Algebra Qualifying Exam Spring 1994

All rings are assumed to have a multiplicative identity, denoted 1. The fields \mathbb{Q} , \mathbb{R} and \mathbb{C} are the fields of rational, real and complex numbers, respectively.

- **1.** Let G be a finite group and p is a prime number. Define $G(p) = \{g \in G | o(g) = p^n \text{ for some } n\}$.
 - (a) Show that G(p) is the union of all Sylow p-subgroups of G.
 - (b) Show that G(p) is a subgroup if and only if G has a normal Sylow p-subgroup.
- **2.** Show that if G is a finite p-group, then for any diviser d of |G|, G has a normal subgroup of order d.
- **3.** Prove or disprove the following statements:
 - (a) An ideal I of a commutative ring R with 1 is maximal if and only if R/I is a field.
 - (b) An ideal I of a ring R with 1 is maximal if and only if R/I is a division ring.
- **4.** A commutative ring R with 1 is called *local* if R has only one maximal ideal m. Show that in this case, the maximal ideal m is precisely the set of all non-units in R. Is it true in general that for any commutative ring the set of all non-units is an ideal?
- **5.** Let R be a ring with 1. An element $e \in R$ is called a central idempotent if $e^2 = e$ and e is in the center of the ring R.
 - (a) Give an example of a ring R having a central idempotent different from 0 and 1.
 - (b) Let $e \in R$ be a central idempotent show that for any unitary R-module M, both eM and (1-e)M are R-submodules of M and that $M=eM \oplus (1-e)M$.
- **6.** Let V be an n-dimensional vector space over a field F and $T: V \to V$ be a linear transformation. Set $P = \{x \in V | Tx = x\}$ to be the subspace of T-fixed points and assume that $T(V) \subseteq P$. Calculate the characteristic polynomial and minimal polynomial of T in terms of n and $k = \dim \ker(T)$. Can T be diagonalized?
- 7. For V a vector space over the field F, let V^* denote the dual space of V, that is, V^* is the vector space $Hom_F(V, F)$ of all linear transformations $\lambda : V \to F$. If V is n-dimensional with a basis $\mathcal{B} = \{x_1, x_2, \ldots, x_n\}$, define elements $\lambda_1, \ldots, \lambda_n$ of V^* by setting

$$\lambda_i \left(\sum_{j=1}^n a_j x_j \right) = a_i,$$

 $1 \le i \le n, a_i \in F$, and put $\mathcal{B}^* = \{\lambda_1, \dots, \lambda_n\}$.

- (a) Show that \mathcal{B}^* is a basis of V^* .
- (b) If V is infinite dimensional with a basis $\{e_1, e_2, \dots, e_n, \dots\}$ and if the λ_i 's are defined similarly as above for $i = 1, 2, \dots$, prove or disprove the statement that $\{\lambda_1, \lambda_2, \dots\}$ is a basis for V^* .
- 8. Give an example of a normal field extension which is not Galois.
- **9.** Prove that any finite extension of degree n over a finite field is Galois. What is the Galois group?