

Det
$$A=1$$
 $B=1$, $C=0$, $D=0$
 \overline{x} 0 $\overline{11}$ $\overline{11}$ $\overline{11}$ \overline{x} 0 0

BE =
$$\overline{xy} + \overline{xy}$$

= $\overline{x}(\overline{y} + \overline{y}) = \overline{x}$

② Let
$$A=0$$
, $B=0$, $C=1$, $D=1$

$$BE = xy + xy$$

$$= x(y+y) = x$$

メ	Ÿ	<u>,</u>
0	0	A
0	1	B
I TO A STATE OF THE PARTY OF TH	O	C
1		D

me cannot make a loop becouse A D are not adjacent.

BE = sey + ory. Also this cannot be simplified.

Observation: In the expression, only one literal can have one complimented.

Page 4 A=1, B=1, C=1, D=0 1 0 In this, we would group as XY+XY XY+XY from 1 me home 50. from 3 me have J. By combing, we have 元+9.

we can group cells as large as possible, but it has to be adjacent to each other and con overlap, not diayonal,

let A = B = D = C = 1

Page 6

= 0 -	YZ	~Z	YZ,	YZ
5	1	L	l	1
x	O	O	0	0

me can form a group

元ダラナダマダナ ガリマナダダラ Boolean expression = 72 (92+42) + 22(42+42) = xy(z+z)+ xy(z+z) = 25+27= 2 (5+4)=2

In other words, the top now depends on si but not any values of y, J, Z, Z.

(1) How about

As noted above, the value deponds entirely on se, but not any values of Y, J, Z, Z

0	0	1	١
0	0	0	7

me need two overlapping groups

YZ	YZ			
		0	0	$\overline{\times}$
	0	0	0	~
	0	0	0	×

which yields

$$\overline{x}yz + \overline{x}y\overline{z} \text{ and}$$

$$\overline{x}y\overline{z} + x\overline{y}\overline{z}$$

$$\overline{x}y + \overline{y}\overline{z} = y(\overline{x}+\overline{z})$$

again me need two overlapping groups

which when combined = $\overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}\overline{z}$ = $\overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}\overline{z} = \overline{y}(\overline{x}+\overline{z})$