Olympiad Geometry

VISHAL RAMAN

November 30, 2020

I first present my notes from the Art of Problem Solving(AoPS) Olympiad Geometry course. I plan to include my notes from reading the text *Euclidean Geometry in Mathematical Olympiad* by Evan Chen. I plan to periodically insert detailed studies of selected IMO/USAMO problems. There are plans to include notes from other courses and handouts, such as AMSP or WOOT.

Contents

1	Week 1: Fundamentals of Geometry
	1.1 Similar Triangles
	1.2 Power of a Point
	1.3 Cyclic Quadrilaterals
	1.4 Problems
2	Homework 1: Fundamentals of Geometry
	2.1 Problem 1
	2.2 Problem 2

§1 Week 1: Fundamentals of Geometry

§1.1 Similar Triangles

The first fundamental tool at our disposal is similar triangles, which give us relationships between the lengths and angles of segments.

Definition 1.1. Two triangles $\triangle ABC$, $\triangle DEF$ and similar (denoted $\triangle ABC \sim \triangle DEF$) if $\angle A = \angle D$, $\angle B = \angle E$, and $\angle C = \angle F$. If the above relations hold, then we also have

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}.$$

Similar triangles can be useful if a problem involves ratios or products of lengths. Another use(though rare) is that we show triangles are similar by showing AB/DE = AC/DF = BC/EF and deduce the angles are equal. We could also show that pair of sides have equal ratio and the included angle is equal: AB/DE = AC/DF and $\angle BAC = \angle EDF$, then $\triangle ABC \sim \triangle DEF$.

We begin by present some applications.

Theorem 1 (Angle Bisector)

Take $\triangle ABC$. If $D \in BC$ so that AD bisects $\angle BAC$, then AB/BD = AC/CD.

Proof. Draw a line through C parallel to AB and mark E as the insertion of the parallel line through C and the extension of AD.

Then $\angle ABC = \angle ECD$ and $\angle DEC = \angle DAC$ so it follows that $\triangle ABC \sim \triangle ECD$. Thus, AB/BD = EC/CD. Finally, $\angle CED = \angle DAC$ so it follows that $\triangle ACE$ is isosceles and AC = EC so we find that

$$\frac{AB}{BD} = \frac{AC}{CD},$$

as desired.

Remark 1.2. We also could prove this using the Law of Sines or the ratio of areas of the two triangles.

Problem 1

Given that AB||CD||EF, prove that $\frac{1}{AB} + \frac{1}{EF} = \frac{1}{CD}$ in the following diagram:

Proof. Multiplying through by CD, we get that

$$CD/AB + CD/EF = 1.$$

Note that $\triangle ACD \sim \triangle AEF$ and $\triangle ECD \sim \triangle EAB$ so it follows that CD/AB =CE/AE and CD/EF = CA/AE.

Finally,

$$\frac{CD}{AB} + \frac{CD}{EF} = \frac{CE}{AE} + \frac{CA}{AE} = \frac{AE}{AE} = 1.$$

§1.2 Power of a Point

Theorem 2 (Power of a Point)

Take a point P and circle O. For any line that passes through P and intersects O at two points X and Y, the product (PX)(PY) is constant. We call this product the **power of point** P with respect to circle O.

 $PC \cdot PD = PA \cdot PB = PE^2$

 $PC \cdot PD = PA \cdot PB$

The Power of a Point Theorem follows from similar triangles:

Problem 2

AB is a diameter of circle O. Points C and D are on the circle such that D bisects arc AC. Point E is on the extension of BC that that BE is perpendicular to DE. F is the intersection of AE and circle O. Prove that the extension of BF bisects segment DE at M.

Proof. We first claim that OD||EB. This is because

$$\angle AOD = \operatorname{arc}(AD) = \operatorname{arc}(AC)/2 = \angle ABE.$$

It follows that ED is tangent to the circle, since $\angle ODE$ is a right angle. Furthermore, $\angle AFB$ is a right angle since AB is the diameter of the circle. Now, note that $\operatorname{Pow}_O(M) = MD^2 = MF \cdot FB$. It suffices to show that $EF^2 = MF \cdot FB$. This follows from the fact that $MFE \sim EFB$, so it follows that

$$\frac{EF}{FB} = \frac{ME}{FE} \Longrightarrow EF^2 = ME \cdot FB.$$

§1.3 Cyclic Quadrilaterals

Definition 1.3. A quadrilateral is called **cyclic** if a circle can be drawn that passes through all four vertices.

There are 4 equivalent methods to showing a quadrilateral ABCD is cyclic, namely:

- Showing $\angle ABD = \angle ACD$ (or any of the other pairs of similarly defined angles).
- Showing a pair of opposite angles sum to 180 degrees.
- ullet The converse of the Power of a Point: if P is the intersection of lines AB and CD and

$$PA \cdot PB = PC \cdot PD$$

or

$$QC \cdot QD = QB \cdot QA$$
,

then A, B, C, D are all on a circle.

• The equality condition of **Ptolemy's Inequality**: In a quadrilateral *ABCD*,

$$AB \cdot CD + BC \cdot DA \ge AC \cdot BC$$

with equality if and only if ABCD is cyclic.

I omit the basic examples but present some of the interesting ones:

Proposition 1.4

A chord ST of constant length slides around a semicircle with diameter AB. M is the midpoint of ST and P is the foot of the perpendicular from S to AB. Prove that the angle SPM is constant for all positions of ST.

Proof. If SM = MT, then it follows M is the perpendicular bisector of $\triangle OST$. Thus, OPSM is cyclic and $\angle SPM = \angle SOM$. Finally, the length of SM is constant, so it follows that the arc between intersection of the extension of OM and the circle and S is constant. Thus, $\angle SPM$ is constant, as desired.

Proposition 1.5

ABC is an acute triangle with O as its circumcenter. Let S be the circle through C, O, B. The lines AB and AC meet circle S again at P and Q, respectively. Show that AO and PQ are perpendicular.

Proof. It suffices to show that $\angle AZP$ is right, where $Z = AO \cap PQ$. This reduces to showing that $\angle ZPA + \angle ZAP = 90$. Since PBCQ is cyclic, note that

$$\angle ZPA = 180 - \angle BCQ = \angle ACB$$
,

so it suffices to show that ACB + OAB = 90. Mark D as the intersection of AO with the original circle. Then,

$$\angle ACB + \angle OAB = \frac{\operatorname{arc}(AB) + \operatorname{arc}(BD)}{2} = \frac{\operatorname{arc}(AD)}{2} = 90.$$

§1.4 Problems

Problem 3

Let ABC be a triangle and D be the foot of the altitude from A. Let E and F be on a line passing through D such that AE is perpendicular to BC, AF is perpendicular to CF, and E and F are different from D. Let M and N be the midpoints of the line segments BC and EF, respectively. Prove that AN is perpendicular to NM.

Proof. Note that ABED and AFCD are cyclic quadrilaterals. It follows that $ABC \sim AEF$ since $\angle ABD = \angle AED$ and $\angle AFD = \angle ACD$. Similarly, we can show that $ABM \sim AEN$ since

$$\frac{AB}{AE} = \frac{BC}{EF} = \frac{2BN}{2EM} = \frac{BN}{EM}.$$

Therefore, $\angle AND = \angle AMD$ and it follows that ANMD is cyclic. Therefore $\angle ANM = 180 - \angle AD = 90$, as desired.

Problem 4

Let ABCD be a convex quadrilateral inscribed in a semicircle with diameter AB. The lines AC and BD intersect at E and the lines AD and BC meet at E. The line EF meets the semicircle at E and E and E are the midpoint of E if and only if E is the midpoint of the line segment E.

Proof. Note that $\angle ADB = \angle ACB = 90$. It follows that E is the orthocenter of FAB and $\angle FAH = 90$. We obtain many similar triangles, with one notable one begin $\triangle AEH = FBH$ which gives the relation

$$HE \cdot HF = HA \cdot HB$$
.

However, note that

$$Pow(H) = HG^2 = HA \cdot HB,$$

so it follows that

$$\frac{HG}{HF} = \frac{HE}{HG},$$

which proves the result.

§2 Homework 1: Fundamentals of Geometry

§2.1 Problem 1

Problem 5

Let ABCD be a quadrilateral such that all sides have equal length and $\angle ABC = 60$. Let k be a line through D and not intersecting the quadrilateral. Let E and F be the intersection of k with lines AB and BC respectively. Let M be the point of intersection of CE and AF. Prove that $CA^2 = CM \cdot CE$.

Proof. It suffices to show that $\triangle MCA \sim \triangle ACE$. We already have that $\angle MCA = \angle ACE$ so we finish by showing that $\angle CAM = \angle CEA$.

We first claim that AD||CB and AB||DC. Note that AB = BC and $\angle ABC = 60$ so it follows that $\triangle ABC$ is equilateral. Hence AB = CB = CA. But note that AD = DC = AB = CA, so it follows that $\triangle ADC$ is also equilateral. Hence $\angle DAB = 120$ and $\angle ADC = \angle ABC = 60$ showing that AD||CB and AB||DC.

Note that $\angle EAC = \angle ACE = 120$, so it suffices to show that $\frac{EA}{AC} = \frac{AC}{CF}$, since it follows that $\triangle EAC = \triangle ACF$ and $\angle CAM = \angle CEA$. Furthermore, we have that $\triangle DCF \sim \triangle EAD$ since $\angle EAD = \angle DCA$ and $\angle AED = \angle CDF$. It follows that

$$\frac{EA}{AC} = \frac{DA}{FC} = \frac{AC}{FC},$$

since DA = AC, which completes the proof.

§2.2 Problem 2

Problem 6

Let C_1 and C_2 be concentric circles with C_2 inside C_1 . Let A and C be on C_1 such that AC is tangent to C_2 at B. Let D be the midpoint of AB. A line passing through A meets C_2 at E and F such that the perpendicular bisectors of DE and CF meet at a point M on a segment DC. Find the ratio AM/MC.