

Predicate Logic and Propositional Function

- Predicate logic uses the following new features:
 - Variables: x, y, z
 - Predicates: P(x), M(x)
- Propositional functions are a generalization of propositions.
 - They contain variables and a predicate: P(x)
 - Variables can be replaced by elements from their domain.
- Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the domain (or bound by a quantifier).

- The statement P(x) is said to be the value of the propositional function P at x.
- For example, let P(x) denote "x > 0" and the domain be the integers. Then:
 - P(-3) is false
 - P(0) is false
 - P(3) is true
- Let "x + y = z" be denoted by R(x, y, z) and U (for all three variables) be the integers. Find these truth values:
 - R(2,-1,5) is false
 - R(3,4,7) is true
 - R(x, 3, z) is not a proposition
- Often the domain is denoted by U. So, in this example U is the integers.

- Connectives from propositional logic carry over to predicate logic.
- If P(x) denotes "x > 0," find these truth values:

$$P(3) \wedge P(-1)$$
 is F

$$P(3) \rightarrow P(-1)$$
 is F

$$P(3) \rightarrow P(1)$$
 is T

 Expressions with variables are not propositions and therefore do not have truth values. For example,

$$P(3) \wedge P(y)$$

$$P(x) \rightarrow P(y)$$

 When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions.

Quantifier

- Quantifiers are words that refer to quantities such as "some" or "all" and tell for how many elements a given predicate is true.
- We need quantifiers to express the meaning of English words including all and some:
 - "All men are Mortal."
 - "Some cats do not have fur."
- The two most important quantifiers are:
 - Universal Quantifier, "For all," symbol: ∀
 - Existential Quantifier, "There exists," symbol: ∃
- We write as in $\forall x P(x)$ and $\exists x P(x)$.
 - $\forall x P(x)$ asserts P(x) is true for every x in the domain.
 - $\exists x \ P(x)$ asserts P(x) is true for some x in the domain.
- The quantifiers are said to bind the variable x in these expressions.

Universal Quantifier

- The symbol ∀ denotes "for all" (or "for any", "for every", "for each") and is called the universal quantifier.
- Let P(x) be a predicate and D the domain of x. A universal statement is a statement of the form " $\forall x \in D$, P(x)".
 - It is defined to be true iff P(x) is true for every x in D.
 - It is defined to be false iff P(x) is false for at least one x in D.
- \blacksquare A value for x for which P(x) is false is called a counterexample.

Examples:

- 1. Let $D = \{1, 2, 3, 4, 5\}$, and consider the statement $\forall x \in D$, $x^2 \ge x$. Show that this statement is true.
 - Check that " $x^2 \ge x$ " is true for each x in D. $1^2 \ge 1$; $2^2 \ge 2$; $3^2 \ge 3$; $4^2 \ge 4$; $5^2 \ge 5$. Hence " $\forall x \in D, x^2 \ge x$ " is true.
- 2. If P(x) denotes "x > 0" and U is the integers, then $\forall x \ P(x)$ is false.
- 3. If P(x) denotes "x > 0" and U is the positive integers, then $\forall x \ P(x)$ is true.
- 4. If P(x) denotes "x is even" and U is the integers, then $\forall x P(x)$ is false.

Existential Quantifier

- The symbol \exists denotes "For some x, P(x)", or as "There is an x such that P(x)," or "For at least one x, P(x)." and is called the universal quantifier.
- Let P(x) be a predicate and D the domain of x. An **existential** statement is a statement of the form " $\exists x \in D$ such that P(x)".
 - It is defined to be true iff P(x) is true for at least one x in D.
 - It is defined to be false iff P(x) is false for all x in D.

Examples:

- 1. Show that $\exists m \in Z^+$ such that $m^2 = m$ is true.
 - Observe that $1^2 = 1$. Thus " $m^2 = m$ " is true for at least one integer m.

Hence " $\exists m \in Z^+$ such that $m^2 = m$ " is true.

2. Let $E = \{5, 6, 7, 8\}$. Show that $\exists m \in \mathbf{E}$ such that $m^2 = m$ is false.

Note that $m^2 = m$ is not true for any integer m from 5 through 8:

$$5^2 = 25 \neq 5$$
; $6^2 = 36 \neq 6$; $7^2 = 49 \neq 7$; $8^2 = 64 \neq 8$.

Hence " $\exists m \in E \text{ such that } m^2 = m$ " is false.

- 3. If P(x) denotes "x > 0" and U is the integers, then $\exists x \ P(x)$ is true. It is also true if U is the positive integers.
- 4. If P(x) denotes "x < 0" and U is the positive integers, then $\exists x \ P(x)$ is false.
- 5. If P(x) denotes "x is even" and U is the integers, then $\exists x \ P(x)$ is true.

Uniqueness Quantifier

 $\exists !x \ P(x) \ means that \ P(x) \ is true for <u>one and only one</u> x in the universe of discourse.$

This is commonly expressed in English in the following equivalent ways:

- "There is a unique x such that P(x)"
- "There is one and only one x such that P(x)"

Examples:

- 1. If P(x) denotes "x + 1 = 0" and U is the integers, then $\exists !x P(x)$ is true.
- 2. If P(x) denotes "x > 0," then $\exists !x P(x)$ is false.

Universal Conditional Statement

A reasonable argument can be made that the most important form of statement in mathematics is the universal conditional statement: $\forall x$, if P(x) then Q(x).

Examples:

Rewrite the following statement informally, without quantifiers or variables: $\forall x \in \mathbf{R}$, if x > 2 then $x^2 > 4$.

- If a real number is greater than 2, then its square is greater than 4, or
- Whenever a real number is greater than 2, its square is greater than 4.

Properties of Quantifier

The truth value of $\exists x \ P(x)$ and $\forall x \ P(x)$ depend on both the propositional function P(x) and on the domain U.

Examples:

- 1. If U is the positive integers and P(x) is the statement "x < 2", then $\exists x \ P(x)$ is true, but $\forall x \ P(x)$ is false.
- 2. If U is the negative integers and P(x) is the statement "x < 2", then both $\exists x \ P(x)$ and $\forall x \ P(x)$ are true.
- 3. If U consists of 3, 4, and 5, and P(x) is the statement "x > 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true.
 - But if P(x) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are false.

Precedence of Quantifier

- The quantifiers ∀ and ∃ have higher precedence than all the logical operators.
- $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$.
- $\forall x (P(x) \lor Q(x))$ means something different.
- Unfortunately, often people write $\forall x P(x) \lor Q(x)$ when they mean $\forall x (P(x) \lor Q(x))$.

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value
 - for every predicate substituted into these statements
 and
 - for every domain of discourse used for the variables in the expressions.
- The notation $S \equiv T$ indicates that S and T are logically equivalent.
- Example: $\forall x (S(x) \land T(x)) \equiv \forall x S(x) \land \forall x T(x)$

Relation among \forall , \exists , \land , and \lor

If Q(x) is a predicate and the domain D of x is

the set
$$\{x_1, x_2, ..., x_n\}$$
, then

$$\forall x \in D, Q(x) \equiv Q(x_1) \land Q(x_2) \land ... \land Q(x_n)$$

$$\exists x \in D, Q(x) \equiv Q(x_1) \lor Q(x_2) \lor ... \lor Q(x_n)$$

Thinking as A Programmer

- When the domain of discourse is finite, we can think of quantification as looping through the elements of the domain.
- To evaluate $\forall x P(x)$ loop through all x in the domain.
 - If at every step P(x) is true, then $\forall x P(x)$ is true.
 - If at a step P(x) is false, then $\forall x P(x)$ is false and the loop terminates.
- To evaluate $\exists x P(x)$ loop through all x in the domain.
 - If at some step, P(x) is true, then $\exists x \ P(x)$ is true and the loop terminates.
 - If the loop ends without finding an x for which P(x) is true, then $\exists x \ P(x)$ is false.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but the loops will not terminate in some cases.

Negating Quantified Expressions

The negation of a statement of the form $\forall x$ in D, P(x) is logically equivalent to a statement of the form $\exists x$ in D such that \sim P(x).

Symbolically, $\sim(\forall x \text{ in } D, P(x)) \equiv \exists x \text{ in } D \text{ such that } \sim P(x)$

The negation of a universal statement ("all are") is logically equivalent to an existential statement ("some are not" or "there is at least one that is not").

The negation of a statement of the form $\exists x$ in D such that P(x) is logically equivalent to a statement of the form $\forall x$ in D, $\sim P(x)$

Symbolically, $\sim(\exists x \text{ in } D \text{ such that } P(x)) \equiv \forall x \text{ in } D, \sim P(x)$

The negation of an existential statement ("some are") is logically equivalent to a universal statement ("none are" or "all are not").

De Morgan's Laws for Quantifiers:

$$\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$$
$$\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$$

Statement	Negation
$\forall x P(x)$	$\exists x \ \neg P(x)$
"Every student in your class has taken a	It is not the case that every student in your
course in Java." where P(x) is "x has taken a	class has taken Java." This implies that
course in Java" and the domain is students in	"There is a student in your class who has not
your class.	taken Java."
$\exists x \ P(x)$	$\forall x \neg P(x)$
"There is a student in this class who has taken	"It is not the case that there is a student in this
a course in Java." where P(x) is "x has taken	class who has taken Java." This implies that
a course in Java."	"Every student in this class has not taken Java"

Statements with Multiple Quantifiers

Statement	When True?	When False
$\forall x \ \forall y \ P(x,y)$	P(x,y) is true for every pair x,y.	There is a pair x, y for which
$\forall y \ \forall x \ P(x,y)$		P(x,y) is false.
$\forall x \; \exists y \; P(x,y)$	For every x there is a y for which P(x,y) is true.	There is an x such that P(x,y) is false for every y.
$\exists x \forall y \ P(x,y)$	There is an x for which P(x,y) is true for every y.	For every x there is a y for which P(x,y) is false.
$\exists x \; \exists y \; P(x,y)$	There is a pair x, y for which	P(x,y) is false for every pair
$\exists y \; \exists x \; P(x,y)$	P(x,y) is true.	x,y

0000000 00000 000000 0000000

- Consider the Tarski's world.
- Show that the following statement is true:
 - For all triangles x, there is a square y such that x and y have the same color.
- The statement says that no matter which triangle someone gives you, you will be able to find a square of the same color.
- There are only 3 triangles *d*, *f*, and *i*.

		a		
b	c		d	
e		f		g
	h			
			i	j

Given $x =$	choose $y =$	and check that y is the same color as x .
d	e	yes •
f or i	h or g	yes •

- If you want to establish the truth of a statement of the form:
 - $\forall x \text{ in } D, \exists y \text{ in } E \text{ such that } P(x, y)$

your challenge is to allow someone else to pick whatever element x in D they wish and then you must find an element y in E that "works" for that particular x.

- ❖ If you want to establish the truth of a statement of the form:
 - $\exists x \text{ in } D \text{ such that } \forall y \text{ in } E, P(x, y)$

your job is to find one particular x in D that will "work" no matter what y in E anyone might choose to challenge you with.

Examples:

Statement	P(x,y): x + y = 0 U is R	$P(x,y): x \cdot y = 0$ U is R	P(x,y): x / y = 1 U is R - $\{0\}$
$\forall x \ \forall y \ P(x,y)$	False	False	False
$\forall x \; \exists y \; P(x,y)$	True	True	True
$\exists x \ \forall y \ P(x,y)$	False	True	False
$\exists x \; \exists y \; P(x,y)$	True	True	True