WIND-BORNE DEBRIS REGIONS: Areas within hurricane prone regions where impact protection is required for glazed openings, see Section 26.10.3.

26.3 SYMBOLS AND NOTATION

The following symbols and notation apply only to the provisions of Chapters 26 through 31:

- $A = \text{effective wind area, in } \text{ft}^2 \text{ (m}^2\text{)}$
- A_f = area of open buildings and other structures either normal to the wind direction or projected on a plane normal to the wind direction, in ft² (m²)
- A_g = the gross area of that wall in which A_o is identified, in ft² (m²)
- A_{gi} = the sum of the gross surface areas of the building envelope (walls and roof) not including A_g , in ft² (m²)
- A_o = total area of openings in a wall that receives positive external pressure, in ft² (m²)
- A_{oi} = the sum of the areas of openings in the building envelope (walls and roof) not including A_o , in ft² (m²)
- A_{og} = total area of openings in the building envelope in ft² (m²)
- A_s = gross area of the solid freestanding wall or solid sign, in ft^2 (m²)
- a = width of pressure coefficient zone, in ft (m)
- B =horizontal dimension of building measured normal to wind direction, in ft (m)
- \overline{b} = mean hourly wind speed factor in Eq. 26.9-16 from Table 26.9-1
- \vec{b} = 3-s gust speed factor from Table 26.9-1
- C_f = force coefficient to be used in determination of wind loads for other structures
- C_N = net pressure coefficient to be used in determination of wind loads for open buildings
- C_p = external pressure coefficient to be used in determination of wind loads for buildings
- c = turbulence intensity factor in Eq. 26.9-7 from Table 26.9-1
- D = diameter of a circular structure or member, in ft (m)
- D' = depth of protruding elements such as ribs and spoilers, in ft (m)
- F =design wind force for other structures, in lb (N)

- G = gust-effect factor
- G_f = gust-effect factor for MWFRS of flexible buildings and other structures
- (GC_{pn}) = combined net pressure coefficient for a parapet
- (GC_p) = product of external pressure coefficient and gust-effect factor to be used in determination of wind loads for buildings
- (GC_{pf}) = product of the equivalent external pressure coefficient and gust-effect factor to be used in determination of wind loads for MWFRS of low-rise buildings
- (GC_{pi}) = product of internal pressure coefficient and gust-effect factor to be used in determination of wind loads for buildings
- (GC_r) = product of external pressure coefficient and gust-effect factor to be used in determination of wind loads for rooftop structures
 - g_Q = peak factor for background response in Eqs. 26.9-6 and 26.9-10
 - g_R = peak factor for resonant response in Eq. 26.9-10
 - g_v = peak factor for wind response in Eqs. 26.9-6 and 26.9-10
 - H = height of hill or escarpment in Fig.26.8-1, in ft (m)
 - h = mean roof height of a building or heightof other structure, except that eave height shall be used for roof angle θ less than or equal to 10° , in ft (m)
 - h_e = roof eave height at a particular wall, or the average height if the eave varies along the wall
 - h_p = height to top of parapet in Fig. 27.6-4 and 30.7-1
 - $I_{\bar{z}}$ = intensity of turbulence from Eq. 26.9-7
- K_1 , K_2 , K_3 = multipliers in Fig. 26.8-1 to obtain K_{zt}
 - K_d = wind directionality factor in Table 26.6-1
 - K_h = velocity pressure exposure coefficient evaluated at height z = h
 - K_z = velocity pressure exposure coefficient evaluated at height z
 - K_{zt} = topographic factor as defined in Section 26.8
 - L = horizontal dimension of a building measured parallel to the wind direction, in ft (m)
 - L_h = distance upwind of crest of hill or escarpment in Fig. 26.8-1 to where the difference in ground elevation is half the height of the hill or escarpment, in ft (m)