Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C

Chapter 15 General-purpose Timers

Dr. Yifeng Zhu ECE, University of Maine With corrections by Prof. Mark Lawford McMaster University

Fall 2017

Timer

- Free-run counter (independent of processor)
- Functions
 - Input capture
 - Output compare
 - Pulse-width modulation (PWM) generation
 - One-pulse mode output

Timer: Clock

$$f_{CK_CNT} = \frac{f_{CL_PSC}}{PSC + 1}$$

Timer: Output

Timer: Input Capture

Multi-Channel Outputs

Output Compare

Output Compare Mode (OCM)	Timer Output (OCREF)
000	Frozen
001	High if CNT == CCR
010	Low if CNT == CCR
011	Toggle if CNT == CCR
100	Forced low (always low)
101	Forced high (always high)

PWM Mode

Mode	Counter < Reference	Counter ≥ Reference
PWM mode I (Low count True)	Active	Inactive
PWM mode 2 (High count True)	Inactive	Active

Edge-aligned Mode (Up-counting)

ARR = 6, RCR = 0

Edge-aligned Mode (down-counting)

ARR = 6, RCR = 0

Clock ______

Center-aligned Mode

ARR = 6, RCR = 0

Clock ______

L.....

Period = 2 * ARR * Clock Period = 12 * Clock Period

PWM Mode 1 (Low-count True)

Mode I

Timer Output =

High if counter < CCR

Low if counter ≥ CCR

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Duty Cycle =
$$\frac{CCR}{ARR + 1}$$
$$= \frac{3}{7}$$

PWM Mode 2 (High-count True)

Mode 2

Timer Output =

Low if counter < CCR

High if counter ≥ CCR

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Clock TOTAL TOTAL

Duty Cycle =
$$1 - \frac{CCR}{ARR + 1}$$

$$= \frac{4}{7}$$

Period = (1 + ARR) * Clock Period = 7 * Clock Period

PWM Mode 2 (High-count True)

Mode 2

Timer Output =

Low if counter < CCR

High if counter ≥ CCR

Upcounting mode, ARR = 6, CCR = 5, RCR = 0

Clock ______

Duty Cycle = 1 -
$$\frac{CCR}{ARR + 1}$$

$$= \frac{2}{7}$$

PWM Mode 2 (High-count True)

Mode 2

Timer Output =

Low if counter < CCR

High if counter ≥ CCR

Center-aligned mode, ARR = 6, CCR = 3, RCR = 0

Duty Cycle =
$$1 - \frac{CCR}{ARR}$$

$$= \frac{1}{2}$$

Period = 2 * ARR * Clock Period = 12 * Clock Period

PWM Mode 2 (High count True)

Mode 2

Timer Output =

Low if counter < CCR

High if counter ≥ CCR

Center-aligned mode, ARR = 6, CCR = 1, RCR = 0

Clock ______

Duty Cycle =
$$1 - \frac{CCR}{ARR}$$

$$= \frac{5}{6}$$

Period = 2 * ARR * Clock Period = 12 * Clock Period

Auto-Reload Register (ARR)

Auto-Reload Preload Enable (ARPE) bit in TIMx_CRI

Triggered by Update Event (UEV)

If UDIS bit in TIMx_CR1 is 1, UEV event is disabled.

ARPE = 0 (Asyn Update)

Read from ARR

Counter-aligned mode

Edge-aligned mode

Counter

 $TIMx_RCR = 0$

Edge-aligned mode Counter-aligned mode Upcounting Downcounting TIMx_CNT ~

Edge-aligned mode Counter-aligned mode Upcounting Downcounting Counter TIMx_CNT ~ $TIMx_RCR = 0$ TIMx_RCR = 1 TIMx_RCR = 2 UEV $TIMx_RCR = 3$

PWM Output Polarity

Mode	Counter < CCR	Counter ≥ CCR
PWM mode I (Low count True)	Active	Inactive
PWM mode 2 (High count True)	Inactive	Active

Output Polarity:

• Software can program the CCxP bit in the TIMx_CCER register

	Active	Inactive
Active High	High Voltage	Low Voltage
Active Low	Low Voltage	High Voltage

Counting up, down, center

24

PWM Mode 1 Up-Counting: Left Edge-aligned

PWM Mode I, Upcounting mode, ARR = 6, CCRI = 3, CCR2=6, RCR = 0

PWM Mode 2 Up-Counting: Right Edge-aligned

Upcounting mode, ARR = 6, CCRI = 3, CCR2=5, RCR = 0

PWM Mode 2: Center Aligned

Center-aligned mode, ARR = 6, CCRI = 3, CCR2 = I, RCR = 0

Clock

Counter

CCRI = 3

CCR2 = I

C

The devil is in the detail

- Timer output control
- Enable Timer Output
 - MOE: Main output enable
 - OSSI: Off-state selection for Idle mode
 - OSSR: Off-state selection for Run mode
 - CCxE: Enable of capture/compare output for channel x
 - CCxNE: Enable of capture/compare complementary output for channel x

Control bits				Output states ⁽¹⁾			
MOE bit	OSSI bit	OSSR bit	CCxE bit	CCxNE bit	OCx output state	OCxN output state	
		Х	0	0	Output disabled (not driven OCx=0, OCxN=0	by the timer: Hi-Z)	
		0	0	1	Output disabled (not driven by the timer: Hi-Z) OCx=0	OCxREF + Polarity OCxN = OCxREF xor CCxNP	
	X	0	1	0	OCxREF + Polarity OCx=OCxREF xor CCxP	Output Disabled (not driven by the timer: Hi-Z) OCxN=0	
	1 X	×	Х	1	1	OCREF + Polarity + dead- time	Complementary to OCREF (not OCREF) + Polarity + dead-time
			1	0	1	Off-State (output enabled with inactive state) OCx=CCxP	OCxREF + Polarity OCxN = OCxREF x or CCxNP
		1	1	0	OCxREF + Polarity OCx=OCxREF xor CCxP	Off-State (output enabled with inactive state) OCxN=CCxNP	
0	0		Х	Х	Output Disabled (not driven by the timer: Hi-Z) OCx=CCxP, OCxN=CCxNP Off-State (output enabled with inactive state) Asynchronously: OCx=CCxP, OCxN=CCxNP (if BRK or BRK2 is triggered). Then (this is valid only if BRK is triggered), if the clock is present: OCx=OISx and OCxN=OISxN after a dead-time, assuming that OISx and OISxN do not correspond to OCX and OCxN both in active state (may cause a short circuit when driving switches in half-bridge configuration). Note: BRK2 can only be used if OSSI = OSSR = 1.		
		1 X	0	0			
			0	1			
			1	0			
0	1		1	1			

Input Capture

Monitor both rising and falling edge

Input Capture

Monitor only rising edges or only falling edge

Input Capture

Input Filtering

Input Capture Diagram

Ultrasonic Distance Sensor

Distance =
$$\frac{Round \ Trip \ Time \times Speed \ of \ Sound}{2}$$

$$= \frac{Round \ Trip \ Time(\mu s) \times 10^{-6} \times 340m/s}{2}$$

$$= \frac{Round \ Trip \ Time(\mu s)}{50} \ cm$$

Ultrasonic Distance Sensor

The echo pulse width corresponds to round-trip time.

Distance (cm) =
$$\frac{Pulse\ Width\ (\mu s)}{58}$$

or

Distance (inch) =
$$\frac{Pulse\ Width\ (\mu s)}{148}$$

If pulse width is 38ms, no obstacle is detected.

Ultrasonic Distance Sensor

HSI

16MHz