UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Cálculo I

14 de Julho de 2017

(1) Encontre os pontos críticos das funções:

a)
$$f(x) = 5x^2 + 4x$$

b)
$$f(x) = x^3 + 3x^2 - 24x$$

c)
$$g(y) = \frac{y-1}{y^2 - y + 1}$$

(2) Encontre os valores máximo e mínimo absolutos de f no intervalo dado:

a)
$$f(x) = 3x^2 - 12x + 5$$
, [0, 3];

b)
$$f(x) = 18x + 15x^2 - 4x^3$$
, [-3, 4];

c)
$$f(x) = \frac{x}{x^2 + 1}$$
, [0, 2];

d)
$$f(x) = x - \ln x; [\frac{1}{2}, 2];$$

e)
$$f(x) = e^{-x} - e^{-2x}$$
; [0, 1];

f)
$$f(t) = 2\cos t + sen(2t), [0, \pi/2].$$

(3) Usando o Teste da Segunda Derivada, encontre os valores máximos e mínimos locais de f:

a)
$$f(x) = x^5 - 5x + 3$$

b)
$$f(x) = x + \sqrt{1 - x}$$

(4) Seja
$$f(x) = x^3 - 12x + 1$$
.

- a) Encontre os intervalos nos quais f é crescente ou decrescente.
- b) Encontre os valores máximo e mínimo local de f.
- c) Encontrar os intervalos de concavidade e os pontos de inflexão.

(5) Seja
$$\frac{x^2}{x^2+3}$$
.

- a) Encontre os intervalos nos quais f é crescente ou decrescente.
- b) Encontre os valores máximo e mínimo local de f.
- c) Encontrar os intervalos de concavidade e os pontos de inflexão.

(6) Seja
$$f(x) = x^2 \ln x$$
.

- a) Encontre os intervalos nos quais f é crescente ou decrescente.
- b) Encontre os valores máximo e mínimo local de f.
- c) Encontrar os intervalos de concavidade e os pontos de inflexão.

Gabarito

(1) a)
$$x = -\frac{2}{5}$$

b)
$$x = -4 e x = 2$$

c)
$$y = 0 e y = 2$$

(2) a) Mínimo global em
$$x = 2$$
: $f(2) = -7$; Máximo global em $x = 0$: $f(0) = 5$.

b) Mínimo global em
$$x = -\frac{1}{2}$$
: $f(-1/2) = -4,75$; Máximo global em $x = -3$: $f(-3) = 189$.

c) Mínimo global em
$$x = 0$$
: $f(0) = 0$; Máximo global em $x = 1$: $f(1) = \frac{1}{2}$.

d) Mínimo global em
$$x=1$$
: $f(1)=1$; Máximo global em $x=2$: $f(2)=2-\ln(2)$.

e) Mínimo global em
$$x=0$$
: $f(0)=0$; Máximo global em $x=\ln 2$: $f(\ln 2)=\frac{1}{4}$.

f) Mínimo global em
$$x = \frac{\pi}{2}$$
: $f(\pi/2) = 0$; Máximo global em $x = \frac{\pi}{6}$: $f(\pi/6) = \frac{3\sqrt{3}}{2}$.

(3) a) Mínimo local em
$$x = 1$$
: $f(1) = -1$; Máximo local em $x = -1$: $f(-1) = 7$.

b) Máximo local em
$$x = \frac{3}{4}$$
: $f(3/4) = 1,25$.

(4) a) Crescente:
$$(-\infty, -2) \cup (2, \infty)$$
; Decrescente: $(-2, 2)$.

b) Máximo Local em
$$x = -2$$
: $f(-2) = 17$; Mínimo Local em $x = 2$: $f(2) = -15$.

c) Concavidade para cima: $(0,\infty)$; Concavidade para baixo: $(-\infty,0)$.

Ponto de inflexão:
$$(0, f(0)) = (0, 1)$$
.

(5) a) Crescente:
$$(0, \infty)$$
; Decrescente: $(-\infty, 0)$.

b) Mínimo Local em
$$x = 0$$
: $f(0) = 0$.

c) Concavidade para cima: (-1,1); Concavidade para baixo: $(-\infty,-1)\cup(1,\infty)$.

Pontos de inflexão:
$$(-1,f(-1))=(-1,\frac{1}{4})$$
 e $(1,f(1))=(1,\frac{1}{4})$.

(6) a) Crescente:
$$(e^{-1/2}, \infty)$$
; Decrescente: $(-\infty, e^{-1/2})$.

b) Mínimo Local em
$$x = e^{-1/2}$$
: $f(e^{-1/2}) = -\frac{e^{-1}}{2}$.

c) Concavidade para cima:
$$(e^{-3/2}, \infty)$$
; Concavidade para baixo: $(0, e^{-3/2})$.

Pontos de inflexão:
$$(e^{-3/2}, f(e^{-3/2})) = (e^{-3/2}, -\frac{3e^{-3}}{2})$$
.