

Fourier Analysis 03-16

Review

Thm 2 (Weyl's criterion). Let $(x_n)_{n=1}^{\infty} \subset [0, 1]$.

Then (x_n) is equidistributed in $[0, 1]$ if and only if

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N e^{2\pi i R x_n} = 0 \text{ for all } R \in \mathbb{Z} \setminus \{0\}$$

Thm 3. Let $0 < d < 1$. Then

$$f_d(x) = \sum_{n=0}^{\infty} 2^{-nd} e^{i 2^n x}, \quad x \in \mathbb{R}$$

is cts but nowhere differentiable.

Prop 4. For any $g \in \mathcal{C}[-\pi, \pi]$, if g is diff at x_0 ,

then

$$\Delta_N(g)'(x_0) = O(\log N),$$

where $\Delta_N(g) = 2\delta_{2N}(g) - \delta_N(g)$.

As we proved in last class, Prop 4 \Rightarrow Thm 3.

$$\begin{aligned}\text{Lemma 5: } \text{Let } F_N(x) &= \sum_{|n| \leq N} \left(1 - \frac{|n|}{N}\right) e^{inx} \\ &= \frac{\sin^2 \frac{Nx}{2}}{N \sin^2 \frac{x}{2}}.\end{aligned}$$

Then \exists a constant $A > 0$ such that

$$|F'_N(x)| \leq AN^2, \quad |F'_N(x)| \leq \frac{A}{x^2}$$

for any $x \in [-\pi, \pi]$

Proof of Prop 4.

$$\text{Since } \Delta_N(g) = 2 \sigma_N^2(g) - \sigma_N(g),$$

it suffices to show that

$$\sigma_N(g)'(x_0) = O(\log N).$$

Recall that

$$\sigma_N(g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_N(x-t) \cdot g(t) dt$$

Hence

$$\sigma_N(g)'(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_N'(x-t) g(t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} F_N'(t) g(x-t) dt$$

In particular,

$$\sigma_N(g)'(x_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_N'(t) g(x_0-t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} F_N'(t) (g(x_0-t) - g(x_0)) dt$$

$$(\text{because } \int_{-\pi}^{\pi} F_N'(t) dt = F_N(t) \Big|_{-\pi}^{\pi} = 0)$$

Hence

$$|\sigma_N(g)'(x_0)| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |F_N'(t)| \cdot |g(x_0-t) - g(x_0)| dt$$

Since g is diff at x_0 , $g \in \mathcal{R}[-\pi, \pi]$, we see that

$$\left| \frac{g(x_0-t) - g(x_0)}{t} \right| \leq \text{const} \quad \text{on } t \in [-\pi, \pi]$$

We obtain that

$$\left| \sigma_N(g)'(x_0) \right| \leq C \int_{-\pi}^{\pi} |F'_N(t)| |t| dt$$

Notice that

$$\begin{aligned} \int_{-\pi}^{\pi} |F'_N(t)| |t| dt &= \int_{|t| \leq \frac{1}{N}} + \int_{\frac{1}{N} < |t| \leq \pi} |F'_N(t)| |t| dt \\ &= (I) + (II) \end{aligned}$$

Now

$$\begin{aligned} (I) &= \int_{|t| \leq \frac{1}{N}} |F'_N(t)| |t| dt \\ &\leq \int_{|t| \leq \frac{1}{N}} A N^2 \cdot \frac{1}{N} dt = 2A. \end{aligned}$$

$$(II) = \int_{\frac{1}{N} < |t| \leq \pi} |F'_N(t)| |t| dt$$

$$\begin{aligned} &\leq \int_{\frac{1}{N} < |t| \leq \pi} \frac{A}{t^2} \cdot |t| dt = 2 \int_{\frac{1}{N}}^{\pi} \frac{A}{t} dt \\ &= 2A \log t \Big|_{\frac{1}{N}}^{\pi} \end{aligned}$$

$$= 2A (\log \pi + \log N)$$

Hence

$$(I) + (II) \leq 2A (l + \log \pi + \log N) \\ = O(\log N).$$

Thm 3': Let $\alpha \in (0, 1)$. Then

$$\sum_{n=1}^{\infty} 2^{-nd} \cos 2^n x, \quad \sum_{n=1}^{\infty} 2^{-nd} \sin 2^n x$$

are cts but nowhere differentiable.

Idea: By slightly modifying the proof of Prop 4,
we have for $|h| < \frac{c}{N}$,

$$\sigma_N(g)'(x_0 + h) = O(\log N),$$

(where we assume g is diff at x_0).

Let us prove that $\sum_{n=1}^{\infty} 2^{-nd} \cos 2^n x$ is nowhere diff.

Suppose on the contrary that $F(x) = \sum_{n=1}^{\infty} 2^{-nd} \cos 2^n x$ is diff at x_0 .

Then for $N = 2^m$,

$$\Delta_{2N}(F)(x) - \Delta_N(F)(x) = 2^{-(m+1)d} \cos(2^{m+1}x).$$

Hence

$$\Delta_{2N}(F)'(x_0 + h) - \Delta_N(F)'(x_0 + h)$$

$$= -2^{(m+1)(1-d)} \sin(2^{m+1}(x_0 + h))$$

We want to take a suitable $|h| \leq \frac{c}{N}$ such that

$$2^{m+1}(x_0 + h) = 2k\pi + \frac{\pi}{2}$$

for some $k \in \mathbb{Z}$

Write $\frac{2^{m+1}x_0}{2\pi} = L + t$ where $L \in \mathbb{Z}$, $t \in [0, 1)$

$$\text{Then letting } h_m = \frac{1}{2^{m+1}} \left[-2\pi t + \frac{\pi}{2} \right]$$

$$\text{Then } 2^{m+1}(x_0 + h_m) = 2\pi L + \frac{\pi}{2}$$

We see that $|p_m| \leq \frac{\text{const}}{N}$

Hence

$$\sigma_N'(F)(x_0 + p_m) = O(\log N).$$

and

$$\Delta_{2N}(F)'(x_0 + p_m) - \Delta_N(F)'(x_0 + p_m) = O(\log N)$$

$$\begin{aligned} \text{but LHS} &= -2^{(m+1)(l-d)} \sin(2^{m+1}(x_0 + p_m)) \\ &= -2^{(m+1)(l-d)} \\ &\neq O(\log N), \end{aligned}$$

leading to a contradiction. This proves Thm 3'. □