

UNIVERSITÀ DEGLI STUDI DI PISA

DIPARTIMENTO DI INGEGNERIA DELLA INFORMAZIONE

Prima prova in itinere Comunicazioni Numeriche 31/03/2016

Fila A

Esercizio 1. Due terminali A e B sono connessi tra di loro tramite 4 interruttori, T_1 , T_2 , T_3 e T_4 ; per la precisione T_1 e T_2 sono connessi in serie tra di loro ed in parallelo sia a T_3 che a T_4 . Nell'ipotesi che gli interruttori possano essere aperti probabilità P_1 =0.5, P_2 =0.4, P_3 =0.4, P_4 =0.3, e in modo indipendente l'uno dall'altro, determinare

- 1) la probabilità che i terminali A e B siano connessi;
- 2) La probabilità che A e B siano connessi sapendo che l'interruttore T₁ è chiuso;
- 3) La probabilità che l'interruttore T₄ sia chiuso, sapendo che i terminali sono connessi.

Esercizio 2. Dopo aver dimostrato il teorema dell'aspettazione per variabili X e Y=g(X) discrete, si calcoli il valor medio di $Y=X^2$ sapendo che la v.a. X può assumere i valori -1, 0 e 1 con probabilità uguali.

Esercizio 3. Si consideri il segnale rappresentato in Fig.1 e se ne calcoli la sua TSF oltre che la sua energia, potenza media, valor medio e valor efficace.

Esercizio 4. Calcolare la ATCF (TCF⁻¹) dello spettro in Fig.2 (nota: il grafico dello spettro è dato in ampiezza e fase)

Esercizio 5. Enunciare e dimostrare il teorema della derivazione per la TCF

