Chapter 12

Communication Diagrams

Communication diagrams, a kind of interaction diagram, emphasize the data links between the various participants in the interaction. Instead of drawing each participant as a lifeline and showing the sequence of messages by vertical direction as the sequence diagrams does, the communication diagram allows free placement of participants, allows you to draw links to show how the participants connect, and use numbering to show the sequence of messages.

In UML 1.x, these diagrams were called **collaboration diagrams**. This name stuck well, and I suspect that it will be a while before people get used to the new name. (These are different from Collaborations [page 143]; hence the name change.)

Figure 12.1 shows a communication diagram for the same centralized control interaction as in Figure 4.2. With a communication diagram, we can show how the participants are linked together.

As well as showing links that are instances of associations, we can also show transient links, which arise only the context of the interaction. In this case, the "local" link from Order to Product is a local variable; other transient links are "parameter" and "global". These keywords were used in UML 1 but are missing from UML 2. Because they are useful, I expect them to stay around in conventional use.

The numbering style of Figure 12.1 is straightforward and commonly used, but actually isn't legal UML. To be kosher UML, you have to use a nested decimal numbering scheme, as in Figure 12.2.

The reason for the nested decimal numbers is to resolve ambiguity with self-calls. In Figure 4.2, you can clearly see that getDiscountInfo is called within the method calculateDiscount. With the flat numbering of Figure 12.1, however, you can't tell whether getDiscountInfo is called within calculateDiscount or within the overall calculatePrice method. The nested numbering scheme resolves this problem.

Despite its illegality, many people prefer a flat numbering scheme. The nested numbers can get very tangled, particularly as calls get rather nested, leading to

Figure 12.1 Communication diagram for centralized control

Figure 12.2 Communication diagram with nested decimal numbering

such sequence numbers as 1.1.1.2.1.1. In these cases, the cure for ambiguity can be worse than the disease.

As well as numbers, you may also see letters on messages; these letters indicate different threads of control. So messages A5 and B2 would be in different threads; messages 1a1 and 1b1 would be different threads concurrently nested

within message 1. You also see thread letters on sequence diagrams, although this doesn't convey the concurrency visually.

Communication diagrams don't have any precise notation for control logic. They do allow you to use iteration markers and guards (page 59), but they don't allow you to fully specify control logic. There is no special notation for creating or deleting objects, but the «create» and «delete» keywords are common conventions.

When to Use Communication Diagrams

The main question with communication diagrams is when to use them rather than the more common sequence diagrams. A strong part of the decision is personal preference: Some people like one over the other. Often, that drives the choice more than anything else. On the whole, most people seem to prefer sequence diagrams, and for once, I'm with the majority.

A more rational approach says that sequence diagrams are better when you want to emphasize the sequence of calls and that communication diagrams are better when you want to emphasize the links. Many people find that communication diagrams are easier to alter on a whiteboard, so they are a good approach for exploring alternatives, although in those cases, I often prefer CRC cards.

blank page