ADAMAS UNIVERSITY PURSUE EXCELLENCE	ADAMAS UNIVERSITY END SEMESTER EXAMINATION (Academic Session: 2020 – 21)				
Name of the Program:	M.TECH (Environmental Engineering)	Semester:	II		
Paper Title:	Numerical Methods	Paper Code:	ENV21014		
Maximum Marks:	50	Time Duration:	3 Hrs		
Total No. of Questions:	17	Total No of Pages:	3		
(Any other information for the student may be mentioned here)	1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam.				
	2. All parts of a Question should be answered consecutively. Each Answer shou start from a fresh page.3. Assumptions made if any, should be stated clearly at the beginning of your answer.				

	Group A		
	Answer All the Questions $(5 \times 1 = 5)$		
1	What is the intermediate value property?	Re	CO1
2	What is interpolation and extrapolation? Discuss with an	\mathbf{U}	CO4
	example.		
3	What is order and degree of $y''^2 + 3xy = 1 + x^2$?	Re	CO3
4	Classify the PDE $f_{xx} + f_{yy} + f_x + f_y = 0$.	U	CO3
5	Which part of the (x, y) plane is the following equation to be elliptic?	Re	CO3
	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} + (x^2 + 4y^2) \frac{\partial^2 u}{\partial y^2} = 2\sin(xy)$		
	Group B		
	Answer All the Questions $(5 \times 2 = 10)$		
6 a)	i) What is the rate of convergence of the Newton-	Re	CO1
	Raphson method for any real function $f(x)$?		
	ii) If π is taken 3.14 in the place of 3.14156, then find		
	the relative error?		
	(OR)		
6 b)	What will be the rounding off values of the numbers of	Re	CO1
	43.38256, 0.0326457 and 0.2537623 to four significant digits?		
7 a)	Find the interval in which a real root of the equation $x^3 - 2x - $	Re	CO1
	5 = 0 lies.		
	(OR)		
7 b)	Tell the pros and cons of the Newton Raphson method.	Re	CO1
8 a)	If $f(x)$ is given by	Re	CO3
	x 0 0.5 1		
	f(x) 1 0.8 0.5		
	Then using Trapezoidal rule, find $\int_0^1 f(x)dx$.		

	(OR)		
8 b)	Summarize the Newton divided difference table for the	U	CO3
	following data:		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	y 2 1 0 -1		G0.2
9 a)	Find the cubic polynomial which takes the following values:	Re	CO3
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	f(x) 1 2 1		
	Hence or otherwise find $f'(3)$.		
9 b)	(OR)	Do	CO3
10 a)	Tell the Gaussian 2-point quadrature formula.	Re	CO4
10 a)	Given $3\frac{dy}{dx} + \sqrt{y} = e^{0.1x}$, $y(0.3) = 5$, and the step size is of	Ap	CO4
	$h = 0.3$. Estimate of $\frac{dy}{dx}(0.9)$ by applying Euler's method.		
_	$\frac{dx}{dx}$ (OR)		
10 b)	Applying Taylor's series method to approximate y when	Ap	CO4
		•	
	$x = 0.2 \text{ for } \frac{dy}{dx} = x^2 y - 1, y(0) = 1.$		
	Group C		
	Answer All the Questions $(7 \times 5 = 35)$		
11 a)	The bacteria concentration in a reservoir varies as $C = 4e^{-2t} +$	Re	CO1
	$e^{-0.1t}$. Using Newton-Raphson method, find the time required		
	for the bacteria concentration to be 0.5.		
	(OR)		
11 b)	Find a real root of the following equation using Secant method	Re	CO1
10	$x log_{10} x = 1.9$, correct to 3 decimal places.	T.	COA
12 a)	Illustrate the mean radiation dose at an altitude of 3000 ft by	U	CO2
	fitting an exponential curve to the given data:		
	Altitude 50 450 780 1200 4400 4800 5300		
	Dose of 28 30 32 36 51 58 69		
	radiation		
	(y)		
	(OR)		
12 b)	One entry in the following table is incorrect and y is the cubic	Ap	CO2
	polynomial in x . Apply the difference table to locate and correct		
	the error:		
	x 0 1 2 3 4 5 6 7		
	y 25 21 18 18 27 45 76 123		
12 -1	A Chamical commons within to stude the CC + C + C	A	CO2
13 a)	A Chemical company, wishing to study the effect of extraction	Ap	CO2
	time(t) on the efficiency of an extraction operation (e) obtained from the data shown in the following table:		
	t 27 45 41 19 3 39 19 49 15 31		
	e 57 64 80 46 62 72 52 77 57 68		
	Build a straight line to the given data by the method of least		
L	Dane a straight line to the given data by the method of least		

	squares.								
	1				(OR)				
13 b)	Apply the method of difference to calculate $\Delta^2(\frac{1}{x^2+5x+6})$.							Ap	CO2
14 a)								U	CO3
	x	1		3	4		5		
	f(x)	-3		9	30	1	132		
	And hence fi	$\inf f$	(4.5).		(O.D.)				
14 b)	The fellowin	na da	to cirros		(OR)	of m	b ac carre	Re	CO3
14 0)	The following data gives corresponding value of pressure and specific volume of a super-heated steam:					Ke	COS		
	Volume (1.0	1.2	1.4	1.6	1.8	2.0		
	(v)								
	Pressure	0	0.128	0.544	1.296	2.432	4.00		
	(p)								
1.5	Find the rate of change of pressure with respect to volume when $v=2$.								g ₀
15 a)	Explain the S					the integr	gral	U	CO3
	$I = \int_0^{0.6} e^{-x}$	$\frac{dx}{dx}$	by taking						
151)	1 dx				(OR)				G02
15 b)	Find $\int_0^1 \frac{dx}{1+x}$ correct to three decimal places using the Romberg's method. Hence find the value of $log_e 2$.							Re	CO3
16 a)	Illustrate three point Gaussian quadrature formula to compute $\int_{1}^{2} \frac{dx}{1+x^{3}}$						U	CO3	
	$J_{1} _{1+x^3}$				(OR)				
16 b)	From the tab	le bel	low, for v		` /	is minin	num? Also,	Re	CO3
	From the table below, for what values of x , y is minimum? Also, find this value of y .								
	x 3		4	5	6	7	8		
	<u>y</u> 0.	205	0.240	0.259	0.262	0.250	0.224		
17 a)	Solve the following differential equation by using Euler's						Ap	CO4	
-· ···/	method for $x = 1, h = 0.2$,						- -r		
			,						
	$\frac{dy}{dx} = xy, y(0)$	y = 1. 							
					(OR)				
17 b)	Apply R-K method of order four to calculate $y(0.2)$, given that					Ap	CO4		
	$\frac{dy}{dx} = x + y^2, y(0) = 1, \text{ taking } h = 0.1$								
									'