EXPERIMENT-2b

AIM: To realize all the gates using NOR gate

HARDWARE / SOFTWARE APPARATUS: Power supply, Bread Board, Connecting Wires, respective IC (7402)

CIRCUIT:

PIN-DIAGRAM:

TRUTH TABLE:

NOR Truth Table		
Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

THEORY: NOR gate is actually a combination of two logic gates: OR and NOT gate it's output is complement of OR gate

This gate can have a minimum of two inputs while the output is limited to one. Using this gate, we can realise all other gates. This is why this gate is also known as a universal gate.

PROCEDURE (MULTISIM):

- Select the gate symbol from the digital section of the tool bar on the left .
- Select a resistor from the same toolbar.
- Select the voltage sources and ground symbols from that toolbar.
- Ground both the voltage sources(clock) and then connect them as in the circuit diagram so as to recreate a different gate.
- Connect the output terminal to 1kohm resistor and ground it.

CIRCUIT DIAGRAMS:

AND GATE

OR GATE

NAND GATE

XOR GATE

XNOR GATE

NOT GATE

INPUT /OUTPUT WAVEFORMS:

AND GATE

OR GATE

NAND GATE

XOR GATE

XNOR GATE

NOT GATE

PRECAUTIONS:

- Power supply should not exceed 5V.
- All the connections should be tight.
- Components should be tested before the practical.