اتصال دالة 2 ع ت

 x_0 مرکزه میرنجال مفتوح مرکزه تعریفها علی مجال مفتوح مرکزه $\lim f(x) = f(x_0)$ نقول إن f(x) متصلة في f(x) إذا وفقط إذا كان

2.الاتصال على مجال:

١. اتصال دالة :

- تكون دالة متصلة على مجال a,b إذا وفقط إذا كانت متصلة في كل نقطة منه تكون دالة متصلة على ig[a,big] إذا وفقط إذا كانت متصلة على a,big[a,big] على b و على اليسار في a اليمين في a

خاصيات:

- R . R على عدودية متصلة على R
- كل دالة جذرية متصلة في كل نقطة من مجموعة تعريفها .
- . R or $x \rightarrow \sin x$ of $x \rightarrow \cos x$ or $x \rightarrow \sin x$
 - . $[0,+\infty[$ متصلة على $x \to \sqrt{x}$.
- $D=R-\left\{rac{\pi}{2}+k\pi\mid k\in Z
 ight\}$ وهي ألدالة x الدالة x متصلة في كل نقطة من مجموعة تعريفها وهي

ج.العمليات على الدوال المتصلة :

 x_0 عدد و و دالتين متصلتين في عدد f

 x_0 فإن الدوال g و f و g و lpha حيث lpha عدد حقيقي متصلة في

 x_0 وإذا كان $g(x_0) \neq 0$ فإن $g(x_0) \neq 0$ دالتان متصلتان في $g(x_0) \neq 0$

ر. اتصال مركبة دالتين:

لتكن f دالة معرفة على مجال I و g دالة متصلة على مجال J حيث I و x_0 عنصرا من $f(I) \subset J$

> $f(x_0)$ إذا كانت f متصلة في x_0 و g متصلة في . x_0 فإن الدالة $g \circ f$ تكون متصلة في

 x_0 متصلة و موجبة على مجال مفتوح مركزه نتيجة: إذا كانت f x_0 فإن \sqrt{f} دالة متصلة في

لتكن f دالة عددية معرفة على مجال مفتوح مركزه x_0 و g دالة معرفة

 $f(I) \subset J$ على مجال J

 $\lim(g\circ f)(x)=g(l)$: فإن

النا كانت f متصلة وموجبة على مجال f فإن f' متصلة على f8.القوة الجذرية لعدد حقيقي موجب قطعا :

إذا كانت f دالة متصلة على [a,b] و f(a).f(b) < 0 فإن

وإذا كانت f متصلة ورتيبة قطعا على [a,b] فإن الحل يكون وحيدا

إذا كانت f دالة متصلة ورتيبة قطعا على مجال I فإنما تقبل دالة عكسية

: إذا كانت f دالة متصلة ورتيبة قطعا على f فإن f

f متصلة على f(I) ولها نفس تغيرات .

متماثلان في م م م بالنسبة للمنصف الأول f^{-1} منحنيي و م م منحنيي م المنصف الأول

الدالة العكسية لقصور الدالة $x \to x^n$ على R^+ يسمى دالة الجذر من

 R^+ معرفة على R^+ وتأخذ قيمها في . الدالة $x \to \sqrt[n]{x}$

الدالة $x \to \sqrt[n]{x}$ متصلة وتزايدية قطعا على

 $\forall x \in \mathbb{R}^+, \quad {\binom{n}{\sqrt{x}}}^n = x \qquad *** \qquad \forall x \in \mathbb{R}^+, \quad {\binom{n}{\sqrt{x}}}^n = x \quad .$

 $: \sqrt[n]{x} = \sqrt[nm]{x^m} \qquad **** \qquad \sqrt[n]{\sqrt[n]{x}} = \sqrt[nm]{x}$

 $(\forall x \in R^+) (\forall y \in R^+) : \sqrt[n]{x} = \sqrt[n]{y} \iff x = y$

 $(\forall x \in R^+) \ (\forall y \in R^+) : \sqrt[n]{x} \prec \sqrt[n]{y} \iff x \prec y$

 $\sqrt[n]{x}\sqrt[n]{y} = \sqrt[n]{xy}$

 $\forall x \ge 0$, $\forall y > 0$: $\sqrt[n]{\frac{x}{v}} = \frac{\sqrt[n]{x}}{\sqrt[n]{v}}$ (y > 0)

 $\forall x \ge 0$, $\forall y \ge 0$:

 $\int y = f^{-1}(x) \iff$

[a,b[المعادلة f(x)=0 تقبل على الأقل حلا في

6.الدالة العكسية لدالة متصلة ورتيبة قطعا:

f(y) = x

7. تعريف دالة الجذر من الوتبة n

الرتبة n

 $\Leftrightarrow \int x = \sqrt[n]{y}$.

ليكن n عددا صحيحا طبيعيا غير منعدم .

، معرفة على المجال J=f(I) ولدينا التكافؤ التالي

لیکن a عددا حقیقیا موجبا قطعا و r عددا جذریا غیر منعدم

: حيث $a^r = \sqrt[q]{a^p}$ يسمى القوة الجذرية للعدد a ويكتب a^r

 $q \in N^*$ $p \in Z^* \bowtie r = \frac{p}{r}$

: لكل \mathbf{q}^* من \mathbf{q}^* و \mathbf{r} و \mathbf{r} من \mathbf{q}^* لدينا :

 $a^{r}.a^{r'} = a^{r+r'}$, $(ab)^{r} = a^{r}b^{r}$; $a^{-r} = \frac{1}{a^{r}}$

 $\left(\frac{a}{b}\right)' = \frac{a^r}{b^r} \; ; \; \frac{a^r}{a^{r'}} = a^{r-r'} \; ; \; \left(a^r\right)^{r'} = a^{rr'}$

إذا كانت f دالة متصلة على [a,b] و λ عددا حقيقيا c على الأقل عدد fig(big) فإنه يوجد على الأقل عدد $f(c) = \lambda$: حيث [a,b] من