Numération

I- Introduction:

La numération permet de convertir un nombre d'une base vers une autre.

L'homme utilise en général un système numérique qui va de 0 à 9 (sur 10 chiffres, puisqu'il a 10 doigts). Le système décimal est aussi appellé base 10 (système à 10 chiffres).

L'ordinateur et les appareils électroniques d'une manière générale, ne savent dialoguer qu'avec le système **binaire** basé sur deux chiffres, 0 ou 1 (le courant ne passe pas ou il passe). Ce système est aussi appellé **base 2**.

Pour traduire de grands nombres binaires, on peut utiliser un système plus grand, comme le système **hexadécimal** (base 16) qui utilise 16 chiffres :

de 0 à 9, puis A, B, C, D, E, F.

Bits:

Le système binaire n'a que deux chiffres possibles : 0 ou 1.

Une unité pouvant prendre la valeur 0 ou 1 est appellée un bit (binary digit). C'est la plus petite unité d'information manipulable.

Sur 1 bit, on peut avoir 2 (21) valeurs possibles: 0 ou 1

Sur 2 bits, on peut avoir 4 (2²) valeurs possibles : 00 ou 01 ou 10 ou 11

Sur 3 bits, on peut avoir 8 (2³) valeurs possibles: 000 ou 001 ou 010 ou 011

ou 100 ou 101 ou 110 ou 111

Sur 4 bits, on peut avoir 16 (2⁴) valeurs possibles : ...

Octets:

Un octet représente un ensemble de 8 bits :

2 ⁷ = 128	2 ⁶ = 64	$2^5 = 32$	2 ⁴ = 16	$2^3 = 8$	2 ² = 4	2 ¹ = 2	2 ⁰ = 1
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1

C'est l'unité de base en informatique. Il permet de stocker une valeur (un caractère, un chiffre, ...)

En binaire cela peut valoir : de 00000000 à 11111111

En décimal : de 0 à 255

En hexadécimal : de 00 à FF

II- Conversions:

Tableau des 16 premiers chiffres en différentes bases :

Base Binaire	Base décimale	Base Hexadécimale
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	A
1011	11	В
1100	12	С
1101	13	D
1110	14	E
1111	15	F

Note: les indices 10, 16 et 2 indiquent la base dans laquelle on se trouve.

Binaire > Décimal

Pour traduire 110101101₂ en décimal :

Méthode: multiplication de chaque bit à 1 par la puissance de 2 lui correspondant:

28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
*	*	*	*	*	*	*	*	*
1	1	0	1	0	1	1	0	1
=	=	=	=	=	=	=	=	=
25/ .	420 .	Ο.	າາ .	ο.	ο.	4.	ο.	4

$$256 + 128 + 0 + 32 + 0 + 8 + 4 + 0 + 1 = 429_{10}$$

Décimal > Binaire :

Méthode des conversions gràce aux puissances de 2 :

C'est l'inverse de la méthode ci-dessus. Cela consiste à décomposer le nombre décimal en puissances de 2 :

On décompose 52 :

52 = 32 + 16 + 4

2 ⁵ = 32	2 ⁴ = 16	$2^3 = 8$	2 ² = 4	2 ¹ = 2	2 ⁰ = 1
1	1	0	1	0	0

$$52_{10} = 110100_2$$

Méthode des divisions par 2 :

Si je veux convertir le chiffre 52 en binaire, je peux utiliser la méthode des divisions succéssives par 2 :

Quand j'obtiens un chiffre < à 2 je lis les 0 et 1 que j'ai obtenu de la droite vers la gauche :

Résultat : $52_{10} = 110100_{2}$

Binaire > Hexadécimal

Puisque l'hexadécimal est la base 16 (= puissance de 2), c'est très simple de convertir un nombre binaire en hexadécimal :

Méthode : Découper le nombre par groupe de 4 chiffres en partant de la droite et on utilise le tableau pour les convertir :

 $11011101011_2 = ?$

110	1110	1011
6	Е	В

Résultat : $11011101011_2 = 6EB_{16}$

Hexadécimal > Binaire

Dans l'autre sens c'est la même chose.

Méthode: On sépare chaque chiffre du nombre hexadécimal et on le traduit en binaire:

$$A2C_{16} = ?_2$$

Α	2	С
1010	0010	1100

Résultat: 101000101100₂

Décimal > Hexadécimal

On utilise la méthode de divisions succéssives par 16 :

Une fois arrivé à un chiffre inférieur à 16, on lit de droite à gauche.

Résultat : $941_{10} = 3AD_{16}$

Hexadécimal > Décimal

Méthode: Multiplication du nombre hexadécimal par les puissances de 16

 $B0F_{16} = ?_{10}$

16² 16¹ 16⁰

* * *

B 0 F

= = =

 $256*11 + 0 + 15 = 2831_{10}$

III- Exercices:

Convertir le nombre décimal en binaire et en hexadécimal :

189₁₀

171₁₀

1030₁₀

256₁₀

1610

102310

Convertir le nombre binaire en décimal et en hexadécimal :

111010110102

= ? 16

101010101111012

? 16

1101010112

? 16

100000012

1010101111002

? 16

1011111012

Convertir le nombre hexadécimal en décimal et en binaire :

F2C₁₆

= ? 2

1111₁₆

= ? 2

3E8₁₆

? 2

2AC₁₆

? 2

= ? 10

22216