Assignment 1 - Report

Stephen Komolafe (21336975)

In order to successfully implement the Arithmetic Logic Unit (ALU), several modules from previous labs had to be used. These modules include the 6bit_ripple_adder.v made in lab C, along with full_adder.v, eq1.v, and eq2.v sourced from Blackboard. Additionally, new modules such as FXN.v, ALU.v, ALU_Testbench.v, a 2's complement module for the ripple adder (SB_2sComp.v), and arithmetic function modules (AltB.v, AxnorB.v, etc) were created to ensure optimal ALU functionality. During the ALU testing phase, individual test vectors were formulated for each arithmetic operation, with 6-bit binary values assigned to inputs A and B. Given that a test vector was made for every arithmetic operation, a total of eight test vectors are present, each represented by a 3-bit binary value ranging from 000 to 111. The output for each operation is displayed as a 6-bit binary X value. The graphical representation of these operations can be observed in the waveform below.

Figure 1. ALU Testbench Waveform in Binary

Each test vector performed as anticipated, yielding reasonable outputs for each arithmetic operation. To improve my testing approach, I would consider refining my test strategy for future labs by conducting multiple tests for each operation. However, considering the current compactness of the waveform, with only one test per operation, doubling or tripling the number of tests may introduce challenges in interpreting the waveform.

Synthesis and Implementation

The switch and LED pins in the constraints file Basys3_Master.xdc, provided through Blackboard, underwent adjustments to bring it in line with the inputs and outputs specified in the design. Following this, the design was synthesized and implemented in order to generate the bitstream necessary for programming the Basys-3 Board. Once programmed the design can be demonstrated on the board.

<u>Demo</u>

(Note: this is w.r.t pin values being read from right to left [i.e. (V17 \rightarrow V15) = V17, V16, W16, W17, W15, V15]) The six rightmost switches on the board (V17 \rightarrow V15) control the value of each bit in the 6-bit binary A input. The six bits to the left of V15 (W14 \rightarrow R3) control the value of each bit in the 6-bit binary B input and the three leftmost switches on the board control each bit of the 3-bit binary fxn input in order to indicate which arithmetic operation to use (A+B, A-B, A XNOR B, etc.). That leaves the W2 switch, which serves no purpose. The six rightmost LEDs on the board (LD0 \rightarrow LD5) are used to depict the value of X outputted.

Figure 2. Basys-3 Board showing specific switches and LEDs used to control/Display ALU input and output

While controlling the board with the demonstrative guidelines outlined in the preceding paragraph in mind, the examination of the test vectors proceeded as follows:

Test Vectors

Test Vector 1. (A)

Α	000001
В	000110
fxn	000
Χ	000001

Test Vector 2. (B)

Α	111100
В	111001
fxn	001
Х	111001

Test Vector 3. (-A)

Α	000101
В	110110
fxn	010
Χ	111011

Test Vector 4. (-B)

Α	101100
В	010000
fxn	011
Χ	110000

Test Vector 5. (A<B)

Α	001011
В	010010
fxn	100
X	000001

Test Vector 6. (AxnorB)

Α	101101
В	100100
fxn	101
Χ	110110

Test Vector 7. (A+B)

Α	001111
В	111001
fxn	110
Χ	001000

Test Vector 8.(A-B)

Α	110111
В	011110
fxn	111
Χ	011001

APPENDIX

• fxn input controls for X output (Assignment 1 Description)

fxn	X[5:0]
000	Α
001	В
010	-A
011	-В
100	A <b (is="" a="" b)<="" less="" td="" than="">
101	(A nxor B) (Bitwise XNOR)
110	A+B
111	A-B

• Waveform (Signed Decimal)

Waveform (Full)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10111
✓ MA[5x] 000001 111100 000101 101101 001111 11 III 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </th <th></th>	
✓ WA[5s] 000001 111100 000101 101101 001111 1 11 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0	
0	
0	
1	
✓ M B [5:0] 000110 111001 110110 010000 010010 101000 111001 0 10 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11110
0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 000 001 010 011 100 101 110 110 110	
✓ № fx0 000 000 001 010 011 100 101 110	
18 0	111
14 0	
0	
	11001
18 0	
18 O	
18 0 18 0	
18 1	

Vivado Hierarchy

∨ □ Constraints (1) ✓ ● eq_bit0 : eq2 (eq2.v) (2) ∨ 🗁 constrs_1 (1) eq_bit0_unit : eq1 (eq1.v) ■ Basys3_Master.xdc ea bit1 unit: ea1 (ea1.v) ∨ □ Simulation Sources (2) ✓ ● eq_bit1 : eq2 (eq2.v) (2) eq_bit0_unit : eq1 (eq1.v) ✓ ■ ∴ ALU_TestBench (ALU_Testbench.v) (1) eq_bit1_unit:eq1 (eq1.v) ✓ ■ uut : ALU (ALU.v) (7) ∨ ■ eq_bit2 : eq2 (eq2.v) (2) eq bit0 unit : eq1 (eq1.v) ✓ ■ I minus A: SB 2sComp (SB 2sComp.v) (1) eq_bit1_unit:eq1 (eq1.v) ✓ ■ I_adder: SB_ripple_adder (6bit_ripple_adder.v) (6) ✓ ● eq_bit3 : eq2 (eq2.v) (2) adder_1 : FullAdder (full_adder.v) eq_bit0_unit : eq1 (eq1.v) adder_2 : FullAdder (full_adder.v) eq_bit1_unit : eq1 (eq1.v) adder_3 : FullAdder (full_adder.v) I_AxnorB : AxnorB (AxnorB.v) adder_4 : FullAdder (full_adder.v) ✓ ■ I_ADD : SB_ripple_adder (6bit_ripple_adder.v) (6) adder_5 : FullAdder (full_adder.v) adder_1 : FullAdder (full_adder.v) adder_6 : FullAdder (full_adder.v) adder_2 : FullAdder (full_adder.v) ✓ ■ I_minus_B: SB_2sComp (SB_2sComp.v) (1) adder_3 : FullAdder (full_adder.v) ✓ ■ I_adder: SB_ripple_adder (6bit_ripple_adder.v) (6) adder 4 : FullAdder (full adder.v) adder_1 : FullAdder (full_adder.v) adder 5 : FullAdder (full adder.v) adder_2 : FullAdder (full_adder.v) adder_6 : FullAdder (full_adder.v) adder_3 : FullAdder (full_adder.v) ✓ ■ I_SUB: SB_ripple_adder (6bit_ripple_adder.v) (6) adder_4 : FullAdder (full_adder.v) adder_1 : FullAdder (full_adder.v) adder_5 : FullAdder (full_adder.v) adder_2 : FullAdder (full_adder.v) adder_6 : FullAdder (full_adder.v) adder_3 : FullAdder (full_adder.v) ✓ ■ I_AltB : AltB (AltB.v) (1) adder_4 : FullAdder (full_adder.v) adder 5 : FullAdder (full adder.v) ✓ ■ I_bit8GTEQ: bit8GTEQ (bit8GTEQ.v) (8) adder_6 : FullAdder (full_adder.v) gr_bit0 : bit2GT (bit2GT.v) I_FXN : FXN (FXN.v) gr_bit1 : bit2GT (bit2GT.v) gr_bit2 : bit2GT (bit2GT.v) gr_bit3 : bit2GT (bit2GT.v)

• File Directory Structure

• Vivado - Elaborate Design

• Vivado - Implemented Device

• <u>Vivado – Synthesized Design Schematics</u>

Previous Submissions – Greater-than*

[*A greater-than report was not previously submitted, however Verilog code that would have been utilised in that lab was created in the form of bit8GTEQ.v and bit2GT.v while making the ALU for Assignment 1]

bit8GTEQ.v

```
1 omodule bit8GTEQ(
        input wire[7:0] c, d,
output wire GTEQ
                                     // 8-bit input vectors which represent A and B respectively
// single bit output
        wire e0, e1, e2, e3, q0, q1, q2, q3;
                                                  //e->equal | q->greater
        // bits 0-3 of 2-bit greater-than modules compare four sets of bits from 8-bit c and d
       bit2GT gr_bit0 (.a(c[1:0]), .b(d[1:0]), .AgrB(g0)); //set 1 (bit 1 to 2)
       bit2GT gr_bit1 (.AgrB(g1), .a(c[3:2]), .b(d[3:2])); //set 2 (bit 3 to 4) bit2GT gr_bit2 (.AgrB(g2), .a(c[5:4]), .b(d[5:4])); //set 3 (bit 5 to 6)
       bit2GT gr_bit3 (.AgrB(g3), .a(c[7:6]), .b(d[7:6])); //set 4 (bit 7 to 8)
       // bits 0-3 of 2-bit equal-to modules compare four sets of bits from 8-bit c and d
        eq2 eq_bit0 (.a(c[1:0]), .b(d[1:0]), .aeqb(e0)); //set 1 (bit 1 to 2)
       eq2 eq_bit1 (.aeqb(e1), .a(c[3:2]), .b(d[3:2])); //set 2 (bit 3 to 4) eq2 eq_bit2 (.aeqb(e2), .a(c[5:4]), .b(d[5:4])); //set 3 (bit 5 to 6)
       eq2 eq_bit3 (.aeqb(e3), .a(c[7:6]), .b(d[7:6])); //set 4 (bit 7 to 8)
       assign EQ = e3 & e2 & e1 & e0;
                                            // calculate equal-to result for 8-bit comparison
       assign GTEQ = EQ | GT; // output final result [1 = c greater than or equal to d] [0 = c less than d]
25 🖨 endmodule
```

bit2GT.v

```
input wire[1:0] a, b, // 2-bit inputs a and b
        output wire AgrB
3
                                 // output shows if A greater than B
    );
       wire [0:2] prod;
                           // 3 wires for product terms
8
                                                     // prod-term0: a[1] AND (NOT b[1])
9
       assign prod[0] = a[1] & ~b[1];
      assign prod[1] = a[0] & ~b[1] & ~b[0]; // prod-term1: a[0] AND (NOT b[1]) AND (NOT b[0])
assign prod[2] = a[1] & a[0] & ~b[0]; // prod-term2: a[1] AND a[0] AND (NOT b[0])
11
       assign AgrB = prod[0] | prod[1] | prod[2]; // OR of all product terms to get output
13
14
15 endmodule
```

<u>Previous Submissions – Adder(Lab C write up)</u>

Test ID	х	У	sel	Cout (exp)	Overflow (exp)	Sum (exp)	Cout (obs)	Overflow (obs)	Sum (obs)	Pass/Fail
1	6'b010101	6'b101010	0	0	0	6'b111111	0	0	6'b111111	Pass
2	6'b001100	6'b110111	1	0	0	6'b010101	0	0	6'b010101	Pass
3	-6'b100001	6'b010010	0	0	1	6'b110001	0	1	6'b110001	Pass
4	6'b111001	6'b100111	1	1	0	6'b010010	1	0	6'b010010	Pass
5	6'b011011	-6'b101101	0	0	1	6'b101110	0	1	6'b101110	Pass
6	6'b110101	6'b011110	1	1	1	6'b010111	1	1	6'b010111	Pass
7	6'b111111	6'b111111	0	1	0	6'b111110	1	0	6'b111110	Pass
8	6'b000000	6'b000000	1	1	0	6'b000000	1	0	6'b000000	Pass
9	-6'b011010	-6'b101011	0	1	0	6'b111011	1	0	6'b111011	Pass

The circuit has passed all the tests as the observed output, overflow and sum values to what was expected. If I were to conduct this experiment again, I would increase the amount of test vectors with select as 1 in order to further verify the accuracy of the circuit when preforming 2's complement subtraction.

Testbench Waveform[1-3]

Testbench Waveform[3-6]

Testbench Waveform[6-9]

Block Diagram

