Höhere Technische Bundeslehranstalt Salzburg

Abteilung für Elektronik

Übungen im Laboratorium für Elektronik

Protokoll für die Übung Nr. 12

Gegenstand der Übung

Colpitts-LC-Oszillator

Name:	Leon Ablinger	
Jahrgang:	4AHEL	
Gruppe Nr.:	A 1	
Übung am:	23.12.2020	

Anwesend: Leon Ablinger

Colpitts-LC-Oszillator

Inhalt

1	Inventar	rliste	2
2	Einleitur	ng	2
3		durchführungdurchführung	
-	_	lpitts-Oszillator	
	3.1.1	Beschreibung des Messvorgangs	
	3.1.2	Schaltung	
	3.1.3	Berechnung	
	3.1.4	Simulation	
	3.1.5	Ausgangskennlinie	5
	3.1.6	Fast-Fourier-Transformation	
	3.1.7	Erkenntnis / Schlussfolgerung	5

1 Inventarliste

Gerätebezeichnung	Inventarnummer	Verwendung
Voltcraft VC270	1130885899	R-/U-Messung
Laborplatz 3/1	-	AC-Versorgung
Tektronix TBS 1052B	-	Spannung / FFT

2 Einleitung

In dieser Übung soll das Verständnis des LC-Oszillators erweitert und gefestigt werden. Speziell wird hier der Colpitts-Oszillator mit der Besonderheit des negativen Widerstandes betrachtet.

3 Übungsdurchführung

3.1 Colpitts-Oszillator

3.1.1 Beschreibung des Messvorgangs

Der Oszillator wurde zuerst dimensioniert und entworfen, um eine oszillierende Spannung von 10 MHz zu erhalten. Anschließend wurde dieser aufgebaut und gemessen. Der Teil des negativen Widerstandes (rechts) wird mittels der Versorgungsspannung (DC) betrieben. Durch den Spannungsteiler (C1 & C2) und dem LC-Glied auf der linken Seite wird eine Oszillation am Ausgang herbeigerufen.

3.1.2 Schaltung

Abbildung 1: Schaltungsaufbau - Colpitts Oszillator

3.1.3 Berechnung

Re:

Gegeben: $I_C = 10mA$

$$R_E = \frac{U_{BE}}{I_C} = \frac{5,3V}{10mA} = 560\Omega$$

3.1.4 Simulation

Abbildung 2: Simulation des Colpitts-Oszillators

Abbildung 3: Cursor-Werte v. Abb. 2

3.1.5 Ausgangskennlinie

Abbildung 4: Ausgangsspannung des Oszillators

3.1.6 Fast-Fourier-Transformation

Abbildung 5: Fourier-Transformation der Ausgangsspannung

3.1.7 Erkenntnis / Schlussfolgerung

Wie in der Beschreibung erwähnt, ist Abb. 2 (Simulation) und Abb. 4 (Real) die oszillierende Ausgangsspannung des Oszillators. Da der Oszillator hier in der Kollektorschaltung integriert wurde, ist keine Phasendrehung vorhanden (Resonanzfrequenz!). Diese wäre nur bei einer Emitterschaltung zu erkennen.

Abb. 5 zeigt die FFT des Ausgangssignals und es ist zu erkennen, dass die Grundwelle einen relativ großen Abstand zu den Oberwellen besitzt. Dadurch lässt sich sagen, dass die Schaltung gut dimensioniert wurde und ein Sinusähnliches Signal auftritt.

Colpitts-LC-Oszillator	

Unterschrift:		
Unierschilli		

Datum:	Note:	Punkte:	<u>Unterschrift:</u>

Leon Ablinger 23.12.2020