Lösningsförslag till tentamensskrivning i SF1624, linjär algebra med geometri för CINTE1(IT) och CMIEL1(ME).

- 1. Planets normalvektor är $\mathbf{v} = (2,1,-1)^t$. Vid projektionen av $\mathbf{u} = (1,2,3)^t$ på \mathbf{v} fås vektorn $\mathbf{w} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} = \frac{1}{6} (2,1,-1)^t$ vilket innebär att den ortogonala projektionen av \mathbf{u} på planet är vektorn $\mathbf{r} = \mathbf{u} \mathbf{w} = \frac{1}{6} (4,11,19)^t$.
- 2. Skärningspunkterna fås ur ekvationssystemet $\begin{cases} 3x + 2y + z = 2 \\ x + 2y z = 2 \\ x y + 2z = -1 \end{cases}$

Med hjälp av Gauss-elimination får vi

$$\begin{bmatrix} 3 & 2 & 1 & 2 \\ 1 & 2 - 1 & 2 \\ 1 - 1 & 2 - 1 \end{bmatrix} r_1 - 3r_3 \begin{bmatrix} 0 & 5 & -5 & 5 \\ 0 & 3 & -3 & 3 \\ 1 - 1 & 2 - 1 \end{bmatrix} r_1 / 5 \begin{bmatrix} 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 1 \\ 1 - 1 & 2 - 1 \end{bmatrix} r_1 - r_2 \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 1 - 1 & 2 & -1 \end{bmatrix}$$

från vilket kan vi avläsa att systemet har oändligt många lösningar z = t, y = 1 + t, x = -t.

Svar:
$$x = -t$$
, $y = 1 + t$, $z = t$ där t är godtycklig.

3. Vektorn $\mathbf{w} = \mathbf{u} + \mathbf{v}$ i basen $\{\mathbf{e}_1, \mathbf{e}_2\}$ så i basen $\{\mathbf{f}_1, \mathbf{f}_2\}$ är även $\mathbf{w} = \mathbf{u} + \mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2\mathbf{f}_1$.

Alternativ kan man finna basbyte matrisen $P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Leftrightarrow P^{-1} = \frac{1}{\det(P)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \text{ur}$

ekvationsystemet

$$\begin{pmatrix} 2 \\ -5 \end{pmatrix} = P \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ och } \begin{pmatrix} 1 \\ -1 \end{pmatrix} = P \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

som ger $P = \begin{pmatrix} 3/2 & -1/2 \\ -3 & 2 \end{pmatrix} \Leftrightarrow P^{-1} = \begin{pmatrix} 4/3 & 1/3 \\ 2 & 1 \end{pmatrix}$ detta ger

$$P^{-1} \begin{pmatrix} 3 \\ -6 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2\mathbf{f}_1$$

4. Eftersom alla koefficienter i ekvationen är reella så är även z = 1 - 2i en rot till ekvationen. Detta medför att polynomet $z^3 + z + 10$ är jämnt delbart med $(z - 1 - 2i)(z - 1 + 2i) = z^2 - 2z + 5$. Divisionen ger $z^3 + z + 10 = (z^2 - 2z + 5)(z + 2)$, vilket innebär att den tredje roten är z = -2.

Svar: z = 1 + 2i, z = 1 - 2i och z = -2.

5. Eftersom
$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} = 1 \neq 0$$
 så är matrisen $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ inverterbar. Den matris som som

löser Matrisekvationen ges inversen till $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. Man får dess invers via t.ex Gaus

elimination som blir

$$\begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
så att $X = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$.

Obs!
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

6. Vi söker en minsta kvadratlösning till ekvationssystemet

$$\begin{cases} a-b+c=6\\ c=-4 \end{cases}$$

$$a+b+c=2$$

$$4a+2b+c=4$$

Sätt
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 4 \\ -4 \\ 2 \\ 4 \end{pmatrix}$ och $\mathbf{x} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. Då gäller att den sökta lösningen $\mathbf{x} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

ges av
$$A^t A \mathbf{x} = A^t \mathbf{b} \Leftrightarrow \begin{pmatrix} 18 & 8 & 6 \\ 8 & 6 & 2 \\ 6 & 2 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 24 \\ 4 \\ 8 \end{pmatrix}$$

Sedvanliga metoder ger
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ -1 \end{pmatrix}$$

$$Svar y = 3x^2 - 3x - 1$$

7. En samling av fyra vektorer bildar en bas för \mathbb{R}^4 om och endast om de är linjärt oberoende. Ett sätt att undersöka detta är att beräkna determinanten för den matris som har dessa vektorer som rader (vektorerna är linjärt oberoende \iff determinanten $\neq 0$). Vi har

$$\begin{vmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 1 \end{vmatrix} r_3 - r_4 = \begin{vmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ -1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ -1 & 0 & 1 \end{vmatrix} r_3 + r_2 = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 2 & 2 \end{vmatrix} = -2 \neq 0$$

alltså vektorerna bildar en bas

Alternativt

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \text{ och } \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \text{ bildar en bas för } \mathbf{R}^4$$

Om sambandet

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} y + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} z + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} v = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x = y = z = v = 0$$

Detta är ett homogentekvationsytem som löses på "vanligt sätt"

$$\Leftrightarrow \begin{cases} x+y+z+v=0\\ 2x+2y+z+v=0\\ x+y+z+v=0 \end{cases} \Rightarrow x=y=z=v=0$$

$$z+v=0$$

8. Egenvektorer till en symmetrisk (nxn)-matris bildar en ON-bas. Vi normera de givna egenvektorena via

$$\vec{e}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \vec{e}_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{e}_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \text{ den ON-matris som diagonaliserar } A \text{ ges av}$$

$$P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \text{ och } P^{-1} = P^{t} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \text{ och observera att } PP^{t} = I$$

Den sökta diagonal marisen ges ab

$$P^{t}AP = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = D$$

- 9. Vi kontrollerar att påståendet $8^n + 6$ är jämnt delbart med 7 är sant för
- 1) n = 0: $8^0 + 6 = 7$ är jämnt delbart med 7. Detta är sant.
- 2) Antag att påståendet är sant för n = k, dvs antag att det är sant att

$$8^k + 6$$
 är jämnt delbart med 7

Vi vill visa att påståendet är sant för n = k + 1, dvs vi vill visa att det är sant att

$$8^{k+1} + 6$$
 är jämnt delbart med 7

Vi har
$$8^{k+1} + 6 = 8 \cdot 8^k + 6 = 7 \cdot 8^k + 8^k + 6$$

De båda talen $7 \cdot 8^k$ och $8^k + 6$ är jämnt delbara med 7 ($8^k + 6$ enligt antagandet) och då är deras summa också jämnt delbart med 7.

Enligt induktionsprincipen är påståendet sant för n = 0, 1, 2, ...

10. A är symmetrisk $\Leftrightarrow A = A^t$, då finns en ON-bas i \mathbb{R}^n bestående av egenvektorer $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ till A och en ON (nxn)-matris P (som består av egenvektorer) som diagonalisera A. $dvs A = P^t DP$.

Men alla egenvärden är lika med ett , ger att D = I . Vi får $A = P^t DP = [D = I] = P^t IP = P^t P = I$ Ty P är en ON-matris