Linear Regression

Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to predict or explain

Independent variable: the variable used to predict or explain the dependent variable

Simple Linear Regression Model

- Only one independent variable, X
- Relationship between X and Y is described by a linear function
- Changes in Y are assumed to be related to changes in X

Types of Relationships

Linear relationships

Nonlinear relationships

Types of Relationships

(continued)

Strong relationships

Types of Relationships

(continued)

Simple Linear Regression Model

Simple Linear Regression Model

(continued)

Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the population regression line

Interpretation of the Slope and the Intercept

b₀ is the estimated average value of Y
 when the value of X is zero

 b₁ is the estimated change in the average value of Y as a result of a one-unit increase in X

The Least Squares Method

 b_0 and b_1 are obtained by finding the values of that minimize the sum of the squared differences between Y and \hat{Y} :

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$

The Least Squares Estimates

Slope

$$b_1 = \frac{SSXY}{SSX}$$

Intercept

$$b_0 = \overline{Y} - b_1 \overline{X}$$

where

$$SSXY = \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^{n} X_i Y_i - n\overline{X}\overline{Y}$$

$$SSX = \sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} X_i^2 - n\overline{X}^2$$

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (Y) = house price in \$1000s
 - Independent variable (X) = square feet

Simple Linear Regression Example: Data

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Simple Linear Regression Example: Scatter Plot

House price model: Scatter Plot

Simple Linear Regression Example: Excel Output

Regression Statistics

<u>~</u>	
Multiple R	0.76211
R Square	0.58082
Adjusted R Square	0.52842
Standard Error	41.33032

Observations

The regression equation is:

house price = 98.24833+0.10977 (square feet)

ANOVA	/				
	df /	SS	MS	F	Significance F
Regression	1/	18934.9348	18934.9348	11.0848	0.01039
Residual	/8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	tandard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

10

Simple Linear Regression Example: Graphical Representation

House price model: Scatter Plot and Prediction Line

Simple Linear Regression Example: Interpretation of bo

house price = 98.24833 + 0.10977 (square feet)

- b₀ is the estimated average value of Y when the value of X is zero (if X = 0 is in the range of observed X values)
- Because a house cannot have a square footage of 0, b₀ has no practical application

Simple Linear Regression Example: Interpreting b₁

house price = 98.24833+0.10977 (square feet)

- b₁ estimates the change in the average value of Y as a result of a one-unit increase in X
 - Here, b₁ = 0.10977 tells us that the mean value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Simple Linear Regression Example: Making Predictions

Predict the price for a house with 2000 square feet:

house price = 98.25 + 0.1098 (sq.ft.)

=98.25+0.1098(2000)

= 317.85

The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850

Simple Linear Regression Example: Making Predictions

 When using a regression model for prediction, only predict within the relevant range of data

Measures of Variation

Total variation is made up of two parts:

$$SST = SSR + SSE$$

Total Sum of Squares

Regression Sum of Squares

Error Sum of Squares

$$SST = \sum (Y_i - \overline{Y})^2$$

$$SSR = \sum (\hat{Y}_i - \overline{Y})^2$$

$$|SSR = \sum (\hat{Y}_i - \overline{Y})^2 | SSE = \sum (Y_i - \hat{Y}_i)^2$$

where:

Y = Mean value of the dependent variable

 Y_i = Observed value of the dependent variable

 Y_i = Predicted value of Y for the given X_i value

Measures of Variation

(continued)

- SST = total sum of squares (Total Variation)
 - Measures the variation of the Y_i values around their mean Y
- SSR = regression sum of squares (Explained Variation)
 - Variation attributable to the relationship between X and Y
- SSE = error sum of squares (Unexplained Variation)
 - Variation in Y attributable to factors other than X

Measures of Variation

(continued)

Coefficient of Determination, r²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called r-squared and is denoted as r²

$$r^{2} = \frac{SSR}{SST} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

$$0 \le r^2 \le 1$$

r² is also the <u>sample correlation coefficient</u>

Examples of Approximate r² Values

$$r^2 = 1$$

Perfect linear relationship between X and Y:

100% of the variation in Y is explained by variation in X

Weaker linear relationships between X and Y:

Some but not all of the variation in Y is explained by variation in X

Examples of Approximate r² Values

$$r^2 = 0$$

No linear relationship between X and Y:

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

Simple Linear Regression Example: Coefficient of Determination, r² in Excel

Regression Statistics

Multiple R 0.76211

R Square 0.58082

Adjusted R Square 0.52842

Adjusted R Square 0.52842 Standard Error 41.33032

Observations 10

r^2	SSR	$=\frac{18934.9348}{0.58082}$
1 -	SST	$-\frac{1}{32600.5000}$

58.08% of the variation in house prices is explained by variation in square feet

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Standard Error of Estimate

 The standard deviation of the variation of observations around the regression line is estimated by

$$S_{YX} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}}$$

Where

SSE = error sum of squares n = sample size

Simple Linear Regression Example: Standard Error of Estimate in Excel

Regression Statistics

Multiple R 0.76211

R Square 0.58082

Adjusted R Square 0.52842

Standard Error 41.33032

Observations 10

_			
C	11	つつつ	27
S_{YX}	$=$ 4 \sqcup		3 2
YX	• •		

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Comparing Standard Errors

S_{YX} is a measure of the variation of observed Y values from the regression line

The magnitude of S_{YX} should always be judged relative to the size of the Y values in the sample data

i.e., S_{YX} = \$41.33K is moderately small relative to house prices in the \$200K - \$400K range

Assumptions of Regression L.I.N.E

- <u>L</u>inearity
 - The relationship between X and Y is linear
- Independence of Errors
 - Error values are statistically independent
- Normality of Error
 - Error values are normally distributed for any given value of X
- <u>Equal Variance</u> (also called homoscedasticity)
 - The probability distribution of the errors has constant variance

Residual Analysis

$$\boldsymbol{e}_{\scriptscriptstyle i} = \boldsymbol{Y}_{\scriptscriptstyle i} - \boldsymbol{\hat{Y}}_{\scriptscriptstyle i}$$

- The residual for observation i, e_i, is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
 - Examine for linearity assumption
 - Evaluate independence assumption
 - Evaluate normal distribution assumption
 - Examine for constant variance for all levels of X (homoscedasticity)
- Graphical Analysis of Residuals
 - Can plot residuals vs. X

Residual Analysis for Linearity

Checking for Normality

- Examine the Stem-and-Leaf Display of the Residuals
- Examine the Boxplot of the Residuals
- Examine the Histogram of the Residuals
- Construct a Normal Probability Plot of the Residuals

Residual Analysis for Normality

When using a normal probability plot, normal errors will approximately display in a straight line

Residual Analysis for Equal Variance

RESIDUAL OUTPUT					
	Predicted				
	House Price	Residuals			
1	251.92316	-6.923162			
2	273.87671	38.12329			
3	284.85348	-5.853484			
4	304.06284	3.937162			
5	218.99284	-19.99284			
6	268.38832	-49.38832			
7	356.20251	48.79749			
8	367.17929	-43.17929			
9	254.6674	64.33264			
10	284.85348	-29.85348			

Does not appear to violate any regression assumptions

Inferences About the Slope

The standard error of the regression slope coefficient (b₁) is estimated by

$$S_{b_1} = \frac{S_{YX}}{\sqrt{SSX}} = \frac{S_{YX}}{\sqrt{\sum (X_i - \overline{X})^2}}$$

where:

 S_{b_1} = Estimate of the standard error of the slope

$$S_{YX} = \sqrt{\frac{SSE}{n-2}}$$
 = Standard error of the estimate

Inferences About the Slope: t Test

- t test for a population slope
 - Is there a linear relationship between X and Y?
- Null and alternative hypotheses
 - H_0 : $\beta_1 = 0$ (no linear relationship)
 - H_1 : $\beta_1 \neq 0$ (linear relationship does exist)
- Test statistic

$$t_{STAT} = \frac{b_1 - \beta_1}{S_{b_1}}$$

$$d.f.=n-2$$

where:

$$b_1$$
 = regression slope coefficient

$$\beta_1$$
 = hypothesized slope

$$S_{b1}$$
 = standard
error of the slope

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

The slope of this model is 0.1098

Is there a relationship between the square footage of the house and its sales price?

$$H_0$$
: $\beta_1 = 0$

From Excel output:

$$H_1$$
: $\beta_1 \neq 0$

	Coefficients	Standard Error	t Stat	P-value	
Intercept	98.24833	58.03348	1.69296	0.12892	
Square Feet	0.10977	0.03297	3.32938	0.01039	
		b ₁	S _{b1}		
			t _{STAT}	$=\frac{\mathbf{b}_{1}-\boldsymbol{\beta}_{1}}{\mathbf{S}_{\mathbf{b}_{1}}}$	$=\frac{0.10977-0}{0.03297}=3.32938$

Test Statistic:
$$t_{STAT} = 3.329$$

$$H_0$$
: $\beta_1 = 0$

$$H_1$$
: $\beta_1 \neq 0$

Decision: Reject H₀

There is sufficient evidence that square footage affects house price

$$H_0$$
: $\beta_1 = 0$

$$H_1$$
: $\beta_1 \neq 0$

From Excel output:

	Coefficients	Standard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

Decision: Reject H_0 , since p-value $< \alpha$

There is sufficient evidence that square footage affects house price.

p-value

F Test for Significance

• F Test statistic:
$$F_{STAT} = \frac{MSR}{MSE}$$

where

$$MSR = \frac{SSR}{k}$$

$$MSE = \frac{SSE}{n-k-1}$$

where F_{STAT} follows an F distribution with k numerator and (n - k - 1)denominator degrees of freedom

(k = the number of independent variables in the regression model)

F-Test for Significance Excel Output

Regression S	Statistics
--------------	------------

-9						
Multiple R	0.76211		MSR 1	8934.9)348	
R Square	0.58082	$F_{STAT} =$	= -		=	.0848
Adjusted R Square	0.52842	51711	MSE :	1708.1	957	
Standard Error	41.33032					
Observations	10	With 1 and	8 degrees			p-value for
		of freedom				the F-Test
ANOVA						1
	df /	SS	MS	F/	Significance	<u> </u>
Regression	1	18934.9348	18934.9348	11.0848	0.010	39
Residual	8	13665.5652	1708.1957			
Total	9	32600.5000				

F Test for Significance

(continued)

$$H_1$$
: $\beta_1 \neq 0$

$$\alpha = .05$$

Test Statistic:

$$F_{STAT} = \frac{MSR}{MSE} = 11.08$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is sufficient evidence that house size affects selling price

Confidence Interval Estimate for the Slope

Confidence Interval Estimate of the Slope:

$$b_1 \pm t_{\alpha/2} S_{b_1}$$
 d.f. = n-2

$$d.f. = n - 2$$

Excel Printout for House Prices:

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

At 95% level of confidence, the confidence interval for the slope is (0.0337, 0.1858)

Confidence Interval Estimate for the Slope (continued)

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580
-			-	-		

Since the units of the house price variable is \$1000s, we are 95% confident that the average impact on sales price is between \$33.74 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

Estimating Mean Values and Predicting Individual Values

Goal: Form intervals around Y to express uncertainty about the value of Y for a given X_i

Confidence Interval for the Average Y, Given X

Confidence interval estimate for the mean value of Y given a particular X_i

Confidence interval for $\mu_{Y|X=X_i}$:

$$\hat{Y} \pm t_{\alpha/2} S_{YX} \sqrt{h_i}$$

Size of interval varies according to distance away from mean, \overline{X}

$$h_{i} = \frac{1}{n} + \frac{(X_{i} - \overline{X})^{2}}{SSX} = \frac{1}{n} + \frac{(X_{i} - \overline{X})^{2}}{\sum (X_{i} - \overline{X})^{2}}$$

Prediction Interval for an Individual Y, Given X

Confidence interval estimate for an Individual value of Y given a particular X_i

Confidence interval for
$$Y_{X=X_i}$$
:
$$\hat{Y} \pm t_{\alpha/2} S_{YX} \sqrt{1 + h_i}$$

This extra term adds to the interval width to reflect the added uncertainty for an individual case

Estimation of Mean Values: Example

Confidence Interval Estimate for $\mu_{Y|X=X_i}$

Find the 95% confidence interval for the mean price of 2,000 square-foot houses

Predicted Price $Y_i = 317.85 (\$1,000s)$

$$\hat{Y} \pm t_{0.025} S_{YX} \sqrt{\frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}} = 317.85 \pm 37.12$$

The confidence interval endpoints (from Excel) are 280.66 and 354.90, or from \$280,660 to \$354,900

Estimation of Individual Values: Example

Prediction Interval Estimate for $Y_{X=X_i}$

Find the 95% prediction interval for an individual house with 2,000 square feet

Predicted Price $Y_i = 317.85 (\$1,000s)$

$$\hat{Y} \pm t_{0.025} S_{YX} \sqrt{1 + \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}} = 317.85 \pm 102.28$$

The prediction interval endpoints from Excel are 215.50 and 420.07, or from \$215,500 to \$420,070

Multivariate Regression

The Multiple Regression Model

Idea: Examine the linear relationship between 1 dependent (Y) & 2 or more independent variables (X_i)

Multiple Regression Model with k Independent Variables:

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + \dots + \beta_{k} X_{ki} + \epsilon_{i}$$
 Random Error

Multiple Regression Equation

The coefficients of the multiple regression model are estimated using sample data

Multiple regression equation with k independent variables:

In this chapter we will use Excel to obtain the regression slope coefficients and other regression summary measures.

Multiple Regression Equation

(continued)

Two variable model

Example: 2 Independent Variables

 A distributor of frozen dessert pies wants to evaluate factors thought to influence demand

Dependent variable: Pie sales (units per week)

Independent variables: Price (in \$)
 Advertising (\$100's)

Data are collected for 15 weeks

Week	Pie Sales	Price	Advertising
vveek	Sales	(\$)	(\$100s)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

Multiple regression equation:

Sales =
$$b_0 + b_1$$
 (Price)
+ b_2 (Advertising)

Excel Multiple Regression Output

Regression St	tatistics					4114
Multiple R	0.72213				Sales of the sales	
R Square	0.52148				A. C.	
Adjusted R Square	0.44172					
Standard Error	47.46341	$\widehat{\text{Sales}} = 30$	06.526-24.9	75(Price) -	+74.131(Advert	ising)
Observations	15	1				
ANOVA	df	ss		F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776	0.0000	0.0.120.	
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

1

The Multiple Regression Equation

Sales = 306.526 - 24.975(Price) + 74.131(Advertising)

where

Sales is in number of pies per week Price is in \$ Advertising is in \$100's.

b₁ = -24.975: sales will decrease, on average, by 24.975 pies per week for each \$1 increase in selling price, net of the effects of changes due to advertising

b₂ = 74.131: sales will increase, on average, by 74.131 pies per week for each \$100 increase in advertising, net of the effects of changes due to price

Using The Equation to Make Predictions

Predict sales for a week in which the selling price is \$5.50 and advertising is \$350:

Predicted sales is 428.62 pies

Note that Advertising is in \$100s, so \$350 means that $X_2 = 3.5$

Coefficient of Multiple Determination

Reports the proportion of total variation in Y explained by all X variables taken together

$$r^2 = \frac{SSR}{SST} = \frac{regressionsum of squares}{total sum of squares}$$

Multiple Coefficient of Determination In Excel

Regression S	tatistics			160.0		WILL ST
Multiple R	0.72213	$r^2 = \frac{50}{100}$	$\frac{SR}{R} = \frac{294}{100}$	460.0	.52148	
R Square	0.52148	S	ST 564	193.3	102 1 10	
Adjusted R Square	0.44172		52 1% of t	he varia	ation in pic	e sales
Standard Error	47.46341	1			ne variatio	
Observations	15	1	orice and			
				auverti	Silig	_
ANOVA	df	ss/	MS	F	Significance F	=
Regression	2	29460.027	14730.013	6.53861	0.0120	 1
Residual	12	27033.306	2252.776			
Total	14	56493.333				<u></u>
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.5883	5 555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.5762	6 -1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.5530	3 130.70888

Adjusted r²

- r² never decreases when a new X variable is added to the model
 - This can be a disadvantage when comparing models
- What is the net effect of adding a new variable?
 - We lose a degree of freedom when a new X variable is added
 - Did the new X variable add enough explanatory power to offset the loss of one degree of freedom?

Adjusted r²

(continued)

 Shows the proportion of variation in Y explained by all X variables adjusted for the number of X variables used

$$\left| r_{adj}^2 = 1 - \left[(1 - r^2) \left(\frac{n - 1}{n - k - 1} \right) \right] = 1 - \frac{SSE/(n - k - 1)}{SST/(n - 1)}$$

(where n = sample size, k = number of independent variables)

- Penalizes excessive use of unimportant independent variables
- Smaller than r²
- Useful in comparing among models

Adjusted r² in Excel

Regression Statistics					
Multiple R	0.72213				
R Square	0.52148				
Adjusted R Square	0.44172				
Standard Error	47.46341				
Observations	15				

$$r_{\text{adj}}^2 = .44172$$

44.2% of the variation in pie sales is explained by the variation in price and advertising, taking into account the sample size and number of independent variables

ANOVA	df	SS	MS	F	Significance F
Regression	2	29460.027	14730.013	6.53861	0.01201
Residual	12	27033.306	2252.776		
Total	14	56493.333			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Is the Model Significant?

- F Test for Overall Significance of the Model
- Shows if there is a linear relationship between all of the X variables considered together and Y
- Use F-test statistic
- Hypotheses:

$$H_0$$
: $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ (no linear relationship)

 H_1 : at least one $\beta_i \neq 0$ (at least one independent variable affects Y)

F Test for Overall Significance

Test statistic:

$$F_{STAT} = \frac{MSR}{MSE} = \frac{SSR/k}{SSE/(n-k-1)}$$

where F_{STAT} has numerator d.f. = k and denominator d.f. = (n - k - 1)

F Test for Overall Significance In Excel

(continued)

Regression St	tatistics					aradille .
Multiple R	0.72213		3.500	1.1700	(
R Square	0.52148	Familia	$=\frac{MSR}{}$	14730.	$\frac{0}{-}$ = 6.5386	
Adjusted R Square	0.44172	F _{STAT}	MSE	2252.8	3 - 0.3300	
Standard Error	47.46341	With 2 an	d 12 degree	26	1	
Observations	15	of freedo	_	.5	/	-value for ne F Test
					LI	- 1
ANOVA	df	ss	MS	F /	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				_
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

F Test for Overall Significance

(continued)

$$H_0$$
: $\beta_1 = \beta_2 = 0$

 H_1 : β_1 and β_2 not both zero

$$\alpha = .05$$

Test Statistic:

$$F_{STAT} = \frac{MSR}{MSE} = 6.5386$$

Decision:

Since F_{STAT} test statistic is in the rejection region (p-value < .05), reject H_0

Conclusion:

There is evidence that at least one independent variable affects Y

Are Individual Variables Significant?

- Use t tests of individual variable slopes
- Shows if there is a linear relationship between the variable X_j and Y holding constant the effects of other X variables
- Hypotheses:
 - H_0 : $β_j$ = 0 (no linear relationship)
 - H_1 : $\beta_j \neq 0$ (linear relationship does exist between X_i and Y)

Are Individual Variables Significant?

(continued)

$$H_0$$
: $\beta_i = 0$ (no linear relationship)

$$H_1$$
: $\beta_j \neq 0$ (linear relationship does exist between X_i and Y)

Test Statistic:

$$t_{STAT} = \frac{b_j - 0}{S_{b_i}}$$

$$(df = n - k - 1)$$

Are Individual Variables Significant? Excel Output (continued)

Regression Statistics				
Multiple R	0.72213			

R Square 0.52148

Adjusted R Square 0.44172

Standard Error 47.46341

Observations

t Stat for Price is $t_{STAT} = -2.306$, with p-value .0398

t Stat for Advertising is $t_{STAT} = 2.855$, with p-value .0145

				[
ANOVA	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Inferences about the Slope: t Test Example

$$H_0$$
: $\beta_j = 0$

 H_1 : $\beta_j \neq 0$

$$d.f. = 15-2-1 = 12$$

 $\alpha = .05$

 $t_{\alpha/2} = 2.1788$

From the Excel output:

For Price $t_{STAT} = -2.306$, with p-value .0398

For Advertising $t_{STAT} = 2.855$, with p-value .0145

The test statistic for each variable falls in the rejection region (p-values < .05)

Decision:

Reject H₀ for each variable **Conclusion**:

There is evidence that both Price and Advertising affect pie sales at $\alpha = .05$

Confidence Interval Estimate for the Slope

Confidence interval for the population slope β_i

$$b_j \pm t_{lpha/2} S_{b_j}$$
 where t has (n – k – 1) d.f.

	Coefficients	Standard Error
Intercept	306.52619	114.25389
Price	-24.97509	10.83213
Advertising	74.13096	25.96732

Here, t has
$$(15-2-1) = 12$$
 d.f.

Example: Form a 95% confidence interval for the effect of changes in price (X_1) on pie sales:

$$-24.975 \pm (2.1788)(10.832)$$

So the interval is (-48.576, -1.374)

(This interval does not contain zero, so price has a significant effect on sales)

Confidence Interval Estimate for the Slope

(continued)

Confidence interval for the population slope β_i

	Coefficients	Standard Error	 Lower 95%	Upper 95%
Intercept	306.52619	114.25389	 57.58835	555.46404
Price	-24.97509	10.83213	 -48.57626	-1.37392
Advertising	74.13096	25.96732	 17.55303	130.70888

Example: Excel output also reports these interval endpoints:

Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of \$1 in the selling price, holding the effect of advertising constant

Testing Portions of the Multiple Regression Model

Contribution of a Single Independent Variable X_j

SSR(X_j | all variables except X_j)

- = SSR (all variables) SSR(all variables except X_i)
- This is extra Sum of Squares attributed to X_i
- Measures the contribution of X_j in explaining the total variation in Y (SST)

Testing Portions of the Multiple Regression Model

(continued)

Contribution of a Single Independent Variable X_j , assuming all other variables are already included (consider here a 2-variable model):

From ANOVA section of regression for

$$\hat{\mathbf{Y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_1 + \mathbf{b}_2 \mathbf{X}_2$$

From ANOVA section of regression for

$$\hat{\mathbf{Y}} = \mathbf{b}_0 + \mathbf{b}_2 \mathbf{X}_2$$

Measures the contribution of X₁ in explaining SST

The Partial F-Test Statistic

Consider the hypothesis test:

H₀: variable X_j does not significantly improve the model after all other variables are included

H₁: variable X_j significantly improves the model after all other variables are included

Test using the F-test statistic:

(with 1 and n-k-1 d.f.)

$$F_{STAT} = \frac{SSR (X_j | all variables except j)}{MSE}$$

Example: Frozen dessert pies

Test at the α = .05 level to determine whether the price variable significantly improves the model given that advertising is included

(continued)

H₀: X₁ (price) does not improve the model with X₂ (advertising) included

H₁: X₁ does improve model

$$\alpha = .05$$
, df = 1 and 12

$$F_{0.05} = 4.75$$

(For X_1 and X_2)

ANOVA			
	df	SS	MS
Regression	2	29460.02687	14730.01343
Residual	12	27033.30647	2252.775539
Total	14	56493.33333	

(For X_2 only)

ANOVA		
	df	SS
Regression	1	17484.22249
Residual	13	39009.11085
Total	14	56493.33333

(continued)

(For X_1 and X_2)

 ANOVA

 df
 SS
 MS

 Regression
 2
 29460.02687
 14730.01343

 Residual
 12
 27033.30647
 2252.775539

 Total
 14
 56493.33333

(For X_2 only)

ANOVA		
	df	SS
Regression	1	17484.22249
Residual	13	39009.11085
Total	14	56493.33333

$$F_{STAT} = \frac{\text{SSR } (X_1 | X_2)}{\text{MSE(all)}} = \frac{29,460.03 - 17,484.22}{2252.78} = 5.316$$

Conclusion: Since $F_{STAT} = 5.316 > F_{0.05} = 4.75$ Reject H_0 ; Adding X_1 does improve model

(continued)

H₀: X₂ (advertising) does not improve the model with X₁ (price) included

H₁: X₂ does improve model

$$\alpha = .05$$
, df = 1 and 12

$$F_{0.05} = 4.75$$

(For X_1 and X_2)

ANOVA			
	df	SS	MS
Regression	2	29460.02687	14730.01343
Residual	12	27033.30647	2252.775539
Total	14	56493.33333	

(For X_1 only)

ANOVA		
	df	SS
Regression	1	11100.43803
Residual	13	45392.8953
Total	14	56493.33333

(For X_1 and X_2)

(For X_1 only)

(continued)

ANOVA			
	df	SS	MS
Regression	2	29460.02687	14730.01343
Residual	12	27033.30647	2252.775539
Total	14	56493.33333	

ANOVA		
	df	SS
Regression	1	11100.43803
Residual	13	45392.8953
Total	14	56493.33333

$$F_{STAT} = \frac{\text{SSR}(X_2 | X_1)}{\text{MSE(all)}} = \frac{29,460.03 - 11,100.44}{2252.78} = 8.150$$

Conclusion: Since $F_{STAT} = 8.150 > F_{0.05} = 4.75$ Reject H_0 ; Adding X_2 does improve model

Simultaneous Contribution of Independent Variables

- Use partial F test for the simultaneous contribution of multiple variables to the model
 - Let m variables be an additional set of variables added simultaneously
 - To test the hypothesis that the set of m variables improves the model:

$$F_{STAT} = \frac{[SSR(all) - SSR (all except new set of m variables)]/m}{MSE(all)}$$

(where F_{STAT} has m and n-k-1 d.f.)

Model Building

- Goal is to develop a model with the best set of independent variables
- Stepwise regression procedure
 - Provide evaluation of alternative models as variables are added and deleted, with partial F tests.
- Best-subset approach
 - Try all combinations and select the best using the highest adjusted r² and lowest standard error

Stepwise Regression

- Idea: develop the least squares regression equation in steps, adding one independent variable at a time and evaluating whether existing variables should remain or be removed
- Evaluate significance of newly added variables by partial F tests

Best Subsets Regression

 Idea: estimate all possible regression equations using all possible combinations of independent variables

 Choose the best fit by looking for the highest adjusted r² and lowest standard error