PRACTICE PROBLEMS

- **40.** Suppose a 5.00 L sample of O_2 at a given temperature and pressure contains 1.08×10^{23} molecules. How many molecules would be contained in each of the following at the same temperature and pressure?
 - a. 5.0 L H₂
 - b. 5.0 L CO₂
 - c. 10.0 L NH₃
- **41.** How many moles are contained in each of the following at STP?
 - a. 22.4 L N₂
 - b. 5.60 L Cl₂
 - c. 0.125 L Ne
 - d. 70.0 mL NH₃
- **42.** Find the mass, in grams, of each of the following at STP.
 - a. 11.2 L H₂
 - b. 2.80 L CO₂
 - c. 15.0 mL SO₂
 - d. $3.40 \text{ cm}^3 \text{ F}_2$
- **43.** Find the volume, in liters, of each of the following at STP.
 - a. 8.00 g O₂
 - b. 3.50 g CO
 - c. $0.0170 \text{ g H}_2\text{S}$
 - d. 2.25×10^{5} kg NH₃
- **44.** Acetylene gas, C₂H₂, undergoes combustion to produce carbon dioxide and water vapor. If 75.0 L CO₂ is produced,
 - a. how many liters of C_2H_2 are required?
 - b. what volume of H₂O vapor is produced?
 - c. what volume of O_2 is required?
- **45.** Assume that 5.60 L H₂ at STP reacts with excess CuO according to the following equation:

$$CuO(s) + H_2(g) \longrightarrow Cu(s) + H_2O(g)$$

Make sure the equation is balanced before beginning your calculations.

- a. How many moles of H₂ react?
- b. How many moles of Cu are produced?
- c. How many grams of Cu are produced?
- **46.** If 29.0 L of methane, CH₄, undergoes complete combustion at 0.961 atm and 140°C, how many liters of each product would be present at the same temperature and pressure?

- **47.** If air is 20.9% oxygen by volume,
 - a. how many liters of air are needed for complete combustion of 25.0 L of octane vapor, C_8H_{18} ?
 - b. what volume of each product is produced?
- **48.** Methanol, CH₃OH, is made by causing carbon monoxide and hydrogen gases to react at high temperature and pressure. If 4.50×10^2 mL CO and 8.25×10^2 mL H₂ are mixed,
 - a. which reactant is present in excess?
 - b. how much of that reactant remains after the reaction?
 - c. what volume of CH₃OH is produced, assuming the same pressure?
- **49.** Calculate the pressure, in atmospheres, exerted by each of the following:
 - a. 2.50 L HF containing 1.35 mol at 320.0 K
 - b. 4.75 L NO₂ containing 0.86 mol at 300.0 K
 - c. 5.50×10^4 mL CO $_2$ containing 2.15 mol at 57° C
- **50.** Calculate the volume, in liters, occupied by each of the following:
 - a. 2.00 mol H_2 at 300.0 K and 1.25 atm
 - b. 0.425 mol NH_3 at 37°C and 0.724 atm
 - c. 4.00 g O₂ at 57°C and 0.888 atm
- **51.** Determine the number of moles of gas contained in each of the following:
 - a. 1.25 L at 250.0 K and 1.06 atm
 - b. 0.80 L at 27°C and 0.925 atm
 - c. 7.50×10^2 mL at -50.0°C and 0.921 atm
- **52.** Find the mass of each of the following.
 - a. 5.60 L O₂ at 1.75 atm and 250.0 K
 - b. 3.50 L NH₃ at 0.921 atm and 27°C
 - c. 125 mL SO_2 at 0.822 atm and $-5^{\circ}C$

Diffusion and Effusion

SECTION 4 REVIEW

- **53.** Describe in your own words the process of diffusion.
- **54.** At a given temperature, what factor determines the rates at which different molecules undergo diffusion and effusion?
- **55.** Ammonia, NH₃, and alcohol, C₂H₆O, are released together across a room. Which will you smell first?