

Project Objective: Creation of a platform to be able to compare each neighborhood to its perspective walk score and forecast the data

Winter Break work is highlighted!

Outline:

- 1. Scrape data from the internet
- 2. Clean data
- 3. Create a neural network
- 4. Implement the neural network with the data

Scrape Data: (Address, Zip Code and Price extracted)

Price	Address	Bathroom	Room	Furnished	Pet Allowed	Postal Code
\$990.00	1438 Overdale Montréal H3G 1V3 QC Canada	1	1 1/2	Oui	Unknown	H3G 1V3
\$2200.00	1045 Rue Wellington Montréal QC H3C 1V6 Canada	1	4 1/2	Oui	Non	H3C 1V6
\$950.00	175 Deguire Ville St-Laurent QC H4N 1P1	1	4 1/2	Non	Non	H4N 1P1
\$1550.00	Place Gennevilliers Laliberté Montréal QC H1V Canada	1	4 1/2	Oui	Unknown	
\$2300.00	230 rue Dominion Montreal QC H3J 1N4	1	4 1/2	Non	Unknown	H3J 1N4
\$900.00	2262 Avenue Bilaudeau Montreal H1L 4A6 QC	1	3 1/2	Oui	Non	H1L 4A6
\$2600.00	635 Rue Saint Maurice Montréal QC H3C 1C7 Canada	1	3 1/2	Oui	Unknown	H3C 1C7
\$790.00	2190 Rue Marie-Anne Montréal QC H2H 1M8 Canada	1	3 1/2	Oui	Non	H2H 1M8
\$725.00	2710 Rue Provost Lachine QC H8S 1R4 Canada	1	3 1/2	Oui	Oui	H8S 1R4
\$740.00	2990 Edouard Montpetit H4B 1Z9 Montréal QC	1	4 1/2	Oui	Unknown	H48 1Z9
\$918.00	Montréal H3T1E7 QC Canada	1	3 1/2	Non	Unknown	H3T1E7

Clean Data:

- 1. All data which is in the CSV file should have an address, zip code and price.
 - a. If the data does not have a price or address, they must be deleted
 - b. If the data has an address but no zip code, the zip code must be found
 - c. If the zip code cannot be found, that house must be deleted
- 2. Merging all datasets together to get rid of duplicate houses.
- 3. Formatting or creating a new CSV file to be able to be manipulated by a Neural Network:

String	String	Latitude	Longitude	Roat	Roat
				(Normalization)	(Normalization)
Full Address	Zip Code	-90 – 90	-90 – 90	Lat/90	Long/90
1438 Overdale Montréal H3G 1V3 QC Canada	H3G 1V3	45.494380	-73.572520	.50549311	81747244
"	66	"	"	"	"
"	"	"	"	"	"

Format the first two columnsfirst, and save room to format the last two.

String	int	Z-score*	Float (Normalization)
Zip Code	Priœ	-3-3	Between -1 and 1
H3G 1V3	\$990.00	í,	ii.
"	и	í,	ii.

^{*}We will be talking about how to do this next semester with Nicolas. If you would like to get a head start, the link below explains it in detail:

https://sebastianraschka.com/Articles/2014_about_feature_scaling.html#z-score-standardization-or-min-max-scaling

4. Finally, we will be creating the master Input/output file that will be feed to the Neural Network:

Inputs (Features)	Outputs
Normalized float for Prices	
Normalized float for Zip Code	

<u>Creation of Neural Network:</u>

- 1. Understand what a neural Network exactly is
 - a. http://www.deeplearningbook.org/
 - b. http://neuralnetworksanddeeplearning.com/
 - c. https://www.youtube.com/watch?v=h3l4qz76JhQ
 - d. https://www.youtube.com/watch?v=aircAruvnKk
- 2. Learn how to implement one from Python
 - a. https://pytorch.org/
 - b. https://lasagne.readthedocs.io/en/latest/user/installation.html
 - c. https://pythonhosted.org/nolearn/
- 3. Program a neural network into python that takes the above framework