Omega - Zwack-Okossi program README

This is a manual for downloading, compiling and running the OZO-program in your own computer.

1. Technical requirements:

- 1. Standard NETCDF-library
- 2. Intel Math Kernel Library. The program uses Intel's MKL library for solving poisson's equation. It can be downloaded for free, but registration is required. See more: https://software.intel.com/en-us/articles/free_mkl
- 3. GNU's gfortran compiler

2. Downloading the source code

- 1. Launch a terminal window
- 2. Go to the local directory where you want to put the program
- 3. Write to the command line:

```
git clone git@bitbucket.org:mikarant/ozo.git
```

If the clone was successful, you should now have ozo-directory appeared on your local drive.

3. Compiling the program

Downloaded directory contains a makefile for compiling and running the program. At first, you should change paths for netcdf- and mkl-libraries.

- 1. Go to ozo-directory
- 2. Open makefile, for example with emacs:

```
emacs makefile
```

3. Change following paths according to where netcdf and mkl libraries are located locally in your computer:

```
NETCDF_INCLUDES = -I/usr/include
NETCDF_LIBS = -L/usr/lib -lnetcdff
MKLROOT = /home/mikarant/intel/compilers_and_libraries_2016.2.181/linux/mkl
```

4. Save your changes and close the makefile

If your changed paths are correct, you should be now able to compile the program. Compiling can be done by just writing command

make

in the ozo-directory. If the compiling was successful, you should have executable called ozo appeared in your directory.

4. Running the test case

Once you have compiled the program, you can test whether it is working by running the test case. You can do it by writing command

make test

in the ozo-directory. Test-directory contains the data needed by the test case. Datafile is in ncdf-format and contains WRF-output variables and calculated vertical motion fields from two timesteps.