Logică computațională Curs 13

Lector dr. Pop Andreea-Diana

Circuite logice

• circuite electronice simple

• modelarea – se face cu ajutorul *funcțiilor booleene* și a *circuitelor logice* care descriu algebric și grafic funcționarea acestora.

Porțile logice

- sunt elementele de bază ale unui circuit logic
- sunt utilizate pentru modelarea circuitelor
- **Definiție:** O *poartă* este un minicircuit logic care realizează una dintre operațiile logice de bază: ∧, ∨, ¯.

Porțile logice – conform standardelor IEEE

$$\frac{a}{\text{legare în serie}} \frac{a \wedge b}{\text{legare in serie}}$$

$$\frac{a}{b}$$

legare în paralel

Circuite integrate

- 14-16 "pini"
 - o parte porți de intrare
 - o parte sunt utilizate pentru conexiunea la curent
- Observație: forma disjunctivă este cel mai simplu de realizat

Exercițiu – desenați circuitul

Porți derivate

Exercițiu

• Desenați circuitele operațiilor logice "și", "sau", "not" folosind doar poartă "nor" / "nand"

Circuit combinațional

• Un circuit logic cu m ieșiri se numește circuit combinațional.

Circuite logice combinaționale ∈ Hard-ul calculatorului

- decodorul
- circuitul comparator
- circuitul sumator
- detectorul de paritate
- "shift"
- ...

Pașii principali pentru desenarea circuitelor

- 1. identificarea intrărilor (variabilelor) / ieșirilor (funcțiilor)
- 2. construirea tabelei de valori asociate
- 3. obținerea expresiilor funcțiilor
- 4. simplificarea funcțiilor
- 5. desenarea circuitului

Decodorul

1.

- intrare: 4 cifre binare x_1 , x_2 , x_3 , x_4
- ieșire: $f_i(x_1, x_2, x_3, x_4) = 1$ pentru $x_1 x_2 x_3 x_{4(2)} = i_{(10)}$, i = 0, 9

Decodorul (2)

2.

x_1	x_2	x_3	x_4	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	FCD (cu un singur element)
0	0	0	0	1	0	0	0	0	0	0	0	0	0	$f_0(x_1, x_2, x_3, x_4)$
0	0	0	1	0	1	0	0	0	0	0	0	0	0	$f_1(x_1, x_2, x_3, x_4)$
0	0	1	0	0	0	1	0	0	0	0	0	0	0	$f_2(x_1, x_2, x_3, x_4)$
0	0	1	1	0	0	0	1	0	0	0	0	0	0	$f_3(x_1, x_2, x_3, x_4)$
0	1	0	0	0	0	0	0	1	0	0	0	0	0	$f_4(x_1, x_2, x_3, x_4)$
0	1	0	1	0	0	0	0	0	1	0	0	0	0	$f_5(x_1, x_2, x_3, x_4)$
0	1	1	0	0	0	0	0	0	0	1	0	0	0	$f_6(x_1, x_2, x_3, x_4)$
0	1	1	1	0	0	0	0	0	0	0	1	0	0	$f_7(x_1, x_2, x_3, x_4)$
1	0	0	0	0	0	0	0	0	0	0	0	1	0	$f_8(x_1, x_2, x_3, x_4)$
1	0	0	1	0	0	0	0	0	0	0	0	0	1	$f_9(x_1, x_2, x_3, x_4)$

• • •

Circuitul decodor – forma generală

Circuitul comparator

• verifică dacă două cifre binare sunt sau nu identice 1.

2.

x_1	x_2	$f(x_1, x_2)$	3. $f(x_1,x_2) = \overline{x_1}\overline{x_2} \vee x_1x_2$ 4.
0	0	1	
0	1	0	5
1	0	0). v = \box v x
1	1	1	X_1
			$x_2 \longrightarrow f(x_1, x_2)$
			x_1x_2

Sumatorul binar

- calculează suma a două cifre binare: *a* și *b* de pe aceeași poziție dintr-un număr binar
- intrare: a, b, transportul t
 - ieșire: s (= a + b), transportul m

$$\begin{bmatrix} a \\ b \\ t \end{bmatrix}$$
 $\begin{bmatrix} -1 \\ m \end{bmatrix}$

3.
$$s(a,b,t) = \overline{t} \ \overline{ab} \lor \overline{t} \ a\overline{b} \lor t\overline{a} \ \overline{b} \lor tab$$

 $m(a,b,t) = \overline{t} \ ab \lor t\overline{a} \ b \lor ta\overline{b} \lor tab$

<u>t</u>	a	b	S	m
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4.Simplificarea

 $m(a,b,t) = \overline{t} ab \vee t\overline{a} b \vee ta\overline{b} \vee tab$

$$s(a,b,t) = \overline{t} \ \overline{a}b \vee \overline{t} a\overline{b} \vee t\overline{a} \ \overline{b} \vee tab$$

$$m(a,b,t)=ta\vee tb\vee ab$$

Sumatorul binar cu n poziții

- $a = a_{n-1} \dots a_{0(2)}$ și $b = b_{n-1} \dots b_{0(2)}$
- $s = s_{n-1} \dots s_{0(2)}$

Compunere de sumatoare simple

Circuit cu întârziere

• cifra de transport obținută la un pas se folosește în pasul următor

Indicații "anti - încâlcire"

Exemplu subiect examen

• Exemple de circuite combinaționale: "circuitul de comparare a 2 cifre binare", "circuitul de adunare a 2 cifre binare", "circuitul de adunare binară pe *n* biți", circuitul de decodificare în binar.