Bio2 Clinical Trial Advancement Team Seminar

A Hidden Treasure of Data Science Adverse Event (AE)

Dung-Tsa Chen, PhD
Zachary Thompson, PhD
Junmin Whiting, PhD
Alyssa Obermayer, MS
Melanie Buhlmann, MS
Jiannong Li, PhD
Ram Thapa, PhD
Timothy Shaw, PhD

*Funding support by NCI (1R21CA286417), Florida Cancer Innovation Fund (MOAAX), and Moffitt Biostatistics and Bioinformatics Department fund

AE Translational Research Team

Data Science Experts

Biostatistics & Bioinformatics

Dr. Dung-Tsa Chen (PI) Dr. Timothy Shaw

Immunology Expert

Immunology

Dr. Amer Beg

Pathology Expert

Pathology

Dr. Theresa Boyle

Clinical Experts

Thoracic Oncology

Dr. Jhanelle Gray (Co-PI)
Dr. Andreas Saltos

AE Predictive Biomarkers

Clinical Expert

Breast Oncology

Clinical Experts

GI Oncology

Dr. Richard Kim

Dr. Dae Won Kim

Dr. Rutika Mehta

Clinical Expert

Cutaneous Oncology

Dr. Ahmad Tarhini

Evidences of Hidden Treasure (1)

Evidences of Hidden Treasure (2)

Evidences of Hidden Treasure (3)

Zach's Masterpiece

- R package: AdverseEvents
 (https://cran.r-project.org/web/packages/AdverseEvents/index.html)
- Biostools https://biostools.moffitt.org/DungTsaChen/AdverseEvents/
- A manuscript in developmental stage

Just Beginning of AE Exploration

Question

Is Adverse Event Really A Bad Thing?

Could Be Some AEs Informative of Clinical Outcomes?

What is Adverse Event (AE)?

- AE definition (by NCI): <u>any unfavorable symptom, sign, or</u> <u>disease</u> (including an abnormal laboratory finding) temporally associated with the use of a medical treatment or procedure that <u>may or may NOT be related to the medical treatment</u>.
- A required component to assess patient safety in cancer clinical trial.

Illustrative AE Data of One Lung Cancer Patient

Grade,
Treatment
relatedness,
Occurrence,
Recurrence,
Duration

Gold Mine
Rich but Very Very
Complicated

AE: A Hidden Treasure

Clinical Innovation

- Toxicity biomarkers
- Therapeutic biomarkers
- Early treatment intervention
- Low-cost but significant improvements in cancer care especially for routine non-research cares

Methodological Innovation

- Paradigm shift of AE data usage from descriptive summary into modern informative AE biomarkers to fulfill precision medicine
- Diverse coverage of AE contents to unlock their potential for clinical application
- Predictive value of early AE biomarkers
- Global discovery AE analysis

Premise

- Safety
 - Toxicity biomarkers
- Efficacy
 - Therapeutic biomarkers
 - Early treatment intervention
 - Low-cost
 - ...

Analyzable AE data

AE Biomarker Profile

Potential Clinical Utility

Association with clinical outcomes in various studies:

- High neutrophil-to-lymphocyte ratio (NLR) correlated with worse survival in multiple immune checkpoint inhibitors (ICI) treated malignancies.
- Hypertension associated with improved survival outcomes
 - Advanced NSCLC patients treated with bevacizumab in combination with carboplatin and paclitaxel (immunotherapy+ chemotherapy)
 - Patients with metastatic renal cell carcinoma treated with sunitinib (targeted therapy).
- Immune-related adverse event (irAE) associated with improved overall survival
 - Melanoma patients treated with nivolumab.
 - NSCLC treated with ICI
- Limitation: restrict to a small AE subset, such as irAE, or not take into account of AE frequency, duration, or grade

How to make "analyzable" AE data

How AE Is Measured?

- CTCAE (by NCI): Common Terminology Criteria for Adverse Events (CTCAE) to standardize toxicity.
- The CTCAE version 5 lists 26 toxicity categories to cover a total of 837 AE terms.
- Each AE term includes date of treatment, onset date, resolved date, grade (severity), treatment attribution (treatment relatedness status), and so on.

Challenges of AE Data Analysis

 The CTCAE version 5 lists 26 toxicity categories to cover a total of 837 AE terms.

Will the ~800 AE terms be just a n x 837matrix?

	AE_1	AE_2	 AE_837
Pt_1			
		22	
Pt_n		0 0	

Illustrative AE Data of One Patient (Cont.)

Illustrative AE Data of One Patient (Cont.)

Many ways to dictate AE

- Any AE: Yes
- Low grade AE (grade 1-2): Yes
- High grade AE (grade 3-5): No
- Any treatment related grade AE:
 Yes
- Treatment related low grade AE:
 Yes
- Treatment related high grade
 AE: No
- Frequency of AE: 6
- Duration of all AEs: 451 days

•

Classical AE Report

Descriptive Statistics unfitted to Precision Medicine Era

One TIL Trial from Nature Medicine

Tumor-infiltrating lymphocyte treatment for anti-PD-1 resistant metastatic lung cancer: a phase I trial

Table 1:

Treatment-emergent adverse events reported with cyclophosphamide, fludarabine, TIL, or interleukin-2.

	Grade					
NCI CTCAE Preferred Term	1	2	3	4	5	Any
Lymphocyte count decreased	0 (0%)	0 (0%)	0 0%)	16 (100%)	0 (0%)	16 (100%)
White blood cell count decreased	0 (0%)	0 (0%)	1 (6%)	15 (94%)	0 (0%)	16 (100%)
Anemia	1 (6%)	2 13%)	13 (81%)	0 (0%)	0 0%)	16 (100%)
Platelet count decreased	0 (0%)	1 (6%)	3 19%)	11 (69%)	0 (0%)	15 (94%)
Neutrophil count decreased	0 (0%)	2 13%)	1 6%)	11 (69%)	0 0%)	14 (88%)
Hypoalbuminemia	0 (0%)	13 (81%)	1 (6%)	0 (0%)	0 (0%)	14 (88%)
Nausea	7 (44%)	7 44%)	0 0%)	0 (0%)	0 0%)	14 (88%)

One Immunotherapy Trial from Lancet

Combined nivolumab and ipilimumab with or without stereotactic body radiation therapy for advanced Merkel cell carcinoma: a randomised, open label, phase 2 trial

Supplementary Table 1. Treatment-related Adverse Events.

	Tota	Arr			
Adverse Event*	Grade 1-2	Grade 3	Grade 4	Grade 1-2	(
Any	27 (54%)	13 (26%)	5 (10%)	11 (44%)	7
Fatigue	31 (62%)	1 (2%)	0	18 (72%)	
Pruritus	20 (40%)	0	0	11 (44%)	
Diarrhea	20 (40%)	2 (4%)	0	9 (36%)	
Rash/Dermatitis	19 (38%)	1 (2%)	0	11 (44%)	
Nausea	16 (32%)	0	0	9 (36%)	
Elevated pancreatic enzymes	14 (28%)	2 (4%)	4 (8%)	12 (48%)	
Cough	12 (24%)	0	0	6 (24%)	
Anorevia	11 (22%)	0	0	3 (12%)	

Some Existing Statistical Approaches

- ToxT approach: Incorporate the dimension of time into AE assessment to depict toxic effects.
 - Limitation: impractical mean of AE grade and fixed time point by drug cycle.
- Generalized log-rank test: Use mean frequency function to compare recurrent AE events.
 - Limitation: lack of consideration of AE duration
- Q-TWiST approach: Analyze quality adjusted time without symptoms or toxicity by decomposing survival time into three health states: time with toxicity (TOX), time without toxicity, relapse, or progression (TWiST), and time after tumor progression or relapse until death (REL), and then uses a weighted average of the three health states to form the Q-TWiST score.
 - Limitation: dependency of utility weights and inability in individual AE analysis.

How to make "analyzable" AE data

Efficient & Effective

Our Innovative Analyzable AE Data

- Integration of different AE parameters
 - Grade
 - Treatment relatedness
 - Occurrence
 - Recurrence
 - Duration
- Conversion into a series of analyzable AE metrics (AE biomarkers)
 - Occurrence
 - Unique frequency
 - Frequency including recurrence
 - Duration

Our Unique Framework of AE Analysis

- <u>Utilization of AE parameters</u> to derive AE biomarkers by toxicity severity level (grade), treatment relatedness, AE occurrence, frequency, and duration.
- Comprehensive analysis of AE-derived biomarkers from overall AE, toxicity category, down to individual AE.
- Early AE analysis at day 30 from initial treatment date for early prediction.
- Informative analysis components including survival plot and boxplot for each AE-derived biomarker, summary plots of effect size and p value for all AE-derived biomarkers in an AE, summary tables for significant AEs.

Innovative AE-Derived Biomarker*

		AE-derived biomarkers			
		Frequ	ency Measureme	ent type 🏅	•
Grad	e Treatment Relatedness	Occurrence	Sum of all unique AEs	Sum of all AEs	Sum of all AE duration
Grade	Any grade	X	X	X	X
type	Any treatment related grades	X	X	X	X
	Low-grade (1 or 2)	X	×	X	X
	Treatment related low-grade	X	X	X	X
	High-grade (3 or higher)	X	X	X	X
	Treatment related high-grade	X	X	X	X

^{*}Chen et al. Early Adverse Event Derived Biomarkers in Predicting Clinical Outcomes in Patients with Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy. Cancers (Basel), 2023, PMID: 37173987

AE-derived biomarkers (Patient A for entire AE level)							
	Measurement type						
		Occurrence	Sum of all unique AEs	Sum of all AEs	Sum of all AE duration (days)		
Grade/	Any grade	1	6	7	451		
Treatment relatedness	Any treatment related grade	1	3	3	344		
	Low-grade (1 or 2)	1	6	7	451		
	Treatment related low- grade	1	3	3	344		
	High-grade (3 or higher)	0	0	0	0		
	Treatment related high- grade	0	0	0	0		

AE-derived biomarkers (Patient A for gastrointestinal disorders)						
			Measu	rement type		
	Occurrence	Sum of all unique AEs	Sum of all AEs	Sum of all AE duration (days)		
Grade/	Any grade	1	3	3	31	
Treatment relatedness	Any treatment related grade	0	0	0	0	
	Low-grade (1 or 2)	1	3	3	31	
	Treatment related low- grade	0	0	0	0	
	High-grade (3 or higher)	0	0	0	0	

Example 4: Individual AE

AE-derived biomarkers (Patient A for weight loss)							
		Measu	rement type				
	Occurrence Sum of all Sum of all AEs Sum of all unique AEs duration (
Grade/	Any grade	1	1	2	168		
Treatment Any treatment related grade		1	1	1	92		
relatedness	Low-grade (1 or 2)	1	1	2	168		
	Treatment related low-grade	1	1	1	92		
	High-grade (3 or higher)	0	0	0	0		
	Treatment related high-grade	0	0	0	0		

Early AE Analysis

Day 30 as example

No Early AE

Early AEs

Example: Overall Early AE

Early AE-derived biomarkers (Patient B): Overall AE							
		Measurement type					
		Occurrence	Sum of all unique AEs	Sum of all AEs	Sum of all AE duration (days)		
Grade/	Any grade	1	2	2	34		
Treatment relatedness	Any treatment related grade	0	0	0	0		
	Low-grade (1 or 2)	1	1	1	30		
	Treatment related low- grade	0	0	0	0		
	High-grade (3 or higher)	1	1	1	4		
	Treatment related high- grade	0	0	0	0		

Global Discovery AE Analysis

Data Example

- An ongoing phase I/II immunotherapy trial in lung cancer (<u>NCT02638090</u>)
- Population: late-stage non-small cell lung cancer (n=32 patients)
- Treatment: combination of HDAC inhibitor and immunotherapy
- Survival outcomes: overall survival (OS) and progression free survival (PFS)

Survival Association of AE-Derived Biomarker

AE-derived biomarkers								
		Measurement type						
		Occurrence	Sum of	Sum of	Sum of all AE			
			all unique AEs	all AEs	duration			
Grade	Any grade	X	X	X	X			
type	Any treatment	X	X	X	X			
	related grades							
	Low-grade (1 or 2)	X	X	X	X			
	Treatment related	X	X	X	X			
	low-grade							
	High-grade	X	X	X	X			
	(3 or higher)							
	Treatment related	X	X	X	X			
	high-grade							

^{*}Chen et al. Early Adverse Event Derived Biomarkers in Predicting Clinical Outcomes in Patients with Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy. Cancers (Basel), 2023, PMID: 37173987

Simple Survival Analysis

Univariate Cox model

for overall survival (OS) and progress-free survival (PFS)

 $h_i(t) = h_0(t) \exp(\alpha * Early AE biomarker metric)$

Summary of AE-Derived Biomarker Analysis

OS

Treatment related low-grade overall early AE* biomarkers

*Early AE: Occurrence of AE at or prior to day 30 of treatment

PFS
Treatment related low-grade **overall early AE* biomarkers**

*Early AE: Occurrence of AE at or prior to day 30 of treatment

Interaction of Treatment Related Low-Grade And High-Grade AEs

PFS: Interaction of High Grade (HG) And Treatment Related Low-Grade (TR_LG)

Strength

Analyzable and Informative AE predictive biomarker of clinical outcomes

AE-derived biomarkers							
		Measurement type					
		Occurrence	Sum of	Sum of	Sum of all AE		
			all unique AEs	all AEs	duration		
Grade	Any grade	X	X	X	X		
type	Any treatment	X	×	X	X		
	related grades						
	Low-grade (1 or 2)	X	X	X	X		
	Treatment related	X	X	X	X		
	low-grade						
	High-grade	X	X	X	X		
	(3 or higher)						
	Treatment related	X	×	X	X		
	high-grade						

Flexibility of Extension to Longitudinal AE Biomarkers

Potential opportunities of longitudinal AE biomarkers

- Biostatistical application opportunities
 - Mixed effect model to associate longitudinal AE data with demographic/clinical variables
 - Statistical joint model to utilize longitudinal AE data in analyzing/predicting survival data.
- Clinical application opportunities
 - Management of personalized toxicity profile by utilizing longitudinal AE data
 - Leverage of longitudinal AE data to predict clinical outcomes for early identification of disease and timely treatment intervention

Flexibility of Extension to Longitudinal AE Biomarkers (Cont.)

AE data at one time point

AE-derived biomarkers							
		Measurement type					
		Occurrence	Sum of all unique AEs	Sum of all AEs	Sum of all AE duration		
Grade	Any grade	X	X	Х	X		
type	Any treatment related grades	х	Х	Х	Х		
	Low-grade (1 or 2)	X	X	X	X		
	Treatment related low-grade	х	Х	х	Х		
	High-grade (3 or higher)	Х	Х	Х	X		
	Treatment related high-grade	х	Х	Х	х		

Many Ways to Construct Longitudinal AE Data (A Challenge)

What type of longitudinal AE data is informative? (need data mining)

Examples:

Frequency:

- Timepoint
- Cumulative

Duration:

- Summation of all AE duration
- Duration of AE occurrence

One Statistical Application Joint Model

- Dr. Rizopoulos's lecture note: <u>https://www.drizopoulos.com/courses/EMC/ESP72.pdf</u>
- Rizopoulos, D. (2012). Joint Models for Longitudinal and Timeto-Event Data, with Applications in R. Boca Raton: Chapman & Hall/CRC.
- R packages: JMbayes2

Joint Models

- Describe evolution of the covariate/marker over time for each patient.
- Then estimate evolutions in a Cox model

Joint Models (Cont.)

- Y_1 and Y_2 : Two outcomes of interest
- measured on a number of subjects for which
- Y₁: Longitudinal data (continuous/binary/categorical variable)
- Y₂: Survival data
- Goal: To jointly model both Y₁ and Y₂

Joint Models (Cont.)

Connection of joint model by random effect δ

$$p(y_{1,}y_{2}) = \int p(y_{1,}y_{2}|b) p(b)d\delta$$

$$= \int p(y_1|b) p(y_2|b) p(b) db$$

- Association between Y_1 and Y_2 by δ
- Y_1 and Y_2 conditional independence by δ

Joint Models: Our Application

Longitudinal Model:

$$y_i = \eta_i(t) + \varepsilon_i(t)$$
where $\eta_i(t) = x_i(t)\beta + z_i(t)b_i$

Fixed effect Random effect

Survival Model:

$$h_i(t) = h_0(t) \exp(w_i(t)\gamma + \eta_i(t)\alpha)$$

AE Data Analysis by Joint Model

 Longitudinal data: Frequency of early low-grade treatment related adverse event (AE)

Mixed effect model:

```
fixed effect: AE= time + gender + age_at_on_study \leftarrow x_i(t)\beta random effect: random slope by subject \leftarrow z_i(t)b_i AE data (frequency): Poisson distribution
```

Survival data: Progression-free survival (PFS)

Cox proportional hazards model:

PFS= gender + age_at_on_study + AE functional form
$$\forall \eta_i(t)\alpha$$

Results (Cox Model Only)

• Cox model only:

	coef	exp(coef)	se(coef)	Z	Pr(> z)
AE Frequency	-0.796	0.451	0.326	-2.445	0.014
genderMale	-0.263	0.769	0.472	-0.557	0.578
age_at_on_study	-0.061	0.941	0.024	-2.572	0.010

Results (Joint Models)

Two types of AE function form (for AE frequency and cumulative frequency)

- Value
- Slope of AE frequency

Results (Joint Models)

AE Frequency

```
Survival Outcome: AE Frequency Value
```

```
MeanStDev2.5%97.5%PgenderMale-1.93092.3932-7.22052.45890.3825age_at_on_study-0.01560.1052-0.21030.21270.7913value(freq)-5.53193.6475-12.59252.99480.1268
```

Survival Outcome: Slope of AE Frequency

Р
Ρ
80
.68
.04
_ L

Results (Joint Models)

AE Cumulative Frequency

```
        Survival Outcome:
        AE Cumulative Frequency Value

        Mean
        StDev
        2.5%
        97.5%
        P

        genderMale
        -1.9615
        1.8596
        -6.1373
        1.2990
        0.2444

        age_at_on_study
        -0.0337
        0.0805
        -0.1881
        0.1408
        0.5910

        value(freq.cum)
        -4.2138
        1.9893
        -8.6276
        -1.0992
        0.0020
```

Survival Outcome: Slope of AE Cumulative Frequency

	Mean	StDev	2.5%	97.5%	Р
genderMale	-0.2619	1.1330	-2.5507	2.0350	0.7958
age_at_on_study	-0.1202	0.0559	-0.2504	-0.0306	0.0074
<pre>slope(freq.cum)</pre>	-62.3537	34.2107	-148.4117	-15.0082	0.0011

Diagnostic Plot

- Large variation in slope form
- More stable result in cumulative frequency

Trace of value(freq)

Trace of slope(freq)

Trace of value(freq.cum)

Trace of slope(freq.cum)

Bright Future of AE Data Mining

- Underutilized (only limited to descriptive toxicity report)
- Informative of clinical outcomes
- Great opportunity of data mining for data science community due to complexity of AE data
- Email: <u>Dung-Tsa.Chen@moffitt.org</u>
- Paper: PMID: 37173987
- R package: AdverseEvents
 (https://cran.r-project.org/web/packages/AdverseEvents/index.html)