Вопрос 20

Диагонализируемость линейного оператора. Собственные значения и собственные векторы.

Определение: Оператор ϕ n-мерного пространства L_n называется диагонализируемым, если в L_n существует базис, в котором матрица линейного оператора диагональная.

Пусть ϕ — оператор пространства L. Если для некоторого ненулевого вектора $x \in L$ и числа λ имеем

$$\varphi(x) = \lambda * x$$

то число λ называется собственным значением оператора ϕ , а вектор x называется собственным вектором оператора ϕ , относящийся к собственному значению λ .

Свойства собственных векторов:

- **1. Лемма 3:** Каждый собственный вектор х оператора ф относится к единственному собственному значению.
- **2. Лемма 4:** Если x_1 и x_2 собственные векторы оператора ϕ , относящееся к одному и тому же собственному значению λ , то их линейная комбинация $\alpha x_1 + \beta x_2$ собственный вектор оператора ϕ , относящийся к тому же собственному значению.

Следствия Леммы 4:

- **a)** Каждому собственному значению λ соответствует бесконечное множество собственных векторов.
- **б)** Если к множеству всех собственных векторов х оператора ϕ , относящихся к одному и тому же собственному значению λ присоединить нулевой вектор, то получаем подпространство пространства L. Это пространство называется собственным подпространством оператора (L_{λ}).
- **3. Лемма 5:** Собственные векторы $x_1, x_2, ..., x_n$ оператора ϕ , относящиеся к различным собственным значениям $\lambda_1, \lambda_2, ..., \lambda_n$, линейно независимы.

Следствия Леммы 5:

- **а)** Линейный оператор, действующий в n-мерном линейном пространстве L_n , не может иметь более n собственных значений.
- **б)** В пространстве может существовать базис, хотя бы часть которого собственные векторы оператора.

Теорема 6. Матрица А оператора φ в базисе l_1, l_2, \ldots, l_n имеет диагональный вид, только тогда, когда все базисные векторы l_i являются СВ этого оператора.

Критерий диагонализируемости оператора: оператор φ диагонализируем тогда и только тогда, когда в пространстве L_n существует базис CB оператора.

Нахождение СЗ и СВ линейного оператора

СЗ – собственные значения, СВ – собственные векторы

Пусть φ — оператор n-мерного пространства L_n , x — CB оператора φ , относится к собственному значению λ , т.е. $\varphi(x)=\lambda\varphi$.

Пусть l_1, l_2, \ldots, l_n – базис L_n , A – матрица линейного оператора φ в базисе l_1, l_2, \ldots, l_n .

Получим:

- 1) х СВ оператора φ , относится к СЗ λ тогда и только тогда, когда его координаты l_1, l_2, \ldots, l_n являются решением (нетривиальным) СЛОУ (A-X ϵ)X=0.
- 2) Подпространство L_{λ} является конечномерным, а его базис образуют СВ $x_1, x_2, \ldots, x_{\lambda}$, координатами которых являются решения из ФСР СЛОУ (A- $\lambda\epsilon$)X=0.

Матрица А- λ є называется характеристической матрицей оператора ϕ (матрицы A).

Определитель характеристической матрицы, т.е. $\det(A-\lambda\epsilon)$ – многочлен степени п относительно переменной λ . Этот многочлен называется характеристическим многочленом оператора ϕ (матрицы A), а его корни – характеристическими корнями оператора ϕ (матрицы A).

Таким образом, число λ является С3 оператора ϕ тогда и только тогда, когда оно является его характеристическим корнем.