Profiling of Modelica Real-Time Models

Christian Schulze¹ Michaela Huhn¹ Martin Schüler²

¹Technische Universität Clausthal, Institut für Informatik, Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Deutschland {Christian.Schulze | Michaela.Huhn}@tu-clausthal.de

²TLK-Thermo GmbH, Hans-Sommer-Str. 5, 38106 Braunschweig, Deutschland M.Schueler@tlk-thermo.de

- 1. Introduction
- 2. Profiling of Modelica Models
- 3. Implementation
- 4. Case Study
- 5. Conclusion

Introduction

- Usages of RT simulation:
 - Rapid Control Prototyping (RCP)
 - Hardware-in-the-Loop (HiL)
 - Model Predictive Control (MPC)
- Hard real-time (execution time per global solver step <= output step size)</p>
- Overruns due to events and algebraic loops
- Model has to be improved manually
- Profiling helps to trace back the cause of an overrun
- There is no applicable profiling tool
- We want to profile on the RT-Target:
 - Calls to external functions (libraries)
 - Algebraic loops
- We want minimize the overhead caused by profiling

- 1. Introduction
- 2. Profiling of Modelica Models
- 3. Implementation
- 4. Case Study
- 5. Conclusion

Simulation on Real-Time Targets

To execute a model on a Real-Time target one has to:

Profiling

- Tracing vs. Profiling
 - Call-Graph
 - Flat-Profile
- Instrumentation must be added but causes additional work load
- We are profiling by measurement (just like Tau) but are not logging the callee or point in time
- One can draw this information from the general structure of those models

Source code of Modelica models

- Separated into Initialization and Simulation
- Solver step:
 - n₁ integration steps
 - e_I external function calls
 - c₁ additional calculations
 - a_l (non-)linear blocks
 - eal external function calls
 - c_{al} additional calculations
 - 1 output of variables
 - e_O external function calls
 - a_O additional calculations
- flat profiling for each section
- profiling is done separately for each solver step

- 1. Introduction
- 2. Profiling of Modelica Models
- 3. Implementation
- 4. Case Study
- 5. Conclusion

Export of models

Modified Export of models

Modified Source Code

- Major impact on the overhead:
 - Saving profiling data (access to HDD)
- Access to HDD is outsourced to secondary application
- Model application is a Real-Time Kernel Task(SCALE-RT)
 - Prioritized execution
- Model runtime increases at maximum by 4%

Implementation

Communication between user task and model task

- 1. Introduction
- 2. Profiling of Modelica Models
- 3. Implementation
- 4. Case Study
- 5. Conclusion

Case Study

Steady State Continuity Equation

Model runtime over simulated time

Results of Profiling

Global solver step separated into integration steps and output of results

Results of Profiling

 Integration steps separated into external fluid property calculations, nonlinear equations and overhead

Algebraic loops

Closer look on integration steps

Algebraic loops

Non-linear equations assinged to submodels

Mass flow of inlet and outlet

Error due to thermal expansion of liquid

- 1. Introduction
- 2. Profiling of Modelica Models
- 3. Implementation
- 4. Case Study
- 5. Conclusion

Conclusion

- Saving results to HDD should be outsourced to a secondary non-Real-Time application
- Flat profiling by measurement for each step gives more than enough information
- Profiling helps identifying the work load contributions and aids the user optimizing the model

Thank you for your attention!