Examen 51DE01MT - durée : 3 heures

Les documents, calculatrices et téléphones sont interdits.

Question de cours. Enoncer la règle de Cauchy de convergence de séries (sans démonstration).

Exercice 1. On dit que deux permutations $v, w \in S_n$ sont conjuguées s'il existe $g \in S_n$ tel que $w = gvg^{-1}$.

- 1. Soit $v = (a_1, \ldots, a_p)$ un cycle de longueur p et $g \in S_n$, montrer que gvg^{-1} est le cycle $w = (g(a_1), \ldots, g(a_p))$.
- 2. Soit $v=(a_1,\ldots,a_p)$ et $w=(b_1,\ldots,b_p)$ deux cycles de longueur p, déterminer $g\in S_n$ tel que $w=gvg^{-1}$.
- 3. En déduire que deux cycles sont conjugués si et seulement si ils ont même longueur.
- 4. Démontrer que deux permutations $v, w \in S_n$ sont conjuguées si et seulement les longeurs des cycles dans leurs décompositions en produit de cycles de supports disjoints coincident.
- 5. En utilisant la question 4, déterminer si les permutations suivantes sont conjuguées dans S_7

$$v = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 4 & 3 & 7 & 1 & 2 \end{pmatrix}, \qquad w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 3 & 7 & 5 & 2 & 1 \end{pmatrix}.$$

- 6. On appelle classe de conjugaison d'un élément $w \in S_5$ l'ensemble $\{gwg^{-1}; g \in S_5\}$. Déduire de la question précédente le nombre de classes de conjugaison dans S_5 .
- 7. L'ordre d'une permutation $w \in S_5$ est le plus petit entier strictement positif r tel que $w^r = \text{id}$. Quel est l'ordre d'un cycle de longueur p? Quels sont les ordres possibles pour un élément de S_5 ?

Exercice 2. La suite de Fibonacci est la suite numérique $(F_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence $F_{n+1}=F_n+F_{n-1}$ pour $n\geqslant 1$, avec $F_0=0$ et $F_1=1$.

1. Déterminer une matrice $A \in M_2(\mathbb{R})$ telle que, pour $n \ge 1$, on a

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = A \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}.$$

- 2. Montrer que A admet deux valeurs propres réelles distinctes que l'on note λ_1 et λ_2 avec $\lambda_1 < \lambda_2$.
- 3. Trouver des vecteurs propres e_1 et e_2 associés aux valeurs propres λ_1 et λ_2 , sous la forme $\begin{pmatrix} \alpha \\ 1 \end{pmatrix}$, avec $\alpha \in \mathbb{R}$.
- 4. Déterminer les coordonnés du vecteur $\begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$ dans la base (e_1, e_2) . On les note x_1 et x_2 .
- 5. Soit $n \ge 1$. Montrer que $\binom{F_{n+1}}{F_n} = A^n \binom{F_1}{F_0}$. Déterminer $A^n(e_1)$ et $A^n(e_2)$ puis montrer que $\binom{F_{n+1}}{F_n} = \lambda_1^n \, x_1 \, e_1 + \lambda_2^n \, x_2 \, e_2$.

- 6. Donner une expression de F_n en fonction de λ_1 et λ_2 .
- 7. Donner un équivalent de F_n lorsque n tend vers $+\infty$.

Exercice 3. Soit $f:]-1,1[\cup]1,+\infty[\to\mathbb{R}$ l'application définie par

$$f(x) = (x^2 - 1) \operatorname{Log} \left| \frac{1+x}{1-x} \right|.$$

Notons Γ le graphe de f.

- 1. Démontrer que f admet un développement limité à l'ordre 3 au voisinage de 0. Donner ce développement limité. Démontrer que f' admet un développement limité à l'ordre 2 au voisinage de 0 donné par $f'(x) = -2 + 4x^2 + o(x^2)$. En déduire que Γ admet une tangente T au point d'abscisse 0 dont on donnera une équation et la position par rapport à Γ .
- 2. Démontrer qu'au voisinage de z=0 on a f(1/z)=2/z-4z/3+o(z). En déduire que Γ admet une asymptote (A). Donner une équation de (A) et préciser la position de Γ par rapport à (A).

Exercice 4. On considère la suite numérique (u_n) telle que $u_n = n! \prod_{k=1}^n \sin(a/k)$ pour tout $n \ge 1$, où $a \in \mathbb{R}$, $a \ge 0$, $a \notin \pi \mathbb{N}$ est un paramètre.

- 1. Démontrer que le signe de u_n ne dépend pas de n si n est suffisament grand. On suppose que $a \neq 1$. En étudiant la suite (u_{n+1}/u_n) préciser
 - a) la nature de la série $\sum u_n$,
 - b) la nature de la suite (u_n) .
- 2. Posons $a_n = \text{Log}(n \sin(1/n))$ pour tout $n \ge 1$.
 - a) Quelle est la nature de la série $\sum a_n$?
 - b) Quelle est la nature de la suite (u_n) pour a = 1?

Exercice 5. Etudier la convergence des séries suivantes

$$S_{1} = \sum_{n=1}^{+\infty} \frac{2^{n} + 3^{n}}{n^{2} + \operatorname{Log}(n) + 5^{n}}, \quad S_{2} = \sum_{n=1}^{+\infty} \log\left(1 - \frac{1}{n^{2}}\right), \quad S_{3} = \sum_{n=1}^{+\infty} \frac{1}{n^{1 + \frac{1}{\sqrt{n}}}},$$
$$S_{4} = \sum_{n=1}^{+\infty} \sin\left(\frac{n^{2} + 1}{n}\pi\right), \quad S_{5} = \sum_{n=1}^{+\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{n^{n}}.$$