Proof of asymptotic behaviour of eigenvalues in families of expanders

The main topic of the seminar is the study of families of expanders in the context of connected, k-regular and finite graphs. A family of expanders consists in a sequence of graphs of increasing size such that the isoperimetric number h(X) satisfies $h(X) \ge \epsilon$ for some fixed positive ϵ and for all graphs X in the sequence.

Earlier in the seminar, we established that the isoperimetric number is bounded by the spectral gap, in particular,

$$\frac{k-\mu_1}{2} \le h(x) \le \sqrt{2k(k-\mu_1)}$$

where μ_1 denotes the first nonzero eigenvalue. Moreover, we showed that the spectral gap cannot grow too much, i.e.

$$\lim_{m \to +\infty} \inf \mu_1 \ge 2\sqrt{k-1}$$

In this session, we aim to strengthen this result by proving that a non-trivial fraction of the eigenvalues of the graph lies within the interval $[(2-\epsilon)\sqrt{k-1},k]$ for any given $\epsilon > 0$.

To prove this, we introduce a set of matrices A_r , which are polynomials in the incidence matrix A. The entries of A_r describe the number of backtracking-free paths of length r between two vertices.

After establishing the necessary properties of these polynomials, we compute their generating function, which is closely related to the generating function of Chebyshev polynomials $(U_m)_{m\in\mathbb{N}}$. This allows us to relate the two polynomials:

$$T_m = (k-1)^{\frac{m}{2}} U_m \left(\frac{A}{2\sqrt{k-1}}\right)$$
 (1)

where $T_m = \sum_{0 \le r \le \frac{m}{2}} A_{m-2r}$.

This way, we can compute:

$$\sum_{x \in V} \sum_{0 \le r \le \frac{m}{2}} (A_{m-2r})_{xx} = Tr(T_m) = (k-1)^{\frac{m}{2}} \sum_{j=0}^{n-1} U_m \left(\frac{\mu_j}{2\sqrt{k-1}}\right)$$
 (2)

which holds for all $m \in \mathbb{N}$. This result is crucial, as it proves that the right-hand side of the equation is positive.

We then introduce the measure:

$$v = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\frac{\mu_j}{\sqrt{k-1}}}$$

where δ_a is the Dirac measure at a, and μ_0, \ldots, μ_{n-1} are the eigenvalues of the graph. The Dirac measure δ_a acts as an indicator function of whether a lies in a given interval. Thus, ν satisfies:

$$v[x_1, x_2] = \frac{1}{n} \sum_{j=0}^{n-1} \mathbb{1}_{[x_1, x_2]} \left(\frac{\mu_j}{\sqrt{k-1}} \right) = \frac{1}{n} \sum_{j=0}^{n-1} \mathbb{1}_{[x_1 \sqrt{k-1}, x_2 \sqrt{k-1}]} (\mu_j)$$
 (3)

that is, v counts the number of eigenvalues in the interval $[x_1\sqrt{k-1}, x_2\sqrt{k-1}]$.

To conclude the proof, equation (2) is used to prove that $v[2-\epsilon, L] \geq C$, where $C = C(\epsilon, k)$ is a strictly positive constant. We first define polynomials $X_m = U_m(\frac{x}{2})$ and $Y_m(x) = \frac{X_m(x)^2}{x-\alpha_m}$ where α_m is the largest root of X_m . Then we show some properties concerning these polynomials. In particular, we see that, for all $m \geq 0$, Y_m is a linear combination with non-negative coefficients of $X_0, X_1, \ldots, X_{2m-1}$.

It follows that, if

$$\int_{-L}^{L} X_m(x) dv(x) \ge 0$$

then

$$\int_{-L}^{L} Y_m(x) d\nu(x) \ge 0$$

Since $Y_m(x) \leq 0$ when $x \leq \alpha_m$, and $\alpha_m > 2 - \epsilon$ for m large enough, it can be proved that the measure of ν in the interval $[2 - \epsilon, L]$ is strictly positive. Moreover, using compactness in the weak topology, we establish that $\nu[2 - \epsilon, L] \geq C(\epsilon, k) > 0$.

The next step is to prove that v indeed satisfies $\int_{-L}^{L} X_m(x) dv(x) \ge 0$. By definition of v and Dirac measure:

$$\int_{-L}^{L} U_m \left(\frac{x}{2}\right) dv(x) = \frac{1}{n} \sum_{j=0}^{n-1} \int_{-L}^{L} U_m \left(\frac{x}{2}\right) d\delta_{\frac{\mu_j}{\sqrt{k-1}}} = \frac{1}{n} \sum_{j=0}^{n-1} U_m \left(\frac{\mu_j}{\sqrt{k-1}}\right)$$

which is non-negative by equation (2).

The assumption is satisfied, therefore there exists $C = C(\epsilon, k) > 0$ such that $v[2 - \epsilon] \ge C$. Finally, when $L = \frac{k}{\sqrt{k-1}}$, equation (3) shows that v counts the number of eigenvalues in the interval $[(2 - \epsilon)\sqrt{k-1}, k]$, and hence:

$$\left|\left\{\text{Eigenvalues of }X\text{ in }\left[(2-\epsilon)\sqrt{k-1},k\right]\right\}\right|=\nu[2-\epsilon,L]*n\geq C*n$$

which proves the main result.

Additionally, we show a similar conclusion for the negative eigenvalues of the graph. Let $(X_m)_{m\geq 1}$ a family of connected, k-regular and finite graphs, with $g(X_m)\to\infty$ as $m\to\infty$. For every $\epsilon>0$, there exists $C=C(\epsilon,k)>0$ such that the number of eigenvalues of X_m in the interval $[-k,-(2-\epsilon)\sqrt{k-1}]$ is at least $C|X_m|$.