Series Temporales y Predicción Práctica 4

Polinomio característico y estimación de los parámetros

1. Raíces del polinomio característico y estacionariedad

La idea de estacionariedad es que el comportamiento (probabilístico) de la serie en el futuro será análogo al comportamiento en el pasado.

Una serie es estacionaria cuando la media y la variabilidad son constantes a lo largo del tiempo.

Esto se refleja gráficamente en que los valores de la serie tienden a oscilar alrededor de una media constante y la variabilidad con respecto a esa media también permanece constante en el tiempo.

Un procés estacionari $\{X_n, n \in \mathbb{Z}\}$ direm que és autoregressiu de primer ordre (AR(1)) si compleix una relació del tipus següent:

$$X_n = \phi X_{n-1} + Z_n, \quad (1)$$

on $\{Z_n, n \in \mathbb{Z}\}$ és un soroll blanc i ϕ és una constant, $|\phi| < 1$ Noteu que si $\phi = 1$ s'obtindria una passejada aleatòria, que com hem dit no és estacionari.

Per treballar amb aquests processos és convenient introduir l'operador de retard (backward) B definit per

$$BX_n = X_{n-1}$$
.

L'equació d'autoregressió (1) s'escriurà:

$$(I - \phi B)X_n = Z_n.$$

Si posem $\Phi(x) = 1 - \phi x$, podem escriure:

$$\Phi(B)X = Z$$
.

El polinomi $\Phi(x) = 1 - \phi x$ s'anomena *polinomi característic* del procés. Noteu que la condició $|\phi| < 1$ implica que l'arrel d'aquest polinomi, $\eta = 1/\phi$ valor absolut $|\eta| < 1$ (òbviament suposem $\phi \neq 0$.)

Si introduïm ara els operadors de retard iterats:

$$B^k X_n = B^{k-1} (BX_n) = X_{n-k}$$

l'expressió (2) pot escriure's

$$X_n = \sum_{k=0}^{\infty} \phi^k B^k (Z_n).$$

Notem que, formalment, el que hem fet ha estat invertir l'operador $I - \phi B$, ja que com que $|\phi| < 1, \forall x \in [-1, 1], |\phi x| < 1$, aleshores,

$$(1 - \phi x)^{-1} = \sum_{k=0}^{\infty} \phi^k x^k$$

(suma d'una progressió geomètrica de raó de valor absolut < 1).

3.2.4 Procés autoregressiu d'ordre p (AR(p))

Es tracta d'un procés estacionari $\{X_n, n \in \mathbb{Z}\}$ que compleix una equació de l'estil

$$X_n = \phi_1 X_{n-1} + \dots + \phi_p X_{n-p} + Z_n,$$

on $\{Z_n, n \in \mathbb{Z}\}$ és un soroll blanc.

S'escriu també

$$\Phi(B)X = Z$$

on

$$\Phi(x) = 1 - \phi_1 x - \dots - \phi_p x^p.$$

Les autocorrelacions han de complir l'equació en diferències

$$\Phi(B)\rho_k = 0$$
,

que per a k = 1, ..., p dóna les equacions de Yule-Wolker

$$\begin{array}{l} \rho_1 = \phi_1 + \phi_2 \rho_1 + \cdots + \phi_p \rho_{p-1} \\ \rho_2 = \phi_1 \rho_1 + \phi_2 + \cdots + \phi_p \rho_{p-2} \\ \vdots \\ \rho_p = \phi_1 \rho_{p-1} + \cdots + \phi_p \end{array} \right\}$$

Raonant igual que al procés AR(2), perquè les solucions de l'equació en diferències no explotin, cal que les arrels del polinomi caracterpistic $\Phi(x)$ estiguin fora del cercle unitat. També en aquest cas serà un procés causal.

Práctica 1.1

Considera el proceso AR(1) dado por $X_t = 0.6 \cdot X_{t-1} + S_t$. ¿Es un proceso estacionario?

Práctica 1.2

Considera el proceso AR(2) dado por $X_t = 1.095445 \ X_{t-1} - 0.3 \ X_{t-2} + s_t$. ¿Qué valores toma las raíces de su polinomio característico? ¿Es un proceso estacionario? ¿Cómo es su correlograma (gráfica ACF)?

Práctica 1.3

Considera el proceso AR(2) dado por $X_t = X_{t-1} - 0.5 \cdot X_{t-2} + S_t$. ¿Cuáles son las raíces de su polinomio característico? ¿Es un proceso estacionario? ¿Cómo es su correlograma (gráfica ACF)?

Práctica 1.4

Suponed que las raíces del polinomio característico de un proceso AR(2) son 0.6 y 0.3. ¿Es un proceso estacionario?

Práctica 1.5

Considera el proceso AR(2) dado por $X_t = 1.6 \cdot X_{t-1} + 0.3 \cdot X_{t-2} + S_t$. ¿Cuáles son las raíces de su polinomio característico? ¿Es un proceso estacionario? ¿Cómo es su correlograma (gráfica ACF)? Simula el proceso y ejecuta la función arima(sim, order=c(2,0,0)). ¿Cuál es su resultado?

2. Estimación de los parámetros

Práctica 2.1

En el Campus Virtual encontraréis el fichero de datos "prac4TS.txt", que contiene información sobre los beneficios mensuales medios de ciertas operaciones bursarias realizadas entre Enero de 2008 y Diciembre de 2012. Proponed un modelo que ajuste bien estos datos.

Práctica 2.2

Estima los parámetros del modelo que propone la función auto.arima() realizada directamente sobre el fichero de datos "prac4TS.txt" de acuerdo a las ecuaciones de Yule-Walker.