Service Intelligence Week 3. [Service Quality Representation]

Chiehyeon Lim

2022. 9. 14

Further Discussion on Recommender Systems for Services

Use of the Bag-of-Words-Form Transactions Matrix

Approaches of Recommender Systems

Q. What if there is the side/context information strongly related to the consumption of users?

Approaches of Recommender Systems: A Data Perspective

 Recommender systems use analytic techniques to compute the value that a user will purchase one of the items; the techniques vary according to the purposes and data

	Feature 1	Feature 2	Feature 3		Feature m-1	Feature m
Transaction 1						
Transaction 2						
Transaction 3		•••		•••		
	•••	•••		•••		
	•••	•••	•••	•••		
	•••	•••	•••	•••		
	•••	•••	•••	•••		
Transaction n-1	•••	•••	•••	•••		
Transaction n						

Approaches of Recommender Systems: A Data Perspective

 Recommender systems use analytic techniques to compute the value that a user will purchase one of the items; the techniques vary according to the purposes and data

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle \, x_i \, x_j \quad (1)$$

where the model parameters that have to be estimated are:

$$w_0 \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^n, \quad \mathbf{V} \in \mathbb{R}^{n \times k}$$
 (2)

And $\langle \cdot, \cdot \rangle$ is the dot product of two vectors of size k:

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle := \sum_{f=1}^k v_{i,f} \cdot v_{j,f}$$
 (3)

A row \mathbf{v}_i within \mathbf{V} describes the *i*-th variable with k factors. $k \in \mathbb{N}_0^+$ is a hyperparameter that defines the dimensionality of the factorization.

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i +$$

If Y is symmetric, from it is class nalizable, it seigenvalues ale real, and its exercise are called the composition $Y = Q\Lambda Q^{\top}$, where the columns of Q are the eigenvectors of Y and the diagonal entries of diagonal matrix Λ are the eigenvalues of Y.

If Y is also **positive semidefinite**, then all its eigenvalues are nonnegative, which means that we can take their square roots. Hence,

$$Y = Q\Lambda Q^\top = Q\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}Q^\top = \underbrace{\left(Q\Lambda^{\frac{1}{2}}\right)}_{=:V} D^{\frac{1}{2}} V^\top V$$
 Note that the rows of V are the eigenvectors of Y multiplied by the square roots of the (nonnegative) eigenvalues of Y .

Reference: https://www.jefkine.com/recsys/2017/03/27/factorization-machines/https://ieeexplore.ieee.org/abstract/document/5694074?casa_token=CV0m3FJ7U3UAAAAA:1rubmy3hLA6hvfRzAxZV4ykDx4kufMqEsGPX69_eJckG3BP05EJCh7DEkUcSmGQzc6JhEf37dX4https://math.stackexchange.com/questions/1801403/decomposition-of-a-positive-semidefinite-matrix

Reference: https://www.jefkine.com/recsys/2017/03/27/factorization-machines/https://ieeexplore.ieee.org/abstract/document/5694074?casa_token=CV0m3FJ7U3UAAAAA:1rubmy3hLA6hvfRzAxZV4ykDx4kufMqEsGPX69_eJckG3BP05EJCh7DEkUcSmGQzc6JhEf37dX4https://math.stackexchange.com/questions/1801403/decomposition-of-a-positive-semidefinite-matrix

Factorization Machine for Offline Contexts

Assignment 2 (by 9.16 11:59 pm)

- There are two types of practice demonstrated by TAs. One approach is to use the user-item matrix and the other is to use the transaction-feature matrix. By yourself, (1) identify several (i.e., top k) recommendations using one of the two approaches with the given datasets. Of course you can try both.
- (2) Then, evaluate and interpret the recommendation outcomes quantitatively (e.g., calculate the recall, calculate the similarities between the recommended items) and qualitatively (e.g., interpret the factorization outcome, identify the characteristics of the top k recommended items). Do it all by yourself, and describe the analysis/interpretation process and outcome in detail.
- (3) Assume you need to use your recommender system for real-world service (i.e., streaming service or hypermarket service). How can you improve your recommender system to be used for the service effectively? For example, what kinds of data should you use further? How would you design a method for using/learning the data? Think beyond these examples in your own creative, unique way!
- (4) You must have your own interested or favorite service WITHOUT a recommender system (i.e., it should be different with the intelligent services discussed in the class). Discuss the requirements of original recommender system development for the service. Describe the requirements in detail.
- (5) If you would conduct a study on the recommender system development for the service, how would you conduct the research in your own creative, unique way? What kinds of data and methods are you going to collect, analyze, and learn? Describe your service intelligence development plan in detail. If possible, visualize your plan clearly (e.g., draw an image, construct a mathematical model). To facilitate your thinking, you may want to identify and review a recommender system paper related to the service you are interested or concerned.
- Upload your code and a several paragraph essay on the tasks (1)~(5) in the Blackboard.

Matrix Factorization Practice Demonstrated by TA Seo

Factorization Machine Practice Demonstrated by TA Shin

Assignment 2 (by 9.16 11:59 pm)

- There are two types of practice demonstrated by TAs. One approach is to use the user-item matrix and the other is to use the transaction-feature matrix. By yourself, (1) identify several (i.e., top k) recommendations using one of the two approaches with the given datasets. Of course you can try both.
- (2) Then, evaluate and interpret the recommendation outcomes quantitatively (e.g., calculate the recall, calculate the similarities between the recommended items) and qualitatively (e.g., interpret the factorization outcome, identify the characteristics of the top k recommended items). Do it all by yourself, and describe the analysis/interpretation process and outcome in detail.
- (3) Assume you need to use your recommender system for real-world service (i.e., streaming service or hypermarket service). How can you improve your recommender system to be used for the service effectively? For example, what kinds of data should you use further? How would you design a method for using/learning the data? Think beyond these examples in your own creative, unique way!
- (4) You must have your own interested or favorite service WITHOUT a recommender system (i.e., it should be different with the intelligent services discussed in the class). Discuss the requirements of original recommender system development for the service. Describe the requirements in detail.
- (5) If you would conduct a study on the recommender system development for the service, how would you conduct the research in your own creative, unique way? What kinds of data and methods are you going to collect, analyze, and learn? Describe your service intelligence development plan in detail. If possible, visualize your plan clearly (e.g., draw an image, construct a mathematical model). To facilitate your thinking, you may want to identify and review a recommender system paper related to the service you are interested or concerned.
- Upload your code and a several paragraph essay on the tasks (1)~(5) in the Blackboard.

Concluding Remarks

Approaches of Recommender Systems: A Categorization

- Recommender systems use analytic techniques to compute the value that a user would purchase one of the items; the techniques vary according to the purposes and data
 - Content-based filtering
 - Collaborative filtering

Approaches of Recommender Systems: Our Focus

Recommender systems use analytic techniques to compute the value that a user would purchase one of the items; the techniques vary according to the purposes and data

	Item 1	Item 2	Item 3	 Item m-1	Item m
User 1				 	
User 2				 	
User 3				 	
User n-1				 	
User n				 	

	Feature 1	Feature 2	Feature 3	 Feature m-1	Feature m
Transaction 1				 	
Transaction 2				 	
Transaction 3				 	
Transaction n-1				 	
Transaction n	•••			 	

Approaches of Collaborative Filtering: Emergence of Deep Learning

- Recommender systems use analytic techniques to compute the value that a user would purchase one of the items; the techniques vary according to the purposes and data
 - Collaborative filtering
 - Uses an information filtering technique based on the user's previous evaluation of items or history of previous purchases

- · Euclidean distance
- Cosine similarity
- · Jaccard coefficient
- · Pearson correlation coefficient
- ...

$$Sim(u_a, u_b) = \frac{\sum_{i=1}^{i'} (r_{u_{a,i}}) (r_{u_{b,i}})}{\sqrt{\sum_{i=1}^{n} (r_{u_{a,i}})} \sqrt{\sum_{i=1}^{n} (r_{u_{b,i}})}}$$

$$\operatorname{Sim}(u_a, u_b) = \frac{|I_{u_a}| \cap |I_{u_b}|}{|I_{u_a}| \cup |I_{u_b}|}$$

$$\operatorname{Sim}(u_a, u_b) = \frac{\sum_{i=1}^{i'} (r_{u_{a,i}} - r_{\overline{u_a}}) (r_{u_{b,i}} - r_{\overline{u_b}})}{\sqrt{\sum_{i=1}^{i'} (r_{u_{a,i}} - r_{\overline{u_a}})^2} \cdot \sqrt{\sum_{i=1}^{i'} (r_{\overline{u_{b,i}}} - r_{\overline{u_b}})^2}}$$

Approaches of Collaborative Filtering: Emergence of Deep Learning

Deep-learning-based nonlinearity consideration complements the traditional approaches

Neural Collaborative Filtering

Lizi Liao

Xiangnan He
National University of
Singapore, Singapore
xiangnanhe@gmail.com
Liqiang Nie

Shandong University

nieliqiang@gmail.com

National University of Singapore, Singapore in liaolizi.llz@gmail.com Xia Hu Texas A&M University USA hu@cse.tamu.edu Hanwang Zhang Columbia University USA hanwangzhang@gmail.com

> Tat-Seng Chua National University of Singapore, Singapore dcscts@nus.edu.sg

ABSTRACT

In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation — collaborative filtering — on the basis of implicit feedback.

Ålthough some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering — the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items.

By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural networkbased Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.

Keywords

Collaborative Filtering, Neural Networks, Deep Learning, Matrix Factorization, Implicit Feedback

*NExT research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its IRC@SG Funding Initiative.

© 2017 International World Wide Web Conference Committee (IW3C2), published under Creative Commons CC BY 4.0 License WWW 2017, April 3–7, 2017, Perth, Australia. ACM 978-1-4503-4913-0/17/04. http://dx.doi.org/10.1145/3038912.3052569

1. INTRODUCTION

In the era of information explosion, recommender systems play a pivotal role in alleviating information overload, having been widely adopted by many online services, including E-commerce, online news and social media sites. The key to a personalized recommender system is in modelling users' preference on items based on their past interactions (e.g., ratings and clicks), known as collaborative filtering 31, 48. Among the various collaborative filtering 13, the distribution of the first projects users and items into a shared latent space, using a vector of latent features to represent a user or an item. Thereafter a user's interaction on an item is modelled as the inner product of their latent vectors.

Popularized by the Netflix Prize, MF has become the de facto approach to latent factor model-based recommendation. Much research effort has been devoted to enhancing MF, such as integrating it with neighbor-based models [21]. combining it with topic models of item content [38], and extending it to factorization machines [26] for a generic modelling of features. Despite the effectiveness of MF for collaborative filtering, it is well-known that its performance can be hindered by the simple choice of the interaction function inner product. For example, for the task of rating prediction on explicit feedback, it is well known that the performance of the MF model can be improved by incorporating user and item bias terms into the interaction function1. While it seems to be just a trivial tweak for the inner product operator [14], it points to the positive effect of designing a better, dedicated interaction function for modelling the latent feature interactions between users and items. The inner product, which simply combines the multiplication of latent features linearly, may not be sufficient to capture the complex structure of user interaction data.

This paper explores the use of deep neural networks for learning the interaction function from data, rather than a handcraft that has been done by many previous work [18, 21]. The neural network has been proven to be capable of approximating any continuous function [17], and more recently deep neural networks (DNNs) have been found to be effective in several domains, ranging from computer vision, speech recognition, to text processing [5, 10, 15, 47]. However, there is relatively little work on employing DNNs for recommendation in contrast to the vast amount of literature

1 http://alex.smola.org/teaching/berkeley2012/slides/8_ Recommender.odf

Approaches of Content-based Filtering: Emergence of Deep Learning

- Recommender systems use analytic techniques to compute the value that a user would purchase one of the items; the techniques vary according to the purposes and data
 - Content-based filtering
 - Analyzes a set of documents (of the items in question) rated by an individual user and uses the contents of the items, as well as the provided ratings, to infer a user profile that can be used to recommend additional items of interest

	Feature 1	Feature 2	Feature 3	 Feature m-1	Feature m
Item 1				 	
Item 2				 	
Item 3				 	
Item n-1				 	
Item n	•••			 	

Approaches of Collaborative Filtering: Emergence of Deep Learning

Deep-learning-based representation/embedding complements the traditional approaches

ITEM2VEC: NEURAL ITEM EMBEDDING FOR COLLABORATIVE FILTERING

Oren Barkan^* and Noam Koenigstein*

^Tel Aviv University *Microsoft

ABSTRACT

Many Collaborative Filtering (CF) algorithms are itembased in the sense that they analyze item-item relations in order to produce item similarities. Recently, several works in the field of Natural Language Processing (NLP) suggested to learn a latent representation of words using neural embedding algorithms. Among them, the Skip-gram with Negative Sampling (SGNS), also known as word2vec, was shown to provide state-of-the-art results on various linguistics tasks. In this paper, we show that itembased CF can be cast in the same framework of neural word embedding. Inspired by SGNS, we describe a method we name item2vec for item-based CF that produces embedding for items in a latent space. The method is capable of inferring item-item relations even when user information is not available. We present experimental results that demonstrate the effectiveness of the item2vec method and show it is competitive with SVD.

Index terms - skip-gram, word2vec, neural word embedding, collaborative filtering, item similarity, recommender systems, market basket analysis, itemitem collaborative filtering, item recommendations.

1. INTRODUCTION AND RELATED WORK

Computing item similarities is a key building block in modern recommender systems. While many recommendation algorithms are focused on learning a low dimensional embedding of users and items simultaneously [1, 2, 3], computing item similarities is an end in itself. Item similarities are extensively used by online retailers for many different recommendation tasks. This paper deals with the overlooked task of learning item similarities by embedding items in a low dimensional space.

Item-based similarities are used by online retailers for recommendations based on a single item. For example, in the Windows 10 App Store, the details page of each app or game includes a list of other similar apps titled "People also like". This list can be

People also like

| Congluency 10 | Conductor | Congluency | Congluenc

Fig. 1. Recommendations in Windows 10 Store based on similar items to Need For Speed.

extended to a full page recommendation list of items similar to the original app as shown in Fig. 1. Similar recommendation lists which are based merely on similarities to a single item exist in most online stores e.g., Amazon, Netflix, Google Play, iTunes store and many others.

The single item recommendations are different than the more "traditional" user-to-item recommendations because they are usually shown in the context of an explicit user interest in a specific item and in the context of an explicit user intent to purchase. Therefore, single item recommendations based on item similarities often have higher Click-Through Rates (CTR) than user-to-item recommendations and consequently responsible for a larger share of sales or revenue.

Approaches of Collaborative Filtering: Emergence of Deep Learning

- Deep-learning-based nonlinearity consideration complements the traditional approaches
- Deep-learning-based representation/embedding complements the traditional approaches

Assignment 2 (by 9.16 11:59 pm)

- There are two types of practice demonstrated by TAs. One approach is to use the user-item matrix and the other is to use the transaction-feature matrix. By yourself, (1) identify several (i.e., top k) recommendations using one of the two approaches with the given datasets. Of course you can try both.
- (2) Then, evaluate and interpret the recommendation outcomes quantitatively (e.g., calculate the recall, calculate the similarities between the recommended items) and qualitatively (e.g., interpret the factorization outcome, identify the characteristics of the top k recommended items). Do it all by yourself, and describe the analysis/interpretation process and outcome in detail.
- (3) Assume you need to use your recommender system for real-world service (i.e., streaming service or hypermarket service). How can you improve your recommender system to be used for the service effectively? For example, what kinds of data should you use further? How would you design a method for using/learning the data? Think beyond these examples in your own creative, unique way!
- (4) You must have your own interested or favorite service WITHOUT a recommender system (i.e., it should be different with the intelligent services discussed in the class). Discuss the requirements of original recommender system development for the service. Describe the requirements in detail.
- (5) If you would conduct a study on the recommender system development for the service, how would you conduct the research in your own creative, unique way? What kinds of data and methods are you going to collect, analyze, and learn? Describe your service intelligence development plan in detail. If possible, visualize your plan clearly (e.g., draw an image, construct a mathematical model). To facilitate your thinking, you may want to identify and review a recommender system paper related to the service you are interested or concerned.
- Upload your code and a several paragraph essay on the tasks (1)~(5) in the Blackboard.

Further Discussion Points

- Relation and gap between the recommender system and service quality
- Considerations of recommender system development for real-world services:
 (1) data, (2) model, (3) service speed, (4) service UI, (5) model and service evaluation ...
- Beyond the user-item matrix
 - Consideration of the side information (details of items and user contexts) is also necessary
 - What other variabilities of the customer's contexts should be considered in recommendation?
- Objectives of recommendation from the customer vs. operations perspectives
- Dealing with the customer's cognitive processes unknown
- Knowledge discovery (customer understanding) for recommender system development
 - Performance of model + Explainability of model + Interpretability of result
- Ethics around the recommender systems

Service Intelligence Week 3. [Service Quality Representation]

Chiehyeon Lim

2022. 9. 14

Questions and Learning Objectives

- How can we "explicitly" evaluate and improve the "implicit" quality of services?
- How can we use data and learning intelligence for service quality representation?

Quality

- Definition of quality
 - "The totality of characteristics of an entity that bears on its ability

to satisfy stated and <u>implied</u> needs." (ISO, 1994)

Importance of quality

Service Quality

A perspective of quality

- A definition of service quality
 - "The totality of characteristics of a service that bears on its ability to satisfy stated and <u>implied</u> needs of customers."

Service Quality Evaluation: Education Service Example

Observable quality incidents

Unobservable perceptive dimensions

Quality perception

Illustration of Service Quality Evaluation

Service Quality Evaluation: Hotel Service Example

Service Quality "Representation"

	Feature 1	Fe	eature 2	Featu	ire 3				Feat	ure m-1	Feature m
Customer 1											
Customer 2											
Customer 3		Obse	ervable quality incid	lents Unobser	vable percep	tive di	mensions	Quality	perception		
			Observations								
			Observations		Tangibl	es					
		seos soes	Observations		Reliabil	ity	-		erall faction		
		Service process goes			Responsive	eness					
		Sen	Observations		Assuran	ice	-		tomer yalty		
	•••		Observations Observations		Empath	ıy					
	•••					I]	
Customer n-1	•••										
Customer n				• • •							

Service Quality "Representation"

For Your Comprehension: A First Study on Service Quality Representation SERVQUAL: A Multiple-Item Scale for Measuring Service Quality (PZB, 1988)

SERVQUAL: A Multiple-Item Scale for Measuring Service Quality

	Feature 1	Feature 2	Feature	: 3		Feature m-1	Feature m
Customer 1	•••	•••					
Customer 2			Observa	able quali	ity incidents Unobservable	perceptive dimensions	Quality perception
Customer 3						, ,	
	Variable 1			Observa		Tangibles	
	Variable 2	Facto	or)	Observa		Reliability	Overall
	Variable 4		Observations		sponsiveness	satisfaction	
	Variable 5			Observa	ations		Customer
	Variable 7	Facto	or	Observa		Assurance	loyalty
	Variable 8			Observa	ations	Empathy	
Customer n-1							
Customer n							

A Perspective on the Service Quality Evaluation

- Traditional challenge in service businesses: Absence of object measures of service quality
- The most appropriate approach would be to measure consumer's perception of quality:
 "Service quality, as perceived by consumers, stems from a comparison of what they feel service firms should offer with their perception of the performance of firms providing the service"
 (Parasuraman et al., 1985)
- The gap between customers' perception of service performance and their expectation

"Quality = Perception – Expectation"

SERVQUAL: A Multiple-Item Scale for Measuring Service Quality

- Definition of service quality
 - "The totality of characteristics of a service that bears on its ability to satisfy stated and <u>implied</u> needs of customers."

SERVQUAL: A Multiple-Item Scale for Measuring Service Quality

SERVQUAL: A Multiple-Item Scale for Measuring Service Quality

	Feature 1	Feature 2	Feature	: 3		Feature m-1	Feature m
Customer 1	•••	•••					
Customer 2			Observa	able quali	ity incidents Unobservable	perceptive dimensions	Quality perception
Customer 3						, ,	
	Variable 1			Observa		Tangibles	
	Variable 2	Facto	or)	Observa		Reliability	Overall
	Variable 4			Observa 		sponsiveness	satisfaction
	Variable 5			Observa	ations		Customer
	Variable 7	Facto	or	Observa		Assurance	loyalty
	Variable 8			Observa	ations	Empathy	
Customer n-1							
Customer n							

Data Collection and Purification (1st & 2nd stages)

1st Data Collection

10 dimensions
A set of 97 items

10 dimensions
A set of 54 items

7 dimensions
A set of 34 items

5 dimensions
A set of 22 items

- 200 adult respondents in shopping mall
 - Used the services of the firm within the past three months
- Five different service categories
 - Appliance repair and maintenance
 - retail banking
 - long-distance telephone
 - securities brokerage
 - credit card

1st Purification with the Reliability Analysis

- Coefficient alpha

10 dimensions A set of 97 items

10 dimensions A set of 54 items

7 dimensions A set of 34 items

5 dimensions A set of 22 items

.72 ~ .83

reliability

responsiveness

communication

credibility

security

understanding the customer

Coefficient alpha (Cronbach's alpha) analysis

- Estimate of reliability and an indicator of internal consistency
- Deletion of certain items based on the corrected item-to-total correlations
- $.55 \sim .78 \rightarrow .72 \sim .83$ across 10 dimensions
- > .70 reliable variance

$$ho_T = rac{k^2 \overline{\sigma_{ij}}}{\sigma_X^2}$$

k = number of items

 σ_{ij} = covariance between Xi and Xj

 σ_X^2 = item variances and inter-item covariances

1st Purification with the 1st Factor Analysis

- Factor loading matrix interpretation
 - Items with high loadings on more than one factor → removed or integrated
 - Relatively meaningless factors → removed

- Statistical method to analyze observable variables in understanding a specific topic
- To identify the underling constructs (i.e., to represent latent variables)

- Statistical method to analyze observable variables in understanding a specific topic
- To identify the underling constructs (i.e., to represent latent variables)

"GENERAL INTELLIGENCE," OBJECTIVELY DETERMINED AND MEASURED.

By C. SPEARMAN.

TABLE OF CONTENTS.

Chap. I.	Introductory.	PAG
•	 Signs of Weakness in Experimental Psychology 	20
	2. The Cause of this Weakness	20
	3. The Identities of Science	20
	4. Scope of the Present Experiments	20
Chap. II.	Historical and Critical	
-	 History of Previous Researches 	20
	2. Conclusions to be drawn from these Previous	
	Researches	21
	3. Criticism of Prevalent Working Methods	22
Chap. III.		
-	 Obviation of the Four Faults Quoted 	22
	2. Definition of the Correspondence Sought	22
	3. Irrelevancies from Practice	22
	(a) Pitch	22
	(b) Sight	23
	(c) Weight	23
	(d) Intelligence	23
	4. Irrelevancies from Age	23
	5. Irrelevancies from Sex	23
	 The Elimination of these Irrelevancies 	23
	Alternations and Equivocalities	23
Chap. IV.	Description of the Present Experiments	
	 Choice of Laboratory Psychics 	24
	2. Instruments	24
	(a) Sound	24
	(b) Light	24
	(c) Weight	24
	3. Modes of Procedure	24
	(a) Experimental Series I	24
	(b) - " " II	24
	(c) " " III	24
	(ď) " " IV	24
	(e) " " V	24
	4. The Estimation of Intelligence	24
	5. Procedure in Deducing Results	25
	(a) Method of Correlation	25
	(b) Elimination of Observational Errors	25
	(c) Elimination of Irrelevant Factors	25
Chap. V.	The Present Results	
	I. Method and Meaning of Demonstration	25
	2. Correspondence between the Discrimination	
	and the Intelligence	25

Discussion

Think about

- Fundamental reasons to use the latent factors rather than the observed variables.
- Directions from the factors to the observed variables
- Implications of the unique loadings about the reliability of observations (i.e., raw data collection)
- Factor Analysis vs. Principal Component Analysis
- Use of covariance matrix vs. Use of correlation matrix
- Estimation of the parameters depending upon the model assumptions
- Pros and Cons coming from the ambiguity of factor rotations (i.e., $R = \Lambda \Lambda' + \Psi = (\Lambda M)(\Lambda M)' + \Psi$)
- Validation of the factor analysis outcomes (i.e., Validity of the identified factors)
- ...

2nd Data Collection

- 200 adult respondents in shopping mall
 - Used the services of the firm within the past three months
- Four different service categories
 - Appliance repair and maintenance
 - Retail banking
 - Long-distance telephone
 - Credit card

2nd Data Collection

Dimension	Label
Tangibles	DI
Reliability	D2
Responsiveness	D3

- Two differences emerged
 - (1) Corrected item-to-total correlations for several items were lower and the alpha for the dimensions were lower (items making up the dimensions D4 and D7)
 - (2) Factor-loading matrices showed much greater overlap between dimensions D4 and D5, between dimensions D6 and D7
- Further purification of 34-item scale was necessary

2nd Purification after the 2nd Factor Analysis

- 2nd stage of purifications
 - Items with low item-to-total correlations were deleted
 - As suggested by the second factor analysis, the items remaining in D4&D5 and D6&D7 were combined to form two separate dimensions
- This procedure resulted in SERVQUAL with 22 items spread among five dimensions

tangibles

reliability*

responsiveness*

assurance

empathy

Dimension	Label	Number of Items	Reliability Coefficients (Alphas)	Items	Factor Loadings of Items on Dimensions to Which They Belong*
Tangibles	Fl	4	.72	QI	69
				Q2	68
				Q3	64
				Q4	51
Reliability	F2	5	.83	Q5	75
				Q6	63
				Q6 Q7	71
				Q8	75
				Q9	50
Responsiveness	F3	4	.82	Q10	51
•				Q11	77
				Q12	66
				Q13	86
Assurance	F4	4	.81	Q14	38
				Q15	72
				Q16	80
				Q17	45
Empathy	F5	5	.86	Q18	78
				Q19	81
				Q20	59
				Q21	71
				Q22	68

									FAC	CTOR	LOAD	INGS								
Bank					Credi	t Car	d Co.		Repair & Maintenance Co.				L-D Telephone Co.							
Items	F1	F2	F3	F4	F5	Fl	F2	F3	F4	F5	FI	F2	F3	F4	F5	FI	F2	F3	F4	F5
Q1	34	28	_	_	_	36		35	_	_	34	_		_		42	_	_	_	_
Q2	64		_	_	_	70	_	_	-	_	70		_		_	72			_	_
Q3	39		_	28		52	_	_			53	_	_		-	51	_		_	_
Q4	28	_		28	_	52	_	-	_	-	65	_		_	_	59	-	_	30	_
Q5	_	72		_			54	_			_	73		_		_	52	_		
Q6		63	_	_	_		43	27			_	51	_	_	_	_	40		_	
Q7	_	71			_	_	87	-	-	_		84	_	_	_		79	_	_	_
Q8		80	_	_		_	83	_		_	_	88	mental and	-		_	59		_	
Q9	-	39	_	-	_	_	49	-	_	_	_	29	_	30	_	-	54	_		_
Q10			37			_		43		26			56			_		39		
Q11			55		_	_	-	48	_	_	_	_	52		_	_	-	43	_	-
Q12		-	62		-	_		54	_		_	_	74	-		_	_	92	_	_
Q13	_	_	69	_	_	_	_	33	_	-	_	-	71		_	_	_	53	_	_
Q14				68	_		-	_	65		_	_		86		_	_	_	69	_
Q15			-	84			_		76	_	-		_	89	_	_		_	81	_
Q16			_	72		_			73	-		_	_	65		_	_	_	61	
Q17			_	64	_			_	61		_	_		64		_	_	_	66	
Q18				_	37	_		_	_	64	_	_			42	_	_			59
Q19		_			48	_	_	-		72		_	_		61	_		_	_	79
Q20		_	-	_	41			_		63		28	34	_	46		_	_	_	55
Q21			_	_	33	_		_		59	_	_		_	32		_	_	_	36
Q22			100000		68	_		_	_	64	_		-	_	61			_	_	59

All numbers in the table are magnitudes of the factor loadings multiplied by 100. Loadings that are .25 or less are not shown. The percentage of variance extracted by the five factors in the bank, credit card, repair and maintenance, and long-distance telephone samples were 56.0%, 57.5%, 61.6%, and 56.2%, respectively.

- Relative importance of the five dimensions in validation
 - 1st : Reliability
 - 2nd: Assurance
 - 5th: **Empathy** (the least important)

Relative Importance of the Five Dimensions in Predicting Overall Ouality

	Standardized Slope	Significance Level of	Adusted		
Dimension	Coefficient	Slope ^a	R ²		
Bank					
Tangibles	.13	.07	.28 (p < .00)		
Reliability	.39	.00			
Responsiveness	.07	35			
Assurance	.13	.09			
Empathy	.01	.89			
Credit Card Co.					
Tangibles	.07	.26	.27 (p < .00)		
Reliability	.33	.00			
Responsiveness	.12	.11			
Assurance	.17	.02			
Empathy	.04	.58			
Repair & Maintenanc	e Co.				
Tangibles	.04	.48	.52 (p < .00)		
Reliability	.54	.00	•		
Responsiveness	.11	.09			
Assurance	.16	.02			
Empathy	.01	.81			
L-D Telephone Co.					
Tangibles	.08	.17	.37 (p < .00)		
Reliability	.45	.00	•		
Responsiveness	.12	.09			
Assurance	.15	.03			
Assurance					

Dimensions of Service Quality

Reliability

Responsiveness

Assurance

Empathy

Tangibles

The ability to <u>perform the promised service</u> both dependably and accurately

- The firm meets their promised time-frames for response
- The firm is sympathetic and reassuring, when the customer has problems
- They are dependable
- They provide their services at the times promised
- They keep accurate records

Dimensions of Service Quality

Reliability

Responsiveness

Assurance

Empathy

Tangibles

The <u>willingness to help customers</u> and to provide prompt service

- Employees tell customers exactly when the service will be performed,
- It is reasonable to expect prompt service from employees
- Employees are always willing to help customers
- Employees respond promptly to customer requests

Dimensions of Service Quality

Reliability

Responsiveness

Assurance

Empathy

Tangibles

The <u>knowledge and courtesy of employees</u> as well as their ability to convey trust and confidence

- Employees are trustworthy
- Customers feel safe when transacting with employees
- Employees are polite
- Employees get adequate support from the firm to do their job well

Dimensions of Service Quality

Reliability

Responsiveness

Assurance

Empathy

Tangibles

The provision of <u>caring</u>, <u>individualized attention</u> to customers

- Firms give each customer individualized attention
- Employees give each customer individualized attention
- Employees fully understand the needs of the customer
- Employees have the best interests of the customer at heart
- Firms operate at hours convenient to all customers

Dimensions of Service Quality

Reliability

Responsiveness

Assurance

Empathy

Tangibles

The <u>appearance of physical</u> facilities, equipment, personnel, and communication materials

- Up-to-date equipment
- Physical facilities are visually appealing
- Employees well-dressed/neat
- Appearance of the physical facilities are consistent with the type of service industry

Validation of the Quality Dimensions

Service Quality Standards Vary and Change

Does SERVQUAL Work Well for Every Service?

Dimensions of Service Quality

Reliability

Responsiveness

Assurance

Empathy

Tangibles

Quality Dimensions Change

- + Machine-to-Human Interactions
- + Virtual Environment
- Human-to-Human Interactions
- Real Environment

- + Diversity of Context
- + Mobile Connection
- + Small Device Interactions
- Desktop Interactions

Quality of Al-based Services? (Assignment 3)

Practice and Assignment

Several Methods Are Available for the Representation

What other methods are available these days?

Practice Demonstrated by TA (Hyunwoo Seo)

```
!pip install factor-analyzer
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: factor-analyzer in /home/ta57xr/.local/lib/python3.8/site-packages (0.3.2)
Requirement already satisfied: numpy in /opt/anaconda3/lib/python3.8/site-packages (from factor-analyzer) (1.19.2)
Requirement already satisfied: scipy in /opt/anaconda3/lib/python3.8/site-packages (from factor-analyzer) (1.5.2)
Requirement already satisfied: scikit-learn in /opt/anaconda3/lib/python3.8/site-packages (from factor-analyzer) (0.23.2)
Requirement already satisfied: pandas in /opt/anaconda3/lib/python3.8/site-packages (from factor-analyzer) (1.2.0)
Requirement already satisfied: python-dateutil>=2.7.3 in /opt/anaconda3/lib/python3.8/site-packages (from pandas->factor-analyzer) (2.8.1)
Requirement already satisfied: pytz>=2017.3 in /opt/anaconda3/lib/python3.8/site-packages (from pandas->factor-analyzer) (2020.5)
Requirement already satisfied: six>=1.5 in /opt/anaconda3/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas->factor-analyzer) (1.15.0)
Requirement already satisfied: joblib>=0.11 in /opt/anaconda3/lib/python3.8/site-packages (from scikit-learn->factor-analyzer) (1.0.0)
Requirement already satisfied: threadpoolct1>=2.0.0 in /opt/anaconda3/lib/python3.8/site-packages (from scikit-learn->factor-analyzer) (2.1.0)
import numpy as np
 import pandas as pd
from factor_analyzer import FactorAnalyzer
 import matplotlib.pyplot as plt
 import seaborn as sns
seed = 0
np.random.seed(seed)
random.seed(seed)
```

Survey data on Onecare service quality

C1 2.602854 1.532453 2.956408 1.536123 **C2** 1.751155 2.458214 2.680014 1.225691

- . The survey response data comes from the service quality survey that measures mental health care service to university students, called onecare service.
- . They are collected from the students who used the service for a period of time.
- Based on existing studies, the survey consists of a total of 21 survey questions (features) and 191 responses (samples) collected on a likert scale from 1 to 7.

```
# rotation of loading matrix for interpretation
rotation = 'varimax'
fa = FactorAnalyzer(n_factors=n_factors, rotation=rotation)
pd.DataFrame(fa.loadings_, index=data.columns, columns=['factor_{}}
     factor_1 factor_2 factor_3 factor_4
C1 0.556864 0.424503 0.131646 -0.207354
 C2 0.443397 0.558572
                      0.205606 -0.067859
 C3 0.364477 0.609672
                       0.282022 -0.155859
 E1 0.488824 0.385487
                       0.200505 0.327874
 E2 0.419344 0.293987
                       0.151642
                                 0.206786
 E3 0.530113 0.259336
                       0.147030 0.435455
              0.261902
                       0.856052
                                 0.073274
 P2 0.178822
              0.244810
                       0.882046
                                 0.048451
 R1 0.540055
              0.425143
                      -0.005615 -0.119930
R2 0.408139
              0.380469
                       0.093014 -0.111780
              0.682331
                       0.255107 0.203066
U2 0.288420
              0.482988
                       0.129406 0.231443
U3 0.599849 0.221959
                       0.110381 0.128002
U4 0.086847 0.788175 0.122433 0.130111
CI1 0.695351
              0.050667
                       0.167367
                                0.150193
CI2 0.670945 0.300767
                       0.087668
                                0.142217
CI3 0.834818 0.070130
                       0.194153 0.210391
SA1 0.752563 0.301313
                       0.090846 0.078963
SA2 0.815798 0.239667
                       0.088588
SA3 0.759715 0.195785 0.189685 -0.064918
```


Assignment 3 (by 09.23 11:59 pm)

- Read <u>Article 3</u>. Summarize the article (one paragraph) with your own comments to the article (one paragraph) (i.e., two paragraphs in total).
- By yourself, complete the identification of the latent factors indicating the quality of the Onecare mobile healthcare service based on the practice demonstrated by the TA. Use the user-question matrix data provided. Do it all by yourself, and describe the identification process and outcome in detail. Interpret the outcome (i.e., interpret the quality dimensions you identified).
- Discuss the "quality representation and measurement of service systems from a customer/user perspective" (focus on the service system you are interested or concerned). What other data and learning methods can be used for the identification of the latent factors indicating the quality of a service? Describe your thoughts/ideas on learning service quality dimensions with data about customer perception, behaviors, etc., in detail.
- What dimensions do you think we should consider for the evaluation of quality of AI-based services? i.e., As a user/customer of AI services (as an undergraduate student researcher), what are the requirements of AI service you think important? And why do you think so? Describe the rationale or reasons for your suggestion.
- Furthermore, assume that you actually need to represent and evaluate the quality of an AI-based service in your company or institute. How would you develop a quality representation and measurement method for the service? What AI-based service are you going to focus on? What kinds of data and methods are you going to collect, analyze, and learn? Describe your research plan in detail. If possible, visualize your research framework clearly (e.g., draw image, mathematical model).
- Upload your code and a several paragraph essay in the Blackboard.

Read Article 3: Onecare Service Overview

- Necessity of wellness management support for college students
 - Wellness means lifestyle to maintain good mental and physical health (Myers et al. 2000)
 - Many students have unhealthy activity, sleep, and diet behaviors (Small et al. 2012)
 - Students need overall support to manage various behaviors

Concept of Onecare

Read Article 3: Onecare Service Overview

Onecare pilot run

Revisiting the Questions and Learning Objectives

- How can we "explicitly" evaluate and improve the "implicit" quality of services?
 - → The service representation (quality dimension identification) is essential
- How can we use data and learning intelligence for service quality representation?
 - → Observed data are varied. Estimations can be different depending upon the assumptions and models

Discussion

Think about

- Fundamental reasons to use the latent factors rather than the observed variables.
- Directions from the factors to the observed variables
- Implications of the unique loadings about the reliability of observations (i.e., raw data collection)
- Factor Analysis vs. Principal Component Analysis
- Use of covariance matrix vs. Use of correlation matrix
- Estimation of the parameters depending upon the model assumptions
- Pros and Cons coming from the ambiguity of factor rotations (i.e., $R = \Lambda \Lambda' + \Psi = (\Lambda M)(\Lambda M)' + \Psi$)
- Validation of the factor analysis outcomes (i.e., Validity of the identified factors)
- ...

Classes of the Next Week

What other observations are available these days?

Classes of the Next Week

What other observations are available these days?

VS

Further Readings Recommended

- Parasuraman, A., Zeithaml, V. A., & Berry, L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. *1988*, *64*(1), 12-40.
- Mejia, J., Mankad, S., & Gopal, A. (2020). Service quality using text mining:
 Measurement and consequences. *Manufacturing & Service Operations Management*.