M57958L

HYBRID IC FOR DRIVING IGBT MODULES

Precaution:

The value of "R_{ext}" should be selected according to the guidelines in Section 4.6.2 of Application Notes.

Also, the value of " R_{ext} " should be selected so that maximum limits, I_{OHP} and I_{OLP} are not exceeded.

Hybrid Integrated Circuit For Driving IGBT Modules

Description:

M57958L is a hybrid integrated circuit designed for driving n-channel IGBT modules in any gate amplifier application. This device operates as an isolation amplifier for these modules and provides the required electrical isolation between the input and output with an opto-coupler.

Features:

- Built in high CMRR optocoupler (V_{CMR}: Typical 30kV/μs, Min. 15kV/μs)
- □ Electrical Isolation between input and output with opto-couplers (V_{iso} = 2500, V_{RMS} for 1 min.)
- ☐ TTL compatible input interface
- Two supply drive topology
- Short differential of propagation time (t_{PLH}, t_{PHL} to Max. 1.5μs, Typical 1.0μs)

Application:

To drive IGBT modules for inverter, AC Servo systems, UPS, CVCF inverter, and welding applications.

Recommended Modules:

V_{CES} = 600V Series (up to 400A Class)

V_{CES} = 1200V Series (up to 200A Class)

V_{CES} = 1400V Series (up to 200A Class)

M57958L

HYBRID IC FOR DRIVING IGBT MODULES

Absolute Maximum Ratings, $T_a = 25^{\circ}C$ unless otherwise specified

Item	Symbol	T _a (°C)	Test Conditions	Limit	Units
Supply Voltage	V _{CC}	25	DC	18	Volts
	V _{EE}	25	DC	-12	Volts
Input Voltage	VI	25	Between Terminal 1 and 2	-1 ~ 7	Volts
Output Voltage	Vo	25	Output Voltage "H"	V _{CC}	Volts
Output Current	I _{OHP}	25	Pulse Width 2μs, f = 30kHz	-5	Amperes
	I _{OLP}	25	Pulse Width 2μs, f = 30kHz	5	Amperes
Output Current	Іон	25	f = 30kHz, DF = 50%	0.8	Amperes
Isolation Voltage	V _{iso}	25	Sinewave Voltage 60Hz, 1 min.	2500	Vrms
Junction Temperature	Тј	_		100	°C
Operating Temperature	T _{opr}	_		-20 ~ 70	°C
Storage Temperature	t _{stg}	_		*-25 ~ 100	°C

^{*}But differs from H/C condition.

Electrical Characteristics, T_a = 25°C, V_{CC} = 15V, V_{EE} = -10V unless otherwise specified

		V _{CC} /V _{EE}	Ta					
Characteristics	Symbol	(°C)	(°C)	Test Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V_{CC}	_	25	Recommended Range	14	15	_	Volts
	V _{EE}	_	25	Recommended Range	-9	-10	_	Volts
Pull-up Voltage on Input Side	V _{IN}	_	25	Recommended Range	4.75	5.00	5.25	Volts
"H" Input Current	l _{IH}	15/-10	25	$V_{IN} = 5V, R = 185\Omega$	_	16	_	mA
"H" Output Voltage	V _{OH}	15/-10	25		13	14	_	Volts
"L" Output Voltage	V _{OL}	15/-10	25		-8	-9	_	Volts
Internal Power Dissipation	PD	15/-10	25	f = 30kHz, DF = 50%,	_	1.2	_	Watts
				Module 200A, 600V IGBT				
"L-H" Propagation Time	tpLH	15/-10	_	$V_{I} = 0$ to 4V, $T_{j} = 100^{\circ}$ C	_	1.0	1.5	μs
"L-H" Rise Time	t _r	15/-10	_	$V_{I} = 0 \text{ to } 4V, T_{j} = 100^{\circ}C$	_	0.6	1.0	μs
"H-L" Propagation Time	t _{PHL}	15/-10	_	$V_{I} = 5 \text{ to } 0V, T_{j} = 100^{\circ}C$	_	1.0	1.5	μs
Fall Time	t _f	15/-10	_	$V_{I} = 5 \text{ to } 0V, T_{j} = 100^{\circ}C$	_	0.4	1.0	μs