Virtual Reality Basics

-srikrishna s

contents

- ☐ Introduction
- Components
- ☐ Geometry of Virtual World
- ☐ Light and optics
- Physiology of Human Vision
- ☐ Visual perception & Rendering
- ☐ Motion in Real and virtual worlds
- ☐ Tracking, Interaction
- ☐ Audio
- Evaluating VR systems and experiences
- ☐ Frontiers

Introduction

What Is Virtual Reality?

Inducing targeted behavior in an organism by using artificial sensory stimulation, while the organism

has little or no *awareness* of the interference.

Watching a movie

- Video conference
- Listening to music
- Talking over a phone
- Playing a video game
- First person vs third person
- Notes could be !!
- arrival of a train at ciotat

Modern VR Experiences

Tele presence { Google's street view, Earth Virtual Societies { avatars, fb, plus, second Empathy Education Virtual Prototyping

Health Care Augmented and Mixed Reality New Human Experiences

Components

Pick a sensor

{eye,ear,finger,tongue,nos

Evolution

Sensory Organs

Sense	Stimulus	Receptor	Sense Organ
Vision	Electromagnetic energy	Photoreceptors	Eye
Auditory	Air pressure waves	Mechanoreceptors	Ear
Touch	Tissue distortion	Mechanoreceptors	Skin, muscles
		Thermoreceptors	Skin
Balance	Gravity, acceleration	Mechanoreceptors	Vestibular organs
Taste/smell	Chemical composition	Chemoreceptors	Mouth, nose

Hardware (Cave vs HMD)

Hardware contd...

hardware(contd..) Oculus Rift DK2

software

- SDK
- Drivers

Available Tools

- Opency & open
- Unity
- Unreal
- Blender
- Maya....

Geometric Models

- Right handed coordinate system
- GPU support for triangles
- Collisons and computation cost
- Stationary vs Movable models

Light and Optics

Basic Behavior of Light

Lenses

Optical Aberrations

The Human Eye

Cameras

Light source	Luminance (cd/m^2)	Photons per receptor
Paper in starlight	0.0003	0.01
Paper in moonlight	0.2	1
Computer monitor	63	100
Room light	316	1000
Blue sky	2500	10,000
Paper in sunlight	40,000	100,000

Visual Perception

Perception of Depth Perception of Motion

Perception of Color

Combining Sources of Informat 1000

FPS

10

16

25

30

48

50.

60

Occurrence

Stroboscopic apparent motion starts

Old home movies; early silent films

PAL television before interlacing

NTSC television before interlacing

Hollywood classic standard

Interlaced PAL television

Ability to distinguish individual frames is lost

Two-blade shutter; proposed new Hollywood standard

Interlaced NTSC television; perceived flicker in some displays

Visual Rendering

Correcting Optical Distortions

Improving Latency and Frame Rate

Immersive Photos and Videos

Image Order Rendering	Object Order Rendering	
Pixel by Pixel	Triangle by Triangle	
Ray Tracing	Rasterization	
Easier to implement	Harder to implement	
Slower	Faster	
Academic & Research	Industrial (GPU support)	

Motion in Real and Virtual Worlds

Velocities and Accelerations $\{v=dy(t)/dt, a=dv(t)/dt, w=d(@(t))/dt, 3d, rigid\}$

Rest or

constant velocity

linear, angular, 3d linear, 3d angular, rigid bodies their respective velocities and acc

The Vestibular System

Physics in the Virtual World

Mismatched Motion and Vection

Audio

The Physics of Sound

The Physiology of Human Hearing

Auditory Perception

Auditory Rendering

Audio(contd..)

Evaluating VR systems and Experiences

Perceptual Training

Recommendations for Developers

Comfort and VR Sickness

Experiments on Human Subjects

Frontiers

Touch and Proprioception

Smell and Taste

Robotic Interfaces

Brain-Machine Interfaces

thanks!!

Q&A

Additional slides

Tracking

Tracking 2D Orientation

Tracking 3D Orientation

Tracking Position and Orientation

Tracking Attached Bodies

3D Scanning of Environments

Interaction

Motor Programs and Remapping

Locomotion

Manipulation

Social Interaction

Additional Interaction Mechanisms

Physiology of Human Vision

From the Cornea to Photoreceptors

From Photoreceptors to the Visual Cortex

Eye Movements

Implications for VR