$12n_{0299} (K12n_{0299})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -5u^{28} - 22u^{27} + \dots + 2b + 4, \ -u^{28} - u^{27} + \dots + 2a - 5, \ u^{29} + 6u^{28} + \dots - 10u - 4 \rangle \\ I_2^u &= \langle -123u^7a^3 + 644u^7a^2 + \dots - 2637a - 1781, \ -u^7a^3 - u^7a^2 + \dots + 4a - 1, \\ u^8 - u^7 + 3u^6 - 2u^5 + 3u^4 - 2u^3 - 1 \rangle \\ I_3^u &= \langle u^{18} - u^{17} + \dots + b + 1, \\ u^{18} + 5u^{16} + u^{15} + 12u^{14} + 3u^{13} + 15u^{12} + 4u^{11} + 8u^{10} - 3u^8 - 4u^7 - 5u^6 - 4u^5 - u^4 + u^2 + a - u - 1, \\ u^{19} - u^{18} + \dots + u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 80 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -5u^{28} - 22u^{27} + \dots + 2b + 4, -u^{28} - u^{27} + \dots + 2a - 5, u^{29} + 6u^{28} + \dots - 10u - 4 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{28} + \frac{1}{2}u^{27} + \dots + 2u + \frac{5}{2} \\ \frac{5}{2}u^{28} + 11u^{27} + \dots - \frac{15}{2}u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{3}{4}u^{28} - 5u^{27} + \dots + \frac{71}{4}u + 18 \\ \frac{1}{2}u^{28} + 6u^{27} + \dots - \frac{19}{2}u + 3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{28} - \frac{9}{2}u^{27} + \dots + \frac{21}{2}u + \frac{21}{2} \\ \frac{5}{2}u^{28} + 15u^{27} + \dots - \frac{27}{2}u - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{28} - \frac{9}{2}u^{27} + \dots + \frac{21}{2}u + \frac{21}{2} \\ -\frac{5}{2}u^{28} - 8u^{27} + \dots - \frac{5}{2}u + 4 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{3}{4}u^{28} - 4u^{27} + \dots + \frac{19}{4}u + 3 \\ -\frac{1}{2}u^{28} - 3u^{27} + \dots + \frac{11}{2}u + 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{4}u^{28} - u^{27} + \dots + \frac{5}{4}u + 1 \\ -\frac{5}{2}u^{28} - 11u^{27} + \dots + \frac{9}{2}u + 3 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$=u^{28}+6u^{27}+26u^{26}+78u^{25}+195u^{24}+404u^{23}+742u^{22}+1212u^{21}+1814u^{20}+2496u^{19}+3192u^{18}+3810u^{17}+4264u^{16}+4505u^{15}+4511u^{14}+4302u^{13}+3916u^{12}+3391u^{11}+2793u^{10}+2164u^{9}+1573u^{8}+1049u^{7}+629u^{6}+320u^{5}+122u^{4}+16u^{3}-19u^{2}-14u-10$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{29} + 16u^{28} + \dots + 108u - 16$
c_{2}, c_{6}	$u^{29} - 6u^{28} + \dots - 10u + 4$
<i>c</i> ₃	$u^{29} + 6u^{28} + \dots + 102u + 52$
c_4, c_5, c_9 c_{11}	$u^{29} + 7u^{27} + \dots + 2u + 1$
c_7, c_{10}	$u^{29} - 3u^{28} + \dots - 21u + 1$
c_8,c_{12}	$u^{29} + 19u^{28} + \dots + 2304u + 256$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{29} - 4y^{28} + \dots + 28400y - 256$
c_{2}, c_{6}	$y^{29} + 16y^{28} + \dots + 108y - 16$
c_3	$y^{29} - 24y^{28} + \dots + 12588y - 2704$
c_4, c_5, c_9 c_{11}	$y^{29} + 14y^{28} + \dots - 10y - 1$
c_7, c_{10}	$y^{29} - 49y^{28} + \dots + 83y - 1$
c_8, c_{12}	$y^{29} + 9y^{28} + \dots + 131072y - 65536$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.529936 + 0.817458I		
a = 0.234233 + 0.574816I	-1.24507 + 2.13242I	-1.54126 - 5.97211I
b = 0.345760 - 0.496091I		
u = 0.529936 - 0.817458I		
a = 0.234233 - 0.574816I	-1.24507 - 2.13242I	-1.54126 + 5.97211I
b = 0.345760 + 0.496091I		
u = -0.333397 + 0.883512I		
a = -0.369414 + 0.421127I	-0.53686 - 1.47819I	-4.90590 + 3.46156I
b = 0.248910 + 0.466784I		
u = -0.333397 - 0.883512I		
a = -0.369414 - 0.421127I	-0.53686 + 1.47819I	-4.90590 - 3.46156I
b = 0.248910 - 0.466784I		
u = 0.230674 + 1.031600I		
a = 0.622836 - 0.242190I	-3.27588 + 2.17781I	-14.9005 - 2.5155I
b = -0.393514 - 0.586648I		
u = 0.230674 - 1.031600I		
a = 0.622836 + 0.242190I	-3.27588 - 2.17781I	-14.9005 + 2.5155I
b = -0.393514 + 0.586648I		
u = 0.752784 + 0.560145I		
a = 0.141867 - 0.328248I	4.48557 - 3.54679I	-5.06701 + 3.83669I
b = -0.290661 + 0.167634I		
u = 0.752784 - 0.560145I		
a = 0.141867 + 0.328248I	4.48557 + 3.54679I	-5.06701 - 3.83669I
b = -0.290661 - 0.167634I		
u = -0.929027 + 0.116767I		
a = -2.22411 + 0.15082I	-2.62991 + 9.91881I	-5.74423 - 5.24249I
b = -2.04864 + 0.39982I		
u = -0.929027 - 0.116767I		
a = -2.22411 - 0.15082I	-2.62991 - 9.91881I	-5.74423 + 5.24249I
b = -2.04864 - 0.39982I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.755090 + 0.452937I		
a = -0.606953 - 0.612743I	4.01496 - 0.67489I	-6.09853 + 2.29351I
b = -0.735838 - 0.187764I		
u = -0.755090 - 0.452937I		
a = -0.606953 + 0.612743I	4.01496 + 0.67489I	-6.09853 - 2.29351I
b = -0.735838 + 0.187764I		
u = -0.864712 + 0.123739I		
a = 2.27119 + 0.52125I	-4.98255 + 2.50011I	-6.07998 - 2.74065I
b = 2.02843 + 0.16969I		
u = -0.864712 - 0.123739I		
a = 2.27119 - 0.52125I	-4.98255 - 2.50011I	-6.07998 + 2.74065I
b = 2.02843 - 0.16969I		
u = 0.018688 + 1.158270I		
a = -0.390605 + 0.430620I	-1.41808 - 2.24811I	-11.36469 + 3.43943I
b = 0.506072 + 0.444376I		
u = 0.018688 - 1.158270I		
a = -0.390605 - 0.430620I	-1.41808 + 2.24811I	-11.36469 - 3.43943I
b = 0.506072 - 0.444376I		
u = 0.643120 + 0.992128I		
a = -0.240554 - 0.246860I	3.21603 + 8.80773I	-6.26763 - 8.83895I
b = -0.090211 + 0.397421I		
u = 0.643120 - 0.992128I		
a = -0.240554 + 0.246860I	3.21603 - 8.80773I	-6.26763 + 8.83895I
b = -0.090211 - 0.397421I		
u = -0.593156 + 1.076560I		
a = 0.559837 + 0.468168I	2.16507 - 4.43085I	-9.17518 + 3.77414I
b = 0.836083 - 0.325004I		
u = -0.593156 - 1.076560I		
a = 0.559837 - 0.468168I	2.16507 + 4.43085I	-9.17518 - 3.77414I
b = 0.836083 + 0.325004I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.396847 + 1.258520I		
a = 0.13510 - 1.71384I	-9.21490 - 1.83630I	-10.54114 + 0.46853I
b = -2.10328 - 0.85015I		
u = -0.396847 - 1.258520I		
a = 0.13510 + 1.71384I	-9.21490 + 1.83630I	-10.54114 - 0.46853I
b = -2.10328 + 0.85015I		
u = -0.525425 + 1.223980I		
a = -0.68573 - 1.73877I	-8.26868 - 7.55554I	-8.73863 + 5.55556I
b = -2.48851 - 0.07427I		
u = -0.525425 - 1.223980I		
a = -0.68573 + 1.73877I	-8.26868 + 7.55554I	-8.73863 - 5.55556I
b = -2.48851 + 0.07427I		
u = -0.398180 + 1.298960I		
a = 0.28856 + 1.51336I	-7.09003 + 5.31029I	-9.76890 - 2.61442I
b = 2.08069 + 0.22776I		
u = -0.398180 - 1.298960I		
a = 0.28856 - 1.51336I	-7.09003 - 5.31029I	-9.76890 + 2.61442I
b = 2.08069 - 0.22776I		
u = -0.533945 + 1.252430I		
a = 0.25821 + 1.84759I	-6.0854 - 15.1894I	-8.50713 + 8.09278I
b = 2.45185 + 0.66312I		
u = -0.533945 - 1.252430I		
a = 0.25821 - 1.84759I	-6.0854 + 15.1894I	-8.50713 - 8.09278I
b = 2.45185 - 0.66312I		
u = 0.309156		
a = -0.988933	-0.776150	-12.5990
b = 0.305734		

$$\begin{array}{l} \text{II. } I_2^u = \langle -123u^7a^3 + 644u^7a^2 + \cdots - 2637a - 1781, \ -u^7a^3 - u^7a^2 + \cdots + \\ 4a - 1, \ u^8 - u^7 + 3u^6 - 2u^5 + 3u^4 - 2u^3 - 1 \rangle \end{array}$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0617160a^{3}u^{7} - 0.323131a^{2}u^{7} + \dots + 1.32313a + 0.893628 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.205218a^{3}u^{7} + 0.497240a^{2}u^{7} + \dots + 0.502760a - 2.00401 \\ 0.0145509a^{3}u^{7} + 0.517311a^{2}u^{7} + \dots - 1.51731a - 1.06573 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.202208a^{3}u^{7} - 0.0180632a^{2}u^{7} + \dots + 0.0180632a - 0.844456 \\ 0.255896a^{3}u^{7} - 0.730055a^{2}u^{7} + \dots + 1.73006a + 0.119920 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.202208a^{3}u^{7} - 0.0180632a^{2}u^{7} + \dots + 0.0180632a - 0.844456 \\ 0.0842950a^{3}u^{7} - 0.416959a^{2}u^{7} + \dots + 1.41696a - 1.24285 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0496739a^{3}u^{7} + 0.406422a^{2}u^{7} + \dots + 0.406422a - 0.499749 \\ 0.308580a^{3}u^{7} + 1.38435a^{2}u^{7} + \dots + 0.615655a - 4.53186 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.186653a^{3}u^{7} + 0.708981a^{2}u^{7} + \dots + 1.29102a - 2.60512 \\ 0.238334a^{3}u^{7} + 0.231811a^{2}u^{7} + \dots + 1.23181a - 1.66282 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{1636}{1993}u^7a^3 + \frac{3964}{1993}u^7a^2 + \dots + \frac{4008}{1993}a \frac{11990}{1993}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$ (u^8 + 5u^7 + 11u^6 + 10u^5 - u^4 - 10u^3 - 6u^2 + 1)^4 $
c_2, c_6	$(u^8 + u^7 + 3u^6 + 2u^5 + 3u^4 + 2u^3 - 1)^4$
<i>c</i> ₃	$ (u^8 - u^7 - 5u^6 + 4u^5 + 7u^4 - 4u^3 - 2u^2 + 2u - 1)^4 $
c_4, c_5, c_9 c_{11}	$u^{32} - u^{31} + \dots + 830u + 361$
c_7, c_{10}	$u^{32} - 5u^{31} + \dots - 27238u + 3169$
c_8, c_{12}	$(u^2 - u + 1)^{16}$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^8 - 3y^7 + 19y^6 - 34y^5 + 71y^4 - 66y^3 + 34y^2 - 12y + 1)^4$
c_2, c_6	$(y^8 + 5y^7 + 11y^6 + 10y^5 - y^4 - 10y^3 - 6y^2 + 1)^4$
c_3	$ (y^8 - 11y^7 + 47y^6 - 98y^5 + 103y^4 - 50y^3 + 6y^2 + 1)^4 $
c_4, c_5, c_9 c_{11}	$y^{32} + 15y^{31} + \dots + 1378908y + 130321$
c_7, c_{10}	$y^{32} - 21y^{31} + \dots + 68151136y + 10042561$
c_8, c_{12}	$(y^2 + y + 1)^{16}$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.914675		
a = 1.89629 + 0.39729I	-5.24109 - 2.02988I	-5.82210 + 3.46410I
b = 1.88389 + 0.10461I		
u = 0.914675		
a = 1.89629 - 0.39729I	-5.24109 + 2.02988I	-5.82210 - 3.46410I
b = 1.88389 - 0.10461I		
u = 0.914675		
a = -2.05963 + 0.11437I	-5.24109 + 2.02988I	-5.82210 - 3.46410I
b = -1.73449 + 0.36339I		
u = 0.914675		
a = -2.05963 - 0.11437I	-5.24109 - 2.02988I	-5.82210 + 3.46410I
b = -1.73449 - 0.36339I		
u = 0.252896 + 0.819281I		
a = 0.839815 + 0.637967I	4.44352 - 0.75456I	-3.18053 - 1.62107I
b = 0.38233 + 2.21666I		
u = 0.252896 + 0.819281I		
a = 1.61466 + 0.45267I	4.44352 + 3.30520I	-3.18053 - 8.54928I
b = -1.49292 + 1.35353I		
u = 0.252896 + 0.819281I		
a = -0.99481 - 2.12932I	4.44352 + 3.30520I	-3.18053 - 8.54928I
b = -0.03748 - 1.43734I		
u = 0.252896 + 0.819281I		
a = -2.60176 - 0.33644I	4.44352 - 0.75456I	-3.18053 - 1.62107I
b = 0.310288 - 0.849384I		
u = 0.252896 - 0.819281I		
a = 0.839815 - 0.637967I	4.44352 + 0.75456I	-3.18053 + 1.62107I
b = 0.38233 - 2.21666I		
u = 0.252896 - 0.819281I		
a = 1.61466 - 0.45267I	4.44352 - 3.30520I	-3.18053 + 8.54928I
b = -1.49292 - 1.35353I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.252896 - 0.819281I		
a = -0.99481 + 2.12932I	4.44352 - 3.30520I	-3.18053 + 8.54928I
b = -0.03748 + 1.43734I		
u = 0.252896 - 0.819281I		
a = -2.60176 + 0.33644I	4.44352 + 0.75456I	-3.18053 + 1.62107I
b = 0.310288 + 0.849384I		
u = -0.394459 + 1.112500I		
a = -0.559029 + 1.096920I	0.58960 - 1.60295I	-8.42240 + 1.05392I
b = 0.095737 + 0.849097I		
u = -0.394459 + 1.112500I		
a = -0.650891 + 0.316842I	0.58960 - 1.60295I	-8.42240 + 1.05392I
b = 0.99981 + 1.05461I		
u = -0.394459 + 1.112500I		
a = 1.265140 + 0.509213I	0.58960 - 5.66272I	-8.42240 + 7.98213I
b = 0.035342 - 0.694019I		
u = -0.394459 + 1.112500I		
a = 0.564174 - 0.168272I	0.58960 - 5.66272I	-8.42240 + 7.98213I
b = 1.06554 - 1.20660I		
u = -0.394459 - 1.112500I		
a = -0.559029 - 1.096920I	0.58960 + 1.60295I	-8.42240 - 1.05392I
b = 0.095737 - 0.849097I		
u = -0.394459 - 1.112500I		
a = -0.650891 - 0.316842I	0.58960 + 1.60295I	-8.42240 - 1.05392I
b = 0.99981 - 1.05461I		
u = -0.394459 - 1.112500I		
a = 1.265140 - 0.509213I	0.58960 + 5.66272I	-8.42240 - 7.98213I
b = 0.035342 + 0.694019I		
u = -0.394459 - 1.112500I		
a = 0.564174 + 0.168272I	0.58960 + 5.66272I	-8.42240 - 7.98213I
b = 1.06554 + 1.20660I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.473514 + 1.273020I		
a = -0.278598 + 1.324080I	-9.13765 + 2.90536I	-8.98443 + 0.46988I
b = -2.19588 + 0.14617I		
u = 0.473514 + 1.273020I		
a = 0.15293 - 1.46513I	-9.13765 + 6.96513I	-8.98443 - 6.45832I
b = 2.23599 - 0.76370I		
u = 0.473514 + 1.273020I		
a = 0.46276 - 1.55281I	-9.13765 + 2.90536I	-8.98443 + 0.46988I
b = 1.81750 - 0.27231I		
u = 0.473514 + 1.273020I		
a = -0.04692 + 1.73899I	-9.13765 + 6.96513I	-8.98443 - 6.45832I
b = -1.93756 + 0.49908I		
u = 0.473514 - 1.273020I		
a = -0.278598 - 1.324080I	-9.13765 - 2.90536I	-8.98443 - 0.46988I
b = -2.19588 - 0.14617I		
u = 0.473514 - 1.273020I		
a = 0.15293 + 1.46513I	-9.13765 - 6.96513I	-8.98443 + 6.45832I
b = 2.23599 + 0.76370I		
u = 0.473514 - 1.273020I		
a = 0.46276 + 1.55281I	-9.13765 - 2.90536I	-8.98443 - 0.46988I
b = 1.81750 + 0.27231I		
u = 0.473514 - 1.273020I		
a = -0.04692 - 1.73899I	-9.13765 - 6.96513I	-8.98443 + 6.45832I
b = -1.93756 - 0.49908I		
u = -0.578577		
a = -1.046970 + 0.657077I	3.58052 - 2.02988I	-5.00319 + 3.46410I
b = -0.322351 + 1.227360I		
u = -0.578577		
a = -1.046970 - 0.657077I	3.58052 + 2.02988I	-5.00319 - 3.46410I
b = -0.322351 - 1.227360I		
-		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.578577		
a = -0.55714 + 2.12134I	3.58052 - 2.02988I	-5.00319 + 3.46410I
b = -0.605755 + 0.380170I		
u = -0.578577		
a = -0.55714 - 2.12134I	3.58052 + 2.02988I	-5.00319 - 3.46410I
b = -0.605755 - 0.380170I		

$$III. \ I_3^u = \langle u^{18} - u^{17} + \dots + b + 1, \ u^{18} + 5u^{16} + \dots + a - 1, \ u^{19} - u^{18} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{18} - 5u^{16} + \dots + u + 1 \\ -u^{18} + u^{17} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u^{18} - 3u^{17} + \dots - 4u + 2 \\ -u^{18} - 4u^{16} + \dots + u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{18} - 5u^{16} + \dots + u + 1 \\ -2u^{18} + 2u^{17} + \dots + 3u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{18} - 5u^{16} + \dots + u + 1 \\ -2u^{18} + 2u^{17} + \dots + 3u - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{18} + 2u^{17} + \dots + 4u - 2 \\ u^{18} - u^{17} + \dots - 2u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{18} - 2u^{17} + \dots - 4u + 1 \\ -u^{17} + u^{16} + \dots - u + 3 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-2u^{17} + 3u^{16} - 11u^{15} + 15u^{14} - 28u^{13} + 35u^{12} - 39u^{11} + 41u^{10} - 30u^9 + 20u^8 - 10u^7 - 4u^6 - 3u^5 - 5u^3 + 8u^2 - 3u - 2$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{19} - 11u^{18} + \dots - 5u + 1$
c_2	$u^{19} - u^{18} + \dots + u - 1$
<i>c</i> ₃	$u^{19} + u^{18} + \dots - u - 1$
c_4,c_{11}	$u^{19} + 8u^{17} + \dots + 3u - 1$
c_5,c_9	$u^{19} + 8u^{17} + \dots + 3u + 1$
c_6	$u^{19} + u^{18} + \dots + u + 1$
c_7, c_{10}	$u^{19} - 3u^{18} + \dots - 2u - 1$
c ₈	$u^{19} + 2u^{18} + \dots + 3u - 1$
c ₁₂	$u^{19} - 2u^{18} + \dots + 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} - y^{18} + \dots - y - 1$
c_{2}, c_{6}	$y^{19} + 11y^{18} + \dots - 5y - 1$
c_3	$y^{19} - 13y^{18} + \dots - 11y - 1$
c_4, c_5, c_9 c_{11}	$y^{19} + 16y^{18} + \dots - 21y - 1$
c_7, c_{10}	$y^{19} - 3y^{18} + \dots - 8y - 1$
c_8, c_{12}	$y^{19} + 8y^{18} + \dots + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.432409 + 0.844316I		
a = -0.329441 + 0.448815I	-1.79244 - 1.81593I	-13.41650 + 0.65086I
b = -0.236489 - 0.472224I		
u = -0.432409 - 0.844316I		
a = -0.329441 - 0.448815I	-1.79244 + 1.81593I	-13.41650 - 0.65086I
b = -0.236489 + 0.472224I		
u = 0.355611 + 1.040830I		
a = 1.62344 + 0.58218I	2.78146 - 0.05347I	-7.84525 - 1.09777I
b = -0.02864 + 1.89676I		
u = 0.355611 - 1.040830I		
a = 1.62344 - 0.58218I	2.78146 + 0.05347I	-7.84525 + 1.09777I
b = -0.02864 - 1.89676I		
u = 0.890704		
a = -2.06630	-5.60220	-6.95090
b = -1.84047		
u = -0.326702 + 1.147210I		
a = -0.125098 - 0.538940I	1.46823 - 3.78813I	-6.32142 + 3.96435I
b = 0.659149 + 0.032559I		
u = -0.326702 - 1.147210I		
a = -0.125098 + 0.538940I	1.46823 + 3.78813I	-6.32142 - 3.96435I
b = 0.659149 - 0.032559I		
u = 0.536152 + 1.067450I		
a = -1.382960 - 0.137280I	4.08792 + 6.74742I	-5.06014 - 6.00387I
b = -0.59494 - 1.54985I		
u = 0.536152 - 1.067450I		
a = -1.382960 + 0.137280I	4.08792 - 6.74742I	-5.06014 + 6.00387I
b = -0.59494 + 1.54985I		
u = 0.101153 + 0.760282I		
a = 1.81914 + 1.18798I	4.29021 + 2.32381I	-5.29787 - 0.37944I
b = -0.71919 + 1.50323I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.101153 - 0.760282I		
a = 1.81914 - 1.18798I	4.29021 - 2.32381I	-5.29787 + 0.37944I
b = -0.71919 - 1.50323I		
u = -0.682478 + 0.327459I		
a = -0.427115 + 0.321033I	5.43330 - 0.84474I	0.382477 + 1.325719I
b = 0.186371 - 0.358960I		
u = -0.682478 - 0.327459I		
a = -0.427115 - 0.321033I	5.43330 + 0.84474I	0.382477 - 1.325719I
b = 0.186371 + 0.358960I		
u = -0.557218 + 1.113290I		
a = 0.172420 + 0.230688I	3.17508 - 3.96127I	-2.77988 + 1.70184I
b = -0.352897 + 0.063409I		
u = -0.557218 - 1.113290I		
a = 0.172420 - 0.230688I	3.17508 + 3.96127I	-2.77988 - 1.70184I
b = -0.352897 - 0.063409I		
u = 0.587141 + 0.436351I		
a = -0.56266 - 1.67318I	5.94319 - 2.22864I	-0.25827 + 1.68244I
b = 0.399733 - 1.227910I		
u = 0.587141 - 0.436351I		
a = -0.56266 + 1.67318I	5.94319 + 2.22864I	-0.25827 - 1.68244I
b = 0.399733 + 1.227910I		
u = 0.473398 + 1.262070I		
a = 0.24543 - 1.57752I	-9.42638 + 4.85839I	-9.92768 - 3.28951I
b = 2.10713 - 0.43705I		
u = 0.473398 - 1.262070I		
a = 0.24543 + 1.57752I	-9.42638 - 4.85839I	-9.92768 + 3.28951I
b = 2.10713 + 0.43705I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{8} + 5u^{7} + 11u^{6} + 10u^{5} - u^{4} - 10u^{3} - 6u^{2} + 1)^{4}$ $\cdot (u^{19} - 11u^{18} + \dots - 5u + 1)(u^{29} + 16u^{28} + \dots + 108u - 16)$
c_2	$((u^8 + u^7 + \dots + 2u^3 - 1)^4)(u^{19} - u^{18} + \dots + u - 1)$ $\cdot (u^{29} - 6u^{28} + \dots - 10u + 4)$
c_3	$(u^{8} - u^{7} - 5u^{6} + 4u^{5} + 7u^{4} - 4u^{3} - 2u^{2} + 2u - 1)^{4} \cdot (u^{19} + u^{18} + \dots - u - 1)(u^{29} + 6u^{28} + \dots + 102u + 52)$
c_4, c_{11}	$(u^{19} + 8u^{17} + \dots + 3u - 1)(u^{29} + 7u^{27} + \dots + 2u + 1)$ $\cdot (u^{32} - u^{31} + \dots + 830u + 361)$
c_5,c_9	$(u^{19} + 8u^{17} + \dots + 3u + 1)(u^{29} + 7u^{27} + \dots + 2u + 1)$ $\cdot (u^{32} - u^{31} + \dots + 830u + 361)$
c_6	$((u^8 + u^7 + \dots + 2u^3 - 1)^4)(u^{19} + u^{18} + \dots + u + 1)$ $\cdot (u^{29} - 6u^{28} + \dots - 10u + 4)$
c_7,c_{10}	$(u^{19} - 3u^{18} + \dots - 2u - 1)(u^{29} - 3u^{28} + \dots - 21u + 1)$ $\cdot (u^{32} - 5u^{31} + \dots - 27238u + 3169)$
<i>c</i> ₈	$((u^{2} - u + 1)^{16})(u^{19} + 2u^{18} + \dots + 3u - 1)$ $\cdot (u^{29} + 19u^{28} + \dots + 2304u + 256)$
c_{12}	$((u^{2} - u + 1)^{16})(u^{19} - 2u^{18} + \dots + 3u + 1)$ $\cdot (u^{29} + 19u^{28} + \dots + 2304u + 256)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^8 - 3y^7 + 19y^6 - 34y^5 + 71y^4 - 66y^3 + 34y^2 - 12y + 1)^4$ $\cdot (y^{19} - y^{18} + \dots - y - 1)(y^{29} - 4y^{28} + \dots + 28400y - 256)$
c_2, c_6	$(y^8 + 5y^7 + 11y^6 + 10y^5 - y^4 - 10y^3 - 6y^2 + 1)^4$ $\cdot (y^{19} + 11y^{18} + \dots - 5y - 1)(y^{29} + 16y^{28} + \dots + 108y - 16)$
c_3	$(y^8 - 11y^7 + 47y^6 - 98y^5 + 103y^4 - 50y^3 + 6y^2 + 1)^4$ $\cdot (y^{19} - 13y^{18} + \dots - 11y - 1)(y^{29} - 24y^{28} + \dots + 12588y - 2704)$
c_4, c_5, c_9 c_{11}	$(y^{19} + 16y^{18} + \dots - 21y - 1)(y^{29} + 14y^{28} + \dots - 10y - 1)$ $\cdot (y^{32} + 15y^{31} + \dots + 1378908y + 130321)$
c_7, c_{10}	$(y^{19} - 3y^{18} + \dots - 8y - 1)(y^{29} - 49y^{28} + \dots + 83y - 1)$ $\cdot (y^{32} - 21y^{31} + \dots + 68151136y + 10042561)$
c_8, c_{12}	$((y^{2} + y + 1)^{16})(y^{19} + 8y^{18} + \dots + 3y - 1)$ $\cdot (y^{29} + 9y^{28} + \dots + 131072y - 65536)$