

- 1. 熟悉计算方法在解决实际问题中所处的地位, 熟悉计算方法是以计算机为工具求近似解的数值方法;
- 2. 熟悉绝对误差(限),相对误差(限)及有效数字概念;
- 3. 熟悉选用算法应遵循的原则。

第2章 插值法

- § 2.1 引言
- § 2. 2 拉格朗日插值
- § 2.3 均差与牛顿插值多项式*
- § 2.4 埃尔米特插值
- § 2.5 分段低次插值*
- § 2. 6 三次样条插值*

1 插值问题 (Interpolation Problem)

			三角	当 數	表		
角	正弦	餘弦	正切	角	正弦	餘弦	正切
0,	0 0000	1 0000	0 0000	45° 46°	0.7071	0.7071	1.0000
1.	0.0175	0 9998	0.0175	46*	0.7103	0 6947	1 0355
%%456%	0.0349	0 9994	0.0349	47°	0 7314 0 7431	0 6820	1 0724
3	0 0523	0 9986 0 9976	0 0524	48*	0 7547	0 6694 0 6551	1 1106 1 1504
2	0.0698 0.0872	0 9976 0 9962	0.0699 0.0875	49° 50°	0.7660	0 6428	1 1504 1.1918
20	0.0072	0 9962	0.0075		0.7000	0 6293	1 2349
7	0.1045 0 1219 0.1392	0 9925	0.1051 0.1228 0.1405	51° 52° 53° 55° 55° 56°	0 7880	0 6157	1 2799
80	0.1392	0 9903	0.1405	53*	0.7986	0 6018	1.3270
9*	0.1564	0 9877	0.1584	54°	0.8090	0 5878	1.3764
10°	0 1736	0 9848	0 1763	55*	0.8192	0 5736	1 4281
11°	0.1908	0.9816	0.1944	56°	0 8290	0 5592	1 4826
12°	0.2079	0 9781	0.2126	57°	0.8387	0 5446	1.5399
13*	0 2250	0 9744	0 2309	58*	0.8480	0.5299	1.6003
14	0.2419	0 9703	0.2493	58° 59° 60°	0.8572	0 5150	1.6003 1 6643 1 7321
15	0.2588 0 2756	0 9659 0 9613	0.2679 0 2867	61*	0 8660 0.8746	0 5000 0 4848	1.8040
14° 15° 16° 17°	0 2924	0 9563	0 3057	24	0.8829	0.4695	1.8807
18*	0.3090	0 9511	0.3249	630	0.8910	0.4695	1 9626
19*	0.3256	0 9455	0.3443	64	0.8988	0 4384	2 0503
	0 3420	0 9397	0 3640	65	0.9063	0 4226	2 1445
21°	0.3584	0 9336	0.3839	66*	0.9135	0.4067	2.2460
20° 21° 22° 23° 25° 26° 27° 28°	0.3746	0 9272	0.4040 0.4245	62 63 64 65 66 67 68 69 70	0.9205 0 9272	0 3907	2 3559 2 4751
23*	0 3907	0 9205	0 4245	68°	0 9272	0 3746	2 4751
24	0.4067	0 9135	0.4452	69*	0 9336	0 3584	2.6051
25°	0.4226	0 9063	0.4663	70	0.9397	0.3420	2.7475
26	0 4384	0 8988	0 4877	71	0.9455	0 3256	2.9042
2/	0.4540 0.4695	0 8910 0 8829	0 5095	12	0 9511	0 3090	3 0777
20	0.4848	0 8829	0.5317 0.5543 0.5774	72° 73° 74°	0.9563 0.9613	0 2924 0.2756	3 2709 3.4874
29°	0.4040	0 8660	0 5543	75	0.9659	0.2756	3 7321
31	0.5150	0 8572	0.6009	76*	0 9703	0 2419	4 0108
32"	0.5299	0.8480	0.6009 0.6249	77	0.9744	0 2250	4 3315
33*	0 5446	0 8387	0.6494	75° 76° 77° 78°	0.9781	0 2079	4.7046
31° 32° 33° 34° 35° 36° 37°	0 5592	0 8290	0 6745	79"	0 9816	0 1908	5 1446
35	0.5736	0 8192	0.7002	80°	0 9848	0 1736	5 6713
36	0.5878	0 8090	0 7265	81°	0.9877	0 1564	6.3138
37	0 6018	0 6018	0 7536	82° 83° 84° 85° 86° 87°	0.9903	0.1392	7.1154
38"	0.6157	0 6157	0.7813	83	0.9925	0 1219	8.1443
39	0.6293 0.6428	0 6293 0 6428	0.8098 0.8391	84	0 9945	0 1045 0 0872	9 5144
40° 41°	0 6428	0 6428 0 6561	0.8391	86	0 9962 0.9976	0.08/2	11.430
42	0.6691	0 6691	0.9004	87*	0.9986	0.0698 0.0523	14.301 19.081
42° 43°	0.6820	0 6820	0.9325	88*	0.9994	0 0349	28 636
44	0.6947	0 6947	0.9657	89	0 9998	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	57 290
44° 45°	0.7071	0 7071	1 0000	89°	1.0000	0 0000	00

§ 2.1 引言

- 1 插值问题 (Interpolation Problem)
 - \triangleright 函数解析式未知,通过实验观测得到的一组数据,即在某个 区间[a, b]上给出一系列点的函数值 y_i = $f(x_i)$
 - ▶函数解析式已知,但过于复杂不便于计算,只能给出函数表

Q:如何计算不在表上的函数值?

A: 建立一个简单的而便于计算的函数P(x),使其近似的代替f(x)。

问题的提出

建立一个简单的而便于计算的函数P(x),使其近似的代替f(x)。

插值法的基本原理

设函数y=f(x) 定义在区间[a, b]上, x_0, x_1, \dots, x_n 是[a, b]上取 定的n+1个互异节点,且在这些点处的函数值 $f(x_0), f(x_1), \dots, f(x_n)$ 为已知,即 $y_i = f(x_i)$,若存在一个f(x)的近似函数 $\varphi(x)$,满足

$$\varphi(x_i) = f(x_i)$$
 $(i = 0, 1, 2, \dots, n)$ (2.1)

则称 $\varphi(x)$ 为f(x)的一个插值函数, f(x)为被插函数,点 x_i 为插值 节点,称(2.1)式为插值条件,而误差函数R(x)= $f(x) - \varphi(x)$ 称为 插值余项, 区间[a, b] 称为插值区间。

构造插值函数关心问题

- ▶ 插值函数是否存在?
- ▶插值函数是否唯一?
- ▶插值函数和插值函数的误差?
- ▶如何表示插值函数?

代数插值法

 $\varphi(x)$ 的选择要求计算最简单

若插值函数为多项式,即

$$\varphi(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

称为代数插值法。

插值函数还能取为什么函数?

$$x^{\alpha}$$
 a^{x} $\log_{a} x$ $\sin x$...

解的存在和惟一性

定理2.1 满足插值条件的n次多项式插值问题的解是存在且惟一的

证明:设n次多项式

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

是函数 y = f(x) 在区间[a, b]上的n+1个互异的节点 X_i (i=0,1,2,...,n)上的插值多项式,则求插值多项式 P(x)的问题就归结为求它的系数 a_i (i=0,1,2,...,n)。

由插值条件: $P(x_i) = f(x_i)$ (*i*=0, 1, 2, ..., n), 可得

$$\begin{cases} a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_1 x_0 + a_0 = f(x_0) \\ a_n x_1^n + a_{n-1} x_1^{n-1} + \dots + a_1 x_1 + a_0 = f(x_1) \\ \dots \\ a_n x_n^n + a_{n-1} x_n^{n-1} + \dots + a_1 x_n + a_0 = f(x_n) \end{cases}$$

这是一个关于待定参数 a_0, a_1, \dots, a_n 的n+1阶线性方程组。按照克兰姆(Cramer)法则,其解为

$$a_i = \frac{D_i}{|V|} \quad i = 0, 1, 2, \dots n$$

解的存在和惟一性

系数矩阵V的行列式为

$$V = \begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} = \prod_{0 \le i < j \le n} \left(x_j - x_i \right)$$

称为Vandermonde(范德蒙)行列式,因 $x_i \neq x_j$ (当 $i \neq j$),故 $V \neq 0$ 。根据解线性方程组的克莱姆法则,方程组的解 a_0 , a_1 ,…, a_n 存在且惟一,从而P(x) 被惟一确定。

问题: 计算量可能很大, 有没有更好的表达呢?

§ 2.2 拉格朗日插值

构造满足插值条件 $p(x_i) = f(x_i)$ (i=0,1,2,...,n) 的插值多项式可有多种方法,拉格朗日插值为最常用的一种。在得到拉格朗日插值一般形式之前,先考察几种简单情形。

- > 线性插值
- > 抛物插值

线性插值

将
$$p(x) = ax + b$$
 改写成

$$p(\mathbf{x}) = \mathbf{y}_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

由此则得

$$p(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

为了便于推广,记

$$l_0(x) = \frac{x - x_1}{x_0 - x_1}, \quad l_1(x) = \frac{x - x_0}{x_1 - x_0}$$

 $l_i(x)$ 称为插值基函数。

于是线性插值函数可以表示为与基函数的线性组合

$$p(x) = l_0(x)y_0 + l_1(x)y_1$$

基函数性质

$$l_0(x) = \frac{x - x_1}{x_0 - x_1}, \quad l_1(x) = \frac{x - x_0}{x_1 - x_0}$$

$$l_0(x_0) = 1, \quad l_0(x_1) = 0$$

$$l_1(x_0) = 0, \quad l_1(x_1) = 1$$

$$l_0(x) + l_1(x) = 1$$

$$l_k(x_i) = \delta_{ki} = \begin{cases} 1 & (i = k) \\ 0 & (i \neq k) \end{cases}$$

\mathcal{X}	x_0	x_I
$l_0(x)$	1	0
$l_1(x)$	0	1

抛物插值

设已知f(x)在三个互异点 x_0 , x_1 , x_2 的函数值 y_0 , y_1 , y_2 , 要构造次数不超过二次的多项式

$$p(x) = a_2 x^2 + a_1 x + a_0$$

将
$$p(x) = a_2 x^2 + a_1 x + a_0$$
 改写成

$$p(x) = A(x - x_1)(x - x_2) + B(x - x_0)(x - x_2) + C(x - x_0)(x - x_1)$$

由
$$p(x_0)=y_0$$
得 $A=y_0/(x_0-x_1)(x_0-x_2)$

由
$$p(x_1)=y_1$$
得 $B=y_1/(x_1-x_0)(x_1-x_2)$

由
$$p(x_2)=y_2$$
得 $C=y_2/(x_2-x_0)(x_2-x_1)$

抛物插值

于是

$$p(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$

记

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

则得

$$p(x) = l_0(x)y_0 + l_1(x)y_1 + l_2(x)y_2$$

基函数性质

$$l_{0}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} \quad l_{1}(x) = \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} \quad l_{2}(x) = \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

$$l_{0}(x_{0}) = 1, \quad l_{0}(x_{1}) = 0, \quad l_{0}(x_{2}) = 0$$

$$l_{1}(x_{0}) = 0, \quad l_{1}(x_{1}) = 1, \quad l_{1}(x_{2}) = 0$$

$$l_{2}(x_{0}) = 0, \quad l_{2}(x_{1}) = 0, \quad l_{2}(x_{2}) = 1$$

$$l_{0}(x) + l_{1}(x) + l_{2}(x) = 1$$

$$l_{k}(x_{k}) = \delta_{ki} = \begin{cases} 1 & (i = k) \\ 0 & (i \neq k) \end{cases}$$

基函数性质

X	x_0	x_1	x_2
$l_0(x)$	1	0	0
$l_1(x)$	0	1	0
$\overline{l_2(x)}$	0	0	1

推广到拉格朗日插值

线性插值(两点)

$$p(x) = l_0(x)y_0 + l_1(x)y_1$$

抛物插值(三点)

$$p(x) = l_0(x)y_0 + l_1(x)y_1 + l_2(x)y_2$$

拉格朗日插值(n+1点)

$$P_n(x) = l_0(x)y_0 + l_1(x)y_1 + \dots + l_n(x)y_n$$

例2. 1 已知
$$\sqrt{100} = 10$$
 , $\sqrt{121} = 11$, 求 $y = \sqrt{115}$

解:这里
$$x_0$$
=100, y_0 =10, x_1 =121, y_1 =11,利用线性插值

$$p(x) = \frac{x - 121}{100 - 121} \times 10 + \frac{x - 100}{121 - 100} \times 11$$
$$y = \sqrt{115} \approx p(115) = 10.714$$

例2.2 已知y=f(x)的函数表

求线性插值多项式,并计算x=1.5的值

解: 由线性插值多项式公式得

$$p(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$
$$= \frac{x - 3}{1 - 3} \times 1 + \frac{x - 1}{3 - 1} \times 2 = \frac{1}{2} (x + 1)$$
$$f(1.5) \approx p(1.5) = 1.25$$

例颢

例2.3 已知x=1,4,9 的平方根值,用抛物插 值公式. 求 $\sqrt{7}$

解:
$$p_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} y_2$$

$$x_0=1, x_1=4, x_2=9 \qquad y_0=1, y_1=2, y_2=3$$

$$p_2(7) = \frac{(7-4)(7-9)}{(1-4)(1-9)} \times 1 + \frac{(7-1)(7-9)}{(4-1)(4-9)} \times 2$$

$$+ \frac{(7-1)(7-4)}{(9-1)(9-4)} \times 3$$

$$= 2.7$$

例2.4 求过点(0,1)、(1,2)、(2,3)的三点插值多项式

解:由Lagrange 插值公式

$$P(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$

$$p(x) = \frac{(x-1)(x-2)}{(0-1)(0-2)} \times 1 + \frac{(x-0)(x-2)}{(1-0)(1-2)} \times 2 + \frac{(x-0)(x-1)}{(2-0)(2-1)} \times 3$$

$$= x+1$$

(给定的三个点在一条直线上)

拉格朗日插值

通过n+1个不同的已知点 $(x_i,y_i)(i=0,1,\cdots,n)$,

次数不超过n的代数多项式P(x)可表示为

$$P_n(x) = \sum_{k=0}^{n} l_k(x) y_k$$
 (2.1)

其中

$$l_k(x_i) = \delta_{ki} = \begin{cases} 1 & (i = k) \\ 0 & (i \neq k) \end{cases}$$

为插值基函数。公式(2.1)就是Lagrange插值多项式

拉格朗日插值

$$I_{k}(x) = \frac{(x - x_{0})(x - x_{1}) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_{n})}{(x_{k} - x_{0})(x_{k} - x_{1}) \cdots (x_{k} - x_{k-1})(x_{k} - x_{k+1}) \cdots (x_{k} - x_{n})} = \prod_{\substack{i=0 \ i \neq k}}^{n} \frac{x - x_{i}}{x_{k} - x_{i}}$$

引进记号

$$\omega(x) = (x - x_0)(x - x_1) \cdots (x - x_n) = \prod_{i=0}^{n} (x - x_i)$$

求导
$$\omega'_{n+1}(x_k) = \prod_{\substack{i=0\\i\neq k}}^{n} (x_k - x_i)$$

于是得 $l_k(x)$ 的另一种表示

$$l_{k}(x) = \frac{\omega_{n+1}(x)}{(x - x_{k})\omega'_{n+1}(x_{k})}$$

拉格朗日插值余项

定理2. 2 设y=f(x)在[a,b]上n+1阶导数存在,则插值多项式(2. 1)的余项为

$$R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$
 (2.2)

其中, $\xi \in (a,b)$, 且依赖于x, $x \in [a,b]$

证明:由于 $R_n(x_i)=0$, i=0,1,...,n,所以可设

$$R_n(x) = u(x)\omega_{n+1}(x)$$

求出 $x\neq x_i$ (i=0,1,...,n)时u(x)的表达式便确

定了 $R_n(x)$. 作辅助函数

$$\varphi(t) = R_n(t) - u(x)\omega_{n+1}(t)$$

 $= f(t) - P_n(t) - u(x)\omega_{n+1}(t), \quad t \in [a,b]$

由定理给出的条件可知 $\varphi^{(n+1)}(t)$ 在 [a,b]上存在,

且当 $t=x_0, x_1, \dots, x_n, x$ 时,有 $\varphi(t)=0$,所以连

拉格朗日插值余项

续用Rolle定理可知至少在(a,b)内存在一点 ξ ,使得

$$\varphi^{(n+1)}(\xi) = 0$$

其中 ξ 位于包含 x_0,x_1,\cdots,x_n 的最小闭区间内。即

$$f^{(n+1)}(\xi) - u(x)(n+1)! = 0$$

从而有

$$u(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

故Lagrange插值误差估计(2.2)式成立。

拉格朗日插值余项

对于线性插值,其误差为

$$R(x) = f(x) - P(x) = \frac{1}{2} f''(\xi)(x - x_0)(x - x_1) \qquad \xi \in (a, b)$$

对于抛物插值(二次插值), 其误差为

$$R(x) = f(x) - P(x) = \frac{1}{6} f'''(\xi)(x - x_0)(x - x_1)(x - x_2) \quad \xi \in (a, b)$$

例2.5 已知f(x)的观测数据

构造Lagrange插值多项式

解 四个点可构造三次Lagrange插值多项式:基函数为

$$l_0(x) = \frac{(x-1)(x-2)(x-4)}{(0-1)(0-2)(0-4)} = -\frac{1}{8}x^3 + \frac{7}{8}x^2 - \frac{7}{4}x + 1$$

$$l_1(x) = \frac{(x-0)(x-2)(x-4)}{(1-0)(1-2)(1-4)} = \frac{1}{3}x^3 - 2x^2 + \frac{8}{3}x$$

$$l_2(x) = \frac{(x-0)(x-1)(x-4)}{(2-0)(2-1)(2-4)} = -\frac{1}{4}x^3 + \frac{5}{4}x^2 - x$$
32

$$l_3(x) = \frac{(x-0)(x-1)(x-2)}{(4-0)(4-1)(4-2)} = \frac{1}{24}x^3 - \frac{1}{8}x^2 + \frac{1}{12}x$$

Lagrange插值多项式为

$$P_{3}(x) = \sum_{k=0}^{3} y_{k} l_{k}(x)$$

$$= l_{0}(x) + 9l_{1}(x) + 23l_{2}(x) + 3l_{3}(x)$$

$$= -\frac{11}{4}x^{3} + \frac{45}{4}x^{2} - \frac{1}{2}x + 1$$

例2.6 已知下列f(x)的观测数据构造插值多项式

解:四个点可以构造三次插值多项式,将数据代入插值公式,有

$$p(x) = l_0(x)y_0 + l_1(x)y_1 + l_2(x)y_2 + l_3(x)y_3$$
$$= x^3 - 4x^2 + 3$$

这个例子说明p(x)的项数不超过n+1项,但可以有缺项。

例2.7 证明
$$\sum_{i=0}^{n} x_i^k l_i(x) = x^k \qquad (k \le n)$$

证明: 当
$$f(x) = x^k$$
 $(k \le n)$ 由于 $f^{(n+1)}(x) = 0$

余项
$$R_n(x) = x^k - \sum_{i=1}^n x_i^k l_i(x) = 0$$

特别地,
$$k=0$$
时 $\sum_{i=1}^{n} l_i(x) = 1$

因此
$$\sum_{i=1}^{n} x_i^k l_i(x) = x^k$$

例2.8 已知 $\chi_0 = 100$, =121, 用线性插值估计 $f(x) = \sqrt{x}$ 在x=115时的截断误差

例2.9 已知 x_0 =100, x_1 =121, x_2 =144, 当用抛物插值求 $f(x) = \sqrt{x}$ 在x=115时的近似值,估计其的截断误差

$$\mathbf{FF} P_{2}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} y_{0} + \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} y_{1} + \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} y_{2}$$

$$\sqrt{115} \approx p_{2}(115) = 10.722756 \qquad \because f'''(x) = \frac{3}{8}x^{-\frac{5}{2}}$$

$$R_{2}(x) = \frac{1}{6}f^{(3)}(\xi)(x - x_{0})(x - x_{1})(x - x_{2}) = \frac{1}{16}\xi^{-\frac{5}{2}}(x - 100)(x - 121)(x - 144)$$

$$\therefore |P_{2}(115)| < \frac{1}{6}|(115 - 100)(115 - 121)(115 - 144)| < 10^{-5} < 0.0017$$

$$|R_2(115)| \le \frac{1}{16} |(115-100)(115-121)(115-144)| \times 10^{-5} < 0.0017$$

例2.10 设 $f(x)=x^4$,用余项定理写出节点-1,0,1,2的三次插值多项式

解: 根据余项定理

$$f(x) - p(x) = \frac{f^{(4)}(\xi)}{4!} (x - x_0)(x - x_1)(x - x_2)(x - x_3)$$

$$x^4 - p(x) = x(x+1)(x-1)(x-2)$$

$$p(x) = 2x^3 + x^2 - 2x$$

§ 2.3 均差与牛顿插值多项式

略

§ 2.4 埃尔米特插值

许多实际问题不但要求插值函数p(x)在插值节点处与被插函数f(x)有相同的函 数值 $p(x_i)=f(x_i)$ (i=0,1,2,...,n),而且要求在 有些节点或全部节点上与f(x)的导数值也 相等, 甚至要求高阶导数值也相等, 能满 足这种要求的插值问题就称为埃尔米特插 值(Hermite)

埃尔米特插值

定义 已知 n+1个互异点上 $a=x_0 < x_1 < \cdots < x_n = b$ 的函数值 $f(x_i)$ 和导数值 $f'(x_i)$,若存在 一个次数不超过2n+1的多项式 H(x) ,满足

$$H(x_i) = f(x_i), \qquad H'(x_i) = f'(x_i) \qquad (i = 0, 1, \dots, n)$$

则称H(x)为f(x)的2n+1次埃尔米特(Hermite)插值

X	x_0	x_{I}	x_2	• • •	X_n	
y=f(x)	\mathcal{Y}_0	${\cal Y}_I$	\mathcal{Y}_2	•••	\mathcal{Y}_n	
y' = f'(x)	y_0'		\mathcal{Y}_2'		y'_n	41

41

埃尔米特插值

上式给出了2n+2个条件,可惟一确定一个次数不超过 2n+1的多项式 $H_{2n+1}(x)$,采用类似于求Lagrange插值多项式的基函数方法求埃尔米特(Hermite)插值多项式 $H_{2n+1}(x)$ 。

$$H_{2n+1}(x) = \sum_{k=0}^{n} \alpha_k(x) y_k + \sum_{k=0}^{n} \beta_k(x) y_k'$$

 $\alpha_k(x)$ 和 $\beta_k(x)$ 称为插值基函数。

例2.11 已知函数 y=f(x) 的数据如下表所示, 求次数不超过三次的Hermite的插值多项式 $H_3(x)$ 使

$$H_3(x_i) = y_i$$
 (i=0,1,2)

$$\mathbf{H'}_{3}(\mathbf{x}_{i}) = \mathbf{y'}_{i}$$

$\boldsymbol{\mathcal{X}}$	-1 0 1
y = (x)	- 1 0 1
$\overline{y'} = f'(x)$	0

解 所求三次Hermite的插值多项式为

$$H_{3}(x) = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3}$$

由插值条件得到以下方程组

$$H_{3}(-1) = a_{0} - a_{1} + a_{2} - a_{3} = -1$$
 $H_{3}(0) = a_{0} = 0$
 $H_{3}(1) = a_{0} + a_{1} + a_{2} + a_{3} = 1$
 $H_{3}'(0) = a_{1} = 0$

解上述方程组

$$a_0 = 0, a_1 = 0, a_2 = 0, a_3 = 1$$

故得 $H_3(x) = x^3$

例2.12 已知y=f(x)的数据如下

\boldsymbol{x}_i	0	1	2
${\mathcal Y}_i$	0	2	6
		1	

求f(x)的三次埃尔米特插值多项式 $H_3(x)$ 。

解:第1步,先由关于函数值的插值条件f(0)=1,f(1)=2,f(2)=6,求出二次拉格朗日插值多项式

$$P_{2}(x) = l_{0}(x)y_{0} + l_{1}(x)y_{1} + l_{2}(x)y_{2}$$

$$= 1\frac{(x-1)(x-2)}{(0-1)(0-2)} + 2\frac{x(x-2)}{(1-0)(1-2)} + 6\frac{x(x-1)}{(2-0)(2-1)}$$

$$= x^{2} + x$$

第2步. 令
$$H_3(x) = P_2(x) + \lambda(x-0)(x-1)(x-2)$$

 (λ) 为 待定常数),则 $H_3(x)$ 显然满足关于函数值的三个插值条件.下面 根据关于导数的插值条件

$$H'_3(1) = f'(1)$$
 定出 λ . 由于
$$H_3(x) = x^2 + x + \lambda(x^3 - 3x^2 + 2x)$$

$$H'_3(x) = 2x + 1 + \lambda(3x^2 - 6x + 2)$$
由 $H'_3(1) = 1$ 得 $\lambda = 2$. 所以
$$H_3(x) = x^2 + x + 2(x^3 - 3x^2 + 2x)$$

$$= 2x^3 - 5x^2 + 5x$$

§ 2.5 分段低次插值

§ 2.6 三次样条插值

略

本章小结

插值法中的拉格朗日插值多项式是研究数值微积分与微分方程数值解的重要工具。埃尔米特插值多项式属于重节点的插值公式,当n+1节点上的函数值和导数值给定时,可构造2n+1次带导数的插值多项式。分段低次多项式插值由于具有良好的稳定性与收敛性,且算法简单,便于应用。

开始 拉格朗日编程框图 输入 (x_i,y_i) 及xi = 0, 1, 2, ..., nP=0,k=0T=1 $T=T(x-x_i)/(x_k-x_i)$ i=0,1,2,...,k-1, k+1,...,n $P=P+y_kT$ k=k+1k=n结束 输出P 51

本章习题

