State diagrams for two DFAs, $\,M_{1}^{}\,$ and $\,M_{2}^{}\,$ are

- (a) Start state is indicated by the arrow pointing towards it.
- ullet For the DFA (Deterministic Finite Automata) M_1 , an arrow is pointing towards the state q_1 . So q_1 is the start state.
- ullet For the DFA $M_{2'}$ arrow is pointing towards the state q_1 . So q_1 is the start state.
- (b) The accept state is the one which is identified by a double circle.
- In state diagram of $M_{\rm I}$, the state q_2 has double circle. So $\left\{q_2\right\}$ is the accept state.
- ullet In the sate diagram of M_2 , the states q_1 and q_4 have double circles. So the set $ig\{q_1,q_4ig\}$ are the accept states.

(c)

- ullet When we given the string aabb as input to the machine M_1 then the following transitions will takes place
- (1) Start in state q_1
- (2) Read a, follow transition from q_1 to q_2
- (3) Read a, follow transition from q_2 to q_3 .
- (4) Read b, follow transition from q_3 to q_1 .
- (5) Read \emph{b} , follow transition from \emph{q}_1 to \emph{q}_1

From (1), (2), (3), (4), (5)

So the machine M_1 will go through following sequence of states on input $aabb.\ q_1,q_2,q_3,q_1,q_1$

- ullet When we give the input aabb to machine ${\it M}_2$ then the following transitions will takes place
- (1) Start in state q_1
- (2) Read a, follow transition from q_1 to q_1
- (3) Read \emph{b} , follow transition from \emph{q}_{1} to \emph{q}_{2}
- (5) Read b, follow transition from q_2 to q_4

From (1), (2), (3), (4), (5)

q_1, q_1, q_1, q_2, q_4 (d) \bullet Machine $\,M_{_{\! 1}}$ will go through following sequence of sates on input aabb1. Start in state q_1 2. Read \emph{a} , follow transition from \emph{q}_1 to \emph{q}_2 3. Read \emph{a} , follow transition from \emph{q}_{2} to \emph{q}_{3} 4. Read b, follow transition from $\,q_{\scriptscriptstyle 3}\,$ to $\,q_{\scriptscriptstyle 1}$ 5. Read \emph{b} , follow transition from \emph{q}_{1} to \emph{q}_{1} On reading the input aabb, M_1 finally entered into state q_1 , which is not an accept state. So M_1 reject the input aabb. \bullet Machine $\,M_2^{}\,$ will go through the following sequence of sates on input aabb1. Start in state q_1 2. Read \emph{a} , follow transition from \emph{q}_1 to \emph{q}_1 3. Read \emph{a} , follow transition from \emph{q}_1 to \emph{q}_1 4. Read \emph{b} , follow transition from \emph{q}_1 to \emph{q}_2 5. Read \emph{b} , follow transition from \emph{q}_{2} to \emph{q}_{4} On reading the input aabb, ${\it M}_{2}$ finally entered into state ${\it q}_{4}$. $q_{\scriptscriptstyle 4}$ accept state of $M_{\scriptscriptstyle 2}$. Hence M_2 accept the input aabb. ullet On giving the input \in (empty string) to machine M_1 , M_1 always in the start state q_1 . But $\left\{q_{\scriptscriptstyle 1}\right\}$ in not the accept sate of $\,M_{\scriptscriptstyle 1}.\,$ Thus M_1 does not accept the string \in

But $\left\{q_{\scriptscriptstyle 1}\right\}$ is also accept state of M_2 .

Thus $\,M_2^{}\,$ accept the string $\,\in\,$.