Universidade Federal de Pernambuco - UFPE Centro de Ciências Sociais Aplicadas - CCSA Departamento de Ciências Contábeis e Atuariais Bacharelado em Ciências Atuariais

Disciplina: Fundamentos de Álgebra Linear Nota:

Professor: Edilberto Almeida

Aluno:

2ª Prova de Fundamentos de Algebra Linear

Duração: 2 horas

Data: 11/12/2018

Esta prova contém 2 página(s), incluindo esta capa, e 5 questões, formando um total de 10 pontos.

Tabela (para uso EXCLUSIVO do professor)

,	18	7%
5	1-1	LIDK th
4	N= OCK	

Questão:	1	2	3	4	5	Total
Valor:	2	2	2	2	2	10
Pontuação:						

- 1. (2 pontos) Seja T: $\mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (x+y,x-y+2z)2x+y-z). rede-se
 (a) autovalores de T. (1,1,2)(b) autovetores de T. (1,1,2) (1,1,2) (1,1,2) (2,1,2) (3,2,3)

- 2: (2 pontos) Considere o espaço de matrizes reais, quadradas de ordem 2, $\mathbb{M}_2(\mathbb{R})$. Verifique quais das seguintes transformações são lineares:
 - (a) T: $\mathbb{M}_2(\mathbb{R}) \to \mathbb{R}$ tal que T $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - (b) T: $\mathbb{M}_2(\mathbb{R}) \to \mathbb{R}$ tal que T $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = 2a + 3b + c d$.
- 3. (2 pontos) Verifique quais das seguintes transformações são lineares:
 - (a) T(x,y) = (x+1,y)
 - (b) T(x, y) = (y, x)
 - (c) T(x,y) = (x-3y, 2x+5y)
 - (d) T(x,y) = (2x y, 0)

4. (2 pontos) Seja T uma transformação linear de \mathbb{R}^3 em \mathbb{R}^2 definida por:

$$T(x) = (T_1(x), T_2(x))$$

com $T_1(x)$ e $T_2(x)$ transformações lineares de \mathbb{R}^3 em \mathbb{R} . Prove que T é transfor linear se e somente se $T_1(x)$ e $T_2(x)$ são transformações lineares.

- 5. (2 pontos) Seja T: $\mathbb{R}^3 \to \mathbb{R}^3$ um operador linear dado por T(x, y, z) = (x + y + z, z, 3z). Pede-se:
 - (a) Determinar o polinômio minimal.
 - (b) Verifique se T é diagonalizável. •
 - (c) Encontre a base do espaço em relação ao qual a matriz do operador é diag determine essa matriz.

Phovan QUE T CINEAR

AUTOVACORES/AUTO VERONCS

POCINAMIO MINIMAR

(5) $\pi(h|0,0)$ 4/1, 2,0) 3(1,0)Pocinamio Minimar

Per Olet $(T-\lambda L) = \begin{cases} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \end{cases}$