

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

Mid Semester Examination

September 2018

Max. Marks: 20

Class: T.E.

Semester: V

Duration: 01 hr

Course Code: IT54/CE55

Branch: Information Technology/Computer

Engineering

Name of the Course: Theoretical Computer Science

Synoptic

Please find the sample solution and marks distribution

Q. no						
Q.1(a)	Mealy machine-					
7	state transition table – 2Marks					
	Mathematical transition – 1Marks					
	Transition diagram – 1 marks					
Q.2(a)	Consider the following grammar					
	S → AB aaB					
	A→ a Aa					
	$B \rightarrow b$					
	(i). Show that the grammar is ambiguous					
	(ii). Construct an unambiguous grammar that describe the same language					
	Answer -					
	1 We may derive aab using either $S \to AB$ or $S \to aaB$, which give rise to different trees:					
	(A) (B) (a) (B)					
	(A) (a) (b)					
	We can remove the production S → aaB to eliminate the ambiguity, which leads to the					
	following grammar: $S \to AB$					
	$A \rightarrow a \mid Aa$					
	B o b					
	We can further simplify this grammar, by eliminating the variables A and B :					
	$S \rightarrow aS \mid ab$					
Q.2 (a)	Convert the following CFG to CNF S→ABA					

	A→aA 8	A STATE OF STATE	1842						
	 B→bB ε Elimination of ε − 2 Mark Elimination of unit production − 1mark Conversion of simplified CFG to CNF − 2 marks 								
Q 3 a	Write Regular expressions for the following languages over {a,b} (3marks)								
	a. The set of Strings of length $\cong 2 \mod 3$ over the input (a,b)								
	Ans: $((a+b), (a+b), (a+b))^* (a+b), (a+b) (1 \text{ mark})$								
	b. The set of strings such that two a's should not come together Ans: $(b+ab)^*$. $(\epsilon+a)$ or $(\epsilon+a)$. $(b+ba)^*$ (1 mark)								
	c. L={uvw u, w belongs to Σ^* and $ v =2$ }								
	-	Ans: (a+b)*.	(a+b). (a+b) . (a+b)	* (1 m	ark)			
Q3b	Design CFG for the following languages (2 Marks)								
	a. $L = \{a^m b^n \mid m \ge 2, n \ge 3\}$ (1 mark)								
	Ans: S → aaAbb								
	$A \rightarrow aA Ab \epsilon$								
	b. $L = \{a^i b^j C^k \mid \text{ such that } k = i+j \text{ where } i,j \ge 1 \}$ (1 mark)								
	Ans: $S \rightarrow aSc \mid aAc$								
		A →bA	c bc						
Q 4		r the following	ig ε-NFA:						
	3		-				7		
			δ	3	a	b	1		
			1	2	3				
			2	-	2	-			
			3	4	-	3			
			5*	-	5	2			
			5	1	1.0	-			
	a)	a) Construct NFA without ε- transitions (3 marks)							
	Converted Transition table of NFA without ε (2 marks)								
		Transition diagram for NFA without ε (1 mark)							
		b) Convert the automation to DFA (3 marks)							
	Converted Transition table of DFA (2 marks) Transition diagram for DFA (1 mark)								
						rks)			

XXXXX