Connecting via Winsock to STN

```
Welcome to STN International! Enter x:x
```

LOGINID: ssspta1201txs

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

```
Welcome to STN International
NEWS
                 Web Page URLs for STN Seminar Schedule - N. America
NEWS
     2
                 "Ask CAS" for self-help around the clock
                New pricing for the Save Answers for SciFinder Wizard within
NEWS
        SEP 01
                 STN Express with Discover!
        OCT 28
                KOREAPAT now available on STN
NEWS 4
        NOV 30 PHAR reloaded with additional data
NEWS 5
NEWS 6 DEC 01 LISA now available on STN
        DEC 09
                12 databases to be removed from STN on December 31, 2004
NEWS
    7
NEWS 8
        DEC 15
                MEDLINE update schedule for December 2004
NEWS
        DEC 17
                 ELCOM reloaded; updating to resume; current-awareness
                 alerts (SDIs) affected
NEWS
     10 DEC 17
                 COMPUAB reloaded; updating to resume; current-awareness
                 alerts (SDIs) affected
                 SOLIDSTATE reloaded; updating to resume; current-awareness
NEWS
      11 DEC 17
                 alerts (SDIs) affected
NEWS
      12 DEC 17
                 CERAB reloaded; updating to resume; current-awareness
                 alerts (SDIs) affected
NEWS
      13 DEC 17
                 THREE NEW FIELDS ADDED TO IFIPAT/IFIUDB/IFICDB
NEWS
      14 DEC 30
                EPFULL: New patent full text database to be available on STN
                CAPLUS - PATENT COVERAGE EXPANDED
NEWS
     15 DEC 30
NEWS
    16 JAN 03 No connect-hour charges in EPFULL during January and
                 February 2005
NEWS 17 FEB 25 CA/CAPLUS - Russian Agency for Patents and Trademarks
                 (ROSPATENT) added to list of core patent offices covered
NEWS 18 FEB 10
                 STN Patent Forums to be held in March 2005
NEWS 19 FEB 16
                 STN User Update to be held in conjunction with the 229th ACS
                 National Meeting on March 13, 2005
NEWS 20 FEB 28
                 PATDPAFULL - New display fields provide for legal status
                 data from INPADOC
NEWS 21 FEB 28
                 BABS - Current-awareness alerts (SDIs) available
NEWS 22 FEB 28 MEDLINE/LMEDLINE reloaded
              JANUARY 10 CURRENT WINDOWS VERSION IS V7.01a, CURRENT
NEWS EXPRESS
              MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),
              AND CURRENT DISCOVER FILE IS DATED 10 JANUARY 2005
NEWS HOURS
              STN Operating Hours Plus Help Desk Availability
NEWS INTER
              General Internet Information
NEWS LOGIN
              Welcome Banner and News Items
NEWS PHONE
              Direct Dial and Telecommunication Network Access to STN
NEWS WWW
              CAS World Wide Web Site (general information)
```

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer

agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 13:33:17 ON 01 MAR 2005

=> file reg

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.42 0.42

FULL ESTIMATED COST

FILE 'REGISTRY' ENTERED AT 13:34:33 ON 01 MAR 2005 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2005 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 27 FEB 2005 HIGHEST RN 838819-79-7 DICTIONARY FILE UPDATES: 27 FEB 2005 HIGHEST RN 838819-79-7

TSCA INFORMATION NOW CURRENT THROUGH JANUARY 18, 2005

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. For more information enter HELP PROP at an arrow prompt in the file or refer to the file summary sheet on the web at: http://www.cas.org/ONLINE/DBSS/registryss.html

=>

Uploading C:\Program Files\Stnexp\Queries\106652272.str

chain nodes :

15 17

ring nodes :

1 2 3 4 5 6 7 8 9 10 11 12 13 14

chain bonds : 2-17 13-15 ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 5-7 6-10 7-8 8-9 8-11 9-10 9-14 11-12 12-13 13-14

13-14

exact/norm bonds :

2-17 5-7 6-10 7-8 9-10 13-15

normalized bonds :

1-2 1-6 2-3 3-4 4-5 5-6 8-9 8-11 9-14 11-12 12-13 13-14

10/665,227

G1:0,0H

G2: C, N

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:CLASS 17:CLASS

L1 STRUCTURE UPLOADED

=> s 11

SAMPLE SEARCH INITIATED 13:35:38 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 6681 TO ITERATE

15.0% PROCESSED 1000 ITERATIONS INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED) SEARCH TIME: 00.00.01

50 ANSWERS

SEARCH TIME, 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**

BATCH **COMPLETE**

PROJECTED ITERATIONS: 128720 TO 138520

PROJECTED ANSWERS: 6446 TO 8786

L2 50 SEA SSS SAM L1

=> d scan

L2 50 ANSWERS REGISTRY COPYRIGHT 2005 ACS on STN

IN Cellulose, monoacetate, polymer with N-(3',6'-dihydroxy-3oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-5-yl)-2-propenamide and
N,N-dimethyl-2-propenamide, graft (9CI)

MF (C23 H15 N O6 . C5 H9 N O . C2 H4 O2 . Unspecified)x

CI PMS

CM 1

CM 2

10/665,227

CM3

CM

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):4

L2 50 ANSWERS REGISTRY COPYRIGHT 2005 ACS on STN

Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 4-amino-2',7'-dichloro-IN 3',6'-dihydroxy-5-nitro- (9CI)

MF C20 H10 Cl2 N2 O7

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L2

50 ANSWERS REGISTRY COPYRIGHT 2005 ACS on STN Scandium(3+), bis(4,7-diphenyl-1,10-phenanthroline-N1,N10)-, (T-4)-, salt IN with 3',6'-dihydroxy-2',4',5',7'-tetraiodospiro[isobenzofuran-1(3H),9'-[9H] xanthen] -3-one (1:2) (9CI)

C48 H32 N4 Sc . 2 C20 H7 I4 O5 MF

> CM1

CM

L2

50 ANSWERS REGISTRY COPYRIGHT 2005 ACS on STN Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-ar-carboxamide, N-[2-[[2-(acetylamino)-2-deoxy-4-O- β -D-galactopyranosyl- β -D-glucopyranosyl]oxy]ethyl]-3',6'-dihydroxy-3-oxo- (9CI) IN

C37 H40 N2 O17 MF

CI IDS

D1- C- NH-
$$CH_2$$
- CH_2 - OH OH CH_2 - OH OH CH_2 - OH

L2 50 ANSWERS REGISTRY COPYRIGHT 2005 ACS on STN

IN 1H,5H,13H,15H-Xantheno[2,3,4-ij:5,6,7-i'j']diquinolizin-18-ium,
9-[4-[[[4-[[6-[16-[4-amino-1,2-dihydro-2-oxo-1-[(2R,5S)-tetrahydro-5-(3,5,7,7-tetrahydroxy-3,5,7-trioxido-2,4,6-trioxa-3,5,7-triphosphahept-1-y1)-2-furanyl]-5-pyrimidinyl]-6-hydroxy-6-oxido-1,9,13-trioxo-5,7-dioxa-2,10-diaza-6-phosphahexadec-15-yn-1-yl]-3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-4'-yl]methyl]amino]carbonyl]phenyl]methyl]amino]carbonyl]-2-carboxy-3,6-dichlorophenyl]-2,4,16,17-tetrahydro-, inner salt (9CI)

MF C81 H73 C12 N9 O29 P4

Absolute stereochemistry.

PAGE 2-A

PAGE 2-B

7814 ANSWERS

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):0

=> s 11 ful

FULL SEARCH INITIATED 13:36:03 FILE 'REGISTRY' FULL SCREEN SEARCH COMPLETED - 135093 TO ITERATE

100.0% PROCESSED 135093 ITERATIONS

SEARCH TIME: 00.00.01

L3 7814 SEA SSS FUL L1

=> s 13 and metal

11528 METAL

15 METALS

11528 METAL

(METAL OR METALS)

L4

0 L3 AND METAL

=> s 13 and transition metal

142 TRANSITION

11528 METAL

15 METALS

11528 METAL

(METAL OR METALS)

1 TRANSITION METAL

(TRANSITION(W)METAL)

L5 0 L3 AND TRANSITION METAL

=> s 13 and probe

46135 PROBE

6 PROBES

46141 PROBE

(PROBE OR PROBES)

L6 1 L3 AND PROBE

=> s 13 and label

14 LABEL

L7 0 L3 AND LABEL

=> s 13 and chelate

128 CHELATE

1 CHELATES

128 CHELATE

L8

(CHELATE OR CHELATES)

0 L3 AND CHELATE

=> d l6 ibib hitstr abs

'IBIB' IS NOT A VALID FORMAT FOR FILE 'REGISTRY'

'HITSTR' IS NOT A VALID FORMAT FOR FILE 'REGISTRY'

'ABS' IS NOT A VALID FORMAT FOR FILE 'REGISTRY'

The following are valid formats:

Substance information can be displayed by requesting individual fields or predefined formats. The predefined substance formats are: (RN = CAS Registry Number)

REG - RN

SAM - Index Name, MF, and structure - no RN FIDE - All substance data, except sequence data

IDE - FIDE, but only 50 names
SQIDE - IDE, plus sequence data

SQIDE3 - Same as SQIDE, but 3-letter amino acid codes are used

SQD - Protein sequence data, includes RN

SQD3 - Same as SQD, but 3-letter amino acid codes are used

SQN - Protein sequence name information, includes RN

CALC - Table of calculated properties EPROP - Table of experimental properties

PROP - EPROP and CALC

Any CA File format may be combined with any substance format to obtain CA references citing the substance. The substance formats must be cited first. The CA File predefined formats are:

ABS -- Abstract

APPS -- Application and Priority Information

BIB -- CA Accession Number, plus Bibliographic Data

CAN -- CA Accession Number

CBIB -- CA Accession Number, plus Bibliographic Data (compressed)

IND -- Index Data

IPC -- International Patent Classification

PATS -- PI, SO

STD -- BIB, IPC, and NCL

IABS -- ABS, indented, with text labels IBIB -- BIB, indented, with text labels

ISTD -- STD format, indented

OBIB ----- AN, plus Bibliographic Data (original)

OIBIB ----- OBIB, indented with text labels

SBIB ----- BIB, no citations SIBIB ----- IBIB, no citations

The ALL format gives FIDE BIB ABS IND RE, plus sequence data when it is available.

The MAX format is the same as ALL.

The IALL format is the same as ALL with BIB ABS and IND indented, with text labels.

For additional information, please consult the following help messages:

HELP DFIELDS -- To see a complete list of individual display fields.

 $\begin{array}{lll} {\tt HELP} \ \ {\tt FORMATS} \ \ -- \ \ {\tt To} \ \ {\tt see} \ \ {\tt detailed} \ \ {\tt descriptions} \ \ {\tt of} \ \ {\tt the} \ \ {\tt predefined} \ \ {\tt formats}. \\ {\tt ENTER} \ \ {\tt DISPLAY} \ \ {\tt FORMAT} \ \ ({\tt IDE}) : {\tt end} \end{array}$

=> d his

(FILE 'HOME' ENTERED AT 13:33:17 ON 01 MAR 2005)

FILE 'REGISTRY' ENTERED AT 13:34:33 ON 01 MAR 2005 STRUCTURE UPLOADED L150 S L1 L2L3 7814 S L1 FUL 0 S L3 AND METAL L40 S L3 AND TRANSITION METAL L5 1 S L3 AND PROBE 1.6 L7 0 S L3 AND LABEL 0 S L3 AND CHELATE T.A

=> d l6 ibib hitstr abs

- 'IBIB' IS NOT A VALID FORMAT FOR FILE 'REGISTRY'
- 'HITSTR' IS NOT A VALID FORMAT FOR FILE 'REGISTRY'
- 'ABS' IS NOT A VALID FORMAT FOR FILE 'REGISTRY'

The following are valid formats:

Substance information can be displayed by requesting individual fields or predefined formats. The predefined substance formats are: (RN = CAS Registry Number)

REG - RN

SAM - Index Name, MF, and structure - no RN FIDE - All substance data, except sequence data

IDE - FIDE, but only 50 names SQIDE - IDE, plus sequence data

SQIDE3 - Same as SQIDE, but 3-letter amino acid codes are used

SQD - Protein sequence data, includes RN

SQD3 - Same as SQD, but 3-letter amino acid codes are used

SQN - Protein sequence name information, includes RN

CALC - Table of calculated properties EPROP - Table of experimental properties

PROP - EPROP and CALC

Any CA File format may be combined with any substance format to obtain CA references citing the substance. The substance formats must be cited first. The CA File predefined formats are:

ABS -- Abstract

APPS -- Application and Priority Information

BIB -- CA Accession Number, plus Bibliographic Data

CAN -- CA Accession Number

CBIB -- CA Accession Number, plus Bibliographic Data (compressed)

IND -- Index Data

IPC -- International Patent Classification

PATS -- PI, SO

STD -- BIB, IPC, and NCL

IABS -- ABS, indented, with text labels

IBIB -- BIB, indented, with text labels

ISTD -- STD format, indented

OBIB ----- AN, plus Bibliographic Data (original)

OIBIB ----- OBIB, indented with text labels

```
SBIB ----- BIB, no citations SIBIB ----- IBIB, no citations
```

The ALL format gives FIDE BIB ABS IND RE, plus sequence data when it is available.

The MAX format is the same as ALL.

The IALL format is the same as ALL with BIB ABS and IND indented, with text labels.

For additional information, please consult the following help messages:

HELP DFIELDS -- To see a complete list of individual display fields. HELP FORMATS -- To see detailed descriptions of the predefined formats. ENTER DISPLAY FORMAT (IDE):end

=> d hidt

L8 HAS NO ANSWERS

'HIDT ' IS NOT A VALID STRUCTURE FORMAT KEYWORD

Structure Formats

SIA ---- Structure Image, Attributes, and map table if it contains data. (Default)

SIM ---- Structure IMage.

SAT ---- Structure ATtributes and map table if it contains data.

SCT ---- Structure Connection Table and map table if it contains

SDA ---- All Structure DAta (image, attributes, connection table and map table if it contains data).

NOS ---- NO Structure data.

ENTER STRUCTURE FORMAT (SIA), SCT, SDA, SIM, SAT, NOS:end

=> d hist

(FILE 'HOME' ENTERED AT 13:33:17 ON 01 MAR 2005)

FILE 'REGISTRY' ENTERED AT 13:34:33 ON 01 MAR 2005

L1 STRUCTURE UPLOADED

L2 50 S L1

L3 · 7814 S L1 FUL

L4 0 S L3 AND METAL

L5 0 S L3 AND TRANSITION METAL

L6 1 S L3 AND PROBE

L7 0 S L3 AND LABEL

L8 0 S L3 AND CHELATE

=> file caplus

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION

FULL ESTIMATED COST

192.80 193.22

FILE 'CAPLUS' ENTERED AT 13:40:37 ON 01 MAR 2005 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the

American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 1 Mar 2005 VOL 142 ISS 10 FILE LAST UPDATED: 28 Feb 2005 (20050228/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 13

L9 22810 L3

=> s 19 and metal

1553024 METAL

788862 METALS

1884659 METAL

(METAL OR METALS)

L10 1287 L9 AND METAL

=> s 19 and transition metal

873158 TRANSITION

243225 TRANSITIONS

979313 TRANSITION

(TRANSITION OR TRANSITIONS)

1553024 METAL

788862 METALS

1884659 METAL

(METAL OR METALS)

168589 TRANSITION METAL

(TRANSITION(W)METAL)

L11 101 L9 AND TRANSITION METAL

=> s 111 and label

56119 LABEL

18817 LABELS

67059 LABEL

(LABEL OR LABELS)

L12 10 L11 AND LABEL

=> s lll and probe

204483 PROBE

102924 PROBES

271507 PROBE

(PROBE OR PROBES)

L13 16 L11 AND PROBE

=> s lll and chelate

42169 CHELATE

26322 CHELATES

55922 CHELATE

(CHELATE OR CHELATES)

L14 9 L11 AND CHELATE

=> dup rem 112 113 114

PROCESSING COMPLETED FOR L12

PROCESSING COMPLETED FOR L13

PROCESSING COMPLETED FOR L14

L15 29 DUP REM L12 L13 L14 (6 DUPLICATES REMOVED)

=> d l15 ibib hitstr abs 1-29

L15 ANSWER 1 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2005:98641 CAPLUS

TITLE:

Protein and peptide sensors using electrical detection

methods

INVENTOR(S):

Sawyer, Jaymie Robin; Li, Changming; Choong, Vi-en;

Maracas, George; Zhang, Peiming

PATENT ASSIGNEE(S):

USA

SOURCE:

U.S. Pat. Appl. Publ., 22 pp., Cont.-in-part of U.S.

Ser. No. 506,178. CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PAT	PATENT NO.					KIND DATE			DATE APPLICATION NO.						DAŢE			
US	2005	0231	 55		A1	-	2005	0203	į	JS 2	 003 <i>-</i> :	2038	 74		2	0030	509	
US	6824	669			B1		2004	1130	1	JS 2	000-	5061	78		2	00002	217	
WO	2001	0610	53		A2		2001	0823	1	WO 2	001-1	JS541	76		2	0010	220	
WO	2001	0610	53		A3		2002	0314										
WO	2001	0610	53		C2		2002	1017										
	W:	W: AE, AG, AL,			AM,	ΑT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,	
	CR, CU, CZ,			DE,	DK,	DM,	DZ,	EE,	ES,	FI,	GB,	GD,	GΕ,	GH,	GM,	HR,		
		HU, ID, IL,			IN,	IS,	JP,	KE,	KG,	KP,	KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,	
		LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	PL,	PT,	RO,	RU,	
		SD,	SE,	SG,	SI,	SK,	SL,	TJ,	TM,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VN,	
		YU,	ZA,	ZW,	AM,	ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	TJ,	TM					
	RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	ΑT,	ΒE,	CH,	CY,	
		DE,	DK,	ES,	FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	TR,	BF,	
	BJ, CF, CG								, GW, ML, MR, NE, SN,					•				
PRIORITY	PRIORITY APPLN. INFO.:									US 2000-506178					A2 20000217			
									1	WO 2	001-1	US54	76	1	W 2	0010	220	

IT 2321-07-5D, Fluorescein, conjugates with antibody

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses) (protein and peptide sensors using elec. detection methods)

RN 2321-07-5 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) (CA INDEX NAME)

AB The present invention provides an apparatus and methods for the elec. detection of mol. interactions between a **probe** mol. and a protein or peptide target mol., but without requiring the use of electrochem. or other reporters to obtain measurable signals. The methods can be used for elec. detection of mol. interactions between **probe** mols. bound to defined regions of an array and protein or peptide target mols. which are permitted to interact with the **probe** mols.

Streptavidin-modified porous hydrogel microelectrodes were prepared

Biotinylated antibodies to Escherichia coli were attached to the streptavidin-modified microelectrodes to make an immunosensor.

L15 ANSWER 2 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 1 ACCESSION NUMBER: 2004:414498 CAPLUS DOCUMENT NUMBER: 140:401332 Detection of nucleic acid sequences by hybridization TITLE: and cleavage of hybrids to release sequences labeled with electrophoretic mobility tags Chenna, Ahmed; Singh, Sharat INVENTOR(S): Aclara Biosciences, Inc., USA PATENT ASSIGNEE(S): U.S. Pat. Appl. Publ., 124 pp., Cont.-in-part of U.S. SOURCE: Ser. No. 698,846. CODEN: USXXCO Patent DOCUMENT TYPE: English LANGUAGE: FAMILY ACC. NUM. COUNT: 29 PATENT INFORMATION: APPLICATION NO. PATENT NO. KIND DATE ----------______ _____ 20040520 US 2001-11201 20011127 US 1999-303029 20040127 US 2000-561579 US 2004096825 A1 20011109 US 6322980 B1 19990430 B1 20000428 US 6682887 20030204 US 2000-602586 US 6514700 B1 20000621 US 6627400 B1 20030930 US 2000-698846 20001027 WO 2003042658 A2 A3 WO 2002-US35893 20030522 20021108 WO 2003042658 20031204 AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG PRIORITY APPLN. INFO.: US 1999-303029 A2 19990430 US 2000-561579 A2 20000428 US 2000-602586 A2 20000621 US 2000-684386 B2 20001004 US 2000-698846 A2 20001027 US 2001-11201 A2 20011109 US 2001-337982P P 20011109 IΤ 150347-54-9 RL: ARU (Analytical role, unclassified); RCT (Reactant); ANST (Analytical study); RACT (Reactant or reagent) (as electrophoretic mobility tag label; detection of nucleic acid sequences by hybridization and cleavage of hybrids to release sequences labeled with electrophoretic mobility tags) RN 150347-54-9 CAPLUS Butanoic acid, (acetylthio)-4-[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-5-yl)amino]-4-oxo- (9CI) (CA INDEX NAME)

CRN 6332-90-7 CMF C6 H8 O5 S

1

CM

$$\begin{array}{c} \text{SAc} \\ | \\ \text{HO}_2\text{C---} \text{CH----} \text{CH}_2\text{----} \text{CO}_2\text{H} \end{array}$$

CM 2

CRN 3326-34-9 CMF C20 H13 N O5

IT 2321-07-5DP, Fluorescein, phosphoramidites 3301-79-9DP,
6-Carboxyfluorescein, phosphoramidites
RL: ARG (Analytical reagent use); SPN (Synthetic preparation); ANST
(Analytical study); PREP (Preparation); USES (Uses)
(preparation and anal. use of; detection of nucleic acid sequences by hybridization and cleavage of hybrids to release sequences labeled with electrophoretic mobility tags)

RN 2321-07-5 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) (CA INDEX NAME)

RN 3301-79-9 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-6-carboxylic acid, 3',6'-dihydroxy-3-oxo- (9CI) (CA INDEX NAME)

IT 3301-79-9, 6-Carboxyfluorescein 72088-94-9,

5(6)-Carboxyfluorescein

RL: RCT (Reactant); RACT (Reactant or reagent)

(reactions of; detection of nucleic acid sequences by hybridization and cleavage of hybrids to release sequences labeled with electrophoretic mobility tags)

RN 3301-79-9 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-6-carboxylic acid, 3',6'-dihydroxy-3-oxo- (9CI) (CA INDEX NAME)

RN 72088-94-9 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-ar-carboxylic acid, 3',6'-dihydroxy-3-oxo- (9CI) (CA INDEX NAME)

D1-CO2H

AB A method of simultaneously detecting a number of different sequences within a sample using pairs of probes that form a duplex structure when hybridized to the target sequence in the correct orientation is described. One member of the pair of probes is labeled with a tag that has a specific electrophoretic mobility. Cleavage of the duplex structures, e.g., with a restriction enzyme, releases electrophoretic tags that are then separated and identified to indicate the presence or quantity of the target sequences. The present invention is particularly useful in multiplex reactions wherein multiple target sequences are detected in one reaction. Kits useful in the detection of nucleic acids are also provided.

L15 ANSWER 3 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2004:570119 CAPLUS

DOCUMENT NUMBER:

141:122623

TITLE:

Analyte-detecting article such as food packaging

labels and method

INVENTOR(S):

Hartman, William G.; Patel-Lahanis, Nina; Li, Kai; Holguin, Daniel L.; Sandt, Richard L.; Herrmann,

Charles K.

PATENT ASSIGNEE(S):

Avery Dennison Corporation, USA

SOURCE:

PCT Int. Appl., 45 pp.

CODEN: PIXXD2 Patent

DOCUMENT TYPE:

English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.						KIND D			APPLICATION NO.						D	ATE		
			-				-				- -	- -				-			
	WO	2004	0592	81		A2		2004	0715	1	WO 20	003 <i>-</i> 1	US399	949		20	00312	216	
	WO	2004	0592	81		A3		2004	1104										
		W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	ΒZ,	CA,	CH,	
			CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DΖ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	
			GE,	GH,	GM,	HR,	HU,	ID,	ΙL,	IN,	IS,	JP,	KΕ,	KG,	ΚP,	KR,	KΖ,	LC,	
			LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NI,	NO,	
			NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	ΤJ,	
			TM,	TN,	TR,	TT,	TZ,	UA,	UG,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW			
		RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	
			BY,	KG,	KZ,	MD,	RU,	TJ,	TM,	AT,	ΒE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	
			ES,	FI,	FR,	GB,	GR,	HU,	ΙE,	ΙT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	
			•			•		CI,	•	•	•		-		•		•	•	TG
																20031216			
PRIO	RIT	Y APP	LN.	INFO	. :					1	US 20	002-4	4337	37P		P 20	00212	216	
ΙT	232	21-07	-5D,	Flu	ores	cein	, tr	ansi	tion	met	al								
		mplex																	
RL: ARG (Analytical read								use); DI	EV (Devi	ce c	rogmc	nent	use); Al	NST		
(Analytical study); USES (Uses)																			
(food packaging labels with anal. functions)																			
RN 2321-07-5 CAPLUS																			
CN Spiro[isobenzofuran-1(3H),9'-[9H]; (CA INDEX NAME)										anthen]-3-one, 3',6'-dihydroxy-					y- (:	∋CI)			

An article generally including a facestock film having first and second AB surfaces, an adhesive layer adjacent to the facestock film, and a detecting system adjacent to the facestock film is used to indicate a change in the status of a packaged material such as food. A measurable analyte can be in vapor and(or) liquid form, and the detecting system, such as an immunoassay device, indicates whether the analyte is present. The detecting system responds to contact with the analyte by indicating that such contact has occurred, or that the analyte is present.

L15 ANSWER 4 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 2

ACCESSION NUMBER:

2003:397081 CAPLUS

DOCUMENT NUMBER:

138:397219

TITLE:

Detection of nucleic acid sequences by hybridization and cleavage of hybrids to release sequences labeled

with affinity and electrophoretic mobility tags

INVENTOR(S): PATENT ASSIGNEE(S):

Chenna, Ahmed; Singh, Sharat Aclara Biosciences, Inc., USA SOURCE:

PCT Int. Appl., 200 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.								APPLICATION NO.						Ε	ATE		
WO		0426	58		A2			0522					893		20021108			
	W :	AE, CO, GM, LS, PL, UA, GH,	AG, CR, HR, LT, PT, UG, GM,	AL, CU, HU, LU, RO, US, KE,	AM, CZ, ID, LV, RU, UZ, LS,	AT, DE, IL, MA, SD, VC, MW,	DK, IN, MD, SE, VN, MZ,	DM, IS, MG, SG, YU, SD,	DZ, JP, MK, SI, ZA, SL,	EC, KE, MN, SK, ZM, SZ,	EE, KG, MW, SL, ZW TZ,	ES, KP, MX, TJ,	FI, KR, MZ, TM,	GB, KZ, NO, TN,	GD, LC, NZ, TR,	CH, GE, LK, OM, TT,	GH, LR, PH, TZ,	
		CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG	·	ВJ,	•	
US	2004	09682	25		A1		2004	0520	1	US 2	001-3	1120	1		20011109			
PRIORITY	APP	LN.	INFO	. :					1	US 2	001-	1120	1		A2 2	0011	109	
									1	US 2	001-3	33798	82P		P 2	0011	109	
									1	US 1	999-3	3030	29		A2 1	9990	430	
									1	US 2	000-	5615	79		A2 2	0000	428	
									1	US 2	000-	6025	86		A2 2	0000	621	
									1	US 2	000-	58438	86		B2 2	0001	004	
									US 2000-698846									
OTHER SOURCE(S):					MARPAT 138:3972													

ΙT 150347-54-9D, conjugates with aminodextran

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses) (as electrophoretic tag label; detection of nucleic acid sequences by hybridization and cleavage of hybrids to release sequences labeled with affinity and electrophoretic mobility tags)

150347-54-9 CAPLUS RN

Butanoic acid, (acetylthio)-4-[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-5-yl)amino]-4-oxo- (9CI) (CA INDEX NAME) CN

CM

CRN 6332-90-7 CMF C6 H8 O5 S

SAc $HO_2C-CH-CH_2-CO_2H$

CM

CRN 3326-34-9 CMF C20 H13 N O5

IT 372170-49-5P 372170-50-8P 372170-51-9P

RL: ARU (Analytical role, unclassified); SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation)

(preparation and anal. use; detection of nucleic acid sequences by hybridization and cleavage of hybrids to release sequences labeled with affinity and electrophoretic mobility tags)

RN 372170-49-5 CAPLUS

CN 5'-Cytidylic acid, 2'-deoxy-, mono[6-[[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-6-yl)carbonyl]amino]hexyl] ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

RN 372170-50-8 CAPLUS

CN Cytidine, 5'-0-[[[6-[[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-6-yl)carbonyl]amino]hexyl]oxy]hydroxyphosphinyl]thymidylyl-(3'->5')-2'-deoxy-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

RN 372170-51-9 CAPLUS

CN Cytidine, 5'-0-[[[6-[[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-6-yl)carbonyl]amino]hexyl]oxy]hydroxyphosphinyl]thymidylyl-(3'→5')-thymidylyl-(3'→5')-2'-deoxy-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

HO~

PAGE 1-B

ΙT 530159-55-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and reactions of; detection of nucleic acid sequences by hybridization and cleavage of hybrids to release sequences labeled with affinity and electrophoretic mobility tags)

RN530159-55-8 CAPLUS

CNPhosphoramidous acid, bis(1-methylethyl)-, 2-cyanoethyl 6-[[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-6yl)carbonyl]amino]hexyl ester (9CI) (CA INDEX NAME)

IT 531513-32-3P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and reactions of; detection of nucleic acid sequences by hybridization and cleavage of hybrids to release sequences labeled with affinity and electrophoretic mobility tags)

RN 531513-32-3 CAPLUS

CN Phosphoramidous acid, bis(1-methylethyl)-, 2-cyanoethyl 2-[[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-5(or 6)-yl)carbonyl]amino]ethyl ester (9CI) (CA INDEX NAME)

$$\begin{array}{c|c} & \text{N (Pr-i)}_2 & \text{O} \\ & | & | \\ \text{NC-CH}_2\text{-CH}_2\text{-O-P-O-CH}_2\text{-CH}_2\text{-NH-C-D1} \end{array}$$

IT 3301-79-9, 6-Carboxyfluorescein 72088-94-9,

5(6)-Carboxyfluorescein

RL: RCT (Reactant); RACT (Reactant or reagent)
(reactions of; detection of nucleic acid sequences by hybridization and cleavage of hybrids to release sequences labeled with affinity and electrophoretic mobility tags)

RN 3301-79-9 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-6-carboxylic acid, 3',6'-dihydroxy-3-oxo- (9CI) (CA INDEX NAME)

RN 72088-94-9 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-ar-carboxylic acid, 3',6'-dihydroxy-3-oxo-(9CI) (CA INDEX NAME)

D1-CO2H

AB Probe sets for the simultaneous detection of multiple sequences in a complex nucleic acid sample are described. The method uses pairs of probes that will hybridize to one another to form a cleavable structure when their target sequences are in a defined relationship. Cleavage of the structure releases a sequence that includes a moiety that alters the electrophoretic mobility of the released sequence and a moiety that can be used as an affinity label for rapid enrichment of cleavage products. In a multiplexed assay, different released e-tag reporters may be separated and detected providing for target identification. The probes comprise interactive functionalities adjacent the cleaved portion positioned in the probes such that the interactive functionality does not form part of the e-tag reporters. Also described are biopolymers and nucleosides containing such interactive functionalities.

L15 ANSWER 5 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 3

ACCESSION NUMBER:

2003:173913 CAPLUS

DOCUMENT NUMBER:

138:217799

TITLE:

Method and kit for displacement assays that detect ligate-ligand association events especially nucleic

rigate-rigand association events t

acid hybridization

INVENTOR(S):

Hartwich, Gerhard; Frischmann, Peter; Haker, Ute;

Wieder, Herbert

PATENT ASSIGNEE(S):

Friz Biochem GmbH, Germany

SOURCE:

PCT Int. Appl., 57 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.					KIND DATE			APPLICATION NO.							DATE		
						-									-		
WO	2003	0191	94		A2		2003	0306	1	WO 2	002-	DE12	69		2	0020	406
OW	2003	0191	94		A3		2004	0129									
	W:	AU,	BR,	CA,	CN,	ΙL,	JP,	RU,	US,	ZA						•	
	RW:	AT,	ΒE,	CH,	CY,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,
		PT,	SE,	TR													
DΕ	1014	1691			A1		2003	0313]	DE 2	2001-	1014	1691		2	0010	825
WO	2003	0188	34		A2		2003	0306	1	WO 2	2002-	DE31	22		2	0020	826
WO	2003	0188	34		A3		2003	0912				•					
	W:	AU,	BR,	CA,	CN,	IL,	JΡ,	RU,	US,	ZA							
	DI.I	ъ. П	D.E.	DC	CIT	017		D.	DIZ		70	D.T.	DD.	an.	CD	TD	TO

RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT,

LU, MC, NL, PT, SE, SK, TR

DE 10307402 A1 20040909 DE 2003-10307402 20030220 PRIORITY APPLN. INFO.: DE 2001-10141691 A 20010825 WO 2002-DE1269 W 20020406

IT 2321-07-5, Fluorescein

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses) (label; method and kit for displacement assays that detect ligate-ligand association events especially nucleic acid hybridization)

RN 2321-07-5 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) (CA INDEX NAME)

AΒ The invention relates to a method for detecting ligate-ligand association events, comprising the following steps: provision of a modified surface, whereby the modification consists in the binding of at least one kind of ligate; provision of signal-ligands; provision of a sample containing ligands; bringing a defined amount of signal-ligands into contact with the modified surface and bringing the sample into contact with the modified surface; detecting the signal-ligands, in addition to comparing the values obtained from the detection of the signal-ligands to the reference values. Thus oligonucleotide ligates were bound to surface-treated gold electrodes; signal nucleotide ligands were complementary to ligate oligonucleotides; they were smaller than the ligate nucleotides and were redox-labeled with ferrocene-carboxylic acid. After reaction of ligate and signal ligand reference chronocoulometric data were measured. Signal ligands were either washed away or the ligate-ligand associate was directly reacted with the sample ligand; the hybridization was quantified by applying again the signal ligands and measuring the current that corresponded to the signal ligands that occupied the non-hybridized ligate sites. Alternativelly labeled single stranded DNA binding proteins are used as signal ligands. An other alternative includes the fluorometric detection of the association; in an example ligates were bound to glass fibers and fluorescent labeled signal ligands were used. The displacement assays are used in conjunction with low d. DNA and protein chips, e.g. for Point of Care systems.

L15 ANSWER 6 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2003:221926 CAPLUS

DOCUMENT NUMBER: 138:251070

TITLE: Device with chemical surface patterns

INVENTOR(S): Textor, Marcus; Michel, Roger; Voeroes, Janos;

Hubbell, Jeffrey A.; Lussi, Jost

PATENT ASSIGNEE(S): Eidgenoessische Technische Hochschule Zuerich, Switz.

SOURCE: PCT Int. Appl., 69 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

WO 2001-CH548 20010912 A1 20030320 WO 2003023401 AE, AG, AL, AM, AT, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, CZ, DE, DE, DK, DK, DM, DZ, EC, EE, EE, ES, FI, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG EP 2001-960055 20040609 20010912 EP 1425583 A1 AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR US 2005014151 20050120 US 2004-489688 20040907 A1 PRIORITY APPLN. INFO.: WO 2001-CH548 20010912

195136-58-4D, conjugates with albumin

RL: BSU (Biological study, unclassified); PEP (Physical, engineering or chemical process); PYP (Physical process); BIOL (Biological study); PROC (Process)

(selective adsorption on patterned silicon wafer; device with chemical surface patterns with biochems. on substrates with prefabricated patterns)

RN 195136-58-4 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 2',7'-difluoro-3',6'dihydroxy- (9CI) (CA INDEX NAME)

AB The invention concerns a device with chemical surface patterns (defined surface areas of at least two different chemical compns.) with biochem. or biol. relevance on substrates with prefabricated patterns of at least two different types of regions $(\alpha, \beta, ...)$, whereas at least two different, consecutively applied mol. self-assembly systems (A, B...) are used in a way that at least one of the applied assembly systems (A or B or...) is specific to one type of the prefabricated patterns (α or β or...). A silicon wafer was coated with TiO2 followed by SiO2 and a pattern of 5 X 5 squares of TiO2 was etched through the SiO2 layer. patterned surface was dipped in aqueous ammonium dodecyl phosphate for self-assembly of DDP on top of the TiO2 areas, rendering these areas highly hydrophobic. The surface was dipped in an aqueous solution of poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) to selectively adsorbed to the SiO2 regions. Texas Red-streptavidin selectively adsorbed to the PLL-g-PEG coating.

REFERENCE COUNT:

10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 7 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2003:793411 CAPLUS

DOCUMENT NUMBER:

139:287272

TITLE: Electrochemical detection of nucleic acid hybridization using probe arrays immobilized

on electrodes

INVENTOR(S):

Hartwich, Gerhard

PATENT ASSIGNEE(S):

Friz Biochem GmbH, Germany

SOURCE:

Ger. Offen., 8 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 10212958	A1	20031009	DE 2002-10212958	20020322
PRIORITY APPLN. INFO.:			DE 2002-10212958	20020322

IT 2321-07-5D, Fluorescein, probe conjugates

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses) (electrochem. detection of nucleic acid hybridization using

probe arrays immobilized on electrodes)

RN 2321-07-5 CAPLUS

Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) CN (CA INDEX NAME)

A procedure for the electrochem. detection of nucleic acid hybridization AB using microarrays immobilized on electrode surfaces is described. An electrode, such as a gold-coated mica, is used as the surface on which a microarray is immobilized. The array is then hybridized with an excess of sample nucleic acids and hybridization is detected by measuring changes in redox potential using an indicator such as a redox dye or a transition metal salt.

REFERENCE COUNT:

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 8 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2003:798404 CAPLUS

DOCUMENT NUMBER:

139:311933

TITLE:

Organically modified metal particles for the treatment

of human hair

INVENTOR(S): PATENT ASSIGNEE(S): Vic, Gabin; Livoreil, Aude; Giroud, Franck

L'oreal, Fr.

SOURCE:

Fr. Demande, 29 pp.

CODEN: FRXXBL

DOCUMENT TYPE:

Patent

LANGUAGE:

French

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
FR 2838052	A1	20031010	FR 2002-4354	20020408

US 2003-393924 20030324 US 2004010864 Α1 20040122 BR 2003-1010 BR 2003001010 20040817 20030404 Α 20031015 EP 2003-290859 20030407 EP 1352634 **A1** AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK JP 2003300844 A2 20031021 JP 2003-104224 20030408 A 20020408 FR 2002-4354 PRIORITY APPLN. INFO.: US 2002-396581P P 20020718

2321-07-5, Fluorescein

RL: COS (Cosmetic use); BIOL (Biological study); USES (Uses) (organically modified metal particles for treatment of human hair)

RN 2321-07-5 CAPLUS

Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) CN (CA INDEX NAME)

The invention relates to the use of a suspension of organically modified AB metallic nanoparticles carrying on their surface a monolayer obtained from organosulfur compds. for the coloring and/or the treatment of human hair. Nanoparticles of gold modified by mercaptosuccinic acid were obtained by the treatment of HAuCl4.3H2O with mercaptosuccinic acid in the presence of NaBH4 in aqueous MeOH solution These nanoparticles were adsorbed on white hair fibers.

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 9 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2003:844016 CAPLUS

DOCUMENT NUMBER:

REFERENCE COUNT:

141:19877

TITLE:

Transition-metal-based

Chemosensing Ensembles: ATP Sensing in Physiological

THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS

Conditions

AUTHOR (S):

Marcotte, Nathalie; Taglietti, Angelo

CORPORATE SOURCE:

Dipartimento di Chimica Generale, Universita di Pavia,

Pavia, 27100, Italy

SOURCE:

Supramolecular Chemistry (2003), 15(7-8), 617-625

CODEN: SCHEER; ISSN: 1061-0278

PUBLISHER:

Taylor & Francis Ltd.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

TT 2321-07-5, Fluorescein 3301-79-9, 6-FAM

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)

(transition-metal-based chemosensing ensembles

containing fluorescent indicator bound to dicopper polyazamacrocyclic receptor for ATP determination in physiol. conditions)

RN2321-07-5 CAPLUS

Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) CN (CA INDEX NAME)

RN 3301-79-9 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-6-carboxylic acid, 3',6'-dihydroxy-3-oxo- (9CI) (CA INDEX NAME)

AB Sensing of biol. relevant anionic substrates in physiol. conditions, employing the strategy of the chemosensing ensembles, is reported. Coordination of a fluorescent indicator to a dicopper(II) polyazamacrocyclic receptor ([Cu2(L)]) results in the collapse of its fluorescence emission. Competitive binding of substrates for the receptor releases the indicator in solution, with full emission recovery. The spectral changes obtained for some indicators and substrates were analyzed to determine their resp. association consts. for the receptor. Discrimination of

micromolar ATP quantities from other interferents (small inorg. anions and well-known neurotransmitters) is improved by a judicious choice of the indicator, the resulting ATP sensor promising interesting biol. applications. Sensing of ATP is achieved with the Chemosensing Ensemble (CE) approach. The photograph shows the emission of the CE mixture in presence of: no substrate, ATP (orange emitting solution) and different neurotransmitters.

REFERENCE COUNT:

THERE ARE 45 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 10 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 4

ACCESSION NUMBER:

2002:51654 CAPLUS

DOCUMENT NUMBER:

136:97269

TITLE:

Cation mediated nucleic acid triplex hybridization

assay

INVENTOR(S):

Daksis, Jasmine I.; Picard, Pierre; Erikson, Glen H.

PATENT ASSIGNEE(S): Ingeneus Corporation, Barbados

SOURCE:

PCT Int. Appl., 56 pp.

•

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.

KIND DATE

APPLICATION NO.

DATE

```
20020117
                                               WO 2001-IB1538
                                                                        20010709
     WO 2002004655
                           A2
     WO 2002004655
                           A3
                                  20020627
             AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
             CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
             LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,
             RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US,
             UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
             DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
             BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
     US 6420115
                           В1
                                  20020716
                                               US 2000-613263
                                                                        20000710
     CA 2415493
                           AA
                                  20020117
                                               CA 2001-2415493
                                                                        20010709
     AU 2001080007
                           A5
                                  20020121
                                               AU 2001-80007
                                                                        20010709
     EP 1307591
                                  20030507
                                               EP 2001-958285
                           A2
                                                                        20010709
            AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
     JP 2004511218
                           T2
                                               JP 2002-509508
                                  20040415
                                                                        20010709
     BR 2001012400
                           Α
                                  20040720
                                               BR 2001-12400
                                                                        20010709
PRIORITY APPLN. INFO.:
                                               US 2000-613263
                                                                     A 20000710
                                               US 1999-468679
                                                                     A2 19991221
                                               WO 2001-IB1538
                                                                     W 20010709
```

IT 2321-07-5, Fluorescein

RL: ARG (Analytical reagent use); BUU (Biological use, unclassified); ANST (Analytical study); BIOL (Biological study); USES (Uses) (cation mediated nucleic acid triplex hybridization assay)

RN 2321-07-5 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) (CA INDEX NAME)

AB Triplex complexes contain a single-stranded probe bound to a double-stranded nucleic acid target, in which the probe includes a heteropolymeric nucleic acid or a heteropolymeric nucleic acid analog. All base triplets of the complex are members selected from the group consisting of A-T-A, T-A-T, U-A-T, T-A-U, A-U-A, U-A-U, G-C-G and C-G-C. A cation-facilitated assay includes detecting the presence of such triplex complexes to determine the degree of complementarity between the probe and target sequence. The assay preferably detects a change in fluorescent intensity of a label as a function of binding affinity between the probe and target. The label can be covalently tethered to the probe or to the target, or can be an intercalating fluorophore in the reaction medium.

L15 ANSWER 11 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 5

ACCESSION NUMBER:

2002:533975 CAPLUS

DOCUMENT NUMBER:

137:104739

TITLE:

Cation mediated triplex hybridization assay for accurate analysis of triplex nucleic acid complexes

INVENTOR(S):

Erikson, Glen H.; Daksis, Jasmine I.; Picard, Pierre

PATENT ASSIGNEE(S):

Ingeneus Corporation, Barbados

SOURCE:

U.S., 21 pp., Cont.-in-part of U.S. Ser. No. 468,679.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 13

PATENT INFORMATION:

	PATENT NO.							DATE			LICAT				I	DATE	
US US CZ WG	6420 6403 62003 A2415 02002	115 313 1137 493 0046	16 55		B1 B1 A1 AA A2		2002 2002 2003 2002 2002	0716 0611 0619 0117 0117		US US US CA	2000- 1999- 2001- 2001- 2001-	6132 4686 8857 2415	63 79 31 493		2	20000 19991 20010 20010 20010	221 620 709
W		AE, CO, GM, LS, RO, UZ, GH,	AG, CR, HR, LT, RU, VN, GM,	AL, CU, HU, LU, SD, YU, KE,	AM, CZ, ID, LV, SE, ZA, LS,	AT, DE, IL, MA, SG, ZW, MW,	DK, IN, MD, SI, AM,	AZ, DM, IS, MG, SK, AZ, SD,	DZ, JP, MK, SL, BY, SL,	EC KE MN TJ KG SZ	BG, EE, KG, MW, TM, KZ,	ES, KP, MX, TR, MD, UG,	FI, KR, MZ, TT, RU, ZW,	GB, KZ, NO, TZ, TJ, AT,	GD LC NZ UA TM BE	, GE, , LK, , PL, , UG,	GH, LR, PT, US,
JA.	J 2001	ВJ, 0800	CF,	CG,	CI,	CM	GA, 2002	GN, 0121	GW,	ML AU	, LU, , MR, 2001-	NE, 8000	SN, 7	TD,	TG	20010	709
	•	AT, IE,	SI,	LT,	DE, LV,	DK FI	, ES,	FR, MK.	GB,	GR AL	2001- , IT,	LI,	LU,	NL,	SE	, MC,	PT,
BI U	P 2004 R 2001 S 2002 S 6656	.0124 :0317	00 75				2004	0720 0314		BR	2002- 2001- 2001-	1240	0		:	20010 20010 20010	709
U	5 2003	0228	53		A1		2003 2005 2002	0130 0222			2001- 2002-					20010 20020	
U: U:	5 6858 5 2002 5 2002 5 2003 5 2005 5 2003	0141 1814	40 12		A1 A1		2002 2003 2005	1121 0313 0120		US US US	2002- 2002- 2002- 2002- 2003-	1030 2692 2931	02 29 48			20020 20020 20021 20021 20030	321 011 112
PRIORI'			INFO	.:	1				٠	US US US US	1999- 1998- 2000- 2000- 2001-	2245 6132 6648 2815	05 63 27 47P	, ·	A2 A2 A2 P	19981 20000 20000 20010	231 710 919 404
IT 2:	321-07	'-5,	Fluo	resc	ein						2001- 2001-					20010 20010	

IT 2321-07-5, Fluorescein

RL: ARG (Analytical reagent use); BSU (Biological study, unclassified); ANST (Analytical study); BIOL (Biological study); USES (Uses)

(as label; cation mediated triplex hybridization assay for accurate anal. of triplex nucleic acid complexes)

2321-07-5 CAPLUS RN

Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) CN (CA INDEX NAME)

The present invention provides triplex complexes comprising a AB single-stranded probe bound to a double-stranded nucleic acid target, in which the probe includes a heteropolymeric nucleic acid or a heteropolymeric nucleic acid analog. All base triplets of the complex are members selected from the group consisting of A-T-A, T-A-T, U-A-T, T-A-U, A-U-A, U-A-U, G-C-G and C-G-C. The invention also provides a cation-facilitated assay which includes detecting the presence of such triplex complexes to determine the degree of complementarity between the probe and target sequence. The assay preferably detects a change in fluorescent intensity of a label as a function of binding affinity between the probe and target. The label can be covalently tethered to the probe or to the target, or can be an intercalating fluorophore in the reaction medium.

CAPLUS COPYRIGHT 2005 ACS on STN L15 ANSWER 12 OF 29

61

ACCESSION NUMBER:

2002:925384 CAPLUS

DOCUMENT NUMBER:

REFERENCE COUNT:

138:1970

TITLE:

A differential labelling method for sulfur and

nitrogen containing entities using platinum complexes Talman, Eduard Gerhard; Van Gijlswijk, Robertus Petrus Maria; Heetebrij, Robert Jochem; Veuskens, Jacky Theo

THERE ARE 61 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

Maria

PATENT ASSIGNEE(S):

Kreatech Biotechnology B.V., Neth.

SOURCE:

Eur. Pat. Appl., 24 pp.

INVENTOR(S):

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA	rent 1	NO.			KIN) 1	DATE		APPLICATION NO.						D	ATE		
						-												
ΕP	1262	778			A 1		2002	1204	1	EP 2	001-2	2020	07		20	0105	528	
	R:	AT,	BE,	E, CH, DE, DK, ES, FR			FR,	GB,	GR,	ΙΤ,	LI,	LU,	NL,	SE,	MC,	PT,		
					T, LV, FI, RO, MK,				•	•								
WO	2002	09743	39		A2		2002	1205	1	WO 2	002-1	NL33	4		2	0020	524	
WO	NO 2002097439				A3		2003	0123										
	W :	W: AE, AG, AL		AL,	AM,	AT,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	
		CN,	CO,	CO, CR, CU, CZ, CZ, DE,		DE,	DΕ,	DK,	DK,	DM,	DZ,	EC,	EE,	EE,	ES,			
		FI, FI, GB, GD,		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,			
		ΚP,	KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	
		MX,	MZ,	NO,	ΝZ,	OM,	PH,	PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK,	SK,	
		SL,	TJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VN,	YU,	ZA,	ZM,	ZW,	
		AM,	ΑZ,	BY,	KG													
	RW:	GH,	GM,	ΚE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AT,	BE,	CH,	
		CY,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	TR,	
		BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG	
JP	JP 2004530885				T2				7 JP 2003-500567						20020524			

US 2003060647 US 2002-156730 20020528 Α1 20030327 A 20010528 EP 2001-202007 PRIORITY APPLN. INFO.: WO 2002-NL334 W 20020524

OTHER SOURCE(S): MARPAT 138:1970

2321-07-5D, Fluorescein, enzyme labeled

RL: RCT (Reactant); RACT (Reactant or reagent)

(microperoxidase labeling with; differential labeling method for sulfur and nitrogen containing entities using platinum complexes)

2321-07-5 CAPLUS RN

Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) CN (CA INDEX NAME)

The invention relates to a method for differentially labeling one or more AB entities, together comprising distinct sulfur and nitrogen containing reactive sites. The invention further relates to an entity that has been labeled by a method according to the invention and to a diagnostic kit comprising a labeled entity and to a diagnostic kit to employ a method according to the invention. Bovine serum albumin was differentially labeled with rhodamine cis-Pt compound

REFERENCE COUNT:

THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

CAPLUS COPYRIGHT 2005 ACS on STN L15 ANSWER 13 OF 29

13

ACCESSION NUMBER: 2002:125438 CAPLUS

DOCUMENT NUMBER:

136:334262

TITLE:

Exploring the Lewis basicity of the metalloligand

[Pt2(μ -Se)2(PPh3)4] on metal substrates by electrospray mass spectrometry. Synthesis, characterization and structural studies of new platinum selenido phosphine complexes containing the

{Pt2Se2} core

AUTHOR (S):

Yeo, Jeremy S. L.; Vittal, Jagadese J.; Henderson, William; Hor, T. S. Andy

CORPORATE SOURCE:

Department of Chemistry, National University of

Singapore, 117543, Singapore

SOURCE:

Journal of the Chemical Society, Dalton Transactions

(2002), (3), 328-336

CODEN: JCSDAA; ISSN: 1472-7773

PUBLISHER:

Royal Society of Chemistry

Journal DOCUMENT TYPE: LANGUAGE: English

OTHER SOURCE(S): CASREACT 136:334262

415681-07-1P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (formation in electrospray mass spectrometry study of reactivity of diplatinum selenido phosphine)

415681-07-1 CAPLUS RN

Platinum(2+), [[μ -(2,7-dihydroxy-3-oxospiro[benzofuran-2(3H),9'-CN [9H] xanthene] -1,8-diyl)]dimercury]di-µ3-selenoxotetrakis(triphenylphosp hine)di- (9CI) (CA INDEX NAME)

IT 32382-27-7

RL: RCT (Reactant); RACT (Reactant or reagent) (reaction with diplatinum selenido phosphine studied by electrospray mass spectrometry)

RN 32382-27-7 CAPLUS

CN Mercury, bis(acetato-κ0)[μ-(3',6'-dihydroxy-3oxospiro[isobenzofuran-1(3H),9'-[9H]xanthene]-4',5'-diyl)]di- (9CI) (CA
INDEX NAME)

AΒ Electrospray Mass Spectrometry (ESMS) was used as a tool to probe the reactivity of the metalloligand [Pt2(µ-Se)2(PPh3)4] with metal substrates, which give charged coordination complexes via loss of halides or other labile ligands. Among the numerous metal substrates used in the displacement reactions are Au(anpy)Cl2 (anpy = cyclometalated 2-anilinopyridyl), HgPhCl and Pb(NO3)2. Acid titration on the Lewis basic metalloligand leads to the identification and isolation of the doubly-protonated species, $[Pt2(\mu-SeH)2(PPh3)4]2+$, whose sulfide analog cannot be isolated. A three-step strategy is employed in the use of ESMS as a probe: (i) preliminary screening of the metalloligand with an array of acidic main group and transition group metal compds., (ii) identification of potentially stable and isolable products formed in situ based on ion distribution and simulated isotope patterns and (iii) promising reactions are repeated on a laboratory scale, and target products are isolated and characterized. X-ray diffraction studies were performed on single crystals of $[Pt2(\mu-SeH)2(PPh3)4][Cl04]2$, $[Pt2(\mu3-$ Se) 2 (PPh3) 4 (CdCl2) and $\{Pt2(\mu_3-Se) 2 (PPh3) 4 [Pb(NO3)] \} \{NO3\}$.

results suggested that in general a parallel chemical can be developed on the intermetallic selenides as on the sulfides. However, there are chemical and structural differences which are highlighted.

REFERENCE COUNT:

THERE ARE 47 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 14 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2001:435043 CAPLUS

DOCUMENT NUMBER:

135:43136

TITLE:

Detection of transmembrane potentials by fluorescent resonance energy transfer (FRET) between a hydrophobic

fluorescent ion and a chromophore

INVENTOR(S):

Tsien, Roger Y.; Gonzalez, Jesus E. III

PATENT ASSIGNEE(S):

The Regents of the University of California, USA

SOURCE:

PCT Int. Appl., 154 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

· English.

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

		APPLICATION NO.	DATE			
WO 2001042211 WO 2001042211	A2 20010614	WO 2000-US33739	20001212			
		BA, BB, BG, BR, BY,	BZ, CA, CH, CN,			
CR, CU, CZ,	DE, DK, DM, DZ,	EE, ES, FI, GB, GD,	GE, GH, GM, HR,			
HU, ID, IL,	IN, IS, JP, KE,	KG, KP, KR, KZ, LC,	LK, LR, LS, LT,			
LU, LV, MA,	MD, MG, MK, MN,	MW, MX, MZ, NO, NZ,	PL, PT, RO, RU,			
SD, SE, SG,	SI, SK, SL, TJ,	TM, TR, TT, TZ, UA,	UG, UZ, VN, YU,			
ZA, ZW, AM,	AZ, BY, KG, KZ,	MD, RU, TJ, TM				
		SL, SZ, TZ, UG, ZW,	AT, BE, CH, CY,			
		IE, IT, LU, MC, NL,				
BJ. CF. CG.	CI. CM. GA. GN.	GW, ML, MR, NE, SN,	TD, TG			
, , ,		US 1999-378534	· · · · · · · · · · · · · · · · · · ·			
US 6596522						
CA 2393562	AA 20010614	CA 2000-2393562	20001212			
		JP 2001-543512				
		EP 2000-984287				
		GB, GR, IT, LI, LU,				
	LV, FI, RO, MK,		, , , , , , ,			
PRIORITY APPLN. INFO.:		US 1999-459956	A 19991213			
		US 1997-765860				
•		WO 2000-US33739	W 20001212			
OMITTE GOLD GE (G)	MADDAM 125.4212		20001212			

OTHER SOURCE(S):

MARPAT 135:43136

IT 27072-45-3D, FITC, antibody conjugate

RL: PEP (Physical, engineering or chemical process); PROC (Process) (detection of transmembrane potentials by fluorescent resonance energy transfer (FRET) between a hydrophobic fluorescent ion and a chromophore)

RN 27072-45-3 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy-5(or 6)-isothiocyanato-(9CI) (CA INDEX NAME)

D1-N=C=S

Methods and compns. are provided for detecting changes in membrane AB potential in membranes biol. systems. In one aspect, the method comprises: (a) providing a living cell with a first reagent comprising a charged hydrophobic mol. which is typically a fluorescence resonance energy transfer (FRET) acceptor or donor, or is a quencher and is capable of redistributing within the membrane of a biol. membrane in response to changes in the potential across the membrane; (b) providing the cell with a second reagent that can label the first face or the second face of a biol. membrane within the cell; (c) detecting light emission from the first reagent or the second reagent. One aspect of this method involves monitoring membrane potential changes in subcellular organelle membranes in a living cell. Another aspect of the invention is the use of certain embodiments of the method for the screening of test chems. for activity to modulate the activity of a target ion channel. Another aspect of the present invention is a transgenic organism comprising a first reagent that comprises a charged hydrophobic fluorescent mol., and a second reagent comprising a bioluminescent or naturally fluorescent protein.

L15 ANSWER 15 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2001:412616 CAPLUS

DOCUMENT NUMBER:

135:58043

TITLE:

Detection of protein oxidation in rat-1 fibroblasts by

fluorescently labeled tyramine

AUTHOR(S):

SOURCE:

van der Vlies, Dennis; Wirtz, Karel W. A.; Pap, Eward

H. W.

CORPORATE SOURCE:

Centre for Biomembranes and Lipid Enzymology Department of Biochemistry of Lipids Institute of Biomembranes, Utrecht University, Utrecht, Neth.

Biochemistry (2001), 40(26), 7783-7788

CODEN: BICHAW; ISSN: 0006-2960

PUBLISHER: DOCUMENT TYPE: American Chemical Society

Journal English

LANGUAGE:

345371-52-0DP, derivs.

RL: ARG (Analytical reagent use); SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation); USES (Uses)

(protein oxidation determination in rat-1 fibroblasts by fluorescently

labeled

tyramine)

345371-52-0 CAPLUS RN

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-ar-carboxamide, 3',6'-dihydroxy-N-[6-[[2-(4-hydroxyphenyl)ethyl]amino]-6-oxohexyl]-3-oxo-(9CI) (CA INDEX NAME)

AB Oxidative damage to proteins has been postulated as a major cause of various degenerative diseases including the loss of functional capacity during aging. A prominent target for oxidation by reactive oxygen species (ROS) is the tyrosine residue. Here we present a highly sensitive method for the detection of tyrosyl radical formation in cells. The method is based on the fluorescein-labeled tyrosine analog, tyramine, which upon oxidation may couple to proteins carrying a tyrosyl radical. Coupling of the probe (denoted TyrFluo) to standard proteins could be induced by generating ROS with horseradish peroxidase/hydrogen peroxide, SIN-1 or with peroxides (cumene or hydrogen peroxide) in combination with a transition metal. TyrFluo added to rat-1 fibroblasts remained outside the cell, whereas the acetylated form (acetylTyrFluo) was membrane-permeable and accumulated in the cell. Exposure of the cells to oxidative stress in the presence of either TyrFluo or acetylTyrFluo gave a cellular labeling characteristic for each probe. Western blot anal. confirmed that each probe labeled a specific set of proteins. This new method for the detection of ROS-induced oxidation of proteins may mimic the tendency of oxidized proteins to form dityrosine bonds.

REFERENCE COUNT:

THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 16 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

34

ACCESSION NUMBER:

2000:383760 CAPLUS

DOCUMENT NUMBER:

133:13385

TITLE:

Applications with and methods for producing selected

interstrand crosslinks in nucleic acid

PATENT ASSIGNEE(S):

Kreatech Biotechnology B.V., Neth.

SOURCE:

Eur. Pat. Appl., 21 pp.

DOCUMENT TYPE:

CODEN: EPXXDW

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT:

. 1

PATENT INFORMATION:

PATENT NO.					KIN	D	DATE		APPLICATION NO.						D.	ATE	
						-						·					
EΡ	1006	199			A1		2000	0607	EP	19	98-2	20409	94		19	981	203
	R:	AT,	BE,	CH,	DE,	DK	, ES,	FR,	GB, G	R,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	SI,	LT,	LV,	FI	, RO										
EΡ	1006	200			A2		2000	0607	EP	19	99-2	20414	11		19	9991	203
EP	1006	200			Α3		2000	1011									

```
AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO
     CA 2353643
                                20000608
                                             CA 1999-2353643
                                                                    19991203
                          AA
    WO 2000032814
                                20000608
                                             WO 1999-NL740
                                                                    19991203
                          A2
    WO 2000032814
                          A3
                                20001116
         W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU,
             CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
             IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
             MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
             SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ,
             BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, BF, BJ, CF, CG, CI,
             CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
    US 2002012915
                          A1
                                20020131
                                            US 1999-454404
                                                                    19991203
    US 6406850
                          B2
                                20020618
     JP 2002531101
                          T2
                                20020924
                                             JP 2000-585445
                                                                    19991203
    NZ 512312
                                            NZ 1999-512312
                          Α
                                20040430
                                                                    19991203
    AU 778429
                          B2
                                20041202
                                             AU 2000-16966
                                                                    19991203
                                             US 2001-5371
    US 2004161743
                          Α1
                                20040819
                                                                    20011205
PRIORITY APPLN. INFO.:
                                             EP 1998-204094
                                                                 A 19981203
                                             US 1999-454404
                                                                 A1 19991203
                                             WO 1999-NL740
                                                                    19991203
```

IT 2321-07-5, Fluorescein

RL: BUU (Biological use, unclassified); RCT (Reactant); BIOL (Biological study); RACT (Reactant or reagent); USES (Uses)

(applications with and methods for producing selected interstrand crosslinks in nucleic acid)

RN 2321-07-5 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) (CA INDEX NAME)

AB The invention provides methods and means for generating interstrand crosslinks in nucleic acid at certain specific locations in said nucleic Said certain specific locations in said nucleic acid can be selected from other locations through hybridizing nucleic acid present in said selected location with complementary nucleic acid. In one aspect the invention provides a method for providing at least one selected sequence in a nucleic acid with interstrand crosslinks comprising hybridizing at least one selected single-strand sequence with a complementary single strand nucleic acid wherein said selected sequence or said complementary nucleic acid or both comprise a crosslinking agent [e.g., trans-dichlorodiammineplatinum(II)]. The selected interstrand crosslinks hamper further hybridization and/or replication/amplification of said selected sequences, and the selected sequence preferably comprises at least one repetitive sequence. The invention provides a special labeling technique of probes, called COBRA (COmbined Binary RAtio labeling) to achieved FISH multiplicity of 24 or more. The means and methods of the invention may be used in and beneficial for a wide variety of applications, such as the generation of nucleic acid probes and the treatment of diseases such as cancer.

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 17 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2000:186664 CAPLUS

DOCUMENT NUMBER: 133:55472

TITLE: Determination of the Chelatable Iron Pool of Single

Intact Cells by Laser Scanning Microscopy

AUTHOR(S): Petrat, Frank; de Groot, Herbert; Rauen, Ursula

CORPORATE SOURCE: Universitatsklinikum, Institut fur Physiologische

Chemie, Essen, D-45122, Germany
SOURCE: Archives of Biochemistry and Biophysics (2000),

376(1), 74-81

CODEN: ABBIA4; ISSN: 0003-9861

PUBLISHER: Academic Press

DOCUMENT TYPE: Journal

LANGUAGE: English
IT 234075-34-4, Phen green SK

RL: ARG (Analytical reagent use); BSU (Biological study, unclassified);

ANST (Analytical study); BIOL (Biological study); USES (Uses)

(determination of chelatable iron pool of single intact cells by laser scanning

microscopy)

RN 234075-34-4 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-5-carboxamide, 2',7'-dichloro-3',6'-dihydroxy-3-oxo-N-1,10-phenanthrolin-5-yl-, dipotassium salt (9CI) (CA INDEX NAME)

●2 K

AB We have previously established a method of detecting intracellular chelatable iron in viable cells based on digital fluorescence microscopy. To quantify cellular chelatable iron, it was crucial to determine the intracellular indicator concentration. In the present study, we therefore adapted

the method to confocal laser scanning microscopy, which should allow the determination of the indicator concentration on the single-cell level. The fluorescent

heavy-metal indicator phen green SK (PG SK), the fluorescence of which is quenched by iron, was loaded into cultured rat hepatocytes. The hepatocellular fluorescence increased when cellular chelatable iron available to PG SK was removed from the probe by an excess of the membrane-permeable transition metal chelator 2,2'-dipyridyl (2,2'-DPD, 5 mM). We optimized the scanning parameters for quant. recording changes in fluorescence and determined individual intracellular PG SK concns. from the unquenched cellular fluorescence (after 2,2'-DPD) compared with PG SK stds. in a "cytosolic" medium. An ex situ calibration method based on laser scanning microscopy was set up to

determine the concentration of cellular chelatable iron from the increase of ${\sf PG}$ SK

fluorescence after addition of 2,2'-DPD (5 mM). As the stoichiometry of the PG SK:Fe2+ complex was 3:1 as long as PG SK was not limiting, cellular chelatable iron was calculated directly from absolute changes in cellular fluorescence. Using this method, we found $2.5\pm2.2~\mu\text{M}$ chelatable iron in hepatocytes. This method makes it possible to determine the pool of chelatable iron in single vital cells independently of cellular differences (e.g., dye loading, cell volume) in heterogeneous cell populations. (c) 2000 Academic Press.

REFERENCE COUNT:

37 THERE ARE 37 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 18 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2000:141803 CAPLUS

DOCUMENT NUMBER:

132:302546

TITLE:

Fiber optic oxygen sensor based on phosphorescence quenching of erythrosin B trapped in silica-gel

qlasses

AUTHOR(S):

Chan, M. A.; Lawless, J. L.; Lam, S. K.; Lo, D. Potential Star Ltd., Hong Kong, Peop. Rep. China

CORPORATE SOURCE: SOURCE:

Analytica Chimica Acta (2000), 408(1-2), 33-37

CODEN: ACACAM; ISSN: 0003-2670

PUBLISHER:

Elsevier Science B.V.

DOCUMENT TYPE:

Elsevier Science B.

DOCUMENT TIP.

Journal English

LANGUAGE:

T 16423-68-0, Erythrosin B

RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)

(fiber optic oxygen sensor based on phosphorescence quenching of erythrosin B trapped in silica-gel glasses) ${}^{\circ}$

RN 16423-68-0 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy-2',4',5',7'-tetraiodo-, disodium salt (9CI) (CA INDEX NAME)

•2 Na

AB Exptl. results from a phosphorescence-based fiber-optical oxygen sensor are presented. The optical oxygen sensor module has overall dimensions of 6 + 6 + 12 mm3. Erythrosin B immobilized in sol-gel silica, which showed strong phosphorescence quenching by oxygen, was used in the sensor probe. Oxygen sensing is effective from 0.014 to 600 mbar. On account of the long phosphorescence lifetime (.apprx.0.28 ms) and high phosphorescence yield (.apprx.2%) of erythrosin B in sol-gel silica at room temperature, the sensitivity of the sensor improves by a factor of 10 as compared to transition-metal complex-based

optical fiber oxygen sensors. The phosphorescence quenching effect is highly selective to oxygen. The sensor is inert to commonly found gases such as nitrogen and argon. Time-decay of phosphorescence is also studied.

REFERENCE COUNT:

16 THERE ARE 16 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 19 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1999:246333 CAPLUS

DOCUMENT NUMBER:

131:127282

TITLE:

Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy

using the fluorescent probe, Phen Green SK

AUTHOR (S):

Petrat, Frank; Rauen, Ursula; De Groot, Herbert

CORPORATE SOURCE:

Institut fur Physiologische Chemie,

Universitatsklinikum, Essen, D-45122, Germany

SOURCE:

Hepatology (Philadelphia) (1999), 29(4), 1171-1179

CODEN: HPTLD9; ISSN: 0270-9139

PUBLISHER:

W. B. Saunders Co.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

IT 234075-41-3, Phen Green FL

RL: ARG (Analytical reagent use); BSU (Biological study, unclassified);

ANST (Analytical study); BIOL (Biological study); USES (Uses)

(Phen Green FL; determination of chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using fluorescent probe, Phen Green SK)

RN 234075-41-3 CAPLUS

CN Thiourea, N-(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'[9H]xanthen]-5-yl)-N'-1,10-phenanthrolin-5-yl-, dipotassium salt (9CI)
(CA INDEX NAME)

●2 K

IT 234075-34-4, Phen Green SK

RL: ARG (Analytical reagent use); BSU (Biological study, unclassified); ANST (Analytical study); BIOL (Biological study); USES (Uses)

(Phen Green SK; determination of chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using fluorescent probe, Phen Green SK)

RN 234075-34-4 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-5-carboxamide, 2',7'-dichloro-3',6'-dihydroxy-3-oxo-N-1,10-phenanthrolin-5-yl-, dipotassium salt (9CI) (CA INDEX NAME)

●2 K

IT 1461-15-0, Calcein 2321-07-5D, Fluorescein, reaction

product with desferrioxamine

RL: ARG (Analytical reagent use); BSU (Biological study, unclassified); ANST (Analytical study); BIOL (Biological study); USES (Uses)

(determination of chelatable iron pool of isolated rat hepatocytes by

digital

fluorescence microscopy using fluorescent **probe**, Phen Green SK)

RN 1461-15-0 CAPLUS

CN Glycine, N,N'-[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'[9H]xanthene]-2',7'-diyl)bis(methylene)]bis[N-(carboxymethyl)- (9CI) (CA
INDEX NAME)

$$HO_2C-CH_2$$
 CH_2-CO_2H CH_2-CO_2H CH_2-CO_2H

RN 2321-07-5 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) (CA INDEX NAME)

AB The intracellular pool of chelatable iron is considered to be a decisive pathogenetic factor for various kinds of cell injury. We therefore set about establishing a method of detecting chelatable iron in isolated hepatocytes based on digital fluorescence microscopy. The fluorescence of hepatocytes loaded with the fluorescent metal indicators, phen green SK

(PG SK), phen green FL (PG FL), calcein, or fluorescein desferrioxamine (FL-DFO), was quenched when iron was added to the cells in a membrane-permeable form. It increased when cellular chelatable iron available to the probe was exptl. decreased by an excess of various membrane-permeable transition metal chelators. The quenching by means of the ferrous ammonium sulfate + citrate complex and also the "dequenching" using 2,2'-dipyridyl (2,2'-DPD) were largest for PG. We therefore optimized the conditions for its use in hepatocytes and tested the influence of possible confounding factors. An ex situ calibration method was set up to determine the chelatable iron pool of cultured hepatocytes from the increase of PG SK fluorescence after the addition of excess 2,2'-DPD. Using this method, we found 9.8±2.9 µmol/L (mean \pm SEM; n = 18) chelatable iron in rat hepatocytes, which constituted 1.0% \pm 0.3% of the total iron content of the cells as determined by atomic absorption spectroscopy. The concentration of chelatable iron in hepatocytes

was

higher than the one in K562 cells (4.0 \pm 1.3 μ mol/L; mean \pm SEM; n = 8), which were used for comparison. This method allowed us to record time courses of iron uptake and of iron chelation by different chelators (e.g., deferoxamine, 1,10-phenanthroline) in single, intact cells.

REFERENCE COUNT:

55 THERE ARE 55 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 20 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1998:682401 CAPLUS

DOCUMENT NUMBER:

129:313127

TITLE:

Trans-platinum compound and coordination with

biomolecules including DNA

INVENTOR(S):

Houthoff, Hendrik Jan; Reedijk, Jan; Volkers, Herman

H.; Heetebrij, Robert Jochem

PATENT ASSIGNEE(S):

Kreatech Biotechnology B.V., Neth.

SOURCE:

PCT Int. Appl., 22 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION: א ייינאקייי או

PATENT NO.					D DATE APPLICATION NO.						DATE						
	9845									WO 1	998-	NL20	6		1	9980	409
	W:	AL,	AM,	AT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CU,	CZ,	DE,
	-	DK,	EE,	ES,	FΙ,	GB,	GE,	GH,	GM,	GW,	HU,	ID,	IL,	IS,	JP,	KΕ,	KG,
		KΡ,	KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	MD,	MG,	MK,	MN,	MW,	MX,
		NO,	NZ,	PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK,	SL,	ΤJ,	TM,	TR,	TT,
		UA,	UG,	US,	UZ,	VN,	YU,	ZW,	AM,	ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	TJ,	TM
	RW:	GH,	GM,	ΚE,	LS,	MW,	SD,	SZ,	UG,	ZW,	ΑT,	BE,	CH,	CY,	DE,	DK,	ES,
		FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	ΝL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,
		CM,	GA,	GN,	ML,	MR,	ΝE,	SN,	TD,	TG							
CA	2286	668			AA		1998	1015		CA 1	998-	2286	668		1	9980	409
AU	9867	517			A1		1998	1030	,	AU 1	.998-	6751	7		1	9980	409
AU	7374	41			B2		2001	0816									
EP	9737	85			A1		2000	0126		EP 1	998-	9128	26		1	9980	409
EP	9737	85			В1		2003	1203									
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	NL,	SE,	PT,	ΙE,	FI
NZ	5001	84			A		2001	0831		NZ 1	.998-	5001	84		1	9980	409
JР	2001						2001	1106		JP 1	.998-	5426	31		1	9980	409
AT	2555				Ε		2003	1215	٠.	AT 1	998-	9128	26		1	9980	409
PT	9737	85			T						998-	_	-				
MX	9909	189			Α		2000	0630		MX 1	999-	9189			1	9991	007
US	6248	531			B1		2001	0619		US 1	999-	4027	35		1	9991	221
PRIORIT	Y APP	LN.	INFO	. :						EP 1	997-	2010	66	i	A 1	9970	410

WO 1998-NL206 W 19980409

OTHER SOURCE(S): MARPAT 129:313127

IT 2321-07-5, Fluorescein

RL: ARU (Analytical role, unclassified); RCT (Reactant); ANST (Analytical study); RACT (Reactant or reagent)

(trans-platinum compound and coordination with biomols. including DNA)

RN 2321-07-5 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) (CA INDEX NAME)

AB The present invention is concerned with a trans-platinum based compound for use in labeling bio-organic mols. The invention describes the synthesis and utilization of several trans-platinum compds. One particular example illustrates the application of the trans-platinum compds. in the labeling of DNA.

REFERENCE COUNT:

10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 21 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1998:675122 CAPLUS

DOCUMENT NUMBER:

129:257360

TITLE:

Dendrimer transition metal

chelate complexes for the detection of
proteins containing phosphate esters

INVENTOR(S):

Tegge, Werner; Gast, Rainer; Glokler, Jorn

PATENT ASSIGNEE(S):

Gesellschaft fur Biotechnologische Forschung m.b.H

(G.B.F.), Germany

SOURCE:

PCT Int. Appl., 28 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.					KIND DATE			APPLICATION NO.					DATE				
	WO	9843082 W: JP			A1	1	99810	01	WO	1998-	EP168	19		1	99803	323	
		RW: AT		CH,	DE,	DK,	ES, F	٦Ī,	FR, GI	3, GR,	ΙE,	ΙΤ,	LU,	MC,	NL,	PT,	SE
	EP	966684			A1	1	99912	229	EP	1998-	91705	57		1	99803	323	
	EP	966684			B1	2	00402	225									
		R: AT	BE,	CH,	DE,	DK,	ES, F	R,	GB, IT	r, LI,	LU,	NL,	SE,	FI			
	JP	20015232	234		T2	2	00111	20	JP	1998-	54442	27		1	99803	323	
	AT	260466			E	2	00403	315	AT	1998-	91705	57		1	99803	323	
	ES	2217546			Т3	2	00411	01	ES	1998-	91705	57		1	99803	323	
	US	6252042			В1	2	00106	26	US	2000-	38138	37		2	00001	18	
	PRIORITY	APPLN.	INFO.	. :					DE	1997-	19711	.796	P	1	99703	321	
									WO	1998-	EP168	39	V	1 1	99803	323	

IT 27072-45-3, Fluoresceinisothiocyanate

RL: RCT (Reactant); RACT (Reactant or reagent)

(dendrimer transition metal chelate

complexes for detection of proteins containing phosphate esters)

RN 27072-45-3 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy-5(or 6)-isothiocyanato-(9CI) (CA INDEX NAME)

D1-N=C=S

IT 213607-49-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(dendrimer transition metal chelate

complexes for detection of proteins containing phosphate esters)

RN 213607-49-9 CAPLUS

CN Pentanedioic acid, 3-[2-[[[[3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-5(or 6)-yl]amino]thioxomethyl]amino]ethyl]- (9CI) (CA INDEX NAME)

The invention concerns dendrimer transition metal chelate complexes with attached fluorescent dye that detect peptides and proteins containing various amts. of phosphate esters. The dendrimer chelating agents are, e.g., iminodiacetic acid, nitrilotriacetic acid and derivs.; Fe3+ and fluorescein are used in the described synthesis. The compound can be used to identify consensus motives of protein kinases and for detection on protein gels, blots and in capillary electrophoresis.

REFERENCE COUNT:

THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ACCESSION NUMBER: 1995:541416 CAPLUS

DOCUMENT NUMBER: 122:283859

TITLE: Fusion proteins containing metallothionein and

targeting-protein structural components

INVENTOR(S): Zamora, Paul; Griffith, Jeffery K.

PATENT ASSIGNEE(S): University of New Mexico, USA

SOURCE: PCT Int. Appl., 39 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9504753	A1	19950216	WO 1994-US8689	19940804

W: CA, JP

RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE PRIORITY APPLN. INFO.: US 1993-104628 A 19930811

IT 2321-07-5P, Fluorescein

RL: ARG (Analytical reagent use); BPN (Biosynthetic preparation); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); PREP (Preparation); USES (Uses)

(probe; fusion proteins containing metallothionein and targeting-protein structural components)

RN 2321-07-5 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy- (9CI) (CA INDEX NAME)

AB Components of the primary amino acid sequence of a metallothionein are genetically incorporated into proteins by recombinant DNA techniques to produce a hybrid mol. comprising an effector protein continuous with the metallothionein. The sulfhydryl and lysine residues of the metallothionein portion of the hybrid mol. provide binding sites for ligands such as radionuclides, contrast agents, magnetic resonance agents, fluorochromes, and enzymes. The labeled hybrid mol. is useful for the diagnosis and localization of disease lesions and is a cost-effective method of producing key ingredients for immunoassays including immunosorbent assay, immunoblot, immunoblot, immunohistochem., and/or flow cytometry. An example of such methods is provided by construction of recombinant DNA for hamster metallothionein-2/human tissue plasminogen activator mols., regulated expression of the chimeric gene in Escherichia coli, and its potential use in diagnostic imaging with the probe technetium-99m.

L15 ANSWER 23 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1995:685677 CAPLUS

DOCUMENT NUMBER: 123:106978

TITLE: Transport of iron and other transition

metals into cells as revealed by a fluorescent

probe

AUTHOR(S): Breuer, William; Epsztejn, Silvina; Millgram, Pnina;

Cabantchik, Ioav Z.

CORPORATE SOURCE: Dep. Biol. Chem., Hebrew Univ. Jerusalem, Jerusalem,

91904, Israel

SOURCE: American Journal of Physiology (1995), 268(6, Pt. 1),

C1354-C1361

CODEN: AJPHAP; ISSN: 0002-9513 American Physiological Society

PUBLISHER: America: DOCUMENT TYPE: Journal

LANGUAGE: English

IT 1461-15-0, Calcein

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES

(transport of iron and other transition metals into cells as revealed by a fluorescent probe)

RN 1461-15-0 CAPLUS

CN Glycine, N,N'-[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'[9H]xanthene]-2',7'-diyl)bis(methylene)]bis[N-(carboxymethyl)- (9CI) (CA
INDEX NAME)

$$HO_2C-CH_2$$
 CH_2-CO_2H CH_2-CO_2H CH_2-CO_2H

AB Transport of nontransferrin-bound iron into cells is thought to be mediated by a facilitated mechanism involving either the trivalent form Fe(III) or the divalent form Fe(II) following reduction of Fe(III) at the cell surface. The authors have made use of the probe calcein, whose fluorescence is rapidly and stoichiometrically quenched by divalent metals such as Fe(II), Cu(II), Co(II), and Ni(II) and is minimally affected by variations in ionic strength, Ca(II) and Mg(II). Addition of Fe(II) salts to calcein-loaded human erythroleukemia K-562 cells elicited a slow quenching response that was markedly accelerated by the ionophore A-23187 and was reversed by membrane-permeant but not by impermeant chelators. These observations were confirmed by fluorescence imaging of cells. Other divalent metals such as Co(II), Ni(II), and Mn(II) permeated into cells at roughly similar rates, and their uptake, like that of Fe(II), was blocked by trifluoperazine, bepridil, and impermeant sulfhydryl-reactive organomercurials, indicating the operation of a common transport mechanism. This method could provide a versatile tool for studying the transport of iron and other transition metals into cells.

L15 ANSWER 24 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1995:324994 CAPLUS

DOCUMENT NUMBER: 122:204043

TITLE: Studies on complexation of fluorescein and

O-phenanthroline derivatives with the elements of Group II B. The spectrophotometric determination of

zinc in its alloys.

AUTHOR(S): Abd-El Hafeez, E. Ali

CORPORATE SOURCE: Fac. Sci. Sohag, Assiut Univ., Egypt

SOURCE: Egyptian Journal of Analytical Chemistry (1993), 2(1),

107-15

CODEN: EJACEH; ISSN: 1110-1857

DOCUMENT TYPE: LANGUAGE:

Journal English

IT 15905-32-5D, Tetraiodofluorescein, transition

metal and phenanthroline derivative complexes

RL: ANT (Analyte); PRP (Properties); ANST (Analytical study)

(absorption spectra of ternary complexes of zinc and cadmium and

mercury with fluorescein and O-phenanthroline derivs.)

RN 15905-32-5 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy-

2',4',5',7'-tetraiodo- (9CI) (CA INDEX NAME)

IT 15905-32-5, Tetraiodofluorescein

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses) (zinc determination in alloys by spectrophotometry with complexation using fluorescein and O-phenanthroline derivs.)

RN 15905-32-5 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy-2',4',5',7'-tetraiodo-(9CI) (CA INDEX NAME)

AB Complexation of the Zinc phenanthroline derivative cationic **chelate** with Er-COOH [Er-COOH = tetraiodofluorescein] was studied and a new sensitive method for the determination of zinc was developed. Beer's law is obeyed up to a zinc concentration of 1.5 μ g/mL and the molar absorptivity is 6.24 + 105 L/mol-cm for zinc-bathophenanthroline-[L2] complex. The molar ratios of the components and the form of the ternary complex were determined The formula [Zn(L1)2]2+ [Er-COO]- is proposed. The present method is 30 times more sensitive than the known PAN method. The method becomes specific for the determination of zinc in its alloys by preceding extraction of

ions from thiourea /NH4SCN into Me isoBu ketone.

ACCESSION NUMBER:

1980:121173 CAPLUS

DOCUMENT NUMBER:

92:121173

TITLE:

Spectrophotometric studies on the chelates

of zinc, cadmium and mercury with bromopyrogallol red

in presence of cetyltrimethylammonium bromide

AUTHOR (S):

Prakash, Om; Gupta, R. C.; Mushran, S. P.

CORPORATE SOURCE:

Chem. Lab., Univ. Allahabad, Allahabad, India

SOURCE:

Indian Journal of Chemistry, Section A: Inorganic, Physical, Theoretical & Analytical (1979), 18A(6),

535-6

CODEN: IJCADU; ISSN: 0376-4710

DOCUMENT TYPE:

Journal

LANGUAGE:

English

IT 16574-43-9

RL: ANST (Analytical study)

(in determination of Group IIB metals by spectrophotometry)

RN 16574-43-9 CAPLUS

CN Spiro[3H-2,1-benzoxathiole-3,9'-[9H]xanthene]-3',4',5',6'-tetrol,

2',7'-dibromo-, 1,1-dioxide (9CI) (CA INDEX NAME)

IT 16574-43-9D, Group IIB metal complexes

RL: PRP (Properties)

(spectra of)

RN 16574-43-9 CAPLUS

CN Spiro[3H-2,1-benzoxathiole-3,9'-[9H]xanthene]-3',4',5',6'-tetrol,

2',7'-dibromo-, 1,1-dioxide (9CI) (CA INDEX NAME)

(λ max, 550 nm), Cd (564 nm), and Hg (400 nm). In the presence of cetyltrimethylammonium (CTA) bromide, green ternary **chelates** (λ max, 600 and 630 nm) are formed. Compns. of binary and ternary **chelates** were determined by the continuous variation and mole ratio methods. The complexes were used for photometric determination of these metal ions. The pH stability range, Beer's law range, Sandell sensitivity, and molar absorptivity value for the systems are: 1:1 Zn-I, 6.0-8.0, 0.23-1.57, 0.060, and 1.8 + 10-4; 1:1:5 Zn-I-CTA, 6.0-9.0, 0.13-2.1, 0.004, and 1.97 + 10-4; 1:1 Cd-I, 6.0-8.0, 0.22-1.80, 0.011, and 3.4 + 10-4; 1:4:4 Cd-I-CTA, 7.0-8.5, 0.05-2.9, 0.002, and 4.1 + 10-4; 1:1 Hg(II)-I, 4.5-6.5, 0.90-5.61, 0.040, and 1.0 + 10-4; and 1:1:4 Hg(II)-I-CTA, 6.0-8.5, 0.20-22.1 ppm, 0.010 μ g/cm2, and 1.3 + 10-4 mol-1 cm-1, resp.

L15 ANSWER 26 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1976:127154 CAPLUS

DOCUMENT NUMBER:

84:127154

TITLE:

Reactivity of nickel(I) and copper(I) complexes

containing 14-membered macrocyclic ligands in aqueous

solution

AUTHOR (S):

Tait, A. Martin; Hoffman, Morton Z.; Hayon, E. Dep. Chem., Boston Univ., Boston, MA, USA

CORPORATE SOURCE: SOURCE:

Inorganic Chemistry (1976), 15(4), 934-9 CODEN: INOCAJ; ISSN: 0020-1669

DOCUMENT TYPE:

Journal English

LANGUAGE:

IT 518-47-8 17372-87-1

RL: RCT (Reactant); RACT (Reactant or reagent)

(reduction of, by Cu(I) and Ni(I) chelates, kinetics of)

RN 518-47-8 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy-,

disodium salt (9CI) (CA INDEX NAME)

●2 Na

RN 17372-87-1 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 2',4',5',7'-tetrabromo-3',6'-dihydroxy-, disodium salt (9CI) (CA INDEX NAME)

●2 Na

The fast kinetics technique of pulse radiolysis was used to generate and AB characterize, in aqueous solution, Ni(I) and Cu(I) complexes containing the tetradentate 14-membered macrocyclic ligands 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene (4,11-dieneN4) and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (aneN4). Reduction of the corresponding divalent metal complexes by eaq-, H atoms, and CO2- radicals generates the M(I) species (k = 108-1010 M-1 sec-1); (CH3)2CO- and \cdot CH2O- radicals reduce Cu(II)(4,11-dieneN4) (k = 9 + 108 M-1 sec-1). Ni(I)(4,11-dieneN4), Ni(I)(aneN4), and Cu(I)(4,11-dieneN4) show intense absorption band maximum at 460 (s 3900 M-1 cm-1), (£ 5150 M-1 cm-1), and 410 nm (£ 4610 M-1 cm-1), resp. The decay kinetics of these species were studied as a function of pH and in the presence of scavenging solutes. The M(I)complexes behave as bases, reacting with H3O+, AcOH and H2PO4-. They are also good reducing agents, transferring an electron to a variety of organic acceptors and 1-electron oxidants such as Co(III), Cr(III), Ru(III), and Fe(III) amine, bipyridyl, and macrocyclic ligand complexes. The M(I) complexes react rapidly with CH3I, N2O, and O2. In the latter reaction, the Ni(I) species produce O2- in solution, while the Cu(I) complex does not and appears to react with O2 via an addition mechanism.

L15 ANSWER 27 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1975:460228 CAPLUS

DOCUMENT NUMBER:

83:60228

TITLE:

SOURCE:

Singlet oxygen and polymer photooxidations. I

Sensitizers, quenchers, and reactants

AUTHOR(S):

Zweig, A.; Henderson, W. A., Jr.

CORPORATE SOURCE:

Chem. Res. Div., Am. Cyanamid Co., Stamford, CT, USA Journal of Polymer Science, Polymer Chemistry Edition

(1975), 13(3), 717-36

CODEN: JPLCAT; ISSN: 0449-296X

DOCUMENT TYPE:

Journal

LANGUAGE:

English

IT 632-68-8

RL: USES (Uses)

(sensitizers for singlet oxygen in polymers)

RN 632-68-8 CAPLUS

CN Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodo-, dipotassium salt (9CI) (CA INDEX NAME)

●2 K

Our Description of the accordance of the series of transition was discussed. With the exception of the accordance of the

L15 ANSWER 28 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1976:486752 CAPLUS

DOCUMENT NUMBER:

85:86752

TITLE:

Bromopyrogallol red as an interesting chromogenic

reagent for the microdetermination of metal ions

AUTHOR(S):

Pande, S. C.; Sangal, S. P.

CORPORATE SOURCE:

Laxminarayan Inst. Technol., Nagpur Univ., Nagpur,

India

SOURCE:

Chemical Era (1975), 11(8), 29-33

CODEN: CHERDB; ISSN: 0009-2533

DOCUMENT TYPE:

Journal

LANGUAGE:

English

IT 16574-43-9D, Spiro[3H-2,1-benzoxathiole-3,9'-[9H]xanthene]-

3',4',5',6'-tetrol, 2',7'-dibromo-, 1,1-dioxide, metal ion complexes

RL: PRP (Properties)

(formation consts. and spectra of)

RN 16574-43-9 CAPLUS

CN Spiro[3H-2,1-benzoxathiole-3,9'-[9H]xanthene]-3',4',5',6'-tetrol, 2',7'-dibromo-, 1,1-dioxide (9CI) (CA INDEX NAME)

IT 16574-43-9

RL: ANST (Analytical study)

(in spectrophotometric determination of metal ions)

RN 16574-43-9 CAPLUS

CN Spiro[3H-2,1-benzoxathiole-3,9'-[9H]xanthene]-3',4',5',6'-tetrol, 2',7'-dibromo-, 1,1-dioxide (9CI) (CA INDEX NAME)

AB The use of bromopyrogallol red (I) as a chromogenic reagent for the spectrophotometric detns. of metal ions was studied. The formation consts., pH ranges of stability, and wavelengths of maximum absorbance were determined for the 1:1 chelates of Sc, Y, La, Ti, Zr, Hf, Th, U, Mo, and W and 1:2 chelates of Al, Ga, and In. The optimum conditions for the detns. of the metals were determined, viz. pH, wavelengths, molar absorptivities, ranges of Beer's law validity, sensitivity indexes, and interfering metal tolerance limits.

L15 ANSWER 29 OF 29 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1969:487330 CAPLUS

DOCUMENT NUMBER:

71:87330

TITLE:

Hydroxyfluoran and its derivatives as organic reagents. VIII. Synthesis of 3',4',5',6'-

tetrahydroxyfluoran derivatives and determination of

bismuth and antimony

AUTHOR(S):

Mori, Itsuo

CORPORATE SOURCE: SOURCE:

Osaka Coll. Pharm., Osaka, Japan Yakugaku Zasshi (1969), 89(4), 475-81

CODEN: YKKZAJ; ISSN: 0031-6903

DOCUMENT TYPE:

Journal

LANGUAGE:

Japanese

IT 24921-41-3 24921-42-4

RL: ANST (Analytical study)

(as indicator in chelatometry)

RN

24921-41-3 CAPLUS
Xanthylium, 9-(o-carboxyphenyl)-3,4,5,6-tetrahydroxy-, methyl ester (8CI) CN (CA INDEX NAME)

RN24921-42-4 CAPLUS

CN Xanthylium, 9-(2-carboxy-3,4,5,6-tetrachlorophenyl)-3,4,5,6-tetrahydroxy-(8CI) (CA INDEX NAME)

ΙT 24921-37-7 24921-38-8 24921-39-9

25167-22-0 25167-23-1

RL: ANST (Analytical study)

(in determination of metals)

RN24921-37-7 CAPLUS

Xanthylium, 9-(o-carboxyphenyl)-3,4,5,6-tetrahydroxy- (8CI) (CA INDEX CN

RN

24921-38-8 CAPLUS Xanthylium, 9-(o-carboxyphenyl)-3,4,5,6-tetrahydroxy-, ethyl ester (8CI) CN (CA INDEX NAME)

RN

24921-39-9 CAPLUS Xanthylium, 9-(2-carboxy-3,4,5,6-tetrachlorophenyl)-3,4,5,6-tetrahydroxy-, CNethyl ester (8CI) (CA INDEX NAME)

RN25167-22-0 CAPLUS

Xanthylium, 9-(dicarboxyphenyl)-3,4,5,6-tetrahydroxy- (8CI) (CA INDEX CNNAME)

RN 25167-23-1 CAPLUS

CN Xanthylium, 9-(2,?-dicarboxyphenyl)-3,4,5,6-tetrahydroxy-, dimethyl ester (8CI) (CA INDEX NAME)

IT 24921-40-2

RL: ANST (Analytical study)
 (in determination of pnictides)

RN 24921-40-2 CAPLUS

CN Xanthylium, 3,4,5,6-tetrahydroxy-9-[2,3,4,5-tetrachloro-6-(methoxycarbonyl)phenyl]- (9CI) (CA INDEX NAME)

24921-33-3P 24921-34-4P 24921-35-5P
24921-36-6P 24921-37-7DP, Xanthylium,
9-(o-carboxyphenyl)-3,4,5,6-tetrahydroxy-, metal complexes
24921-38-8DP, Xanthylium, 9-(o-carboxyphenyl)-3,4,5,6-tetrahydroxy-, ethyl ester, metal complexes 24921-39-9DP, Xanthylium,
9-(2-carboxy-3,4,5,6-tetrachlorophenyl)-3,4,5,6-tetrahydroxy-, ethyl ester, metal complexes 24921-40-2DP, Xanthylium,
9-(2-carboxy-3,4,5,6-tetrachlorophenyl)-3,4,5,6-tetrahydroxy-, methyl ester, pnictide complexes 24921-41-3DP, Xanthylium,
9-(o-carboxyphenyl)-3,4,5,6-tetrahydroxy-, methyl ester, metal complexes 24921-42-4DP, Xanthylium, 9-(2-carboxy-3,4,5,6-tetrachlorophenyl)-3,4,5,6-tetrahydroxy-, metal complexes 25167-21-9P
25167-22-0DP, Xanthylium, 9-(dicarboxyphenyl)-3,4,5,6-tetrahydroxy-, metal complexes

10/665,227

RL: PREP (Preparation) (preparation of)

RN

24921-33-3 CAPLUS
Xanthylium, 9-(o-carboxyphenyl)-2-chloro-3,5,6-trihydroxy-, ethyl ester CN (8CI) (CA INDEX NAME)

RN 24921-34-4 CAPLUS

CN Xanthylium, 9-(o-carboxyphenyl)-4-chloro-3,5,6-trihydroxy-, ethyl ester (8CI) (CA INDEX NAME)

RN 24921-35-5 CAPLUS

CN Xanthylium, 9-(o-carboxyphenyl)-2,4-dichloro-3,5,6-trihydroxy-, ethyl ester (8CI) (CA INDEX NAME)

RN24921-36-6 CAPLUS

CN Xanthylium, 9-(o-carboxyphenyl)-2,4-dichloro-3,5,6-trihydroxy-, methyl (CA INDEX NAME)

RN 24921-37-7 CAPLUS

CN Xanthylium, 9-(o-carboxyphenyl)-3,4,5,6-tetrahydroxy- (8CI) (CA INDEX NAME)

RN 24921-38-8 CAPLUS

CN Xanthylium, 9-(o-carboxyphenyl)-3,4,5,6-tetrahydroxy-, ethyl ester (8CI) (CA INDEX NAME)

RN 24921-39-9 CAPLUS

CN Xanthylium, 9-(2-carboxy-3,4,5,6-tetrachlorophenyl)-3,4,5,6-tetrahydroxy-, ethyl ester (8CI) (CA INDEX NAME)

RN

24921-40-2 CAPLUS Xanthylium, 3,4,5,6-tetrahydroxy-9-[2,3,4,5-tetrachloro-6-CN(methoxycarbonyl)phenyl] - (9CI) (CA INDEX NAME)

RN

24921-41-3 CAPLUS Xanthylium, 9-(o-carboxyphenyl)-3,4,5,6-tetrahydroxy-, methyl ester (8CI) CN(CA INDEX NAME)

RN

24921-42-4 CAPLUS
Xanthylium, 9-(2-carboxy-3,4,5,6-tetrachlorophenyl)-3,4,5,6-tetrahydroxy-CN (8CI) (CA INDEX NAME)

RN 25167-21-9 CAPLUS

CN Xanthylium, 9-(dicarboxyphenyl)-3,4,5,6-tetrahydroxy-, diethyl ester (8CI) (CA INDEX NAME)

RN 25167-22-0 CAPLUS

CN Xanthylium, 9-(dicarboxyphenyl)-3,4,5,6-tetrahydroxy- (8CI) (CA INDEX NAME)

D1-CO2H

GI For diagram(s), see printed CA Issue.

AB The following new I were prepared by previously described methods (CA 63:6954d) (X, Y, R, and m.p. given): Cl, H, Et, 213-16°; H, Cl, Et,

272-5°; Cl, Cl, Me, 244-7°; Cl, Cl, Et, 250-60°. Similarly, II (R = H, Me, or Et), m. 280°, were prepared from trimellitic anhydride. Since II and III are more soluble in organic solvents than I and, unlike I, their solns. exhibit no fluorescence, they are more suitable as organic reagents for determination of Bi, Sb, and other metals. III(R =

Me) (IV), m. 280°, was selected for **chelate** titration of Bi3+, giving a clear blue to red end point. For spot test of Sb3+, IV was 10 times as sensitive as I (X = H, Y, = OH, R = Me). IV was also used for spectrophotometric determination of Bi and Sb at 620 and 590 m μ , resp. The calibration curves were linear for 0-10 γ Bi/ml. and 0.4-3 γ Sb/ml. Sn, Th, Fe(III), Zr, and Mo over the limits of 1:10-50 interfered.

=> log y COST IN U.S. DOLLARS	SINCE FILE TOT						
	ENTRY	SESSION					
FULL ESTIMATED COST	155.95	349.17					
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL					
	ENTRY	SESSION					
CA SUBSCRIBER PRICE	-21.17	-21.17					

STN INTERNATIONAL LOGOFF AT 13:42:25 ON 01 MAR 2005

Connecting via Winsock to STN

```
Welcome to STN International! Enter x:x
```

LOGINID: ssspta1201txs

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

```
Welcome to STN International
NEWS
                Web Page URLs for STN Seminar Schedule - N. America
NEWS
                "Ask CAS" for self-help around the clock
NEWS
        SEP 01
                New pricing for the Save Answers for SciFinder Wizard within
                STN Express with Discover!
NEWS 4
        OCT 28
                KOREAPAT now available on STN
        NOV 30 PHAR reloaded with additional data
NEWS 5
NEWS 6 DEC 01 LISA now available on STN
NEWS 7
        DEC 09 12 databases to be removed from STN on December 31, 2004
NEWS 8 DEC 15 MEDLINE update schedule for December 2004
NEWS 9 DEC 17
                ELCOM reloaded; updating to resume; current-awareness
                alerts (SDIs) affected
NEWS
    10 DEC 17
                COMPUAB reloaded; updating to resume; current-awareness
                alerts (SDIs) affected
NEWS
     11 DEC 17
                SOLIDSTATE reloaded; updating to resume; current-awareness
                alerts (SDIs) affected
     12 DEC 17
                CERAB reloaded; updating to resume; current-awareness
NEWS
                alerts (SDIs) affected
                THREE NEW FIELDS ADDED TO IFIPAT/IFIUDB/IFICDB
     13 DEC 17
NEWS
     14 DEC 30
                EPFULL: New patent full text database to be available on STN
NEWS
     15 DEC 30
NEWS
                CAPLUS - PATENT COVERAGE EXPANDED
NEWS 16 JAN 03
                No connect-hour charges in EPFULL during January and
                February 2005
                CA/CAPLUS - Russian Agency for Patents and Trademarks
NEWS 17 FEB 25
                 (ROSPATENT) added to list of core patent offices covered
NEWS 18 FEB 10
                STN Patent Forums to be held in March 2005
NEWS 19 FEB 16
                STN User Update to be held in conjunction with the 229th ACS
                National Meeting on March 13, 2005
NEWS 20 FEB 28
                PATDPAFULL - New display fields provide for legal status
                data from INPADOC
NEWS 21 FEB 28 BABS - Current-awareness alerts (SDIs) available
NEWS 22 FEB 28 MEDLINE/LMEDLINE reloaded
             JANUARY 10 CURRENT WINDOWS VERSION IS V7.01a, CURRENT
NEWS EXPRESS
             MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),
             AND CURRENT DISCOVER FILE IS DATED 10 JANUARY 2005
NEWS HOURS
             STN Operating Hours Plus Help Desk Availability
NEWS INTER
             General Internet Information
NEWS LOGIN
             Welcome Banner and News Items
NEWS PHONE
             Direct Dial and Telecommunication Network Access to STN
NEWS WWW
             CAS World Wide Web Site (general information)
```

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer

agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 11:57:41 ON 01 MAR 2005

=> FIL STNGUIDE

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.21 0.21

FULL ESTIMATED COST

FILE 'STNGUIDE' ENTERED AT 11:57:54 ON 01 MAR 2005
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE
AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE

FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Feb 25, 2005 (20050225/UP).

=> FIL HOME

COST IN U.S. DOLLARS
SINCE FILE TOTAL
ENTRY SESSION
FULL ESTIMATED COST
0.06
0.27

FILE 'HOME' ENTERED AT 11:58:00 ON 01 MAR 2005

=> file reg

COST IN U.S. DOLLARS
SINCE FILE TOTAL
ENTRY SESSION
FULL ESTIMATED COST
0.21
0.48

FILE 'REGISTRY' ENTERED AT 11:58:05 ON 01 MAR 2005 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2005 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 27 FEB 2005 HIGHEST RN 838819-79-7 DICTIONARY FILE UPDATES: 27 FEB 2005 HIGHEST RN 838819-79-7

TSCA INFORMATION NOW CURRENT THROUGH JANUARY 18, 2005

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. For more information enter HELP PROP at an arrow prompt in the file or refer to the file summary sheet on the web at: http://www.cas.org/ONLINE/DBSS/registryss.html

Uploading C:\Program Files\Stnexp\Queries\106652271.str

$$G_1$$
 G_1
 G_1

chain nodes : 19 20 21 ring nodes : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 chain bonds : 14-19 17-20 19-21 20-21 ring bonds : 1-2 1-6 1-15 2-3 3-4 4-5 5-6 6-13 7-8 7-12 7-16 8-9 8-18 9-10 10-11 11-12 13-14 14-15 16-17 17-18 exact/norm bonds : 17-20 19-21 20-21 1-15 6-13 7-16 8-18 13-14 14-15 14-19 16-17 17-18 normalized bonds : 1-2 1-6 2-3 3-4 4-5 5-6 7-8 7-12 8-9 9-10 10-11 11-12 isolated ring systems : containing 1 : 7 :

G1:C,O,S,N

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:CLASS 20:CLASS 21:CLASS

L1 STRUCTURE UPLOADED

=> s 11

SAMPLE SEARCH INITIATED 11:58:26 FILE 'REGISTRY' SAMPLE SCREEN SEARCH COMPLETED - 2289 TO ITERATE

43.7% PROCESSED 1000 ITERATIONS INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED) SEARCH TIME: 00.00.01

50 ANSWERS

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 42911 TO 48649
PROJECTED ANSWERS: 15540 TO 19068

L2 50 SEA SSS SAM L1

=> d scan

L2 50 ANSWERS REGISTRY COPYRIGHT 2005 ACS on STN

10/665,227

IN Benzoxazolium, 5-phenyl-2-[3-[5-phenyl-3-(4-sulfobutyl)-2(3H)benzoxazolylidene]-1-propenyl]-3-(2-sulfoethyl)-, inner salt (9CI)

MF C35 H32 N2 O8 S2

CI COM

Ph

CH2 CH2 CH2 SO3H

$$CH_2$$
 CH2 CH2 CH2 SO3-

 CH_2 CH2 SO3-

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):4

L2 50 ANSWERS REGISTRY COPYRIGHT 2005 ACS on STN

IN Benzothiazolium, 3-(carboxymethyl)-5-chloro-2-[3-[5-chloro-1,3-dihydro-3-methyl-1-(3-sulfopropyl)-6-(trifluoromethyl)-2H-benzimidazol-2-ylidene]-1-propenyl]-, inner salt (9CI)

MF C24 H20 Cl2 F3 N3 O5 S2

CI COM

L2 50 ANSWERS REGISTRY COPYRIGHT 2005 ACS on STN

IN Benzoxazolium, 3-ethyl-2-[β -[(3-ethyl-5-methoxy-6-methyl-2-benzothiazolinylidene)methyl]styryl]-5-phenyl- (8CI)

MF C35 H33 N2 O2 S

CI COM

L2 50 ANSWERS REGISTRY COPYRIGHT 2005 ACS on STN

IN 1H-Benzimidazolium, 1-[3-(acetyloxy)propyl]-2-[3-[1-[3-(acetyloxy)propyl]5,6-dichloro-1,3-dihydro-3-(4-sulfobutyl)-2H-benzimidazol-2-ylidene]-1propenyl]-5,6-dichloro-3-(4-sulfobutyl)-, inner salt (9CI)

MF C35 H42 Cl4 N4 O10 S2

CI COM

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

L2 50 ANSWERS REGISTRY COPYRIGHT 2005 ACS on STN

MF C44 H54 N3 O3

CI COM

Absolute stereochemistry.

Double bond geometry as shown.

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):0

=> s 11 ful

FULL SEARCH INITIATED 11:59:05 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 45190 TO ITERATE

100.0% PROCESSED 45190 ITERATIONS

17732 ANSWERS

SEARCH TIME: 00.00.01

L3 17732 SEA SSS FUL L1

=> file caplus

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 161.76 162.24

FULL ESTIMATED COST

FILE 'CAPLUS' ENTERED AT 11:59:14 ON 01 MAR 2005 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS) Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 1 Mar 2005 VOL 142 ISS 10 FILE LAST UPDATED: 28 Feb 2005 (20050228/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 13

L4 9513 L3

=> s l4 and metal

1553024 METAL

788862 METALS

1884659 METAL

(METAL OR METALS)

L5 585 L4 AND METAL

=> s 14 and trabsition metal

0 TRABSITION

1553024 METAL

788862 METALS

1884659 METAL

(METAL OR METALS)

0 TRABSITION METAL

(TRABSITION(W)METAL)

L6 0 L4 AND TRABSITION METAL

=> s 14 and transition metal

873158 TRANSITION

243225 TRANSITIONS

979313 TRANSITION

(TRANSITION OR TRANSITIONS)

1553024 METAL

788862 METALS

1884659 METAL

(METAL OR METALS)

168589 TRANSITION METAL

(TRANSITION (W) METAL)

L7 62 L4 AND TRANSITION METAL

=> s 17 and label

56119 LABEL

18817 LABELS

67059 LABEL

(LABEL OR LABELS)

L8 5 L7 AND LABEL

=> s 17 and probe

204483 PROBE

102924 PROBES

271507 PROBE

(PROBE OR PROBES)

L9

4 L7 AND PROBE

=> s 17 and chelate

42169 CHELATE 26322 CHELATES 55922 CHELATE

(CHELATE OR CHELATES)

L10

6 L7 AND CHELATE

=> dup rem 18 19 110

PROCESSING COMPLETED FOR L8 PROCESSING COMPLETED FOR L9 PROCESSING COMPLETED FOR L10

L11 12 DUP REM L8 L9 L10 (3 DUPLICATES REMOVED)

=> d 17 ibib hitstr abs 1-62

L7 ANSWER 2 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2003:875484 CAPLUS

DOCUMENT NUMBER:

139:361233

TITLE:

Bis-transition-metal

-chelate-probes

INVENTOR(S):

Ebright, Richard H.; Ebright, Yon W.

PATENT ASSIGNEE(S):

Rutgers, the State of University of New Jersey, USA

SOURCE:

PCT Int. Appl., 80 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

. PATENT N	0.	KIND	DATE	APPL	ICATION :	NO.	DATE			
		20031106 20041223	WO 2	002-US36	180	20021112				
	AE, AG, AL, CO, CR, CU, GM, HR, HU, LS, LT, LU, PL, PT, RO,	CZ, DE, ID, IL, LV, MA,	DK, DM, IN, IS, MD, MG,	DZ, EC, JP, KE, MK, MN,	EE, ES, KG, KP, MW, MX,	FI, GI KR, K MZ, N	B, GD Z, LC D, NZ	, GE, GH, , LK, LR, , OM, PH,		
RW: (UA, UG, US, GH, GM, KE, KG, KZ, MD, FI, FR, GB, CG, CI, CM,	UZ, VN, LS, MW, RU, TJ, GR, IE, GA, GN,	, YU, ZA, , MZ, SD, , TM, AT, , IT, LU, , GQ, GW,	ZM, ZW SL, SZ, BE, BG, MC, NL, ML, MR,	TZ, UG, CH, CY, PT, SE, NE, SN,	ZM, ZM CZ, Di SK, Ti TD, TC	W, AM E, DK R, BF	, AZ, BY, , EE, ES, , BJ, CF,		
US 20040	02 AT, BE, CH, IE, SI, LT, 96887 31545	LV, FI,	, ES, FR, , RO, MK, 20040520	GB, GR, CY, AL, US 2	IT, LI, TR, BG, 003-6652	LU, N CZ, E 27	L, SE E, SK •			
PRIORITY APPL	N. INFO.:		139:3612	US 2 US 2 WO 2 US 2	002-3677 002-4102 002-US36	75P 67P 180	P P W			

OTHER SOURCE(S): MARPAT 139:361233

IT 389059-73-8P 389059-74-9P

RN 389059-73-8 CAPLUS

CN Nickelate(3-), $[\mu-[1-[6-[5-[bis[(carboxy-\kappa 0)methyl]amino-\kappa N]-5-(carboxy-\kappa 0)pentyl]amino]-6-oxohexyl]-2-[3-[1-[6-[5-[bis[(carboxy-\kappa 0)methyl]amino-\kappa N]-5-(carboxy-\kappa 0)pentyl]amino]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene]-1-propenyl]-3,3-dimethyl-5-sulfo-3H-indoliumato(8-)]]di-(9CI) (CA INDEX NAME)$

PAGE 1-A

PAGE 2-A

RN 389059-74-9 CAPLUS

CN Nickelate(3-), $[\mu-[1-[6-[5-[bis[(carboxy-\kappa0)methyl]amino-\kappa N]-5-(carboxy-\kappa0)pentyl]amino]-6-oxohexyl]-2-[5-[1-[6-[5-[bis[(carboxy-\kappa0)methyl]amino-\kappa N]-5-(carboxy-\kappa0)pentyl]amino]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene]-1,3-pentadienyl]-3,3-dimethyl-5-sulfo-3H-indoliumato(8-)]]di- (9CI) (CA INDEX NAME)$

ΙT 146368-15-2 146397-20-8

RL: RCT (Reactant); RACT (Reactant or reagent) (bis-transition-metal-chelate-probes)

RN

146368-15-2 CAPLUS 3H-Indolium, 1-[6-[(2,5-dioxo-1-pyrrolidinyl)oxy]-6-oxohexyl]-2-[5-[1-[6-CN[(2,5-dioxo-1-pyrrolidinyl)oxy]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5sulfo-2H-indol-2-ylidene]-1,3-pentadienyl]-3,3-dimethyl-5-sulfo-, inner salt (9CI) (CA INDEX NAME)

$$CH-CH=CH-CH=CH$$
 $CH-CH=CH$
 $CH-CH$
 $CH-CH$

PAGE 2-A

RN

146397-20-8 CAPLUS
3H-Indolium, 1-[6-[(2,5-dioxo-1-pyrrolidinyl)oxy]-6-oxohexyl]-2-[3-[1-[6-[(2,5-dioxo-1-pyrrolidinyl)oxy]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene]-1-propenyl]-3,3-dimethyl-5-sulfo-, inner salt CN (9CI) (CA INDEX NAME)

$$CH_{O}$$
 CH_{O}
 $CH_{$

PAGE 2-A

IT 618886-24-1P 618886-25-2P

> RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(bis-transition-metal-chelate-probes)

RN

618886-24-1 CAPLUS
3H-Indolium, 1-[6-[[5-[bis(carboxymethyl)amino]-5-carboxypentyl]amino]-6-CN oxohexyl]-2-[3-[1-[6-[[5-[bis(carboxymethyl)amino]-5-carboxypentyl]amino]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene]-1propenyl]-3,3-dimethyl-5-sulfo-, inner salt (9CI) (CA INDEX NAME)

PAGE 1-A

$$HO_2C-CH_2$$
 HO_2C-CH_2-N
 $HO_2C-CH-(CH_2)_4-NH-C-(CH_2)_5$
 $HO_2C-CH-(CH_2)_5-C-NH-C-(CH_2)_5$
 $HO_2C-CH-(CH_2)_5-C-NH-C-(CH_2)_5$
 $HO_3C-CH-(CH_2)_5-C-NH-C-(CH_2)_5$
 $HO_3C-CH-(CH_2)_5-C-NH-C-(CH_2)_5$
 $HO_3C-CH-(CH_2)_5-C-NH-C-(CH_2)_5$
 $HO_3C-CH-(CH_2)_5-C-NH-C-(CH_2)_5$
 $HO_3C-CH-(CH_2)_5-C-NH-C-(CH_2)_5$
 $HO_3C-CH-(CH_2)_5$
 HO

PAGE 1-B

$$^{\mathrm{CH}_2-\mathrm{CO}_2\mathrm{H}}_{|}$$
 $|$ $^{\mathrm{N-CH}_2-\mathrm{CO}_2\mathrm{H}}_{|}$ $^{\mathrm{CCH}_2)_4-\mathrm{CH-CO}_2\mathrm{H}}$

RN 618886-25-2 CAPLUS

CN 3H-Indolium, 1-[6-[[5-[bis(carboxymethyl)amino]-5-carboxypentyl]amino]-6-oxohexyl]-2-[5-[1-[6-[[5-[bis(carboxymethyl)amino]-5-carboxypentyl]amino]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene]-1,3-pentadienyl]-3,3-dimethyl-5-sulfo-, inner salt (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

$$CH_2-CO_2H$$
 $N-CH_2-CO_2H$
 $N-CH_2-CO_2H$
 $CH_2 = CO_2H$
 $CH_2 = CH_2 = CO_2H$
 $CH_2 = CH_2 = CO_2H$
 $CH_2 = CO_2H$
 $CH_2 = CH_2 = CO_2H$
 $CH_2 = CO_2H$

IT 618886-25-2DP, derivs. 618886-26-3DP, derivs.
RL: SPN (Synthetic preparation); PREP (Preparation)
(bis-transition-metal-chelate-probes)

RN 618886-25-2 CAPLUS

CN 3H-Indolium, 1-[6-[[5-[bis(carboxymethyl)amino]-5-carboxypentyl]amino]-6-oxohexyl]-2-[5-[1-[6-[[5-[bis(carboxymethyl)amino]-5-carboxypentyl]amino]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene]-1,3-pentadienyl]-3,3-dimethyl-5-sulfo-, inner salt (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

RN 618886-26-3 CAPLUS

CN 3H-Indolium, 1-[6-[[5-[bis(carboxymethyl)amino]-5-carboxypentyl]amino]-6-oxohexyl]-2-[5-[1-(5-carboxypentyl)-1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene]-1,3-pentadienyl]-3,3-dimethyl-5-sulfo-, inner salt (9CI) (CA INDEX NAME)

PAGE 1-A

$$HO_2C-CH_2$$
 HO_2C-CH_2-N
 $HO_2C-CH-(CH_2)_4-NH-C-(CH_2)_5$
 N^+
 $CH=CH-CH=CH-CH=$
 $Me Me-$

AB A probe for labeling a target material is provided including two transition-metal chelates and detectable group. The probe has the general structural formula (I) wherein: (a) Y and Y' are each a transition metal, (b) R1 and R1 are each independently CH(COO-), CH(COOH), or absent; (c)R2 and R2 are linkers each having a length of from about 3.0 to about 20 A; and (d) X is a detectable group. The linkers may be linear or branched, may contain aromatic moieties, and may optionally be further substituted. Methods of use of the probe in detecting and analyzing target materials of interest also are provided.

L7 ANSWER 3 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2003:397108 CAPLUS

DOCUMENT NUMBER:

138:409441

TITLE:

Compositions comprising at least one oxonol dye and at

least one metal complex

INVENTOR(S):

Schmidhalter, Beat; Adam, Jean-Marie; Feiler,

Leonhard; Lehmann, Urs; De Keyzer, Gerardus; Yousaf,

Taher

PATENT ASSIGNEE(S):

Ciba Specialty Chemicals Holding Inc., Switz.

SOURCE:

PCT Int. Appl., 70 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

1

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA	ATENT 1	NO.			KINI)	DATE		1	APPL	I CAT	I NO I	. O <i>l</i>		D	ATE	
						-									-		
WC	2003	0429	89		A1		2003	0522	I	WO 2	002-1	EP123	307		2	0021	105
	W:	ΑE,	AG,	AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,
		GM,	HR,	HU,	ID,	ΙL,	IN,	IS,	JP,	KE,	KG,	KΡ,	KR,	KZ,	LC,	LK,	LR,
		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	OM,	PH,
		PL,	PT,	RO,	RU,	SD,	SE,	·SG,	SI,	SK,	SL,	TJ,	TM,	TN,	TR,	TT,	TZ,
		UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW						
•	RW:	GH,	GM,	ΚE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	BY,
		KG,	ΚZ,	MD,	RU,	TJ,	TM,	ΑT,	ΒE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,
		FI,	FR,	GB,	GR,	ΙE,	ΙT,	LU,	MC,	NL,	PT,	SE,	SK,	TR,	BF,	ВJ,	CF,
		CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG			
EF	1444	691			A 1		2004	0811	1	EP 2	002-	7875	57		2	0021	105
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙT,	LI,	LU,	ΝL,	SE,	MC,	PT,
		ΙE,	SI,	LT,	LV,	FΙ,	RO,	MK,	CY,	ΑL,	TR,	BG,	CZ,	ΕĖ,	SK		
BR	2002	0140	80		Α		2004	0928	1	BR 2	002-	1408	0		2	0021	105
US	2005	0031	35		A1		2005	0106	1	JS 2	004-	4951	84		2	0040!	511
PRIORIT	TY APP	LN.	INFO	.:					1	EP 2	001-	8110	92	1	A 2	0011	113
]	EP 2	001-	8112	26	7	A 2	0011	213

CN

OTHER SOURCE(S):

MARPAT 138:409441

529512-46-7P

RL: PRP (Properties); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(compns. comprising oxonol dye and metal complex for optical recording)

529512-46-7 CAPLUS RN

> Benzothiazolium, 6-ethoxy-2-[3-(6-ethoxy-3-ethyl-2(3H)benzothiazolylidene)-1-propenyl]-3-ethyl-, salt with 5-[3-[5-cyano-1,6dihydro-2-hydroxy-4-methyl-1-[3-(1-methylethoxy)propyl]-6-oxo-3-pyridinyl]-2-propenylidene]-1,2,5,6-tetrahydro-4-methyl-1-[3-(1-methylethoxy)propyl]-2,6-dioxo-3-pyridinecarbonitrile (1:1) (9CI) (CA INDEX NAME)

CM

CRN 529512-34-3 C29 H35 N4 O6 CMF

i-PrO- (CH₂)
$$_3$$
 CH- CH- CH- CH (CH₂) $_3$ -OPr-i

CM 2

CRN 90909-86-7

CMF C25 H29 N2 O2 S2

GI

AUTHOR (S):

ANSWER 6 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2001:818766 CAPLUS

DOCUMENT NUMBER: 136:98660

TITLE: Site-specific incorporation of fluorescent probes into

protein: Hexahistidine-tag-mediated fluorescent

labeling with (Ni2+:Nitrilotriacetic

Acid)n-fluorochrome conjugatesfluorescent probes Kapanidis, Achillefs N.; Ebright, Yon W.; Ebright,

Richard H.

CORPORATE SOURCE: Howard Hughes Medical Institute Waksman Institute and

Department of Chemistry, Rutgers University,

Piscataway, NJ, 08854, USA

Journal of the American Chemical Society (2001), 123(48), 12123-12125 SOURCE:

CODEN: JACSAT; ISSN: 0002-7863

10/665,227

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

IT 389059-71-6P 389059-72-7P 389059-73-8P

389059-74-9P

RL: ARU (Analytical role, unclassified); SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation)

(site-specific incorporation of fluorescent probes into protein)

RN 389059-71-6 CAPLUS

Nickelate(2-), [2-[3-[1-[6-[[5-[bis[(carboxy-κ0)methyl]aminoκN]-5-(carboxy-κ0)pentyl]amino]-6-oxohexyl]-1,3-dihydro-3,3dimethyl-5-sulfo-2H-indol-2-ylidene]-1-propenyl]-1-ethyl-3,3-dimethyl-5sulfo-3H-indoliumato(5-)]- (9CI) (CA INDEX NAME)

RN 389059-72-7 CAPLUS

CN Nickelate(2-), [2-[5-[1-[6-[[5-[bis[(carboxy-κ0)methyl]aminoκN]-5-(carboxy-κ0)pentyl]amino]-6-oxohexyl]-1,3-dihydro-3,3dimethyl-5-sulfo-2H-indol-2-ylidene]-1,3-pentadienyl]-1-ethyl-3,3-dimethyl-5-sulfo-3H-indoliumato(5-)]- (9CI) (CA INDEX NAME)

RN 389059-73-8 CAPLUS

CN Nickelate(3-), $[\mu-[1-[6-[[5-[bis[(carboxy-\kappa0)methyl]amino-\kappa N]-5-(carboxy-\kappa0)pentyl]amino]-6-oxohexyl]-2-[3-[1-[6-[[5-[bis[(carboxy-\kappa0)methyl]amino-\kappa N]-5-(carboxy-k0)methyl]amino-k N]-5-(carboxy-k0)methyl N]-5-(carboxy-k0)methyl N]-5-(carboxy-k0)methyl N]-5-(carboxy-k0)methyl N]-5-(carboxy-k0)methyl N]-5-(carboxy-k0)methyl N]-5-(carboxy-k0)methyl N]-5-(carboxy-k0)methyl N]-$

κΟ)pentyl]amino]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5-sulfo-2Hindol-2-ylidene]-1-propenyl]-3,3-dimethyl-5-sulfo-3H-indoliumato(8-)]]di-(9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

389059-74-9 CAPLUS

RN CN Nickelate(3-), $[\mu-[1-[6-[5-[bis[(carboxy-\kappa O)methyl]amino \kappa N$] -5-(carboxy- κO) pentyl] amino] -6-oxohexyl] -2-[5-[1-[6-[[5- κN]] -6-oxohexyl] -2-[5-[1-[6-[[5- κN]]] -6-oxohexyl] -2-[5-[1-[6-[[5- κN]]]] -6-oxohexyl] -6-oxohexyl] [bis[(carboxy- κ 0)methyl]amino- κ N]-5-(carboxyκΟ)pentyl]amino]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5-sulfo-2Hindol-2-ylidene]-1,3-pentadienyl]-3,3-dimethyl-5-sulfo-3H-indoliumato(8-)]]di- (9CI) (CA INDEX NAME)

L7 ANSWER 15 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2000:238483 CAPLUS

DOCUMENT NUMBER:

132:271731

TITLE:

Optical storage medium especially suitable for DVD

(digital video disk)

INVENTOR(S):

Yamazaki, Mikio; Kanno, Toshiyuki Fuji Electric Co., Ltd., Japan

PATENT ASSIGNEE(S): SOURCE:

Ger. Offen., 24 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.		DATE		
					-			
	DE 19947815	A1	20000413	DE 1999-19947815		19991005		
	JP 2000108515	A2	20000418	JP 1998-286263		19981008		
PRIO	RITY APPLN. INFO.:			JP 1998-286263	Α	19981008		
OTHER	R SOURCE(S):	MARPAT	132:271731			•		
ΙT	263368-87-2							
RL: DEV (Device component use); USES (Uses)								
	(asym. cyanine p	igment	in optical s	torage medium especi	all	y suitable for DVD		
	(digital video d	isk))						
RN	263368-87-2 CAPLUS					•		
CN	3H-Indolium, 2-[3-[1,3-dih	ydro-3,3-dim	ethyl-1-(2-propenyl)	-2H	-indol-2-		
	ylidene]-1-propenyl]-5-(2-ethoxy-2-oxoethyl)-3,3-dimethyl-1-(2-propenyl)-,							
	perchlorate (9CI)	(CA IND	EX NAME)					

CM 1

CRN 263368-86-1 CMF C33 H39 N2 O2

CRN 14797-73-0 CMF Cl O4

GI

$$\begin{bmatrix} R^2 & \begin{bmatrix} S & S & S & \\ S & S & S & \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} I & I & \\ I & I & \\ I & I & \end{bmatrix} \end{bmatrix}$$

AB The title optical storage medium comprises 3-30 % of a metal complex salt represented by a general formula I (R1, R2 = electrophilic substituent; M = transition metal, rare earth metal) and a cyanine pigment represented by a general formula II (Z- = I-, Br-, ClO4-, BF4-,

ΙI

10/665,227

PF4-, SbF4-, CH3SO4-, H3C-Ph-SO3-; R3, R4 = C3-18-alkenyl; Y1, Y2 = H, halo, alkyl, aryl, alkoxy, etc.; n, m = 1-4) as a main component, wherein the above asym. cyanine pigment absorbs light at 500-700 nm. The optical reflection layer of the optical storage material comprises Al, Au, Ag, Cu, Ti, Ni, or metallic chalcogenide.

ANSWER 16 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2000:133359 CAPLUS

DOCUMENT NUMBER:

132:173479

TITLE:

Optical recording material

INVENTOR(S):

Satoh, Tsutomu; Maruyama, Shohji; Ueno, Yasunobu;

Tomura, Tatsuya; Sasa, Noboru; Higashi, Yasuhiro

PATENT ASSIGNEE(S):

Ricoh Company, Ltd., Japan

SOURCE:

Eur. Pat. Appl., 40 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 981132	A1	20000223	EP 1999-116226	19990817
EP 981132	B1	20040506		
R: AT, BE, CH,	DE, DK	ES, FR,	GB, GR, IT, LI, LU, NL,	SE, MC, PT,
IE, SI, LT,	LV, FI	, RO		
JP 2000127625	A2	20000509	JP 1999-170708	19990617
US 6197477	B1	20010306	US 1999-376197	19990818
PRIORITY APPLN. INFO.:		•	JP 1998-247867	A 19980818
			JP 1999-170708	A 19990617

OTHER SOURCE(S):

MARPAT 132:173479

ΙT 95415-20-6

> RL: TEM (Technical or engineered material use); USES (Uses) (optical recording materials containing azo chelates and)

95415-20-6 CAPLUS RN

3H-Indolium, 5-chloro-2-[7-(5-chloro-1,3-dihydro-1,3,3-trimethyl-2H-indol-CN 2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-, perchlorate (9CI) (CA INDEX NAME)

CM 1

95415-19-3 CRN CMF C29 H31 Cl2 N2

CM

CRN 14797-73-0

CMF Cl O4

GI

AB An optical recording material comprises a substrate and a recording layer which is formed overlying the substrate, wherein the recording layer includes an azo chelate compound including an azo compound having the structure I (R1-3 = H, halogen, nitro, cyano, hydroxy, carboxyl, amino, carbamoyl, alkyl, aryl, heterocyclyl, alkyloxy, aryloxy, alkylamino,

L7 ANSWER 30 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1993:104791 CAPLUS

DOCUMENT NUMBER:

118:104791

Ι

TITLE:

Sulfur compound-coordinate bonded organic coloring

matter, resin compositions containing such, and

optical recording materials comprising these

INVENTOR(S): Kawaguchi, Takeyuki; Shiro, Takashi; Sasaki, Katsushi;

Iwata, Kaoru

PATENT ASSIGNEE(S):

Teijin Ltd., Japan

SOURCE:

Eur. Pat. Appl., 31 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

bis[[(mercaptoacetyl)oxy]methyl]-1,3-propanediyl

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
				,	
	EP 488231	A1	19920603	EP 1991-120296	19911127
	EP 488231	B1	19960501		
	R: DE, FR, GB				
	US 5268478	A	19931207	US 1991-797137	19911122
	JP 05043814	A2	19930223	JP 1991-338004	19911128
	JP 2575563	B2	19970129		
PRIO	RITY APPLN. INFO.:			JP 1990-330144 A	19901130
OTHER	R SOURCE(S):	MARPAT	118:104791		
IT.	146243-92-7P 146243	-94-9P	146244-29-3P		
	146262-13-7P 146282	-11-3P	146282-13-5P		
	146282-30-6P 146291	-34-1P	146291-36-3P		
	RL: IMF (Industrial	manufa	cture); PREP	(Preparation)	
				al recording materials)
RN	146243-92-7 CAPLUS		*	3	
CN	3H-Indolium, 2-[7-(1,3-dih	ydro-1,3,3-t	rimethyl-2H-indol-2-yl	idene) -1,3,5-
	heptatrienyl]-1,3,3				, -,-,-

bis(mercaptoacetate)]bis[4,5-dimethoxy-1,2-benzenedithiolato(2-)S,S']nickelate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 146243-91-6

CMF C29 H36 Ni O12 S8

CCI CCS

CM 2

CRN 47676-39-1 CMF C29 H33 N2

RN 146243-94-9 CAPLUS

CN 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-, (OC-6-23)-[2,2-bis[[(mercaptoacetyl)oxy]methyl]-1,3-propanediyl bis(mercaptoacetate)]bis[2,3-dimercapto-2-butenedinitrilato(2-)-5,S']nickelate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 146243-93-8

CMF C21 H20 N4 Ni O8 S8

CCI CCS

CRN 47676-39-1 CMF C29 H33 N2

RN

146244-29-3 CAPLUS 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-CN heptatrienyl]-1,3,3-trimethyl-, (dimethyl disulfide-S)bis[3,4,6-trichloro-1,2-benzenedithiolato(2-)-S,S']nickelate(1-) (9CI) (CA INDEX NAME)

CM1

CRN 146244-28-2

C14 H8 Cl6 Ni S6 CMF

CCI CCS

CRN 47676-39-1 C29 H33 N2 CMF

RN

146262-13-7 CAPLUS 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-CNheptatrienyl]-1,3,3-trimethyl-, (1-dodecanethiol)bis[3,4,6-trichloro-1,2-benzenedithiolato(2-)-S,S']nickelate(1-) (9CI) (CA INDEX NAME)

CM1

146262-12-6 CRN CMF C24 H28 C16 Ni S5

CCI CCS

$$^{
m R}$$
 SH- (CH₂)₁₁-Me

CM2

CRN 47676-39-1 CMF C29 H33 N2

RN 146282-11-3 CAPLUS

CN 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-, [2,2-bis[[(mercaptoacetyl)oxy]methyl]-1,3-propanediyl bis(mercaptoacetate)]bis[1-[4-(dimethylamino)phenyl]-2-phenyl-1,2-ethenedithiolato(2-)-5,5']nickelate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 146282-10-2

CMF C45 H50 N2 Ni O8 S8

CCI CCS

CM 2

CRN 47676-39-1

CMF C29 H33 N2

RN 146282-13-5 CAPLUS

CN 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-, [2,2-bis[[(mercaptoacetyl)oxy]methyl]-1,3-

propanediyl bis(mercaptoacetate)]bis[1,2-naphthalenedithiolato(2-)S,S']nickelate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 146282-12-4

CMF C33 H32 Ni O8 S8

CCI CCS

CM 2

CRN 47676-39-1

CMF C29 H33 N2

RN 146282-30-6 CAPLUS

CN Benzoxazolium, 3-ethyl-2-[7-(3-ethyl-2(3H)-benzoxazolylidene)-1,3,5-heptatrienyl]-, [2,2-bis[[(mercaptoacetyl)oxy]methyl]-1,3-propanediyl bis(mercaptoacetate)]bis[3,4,6-trichloro-1,2-benzenedithiolato(2-)-S,S']nickelate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 146282-01-1

CMF C25 H22 C16 Ni O8 S8

CCI CCS

CRN 37069-77-5 CMF C25 H25 N2 O2

RN 146291-34-1 CAPLUS

CN 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-, [2,2'-bis[[(mercaptoacetyl)oxy]methyl]-1,3-propanediyl bis(mercaptoacetate)]bis[4-ethyl-1,2-benzenediaminato(2-)-N,N']nickelate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 146291-33-0

CMF C29 H40 N4 Ni O8 S4

CCI CCS

47676-39-1 CRN CMF C29 H33 N2

RN

146291-36-3 CAPLUS
3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-CN heptatrienyl]-1,3,3-trimethyl-, [2,2'-bis[[(mercaptoacetyl)oxy]methyl]-1,3propanediyl bis(mercaptoacetate)]bis[3,5-dichloro-2-mercaptophenolato(2-)-O,S]nickelate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 146291-35-2

C25 H24 Cl4 Ni O10 S6 CMF

CCI CCS

CRN 47676-39-1 CMF C29 H33 N2

IT 19764-96-6, 1,1',3,3,3',3'-Hexamethylindolinotricarbocyanine
iodide

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with nickel complex)

RN 19764-96-6 CAPLUS

CN 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-, iodide (9CI) (CA INDEX NAME)

$$\begin{bmatrix} R^1 & X^1 & X^3 & R^3 \\ R^2 & X^2 & X^4 & R^4 \end{bmatrix} \begin{bmatrix} R^1 & R^3 & R^4 \\ R^2 & R^4 & R^4 \end{bmatrix}$$

$$\begin{bmatrix} C1 & C1 & C1 \\ S & SH & C1 \\ C1 & (CH_2)_{11} & C1 \\ Me & Me \end{bmatrix}$$

ΙI

AB The colorants are formed by coordination of organic mercaptans or disulfides with I [A = cationic dye residue; M = transition metal with coordination number ≥4; R1-R4 = alkyl, (un)substituted Ph, CN, or R1R2, R3R4 complete (un)substituted fused rings; X1-X4 = O, S, SH, NH, NH2; n = 0-2 (A is absent if n = 0)] and are useful in erasable optical recording media. Thus, 1 mmol each of dodecyl mercaptan and a cyanine dye complex formed by reacting equimolar amts. of NK 125 and PA 1006 were dissolved in 50 mL CHCl3 and stirred 8 h at room temperature to give II, purified by liquid chromatog. A 10% CHCl3 solution of novolak epoxy acrylate resin SP 4060 containing 10 phr II was spin-coated at 1.5 μm on a glass plate, dried 10 min at 80°, and cured by UV irradiation to give an erasable optical recording layer. A polyester fabric dyed with C.I. Basic Red 12 and post-treated with II showed a deepened color and improved lightfastness.

L7 ANSWER 31 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1992:245333 CAPLUS

DOCUMENT NUMBER: 116:245333

TITLE: Optical recording material containing cyanine dye

complex

INVENTOR(S): Takazawa, Akihiro; Inagaki, Yoshio; Kobayashi,

Takashi; Takahashi, Yonosuke

PATENT ASSIGNEE(S): Fuji Photo Film Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 17 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

JP 03161394 A2 19910711 JP 1989-302993 19891121 IORITY APPLN. INFO.: JP 1989-302993 19891121

PRIORITY APPLN. INFO.: IT 139600-49-0P

RL: PREP (Preparation)

(preparation of, for laser optical recording material)

RN 139600-49-0 CAPLUS

CN Benzothiazolium, 3-butyl-2-[5-(3-butyl-5-chloro-2(3H)-benzothiazolylidene)-3-ethyl-1,3-pentadienyl]-5-chloro-, perchlorate (9CI) (CA INDEX NAME)

CM 1

CRN 139600-48-9

CMF C29 H33 C12 N2 S2

CM 2

CRN 14797-73-0 CMF Cl O4

AB In an optical recording material having a laser-writable recording layer on a substrate, the recording layer contains a cyanine dye complex Q+L:Q1(Xm-)1/m [Q, Q1 = an (aromatic ring-fused) indolenine, thiazole, oxazole, selenazole, imidazole, pyridine, thiazolopyrimidine, naphtholactam, or imidazoquinoxaline residue; L = a linkage group forming mono-, di-, tri- or tetracarbocyanine; Xm- = a m-valent transition metal complex anion; m = L, 2; QL or LQ1 may form a ring]. The optical recording material shows reflectivity ≥60° for the incoming light from the side of the substrate. It also shows excellent durability.

L7 ANSWER 36 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1989:487548 CAPLUS

DOCUMENT NUMBER:

111:87548

TITLE:

Optical recording material containing nickel complex

as dye-stabilizing agent

INVENTOR (S):

Maruyama, Katsuji; Sato, Tsutomu

PATENT ASSIGNEE(S):

Ricoh Co., Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 5 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent Japanese

LANGUAGE: FAMILY ACC. NUM. COUNT:

Г: 1

10/665,227

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 63288785 PRIORITY APPLN. INFO.:	A2	19881125	JP 1987-122799 JP 1987-122799	19870520 19870520

IT 16595-48-5

RL: TEM (Technical or engineered material use); USES (Uses) (optical recording material containing, transition metal complex stabilizer for, NK-2421)

RN 16595-48-5 CAPLUS

CN 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-, perchlorate (9CI) (CA INDEX NAME)

CM 1

CRN 47676-39-1 CMF C29 H33 N2

CM 2

CRN 14797-73-0 CMF Cl O4

$$\begin{bmatrix} x_n & & & \\ & & & \\ x^1 & & & \\ & & & \end{bmatrix}^{-1} A^+$$

AB An optical recording material has a recording layer which contains a light-absorbing and reflecting dye and a transition metal complex I (X, X1 = F, Cl, Br; M = Ni, Pd, Pt; n = 1, 2; A+ = 1cation). The material has high stability toward light in reading out of information. Thus, a mixture of NK-2421 (a cyanine dye) and a stabilizer II (1:0.15 in weight) dissolved in dichloroethane was coated on a glass substrate and dried to form a 600 A-thick recording layer. The layer was subjected to a lightfastness test by exposure to 54,000-lx light from a 500-W W-lamp to show a rate of decrease in the dye optical d. of 1/4 that occurring for a recording layer not containing the stabilizer.

ANSWER 37 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

1989:448208 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 111:48208

Heat mode optical recording medium TITLE:

Nanba, Noriyoshi; Asami, Shigeru; Aoi, Toshiki; INVENTOR(S):

Ι

TT

Takahashi, Kazuo; Kuroiwa, Akihiko

PATENT ASSIGNEE(S): TDK Corp., Japan

Jpn. Kokai Tokkyo Koho, 26 pp. SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

DB.

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
		-		
JP 61213193	A2	19860922	JP 1985-54013	19850318
JP:05022595	B4	19930330		
RIORITY APPLN. INFO.:			JP 1985-54013	19850318
1 16505 40 5				

IT 16595-48-5

RL: USES (Uses)

(indolenine-type cyanine dye, for optical recording materials)

RN 16595-48-5 CAPLUS

3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-CN heptatrienyl]-1,3,3-trimethyl-, perchlorate (9CI) (CA INDEX NAME)

10/665,227

CM 1

CRN 47676-39-1 CMF C29 H33 N2

CM 2

CRN 14797-73-0 CMF Cl O4

IT 118066-34-5P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and use of, as light-stable optical recording dye)

RN 118066-34-5 CAPLUS

CN 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-, bis[trichloro-1,2-benzenedithiolato(2-)-S,S']nickelate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 118066-33-4 CMF C12 H2 C16 Ni S4 CCI CCS, IDS

6 (D1-C1)

CRN 47676-39-1 CMF C29 H33 N2

IT 121184-96-1P

RL: PREP (Preparation)

(preparation of, as light stable dye for optical recording)

RN 121184-96-1 CAPLUS

CN 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-, bis[(dimethylamino)-1,2-benzenedithiolato(2-)-S,S']nickelate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 121184-95-0 CMF C16 H18 N2 Ni S4

CCI CCS, IDS

$$2\begin{bmatrix} D1 \\ Me-N-Me \end{bmatrix}$$

CM 2

CRN 47676-39-1 CMF C29 H33 N2

The title optical recording medium possesses on a support a recording AB layer containing a cyanine dye stabilized toward light and based on a salt obtained from an indolenine-type cyanine dye cation and a bisphenyldithiol transition metal complex anion, the complex anion being present as ≥2 isomers. An addnl. indolenine-type cyanine dye may also be incorporated in the recording layer. The above salt shows good solubility, prevents crystallization in the recording layer, allows good film formation, and yields a recording layer which gives a good S/N ratio, and good stability to readout light.

ANSWER 41 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1986:600578 CAPLUS

DOCUMENT NUMBER:

105:200578

TITLE:

Optical recording materials

INVENTOR(S):

Nanba, Noriyoshi; Asami, Shigeru; Aoi, Toshiki;

Takahashi, Kazuo; Kuroiwa, Akihiko

PATENT ASSIGNEE(S):

SOURCE:

TDK Corp., Japan Jpn. Kokai Tokkyo Koho, 31 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 61016894	A2	19860124	JP 1984-138694	19840704
PRIORITY APPLN. INFO.:			JP 1984-138694	19840704

IT 16595-48-5 19764-96-6 64285-35-4

104569-73-5D, complex with nickel 104569-74-6D, complex

with nickel

RL: TEM (Technical or engineered material use); USES (Uses)

(laser recording materials containing)

RN 16595-48-5 CAPLUS

3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-CN

heptatrienyl]-1,3,3-trimethyl-, perchlorate (9CI) (CA INDEX NAME)

CM1

CRN 47676-39-1 CMF C29 H33 N2

CM 2

CRN 14797-73-0

CMF Cl O4

RN 19764-96-6 CAPLUS

CN 3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-, iodide (9CI) (CA INDEX NAME)

• I -

RN 64285-35-4 CAPLUS

CN 3H-Indolium, 2-[7-[1,3-dihydro-3,3-dimethyl-1-(3-sulfopropyl)-2H-indol-2-ylidene]-1,3,5-heptatrienyl]-3,3-dimethyl-1-(3-sulfopropyl)-, inner salt, sodium salt (9CI) (CA INDEX NAME)

Na

RN 104569-73-5 CAPLUS

CN 3H-Indolium, 2-[7-[1,3-dihydro-3,3-dimethyl-1-(3-sulfopropyl)-2H-indol-2-ylidene]-1,3,5-heptatrienyl]-3,3-dimethyl-1-(3-sulfopropyl)-, iodide, disodium salt (9CI) (CA INDEX NAME)

10/665,227

• I.

●2 Na

RN 104569-74-6 CAPLUS
CN 3H-Indolium, 5-chloro-2-[7-[5-chloro-1,3-dihydro-3,3-dimethyl-1-[(4-sulfophenyl)methyl]-2H-indol-2-ylidene]-1,3,5-heptatrienyl]-3,3-dimethyl-1-[(4-sulfophenyl)methyl]-, iodide, disodium salt (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

• I

GΙ

ΑB The claimed optical recording materials contain reaction products of transition metal salts with indolenine derivative type cyanine dyes having SO3H, CO2H, or their salt groups. The recording materials may also contain quenchers. Thus, an acrylic resin support coated with a colloidal silica subbing layer was coated with a composition containing reaction products of NiCl2 and I to give a high-quality direct-read-after-write laser recording disk.

ANSWER 42 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN T.7

ACCESSION NUMBER: 1986:600577 CAPLUS

DOCUMENT NUMBER: 105:200577

TITLE: Optical recording materials

INVENTOR (S): Nanba, Noriyoshi; Asami, Shigeru; Aoi, Toshiki;

Takahashi, Kazuo; Kuroiwa, Akihiko

PATENT ASSIGNEE(S): TDK Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 33 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
JP 61016891	A2	19860124	JP 1984-137692	•	19840703
PRIORITY APPLN. INFO.:			JP 1984-137692		19840703

ΙT 104359-58-2D, complexes with nickel dichloride and ethylene glycol 104359-59-3D, complexes with nickel dichloride and ethylene glycol RL: TEM (Technical or engineered material use); USES (Uses)

(laser recording materials containing)

104359-58-2 CAPLUS RN

Benzothiazolium, 6-methyl-2-[7-[6-methyl-3-(3-sulfopropyl)-2(3H)-CN benzothiazolylidene]-1,3,5-heptatrienyl]-3-(3-sulfopropyl)-, inner salt, sodium salt (9CI) (CA INDEX NAME)

Me
$$(CH_2)_3 - SO_3H$$

$$N = CH - CH = CH - CH = CH - CH = CH$$

$$S = -O_3S - (CH_2)_3$$

Na

RN 104359-59-3 CAPLUS

CN Benzothiazolium, 3-(3-sulfopropyl)-2-[7-[3-(3-sulfopropyl)-2(3H)-benzothiazolylidene]-1,3,5-heptatrienyl]-, iodide, disodium salt (9CI) (CA INDEX NAME)

🕒 т –

●2 Na

GI

AB The claimed optical recording materials contain reaction products of transition metal salts with cyanine dyes having SO3H, CO2H, or their salt groups. The recording materials may also contain quenchers. Thus, an acrylic resin disk support having a colloidal silica subbing layer was coated with a composition containing a reaction product of NiCl2

and I to give a high-quality direct-read-after-write type laser recording disk.

L7 ANSWER 56 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1985:195282 CAPLUS

DOCUMENT NUMBER: 102:195282

TITLE: Optical recording materials

PATENT ASSIGNEE(S): TDK Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 16 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 60019587	A2	19850131	JP 1983-127075	19830713
PRIORITY APPLN. INFO.:			JP 1983-127075	19830713

IT 95974-79-1

RL: USES (Uses)

(laser recording materials containing thiotungstate type singlet oxygen quenchers and)

RN 95974-79-1 CAPLUS

CN Titanium, bis(2,4-pentanedionato-0,0')bis(2-propanolato)-, polymer with 2-[7-[1,3-dihydro-3-(2-hydroxyethyl)-1,1-dimethyl-2H-benz[e]indol-2-ylidene]-1,3,5-heptatrienyl]-3-(2-hydroxyethyl)-1,1-dimethyl-1H-benz[e]indolium perchlorate (salt) and 2-[7-[1,3-dihydro-1-(2-hydroxyethyl)-3,3-dimethyl-2H-indol-2-ylidene]-1,3,5-heptatrienyl]-1-(2-hydroxyethyl)-3,3-dimethyl-3H-indolium bromide (9CI) (CA INDEX NAME)

CM 1

CRN 95974-78-0

CMF C31 H37 N2 O2 . Br

• Br

CM 2

CRN 17927-72-9 CMF C16 H28 O6 Ti CCI CCS

CM 3

CRN 95144-19-7 CMF C39 H41 N2 O2 . Cl O4

CM 4

CRN 95144-18-6 CMF C39 H41 N2 O2

CM 5

CRN 14797-73-0 CMF Cl O4

GΙ

$$\begin{bmatrix} S & S & S & S & S \\ S & W & S & W & S \end{bmatrix} \begin{bmatrix} M^1 \end{bmatrix}_{n}$$

$$\begin{bmatrix} Me & Me & Me & Me \\ N+ & Me & Me & Me \end{bmatrix}$$

$$\begin{bmatrix} C104^{-1} & Me & Me & Me \\ Me & Me & Me & Me \end{bmatrix}$$

AB Optical recording materials have a recording medium composed of a cyanine dye, a singlet O quencher I (M = transition metal; M1 = cation; n = 1, 2), and a resin (optional). Thus, II, nitrocellulose, and I(M = Ni; M1 = Bu4N+; n = 2) were mixed in a solvent and coated on an acrylic disk to give a laser recording disk with high sensitivity, high readout signal/noise ratio, and excellent durability.

L7 ANSWER 57 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1985:158222 CAPLUS

DOCUMENT NUMBER:

102:158222

TITLE:

Optical recording materials

PATENT ASSIGNEE(S): TDK Corp., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 16 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 60018387	A2	19850130	JP 1983-125654	19830711
JP 04075143	B4	19921130	•	
PRIORITY APPLN. INFO.:			JP 1983-125654	19830711

IT 95974-79-1

RL: USES (Uses)

(laser recording disks containing singlet oxygen quencher and)

RN 95974-79-1 CAPLUS

CN Titanium, bis(2,4-pentanedionato-0,0')bis(2-propanolato)-, polymer with 2-[7-[1,3-dihydro-3-(2-hydroxyethyl)-1,1-dimethyl-2H-benz[e]indol-2-ylidene]-1,3,5-heptatrienyl]-3-(2-hydroxyethyl)-1,1-dimethyl-1H-benz[e]indolium perchlorate (salt) and 2-[7-[1,3-dihydro-1-(2-hydroxyethyl)-3,3-dimethyl-2H-indol-2-ylidene]-1,3,5-heptatrienyl]-1-(2-hydroxyethyl)-3,3-dimethyl-3H-indolium bromide (9CI) (CA INDEX NAME)

CM 1

CRN 95974-78-0

CMF C31 H37 N2 O2 . Br

• Br

CM 2

CRN 17927-72-9 CMF C16 H28 O6 Ti

CCI CCS

CM 3

CRN 95144-19-7

CMF C39 H41 N2 O2 . Cl O4

CM 4

CRN 95144-18-6 CMF C39 H41 N2 O2

CM 5

CRN 14797-73-0 CMF Cl O4

GΙ

AB Laser recording materials have recording layer containing a cyanine dye, I or II (M = transition metal; M1 = cation), and a resin (optional). The addition of I or II inhibits degradation of the cyanine dye by repeated readout. Thus, an acrylic disk was coated with a composition containing

III, nitrocellulose and I (M = Ni; M1 = 2K) to give a laser recording disk which showed good sensitivity, high readout signal/noise ratio, and good durability (after recording).

L7 ANSWER 58 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1985:87736 CAPLUS

DOCUMENT NUMBER:

102:87736

TITLE:

Laser recording materials

10/665,227

PATENT ASSIGNEE(S):

TDK Corp., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 19 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent Japanese

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 59178295	A2	19841009	JP 1983-54950	19830329
PRIORITY APPLN. INFO.:			JP 1983-54950	19830329

IT 16595-48-5 94793-18-7

RL: TEM (Technical or engineered material use); USES (Uses)

(laser recording materials containing)

RN 16595-48-5 CAPLUS

3H-Indolium, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-CN heptatrienyl]-1,3,3-trimethyl-, perchlorate (9CI) (CA INDEX NAME)

CM

CRN 47676-39-1 CMF C29 H33 N2

CM2

CRN 14797-73-0 CMF Cl 04

RN 94793-18-7 CAPLUS

CN Benzothiazolium, 3-methyl-2-[7-(3-methyl-2(3H)-benzothiazolylidene)-1,3,5heptatrienyl]-, perchlorate (9CI) (CA INDEX NAME)

CM1

CRN 54123-58-9 C23 H21 N2 S2 CMF

CRN 14797-73-0 CMF Cl O4

AB A laser recording material with improved storage stability, heat resistance, and reading signal-to-noise ratio is obtained by forming on a substrate a recording layer containing a xylene-type polymer (e.g., HCHO-m-xylene or HCHO-mesitylene polymer) and a dye (e.g., a cyanine dye). A quencher (e.g., a transition metal chelate compound) may also be incorporated in the above recording layer.

L7 ANSWER 59 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1985:70323 CAPLUS

DOCUMENT NUMBER:

102:70323

TITLE:

Optical recording materials

PATENT ASSIGNEE(S):

TDK Corp., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 22 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

13

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
JP 59083695	A2	19840515	JP 1982-193685		19821102
JP 06030961	B4	19940427	•		
US 5741623	Α	19980421	US 1992-990979		19921209
US 5512416	Α	19960430	US 1995-482165		19950606
PRIORITY APPLN. INFO.:			JP 1982-134397	Α	19820730
			JP 1982-134170	Α	19820731
			JP 1982-166832	Α	19820925
			JP 1982-168048	Α	19820927
			JP 1982-177776	Α	19821011
			JP 1982-182589	Α	19821018
			JP 1982-192879	Α	19821101
			JP 1982-193685	Α	19821102
			JP 1982-234245	Α	19821228
			JP 1982-233157	Α	19821229
		*	JP 1982-232241	Α	19821230
			JP 1982-232198	Α	19821231
			JP 1982-232199	A	19821231

US 1983-518359 B2 19830729 US 1986-895860 B1 19860812 US 1988-143312 B1 19880106 US 1992-918924 B1 19920722

IT 22268-66-2 93911-28-5

RL: TEM (Technical or engineered material use); USES (Uses) (laser recording materials containing, heat-mode)

RN 22268-66-2 CAPLUS

CN Benzothiazolium, 3-ethyl-2-[7-(3-ethyl-2(3H)-benzothiazolylidene)-1,3,5-heptatrienyl]-, perchlorate (9CI) (CA INDEX NAME)

CM 1

CRN 23178-68-9 CMF C25 H25 N2 S2

CM 2

CRN 14797-73-0 CMF Cl O4

RN 93911-28-5 CAPLUS

CN Benzothiazolium, 3-octyl-2-[7-(3-octyl-2(3H)-benzothiazolylidene)-1,3,5-heptatrienyl]-, perchlorate (9CI) (CA INDEX NAME)

CM 1

CRN 93911-27-4 CMF C37 H49 N2 S2

$$(CH_2)_7$$
 Me

 N
 CH
 CH

CM 2

CRN 14797-73-0 CMF Cl O4

GI

$$S$$
 $C104$
 $C104$

AΒ Optical recording materials are described which contain a dye and ≥2 singlet 0 quenchers in the recording layer. The recording layer may also contain a self-oxidizing or thermoplastic resin. The dye is preferably selected from carbocyanine dyes whereas the singlet O quenchers are selected from chelated transition metal compds. The recording materials show excellent storage stability and good sensitivity toward semiconductor lasers. Thus, an acrylic resin disk was coated with a composition containing nitrocellulose, I, II, and III [I/nitrocellulose = 0.5 (by weight), (II + III)/I = 0.2 (mol ratio), III/II =0.5 (mol ratio)] to give a laser recording material which showed good sensitivity toward an AlGaAs-GaAs semiconductor laser, a high signal-to-noise ratio (readout), and good storage stability.

Ι

II

CAPLUS COPYRIGHT 2005 ACS on STN ANSWER 60 OF 62

ACCESSION NUMBER: 1977:18342 CAPLUS

DOCUMENT NUMBER: 86:18342

TITLE: Reaction of bases of polymethine dyes with

transition metal salts

Voevodskaya, M. V.; Kuz'min, V. A.; Khudyakov, I. V. AUTHOR (S):

CORPORATE SOURCE: Inst. Khim. Fiz., Moscow, USSR

SOURCE: Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya

(1976), (9), 1991-4

CODEN: IASKA6; ISSN: 0002-3353

DOCUMENT TYPE: Journal

LANGUAGE: Russian IT

3595-74-2D, transition metal complexes

RL: USES (Uses)

(absorption maximum of)

RN 3595-74-2 CAPLUS CN Benzothiazole, 2-[3-(2-benzothiazolyl)-2-propenylidene]-2,3-dihydro-3-methyl- (9CI) (CA INDEX NAME)

GI For diagram(s), see printed CA Issue.

AB Complex formation between transition metals and carbocyanine dye bases I (R = Me, Et; A = pyridine, quinoline, benzothiazole residue), some styryl analogs, and II [61109-41-9] shifts the absorption maximum of the bases to greater wavelength by 80-140 nm. The resulting spectra closely resemble those of the protonated forms of the dye bases, which suggests that coordination to the metal is via the basic N of the ligand rather than the π-bonds of the cyanine chain. The nature of the metal (Co, Cu, Ni, Cr, Cd) has little effect on the spectra of the complexes if formed, but with some of the bases not all of the metals are effective in complex formation. The equilibrium consts. for complex formation determined for I (R = Me, A = quinoline residue) [3595-49-1] were apprx.2 orders of magnitude greater for Cu(NO3)2 and Cr(NO3)3 than for the other metal nitrates. The metal complexes are known to show high-temperature supercond.

L7 ANSWER 61 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

1975:162981 CAPLUS

DOCUMENT NUMBER:

82:162981

TITLE:

Photographic recording material

INVENTOR(S):

Ohkubo, Kinji; Noguchi, Junpei; Ohmura, Kunioki;

Hinata, Masanao

PATENT ASSIGNEE(S):

Fuji Photo Film Co., Ltd.

SOURCE:

Ger. Offen., 27 pp. Division of Ger. Offen. 2,063,669

(CA 75: 114816z).

CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
DE 2065539	A1	19741205	DE 1970-2065539		19701224
DE 2065539	B2	19800430			
DE 2065539	C3	19810122			
JP 49013021	B4	19740328	JP 1969-104009		19691224
JP 48042172	B4	19731211	JP 1970-2819		19700109
GB 1330699	Α	19730919	GB 1970-61278		19701223
CA 983763	A1	19760217	CA 1970-101354		19701223
FR 2072062	A 5	19710924	FR 1970-46630		19701224
FR 2072062	В1	19730202			
US 3890154 ·	A	19750617	US 1973-344401		19730323
PRIORITY APPLN. INFO.:			JP 1969-104009	Α	19691224
			JP 1970-2819	A	19700109
			US 1970-101233		19701224

IT 19163-98-5 33958-29-1 34270-51-4 52686-21-2 55205-68-0 55205-69-1

RL: USES (Uses)

(photographic emulsions containing transition metal

10/665,227

complexes and, for high green sensitivity for flash exposure)

RN 19163-98-5 CAPLUS

CN Benzoxazolium, 2-[3-[5,6-dichloro-1-ethyl-1,3-dihydro-3-(3-sulfopropyl)-2H-benzimidazol-2-ylidene]-1-propenyl]-3-ethyl-, inner salt (9CI) (CA INDEX NAME)

RN 33958-29-1 CAPLUS

CN Benzoxazolium, 3-ethyl-2-[2-[[5-methyl-3-(3-sulfopropyl)-2(3H)-benzoxazolylidene]methyl]-1-butenyl]-5-phenyl-, inner salt (9CI) (CA INDEX NAME)

Me
$$CH-C=CH$$
 $N+$ Ph $CH_2)$ $3-SO_3-$ Et

RN 34270-51-4 CAPLUS

CN Benzoxazolium, 5-methyl-2-[2-methyl-3-[5-methyl-3-(3-sulfopropyl)-2(3H)-benzoxazolylidene]-1-propenyl]-3-(3-sulfopropyl)-, inner salt (9CI) (CA INDEX NAME)

RN 52686-21-2 CAPLUS

CN Benzoxazolium, 2-[3-[1-(2-carboxyethyl)-5,6-dichloro-3-ethyl-1,3-dihydro-2H-benzimidazol-2-ylidene]-1-propenyl]-3-ethyl-, bromide (9CI) (CA INDEX NAME)

$$\begin{array}{c} \text{CH}_2\text{--}\text{CH}_2\text{--}\text{CO}_2\text{H} \\ \text{Cl} \\ \\ \text{Cl} \\ \\ \text{Et} \\ \end{array}$$

RN 55205-68-0 CAPLUS

CN Benzoxazolium, 2-[3-[3-(3-carboxypropyl)-5-chloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-ylidene]-1-propenyl]-5-cyano-3-ethyl- (9CI) (CA INDEX NAME)

$$C1$$
 N
 $CH-CH$
 CH
 CN
 CN

RN 55205-69-1 CAPLUS

CN Benzoxazolium, 2-[2-[[5,6-dichloro-1-ethyl-1,3-dihydro-3-(3-sulfopropyl)-2H-benzimidazol-2-ylidene]methyl]-1-butenyl]-3-ethyl-5-methoxy-, inner salt (9CI) (CA INDEX NAME)

IT 18360-25-3P 18462-64-1P 55205-70-4P

RN 18360-25-3 CAPLUS

CN Benzoxazolium, 5-chloro-2-[2-[[5-chloro-3-(3-sulfopropyl)-2(3H)-benzoxazolylidene]methyl]-1-butenyl]-3-(3-sulfopropyl)-, inner salt, sodium salt (9CI) (CA INDEX NAME)

Na

RN 18462-64-1 CAPLUS

CN 1H-Benzimidazolium, 5,6-dichloro-2-[3-[5,6-dichloro-1-ethyl-1,3-dihydro-3-(4-sulfobutyl)-2H-benzimidazol-2-ylidene]-1-propenyl]-1-ethyl-3-(4-sulfobutyl)-, inner salt, sodium salt (9CI) (CA INDEX NAME)

Na

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

RN 55205-70-4 CAPLUS

CN Benzothiazolium, 2-[3-[5,6-dichloro-1-ethyl-1,3-dihydro-3-(3-sulfopropyl)-2H-benzimidazol-2-ylidene]-1-propenyl]-3-ethyl-, inner salt (9CI) (CA INDEX NAME)

$$C1$$
 $C1$
 $C1$
 $C1$
 $CH_2)_3-SO_3 CH_2$
 CH_2
 CH_3
 CH_4
 CH_5
 CH_7
 CH_7

GI For diagram(s), see printed CA Issue.

AB The high green sensitivity required for exposures <1 msec (Xe flashlamps, cathode ray tubes) is achieved by adding to the emulsions, preferably at the time of the Ag halide precipitation, 1 + 10-6 - 1 + 10-3 mole of K3Fe(CN)6, K4Fe(CN)6, RhCl3, (NH4)3RhCl6, IrCl4, or K2IrCl6 and besides 10-4 - 5 + 10-3 mole of an oxa-, imida-, or oximidacarbocyanine with 1 or 2 N-carboxyalkyl or N-sulfoalkyl groups. Thus, by adding during the precipitation of a Ag(Cl,Br) emulsion 3 x 10-6 mole (NH4)3RhCl6 and after ripening

2 + 10-5 mole PtCl4 and 8 + 10-3 mole I a green speed of 237 at 0.01 sec and of 246 at 1 μsec were obtained.

L7 ANSWER 62 OF 62 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1969:23024 CAPLUS

DOCUMENT NUMBER: 70:23024

TITLE: Calculation of ionization energies from redox

potentials

Journal

AUTHOR(S): Stanienda, Alfred

CORPORATE SOURCE: Humboldt Univ., Berlin, Fed. Rep. Ger.

SOURCE: Zeitschrift fuer Naturforschung, Teil B: Anorganische

Chemie, Organische Chemie, Biochemie, Biophysik,

Biologie (1968), 23(10), 1285-95

CODEN: ZENBAX; ISSN: 0044-3174

LANGUAGE: German

IT 22268-64-0 22268-65-1 22268-66-2

RL: PRP (Properties)

(ionization energy of)

RN 22268-64-0 CAPLUS

DOCUMENT TYPE:

CN Benzothiazolium, 3-ethyl-2-[3-(3-ethyl-2(3H)-benzothiazolylidene)-1-propenyl]-, perchlorate (9CI) (CA INDEX NAME)

CRN 18403-49-1 CMF C21 H21 N2 S2

CM 2

CRN 14797-73-0 CMF Cl O4

RN 22268-65-1 CAPLUS

CN Benzothiazolium, 3-ethyl-2-[5-(3-ethyl-2(3H)-benzothiazolylidene)-1,3-pentadienyl]-, perchlorate (9CI) (CA INDEX NAME)

CM 1

CRN 14797-73-0 CMF Cl O4

CM 2

CRN 7187-55-5 CMF C23 H23 N2 S2

RN 22268-66-2 CAPLUS

CN Benzothiazolium, 3-ethyl-2-[7-(3-ethyl-2(3H)-benzothiazolylidene)-1,3,5-heptatrienyl]-, perchlorate (9CI) (CA INDEX NAME)

CRN 23178-68-9 CMF C25 H25 N2 S2

CM 2

CRN 14797-73-0 CMF Cl O4

The ionization energies and electron affinities of 21 organic compds. and 29 metals were calculated from reversible anodic and cathodic half-wave potentials, solvation energies, and the electron work function potential of the electrode metal. The solvation energies were calculated by using a modified Born equation in which the mol. radius was corrected for the ionization energy. The calculated electron affinities do not agree with previously published values but are equal to the difference in energy between the 1st excited state and the ionization potential. The electron work function potential of Pt was measured by an indirect method and is 4.43 ev.

=> log y		
COST IN U.S. DOLLARS	SINCE FILE	TOTAL
	ENTRY	SESSION
FULL ESTIMATED COST	323.48	485.72
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL
	ENTRY	SESSION
CA SUBSCRIBER PRICE	-45.26	-45.26

STN INTERNATIONAL LOGOFF AT 12:04:42 ON 01 MAR 2005