4.2.23

EE25BTECH11020 - Darsh Pankaj Gajare

September 21, 2025

Question:

Show that two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ where $b_1b_2 \neq 0$ are perpendicular if $a_1a_2 - b_1b_2 = 0$.

Solution:

Table

n ₁	$\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$
n ₂	$\begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$

For the lines to be perpendicular, their normals must be orthogonal:

$$\mathbf{n_1}^{\mathsf{T}}\mathbf{n_2} = 0 \tag{0.1}$$

Evaluating the product,

$$\begin{pmatrix} a_1 & b_1 \end{pmatrix} \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = 0 \tag{0.2}$$

Example: Let us assume the values $a_1 = 2$, $a_2 = 3$, $b_1 = 3$, $b_2 = 2$, $c_1 = 2$ and $c_2 = 3$ Plot using C libraries:

