Задача А. Компоненты связности

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан неориентированный невзвешенный граф. Необходимо посчитать количество его компонент связности и вывести их.

Формат входных данных

Во входном файле записано два числа N и M (0 < $N \le 100000, 0 \le M \le 100000$). В следующих M строках записаны по два числа i и j (1 $\le i, j \le N$), которые означают, что вершины i и j соединены ребром.

Формат выходных данных

В первой строчке выходного файла выведите количество компонент связности. Далее выведите сами компоненты связности в следующем формате: в первой строке количество вершин в компоненте, во второй - сами вершины в отсортированном порядке.

Пример

стандартный вывод
3
3
1 2 3
2
4 5
1
6

Задача В. Есть ли цикл?

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан ориентированный граф. Требуется определить, есть ли в нем цикл.

Обратите внимание на третий тест и подумайте, почему в нем нет цикла. Можно вспомнить рассуждение про красные и синие ребра с лекции и подумать, что меняется, если ребра становятся ориентированными.

Формат входных данных

В первой строке вводится число n - количество вершин и m - количество ребер. $(1 \le n, m \le 10^5)$. Далее в m строках следует по 2 числа u, v - вершины графа, соединенные ребром.

Формат выходных данных

Выведите 0, если в заданном графе нет цикла, и 1, если он есть.

Примеры

стандартный ввод	стандартный вывод
4 4	1
1 2	
2 3	
3 4	
4 1	
3 2	0
1 2	
1 3	
3 3	0
1 2	
2 3	
1 3	

Задача С. Один голодный конь

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На шахматной доске $N \times N$ в клетке (x_1, y_1) стоит голодный шахматный конь. Он хочет попасть в клетку (x_2, y_2) , где растет вкусная шахматная трава. Какое наименьшее количество ходов он должен для этого сделать?

Формат входных данных

На вход программы поступает пять чисел: $N, x_1, y_1, x_2, y_2 \ (5 \leqslant N \leqslant 20, 1 \leqslant x_1, y_1, x_2, y_2 \leqslant N)$. Левая верхняя клетка доски имеет координаты (1,1), правая нижняя -(N,N).

Формат выходных данных

В первой строке выведите единственное число K — наименьшее необходимое число ходов коня. В каждой из следующих K+1 строк должно быть записано 2 числа — координаты очередной клетки в пути коня.

Пример

стандартный вывод
1
1 1
3 2

Задача D. Теория чисел

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Найдите минимальную возможную сумму цифр в десятичной записи числа такого, которое делится на K.

Формат входных данных

В первой строке входных данных содержится целое число $K\ (2\leqslant K\leqslant 10^5)$

Формат выходных данных

В единственной строке выходных данных выведите ответ на задачу.

Примеры

стандартный ввод	стандартный вывод
6	3
41	5
79992	36

Задача Е. Кратчайший путь

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан ориентированный ациклический взвешенный граф. Требуется найти в нем кратчайший путь из вершины s в вершину t.

В графе бывают отрицательные ребра, поэтому алгоритм Дейкстры работать не будет. Но вы можете воспользоваться тем, что это ориентированный граф без циклов, и придумать, в каком порядке можно релаксировать расстояния

Формат входных данных

Первая строка входного файла содержит четыре целых числа n, m, s и t — количество вершин, дуг графа, начальная и конечная вершина соответственно.

Следующие m строк содержат описания дуг по одной на строке. Ребро номер i описывается тремя натуральными числами b_i , e_i и w_i — началом, концом и длиной дуги соответственно $(1 \le b_i, e_i \le n, |w_i| \le 1\,000)$.

Входной граф не содержит циклов и петель.

 $1 \le n \le 100\,000, \ 0 \le m \le 200\,000.$

Формат выходных данных

Первая строка выходного файла должна содержать одно целое число — длину кратчайшего пути из s в t.

Если пути из s в t не существует, выведите «Unreachable».

Пример

стандартный ввод	стандартный вывод
2 1 1 2	-10
1 2 -10	