Question-1

Quantization Escress.

$$E_{\pm}(q_1,q_2) = \sum_{\chi=0}^{\pm 1} h(\chi) |\chi-q_1| + \sum_{\chi=\pm}^{255} h(\chi) |\chi-q_2|$$

102 (1) 6 + 4 216

To find q, and q2 1-

(i) Derivotive
$$w.x.t q$$
,
$$\frac{\partial E_t}{\partial q_i} = \frac{\partial}{\partial q_i} \left[\begin{array}{c} \frac{t+1}{2} \\ x=0 \end{array} \right] h(x) \left[x-q_i \right] + 0$$

$$= -\frac{t+1}{2} h(x) \left(x-q_i \right)$$

$$= -\frac{t+1}{2} h(x) \left(x-q_i \right)$$

$$\frac{\partial E}{\partial q} = 0 \Rightarrow q_1 = \frac{\int_{X=0}^{+1} x h(x)}{\sum_{X=0}^{+1} h(x)}$$
 where $x \neq q_1$

(ii) Derivative wort
$$q_2$$

$$\frac{\partial E_{\pm}}{\partial q_2} = 0 - \sum_{\chi=\pm}^{m} h(\chi) (\chi - q_2)$$

$$\frac{\partial F_{\pm}}{\partial q_2} = \sum_{\chi=\pm}^{m} \chi h(\chi)$$

$$\frac{\partial F_{\pm}}{\partial q_2} = \sum_{\chi=\pm}^{m} \chi h(\chi)$$

$$\frac{\partial F_{\pm}}{\partial q_2} = \sum_{\chi=\pm}^{m} \chi h(\chi)$$

Question-2

2. Optimal Thresholding Algorithm.

$$E(\pm, q_1, q_2) = \sum_{\chi=0}^{\pm 1} (\chi - q_1)^2 p(\chi) + \sum_{\chi=\pm}^{M} (\chi - q_2)^2 p(\chi)$$

(a) Let,
$$t=6$$

a) Let,
$$t = 6$$

$$E[6, 9, 9_{2}] = \sum_{x=0}^{5} (x-9_{1})^{2} p(x) + \sum_{x=6}^{m} (x-9_{2})^{2} p(x) = \sum_{x=6}^{m} (x-9_{2})^{2} p(x)$$

$$Q_{2} = \sum_{x=0}^{m} x p(x)$$

$$3b + 20 + 119 + 88$$

$$Q_{2} = \frac{M}{\sum_{\substack{x = \pm \\ x = \pm \\ x$$

$$(6-16.4375)^{2} \times (6-16.4375)^{2} \times (10-16.4375)^{2} \times 2 + (10-16.4375)^{2} \times 7 + (88-16.4375)^{2}$$

$$E(10,q_1,q_2) = \sum_{x=0}^{q} (x-q_1)^2 p(x) + \sum_{x=10}^{m} (x-q_2)^2 p(x)$$

$$9_1 = \frac{36}{6} = 6$$
 $9_2 = \frac{20 + 119 + 88}{2 + 7 + 1} = 22 \cdot 7$

Entrol =
$$(6-6)^2 \times 6 + (10-22\cdot7)^2 \times 2 + (17-22\cdot7)^2 \times 7 + (88-22\cdot7)^2$$

= $0 + 322\cdot58 + 227\cdot53 + 5265\cdot09$
= $4814\cdot1$

$$E(17, q_1, q_2) = \sum_{\chi=0}^{16} (\chi - q_1)^2 p(\chi) + \sum_{\chi=17}^{17} (\gamma - q_2)^2 p(\chi)$$

$$Q_1 = 36 + 20 = 8$$
 $Q_2 = 119 + 88 = 25 - 875$

: Estron =
$$(6-8)^2 \times 6 + (10-8)^2 \times 2 + (17-25.875)^2 \times 7 + (88-25.875)^2 \times 1$$

DI-1218 + 312-5 4 28-63 F 34-1780

$$E(88, 9, 9, 9) = \sum_{x=0}^{87} (x-9)^2 p(x) + \sum_{x=88}^{10} (x-9)^2 p(x)$$

$$q_1 = \frac{36+20+119}{15} = 11-67$$
 $q_2 = \frac{88}{1} = 88$

Forces =
$$(6-11.67)^2 \times 6 + (10-11.67)^2 \times 2 + (17-11.67)^2 \times 7 + (188-88)^2 \times 1$$

$$= 192.89 + 5.58 + 198.86 + 0$$
$$= 397.33$$

Image !-

	0	0	0	0
	0	0	0	0
-	0	0	0	0
	0	0	0	J

3. Linear Scaling

$$\chi \rightarrow (\chi - \alpha)(B - A) + A$$

$$A = 0$$

$$B = 255$$

As per image,
$$a = 6$$
 and $b = 88$
 $\therefore x \rightarrow (2-6) \times 255$
 82

$$\chi = 6 \Rightarrow (6-6) \times 255 = 0$$
 $\chi = 17 \Rightarrow \frac{11 \times 255}{82} = 34.207$

$$\chi = 10 \Rightarrow \frac{4 \times 255}{82} = 255$$

$$= 12.439$$

$$\approx 12$$

Г	-			12-1
1	0	0	0	
1	0	0	0	12
+	74	34	34	34
1	34	34	34	255
4.	34]		

4. Histogram Equalization

i h(i)
$$f(i) + f(i) = \frac{256}{16}$$
 $f(0)$ $0 \Rightarrow 0$
 $0 \quad 0 \quad 0 \quad 0 \Rightarrow 0$

Image:

48	48	48	112
48	48	48	112
84	184	184	184
84	184	184	248
	48 84	48 48 84 184 184 184 184 184 184 184 184	48 48 84 184 184 184