

Radar Systems

Detection of Targets in Noise and

Pulse Compression Techniques

구 자 열

Detection and Pulse Compression

차 례

Detection of Target Echoes in Noise

- Basic Concepts
- Integration of Pulses
- Fluctuating Targets Issues
- Adaptive Thresholding Techniques
- Pulse Compression

Target Detection in the Presence of Noise

- The radar return is sampled at regular intervals with A/D (Analog to Digital) converters
- The sampled returns may include the target of interest and noise
- A threshold is used to reject noise

The Radar Detection Problem

For each measurement There are two possibilities:	Measurement	Probability Density
Target absent hypothesis, $\mathbf{H}_{\scriptscriptstyle{0}}$ Noise only	$\mathbf{x} = \mathbf{n}$	$p(x H_0)$
Target present hypothesis, \mathbf{H}_1 Signal plus noise	x = a + n	$p(x H_1)$

For each measurement There are four decisions:

Truth

$\begin{array}{c|c} & \text{Decision} \\ \hline & H_0 & H_1 \\ \hline & H_0 & \text{False} \\ \hline & \text{Report} & \text{Alarm} \\ \hline & H_1 & \text{Missed} \\ \hline & \text{Detection} & \\ \hline \end{array}$

The Detection Problem

The Detection Problem

Detection Examples with Different SNR

Probability of Detection vs. SNR

Figure by MIT OCW.

차 례

- Detection of Target Echoes in Noise
 - Basic Concepts
 - Integration of Pulses \leftarrow
 - Fluctuating Targets Issues
 - Adaptive Thresholding Techniques
- Pulse Compression

- The process of summing all the radar pulses to improve detection is known as "Pulse integration"
- A search-radar beam scans, the target will remain in the beam sufficiently long for more than one pulse to hit it. This number is known as hits per scan.

$$n_b = \frac{\theta_b f_p}{\dot{\theta}_s} = \frac{\theta_b f_p}{6\omega_m},$$

 For a ground based search radar with antenna scan rate 5 rpm, beam width 1.5° and PRF 300Hz, the number of hits would be 15/scan.

 A pulse integrator is a improvement technique to address gains in probability of detection by using multiple transmit pulses.

- Depending on location of the pulse integrator in the signal processing chain this process is referred to as
 - coherent integration.
 - non-coherent integration.

• Coherent Integration:

- Insertion of a Pulse integrator between the matched filter and amplitude detector.
- The signal processor samples the return from each transmit pulse at a spacing equal to the range resolution of the radar set and adds the returns from N pulses. After it accumulates the N pulses, performs the amplitude detection and threshold check.

Non-Coherent Integration :

- Integrator is placed after the amplitude or square law detector.
- The name non-coherent integration derives from the fact that, since the signal has undergone amplitude or square law detection, the phase information is lost.
- The non-coherent integrator operates in the same fashion as the coherent integrator in that it sums the returns from N pulses before performing the threshold check.

Coherent Integration	Non-Coherent Integration
Predetection Integration	Postdetection Integration
Phase information of the echo signal is preserved	Detector destroys phase information. Less efficient than predetection.
If n pulse are integrated, the SNR of integrated signal is nSNR.	If n pulse are integrated, the SNR of integrated signal is lesser than nSNR.
Difficult to implement	Easy to implement

Integration of Radar Pulses

- Improve ability of radar to detect targets by combining the returns from multiple pulses
- Coherent Integration
 - No information lost (amplitude or phase)
- Non-coherent integration techniques
 - Some information lost (phase)
 - Non-coherent (video) Integration
 - Binary Integration
 - Cumulative detection
 - For most cases, coherent integration is more efficient than noncoherent integration

Integration of Radar Pulses

Target Detection
$$\frac{1}{N} \left| \sum_{n=1}^{N} x_n \right|^2 > T$$

- · Adds 'voltages', then square
- Phase is preserved
- pulse-to-pulse phase coherence required
- SNR Improvement = 10 log₁₀ N

- Adds 'powers' not voltages
- · Phase neither preserved nor required
- · Easier to implement, not as efficient

Detection performance can be improved by integrating multiple pulses

Coherent Integration

 Real and Imaginary (In-phase and Quadrature) parts of the complex radar return are added, and the magnitude of the voltage is calculated

$$-$$
 V=($I^2 + Q^2$)^{1/2}

- This quantity is then thresholded
- The coherent integration gain is equal to the number of pulses coherently integrated

2 pulses3 dB

10 pulses
 10 dB

20 pulses
 13 dB

- For this gain to be realized, the noise samples, from pulse to pulse must be independent
 - The background noise is white Gaussian noise

Noncoherent Integration

Steady Target

Noise Variance Reduced after Integration (Allows Lower Threshold)

Steady Target

P_{FA}=10-6

For Most Cases, Coherent Integration is More Efficient than Non-Coherent Integration

Different Types of Non-Coherent Integration

- Non Coherent Integration General (aka video integration)
 - Generate magnitude for each of N pulses
 - Add magnitudes and then threshold
- Binary Integration
 - Generate magnitude for each of N pulses and then threshold
 - Require at least M detections in N scans
- Cumulative Detection
 - Generate magnitude for each of N pulses and then threshold
 - Require at least 1 detection in N scans

Binary (M-of-N) Integration

Target present if at least M detections in N pulses

Binary Integration

Cumulative Detection

$$\begin{array}{ll} \text{At Least} & \\ \text{M of N} & P_{\mathrm{M/N}} = \sum_{k=\mathrm{M}}^{\mathrm{N}} \frac{N!}{k! \big(N\!-\!k\big)!} p^k \big(1\!-\!p\big)^{\mathrm{N-k}} \end{array}$$
 Detections

Detection Statistics for Different Types of Integration

차 례

- Detection of Target Echoes in Noise
 - Basic Concepts
 - Integration of Pulses
 - Fluctuating Targets Issues
 - Adaptive Thresholding Techniques
- Pulse Compression

Fluctuating Target Models

RCS vs. Azimuth for a Typical Complex Target

RCS versus Azimuth

- For many types of targets, the received radar backscatter amplitude of the target will vary a lot from pulse-to-pulse:
 - Different scattering centers on complex targets can interfere constructively and destructively
 - Small aspect angle changes or frequency diversity of the radar's waveform can cause this effect
- Fluctuating target models are used to more accurately predict detection statistics (P_D vs., P_{FA}, and S/N) in the presence of target amplitude fluctuations

Swerling Target Models

Noture of	RCS	Fluctuation Rate	
Nature of RCS Scattering Model		Slow Fluctuation "Scan-to-Scan"	Fast Fluctuation "Pulse-to-Pulse"
Similar amplitudes	Exponential (Chi-Squared DOF=2) $p(\sigma) = \frac{1}{\overline{\sigma}} exp\left(-\frac{\sigma}{\overline{\sigma}}\right)$	Swerling I	Swerling II
One scatterer much Larger than others	(Chi-Squared DOF=4) $p(\sigma) = \frac{4 \sigma}{\overline{\sigma}^2} exp\left(-\frac{2 \sigma}{\overline{\sigma}}\right)$	Swerling III	Swerling IV

 $\overline{\sigma}$ = Average RCS (m²)

Courtesy of MIT Lincoln Laboratory Used with permission

RCS Variability for Different Target Models

Detection Statistics for Fluctuating Targets

Single Pulse Detection

Fluctuating Targets Require More SNR than Non-fluctuating Targets to Maintain a High Probability of Detection

차 례

- Detection of Target Echoes in Noise
 - Basic Concepts
 - Integration of Pulses
 - Fluctuating Targets Issues
 - Adaptive Thresholding Techniques

Constant False Alarm Rate (CFAR) Thresholding

- Problem: Must know (or estimate) noise floor to set threshold
- Solution: Estimate noise floor using noise-only samples
 - Adaptive thresholding
- CFAR thresholding:

test cell noise floor estimate > threshold

Radar Detection – "The Big Picture"

Example – Typical Aircraft Surveillance Radar ASR-9

- Mission Detect and track all aircraft within 60 nmi of radar
- S-band $\lambda \sim 10$ cm

The Mean Level CFAR

 Use mean value of surrounding range cells to determine threshold for cell under test

Nearby targets can raise threshold and suppress detection

Effect of Rain on CFAR Thresholding

Effect of Rain on CFAR Thresholding

Greatest-of Mean Level CFAR

- Find mean value of N/2 cells before and after test cell separately
- Use larger noise estimate to determine threshold

- Helps reduce false alarms near sharp clutter or interference boundaries
- Nearby targets still raise threshold and suppress detection

차 례

- Detection of Target Echoes in Noise
 - Basic Concepts
 - Integration of Pulses
 - Fluctuating Targets Issues
 - Adaptive Thresholding Techniques
- Pulse Compression

Pulsed CW Radar Fundamentals

Range Resolution

- Range Resolution (∆r)
 - Proportional to pulse width (T)
 - Inversely proportional to bandwidth (B = 1/T)
 1 MHz Bandwidth => 150 m of range resolution

$$\Delta r = \frac{c T}{2}$$

$$\Delta r = \frac{c}{2B}$$

Pulse Width, Bandwidth and Resolution for a Square Pulse

Resolution: Pulse Length is Larger than Target Length
Cannot Resolve Features Along the Target

Pulse Length is Smaller than Target Length
Can Resolve Features Along the Target

Metaphorical Example :

High Bandwidth $\Delta r = .1 \times \Delta r$

BW = 10 x BW

Low Bandwidth

Relative Range (m)

Shorter Pulses have Higher Bandwidth and Better Resolution

Viewgraph courtesy of MIT Lincoln Laboratory Used with permission

Motivation for Pulse Compression

- Hard to get "good" average power and resolution at the same time using a pulsed CW system
 - Higher average power is proportional to pulse width
 - Better resolution is inversely proportional to pulse width
- A long pulse can have the same bandwidth (resolution) as a short pulse if the long pulse is modulated in frequency or phase
- These pulse compression techniques allow a radar to simultaneously achieve the energy of a long pulse and the resolution of a short pulse

Matched Filter Concept

- Matched Filter maximizes the peak-signal to mean noise ratio
 - For rectangular pulse, matched filter is a simple pass band filter

Frequency and Phase Modulation of Pulses

- Resolution of a short pulse can be achieved by modulating a long pulse, increasing the time-bandwidth product
- Signal must be processed on return to "pulse compress"

Bandwidth = 1/T
Time × Bandwidth = 1

Bandwidth = $1/T_{CHIP}$ Time × Bandwidth = T/T_{CHIP}

Frequency F1 Frequency F2

Bandwidth = ΔF = F2-F1

Time × Bandwidth = T∆F

Binary Phase Coded Waveforms

Binary Phase Coded Waveform

Pulse Compression Ratio = T/ T_{CHIP}

- Changes in phase can be used to increase the signal bandwidth of a long pulse
- A pulse of duration T is divided into N sub-pulses of duration T_{CHIP}
- The phase of each sub-pulse is changed or not changed, according to a binary phase code
- Phase changes 0 or π radians (+ or -)
- Pulse compression filter output will be a compressed pulse of width T_{CHIP} and a peak N times that of the uncompressed pulse

- Convolution process:
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

- Convolution process:
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

- Convolution process:
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

- Convolution process:
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

- Convolution process:
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

- Convolution process:
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

- Convolution process:
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

- Convolution process:
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

Pulse Compression

Binary Phase Modulation Example

Figure by MIT OCW.

Example - 13 Bit Barker Code

A long pulse with 13 equal sub-pulses, whose individual phases are either 0 (+) or π (-) relative to the un-coded pulse

Tapped Delay Line

Generating the Barker Code of Length 13

Barker Codes

Code Length	Code Elements	Sidelobe Level (dB)
2	+-,++	- 6.0
3	+ + -	- 9.5
4	++-+,++-	- 12.0
5	+++-+	- 14.0
7	++++-	- 16.9
11	++++-	- 20.8
13	+++++	- 22.3

- The 0, and π binary phase codes that result in equal time sidelobes are called Barker Codes
- Sidelobe level of Barker Code is 1 / N² that of the peak power (N = code length)
- None greater than length 13

Linear FM Pulse Compression

Frequency of transmitted pulse as a function of time

Because range is measured by a shift in Doppler frequency, there is a coupling of the range and Doppler velocity measurement

Figure by MIT OCW.

Q & A

