Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M32021	К работе допущен	
Студент	Жуйков / Лопатенко	Работа выполнена	20.02.2023
Преподаватель	Тимофеева Э.О.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №5.04

Определение постоянной Ридберга по спектру излучения атомарного водорода

1. Цель работы:

Исследовать серию Бальмера для атома водорода и вычислить постоянную Ридберга.

2. Задачи, решаемые при выполнении работы:

- 1. Получить численное значение постоянной Ридберга для атомного водорода из экспериментальных данных и сравнить с теоретическим;
 - 2. Наблюдать спектральные линии при высвечивании водорода и ртути, изучить спектры;
 - 3. Построить градуировочную кривую и изучить принцип работы монохроматора.

3. Объект исследования:

Ртутная и водородная лампы, монохроматор УМ-2, источник питания PHYWE.

4. Метод экспериментального исследования:

Прямые измерения делений корректирующего барабана по видимым линиям спектра.

5. Рабочие формулы и исходные данные:

- 1) Формула Бальмера: $\bar{\nu}_0(\frac{1}{n^2}) = R \cdot (\frac{1}{m^2} \frac{1}{n^2})$, где m = 2, $n \in [3, 4, 5...]$
- 2) Постоянная Ридберга в СИ: $R = \frac{me^4}{8ch^3\epsilon_0^2}$
- 3) Энергия ионизации атома водорода: $E_n = \frac{hcR}{n^2}$

6. Измерительные приборы:

№	Наименование	Измерение	Используемый диапазон	$\Delta_{_{ m H}}$
1	Шкала барабана УМ-2	относительные единицы	[0, 3500] deg	1 deg

7. Схема установки:

Свет от источника 1 проходит через входную щель 2, установленную в фокусе ахроматического объектива коллиматора 3, и далее параллельным пучком падает на диспергирующую призму Аббе 4

8. Результаты прямых измерений и их обработки:

Таблица 1. Градуировка монохроматора УМ-2 по спектру ртути

Цвет линии в спектре Hg	λ, нм	α, делений
красный	690,7	2606
красный	671,1	2578
оранжевый	623,4	2250
желтый	579,0	2134
желтый	576,9	2116
зеленый	546,0	1938
голубой	491,6	1518
сине-фиолетовый	435,8	856
фиолетовый	407,8	592
фиолетовый	404,7	332

Таблица 2. Расчеты для спектра Н по градуировочной кривой Нд

Цвет линии в спектре Н	λ, нм (по графику 1)	α', делений	- ν ₀ , нм ⁻¹
λ ₁ (Красная)	643,6	2462	0,00155
$\lambda_2^{}$ (Голубая)	494,4	1480	0,00202
$\lambda_3^{}$ (Фиолетовая)	469,7	1232	0,00213

Расчет 1. МНК значение коэффициента R из зависимости $v_0(\frac{1}{n^2})$ κ графику 2

$$R = -\frac{\sum\limits_{i=1}^{N} (\frac{1}{n_{i}^{2}} - <\frac{1}{n^{2}} >)(y_{i} -)}{\sum\limits_{i=1}^{N} (\frac{1}{n_{i}^{2}} - <\frac{1}{n^{2}} >))^{2}} = 0,008398435 \text{ HM}$$

Значение найдено из предположения, что зависимость $\frac{1}{v_0}(\frac{1}{n^2})$ выражается в виде:

$$\overline{\nu}_0(\frac{1}{n^2}) = R \cdot (\frac{1}{m^2} - \frac{1}{n^2}), \text{ где } m = 2, n \in [3, 4, 5...]$$

Таблица 3. Расчет значения постоянной Ридберга из экспериментальных данных

Метод поиска постоянной Ридберга	<i>R</i> _{эксп} , м
по угловому коэффициенту кривой $\overline{v}_0(\frac{1}{n^2})$	8398434,61
из значения $\overset{-}{\nu}_0(0)\equiv \frac{R}{4}$	9991998,59
по формуле $R = \frac{me^4}{8ch^3 \epsilon_0^{\ 2}}$	11165497,68

Таблииа 4. Сравнение длин волн спектра Н экспериментальных и теоретических значений

Цвет линии спектра	λ, нм (по графику 1)	λ, нм (по формуле Бальмера)	Δλ, нм
λ ₁ (Красная)	643,6	654,6	11,0
$\lambda_2^{}$ (Голубая)	494,4	484,8	9,6
$\lambda_3^{}$ (Фиолетовая)	469,7	432,9	36,8

Расчет 2. Энергия ионизации атома Н по обобщенной формуле Бальмера

$$E_n = \frac{Rch}{n^2} = \frac{11165497,67 \cdot 299792458 \cdot 6,626 \cdot 10^{-34}}{1,6 \cdot 10^{-19}} = 13,86 \text{ pB}$$

10. Расчет погрешностей измерений:

$$\Delta R = 2 \sqrt{\frac{1}{(N-2)} \cdot \frac{\sum\limits_{i=1}^{N} (y_i - (R \cdot \frac{1}{n_i^2} + R/4))^2}{\sum\limits_{i=1}^{N} (\frac{1}{n_i^2} - \langle \frac{1}{n^2} \rangle))^2}} = 2351157$$
 м (для значения $R = 8398434$, 61 м)

$$\Delta R = 2 \sqrt{\left(\frac{1}{N} + \frac{\langle \frac{1}{n^2} \rangle^2}{\sum\limits_{i=1}^{N} \left(\frac{1}{n_i^2} - \langle \frac{1}{n^2} \rangle\right)^2}\right) \cdot \frac{\sum\limits_{i=1}^{N} \left(y_i - \left(R \cdot \frac{1}{n_i^2} + R/4\right)\right)^2}{N-2}} = 181369 \text{ m } (R = 9991998, 59 \text{ m})$$

11. Графики:

График 1. Градуировочная кривая для ртути. Полиномиальная аппроксимация.

График 2. Зависимость волнового числа от обратного квадрата уровня с аппроксимирующей прямой.

13. Выводы и анализ результатов работы:

В ходе лабораторной работы было получено значение константы Ридберга. При этом точную оценку значения получить не удалось ввиду слабой математической модели лабораторной работы: по тройке длин волн, соответствующим видимым спектральным линиям атома водорода, построение линейной регрессии приводит к большим ошибкам. Поэтому для ридберговских значений, полученных из экспериментальных данных характерны непривычно большие значения дисперсии (а следовательно и высокого показателя среднеквадратического отклонения).

Принято решение за максимально правдоподобное значение взять:

Построена градуировочная кривая для ртути, получена энергия ионизации атома водорода в основном состоянии: $E_n=13,86$ эВ

Проанализированы особенности работы с монохроматором и теория водородных серий