Python Assignment Report

Kushagra Srivastava
Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

April 2024

1 Methodology

The files for this project are contained in the following repository. \bigcirc

1.1 Data Pre-Processing

- The Candidate, Constituency columns are dropped from the dataframe after extracting the features.
- Since, the Total Assets and Liabilities have text-numeric data, that is entires of the form Crore or Lacs, they have been converted to their respective values in Hundreds.
- Party, State and Education have both been converted into their respective mapped integer values, using a dictionary.

1.2 Feature Engineering

- From the Candidate column, look out for 'Dr.' or 'Adv.' and create two new indicator features, isDoctor and isAdvocate.
- From the Constituency column, look out for '(SC)' or '(ST)' and create two new indicator features, isSC and isST. This feature was later dropped as it did not yield any fruit-ful results, which indicates that there is little to no co-relation to these two factors.

1.3 Data-Set Analysis

We first analyse the correlation matrix as shown in 1 on the processed data, and observe. The conclusion

Figure 1: Correlation matrix b/w features in the dataset

that we arrive at from this matrix, is that Education does not have a strong correlation with a single factor over the entire dataset.

Now, we take a look at the correlation over different state 2 and education now is strongly co-related to some factor which is different over different states.

Figure 2: Corealtion matrix b/w features in the dataset

2 Experiment Details

The main idea here, is to use different model for different states, so, we try two models, kNN, Decision Tree, and choose the one with the better F1-Score, for each state.

Table 1: kNN for each state.					
State	n	F1-Score			
TAMILNADU	14	0.4432			
MADHYAPRADESH	8	0.6375			
KARNATAKA	12	0.4464			
BIHAR	7	0.3185			
WESTBENGAL	8	0.4071			
UTTARPRADESH	14	0.3271			
PUNJAB	14	0.2014			
MAHARASHTRA	12	0.3146			
ODISHA	6	0.3436			
HIMACHALPRADESH	2	0.5091			
MEGHALAYA	14	0.2815			
KERALA	7	0.3367			
HARYANA	7	0.1111			
DELHI	13	0.3636			
ANDHRAPRADESH	13	0.1400			
MANIPUR	1	0.2667			
RAJASTHAN	2	0.2768			
ASSAM	6	0.2476			
ARUNACHALPRADESH	12	0.2500			
JHARKHAND	13	0.3807			
$\operatorname{GUJARAT}$	10	0.1905			
TRIPURA	2	0.5714			
CHHATTISGARH	12	0.5101			
UTTARAKHAND	14	0.2545			
NAGALAND	5	0.2204			
SIKKIM	1	1.0000			
GOA	14	0.3333			
PUDUCHERRY	1	0.3750			

These parameters have been saved in their respective files, to avoid training time, as $paramters_DT.txt$ or $paramters_KNN.txt$

Using these parameters we can judge, which kind of model is to be used for each state, and a final model is formed.

Table 2	: Decision	Tree f	α r	each	state
Table 2	. Decision	Tree i	OI.	eacn	state.

State	maxdepth	<u>ision Tree for each s</u> minsamplesleaf	minsamplessplit	F1-Score
TAMILNADU	10	4	2	0.5156
MADHYAPRADESH	1	1	2	0.6429
KARNATAKA	6	1	3	0.2924
BIHAR	1	1	2	0.2227
WESTBENGAL	25	1	3	0.2497
UTTARPRADESH	9	4	2	0.3523
PUNJAB	6	8	2	0.3100
MAHARASHTRA	4	10	2	0.2399
ODISHA	7	14	2	0.1604
HIMACHALPRADESH	6	11	2	0.5455
MEGHALAYA	4	13	2	0.2815
KERALA	7	2	2	0.4325
HARYANA	6	3	2	0.1905
DELHI	4	11	2	0.3636
ANDHRAPRADESH	11	9	2	0.3253
MANIPUR	6	2	2	0.1111
RAJASTHAN	4	8	2	0.2075
ASSAM	1	1	2	0.2286
ARUNACHALPRADESH	4	8	2	0.2000
JHARKHAND	2	1	2	0.5273
$\operatorname{GUJARAT}$	3	1	2	0.2630
TRIPURA	4	10	2	0.6349
CHHATTISGARH	7	2	2	0.4072
UTTARAKHAND	1	1	2	0.1169
NAGALAND	2	1	2	0.2204
SIKKIM	1	1	2	1.0000
GOA	1	1	2	0.3333
PUDUCHERRY	4	1	2	0.3750

2.1 Dataset Analysis for Given Train Data

Figure 3: Distribution of Education

Figure 4: Distribution of Education with respect to state

Figure 5: Distribution of Education with respect to Party

Figure 6: Criminal Cases vs State

Figure 7: Average Criminal Cases vs State

Figure 8: Percent of Assembly with Criminal Cases vs State

Figure 9: Members with more than one criminal cases vs State

Figure 10: Total Criminal Cases vs Party

Figure 11: Average Criminal Cases vs Party

Figure 12: Percent of Party with Criminal Cases vs Party

Figure 13: Members with more than one criminal cases vs Party

Figure 14: Assets for each party

Figure 15: Average Assets in each party

2.2 Dataset Analysis for Enhanced Data

Data has been enhanced using CTGAN, by generating around 8000 Datapoints, and using 10000 epochs.

```
ctgan = CTGAN(epochs=10000, log_frequency=True, verbose=True)
  ctgan.fit(X, discrete_columns)
   # Create synthetic data
  synthetic_data = ctgan.sample(8000)
  final_data = []
6
  # Save the synthetic data
9 reverse_party = {value: key for key, value in party.items()}
reverse_edu = {value: key for key, value in education.items()}
  reverse_state = {value: key for key, value in state.items()}
11
12
13 for row in synthetic_data.index:
       synthetic_data.loc[row, "Party"] = reverse_party[synthetic_data.loc[row, "Party"]]
14
       synthetic_data.loc[row, "state"] = reverse_state[synthetic_data.loc[row, "state"]]
15
       synthetic_data.loc[row, "Education"] = reverse_edu[synthetic_data.loc[row, "Education"]]
16
17
synthetic_data.to_csv('synthetic_data_5ke_8k.csv', index=False)
```


Figure 16: Co-relation

Figure 17: Education Distribution

Figure 18: Education vs State

Figure 19: Education vs Party

Figure 20: Assets vs Party

3 Results

The results generated using this methodology, generate the following Scores :

• Public Score : 0.30737 [7/243] • Private Score : 0.32192 [6/243]

4 References

- Xu, Lei, et al. "Modeling Tabular data using Conditional GAN NeurIPS Proceedings." [SNIPPET] Modeling Tabular data using Conditional GAN. (2019).
- $\bullet\,$ Multi-Class Classification on Medium