

CAI 4104/6108 – Machine Learning Engineering: Recurrent Neural Networks

Prof. Vincent Bindschaedler

Spring 2024

Reminder: Neural Network Terminology

Reminder: Deep Neural Networks

- What is a deep neural network?
 - Any neural network with two or more hidden layers
 - Nowadays, the best neural networks architectures for many applications & problems are deep
 - E.g.: AlexNet (2012) has 8 layers, ResNet18 has 18 layers, GPT-2 has 48 layers

Reminder: CNNs

Example & Terminology:

Recurrent Neurons/Units

- Recurrent Layers:
 - Made up of recurrent neurons/units which keep state
 - State at time t: $h^{(t)}$ is a function g of the previous state $h^{(t-1)}$ and the current input $x^{(t)}$
 - $*h^{(t)} = g(h^{(t-1)}, x^{(t)})$

Recurrent Layers

Recurrent Layers:

- Weight matrices: $W(m \times k)$ and $V(k \times k)$
 - * *k* is the number of units/neurons
- Activation function: f (e.g., tanh)
- ◆ Hidden state vector: h(t) = V y(t-1)
- Output vector: $y^{(t)} = f(W^T x^{(t)} + h^{(t)} + b)$

Bias vector: $b(k \times 1)$

(e.g., we can set $h^{(0)} = 0$)

Architecture & Tasks:

- Sequence-to-sequence: from an input sequence produce a sequence as output
- Vector-to-sequence: from a fixed length input produce a sequence as output
- Sequence-to-vector: from an input sequence produce a fixed length output
- Encoder-decoder networks: sequence-to-vector followed by vector-to-sequence

Unrolling through time

- Architecture & Tasks:
 - Sequence-to-sequence: for each input frame there is a single output frame
 - Example: predicting stock prices
 - * Feed the price of a stock over the last n days, network predicts the price on day n+1

- Architecture & Tasks:
 - Vector-to-sequence: there is a vector of inputs, the model produces a sequences as output
 - Example: Image captioning
 - Feed the image to the model. Model predicts one word/character of the caption at a time

- Architecture & Tasks:
 - Sequence-to-vector: input is a sequence, the model produces a vector (fixed length) as output
 - Example: Sentiment analysis
 - Given the text of a movie review the model outputs "positive" (+1) or "negative" (-1)

negative (-1)

- Architecture & Tasks:
 - Encoder-decoder networks: sequence-to-vector followed by vector-to-sequence
 - Example: Language translation
 - Translate a sentence from one language to another

Training Recurrent Neural Networks

- How does training work?
 - Backpropagation through time
 - Note:
 - Loss is typically averaged over the entire output
 - The weights are shared across time
 - Training is slow

Unstable Gradients & Short-Term Memory

- Unstable gradients problem
 - Activation functions that do not saturate (e.g., ReLU) can make things worse
 - * Typically, we use activation functions such as tanh or sigmoid
 - We cannot use batch normalization across time steps
 - But we can use gradient clipping
- Short-term memory problem
 - RNNs cannot remember long-term dependencies well
 - Intuition: information is lost at each time step
 - Mitigation
 - Use a different type of cell (e.g., LSTM, GRU, etc.)

Gates & Recurrent Units

- Types of cells
 - Simple/traditional RNN cell
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Unit (GRU)
 - Cho et al. "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation." In EMNLP, 2014.

update gate z — allows information from previous hidden state to carry over to current hidden state

Reset gate *r* — decides if previous hidden state is ignored (reset to current input)

Next Time

■ Wednesday (3/27): Lecture

- Upcoming:
 - Homework 4 out soon
 - Project Proposals due 3/27