שיעור 1 תכונות של פונקציה ופונקציות אלמנטריות

קבוצות של מספרים

קבוצה זה אוסף של עצמים. ישנן שתי דרכים להגדרת קבוצה ספציפית.

:1 דרך

לתת רשימה שלמה של איברים. לדוגמה:

$$A = \{1, 2, 3, 4, 5\}$$

:2 דרך

לתת תנאי שמאפיין את איברי הקבוצה, בצורה

$$A = \{x | x$$
 תנאי שמאפיין את $\}$

לגודמה:

$$A = \{x | 2 \le x \le 5$$
 מספר ממשי וגם $x \}$

 $A=\{1,3,4,5\}$ אם $A=\{1,3,4,5\}$ אייכים לקבוצה A שייכים לקבוצה א ומספרים A

סדר האיברים בקבוצה אינו חשוב, לכן

$${1,2,3} = {2,1,3}$$
.

לא משנה כמה פעמים איבר מופיע ברשימה האיברים, ז"א

$${1,2,3} = {1,2,3,2}$$
.

קבוצה ללא איברים מסומנת ב- \emptyset . כלומר

$$\emptyset = \{\}$$
 .

 $A\subset B$ אומרים ש- A היא תת קבוצה של B אם כל איבר של A שייך ל- A מסמנים תת קבוצה בצורה

פעולות בין קבוצות

$A\cap B=\{x x\in A$ וגם $x\in B\}$	AB	חיתוך של קבוצות
$A \cup B = \{x x \in A \text{ או } x \in B\}$	A B	איחוד של קבוצות
$A-B=\{x x otin B$ וגם $x\in A\}$	AB	הפרש בין קבוצות

קבוצות של מספרים

 $\mathbb{N} = \{1, 2, 3, \dots\}$ קבוצת המספרים הטבעיים:

 $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$ קבוצת המספרים השלמים:

 $\mathbb{Q}=\{rac{m}{n}|n
eq 0,n\in\mathbb{Z},m\in\mathbb{Z}\}$ קבוצת המספרים הרציונלים: שים לב,

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}$.

המספרים הרציונלים מקיימים את תכונת הצפיפות. ז"א בין כל שני מספרים רציונלים יש מספר רציונלי אחר. אבל עדיין קיימות הרבה מאוד נקודות על הציר שלא מתאימות לאף מספר רציונלי.

.1.1 טענה

לא קיים מספר רציונלי שהריבוע שלו שווה ל-2.

הוכחה.

-נוכיח בדרך השלילה. נניח שקיים מספר רציונלי $\frac{m}{n}$ כך ש

$$\left(\frac{m}{n}\right)^2 = 2 \ .$$

אפשר להניח ש-
$$\frac{m}{n}$$
 שבר מצומצם. אז
$$m^2 = 2n^2 \ ,$$

. (מספר אוני, ולכן גם m מספר אוגי, כלומר ניתן לבטא m=2k כאשר אוני. מספר אוגי, ולכן גם מספר אוגי. כלומר ניתן לבטא אז נקבל

$$m = 2k$$
 \Rightarrow $4k^2 = 2n^2$ \Rightarrow $n^2 = 2k^2$.

לכן $n \neq n$ זוגי. זאת אומרת m ו- n מספרים זוגיים. לכן אפשר לצמצם את השבר ב- $n \neq n$ סתירה. כלומר, לא קיים מספר רציונלי שריבועו שווה ל- $n \neq n$

אחרי שממלאים את כל הציר, מקבלים את קבוצת המספרים הממשיים, $\mathbb R$. ז"א

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$$

סביבות וקטעים

קטע סגור	[a,b]	=	$\{x a \le x \le b\}$
קטע פתוח	(a,b)	=	$\{x a < x < b\}$
קטע חצי פתוח	[a,b)	=	$\{x a \le x < b\}$
קטע חצי פתוח	(a,b]	=	$\{x a < x \le b\}$
קטע חד פתוח	$[a,\infty)$	=	$\{x x \ge a\}$
קטע חד פתוח	(a,∞)	=	$\{x x>a\}$
קטע חד פתוח	$(-\infty,b]$	=	$\{x x\leq b\}$
קטע חד פתוח	$(-\infty,b)$	=	$\{x x < b\}$
קטע חד פתוח	$(-\infty,\infty)$	=	$\{x - \infty < x < \infty\} = \mathbb{R}$

1.2 הגדרה: (סביבה של נקודה)

- x_0 שמכיל נקודה x_0 נקרא סביבה של כל עמכיל נקודה (a,b) שמכיל
- x_0 ביבה של נקודה ($x_0+\epsilon,x_0-\epsilon$ סביבה של נקודה ($x_0+\epsilon,x_0-\epsilon$

. מרחק מהאמצע עד הקצה - ϵ מרחק מהאמצע עד הקצה x_0

מושג של פונקציה

1.1 הגדרה: (פונקציה)

פונקציה

$$f: X \to Y$$

 $y \in Y$ יחיד איבר איבר איבר איבר לכל המתאימה כלל היא היא

פונקציה

לא פונקציה

1.2 הגדרה: (תחום הגדרה, טווח ותמונה של פונקציה)

תהיf הפונקציה

$$f: X \to Y$$

X מקבוצה לקבוצה

א) אוסח(f) - מסומן הגדרה מסומן התחום הגדרה של f. התחום הגדרה מחום לנקראת אחום הגדרה מחום הגדרה של

$$dom(f) = X$$
.

 $\mathsf{Rng}(f)$ -ב) הקבוצה Y נקראת ה vin של f. הטווח מסומן בY

$$\operatorname{Rng}(f) = Y$$
 .

ג) התמונה של פונקציה f מסומנת ב- $\operatorname{Im}(f)$ ומוגדרת באופן הבא:

$$\operatorname{Im}(f) = \{y | \forall y \in Y \ \exists \ x \in X \ : \ f(x) = y\}$$

או במילים פשוטות,

. מתקיים f(x)=y כך ש $x\in X$ קיים $y\in Y$ כך שלכל $\{y\}$ מתקיים $\mathrm{Im}(f)$

דוגמא.

תהי f הפונקציה המוגדרת ע"י הנוסחה

$$f(x) = (x+2)^2.$$

$$\mathrm{Dom}(f) = \mathbb{R} \; , \qquad \mathrm{Rng}(f) = \mathbb{R} \; , \qquad \mathrm{Im}(f) = \mathbb{R}^+ \; .$$

.0-ט אווים אדולים הממשיים המספרים את מסמן מסמן \mathbb{R}^+ כאשר

1.3 הגדרה: (חד חד ערכית)

תהי

$$f: X \to Y$$

 $a,b \in X$ פונקציה. $a,b \in X$ חד חד ערכית אם לכל

$$a \neq b \qquad \Rightarrow \qquad f(a) \neq f(b) \; ,$$

או שקול

$$f(a) = f(b)$$
 \Rightarrow $a = b$.

פונקציה חח"ע

$$q: X \to Y$$

פונקציה לא חח"ע

1.4 הגדרה: (על)

-פונקציה. $x \in X$ קיים $y \in Y$ אם לכל Y, אם לקא תקרא f תקרא על f(x) = y .

 $\operatorname{Im}(f)=Y$ במילים אחרות,

$g:X\to Y$

פונקציה לא על

דוגמאות.

$$.f(x) = 5x + 6$$
 .1

$$Dom(f) = \mathbb{R}$$
, $Rng(f) = \mathbb{R}$, $Im(f) = \mathbb{R}$.

. חד חד ערכית ועל f

$$\operatorname{Dom}(f) = \mathbb{R} \ , \quad \operatorname{Rng}(f) = \mathbb{R} \ , \quad \operatorname{Im}(f) = [9, \infty)$$

. לא חד חד ערכית ולא על f

$\underline{.f(x) = \sin x}$.3

$$\mathrm{Dom}(f) = \mathbb{R} \ , \quad \mathrm{Rng}(f) = \mathbb{R} \ , \quad \mathrm{Im}(f) = [-1, 1]$$

. לא חד חד ערכית ולא על f

$f(x) = \frac{1}{(x-1)^2}$.4

$$\mathrm{Dom}(f) = \{x \in \mathbb{R} \cap x \neq 1\} \ , \quad \mathrm{range}(f) = \mathbb{R} \ , \mathrm{Im}(f) = (0, \infty)$$

. לא חד חד ערכית ולא על f

$$.f(x) = 2x^2 - 3$$
 .5

$$\mathrm{Dom}(f) = \mathbb{R} \ , \quad \mathrm{Rng}(f) = \mathbb{R} \ , \quad \mathrm{Im}(f) = [-3, \infty)$$

. לא חד חד ערכית ולא על f

$$f(x) = \sqrt{1 - x^2}$$
 .6

$$Dom(f) = [-1, 1] ,$$

. לא חד חד ערכית f

תכונות של פונקציות

ו זוגיות I

1.5 הגדרה: (פונקציה זוגית ופונקציה אי-זוגית)

נניח ש $x\in D$ לכל אם אם פונקציה פונקציה f(x) .Dבתחום בתחום המוגדרת פונקציה f(x)

$$f(-x) = f(x) .$$

y-ה לציר ביחס ביחס אוגית היפטרי ביחס ביחס גרף אר

מתקיים: $x \in D$ נקראת פונקציה אי-זוגית אם לכל f(x)

$$f(-x) = -f(x) .$$

גרף של פונקציה זוגית סימטרי יחסית ראשית הצירים.

דוגמאות.

.זוגית $y=x^2$

זוגית. $y = \cos x$

.זוגית y=|x|

. זוגית $y=\sqrt{1-x^2}$

לא זוגית. $y=\sqrt{x}$

.לא זוגית y=x-1

.אי זוגית y=x

.אי זוגית $y=x^3$

אי זוגית. $y = \sin x$

II מונוטוניות

1.6 הגדרה: (עלייה וירידה של פונקציה)

כי: חומרים D פונקציה המוגדרת בתחום ונקציה פונקציה מוגדרת בתחום ו

 $a,b\in D$ עולה מונוטונית בתחום זה אם לכל f .1

$$b > a \implies f(b) \ge f(a)$$
,

 $a,b\in D$ עולה מונוטונית ממש בתחום אם לכל f .2

$$b > a \implies f(b) > f(a)$$
,

 $a,b\in D$ יורדת מונוטונית בתחום זה אם לכל f .3

$$b > a \implies f(b) \le f(a)$$
,

 $a,b\in D$ יורדת מונוטונית ממש בתחום זה אם לכל f .4

$$b > a \quad \Rightarrow \quad f(b) < f(a) \; ,$$

 $a,b\in D$ לא יורדת בתחום זה אם לכל f .5

$$b > a \implies f(b) \ge f(a)$$
,

 $a,b\in D$ לא עולה בתחום זה אם לכל f .6

$$b > a \quad \Rightarrow \quad f(b) \le f(a) ,$$

דוגמאות.

עולה מונוטונית ממש. f(x)=2x+1

עולה ממש בתחום $(0,\infty)$ ניורדת ממש בתחום $f(x)=x^2$. $(-\infty,0)$

הפונקציה f(x) יורדת בתחומים f(x) יורדת הפונקציה בתחום f(x) יורדת בתחום בתחום (2,5)

1.7 הגדרה: (חסימות של פונקציה)

כי: חומרים מונקציה המוגדרת פונקציה המוגדרת פונקציה לונקציה פונקציה המוגדרת פונקציה המוגדרת פונקציה המוגדרת בתחום $f(\boldsymbol{x})$

מתקיים מספר $x\in D$ כך שלכל קיים מספר קיים מחספה f (1

$$f(x) < M$$
,

מתקיים $x\in D$ כך שלכל m כף מספר אם מיים מלמטה f (2

$$f(x) > m$$
,

מתקיים מספרים שלכל Mו- מספרים קיים אם חסומה אם f (3

$$m < f(x) < M$$
,

מתקיים מספר עלכל כך מחפר מספר או מתקיים מחפר או באופן או באופן או באופן או

$$|f(x)| < M$$
.

דוגמאות.

עולה מונוטונית ממש. f(x) = 2x + 1

. חסומה מלמטה אבל אבל מלמטה מלמעלה $y=x^2$

הפונקציות $y=\cos x$, $y=\sin x$ חסומות:

 $-1 \le \cos x \le 1$, $-1 \le \sin x \le 1$

IV מחזוריות

1.8 הגדרה: (פונקציה מחזורית)

 $x\pm T\in D$ בו $x\in D$ בלכל T>0 כך שלכל מספר מחזורית מחזורית מחזורית מחזורית בתחום מספר מוגדרת בתחום T>0

$$f(x+T) = f(x) , \qquad f(x-T) = f(x) .$$

f של המחזור נקרא המחזור של כזה מספר T>0

דוגמאות.

$$T = 2\pi \quad y = \sin x$$

$$T = 2\pi \quad y = \cos x$$

$$T = \pi \quad y = \tan x$$

$$T = \pi \quad y = \cot x$$

דוגמא.

$$T$$
 נחפש את המחזור של . $f(x) = \sin(2x+3)$ נחפש

$$f(x+T) = f(x)$$
 \Rightarrow $\sin(2(x+T)+3) = \sin((2x+3)+2T) = \sin(2x+3)$.

$$.T=\pi \Leftarrow 2T=2\pi$$
 לכן

פונקציה הפוכה

1.9 הגדרה: (פונקציה הפוכה)

תהי

$$f: X \to Y$$

באופן $f^{-1}:\mathrm{Dom}(f) \to X$ חד חד חד ערכית אז ניתן להגדיר פונקציה הפוכה, שתסומן להגדיר ערכית אז ניתן להגדיר הבא.

$$f(x) = y$$
 \Leftrightarrow $x = f^{-1}(y)$.

$$f^{-1}(y_1) = x_1$$
,
 $f^{-1}(y_2) = x_2$,
 $f^{-1}(y_3) = x_3$.

דוגמאות.

$$.\underline{f(x) = 2x}$$
 (1

לכן

$$f^{-1}(x) = \frac{x}{2} \ .$$

y = 2x \Rightarrow $x = \frac{y}{2}$

$$\underline{x\geq 0}$$
 , $f(x)=x^2$ (2

$$y = x^2$$
 \Rightarrow $x = \sqrt{y}$

לכן

lacktriangle y=x אחד לשניה סימטריים ביחס לקו 1.10 הערה. הגרפים של שתי פונקציות הפוכות אחד לשניה

1.11 משפט. (תחום הגדרה ותמונה של פונקציה הפוכה)

. שים לב לפי הגדרה של פונקציה הפוכה, התמונה של f שווה לתחום ההגדרה של f^{-1} ולהפך

דוגמא.

נתונה הפונקציה

$$y = \sqrt{x+5} - 2 \ .$$

מצאו את

- תחום הגדרה ותמונה של הפונקציה (1
 - 2) פונקציה ההפוכה
- מחום הגדרה של פונקציה ההפוכה (3
 - 4) התמונה של פונקציה ההפוכה
 - 2) צייר הגרפים שלהם.

תחום ההגדרה של הפונקציה:

$$.[-5,\infty)$$

תמונה של הפונקציה:

$$[-2,\infty)$$

2) פונקציה ההפוכה:

$$y = \sqrt{x+5} - 2 \qquad \Rightarrow \qquad x = (y+2)^2 - 5$$

לכן פונקציה ההפוכה היא

$$f^{-1}(x) = (x+2)^2 - 5.$$

: תחום הגדרה של פונקציה ההפוכה: (3

$$.[-2,\infty)$$

4) התמונה של פונקציה ההפוכה:

$$.[-5,\infty)$$

 $\underline{}:f^{-1}$ -ו f שירטוט של הגרפים של f

1.12 הגדרה: (פונקציה מורכבת)

. מורכבת פונקציה y=f(g(x))היז לפונקציה אז הu=g(x) -ו y=f(u) עניח עניח נניח

דוגמאות.

(1

(2

$$y = \sin(x^2)$$

 $\Delta u = x^2$ ו- $y = \sin u$ הוא פונקציה המורכבת המורכבת

$$y=e^{\sqrt{x}}$$
 . $u=\sqrt{x}$ -ו $y=e^u$ הוא פונקציה המורכבת מהפונקציה

$$y = \frac{1}{(x^2 - 3)^3}$$

 $u=x^2-3$ ו- $y=rac{1}{u^3}$ הוא פונקציה המורכבת מהפונקציה

טרנספורמציות של הגרפים במערכת הצירים

יבאות: הבאות הטרנספורמציות עם הגרף y=f(x) עם הגרף מה להלן מתואר מה להלן להלן פונקציה כלשהי.

.1	f(x) + a	a<0 או למטה אם $a>0$ או יחידות למעלה אם והזזת הגרף ב-
.2	f(x+a)	a<0 או ימינה אם $a>0$ או יחידות שמאלה אם והזזת הגרף ב-
.3	-f(x)	(x-1) היפוף של הגרף לעומת ציר ה- x (שיקוף הגרף ביחס לציר ה- x).
.4	f(-x)	(y-היפוף של הגרף לעומת ציר ה- y (שיקוף הגרף ביחס לציר ה-
.5	$k \cdot f(x)$.y -ה אם בכיוון של הגרף הגרף אם $0 < k < 1$ אם או כיווץ, אם אם ($k > 0)$
.6	$f(k \cdot x)$.xה- בכיוון של בכיוון אם $0 < k < 1$ אם מתיחה, אם או או $, k > 1$ כיווץ, אם ($k > 0)$
.7	f(x)	x -שיקוף של חלקי הגרף הנמצאים מתחת לציר ה x לעומת ציר ה
.8	f(x)	החלפת הגרף הנמצא משמאל לציר ע בשיקופו של החלק הימין של הגרף לעומת ציר ה- y
.9	f(- x)	החלפת הארף הנמצא מימין לציר על לשיקוף של החלק השמאלי של הגרף לעומת ציר ה- y
	1.07.	

- אים מתחת הנמצאים חלקי של y=aישר לעומת שיקוף שיקוף |f(x)-a|+a
- ההחלפת ישר אה לישר x=a לישר הנמצא משמאל הגרף הנחלפת החלפת החלפת החלפת הרוא הנמצא משמאל לישר x=a ההחלפת החלפת הגרף אשר מימין לישר בישר הגרף אשר מימין האשר מימין לישר

פונקציות אלמנטריות בסיסיות

קו ישר

(שיפוע של גרף של קו ישר) 1.13

בהינתן גרף של קו ישר כמתואר בתרשים.

בכדי למצוא השיפוע ניתן ע"י הנוסחה: (x_2,y_2) ו- (x_1,y_1) בכדי למצוא בוחרין כל שתי נקודות

$$m = \frac{y_2 - y_1}{x_2 - x_1} \ .$$

1.14 כלל: (גרף של קו ישר)

הפונקציה הניתנת ע"י הנוסחה

$$y = mx + c$$

(0,c) בנקודה y ביר ה- שחותכת שיפוע שיפוע שיפוע

1) פונקציה קבועה

y=c.

2) פונקציה מעריכית

$$y = a^x , \qquad a \neq 1 , a > 0$$

\square	תחום הגדרה:
$y \in (0, \infty)$	התמונה:

4) פונקציה לוגריתמית

פונקציה לוגריתמית היא פונקציה הפוכה לפונקציה מעריכית. כלומר

$$y = a^x$$

אם ורק אם $x = \log_a y$. מכאן נובע $a^{\log_a y} = y \; .$

$\log_a x$ נוסחאות של

$$\log_a(xy) = \log_a x + \log_a y$$
 (1

$$\log_a\left(rac{x}{y}
ight) = \log_a x - \log_a y$$
 (2

$$\log_e x = \ln x$$
 עבור $a = e$

5) פונקציה טריגונומטריות

פונקציות הטריגונומטריות מוגדרות ע"י מעגל היידה:

$$\sin x = AB \ , \qquad \cos x = OA \ , \qquad \tan x = \frac{AB}{OA} = \frac{\sin x}{\cos x} \ , \qquad \cot x = \frac{OA}{AB} = \frac{\cos x}{\sin x} \ .$$

 $y = \sin x$

ערכים עיקריים:

$$\sin(0)=0\ , \qquad \sin\left(\tfrac{\pi}{2}\right)=1\ , \qquad \sin\left(\pi\right)=0\ , \qquad \sin(\tfrac{3\pi}{2})=1\ , \qquad \sin(2\pi)=0\ .$$

פונקציה אי-זוגית:

$$\sin(-x) = -\sin(x) .$$

 $T=2\pi$ פונקציה מחזורית עם מחזור

$$\sin(x + 2\pi n) = \sin(x) , \quad n \in \mathbb{Z}$$

ערכים מחזוריים:

$$\sin\left(\frac{\pi}{2} + 2\pi n\right) = 1 \;, \quad \sin\left(-\frac{\pi}{2} + 2\pi n\right) = -1 \;, \quad \sin(n\pi) = 0 \;, \quad \sin\left((2n-1)\frac{\pi}{2}\right) = (-1)^n \;, \quad n \in \mathbb{Z} \;.$$
 ערכים שיקופיים:

$$\sin(\pi - x) = \sin x , \qquad \sin(x - \pi) = -\sin x \qquad \sin(x + \pi) = -\sin(x) .$$

 $y = \cos x$

:ערכים עיקריים

$$\cos(0)=1 \ , \qquad \cos\left(\frac{\pi}{2}\right)=0 \ , \qquad \cos\left(\pi\right)=-1 \ , \qquad \cos\left(\frac{3\pi}{2}\right) \ , \qquad \cos(2\pi)=0 \ .$$

פונקציה זוגית:

$$\cos(-x) = \cos(x) \ .$$

 $T=2\pi$ פונקציה מחזורית עם מחזור

$$\cos(x + 2\pi n) = \cos(x) , \quad n \in \mathbb{Z}$$

ערכים מחזוריים:

$$\cos\left(\frac{n\pi}{2}\right) = 0 \;, \qquad \cos\left(2\pi n\right) = 1 \;, \qquad \cos(\pi + 2\pi n) = -1 \;, \qquad \cos(n\pi) = (-1)^n \;, \qquad n \in \mathbb{Z} \;.$$
 ערכים שיקופיים:

$$\cos(\pi - x) = -\cos x , \qquad \cos(x - \pi) = -\cos x \qquad \cos(x + \pi) = -\cos(x) .$$

 $y = \tan x$

תחום הגדרה:

$$x \neq \frac{\pi}{2} + n\pi$$
, $n = 0, \pm 1, \pm 2, \dots$

ערכים עיקריים:

$$\tan(0)=0\;,\qquad \tan\left(\frac{\pi}{4}\right)=1\;,\qquad \tan\left(-\frac{\pi}{4}\right)=-1\;,\qquad \tan\left(\frac{\pi}{2}\right)\to\infty\;,\qquad \tan\left(-\frac{\pi}{2}\right)\to-\infty\;.$$
 פונקציה אי-זוגית:

$$\tan(-x) = -\tan(x) \ .$$

 $T=\pi$ פונקציה מחזורית עם מחזור

$$\tan(x + \pi n) = \tan(x) , \quad n \in \mathbb{Z}$$

ערכים מחזוריים:

$$\tan\left(\frac{|n|\pi}{2}\right)\to\infty\ ,\qquad \tan\left(-\frac{|n|\pi}{2}\right)\to-\infty\ ,\qquad \tan(n\pi)=0\ ,\qquad n\in\mathbb{Z}\ .$$

ערכים שיקופיים:

$$\tan(\pi-x) = -\tan x \ , \qquad \tan(x-\pi) = \tan x \qquad \quad \tan(x+\pi) = \tan(x) \ .$$

6) פונקציה טריגונומטריות הפוכות

$$y = \arcsin x \; , \qquad y = \arccos x \; , \qquad y = \arctan x \; .$$

 $y = \arcsin x$

$$-rac{\pi}{2} \leq x \leq rac{\pi}{2}$$
 בתחום $y = \sin x$ היא פונקציה הפוכה $y = \arcsin x$

$$y = \sin x$$
, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, $-1 \le y \le 1$

 $-rac{\pi}{2} \leq y \leq rac{\pi}{2}$ היא $y = \arcsin x$ והתמונה של ההגדרה של $y = \arcsin x$ הוא לכן תחום ההגדרה של

$y = \arccos x$

לכן

אומרת אומרת היא פונקציה הפוכה ל- $y=\cos x$ ל- הפוכה הפונקציה $y=\arccos x$

$$y = \cos x \ , \qquad 0 \le x \le \pi \ , \qquad -1 \le y \le 1$$

 $y=\arccos x \ , \qquad -1 \leq x \leq 1 \ , \qquad 0 \leq y \leq \pi \ .$

$y=\arctan x$

לכן

אומרת אומרת . $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ בתחום $y = \tan x$ ל- הפוכה פונקציה $y = \arctan x$

$$y = \tan x \; , \qquad -\frac{\pi}{2} \le x \le \frac{\pi}{2} \; , \qquad -\infty \le y \le \infty$$

$$y = \arctan x \ , \qquad -\infty \le x \le \infty \ , \qquad -\frac{\pi}{2} \le y \le \frac{\pi}{2} \ .$$

