안인규 (Inkyu An)

Speech And Audio Recognition (오디오 음성인식)

https://mairlab-km.github.io/

- Task:
 - Transform speech from audio to text
- Also known as:
 - SST (Speech to Text)

- Metrics: WER (Word Error Rate)
 - **Target**: the quick brown fox jumps over a lazy dog
 - Prediction: the quick brow an fox jumps over lazy dog

- Metrics: WER (Word Error Rate)
 - **Target**: the quick brown fox jumps over a lazy dog
 - **Prediction**: the quick brow an fox jumps over lazy dog
 - 1. S substitutions
 - 2. D deletions
 - 3. I insertions
 - 4. N total words in target

$$WER = \frac{S + D + I}{N}$$

- Metrics: WER (Word Error Rate)
 - **Target**: the quick brown fox jumps over a lazy dog
 - **Prediction**: the quick brow an fox jumps over lazy dog
 - 1. S substitutions
 - 2. D deletions
 - 3. I insertions
 - 4. N total words in target

$$WER = \frac{S + D + I}{N}$$

CER (Character Error Rate)

The same tings, but at the character level

Questions:

- What is more important?
- What is more difficult to minimize?
- WER > 1?
- N = 0?

- Metrics: WER (Word Error Rate)
 - Target: the quick brown fox jumps over a lazy dog
 - **Prediction**: the quick brow an fox jumps over lazy dog
 - 1. S substitutions
 - 2. D deletions
 - 3. I insertions
 - 4. N total words in target

$$WER = \frac{S + D + I}{N}$$

CER (Character Error Rate)

• The same tings, but at the character level

Questions:

- Questions:왜곡, 가독성 저하 측면)• What is more important?S (음향적 유사성, 언어적 모호성) minimize?
- WER > 1?——→ Possible (Why?)
- N = 0 ?

D > S > I (정보 손실, 의미

- Data: Wall Street Journal (WSJ0, WSJ1)
 - Domain: WSJ articles read aloud by journalists, high-quality audio recorded with 2 mics
 - Parts:
 - train: 78k samples, totally 73h
 - test: 8.2k samples, total 8h
 - Features:
 - read speech
 - up to several minutes of audio
 - complex newspaper language
 - commercial: no free access

- Data: Libri Speech (2015)
 - Domain: audio books from LibriVox project
 - Parts:
 - train: 960h / test: 11h / dev: 11h
 - clean / other (noise)
 - Features:
 - read speech with ASR model alignment
 - 10-20s of audio
 - literary language
 - several sentences per sample
 - balanced by speakers

subset	hours	per-spk	female	1	total
Subsci	Hours	minutes	spkrs	spkrs	spkrs
dev-clean	5.4	8	20	20	40
test-clean	5.4	8	20	20	40
dev-other	5.3	10	16	17	33
test-other	5.1	10	17	16	33
train-clean-100	100.6	25	125	126	251
train-clean-360	363.6	25	439	482	921
train-other-500	496.7	30	564	602	1166

	test clean	test other
model	1.4	2.48
human	5.83	12.69

Sample (clean):

Sample (other):

Audio Visualization tool: Audacity (Free)

• Before Deep Learning

Before Deep Learning

Acoustic model (음향 모델)

- Feature → Phoneme (음소) 확률을 mapping
- HMM (Hidden Markov Model) + GMM (Gaussian Mixture Model)

Lexicon (발음 사전)

- 단어 → 음소 sequence mapping
- Acoustic model을 통해 구한 음소 확 률을 단어로 연결하는 역할

 $\mathbf{W}^* = \arg \max_{\mathbf{W}} \ p(\mathbf{X}|\mathbf{W}) \ P(\mathbf{W})$

Language model (언어 모델)

- Word sequence의 확률을 계산
- n-gram
- Acoustic model이 헷갈릴 경우, 문맥 확률을 활용

- What do we want?
 - Build an ASR model

- What do we want?
 - Build an ASR model
 - We ca extract audio features
 - Spectrogram
 - Mel spectrogram
 - ...

- What do we want?
 - Build an ASR model
 - We ca extract audio features
 - Spectrogram
 - Mel spectrogram
 - •
 - We have
 - variable input lengths, x_1, x_2, \dots, x_t
 - variable output length, $y_1, y_2, \dots, y_u, u \le t$

- What do we want?
 - Build an ASR model
 - We ca extract audio features
 - Spectrogram
 - Mel spectrogram
 - •
 - We have
 - variable input lengths, x_1, x_2, \dots, x_t
 - variable output length, $y_1, y_2, \dots, y_u, u \le t$
 - **Problem**: *x* and *y* are misaligned!

- What do we want?
 - Build an ASR model
 - We ca extract audio features
 - Spectrogram
 - Mel spectrogram
 - ...
 - We have
 - variable input lengths, x_1, x_2, \dots, x_t
 - variable output length, y_1, y_2, \dots, y_u , $u \le t$
 - **Problem**: *x* and *y* are misaligned!

- Naive Approach
 - Build a model that predicts probability distribution for each x_i over vocabulary V
 - $O = P(V \parallel X) = Model(X)$
 - $X \in \mathbb{R}^{seq_{len} \times mel_{len}}, O \in \mathbb{R}^{seq_{len} \times size_{voca}}$
 - then, we can easily predict output as argmax over the time axis
 - $Y^* = \operatorname{argmax}(O), Y \in \mathbb{R}^{seq_{len}}$
 - $Y^* = \{h, h, e, l, l, l, \dots\}$

- Naive Approach
 - Build a model that predicts probability distribution for each x_i over vocabulary V
 - $O = P(V \parallel X) = Model(X)$
 - $X \in \mathbb{R}^{seq_{len} \times mel_{len}}, O \in \mathbb{R}^{seq_{len} \times size_{voca}}$

Encoding

- then, we can easily predict output as argmax over the time axis
- $Y^* = \operatorname{argmax}(O), Y \in \mathbb{R}^{seq_{len}}$
- $Y^* = \{h, h, e, l, l, l, \dots\}$

Vocabulary: v_1, v_2, \dots, v_t

- What do we want?
 - Thus, how can we obtain $Y^* \in \mathbb{R}^{seq_{len}}$

- What do we want?
 - Thus, how can we obtain $Y^* \in \mathbb{R}^{seq_{len}}$

Merge consecutive letters

Issues?

- Multiple consecutive letters in a target word (e.g., hello)
- Silence between works and letters (e.g., breathing, lip-smacking)

O: probability distribution

- What do we want?
 - Thus, how can we obtain $Y^* \in \mathbb{R}^{seq_{len}}$

Merge consecutive letters

Issues?

- Multiple consecutive letters in a target word (e.g., hello)
- Silence between works and letters (e.g., breathing, lip-smacking)

 \longrightarrow Blank symbol: ε

O: probability distribution

- What do we want?
 - Add special symbol to vocabulary
 - Blank symbol: ε
 - <u>Train model in such a way, to predict blank symbol in issue case</u>
 - How to deal with blank symbol while decoding
 - Merge all repeated symbols into one

 $h \epsilon e | l \epsilon \epsilon l \epsilon o \rightarrow h \epsilon e | \epsilon l \epsilon o$

Delete blanks

 $h \epsilon e | \epsilon | \epsilon o \rightarrow h e | l o$

- How should we define a loss?
 - We have valid paths that decode into the target

and non-valid path

- How should we define a loss?
 - We have valid paths that decode into the target

- we don't care what path the model selected, thus, we maximize probabilities for all of them
- for each valid path, we can compute its probability from the output matrix

- How should we define a loss?
 - we don't care what path the model selected, thus, we maximize probabilities for all of them
 - for each valid path, we can compute its probability from the output matrix
 - $P(h h e l l \epsilon \epsilon l \epsilon o) = 0.00123$

- How should we define a loss?
 - we don't care what path the model selected, thus, we maximize probabilities for all of them
 - for each valid path, we can compute its probability from the output matrix
 - $P(h h e l l \epsilon \epsilon l \epsilon o) = 0.00123$
 - $P(h h e l l l \epsilon l \epsilon o) = 0.00112$

- How should we define a loss?
 - we don't care what path the model selected, thus, we maximize probabilities for all of them
 - for each valid path, we can compute its probability from the output matrix
 - $P(h h e l l \epsilon \epsilon l \epsilon o) = 0.00123$
 - $P(h h e l l l \epsilon l \epsilon o) = 0.00112$
 - $P(h h h h h h e l \epsilon l o) = 0.00001$
 - and for many others ...

- How should we define a loss? ——— CTC Loss
 - we don't care what path the model selected, thus, we maximize probabilities for all of them
 - for each valid path, we can compute its probability from the output matrix
 - $P(h h e l l \epsilon \epsilon l \epsilon o) = 0.00123$
 - $P(h h e l l l \epsilon l \epsilon o) = 0.00112$
 - $P(h h h h h h e l \epsilon l o) = 0.00001$

Efficient CTC Loss Compute

```
target = ab
p(\text{out=ab})_T = p(\text{out=ab}, \text{last\_char} = b)_T
                       + p(\text{out=ab, last\_char} = \epsilon)_T
p 	ext{ (out=ab, last\_char = b)}_T =
                               p(\text{prefix=a, last\_char} = b)_{T-1} \cdot p(\text{char=b})_{T}
                            +p(\text{prefix=a, last\_char} = \epsilon)_{T=1} \cdot p(\text{char=b})_{T}
                            +p(\text{prefix=a, last\_char} = \text{a})_{T=1} \cdot p(\text{char=b})_{T}
p 	ext{ (out=ab, last\_char} = \epsilon)_T =
                               p(\text{prefix}=\text{a}, \text{last\_char} = \text{b})_{T-1} \cdot p(\text{char}=\epsilon)_T
                            +p(\text{prefix=ab}, \text{last\_char} = \epsilon)_{T-1} \cdot p(\text{char} = \epsilon)_{T}
```

• Efficient CTC Loss Compute

• Efficient CTC Loss Compute: Case 1

$$lpha_{s,t} \; = \; \; \; (lpha_{s-1,t-1} + lpha_{s,t-1}) \hspace{1cm} \cdot \hspace{1cm} p_t(z_s \mid X)$$

The CTC probability of the two valid subsequences after t-1 input steps.

$$p_t(z_s \mid X)$$

The probability of the current character at input step t.

• Efficient CTC Loss Compute: Case 2

$$lpha_{s,t} \ = \ (lpha_{s-2,t-1} + lpha_{s-1,t-1} + lpha_{s,t-1}) \qquad \cdot \qquad p_t(z_s \mid X)$$

The CTC probability of the three valid subsequences after t-1 input steps.

$$p_t(z_s \mid X)$$

The probability of the current character at input step t.

- Efficient CTC Loss Compute: Example
 - Output Y = [a, b]

Node (s,t) in the diagram represents $\alpha_{s,t}$ – the CTC score of the subsequence $Z_{1:s}$ after t input steps.

t	t=1	t=2	t=3	t=4
\mathcal{E}	0.6	0.2	0.3	0.4
а	0.3	0.5	0.2	0.1
b	0.1	0.3	0.5	0.5

O: probability distribution

- Efficient CTC Loss Compute: Example
 - Output Y = [a, b]

Node (s,t) in the diagram represents $\alpha_{s,t}$ – the CTC score of the subsequence $Z_{1:s}$ after t input steps.

t	t=1	t=2	t=3	t=4
\mathcal{E}	0.6	0.2	0.3	0.4
а	0.3	0.5	0.2	0.1
b	0.1	0.3	0.5	0.5

0: probability distribution

- Efficient CTC Loss Compute: Example
 - Output Y = [a, b]

		input, X		
	x_I	x_2	x_3	x_4
	ϵ 0.6	0.12	0.036	0. 44
output $Y = [a,b]$	a 0.3	0.45	0.114	0.5
	ϵ	0.06	• 0.153	0, 68
	b \	0.09	0.3	0.2835
	ϵ		0.027	0.1308

Node (s,t) in the diagram represents $\alpha_{s,t}$ – the CTC score of the subsequence $Z_{1:s}$ after t input steps.

t	t=1	t=2	t=3	t=4
\mathcal{E}	0.6	0.2	0.3	0.4
а	0.3	0.5	0.2	0.1
b	0.1	0.3	0.5	0.5

0: probability distribution

0.2835 + 0.1308 = 0.4143

Forward DP (Dynamic Programming)

- CTC properties
 - No language context: outputs are independent, meaning that each letter does not know about others
 - Streamable: we don't need full audio, to start predicting (how to inference?)
 - Produces alignment: between audio and target

- CTC inference
 - argmax is fast, but:
 - Problems:
 - P([b,b,b]) = 0.5 argmax
 - $P([a, a, \epsilon]) = 0.4$
 - P([a, a, a]) = 0.2
 - ...
 - but:
 - p("a") = 0.6
 - p("b") = 0.5

We can't compute all paths

- CTC Beam Search
 - We want to decode an output matrix into a list of text predictions with probabilities
 - Has parameter: beam size >= 1
 - Tradeoff between:
 - Taking argmax prediction: easy and fast to compute, but not perfectly accurate
 - Computing sum of probabilities of all possible paths: Perfect quality, but <u>infeasible</u>

• CTC Beam Search (Beam size=3)

Beam search step:

- expand beam
- truncate beam

A standard beam search algorithm with an alphabet of $\{\epsilon,a,b\}$ and a beam size of three.

• CTC Beam Search (Beam size=3)

Beam search step:

- expand beam
- merge paths
- truncate beam

The CTC beam search algorithm with an output alphabet $\{\epsilon,a,b\}$ and a beam size of three.

CTC Summary

* Connectionist Temporal Classification: Labelli ng Unsegmented Sequence Data with Recurre nt Neural Networks, A. Graves et. al, 2006

CTC Properties

- conditional independence
- streamable
- produces alignment
- fast inference

CTC Decoding

- allows to reduce fixed len predictions to variable length predictions provides mapping from path to string

How to train:

- compute encoder predictions output matrix
- efficiently compute sum of probs of all paths c orresponding to target
- maximize this sum

How to evaluate:

- compute encoder predictions output matrix
- argmax / beam search
- CTC decode

Beam Search:

- expand beam
- merge paths
- truncate beam
- repeat

- Encoders: Deep Speech 2
 - Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, Dario Amodei et al., 2015
 - 11,9k hours of training data
 - 35M parameters
 - no torch in 2015 many challenges
 - super human quality on clean sets
 - 3-5 days on 16 GPUs

Read Speech			
Test set	DS1	DS2	Human
WSJ eval'92	4.94	3.60	5.03
WSJ eval'93	6.94	4.98	8.08
LibriSpeech test-clean	7.89	5.33	5.83
LibriSpeech test-other	21.74	13.25	12.69

- Encoders: Conformer
 - Conformer: Convolution-augmented Transformer for Speech Recognition, Anmol Gulati, Google, 2020
 - Transformers
 - 1D depthwise separable convolution
 - <u>convolutions for local</u>, attention for global dependencies

- Encoders: Conformer
 - Conformer: Convolution-augmented Transformer for Speech Recognition, Anmol Gulati, Google, 2020

Convolution module

- Encoders: Conformer
 - Conformer: Convolution-augmented Transformer for Speech Recognition, Anmol Gulati, Google, 2020

Depthwise Convolution

Pointwise Convolution

8
8
8

Subword Tokenization

- motivation:
 - a lot of characters have different pronunciation in different contexts (e.g. cheese and character)
 - generated tokens are conditionally independent of each other (in case of CTC)
 - reducing the target sentence length by subword tokenization, we are trying to sidestep the CTC loss sequence length limitation
 - less compute leads to faster training and inference
 - better generalization leads to better quality
- subword tokenization:
 - Byte Pair Encoding (BPE)
 - Word Piece
 - Unigram

Subword Tokenization: BPE (Byte Pair Encoding)

```
Algorithm 1 Byte-pair encoding [30]
 1: Input: set of strings D, target vocab size K
 2: procedure BPE(D, K)
       V \leftarrow all unique characters in D
       while |V| < K do
                                                              ▶ Merge tokens
 4:
           t_L, t_r \leftarrow \text{Most frequent bigram in D}
                                                           ▶ Make new token
          t_{NEW} \leftarrow t_L + t_R
 6:
          V \leftarrow V + [t_{NEW}]
           Replace each occurrence of t_L, t_r in D with t_{NEW}
 8:
       end while
 9:
       return V
10:
11: end procedure
```

aaabdaaabac

1. add **Z** <- aa

ZabdZabac

2. add **Y** <- ab

ZYd**ZY**ac

3. add **X** <- ZY

XdXac

Example: low, lowest, newer \longrightarrow add "lo"=**A**, **A**w, **A**west, newer \longrightarrow ... **V**: I, o, w, n, e, s, t, r \longrightarrow **V**: **A**, w, n, e, s, t, r

Subsampling

- motivation:
 - speed up training and inference
 - subword tokenization can work better, because we will encode more data per frame

- options:
 - 1d conv with stride
 - 2d conv and projection
 - stacking consecutive frames and projection -
 - and many others..

- Language models (LM)
 - motivation:
 - spelling of a word heavily depends on its context
 - LMs can add context dependency in CTC beam search
 - external language models typically saw more data
 - examples:
 - simple: n-gramms, Kneser–Ney smoothing and others
 - complex: neural networks
 e.g: Bert, GPT, LLaMA

```
hypo 1: let's go two a movie (am score: 0.21) hypo 2: let's go to a movie (am score: 0.19) hypo 3: let's go too a movie (am score: 0.13)
```

```
P(let's go two a movie) = 0.01 (Im score)
P(let's go to a movie) = 0.6 (Im score)
```

• Language models (LM)

- Language models (LM)
 - Second pass rescoring:

