NTIN071 A&G: Tutorial 4 - Closure properties of regular languages

Teaching goals: The student is able to

- formally describe a construction of an automaton based on other automata
- decide whether regular languages are closed under various set and string operations, including more complex ones, and prove or disprove it

IN-CLASS PROBLEMS

Problem 1 (Closure under set and string operations). Given DFAs A, B, construct an automaton C recognizing the given language. (Give a formal description of the automaton.)

(a) $L(A) - L(B)$	A	a	b		В	a	b
(b) $L(A).L(B)$		1				0	
	* 1				* 1		
(c) $L(A)^{+}$						2	
(d) $L(A)^*$		0				3	
(e) $L(A)^R$		2			* 4		
	5	0	3			5	
					* 6	4	2

Problem 2 (Delete). Let L be a regular language over the alphabet $\Sigma = \{a, b\}$. Desribe the following languages in set notation. Decide if they are (necessarily) also regular, prove or disprove. The language of all words obtained from words of the language L by...

- (a) ... deleting all occurrences of the letter a.
- (b) ... deleting the initial letter and writing this letter at the end of the word.
- (c) ... deleting the longest contiguous sequence of a's from the beginning of the word.

EXTRA PRACTICE AND THINKING

Problem 3 (Prefixes). Are regular languages closed under the following operations? Prove or disprove. (In the following, L is a regular language over an alphabet Σ .)

- (a) $\operatorname{init}(L) = \{ w \in \Sigma^* \mid \text{there is } u \in \Sigma^* \text{ such that } wu \in L \}$
- (b) $\min(L) = \{ w \in L \mid \text{there is no } u \in L, v \in \Sigma^+ \text{ such that } w = uv \}$
- (c) $\max(L) = \{ w \in L \mid \text{there is no } u \in \Sigma^+ \text{ such that } wu \in L \}$

Problem 4 (Shift). Given a regular language L over an alphabet Σ , define the language L' as follows. Is the language L' necessarily regular?

$$L' = \{uv \mid u, v \in \Sigma^*, vu \in L\}$$

Problem 5 (Cut). Consider two regular languages L and M over an alphabet Σ , and define the language K as follows. Is the language K necessarily regular?

$$K = \{uw \mid u, w \in \Sigma^*, (\exists v \in M) \, uvw \in L\}$$

Problem 6 (Switch final and nonfinal states). If we switch accepting and nonaccepting states in a given NFA, will the language recognized by the resulting automaton be the complement of the language recognized by the original NFA? Justify your answer.

Problem 7 (Iterations of unary languages). Show that for any language L over the alphabet $\Sigma = \{a\}$, the language L^* is regular.