過渡解析

最終コンパイル 平成 30 年 11 月 21 日

Takumi Ueda

目 次

第1章	過渡現象	4
1.1	過渡現象	4
第2章	過渡現象	5
2.1	ラプラス変換	5
	2.1.1 ラプラス変換の定義	5
	2.1.2 逆ラプラス変換	5
	2.1.3 ラプラス変換表	5

第1章 過渡現象

1.1 過渡現象

$$v_L = L \frac{di}{dt} [V] \tag{1.1}$$

$$v_C = \frac{1}{C} \int idt[V] \tag{1.2}$$

時定数

RL 直列回路の過渡現象

$$i = \frac{E}{R}(1 - e^{-\frac{R}{L}t})[A]$$
 (1.3)

RC 直列回路の過渡現象

$$i = \frac{E}{R}e^{-\frac{1}{CR}t}[A] \tag{1.4}$$

第2章 過渡現象

2.1 ラプラス変換

2.1.1 ラプラス変換の定義

定義 2.1.1 (ラプラス変換).

$$F(s) = \int_0^\infty f(t)e^{-st}dt \tag{2.1}$$

正確には

$$F(s) = \lim_{\alpha \to \infty} \int_0^{\alpha} f(t)e^{-st}dt$$
 (2.2)

で定義される。

2.1.2 逆ラプラス変換

定義 2.1.2 (ブロムウィッチ積分).

$$F(s) = \lim_{p \to \infty} \frac{1}{2\pi j} \int_{c-jp}^{c+jp} F(s)e^{st}dt$$
 (2.3)

2.1.3 ラプラス変換表

証明

$$F(s) = \lim_{p \to \infty} \int_0^p u(t)e^{st}dt$$

$$= \lim_{p \to \infty} \int_0^p e^{-st}dt$$

$$= \left[\frac{e^{-st}}{-s}\right]_0^{\infty}$$

$$= \frac{1}{s} - \lim_{t \to \infty} \frac{e^{-st}}{s}$$

$$= \frac{1}{s}$$

$$= \frac{1}{s}$$
(2.4)

2.1. ラプラス変換 第 2. 過渡現象

表 2.1: ラプラス変換表

		7 177 17
No	f(t)	F(s)
1	1	$\frac{1}{s}$
2	t	$\frac{1}{s^2}$
3	t^n	$\frac{n!}{s^{n+1}}$
4	e^{at}	$\frac{1}{s-a}$
5	$\sin at$	$\frac{a}{s^2 + a^2}$
6	$\cos at$	$\frac{s}{s^2 + a^2}$
7	$e^{bt}\sin at$	$\frac{a}{(s-b)^2 + a^2}$
8	$e^{bt}\cos at$	$\frac{s-b}{(s-b)^2 + a^2}$

索引

2.1.1 ラプラス変換																5
2.1.2 ブロムウィッチ	積分															5

2.1. ラプラス変換 第 2. 過渡現象

定理一覧

関連図書

[1] 高橋大輔. 数値計算. 岩波書店, 1996.