### History

- Before 1980's in Tv Sets- Microcontroller connected to each peripheral by wire
- Complex and Bulky Structure
- Philips Developed Two wired Protocol-I2C
- Reduced Complexity

#### **Basic Characteristics**

- Two wired bus
- Speed

Normal mode-100kbps

Fast mode-400kbps

High Speed mode-3.4mbps

- Data Transfer: Serial,8 bit oriented, bidirectional
- Master slave approach with multimaster option
- Addressing-7 bit or 10 bit unique addressing

### Overview:

- SCL : Serial Clock Line
- SDA : Serial Data Line
- Data transfer between devices connected to the bus
- Master Slave Approach

#### Overview:Terms

- Transmitter The device sending data to the bus
- Receiver Device receiving data from the bus
- Master device initiating a transfer, generates to clock and terminates a transfer
- Slave Device addressed by the master
- Multi-master more than one master can attempt to control the bus
- Arbitration procedure to insure that only one master has control of ther bus at any instant
- Synchronization procedure to sync then clocks of two or more devices

### Master and Slave

- Master :
- Controls the SCL
- Starts and stops data transfer
- Controls addressing of other devices
- Slave :
- Device address by master

# Physical Structure:



### Special Start and Stop Conditions:

- Only in Start and Stop conditions SDA is allowed to change while SCL is high
- Data transfer mode : SDA is stable when SCL is High



#### Data Transfer

- Every Byte put on SDA must be 8 bit long
- Each Byte followed by Acknowledge bit
- Transfer- MSB to LSB
- When SCL is low- Data can be transfer

# Advantages

- Only two signal lines requires
- Flexible data transmission rates
- Each device on the bus is independently addressable
- Devices have a simple Master/Slave relationship
- Capable of handling multiple master communications by providing arbitration and communication collision detection

# Disadvantages

- Open Collector driver at master needs pull up resistance 2.2k on each line
- High Power Requirement
- Low Speed
- Low Throughput

# Comparison: I2C Vs SPI

| I <sub>2</sub> C                                                 | SPI                                                              |
|------------------------------------------------------------------|------------------------------------------------------------------|
| Requires only two lines                                          | Requires minimum four lines                                      |
| Low Speed                                                        | Higher Speed                                                     |
| Half Duplex                                                      | Full Duplex                                                      |
| Additional Signal select lines not required if devices increases | Additional Signal select lines are required as devices increases |
| More Power required                                              | Less Power Required                                              |
| Multimaster can be used easily                                   | Multimaster is difficult to implement                            |
|                                                                  |                                                                  |