

Introdução a Análise de Circuitos

JOÃO PAULO ASSUNÇÃO DE SOUZA

Ementa

- 1. Introdução a análise de circuitos elétricos;
- 2. Circuitos resistivos;
- 3. Fontes dependentes;
- 4. Métodos de análise;
- 5. Teorema de Redes;
- 6. Independência das Equações;
- 7. Elementos Armazenadores de Energia;
- 8. Circuitos RC e RL;
- 9. Circuitos de segunda ordem;
- 10. Transformadas de Laplace;

Avaliação

Prova 1 (25%) – Unidades 1, 2, 3 e 4

Prova 2 (25%) – Unidades 5, 6, 7 e 8

Prova 3 (25%) – Unidades 9 e 10

Relatórios (25%) – Experiências em laboratório dos conteúdos desenvolvidos

Definições e unidades

- Curso básico na engenharia elétrica no estudo da transferência de energia de um ponto ao outro;
- Interconexão de elementos elétricos

Definições e unidades

Sistema Internacional

Quantidade	Unidade básica	Símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	s
Corrente elétrica	ampère	A
Temperatura termodinâmica	kelvin	K
Intensidade luminosa	candela	cd
Carga	coulomb	С

Multiplicador	Prefixo	Símbolo
10 ¹⁸	exa	E
10 ¹⁵	peta	P
10 ¹²	tera	T
10 ⁹	giga	G
10 ⁶	mega	M
10 ³	quilo	k
10 ²	hecto	h
10	deka	da
10 ⁻¹	deci	d
10 ⁻²	centi	c
10 ⁻³	mili	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	pico	p
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	a

Carga

- Propriedade elétrica das partículas atômicas que compõe a matéria. Medida em *Coulumbs* [C].
- Matéria
 - Átomos
 - Prótons
 - Elétrons
 - Neutrôns
- 1 elétron possui a carga de $-1,602 \times 10^{-19}$ C.
- 1 próton possui a carga de 1,602 × 10^{-19} C.
- As cargas que ocorrem na natureza são múltiplos da carga eletrônica.
- Não se pode destruir cargas, apenas transferi-las.

Corrente Elétrica

■ Taxa de variação da carga em relação ao tempo. Medida em *Ampères* [A]

•
$$i = \frac{dq}{dt}$$

■ 1 Ampère = 1 Coulomb / segundo

Corrente contínua

Corrente alternada

Tensão

■ Tensão (diferença de potencial) é a energia necessária para deslocar uma carga unitária através de um elemento. Medida em *Volts* [V]

$$v_{ab} = -v_{ba}$$

Potência

■ Potência é a velocidade com que se consome ou absorve energia. Medida em watts (W)

- Se a potência tem sinal positivo (+), ela está sendo absorvida pelo elemento;
- Se a potência tem sinal negativo (-), ela está sendo fornecida pelo elemento;
- Como saber se o elemento está fornecendo ou absorvendo potência?

Potência

- Deve-se observar a polaridade da tensão e o sentido da corrente.
 - Se a corrente está no sentido da queda de tensão, então o elemento está absorvendo potência e a potência tem sinal positivo.

Se a corrente está no sentido da elevação de tensão, então o elemento está fornecendo potência e a potência tem sinal negativo.

Convenção de sinal passivo.

Energia

■ Energia é a capacidade de realizar trabalho. Medida em Joules [J]

$$w = \int_{t_0}^t p \, dt = \int_{t_0}^t v \, i \, dt$$

■ Concessionárias de energia elétrica medem o consumo de energia em kWh.

Elementos de Circuito

■ Fonte independente ideal: <u>elemento ativo</u> que fornece tensão ou corrente especificada que é completamente independente de outros elementos do circuito.

Elementos de Circuito

■ Fonte dependente (ou controlada) ideal: <u>elemento ativo</u> no qual a corrente ou a tensão é controlada por outra tensão ou corrente do circuito.

Exercício

Calcule a potência fornecida ou absorvida em cada elemento do circuito abaixo:

Bibliografia

- [1] SADIKU, M.N.O; ALEXANDER, A, K. Fundamentos de Circuitos Elétricos. 5ª edição, AMGH Editora LTDA, 2013. 840 p.
- [2] David E. Johnson. Fundamentos de Análise de Circuitos Elétricos. Ed: LTC ISBN-10: 8521612389. 539 p. 2000