Stochastic Processes, MA04243, Spring 2019, Homework 6

due: Sunday afternoon, 28 April

1. Let N be a Poisson random variable with parameter λ . Prove that

$$Ee^{i\theta N} = \exp(-\lambda(1 - e^{i\theta})), \quad \theta \in \mathbb{R}.$$

2. Let $N = (N_t)_{t\geq 0}$ be a Poisson process with parameter λ , and $(\mathcal{F}_t)_{t\geq 0}$ be the canonical (or natural, or induced) filtration of N. Define $X = (X_t)_{t\geq 0}$ and $Y = (Y_t)_{t\geq 0}$ respectively by

$$X_t = (N_t - \lambda t)^2 - \lambda t$$
 and $Y_t = \exp(\theta N_t - \lambda t(e^{\theta} - 1)).$

Prove that X and Y are martingales with respect to $(\mathcal{F}_t)_{t\geq 0}$.

3. Let $N = (N_t)_{t\geq 0}$ be a Poisson process with parameter λ , and $(\xi, \xi_1, \xi_2, \cdots)$ be an independent sequence of i.i.d. random variables (independent of N) such that the random variable ξ has the distribution μ . Define the compound Poisson process $X = (X_t)_{t\geq 0}$ by $X_t = \xi_1 + \cdots + \xi_{N_t}$. Prove that

$$Ee^{i\theta X_t} = \exp\left(-\lambda t \int (1 - e^{i\theta x})\mu(dx)\right), \quad \theta \in \mathbb{R}.$$

- 4. Let $N=(N_t)_{t\geq 0}$ be a Poisson process with parameter λ , and $(\xi, \xi_1, \xi_2, \cdots)$ be an independent sequence of i.i.d. random variables (independent of N) such that $P(\xi=1)=p$ and $P(\xi=-1)=q$ with p+q=1. Define $N^p=(N_t^p)_{t\geq 0}$ by letting N_t^p be the total number of appearances of "1" in the sequence $(\xi_1, \cdots, \xi_{N_t})$, and similarly define $N^q=(N_t^q)_{t\geq 0}$ by letting N_t^q be the total number of appearances of "-1" in the sequence $(\xi_1, \cdots, \xi_{N_t})$. Prove that N^p is a Poisson process with parameter λp , N^q is a Poisson process with parameter λq , and N^p and N^q are independent.
- 5. Let (S, S, μ) be a σ -finite measure space, the random measure M on (S, S) (that is, $M = (M(\omega, B))_{\omega \in \Omega, B \in S}$) be a Poisson measure with intensity μ , and f be a nonnegative measurable function on (S, S). Write $\mu f = \int_S f(x)\mu(dx)$ and $(Mf)(\omega) = \int_S f(x)M(\omega, dx)$. Prove that

$$E(Mf) = \mu f$$
 and $E \exp(-Mf) = \exp(-\mu(1 - e^{-f}))$.