IMD0030 – LINGUAGEM DE PROGRAMAÇÃO I

Aula 04 – Recursividade

Recursão

- Método de programação no qual uma função chama a si própria
- Dividir e conquistar
 - problemas menores
 - combinar soluções
 - soluções mais simples e fáceis de se analisar

•
$$3! = 3*2*1$$

•
$$2! = 2*1$$

•
$$0! = 1$$

•
$$4! = 4*3!$$

•
$$3! = 3*2!$$

•
$$2! = 2*1!$$

•
$$1! = 1*0!$$

•
$$0! = 1$$

$$N! = N*(N-1)!$$

 $0! = 1$

```
0! = 1 (caso base)
N! = N*(N-1)!
```

- quando a recursão deve parar
- mudar o valor do parâmetro da chamada recursiva

```
#include <iostream>
using namespace std;
int fatorial(int N)
       (N == 0)
        return 1;
        return N*fatorial(N-1);
int main(void)
    int n, F;
    cout << "Digite um número:" << endl;</pre>
    cin >> n;
    F = fatorial(n);
    cout << "0 fatorial de " << n << " é: " << F << endl;</pre>
    return 0;
```

0! = 1 (caso base)

N! = N*(N-1)!

fatorial(0)

fatorial(1)

fatorial(2)

fatorial(3)

fatorial(4)

main()

return(1)

return(1*1)

return(2*1*1)

return(3*2*1*1)

return(4*3*2*1*1)

main()

```
0! = 1 (caso base)
N! = N*(N-1)!
```

Posso usar caso base "1!=1"?

Por que?

```
#include <iostream>
using namespace std;
int fatorial(int N)
    if (N == 0)
        return 1;
        return N*fatorial(N-1);
int main(void)
    int n, F;
    cout << "Digite um número:" << endl;</pre>
    cin >> n;
    F = fatorial(n);
    cout << "0 fatorial de " << n << " é: " << F << endl;</pre>
    return 0;
```

Função Recursiva

Sempre deve ter nesta sequência:

- Caso base (critério de parada)
- Caso de recursão

Opcional

 Condição de terminação (caso de entrada errada dos dados)

```
#include <iostream>
using namespace std;
int fatorial(int N)
    if (N == 0)
        return 1;
        return N*fatorial(N-1);
int main(void)
    int n, F;
    cout << "Digite um número:" << endl;
    cin >> n;
    F = fatorial(n);
    cout << "0 fatorial de " << n << " é: " << F << endl;</pre>
    return 0;
```

Soma de N números inteiros

Utilizando recursão, faça um programa que retorne a soma de 1 a N, onde N é um número inteiro positivo fornecido pelo usuário

Máximo Divisor Comum

Algoritmo de Euclides

$$mdc(p,q) = \left\{ egin{aligned} p, & se & q = 0 \ mdc(q, & p\%q) & caso & contr\'ario \end{aligned}
ight.$$

Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

•
$$F_0 = 0, F_1 = 1$$

•
$$F_n = F_{n-1} + F_{n-2}$$

Fibonacci

- F_{31} : 4.356.617 chamadas
- F_{32} : 7.049.155 chamadas

Recursão vs Iteração

- quando utilizar recursão?
- quais os pontos críticos na implementação de um programa recursivo?

Recursão	Iteração
Estruturas de seleção <i>if</i> , <i>if-else</i> ou <i>switch</i> .	Estruturas de repetição <i>for</i> , <i>while</i> ou <i>do-while</i> .
Repetição por chamadas de funções repetidas.	Repetição explícita.
Termina quando um caso base é reconhecido.	Termina quando teste do laço falha.
Pode ocorrer infinitamente.	Pode ocorrer infinitamente.
Lento.	Rápido.
Soluções simples e de fácil manutenção.	Soluções complicadas e de difícil manutenção.

www.ic.unicamp.br/~oliveira/doc/mc102_2s2004/Aula19.pdf

Recursão vs Iteração

Recursão	Iteração
Estruturas de seleção <i>if</i> , <i>if-else</i> ou <i>switch</i> .	Estruturas de repetição <i>for</i> , <i>while</i> ou <i>do-while</i> .
Repetição por chamadas de funções repetidas.	Repetição explícita.
Termina quando um caso base é reconhecido.	Termina quando teste do laço falha.
Pode ocorrer infinitamente.	Pode ocorrer infinitamente.
Lento.	Rápido.
Soluções simples e de fácil manutenção.	Soluções complicadas e de difícil manutenção.

www.ic.unicamp.br/~oliveira/doc/mc102_2s2004/Aula19.pdf

- Recursão pode ficar MUITO LENTO ao ponto de parecer "travamento".
 Por que?
 - Resposta: disciplina Arquitetura + Sistemas Operacionais

Tipos de recursão

- recursão direta
 - função chama a mesma função
- recursão indireta
 - uma função "a" é dita indireta se chama uma função "b" que por sua vez chama a função "a"
- recursão em cauda
 - não existe processamento a ser feito depois de encerrada a chamada recursiva (não há retorno de informação)

Recursão em cauda

Recursão em cauda

```
int fact(int n) {
    if (n == 0)
       return 1;
    return n*fact(n-1);
int main(){
    cout << fact(5);</pre>
    return 0;
```

```
int fact(int n, int a) {
    if (n == 0)
        return a;
    return fact (n-1, n*a);
int main(){
    cout << fact(5,1);</pre>
    return 0;
```

Exercício Sala de Aula

- 1) Implemente Integral definida utilizando regra do trapézio. Forneça:
 - Função f(x);
 - Limites inferior e superior "a" e "b";
 - Número de trapézios "n".

Explicação a seguir

Integral definida por Regra do Trapézio

Área de um trapézio =
$$\frac{h}{2}[f(x_i) + f(x_{i+1})]$$

$$h = \frac{b-a}{n}$$
No de trapézios

Area de trapézio =
$$\frac{h}{2}(B+b)$$

$$x_0 = a$$
, $x_1 = a + h$, $x_2 = a + 2h$, ... $x_{n-1} = a + (n-1)h$, $x_n = b$

Solução 1

Considere que $f(x_n) = y_n$

Area de trapézio =
$$\frac{h}{2}(B+b)$$

$$\text{\'A}rea\ total = \frac{h}{2}[y_0 + y_1] + \frac{h}{2}[y_1 + y_2] + \frac{h}{2}[y_2 + y_3] + \dots + \frac{h}{2}[y_{n-2} + y_{n-1}] + \frac{h}{2}[y_{n-1} + y_n]$$

Solução 1

Considere que $f(x_n) = y_n$

Area de trapézio =
$$\frac{h}{2}(B+b)$$

$$\text{\'A}rea\ total = \frac{h}{2}[y_0 + y_1] + \frac{h}{2}[y_1 + y_2] + \frac{h}{2}[y_2 + y_3] + \dots + \frac{h}{2}[y_{n-2} + y_{n-1}] + \frac{h}{2}[y_{n-1} + y_n]$$

Tem como simplificar a solução?