

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME										
CENTRE NUMBER						CANDIDATE NUMBER				
MATHEMATICS									97	09/12
Paper 1 Pure Mat	themati	cs 1 (P	1)				Feb	ruary/	March	1 2017
							1	hour	45 mi	nutes
Candidates answe	er on th	e Quest	ion Pa	iper.						
Additional Materia	ls:	List of F	ormu	lae (MF9)						

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

•••	• • • • •
•••	••••
•••	 ••••
•••	 ••••
•••	••••
•••	 ••••
•••	 ••••
•••	••••
•••	
•••	 ••••
•••	••••
•••	 ••••
•••	 ••••
•••	••••
•••	
•••	 ••••
•••	••••

	expansion (•	•						
••••••		•••••		•••••					
						•••••		•••••	
•••••	•••••	•••••	••••••		•••••	•••••	•••••	•••••	
•••••									
								•••••	
•••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••	•••••	
								•••••	
•••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••	•••••	
							•••••	•••••	
•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	••••••	••••••
••••••	•••••••	•••••••	••••••	••••••	••••••	••••••	••••••	••••••	•••••••
•••••			•••••					•••••	
••••••	••••••	•••••••	••••••	••••••	••••••	••••••	••••••	••••••	•••••••
•••••		•••••	••••••		••••••	•••••	•••••	•••••	
. ,									
•••••								•••••	

The diagram shows a water container in the form of an inverted pyramid, which is such that when the height of the water level is h cm the surface of the water is a square of side $\frac{1}{2}h$ cm.

(i)	Express the volume of water in the container in terms of h .	[1]
	[The volume of a pyramid having a base area A and vertical height h is $\frac{1}{3}Ah$.]	

Water is steadily dripping into the container at a constant rate of $20\,\mathrm{cm}^3$ per minute.

level is 10 c	m.							I
•••••	•••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
				•••••				
•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	••••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••••	••••••	•••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	
•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••		
•••••		••••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
				•••••			•••••	
•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	••••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •
•••••••	••••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
				•••••			•••••	

4

In the diagram, AB = AC = 8 cm and angle $CAB = \frac{2}{7}\pi$ radians. The circular arc BC has centre A, the circular arc CD has centre B and ABD is a straight line.

(i)	Show that angle $CBD =$	$\frac{3}{14}\pi$ radians.	[1]

Find the perimeter of the shaded region.	[5

The diagram shows the graphs of $y = \tan x$ and $y = \cos x$ for $0 \le x \le \pi$. The graphs intersect at points A and B.

(i)	Find by calculation the <i>x</i> -coordinate of <i>A</i> .	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(ii)	Find by calculation the coordinates of B . [3]

6 F	Relative to an	origin O ,	the position	vectors of the	points A	and B and	re given by
-----	----------------	--------------	--------------	----------------	------------	-------------	-------------

$\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j}$	i + 5k	and	$\overrightarrow{OB} = 7\mathbf{i} + 4\mathbf{j} + 3\mathbf{j}$	k
$O_1 - 21 + 3$	$\top J \mathbf{K}$	and	OD = II + II + J	n

Use a scalar product to find angle OAB .	[5]

Find the area of triangle <i>OAB</i> .	[2]

The	function f is defined for $x \ge 0$ by $f(x) = (4x + 1)^{\frac{3}{2}}$.	
(i)	Find $f'(x)$ and $f''(x)$.	[3]
The	first second and third towns of a geometric program are respectively f(2) f	(2) and Irf"(2)
	first, second and third terms of a geometric progression are respectively $f(2)$, f' . Find the value of the constant k .	(2) and k1 (2).
(II <i>)</i>		
		•••••
		•••••

 · · · · · · · · · · · · · · · · · · ·
 ••••

8	The functions f and	g are defined for $x \ge 0$ by
---	---------------------	--------------------------------

$$f: x \mapsto 2x^2 + 3$$
,
 $g: x \mapsto 3x + 2$.

(i)	Show that $gf(x) = 6x^2 + 11$ and obtain an unsimplified expression for $fg(x)$.	[2]
		••••
		••••
		••••
		•••••
		••••
		••••
(ii)	Find an expression for $(fg)^{-1}(x)$ and determine the domain of $(fg)^{-1}$.	[5]
		••••
		••••
		••••
		••••
		•••••

		•••••
		••••••
		•••••
		•••••
		•••••
		•••••
(:::)	$C_{\alpha}(x) = c_{\alpha}(x)$ $c_{\alpha}(x)$ $c_{\alpha}(x)$	[2]
(III)	Solve the equation $gf(2x) = fg(x)$.	[3]
		•••••
		••••••
		••••••
		•••••
		•••••

) Find the equation of the tangent to the curve at A .	
the normal to the curve at A intersects the curve again at B .	
i) Find the coordinates of B .	

The	tangents at A and B intersect each other at C .
(iii)	Find the coordinates of C . [4]

10

The diagram shows the curve y = f(x) defined for x > 0. The curve has a minimum point at A and crosses the x-axis at B and C. It is given that $\frac{dy}{dx} = 2x - \frac{2}{x^3}$ and that the curve passes through the point $\left(4, \frac{189}{16}\right)$.

(i)	Find the x -coordinate of A .	[2]
(ii)	Find $f(x)$.	[3]

(iii)	Find the x -coordinates of B and C . [4]

[Question $10 \, (iv)$ is printed on the next page.]

Find, showing all necessary working, the area of the shaded region.	[4]
	•••••
	•••••
	•••••
	•••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2017