Ausgewählte Kapitel der Logik

Martin Lundfall

13. Juli 2016

Aufgabe 1

Nach Satz 3.21 (zusammen mit Bemerkung 3.22) ist eine Relation TM-rekursiv abzählbar genau dann wenn sie Σ_1 -definierbar ist.

Deswegen ist unser Ziel eine TM-rekursiv abzählbar Relation zu bauen, welche Σ_1 -definition unter Negation entspricht keine TM-rekursiv abzählbare Relation. In Aufgabe 3 von Übungsblatt 7 haben wir gezeigt dass die Relation H definiert durch

 $H := \{n_M : M \text{ ist eine Turing-Maschine, deren Zustandsmenge eine}$ endliche Teilmenge von N ist, die bei leerer Eingabe nach endlich vielen Schritten anhält}

 Σ_1 -definierbar ist.

Sei φ die Σ_1 -Formel die definiert H. Wenn $\neg \varphi$ Σ_1 -definierbar wäre, würden die Mengen $\mathbb{N} \setminus H$ und H beide rekursiv abzählbar sein, aber dass würde bedeuten dass die Halte-probleme entsheidbar wäre.

Aufgabe 2

Angenommen dass $\operatorname{Th}(\mathcal{Z})$ ist rekursiv aufzählbar. Unsere Zeil ist zu zeigen dass das impliziert dass $\operatorname{Th}(\mathcal{N})$ rekursiv aufzählbar ist.

Es gilt dass $\varphi \in Th(\mathcal{N})$ genau dann wenn $\varphi' \in Th(\mathcal{Z})$, wo φ' ist φ wo alle die Quantoren hat die weitere forderung dass die variablen sie quantifieren positiv sein muss.

Genauer: φ' ist die Formel wo jeder Subformel von φ an der Form $\exists v_i.\psi$ (oder $\forall v_i.\psi$), ist ausgetauchst für die Subformel $\exists v_i.0 \leq v_i.\psi$ (oder $\forall v_i.0 \leq v_i\psi$).

Beweis: Für alle positive Zahl m_Z, n_Z, k_Z in \mathbb{Z} gilt:

$$0_{Z} = 0$$

$$1_{z} = 1$$

$$m_{Z} \leq_{Z} n_{Z} \iff m_{N} \leq_{N} n_{N}$$

$$m_{Z} +_{Z} n_{Z} = k_{z} \iff m_{N} +_{N} n_{N} = k_{N}$$

$$m_{Z} \cdot_{Z} n_{Z} = k_{z} \iff m_{N} \cdot_{N} n_{N} = k_{N}$$

$$(2)$$

Dass heißt, die Teil (substruktur) von positiven Zahlen in die struktur \mathcal{Z} ist isomorph zu \mathcal{N} , und deswegen gilt $Th(\mathcal{N}) \equiv Th(\mathcal{Z}|_{pos})$. Bau die algoritmus die zählt $Th(\mathcal{N})$ wie folgt: Gegeben eine Formel φ' ander $\in Th(\mathcal{Z})$ von die algoritmus die zählt sie auf, ACCEPT φ und φ' wenn φ' hat die beschränkungen von positivität beschreibt wie oben. Da wir wissen dass $Th(\mathcal{N})$ nicht rekursiv aufzählbar ist, haben wir hier ein widerspruch. Deswegen kann $Th(\mathcal{Z})$ nicht rekursiv aufzählbar sein.

Aufgabe 3

Das Ziel ist zu Übersetzen σ_{Ar} zu eine endliche binäres Signatur $\hat{\sigma}$. Sei $\hat{\sigma} = E, \dots$ wobei

$$R_{0} = \{n, m \in \mathbb{N} : m = 0\}$$

$$R_{1} = \{n, m \in \mathbb{N} : m = 1\}$$

$$R_{+} = \{n, m \in \mathbb{N} : R_{T}(n, m)\}$$
(3)

sei $E_g = \text{Für alle } n, m, s \in \mathbb{N}$ sei