```
ELEN E4903: MACHINE LEARNING HOMEWORK I
       Problem 1:
       GNBn a sequence of N observations (x1, -, xn) with each
        xi & Eo, 19 and xi & Bernoulli (T) and TIE [0,1],
        p(xi(n)= nxi(1-n)1-xi
       Joint likelihood of data: p(x1, , xN/x)= Tp(x1/x)
(a)
                          \therefore \left[ p(x_1, \dots, x_m) \pi_1 \right] = \prod_{i=1}^{N} \pi^{X_i} (1 - \pi)^{1 - X_i}
                                                =\pi^{\sum_{i=1}^{N}x_i}(1-\pi)^{N-\sum_{i=1}^{N}x_i}
(b) Tim = orgmax p(x,,,x,11)
          = arg max TT p(x; |TL)
     Since taking the logarithm aloes not change the location of a
     maximum or minimum,
    Time = arg max TT p(zilt)
          = arg max In ( Tr p (x 1 1 1))
         = arg max & Inp(xilt)
    Solving for Time, Va > In p(xilti) = > Va In p(xilti) = 0
                                        Z 7 ln(π (1-π) )=0
                             Σ Q [ Inπx + In(1-π) ] = 0
                              2 \\ \frac{\pi_1}{\frac{1}{4}m_1} + \frac{(1-\pi_1)}{1-\frac{1}{4}m_1} (-1) = 0
                          N XI = 2 (1-XI)
                                                         [continued next page]
```

(consider (b)
$$\frac{1}{2} \times i = \frac{1}{2} \times i =$$

posterior literihand proving magnet toward of this question, $ \rho(\pi \mid x_1,,x_N) = \frac{\rho(x_1,,x_N \mid \pi)}{\rho(x_1,,x_N \mid \pi)} \cdot \frac{\rho(\pi)}{\Gamma(\alpha, \pi)\Gamma(b)} \pi^{-1} \left[\frac{\Gamma(\alpha+b)}{\Gamma(\alpha)\Gamma(b)} \pi^{-1} \left(1-\pi \right)^{b-1} \right] \\ = \left[\frac{11}{12} \pi^{2i} (1-\pi)^{i-2i} \right] \left[\frac{\Gamma(\alpha+b)}{\Gamma(\alpha)\Gamma(b)} \pi^{-1} \left(1-\pi \right)^{b-1} \right] \\ = \rho(x_1,,x_N) $
$\rho(\pi \mid x_{1},,x_{N}) = \frac{\rho(x_{1},,x_{N} \mid \pi) \cdot \rho(\pi)}{\rho(x_{1},,x_{N})}$ $= \left[\prod_{i=1}^{N} \pi^{x_{i}} (1-\pi)^{1-x_{i}} \right] \left[\frac{\Gamma(\alpha+b)}{\Gamma(\alpha)\Gamma(b)} \pi^{\alpha-1} (1-\pi)^{b-1} \right]$
$= \left[\frac{1}{12} \pi^{2} (1-\pi)^{1-2} \right] \left[\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \pi^{a-1} (1-\pi)^{b-1} \right]$
$= \left[\frac{1}{12} \pi^{2} (1-\pi)^{1-2} \right] \left[\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \pi^{a-1} (1-\pi)^{b-1} \right]$
$= \left[\frac{1}{\pi} \pi^{x} (1-\pi)^{x} \right] \left[\frac{\Gamma(\alpha+b)}{\Gamma(\alpha)\Gamma(b)} \pi^{x} (1-\pi)^{x} \right]$ $= \left[\frac{1}{\pi} \pi^{x} (1-\pi)^{x} \right] \left[\frac{\Gamma(\alpha+b)}{\Gamma(\alpha)\Gamma(b)} \pi^{x} (1-\pi)^{x} \right]$
P(x1,, xN)
TH Zita-1 (1-1) (1-xi)+b-1 [(atb)
= The zita-1 (1-T) = (1-Xi)+b-1 (atb) P(X.,, ZN) (Catb)
απεχίτα-1 (1-π) conce the
to p(x1,-,xw) and T(a15) does not depend on TC.
con recognize p(n x1,, xN) = beta(\$xi+a, \$(1-xi)+b)
and the X or the part of the last of the l
ostenior distribution of TC is the beta distribution but
different parameters to the prior (Exita, & (1-xi)+b)
of (a,b).

(e) In (d), I found that 不 has a posterior distribution of beta (芸xi+a、芸(1-xi)+b) . The mean of the under the posterior = \frac{1}{2}(1-xi)+b+\frac{1}{2}xi+a Variance of the under the posterior = (\$\frac{1}{2}x+a)(\$\frac{1}{2}(1-xi)+b)
(\$\frac{1}{2}x+a+\frac{1}{2}(1-xi)+b)(\$\frac{1}{2}x+a+\frac{1}{2}(1-xi)+b+1) = (美なける)(気(リースン)ナトン) (N+Q+b)2(N+Q+b+1) The mean of π under the postonor is similar to $\hat{\pi}_{ML} = \frac{8\pi c_1}{N}$ and TTIME = 121 xi+a-1 in that it seeks to obtain an estimate of To based on data that we have. It differs from time in that it factors in a prior of p(T) = beta(a,b) whereas ML only focuses on the likelihood and thus does not have the terms a and b. It differs from Times in that it measures the mean while times is an estimate of the mode or most probable value of The under the posterior The variance of to under the posterior captures the uncertainty about TC; just like what vor(Time) and vor (There) would have done. They are also similar in that with large N they asymptotically decay to 0

Problem 2: Part 1

(a)
$$L = \lambda ||w||^2 + \sum_{i=1}^{350} ||y_i - x_i^T w||^2$$

 $w_{rr} = argmin_w |\lambda||w||^2 + \sum_{i=1}^{350} ||y_i - x_i^T w||^2$
 $= argmin_w |(y - Xw)^T (y - Xw) + \lambda w^T w$
 $\nabla_w L = -2X^T y + 2X^T X + 2\lambda w = 0$
 $\therefore w_{rr} = (\lambda I + X^T X)^{-1} X^T y$

For $\lambda=0,1,2,3,...,500$, a table of the first few values of w_{rr} is shown below where w1 corresponds to the estimate of w_{rr} for the first dimension of X and w7 corresponds to the estimate of w_{rr} for the seventh dimension of X:

Table 1: Estimates of w_{rr} for $\lambda = 0, 1, 2, 3, ..., 500$ (only the first 27 values are shown)

•	Lambda	w1 ÷	w2	w3	w4	w5	w6	w7
1	0	-0.4562614	0.73016730	-0.2846187	-5.585589	0.2895777415	2.781398	1.015709e-
2	1	-0.4457237	0.57776701	-0.3444969	-5.409686	0.2511063551	2.763335	8.127055e-
3	2	-0.4413098	0.44574021	-0.3991785	-5.250289	0.2169052695	2.746405	6.362608e-
4	3	-0.4414279	0.33021663	-0.4491997	-5.104980	0.1863707850	2.730449	4.815896e-
5	4	-0.4449193	0.22825260	-0.4950435	-4.971818	0.1590096380	2.715338	3.450147e-
6	5	-0.4509279	0.13756905	-0.5371403	-4.849223	0.1344139969	2.700969	2.236601e-
7	6	-0.4588127	0.05637367	-0.5758722	-4.735891	0.1122432022	2.687253	1.152414e-
8	7	-0.4680891	-0.01676267	-0.6115774	-4.630736	0.0922101518	2.674118	1.791921e-
9	8	-0.4783868	-0.08299370	-0.6445549	-4.532843	0.0740709638	2.661501	-6.980582e-
10	9	-0.4894211	-0.14326120	-0.6750693	-4.441433	0.0576170074	2.649351	-1.491690e-
11	10	-0.5009716	-0.19834166	-0.7033548	-4.355841	0.0426686736	2.637621	-2.211984e-
12	11	-0.5128667	-0.24888117	-0.7296194	-4.275493	0.0290704487	2.626274	-2.867567e-
13	12	-0.5249726	-0.29542175	-0.7540476	-4.199890	0.0166869755	2.615274	-3.465743e-
14	13	-0.5371844	-0.33842160	-0.7768037	-4.128598	0.0053998745	2.604593	-4.012736e-
15	14	-0.5494202	-0.37827076	-0.7980343	-4.061236	-0.0048948442	2.594205	-4.513889e-
16	15	-0.5616157	-0.41530339	-0.8178705	-3.997467	-0.0142889040	2.584086	-4.973816e-
17	16	-0.5737206	-0.44980748	-0.8364296	-3.936993	-0.0228635165	2.574217	-5.396522e-
18	17	-0.5856960	-0.48203260	-0.8538169	-3.879550	-0.0306908406	2.564579	-5.785506e-
19	18	-0.5975117	-0.51219614	-0.8701271	-3.824902	-0.0378352043	2.555156	-6.143837e-
20	19	-0.6091446	-0.54048836	-0.8854456	-3.772838	-0.0443541323	2.545934	-6.474220e-
21	20	-0.6205774	-0.56707652	-0.8998494	-3.723166	-0.0502992150	2.536900	-6.779048e-
22	21	-0.6317973	-0.59210828	-0.9134083	-3.675716	-0.0557168484	2.528042	-7.060448e-
23	22	-0.6427953	-0.61571451	-0.9261856	-3.630332	-0.0606488642	2.519349	-7.320318e-
24	23	-0.6535650	-0.63801161	-0.9382385	-3.586875	-0.0651330718	2.510813	-7.560356e-
25	24	-0.6641029	-0.65910351	-0.9496193	-3.545216	-0.0692037238	2.502424	-7.782085e-
26	25	-0.6744070	-0.67908325	-0.9603757	-3.505239	-0.0728919186	2.494175	-7.986880e-
27	26	-0.6844770	-0.69803444	-0.9705509	-3.466837	-0.0762259503	2.486058	-8.175981e-

To obtain $df(\lambda)$, I obtained the singular value decomposition (SVD) of the matrix of features X so that $X = UDV^T \to (X^TX)^{-1} = VD^{-2}V^T$ and

 $w_{rr}=(\lambda I+X^TX)^{-1}X^Ty=V(\lambda D^{-2}+I)^{-1}V^T(X^TX)^{-1}X^Ty=VMV^T(X^TX)^{-1}X^Ty \text{ where M is a diagonal matrix with } M_{ii}=\frac{D_{ii}^2}{\lambda+D_{ii}^2} \text{ and }$

$$df(\lambda) = trace[(X(X^TX + \lambda I)^{-1}X^T] = \sum_{i=1}^{d} \frac{D_{ii}^2}{\lambda + D_{ii}^2} = trace(M)$$

Figure 1 below then plots the 7 values of w_{rr} as a function of $df(\lambda)$. Again, w1 corresponds to the estimate of w_{rr} for the first dimension of x and w7 corresponds to the estimate of w_{rr} for the seventh dimension of x:

Figure 1: Graph of w_{rr} against $df(\lambda)$

(b) The 4th dimension (car weight) and 6th dimension (car year) clearly stand out over the other dimensions as they have a larger value of w_{rr} for large values of $df(\lambda)$ (although they also decrease asymptotically to 0 as $df(\lambda)$ tends towards 0 as that corresponds to large values of λ and λ is the penalizing term for having a large value of w_{rr} such that when λ gets too large, it is optimal to set $w_{rr}=0$). This implies that these 2 dimensions play a more significant role in explaining and predicting values of y (miles per gallon of a car) compared to the other dimensions in terms of magnitude.

The 4th dimension (car weight) takes on a significantly more negative value of w_{rr} than the other dimensions of X as shown in figure 2 above. This implies that for large $df(\lambda)$ or small values of λ (which gets us closer to least squares), we want to include car weight as an explanatory variable or predictor for y (miles per gallons of a car) since it exhibits a more significant negative relationship with y than the other variables. This makes sense as a heavier a car is the fewer miles per gallon we expect it to travel.

Conversely, the 6th dimension (car year) takes on a significantly more positive value of w_{rr} than the other dimensions of X as $df(\lambda)$ increases. This implies that for large $df(\lambda)$ or small values of

- λ (which gets us closer to least squares), we want to include car year as an explanatory variable or predictor for y (miles per gallons of a car) since it exhibits a more significant positive relationship with y than the other variables. This makes sense as we expect newer cars to be more fuel efficient.
- (c) For $\lambda=0,\ldots,50$, using the w_{rr} obtained from the training data and applying it to the testing data, the predicted values of y, $\widehat{y_0}$, is given by $\widehat{y_0}=x_0^Tw_{rr}$ where x_0 is the matrix of features in the testing data. A snapshot of the first 30 test cases of $\widehat{y_0}$ and for $\lambda=0$ to 20 is shown in table 2 below:

Table 2: Predicted values of y (only first 30 values (rows) and $\lambda=0$ to 20 (columns) are shown)

After obtaining the predicted values for all 42 test cases, the root mean squared error (RMSE) given by the equation $E[(y_0-\widehat{y_0})^2]=E[(y_0-x_0^Tw_{rr})^2]$ is calculated and plotted as a function of λ as shown in Figure 2 below:

Figure 2: Graph of RMSE against λ

The fact that the RMSE is monotonically increasing as λ increases for $\lambda=0,...,50$ tells us that the optimal value of λ to choose is $\lambda=0$ since we want to minimize the RMSE as that minimizes the variance bias trade-off. This in turn implies that the **least squares model predicts the testing data** better than a ridge regression model in terms of minimizing the RMSE. This occurs because the **least squares model does not overfit the training data for** $\lambda=0,...,50$ so that there is no need for an additional penalizing factor λ that is present in a ridge regression. In fact, adding in λ to the objective function for a ridge regression model would result in an increase in bias that is more than the decrease in variance that the ridge regression brings about for the estimates and thus a poorer prediction accuracy for a ridge regression model compared to a least squares model.

(d) Figure 3 below shows the plot of RMSE as a function of For $\lambda = 0, ..., 500$ and for p = 1, 2, 3.

Figure 3: Graph of RMSE against λ for p = 1, 2, 3

Finding the minimum point across all three different values of p yields the result that the value of p and λ that minimizes RMSE is $\mathbf{p} = \mathbf{2}$ and $\lambda = \mathbf{23}$. The reason why I would choose $\mathbf{p} = \mathbf{2}$ is because the improvement in fit that it brings about in the testing data overweighs the increase in variance compared to the case when $\mathbf{p} = \mathbf{1}$ thereby leading to an improvement in prediction accuracy in the testing data compared to $\mathbf{p} = \mathbf{1}$. On the other hand, $\mathbf{p} = \mathbf{3}$ performs more badly than $\mathbf{p} = \mathbf{2}$ because it results in overfitting whereby the variance of the model increases so much that it outweighs the reduction in bias that $\mathbf{p} = \mathbf{3}$ brings about. Hence $\mathbf{p} = \mathbf{2}$ gives the lowest RMSE as it optimizes the variance bias tradeoff.

Now that we choose p=2, the ideal value of λ is no longer 0 like in part c but is $\lambda=23$. This is because with p=2, we do not want the coefficients on the polynomials of X (w_{rr}) to be too large and want to impose a penalizing term in the ridge regression so as to maximize the likelihood over the hyperparameter λ .