Bellman-Ford algorithm - Single-source shortest paths

Bellman-Ford algorithm

- Single-source shortest paths
- Handling negative-weight cycles and negative edges

Graph with negative cycle

Directed graph with a negative-length edge

Bellman & Ford

Richard E. Bellman (1920-1984) IEEE Medal of Honor, 1979

http://www.amazon.com/Bellman-Continuum-Collection-Works-Richard/dp/9971500906

Lester R. Ford, Jr. (1927-) president of MAA, 1947-48

http://www.maa.org/aboutmaa/maaapresidents.html

Bellman-Ford in Practice

- Distance-vector routing protocol
 - Repeatedly relaxedges until convergence
 - Relaxation is local!
- On the Internet:
 - Routing InformationProtocol (RIP)
 - Interior Gateway Routing Protocol (IGRP)

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path lengths from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Recall: Single-Source Shortest Paths

- Problem: Given a directed graph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$, and a source vertex s, compute $\delta(s, v)$ for all $v \in V$
 - Also want shortest-path tree represented by v. π

When there are no cycles of negative length, there is a shortest path between any two vertices of an n-vertex graph that has at most n -1 edges on it

a path that has more than n-1 edges must repeat at least one vertex and hence must contain a cycle.

Let $dist^{\ell}[u]$ be the length of a shortest path from the source vertex v to vertex u under the constraint that the shortest path contains at most ℓ edges. Then, $dist^{1}[u] = cost[v, u], 1 \le u \le n$. As noted earlier, when there are no cycles of negative length, we can limit our search for shortest paths to paths with at most n-1 edges. Hence, $dist^{n-1}[u]$ is the length of an unrestricted shortest path from v to u.

Our goal then is to compute $dist^{n-1}[u]$ for all u. This can be done using the dynamic programming methodology. First, we make the following observations:

- 1. If the shortest path from v to u with at most k, k > 1, edges has no more than k-1 edges, then $dist^k[u] = dist^{k-1}[u]$.
- 2. If the shortest path from v to u with at most k, k > 1, edges has exactly k edges, then it is made up of a shortest path from v to some vertex j followed by the edge $\langle j, u \rangle$. The path from v to j has k-1 edges, and its length is $dist^{k-1}[j]$. All vertices i such that the edge $\langle i, u \rangle$ is in the graph are candidates for j. Since we are interested in a shortest path, the i that minimizes $dist^{k-1}[i] + cost[i, u]$ is the correct value for j.

These observations result in the following recurrence for dist:

$$dist^k[u] \ = \ \min \ \{dist^{k-1}[u], \ \min_i \ \{dist^{k-1}[i] \ + \ cost[i,u]\}\}$$

This recurrence can be used to compute $dist^k$ from $dist^{k-1}$, for $k=2,3,\ldots, n-1$.

```
Algorithm BellmanFord(v, cost, dist, n)

    \begin{array}{r}
      23456789
    \end{array}

     // Single-source/all-destinations shortest
     // paths with negative edge costs
          for i := 1 to n do // Initialize dist.
               dist[i] := cost[v, i];
          for k := 2 to n-1 do
                for each u such that u \neq v and u has
                          at least one incoming edge do
                     for each \langle i, u \rangle in the graph do
10
                          if dist[u] > dist[i] + cost[i, u] then
11
                               dist[u] := dist[i] + cost[i, u];
12
13
```

Bellman and Ford algorithm to compute shortest paths

			dis	$t^k[1$	7]		
k	1	2	3	4	5	6	7
1	0	6	5	5	∞	∞	∞
2	0	3	3	5	5	4	∞
3	0	1	3	5	2	4	7
4	0	1	3	5	0	4	5
5	0	1	3	5	0	4	3
6	0	1	3	5	0	4	3

(b) distk

$$dist^k[u] \ = \ \min \ \{dist^{k-1}[u], \ \min_i \ \{dist^{k-1}[i] \ + \ cost[i,u]\}\} \ \ k = 2,3,\ldots, \ n-1.$$

			dis	$t^k[1$	7]		
k	1	2	3	4	5	6	7
1	0	6	5	5	∞	∞	∞
2	0	3	3	5	5	4	∞
3	0	1	3	5	2	4	7
4	0	1	3	5	0	4	5
5	0	1	3	5	0	4	3
6	0	1	3	5	0	4	3

(b) distk

$$dist^k[u] \ = \ \min \ \{dist^{k-1}[u], \ \min_i \ \{dist^{k-1}[i] \ + \ cost[i,u]\}\} \ \ k = 2,3,\ldots, \ n-1.$$

			dis	$t^k[1$	7]		
k	1	2	3	4	5	6	7
1	0	6	5	5	∞	∞	∞
2	0	3	3	5	5	4	∞
3	0	1	3	5	2	4	7
4	0	1	3	5	0	4	5
5	0	1	3	5	0	4	3
6	0	1	3	5	0	4	3

(b) distk

$$dist^k[u] \ = \ \min \ \{dist^{k-1}[u], \ \min_i \ \{dist^{k-1}[i] \ + \ cost[i,u]\}\} \ \ k = 2,3,\ldots, \ n-1.$$

			dis	$t^k[1$	7]		
k	1	2	3	4	5	6	7
1	0	6	5	5	∞	∞	∞
2	0	3	3	5	5	4	∞
3	0	1	3	5	2	4	7
4	0	1	3	5	0	4	5
5	0	1	3	5	0	4	3
6	0	1	3	5	0	4	3

(b) distk

$$dist^k[u] \ = \ \min \ \{dist^{k-1}[u], \ \min_i \ \{dist^{k-1}[i] \ + \ cost[i,u]\}\} \ \ k = 2,3,\ldots, \ n-1.$$

			dis	$t^k[1$	7]		
k	1	2	3	4	5	6	7
1	0	6	5	5	∞	∞	∞
2	0	3	3	5	5	4	∞
3	0	1	3	5	2	4	7
4	0	1	3	5	0	4	5
5	0	1	3	5	0	4	3
6	0	1	3	5	0	4	3

(b) distk

$$dist^k[u] \ = \ \min \ \{dist^{k-1}[u], \ \min_i \ \{dist^{k-1}[i] \ + \ cost[i,u]\}\} \ \ k = 2,3,\ldots, \ n-1.$$

© 2001 by Charles E. Leiserson 31 L18.

Introduction to Algorithms

 $dist^k[u] \ = \ \min \ \{dist^{k-1}[u], \ \min_i \ \{dist^{k-1}[i] \ + \ cost[i,u]\}\} \ \ k = 2,3,\ldots, \ n-1.$

	Α	В	С	D	E
Α	0	-1	4	8	8
В	∞	0	3	2	2
С	8	8	0	8	8
D	∞	1	5	0	~
E	∞	8	∞	-3	0

	Α	В	С	D	E
Α	0	-1	4	8	8
В	8	0	3	2	2
С	8	8	0	8	8
D	8	1	5	0	8
E	8	∞	∞	-3	0

	Α	В	С	D	E
Α	0	-1	4	8	8
В	8	0	3	2	2
С	8	8	0	8	8
D	8	1	5	0	8
E	8	8	8	-3	0

	Α	В	С	D	E
Α	0	-1	4	8	8
В	8	0	3	2	2
С	8	8	0	8	∞
D	8	1	5	0	∞
E	8	8	8	-1	0

	Α	В	С	D	E
Α	0	-1	4	8	8
В	8	0	3	2	2
С	8	8	0	8	8
D	8	1	5	0	8
E	8	8	8	-3	0

A	В	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞

\boldsymbol{A}	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞

\boldsymbol{A}	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞

A	В	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1

\boldsymbol{A}	B	C	D	E_{\perp}
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Note: Values decrease monotonically.

