Exercici 2. Considereu els vectors $u_1 = (1, 1, 0)$, $u_2 = (1, 0, 1)$ i $u_3 = (0, 1, 1)$ de \mathbb{R}^3 i els vectors $w_1 = (1, 1, 1, 0)$, $w_2 = (1, 1, 0, 1)$, $w_3 = (1, 0, 1, 1)$ i $w_4 = (0, 1, 1, 1)$ de \mathbb{R}^4 . Sigui $f : \mathbb{R}^3 \to \mathbb{R}^4$ l'aplicació definida per

$$f(u_1) = w_1 + w_3 - w_4, f(u_2) = w_2 - w_3 + w_4, 2u_1 + 2u_2 - u_3 \in \text{Nuc } f$$

- (i) (4 punts) Trobeu la matriu de f en les bases canòniques de \mathbb{R}^3 i \mathbb{R}^4 respectivament.
- (ii) (3 punts) Calculeu les dimensions i bases de Nuc f i de Im f.
- (iii) (3 punts) Sigui v = (1, 1, 1). Calculeu f(v) i $f^{-1}(f(v))$.

Observem primer que $\mathcal{B}_u = (u_1, u_2, u_3)$ i $\mathcal{B}_w = (w_1, w_2, w_3, w_4)$ són bases de \mathbb{R}^3 i \mathbb{R}^4 ja que

$$\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} = -2 \neq 0, \qquad \begin{vmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{vmatrix} = -3 \neq 0$$

Per altra banda

$$f(2u_1 + 2u_2 - u_3) = \vec{0} \Leftrightarrow f(u_3) = 2(f(u_1) + f(u_2)) = 2w_1 + 2w_2$$

Per tant, les condicions donades equivalen a dir quines són les imatges de f sobre la base (u_1, u_2, u_3) i f està determinada per aquestes imatges. La matriu en les bases (u_1, u_2, u_3) i (w_1, w_2, w_3, w_4) és:

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$

(i) Si $\mathcal{B}_e = (e_1, e_2, e_3)$ i $\mathcal{B}_{\bar{e}} = (\bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{e}_4)$ són les bases canòniques de \mathbb{R}^3 i \mathbb{R}^4 respectivament les matrius de canvi de base són

$$de \ \mathcal{B}_u \ a \ \mathcal{B}_e: \quad Q = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \qquad de \ \mathcal{B}_w \ a \ \mathcal{B}_{\bar{e}} \quad P = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

La matriu de f en les bases \mathcal{B}_e i $\mathcal{B}_{\bar{e}}$ és:

$$B = PAQ^{-1} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} -1 & 3 & 1 \\ -1 & 1 & 3 \\ -\frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{3}{2} \end{pmatrix}$$

(ii) Tenim

$$\langle f(u_1), f(u_2) \rangle \subset \operatorname{Im} f, \qquad \langle 2u_1 + 2u_2 - u_3 \rangle \subset \operatorname{Nuc} f \quad \Rightarrow \quad \dim \operatorname{Im} f \geq 2, \ \dim \operatorname{Nuc} f \geq 1$$

ja que $f(u_1)$ i $f(u_2)$ són linealment independents. Com que dim Im $f + \dim \text{Nuc } f = 3$ ha de ser Im f = 2, dim Nuc f = 1.

$$f(u_1), f(u_2)$$
 és base de Im f , $2u_1 + 2u_2 - u_3$ és base de Nuc f

(iii) Per trobar f(v) podem fer servir la matriu de f en les bases canóniques:

$$B\begin{pmatrix}1\\1\\1\end{pmatrix} = \begin{pmatrix}3\\3\\\frac{3}{2}\\\frac{3}{2}\end{pmatrix}$$

Per definició $f^{-1}(S) := \{ x \in \mathbb{R}^3 \mid f(x) \in S \}$. En particular, $f^{-1}(f(v))$ és el conjunt de vectors $x \in \mathbb{R}^3$ que tenen la mateixa imatge que v: f(x) = f(v). Si f(v) = b, x són les solucions de

$$Bx = b$$

Una solució particular és v. La solució general s'obté sumant a v les solucions del sistema homogeni Bx = 0, és a dir, el Nuc f:

$$f^{-1}(f(v)) = v + \text{Nuc } f = v + \langle 2u_1 + 2u_2 - u_3 \rangle = v + \langle (4, 1, 1) \rangle$$