Homework 3

MSSC 6010- Computational Probability

Henri Medeiros Dos Reis

September 18, 2023

Question 1. (3.6.39) From book. Let the random variable X be the sum of the numbers on two fair dice. Find an upper bound on $\mathbb{P}(|X-7| \ge 4|)$ using Chebyshev's Inequality as well as the exact probability for $\mathbb{P}(|X-7| \ge 4|)$.

```
X = c(2,3,4,5,6,7,8,9,10,11,12)

X = rbind(X,c(1/36,2/36,3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36))

table(X)
```

X

X			
0.027777777777778	0.055555555555556	0.08333333333333333	0.1111111111111111
2	2	2	2
0.13888888888889	0.166666666666667	2	3
2	1	1	1
4	5	6	7
1	1	1	1
8	9	10	11
1	1	1	1
12			
1			

Question 2. (3.6.48) From book. Consider the random variable X, which takes the values 1, 2, 3, and 4 with probabilities 0.2, 0.3, 0.1, and 0.4, respectively. Calculate E[X], $\frac{1}{E[X]}$, $E[X^2]$, and $E[X]^2$, and check empirically that $E[X]^2 \neq E[X^2]$ and $\frac{1}{E[X]} \neq E\left[\frac{1}{X}\right]$

Question 3. (3.6.50) From book. Find the values of k such that the following functions are probability density functions.

• (a)
$$f(x) = \frac{kx^4}{5}, 0 < x < 1$$

Question 4. (3.6.52) From book. Consider an experiment where two dice are rolled. Let the random variable X equal the sum of the two dice and the random variable Y be the difference of the two dice.

- *(a)* Find the mean of *X*
- (b) Find the variance of X
- *(c)* Find the skewness of *X*
- (d) Find the mean of Y
- (e) Find the variance of Y
- (f) Find the skewness of Y

Question 5. (3.6.58) From book. Consider the probability density function

$$f(x) = \frac{1}{36} x e^{\frac{-x}{6}}, x > 0$$

Derive the moment generating function, and calculate the mean and the variance.

Question 6. (3.6.60) From book. Prove that if a and b are real-valued constants, then

- $(1)M_{X+a}(t) = E[e^{(X+a)t}] = e^{at}M_X(t).$
- $(2)M_{X+a}(t) = E[e^{bXt}] = M_X(bt)$. $(3)M_{\frac{X+a}{b}}(t) = E[e^{(\frac{X+a}{b}t)}] = e^{\frac{a}{b}t}M_X(\frac{t}{b})$.