浙江大学实验报告

专业 1:	机械工程
姓名 1:	徐屹寒
学号 1:	
专业 2:	
姓名 2:	
学号 2:	
日期: _	9.21
地点:	东 3-208

一、实验目的

- 1. 掌握线性电阻和非线性电阻元件伏安特性的测量。
- 2. 掌握电压源外特性和电流源外特性的测量。
- 3. 学习示波器和信号发生器使用方法

二、实验设备

电工电子综合实验台、数字式万用表、示波器和信号发生器、实验元器件

三、实验原理

1. 线性电阻的伏安特性曲线

通过坐标原点的一条直线,电流与电压成正比。电压与电流的比值叫做电阻。

线形电阻的伏安特性曲线

2. 晶体二极管的伏安特性曲线

加在 PN 结两端的电压和流过二极管的电流之间的关系曲线。 当反向电压超过一定数值 U(BR)后,反向电流急剧增加,称之反向击穿。通过器件的电流与电压不成正比。其伏安特性曲线是非线性的。

普通二极管的伏安特性曲线

3. 电压源外特性测量

实际的电压源可以用一个理想电压源 U_s 和一个内阻 R_s 的串联来表示。实际电压源的外特性曲线公式:

$$U = U_s - R_s I$$

4. 电流源外特性测量

实际的电流源可以用一个理想电流源 I_s 和一个内阻 R_s 的并联来表示。实际电流源的外特性曲线公式:

$$I = I_S - \frac{U}{R_S}$$

四、预习要求

预习课本、学在浙大和钉钉群上传的课件、学银在线(学习通)上的视频学习,学习了电工电子学中 伏安特性和电源外特性的相关知识

五、实验内容

1. 测量电路元件的伏安特性

1、操作方法与实验步骤

接图 1 接线,其中 R_x 分别取 1kΩ/2W (万用表测得 0.992kΩ) 的线性电阻、整流二极管,限流电阻 R_s 取 100Ω/2W 电阻。 调节 U_s 的大小,测取元件的电压和电流值,记入表 1 中,并用 MATLAB 绘图。用数 据 点 拟 合 直 线 , 得 到 $I=9.823\times10^{-4}U+2.76\times10^{-5}$,(若无特别说明,采

用国际标准单位制)即 $R_{\scriptscriptstyle X}=1.018k\Omega$

2、实验记录

线性	U/V	0	1.001	2.002	4.000	6.004	8.00	10.00	20.00			
电阻 1kΩ	I/mA	0	0.994	1.95	3.93	5.94	7.96	9.95	19.6			
二极	I/mA	0	0.222	0.383	0.620	0.990	1.99	4.98	10.04	20.0	49.8	100.2
管	U/V	0.3103	0.3883	0.4040	0.4182	0.4327	0.4572	0.4929	0.5259	0.5668	0.632	0.691

表 1

2. 电压源外特性测量

1、操作方法与实验步骤

按图 2 接线,其中 $U_S=10V$, R_S 取 $100\Omega/2W$ 电阻(万用表测得 $R_S=99.7\Omega$),改变负载电阻 R_L 值,测量数据记入表 2,并用 MATLAB 绘图。

2、实验记录

R_L/Ω	200/200.3	100/100.0	50/51.5	20/22.1	0/0.9
标称/实测					
U/V	6.68	4.999	3.361	1.690	0.0013
I / mA	32.6	49.5	65.9	82.8	99.4

拟合直线为U=-99.9I+9.94,即测得内阻为 $R_{\scriptscriptstyle S}=99.9\Omega$

3. 电流源外特性测量

R_L/Ω	开路 (无穷)	100/100.0	50/51.5	20/22.1	0/0.9
标称/实测					
U/V	1.809	0.878	0.5843	0.2908	0.0013
I / mA	0	8.75	11.59	14.36	17.17

拟合直线为 I=-0.0095U+0.0171,即测得内阻为 $R_s=105.3\Omega$

4. 函数信号发生器通道 2 产生一个方波,峰峰值 $V_{PP}=3V$, 频率 f=100Hz ,占空比为 60%。将此信号在示波器通道 1 显示,并用示波器光标测试其周期。

六、实验总结

1、实验结果分析

- 1. 理论上线性电阻的伏安特性曲线是一条过原点的直线,实验数据拟合的直线也接近一条过原点的直线 $I=\frac{1}{R}U$,电阻值为斜率的倒数 $R_{_X}=1.018k\Omega$,与真实值的(0.992kΩ)相对误差为 $\frac{1.018-0.992}{0.992}=2.62\%$
- 2. 理论上晶体二极管的正向特性中,当正向电压较小时,正向电流很小,这一段称为死区。当正向电压超过某一数值后,正向电流开始明显增大,该电压值称为导通电压。硅二极管的导通电压约 0.5 V。二极管正向导通后,电流上升较快,但管压降变化很小。硅二极管的正向压降为 0.6~0.8 V。这些特性都与数据符合的很好。
- 3. 由电压源的外特性曲线公式: $U=U_s-R_sI$ 以及数据拟合的直线U=-99.9I+9.94,可知测得内阻 $R_s=99.9\Omega$,与真实值(99.7 Ω)的相对误差为 $\frac{99.9-99.7}{99.7}=0.2\%$,非常准确
 - 4. 由电流源的外特性曲线公式: $I=I_S-\frac{U}{R_S}$ 以及数据拟合的直线 I=-0.0095U+0.0171,可知

测得内阻 $R_s = 105.3\Omega$,与真实值(99.7 Ω)的相对误差为 $\frac{105.3-99.7}{99.7} = 5.6\%$,有一定误差

5. 用光标法测得示波器内波形周期为 $\Delta t = 10ms$

2、误差分析

实验中直流电流表,万用表测量电压和电阻均有误差,电流表和万用表的内阻会造成误差,电流源和电压源的示数也存在一定的误差。

3、心得体会

本次实验中我对线性电阻和二极管的伏安特性、电流源和电压源的外特性以及示波器的操作有了更深一步的理解。