1 Introduction

2 Model Formulation

Table 1: Notations Sets and indices Ι set of evacuation sources, $i \in I$ Jset of potential shelters, $i \in J$ Kset of potential relief distribution centres, $k \in K$ A_1 set of arcs between evacuation sources and potential shelter nodes, $\{(i,j)|i\in I,j\in J\}$ set of arcs between potential relief distribution centres and potential shelter nodes, A_2 $\{(k,j)|k\in K, j\in J\}$ Lset of levels of road capacity increase, $l \in L$ **Parameters** population at landfall node $i \in H$ p_i capacity of potential shelter $j \in J$ q_j Q_k capacity of potential relief distribution centre $k \in K$ quantity of relief material consumed per person ϕ transportation cost per unit transportation time μ coefficient in the BPR function α Β coefficient in the BPR function Tplanning horizon for emergency supply transportation П penalty for failing to evacuate a person U_{ij}, U_{kj} practical flow rate capacity of arcs $(i, j) \in A_1$ and $(k, j) \in A_2$, respectively B_{ij}, B_{kj} background traffic flow rate of arcs $(i, j) \in A_1$ and $(k, j) \in A_2$, respectively t_{ij},t_{kj} free-flow transportation time through arcs $(i,j) \in A_1$ and $(k,j) \in A_2$, respectively Δu_{ijl} increase in capacity of arc $(i,j) \in A_1 \cup A_2$ by choosing capacity level $l \in L$ f_j fixed cost of opening a shelter at location $j \in J$ F_k fixed cost of opening a relief distribution centre at location $k \in K$ fixed cost of expanding capacity of arc $(i, j) \in A_1 \cup A_2$ to level $l \in L$ g_{ijl} **Decision Variables** evacuee flow from source $i \in I$ to shelter $j \in J$ x_{ij} unmet evacuee demand at $i \in I$ s_i relief material flow from relief distribution centre $k \in K$ to shelter $j \in J$ \widehat{x}_{kj} = 1 if shelter is opened at node $j \in J$; otherwise 0 y_j = 1 if warehouse is opened at node $k \in K$; otherwise 0 z_k = 1 if capacity level $l \in L$ is chosen for arc $(i, j) \in A_1 \cup A_2$; otherwise 0 w_{iil}

2.1 Objective

$$\operatorname{Min} \sum_{j \in J} f_j y_j + \sum_{k \in K} F_k z_k + \sum_{l \in L} \sum_{(i,j) \in A_1} g_{ijl} w_{ijl} + \mu \sum_{(i,j) \in A_1} t_{ij} \left(1 + \alpha \left(\frac{x_{ij} + B_{ij}}{U_{ij} + \sum_{l \in L} \Delta u_{ijl} w_{ijl}} \right)^{\beta} \right) x_{ij} T + \mu \sum_{(k,j) \in A_2} t_{kj} \left(1 + \alpha \left(\frac{\widehat{x}_{kj} + B_{ij}}{U_{kj}} \right)^{\beta} \right) \widehat{x}_{kj} T + \prod \sum_{i \in I} s_i$$
(1)

2.2 Transfer of evacuees to shelter

$$\sum_{j \in J} x_{ij} + s_i = p_i \qquad \forall i \in I \tag{2}$$

2.3 Shelter capacity constraints

$$\sum_{j \in I} x_{ij} \le q_j y_j \qquad \forall j \in J \tag{3}$$

2.4 DC capacity constraints

$$\sum_{i \in I} \widehat{x}_{kj} \le Q_k z_k \qquad \forall k \in K \tag{4}$$

2.5 Transfer of relief material to shelter

$$\sum_{k \in K} \widehat{x}_{kj} \ge \phi \sum_{i \in I} x_{ij} \qquad \forall j \in J$$
 (5)

2.6 Evacuation source to shelter link capacity constraints

$$x_{ij} \le U_{ij} + \sum_{l \in L} \Delta u_{ijl} w_{ijl} \qquad \forall (i, j) \in A_1 \qquad (6)$$

$$w_{ijl} \le y_j \qquad \qquad \forall (i,j) \in A_1, j \in J, l \in L \tag{7}$$

$$\sum_{l \in I} w_{ijl} \le 1 \qquad \qquad \forall (i, j) \in A_1 \qquad (8)$$