часть четвертая

БАЗЫ ДАННЫХ

Методология IDEF1X (Integration Definition for Information Modeling) разрабатывалась для создания информационных моделей, представляющих структуру данных, описывающих предприятие или другую предметную область.

Стандарт на IDEF1X принят в США в 1993

году.

Объекты модели называются сущностями (Entity). Каждая сущность является множеством подобных индивидуальных объектов, называемых экземплярами. Каждый экземпляр индивидуален и должен отличаться от всех остальных экземпляров. Атрибут выражает определенное свойство объекта. С точки зрения БД сущности соответствует таблица, экземпляру сущности - строка в таблице, а атрибуту - колонка таблицы.

Сущность в методологии IDEF1X является независимой от идентификаторов или просто независимой, если каждый экземпляр сущности может быть однозначно идентифицирован без определения его отношений с другими сущностями.

Сущность называется зависимой от идентификаторов или просто зависимой, если однозначная идентификация экземпляра сущности зависит от его отношения к другой сущности.

Н езависимые от идентификатора сущности			
Имя сущности/Н омер сущности	Служащий/44		
Зависимые от идентификатора сущности			
Имя сущности/Н омер сущности	Проектное задание/56		

Связь является логическим соотношением между сущностями. Каждая связь должна именоваться глаголом или глагольной фразой.

Связь дополнительно определяется с помощью указания степени или мощности.

Если экземпляр сущности-потомка однозначно определяется своей связью с сущностью-родителем, то связь называется идентифицирующей, в противном случае - неидентифицирующей.

Связь изображается линией, проводимой между сущностью-родителем и сущностью-потомком с точкой на конце линии у сущности-потомка.

Идентифицирующая связь между сущностью-родителем и сущностью-потомком изображается сплошной линией. Сущность-потомок в идентифицирующей связи является зависимой от идентификатора сущностью.

Пунктирная линия изображает неидентифицирующую связь. Сущность-потомок в неидентифицирующей связи будет независимой от идентификатора, если она не является также сущностью-потомком в какой-либо идентифицирующей связи.

МЕТОДОЛОГИЯ IDEF1X фрагмент логической модели

МЕТОДОЛОГИЯ IDEF1X миграция ключей

- Операция автоматического добавления ключевых атрибутов родительской сущности в дочернюю в качестве внешнего ключа, выполняемая при создании связи, называется миграцией ключей (Key Migration).
- Выполняется при создании связи «один-ко-многим», как идентифицирующей, так и неидентифицирующей. Для идентифицирующей связи, ключ «родителя» добавляется в первичный ключ дочерней сущности.

МЕТОДОЛОГИЯ IDEF1X Связь «многие-ко-многим»

Изображается сплошной линией с двумя черными кружками на концах.

Допустима только в логической модели.

MEТОДОЛОГИЯ IDEF1X Уровни представления модели

- диаграмма сущность-связь (Entity-Relationship Diagram, ERD);
- модель базы данных, основанная на ключах (Key-Based);
- полная атрибутивная модель (Fully-Attributed, FA).

МЕТОДОЛОГИЯ IDEF1X Диаграмма сущность-связь

Модель базы данных, основанная на ключах

МЕТОДОЛОГИЯ IDEF1X Полная атрибутивная модель

ER-диаграммы. Нотация Чена

Нотации Баркера и Мартина

Типы связей в нотации Баркера

Обозначение	Кардинальность
	0,1
	1,1
- =====	0,N
	1,N

Типы связей в нотации Мартина

Обозначение	Кардинальность
	нет
	1,1
0+	0,1
	M,N
	0,N
+<	1,N

ER-диаграмма в нотации Мартина

Пример реляционной нотации MS Visio 2010

Нотация Information Engineering

Тип связи	Нотация IDEF1X	Нотация IE
Идентифицирующая		+
«1 к 0, 1 или более»		
	•	#
Неидентифицирующая		<u>:</u>
«1 к 0, 1 или более»		
	•	\
Идентифицирующая		+
«1 к 1 или более»		
	•	+
Неидентифицирующая		+
«1 к 1 или более»		
	• ^b	*

Нотация Information Engineering

Тип связи	Нотация IDEF1X	Нотация IE
Идентифицирующая		+
«1 к 0 или 1»	z z	Φ
Неидентифицирующая	İ	÷
«1 к 0 или 1»	z	÷ φ
Неидентифицирующая		÷
«О или 1 к O, 1 или		
более»	•	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
Неидентифицирующая		· \o
«О или 1 к О или 1»	z	φ φ

Дефект типа "разветвление"

Дефект типа "разветвление"

Дефект типа "разрыв"

Дефект типа "разрыв"

Правило ссылочной целостности гласит, что внешний ключ может быть либо пустым (иметь значение NULL), либо соответствовать значению первичного ключа, на который он ссылается

Методы обработки:

 Cascade – заменяет все записи в подчиненной таблице, удовлетворяющие старому ключевому значению главной таблицы, на новое ключевое значение

Методы обработки:

 Restrict – проверяет, имеются ли в подчиненной таблице записи, удовлетворяющие значению текущего первичного ключа, и при их наличии запрещает изменение первичного ключа

(запрещает добавление записи к подчиненной таблице, если в главной таблице отсутствует запись с подходящим значением ключа)

Методы обработки:

 None – игнорирует ссылочную целостность и позволяет изменять первичный ключ, не усчитывая при этом подчиненную таблицу
 (не выполняет никаких проверок на целостность)

Ссылочная целостность неидентифицирующая связь

Ссылочная целостность идентифицирующая связь

Ссылочная целостность

Дополнительные методы обработки:

- No action никаких действий не предпринимается;
- Set Null после удаления объекта ссылки внешнего ключа, внешнему ключу будет установлено значение Null (не определено);
- Set Default в аналогичной предыдущему случаю ситуации, внешний ключ получит значение по умолчанию, если оно для него определено.

К структурам контроля целостности данных относятся ограничители (constraint), которые привязаны к столбцам и триггеры (trigger), которые могут быть привязаны как к столбцам, так и к строкам в таблице

Ограничители это элементарные проверки или условия, которые выполняются для операций вставки и модификации значения столбца. Если данная проверка не проходит или условие не выполняется, то вставка или модификация отменяется, а в программу клиента передается ошибка.

- NOT NULL проверка на непустое значение.
- UNIQUE проверка на уникальность.
- PRIMARY KEY первичный ключ.
- FOREIGN KEY внешний ключ.
- REFERENCES указатель ссылки (или родительский ключ).
- **CHECK** проверка фиксированного условия.

Ограничения ссылочной целостности используются при каскадном удалении, т.е. при удалении записи в родительской таблице удаляются все записи с указанным ключом из дочерних таблиц, и наоборот при запрете удаления/модификации, т.е. при наличии зависимых записей в дочерних таблицах, значение ключа записи в родительской таблице нельзя удалить или модифицировать.

Триггеры представляют собой программы, выполняемые всякий раз при выполнении команд вставки, замены или удаления (INSERT, UPDATE или DELETE).

Триггер ссылочной целостности - особый вид триггера, используемый для поддержания целостности между двумя таблицами, которые связаны между собой. Если строка в одной таблице вставляется, изменяется или удаляется, то триггер ссылочной целостности (RI-триггер) сообщает СУБД, что нужно делать с теми строками в других таблицах, у которых значение внешнего ключа совпадает со значением первичного ключа вставленной (измененной, удаленной) строки.

ПО уровня сервера

Хранимой процедурой называется именованный набор предварительно откомпилированных команд SQL, который может вызываться из клиентского приложения или из другой хранимой процедуры.

Дополнительные аспекты организации данных

Чтобы решить проблему поиска данных, СУБД использует особый объект, называемый индексом.

Дополнительные аспекты организации данных

Индекс содержит отсортированную по колонке или нескольким колонкам информацию и указывает на строки, в которых хранится конкретное значение колонки.

Дополнительные аспекты организации данных

Администратор СУБД должен анализировать наиболее часто выполняемые запросы и создавать индексы с различными колонками и порядком сортировки для увеличения эффективности поиска при работе конкретных приложений.

Вопросы?