

# Relational Database By-

Rajeev Srivastava

C-DAC Mumbai



### **RDBMS**

An Introduction



#### Relational Databases

- Based on Relational Model
- Stores data in form of Tables = Relations.
- Data items or information stored in a Relational Database is related to each other. Hence the term Relational.
- Follow a common query language: SQL
- Ex: PostgreSQL, MySQL, MariaDB, Oracle, MS SQL Server, IBM DB2 etc.



### Relational [Database] Model

- First defined by Computer Scientist **Edgar Frank Codd** in 1969.
- Mathematical model, based on <u>Relational Algebra and</u> <u>Predicate Logic</u>.
- Very well defined and extremely mature model in terms of data storage and representation.
- All RDBMS (Relational Database Management Systems) derived from Relational model.





#### A Relation

- In Relational Model data is modelled in form of Relations represented by tabular structure.
- Consider the <u>relation</u> EMPLOYEE represented by the following table:

| EmpCode | Name | Desig | Grade | JoinDate | BasicSalary | Gender | DeptCod<br>e |
|---------|------|-------|-------|----------|-------------|--------|--------------|
|         |      |       |       |          |             |        |              |
|         |      |       |       |          |             |        |              |
|         |      |       |       |          |             |        |              |
|         |      |       |       |          |             |        |              |
|         |      |       |       |          |             |        |              |
|         |      |       |       |          |             |        |              |
|         |      |       |       |          |             |        |              |



### Tuples in a Relation

• A relation is a set of tuples; each row here is a <u>tuple</u>:

| EmpCode | Name | Desig | Grade | JoinDate | BasicSalary | Gender | DeptCode |   |
|---------|------|-------|-------|----------|-------------|--------|----------|---|
|         |      |       |       |          |             |        |          | 1 |
|         |      |       |       |          |             |        |          | 2 |
|         |      |       |       |          |             |        |          | 3 |
|         |      |       |       |          |             |        |          | 4 |
|         |      |       |       |          |             |        |          | 5 |
|         |      |       |       |          |             |        |          | 6 |
|         |      |       |       |          |             |        |          | 7 |

• Cardinality of a Relation: Number of Tuples in a Relation at a given time.



#### Attribute in a Relation

- An <u>attribute</u> represents a quality/information about an entity.
- A tuple consists of Attribute values.

| EmpCod<br>e | Name | Desig | Grade | JoinDate | BasicSalar<br>y | Gender | DeptCod<br>e |
|-------------|------|-------|-------|----------|-----------------|--------|--------------|
|             |      |       |       |          |                 |        |              |
|             |      |       |       |          |                 |        |              |

• A <u>degree</u> or <u>arity</u> of a Relation is the number of attributes in it at a given time



### **Domains**

- Each attribute has a domain associated with it.
- Attribute values in a relation are restricted to the values from its domain.

| EmpCod<br>e | Name | Desig | Grade | JoinDate | BasicSalar<br>y | Gender | DeptCod<br>e |
|-------------|------|-------|-------|----------|-----------------|--------|--------------|
|             |      |       |       |          |                 |        |              |
|             |      |       |       |          |                 |        |              |
|             | Di   | PE PE |       |          |                 | DEPT   | ACCO         |
|             |      | ТО    |       |          |                 |        | PURC         |
|             |      | STO   |       |          |                 |        | COUR         |



### Consider the Employee relation as:

```
    CREATE TABLE employee (

     EmpCode
                 integer(4),
                 char(30),
     Name
                 char(4),
     Desig
     Grade
                 integer(4),
     JoinDate
                 date,
                 integer(7),
     Basic
     Gender
                 char(1),
                 char(4)
     DeptCode
• )
```



### Domains of Attributes: Example

```
set of all 4-digit numbers
EmpCode
          set of all 30-alpha characters
Name
          set of all designation codes
Desig
Grade
          set of all grade values
          set of all dates (in a given range)
JoinDate
          set of all possible values for basic
Basic
          set {'M','F', 'T'}
Gender
         set of all dept codes
DeptCode
```



## A Relation may be represented as a Table where

| Relation     | Table                           |
|--------------|---------------------------------|
| Tuple        | Row/Record                      |
| Attribute    | Column                          |
| Degree/Arity | No of Columns in the table      |
| Cardinality  | No or Rows in the table         |
| Domain       | Pool of acceptable values for a |
|              | column                          |
| Primary Key  | Unique Identifier               |



### But, a Relation is not a Table, because:

- A table has an inherent order for rows; there is no concept of order for tuples in a relation.
- A relation must have a <u>Primary Key</u>; a table need not have an identifier/Primary Key.
- The tuples in a relation must be unique; there is no such restriction for tables



### Keys in a Relation

- Keys are used to identify rows uniquely in a Relation. (Except Foreign Key)
- A **single column** or a **set of columns** can be defined as a Key.
- Major Type of Keys:
  - Candidate Key
  - Primary Key
  - Composite Key
  - Foreign Key
  - Unique Key



### A Sample Table: Employee

| Empid<br>(PK) | empna<br>me | designa<br>tion     | salary | bonus | dept | report_t<br>o |
|---------------|-------------|---------------------|--------|-------|------|---------------|
| 1001          | Aniket      | Project<br>Engineer | 40000  | 5000  | SE   | 1002          |
| 1002          | Avinash     | Team<br>Lead        | 50000  | 10000 | SE   | 1003          |
| 1003          | Shweta      | Project<br>Manager  | 70000  |       | SE   | 1005          |
| 1005          | Sachin      | HR Head             | 60000  |       | HR   | 1006          |
| 1006          | Vikash      | CEO                 |        | 10000 |      |               |
| 1007          | Sachin      | Project<br>Engineer | 45000  |       | SE   | 1005          |

#### सी डेक **©PAC**

### A Sample Table:

#### **EMPLOYEE\_RATING**

| Empid (PK) | year (PK) | rat<br>ing |
|------------|-----------|------------|
| 1001       | 2019      | A+         |
| 1001       | 2020      | A+         |
| 1002       | 2020      | A          |
| 1003       | 2020      | В          |
| 1005       | 2019      | B+         |
| 1005       | 2020      | A          |
| 1006       | 2020      | C          |
| 1007       | 2020      | D          |
|            |           |            |

#### RATING\_MASTER

| Rating (PK) | Description      |
|-------------|------------------|
| A+          | Excellent        |
| A           | Very Good        |
| В           | Good             |
| B+          | Average          |
| С           | Below<br>Average |
| D           | Bad              |



### Candidate Key

A **Candidate Key** must satisfy following time-independent properties:

- **Uniqueness**: No two distinct tuples have the same value for the key.
- Minimalistic: None of the attributes of the key can be discarded from the key without destroying the uniqueness property.



### Candidate Key?

```
create table EMPLOYEE(
      EmpCode
                  integer(4),
                  char(30),
      Name
                  char(4),
      Desig
                  integer(4),
      Grade
      JoinDate
                  date,
                  integer(7),
      Basic
                  char(1),
      Gender
                  char(4)
      DeptCode
• )
```



### Candidate Key?

```
    create table EMPLOYEE (

      EmpCode
                   integer(4),
                   char(30),
      Name
                   char(4),
      Desig
                   integer(4),
      Grade
                   date,
      JoinDate
                   integer(7),
      Basic
                   char(1),
      Gender
      DeptCode
                   char(4),
      Email
                   char(100),
      MobileNo
                   char(16)
```



### Primary Key

Is a candidate key that have following two qualities -

- Uniquely identifies a tuple in a relation
- Must NOT be NULL

- \*Should be selected from candidate keys such that it never changes.
- In a relational database all tables must have a Primary Key



### Primary Key?

```
    create table EMPLOYEE (

      EmpCode
                   integer(4),
                   char(30),
      Name
                  char(4),
      Desig
                   integer(4),
      Grade
      JoinDate
                   date,
                   integer(7),
      Basic
                   char(1),
      Gender
      DeptCode
                  char(4),
      Email
                   char(100),
      MobileNo
                   char(16)
```



### Composite Key

- A candidate key with two or more attributes that uniquely identifies the tuple in a Relation.
- Also called as <u>compound key</u>

#### **Composite Primary Key**

• A primary key which is a composite key is called as Composite Primary Key.



# Can we have more than one primary key in a table?

• No. We can NOT.

#### A table can have only one Primary Key.

- The Primary Key can be defined on a single column or more than one columns. If the Primary Key is defined using more than one columns, it is known as a Composite Primary Key.
- Therefore, a Composite Primary Key in a table does not mean that there are more than one Primary Keys in the table. Instead, a Composite Key uses more than one columns to define a (Single) Primary Key.



### Foreign Key

- A <u>Foreign Key</u> is a set of attributes in one relation whose values are required to match one of the values of the primary key of the <u>same or different relation</u>.
- There can be more than one foreign keys in a given relation.

Identify a relation in any system/business, define its Attributes, Domain for each attribute and find out Primary, Key, Foreign Keys, Candidate Keys, Super Key in the relation.



### Foreign Key(s)?

```
create table EMPLOYEE(
      EmpCode
                  integer(4),
                  char(30),
      Name
                  char(4),
      Desig
                  integer(4),
      Grade
      JoinDate
                  date,
                  integer(7)),
      Basic
                  char(1),
      Gender
                  char(4)
      DeptCode
 create table DEPT(
      <u>DeptCode</u>
                  char(4),
      DeptName char(30),
                  char(10)
      Location
```



### Integrity Rules

- **Entity Integrity**: Implemented through Primary Key
- "No Attribute participating in the primary key of a relation may accept null values"
- Guarantees that each tuple will have a unique identity.
- Referential Integrity: Implemented through Foreign Key, "Values of the foreign key
  - (a) must be either null, or
  - (b) if non-null, must match with the primary key value of some tuple of the `parent' relation. The reference can be to the same relation"
- \*Foreign Key is also know as Reference/Referential key.