Readings from Sipser

- Section 4.2, Subsections:
 - Introduction (Skip Diagonalization Method)
 - An Undecidable Language

From Last Time...

- Recall that we can create Turing
 Machines that take the descriptions (i.e.,
 "programs") of other Turing Machines as
 input, for example:
 - Translators
 - Compilers/Typecheckers
 - Interpreters, e.g., Universal Turing Machines

The Language A_{TM}

 The language A_{TM} is the set of all <M, w> pair encodings where M accepts w

$$A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$$

- Question: Is the language A_{TM} <u>recognizable</u>?
 - In other words, can we construct a TM that accepts exactly those strings that are in A_{TM}, and either rejects or loops infinitely on everything else?

Hmmm.... I think we already have something that does this!

Behavior of UTM

On input <m, w="">, if</m,>	UTM
M accepts w	Accepts
M rejects w	Rejects
M loops forever on w	Loops forever

Review: Deciders vs. Recognizers

On input x, if	Decider	Recognizer
$x \in L$	Accepts	Accepts
x∉L	Rejects	Rejects or Loops forever

An Even Bigger Question...

- Is the language A_{TM} <u>decidable</u>?
 - UTM doesn't work for this here

On input <m, w="">, if</m,>	UTM (recognizer)	Decider for A _{TM} must
M accepts w	Accepts	Accepts
M rejects w	Rejects	Rejects
M loops forever on w	Loops forever	Rejects

Extremely Important Theorem

- Theorem: The language A_{TM} is <u>not</u> decidable
- Proof (by contradiction): Assume such a decider exists! Let's call it H. Use it to construct a new decider D that checks if a machine M accepts its own code M, and then inverts the result:

On input <m>, if</m>	Н	D
M accepts M	Accepts	Rejects
M rejects or loops	Rejects	Accepts
forever on M		

Extremely Important Theorem

- Theorem: The language A_{TM} is not decidable
- Proof (by contradiction): Assume such a decider exists! Let's call it H. Use it to construct a new decider D that checks if a machine M accepts its own code M, and then inverts the result:

Now, let's break stuff!

Proof (continued)

- Now, run D using its own code <D> as input!
 - If it <u>rejects</u>, this means that H accepted $\langle D, D \rangle$, so $\langle D, D \rangle$ must be in A_{TM} , which means that D should <u>accept</u> $\langle D \rangle$ as input a contradiction!
 - 2. If it <u>accepts</u>, this means that H must have rejected $\langle D, D \rangle$, and so $\langle D, D \rangle$ is not in A_{TM} , which means that D <u>cannot accept</u> $\langle D \rangle$ another contradiction!
- Thus, no such decider H exists for A_{TM}

