Clase 2:

Derivación numérica

Derivación numérica

Brunton, Steven

- Motivación en el marco de la materia
- Métodos de diferencias finitas
 - Progresiva
 - Regresiva
 - Central
- Errores de estimación de la derivada
- Derivada numérica aplicada a datos
- Uso de paquetes de Python
- Bibliografía

Motivación en el marco de la materia

• Sistemas dinámicos, autónomos, unidimensionales, regidos por ODE

$$\dot{x} = dx/dt = f(x) \longrightarrow$$
 campo vector

Puntos fijos

$$\dot{x} = f(x) = 0 \implies$$
 raíces de f(x)

Estabilidad de puntos fijos

$$\left. rac{df}{dx}
ight|_{x^*} = f'(x^*)$$
 $f'(x^*) > 0$ inestable $f'(x^*) < 0$ estable

Derivada: definición matemática

Sea la función f(x) continua y diferenciable en x_0 , la derivada de f(x) en x_0 se define como el límite del cociente incremental

$$f'(x_0) = \lim_{h o 0} rac{f(x_0+h)-f(x_0)}{h}$$

Cuánto más chico el h, la secante tiende a la tangente

La derivada de f(x) en x_0 es la pendiente de la recta tangente a f(x) en x_0

Métodos de diferencias finitas

Método de la diferencia progresiva

$$f'(x_0)pprox rac{f(x_0+h)-f(x_0)}{h}$$

Método de la diferencia regresiva

$$f'(x_0)pprox rac{f(x_0)-f(x_0-h)}{h}$$
 /

• Método de la diferencia central

$$f'(x_0)pprox rac{1}{2}igg(rac{f(x_0+h)-f(x_0)}{h}+rac{f(x_0)-f(x_0-h)}{h}igg)=rac{f(x_0+h)-f(x_0-h)}{2h}$$

Evalúo la función en 2 puntos

Evalúo la función en 3 puntos

Error de truncamiento

Se debe a que estamos truncando el desarrollo de Taylor a un cierto grado

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + rac{f''(x_0)}{2}(x - x_0)^2 + rac{f'''(x_0)}{6}(x - x_0)^3 + \cdots$$

Para los métodos de la diferencia progresiva y de la diferencia regresiva, la estimación surge del polinomio de Taylor de grado 1, por lo que el error es

$$\left| rac{f(x_0+h)-f(x_0)}{h} - f'(x_0)
ight| \leq rac{hK_2}{2}$$

Para el método de la diferencia central, la estimación surge del polinomio de Taylor de grado 2. El error es menor (si h es chico), dada la expresión

$$\left| rac{f(x_0+h) - f(x_0-h)}{2h} - f'(x_0)
ight| \leq rac{h^2 K_3}{6}$$

Error de redondeo

Al evaluar la función tendré un error de estimación (redondeo de la máquina)

$$f(x) = \hat{f}(x) + e(x)$$

Esto hace que los métodos de diferencias finitas tengan error de redondeo

$$rac{f(x_0+h)-f(x_0)}{h}-f'(x_0)=rac{\hat{f}\left(x_0+h
ight)-\hat{f}\left(x_0
ight)}{h}-f'(x_0)+rac{e(x_0+h)-e(x_0)}{h}$$

Si considero el error de redondeo acotado por un epsilon, entonces todos los métodos van a tener un error de redondeo proporcional a epsilon/h

Balance en h: que sea chico como para reducir el error de truncamiento pero no tan chico, para no tener un error de redondeo alto (la suma es el error total)

Derivada numérica aplicada a datos

Hasta ahora hablamos de derivar una función (yo podía elegir el h)

Qué pasa en realidad cuando trabajo con datos?

Qué forma tienen los datos?

$$x = [x1, x2, ..., xn]$$
 (lista, array)

Conozco la expresión que los describe?

"x" es una variable

x(t)?

Me puede llegar a interesar la derivada de los datos?

Nueva motivación para la derivada numérica:

$$\dot{x}=f(x)$$

Si tengo valores de "x" y de su derivada, puedo estimar la ODE que la describe!

Derivada numérica aplicada a datos

Vamos a ver un ejemplo en el colab en una base de datos pública de tránsito de peatones. Vamos a extraer las posiciones en "x" y en "y" y a calcular las derivadas

Cómo se comportan las derivadas?

Comparemos las fluctuaciones de acuerdo a lo esperado a partir de las posiciones

Hay un tema de ruido y robustez de la estimación que requiere resolución y vamos a ver más adelante

Funciones integradas en paquetes de Python

Numpy y Scipy tienen funciones para cálculo de derivada numérica

- scipy.misc.derivative
 - Usa el método de la diferencia central
 - Se aplica a funciones
 - Tiene problemas y será retirado en próximas versiones
- numpy.gradient
 - Usa el método de la diferencia central
 - Pide como entrada un array
- numpy.diff
 - Sólo calcula la diferencia entre elementos (n-1)

Bibliografía recomendada

Burden & Faires 2010

Kiusalaas 2013

Morken 2017

