浙江大学 20_18_ - 20_19_学年_春夏_学期 《大学物理乙1》课程期末考试试卷

课程号: 761T0030 , 开课学院: 物理学系 ,

考试试卷: A √卷、B 卷 (请在选定项上打 √)

考试形式:闭 /、开卷(请在选定项上打 /),允许带_无存储功能的计算器_入场

考试日期: _2019_年_6_月_29_日, 考试时间: 120_分钟

诚信考试,沉着应考,杜绝违纪.

_	考生姓名_	学号				任课老师		编号	
	题序	填空	计1	计2	भ 3	计4	计 5	计6	总 分
	得分					1 15.		A Pool	
	评卷人								

普适气体常量 $R = 8.31 \text{ (J·mol}^{-1} \cdot \text{K}^{-1} \text{)}$ 阿伏伽德罗常量 $N_A = 6.02 \times 10^{23} \text{ (mol}^{-1} \text{)}$ 真空介电常数 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ (C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2} \text{)}$ 电子静止质量 $m_e = 9.11 \times 10^{-31} \text{ (kg)}$

玻尔兹曼常量 $k = 1.38 \times 10^{-23} \text{ (J·K}^{-1)}$ 真空中光速 $c = 3 \times 10^8 \text{ (m/s)}$ 电子伏特 1 (eV)=1.6×10⁻¹⁹ (J) 1 atm = 1.013×10⁵ (Pa)

一、填空题: (每题 4 分, 共 48 分)

1. (本题 4分) 0596

2. (本题 4分) j001

一轻绳跨过一轻定滑轮,一猴子抓住绳的一端,绳的另一端挂一与猴子质量相等的重物. 若猴子由静止开始,相对绳子以速度 v_0 向上爬,则重物上升的速度 V为______.

3. (本题 4分) 0093

如图所示,劲度系数为 k 的弹簧,一端固定在墙壁上,另一端连一质量为m 的物体,物体在坐标原点 o 时弹簧长度为原长. 物体与桌面间的摩擦系数为 μ . 若物体在恒力 F 作用下向右移动,则物体到达最远位置时系统的弹性势能 E_p =_______.

4. (本题 4分) 0564

如图所示,设两重物的质量分别为 m_1 和 m_2 ,且 $m_1 > m_2$,均质的定滑轮半径为r,质量为M,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,则任意时刻滑轮的角加速度为 α

5. (本题 4 分) t001

6. (本题 4分) w001

一弹簧振子作简谐振动,则当振子的位移为振幅的 1/2 时,弹 簧振子的动能与势能之比为

7. (本题 4分) 3570

一物体同时参与同一直线上的两个简谐振动: $x_1 = 0.05\cos(4\pi t + \frac{1}{3}\pi)$ (SI), $x_2 = 0.03\cos(4\pi t - \frac{2}{3}\pi)$ (SI),则合成振动的振幅为______m.

8. (本题 4分) t002

一个观测者在铁路边,一列火车从远处开来. 他接收到的火车汽笛声的频率为 650 Hz. 当火车从身旁驰过而远离他时,他接收到的汽笛声频率为 540 Hz. 已知空气中的声速为 340 m/s. 则火车行驶的速度为 v= m/s.

9. (本题 4分) t003

10. (本题 4分) w002

11. (本题 4 分) o001

1 mol 理想气体在汽缸中进行准静态膨胀, 其体积由 V₁变到 V₂.

- (1) 当汽缸始终处于绝热情况下,理想气体熵的增量 ΔS = .
- (2) 当汽缸始终处于等温情况下,理想气体熵的增量 ΔS =

12. (本题 4分) 1058

二、计算题: (共6题,共52分)

1. (本题 10分) w003

一裝置如图所示,轻质弹簧的一端固定,另一端与一质量为 m 的物体间由细绳连接,细绳跨于桌边定滑轮上,而物体悬于细绳下端.设弹簧的劲度系数为 k,滑轮的转动惯量为 I,半径为 R. 现将物体用手托起,再突然放手,物体下落而整个系统进入振动状态.设绳长一定,绳子与滑轮间不打滑,滑轮与轴之间无摩擦.求系统振动的周期.

2. (本题 10分) w004

一平面简谐波在 t=0 时的波形图如图所示, 若该简谐波的频率为 250 Hz, 且图中质点 P的运动方向向上, 求:

- (1) 该波的波动方程;
- (2) 在距原点 O 为 $10 \, \text{m}$ 处质点的运动方程与 t = 0 时刻该点的振动速度.

3. (本题 8 分) w005

如图所示,两相干波源 S_1 和 S_2 相距 $10\,m$,其振幅相等,频率为 $100\,Hz$,在同一媒质中传播,波速均为 $400\,m/s$,且 S_1 处为波峰时, S_2 处恰为波谷.若以 S_1 和 S_2 连线为坐标轴 x, S_1S_2 连线的中点为原点,求 S_1S_2 之间因干涉而静止的各点坐标.

4. (本题 8 分) w006

在容积为 2.0×10^{-3} m³ 的容器中,有内能为 6.75×10^2 J 的刚性双原子分子理想气体. (1) 求气体的压强; (2) 若分子总数为 5.4×10^{22} 个,求分子的平均平动动能及气体的温度.

5. (本题 8 分) w007

某理想气体(摩尔热容比为 γ)作如图所示的循环过程,其中 $a \rightarrow b$ 是绝热过程, $b \rightarrow c$ 是等压过程, $c \rightarrow a$ 是等体过程. 已知 a 态的温度为 T_a ,b 态的温度为 T_b ,c 态的温度为 T_c ,求循环的热机效率.

6. (本题 8分) t004

有一细玻璃棒被弯成半径为R的半圆形,其上半部均匀带有电荷 +Q,下半部均匀带有电荷 -Q,如图所示. 求半圆中心 O处的场强大小和方向.

试卷参考答案

一、填空题: (每题 4 分, 共 48 分)

1.
$$v = r\omega = rkt^2$$
, $k = 4$, $\omega = 4t^2$, $\alpha = 8t$, $a_1 = r\alpha = 8(\text{m/s}^2)$, $a_n = r\omega^2 = 2(\text{m/s}^2)$

2.
$$mR(v_0 - V) = mRV$$
 $V = \frac{v_0}{2}$

3.
$$(F - \mu mg)A = \frac{1}{2}kA^2$$
 $A = \frac{2}{k}(F - \mu mg)$ $E_p = \frac{1}{2}kA^2 = \frac{2}{k}(F - \mu mg)^2$

4.
$$m_1g - T_1 = m_1a$$
, $T_2 - m_2g = m_2a$, $(T_1 - T_2)r = \frac{1}{2}Mr^2\alpha$, $a = r\alpha$,

$$\beta = \frac{2(m_1 - m_2)g}{2(m_1 + m_2)r + Mr}$$

5.
$$\frac{1}{2}I\omega^2 = \frac{1}{2}mv^2$$
 $I\omega = mvl$ $I = \frac{1}{3}mL^2$ $l = \frac{\sqrt{3}}{3}L$

6.
$$E_p = \frac{1}{2}kx^2 = \frac{1}{8}kA^2$$
, $E_k = E - E_p = \frac{1}{2}kA^2 - \frac{1}{8}kA^2 = \frac{3}{8}kA^2$, $\frac{E_k}{E_p} = 3$

7.
$$\Delta \phi = -\frac{2}{3}\pi - \frac{1}{3}\pi = -\pi$$
, $A = |A_2 - A_1| = 0.02 \text{ m}$

8.
$$v_1 = \frac{u}{u - v_s} v_s = 650 \text{ Hz}$$
, $v_2 = \frac{u}{u + v_s} v_s = 540 \text{ Hz}$, $v_s = \frac{v_1 - v_2}{v_1 + v_2} u = 31.4 \text{ m/s}$

9.
$$n = \frac{N}{V} = \frac{M/m}{(4/3)\pi R^3} = \frac{3M}{4\pi R^3 m}$$
 $T = \frac{p}{nk} = \frac{4\pi R^3 mp}{3kM} = 1.16 \times 10^7 \text{ K}$
 $\sqrt{\overline{v^2}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{4\pi R^3 p}{M}} = 5.36 \times 10^5 \text{ m/s}$

11.
$$\Delta S = 0$$
 $\Delta S = R \ln \frac{V_2}{V_1}$

12.
$$E_A = -\frac{3\sigma}{2\varepsilon_0}$$
 $E_B = -\frac{\sigma}{2\varepsilon_0}$ $E_C = \frac{\sigma}{2\varepsilon_0}$ $E_D = \frac{3\sigma}{2\varepsilon_0}$

二、计算题: (共6题,共52分)

1. 解:
$$mg = kx_0$$

 $mg - T_1 = ma$, $T_1R - T_2R = I\alpha$
 $T_2 = k(x_0 + x)$, $a = R\alpha$

解得:
$$a = -\frac{kR^2}{(mR^2 + I)}x$$
, 或 $\frac{d^2x}{dt^2} + \frac{kR^2}{(mR^2 + I)}x = 0$

故:
$$\omega = \sqrt{\frac{kR^2}{mR^2 + I}}$$
, $T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{mR^2 + I}{kR^2}}$

2. 解: (1)
$$A = 0.2 \text{ m}$$
, $\lambda = 40 \text{ cm}$, $u = \lambda v = 1 \times 10^4 \text{ m/s}$, $\omega = 2\pi v = 500\pi \text{ rad/s}$ 波沿 x 轴负方向. 原点 O 处, $t = 0$ 时, $y_0 = 0.1 \text{ m}$,且向负方向运动, $v_0 < 0$

$$y = A\cos\varphi = \frac{A}{2}$$
, $\varphi = \pm \frac{\pi}{3}$, $\pm v_0 < 0$, $\xi : \varphi = \frac{\pi}{3}$

原点 O 处质点的振动方程为:
$$y_0 = 0.2\cos(500\pi + \frac{\pi}{3})$$
 m

波动方程为:
$$y = 0.2\cos[500\pi(t + \frac{x}{1 \times 10^4}) + \frac{\pi}{3}]$$
 m

(2)
$$y_{10} = 0.2\cos[500\pi(t + \frac{10}{1\times10^4}) + \frac{\pi}{3}] \text{ m} = 0.2\cos[500\pi t + \frac{5\pi}{6}] \text{ m}$$
 该点的振动速度: $v_{10} = \frac{\mathrm{d}y_{10}}{\mathrm{d}t} = -100\pi\sin(500\pi t + \frac{5\pi}{6}) \text{ m/s}$ $t = 0$ 时, $v = -100\pi\sin\frac{5\pi}{6}$ (m/s) $= -50\pi$ (m/s)

3. 解:
$$\lambda = u/v = 400/100 = 4$$
 m, $r_2 = 5 - x$, $r_1 = 5 + x$, $\varphi_2 - \varphi_1 = \pi$

$$\Delta \varphi = \varphi_2 - \varphi_1 - 2\pi \frac{r_2 - r_1}{\lambda} = \pi - 2\pi \frac{5 - x - (5 + x)}{4} = (2k + 1)\pi$$
, $k = 0, \pm 1, \pm 2, ...$

$$x = 2k$$
, $k = 0, \pm 1, \pm 2, ...$
因 $5 \ge x \ge -5$, S_1S_2 之间因干涉而静止的各点坐标为 -4 , -2 , 0 , 2 , 4 (m).

4. 解: (1)
$$i=5$$
,所以气体的内能为 $E=v\frac{i}{2}RT$,

$$pV = vRT$$
, $p = \frac{vRT}{V} = \frac{2E}{iV} = 1.35 \times 10^5 \text{ Pa}$

(2)
$$n = \frac{N}{V}$$
, 由 $p = nkT$, $T = \frac{p}{nk} = \frac{pV}{Nk} = 3.62 \times 10^2 \,\mathrm{K}$ 分子的平均平动动能 $\overline{\varepsilon}_k = \frac{3}{2}kT = 7.49 \times 10^{-21} \,\mathrm{J}$

5. 解:
$$a \rightarrow b$$
 是绝热过程 $Q_{ab} = 0$; $b \rightarrow c$ 是等压过程: $Q_{bc} = \nu C_{p,m} (T_c - T_b)$, 放热 $c \rightarrow a$ 是等体过程: $Q_{ca} = \nu C_{V,m} (T_a - T_c)$, 吸热

$$\eta = 1 - \frac{|Q_{\uparrow b}|}{Q_{\eta b}} = 1 - \frac{\nu C_{p,m} (T_b - T_c)}{\nu C_{V,m} (T_a - T_c)} = 1 - \gamma \frac{(T_b - T_c)}{(T_a - T_c)}$$

6.
$$M: \lambda = \frac{Q}{\pi R/2}$$
, $dq = \lambda dl = \lambda R d\theta$, $dE = \frac{dq}{4\pi \varepsilon_0 R^2} = \frac{\lambda d\theta}{4\pi \varepsilon_0 R}$

场强只有沿 x 的分量, 大小为:

$$E_x = 2\int_0^{\pi/2} dE \sin\theta = \int_0^{\pi/2} \frac{\lambda \sin\theta}{2\pi\varepsilon_0 R} d\theta = \frac{Q}{\pi^2 \varepsilon_0 R^2}$$

方向为 x 轴正向.

