SVKM's NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: B. Tech (Computer)

Year: III

Semester: V

Batch: 2013-2014

Academic Year: 2015-2016

Subject: Digital Signal Processing

Date: 27/11/2015

Marks : 100 Time

Duration: 3 (h)

Re-Examination

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the answer book, which is provided for their use

- 1. Question No. 1 is compulsory
- 2. Out of the remaining questions, attempt any four questions
- 3. In all 5 questions to be attempted
- 4. Answer to each question must be started on a new page
- 5. Figures on the right indicate full marks
- Q1 Determine whether the following are energy or power signals 5
 - i. $x[n] = Ae^{j\omega n}$
 - $x[n] = (-0.5)^n u[n]$
 - Explain Frequency warping effect in bilinear transformation? 5
 - A designer has available a number of eight point FFT chips. Show explicitly how he 5 should interconnect three such ships in order to compute a 24-point DFT.
 - Compute the convolution of $x[n] = \{1, 1, 0, 1, 1\}$ and $h[n] = \{1, 2, 3, 4\}$ 5
- O2If $x[n] = \{1, 2, 3, 4\}$, find X[k]. Using this result and not otherwise, find the DFT of 10 $x[n] = \{4, 1, 2, 3\}$
 - b. Find the impulse response for the causal system 10 y[n] - y[n-1] = x[n] + x[n-1]
- Q3 a. Design a digital Butterworth filter that satisfies the following constraint using Bilinear 10 Transformation. Assume T = 1s. $0 \le \omega \le \pi/2$

$$0.707 \le |H(e^{j\omega})| \le 1$$
 $0 \le \omega \le \pi/$
 $|H(e^{j\omega})| \le 0.2$ $3\pi/4 \le \omega \le \pi$

b. Prove a LTI system is stable if its impulse response is absolutely summable and hence determine the range of values of the parameter a for which the LTI system with impulse response

$$h[n] = a^n u[n]$$

is stable

Compute DFT of the following sequence using DIF-FFT algorithm. Q4 10 $x[n] = \{3, 1, 3, 1, 3, 1, 3, 1\}$

b. Determine the z-transform of the signal
$$x[n] = -a^n u[-n-1]$$

Perform circular convolution for the following sequences using DFT/IDFT Q5

$$x[n] = \{1, 1, 0, 0\}$$

$$y[n] = \{1, 2, 1, 2\}$$

Find DF-I, DF-II, Cascade and Parallel form for the following difference equation y[n] = -0.1y[n-1] + 0.72y[n-2] + 0.7x[n] + 0.252x[n-2]

10

10

A low pass filter is to be designed with the following specifications

10

$$H_d(\omega) = e^{-j2\omega} - \pi/4 \le \omega \le \pi/4$$

$$= 0 \qquad \qquad \pi/4 \le |\omega| \le \pi$$

Determine the filter coefficient h[n], if the window function is defined as

$$w[n] = 1$$
 $0 \le n \le 4$
= 0 otherwise

Determine the frequency response $H(\omega)$ of the designed filter.

Find x[n] considering all possible region of convergence

10

$$X[z] = \frac{10z}{(z-1)(z-2)}$$

Computer the correlation for the following pair of signal and comment on the result 10 Q7 obtained

i.
$$x_1[n] = \{1, 2, 3, 4\}$$

$$h_1[n] = \{4, 3, 2,$$

i.
$$x_1[n] = \{1, 2, 3, 4\}$$
 $h_1[n] = \{4, 3, 2, 1\}$
ii. $x_2[n] = \{1, 2, 3, 4\}$ $h_2[n] = \{1, 2, 3, 4\}$

$$h_2[n] = \{1, 2, 3, 4\}$$

Consider the following analog sinusoidal signal

10

$$x_a(t) = 3\sin(100\pi t)$$

- Sketch the signal $x_a(t)$ for $0 \le t \le 30$ ms
- The signal $x_a(t)$ is sampled with a sampling rate $F_s = 300$ sampes/s. Determine ii. the frequency of the discrete-time signal, $x[n] = x_a[nT]$, $T = \frac{1}{F_c}$, and show that is it periodic. ******