EL9343 Homework 1

Due: Sept. 14th 8:00 a.m.

1. Prove the following properties of asymptotic notation:

(a)
$$n = \omega(\sqrt{n})$$

$$\forall c > 0, \exists n_0 = c^2 + 1 > 0, \text{ such that } n > c\sqrt{n}, \forall n \ge n_0$$

$$\therefore n = \omega(\sqrt{n})$$

(b) If
$$f(n) = \Omega(g(n))$$
, and $h(n) = \Theta(g(n))$, then $f(n) = \Omega(h(n))$

$$f(n) = \Omega(g(n)) \Leftrightarrow \exists c_1 > 0, n_1 > 0$$
, such that $f(n) \geq c_1 g(n), \forall n \geq n_1$
 $h(n) = \Theta(g(n)) \Leftrightarrow \exists c_2 > 0, n_2 > 0$, such that $h(n) \leq c_2 g(n), \forall n \geq n_2$

$$g(n) \ge \frac{1}{c_2}h(n), \forall n \ge n_2$$

$$\therefore \exists c_3 = \frac{c_1}{c_2} > 0, n_3 = \max(n_1, n_2) > 0, \text{ such that } \forall n \ge n_3, f(n) \ge c_1 g(n) \ge c_1 \frac{1}{c_2} h(n) = c_3 h(n)$$
$$\therefore f(n) = \Omega(h(n))$$

(c) f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$ (Transpose Symmetry property)

Part1:
$$f(n) = O(g(n)) \implies g(n) = \Omega(f(n))$$

 $f(n) = O(g(n)) \Leftrightarrow \exists c_1 > 0, n_1 > 0$, such that $f(n) \leq c_1 g(n), \forall n \geq n_1$
 $\therefore c'_1 = \frac{1}{c_1}, \forall n \geq n_1, g(n) \geq c'_1 f(n) \Leftrightarrow g(n) = \Omega(f(n))$
Part2: $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
 $g(n) = \Omega(f(n)) \Leftrightarrow \exists c_2 > 0, n_2 > 0$, such that $g(n) \geq c_2 f(n), \forall n \geq n_2$
 $\therefore c'_2 = \frac{1}{c_2}, \forall n \geq n_2, f(n) \leq c'_2 g(n) \Leftrightarrow f(n) = O(g(n))$

2. Indicate, for each pair of expressions (A,B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \geq 1, \epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	B	O	0	Ω	ω	Θ
a	$\lg^k n$	n^{ϵ}	yes	yes	no	no	no
b	n^k	c^n	yes	yes	no	no	no
c	\sqrt{n}	$n^{\sin n}$	no	no	no	no	no
d	2^n	$2^{n/2}$	no	no	yes	yes	no
e	$n^{\lg c}$	$c^{\lg n}$	yes	no	yes	no	yes
f	$\lg(n!)$	$\lg(n^n)$	yes	no	yes	no	yes

- 3. You have 5 algorithms, A1 took O(n) steps, A2 took $\Theta(n \log n)$ steps, and A3 took $\Omega(n^2)$ steps, A4 took $o(n^3)$ steps, A5 took $\omega(n^{3/2})$ steps. You had been given the exact running time of each algorithm, but unfortunately you lost the record. In your messy desk you found the following formulas:
 - (a) $4(5^{3\log_5 n}) + 12n + 9527$
 - (b) $\sqrt[5]{3n!}$
 - (c) $\frac{5^{\log_{16} n}}{6}^2 + 4n + 17$
 - (d) $3n \log_3 n + (\log_2 n)^3$
 - (e) $\log_4 \log_2 n + 61$
 - (f) $2^{5 \log_4 n}$
 - (g) $(\log_2 n)^2 + \log_3 \log_3 n$

For each algorithm write down all the possible formulas that could be associated with it.

(a)
$$4(5^{3\log_5 n}) + 12n + 9527$$

$$4(5^{3\log_5 n}) + 12n + 9527 = \Theta(5^{3\log_5 n} + n) = \Theta(n^3 + n) = \Theta(n^3)$$

(b) $\sqrt[5]{3n!}$

By Stirling's approximation,
$$n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$$

$$\sqrt[5]{3n!} \approx \sqrt[5]{3} (2\pi n)^{1/10} (\frac{n}{e})^{n/5} = \Omega(n^n)$$

(c)
$$\frac{5^{\log_{16} n}}{6}^2 + 4n + 17$$

$$\frac{5^{\log_{16} n}}{6}^2 + 4n + 17 = \Theta(n^{\log_{16} 25} + n) = \Theta(n^{\log_{16} 25}) \approx \Theta(n^{1.20})$$

(d) $3n \log_3 n + (\log_2 n)^3$

$$3n\log_3 n + (\log_2 n)^3 = \Theta(n\log n)$$

(e) $\log_4 \log_2 n + 61$

$$\log_4 \log_2 n + 61 = \Theta(\log \log n)$$

(f) $2^{5 \log_4 n}$

$$2^{5\log_4 n} = \Theta(n^{2.5})$$

(g) $(\log_2 n)^2 + \log_3 \log_3 n$

$$(\log_2 n)^2 + \log_3 \log_3 n = \Theta((\log_2 n)^2)$$

Thus,

4. Show what is printed by the following algorithm when called with $\mathbf{MAXIMUM}(A, 1, 5)$ where A = [7, 3, 8, 5, 9]? Where the function \mathbf{PRINT} simple prints its arguments in some appropriate manner.

- 0: $\mathbf{MAXIMUM}(A, l, r)$
- 1: **if** (r l == 0) **then**
- 2: **return** A[r]
- 3: end if
- 4:
- 5: $lmax = \mathbf{MAXIMUM}(A, l, \lfloor (l+r)/2 \rfloor)$
- 6: rmax = MAXIMUM(A, |(l+r)/2| + 1, r)
- 7: **PRINT**(rmax, lmax)
- 8: if rmax < lmax then
- 9: $\mathbf{return}\ lmax$
- 10: **else**
- 11: **return** rmax
- 12: **end if**

The printed result is,

- 3, 7
- 8, 7
- 9, 5
- 9, 8