MATH 417 1/25/2023 What about inverse when matrices are not square? We could afternet to solve AX = I. Example: Find a matrix & mil that $\begin{pmatrix} 2411 \\ 1213 \end{pmatrix} X = \begin{pmatrix} 10 \\ 01 \end{pmatrix}$ $\frac{3013800}{(2411|0)} = (00-15|1-2)$ (1213|01) = (1213|01) (0015|-12)

Example: Solve $\begin{pmatrix}
2 & 1 \\
4 & 2 \\
1 & 1
\end{pmatrix} = \begin{pmatrix}
1000 \\
0100 \\
0510 \\
0001
\end{pmatrix}$

Shukion

(21 1000) This cannot work! We are not allowed (42 0100) any hivots to the right of the line. So we (11 0010) are allowed at most two pivots \Rightarrow at least (13 0001) two 0 lines in RREF.

But the unit metrix is not equivalent to a matrix with a D wow (because it is in RREF and the RREF is curiquely determined).

Note: Size does not gracartee a solution Exemple: Find a measing & (if any) and that $\begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 0 & 2 \end{pmatrix} X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ Solution: $\frac{1}{2} \frac{2}{2} \frac{3}{2} \frac{100}{000} \frac{3}{2} \frac{1}{2} \frac{100}{000} \frac{3}{2} \frac{1}{2} \frac{100}{000} \frac{3}{2} \frac{1$ $\begin{pmatrix}
1 & 1 & 2 & 3 & | & 100 & | \\
0 & 1 & 1 & 2 & | & -110 & | \\
0 & -2 & -2 & -4 & | & -201 & | & 2
\end{pmatrix}$

REF: No solution.

trample: Solve (if possible) $2\left(\frac{241}{1213}\right) = \begin{pmatrix} 1000\\0100\\0001 \end{pmatrix}$ Solution: Refer to example Q. Soffing Y = 2^t, equation (1) implies $\begin{pmatrix} 2 & 1 \\ 4 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1000 \\ 000 \\ 000 \\ 000 \end{pmatrix}$

which has no solution because of size.

Z (A) m = [] m

is not solvable of MV < M.

(Perform a transposition and user to page \$\Pi\$.)

A makix X and that AX = I is called a right inverse A matrix Y nucle that YA = I is called a left inverte to A. A right (or left) inverse closes not exist when I has more entries than the matrix A. Otherwise, the left or right inverse may or may not wist.
Ux (auss elimination, (for finding left inverse, transform, and if
you find a solution, transport it back) An inverse from both sides car only exist when A is square. In that case, inverses from both sides (i) an inverse from one the exist) are equal and uniquely determined FIW 3 Determine whether the matrix $A = \begin{pmatrix} 3 & 5 & 8 & 11 & 16 \\ 1 & 2 & 3 & 4 & 6 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix}$

(a) Has a left inverse. If so, find all its left inverses.

(b) has a right inverse. If so, find all its right inverses.

A Petermine if the medix $A = \begin{pmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 3 & 2 & 5 \\ 2 & 1 & 3 \end{pmatrix}$ A Has a left inverse. If so, find all its left inverses.

(a) Has a light inverse. If so, find all its right inverses.