$Av = \lambda v \iff A$ -ב ע"ע ו"ע ל-ע"ע v ו"ע ע"ע וו"ע $\rho(A) = \max_{1 \le i \le \eta} |\lambda_i|$:רדיוס ספקטרלי: $\forall_K : \rho(A) \le \left| |A^K| \right|^{\frac{1}{K}}$ $\mathbf{A}^{\mathrm{T}}A$ עבור λ_i עבור $\sigma_i = \sqrt{\lambda_i}$ של של $\sigma_i = \sqrt{\lambda_i}$ יש n ו"ע עם ע"ע שונים A - אם ל- A יש אונים $\Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_n) \ A = V \Lambda V^{-1}$:אז A לכסינה $V = [v_1 | \dots | v_n]$ $\mathbf{U} \in \mathbb{C}^{n \times n}$ קיימת אז קיימת A פירוק נורמלי: פירוק נורמלי $U^*U=I$, $A=U\Lambda U^*$:אוניטרית $U = [u_1| \dots |u_n]$, $\Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$; $\lambda_i \in \mathbb{C}$ $x^T A x > 0 \ \forall x \in \mathbb{R}^n$ חיובית מוגדרת $(\lambda_i > 0$ מטריצה סימטרית חיובית מוגדרת -SPD) $x^T A x \ge 0 \ \forall x \in \mathbb{R}^n$ חיובית חצי מוגדרת:

 $\Leftrightarrow \det(A) \neq 0 \Leftrightarrow A^{-1}$ מטריצה הפיכה: קיים $\mathsf{full}\;\mathsf{rank}\;$ היא $\mathsf{A} \Leftrightarrow \mathsf{A}$ $\det(B) = 0$ או $\det(A) = 0 \Leftarrow$ סינגולרית או $\det(B) = 0$ טענה: עבור A חיובית מוגדרת / הפיכה / לכסינה, $\mathbf{A}^{-1}v_i=(1/\,\lambda_i)v_i$ אז $Av_i=\lambda_iv_i$ אם טענה: עבור $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ מהצורה $A \in \mathbb{R}^{2 \times 2}$ אם SPD A אז a > b; c > b; a > 0; c > 0

(מתקיים לכל A^TA כאשר (מתקיים לכל

 $a_{i,j} = 0 \text{ if } |i-j| > 1$:תלת אלכסונית A מטריצה (SDD) :strictly diagonally dominant $\left|a_{j,j}
ight|>\sum_{i}\left|a_{i,j}
ight|$ או $\left|a_{i,i}
ight|>\sum_{j}\left|a_{i,j}
ight|$ אשר מקיימת :דטרמיננטות

 $\det(AB) = \det(A)\det(B) *$

 $A^TA = AA^T$ נורמלית:

 $\det(L) = \prod_i l_{i,i}$ אם L היא מטריצה משולשית *

 $\det(A) = ad - bc$ עבור $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ עבור *

עבור A, B ריבועיות $(AB)^{-1} = B^{-1}A^{-1}$

 $(AB)^T = B^T A^T *$ $(A+B)^T = A^T + B^T *$

סכום מטריצות ו-ע"ע:

"עבור מטריצות A,B בעלי אותו ו $(A+B)v = Av + Bv = \lambda_A v + \lambda_B v = (\lambda_A + \lambda_B)v$

 $M \in \mathbb{R}^{n \times n}$ $A \in \mathbb{R}^{m \times n}$ $x, v \in \mathbb{R}^n$ נגזרות: $abla f = \left[rac{\partial f}{\partial x_1} \cdots rac{\partial f}{\partial x_n}
ight]^T$ הוא $f(x_1, ..., x_n)$ גרדיאנט של $\nabla f = v$ אז $f = v^T x^*$ $\nabla f = 2x$ אז $f = x^T x$ *

 $\nabla f = A^T A v$ אז $f = v^T A^T A x^*$ $\nabla f = 2A^TAx$ אז $f = x^TA^TAx$ * $\nabla f = (M + M^T)x$ אז $f = x^T M x^*$

Ax = b :פתרון מערכת משוואות אחרת , $A \ full \ rank$ אחרת פתרון יחיד אם יש אינסוף פתרונות או שאין פתרון כלל. pivoting , LU , Gaussian Elemination: קיים פירוק , $Ax = P^T L U x = b$ ומתקיים: PA = L U $x = U^{-1}y$, $y = L^{-1}(Pb)$

 $A^{-1} = U^{-1}Y$, $Y = L^{-1}I$ הפיכת מטריצה: יחיד A אם A הפיכה אז קיים לה

Pivot אז קיים פתרון ללא SPD A אם *

 $\det(A) = \det(LU) = \det(U)^*$

L למטריצות SPD אם A היא Cholesky $A = LL^T$ משולשית תחתונה עם $l_{i,i} > 0$ כך ש $\det(A) = \det(LL^T) = \det(L)^2 *$

Thomas למערכת תלת אלכסונית: האלגוריתם מצליח כאשר המטריצה A היא SPD או SDD. $x = R^{-1}Q^Tb$ נקבל A = QR פירוק QR: עבור

נורמה וקטורית: ||∙|| תקרא נורמה אם מתקיים: $\|\vec{x}\| = 0 \iff \vec{x} = 0$ או שליליות: $0 \ge 0$ אי שליליות: *

 $orall ec{x} \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$: $\|\lambda ec{x}\| = |\lambda| \|ec{x}\|$ * הומוגניות: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$ אי שוויון המשולש: *

 $\|ec{v}\|_p = (\sum_{i=1}^n |v_i|^p)^{\overline{p}}$:Lp קבוצת נורמות $\| ec{v} \|_{\infty} = \max\{|v_i|\}$, $\| ec{v} \|_1 = \sum_{i=1}^n |v_i|$ למשל:

 $\|\vec{v}\|_2 = (\sum_{i=1}^n {v_i}^2)^{\frac{1}{2}} = \sqrt{v^T v} = \sqrt{\langle v, v \rangle}$ נשים לב כי $\|\vec{v}\|_{\infty} \le \|\vec{v}\|_2 \le \|\vec{v}\|_1$ נשים לב נורמת אנרגיה: לכל מטריצה M מסוג SPD נורמת

 $\|\vec{v}\|_M = \sqrt{\langle \vec{v}, M\vec{v} \rangle}$ הנורמה טענה: מטריצה אורתוגונלית משמרת נורמה $\left|\left|Q\vec{v}\right|\right|_2=\left|\left|\vec{v}\right|\right|_2$ ומתקיים: l_2 ומתקיים

טענה: כל נורמה ∥⋅∥ היא פונקציה רציפה (לא בהכרח גזירה).

טענה: לכל נורמות וקטוריות ϕ_1,ϕ_2 קיימים קבועים $a\phi_2(\vec{v}) \leq \phi_1(\vec{v}) \leq b\phi_2(\vec{v})$ ומתקיים $0 < a \leq b$ (כלומר כל הנורמות שקולות, אם באחת נתכנס ל-0 אז גם בשניה).

מכפלה פנימית וקטורית:

אם: $u, v \in \mathbb{R}^n$ אם: $\langle \cdot, \cdot \rangle$ אם: $\langle u, v \rangle = \langle v, u \rangle$ סימטריות:

וגם $\langle u,v_1+v_2 \rangle = \langle \, u,v_1 \rangle + \langle u,v_2 \rangle$: לינאריות * $\langle \alpha u, \beta v \rangle = \alpha \beta \langle u, v \rangle$

 $\langle u,u\rangle=0 \Leftrightarrow u=0$ או $\langle u,u\rangle\geq0$ אי שליליות: , $\langle u, v \rangle = \sum_i u_i v_i = u^T v$ מכפלות מוכרות: SPD מסוג M למטריצה $\langle u, v \rangle_M = u^T M v$

נורמת מטריצה: (מקיימות את אותן תכונות של נורמות וקטוריות)

נורמות מטריצות אנאלוגיות לנורמות וקטוריות:

 $||A||_F = \left(\sum_i \sum_j |a_{i,j}|^2\right)^{\frac{1}{2}}$ - Forbenius Norm * $||A||_{r} = \sqrt{trace(AA^{T})}$

 $||A||_1 = \sum_{ij} |a_{i,j}|^*$

 $||A||_{\infty} = \max |a_{i,j}|^*$

נורמות מטריצות מושרות:

 $\left|\left|A\right|\right|_{a}=\left|\left|A\right|\right|_{a,a}\text{ piou }\left|\left|A\right|\right|_{a,b}=\max_{\vec{x}\in\mathbb{R}^{n}}\frac{\left|\left|A\vec{x}\right|\right|_{a}}{\left|\left|\vec{x}\right|\right|_{b}}$ $||A||_1 = \max_i (\sum_{i=1}^m |a_{i,j}|)$ דוגמאות: $||A||_{\infty} = \max_{i} \left(\sum_{j=1}^{n} |a_{i,j}| \right)$ A^TA ע"ע של $||A||_2 = \max \sqrt{\mu_i}$ כאשר כאשר $\left| |A\vec{x}| \right|_a \le \left| |A| \right|_{a,b} \left| |\vec{x}| \right|_b^t$ טענה: $||AB||_{b,a} \le ||A||_{c,a} ||B||_{b,c}$ טענה: $||A||_2 = \rho(A)$ טענה: עבור A נורמלית מתקיים

 $\kappa(A)$ מספר מצב (Condition Number): מספר מתקיים $\left|\frac{|\delta x|}{|x|} \le \left|A^{-1}\right| \left|A\right| \left|\frac{|\delta b|}{|b|} + \frac{|\delta A|}{|a|}\right|$ כאשר $\kappa(A) = \left| |A^{-1}| \right| \left| |A| \right|^{2 - norm} \frac{\sigma_{\max}(A)}{\sigma_{\max}(A)}$ A^TA עבור λ_i עבור $\sigma_{\max}(A) = \max_i \sqrt{\lambda_i}$ ו-מטריצה עם מספר מצב גדול נקראת מטריצה "חולנית" ועלולה ליצור שגיאות גדולות.

.hower method למציאת ו"ע עם ע"ע גדול ביותר

 $x^{(k+1)} = \frac{(Ax^{(k)})}{||Ax^{(k)}||} : x^{(0)}$ בהינתן ניחוש התחלתי : $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$ לכל A לכסינה עם ע"ע

 $\lim_{k \to \infty} \{x^{(k)}\} = v_1 ; \lim_{k \to \infty} \frac{\left(\left(x^{(k)}\right)^T A x^{(k)}\right)}{\left(x^{(k)}\right)^T x^{(k)}} = \lambda_1$ הערה: עבור A^{-1} השיטה תחזיר את את , ו"ע

עם ע"ע קטן ביותר מציאת ו"ע של ע"ע נתוו. (וויע וויע של ע"ע וווי : $x^{(0)}$ ניחוש לע"ע וניחוש התחלתי לו"ע בהינתן בהינתן בהינתן אוניחוש לע $x^{(w)}$ געע אוניווש והתחלתי לו"ע $x^{(k+1)} = (A - \mu I)^{-1} x^{(k)}; x^{(k+1)} \leftarrow \frac{x^{(k+1)}}{|x^{(k+1)}|}$

 $rac{|\mu^{-}\lambda_{closest\ to\ \mu}|}{|\mu^{-}\lambda_{second\ closest\ to\ \mu}|}$ ו הינו ו.P.M פקטור ההתכנסות ל

 $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$,full rank $A \in \mathbb{R}^{m \times n}$ בעיית הריבועים הפחותים: b-אנו מחפשים וקטור x כך ש-Ax יהיה כמה שיותר קרוב ל

וקטור השארית. $r(x) = Ax - b^*$ הוא הוקטור האופטימלי או בכתיב $\hat{x} = \arg\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2 *$

(full rank היא $\hat{x} = (A^T A)^{-1} A^T b$ מטריציוני אז יש full rank אז א full rank הן המשוואות הנורמליות, אם $A^TAx = A^Tb$ להן אינסוף פתרונות.

העובר כמה ax+b ישר למצוא נרצה ($x_i,y_i)$ העובר כמה * שיותר קרוב לנק'.

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} m & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i} y_{i} \\ \sum_{i} x_{i} y_{i} \end{bmatrix}$$

$$\underset{arg \min}{\text{arg min}} \begin{bmatrix} x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{n} & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

ולקבל SPD שהיא W ניתן להוסיף משקולות לבעיה ע"י מטריצה * $\hat{x} = (A^T W A)^{-1} A^T W b$ או $\hat{x} = \arg \min_{x \in \mathbb{R}^n} ||Ax - b||_W^2$

 $\lambda>0$ סינגולרית ניתן להוסיף רגולריזציה לבעיה באמצעות $\lambda>0$ ולקבל: (C=I בדר"כ C ולקבל:

 $\hat{x} = \arg\min_{x \in \mathbb{R}^n} \left| |Ax - b| \right|_2^2 + \lambda \left| |Cx| \right|_2^2$ $\hat{x} = (A^T A + \lambda C^T C)^{-1} A^T b$ או

 $x^TAx + x^Tb$:כל משוואה ריבועית ניתן לכתוב כך $\hat{x} = \arg\min_{n=1}^{\infty} ||U\Sigma V^T x - b||_2^2$ (SVD מינימום ריבועים ע"י $\hat{x} = (A^T A)^{-1} A^T b = V(\Sigma)^{-1} U^T b$ אז full rank כאשר

 $\hat{x} = V(\Sigma)^{\dagger} U^T b$ אז לא full rank א A באשר $\hat{x} = V(\Sigma)^{\dagger} U^T b$ אז עבור $\Sigma_{i,i} \neq 0$ עבור $\Sigma_{i,i} = 0$

תהליך אורתוגונלית $A=[a_1|\cdots|a_n]$:Gram Schmidt תהליך $q_i=a_i-\sum_{j=1}^{(i-1)}rac{\langle a_i,a_j
angle}{\langle q_j,q_j
angle}q_j$ כך: Q בהתבסס על עמודות Q

A= באמצעות גרהאם שמידט עם נירמול נפרק מטריצה **QR** פירוק . אורתוגונלית ו-R אורתוגונלית עליונה Q למטריצה QR

Algorithm: Gram Schmidt QR

$$\# A = [\mathbf{a}_1 | \mathbf{a}_2 | \dots | \mathbf{a}_n] \in \mathbb{R}^{m \times n}$$
 Initialize: $R = 0^{n \times n}$, $R_{1,1} = \|\mathbf{a}_1\|_2$, $\mathbf{q}_1 = \frac{\mathbf{a}_1}{R_{1,1}}$ for $i = 2, \dots, n$ do $\mathbf{q}_i \leftarrow \mathbf{a}_i$

$$\mathbf{q}_i \leftarrow \mathbf{q}_i$$
 for $j = 1: i-1$ do $R_{j,i} = \mathbf{q}_j^{\top} \mathbf{a}_i$ $\mathbf{q}_i \leftarrow \mathbf{q}_i - R_{j,i} \mathbf{q}_j$

 $R_{i,i} = \|\mathbf{q}_i\|_2$ $\mathbf{q}_i \leftarrow \frac{\mathbf{q}_i}{R_{i,i}}$

פירוק מטריצות מטריצות $p=\min\left(m,n\right)$, $A\in\mathbb{R}^{m\times n}$ לכל **SVD: פירוק** אורתוגונליות $U \in \mathbb{R}^{m imes p}, V \in \mathbb{R}^{n imes p}$ ומטריצה אלכסונית A הם ערכים סינגולריים של σ_i) $\Sigma \in \mathbb{R}^{p \times p} = diag(\sigma_1, \dots, \sigma_p)$ $A = U\Sigma V^T$:כך שמתקיים ($\sigma_1 \geq ... \geq \sigma_p$ ומתקיים

- ${
 m A}^{
 m T} A$ הם שורשי הע"ע של σ_i
 - $A^T A$ הם הו"ע של v_i
 - AA^T הם הו"ע של u_i

קירוב מטריצה עם מטריצה מדרגה קטנה ופירוק SVD: נחפש $A = U\Sigma V^T$ כאשר $\left| |A - B| \right|_F = \left| |\Sigma - U^T B V| \right|_F$ הממזערת את הערכים rank(B) את בחר ל- Σ_B כאשר ל- $B=U\Sigma_BV^T$ הערכים הסינגולריים הגדולים ביותר של A.

מטריצה Householder מטריצת Householder מטריצת $Q = I - 2ww^T$ אורתוגונלית מהצורה

 $Qv = ||v||_2 e_1$ לכל וקטור v מתקיים

 $w = \frac{v - \beta e_1}{||v - \beta e_1||_2}$ עבור כך: $\beta = \left||v|\right|_2$ עבור

 $x^{(k+1)} = \phiig(x^{(k)}ig)$ עבור ניחוש התחלתי $x^{(0)}$ השיטה $x^{(0)}$ עבור ניחוש * $\lim_{k \to \infty} \frac{\left| |x^{(k+1)} - x^*| \right|}{\left| |x^{(k)} - x^*| \right|^p} = C \le \rho(I - M^{-1}A)$ א קצב ההתכנסות .Convergence factor- מגדיר את קצב ההתכנסות ו-C $|\mathcal{C}| < 1$ ו ו-p=1 ו-לינארית כאשר p=1 ו-לינארית * (נעלם) x^* נעלם) $e^{(k)} = x^* - x^{(k)}$ נעלם) * $r^{(k)} = b - Ax^{(k)} = Ae^{(k)}$: וקטור השארית $A^{T}(b-Ax)=0$ השארית אנכית לעמודות המטריצה, כלומר * $\lim_{k \to \infty} \{e^{(k)}\} = \lim_{k \to \infty} \{r^{(k)}\} = 0$ נרצה שיתקיים * $\frac{\left\|Ax^{(k)}-b\right\|}{\left\|b
ight\|}<\epsilon$ עצירה ϵ א $\frac{\left\||x^{(k)}-x^{(k-1)}
ight\|}{\left\|x^{(k)}
ight\|}<\epsilon$ תנאי עצירה * . הערה: נחפש λ^{ieq^*} שכל איבריו $0 \leq 0$ ויש בו כמה שיותר אפסים $y \in \mathbb{R}^n$ מתאימים היא מינימום אם לכל λ^{leq^*} , λ^{eq^*} עם x^* ונפתור Mx+Nx=b ולכן A=M+N ונפתור * $x^{(k+1)} = M^{-1}(b - Nx^{(k)}) = x^{(k)} + M^{-1}(b - Ax^{(k)})$ $J^{eq}y = 0$; $\forall l \in \mathcal{A}(x) \left(\nabla c_l^{ieq}(x^*) \right)^l y = 0$ המקיים שיטת ריצ'רדסון (Richardson): $y^T \nabla_x^2 \mathcal{L}(x^*, \lambda^{\text{eq}^*}, \lambda^{\text{ieq}^*}) y \geq 0$ מתקיים $x^{(k+1)} = x^{(k)} + \frac{1}{2}(b - Ax^{(k)}), c > 0$ עבור M = cIנקבל $\omega=1$ אם $0<\omega\le 1$ נקבל $\omega=1$ אם $\omega=0$ נקבל $M_{J}=D=diag(A)$: $D_{i,i}=A_{i,i}$,הרגילה, את שיטת ג'ייקובי הרגילה ונקבל A=L+D+U או $x^{(k+1)}=x^{(k)}+\omega D^{-1}\big(b-Ax^{(k)}\big)$ או $x^{(k+1)} = (1 - \omega)x^{(k)} + \omega D^{-1}(b - (L+U)x^{(k)})$ $x_i^{(k+1)} = (1 - \omega)x_i^{(k)} + \omega \frac{1}{a_{i,i}} (b_i - \sum_{j \neq i} a_{i,i} x_j^{(k)})$ $\omega = \omega$, אם אם (Gauss-Seidel), אם אוידל ממושקלת ($\omega \leq \omega \leq 1$ $M = (L + D)^{-1}$, נקבל את שיטת גאוס זיידל הרגילה 1 או $x^{(k+1)} = (\omega L + D)^{-1} \left((1 - \omega) D x^{(k)} + \omega (b - U x^{(k)}) \right)$ א $x^{(k+1)} = x^{(k)} + \omega(\omega L + D)^{-1} (b - Ax^{(k)})$ $x_i^{(k+1)} = \frac{1}{a_{ij}} \left(b_i - \sum_{j < i} a_{i,j} x_j^{(k+1)} - \sum_{j > i} a_{i,j} x_j^{(k)} \right)^2$ התכנסות שיטות איטראטיביות: $.e^{(k+1)} = (I - M^{-1}A)^k e^{(0)}$ וקטור השגיאה הינו * $p(I-M^{-1}A) < 1$ אם * $p(I-M^{-1}A)$ טענה: בגאוס זיידל וג'ייקובי, אם A הינה SDD אז השיטות מתכנסות. טענה: אם A היא לא סינגולרית אז גאוס זיידל מתכנסת. טענה: אם A היא חיובית מוגדרת אז גאוס זיידל מתכנסת. **טענה:** גאוס זיידל שקולה למינימיזציה של $f(x) = \frac{1}{2} ||x - x^*||_A^2 = \frac{1}{2} x^T A x - x^T b + \frac{1}{2} (x^*)^T b$ עבור $\nabla f(x) = Ax - b$ אז SPD אהיא A עבור (Steepes Descent שיטת שיטת $f(x) = \frac{1}{2} ||x^* - x||_A^2 = \frac{1}{2} x^T A x - x^T b + \frac{1}{2} (x^*)^T b$:השיטה תוגדר כך $x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)}) = x^{(k)} + \alpha (b - Ax^{(k)})$. שנבחר בכל איטרציה מחדש. $\alpha_{opt} = \frac{\left(r^{(k)}\right)^T\!\!Ae^{(k)}}{\left(r^{(k)}\right)^T\!\!Ar^{(k)}} = \frac{\langle r^{(k)}, r^{(k)} \rangle}{\langle r^{(k)}, Ar^{(k)} \rangle}$ התכנסות לשיטת Steepes Descent: $ho(I-lpha A)=\max{\{|1-lpha \lambda_{\max}|,|1-lpha \lambda_{min}|\}}$ עבור $ho(I-lpha A)=\max{\{-1,|1-lpha \lambda_{\min}|\}}$ - פקטור ההתכנסות הוא $ho_{min}=1-rac{2}{\kappa(A)}$, פקטור ההתכנסות הוא :(CG) Conjugate gradients שיטת איטרציות אחרי n איטרציות CG אז full rank ו- SPD איה A טענה: אם A טענה לכל היותר. עבור כל ניחוש התחלתי. אופטימיזציה עם אילוצים: צורה כללית לאופטימיזציה עם אילוצים: $(*) = \min_{x \in \mathbb{R}^n} f(x) \text{ subject to } \begin{cases} c_j^{eq}(x) = 0 & j = 1, ..., m_{eq} \\ c_l^{ieq}(x) \le 0 & l = 1, ..., m_{leq} \end{cases}$ Feasible set: קבוצת הפתרונות שמקיימים את האילוצים. $\Omega = \{x | c_j^{eq}(x) = 0, \ j = [1, m_{eq}] \ ; c_l^{ieq}(x) \leq 0, \ l = [1, m_{ieq}] \}$ $(*) = \min_{x \in \Omega} f(x)$:ניתן להגדיר את הבעיה כך אם $\mathcal N$ וגם קיים $x^*\in\Omega$ אם $x^*\in\Omega$ המקיימת x^* $f(x) \ge f(x^*)$; $\forall x \in \mathcal{N} \cap \Omega$ $(**) = \min_{x \in \mathbb{R}^n} f(x) \ subject \ to \ c_j^{eq}(x) = 0 \quad j = 1,..,m_{eq}$ מטריצת הגרדיאנטים של אילוצי השוויון מטריצת אילוצי השוויון $J^{eq}(x) = \begin{bmatrix} -\nabla c_1^{eq}(x) - \\ \vdots \\ -\nabla c_{m_{eq}}^{eq}(x) - \end{bmatrix}$ $(\lambda^{eq})^T = [\lambda_1 \cdots \lambda_{m_{eq}}]$:'וקטור כופלי לגראנז $\mathcal{L}(x,\lambda^{eq}) = f(x) + (\lambda^{eq})^T c^{eq}(x)$ פונקציית לגרז'יאן: נחפש x^* וגם $abla \mathcal{L}_{\lambda^{\mathrm{eq}}}(x^*,\lambda^{\mathrm{eq}*})=0$ וגם אים: $\lambda^{\mathrm{eq}*}$ וגם $\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \lambda^{\mathrm{eq}^*}) = \nabla f(\mathbf{x}^*) + (J^{eq})^T \lambda^{\mathrm{eq}^*} = 0$ נקודה x^* עם כופלי לגראנז' מתאימים $\lambda^{\mathrm{eq}*}$ היא מינימום אם $y^T \nabla_x^2 \mathcal{L}(x^*, \lambda^{\mathrm{eq}^*}) y \geq 0$ מתקיים $y \in \mathbb{R}^n$; $J^{eq} y = 0$ לכל (*) אופטימיזציה עם אילוצי שוויון ואי שוויון: הצורה הכללית היא $c_l^{ieq}(x^*)=0$ אילוץ אי שוויון פעיל: קיים פתרון x^* כך שמתקיים היא קבוצת האינדקסים של אילוצי אי שוויון פעילים $\mathcal{A}(x)$ $c_{\imath}^{ieq}(x^{*}) < 0$ בין שמתקיים כך אילוץ אי שוויון לא פעיל: קיים פתרון x^{*}

Ax = b שיטות איטרטיביות לפתרון מערכת שוואות:

מטריצת הגרדיאנטים של אילוצי האי שוויוו מטריצת אילוצי האי שוויוו $-\nabla c_1^{ieq}(x)$ - $-c_1^{ieq}(x)$ – $c^{ieq}(x) =$ $J^{ieq}(x) =$ $\left[-c_{m_{leg}}^{leq}(x)-\right]$ $(\lambda^{ieq})^{\dot{T}} = [\lambda_1 \cdots \lambda_{m_{ieq}}]$:'וקטור כופלי לגראנז פונקציית לגרז'יאן: $\mathcal{L}(x,\lambda^{eq},\lambda^{ieq}) = f(x) + (\lambda^{eq})^T c^{eq}(x) + (\lambda^{ieq})^T c^{ieq}(x)$ נחפש λ^{ieq^*} , λ^{eq^*} , λ^{eq^*} , λ^{eq^*} , $\nabla_{\mathbf{x}} \mathcal{L}(x^*, \lambda^{\mathrm{eq}^*}, \lambda^{ieq^*}) = \nabla f(x^*) + (J^{eq})^T \lambda^{\mathrm{eq}^*} = 0$ $abla \mathcal{L}_{\lambda^{\mathrm{ieq}}}(x^*,\lambda^{\mathrm{eq}^*},\lambda^{ieq^*}) = 0$ -I $abla \mathcal{L}_{\lambda^{\mathrm{eq}}}(x^*,\lambda^{\mathrm{eq}^*},\lambda^{ieq^*}) = 0$

 $f(x):\mathbb{R}^n o \mathbb{R}^n$ אופטימיזציה ללא אילוצים: 1) נתונה פונקציה $x^* = argmin_{x \in \mathbb{R}^n} f(x)$ ונרצה למצוא $c \in [x, x + \epsilon]$:טור טיילור חד מימדי

$$f(x+\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2 + \frac{1}{3!}f'''(c)\epsilon^3$$
 טור טיילור דו מימדי:

טור טיילור דו מימדי:
$$f(x_1+\epsilon_1,x_2+\epsilon_2)=f(x_1,x_2)+\frac{\partial f}{\partial x_1}\epsilon_1+\frac{\partial f}{\partial x_2}\epsilon_2+\frac{1}{2}\frac{\partial^2 f}{\partial x_1^2}\epsilon_1^2+\\ -\frac{\partial^2 f}{\partial x_1\partial x_2}\epsilon_1\epsilon_2+\frac{1}{2}\frac{\partial^2 f}{\partial x_2^2}\epsilon_2^2$$

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}, \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2} \end{bmatrix}^T, \epsilon = [\epsilon_1, \epsilon_2]^T$$
עבור

(ב-ת מימדים
$$H_{i,j}=rac{\partial^2 f}{\partial x_i\partial x_j}$$
נקבל:

$$f(x+\epsilon)=f(x)+\langle \nabla f,\epsilon\rangle+rac{1}{2}\langle \epsilon,H\epsilon\rangle+O\left(\left|\left|\epsilon\right|
ight|^3
ight)$$
 אם $f(x):\mathbb{R}^n o\mathbb{R}^m$ אם **(2**

 $f(x) \in \mathbb{R}^m$, $x \in \mathbb{R}^n$, ($n \times m$ מטריצה בגודל

אז $A \in \mathbb{R}^{m \times n}$ אבור f = Ax אם

J=A כלומר, $\delta f=f(x+\epsilon)-f_i(x)=A(x+\epsilon)-Ax=A\epsilon$ אם f מיוצגת באמצעות (כלומר אם f אם $f(x) = \phi(x_i)$ ו- $\phi: \mathbb{R} \to \mathbb{R}$ אם * (0- מטריצה אז רק האיבר הi שונה מ

 $\delta f = \phi(x + \epsilon) - \phi_i(x) \approx diag(\phi'(x)) \stackrel{\circ}{\epsilon} = diag(\phi'(x)) \delta x$ $J_{i,i} = \phi'(x_i)$, $J = diag(\phi'(x))$ -I

פתרון בעיית אופטימיזציה ללא אילוצים:

. נחפש x^* המקיימת $\nabla f(x^*) = 0$ והיא תוכל להיות נקודת מינימום * $\exists r>0$: $f(x)\geq f(x^*)$; $\forall x$: $\left|\left|x-x^*\right|\right|< r$:locally מינימום x^* $f(x) \ge f(x^*)$; $\forall x \in \mathbb{R}^n$:gloabally מינימום x^*

 $abla f(x^*) = 0$ אם locally מינימום x^* מינימו H אם *

שיטות איטרטיביות לבעיות אופטימיזציה ללא אילוצים: שיטת steepest descend: נבחר בכל איטרציה

 $(M = I : x^{(k+1)}) x^{(k+1)} = x^{(k)} - \alpha M \nabla f(x^{(k)})$ $\langle \nabla f, d^{(k)} \rangle < 0$ הוא כאשר מתקיים: d

כיוון הירידה הוא מינוס הגרדיאנט: $-\nabla f(x^{(k)})$, שהוא כיוון הירידה f המירבי של הפונקציה

כל כיוון M -כך ש $d=-M
abla f(x^{(k)})$ כל כיוון

שיטת Newton: אם H הפיכה אז בכל איטרציה נבחר $d = -H^{-1}\nabla f(x^{(k)})$ עבור $x^{(k+1)} = x^{(k)} + d$

שיטת (מחליף את H ב-M $(x^{(k)})$ -ב וחליף את (מחליף איטרציה: Quasi Neqton שיטת

 $d = -(M(x^{(k)}))^{-1} \nabla f(x^{(k)})$ עבור $x^{(k+1)} = x^{(k)} + d$ נבחר (למשל M שווה לאלכסון של H וכך היא הפיכה)

 $x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)}$ בכל איטרציה נבחר: Line Search שיטות: .(כאן ההתייחסות היא לבחירת lpha, בהנחה שאת d אנו יודעים לבחור) $\phi(lpha) = fig(x^{(k)} + lpha d^{(k)}ig)$ נרצה לבחור $lpha^{(k)}$ מינימלית, כלומר עבור $\alpha^{(k)} = argmin_{\alpha}\phi(\alpha)$ נרצה למזער

די $\alpha^{(0)}$ נבחר :Backtracking line search using Armijo condition . ($c = 10^{-4}$ בדר"כ (בדר"כ הי"כ ($\beta = \frac{1}{2}$) ו- (בדר"כ בדר"כ (בדר"כ הדול, 1 בכל איטרציה נבחן $eta^{(k)}_i=eta^j lpha^{(0)}$ עבור j=0,1,2,... עד שמתקיים: $f(x^{(k)} + \alpha_i^{(k)}d^{(k)}) \le f(x^{(k)}) + c\alpha_i^{(k)}\langle \nabla f, d^{(k)}\rangle$

שיטות Coordinate descent: בכל איטרציה נעדכן את הקואורדינטה $rac{\partial f}{\partial x_i}=0$ הל x_i המקיים j
eq i ונבחר וניח כי x_j קבועים לכל j
eq iiניתן לעבור על ה-i סדרתית או אקראית (העיקר לעדכן את כולם).

את בעיות האופטימיזציה עם אילוצי אי שוויון ושוויון שראינו ב-(*) נכתוב כך: $\min_{x \in \mathbb{R}^n} f(x) + \mu \left(\sum_{j=1}^{m_{eq}} \rho_j \left(c_j^{eq}(x) \right) + \right.$ $\sum_{l=1}^{m_{leq}} \rho_l \left(\max \left\{ 0, c_l^{ieq}(x) \right\} \right) \right)$ $\{\rho_{j(x)}\}, \{\rho_l(x)\}$ -ו $\mu > 0$ עבור פונקציות סקלריות החסומות מלמטה $(\rho(x) = x^2, \rho(x) = |x|$ ב-0 (לרוב היה זהה $\mu \to \infty$ עבור לפתרון של (*). בפועל נפתור בצורה איטרטיבית עם עם (***) את $x^{(0)}$ עם ניחוש התחלתי ובכל איטרציה $\mu_0 < \mu_1 < \dots < \infty$ הקלט יהיה $x^{(k)}$ מהאיטרציה הקודמת.

:Penalty and Barrier methods

The projected Steepest Descent method: נדאג שבכל איטרציה נהיה בתוך התחום שמקיים את האילוצים $x^{(0)}$ עבור ניחוש התחלתי (feasible) בכל איטרציה נבצע:

$$x^{(k+1)} = \prod_{\Omega} \left(x^{(k)} - \alpha \nabla f(x^{(k)}) \right)$$

עבור פונקציית הטלה:
 $\prod_{\Omega}(y) = argmin_{x \in \Omega} ||x - y||$

משפטים שאני המצאתי: משפט: עבור $x=\sum_{i=1}^n \alpha_i v_i$ כאשר

הם ו"ע וע"ע מתקיים
$$(v_i, \lambda_i)$$
 $\max\left(rac{\sum_{l=1}^n lpha_l^2 \lambda_i}{\sum_{l=1}^n lpha_l^2}
ight) = \lambda_{\max}$

מתקיים SPD A מתקיים

$$\max \frac{x^T A x}{x^T x} = \lambda_{max}$$

$$\max \frac{x^T A^{-1} x}{x^T x} = \lambda_{max} \quad \text{DAI}$$

$$\max \frac{x^TA^{-1}x}{x^Tx} = \lambda_{min}$$
 וגם
משפט: בשיטות איטראטיביות

לפתרון מערכת משוואות מערכת לפתרון לפתרון מערכת משוואות ל $\dot{\rho}(I-M^{-1}A)$ שממזער את מדרגה מלאה $A \in \mathbb{R}^{m imes n}$ מדרגה משפט: אם rank(A) = min(m, n) אז

משפט: אם SPD A אז כל המינורים שלה הם גם SPD. בנוסף למינורים יש דטרמיננטות שונות מ-0.

M-ו חצי מוגדרת ו B משפט: אם חיובית (M+B) חיובית מוגדרת.

 $(I + A^T A)$ אז full rank A בפרט אם חיובית מוגדרת.

משפט: אם מכפלת מטריצות מדרגה $(k \times k)$ מלאה נותנת מטריצה מסדר כאשר k הוא המינימלי מבין כל הדרגות אז המטריצה מדרגה מלאה.

המירות: לכל קמורה אם לכל $S \in \mathbb{R}^n$ (1

מתקיים $x, y \in S, \alpha \in [0,1]$

 $\alpha x + (1 - \alpha)y \in S$ domain-פונקציה קמורה אם f (2 שלה הוא קבוצה קמורה ולכל מתקיים $x, y, \alpha \in [0,1]$ $f(\alpha x + (1 - \alpha)y) \le$ $\alpha f(x) + (1 - \alpha)f(y)$ פונקציה קמורה אם היא גזירה f (3 ולכל x_1, x_2 מתקיים $f(x_1) \geq f(x_2) + \langle \nabla f(x_2), x_1 - x_2 \rangle$ פונקציה קמורה אם היא גזירה f (4 , $H=
abla^2 f(x)\geq 0$ פעמיים ומתקיים כלומר H מטריצה חיובית חצי מוגדרת אם f קמורה אז כל מינימום (5 או כל נקודה המקיימת x^* locally globally היא מינימום $abla f(x^*) = 0$