Relatório EFC2

EA-072: Inteligência Artificial em Aplicações Industriais

André Barros de Medeiros RA:194060

Q1. Controle PID empregando um algoritmo evolutivo, que opera como uma meta-heurística de otimização em espaços contínuos.

Gráficos Gerados:

1. Evolução do Melhor fitness e fitness médio

2. Evolução dos Ganhos: Kp, Kd, Ki

3. Intensidade da mutação não uniforme ao longo das gerações:

4. Resposta a Degrau:

Análise dos Gráficos Gerados:

- O primeiro mostra como o fitness máximo chegou em 1 muito rapidamente e que, ao final da execução, a última geração tem fitness médio muito próxima de 1 também.
- O segundo gráfico mostra a evolução dos valores dos 3 ganhos ao longo das gerações até chegar nos valores que ao final da execução fornecem um fitness ótimo. Temos que a evolução do fitness mostrado no primeiro gráfico surge a partir da evolução dos ganhos.
- O terceiro gráfico mostra o decaimento da intensidade de mutação ao longo das gerações. Isso ocorre pois, à medida que se aproxima dos ganhos ótimos, diminui-se a

- necessidade/utilidade de uma taxa de mutação intensa já que o resultado que se procura está "por perto".
- O quarto e último gráfico apresenta a resposta a degrau com a configuração final de ganhos. Percebe-se que a resposta é extremamente rápida (reparar na escala). Isso é condizente com o fitness 1 pois, se atingimos os parâmetros ótimos de um controle PID, estes devem fazer o controle do sistema de uma forma bastante ágil.

Q2. Controle PID empregando PSO (Particle Swarm Optimization), que opera como uma meta-heurística de otimização em espaços contínuos.

Segue a proposta de <u>pseudocódigo</u> para a implementação de Particle Swarm Optimization (Global Best):

```
FOR each particle i
     FOR each dimension d
        Initialize position Xid randomly within permissible range
       Initialize velocity Vid randomly within permissible range
     END
   END
   WHILE maximum iterations or minimum error criteria not reached
     iteration k
     FOR each particle i
        Calculate Fitness
       IF fitness is better than own best
          update own best (Pid)
       END
     END
     Choose the particle with the best fitness value (Pgd)
     FOR each Particle i
        FOR each dimension d
          Calculate velocity according to the equation: Vid(k+1)=
W*Vid(k)+C1*rand(Pid-Xid)+C1*rand(Pgd-Xid)
          Update particle position according to equation: Xid(k+1) = Xid(k)+Vid(k+1)
       END
     END
     Add to iteration
   END
```

A diferença do Global Best PSO para o Local Best PSO é na componente que influencia a nova velocidade da partícula. No primeiro o termo Pgd vai ser o mesmo para toda as partículas pois corresponde à posição da partícula com o melhor fitness de todas na dada iteração. Já no caso do segundo, teríamos um termo "Pld" que é único para cada partícula

(poderíamos ter um array PLD com o Pld de cada partícula), pois cada partícula se referencia apenas nas duas partículas vizinhas para atualizar a sua velocidade. Com isso para alterar o pseudocódigo acima para implementar o Local best, após atualizar o fitness de cada uma, deve ser calculado um Pld para cada partícula e isso deve ser armazenado para o uso no resto da iteração. Podemos reutilizar o mesmo array toda iteração, pois na próxima iteração o que interessa são os novos valores de fitness calculados, não precisando guardar os valores Pld da anterior. Abaixo temos uma ilustração para facilitar o entendimento do cálculo da nova velocidade:

Comparando o algoritmo PSO com o Algoritmo Genético da questão 1, percebemos que, tendo ajustado corretamente a questão da restrição do espaço de busca para o PSO, o primeiro tende a ser melhor do que o segundo. Podemos ver isso quando avaliamos a velocidade para atingir resultados de qualidade próxima da ótima (converge em um tempo menor). Além disso, com várias execuções, percebe-se que o PSO converge à solução ótima com uma frequência maior do que o Algoritmo da questão 1. Como observação, após pesquisa na internet, foi concluído que para datasets pequenos, a diferença é bem pequena, aumentando com o tamanho do dataset (quanto mais dados, melhor o PSO se torna, comparado ao Algoritmo Genético Padrão).

Também podemos falar do fato de que enquanto o PSO ter sido concebido para otimização de espaços contínuos (que é o caso dessa aplicação), o AG foi originalmente pensado para otimizar espaços discretos. Com isso, para a aplicação do segundo no nosso problema, teve de ser utilizado alguns operadores que foram propostos para que o AG funcionasse. Isso pode ser outro motivo pela melhor performance do PSO.

Entretanto, é importantíssimo que não falte a observação de que o PSO não necessariamente vai manter esta superioridade caso outros problemas de otimização sejam testados e casos operadores genéticos mais competentes sejam empregados. Além disso, temos que quando uma meta-heurística bate outras em algum cenário comparativo, pode ser

pelo fato dos operadores serem mais adequados para a aplicação pretendida, dadas suas peculiaridades, ou porque possui uma parametrização melhor definida que aquela adotada para o algoritmo concorrente. Ou seja, toda essa análise feita comparando o PSO com o AG é, inevitavelmente, subjetivo à nossa aplicação, podendo ser diferente caso a aplicação fosse outra.

Finalmente, fazemos uma comparação entre o desempenho do Global Best e Local Best. A comunidade de pesquisa de PSO em geral recomenda o uso de Local Best pois tende a explorar um espaço maior, evita com mais frequência mínimos locais e, além disso, evita convergência prematura (o que ocorre bastante no uso de Global Best).

Q3. Otimização Combinatória

1. Mapa de Kohonen

Seguem abaixo os resultados de múltiplas execuções do algoritmo do caixeiro viajante (duas execuções para cada mapa fornecido) na seguinte ordem: Berlin52, inst1, inst2.

2. Algoritmo Genético

Segue o pseudocódigo da resolução do problema do Caixeiro Viajante por Algoritmo Genético:

- 1. Criar população inicial de P cromossomos
- 2. Avaliar o fitness de cada cromossomo.
- 3. Escolher X pais da atual população por meio de seleção proporcional
- 4. Selecionar aleatoriamente dois pais para gerar filho, utilizando o operador de recombinação.
- 5. Aplicar o operador de mutação aos filhos
- 6. Repetir 4 e 5 até todos os pais selecionados terem gerado filhos
- 7. Trocar população anterior pela nova
- 8. Voltar ao passo 2 IF não tiver alcançado critério de parada

O programa para a implementação desse problema foi feito em java. Abaixo temos a configuração inicial, um resultado intermediário, dois resultados finais e o gráfico da evolução do fitness ao longo do tempo (nesta ordem). Observação: o gráfico de fitness é referente à primeira execução.

Seguem os códigos do operador de recombinação, operador de mutação e de busca local:

```
private ArrayList<Chromosome> crossover (Chromosome p1, Chromosome p2)
{
    ArrayList<Chromosome> children;
    if (crossoverType == CrossoverType.UNIFORM_ORDER) {
        children = Crossover.uniformOrder(p1, p2, random);
    } else if (crossoverType == CrossoverType.ONE_POINT) {
        children = Crossover.onePointCrossover(p1, p2, random);
    } else {
        children = Crossover.orderCrossover(p1, p2, random);
    }
    return children;
}
```

```
private Chromosome performLocalSearch (Chromosome chromosome) {
        int bestDistance = chromosome.getDistance();
        City[] array = chromosome.getArray();
        City[] bestArray = array.clone();
        for (int i = 0; i < array.length-1; i++) {</pre>
            for (int k = i+1; k < array.length; k++) {
                City[] temp = array.clone();
                // Reverse order from i to k.
                for (int j = i; j <= (i+k)/2; j++) {
                    swap(temp, j, k - (j-i));
                }
                Chromosome c = new Chromosome(temp);
                int distance = c.getDistance();
                if (distance < bestDistance) {</pre>
                    bestDistance = distance;
                    bestArray = c.getArray();
                }
            }
        return new Chromosome(bestArray);}
```

Q4. Regressão Simbólica utilizando Eureqa

1. Mapeamento $\Re^1 \rightarrow \Re^1 [y = f(t)]$; $y = t^*\cos(5.3+6t) + \text{noise}$

Solution	y = 0.696981168549497*t*cos(2256.0713034038*t) + 0.322513018100629*t*cos(2224.65875947568*t)
R^2 Goodness of Fit	0.92451851
Correlation Coefficient	0.96363886
Maximum Error	2.0992338
Mean Squared Error	0.81168394
Mean Absolute Error	0.71182053
Coefficients	4
Complexity	21
Primary Objective	0.71182053
Fit (Normalized Primary Obj.)	0.28637649

2. Mapeamento $\Re^3 \rightarrow \Re^1 [y=f(x1,x2,x3)]$; $y=x1+\cos(x2)+\sin(x3)+\text{noise}$

Geramos os dados de X1, X2, X3 e Y com a seguinte função do Matlab:

```
i=0;
for j=1:0.1:10
    i=i+1;
    noise=0.2*rand(91,1);
    x1(1,i)=j+5;
    x2(1,i)=-j;
    x3(1,i)=(j-4.5)^2;
    y(1,i) = x1(1,i)+cos(x2(1,i))+sin(x3(1,i))+noise(i,1);
    x1=transpose(x1);
    x2=transpose(x2);
    x3=transpose(x3);
```

y=transpose(y); end

Observação: deve-se executar o código 2 vezes para preencher as variáveis por completo (devido ao funcionamento da função transpose()).

Com isso, passamos os dados para o Eureqa. A seguir está a representação gráfica de X1, X2, X3 e Y (nessa ordem):

Com isso, foi feita a inferência com o software Eureqa. Abaixo seguem algumas soluções que foram apresentadas pelo software:

size	Fit	Solutions
17	0.078	y = 0.0933162114575471 + x1 + cos(x2) - sin(x3 + 0.971169729420272*x1)
19	0.077	$y = 0.0882137532136215 + x1 + \cos(x2) - 0.990256927794345*\sin(x3 + 0.97176300019404*x1)$
21	0.076	$y = 0.0633809159923694 + 1.00161530792091*x1 + \cos(x2) - 0.979156757524207*\sin(x3 + 0.971756078055139*x1)$
15	0.123	y = x1 + cos(x2) - sin(x3 + 0.973396505573773*x1)
13	0.26	y = x1 + cos(x2) - sin(x1 + x3)
6	0.761	$y = x1 - \sin(x1)$
8	0.727	y = 0.250502437147123 + x1 - sin(x1)
10	0.727	y = 0.366458210023106 + 0.984591171636002*x1 - sin(x1)
12	0.705	y = 1.05151604528235*x1 + cos(x2) - 0.041051585464885*x3

Levando em consideração simplicidade e acurácia escolhemos uma solução com boa relação custo-benefício entre esses dois:

Solution	y = x1 + cos(x2) - sin(x3 + 0.973396505573773*x1)
R^2 Goodness of Fit	0.99830041
Correlation Coefficient	0.9996219
Maximum Error	0.28166569
Mean Squared Error	0.012776339
Mean Absolute Error	0.094251929
Coefficients	1

Complexity	15
Primary Objective	0.094251929
Fit (Normalized Primary Obj.)	0.12284597

Gráficamente, ela se apresenta da seguinte maneira:

Além disso, apresentamos a fronteira de Pareto obtida. Lembramos que a Fronteira de Pareto é o conjunto de parametrizações que são pareto-eficientes.

Q5. Redes Bayesianas

Temos que os dados contidos no arquivo dados_BN_EFC2.mat possuem 10000 amostras, 9 atributos, onde todos exceto o atributo 2 são atributos binários. Já o próprio atributo 2 assume 7 estados diferentes (veja tabela de probabilidade "Variable 7").

Abaixo segue a rede bayesiana gerada a partir dos dados citados, junto com as tabelas de probabilidades para cada nó:

Varia	ble 1	FALSE	TRUE
V8 false	V9 false	1	0
V8 false	V9 true	0	1
V8 true	V9 false	0	1
V8 true	V9 true	1	0

Variable 2	State1	State2	State3	State4	State5	State6	State7
V5 false	0.2633	0.1904	0.1769	0.1614	0.1182	0.0655	0.0216
V5 true	0.1159	0.1414	0.1283	0.1261	0.1657	0.1548	0.1677

Variable 3	FALSE	TRUE
V4 false	0.3373	0.6627
V4 true	0.9802	0.0198

Variable 4	FALSE	TRUE
V5 false	0.5949	0.4051
V5 true	0.7509	0.2491

Variable 5	FALSE	TRUE
	0.1481	0.8519

Varia	ble 6	FALSE	TRUE
V5 false	V8 false	0.8788	0.1212
V5 false	V8 true	0.5888	0.4112
V5 true	V8 false	0.0528	0.9472
V5 true	V8 true	0.1587	0.8413

Variable 7	FALSE	TRUE
	0.4972	0.5028

Variable 8	FALSE	TRUE
	0.482	0.518

Variable 9	FALSE	TRUE
	0.5022	0.4978

Ao analisar a rede bayesiana gerada, percebe-se que o nó 7 não possui conexões a nenhum outro nó. Isto se dá pelo fato de foi inferido, no processo de construção da rede, que a variável 7 não influencia na probabilidade de ocorrência de nenhuma outra.

Além disso temos que a probabilidade da variável 5 ser verdade é de 85.19%. É importante ressaltar que esta probabilidade não é influenciada por nenhuma outra variável (veja rede).

Temos também que, ao analisar a tabela de probabilidade do atributo 6, a probabilidade do atributo 6 ser verdade dado que o atributo 5 é falso e o atributo 8 é verdade é de 41.12%.

Não podemos deixar de observar também que, ao analisar a tabela de probabilidade da variável 1, podemos que há uma relação de XOR entre as variáveis 8 e 9.

Finalmente, também calculamos a probabilidade do atributo 5 ser verdade, dado que 3 é verdade. Para isso, partimos do Teorema de Bayes, e seguimos um processo similar ao apresentado no Exercício 2 do Tópico 10 da página do curso. Concluímos finalmente que P(5=1|3=1) = 87.38%.

Q6. Árvores de Decisão

Para os dados contidos no arquivo dados_AD_EFC2.arff, há 7 atributos, sendo eles 5 atributos numéricos (temperatura média, umidade média, altura da chuva mensal, precipitação em 21 dias e número de dias de chuva) e 2 atributos categóricos (local e classe). Abaixo seguem as estatísticas referentes a esses atributos:

Name: temperatura_medi Missing: 0 (0%)	Distinct: 14		Type: Numeric Unique: 0 (0%)
Statistic		Value	
Minimum		12.82	
Maximum		21.98	
Mean		18.448	
StdDev		2.965	
Name: umidade_media			Type: Numeric
Missing: 0 (0%)	Distinct: 14		Unique: 0 (0%)
Statistic		Value	
Minimum		68.38	
Maximum		97.83	
Mean		90.306	
StdDev		7.247	
Name: altura_chuva_mer Missing: 0 (0%)	nsal Distinct: 14		Type: Numeric Unique: 0 (0%)
Statistic		Value	
Minimum		9	
Maximum		273.7	
Mean		107.779	
StdDev		71.769	
Name: precip_21_dias			Type: Numeric
Missing: 0 (0%)	Distinct: 14		Unique: 0 (0%)
Statistic		Value	
Minimum		0	
Maximum		216.9	
Mean		85.179	
StdDev		62.745	
Name: numero_dias_chu	ıva		Type: Numeric
Missing: 0 (0%)	Distinct: 11		Unique: 0 (0%)
Statistic		Value	
Minimum		3	
Maximum		15	
Mean		8.857	
StdDev		3.823	

Name: Missing:	12.770	Distinct: 5	Type: Nominal Unique: 0 (0%)
No.	Label	Count	Weight
1	ID	14	14.0
2	IM	14	14.0
3	PM	14	14.0
4	CHI	14	14.0
5	GAL	14	14.0
Name: class Missing: 0 (0%)		Distinct: 2	Type: Nominal Unique: 0 (0%)
No.	Label	Count	Weight
1	0	11	11.0
2	1	59	59.0

Ao rodarmos a árvore de decisão C4.5 com os parâmetros indicados no enunciado, obtivemos o seguinte resultado:

• % de classificação correta: 91.4286 %

• Matriz de confusão: a b <-- classified as

8 3 | a = 0 3 56 | b = 1

• A própria árvore de decisão:

J48 unpruned tree

```
temperatura_media <= 21.87
| numero_dias_chuva <= 4
| | local = ID: 1 (3.0)
| | | local = IM: 1 (3.0)
| | local = PM
| | local = CHI
| | | local = GAL: 0 (3.0)
| numero_dias_chuva > 4
| | local = ID: 1 (10.0)
| | local = IM
| | umidade_media <= 97.5: 1 (9.0)
| | umidade_media > 97.5: 0 (1.0)
| | local = PM: 1 (10.0)
| | local = CHI: 1 (10.0)
```

```
| | local = GAL: 1 (10.0)
temperatura_media > 21.87
| local = ID: 1 (1.0)
| local = IM: 0 (1.0)
| local = PM: 0 (1.0)
| local = CHI: 0 (1.0)
| local = GAL: 0 (1.0)
```

Number of Leaves : 18 Size of the tree : 26

Time taken to build model: 0.01 seconds

É interessante ressaltar que a matriz de confusão (apresentada acima) indica que em 8 vezes, foi classificado que não havia a presença da espécie (a=0) corretamente e 3 vezes erroneamente. Além disso em 56 vezes foi classificado que havia a presença da espécie (b=1) corretamente e 3 vezes erroneamente.

Para facilitar mais ainda a compreensão, estruturamos a árvore de decisão acima na forma de <u>regras de antecedente e consequente</u>: (onde 0 indica classe a e 1 indica classe b)

SE <temperatura_media<21.87 & numero_dias_chuva<=4> ENTÃO < ID=1 & IM=1 & GAL=0>

SE <temperatura_media<21.87 & numero_dias_chuva <=4 & numero_dias_chuva>3> ENTÃO <CHI=0>

SE <temperatura_media<21.87 & numero_dias_chuva<=4 & numero_dias_chuva<=3> ENTÃO <CHI=1>

SE <temperatura_media<21.87 & numero_dias_chuva>4> ENTÃO <ID=1 & PM=1 & CHI=1 & GAL=1>

SE <temperatura_media<21.87 & numero_dias_chuva>4 & umidade_media<=97.5> ENTÃO <IM=1>

SE <temperatura_media<21.87 & numero_dias_chuva>4 & umidade_media>97.5> ENTÃO <IM=0>

SE <temperatura_media>21.87> ENTÃO <ID=1 & IM=0 & PM=0 & CHI=0 & GAL=0>

Em seguida, <u>alteramos o parâmetro minNumObj e unpruned</u> (um de cada vez) e obtivemos os resultados abaixo:

```
unpruned=false (pruned):

J48 pruned tree
-----

temperatura_media <= 21.87: 1 (65.0/7.0)

temperatura media > 21.87: 0 (5.0/1.0)
```

```
=== Confusion Matrix ===

a b <-- classified as

4 7 | a = 0

2 57 | b = 1
```

minNumObj = 2:

```
J48 unpruned tree
```

```
temperatura_media <= 21.87
| numero_dias_chuva <= 4
| | local = ID: 1 (3.0)
| | local = IM: 1 (3.0)
| | local = PM: 1 (3.0/1.0)
| | local = CHI: 0 (3.0/1.0)
| local = GAL: 0 (3.0)
| numero_dias_chuva > 4: 1 (50.0/1.0)
temperatura_media > 21.87: 0 (5.0/1.0)
```

Correctly Classified Instances 63 90 %

```
=== Confusion Matrix ===
a b <-- classified as
8 3 | a = 0
4 55 | b = 1
```

Percebe-se que no caso em que aumentamos o MinNumObj de 1 para dois, a árvore é simplificada, porém cai um pouco de performance. Entretanto, como a queda é pouca, essa configuração pode ser interessante para ser aplicada. Enquanto isso, quando ativamos o "pruning", a árvore é muito simplificada, e o desempenho cai em torno de 4 vezes mais. Sendo assim, podemos dizer que nesse caso, dependendo não é muito interessante essa configuração a não ser que precisamos de algo muito simplificado (nesse caso, uma performance de 87% é de fato excelente). Abaixo, explicamos o que quer dizer cada um dos parâmetros:

Quando a árvore é "unpruned" ela tende a ser maior, pois ao final da sua construção, ela não passa por um processo de "poda". Caso selecionarmos a opção "pruned", ao final da construção da árvore adicionamos um passo no algoritmo que analisa se há partes dela que podem ser removidas sem afetar em muito a performance. A ideia por trás de pruning é, além de deixar a árvore mais compreensível, diminuir o risco de overfitting.

Já o parâmetro MinNumObj, de modo simplificado, regula o número mínimo de instâncias em uma folha. Entretanto, na verdade isso só ocorre para no mínimo dois ramos

(mas nada garante mais de dois). Com isso, o parâmetro MinNumObj pode ser melhor interpretado como a separação mínima de dados por ramo, especialmente para árvores onde nós têm vários filhos (árvores não binárias, conhecidas como "multi-way trees").

Com isso, tomamos outro conjunto de dados principalmente de atributos categóricos. No caso, a base de dados é sobre a eleição presidencial de 1984 no Estados Unidos. Este arquivo pode ser encontrado no seguinte link:

https://storm.cis.fordham.edu/~gweiss/data-mining/datasets.html ou na pasta em que foi enviado esse relatório.

Quando construímos a árvore com as configurações iniciais do exercício anterior, conseguimos 95.1724% de acerto. Ao alterar os parâmetros (unpruned=false e minNumObj=3), conseguimos subir a taxa de acerto para 96.3218%. Lembrando que só havia 5% de "espaço" para melhorar, um aumento de 1.1494% já está muito bom. Com essa nova configuração, obtivemos a seguinte árvore de decisão:

```
J48 pruned tree
-----
physician-fee-freeze = n: democrat (253.41/3.75)
physician-fee-freeze = y
| synfuels-corporation-cutback = n: republican (145.71/4.0)
| synfuels-corporation-cutback = y
| mx-missile = n
| | adoption-of-the-budget-resolution = n: republican (22.61/3.32)
| adoption-of-the-budget-resolution = y: democrat (7.25/2.23)
| mx-missile = y: democrat (6.03/1.03)
```

Com a seguinte matriz de confusão:

```
=== Confusion Matrix ===
a b <-- classified as
259 8 | a = democrat
8 160 | b = republican
```