Implementation and Formal Verification of a <u>functional</u> SkipList

Lepeytre Hugo, Juillard Paul, Rocher Tanguy

CS550 - EPFL

What is a SkipList

- Store an ordered sequence of n elements
- Insertion, removal is O(log n)
- Search is O(log n)

What is a SkipList

- The SkipList is organised in levels
- Each level i is itself an ordered list
- Each level i is a subset of level i-1
- Each node consists in :
 - A value
 - A pointer on the next node on level i
 - A pointer to a node with the same value on level i-1 if i>0

Abstract

SkipLists and implementations have been formally verified:

- leveraging imperative constructs and memory layouts etc.
- by constructing a complex signature space in Presburger arithmetic and verified in Coq

Our work:

- functional implementation of skiplists
- formal verification of a functional implementation
- verified with stainless, without the need to develop the formal space

	Interpretation	
Σ_{level}		$s^{A}(l) = s(l)$, for each $l \in A_{level}$
		$x \preceq^A y \vee y \preceq^A x$
Σ_{ord}	• $x \leq^A y \land y \leq^A z \rightarrow x \leq^A z$ •	$-\infty^A \preceq^A x \wedge x \preceq^A + \infty^A$
	for any $x, y, z \in A_{ord}$	70 TO 1 TO
Σ_{array}	• $A[l]^A = A(l)$	
	 A{l ← a}^A = B, where B(l) = for each A, B ∈ A_{array}, l ∈ A_{level} an 	
	Maria de la companya	
$\varSigma_{\mathrm{cell}}$	• $mkcell^A(e, k, A, l) = \langle e, k, A, l \rangle$	()
	• $\langle e, k, A, l \rangle . data^A = e$	f-1-1-1-1-1-1
	The state of the s	• $\langle e, k, A, l \rangle .max^A = l$
	for each $e \in A_{elem}$, $k \in A_{ord}$, $A \in A_{ord}$	A_{array} , and $l \in A_{level}$
Σ_{mem}	• $rd(m, a)^A = m(a)$ • $upd^A(m, a, c) = m_{a \mapsto c}$ • $m^A(null^A) = error^A$ for each $m \in A_{mem}$, $a \in A_{addr}$ and $c \in A_{cell}$	
		C Picell
Σ_{reach}	 ε^A is the empty sequence [a]^A is the sequence containing 	a ∈ 4 as the only element
	• $([a_1 a_n], [b_1 b_m], [a_1 a_n, b_1 b_m]) \in append^A$ iff $a_k \neq b_l$.	
	• $(m, a_{init}, a_{end}, l, p) \in reach^A$ iff $a_{init} = a_{end}$ and $p = \epsilon$, or there	
	exist addresses $a_1, \dots, a_n \in A_{addr}$ such that:	
		ddr such that:
	(a) $p = [a_1 a_n]$ (c)	ddr such that: $m(a_r).arr^A(l) = a_{r+1}$, for $r < n$
	(a) $p = [a_1 a_n]$ (c)	ddr such that:
	(a) $p = [a_1 a_n]$ (c)	ddr such that: $m(a_r).arr^A(l) = a_{r+1}$, for $r < n$ $m(a_n).arr^A(l) = a_{end}$
	(a) $p = [a_1 a_n]$ (c) (b) $a_1 = a_{init}$ (d) for each $m \in A_{mem}$, $p \in A_{path}$, $l \in$ • $path2set^A(p) = \{a_1,, a_n\}$ for	ddr such that: $m(a_r).arr^A(l) = a_{r+1}$, for $r < n$ $m(a_n).arr^A(l) = a_{end}$ $A_{level}, a_i, a_e \in A_{addr}, r \in A_{set}$ $r p = [a_1, \dots, a_n] \in A_{path}$
	(a) $p = [a_1a_n]$ (c) (b) $a_1 = a_{init}$ (d) for each $m \in A_{mem}$, $p \in A_{path}$, $l \in$ • $path2set^A(p) = \{a_1,, a_n\}$ for • $addr2set^A(m, a, l) = \{a' \mid \exists p \in$	dot such that: $m(a_r).arr^A(l) = a_{r+1}$, for $r < n$ $m(a_n).arr^A(l) = a_{end}$ $A_{level}, a_i, a_e \in A_{add}, r \in A_{bet}$ $r = [a_1, \dots, a_n] \in A_{path}$ $A_{path} \cdot (m, a, a', l, p) \in reach'^4$
	(a) $p = [a_1a_n]$ (c) (b) $a_1 = a_{inil}$ (d) for each $m \in A_{mem}$, $p \in A_{path}$, $l \in$ • $path2set^A(p) = \{a_1,,a_k\}$ for • $addr2set^A(m,a_l) = \{a' \mid \exists p \in$ • $getp^A(m,a_l,a_k,l) = p$ if $(m,a_l,a_k) = a'$	$\begin{array}{ll} {\rm dec} \ {\rm such} \ {\rm that} : \\ m(a_r).arr^A(l) = a_{r+1}, {\rm for} r < n \\ m(a_n).arr^A(l) = a_{\rm end} \\ {\rm Algord}, \ a_i, a_i \in A_{\rm add}, \ r \in A_{\rm set} \\ r = [a_1, \ldots, a_n] \in A_{\rm path} \\ A_{\rm path}, (m, a, a', l, p) \in {\rm reach}^A \} \\ a_a, l, p) \in {\rm reach}^A, \ {\rm and} \ {\rm otherwise} \end{array}$
	(a) $p = [a_1 a_n]$ (c) (b) $a_1 = a_{nint}$ (d) for each $m \in A_{nem}$, $p \in A_{path}$, $l \in$ $path 2set^A(p) = \{a_1,, a_n\}$ for • $addr2set^A(m, a, l) = \{a' \mid \exists p \in$ • $getp^A(m, a_l, a_e, l) = p$ if $(m, a_l, l) \in P$ • $ordList^A(m, p)$ if $p = e$ or $p = e$	$\begin{aligned} & \text{dot} \text{ such that:} \\ & m(a_r).arr^A(l) = a_{r+1}, & \text{for } r < n \\ & m(a_n).arr^A(l) = a_{end} \\ & A_{\text{level}}, a_i, a_e \in A_{\text{3dds}}, r \in A_{\text{set}} \\ & r = [a_1, \dots, a_n] \in A_{\text{path}} \\ & A_{\text{path}}, & (m, a, a', l, p) \in reach^A\} \\ & a_e, l, p) \in reach^A, \text{ and e otherwise} \\ & [a]_0, or p = [a_1, \dots, a_n] & \text{ with $n \geq 2$ an} \end{aligned}$
	(a) $p = [a_1 a_n]$ (c) (b) $a_1 = a_{nint}$ (d) for each $m \in A_{nem}$, $p \in A_{path}$, $l \in$ $path 2set^A(p) = \{a_1,, a_n\}$ for • $addr2set^A(m, a, l) = \{a' \mid \exists p \in$ • $getp^A(m, a_l, a_e, l) = p$ if $(m, a_l, l) \in P$ • $ordList^A(m, p)$ if $p = e$ or $p = e$	does such that: $m(a_r).arr^A(l) = a_{r+1}$, for $r < n$ $m(a_r).arr^A(l) = a_{cnd}$ $A_{level}, a_i, a_i \in A_{add}$, $r \in A_{sst}$ $r = [a_1, \dots, a_n] \in A_{path}$ A_{gath} , $(m, a_i, a_i, l, p) \in reach^A$ } $a_i, l, p) \in reach^A$, and ϵ otherwise $[a]$, or $p = [a_1, \dots, a_n]$ with $n \ge 2$ an r all $1 \le j < n$, for any $m \in A_{mem}$
	(a) $p = [a_1 a_n]$ (c) (b) $a_1 = a_{nint}$ (d) for each $m \in A_{nem}$, $p \in A_{path}$, $l \in$ $path 2set^A(p) = \{a_1,, a_n\}$ for • $addr2set^A(m, a, l) = \{a' \mid \exists p \in$ • $getp^A(m, a_l, a_e, l) = p$ if $(m, a_l, l) \in P$ • $ordList^A(m, p)$ if $p = e$ or $p = e$	$\begin{split} & \text{dde such that:} \\ & m(a_r).arr^A(l) = a_{r+1}, \text{for} r < n \\ & m(a_n).arr^A(l) = a_{end} \\ & A_{\text{level}}, \ a_i, a_e \in A_{\text{sdde}}, \ r \in A_{\text{set}} \\ & r = [a_1, \dots, a_n] \in A_{\text{path}} \\ & A_{\text{path}}, (m, a, a', l, p) \in reach^A \} \\ & a_e, l, p) \in reach^A, \text{ and otherwise} \\ & [a], \text{ or } p = [a_1, \dots, a_n] \text{ with } n \geq 2 \text{ an} \\ & \text{ or all } 1 \leq j < n, \text{ for any } m \in A_{\text{seen}} \\ & \text{ or dList}^A(m, \text{getp}^A(m, a_i, a_e, 0)) \land \end{split}$
	(a) $p = [a_1 a_n]$ (c) (b) $a_1 = a_{nint}$ (d) for each $m \in A_{nem}$, $p \in A_{path}$, $l \in$ $path 2set^A(p) = \{a_1,, a_n\}$ for • $addr2set^A(m, a, l) = \{a' \mid \exists p \in$ • $getp^A(m, a_l, a_e, l) = p$ if $(m, a_l, l) \in P$ • $ordList^A(m, p)$ if $p = e$ or $p = e$	$\begin{array}{ll} {\rm dec \ such \ that:} \\ {m(a_r).arr^A(l) = a_{r+1}, for r < n} \\ {m(a_r).arr^A(l) = a_{cnd}} \\ {A_{\rm fout}, a_i, a_c \in A_{\rm adds}, r \in A_{\rm set}} \\ {r = [a_1, \dots, a_n] \in A_{\rm path}} \\ {A_{\rm path}, (m_i, a_i, l_i) \in reach^A}, \\ {a_c, l, p] \in reach^A, a_l \in otherwise} \\ {a_c, l, p] \in reach^A, a_l \in otherwise} \\ {a_c, l, p] \in reach^A, a_l \in otherwise} \\ {a_c, l, p] \in reach^A, a_l \in otherwise} \\ {a_c, l, p] \in reach^A, a_l \in otherwise} \\ {a_c, l, p] \in reach^A, a_l \in otherwise} \\ {a_c, l, p] \in reach^A, a_l \in otherwise} \\ {a_c, l, p \in reach^A, a_l \in$
	(a) $p = [a_1 a_n]$ (c) (b) $a_1 = a_{nint}$ (d) for each $m \in A_{nem}$, $p \in A_{path}$, $l \in$ $path 2set^A(p) = \{a_1,, a_n\}$ for • $addr2set^A(m, a, l) = \{a' \mid \exists p \in$ • $getp^A(m, a_l, a_e, l) = p$ if $(m, a_l, l) \in P$ • $ordList^A(m, p)$ if $p = e$ or $p = e$	$\begin{array}{lll} & \text{such that:} \\ & m(a_r).ar^{\mathcal{A}}(l) = a_{r+1}, & \text{for} & r < n \\ & m(a_r).ar^{\mathcal{A}}(l) = a_{cnd} \\ & A_{\text{level}}, a_i, a_e \in A_{\text{slot}}, r \in A_{\text{sst}} \\ & r = [a_1, \dots, a_n] \in A_{\text{path}} \\ & A_{\text{path}}, & (m_a, a_i, l, p) \in reach^{\mathcal{A}} \\ & (a_i, l, p) \in reach^{\mathcal{A}}, & \text{and } c \text{ otherwise} \\ & [a], \text{ or } p = [a_1, \dots, a_n] \text{ with } n \geq 2 \text{ an} \\ & \text{an} \text{ all } 1 \leq j < n, \text{ for any } m \in A_{\text{nem}} \\ & \text{ord} List^{\mathcal{A}}(m_i, getp^{\mathcal{A}}(m_i, a_e, 0)) \\ & r = addr^2set^{\mathcal{A}}(m_i, a_i, 0) \\ & 0 \leq l \wedge \forall a \in r m(a).max^{\mathcal{A}} \leq l \end{array}$
	(a) $p = [a_1a_n]$ (c) (b) $a_1 = a_{out}$ (d) (b) $a_1 = a_{out}$ (d) for each $m \in A_{noun}, p \in A_{puth}, i \in$ • $path Sec^{4A}(p) = \{a_1,, a_n\}$ for • $addr2set^A(m, a_i, 1) = \{a' \mid \exists p \in$ • $getp^A(m, a_i, a_i, p) = p \text{ if } m_i$ • $ordList^A(m, p) \text{ iff } p = c \text{ or } p =$ $m(a_j).key^A \leq m(a_{j+1}).key^A \text{ for } m_i$	$\begin{array}{ll} \operatorname{des} \ \operatorname{such} \ \operatorname{that:} \\ m(a_r).\operatorname{arr}^A(l) = a_{r+1}, \text{for} r < n \\ m(a_r).\operatorname{arr}^A(l) = a_{\operatorname{end}} \\ \operatorname{Alievel}, \ a_i, a_i \in A_{\operatorname{adde}}, \ r \in A_{\operatorname{sst}} \\ r = [a_1, \dots, a_n] \in A_{\operatorname{path}} \\ A_{\operatorname{gath}}, (m, a_i, a_i, l, p) \in \operatorname{reach}^A \} \\ a_r, l, p) \in \operatorname{reach}^A, \ \operatorname{and} \epsilon \ \operatorname{otherwise} \\ [a], \ \operatorname{or} p = [a_1, \dots, a_n] \ \text{with} \ n \geq 2 \ \operatorname{an} \\ \operatorname{ral} \ l \leq j < n, \ \operatorname{for} \ \operatorname{any} \ m \in A_{\operatorname{deem}} \\ \operatorname{ord} \operatorname{List}^A(m, \operatorname{getp}^A(m, a_i, a_i, 0)) \land \\ r = \operatorname{addr} \operatorname{zset}^A(m, a_i, 0) \land \\ 0 \leq l \land \forall a \in r \ m(a_i). \\ \operatorname{arr}^A(l) = \operatorname{null}^A \qquad \land \\ m(a_e). \operatorname{arr}^A(l) = \operatorname{null}^A \qquad \land \end{array}$
	(a) $p = [a_1 a_n]$ (c) (b) $a_1 = a_{min}$ (d) for each $m \in A_{man}$, $p \in A_{path}$, $i \in$ • $path 2ext^A(p) = \{a_1,, a_n\}$ for • $add^2 2ext^A(m, a_i, l) = \{a' \mid \exists p \in$ • $getp^A(m, a_n, l) = p$ if (m, a_n) • $ordList^A(m, p)$ iff $p = ca p =$ $m(a_j).key^A \leq m(a_{j+1}).key^A$ for • $skiplist^A(m, r, l, a_i, a_e)$ iff	$\begin{array}{ll} \operatorname{dec such that:} \\ m(a_n).arr^A(l) = a_{r+1}, & \text{for } r < n \\ m(a_n).arr^A(l) = a_{cnd} \\ A_{\operatorname{dect}}, a_i, a_i \in A_{\operatorname{sub}}, r \in A_{\operatorname{sut}} \\ p = [a_1, \dots, a_n] \in A_{\operatorname{puth}} \\ A_{\operatorname{gath}}, & (m_i, a_i^-, l_p) = \operatorname{reach}^A, \\ a_i, l_p] \in \operatorname{reach}^A, & \text{and } c \text{ otherwise} \\ [a_i, t_p] = (l_i, \dots, a_n] & \text{with } n \geq 2 \text{ an} \\ \text{or all } 1 \leq j < n_i, \text{ for any } m \in A_{\operatorname{men}} \\ \text{or } dl.is^A(m_i, \operatorname{gcp}^A(m_i, a_{i-1}, 0_i)) & \wedge \\ r = \operatorname{add}^a \operatorname{Sec}^A(m_i, a_i, 0_i) & \wedge \\ 0 \leq l \wedge \forall a \in r \cdot m(a_i). \operatorname{max}^A \leq l & \wedge \\ m(a_i). \operatorname{arr}^A(l) = \operatorname{null}^A & \wedge \\ (0 = l) \vee & \end{array}$
	(a) $p = [a_1 a_n]$ (c) (b) $a_1 = a_{min}$ (d) for each $m \in A_{man}$, $p \in A_{path}$, $i \in$ • $path 2ext^A(p) = \{a_1,, a_n\}$ for • $add^2 2ext^A(m, a_i, l) = \{a' \mid \exists p \in$ • $getp^A(m, a_n, l) = p$ if (m, a_n) • $ordList^A(m, p)$ iff $p = ca p =$ $m(a_j).key^A \leq m(a_{j+1}).key^A$ for • $skiplist^A(m, r, l, a_i, a_e)$ iff	$\begin{aligned} & \text{dot} \text{ such that:} \\ & m(a_r).arr^{\mathcal{A}}(l) = a_{r+1}, & \text{for } r < n \\ & m(a_r).arr^{\mathcal{A}}(l) = a_{cnd} \\ & \mathcal{A}_{\text{level}}, a_i, a_e \in \mathcal{A}_{\text{sofe}}, r \in \mathcal{A}_{\text{set}} \\ & p = [a_1, \dots, a_n] \in \mathcal{A}_{\text{path}} \\ & \mathcal{A}_{\text{path}}, & (m, a_i, l, p) \in reach^{\mathcal{A}}_{\text{legal}}, & \text{a_i, l, p} \in \mathcal{A}_{\text{legal}}, & \text{in } l = 2 \text{ an} \\ & n \text{ all } 1 \leq j < n, \text{ for any } m \in \mathcal{A}_{\text{enem}} \\ & \text{ord} List^{\mathcal{A}}(m, getp^{\mathcal{A}}(m, a_i, a_e, 0)) \\ & r = addr^2set^{\mathcal{A}}(m, a_i, 0), & \text{o} \\ & r = addr^2set^{\mathcal{A}}(m, a_i), & \text{o} \\ & m(a_e).arr^{\mathcal{A}}(l) = null^{\mathcal{A}} \\ & m(a_e).arr^{\mathcal{A}}(l) = null^{\mathcal{A}} \\ & \mathcal{A}_{\text{legal}}, & \mathcal{A}_{\text{legal}}(p) = l \land \forall i \in 0, \dots, l_p. \end{aligned}$
	(a) $p = [a_1 a_n]$ (c) (b) $a_1 = a_{min}$ (d) for each $m \in A_{man}$, $p \in A_{path}$, $i \in$ • $path 2ext^A(p) = \{a_1,, a_n\}$ for • $add^2 2ext^A(m, a_i, l) = \{a' \mid \exists p \in$ • $getp^A(m, a_n, l) = p$ if (m, a_n) • $ordList^A(m, p)$ iff $p = ca p =$ $m(a_j).key^A \leq m(a_{j+1}).key^A$ for • $skiplist^A(m, r, l, a_i, a_e)$ iff	$\begin{array}{ll} \operatorname{dec such that:} \\ m(a_n).arr^A(l) = a_{r+1}, & \text{for } r < n \\ m(a_n).arr^A(l) = a_{cnd} \\ A_{\operatorname{dect}}, a_i, a_i \in A_{\operatorname{sub}}, r \in A_{\operatorname{sut}} \\ p = [a_1, \dots, a_n] \in A_{\operatorname{puth}} \\ A_{\operatorname{gath}}, & (m_i, a_i^-, l_p) = \operatorname{reach}^A, \\ a_i, l_p] \in \operatorname{reach}^A, & \text{and } c \text{ otherwise} \\ [a_i, t_p] = (l_i, \dots, a_n] & \text{with } n \geq 2 \text{ an} \\ \text{or all } 1 \leq j < n_i, \text{ for any } m \in A_{\operatorname{men}} \\ \text{or } dl.is^A(m_i, \operatorname{gcp}^A(m_i, a_{i-1}, 0_i)) & \wedge \\ r = \operatorname{add}^a \operatorname{Sec}^A(m_i, a_i, 0_i) & \wedge \\ 0 \leq l \wedge \forall a \in r \cdot m(a_i). \operatorname{max}^A \leq l & \wedge \\ m(a_i). \operatorname{arr}^A(l) = \operatorname{null}^A & \wedge \\ (0 = l) \vee & \end{array}$
$\Sigma_{ ext{bridge}}$	(a) $p = [a_1 a_n]$ (c) (b) $a_1 = a_{out}$ (d) for each $m \in A_{out}$, $p \in A_{put}$, $l \in$ • $path2set^A(p) = \{a_1,,a_n\}$ for • $addr2set^A(m, a_l) = \{a' \mid \exists p \in$ • $getp^A(m, a_l, a_l) = p$ if $a_1, a_2, a_1 \in$ • $getp^A(m, a_l, a_l) = p$ if $a_1, a_2, a_1 \in$ • $getp^A(m, a_l, a_l) = p$ if $a_1, a_2 \in$ • $getp^A(m, a_l, a_l) = p$ if $a_1, a_2 \in$ • $getp^A(m, a_l, a_l) = p$ if $a_1, a_2 \in$ • $getp^A(m, a_l, a_l) = p$ if $a_1, a_2 \in$ • $getp^A(m, a_l, a_l) = p$ if $a_1, a_2 \in$ • $getp^A(m, a_l, a_l) = p$ if $a_1, a_2 \in$	$\begin{aligned} & \text{dot} \text{ such that:} \\ & m(a_r).arr^{\mathcal{A}}(l) = a_{r+1}, & \text{for } r < n \\ & m(a_r).arr^{\mathcal{A}}(l) = a_{cnd} \\ & \mathcal{A}_{\text{level}}, a_i, a_e \in \mathcal{A}_{\text{sofe}}, r \in \mathcal{A}_{\text{set}} \\ & p = [a_1, \dots, a_n] \in \mathcal{A}_{\text{path}} \\ & \mathcal{A}_{\text{path}}, & (m, a_i, l, p) \in reach^{\mathcal{A}}_{\text{legal}}, & \text{a_i, l, p} \in \mathcal{A}_{\text{legal}}, & \text{in } l = 2 \text{ an} \\ & n \text{ all } 1 \leq j < n, \text{ for any } m \in \mathcal{A}_{\text{enem}} \\ & \text{ord} List^{\mathcal{A}}(m, getp^{\mathcal{A}}(m, a_i, a_e, 0)) \\ & r = addr^2set^{\mathcal{A}}(m, a_i, 0), & \text{o} \\ & r = addr^2set^{\mathcal{A}}(m, a_i), & \text{o} \\ & m(a_e).arr^{\mathcal{A}}(l) = null^{\mathcal{A}} \\ & m(a_e).arr^{\mathcal{A}}(l) = null^{\mathcal{A}} \\ & \mathcal{A}_{\text{legal}}, & \mathcal{A}_{\text{legal}}(p) = l \land \forall i \in 0, \dots, l_p. \end{aligned}$

Fig. 4. Characterization of a TSL-interpretation A

Operations

Search:

- Start at the top level
- either further right or lower

example: search(88)

Removing:

- Removing a value consists in removing all nodes containing this value
- Pointers have to be reassigned to skip the removed value

Inserting:

- To insert, we first need to pick at random a level i (which can be higher than the actual max level)
- And then insert a that value in each level smaller than or equal to i

Our implementation:

structure and properties

Our Implementation of a SkipList:

- A Skiplist is composed of :
 - maxHeight, the current maximum level of the SkipList
 - A *Node*, the first element at level *maxHeight* of the Skiplist
- A Node can be either:
 - A SkipNode itself composed of these elements
 - A value v
 - A level i
 - A node right
 - A node down

case class SkipList(head: Node, maxHeight: BigInt)

o A *Leaf*, used as boundary for the bottom and the right of the Skiplist

```
abstract class Node
case class SkipNode(value: Int, down: Node, right: Node, height: BigInt) extends Node
case object Leaf extends Node
```

Properties of a valid SkipList:

- A SkipList is valid if:
 - o maxHeight >= 0
 - it holds a valid SkipNode with value -Infinity and with level i = maxHeight
- A SkipNode n is valid if it is a Leaf, or if :
 - o n.i >= 0
 - n.right and n.down are valid
 - If n.right is not a leaf then:
 - n.right.value > n.value
 - \blacksquare n.right.i = n.i
 - \circ If n.i = 0:
 - n.down is a Leaf
 - o If n.i > 0:
 - \mathbf{n} n.down.v = n.v
 - \blacksquare n.down.i = n.i-1
 - If n.i > 0:
 - n.right.down is found somewhere to the right of n.down

The properties we want to prove to have valid operations:

Assuming all subsequent nodes are valid:

 If a node v2 is somewhere to the right of a node v1 then v2.down is somewhere to the right of v1.down

The properties we want to prove to have valid operations:

Stability properties:

- Insert(sl,v) is also a Skiplist
- Remove(sl,v) is also a Skiplist
- If sl contains v1 and v1!=v2 insert(sl,v2) contains v1
- If sl contains v1 and v1!=v2, remove(sl, v2) contains v1

The properties we want to prove to have valid operations:

Correctness properties:

- Insert(sl,v) contains v
- Remove(sl,v) does not contains v
- If sl contains v, search(sl,v) returns v
- If sl does not contain v, search(sl,v) returns None

First problem: functional programming for dynamic links

A SkipNode does not contain **pointers to nodes but the nodes themselves**. So inserting or removing an element k means we have to **recreate every node** with value < k. So actually insert and remove are O(n), and only search is O(log n).

example: insert(6)

Second problem: every SkipNode has 2 incoming links

We are not working with a tree, so for a node n, to update its subtree, it is not possible to have a simple recursion on n.down and n.right as it would create duplicates of some nodes.

Third problem: Decreasing measures in mutual recursion

```
sealed abstract class Node
case class SkipNode(right: Node) extends Node
case object Leaf extends Node
def insert(n: Node): Node = {
   decreases(size(n))
    n match {
        case SkipNode(r) => {
            insertIsSkipList(r)
            insert(r)
        case Leaf => Leaf
def insertIsSkipList(n: Node): Unit = {
    decreases(size(n))
    assert(isLeaf(insert(n)))
 ensuring (_ => isLeaf(insert(n)))
```

⇒ Means we had to rewrite our insertion and removal method to be tail-recursive

Fourth problem: It becomes very long, very fast

Every non-trivial lemma usually requires multiple sub-lemmas

Even with the stainless cache, the running times are now ~ 1min

total: 1016 valid: 1011 (526 from cache) invalid: 0 unknown: 5 time: 56.8

Where are we at?

Not quite done with termination proof of insert. Remove remaining.

Not started proving properties, but we now have lots of lemmas, so it might be faster.

