

厦门大学《线性代数》课程期中试题

·**、单项选择题**(每小题 2 分,共 20 分)

 对于n阶可逆矩阵A, B, 则下列等式中() 	不成立.
--	------

(A)
$$|(AB)^{-1}| = |A^{-1}| \cdot |B^{-1}|$$

(B)
$$|(AB)^{-1}| = (1/|A^{-1}|) \cdot (1/|B^{-1}|)$$

(C)
$$|(AB)^{-1}| = |A|^{-1} \cdot |B|^{-1}$$

(D)
$$|(\mathbf{AB})^{-1}| = 1/|\mathbf{AB}|$$

2. 设 A 、B 为同阶方阵,则必有(

A. |A+B|=|A|+|B|

B. AB=BA

C. $(AB)^T = A^TB^T$

D. |AB|=|BA|

3. 设 $A \setminus B$ 均为n 阶矩阵,满足AB = O,则必有(

$$A \cdot |A| + |B| = 0$$

$$B \cdot r(A) = r(B) = 0$$

$$C. A = O \otimes B = O$$

$$D \cdot |A| = 0 \overrightarrow{\mathfrak{D}}|B| = 0$$

4. 设
$$A = (a_{ij})_{3\times3}$$
, $B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{11} & a_{32} + a_{12} & a_{33} + a_{13} \end{pmatrix}$, $P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, 那么

$$(A) AP_1P_2 = B$$

(B)
$$AP_2P_1 = I$$

(C)
$$P_1P_2A = B$$

(A)
$$AP_1P_2 = B$$
 (B) $AP_2P_1 = B$ (C) $P_1P_2A = B$ (D) $P_2P_1A = B$

5. 设 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 是四维列向量,且 $|\alpha_1, \alpha_2, \alpha_3, \beta_1| = m$, $|\alpha_1, \alpha_2, \beta_2, \alpha_3| = n$,则

$$|\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_1,\boldsymbol{\beta}_1+\boldsymbol{\beta}_2|= () .$$

(A)
$$m+n$$

(B)
$$-(m+n)$$
 (C) $n-m$ **(D)** $m-n$

(C)
$$n-m$$

(D)
$$m-n$$

6. 下列矩阵是行最简形矩阵的是(

$$\mathbf{(A)} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{(B)} \begin{pmatrix} 1 & 0 & 3 & 4 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(C)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 1 \end{pmatrix}$$

(D)
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

<mark>7.</mark> 设 n 阶方阵 A、B、C 满足 ABC=E,则必有(

A. ACB=E

B. CBA=E

C. *BCA=E*

D. BAC=E

8. 若同阶方阵 <i>A</i> 与 <i>B</i> 等价,则必有(A. <i>A</i> = <i>B</i>)。 B. A 可逆 B 不可逆
C. $R(A)=R(B)$	D. $ A = 0$, $ B \neq 0$
_	
9. 设 <i>A</i> 为 <i>n</i> 阶可逆矩阵,则下面结论错误的	
A. $ A \neq 0$	$B. A* = A ^{n+1}$
C. <i>A</i> 与 <i>E</i> 行等价	D. $r(A) = n$
10 、设 A 为 $m \times n$ 矩阵,若 A 的秩为 $R(A)$	=r,则下面结论正确的是 $($ $)$ $)$ $)$
A.~A的 r 阶子式都不为零。 C.~A的所有 $r+1$ 阶以上子式都为零。	B. A 的 $r-1$ 阶子式都不为零。 D. A 的 $r-1$ 阶以下子式都不为零。
二、填空题 (每空格 4 分, 共 20 分)	
1. n 阶行列式 $\begin{vmatrix} a & b & 0 & \cdots & 0 & 0 \\ 0 & a & b & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ b & 0 & 0 & \cdots & 0 & a \end{vmatrix} = \underline{\qquad}$	•
2. 设 $\alpha = (1,2,3)^T$, $\beta = \left(1,\frac{1}{2},\frac{1}{3}\right)^T$, $A = \alpha_0$	$oldsymbol{eta}^T$,则 $oldsymbol{A}^n =$
3. 设分块矩阵 $A = \begin{pmatrix} 0 & -E_{n-1} \\ -1 & 0^T \end{pmatrix}$,则 det	A = ().
(A) 1 (B) -1 (C)	$(-1)^{n-1}$ (D) $(-1)^n$
4. $\begin{tabular}{ll} A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 1 & 3 \end{pmatrix}, C = AB^2$	$-^{1}$,则矩阵 $oldsymbol{c}^{-1}$ 中,第 3 行第 2 列的元素是()
A. $\frac{1}{3}$ B. $\frac{1}{2}$	C. 1 D. $\frac{3}{2}$
5. 设四阶方阵 $A = \begin{pmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -3 \end{pmatrix}$, 则 A^{-1}	-1 <u>-</u>

三、计算题 (共 45 分)

1. 计算行列式

$$\begin{vmatrix} a+b & b & b & b \\ -b & a-b & -b & -b \\ b & b & a+b & b \\ -b & -b & -b & a-b \end{vmatrix}$$

2. 计算行列式

$$\begin{vmatrix} x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & x & -1 \\ a_0 & a_1 & a_2 & a_3 + x \end{vmatrix}$$

3. 解矩阵方程
$$X = AX + B$$
, 其中 $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}$.

- **4.** 设矩阵 $A = \begin{pmatrix} 0 & 1 & 7 & 8 \\ 1 & 3 & 3 & 8 \\ -2 & -5 & 1 & -8 \end{pmatrix}$,试用初等行变换将行<mark>阶梯型 F</mark>,并求 P_1 、 P_2 、…、
- P_i , 使 $A=P_1P_2\cdots P_i$ F, 其中 P_1 、 P_2 、…、 P_i 为初等矩阵, l 初等变换次数。

5. (6分)设
$$D = \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$
, D 的 (i, j) 元 的 代 数 余 子 式 记 作 A_{ij} , 求

$$A_{31} + 3A_{32} - 2A_{33} + 2A_{34}$$
.

四、证明题 (每小题 5 分, 共 15 分)

1. 若A, B都是n阶非零矩阵, 且AB=0. 证明A和B都是不可逆的.

2、设方阵A满足 $A^2 - A - 2E = 0$,证明A和A + 2E都可逆,并求 A^{-1} 和 $(A + 2E)^{-1}$ 。

3、设n**阶**方阵A可逆,证明 $(A^*)^*=$ 并求 A^{-1} 和 $(A+2E)^{-1}$ 。