Задача А. Дейкстра

 Имя входного файла:
 dijkstra.in

 Имя выходного файла:
 dijkstra.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Дан ориентированный взвешенный граф.

Найдите кратчайшее расстояние от одной заданной вершины до другой.

Формат входного файла

В первой строке входного файла три числа: N, S и F ($1 \leqslant N \leqslant 2000, 1 \leqslant S, F \leqslant N$), где N — количество вершин графа, S — начальная вершина, а F — конечная. В следующих N строках по N чисел — матрица смежности графа, где -1 означает отсутствие ребра между вершинами, а любое целое неотрицательное число, не превосходящее $10\,000$ — присутствие ребра данного веса. На главной диагонали матрицы всегда нули.

Формат выходного файла

Вывести искомое расстояние или -1, если пути не существует.

Примеры

dijkstra.in	dijkstra.out
3 1 2	6
0 -1 2	
3 0 -1	
-1 4 0	

Задача В. Расстояние между вершинами

 Имя входного файла:
 distance.in

 Имя выходного файла:
 distance.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Дан неориентированный взвешенный граф.

Найти вес минимального пути между двумя вершинами.

Формат входного файла

Первая строка входного файла содержит натуральные числа N, M, S и $F(N \le 5\,000, M \le 100\,000, 1 \le S, F \le N, S \ne F)$ — количество вершин и ребер графа а также номера вершин, длину пути между которыми требуется найти. Следующие M строк по три натуральных числа b_i, e_i и w_i — номера концов i-ого ребра и его вес соответственно $(1 \le b_i, e_i \le n, 0 \le w_i \le 100\,000)$.

Формат выходного файла

Первая строка должна содержать одно натуральное число — вес минимального пути между вершинами S и F. Во второй строке через пробел выведите вершины на кратчайшем пути из S в F в порядке обхода. Если путь из S в F не существует, выведите -1.

Примеры

distance.in	distance.out
4 4	3
1 3	1 2 3
1 2 1	
2 3 2	
3 4 5	
4 1 4	

Задача С. Флойд

Имя входного файла: floyd.in
Имя выходного файла: floyd.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Полный ориентированный взвешенный граф задан матрицей смежности. Постройте матрицу кратчайших путей между его вершинами.

Гарантируется, что в графе нет циклов отрицательного веса.

Формат входного файла

В первой строке вводится единственное число N ($1 \le N \le 100$) — количество вершин графа. В следующих N строках по N чисел задается матрица смежности графа (j-ое число в i-ой строке — вес ребра из вершины i в вершину j). Все числа по модулю не превышают 100. На главной диагонали матрицы — всегда нули.

Формат выходного файла

Выведите N строк по N чисел — матрицу расстояний между парами вершин, где j-ое число в i-ой строке равно весу кратчайшего пути из вершины i в j.

Примеры

floyd.in	floyd.out
4	0 5 7 13
0 5 9 100	12 0 2 8
100 0 2 8	11 16 0 7
100 100 0 7	4 9 11 0
4 100 100 0	

Задача D. Цикл отрицательного веса

 Имя входного файла:
 negcycle.in

 Имя выходного файла:
 negcycle.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дан ориентированный граф. Определите, есть ли в нем цикл отрицательного веса, и если да, то выведите его.

ЛКШ.2011.Август.С.День 10 Судиславль, Берендеевы Поляны, 13 Августа 2011

Формат входного файла

Во входном файле в первой строке число N ($1\leqslant N\leqslant 100$) — количество вершин графа. В следующих N строках находится по N чисел — матрица смежности графа. Все веса ребер не превышают по модулю $10\,000$. Если ребра нет, то соответствующее число равно $100\,000$.

Формат выходного файла

В первой строке выходного файла выведите «YES», если цикл существует или «NO» в противном случае. При его наличии выведите во второй строке количество вершин в искомом цикле и в третьей строке — вершинывходящие в этот цикл в порядке обхода.

Примеры

negcycle.in	negcycle.out
2	YES
0 -1	2
-1 0	2 1