夏可为 2015301200168 卓工班

- 7.2 分别用0,1,2,3,4,5表示(编号)结点 a.b, c,d.e,f

一种 深度优先: a,b,d, e,c,f

- 种广度优先: a, c, e, b, f, d

(4) -木果>架度优先生成权寸

一棵广度优先生成树

(5) Kruskal 算法

Prim 算法 (从结点A开始)

(3)	结点	入度	出度	度
	Vı	2	1	3
	٧z	1	2	3
	V ₃	2	3	5
	Vψ	3		4
	Vs	2	2	4
jā,	V ₆	人也什么	2	3

 $V_1, V_3, V_6, V_4, V_2,$

(4) 图的强连通分量就是其自身

7.4

}

Index of (Vertex < 7> n) { return vertex list. Index of (n); } public int 7.5 Contains Directed Edge (T from, T to) { Public 7.6 bool

i= Index Of (from);

nodes [i]. Neighbors. contain (new Graph Node < T > (to)); return

} Contains Undirected Edge (T from, T to) { public bool int Index Of (from);

nodes [i]. Neighbors. contain (new GraphNode < 7> (to)); return