Practico: X₁,..., X_n Istadisticos muestrales Media muestral: $X(n) = \frac{X_1 + ... + X_n}{n}$ Ges an estimation de la E ([X]) Varianza muestral: $5(n) = \int_{(x_i-x_i(n))}^{n} (x_i-x_i(n))$ Gestima Var (x). Media muestral. X,+...+Xn = X(n) $E(\bar{X}(n)) = \bar{E}(x)$ $Var\left(\overline{X}(n)\right) = \frac{Var\left(x\right)}{n \rightarrow \infty}$

$$\frac{E(3)}{g(u)} = \frac{1}{g(u)} + \frac{1}{g(u)}$$

$$\frac{g(u)}{n} = \frac{1}{g(u)} + \frac{1}{g(u)}$$

$$\frac{1}{g(u)} = \frac{1}{g(u)} = \frac{1}{g(u)}$$

$$\frac{1}{g(u)} = \frac{1}{g(u)} = \frac{1}{g(u)}$$

$$\frac{1}{g(u)} = \frac{1}{g(u)}$$

$$\frac{1}{g$$

Ex5: {U;}

$$M = n$$
 si $U_1 \le U_2 \le U_3$ y $U_n \le U_{n_1}$
 $P(\Pi > n) = \frac{1}{n!}$, Ex $P(M > 2) = \frac{1}{2}$
 $1 - P(\Pi \le 2) = 1 - \frac{1}{2} = \frac{1}{2}$

$$\frac{1}{M} > n \rightarrow (U_1) \notin U_2 \oplus (U_3) \notin \dots \notin U_n$$

P(de Terre exactamente n
$$= \frac{1}{n!} (z) = \frac{1}{n!}$$
 aircidencias en un muso n cartus)

$$\frac{1}{2} = \frac{2}{2} P(\pi) n = \frac{2}{2} \frac{1}{n!} = e$$

$$\frac{1}{2} = e$$

b)
$$E(n) = \sum_{n=0}^{\infty} P(n)n) = \sum_{n=0}^{\infty} \frac{1}{n!} = e$$
 $e^{x} = \sum_{n=0}^{\infty} x^{n} \Rightarrow e^{1} = \sum_{n=0}^{\infty} \frac{1}{n!}$

Serie de Taylon

$$E(M^z) = Zn^c P(M=n) \stackrel{?}{=}$$

$$E(\Pi^2) \stackrel{?}{=} \frac{2}{2} P(\Pi^2(\Omega))$$

 $\int_{0}^{1} g(x) dx \approx E(g(u))$ $\frac{g(u_{1}) + \dots + g(u_{n})}{n}$ $\int_{0}^{\infty} x^{2} \exp(-x^{2}) dx = 2 \int_{0}^{\infty} x^{2} \exp(-x^{2}) dx$ $= \dots = 2 \int_{0}^{\infty} h(y) dy$ $\Rightarrow 2 \cdot E(h(u))$