Co	ompo	ositic	on –	finite	e sed	quen	ice c	of pos	sitive	inte	gers												
	8	- (c	1, .		c_k)																	
	lene	Ah	; -	(2)	'	k																	
	Size	_	17	=		+		+ C ₁	<u> </u>	th	ß	îs	d	ζο	the	L	sta	nder	7	Lieig	?ht		
										fu	ncti	on	W	: (} →	N					V		
Th	ere a	are C) cor	npos	sitior	ns of	size	e 0															
1 (com	oosi	tion	of si	ze 1																		
	The	re	er	6	2~1	U	ays	<i>to</i>	M	uke	O	\	com	posi	Hen		&	Sì	æ	W			
		•	•	•		(4)																	
		•	•	0		1	3)																
	•	•	•	0		()	2																
	•	•	•	•		(3)	, 1																
Th	e nu	mbe	er of	com	pos	ition		th we					the	gen	eratir	ng se	eries						
	$\Phi_{f e}^{f u}$	(x)	-	7	_ - 'Y	-	{(١, ٠.	- ,	C*)	ę C	J											
	⊥ ღ			\ n=			t d	C, + ·	1	- C _K	= r	\rightarrow											
			1,		J.v.	1 X	+	<u> </u>															
				120	ر ا ا	7., .	No	γ	to	div	ide	(and	la siti	<u>o</u>	jvg	0	7/0	ups	C		. , C	K
			-	-	_ x																		
				T	2-	×																	
	ACT	emo	ite	u	ey	p		comy	WHE	, :													
	P	۲,	Z *					0															
	C	,	L ,	0	→	24 <i>U;</i>	1	W	4 /10	\													

Ex. How many compositions of 100 are there?

$$[x^{100}]$$
 $\Phi_{\epsilon}(x) = [x^{100}] \frac{1-x}{1-2x}$

Ex. How many compositions are there such that:

(a) All elements are odd

$$\oint_{\beta} (x) = |x'| + |x'| + |x'| + \cdots$$

$$= x(|+x'| + |x'| + \cdots)$$

=>
$$\chi(1+\chi^2+\chi^4+\cdots)=\chi\sum_{n=0}^{\infty}\chi^{2n}=\frac{\chi}{1-\chi^2}$$

$$\Phi_{p*}(x) = \frac{1}{1 - \frac{x}{1 - x}}$$
 (string terms)

(b) All elements are congruent to 2 mod 3

$$P = \{2 + 3j : j + 0\} = \{2, 5, 8, ...\}$$

$$= \sum_{i} \chi_{5} + \chi_{2} + \chi_{3} + \dots$$

Ex. Generating series if the two parts are even, and the remaining parts are odd

$$E = \{2j : j \ge 1\}$$

$$O = \{1+2j : j \ge 0\}$$

$$\Phi_{\varepsilon} = \frac{x^{2}}{1-x^{2}}$$

$$\Phi_{0} = \frac{x}{1-x^{2}}$$

$$\Rightarrow S = (\varepsilon \cup E) \cup (E^{2} O^{x})$$

$$\theta_{0} = \frac{x}{1-x^{2}}$$

$$\Rightarrow S = (\varepsilon \cup E) \cup (E^{2} O^{x})$$

$$\theta_{0} = \frac{x}{1-x^{2}}$$

Ex. How many compositions with odd parts of 100 are there?

$$\Phi_{\eta}(x) = \frac{x}{1-x}$$
 (from earlier)

$$\Phi_{p*}(x) = \frac{1-x^2}{1-x-x^2} = F(x) = \sum_{n\geq 0} a_n x^n$$

$$= \left[x^{(0)}\right] \frac{1-x^2}{1-x-x^2} = F(x) = \sum_{n\geq 0} a_n x^n$$

$$= \left[x^{(0)}\right] \frac{1-x^2}{1-x-x^2} = \left[1-x-x^2\right] F(x)$$

$$= \sum_{n\geq 0} a_n x^n - \sum_{n\geq 0} a_n x^{n+1}$$

Substring: contiguous sequence contained in string

If s and t are strings, st is the concatenation of s and t

Definition Let S and T be sets of binary strings. Then $ST = \{St : (S, t) \in S, T\}$ Each element of S concatenated with each element of T Ex. If $S = \{0,1\}$ and $T = \{01, 11, E\}$ $S \times T = \{(0,01), (0,11), (0,E), (1,01), (1,11), (1,E)\}$ ST = {001, 011, 0, 101, 111, 1} - bijection Ex.2. $S = \{10,100\}, T = \{01,1\}$ $S \times T = \{(10,01), (10,1), (100,01), (100,1)\}$ ST = {1001, 101, 10001, 1001} a bijection Weight function is, by default, the length of a string $w^*(s,t) = w(s) + w(t) = |s| + |t| = |st|$ As such, the weights of Cartesian products is the same as the weight of concatenations (|st|) WX is carrestan products From here, it follows that SX = EUSUS² US³ U··· Li, all length 2 strings from an alphabet Since S² Joes. for i m for j in S:

$$= \frac{1}{\sqrt{2}} (x) = x + x^{2} + x^{3} + \cdots$$

$$= x(1 + x + x^{2} + \cdots)$$

$$= \frac{x}{1 - x}$$

Let S and T be sets of strings. Then:

$$\Phi_{ST}(\mathbf{x}) = \Phi_{S}(\mathbf{x}) \Phi_{T}(\mathbf{x}) \quad \text{if} \quad ST \Rightarrow S \times T$$
(bijection exists)

Let
$$\sigma \in S$$
. Let $g(\sigma) = (\sigma, \sigma_2 \sigma_3 \cdots \sigma_k)$

If
$$\zeta_{\mu} = \tilde{\zeta} \times \tilde{\zeta} \times \cdots \times \tilde{\zeta}$$

Then
$$\Phi_{c*}(\mathbf{x}) = \frac{1}{1-\Phi^c(\mathbf{x})}$$