Consider the goodness of fit statistic:

$$KS_n := \sup_{x} |Y_n(x; \hat{\theta})|, \quad Y_n(x; \hat{\theta}) = \sqrt{n} (F_n(x) - F(x; \hat{\theta}_n)),$$

where F_n denotes the empirical distribution function based on X_1, \ldots, X_n . We note that

$$Y_n(x;\hat{\theta}) = \sqrt{n}(F_n(x) - F(x)) - \sqrt{n}(F(x;\hat{\theta}_n) - F(x)),$$

where F(x) is the true cdf (under the null $F(x) = F(x; \theta_0)$ for some true parameter θ_0).

Let us first consider the case where X_i 's are i.i.d. Denote by F_n^* the empirical distribution of the bootstrap samples X_1^*, \ldots, X_n^* and let $\hat{\theta}_n^*$ be the parameter estimate based on the bootstrap samples. Using the bootstrap (asymptotic) theory, we can approximate the distribution of

$$\sqrt{n}(F_n(x) - F(x))$$

by that of

$$\sqrt{n}(F_n^*(x) - F_n(x)),$$

and the distribution of

$$\sqrt{n}(F(x;\hat{\theta}_n) - F(x))$$

by that of

$$\sqrt{n}(F(x;\hat{\theta}_n^*) - F(x;\hat{\theta}_n)).$$

Therefore, if we define

$$Y_n^*(x) = \sqrt{n}(F_n^*(x) - F_n(x)) - \sqrt{n}(F(x; \hat{\theta}_n^*) - F(x; \hat{\theta}_n))$$

= $\sqrt{n}(F_n^*(x) - F(x; \hat{\theta}_n^*)) - \sqrt{n}(F_n(x) - F(x; \hat{\theta}_n)),$

then $KS_n^* := \sup_x |Y_n^*(x)|$ is the bootstrap statistic that is expected to approximate the distribution of KS_n . We note that the term $\sqrt{n}(F_n(x) - F(x; \hat{\theta}_n))$ is exactly the bias term considered in Babu and Rao (2004).

We now consider the case where X_i 's are realizations from a time series and X_1^*, \ldots, X_n^* are generated by block bootstrap. In this case, we can approximate the distribution of

$$\sqrt{n}(F_n(x) - F(x))$$

by that of

$$\sqrt{n}(F_n^*(x) - E^*[F_n^*(x)]),$$

and the distribution of

$$\sqrt{n}(F(x;\hat{\theta}_n) - F(x))$$

by that of

$$\sqrt{n}(F(x;\hat{\theta}_n^*) - F(x;E^*[\hat{\theta}_n^*])).$$

Here E^* denotes the expectation with respect to the bootstrap distribution (i.e., the randomness due to the resampling using block bootstrap) conditional on the observations X_1, \ldots, X_n . We can compute $E^*[F_n^*(x)]$ and $E^*[\hat{\theta}_n^*]$ numerically (they can also be computed analytically, depending on the types of block bootstrap we use). For example, let $X_{1,b}^*, \ldots, X_{n,b}^*$ be the bth block bootstrap sample for $1 \le b \le B$.

One can compute $F_{n,b}^*$ and $\hat{\theta}_{n,b}^*$ based on $X_{1,b}^*, \ldots, X_{n,b}^*$. Then

$$E^*[F_n^*(x)] \approx \frac{1}{B} \sum_{b=1}^B F_{n,b}^*(x),$$

$$E^*[\hat{\theta}_n^*] \approx \frac{1}{B} \sum_{b=1}^B \hat{\theta}_{n,b}^*.$$

In this case, we can define

$$Y_n^*(x) = \sqrt{n}(F_n^*(x) - E^*[F_n^*(x)]) - \sqrt{n}(F(x; \hat{\theta}_n^*) - F(x; E^*[\hat{\theta}_n^*])$$

= $\sqrt{n}(F_n^*(x) - F(x; \hat{\theta}_n^*)) - \sqrt{n}(E^*[F_n^*(x)] - F(x; E^*[\hat{\theta}_n^*])),$

and $KS_n^* = \sup_x |Y_n^*(x)|$.