Federated Curvature & Multi-Task Federated Machine Learning

Théo LELEU

Christophe Cerisara LORIA Mines Nancy

11 Juin 2020

Réseaux de Neurones et Federated learning

Descente de Gradient Stochastique

Soit un réseau avec des poids W et une vitesse d'apprentissage ϵ .

$$W = W - \epsilon \times \nabla L(D_i)$$
 (E itérations)

avec L la fonction de perte, souvent :

$$L(D_i) = \frac{1}{N} \sum_{D_i} (Observation - Prédiction)^2$$

Stochastic Gradient Descent

Gradient Descent

Federated Averaging

Pour gérer la fusion, nous moyennons les modèles des clients pour obtenir le modèle général.

Federated Curvature

Sur un modèle à plusieurs clients, on aura des résultats sur les clients distincts de l'optimum mais, on cherche à s'en rapprocher.

On utilise une méthode de pénalité pour forcer cela :

$$\tilde{L}_B(w) \approx L_B(w) + \lambda (w - \hat{w}_A)^T diag(H_{L_A})(w - \hat{w}_A)$$
 with $H_{L_A} = \frac{\partial^2 L_A}{\partial x_i \partial x_j}$

Federated Curvature

D'où pour un modèle à n clients à l'étape t:

En entrée sur s :

•
$$L_{t,s}(w) = \hat{L}_{t,s}(w) + \lambda w^T \times (u_t w - 2v_t)$$

• Chaque appareil s reçoit $u_t = \sum_{j \in S \setminus s} diag(H_{t-1,j})$ et $v_t = \sum_{j \in S \setminus s} diag(H_{t-1,j}) w_{t-1,j}$

En sortie:

ullet II faut transmettre $w_{t,j}$ et $diag(H_{L_{t,j}})$

Expériences

 Nous étudions trois groupes de points représentant des corpus d'apprentissage et observons l'impact du passage de FedAVG à FedCurv.

Tâche de test avec les quatres catégories de points

FedAVG

Loss

Accuracy

FedCurv Loss

Accuracy

Etude de tâches de sentiments : Senteval

name	N	task	C	examples	label(s)
MR	11k	sentiment (movies)	2	"Too slow for a younger crowd, too shallow for an older one."	neg
CR	4k	product reviews	2	"We tried it out christmas night and it worked great ."	pos
SUBJ	10k	subjectivity/objectivity	2	"A movie that doesn't aim too high, but doesn't need to."	subj
MPQA	11k	opinion polarity	2	"don't want"; "would like to tell";	neg, pos
TREC	6k	question-type	6	"What are the twin cities ?"	LOC:city
SST-2	70k	sentiment (movies)	2	"Audrey Tautou has a knack for picking roles that magnify her []"	pos
SST-5	12k	sentiment (movies)	5	"nothing about this movie works."	0

Table 1: Classification tasks. C is the number of classes and N is the number of samples.

name	N	task	output	premise	hypothesis	label
SNLI	560k	NLI	3	"A small girl wearing a pink jacket	"The carousel is moving."	entailment
				is riding on a carousel."		
SICK-E	10k	NLI	3	"A man is sitting on a chair and rub-	"There is no man sitting on a chair	contradiction
				bing his eyes"	and rubbing his eyes"	
SICK-R	10k	STS	[0, 5]	"A man is singing a song and playing	"A man is opening a package that	1.6
				the guitar"	contains headphones"	
STS14	4.5k	STS	[0, 5]	"Liquid ammonia leak kills 15 in	"Liquid ammonia leak kills at least	4.6
				Shanghai"	15 in Shanghai"	
MRPC	5.7k	PD	2	"The procedure is generally per-	"The technique is used during	paraphrase
				formed in the second or third	the second and, occasionally, third	
				trimester."	trimester of pregnancy."	
COCO	565k	ICR	sim	de dede	"A group of people on some horses riding through the beach."	rank

Table 2: Natural Language Inference and Semantic Similarity tasks. NLI labels are contradiction, neutral and entailment. STS labels are scores between 0 and 5. PD=paraphrase detection, ICR=image-caption retrieval.

Figure: Description des données présentes dans le package Senteval de Conneau et Kiela

Etude de tâches de sentiments : Senteval

Accuracy de SGD Par ordre: CR, MR, MPQA, SUBJ

Accuracy de FedAVG De bas en haut MR,CR, MPQA

Merci pour votre attention !

