WHAT IS CLAIMED IS:

1		1. A micromechanical resonator device having at least one mode				
2		shape, the device comprising:				
3		a substrate; and				
4		a disk-shaped resonator disposed above the substrate and having at				
5		least one nodal point.				
1		2. The device as claimed in claim 1 further comprising a support				
2		structure anchored to the substrate to support the resonator at the at least one nodal				
3		point above the substrate wheein both the resonator and the support structure are				
4		dimensioned and positioned relative to one another so that the resonator is				
5	١,	substantially isolated during vibration thereof wherein energy losses to the sustrate				
6		are substantially eliminated and wherein the resonator device is a high-Q resonator				
7		device.				
8						
1		3. The device as claimed in claim 1 wherein the at least one				
2		mode shape includes a radial-contour mode shape.				
1		4. The device as claimed in claim 1 wherein the at least one				
2		mode shape includes a flexural mode shape.				
		5. The device as claimed in claim 1 further comprising a drive				
1						
2		electrode structure formed on the substrate at a position to allow electrostatic				
3		excitation of the resonator so that the resonator is driven in the at least one mode				
4		shape and wherein the resonator and the drive electrode structure define a capacitive				
5		gap therebetween.				
1		6. The device as claimed in claim 5 wherein the drive electrode				
2		structure is disposed about a periphery of the resonator and wherein the at least one				
3		mode shape includes a radial-contour mode shape.				

1	7.	The device as claimed in claim 5 wherein the capacitive gap			
2	is a sub-micron, lateral, capacitive gap.				
1	8.	The device as claimed in claim 6 wherein the drive electrode			
2	structure includes a	plurality of split electrodes.			
1	9.	The device as claimed in claim 1 wherein the at least one			
2	nodal point correspo	onds to a center of the resonator.			
1	10.	The device as claimed in claim 9 wherein the support structure			
2	is a single anchor po	ositioned at the center of the resonator.			
1	11.	The device as claimed in claim 5 further comprising a sense			
2	electrode structure formed on the substrate at a position to sense output current				
3	based on motion of	the resonator.			
1	12.	The device as claimed in claim 11 wherein the drive electrode			
2	structure includes a	a plurality of separate input drive electrodes and the sense			
3	electrode structure i	ncludes a plurality of separate output sense electrodes.			
1	13.	The device as claimed in claim 5 wherein the drive electrode			
2	structure is positione	d beneath the resonator and wherein the at least one mode shape			
3	includes a flexural mode shape.				
1	14.	The device as claimed in claim 1 wherein the device is			
2	diamond-based.				
1	15.	The device as claimed in claim 1 wherein the device is silicon-			
2	based.				
1	16.	A micromechanical device comprising:			
2	a sub	strate;			

3

4	at least one nodal point; and				
5	a disk-shaped output resonator disposed above the substrate and				
6	coupled to the input resonator and having at least one nodal point.				
1	17. The device as claimed in claim 16 further comprising support				
2	structures anchored to the substrate to support the input and output resonators at				
3	their respective nodal points above the substrate.				
1	18. The device as claimed in claim 16 further comprising an				
2	intermediate resonator disposed above the substrate and coupled to the input and				
3	output resonators and having at least one nodal point.				
1	19. The device as claimed in claim 16 wherein the				
2	micromechanical device is a filter.				
1	20. The device as claimed in claim 16 wherein the resonators are				
2	mechanically coupled together.				
1	21. The device as claimed in claim 20 wherein the device is a				
2	bandpass filter.				
1	22. The device as claimed in claim 16 wherein the resonators are				
2	electrically coupled together.				
1	23. The device as claimed in claim 22 wherein the device is an				
2	integrable filter.				
1	24. The device as claimed in claim 20 further comprising a				
2	coupling spring for mechanically coupling the resonators together.				
1	25. The device as claimed in claim 16 further comprising a drive				
2	electrode structure formed on the substrate at a position to allow electrostatic				

a disk-shaped input resonator disposed above the substrate and having

3		excitation of the input resonator and a sense electrode structure formed on the				
4		substrate at a position to sense output current based on motion of the output				
5	5 resonator.					
1			26.	The device as claimed in claim 18 further comprising a drive		
2		electrode stru	cture fo	ormed on the substrate at a position to allow electrostatic		
3		excitation of the input resonator, a sense electrode structure formed on the substrate				
4		at a position to	sense o	output current based on motion of the output resonator and an		
5	intermediate electrode structure formed on the substrate at a position for enhanced					
6		access to a res	sponse o	of the device.		
		Section 2				
1		i i i i i i i i i i i i i i i i i i i	27.	The device as claimed in claim 18 further comprising a non-		
2	1.0	adjacent coup	oler for	mechanically coupling the input resonator to the output		
3		resonator whe	erein the	e device is a bridged filter.		
1			28.	The device as claimed in claim 16 wherein the device is a		
2		mixer.				
1			29.	The device as claimed in claim 1 wherein the resonator has		
2				odal portion where the resonator experiences the most		
3		displacement	when di	riven and wherein the device further comprises sensing means		
4		for sensing m	otion of	f the anti-nodal portion.		
1			30.	The device as claimed in claim 29 wherein the sensing means		
2				e projection projecting from the anti-nodal portion to move		
3				coupled to the at least one projection to provide an output		
4		representation	of mo	tion of the anti-nodal portion.		
			•			
1			31.	The device as claimed in claim 30 wherein the means includes		
2		at least one el	lectrode	structure.		

electrode structure formed on the substrate at a position to allow electrostatic

32.

1

2

The device as claimed in claim 1 further comprising a single

- 3 excitation of the resonator and to sense output current based on motion of the
- 4 resonator.