Chapter 8

Bias and Current Flow in the PN Junction

Biased PN Junction

- The term 'bias' in electronics refers to the application of one or more steady or "DC" voltages (or sometimes currents) to a semiconductor device;
- In the case of a PN junction which has just two terminals, we forward bias the junction when the potential on the Pside (anode) is higher than the potential on the N-side (cathode) (i.e. voltage across the device = V > 0)
- The opposite condition is referred to as reverse bias, where the potential on the anode is lower than that on the cathode (i.e. V < 0).
- Under conditions of DC bias, note that thermal equilibrium no longer applies.

Reference Senses and Notation

- We will adopt the notation that capital letters (perhaps with capital subscripts) always represent steady or DC voltages or currents
- For example, if V_p is the absolute DC voltage on the P-side (relative to 0V or Ground) and V_N is the equivalent DC voltage on the N-side, then from KVL above:

$$V = V_P - V_N$$

 Note that e.g. the current does not have to flow in the direction of the reference arrow, its just that if it does so then it is taken as a positive quantity.

Forward Bias of the PN Junction

Connect <u>positive</u> terminal of DC voltage to <u>anode</u> of PN junction

- In thermal equilibrium, the internal N-side is at a voltage (ϕ_i) higher than the P-side.
- As a result of applying the DC bias, a (positive) voltage V exists across the terminals of the device as shown in the diagram, and therefore the N-side becomes only (ϕ_i -V) higher than the P-side, i.e. the potential barrier has been reduced by the forward bias.

Reverse Bias of the PN Junction

Connect <u>negative</u> terminal of DC voltage to <u>anode</u> of PN junction

- Again, thermal equilibrium no longer applies;
- In this case the V shown in the diagram is negative. It thus adds in magnitude to the higher potential on the N-side in thermal equilibrium. The potential on the N-side now becomes $(\phi_i+|V|)$ higher than the P-side, i.e. the potential barrier has been increased by the reverse bias.

Extending from Thermal Equilibrium to the Non-equilibrium (Biased) Case

- We can simply re-use the formulas derived earlier that assumed thermal equilibrium, e.g. for the depletion layer width and penetration of the depletion layer into the P-side or N-side;
- All that needs to be done is everywhere to replace (ϕ_i) with (ϕ_i-V) , where it is understood that V> 0 means forward bias and V< 0 means reverse bias. We should also remove any zero subscripts that indicated thermal equilibrium.

Depletion Layer Width with Bias

 For example, in thermal equilibrium we found previously that the equilibrium depletion layer width is given by:

$$W_o = \sqrt{\frac{2 \cdot \varepsilon \left(\varphi_i\right)}{q} \left(\frac{N_A + N_D}{N_A \cdot N_D}\right)}$$

Under biased conditions with a voltage V, this now reads:

$$W = \sqrt{\frac{2 \cdot \mathcal{E} \cdot (\varphi_i - V)}{q} \cdot \left(\frac{N_A + N_D}{N_A \cdot N_D}\right)} \frac{\text{This is the version of the formula given in the Formula Sheet}}{}$$

This is the Sheet

• Similarly, we can modify the formulas for x_{no} and x_{po} to get general expressions for x_n and x_p under biased conditions.

Effect of DC Bias on Depletion Layer Width, Electric Field E(x) and Potential V(x)

Example 8.1

<u>Current Flow in the PN Junction</u>

- With a DC voltage V applied, it is possible for a current I to flow in the PN junction
- We now first consider *qualitatively* what happens within the structure under forward and reverse bias, respectively. This discussion is based on the energy band picture with the junction energy barrier modified from the value $\mathbf{q}.(\phi_i)$ in equilibrium to $\mathbf{q}.(\phi_i-V)$ with bias
- Following this, we use the basic semiconductor device equations to derive an *analytical formula* that allows us to predict I for any V in a PN junction, subject to certain approximations

Energy Bands Under DC Bias Conditions

- Since thermal equilibrium no longer applies, there is no requirement for the Fermi energy to be everywhere uniform;
- Earlier we took the neutral P-region as our reference for potential.
 Hence, we can take account of the effect of an applied DC bias V
 (equivalent to an energy shift q.V) by fixing or "pinning" the energy
 band diagram on the P-side and simply moving the band structure on
 the N-side, either up (Forward Bias) or down (Reverse Bias) by |q.V|;
- Note that technically the depletion layer width should also change on the energy band diagrams as the bias V changes, but this makes the drawings very complex so we will ignore this effect for the moment;
- Under <u>Forward Bias</u>, the potential barrier opposing large-scale electron diffusion from N-side to the P-side is <u>reduced by q.V</u>. A large unbalanced electron diffusion current can then flow from N → P.
- In exactly the same way, a large hole diffusion current can flow from P-side to N-side. Both of these current components add together.

DC Current Flow in Forward Bias

DC Current Flow in Forward Bias

- The result is that the total current density $J = J_p + J_n$ becomes <u>large</u> as V is made increasingly positive;
- Note that the small (now unbalanced) drift currents that oppose diffusion are ≈ unaffected by the presence of the forward bias.

electrons are injected into neutral P-region and <u>diffuse</u> across to ohmic contact.

These are excess minority electrons $\Delta n_p(x)$

holes are injected into neutral N-region and <u>diffuse</u> across to ohmic contact. These are excess minority holes $\Delta p_n(x)$

DC Current Flow in Reverse Bias

- Under reverse bias, the potential barrier opposing large-scale electron diffusion from N-side to the P-side is increased by q.V. The result is that diffusion current is quickly killed off almost entirely
- All that is left is a tiny drift current of electrons from P -> N and a drift current holes from N -> P. This current is limited by the very small minority carrier concentrations and is largely independent of V.

Analytical Formula for Current Flow in a Biased PN Junction

- The previous qualitative discussion of the biased PN junction suggests that a large and rapidly growing current may be expected under forward bias, while a very small and essentially constant current will flow in the opposite direction under reverse bias.
- We now analyse the current flow in the PN junction making several important approximations:
 - 1. 1-D structure, with zero electric field in the neutral regions
 - 2. Uniformly doped, abrupt PN junction
 - 3. The excess carriers injected into both neutral regions under forward bias correspond to *low-level* injection conditions
 - 4. We neglect Generation and Recombination in the depletion layer

Consequence of Neglecting G-R in the Depletion Region

- The result of this assumption is that the DC electron current density J_n(x) and the hole current density J_p(x) must be separately constant across the depletion layer,
- Proof: use the continuity equation for holes in the region x ε [-x_p, x_n]:

$$\frac{\partial p(x,t)}{\partial t} = -\frac{1}{q} \cdot \frac{\partial J_p(x,t)}{\partial x} + G - R \quad \text{DC (static)} \Rightarrow \frac{\partial}{\partial t} = 0$$

$$0 = -\frac{1}{q} \cdot \frac{dJ_p(x)}{dx} + \underbrace{G - R}_{\text{zero in depletion layer}} \Rightarrow \frac{dJ_p(x)}{dx} = 0$$

$$\Rightarrow J_p(x) \quad \text{is constant,} \forall \ x \in [-x_p, x_n]$$

(Similar proof can be done for $J_n(x)$)

Minority Carrier Concentrations at the Edges of the Depletion Layer

Earlier (in developing an expression for ϕ_i) we proved that in thermal equilibrium :

$$\phi_i \neq \frac{kT}{q} \cdot \ln \left| \frac{p_{po}}{p_{no}} \right|$$

As before, we propose that in the case where a voltage "V" is applied (non-equilibrium conditions), this can simply be modified to:

$$(\phi_i - V) = \frac{kT}{q} \cdot \ln \left| \frac{p_p}{p_n} \right| = \frac{kT}{q} \cdot \ln \left| \frac{p_p(-x_p)}{p_n(x_n)} \right|$$

$$\Rightarrow p_n(x_n) = p_p(-x_p) \cdot \exp\left[-\frac{q(\phi_i - V)}{kT}\right]$$

Minority Carrier Concentrations at the Edges of the Depletion Layer

We can write, using the 'low-level' injection assumption:

$$p_p(-x_p) = p_{po} + \Delta p_p(-x_p) \approx \underline{p_{po}}$$

(i.e. excess holes have negligible effect in P neutral region)

Also:

$$p_{n}(x_{n}) = p_{no} + \Delta p_{n}(x_{n})$$
 excess (minority) holes in neutral N-region produced by "V"
$$\Rightarrow p_{no} + \Delta p_{n}(x_{n}) = p_{po} \cdot \exp\left[-\frac{q\phi_{i}}{kT}\right] \cdot \exp\left[\frac{qV}{kT}\right]$$

Minority Carrier Concentrations at the Edges of the Depletion Layer

"Boundary Condition on N-side"
$$\Delta p_n(x_n) = p_{no} \left[e^{qV/kT} - 1 \right]$$

This gives the minority hole concentration at the depletion layer edge of the neutral N-region as a function of bias "V".

A similar analysis gives: :

"Boundary condition on P-side"
$$\Delta n_p (-x_p) = n_{po} \left[e^{qV/kT} - 1 \right]$$

No Need to Remember: These important Boundary Condition equations for the PN Junction are given in the Formula Sheet

Static Analysis of the PN Junction

We are looking for a formula of the kind I = f(V). 1st consider <u>neutral N-region</u>:

Neutral region
$$x \in [x_n, "\infty"]$$
 "long-based" on N-side :

We wish to solve for the minority hole concentration: $\Delta p_n(x)$

Solution for $\Delta p_n(x)$ in the Neutral N Region

2 basic equations

• Continuity:
$$\frac{\partial p(x,t)}{\partial t} = -\frac{1}{q} \frac{\partial J_p(x,t)}{\partial x} + G - R$$
• Current density:
$$J_p(x,t) = q p(x,t) \mu_p E - q D_p \frac{\partial p(x,t)}{\partial x}$$

• Current density:
$$J_p(x,t) = q p(x,t) \mu_p E - q D_p \frac{\partial p(x,t)}{\partial x}$$

Can simplify these using the fact that this is DC $\Rightarrow \frac{\partial}{\partial t} = 0$ everywhere

The assumption of no electric field in neutral region means that there is no drift current carried so that current is carried entirely by diffusion:

$$0 = -\frac{1}{q} \cdot \frac{dJ_p(x)}{dx} - \frac{\Delta p_n(x)}{\tau_p} \qquad (1)$$

$$J_p(x) = -qD_p \cdot \frac{dp_n(x)}{dx} \qquad (2)$$

Remember: τ_n is the minority hole lifetime: the average time an excess hole survives in the neutral N-region before being eliminated through recombination

Solution for $\Delta p_n(x)$ in the Neutral N Region

But
$$p_n(x) = p_{no} + \Delta p_n(x)$$
 this does not depend on "x" since the doping is uniform

$$\Rightarrow J_p(x) = -q D_p \frac{d \Delta p_n(x)}{dx}$$
 (2)

Now substitute equation (2) into equation (1) on previous slide:

$$0 = -\frac{1}{q} \cdot \frac{d}{dx} \left(-\frac{1}{q} D_p \cdot \frac{d \Delta p_n(x)}{dx} \right) - \frac{\Delta p_n(x)}{\tau_p}$$

$$\Rightarrow 0 = D_p \cdot \frac{d^2 \Delta p_n(x)}{dx^2} - \frac{\Delta p_n(x)}{\tau_p}$$

Solution for $\Delta p_n(x)$ in the Neutral N Region

We re-write this equation as: $\frac{d^2 \Delta p_n(x)}{dx^2} = \frac{\Delta p_n(x)}{L^2}$

$$\frac{d^2 \Delta p_n(x)}{dx^2} = \frac{\Delta p_n(x)}{L_p^2}$$

...where:
$$L_p = \sqrt{D_p \tau_p}$$
 (m)

L_n is defined as the *hole diffusion length*

A solution to this second-order differential equation is:

$$\Delta p_n(x) = A \cdot \exp\left[\frac{x - x_n}{L_p}\right] + B \cdot \exp\left[-\left(\frac{x - x_n}{L_p}\right)\right] \text{ (Exercise: verify by substitution)}$$

Boundary Conditions

- To eliminate the 2 unknown constants, A and B, we need
 2 Boundary Conditions:
 - We know from the earlier derivation of the minority carrier concentration at the edge of the depletion layer (on the N-side)

$$\Delta p_n(x_n) = p_{no} \cdot \left[e^{qV/kT} - 1 \right]$$

This means that $\Delta p_n(x_n) = A + B$

- But it is also true from physical arguments that $\Delta p_n(x)$ must $\rightarrow 0$ as $x \rightarrow \infty$. This forces A = 0. Thus $B = \Delta p_n(x_n)$.
- The full solution for $\Delta p_n(x)$ in the range $[x_n, \infty[$ is thus:

$$\Delta p_n(x) = p_{no} \cdot \left[e^{qV/kT} - 1 \right] \cdot \exp \left[-\left(\frac{x - x_n}{L_p} \right) \right]$$

Minority Hole Distributions in Neutral N-Region

Knowing $\Delta p_n(x)$ we can find the current $J_p(x)$ using $J_p(x) = -qD_p \frac{d\Delta p_n(x)}{dx}$

$$\Rightarrow J_p(x) = \frac{qD_p}{L_p} \cdot p_{no} \left[e^{\frac{qV}{kT}} - 1 \right] \cdot \exp \left[-\left(\frac{x - x_n}{L_p}\right) \right]$$

Hence at
$$x = x_n$$
: $J_p(x_n) = \frac{qD_p}{L_p} \cdot p_{no} \cdot \left[e^{qV/kT} - 1\right]$

Final Analytical Result

A similar analysis can be carried out for minority <u>electrons</u> in the <u>neutral P region</u> giving the corresponding result for the electron current density at the opposite edge of the depletion layer:

$$J_n(-x_p) = \frac{qD_n}{L_n} \cdot n_{po} \cdot \left[e^{\frac{qV}{kT}} - 1 \right]$$

But since we assume no G-R in the depletion layer, we have seen that both $J_n(-x_p)$ and $J_p(x_n)$ must be <u>constant</u> within the depletion layer.

Hence the total current density (J) is:

$$J = J_{p}(x_{n}) + J_{n}(-x_{p})$$

$$= \left[\frac{q D_{p} p_{no}}{L_{p}} + \frac{q D_{n} n_{po}}{L_{n}}\right] \times \left[e^{qV/kT} - 1\right]$$

'Ideal' PN Junction Equation for DC Current

 Using I = J.A, we thus obtain a key formula for the DC current in a PN junction as a function of the terminal voltage V (that is valid for both forward and reverse bias):

$$I = I_s \cdot \left[e^{qV/kT} - 1 \right]$$

Where I_s is the saturation current or the reverse leakage current.

current.
$$I_s = qA \left[\frac{D_p \, p_{no}}{L_p} + \frac{D_n \, n_{po}}{L_n} \right] \quad \underline{OR} \quad I_s = qA \left[\frac{D_p \, n_i^2}{L_p N_D} + \frac{D_n \, n_i^2}{L_n N_A} \right]$$

$$\underline{Note}: \quad D_p = \frac{kT}{q} \, \mu_p \qquad \qquad D_n = \frac{kT}{q} \, \mu_n$$

$$L_p = \sqrt{D_p \, \tau_p} \qquad \qquad L_n = \sqrt{D_n \, \tau_n}$$

 $\frac{kT}{g} = 0.0259V$ at T = 300K

DC Current-Voltage Characteristic of PN Junction (typical values, Si at 300K)

Internal Current Distributions in PN Junction

Currents constant in the Depletion Region (no Generation/Recombination)

Temperature Dependence of Current in a PN <u>Junction</u>

- The current-voltage characteristic of a PN junction is quite sensitive to temperature
- This is obvious through the dependence on (qV/kT) but what is less obvious is the exponential increase of the reverse saturation current (I_s) with increasing temperature. This arises through the fact that I_s is directly proportional to the square of the intrinsic concentration n_i :

strongly temp. dependent
$$\propto n_i^2$$
 $I = I_s \left[e^{qV/kT} - 1 \right]$

obvious

Earlier we showed:

$$n_i = const T^{\frac{3}{2}} \exp \left[\frac{-\varepsilon_g}{2kT} \right]$$

Note also that I_s will be much smaller in wider bandgap materials

Long-Based/Narrow-Based PN Junction <u>Analysis</u>

- One of the assumptions made in analysing the PN junction was the device could be considered "long-based" on both sides, meaning that the end-contacts were "far" from the depletion layer edges;
- More precisely, "long-based" means W_p>>L_n and W_n>>L_p
- The opposite extreme is "narrow-based" whereby $W_p << L_n$ and $W_n << L_p$;. It turns out that the analysis in this case leads to a simple result for I_s : just replace L_p by W_n and by L_n by W_p :

$$I_{S} = \left[\frac{q D_{p} p_{no}}{W_{n}} + \frac{q D_{n} n_{po}}{W_{p}}\right]$$

• The intermediate case leads to a much more complicated solution involving hyperbolic functions (cosh, sinh etc).

"One-sided" (Long-Based) PN Junction

This situation often arises in practical PN structures e.g. we could have a P+N junction with $N_A = 10^{18}/\text{cm}^3$ and $N_D = 10^{14}/\text{cm}^3$:

$$\underline{n_{no}} = N_D = 10^{14} / cm^3; \qquad \underline{p_{no}} = \frac{n_i^2}{n_{no}} = \underline{2.25 \times 10^6 / cm^3}$$
majority
minority

i.e. simpler formula can be used

$$I_{s} = qA \left[\frac{D_{p}}{L_{p}} p_{no} + \frac{D_{p}}{L_{n}} n_{po} \right]$$
negligible

$$I_{s} = qA \left[\frac{D_{p}}{L_{p}} p_{no} + \frac{D_{n}}{L_{n}} p_{no} \right] \qquad \underline{\text{One-Sided}} \quad (P^{+}N) : I_{s} = \frac{qAD_{p} p_{no}}{L_{p}} = \left(\frac{qAD_{p} n_{i}^{2}}{L_{p}} \right)$$

If one-sided <u>and</u> narrow-based, replace L_p by W_n

EXAMPLE 8.2

Generation and Recombination in the Depletion Layer

We now re-visit the assumption of zero G-R in the depletion layer. In practice, thermally generated EHPs may be produced in this region, and, because of the intense electric field, they are quickly separated: electrons to the N-side and holes to the P-side. This results in an extra current component added to the saturation current I_s.

The earlier analysis may be extended to take this into account.

$$I = I_s \begin{bmatrix} e^{qV/kT} - 1 \end{bmatrix} + I_{s1} \begin{bmatrix} e^{qV/2kT} - 1 \end{bmatrix}$$
 Extra term due to G-R 34

Effect of Parasitic Resistances

- Earlier we assumed zero electric field within each neutral region. In practice, there is 'ohmic' loss due to the finite conductivity of the semiconductor material in each region;
- In addition, the metal-semiconductor contacts are not perfect and this can be modelled by the introduction of a small series resistance at each contact;
- All of these can be lumped together into a single parasitic resistance R_s (~1 Ω) in series with the 'ideal' PN structure.

DC Equivalent Circuit Model

 A simple DC equivalent circuit for the PN junction allowing for parasitic resistance effects can be constructed as follows:

 Although apparently a simple change, the introduction of R_s considerably complicates the task of solving this circuit (non-linear simultaneous algebraic equations involved):

$$I = I_s \cdot \left[e^{\frac{qV_j}{kT}} - 1 \right] \qquad \qquad V_j = V - I \cdot R_s$$

The Ideality Factor (n)

- In practical PN junctions, it is found that the ideal PN junction equation does a good, but not perfect, job of fitting the DC characteristics;
- A better result is obtained by introducing an empirical 'ideality factor' 'n' (this is a dimensionless number ≥ 1):

$$I = I_S \cdot \left[e^{\left(\frac{qV}{n \cdot kT} \right)} - 1 \right]$$

- In a perfect PN junction, n=1, while in a practical well-made Si junction we might find n = 1.04, for example;
- The ideality factor n, and saturation current I_S can be determined experimentally by plotting the log_e of the forward current against the voltage (i.e. ln | I | vs. V)

Determining 'n' and 'Is'

Assume a forward biased PN junction with V>>(kT/q).
 Then we can use the approximation:

$$I \cong I_S \cdot e^{\left(\frac{qV}{nkT}\right)}$$

Take the natural log of both sides:

$$\ln|I| = \ln|I_S| + \frac{qV}{nkT}$$

This in the form of a straight line: "y = m.x +c" where "y" is In | I | and "x" is V

Determining 'n' and 'Is'

By plotting In |/| versus V (for V > ~100mV) we can find I_s from the y-axis intersection and then if the temperature T is known, we can estimate n from the slope.

Wide-Range In / versus V Plot

 Graphical plots like this are very useful for experimental parameter extraction, i.e. using measurements to identify critical parameters of device model: the above plot could be used to determine I_S, n, I_{S1}, n₁, R_S...

Example 8.3

Impact Ionisation and Avalanche Breakdown in PN Junctions

Impact Ionisation and Avalanche Breakdown

- At very high electric fields, the energy acquired by electrons between collisions can become so high that a collision with the lattice can transfer an electron from VB to CB (i.e. an EHP created). This is called <u>impact ionisation</u>
- The electron and hole thereby created are also accelerated by the field, and can acquire enough energy to create further EHPs – a chain reaction can then occur leading to a large increase in (reverse) current – avalanche breakdown

Avalanche Breakdown

 A sudden increase in current at high voltages due to avalanche breakdown is very commonly observed in semiconductor devices, e.g. transistor characteristics:

 Although it sounds catastrophic, it need not be if handled carefully and some kinds of device are even operated for years in continuous avalanche breakdown!

The Zener Diode

- When a PN junction is heavily doped on <u>both</u> sides (P+N+), the breakdown voltage can become quite low;
 - Diodes specifically designed to produce a stable, carefullycontrolled reverse breakdown voltage often go under the general name of "Zener Diodes"
- Zener diodes are widely used as voltage references in electronic circuits

