UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE - UERN

Departamento de Computação

0805221-1 – Algoritmos e Programação

LISTA DE EXERCÍCIOS (Unidade3)

Estrutura de Dados Homogêneas – Vetores e Matrizes

- 1. Escreva algoritmos que resolvam os seguintes problemas:
 - a) Leia um vetor de 50 posições e o compacte, ou seja, elimine as posições com valor zero avançando uma posição, com os com os valores subsequentes do vetor. Dessa forma todos "zeros" devem ficar para as posições finais do vetor.
 - b) Escrever um algoritmo que gera os 10 primeiros números primos acima de 100 e os armazena em um vetor de X[10] escrevendo, no final, o vetor X.
 - c) Escreva um algoritmo que leia os vetores Op1, Op2 e Op, com 30 posições. Em Op1 e Op2 você deve armazenar números inteiros ≥ a zero, digitados pelo usuário, e em Op você deve armazenar +, -, * ou /. O seu programa deve calcular o valor de Op1 Op Op2 correspondentes ao mesmo índice em cada um dos vetores e armazenar o resultado em um quarto vetor. Ao final mostre cada operação realizada, com o respectivo resultado.
 - d) Escreva um algoritmo que leia um vetor de 13 elementos inteiros, que é o Gabarito de um teste da loteria esportiva, contendo os valores 1 (coluna 1), 2 (coluna 2) e 3 (coluna do meio). Leia, a seguir, para cada um dos 100 apostadores, o número do seu cartão e um vetor de Respostas de 13 posições. Verifique para cada apostador o número de acertos, comparando o vetor de Gabarito com o vetor de Respostas. Escreva o número do apostador e o número de acertos. Se o apostador tiver 13 acertos, mostrar a mensagem "Ganhador".
 - e) Considere uma matriz de distância entre cidades 6 x 6:

	1.Natal	2.Mossoró	3.Assu	4.Caicó	5.Macaiba	6.Parnamirim
1.Natal	0	400	300	250	150	100
2.Mossoró	400	0	100	250	300	350
3.Assu	300	100	0	200	250	280
4.Caicó	250	250	200	0	300	380
5.Macaíba	150	300	250	300	0	50
6.Parnamirim	100	350	280	380	50	0

Considere também um vetor de viagem indo de Mossoró até Natal pela seguinte rota:

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE - UERN

Departamento de Computação

0805221-1 – Algoritmos e Programação

Indice	1	2	3	4	5	6
Cidade	2	4	3	5	6	1

Faça um programa que leia a matriz e o vetor e calcule a distância percorrida durante a viagem.

- f) Leia uma matriz 100 x 10 que se refere respostas de 10 questões de múltipla escolha, referentes a 100 alunos. Leia também um vetor de 10 posições contendo o gabarito d e respostas que podem ser a, b, c ou d. Seu programa deverá comparar as respostas de cada candidato com o gabarito e emitir um vetor Resultado, contendo a pontuação correspondente.
- g) Leia duas matrizes 20 x 20 e escreva os valores da primeira que ocorrem em qualquer posição da segunda.
- h) Leia uma matriz 8×8 e a transforme numa matriz triangular inferior , atribuindo zero a todos os elementos acima da diagonal principal, escrevendo-a ao final.
- i) Faça um algoritmo para realizar a multiplicação de matrizes A e B e armazenar o resultado na matriz C, ao final, mostrar as 3 matrizes!

$$C_{(m \times p)} = A_{(m \times n)} X B_{(n \times p)}$$