Analyse de données

Séance 1 - Comprendre un dataset

Introduction L'importance de la donnée en 2022

Donnée

Valeur qui porte de l'information

Littérale, numérique, booléenne, etc.

Quantités, faits, statistiques, etc.

⇒ Exploiter des données, c'est utiliser des informations à son avantage

Exploiter des données, c'est utiliser des informations à son avantage

Toute activité génère de la donnée, donc toute activité est sujette à l'exploitation de données

Source de l'image : What is Data Science? sur hackr.io

Deux grands types d'exploitation

- Analyse
- Apprentissage

... Rendus possibles par des avancées technologiques et théoriques

Quelques exemples en santé

L'exploitation des données de santé a de nombreuses applications en recherche et dans l'industrie.

Épidémiologie

Prédiction de maladies

Gestion des plannings

Alertes de santé

... etc.

Quelques exemples en santé

Les **symptom checkers** permettent aux patients d'évaluer leur propre état pour décider s'ils doivent consulter un médecin ou aller aux urgences.

Ils fonctionnent sous la forme d'un chat bot.

https://symptoms.webmd.com/

Un peu de vocabulaire

Dataset

Un ensemble de données

Big Data

Un énorme ensemble de données

Data Analysis

Observer des données pour les comprendre

Data Engineering

Préparation des données pour analyse

Data Science

Modélisation des données

ARTIFICIAL INTELLIGENCE VS MACHINE LEARNING VS DEEP LEARNING

Artificial Intelligence

Development of smart systems and machines that can carry out tasks that typically require human intelligence

2 Machine Learning

Creates algorithms that can learn from data and make decisions based on patterns observed

Require human intervention when decision is incorrect

3 Deep Learning

Uses an artificial neural network to reach accurate conclusions without human intervention

Comment exploite-t-on des données?

La méthode CRISP-DM

Cross-Industry **S**tandard **P**rocess for **D**ata **M**ining

- → Publiée en 1999
- → Méthode suivie dans l'industrie
- → Toujours d'actualité

Plan de cours

Séance 1 : Comprendre un dataset

- Étude exploratoire des données
- Visualisation des données

Séance 2 : Préparer un dataset (1/2)

- Overview des types de pré-traitement des data
- Gestion des valeurs manquantes & absurdes

Séance 3 : Préparer un dataset (2/2)

- Introduction à la réduction de dimension
- Typologie des algorithmes de machine learning

Étude exploratoire des données Introduction

Étude exploratoire des données

La première chose à faire avec un dataset est d'apprendre à le connaître

Qu'est-ce qu'on cherche à apprendre?

Qu'est-ce qu'on cherche à apprendre?

Questions d'ordre général (lire et compter)

- Quelles données le dataset contient-il ?
- Comment ces données sont-elles représentées ?
- De quel type sont ces données ?
- Y a-t-il des "trous" dans les données ?
- Y a-t-il des doublons dans les données ?
- Les données sont-t-elles équilibrées ?

Questions plus avancées (comprendre)

- Quelle est la distribution statistique des données ?
- Y a-t-il des corrélations entre les colonnes ?
- Si oui, lesquelles?

⇒ Plus on avance dans l'exploration, plus les questions qui émergent se font nombreuses.

Étude exploratoire des données Mise en pratique

Quels langages pour l'analyse de données ?

Les plus utilisés sont Python et R, mais il en existe bien d'autres (e.g. Kotlin, Java, etc.).

De nombreux packages sont disponibles dans ces langages pour exploiter, analyser et modéliser les données.

Nous utiliserons le langage Python

Quels logiciels pour l'analyse de données ?

Par souci de simplicité, nous exécuterons notre code sur des Jupyter notebook via un logiciel en ligne.

Faire tourner du code en local nécessite d'installer Python et ses packages soi-même.

Quels packages pour l'analyse de données ?

De nombreuses librairies (ensembles d'objets et de fonctions) existent en Python pour différents aspects de l'exploitation de données.

Mathématiques

Manipulation de datasets

Machine Learning (hors Deep learning)

Affichages

Récupération du notebook

Ouvrir le notebook

Il suffit de l'importer sur le logiciel de son choix.

Datalore permet une édition simultanée entre plusieurs collaborateurs. (Share > Manage invitations)

Au travail!

Le notebook contient une mise en pratique et des questions à traiter.

Visualisation des données

Quels sont les intérêts de la visualisation des données ?

Quels sont les intérêts de la visualisation des données ?

Les intérêts de la visualisation

- La visualisation peut servir à comprendre des données : détecter les outliers, visualiser la distribution d'une variable, le nombre d'éléments d'une classe, la corrélation entre des variables, l'importance des différentes features, etc.
- Elle peut permettre de choisir un algorithme (par exemple dans le cas de données linéairement séparables)
- Les graphes sont également un outil de communication essentiel dans un contexte professionel (pour convaincre ou expliquer, en particulier à des gens qui ne sont pas experts techniques)

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Coefficient de corrélation de Pearson