Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test – II Question Paper

Degree & Branch	BE (CSE)			Semester	VI	
Subject Code & Name	UCS1602 – Compiler Design			Regulation:	2018	
Academic Year	2021-2022	Batch	2019-2023	Date	10-05-2022	FN
Time: 90 Minutes 8.30 – 10.00 am		Answer All	Questions		Maximun	n: 50 Marks

$Part - A (6 \times 2 = 12 Marks)$

<kl1></kl1>	What is LR(k) parser?	<co2></co2>
<kli></kli>	How precedence and associativity are handled by YACC compiler?	<co2></co2>
<kl2></kl2>	Explain handle pruning with suitable example.	<co2></co2>
<kl2></kl2>	Show FIRST & FOLLOW for the grammar. $S \rightarrow ABBA$ $A \rightarrow a \mid \epsilon$ $B \rightarrow b \mid \epsilon$	<co2></co2>
<kl1></kl1>	What is rule for finding closure {I}, where I is the set of items?	<co2></co2>
<kl2></kl2>	Explain the structure of LR parsing table.	<co2></co2>

$Part - B (3 \times 6 = 18 Marks)$

<kl3></kl3>	 7. Consider the grammar G for declaration statements. G: S → TL; T → int float L → L,id id Develop a Syntax checker to recognize the following statements by writing suitable LEX & YACC specifications. int a,b,c; char e,f; float h 	<co2></co2>
KL2>	8. Explain error recovery in predictive parsing with suitable examples.	<co2></co2>
KL2>	9. Write the LR parsing algorithm.	<co2></co2>

Part – C $(2\times10=20 \text{ Marks})$

<kl3></kl3>	10. Construct CLR parsing table for the grammar. E → E + T T T → TF F F → F* a b	<c02></c02>
	(OR)	
- <kl3></kl3>	II. Construct LALR parser for the grammar and show that the grammar is not LALR(1). S → Aa bAc Bc bBa A → d B → d	<c02></c02>
<kl3></kl3>	12. Construct Predictive parsing table for the given grammar and parse the sentence (a,a) S → a ↑ (T) T → T, S S	<c02></c02>
	(OR)	
<kl3></kl3>	 13. Construct SLR parser for the grammar G. Parse the string int id,id G: S → TL; T → int float L → L,id id 	<c02< td=""></c02<>