Applying the importance sampling to regression

Jieun Shin December 15, 2021

Table of Contents

1. Introduction

2. Methodology

3. Choice the optimal reference parameter

4. Simulation

1. Introduction

1. Introduction

- Objective: Comparison of variance reduction methods for estimating extreme event probability, $\ell = \mathbb{E}[Y > \gamma]$, in simple linear regression.
- Let *Y* be the response variable of simple linear regression:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 where $\epsilon \sim N(0, \sigma^2)$,

for $i = 1, \ldots, n$.

- Importance sampling using least square estimator.
- Comparison of results when using two suggested distributions in regression.
- Check if variance reduction occur.

2. Methodology

2. Methodology

Estimation of rare-event probabilities

- Let the parameter set for target distribution as $\boldsymbol{\theta}^* = (\sigma^{*2}, \beta_0^*, \beta_1^*)$ and proposed distribution as $\boldsymbol{\theta} = (\sigma^2, \beta_0, \beta_1)$.
- We want to estimate of

$$\ell = \mathbb{P}_{\boldsymbol{\theta}^*}(Y \ge \gamma) = \mathbb{E}_{\boldsymbol{\theta}^*}[I\{Y \ge \gamma\}]$$
 (1)

for some fixed level γ .

• Y is a random vector with pdf $f(\cdot, \theta^*)$ belonging to parametric family $\{f(\cdot, \theta), \theta \in \Theta\}$, and $\{Y \ge \gamma\}$ is assumed to be a rare event.

3

2. Methodology

Importance sampling estimator

- The importance sampling estimator $\hat{\ell}_{\mathit{IS}}$ is defined as

$$\hat{\ell}_{IS} = \frac{1}{N} \sum_{k=1}^{N} I(Y_k > \gamma) W(Y_k; \boldsymbol{\theta}^*, \boldsymbol{\theta}), \tag{2}$$

where $W(Y_k; \boldsymbol{\theta}^*, \boldsymbol{\theta}) = f(Y_k; \boldsymbol{\theta}^*) / f(Y_k; \boldsymbol{\theta})$ is the likelihood ratio.

- We consider two methods to choose the *optimal reference parameter* heta.
 - 1. Cross-entropy method
 - 2. Least square estimator

Δ

Cross-entropy (CE) method

- The optimal CE reference parameter $\hat{m{ heta}}_{CE}$ is defined as

$$\hat{\boldsymbol{\theta}}_{CE} = \operatorname*{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{\tilde{\boldsymbol{\theta}}} \left[I(Y_k > \gamma) W(Y_k; \boldsymbol{\theta}^*, \tilde{\boldsymbol{\theta}}) \ln f(Y_k; \boldsymbol{\theta}) \right], \tag{3}$$

where $\tilde{\boldsymbol{\theta}}$ is an arbitary tilting parameter.

- We can estimate $\hat{m{ heta}}_{\mathit{CE}}$ as the solution of the stochastic program

$$\hat{\boldsymbol{\theta}}_{CE} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \frac{1}{N} \sum_{k=1}^{N} I(Y_k > \gamma) W(Y_k; \boldsymbol{\theta}^*, \tilde{\boldsymbol{\theta}}) \ln f(Y_k; \boldsymbol{\theta}), \tag{4}$$

where Y_i, \ldots, Y_k is a random sample from $f(Y_k; \tilde{\boldsymbol{\theta}})$.

Cross-entropy (CE) method

1. Find the optimal $\hat{\sigma}_{\it CE}^2$ as the solution of the stochastic program

$$\hat{\sigma}_{CE}^{2} = \underset{\sigma^{2}}{\operatorname{argmax}} \frac{1}{N} \sum_{k=1}^{N} I(\varepsilon_{k} > \gamma) W(\varepsilon_{k}; \sigma^{*2}, \tilde{\sigma}^{2}) \ln f(\varepsilon_{k}; \sigma^{2})$$
 (5)

$$= \frac{\sum_{k=1}^{N} I(\varepsilon_k > \gamma) W(\varepsilon_k; \sigma^{*2}, \tilde{\sigma}^2) \varepsilon_k^2}{\sum_{k=1}^{N} I(\varepsilon_k > \gamma) W(\varepsilon_k; \sigma^{*2}, \tilde{\sigma}^2)},$$
(6)

where the error $\varepsilon_k \sim N(0, \tilde{\sigma}^2)$.

Cross-entropy (CE) method

2. Find the optimal $\hat{\beta}_{0CE}$ as the solution of the stochastic program:

$$\hat{\beta}_{0CE} = \underset{\beta_0}{\operatorname{argmax}} \frac{1}{N} \sum_{k=1}^{N} I(Y_k > \gamma) W(Y_k; \beta_0^*, \tilde{\beta}_0) \ln f(Y_k; \beta_0)$$
 (7)

$$=\frac{\sum_{k=1}^{N} I(Y_k > \gamma) W(Y_k; \beta_0^*, \tilde{\beta}_0) (Y_k - \tilde{\beta}_1 X_k)}{\sum_{k=1}^{N} I(Y_k > \gamma) W(Y_k; \beta_0^*, \tilde{\beta}_0)},$$
(8)

where the response variable $Y_k \sim N(\tilde{\beta}_0 + \tilde{\beta}_1 X, \tilde{\sigma}^2)$.

Cross-entropy (CE) method

3. Find the optimal $\hat{\beta}_{1CE}$ as the solution of the stochastic program:

$$\hat{\beta}_{1CE} = \underset{\beta_1}{\operatorname{argmax}} \frac{1}{N} \sum_{k=1}^{N} I(Y_k > \gamma) W(Y_k; \beta_1^*, \tilde{\beta}_1) \ln f(Y_k; \beta_1)$$
 (9)

$$=\frac{\sum_{k=1}^{N} I(Y_k > \gamma) W(Y_k; \beta_1^*, \tilde{\beta}_1) X_k (Y_k - \tilde{\beta}_0)}{\sum_{k=1}^{N} I(Y_k > \gamma) W(Y_k; \beta_1^*, \tilde{\beta}_1) X_k^2},$$
(10)

where the response variable $Y_k \sim N(\tilde{\beta}_0 + \tilde{\beta}_1 X, \tilde{\sigma}^2)$.

Least square estimator

We choose the optimal reference parameter as least square estimator as follows:

$$\hat{\sigma}_{LS}^2 = \underset{\sigma^2}{\operatorname{argmin}} \sum_{k=1}^{N} \varepsilon_k^2, \tag{11}$$

$$\hat{\beta}_{0LS} = \underset{\beta_0}{\operatorname{argmin}} \sum_{k=1}^{N} (Y_k - \tilde{\beta}_0 - \tilde{\beta}_1 X_k)^2, \tag{12}$$

$$\hat{\beta}_{1LS} = \underset{\beta_1}{\operatorname{argmin}} \sum_{k=1}^{N} (Y_k - \tilde{\beta}_0 - \tilde{\beta}_1 X_k)^2, \tag{13}$$

where the response variable $\varepsilon_k \sim N(0, \tilde{\sigma}^2)$, $Y_k \sim N(\tilde{\beta}_0 + \tilde{\beta}_1 X, \tilde{\sigma}^2)$.

4. Simulation

4. Simulation

Simulation setting

- Set the parameter of target distribution as $\sigma^{*2} \in \{\sqrt{0.4}, \sqrt{12}\}, \beta_0^* = 5, \beta_1^* = 3.$ and $X_k \sim \textit{U}(0,1)$ and $\varepsilon_k \sim \textit{N}(0,\sigma^{*2})$ then $Y_k = \beta_0^* + \beta_1^* X_k + \varepsilon_k, k = 1, \ldots, \textit{N}.$
- Set the large value γ is 99.95% quantile value of Y.
- Sample size: $N = 10^6$.

4. Simulation

Table 1: $\sigma^{*2} = \sqrt{0.4}, \tilde{\sigma}^2 = 1, \tilde{\beta}_0 = 7, \tilde{\beta}_1 = 7$

Method	$\hat{\sigma}^2$	\hat{eta}_0	\hat{eta}_1	ê	$Var(\hat{\ell})$	relative error
CMC	-	-	-	0.000500	0.0000223551	0.0447102
IS-CE	0.40025	3.048124	6.999594	0.000464	0.0000032378	0.0069722
IS-LS	0.99992	6.999022	7.000913	0.000349	0.0000972918	0.2782808

Table 2: Table2.
$$\sigma=\sqrt{12}, \tilde{\sigma}^2=1, \tilde{\beta}_0=10, \tilde{\beta}_1=10$$

Method	$\hat{\sigma}^2$	\hat{eta}_0	\hat{eta}_1	ê	$Var(\hat{\ell})$	relative error
CMC	-	-	-	0.000500	0.0000223551	0.0447102
IS-CE	7.86831	10.14025	9.936445	0.000520	0.0000020892	0.0040148
IS-LS	0.99992	9.999022	10.00091	0.000440	0.0000105115	0.0238859