

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019 Modallogik

Im Unterschied zur klassischen Logik, in der nur die Wahrheit einer Aussage von Bedeutung ist, spielt in der modalen Logik die Art und Weise, der *Modus*, in der eine Aussage wahr ist eine große Rolle.

Im Unterschied zur klassischen Logik, in der nur die Wahrheit einer Aussage von Bedeutung ist, spielt in der modalen Logik die Art und Weise, der *Modus*, in der eine Aussage wahr ist eine große Rolle.

Eine Aussage ist

notwendigerweise wahr, zufälligerweise wahr

Im Unterschied zur klassischen Logik, in der nur die Wahrheit einer Aussage von Bedeutung ist, spielt in der modalen Logik die Art und Weise, der *Modus*, in der eine Aussage wahr ist eine große Rolle.

Eine Aussage ist

- notwendigerweise wahr, zufälligerweise wahr
- heute, gestern oder morgen wahr

Im Unterschied zur klassischen Logik, in der nur die Wahrheit einer Aussage von Bedeutung ist, spielt in der modalen Logik die Art und Weise, der *Modus*, in der eine Aussage wahr ist eine große Rolle.

Eine Aussage ist

- notwendigerweise wahr, zufälligerweise wahr
- heute, gestern oder morgen wahr
- wird geglaubt, gehört zum Wissen einer Person

Im Unterschied zur klassischen Logik, in der nur die Wahrheit einer Aussage von Bedeutung ist, spielt in der modalen Logik die Art und Weise, der *Modus*, in der eine Aussage wahr ist eine große Rolle.

Eine Aussage ist

- notwendigerweise wahr, zufälligerweise wahr
- heute, gestern oder morgen wahr
- wird geglaubt, gehört zum Wissen einer Person
- ► ist vor/nach einer Aktion wahr, nach Ausführung eines Programms wahr.

Einführungsbeispiel

Drei Weisen werden Hüte aufgesetzt, jedem genau einer. Die Hüte sind entweder weiß oder schwarz, und jedem ist bekannt, daß mindestens ein schwarzer Hut mit dabei ist. Jeder Beteiligte sieht, welche Hüte die anderen beiden aufsitzen haben und soll erschließen. welchen Hut er aufsitzen hat, natürlich ohne in einen Spiegel zu schauen, den Hut abzunehmen oder ähnliches. Nach einer Weile sagt der erste Weise: "Ich weiß nicht, welchen Hut ich aufhabe." Nach einer weiteren Pause des Nachdenkens sagt der zweite: "Ich weiß auch nicht, welchen Hut ich aufhabe." "Dann", sagt der dritte, "weiß ich, daß ich einen schwarzen Hut aufhabe."

w b w

b b w b w w

w b b

b b b

w w b b w b

Erster Schritt

Erster Schritt

Da der erste Weise die Farbe seines Huts nicht erschließen kann, kann die Welt

(**b** w w) nicht auf-

treten.

Erster Schritt

Da der erste Weise die Farbe seines Huts nicht erschließen kann, kann die Welt

(**b w w**) nicht auftreten.

Zweiter Schritt

Zweiter Schritt

W b Da der b b zweite W W Weise die Farbe sei-3 Huts nes W b nicht weiß, b b können die b b Welten (w W) (b b W) W W nicht aufb treten.

b

W

b

Zweiter Schritt

Da der zweite
Weise die Farbe seines Huts nicht weiß, können die Welten

(**w b w**)

nicht auftreten.

Letzter Schritt

In den noch verbleibenden möglichen Welten hat der dritte Weise stets einen schwarzen Hut auf.

Modallogische Grundbegriffe

in der Welt s weiß der i-te Weise die Aussage A

Modallogische Grundbegriffe

in der Welt s weiß der i-te Weise die Aussage A

genauer

in jeder für den *i*-ten Weisen von *s* aus gesehen möglichen Welt gilt *A*.

Modallogische Grundbegriffe

in der Welt s weiß der i-te Weise die Aussage A

genauer

in jeder für den *i*-ten Weisen von *s* aus gesehen möglichen Welt gilt *A*.

$$s \models \Box_i A$$

Beispiele

Die Boolesche Variable

 B_i

ist wahr in der Welt s, wenn in s der i-te Weise einen schwarzen Hut aufhat. Entsprechend für W_i .

Beispiele

Die Boolesche Variable

 B_i

ist wahr in der Welt s, wenn in s der i-te Weise einen schwarzen Hut aufhat. Entsprechend für W_i .

$$(w, b, w) \models \Box_1 B_2$$

$$(w, b, w) \models \Box_1 W_3$$

nicht
$$(w, b, w) \models \Box_1 W_1 \quad (b, w, w) \models \Box_1 B_1$$

Zweites Einführungsbeispiel

Konfliktfreie Zugriffskontrolle

Der Bakery-Algorithmus ist benannt nach der in manchen amerikanischen Bäckereien (und manchen deutschen Behörden, Arztpraxen etc.) üblichen Methode, daß der Kunde beim Eintritt eine Nummer zieht und dann an die Reihe kommt, wenn seine Numnmer die kleinste unter den noch Wartenden ist.

So ist sichergestellt, daß jeder schließlich an die Reihe kommt und kein Streit darüber entsteht, wer als nächster drankommt.

Prozesse

Die Prozesse, die am *Bakery*-Algorithmus teilnehmen, können wir uns als Instanzen der Klasse *Customer* vorstellen.

Customer

int ticket

{idle, trying, critical} phase

Zustandsübergangsregeln

try: if phase = idle then

phase := trying

ticket := max of all other tickets + 1

enter: if phase = trying and

ticket less than

all other tickets then

phase := critical

leave phase = critical then

phase := idle ticket := 0

Endlicher Automat

Zwei Prozesse, keine Nummern

Notation

Die Booleschen Variablen *i.idle*, *i.trying*, *i.critical* seien wahr in einem Zustand *s*, wenn in *s* der *i*-te Prozess in der angegebenen Phase ist.

Notation

Die Booleschen Variablen *i.idle*, *i.trying*, *i.critical* seien wahr in einem Zustand *s*, wenn in *s* der *i*-te Prozess in der angegebenen Phase ist.

Ist der 1. Prozess in der *trying* Phase, dann kann er in höchstens zwei Schritt in die kritische Phase gelangen.

Notation

Die Booleschen Variablen *i.idle*, *i.trying*, *i.critical* seien wahr in einem Zustand *s*, wenn in *s* der *i*-te Prozess in der angegebenen Phase ist.

Ist der 1. Prozess in der *trying* Phase, dann kann er in höchstens zwei Schritt in die kritische Phase gelangen.

1.trying
$$\rightarrow$$
 (\Diamond 1.critical $\lor \Diamond \Diamond$ 1.critical)

Notation

Die Booleschen Variablen *i.idle*, *i.trying*, *i.critical* seien wahr in einem Zustand *s*, wenn in *s* der *i*-te Prozess in der angegebenen Phase ist.

Ist der 1. Prozess in der *trying* Phase, dann kann er in höchstens zwei Schritt in die kritische Phase gelangen.

1.trying → (
$$\Diamond$$
1.critical \lor $\Diamond \Diamond$ 1.critical) nicht 1.trying → \Diamond 1.idle

Formeln der Modalen Aussagenlogik

Definition

1. $\mathbf{1}, \mathbf{0} \in mFor0_{\Sigma}$

Formeln der Modalen Aussagenlogik

Definition

- 1. **1**, **0** \in *mFor* 0_{Σ}
- 2. Jede aussagenlogische Variable $P \in \Sigma$ ist in $mFor0_{\Sigma}$.

Formeln der Modalen Aussagenlogik

Definition

- 1. **1**, **0** \in *mFor* 0_{Σ}
- 2. Jede aussagenlogische Variable $P \in \Sigma$ ist in $mFor0_{\Sigma}$.
- 3. Mit $A, B \in mFor0_{\Sigma}$ liegen ebenfalls in $mFor0_{\Sigma}$: $\neg A, A \land B, A \lor B, A \to B$.

Formeln der Modalen Aussagenlogik

Definition

- 1. **1**, **0** \in *mFor* 0_{Σ}
- 2. Jede aussagenlogische Variable $P \in \Sigma$ ist in $mFor0_{\Sigma}$.
- 3. Mit $A, B \in mFor0_{\Sigma}$ liegen ebenfalls in $mFor0_{\Sigma}$: $\neg A, A \land B, A \lor B, A \to B$.
- 4. Mit $A \in mFor0_{\Sigma}$ liegen ebenfalls in $mFor0_{\Sigma}$:
 - □A (gelesen als "Box A", "notwendig A")
 - ⟨B (gelesen als "Diamond A", "möglich A")

Definition

Sei Σ eine Menge aussagenlogischer Variablen.

Eine Kripke-Struktur

$$\mathcal{K} = (S, R, I)$$

über Σ besteht aus:

► S eine nichtleere Menge (die Menge von *Zuständen* oder möglichen *Welten*)

Definition

Sei Σ eine Menge aussagenlogischer Variablen.

Eine Kripke-Struktur

$$\mathcal{K} = (S, R, I)$$

über Σ besteht aus:

- ► S eine nichtleere Menge (die Menge von Zuständen oder möglichen Welten)
- ► R \subseteq S \times S (die Zugänglichkeitsrelation)

Definition

Sei Σ eine Menge aussagenlogischer Variablen.

Eine Kripke-Struktur

$$\mathcal{K} = (S, R, I)$$

über Σ besteht aus:

- ► S eine nichtleere Menge (die Menge von Zuständen oder möglichen Welten)
- ► I: $(\Sigma \times S) \rightarrow \{W, F\}$ (Interpretation der AL-Variablen)

Definition

Sei Σ eine Menge aussagenlogischer Variablen.

Eine Kripke-Struktur

$$\mathcal{K} = (S, R, I)$$

über Σ besteht aus:

- ► S eine nichtleere Menge (die Menge von Zuständen oder möglichen Welten)
- ► I: $(\Sigma \times S) \rightarrow \{W, F\}$ (Interpretation der AL-Variablen)

Definition

Sei Σ eine Menge aussagenlogischer Variablen.

Eine Kripke-Struktur

$$\mathcal{K} = (S, R, I)$$

über Σ besteht aus:

► S eine nichtleere Menge (die Menge von *Zuständen* oder möglichen *Welten*)

 $ightharpoonup \ \mathsf{R} \subseteq \mathcal{S} imes \mathcal{S}$ (die Zugänglichkeitsrelation)

▶ I: $(\Sigma \times S) \rightarrow \{W, F\}$ (Interpretation der AL-Variablen)

(S, R) heißt der Kripke Rahmen von K.

aus Huth and Ryan

aus Huth and Ryan

Menge der Zustände $S = \{x_1, x_2, x_3, x_4, x_5, x_6\}$

aus Huth and Ryan

$$R = \{(x_1, x_2), (x_1, x_3), (x_2, x_3), (x_3, x_2), (x_3, x_3), (x_4, x_5), (x_5, x_4), (x_5, x_6)\}\$$

aus Huth and Ryan

$$I(P, x_1) = I(P, x_3) = I(P, x_6) = 1$$

 $I(Q, x_2) = I(Q, x_3) = I(Q, x_4) = 1$, sonst $I(s, x) = 0$

Auswertung von Formeln

Sei K = (S, R, I) eine Kripke-Struktur. Wir definieren für jeden Zustand $s \in S$, wann eine Formeln aus mFor0 in s wahr ist.

Notation

 $\mathcal{K} = (S, R, I)$ eine Kripke-Struktur, $s \in S$, F eine modale Formel

Notation

 $\mathcal{K} = (S, R, I)$ eine Kripke-Struktur, $s \in S$, F eine modale Formel

$$(\mathcal{K}, s) \models F \Leftrightarrow val_s(F) = W$$

wenn $\mathcal K$ aus dem Kontext bekannt ist auch:

$$s \models F \Leftrightarrow val_s(F) = W$$

$$\mathcal{K} \models F \Leftrightarrow \text{ für alle } s \in S \text{ gilt } (\mathcal{K}, s) \models F$$

Gültigkeit in einen Kripke-Rahmen (S, R): $(S, R) \models F \Leftrightarrow \text{ für alle } I \text{ gilt } (S, R, I) \models F$

Saul Aaron Kripke

Geboren 1940 in Omaha (US)

1. Publikation A Completeness Theorem in

Modal Logic

The Journal of Symbolic Logic, 1959

Studium in Harvard, Princeton, Oxford

und an der Rockefeller University

Positionen in Harvard, Rockefeller, Columbia,

Cornell, Berkeley and UCLA, Oxford

Ab 1977 Professor an der Princeton University

Seit 1998 Emeritus der Princeton University

Beispiel zur Auswertung von Formeln

Beispiel zur Auswertung von **Formeln**

$$(\mathcal{K}, A) \models P$$

$$(\mathcal{K}, B) \models P$$

$$(\mathcal{K}, A) \models P$$
 $(\mathcal{K}, B) \models P$ $(\mathcal{K}, C) \models P$ $(\mathcal{K}, D) \models P$

$$(\mathcal{K}, D) \models P$$

$$(\mathcal{K}, A) \models \Box P$$
 $(\mathcal{K}, B) \models \Box P$ $(\mathcal{K}, C) \models \Box P$ $(\mathcal{K}, D) \models \Box P$

$$(\mathcal{K}, B) \models \Box P$$

$$(\mathcal{K}, \mathcal{C}) \models \Box P$$

$$(\mathcal{K}, \mathcal{D}) \models \Box P$$

$$(\mathcal{K}, A) \models \Box\Box P$$

$$(\mathcal{K}, \mathcal{B}) \models \Box \Box \mathcal{P}$$

$$(\mathcal{K}, A) \models \Box\Box P \ (\mathcal{K}, B) \models \Box\Box P \ (\mathcal{K}, C) \models \Box\Box P \ (\mathcal{K}, D) \models \Box\Box P$$

$$(\mathcal{K}, D) \models \Box \Box F$$

Beispiel zur Auswertung von Formeln

Logische Folgerung

Definition

Sei A eine Formel und Γ eine Menge von Formeln der modalen Aussagenlogik.

$$A$$
 ist eine logische Folgerung aus Γ

$$\Gamma \models A$$

$$\text{gdw}$$

für alle Kripke-Strukturen \mathcal{K} und jede Welt s von \mathcal{K} gilt wenn $(\mathcal{K}, s) \models \Gamma$ dann auch $(\mathcal{K}, s) \models A$

A ist allgemeingültig wenn

$$\emptyset \models A$$

1.
$$\Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)$$

- 1. $\Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)$
- 2. $(\Box P \land \Box (P \rightarrow Q)) \rightarrow \Box Q$

- 1. $\Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)$
- 2. $(\Box P \land \Box (P \rightarrow Q)) \rightarrow \Box Q$
- 3. $(\Box P \lor \Box Q) \to \Box (P \lor Q)$

- 1. $\Box(P \to Q) \to (\Box P \to \Box Q)$
- 2. $(\Box P \land \Box (P \rightarrow Q)) \rightarrow \Box Q$
- 3. $(\Box P \lor \Box Q) \to \Box (P \lor Q)$
- 4. $(\Box P \land \Box Q) \leftrightarrow \Box (P \land Q)$

- 1. $\Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)$
- 2. $(\Box P \land \Box (P \rightarrow Q)) \rightarrow \Box Q$
- 3. $(\Box P \lor \Box Q) \to \Box (P \lor Q)$
- 4. $(\Box P \land \Box Q) \leftrightarrow \Box (P \land Q)$
- 5. $\Box P \leftrightarrow \neg \Diamond \neg P$

- 1. $\Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)$
- 2. $(\Box P \land \Box (P \rightarrow Q)) \rightarrow \Box Q$
- 3. $(\Box P \lor \Box Q) \to \Box (P \lor Q)$
- 4. $(\Box P \land \Box Q) \leftrightarrow \Box (P \land Q)$
- 5. $\Box P \leftrightarrow \neg \Diamond \neg P$
- 6. $\Diamond(P \lor Q) \leftrightarrow (\Diamond P \lor \Diamond Q)$

- 1. $\Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)$
- 2. $(\Box P \land \Box (P \rightarrow Q)) \rightarrow \Box Q$
- 3. $(\Box P \lor \Box Q) \to \Box (P \lor Q)$
- 4. $(\Box P \land \Box Q) \leftrightarrow \Box (P \land Q)$
- 5. $\Box P \leftrightarrow \neg \Diamond \neg P$
- 6. $\Diamond(P \lor Q) \leftrightarrow (\Diamond P \lor \Diamond Q)$
- 7. $\Diamond(P \land Q) \rightarrow (\Diamond P \land \Diamond Q)$

Äquivalenzen zwischen den beiden Modalitäten

Varianten

Modale Logik

$$\Box P \leftrightarrow \neg \Diamond \neg P \\
\neg \Box P \leftrightarrow \Diamond \neg P \\
\Diamond P \leftrightarrow \neg \Box \neg P \\
\neg \Diamond P \leftrightarrow \Box \neg P$$

Äquivalenzen zwischen den beiden Modalitäten

Varianten

Modale Logik

$$\Box P \leftrightarrow \neg \Diamond \neg P \\
\neg \Box P \leftrightarrow \Diamond \neg P \\
\Diamond P \leftrightarrow \neg \Box \neg P \\
\neg \Diamond P \leftrightarrow \Box \neg P$$

Äquivalenzen zwischen den beiden Modalitäten

Varianten

Modale Logik		Analogie aus Prädikatenlogik			
$\Box P$	\leftrightarrow	$\neg \Diamond \neg P$	∀ <i>xA</i>	\leftrightarrow	$\neg \exists x \neg A$
$\neg\Box P$	\leftrightarrow	$\Diamond \neg P$	$\neg \forall x A$	\leftrightarrow	$\exists x \neg A$
$\Diamond P$	\leftrightarrow	$\neg\Box\neg P$	∃ <i>xA</i>	\leftrightarrow	$\neg \forall x \neg A$
$\neg \Diamond P$	\leftrightarrow	$\Box \neg P$	¬∃ xA	\leftrightarrow	$\forall x \neg A$

Gegenbeispiel zur Allgemeingültigkeit von

$$\Box(P\lor Q)\to (\Box P\lor\Box Q)$$

Erstes Beispiel

Die Formel

$$\Box A \rightarrow A$$

ist nicht allgemeingültig.

Erstes Beispiel

Die Formel

 $\Box A \rightarrow A$

ist nicht allgemeingültig.

Aber

Erstes Beispiel

Die Formel

$$\Box A \rightarrow A$$

ist nicht allgemeingültig.

Aber

für alle Kripke-Strukturen $\mathcal{K}=(\mathcal{S},\mathcal{R},\mathit{I})$, so daß $(\mathcal{S},\mathcal{R})$ eine reflexive Relation ist gilt

$$\mathcal{K} \models \Box A \rightarrow A$$

allgemeingültige Formel	Eigenschaft von R
$\Box P o P$	reflexiv

allgemeingültige Formel	Eigenschaft von R
$\Box P ightarrow P$	reflexiv
$\Box P ightarrow \Box \Box P$	transitiv

allgemeingültige Formel	Eigenschaft von F
$\Box P o P$	reflexiv
$\Box P ightarrow \Box \Box P$	transitiv
$P ightarrow \Box \Diamond P$	symmetrisch

allgemeingültige Formel	Eigenschaft von R
$\Box P o P$	reflexiv
$\Box P ightarrow \Box \Box P$	transitiv
$P ightarrow \Box \Diamond P$	symmetrisch
$\Box\Box P o \Box P$	dicht

allgemeingültige Formel	Eigenschaft von R
$\Box P o P$	reflexiv
$\Box P ightarrow \Box \Box P$	transitiv
$ extcolor{p}{ o}\Box\Diamond extcolor{p}{ o}$	symmetrisch
$\Box\Box P \to \Box P$	dicht
	für alle $t_1, t_2 \in S$ mit $R(t_1, t_2)$
	existiert $t_3 \in S$ mit $R(t_1, t_3)$ und $R(t_3, t_2)$.

allgemeingültige Formel	Eigenschaft von R
$\Box P o P$	reflexiv
$\Box P ightarrow \Box \Box P$	transitiv
$P ightarrow \Box \Diamond P$	symmetrisch
$\Box\Box P \to \Box P$	dicht
	für alle $t_1, t_2 \in S$ mit $R(t_1, t_2)$
	existiert $t_3 \in S$ mit $R(t_1, t_3)$ und $R(t_3, t_2)$.
$\lozenge P o \Box P$	partiell funktional

allgemeingültige Formel	Eigenschaft von R
$\Box P o P$	reflexiv
$\Box P ightarrow \Box \Box P$	transitiv
$ extstyle{P} ightarrow \Box \Diamond extstyle{P}$	symmetrisch
$\Box\Box P ightarrow \Box P$	dicht
	für alle $t_1, t_2 \in S$ mit $R(t_1, t_2)$
	existiert $t_3 \in S$ mit $R(t_1, t_3)$ und $R(t_3, t_2)$.
$\lozenge P o \Box P$	partiell funktional
	für alle $s, t_1, t_2 \in S$ mit $R(s, t_1) \wedge R(s, t_2)$
	folgt $t_1 = t_2$.

allgemeingültige Formel	Eigenschaft von R
$\Box P o P$	reflexiv
$\Box P ightarrow \Box \Box P$	transitiv
$P ightarrow \Box \Diamond P$	symmetrisch
$\Box\Box P \to \Box P$	dicht
	für alle $t_1, t_2 \in S$ mit $R(t_1, t_2)$ existiert $t_3 \in S$ mit $R(t_1, t_3)$ und $R(t_3, t_2)$.
$\Diamond P ightarrow \Box P$	partiell funktional für alle $s, t_1, t_2 \in S$ mit $R(s, t_1) \land R(s, t_2)$
$\Box P ightarrow \Diamond P$	folgt $t_1 = t_2$. endlos

Eigenschaft von R
reflexiv
transitiv
symmetrisch
dicht
für alle $t_1, t_2 \in S$ mit $R(t_1, t_2)$
existiert $t_3 \in S$ mit $R(t_1, t_3)$ und $R(t_3, t_2)$.
partiell funktional
für alle $s, t_1, t_2 \in S$ mit $R(s, t_1) \wedge R(s, t_2)$
folgt $t_1 = t_2$.
endlos
für jedes $s \in S$ ein t existiert mit $R(s, t)$.
agenlogische Variable.

Weitere Beispiele

allgemeingültige Formel	Eigenschaft von R
$\Box P o P$	reflexiv
$P ightarrow \lozenge P$	reflexiv
$\Box\Box P \to \Box P$	reflexiv
$\Box\Diamond P o \Diamond P$	reflexiv
$\Box P ightarrow \Diamond \Box P$	reflexiv
$\Diamond \Diamond P ightarrow \Diamond P$	transitiv
$\Box P ightarrow \Box \Box P$	transitiv
$ extstyle{P} ightarrow \Box \Diamond extstyle{P}$	symmetrisch
$\Box\Box P \leftrightarrow \Box P$	reflexiv und transitiv
$\Diamond \Diamond P \leftrightarrow \Diamond P$	reflexiv und transitiv
$\Diamond\Box P\leftrightarrow\Box P$	Äquivalenzrelation
$\Box\Diamond P\leftrightarrow\Diamond P$	Äquivalenzrelation
O -!	I M! - I-I -

P eine aussagenlogische Variable.

Charakterisierung

Erstes Beispiel

Charakterisierung

Erstes Beispiel

Gilt für einen Kripke-Rahmen (S, R)

für alle
$$I$$
 gilt $(S, R, I) \models \Box P \rightarrow P$

dann ist

$$(S,R)$$
 reflexiv

Charakterisierungstheorie

Definition

Sei **R** eine Klasse von Kripke-Rahmen, und *F* eine Formel der Modallogik.

Charakterisierungstheorie

Definition

Sei **R** eine Klasse von Kripke-Rahmen, und *F* eine Formel der Modallogik.

F charakterisiert die Klasse \mathbf{R} genau dann, wenn für alle Kripke-Rahmen (S,R) gilt

für alle
$$I$$
 gilt $(S, R, I) \models F$
gdw
 $(S, R) \in \mathbf{R}$

Formel	charakterisierte Eigenschaft
$\Box P o P$	reflexiv

Formel	charakterisierte Eigenschaft
$\Box P ightarrow P \ \Box P ightarrow \Box D P$	reflexiv transitiv

Formel	charakterisierte Eigenschaft
$\Box P ightarrow P \ \Box P ightarrow \Box \Box P \ P ightarrow \Box \Box P \ P ightarrow \Box \Diamond P$	reflexiv transitiv symmetrisch

Formel	charakterisierte Eigenschaft
$\Box P o P$	reflexiv
$\Box P ightarrow \Box \Box P$	transitiv
$P ightarrow \Box \Diamond P$	symmetrisch
$\Box\Box P ightarrow \Box P$	dicht

Formel	charakterisierte Eigenschaft
$\Box P o P$	reflexiv
$\Box P ightarrow \Box \Box P$	transitiv
$P ightarrow \Box \Diamond P$	symmetrisch
$\Box\Box P ightarrow \Box P$	dicht
$\lozenge P o \Box P$	partiell funktional

Formel	charakterisierte Eigenschaft
$ \Box P \to P \Box P \to \Box \Box P P \to \Box \Diamond P \Box \Box P \to \Box P $	reflexiv transitiv symmetrisch dicht
$\lozenge P o \Box P \ \Box P o \lozenge P$	partiell funktional

Formel	charakterisierte Eigenschaft
$ \Box P \to P \\ \Box P \to \Box \Box P \\ P \to \Box \Diamond P \\ \Box \Box P \to \Box P $	reflexiv transitiv symmetrisch dicht
igtriangleup P ightarrow igtriangleup P ightarrow igtriangleup P	partiell funktional

Formel	charakterisierte Eigenschaft			
$\Box P o P$	reflexiv			
$\Box P ightarrow \Box \Box P$	transitiv			
$P ightarrow \Box \Diamond P$	symmetrisch			
$\Box\Box P ightarrow \Box P$	dicht			
$\Diamond P \to \Box P$	partiell funktional			
$\Box P ightarrow \Diamond P$	endlos			
P eine aussagenlogische Variable.				

Konkretisierung

Sei ϕ eine Formel der Prädikatenlogik in der Signatur $\Sigma = \{R\}$ und

$$\mathcal{R}_{\phi} = \{ (\mathcal{S}, \mathcal{R}) \mid (\mathcal{S}, \mathcal{R}) \models \phi \}$$

Frage 1 Gibt es zu jedem ϕ eine modallogische Formel F, so daß die Klasse der Rahmen \mathcal{R}_{ϕ} charakterisiert?

Konkretisierung

Sei ϕ eine Formel der Prädikatenlogik in der Signatur $\Sigma = \{R\}$ und

$$\mathcal{R}_{\phi} = \{ (\mathcal{S}, \mathcal{R}) \mid (\mathcal{S}, \mathcal{R}) \models \phi \}$$

- Frage 1 Gibt es zu jedem ϕ eine modallogische Formel F, so daß die Klasse der Rahmen \mathcal{R}_{ϕ} charakterisiert?
- Frage 2 Gibt es zu jeder modallogischen Formel F eine prädikatenlogische Formel ϕ , so daß \mathcal{R}_{ϕ} mit der Klasse der durch F charakterisierten Rahmen zusammenfällt?

Antworten

Antwort 1 Nein

Z.B. für $\phi = \forall x \neg R(x, x)$ kann die Klasse \mathcal{R}_{ϕ} nicht durch eine modallogische Formel charakterisiert werden

Antworten

Antwort 1 Nein

Z.B. für $\phi = \forall x \neg R(x, x)$ kann die Klasse \mathcal{R}_{ϕ} nicht durch eine modallogische Formel charakterisiert werden

Antwort 2 Nein

Es gibt modallogische Formel F, so daß die durch F charakterisierten Rahmen nicht durch eine prädikatenlogische Formel ϕ axiomatisiert werden kann.

Entscheidbarkeit modaler Logiken

Entscheidbarkeit

Aus dem Filtrationslemma (siehe Skriptum) folgt:

Theorem

Jede Menge Γ modallogischer Formeln, die überhaupt ein Modell hat,

hat auch ein Modell (S, R, I), so dass S endlich ist, wobei eine obere Schranke für die Größe von S aus Γ berechnet werden kann.

Entscheidbarkeit

Aus dem Filtrationslemma (siehe Skriptum) folgt:

Theorem

Jede Menge Γ modallogischer Formeln, die überhaupt ein Modell hat,

hat auch ein Modell (S, R, I), so dass S endlich ist, wobei eine obere Schranke für die Größe von S aus Γ berechnet werden kann.

Korollar

Die modale Aussagenlogik K ist entscheidbar,

Entscheidbarkeit

Aus dem Filtrationslemma (siehe Skriptum) folgt:

Theorem

Jede Menge Γ modallogischer Formeln, die überhaupt ein Modell hat,

hat auch ein Modell (S, R, I), so dass S endlich ist, wobei eine obere Schranke für die Größe von S aus Γ berechnet werden kann.

Korollar

Die modale Aussagenlogik K ist entscheidbar, d.h.

es gibt einen Algorithmus, der für jede Formel *A* entscheidet, ob *A* eine **K**-Tautologie ist oder nicht.

Andere Modalitäten

Informale Interpretationen von □

$\Box F$
F ist zu jedem zukünftigen Zeitpunkt wahr
Ein Agent <i>a</i> glaubt <i>F</i>
Ein Agent a weiß F
Nach jeder Ausführung des Programms <i>p</i> gilt <i>F</i>

Falls erforderlich schreibt man

$$\Box_a F$$
, $\Box_p F$, $[a]F$ oder $[p]F$

anstelle von $\Box F$.

Informale Interpretationen von \Diamond

$\lozenge F \equiv \neg \Box \neg F$					
$\Box F$	<i>♦F</i>				
F ist zu jedem zukünftigen	es gibt einen zukünftigen Zeitpunkt,				
Zeitpunkt wahr	zu dem <i>F</i> wahr ist.				
Ein Agent a glaubt F	F ist konsistent mit den Aussagen,				
	die <i>a</i> für wahr hält.				
Ein Agent a weiß F	a weiß nicht, daß F falsch ist.				
Nach jeder Ausführung des	Es gibt eine Ausführung des				
Programms <i>p</i> gilt <i>F</i>	Programms p , nach der F wahr ist.				

$\Box \mathcal{F}$	$\Box F o F$	$\Box F ightarrow \Box \Box F$	$\Box F \to \Diamond F$	$(\Box(F\to G)\land \Box F)\to \Box G$	<i>♦true</i>
F ist immer wahr (in der Zukunft)	?	yes	yes	yes	yes
Ein Agent a weiß F	yes	?	yes	yes	yes
Ein Agent <i>a</i> glaubt <i>F</i>	no	?	yes	yes	yes
Nach jeder Ausführung des					
Programms <i>p</i> gilt <i>F</i>	no	no	no	yes	no

$\Box \mathcal{F}$	$\Box F o F$	$\Box F \to \Box \Box F$	$\Box F \to \Diamond F$	$(\Box(F\to G)\land \Box F)\to \Box G$	<i>♦true</i>
F ist immer wahr (in der Zukunft)	yes	yes	yes	yes	yes
Ein Agent a weiß F	yes	?	yes	yes	yes
Ein Agent a glaubt F	no	?	yes	yes	yes
Nach jeder Ausführung des					
Programms <i>p</i> gilt <i>F</i>	no	no	no	yes	no

$\Box F$	$\Box F o F$	$\Box F \to \Box \Box F$	$\Box F \to \Diamond F$	$(\Box(F\to G)\land \Box F)\to \Box G$	<i>♦true</i>
F ist immer wahr (in der Zukunft)	yes	yes	yes	yes	yes
Ein Agent a weiß F	yes	yes	yes	yes	yes
Ein Agent <i>a</i> glaubt <i>F</i>	no	yes	yes	yes	yes
Nach jeder Ausführung des Programms <i>p</i> gilt <i>F</i>	no	no	no	yes	no