#### System Identification LS 2017



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

Problem discussion

## Least squares identification

For white noise

Xing Chao

School of Astronautics, Northwestern Polytechnical University

#### System model based on input/output data



The difference equation of a SISO system is

$$y_k+a_1y_{k-1}+\cdots+a_ny_{k-n}=b_0u_k+\cdots+b_nu_{k-n}+\xi_k$$

at time  $k = n + 1, n + 2, \dots, n + N$ , there is

$$y_{n+1} + a_1 y_n + \dots + a_n y_1 = b_0 u_{n+1} + \dots + b_n u_1 + \xi_{n+1}$$
  
$$y_{n+2} + a_1 y_{n+1} + \dots + a_n y_2 = b_0 u_{n+2} + \dots + b_n u_2 + \xi_{n+2}$$
  
$$\dots$$

$$y_{n+N} + a_1 y_{n+N-1} + \dots + a_n y_N = b_0 u_{n+N} + \dots + b_n u_N + \xi_{n+N}$$

Least squares identification

Xing Chao

east square stimation

Model order increasing algorithm

recursive least square

#### Vector form



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

$$\begin{array}{llll} Y & = & \Phi\theta + \xi \\ Y & = & \begin{bmatrix} y_{n+1} & y_{n+2} & \cdots & y_{n+N} \end{bmatrix}^T \\ & & & \begin{bmatrix} -y_n & \cdots & -y_1 & u_{n+1} & \cdots & u_1 \\ -y_{n+1} & \cdots & -y_2 & u_{n+2} & \cdots & u_2 \\ \vdots & & \vdots & \vdots & & \vdots \\ -y_{n+N-1} & \cdots & -y_N & u_{n+N} & \cdots & u_N \end{bmatrix} \\ \theta & = & \begin{bmatrix} a_1 & \cdots & a_n & b_0 & \cdots & b_n \end{bmatrix}^T \\ \xi & = & \begin{bmatrix} \xi_{n+1} & \xi_{n+2} & \cdots & \xi_{n+N} \end{bmatrix}^T \end{array}$$

#### Basic least squares method: identification criteria



Least squares identification

Xing Chao

## Least square estimation

Model order increasing algorithm

recursive least square

Problem discussion

Identification criterion: least square sum of residuals.

$$\begin{split} J &= \sum_{k=n+1}^{n+N} e^2(k) \\ &= (Y - \Phi \hat{\theta})^T (Y - \Phi \hat{\theta}) \\ \hat{\theta}_{LS} &= \underset{\hat{\theta}}{\operatorname{arg} \min J} \end{split}$$

#### Basic least square method: Derivative



$$\begin{split} \frac{\partial J}{\partial \hat{\theta}_k} &= \frac{\partial \sum_i (Y_i - \sum_m \Phi_{i,m} \hat{\theta}_m)^2}{\partial \hat{\theta}_k} \\ &= 2 \sum_i (Y_i - \sum_m \Phi_{i,m} \hat{\theta}_m) \frac{\partial (Y_i - \sum_m \Phi_{i,m} \hat{\theta}_m)}{\partial \hat{\theta}_k} \\ &= 2 \sum_i (Y_i - \sum_m \Phi_{i,m} \hat{\theta}_m) \frac{\partial (-\sum_m \Phi_{i,m} \hat{\theta}_m)}{\partial \hat{\theta}_k} \\ &= -2 \sum_i (Y_i - \sum_m \Phi_{i,m} \hat{\theta}_m) \Phi_{i,k} \\ &= -2 \sum_i (Y_i - \sum_m \Phi_{i,m} \hat{\theta}_m) \Phi_{i,k} \\ \frac{\partial J}{\partial \hat{\theta}} &= (-2(Y - \Phi \hat{\theta})^T \Phi)^T \\ &= -2 \Phi^T (Y - \Phi \hat{\theta}) \end{split}$$

Least squares identification

Xing Chao

## Least square estimation

Model order increasing algorithm

recursive least square

#### Basic least square method: solution



Least squares identification

Xing Chao

## Least square estimation

Model order increasing algorithm

recursive least square

$$\begin{array}{rcl} -2\Phi^{T}(Y - \Phi\hat{\theta}_{LS}) & = & 0 \\ \Phi^{T}Y - \Phi^{T}\Phi\hat{\theta}_{LS} & = & 0 \\ \Phi^{T}Y & = & \Phi^{T}\Phi\hat{\theta}_{LS} \\ \hat{\theta}_{LS} & = & (\Phi^{T}\Phi)^{-1}\Phi^{T}Y \end{array}$$

#### Basic least square method: two order derivative



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

$$\begin{array}{lcl} \frac{\partial^2 J}{\partial \hat{\theta}^2} & = & \frac{\partial (-2\Phi^T(Y-\Phi\hat{\theta}))}{\partial \hat{\theta}} \\ \frac{\partial \frac{\partial J}{\partial \hat{\theta}}}{\partial \hat{\theta}_s} & = & \frac{\partial (-2\sum_i (Y_i-\sum_m \Phi_{i,m}\hat{\theta}_m)\Phi_{i,k})}{\partial \hat{\theta}_s} \\ & = & 2\sum_i \frac{\partial \sum_m \Phi_{i,m}\hat{\theta}_m}{\partial \hat{\theta}_s} \Phi_{i,k} \\ & = & 2\sum_i \Phi_{i,s}\Phi_{i,k} \\ \frac{\partial^2 J}{\partial \hat{\theta}^2} & = & 2\Phi^T\Phi \end{array}$$

# The requirement of input signal by least square method : $[Y_{N\times n} \quad U_{N\times (n+1)}]$



$$\begin{split} \Phi^T\Phi &=& \begin{bmatrix} Y_{N\times n} & U_{N\times (n+1)} \end{bmatrix}^T \begin{bmatrix} Y_{N\times n} & U_{N\times (n+1)} \end{bmatrix} \\ &=& \begin{bmatrix} Y_{N\times n}^T Y_{N\times n} & Y_{N\times n}^T U_{N\times (n+1)} \\ U_{N\times (n+1)}^T Y_{N\times n} & U_{N\times (n+1)}^T U_{N\times (n+1)} \end{bmatrix} \end{split}$$

where:

$$Y_{N \times n} \ = \ \begin{bmatrix} -y_n & \cdots & -y_1 \\ -y_{n+1} & \cdots & -y_2 \\ \vdots & & \vdots \\ y_{n+N-1} & \cdots & -y_N \end{bmatrix}$$
 
$$U_{N \times (n+1)} \ = \ \begin{bmatrix} u_{n+1} & \cdots & u_1 \\ u_{n+2} & \cdots & u_2 \\ \vdots & & \vdots \\ u_{n+N} & \cdots & u_N \end{bmatrix}$$

Least squares identification Xing Chao

estimation

Model order increasing algorithm

recursive least square

# The requirement of input signal by least square method $\begin{bmatrix} Y_{N\times n} & U_{N\times (n+1)} \end{bmatrix}$



Least squares identification

Xing Chao

Least square

Model order increasing algorithm

recursive least square

## The requirement of input signal by least square method



Least squares identification

Xing Chao

Model order increasing algorithm

square

discussion

recursive least

Problem

LS 10/40

 $\lim_{N \to \infty} \frac{\Phi^T \Phi}{N} = \frac{1}{N} \begin{bmatrix} Y_{N \times n}^T Y_{N \times n} & Y_{N \times n}^T U_{N \times (n+1)} \\ U_{N \times (n+1)}^T Y_{N \times n} & U_{N \times (n+1)}^T U_{N \times (n+1)} \end{bmatrix}$  $= \begin{bmatrix} R_y & R_{yu} \\ R_{yy} & R_{yy} \end{bmatrix}$ 

where:

 $\begin{array}{llll} R_y & = & \begin{bmatrix} R_y(0) & R_y(1) & \cdots & R_y(n-1) \\ R_y(1) & R_y(0) & \cdots & R_y(n-2) \\ \vdots & \vdots & & \vdots \\ R_y(n-1) & R_y(n-2) & \cdots & R_y(0) \end{bmatrix} \\ R_{yu} & = & \begin{bmatrix} -R_{yu}(1) & -R_{yu}(0) & \cdots & -R_{yu}(1-n) \\ -R_{yu}(2) & -R_{yu}(1) & \cdots & -R_{yu}(2-n) \\ \vdots & \vdots & & \vdots \\ -R_{yu}(n) & -R_{yu}(n-1) & \cdots & -R_{yu}(0) \end{bmatrix} \end{array}$ 

#### The requirement of input signal by least square method:

$$\begin{bmatrix} R_y & R_{yu} \\ R_{uy} & R_u \end{bmatrix}$$



Least squares identification

Xing Chao

## Least square estimation

Model order increasing algorithm

recursive least square

```
\begin{array}{lll} R_{uy} & = & R_{yu}^T \\ \\ R_{uu} & = & \begin{bmatrix} R_u(0) & R_u(1) & \cdots & R_u(n) \\ R_u(1) & R_u(0) & \cdots & R_u(n-1) \\ \vdots & \vdots & & \vdots \\ R_u(n) & R_u(n-1) & \cdots & R_u(0) \end{bmatrix} \end{array}
```

#### (n+1) order continuous excitation signal



• defination:  $\{u(k)\}$  is called (n+1) order continuous excitation signal if (n+1) order matrix  $R_u$  of series  $\{u(k)\}$  is positive definate,  $\circ$ 

identification
Xing Chao

Least squares

• The requirement of least square method for input signal is:  $\{u(k)\}$  is (n+1) order continuous excitation signal

### Least square estimation

• R<sub>u</sub> is positive definate if R<sub>u</sub> is an strongly diagonally dominant matrix. The following sginals can satisfy the requirement of positive definate of R<sub>u</sub>.

Model order increasing algorithm

• White noise sequence ;

recursive least square

• Pseudo random two bit noise sequence;

Problem discussion

 $\bullet$  Colored noise random signal sequence  $_{\circ}$ 

 $\bullet$  "Pseudo random two bit noise sequence" and "colored noise random signal sequence" are often used as input signals in Engineering  $_\circ$ 

#### Probabilistic properties of least squares estimation



Least squares identification

Xing Chao

There are four main aspects of the probability property of least squares estimation,

- unbiasedness of the estimation:
- Consistency of estimates;
- Validity of estimation;
- Asymptotic normality of estimators .

Least square estimation

Model order increasing algorithm

recursive least

#### unbiasedness of the estimation



 $\hat{\theta}$  is refered as unbiased estimation of parameter  $\theta$  if  $\mathrm{E}\{\hat{\theta}\}=\theta$  .

$$Y = \Phi\theta + \xi$$

$$\hat{\theta} = (\Phi^{T}\Phi)^{-1}\Phi^{T}Y$$

$$E[\hat{\theta}] = E[(\Phi^{T}\Phi)^{-1}\Phi^{T}Y]$$

$$= E[(\Phi^{T}\Phi)^{-1}\Phi^{T}(\Phi\theta + \xi)]$$

$$= E[(\Phi^{T}\Phi)^{-1}\Phi^{T}\Phi\theta + (\Phi^{T}\Phi)^{-1}\Phi^{T}\xi]$$

$$= E[\theta + (\Phi^{T}\Phi)^{-1}\Phi^{T}\xi]$$

The necessary and sufficient conditions of least squares estimation for unbiased estimation is:

$$E[(\Phi^{T}\Phi)^{-1}\Phi^{T}\xi] = 0$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

#### Consistent estimation



$$\lim_{N \to \infty} P\{|\hat{\theta} - \theta\} = 1$$

Suppose  $\xi\{(k)\}$  is random sequence with zero mean and independent distribution uncorrelated with  $\{u(k)\}$ :

$$\begin{split} E(\hat{\theta} - \theta)^2 &= E[(\Phi^T \Phi)^{-1} \Phi^T \xi \xi^T \Phi (\Phi^T \Phi)^{-1}] \\ &= E[\frac{1}{N^2} (\frac{1}{N} \Phi^T \Phi)^{-1} \Phi^T \xi \xi^T \Phi (\frac{1}{N} \Phi^T \Phi)^{-1}] \\ \lim_{N \to \infty} E(\hat{\theta} - \theta)^2 &= \frac{1}{N^2} R^{-1} E[\Phi^T \xi \xi^T \Phi] R^{-1} \\ &= \frac{1}{N^2} R^{-1} \sigma^2 E[\Phi^T \Phi] R^{-1} \\ &= \frac{1}{N^2} R^{-1} \sigma^2 NRR^{-1} \\ &= \frac{\sigma^2}{N} R^{-1} \\ &= 0 \end{split}$$

Least squares identification

Xing Chao

## Least square estimation

Model order increasing algorithm

recursive least square

#### The validity of the estimation



Least squares identification

Xing Chao

## Least square estimation

Model order increasing algorithm

recursive least square

Problem discussion

#### Cramer-Rao inequality:

$$D\hat{\theta} = M^{-1}$$

$$M = E \left[ \left( \frac{\partial \ln p(y|\theta)}{\partial \theta} \right)^{T} \left( \frac{\partial \ln p(y|\theta)}{\partial \theta} \right) \right]$$

#### The validity of the estimation



$$\begin{aligned} \mathbf{y} &=& \Phi\theta + \xi \\ \mathbf{y} &\sim & \mathbf{N}(\Phi\theta, \sigma^2\mathbf{I}) \\ \mathbf{p}(\mathbf{y}|\theta) &=& (2\pi\sigma^2)^{-\frac{\mathbf{N}}{2}} \mathrm{exp} \left[ -\frac{1}{2\sigma^2} (\mathbf{y} - \Phi\theta)^{\mathrm{T}} (\mathbf{y} - \Phi\theta) \right] \\ \frac{\partial \ln \mathbf{p}(\mathbf{y}|\theta)}{\partial \theta} &=& -\frac{1}{\sigma^2} (\mathbf{y} - \Phi\theta)^{\mathrm{T}} \Phi \\ \mathbf{M} &=& \mathbf{E} \left[ \frac{1}{\sigma^4} \Phi^{\mathrm{T}} (\mathbf{y} - \Phi\theta) (\mathbf{y} - \Phi\theta)^{\mathrm{T}} \Phi \right] \\ &=& \frac{1}{\sigma^4} \mathbf{E} [\Phi^{\mathrm{T}} \xi \xi^{\mathrm{T}} \Phi] \\ \lim_{\mathbf{N} \to \infty} \mathbf{M}^{-1} &=& \sigma^4 (\sigma^2 \mathbf{E} [\Phi^{\mathrm{T}} \Phi])^{-1} \\ &=& \frac{\sigma^2}{\mathbf{N}} \mathbf{R}^{-1} \end{aligned}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

#### Asymptotic normality of estimation



Least squares identification

Xing Chao

Suppose  $\{\xi(k)\}\$  is white noise sequence with zero mean and normal distribution. then:

$$\begin{aligned} \mathbf{y} &=& \Phi \theta + \xi \\ \mathbf{y} &\sim& \mathbf{N}(\Phi \theta, \sigma^2 \mathbf{I}) \\ \hat{\theta} &=& (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y} \end{aligned}$$

## Least square estimation

Model order increasing algorithm

recursive least

#### Model order increasing algorithm: algorithm characteristics



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

- recursive algorithm based on model order n;
- suitable for unknown model order n
- The identification accuracy is the same as that of the basic least square method
- The identification speed is greatly improved than the basic least square method
- It is not necessary to compute the inverse of higher order matrices

### System model



$$\begin{array}{llll} Y & = & \Phi_n \theta_n + \xi \\ \\ \Phi_n & = & \begin{bmatrix} u_{n+1} & -y_n & u_n & \cdots & -y_1 & u_1 \\ u_{n+2} & -y_{n+1} & u_{n+1} & \cdots & -y_2 & u_2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ u_{n+N} & -y_{n+N-1} & u_{n+N-1} & \cdots & -y_N & u_N \end{bmatrix} \\ \\ & = & \begin{bmatrix} X_1 & \cdots & X_{2n+1} \end{bmatrix} \\ \theta_n & = & \begin{bmatrix} b_0 & a_1 & b_1 & \cdots & a_n & b_n \end{bmatrix}^T \\ \xi & = & \begin{bmatrix} \xi_{n+1} & \cdots & \xi_{n+N} \end{bmatrix}^T \\ Y & = & \begin{bmatrix} y_{n+1} & \cdots & y_{n+N} \end{bmatrix}^T \end{array}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

#### Identification from n = 0



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least

$$\begin{array}{rcl} \Phi_0 & = & X_1 \\ \hat{\theta}_0 & = & (\Phi_0^T \Phi_0)^{-1} \Phi_0^T Y \\ & = & \displaystyle \sum_{i=n+1}^{n+N} u_i y_i \\ & = & \displaystyle \sum_{i=n+1}^{n+N} u_i^2 \end{array}$$

#### from n to n + 1



Identification result of model order n+1 is obtained based on result of model order  $n_{\circ}$  The solution is divided into two steps. First  $\tilde{P}_n$  is solved, and then  $P_{n+1}$  is solved.

$$\begin{array}{rcl} \Phi_{n+1} & = & \left[ \Phi_n & X_{2n+2} & X_{2n+3} \right] \\ & = & \left[ \tilde{\Phi}_n & X_{2n+3} \right] \\ \tilde{\Phi}_n & \triangleq & \left[ \Phi_n & X_{2n+2} \right] \\ P_n & \triangleq & \left( \Phi_n^T \Phi_n \right)^{-1} \\ \tilde{P}_n & \triangleq & \left( \tilde{\Phi}_n^T \tilde{\Phi}_n \right)^{-1} \\ P_{n+1} & = & \left( \Phi_{n+1}^T \Phi_{n+1} \right)^{-1} \end{array}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

#### from n to n + 1: $P_{n+1}$



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

$$\begin{split} P_{n+1} &= \begin{bmatrix} \tilde{\Phi}_n^T \tilde{\Phi}_n & \tilde{\Phi}_n^T X_{2n+3} \\ X_{2n+3}^T \tilde{\Phi}_n & X_{2n+3}^T X_{2n+3} \end{bmatrix}^{-1} \\ &= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \\ A_{22} &= (X_{2n+3}^T X_{2n+3} - X_{2n+3}^T \tilde{\Phi}_n \tilde{P}_n \tilde{\Phi}_n^T X_{2n+3})^{-1} \\ A_{12} &= A_{21}^T \\ &= -\tilde{P}_n \tilde{\Phi}_n^T X_{2n+3} A_{22} \\ A_{11} &= \tilde{P}_n - A_{12} X_{2n+3}^T \tilde{\Phi}_n \tilde{P}_n^T \end{split}$$

## from n to n + 1: $\tilde{P}_n$



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

$$\begin{split} \tilde{P}_n &= \begin{bmatrix} \Phi_n^T \Phi_n & \Phi_n^T X_{2n+2} \\ X_{2n+2}^T \Phi_n & X_{2n+2}^T X_{2n+3} \end{bmatrix}^{-1} \\ &= \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \\ B_{22} &= (X_{2n+2}^T X_{2n+2} - X_{2n+2}^T \Phi_n P_n \Phi_n^T X_{2n+2})^{-1} \\ B_{12} &= B_{21}^T \\ &= -P_n \Phi_n^T X_{2n+2} B_{22} \\ B_{11} &= P_n - B_{12} X_{2n+2}^T \Phi_n P_n^T \end{split}$$

#### Computation procedure



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

- Initialize, compute  $P_0 = (\Phi_0^T \Phi_0)^{-1}$
- Compute  $\hat{\theta}_0 = P_0 \Phi_0^T Y$
- iterate
  - $\bullet$  Compute  $\tilde{P}_n$  based on  $P_n$
  - Compute  $P_{n+1}$  based on  $\tilde{P}_n$
  - Compute  $\hat{\theta}_{n+1} = P_{n+1} \Phi_{n+1}^T Y$

#### Recursive algorithm derivation: Model

Assuming that the input and output data with length of N have been obtained, the least squares estimation is

$$\begin{array}{lcl} Y_N & = & \Phi_N \theta + \xi_N \\ \hat{\theta}_N & = & (\Phi_N^T \Phi_N)^{-1} \Phi_N^T Y_N \\ \tilde{\theta}_N & = & \theta - \tilde{\theta}_N \\ & = & -(\Phi_N^T \Phi_N)^{-1} \Phi_N^T \xi_N \end{array}$$

After obtaining new data  $u_{n+N+1}, y_{n+N+1},$ 

$$\begin{array}{rcl} y_{(n+N+1)} & = & \boldsymbol{\Psi}^T\boldsymbol{\theta} + \boldsymbol{\xi}_{(n+N+1)} \\ y_{N+1} & = & \boldsymbol{\Psi}^T\boldsymbol{\theta} + \boldsymbol{\xi}_{N+1} \\ \boldsymbol{\Psi}_i & = & \begin{bmatrix} -y_{(n+i-1)} & \cdots & -y_{(i)} & u_{(n+i)} & \cdots & u_{(i)} \end{bmatrix}^T \\ \begin{bmatrix} Y_N \\ y_{N+1} \end{bmatrix} & = & \begin{bmatrix} \boldsymbol{\Phi}_N \\ \boldsymbol{\Psi}_{N+1}^T \end{bmatrix} \boldsymbol{\theta} + \begin{bmatrix} \boldsymbol{\xi}_N \\ \boldsymbol{\xi}_{N+1} \end{bmatrix} \end{array}$$



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

## Recursive algorithm derivation $:P_{N+1}$

$$\hat{\theta}_{N+1} = \begin{pmatrix} \begin{bmatrix} \Phi_{N} \\ \Psi_{N+1}^{T} \end{bmatrix}^{T} \begin{bmatrix} \Phi_{N} \\ \Psi_{N+1}^{T} \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} \Phi_{N} \\ \Psi_{N+1}^{T} \end{bmatrix}^{T} \begin{bmatrix} Y_{N} \\ y_{N+1} \end{bmatrix} \\
= (\Phi_{N}^{T} \underbrace{\Phi_{N}}_{N,2n+1} + \underbrace{\Psi_{N+1}}_{2n+1,1} \Psi_{N+1}^{T})^{-1} (\Phi_{N}^{T} \underbrace{Y_{N}}_{N,1} + \Psi_{N+1} \underbrace{y_{N+1}}_{1,1}) \\
\hat{\theta}_{N+1} = P_{N+1} (\Phi_{N}^{T} Y_{N} + \Psi_{N+1} y_{N+1})$$

$$\begin{array}{rcl} P_{N+1} & = & (P_N^{-1} + \Psi_{N+1} \Psi_{N+1}^T)^{-1} \\ P_N & = & (\Phi_N^T \Phi_N)^{-1} \end{array}$$

#### Recursive algorithm derivation: matrix inversion lemma



If the inverse of the corresponding matrix exists, then:

$$(A + BC^{T})^{-1} = A^{-1} - A^{-1}B(I + C^{T}A^{-1}B)^{-1}C^{T}A^{-1}$$

therefore:

$$\begin{array}{lll} P_{N+1} & = & (P_N^{-1} + \Psi_{N+1} \Psi_{N+1}^T)^{-1} \\ & = & P_N - P_N \Psi_{N+1} (1 + \Psi_{N+1}^T P_N \Psi_{N+1})^{-1} \Psi_{N+1}^T P_N \\ \hat{\theta}_{N+1} & = & A + B \\ A & = & P_{N+1} \Phi_N^T Y_N \\ B & = & P_{N+1} \Psi_{N+1} y_{N+1} \\ i & = & 1 + \Psi_{N+1}^T P_N \Psi_{N+1} \end{array}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least

## Recursive algorithm derivation: Simplification

$$\begin{array}{lll} A & = & (P_N - P_N \Psi_{N+1} i^{-1} \Psi_{N+1}^T P_N) \Phi_N^T Y_N \\ & = & P_N \Phi_N^T Y_N - P_N \Psi_{N+1} i^{-1} \Psi_{N+1}^T P_N \Phi_N^T Y_N \\ & = & \hat{\theta}_N - P_N \Psi_{N+1} i^{-1} \Psi_{N+1}^T \hat{\theta}_N \\ B & = & (P_N - P_N \Psi_{N+1} i^{-1} \Psi_{N+1}^T P_N) \Psi_{N+1} y_{N+1} \\ & = & i^{-1} (P_N (1 + \Psi_{N+1}^T P_N \Psi_{N+1}) - P_N \Psi_{N+1} \Psi_{N+1}^T P_N) \Psi_{N+1} y_{N+1} \\ & = & i^{-1} (P_N + P_N \Psi_{N+1}^T P_N \Psi_{N+1} - P_N \Psi_{N+1} \Psi_{N+1}^T P_N) \Psi_{N+1} y_{N+1} \\ & = & i^{-1} (P_N \Psi_{N+1} + P_N \Psi_{N+1}^T P_N \Psi_{N+1} \Psi_{N+1} \\ & - P_N \Psi_{N+1} \Psi_{N+1}^T P_N \Psi_{N+1}) y_{N+1} \\ & = & i^{-1} (P_N \Psi_{N+1} + P_N \Psi_{N+1} \Psi_{N+1}^T P_N \Psi_{N+1} \\ & - P_N \Psi_{N+1} \Psi_{N+1}^T P_N \Psi_{N+1}) y_{N+1} \\ & = & i^{-1} P_N \Psi_{N+1} y_{N+1} \end{array}$$

#### Recursive algorithm derivation: result



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

square

Problem discussion

$$\begin{array}{lll} \hat{\theta}_{N+1} & = & \hat{\theta}_{N} - P_{N} \Psi_{N+1} i^{-1} \Psi_{N+1}^{T} \hat{\theta}_{N} + i^{-1} P_{N} \Psi_{N+1} y_{N+1} \\ & = & \hat{\theta}_{N} + i^{-1} P_{N} \Psi_{N+1} (-\Psi_{N+1}^{T} \hat{\theta}_{N} + y_{N+1}) \\ & = & \hat{\theta}_{N} + K_{N+1} (y_{N+1} - \Psi_{N+1}^{T} \hat{\theta}_{N}) \\ K_{N+1} & = & P_{N} \Psi_{N+1} (1 + \Psi_{N+1}^{T} P_{N} \Psi_{N+1})^{-1} \\ P_{N+1} & = & P_{N} - K_{N+1} \Psi_{N+1}^{T} P_{N} \end{array}$$

#### Obtain initial value:

- Basic least squares estimation
- $\hat{\theta}_0 = 0, P_0 = c^2 I$ , where c is a sufficient large constant<sub>o</sub>

### $Convergence: P_{N}$



$$\begin{array}{rcl} P_{N} & = & (P_{N-1}^{-1} + \Psi_{N}\Psi_{N}^{T})^{-1} \\ P_{N}^{-1} & = & P_{N-1}^{-1} + \Psi_{N}\Psi_{N}^{T} \\ P_{N-1}^{-1} & = & P_{N-2}^{-1} + \Psi_{N-1}\Psi_{N-1}^{T} \\ P_{N-2}^{-1} & = & P_{N-3}^{-1} + \Psi_{N-2}\Psi_{N-2}^{T} \\ P_{N-3}^{-1} & = & P_{N-4}^{-1} + \Psi_{N-3}\Psi_{N-3}^{T} \\ & \vdots \\ P_{1}^{-1} & = & P_{0}^{-1} + \Psi_{1}\Psi_{1}^{T} \\ P_{N}^{-1} & = & P_{0}^{-1} + \sum_{i=1}^{N} \Psi_{i}\Psi_{i}^{T} \end{array}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least

#### Convergence



$$\Phi_{N} = \begin{bmatrix} \Psi_{1}^{T} \\ \Psi_{2}^{T} \\ \vdots \\ \Psi_{N}^{T} \end{bmatrix}$$

$$P_{N}^{-1} = \frac{1}{c^{2}}I + \begin{bmatrix} \Psi_{1} & \Psi_{2} & \cdots & \Psi_{N} \end{bmatrix} \begin{bmatrix} \Psi_{1}^{1} \\ \Psi_{2}^{T} \\ \vdots \\ \Psi_{N}^{T} \end{bmatrix}$$
$$= \frac{1}{c^{2}}I + \Phi^{T}\Phi$$

$$\begin{split} &= \quad \frac{1}{c^2} I + \Phi^T \Phi \\ &\lim_{c \to \infty} P_N^{-1} \quad = \quad \Phi_N^T \Phi_N \\ &\hat{\theta}_N \quad = \quad P_N \Phi_N^T Y_N \\ &= \quad (\Phi_N^T \Phi_N)^{-1} \Phi_N^T Y_N \end{split}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

#### The relationship between residual and innovation



Innovation  $\tilde{y}_i = y_i - \Psi_i^T \hat{\theta}_{i-1}$  is used to describe prediction error at time i. residual  $\varepsilon_i = y_i - \Psi_i^T \hat{\theta}_i$  is used to describe the output bias at time i.

$$\begin{split} \varepsilon &= y_i - \Psi_i^T \hat{\theta}_i \\ &= y_i - \Psi_i^T (\hat{\theta}_{i-1} + K_i \tilde{y}_i) \\ &= \tilde{y}_i - \Psi_i^T K_i \tilde{y}_i \\ &= (1 - \Psi_i^T K_i) \tilde{y}_i \\ &= (1 - \Psi_i^T P_{i-1} \Psi_i (\Psi_i^T P_{i-1} \Psi_i + 1)^{-1}) \tilde{y}_i \\ &= \frac{\Psi_i^T P_{i-1} \Psi_i + 1 - \Psi_i^T P_{i-1} \Psi_i}{\Psi_i^T P_{i-1} \Psi_i + 1} \tilde{y}_i \\ &= \frac{\tilde{y}_i}{\Psi_i^T P_{i-1} \Psi_i + 1} \end{split}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

#### Recursive calculation of criterion function



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

$$\begin{split} J_i &= & (Y_i - \Phi_i \theta_i)^T (Y_i - \Phi_i \theta_i) \\ J_{i-1} &= & (Y_{i-1} - \Phi_{i-1} \theta_{i-1})^T (Y_{i-1} - \Phi_{i-1} \theta_{i-1}) \\ Y_i - \Phi_i \theta_i &= & Y_i - \Phi_i (\hat{\theta}_{i-1} + K_i \tilde{y}_i) \\ &= & \begin{bmatrix} Y_{i-1} \\ y_i \end{bmatrix} - \begin{bmatrix} \Phi_{i-1} \\ \Psi_i^T \end{bmatrix} (\hat{\theta}_{i-1} + K_i \tilde{y}_k) \\ &= & \begin{bmatrix} Y_{i-1} - \Phi_{i-1} \hat{\theta}_{i-1} \\ \tilde{y}_i \end{bmatrix} - \begin{bmatrix} \Phi_{i-1} \\ \Psi_i^T \end{bmatrix} K_i \tilde{y}_k \end{split}$$

#### Recursive calculation of criterion function



$$\begin{array}{lll} J_{i} & = & J_{i-1} - 2K_{i}^{T}\Phi_{i-1}^{T}(Y_{i-1} - \Phi_{i-1}\hat{\theta}_{i-1})\tilde{y}_{i} + K_{i}^{T}\Phi_{i-1}^{T}\Phi_{i-1}K_{i}\tilde{y}_{i}^{2} \\ & + (1 - 2K_{i}^{T}\Psi_{i} + K_{i}^{T}\Psi_{i}\Psi_{i}^{T}K_{i})\tilde{y}_{i}^{2} \\ & = & J_{i-1} - 2K_{i}^{T}(\Phi_{i-1}^{T}Y_{i-1} - \Phi_{i-1}^{T}\Phi_{i-1}\hat{\theta}_{i-1})\tilde{y}_{i} \\ & + (1 - 2K_{i}^{T}\Psi_{i} + K_{i}^{T}\Phi_{i}\Phi_{i}^{T}K_{i})\tilde{y}_{i}^{2} \\ & = & J_{i-1} + (1 - 2K_{i}^{T}\Psi_{i} + K_{i}^{T}\Phi_{i}\Phi_{i}^{T}K_{i})\tilde{y}_{i}^{2} \\ & = & J_{i-1} + (1 - 2K_{i}^{T}\Psi_{i} + K_{i}^{T}P_{i-1}^{-1}K_{i})\tilde{y}_{i}^{2} \\ & = & J_{i-1} + (1 - 2K_{i}^{T}\Psi_{i} + K_{i}^{T}\Psi_{i})\tilde{y}_{i}^{2} \\ & = & J_{i-1} + (1 - 2K_{i}^{T}\Psi_{i} + K_{i}^{T}\Psi_{i})\tilde{y}_{i}^{2} \\ & = & J_{i-1} + (1 - W_{i}^{T}\Psi_{i-1}\Psi_{i}(\Psi_{i}^{T}P_{i-1}\Psi_{i} + 1)^{-1})\tilde{y}_{i}^{2} \\ & = & J_{i-1} + (1 - \Psi_{i}^{T}P_{i-1}\Psi_{i} + 1 - \Psi_{i}^{T}P_{i-1}\Psi_{i})\tilde{y}_{i}^{2} \\ & = & J_{i-1} + \frac{\Psi_{i}^{T}P_{i-1}\Psi_{i} + 1 - \Psi_{i}^{T}P_{i-1}\Psi_{i}}{\Psi_{i}^{T}P_{i-1}\Psi_{i} + 1} \\ & = & J_{i-1} + \frac{\tilde{y}_{i}^{2}}{\Psi_{i}^{T}P_{i-1}\Psi_{i} + 1} \end{array}$$

Least square estimation

identification

Xing Chao

Model order increasing algorithm

recursive least square

#### he influenc Te of the calculation error of gain matrix $K_{\rm i}$ on $P_{\rm i}$



When there is error  $\delta K_i$  in  $K_i$ :

$$\delta P_i = \delta K_i \Psi_i^T P_{i-1}$$

Compute new form of P<sub>i</sub>:

$$\begin{split} P_i &= (I - K_i \Psi_i^T) P_{i-1} \\ &= (I - K_i \Psi_i^T) P_{i-1} - P_{i-1} \Psi_i K_i^T + P_{i-1} \Psi_i K_i^T \\ &= (I - K_i \Psi_i^T) P_{i-1} - P_{i-1} \Psi_i K_i^T + K_i (\Psi_i^T P_{i-1} \Psi_i + 1) K_i^T \\ &= (I - K_i \Psi_i^T) P_{i-1} - (I - K_i \Psi_i^T) P_{i-1} \Psi_i K_i^T + K_i K_i^T \\ &= (I - K_i \Psi_i^T) (P_{i-1} - P_{i-1} \Psi_i K_i^T) + K_i K_i^T \\ &= (I - K_i \Psi_i^T) P_{i-1} (I - \Psi_i K_i^T) + K_i K_i^T \end{split}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

#### he influenc Te of the calculation error of gain matrix $K_{\rm i}$ on $P_{\rm i}$



When there is error  $\delta K_i$  in  $K_i$ :

$$\begin{split} \delta P_i &= (I - (K_i + \delta K_i) \Psi_i^T) P_{i-1} (I - \Psi_i (K_i + \delta K_i)^T) \\ &+ (K_i + \delta K_i) (K_i + \delta K_i)^T - P_i \\ &= -\delta K_i \Psi_i^T P_{i-1} (I - \Psi_i K_i^T) + K_i \delta K_i^T \\ &- (I - K_i \Psi_i^T) P_{i-1} \Psi_i \delta K_i^T + \delta K_i K_i^T \\ &+ \delta K_i \Psi_i^T P_{i-1} \Psi_i \delta K_i^T + \delta K_i \delta K_i^T \\ &+ (I - K_i \Psi_i^T) P_{i-1} (I - \Psi_i K_i^T) + K_i K_i^T - P_i \\ &= -\delta K_i \Psi_i^T P_{i-1} (I - \Psi_i K_i^T) + K_i \delta K_i^T \\ &- (I - K_i \Psi_i^T) P_{i-1} \Psi_i \delta K_i^T + \delta K_i K_i^T + O(\delta K_i) \\ &= -\delta K_i \Psi_i^T P_i^T + \delta K_i K_i^T - P_i \Psi_i \delta K_i^T + K_i \delta K_i^T + O(\delta K_i) \\ &= -\delta K_i K_i^T + \delta K_i K_i^T - K_i \delta K_i^T + K_i \delta K_i^T + O(\delta K_i) \\ &= O(\delta K_i) \end{split}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

#### Stability of recursive algorithms: Difference Equations



$$\begin{array}{lll} y_{i} & = & \Psi_{i}^{T}\theta + \xi_{i} \\ \tilde{\theta}_{i} & \stackrel{def}{=} & \theta - \hat{\theta}_{i} \\ & = & \theta - [\hat{\theta}_{i-1} + K_{i}(y_{i} - \Psi_{i}^{T}\hat{\theta}_{i-1})] \\ & = & \tilde{\theta}_{i-1} - K_{i}(y_{i} - \Psi_{i}^{T}\hat{\theta}_{i-1}) \\ & = & \tilde{\theta}_{i-1} - K_{i}(\Psi_{i}^{T}\theta + \xi_{i} - \Psi_{i}^{T}\hat{\theta}_{i-1}) \\ & = & \tilde{\theta}_{i-1} - K_{i}(\Psi_{i}^{T}\tilde{\theta}_{i-1} + \xi_{i}) \\ & = & (I - K_{i}\Psi_{i}^{T})\tilde{\theta}_{i-1} - K_{i}\xi_{i} \\ & = & P_{i}P_{i-1}^{-1}\tilde{\theta}_{i-1} - K_{i}\xi_{i} \\ & = & A_{i}\tilde{\theta}_{i-1} - K_{i}\xi_{i} \\ A_{i} & = & P_{i}P_{i-1}^{-1} \end{array}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square

#### Stability of recursive algorithms: eigenvalues



Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least

Problem discussion

$$\begin{array}{rcl} A_{i}x & = & \lambda x \\ (P_{i-1}^{-1} + \Psi_{i}\Psi_{i}^{T})^{-1}P_{i-1}^{-1}x & = & \lambda x \\ P_{i-1}^{-1}x & = & [P_{i-1}^{-1} + \Psi_{i}\Psi_{i}^{T}]\lambda x \\ (1 - \lambda)P_{i-1}^{-1}x & = & \lambda \Psi_{i}\Psi_{i}^{T}x \\ (1 - \lambda)x^{T}P_{i-1}^{-1}x & = & \lambda x^{T}\Psi_{i}\Psi_{i}^{T}x \end{array}$$

where:  $P_{i-1}^{-1}$  is positive definite and  $\Psi_i \Psi_i^T$  is non-negtive definite, so  $0 < \lambda \le 1_\circ$  that is:  $\tilde{\theta}_i \le \tilde{\theta}_{0\,\circ}$ 

# The relationship between least squares estimation and Kalman filtering



#### State space model:

$$\begin{array}{rcl} \theta_{i+1} & = & \theta_i \\ y_i & = & \Psi_i^T \theta_i + \xi_i \end{array}$$

#### Kalman filtering:

$$\begin{array}{rcl} \hat{\theta}_{i} & = & \hat{\theta}_{i-1} + K_{i}(y_{i} - \Psi_{i}^{T}\hat{\theta}_{i-1}) \\ K_{i} & = & S_{i}\Psi_{i}(\Psi_{i}^{T}S_{i}\Psi_{i} + \sigma^{2})^{-1} \\ S_{i} & = & P_{i-1} \\ P_{i} & = & (I - K_{i}\Psi_{i}^{T})P_{i-1} \\ \hat{\theta}_{0} & = & 0 \end{array}$$

Least squares identification

Xing Chao

Least square estimation

Model order increasing algorithm

recursive least square