mathbf{G}_k) = \sum_j e^{i\mathbf{G}_k \mathbf{r}_j} n(\mathbf{r}_j)$$
 is discretization of integral $n(\mathbf{G}) = \int e^{i\mathbf{G}\mathbf{r}} n(\mathbf{r}) d\mathbf{r}$

$$n(\mathbf{r}) = \sum_{n=0}^{\infty} |\psi_n(\mathbf{r})|^2$$
 also contains core states; 1s state of H-like atom:

$$\psi_n(\mathbf{r}) \simeq e^{-|\mathbf{r}-\mathbf{R}_A|/r_0}$$
 $r_0 = \frac{a_0}{Z}$

- → for heavy atoms, Z is large and core levels get extremely localized
- \rightarrow one needs extremely many plane waves $e^{i\mathbf{Gr}}$ for accurate Fourier trafo of $n(\mathbf{r})$
- → computationally very demanding
- ightarrow use pseudopotential (PP) and absorb core electrons into PP: $\frac{Ze^2}{|{f r}-{f R}_A|}
 ightarrow V_{
 m PP}^A({f r})$

Separable dual-space Gaussian pseudopotentials

6792

How can we control the Fourier transform and the pseudopotentials in the input?

FFT
$$n(\mathbf{G}_k) = \sum_j e^{i\mathbf{G}_k \mathbf{r}_j} n(\mathbf{r}_j)$$

determines

CUTOFF REL CUTOFF 100 &END MGRID

 $\max |\mathbf{G}_k|$

Further reading about CUTOFFs:

https://www.cp2k.org/faq:cutoff

https://manual.cp2k.org/trunk/methods/dft/cutoff.html

CUTOFF 600, REL_CUTOFF 100 are well-converged in most applications

Pseudopotentials

$$\frac{Ze^2}{|\mathbf{r} - \mathbf{R}_A|} \rightarrow V_{\mathrm{PP}}^A(\mathbf{r})$$

&KIND S BASIS SET DZVP-MOLOPT-GTH POTENTIAL GTH-PBE &END KIND

Gaussian and plane-wave scheme (GPW)

&OS METHOD GPW

&END OS

Separable dual-space Gaussian pseudopotentials

S Goedecker, M Teter, J Hutter Physical Review B 54 (3), 1703, 1996 A hybrid Gaussian and plane wave density functional scheme G Lippert, J Hutter, M Parrinello

Molecular Physics 92 (3), 477-487

How can we optimize / move the atomic positions and the cell?

Standard KS-DFT calculation:

```
&GLOBAL
...
RUN_TYPE ENERGY
&END GLOBAL
```

Geometry optimization (optimize atomic positions, keep cell fixed):

```
&GLOBAL
...
RUN_TYPE GEO_OPT
&END GLOBAL
```

Cell optimization (optimize atomic positions and unit cell):

```
&GLOBAL
...
RUN_TYPE CELL_OPT
&END GLOBAL
```

Molecular dynamics (move atoms according to temperature):

```
&GLOBAL
...
RUN_TYPE MD
&END GLOBAL
```

The full CPEK input

GLOBAL PROJECT MoS2 RUN_TYPE ENERGY END GLOBAL	&PRINT &BAND_STRUCTURE ADDED_MOS 10		
	FILE_NAME bandstructure.bs		
FORCE_EVAL &DFT	&KPOINT_SET		
	NPOINTS 49		
BASIS_SET_FILE_NAME BASIS_MOLOPT	SPECIAL POINT GAMMA 0.0 0.0 0.0		
POTENTIAL_FILE_NAME GTH_POTENTIALS	SPECIAL_POINT K 0.333333 0.333333 0.0		
&MGRID	SPECIAL_POINT M 0.0 0.5 0.0		
CUTOFF 500	SPECIAL POINT GAMMA 0.0 0.0 0.0		
REL_CUTOFF 100	&END KPOINT SET		
&END MGRID	&END BAND STRUCTURE		
&QS	END PRINT		
METHOD GPW	&END DFT		
EPS_DEFAULT 1.0E-12	&SUBSYS		
EPS_PGF_ORB 1.0E-12	&CELL		
&END QS &SCF	ABC 3.184 3.184 18.127		
	ALPHA_BETA_GAMMA 90 90 120		
SCF_GUESS ATOMIC	PERIODIC XY		
EPS_SCF 1.0E-9	&END CELL		
MAX_SCF 500	&KIND S		
&MIXING	BASIS_SET DZVP-MOLOPT-GTH		
METHOD BROYDEN_MIXING	POTENTIAL GTH-PBE		
ALPHA 0.1	&END KIND		
BETA 1.5	&KIND Mo		
NBROYDEN 8	BASIS_SET DZVP-MOLOPT-SR-GTH		
&END	POTENTIAL GTH-PBE		
&END SCF	&END KIND		
&XC	&COORD		
&XC_FUNCTIONAL PBE	Mo 0.0000000 0.0000000 9.0635563		
&END XC_FUNCTIONAL	Mo 0.0000000 0.0000000 9.0635563 S 1.59203323 0.91916082 10.6271126		
&END XC	s 1.59203323 0.91916082 7.5000000		
&KPOINTS	&END COORD		
SCHEME MONKHORST-PACK 8 8 1	&TOPOLOGY		
&END KPOINTS	&CENTER COORDINATES		
	END -		
•	&END		
	&END SUBSYS		

&END FORCE_EVAL

Summary of KS-DFT algorithm in

• Expand Kohn-Sham orbitals in Gaussian basis:

$$\psi_n(\mathbf{r}) = \sum_{\nu=1}^{N_{\mathrm{basis}}} C_{\nu n} \, \phi_{\nu}(\mathbf{r})$$

 $\phi_{\mu}(\mathbf{r})$ $\phi_{\nu}(\mathbf{r})$

Iterate Kohn-Sham equations; for crystals with k-index:

SCF loop
$$\left[-\frac{\hbar^2}{2m} \nabla^2 + v_{\text{ext}}(\mathbf{r}) + v_{\text{H}}[n](\mathbf{r}) + v_{\text{xc}}[n](\mathbf{r}) \right] \psi_{j\mathbf{k}}(\mathbf{r}) = \varepsilon_{j\mathbf{k}} \psi_{j\mathbf{k}}(\mathbf{r})$$

$$n(\mathbf{r}) = \sum_{j}^{\text{occ}} \frac{1}{N_k} \sum_{\mathbf{k}} |\psi_{j\mathbf{k}}(\mathbf{r})|^2$$

• Compute electron density $n(\mathbf{r})$ from $\psi_n(\mathbf{r})$ on real-space grid \mathbf{r}_j and Fourier transform $n(\mathbf{r})$ to compute Hartree potential (Gaussian and plane waves scheme)

$$n(\mathbf{G}_k) = \sum_j e^{i\mathbf{G}_k \mathbf{r}_j} n(\mathbf{r}_j) \qquad v_{\mathbf{H}}(\mathbf{G}_k) = \frac{4\pi n(\mathbf{G}_k)}{|\mathbf{G}_k|^2} \qquad v_{\mathbf{H}}(\mathbf{r}_j) = \sum_k e^{-i\mathbf{G}_k \mathbf{r}_j} v_{\mathbf{H}}(\mathbf{G}_k)$$

Question to you:

Why is the Gaussian and plane-wave scheme (GPW) in CP2K named this way?

(a) Because KS orbitals are expanded in a basis of Gaussians and plane waves:

$$\psi_n(\mathbf{r}) = \sum_{\mu} C_{\mu n} \, \phi_{\mu}(\mathbf{r}) + \sum_{\mathbf{G}} \mathbf{C}_{\mathbf{G}n} \, e^{i\mathbf{G}\cdot\mathbf{r}}$$

(b) Because KS orbitals are expanded in Gaussians:

$$\psi_n(\mathbf{r}) = \sum_{\mu} C_{\mu n} \, \phi_{\mu}(\mathbf{r})$$

whereas plane waves are used for the Fourier transformation of the electron density *n*:

$$n(\mathbf{G}_k) = \sum_j e^{i\mathbf{G}_k \mathbf{r}_j} n(\mathbf{r}_j)$$

Correct answer: (b).

The KS orbitals are only expanded in Gaussians, not in plane waves!

Are atom-centered basis functions the only basis set? (not in CP2K)

Plane-wave basis set for KS orbitals:

$$\psi_n(\mathbf{r}) = \sum_{\mathbf{G} \text{ with } |\mathbf{G}| < G_c} C_{\mathbf{G}n} e^{i\mathbf{G} \cdot \mathbf{r}}$$

Use all plane waves that are periodic w.r.t. simulation box and are below cutoff G_c

Advantage of plane waves over Gaussian basis functions:

- systematic convergence of basis set by increasing G_c
- no pretabulation of basis sets necessary

Disadvantages of plane waves compared to Gaussian basis functions:

- inefficient for all systems with large vacuum region, for example single molecule,
 2D materials, surface, metal-organic framework, some liquids
- Gaussian basis is usually smaller than plane-wave basis
 - → Usually Gaussian-based codes can deal with more atoms in the unit cell