NIS2312-01 Fall 2023-2024

信息安全的数学基础(1)

Answer 17

2023 年 12 月 8 日

Problem 1

设 $a, b \in \mathbb{R}, b \neq 0$. 证明: $\mathbb{R}(a + bi) = \mathbb{C}$.

解: 因为 $[\mathbb{C}:\mathbb{R}] = [\mathbb{C}:\mathbb{R}(a+b\mathrm{i})][\mathbb{R}(a+b\mathrm{i}):\mathbb{R}] = 2$,则 $[\mathbb{R}(a+b\mathrm{i}):\mathbb{R}] \leq 2$. 同时 $\mathrm{i} \notin \mathbb{R}$,有 $[\mathbb{R}(a+b\mathrm{i}):\mathbb{R}] > 1$,故 $[\mathbb{R}(a+b\mathrm{i}):\mathbb{R}] = 2$,即 $\mathbb{R}(a+b\mathrm{i}) = \mathbb{C}$.

Problem 2

设 F 是个域, $a, b \in F, a \neq 0$. 如果 c 属于 F 的某个扩域, 证明: F(c) = F(ac + b)(即 F "吸收" 它自己的元素).

解: 因为 F(ac + b) 是包含 F 和 ac + b 的最小域,且 $a,b \in F$, $ac + b \in F(c)$,则 $F(c) \supseteq F(ac + b)$;同理用 a,b,ac + b 来表示 c,有 $c = a^{-1} \cdot ((ac + b) - b)$,故可得 $F(c) \subseteq F(ac + b)$.故

Problem 3

证明: $\mathbb{Q}[\sqrt{2}] \ncong \mathbb{Q}[\sqrt{3}]$.

解: 假设存在同构映射 $\phi: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}]$.

注意到 ϕ 这个映射固定了 \mathbb{Q} : 因为单位元必定被映射成单位元, 故 $\phi(1_{\mathbb{Q}[\sqrt{2}]}) = 1_{\mathbb{Q}[\sqrt{3}]}$, 则对任意 $a \in \mathbb{Q} \subset \mathbb{Q}[\sqrt{2}]$, 有 $\phi(a) = a\phi(1_{\mathbb{Q}[\sqrt{2}]}) = a \in \mathbb{Q} \subset \mathbb{Q}[\sqrt{3}]$.

假设 $\phi(\sqrt{2}) = a + b\sqrt{3} \in \mathbb{Q}[\sqrt{3}]$, 其中 $a, b \in \mathbb{Q}$. 故有

$$2 = \phi(2) = \phi((\sqrt{2})^2) = \phi(\sqrt{2})^2 = a^2 + 3b^2 + 2ab\sqrt{3},$$

则

$$a^2 + 3b^2 = 2,2ab\sqrt{3} = 0.$$

从 $2ab\sqrt{3}=0$ 得到 a=0 或 b=0: 假设 a=0, 则 $3b^2=2$, 故 $b=\pm\sqrt{\frac{2}{3}}\notin\mathbb{Q}$, 矛盾; 故 $a\neq 0$, 有 $a=\pm\sqrt{2}\notin\mathbb{Q}$, 矛盾. 因此没有同构映射使得 $\mathbb{Q}[\sqrt{2}]\cong\mathbb{Q}[\sqrt{3}]$.