Fòrmulas bàsicas sobre transformada y su transformada inversa.

1) $\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}, \ n \in \mathbb{N}_0, \ s > 0.$	$\mathcal{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\} = t^n$
2) $\mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a}, \ a \in \mathbb{R}, \ s > a.$	$\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} = e^{at}$
3) $\mathcal{L}\left\{\sin(kt)\right\} = \frac{k}{s^2 + k^2}$	$\mathcal{L}^{-1}\left\{\frac{k}{s^2+k^2}\right\} = \sin(kt)$
4) $\mathcal{L}\left\{\cos(kt)\right\} = \frac{s}{s^2 + k^2}$	$\mathcal{L}^{-1}\left\{\frac{s}{s^2+k^2}\right\} = \cos(kt)$
5) $\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$	$\mathcal{L}^{-1}\left\{F(s-a)\right\} = e^{at}f(t)$
6) $\mathcal{L}\left\{e^{at}\sin(kt)\right\} = \frac{k}{(s-a)^2 + k^2}$	$\mathcal{L}^{-1}\left\{\frac{k}{(s-a)^2 + k^2}\right\} = e^{at}\sin(kt)$
7) $\mathcal{L}\left\{e^{at}\cos(kt)\right\} = \frac{s-a}{(s-a)^2+k^2}$	$\mathcal{L}^{-1}\left\{\frac{s-a}{(s-a)^2+k^2}\right\} = e^{at}\cos(kt)$
8) $\mathcal{L}\left\{e^{at}t^n\right\} = \frac{n!}{(s-a)^{n+1}}$	$\mathcal{L}^{-1}\left\{\frac{n!}{(s-a)^{n+1}}\right\} = e^{at}t^n$
9) $\mathcal{L}\left\{f^{(n)}(t)\right\} = s^n F(s) - s^{n-1} f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$ $\mathcal{L}\left\{f'(t)\right\} = s F(s) - f(0), \mathcal{L}\left\{f''(t)\right\} = s^2 F(s) - s f(0) - f'(0)$	$\mathcal{L}^{-1}\left\{F(s)\right\} = f(t)$
10) $\mathcal{L}\left\{f(t-a)\mu(t-a)\right\} = F(s)e^{-as}$	$\mathcal{L}^{-1}\left\{F(s)e^{-as}\right\} = f(t-a)\mu(t-a)$
11) $\mathcal{L}\left\{f(t)\mu(t-a)\right\} = e^{-as}\mathcal{L}\left\{f(t+a)\right\}$	$\mathcal{L}^{-1}\left\{e^{-as}\mathcal{L}\left\{f(t+a)\right\}\right\} = f(t)\mu(t-a)$
12) $\mathcal{L}\left\{t^n f(t)\right\} = (-1)^n \frac{d^n F(s)}{ds^n}$	$\mathcal{L}^{-1}\left\{ \left(-1\right)^n \frac{d^n F(s)}{ds^n} \right\} = t^n f(t)$
13) $\mathcal{L}\left\{(f*g)(t)\right\} = \mathcal{L}\left\{\int_0^t f(z)g(t-z)dz\right\} = F(s)G(s)$	$\mathcal{L}^{-1}\left\{F(s)G(s)\right\} = \int_0^t f(z)g(t-z)dz$
14) $\mathcal{L}\left\{\int_0^t f(z)dz\right\} = \frac{F(s)}{s}$	$\mathcal{L}^{-1}\left\{\frac{F(s)}{s}\right\} = \int_0^t f(z)dz$
15) $\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(s)ds$	$\mathcal{L}^{-1}\left\{\int_{s}^{\infty} F(s)ds\right\} = \frac{f(t)}{t}$

Además, si

$$f(t) = \begin{cases} g(t), & \text{si } 0 \le t < a \\ h(t), & \text{si } t \ge a \end{cases}$$

entonces,

$$f(t) = g(t) + [h(t) - g(t)] \mu(t - a)$$

donde,

$$\mu(t-a) = \left\{ \begin{array}{ll} 0, & \text{si} & 0 \leq t < a \\ & & \text{, función escalón unitario.} \\ 1, & \text{si} & t \geq a \end{array} \right.,$$