

## **SUBRINGS**

## **Definition**

Let  $(R, +, \cdot)$  be a ring. A ring  $(S, +, \cdot)$  is subring of  $(R, +, \cdot)$  if  $S \subset R$ .

## Verification

If  $(R, +, \cdot)$  and  $S \subset R$ , then + is associative and commutative on S because it is on R,  $\cdot$  is associative and + and  $\cdot$  distribute over each other for the same reason. So we have restricted the number of conditions to check, and arrive at our first statement of sufficient conditions on S that ensure  $(S, +, \cdot)$  is a ring.

