A new result for the Degree/Diameter Problem

Yawara ISHIDA

July 23, 2015

Abstract

The Degree/Diameter Problem is one of the most famous problem in graph theory. We consider the problem for the case of Diameter 2. We extented the Brown's construction. We found a new graph by (306, 2)-graph with 88723 vertices by our construction.

1 Introduction

A graph G=(V,E) consists of a set V called vertices and a set $E\subset V^2$ called edges. If (v,w) is in E, it is said that v and w are adjacent and denoted $v\sim w$. If the vertex v is adjacent to itself, the edge (v,v) is called loop. The graph G without any loops is simple. The $order\ |G|$ of the graph is the size of the set of vertices. The degree of the vertex $\delta(v)$ is a number of vertices which are adjacent to v. The degree of the graph $\Delta(G)$ is the maximal degree of the vertex. The graph is regular if every vertex's degree are same. The distance for each pair (v,w) of vertices is the shortest path length between v and w. The $diameter\ D(G)$ of the graph is the maximum distance for all pairs of vertices. The $diameter\ D(G)$ and diameter d and d a

$$1 + \Delta \sum_{k=1}^{D-1} (\Delta - 1)^k$$

which is called Moore bound.

The genaral constructions for small degree and small diameter are known. Especially for case of D=2 there exists the general construction called Brown's construction. Given the finite field F_q where q is a power of prime, we construct the graph $B(F_q)$ whose vertices are lines in F_q^3 and two lines are adjacent if and only if they are orthogonal. We call it the Brown's graph. The order of $B(F_q)$ is q^2+q+1 and the degree of it is q+1. The diameter of it is 2 because $B(F_q)$ includes many triangles. Any lines are symmetric in F_q , so $B(F_q)$ is regular. However it is not simple because of including some loops. Removing any loops from $B(F_q)$, we get the simple graph whose degree of vertices are q+1 or q.

Let R be a ring with unity. R^* denotes the set of invertible elements of R. R^3 is naturally seen as R-module. The addition and R-action are defined by coordinate-wise. The *inner product* $: R^3 \times R^3 \Rightarrow R$ is defined as follows

$$(v_1, v_2, v_3) \cdot (w_1, w_2, w_3) = v_1 w_1 + v_2 w_2 + v_3 w_3$$

 $\boldsymbol{v}, \boldsymbol{w}$ are orthogonal if and only if the inner of product of $\boldsymbol{v}, \boldsymbol{w}$ vanishes, namely $\boldsymbol{v} \cdot \boldsymbol{w} = 0$. The cross product $\times : R^3 \times R^3 \Rightarrow R$ is defined as follows

$$(v_1, v_2, v_3) \cdot (w_1, w_2, w_3) = (v_2w_3 - v_3w_2, v_3w_1 - v_1w_3, v_1w_2 - v_2w_1)$$

The domain D is a ring without zero divisors. The Euclidean domain consists of the domain E and the function called degree $d: E \setminus \{0\} \Rightarrow \mathbb{N}$ such that for all non-zero $a, b \in E$ there exists $q, r \in E, a = qb + r$ where d(r) < d(b). The ring of integers \mathbb{Z} is a example of the Euclidean domains.

2 Extended Brown's Construction

Definition 1. Let (R, +, 0, *, 1) be a ring with unit. The vertex set V of the extended Brown's graph EB(R) is

$$V = (R^3 \setminus \{ \boldsymbol{v} | \exists r \in R, r \cdot \boldsymbol{v} = \boldsymbol{0} \}) / \sim$$

where $\mathbf{v} \sim \mathbf{w}$ if and only iff $\exists k \in R^*, k \cdot \mathbf{v} = \mathbf{w}$. The two vertices $[\mathbf{v}], [\mathbf{w}]$ are adjacent if and only if $\mathbf{v} \cdot \mathbf{w} = 0$.

The adjacency of the definition above is well-defined because the orthogonality does not depends on the selection of representitives.

Lemma 1. The following equations holds.

1.
$$|EB(\mathbb{Z}_{n^k})| = p^{2k} + p^{2k-1} + p^{2k-2}$$

2.
$$\Delta(EB(\mathbb{Z}_{p^k})) = p^k + p^{k-1}$$

Lemma 2. Let E be a Euclidean domain and I be ideal of E. The diameter of EB(E/I) is 2.

Proof. For any two distinct vertices [v] and [w], consider the cross product $v \times w$. If $v \times w = 0$, $v_i \cdot w = w_i \cdot v$ for i = 1, 2, 3. For any vertex [v], the triple (v_1, v_2, v_3) are coprime, then there exists $a, b, c \in E/I$ such that $av_1 + bv_2 + cv_3 = 1$.

$$v = 1 \cdot v = (av_1 + bv_2 + cv_3)v = (aw_1 + bw_2 + cw_3)w$$

It is a contradiction then $\mathbf{v} \times \mathbf{w} \neq \mathbf{0}$. If $\mathbf{v} \times \mathbf{w}$ is a representitive of vertex, $[\mathbf{v} \times \mathbf{w}]$ is adjacent to $[\mathbf{v}]$ and $[\mathbf{w}]$. If $\mathbf{v} \times \mathbf{w}$ is not a representitive of vertex, there exist $k \in E/I$ and $\mathbf{u} \in (E/I)^3$ such that $\mathbf{v} \times \mathbf{w} = k \cdot \mathbf{u}$ and \mathbf{u} is a representitive of vertex. $[\mathbf{u}]$ is adjacent to $[\mathbf{v}]$ and $[\mathbf{w}]$.

Corollary 3. The diameter of $EB(\mathbb{Z}_n)$ is 2.

3 Acknowledgement

Thank you!!!