

Wydział Informatyki	Imię i nazwis 1. Kawa Mie 2. Smyda To	chał	Rok: II	Grupa: 5	Zespół:
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Interferencj	Nr ćwiczenia:			
Data wykonania: 24.10.2023	Data oddania: 28.10.2023	Zwrot do popr.:	Data oddania:	Data zaliczenia:	OCENA:

Interferencja fal akustycznych

Ćwiczenie nr 25

Kawa Michał Smyda Tomasz

Spis treści

1	$\operatorname{Wst}_{\operatorname{p}}$	2										
	1.1 Cel ćwiczenia	2										
	1.2 Opis ćwiczenia	2										
2	Układ pomiarowy	2										
3	Przebieg doświadczenia	3										
4	4 Wyniki pomiarów											
5 Opracowanie wyników pomiarów												
	5.1 Wykres prędkości od częstotliwości	4										
	5.2 Średnia wartość prędkości i niepewność standardowa	4										
	5.3 Prędkość dźwięku	4										
	5.4 Wartość wykładnika adiabaty	5										
6	Wnioski	5										

1 Wstęp

1.1 Cel ćwiczenia

Celem ćwiczenia było wyznaczenie prędkości dźwięku w powietrzu badając interferencję fal akustycznych, przy użyciu rury Quinckego oraz wyznaczenie wartości wykładnika adiabaty $\kappa=\frac{c_p}{d_V}$ dla powietrza.

1.2 Opis ćwiczenia

Doświadczenie jest wykonywane w oparciu o równanie fali dźwiękowej:

$$y = y_m \sin(\omega t - \phi)$$

gdzie:

$$y_m = \sqrt{y_{m_1}^2 + y_{m_2}^2 + 2y_{m_1} + y_{m_2}\cos k(x_1 - x^2)}$$

Celem ćwiczenia było obliczenie odległości pomiędzy kolejnymi minimami amplitudy nakładających się dwóch fal, w skutek czego otrzymywaliśmy długość fali, która pozwalała nan obliczyć prędkość dźwięku korzystając ze wzoru:

$$v = f \cdot \lambda$$

Na dokładność wykonywanych ma wpływ m.in. temperatura.

2 Układ pomiarowy

W skład układu pomiarowego wchodzą:

- Rura Quinckego
- Generator mocy 20 Hz 20 kHz
- Licznik do odczytu częstotliwości
- Oscyloskop

Rysunek 1: Schemat rury Quinckego

3 Przebieg doświadczenia

W ramach ćwiczenia przeprowadziliśmy 11 serii pomiarów odległości pomiędzy minimami amplitudy interferencji fal akustycznych dla częstotliwości dźwięku od 2000 Hz do 4000 Hz z krokiem co 200 Hz. Dla każdej serii policzyliśmy średnią, przy pomocy której uzyskaliśmy długość fali, a następnie prędkość rozchodzenia się dźwięku.

4 Wyniki pomiarów

Częstotliwość	Położenie					Różnica położeń				Długość	Prędkość
fali	kolejnych minimów					kolejnych minimów			mów	fali	dźwięku
[Hz]	[mm]					[mm]				[mm]	$\left[\frac{\mathrm{m}}{s}\right]$
f	a_1	a_2	a_3	a_4	a_5	Δ_1	Δ_2	Δ_3	Δ_4	λ	v
2000	61	147	234	322	407	86	87	88	85	173	346
2200	42	120	202	275	358	78	82	73	83	158	347,6
2400	39	111	185	256	329	72	74	71	73	145	348
2600	36	103	170	236	302	67	67	66	66	133	345,8
2800	32	93	155	216	277	61	62	61	61	122,5	343
3000	29	86	142	200	258	57	56	58	58	114,5	343,5
3200	22	76	130	185	238	54	54	55	53	108	345,6
3400	23	70	120	173	222	47	50	53	49	99,5	338,3
3600	18	66	114	163	209	48	48	49	46	$95,\!5$	343,8
3800	17	64	109	154	199	47	45	45	45	91	345,8
4000	16	60	105	145	190	44	45	40	45	87	348

Temperatura [°C] | 21

Tabela 1: Wyniki pomiarów dla wskazanych częstotliwości

5 Opracowanie wyników pomiarów

5.1 Wykres prędkości od częstotliwości

Rysunek 2: Wykres przedstawiający wyliczoną prędkość fali dźwiękowej od jej częstotliwości

Przedstawiony wykres zgodnie z przewidywaniami pokazuje, że częstotliwość dźwięku nie ma wpływu na jego prędkość. Czerwona linia wskazuje prędkość średnią.

5.2 Średnia wartość prędkości i niepewność standardowa

Obliczono średnią prędkość:

$$\overline{v} = 345,04 \frac{\text{m}}{\text{s}}$$

Niepewność standardową typu A wyliczyliśmy jako:

$$u(v) = 0.85 \, \frac{\mathrm{m}}{\mathrm{s}}$$

Niepewność rozszerzona przyjmuje wtedy wartość:

$$U(v) = 2 \cdot u(v) = 1,70 \frac{\text{m}}{\text{s}}$$

5.3 Prędkość dźwięku

Korzystając ze wzoru na prędkość dźwięku w gazach przeliczamy wyliczoną prędkość na prędkość dla temperatury $T_0=0^\circ$ C = 273,15 K Podczas przeprowadzania ćwiczenia w pomieszczeniu panowała temperatura $T=21^\circ$ C = 294,15 K

$$v_0 = \overline{v}\sqrt{\frac{T_0}{T}}$$

$$v_0 = 332,49 \left[\frac{\mathrm{m}}{\mathrm{s}} \right]$$

Korzystając z prawa przenoszenia niepewności:

$$u(v_0) = u(v)\sqrt{\frac{T_0}{T}} = 0.82 \left[\frac{\mathrm{m}}{\mathrm{s}}\right]$$

Przyjmując współczynnik k=2 liczymy niepewność rozszerzoną:

$$U(v_0) = k \cdot u(v_0) = 2 \cdot 0.82 = 1.64 \left[\frac{\text{m}}{\text{s}} \right]$$

Wartość tablicowa dla prędkości dźwięku dla suchego powietrza w temperaturze 0° C wynosi 331,5 $\left\lceil \frac{m}{s} \right\rceil$

$$|331.5 - 332.49| = 0.99 < 1.64 = U(v_0)$$

Wartość tabelaryczna jest zgodna z otrzymanymi wynikami pomiarów, a obliczona niepewność jest mniejsza niż faktyczny błąd.

5.4 Wartość wykładnika adiabaty

Korzystając ze wzoru na prędkość dźwięku w gazach:

$$v = \sqrt{\frac{\kappa RT}{\mu}}$$

Gdzie T - temperatura bezwzględna, R - stała gazowa, μ - masa molowa gazu, a κ - wykładnik adiabaty.

Obliczamy masę molową dla powietrza - mieszaniny azotu (78%), tlenu (21%) oraz argonu (1%) jako średnią ważoną mas molowych tych składników:

$$\mu = 0.78 \cdot 28 + 0.21 \cdot 32 + 0.01 \cdot 40 = 28.96 \frac{\text{g}}{\text{mol}}$$

Przyjmujemy stałą $R=8,31446~\frac{\mathrm{J}}{\mathrm{mol\cdot kg}}$

Przekształcamy wzór, tak aby uzyskać wykładnik adiabaty.

$$\kappa = \frac{\mu v^2}{RT} = 1.41$$

$$u(\kappa) = \frac{2v\mu}{RT}u(v) = 0.07$$

6 Wnioski

Wyniki przeprowadzonego doświadczenia są zgodne z przewidywaniami. Eksperyment z użyciem rury Quinckego pozwolił dość dokładnie oszacować prędkość dźwięku, a obliczone rezultaty są bardzo zbliżone do wartości tabelarycznych. Na niedokładność pomiaru - poza trudnością z precyzyjnym odczytaniem wyników na oscyloskopie miały wpływ takie czynniki jak wilgotność i ciśnienie powietrza, czy dokładność samych użytych urządzeń pomiarowych. Pomiar potwierdził także, że prędkość dźwięku nie jest zależna od jego częstotliwości. Również obliczona wartość wykładnika adiabaty jest bardzo zbliżona do prawdziwej wartości, co dodatkowo potwierdza poprawność wykonanych pomiarów.