Package 'E2E'

August 26, 2025

Title Ensemble Learning Framework for Diagnostic and Prognostic Modeling

Version 0.0.3

Description Provides a framework to build and evaluate diagnosis or prognosis models using stacking, voting, and bagging ensemble techniques with various base learners. The package also includes tools for visualization and interpretation of models. The development version of the package is available on 'GitHub' at https://github.com/xiaojie0519/E2E. The methods are based on the foundational work of Breiman (1996) doi:10.1007/BF00058655 on bagging and Wolpert (1992) doi:10.1016/S0893-6080(05)80023-1 on stacking.

License MIT + file LICENSE

Encoding UTF-8

URL https://xiaojie0519.github.io/E2E/

BugReports https://github.com/xiaojie0519/E2E/issues

RoxygenNote 7.3.2

Imports caret, dplyr, gbm, ggplot2, glmnet, magrittr, MASS, patchwork, pROC, PRROC, randomForestSRC, readr, RSNNS, shapviz, survcomp, survival, survivalROC, survminer, timeROC, xgboost

Suggests ada, doParallel, e1071, kernlab, klaR, knitr, nnet, randomForest, RColorBrewer, rmarkdown, rpart

Depends R (>= 3.5)

LazyData true

VignetteBuilder knitr

Language en

NeedsCompilation no

Author Shanjie Luan [aut, cre]

Maintainer Shanjie Luan < Luan 20050519@163.com>

Repository CRAN

Date/Publication 2025-08-26 19:30:14 UTC

2 Contents

Contents

apply_dia	3
apply_pro	4
bagging_dia	5
bagging_pro	7
calculate_metrics_at_threshold_dia	8
dt_dia	10
en_dia	11
en_pro	12
evaluate_model_dia	13
evaluate_model_pro	15
	16
	17
	18
<i>€</i> −1	19
$\mathcal{E} = 1$	20
	21
	22
<i>C</i> −1	23
	24
	24
_	
_	27
-	28
<u> </u>	29
-	30
1 1	32
1 1	33
1-	34 35
-	
<u> </u>	37
nb_dia	
print_model_summary_dia	
1	
qda_dia	
register_model_dia	
register_model_pro	
rf_dia	44
	45
C -1	46
<u></u>	47
stacking_dia	48
stacking_pro	50
stepcox_pro	51
Surv	52
cym dio	52

3 apply_dia

	test_dia	53
	test_pro	
	train_dia	55
	train_pro	56
	voting_dia	58
	xb_dia	60
Index		61
muex		01

apply_dia

Apply a Trained Diagnostic Model to New Data

Description

Applies a previously trained model (or ensemble) to a new, unseen dataset to generate predicted probabilities.

Usage

```
apply_dia(
  trained_model_object,
  new_data,
  label_col_name = NULL,
  pos_class,
  neg_class
)
```

Arguments

trained_model_object

A trained model object, as returned by models_dia, bagging_dia, stacking_dia, voting_dia, or imbalance_dia.

new_data A data frame containing the new data for prediction. The first column must be

the sample ID, subsequent columns are features.

label_col_name A character string, the name of the column containing the class labels in the new

data. This is optional and only used to include true labels in the output; it is not

used for prediction.

A character string, the label for the positive class (must match the label used pos_class

during training).

A character string, the label for the negative class (must match the label used neg_class

during training).

Value

A data frame with sample (ID), label (original numeric label from new data, or NA if not provided), and score (predicted probability for the positive class).

4 apply_pro

Examples

```
# 1. Assume 'train_dia' and 'test_dia' are loaded from your package
# data(train_dia)
# data(test_dia) # test_dia has same structure, maybe without the label column
initialize_modeling_system_dia()
# 2. Train a model
train_results <- models_dia(</pre>
  data = train_dia, model = "lasso",
  new_positive_label = "Case", new_negative_label = "Control"
trained_lasso_model <- train_results$lasso$model_object</pre>
# 3. Apply the trained model to new data
new_predictions <- apply_dia(</pre>
  trained_model_object = trained_lasso_model,
  new_data = test_dia,
  label_col_name = "Disease_Status", # Optional
  pos_class = "Case",
  neg_class = "Control"
utils::head(new_predictions)
```

apply_pro

Apply a Trained Prognostic Model to New Data

Description

Applies a previously trained prognostic model (or ensemble) to a new, unseen dataset to generate prognostic scores.

Usage

```
apply_pro(trained_model_object, new_data, time_unit = "day")
```

Arguments

trained_model_object

A trained model object, as returned by models_pro, bagging_pro, or stacking_pro.

new_data

A data frame containing the new data for prediction. It should follow the same structure as the training data: ID, Outcome, Time, Features. The outcome and time columns are used for data preparation and can be included in the output, but the model's prediction only uses the features. If outcome/time are unknown, they can be filled with NA.

_unit A character string, the unit of time in the third column of new_data.

time_unit

bagging_dia 5

Value

A data frame with ID, outcome, time, and predicted score for the new data.

See Also

```
evaluate_model_pro
```

Examples

```
# NOTE: This example requires 'train_pro' and 'test_pro' datasets.
if (requireNamespace("E2E", quietly = TRUE) &&
    "train_pro" %in% utils::data(package = "E2E")$results[,3] &&
    "test_pro" %in% utils::data(package = "E2E")$results[,3]) {
 data(train_pro, package = "E2E")
 data(test_pro, package = "E2E")
 initialize_modeling_system_pro()
 train_results <- models_pro(data = train_pro, model = "lasso_pro")</pre>
 trained_lasso_model <- train_results$lasso_pro$model_object</pre>
 # Apply the trained model to new data
 new_data_predictions <- apply_pro(</pre>
    trained_model_object = trained_lasso_model,
   new_data = test_pro,
    time_unit = "day" # Specify time unit of test_pro
 utils::head(new_data_predictions)
}
```

bagging_dia

Train a Bagging Diagnostic Model

Description

Implements a Bagging (Bootstrap Aggregating) ensemble for diagnostic models. It trains multiple base models on bootstrapped samples of the training data and aggregates their predictions by averaging probabilities.

Usage

```
bagging_dia(
  data,
  base_model_name,
  n_estimators = 50,
  subset_fraction = 0.632,
  tune_base_model = FALSE,
  threshold_strategy = "default",
```

6 bagging_dia

```
specific_threshold_value = 0.5,
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Positive",
new_negative_label = "Negative",
seed = 456
)
```

Arguments

data

A data frame where the first column is the sample ID, the second is the outcome label, and subsequent columns are features.

base_model_name

A character string, the name of the base diagnostic model to use (e.g., "rf", "lasso"). This model must be registered.

n_estimators

An integer, the number of base models to train.

subset_fraction

A numeric value between 0 and 1, the fraction of samples to bootstrap for each base model.

tune_base_model

Logical, whether to enable tuning for each base model.

threshold_strategy

A character string (e.g., "f1", "youden", "default") or a numeric value (0-1) for determining the evaluation threshold for the ensemble.

specific_threshold_value

A numeric value between 0 and 1. Only used if threshold_strategy is "numeric".

positive_label_value

A numeric or character value in the raw data representing the positive class.

negative_label_value

A numeric or character value in the raw data representing the negative class.

new_positive_label

A character string, the desired factor level name for the positive class (e.g., "Positive").

new_negative_label

A character string, the desired factor level name for the negative class (e.g., "Negative").

seed

An integer, for reproducibility.

Value

A list containing the model_object, sample_score, and evaluation_metrics.

See Also

initialize_modeling_system_dia, evaluate_model_dia

bagging_pro 7

Examples

```
# This example assumes your package includes a dataset named 'train_dia'.
# If not, create a toy data frame first.
if (exists("train_dia")) {
    initialize_modeling_system_dia()

    bagging_rf_results <- bagging_dia(
        data = train_dia,
        base_model_name = "rf",
        n_estimators = 5, # Reduced for a quick example
        threshold_strategy = "youden",
        positive_label_value = 1,
        negative_label_value = 0,
        new_positive_label = "Case",
        new_negative_label = "Control"
    )
    print_model_summary_dia("Bagging (RF)", bagging_rf_results)
}</pre>
```

bagging_pro

Train a Bagging Prognostic Model

Description

Implements a Bagging (Bootstrap Aggregating) ensemble for prognostic models. It trains multiple base models on bootstrapped samples of the training data and aggregates their predictions.

Usage

```
bagging_pro(
  data,
  base_model_name,
  n_estimators = 10,
  subset_fraction = 0.632,
  tune_base_model = FALSE,
  time_unit = "day",
  years_to_evaluate = c(1, 3, 5),
  seed = 456
)
```

Arguments

data

A data frame for training. The first column must be the sample ID, the second column the event status (0/1), the third column the time, and subsequent columns the features.

base_model_name

A character string, the name of the base prognostic model to use (e.g., "lasso_pro", "rsf_pro"). This model must be registered.

```
n_estimators An integer, the number of base models to train.

subset_fraction

A numeric value between 0 and 1, the fraction of samples to bootstrap for each base model.

tune_base_model

Logical, whether to enable tuning for each base model.

time_unit A character string, the unit of time in the third column of data.

years_to_evaluate

A numeric vector of specific years at which to calculate time-dependent AUROC for evaluation.
```

Value

seed

A list containing the model_object, sample_score, and evaluation_metrics.

An integer, for reproducibility.

See Also

```
initialize_modeling_system_pro, evaluate_model_pro
```

Examples

```
# NOTE: This example requires the 'train_pro' dataset.
if (requireNamespace("E2E", quietly = TRUE) &&
  "train_pro" %in% utils::data(package = "E2E")$results[,3]) {
    data(train_pro, package = "E2E")
    initialize_modeling_system_pro()

    bagging_lasso_results <- bagging_pro(
        data = train_pro,
        base_model_name = "lasso_pro",
        n_estimators = 3, # Small number for example speed
        subset_fraction = 0.8,
        years_to_evaluate = c(1, 3)
    )
    print_model_summary_pro("Bagging (Lasso)", bagging_lasso_results)
}</pre>
```

```
calculate_metrics_at_threshold_dia
```

Calculate Classification Metrics at a Specific Threshold

Description

Calculates various classification performance metrics (Accuracy, Precision, Recall, F1-score, Specificity, True Positives, etc.) for binary classification at a given probability threshold.

Usage

```
calculate_metrics_at_threshold_dia(
  prob_positive,
  y_true,
  threshold,
  pos_class,
  neg_class
)
```

Arguments

prob_positive A numeric vector of predicted probabilities for the positive class.

y_true A factor vector of true class labels.

threshold A numeric value between 0 and 1, the probability threshold above which a prediction is considered positive.

pos_class A character string, the label for the positive class.

neg_class A character string, the label for the negative class.

Value

A list containing:

- Threshold: The threshold used.
- Accuracy: Overall prediction accuracy.
- Precision: Precision for the positive class.
- Recall: Recall (Sensitivity) for the positive class.
- F1: F1-score for the positive class.
- Specificity: Specificity for the negative class.
- TP, TN, FP, FN, N: Counts of True Positives, True Negatives, False Positives, False Negatives, and total samples.

10 dt_dia

dt_dia

Train a Decision Tree Model for Classification

Description

Trains a single Decision Tree model using caret::train (via rpart method) for binary classification.

Usage

```
dt_dia(X, y, tune = FALSE, cv_folds = 5)
```

Arguments

X A data frame of features.

y A factor vector of class labels.

tune Logical, whether to perform hyperparameter tuning for cp (complexity parameter) (if TRUE) or use a fixed value (if FALSE).

cv_folds An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained Decision Tree model.

en_dia

en_dia	Train an Elastic Net (L1 and L2 Regularized Logistic Regression) Model for Classification

Description

Trains an Elastic Net-regularized logistic regression model using caret::train (via glmnet method) for binary classification.

Usage

```
en_dia(X, y, tune = FALSE, cv_folds = 5)
```

Arguments

Χ	A data frame of features.
У	A factor vector of class labels.
tune	Logical, whether to perform hyperparameter tuning for lambda (if TRUE) or use a fixed value (if FALSE). alpha is fixed at 0.5 for Elastic Net.
cv_folds	An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained Elastic Net model.

12 en_pro

en_pro

Train an Elastic Net Cox Proportional Hazards Model

Description

Trains a Cox proportional hazards model with Elastic Net regularization using glmnet (with alpha = 0.5).

Usage

```
en_pro(X, y_surv, tune = FALSE)
```

Arguments

X A data frame of features.

y_surv A survival::Surv object representing the survival outcome.

tune Logical, whether to perform hyperparameter tuning (currently simplified/ignored

for direct cv.glmnet usage which inherently tunes lambda).

Value

A list of class "train" containing the trained glmnet model object, names of features used in training, and model type. The returned object also includes fitted_scores (linear predictor), y_surv, best_lambda, and alpha_val.

```
set.seed(42)
n_samples <- 50
n_features <- 10
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
    time = runif(n_samples, 100, 1000),
    event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model
en_model <- en_pro(X_data, Y_surv_obj)
print(en_model$finalModel)</pre>
```

evaluate_model_dia 13

Description

Evaluates the performance of a trained diagnostic model using various metrics relevant to binary classification, including AUROC, AUPRC, and metrics at an optimal or specified probability threshold.

Usage

```
evaluate_model_dia(
  model_obj = NULL,
  X_data = NULL,
  y_data,
  sample_ids,
  threshold_strategy = c("default", "f1", "youden", "numeric"),
  specific_threshold_value = 0.5,
  pos_class,
  neg_class,
  precomputed_prob = NULL,
  y_original_numeric = NULL
)
```

Arguments

model_obj A trained model object (typically a caret::train object or a list from an en-

semble like Bagging). Can be NULL if precomputed_prob is provided.

X_data A data frame of features corresponding to the data used for evaluation. Required

if model_obj is provided and precomputed_prob is NULL.

y_data A factor vector of true class labels for the evaluation data.

sample_ids A vector of sample IDs for the evaluation data.

threshold_strategy

A character string, defining how to determine the threshold for class-specific metrics: "default" (0.5), "f1" (maximizes F1-score), "youden" (maximizes Youden's J statistic), or "numeric" (uses specific_threshold_value).

specific_threshold_value

A numeric value between 0 and 1. Only used if threshold_strategy is "numeric".

pos_class A character string, the label for the positive class.

neg_class A character string, the label for the negative class.

precomputed_prob

Optional. A numeric vector of precomputed probabilities for the positive class. If provided, model_obj and X_data are not used for score derivation.

14 evaluate_model_dia

```
y_original_numeric
```

Optional. The original numeric/character vector of labels. If not provided, it's inferred from y_data using global pos_label_value and neg_label_value.

Value

A list containing:

- sample_score: A data frame with sample (ID), label (original numeric), and score (predicted probability for positive class).
- evaluation_metrics: A list of performance metrics:
 - Threshold_Strategy: The strategy used for threshold selection.
 - _Threshold: The chosen probability threshold.
 - Accuracy, Precision, Recall, F1, Specificity: Metrics calculated at _Threshold.
 - AUROC: Area Under the Receiver Operating Characteristic curve.
 - AUROC_95CI_Lower, AUROC_95CI_Upper: 95% confidence interval for AUROC.
 - AUPRC: Area Under the Precision-Recall curve.

```
set.seed(42)
n_obs <- 50
X_toy <- data.frame(</pre>
  FeatureA = rnorm(n_obs),
  FeatureB = runif(n_obs, 0, 100)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),</pre>
                 levels = c("Control", "Case"))
ids_toy <- paste0("Sample", 1:n_obs)</pre>
# 2. Train a model
rf_model <- rf_dia(X_toy, y_toy)</pre>
# 3. Evaluate the model using F1-score optimal threshold
eval_results <- evaluate_model_dia(</pre>
  model_obj = rf_model,
  X_{data} = X_{toy}
  y_data = y_toy,
  sample_ids = ids_toy,
  threshold_strategy = "f1",
  pos_class = "Case",
  neg_class = "Control"
str(eval_results)
```

evaluate_model_pro 15

evaluate_model_pro

Evaluate Prognostic Model Performance

Description

Evaluates the performance of a trained prognostic model using various metrics relevant to survival analysis, including C-index, time-dependent AUROC, and Kaplan-Meier (KM) group analysis (Hazard Ratio and p-value).

Usage

```
evaluate_model_pro(
  trained_model_obj = NULL,
  X_data = NULL,
  Y_surv_obj,
  sample_ids,
  years_to_evaluate = c(1, 3, 5),
  precomputed_score = NULL,
  meta_normalize_params = NULL
)
```

Arguments

trained_model_obj

A trained model object (of class "train" as returned by model training functions like lasso_pro, rsf_pro, etc.). Can be NULL if precomputed_score is provided.

 X_{data}

A data frame of features corresponding to the data used for evaluation. Required if trained_model_obj is provided and precomputed_score is NULL.

Y_surv_obj

A survival::Surv object for the evaluation data.

sample_ids

A vector of sample IDs for the evaluation data.

years_to_evaluate

A numeric vector of specific years at which to calculate time-dependent AU-ROC.

precomputed_score

Optional. A numeric vector of precomputed prognostic scores for the samples. If provided, trained_model_obj and X_data are not strictly necessary for score derivation.

meta_normalize_params

Optional. A list of normalization parameters (min/max values) used for base model scores in a stacking ensemble. Used when trained_model_obj is a stacking model to ensure consistent normalization during prediction.

Value

A list containing:

- sample_score: A data frame with ID, outcome, time, and score columns.
- evaluation_metrics: A list of performance metrics:
 - C_index: Harrell's C-index.
 - AUROC_Years: A named list of time-dependent AUROC values for specified years.
 - AUROC_Average: The average of time-dependent AUROC values.
 - KM_HR: Hazard Ratio for High vs Low risk groups (split by median score).
 - KM_P_value: P-value for the KM group comparison.
 - KM_Cutoff: The score cutoff used to define High/Low risk groups (median score).

Examples

```
# Generate dummy data
set.seed(42)
n <- 50
X <- as.data.frame(matrix(rnorm(n * 5), n, 5))</pre>
Y_surv <- survival::Surv(time = runif(n, 1, 5*365), event = sample(0:1, n, TRUE))
ids <- paste0("s", 1:n)
# Train a simple model
initialize_modeling_system_pro()
model_obj <- lasso_pro(X, Y_surv)</pre>
# Evaluate the model on the same data
eval_results <- evaluate_model_pro(</pre>
  trained_model_obj = model_obj,
  X_{data} = X,
  Y_surv_obj = Y_surv,
  sample_ids = ids,
  years_to_evaluate = c(1, 2, 3)
str(eval_results$evaluation_metrics)
```

evaluate_predictions_pro

Evaluate Prognostic Predictions

Description

A convenience wrapper to evaluate a data frame of prognostic predictions. This function is ideal for evaluating the output of apply_pro.

Usage

```
evaluate_predictions_pro(prediction_df, years_to_evaluate = c(1, 3, 5))
```

figure_dia 17

Arguments

A numeric vector of specific years at which to calculate time-dependent AU-ROC.

Value

A list of evaluation metrics, including C-index, time-dependent AUROC, and Kaplan-Meier analysis results.

See Also

```
apply_pro, evaluate_model_pro
```

Examples

```
# Assume 'trained_model' and 'test_pro' data are available
if (requireNamespace("E2E", quietly = TRUE) &&
    "train_pro" %in% utils::data(package = "E2E")$results[,3] &&
    "test_pro" %in% utils::data(package = "E2E")$results[,3]) {

    data(train_pro, package = "E2E")
    data(test_pro, package = "E2E")
    initialize_modeling_system_pro()
    model_results <- models_pro(data = train_pro, model = "lasso_pro")

# 1. Get predictions on new data
    predictions <- apply_pro(model_results$lasso_pro$model_object, test_pro)

# 2. Evaluate these predictions using the simplified function
    evaluation_metrics <- evaluate_predictions_pro(predictions, years_to_evaluate = c(1, 3))
    print(evaluation_metrics)
}</pre>
```

figure_dia

Plot Diagnostic Model Evaluation Figures

Description

Generates and returns a ggplot object for Receiver Operating Characteristic (ROC) curves, Precision-Recall (PRC) curves, or confusion matrices.

Usage

```
figure_dia(type, data, file = NULL)
```

18 figure_pro

Arguments

type

String, specifies the type of plot to generate. Options are "roc", "prc", or "matrix".

data

A list object containing model evaluation results. It must include:

• sample_score: A data frame with "label" (0/1) and "score" columns.

• evaluation_metrics: A list with a "Final_Threshold" or "Final_Threshold" value.

file

Optional. A string specifying the path to save the plot (e.g., "plot.png"). If NULL (the default), the plot object is returned instead of being saved.

Value

A ggplot object. If the file argument is provided, the plot is also saved to the specified path.

Examples

```
# Create example data for a diagnostic model
external_eval_example_dia <- list(</pre>
 sample_score = data.frame(
   ID = paste0("S", 1:100),
   label = sample(c(0, 1), 100, replace = TRUE),
   score = runif(100, 0, 1)
 evaluation_metrics = list(
    Final_Threshold = 0.53
 )
)
# Generate an ROC curve plot object
roc_plot <- figure_dia(type = "roc", data = external_eval_example_dia)</pre>
# To display the plot, simply run:
# print(roc_plot)
# Generate a PRC curve and save it to a temporary file
# tempfile() creates a safe, temporary path as required by CRAN
temp_prc_path <- tempfile(fileext = ".png")</pre>
figure_dia(type = "prc", data = external_eval_example_dia, file = temp_prc_path)
# Generate a Confusion Matrix plot
matrix_plot <- figure_dia(type = "matrix", data = external_eval_example_dia)</pre>
```

figure_pro

Plot Prognostic Model Evaluation Figures

Description

Generates and returns a ggplot object for Kaplan-Meier (KM) survival curves or time-dependent ROC curves.

figure_shap 19

Usage

```
figure_pro(type, data, file = NULL, time_unit = "days")
```

Arguments

type "km" or "tdroc" data list with:

• sample_score: data.frame(time, outcome, score)

• evaluation_metrics: for "km" needs KM_Cutoff; for "tdroc" needs AU-

ROC_Years (numeric years like c(1,3,5), OR a named vector/list like c('1'=0.74,'3'=0.82,'5'=0.85))

file optional path to save

time_unit "days" (default), "months", or "years" for df\$time

Value

ggplot object

figure_shap	Generate and Plot SHAP Explanation Figures

Description

Creates SHAP (SHapley Additive exPlanations) plots to explain feature contributions by training a surrogate model on the original model's scores.

Usage

```
figure_shap(data, raw_data, target_type, file = NULL, model_type = "xgboost")
```

Arguments

data	A list containing sample_score, a data frame with sample IDs and score.
raw_data	A data frame with original features. The first column must be the sample ID.
target_type	String, the analysis type: "diagnosis" or "prognosis". This determines which columns in raw_data are treated as features.
file	Optional. A string specifying the path to save the plot. If $NULL$ (default), the plot object is returned.
model_type	String, the surrogate model for SHAP calculation. "xgboost" (default) or "lasso".

Value

A patchwork object combining SHAP summary and importance plots. If file is provided, the plot is also saved.

Examples

```
# --- Example for a Diagnosis Model ---
set.seed(123)
train_dia_data <- data.frame(</pre>
  SampleID = paste0("S", 1:100),
  Label = sample(c(0, 1), 100, replace = TRUE),
  FeatureA = rnorm(100, 10, 2),
  FeatureB = runif(100, 0, 5)
model_results <- list(</pre>
  sample_score = data.frame(ID = paste0("S", 1:100), score = runif(100, 0, 1))
)
# Generate SHAP plot object
shap_plot <- figure_shap(</pre>
  data = model_results,
  raw_data = train_dia_data,
  target_type = "diagnosis",
  model_type = "xgboost"
# To display the plot:
# print(shap_plot)
```

find_optimal_threshold_dia

Find Optimal Probability Threshold

Description

Determines an optimal probability threshold for binary classification based on maximizing F1-score or Youden's J statistic.

Usage

```
find_optimal_threshold_dia(
  prob_positive,
  y_true,
  type = c("f1", "youden"),
  pos_class,
  neg_class
)
```

Arguments

prob_positive A numeric vector of predicted probabilities for the positive class.

y_true A factor vector of true class labels.

gbm_dia 21

type	A character string, specifying the optimization criterion: "f1" for F1-score or "youden" for Youden's J statistic (Sensitivity + Specificity - 1).
pos_class	A character string, the label for the positive class.
neg_class	A character string, the label for the negative class.

Value

A numeric value, the optimal probability threshold.

Examples

```
y_true_ex <- factor(c("Negative", "Positive", "Positive", "Negative", "Positive"),</pre>
                     levels = c("Negative", "Positive"))
prob_ex <- c(0.1, 0.8, 0.6, 0.3, 0.9)
# Find threshold maximizing F1-score
opt_f1_threshold <- find_optimal_threshold_dia(</pre>
  prob_positive = prob_ex,
  y_true = y_true_ex,
  type = "f1",
  pos_class = "Positive",
  neg_class = "Negative"
print(opt_f1_threshold)
# Find threshold maximizing Youden's J
opt_youden_threshold <- find_optimal_threshold_dia(</pre>
  prob_positive = prob_ex,
  y_true = y_true_ex,
  type = "youden",
  pos_class = "Positive",
  neg_class = "Negative"
print(opt_youden_threshold)
```

gbm_dia

Train a Gradient Boosting Machine (GBM) Model for Classification

Description

Trains a Gradient Boosting Machine (GBM) model using caret::train for binary classification.

Usage

```
gbm_dia(X, y, tune = FALSE, cv_folds = 5)
```

gbm_pro

Arguments

X A data frame of features.y A factor vector of class labels.

tune Logical, whether to perform hyperparameter tuning for interaction.depth,

n. trees, and shrinkage (if TRUE) or use fixed values (if FALSE).

cv_folds An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained GBM model.

Examples

gbm_pro

Train a Gradient Boosting Machine (GBM) for Survival Data

Description

Trains a Gradient Boosting Machine (GBM) model with a Cox proportional hazards loss function using gbm.

Usage

```
gbm_pro(X, y_surv, tune = FALSE, cv.folds = 3)
```

Arguments

X A data frame of features.

y_surv A survival::Surv object representing the survival outcome.

tune Logical, whether to perform simplified hyperparameter tuning. If TRUE, n. trees,

interaction.depth, and shrinkage are set to predefined values suitable for

tuning; otherwise, default values are used.

cv. folds Integer. The number of cross-validation folds to use. Setting this to 0 or 1 will

disable cross-validation. Defaults to 3.

Value

A list of class "train" containing the trained gbm model object, names of features used in training, and model type. The returned object also includes fitted_scores (linear predictor), y_surv, and best_iter.

Examples

```
# Generate some dummy survival data
set.seed(42)
n_samples <- 200
n_features <- 5
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
   time = runif(n_samples, 100, 1000),
   event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model for the example *without* cross-validation to pass R CMD check
# In real use, you might use the default cv.folds = 3
gbm_model <- gbm_pro(X_data, Y_surv_obj, cv.folds = 0)
print(gbm_model$finalModel)</pre>
```

Description

Retrieves a list of all diagnostic model functions currently registered in the internal environment.

Usage

```
get_registered_models_dia()
```

Value

A named list where names are the registered model names and values are the corresponding model functions.

See Also

```
register_model_dia, initialize_modeling_system_dia
```

24 imbalance_dia

Examples

```
# Ensure system is initialized to see the default models
initialize_modeling_system_dia()
models <- get_registered_models_dia()
# See available model names
print(names(models))</pre>
```

Description

Retrieves a list of all prognostic model functions currently registered in the internal environment.

Usage

```
get_registered_models_pro()
```

Value

A named list where names are the registered model names and values are the corresponding model functions.

See Also

```
register_model_pro, initialize_modeling_system_pro
```

Examples

```
# Get all currently registered models
initialize_modeling_system_pro() # Ensure system is initialized
models <- get_registered_models_pro()
names(models) # See available model names</pre>
```

imbalance_dia

Train an EasyEnsemble Model for Imbalanced Classification

Description

Implements the EasyEnsemble algorithm. It trains multiple base models on balanced subsets of the data (by undersampling the majority class) and aggregates their predictions.

imbalance_dia 25

Usage

```
imbalance_dia(
  data,
  base_model_name = "xb",
  n_estimators = 10,
  tune_base_model = FALSE,
  threshold_choices = "default",
  positive_label_value = 1,
  negative_label_value = 0,
  new_positive_label = "Positive",
  new_negative_label = "Negative",
  seed = 456
)
```

Arguments

data

A data frame where the first column is the sample ID, the second is the outcome label, and subsequent columns are features.

base_model_name

A character string, the name of the base diagnostic model to use (e.g., "xb", "rf"). This model must be registered.

n_estimators

An integer, the number of base models to train (number of subsets).

tune_base_model

Logical, whether to enable tuning for each base model.

threshold_choices

A character string (e.g., "f1", "youden", "default") or a numeric value (0-1) for determining the evaluation threshold for the ensemble.

positive_label_value

A numeric or character value in the raw data representing the positive class.

negative_label_value

A numeric or character value in the raw data representing the negative class.

new_positive_label

A character string, the desired factor level name for the positive class (e.g., "Positive").

new_negative_label

A character string, the desired factor level name for the negative class (e.g., "Negative").

seed

An integer, for reproducibility.

Value

A list containing the model_object, sample_score, and evaluation_metrics.

See Also

```
initialize_modeling_system_dia, evaluate_model_dia
```

Examples

```
# 1. Initialize the modeling system
initialize_modeling_system_dia()
# 2. Create an imbalanced toy dataset
set.seed(42)
n_obs <- 100
n_minority <- 10
data_imbalanced_toy <- data.frame(</pre>
 ID = paste0("Sample", 1:n_obs),
 Status = c(rep(1, n_minority), rep(0, n_obs - n_minority)),
 Feat1 = rnorm(n_obs),
 Feat2 = runif(n_obs)
)
# 3. Run the EasyEnsemble algorithm
# n_estimators is reduced for a quick example
easyensemble_results <- imbalance_dia(</pre>
 data = data_imbalanced_toy,
 base_model_name = "xb",
 n_{estimators} = 3,
 threshold_choices = "f1"
print_model_summary_dia("EasyEnsemble (XGBoost)", easyensemble_results)
```

initialize_modeling_system_dia

Initialize Diagnostic Modeling System

Description

Initializes the diagnostic modeling system by loading required packages and registering default diagnostic models (Random Forest, XGBoost, SVM, MLP, Lasso, Elastic Net, Ridge, LDA, QDA, Naive Bayes, Decision Tree, GBM). This function should be called once before using models_dia() or ensemble methods.

Usage

```
initialize_modeling_system_dia()
```

Value

Invisible NULL. Initializes the internal model registry.

Examples

```
# Initialize the system (typically run once at the start of a session or script)
initialize_modeling_system_dia()

# Check if a default model like Random Forest is now registered
"rf" %in% names(get_registered_models_dia())
```

Description

Initializes the prognostic modeling system by loading required packages and registering default prognostic models (Lasso, Elastic Net, Ridge, Random Survival Forest, Stepwise Cox, GBM for Cox). This function should be called once before using run_models_pro() or ensemble methods.

Usage

```
initialize_modeling_system_pro()
```

Value

Invisible NULL. Initializes the internal model registry.

Examples

```
# Initialize the system (typically run once at the start of a session or script)
initialize_modeling_system_pro()

# Check if models are now registered
print(names(get_registered_models_pro()))
```

lasso_dia

Train a Lasso (L1 Regularized Logistic Regression) Model for Classification

Description

Trains a Lasso-regularized logistic regression model using caret::train (via glmnet method) for binary classification.

Usage

```
lasso_dia(X, y, tune = FALSE, cv_folds = 5)
```

28 lasso_pro

Arguments

X A data frame of features.
 y A factor vector of class labels.
 tune Logical, whether to perform hyperparameter tuning for lambda (if TRUE) or use a fixed value (if FALSE). alpha is fixed at 1 for Lasso.
 cv_folds An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained Lasso model.

Examples

lasso_pro

Train a Lasso Cox Proportional Hazards Model

Description

Trains a Cox proportional hazards model with Lasso regularization using glmnet.

Usage

```
lasso\_pro(X, y\_surv, tune = FALSE)
```

Arguments

X A data frame of features.

y_surv A survival::Surv object representing the survival outcome.

tune Logical, whether to perform hyperparameter tuning (currently simplified/ignored

for direct cv.glmnet usage which inherently tunes lambda).

lda_dia 29

Value

A list of class "train" containing the trained glmnet model object, names of features used in training, and model type. The returned object also includes fitted_scores (linear predictor) and y_surv.

Examples

```
set.seed(42)
n_samples <- 50
n_features <- 10
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
    time = runif(n_samples, 100, 1000),
    event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model
lasso_model <- lasso_pro(X_data, Y_surv_obj)
print(lasso_model$finalModel)</pre>
```

lda_dia

Train a Linear Discriminant Analysis (LDA) Model for Classification

Description

Trains a Linear Discriminant Analysis (LDA) model using caret::train for binary classification.

Usage

```
lda_dia(X, y, tune = FALSE, cv_folds = 5)
```

Arguments

X A data frame of features.

y A factor vector of class labels.

tune Logical, whether to perform hyperparameter tuning (currently ignored for LDA).

cv_folds An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained LDA model.

Examples

load_and_prepare_data_dia

Load and Prepare Data for Diagnostic Models

Description

Loads a CSV file containing patient data, extracts features, and converts the label column into a factor suitable for classification models. Handles basic data cleaning like trimming whitespace and type conversion.

Usage

```
load_and_prepare_data_dia(
  data_path,
  label_col_name,
  positive_label_value = 1,
  negative_label_value = 0,
  new_positive_label = "Positive",
  new_negative_label = "Negative"
)
```

Arguments

data_path A character string, the file path to the input CSV data. The first column is assumed to be a sample ID.

label_col_name A character string, the name of the column containing the class labels. positive_label_value

A numeric or character value that represents the positive class in the raw data.

negative_label_value

A numeric or character value that represents the negative class in the raw data.

```
new_positive_label
```

A character string, the desired factor level name for the positive class (e.g., "Positive").

new_negative_label

A character string, the desired factor level name for the negative class (e.g., "Negative").

Value

A list containing:

- X: A data frame of features (all columns except ID and label).
- y: A factor vector of class labels, with levels new_negative_label and new_positive_label.
- sample_ids: A vector of sample IDs (the first column of the input data).
- pos_class_label: The character string used for the positive class factor level.
- neg_class_label: The character string used for the negative class factor level.
- y_original_numeric: The original numeric/character vector of labels.

```
# Create a dummy CSV file in a temporary directory for demonstration
temp_csv_path <- tempfile(fileext = ".csv")</pre>
dummy_data <- data.frame(</pre>
 ID = paste0("Patient", 1:50),
 Disease_Status = sample(c(0, 1), 50, replace = TRUE),
 FeatureA = rnorm(50),
 FeatureB = runif(50, 0, 100),
 CategoricalFeature = sample(c("X", "Y", "Z"), 50, replace = TRUE)
)
write.csv(dummy_data, temp_csv_path, row.names = FALSE)
# Load and prepare data from the temporary file
prepared_data <- load_and_prepare_data_dia(</pre>
 data_path = temp_csv_path,
 label_col_name = "Disease_Status",
 positive_label_value = 1,
 negative_label_value = 0,
 new_positive_label = "Case"
 new_negative_label = "Control"
)
# Check prepared data structure
str(prepared_data$X)
table(prepared_data$y)
# Clean up the dummy file
unlink(temp_csv_path)
```

```
load_and_prepare_data_pro
```

Load and Prepare Data for Prognostic Models

Description

Loads a CSV file containing patient data, extracts features, outcome, and time columns, and prepares them into a format suitable for survival analysis models. Handles basic data cleaning like NA removal and column type conversion.

Usage

```
load_and_prepare_data_pro(
  data_path,
  outcome_col_name,
  time_col_name,
  time_unit = c("day", "month", "year")
)
```

Arguments

data_path

A character string, the file path to the input CSV data. The first column is assumed to be a sample ID.

outcome_col_name

A character string, the name of the column containing event status (0 for cen-

sored, 1 for event).

time_col_name A character string, the name of the column containing event or censoring time.

time_unit A character string, the unit of time in time_col_name. Can be "day", "month",

or "year". Times will be converted to days internally.

Value

A list containing:

- X: A data frame of features (all columns except ID, outcome, and time).
- Y_surv: A survival::Surv object created from time and outcome.
- sample_ids: A vector of sample IDs (the first column of the input data).
- outcome_numeric: A numeric vector of outcome status.
- time_numeric: A numeric vector of time, converted to days.

min_max_normalize 33

Examples

```
temp_csv_path <- tempfile(fileext = ".csv")</pre>
dummy_data <- data.frame(</pre>
  ID = paste0("Patient", 1:50),
  FeatureA = rnorm(50),
  FeatureB = runif(50, 0, 100),
  CategoricalFeature = sample(c("A", "B", "C"), 50, replace = TRUE),
  Outcome_Status = sample(c(0, 1), 50, replace = TRUE),
  Followup_Time_Months = runif(50, 10, 60)
write.csv(dummy_data, temp_csv_path, row.names = FALSE)
# Load and prepare data
prepared_data <- load_and_prepare_data_pro(</pre>
  data_path = temp_csv_path,
  outcome_col_name = "Outcome_Status",
  time_col_name = "Followup_Time_Months",
  time_unit = "month"
# Check prepared data structure
str(prepared_data$X)
print(prepared_data$Y_surv[1:5])
# Clean up dummy file
unlink(temp_csv_path)
```

min_max_normalize

Min-Max Normalization

Description

Normalizes a numeric vector to a range of 0 to 1 using min-max scaling.

Usage

```
min_max_normalize(x, min_val = NULL, max_val = NULL)
```

Arguments

x A numeric vector to be normalized.

min_val Optional. The minimum value to use for normalization. If NULL, the minimum of x is used.

max_val Optional. The maximum value to use for normalization. If NULL, the maximum of x is used.

Value

A numeric vector with values scaled between 0 and 1. If min_val and max_val are equal (or x has no variance), returns a vector of 0.5s.

34 mlp_dia

Examples

```
# Normalize a vector
x_vec <- c(10, 20, 30, 40, 50)
normalized_x <- min_max_normalize(x_vec)
print(normalized_x) # Should be 0, 0.25, 0.5, 0.75, 1

# Normalize with custom min/max
custom_normalized_x <- min_max_normalize(x_vec, min_val = 0, max_val = 100)
print(custom_normalized_x) # Should be 0.1, 0.2, 0.3, 0.4, 0.5</pre>
```

mlp_dia

Train a Multi-Layer Perceptron (Neural Network) Model for Classification

Description

Trains a Multi-Layer Perceptron (MLP) neural network model using caret::train for binary classification.

Usage

```
mlp_dia(X, y, tune = FALSE, cv_folds = 5)
```

Arguments

X A data frame of features.

y A factor vector of class labels.

tune Logical, whether to perform hyperparameter tuning using caret's default grid

(if TRUE) or a fixed value (if FALSE).

cv_folds An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained MLP model.

models_dia 35

```
print(mlp_model)
```

models_dia

Run Multiple Diagnostic Models

Description

Trains and evaluates one or more registered diagnostic models on a given dataset.

Usage

```
models_dia(
  data,
  model = "all_dia",
  tune = FALSE,
  seed = 123,
  threshold_choices = "default",
  positive_label_value = 1,
  negative_label_value = 0,
  new_positive_label = "Positive",
  new_negative_label = "Negative"
)
```

Arguments

data A data frame where the first column is the sample ID, the second is the outcome

label, and subsequent columns are features.

model A character string or vector of character strings, specifying which models to run.

Use "all_dia" to run all registered models.

tune Logical, whether to enable hyperparameter tuning for individual models.

seed An integer, for reproducibility of random processes.

threshold_choices

A character string (e.g., "f1", "youden", "default") or a numeric value (0-1), or a named list/vector allowing different threshold strategies/values for each model.

positive_label_value

A numeric or character value in the raw data representing the positive class.

negative_label_value

A numeric or character value in the raw data representing the negative class.

new_positive_label

A character string, the desired factor level name for the positive class (e.g., "Positive").

new_negative_label

A character string, the desired factor level name for the negative class (e.g., "Negative").

36 models_dia

Value

A named list, where each element corresponds to a run model and contains its trained model_object, sample_score data frame, and evaluation_metrics.

See Also

```
initialize_modeling_system_dia, evaluate_model_dia
```

```
# This example assumes your package includes a dataset named 'train_dia'.
# If not, you should create a toy data frame similar to the one below.
# train_dia <- data.frame(</pre>
# ID = paste0("Patient", 1:100),
# Disease_Status = sample(c(0, 1), 100, replace = TRUE),
  FeatureA = rnorm(100),
# FeatureB = runif(100)
# )
# Ensure the 'train_dia' dataset is available in the environment
# For example, if it is exported by your package:
# data(train_dia)
# Check if 'train_dia' exists, otherwise skip the example
if (exists("train_dia")) {
 # 1. Initialize the modeling system
 initialize_modeling_system_dia()
 # 2. Run selected models
 results <- models_dia(</pre>
   data = train_dia,
   model = c("rf", "lasso"), # Run only Random Forest and Lasso
    threshold_choices = list(rf = "f1", lasso = 0.6), # Different thresholds
   positive_label_value = 1,
   negative_label_value = 0,
   new_positive_label = "Case",
   new_negative_label = "Control",
   seed = 42
 )
 # 3. Print summaries
 for (model_name in names(results)) {
   print_model_summary_dia(model_name, results[[model_name]])
}
```

models_pro 37

mod	e1	S	nr	'n

Run Multiple Prognostic Models

Description

Trains and evaluates one or more registered prognostic models on a given dataset.

Usage

```
models_pro(
  data,
  model = "all_pro",
  tune = FALSE,
  seed = 123,
  time_unit = "day",
  years_to_evaluate = c(1, 3, 5)
)
```

Arguments

data	A data frame for training. The first column must be the sample ID, the second column the event status (0/1), the third column the time, and subsequent columns the features.	
model	A character string or vector of character strings, specifying which models to run. Use "all_pro" to run all registered models.	
tune	Logical, whether to enable hyperparameter tuning for individual models.	
seed	An integer, for reproducibility of random processes.	
time_unit	A character string, the unit of time in the third column of data. Can be "day", "month", or "year".	
years_to_evaluate		
	A numeric vector of specific years at which to calculate time-dependent AU-ROC.	

Value

A named list, where each element corresponds to a run model and contains its trained model_object, sample_score data frame, and evaluation_metrics.

See Also

```
initialize_modeling_system_pro, evaluate_model_pro
```

nb_dia

Examples

```
# NOTE: This example requires the 'train_pro' dataset to be exported by the package.
# If it is not, replace `data(train_pro)` with code to create a dummy dataframe.
# For demonstration, we assume `train_pro` is available.
if (requireNamespace("E2E", quietly = TRUE) &&
 "train_pro" %in% utils::data(package = "E2E")$results[,3]) {
 data(train_pro, package = "E2E")
 # Initialize the modeling system
 initialize_modeling_system_pro()
 # Run selected models
 results <- models_pro(
   data = train_pro,
   model = c("lasso_pro", "rsf_pro"), # Run only Lasso and RSF
   years_to_evaluate = c(1, 3, 5),
    seed = 42
 )
 # Print summaries
 for (model_name in names(results)) {
   print_model_summary_pro(model_name, results[[model_name]])
}
```

nb_dia

Train a Naive Bayes Model for Classification

Description

Trains a Naive Bayes model using caret::train for binary classification.

Usage

```
nb_dia(X, y, tune = FALSE, cv_folds = 5)
```

Arguments

X A data frame of features.

y A factor vector of class labels.

tune Logical, whether to perform hyperparameter tuning using caret's default grid

(if TRUE) or fixed values (if FALSE).

cv_folds An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained Naive Bayes model.

Examples

```
print_model_summary_dia
```

Print Diagnostic Model Summary

Description

Prints a formatted summary of the evaluation metrics for a diagnostic model, either from training data or new data evaluation.

Usage

```
print_model_summary_dia(model_name, results_list, on_new_data = FALSE)
```

Arguments

model_name	A character string, the name of the model (e.g., "rf", "Bagging (RF)").
results_list	A list containing model evaluation results, typically an element from the output of models_dia() or the result of bagging_dia(), stacking_dia(), voting_dia(), or imbalance_dia(). It must contain evaluation_metrics and model_object (if applicable).
on_new_data	Logical, indicating whether the results are from applying the model to new, unseen data (TRUE) or from the training/internal validation data (FALSE).

Value

NULL. Prints the summary to the console.

Examples

```
# Example for a successfully evaluated model
successful_results <- list(
    evaluation_metrics = list(
        Threshold_Strategy = "f1",
        `_Threshold` = 0.45,
        AUROC = 0.85, AUROC_95CI_Lower = 0.75, AUROC_95CI_Upper = 0.95,
        AUPRC = 0.80, Accuracy = 0.82, F1 = 0.78,
        Precision = 0.79, Recall = 0.77, Specificity = 0.85
    )
)
print_model_summary_dia("MyAwesomeModel", successful_results)

# Example for a failed model
failed_results <- list(evaluation_metrics = list(error = "Training failed"))
print_model_summary_dia("MyFailedModel", failed_results)</pre>
```

```
print_model_summary_pro
```

Print Prognostic Model Summary

Description

Prints a formatted summary of the evaluation metrics for a prognostic model, either from training data or new data evaluation.

Usage

```
print_model_summary_pro(model_name, results_list, on_new_data = FALSE)
```

Arguments

model_name	A character string, the name of the model (e.g., "lasso_pro").
results_list	A list containing model evaluation results, typically an element from the output of run_models_pro() or the result of bagging_pro(), stacking_pro(). It must contain evaluation_metrics and model_object (if applicable).
on_new_data	Logical, indicating whether the results are from applying the model to new, unseen data (TRUE) or from the training/internal validation data (FALSE).

Value

NULL. Prints the summary to the console.

qda_dia 41

Examples

```
if (requireNamespace("E2E", quietly = TRUE) &&
  "train_pro" %in% utils::data(package = "E2E")$results[,3]) {
  data(train_pro, package = "E2E")
  initialize_modeling_system_pro()
  results <- models_pro(data = train_pro, model = "lasso_pro")

# Print summary for the trained model
  print_model_summary_pro("lasso_pro", results$lasso_pro, on_new_data = FALSE)

# Example for a failed model
  failed_results <- list(evaluation_metrics = list(error = "Training failed"))
  print_model_summary_pro("MyFailedModel", failed_results)
}</pre>
```

qda_dia

Train a Quadratic Discriminant Analysis (QDA) Model for Classification

Description

Trains a Quadratic Discriminant Analysis (QDA) model using caret::train for binary classification.

Usage

```
qda_dia(X, y, tune = FALSE, cv_folds = 5)
```

Arguments

X A data frame of features.

y A factor vector of class labels.

tune Logical, whether to perform hyperparameter tuning (currently ignored for QDA).

cv_folds An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained QDA model.

```
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
  FeatureA = rnorm(n_obs),
  FeatureB = runif(n_obs, 0, 100)
)</pre>
```

42 register_model_dia

register_model_dia

Register a Diagnostic Model Function

Description

Registers a user-defined or pre-defined diagnostic model function with the internal model registry. This allows the function to be called later by its registered name, facilitating a modular model management system.

Usage

```
register_model_dia(name, func)
```

Arguments

name A character string, the unique name to register the model under.

func A function, the R function implementing the diagnostic model. This function

should typically accept X (features) and y (labels) as its first two arguments and

return a caret::train object.

Value

NULL. The function registers the model function invisibly.

See Also

```
get_registered_models_dia, initialize_modeling_system_dia
```

```
# Example of a dummy model function for registration
my_dummy_rf_model <- function(X, y, tune = FALSE, cv_folds = 5) {
   message("Training dummy RF model...")
   # This is a placeholder and doesn't train a real model.
   # It returns a list with a structure similar to a caret train object.
   list(method = "dummy_rf")
}
# Initialize the system before registering
initialize_modeling_system_dia()</pre>
```

register_model_pro 43

```
# Register the new model
register_model_dia("dummy_rf", my_dummy_rf_model)
# Verify that the model is now in the list of registered models
"dummy_rf" %in% names(get_registered_models_dia())
```

register_model_pro

Register a Prognostic Model Function

Description

Registers a user-defined or pre-defined prognostic model function with the internal model registry. This allows the function to be called later by its registered name, facilitating a modular model management system.

Usage

```
register_model_pro(name, func)
```

Arguments

name

A character string, the unique name to register the model under.

func

A function, the R function implementing the prognostic model. This function should typically accept X (features) and y_surv (survival object) as its first two

arguments.

Value

NULL. The function registers the model function invisibly.

See Also

```
get_registered_models_pro, initialize_modeling_system_pro
```

rf_dia rf_dia

rf_dia

Train a Random Forest Model for Classification

Description

Trains a Random Forest model using caret::train for binary classification.

Usage

```
rf_dia(X, y, tune = FALSE, cv_folds = 5)
```

Arguments

X A data frame of features.

y A factor vector of class labels.

tune Logical, whether to perform hyperparameter tuning using caret's default grid

(if TRUE) or use a fixed mtry value (if FALSE).

cv_folds An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained Random Forest model.

ridge_dia 45

ridge_dia	Train a Ridge (L2 Regularized Logistic Regression) Model for Classification
-----------	---

Description

Trains a Ridge-regularized logistic regression model using caret::train (via glmnet method) for binary classification.

Usage

```
ridge_dia(X, y, tune = FALSE, cv_folds = 5)
```

Arguments

Χ	A data frame of features.
у	A factor vector of class labels.
tune	Logical, whether to perform hyperparameter tuning for lambda (if TRUE) or use a fixed value (if FALSE). alpha is fixed at $0\ \rm for\ Ridge.$
cv_folds	An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained Ridge model.

ridge_pro

ridge_pro

Train a Ridge Cox Proportional Hazards Model

Description

Trains a Cox proportional hazards model with Ridge regularization using glmnet.

Usage

```
ridge_pro(X, y_surv, tune = FALSE)
```

Arguments

X A data frame of features.

y_surv A survival::Surv object representing the survival outcome.

tune Logical, whether to perform hyperparameter tuning (currently simplified/ignored

for direct cv.glmnet usage which inherently tunes lambda).

Value

A list of class "train" containing the trained glmnet model object, names of features used in training, and model type. The returned object also includes fitted_scores (linear predictor), y_surv, and best_lambda.

```
set.seed(42)
n_samples <- 50
n_features <- 10
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
    time = runif(n_samples, 100, 1000),
    event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model
ridge_model <- ridge_pro(X_data, Y_surv_obj)
print(ridge_model$finalModel)</pre>
```

rsf_pro 47

rsf_pro

Train a Random Survival Forest Model

Description

Trains a Random Survival Forest (RSF) model using randomForestSRC.

Usage

```
rsf_pro(X, y_surv, tune = FALSE)
```

Arguments

X A data frame of features.

y_surv A survival::Surv object representing the survival outcome.

tune Logical, whether to perform hyperparameter tuning (a simplified message is

currently provided, full tuning with tune.rfsrc is recommended for advanced

use).

Value

A list of class "train" containing the trained rfsrc model object, names of features used in training, and model type. The returned object also includes fitted_scores and y_surv.

```
# Generate some dummy survival data
set.seed(42)
n_samples <- 50
n_features <- 5
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
   time = runif(n_samples, 100, 1000),
   event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model (ntree is small for a quick example)
rsf_model <- rsf_pro(X_data, Y_surv_obj)
print(rsf_model$finalModel)</pre>
```

48 stacking_dia

stacking_dia

Train a Stacking Diagnostic Model

Description

Implements a Stacking ensemble. It trains multiple base models, then uses their predictions as features to train a meta-model.

Usage

```
stacking_dia(
  results_all_models,
  data,
  meta_model_name,
  top = 5,
  tune_meta = FALSE,
   threshold_choices = "f1",
  seed = 789,
  positive_label_value = 1,
  negative_label_value = 0,
  new_positive_label = "Positive",
  new_negative_label = "Negative"
)
```

Arguments

results_all_models

A list of results from models_dia(), containing trained base model objects and their evaluation metrics.

then evaluation metrics

A data frame where the first column is the sample ID, the second is the outcome label, and subsequent columns are features. Used for training the meta-model.

meta_model_name

A character string, the name of the meta-model to use (e.g., "lasso", "gbm"). This model must be registered.

An integer, the number of top-performing base models (ranked by AUROC) to select for the stacking ensemble.

Logical, whether to enable tuning for the meta-model.

threshold_choices

tune_meta

A character string (e.g., "f1", "youden", "default") or a numeric value (0-1) for determining the evaluation threshold for the ensemble.

seed An integer, for reproducibility.

positive_label_value

A numeric or character value in the raw data representing the positive class.

negative_label_value

A numeric or character value in the raw data representing the negative class.

stacking_dia 49

```
new_positive_label
```

A character string, the desired factor level name for the positive class (e.g., "Positive").

new_negative_label

A character string, the desired factor level name for the negative class (e.g., "Negative").

Value

A list containing the model_object, sample_score, and evaluation_metrics.

See Also

```
models_dia, evaluate_model_dia
```

```
# 1. Initialize the modeling system
initialize_modeling_system_dia()
# 2. Create a toy dataset for demonstration
set.seed(42)
data_toy <- data.frame(</pre>
  ID = paste0("Sample", 1:60),
  Status = sample(c(0, 1), 60, replace = TRUE),
  Feat1 = rnorm(60),
 Feat2 = runif(60)
)
# 3. Generate mock base model results (as if from models_dia)
# In a real scenario, you would run models_dia() on your full dataset
base_model_results <- models_dia(</pre>
  data = data_toy,
  model = c("rf", "lasso"),
  seed = 123
)
# 4. Run the stacking ensemble
stacking_results <- stacking_dia(</pre>
  results_all_models = base_model_results,
  data = data_toy,
  meta_model_name = "gbm",
  top = 2,
  threshold_choices = "f1"
print_model_summary_dia("Stacking (GBM)", stacking_results)
```

50 stacking_pro

stacking_pro

Train a Stacking Prognostic Model

Description

Implements a Stacking ensemble for prognostic models. It trains multiple base models and uses their predictions to train a meta-model.

Usage

```
stacking_pro(
  results_all_models,
  data,
  meta_model_name,
  top = 3,
  tune_meta = FALSE,
  time_unit = "day",
  years_to_evaluate = c(1, 3, 5),
  seed = 789
)
```

Arguments

results_all_models

A list of results from models_pro(), containing trained base model objects and

their evaluation metrics.

data A data frame for training the meta-model. The first column must be ID, second

event status (0/1), third time, and subsequent columns features.

meta_model_name

A character string, the name of the meta-model to use (e.g., "lasso_pro", "gbm_pro").

This model must be registered.

top An integer, the number of top-performing base models (ranked by C-index) to

select for the stacking ensemble.

tune_meta Logical, whether to enable tuning for the meta-model.

time_unit A character string, the unit of time in the third column of data.

years_to_evaluate

A numeric vector of specific years at which to calculate time-dependent AUROC

for evaluation.

seed An integer, for reproducibility.

Value

A list containing the model_object, sample_score, and evaluation_metrics.

stepcox_pro 51

See Also

```
models_pro, evaluate_model_pro
```

Examples

```
# NOTE: This example requires the 'train_pro' dataset.
if (requireNamespace("E2E", quietly = TRUE) &&
"train_pro" %in% utils::data(package = "E2E")$results[,3]) {
 data(train_pro, package = "E2E")
 initialize_modeling_system_pro()
 # First, generate results for base models
 base_model_results <- models_pro(data = train_pro, model = c("lasso_pro", "rsf_pro"))</pre>
 # Then, create the stacking ensemble
 stacking_lasso_results <- stacking_pro(</pre>
    results_all_models = base_model_results,
   data = train_pro,
   meta_model_name = "lasso_pro",
   top = 3,
   years_to_evaluate = c(1, 3)
 print_model_summary_pro("Stacking (Lasso)", stacking_lasso_results)
}
```

stepcox_pro

Train a Stepwise Cox Proportional Hazards Model

Description

Trains a Cox proportional hazards model and performs backward stepwise selection using MASS::stepAIC to select important features.

Usage

```
stepcox_pro(X, y_surv, tune = FALSE)
```

Arguments

X A data frame of features.

y_surv A survival::Surv object representing the survival outcome.

tune Logical, whether to perform hyperparameter tuning (currently ignored).

Value

A list of class "train" containing the trained coxph model object after stepwise selection, names of features used in training, and model type. The returned object also includes fitted_scores (linear predictor) and y_surv.

52 svm_dia

Examples

```
set.seed(42)
n_samples <- 50
n_features <- 5
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
   time = runif(n_samples, 100, 1000),
   event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model
stepcox_model <- stepcox_pro(X_data, Y_surv_obj)
print(stepcox_model$finalModel)</pre>
```

Surv

re-export Surv from survival

Description

re-export Surv from survival

svm_dia

Train a Support Vector Machine (Linear Kernel) Model for Classification

Description

Trains a Support Vector Machine (SVM) model with a linear kernel using caret::train for binary classification.

Usage

```
svm_dia(X, y, tune = FALSE, cv_folds = 5)
```

Arguments

X A data frame of features.

y A factor vector of class labels.

tune Logical, whether to perform hyperparameter tuning using caret's default grid

(if TRUE) or a fixed value (if FALSE).

cv_folds An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained SVM model.

test_dia 53

Examples

test_dia

Test Data for Diagnostic Models

Description

A test dataset for evaluating diagnostic models, with a structure identical to train_dia.

Usage

test_dia

Format

A data frame with rows for samples and 22 columns:

sample character. Unique identifier for each sample.

outcome integer. The binary outcome (0 or 1).

AC004637.1 numeric. Gene expression level.

AC008459.1 numeric. Gene expression level.

AC009242.1 numeric. Gene expression level.

AC016735.1 numeric. Gene expression level.

AC090125.1 numeric. Gene expression level.

AC104237.3 numeric. Gene expression level.

AC112721.2 numeric. Gene expression level.

AC246817.1 numeric. Gene expression level.

AL135841.1 numeric. Gene expression level.

AL139241.1 numeric. Gene expression level.

HYMAI numeric. Gene expression level.

KCNIP2.AS1 numeric. Gene expression level.

54 test_pro

```
LINC00639 numeric. Gene expression level.
LINC00922 numeric. Gene expression level.
LINC00924 numeric. Gene expression level.
LINC00958 numeric. Gene expression level.
LINC01028 numeric. Gene expression level.
LINC01614 numeric. Gene expression level.
LINC01644 numeric. Gene expression level.
PRDM16.DT numeric. Gene expression level.
```

Source

Stored in data/test_dia.rda.

test_pro

Test Data for Prognostic (Survival) Models

Description

A test dataset for evaluating prognostic models, with a structure identical to train_pro.

Usage

test_pro

Format

A data frame with rows for samples and 31 columns:

sample character. Unique identifier for each sample.

outcome integer. The event status (0 or 1).

time numeric. The time to event or censoring.

AC004990.1 numeric. Gene expression level.

AC055854.1 numeric. Gene expression level.

AC084212.1 numeric. Gene expression level.

AC092118.1 numeric. Gene expression level.

AC093515.1 numeric. Gene expression level. AC104211.1 numeric. Gene expression level.

AC105046.1 numeric. Gene expression level.

AC105219.1 numeric. Gene expression level. AC110772.2 numeric. Gene expression level.

AC133644.1 numeric. Gene expression level.

AL133467.1 numeric. Gene expression level.

train_dia 55

AL391845.2 numeric. Gene expression level.

AL590434.1 numeric. Gene expression level.

AL603840.1 numeric. Gene expression level.

AP000851.2 numeric. Gene expression level.

AP001434.1 numeric. Gene expression level.

C9orf163 numeric. Gene expression level.

FAM153CP numeric. Gene expression level.

HOTAIR numeric. Gene expression level.

HYMAI numeric. Gene expression level.

LINC00165 numeric. Gene expression level.

LINC01028 numeric. Gene expression level.

LINC01152 numeric. Gene expression level.

LINC01497 numeric. Gene expression level.

LINC01614 numeric. Gene expression level.

LINC01929 numeric. Gene expression level.

LINC02408 numeric. Gene expression level.

SIRLNT numeric. Gene expression level.

Source

Stored in data/test_pro.rda.

train_dia

Training Data for Diagnostic Models

Description

A training dataset for diagnostic models, containing sample IDs, binary outcomes, and gene expression features.

Usage

train_dia

Format

A data frame with rows for samples and 22 columns:

sample character. Unique identifier for each sample.

outcome integer. The binary outcome, where 1 typically represents a positive case and 0 a negative case.

AC004637.1 numeric. Gene expression level.

56 train_pro

AC008459.1 numeric. Gene expression level.

AC009242.1 numeric. Gene expression level.

AC016735.1 numeric. Gene expression level.

AC090125.1 numeric. Gene expression level.

AC104237.3 numeric. Gene expression level.

AC112721.2 numeric. Gene expression level.

AC246817.1 numeric. Gene expression level.

AL135841.1 numeric. Gene expression level.

AL139241.1 numeric. Gene expression level.

HYMAI numeric. Gene expression level.

KCNIP2.AS1 numeric. Gene expression level.

LINC00639 numeric. Gene expression level.

LINC00922 numeric. Gene expression level.

LINC00924 numeric. Gene expression level.

LINC00958 numeric. Gene expression level.

LINC01028 numeric. Gene expression level.

LINC01614 numeric. Gene expression level.

LINC01644 numeric. Gene expression level.

PRDM16.DT numeric. Gene expression level.

Details

This dataset is used to train machine learning models for diagnosis. The column names starting with 'AC', 'AL', 'LINC', etc., are feature variables.

Source

Stored in data/train_dia.rda.

train_pro

Training Data for Prognostic (Survival) Models

Description

A training dataset for prognostic models, containing sample IDs, survival outcomes (time and event status), and gene expression features.

Usage

train_pro

train_pro 57

Format

A data frame with rows for samples and 31 columns:

sample character. Unique identifier for each sample.

outcome integer. The event status, where 1 indicates an event occurred and 0 indicates censoring.

time numeric. The time to event or censoring.

AC004990.1 numeric. Gene expression level.

AC055854.1 numeric. Gene expression level.

AC084212.1 numeric. Gene expression level.

AC092118.1 numeric. Gene expression level.

AC093515.1 numeric. Gene expression level.

AC104211.1 numeric. Gene expression level.

AC105046.1 numeric. Gene expression level.

AC105219.1 numeric. Gene expression level.

AC110772.2 numeric. Gene expression level.

AC133644.1 numeric. Gene expression level.

AL133467.1 numeric. Gene expression level.

AL391845.2 numeric. Gene expression level.

AL590434.1 numeric. Gene expression level.

AL603840.1 numeric. Gene expression level.

AP000851.2 numeric. Gene expression level.

AP001434.1 numeric. Gene expression level.

C9orf163 numeric. Gene expression level.

FAM153CP numeric. Gene expression level.

HOTAIR numeric. Gene expression level.

HYMAI numeric. Gene expression level.

LINC00165 numeric. Gene expression level.

LINC01028 numeric. Gene expression level.

LINC01152 numeric. Gene expression level.

LINC01497 numeric. Gene expression level.

LINC01614 numeric. Gene expression level.

LINC01929 numeric. Gene expression level.

LINC02408 numeric. Gene expression level.

SIRLNT numeric. Gene expression level.

Details

This dataset is used to train machine learning models for prognosis. The features are typically gene expression values.

Source

Stored in data/train_pro.rda.

58 voting_dia

voting_dia

Train a Voting Ensemble Diagnostic Model

Description

Implements a Voting ensemble, combining predictions from multiple base models through soft or hard voting.

Usage

```
voting_dia(
  results_all_models,
  data,
  type = c("soft", "hard"),
  weight_metric = "AUROC",
  top = 5,
  seed = 789,
  threshold_choices = "f1",
  positive_label_value = 1,
  negative_label_value = 0,
  new_positive_label = "Positive",
  new_negative_label = "Negative"
)
```

Arguments

results_all_models

A list of results from models_dia(), containing trained base model objects and

their evaluation metrics.

data A data frame where the first column is the sample ID, the second is the outcome

label, and subsequent columns are features. Used for evaluation.

type A character string, "soft" for weighted average of probabilities or "hard" for

majority class voting.

weight_metric A character string, the metric to use for weighting base models in soft voting

(e.g., "AUROC", "F1"). Ignored for hard voting.

top An integer, the number of top-performing base models (ranked by weight_metric)

to include in the ensemble.

seed An integer, for reproducibility.

threshold_choices

A character string (e.g., "f1", "youden", "default") or a numeric value (0-1) for determining the evaluation threshold for the ensemble.

positive_label_value

A numeric or character value in the raw data representing the positive class.

negative_label_value

A numeric or character value in the raw data representing the negative class.

voting_dia 59

```
new_positive_label
```

A character string, the desired factor level name for the positive class (e.g., "Positive").

new_negative_label

A character string, the desired factor level name for the negative class (e.g., "Negative").

Value

A list containing the model_object, sample_score, and evaluation_metrics.

See Also

```
models_dia, evaluate_model_dia
```

```
# 1. Initialize the modeling system
initialize_modeling_system_dia()
# 2. Create a toy dataset for demonstration
set.seed(42)
data_toy <- data.frame(</pre>
  ID = paste0("Sample", 1:60),
  Status = sample(c(0, 1), 60, replace = TRUE),
  Feat1 = rnorm(60),
 Feat2 = runif(60)
)
# 3. Generate mock base model results (as if from models_dia)
base_model_results <- models_dia(</pre>
  data = data_toy,
  model = c("rf", "lasso"),
  seed = 123
)
# 4. Run the soft voting ensemble
soft_voting_results <- voting_dia(</pre>
  results_all_models = base_model_results,
  data = data_toy,
  type = "soft",
  weight_metric = "AUROC",
  top = 2,
  threshold_choices = "f1"
print_model_summary_dia("Soft Voting", soft_voting_results)
```

xb_dia

xb_dia

Train an XGBoost Tree Model for Classification

Description

Trains an Extreme Gradient Boosting (XGBoost) model using caret::train for binary classification.

Usage

```
xb_dia(X, y, tune = FALSE, cv_folds = 5)
```

Arguments

X A data frame of features.

y A factor vector of class labels.

tune Logical, whether to perform hyperparameter tuning using caret's default grid

(if TRUE) or use fixed values (if FALSE).

cv_folds An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained XGBoost model.

Index

* datasets test_dia, 53 test_pro, 54 train_dia, 55 train_pro, 56	load_and_prepare_data_dia, 30 load_and_prepare_data_pro, 32 min_max_normalize, 33 mlp_dia, 34	
apply_dia, 3 apply_pro, 4, 17	models_dia, 35, 49, 59 models_pro, 37, 51 nb_dia, 38	
<pre>bagging_dia, 5 bagging_pro, 7</pre>	<pre>print_model_summary_dia, 39 print_model_summary_pro, 40</pre>	
<pre>calculate_metrics_at_threshold_dia, 8</pre>	qda_dia,41	
dt_dia, 10 en_dia, 11	register_model_dia, 23, 42 register_model_pro, 24, 43	
en_pro, 12 evaluate_model_dia, 6, 13, 25, 36, 49, 59 evaluate_model_pro, 5, 8, 15, 17, 37, 51 evaluate_predictions_pro, 16	rf_dia, 44 ridge_dia, 45 ridge_pro, 46 rsf_pro, 47	
figure_dia, 17 figure_pro, 18 figure_shap, 19 find_optimal_threshold_dia, 20	stacking_dia, 48 stacking_pro, 50 stepcox_pro, 51 Surv, 52 svm_dia, 52	
<pre>gbm_dia, 21 gbm_pro, 22 get_registered_models_dia, 23, 42 get_registered_models_pro, 24, 43</pre>	test_dia, 53 test_pro, 54 train_dia, 55 train_pro, 56	
<pre>imbalance_dia, 24 initialize_modeling_system_dia, 6, 23,</pre>	voting_dia,58	
25, 26, 36, 42 initialize_modeling_system_pro, 8, 24, 27, 37, 43	xb_dia, 60	
lasso_dia, 27 lasso_pro, 28 lda_dia, 29		