

Ekip Üyeleri

Hakkı Besim Bardakçı

Data Scientist

Data Scientist arabam.com

Gamze Akkurt

Data Scientist

Freelance

Sunum Akışı

- Problem Tanımı
- Literatür
- Keşifsel Veri Analizi
- Özellik Çıkarımı
- Modelleme
- Analiz Sonuçları
- Referanslar

Problemin Tanımı

Kullanıcıların oturum bazlı etkileşimlerinden (görüntüleme, sepete ekleme, satın alma vb.) hareketle her oturumun değeri (session_value) tahmin edilmektedir.

Toplam aktivite: 141,219	Kategori sayısı: 448
Toplam kullanıcı: 51,821	Ürün sayısı: 26,470
Toplam oturum: 70,736	Etkileşim türü: 4

Model performansı MSE (Mean Squared Error) metriği ile değerlendirilmektedir.

Mevcut Yaklaşımlar

Kullanılan Öznitelikler

- Kullanıcı davranışları
- Oturum özellikleri
- Ürün/ürün kategorisi bilgisi
- Zaman bilgisi
- Tarihsel kullanıcı verisi

Kullanılan Modeller

- GRU/LSTM
- Transformer tabanlı modeller (BERT4Rec, SASRec)
- GBDT / Random Forest

LİTERATÜR

Top 10 Ürün

Top 20 Kategori

En Fazla 10 Kullanıcı Oturumu

Etkileşim Sayısı vs Oturum Değeri Dağılımı

Etkileşim Sayısı vs Buy Count vs log1p(Session Value) Grafiği

VERİ ANALİZİ

En Çok Kullanıcısı Olan 20 Kategori

Görüntülenmemiş veya Satın Alınmamış Ürün Sayısı

VERİ ANALİZİ

Sepette En Çok Bırakılan 20 Ürün

Ortalama Satın Alma Süresi En Kısa 20 Ürün

Birlikte En Çok Satın Alınan 20 Ürün

En Popüler 10 Kullanıcı Etkinlik Dizisi

Saat Bazında Etkinlik Dağılımı

Haftalık Oturum Sayısı Dağılımı

Modelleme Stratejisi

Event Count ve Session Value yüksek korelasyonu

- Session_value değerini session bazlı olarak olay sayısı değeriyle normalize ettik. (session_value / olay_sayisi)
- Yapılan değişiklikten sonra tahmin anında her bir session için tahmin edilen session_value değerlerini topladık. Fold skorlarını da aynı şekilde ölçtük.
- Train setindeki her bir veriye log1p(session_value) olacak şekilde ağırlık verdik. Bu sayede yüksek tahminlerdeki MSE değerlerini düşürmeyi amaçladık.

Train verisetinde varolan bazı sessionların Testte de olması

- Preprocess işlemlerinden önce ortak sessionları train verisetine aktarıp ortak sessionlardan bir sözlük oluşturduk.
- Aktardığımız ortak sessionları da modeli eğittiğimiz verinin içine de dahil ettik.
- Oluşturduğumuz sözlüğü test verisetini tahmin ederken kullandık, ortak veriler için tekrar tahmin yapmak yerinde sözlükteki değerleri kullandık.

Fold Stratejisi

Fold Stratejisini belirlerken

- Session Value değerlerinin homojen olarak dağılmaması.
- Aynı Session'a ait değerlerinin aynı sette kalması gerekmesi.
- Modeli yeterince test edebilecek kadar fazla ancak çok fazla iterasyona sebep olmayacak sayıda az olması gerekmesi.

StratifiedGroupKFold kullanmakta karar kıldık.

Stratification Label'ı belirleme

- Strafication label'ını belirlerken hem session toplamını hem de session ortalamasını denedik. En iyi sonucu session ortalaması verdiği için onunla devam ettik.
- Session ortalamasını 20 quantile'a böldük.

Fold Grouping

User_session kolonunu olduğu gibi kullandık.

Fold Sayısı

Farklı n değerleri denedik n=5 fold değerinde leaderboard ile en yüksek korelasyonu sağladık

Öznitelik Çıkarımı (Feature Engineering)

STEP 1 Anomalilerinin Tespiti

OOF tahminlerinde çok yüksek hata değerlerinin gelmesi üzerine toplamda 45 tane anomaly heuristici geliştirdik.

STEP 2 Oturum, Kullanıcı ve Zamansal Özellikler

Toplam oturum sayısı, ortalama olay aralığı, olayların saatlik dağılımı, toplam satın alma sayısı vb. özellikler çıkarılması

STEP 3 Kategorik Kodlama ve Embedding Özellikleri

Temel kategorik değişkenlerin sayısal forma dönüştürülmesi ardından **Truncated SVD** kullanarak düşük boyutlu embedding vektörleri oluşturulması

STEP 4 Oturum Düzeyi Embedding Kümeleme

Oturum embeddinglerinin contrastive learning kullanarak oluşturulup farklı **n_cluster** değerleriyle **KMeans** kullanılarak kümelenmesiyle ve oluşan küme etiketlerinin, oturum davranışlarını temsil eden kategorik özellikler olarak çıkarılması.

Anomali Tespiti

Olağandışı Oturum Uzunlukları

• Toplam oturum: 70.736

• Uzun oturumlar: 14.701(%20)

• Kısa ve hızlı oturumlar: 30

• Süresi 0 olan oturumlar: 48.067(%67)

"very_long_duration"-"many_duplicate_timestamps"...

Görüntüleme veya Sepete Ekleme Olmadan Satın Alma

• Öncesinde VIEW veya ADD_CART olmayan satın almalar: 12.859(%18) "purchase_without_add_or_view"

Sepete Eklemeden Sepetten Çıkarma

• Öncesinde ADD_CART olmayan REMOVE_CART olay sayısı: 23.719(%33) "remove_without_add"

Olay Sırası Anomalileri

• Satın almalar veya sepetten çıkarma işlemleri beklenmedik şekildeki oturum sayısı: 3.822(%5)

"purchase_without_add_or_view"

Gece Saatlerindeki Aktivite Artışları

• Toplam gece etkinliği: 14.105(%20)

"high_frac_events_night"

Model Seçimi

Farklı modeller test ettik:

- Catboost
- LGBM
- XGBoost
- Autogluon
- LSTM / Transformer

En iyi sonucu autogluon verdi.

Prototipleme kısmını en iyi 2. sonucu veren catboost ile yaptık. Nihai model trainde ise autogluon kullandık.

Model Seçimi

5-Group Stratified Fold CV

Stratejik Öneriler | Analiz Bulguları

Doğru analiz, işinizi ileriye taşıyan güçlü değişimler yaratır.

Sepet Terk Etme & Dönüşüm

Ürün & Kategori Optimizasyonu

- Ödeme sürecini sadeleştirebilinir daha az adım, şeffaf fiyatlandırma.
- Güven unsurları ekleyin (güvenli ödeme logoları, iade politikaları).
- Sepetten çıkış anında kampanya sunun (indirim pop-up'ı).
- Fiyatlandırma stratejisini veya ürün sunumunu gözden geçirin (ör. düşük kaliteli görseller, eksik yorumlar).
- Çok görüntülenen ama düşük dönüşüm sağlayan ürünleri belirleyin
- Çapraz satış için paket/promosyonlar oluşturun (sıklıkla birlikte alınan ürünler).

Veri Kalitesi & Takip İyileştirmeleri

- Olay kayıt sürecini denetleyin.
- Olay sırasının bütünlüğünü sağlayın (VIEW → ADD → BUY).
- Bu iyileştirme, hem analitik kalitesini hem de model performansını artıracaktır.

Referanslar

Session-Based Recommendation

Recurrent neural networks with top-k gains for session-based recommendations

<u>Enhancing Collaborative Information with Contrastive Learning for Session-based Recommendation</u>

STAMP: short-term attention/memory priority model for session-based recommendation

Behavior Sequence Transformer for E-commerce Recommendation in Alibaba

Teşekkürler

