Exercício Prático 3 - Representação de malhas de triângulos

Aluno Kleyton da Costa (2312730) Professor Waldemar Celes (DI/PUC-Rio)

1 Introdução

Este relatório tem como finalidade apresentar os resultados de aplicação para a representação de malhas de triângulos através de um grafo dual.

2 Metodologia

Algorithm 1 Transform to Dual

```
1: procedure TransformToDual(n, m, v, t)
 2:
        dualGraph \leftarrow list()
        for i \leftarrow 0 to n-1 do
 3:
            vertexInfo \leftarrow vertices[i] + (-1)
 4:
            for j \leftarrow 0 to m-1 do
 5:
                if i in t[j] then
 6:
 7:
                    adjacentTriangule \leftarrow [t \text{ for } t \text{ in } t[j] \text{ if } t \neq i]
                    vertexInfo \leftarrow vertexInfo + tuple(adjacentTriangule)
 8:
                end if
 9:
            end for
10:
            dualGraph.append(vertexInfo)
11:
        end for
12:
        return dualGraph
13:
14: end procedure
```

O Algoritmo 1 possui quatro elementos de entrada: o número de vértices (n); o número de triângulos (m); a lista de vértices (v); e a lista de triângulos (t). O algoritmo inicia com uma lista vazia dualGraph para realizar o armazenamento da representação do grafo dual. Depois os seguintes passos são executados:

- iteração sobre cada vértice de 0 até n-1. Para cada vértice, inicializa-se vertexInfo através da concatenação das coordenadas do vértice presente na lista v com -1, indicando que de início o vértice não possui um triângulo adjacente;
- o segundo loop itera de 0 até *m-1*. Para cada triângulo, checa-se se o vértice atual é parte do triângulo utilizando o operador *in*. Se o vértice for encontrado no triângulo, uma lista chamada *adjacentTriangule* é criada iterando sobre os vértices do triângulo e excluindo o vértice atual. Essa lista possui o triângulo adjacente do vértice atual;
- Após o loop, o vertexInfo é atualizado por uma concatenação com a lista de adjacentTriangule.
 Por fim, o vertexInfo é anexado a lista dualGraph;
- Uma vez que todos os vértices forem processados, o algoritmo retorna a lista dualGraph sendo esta a representação do grafo dual.

A complexidade do pseudocóidigo é de ordem O(nm), em que n é o número de vértices e m é o número de triângulos. A justificativa é de que o primeiro loop itera n vezes e o segundo loop itera m vezes. Dentro dos loops as operações (concatenação de listas e tuplas, a utilização do operador in e iterar sobre os vértices do triângulo) são constantes.

3 Experimentos

Através da malha de triângulos disponibilizada, chegamos no seguinte grafo dual (Figura 3).

Cada linha na Tabela 3 é uma lista contendo informações sobre um vértice e seus triângulos adjacentes.

O experimento realizado (Figura 3) mostra que, como esperado, o tempo de execução do algoritmo cresce linearmente em função do produto entre o número de vértices e triângulos. Para este experimento foram consideradas 100 amostras com tamanho de entrada $n=100\ to\ 10100$.

Tabela 1: Informações da malha

										Tab	cia i.	. 1111	JIIIa	tabela 1. Illiolillações da illallia	da III	allla													
ш	\mathbf{t}																												
400.0	-	<u></u>	10	<u></u>	12	က	6	4	12	4	6	3	10																
50.0	-	0	10	0	12	2	3	က	10	7	0	10	0	12	2	3	က	10											
50.0	-	<u></u>	က	က	5	5	9	9	11	-	П	က	က	5	5	9	9	11											
200.0	-1	0	6	П	2	2	5	∞	6	5		1	10	0	10	-	0	6	1	2	2 5	∞	6	5	∞	3 1	. 10	0 0	1
800.0		0	12	7	12	7	∞	0	6	∞	6		0	12	7	12	2	∞	0	6	8	_							
200.0	-1	3	2	က	∞	2	9	9	2	7			33	2	3	∞	2	9	9		2 8	~							
200.0	-	5	2	5	2	2	11	2	11	-	5	2	5	7	2	11	2	11											
900.0	7	5	9	4	12	2	∞	4		9	11	11	12	7	2	9	4	12	ಒ	· ∞	4 8	9 8	11	. 11	12	2			
700.0	-	33	6	က	5	2	2	7	4	4	6	7	က	6	3	5	ಬ	7	7	4	4 9								
500.0	7	0	က	က	∞	4	0	∞	4	7	0	က	က	∞	4	0	∞	4											
100.0	-	0	П		က	က	0	-	0		П	က	က	0															
1000.0	7	9	2	~	9		12	7	9	2	2	9	7	12															
1000.0	 		0	0	4	4	2	2	11	7		0	0	4	4	2	7	11											