Examen final de SIN: Test del bloc 2 (1,75 punts)

ETSINF, Universitat Politècnica de València, 17 de gener de 2023

Grup, cognoms i nom: 2,

Marca cada requadre amb una única opció. Puntuació: $\max(0, (\text{encerts} - \text{errors}/3) \cdot 1, 75/9)$.

- 1 B Suposeu que tenim dues caixes amb 40 taronges en la primera i 80 en la segona. La primera caixa conté 26 taronges Navelina i 14 Caracara. La segona caixa conté tres vegades més taronges Navelina que Caracara. Ara suposeu que s'escull una caixa a l'atzar, i després una taronja a l'atzar de la caixa escollida. Si la taronja escollida és Navelina, la probabilitat P de que procedisca de la primera caixa és: P=0.46
 - A) $0/4 \le P < 1/4$.
 - B) $1/4 \le P < 2/4$.
 - C) $2/4 \le P < 3/4$.
 - D) $3/4 \le P \le 4/4$.
- 2 D Siga un problema de classificació en quatre classes per a dades del tipus $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, amb les distribucions de probabilitat de la taula. Indica en quin interval es troba l'error de Bayes, ε^* :
 - A) $\varepsilon^* < 0.40$.
 - B) $0.40 < \varepsilon^* < 0.45$.
 - C) $0.45 \le \varepsilon^* < 0.50$.
 - D) $0.50 \le \varepsilon^*$.

2	ĸ	$P(c \mid \mathbf{x})$				
x_1	x_2	c=1	c=2	c=3	c=4	$P(\mathbf{x})$
0	0	0.2	0.3	0.4	0.1	0.1
0	1	0.3		0.2	0.1	0.3
1	0	0.3	0.3	0.1	0.3	0.1
1	1	0.3	0.4	0.1	0.2	0.5

$$\varepsilon^* = 0.61$$

- 3 A Donat el classificador en dues classes definit per la seua frontera i regions de decisió de la figura de la dreta, ¿quin dels següents vectors de pesos (en notació homogènia) defineix un classificador equivalent al donat?
 - A) $\mathbf{w}_1 = (0, 0, 2)^t$ i $\mathbf{w}_2 = (1, 0, 0)^t$.
 - B) $\mathbf{w}_1 = (0, 0, -2)^t$ i $\mathbf{w}_2 = (-1, 0, 0)^t$.
 - C) $\mathbf{w}_1 = (1,0,0)^t$ i $\mathbf{w}_2 = (0,0,2)^t$.
 - D) Tots els vectors de pesos anteriors defineixen classificadors equivalents.

- 4 B Suposeu que estem aplicant l'algorisme Perceptró, amb factor d'aprenentatge $\alpha=1$ i marge b=0.1, a un conjunt de 4 mostres bidimensionals d'aprenentatge per a un problema de 4 classes, c=1,2,3,4. En un moment donat de l'execució de l'algorisme s'han obtés els vectors de pesos $\mathbf{w}_1=(-2,-8,-12)^t$, $\mathbf{w}_2=(-2,-6,-4)^t$, $\mathbf{w}_3=(-2,-6,-4)^t$, $\mathbf{w}_4=(-2,-8,-8)^t$. Suposant que a continuació es va a processar la mostra $(\mathbf{x},c)=((5,3)^t,2)$, quants vectors de pesos es modificaran?
 - A) 0
 - B) 2
 - C) 3
 - D) 4
- 5 C Suposeu que estem aplicant l'algorisme d'aprenentatge d'arbres de classificació per a un problema de dues classes, c=A,B. L'algorisme ha arribat a un node t la impuressa del qual, mesurada com l'entropia de la distribució empírica de les probabilitats a posteriori de les classes en t, és I=0.72. Quin és el nombre de mostres de cadascuna de les classes en el node t?
 - A) 8 de classe A i 64 de classe B
 - B) 16 de classe A i 128 de classe B
 - C) 16 de classe A i 64 de classe B
 - D) 8 de classe A i 128 de classe B
- 6 D Donat el conjunt de mostres de 2 classes (∘ i •) de la figura de la dreta, ¿quin dels següents arbres de classificació és coherent amb la partició representada?

7 A La figura següent mostra una partició de 5 punts bidimensionals en dos clústers, • i ∘:

Si transferim de clúster el punt $(7,1)^t$, es produeix una variació de la suma d'errors quadràtics (SEQ), $\Delta J = J - J'$ (SEQ després de l'intercanvi menys SEQ abans de l'intercanvi), tal que:

A) $\Delta J < -7$.

$$\Delta J = 21.8 - 33.2 = -11.3$$

- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.
- 8 A Siga M un model de Markov de representació gràfica:

Quantes cadenes distintes de llargària 2 que comencen pel símbol a pot generar M? 0

- A) Cap.
- B) Una.
- C) Dos.
- D) Més de dos.
- 9 D Siga M un model de Markov de conjunt d'estats $Q = \{1, 2, F\}$; alfabet $\Sigma = \{a, b\}$; probabilitats inicials $\pi_1 = \frac{1}{2}, \pi_2 = \frac{1}{2}$; matriu de probabilitats de transició entre estats A i d'emissió de símbols B, i matriu Forward α :

A	1	2	F
1	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{3}{7}$
2	$\frac{1}{7}$	$\frac{3}{7}$	$\frac{3}{7}$

B	a	b
1	$\frac{3}{6}$	3 6
2	$\frac{1}{4}$	$\frac{3}{4}$

α	b	b
1	$\frac{1}{4}$	α_{12}
2	3	α_{22}

Quins són els valors corresponents a α_{12} i α_{22} ? $\alpha_{12} = \frac{1}{4} \cdot \frac{2}{7} \cdot \frac{3}{6} + \frac{3}{8} \cdot \frac{1}{7} \cdot \frac{3}{6}$, $\alpha_{22} = \frac{1}{4} \cdot \frac{2}{7} \cdot \frac{3}{4} + \frac{3}{8} \cdot \frac{3}{7} \cdot \frac{3}{4}$

- A) $\alpha_{12} = \frac{1}{28}$, $\alpha_{22} = \frac{27}{224}$
- B) $\alpha_{12} = \frac{1}{16}$, $\alpha_{22} = \frac{27}{224}$
- C) $\alpha_{12} = \frac{1}{28}$, $\alpha_{22} = \frac{39}{224}$ D) $\alpha_{12} = \frac{1}{16}$, $\alpha_{22} = \frac{39}{224}$

Examen final de SIN: Problema del bloc 2 (2 punts)

ETSINF, Universitat Politècnica de València, 17 de gener de 2023

Grup, cognoms i nom: 2,

Problema sobre Viterbi

Siga M un model de Markov de conjunt d'estats $Q=\{1,2,F\}$; alfabet $\Sigma=\{a,b\}$; probabilitats inicials $\pi_1=\frac{1}{2},\pi_2=\frac{1}{2}$; i probabilitats de transició entre estats i d'emissió de símbols:

A	1	2	F
1	$\frac{1}{6}$	<u>2</u>	3 6
2	6 3 8	$\frac{3}{8}$	$\frac{2}{8}$

B	a	b
1	$\frac{2}{3}$	$\frac{1}{3}$
2	$\frac{1}{3}$	$\frac{2}{3}$

Es demana:

- 1. (1 punt) Realitzeu una traça de l'algorisme de Viterbi per a obtindre la seqüència d'estats més probable amb la qual M genera la cadena aa.
- 2. (1 punto) Donats els parells d'entrenament, cadena seqüència de Viterbi, (ab, 12F) i (bbab, 2212F) amb la cadena aa i la seua seqüència de Viterbi calculada en l'apartat anterior, reestimeu els paràmetres d'*M* mitjançant una iteració de l'algorisme de reestimació per Viterbi.

Solució:

1. Traça de Viterbi per a la cadena aa (els estats 1 i 2 es representen com 0 i 1, respectivament):

2. Reestimació per Viterbi a partir del parell aa i 21F calculat en l'apartat anterior, amb els parells donats (ab, 12F) i (bbab, 2212F), obtenim els paràmetres reestimats desitjats:

π	1	2
	$\frac{1}{3}$	$\frac{2}{3}$

A	1	2	F
1	$\frac{0}{3}$	$\frac{2}{3}$	$\frac{1}{3}$
2	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{2}{5}$

B	a	b
1	$\frac{3}{3}$	$\frac{0}{3}$
2	$\frac{1}{5}$	$\frac{4}{5}$

Es pot comprovar, mitjançant una nova iteració de reestimació per Viterbi, que l'algorisme convergeix al modelo anterior.