

Evaluating the Performance of GPU Classification Based on Graphics Memory Type

A Comparative Study of Three Algorithm

10 February 2023 | Lemgo

- Introduction
- Motivation
- State of the Art
- Solutions
- Experiments and Results
- Summary and Outlook

- Introduction
- Motivation
- State of the Art
- Solutions
- Experiments and Results
- Summary and Outlook

Introduction

TH **T**

- GPU Classification
- Machine learning
- Three algorithms
 - SVM
 - RFC
 - DTC

- Introduction
- Motivation
- State of the Art
- Solutions
- Experiments and Results
- Summary and Outlook

Motivation

- Personal Experience Product recommendations
- Ever demanding technology world
- Increasing number of products being launched
- Difficult to keep track
- Processing large amount of data

Why ML?

- Availability of multiple solutions
- Readely available libraries
- Easy to understand language
- Experties in data mining

Focus of the study

TH TOWL

- Supervised learning
- Classification
- Multi-label Classification

- Introduction
- Motivation
- State of the Art
- Solutions
- Experiments and Results
- Summary and Outlook

Multi-class classification

- Predict one of multiple possible classes
- More than 2 classes
- Ex: Plant species
- One-vs-all
- One-vs-one (softmax)

Classifiers

- Support vector machine
- Random forest classifier
- Decision Tree

- Introduction
- Motivation
- State of the Art
- Solutions
- Experiments and Results
- Summary and Outlook

Support Vector Machine

- Decision boundary between two classes of objects
- Handle non-linearly separable data
- High dimensional spaces and cases where the number of features is greater than the number of samples
- Distances of new data points to the hyperplane in the feature space
- Low training error and high testing error

$$(N,K) \to \sum_{i=1}^{n} \alpha_i \quad y_i \quad K(x_i,x) + b \to f(x)$$

Where, N – Training data, K – Kernal function

Algorithm 3: Support vector machine

Input: Data set N

Output: Find different classes of objects

```
1 Function SVC (X, y, k):
```

```
 \begin{array}{c|c} \mathbf{2} & V \leftarrow \phi; \\ \mathbf{3} & \mathbf{for} \ x \in X \ \mathbf{do} \\ \mathbf{4} & x_k = k(X); \\ \mathbf{5} & v = v - x_k; \\ V \leftarrow V \cup v; \\ \mathbf{7} & \mathbf{3} \end{array}
```

7 end

8 return V;

Decision Tree Classifier

- Test condition on feature
- The branches
- The leaves
- Overfitting

Algorithm 2: Decision tree

```
Input: Examples: E, Attributes: A, Parent Examples: PE
  Output: Decision Tree: T
1 Function DecisionTreeClassifier (E, A,
    PE):
      Result: Decision Tree: T
      if |E|=0 then
         return pluralityValue(PE)
      end
      if |A| = 0 then
         return pluralityValue(E)
      end
      if \forall e \in E, e classifies the same then
         return the classification
      end
10
      A' = \operatorname{argmax}_{a \in A}(importance(a, E));
11
      T = newTree(root = A');
12
      for v \in A' do
13
         exs = \{e \in E | e.A' = v\};
14
         subtree =
15
           decisionTreeLearning(exs, A - A', E);
         T.addSubtreeAsBranch(subtree, label =
16
           (A', v));
      end
17
      return T
```


- In 2001, Leo Breiman of the University of California proposed the Random Forest
- Collection of tree-structured classifiers
- Identically distributed independent random vectors
- Each tree casting a unit vote for the most popular class at input

$$(N, n, e) \rightarrow \frac{1}{n} \sum_{i=1}^{n} f_n(x, e) \rightarrow f(x)$$

Where, N – Training data, e - Entropy, n – Number of decision tree

Algorithm 1: Random forest

Input: Data set N

Output: Find different classes of objects

1 Function RandomForestClassifier (X, y, n, n)

```
e):
DF \leftarrow \phi;
for \ x \in X \ do
\begin{cases} x_i \leftarrow BTS(X); \\ f \subset F; \\ d_i \leftarrow f_n(x, f, e); \\ DF \leftarrow DF \cup d_i; \\ end \\ g \ return \ DF; \end{cases}
```

Performance Matrics

- Confusion Matrix
 - Accuracy
 - Precision
 - Recall
 - F1
 - Execution Time
 - racy
- Cross-validation StratifiedKfold
 - Accuracy
 - Execution Time

Why StratifiedKfold?

- Class imbalance
- Model evaluation
- Better performance

- Introduction
- Motivation
- State of the Art
- Solutions
- Experiments and Results
- Summary and Outlook

- Kaggle dataset Data Mining UNDIP
- 2889 samples and 16 features
- 5 features considored
- DV Memory Type
- Interpolation
- Dataset split: 80% Training, 20% Test
- Pearson's corelation test

	memType	memSize	gpuClock	memClock	memBusWidth
0	GDDR6	8.0	1925	2250.0	128.0
1	GDDR6	4.0	300	1500.0	64.0
2	GDDR6	4.0	300	1500.0	64.0
3	GDDR6	4.0	300	1500.0	64.0
4	GDDR6	8.0	300	1500.0	128.0

Dataset snapshot

Dataset visualisation

Algorithm Training

Models were trained using selected features:

- Memory Size
- GPU Clock
- Memory Clock
- Memory Bus Width

Evaluation

Confusion matrix

- Accuracy
- Precision
- Recall
- F1

Cross-validation

- Over 1200 tests to avoid OS scheduling effect
- Accuracy
- Execution Time (Train and Predict)

Confusion matrix results

- Overall, RFC performed best
- DTC performed well
- SVM performed poorly

Confusion Matrix Heatmap

DTC RFC SVM

- Results are average of over 1200 tests
- In execution time, DTC performed the best
- RFC performed well
- SVM took highest time

Performance consistancy

26

Accuracy plot for SVM, RFC, DTC DTC 0.80 0.78 0.76 Accuracy PCOU 0.72 0.70 0.68 0.66

Combined results

RFC

- Accurate
- Fast
- Precise

DTC

- Less accurate
- Fastest
- Less precise

SVM

- Least accurate
- Slowest
- Least precise

Classifie r	Accuracy (CV)	Accuracy (CM)	Precisio n	Recall	F1	Executio n Time
DTC	0.77	0.76	0.78	0.77	0.77	0.17
RFC	0.83	0.80	0.83	0.83	0.83	0.25
SVM	0.67	0.67	0.68	0.67	0.64	0.29

- Introduction
- Motivation
- State of the Art
- Solutions
- Experiments and Results
- Summary and Outlook

Summary and Outlook

- RFC has highest acuracy, followed by DTC and SVM
- Evaluation based on Accuracy, Precisin, Recall, F1 score and Execution time.
- No parameter optimization
- Utilizes ML to effectively classify GPU based on memory type
- Solution can be extended to other technology products

https://github.com/AkshayChikhalkar/CPU-Classification-RFC-DTC-SVM

Summary

- Introduction
- Motivation
- State of the Art
- Solutions
- Experiments and Results
- Summary and Outlook

Questions

Thank you!