Your Name: Sagar Kalauni | 800752752

INSTRUCTIONS

- 1. You are allowed 1 hour 15 minutes for this exam.
- 2. Show ALL work on this sheet to receive partial credit or full credit.
- Neat presentation of work is required. Answers which are not legible will be assumed incorrect
- 4. Make sure your mobile phone is switched off and place it in your bag together with any books and materials not allowed on this test
- 5. Leave the exam hall quickly and quietly. Remember to take all your belongings with you.
- 6. No calculators during the exam.
- 7. Answer ALL questions!

Answer the following questions [2 point each 14 total points]

1.	If matrix A is positive defin	ite, $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$.								
(a)) True	(b) False								
2.	(Select all that apply) If	the covariance between two variables is zero, this implies :								
<u>(b)</u> с)	The variables are independe The variables are not correla The mean of the variables is	ated.								
	The variables have a normal distribution. What can be said about the eigenvalues and eigenvectors of Σ^{-1} relative to those of Σ ?									
a) the c) ne d)	Σ^{-1} and Σ have the same expression of Σ^{-1} are seen same. The eigenvalues of Σ^{-1} are segatives of each other									
4.	What is the distribution of a	a single linear combination a'X when X is multivariate normal?								
_	Multivariate normal Univariate normal	c) Wishart d) Chi-squared								
5.	Which of the following is tru	ne about the multivariate normal distribution?								
b)) Zero correlation implies independence) Linear combinations are normally distributed) The conditional distributions are normal) All of the above									
6.	Which measure is used to su	immarize the relationship between two continuous variables?								
,	Mean Variance	© Correlation d) Median								

7. Select the best answer. If a multivariate dataset follows a normal distribution in every possible linear combination of variables, it is said to be:

- a Marginally normal
- c) Unconditionally normal
- b) Jointly normal
- d) Fully normal

3

 x_1 x_3 x_2 x_4 x_1 x_3 x_2 x_4 x_4 x_5 x_2 x_4 x_4 x_5 x_2 x_4 x_4 x_5 x_5 x_5 x_6 x_6 x_7 x_8 x_8 x_8 x_9 x_9

SECTION B

In what follows, only perform matrix multiplication if the answer is needed for a follow up question. If not, leave your answers as a product of matrices.

1. [13 pts] Suppose the mean vector and covariance matrix of $\mathbf{X} = (X_1, X_2, X_3, X_4)$ is given by:

$$\mu = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix} \quad \text{and} \quad \Sigma = \begin{bmatrix} 3 & 0 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & 1 & 9 & -2 \\ 2 & 0 & -2 & 4 \end{bmatrix}. \quad \mu_1 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$\mu_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Let

$$\mathbf{X}^{(1)} = \begin{bmatrix} X_1 \\ X_3 \end{bmatrix} \qquad \mathbf{X}^{(2)} = \begin{bmatrix} X_2 \\ X_4 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} 1 & 2 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix}$$

Find

(a) [4 pts] $E(\mathbf{AX^{(1)}})$ and $E(\mathbf{BX^{(2)}})$

$$E(AX'') = AE(X'') = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$
$$= 8$$

$$E(B \times {}^{(2)}) = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

(b) [4 pts] $Cov(AX^{(1)})$ and $Cov(BX^{(2)})$

$$(ov (AX'')) = A \sum_{i} A^{T}$$

$$= \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$(OV(BX^{(2)}) = B \Sigma_{22}B^{T}$$

$$= \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -2 & -1 \end{bmatrix}$$

(c) [2 pts] Cov(X⁽¹⁾, X⁽²⁾)

$$Cov(X^{(1)}, X^{(2)}) = \sum_{12} = \begin{bmatrix} 0 & 2 \\ 1 & -2 \end{bmatrix}$$

(d) [3 pts] $Cov(AX^{(1)}, BX^{(2)})$

$$(ov(AX^{(1)}, BX^{(2)}) = A (ov(X^{(1)}, X^{(2)})B^{T}$$

$$= \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -2 & -1 \end{bmatrix}$$

2. [8 pts] The density function of a multivariate normal distribution can be written in the form

$$f(\mathbf{x}) = \frac{\sqrt{|\mathbf{A}|}}{(2\pi)^{p/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{b})^T \mathbf{A}(\mathbf{x} - \mathbf{b})} - \infty < \mathbf{x} < \infty \qquad -$$

Find A, b and p for the random vector x with density function:

We are given
$$f(x) = \frac{1}{2\pi} \exp\left[-\frac{1}{2}(x_1^2 + x_2^2 + 4x_1 - 6x_2^6 + 13)\right]$$

$$= \frac{1}{2\pi} \exp\left[-\frac{1}{2}(x_1^2 + x_2^2 + 4x_1 - 6x_2^4 + 13)\right]$$

$$= \frac{1}{2\pi} \exp\left[-\frac{1}{2}(x_1^2 + x_2^2 + 4x_1 + 4 - 4 + x_2^2 - 6x_2 + 9 - 9 + 13)\right]$$

$$= \frac{1}{2\pi} \exp\left[-\frac{1}{2}((x_1 + 2)^2 + (x_2 - 3)^2)\right]$$

$$= \frac{1}{2\pi} \exp\left[-\frac{1}{2}((x - b)^T A(x - b))\right]$$
Where $(x - b)^T A(x - b)$

$$= \begin{cases} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} -2 \\ 3 \end{bmatrix} \end{cases}$$

$$\therefore \text{ Clearly } P = 2, b = \begin{bmatrix} -2 \\ 3 \end{bmatrix} A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Such that IAI = 1.

3. [10 pts] Suppose f(x,y) is a bivariate normal density with $\mu_{X_1}=0, \mu_{X_2}=0,$ $\sigma_{X_1}^2=4, \sigma_{X_2}^2=1, \rho_{X_1X_2}=0.8$

(a) [4 pts] Write the marginal distributions of X_1 and X_2 .

Marginal distribution of X1 and X2 both is Univariate Normal

50 X1 N(Mx1, 0x2)

ine X, ~ N(0,4)

 $A \times_2 \longrightarrow N(\mu_{X_2}, \sigma_{X_2}^2)$

ie X2 N(0,1)

(b)[6 pts] What is the marginal distribution of $X_1 + 2X_2$?

$$0 = (X_1 + 2X_2) = \mathcal{U}_1 + 2\mathcal{U}_2 = 0 + 2 \cdot (0) = 0$$

$$\begin{cases} ..' O_{12} = S_{12} \sqrt{\sigma_1^2} \sqrt{\sigma_2^2} \\ = 0.8 \cdot (2) \cdot (1) \end{cases}$$

30 The monginal distribution of X1+2X2 is univariate Normal

i.e
$$\chi_1 + 2\chi_2$$
 $\bigwedge \left(\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 & 1 \cdot 6 \\ 1 \cdot 6 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right)$

4. [5 pts] Let $X \sim N_p(\mu, \Sigma)$. Show that the random variable $Z = (X - \mu)^T \Sigma^{-1} (X - \mu)$ has a $\chi^2_{\ell,\lambda}$ distribution

given
$$X \sim N_P(M, \Sigma)$$
.

Let
$$Z = (X - \mu) \Sigma^{-1/2} \longrightarrow N_p(Q, I)$$
. Thus

$$ZZ^{T} = \left[(X - \mathcal{L}) \Sigma^{-1/2} \right] \left[(X - \mathcal{L}) \Sigma^{-1/2} \right]^{T}$$

$$= (X - \mathcal{L}) \Sigma^{-1/2} \cdot \Sigma^{-1/2} (X - \mathcal{L})^{T}$$

$$= (X - H) \Sigma^{-1} (X - H) \longrightarrow X_{(b)}^{2}$$

5. [4 pts] A quadratic form $\mathbf{x}^T \mathbf{A} \mathbf{x}$ for a matrix A is given as $3x_1^2 + 3x_2^2 - 2x_1x_2$. Is the matrix A positive definite?

$$\alpha^{T}A\alpha = 3\chi_1^2 + 3\chi_2^2 - 2\chi_1\chi_2$$

$$= 2\chi_1^2 + 2\chi_2^2 + \chi_1^2 + \chi_2^2 - 2\chi_1\chi_2$$

$$= 2\chi_1^2 + 2\chi_2^2 + (\chi_1 - \chi_2)^2 > 0$$

so Motrux A is positive definite (provide & should be non-zero vector)

$$\Rightarrow \begin{vmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (1-\lambda)^2 - \mu^2 = 0$$

$$\begin{bmatrix} -h & h \\ h & h \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$-\pi\chi_1 + \pi\chi_2 = 0$$
 } identical $\pi\chi_1 - \pi\chi_2 = 0$

Let
$$x_1=1$$
, then $x_2=1$

bo Normalized eigen vector is
$$e_1 = \begin{bmatrix} \frac{1}{\sqrt{1^2+1^2}} \\ \frac{1}{\sqrt{1^2+1^2}} \end{bmatrix} = \begin{bmatrix} \sqrt[4]{2} \\ \sqrt{\sqrt{2}} \end{bmatrix}$$

$$\begin{bmatrix} n & H \\ y & L \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$11x_1 + 11x_2 = 0$$
 ? identical $11x_1 + 11x_2 = 0$

Let
$$x_1=1$$
, then $x_2=-1$.

:. Eigen Vector =
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$A = \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T$$

$$= (1+1) \begin{bmatrix} 1/1/2 \\ 1/1/2 \end{bmatrix} \begin{bmatrix}$$

7. [5 pts] Given the data matrix

$$\mathbf{X} = \begin{bmatrix} 9 & 1 \\ 5 & 1 \\ 1 & 2 \end{bmatrix},$$

Find the covariance and correlation between $-X_1 + 2X_2$ and $2X_1 + 3X_2$. (Use the unbiased covariance matrix of X)

covariance matrix of X).
$$b^{T} X = \begin{bmatrix} -1 & 2 \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} + C^{T} X = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix}$$

$$S = \frac{1}{(n-1)} \overline{X}^{T} (I - \frac{1}{n} I I^{T}) \overline{X}$$

$$= \frac{1}{2} \begin{bmatrix} 9 & 5 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2/3 & -1/3 & -1/3 \\ -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \end{bmatrix} \begin{bmatrix} 9 & 1 \\ 5 & 1 \\ 1 & 2 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 9 & 5 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 4 & -1/3 \\ 0 & -1/3 \\ -4 & 2/3 \end{bmatrix}$$

$$= \begin{bmatrix} 16 & -2 \\ -2 & \frac{1}{3} \end{bmatrix}$$

Covariance

$$cov(\cancel{b}^{T}\cancel{x}, \cancel{c}^{T}\cancel{x})$$

$$= [-12]\begin{bmatrix} 16 & -2 \\ -2 & y_3 \end{bmatrix}\begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$= [-12]\begin{bmatrix} 26 \\ -3 \end{bmatrix}$$

$$= -32$$

Voruance

$$Voin(-X_1 + 2X_2) = 16 + 4(\frac{1}{3}) - 4(-2)$$
$$= 16 + \frac{4}{3} + 8 = \frac{76}{3}$$

Page	2	3	4	5	6	7	8	9	10	Total
Points										
earned										