INITIATION À L'ALGÈBRE - A

TD # 1 : Introduction au langage mathématique et à la théorie des ensembles

Logique

Exercice 1. Implications

Pour chacune des affirmations suivantes:

- dire si elle est vraie ou fausse. Dans le cas où elle est fausse, donner un contre-exemple.
- dire si l'affirmation réciproque est vraie ou fausse.
- conclure alors sur les énoncés où l'on peut employer : « ssi ».
 - 1. Si je suis espagnol, alors je suis européen.
 - 2. Si je suis enfant unique, alors je n'ai ni frère ni soeur.
 - 3. Soit ABC un triangle. Si ABC est équilatéral, alors ABC est isocèle.
 - 4. Si $x \le 1$, alors x < 2.
 - 5. Si $y^2 = 16$, alors y = 4.
 - 6. Si x < 0 et $x^2 = 9$, alors x = -3.
 - 7. Si x = 2, alors x est solution de l'équation : -2x + 4 = 0.
 - 8. Si x = 2, alors x est solution de l'équation : $x^2 2x = 0$.

Exercice 2. Opérateurs logiques

Compléter par « et » ou par « ou » :

- $(x-2)(x-3) = 0 \Rightarrow x = 2 \dots x = 3.$
- $(x+5)(x-1) \neq 0 \Rightarrow x \neq -5....x \neq 1.$
- n est divisible par $10 \Rightarrow n$ est divisible par $5 \dots n$ est divisible par 2.
- $-f(x) = \sqrt{x^2 1}$ est défini pour $x \in]-\infty; -1] \dots x \in [1; +\infty[$.

Exercice 3. Opérateurs logiques

Ces assertions sont-elles vraies ou fausses? Justifier vos réponses.

- $-((-1)^2 = 1) \land (-1^2 = 1).$
- $-(12 \times 8 = 96) \vee (12 \times 8 = 88).$
- \neg (ln(1) = 0) ∧ (ln(e) = 1).
- $-(\sqrt{3^2+4^2}=3+4)\vee(\sqrt{3^2+4^2}=5)$.
- $\forall x \in \mathbb{R}, x^2 = 9 \Rightarrow x = 3.$
- $--\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x^2 1.$
- -- $\forall x \in \mathbb{R}, (x > 0) \Rightarrow (\exists y \in \mathbb{R}, y > 0 \land xy > 1).$

Exercice 4. Négation

Pour chacune des affirmations suivantes :

- dire si elle est vraie ou fausse. Dans le cas où elle est fausse, donner un contre-exemple.
- donner leur négation.
- 1. $\exists x \in \mathbb{R}, x > 0$.
- 2. $\forall x \in \mathbb{R}, x^2 > 0$.
- 3. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0$.
- 4. $\exists x \in \mathbb{R}, (\forall y \in \mathbb{R}, y^2 > x).$

Donner la négation de la proposition suivante : $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, \exists z \in \mathbb{Z}, (xyz \neq 0) \land (x^n + y^n = z^n)$.

Exercice 5. Implications, équivalences

On suppose $x \in \mathbb{R}$. Pour chacune des propositions P et Q suivantes, indiquer si les assertions $P \Longrightarrow Q$ et $Q \Longrightarrow P$ sont vraies. $P : x \le 2$, $Q : x^2 \le 4$.

$$-P: |x| \le 2, \quad Q: x^2 \le 4.$$

Exercice 6. Contraposée

Pour chacune des propositions suivantes

- écrire leur contraposée;
- démontrer que cette contraposée est vraie;
- en déduire que la proposition initiale est vraie.
- 1. Si l'entier n^2 est impair, alors n est impair.
- 2. Si x est un nombre réel tel que $x^3 + x^2 + 2x + 1 < 0$, alors x < 0.
- 3. Si a + b est irrationnel, alors a est irrationnel ou b est irrationnel.

Exercice 7. Soient p, q, r et s quatre propositions. Ecrire les propositions suivantes, sous formes simplifiées, en utilisant uniquement les opérateurs \neg , \land , \lor :

- $(\neg p \land q) \Longrightarrow r;$
- $-\neg (p \lor \neg q) \land (s \Longrightarrow t);$
- $-\neg (p \land q) \land (p \lor q).$

Exercice 8. Raisonnement par l'absurde

- 1. Montrer que pour tout nombre réel x différent de -2 on a : $\frac{x+1}{x+2}$ différent de 1.
- 2. Montrer par l'absurde que $\sqrt{3}$ n'est pas rationnel.
- 3. Sachant que $\sqrt{2}$ est irrationnel, montrer par l'absurde que pour tout $(a, b) \in \mathbb{Q} \times \mathbb{Q}^*$: $a + b\sqrt{2}$ n'est pas rationnel.
- 4. Soit $n \in \mathbb{N}^*$. Montrer par l'absurde que $\sqrt{n^2 + 1}$ n'est pas un entier.

Exercice 9. Raisonnement par l'absurde

- 1. Étant donné r nombres premiers $p_1, p_2, ..., p_r$, montrer que l'entier $N = p_1 p_2 \cdots p_r + 1$ n'est divisible par aucun des entiers p_i .
- 2. En utilisant la question précédente, montrer par l'absurde qu'il existe une infinité de nombres premiers.

Ensembles

Exercice 10. Appartenir et inclusion

Soit $E = \{a, b, c\}$ un ensemble. Peut-on écrire :

(1)
$$a \in E$$
,

(2)
$$a \subset E$$
,

$$(3) \{a\} \subset E,$$

$$(4) \emptyset \in E$$
,

$$(5) \ \emptyset \subset E\,,$$

$$(6) \{\emptyset\} \subset E.$$

Exercice 11. Ensemble des parties

Donner la liste des éléments de $\mathcal{P}(\{1,2\})$ (ensemble des parties de l'ensemble $\{1,2\}).$

Idem avec $\{a, b, c\}$.

Exercice 12. Opérations ensemblistes

Soient a, b, c, d, e cinq éléments distincts. On pose $W = \{a, b, c, d, e\}$, $X = \{a, b, c\}$, $Y = \{a, c, e\}$ et $Z = \{d, e\}$.

- 1. Quels sont les ensembles $W \cap Y, W \cup X, X \cap Z$?
- 2. A-t-on $\emptyset \subset X, X \subset W, X \subset Y$?
- 3. Quels sont les ensembles \overline{X} , $\overline{X} \cap \overline{Y}$, $\overline{X} \cup \overline{Y}$?

Remarque : $\overline{X} = W \setminus X$ est le complémentaire de X dans l'ensemble W.

Montrer qu'en général, pour tous sous-ensembles A et B d'un ensemble E, on a

$$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$$
 et $(\overline{A \cap B}) = \overline{A} \cup \overline{B}$.

Exercice 13. Union et Intersection

Définir dans chaque cas $A \cup B$ et $A \cap B$.

- 1. $A = \{n | n \text{ est un entier pair}\}\ \text{et } B = \{n | n \text{ est un nombre premier}\}\$.
- 2. $A = \{\text{point } M \text{ du plan } | MX = MY\}, B = \{\text{point } M \text{ du plan } | MX + MY = XY\} \text{ et } X \text{ et } Y \text{ sont deux points distincts du plan } \mathbb{R}^2$.

- 3. $A =]-\infty; 5[$ et B =]-2; 8].
- 4. $A = \{x \in \mathbb{R} | |x-2| \le 3\} \text{ et } B = \{x \in \mathbb{R} | |x+2| > 3\}.$

Exercice 14. Combien d'éléments y a-t-il dans l'ensemble $\{n \in \mathbb{N} : n < 100\} \setminus (\{2k : k \in \mathbb{N}\} \cup \{3k : k \in \mathbb{N}\})\}$?

Exercice 15. Vérifier que l'ensemble des réels de la forme 2x + 1 avec $x \in [2;3[$ est un intervalle. Faire de même avec les réels de la forme $x^2 + x$.

Exercice 16. Représentation graphique

Soit E un ensemble. Soient A, B, C des parties de E et soient $\overline{A}, \overline{B}, \overline{C}$ leurs complémentaires respectifs dans E. Vérifier graphiquement si les propriétés suivantes sont correctes ou non :

- 1. $(A \setminus B) \setminus C = A \cup \overline{B \cup C}$
- 2. $A \cap \overline{B \cup C} = A \setminus (B \cup C)$
- 3. $(A \cup B) \setminus C = (A \setminus C) \cap (B \setminus C)$
- 4. $A \cap (\overline{A} \cup B) = A \cup B$

Exercice 17. Différence symétrique

Soit E un ensemble. On définit la **différence symétrique** de deux parties A et B de E par

$$A\Delta B = (A \backslash B) \cup (B \backslash A).$$

- 1. Montrer les propriétés suivantes :
 - (a) $A\Delta A = \emptyset$;
 - (b) $A\Delta B = B\Delta A$;
 - (c) $A = B \iff A\Delta B = \emptyset$;
 - (d) $A\Delta B = (A \cup B) \setminus (A \cap B)$.
- 2. Représenter graphiquement :
 - (a) $A \cup (B\Delta C)$;
 - (b) $\bar{A}\Delta B$.

Exercice 18. Dans un lycée de 300 élèves, 152 savent jouer au poker, 83 au tarot et 51 au bridge. De plus, 24 savent jouer à la fois au poker et au tarot, 14 au poker et au bridge, et 8 au tarot et au bridge. Enfin, seulement 3 élèves savent jouer les trois jeux de cartes. Combien y-a-t'il d'élèves dans ce lycée qui savent jouer au moins un de ces trois jeux de cartes?

Exercice 19.

- 1. On considère les intervalles suivants I = [0,3], J = [0,4], K = [1,4], L = [1,5] de \mathbb{R} .
 - Dessiner dans le plan \mathbb{R}^2 les ensembles $I \times J$, $I \times \overline{J}$ et $K \times L$.
 - Déterminer $(I \times J) \cup (K \times L)$.
- 2. Dessiner dans le plan \mathbb{R}^2 l'ensemble $A = \{(x, y) \in \mathbb{Z}^2 : x^2 + y^2 \le 9\}$.

Exercice 20. Soit $A = \{1, 2, 3\}, B = \{1, 5\}$ et $C = \{2, 10\}$.

- Expliciter les produits cartésiens $A \times B$, $B \times A$, $C \times B$, $(A \cup C) \times B$, ainsi que l'ensemble $(A \times B) \cup (C \times B)$.
- Que remarque-t-on? Peut-on généraliser le résultat?
- Enoncer un résultat analogue avec les symboles \cap et \times .

Comment montrer l'équivalence $P \iff Q$?

• On peut procéder par équivalences : on trouve des assertions P_0, \dots, P_n telles que

$$P \iff P_0 \iff \cdots \iff P_n \iff Q$$
.

• On peut procéder par double-implication : on montre $P \Rightarrow Q$ et $Q \Rightarrow P$.

Comment montrer l'égalité A = B de deux ensembles?

- On peut démontrer, pour tout $x \in A$, l'équivalence $(x \in A) \iff (x \in B)$.
- On peut procéder par double inclusion : on montre que $A \subset B$ et $B \subset A$.
- Utiliser les propriétés de la réunion, de l'intersection et du passage au complémentaire.

Comment montrer l'inclusion $A \subset B$ de deux ensembles?

- On se donne un élément $x \in A$ (soit $x \in A$) et on montre que $x \in B$.
- On trouve C tel que $A = B \cap C$.
- Utiliser les propriétés de la réunion, de l'intersection et du passage au complémentaire.

Comment montrer que, pour tout $x \in X$, la propriété Q(x) vraie?

On se donne un élément $x \in X$ quelconque (soit $x \in X$) et on montre que x vérifie la propriété Q.