Arbres en Mémoire Secondaire

Les blocs d'un fichier peuvent être organisés sous d'un **arbre de blocs** C'est utile pour représenter des **arbres de recherche m-aires** en Mémoire Secondaire (**MS**)

Définitions

Un <u>arbre de recherche m-aire</u> **d'ordre N** est un arbre où <u>chaque nœud</u> peut contenir, au maximum : **N-1 valeurs ordonnées** $(val_1, val_2, ... val_{N-1})$ et **N fils** $(Fils_1, Fils_2, ... Fils_N)$

Pour un nœud donné, le *degré* représente <u>le nombre de fils courant.</u>

Pour un nœud donné, <u>le nombre de valeurs courantes</u> est toujours = *degré - 1*

Au minimum : degré = 2 et au maximum : degré = N

Propriétés

- a) Toutes les valeurs dans le sous-arbre $Fils_1$ sont $< val_1$
- **b)** Toutes les valeurs dans le sous-arbre $Fils_j$ sont $> val_{j-1}$ et $< val_j$ (avec j dans [2 , degré-1])
- c) Toutes les valeurs dans le sous-arbre $Fils_{degré}$ sont $> val_{degré-1}$

Exemple d'arbre de recherche m-aire d'ordre 5

Les nœuds internes : i,a,h,d,e,n Les nœuds feuilles : b, g, c, k, j, f, m

La **profondeur** (ou **hauteur**) de l'arbre = **4** (le niveau de la feuille la plus éloignée)

 $degré(\mathbf{a}) = \mathbf{5}$, $degré(\mathbf{b}) = \mathbf{5}$, $degré(\mathbf{c}) = \mathbf{3}$, $degré(\mathbf{d}) = \mathbf{5}$, $degré(\mathbf{e}) = \mathbf{5}$, $degré(\mathbf{f}) = \mathbf{3}$, $degré(\mathbf{g}) = \mathbf{3}$,... etc

Propriété *Top-Down*: Tous les nœuds internes sont pleins à 100 % (optionnellement vérifiée)

Exemple d'arbre de recherche m-aire d'ordre 5

Exemple d'arbre de recherche m-aire d'ordre 5

a	b	С	d	е	f	g	_h	_i	j	k	m	_n
10,16,18,20	2, 3, 5, 9	27,30, ,	42,47,50,54	71,76,80,94	57,60, , 	12,14, ,	55,70,96,97	32,33,40,99	43,44, ,	37, , ,	82,83,84,88	89,90,92,93

Fichier organisé en arbres m-aire de recherche : les blocs sont chaînés selon une structure d'arbre m-aire → Le *numéro du bloc <u>Racine</u>* peut être gardé comme <u>caractéristique</u> du fichier (dans le *Bloc d'entête*)

2- Comme fichier de données organisé en arbre

La recherche d'une valeur ${\bf C}$ commence dans le nœud racine ${\bf P}$ et se poursuit le long d'une branche :

- 1- Si C existe dans P alors la recherche s'arrête avec succès
- 2- Si *C* n'existe pas dans *P* alors
 - soit k la position dans P où devrait se trouver C (pour que les valeurs restent ordonnées)
 - Si $Fils_k$ différent de -1 (nil) alors $P \leftarrow Fils_k$; aller à 1
 - Sinon la recherche s'arrête avec *échec*.

Ex: Rech(47) \rightarrow parcours de la branche : i , h , d (arrêt avec succès : P = d et k = 2) Rech(15) \rightarrow parcours de la branche : i , a , g (arrêt avec échec : P = g et k = 3)

FSI

Les valeurs sont visitées (traitées) en ordre croissant : 2, 3, 5, 9, 10, 12, 14, 16, 18, 20, 27, 32, 33, 37, 40, 42, 43, 44, 47, 50, 54, 55, 57, 70, 71, 76, 80, 82, 83, 84, 88, 89, 90, 92, 93, 94, 96, 97, 99

La plus petite valeur de l'arbre (2) se trouve \Rightarrow à <u>la 1 ere position du nœud le plus à gauche</u>.

Comment localiser le suivant inordre d'une valeur ?

Ex: le suivant de
$$2 \Rightarrow 3$$
, (car le fils à droite de 2 est -1) (c-a-d le fils à droite de val_k est -1) (c-a-d val_{k+1} est -1)

Si (k < degré-1 && Fils_{k+1} == -1) Le suivant \leftarrow val_{k+1} (dans le même nœud p)

Ex : le suivant de $2 \Rightarrow 3$, le suivant de $3 \Rightarrow 5$, le suivant de $5 \Rightarrow 9$, le suivant de $12 \Rightarrow 14$, le suivant de $16 \Rightarrow 18$, le suivant de $18 \Rightarrow 20$, le suivant de $32 \Rightarrow 33$, etc

Ex: le suivant de $40 \Rightarrow 42$ (car le fils à droite de 40 est différent de -1) $(c-a-d \ \textbf{Fils}_{k+1} \ \text{est différent de -1})$

Si (Fils_{k+1} \neq -1) Le suivant est la <u>plus petite valeur du sous-arbre</u> de racine Fils_{k+1}

Ex : le suivant de $10 \Rightarrow 12$, le suivant de $20 \Rightarrow 27$, le suivant de $33 \Rightarrow 37$, le suivant de $40 \Rightarrow 42$, le suivant de $42 \Rightarrow 43$, le suivant de $55 \Rightarrow 57$, le suivant de $70 \Rightarrow 71$ et le suivant de $80 \Rightarrow 82$

Ex: le suivant de $27 \Rightarrow 32$ (car 27 est la **dernière valeur du nœud** et son **fils** droit est **-1**)

$$(c-a-d)$$
 $k == degré-1$ et $Fils_{degré} == -1)$

Si (k < degré-1 && Fils_{k+1} == -1) Le suivant \leftarrow val_{k+1} (dans le même nœud p)

Si (Fils $_{k+1} \neq -1$) Le suivant est la plus petite valeur du sous-arbre de racine Fils $_{k+1}$

Si ($k == degré-1 \&\& Fils_{degré} == -1$)

Le suivant est dans le 1er ascendant duquel on est descendu par un fils autre que le dernier (soit Fils_{j} avec $j < \operatorname{degr\'e}$). Le suivant est alors la valeur val_i dans cet ascendant

Ex: le suivant de $9 \Rightarrow 10$, le suivant de $14 \Rightarrow 16$, le suivant de $27 \Rightarrow 32$, le suivant de $37 \Rightarrow 40$, le suivant de $44 \Rightarrow 47$, le suivant de $54 \Rightarrow 55$, le suivant de $57 \Rightarrow 70$, le suivant de $88 \Rightarrow 89$, le suivant de $93 \Rightarrow 94$, le suivant de $94 \Rightarrow 96$, le suivant de $97 \Rightarrow 99$.

Exercice

Donner l'algorithme pour la requête à intervalle : \sim trouver toutes les valeurs de l'arbre comprises entre les bornes a et b »

Indications:

- utiliser <u>l'algorithme de recherche</u> avec une *pile*, pour localiser la borne *a*
- utiliser la *pile* pour accéder aux *suivants inordre* et parcourir ainsi l'intervalle jusqu'à atteindre ou dépasser la borne *b*

Mécanisme d'insertion

Si le <u>dernier nœud visité</u> par la recherche <u>n'est pas plein</u> ...

Alors insérer la nouvelle valeur dans le dernier nœud visité (décalages internes au bloc)

Mécanisme d'insertion

Si le <u>dernier nœud visité</u> par la recherche est <u>déjà à plein</u> 100 % ...

Alors allouer un nouveau bloc contenant la nouvelle valeur et le connecter avec l'arbre

Mécanisme d'insertion

Pour insérer une nouvelle valeur V dans un arbre de recherche m-aire, il faut :

- **1- Rechercher** V pour vérifier qu'elle n'existe pas et pour localiser le dernier nœud visité P. La recherche retourne aussi l'indice k où devrait se trouver la valeur V pour maintenir l'ordre des valeurs dans P.
- 2- SI P n'est pas plein,
 - **2.1-** Insérer V dans P, par décalages afin de garder le tableau de valeurs ordonné.

SINON

- 2.2- Allouer un nouveau bloc Q, contenant une seule valeur V et 2 fils à -1
- **2.3-** Connecter Q comme fils, de P (ce dernier fils, était forcément à -1)

FSI

Remarques

- Maintient la propriété *Top-Down*
- Peut engendrer un fort déséquilibre de l'arbre
 - → Nécessite des réorganisations périodiques

Mécanisme de suppression

- Suppression Logique :

Ajout d'un *indicateur d'effacement logique* au niveau de chaque valeur

Dans cet exemple, les valeurs 16, 50, 55, 57, 70, 82, 88 et 90 ont été supprimée

Mécanisme de suppression

- **Suppression Physique** d'une valeur v :
- 1. Rechercher le nœud contenant la valeur $v \Rightarrow p$
- 2. SI p est une feuille suppression de v par décalages ; SI p devient vide, libérer p et m-a-j son père FSI Stop
- 3. SINON // donc p est un nœud interne
 - 3.1 rechercher le suivant ou le précédent inordre ⇒ valeur : v'et nœud : p'
 - 3.2 remplacer v par v' dans p
 - $3.3 \text{ v} \leftarrow \text{v'}$; $p \leftarrow p'$; Aller à 2

- 1. Rechercher le nœud contenant la valeur $v \Rightarrow p$
- SI p est une feuille suppression de v par décalages ; SI p devient vide, libérer p et m-a-j son père FSI Stop
- 3. SINON // donc p est un nœud interne
 - 3.1 rechercher le suivant ou le précédent inordre ⇒ valeur : v'et nœud : p'
 - 3.2 remplacer v par v' dans p
 - $3.3 \text{ v} \leftarrow \text{v'}$; $p \leftarrow p'$; Aller à 2

Ex : sup (40)

1 rech de $40 \Rightarrow$ (a,2) // un nœud interne ...

- 1. Rechercher le nœud contenant la valeur $v \Rightarrow p$
- SI p est une feuille suppression de v par décalages ; SI p devient vide, libérer p et m-a-j son père FSI Stop
- 3. SINON // donc p est un nœud interne
 - 3.1 rechercher le suivant ou le précédent inordre ⇒ valeur : v'et nœud : p'
 - 3.2 remplacer v par v' dans p
 - $3.3 \text{ v} \leftarrow \text{v'}$; $p \leftarrow p'$; Aller à 2

Ex : sup (40)

- 1 rech de $40 \Rightarrow$ (a,2) // un nœud interne ...
- 3 suiv. Inordre de 40 = 42 **(d,1)** et **remplacement** de 40 par 42 dans **a** // d est aussi un nœud interne ...

- 1. Rechercher le nœud contenant la valeur $v \Rightarrow p$
- SI p est une feuille suppression de v par décalages ; SI p devient vide, libérer p et m-a-j son père FSI Stop
- 3. SINON // donc p est un nœud interne
 - 3.1 rechercher le suivant ou le précédent inordre ⇒ valeur : v'et nœud : p'
 - 3.2 remplacer v par v' dans p
 - $3.3 \text{ v} \leftarrow \text{v'}$; $p \leftarrow p'$; Aller à 2

Ex: sup (40)

- 1 rech de $40 \Rightarrow$ (a,2) // un nœud interne ...
- 3 suiv. Inordre de 40 = 42 **(d,1)** et remplacement de 40 par 42 dans **a** // d est aussi un nœud interne ...
- 3 suiv. Inordre de 42 = 47 **(h,1)** et **remplacement** de 42 par 47 dans **d** // h est un nœud feuille ...

- 1. Rechercher le nœud contenant la valeur $v \Rightarrow p$
- 2. SI p est une feuille

suppression de v par décalages ; SI p devient vide, libérer p et m-a-j son père FSI Stop

- 3. SINON // donc p est un nœud interne
 - 3.1 rechercher le suivant ou le précédent inordre ⇒ valeur : v'et nœud : p'
 - 3.2 remplacer v par v' dans p
 - $3.3 \text{ v} \leftarrow \text{v'}$; $p \leftarrow p'$; Aller à 2

Ex : sup (40)

- 1 rech de $40 \Rightarrow$ (a,2) // un nœud interne ...
- 3 suiv. Inordre de 40 = 42 **(d,1)** et remplacement de 40 par 42 dans a // d est aussi un nœud interne ...
- 3 suiv. Inordre de 42 = 47 **(h,1)** et remplacement de 42 par 47 dans d // h est un nœud feuille ...
- 2 suppression de 47 par décalages dans h.

