

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=4; day=30; hr=16; min=38; sec=26; ms=200;]

=====

Application No: 10646268 Version No: 3.0

Input Set:

Output Set:

Started: 2008-04-17 12:19:05.610
Finished: 2008-04-17 12:19:06.424
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 814 ms
Total Warnings: 10
Total Errors: 0
No. of SeqIDs Defined: 14
Actual SeqID Count: 14

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)

SEQUENCE LISTING

<110> Marchionni, Mark
Kelly, Ralph
Lorell, Beverly
Sawyer, Douglas B.

<120> Method for Treating Congestive Heart Failure

<130> 1094-1-028DIV

<140> 10646268
<141> 2003-08-22

<150> 09/298,121
<151> 1999-04-23

<160> 14

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 1

tgtgctagtc aagagtccca accac

25

<210> 2
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 2

ccttctctcg gtactaaagta ttcat

25

<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 3

gcttaaaagt cttggctcgg gtgtc

25

<210> 4
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 4
tcctacacac tgacacttcc tctt 24

<210> 5
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 5
aattcaccca tcagagtgac gtttgg 26

<210> 6
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 6
tcctgcaggta gtctgggtc ctg 23

<210> 7
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 7
gctggctcccg atgtatggta tggt 24

<210> 8
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 8
gttctctgcc gtaggtgtcc cttt

24

<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 9
gcatcaactgg ctgattctgg ag

22

<210> 10
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 10
cacatgccgg ttatggtcag ca

22

<210> 11
<211> 754
<212> PRT
<213> Rattus norvegicus

<400> 11
Met Arg Arg Asp Pro Ala Pro Gly Phe Ser Met Leu Leu Phe Gly Val
1 5 10 15
Ser Leu Ala Cys Tyr Ser Pro Ser Leu Lys Ser Val Gln Asp Gln Ala
20 25 30
Tyr Lys Ala Pro Val Val Glu Gly Lys Val Gln Gly Leu Ala Pro
35 40 45
Ala Gly Gly Ser Ser Ser Asn Ser Thr Arg Glu Pro Pro Ala Ser Gly
50 55 60
Arg Val Ala Leu Val Lys Val Leu Asp Lys Trp Pro Leu Arg Ser Gly
65 70 75 80
Gly Leu Gln Arg Glu Gln Val Ile Ser Val Gly Ser Cys Ala Pro Leu
85 90 95
Glu Arg Asn Gln Arg Tyr Ile Phe Phe Leu Glu Pro Thr Glu Gln Pro
100 105 110
Leu Val Phe Lys Thr Ala Phe Ala Pro Val Asp Pro Asn Gly Lys Asn
115 120 125
Ile Lys Lys Glu Val Gly Lys Ile Leu Cys Thr Asp Cys Ala Thr Arg
130 135 140
Pro Lys Leu Lys Lys Met Lys Ser Gln Thr Gly Glu Val Gly Glu Lys
145 150 155 160
Gln Ser Leu Lys Cys Glu Ala Ala Gly Asn Pro Gln Pro Ser Tyr
165 170 175

Arg Trp Phe Lys Asp Gly Lys Glu Leu Asn Arg Ser Arg Asp Ile Arg
180 185 190
Ile Lys Tyr Gly Asn Gly Arg Lys Asn Ser Arg Leu Gln Phe Asn Lys
195 200 205
Val Lys Val Glu Asp Ala Gly Glu Tyr Val Cys Glu Ala Glu Asn Ile
210 215 220
Leu Gly Lys Asp Thr Val Arg Gly Arg Leu His Val Asn Ser Val Ser
225 230 235 240
Thr Thr Leu Ser Ser Trp Ser Gly His Ala Arg Lys Cys Asn Glu Thr
245 250 255
Ala Lys Ser Tyr Cys Val Asn Gly Gly Val Cys Tyr Tyr Ile Glu Gly
260 265 270
Ile Asn Gln Leu Ser Cys Lys Cys Pro Val Gly Tyr Thr Gly Asp Arg
275 280 285
Cys Gln Gln Phe Ala Met Val Asn Phe Ser Lys His Leu Gly Phe Glu
290 295 300
Leu Lys Glu Ala Glu Glu Leu Tyr Gln Lys Arg Val Leu Thr Ile Thr
305 310 315 320
Gly Ile Cys Val Ala Leu Leu Val Val Gly Ile Val Cys Val Val Ala
325 330 335
Tyr Cys Lys Thr Lys Lys Gln Arg Arg Gln Met His His His Leu Arg
340 345 350
Gln Asn Met Cys Pro Ala His Gln Asn Arg Ser Leu Ala Asn Gly Pro
355 360 365
Ser His Pro Arg Leu Asp Pro Glu Glu Ile Gln Met Ala Asp Tyr Ile
370 375 380
Ser Lys Asn Val Pro Ala Thr Asp His Val Ile Arg Arg Glu Ala Glu
385 390 395 400
Thr Thr Phe Ser Gly Ser His Ser Cys Ser Pro Ser His His Cys Ser
405 410 415
Thr Ala Thr Pro Thr Ser Ser His Arg His Glu Ser His Thr Trp Ser
420 425 430
Leu Glu Arg Ser Glu Ser Leu Thr Ser Asp Ser Gln Ser Gly Ile Met
435 440 445
Leu Ser Ser Val Gly Thr Ser Lys Cys Asn Ser Pro Ala Cys Val Glu
450 455 460
Ala Arg Ala Arg Arg Ala Ala Tyr Ser Gln Glu Glu Arg Arg Arg
465 470 475 480
Ala Ala Met Pro Pro Tyr His Asp Ser Ile Asp Ser Leu Arg Asp Ser
485 490 495
Pro His Ser Glu Arg Tyr Val Ser Ala Leu Thr Thr Pro Ala Arg Leu
500 505 510
Ser Pro Val Asp Phe His Tyr Ser Leu Ala Thr Gln Val Pro Thr Phe
515 520 525
Glu Ile Thr Ser Pro Asn Ser Ala His Ala Val Ser Leu Pro Pro Ala
530 535 540
Ala Pro Ile Ser Tyr Arg Leu Ala Glu Gln Gln Pro Leu Leu Gly His
545 550 555 560
Pro Ala Pro Pro Gly Pro Gly Pro Gly Ala Asp Met Gln Arg
565 570 575
Ser Tyr Asp Ser Tyr Tyr Pro Ala Ala Gly Pro Gly Pro Arg Arg
580 585 590
Gly Ala Cys Ala Leu Gly Gly Ser Leu Gly Ser Leu Pro Ala Ser Pro
595 600 605
Phe His Ile Pro Glu Asp Asp Glu Tyr Glu Thr Thr Gln Glu Cys Ala
610 615 620
Pro Pro Pro Pro Pro Arg Pro Arg Thr Arg Gly Ala Ser Arg Arg Thr

625	630	635	640
Ser Ala Gly Pro Arg Arg Trp Arg Arg Ser Arg Leu Asn Gly	Leu Ala		
645	650	655	
Ala Gln Arg Ala Arg Ala Ala Arg Asp Ser	Leu Ser Leu Ser Ser Gly		
660	665	670	
Ser Gly Cys Gly Ser Ala Ser Ala Ser Asp Asp Asp	Asp Ala Asp Asp Ala		
675	680	685	
Asp Gly Ala Leu Ala Ala Glu Ser Thr Pro Phe	Leu Gly Leu Arg Ala		
690	695	700	
Ala His Asp Ala Leu Arg Ser Asp Ser Pro Pro	Leu Cys Pro Ala Ala		
705	710	715	720
Asp Ser Arg Thr Tyr Tyr Ser Leu Asp Ser His Ser	Thr Arg Ala Ser		
725	730	735	
Ser Arg His Ser Arg Gly Pro Pro Thr Arg Ala Lys	Gln Asp Ser Gly		
740	745	750	
Pro Leu			

<210> 12
<211> 330
<212> PRT
<213> Rattus norvegicus

<400> 12			
Met Arg Arg Asp Pro Ala Pro Gly Phe Ser Met	Leu Leu Phe Gly Val		
1	5	10	15
Ser Leu Ala Cys Tyr Ser Pro Ser Leu Lys Ser Val	Gln Asp Gln Ala		
20	25	30	
Tyr Lys Ala Pro Val Val Val Glu Gly Lys Val	Gln Gly Leu Ala Pro		
35	40	45	
Ala Gly Gly Ser Ser Ser Asn Ser Thr Arg Glu Pro	Pro Ala Ser Gly		
50	55	60	
Arg Val Ala Leu Val Lys Val Leu Asp Lys Trp	Pro Leu Arg Ser Gly		
65	70	75	80
Gly Leu Gln Arg Glu Gln Val Ile Ser Val Gly	Ser Cys Ala Pro Leu		
85	90	95	
Glu Arg Asn Gln Arg Tyr Ile Phe Phe Leu Glu	Pro Thr Glu Gln Pro		
100	105	110	
Leu Val Phe Lys Thr Ala Phe Ala Pro Val Asp	Pro Asn Gly Lys Asn		
115	120	125	
Ile Lys Lys Glu Val Gly Lys Ile Leu Cys Thr	Asp Cys Ala Thr Arg		
130	135	140	
Pro Lys Leu Lys Lys Met Lys Ser Gln Thr Gly	Glu Val Gly Glu Lys		
145	150	155	160
Gln Ser Leu Lys Cys Glu Ala Ala Ala Gly	Asn Pro Gln Pro Ser Tyr		
165	170	175	
Arg Trp Phe Lys Asp Gly Lys Glu Leu Asn Arg	Ser Arg Asp Ile Arg		
180	185	190	
Ile Lys Tyr Gly Asn Gly Arg Lys Asn Ser Arg	Leu Gln Phe Asn Lys		
195	200	205	
Val Lys Val Glu Asp Ala Gly Glu Tyr Val Cys	Glu Ala Glu Asn Ile		
210	215	220	
Leu Gly Lys Asp Thr Val Arg Gly Arg Leu His	Val Asn Ser Val Ser		
225	230	235	240
Thr Thr Leu Ser Ser Trp Ser Gly His Ala Arg	Lys Cys Asn Glu Thr		
245	250	255	

Ala Lys Ser Tyr Cys Val Asn Gly Gly Val Cys Tyr Tyr Ile Glu Gly
 260 265 270
 Ile Asn Gln Leu Ser Cys Lys Cys Pro Asn Gly Phe Phe Gly Gln Arg
 275 280 285
 Cys Leu Glu Lys Leu Pro Leu Arg Leu Tyr Met Pro Asp Pro Lys Gln
 290 295 300
 Ser Val Leu Trp Asp Thr Pro Gly Thr Gly Val Ser Ser Ser Gln Trp
 305 310 315 320
 Ser Thr Ser Pro Ser Thr Leu Asp Leu Asn
 325 330

<210> 13
 <211> 182
 <212> PRT
 <213> Homo sapiens

<400> 13
 Arg Gly Glu Gly Ile Ser Phe Pro Ser Lys Leu Gln Gly His Cys Gly
 1 5 10 15
 Ser Val Glu Arg Gly Asn Arg Trp Val Thr Ala Gly Glu Pro Gln Pro
 20 25 30
 Ala Leu Ala His Ala Ser Pro Pro Phe Ile Pro Ser Leu Thr Arg Lys
 35 40 45
 Asn Ser Arg Leu Gln Phe Asn Lys Val Lys Val Glu Asp Ala Gly Glu
 50 55 60
 Tyr Val Cys Glu Ala Glu Asn Ile Leu Gly Lys Asp Thr Val Arg Gly
 65 70 75 80
 Arg Leu Tyr Val Asn Ser Val Ser Thr Thr Leu Ser Ser Trp Ser Gly
 85 90 95
 His Ala Arg Lys Cys Asn Glu Thr Ala Lys Ser Tyr Cys Val Asn Gly
 100 105 110
 Gly Val Cys Tyr Tyr Ile Glu Gly Ile Asn Gln Leu Ser Cys Lys Cys
 115 120 125
 Pro Asn Gly Phe Phe Gly Gln Arg Cys Leu Glu Lys Leu Pro Leu Arg
 130 135 140
 Leu Tyr Met Pro Asp Pro Lys Gln Ser Val Leu Trp Asp Thr Pro Gly
 145 150 155 160
 Thr Gly Val Ser Ser Ser Gln Trp Ser Thr Ser Pro Lys Pro Arg Ser
 165 170 175
 Cys Thr Arg Arg Gly Ser
 180

<210> 14
 <211> 3020
 <212> DNA
 <213> Homo sapiens

<400> 14
 cctccaggc tcggcgac a gggtgggagc gctgcgtgc gcccgcgtgc gcatcgccgc 60
 ccgcttgcgg cctgccccct gccctagctg ggccacctcc cccggctgcc ggtggagggc 120
 taagaggcgc taacgttacg ctgtttccgg ttttccageg ggctctgttt cccctcccaa 180
 ggcggcggc gctgagcggc ggagcccccc aaatggctg gccagatgct gcagggttgc 240
 tgctcagcgc tgccggccgc gccactggag aagggtcggt gcagcagcta cagcgcacagc 300
 agcagcagca gcagcagagag gagcagcagc agcagcagca gcagcagcga gagcggcagc 360
 agcagcagaga gcagcagcaa caacagcagc atctctcgtc ccgctgcgcc cccagagccg 420

cggccgcagc aacagccgca gccccgcagc cccgcagccc ggagagccgc cgcccggtcg 480
cgagccgcag ccgcggcgg catgaggcgc gacccggccc cccgttctc catgtctgtc 540
ttcggtgtgt cgctgcctg ctactcgccc agcctaagt cagtgcagga ccaggcgta 600
aaggcacccg tggtgtgga gggcaaggta caggggctgg tcccagccgg cggctccagc 660
tccaacagca cccgagagcc gcccgcctcg ggtcgggtgg cgttgtaaa ggtgtggac 720
aagtggccgc tccggagcgg ggggctgcag cgcgagcagg tgatcagcgt gggctctgt 780
gtgccgctcg aaaggaacca gcgcatacattttcctgg agcccacgga acagccctta 840
gtcttaaga cggcccttgc cccctctcgat accaacggca aaaatctcaa gaaagaggtg 900
ggcaagatcc tgtcaactga ctgcgccacc cggcccaagt tgaagaagat gaagagccag 960
acgggacagg tgggtgagaa gcaatcgctg aagtgtgagg cagcagccgg taatccccag 1020
ccttcctacc gttgggtcaa ggatggcaag gagctcaacc gcagccgaga cattcgcatc 1080
aaatatggca acggcagaaa gaactcacga ctacagttca acaaggtgaa ggtggaggac 1140
gctggggagt atgtctgcga ggccgagaac atcctggggaggacaccgt ccggggccgg 1200
ctttacgtca acagcgttag caccaccctg tcatcttgcg cggggcacgc ccggaaagtgc 1260
aacgagacag ccaagtccta ttgcgtcaat ggaggcgctcgtactacat cgagggcatc 1320
aaccagctt cctgcaaatttcaatggatcccttcggac agagatgttt ggagaaactg 1380
ccttgcgtat tgtacatgcc agatcctaag caaaaagccg aggagctgta ccagaagagg 1440
gtcctgacca tcacgggcat ctgcgtggct ctgcgtggcg tgggcacatcg ctgtgtgg 1500
gcctactgca agacaaaaaa acagcggaaag cagatgcaca accacccctcg gcagaacatg 1560
tgcccgcccccc atcagaaccg gagctggcc aatggggcca gccacccccc gctggaccca 1620
gaggagatcc agatggcaga ttatatttcc aagaacgtgc cagccacaga ccatgtcatc 1680
aggagagaaa ctgagaccac cttctctggg agccactctt gtttccttc tcaccactgc 1740
tccacagcca cacccaccc cagccacaga cacgagagcc acacgtggag cctggaaactg 1800
tctgagagcc tgacttctga ctccttcgtcg gggatcatgc tatcatcgt gggtaccagc 1860
aaatgcaaca gcccacgcattgt tggtggaggcc cggcaaggc gggcagcagc ctacaacactg 1920
gaggagcggc gcagggccac cgcgcaccc tatcacattt ccgtggactc cttcgccgac 1980
tccccacaca gcgagaggtt cgtgtcgcc ctgaccacgc ccgcgcgcct ctgcggcg 2040
gacttccact actcgctggc cacgcaggatg ccaacttgc agatcacgtc ccccaactcg 2100
gcgcacgccc tgctcgctgcc gcccggcccg cccatcgtt accgcctggc cgagcagcag 2160
ccgttactgc ggcacccggc gccccccggc cggggacccg gacccggggcc cggggccgg 2220
ccggcgcgcac acatgcagcg cagctatgac agtactatt accccgcggc gggggccgg 2280
ccggcgcgcg ggacctgcgc gtcggccgc agcctggca gcctgcctgc cagcccccttc 2340
cgcatccccg aggacgacga gtacgagacc acgcaggagt gcgcgcggcc gccgcgcgc 2400
cggccgcgcg cgcgcggcgtc gtcccgccagg acgtcgccgg gggccggccg ctggcgcgc 2460
tcgcgeetca acgggctggc ggccgcgcgc gcacggccgg cgagggactc gctgtcgctg 2520
agcagcggct cggggccggc ctcagcctcg gcgtcgacg acgacgcggc cgacgcggac 2580
ggggcgctgg cggccgagag cacaccccttc ctgggcctgc gtggggcgca cgacgcgcctg 2640
cgctcgact cgccgcact gtccccggcg gccgacagca ggacttacta ctcaactggac 2700
agccacagca cgcggccag cagcagacac agccgcggc cccccccgcg ggccaagcag 2760
gactcgccgc cactctaggc ccccgccgcg cggccctccg ccccgccccgc cccactatct 2820
ttaaggagac cagagaccgc ctactggaga gaaaggagga aaaaagaaaat aaaaatattt 2880
ttatatttcta taaaaggaaa aaagtataac aaaatgtttt atttcattt tagcaaaaat 2940
tgtcttataa tactagctaa cggcaaaggc gttttatag gaaaactatt tataatgtaaac 3000
atcctgattt acagcttcgg 3020