

A set is an unordered collection of objects, called elements or members of the set.

We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A. áeA

Example

The set O of odd positive integers less than 10 can be expressed by

- A set \mathcal{A} is a subset of another set \mathcal{B} if every element of \mathcal{A} is also an element of \mathcal{B} . We use the notation $\mathcal{A} \subseteq \mathcal{B}$ to indicate that \mathcal{A} is a subset of the set \mathcal{B} .
- \square Two sets A and B are equal $\iff A \subseteq B$ and $B \subseteq A$.
- Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|.

Cartesian Product

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

Hence,
$$A \times B = \{ (a,b) \mid a \in A, b \in B \}.$$

For example, if $A = \{1, 2\}$ and $B = \{a, b\}$, then

$$A \times B = \{(1, a), (1, b), (2, a), (2, b)\}$$

Operations

Let A and B be sets.

Union

The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

Intersection

The intersection of the sets A and B, denoted by $A \cap B$, is the set that contains those elements that are in both A and B.

Two sets are called disjoire in their intersection is the empty set

Operations

Difference of sets

The difference of A and B, denoted by A - B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

Complement

Let U be the universal set. The complement of the set A, denoted by \overline{A} or A^c , is the complement of A with respect to U. Therefore, the complement of the set A is U - A.

Multiset

It is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. In the multiset $\{a, a, b\}$, the element a has multiplicity 2, and b has multiplicity 1.

Set identities

	ر ۱	Ŋſ	(a)
	X		
P			·
P	UP	, ,	

TABLE 1 Set Identities.			
Identity	Name		
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws		
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws		
$A \cup A = A$ $A \cap A = A$	Idempotent laws		
$\overline{(\overline{A})} = A$	Complementation law		
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws		
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws		
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws		
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws		
$A \cup (A \cap B) = A$ $A \circ (A \cap B) = 1$	Absorption laws		
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws		

AOR

Range: = S f(x): x G A'S What is function?

Let A and B be none poty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \to B$.

|Range| Image If f is a function from A to B, we say that A is the domain of f and B is the codomain of f. If f(a) = b, we say that b is the image of a and a is a preimage of b. The range, or image, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

Domain and Co-domain

Onto function

A function
$$f$$
 from A to B is called onto, or a surjection if and only if for every element $b \in B$ here is an element $a \in A$ with $f(a) = b$. A function f is called surjective if it is onto.

The function f is called surjective if it is onto.

The function f is called $f(a) = b$. A function f is called $f(a) = b$. A function f is called $f(a) = b$. A function $f(a) = b$. A fun

both one-to-one and onto. We also say that such a function is bijective.

Composition of functions

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(a) = f(g(a))$ for all $a \in A$

Inverse of a function

The inverse of a function f is another function g if $f \circ g = g \circ f = identity$, In this case we write $g = f^{-1}$.

$$f: A \rightarrow B$$

$$g: B \rightarrow C$$