1 General definitions

1.1 Basic

Sample variance

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 (1.1)

• Sample correlation coefficient

$$r_{X,Y} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)\sqrt{(S_X^2 S_Y^2)}}$$
(1.2)

- QQ-plot for cumulative distribution function F is the set of points $\left(q_F\left(\frac{i}{n+1}\right), x_{(i)}\right)$, where $q_F(\cdot)$ is the quantile function for the distribution.
- Mean Squared Error (MSE)

$$MSE(\theta; T(X), g(\theta)) = \mathbb{E}_{\theta} (T(X) - g(\theta))^{2}$$
(1.3)

• Bias-variance decomposition

$$MSE(\theta; T(X)) = var_{\theta}T + (\mathbb{E}_{\theta}T(X) - g(\theta))^{2}$$
(1.4)

• Empirical distribution function

$$\hat{F}_n(x) = \sum_{i=1}^n \mathbb{I}(X_i \le x) \tag{1.5}$$

1.2 k-th order statistic $X_{(k)}$

 $X_{(k)} - k - th$ order statistic distribution for n i.i.d. variables from continuous distribution F.

$$f_{(k)}(x) = \frac{n!}{(k-1)!(n-k)!} F(x)^{k-1} (1 - F(x))^{n-k} f(x)$$
 (1.6)

$$F_{(k)}(x) = \sum_{j=k}^{n} {n \choose j} F(x)^{j} (1 - F(x))^{n-j}$$
(1.7)

$$\mathbb{E}F(X_{(k)}) = \frac{k}{n+1} \tag{1.8}$$

1.3 Time Series

Time series below are assumed to be weakly stationary in the following sense:

- Stochastic time series $X_t(\omega)$ are called weakly stationary, if $\mathbb{E}X_t$ and $\text{Cov}(X_t, X_s)$ are inependent of time shifts; in particular, it first and second moments exist.
- For a weakly stationary time series X_t , the following function are defined:
 - Autocovariance function:

$$\gamma_X(h) = \mathbb{E}(X_{t+h}, X_t) \tag{1.9}$$

- Autocorrelation function

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} \tag{1.10}$$

- Partial autocorrelation function $\varphi(h)$ is defined as the coefficient the regression of X_{t+h} on X_t when controlled for constant and $X_{t+1}, \ldots X_{t+h-1}$ (see Proposition 3.35). In particular, $\varphi(0) = 1$ and $\varphi(1) = \rho(1)$

2 Important distributions

- Student's t-distribution $t_{\nu}, \nu \in \mathbb{R}_{>0}$
 - pdf

$$\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu} \Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} \tag{2.1}$$

- cdf

$$\frac{1}{2} + x\Gamma\left(\frac{\nu+1}{2}\right) \frac{{}_{2}F_{1}\left(\frac{1}{2}, \frac{\nu+1}{2}; \frac{3}{2}, -\frac{x^{2}}{\nu}\right)}{\sqrt{\pi\nu} \Gamma(\frac{\nu}{2})}$$
(2.2)

- t-distribution with $n \in \mathbb{N}$ degrees of freedom arises from the ratio of independent N(0,1)- and χ_n^2 -distributions

- Poisson distribution Poisson(λ), $\lambda > 0$
 - $-\lambda$ is the average number of events per interval
 - pdf

$$p_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!} \tag{2.3}$$

• Geometric distribution $G(\theta)$, $0 \le \theta \le 1$

$$f_{\theta}(k) = (1 - \theta)^{1 - k} \theta \tag{2.4}$$

- cdf

$$F_{\theta}(k) = 1 - (1 - \theta)^k \tag{2.5}$$

• Exponential distribution $F(x; \lambda)$

$$f_{\lambda}(x) = \lambda e^{-\lambda x} \tag{2.6}$$

- cdf

$$F_{\lambda}(x) = 1 - e^{-\lambda x} \tag{2.7}$$

$$-\mathbb{E}_{\lambda}X = 1/\lambda$$

- Beta distribution $B(\alpha, \beta), \ \alpha, \beta > 0$
 - pdf

$$f_{\alpha,\beta}(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \ B(\alpha,\beta) \equiv \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
 (2.8)

- Weibull distribution
 - $-\alpha$ and λ are the "shape" and 'inverse scale" parameters.
 - pdf

$$f_{\lambda,\alpha}(x) = \lambda^{\alpha} \alpha x^{\alpha - 1} e^{-(\lambda x)^{\alpha}}$$
(2.9)

- cdf

$$F_{\lambda,\alpha}(x) = 1 - e^{-(\lambda x)^{\alpha}} \tag{2.10}$$

• Gamma distribution $\Gamma(\alpha, \lambda), \ \alpha > 0, \lambda > 0$

 $-\alpha$ and λ are known as "shape" and "inverse scale" parameters.

- pdf

$$f_{\alpha,\lambda}(x) = \frac{x^{\alpha-1}\lambda^{\alpha}e^{-\lambda x}}{\Gamma(\alpha)}$$
 (2.11)

– cdf (where $\gamma(s,x)=\int_0^x t^{s-1}e^{-t}dt$ — is the "incomplete gamma function")

$$F_{\alpha,\lambda}(x) = \frac{\gamma(\alpha, x\beta)}{\Gamma(\alpha)}$$
 (2.12)

Definition 2.1. A family of probability densities p_{θ} that depends on a parameter θ is called a k-dimensional exponential family if there exist functions $c(\theta)$, h(x), $Q_j(\theta)$, and $V_j(x)$ such that

$$p_{\theta}(x) = c(\theta)h(x)e^{\sum_{j=1}^{k} Q_{j}(\theta)V_{j}(x)}$$

3 Fundamental results

3.1 Convergence types and o_p - and O_p -notations

Definition 3.1. Let $X_n, n \in \mathbb{N}$ be a sequence of random vectors.

• Sequence X_n is said to converge in distribution to a random vector X if at any continuity point x of c.d.f. F_X

$$X_n \rightsquigarrow X \text{ if } \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

• Let d(x, y) be a metric in a target space of X_n . Sequence X_n converges in porobability to a random vector X if

$$X_n \xrightarrow{p} X \text{ if } \mathbb{P}(d(X_n, X) > \varepsilon) \xrightarrow{n \to \infty} 0, \forall \varepsilon > 0$$

• For the above notations, X_n converges to X almost surely if

$$X_n \xrightarrow{as} X \text{ if } \mathbb{P}\left(\lim_{n \to \infty} X_n = X\right) = 1$$

Theorem 3.2. Let $X_n, n \in \mathbb{N}$ and X be random vectors. Then

- 1. $X_n \xrightarrow{as} X$ implies $X_n \xrightarrow{p} X$
- 2. $X_n \xrightarrow{p} X$ implies $X_n \rightsquigarrow X$
- 3. $X_n \leadsto c$ for a constant c, if and only if $X_n \xrightarrow{p} X$
- 4. If $X_n \leadsto X$ and $d(X_n, Y_n) \xrightarrow{p} 0$ then $Y_n \leadsto X$
- 5. If $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow c$ for a constant c, then $(X_n, Y_n) \rightsquigarrow (X, c)$
- 6. If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$ for a constant c, then $(X_n, Y_n) \xrightarrow{p} (X, Y)$

Theorem 3.3. (Strong law of large numbers) Let $g : \mathbb{R}^k \to \mathbb{R}^m$ be continuous at every point of a set c such that $\mathbb{P}(X \in C) = 1$.

- 1. If $X_n \leadsto X$, then $g(X_n) \leadsto g(X)$
- 2. If $X_n \xrightarrow{p} X$, then $g(X_n) \xrightarrow{p} g(X)$
- 3. If $X_n \xrightarrow{as} X$, then $g(X_n) \xrightarrow{as} g(X)$

Definition 3.4. A family of random vectors X_{α} is called *uniformally tight* if

$$\lim_{M \to \infty} \sup_{\alpha} \|X_{\alpha}\| = 0$$

Theorem 3.5. (Levy's continuity theorem) Let X_n and X be random vectors with values in \mathbb{R}^k , and let $\varphi_{X_n}(t)$ and $\varphi_X(t)$ be their characteristic functions respectively.

- If $\varphi_{X_n}(t)$ converges to $\varphi_X(t)$ pointwise then $X_n \leadsto X$
- if φ_{X_n} converges pointwise to a function continuous at 0 then X_n converges in distribution to some random variable X with that characteristic function

Definition 3.6. Let X_n and R_n be sequences of random vectors. The following notations are used:

- $X_n = o_p(1)$ if $X_n \xrightarrow{p} 0$
- $X_n = o_p(R_n)$ if $X_n = Y_n R_n$ and $Y_n = o_p(1)$ for some Y_n
- $X_n = O_p(1)$ if X_n is uniformally tight

• $X_n = O_p(R_n)$ if $X_n = Y_n R_n$ and $Y_n = O_p(1)$ for some Y_n

Proposition 3.7. Let $R: \mathbb{R}^k \to \mathbb{R}^m$ be a function with R(0) = 0. Let $X_n \stackrel{p}{\to} 0$. Then for every $\alpha > 0$

- 1. If $R(h) = o(\|h\|^{\alpha})$ as $h \to 0$ then $R(X_n) = o_p(\|X_n\|^{\alpha})$
- 2. If $R(h) = O(\|h\|^{\alpha})$ as $h \to 0$ then $R(X_n) = O_p(\|X_n\|^{\alpha})$

Theorem 3.8. (Delta method) Let $\varphi : \mathbb{R}^k \to \mathbb{R}^m$ be a map defined on a subset of \mathbb{R}^k and differentiable at θ . Let T_n be random vectors taking values in the domain of φ . If $r_n(T_n - \theta) \leadsto T$ for some numbers $r_n \xrightarrow{n \to \infty} \infty$, then

$$r_n\left(\varphi(X_n) - \varphi(\theta)\right) \leadsto \frac{\partial}{\partial \theta}\varphi(\theta)(T)$$

where right hand side is the linear transformation of T given by the differential of φ at θ .

Example 3.9. Let S_n be a sample variance of a sequence of i.i.d. random variables X_n , $n \in \mathbb{N}$ with $\mathbb{E}X_n = 0$ and finite fourth moment. Denote by $\kappa = \frac{\mu_4}{\mu_2^2} - 3$ kurtosis of X_n . Then

$$\mathbb{P}\left(\frac{nS^2}{\mu_2} > \chi_{n,\alpha}^2\right) = \mathbb{P}\left(\sqrt{n}\left(\frac{S^2}{\mu_2}\right) > \frac{\chi_{n,\alpha}^2 - n}{\sqrt{n}}\right) \to 1 - \Phi\left(\frac{z_\alpha\sqrt{2}}{\sqrt{\kappa + 2}}\right)$$

Proof. By central limit theorem 3.11

$$\sqrt{n} \left(\begin{pmatrix} \bar{X_n} \\ \bar{X_n^2} \end{pmatrix} - \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \right) \rightsquigarrow N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha_2 - \alpha_1^2 & \alpha_3 - \alpha_1 \alpha_2 \\ \alpha_3 - \alpha_1 \alpha_2 & \alpha_4 - \alpha_2^2 \end{pmatrix} \right)$$

As S^2 does not change if X_n is replaced by its centered version, it can be assumed that $\alpha_1 = 0$. Delta method for 3.8 for $\varphi(x, y) = y - x^2$ implies:

$$\sqrt{n}\left(S^2-\mu_2\right) \rightsquigarrow N(0,\mu_4-\mu_2^2)$$

3.2 Law of large numbers and central limit theorems

Theorem 3.10. (Strong law of large numbers) Let \bar{X}_n be the average of the first n of a sequence of independent identically distributed random vectors X_k , $k \in \mathbb{N}$. If $\mathbb{E}||X_k|| < \infty$ then $\bar{X}_n \xrightarrow{\text{as}} \mathbb{E} X_1$.

Theorem 3.11. (Central Limit Theorem) Let \bar{X}_n be the average of the first n of a sequence of i.i.d. random vectors X_k , $k \in \mathbb{N}$. If $\mathbb{E}||X_k||^2 < \infty$ then

$$\sqrt{n}(\bar{X}_n - \mathbb{E}X_1) \leadsto N(0, \mathbb{V}(X_1)) \tag{3.1}$$

Theorem 3.12. (Lindeberg-Feller theorem). For each n let $X_{n,1}, \ldots X_{n,k_n}$ be independent random vectors with $\mathbb{E}||X_{n,i}||^2 < \infty$ and such that:

$$\sum_{i=1}^{k_n} \mathbb{E}\left(\|X_{n,i}\|^2 \mathbb{I}\left(\|X_{n,i}\| > \varepsilon\right)\right) \xrightarrow{n \to \infty} 0, \ \forall \varepsilon > 0$$

$$\sum_{i=1}^{k_n} \mathbb{V}(X_{n,i}) \xrightarrow{n \to \infty} \Sigma$$

Then the sequence $\sum_{i=1}^{k_n} (X_{n,i} - \mathbb{E}X_{n,i})$ converges in distribution to $N(0,\Sigma)$.

3.3 Basic statistics

Theorem 3.13. Let $X_1, \ldots X_n$ be an i.i.d. random variables from the $N(\mu, \sigma^2)$ distribution, then

- 1. \bar{X} is $N(\mu, \sigma^2/n)$ distributed;
- 2. $(n-1)S_X^2/\sigma^2$ is χ_{n-1}^2 -distributed (see 1.1);
- 3. \bar{X} and S_X^2 are independent;
- 4. $\sqrt{n}(\bar{X}-\mu)/\sqrt{S_X^2}$ has the t_{n-1} distribution.

Proof.
$$||X||^2 - n\bar{X}^2 = (n-1)S_X^2$$

Definition 3.14. Let $A \in \mathbb{C}^{m \times n}$ and $A^{\sim} \in \mathbb{C}^{n \times m}$. Consider a list of conditions:

- 1. $AA^{\sim}A = A$
- 2. $A^{\sim}AA^{\sim} = A^{\sim}$
- 3. $(AA^{\sim})^* = AA^{\sim}$
- 4. $(A^{\sim}A)^* = A^{\sim}A$

If A^{\sim} satisfies the first condition, then it is a generalized inverse of A. If it satisfies the first two conditions, then it is a reflexive generalized inverse of A. If A satisfies all four conditions the it is called the Moore-Penrose inverse.

Proposition 3.15. The space of generalized inverse matrices to a given matrix has dimension $2 \operatorname{rk} A \operatorname{corank} A$. It is characterized by two properties:

- The restriction of A^{\sim} on Im A is an arbitrary lift of the inverse of induced isomorphism on the quotient by Ker A.
- The image of A^{\sim} equals $A^{\sim} \operatorname{Im} A$.

Theorem 3.16. Let $X \sim N(\mu_X, \mathbb{V}_X)$ be a k-dimensional random vector, where \mathbb{V}_X might be singular. Then for any linear condition of the form BX = b and any linear transformation AX, conditional distributions of X and AX are given by the following formulae:

$$f(X|BX) \sim N(\mu_X + \mathbb{V}_X B^T (B\mathbb{V}_X B^T)^{\sim} (BX - B\mu_X),$$

$$\mathbb{V}_X - \mathbb{V}_X B^T (B\mathbb{V}_X B^T)^{\sim} B\mathbb{V}_X)$$

$$f(AX|BX) \sim N(A\mu_X + A\mathbb{V}_X B^T (B\mathbb{V}_X B^T)^{\sim} (BX - B\mu_X),$$

$$A\mathbb{V}_X A^T - A\mathbb{V}_X B^T (B\mathbb{V}_X B^T)^{\sim} B\mathbb{V}_X A^T)$$

where A^{\sim} denotes reflexive generalized inverse of matrix A.

Proof. Follows from the proposition below.

Proposition 3.17. Let Y be a Gaussian random vecor such that

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} \right)$$

Then Y_1 conditional on Y_2 is Gaussian:

$$f(Y_1|Y_2) \sim N(V_{12}V_{22}^{\sim}Y_2, V_{11} - V_{12}V_{22}^{\sim}V_{21})$$

Example 3.18. Let

$$\begin{pmatrix} x \\ y \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$$

Then

$$f(y|x) \sim N(\rho x, 1 - \rho^2)$$

Proof of Proposition 3.17. We only consider the case with $\mathbb{V}(Y)$ nonsingular. It is generalized in a straightforward way, but does not admit straightforward matrix notation for Gaussian distributions.

By definition,

$$f(Y_1|Y_2 = y_2) = \frac{f(Y_1, y_2)}{\int_{Y_2 = y_2} f(Y_1, y_2) dY_1}$$
(3.2)

It is enough to show that

$$Y^{T}\mathbb{V}(Y)^{-1}Y = (Y_{1} - V_{12}V_{22}^{-1})^{T}(V_{11} - V_{12}V_{22}^{-1}V_{21})^{-1}(Y_{1} - V_{12}V_{22}^{-1}) + C(Y_{2})$$
(3.3)

where $C(Y_2)$ is a term that does not depend on Y_1 . Note that in (3.2) the part of the exponential in Gaussian density depending on $C(Y_2)$ cancels out. After the cancellation, we are left with the required density up to a multiplicative constant. The latter has to have correct magnitude so that the whole expression corresponds to a density function; alternatively it can be computed directly.

The equation (3.3) is a direct consequence of the inversion formula for 2×2 block matrix.

3.4 Reminder on different convergence types

Definition 3.19. Let X_n be a sequence of random variables defined on the probability space (Ω, \mathbb{P}) :

- X_n is said to converge to X almost surely if $\mathbb{P}(\lim_{n\to\infty} X_n = X) = 1$
- convergence in probability
- weak convergence
- L_p -convergence

Theorem 3.20. If a sequence of random variables converges almost surely then it converges in probability.

Proposition 3.21. Assume $\sum_{n\in\mathbb{Z}} \mathbb{E}|X_n| < \infty$, then $\sum_{n\in\mathbb{Z}} X_n$ is defined as an almost sure limit and:

$$\mathbb{E}\sum_{n\in\mathbb{Z}}X_n=\sum_{n\in\mathbb{Z}}\mathbb{E}X_n$$

Proof. Established using Monotone and Dominated Convergence theorems applied to partial sums of random variables.

Proposition 3.22. Let f(x) be a function of period T that is absolutely integrable on the interval [-T/2, T/2]. Define its Fourier coefficients as follows:

$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos \frac{2\pi kx}{T} dx, \ k = 0, 1, \dots$$
$$b_k = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin \frac{2\pi kx}{T} dx, \ k = 1, 2, \dots$$

Then the partial sum $S_n(x) \stackrel{\text{def}}{=} a_0/2 + \sum_{k=1}^n \left(a_k \cos \frac{2\pi kx}{T} + b_k \sin \frac{2\pi kx}{T} \right)$ of the Fourier series admits an integral presentation:

$$S_n(x) = \frac{2}{T} \int_{-T/2}^{T/2} f(x+u) \frac{\sin(n+\frac{1}{2})\frac{2\pi u}{T}}{\sin\frac{\pi u}{T}} dx$$

Remark: Note that the coefficient a_0 defined by the formulas above is twice the coefficient to of the constant function in Fourier series (as the norm of a sine wave is twice less).

Theorem 3.23. Let f(x) be a function of period T that is absolutely integrable on the interval [-T/2, T/2].

- 1. At a point of continuity where f(x) has a right and a left derivative, the Fourier series coverge absolutely to the value f(x)
- 2. If f(x) is continuous and its derivative f'(x) is square integrable, then the Fourier series converge to f(x) absolutely and uniformly
- 3. If f(x) is continuous, then the Fourier series are uniformally summable to f(x) by the method of Cesàro

Theorem 3.24. If series $\sum_{k=1}^{\infty} (|a_k| + |b_k|)$ are absolutely summable then the associated trigonometric series

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos \frac{2\pi kx}{T} + b_k \sin \frac{2\pi kx}{T} \right)$$

converges absolutely and uniformly to a continuous periodic function of period T of which it is a Fourier series

Proposition 3.25. Let $(a_n)_{n\in\mathbb{Z}}$ be an element of $l^1(\mathbb{Z})$, and let $(Z_t)_{t\in\mathbb{Z}}$ be a sequence of random variables satisfying $\mathbb{E}|Z_t| < C_1 \ \forall t$ for some constant C_1 . Then the convolution

$$X_t = \sum_{n \in \mathbb{Z}} a_n Z_{t-n}$$

is defined almost surely $\forall t \in \mathbb{Z}$.

Moreover, if there exists a constant such that $\mathbb{E}Z_t^2 < C_2 \ \forall t$, then X_t is also a limit in L^2 -norm and $\mathbb{E}X_t^2 \leq |a_n|_1^2 C_2$.

Theorem 3.26. Let $(X_t)_{t\in\mathbb{Z}} \in L^2\left(\Omega, \mathbb{P}, \mathbb{C}^{d_X}\right)$ and $(Y_t)_{t\in\mathbb{Z}} \in L^2\left(\Omega, \mathbb{P}, \mathbb{C}^{d_Y}\right)$. Let $(a_m)_{m\in\mathbb{Z}} \in l^1(\mathbb{Z}, \mathbb{C}^{d_X' \times d_X})$ and $(b_n)_{n\in\mathbb{Z}} \in l^1(\mathbb{Z}, \mathbb{C}^{d_Y' \times d_Y})$. Then

1. Convolutions $(a * X)_t$ and $(b * Y)_t$ are well-defined elements of $L^2(\Omega, \mathbb{P}, \mathbb{C}^{d'_X})$ and $L^2(\Omega, \mathbb{P}, \mathbb{C}^{d'_Y})$.

2.

$$\gamma_{a*X,b*Y}(h) = \sum_{m,n \in \mathbb{Z}} a_m \gamma_{X,Y}(h+n-m) \bar{b}_n^T$$

Corollary 3.27. Let (a_m) , $(b_n) \in l^1(\mathbb{Z})$ and $(e_t)_{t \in \mathbb{Z}}$ be a sequence of uncorrelated $(0, \sigma^2)$ random variables. Denote Let $X_t = (a * e)_t$, $Y_t = (b * X)_t$. Then

1.

$$\gamma_X(h) = \sum_{n \in \mathbb{Z}} a_m a_{m-h} \sigma^2$$

2.

$$\gamma_Y(h) = \sum_{n \in \mathbb{Z}} c_n c_{n-h} \sigma^2, \tag{3.4}$$

where $c_n = (a * b)_n$.

Theorem 3.28. Let $(a_m) \in l^1(\mathbb{Z})$, $(b_n) \in l^2(\mathbb{Z})$ and $(e_t)_{t \in \mathbb{Z}}$ be a sequence of uncorrelated $(0, \sigma^2)$ random variables. Denote $X_t = (a * e)_t$, then

- 1. For each $t \in \mathbb{Z}$ random variable Y_t defined as L_2 -limit of the sequence $\sum_{n=-N}^{N} b_n X_{t-n}$ is well defined.
- 2. Formula (3.4) holds for Y_t .

Corollary 3.29. For $(b_n) \in l^2(\mathbb{Z})$ the sequence $(b * e)_t$ is defined in $L^2(\Omega, \mathbb{P})$

Theorem 3.30. Conclusions of Theorem 3.28 hold for $(a_m) \in l^2(\mathbb{Z}), (b_n) \in l^1(\mathbb{Z})$

3.5 Time Series

Proposition 3.31. Given the difference equation of order n:

$$y_t + a_1 y_{t-1} + a_2 y_{t-2} + \ldots + a_n y_{t-n} = r_t, \ t = n, n+1, \ldots$$
 (3.5)

The solution $(y_n)_{n=0}^{\infty}$ can be expressed in the form:

$$y_t = \sum_{i=0}^{t} w_i r_{t-i}, \ t = 0, 1, \dots$$

with $w_i \equiv 0$ for i < 0, and satisfying the homogeneous difference equation of (y_t) :

$$\sum_{i=0}^{n} a_i w_{t-i} = 0, \ i = 1, 2, \dots$$
(3.6)

Proof. Using recursive formula (3.5) for y_t , any element of the sequence can be written in the form:

$$y_t = \sum_{i=0}^{t} w_i^{(t)} r_{t-i}$$

for some $w_i^{(t)}$ with $t \in \mathbb{Z}_{\geq 0}, \ 0 \leq i \leq t$. Using inductive argument, we show that

- 1. $w_i^{(t)} \equiv w_i$ for some constant depending on i only
- 2. The sequence w_i satisfies equation (3.6)

Indeed, from the equation 3.5 it is immediate to see that $w_0 = 1$ and $w_1 = -a_1$. Assuming that the pair of statements above is shown for s < t, write:

$$y_t = r_t - \sum_{k=0}^n a_k^{(t)} y_{t-k} = r_t - \sum_{k=1}^t a_k \sum_{j=0}^{t-k} w_j r_{t-k-j}$$
 (3.7)

By definition, we set w_t to be the coefficient of r_0 , that is, $w_t = -\sum_{i=1}^n a_i w_{t-i}$. Moreover, by rearranging terms in 3.7, we get:

$$y_t = -\sum_{j=0}^{t} r_j \sum_{k=1}^{t-j} a_k w_{t-j-k},$$

it follows that the coefficient $w_{t-j}^{(t)}$ of r_j , $j=1,\ldots t$, is equal to w_{t-j} by induction assumption and it concludes the proof.

Theorem 3.32. 1. Let X_t be an AR(p) process given by

$$X_t + \sum_{j=0}^{p} a_j X_{t-j} = e_t,$$

where $(e_t)_{t\in\mathbb{Z}}$ is a sequence of uncorrelated $(0,\sigma^2)$ random variables. Suppose that all roots of the polynomial

$$m^p + \sum_{i=0}^p a_i m^{p-j}$$

have magnitude less than 1. Then X_t admits an infinite MA-presentation $X_t = \sum_{j=0}^{\infty} w_j e_{t-j}$, where

$$w_0 = 1$$

 $w_j + \sum_{i=1}^{j} a_i w_{j-i} = 0, \ j = 1, \dots p - 1$
 $w_j + \sum_{i=1}^{p} a_i w_{j-i} = 0, \ j = p, p + 1, \dots$

2. Let X_t be an MA(q) process given by

$$X_t = e_t + \sum_{j=0}^{q} b_j e_{t-j}$$

where $(e_t)_{t\in\mathbb{Z}}$ is a sequence of uncorrelated $(0,\sigma^2)$ random variables. Suppose that all roots of the polynomial

$$m^p + \sum_{j=0}^q b_j m^{q-j}$$

have magnitude less than 1. Then X_t admits an infinite AR-presentation

$$\sum_{j=0}^{\infty} c_j X_{t-j} = e_t, \text{ where}$$

$$c_0 = 1$$

$$c_j + \sum_{i=1}^{j} b_i c_{j-i} = 0, \ j = 1, \dots, q-1$$

$$c_j + \sum_{i=1}^{p} b_i c_{j-i} = 0, \ j = q, q+1, \dots$$

Proposition 3.33. Let X_t be an AR(p) process satisfying conditions of Theorem 3.32. Then the partial autocorrelation function $\varphi(h) = 0$ for h > p

Proof. By definition, $\varphi(h)$ is the correlation between the X_{t-h} and the residual obtained from the regression of X_t on $X_{t-1}, \ldots X_{t-h+1}$. The latter is e_t and the result follows.

Proposition 3.34. Let X_t be an AR(p) process satisfying conditions of Theorem 3.32. Then autocovariance function $\gamma(h)$ satisfies:

$$\gamma(0) + a_1 \gamma(1) + \dots + a_p \gamma(p) = \sigma^2$$

 $\gamma(h) + a_1 \gamma(h-1) + \dots + a_p \gamma(h-p) = 0, h > 0$

Remark: this result allows one to express $\gamma(0), \ldots \gamma(p)$ through the coefficients $a_1, \ldots a_p$ and vice versa.

Proposition 3.35. Let X_t be weakly stationary time series:

1. The partial autocorrelation coefficient $\varphi(h)$ equals θ_{hh} in the linear regression:

$$X_{t+h} = \theta_{0h} + \theta_{1h}X_{t+h-1} + \ldots + \theta_{hh}X_t + a_{ht}$$

2. Let $\rho_{t+h,t\cdot(t+1,\dots t+h-1)}$ denote the partial correlation of X_{t+h} and X_t when controlled for $X_{t+1},\dots X_{t+h-1}$. The squared norm of the residual term in the regression above equals:

$$\mathbb{E}(a_{ht}^2) = \gamma(0) \prod_{i=1}^{h} (1 - \rho_{t+h,t+i-1\cdot(t+i,\dots t+h-1)}^2)$$

Proof. These statements follow from basic Eucledian geometry. Denote by P the projection onto the subspace spanned by $X_{t+i}, \ldots X_{t+h-1}$. Now consider sequentially orthogonal decompositions $X_{t+h} = P(X_{t+h}) + (1-P)(X_{t+h})$ and look at the component of the second summand along $(1-P)(X_{t+i})$.

Proposition 3.36. Let $(Y_t)_{t\in\mathbb{Z}}$ be a sequence of elements in $L^2(\Omega, \mathbb{P}, \mathbb{C})$, denote $\mathbf{Y}_n \equiv (Y_1, \ldots, Y_n)$. Let $\hat{Y}_{n+s}(Y_1, \ldots, Y_n) \equiv \mathbf{Y}_n b_{n,s}$, $b_{n,s} \in \mathbb{C}^n$ be a linear predictor minimizing mean squared error

$$\tau_{n,s}^2 \stackrel{\text{def}}{=} MSE\left(Y_{n+s}, \hat{Y}_{n+s}(Y_1, \dots Y_n)\right) \equiv \mathbb{E}\left\{ ||Y_{n+s} - \hat{Y}_{n+s}||^2 \right\}$$

Then $b_{n,s} = (\mathbb{V}_{n,n})^+ V_{n,s}$ is a solution, where

$$V_{n,s} \stackrel{\text{def}}{=} \mathbb{E} \left(\mathbf{Y}_n^T Y_{n+s} \right)$$

$$\mathbb{V}_{n,n} \stackrel{\text{def}}{=} \mathbb{E} \left(\mathbf{Y}_n^T \mathbf{Y}_n \right)$$

Furthermore, MSE is given by:

$$\tau_{n,s}^2 = \mathbb{V}(Y_{n+s}) - b_{n,s}^T V_{n,s} = \mathbb{V}(Y_{n+s}) - V_{n,s}^T \mathbb{V}_{n,n}^+ V_{n,s}$$

Proof. Follows from standard linear regression theory.

Definition 3.37. A time-series is nonsingular (regular, nondeterministic) if the sequence of mean squared errors of one-preriod prediction $\tau_{n,1}^2$ is bounded away from zero. A time series is singular (deterministic) if

$$\lim_{n\to\infty} \tau_{n,1} = 0$$

Theorem 3.38. Let $Y_t, b_{n,s}$ and $\tau_{n,s}$ be as defined in Proposition 3.36 and assume that Y_t is weakly stationary, nondeterministic. Denote the components of $b_{n,s}$ by $b_{n,s,i}$, $i = 1, \ldots n$ so that

$$\hat{Y}_{n+s}(Y_1, \dots Y_n) = \sum_{i=1}^n b_{n,s,i} Y_i$$

Then the following recursive relations take place:

1.
$$b_{n,s,1} = \tau_{n-1,1}^{-2} \left(\gamma(n+s-1) - \sum_{i=1}^{n} b_{n-1,s,i} \gamma(n+s-1-i) \right)$$

2.
$$\tau_{n,s}^2 = \tau_{n-1,s}^2 - b_{n,s,1} \tau_{n-1,1}^2$$

$$3. \begin{pmatrix} b_{n,s,2} \\ b_{n,s,3} \\ \vdots \\ b_{n,s,n} \end{pmatrix} = \begin{pmatrix} b_{n-1,s,2} \\ b_{n-1,s,3} \\ \vdots \\ b_{n-1,s,n} \end{pmatrix} - b_{n,s,1} \begin{pmatrix} b_{n-1,1,n-1} \\ b_{n-1,1,n-2} \\ \vdots \\ b_{n-1,1,1} \end{pmatrix}$$

Remark. Note that one-step prediction terms, $\tau_{n-1,1}$ and $b_{n-1,1}$, appear in the recursion, and the components of the last vector are reversed.

Theorem 3.39. (Gram-Schmidt) Let Let $(Y_t)_{t\in\mathbb{Z}}$ from $L^2(\Omega, \mathbb{P}, \mathbb{C})$ be a zero-mean, stationary, nondeterministic time series.

Then one can write $Y_t = \sum_{i=1}^t c_{t,i} Z_i$ where

$$\mathbb{E}Z_{t,i} = 0$$

$$\mathbb{E}(Z_{t,i}Z_{t,j}) = \delta_{ij}\kappa_i^2$$

$$c_{t,1} = \kappa_1^{-2}\gamma_Y(t-1)$$

$$c_{t,i} = \kappa_i^{-2} \left(\gamma_Y(t-i) - \sum_{j < i} c_{t,j}c_{i,j}\kappa_i^2\right)$$

$$\kappa_t^2 = \gamma_Y(0) - \sum_{i=1}^{t-1} c_{t,i}^2\kappa_i^2$$

Proof. This is a result of direct application of Gram-Schmidt orthogonalization algorythm to the sequence Y_1, \ldots, Y_t . Note that the process can be generalized to vector-valued processes.

Theorem 3.40. The real valued function $\rho(h)$ is the correlation function of a real valued stationary time series $X_t(\omega)$ with index set $t \in \mathbb{Z}$ if and only if it is representable in the form

$$\rho(h) = \int_{-\pi}^{\pi} e^{ihx} dG(x),$$

where G(x) is a symmetric distribution function

Theorem 3.41. Let the correlation function $\rho(h)$ of a stationary time series be abcolutely summable. Then there exists a continuous function $f(\omega)$ such that.

1.
$$\rho(h) = \int_{-\pi}^{\pi} f(\omega) \cos \omega h d\omega$$

- 2. $\int_{-\pi}^{\pi} f(\omega) d\omega = 1$
- 3. $f(\omega) \ge 0$
- 4. $f(\omega)$ is an even function

3.6 Estimator convergence via information matrix

Definition 3.42. Let X be a random variable defined on probability space $(\Omega, \mathbb{P}_{\theta}), \ \theta \in \Theta$. Suppose that the likelihood function $\theta \mapsto \ell_{\theta} \stackrel{\text{def}}{=} \log p_{\theta}$ is differentiable for all $x \in \Omega$. The gradient

$$\dot{\ell_{\theta}}(x) = \frac{\partial}{\partial \theta} \ell_{\theta}(x)$$

is called the score function. The Fisher information is defined as the matrix

$$i_{\theta} = \mathbb{V}_{\theta} \left(\dot{\ell_{\theta}}(X) \right)$$

Theorem 3.43. Suppose that Θ is compact and convex and that θ is identifiable, and let $\hat{\theta}_n$ be the maximum likelihood estimator based on a sample of size n from the distribution with (marginal) probability density p_{θ} . Suppose, furthermore, that the map $\theta \mapsto \log p_{\theta}(x)$ is continuously differentiable for all x, with derivative $\dot{\ell}_{\vartheta}(x)$, such that $||\dot{\ell}_{\vartheta}(x)|| \leq L(x)$ for every $\theta \in \Theta$, where L(x) is a function with $\mathbb{E}_{\theta}L^2(X) < \infty$. If θ is an interior point of Θ and the function $\theta \mapsto i_{\theta}$ is continuous and positive, then under θ , $\sqrt{n}(\hat{\theta}_n - \theta)$ converges in distribution to a normal distribution with expectation 0 and variance i_{θ}^{-1} . Therefore, under θ , as $n \to \infty$, we have

$$\sqrt{n}(\hat{\theta}_n - \theta) \to N(0, i_{\theta}^{-1})$$

Theorem 3.44. (Cramer-Rao) Suppose $\theta \mapsto p_{\theta}(x)$ is differentiable for every x. Then under certain regularity conditions any unbiased estimator T for $g(\theta)$ satisfies:

$$\mathbb{V}_{\theta}(T) \ge g'(\theta) I_{\theta}^{-1} g'(\theta)^{T},$$

where I_{θ} denotes the full information matrix.

3.7 Sufficient Statistics and UMVU estimators

Definition 3.45. For a statistical model $(\Omega, \mathbb{P}_{\theta})$, $\theta \in \Theta$, a statistic V(x) is called *sufficient* (for X) if conditional distribution f(x|V=v) is independent of V.

Theorem 3.46. A statistic V(x) is sufficient if there exist functions h(x) and $g(v, \theta)$ such that

$$p_{\theta}(x) = h(x)g(V(x), \theta)$$

Theorem 3.47. (Rao-Blackwell) Let V = V(X) be a sufficient statistic, and let T = T(X) be an arbitrary real-valued estimator for $g(\theta)$. Then there exists an estimator $T^* = T^*(V)$ for $g(\theta)$ that depends only on V, such that $\mathbb{E}_{\theta}T^* = \mathbb{E}_{\theta}T$ and $\mathbb{V}_{\theta}T^* \leq \mathbb{V}_{\theta}T$ for all θ . In particular, we have $MSE(\theta; T^*) \leq MSE(\theta; T)$. This inequality is strict unless $\mathbb{P}_{\theta}(T^* = T) = 1$.

Definition 3.48. For a statistical model $(\Omega, \mathbb{P}_{\theta})$, $\theta \in \Theta$, a statistic V(x) is called complete if $\mathbb{E}_{\theta}(f(V)) = 0$, $\forall \theta \in \Theta$ implies f(V) = 0 a.s.

Theorem 3.49. Let V(x) be sufficient and complete, and T(V) be an unbiased estimator for $g(\theta)$. Then T(V) is UMVU estimator (i.e. has smallest variance among all unbiased estimators $\forall \theta \in \Theta$).

Theorem 3.50. Suppose that for a k-dimensional exponential family (2.1) the set below contains an interior point:

$$(Q_1(\theta), \dots Q_k(\theta)), \ \theta \in \Theta$$

Then the random vector $(V_1(x), \ldots V_n(x))$ is sufficient and complete.

4 Estimators

4.1 Maximum of *n* uniformally distributed statistics

Set up: $X_1, X_2, ... X_n$ i.i.d. drown from $U[0, \theta]$, where θ is the parameter of interest.

- $\bullet \ \hat{\theta} = 2\bar{X_n}$
 - method of moments estimator
 - unbiased

-
$$MSE(\theta, \hat{\theta}) = \frac{\theta^2}{3n}$$
, see (1.6)

• $X_{(n)}$ — n-th order statistic, i.e. maximum.

$$-\mathbb{E}_{\theta}X_{(n)} = \frac{n}{n+1}\theta$$
, see (1.6)

$$- MSE(\theta, X_{(n)}) = \frac{2\theta^2}{(n+2)(n+1)}$$

- \bullet $\frac{n+2}{n+1}X_{(n)}$
 - best estimator of the form $cX_{(n)}$

-
$$MSE(\theta, \frac{n+2}{n+1}X_{(n)}) = \frac{\theta^2}{(n+1)^2}$$

4.2 Univariate normal distribution

•
$$(\hat{\mu}, \hat{\sigma}^2) = \left(\bar{X}_n, \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)\right) = \left(\bar{X}_n, \frac{n-1}{n} S_X^2\right)$$

- maximum likelihood estimator
- method of moments estimator
- $-\hat{\mu}$ is unbiased
- $-\mathbb{E}_{(\mu,\sigma^2)}\hat{\sigma}^2 = \frac{n-1}{n}\sigma^2$

4.3 Empirical distribution function

Let $X_1, \ldots X_n$ be an i.i.d. sample drawn from the distribution F.

- The empirical distribution function (ecdf) $\hat{F}(x) = \sum_{i=1}^{n} \mathbb{I}(X_i \leq x)$ (see 1.1)
 - unbiased
 - $\operatorname{cov}_F\left(\hat{F}(u), \hat{F}(v)\right) = n^{-1}(F(\min(u, v)) F(u)F(v))$ positively correlated

4.4 Linear Regression

Theorem 4.1. (Ordinary Least Squares)

(i) In one-factor setting, maximum likelihood estimators for slope, intercept and variance are given by (see (1.1, 1.2)):

$$\hat{\beta} = \frac{S_Y r_{X,Y}}{S_X}, \quad \hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n = (Y_i - \hat{\beta}X_i - \hat{\alpha})^2$$

(ii) If the design matrix X in a multiple linear regression has full rank, then the maximum likelihood estimators are given by:

$$\hat{\beta} = (X^T X)^{-1} (X^T Y), \quad \hat{\sigma}^2 = \frac{\|Y - X \hat{\beta}\|^2}{n}$$

Theorem 4.2. (Weighted Least Squares/Heteroscedacity)

(i) Assume that error terms ε_i are have variance as $\sigma_i^2 \equiv z_i \sigma^2$ for known constants z_i . Let $w_i \stackrel{\text{def}}{=} (z_i \sigma^2)^{-1}$, then maximum likelihood estimators for slope, intercept and variance are given by (see (1.1, 1.2)):

$$\tilde{\beta} = \frac{\sum w_i(x - \tilde{x})(y - \tilde{y})}{\sum w_i(x - \tilde{x})^2} = \frac{\sum w_i \sum w_i x_i y_i - \sum w_i x_i \sum w_i y_i}{\sum w_i \sum w_i x_i^2 - (\sum w_i x_i)^2}$$
$$\tilde{\alpha} = \tilde{y} - \tilde{\beta}\tilde{x}$$
$$\hat{\sigma}^2 = n^{-1} \sum \frac{1}{z_i} (y_i - \tilde{\beta}x_i - \tilde{\alpha})^2$$

(ii) For the multi-factor model, maximum likelihood estimators can be written in the form:

$$\tilde{\beta} = (X^T W X)^{-1} (X^T W Y)$$

Theorem 4.3. Let $V \stackrel{\text{def}}{=} \operatorname{span}(X)$, and $V_0 \subset V$. Denote the projection onto V by P_V .

1. The likelihood ratio statistic for $H_0: X\beta_0 \in V_0$ equals

$$2\log \lambda_n(X,Y) = n\log \frac{\|(E - P_{V_0})Y\|^2}{\|(E - P_V)Y\|^2},$$

2. Under the null hypothesis, the following quantity has $F_{n-p,p-p_0}$ distribution:

$$\frac{\|(P_V - P_{V_0})Y\|^2/(p - p_0)}{\|(E - P_V)Y\|^2/(n - p)}$$

5 Statistical tests

5.1 t-tests

5.1.1 One-sample t-test

Let $X_1, X_2, ... X_n$ be an i.i.d. sample from the $N(\mu, \sigma^2)$ -distribution with μ and σ^2 unknown. Given $\mu_0 \in \mathbb{R}$ we test:

$$H_0: \mu \le \mu_0 \text{ against } H_1: \mu > \mu_0$$
 (5.1)

Test statistic:

$$T = \sqrt{n} \frac{\bar{X}_n - \mu_0}{S_X} \tag{5.2}$$

By Theorem 3.13, under $\mu = \mu_0$ the statistic has Student's t_{n-1} distribution, consequently we can use.

$$\sup_{\mu \le \mu_0} \mathbb{P}\left(T \ge t_{n-1,1-\alpha}\right) \le \alpha \tag{5.3}$$

5.1.2 t-Test for paired observations

Let $(X_1, Y_1), (X_2, Y_2), \ldots (X_n, Y_n)$ be the i.i.d. sample of paired observations. We assume that $Z_i \stackrel{\text{def}}{=} X_i - Y_i$ is $N(\Delta, \sigma^2)$ is normally distributed, and the ordinary One-sample t-test can be used to test the null hypotheses $H_0: \Delta \geq 0$. Note that if X_i and Y_i are strongly correlated then variance of Z_i decreases and this improves the power of the t-test.

5.1.3 Two-sample t-test

Let $X_1, X_2, ... X_n$ and $Y_1, Y_2, ... Y_m$ be two mutually independent i.i.d samples from $N(\mu, \sigma^2)$ and $N(\nu, \sigma^2)$. The test checks

$$H_0: \mu - \nu \le 0 \text{ against } H_1: \mu - \nu > 0$$
 (5.4)

Test statistic:

$$T = \frac{\bar{X} - \bar{Y}}{S_{X,Y}\sqrt{\frac{1}{n} + \frac{1}{m}}}$$
 (5.5)

$$S_{X,Y}^2 = \frac{1}{m+n-2} \left(\sum_{i=1}^n (X_i - \bar{X}_n)^2 + \sum_{j=1}^m (Y_j - \bar{Y}_m)^2 \right)$$
 (5.6)

Theorem 3.13 implies that $S_{X,Y}^2$ follows $\sigma^2 \cdot \chi_{m+n-2}^2$ distribution.

5.2 Kolmogorov-Smirnov test

Given and i.i.d. sample $X_1, \ldots X_n$ from some unknown distribution F, we want to test:

$$H_0: F = F_0 \text{ against } H_1: F \neq F_0$$
 (5.7)

The test statistic is given by

$$T = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)|, \tag{5.8}$$

where $\hat{F}_n(x)$ stands for the empirical distribution function (see 1.1). The distribution of T is the same for every continuous cdf F_0 . The following limit establishes the test:

$$\lim_{n \to \infty} \mathbb{P}_{F_0} \left(T > \frac{z}{n} \right) = 2 \sum_{j=1}^{\infty} (-1)^{j+1} e^{-j^2 z^2}$$
 (5.9)

6 Examples

6.1 Structural Models

6.1.1 Local level plus noise

• Model

$$\begin{cases} y_t = \mu_t + \varepsilon_t \\ m_t = \mu_{t-1} + \eta_t \end{cases}$$

• Stationary form

$$\Delta y_t = \eta_t + \Delta \varepsilon_t$$

• Reduced expression

$$y_t = \frac{\eta_t}{\Lambda} + \varepsilon_t$$

• Autocovariance generating function

$$g_{\Delta y_t}(L) = \sigma_{\eta}^2 + (1+L)(1+L^{-1})\sigma_{\varepsilon}^2$$

• Power spectrum

$$g_{\Delta y_t}(\lambda) = \sigma_{\eta}^2 + 2(1 - \cos \lambda)\sigma_{\varepsilon}^2$$

6.1.2 Local linear trend

• Model

$$\begin{cases} y_t = \mu_t + \varepsilon_t \\ \mu_t = \mu_{t-1} + \beta_{t-1} + \eta_t \\ \beta_t = \beta_{t-1} + \zeta_t \end{cases}$$

• Stationary form

$$\Delta^2 y_t = \zeta_{t-1} + \Delta \eta_t + \Delta^2 \varepsilon_t$$

• Reduced expression

$$y_t = \frac{\zeta_{t-1}}{\Delta^2} + \frac{\eta_t}{\Delta} + \varepsilon_t$$

• Autocovariance generating function

$$g_{\Delta^2 y_t}(L) = \sigma_{\zeta}^2 + (1+L)(1+L^{-1})\sigma_{\eta}^2 + (1+L)^2(1+L^{-1})^2\sigma_{\varepsilon}^2$$

• Power spectrum

$$g_{\Delta y_t}(\lambda) = \sigma_{\zeta}^2 + 2(1 - \cos \lambda)\sigma_{\eta}^2 + 4(1 - \cos \lambda)^2\sigma_{\varepsilon}^2$$

6.1.3 Cyclical models

• Model $(0 \le \rho \le 1)$

$$\begin{pmatrix} \psi_t \\ \psi_t^* \end{pmatrix} = \rho \begin{pmatrix} \cos \lambda_c & \sin \lambda_c \\ -\sin \lambda_c & \cos \lambda_c \end{pmatrix} \begin{pmatrix} \psi_{t-1} \\ \psi_{t-1}^* \end{pmatrix} + \begin{pmatrix} \kappa_t \\ \kappa_t^* \end{pmatrix}$$

- Stochastic cycle

$$y_t = \mu + \psi_t + \varepsilon_t$$

- Trend plus cycle

$$y_t = \mu_t + \psi_t + \varepsilon_t$$

Cyclical trend

$$\begin{cases} y_t = \mu_t + \varepsilon_t \\ \mu_t = \mu_{t-1} + \psi_{t-1} + \beta_{t-1} + \eta_t \\ \beta_t = \beta_{t-1} + \zeta_t \end{cases}$$

• Stationary form

- Stochastic cycle
$$(y_t \text{ stationary iff } \rho < 1)$$

$$y_t = \frac{(1 - L\rho\cos\lambda_c)\kappa_t + (L\rho\sin\lambda_c)\kappa_t^*}{1 - 2L\rho\cos\lambda_c + \rho^2L^2} + \varepsilon_t$$

- Trend plus cycle

$$\Delta^2 y_t = \zeta_{t-1} + \Delta \eta_t + \Delta^2 \psi_t + \Delta^2 \varepsilon_t$$

- Cyclical trend

$$\Delta^2 y_t = \zeta_{t-1} + \Delta \eta_t + \Delta \psi_{t-1} + \Delta^2 \varepsilon_t$$

- Reduced form (skipped obvious from Stationary form)
- Autocovariance generating function (view as VAR(1) process to derive)
 - Stochastic cycle

$$g_{y_t}(L) = \frac{\sigma_{\kappa}^2}{1 - \rho^2} \sum_{\tau = -\infty}^{\tau = \infty} L^{\tau} \rho^{|\tau|} \cos \lambda_c \tau$$

- Trend plus cycle & Stochastic trend use stationary form and take a sum of autocovariance generating functions of components accounting for differencing operators
- Power spectrum ($\rho < 1$). Easiest to see from the stationary form by substitution $L = e^{i\lambda}$. Note the difference between cycle frequency λ_c and the spectral parameter λ :

$$g_{\psi}(e^{i\lambda}) = \frac{|1 - \rho\cos\lambda_c e^{i\lambda}|^2 + |\rho\sin\lambda_c e^{i\lambda}|^2}{|1 - 2\rho\cos\lambda_c e^{i\lambda} + \rho^2 e^{2i\lambda}|}$$

6.1.4 Basic structural model (BSM)

• Model

$$y_t = \mu_t + \gamma_t + \varepsilon_t$$

- Dummy variable seasonal component

$$\sum_{\tau=0}^{s-1} \gamma_{t-\tau} = \omega_t$$

- Trigonometric seasonal component (c.f. Stochastic cycle):

$$\gamma_t = \sum_{j=1}^{\lfloor s/2 \rfloor} \gamma_{jt}, \ \gamma_{jt} = \frac{(1 - L\cos\lambda_j)\omega_t + (L\sin\lambda_j)\omega_t^*}{1 - 2L\cos\lambda_j + L^2}, \lambda_j = \frac{2\pi j}{s}$$

Note that cycles don't have dampening ρ factor, which makes the not stationary.

Stationary form

To make seasonal component γ_t in both versions of BSM model stationary, seasonal averaging $S(L) = 1 + L + \ldots + L^{s-1}$ must be applied (excercise), it won't be stationary as is due to absence of dampening factor.

- Dummy variable seasonal component $(S(L)\gamma_t = \omega_t)$ $\Delta \Delta_s y_t = S(L)\zeta_{t-1} + \Delta S(L)\eta_t + \Delta^2 \omega_t + \Delta \Delta_s \varepsilon_t$
- Trigonometric seasonal component (below $\bar{\gamma}_j = S(L)/(1-2L\cos\lambda_j + L^2)$; or (1+L) denominator for j=s/2 with even s):

$$S(L)\gamma_t = \sum_{j=1}^{\lfloor s/2\rfloor} \bar{\gamma_j} \left((1 - L\cos\lambda_j)\omega_{jt} + (L\sin\lambda_j)\omega_{jt}^* \right)$$

• Reduced form

- Dummy variable seasonal component

$$y_t = \frac{\zeta_{t-1}}{\Delta^2} + \frac{\eta_t}{\Delta} + \frac{\omega_t}{S(L)} + \varepsilon_t$$

– Trigonometric seasonal component follow directy from the form of γ_{jt} . Also note that trigonometric components can be written in VAR(1) form.

• Autocovariance generating function

- Dummy variable seasonal component The formula for $g_{\Delta\Delta_s y_t}$ follows from the stationary form. In particular, it follows that $\gamma(\tau) = 0$ for $\tau > s+1$
- Trigonometric seasonal component is more involved, can be derived directly by averaging and expressing $S(L)\gamma_t$ as a sum of $\omega_{jt}, \omega_{it}^*$. For example, s=4:

$$S(L)\gamma_{t} = (1+L)(\omega_{1t} + \omega_{1t} - 1^{*}) + (1+L^{2})\omega_{2t}$$

$$\Delta\Delta_{4}y_{t} = S(L)\zeta_{t-1} + \Delta_{4}\eta_{t} + \Delta^{2}(1+L)(\omega_{1t} + \omega_{1t-1}^{*}) + \Delta^{2}(1+L^{2})\omega_{2t} + \Delta\Delta_{4}\varepsilon_{t}$$

- Power spectrum
 - Dummy variable seasonal component (follows from the stationary form by substitution $L=e^{i\lambda}$)

$$g_{\Delta\Delta_s y_t}(L) = S(L)S(L^{-1})\sigma_{\zeta}^2 + (1 - L^s)(1 - L^{-s})\sigma_{\eta}^2 + (1 - L)^2(1 - L^{-1})^2\sigma_{\omega}^2 + (1 - L)(1 - L^{-1})(1 - L^s)(1 - L^{-s})\sigma_{\varepsilon}^2$$

 Trigonometric seasonal component follow from the stationary form, doesn't seem to simplify significantly.

6.1.5 ARMA models

• Model (all complex roots of $\varphi(L)$ are required to have absolute value strictly greater than one)

$$\varphi(L)y_t = \theta(L)\varepsilon_t$$

- ullet Stationary form y_t is stationary without any transformations
- Reduced form

$$y_t = \frac{\theta(L)}{\varphi(L)} \varepsilon_t$$

• Autocovariance generation function

$$g_{y_t}(L) = \frac{\theta(L)\theta(L^{-1})}{\varphi(L)\varphi(L^{-1})}$$

• Power spectrum

$$f(\lambda) = \frac{|\theta(e^{i\lambda})|^2}{|\varphi(e^{i\lambda})|^2}$$