Следствие 1 (из 5 свойства меры Лебега). $\forall A \in \mathfrak{M}^m \; \exists B, C$ — борелевские:

$$B \subset A \subset C$$
 $\lambda(C \setminus A) = 0, \lambda(A \setminus B) = 0$

Доказательство.

$$C:=\bigcap_{n=1}^{+\infty}G_{\frac{1}{n}}\quad B\subset\bigcup_{n=1}^{+\infty}F_{\frac{1}{n}}$$

Следствие 2. $\forall A \in \mathfrak{M}^m \ \exists B, \mathcal{N} : B$ — борелевское, $\mathcal{N} \in \mathfrak{M}^m, \lambda \mathcal{N} = 0$.

Тогда $A = B \cup \mathcal{N}$

Доказательство. $\exists B$ из следствия 1, $\mathcal{N} := A \setminus B$

Примечание. Обозначим |X| — мощность множества X.

$$\forall X \ |2^X|>|X|$$

$$|2^{\mathbb{R}^m}|> \text{континуум}$$

$$\mathcal{B}\subset 2^{\mathbb{R}^m}-\text{борелевская }\sigma\text{-алгебра }|\mathcal{B}|=\text{континуум}$$

$$\mathfrak{M}^m>\text{континуум}$$

 \mathcal{K} — Канторово множество, тогда $|\mathcal{K}|$ = континуум, $\lambda \mathcal{K} = 0$

$$\forall D \subset \mathcal{K} \ D \in \mathfrak{M}^m, \lambda D = 0 \ 2^{\mathcal{K}} \subset \mathfrak{M}^m$$

Следствие 3. $\forall A \in \mathfrak{M}^m$

$$\lambda A = \inf_{\substack{G: A \subset G \\ G - \text{ otkp.}}} \lambda(G) = \sup_{\substack{F: F \subset A \\ F - \text{ 3amkh.}}} \lambda(F) \stackrel{(*)}{=} \sup_{\substack{K: K \subset A \\ K - \text{ komii.}}} \lambda(K)$$

Доказательство. (*) следует из σ -конечности $\mathbb{R}^m = \bigcup_{n=1}^{+\infty} Q(0,n)$, где $Q(a,R) = \times_{i=1}^n [a_i - R, a_i + R]$ — куб с центром в a и ребром R.

 $\lambda(A\cap Q(0,n))\to \lambda A$ по непрерывности снизу, т.к. $A\cap Q(0,n)$ хорошо аппроксимируется замкнутым множеством. $\hfill\Box$

Определение. Свойства из следствия 3 называются регулярностью меры Лебега.

M3137y2019 21.12.2020

Преобразование меры Лебега при сдвигах и линейных отображениях

Лемма 1.

- $(X', \mathfrak{A}', \mu')$ пространство с мерой.
- $(X,\mathfrak{A},_)$ "заготовка" пространства с мерой
- $\exists T: X \to X'$ биекция; $\forall A \in \mathfrak{A} \ TA \in \mathfrak{A}'$ и $T\emptyset = \emptyset$

Положим $\mu A = \mu'(TA)$. Тогда μ — мера.

Доказательство. Проверим счётную аддитивность $\mu: A = |A_i|$

$$\mu A = \mu'(TA) = \mu'\left(\bigsqcup TA_i\right) = \sum \mu'(TA_i) = \sum \mu A_i$$

Лемма 2.

• $T: \mathbb{R}^m \to \mathbb{R}^n$ — непр.

• $\forall E \in \mathfrak{M}^m : \lambda E = 0$ выполняется $\lambda TE = 0$

Тогда $\forall A \in \mathfrak{M}^m \ TA \in \mathfrak{M}^m$

Доказательство.

$$A = \bigcup_{j=1}^{+\infty} K_j \cup \mathcal{N}$$

, где K_j — компакт, $\lambda \mathcal{N} = 0$

$$TA = \bigcup_{j=1}^{+\infty} TK_j \cup T\mathcal{N}$$

 TK_j компакт как образ компакта при непрерывном отображении. $\Rightarrow TA$ измеримо.

Пример (Канторова лестница).

$$\Delta = [0, 1]$$

$$\Delta_0 = \left[0, \frac{1}{3}\right] \quad \Delta_1 = \left[\frac{2}{3}, 1\right]$$

$$\Delta_{00} = \left[0, \frac{1}{9}\right] \quad \Delta_{01} = \left[\frac{2}{9}, \frac{1}{3}\right], \Delta_{10} = \dots, \Delta_{11} = \dots$$

$$\mathcal{K}_0 = \Delta$$

M3137y2019 21.12.2020

$$\mathcal{K}_1 = \Delta_0 \cup \Delta_1$$

$$\mathcal{K}_2 = \Delta_{00} \cup \Delta_{01} \cup \Delta_{10} \cup \Delta_{11}$$

$$\vdots$$

$$\mathcal{K}_n = \bigcup_{\varepsilon_1 \dots \varepsilon_n \in \{0,1\}} \Delta_{\varepsilon_1 \dots \varepsilon_n}$$

$$\mathcal{K} := \bigcap \mathcal{K}_n$$

$$f(x) = \begin{cases} \frac{1}{2} & , x \in \Delta \setminus \mathcal{K}_1 \\ \frac{1}{4} & , x \in \Delta_0 \setminus \mathcal{K}_2 \\ \frac{3}{4} & , x \in \Delta_1 \setminus \mathcal{K}_2 \\ \vdots & \\ \sup f(t) & , t \leq x, t \notin \mathcal{K} \end{cases}$$

 $f([0,1] \setminus \mathcal{K}-$ счётное = множество двоично-рациональных чисел из [0,1]

$$\lambda f([0,1] \setminus \mathcal{K}) = 0$$

 $\lambda f(\mathcal{K})=1$, т.к. $\forall y\in [0,1] \ \exists x: f(x)=y$, при этом f непрерывна, т.к. она — сюръекция.

Тогда пусть $E\subset [0,1]\not\in\mathfrak{M}^m: f^{-1}(E)$ — подмножество $\mathcal K$ и промежутки — прообразы двоично рациональных точек $\in E$, при этом это множество измеримо, т.к. $\lambda\mathcal K=0$

Ещё наблюдение: $x \not\in \mathcal{K} \Rightarrow f$ — дифференцируема в x и f'=0

Теорема 1.

• $O \subset \mathbb{R}^m$ открыто

M3137y2019 21.12.2020

- $\Phi: O \to \mathbb{R}^n$
- $\Phi \in C^1(O)$

Тогда $\forall A \in O: A \in \mathfrak{M}^m \ \Phi(A) \in \mathfrak{M}^m$, т.е. образ измеримого множества измерим.

Доказательство. Достаточно проверить свойства $\lambda E=0 \Rightarrow \lambda \Phi(E)=0$

$$\lambda E=0\Leftrightarrow orall arepsilon>0\;\;\exists\;$$
шары $B_i:E\subset igcup_{i=1}^{+\infty}B_i\;\;\;\lambda B_i$

⇒ из теоремы о Лебеговском продолжении меры.

⇐ по полноте меры Лебега.

1.
$$E \subset P \subset \overline{P} \subset O, \lambda E = 0$$

$$L := \max_{x \in \overline{P}} ||\Phi'(x)||$$

Тогда

$$\forall x, y \in P \ |\Phi(x) - \Phi(y)| \le L|x - y|$$

— неравенство Лагранжа.

$$\Phi(B(x_0,r))\subset B(\Phi(x_0),Lr)\subset Q(\Phi(x_0),Lr)$$

$$B_i:=B(x_i,r_i),y_i:=\Phi(x_i)$$

$$E\subset\bigcup B_i\ \sum\lambda B_i<\varepsilon\Rightarrow$$

$$\Phi(E)\subset\bigcup\Phi(B_i)\subset\bigcup B(y_i,Lr)\subset\bigcup Q(y_i,Lr)$$

$$\sum\lambda\Phi(B_i)<\sum\lambda Q(y_i,Lr_i)=\sum(2Lr_i)^m=(2L)^m\sum r_i^m$$
 Было $\sum(2r_i)^m<\varepsilon(\sqrt{m})^m,$ стало $\sum\lambda\Phi(B_i)< L^m\sum(2r_i)^m<\varepsilon(\sqrt{m}L)^m$

2. Рассмотрим произвольный случай, то есть $E\subset O$

$$O=\bigsqcup Q_i$$
, где Q_i — кубические ячейки, $Q_i\subset \overline{Q}_i\subset O$ $E=\bigsqcup (E\cap Q_i),\, \lambda(E\cap Q_i)=0.$ Тогда по пункту 1 $\lambda(\Phi(E\cap Q_i))=0$
$$\Phi(E)=\bigcup \Phi(E\cap Q_i)\Rightarrow \lambda\Phi(E)=0$$

Следствие 4. λ — инвариантно относительно сдвигов в \mathbb{R}^m (и \mathfrak{M}^m тоже инвариантно), т.е. $\forall a \in \mathbb{R}^m$:

$$\forall A \in \mathfrak{M}^m \quad A + a \in \mathfrak{M}^m \tag{1}$$

$$\mathbf{u} \ \lambda A = \lambda (A+a) \tag{2}$$

M3137y2019 21.12.2020

Доказательство.

$$\Phi: x \mapsto x + a, \Phi \in C^1(\mathbb{R}^m)$$

Отсюда следует (1).

(2) следует из пункта 5 теоремы о лебеговском продолжении.

$$A \subset \bigcup P_k \Leftrightarrow A + a \subset \bigcup (P_k + a)$$

Для ячеек $\lambda P_k = \lambda (P_k + a)$

Таким образом:

$$\lambda A = \inf\left(\sum \lambda P_k\right) = \inf\left(\sum \lambda (P_k + a)\right) = \lambda (A + a)$$

Теорема 2. μ — мера на \mathfrak{M}^m :

1. μ — инвариантно относительно сдвигов:

$$\forall a \in \mathbb{R}^m \ \forall E \in \mathfrak{M}^m \ \mu(E+a) = \mu E$$

2. Для любого ограниченного $E \in \mathfrak{M}^m \ \mu(E) < +\infty$

Тогда $\exists k \in [0, +\infty) : \mu = k \cdot \lambda$, т.е.:

$$\forall E \ \mu E = k \cdot \lambda E$$

и пусть $0 \cdot \infty = 0$ в данном контексте.

Доказательство. Нет и не будет.

Общая идея: Как мера μ задается на рациональных ячейках?

В \mathbb{R}^2 Q_1 — единичная квадратная ячейка, $\mu Q_1 = v$

$$Q_2$$
 — ячейка 2×2 , $\mu Q_2 = 4v$. Аналогично $\mu Q_n = n^2 v$, $\mu Q_{\frac{1}{n}} = \frac{1}{n^2} v$

Тогда k=v и μ пропорционально λ .

Примечание. $\mu A = \lambda_1 A$, если $\exists y_0 : A \subset \{(x, y_0), x \in \mathbb{R}\}$ — афинное одномерное подпространство, пересекающее ось y в точке y_0 .

Эта мера — 1-Хаусдорфа в \mathbb{R}^2 .

Теорема 3 (инвариантность меры лебега относительно линейного ортогонального преобразования).

M3137y2019 21.12.2020

• $T: \mathbb{R}^m \to \mathbb{R}^m$ ортогонально.

Тогда $\forall A \in \mathfrak{M}^m$:

- 1. $TA \in \mathfrak{M}^m$
- 2. $\lambda(TA) = \lambda A$

Доказательство.

- 1. $T \in C^1$, поэтому измеримость сохраняется.
- 2. $\mu A := \lambda(TA)$

 μ — мера на \mathfrak{M}^m по лемме 1, при этом μ инвариантно относительно сдвигов:

$$\mu(A+a) = \lambda(T(A+a)) = \lambda(TA+Ta) = \lambda(TA) = \mu A$$

A ограничено $\Rightarrow TA$ ограничено $\Rightarrow \mu A < +\infty$

По предыдущей теореме $\lambda(TA) = k \cdot \lambda(A)$. Какое у нас k?

Возьмём шар $B.\ TB$ — шар того же радиуса, т.е. TB — сдвинутый B, т.е. $TB=B+x_0.$

$$\mu B = \lambda(TB) = \lambda(B + x_0) = \lambda B \Rightarrow k = 1$$

Следствие 5. λ (прямоугольный параллелепипед) = произведение сторон.

Следствие 6. Любое собств. линейное подпространство в \mathbb{R}^m имеет меру 0

Доказательство. Достаточно доказать, что $\lambda \{x : x_m = 0\} = 0$

$$L = \{x : x_m = 0\} \simeq \mathbb{R}^{m-1} = \bigsqcup_{\text{единичные кубы}} \underbrace{Q_i}_{\text{единичные кубы}}$$

$$L \subset \bigsqcup Q_i \times \left[-\frac{\varepsilon}{2^i}, \frac{\varepsilon}{2^i} \right)$$
$$\lambda \left(Q_i \times \left[-\frac{\varepsilon}{2^i}, \frac{\varepsilon}{2^i} \right) \right) = \frac{2\varepsilon}{2^i}$$

M3137y2019 21.12.2020