0.1 理想

定义 0.1 (由子集生成的理想)

设 $(R,+,\cdot)$ 是一个环, 而 $A\subset R$. 则 (A), 称为**由** A 生成的理想, 定义为所有 R 中包含 A 的理想的交集, 即 $(A)=\bigcap\{I\subset R:I\supset A,I\vartriangleleft R\}.$

\$

笔记 因为 $R \triangleleft R$ 且 $A \subset R$, 所以 $R \subset (A)$. 故 $(A) \neq \emptyset$.

命题 0.1 (生成的理想还是理想)

设 $(R,+,\cdot)$ 是一个环, 而 $A\subset R$, 则 $(A)\lhd R$.

证明 首先,取交集的集族非空,因为整个环 R 是包含了 A 的一个理想(对加法构成子群,且"吸收"了乘法).由于集族中每一个理想都是加法子群.因此根据命题??可知,它们的交还是加法子群.我们只须检验乘法的"吸收"性,即 $R(A) \subset (A)$,及 $(A)R \subset (A)$.根据对称性,我们证明第一个包含关系.假设 $r \in R, a \in (A)$,则对于任意集族中的理想 I,我们都有 $a \in I$.故 $ra \in I$.这对于任意这样的理想 I 都是成立的,因此 $ra \in (A)$.这就证明了 (A)是 R 的子环.

定义 0.2

设 $(R,+,\cdot)$ 是一个环,而 $a \in R$,则我们定义

$$(a) = (\{a\}).$$

称为**由** a 生成的主理想. 一般地, 若一个理想能被一个元素生成, 我们就称其为主理想. 对于 $a_1, \dots, a_n \in R$, 我们定义

$$(a_1, \cdots, a_n) = (\{a_1, \cdots, a_n\}).$$

一般地, 若一个理想能被有限个元素生成, 我们就称其为有限生成的理想.

命题 0.2

设 $(R,+,\cdot)$ 是一个交换环,而 $a \in R$,则

$$(a) = Ra = \{ra : r \in R\}.$$

一般地, 若 $a_1, \dots, a_n \in R$, 则

$$(a_1, \dots, a_n) = Ra_1 + \dots + Ra_n = \{r_1a_1 + \dots + r_na_n : r_1, \dots, r_n \in R\}.$$

 $\dot{\mathbf{E}}$ 若 $(R, +, \cdot)$ 是环, 但不是交换环, 则上述结论仍成立. 但是我们还可以同理得到, 当 $m = 1, 2, \cdots, n$ 时, 都有

$$(a_1, \cdots, a_n) = Ra_1 + \cdots + Ra_m + a_{m+1}R + \cdots + a_nR.$$

故此时与 (a_1, \dots, a_n) 相等的集合就有 2^m 种不同的形式.

如果 $(R, +, \cdot)$ 是一个交换环, 那么当 $m = 1, 2, \dots, n$ 时, 都有

$$(a_1, \dots, a_n) = Ra_1 + \dots + Ra_m + a_{m+1}R + \dots + a_nR = Ra_1 + \dots + Ra_n.$$

这样在交换环下 (a_1, \cdots, a_n) 的形式就能够统一起来.

证明 显然有限生成的理想是主理想的特例,故我们只须证明第二个等式.

要证明 (A) = I, 我们只须证明两点. -,I 是包含 A 的理想 (即 $(A) \subset I$); -, 每一个包含 A 的理想都会包含 I(即 $\forall H \in (A)$, 都有 $I \subset H$. 也即 $I \subset (A)$).

首先,要证明 $Ra_1 + \cdots + Ra_n$ 是个理想. 对加法而言, $0 = 0a_1 + \cdots + 0a_n \in Ra_1 + \cdots + Ra_n$,而且对 $r_1a_1 + \cdots + r_n$

 $r_n a_n, s_1 a_1 + \cdots + s_n a_n (r_i, s_i \in R)$, 我们有

$$(r_1a_1 + \dots + r_na_n) - (s_1a_1 + \dots + s_na_n) = (r_1 - s_1)a_1 + \dots + (r_n - s_n)a_n \in Ra_1 + \dots + Ra_n.$$

因此 $Ra_1 + \cdots + Ra_n$ 对加法构成子群.

接下来, 根据对称性, 我们只须证明 $R(Ra_1 + \cdots + Ra_n) \subset (Ra_1 + \cdots + Ra_n)$. 而这是因为

$$R(Ra_1 + \cdots + Ra_n) = RRa_1 + \cdots + RRa_n = Ra_1 + \cdots + Ra_n.$$

这样, 我们就证明了 $Ra_1 + \cdots + Ra_n$ 是个理想, 而且显然包含 $\{a_1, \cdots, a_n\}$.

另一方面,设I是一个包含了 a_1, \dots, a_n 的理想,那么根据加法的封闭性及乘法的"吸收"性,

$$I \supset Ra_1 + \cdots + Ra_n$$
.

综上所述,这就证明了这个命题.

定义 0.3 (理想的加法)

设 $(R,+,\cdot)$ 是一个环,而 $I,J \triangleleft R$,则

$$I + J = \{a + b : a \in I, b \in J\}.$$

命题 0.3 (理想的加法还是理想)

设 $(R,+,\cdot)$ 是一个环, 而 $I,J \triangleleft R$, 则 I+J 还是个理想, 即

$$I+J \lhd R$$
.

证明 由引理??可知 (I+J,+) < (R,+). 因此我们只须证明乘法的"吸收"性.

$$R(I+J) = RI + RJ \subseteq I + J,$$

$$(I+J)R = IR + JR \subseteq I + J.$$

这就证明了

$$I + J \triangleleft R$$
.

命题 0.4

设 $(R,+,\cdot)$ 是一个环, 而 $I,J \triangleleft R$, 则I+J是由 $I \cup J$ 生成的理想, 即

$$I + J = (I \cup J)$$
.

证明 首先, 由命题 0.3可知 I+J 是一个理想. 而 $I+J \supset I+\{0\} = I$, 同理 $I+J \supset J$, 故 $I+J \supset I \cup J$. 这就证明了 I+J 是一个包含了 $I \cup J$ 的理想.

接着,如果 K 是包含了 $I \cup J$ 的理想,则 $K \supset I, K \supset J$,那么根据加法封闭性,我们当然有

$$K \supset I + J$$
.

综上所述,我们就证明了

$$I + J = (I \cup J)$$
.

定义 0.4 (理想的乘法)

设 $(R,+,\cdot)$ 是一个交换环, 而 $I,J \triangleleft R$, 则

$$IJ = (\{ab : a \in I, b \in J\}) = (I \cdot J).$$

上面的圆括号表示生成的理想.

注 由命题 0.1可知, 上述定义的 IJ 仍是 R 的一个理想.

命题 0.5

设 $(R,+,\cdot)$ 是一个交换环,而 $I,J \triangleleft R$,则

$$IJ = \{a_1b_1 + \dots + a_nb_n : a_1, \dots, a_n \in I, b_1, \dots, b_n \in J\}.$$

注 若 $(R, +, \cdot)$ 是环, 但不是交换环, 则上述结论仍成立. 但是我们还可以同理得到, 当 $m = 1, 2, \dots, n$ 时, 都有

$$IJ = \{(a_1b_1 + \dots + a_mb_m) + (b_{m+1}a_{m+1} + \dots + b_na_n) : a_1, \dots, a_n \in I, b_1, \dots, b_n \in J\}.$$

故此时与 IJ 相等的集合就有 2^m 种不同的形式.

如果 $(R, +, \cdot)$ 是一个交换环, 那么当 $m = 1, 2, \dots, n$ 时, 都有

$$IJ = \{a_1b_1 + \dots + a_nb_n : a_1, \dots, a_n \in I, b_1, \dots, b_n \in J\}$$

= \{(a_1b_1 + \dots + a_mb_m) + (b_{m+1}a_{m+1} + \dots + b_na_n) : a_1, \dots , a_n \in I, b_1, \dots , b_n \in J\}.

这样在交换环下 IJ 的形式就能够统一起来.

证明 首先, 如果 K 是交换环 R 中包含了 $\{ab: a \in I, b \in J\}$ 的理想, 则根据加法的封闭性,

$$K \supset \{a_1b_1 + \dots + a_nb_n : a_1, \dots, a_n \in I, b_1, \dots, b_n \in J\}.$$

故 $\{a_1b_1 + \dots + a_nb_n : a_1, \dots, a_n \in I, b_1, \dots, b_n \in J\}$ ⊂ IJ.

接着, 我们要证明 $A = \{a_1b_1 + \cdots + a_nb_n : a_1, \cdots, a_n \in I, b_1, \cdots, b_n \in J\}$ 确实是包含了 $\{ab : a \in I, b \in J\}$ 的一个 R 上的理想. 包含关系是显然的, 这就是有限和中只有一项的特例.

我们先证明加法是子群.0 = 00 + ··· + 00 \in A, 而且对于 a_1b_1 + ··· + a_nb_n , c_1d_1 + ··· + c_md_m \in A, 其中 $a_i, c_i \in I, b_i, d_i \in J$. 由 $I, J \triangleleft R$ 可知 $-c_i \in I, a_ib_i \in I, (-c_i)d_i \in J$. 于是我们有

$$(a_1b_1 + \dots + a_nb_n) - (c_1d_1 + \dots + c_md_m) = a_1b_1 + \dots + a_nb_n + (-c_1)d_1 + \dots + (-c_m)d_m$$

= $(a_1b_1 + \dots + a_nb_n) \cdot 1 + 1 \cdot ((-c_1)d_1 + \dots + (-c_m)d_m) + 0 + \dots + 0 \in A.$

故 (A,+) 是 (R,+) 的子群. 我们再证明乘法的"吸收性". 根据对称性, 我们只证"左吸收性". 令 $a_1b_1+\cdots+a_nb_n\in A$, 而 $\forall r\in R$, 都有 $ra_i\in I$, 不妨令 $a_i'=ra_i\in I$, 则

$$r(a_1b_1 + \dots + a_nb_n) = ra_1b_1 + \dots + ra_nb_n = a'_1b_1 + \dots + a'_nb_n \in A.$$

综上所述, 由交换环中的两个理想 I,J 的乘积所生成的理想, 就是它们元素乘积的有限和所构成的集合. □□

命题 0.6 (理想关于加法和乘法的运算律)

设 $(R,+,\cdot)$ 是一个交换环, 而 $I,J,K \triangleleft R$, 则满足

- (1) I + J = J + I;
- (2) I + (J + K) = (I + J) + K;
- (3) I(J + K) = IJ + IK;
- (4) I(JK) = (IJ)K;
- (5) I = RI = IR.

证明

- (1) 由 (R,+) 是一个 Abel 群可直接得到 I+J=J+I.
- (2) 由 (R,+) 是一个 Abel 群也可直接得到 I+(J+K)=(I+J)+K.
- (3) 一方面, $I(J+K) \supset I(J+\{0\}) = IJ$, 同理 $I(J+K) \supset IK$. 又 I(J+K) 是 R 上的理想, 故根据 I(J+K) 对加法的 封闭性可得 $I(J+K) \supset IJ+IK$.

另一方面, 令 $\sum_{i} (a_i(b_i + c_i)) \in I(J + K)$, 则

$$\sum_{i} (a_i(b_i + c_i)) = \sum_{i} (a_i b_i) + \sum_{i} (a_i c_i) \in IJ + IK.$$

因此 $I(J+K) \subset IJ+IK$.

(4) 根据对称性, 我们只证明 $I(JK) \subset (IJ)K$. 因为理想的乘积是由元素乘积的集合所生成的, 故只须证明 $\{ad: a \in I, d \in JK\} \subset (IJ)K$. 令 $a \in I, d = \sum (b_i c_i) \in JK$. 则

$$ad = a\sum_i (b_ic_i) = \sum_i ((ab_i)c_i).$$

其中 $ab_i \in IJ$, 故 $ad \in (IJ)K$. 因此 $I(JK) \subset (IJ)K$.

(5) 我们只证明 I = RI. 一方面, 根据理想的定义, $I \supset RI$. 另一方面, $I = II \subset RI$, 因为 $1 \in R$.

引理 0.1

设 $(R,+,\cdot)$ 是一个交换环,而 $I,J \triangleleft R$,则

 $IJ \subset I \cap J \subset I + J$

证明 证明是简单的. 因为 R 是一个交换环, 而 I 是一个理想, 故

 $IJ \subset IR = I$.

对J是类似的,故

 $IJ \subset I \cap J$.

另外, $I \cap J \subset I$, 而且 $I \cap J \subset J$, 故

 $I\cap J\subset (I\cup J)=I+J.$

这就证明了这个引理.

引理 0.2

设 $(R,+,\cdot)$ 是一个交换环,而 $I,J \triangleleft R$,则

 $(I \cap J)(I + J) \subset IJ$.

证明 证明是不难的. 由命题 0.5可知 $(I \cap J)(I + J) = \{\sum_i (a_i(b_i + c_i)) : a_i \in I \cap J, b_i \in I, c_i \in J\}$. 于是任取 $\sum_i (a_i(b_i + c_i)) \in (I \cap J)(I + J)$, 则 $a_i(b_i + c_i) \in (I \cap J) \cdot (I + J)$, 其中 $a_i \in I \cap J, b_i \in I, c_i \in J$, 从而

$$\sum_i (a_i(b_i+c_i)) = \sum_i (a_ib_i) + \sum_i (a_ic_i) \subset JI + IJ = IJ + IJ = IJ.$$

第一个等号是因为R中的乘法对加法满足分配律,倒数第二个等号是根据交换环对乘法的交换律,最后一步是根据理想的乘积对加法的封闭性. 这就证明了这个命题.

命题 0.7

设 $(R,+,\cdot)$ 是一个交换环, 而 $I,J,K \triangleleft R$, 则

 $I \cap (J+K) \supset I \cap J + I \cap K$

特别地, 如果 $J \subset K$, 则

 $I \cap (J+K) = I \cap J + I \cap K$

4

证明 因为 $I \cap (J+K) \supset I \cap J$, 且 $I \cap (J+K) \supset I \cap K$, 又 $I \cap (J+K)$ 构成 R 的加法子群, 从而对加法封闭. 所以 $I \cap (J+K) \supset I \cap J + I \cap K$.

这就证明了第一点.

接下来, 我们假设 $J \subset K$. 我们只须证明

 $I \cap (J + K) \subset I \cap J + I \cap K$.

而这是因为

 $I \cap (J+K) \subset I \cap (K+K) = I \cap K \subset I \cap J + I \cap K$.

这就证明了这个命题.

定义 0.5 (理想的互素)

设 $(R, +, \cdot)$ 是一个交换环, 而 $I, J \triangleleft R$. 我们称 $I, J \subseteq \mathbb{R}$, 若其和为整个环, 即

$$I + J = R$$
.

命题 0.8 (两个理想互素的充要条件)

设 $(R,+,\cdot)$ 是一个交换环, 而 $I,J \triangleleft R$. 则 I,J 互素, 当且仅当

 $\exists a \in I, \exists b \in J, a + b = 1.$

证明 一方面, 若 I+J=R, 则根据引理??可知 $1 \in R = I+J$, 故存在 $a \in I, b \in J$, 使得 a+b=1. 另一方面, 假设 $a+b=1(a \in I, b \in J)$, 则对任何 $r \in R$,

$$r = r1 = r(a + b) = ra + rb \in RI + RJ = I + J$$

这就证明了 $I+J \subset R$. 而由 R 对加法封闭, 显然有 $R \subset I+J$. 故 R=I+J. 综上所述, 两个理想互素当且仅当 1 可以写成这两个理想中元素的和.

命题 0.9

设 $(R,+,\cdot)$ 是一个交换环,而 $I,J \triangleleft R$ 互素,则

 $IJ = I \cap J$.

证明 由引理 0.1可知

 $IJ \subset I \cap J$.

故只须证明

 $I \cap J \subset IJ$.

由 I,J 互素可知 I+J=R. 又由命题??可知 $I\cap J$ 仍是 R 的理想, 从而 $I\cap J=(I\cap J)R$. 于是由引理 0.2可得 $I\cap J=(I\cap J)R=(I\cap J)(I+J)\subset IJ.$

这就证明了这个命题.

命题 0.10

设 $(R,+,\cdot)$ 和 $(R',+,\cdot)$ 是两个交换环, $f:(R,+,\cdot)\to(R',+,\cdot)$ 是一个环同态, 而 $I'\lhd R'$, 则 $f^{-1}(I')\lhd R$.

证明 就加法子群而言, 由命题??可知 $0 = f^{-1}(0) \in R$, 并且若 $a = f^{-1}(a'), b = f^{-1}(b') \in f^{-1}(I')$, 则

$$f(a-b) = f(a) + f(-b) = f(a) - f(b) = a' - b'$$

$$\Rightarrow a - b = f^{-1}(a' - b') \in f^{-1}(I').$$

就乘法的"吸收"性来说. 根据对称性, 我们只须证明 $Rf^{-1}(I') \subset f^{-1}(I')$, 对 $\forall r \in R, x \in f^{-1}(I')$, 有 $f(x) \in I'$. 由 f 是环同态可知, f(rx) = f(r)f(x). 又由 I' 是 R' 的理想且 $f(r) \in R'$, 因此 $f(rx) = f(r)f(x) \in I'$. 于是 $rx \in f^{-1}(I')$. 这样, 我们就证明了这个命题, 即交换环中, 理想在环同态下的原像还是理想.