面试智力题

阿里面试:

(50条消息) 阿里巴巴技术部面试题——经典智力问题收集 Java2King的博客-CSDN博客

- 1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?
- 2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?
- 3、有三个人去住旅馆,住三间房,每一间房\$10元,于是他们一共付给老板\$30,第二天,老板觉得三间房只需要\$25元就够了于是叫小弟退回\$5给三位客人,谁知小弟贪心,只退回每人\$1,自己偷偷拿了\$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了\$27,再加上小弟独吞了\$2,总共是\$29。可是当初他们三个人一共付出\$30那么还有\$1呢?
- 4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?
- 5、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约 开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆 车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?
- 6、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?
- 7、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量 + 1.只称量一次,如何判断哪个罐子的药被污染了?
- 8、你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?
- 9、对一批编号为1~100,全部开关朝上(开)的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关.....问:最后为关熄状态的灯的编号。
- 10、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?
- 11、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什么帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
- 12、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?
- 13、假如每3个空啤酒瓶可以换一瓶啤酒,某人买了10瓶啤酒,那么他最多可以喝到多少瓶啤酒?答案:
- 1、香a点燃一头,香b点燃两头。等香b烧完时,时间过去了30分钟。再把香a剩下的另一头也点燃。从这时起到a烧完的时间就是15分钟。
- 2、三女的年龄应该是2、2、9。因为只有一个孩子黑头发,即只有她长大了,其他两个还是幼年时期即小于3岁,头发为淡色。再结合经理的年龄应该至少大于25。

- 3、典型的偷换概念。事实上3人只付出了27元,老板得了25元,小弟拿了2元。
- 4、将每对袜子拆开一人一只。
- 5、设洛杉矶到纽约的铁路长为A公里。则两辆火车到相遇用了A/(15+20)小时,也就是小鸟飞行的时间。所以小鸟飞行的距离就是速度×时间=30×A/35=6/7的洛杉矶到纽约的铁路长。
- 6、1/2的几率。先选出球在选罐子。这样罐子其实对球的颜色无影响。
- 7、1号罐取1丸,2号罐取2丸,3号罐取3丸,4号罐取4丸,称量该10个药丸,比正常重量重几就是几号罐的药有问题。
- 8、4个。数量>颜色种类。颜色必重复。
- 9、有10盏灯为灭,分别为1、4、9、16、25、36、49、64、81、100号。因为:每个质数能被1和自身整除,所以质数的灯是亮的。设一个合数能被N个数整除,N必然是个偶数。对于非某数平方的合数来说,将被开关N次也就是偶数次,灯保留为亮;对于上面列出的平方数,则只被开关N-1次,所以灯是灭的。
- 10、镜像对称的轴是人的中轴
- 11、有三个人戴黑帽。假设有N个人戴黑,当N=1时,戴黑人看见别人都为白则能肯定自己为黑。于是第一次关灯就应该有声。可以断定N>1。对于每个戴黑的人来说,他能看见N-1顶黑帽,并由此假定自己为白。但等待N-1次还没有人打自己以后,每个戴黑人都能知道自己也是黑的了。所以第N次关灯就有N个人打自己。
- 12、无论内外,小圆转两圈。
- 13、喝完10瓶后用9个空瓶换来3瓶啤酒(喝完后有4个空瓶)喝完这三瓶又可以换到1瓶啤酒(喝完后有2个空瓶)

这时他有2个空酒瓶,如果他能向老板先借一个空酒瓶,就凑够了3个空瓶可以换到一瓶啤酒,把这瓶喝完后将空瓶还给老板就可以了。

所以他最多可以喝10+3+1+1=15瓶

牛客收藏:

面试常问智力题40道(逻辑题)+参考答案笔经面经牛客网(nowcoder.com)

作者: Yasu0

链接: https://www.nowcoder.com/discuss/526897

来源: 牛客网

每次面试前都要找智力题看,会就秒解,不会一个小时也做不出来, 最近收集了一点智力题,方便大家复习。 有 100 个囚犯分别关在 100 间牢房里。牢房外有一个空荡荡的房间,房间里有一个由开关控制的灯泡。初始时,灯是关着的。看守每次随便选择一名囚犯进入房间,但保证每个囚犯都会被选中无穷多次。如果在某一时刻,有囚犯成功断定出所有人都进过这个房间了,所有囚犯都能释放。游戏开始前,所有囚犯可以聚在一起商量对策,但在此之后它们唯一可用来交流的工具就只有那个灯泡。他们应该设计一个怎样的协议呢?

首先,第一天出来的人,担当"计数者",它把灯开起来(原来开着就不必动了),然后每天出来一个囚犯。如果他不是"计数者",并且没有关过灯,并且灯开着,那么就把灯关了。如果他是"计数者",如果灯关了,就把他开起来(计数+1)。当然如果灯被关了99次,那么就去和国王说吧。

第一天出来的是"计数者", 这是一个必然事件, 从第二天开始, 我们要完成以下过程 99 次

出来一个新的囚犯, 然后等待"计数者"出来把灯开起来。

第一次出来新的囚犯的概率是: 99 / 100 --- 除去计数者, 其他任何囚犯出来都满足要求, 完成这一步的平均时间是 100 / 99 天

完成上面这个过程后,接着要求"计数者"出来,开灯。 这个概率是 1 / 100 , 完成这一步的平均时间是 100 天

第二次,新囚犯出来的概率是 98 / 100, 完成这一步的平均时间是 100 / 98 , 计数者出来的率还是 1 / 100 , 完成这一步的平均时间还是 100 天

...

第99次,新囚犯出来的概率是 1 / 100 (只有一个囚犯没有出来了), 计数者出来的率还是 1 / 100 然后我们把时间加起来:

100 / 99 + 100 + 100 / 98 + 100 + ... 100 / 1 + 100

= 100 * 99 + 100 * (1 / 99 + 1 / 98 + 1 / 97 + ... + 1)

= 9900 + 100 * (1 + 1 / 2 + 1 / 3 + ... 1 / 99)

1+1/2+1/3+...1/99 这是一个调和级数 大概等于 In 99+1,

所以上述值为: 10417

https://www.ocf.berkeley.edu/~wwu/papers/100prisonersLightBulb.pdf

家里有两个孩子,一个是女孩,另一个也是女孩的概率是多少?

https://www.bilibili.com/video/BV1ws411j77v

李永乐老师 yyds

ans: 1/3

参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门可赢得该汽车,另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门会否增加参赛者赢得汽车的机率。

https://www.bilibili.com/video/av25648623/

李永乐老师 yyds

ans:换,不换1/3,换2/3

一副牌52张,告诉瞎子里面有10张牌是正面朝上的,要求瞎子把这52张牌分成两堆,并且每堆牌正面朝上的张数相同,可任意翻动牌,但是一直不可以看。

分成10和42, 10 中的所有牌。

proof: 第一堆 (10张牌里有x张向上),全翻 = 10-x 张向上,等于第二堆向上的牌数

有无限的水, 5L和6L 的桶精确装4L 水

通用解法: 用小的桶不断往大桶填水

这里: 5L桶 6L桶

0 0

50

05

55

46

1000瓶药,有一些可能有毒,用老鼠来喝药,喝到有毒的一周就死。 一周内至少需要多少只老鼠才能检测到哪些有毒

二进制, 死=1, 不死=0, 老鼠=bit, 答案 lg1000 = 10

25匹马,5个赛道,最少需要比赛几次才能知道前3名

赛马经典问题: 5+1+1 = 7次

13个石头,有一个比较重其他都一样,用天平测量最多需要几次才能 测出重的那个

- 一般都是分成3份ABC,称A和B,如果A=B,那么在C那,A>B在A那,A<B在B那.
- 一次排除了2/3.

- \1) 如果 4 == 4 在 5 里面 分为 2 2 1
- 1.1) 如果 2 == 2 在 1 那 ok 两次
- 1.2) 如果 2!= 2 称 1 1, 那个沉就是答案, 三次
- \2) 4!= 4在 沉的那堆里面
- 2.1) 称2 2 排除 2个 再称1 1 , 那个沉就是答案, 三次
- ps 评论提醒,最好是1次,直接 6 6 1 ,如果平衡那个1就是答案,但是不确保能测出

五对夫妇举行家庭聚会 每一个人都可能和其他人握手, 但夫妇之间绝对不握手. 聚会结束时,A先生提问大家握手几次(很关键), 结果是每个人的握手次数不相同。问A先生的太太握手几次

首先有一个隐含的信息,他们握手的次数分别是0,1,2,3,4,5,6,7,8。为什么呢?显然,握手次数是小于等于8的,因为10个人,自己不和自己握手,自己不和配偶握手,只能是10-2=8,刚刚好大家的都不同所以就是0-8了

其次,握手x次和握手8-x次的是一家人。抽象来说,俩夫妻握手总次数刚刚好铺满其他8人。

比如0次和8次是一家人。因为一个人握了0次手,说明他(她)没有和其他任何人握手,而握了8次手的人握了别家的所有人的手,如果握了8次手的这个人和握了0次手的这个人不是一家人,握了8次手的这个人就必然握过握了0次手的人,那么,握了0次手的人就被握了8次手的人握了1次,这就矛盾了。

再比如,握1次手的人和握7次手的人是一家人。因为现在大家都至少握过一次手了(和握过8次手的那个人握的),所以握过7次手的人必须和除了第一家和自己家的所有人握手,而握过1次手的人已经不能再和任何人握手了,因此,他们只能是一家人。其他同理。

接着,既然握手次数之和为8的必定是一对夫妻,九人中又没有两个人握手的次数相同,而0-8次握手里面没有配对成功的是4(成功的是0-8, 1-7, 2-6, 3-5),所以只有A先生和A太太握手次数同为4次

两人玩游戏,在脑门上贴数字(正整数>=1),只看见对方的,看不见自己的,而且两人的数字相差1。两人的对话: A:我不知道 B:我也不知道 A:我知道了 B:我也知道了。问A头上的字是多少,B头上的字是多少?

每一个数n都是有n-1和n+1两个相邻数,但是1只有一个2是相邻数

- A: 我不知道。不知道自己是1还是3
- B: 我也不知道。 如果A是1, 那么B肯定是能够确定他自己是2。
- A: 我知道了。自己不是1 而是3
- B: 我也知道了。 既然A知道自己, 肯定是从2推出的3, 那么也知道自己是2了

所以A是3, B是2

如果你是一名艾滋病患者,那么经过检测后,结果显示为阳性的概率为 99%。如果你并没有携带艾滋病毒,经过检测后,结果显示为阳性的概率仅为 1%。也就是说,这种设备较为'可靠',不论你是否患有艾滋病,它基本能作出正确的判断。假如现在,用艾滋病检测试纸对自己进行一次检测,检测结果显示是阳性,那请问你觉得自己得艾滋病的概率是 3/10000.

当随机从总体中抽出一个人,利用检测试纸进行检测,如果检测结果呈阳性,并不意味着这个人一定患病,他患病的可能性其实不高,原因是没患病的人基数实在太高了。

阳性的情况(假阳+真有病): 9999/10000 * 1% + 1/10000 * 99%

真有病概率: 1/10000 * 99% / (9999/10000 * 1% + 1/10000 * 99%) 约1%

后续问题: 连续2次都是阳性, 真有病的概率?

阳性的情况(假阳+真有病): 9999/10000 * 1% * 1% + 1/10000 * 99% * 99%

真有病概率: 1/10000 * 99% * 99% / (9999/10000 * 1% * 1% + 1/10000 * 99% * 99%) 约

50%

烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?

1 同时两头 2 一头 等1 烧完再点2的另一头,等2烧完再点燃3,等3 完就是1小时15min

有10瓶药,每瓶有10粒药,其中有一瓶是变质的。好药每颗重1克,变质的药每颗比好药重0.1克。问怎样用天秤称一次找出变质的那瓶药。

编号1-10 分别取1-10颗, 重量为x, 坏药编号为 (x - 55) /0.1

有7克、2克砝码各一个,天平一只,如何只用这些物品三次将140克的盐分成50、90克各一份?

第一步: 把140克盐分成两等份, 每份70克。

第二步: 把天平一边放上2+7克砝码,另一边放盐,这样就得到9克和61克分开的盐。

第三步: 将9克盐和2克砝码放在天平一边,另一边放盐,这样就得到11克和50克。于是50和90就

分开了

有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以外30公里每小时的速度和两辆火车现时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回的飞行,直道两面辆火车相遇,假设洛杉矶到纽约的距离为s,请问,这只小鸟飞行了多长距离?

你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?

罐1: 红1

罐2: 红49+蓝50

红概率 = 1/2 * 1 + 1/2 * 49 / (49+50) 约3/4

想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能 颠倒上下?

因为人的两眼在水平方向上对称。

病狗问题 一个住宅区内有100户人家,每户人家养一条狗,每天傍晚大家都在同一个地方遛狗。已知这些狗中有一部分病狗,由于某种原因,狗的主人无法判断自己的狗是否是病狗,却能够分辨其他的狗是否有病,现在,上级传来通知,要求住户处决这些病狗,并且不允许指认他人的狗是病狗(就是只能判断自己的),过了7天之后,所有的病狗都被处决了,问,一共有几只病狗?为什么?

https://www.bilibili.com/video/av27732823/

李永乐老师, yyds

桌上有100个苹果,你和另一个人一起拿,一人一次,每次拿的数量 大于等于1小于等于5,问:如何拿能保证最后一个苹果由你来拿?

分析:如果要保证拿最后一个,那么就得保证拿到第94个,以此类推,要拿第94个,就要保证拿到第88个、82、76、70...最后只要保证你拿到第四个就行了,所以看下面:

解答:只需要你先拿,第一次拿4个,以后看对方拿的个数,根据对方拿的个数,保证每轮对方和你拿的加起来是6就行了,其实就是保证你拿到4,还要拿到10,16...直到94

两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜子的布质、 大小完全相同,而每对袜都有一张商标纸连着。两位盲人不小心将八 对袜子混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?

每一对分开,一人拿一只,因为袜子不分左右脚的;

一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?

病狗问题

有三筐水果,一筐装的全是苹果,第二筐装的全是橘子,第三筐是橘子与苹果混在一起。筐上的标签都是错的,你的任务是拿出其中一筐,从里面只拿一只水果,然后正确写出三筐水果的标签。

从标着"混合"标签的筐里拿一只水果,就可以知道另外两筐装的是什么水果了。

一个小猴子边上有100 根香蕉,它要走过50 米才能到家,每次它最多搬50 根香蕉,每走1 米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。

设 小猴从 0 走到 50, 到 A 点时候他可以直接抱香蕉回家了, 可是到 A 点时候他至少消耗了3A 的香蕉(到A,回0,到A),一个限制就是小猴只能抱 50 只香蕉,那么在 A 点小猴最多 49 只香蕉.100-3A=49, 所以A=17.

0 -> 17 放下 50 - 2*17 = 16 根

17-> 0 消耗完

0 -> 17 还有 50 - 17 + 16 = 49 根

直接回家 49 - (50 - 17) = 16 根

连续整数之和为1000的共有几组?

首先1000为一个解。连续数的平均值设为x,1000必须是x的整数倍。假如连续数的个数为偶数个,x就不是整数了。x的2倍只能是5,25,125才行。因为平均值为12.5,要连续80个达不到。125/2 = 62.5是可以的。即62,63,61,64,等等。连续数的个数为奇数时,平均值为整数。1000为平均值的奇数倍。1000 = 2×2×2×5×5×5;x可以为2,4,8,40,200排除后剩下40和200是可以的。所以答案为平均值为62.5,40,200,1000的4组整数。

<u>leetcode</u> 相关:

https://leetcode-cn.com/problems/consecutive-numbers-sum/

18#楼给了个好一些的解法,大家可以参考一下

据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?

在9个点上画10条直线,要求每条直线上至少有三个点?

五个囚犯先后从100颗绿豆中抓绿豆。抓得最多和最少的人将被处死,不能交流,可以摸出剩下绿豆的数量,谁的存活几率最大?

1、他们都是很聪明的人; 2、他们的原则是先求保命,再去多杀人; 3、100颗不必都分完,但要保证每人至少抓一颗; 4、若有重复的情况,则也算最大和最小,一并处死。

有甲、乙两人,其中,甲只说假话,而不说真话;乙则是只说真话,不说假话。但是,他们两个人在回答别人的问题时,只通过点头与摇头来表示,不讲话。有一天,一个人面对两条路:A与B,其中一条路是通向京城的,而另一条路是通向一个小村庄的。这时,他面前站着甲与乙两人,但他不知道此人是甲还是乙,也不知道"点头"是表示"是"还是表示"否"。现在,他必须问一个问题,才可能断定出哪条路通向京城。那么,这个问题应该怎样问?

这个人只要站在A与B任何一条路上,然后,对着其中的一个人问:"如果我问他(甲、乙中的另外一个人)这条路通不通向京城,他会怎么回答?"如果甲与乙两个人都摇头的话,就往这条路向前走去,如果都点头,就往另一外一条走去。

f(g(x)) = g(f(x))

甲、乙、丙三个人在一起做作业,有一道数学题比较难,当他们三个人都把自己的解法说出来以后,甲说:"我做错了。"乙说:"甲做对了。"丙说:"我做错了。",在一旁的丁看到他们的答案并听了她们的意见后说:"你们三个人中有一个人做对了,有一个人说对了。"请问,他们三人中到底谁做对了?

假设丙做对了,那么甲、乙都做错了,这样,甲说的是正确的,乙、丙都说错了,符合条件,因此,丙做对了。

50名运动员按顺序排成一排,教练下令:"单数运动员出列!"剩下的运动员重新排列编号,教练又下令:"单数运动员出列!"如此下去,最后只剩下一个人,他是几号运动员?最后剩下的又是谁?

教练下令"单数"运动员出列时,教练只要下5次命令,就能知道剩下的那个人。此人在下第五次令之前<u>排序</u>为2,在下4次令之前<u>排序</u>为4,在下3次令之前<u>排序</u>为8,在下2次令之前<u>排序</u>为16,在下1次令之前<u>排序</u>为32,即32位运动员。因此:32号。

赵女士买了一些水果和小食品准备去看望一个朋友,谁知,这些水果和小食品被他的儿子们偷吃了,但她不知道是哪个儿子。为此,赵女士非常生气,就盘问4个儿子谁偷吃了水果和小食品。老大说道:"是老二吃的。"老二说道:"是老四偷吃的。"老三说道:"反正我没有偷吃。"老四说道:"老二在说谎。"这4个儿子中只有一个人说了实话,其他的3个都在撒谎。那么,到底是谁偷吃了这些水果和小食品?

是老三偷吃了水果和小食品,只有老四说了实话。用假设法分别假设老大、老二、老三、老四都说了实话,看是否与题意矛盾,就可以得出答案

某企业老板在对其员工的思维能力进行测试时出了这样一道题:某大型企业的员工人数在1700~1800之间,这些员工的人数如果被5除余3,如果被7除余4,如果被11除余6。那么,这个企业到底有多少员工?员工小王略想了一下便说出了答案,请问他是怎么算出来的?

对题目中所给的条件进行分析,假如把全体员工的人数扩大2倍,则它被5除余1,被7除余1,被11除余1,那么,余数就相同了。假设这个企业员工的人数在3400-3600之间,满足被5除余1,被7除余1,被11除余1的数是

```
(x-1)%5==0
(x-1)%7==0
(x-1)%11==0
lcm(5,7,11)=35*11=385
385*9=3465
x=3466,符合要求,所以这个企业共有1733个员工。
```

老师让幼儿园的小朋友排成一行,然后开始发水果。老师分发水果的方法是这样的:从左面第一个人开始,每隔2人发一个梨;从右边第一个人开始,每隔4人发一个苹果。如果分发后的结果有10个小朋友既得到了梨,又得到了苹果,那么这个幼儿园有多少个小朋友?

158个小朋友。10个小朋友拿到梨和苹果最少人数是(2+1)×(4+1)×(101)+1=136人,然后从左右两端开始向外延伸,假设梨和苹果都拿到的人为"1",左右两边的延伸数分别为: 3×5 -3=12人,3×5 -5=10人。所以,总人数为136+12+10=158。

有一个外地人路过一个小镇,此时天色已晚,于是他便去投宿。当他来到一个十字路口时,他知道肯定有一条路是通向宾馆的,可是路口却没有任何标记,只有三个小木牌。第一个木牌上写着:这条路上有宾馆。第二个木牌上写着:这条路上没有宾馆。第三个木牌上写着:那两个木牌有一个写的是事实,另一个是假的。相信我,我的话不会有错。假设你是这个投宿的人,按照第三个木牌的话为依据,你觉得你会找到宾馆吗?如果可以,那条路上有宾馆哪条路上有宾馆

假设第一个木牌是正确的,那么第一个小木牌所在的路上就有宾馆,第二条路上就没有宾馆,第二句话就该是真的,结果就有两句真话了;假设第二句话是正确的,那么第一句话就是假的,第一二条路上都没有宾馆,所以走第三条路,并且符合第三句所说,第一句是错误的,第二句是正确的。

有一富翁,为了确保自己的人身安全,雇了双胞胎兄弟两个作保镖。 兄弟两个确实尽职尽责,为了保证主人的安全,他们做出如下行事准 则:

- a. 每周一、二、三, 哥哥说谎;
- b. 每逢四、五、六, 弟弟说谎;
- c. 其他时间两人都说真话。

一天,富翁的一个朋友急着找富翁,他知道要想找到富翁只能问兄弟俩,并且他也知道兄弟俩个的做事准则,但不知道谁是哥哥,谁是弟弟。另外,如果要知道答案,就必须知道今天是星期几。于是他便问其中的一个人: 昨天是谁说谎的日子? 结果两人都说: 是我说谎的日子。你能猜出今天是星期几吗?

首先分析,兄弟两个必定有一个人说真话,其次,如果两个人都说真话,那么今天就是星期日,但这是不可能的,因为如果是星期日,那么两个人都说真话,哥哥就说谎了。假设哥哥说了真话,那么今天一定就是星期四,因为如果是星期四以前的任一天,他都得在今天再撒一次谎,如果今天星期三,那么昨天就是星期二,他昨天确实撒谎了,但今天也撒谎了,与假设不符,所以不可能是星期一、二、三。由此类推,今天也不会是星期五以后的日子,也不是星期日。假设弟弟说了真话,弟弟是四五六说谎,那么先假设今天是星期一,昨天就是星期日,他说谎,与题设矛盾;今天星期二,昨天就是星期一,不合题意;用同样的方法可以去掉星期三的可能性。如果今天星期四,那么他今天就该撒谎了,他说昨天他撒谎,这是真话,符合题意。假设今天星期五,他原本应该撒谎但他却说真话,由"昨天我撒谎了"就知道不存在星期五、六、日的情况,综上所述,两个结论都是星期四,所以今天星期四。

对地理非常感兴趣的几个同学聚在一起研究地图。其中的一个同学在地图上标上了标号A、B、C、D、E,让其他的同学说出他所标的地方都是哪些城市。甲说:B是陕西。E是甘肃;乙说:B是湖北,D是山东;丙说:A是山东,E是吉林;丁说:C是湖北,D是吉林;戊说:B是甘肃,C是陕西。这五个人每人只答对了一个省,并且每个编号只有一个人答对。你知道ABCDE分别是哪几个省吗?

假设甲说的第一句话正确,那么B是陕西,戊的第一句话就是错误的,戊的第二句话就是正确的; C是陕西就不符合条件。甲说的第二句话正确。那么E就是甘肃。戊的第二句话就是正确的,C是陕西。同理便可推出A是山东,B是湖北,C是陕西,D是吉林,E是甘肃。

已知:有N架一样的飞机停靠在同一个机场,每架飞机都只有一个油箱,每箱油可使飞机绕地球飞半圈。注意:天空没有加油站,飞机之间只是可以相互 加油。如果使某一架飞机平安地绕地球飞一圈,并安全地回到起飞时的机场,问:至少需要出动几架飞机?注:路途中间没有飞机场,每架飞机都必须安全返回起飞时的机场,不许中途降落。

一共需要6架飞机。假设绕地球一圈为1,3架飞机同时顺时针飞,在1/8处油量为3/43/4其中一辆給另外两加满往回飞,此时油量为1,1,到1/4处油量为3/4,3/4,加满一辆,另一辆往回2/4,1,可以飞到3/4的位置此时油量为0

3架飞机往逆时针方向飞,在7/8位置3/4,3/4,—架给另两加满然后往回飞 1,1,0,继续飞,在3/4位置油量为 3/4,3/4,0,平衡一下 2/4,2/4 可以把之前的飞机接回去

两个直径分别是2和4的圆环,如果小圆在大圆内部绕大圆转一周,那么小圆自身转了几周?如果在大圆的外部转,小圆自身又要转几周呢?

小圆能转3周。分析:两圆的直径分别为2、4,那么半径分别为1、2。假如把大圆剪开并拉直,那么小圆绕大圆转一周,就变成从直线的一头移动到另一头。因为这条直线长就是大圆的周长,是小圆周长的2倍,所以小圆需要滚动2圈。但现在小圆在沿大圆滚动的同时,自身还要作转动。小圆在沿着大圆滚动1周并回到原出发点的同时,小圆自身也转了1周。如果小圆在大圆的内部滚动,其自转的方向与滚动的转向相反,因此小圆自身转了1周;如果小圆在大圆的外部滚动,其自转的方向与滚动的转向相同,因此小圆自身转了3周。

在一个夜晚,同时有4人需要过一桥,一次最多只能通过两个人,且只有一只手电筒,而且每人的速度不同。A,B,C,D需要时间分别为:1,2,5,10分钟。问:在17分钟内这四个人怎么过桥?

总共是17分钟

第一步: A、B过花时间2分钟。

第二步: B回花时间2分钟。

第三步: C、D过花时间10分钟。

第四步: A回花时间1分钟。

第五步: A、B再过花时间2分钟。

more:

- https://www.nowcoder.com/discuss/262595?type=post&order=time&pos=&page=2&channel =1009&source id=search post
- https://www.nowcoder.com/discuss/150434?type=post&order=time&pos=&page=2&channel =1009&source id=search post
- https://juejin.im/entry/6844903633759420423

more 1

【盘点】面试中常常看见的智力题笔经面经牛客网 (nowcoder.com)

作者: 代码不规范, 测试两行泪

链接: https://www.nowcoder.com/discuss/262595?type=post&order=time&pos=&page=2&chann

el=1009&source id=search post

来源: 牛客网

OK, 我已经在<u>牛客</u>网上做了大量的面筋观赏及大脑预演,发现了一种比较小清新的船新题型:智力题

其实说是智力题倒不如说是逻辑题,因为本人IQ不高,就只能找找<u>百度</u>答案复盘练练逻辑能力了,下面 是常见题目以及变种

点赞, 收藏, 评论, 我全都要~

目录:

- 1.赛马找最快<腾讯高频>
- 2.砝码称轻重
- 3.药瓶毒白鼠<腾讯>
- 4.绳子两头烧
- 5.犯人猜颜色
- 6.猴子搬香蕉
- 7.高楼扔鸡蛋<谷歌>
- 8.轮流拿石子<头条>
- 9.蚂蚁走树枝
- 10.海盗分金币<不常见>
- 11.三个火枪手
- 12.囚犯拿豆子
- 13.学生猜生日<笔试高频>

1. 赛马找最快<腾讯高频题>

- 一般有这么几种问法:
- 25匹马5条跑道找最快的3匹马,需要跑几次?答案:7
- 64匹马8条跑道找最快的4匹马,需要跑几次?答案:11
- 25匹马5条跑道找最快的5匹马,需要跑几次?答案:最少8次最多9次

接下来我们看看详细解法:

25匹马5条跑道找最快的3匹马,需要跑几次?

變 牛客@代码不规范,测试两行

将25匹马分成ABCDE5组,假设每组的排名就是A1>A2>A3>A4>A5,用边相连,这里比赛5次第6次,每组的第一名进行比赛,可以找出最快的马,这里假设A1>B1>C1>D1>E1
D1,E1肯定进不了前3,直接排除掉
第7次,B1 C1 A2 B2 A3比赛,可以找出第二,第三名

所以最少比赛需要7次

64匹马8条跑道找最快的4匹马,需要跑几次?

第一步

全部马分为8组,每组8匹,每组各跑一次,然后淘汰掉每组的后四名,如下图 (需要比赛8场)

A1	131	C1	D1	E1	F1	G1	H1
A2	132	C2	D2	E2	F2	G2	H2
A3	13.3	C3	D3	E3	E3	G3	H3
A4	134	C4	D4	E4	F4	G4	H4
A5	135	C5	D5	E5	F5	G5	H5
				E5 E6			
	136	C6	D6	E6	F6	G6	H6

第二步

取每组第一名进行一次比赛,然后淘汰最后四名所在组的所有马,如下图 (需要比赛1场)

A1	131	C1	D1	E1	F1	G1	H1
A2	132	C2	D2	E2	F2	G2	H2
A3	13.3	C3	D3	E3	F3	G3	H3
A4	134	C4	D4	E4	F4	G4	H4
A5	135	C5	D5	E5	F5	G5	H5
				E5			
	136	C6	D6	E6	F6	G6	H6

这个时候总冠军已经诞生,它就是A1,蓝**域(它不需要比赛了),而其他可能跑得最快的三匹马只可能是下图中的黄**域了(A2,A3,A4,B1,B2,B3,C1,C2,D1,共9匹马)

A1	131	C1	D1	E1	F1	G1	H1
A2	132	C2	D2	E2	F2	G2	H2
A3	13.3	C3	D3	E3	F3	G3	H3
A4	134	C4	D4	E4	F4	G4	144
A5	135	C5	D5	E5	F5	G5	H5
	ß5						
A6		C6	D6	E6	F6	G6	H6

第三步

只要从上面的9匹马中找出跑得最快的三匹马就可以了,但是现在只要8个跑道,怎么办?那就随机选出8匹马进行一次比赛吧(需要比赛一场)

第四步

上面比赛完,选出了前三名,但是9匹马中还有一匹马没跑呢,它可能是一个潜力股啊,那就和前三名比一比吧,这四匹马比一场,选出前三名。最后加上总冠军,跑得最快的四匹马诞生了!!! (需要一场比赛)

最后,一共需要比赛的场次: 8+1+1+1=11场

来源: https://blog.csdn.net/u013829973/article/details/80787928

25匹马5条跑道找最快的5匹马,需要跑几次?

(1) 首先将25匹马分成5组,并分别进行5场比赛之后得到的名次排列如下:

A组: [A1 A2 A3 A4 A5]

B组: [B1 B2 B3 B4 B5]

C组: [C1 C2 C3 C4 C5]

D组: [D1 D2 D3 D4 D5]

E组: [E1 E2 E3 E4 E5]

其中,每个小组最快的马为[A1、B1、C1、D1、E1]。

(2) 将[A1、B1、C1、D1、E1]进行第6场,选出第1名的马,不妨设 A1>B1>C1>D1>E1. 此时第1名的马为A1。

- (3) 将[A2、B1、C1、D1、E1]进行第7场,此时选择出来的必定是第2名的马,不妨假设为B1。因为这5匹马是除去A1之外每个小组当前最快的马。
- (3) 进行第8场,选择[A2、B2、C1、D1、E1]角逐出第3名的马。
- (4) 依次类推, 第9, 10场可以分别决出第4, 5名的吗。

因此,依照这种竞标赛排序思想,需要10场比赛是一定可以取出前5名的。

仔细想一下,如果需要减少比赛场次,就一定需要在某一次比赛中同时决出2个名次,而且每一场比赛之后,有一些不可能进入前5名的马可以提前出局。 当然要做到这一点,就必须小心选择每一场比赛的马匹。我们在上面的方法基础上进一步思考这个问题,希望能够得到解决。

- (1) 首先利用5场比赛角逐出每个小组的排名次序是绝对必要的。
- (2) 第6场比赛选出第1名的马也是必不可少的。假如仍然是A1马(A1>B1>C1>D1>E1)。那么此时我们可以得到一个重要的结论:有一些马在前6场比赛之后就决定出局的命运了(下面粉色字体标志出局)。

A组: [A1 A2 A3 A4 A5]

B组: [B1 B2 B3 B4 B5]

C组: [C1 C2 C3 C4 C5]

D组: [D1 D2 D3 D4 D5]

E组: [E1 E2 E3 E4 E5]

(3) 第7场比赛是关键,能否同时决出第2,3名的马呢?我们首先做下分析:

在上面的方法中,第7场比赛[A2、B1、C1、D1、E1]是为了决定第2名的马。但是在第6场比赛中我们已经得到(B1>C1>D1>E1),试问?有B1在的比赛,C1、D1、E1还有可能争夺第2名吗?当然不可能,也就是说第2名只能在A2、B1中出现。实际上只需要2条跑道就可以决出第2名,剩下C1、D1、E1的3条跑道都只能用来凑热闹的吗?

能够优化的关键出来了,我们是否能够通过剩下的3个跑道来决出第3名呢?当然可以,我们来进一步分析第3名的情况?

- 如果A2>B1(即第2名为A2),那么根据第6场比赛中的(B1>C1>D1>E1)。 可以断定第3名只能在A3和B1中产生。
- 如果B1>A2(即第2名为B1),那么可以断定的第3名只能在A2,B2,C1 中产生。

好了,结论也出来了,只要我们把[A2、B1、A3、B2、C1]作为第7场比赛的马,那么这场比赛的第2,3名一定是整个25匹马中的第2,3名。

我们在这里列举出第7场的2,3名次的所有可能情况:

- ① 第2名=A2, 第3名=A3
- ②第2名=A2,第3名=B1
- ③第2名=B1,第3名=A2
- ④ 第2名=B1, 第3名=B2
- ⑤ 第2名=B1, 第3名=C1
- (4) 第8场比赛很复杂,我们要根据第7场的所有可能的比赛情况进行分析。
- ① 第2名=A2, 第3名=A3。那么此种情况下第4名只能在A4和B1中产生。

- 如果第4名=A4,那么第5名只能在A5、B1中产生。
- 如果第4名=B1,那么第5名只能在A4、B2、C1中产生。

不管结果如何,此种情况下,第4、5名都可以在第8场比赛中决出。其中比赛马匹为[A4、A5、B1、B2、C1]

- ②第2名=A2,第3名=B1。那么此种情况下第4名只能在A3、B2、C1中产生。
- 如果第4名=A3,那么第5名只能在A4、B2、C1中产生。
- 如果第4名=B2,那么第5名只能在A3、B3、C1中产生。
- 如果第4名=C1, 那么第5名只能在A3、B2、C2、D1中产生。

那么,第4、5名需要在马匹[A3、B2、B3、C1、A4、C2、D1]七匹马中产生,则必须比赛两场才行,也就是到第9场角逐出全部的前5名。

③ 第2名=B1, 第3名=A2。那么此种情况下第4名只能在A3、B2、C1中产生。

情况和②一样,必须角逐第9场

- ④ 第2名=B1, 第3名=B2。那么此种情况下第4名只能在A2、B3、C1中产生。
- 如果第4名=A2,那么第5名只能在A3、B3、C1中产生。
- 如果第4名=B3,那么第5名只能在A2、B4、C1中产生。
- 如果第4名=C1,那么第5名只能在A2、B3、C2、D1中产生。

那么,第4、5名需要在马匹[A2、B3、B4、C1、A3、C2、D1]七匹马中产生,则必须比赛两场才行,也就是到第9场角逐出全部的前5名。

- ⑤ 第2名=B1, 第3名=C1。那么此种情况下第4名只能在A2、B2、C2、D1中产生。
- 如果第4名=A2,那么第5名只能在A3、B2、C2、D1中产生。
- 如果第4名=B2,那么第5名只能在A2、B3、C2、D1中产生。
- 如果第4名=C2,那么第5名只能在A2、B2、C3、D1中产生。
- 如果第4名=D1,那么第5名只能在A2、B2、C2、D2、E2中产生。

那么,第4、5名需要在马匹[A2、B2、C2、D1、A3、B3、C3、D2、E1]九匹马中产生,因此也必须比赛两场,也就是到第9长决出胜负。

总结: 最好情况可以在第8场角逐出前5名, 最差也可以在第9场搞定。

来源: iteye.com/blog/hxraid-662643

2. 砝码称轻重

这一类的题目有很多 这里只举几个经典的:

- 1. 有一个天平,九个砝码,其中一个砝码比另八个要轻一些,问至少要用天平称几次才能将轻的那个 找出来? 答案: 2次
- 2. 十组砝码每组十个,每个砝码都是10g重,但是现在其中有一组砝码每个都只有9g重,现有一个能显示克数的秤,最少称几次能找到轻的那组?答案: 1次

有一个天平,九个砝码,一个轻一些,用天平至少几次能找到轻的?

至少2次:第一次,一边3个,哪边轻就在哪边,一样重就是剩余的3个;

第二次,一边1个,哪边轻就是哪个,一样重就是剩余的那个;

答:至少称2次.

有十组砝码每组十个,每个砝码重10g,其中一组每个只有9g,有能显示克数的秤最少几次能找到轻的那一组砝码?

将砝码分组1~10,第一组拿一个,第二组拿两个以此类推。。第十组拿十个放到秤上称出克数x,则y = 550 - x,第y组就是轻的那组

3. 药瓶毒白鼠

有1000个一模一样的瓶子,其中有999瓶是普通的水,有1瓶是毒药。任何喝下毒药的生命都会在一星期之后死亡。现在你只有10只小白鼠和1个星期的时间,如何检验出哪个瓶子有毒药?

答案:

1、将10只老鼠剁成馅儿,分到1000个瓶盖中,每个瓶盖倒入适量相应瓶子的液体,置于户外,并每天补充适量相应的液体,观察一周,看哪个瓶盖中的肉馅没有腐烂或生蛆。(最好不要这样回答)

2.

首先一共有1000瓶,2的10次方是1024,刚好大于1000,也就是说,1000瓶药品可以使用10位二进制数就可以表示。从第一个开始:

第一瓶: 00 0000 0001

第二瓶: 00 0000 0010

第三瓶: 00 0000 0011

.

第999瓶: 11 1111 0010

第1000瓶: 11 1111 0011

需要十只老鼠,如果按顺序编号,ABCDEFGHIJ分别代表从低位到高位每一个位。 每只老鼠对应一个二进制位,如果该位上的数字为1,则给老鼠喝瓶里的药。

观察,若死亡的老鼠编号为: ACFGJ, 一共死去五只老鼠,则对应的编号为 10 0110 0101,则有毒的药品为该编号的药品,转为十进制数为: 613号。(这才是正解,当然前提是老鼠还没被撑死)

4. 绳子两头烧

现有若干不均匀的绳子,烧完这根绳子需要一个小时,问如何准确计时15分钟,30分钟,45分钟,75分钟。。。

15: 对折之后两头烧(要求对折之后绑的够紧, 否则看45分钟解法)

30: 两头烧 45: 两根,一根两头烧一根一头烧,两头烧完过了30分钟,立即将第二根另一头点燃,到烧完又过15分钟,加起来45分钟 75: =30+45

0 0 0

5. 犯人猜颜色

一百个犯人站成一纵列,每人头上随机带上黑色或白色的帽子,各人不知道自己帽子的颜色,但是能看见自己前面所有人帽子的颜色。

然后从最后一个犯人开始,每人只能用同一种声调和音量说一个字: "黑"或"白",

如果说中了自己帽子的颜色,就存活,说错了就拉出去斩了,

说的答案所有犯人都能听见,

是否说对,其他犯人不知道,

在这之前, 所有犯人可以聚在一起商量策略,

问如果犯人都足够聪明而且反应足够快,100个人最大存活率是多少?

答案: 这是一道经典推理题

- 1、最后一个人如果看到奇数顶黑帽子报"黑"否则报"白",他可能死
- 2、其他人记住这个值(实际是黑帽奇偶数),在此之后当再听到黑时,黑帽数量减一
- 3、从倒数第二人开始,就有两个信息:记住的值与看到的值,相同报"白",不同报"黑" 99人能100%存活,1人50%能活

除此以外, 此题还有变种: 每个犯人只能看见前面一个人帽子颜色又能最多存活多少人?

答案:在上题基础上,限制了条件,这时上次的方法就不管用了,此时只能约定偶数位犯人说他前一个人的帽子颜色,奇数犯人获取信息100%存活,偶数犯人50几率存活。

6. 猴子搬香蕉

一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走

1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。(提示:他可以把香蕉放下往返的走,但是必须保证它每走一米都能有香蕉吃。也可以走到n米时,放下一些香蕉,拿着n根香蕉走回去重新搬50根。)

答案:这种试题通常有一个迷惑点,让人看不懂题目的意图。此题迷惑点在于:走一米吃一根香蕉,一共走50米,那不是把50根香蕉吃完了吗?如果要回去搬另外50根香蕉,则往回走的时候也要吃香蕉,这样每走一米需要吃掉三根香蕉,走50米岂不是需要150根香蕉?

其实不然,本题关键点在于:猴子搬箱子的过程其实分为两个阶段,第一阶段:来回搬,当香蕉数目大于50根时,猴子每搬一米需要吃掉三根香蕉。第二阶段:香蕉数《=50,直接搬回去。每走一米吃掉1根。

我们分析第一阶段: 假如把100根香蕉分为两箱。一箱50根。

第一步,把A箱搬一米,吃一根。

第二步,往回走一米,吃一根。

第三步,把B箱搬一米,吃一根。

这样, 把所有香蕉搬走一米需要吃掉三根香蕉。

这样走到第几米的时候,香蕉数刚好小于50呢?

100-(n3)<50 && 100-(n-13)>50

走到16米的时候,吃掉48根香蕉,剩52根香蕉。这步很有意思,它可以直接搬50往前走,也可以再来回搬一次,但结果都是一样的。到17米的时候,猴子还有49根香蕉。这时猴子就轻松啦。直接背着走就行。

第二阶段:

走一米吃一根。

把剩下的50-17=33米走完。还剩49-33=16根香蕉。

7. 高楼扔鸡蛋

有2个鸡蛋,从100层楼上往下扔,以此来测试鸡蛋的硬度。比如鸡蛋在第9层没有摔碎,在第10层摔碎了,那么鸡蛋不会摔碎的临界点就是9层。

问:如何用最少的尝试次数,测试出鸡蛋不会摔碎的临界点?

首先要说明的是这道题你要是一上来就说出正确答案,那说明你的智商不是超过160就是你做过这题。

所以建议你循序渐进的回答,一上来就说最优解可能结果不会让你和面试官满意。

答案:

1.暴力法

举个栗子,最笨的测试方法,是什么样的呢?把其中一个鸡蛋,从第1层开始往下扔。如果在第1层没碎,换到第2层扔;如果在第2层没碎,换到第3层扔……如果第59层没碎,换到第60层扔;如果第60层碎了,说明不会摔碎的临界点是第59层。

在最坏情况下,这个方法需要扔100次。

2.二分法

采用类似于二分查找的方法,把鸡蛋从一半楼层 (50层)往下扔。

如果第一枚鸡蛋,在50层碎了,第二枚鸡蛋,就从第1层开始扔,一层一层增长,一直扔到第49层。

如果第一枚鸡蛋在50层没碎了,则继续使用二分法,在剩余楼层的一半(75层)往下扔……

这个方法在最坏情况下,需要尝试50次。

3.均匀法

如何让第一枚鸡蛋和第二枚鸡蛋的尝试次数,尽可能均衡呢?

很简单,做一个平方根运算,100的平方根是10。

因此,我们尝试每10层扔一次,第一次从10层扔,第二次从20层扔,第三次从30层.....一直扔到100 层。

这样的最好情况是在第10层碎掉,尝试次数为1+9=10次。

最坏的情况是在第100层碎掉,尝试次数为10+9=19次。

不过,这里有一个小小的优化点,我们可以从15层开始扔,接下来从25层、35层扔……一直到95层。 这样最坏情况是在第95层碎掉,尝试次数为 9 + 9 = 18次。

4.最优解法

最优解法是反向思考的经典:如果最优解法在最坏情况下需要扔X次,那第一次在第几层扔最好呢?

答案是: 从X层扔

假设最优的尝试次数的x次,为什么第一次扔就要选择第x层呢?

这里的解释会有些烧脑,请小伙伴们坐稳扶好:

假设第一次扔在第x+1层:

如果第一个鸡蛋碎了,那么第二个鸡蛋只能从第1层开始一层一层扔,一直扔到第x层。

这样一来,我们总共尝试了x+1次,和假设尝试x次相悖。由此可见,第一次扔的楼层必须小于x+1层。

假设第一次扔在第x-1层:

如果第一个鸡蛋碎了,那么第二个鸡蛋只能从第1层开始一层一层扔,一直扔到第x-2层。

这样一来,我们总共尝试了x-2+1 = x-1次,虽然没有超出假设次数,但似乎有些过于保守。

假设第一次扔在第x层:

如果第一个鸡蛋碎了,那么第二个鸡蛋只能从第1层开始一层一层扔,一直扔到第x-1层。

这样一来,我们总共尝试了x-1+1 = x次,刚刚好没有超出假设次数。

因此,要想尽量楼层跨度大一些,又要保证不超过假设的尝试次数x,那么第一次扔鸡蛋的最优选择就是第x层。

那么算最坏情况,第二次你只剩下x-1次机会,按照上面的说法,你第二次尝试的位置必然是X+ (X-1);

以此类推我们可得:

$$x + (x-1) + (x-2) + ... + 1 = 100$$

这个方程式不难理解:

左边的多项式是各次扔鸡蛋的楼层跨度之和。由于假设尝试x次,所以这个多项式共有x项。

右边是总的楼层数100。

下面我们来解这个方程:

(x+1)*x/2 = 100

最终x向上取整,得到 x = 14

因此,最优解在最坏情况的尝试次数是14次,第一次扔鸡蛋的楼层也是14层。

最后,让我们把第一个鸡蛋没碎的情况下,所尝试的楼层数完整列举出来:

14, 27, 39, 50, 60, 69, 77, 84, 90, 95, 99, 100

举个栗子验证下:

假如鸡蛋不会碎的临界点是65层,那么第一个鸡蛋扔出的楼层是14,27,50,60,69。这时候啪的一声碎了。

第二个鸡蛋继续,从61层开始,61,62,63,64,65,66,啪的一声碎了。

因此得到不会碎的临界点65层,总尝试次数是6+6=12<14。

下面是我个人的理解:这个更像是优化版的均匀法,均匀法让你第二次尝试不超过10,但是第一次的位置无法保证(最多要9次,最好一次),这个由于每多一次尝试,楼层间隔就-1,最终使得第一次与第二次的和完全均匀(最差情况)。

但是核心思路是逆向思考,因为即使理解了需要两次的和均匀也很难得到第一次要在哪层楼扔。

一旦理解了这种方法, 多少层楼你都不会怕啦~

来源: https://blog.csdn.net/qq 38316721/article/details/81351297

8. 轮流拿石子<头条问过>

问题:一共有N颗石子(或者其他乱七八糟的东西),每次最多取M颗最少取1颗,A,B轮流取,谁最后会获胜?(假设他们每次都取最优解)。

答案: 简单的巴什博奕: https://www.cnblogs.com/StrayWolf/p/5396427.html

问题:有若干堆石子,每堆石子的数量是有限的,二个人依次从这些石子堆中拿取任意的石子,至少一个(不能不取),最后一个拿光石子的人胜利。

答案: 较复杂的尼姆博弈: https://blog.csdn.net/BBHHTT/article/details/80199541

9. 蚂蚁走树枝

问题:放N只蚂蚁在一条长度为M树枝上,蚂蚁与蚂蚁之间碰到就各自往反方向走,问总距离或者时间。

答案:这个其实就一个诀窍:蚂蚁相碰就往反方向走,可以直接看做没有发生任何事:大家都相当于独立的

A蚂蚁与B蚂蚁相碰后你可以看做没有发生这次碰撞,这样无论是求时间还是距离都很简单了。

10. 海盗分金币

问题: 5个海盗抢到了100枚金币,每一颗都一样的大小和价值。

他们决定这么分:

- 1. 抽签决定自己的号码 (1, 2, 3, 4, 5)
- 2. 首先,由1号提出分配方案,然后大家5人进行表决,当 半数以上的人同意时(不包括半 数,这是重点),按照他的提案进行分配,否则将被扔入大海喂鲨鱼。

- 3. 如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当半超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
- 4. 依次类推......

假设每一位海盗都足够聪明,并且利益至上,能多分一枚金币绝不少分,那么1号海盗该怎么分金币才能使自己分到最多的金币呢?

答案:

从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。

3号知道这一点,就会提出"100,0,0"的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。

不过,2号推知3号的方案,就会提出"98,0,1,1"的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。

同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。

此题还有变种:就是只需要一半人同意即可,不需要一半人以上同意方案就可以通过,在其他条件不变的情况下,1号该怎么分配才能获得最多的金币?

答案: 类似的推理过程

4号: 4号提出的方案的时候肯定是最终方案,因为不管5号同意不同意都能通过,所以4号5号不必担心自己被投入大海。那此时5号获得的金币为0,4号获得的金币为100。

5号:因为4号提方案的时候,自己获取的金币为0。所以只要4号之前的人分配给自己的金币大于0就同意该方案。

4号:如果3号提的方案一定能获得通过(原因:3号给5号的金币大于0,5号就同意因此就能通过),那自己获得的金币就为0,所以只要2号让自己获得的金币大于0就会同意。

3号:因为到了自己提方案的时候可以给5号一金币,自己的方案就能通过,但考虑到2号提方案的时候给4号一个金币,2号的方案就会通过,那自己获得的金币就为0。所以只要1号让自己获得的金币大于0就会同意。

2号: 因为到了自己提方案的时候只要给4号一金币,就能获得通过,根本就不用顾及3号5号同意不同意,所以不管1号怎么提都不会同意。

1号:2号肯定不会同意。但只要给3号一块金币,5号一块金币(因为5号如果不同意,那么4号分配的时候,他什么都拿不到)就能获得通过。

所以答案是 98, 0, 1, 0, 1。

类似的问题也可用类似的推理,并不难

11. 三个火枪手

问题:彼此痛恨的甲、乙、丙三个枪手准备决斗。甲枪法最好,十发八中;乙枪法次之,十发六中;丙枪法最差,十发四中。如果三人同时***,并且每人每轮只发一枪;那么枪战后,谁活下来的机会大一些?

答案:

一般人认为甲的枪法好,活下来的可能性大一些。但合乎推理的结论是,枪法最糟糕的丙活下来的几率 最大。

那么我们先来分析一下各个枪手的策略。

如同田忌赛马一般,枪手甲一定要对枪手乙先***。因为乙对甲的威胁要比丙对甲的威胁更大,甲应该首先干掉乙,这是甲的最佳策略。

同样的道理,枪手乙的最佳策略是第一枪瞄准甲。乙一旦将甲干掉,乙和丙进行对决,乙胜算的概率自然大很多。

枪手丙的最佳策略也是先对甲***。乙的枪法毕竟比甲差一些,丙先把甲干掉再与乙进行对决,丙的存活概率还是要高一些。

我们根据分析来计算一下三个枪手在上述情况下的存活几率:

第一轮: 甲射乙, 乙射甲, 丙射甲。

甲的活率为24% (40% X 60%)

乙的活率为20%(100% - 80%)

丙的活率为100%(无人射丙)。

由于丙100%存活率,因此根据上轮甲乙存活的情况来计算三人第二轮的存活几率:

情况1: 甲活乙死 (24% X 80% = 19.2%)

甲射丙,丙射甲:甲的活率为60%,丙的活率为20%。

情况2: 乙活甲死 (20% X 76% = 15.2%)

乙射丙,丙射乙:乙的活率为60%,丙的活率为40%。

情况3: 甲乙同活 (24% X 20% = 4.8%)

重复第一轮。

情况4: 甲乙同死 (76% X 80% = 60.8%)

枪战结束。

据此来计算三人活率:

甲的活率为(19.2% X 60%) + (4.8% X 24%) = 12.672%

乙的活率为(15.2% X 60%) + (4.8% X 20%) = 10.08%

丙的活率为(19.2% X 20%) + (15.2% X 40%) + (4.8% X 100%) + (60.8% X 100%) = 75.52%

通过对两轮枪战的详细概率计算,我们发现枪法最差的丙存活的几率最大,枪法较好的甲和乙的存活几率却远低于丙的存活几率。

来自: https://www.zhihu.com/question/288093713/answer/482192781

12. 囚犯拿豆子

问题:有5个囚犯被***,他们请求上诉,于是法官愿意给他们一个机会。

犯人抽签分好顺序,按序每人从100粒豆子中随意抓取,最多可以全抓,最少可以不抓,可以和别人抓 的一样多。

最终, 抓的最多的和最少的要被处死。

- 1、他们都是非常聪明且自私的人。
- 2、他们的原则是先求保命。如果不能保命,就拉人陪葬。
- 3、100颗不必都分完。
- 4、若有重复的情况,则也算最大或最小,一并处死(中间重复不算)。

假设每个犯人都足够聪明,但每个犯人并不知道其他犯人足够聪明。那么,谁活下来的可能性最大?

答案:

不存在"谁活下来的可能性比较大"的问题。实际情况是5个人都要死。答案看起来很扯淡,但推理分析后却发现十分符合逻辑。

根据题意,一号知道有五个人抓豆子,为保性命,他只要让豆子在20颗以内就可以了。但是他足够聪明的话他一定拿20颗,因为无论多拿一颗:2,3,4号的人一定会拿20颗最后死的人就会是最多的1号和最少的5号还是少拿一颗:2,3,4号拿20个后,5号选择也拿20个拉上1234号垫背。(下面会说为什么多拿少拿也只会相差一颗)

2号是知道1号抓了几颗豆子(20)的。那么,对于2号来说,只有2种选择:与1号一样多,或者不一样多。我们就从这里入手。

情况一, 假如2号选择与1号的豆子数不一样多, 也就是说2号选择比1号多或者比1号少。

我们先要证明,如果2号选择比1号多或者比1号少,那么他一定会选择比1号只多1颗或者只少1颗。

要证明这个并不算太难。因为每个囚犯的第一选择是先求保命,要保命就要尽量使自己的豆子数既不是最多也不是最少。当2号决定选择比1号多的时候,他已经可以保证自己不是最少,为了尽量使自己不是最多,当然比1号多出来的数量越小越好。因为这个数量如果与一号相差大于1的话,那么3号就有机会抓到的居中数,相差越大,二号成为最多的可能性也就越大。反之,当2号决定选择比1号少的时候,也是同样的道理,他会选择只比1号少1颗。既然2号只会会选择比1号多1颗或者比1号少1颗,那么1、2号的豆子数一定是2个连续的自然数,和一定是2n+1(其中1个人是n,另1人是n+1)。

轮到3号的时候,他可以从剩下的豆子数知道1、2号的数量和,也就不难计算出n的值。而3号也只有2个选择: n颗或者n+1颗。为什么呢? 这与上面的证明是一样的道理,保命原则,取最接近的数量,这里不再赘述。

不过,3号选择的时候会有一个特殊情况,在这一情况下,他一定会选择较小的n,而不是较大的n+1。这一特殊情况就是,当3号知道自己选择了n后(已保证自己不是最多),剩下的豆子数由于数量有限,4、5号中一定有人比n要少,这样自己一定可以活下来。计算的话就是[100-(3n+1)]/2<=n,不难算出,在这个特殊情况下,n>=20。也就是说,当1、2号选择了20或21颗的时候,3号只要选择20颗,就可以保证自己活下来。

这样一来剩下的豆子只剩39颗,4、5号至少有一人少于20颗的(这个人当然是后选的5号),这样死的将是5号和1、2号中选21颗的那个人。当然,1号、2号肯定不会有人选择21这一"倒霉"的数字(因为他们都是聪明人),这样的话,上述"特殊情况(即3号选择n)"就不会发生了。

综上所述,2345这四个人不难从剩下的豆子数知道前面几个人的数量总和,也就不难进而计算出n的值,而这样一来他们也只有n或者n+1这两种选择。最后的5号也是不难算出n的。在前4个人只选择了2个数字(n和n+1)的情况下,5号已是必死无疑,这时,根据"死也要拉几个垫背"的条件,5号会选择n或n+1,选择5个人一起完蛋。

情况二,如果2号选择了与1号不一样多的话,最终结果是5个人一起死,那么2号只有选择与1号一样多了。

那么1、2号的和就是2n,而3号如果选择n+1或者n-1的话,就又回到第一点的情况去了(前3个人的和是3m+1或3m+2),于是3号也只能选择n,当然,4号还是只能选n,最后的结果仍旧是5个人一起完蛋。

"最后处死抓的最多和最少的囚犯"严格执行这句话的话,除非有人舍己为人,死二留三。但这是足够聪明且自私的囚犯,所以这五个聪明人的下场是全死,这道题只不过是找了一个处死所有人的借口罢了...

变种问题:如果每个囚犯都知道其他囚犯足够聪明,事情会怎么发展?

答案:

这样的情况下囚犯一也会像我们一样推导出前面的结论,那么根据自私的规定,他会直接拿完100个, 大家一起完蛋(反正结局已定)

13. 学生猜生日<笔试高频>

这种题目笔试中出现的次数比较多,用排除法比较好解决

1.

小明和小强都是张老师的学生, 张老师的生日是M月N日,

2人都知道张老师的生日是下列10组中的一天, 张老师把M值告诉了小明,

把N值告诉了小强, 张老师问他们知道他的生日是那一天吗?

3月4日 3月5日 3月8日

6月4日 6月7日

9月1日 9月5日

12月1日 12月2日 12月8日

小明说:如果我不知道的话,小强肯定也不知道.

小强说:本来我也不知道,但是现在我知道了.

小明说:哦,那我也知道了.

请根据以上对话推断出张老师的生日是哪一天?

答案: 9月1日

排除法:

1.小明肯定小强不知道是哪天,排除所有月份里有单独日的月份:6月和12月<因为如果小强的M是2或者7的话,小强就知道了,所以把6月7日与12月2日排除>,所以小明拿到的是3或者9

2.小强本来不知道,所以小强拿到的不是2或者7,但是小强现在知道了,说明把6月与12月排除后,小强拿到的是1,4,8中的一个<这里小强肯定没拿到5,否则他不会知道是哪天的>

3.小明现在也知道了,说明小明拿到的不是3,否则他不会知道是3月4日还是3月8日的,所以小明拿到的是9才能唯一确定生日

综上,答案是9月1日

2.

小明和小强是赵老师的学生,张老师的生日是M月N日,张老师

把M值告诉小明,N值告诉小强

给他们六个选项

3月1日 3月3日 7月3日 7月5日

9月1日 11月7日

小明说:我猜不出来

小强说:本来我也猜不出来,但是现在我知道了

问:张老师生日多少

答案: 3月1日

排除法:

1.小明说猜不出来,说明小明拿到的不是单独出现的9或者11,说明老师生日只能是3月或者7月

2.小强原本不知道,说明小强拿到的不是单独出现的5或者7,说明老是生日是1日或3日

3.小强现在知道了,说明小强拿到的是1,因为如果拿到的是3,那么小强就不知道是3月3日还是7月3日 了

综上,老师生日是3月1日

more 2

面试常问智力题笔经面经牛客网 (nowcoder.com)

赛马次数

有 25 匹马和 5 条赛道,赛马过程无法进行计时,只能知道相对快慢。问最少需要几场赛马可以知道前 3 名。

先把 25 匹马分成 5 组,进行 5 场赛马,得到每组的排名。再将每组的第 1 名选出,进行 1 场赛马,按照这场的排名将 5 组先后标为 A、B、C、D、E。可以知道,A 组的第 1 名就是所有 25 匹马的第 1 名。而第 2、3 名只可能在 A 组的 2、3 名,B 组的第 1、2 名,和 C 组的第 1 名,总共 5 匹马,让这 5 匹马再进行 1 场赛马,前两名就是第 2、3 名。所以总共是 **5+1+1=7** 场赛马。

A组: 1, **2, 3**, 4, 5 B组: **1, 2**, 3, 4, 5 C组: **1**, 2, 3, 4, 5 D组: 1, 2, 3, 4, 5 E组: 1, 2, 3, 4, 5

用绳子计时 15 分钟

给定两条绳子,每条绳子烧完正好一个小时,并且绳子是不均匀的。问要怎么准确测量 15 分钟。

- 点燃第一条绳子 R1 两头的同时, 点燃第二条绳子 R2 的一头;
- 当 R1 烧完, 正好过去 30 分钟, 而 R2 还可以再烧 30 分钟;
- 点燃 R2 的另一头, 15 分钟后, R2 将全部烧完。

九球称重

有 9 个球,其中 8 个球质量相同,有 1 个球比较重。要求用 2 次天平,找出比较重的那个球。

将这些球均分成 3 个一组共 3 组,选出 2 组称重,如果 1 组比较重,那么重球在比较重的那 1 组;如果 1 组重量相等,那么重球在另外 1 组。

对比较重的那1组的3个球再分成3组,重复上面的步骤。

药丸称重

有 20 瓶药丸,其中 19 瓶药丸质量相同为 1 克,剩下一瓶药丸质量为 1.1 克。瓶子中有无数个药丸。要求用一次天平找出药丸质量 1.1 克的药瓶。

可以从药丸的数量上来制造差异:从第 i 瓶药丸中取出 i 个药丸,然后一起称重。可以知道,如果第 i 瓶药丸重 1.1 克/粒,那么称重结果就会比正常情况下重 0.1 * i 克。

得到 4 升的水

有两个杯子,容量分别为5升和3升,水的供应不断。问怎么用这两个杯子得到4升的水。

可以理解为用若干个5和3做减法得到4。

- 不能从 3 做减法得到 4,那么只能从 5 做减法得到 4,即最后一个运算应该为 5 1 = 4,此时问题 转换为得到 1 升的水;
- 1 升的水可以由 3 做减法得到, 3-2=1, 此时问题转换为得到 2 升的水;
- 5 3 = 2

扔鸡蛋

一栋楼有 100 层,在第 N 层或者更高扔鸡蛋会破,而第 N 层往下则不会。给 2 个鸡蛋,求 N,要求最差的情况下扔鸡蛋的次数最少。

可以将楼层划分成多个区间,第一个鸡蛋 E1 用来确定 N 属于哪个区间,第二个鸡蛋 E2 按顺序遍历该区间找到 N。那么问题就转换为怎么划分区间满足最坏情况下扔鸡蛋次数最少。

E1 需要从第一个区间开始遍历到最后一个区间。如果按等大小的方式划分区间,即 E2 的遍历次数固定。那么最坏的情况是 N 在最后一个区间,此时 E1 遍历的次数最多。为了使最坏情况下 E1 和 E2 总共遍历的次数比较少,那么后面的区间大小要比前面的区间更小。具体来说,E1 每多遍历一次,E2 要少遍历一次,才使得 N 无论在哪个区间,总共遍历的次数一样。设第一个区间大小为 X,那么第二个区间的大小为 X-1,以此类推。那么 X + (X-1) + (X-2) + ... + 1 = 100,得到 X (X + 1) / 2 = 100 ,即 X = 14。

more 3

Android和java面试中的智力题 - 掘金 (juejin.cn)

智力题,每个正式的笔试、面试都会出,而且在面大企业的时候必然会问到,笔者曾在很多面试中,都被问到过,不过答得都不是很好,因为时间很短,加上我们有时候过于紧张,所以做出这类问题,还是有一定的难度,从这篇文章中我会总结一些常见的智力题,希望各位读者能在本章所列的题中找出做这类题的方法,克服面试中的难题!

1、农民分金条问题

题目:你让农民为你工作7天,给他的回报是一根金条。金条平分成相连的7段,你必须在每天结束时给他们一段金条,如果只许你两次把金条弄断,你如何给你的工人付费,保证该农民在七天中任意一天结束时都可以领到相应的报酬。(例:第一天结束时他可领到1/7,第三天结束时他可领到3/7)

我当时在面试某企业的时候被问到了这个问题,面试官没有和我说"金条是平分成7段的"。所以我当时把精力都集中在:如何通过2刀将一个金条分成7份的问题上,其实这个问题根本不用我们考虑,题目默认已经平分为7份了,关键是分成7分后再怎么分。当时面试官只给我3分钟时间,所以我绝对悲剧了。

解答:将7份分成1/7,2/7,4/7.第一天结束时给1/7,第二天结束时给2/7,然后将农民手上的1/7要过来。第三天结束时将1/7给农民,第四天将4/7给农民,再将农民手里的3/7要过来,第五天再给1/7,第六天......

其实这个题很简单,我只是思路没对,其实也不能怪我,当你们做了接下来的第二题后,就大概知道我 当时为什么会那么想了。

2、两柱香问题

题目:有两柱不均匀的香,每柱香燃烧完需要1个小时,问:怎样用两柱香切出一个15分钟的时间段? 这个题的重点就是怎么切

解答:将甲香的一头点着,将乙香的两头点着,当乙香燃烧完时,说明已经过了半个小时,同时也说明 甲香也正好燃烧了一半,此时,将甲香的另一头点着,从此时起到甲香完全烧完,正好15分钟。

3、瞎子翻牌

题目:给一个瞎子52张扑克牌,并告诉他里面恰好有10张牌是正面朝上的。要求这个瞎子把牌分成两堆,使得每堆牌里正面朝上的牌的张数一样多。瞎子应该怎么做? (瞎子摸不出牌是正面或者是反面,但是却可以随意翻动每一张牌)

我曾经在参加某企业的笔试的时候,被考了这个题,当时被一个条件给弄迷茫了,如上述:使得每堆牌里正面朝上的牌的张数一样多,我当时的想法就是每堆里5张,因为一共只有10张向上,其实就是自己给想错了,并没有要求加起来10张,只要保证向上的牌数一样就行了。

解答:将52张牌分为2堆,一堆10张,另一堆42张,将10张的那一堆全部翻起来就行了。

分析:

10张堆 翻起来后 42张堆

复制代码

向上 向下 向上 向下 向上 向下

1991933

2882834

3773735

.

从上面的分析过程可以看出: 10张里面向下的张数和42张里面向上的张数相同, 所以只需要将10张堆整体翻一下, 向下的牌就向上了, 同时和42张里向上的就相同了。

4、100个苹果

桌上有100个苹果,你和另一个人一起拿,一人一次,每次拿的数量大于等于1小于等于5,问:如何拿 能保证最后一个苹果由你来拿?

分析:如果要保证拿最后一个,那么就得保证拿到第94个,以此类推,要拿第94个,就要保证拿到第88个、82、76、70...最后只要保证你拿到第四个就行了,所以看下面:

解答:只需要你先拿,第一次拿4个,以后看对方拿的个数,根据对方拿的个数,保证每轮对方和你拿的加起来是6就行了,其实就是保证你拿到4,还要拿到10,16...直到94。

5、10斤酒两个桶

有三口酒缸,分别能装3斤;7斤;10斤。现在10斤的缸装满了酒,在没有称得情况下,怎么把这10斤酒平均分成两个5斤。

解答:第一步,用10斤的先倒入3斤的,将3斤的装满,将3斤的倒入7斤的,再将10斤的缸子中的7斤倒入3斤的装满,将3斤的再倒入7斤的,最后再将10中剩下的4斤倒入3斤的缸子,此时,三个缸子的状态为,10斤中有1斤,7斤的缸子中有6斤,3斤的缸子中有3斤。第二步,用3斤的将7斤的装满,状态为:10斤中有1斤,7斤中有7斤,3斤中有2斤。第三步,将7斤的缸子里的酒全部倒入10斤的缸子,状态:10斤的有8斤,7斤的有0斤,3斤的有2斤。第四步,将3斤的倒入7斤的。状态为:10斤的有8斤,7斤的有2斤,3斤的有0斤。第五步,用10斤的缸子将3斤的缸子装满,10斤的缸子中正好剩余5(8-3)斤,将3斤缸子里的倒入7斤缸子里,也正好5斤。正好实现。

6、微软灯管问题

在房里有三盏灯,房外有三个开关,在房外看不见房内的情况,你只能进门一次,你用什么方法来区分那个开关控制那一盏灯?据《编程之美》一书中介绍,在微软大厦,没晚都会有一些新员工在会议室测试,灯一亮一灭。可见这个问题有多么古怪!

解答:打开一盏灯10分钟,关掉,打开第二盏,进去看看哪盏亮,摸摸哪盏热,热的是第一个打开的开关开的,亮的是第二个开关开的,另一个就是第三个。

7、经理的三个女儿问题

一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?答案:三个女儿只有一个有黑头发,说明另两个女儿都很小,大约在3岁以下.如果有个女儿是一岁的话(1,1,11 1,2,10 1,3,9 1,4,8),不论怎样都不成立.如果两个女儿在3岁或3岁以上的话,那样的话家长的年龄就过大了,所以两个小女儿应该都是2岁或一个2岁另一个3岁.(2,2,9或2,3,8)家长的年龄为36或48,大女儿出

生时家长的年龄应该是27或40.按常理推断家长有第一个孩子是为27岁比较合理.所以三个女儿分别为2岁,2岁,9岁.经理为36岁. (中国的婴儿一出生是黄色头发的。但过了差不多5岁的时候就头发就开始变黑色的了。);

8、两位盲人问题

他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。 他们每人怎样才能取回黑袜和白袜各两对呢? 答案:每一对分开,一人拿一只,因为袜子不分左右脚的;

9、两辆货车及小鸟问题

有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往 洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后 返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?

答案:要知道纽约与洛杉基的距离,然后算出两列火车相遇要用多少小时,然后用小时×30公里/小时,得出小鸟飞行的距离。

纽约到洛杉矶的路程给漏掉了。设路程s, 鸟飞距离则是: {s/(20+15)} * 30;

10、两个罐子+红球+蓝球问题

你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?

答案: 我的方案是:所有蓝球先装罐,再随机取没有装罐的球,得到红球的几率是100%!!!(哈哈是不是疯了~)

11、四个罐子问题

你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量 + 1.只称量一次,如何判断哪个罐子的药被污染了?

答案:给四个罐子编上号,1、2、3、4。然后1号拿一个,2号拿2个,3号拿3个,4号拿4个,称一下,若是都没被污染,应该重10个重量,若是11个重量就是1号罐,12就是2号罐,13就是3号罐,14就是4号罐;

- 1 给5个瓶子标上1、2、3、4、5。
- 2 从1号瓶中取1个药丸, 2号瓶中取2个药丸, 3号瓶中取3个药丸, 4号瓶中取4个药丸, 5号瓶中取5个药丸。
- 3 把它们全部放在天平上称一下重量。
- 4 现在用1×10 + 2×10 + 3×10 + 4×10 + 5×10的结果减去测出的重量。
- 5 结果就是装着被污染的药丸的瓶子号码。

12、果冻问题

你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,同时抓取两个果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?

答案: 2次4个!

13、100个灯的问题

对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关.....问:最后为关熄状态的灯的编号。

答案:除掉2,3的倍数号,再又加上6的倍数好。最后一个是97号;

第十三题,楼主应该读错题意了。最后为关熄状态的灯的编号应该是1、4、9、16、25、36、49、64、81、100。1到10的平方数。因为平方数的因数个数为奇数。

14、个人照镜子

想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?

答案:因为你眼睛是平行长的。因为判断左右是以人的视觉习惯而言的。视角上分辨左右和分辨上下是不同的概念;

15、戴帽子问题

一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什么帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?答案:3个黑帽子。

分析:

设有x个黑帽子。

x=1,则戴黑帽子的第一次就看到其他人都是白帽子,那么自己就肯定是黑帽子了。所以该打自己嘴巴。

但第一次没人打,说明至少有两个黑帽子。

x=2,第一次开灯后否没人打,说明黑帽不止一个,所以第二次如果有人只看到别人只有一顶黑帽子的话,就能判断自己头上是黑帽子,就该打嘴巴,但没人打,说明至少有3个黑帽。

x=3,由于前两次没人打,所以至少三顶黑帽。第三次开灯后,有人打嘴巴,说明打嘴巴的人看到其他人 只有两顶黑帽,所以能判断自己头上是黑帽。

因此是三顶;

16、三人住旅馆

有三个人去住旅馆, 住三间房,	每一间房	10 元	,			于
是 他	们	_	共		付	
给老	板	" role="presentation ">				
10元,于是他们一共位	付给老板	30,第二天,老板觉得三间	房只需要	25		元
就够	了	于	是		ПЦ	
小弟	退	回 " role='	presentati	on ">		
25元就够了于是叫小家	弟退回5%	合三位客人,谁知小弟贪心,只	退回每人	1		,
自己	偷	偷	拿		了	"
role="presentation"> 1 ,自	己偷偷拿	全了2,这样一来便等于那三	位客人每人	、各花了け	元,	于是
三个人一共花了 27	,	再	加		上	
小弟	独	吞	了		不	"
role="presentation"> 27 ,	身加上小	弟独吞了不2, 总共是	29	0		
可 是	当	初	他		们	
三	人	_	共		付	
出 "role="presentation">	29。可是	是当初他们三个人-	一共付出	30那么过	有\$1	呢?
答案:他们所消费的27元里已经脚,根据一条思路做:这30元现				中题一定2	下要乱	了阵

17、切蛋糕问题

有一个长方形蛋糕,切掉了长方形的一块(大小和位置随意),你怎样才能直直的一刀下去,将剩下的蛋糕切成大小相等的两块?

答案:将完整的蛋糕的中心与被切掉的那块蛋糕的中心连成一条线。这个方法也适用于立方体!请注意,切掉的那块蛋糕的大小和位置是随意的,不要一心想着自己切生日蛋糕的方式,要跳出这个圈子。

18、三筐苹果问题

有三筐水果,一筐装的全是苹果,第二筐装的全是橘子,第三筐是橘子与苹果混在一起。筐上的标签都是骗人的,(就是说筐上的标签都是错的)你的任务是拿出其中一筐,从里面只拿一只水果,然后正确写出三筐水果的标签。

答案: 从标着"混合"标签的筐里拿一只水果,就可以知道另外两筐装的是什么水果了。

分析:从混合的拿出一个来,如果是苹果,而贴苹果的筐里有可能是橘子和混合,如果是混合,说明贴橘子的筐里是橘子,不成立(因为前提说了,每个标签都是错的)。所以贴苹果的筐里是橘子,则贴橘子的筐里是混合。不懂的童鞋在纸上画画,就看出来了。

19、村子里50条狗的问题

村子中有50个人,每人有一条狗。在这50条狗中有病狗(这种病不会传染)。于是人们就要找出病狗。每个人可以观察其他的49条狗,以判断它们是否生病,只有自己的狗不能看。观察后得到的结果不得交流,也不能通知病狗的主人。主人一旦推算出自己家的是病狗就要枪毙自己的狗,而且每个人只有权利枪毙自己的狗,没有权利打死其他人的狗。第一天,第二天都没有枪响。到了第三天传来一阵枪声,问有几条病狗,如何推算得出?

解答: 3条病狗. 如果是1条病狗,第一天,它的主人就会发现其他49条狗都是好狗,那么他将在第一天推断出自己的狗是病狗;如果是2条病狗,第一天,2条病狗的主人都会看到1条病狗,都在等待那条狗的主人开枪。但第一天没有听到枪声,则2条病狗的主人都可推断出自己的狗是病狗,则第二天肯定会听到枪响;如果是3条病狗,第一天,3病狗的主人都会看到2条病狗,如果第二天还没有听到枪响,则3人都可推断出自己的狗是病狗,于是第三天肯定会听到枪响。如果出题严谨点,应该说明49人全都是逻辑能力较高的人。

20、蛋糕切8份问题

请把一盒蛋糕切成8份,分给8个人,但蛋糕盒里还必须留有一份。

解答:面对这样的怪题,有些应聘者绞尽脑汁也无法分成;而有些应聘者却感到此题实际很简单,把切成的8份蛋糕先拿出7份分给7人,剩下的1份连蛋糕盒一起分给第8个人。

21、拿最大钻石问题

一楼到十楼的每层电梯门口都放着一颗钻石,钻石大小不一。你乘坐电梯从一楼到十楼,每层楼电梯门都会打开一次,只能拿一次钻石,问怎样才能拿到最大的一颗?

解答:选择前五层楼都不拿,观察各层钻石的大小,做到心中有数。后五层楼再选择,选择大小接近前五层楼出现过最大钻石大小的钻石。

22、拿手电过桥问题

U2合唱团在17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。一次同时最多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。手电筒是不能用丢的方式来传递的。四个人的步行速度各不同,若两人同行则以较慢者的速度为准。Bono需花1分钟过桥,Edge需花2分钟过桥,Adam需花5分钟过桥,Larry需花10分钟过桥。他们要如何在17分钟内过桥呢?

23、为什么下水道的盖子是圆的?

解答:从麻省理工大学一位计算机系教授那里听来的答案,首先在同等用材的情况下他的面积最大。第二因为如果是方的、长方的或椭圆的,那无聊之徒拎起来它就可以直接扔进地下道啦!但圆形的盖子嘛,就可以避免这种情况了。这种问题是非常开放性的问题,言之有理即可!

24、美国有多少辆加油站(汽车)?

解答:这个乍看让人有些摸不着头脑的问题时,你可能要从问这个国家有多少小汽车入手。面试者也许会告诉你这个数字,但也有可能说:"我不知道,你来告诉我。"那么,你对自己说,美国的人口是2.75亿。你可以猜测,如果平均每个家庭(包括单身)的规模是2.5人,你的计算机会告诉你,共有1.1亿个家庭。你回忆起在什么地方听说过,平均每个家庭拥有1.8辆小汽车,那么美国大约会有1.98亿辆小汽

车。接着,只要你算出替1.98亿辆小汽车服务需要多少加油站,你就把问题解决了。重要的不是加油站的数字,而是你得出这个数字的方法。

25、两个桶称出准确的水

如果你有无穷多的水,一个3夸脱的和一个5夸脱的提桶,你如何准确称出4夸脱的水?

解答:

- A、先用3 夸脱的桶装满,倒入5 夸脱。以下简称3->5),在5 夸脱桶中做好标记b1,简称b1)。
- B、用3继续装水倒满5空3将5中水倒入3直到b1在3中做标记b2。
- C、用5继续装水倒满3空5将3中水倒入5直到b2。
- D、空3将5中水倒入3标记为b3。
- E、装满5空3将5中水倒入3直到3中水到b3。结束了,现在5中水为标准的4夸脱水。
- 26、诚实和说谎的连个人

一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?

解答:问其中一人:另外一个人会说哪一条路是通往诚实国的?回答者所指的那条路必然是通往说谎国的。

27、12个球一个天平问题

12个球一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)

解答:

12个球。第一次: 4, 4 如果平了: 那么剩下的球中取3放左边,取3个好球放右边,称: 如果左边重,那么取两个球称一下,哪个重哪个是次品,平的话第三个重,是次品,轻的话同理如果平了,那么剩下一个次品,还可根据需要称出次品比正品轻或者重如果不平: 那么不妨设左边重右边轻,为了便于说明,将左边4颗称为重球,右边4颗称为轻球,剩下4颗称为好球取重球2颗,轻球2颗放在左侧,右侧放3颗好球和一颗轻球如果左边重称那两颗重球,重的一个次品,平的话右边轻球次品如果右边重称左边两颗轻球,轻的一个次品如果平称剩下两颗重球,重的一个次品,平的话剩下那颗轻球次品13个球。 第一次: 4, 4, 如果平了剩5颗球用上面的方法仍旧能找出次品,只是不能知道次品是重是轻如果不平,同上。

28、海盗分金币的问题

传说,从前有五个海盗抢得了100枚金币.他们通过了一个如何确定选用谁的分配方案的安排.即:1.抽签决定各人的号码(1, 2, 3, 4, 5);

- 2.先由1号提出分配方案, 然后5个人表决.当且仅当超过半数人同意时, 方案才算被通过, 否则他将被扔入大海喂鲨鱼;
- 3.当1号死后,再由2号提方案,4个人表决,当且仅当超过半数同意时,方案才算通过,否则2号同样将被扔入大海喂鲨鱼;
- 4.往下依次类推......

复制代码

根据上面的这个故事,现在提出如下的一个问题。即,我们假定每个海盗都是很聪明的人,并且都能够很理智 地判断自己的得失,从而做出最佳的选择,那么第一个海盗应当提出怎样的分配方案才能够使自己不被扔入大 海喂鲨鱼,而且收益还能达到最大化呢? 解答:倒推,从后往前推,人数依次增加如果1-3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。3号知道这一点,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。2号的方案会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!

29、飞机加油问题

每个飞机只有一个油箱, 飞机之间可以相互加油(注意是相互,没有加油机) 一箱油可供一 架飞机绕地球飞半圈。为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机? (所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)

解答: 猜想验证

猜想:

至 少需要出动5 架飞机。思路是这样的,一架飞机要想完成绕地球一周的飞行,至少需要别的飞机给它提供1箱油。最划算的办法显然是,派飞机和它结伴飞行前四分之一周以及后四分之一周,(因为这两段路程距离基地近所花代价小。)由它独立飞行中间的半程。必须保 证两个加油点,前四分之一处,加满,后四分之一点,及时补充。那么必须有两架飞机与目标机结伴飞行四分之一周,这两架飞机需要做折返飞行,正好花费2 箱油。所以补充油的任务实际上该由另外两架飞机完成。这两架飞机飞八分之一周,做折返飞,正好富余1 箱油。因此,5 架飞机刚好完成任务。到了此时,问题只考虑了一半。能够提供多少油并不意味着就能够全部接受,受到结伴飞行的距离,即腾 出的油箱空间所限制。而以下做法正 好可以满足此条件。

3架飞机同时从机场出发,飞行八分之一周,各耗油四分之一。此时某架飞机给其余两架补满油,自己返回基地。另一机和目标机结伴,飞至四分之一周,给目标机补满油,自己返回。目标机独自飞行半周,与从基地反向出发的一机相遇,2 机将油平分,飞至最后八分之一 处,与从基地反向出发的另一机相遇,各分四分之一油,返回。

复制代码

30、汽车加油问题

一辆载油500升的汽车从A开往1000公里外的B,已知汽车每公里耗油量为1升,A处有无穷多的油,其他任何地点都没有油,但该车可以在任何地点存放油以备中转,问从A到B最少需要多少油

解答: 严格证明该模型最优比较麻烦,但确实可证,大胆猜想是解题关键。题目可归结为求数列 an=500/(2n 1) n=0,1,2,3......的和Sn什么时候大于等于1000,解得n>6当n=6时,S6=977.57,所以第一个中转点离起始位置距离为1000-977.57=22.43公里.所以第一次中转之前共耗油22.43(27 1)=336.50升此后每次中转耗油500升,所以总耗油量为7*500 336.50=3836.50升。

31、种子被摔破问题

一种杯子,若在第N层被摔破,则在任何比N高的楼层均会破,若在第M层不破,则在任何比M低的楼层均会破,给你两个这样的杯子,让你在100层高的楼层中测试,要求用最少的测试次数找出恰巧会使杯子破碎的楼层。

32、两个人猜数问题

教授选出两个从2到9的数,把它们的和告诉学生甲,把它们的积告诉学生乙,让他们轮流猜这两个数,甲说:"我猜不出", 乙说:"我猜不出", 甲说:"我猜到了", 乙说:"我也猜到了", 问这两个数是多少?

答:3和4。设两个数为n1, n2, n1>=n2, 甲听到的数为n=n1 n2, 乙听到的数为m=n1*n2, 证明 n1=3, n2=4是唯一解。证明: 要证以上命题为真, 不妨先证n=7

1)必要性:

- i) n> 5 是显然的,因为n <4不可能,n=4或者n=5甲都不可能回答不知道
- ii) n> 6 因为如果n=6的话,那么甲虽然不知道(不确定2 4还是3 3)但是无论是2,4还是3,3乙都不可能说不知道(m=8或者m=9的话乙说不知道是没有道理的)
- iii) n < 8 因为如果n > = 8的话,就可以将n分解成 $n = 4 \times 10$ 和 n = 6 (x 2),那么m可以是4x也可以是6(x 2)而4x = 6(x 2)的必要条件是x = 6即n = 10,那样n又可以分解成n = 2,所以总之当n > 1 = 8时,n至少可以分解成两种不同的合数之和,这样乙说不知道的时候,甲就没有理由马上说知道。以上证明了必要性。

2)充分性

当n=7时, n可以分解成25或34

显然25不符合题意, 舍去, 容易判断出34符合题意, m=12, 证毕

于是得到n=7 m=12 n1=3 n2=4是唯一解。

33、猴子吃香蕉问题

一个小猴子边上有100 根香蕉,它要走过50 米才能到家,每次它最多搬50 根香蕉,每走1 米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。

解答:设 小猴从0 走到50,到A 点时候他可以直接抱香蕉回家了,可是到A 点时候他至少消耗了3A 的香蕉(到A,回0,到A),一个限制就是小猴只能抱50 只香蕉,那么在A 点小猴最多49 只香蕉.100-3A=49,所以A=17.这样折腾完到家的时候香蕉剩100-3A-(50-A)=50-2A=16.

34、拿硬币问题(与问题4类似)

16 个硬币, A 和B 轮流拿走一些, 每次拿走的个数只能是1, 2, 4 中的一个数。谁最后拿硬币谁输。

问: A 或B 有无策略保证自己赢?

博弈类问题, 分清两概念

必胜态:有一种方法导致下一状态为必败态必败态:每一种方法导致下一状态为必胜态

解决办法: 递推

1: 必败

2: 必胜: 取1,导致变为1状态(必败)

3: 必胜: 取2-> 必败态

4: 必败: 取1或2或4均导致必败态或直接失败以些类推知16为必败态,即后手必胜

剩2个时,取1个必胜;

剩3个时,取2个必胜;

剩4个时,如果对手足够聪明则必败;

剩5 个时, 去1 个必胜...

记作 2(1) 3(2) 4(x) 5(1) 6(2) 7(x) 8(1) ...

从中找出规律:

当剩余个数K=3N-2,N 为自然数时,只要对手足够聪明则必败.

当K=3N-1 时, 有必胜策略: 取1 个;

当K=3N 时, 有必胜策略: 取2个

所以, 当16个时, 后取者有必胜策略.

35、平均分问题(与问题5类似)

有三个酒杯,其中两个大酒杯每个可以装8两酒,一个可以装3两酒。现在两个大酒杯都装满了酒,只用这三个杯子怎么把酒平均的分给4个人喝?

解答:用一个三位数表示三个杯,880,前两个为8升的杯最后一个3升。开始:880_853A 喝掉3升变为:850_823_B 喝掉2升为:803_830_533_560_263_281A 喝掉1升(A 已经喝4升完毕)为:280_253_550_523_820_802_703_730_433_460_163_181CD 各喝一升为:080_053_350_323CD各喝3升B 喝2升,分水结束,ABCD 四人各喝4升。

36、爱因斯坦提出的问题

爱因斯坦出了一道题,他说世界上有90%的人回答不出,看看你是否属于10%。 内容:

- 1、有5栋5种颜色的房子
- 2、每一位房子的主人国籍都不同
- 3、这五个人每人只喝一个牌子的饮料,只抽一个牌子的香烟,只养一种宠物
- 4、没有人有相同的宠物,抽相同牌子的烟,喝相同牌子的饮料

已知条件:

- 1、英国人住在红房子里
- 2、瑞典人养了一条狗
- 3、丹麦人喝茶
- 4、绿房子在白房子的左边
- 5、绿房子主人喝咖啡
- 6、抽PALL MALL 烟的人养了一只鸟
- 7、黄房子主人抽DUNHILL烟
- 8、住在中间房子的人喝牛奶
- 9、挪威人住在第一间房子
- 10、抽混合烟的人住在养猫人的旁边
- 11、养马人住在抽DUNHILL烟人的旁边
- 12、抽BLUE MASTER烟的人喝啤酒
- 13、德国人抽PRINCE烟
- 14、挪威人住在蓝房子旁边
- 15、抽混合烟的人的邻居喝矿泉水

问题: 谁养鱼?

解答过程:(这种题,耐心想多几次比看答案来得简单些)

已知条件:

首先这9, 1, 2, 3, 13可以先填, 只是卡片排列顺序还不能确定

- 9、挪威人住在第一间房子
- 1、英国人住在红房子里
- 2、瑞典人养了一条狗
- 3、丹麦人喝茶
- 13、德国人抽PRINCE烟
- 14、挪威人住在蓝房子旁边
- 4、绿房子在白房子的左边

这里得出房子颜色排列:挪威色->蓝色->绿色->白色->红色 或挪威色->蓝色->红色->绿色->白色(

前提左边表示第一个房子)

这里推理出错了,绿色在白色左边并不表示相邻的左边

所以顺序为:挪威色-蓝色-绿色-白色-红色或挪威色-蓝色-绿色-红色-白色或挪威色-蓝色-红色-绿

色-白色

7、黄房子主人抽DUNHILL烟

得出挪威人住的是黄色房子,并且挪威人抽DUNHILL烟

所以顺序为:黄色-蓝色-绿色-白色-红色或黄色-蓝色-绿色-红色-白色或黄色-蓝色-红色-绿色-白色 并且有:黄色挪威DUNHILL

11、养马人住在抽DUNHILL烟人的旁边

得出养马人住在挪威人右边, 因为假设了挪威的第一间房子是在最左边

得出: 黄色挪威DUNHILL 蓝色马 ... 红色英国

5、绿房子主人喝咖啡

8、住在中间房子的人喝牛奶

得出应该是红色房子在中间,并且有英国人喝牛奶

颜色排列: 黄色->蓝色->红色->绿色->白色

可以得出 黄色挪威DUNHILL,蓝色养马,红色英国牛奶,绿色喝咖啡,白色在最右边,顺序已经固定

好

10、抽混合烟的人住在养猫人的旁边

15、抽混合烟的人的邻居喝矿泉水

由于第一间(黄挪威)以及中间(红英牛奶)固定,所以抽混合烟的人在最后(最右边)

那么得:绿色咖啡猫 白色混合烟

由于红色英国喝牛奶绿色喝咖啡,所以白色不可能抽混合烟,而黄色挪威抽DUNHILL,所以是蓝色养

马抽混合烟

得到: 黄色挪威矿泉水DUNHILL, 蓝色马混合烟, 红色英国牛奶, 绿色咖啡, 白色

并且: 黄色挪威矿泉水猫DUNHILL 或 红色英国牛奶猫

12、抽BLUE MASTER烟的人喝啤酒

排除易得:这个就是白色啤酒BLUE MASTER

得到:黄色挪威矿泉水DUNHILL,蓝色马混合烟,红色英国牛奶,绿色咖啡,白色啤酒BLUE MASTER

根据丹麦茶

得到:黄色挪威矿泉水DUNHILL,蓝色丹麦茶马混合烟,红色英国牛奶,绿色咖啡,白色啤酒BLUE

MASTER

根据德国PRINCE

得到:绿色德国咖啡PRINCE

得到:黄色挪威矿泉水DUNHILL,蓝色丹麦茶马混合烟,红色英国牛奶,绿色德国咖啡PRINCE,白色

啤酒BLUE MASTER

根据瑞典人养狗

得到: 白色瑞典啤酒狗BLUE MASETER

得到:黄色挪威矿泉水DUNHILL,蓝色丹麦茶马混合烟,红色英国牛奶,绿色德国咖啡PRINCE,白色

瑞典啤酒狗BLUE MASTER

6、抽PALL MALL 烟的人养了一只鸟

得到: 红色英国牛奶鸟PALLMALL

得到:黄色挪威矿泉水DUNHILL,蓝色丹麦茶马混合烟,红色英国牛奶鸟PALLMALL,绿色德国咖啡

PRINCE, 白色瑞典啤酒狗BLUE MASTER

由前面10,15得到的猫的可能性

得到:黄色挪威矿泉水猫DUNHILL,蓝色丹麦茶马混合烟,红色英国牛奶鸟PALLMALL,绿色德国咖啡

PRINCE, 白色瑞典啤酒狗BLUE MASTER 最后得到: 鱼是绿色德国咖啡鱼PRINCE

37、连续整数之和为1000的共有几组?

首先1000为一个解。连续数的平均值设为x,1000必须是x的整数倍。假如连续数的个数为偶数个,x就不是整数了。x的2倍只能是5,25,125才行。因为平均值为12.5,要连续80个达不到。125/2?62.5是可以的。即62,63,61,64,等等。连续数的个数为奇数时,平均值为整数。1000为平均值的奇数倍。1000?2×2×2×5×5×5;x可以为2,4,8,40,200排除后剩下40和200是可以的。所以答案为平均值为62.5,40,200,1000的4组整数。

专家意见:

这类题目多出现于跨国企业的招聘面试中,对考察一个人的思维方式及思维方式转变能力有极其明显的作用,而据一些研究显示,这样的能力往往也与工作中的应变与创新状态息息相关。所以回答这些题目时,必须冲破思维定式,试着从不同的角度考虑问题,不断进行逆向思维,换位思考,并且把题目与自己熟悉的场景联系起来,切忌思路混乱。

38

两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?

39

1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

40

10个箱子,每个箱子10个苹果,其中一个箱子的苹果是9两/个,其他的都是1斤/个。要求利用一个秤,只秤一次,找出那个装9两/个的箱子。

41、囚犯活命问题

5个囚犯,分别按1-5号在装有100颗绿豆的麻袋抓绿豆,规定每人至少抓一颗,而抓得最多和最少的人将被处死,而且,他们之间不能交流,但在抓的时候,可以摸出剩下的豆子数。问他们中谁的存活几率最大?

提示:

- 1,他们都是很聪明的人
- 2,他们的原则是先求保命,再去多杀人
- 3,100颗不必都分完
- 4, 若有重复的情况,则也算最大或最小,一并处死

42、山羊问题

卢姆教授说:"有一次我目击了两只山羊的一场殊死决斗,结果引出了一个有趣的数学问题。我的一位邻居有一只山羊,重54磅,它已有好几个季度在附近山区称王称霸。后来某个好事之徒引进了一只新的山羊,比它还要重出3磅。 开始时,它们相安无事,彼此和谐相处。可是有一天,较轻的那只山羊站在陡峭的山路顶上,向它的竞争对手猛扑过去,那对手站在土丘上迎接挑战,而挑战者显然拥有居高临下的优势。不幸的是,由于猛烈碰撞,两只山羊都一命呜呼了。

解答:现在要讲一讲本题的奇妙之处。对饲养山羊颇有研究,还写过书的乔治·阿伯克龙比说道:"通过反复实验,我发现,动量相当于一个自20英尺高处坠落下来的30磅重物的一次撞击,正好可以打碎山羊的脑壳,致它死命。"如果他说得不错,那么这两只山羊至少要有多大的逼近速度,才能相互撞破脑壳?你能算出来吗?

43、酒肆老板娘的难题

据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?

44

在9个点上画10条直线,要求每条直线上至少有三个点?

45

12个球和一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢? (注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑) 你有一桶果冻,其中有黄色、绿色、红色三种,闭上眼睛抓取同种颜色的两个。抓取多少个就可以确定你肯定有两个同一颜色的果冻?

47、算指针的重合次数

在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你 怎样算出来的?

48

3个球外观相同,其中有一个球不一样重,如何用天平称三次找出这个球?

49

1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

50、国王与预言家

在临上刑场前,国王对预言家说:"你不是很会预言吗?你怎么不能预言到你今天要被处死呢?我给你一个机会,你可以预言一下今天我将如何处死你。你如果预言对了,我就让你服毒死;否则,我就绞死你。"

但是聪明的预言家的回答,使得国王无论如何也无法将他处死。

请问,他是如何预言的?

51、奇怪的村庄

某地有两个奇怪的村庄,张庄的人在星期一、三、五说谎,李村的人在星期二、四、六说谎。在其他日子他们说实话。一天,外地的王从明来到这里,见到两个人,分别向他们提出关于日期的题。两个人都说:"前天是我说谎的日子。"

如果被问的两个人分别来自张庄和李村,那么这一天是星期几?

52、监狱问题

监狱里有100个房间,每个房间内有一囚犯。一天,监狱长说,你们狱房外有一电灯,你们在放风时可以控制这个电灯(熄或亮)。每天只能有一个人出来放风,并且防风是随机的。如果在有限时间内,你们中的某人能对我说:"我敢保证,现在每个人都已经至少放过一次风了。"我就放了你们!

问囚犯们要采取什么策略才能被监狱长放掉?如果采用了这种策略,大致多久他们可以被释放?约定好一个人作为报告人(可以是第一个放风的人)

解答:

- 1、报告人放风的时候开灯并数开灯次数
- 2、其他人第一次遇到开着灯放风时,将灯关闭
- 3、当报告人第100次开灯的时候,去向监狱长报告,要求监狱长放人......

按照概率大约30年后(10000天)他们可以被释放

(好像不必100次)

53、终生受用的一个题

你开着一辆车。

在一个暴风雨的晚上。

你经过一个车站。

有三个人正在焦急的等公共汽车。

- 一个是快要临死的老人,他需要马上去医院。
- 一个是医生,他曾救过你的命,你做梦都想报答他。

还有一个女人/男人,她/他是你做梦都想嫁/娶的人,也许错过就没有了。

但你的车只能在坐下一个人, 你会如何选择?

前提: 国外某公司的面试题

答案:

老人代表你有颗怜悯易感动的心; 医生代表感恩的心; 喜欢的人是代表爱心; 假如是我,我将下车和我爱的人在一起 让医生送老人去医院.