Семинар 2

Суслова Ирина

12 февраля 2024

1 Порядковые статистики

Определение 1.1.

Пусть дано вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$, на котором определены элементы выборки X_1, \ldots, X_n и $x_i = X_i(\omega), \ \omega \in \Omega$. Пронумеруем последовательность $\{x_i\}$ в порядке неубывания: $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$. Тогда функция $X_{(k)}(\omega) = x_{(k)}$ называется k-ой порядковой статистикой

$$X_{(1)} = \min(X_1, \dots, X_n), X_{(n)} = \max(X_1, \dots, X_n).$$

Задача 1.1. Найти распределение k-ой порядковой статистики

Решение:

$$F_{X_k} = \mathbb{P}(X_{(k)} < x)$$

Рассмотрим событие $X_{(k)} < x$. Заметим, что k-ое по величине значение выборки меньше х тогда, когда как минимум k элементов выборки меньше х.

$$\mathbb{P}(X_k < x) = \mathbb{P}(\xi < x) = F_{\xi}(x)$$
$$\mathbb{P}(X_k \ge x) = \mathbb{P}(\xi \ge x) = 1 - F_{\xi}(x)$$

Тогда т.к выборка одинаковы распределены и независимы

$$F_{X_{(k)}}(x) = \sum_{m=k}^{n} C_n^m F_{\xi}^m(x) (1 - F_{\xi}(x))^{n-m}$$

Если у ξ есть плотность распределения, то и $X_{(k)}$ обладает плотностью распределения.

$$f_{X_{(k)}} = \lim_{\epsilon \to 0} \frac{F_{X_{(K)}}(x+\epsilon) - F_{X_{(k)}}(x)}{\epsilon} = \lim_{\epsilon \to 0} \frac{\mathbb{P}(X_{(k)} \in [x,x+\epsilon))}{\epsilon}$$

Для вычисления предела достаточно разложить числитель по степеням ϵ и оставить только слагаемые пропорциональные ϵ .

Рассмотрим событие, что $X_{(k)}$ попало в необходимый интервал. Это может случиться тогда, когда

- либо k-1 значение меньше x, одно значение принадлежит интервалу $[x, x + \epsilon)$, остальные больше либо равны $x + \epsilon$
- k-2 значения меньше x, 2 элемента выборки попали в нужный интервалы, а все остальные $\geq x + \epsilon$
- и.т.д

Однако, нам подходит только первый случай. Рассмотрим второй случай. Пусть какие-то 2 значения попали в нужный нам интервал, допустим X_1, X_2 . Рассмотрим вероятность

$$\mathbb{P}(X_1 \in [x, x+\epsilon), X_2 \in [x, x+\epsilon)) = \mathbb{P}(X_1 \in [x, x+\epsilon)) \mathbb{P}(X_2 \in [x, x+\epsilon)) = f_{\mathcal{E}}(x) \epsilon f_{\mathcal{E}}(x) \epsilon \approx \epsilon^2$$

. Поэтому этот случай нас не интересует. Для случаев 3 и далее мы получим аналогичные результаты со степенью $\epsilon>2$. таким образом, нам интересует только первый случай.

$$f_{X_{(k)}} = \lim_{\epsilon \to 0} \frac{C_n^1 \mathbb{P}(\xi \in [x, x + \epsilon)) C_{n-1}^{k-1} \mathbb{P}^{k-1}(\xi < x) C_{n-k}^{n-k} \mathbb{P}^{n-k}(\xi \ge x + \epsilon)}{\epsilon} = nf_{\xi}(x) C_{n-1}^{k-1} F_{\xi}^{k-1}(x) (1 - F_{\xi}(x))^{n-k}$$

Стоит запомнить: Если $\xi \in U(0,1)$, то $X_{(k)} \in \text{Beta}(k,n-k+1)$

2 Проверка статистических гипотез

Гипотезой называется любое утверждени о распределеии случайной величиной

ПРИМЕРЫ: Дана случайная величина ξ

- 1. Утверждение $\xi \in N(0,1)$ является гипотезой
- 2. Утверждение $\xi \in N(\mu, \sigma^2)$ также является гипотезой
- 3. Можно выдвинуть несколько гипотез $H_1: N(0,1), H_2: N(0,2)$

Стоит отметить, что установить верность той или иной гипотезы невозможно. Задача теории проверки гипотез состоит в минимизации этих ошибок

Определение 2.1.

Множество $\Omega\subseteq\mathbb{R}^n$ всех значений выборки называется выборочным пространством

Пусть F_{ξ} - низвестная функция распределения случайной величины ξ , принадлежащая некоторому множеству априори допустимых распределений \mathcal{F} (например, множество всех возможных распределений)

Определение 2.2.

Любое утверждение о принадлежности F_{ξ} какому-либо подмножеству $\mathcal{F}' \subset \mathcal{F}$ называется *гипотезой* и обозначается, напримет, так:

$$H: F_{\xi} \in \mathcal{F}' \subset \mathcal{F}$$

Определение 2.3.

Если \mathcal{F}' состоит из одного элемента, то гипотеза H называется простой. Иначе - сложной

Например, гипотеза $\xi \in N(0,1)$ является простой, а гипотеза $\mathrm{H}_1:N(\mu,\sigma^2)$ - сложной.

На проверку может быть выдвинуто несколько гипотез, при этом некоторые из них могут быть простыми, а некоторые - сложным. Бывает, что выдвинута одна гипотеза. В этом случа на самом деле подразумевается, что гипотез две, просто вторая гипотеза по умолчанию дополняет множество из основной гипотезы до множества всех априори допустимых гипотез и ее не пишут.

Определение 2.4.

Пусть выдвинуто г гипотез H_1, H_2, \ldots, H_r . Статистическим критерием называется измеримая функция $\delta: \Omega \to \{H_1, \ldots, H_r\}$. Где Ω - выборочное пространство

То есть каждой выборке статистический критерий сопоставляет какуюто гипотезу. Задание измеримой функции δ равносильно разбиению выборочного пространства на r непересекающихся подмножеств $\Omega_1, \ldots, \Omega_r$ таких, что при попадании выборки x в область Ω_1 принимается гипотеза H_1 , при попадании в область Ω_2 принимается гипотеза H_2 и так далее

Определение 2.5.

Пусть дано г простых гипотез $H_1, H_2, ..., H_r$. Вероятность

$$\alpha_i(\delta) = \mathbb{P}_i(X \notin \Omega_i) = \mathbb{P}_i(\delta(X) \neq H_i)$$

называется верояность ошибки i-го рода. Индекс і под символом вероятноти означает, что вероятность подсчитывается в случае, когда выборка распределена по закону гипотезы Н. Другими словами, вероятность ошибки i-го рода - это вероятность отклонить i-ю гипотезу, если она на самом деле верна

Определение 2.6.

В случае двух гипотез H_1 и H_2 множество Ω_2 называют *критической областью* гипотезы H_1

В случае двух простых гипотез вероятность ошибки первого рода обозначается символом α , а вероятность ошибки второго рода символом β . Гипотеза H_1 принято называть основной гипотезой, а H_2 - альтернативной гипотезой или просто альтернативой. При этом ошибка первого рода $\alpha(\delta)$

 $\mathbb{P}_1(\delta(X) \neq \mathrm{H}_1) = \mathbb{P}_1(\delta(X) = \mathrm{H}_2)$, то есть ошибка первого рода-вероятность принять альтернативу (=отвергнуть основную гипотезу), если на самом деле верна. Ошибка второго рода $\beta(\delta) = \mathbb{P}_2(\delta(X) \neq \mathrm{H}_2) = \mathbb{P}_2(\delta(X) = \mathrm{H}_1)$ - вероятность принять основную гипотезу, если на самом деле верна альтернатива

Определение 2.7.

Если $\alpha(\delta) \leq \alpha_0$, то говорят, что критерий δ имеет уровень значимости α_0 .

Определение 2.8.

Пусть F(x) - некоторая функция распределения. Тогда любое решение уравнения $F(x)=p\in(0,1),\ ecnu\ ono\ cyществует,\ называется\ p-квантилем.$ Если решение не существует, то p-квантилем для непрерывной слева функции F(x) называется $x=\sup\{y:\ F(y)\leq p\}.$

3 Критерий согласия Колмогорова

Условия.

Дана выборка $x_1, x_2, \dots x_n$ и непррывная функция F(x). Выдвинута простая гипотеза:

$$H_1: F_{\xi}(x) = F(x)$$

Требуется составить критерий проверки гипотезы H_1 на заданном уровне значимости α .

Алгоритм

- 1. Составить эмпирическую функцию распределения на данной выборке
- 2. Вычислить реализацию статистики Колмогорова-Смирнова:

$$D_n = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)|$$

3. Выбрать в качестве критческой области $\Omega_2 = \{x \in \Omega: D_n \geq t_\alpha\}$, и найти t_α из условия на уровень значимости:

$$\mathbb{P}_1(X \in \Omega_2) = \mathbb{P}_1(D_n \ge t_\alpha) = \alpha$$

, то есть найти $(1-\alpha)$ -квантиль распределения случайной величины D_n .

4. Принять решение по следующей схеме:

$$H_1$$
 отвергается $\iff D_n \geq t_\alpha$

Замечание 1. Статистика Колмогорова-Смирнова равна максимальному отклонению эмпирической функции распределения, построенной по выборке, от гипотетической F(x). Согласно теореме Гливенко, если гипотеза H_1 верна, то это отклонение почти наверное стремится к нулю с ростом объема

выборки. Таким образом если гипотеза верна, то мы ожидаем, что величина D_n будет небольшой. Поэтому в качестве критической области выбираются достаточно большие значения этой статистики, а граница для этих значений определяется из условия на уровень значимости.

Замечание 2. Критерий используется только для непрерывных функций F(x).

Замечание 3. Если значения п достаточно большие $(n \ge 20)$, то благодаря теореме Колмогорова можно воспользоваться приближением

$$\mathbb{P}_1(D_n \ge t_\alpha) = \mathbb{P}_1(\sqrt{n}D_n \ge \sqrt{n}t_\alpha) \approx 1 - K(\sqrt{n}t_\alpha) = \alpha$$

и находить t_{α} через квантиль распределения Колмогорова

Замечание 4. Если мы отклонили гипотезу H_1 , то мы можем гарантировать, что вероятность нашей ошибки не превышает уровень значимости α . Если же гипотезу мы не отклоняем, то утверждать, что она верная, нельзя, т.к. мы не знаем вероятность ошибки такого утверждения. Поэтому в случае неотклонения гипотезы H_1 мы говорим: «данные гипотезе не противоречат».

Замечание 5. На практике, зная выборку, статистику D_n рассчитывают по формулам

$$D_n = \max\{D_n^+, D_n^-\},\,$$

$$D_n^+ = \max_{1 \le k \le n} \left(\frac{k}{n} - F(X_{(k)}) \right). \ D_n^- = \max_{1 \le k \le n} \left(F(X_{(k)}) - \frac{k-1}{n} \right).$$

Задача 3.1 (Задача 1).

Дана выборка x = (0.1, 0.9, 0.3, 0.4, 0.7) из непрерывного распределения. На уровне значимости $\alpha = 0.05$ проверить гипотезу о равномерном на отрезке (0,1) распределении измеряемой случайной величины:

$$H_1: U(0,1)$$

Решение:

Функция распределения U(0,1) есть

$$F(x) = x, \ x \in (0,1).$$

Вычислим реализацию статистики D_n . Для этого воспользуемся формулами

$$D_n = \max\{D_n^+, D_n^-\},\$$

$$D_n^+ = \max_{1 \le k \le n} \left(\frac{k}{n} - F(X_{(k)}) \right). \ D_n^- = \max_{1 \le k \le n} \left(F(X_{(k)}) - \frac{k-1}{n} \right).$$

В нашем случае

$$(x_{(1)}, x_{(2)}, x_{(3)}, x_{(4)}, x_{(5)}) = (0.1, 0.3, 0.4, 0.7, 0.9),$$

$$D_n^+ = \max\left\{\frac{1}{5} - \frac{1}{10}, \frac{2}{5} - \frac{3}{10}, \frac{3}{5} - \frac{4}{10}, \frac{4}{5} - \frac{7}{10}, 1 - \frac{9}{10}\right\} = \frac{1}{5},$$

$$D_n^- = \max\left\{\frac{1}{10}, \frac{3}{10} - \frac{1}{5}, \frac{4}{10} - \frac{2}{5}, \frac{7}{10} - \frac{3}{5}, \frac{9}{10} - \frac{4}{5}\right\} = \frac{1}{10},$$
$$D_n = \max\left\{\frac{1}{5}, \frac{1}{10}\right\} = \frac{1}{5}$$

Теперь заглянем в таблицу квантилей и найдем квантиль $t_{\alpha}=0.563$. Видим, что $D_n < t_{\alpha}$, поэтому ответ: "Данные гипотезе не противоречат"