Lecture08 Redes Neuronales Convolucionales para detección de objetos y segmentación semántica

CNNs para Visión por Computador

[Krizhevsky 2012]

[Ciresan et al. 2013]

[Faster R-CNN - Ren 2015]

[NVIDIA dev blog]

CNNs

• Conferencia anterior: clasificación de imágenes.

Limitaciones

- Principalmente en imágenes centradas
- Solo un objeto por imagen
- No es suficiente para muchas tareas de visión del mundo real

Classification

Classification

Classif + Localisation

Classification

Classif + Localisation

multiple objects

Object Detection

Classification

Classif + Localisation

multiple objects

Object Detection Semantic Segmentation

Classification

Classif + Localisation

multiple objects

Object Detection Instance Segmentation

Esquema

Localización simple como regresión

Algoritmos de detección

Redes completamente convolucionales

Segmentación semántica y de instancias

Localización

Localización

- Un solo objeto por imagen
- Predecir las coordenadas de una caja delimitadora (x, y, w, h)
- Evaluar mediante la intersección sobre unión (IoU)

Localización como regresión

Localización como regresión

- Utiliza una CNN preentrenada en ImageNet (ej. ResNet)
- La "cabeza de localización" se entrena por separado con regresión
- Posible ajuste fino de extremo a extremo para ambas tareas
- En la fase de prueba, se usan ambas cabezas

C clases, 4 dimensiones de salida (1 caja)

Predecir exactamente N objetos: predecir las coordenadas ($N \times 4$) y las puntuaciones de clase ($N \times K$)

Detección de objetos

No sabemos de antemano la cantidad de objetos en la imagen. La detección de objetos se basa en la propuesta de objetos y la clasificación de objetos

Propuesta de objetos: encontrar regiones de interés (RoIs) en la imagen.

Clasificación de objetos: clasificar el objeto en esas regiones.

Dos familias principales:

- Single-Stage: Una cuadrícula en la imagen donde cada celda es una propuesta (SSD, YOLO, RetinaNet).
- Two-Stage: Propuesta de región y luego clasificación (Faster-RCNN).

S x S grid on input

Para cada celda de la cuadrícula $S \times S$ predecir:

- B cajas delimitadoras y puntuaciones de confianza C (5 × B valores) + clases C

Para cada celda de la cuadrícula $S \times S$ predecir:

- B cajas delimitadoras y puntuaciones de confianza C (5 × B valores) + clases C

Detecciones finales: Cj * prob(c) > umbral

- Después del preentrenamiento en ImageNet, toda la red se entrena de extremo a extremo.
- La pérdida es una suma ponderada de diferentes regresiones.

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\
+ \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\
+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\
+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\
+ \sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \quad (3)$$

RetinaNet

- Detector de una sola etapa con:
- Múltiples escalas a través de una Red Piramidal de Características (Feature Pyramid Network)
- Pérdida focal (Focal Loss)** para gestionar el desequilibrio entre el fondo y los objetos reales
- Consulta este <u>link</u> para más información.

Propuestas de Cajas

En lugar de tener un conjunto predefinido de propuestas de cajas, encuéntralas en la imagen:

- Selective Search: a partir de píxeles (no aprendido, ya no se usa).
- Faster-RCNN: Red de Propuestas de Regiones (RPN).

Operador de recorte y redimensionamiento (RoI-Pooling):

- Entrada: mapa convolucional + N regiones de interés.
- Salida: tensor de N imes 7 imes 7 imes profundidad de las cajas.
- Permite propagar el gradiente solo en las regiones de interés, y facilita el cálculo eficiente.

Faster - RCNN

- Entrenar conjuntamente la RPN y la otra cabeza
- 200 propuestas de cajas, el gradiente se propaga solo en las cajas positivas
- La propuesta de región es invariante a la traslación, en comparación con YOLO

Medición del rendimiento

method	test size shorter edge/max size	feature pyramid	align	mAP@[0.5:0.95]	AP_s	AP_m	AP_l
R-FCN [17]	600/1000			32.1	12.8	34.9	46.1
Faster R-CNN (2fc)	600/1000			30.3	9.9	32.2	47.4
Deformable [3]	600/1000		√	34.5	14.0	37.7	50.3
G-RMI [13]	600/1000			35.6	-	-	-
FPN [19]	800/1200	√		36.2	18.2	39.0	48.2
Mask R-CNN [7]	800/1200	√ ·	√	38.2	20.1	41.1	50.2
RetinaNet [20]	800/1200	√ ·		37.8	20.2	41.1	49.2
RetinaNet ms-train [20]	800/1200	· /		39.1	21.8	42.7	50.2
Light head R-CNN	800/1200		√	39.5	21.8	43.0	50.7
Light head R-CNN ms-train	800/1200		V	40.8	22.7	44.3	52.8
Light head R-CNN	800/1200	✓	V	41.5	25.2	45.3	53.1

Medidas: Precisión Promedio Media (mAP) con umbrales dados de IoU

- AP @0.5 para la clase "gato": precisión promedio para la clase, donde $IoU(box^{pred},box^{true})>0.5$

Estado del arte

Model	FLOPs	# Params	AP_{val}	AP _{test-dev}
SpineNet-190 (1536) [11]	2076B	176.2M	52.2	52.5
DetectoRS ResNeXt-101-64x4d [43]	_		_	55.7 [†]
SpineNet-190 (1280) [11]	1885B	164M	52.6	52.8
SpineNet-190 (1280) w/ self-training [71]	1885B	164M	54.2	54.3
EfficientDet-D7x (1536) [56]	410B	77M	54.4	55.1
YOLOv4-P7 (1536) [60]	_	_	_	55.8 [†]
Cascade Eff-B7 NAS-FPN (1280)	1440B	185M	54.5	54.8
w/ Copy-Paste	1440B	185M	(+1.4) 55.9	(+1.2) 56.0
w/ self-training Copy-Paste	1440B	185M	(+2.5) 57.0	(+2.5) 57.3

- Tamaños de imagen más grandes, modelos más grandes y mejores, mejores datos aumentados.
- https://paperswithcode.com/sota/object-detection-on-coco

Otros trabajos

- Nuevos enfoques intentan evitar el uso de anclas.
- CornerNet solo predice los dos extremos de una caja:

Otros trabajos

- Nuevos enfoques intentan evitar el uso de anclas.
- DeTr usa un Transformer para mapear un conjunto de características a un conjunto de cajas (con diferente cardinalidad).

La pérdida es una coincidencia por pares entre el conjunto de verdad de terreno y el conjunto de predicciones. Esta asignación óptima se calcula con el algoritmo Húngaro.

Segmentación

Segmentación

• Salida de un mapa de clases para cada píxel (aquí: perro vs

fondo)

- Segmentación de instancias: especifica cada instancia de objeto (dos perros tienen diferentes instancias).
- Esto se puede lograr a través de detección de objetos + segmentación.

Convolución

- Desliza la red con una entrada de (224, 224) sobre una imagen más grande. Salida de tamaño espacial variable.
- Convolucionar: cambia la capa densa (4096, 1000) a una convolución de 1 × 1, con 4096 canales de entrada y salida.
- Da una segmentación burda (sin supervisión adicional).

Red Totalmente Convolucional

- Predecir / retropropagar por cada píxel de salida.
- Agregar mapas de varias convoluciones a diferentes escalas para obtener resultados más robustos.

Deconvolución

• "Deconvolución": convoluciones transpuestas

Deconvolución

- Conexiones de salto entre las capas correspondientes de convolución y deconvolución.
- Máscaras más definidas utilizando información espacial precisa (capas tempranas).
- Mejor detección de objetos utilizando información semántica (capas tardías).

Red Hourglass

- Arquitecturas tipo U-Net repetidas secuencialmente.
- Cada bloque refina la segmentación para el siguiente.
- Cada bloque tiene una pérdida de segmentación.

Mask-RCNN

Arquitectura Faster-RCNN con una tercera cabeza de máscara binaria.

Resultados

- Los resultados de las máscaras aún son burdos (baja resolución de máscara).
- Excelente generalización de instancias.

Resultados

Estado del arte y enlaces

La mayoría de los benchmarks y arquitecturas recientes se reportan aquí:

https://paperswithcode.com/area/computer-vision

Tensorflow

object detection API

Pytorch

Detectron: https://github.com/facebookresearch/Detectron

- Mask-RCNN, RetinaNet y otras arquitecturas.
- Focal loss, Redes Piramidales de Características, etc.

Red Neuronal para Visión: Conceptos Clave

Características preentrenadas como base

- ImageNet: objetos centrados, dominio de imágenes muy amplio.
- Más de 1 millón de etiquetas y muchas clases diferentes que resultan en representaciones muy generales y desenredadas.
- Mejores redes (es decir, ResNet vs VGG) tienen un gran impacto.

Ajuste fino (Fine tuning)

- Añadir nuevas capas sobre la capa convolucional o densa de las CNNs.
- Ajuste fino de toda la arquitectura de extremo a extremo.
- Utilizar un conjunto de datos más pequeño pero con etiquetas más ricas (cajas delimitadoras, máscaras...).