### Baze de date

#### Universitatea Transilvania din Brașov

Lect.dr. Costel Aldea costel.aldea@gmail.com

# Asocieri speciale

- □ Agregarea
  - Este descrisă ca supraordonare sau subordonare
  - Adesea are forma "is part of"



# Asocieri speciale

- □ Generalizarea
  - Descrie o ierarhie
  - Adesea întâlnită ca "este o/este un" (engl. "is a")
  - Atributele sunt moștenite
  - Se pot adăuga alte atribute



### Asocieri speciale

- □ Dependenta slaba (entitate slaba)
  - O entitate nu poate exista fără existenta unei alte entități



- Orice clădire are una sau mai multe încăperi
- Fiecare încăpere aparține unei clădiri și nu poate exista fără aceasta

### Asocieri recursive

□ Tip de entitate care este în relație cu ea însăși



- □ Fiecare membru al clubului este tatăl a 0 sau mai mulți copii
- Pentru fiecare membru al clubului tatăl poate aparține sau nu clubului
- □ Diagrama conține și numele rolurilor

### Asocieri recursive

- □ Relațiile recursive sunt uneori necesare (denumite și reflexive)
- Exemplu: o parte componenta este alcătuită din alte parți componente care la rândul lor sunt alcătuite din alte parți componente,...
- □ Chiar daca se cunoaște nivelul de recursivitate este incorect sa se modeleze folosind niveluri:



□ Corect este sa se modeleze folosind relații recursive:



# Asociere cu grad mai mare ca 2

- Un exemplu de relație ternara: trebuie salvate informații despre firme, produsele acestora și tarile în care ele exporta produsele, de asemenea nu orice produs al unei firme nu este vândut în orice tara.
- □ Relațiile cu grad mai mare ca 2 sunt rare și trebuie înlocuite cu relații de grad 2.
- Cardinalitatea în acest caz semnifica ca fiecare tara este în relație cu oricâte perechi (firma, produs)



## Modelul relațional

- Modelul relațional se bazează pe conceptul matematic de relație
- □ Aceasta este reprezentată fizic sub formă tabelului
- □ Bazele acestei tratări au fost puse de Codd, care a utilizat terminologia și conceptele din teoria mulțimilor și logica predicativă

- □ Relație
  - O relație este un tabel cu coloane și rânduri
- Un SGBD relaţional necesită ca baza de date să fie percepută de către utilizator doar sub formă de tabele
- □ Această percepție se aplică numai structurii logice a bazei de date – adică nivelurilor externe și conceptuale ale arhitecturii ANSI-SPARC
- □ Nu se aplică şi structurii fizice a bazei de date, care poate fi implementată utilizând o varietate de structuri de stocare

- □ Atribut
  - Un atribut este o coloană a unei relații, cu o anumită denumire
- O relație este reprezentată de un tabel bidimensional, în care rândurile acestuia corespund înregistrărilor individuale, iar coloanele corespund atributelor
- Atributele pot apărea în orice ordine, relația rămânând neschimbată

#### □ Domeniu

- Un domeniu este mulțimea de valori permise pentru unul sau mai multe atribute
- □ Domeniile constituie o caracteristică extrem de puternică a modelului relațional
- □ Fiecare atribut dintr-o bază de date relațională este definit pe un domeniu
- □ Domeniile pot fi diferite pentru fiecare atribut, sau două sau mai multe atribute pot fi definite pe un același domeniu

- □ Conceptul de domeniu este important deoarece permite utilizatorului definirea sensului și a sursei de valori pe care le poate lua atributul
- Ca rezultat, sistemului îi sunt disponibile mai multe informații și la executarea unei *operații relaționale*, pot fi evitate operațiile incorecte semantic
  - Exemplu

Nu are sens compararea unui număr de stradă cu un număr de telefon, cu toate că pentru ambele atribute domeniile de definiție sunt șiruri de caractere

- □ Tuplu
  - Un tuplu este **un rând** dintr-o relație
- □ Elementele unei relații sunt rândurile sau tuplurile dintr-un tabel
- □ Tuplurile pot apărea în orice ordine, relația va rămâne aceeași
- Structura unei relații, împreună cu specificarea domeniilor și a oricăror alte restricții asupra valorilor posibile este denumită uneori **intensitatea** acesteia
- Tuplurile sunt denumite **extensia** sau **starea** unei relații, care se modifică în timp

- □ Grad
  - Gradul unei relații reprezintă **numărul de atribute** pe care le conține aceasta
- □ O relație cu un singur atribut are gradul întâi și este denumită relație **unară**
- O relație cu două atribute este denumită binară
- □ O relație cu trei atribute se numește **ternară**
- $\square$  O relație cu *n* atribute se numește *n*-ară

- □ Cardinalitate
  - Cardinalitatea unei relații reprezintă numărul de tupluri conținute de aceasta
- □ Cardinalitatea se modifică prin adăugarea sau ștergerea unor tupluri

- Bază de date relațională
  - Un set de relații normalizate
- O bază de date relațională constă în relații, care sunt structurate adecvat
  - Această structurare este denumită normalizare

## Terminologie



- □ **Produsul cartezian** a două mulțimi  $D_1$  și  $D_{2,}$  scris sub forma  $D_1 \times D_2$ 
  - reprezintă mulțimea tuturor perechilor ordonate astfel încât primul element să fie membru al mulțimii  $D_1$ , iar al doilea element să fie membru al mulțimii  $D_2$

- Exemplu
  - Presupunem că avem două mulțimi,  $D_1$  și  $D_2$ , unde  $D_1 = \{2,4\} \text{ și } D_2 = \{1,3,5\}$
  - □ Produsul cartezian al acestor două mulțimi este

$$D_1 \times D_2 = \{(2,1), (2,3), (2,5), (4,1), (4,3), (4,5)\}$$

- Orice submulțime a produsului cartezian este o relație
  - Exemplu
    - Se poate realiza o relație R ca submulțime a produsului cartezian  $D_1 \times D_2$  al mulțimilor  $D_1 = \{2,4\}$  și  $D_2 = \{1,3,5\}$  astfel încât

$$R = \{(2,1), (4,1)\}$$

- □ Putem extinde noțiunea de relație la trei mulțimi
- Fie trei mulțimi,  $D_1$ ,  $D_2$ ,  $D_3$ . Produsul cartezian  $D_1 \times D_2 \times D_3$  al acestor trei mulțimi reprezintă mulțimea tuturor tripletelor ordonate, în care
  - primul element îi aparține lui  $D_1$
  - lacksquare al aparține mulțimii  $D_2$
  - $\blacksquare$  al treilea element aparține lui  $D_3$
- Orice submulțime a acestui produs cartezian reprezintă o relație

- Putem extinde noțiunea de produs cartezian la n mulțimi  $D_1$ ,  $D_2$ ,...,  $D_n$
- □ Produsul cartezian al acestora este definit ca:

$$D_1 \times D_2 \times ... \times D_n = \{(d_1, d_2, ..., d_n) | d_1 \in D_1, d_2 \in D_2, ..., d_n \in D_n\}$$

□ Se mai poate scrie sub forma:

$$\sum_{i=1}^n D_i$$

- Orice submulțime a acestui produs cartezian reprezintă o relație a celor n mulțimi
- ☐ În definirea acestor relații trebuie specificate mulțimile sau **domeniile** din care se aleg valori

#### Relații în bazele de date

- □ Schema de relație
  - O denumire a relației, urmată de un set de perechi de atribute și denumiri de domenii
- Fie atributele  $A_1, A_2,..., A_n$ , cu domeniile  $D_1, D_2,..., D_n$ . Atunci mulțimea

$$\{A_1:D_1, A_2:D_2, ... A_n:D_n\}$$

- reprezintă schema de relație
- $\square$  O relație R, definită de schema de relație S, este un set de corespondențe între denumirile atributelor și domeniile corespunzătoare acestora

#### Relații în bazele de date

 $\square$  Prin urmare, relația R este o mulțime de n tupluri

$$\{A_1{:}D_1,A_2{:}D_2,\dots A_n{:}D_n\}$$
 astfel încât  $d_1{\in}D_1,d_2{\in}D_2,\dots d_n{\in}D_n$ 

- □ Fiecare element din *n*-tuplu este format dintr-un atribut și o valoare a acestuia
- ☐ În acest mod putem considera o relație din modelul relațional ca pe o submulțime a produsului cartezian al atributelor și a domeniilor

- □ O relație are următoarele caracteristici
  - are o denumire, diferită de toate celelalte denumiri de relații
  - fiecare celulă a relației conține o valoare singulară
  - fiecare atribut are o valoare distinctă

- □ Caracteristici (continuare)
  - toate valorile unui atribut aparțin aceluiași domeniu
  - ordinea atributelor nu are nici o importantă
  - **fiecare tuplu este distinct**, nu există dubluri ale tuplurilor
  - teoretic, ordinea tuplurilor nu are nici o importanță, dar practic, ordinea poate afecta eficiența accesării tuplurilor

- Exemplu
  - Din moment ce fiecare celulă trebuie să conțină doar o singură valoare, stocarea a două numere de telefon pentru o singură filială din relația *Filiale* care a fost prezentată în exemplul anterior este ilegală
  - □ Cu alte cuvinte, relația nu conține grupuri repetitive
- □ O relație care nu conține grupuri repetitive se spune că este **normalizată** sau în **prima formă normală**

- Majoritatea proprietăților de mai sus provin din proprietățile relațiilor matematice:
  - din moment ce relația este o mulțime, ordinea elementelor sale nu are nici o semnificație
  - într-o mulțime nu se repetă nici un element
- □ Totuși, într-o relație matematică, ordinea elementelor dintr-un tuplu are importantă
  - Exemplu
    - □ Perechea ordonată (1, 2) este diferită de perechea ordonată (2, 1)
- Acest fapt nu este valabil și pentru relațiile din modelul relațional, care necesită în mod special ca ordinea atributelor să nu prezinte importanță

- □ Pentru identificarea unică a unui tuplu dintr-o relație, nu sunt necesare valorile tuturor atributelor sale
- □ Sunt suficiente doar valorile unui subset al atributelor
- □ Cheia este un subset al atributelor unei relații care satisface proprietățile de:
  - identificare unică fiecare tuplu al relației este identificat unic de valorile atributelor care compun cheia
  - neredundanță subsetul de atribute este minimal, adică eliminarea oricărui atribut din subset duce la pierderea primei proprietăți

- □ Problema găsirii unei chei se reduce la determinarea setului minimal de atribute care satisface proprietatea de identificare unică
- Orice atribut al unei relații care face parte din cel puțin o cheie se numește **atribut prim**
- □ Toate celelalte atribute ale relației sunt **neprime**
- □ Într-o relație pot exista mai multe chei chei candidat
- □ Pentru fiecare relație se desemnează dintre acestea o cheie privilegiată - cheie primară

#### □ Cheie primară

- Cheia candidat care este selectată pentru a identifica în mod unic tuplurile din cadrul unei relații
- □ Statutul de cheie primară al unei chei candidat este stabilit de utilizator
- Cheile candidat care nu sunt selectate drept chei primare se numesc chei alternative
- La selectarea unei chei primare din mulțimea cheilor candidate se va tine seama de necesitatea ca numărul atributelor cheii primare să fie cât mai mic posibil

- □ O cheie străină pentru relația R2 este un subset de atribute din R2 astfel încât
  - Există o relație de bază R1 care are o cheie candidat
  - Fiecare valoare a cheii străine din relația R2 se regăsește între valorile cheii candidat din R1

## Ilustrarea unei relații

| R | Α   | В   | С   | D   |
|---|-----|-----|-----|-----|
|   | xyz | 2   | blo | 4.6 |
|   | dfg | 5   | bli | 2.4 |
|   | ••• | ••• |     |     |
|   | ggg | 7   | bum | 4.2 |

□ In acest exemplu este reprezentata relația

$$R \subseteq A \times B \times C \times D$$

- □ Din descrierea formala a unui tabel ca relație se observa următoarele:
  - Toate valorile unei coloane au același tip
  - Toate liniile sunt diferite (relațiile sunt mulțimi)
  - Ordinea liniilor este oarecare
  - Semnificația unei coloane este descrisa printr-un nume (domeniul de valori)

### Transformarea modelului ER în relații

- Modelele ER pot fi transformate în relații fără pierderea de informații
- □ Se aplica reguli diferite în funcție de cardinalitatea relațiilor
- □ Este importanta manipularea cheilor primare și cheilor străine

# Scopul transformării

- □ La completarea tabelelor cu date trebuie evitate datele redundante
- □ Daca problema modelata nu are nevoie de valori NULL atunci acestea se vor elimina
- □ Se încearcă crearea unui număr minim de tabele ținând cont de regulile de mai sus.

# Transformarea tipurilor de entități

- □ Tipurile de entități devin tabele
- □ Atributele devin coloane
- ☐ Fiecare entitate devine linie sau înregistrare
- □ Client(ClientID, Nume, Prenume, Tara)



| ClientID | Nume       | Prenume | Tara     |
|----------|------------|---------|----------|
| 1        | Mustermann | Max     | Germania |
| 2        | Doe        | John    | SUA      |

### Transformarea relațiilor 1:1

Informațiile sunt asamblate într-un singur tabel



□ Client(ClientID, Nume, Prenume, Tara, Număr, Rețea)

| ClientID | Nume       | Prenume | Tara     | Numar           |
|----------|------------|---------|----------|-----------------|
| 1        | Mustermann | Max     | Germania | <br>0162/234123 |
| 2        | Doe        | John    | SUA      | <br>555/1231456 |

## Transformarea relațiilor 1:N

- □ Sunt necesare doua tabele
  - Tabelul Client
  - Tabelul Comanda conține cheia primara a tabelului supraordonat (cel marcat cu "1") care va fi denumit cheie străină.



# Transformarea relațiilor 1:N

| - | ClientID | Nume       | Prenume | Tara     |   | Numar       |
|---|----------|------------|---------|----------|---|-------------|
|   | 1        | Mustermann | Max     | Germania |   | 0162/234123 |
|   | 2        | Doe        | John    | SUA      | : | 555/1231456 |
|   |          |            |         |          |   |             |

| ComandalD | ClientID | DataComanda |  |
|-----------|----------|-------------|--|
| 1         | 1        | 22.01.2016  |  |
| 2         | 1        | 30.03.2016  |  |
| 3         | 2        | 15.09.2016  |  |
| 4         | 5        | 05.11.2016  |  |
|           |          |             |  |

# Transformarea relațiilor M:N

- □ Sunt necesare trei tabele
  - Tabelul Angajat
  - Tabelul Client
  - Tabelul de legătură SupervizareClient care conține cheile primare din celelalte tabele (si atributele asocierii daca este cazul)
  - Cheia primara a acestui tabel (SupervizareClient ) poate fi formata din cele doua chei străine



# Transformarea relațiilor M:N



| <u>AngajatID</u> | Prenume  |           |          |
|------------------|----------|-----------|----------|
| 1                | Alice    |           |          |
| 2                | Bob      |           |          |
|                  |          |           |          |
|                  |          |           |          |
|                  |          |           |          |
|                  |          |           |          |
|                  | +        |           | Ψ        |
|                  | <b>─</b> | AngajatID | ClientID |
|                  |          | 15        | 1        |
|                  |          | 7         | 3        |
|                  |          | 1         | 2        |
|                  |          | 2         | 7        |

Asocierile M:N sunt rupte în doua relații 1:N:

a)Angajat – SupervizareClient

b)Client - SupervizareClient

#### Transformarea relațiilor ce au cardinalitate "C"



□ Scop principal: evitare valori nule daca este posibil

