# Cox ph model and m() function

2020-03-06

### Outline

In Cox PH model, for the event time model:

$$\Lambda_T(t,x) = \Lambda_0(t) \exp(\beta_1 x_1 + \dots + \beta_p x_p)$$

suppose the censoring time follows a similar model:

$$\Lambda_C(t, x) = \Lambda_0(t) \exp(\gamma_1 x_1 + \dots + \gamma_p x_p)$$

If  $\beta_i$  is significant in the true model, but may be not significant due to censoring, and then the model can be biased.

We would like to check the simplest condition, where the  $\beta_i$  is significant, no matter there is censoring or not. Misspecification of the model without the significant part  $\beta_i x_i$ , will the model have a bad estimation?

### Model setting

Suppose the event time T and the censoring time C are both following cox models, who are sharing the same  $S_0(t)$  function, i.e.

event time: 
$$S_T(t|X=x) = P(T > t|X=x) = S_0(t)^{\exp(\beta'x)}$$
  
censoring time:  $S_C(t|X=x) = P(C > t|X=x) = S_0(t)^{\exp(\gamma'x)}$ 

where X is the covariates vector and  $\beta = (\beta_1, \beta_2, ..., \beta_p)$  are the coefficients for cox PH model in terms event time,  $\gamma = (\gamma_1, \gamma_2, ..., \gamma_p)$  are the coefficients for cox PH model in terms of censoring time.

Therefore, the associated hazard functions are

event time: 
$$\lambda_T(t|x) = \lambda_0(t) \exp(\beta' x)$$
,  $\Lambda_T(t|x) = \Lambda_0(t) \exp(\beta' x)$   
censoring time:  $\lambda_C(t|x) = \lambda_0(t) \exp(\gamma' x)$ ,  $\Lambda_C(t|x) = \Lambda_0(t) \exp(\gamma' x)$ 

The associated m() function can be

$$m(t,x) = \frac{\lambda_T(t|x)}{\lambda_T(t|x) + \lambda_C(t|x)} = \frac{\lambda_0(t) \exp(\beta' x)}{\lambda_0(t) \exp(\beta' x) + \lambda_0(t) \exp(\gamma' x)} = \frac{1}{1 + \exp(-(\beta - \gamma)' x)}$$

which follows a logistic distribution.

Let's just consider a two dimension simple scenario, where  $\lambda_0(t) = 1$ ,  $\Lambda_0(t) = t$ ,  $S_0(t) = \exp(-t)$ 

• Event time:

hazard function: 
$$\lambda_T(t|x) = \lambda_0(t) \exp(\beta_1 x_1 + \beta_2 x_2) = \exp(\beta_1 x_1 + \beta_2 x_2)$$
  
cumulative hazard function:  $\Lambda_T(t|x) = \Lambda_0(t) \exp(\beta_1 x_1 + \beta_2 x_2) = t \exp(\beta_1 x_1 + \beta_2 x_2)$   
survival function:  $S(t|x) = S_0(t)^{\exp(\beta_1 x_1 + \beta_2 x_2)} = \exp(-t \times (\beta_1 x_1 + \beta_2 x_2))$ 

• Censoring time

hazard function: 
$$\lambda_C(t|x) = \lambda_0(t) \exp(\gamma_1 x_1 + \gamma_2 x_2) = \exp(\gamma_1 x_1 + \gamma_2 x_2)$$
  
cumulative hazard function:  $\Lambda_C(t|x) = \Lambda_0(t) \exp(\gamma_1 x_1 + \gamma_2 x_2) = t \exp(\gamma_1 x_1 + \gamma_2 x_2)$   
survival function:  $S(t|x) = S_0(t)^{\exp(\gamma_1 x_1 + \gamma_2 x_2)} = \exp(-t \times (\gamma_1 x_1 + \gamma_2 x_2))$ 

Let's consider two numerical settings

|                       | $\beta_1$ | $\beta_2$ | $\gamma_1$ | $\gamma_2$ |
|-----------------------|-----------|-----------|------------|------------|
| setting 1: setting 2: | 2         | 0.1       | 0.2        | -0.2       |
|                       | 0.1       | 0.1       | 0.2        | -0.2       |

We will check whether:

- 1.  $X_1, X_2$  have effect on the survival time S(t), i.e. the coefficients are significant in the Cox PH model fitted with  $X_1, X_2$
- 2.  $X_1, X_2$  have effect on the censoring time, i.e. the coefficients are significant by fitting the logistic regression with status  $\sim X_1, X_2$
- 3. When the Cox PH model is mis-specified, with only  $X_2$ , how well the survival time is estimated?
- 4. The estimation methods:
  - Cox PH model with  $X_1, X_2$
  - Cox PH model with only  $X_2$
  - by using the true m(t,x) function (true  $\beta_1 \gamma_1, \beta_2 \gamma_2$ )
  - by using the estimated  $\hat{m}(t,x)$  function (estimated from the logistic regression with  $X_1,X_2$ )

### Model misspecification

When the model is mis-spepicfied with only one of the two covariates that is associated with survival time, will the model get a bad estimation?

In our setting,  $X_1, X_2$  are two random variables from independent normal distributions,  $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2)$ 

$$f_1(x_1) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2), f_2(x_2) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp(-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2)$$

$$f_{1,2}(x_1, x_2) = f_1(x_1) f_2(x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp(-\frac{1}{2\sigma_1^2} (x_1 - \mu_1)^2) \exp(-\frac{1}{2\sigma_2^2} (x_2 - \mu_2)^2)$$

Cox PH model

$$\lambda(t|x_1, x_2) = \lambda_0(t) \exp(\beta_1 x_1 + \beta_2 x_2)$$

The joint pdf of t and  $X_1, X_2$  is

$$\lambda(t, x_1, x_2) = \lambda(t|x_1, x_2) f(x_1, x_2)$$

$$= \lambda_0(t) \exp(\beta_1 x_1 + \beta_2 x_2) \frac{1}{2\pi \sigma_1 \sigma_2} \exp(-\frac{1}{2\sigma_1^2} (x_1 - \mu_1)^2) \exp(-\frac{1}{2\sigma_2^2} (x_2 - \mu_2)^2)$$

$$\lambda(t, x_1) = \int_{-\infty}^{+\infty} \lambda(t, x_1, x_2) dx_2$$

$$= \lambda_0(t) \exp(\beta_1 x_1) \frac{1}{\sqrt{2\pi}\sigma_1} \exp(-\frac{1}{2\sigma_1^2} (x_1 - \mu_1)^2) \exp(\frac{1}{2\sigma_1^2} [(\mu_2 + \beta_2 \sigma_2^2)^2 - \mu_2^2])$$

Therefore,

$$\lambda(t|x_1) = \frac{\lambda(t, x_1)}{f_1(x_1)} = \exp(\frac{1}{2\sigma_1^2} [(\mu_2 + \beta_2 \sigma_2^2)^2 - \mu_2^2]) \lambda_0(t) \exp(\beta_1 x_1)$$
$$\Lambda(t|x_1) = \exp(\frac{1}{2\sigma_1^2} [(\mu_2 + \beta_2 \sigma_2^2)^2 - \mu_2^2]) \Lambda_0(t) \exp(\beta_1 x_1)$$

$$S(t|x_1) = \left[\exp\left(-C\Lambda_0(t)\right)\right]^{\exp(\beta_1 x_1)}$$

where  $C = \exp(\frac{1}{2\sigma_z^2}[(\mu_2 + \beta_2\sigma_2^2)^2 - \mu_2^2])$ 

Therefore,

- If there do not have censoring, the estimation should be good
- The hazard ratio for  $X_1$  will not change if  $X_2$  is dropped from the model
- However, the informative censoring may change the story and bring bias in the estimation

#### Results

To estimated how the model is fitted, we will check

- AUC and ROC curve with confidence interval
- The mean absolute difference between S(t) and  $\hat{S}(t)$  at quantile time 10%, 25%, 50%, 75%, and 90%.

For the first setting,  $\beta_1 = 2$ ,  $\beta_2 = 0.1$ ,  $\gamma_1 = 0.2$ ,  $\gamma_2 = -0.2$ , we generate a training dataset with 1000 subjects and a test dataset with 100 subjects. The time dependent AUCs and the differences between S(t) and  $\hat{S}(t)$  are calculated at quantile times 10%, 25%, 50%, 75%, and 90%. The procedures are repeated for 100 times.

If we estimate with true death time and all status = 1

Table 2: Estimation of coefficient beta

|       | true coef | x1 + x2 | x1 only | x2 only |
|-------|-----------|---------|---------|---------|
| beta1 | 2.0       | 1.993   | 1.988   | NA      |
| beta2 | 0.1       | 0.085   | NA      | 0.097   |

The model with  $X_1$  and  $X_2$  showing that both of them have significant effects:

```
## coef exp(coef) se(coef) z Pr(>|z|)
## x1 1.9931888 7.338899 0.06075762 32.805575 4.903230e-236
## x2 0.0854206 1.089175 0.03201869 2.667835 7.634169e-03
```

If we estimate with the observed time and status,

Table 3: Estimation of coefficient beta

|       | true coef | x1 + x2 | x1 only | x2 only |
|-------|-----------|---------|---------|---------|
| beta1 | 2.0       | 2.072   | 2.06    | NA      |
| beta2 | 0.1       | 0.154   | NA      | 0.151   |

The model with  $X_1$  and  $X_2$  showing that both of them have significant effects:

```
## coef exp(coef) se(coef) z Pr(>|z|)
## x1 2.0715163 7.936849 0.07831716 26.450351 3.614963e-154
## x2 0.1537429 1.166191 0.04766883 3.225229 1.258719e-03
```

Fit the logistic regression:

```
fit_lg = glm(status ~ x1 + x2 - 1, data = data, family = 'binomial')
as.vector(summary(fit_lg)$coefficient[,1])
```

```
## [1] 1.8382064 0.2925561
beta - gamma
```

## [1] 1.8 0.3

#### The AUC estimation

| quantile time | Cox (x1,x2) |                     | Cox (x2 only) |                     | m(t,x) |                     | hat m(t,x) |       |
|---------------|-------------|---------------------|---------------|---------------------|--------|---------------------|------------|-------|
|               | mean        | $\operatorname{sd}$ | mean          | $\operatorname{sd}$ | mean   | $\operatorname{sd}$ | mean       | sd    |
| 10            | 0.843       | 0.084               | 0.583         | 0.065               | 0.840  | 0.086               | 0.839      | 0.086 |
| 25            | 0.829       | 0.052               | 0.553         | 0.042               | 0.824  | 0.052               | 0.823      | 0.052 |
| 50            | 0.812       | 0.042               | 0.551         | 0.037               | 0.806  | 0.043               | 0.805      | 0.043 |
| 75            | 0.813       | 0.044               | 0.563         | 0.049               | 0.805  | 0.046               | 0.804      | 0.047 |
| 90            | 0.840       | 0.046               | 0.607         | 0.082               | 0.828  | 0.050               | 0.828      | 0.052 |

# **AUC** at quantile times





In this setting, the other models fit much better than the one with only  $X_2$  in the cox ph model.

## The difference between S(t) and $\hat{S}(t)$

| quantile time | Cox(x1,x2) |                     | Cox (x | Cox (x2 only)       |       | m(t,x)              |       | hat m(t,x)          |  |
|---------------|------------|---------------------|--------|---------------------|-------|---------------------|-------|---------------------|--|
|               | mean       | $\operatorname{sd}$ | mean   | $\operatorname{sd}$ | mean  | $\operatorname{sd}$ | mean  | $\operatorname{sd}$ |  |
| 10            | 0.007      | 0.003               | 0.096  | 0.013               | 0.062 | 0.013               | 0.062 | 0.013               |  |
| 25            | 0.010      | 0.004               | 0.197  | 0.018               | 0.120 | 0.017               | 0.120 | 0.017               |  |
| 50            | 0.013      | 0.006               | 0.295  | 0.017               | 0.159 | 0.015               | 0.159 | 0.016               |  |
| 75            | 0.013      | 0.006               | 0.330  | 0.015               | 0.145 | 0.013               | 0.145 | 0.015               |  |
| 90            | 0.012      | 0.006               | 0.317  | 0.015               | 0.107 | 0.013               | 0.108 | 0.015               |  |

### Differences of S(t) at quantile time:





The roc curve







### Setting 2

For the first setting,  $\beta_1 = 0.1$ ,  $\beta_2 = 0.1$ ,  $\gamma_1 = 0.2$ ,  $\gamma_2 = -0.2$ , we generate a training dataset with 1000 subjects and a test dataset with 100 subjects. The time dependent AUCs and the differences between S(t) and  $\hat{S}(t)$  are calculated at quantile times 10%, 25%, 50%, 75%, and 90%. The procedures are repeated for 100 times.

If we estimate with true death time and all status = 1

Table 6: Estimation of coefficient beta

|       | true coef | x1 + x2 | x1 only | x2 only |
|-------|-----------|---------|---------|---------|
| beta1 | 0.1       | 0.132   | 0.133   | NA      |
| beta2 | 0.1       | 0.124   | NA      | 0.124   |

The model with  $X_1$  and  $X_2$  showing that both of them have significant effects:

## coef exp(coef) se(coef) z Pr(>|z|) ## x1 0.1319771 1.141082 0.03031285 4.353832 1.337782e-05

#### ## x2 0.1239441 1.131953 0.03080215 4.023878 5.724766e-05

If we estimate with the observed time and status,

Table 7: Estimation of coefficient beta

|       | true coef | x1 + x2 | x1 only | x2 only |
|-------|-----------|---------|---------|---------|
| beta1 | 0.1       | 0.172   | 0.172   | NA      |
| beta2 | 0.1       | 0.085   | NA      | 0.084   |

The model with  $X_1$  and  $X_2$  showing that both of them have significant effects:

```
## coef exp(coef) se(coef) z Pr(>|z|)
## x1 0.17164035 1.187251 0.04450060 3.857035 0.0001147708
## x2 0.08455883 1.088237 0.04380487 1.930352 0.0535632291
```

Fit the logistic regression:

```
fit_lg = glm(status ~ x1 + x2 - 1, data = data, family = 'binomial')
as.vector(summary(fit_lg)$coefficient[,1])
```

```
## [1] 0.0262941 0.2950706
```

beta - gamma

## [1] -0.1 0.3

The AUC estimation

| quantile time | Cox(x1,x2) |       | Cox (x | Cox (x2 only)       |       | m(t,x) |       | hat $m(t,x)$        |  |
|---------------|------------|-------|--------|---------------------|-------|--------|-------|---------------------|--|
|               | mean       | sd    | mean   | $\operatorname{sd}$ | mean  | sd     | mean  | $\operatorname{sd}$ |  |
| 10            | 0.591      | 0.079 | 0.584  | 0.074               | 0.591 | 0.076  | 0.592 | 0.077               |  |
| 25            | 0.558      | 0.042 | 0.553  | 0.042               | 0.561 | 0.046  | 0.560 | 0.046               |  |
| 50            | 0.552      | 0.035 | 0.551  | 0.035               | 0.558 | 0.042  | 0.558 | 0.039               |  |
| 75            | 0.567      | 0.048 | 0.556  | 0.042               | 0.569 | 0.048  | 0.565 | 0.048               |  |
| 90            | 0.592      | 0.072 | 0.583  | 0.054               | 0.600 | 0.060  | 0.596 | 0.063               |  |

## **AUC** at quantile times





In this setting, the other models fit much better than the one with only  $X_2$  in the cox ph model. The roc curve







The difference between S(t) and  $\hat{S}(t)$ 

| quantile time | Cox (x1,x2) |       | Cox (x | Cox (x2 only)       |       | m(t,x)              |       | hat m(t,x)          |  |
|---------------|-------------|-------|--------|---------------------|-------|---------------------|-------|---------------------|--|
|               | mean        | sd    | mean   | $\operatorname{sd}$ | mean  | $\operatorname{sd}$ | mean  | $\operatorname{sd}$ |  |
| 10            | 0.006       | 0.004 | 0.007  | 0.003               | 0.015 | 0.009               | 0.015 | 0.009               |  |
| 25            | 0.009       | 0.005 | 0.013  | 0.003               | 0.025 | 0.013               | 0.026 | 0.013               |  |
| 50            | 0.014       | 0.007 | 0.025  | 0.005               | 0.043 | 0.015               | 0.043 | 0.016               |  |
| 75            | 0.016       | 0.008 | 0.033  | 0.006               | 0.054 | 0.013               | 0.054 | 0.015               |  |
| 90            | 0.017       | 0.007 | 0.036  | 0.007               | 0.058 | 0.017               | 0.059 | 0.019               |  |

# Differences of S(t) at quantile times



