Práctica Circuitos Electrónicos 5 Informe Prepráctica

EJERCICIO A

Realizando los cálculos teóricos para una serie discreta de frecuencias, obtuvimos los siguientes resultados:

Frecuencia (Hz)	Av (dB)	Φ (ͽ)
10	-74.14	~90º
100	-54.13	~90º
1000	-33.79	~90º
10000	-23.55	~(-90º)
100000	-46.04	~(-90º)

Como se puede apreciar en la gráfica, estos valores son muy similares. Además, llegamos a la conclusión de que se asemeja a un filtro pasa-banda, ya que deja pasar las frecuencias intermedias

EJERCICIO 2

En este caso, obtenemos los siguientes resultados teóricos:

Frecuencia (Hz)	Av (dB)	Φ (ͽ)
10	-38.17	~0º
100	-38.27	~8º
1000	-32.47	~56º
10000	-23.61	~(-88º)
100000	-46.05	~(-90º)

Se puede apreciar que los valores obtenidos teóricamente se asemejan bastante a los obtenidos en la simulación.

Por otro lado, el *plateau* que se aprecia a frecuencias bajas en el segundo circuito se debe a que cuando la frecuencia tiende a 0 tenemos un circuito equivalente donde Vo depende de una resistencia (Zl tiende a 0 y Zc tiende a infinito), por lo que dependerá de nuestra resistencia de 40 ohmios, sin embargo cuando la frecuencia tiende a infinito, Vo depende de un cortocircuito (Producido por Zc tendiendo a 0 y Zl tendiendo a infinito)