Operációs rendszerek 1. – 6. előadás A virtuális gép hardvereszközei

Soós Sándor

Nyugat-magyarországi Egyetem Simonyi Károly Műszaki, Faanyagtudományi és Művészeti Kar Informatikai és Gazdasági Intézet

 $\hbox{E-mail: soossandor@inf.nyme.hu}$

Tartalomjegyzék.

Tartalomjegyzék

1.	Ismétlés			
	1.1.	Emlékeztető az előző órákról	1	
2.	A virtuális gép eszközei 2			
			2	
	2.2.	Tárkezelés az operációs rendszerben	4	
	2.3.	Fájlkezelés az operációs rendszerben	6	
3.	3. Befejezés			
	3.1.	Emlékeztető kérdések	7	
1.	Is	smétlés		
1.1. Emlékeztető az előző órákról				
KI	asszil	kus konkurens problémák.		
	• Ter	rmelő-fogyasztó probléma		
	• Írók-olvasók problémája			
	• Étl	kező filozófusok problémája		
	• Ad	atfolyamok illesztése		
Ŋ	elvi e	eszközök a folyamatok programozására.		
	• Pre	ecedenciagráf		
	• For	k-join utasításpár		
	• Pai	rbegin-parend utasításpár		

1

Ismétlés vége

2. A virtuális gép eszközei

2.1. Tárak

A virtuális gép további eszközei.

- Mielőtt elkezdjük:
 - FIGYELEM! Jegyzetelés!!!
 - Jövő héten zárthelyi!
 - Legyen-e konzultáció? Mikor?
- Az elmúlt órákon megismerkedtünk a virtuális gépeken futó folyamatokkal és az azokat futtató processzorokkal
- Most megvizsgáljuk, hogyan kezeli az operációs rendszer a virtuális gép további eszközeit
- Kezdjük azzal, hogy hogyan tároljuk az adatokat!

Tárak, tárhierarchia,.

• A tárak hierarchikus rendbe szervezettek:

külső tárak, harmadlagos tárolók
háttértárak, másodlagos tárolók
operatív tár, memória
a processzor regiszterei

- A tárak jellemzői hierarchia szintek szerint:
 - Minél magasabb szinten van egy tároló:
 - * annál nagyobb méretű
 - * annál lassabb működésű
 - * annál nagyobb egységekben címezhető
 - * annál hosszabb a tárolási idő
- Alapvető ellentmondás:

- A különböző tárolási szintek hatékony kezelése a rendszer teljesítményének egyik kulcsa
- A műveletek elvégzéséhez az adatoknak a processzor regisztereiben kell lenniük. (Miért?)
- Az összes szükséges adat szinte soha nem fér el a regiszterekben, sokszor a memóriában sem, néha még a háttértárakon sem
- $\bf A$ megoldás: az adatokat rendszeresen mozgatni kell a tárolási szintek között
- Hogyan?
 - * regiszterek ↔ memória: processzor
 - * memória ↔ háttértár: fájlműveletek
 - * háttértár ↔ külső tárak: felhasználói beavatkozás
- Adatok elérése, címzés a különböző tárolószinteken:
 - regiszterek: minden regiszternek külön neve van, bizonyos műveletek csak bizonyos regiszterekkel végezhetők el
 - **memória**: minden memóriarekesz külön-külön címezhető
 - háttértár: fájlonként, azon belül rekordonként, blokkonként címezhető
 - -külső tár: médiánként címezhető, melyik CD/DVD lemezen, szalagon található a keresett adat
- Az adatok mozgatása kétféleképpen történhet:
 - Explicit: (világosan kifejezett) pl. egy utasítással betöltünk egy fájlt a memóriába
 - 2. **Implicit**: (rejtett, közvetett) a rendszer végzi a háttérben a kényelem fokozása, vagy a hatékonyság növelése érdekében
- A rejtett adatmozgatás tipikus fajtái:

1. Virtualizálás

- Az alacsonyabb szinten lévő tár címzési módját kiterjesztjük a magasabb szintre
- Ezzel megnöveljük az alacsonyabb szintű tár méretét (látszólag), de lassabban működik
- Példa: virtuális memória, lemezen tárolódik, de memória módjára kezeljük, nem fájlként

2. Gyorsítótár (cache)

Magasabb szintű elérési módon kezelünk egy alacsonyabb szintű tárat

- Sokkal gyorsabb
- De a mérete sokkal kisebb, mint a szimulált tár szokásos mérete
- Kulcsfontosságú az adatmozgatás szervezése
- Lokalitási elv: ha egy adatra szükség van, akkor nagy valószínűséggel a környezetében lévő adatokra is szükség lesz
- Ezt használjuk ki a gyorsítótárak adatokkal való feltöltésekor
- Megfelelő adatcserélési algoritmusokkal és a gyorsítótárak megfelelő méretezésével 80-99%-os találati arány is elérhető

• Jellegzetes gyorsítótárak:

- Processzorba épített hardver-gyorsítótárak (utasítás- és adatcache), a memóriában lévő adatok aktuális részét teszik gyorsabban elérhetővé a processzor számára
- A memóriában kialakított átmeneti tárterületek (buffer-cache) az éppen használatban lévő fájlok adatai egy részének tárolására
- Memóriában kialakított virtuális diszk (RAM-diszk, elektronikus diszk)
- A harmadlagos tárak fájlrendszereit tároló mágneslemez területek
- Mire kell vigyázni a virtuális tárakkal kapcsolatban?
 - Mi történik, ha szabálytalanul állítjuk le az operációs rendszert?
 - A memóriában lévő adatok váratlanul elvesznek
 - A rejtett adatmozgatások félbeszakadnak
 - A háttértárakon lévő adatok inkonzisztens állapotban maradnak
 - A mágneslemezeken lévő adatokat nem tudjuk elérni a hagyományos eszközökkel, ha azok adminisztrációja nem hibátlan
- Hogyan tudunk védekezni az ilyen hibák ellen?
 - Szünetmentes tápegység, akkumulátoros táplálás, notebook
 - Vigyázat! Nem csak áramszünet miatt állhat le szabálytalanul az operációs rendszer!
 - Biztonságos szoftvermegoldások (pl. naplózó fájlrendszer, minden végrehajtott műveletet naplóz a rendszer, így rendszerhiba esetén visszaállítható a korábbi állapot

2.2. Tárkezelés az operációs rendszerben

Tárkezelés az operációs rendszerben.

 A tárkezelés területén az operációs rendszer feladata a következő eszközök kezelése:

- Operatív tár (memória)
- Háttértárak és külső tárak (fájlrendszerek)
- Virtuális memória
- Fájlrendszer-gyorsítótárak (buffer-cache)

Operatív tár.

- A korai operációs rendszerek közvetlenül kezelték a memóriát
- A programok a valóságos fizikai memóriacímekre hivatkoztak
- A program csak egy adott gépkonfiguráción tudott futni
- Javítás: a program betöltésekor a betöltőprogram (loader) beállította a fizikai címeket, ezután indította el a programot
- A mai operációs rendszerekben minden folyamat kap egy úgynevezett logikai memóriát, ami a fizikai memória (operatív tár) egy elválasztott része
- A folyamat nem tudja, hogy a fizikai memóriában ténylegesen hol fut, nem is kell tudnia, sőt ez meg is változhat

Logikai memória,.

- A megkapott memóriát a folyamat RAM, vagy PRAM-modell szerint működőnek látja
- Ezt a memóriát nem egy egységes, folytonos memóriának kezeli, hanem három önálló részt különít el:
 - 1. Kódterület:
 - általában csak olvassák a folyamatok
 - nem okoz gondot a közös használat
 - mérete előre ismert és nem változik
 - 2. Adatterület:
 - a változókat tárolja
 - a folyamatok írják és olvassák
 - a mérete általában nem változik
 - 3. Verem (stack):
 - változókat tárol
 - dinamikusan változik a mérete, nőhet és csökkenhet is
 - $-\,$ speciális esetben túlnőhet minden határon (pl. rekurzió), kinőheti a fizikai memóriát
 - fel kell készülni a verem-túlcsordulás kezelésére
 - (Mit jelent a rekurzió?)
 - (Hogyan működik az eljáráshívás?)

2.3. Fájlkezelés az operációs rendszerben

Háttértárak kezelése.

- A memória tartalma addig él, amíg a számítógép működik
- A folyamat szempontjából a memóriában lévő adatok addig élnek, amíg a folyamat fut
- Ha valamilyen adatot meg akar őrizni, akkor háttértárra kell menteni
- A háttértárra írandó adatokat fájlokba kell szervezni
- A felhasználó szempontjából az operációs rendszer legfontosabb feladata a fájlok kezelése (DOS-Disk Operating System)

Fájlkezelés.

- A másodlagos és harmadlagos tárolókon csak fájlokban lehet adatokat tárolni
- A fájlok kezelése az operációs rendszer feladata
- Két szint:
 - 1. A fájlok, mint tárolási egységek kezelése (egyben)
 - Fájlnév
 - Hierarchikus könyvtárszerkezet
 - Egy, vagy több gyökér (root)
 - Katalógusfájl (directory)
 - Kötetek (volume)
 - Mount
 - A fájl azonosítása: elérési út + fájlnév
 - 2. A fájlokban lévő adatok kezelése
 - Fájlmodellek
 - Fájlműveletek

Fájlmodellek.

- A fájlban lévő adatok elérésére háromféle fájlmodell használatos:
 - 1. Soros elérésű (szekvenciális, sequential) fájl
 - mint a mágnesszalag
 - csak sorban lehet írni és olvasni
 - fájlpointer

- 2. Közvetlen elérésű (direct) fájl
 - bármelyik adatelem bájt, vagy rekord elérhető a sorszáma alapján
- 3. Indexelt, index-szekvenciális elérésű (index sequential access method, ISAM) fájl
 - adatrekordok, adatmezők
 - kulcsmező(k) alapján lehet elérni az adatokat
 - indextábla, indexfájl, rendezett kulcsok, mutató az adatra
 - adatbázis

Fájlműveletek.

- 1. Megnyitás (open)
- 2. Lezárás (close)
- 3. Végrehajtás (execution)
- 4. Létrehozás (create)
- 5. Törlés (delete)
- 6. Adatelérés, írás, olvasás (write, read)
- 7. Hozzáírás, hozzáfűzés (append)
- 8. Pozícionálás (seek)

3. Befejezés

3.1. Emlékeztető kérdések

Emlékeztető kérdések.

- 1. Hogyan csoportosíthatjuk a számítógépben lévő különböző tárakat?
- 2. Mi jellemzi ezeket a kategóriákat?
- 3. Milyen módokon mozgatjuk az adatokat a tárhierarchia szintjei között?
- 4. Mit nevezünk cache-nek?
- 5. Milyen veszélyei vannak a virtuális tárkezelésnek?
- 6. Hogyan kezelik a memóriát a különböző operációs rendszerek?
- 7. Hogyan kezelik a fájlokat az operációs rendszerek?

- 8. Mutassa be a három jellemző fájlmodellt!
- 9. Hasonlítsa össze ezeket?
- 10. Milyen fájlműveleteket valósítanak meg az operációs rendszerek?

Befejezés.

Köszönöm a figyelmet!