Lecture15: CMOS amplifier, common-source (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Gain

- Now, calculate the v_{out} .
 - KCL for the v_{out} node gives

$$v_{out} = -g_m(R_D||r_0)v_{in}$$

Increasing the gain

- The voltage gain has two factors.
 - Transconductance(g_m): Selecting W, L, and V_{GS} to maximize the transconductance
 - Resistance($R_D || r_O$): A large R_D value is desirable. However, there is a restrction.

$$V_{D,DC} = V_{DD} - R_D I_{D,DC}$$

- A too large value of R_D reduces $V_{D,DC}$ too much. The triode mode is not suitable for the amplification due to its smaller transconductance.
- A drain load other than a simple resistor can be tried.

Impact of R_S

• Consider a source resistance, R_S .

Input/output impedances

- When calculating the impedance, the voltage sources at other terminals are neglected.
- Input and output impedances

Current-source load

- When $R_D \to \infty$,
 - The gain can be maximized in its absolute value. $(A_v \rightarrow -g_m r_0)$
 - Great! Then, how can we implement a current source?

Homework#7

- Due: 09:00, May 9 (No lecture on May 7)
- Write a program, which reads a netlist file.
 - Only voltages sources and resistors are considered.
 - The program calculates the node voltages and the terminal voltages/currents.
 - Three test netlists will be uploaded. For each of them, show the solution vector.