

Ôn tập

Cho bảng sự thật như sau:

Α	В	C	f(A, B, C)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- a. Biểu diễn hàm logic dưới dạng chính tắc 1 và chính tắc 2.
- b. Rút gọn biểu thức

4.4 Hàm logic

• Bảng giá trị (bảng sự thật) của hàm logic

Cho hàm logic theo n-biến $f(X_1, X_2, ..., X_n)$, khi ta thay thế các X_i bằng giá trị 0 hay 1, ta sẽ có một giá trị của hàm logic.

Thí dụ: Hàm logic theo 3 biến $f(X_1, X_2, X_3) = X_1 + X_2.X_3$.

$$f(0, 0, 1) = 0 + 0.1 = 0$$

$$f(0, 1, 1) = 0 + 1.1 = 1$$

$$f(1, 0, 0) = 1 + 0.0 = 1$$

Lưu ý việc áp dụng các định đề và định lý của đại số logic để tính nhanh giá trị của f.

• Với 3 biến, ta có 8 tổ hợp giá trị các biến. Thống kê tất cả giá trị của f ứng với 8 tổ hợp giá trị các biến vào một bảng \rightarrow ta có bảng giá trị (bảng sự thật) của hàm logic f.

4.4 Hàm logic

• Thí dụ bảng giá trị (bảng sự thật) của hàm logic $f(X_1, X_2, X_3) = X_1 + X_2 X_3$

Thập phân	$X_1 X_2 X_3$	$f(X_1, X_2, X_3)$
0	0 0 0	0
1	0 0 1	0
2	0 1 0	0
3	0 1 1	1
4	1 0 0	1
5	1 0 1	1
6	1 1 0	1
7	1 1 1	1

Dạng chính tắc 1

Bước 1: Các tổ hợp giá trị các biến làm cho f = 1: 011, 100, 101, 110, 111.

Bước 2: Thay 0 bằng \bar{X} và 1 bằng X. Với thí dụ trên ta có:

$$011 \rightarrow \overline{X_1} X_2 X_3$$

$$100 \rightarrow X_1 \overline{X_2} \overline{X_3}$$

$$101 \rightarrow X_1 \, \overline{X_2} \, X_3$$

Mỗi số hạng là một tích hay một minterm.

$$110 \rightarrow X_1 X_2 \overline{X_3}$$

$$111 \rightarrow X_1 X_2 X_3$$

Bước 3: Dạng chính tắc 1 sẽ liệt kê f dưới dạng tổng của các số hạng trên (nghĩa là liệt kê các minterm). Ở thí dụ trên ta có 5 minterm.

$$f(X_1, X_2, X_3) = \overline{X_1} X_2 X_3 + X_1 \overline{X_2} \overline{X_3} + X_1 \overline{X_2} X_3 + X_1 X_2 \overline{X_3} + X_1 X_2 \overline{X_3} + X_1 X_2 X_3$$
$$f(X_1, X_2, X_3) = m_3 + m_4 + m_5 + m_6 + m_7 = \sum m(3, 4, 5, 6, 7)$$

Dạng chính tắc 2

Bước 1: Các tổ hợp giá trị các biến làm cho f = 0: 000, 001, 010.

Bước 2: Thay 0 bằng X và 1 bằng \overline{X} . Với thí dụ trên ta có:

$$000 \Rightarrow X_1 + X_2 + X_3$$

 $001 \Rightarrow X_1 + X_2 + \overline{X_3}$
 $010 \Rightarrow X_1 + \overline{X_2} + X_3$ Mỗi số hạng là một tổng hay một maxterm.

Bước 3: Dạng chính tắc 2 sẽ liệt kê f dưới dạng tích của các số hạng trên (nghĩa là liệt kê các maxterm). Ở thí dụ trên ta có 3 maxterm.

$$f(X_1, X_2, X_3) = (X_1 + X_2 + X_3).(X_1 + X_2 + \overline{X_3}).(X_1 + \overline{X_2} + X_3)$$
$$f(X_1, X_2, X_3) = M_0.M_1.M_2 = \prod M(0, 1, 2)$$

	INPUTS OUTPUT			
A	В	С	X	PRODUCT TERM
0	0	0	0	
0	0	1	1	$AB\bar{C}$
0	1	0	0	
0	1	1	0	
1	0	0	1	$Aar{B}ar{C}$
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

$$X = AB\bar{C} + A\bar{B}\bar{C} + ABC$$

	INPUT	OUTPUT	
A	B	С	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$X = (A + B + C).(A + \bar{B} + C).(A + \bar{B} + \bar{C}).(\bar{A} + B + \bar{C}).(\bar{A} + \bar{B} + C)$$

- ➤ Bìa Karnaugh là một cách thể hiện mối quan hệ các mức logic giữa ngõ vào và ngõ ra
- ➤ Bìa Karnaugh là một trong những phương pháp để đơn giản hóa biểu thức logic
- Có thể áp dụng cho hàm nhiều biến nhưng thường hay áp dụng cho hàm 2-6 biến là nhiều nhất
- ➤ Rút gọn biểu thức logic dùng bìa Karnaugh thì dễ thực hiện hơn so với phương pháp đại số

• Cách lập bìa K (Karnaugh)

Bìa K của một hàm logic n-biến sẽ có 2ⁿ ô. Mỗi ô ứng với một tổ hợp giá trị các biến.

Các ô trong trong bìa K được sắp xếp sao 2 ô kề nhau chỉ khác nhau 1 giá trị

2 biến

3 biến

Dạng chính tắc 1

Thí dụ: Hàm $f(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + AB\overline{C} + A\overline{B}\overline{C} = \sum m(0, 1, 4, 6)$

Α	В	C	f(A, B, C)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Thí dụ: $X = \bar{A}\bar{B}\bar{C} + A\bar{B}\bar{C} + AB\bar{C} + AB\bar{C}$

I	NPU'	ΓS	OUTPUT
A	В	С	X
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Thí dụ:

Cho hàm
$$f(A, B, C) = \overline{A} + A\overline{B} + AB\overline{C}$$

$$\overline{A} + A\overline{B} + AB\overline{C}$$
000 100 110
001 101
010
011

Thí dụ:

$$\operatorname{Ham} f_1(A, B, C, D) \overline{ABCD} + \overline{ABCD}$$

Hàm
$$f_2(A, B, C, D)$$
 $\overline{BC} + A\overline{B} + AB\overline{C} + A\overline{BCD} + \overline{ABCD} + \overline{ABCD}$

Dạng chính tắc 2

Thí dụ: Hàm
$$f(A, B, C) = (A + B + C)(A + \bar{B} + C)(\bar{A} + \bar{B} + C)(\bar{A} + B + \bar{C})$$

 $f(A, B, C) = (C + D)(A + B + D)(\bar{A} + B + C)$

CI	\supset			
AB	00	01	11	10
00	0			0
01	0			
11	0			
10	0	0		

• Phương pháp bìa K

Nhóm các ô kế cận = 2^i ô, với i = 0, 1, 2, 3, ... nghĩa là nhóm các ô kế cận sẽ có 1, 2, 4, 8, ... ô và 1 ô có thể nhóm nhiều lần

Hàm sau khi rút gọn cần có số số hạng ít nhất, mỗi số hạng có ít số biến nhất

Ô kế cận (hay ô kề nhau)

• Các ví dụ gom nhóm

Thí dụ:

• Các ví dụ gom nhóm

Rút gọn hàm logic dạng chính tắc 1

$$X = B + \bar{A}C + A\bar{C}D$$

Thí dụ:

$$X = \bar{A}\bar{B}\bar{C} + AB + BC$$

$$X = \bar{A}\bar{C} + \bar{B} + AC$$

Thí dụ:

\mathbf{C}	D			
AB \	00	01	11	10
00	1	1		
01	1	1	1	1
11				
10		1	1	

C]	D			
AB \	00	01	11	10
00	1			1
01	1	1		1
11	1	1		1
10	1		1	1

$$X = \bar{A}\bar{C} + \bar{A}B + A\bar{B}D$$
 $X = \bar{D} + B\bar{C} + A\bar{B}C$

$\mathbf{C}_{\mathbf{J}}$	D			
AB \	00	01	11	10
00	1		1	1
01	1			1
11	1			1
10	1		1	1

$$X = \overline{D} + \overline{B}C$$

Rút gọn hàm logic dạng chính tắc 2

$$X = (C+D)(\bar{A}+B+C)(A+B+D)$$

$$X = (\overline{B} + C + D)(B + C + \overline{D})(A + B + \overline{C})$$

Bìa K cho hàm 5 biến

d

ABC DE	000	001	011	010	110	111	101	100
00								
01								
11								
10								

Các ô đối xứng qua d có thể nhóm được với nhau

Bìa K cho hàm 5 biến

d

ABC DE	000	001	011	010	110	111	101	100
00	1							1
01			1			1		
11			1			1		
10	1			1	1			1

$$X = BCE + \bar{B}\bar{C}\bar{E} + \bar{C}D\bar{E}$$

Bìa K cho hàm 5 biến

d

ABC DE	000	001	011	010	110	111	101	100
00	1				1	1		
01		1	1			1	1	
11		1	1			1	1	
10	1							1

$$X = CE + \bar{B}\bar{C}D\bar{E} + \bar{A}\bar{B}\bar{C}\bar{E} + AB\bar{D}\bar{E}$$

Bìa K cho hàm 5 biến

Các ô có vị trí giống nhau trong 2 bảng thì có thể gom được với nhau

Thí dụ:

$$X = \overline{A}\overline{B}\overline{C}\overline{D}\overline{E} + \overline{A}\overline{B}\overline{C}\overline{D}\overline{E} + \overline{A}B\overline{C}\overline{D}\overline{E} + \overline{A}B\overline{C}\overline{D}\overline{E} + \overline{A}B\overline{C}\overline{D}E +$$

$$X = \bar{A}\bar{D}\bar{E} + \bar{B}\bar{C}\bar{D} + BCE + ACDE$$

Bìa K cho hàm 5 biến

A = 0

BC				
DE	00	01	11	10
00		1		
01		1	1	
11				
10	1			

A = 1

BC DE	00	01		11		10
00			1	1		
01		[1	1		
11						
10	1					

$$X = \bar{B}\bar{C}D\bar{E} + \bar{B}C\bar{D} + C\bar{D}E + AC\bar{D}$$

• Xét hàm logic sau:

A B (C D	f		A	В	C	D	f
0 0 0	0	X	_	1	0	0	0	0
0 0 0	1	1		1	0	0	1	0
0 0 1	0	X		1	0	1	0	0
0 0 1	1	1		1	0	1	1	1
0 1 0	0	0		1	1	0	0	0
0 1 0	1	X		1	1	0	1	0
0 1 1	0	0		1	1	1	0	0
0 1 1	1	1		1	1	1	1	1

Hàm trên có 3 tổ hợp giá trị các biến làm cho f = x (tùy định), nghĩa là 0 hay 1 đều đúng. Có hai khả năng: hoặc những tổ hợp giá trị các biến này không xảy ra hoặc giá trị của f không được sử dụng.

• Biểu diễn dạng đại số

- 5 tổ hợp giá trị các biến làm cho f bằng 1.

$$f(A, B, C, D) = \sum m(1, 3, 7, 11, 15) + d(0, 2, 5)$$

- 8 tổ hợp giá trị các biến làm cho f bằng 0.

$$f(A, B, C, D) = \Pi M(4, 6, 8, 9, 10, 12, 13, 14).D(0, 2, 5)$$

• Biểu diễn bằng bìa K

AB	OO	01	11	10
00	x	1	1	x
01		Х	1	
11			1	
10			1	

Dạng chính tắc 1

AB	CD 00	01	11	10
00	х			х
01	0	Х		0
11	0	0		0
10	0	0		0

Dạng chính tắc 2

• Rút gọn hàm logic có giá trị tùy định

AB	D 00	01	11	10	
00	x	1	1	x	
01		х	1		
11			1		
10			1		
$F = CD + \bar{A}D$					

Hai kết quả đều đúng

• Rút gọn hàm logic

$$W(A, B, C, D) = A + BD + BC$$

$$F(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$$

Không sử dụng x:
$$F = \bar{A}D + \bar{B}\bar{C}D$$

Sử dụng x:
$$F = \bar{C}D + \bar{A}D$$

AF CD	00	01	11	10
00	0	0	X	0
01	1	1	x	1
11	1	1	0	0
10	0	х	0	0

Dạng chính tắc 1

AH CD	00	01	11	10
00	0	0	x	0
01	1	1	Х	1
11	1	1	0	0
10	0	Х	0	0

$$F = \overline{D}(\overline{A} + \overline{C})$$

4.9 Rút gọn nhiều hàm

Rút gọn riêng rẽ

$$\begin{aligned} \mathsf{F} &=& \Sigma_{\mathsf{X},\mathsf{Y},\mathsf{Z}}(3,6,7) \\ \mathsf{G} &=& \Sigma_{\mathsf{X},\mathsf{Y},\mathsf{Z}}(0,1,3) \end{aligned}$$

4.9 Rút gọn nhiều hàm

Rút gọn đồng thời

$$G = \Sigma_{X,Y,Z}(0,1,3)$$

