5 Wasserstoffatom

Motivation:

- Wie lautet die quantenmechanische Beschreibung der Bewegung eines Elektrons im Coulombpotential eines Protons?
- Energieeigenzustände? Energieeigenwerte?

5.1 Stationäre Zustände im Zentralpotential V(r)

• Der Hamiltonoperator für ein Teilchen der Masse μ in einem zentralsymmetrischen Potential V(r) (mit der radialen Koordinate $r=\sqrt{x_1^2+x_2^2+x_3^3}$) ist

$$H = \frac{\vec{p}^2}{2\mu} + V(r) = -\frac{\hbar^2}{2\mu}\Delta + V(r)$$

Der Laplaceoperator in Kugelkoordinaten ist

$$\Delta = \frac{1}{r}\partial_r^2 r + \frac{1}{r^2} \left(\partial_\theta^2 + \frac{1}{\tan \theta} \partial_\theta + \frac{1}{\sin^2 \theta} \partial_\theta^2 \right)$$
$$= \frac{1}{r}\partial_r^2 r - \frac{1}{\hbar^2 r^2} \vec{L}^2$$

Also ist der Hamiltonoperator

$$H = -\frac{\hbar^2}{2\mu r} \frac{\partial^2}{\partial r^2} r + \frac{1}{2\mu r^2} \vec{L}^2 + V(r)$$

Eigenschaften des Hamiltonoperators:

$$H = -\frac{\hbar^2}{2\mu r} \frac{\partial^2}{\partial r^2} r + \frac{1}{2\mu r^2} \vec{L}^2 + V(r)$$

- Weil L_z, \vec{L}^2 nicht von r abhängen und $[L_z, \vec{L}^2] = 0$ gilt

$$[H, L_z] = [H, \vec{L}^2] = 0.$$

D.h. L_z, \vec{L}^2 sind Erhaltungsgrößen und H, L_z und \vec{L}^2 haben gemeinsame Eigenzustände (in Ortsdarstellung $\psi(\vec{x}) = \langle \vec{x} | \psi \rangle$)

$$H\psi(\vec{x}) = E\psi(\vec{x})$$

$$\vec{L}^2\psi(\vec{x}) = \hbar^2 l(l+1)\psi(\vec{x})$$

$$L_z\psi(\vec{x}) = \hbar m\psi(\vec{x})$$

- H hängt nur über \vec{L}^2 von den Winkeln (θ,ϕ) ab, d.h. die Winkelabhängigkeit der Eigenfunktionen $\psi(\vec{x})$ ist durch die Kugelflächenfunktionen gegeben

$$\psi_{lm\alpha}(\vec{x}) = R_{lm\alpha}(r) Y_l^m(\theta, \phi).$$

Damit sind die Eigenwertgleichungen für \vec{L}^2 und L_z bereits erfüllt. α bezeichnet einen Entartungsindex.

Der Separationsansatz

$$\psi_{lm\alpha}(\vec{x}) = R_{lm\alpha}(r) Y_l^m(\theta, \phi)$$

liefert aus der Schrödinger Gleichung $H\psi(\vec{x})=E\psi(\vec{x})$ die Gleichung für die radiale Funktion $R_{lm\alpha}(r)$

$$H\psi_{lm\alpha}(\vec{x}) = \left(-\frac{\hbar^2}{2\mu r}\frac{\partial^2}{\partial r^2}r + \frac{1}{2\mu r^2}\vec{L}^2 + V(r)\right)R_{lm\alpha}(r)Y_l^m(\theta,\phi)$$
$$= \left(-\frac{\hbar^2}{2\mu r}\frac{\partial^2}{\partial r^2}r + \frac{\hbar^2}{2\mu r^2}l(l+1) + V(r)\right)R_{lm\alpha}(r)Y_l^m(\theta,\phi)$$
$$\stackrel{!}{=} ER_{lm\alpha}(r)Y_l^m(\theta,\phi)$$

also

$$\left[-\frac{\hbar^2}{2\mu r} \frac{\partial^2}{\partial r^2} r + \frac{\hbar^2}{2\mu r^2} l(l+1) + V(r) \right] R_{lm\alpha}(r) = E R_{lm\alpha}(r).$$

R(r) hängt also vom Index l aber nicht von m ab, $R_{lm\alpha}(r) = R_{l\alpha}(r)$.

Der Ansatz

$$R_{l\alpha}(r) = \frac{1}{r} u_{l\alpha}(r)$$

führt auf

$$\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + \frac{\hbar^2 l(l+1)}{2\mu r^2} + V(r) \right] u_{l\alpha}(r) = E u_{l\alpha}(r)$$

Bemerkungen:

- Wegen $\int_0^\infty dr \, r^2 |R_{l\alpha}(r)|^2 = 1$ muss für $u_{l\alpha}(r)$ gelten

$$\int_0^\infty \mathrm{d}r \left| u_{l\alpha}(r) \right|^2 = 1,$$

also

$$u_{l\alpha}(r) \in L^2([0,\infty)).$$

- Die Eigenwertgleichung für $u_{l\alpha}(r)$ ist identisch zu einer Schrödinger Gleichung für ein Teilchen in einem effektiven Potential

$$V_{\text{eff}}(r) = \frac{\hbar^2 l(l+1)}{2\mu r^2} + V(r) = V_{\text{ZF}}(r) + V(r)$$

im Halbraum $[0,\infty)$. Zusätzlich zum Zentralpotential V(r) tritt ein **Zentrifugalpotential** $V_{\rm ZF}(r)$ auf, das vom Eigenwert $\hbar^2 l(l+1)$ des Eigenzustandes $\psi(\vec x) = R(r) Y_l^m(\theta,\phi)$ bezüglich $\vec L^2$ abhängt.

- Vergleich zur Bewegung eines klassischen Teilchens in einem Zentralpotential V(r)
 - Die Kraft $\vec{F} = -\vec{\nabla}V(r)$ richtet sich immer zum Ursprung,

$$\vec{F} \parallel -\vec{e}_r$$

- Das Drehmoment verschwindet,

$$\dot{\vec{L}} = \vec{M} = \vec{x} \times \vec{F} = 0$$

- Der Drehimpuls ist erhalten, $\vec{L} = \vec{x} \times \vec{p} = \text{const.}$
- Die Trajektorie liegt in einer Ebene, die durch \(\vec{x} \) und \(\vec{p} \)
 aufgespannt wird und den Ursprung einschließt.
- Der Impuls kann in eine zu \vec{x} parallele bzw. orthogonale Komponente zerlegt werden,

$$\vec{p} = p_r \vec{e}_r + p_\perp \vec{e}_\perp$$

- Damit ist $\vec{L}^2 = r^2 p_\perp^2$
- Die Energie des Teilchens mit Masse μ ist

$$E = \frac{\vec{p}^{\,2}}{2\mu} + V(r) = \frac{\vec{p}_{r}^{\,2}}{2\mu} + \frac{\vec{p}_{\perp}^{\,2}}{2\mu} + V(r) = \frac{\vec{p}_{r}^{\,2}}{2\mu} + \frac{\vec{L}^{\,2}}{2\mu r^{2}} + V(r)$$

mit der radialen Koordinate $r \in [0, \infty)$.

Das effektive Potential ist

$$V_{\text{eff}}(r) = V_{\text{ZF}}(r) + V(r).$$

Für ein Zentralpotential, das sich für $r \to 0$ asymptotisch wie

$$V(r) \sim \frac{1}{r^s}$$

mit s<2 verhält, wird für Zustände mit Drehimpulsquantenzahl l>0 in der Nähe des Ursprunges $(r\to 0)$ das repulsive Zentrifugalpotential

$$V_{\rm ZF}(r) = \frac{\hbar^2 l(l+1)}{2\mu r^2}$$

dominant. Dies gilt z.B. für das Coulombpotential

$$V_{\text{Coul}}(r) = -\frac{e^2}{4\pi\varepsilon_0} \frac{1}{r}.$$

• Für l>0 und $r\to 0$ erfüllt die radiale Komponente $u_{l\alpha}(r)$ der Wellenfunktion asymptotisch die Differentialgleichung

$$u_{l\alpha}^{"}(r) \sim \frac{l(l+1)}{r^2} u_{l\alpha}(r).$$

Diese Gleichung besitzt die zwei linear unabhängigen Lösungen (für $r \to 0$)

$$u_{l\alpha}(r) \sim r^{l+1}$$
 $u_{l\alpha}(r) \sim r^{-l}$

Die Lösung $u_{l\alpha}(r) \sim r^{-l}$ müssen wir wegen der Integrabilitätsbedinung $[u_{l\alpha}(r) \in L^2([0,\infty))]$ ausschließen.

• Für l=0 gilt für $r\to 0$ asymptotisch die Differentialgleichung

$$u_0'' \sim 0$$

also $u_0(r) \sim r$ oder $u_0(r) \sim 1$.

Für die letzte Lösung wäre $R_0(r)=\frac{u_0(r)}{r}=\frac{1}{r}.$ Wegen $\Delta \frac{1}{r}\sim \delta^3(\vec{x})$ kann $\psi(\vec{x})=R_0(r)Y_0^0(\theta,\phi)$ keine Lösung der Schrödinger Gleichung $\left[-\frac{\hbar^2}{2m}\Delta+V(r)\right]\psi(\vec{x})=E\psi$ sein.

In einem Zentralpotential $V(r)\sim r^{-s}$ mit s<2 verhält sich die radiale Komponente $u_{l\alpha}(r)$ der Wellenfunktion asymptotisch für $r\to 0$ wie

$$u_{l\alpha}(r) \sim r^{l+1}$$
 $l = 0, 1, 2, \dots$

bzw. gilt

$$u_{l\alpha}(0) = 0.$$

5.2 Wasserstoff: Ein Elektron im Coulombpotential

 \bullet Zum Vergleich: Das **Bohrsche Atommodell** postuliert, dass sich das Elektron nur auf Kreisbahnen mit Drehimpuls $|\vec{L}|$ bewegen kann, wobei

$$|\vec{L}| = n\hbar, \qquad \qquad n = 1, 2, 3, \dots$$

Damit folgt f
ür den Radius und die Energie der n-ten Kreisbahn

$$r_n = a_0 n^2$$
 $E_n = -\frac{m_e \alpha_{\rm s}^2 c^2}{2} \frac{1}{n^2}$

mit dem Bohrschen Radius a_0 und der Feinstrukturkonstante α_s

$$a_0 = \frac{4\pi\varepsilon_0}{e^2} \frac{\hbar^2}{m_e} = \frac{\hbar}{\alpha_{\rm s} m_e c} \simeq 0.5 \cdot 10^{-10} \,\mathrm{m} \qquad \qquad \alpha_{\rm s} = \frac{e^2}{4\pi\varepsilon_0} \frac{1}{\hbar c} \simeq \frac{1}{137}$$

Die Energie des elektronischen Grundzustandes (Ionisierungsenergie) des Wasserstoffes ist

$$E_1 = -E_I = -\frac{1}{2}m\alpha_s^2 c^2$$

- Beschreibung gemäß der Postulate der Quantenmechanik:
 - Die klassische Hamiltonfunktion eines Elektrons im Coulombpotential eines Protons (mit fester Position im Ursprung) ist

$$H(\vec{x}, \vec{p}) = \frac{\vec{p}^2}{2m_e} - \frac{e^2}{4\pi\varepsilon_0} \frac{1}{|\vec{x}|}$$

mit den kanonisch konjugierten Phasenraumkoordinaten \vec{x} und \vec{p} des Elektrons. Bemerkung: Später wird das Wasserstoffatom als Zweiteilchenproblem Elektron + Proton behandelt.

In kanonischer Quantisierung werden die Ersetzungen vorgenommen:

$$\vec{x} \rightarrow \hat{\vec{x}}$$
 $\vec{p} \rightarrow \hat{\vec{p}}$ $[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij}$

Der resultierende Hamiltonoperator des Systems ist

$$\hat{H} = \frac{\hat{\vec{p}}^2}{2m_e} - \frac{e^2}{4\pi\varepsilon_0} \frac{1}{|\hat{\vec{x}}|}$$

Die zeitunabhängige Schrödingergleichung lautet

$$\left(\frac{\hat{\vec{p}}^2}{2m_e} - \frac{e^2}{4\pi\varepsilon_0} \frac{1}{|\hat{\vec{x}}|}\right) |\psi\rangle = E |\psi\rangle$$

bzw. in Ortsdarstellung $\psi(\vec{x}) = \langle \vec{x} | \psi \rangle$ mit $r = |\vec{x}|$

$$\left(-\frac{\hbar^2}{2m_e}\Delta - \frac{e^2}{4\pi\varepsilon_0}\frac{1}{r}\right)\psi(\vec{x}) = E\psi(\vec{x})$$

Aus der allgemeinen Behandlung zentralsymmetrischer Potentiale folgt: Die stationären Zustände des Elektrons haben die Form

$$\psi_{lm\alpha}(\vec{x}) = \frac{u_{l\alpha}(r)}{r} Y_l^m(\theta, \phi)$$

mit den Kugelflächenfunktionen $Y_l^m(\theta,\phi)$ mit $l=0,1,2,\cdots$ und $m=-l,\cdots,l$.

Die radiale Komponente der Wellenfunktion $u_{l\alpha}(r)$ erfüllt die radiale Schrödingergleichung

$$\[-\frac{\hbar^2}{2m_e} \frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{\hbar^2 l(l+1)}{2m_e r^2} - \frac{e^2}{4\pi\varepsilon_0} \frac{1}{r} \] u_{l\alpha}(r) = E u_{l\alpha}(r)$$

 $\text{mit } u_{l\alpha}(r) \in L^2([0,\infty)).$

• Wir suchen nach gebundenen Zuständen mit E < 0 im effektiven Potential

Die radiale Schrödingerleichung

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} - \frac{l(l+1)}{r^2} + \frac{e^2}{4\pi\varepsilon_0} \frac{2m_e}{\hbar^2} \frac{1}{r} + \frac{2m_e}{\hbar^2} E\right] u_{l\alpha}(r) = 0$$

lautet in dimensonslosen Größen

$$\rho = \frac{r}{a_0} \qquad \lambda = \sqrt{\frac{|E|}{E_I}} > 0$$

mit dem Bohrschen Radius a_0 und der Ionisierungsenergie E_I (vgl. Bohrsches Modell)

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} - \frac{l(l+1)}{\rho^2} + \frac{2}{\rho} - \lambda^2\right] u_{l\alpha}(\rho) = 0$$

• Das asymptotische Verhalten von $u_{l\alpha}(\rho)$ ist (siehe Abschnitt über zentralsymmetrische Potentiale)

$$u_{l\alpha}(\rho) \sim \rho^{l+1}$$
 für $\rho \to 0$

• Für $\rho \to \infty$ lautet die radiale Schrödingergleichung

$$\left(\frac{\partial^2}{\partial \rho^2} - \lambda^2\right) u_{l\alpha}(\rho) = 0$$

mit den linear unabhängigen Lösungen $u_{l\alpha}(\rho) \sim \exp\left[\pm \lambda \rho\right]$. Aufgrund von $u_{l\alpha}(r) \in L^2([0,\infty))$ muss $u_{l\alpha}(\rho) \sim \exp\left[\pm \lambda \rho\right]$ ausgeschlossen werden. Das asymptotische Verhalten von $u_{l\alpha}(\rho)$ ist daher

$$u_{l\alpha}(\rho) \sim e^{-\rho\lambda}$$
 für $\rho \to \infty$

Der Ansatz

$$u_{l\alpha}(\rho) = \rho^{l+1} e^{-\rho\lambda} v_{l\alpha}(\rho).$$

führt auf

$$\rho v_{l\alpha}^{"} + 2(l+1-\rho\lambda)v_{l\alpha}^{'} - 2(\lambda(l+1)-1)v_{l\alpha} = 0$$

Diese Differentialgleichung lösen wir durch einen Reihenansatz

$$v_{l\alpha}(\rho) = \sum_{k=0}^{\infty} c_k \rho^k$$

Einsetzen in die Differentialgleichung für $v_{l\alpha}$ ergibt

$$\sum_{k=0}^{\infty} \left[k(k-1)c_k \rho^{k-1} + 2(l+1-\rho\lambda)k \, c_k \rho^{k-1} - 2(\lambda(l+1)-1)c_k \rho^k \right] = 0$$

Vergleich der Koeffizienten von ρ^k ergibt

$$(k+1)k c_{k+1} + 2(l+1)(k+1)c_{k+1} - 2\lambda k c_k - 2(\lambda(l+1) - 1)c_k = 0$$

bzw.

$$(2l+2+k)(k+1)c_{k+1} - [2\lambda(l+1+k) - 2]c_k = 0$$

also

$$\frac{c_{k+1}}{c_k} = 2 \frac{\lambda(l+1+k)-1}{(2l+2+k)(k+1)}$$
 für $k = 0, 1, 2, \dots$

• Für $k \to \infty$ lautet die Rekursionsformel

$$\frac{c_{k+1}}{c_k} \sim \frac{2\lambda}{k}$$

also

$$c_k \sim \frac{(2\lambda)^k}{k!} \qquad \qquad \text{bzw.} \qquad \qquad v_{l\alpha}(\rho) = \sum_{k=0}^\infty \frac{(2\lambda)^k}{k!} \rho^k \sim e^{2\lambda\rho}$$

Damit wäre $u_{l\alpha}(\rho) = \rho^{l+1} e^{-\rho\lambda} v_{l\alpha}(\rho) \sim \rho^{l+1} e^{+\lambda\rho}$, also nicht normierbar!

• Normierbare Wellenfunktionen ergeben sich daher nur dann, wenn die Potenzreihe von $v_{l\alpha}$ abbricht, d.h. wenn für ein $k=k_0$

$$\lambda(l + 1 + k_0) - 1 = 0$$

Dann ist

$$c_{k_0+1} = 2\frac{\lambda(l+1+k_0)-1}{(2l+2+k_0)(k_0+1)}c_{k_0} = 0$$

und damit ist $v_{l\alpha}(\rho)$ ein Polynom der Ordnung k_0

$$v_{l\alpha}(\rho) = \sum_{k=0}^{k_0} c_k \rho^k.$$

Die Bedingung

$$\lambda(l + 1 + k_0) - 1 = 0$$

für natürliche Zahlen k_0 und l stellt eine Beschränkung der möglichen Werte von $\lambda = \sqrt{\frac{|E|}{E_I}}$, also der Energieeigenwerte E < 0, dar

$$\sqrt{\frac{E_I}{|E|}} = \frac{1}{\lambda} = l + 1 + k_0 =: n$$

Aufgrund des Wertebereiches von $k_0, l \in \mathbb{N}$ gilt $n = 1, 2, \ldots$

• Die erlaubten Energien der elektronischen Zustände im Wasserstoff sind also

$$E_n = -\frac{E_I}{n^2} = -\frac{1}{2} \frac{m_e \alpha^2 c^2}{n^2}$$

mit der sogenannten Hauptquantenzahl

$$n = 1, 2, 3, \dots$$

in Übereinstimmung mit dem Bohrschen Modell.

• Für ein gegebenes n kann wegen $l+1+k_0=n$ die **Drehimpulsquantenzahl** l nut die Werte

$$l = 0, 1, 2, \ldots, n - 1$$

annehmen.

Bemerkung: Im Gegensatz zum Bohrschen Modell legt die Hauptquantenzahl n den Wert des Drehimpulses nicht fest, sondern beschränkt ihn nur.

• Für gegebene Haupt- und Drehimpulsquantenzahlen (l,n) lautet die Rekursionsformel (mit $\lambda=\frac{1}{n}$)

$$c_{k+1} = -2\frac{n-l-1-k}{(2l+2+k)(k+1)n}c_k.$$

Per Konstruktion ist $c_{k+1} = 0$ für $k \ge n - l - 1$.

Also ist $v_{l\alpha}(\rho)$ ein Polynom (n-l-1)-ten Grades und durch (n,l) eindeutig festgelegt. Wir identifizieren daher den Index α mit der Hauptquantenzahl n.

• Statt die Rekursionsformel zu lösen betrachten wir nochmals die Differentialgleichung für $v_{ln}(\rho)$ (mit $\lambda = \frac{1}{n}$)

$$\rho v_{ln}''(\rho) + 2\left(l + 1 - \frac{\rho}{n}\right)v_{ln}'(\rho) - 2\left(\frac{l+1}{n} - 1\right)v_{ln}(\rho) = 0$$

Die Substitution

$$\sigma = \frac{2\rho}{n} \qquad \quad \rho = \sigma \frac{n}{2} \qquad \quad \frac{\partial}{\partial \rho} = \frac{\partial \sigma}{\partial \rho} \frac{\partial}{\partial \sigma} = \frac{2}{n} \frac{\partial}{\partial \sigma}$$

ergibt

$$\sigma v_{ln}''(\sigma) + [(2l+1) + 1 - \sigma]v_{ln}'(\sigma) + (n-l-1)v_{ln}(\sigma) = 0$$

• Dies ist die Differentialgleichung für die assozierten Laguerrepolynome $L_m^k(x)$ mit $k \leq m$

$$x\left(L_{\bar{n}}^{\bar{k}}(x)\right)^{\prime\prime}+\left[k+1-x\right]\left(L_{\bar{n}}^{\bar{k}}(x)\right)^{\prime}+\bar{n}L_{\bar{n}}^{\bar{k}}(x)=0$$

mit der Lösung (Rodrigues-Formel)

$$L_m^k(x) = \frac{e^x}{m!x^k} \frac{\mathrm{d}^m}{\mathrm{d}x^m} \left[e^{-x} x^{k+m} \right] = \sum_{r=0}^n \frac{(-1)^r (n+k)!}{(n-r)!(k+r)!r!} x^r$$

• Mit den Substitutionen m = n - l - 1 und k = 2l + 1 finden wir

$$v_{ln}(\sigma) = L_{n-l-1}^{2l+1}(\sigma)$$

• Der radiale Anteil $R_{nl}(r)$ der Wellenfunktion $\psi_{nlm}(\vec{x}) = R_{nl}(r)Y_l^m(\theta,\phi)$ des Elektrons lautet somit mit $\rho = \frac{r}{a_0}$

$$R_{nl}(r) = \frac{u_{ln}(\rho)}{\rho} = \rho^l e^{-\rho \lambda} v_{ln} \left(\frac{2\rho}{n}\right)$$
$$= \frac{2}{\sqrt{a_0^3} n^2} \left[\frac{(n-l-1)!}{(n+l)!} \right]^{1/2} \left(\frac{2\rho}{n}\right)^l e^{-\rho/n} L_{n-l-1}^{2l+1} \left(\frac{2\rho}{n}\right)$$

Die Wahrscheinlichkeitsdichte für die radiale Koordinate ist $P_{nl}(r) = r^2 R_{nl}^2(r)$

Diskussion

• Die Angabe der Quantenzahlen (n, l, m) legen die stationären Zustände eindeutig fest

$$\psi_{nlm}(\vec{x}) = \langle \vec{x} | nlm \rangle = R_{nl}(r) Y_l^m(\theta, \phi)$$

• $\{H, \vec{L}^2, L_z\}$ bilden ein VSKO. \vec{L}^2 und L_z sind Erhaltungsgrößen. Es gelten die Eigenwertgleichungen

$$H | nlm \rangle = E_n | nlm \rangle$$
 $E_n = -\frac{E_I}{n^2}$ $n = 1, 2, ...$ $\vec{L}^2 | nlm \rangle = \hbar^2 l(l+1) | nlm \rangle$ $l = 0, 1, ..., n-1$ $L_z | nlm \rangle = \hbar m | nlm \rangle$ $m = -l, ..., l$

• Die Energieeigenwerte E_n sind entartet mit den Entartungsfaktoren

$$g_n = \sum_{l=0}^{n-1} \sum_{m=-l}^{l} 1 = \sum_{l=0}^{n-1} (2l+1) = n^2$$

Jeder Zustand mit festem (n, l) ist entartet mit

$$g_{n,l} = \sum_{l=1}^{+l} 1 = 2l + 1$$

Termschema des Wasserstoffatoms

Wahrscheinlichkeitsdichte der Wasserstofforbitale

Die Aufenthaltswahrscheinlichkeit des Elektrons am Ort \vec{x} in einem Volumen d^3x in einem der Energieeigenzustände $|nlm\rangle$ ist

$$d^{3}P_{nlm}(\vec{x}) = |\psi_{nlm}(\vec{x})|^{2}d^{3}x = |\psi_{nlm}(r,\theta,\phi)|^{2}r^{2}drd\Omega$$
$$= |R_{nl}(r)|^{2}r^{2}dr \times |Y_{l}^{m}(\theta,\phi)|^{2}d\Omega$$

