

Машинное обучение в науках о Земле

Михаил Криницкий

krinitsky.ma@phystech.edu

K.T.H., C.H.C.

Институт океанологии РАН им. П.П. Ширшова

Лаборатория взаимодействия океана и атмосферы и мониторинга климатических изменений (ЛВОАМКИ)

previously on ML4ES

Общий принцип обучения по прецедентам (оптимизация функции ошибки)

 $x \in \mathbb{X}$ — объекты, objects

 $y \in \mathbb{Y}$ — ответы, labels

 $\mathcal{F} \colon \mathbb{X} \to \mathbb{Y}$ — искомая закономерность

 $\mathcal{T}\colon \{x_i;y_i\}$ — «обучающая выборка» (прецеденты), train dataset

Найти: $\widehat{\mathcal{F}}$: $\{x_i\} \rightarrow \{y_i\}$

один из способов решения:

 $\mathcal{L}(\widehat{\mathcal{F}}(x))$ — функционал ошибки (эмпирического риска, потерь), Loss function

 $\widehat{y_i} = \widehat{\mathcal{F}}(x_i) = f(\vec{p}, x_i)$ — функционально задаваемая зависимость. **Предположение** исследователя о виде закономерности. Иногда задается параметрически, \vec{p} — вектор параметров.

$$\mathcal{L} = L(\vec{p}, \mathcal{T})$$
 — функция ошибки $\hat{p} = \operatorname*{argmin} ig(L(\vec{p}, \mathcal{T})ig)$ $\widehat{\mathcal{F}} = f(\hat{p}, x)$

previously on ML4ES

Общий принцип обучения по прецедентам (оптимизация функции ошибки)

 $x \in \mathbb{X}$ — объекты, objects $y \in \mathbb{Y}$ — ответы, labels $\mathcal{F} \colon \mathbb{X} \to \mathbb{Y}$ — искомая закономерность $\mathcal{T} \colon \{x_i; y_i\}$ — «обучающая выборка» (прецеденты), train dataset Hайти: $\widehat{\mathcal{F}} \colon \{x_i\} \to \{y_i\}$

один из способов решения: $\mathcal{L}(\widehat{\mathcal{F}}(x))$ — функционал ошибки Чем руководствоваться при выборе $\widehat{y}_i = \widehat{\mathcal{F}}(x_i) =$ функции ошибки? КАКИЕ бывают функции ошибки?! исследователя о виде закономерности. Иногда $\mathcal{L} = L(\vec{p}, \mathcal{T})$ — функция ошибки

Обучение по прецедентам: вероятностная постановка

принцип максимального правдоподобия maximum likelihood estimation

```
\overrightarrow{x_i} - признаковое описание объектов \overrightarrow{y_i} - признаковое описание ответов p(\overrightarrow{x}, \overrightarrow{y}) – (искомая, аппроксимируемая) совместная плотность распределения событий на множестве X \times Y
```

 \mathcal{T} : $\{\overrightarrow{x_i}; \overrightarrow{y_i}\}$ — «обучающая выборка» (прецеденты), train dataset

Обучение по прецедентам: вероятностная постановка

Принцип максимального правдоподобия maximum likelihood estimation

```
m{x_i} - признаковое описание объектов m{y_i} - признаковое описание ответов p(m{x}, m{y}) – (искомая, аппроксимируемая) совместная плотность распределения событий на множестве X \times Y \phi(m{x}, m{y}, m{\theta}) - модель плотности распределения, предлагаемая исследователем
```

 $\mathcal{T}\colon \{oldsymbol{x_i}; oldsymbol{y_i}\}$ — «обучающая выборка» (прецеденты), train dataset

 $\Pi peдположение! \\
(x_i, y_i) - выбираются из <math>p(x, y)$ независимо и случайно

Обучение по прецедентам: вероятностная постановка

Принцип максимального правдоподобия maximum likelihood estimation

 $m{x_i}$ - признаковое описание объектов $m{y_i}$ - признаковое описание ответов $p(m{x}, m{y})$ – (искомая, аппроксимируемая) совместная плотность распределения событий на множестве $X \times Y$ $\phi(m{x}, m{y}, m{\theta})$ - модель плотности распределения, предлагаемая исследователем

 $\mathcal{T}\colon \{oldsymbol{x_i}; oldsymbol{y_i}\}$ — «обучающая выборка» (прецеденты), train dataset

 $\Pi peдположение! \\
(x_i, y_i) - выбираются из <math>p(x, y)$ независимо и случайно

MLE

 $\phi(x_i, y_i, \theta)$ - правдоподобие для одного экземпляра выборки

$$L(\{m{x_i}\}, \{m{y_i}\}, m{ heta}) = \prod_{i=1}^N m{\phi}(m{x_i}, m{y_i}, m{ heta})$$
 - правдоподобие выборки $m{ heta}^* = rgmax_{m{\Theta}} L(\{m{x_i}\}, \{m{y_i}\}, m{ heta})$

Функция потерь определяется видом модели плотности распределения $\phi(x,y,\theta)$, предложенной исследователем!

Правдоподобие выборки $L(\boldsymbol{\theta}, \mathcal{T})$ – максимизировать (в пространстве параметров Θ)

Функцию потерь $\mathcal{L}(\boldsymbol{\theta}, \mathcal{T})$ – минимизировать (в пространстве параметров Θ)

Обучение по прецедентам. Вероятностная постановка, MLE Примеры

Линейная регрессия

MSE

$$\phi(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}) = \theta \mathbf{x} + \epsilon,$$

$$p(\epsilon) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\epsilon^2}{2\sigma^2}} \implies \mathcal{L}(\boldsymbol{\theta}, \mathcal{T}) = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{y}_i - \boldsymbol{\theta} \mathbf{x}_i)^2$$

MAE

$$\phi(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta}) = \theta \mathbf{x} + \epsilon,$$

$$p(\epsilon) = \frac{1}{2b} e^{-\frac{|\epsilon|}{b}} \implies \mathcal{L}(\boldsymbol{\theta}, \mathcal{T}) = \frac{1}{N} \sum_{i=1}^{N} |\mathbf{y}_i - \boldsymbol{\theta} \mathbf{x}_i|$$

previously on ML4ES

Квантильная регрессия

Bera, Anil & Galvao, Antonio & Montes-Rojas, Gabriel & Park, Sung Y.. (2015). **Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression**. Journal of Econometric Methods. 10.1515/jem-2014-0018.

Sánchez, B. L., Lachos, H. V., & Labra, V. F. (2013). Likelihood based inference for quantile regression using the asymmetric Laplace distribution. Journal of Statistical Computation and Simulation, 81, 1565-1578.

Asymmetric Laplace density. From Sánchez et al.

previously on ML4ES

Обучение по прецедентам. Вероятностная постановка, MLE Примеры

Логистическая регрессия (logistic regression)

Coming soon! (its for classification problem)

Решение задач типа ОБУЧЕНИЕ С УЧИТЕЛЕМ

Михаил Криницкий

krinitsky.ma@phystech.edu

K.T.H., H.C.

Институт океанологии РАН им. П.П. Ширшова

Лаборатория взаимодействия океана и атмосферы и мониторинга климатических изменений (ЛВОАМКИ)

ОБЩАЯ СХЕМА РЕШЕНИЯ ЗАДАЧ <u>ОБУЧЕНИЯ С УЧИТЕЛЕМ</u>

обучаем (тренируем) модель <u>на имеющихся данных</u>

• • •

Вечор, ты помнишь, вьюга злилась, На мутном небе мгла носилась; Луна, как бледное пятно, Сквозь тучи мрачные желтела, И ты печальная сидела — А нынче... погляди в окно:

Под голубыми небесами Великолепными коврами, Блестя на солнце, снег лежит; Прозрачный лес один чернеет, И ель сквозь иней зеленеет, И речка подо льдом блестит.

. . .

А.С. Пушкин, «Зимнее утро»

. . .

Буря мглою небо кроет,
Вихри снежные крутя;
То, как зверь, она завоет,
То заплачет, как дитя.
Выпьем, добрая подружка
Бедной юности моей,
Выпьем с горя; где же кружка?
Сердцу будет веселей.

. .

Было так: Нева, как зверь, стонала, Серые ломая гребешки, Колыхались барки у причала, И царапал стынущие щеки Острый дождь, ложась, как плащ широкий, Над гранитным логовом реки.

. . .

А.С. Пушкин, «Зимний вечер»

В. Рождественский, «Октябрьская погода»

О признаковом описании событий (объектов) в геофизике

. . .

Вечор, ты помнишь, вьюга злилась, На мутном небе мгла носилась; Луна, как бледное пятно, Сквозь тучи мрачные желтела, И ты печальная сидела — А нынче... погляди в окно:

Под голубыми небесами Великолепными коврами, Блестя на солнце, снег лежит; Прозрачный лес один чернеет, И ель сквозь иней зеленеет, И речка подо льдом блестит.

. . .

А.С. Пушкин, «Зимнее утро»

. .

Буря мглою небо кроет, Вихри снежные крутя; То, как зверь, она завоет, То заплачет, как дитя. Выпьем, добрая подружка Бедной юности моей, Выпьем с горя; где же кружка? Сердцу будет веселей. . .

Было так: Нева, как зверь, стонала, Серые ломая гребешки, Колыхались барки у причала, И царапал стынущие щеки Острый дождь, ложась, как плащ широкий, Над гранитным логовом реки.

. . .

А.С. Пушкин, «Зимний вечер»

В. Рождественский, «Октябрьская погода»

Синтетическая задача, "toy problem"

События x_i : наблюдения циферблата часов Признаковое описание событий $\overline{x_i}$: координаты конца минутной стрелки Целевая переменная m_i : минутная компонента времени

Исследование данных: визуализация, поиск структуры

Построение и настройка модели

Возьмем очень слабую модель

Модель в задаче восстановления регрессии:

$$\widehat{\boldsymbol{m}}_{\boldsymbol{i}} = f(\overrightarrow{\boldsymbol{p}}, \boldsymbol{x}_{\boldsymbol{i}}) = k\boldsymbol{x}_{\boldsymbol{i}} + \boldsymbol{b}$$

$$\mathcal{L}(\overrightarrow{p}, \{x_i\}, \{m_i\}) = \frac{1}{n} \sum_{i=1}^n (f(\overrightarrow{p}, x_i) - m_i)^2$$

Решение (оценка параметров
$$\overrightarrow{p}$$
):

Решение (оценка параметров
$$\vec{p}$$
): $\vec{p}^* = \operatorname{argmin}(\mathcal{L}(\vec{p}, \{x_i\}, \{m_i\}))$

Результаты модели

Построение и настройка модели

Возьмем модель посильнее

Модель в задаче восстановления регрессии:

$$\widehat{\boldsymbol{m}}_{\boldsymbol{i}} = f(\overrightarrow{\boldsymbol{p}}, \boldsymbol{x}_{\boldsymbol{i}}) = poly^{(6)}(\boldsymbol{x}_{\boldsymbol{i}})$$

$$\mathcal{L}(\overrightarrow{p}, \{x_i\}, \{m_i\}) = \frac{1}{n} \sum_{i=1}^n (f(\overrightarrow{p}, x_i) - m_i)^2$$

Решение (оценка параметров \vec{p}): $\vec{p}^* = \operatorname{argmin}(\mathcal{L}(\vec{p}, \{x_i\}, \{m_i\}))$

$$\operatorname{gmin}(\mathcal{L}(oldsymbol{p},\{oldsymbol{x_i}\},\{oldsymbol{m_i}\}))$$

Результаты модели

Построение и настройка модели

Возьмем нейросеть

$$\widehat{\boldsymbol{m}}_{\boldsymbol{i}} = MLP(\overrightarrow{\boldsymbol{p}}, \boldsymbol{x}_{\boldsymbol{i}})$$

$$\mathcal{L}(\overrightarrow{p}, \{x_i\}, \{m_i\}) = \frac{1}{n} \sum_{i=1}^{n} (MLP(\overrightarrow{p}, x_i) - m_i)^2$$

$$\overrightarrow{p^*} = \operatorname{argmin}(\mathcal{L}(\overrightarrow{p}, \{x_i\}, \{m_i\}))$$

Результаты модели

Решение задачи восстановления регрессии: ПРИМЕР что же делать?

что-то не так с постановкой задачи? что-то не так с признаковым описанием событий? что-то не так с разметкой? что-то не так с моделью?

что-то не так с программным кодом? что-то не так с исследователем?

(не тот тип задачи? не та целевая переменная?) (нерелевантное? неполное? шумное?) (шумная? некорректная? много? мало?) (слишком простая? слишком сложная? не

подходит для этой задачи?)

МОЖЕТ, ПРОСТО НЕТ ЗАКОНОМЕРНОСТИ?

изобретать (более информативные) признаки

Новое признаковое описание событий: $\overline{x_i}$ - угол отклонения минутной стрелки

$$x_i = \phi = egin{cases} \arccos\left(rac{x}{\sqrt{x^2 + y^2}}
ight)$$
, если $x \geq 0$ $2\pi - \arccos\left(rac{x}{\sqrt{x^2 + y^2}}
ight)$, если $x < 0$

Построение и настройка модели

Возьмем очень слабую модель

Модель в задаче восстановления регрессии:

$$\hat{\boldsymbol{m}}_{\boldsymbol{i}} = f(\vec{\boldsymbol{p}}, \boldsymbol{\phi}_{\boldsymbol{i}}) = k\boldsymbol{\phi}_{\boldsymbol{i}} + \boldsymbol{b}$$

Функция потерь:

$$\mathcal{L}(\overrightarrow{p}, \{\phi_i\}, \{m_i\}) = \frac{1}{n} \sum_{i=1}^n (f(\overrightarrow{p}, \phi_i) - m_i)^2$$

Решение (оценка параметров \overrightarrow{p}):

$$\overrightarrow{p^*} = \operatorname{argmin}(\mathcal{L}(\overrightarrow{p}, \{\phi_i\}, \{m_i\}))$$

использовать (более) полную информацию о событиях

Новое признаковое описание событий: $\overline{x_i}$ - <u>обе</u> координаты x,y конца минутной стрелки Возьмем нейросеть

$$\widehat{\boldsymbol{m}}_{\boldsymbol{i}} = MLP(\overrightarrow{\boldsymbol{p}}, \overrightarrow{\boldsymbol{x}_{\boldsymbol{i}}})$$

$$\mathcal{L}(\overrightarrow{p}, \{\overrightarrow{x_i}\}, \{m_i\}) = \frac{1}{n} \sum_{i=1}^{n} (MLP(\overrightarrow{p}, \overrightarrow{x_i}) - m_i)^2$$

$$\overrightarrow{p^*} = \operatorname{argmin}(\mathcal{L}(\overrightarrow{p}, \{\overrightarrow{x_i}\}, \{m_i\}))$$

Качество модели: RMSE = 0.28m