

2025 - 2026

Livret d'exercices

Les questions marquées par une étoile * sont des questions d'approfondissement.

1 Nombres complexes

1.1 Forme algébrique

Exercice 1. Déterminer la forme algébrique des nombres complexes suivants, et donner leur partie réelle et imaginaire.

1.
$$z_1 := -4 + 7i - (2 + 4i)$$
.

2.
$$z_2 := i(3+2i)-1+3i$$
.

3.
$$z_3 := (2+i)(3-2i)$$
.

4.
$$z_4 := (2-5i)(-5+2i)$$

5.
$$z_5 := (4-3i)^2$$
.

6.
$$z_6 := (2 - i)^3$$
.

7.
$$z_7 := (a + ib)^2$$
, où $a, b \in \mathbb{R}$.

8.
$$z_8 := (a + ib)(a - ib)$$
, où $a, b \in \mathbb{R}$.

Exercice 2. Soient a et b des réels tels que $a \neq 0$ ou $b \neq 0$.

1. Montrer que $\frac{1}{a+ib} = \frac{a-ib}{a^2+b^2}$.

2. Quel est la forme algébrique de l'inverse de i?

Exercice 3. Mettre sous forme algébrique les nombres complexes suivants :

1.
$$z_1 := \frac{2}{i}$$
.

3.
$$z_3 := \left(\frac{1+i}{2-i}\right)^2$$
.

5.
$$z_5 := \frac{2}{2 + \frac{1}{1+i}}$$

2.
$$z_2 := \frac{2-i}{3-2i}$$
.

4.
$$z_4 := \frac{2-5i}{1+i} - \frac{2+5i}{1-i}$$
.

6.
$$z_6 := \frac{\sqrt{3} - i}{1 + i\sqrt{3}}$$

Exercice 4.

1. Résoudre dans \mathbb{C} l'équation : 2iz + z + 1 = 2z - 4i - 1.

2. Résoudre dans C le système suivant :

$$\begin{cases} z_1 - iz_2 = -2 - 3i \\ 2z_1 + (1 - i)z_2 = 3 - 5i. \end{cases}$$

Exercice 5.

1. Calculer i², i³ et i⁴.

2. En déduire la valeur de i^n en fonction du reste de la division euclidienne de n par 4.

3. Calculer la somme :

$$S := \sum_{k=0}^{2025} \mathbf{i}^k.$$

Exercice 6. Calculer le module des nombres complexes suivants :

1.
$$z_1 := -3 + 4i$$
,

3.
$$z_3 := -\frac{3}{\sqrt{2}}$$
,

5.
$$z_5 := \sqrt{3} + \frac{i}{\sqrt{2}}$$
,

2.
$$z_2 := \frac{1}{3} - \frac{i}{6}$$
,

4.
$$z_4 := \frac{\mathrm{i}}{\sqrt{3}}$$
,

6.
$$z_6 := \frac{1-3i}{2+3i}$$

Exercice 7. Montrer que les nombres suivants sont réels sans calculer le produit des quatre facteurs :

1.
$$z := (2+i)(3-2i)(2-i)(3+2i)$$
,

2.
$$w := (1+2i)(2+i)(2-3i)(3-2i)$$
.

Exercice 8. Soit $z \in \mathbb{C} \setminus \{i\}$ et soit $Z := \frac{z+i}{z-i}$.

- **1.** Exprimer \overline{Z} en fonction de \overline{z} .
- **2.** En déduire une condition nécessaire et suffisante sur z pour que $Z \in \mathbb{R}$.

Exercice 9. Soit $z \in \mathbb{C} \setminus \{1\}$ et soit $Z := \frac{z-2i}{z-1}$. On note z = x+iy et Z = X+iY avec $x, y, X, Y \in \mathbb{R}$.

- **1.** Exprimer X et Y en fonction de x et y.
- **2.** Déterminer et représenter dans le plan complexe l'ensemble $E := \{z \in \mathbb{C} \setminus \{1\} \mid Z \in \mathbb{R}\}.$
- **3.** Déterminer et représenter dans le plan complexe l'ensemble $F := \{z \in \mathbb{C} \setminus \{1\} \mid Z \in \mathbb{R}\}$.

Exercice 10. Déterminer les nombres complexes z qui sont solutions des équations ci-dessous.

1.
$$(1+2i)z-3+5i=0$$
.

4.
$$2z + 6\overline{z} = 3 + 2i$$
.

2.
$$2z + 3\overline{z} = 5$$
.

5.
$$z^2 = |z|$$
.

3.
$$\overline{z}^2 + 2|z|^2 - 3 = 0$$
.

6.
$$|z| = |1 - z| = \frac{1}{|z|}$$
, avec $z \neq 0$.

Exercice 11*.

- **1.** Montrer que $\forall z \in \mathbb{C}$, $\Re \mathfrak{e}(z) \le |\Re \mathfrak{e}(z)| \le |z|$ et $\Im \mathfrak{m}(z) \le |\Im \mathfrak{m}(z)| \le |z|$.
- **2.** Montrer que $\forall z, w \in \mathbb{C}$, $|z+w| \le |z| + |w|$. *Indication*: on rappelle que $|Z|^2 = Z\overline{Z}$.
- **3.** Montrer que $\forall z \in \mathbb{C}$, $\mathfrak{Re}(z) = |z| \iff z \in \mathbb{R}_+$.
- **4.** En déduire que $\forall z, w \in \mathbb{C}$, $|z+w| = |z| + |w| \iff \exists \lambda \in \mathbb{R}_+, z = \lambda w$ ou $w = \lambda z$.

Exercice 12*. Soient z et w des nombres complexes.

- 1. Montrer que $|z| \le |z w| + |w|$.
- **2.** En déduire que $|z-w| \ge ||z|-|w||$.
- **3.** Soit $k \in]0,1[$. Montrez que $\forall z \in \mathbb{C}, |z| \le k \Longrightarrow 1-k \le |1+z| \le 1+k.$
- 4. En faisant un dessin, déterminer les cas d'égalité.

Exercice 13.

1. Établir l'identité du parallélogramme :

$$\forall z, w \in \mathbb{C}, \quad |z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2).$$

 2^{\star} . Montrer la formule de polarisation :

$$\forall z, w \in \mathbb{C}, \quad zw = \frac{1}{4} \Big(\big| z + \overline{w} \big|^2 - \big| z - \overline{w} \big|^2 + \mathrm{i} \big| z + \mathrm{i} \, \overline{w} \big|^2 - \mathrm{i} \big| z - \mathrm{i} \, \overline{w} \big|^2 \Big).$$

Exercice 14. Déterminer les racines carrées des nombres complexes suivants :

1.
$$z_1 := -7$$
.

3.
$$z_3 := -3 - 4i$$
.

2.
$$z_2 := 5 - 12i$$
.

4.
$$z_4 := 8i$$
.

Exercice 15. Déterminer les nombres complexes z qui sont solutions des équations suivantes :

1.
$$z^2 - 2z + 5 = 0$$
.

4.
$$z^4 = 1$$

2.
$$z^2 + (4 - 6i)z = 5 + 14i$$
.

5.
$$z^4 - (5 - 14i)z^2 - 2(5i + 12) = 0$$
.

3.
$$z^2 - 3(z - 1) = i$$
.

6.
$$z^4 + z^2 - 1 + 3i = 0$$
.

Exercice 16^* . Déterminer et interpréter géométriquement l'ensemble des nombres complexes z tels que :

$$1. \left| \frac{3z+4}{3z+8i} \right| = 1.$$

$$3. \ z^2 - \overline{z} \in \mathbb{R}.$$

2.
$$\left| \frac{z-3}{z-5} \right| = \frac{\sqrt{2}}{2}$$
.

4.
$$\frac{z-3+2i}{iz+2} \in \mathbb{R}.$$

Exercice 17. Soit $f: \mathbb{C} \to \mathbb{C}$ la fonction définie par :

$$\forall z \in \mathbb{C}, \quad f(z) = \frac{z^2 - 2i}{z\overline{z} + 1}.$$

- **1.** Justifier que f est bien définie sur $\mathbb C$ tout entier.
- **2.** Pour tout $z \in \mathbb{C}$, montrer que $f(z) \in \mathbb{R}$ si et seulement si $(z \overline{z})(z + \overline{z}) = 4i$.
- **3.** En déduire que f(z) est réel si et seulement si il existe $\lambda \in \mathbb{R}^*$ tel que $z = \lambda + \frac{1}{\lambda}i$.
- **4.** Montrer que f(z) est imaginaire pur si et seulement si il existe $\lambda \in \mathbb{R}$ tel que $z = \lambda(1+i)$ ou $z = \lambda(1-i)$.

Exercice 18. Pour tout $z \in \mathbb{C}$, on considère le polynôme :

$$f(z) = z^4 - 10z^3 + 38z^2 - 90z + 261.$$

- **1.** Exprimer en fonction de $y \in \mathbb{R}$ les parties réelles et imaginaires de f(iy).
- **2.** En déduire les solutions imaginaires pures de l'équation f(z) = 0.
- **3.** Déterminer $a, b \in \mathbb{R}$ tels que $f(z) = (z^2 + 9)(z^2 + az + b)$.
- **4.** Résoudre dans \mathbb{C} l'équation f(z) = 0.

Exercice 19 * . Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$4z^2 + 8|z| - 3 = 0$$
.

2.
$$z^2 + \overline{z} - 1 = 0$$
.

3.
$$\overline{z}(z-1) = z^2(\overline{z}-1)$$
.

1.2 Forme trigonométrique

Exercice 20.

1. Écrire les nombres complexes suivants sous forme algébrique :

a.
$$z_1 := e^{i\frac{\pi}{3}}$$

b.
$$z_2 := \sqrt{2} e^{-i\frac{\pi}{4}}$$

c.
$$|z_3| = 7$$
 et $\arg(z_3) \equiv \frac{\pi}{6}$ (2π)

2. Déterminer le module et un argument des nombres complexes suivants :

a.
$$z_1 := 2\sqrt{3} - 2i$$

c.
$$z_3 := i - 1$$

e.
$$z_5 := \frac{-3\sqrt{3}-3i}{1+i}$$
.

b.
$$z_2 := -4$$

d.
$$z_4 := 2i(1+i)(1+i\sqrt{3}).$$

$$f^*$$
. $z_6 := \sin(2) + i\cos(2)$.

Exercice 21. Mettez sous forme algébrique les nombres complexes suivants :

1.
$$z_1 := (1 + i\sqrt{3})^8$$
.

3.
$$z_3 := (-1+i)^{100}$$
.

2.
$$z_2 := \left(\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\right)^6$$
.

4.
$$z_4 := \left(\frac{\sqrt{3} - i}{2}\right)^{2025}$$
.

Exercice 22. Représenter dans le plan complexe les ensembles suivants :

1.
$$E_1 := \{z \in \mathbb{C} \mid |z - 1 + 2i| = 3\}.$$

3.
$$E_3 := \{ z \in \mathbb{C} \mid z + \overline{z} = 4 \}.$$

2.
$$E_2 := \{z \in \mathbb{C} \mid \arg(z) \equiv \frac{\pi}{4} \mod \frac{\pi}{2} \}.$$

4.
$$E_4 := \{z \in \mathbb{C} \mid |z-1| = |z-i|\}.$$

Exercice 23. Soit $z_1 := 1 + i$ et $z_2 := \sqrt{3} - i$.

- 1. Calculer le module et un argument de z_1 et de z_2 .
- **2.** Donner les formes algébrique et trigonométrique du produit z_1z_2 .
- **3.** En déduire les valeurs exactes de $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

Exercice 24. Soit $\theta \in \mathbb{R}$. Déterminer le module et un argument des nombres complexes suivants, et les mettre sous forme trigonométrique.

1.
$$z := -e^{i\theta}$$
.

2.
$$w := i e^{i\theta}$$
.

Exercice 25. Soit $z_1 := 2 + 2i\sqrt{3}$ et $z_2 := 2 - 2i\sqrt{3}$.

- **a.** Déterminer la forme trigonométrique des nombres z_1 et z_2 .
 - **b.** En déduire les racines carrées complexes de z_1 et de z_2 sous forme trigonométrique, puis sous forme algébrique.
- **a.** Déterminer les nombres complexes Z qui sont solutions de l'équation $Z^2 4Z + 16 = 0$.
 - **b.** En déduire les nombres complexes z qui sont solutions de l'équation $z^4 4z^2 + 16 = 0$.

Exercice 26. Soit $\theta \in \mathbb{R}$.

1. Linéariser les expressions trigonométriques suivantes :

a.
$$\cos^2(\theta)$$
.

$$\mathbf{c}^{\star}$$
. $\sin^4(\theta)$.

b. $\sin^3(\theta)$.

$$\mathbf{d}^{\star}$$
. $\sin^2(\theta)\cos^3(\theta)$.

2. Exprimer les nombres suivants en fonction de $cos(\theta)$ et $sin(\theta)$:

a.
$$cos(2\theta)$$
.

$$\mathbf{c}^{\star}$$
. $\cos(3\theta)\sin(4\theta)$.

b. $\sin(3\theta)$.

$$\mathbf{d}^{\star}$$
. $\sin(6\theta)$.

Exercice 27. Soit $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$.

- **1.** Calculer la somme $E_n := \sum_{i=1}^{n} e^{ik\theta}$.
- 2. En déduire la valeur des sommes :

a.
$$C_n := \sum_{k=0}^n \cos(k\theta)$$
.

b.
$$S_n := \sum_{k=0}^n \sin(k\theta)$$
.

b.
$$S_n := \sum_{k=0}^n \sin(k\theta)$$
. $\mathbf{c}^* \cdot T_n := \sum_{k=0}^n \cos^2(k\theta)$.

Exercice 28. Soient $\theta, \varphi \in]-\pi, \pi[$. Déterminer le module et un argument des nombres complexes suivants :

1.
$$z_1 := 1 + e^{i\theta}$$
.

$$\mathbf{2.} \ \ z_2 \coloneqq \mathrm{e}^{\mathrm{i}\,\theta} + \mathrm{e}^{\mathrm{i}\,\varphi}.$$

$$\mathbf{c}^{\star}$$
. $z_3 := i e^{i\theta} - e^{i\varphi}$.

Indication: factorisation de l'angle moitié.

Exercice 29. Démontrer que pour tous $z, w \in \mathbb{U}$ tel que $zw \neq -1$, on a $\frac{z+w}{1+zw} \in \mathbb{R}$.

Exercice 30. Soit $z \in \mathbb{U}$ tel que l'argument principal de z appartienne à $\left]0,\frac{\pi}{3}\right[$. Calculer le module et un argument de:

$$\frac{1+z^3}{z^2}.$$

Exercice 31. Soit $z = e^{i\frac{\pi}{4}}$.

- 1. Montrer que $arg(1+z) \equiv \frac{\pi}{8} (2\pi)$.
- **2.** Montrer que $|1 + z| = \sqrt{2 + \sqrt{2}}$.
- 3. En déduire que $\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$ et $\sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$.

1.3 Racines *n*-ièmes

Exercice 32. Déterminer les racines cubiques et les racines 4es des nombres complexes suivants, sous forme exponentielle:

1.
$$z_1 := 1$$
.

2.
$$z_2 := i$$
.

3.
$$z_3 := -1 + i$$
.

4.
$$z_5 := \frac{1+i}{\sqrt{3}-i}$$
.

Exercice 33. Soient $n \in \mathbb{N}^*$ et $\theta \in \mathbb{R}$.

- 1. Déterminer les nombres $w \in \mathbb{C}$ qui sont solutions de l'équation $w^2 2\cos(\theta)w + 1 = 0$.
- **2.** En déduire les nombres $z \in \mathbb{C}$ qui sont solutions de l'équation $z^{2n} 2\cos(\theta)z^n + 1 = 0$.

Exercice 34. Soit $\omega := e^{\frac{2i\pi}{5}}$.

1. Montrer que $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.

2. Montrer que $\omega + \omega^4 = 2\cos(\frac{2\pi}{5})$ et $\omega^2 + \omega^3 = 2\cos(\frac{4\pi}{5})$.

3. En déduire que $\cos\left(\frac{2\pi}{5}\right)$ et $\cos\left(\frac{4\pi}{5}\right)$ sont solutions de l'équation $4x^2 + 2x - 1 = 0$.

4. Calculer les valeurs exactes de $\cos(\frac{2\pi}{5})$ et $\cos(\frac{4\pi}{5})$.

Exercice 35. Soient $n \in \mathbb{N}^*$ et $\omega \in \mathbb{U}_n \setminus \{1\}$.

1. Montrer que $\sum_{k=0}^{n-1} \omega^k = 0$.

2*. Calculer $S := \sum_{k=0}^{n-1} k\omega^k$. *Indication : calculer* $S - \omega S$.

Systèmes linéaires

Exercice 36. Résoudre dans \mathbb{R} le système linéaire :

$$\begin{cases}
-3x - 2y - z + 2t = -1 \\
4y + z - t = 0 \\
z + t = 0 \\
2t = -4.
\end{cases}$$

Exercice 37. On considère le système linéaire :

$$\begin{cases}
-x+4y-z+2t+s=-1 \\
-y+3z+3t=0 \\
-2z+3t=2
\end{cases}$$

1. Que vaut le rang de ce système?

2. Déterminer une description paramétrique de l'ensemble des solutions du système.

Exercice 38. Résoudre dans ℝ les systèmes suivants par la méthode du pivot du Gauss.

1.
$$\begin{cases} \frac{1}{2}x + \frac{2}{5}y = -1\\ \frac{3}{5}x + \frac{1}{2}y = -\frac{1}{5}. \end{cases}$$

2.
$$\begin{cases} x + 2y + 3z = 5 \\ 2x + 3y + z = 4 \\ 3x + y + 2z = 3. \end{cases}$$

3.
$$\begin{cases} 2x - y + z = 3 \\ x + y - 2z = -3 \\ 2x + y - 2z = -2. \end{cases}$$

4.
$$\begin{cases} 2x - 3y - z = -2 \\ x + y - 3z = -1 \\ -x + 2y = 1. \end{cases}$$

5.
$$\begin{cases} 2x + 6y - 4z = 1 \\ x + 3y - 2z = 4 \\ 2x + y - 3z = -7. \end{cases}$$

6.
$$\begin{cases} x + y - z = 2 \\ 2x - y + 2z = 4 \\ x - 2y + 3z = 2. \end{cases}$$
7.
$$\begin{cases} x + 2y + 3z - 2t = 6 \\ 2x - y - 2z - 3t = 8 \\ 3x + 2y - z + 2t = 4 \\ 2x - 3y + 2z + t = -8. \end{cases}$$
8.
$$\begin{cases} x + 2y + 3z + 2t = 0 \\ -2x + 3y - 5z + t = 0 \\ 3x - 4y + 7z - 3t = -5 \\ 2x + 3y + 8z + 2t = -6 \end{cases}$$
9.
$$\begin{cases} x + 2y - z + 3t = -1 \\ 3x + y + z + 2t = 6 \\ x - 3y + 3z - t = 5 \\ 5x + 5y - z + 7t = 5 \end{cases}$$

7.
$$\begin{cases} 2x - y - 2z - 3t = 8 \\ 3x + 2y - z + 2t = 4 \\ 2x - 3y + 2z + t = -8. \end{cases}$$

8.
$$\begin{cases} x + 2y + 3z + 2t = 0 \\ -2x + 3y - 5z + t = 0 \\ 3x - 4y + 7z - 3t = -9 \\ 2x + 3y + 8z + 2t = -9 \end{cases}$$

9.
$$\begin{cases} x+2y-z+3t=-\\ 3x+y+z+2t=6\\ x-3y+3z-t=5\\ 5x+5y-z+7t=5 \end{cases}$$

Exercice 39. Résoudre l'équation 2y - z + 3t = 1 dont les inconnues sont $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 40. Discuter l'existence et l'unicité des solutions dans \mathbb{R} des systèmes suivants, selon la valeur du paramètre $m \in \mathbb{R}$.

1.
$$\begin{cases} x - y + z = m \\ x + my - z = 1 \\ x - y - z = 1. \end{cases}$$
2.
$$\begin{cases} mx + y + z = 1 \\ x + my + z = 1 \\ x + y + mz = 1. \end{cases}$$
3.
$$\begin{cases} x + y + (2m-1)z = 1 \\ mx + y + z = 1 \\ x + my + z = 1 \end{cases}$$
4.
$$\begin{cases} mx + y + z + t = 1 \\ x + my + z + t = m \\ x + y + mz + t = m + 1. \end{cases}$$

Exercice 41. Discuter selon $(a, b) \in \mathbb{R}^2$ l'existence et l'unicité des solutions des systèmes suivants :

1.
$$\begin{cases} ax + by + z = 1 \\ x + aby + z = b \\ x + by + az = 1. \end{cases}$$
2.
$$\begin{cases} x + ay + bz = a \\ x + by + az = b \\ ax + y + bz = a \\ bx + y + az = b. \end{cases}$$

Exercice 42. Résoudre le système de n équations suivant, d'inconnue $(x_1, ..., x_n) \in \mathbb{R}^n$:

$$\begin{cases} x_1 + x_2 + x_3 + \dots + x_n = 1 \\ x_1 + 2x_2 + 2x_3 + \dots + 2x_n = 1 \\ x_1 + 2x_2 + 3x_3 + \dots + 3x_n = 1 \\ \vdots \\ x_1 + 2x_2 + 3x_3 + \dots + nx_n = 1. \end{cases}$$

3 Espaces vectoriels

3.1 Sous-espaces vectoriels

Exercice 43. Représenter les sous-ensembles de \mathbb{R}^2 suivants, puis déterminer ceux qui sont stables par addition, ceux qui sont stables par multiplication par un scalaire, et ceux qui sont des sous-espaces vectoriels de \mathbb{R}^2

1.
$$A := \{(x, y) \in \mathbb{R}^2 \mid x + 2y = 0\}$$
 4. $D := \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$ **2.** $B := \{(x, y) \in \mathbb{R}^2 \mid x + 2y = 1\}$ **5.** $E := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ **6.** $F := \mathbb{Z}^2$

Exercice 44. Parmi les ensembles suivants, dire lesquels sont des sous-espaces vectoriels de \mathbb{R}^3 .

1.
$$A := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4y - z = 0\}.$$
 4. $D := \{(\lambda - \mu, 2\lambda, \lambda + \mu) : \lambda, \mu \in \mathbb{R}\}.$ **2.** $B := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4y - z = 3\}.$ **5.** $E := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4z = 0 \text{ et } x + y + z = 0\}.$ **6.** $F := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4z = 0 \text{ ou } x + y + z = 0\}.$

Exercice 45. Soit E un espace vectoriel et soient F et G deux sous-espaces vectoriels de E.

- **1.** Montrer que $F \cap G$ est un sous-espace vectoriel de E.
- **2.** F^{c} est-il un sous-espace vectoriel de E?
- **3.** Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Exercice 46*. Parmi les ensembles suivants, établir lesquels sont des sous-espaces vectoriels de l'espace des applications de \mathbb{R} dans \mathbb{R} .

1.
$$A := \{ f : \mathbb{R} \to \mathbb{R} \mid f(0) = 0 \}.$$
 2. $B := \{ f : \mathbb{R} \to \mathbb{R} \mid f(0) = 3 \}.$ **4.** $D := \{ f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R}) \mid \int_0^1 f(x) \, \mathrm{d}x = 0 \}.$ **5.** $E := \{ f \in \mathscr{C}^1(\mathbb{R}, \mathbb{R}) \mid f' + 2f = 0 \}.$

Exercice 47*. Dans l'espace vectoriel des suites réelles, déterminer si les ensembles suivants sont des sous-espaces vectoriels.

1. $A := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ converge}\}.$ **4.** $D := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ est arithmétique}\}.$

2. $B := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ diverge}\}.$ **5.** $E := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ est g\'eom\'etrique}\}.$ **3.** $C := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+1} \ge u_n\}.$ **6.** $F := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \exists N \ge 0, \ \forall n \ge N, \ u_{n+1} = u_n\}.$ **6.** $F := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \exists N \ge 0, \ \forall n \ge N, \ u_{n+1} = u_n \}.$

3.2 Familles libres

Exercice 48.

1. Montrer que la famille (u, v) est libre dans \mathbb{R}^2 si u := (1, 2) et v := (2, 3).

2. Même question dans \mathbb{R}^3 avec u := (1,2,3) et v := (2,3,4).

3. Montrer que la famille (u, v, w) est libre dans \mathbb{R}^3 si u := (1, -1, 2), v := (1, 1, 1) et w := (2, -2, 1).

Exercice 49. Soient u := (1, -1, 4), v := (2, 5, -1) et w := (3, 0, -4) des vecteurs de \mathbb{R}^3 . Dire si la famille (u, v, w) est libre ou liée.

Exercice 50. Soient u := (1,2), v := (1,3) et w := (1,4) des vecteurs de \mathbb{R}^2 .

1. Montrer que les vecteurs u, v, w sont deux-à-deux libres.

2. La famille (u, v, w) est-elle libre?

Exercice 51. Dans \mathbb{R}^3 , considère les vecteurs u := (1, -2, 2) et v := (3, 3, -1).

1. Justifier que les vecteurs u et v sont libres.

2. Déterminer si le vecteur (-1, -7, 5) est une combinaison linéaire de u et v.

3. Déterminer une condition nécessaire et suffisante sur les réels x, y, z pour que $(x, y, z) \in \text{Vect}(u, v)$.

4. En déduire une équation cartésienne du plan engendré par u et v.

Exercice 52. Soit (u_1, \ldots, u_n) une famille de vecteurs d'un espace vectoriel E et posons $s_k := u_1 + \cdots + u_k$ pour tout $1 \le k \le n$. Montrer que la famille $(s_1, ..., s_n)$ est libre si seulement si $(u_1, ..., u_n)$ est libre.

Exercice 53. Soit (e_1, e_2, e_3, e_3) une famille libre d'un espace vectoriel E. Dire si les familles suivantes sont libres ou liées:

1. $\mathscr{A} := (e_1, 2e_2, 3e_3).$

2. $\mathscr{B} := (e_1, 2e_1 + e_4, e_3 + e_4).$

3. $\mathscr{C} := (2e_1 + e_2, e_1 - 2e_2, e_4, 7e_1 - 4e_2).$

Exercice 54. Dans \mathbb{R}^4 , on considère les vecteurs $u_1 := (\lambda, 1, 2, 2), u_2 := (0, \lambda, 1, 1)$ et $u_3 := (1, 0, \lambda, 1)$, où $\lambda \in \mathbb{R}$ est un paramètre. Déterminer pour quelles valeurs de λ la famille (u_1, u_2, u_3) est libre.

Exercice 55*. Soit *E* l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .

- 1. Montrer que la famille (cos, sin) est libre.
- **2.** Montrer que la famille (cos, sin, f) est liée, où $f(x) := \sin(x+1)$, et donner une relation de liaison.
- **3.** Montrer que pour tout $n \in \mathbb{N}$, la famille (f_0, f_1, \dots, f_n) est libre, où $f_k(x) := e^{kx}$.
- **4.** Montrer que pour tout $n \in \mathbb{N}$, la famille (g_0, g_1, \dots, g_n) est libre, où $g_k(x) := \cos(kx)$. Indication : faire une récurrence, et utiliser la dérivée seconde.

3.3 Bases et dimension

Exercice 56. Soit $F := \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + z = 0\}$. Vérifier que F est un sous-espace vectoriel de \mathbb{R}^3 , puis en déterminer une base.

Exercice 57. Déterminer une base des sous-espaces vectoriels de \mathbb{R}^4 suivants (on ne demande pas de montrer que ce sont des s.e.v.).

- 1. $\{(x, y, z, t) \in \mathbb{R}^4 \mid x + 2y + 3z + 4t = 0\}.$
- **2.** $\{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = 0 \text{ et } x + y + t = 0\}.$
- 3. $\{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0 \text{ et } x + 2y z + 3t = 0\}.$

Exercice 58. Déterminer une base du sous-espace vectoriel de \mathbb{R}^n d'équation $x_1 + \cdots + x_n = 0$.

Exercice 59. Dans chaque cas, montrer que les vecteurs (u_1, u_2, u_3) forment une base de \mathbb{R}^3 , puis déterminer les coordonnées du vecteur v := (1, -1, 0) dans cette base.

- **1.** $u_1 := (1,0,0), u_2 := (0,1,0) \text{ et } u_3 := (0,0,1).$
- **2.** $u_1 := (1,0,0), u_2 := (1,1,0) \text{ et } u_3 := (1,1,1).$
- **3.** $u_1 := (1, 1, 2), u_2 := (-1, 2, 1)$ et $u_3 := (1, -1, -1)$.

Exercice 60. Dans \mathbb{R}^4 , on considère les vecteurs $u_1 := (1,2,0,3)$ et $u_2 := (1,0,0,-1)$.

- **1.** Montrer que la famille (u_1, u_2) est libre.
- **2.** Compléter cette famille en une base de \mathbb{R}^4 .

Exercice 61. Dans \mathbb{R}^4 , soit F := Vect(u, v, w) où u := (1, 1, -1, 1), v := (0, 2, -1, 2) et w := (-2, -3, 1, -1), et soit H le sous-espace vectoriel :

$$H := \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x - y + 4z + 3t = 0\}.$$

- 1. Montrer que u, v et w sont linéairement indépendants.
- **2.** Montrer que H est un hyperplan de \mathbb{R}^4 .
- **3.** En déduire que F = H.

Exercice 62*. Soit $E := \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites réelles et soit F l'ensemble :

$$F \coloneqq \big\{ (u_n)_{n \in \mathbb{N}} \in E \,|\, \forall \, n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + 6u_n \big\}.$$

- **1.** Montrer que F est un sous-espace vectoriel de E.
- **2.** Soient $a_n := (-2)^n$ et $b_n := 3^n$. Montrer que $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ sont des vecteurs de F.
- **3.** Montrer que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ forment une famille libre.
- **4.** L'objectif de cette question est de montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ forment une famille génératrice de F. Fixons une suite $(u_n)_{n\in\mathbb{N}}\in F$. Pour $\lambda,\mu\in\mathbb{R}$, on considère la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par :

$$v_n := \lambda a_n + \mu b_n$$
.

- **a.** Expliquer pourquoi $(v_n)_{n \in \mathbb{N}} \in F$.
- **b.** Montrer qu'il existe des valeurs de λ et μ pour lesquelles $v_0 = u_0$ et $v_1 = u_1$.
- **c.** Pour ces valeurs de λ et μ , démontrer par récurrence double que : $\forall n \in \mathbb{N}, \ \nu_n = u_n$.
- **d.** En déduire que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ forment une famille génératrice de F.
- **5.** Quelle est la dimension de *F*?
- **6.** Déterminer une suite $(u_n)_{n\in\mathbb{N}}\in F$ telle que $u_0=0$ et $u_1=3$. Cette suite est-elle unique?

3.4 Somme de sous-espaces, supplémentaires

Exercice 63. Dans \mathbb{R}^4 , soit F le plan vectoriel dirigé par $u_1 := (2,3,0,1)$ et $u_2 := (-1,2,1,-2)$ et soit G le plan vectoriel dirigé par $v_1 := (4,-1,-2,5)$ et $v_2 := (1,0,0,0)$.

- 1. Déterminer une base de F + G.
- 2. La somme est-elle directe?

Exercice 64. Dans \mathbb{R}^3 , soient F le plan d'équation x + y + z = 0 et G le plan d'équation x + 2y + 3z = 0.

- **1.** Montrer que $F + G = \mathbb{R}^3$.
- **2.** Sans déterminer $F \cap G$, justifier si F et G sont supplémentaires.

Exercice 65. Dans \mathbb{R}^4 , on considère les sous-espaces vectoriels :

$$F := \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = 0 \text{ et } z + t = 0\}, \qquad G := \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y = 0 \text{ et } z - t = 0\}.$$

- **1.** Déterminer les dimensions de F et de G.
- **2.** Déterminer $F \cap G$.
- **3.** En déduire que $F + G = \mathbb{R}^4$.

Exercice 66*. Soit $E := \mathscr{C}^0([0,1],\mathbb{R})$ l'espace vectoriel des fonctions continues sur [0,1]. Soit F le sousespace vectoriel :

$$F := \left\{ f \in E \middle| \int_{0}^{1} f(x) \, \mathrm{d}x = 0 \right\},$$

et soit G le sous-espace vectoriel des fonctions constantes.

- **1.** Vérifier que *F* et *G* sont bien des sous-espaces vectoriels de *E*.
- **2.** Montrer que F et G sont supplémentaires dans E.

Exercice 67. Soit E un espace vectoriel de dimension n, et soient F et G des sous-espaces vectoriels de E. Montrer que si $\dim(F) + \dim(G) > n$, alors F et G ne sont pas en somme directe.

Exercice 68. Soit E un espace vectoriel et soient F et G des s.e.v. de dimension finie de E. Notons $\mathscr{B}_F := (u_1, \ldots, u_p)$ une base de F et $\mathscr{B}_G := (v_1, \ldots, v_q)$ une base de G. Montrer que si $(u_1, \ldots, u_p, v_1, \ldots, v_q)$ est libre, alors F et G sont en somme directe.

Exercice 69. Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$, et soient H_1, \dots, H_p des hyperplans de E. Démontrer par récurrence sur p que :

$$\forall p \in [1, n], \quad \dim(H_1 \cap \cdots \cap H_p) \ge n - p.$$

Exercice 70. Soit E un espace vectoriel de dimension finie et soient F, G, H des s.e.v. de E.

- **1.** Montrer que $(F \cap G) + (F \cap H) \subset F \cap (G + H)$. A-t-on l'inclusion contraire en général?
- 2. Montrer que:

$$\dim(F+G+H) \leq \dim(F) + \dim(G) + \dim(H) - \dim(F\cap G) - \dim(F\cap H) - \dim(G\cap H) + \dim(F\cap G\cap H).$$

Exercice 71 * . Soit *E* un espace vectoriel de dimension finie.

- **1.** Soient V et W des sous-espaces vectoriels tels que $V \cap W = \{0_E\}$. Montrer que V admet un supplémentaire S tel que $W \subset S$.
- **2.** Montrer que tout sous-espace vectoriel *F* distinct de *E* est égal à l'intersection des hyperplans de *E* qui contiennent *F*.

Exercice 72*. Soit E un espace vectoriel de dimension finie et soient F_1 et F_2 des s.e.v. tels que $F_1 + F_2 = E$. Démontrer qu'il existe des s.e.v. $G_1 \subset F_1$ et $G_2 \subset F_2$ tels que $G_1 \oplus G_2 = E$.

3.5 Exercices tirés d'examens

Exercice 73 (Examen 2021-2022, session 1). Soient F et G les sous-ensembles de \mathbb{R}^4 suivants :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = 0 \text{ et } y = z\}, \quad G_m = \text{Vect}((1, 1, 0, 0), (1, 0, m, 0)),$$

où m ∈ \mathbb{R} est un paramètre.

- **1.** Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 .
- **2.** Résoudre le système à quatre inconnues x, y, z, t: $\begin{cases} x = 0 \\ y = z. \end{cases}$
- **3.** En déduire une base de F (en justifiant).
- **4.** Donner la dimension de *F*.
- **5.** Déterminer une condition nécessaire et suffisante sur m pour que F et G_m soient supplémentaires dans \mathbb{R}^4 .

Exercice 74 (Examen 2022-2023, session 1). Soient $u_{\alpha,\beta} = (\alpha - \beta, \alpha + 2\beta, \beta)$ et $\nu = (-2,7,3)$ des vecteurs de \mathbb{R}^3 , avec α et β des paramètres réels.

- 1. Écrire $u_{\alpha,\beta}$ comme une combinaison linéaire $\alpha w_1 + \beta w_2$, en précisant qui sont les vecteurs fixes w_1 et w_2 de \mathbb{R}^3 .
- **2.** La famille (w_1, w_2) est-elle libre?
- **3.** Montrer que $(u_{\alpha,\beta}, v)$ est une famille libre de vecteurs de \mathbb{R}^3 si et seulement si $3\alpha \beta = 0$.
- **4.** Montrer que la somme $Vect(v) + Vect(w_2)$ est directe. Que vaut dim $Vect(v, w_2)$?
- **5.** Montrer que la somme $Vect(v) + Vect(w_1) + Vect(w_2)$ n'est pas directe. Que vaut sa dimension?

4 Applications linéaires

Exercice 75. Parmi les applications ci-dessous, déterminer lesquelles sont linéaires.

- **1.** $f_1: \mathbb{R}^2 \to \mathbb{R}^2$ définie pour tout $(x, y) \in \mathbb{R}^2$ par $f_1(x, y) := (y, x + y)$.
- **2.** $f_2: \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout $(x, y, z) \in \mathbb{R}^3$ par $f_2(x, y, z) \coloneqq (2y + z, x + z, -x + y + z)$.
- **3.** $f_3: \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout $(x, y, z) \in \mathbb{R}^3$ par $f_3(x, y, z) := (y + 1, x + y, z x)$.
- **4.** $f_4: \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout $(x, y, z) \in \mathbb{R}^3$ par $f_4(x, y, z) := (y, x + y, x^2)$.
- **5.** $f_5: \mathbb{R}^3 \to \mathbb{R}^4$ définie pour tout $(x, y, z) \in \mathbb{R}^3$ par $f_5(x, y, z) := (x 2y + z, 2y, z x, z y)$.
- **6.** $f_6: \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout $(x, y, z) \in \mathbb{R}^3$ par $f_6(x, y, z) := (x, x + y, xz)$.
- 7. $f_7: \mathbb{R} \to \mathbb{R}^3$ définie pour tout $x \in \mathbb{R}$ par $f_7(x) := (x \sin(2023), \frac{x}{\pi}, x\sqrt{2})$.

Exercice 76. Soient f et g les applications définies de $\mathbb C$ dans $\mathbb C$ par $f(z) \coloneqq \overline{z}$ et $g(z) \coloneqq \mathfrak{Re}(z)$. Les applications f et g sont-elles $\mathbb R$ -linéaires? $\mathbb C$ -linéaires?

Exercice 77*. Dans chaque cas, dire si l'application $f: E \to F$ est linéaire.

- **1.** $E := \mathscr{F}(\mathbb{R}, \mathbb{R}), F := \mathbb{R}$ et pour tout $u \in E, f(u) := u(0)$.
- **2.** $E := \mathscr{C}^0([0,1],\mathbb{R}), F := \mathscr{C}^1([0,1],\mathbb{R})$ et pour tout $u \in E$, $f(u) : x \mapsto \int_0^x u(t) dt$.
- **3.** $E := \mathscr{C}^0([0,1],\mathbb{R}), F := \mathbb{R}$ et pour tout $u \in E$, $f(u) := \max_{t \in [0,1]} u(t)$.
- **4.** $E := \{u \in \mathscr{F}(\mathbb{N}, \mathbb{R}) \mid (u_n)_{n \in \mathbb{N}} \text{ converge}\}, F := \mathbb{R} \text{ et pour tout } u \in E, f(u) := \lim_{n \to \infty} u_n.$
- **5.** $E := \mathcal{C}^2(\mathbb{R}, \mathbb{R}), F := \mathbb{R}^3$ et pour tout $u \in E$, $f(u) := (u(0), u'(0), \frac{1}{2}u''(0))$.

Exercice 78. Soient $a, b, c \in \mathbb{R}$, on considère le système linéaire :

$$\begin{cases} x - y + z + t = a \\ x + 2z - t = b \\ x + y + 3z - 3t = c. \end{cases}$$
 (S_{a,b,c})

Posons $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire définie pour tout $(x, y, z, t) \in \mathbb{R}^4$ par :

$$f(x, y, z, t) := (x - y + z + t, x + 2z - t, x + y + 3z - 3t).$$

- 1. Échelonner le système ($\mathcal{S}_{a,b,c}$) par la méthode du pivot de Gauss.
- **2.** En déduire une base de ker f. L'application f est-elle injective?
- **3.** Déterminer une condition nécessaire et suffisante sur a,b,c pour que le système $(\mathcal{S}_{a,b,c})$ soit compatible.
- **4.** En déduire une base de $\operatorname{Im} f$. L'application f est-elle surjective?
- 5. Vérifier la validité du théorème du rang sur cet exemple.

Exercice 79. Soit $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire définie pour tout $(x, y, z, t) \in \mathbb{R}^4$ par :

$$f(x, y, z, t) := (x + 2y + 2t, -x + y + z, 2x + y + z + t).$$

- 1. À l'aide du théorème du rang, montrer sans calculs que f n'est pas injective.
- **2.** Déterminer une base de ker f.
- **3.** En déduire que f est surjective.

Exercice 80*. Soit I un intervalle ouvert de \mathbb{R} , et soient les \mathbb{R} -espaces vectoriels $E := \mathscr{C}^1(I,\mathbb{R})$ et $F := \mathscr{C}^0(I,\mathbb{R})$. On considère l'application $\mathscr{D} : E \to F$ qui à tout $f \in E$ associe sa dérivée $f' \in F$.

- 1. Montrer que \mathcal{D} est une application linéaire.
- **2.** Déterminer $\ker \mathcal{D}$. L'application \mathcal{D} est-elle injective?
- **3.** Montrer que \mathcal{D} est surjective.

Exercice 81.

- 1. Existe-t-il des applications linéaires injectives de \mathbb{R}^2 dans \mathbb{R} ?
- **2.** Existe-t-il des applications linéaires surjectives de \mathbb{R} dans \mathbb{R}^2 ?
- **3.** Déterminer une condition nécessaire sur les entiers n et p pour qu'une application linéaire de \mathbb{R}^n dans \mathbb{R}^p soit :
 - a. injective.

b. surjective.

c. bijective.

Exercice 82. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie pour tout $(x, y, z) \in \mathbb{R}^3$ par :

$$f(x, y, z) := (x - 2y + 3z, 4x + y + z, x + 2y - 2z).$$

Montrer que f est un isomorphisme.

Exercice 83 (Examen 2023-2024, session 2). On considère l'application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ définie par :

$$\forall x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4, \quad f(x) = (-3x_1 + 3x_2 - x_3 - 7x_4; \ x_1 - x_2 + 3x_4; \ 2x_1 - 2x_2 + x_3 + 4x_4).$$

1. Soit $y = (y_1, y_2, y_3) \in \mathbb{R}$. Échelonner le système linéaire suivant d'inconnues $x_1, x_2, x_3, x_4 \in \mathbb{R}$:

$$\begin{cases}
-3x_1 + 3x_2 - x_3 - 7x_4 = y_1 \\
x_1 - x_2 + 3x_4 = y_2 \\
2x_1 - 2x_2 + x_3 + 4x_4 = y_3
\end{cases}$$
(\mathscr{S}_y)

2. En déduire une base de ker f. Celle-ci sera formée de deux vecteurs qu'on notera u_1 et u_2 .

- **3.** En déduire que Im f est un plan vectoriel de \mathbb{R}^3 et déterminer une base de celui-ci.
- **4.** L'application f est-elle injective? surjective?
- **5.** Montrer que Im $f = \{(y_1, y_2, y_3) \in \mathbb{R}^3 \mid y_1 + y_2 + y_3 = 0\}.$
- **6. a.** Justifier, sans les calculer, qu'il existe $u_3, u_4 \in \mathbb{R}^4$ tels que la famille (u_1, u_2, u_3, u_4) soit une base de \mathbb{R}^4 .
 - **b.** Déterminer des vecteurs u_3 et u_4 satisfaisant la proposition de la question précédente.
 - **c.** On pose $S = \text{Vect}(u_3, u_4)$. Montrer que S et ker f sont supplémentaires dans \mathbb{R}^4 .
 - **d.** Notons $g: S \to \text{Im } f$ la restriction de f à S, c'est-à-dire g est définie sur S par :

$$\forall x \in S$$
, $g(x) = f(x)$.

Montrer que $\ker g = \{0_{\mathbb{R}^4}\}$, puis en déduire que g est un isomorphisme entre S et $\operatorname{Im} f$.

Exercice 84. Soient E, F et G des \mathbb{K} -espaces vectoriels.

- **1.** Soient $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$. Montrer que $g \circ f$ est une application linéaire de E dans G.
- **2.** Soit $f: E \to F$ un isomorphisme et soit $f^{-1}: F \to E$ son application réciproque. Montrer que f^{-1} est un isomorphisme de F dans E.

Exercice 85*. Soient E, F et G des \mathbb{K} -espaces vectoriels de dimensions finies et soit $f \in \mathcal{L}(E, F)$.

- **1.** Si $g \in \mathcal{L}(G, E)$ est surjective, montrer que $\operatorname{rg}(f \circ g) = \operatorname{rg}(f)$.
- **2.** Si $h \in \mathcal{L}(F, G)$ est injective, montrer que $\operatorname{rg}(h \circ f) = \operatorname{rg}(f)$.

Exercice 86*. L'objectif de cet exercice est de démontrer la formule de Grassmann à partir du théorème du rang.

1. Soient $(F, +_F, \cdot_F)$ et $(G, +_G, \cdot_G)$ des \mathbb{K} -espaces vectoriels. On définit l'*espace vectoriel produit* de F et G comme l'ensemble $F \times G$ muni des lois + (interne) et \cdot (externe) définies ci-dessous :

$$\forall (u, v), (u', v') \in F \times G, \quad \forall \lambda \in \mathbb{K}, \quad (u, v) + (u', v') := (u +_F u', v +_G v') \quad \text{et} \quad \lambda \cdot (u, v) := (\lambda \cdot_F u, \lambda \cdot_G v).$$

- **a.** On admet que $(F \times G, +, \cdot)$ est un \mathbb{K} -espace vectoriel (le vérifier mentalement). Quel est son vecteur nul?
- **b.** On suppose que F et G sont de dimensions finies. Montrer que $F \times G$ est de dimension finie et que $\dim(F \times G) = \dim(F) + \dim(G)$.
- **2.** Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soient F et G des s.e.v. de E. On considère l'application :

$$\begin{array}{ccc} f \colon F \times G & \longrightarrow & E \\ (u, v) & \longmapsto & u + v. \end{array}$$

- **a.** Vérifier que *f* est linéaire.
- **b.** Déterminer Im f.
- **c.** Montrer que ker f est isomorphe à $F \cap G$.
- d. Appliquer le théorème du rang et en déduire la formule de Grassmann.

Exercice 87*. Soit f un endomorphisme de \mathbb{R}^3 tel que $f \circ f = 0_{\mathscr{L}(\mathbb{R}^3)}$, où $0_{\mathscr{L}(\mathbb{R}^3)}$ est l'endomorphisme de \mathbb{R}^3 qui à tout vecteur associe le vecteur nul $0_{\mathbb{R}^3}$.

- **1.** Montrer que Im $f \subset \ker f$.
- **2.** Montrer que $f = 0_{\mathcal{L}(\mathbb{R}^3)}$ ou $[\dim(\ker f) = 2 \text{ et } \operatorname{rg}(f) = 1]$.
- **3.** Montrer qu'il existe $u \in \mathbb{R}^3$ et une forme linéaire $\varphi \colon \mathbb{R}^3 \to \mathbb{R}$ tels que pour tout $x \in \mathbb{R}^3$, $f(x) = \varphi(x) u$.

Exercice 88*. Soit E un \mathbb{K} -espace vectoriel et soient f et g des endomorphismes de E tels que $f \circ g = g \circ f$.

Définition. On dit qu'un s.e.v. F de E est stable par un endomorphisme f si $f(F) \subset F$.

Démontrer que ker g et Im g sont stables par f.