MSPR 6: Classification

Dr. Hendrik Purwins

AAU CPH

October 8, 2015

- The part on discriminant analysis follows closely Prof. Ulrich Kockelkorn: (emeritus, Berlin Institute of Technology): Lecture Notes Multivariate Statistics. (unpublished)
- As a background van der Heijden et al.: Classification, Parameter Estimation and State Estimation, Chapter 2 Detection and Classification p.13-31 can be read. Although the PRTools examples are from that book, the lecture uses another terminology than in the book and presents the topics in a different order.

Outline

1 Classification

The probability of x is given by probability distribution p(x).

```
mu = 0; sigma = 2;
pd = makedist('Normal', mu,
sigma);
```

The probability of $x \in (-\infty, z)$ is given by the cumulative distribution function (CDF) P(x) Matlab y = cdf(pd,x) Consider a probability in the range δx E.g. that a normally distributed random variable falls within $\pm \sigma$:

Result: Probability: 0.6827

- Let $p(x)\delta x$ be the probability of x falling in the interval $(x, x + \delta x)$ for $\delta x \to 0$
- Then p(x) is called *probability* density function (PDF) over x with the properities

$$p(x) \ge 0$$
$$\int_{-\infty}^{\infty} p(x)dx = 1$$

■ The probability of $x \in (a, b)$ is given by

$$p(x \in (a,b)) = \int_a^b p(x) dx$$

■ The probability of $x \in (-\infty, z)$ is given by the *cumulative* distribution function (CDF)

$$P(x,z) = \int_{-\infty}^{z} p(x)dx$$
$$P'(z) = p(x)$$

Multi-variate Gaussians

 The multivariate Gaussian distribution for a J-dimensional variable x is given by

$$\mathcal{N}(\mathbf{x}|\mu,\mathbf{\Sigma}) = \frac{1}{2\pi^{J/2}\det\mathbf{\Sigma}^{1/2}}e^{-\frac{1}{2}(\mathbf{x}-\mu)^T\mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)}$$

- **D**efining parameters: μ and Σ
- Mean and Covariance
 - Mean (vector) = μ (J dimensional)
 - Covariance (matrix) = Σ ($J \times J$)
 - \blacksquare det Σ denotes the determinant of Σ

Classification: Applications and Questions

- Application examples:
 - Description (classification of customer types that buy brands/ no-name products based on buys in those products)
 - Prediction (avalanche warning based on snow analysis)
 - Decision (credit risk of a client based on income, employment duration, number of credit cards)
- Questions:
 - Find reasonable decision rule to optimally separate classes
 - Feature vectors: feature construction (e.g. MFSSs for sound), dimension reduction (e.g. eigenvalue decomposition), feature selection (later in the lecture)
 - Do we have pervious knowledge?
 - We know class labels for the training set (Supervised learning) ⇒ apply discriminant analysis
 - We have no class labels (Unsupervised learning) ⇒ Cluster analysis
 - Error, costs, quality of a decision for a class
 - Division of data in training set ↔ test set

Decision Rule for Classification

- Assume a data point \mathbf{x} can belong to two classes: 1, 0.
- The probability distribution of each class modelled by a Gaussian with mean μ_0 (μ_1) and covariance Σ_0 (Σ_1).
- Predict the class x according to the decision rule:

$$d(x) = \left\{ egin{array}{ll} 1 & ext{if } \mathcal{N}(\mathbf{x}|\mu_{\mathbf{1}}, \mathbf{\Sigma}_{1}) > \mathcal{N}(\mathbf{x}|\mu_{\mathbf{0}}, \mathbf{\Sigma}_{0}) \\ 0 & ext{else} \end{array}
ight.$$

Gaussian Fit for Predicting the Iris Type Based on Sepal Length and Petal Width only

- We had fitted two Gaussians $\mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}_{virg}, \mathbf{S}_{virg}), \mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}_{vers}, \mathbf{S}_{vers})$ to the points 6-50 of Virginica and Versicolor Iris data ('Sepal Length' and 'Petal Width').
- The first 5 points of Virginica and Versicolor iris data ('Sepal Length' and 'Petal Width') have not been used for the fitting.
- Let us use the fitted Gaussians, to determine whether these points belong to Virginica or Versicolor according to the rule: If for a point \mathbf{x} $\mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}_{virg},\mathbf{S}_{virg}) > \mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}_{vers},\mathbf{S}_{vers})$ we predict its class to be Virginica, otherwise Versicolor.
- Let us count the wrong predictions.


```
sig_virginica=cov(X(idx_virginica_tr ,:));
2 sig_versicolor=cov(X(idx_versicolor_tr ,:));
  idx_virginica_tst=idx_virginica(1:5);
4 idx_versicolor_tst=idx_versicolor(1:5);
  F_{\text{versicolor\_tst}} = \text{mvnpdf}(X([idx_{\text{virginica\_tst}};
      idx_versicolor_tst],:),...
        mean_versicolor, sig_versicolor);
  F_virginica_tst = mvnpdf(X([idx_virginica_tst;
      idx_versicolor_tst],:),...
        mean_virginica , sig_virginica );
  [F_virginica_tst'; F_versicolor_tst']
  \% \quad 0.18 \quad 0.43 \quad 0.69 \quad 0.66 \quad 0.69 \quad 0.03 \quad 0.16 \quad 0.09 \quad 0.02 \quad 0.15 
_{12}|\% 0.00 0.00 0.00 0.10 0.00 0.08 0.98 0.19 1.30 0.80
```

Perfect Prediction!

Parameters to Estimate

- In its most general form, the multi-variate Gaussian of J dimensions has
 - J(J+1)/2 parameters for the covariance matrix
 - J parameters for the mean vector.
 - All this for K classes
- The number of parameters increases quadratically with *J* and hence poses a problem both in parameter estimation and matrix inversion.

Reduction of Parameters to be Estimated

How to simplifying this problem in a classification context

- Assume diagonal covariance matrix $(2 \times J)$ parameters.
- Assume equal covariance $\sigma = \sigma_k$ for all classes k: $\mathbf{\Sigma} = \sigma^2 \mathbf{I}$ ((J+1) parameters). (minimum distance classifier)

The more parameters, the more complex/more flexible the classifier, but we need more data to have reliable estimates. The less parameters the less

Linear Discriminant Analysis (=Minimal Mahalanobis Distance Classifier)

Pooled covariance matrix for I observations belonging to K classes, I_k in each class (in case all classes have the same size):

$$\mathbf{S} = \frac{1}{K} \sum_{k=1}^{K} S_k$$

Class Assignment

Calculate the pooled covariance matrix for the species Virginicia and Versicolor based on the features 'Sepal Length' and 'Petal Width' using the perviously estimated class sample covariances \mathbf{S}_{virg} , \mathbf{S}_{vers} Then perform the classification based on the decision rule:

$$d(x) = \begin{cases} Virginica & if \mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}_{virg}, \mathbf{S}) > \mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}_{vers}, \mathbf{S}) \\ Versicolor & else \end{cases}$$

```
sig_pool=(sig_versicolor +sig_virginica)/2;
F_versicolor_tst = mvnpdf(X([idx_virginica_tst;
    idx_versicolor_tst],:), mean_versicolor, sig_pool);
F_virginica_tst = mvnpdf(X([idx_virginica_tst;
    idx_versicolor_tst],:), mean_virginica, sig_pool);
true_labs=[ones(1, no_tst) zeros(1, no_tst)];
pred_labs= (F_virginica_tst>F_versicolor_tst)';
errors=sum(true_labs~=pred_labs)
```

0 Errors

Classification Versicolor (Green) vs Virginica (Red), Pooled Cov

Minimum Distance Classifier

Class Assignment

- Fit two Gaussians $\mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}_{virg}, \sigma^2\mathbf{I})\mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}_{vers}, \sigma^2\mathbf{I})$ using a covariance matrix of type $\sigma^2\mathbf{I}$ with σ^2 being the mean variance of for 'Sepal Length' and 'Petal Width' on the diagonal of the pooled covariance matrix \mathbf{S} . Use to the features 'Sepal Length' and 'Petal Width' of instances 6-50 of the Virginica and Versicolor Iris data.
- Use the fitted Gaussians, to determine whether these points belong to Virginica or Versicolor according to the rule: If for a point \mathbf{x} $\mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}_{virg},\sigma^2\mathbf{I}) > \mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}_{vers},\sigma^2\mathbf{I})$ we predict its class to be Virginica, otherwise Versicolor.
- Count the wrong predictions for the first 5 points of Virginica and Versicolor iris data.

Classification Versicolor (Green) vs Virginica (Red), $cov=\sigma^2$ I

Solution

```
sig_pool=(sig_versicolor +sig_virginica)/2;
sig_l=mean(diag(sig_pool))*diag(ones(2,1));
F_versicolor_tst = mvnpdf(X([idx_virginica_tst;
    idx_versicolor_tst],:), mean_versicolor, sig_l);
F_virginica_tst = mvnpdf(X([idx_virginica_tst;
    idx_versicolor_tst],:), mean_virginica, sig_l);
true_labs=[ones(1, no_tst) zeros(1, no_tst)];
pred_labs= (F_virginica_tst > F_versicolor_tst)';
errors=sum(true_labs~=pred_labs)
```

4 Errors!

Geometrical Visualization of Euclidean Distance

Points of equal distance to centers $\mu_1=\begin{bmatrix} -2\\0 \end{bmatrix}$ and $\mu_2=\begin{bmatrix} 2\\0 \end{bmatrix}$

With Euclidean distances, all points x with constant distance
 r to center μ lie on the circle

$$\|\mathbf{x} - \mu\|^2 = r^2$$

with radius r around μ .

• All points with equal distance to two centers μ_1 and μ_2 lie on a line.

Discriminant Analysis (DA)

■ To element with feature vector \mathbf{x} , assign class j with closest class mean μ_j :

$$\mathbb{D}_{i} = \{ \mathbf{x} \mid ||\mathbf{x} - \mu_{k}|| > ||\mathbf{x} - \mu_{i}|| \text{ for } 1 \le k \le K, k \ne j \}.$$

■ For a two-dimensional feature vector $\mathbf{x} \in \mathbb{R}^2$, the class border between \mathbb{D}_1 and \mathbb{D}_2 is the vertical line rectangular to the connection line of both class means μ_1 and μ_2 , crossing this line in the middle:

■ On the borders between \mathbb{D}_1 and \mathbb{D}_2 decision for one class is arbitrary \Rightarrow Decision can be randomized

Decision Rule for 3 Classes

Assuming equal priors, for 3 classes there are three decision regions $\mathbb{D}_1, \mathbb{D}_2, \mathbb{D}_3$ in right angles to the connection lines between pairs of means μ_1, μ_2, μ_3 :

Image for equal costs and equal priors for each class.

PRTools Example: Euclidean Distance in Minimum Distance Classifier

CPESE book p. 31

```
mus = [0.2 0.3; 0.35 0.75; 0.65 0.55; 0.8 0.25];
C = 0.01*eye(2); z = gauss(200,mus,C);
% Normal densities, uncorrelated noise with equal variances
w = nmsc(z);
figure (1); scatterd (z); hold on; plotm (w);
figure (2); scatterd (z); hold on; plotc (w);
```

PRTools Example: Euclidean Metric II

Geometrical Visualization of Malhalanobis Distance

Points of equal distance to centers $\mu_1 = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$ and $\mu_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ with the Mahalanobis distance with

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$

With respect to the Mahalanobis distance all points
 x with constant distance r to center μ lie on the ellipse

$$(\mathbf{x} - \mu)^T \mathbf{A} (\mathbf{x} - \mu) = r^2$$

around μ .

• All points with equal distance to two centers μ_1 and μ_2 still lie on a line.

PRTools Example: Mahalanobis Distance and Minimum Mahalanobis Classifier

CPESE book p. 23

```
mus = [0.2 0.3; 0.35 0.75; 0.65 0.55; 0.8 0.25];

C = [0.018 0.007; 0.007 0.011];

z = gauss(200,mus,C);

w = Idc(z);

% Normal densities, identical covariances
h=figure(1); scatterd(z); hold on; plotm(w);
print_def(h,'ldc_cont_gauss')

g=figure(2); scatterd(z); hold on; plotc(w);
```

PRTools Example: Mahalanobis Distance and Minimum Mahalanobis Classifier

Borders of Discriminant Regions for Quadratic Classifier

■ For r = 1, 2, 3, 4, 5, 6, ellipses

$$(\mathbf{x} - \mu_k)^T \mathbf{S}_k^{-1} (\mathbf{x} - \mu_k) = r^2$$

are shown for $\mu_1=0$ und

$$\mu_2=\left(\begin{array}{c}3\\2\end{array}
ight),\; \mathbf{S}_1=\left(\begin{array}{cc}4&1\\1&2\end{array}
ight)$$
 and $\mathbf{S}_2=\left(\begin{array}{cc}4&-1\\-1&2\end{array}
ight)$

Borders of discrimination regions defined by:

$$\left(\begin{array}{cc} x-3, & y-2 \end{array}\right) \left(\begin{array}{cc} 4 & -1 \\ -1 & 2 \end{array}\right) \left(\begin{array}{cc} x-3 \\ y-2 \end{array}\right) = \left(\begin{array}{cc} x, & y \end{array}\right) \left(\begin{array}{cc} 4 & 1 \\ 1 & 2 \end{array}\right) \left(\begin{array}{cc} x \\ y \end{array}\right).$$

■ Hyperbola: $y = -2\frac{5x-8}{2x+1}$.

```
X=[adata{1} adata{4}];
2 species=adata {5};
 species=strcmp(species, 'Iris-setosa')+2*strcmp(species, 'Iris-
     virginica')...
     +3*strcmp(species, 'Iris-versicolor');
 idx_virginica=find(species==2); idx_versicolor=find(species
     ==3):
6 idx_virginica_tr=idx_virginica (no_tst+1:50);
     idx_versicolor_tr=idx_versicolor(no_tst+1:50);
 idx_virginica_tst=idx_virginica(1:no_tst); idx_versicolor_tst
     =idx_versicolor(1:no_tst);
8 idx_tr=[idx_virginica_tr; idx_versicolor_tr]; tst_idx=[
     idx_virginica_tst; idx_versicolor_tst];
  priris_tr=prdataset(X([idx_tr],:),species([idx_tr]));
io| priris_tst=prdataset(X([tst_idx],:),species([tst_idx]));
 priris_w=ldc(priris_tr); pred_lab=priris_tst*priris_w*labeld;
12 sum(pred_lab~=species(tst_idx))
 g=figure; scatterd (priris_tr); hold on; plotm (priris_w);
<sub>14</sub> h=figure; scatterd (priris_tr); hold on; plotc (priris_w);
```

Class Assignment

Perform Quadratic classification on the same trainings set and predict the labels of the same left out test instances.

Bayesian Decision Rule in Binary Classification

- Assume a data point \mathbf{x} can belong to two classes: 1, 0.
- The probability distribution of each class modelled by a Gaussian with mean μ_0 (μ_1) and covariance Σ_0 (Σ_1).
- With class prior probabilities $P(\mu_1, \sigma_1), P(\mu_2, \sigma_2)$, predict the class of **x** according to the decision rule:

$$d(x) = \begin{cases} 1 & \text{if } \mathcal{N}(\mathbf{x}|\mu_1, \mathbf{\Sigma}_1) P(\mu_1, \sigma_1) > \mathcal{N}(\mathbf{x}|\mu_0, \mathbf{\Sigma}_0) P(\mu_0, \sigma_0) \\ 0 & \text{else} \end{cases}$$

• If no prior knowledge is known, the relative size of class k can be used as priors $P(\mu_k, \sigma_k)$. If the classes are equal size, the priors need not be considered.

Discriminant Analysis as Bayesian Classification

■ Bayes' Theorem for class k and data point \mathbf{x} :

$$P(k|\mathbf{x}) = \frac{P(\mathbf{x}|k)P(k)}{P(\mathbf{x})}$$

- P(k): prior
- $P(\mathbf{x}|k)$: likelihood (typically $\mathcal{N}(\mathbf{x}|\mu_{\mathbf{k}}, \mathbf{\Sigma}_{k})$
- $P(k|\mathbf{x})$: posterior
- Multiclass classification rule:

$$k(\mathbf{x}) = \operatorname{argmax}_{1 \leq 1 \leq K} P(\mathbf{x}|k) P(k) = \operatorname{argmax}_{1 \leq 1 \leq K} \mathcal{N}(\mathbf{x}|\mu_{\mathbf{k}}, \Sigma_{k}) P(k)$$

Class Assignment

How do classification borders change if one class is larger than the other?

Summary: Minimum Distance Classifier (=Nearest Mean Classifier)

- Theoretical assumption: Data of each class are drawn from a radialsymmetric Gaussian distribution with the identical covariance matrix of the form $\Sigma = \sigma^2 \mathbf{I}$.
- Number of parameters to estimate: just $K \cdot J$ for the K mean vectors (K: number of classes, J number of features)
- Classification borders: straight line(s) vertical to the connection between class means.
- Classification criteria: \mathbf{x} is assigned to the class k, whose mean μ_k is closest to it according to the Euclidean distance: $\|\mathbf{x} \mu_k\|$.
- Matlab PRtools:w=nmsc(z)

Summary: Minimum Mahalanobis Distance Classifier (=Linear Discriminant Analysis)

- Theoretical assumption: Data of each class are drawn from a Gaussian distribution with identical covariance matrix Σ of any form.
- Number of parameters to estimate: $K \cdot J$ for the K mean vectors + J(J+1)/2 for the covariance matrix (K: number of classes, J number of features)
- Classification borders: straight line(s).
- Classification criteria: \mathbf{x} is assigned to the class, whose mean is closest to it according to the Mahalanobis distance $(\mathbf{x} \mu_k)^T \Sigma^{-1} (\mathbf{x} \mu_k)$.
- Matlab PRtools:w=ldc(z)

Summary: Quadratic Classifier (=Quadratic Discriminant Analysis)

- Theoretical assumption: Data of each class k are drawn from a Gaussian distribution with its class-specific covariance matrices Σ_k of any form.
- Number of parameters to estimate: $K \cdot J$ for the K mean vectors $+ J(J+1)/2 \cdot K$ for the covariance matrices (K: number of classes, J number of features)
- Classification borders: hyperbolas.
- Classification criteria: \mathbf{x} is assigned to class k, whose mean μ_k is closest to it according to the Mahalanobis distance $(\mathbf{x} \mu_k)^T \Sigma_{\nu}^{-1} (\mathbf{x} \mu_k)$.
- Matlab PRtools:w=qdc(z)

- In practice, often these classifiers are used, even if the theoretical assumptions are not strictly fulfilled.
- In practice, often regularization (with regularization parameter λ yields a compromise between quadratic classifier and minimum Mahalanobis classifier using the sample covariance matrices S_k for K classes:

$$\mathbf{S}_k^{reg} = (1 - \lambda)\mathbf{S}_k + rac{\lambda}{K}\sum_{k=1}^K \mathbf{S}_k$$

Class Assignment

How is the classifier called if $\lambda = 0$ and if $\lambda = 1$?