Examen de Teoría de Percepción - Primer Parcial ETSINF, Universitat Politècnica de València, Abril de 2022

Apellidos:	Nombre:
Profesor: \Box Jorge Civera \Box Carlos	Martínez
Cuestiones (1.5 puntos, 30 minutos	, sin apuntes)
B ¿Cuál de las siguientes expresiones e	quivale a un clasificador de Bayes?
A) $\operatorname{argmax}_{c \in \mathbb{C}} \ P(c \mathbf{x})^{-1}$ B) $\operatorname{argmax}_{c \in \mathbb{C}} \ \log P(c, \mathbf{x})$ C) $\operatorname{argmin}_{c \in \mathbb{C}} \ \log P(c, \mathbf{x})$ D) $\operatorname{argmin}_{c \in \mathbb{C}} \ P(c \mathbf{x})$	
C La técnica del on-line learning se ca	racteriza por:
 A) Realizar la selección de las muestr B) Emplear únicamente muestras de C) Usar interpolación para actualiza D) Aplicarse sólo a clasificadores ba 	ar el modelo
D Si se tiene una imagen donde se des frecuencia mínima de muestreo debe	ea reconstruir con fidelidad tamaños de 1mm, la ser:
A) Entre 1000 y 1250 puntos por me B) Entre 1250 y 1500 puntos por me C) Entre 1500 y 1750 puntos por me D) Mayor a 1750 puntos por metro	etro
B Tras la tokenización y la normalizac Madrid."?	ión, ¿cómo queda el texto "Ante esto, podría ir a
 A) "Ante esto , podría ir a Madrid ." B) "ante esto , podria ir a madrid ." C) "ante esto , podria ir a Madrid ." D) "ante esto, podria ir a madrid." 	

- A PCA es una técnica de reducción de dimensión que:
 - A) Obtiene vectores de proyección ortonormales
 - B) Minimiza el error de clasificación
 - C) Minimiza la varianza de los datos proyectados
 - D) No se basa en un problema de optimización
- C La matriz de covarianzas de los datos proyectados por PCA:
 - A) Tiene diagonal nula
 - B) Es la matriz identidad
 - C) Es una matriz diagonal
 - D) Es una matriz no simétrica
- D ¿Cuál de los siguientes clasificadores es equivalente al clasificador de un vecino más cercano en distancia L2?
 - A) $\hat{c}(\mathbf{y}) = \arg\min_{c} \min_{\mathbf{x} \in X_c} \frac{1}{L2(\mathbf{x}, \mathbf{y})}$
 - B) $\hat{c}(\mathbf{y}) = \arg\min_{c} \max_{\mathbf{x} \in X_{c}} \frac{1}{L2(\mathbf{x}, \mathbf{y})}$ C) $\hat{c}(\mathbf{y}) = \arg\max_{c} \min_{\mathbf{x} \in X_{c}} \frac{1}{L2(\mathbf{x}, \mathbf{y})}$

 - D) $\hat{c}(\mathbf{y}) = \arg\max_{c} \max_{\mathbf{x} \in X_c} \frac{1}{L^{2}(\mathbf{x}, \mathbf{y})}$
- C Si se tiene un error de Bayes de P=0.25, ¿qué error se puede esperar con un número asintóticamente grande de prototipos y vecinos en un clasificador k-NN?
 - A) 0.5 en cualquier caso
 - B) 0.25, siempre que k crezca más rápido que el número de prototipos
 - C) 0.25, siempre que k crezca más lento que el número de prototipos
 - D) Dependerá del número de clases

Examen de Teoría de Percepción - Primer Parcial

ETSINF, Universitat Politècnica de València, Abril de 2022

Apellidos:] Nombre:	
Profesor: \Box Jorge Civera \Box Carlos Martínez		
Problemas (2 puntos, 90 minutos, con apuntes	3)	

- 1. (0.5 puntos) Calcula el espacio en memoria de las siguientes representaciones:
 - a) Representación global por histograma de una imagen a 1024 niveles de gris con resolución 512×256 píxeles (**0.05** puntos)
 - b) Representación local de una imagen de 2048×1024 píxeles, usando ventanas de 5×15 píxeles y una rejilla de desplazamiento horizontal de 4 y vertical de 4 sobre una imagen de 512 niveles de gris, usando representación directa de cada ventana (0.2 puntos)
 - c) Señal de audio de 5 canales de 20 minutos de duración, con ancho de banda 48KHz y 32 bits (**0.1 puntos**)
 - d) Colección de 2000 documentos de 1000 palabras máximo cada uno, con un vocabulario de 2000 palabras, representado por term frequency de 2-grama (**0.15 puntos**)

Solución:

- a) 3 Kbytes
- b) 18.49 Mbytes
- c) 2197.27 Mbytes
- d) 15258.79 Mbytes
- 2. (0.8 puntos) Se tiene el siguiente conjunto de datos vectoriales de 3 dimensiones ($\mathbf{x} \in \mathbb{R}^3$) con sus correspondientes etiquetas de clase:

n	_	2	3	4	5	
x_{n1}	2	-1	2	-2	-2	1
x_{n2}	1	1	-2	-1	2	-1
$x_{n1} \\ x_{n2} \\ x_{n3}$	-1	-1	2	1	-2	1
c_n	A	В	С	A	В	С

Se pide:

- a) Calcular una matriz de proyección a dos dimensiones (\mathbb{R}^2) mediante PCA, indicando todos los pasos necesarios (**0.5 puntos**)
- b) Aplicar dicha proyección y discernir si los datos proyectados serían lineamente separables. En ese caso, proponer un clasificador basado en funciones discriminantes lineales que clasifiquen correctamente las muestras proyectadas (0.3 puntos)

Solución:

a) La media de los datos es $\mathbf{x}_m = (0 \quad 0 \quad 0)^t$ y la matriz de covarianzas de esos datos es:

$$\Sigma_X = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 2 & -2 \\ 1 & -2 & 2 \end{pmatrix}$$

Los valores y vectores propios de la matriz de covarianzas son:

	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
	$-\frac{2}{\sqrt{6}}$	$-\frac{1}{\sqrt{3}}$	0
	$-\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$
	$\frac{1}{\sqrt{6}}$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$
$\overline{\lambda}$	2	5	0

Por tanto, la matriz de proyección a \mathbb{R}^2 se realiza mediante los vectores \mathbf{w}_2 y \mathbf{w}_1 :

$$W = \begin{pmatrix} -\frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{pmatrix}$$

b) El resultado de la proyección es:

\mathbf{x}_1'	\mathbf{x}_2'	\mathbf{x}_3'	\mathbf{x}_4'	\mathbf{x}_5'	\mathbf{x}_6'
0	$\sqrt{3}$	$-2\sqrt{3}$	0	$2\sqrt{3}$	$-\sqrt{3}$
$-\sqrt{6}$	0	0	$\sqrt{6}$	0	0
A	В	С	A	В	C

Son linealmente separables (ver la representación gráfica) mediante las fronteras verticales $-x_1 = 1$ y $1 = x_1$, que han sido obtenidas como resultado de igualar las funciones discriminantes $g_C(\mathbf{x}) = g_A(\mathbf{x})$ y $g_A(\mathbf{x}) = g_B(\mathbf{x})$, respectivamente. Es decir:

$$g_A(\mathbf{x}) = 1$$
 $g_B(\mathbf{x}) = x_1$ $g_C(\mathbf{x}) = -x_1$

3. (0.7 puntos) Se tiene el siguiente conjunto de datos, cuya representación gráfica se ve en la parte derecha:

n	1	2	3	4	5	6	7	8	9
x_{n1}	1	3	1	4	2	3	4	4	2
x_{n2}	1	3	5	3	2	2	1	2	4
$ \begin{array}{c c} n \\ \hline x_{n1} \\ x_{n2} \\ c_n \end{array} $	3	3	2	3	1	1	1	2	2

Se pide:

- a) Aplica el algoritmo de Wilson con 1-NN en distancia Euclídea, con recorrido por índices ascendentes. En caso de empate por distancia, desempata clasificando por el prototipo de menor distancia en x_{n2} y si persiste el empate al de menor valor de x_{n1} entre los empatados (el que esté más a la izquierda en la gráfica) (**0.4 puntos**)
- b) Una vez aplicado el algoritmo de Wilson, aplica el algoritmo de Hart con 1-NN en distancia Euclídea, con recorrido por índices ascendentes. Utiliza los mismo criterios en caso de empate que en el apartado anterior (0.3 puntos)

Solución:

- a) Tras aplicar Wilson, el conjunto resultante de prototipos es $\{\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_9\}.$
- $b) \ \ \text{Una vez aplicado Wilson, aplicamos Hart, y obtenemos los conjuntos} \ S = \{\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_5\} \ \text{y} \ G = \{\mathbf{x}_4, \mathbf{x}_6, \mathbf{x}_9\}.$