MTH9899 Final Project 2021.5

Quanzhi Bi, Junhan Wang, Liang Shan

Outline

Project Structure

Data Preparation

13 Feature Engineering

Model Tuning

Model Performance

01 Project Structure

The ML Pipeline

02 Data Preparation

Data preprocessing

Cleaning

- Impute the missing values by the median of its previous value, because
- (1) median is robust to the outliers.
- (2) will assign the lowest signal value to the model, avoid learning fake signal.

Clipping

• To avoid learning the outliers, we winsorized the data (both the features and the target) by quantile (0.01, 0.99).

Scaling

 Some model make use of regularization techniques. So, we scale the feature to zero mean, unit variance.

Train-test split

Train Set

 Train Set: 2014, 2015, 2016. We do all of our exploratory data analysis, feature engineering and hyper-parameter tuning in this set.

Cross-validation

 Split the train set into K-folds. Each fold contains all the stocks' data available on the dates in that fold. We split the train set in this way to calculate the information coefficient (IC) as one of the references of feature selection.

Test set

• 2017. We only calculate the weighted R squared on this set as a performance metric of the model.

Feature selection criteria?

	Description	Characteristic
IC	daily IC = corr(feature, target)	
IR	mean(IC) / std(IC)	cross-sectional stock- picking capability,
RankIC	daily RankIC = corr(rank(feature), rank(target))	not necessarily useful in a single
RankIR	mean(RankIC) / std(RankIC)	model
weighted R squared	in-sample 1/estVol weighted R squared, using LR	works well in a single model

Feature categories and full list

Trend features

Name	Description	In-sample R squared (bps)	Out-of-sample R squared (bps)
vol-weighted res_ret	ts_sum(res_ret*vol,20)/ts_sum(vol,20)	0.38	0.25
vol-weighted raw_ret	ts_sum(raw_ret*vol,20)/ts_sum(vol,20)	0.18	0.21
20-day res_ret	ts_sum(res_ret,20)	0.15	0.32
vol raw_ret divergence	corr(vol,raw_ret,20)	0.12	0.07
5-day res_ret	ts_sum(res_ret,5)	0.04	0.24
20-day intraday res_ret	ts_sum(res_ret_day,20)	(0.02)	0.06
5-day raw_ret	ts_sum(raw_ret,5)	(0.03)	0.07
RawReturn_LogLogSquared	log(-log(raw ret**2))	0.48	0.78
Reversal1D	1 Day's Reversal	0.19	(0.22)
VolWeightedReturn	Volatility weighted residual return	0.04	(0.11)
Reversal5D	5 Day's Reversal	0.01	0.05
RawReturn_close_EMA	Exponential moving average of raw return	(0.03)	0.04
FD1008	Fractional Differentiation	(0.03)	0.02
IntradayReturn	Intra-day return	(0.04)	(0.02)
ВВ	Bollinger Bands	(0.04)	(0.02)
RawNoWinsorCumReturn_close	Today's Raw Return	(0.05)	(0.05)

Feature categories and full list

Volatility features

Description	In-sample R squared (bps)	Out-of-sample R squared (bps)
ts_kurt(raw_ret,20)	0.11	0.25
10-day {res_ret} 75 quantile – 25 quantile	0.04	0.14
20-day {res_ret} 75 quantile – 25 quantile	(0.01)	0.14
20-day {raw_ret} 75 quantile – 25 quantile	(0.03)	0.05
ts_kurt(rank(estVol),20)	(0.03)	0.08
	ts_kurt(raw_ret,20) 10-day {res_ret} 75 quantile – 25 quantile 20-day {res_ret} 75 quantile – 25 quantile 20-day {raw_ret} 75 quantile – 25 quantile	Description R squared (bps) ts_kurt(raw_ret,20) 0.11 10-day {res_ret} 75 quantile - 25 quantile 0.04 20-day {res_ret} 75 quantile - 25 quantile (0.01) 20-day {raw_ret} 75 quantile - 25 quantile (0.03)

Volume features

20-day rank of vol-kurt	rank(ts_kurt(vol,20))	(0.04)	0.06
Liquidity_volume_close	In(V_t + V_t-1 + + V_t-n+1), where V_t is trading volume in shares	(0.01)	0.00

Stories behind the features

ts_kurt(raw_ret,20) ~ "volatility"

20-day kurtosis of {raw_ret} series

$$\operatorname{Kurt}[X] = \operatorname{E}\left[\left(rac{X-\mu}{\sigma}
ight)^4
ight] = rac{\operatorname{E}\left[(X-\mu)^4
ight]}{\left(\operatorname{E}[(X-\mu)^2]
ight)^2} \,\,\, {}^{ ext{ o 0.00010}}$$

MQ(res_ret,20,0.75,0.25) ~ "volatility"

20-day {res_ret} series, 75-quantile – 25-quantile

Stories behind the features

RawReturn_LogLogSquared

• FD1008

Fractional Differentiation

Differentiation of price with a non-integer factor d:

$$(1-B)^d = 1 - dB + \frac{d(d-1)}{2!}B^2 - \frac{d(d-1)(d-2)}{3!}B^3 + \dots$$
, where B is a backshift operator.

Here we let d=0.8.

Feature correlation

In-sample
correlation
matrix of all
features,
excluding
abs(corr) ≥ 0.8.

-0.6

-0.0

04 Model Tuning

The models we used

Linear Regression, Ridge Regression, XGBoost, ExtraTrees

Hyper-parameter Tuning for XGBoost

We used grid search on the training set to select the best combination of the parameters. The parameters can be divided into two categories:

- To fit the training set:
 - n estimators: 1000
 - the number of trees in the boosting algorithm.
 - max depth: [3, 5, 7, None]
 - the maximized depth of each CART in the boosting algorithm.

- To avoid over-fitting the training set:
 - earling stopping rounds: 5
 - validation metric needs to improve at least once in every early_stopping_rounds round(s) to continue training.
 - learning rate: [0.01, 0.05, 0.1]
 - boosting learning rate.
 - reg_alpha: [0.1, 1]
 - L1 regularization term on weights.
 - subsample: [0.5, 1]
 - Subsample ratio of the training instance.
 - colsample bytree: [0.5, 1]
 - Subsample ratio of columns when constructing each tree.

05 Model Performance

Model Performance

Model Name	CV R squared (bps)	In-sample (14-16) R squared (bps)	Out-of-sample (17) R squared (bps)	
Linear Regression (7 features)		1.34	1.30	
Linear Regression (19 features)		1.83	2.18	
Ridge Regression (7 features)	0.94	1.33	1.28	
Ridge Regression (19 features)	1.01	1.83	2.11	
XGBoost (7 features)	0.56	8.31	1.46	
XGBoost (19 features)	1.12	16.76	5.65	
ExtraTrees (7 features)	3.67	18.41	3.98	
ExtraTrees (19 features)	4.30	30.70	3.24	

Model Name	CV R squared (bps)	14-15 (bps)	16 (bps)	17 (bps)
XGBoost (19 features)*	2.32	24.83	4.83	3.08
ExtraTrees (19 features)*	3.93	37.98	4.51	2.32

Remark: * means using 14-15 to train, 16 to validate, 17 to test

05 Model Performance

Correlation of Predictions & Targets

Feature Importance by MDA

05 Model Performance

Drift Plot

Thank you!