Recurrence Relations

Click on a question number to see how your answers were marked and, where available, full solutions.

Question Number	Score	Review
Order 1		
Question 1	1 mark	
Question 2	1 mark	
Question 3	1 mark	
Order 2		
Question 4	1 mark	
Question 5	1 mark	
Total	5 marks	

Well done. You have passed the self-assessment.

Performance Summary

Exam Name:	Recurrence Relations
Session ID:	4358681482077292
Student's Name:	Pawan Kumarasinghe (223503335)
Exam Start:	Wed Aug 13 2025 16:44:59
Exam Stop:	Wed Aug 13 2025 16:53:54
Time Spent:	0:08:55

Created using Numbas (https://www.numbas.org.uk), developed by Newcastle University (https://www.newcastle.ac.uk).

Question 1

Find the closed form of the relations:

$$\left\{ egin{array}{ll} a_0 &= -39 \ a_n &= -9a_{n-1} - 30 \end{array}
ight.$$

Note the index! $a_n =$

Score: 1 mark 🗸

✓ Your answer is numerically correct. You were awarded 1 mark.

You scored 1 mark for this part.

Advice

To solve Order 1 recurrences, we need to apply the following steps:

- 1. Express the recurrence relation for the first difference (which *will* be a geometric sequence).
- 2. Find the closed form for that geometric sequence.
- 3. Find the closed form of the original sequence using its first difference.

Finding the first difference.

We need two things here: the first element, and the recurrence formula for the first difference.

For the first element, we have $b_0 = a_1 - a_0$.

• $a_0 = -39$

13/08/2025. 16:54

• $a_1 = -9a_0 + (-30) = 321$.

So,
$$b_0 = 321 - -39 = 360$$
.

For the recurrence formula, we have

$$b_n = a_{n+1} - a_n$$

= $-9a_n - 30 - (-9a_{n-1} - 30)$
= $-9b_{n-1}$

Closed form of the first difference.

Now we know that the first difference is a geometric sequence, and we know its recurrence form. From Activity 2, we can find the closed form: $b_0 \times k^n$, where k is the multiplier in the recurrence. So

$$b_0 = 360(-9)^n$$

Closed form for the sequence a_n :

Finally we can use the closed form of the first difference to find a_n .

$$b_n = a_{n+1} - a_n \ 360(-9)^n = -9a_n - 30 - a_n \ = -9a_n - 30 - a_n \ 360(-9)^n + 30 = -10a_n \ -36(-9)^n - 3 = a_n$$
 divide both sides by -10

And so we find the closed form for a_n .

Question 2

Find the closed form of the relations:

$$\left\{egin{array}{ll} a_0&=19\ a_n&=27-8a_{n-1} \end{array}
ight.$$

Note the index! $a_n =$

16(-8)^n+3
$$16(-8)^n+3$$

Score: 1 mark 🗸

✓ Your answer is numerically correct. You were awarded 1 mark.

You scored 1 mark for this part.

Advice

To solve Order 1 recurrences, we need to apply the following steps:

- 1. Express the recurrence relation for the first difference (which *will* be a geometric sequence).
- 2. Find the closed form for that geometric sequence.
- 3. Find the closed form of the original sequence using its first difference.

Finding the first difference.

We need two things here: the first element, and the recurrence formula for the first difference.

For the first element, we have $b_0=a_1-a_0$.

• $a_0 = 19$

•
$$a_1 = -8a_0 + 27 = -125$$
.

So,
$$b_0 = -125 - 19 = -144$$
.

For the recurrence formula, we have

$$b_n = a_{n+1} - a_n$$

= $-8a_n + 27 - (-8a_{n-1} + 27)$
= $-8b_{n-1}$

Closed form of the first difference.

Now we know that the first difference is a geometric sequence, and we know its recurrence form. From Activity 2, we can find the closed form: $b_0 \times k^n$, where k is the multiplier in the recurrence. So

$$b_0 = -144(-8)^n$$

Closed form for the sequence a_n :

Finally we can use the closed form of the first difference to find a_n .

$$egin{aligned} b_n &= a_{n+1} - a_n \ -144{(-8)}^n &= -8a_n + 27 - a_n \ &= -8a_n + 27 - a_n \ -144{(-8)}^n - 27 &= -9a_n \ 16{(-8)}^n + 3 &= a_n \end{aligned}$$

divide both sides by $\,-\,9\,$

And so we find the closed form for a_n . CP 1755083874

Question 3

Find the closed form of the relations:

$$\left\{egin{array}{ll} a_0&=-7\ a_n&=-3a_{n-1}-4 \end{array}
ight.$$

Note the index! $a_n =$

-6(-3)^n-1
$$-6(-3)^n-1$$

Score: 1 mark 🗸

✓ Your answer is numerically correct. You were awarded 1 mark.You scored 1 mark for this part.

Advice

To solve Order 1 recurrences, we need to apply the following steps:

- 1. Express the recurrence relation for the first difference (which *will* be a geometric sequence).
- 2. Find the closed form for that geometric sequence.
- 3. Find the closed form of the original sequence using its first difference.

Finding the first difference.

We need two things here: the first element, and the recurrence formula for the first difference.

For the first element, we have $b_0 = a_1 - a_0$.

•
$$a_0 = -7$$

•
$$a_1 = -3a_0 + (-4) = 17$$
.

So,
$$b_0 = 17 - -7 = 24$$
.

For the recurrence formula, we have

$$egin{aligned} b_n &= a_{n+1} - a_n \ &= -3a_n - 4 - (-3a_{n-1} - 4) \ &= -3b_{n-1} \end{aligned}$$

Closed form of the first difference.

Now we know that the first difference is a geometric sequence, and we know its recurrence form. From Activity 2, we can find the closed form: $b_0 \times k^n$, where k is the multiplier in the recurrence. So

$$b_0 = 24(-3)^n$$

Closed form for the sequence a_n :

Finally we can use the closed form of the first difference to find a_n .

$$b_n = a_{n+1} - a_n \ 24(-3)^n = -3a_n - 4 - a_n \ = -3a_n - 4 - a_n \ 24(-3)^n + 4 = -4a_n \ -6(-3)^n - 1 = a_n$$
 divide both sides by -4

And so we find the closed form for a_n . CP 1755083998

Question 4

Solve the recurrence relation given by:

$$\left\{egin{array}{ll} a_0 &= 2 \ a_1 &= -25 \ a_n &= 8a_{n-2} - 7a_{n-1} \end{array}
ight.$$

Note the index! $a_n =$

$$-1 + 3(-8)^n$$
 $-1 + 3(-8)^n$

Score: 1 mark 🗸

✓ Your answer is numerically correct. You were awarded 1 mark.

You scored 1 mark for this part.

Advice

To find the closed form of a linear recurrence of order 2, we have to follow three steps:

- 1. Find the characteristic equation.
- 2. Solve the characteristic equation to obtain the general form of the sequence.
- 3. Find the specific parameters by solving a system of simultaneous equations.

Finding the characteristic equation.

To find the characteristic equation, we first need to rewrite ther recurrence relation to have 0 on the right hand side.

$$a_{n+2} = 8a_{n-2} - 7a_{n-1} \ a_n - (8a_{n-2} - 7a_{n-1}) = 0$$

Since this relation must be true for every $n \geq 2$, it must also apply for n = 2:

$$a_2 + 7a_1 - 8a_0 = 0$$

Now, we substitute each a_i with x^i , to get the characteristic equation:

$$x^2 + 7x - 8 = 0$$

.

Solving the characteristic equation.

We can solve the characteristic equation using the quadratic formula:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2}.$$

Here we have a=1, b=7 and c=-8. So the quadratic formula gives us two solutions to that equation: $x_1=1$ and $x_2=-8$. Make sure to verify your intermediate result at this stage by plugging these values back into your equation.

The general form of the sequence is therefore:

$$a_n = s_1 \times 1^n + s_2(-8)^n$$
.

Finding the parameters s_1 and s_2 .

To find the parameters s_1 and s_2 we use the values of the elements a_0 and a_1 .

- For n=0, we know that $a_0=2$, and our general form gives us that this must be equal to $a_0=s_0*(1)^0+s_2*(-8)^0$.
- For n=1, we know that $a_1=-25$, and our general form gives us that this must be equal to $a_1=s_1*(1)^1+s_2*(-8)^1$.

And so we obtain the simultaneous equations:

$$\left\{ egin{array}{ll} s_1 + s_2 &= 2 \ s_1 - 8 s_2 &= -25 \end{array}
ight. .$$

We can solve this system of linear equations, for example by elimination. Let's eliminate s_2 :

1. Multiply the top equation by -8 (the coefficient of s_2 in the bottom equation):

$$-8s_1 - 8s_2 = -16.$$

2. Subtract the second equation from the first:

$$-9s_1 = 9.$$

- 3. Solve for s_1 using the equation we just obtained: $s_1 = -1$.
- 4. Substitute the value of s_1 into the top equation: $s_2=2-s_1=3$.

We find that $s_1=-1$ and $s_2=3$. Make sure to verify your intermediate result at this stage by plugging these values back into the two simultaneous equations.

Therefore the closed form is

$$a_n = 3(-8)^n - 1^n$$
.

Evaluate at least a_0 , a_1 and a_2 with your closed form solution before entering it into the quiz.

Question 5

Solve the recurrence relation given by:

$$\left\{egin{array}{ll} a_0 &= 5 \ a_1 &= 5 \ a_n &= 56a_{n-2} - a_{n-1} \end{array}
ight.$$

Note the index! $a_n =$

3*7^n +2*(-8)^n
$$3 \times 7^n + 2(-8)^n$$

Score: 1 mark ✓

✓ Your answer is numerically correct. You were awarded 1 mark.

You scored 1 mark for this part.

Advice

To find the closed form of a linear recurrence of order 2, we have to follow three steps:

- 1. Find the characteristic equation.
- 2. Solve the characteristic equation to obtain the general form of the sequence.
- 3. Find the specific parameters by solving a system of simultaneous equations.

Finding the characteristic equation.

To find the characteristic equation, we first need to rewrite ther recurrence relation to have 0 on the right hand side.

$$a_{n+2} = 56a_{n-2} - a_{n-1} \ a_n - (56a_{n-2} - a_{n-1}) = 0$$

Since this relation must be true for every $n \geq 2$, it must also apply for n = 2:

$$a_2 + 1a_1 - 56a_0 = 0$$

Now, we substitute each a_i with x^i , to get the characteristic equation:

$$x^2 + x - 56 = 0$$

.

Solving the characteristic equation.

We can solve the characteristic equation using the quadratic formula:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2}.$$

Here we have a=1, b=1 and c=-56. So the quadratic formula gives us two solutions to that equation: $x_1=7$ and $x_2=-8$. Make sure to verify your intermediate result at this stage by plugging these values back into your equation.

The general form of the sequence is therefore:

$$a_n = s_1 \times 7^n + s_2(-8)^n.$$

Finding the parameters s_1 and s_2 .

To find the parameters s_1 and s_2 we use the values of the elements a_0 and a_1 .

- For n=0, we know that $a_0=5$, and our general form gives us that this must be equal to $a_0=s_0*(7)^0+s_2*(-8)^0$.
- For n=1, we know that $a_1=5$, and our general form gives us that this must be equal to $a_1=s_1*(7)^1+s_2*(-8)^1$.

And so we obtain the simultaneous equations:

$$\left\{ egin{array}{ll} s_1 + s_2 &= 5 \ 7s_1 - 8s_2 &= 5 \end{array}
ight.$$

We can solve this system of linear equations, for example by elimination. Let's eliminate s_2 :

- 1. Multiply the top equation by -8 (the coefficient of s_2 in the bottom equation): $-8s_1-8s_2=-40$.
- 2. Subtract the second equation from the first:

$$-15s_1 = -45.$$

- 3. Solve for s_1 using the equation we just obtained: $s_1=3$.
- 4. Substitute the value of s_1 into the top equation: $s_2=5-s_1=2$.

We find that $s_1=3$ and $s_2=2$. Make sure to verify your intermediate result at this stage by plugging these values back into the two simultaneous equations.

Therefore the closed form is

$$a_n = 3 \times 7^n + 2(-8)^n$$
.

Evaluate at least a_0 , a_1 and a_2 with your closed form solution before entering it into the quiz.

13/08/2025, 16:54 Recurrence Relations

Created using Numbas (https://www.numbas.org.uk), developed by Newcastle University (https://www.newcastle.ac.uk).