Test 1 (Algebra, Exponential & Logarithmic, Trigonometry)

(52 marks)

1 The quadratic expression f(x) is such that

- when f(x) is divided by x-1, the remainder is 3;
- when f(x) is divided by x + 1, the remainder is 7;
- f(0) = 1.

Find
$$f(x)$$
.

[7]

2 Find the values of x for which

$$x^2 - x + 4 < |4x - 2|$$
.

[7]

3 In the expansion of

$$\frac{1}{\sqrt{1+ax}} - \frac{1}{1+2x}$$

in ascending powers of x, the first non-zero term is the term in x^2 . Find the value of the constant a and hence find the terms in x^2 and x^3 . [7]

4 (a) The variables p and q are related by the law

 $q = ap^b$, where a and b are constants.

Given that $\ln p = 1.32$ when $\ln q = 1.73$,

and
$$\ln p = 0.44$$
 when $\ln q = 1.95$ find the values of b and $\ln a$. [5]

(b) Given that $y = log_2 x$ and that

$$log_2x - log_x8 + log_22^k + klog_x4 = 0,$$

prove that

$$y^2 + ky + (2k - 3) = 0.$$
 [4]

- (i) Hence deduce the set of values of k for which y is real.
- (ii) Find the values of x when k = 1.5.

Page 1 of 2

[4]

[3]

The figure shows two perpendicular axes OX and OY. Also shown are two circles C_1 and C_2 which touch each other and which both lie in the first quadrant (i.e. above OX and to the right of OY).

 C_1 has radius 4 and touches OY at D; C_2 has radius 3 and touches OX at E. The line AB, joining the centres of C_1 and C_2 , meets OX at F and $B\widehat{F}O = \theta$.

(a) Find expression for OD and OE in terms θ and show that $DE^2 = a + p \sin \theta + q \cos \theta$

where a, p and q are constants.

Hence express DE^2 in the form $a + r\cos(\theta - \alpha)$ where the values of r and α are to be found.

- (b) By considering the extreme positions in which
 - (i) Both circles touch OX, and
 - (ii) Both circles touch OY,

Show that, correct to 1 decimal place,

$$8.2 \le \theta \le 98.2.$$
 [4]

(c) Find the greatest and least possible lengths of DE and state the corresponding values of θ . [5]

1.
$$f(1) = 3$$
 $\frac{f(x)}{x-1} = (ax+b) + \frac{3}{x-1}$ $\frac{ax+b}{x-1}$ $f(0) = 1$ $\frac{1}{x-1} = (a(0)+b) + \frac{3}{0-1}$

$$\frac{7}{-1-1} = \left[\alpha(-1) + 2\right] + \frac{3}{-1-1}$$

$$\alpha = 4$$

$$f(x) = (4x+2)(x-1) + 3$$

$$f(x) = 4x^2 - 2x + 1$$

2.
$$\chi^{2} - \chi + 4 < |4 \times -2|$$

 $(\chi^{2} - \chi + 4)^{2} < (4 \chi - 2)^{2}$
 $\chi^{4} - \chi^{3} + 4\chi^{2} - \chi^{3} + \chi^{2} - 4\chi + 4\chi^{2} - 4\chi + 16$
 $< 16\chi^{2} - 16\chi + 4$

=)
$$\chi^{4} - 2\chi^{3} - 7\chi^{2} + 8\chi + 12 < 0$$

 $f(x) = \chi^{4} - 2\chi^{3} - 7\chi^{2} + 8\chi + 12$
 $TSE \quad f(-1) = 0 \Rightarrow (\chi + 1) \text{ is a factor}$
 $f(2) = 0 \Rightarrow (\chi - 2) \text{ is a factor}$
 $\chi^{2} - \chi - \chi - \chi = 0$
 $f(\chi) = 0 \Rightarrow (\chi - 2) \text{ is a factor}$
 $f(\chi) = 0 \Rightarrow (\chi - 2) \text{ is a factor}$
 $f(\chi) = 0 \Rightarrow (\chi - 2) \text{ is a factor}$
 $f(\chi) = 0 \Rightarrow (\chi - 2) \text{ is a factor}$

-2LXL-1 or

$$= (1+ax)^{\frac{1}{2}} - (1+ix)^{-1}$$

$$= \left[\left[-\frac{1}{5} \alpha x + \frac{3}{5} \alpha^2 x^2 - \frac{5}{16} \alpha^3 x^3 \right] - \left[1 - 2x + 4x^2 - 8x^3 \right]$$

$$= (2-\frac{1}{5}a)x + (\frac{3}{8}a^2 - 4)x^2 + (8 - \frac{5}{16}a^3)x^3$$

$$2-\frac{1}{2}a=0$$
 $0=4$
 $2\pi^2$
 $-12\pi^3$

4. (a)
$$q = apb$$
 $lnq = blnp + lna$
 $(k^{2} - 4a)(2k-3)za$
 $lnp=1.32$, $lnq=1.73$
 $(k-6)(k-2).70$
 $(k-$

4. (a)
$$q = ap^{b}$$
 $lnq = blnp + lna$
 $(k^{a} - 4cl)(2k-3)z^{a}$
 $lnp=1.32$, $lnq=1.73$
 $(k-6)(k-2).70$
 $(k-6)(k-2).70$

4(b) (i) 6^{2} 4 ac 70 $K^{2}-411(2K-3) > 0$ $K^{2}-8K+12 > 0$ (K-6)(K-2) > 0 $K \leq 2 \text{ or } K > 6$

(ii) $y^2 + \frac{3}{2}y = 0$ $y(y + \frac{3}{2}) = 0$ y = 0, $y = -\frac{3}{2}$

 $\chi = 2^{9}$ $\chi = 2^{0} = 1$

 $\mathcal{X} = 2^{3}$ $\mathcal{X} = 2^{-3}$ $\mathcal{X} = 2\sqrt{2}$

(a)
$$Ob = 7 \sin 0 + 3 \implies Ob^2 = 49 \sin^2 0 + 47 \sin 0 + 9$$

(a) $Ob = 7 \cos 0 + 4 \implies Ob^2 = 49 \cos^2 0 + 47 \sin 0 + 9$

$$DE^2 = 76 + 42 \sin 0 + 56 \cos 0$$

$$42 \sin 0 + 56 \cos 0 = R \cos(0 - 4)$$

$$R = \sqrt{42^2 + 56^2} = 70$$

$$d = \tan^{-1} 42 \cos 0 = 36.87^\circ$$

(b) (i)

(1) Chouches $0X$, $0D = 4$

$$Ob = 7 \sin 0 + 3$$

$$4 = 7 \sin 0 + 3 \implies 0 = 8.2^\circ$$

4 touches
$$0X$$
, $0D = 4$
 $0D = 7 \text{ Sino } + 3$
 $4 = 7 \text{ Sino } + 3 \implies 0 = 8.2^{\circ}$
 Cz toches $0Y$, $0E = 3$
 $0E = 7 \cos 0 + 4$
 $3 = 7 \cos 0 + 4 \implies 0 = 98.2$
 $8.2^{\circ} \le 0 \le 98.2^{\circ}$

(c)
$$DE^2 = 74 + 70 \cos(0 - 36.87)^{\circ}$$
 $-287^{\circ} \times 0 - 36.87 \times 61$
max $OE = \sqrt{74470(1)} = 12$
when $\cos(0 - 36.87) = 1 \Rightarrow 0 = 36.87$
win $DE = \sqrt{74470\cos(98.2 - 36.87)^{\circ}} = 10.37$
when $0 = 98.2$