第二次书面作业 (若发现问题,请及时告知)

A1 下面的文法 G[S] 描述由命题变量 p, q ,联结词 Λ (合取)、V (析取)、 Π (否定)构成的命题公式集合:

$$S \rightarrow S \lor T \mid T$$

$$T \rightarrow T \land F \mid F$$

$$F \rightarrow \neg F \mid p \mid q$$

试分别指出句型 ¬F ∨ ¬ q ∧ p 和 ¬F ∨ p ∧ ¬F ∨ T 的所有短语,直接短语。如果这些句型同时也是右句型,那么还要给出其句柄 . 请将结果填入下表中:

 句型	短语	直接短语	句柄
$\neg F \lor \neg q \land p$			
¬F∨p∧¬F∨T			

参考解答:

句型		直接短语			句柄			
Ev. a.n	$\neg F \lor \neg q \land p$	¬F	$\neg q$	^p	¬F	q	p	¬F
¬F∨¬q∧p	¬q	q	I)				
D D. /T	$\neg F \lor p \land \neg F \lor T$		$\neg F \lor p \land$	∖¬F	¬F	p	¬F	无
$\neg F \lor p \land \neg F \lor T$	¬F p∧−	F	p	¬F				

A2 给定文法 G[S]:

$$S \rightarrow SS \mid (S) \mid a$$

- 1. 构造该文法 G[S] 的 LR(0) 有限状态机。
- 2. 说明该文法不是 LR(0) 文法。
- 3. 该文法是否 SLR(1) 文法? 为什么?

参考解答:

首先变换文法为增广文法。增加如下产生式

$$S' \rightarrow S$$

得到增广文法如下

$$S \to S$$

$$S \to S S$$

$$S \to (S)$$

$$S \to a$$

1. 该文法的LR(0)有限状态机状态转换图如下:

- 2. 状态I3中包含移进-归约冲突,所以G(S)不是LR(0)文法。
- 3. 对于状态I3,由于 $FOLLOW(S)=\{a, (,), \#\}$,在面临第一个符号是a时,不能选择是归约成S还是移进a,所以,不是SLR(1)文法。

A3 已知某文法 G[S] 的 LALR(1)分析表如下:

状态		GOTO				
	а	t	g	С	#	S
0	s11	s8		s4		1
1				s2	acc	
2			s3			
3	s11	s8		s4		16
4	s5					

5	s6					
6				s7		
7			r1	r1	R1	
8			s9			
9				s10		
10	s11	s8		s4		14
11	s11	s8		s4		12
12			s13	s2		
13	s11	s8		s4		15
14			r4	s2	R4	
15			r2	s2	R2	
16			r3	s2	R3	

并且已知各规则右边语法符号的个数以及左边的非终结符如下:

规则编号	1	2	3	4
右部长度	4	4	4	4
左部符号	S	S	S	S

试写出使用上述 LALR(1)分析器分析下面串的过程(只需写出前 10 步,列出所有可能的 ri ,sj 序列,注意先后次序):

 $a caaccgtgccaacgatgccaa \cdots$

参考解答:

s11, s4, s5, s6, s7, r1, s2, s3, s8, s9, ···

A4 给定如下文法 G[S]:

- (1) $S \rightarrow \underline{\text{if}} S \underline{\text{else}} S$
- (2) $S \rightarrow \underline{if} S$
- (3) $S \rightarrow a$

为文法 G[S] 增加产生式 $S' \rightarrow S$,得到增广文法 G'[S'],下图是相应的 LR(0)自动机(i 表示 <u>if</u>,e 表示 <u>else</u>):

- 1. 指出LR(0)自动机中的全部冲突状态及其冲突类型,以说明文法G[S]不是LR(0)文法。
- 2. 文法G[S]也不是SLR(1)文法。为什么?
- 3. 下图表示文法G[S]的LR(1)自动机,部分状态所对应的项目集未给出,试补齐之(即分别给出状态 I_2 , I_8 ,和 I_{10} 对应的项目集。

- 4. 指出LR(1)自动机中的全部冲突状态,这说明文法 G[S] 也不是 LR(1) 文法。
- 5. 若规定最近匹配原则,即 else 优先匹配左边靠近它的未匹配的if,则可以解决上述2个自动机中的状态冲突。下图表示文法G[S]在规定这一规则情况下的SLR(1)分析表,状态 4~6 对应的行未给出,试补齐之 。

	GOTO			
i	e	a	#	S
s2		s3		1
			acc	
s2		s3		4
	r3		r3	
	s2	i e s2 s2	s2 s3 s2 s3	i e a # s2 s3 acc s2 s3

下图表示文法G[S] 在规定这一规则情况下的LR(1)分析表,状态 4,7 和 9 对应的行未给出,试补齐之。

ΛΓ -Υ-		GOTO			
状态 	i	e	a	#	S
0	s2		s3		1
1				acc	
2	s8		s7		4
3				r3	
4					
5	s2		s3		6
6				r1	
7					
8	s8		s7		9
9					
10	s8		s7		11
11		r1		r1	

6. 对于文法G[S]中正确的句子,基于上述两个分析表均可以成功进行LR分析。然而,对于不属于文法G[S]中的句子,两种分析过程发现错误的速度不同,即发现错误时所经过的移进/归约总步数有差异。试给出一个长度不超过10的句子(即所包含的终结符个数不超过10),使得两种分析过程发现错误的速度不同。哪一个更快?对于你给的例子,两种分析过程分别到达哪个状态会发现错误?

参考解答:

- 1. 状态 L4 有冲突, 为移进-归约冲突。
- 2. 因 $Follow(S) = \{e, \#\}, e \in Follow(S), 所以状态L4的移进-归约冲突不可解决,所以该文法不是 <math>SLR(1)$ 文法。
 - 3. 完整的 LR(1) 自动机如下:

- 4. 状态 I9 有冲突,同样为移进-归约冲突。
- 5. 完整的 SLR(1)分析表

112 1 .		ACTION				
状态	i	e	a	#	S	
0	s2		s3		1	
1				acc		
2	s2		s3		4	
3		r3		r3		
4		s5		r2		
5	s2		s3		6	
6		r1		r1		

完整的 LR(1)分析表

117 - Y -		ACT	TON		GOTO
状态	i	e	a	#	S
0	s2		s3		1
1				acc	
2	s8		s7		4
3				r3	
4		s5		r2	
5	s2		s3		6
6				r1	
7		r3		r3	
8	s8		s7		9
9		s10		r2	
10	s8		s7		11
11		r1		r1	

6. 如对于句子 a else,用LR(1)分析1步后到达状态3发现错误,用SLR(1)分析 2步后到达状态1发现错误,所以LR(1) 分析更快。

另解: 如对于句子 <u>if a else</u> a <u>else</u> ,用LR(1)分析5步后到达状态3发现错误,用SLR(1)分析8步后到达状态1发现错误,所以LR(1) 分析更快。

A5 给定文法 G[S]:

⁽¹⁾ $S \rightarrow Ac$

⁽²⁾ $S \rightarrow aAb$

- (3) $S \rightarrow Bb$
- (4) $S \rightarrow aBc$
- (5) $A \rightarrow d$
- (6) $B \rightarrow d$

设 G'[S'] 为 G[S] 的增广文法。下图表示 G[S] 的 LR(0) 有限状态机:

- 1. 从上述 LR(0) 有限状态机可以看出, *G*[*S*] 不是 LR(0) 文法。试指出该 LR(0) 有限状态机中哪一个或哪几个状态是有冲突的? 同时请指出所包含 的每一个冲突的类别,即是移进-归约冲突,还是归约-归约冲突?
- 2. G[S] 也不是SLR(1) 文法,请简单解释原因。
- **3.** 下图是相应于 G[S] 的 LR(1) 有限状态机,但部分状态对应的 LR(1) 项目集信息并未完善,试补齐之(分别补全状态 I_0 , I_4 , I_5 和 I_{12} 对应的项目集)。

- **4.** 从上述的 LR(1) 有限状态机可得知 G[S] 是 LR(1) 文法,请简单解释原因。
- **5.** 给出 G[S] 的 LR(1) 分析表前 4 行(分别对应于 LR(1) 有限状态机中状态 I_0 , I_1 , I_2 和 I_3) 的内容。(即完成下表)

状		A	CTIC	(GOT	О		
状态	а	b	c	d	#	S	A	В
0								
1								
2								
3								

- **6.** 从上述的 LR(1) 有限状态机出发,通过合并同芯(同心)状态可得到 G[S] 的 LALR(1) 有限状态机。该 LALR(1) 有限状态机比原先的LR(1) 有限状态机少几个状态? 从 LALR(1) 有限状态机判断 G[S] 是否为 LALR(1) 文法?请简单解释你的回答。
- **7.** 基于上面的 LR(1) 有限状态机进行 LR 分析,若处于某个正常状态(未出错状态)时所面临的输入符号是 b,且当前栈顶尚未形成句柄,那么这样的状态可能有 _______ 个。

A. 1个 B. 2个 C. 3个 D. 4个

8. 基于上面的 LR(1) 有限状态机进行 LR 分析,若处于某个出错状态时所 面临的输入符号是 a,那么这样的状态可能有 _______ 个。

A. 7个 B. 8个 C. 9个 D. 12个

参考解答:

1. 从上述 LR(0) 有限状态机可以看出,文法 G[A] 不是 G[S] 文法。试指出该 LR(0) 有限状态机中哪一个或哪几个状态是有冲突的? 同时请指出所包含的每一个冲突的类别,即是移进-归约冲突,还是归约-归约冲突?

Is 中有归约-归约冲突。

2. *G*[*S*] 也不是SLR(1) 文法,请简单解释原因。

因为 $FOLLOW(A) = \{b, c\}$, $FOLLOW(B) = \{b, c\}$,而 I_2 的移进符号集为 $\{c\}$, $FOLLOW(A) \cap FOLLOW(B) \neq \emptyset$,所以 I_5 中的归约-归约冲突无法解决。故 G[S] 也不是 SLR(1) 文法。

回答得有道理即可,不必严格遵循参考答案。

3. 下图是相应于 G[S] 的 LR(1) 有限状态机,但部分状态对应的 LR(1) 项目集信息并未完善,试补齐之(分别补全状态 I_0 , I_4 , I_5 , I_7 和 I_8 对应的项目集)。

4. 从上述的 LR(1) 有限状态机可得知 G[S] 是 LR(1) 文法,请简单解释 原因。

除状态 I₅ 和 I₁₂ 外,其余状态要么只有移进项没有归约项,要么没有移进项且 只有一个归约项,因此不会有冲突。状态 I₅ 和 I₁₂ 各自有两个归约项而没有移进项, 而两个归约项均有不同的向前搜索附,故没有归约-归约冲突,即没有任何冲突。 回答的有道理即可,不必严格遵循参考答案。

5.

状		A	(GOT	O				
状态	а	b	c	d	#	S	A	В	
0	s4			s5		1	2	6	
1					acc				
2			s3						
3					r1				

6. 从上述的 LR(1) 有限状态机出发,通过合并同芯(同心)状态可得到 G[S] 的 LALR(1) 有限状态机。该 LALR(1) 有限状态机比原先的LR(1) 有限状态机少几个状态? 从 LALR(1) 有限状态机判断 G[S] 是否为 LALR(1) 文法?请简单解释你的回答。

通过合并同芯(同心)状态得到的 LALR(1) 有限状态机比原先的 LR(1) 有限状态机少 1 个状态。

从 LALR(1) 有限状态机可知 G[S] 不是 LALR(1) 文法。

因为,原先的 LR(1) 有限状态机中仅有状态 I_5 和 I_{12} 两个同芯(同心)状态,合并后有归约-归约冲突。

7. 基于上面的 LR(1) 有限状态机进行 LR 分析, 若处于某个正常状态 (未出错状态) 时所面临的输入符号是 b, 且当前栈顶尚未形成句柄, 那么这样

的状态可能有	个。
H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0

B. 2个

8. 基于上面的 LR(1) 有限状态机进行 LR 分析,若处于某个出错状态时所面临的输入符号是 a,那么这样的状态可能有 ______ 个。

A. 7个