Chapter 8 – Revision of chapters 2–7

Solutions to 8A Short-answer questions

1 a Vertices
$$A(-2, 1), B(3, -4), C(5, 7)$$

Coordinates of $M = \left(\frac{-2+3}{2}, \frac{1+(-4)}{2}\right)$
 $= \left(\frac{1}{2}, -\frac{3}{2}\right)$
Coordinates of $N = \left(\frac{-2+5}{2}, \frac{1+7}{2}\right)$
 $= \left(\frac{3}{2}, 4\right)$

Vertices
$$A(-2, 1)$$
, $B(3, -4)$, $C(5, 7)$
Coordinates of $M = \left(\frac{-2+3}{2}, \frac{1+(-4)}{2}\right)$
 $= \left(\frac{1}{2}, -\frac{3}{2}\right)$
 $= \left(\frac{1}{2}, -\frac{3}{2}\right)$
Coordinates of $N = \left(\frac{-2+5}{2}, \frac{1+7}{2}\right)$
 $= \left(\frac{3}{2}, 4\right)$
 $= \left(\frac{3}{2}, 4\right)$
c $Q(x) = P(x+1)$
 $= 8 \times (x+1)^3 + 4(x+1) - 3$
 $= 69$
 $Q(-2) = 8 \times (-2+1)^3 + 4(-2+1) - 3$
 $= -8 - 4 - 3$
 $= -15$

b Gradient of MN =
$$\frac{4 - \left(-\frac{3}{2}\right)}{\frac{3}{2} - \frac{1}{2}}$$

$$= \frac{11}{2}$$
Gradient of BC =
$$\frac{7 - (-4)}{5 - 3}$$

$$= \frac{11}{2}$$
∴ BC || MN

a
$$g(2a) = 3(2a)^2 - 4 = 12a^2 - 4$$

b $g(a-1) = 3(a-1)^2 - 4$
 $= 3(a^2 - 2a + 1) - 4$
 $= 3a^2 - 6a - 1$

 $3 g(x) = 3x^2 - 4$

$$2 P(x) = 8x^3 + 4x - 3$$

$$\mathbf{c} \quad g(a+1) - g(a-1)$$

$$= 3(a+1)^2 - 4 - (3(a-1)^2 - 4)$$

$$= 3((a^2 + 2a + 1) - (a^2 - 2a + 1))$$

$$= 12a$$

a
$$P\left(-\frac{1}{2}\right) = 8 \times \left(-\frac{1}{2}\right)^3 + 4\left(-\frac{1}{2}\right) - 3$$

= $-1 - 2 - 3$
= -6

4
$$f(x) = 4 - 5x$$
 and $g(x) = 7 + 2x$

b
$$P(2) = 8 \times (2)^3 + 4(2) - 3$$

= $64 + 8 - 3$
= 69

a
$$f(2) + f(3) = -6 + (-11) = -17$$

 $f(2+3) = f(5) = -21$
 $\therefore f(2) + f(3) \neq f(2+3)$

$$f(x) = g(x)$$

$$4 - 5x = 7 + 2x$$

$$-3 = 7x$$

$$x = -\frac{3}{7}$$

$$f(x) \ge g(x)$$

$$4 - 5x \ge 7 + 2x$$

$$-3 \ge 7x$$

$$x \le -\frac{3}{7}$$

d
$$f(2k) = g(3k)$$

 $4 - 5(2k) = 7 + 2(3k)$
 $4 - 10k = 7 + 6k$
 $-3 = 16k$
 $k = -\frac{3}{16}$

5
$$x + y = 5...(1)$$

 $(x + 1)^2 + (y + 1)^2 = 25...(2)$

From equation (1) y = 5 - xSubstitute in equation (2)

$$(x+1)^2 + (6-x)^2 = 25$$
$$x^2 + 2x + 1 + 36 - 12x + x^2 = 25$$

$$2x^2 - 10x + 37 = 25$$

$$2x^2 - 10x + 12 = 0$$

$$x^2 - 5x + 6 = 0$$

$$(x-3)(x-2) = 0$$

$$x = 3 \text{ or } x = 2$$

From equation (1)

When x = 3, y = 2 and when

$$x = 2, y = 3$$

6
$$A(0,-5), B(-1,2), C(4,7), D(5,0)$$

 $AB = \sqrt{(7-2))^2 + (4-(-1))^2}$
 $= \sqrt{25+25}$
 $= 5\sqrt{2}$

$$BC = \sqrt{(2 - (-5))^2 + (-1 - 0)^2}$$

$$= \sqrt{49 + 1}$$

$$= 5\sqrt{2}$$

$$CD = \sqrt{(0 - 7)^2 + (5 - 4)^2}$$

$$= \sqrt{49 + 1}$$

$$= 5\sqrt{2}$$

$$DA = \sqrt{(5 - 0))^2 + (0 - (-5))^2}$$

$$= \sqrt{25 + 25}$$

$$= 5\sqrt{2}$$

This is sufficient to prove *ABCD* is a rhombus.

7 **a**
$$y = x^2 + 4x - 9$$

= $x^2 + 4x + 4 - 4 - 9$
= $(x + 2)^2 - 13$

b
$$y = x^2 - 3x - 11$$

= $x^2 - 3x + \frac{9}{4} - \frac{9}{4} - 11$
= $\left(x - \frac{3}{2}\right)^2 - \frac{53}{4}$

$$\mathbf{c} \quad y = 2x^2 - 3x + 11$$

$$= 2\left[x^2 - \frac{3}{2}x + \frac{11}{2}\right]$$

$$= 2\left[x^2 - \frac{3}{2}x + \frac{9}{16} - \frac{9}{16} + \frac{11}{2}\right]$$

$$= 2\left[\left(x - \frac{3}{4}\right)^2 + \frac{79}{16}\right]$$

$$= 2\left(x - \frac{3}{4}\right)^2 + \frac{79}{8}$$

8 a
$$y = 4x + 1...(1)$$

 $y = x^2 + 3x - 9...(2)$

$$4x + 1 = x^2 + 3x - 9$$

$$\therefore 0 = x^2 - x - 10$$

$$\therefore x^2 - x - 10 = 0$$

$$\therefore x^2 - x + \frac{1}{4} - \frac{1}{4} - 10 = 0$$

$$\therefore (x - \frac{1}{2})^2 = \frac{41}{4}$$

$$x = \frac{1}{2} \pm \frac{\sqrt{41}}{2}$$

$$x = \frac{1 \pm \sqrt{41}}{2}$$
From equation (1)

When
$$x = \frac{1 + \sqrt{41}}{2}$$

$$y = 2 + 2\sqrt{41 + 1} = 3 + 2\sqrt{41}$$

When
$$x = \frac{1 - \sqrt{41}}{2}$$

$$y = 2 - 2\sqrt{41} + 1 = 3 - 2\sqrt{41}$$

b
$$y = 2x + 2 \dots (1)$$

$$y = x^2 - 2x + 6\dots(2)$$

Substitute in equation (2) from equation 1

$$2x + 2 = x^2 - 2x + 6$$
 From

$$\therefore 0 = x^2 - 4x + 4$$

$$x^2 - 4x + 4 = 0$$

$$\therefore (x-2)^2 = 0$$

$$x = 2$$

equation (1)

When x = 2, y = 6

$$\mathbf{c} \quad y = -3x + 2 \dots (1)$$

$$y = x^2 + 5x + 18\dots(2)$$

$$-3x + 2 = x^2 + 5x + 18$$
 From

$$0 = x^2 + 8x + 16$$

$$x^2 + 8x + 16 = 0$$

$$\therefore (x+4)^2 = 0$$

$$\therefore x = -4$$

equation (1)

When x = -4, y = 14

9 **a**
$$x^2 + 3x - 5 > 0$$

Consider

$$x^2 + 3x - 5 = 0$$

$$x^2 + 3x + \frac{9}{4} - \frac{9}{4} - 5 = 0$$

$$\left(x + \frac{3}{2}\right)^2 = \frac{29}{4}$$

$$x + \frac{3}{2} = \pm \frac{\sqrt{29}}{2}$$

$$x = \frac{-3 \pm \sqrt{29}}{2}$$

The coefficient of x^2 is positive.

Therefore $x^2 + 3x - 5 > 0$ if and only

$$x \in \left(-\infty, \frac{-3 - \sqrt{29}}{2}\right) \cup \left(-3 + \sqrt{29}\right)$$

$$\left(\frac{-3+\sqrt{29}}{2},\infty\right)$$

b
$$2x^2 - 5x - 5 \ge 0$$

Consider

$$2\left(x^{2} - \frac{5}{2}x - \frac{5}{2}\right) = 0$$

$$x^{2} - \frac{5}{2}x - \frac{5}{2} = 0$$

$$x^{2} - \frac{5}{2}x + \frac{25}{16} - \frac{25}{16} - \frac{5}{2} = 0$$

$$\left(x - \frac{5}{4}\right)^{2} = \frac{65}{16}$$

$$x - \frac{5}{4} = \pm \frac{\sqrt{65}}{4}$$

$$x = \frac{5 \pm \sqrt{65}}{4}$$

The coefficient of x^2 is positive. Therefore $2x^2 - 5x - 5 \ge 0$ if and

only if

$$x \in \left(-\infty, \frac{5 - \sqrt{65}}{4}\right] \cup \left[\frac{5 + \sqrt{65}}{4}, \infty\right)$$

10 a
$$\mathbb{R} \setminus \{\frac{5}{2}\}$$

b
$$(-\infty, 5]$$

 $\mathbf{c} \; \mathbb{R}$

11 Let
$$P(x) = 3x^3 + x^2 + px + 24$$

 $P(-4) = 0$ by the factor theorem.
Hence

$$3(-4)^{3} + (-4)^{2} + (-4)p + 24 = 0$$
$$-192 + 16 - 4p + 24 = 0$$
$$-4p = 152$$
$$\therefore p = -38$$

$$P(x) = 3x^3 + x^2 - 38x + 24$$
$$3x^3 + x^2 - 38x + 24 = (x+4)(3x^2 + bx + 6)$$

since x + 4 is a factor.

By equating coefficients of x^2

$$1 = 12 + b, :. b = -11$$

$$P(x) = (x + 4)(3x^{2} - 11x + 6)$$

$$= (x + 4)(3x - 2)(x - 3)$$

$$5x^{3} - 3x^{2} + ax + 7 = (x + 2)Q_{1}(x) + R ...(1)$$

$$4x^{3} + ax^{2} + 7x - 4 = (x + 2)Q_{2}(x) + 2R ...(2)$$
Multiply (1) by 2 and subtract (1) from the result.
$$6x^{3} - (6 + a)x^{2} + (2a - 7)x + 18 = (x + 2)(2Q_{1} - Q_{2})$$
When $x = -2$

$$6(-2)^{3} - (6 + a)(-2)^{2} + (2a - 7)(-2) + 18 = 0$$
∴ −48 − 24 − 4a − 4a + 14 + 18 = 0

$$\therefore a = -5$$
Substitute in (1)
$$5x^3 - 3x^2 - 5x + 7 = (x+2)Q_1(x) + R$$
Substitute $x = -2$

$$R = 5(-2)^3 - 3(-2)^2 - 5(-2) + 7 = -35$$

 $\therefore -8a = 40$

13 **a**
$$f: [1,2] \to \mathbb{R}, f(x) = x^2$$

Domain of $f = [1,2]$
Range of $f = [1,4]$
Let $y = x^2$
Interchange x and y .
 $x = y^2$
Choose $y = \sqrt{x}$, (range of f)
 $\therefore f^{-1}: [1,4] \to \mathbb{R}, f^{-1}(x) = \sqrt{x}$

b
$$h: [-1,2] \to \mathbb{R}, h(x) = 2 - x$$

Domain of $h = [-1,2]$
Range of $h = [0,3]$
Let $y = 2 - x$
Interchange x and y .
 $x = 2 - y$
 $y = 2 - x$
 $h^{-1}: [0,3] \to \mathbb{R}, h^{-1}(x) = 2 - x$

c
$$g: \mathbb{R}^{-1} \to \mathbb{R}, g(x) = x^2 - 4$$

Domain of $g = (-\infty, 0)$
Range of $g = (-4, \infty)$
Let $y = x^2 - 4$

Therefriange x and y:

$$x = y^2 - 4$$

$$y = -\sqrt{x+4} \text{ (range of g)}$$

$$\therefore g^{-1} : [0,3] \to \mathbb{R}, g^{-1}(x) = -\sqrt{x+4}$$

d
$$f: (-\infty, 2] \to \mathbb{R}, f(x) = \sqrt{2-x} + 3$$

Domain of $f = (-\infty, 2]$

Range of
$$f = [3, \infty)$$

$$Let y = \sqrt{2 - x} + 3$$

Interchange *x* and *y*.

$$x = \sqrt{2 - y} + 3$$

$$y = -(x - 3)^2 + 2$$

$$\therefore f^{-1}: [3,\infty) \to \mathbb{R},$$

$$f^{-1}(x) = -(x-3)^2 + 2$$

e
$$f: \to \mathbb{R}, f(x) = (x-2)^3 + 8$$

Domain of
$$f = \mathbb{R}$$

Range of
$$f = \mathbb{R}$$

Let
$$y = (x - 2)^3 + 8$$

Interchange x and y.

$$x = (y - 2)^3 + 8$$

$$y = (x - 8)^{\frac{1}{3}} + 2$$

$$\therefore f^{-1}: \mathbb{R} \to \mathbb{R},$$

$$f^{-1}(x) = (x - 8)^{\frac{1}{3}} + 2$$

14 Let *b* be the cost of a Bob's burger. Let f be the cost of a regular fries.

$$a : 3b + 2f = 18.20$$

b If
$$b = 4.2$$

$$3 \times 4.20 + 2f = 18.20$$

$$\therefore 2f = 18.20 - 12.60$$

∴
$$f = 2.80$$

The cost of regular fries is \$2.80

a If the lines are parallel,
$$-\frac{4}{k} = -4$$

Hence $k = 1$

$$-\frac{4}{k} \times -4 = -1$$
$$k = -16$$

16 Line ℓ_1 has x-axis intercept (5,0) and y-axis intercept (0, -2).

a Gradient of
$$\ell_1 = \frac{-2 - 0}{0 - 5} = \frac{2}{5}$$

b Line ℓ_2 is perpendicular to line line ℓ_1

Hence gradient of
$$\ell_2$$
 is $-\frac{5}{2}$

The line ℓ_2 has equation of the form

$$y = -\frac{5}{2}x + c$$

When
$$x = 1, y = 6$$
 :.., $6 = -\frac{5}{2} + c$ and

$$c = \frac{17}{2}$$
 and $y = -\frac{5}{2}x + \frac{17}{2}$

Rearranging as required

$$5x + 2y - 17 = 0$$

17 $\ell \propto \sqrt{n}$

$$\ell = k \sqrt{n}$$

$$k = 2$$

$$\ell = 2\sqrt{4} = 2$$

$$14 = 2\sqrt{n}$$

$$n = 49$$

of the line 4x + ky = 7 is $-\frac{4}{k}$ The gradient of the line y = 3 - 4x is -4

15 4x + ky = 7 and y = 3 - 4x The gradient

18 **a**
$$ax^2 + 2x + a$$

$$= a(x^2 + \frac{2}{a}x + 1)$$

$$= a\left(x^2 + \frac{2}{a}x + \frac{1}{a^2} - \frac{1}{a^2} + 1\right)$$

$$= a\left(\left(x + \frac{1}{a}\right)^2 + \frac{a^2 - 1}{a^2}\right)$$

$$= a\left(x + \frac{1}{a}\right)^2 + \frac{a^2 - 1}{a}$$

$$\mathbf{b} \left(-\frac{1}{a}, \frac{a^2 - 1}{a} \right)$$

- c Perfect square when $\Delta = 4 4a^2 = 0$. That is when $a = \pm 1$
- **d** There are two solutions when $\Delta = 4 4a^2 > 0$. That is when -1 < a < 1

19 **a**
$$y = 1 + \frac{1}{2+x}$$

When $x = 0, y = \frac{3}{2}$ When $y = 0, 1 + \frac{1}{2+x} = 0$
That is, $\frac{1}{2+x} = -1$ which implies $x = -3$

The horizontal asymptote has equation y = 1

The vertical asymptote has equation x = -2

b
$$A\left(0,\frac{3}{2}\right), B(-3,0)$$

c
$$y = \frac{1}{2}x + \frac{3}{2}$$

d The midpoint

$$\left(\frac{0+(-3)}{2}, \frac{\frac{3}{2}+0}{2}\right) = \left(-\frac{3}{2}, \frac{3}{4}\right)$$

e Gradient of line $AB = \frac{\frac{3}{2} - 0}{0 - (-3)} = \frac{1}{2}$ Gradient of a line perpendicular to AB is -2.

Therefore using the general form

$$y - y_1 = m(x - x_1)$$
 we have
 $y - \frac{3}{4} = -2\left(x + \frac{3}{2}\right)$

That is,

$$y = -2x - \frac{9}{4}$$

20 $\sqrt{2}$ cm

21 192 g

1 B
$$y = x^2 - ax$$

= $x^2 - ax + \left(\frac{a}{2}\right)^2 - \left(\frac{a}{2}\right)^2$
= $\left(x - \frac{a}{2}\right)^2 - \frac{a^2}{4}$

2 D
$$\Delta = 4a^2 - 4b = 0$$

$$a^2 = b$$

$$a = \sqrt{b} \text{ or } a = -\sqrt{b}$$
But a and b are positive constants.
Therefore $a = \sqrt{b}$

3 C Gradients are the same when
$$\frac{2-m}{3} = \frac{-2}{m+2}$$

$$\frac{m-2}{3} = \frac{2}{m+2}$$

$$m^2 - 4 = 6$$

$$m = \pm \sqrt{10}$$

4 A
$$m = kn$$

 $9 = 4k$
 $k = \frac{9}{4}$

5 D
$$x = ky$$

 $8 = 2k$
 $k = 4$
 $x = 4 \times 7 = 28$

6 A
$$3x - 2y = -6$$

7 D Only
$$(1, 2)$$
 is on the line $y = 3x - 1$

8 D
$$x^3 - 8 = x^3 - 2^3$$

= $(x - 2)(x^2 + 2x + 4)$

9 C
$$2x^2 - 5x - 12 = (2x + a)(x - b)$$

 $a - 2b = -5$; $ab = 12$
 $a = 3, b = 4: f(x) = (2x + 3)(x - 4)$

10 C
$$P(x) = 4x^3 - 5x + 5$$
 $P(-\frac{3}{2}) = -1$

11 C
$$x^2 + y^2 + 6x - 2y + 6 = 0$$

 $\therefore x^2 + 6x + 9 + y^2 - 2y + 1 = 10 - 6$
 $\therefore (x+3)^2 + (y-1)^2 = 2^2$
Radius = 2

12 A
$$2x + 4y - 6 = 0$$

 $\therefore 4y = -2x + 6$
 $\therefore y = -\frac{1}{2}x + \frac{3}{2}$
Gradient = $-\frac{1}{2}$

13 E 2x + 4y = 3
∴ 4y = -2x + 3
∴
$$y = -\frac{1}{2}x + \frac{3}{4}$$

Line has gradient $= -\frac{1}{2}$, so perpendicular has gradient m = 2. Using (1,2): y - 2 = 2(x - 1) $\therefore y = 2x$

14 B
$$P(x) = x^3 + ax^2 - x - 6$$

If $x - 3$ is a factor of $P(x)$ then $P(3) = 0$: $P(3) = 27 + 9a - 3 - 6 = 0$
 $\therefore 9a + 18 = 0, \therefore a = -2$

15 A
$$P(x) = x^3 + 8x^2 + 9x - 18$$

 $P(1) = 1 + 8 + 9 - 18 = 0$
 $\therefore P(x) = (x - 1)(x^2 + 9x + 18)$
 $= (x - 1)(x + 6)(x + 3)$

x-intercepts at (-2,0) and (2,0), so
$$y = a(x-2)(x+2)$$

∴ $y = a(x^2-4)$

Using y-intercept at
$$(0, 3)$$
, $a = -\frac{3}{4}$

$$\therefore \qquad y = -\frac{3}{4}(x-2)(x+2)$$

OR
$$4y = -3(x-2)(x+2)$$

17 B Perpendicular lines have gradients which multiply to −1

1

$$\therefore -3m = -1, \ \therefore m = \frac{1}{3}$$

18 D
$$f(x) = x^2 - 1$$

$$f(x - 1) = ((x - 1)^2 - 1)$$

$$= x^2 - 2x + 1 - 1$$

$$= x^2 - 2x$$

19 D
$$y = x^2 + kx + k + 8$$
 touches the

x-axis. Therefore it is a perfect square and $\Delta = 0$:

square and
$$\Delta = 0$$
.

$$\Delta = k^2 - 4(k+8)$$

$$= k^2 - 4k - 32$$

$$= (k-8)(k+4)$$

$$\Delta = 0$$
 when $k = -4$ or 8

20 E
$$P(x) = 3x^3 - 4x - k$$

If $P(x)$ is divisible by $x - k$, then
$$P(k) = 0: P(k) = 3k^3 - 4k - k = 0$$

$$= 3k^3 - 5k = 0$$

Remainder when P(x) is divided by x + k:

$$P(-k) = -3k^{3} + 4k - k$$

$$= -3k^{3} + 3k$$

$$3k^{3} - 5k = 0, \therefore -3k^{3} + 5k = 0$$

$$\therefore P(-k) = 0 - 2k$$

21 B TP of
$$y = a(x - b)^2 + c$$
 is at (b, c)

22 D
$$y = 3 + 4x - x^2$$

meets $y = k$ only once.
 $\therefore -x^2 + 4x + (3 - k) = 0$ has $\Delta = 0$:
 $\Delta = 16 + 4(3 - k) = 0$
 $\therefore 3 - k = -4, \therefore k = 7$

23 E Midpoint of (12,7) and (-3,5) is:
$$(\frac{12-3}{2}, \frac{7+5}{2}) = (\frac{9}{2}, 6)$$

24 D *X* is at
$$(a,b)$$
: $(7,-3) = (\frac{5+a}{2}, \frac{4+b}{2})$
 $5+a=14, \therefore a=9$
 $4+b=-6, \therefore b=-10$

25 B
$$y = x^2 + 1$$
 dom $[-2, 1] \rightarrow \text{range } [1, 5]$

26 D
$$x^3 + 2x - 8 = 0$$
 Use calculator:

Solution is between 1 and 2.

27 D
$$f(x) = x(x-2)$$

 $\therefore f(-3) = (-3)(-5) = 15$

28 A
$$x^2 + y^2 - 11x - 10y + 24 = 0$$

Circle cuts the y-axis at M and N so $x = 0$
 $y^2 - 10y + 24 = 0$

$$y^{2} - 10y + 25 = 1$$

$$y - 5 = \pm 1$$

$$y = 4; 6$$

Distance between *M* and *N* is 2

29 B Distance between
$$(-4, -3)$$
 and $(-5, -10)$

$$= \sqrt{(-4 - (-5))^2 + (-3 - (-10))^2}$$

$$= \sqrt{1 + 49} = 5\sqrt{2}$$

30 **D**
$$y = x^2 + 4x - 3$$
 cuts the line
 $y = 4 - 2x$ at
 $x^2 + 4x - 3 = 4 - 2x$
∴ $x^2 + 6x - 7 = 0$
∴ $(x + 7)(x - 1) = 0$

$$x = -7, y = 18$$
 and $x = 1, y = 2$
Distance between $(-7, 18)$ and $(1,2)$
= $\sqrt{(-7-1)^2 + (18-2)^2}$
= $\sqrt{8^2 + 16^2} = \sqrt{320}$

31 **D**
$$\{(x, y): y \le 2x + 3\}$$

A $(1,4): 4 < 5$ \checkmark
B $(-1,1): 1 = 1$ \checkmark
C $\left(\frac{1}{2}, 3\frac{1}{2}\right): 3\frac{1}{2} < 4$ \checkmark
D $\left(-\frac{1}{2}, 2\frac{1}{2}\right): 2\frac{1}{2} > 2$ **X**
E $(2,5): 5 < 7$ \checkmark

32 **B**
$$y = k + 2x - x^2$$

If the graph touches the *x*-axis then $\Delta = 0$:
 $\Delta = 4 + 4k = 0$, $\therefore k = -1$

33 C Perpendicular lines have gradients which multiply to -1:

$$kx + y - 4 = 0, \therefore y = 4 - kx$$
$$x - 2y + 3 = 0, \therefore y = \frac{x + 3}{2}$$
$$\therefore (-k)\left(\frac{1}{2}\right) = -1, \therefore k = 2$$

34 A
$$y = x^2 + k$$
 and $y = x$

$$\therefore x^2 + k = x$$
$$\therefore x^2 - x + k = 0$$

For 1 solution
$$\Delta = 0$$
:
 $\Delta = 1 - 4k = 0$, $\therefore k = \frac{1}{4}$

35 C Circle with centre at (-4, 2): $(x + 4)^2 + (y - 2)^2 = r^2$ Circle touches the y-axis so r = 4: \therefore $x^2 + 8x + 16 + y^2 - 4y + 4 = 16$ $x^2 + 8x + y^2 - 4y + 4 = 0$

36 **D**
$$x \propto \frac{1}{y}$$

$$y = 5y$$

$$x \propto \frac{1}{5y}$$

$$x = \frac{x}{5}$$

37 **A**
$$A = kb$$
 and $A = 14$ when $b = 2.4$

$$14 = 2.4k$$

$$k = \frac{14}{2.4}$$

$$= \frac{140}{24} = \frac{35}{6}$$

$$A = \frac{35b}{6}$$
When $A = 18$,
$$18 = \frac{35b}{6}$$

$$b = \frac{18 \times 6}{35}$$
$$\approx 3.086$$

38 A
$$2x - y + 3 = 0$$
 has gradient = 2.
If $ax + 3y - 1 = 0$ is parallel, its gradient = 2

$$3y = 1 - ax$$

$$y = \frac{1 - ax}{3}$$

$$-\frac{a}{3} = 2, \therefore a = -6$$

39 B
$$f(x) = \sqrt{4 - x^2}$$
 has max. dom. $[-2, 2]$

40 C
$$f(x) = 2x^2 + 3x + 4$$

$$= 2\left(x^2 + \frac{3}{2}x + 2\right)$$

$$= 2\left(x + \frac{3}{2}x + \frac{9}{16} + \frac{23}{16}\right)$$

$$= 2\left(x + \frac{3}{2}\right)^2 + \frac{23}{8}$$

Range =
$$\left[\frac{23}{8}, \infty\right)$$

41 D
$$P(x) = x^3 - kx^2 - 10kx + 25$$

 $P(2) = 8 - 4k - 20k + 25 = 9$
 $\therefore 24k = 24, \therefore k = 1$

42 E
$$f(x) = x^2 - 7x + k$$

 $f(k) = k^2 - 7k + k = -9$
 $\therefore k^2 - 6k + 9 = 0$
 $\therefore (k-3)^2 = 0, \therefore k = 3$
 $\therefore f(x) = x^2 - 7x + 3$
 $\therefore f(-1) = 1 + 7 + 3 = 11$

43 E
$$2xy - x^2 - y^2$$

= $-(x^2 - 2xy + y^2)$
= $-(x - y)^2$

44 C
$$x^2 - x - 12 \le 0$$

$$\therefore (x - 4)(x + 3) \le 0$$
Upright parabola so $-3 \le x \le 4$

45 C
$$f(x) = \frac{1}{2}x(x-1)$$

$$\therefore f(x) - f(x+1)$$

$$= \frac{1}{2}x(x-1) - \frac{1}{2}x(x+1)$$

$$= \frac{x}{2}((x-1) - (x+1))$$

$$= \frac{x}{2}(-2) = -x$$

46 C
$$2x^2 - 2 \le 0$$

 $\therefore x^2 \le 1, \dots -1 \le x \le 1$

$$= 2\left(x + \frac{3}{2}x + \frac{9}{16} + \frac{23}{16}\right)$$

$$= 2\left(x + \frac{3}{2}\right)^2 + \frac{23}{8}$$

$$= 6 - 2\left(x - \frac{1}{2}\right)^2$$

Inverted parabola so max. value = 6

48 C
$$p = \frac{kx}{y^2}$$

Set both x and y = 1 so that p = k.

When x and y are decreased,

$$p = \frac{k \times 0.7}{0.8^2} = 1.09375 \ k$$

This has increased by approximately 9.4%.

49 E In the case of the tank,
$$P = krh$$
.

When
$$r = 5$$
 and $h = 4$, $P = 60$.

$$60 = 5 \times 4 \times k$$

$$k = \frac{60}{20} = 3$$

$$k = \frac{60}{20} = 3$$

When $r = 4$ and $h = 6$,

$$P = 3 \times 4 \times 6$$

Solutions to 8C Extended-response questions

1 a
$$x^2 + y^2 + bx + cy + d = 0$$

At
$$(-4,5)$$
, $16 + 25 - 4b + 5c + d = 0$

$$\therefore$$
 4*b* – 5*c* – *d* = 41 (1)

At
$$(-2,7)$$
, $4+49-2b+7c+d=0$

$$\therefore$$
 2b - 7c - d = 53 (2)

At
$$(4, -3)$$
, $16 + 9 + 4b - 3c + d = 0$

$$\therefore$$
 $-4b + 3c - d = 25$ (3)

b Using a CAS calculator.

Change the number of equations to 3 and change the variables to b, c, d

The calculator yields b = -2, c = -4 and d = -29

Therefore the equation of the circle is $x^2 + y^2 - 2x - 4y - 29 = 0$

2 a
$$x^2 + y^2 + bx + cy = 0$$
 (1)

At
$$(4,4)$$
, $16+16+4b+4c=0$

$$\therefore$$
 32 + 4*b* + 4*c* = 0

$$\therefore \qquad 4c = -4b - 32$$

$$\therefore \qquad c = -b - 8 \tag{2}$$

b To find the x-axis intercept, let y = 0 in equation (1),

$$\therefore \qquad x^2 + bx = 0$$

$$\therefore \qquad x(x+b) = 0$$

$$\therefore \qquad x = 0 \text{ or } x = -b$$

c To find the y-axis intercept, let x = 0 in equation (1),

$$y^{2} + cy = 0$$

$$y(y + c) = 0$$

$$y(y - b - 8) = 0 \quad \text{from (2)}$$

$$y = 0 \text{ or } y = b + 8$$

- **d** The circle touches the y-axis when there is one y-axis intercept, i.e. when b + 8 = 0, or b = -8.
- **3** a For $f(x) = \sqrt{a-x}$, the maximal domain is $x \le a$.
 - **b** At the point of intersection, $\sqrt{a-x} = x$

$$\therefore \&a - x = x^2$$

$$\therefore x^2 + x - a = 0$$

Using the general quadratic formula, $x = \frac{-1 \pm \sqrt{1 + 4a}}{2}$.

Since the range of f(x) is $[0, \infty)$, the point of intersection of the graphs of y = f(x)and y = x is $\left(\frac{-1 + \sqrt{1 + 4a}}{2}, \frac{-1 + \sqrt{1 + 4a}}{2}\right)$.

c When
$$\left(\frac{-1 + \sqrt{1 + 4a}}{2}, \frac{-1 + \sqrt{1 + 4a}}{2}\right) = (1, 1),$$

$$\frac{-1 + \sqrt{1 + 4a}}{2} = 1$$

$$\therefore \qquad -1 + \sqrt{1 + 4a} = 2$$

$$\therefore \qquad \qquad \sqrt{1+4a}=3$$

$$\therefore 1 + 4a = 9$$

$$\therefore \qquad 4a = 8$$

$$\therefore$$
 $a=2$

d When
$$\left(\frac{-1 + \sqrt{1 + 4a}}{2}, \frac{-1 + \sqrt{1 + 4a}}{2}\right) = (2, 2),$$

$$\frac{-1 + \sqrt{1 + 4a}}{2} = 2$$

$$\therefore \qquad -1 + \sqrt{1 + 4a} = 4$$

$$\therefore \qquad \qquad \sqrt{1+4a}=5$$

$$\therefore 1 + 4a = 25$$

$$\therefore \qquad 4a = 24$$

$$\therefore$$
 $a = 6$

314 Math Methods AC Year 11

e When
$$\left(\frac{-1 + \sqrt{1 + 4a}}{2}, \frac{-1 + \sqrt{1 + 4a}}{2}\right) = (c, c),$$

$$\frac{-1 + \sqrt{1 + 4a}}{2} = c$$

$$\therefore \qquad -1 + \sqrt{1 + 4a} = 2c$$

$$\therefore \qquad \sqrt{1 + 4a} = 2c + 1$$

$$\therefore \qquad 1 + 4a = (2c + 1)^2$$

$$\therefore \qquad 1 + 4a = 4c^2 + 4c + 1$$

$$\therefore \qquad 4a = 4c^2 + 4c$$

$$\therefore \qquad a = c^2 + c$$

4 a
$$C = 3500 + 10.5x$$

b
$$I = 11.5x$$

:.

d
$$I = C$$

 $\therefore 11.5x = 3500 + 10.5x$

$$x = 3500$$

f
$$P = 2000$$

∴ $x - 3500 = 2000$ ∴ $x = 5500$

5500 plates must be sold for a profit of \$2000 to be made.

5 a
$$V = 45\ 000 + 40m$$

b
$$45\ 000 + 40m = 55\ 000$$

$$\therefore m = \frac{10\ 000}{40} = 250$$

$$250 \, \text{min} = 4h \, 10 \, \text{min}$$

The pool will reach its maximum capacity after 4 hours 10 minutes.

6 a When
$$t = 10$$
, $V = 20 \times 10 = 200$ litres.

b For uniform rate, the gradient of the graph is given by the rate.

Hence,
$$a = 20$$

When
$$t = 10$$
, $V = 200$ and $b = 15$

Thus
$$V = bt + c$$
 gives

$$200 = 15 \times 10 + c$$
, $\therefore c = 50$

and

$$V = \begin{cases} 20t & 0 \le t \le 10\\ 15t + 50 & 10 < t \le \frac{190}{3} \end{cases}$$

Note: $d = \frac{190}{3}$ as 15t + 50 = 1000

$$\Rightarrow 15t = 950$$

$$\Rightarrow \qquad \qquad t = \frac{190}{3}$$

7 a For rectangle, length = 3x cm, width = 2x cm, area = $6x^2$ cm²

b Side length of square
$$= \frac{1}{4}(42 - 10x)$$

 $= \frac{1}{2}(21 - 5x) \text{ cm}$
Area of square $= \left(\frac{1}{2}(21 - 5x)\right)^2$
 $= (10.5 - 2.5x)^2 \text{ cm}^2$

c
$$0 \le 10x \le 42$$

$$\therefore 0 \le x \le 4.2$$

$$\mathbf{d} \qquad \mathbf{A}_{T} = 6x^{2} + (10.5 - 2.5x)^{2}$$

$$= 6x^{2} + \frac{25}{4}x^{2} - \frac{105}{2}x + \frac{441}{4}$$

$$= \frac{49}{4}x^{2} - \frac{105}{2}x + \frac{441}{4}$$

$$= \frac{49}{4}\left(x^{2} - \frac{4}{49} \times \frac{105}{2}x + \frac{4}{49} \times \frac{441}{4}\right)$$

$$= \frac{49}{4}\left(x^{2} - \frac{30}{7}x + \left(\frac{15}{7}\right)^{2} - \frac{225}{49} + \frac{441}{49}\right)$$

$$\therefore \mathbf{A}_{T} = \frac{49}{4}\left(x - \frac{15}{7}\right)^{2} + \frac{49}{4} \times \frac{216}{49}$$

$$\therefore \mathbf{A}_{T} = \left(\frac{49}{4}\left(x - \frac{15}{7}\right)^{2} + 54\right) \text{cm}^{2}, \text{ or } : A = (12.25x^{2} - 52.5x + 110.25) \text{ cm}^{2}$$

f Maximum total area = 110.25 cm² (area of rectangle equals zero)

$$\mathbf{g} \qquad \qquad \frac{49}{4}x^2 - \frac{105}{2}x + \frac{441}{4} = 63$$

$$\therefore \quad \frac{49}{4}x^2 - \frac{105}{2}x + \frac{441}{4} - \frac{252}{4} = 0$$

$$\therefore \frac{49}{4}x^2 - \frac{105}{2}x + \frac{189}{4} = 0$$

$$\therefore 49x^2 - 210x + 189 = 0$$

$$\therefore 7(7x^2 - 30x + 27) = 0$$

$$\therefore 7(7x-9)(x-3) = 0$$

$$\therefore \qquad x = \frac{9}{7} \text{ or } x = 3$$

When $x = \frac{9}{7}$, the rectangle has dimensions $3x = \frac{27}{7} \approx 3.9$ and $2x = \frac{18}{7} \approx 2.6$,

i.e. 3.9 cm \times 2.6 cm, and the square has dimensions $\frac{1}{2}\left(21-5\times\frac{9}{7}\right)=\frac{51}{7}\approx7.3$,

i.e. $7.3 \text{ cm} \times 7.3 \text{ cm}$.

When x = 3, the rectangle has dimensions 3x = 9 and 2x = 6,

i.e. 9 cm \times 6 cm, and the square has dimensions $\frac{1}{2}(21 - 5 \times 3) = 3$,

i.e. $3 \text{ cm} \times 3 \text{ cm}$

8
$$y = -\frac{1}{10}(x+10)(x-20), x \ge 0$$

a When
$$x = 0$$
, $y = -\frac{1}{10}(10)(-20)$

= 20m, the height at the point of projection.

b When y = 0, x = 20 m, the horizontal distance travelled, $(x \ne -10 \text{ as } x \ge 0)$.

$$\mathbf{c} \quad y = -\frac{1}{10}(x^2 - 10x - 200)$$
$$= -\frac{1}{10}(x^2 - 10x + 25 - 225)$$
$$= -\frac{1}{10}(x - 5)^2 + 22.5$$

When x = 5, y = 22.5 m, the maximum height reached by the stone.

9 a If height = x cm, width = (x + 2) cm, length = 2(x + 2) cm

$$A = 2x(x+2) + 2x \times 2(x+2) + 2(x+2) \times 2(x+2)$$
$$= 2x^{2} + 4x + 4x^{2} + 8x + 4x^{2} + 16x + 16$$
$$= 10x^{2} + 28x + 16$$

b i When
$$x = 1$$
, $A = 10(1)^2 + 28(1) + 16$
= $10 + 28 + 16$
= 54 cm^2

ii When
$$x = 2$$
, $A = 10(2)^2 + 28(2) + 16$
= $40 + 56 + 16$
= 112 cm^2

c
$$10x^2 + 28x + 16 = 190$$

$$\therefore 10x^2 + 28x - 174 = 0$$

$$\therefore 2(5x^2 + 14x - 87) = 0$$

$$\therefore (5x + 29)(x - 3) = 0$$

$$\therefore \qquad x = \frac{-29}{5} \text{ or } 3$$

But
$$x > 0$$
, $\therefore x = 3$ cm

d
$$A = 10x^2 + 28x + 16$$

$$e V = 2(x+2)x(x+2)$$

$$= 2x(x+2)^{2}$$

$$= 2x(x^{2} + 4x + 4)$$

$$= 2x^{3} + 8x^{2} + 8x$$

$$2x^3 + 8x^2 + 8x = 150$$
$$2x^3 + 8x^2 + 8x - 150 = 0$$

(x-3) is a factor of $2x^3 + 8x^2 + 8x - 150$

When
$$V = 150$$
, $x = 3$

$$\begin{array}{r}
2x^2 + 14x + 50 \\
x - 3 \overline{\smash{\big)}2x^3 + 8x^2 + 8x - 150} \\
\underline{2x^3 - 6x^2} \\
14x^2 + 8x - 150 \\
\underline{14x^2 - 42x} \\
50x - 150 \\
\underline{0}
\end{array}$$

$$2x^{3} + 8x^{2} + 8x - 150 = (x - 3)(2x^{2} + 14x + 50)$$
But
$$2x^{2} + 14x + 50 \neq 0$$
as
$$\Delta = 196 - 400$$

$$= -204 < 0$$

$$x = 3$$

g The answer can be found using a CAS calculator.

Input $Y_1 = 2X^3 + 8X^2 + 8X$ and $Y_2 = 1000$.

The point of intersection is (6.6627798, 1000). Therefore the volume of the block is $1000 \text{ cm}^3 \text{ when } x = 6.66, \text{ correct to 2 decimal places.}$

10 a i
$$A = 10y + (y - x)x$$

= $10y + yx - x^2$

ii
$$P = 2y + 20 + 2x$$

= $2(y + 10 + x)$

b i If
$$P = 100$$

 $100 = 2(y + 10 + x)$

$$\therefore$$
 50 = y + 10 + x

$$\therefore \qquad y = 40 - x$$

$$A = (10 + x)(40 - x) - x^{2}$$

$$= 400 + 30x - x^{2} - x^{2}$$

$$= 400 + 30x - 2x^{2}$$

ii
$$A = -2(x^2 - 15x - 200)$$
$$= -2\left(x^2 - 15x + \frac{225}{4} - 200 - \frac{225}{4}\right)$$

$$\therefore A = -2\left(\left(x - \frac{15}{2}\right)^2 - \frac{1025}{4}\right)$$
$$= -2\left(x - \frac{15}{2}\right)^2 + \frac{1025}{2}$$

∴ maximum possible area =
$$\frac{1025}{2}$$
 m²
= 512.5 m²

iii A > 0 and y > 0 and $x \ge 0$ and $y - x \ge 0$ Considering the last inequality,

$$y \ge x$$

$$\therefore 40 - x \ge x$$

$$\therefore x \le 20$$

As $x \ge 0$, the largest possible domain is $0 \le x \le 20$.

11 a Let: $A_T(m^2)$ be the total area of the window.

$$A_T = (2x + y)(3x + 2y)$$
$$= 6x^2 + 7xy + 2y^2$$

b Let $A_W(m^2)$ be the total area of the dividing wood.

$$A_W = xy + y^2 + y^2$$

= 7xy + 2y²

c i Area of glass, $A_G = 1.5$

$$\therefore \qquad 6x^2 = 1.5$$

$$\therefore \qquad x^2 = \frac{3}{2} \times \frac{1}{6} = \frac{1}{4}$$

$$\therefore x = \frac{1}{2} \text{ or } 0.5 \text{ (as } x \ge 0)$$

ii Area of wood, $A_{w} = 1$

$$7xy + 2y^2 = 1$$

As
$$x = \frac{1}{2}$$
, $7 \times \frac{1}{2} \times y + 2y^2 - 1 = 0$

$$2y^2 + \frac{7}{2}y - 1 = 0$$

$$4y^2 + 7y - 2 = 0$$

$$\therefore \qquad (4y-1)(y+2)=0$$

$$y = \frac{1}{4} \text{ or } y = -2$$

But
$$y > 0$$
, $\therefore y = \frac{1}{4} = 0.25$

12 a
$$h(3) = -4.9(3)^2 + 30(3) + 5$$

= $-4.9(9) + 90 + 5$
= $-44.1 + 95 = 50.9$

The drop will be at a height of 50.9 m after 3 seconds.

b
$$-4.9t^{2} + 30t + 5 = 5$$
∴
$$-4.9t^{2} + 30t = 0$$
∴
$$t(30 - 4.9t) = 0$$
∴
$$t = 0 \text{ or } 30 - 4.9t = 0$$
∴
$$4.9t = 30$$
∴
$$t \approx 6.12$$

The drop will be back at the spout height after approximately 6.12 seconds.

c Turning point at $x = \frac{-b}{2a}$ $= \frac{-30}{2(-4.9)} = \frac{300}{98}$ $= \frac{150}{49}$ ≈ 3.06

$$h\left(\frac{150}{49}\right) = -4.9\left(\frac{150}{49}\right)^2 + 30\left(\frac{150}{49}\right) + 5$$
$$= \frac{2495}{49} \approx 50.92$$

d When
$$h(t) = 0$$
,
$$t = \frac{-30 \pm \sqrt{(30)^2 - 4(-4.9)(5)}}{2(-4.9)}$$
$$= \frac{-30 \pm \sqrt{900 + 98}}{-9.8}$$
$$\approx \frac{-30 \pm 31.59}{-9.8}$$
$$\approx \frac{-61.59}{-9.8} \text{ or } \frac{1.5.9}{-9.8} \approx 6.285 \text{ or } -0.162$$

But as $t \ge 0$ t = 6.285

It will take a drop of water 6.285 seconds to hit the ground.

13 a height = 7 cm, breadth = x cm, length = (x + 5) cm

b
$$V = 7x(x+5)$$

= $7x^2 + 35x$

$$c S = 7x + 7x + 7(x + 5) + 7(x + 5) + x(x + 5)$$
$$= 14x + 14x + 70 + x^{2} + 5x$$
$$= x^{2} + 33x + 70$$

e Let
$$S = V$$
, $\therefore x^2 + 33x + 70 = 7x^2 + 35x$

$$\therefore 6x^2 + 2x - 70 = 0$$

$$x = \frac{-2 \pm \sqrt{4 - 4(6)(-70)}}{12}$$

$$= \frac{-2 \pm \sqrt{1684}}{12}$$

$$= \frac{-2 \pm 41.0366}{12}$$

$$= -3.59, 3.25$$

But $x \ge 0$

 \therefore V = S when x = 3.25, correct to 2 decimal places.

f Let
$$S = 500$$
, $\therefore x^2 + 33x + 70 = 500$

$$\therefore x^2 + 33x - 430 = 0$$

$$\therefore (x - 10)(x + 43) = 0$$

$$\therefore$$
 $x = 10 \text{ or } x = -43$

But
$$x \ge 0$$
, $\therefore x = 10$

14 a Midpoint of
$$AC = \left(\frac{1+7}{2}, \frac{3+7}{2}\right) = (4,5)$$

Gradient of $AC = \frac{7-3}{7-1} = \frac{4}{6} = \frac{2}{3}$

Gradient of a line perpendicular to
$$AC = \frac{-1}{\frac{2}{3}} = \frac{-3}{2}$$

Equation of perpendicular bisector of AC

$$y - 5 = \frac{-3}{2}(x - 4) = \frac{-3x}{2} + 6$$

$$\therefore 2y + 3x = 22$$

b i When
$$x = 0, y = 11$$

 $\therefore B$ has coordinates $(0, 11)$

ii
$$x = 2 \times 4 - 0 = 8$$

 $y = 2 \times 5 - 11 = -1$
D has coordinates $(8, -1)$

c Area = length
$$AC \times$$
 length BM
= $\sqrt{6^2 + 4^2} \times \sqrt{4^2 + 6^2}$
= $\sqrt{52} \times \sqrt{52}$
= 52 units^2

d Area
$$\triangle ABC = \frac{1}{2}$$
 area of the rhombus
$$= 26 \text{ units}^2$$
 Area $\triangle ABC = \frac{1}{2}BC \times AY$

So
$$AY = \frac{2 \times 2b}{BC}$$
$$= \frac{52}{\sqrt{7^2 + 4^2}}$$
$$= \frac{52}{\sqrt{65}}$$
$$\approx 6.45$$

The length of AY (the perpendicular distance of A from BC) ≈ 6.45 units.

15 a Let x hours be the time for the first journey, $\therefore V = \frac{300}{r}$.

The time for the second journey = (x - 2) hours

$$V + 5 = \frac{300}{x - 2}$$

$$\frac{300}{x} + 5 = \frac{300}{x - 2}$$

$$\frac{300}{x} + 5 = \frac{300}{x - 2}$$

$$\frac{300}{x} + 5 = \frac{300}{x - 2}$$

$$300 + 5x - \frac{600}{x} - 10 = 300$$

$$5x^{2} - 600 - 10x = 0$$

$$5x^{2} - 10x - 600 = 0$$

$$5(x^{2} - 2x - 120) = 0$$

$$(x - 12)(x + 10) = 0$$

$$x = 12 \text{ or } x = -10$$
But $x \ge 0$,
$$x = 12$$

$$x = 12$$

The speed of the train travelling at the slower speed is 25 km/h.

b Let t_A minutes be the time it takes tap A to fill the tank, and t_B minutes be the time it takes tap B to fill the tank. $t_B = t_A + 15$

When the taps are running together, it takes $33\frac{1}{3}$ minutes to fill the tank.

Let R_A units/min be the rate of flow of tap A, and R_B units/min be the rate of flow of tap B.

Volume to be filled =
$$\frac{100}{3}R_A + \frac{100}{3}R_B$$

 $R_A = \frac{\text{volume to be filled}}{t_A}$
 $R_B = \frac{\text{volume to be filled}}{t_B}$

Let *V* be the volume to be filled.

$$V = \frac{100}{3} \times \frac{V}{t_A} + \frac{100}{3} \times \frac{V}{t_B}$$

$$\therefore \frac{3}{100} = \frac{1}{t_A} + \frac{1}{t_A + 15}$$

$$\therefore 3(t_A + 15)t_A = 100(t_A + 15) + 100t_A$$

$$\therefore 3t_A^2 + 45t_A = 200t_A + 1500$$
i.e. $3t_A^2 - 155t_A - 1500 = 0$

$$t_A = \frac{155 \pm \sqrt{42025}}{6}$$

$$\therefore = \frac{155 \pm 205}{6} = 60 \text{ or } \frac{-25}{3}$$

Tap *A* takes 60 minutes to fill the tank by itself. Tap *B* takes 75 minutes to fill the tank by itself.

c Let *x* cm be the length of a side of a square tile. Let *A* be the floor area of the hall.

Then
$$A = 200x^2$$

and $A = 128(x+1)^2$
 $\therefore 200x^2 = 128x^2 + 256x + 128$
 $\therefore 72x^2 - 256x - 128 = 0$
 $\therefore 8(9x^2 - 32x - 16) = 0$
 $\therefore 8(9x + 4)(x - 4) = 0$
 $\therefore x = \frac{-4}{9} \text{ or } x = 4$
But $x \ge 0$, $\therefore x = 4$

The smaller tiles are (4×4) cm² and the larger tiles are (5×5) cm².

16 a
$$4(x + 2x + h) = 400$$

∴ $3x + h = 100$
∴ $h = 100 - 3x$
b $V = x \times 2x \times h$
 $= 2x^2(100 - 3x)$

c When
$$V = 0$$
, $2x^2(100 - 3x) = 0$

$$\therefore \qquad x = 0 \text{ or } x = \frac{100}{3}$$

Now
$$V > 0$$
, $\therefore 0 < x < \frac{100}{3}$

- i On a CAS calculator, set $f1=2x^2(100-3x)$ and $f2=30\,000$. The points of intersection are (18.142, 30 000) and (25.852, 30 000), correct to 3 decimal places. Thus volume is $30\,000$ cm³ when x = 18.142 or x = 25.852, correct to 3 decimal places.
 - ii Repeat e i, using $f2 = 20\,000$. Volume is 20 000 cm³ when x = 12.715 or x = 29.504, correct to 3 decimal places.

$$\mathbf{f} V_{\text{max}} = 32\ 921.811\ \text{cm}^3 \text{ when } x = 22.222$$

$$\mathbf{g} \quad \mathbf{i} \quad S = 2(x \times 2x + x \times h + 2x \times h)$$

$$= 2(2x^{2} + x(100 - 3x) + 2x(100 - 3x))$$

$$= 2(2x^{2} + 100x - 3x^{2} + 200x - 6x^{2})$$

$$= 2(300x - 7x^{2})$$

$$= 600x - 14x^{2}$$

ii On a CAS calculator, sketch
$$f1 = 600x - 14x^2$$
.
 $S_{\text{max}} = \frac{45000}{7} \text{ cm}^2 \text{ when } x = \frac{150}{7}$

- h Sketch $f1=600x 14x^2$ and $f2=2x^2(100 3x)$ on a CAS calculator. The points of intersection are (3.068, 1708.802) and (32.599, 4681.642). Therefore S = V when $x \approx 3.068 \text{ or } x \approx 32.599.$
- 17 a Use a CAS calculator This yields gives $a = \frac{19}{250000} = 7.6 \times 10^{-5}, b = -\frac{69}{2500} =$ 0.0276, $c = \frac{233}{100} = 2.33$ and d = 0. Therefore the function which passes through the given points is $y = (7.6 \times 10^{-5})x^3 - 0.0276x^2 + 2.33x$.

b
$$y = (7.6 \times 10^{-5})x^3 - 0.0276x^2 + 2.33x + 5$$

- c On a CAS calculator, sketch $f1=19/250\ 000x^3-69/2500x^2+2.33x$. The largest deviation from the x-axis is 57.31 metres, perpendicular to the x-axis and correct to 2 decimal places.
- **18** a The equation of *BC* is $y = \frac{3}{4}x 4$

b The equation of AD is
$$y - 6 = -\frac{4}{3}(x - 5) = -\frac{4}{3}x + \frac{20}{3}$$

$$\therefore \qquad y = -\frac{4}{3}x + \frac{38}{3} \text{ or } 3y + 4x = 38$$

c *D* is on the lines $y = \frac{3}{4}x - 4$ and 3y + 4x = 38

Substituting
$$y = \frac{3}{4}x - 4$$
 into $3y + 4x = 38$ gives

$$3\left(\frac{3}{4}x - 4\right) + 4x = 38$$

$$\therefore \qquad \frac{9}{4}x - 12 + 4x = 38$$

$$\therefore \frac{25}{4}x = 50$$

$$\therefore$$
 25x = 200

$$\therefore$$
 $x = 8$

$$y = \frac{3}{4}(8) - 4$$

$$= 6 - 4$$

$$= 2$$

The coordinates of D are (8, 2).

d Length of
$$AD = \sqrt{(8-5)^2 + (6-2)^2}$$

= $\sqrt{25}$
= 5units

e Area of
$$\triangle ABC = 2 \times \text{area of } \triangle ABD$$

=
$$2 \times \frac{1}{2} \times BD \times AD$$

= $\sqrt{(8-0)^2 + (2-(-4))^2} \times 5$
= $5\sqrt{64+36}$
= $5\sqrt{100}$
= 50 square units

$$P \propto mh$$

$$\therefore$$
 $P = kmh$ for a constant $k \in R \setminus \{0\}P = 5kh$

When
$$m = 5$$
, $P = 5kh$

$$\therefore \quad k = \frac{P}{5h}$$

i When
$$P = 980$$
, $h = 20$,

$$k = \frac{980}{5 \times 20}$$

$$= 9.8$$

$$\therefore P = 5 \times 9.8h$$

$$= 49h$$

iii When
$$h = 23.2$$
,

$$P = 49 \times 23.2$$

$$= 1136.8$$

b i
$$P = kmh$$

$$\therefore \quad k = \frac{P}{mh}$$

When
$$P = 980$$
, $h = 20$, $m = 5$,

$$k = \frac{980}{5 \times 20}$$

$$\therefore = 9.8$$

$$P = 9.8mh$$

ii Let
$$P_1 = 9.8mh$$
,
∴ $P_2 = 9.8m \times (2h)$
= 19.6mh
= $2P_1$

Percentage change in potential energy =
$$\frac{P_2 - P_1}{P_1} \times 100$$

= $\frac{2P_1 - P_1}{P_1} \times 100$
= 100

The potential energy has increased by 100%.

iii Let
$$P_1 = 9.8mh$$

$$\therefore P_2 = 9.8 \times 2m \times \frac{1}{4}h$$

$$= 4.9mh$$

$$= \frac{1}{2}P_1$$

Percentage change in potential energy =
$$\frac{P_2 - P_1}{P_1} \times 100$$

= $\frac{\frac{1}{2}P_1 - P_1}{P_1} \times 100$
= -50

The potential energy has decreased by 50%.

c i When
$$h = 10$$
,
 $V = \sqrt{19.6 \times 10}$
= 14

ii When
$$h = 90$$
,
 $V = \sqrt{19.6 \times 90}$
= 42

d Let
$$V_1 = \sqrt{19.6h_1}$$

 $\therefore V_2 = 2V_1$
 $= 2\sqrt{19.6h_1}$
 $= \sqrt{19.6 \times 4h_1}$
 $= \sqrt{19.6h_2}$ where $h_2 = 4h_1$

The height must be increased by a factor of 4.

20 a i
$$2y + 6x + 4x = 500$$

 $\therefore y + 5x = 250$
 $\therefore y = 5(50 - x)$

ii
$$V = x \times x \times y$$

= $x^2 \times 5(50 - x)$
= $5x^2(50 - x)$

- **c** Domain = (0, 50)
- d Sketch $f1=5x^2(50-x)$ and $f2=25\,000$ on a CAS calculator. The points of intersection are (11.378 052, 25 000) and (47.812 838, 25 000). Therefore V = 25000 for x = 11.38 and x = 47.81, correct to 2 decimal places.
- e Use a CAS calculator to yield the coordinates (33.333 331, 92 592.593). Therefore the maximum volume is 92 592.59 cm³ when x = 33.33, correct to 2 decimal places. When $x = 33.333..., y = 5(50 - 33.333...) \approx 83.33.$

21 a i
$$A \propto a^3$$

$$\therefore A = ka^3 \qquad \text{for some } k \in R \setminus \{0\}$$

$$k = \frac{A}{a^3}$$

$$= \frac{4}{3} \div 2^3 \qquad \text{when } A = \frac{4}{3}, \ a = 2$$

$$= \frac{4}{3} \times \frac{1}{8}$$

$$= \frac{1}{6}$$

$$\therefore A = \frac{a^3}{6}$$

ii When
$$a = 3$$
, $A = \frac{3^3}{6}$
= 4.5

iii
$$a = 3\sqrt{6A}$$

When
$$A = 4500$$
, $a = \sqrt[3]{6 \times 4500}$
= 30