Feature Selection

Generative AI Academy
Part 4: Neural Networks — FS-NEAT and N3O

Bruno lochins Grisci¹

¹Institute of Informatics, UFRGS, Porto Alegre, Brazil bigrisci@inf.ufrgs.br

22 de maio de 2025

Summary

- Neuroevolution
- 2 Proposed method
 - Filtering
 - Neuroevolution
- 3 Results
- 4 Conclusion

Summary

- 1 Neuroevolution
- 2 Proposed method
 - Filtering
 - Neuroevolution
- 3 Results
- 4 Conclusion

NEAT

Microarray and Neuroevolution

- Two in one;
- Automaticity.

NEAT: NeuroEvolution of Augmenting Topologies

- Idea: to use GA to evolve neural networks.
- FS-NEAT: NEAT with feature selection [Whiteson et al., 2005].

Artificial neural network

NEAT representation

Genome representation and structural mutations in NEAT

Gray: input / White: hidden / Blue: output / Yellow: new

NEAT crossover

Example of NEAT crossover between two individuals, in which the red parent has better fitness than the blue parent

FS-NEAT initialization

Initial topology comparison between NEAT and FS-NEAT

Gray: input / White: hidden / Blue: output

8/47

FS-NEAT mutation

Example of the extra FS-NEAT structural mutation, that adds a new input in a network

Gray: input / White: hidden / Blue: output

Summary

- 1 Neuroevolution
- 2 Proposed method
 - Filtering
 - Neuroevolution
- 3 Results
- 4 Conclusion

The proposed method

- Gene selection and classification;
- Preprocessing, filtering, and Neuroevolution;
- Autonomous;
- No selection threshold;
- Hybrid.

Summary of the proposed method

Proposed method: Filtering

└─ Filtering

Filtering

- Data does not follow normal distribution;
- Kruskal-Wallis H Test;
- Allow different sample sizes;
- Test whether samples originate from the same distribution;
- Remove all genes whose expression distribution does not differ among classes.

Proposed method: Neuroevolution

The proposed crossover operator

Additive crossover operator

The proposed mutation operators

The two new possible structural mutations for the proposed method.

Gray: input / White: hidden / Blue: output / Yellow: new

Fitness and Artificial Neuron

fitness =
$$\frac{1}{|Q|} \sum_{q \in Q} \left\{ -\frac{1}{n^q} \sum_{i=1}^{n^q} [y_i \ln a_i + (1-y_i) \ln(1-a_i)] \right\}$$
 (1a)

$$+\frac{\lambda}{2n}\frac{1}{c}\sum_{k=1}^{c}w_{k}^{2}\tag{1b}$$

$$a_h = \Phi(\frac{1}{m_h} \sum_{i=1}^{m_h} w_{hj} x_{hj} + b_h)$$
 (2)

18/47

Evolution

Summary

- 1 Neuroevolution
- 2 Proposed method
 - Filtering
 - Neuroevolution
- 3 Results
- 4 Conclusion

Proposed method: Classification and selection

N3O x FS-NEAT

Stratified 3-fold cross-validation x 31 runs

Accuracy and FS comparison of N3O with FS-NEAT.

		Accuracy		FS	
Datasets	Class	N3O	FS-NEAT	N3O	FS-NEAT
	Cancer Epithelial	0.736 ± .058	$\textbf{0.725} \pm .043$	13.65 ± 2.36	32.33 ± 10.77
GSE10797	Cancer Stroma	0.744 ± .035	$0.734\pm.044$	13.85 \pm 2.76	37.12 ± 12.53
	Normal	0.930 ± .024	$0.921\pm.024$	12.92 ± 4.19	$\textbf{20.09} \pm \textbf{9.13}$
GSE8671		0.984 ± .018	$0.980\pm.020$	15.16 \pm 3.99	17.53 ± 7.98
GSE32323		0.939 ± .040	$\textbf{0.934} \pm .043$	15.74 ± 4.02	20.29 ± 8.97
GSE41328		0.968 ± .045	$0.955\pm.071$	18.67 ± 6.35	18.60 ± 9.24
GSE14317		0.964 ± .040	$0.960\pm.044$	14.80 \pm 4.76	20.77 ± 9.44
GSE71935		$0.902 \pm .046$	$0.860\pm.047$	14.60 ± 3.42	26.13 ± 11.54
golub1999molecular		$0.900\pm.032$	$0.901 \pm .038$	12.51 ± 2.43	28.58 ± 11.97
Average		0.896 ± .093	$\textbf{0.886} \pm .095$	14.65 ± 1.83	24.60 ± 6.84

In bold are the best average accuracy and smallest average FS of each dataset. Best results with statistical significance (ρ < 0.01) are marked in blue.

N3O x FS-NEAT

Final neural networks (GSE71935 Leukemia)

FS-NEAT

N3O x FS-NEAT

Genes selection and error convergence for N3O and FS-NEAT

└FS-NEAT

N3O x FS-NEAT

Selection history of candidate genes for N3O and FS-NEAT

N3O x another Neuroevolution method

Method	Dataset	Accuracy	FS
N3O	[Golub et al., 1999]	$0.917\pm.095$	$\textbf{6.27} \pm \textbf{2.38}$
ABC&DE	[Golub et al., 1999]	$0.912 \pm .067$	3

N3O = average accuracy and number of selected features of our method for the testing set (20%) with random partition over 30 repetitions; ABC&DE = accuracy reported by the method from [Garro et al., 2017] for the testing set (20%) with random partition over 30 repetitions; FS = number of selected features.

N3O x SVM

Datasets	Class	Baseline	N3O	SVM	KW&SVM	N3O&SVM
GSE42568		0.87	$0.978 \pm .011$	$0.985\pm.007$	$0.985\pm.006$	0.990 ± .006
	Basal	0.73	$0.934 \pm .016$	$0.972 \pm .003$	$0.971 \pm .004$	$0.968 \pm .012$
	HER	0.80	$0.946 \pm .019$	$\textbf{0.962} \pm .010$	$0.950 \pm .011$	0.973 ± .026
GSE45827	Cell Line	0.91	$0.994 \pm .006$	$1.000 \pm .000$	1.000 ± .000	$0.999 \pm .003$
	Luminal A	0.81	$0.934 \pm .019$	$\textbf{0.968} \pm .014$	$0.979 \pm .007$	$0.965 \pm .017$
	Luminal B	0.80	$0.890 \pm .026$	0.931 ± .013	$0.928 \pm .016$	$0.923 \pm .024$
	Normal	0.95	$\textbf{0.988} \pm .009$	$0.995 \pm .003$	$0.993 \pm .000$	$0.994 \pm .005$
	Cancer Epithelial	0.57	$0.736 \pm .058$	$0.857 \pm .028$	$0.857 \pm .028$	$0.850 \pm .053$
GSE10797	Cancer Stroma	0.57	$0.744 \pm .035$	$0.761 \pm .036$	$0.761 \pm .036$	0.825 ± .062
	Normal	0.85	$0.930 \pm .024$	$0.924 \pm .019$	$0.924 \pm .019$	0.965 ± .018
GSE44076		0.50	$0.982 \pm .009$	$\textbf{0.983} \pm .003$	$0.984 \pm .003$	0.987 ± .008
GSE44861		0.50	$0.823 \pm .031$	$0.829 \pm .045$	0.829 ± .045	0.829 ± .059
GSE8671		0.51	0.984 ± .018	$0.698 \pm .065$	$0.698 \pm .065$	$0.667 \pm .000$
GSE21510		0.58	$0.956 \pm .032$	0.986 ± .021	0.986 ± .021	0.986 ± .039
GSE32323		0.51	0.939 ± .040	$0.692 \pm .066$	$0.692 \pm .066$	$0.686 \pm .050$
GSE41328		0.55	$\textbf{0.968} \pm .045$	$0.695 \pm .061$	$0.697 \pm .040$	$0.722 \pm .000$
	AML	0.59	0.901 ± .035	$0.947 \pm .016$	$0.920 \pm .019$	0.954 ± .039
	Bone Marrow	0.84	$0.989 \pm .017$	$0.984 \pm .000$	0.998 ± .005	$0.997 \pm .007$
GSE9476	Bone Marrow CD34	0.87	$0.963 \pm .023$	0.997 ± .007	$0.980 \pm .019$	$0.984 \pm .018$
	PB	0.84	$0.994 \pm .009$	$0.985 \pm .013$	1.000 ± .000	$0.999 \pm .004$
	PBSC CD34	0.84	$0.976 \pm .022$	$0.984 \pm .010$	$0.997 \pm .006$	$0.995 \pm .012$
GSE14317		0.72	$0.964 \pm .040$	$0.957 \pm .044$	$0.991 \pm .025$	0.996 ± .012
GSE63270		0.59	$0.969 \pm .022$	$0.999 \pm .003$	$0.998 \pm .004$	0.991 ± .011
GSE71935		0.80	$0.902 \pm .046$	$0.896 \pm .034$	$0.923 \pm .034$	0.966 ± .030
[Golub et al., 1999]		0.65	$0.900 \pm .032$	$0.961 \pm .022$	0.978 ± .012	$\textbf{0.943} \pm .028$
Average			0.931 ± .070	0.918 ± .102	0.921 ± .103	$0.926 \pm .102$

∟svм

Generalization

- Gene selection performed with a classifier is only specific to that given algorithm [Ang et al., 2016].
- SVMs are usually insensitive to a large number of irrelevant genes, and FS often biases down their accuracy [Statnikov et al., 2008].
- When the genes selected by the N3O were applied to SVM, its performance was not hurt, and for most of the datasets, it actually had a slight improvement.

Gene selection

Most selected genes

Most selected genes over all runs for each dataset:

- 44%: Related to the specific type of cancer;
- 20%: Related to another type of cancer;
- 20%: Not related to any cancer;
- 16%: Not yet described.

ERBB2 (HER2) was the most selected gene in its dataset among all experiments, appearing at 90.6% of the networks. It is described as the most relevant gene in breast cancer HER2 Status [Borges et al., 2018].

Gene selection

Proposed method: Functional enrichment

Gene selection experiment

177 genes obtained from running the method for the chosen cancer types considering all available samples.

- 82 associated to their given cancer type;
- 45 observed to be altered in other cancer types;
- 50 don't possess a clear described function, or were just not related to any tumoral condition.

Gene selection experiment

Detailment of gene selection for GSE44076 - CRC Adenocarcinoma.

Cellular components

Major bioprocesses were acessed using DAVID.

The number of genes related to the major cellular components.

Major Gene Ontology

Major GO derived from all selected genes.

Bioprocesses	Corrected p-value
Extracellular Matrix Organization	1.9×10^{-1}
Response to Hypoxia	7.7×10^{-1}
Signal Transduction	8.6×10^{-1}
Positive Regulation of Cell proliferation	8.0×10^{-1}

Biological role

- Components that act in the plasma membrane and extracellular exossomes: fundamental in cancer biology;
- Extracellular Matrix possesses proteins related to cell adhesion and cytoskeleton organization that are fundamental for tumor invasion and colony formation;
- Exossomes are critical for cell-cell signaling, influencing pathological conditions;
- Plasma membrane is part of a dynamic system of external and internal signals, intimately associated to cancer molecular mechanisms.

Summary

- 1 Neuroevolution
- 2 Proposed method
 - Filtering
 - Neuroevolution
- 3 Results
- 4 Conclusion

Conclusion

A pipeline for microarray classification and gene selection by employing Neuroevolution as a method capable of efficiently performing both tasks was presented.

- Improve upon regular FS-NEAT;
- Autonomous:
- Results matching the ones other methods;
- Generalizable;
- Selected genes validated as envolved in the cancer process.

References

Ang, J. C., Mirzal, A., Haron, H., et al. (2016).

Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection.

IEEE/ACM transactions on computational biology and bioinformatics, 13(5):971–989.

Borges, V. F., Ferrario, C., Aucoin, N., Falkson, C., Khan, Q., Krop, I., Welch, S., Conlin, A., Chaves, J., Bedard, P. L., et al. (2018).

Tucatinib combined with ado-trastuzumab emtansine in advanced erbb2/her2-positive metastatic breast cancer: A phase 1b clinical trial.

JAMA oncology.

Garro, B. A., Rodríguez, K., and Vazquez, R. A. (2017).

Designing artificial neural networks using differential evolution for classifying dna microarrays.

In Evolutionary Computation (CEC), 2017 IEEE Congress on, pages 2767–2774. IEEE.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., et al. (1999).

Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. science. 286(5439):531–537.

Statnikov, A., Wang, L., and Aliferis, C. F. (2008).

A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC bioinformatics, 9(1):319.

Whiteson, S., Stone, P., Stanley, K. O., Miikkulainen, R., and Kohl, N. (2005).

Automatic feature selection in neuroevolution.

In Proceedings of the 7th annual conference on Genetic and evolutionary computation, pages 1225–1232. ACM.

SVM

(a) Example of an SVM classifying data (represented by dots and squares) in 2D. In this case, the separating hyperplane is the line that best splits the data into two classes. (b) In this case, the data is not linearly separable, so a kernel transformation is applied, mapping it to a higher dimension, where a separating hyperplane exists.

Genetic algorithms

Schematic of a simple GA pipeline. A population of random individuals is generated, each of them representing a candidate solution. These individuals are evaluated by some domain-specific metric and, based on that, selected. The selected individuals can be subjugated to crossover or mutation operators, that create new individuals.

Kruskal-Wallis H Test

$$H = (N-1) \frac{\sum_{i=1}^{g} n_i (\bar{r}_i - \bar{r})^2}{\sum_{i=1}^{g} \sum_{i=1}^{n_i} (r_{ij} - \bar{r})^2}$$
(3)

$$\overline{r}_i = \frac{\sum_{j=1}^{n_i} r_{ij}}{n_i} \tag{4}$$

$$\overline{r} = \frac{1}{2}(N+1) \tag{5}$$

In which N is the total number of samples in all groups, g is the number of groups, n_i is the number of samples in the group i, r_{ij} is the rank of sample j from group i considering the rank among all samples, \overline{r}_i is the average rank of samples in group i, and \overline{r} is the average of all r_{ij} . The p-value is approximated using chi-squared by $\Pr(\chi^2_{g-1} \geq H)$.

Activation functions

List of used hyperparameters

Hyperparameter	Value
Population size	1000
Number of generations	100
Aggregation function	mean
Activation function	tanh, Gaussian
L2 regularization λ	0.5
Probability of mutation adding input	0.05
Probability of mutation swapping input	0.05
Probability of mutation adding connection	0.05
Probability of mutation adding node	0.03
Probability of mutation changing weight	0.04
Elitism proportion	0.1
k tournament selection	2
Coefficient 1	1.0
Coefficient 2	1.0
Coefficient 3	0.4
Compatibility threshold	3.0

Mean normalization and Softmax

$$x_{\text{new}} = \frac{x - \mu}{x_{\text{max}} - x_{\text{min}}} \tag{6}$$

$$softmax(Z) = e^{Z} \div \sum_{z \in Z} e^{Z'}, \forall z \in Z$$
 (7)

Log transformation

The p-values $-\log_{10}$ transformation

Cross-validation

Stratified 3-fold cross-validation

Baseline

$$baseline(D) = \max(\frac{|D_A|}{|D|}, \frac{|D_B|}{|D|})$$
 (8)

$$\rho = \frac{m}{G} \tag{9a}$$

$$\binom{A}{s} = \frac{A!}{s!(A-s)!} \tag{9b}$$

$$P_g[X=s] = {A \choose s} p^s (1-p)^{A-s}$$
 (9c)

$$P_g[X \ge s] = 1 - (P_g[X = 0] + P_g[X = 1] + ... + P_g[X = s - 1])$$
 (9d)