

64-040 Modul InfB-RS: Rechnerstrukturen

https://tams.informatik.uni-hamburg.de/ lectures/2016ws/vorlesung/rs

- Kapitel 8 -

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

Wintersemester 2016/2017

64-040 Rechnerstrukturen

8 Logische Operationen

Logische Operationen

Boole'sche Algebra Boole'sche Operationen

Bitweise logische Operationen

Schiebeoperationen

Anwendungsbeispiele

Literatur

Analyse und Beschreibung von

- gemeinsamen, wichtigen Eigenschaften
- mathematischer Operationen
- mit vielfältigen Anwendungen

Spezifiziert durch

- ▶ die Art der Elemente (z.B. ganze Zahlen, Aussagen, usw.)
- die Verknüpfungen (z.B. Addition, Multiplikation)
- zentrale Elemente (z.B. Null-, Eins-, inverse Elemente)

Anwendungen: z.B. fehlerkorrigierende Codes auf CD/DVD

- George Boole, 1850: Untersuchung von logischen Aussagen mit den Werten true (wahr) und false (falsch)
- ▶ Definition einer Algebra mit diesen Werten
- ▶ Vier grundlegende Funktionen:
 - ► NEGATION (NOT)
 - UND
 - ODER
 - XOR

Schreibweisen:
$$\neg a$$
, \overline{a} , $\sim a$

-"- $a \wedge b$, $a \& b$

-"- $a \vee b$, $a \mid b$

-"- $a \oplus b$, $a \cap b$

► Claude Shannon, 1937: Realisierung der Boole'schen Algebra mit Schaltfunktionen (binäre digitale Logik)

- ▶ zwei Werte: wahr (true, 1) und falsch (false, 0)
- vier grundlegende Verknüpfungen:

$$\begin{array}{c|c}
XOR(x,y) \\
 & y & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

- alle logischen Operationen lassen sich mit diesen Funktionen darstellen
- → vollständige Basismenge

▶ insgesamt 4 Funktionen mit einer Variable

$$f_0(x) = 0$$
, $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = \neg x$

- ▶ insgesamt 16 Funktionen zweier Variablen
- ▶ allgemein 2^{2^n} Funktionen von n Variablen
- ► später noch viele Beispiele

(s. Beispiel)

Anzahl der binären Funktionen (cont.)

8.1 Logische Operationen - Boole'sche Algebra

64-040 Rechnerstrukturen

x =	0	1	0	1				
y =	0	0	1	1	Bezeichnung	Notation	alternativ	Java / C
	0	0	0	0	Nullfunktion	0		0
	0	0	0	1	AND	$x \cap y$	$x \wedge y$	x&&y
	0	0	1	0	Inhibition	x < y		x <y< td=""></y<>
	0	0	1	1	ldentität y	y		У
	0	1	0	0	Inhibition	x > y		x>y
	0	1	0	1	ldentität ×	x		x
	0	1	1	0	XOR	$x \oplus y$	$x \neq y$	x!=y
	0	1	1	1	OR	$x \cup y$	$x \vee y$	x y
	1	0	0	0	NOR	$\neg(x \cup y)$	$\overline{x \vee y}$!(x y)
	1	0	0	1	Äquivalenz	$\neg(x\oplus y)$	x = y	x==y
	1	0	1	0	NICHT x	$\neg x$	\overline{x}	! x
	1	0	1	1	Implikation	$x \leq y$	$x \rightarrow y$	x<=y
	1	1	0	0	NICHT y	$\neg y$	\overline{y}	! y
	1	1	0	1	Implikation	$x \ge y$	$x \leftarrow y$	x>=y
	1	1	1	0	NAND	$\neg(x\cap y)$	$\overline{x \wedge y}$! (x&&y)
	1	1	1	1	Einsfunktion	1		1

- ▶ 6-Tupel $\langle \{0,1\}, \vee, \wedge, \neg, 0, 1 \rangle$ bildet eine Algebra
- ▶ {0, 1} Menge mit zwei Elementen
- \ \ ist die "Addition"
- \(\) ist die "Multiplikation"
- ¬ ist das "Komplement" (nicht das Inverse!)
- ▶ 0 (false) ist das Nullelement der Addition
- ▶ 1 (true) ist das Einselement der Multiplikation

Rechenregeln: Ring / Algebra

8.1 Logische Operationen - Boole'sche Algebra

64-040 Rechnerstrukturen

Eigenschaft	Ring der ganzen Zahlen	Boole'sche Algebra
Kommutativgesetz	a+b=b+a	$a \lor b = b \lor a$
	$a \times b = b \times a$	$a \wedge b = b \wedge a$
Assoziativgesetz	(a+b)+c = a+(b+c)	$(a \lor b) \lor c = a \lor (b \lor c)$
	$(a \times b) \times c = a \times (b \times c)$	$(a \wedge b) \wedge c = a \wedge (b \wedge c)$
Distributivgesetz	$a \times (b+c) = (a \times b) + (a \times c)$	$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
Identitäten	a+0=a	$a \lor 0 = a$
	a imes 1 = a	$a \wedge 1 = a$
Vernichtung	$a \times 0 = 0$	$a \wedge 0 = 0$
Auslöschung	-(-a)=a	$\neg(\neg a) = a$
Inverses	a + (-a) = 0	_
Distributivgesetz	- ///~	$a\lor(b\land c)=(a\lor b)\land(a\lor c)$
Komplement	_	$a \lor \neg a = 1$
	_	$a \wedge \neg a = 0$
Idempotenz	- //-/	$a \lor a = a$
	- 111-11	$a \wedge a = a$
Absorption	_	$a \lor (a \land b) = a$
	_	$a \wedge (a \vee b) = a$
De-Morgan Regeln	- 111-241	$\neg(a \lor b) = \neg a \land \neg b$
· · · · · · · · · · · · · · · · · · ·	- ///-0	$\neg(a \land b) = \neg a \lor \neg b$

54-040 Rechnerstrukturen

8.1 Logische Operationen - Boole'sche Algebra

$$\neg(a \lor b) = \neg a \land \neg b$$

$$\neg(a \land b) = \neg a \lor \neg b$$

$$a \rightarrow b \rightarrow a \land b$$

- Ersetzen von UND durch ODER und umgekehrt ⇒ Austausch der Funktion
- 2. Invertieren aller Ein- und Ausgänge

Verwendung

- ▶ bei der Minimierung logischer Ausdrücke
- beim Entwurf von Schaltungen
- ▶ siehe Abschnitte: "Schaltfunktionen" und "Schaltnetze"

⇒ entweder a oder b (ausschließlich) a ungleich b

 $(\Rightarrow Antivalenz)$

- ▶ $a \oplus b = (\neg a \land b) \lor (a \land \neg b)$ genau einer von den Termen a und b ist wahr
- ▶ $a \oplus b = (a \lor b) \land \neg(a \land b)$ entweder a ist wahr, oder b ist wahr, aber nicht beide gleichzeitig
- $ightharpoonup a \oplus a = 0$

- ► Datentyp für Boole'sche Logik
 - ► Java: Datentyp boolean
 - ► C: implizit für alle Integertypen
- Vergleichsoperationen
- Logische Grundoperationen
- ▶ Bitweise logische Operationen
 - = parallele Berechnung auf Integer-Datentypen
- Auswertungsreihenfolge
 - Operatorprioritäten
 - Auswertung von links nach rechts
 - ▶ (optionale) Klammerung

a == b wahr, wenn a gleich b
a != b wahr, wenn a ungleich b
a >= b wahr, wenn a größer oder gleich b
a > b wahr, wenn a größer b
a < b wahr, wenn a kleiner b
a <= b wahr, wenn a kleiner oder gleich b

- ▶ Vergleich zweier Zahlen, Ergebnis ist logischer Wert
- ▶ Java: Integerwerte alle im Zweierkomplement
 - C: Auswertung berücksichtigt signed/unsigned-Typen

- ▶ zusätzlich zu den Vergleichsoperatoren <, <=, ==, !=, >, >=
- drei logische Operatoren:
 - ! logische Negation
 - & logisches UND
 - | | logisches ODER
- ► Interpretation der Integerwerte: der Zahlenwert 0 ⇔ logische 0 (false) alle anderen Werte ⇔ logische 1 (true)
- ⇒ völlig andere Semantik als in der Mathematik

Achtung!

⇒ völlig andere Funktion als die bitweisen Operationen

- verkürzte Auswertung von links nach rechts (shortcut)
 - ► Abbruch, wenn Ergebnis feststeht
 - + kann zum Schutz von Ausdrücken benutzt werden
 - kann aber auch Seiteneffekte haben, z.B. Funktionsaufrufe
- ► Beispiele
 - ▶ (a > b) || ((b != c) && (b <= d))

•		Wert		
			!0x41	0x00
			00x0	0x01
		!	00x0	00x0
	0x69	&&	0x55	0x01
	0x69	П	0x55	0x01

Logische Operationen in C: Logisch vs. Bitweise

8.2 Logische Operationen - Boole'sche Operationer

64-040 Rechnerstrukturen

- ▶ der Zahlenwert $0 \Leftrightarrow \text{logische 0 (false)}$ alle anderen Werte $\Leftrightarrow \text{logische 1 (true)}$
- ▶ Beispiel: x = 0x66 und y = 0x93

bitweise O	peration	logische Operation		
Ausdruck	Wert	Ausdruck	Wert	
х	01100110	х	0000 0001	
у	1001 0011	у	0000 0001	
х & у	00000010	х && у	0000 0001	
x y	11110111	x y	0000 0001	
~x ~y	1111 1101	!x !y	0000 0000	
x & ~y	01100100	x && !y	0000 0000	

- ▶ logische Ausdrücke werden von links nach rechts ausgewertet
- Klammern werden natürlich berücksichtigt
- ► Abbruch, sobald der Wert eindeutig feststeht (*shortcut*)
- ► Vor- oder Nachteile möglich (codeabhängig)
 - + (a && 5/a) niemals Division durch Null. Der Quotient wird nur berechnet, wenn der linke Term ungleich Null ist.
 - + (p && *p++) niemals Nullpointer-Zugriff. Der Pointer wird nur verwendet, wenn p nicht Null ist.

Ternärer Operator

- ▶ ⟨condition⟩ ? ⟨true-expression⟩ : ⟨false-expression⟩
- ▶ Beispiel: (x < 0) ? -x : x Absolutwert von x

- ► Java definiert eigenen Datentyp boolean
- elementare Werte false und true
- ▶ alternativ Boolean.FALSE und Boolean.TRUE
- ▶ keine Mischung mit Integer-Werten wie in C
- ▶ Vergleichsoperatoren <, <=, ==, !=, >, >=
- verkürzte Auswertung von links nach rechts (shortcut)

Ternärer Operator

- ► ⟨condition⟩ ? ⟨true-expression⟩ : ⟨false-expression⟩
- ▶ Beispiel: (x < 0) ? -x : x Absolutwert von x

Integer-Datentypen doppelt genutzt:

- 1. Zahlenwerte (Ganzzahl, Zweierkomplement, Gleitkomma) arithmetische Operationen: Addition, Subtraktion, usw.
- 2. Binärwerte mit w einzelnen Bits (Wortbreite w) Boole'sche Verknüpfungen, bitweise auf allen w Bits
 - Grundoperationen: Negation, UND, ODER, XOR
 - Schiebe-Operationen: shift-left, rotate-right, usw.

64-040 Rechnerstrukturen

8.3 Logische Operationen - Bitweise logische Operationer

- ► Integer-Datentypen interpretiert als Menge von Bits
- ⇒ bitweise logische Operationen möglich
 - ▶ in Java und C sind vier Operationen definiert:

Negation
$$\sim x$$
 Invertieren aller einzelnen Bits UND $x \& y$ Logisches UND aller einzelnen Bits OR $x \mid y$ -"- ODER -"- XOR $x \wedge y$ -"- XOR -"-

▶ alle anderen Funktionen können damit dargestellt werden es gibt insgesamt 2²ⁿ Operationen mit n Operanden

8.3 Logische Operationen - Bitweise logische Operationer

64-040 Rechnerstrukturen

$$x = 00101110$$

$$y = 10110011$$

$$\sim x = 11010001$$
 alle Bits invertiert

$$\sim$$
y = 0100 1100 alle Bits invertiert

$$x \& y = 00100010$$
 bitweises UND

$$x \mid y = 10111111$$
 bitweises ODER

$$x \wedge y = 10011101$$
 bitweises XOR

- Ergänzung der bitweisen logischen Operationen
- ▶ für alle Integer-Datentypen verfügbar
- fünf Varianten

Shift-Left shl
Logical Shift-Right srl
Arithmetic Shift-Right sra
Rotate-Left rol
Rotate-Right ror

- ► Schiebeoperationen in Hardware leicht zu realisieren
- ▶ auf fast allen Prozessoren im Befehlssatz

- ▶ Verschieben der Binärdarstellung von *x* um *n* bits nach links
- ▶ links herausgeschobene *n* bits gehen verloren
- ▶ von rechts werden *n* Nullen eingefügt

- ▶ in Java und C direkt als Operator verfügbar: x << n
- \triangleright sh1 um *n* bits entspricht der Multiplikation mit 2^n

- ▶ Verschieben der Binärdarstellung von x um n bits nach rechts
- ▶ rechts herausgeschobene *n* bits gehen verloren
- ▶ von links werden *n* Nullen eingefügt

in Java direkt als Operator verfügbar: x >>> n in C nur für unsigned-Typen definiert: x >> n für signed-Typen nicht vorhanden

- ▶ Verschieben der Binärdarstellung von x um n bits nach rechts
- ▶ rechts herausgeschobene *n* bits gehen verloren
- ▶ von links wird *n*-mal das MSB (Vorzeichenbit) eingefügt
- ► Vorzeichen bleibt dabei erhalten (gemäß Zweierkomplement)

- ▶ in Java direkt als Operator verfügbar: x >> n in C nur für signed-Typen definiert: x >> n
- \triangleright sra um *n* bits ist ähnlich der Division durch 2^n

Arithmetic Shift-Right: Beispiel

8.4 Logische Operationen - Schiebeoperationen

64-040 Rechnerstrukturen

x >> 1 aus 0x10D3 (4307) wird 0x0869 (2153)

x >> 3 aus 0x90D3 (-28460) wird 0xF21A (-3558)

Arithmetic Shift-Right: Division durch Zweierpotenzen?

8.4 Logische Operationen - Schiebeoperationer

64-040 Rechnerstrukturen

- **•** positive Werte: $x \gg n$ entspricht Division durch 2^n
- ▶ negative Werte: x >> n Ergebnis ist zu klein (!)
- gerundet in Richtung negativer Werte statt in Richtung Null:

```
1111 1011 (-5)
1111 1101 (-3)
1111 1110 (-2)
```

1111 1111 (-1)

▶ in C: Kompensation durch Berechnung von (x + (1 << k)-1) >> kDetails: Bryant, O'Hallaron [BO15]

- ▶ Rotation der Binärdarstellung von *x* um *n* bits nach links
- ▶ herausgeschobene Bits werden von rechts wieder eingefügt

- ▶ in Java und C nicht als Operator verfügbar
- ▶ Java: Integer.rotateLeft(int x, int distance)

8.4 Logische Operationen - Schiebeoperationen

- ▶ Rotation der Binärdarstellung von *x* um *n* bits nach rechts
- ▶ herausgeschobene Bits werden von links wieder eingefügt

- ▶ in Java und C nicht als Operator verfügbar
- ▶ Java: Integer.rotateRight(int x, int distance)

- ► Integer-Multiplikation ist auf vielen Prozessoren langsam oder evtl. gar nicht als Befehl verfügbar
- ► Add./Subtraktion und logische Operationen: typisch 1 Takt Shift-Operationen: meistens 1 Takt
- ⇒ eventuell günstig, Multiplikation mit Konstanten durch entsprechende Kombination aus shifts+add zu ersetzen
 - ▶ Beispiel: $9 \cdot x = (8+1) \cdot x$ ersetzt durch (x << 3) + x
 - viele Compiler erkennen solche Situationen

Bits an Position p in einem Integer setzen oder löschen?

- Maske erstellen, die genau eine 1 gesetzt hat
- ▶ dies leistet (1 << p), mit $0 \le p \le w$ bei Wortbreite w

Linux: /usr/include/bits/byteswap.h

```
...
/* Swap bytes in 32 bit value. */
#define __bswap_32(x) \
((((x) & 0xff000000) >> 24) | (((x) & 0x000f0000) >> 8) |\
(((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))
...
```

Linux: /usr/include/netinet/in.h

```
# if __BYTE_ORDER == __LITTLE_ENDIAN
# define ntohl(x) __bswap_32 (x)
# define ntohs(x) __bswap_16 (x)
# define htonl(x) __bswap_32 (x)
# define htons(x) __bswap_16 (x)
# endif
```

Farbdarstellung am Monitor / Bildverarbeitung?

- ▶ Matrix aus $w \times h$ Bildpunkten
- additive Farbmischung aus Rot, Grün, Blau
- ▶ pro Farbkanal typischerweise 8-bit, Wertebereich 0..255
- ► Abstufungen ausreichend für (untrainiertes) Auge
- ▶ je ein 32-bit Integer pro Bildpunkt
- ► typisch: 0x00RRGGBB oder 0xAARRGGBB
- ▶ je 8-bit für Alpha/Transparenz, rot, grün, blau
- java.awt.image.BufferedImage(TYPE_INT_ARGB)

```
public BufferedImage redFilter( BufferedImage src ) {
  int w = src.getWidth();
 int h = src.getHeight();
  int type = BufferedImage.TYPE_INT_ARGB;
 BufferedImage dest = new BufferedImage( w, h, type );
  for( int y=0; y < h; y++ ) {      // alle Zeilen</pre>
    for( int x=0; x < w; x++ ) { // von links nach rechts
      int rgb = src.getRGB( x, y ); // Pixelwert bei (x,y)
                                    // rgb = 0xAARRGGBB
      int red = (rgb & 0x00FF0000); // Rotanteil maskiert
      dest.setRGB( x, y, red );
  return dest:
```

```
public BufferedImage grayFilter( BufferedImage src ) {
  for( int y=0; y < h; y++ ) {      // alle Zeilen</pre>
    for( int x=0; x < w; x++ ) { // von links nach rechts</pre>
      int rgb = src.getRGB( x, y ); // Pixelwert
      int red = (rgb & 0x00FF0000) >>>16; // Rotanteil
      int green = (rgb & 0x0000FF00) >>> 8; // Grünanteil
      int blue = (rgb & 0x000000FF); // Blauanteil
      int gray = (red + green + blue) / 3; // Mittelung
      dest.setRGB(x, y, (gray << 16) | (gray << 8) | gray );
```

Anzahl der gesetzten Bits in einem Wort?

- Anwendung z.B. für Kryptalgorithmen (Hamming-Abstand)
- Anwendung für Medienverarbeitung

```
public static int bitcount( int x ) {
  int count = 0;

while( x != 0 ) {
   count += (x & 0x00000001); // unterstes bit addieren
   x = x >>> 1; // 1-bit rechts-schieben
  }

return count;
}
```

- Algorithmus mit Schleife ist einfach aber langsam
- schnelle parallele Berechnung ist möglich

java.lang.Integer.bitCount()

```
public static int bitCount(int i) {
    // HD, Figure 5-2
    i = i - ((i >>> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
    i = (i + (i >>> 4)) & 0x0f0f0f0f;
    i = i + (i >>> 8);
    i = i + (i >>> 16);
    return i & 0x3f;
}
```

- ▶ viele Algorithmen: bit-Maskierung und Schieben
 - http://gurmeet.net/puzzles/fast-bit-counting-routines
 - http://graphics.stanford.edu/~seander/bithacks.html
 - D. E. Knuth: The Art of Computer Programming: Volume 4A, Combinational Algorithms: Part1, Abschnitt 7.1.3 [Knu09]
- ▶ viele neuere Prozessoren/DSPs: eigener bitcount-Befehl

Tipps & Tricks: Rightmost bits

D. E. Knuth: The Art of Computer Programming, Vol 4.1 [Knu09]

8.5 Logische Operationen - Anwendungsbeispiele

64-040 Rechnerstrukturen

Grundidee: am weitesten rechts stehenden 1-Bits / 1-Bit Folgen erzeugen Überträge in arithmetischen Operationen

- ▶ Integer x, mit $x = (\alpha \, 0 \, [1]^a \, 1 \, [0]^b)_2$ beliebiger Bitstring α , eine Null, dann a+1 Einsen und b Nullen, mit $a \ge 0$ und $b \ge 0$.
- Ausnahmen: $x = -2^b$ und x = 0

$$\Rightarrow x = (\alpha \, 0 \, [1]^{a} \, 1 \, [0]^{b})_{2}$$

$$\overline{x} = (\overline{\alpha} \, 1 \, [0]^{a} \, 0 \, [1]^{b})_{2}$$

$$x - 1 = (\alpha \, 0 \, [1]^{a} \, 0 \, [1]^{b})_{2}$$

$$-x = (\overline{\alpha} \, 1 \, [0]^{a} \, 1 \, [0]^{b})_{2}$$

 $\Rightarrow \overline{x} + 1 = -x = \overline{x - 1}$

Tipps & Tricks: Rightmost bits (cont.) D. E. Knuth: *The Art of Computer Programming*, Vol 4.1 [Knu09]

8.5 Logische Operationen - Anwendungsbeispiele

64-040 Rechnerstrukturen

$$x = (\alpha \, 0 \, [1]^{a} \, 1 \, [0]^{b})_{2}$$
 $\overline{x} = (\overline{\alpha} \, 1 \, [0]^{a} \, 0 \, [1]^{b})_{2}$
 $x - 1 = (\alpha \, 0 \, [1]^{a} \, 0 \, [1]^{b})_{2}$ $-x = (\overline{\alpha} \, 1 \, [0]^{a} \, 1 \, [0]^{b})_{2}$

$$x\&(x-1) = (\alpha \ 0[1]^{a}0[0]^{b})_{2}$$

$$x\&-x = (0^{\infty}0[0]^{a}1[0]^{b})_{2}$$

$$x \mid -x = (1^{\infty}1[1]^{a}1[0]^{b})_{2}$$

$$x \oplus -x = (1^{\infty}1[1]^{a}0[0]^{b})_{2}$$

$$x \mid (x-1) = (\alpha \ 0[1]^{a}1[1]^{b})_{2}$$

$$\overline{x}\&(x-1) = (0^{\infty}0[0]^{a}0[1]^{b})_{2}$$

$$((x \mid (x-1)) + 1)\&x = (\alpha \ 0[0]^{a}0[0]^{b})_{2}$$

letzte 1 entfernt
letzte 1 extrahiert
letzte 1 nach links verschmiert
letzte 1 entfernt und verschmiert
letzte 1 nach rechts verschmiert
letzte 1 nach rechts verschmiert
letzte 1-Bit Folge entfernt

- [BO15] R.E. Bryant, D.R. O'Hallaron:
 Computer systems A programmers perspective.
 3rd global ed., Pearson Education Ltd., 2015.
 ISBN 978-1-292-10176-7. csapp.cs.cmu.edu
- [TA14] A.S. Tanenbaum, T. Austin: Rechnerarchitektur Von der digitalen Logik zum Parallelrechner.
 6. Auflage, Pearson Deutschland GmbH, 2014.
 ISBN 978-3-86894-238-5

- [Knu09] D.E. Knuth: The Art of Computer Programming, Volume 4. Fascicle 1. Bitwise Tricks & Techniques: Binary Decision Diagrams. Addison-Wesley Professional, 2009. ISBN 978-0-321-58050-4
- [Hei05] K. von der Heide: Vorlesung: Technische Informatik 1 interaktives Skript. Universität Hamburg, FB Informatik, 2005. tams.informatik.uni-hamburg.de/lectures/2004ws/ vorlesung/t1