

General Description

The MAX5400/MAX5401 digital potentiometers offer 256-tap SOT-PoT™ digitally controlled variable resistors in tiny 8-pin SOT23 packages. Each device functions as a mechanical potentiometer, consisting of a fixed resistor string with a digitally controlled wiper contact. They operate from +2.7V to +5.5V single-supply voltages and use an ultra-low supply current of 0.1µA. These devices also provide glitchless switching between resistor taps, as well as a convenient poweron reset that sets the wiper to the midscale position at power-up. A low 5ppm/°C ratiometric temperature coefficient makes it ideal for applications requiring low drift.

The MAX5400/MAX5401 serve well in applications requiring digitally controlled resistors, including adjustable voltage references and programmable gain amplifiers (PGAs). A nominal end-to-end resistor temperature coefficient of 50ppm/°C allows these parts to be used as variable resistors in applications such as low-tempco adjustable gain and other circuit configurations.

Two resistance values are available: $50k\Omega$ (MAX5400) and $100k\Omega$ (MAX5401). Each device is guaranteed over the extended industrial temperature range (-40°C to +85°C).

Applications

Mechanical Potentiometer Replacement Low-Drift PGAs Adjustable Voltage References

Features

- ♦ Miniature 8-Pin SOT23 (3mm x 3mm)
- ♦ 256 Tap Positions
- ♦ Ultra-Low 0.1µA Supply Current
- ♦ Single-Supply Operation: +2.7V to +5.5V
- **♦ Low Ratiometric Temperature Coefficient:** 5ppm/°C
- **♦** Power-On Reset: Wiper Goes to Midscale (Position 128)
- ♦ Glitchless Switching Between the Resistor Taps
- ♦ 3-Wire SPI™-Interface Compatible
- ♦ 50kΩ/100kΩ Resistor Values

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	R (k Ω)
MAX5400EKA-T	-40°C to +85°C	8-SOT23	50
MAX5401EKA-T	-40°C to +85°C	8-SOT23	100

SOT-PoT is a trademark of Maxim Integrated Products. SPI is a trademark of Motorola, Inc.

Pin Configuration appears at end of data sheet.

Functional Diagram

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	0.3V to +6V
DIN, SCLK, CS to GND	
H, L, W to GND	$0.3V$ to $(V_{DD} + 0.3V)$
Maximum Continuous Current into	, , ,
Pins H, L, and W	±1mA

Continuous Power Dissipation (T _A = +70°C)	
8-Pin SOT23 (derate 8.7mW/°C above +70°C)	697mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range6	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +5V, V_H = V_{DD}, V_L = 0, T_A = T_{MIN}$ to T_{MAX} . Typical values are at $T_A = +25$ °C, unless otherwise noted. Parameters are measured at $T_A = +25$ °C. Values over full temperature range are guaranteed by design.)

PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS	
DC PERFORMANCE (Voltage I	Divider Mode)			•				
Resolution	N			8			Bits	
Integral Nonlinearity (Notes 1, 2)	INL					±1/2	LSB	
Differential Nonlinearity (Notes 1, 2)	DNL					±1/2	LSB	
End-to-End Resistor Tempco	TCR				50		ppm/°C	
Ratiometric Resistor Tempco					5		ppm/°C	
Full-Scale Ratio Error		MAX5400			-0.8		1.00	
Full-Scale Ratio Error		MAX5401			-0.4		LSB	
Zero-Scale Ratio Error		MAX5400 +0.8			LSB			
Zero-Scale Hatio Error		MAX5401			+0.4		LSD	
POWER SUPPLIES								
Supply Voltage	V_{DD}			2.7		5.5	V	
Supply Current	I _{DD}	$\overline{CS} = SCLK = DIN = V_{DD}$	$V_{DD} = 5V$		0.7	5	μΑ	
опры синент	טטי		$V_{DD} = 2.7V$	DD = 2.7V 0.1			μΑ	
DC PERFORMANCE (Variable	Resistor Mod	e)						
Resolution	N			8			Bits	
Interval Nippling output		$V_{CC} = 5V$				±1		
Integral Nonlinearity (Notes 1, 3)	INL	V _{CC} = 3V	MAX5400			±1.5	LSB	
(1.16166 1, 6)		VCC - 0V	MAX5401			±1		
Differential Nonlinearity	DNL	$V_{CC} = 5V$				±1/2	LSB	
(Notes 1, 3)		$V_{CC} = 3V$				±1/2	LOD	
DC PERFORMANCE (Resistor	Characteristi	cs)						
Wiper Resistance (Note 4)	Rw				250	800	Ω	
Wiper Capacitance	Cw				25		рF	
End-to-End Resistance	R _{HL}	MAX5401		75	100	100 125 50 62.5 kΩ		
	, ,UL	MAX5400		37.5	50			

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +5V, V_H = V_{DD}, V_L = 0, T_A = T_{MIN}$ to T_{MAX} . Typical values are at $T_A = +25$ °C, unless otherwise noted. Parameters are measured at $T_A = +25$ °C. Values over full temperature range are guaranteed by design.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS						
Input High Voltage	VIH	V _{CC} = 5V	$0.7 \times V_{DD}$			V
Input Low Voltage	VIL	$V_{CC} = 5V$		($0.3 \times V_{DD}$	V
Input High Voltage	VIH	V _{CC} = 3V	$0.7 \times V_{DD}$			V
Input Low Voltage	VIL	V _{CC} = 3V		($0.3 \times V_{DD}$	V
Input Leakage Current					±1.0	μΑ
Input Capacitance				5.0		рF
TIMING CHARACTERISTICS (Vo	Itage Divide	er Mode)				
Winer Cattling Time	.	MAX5400 (to 50% of final value, from code 0 to code 128)	300 600		ns	
Wiper Settling Time	tı∟	MAX5401 (to 50% of final value, from code 0 to code 128)				
TIMING CHARACTERISTICS (Dig	gital) (Note 5	5)				
SCLK Clock Period	tCP		100			ns
SCLK Pulse Width High	tch		40			ns
SCLK Pulse Width Low	t _{CL}		40			ns
CS Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to CS Rise Hold Time	tcsh		0			ns
DIN Setup Time	t _{DS}		40			ns
DIN Hold Time	tDH		0			ns
SCLK Rise to CS Fall Delay	tcso		10			ns
CS Rise to SCLK Rise Hold	t _{CS1}		40			ns
CS Pulse Width High	tcsw		100			ns

- **Note 1:** Linearity is defined in terms of the H to L code-dependent resistance.
- Note 2: The DNL and INL are measured with the potentiometer configured as a voltage-divider with H = V_{DD} and L = 0. The wiper terminal is unloaded and measured with an ideal voltmeter.
- **Note 3:** The DNL and INL are measured with the potentiometer configured as a variable resistor. H is unconnected and L = 0. The wiper terminal is driven with a source current of $80\mu\text{A}$ for the $50k\Omega$ configuration and $40\mu\text{A}$ for the $100k\Omega$ configuration.
- Note 4: The wiper resistance is measured assuming the source currents given in Note 2.
- Note 5: Digital timing is guaranteed by design.

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

PIN	NAME	FUNCTION	
1	L	Low Terminal of Resistor	
2	GND	Ground	
3	CS	Chip Select Input	
4	DIN	Serial Data Input	
5	SCLK	Clock Input	
6	V _{DD}	Power Supply. Bypass with a 0.1μF capacitor to GND.	
7	W	Wiper Terminal	
8	Н	High Terminal of Resistor	

Figure 2. Serial Interface Timing Diagram

Figure 3. Detailed Serial Interface Timing Diagram

Detailed Description

The MAX5400/MAX5401 consists of 255 fixed resistors in series between pins H and L. The potentiometer wiper (pin W) can be programmed to access any one of the 256 different tap points on the resistor string. The MAX5400/MAX5401 uses a 3-wire serial data interface to control the wiper tap position. This write-only interface contains three inputs: Chip-Select (CS), Data In (DIN), and Data Clock (SCLK). When CS is taken low, data from the DIN pin is synchronously loaded into the 8-bit serial shift register on the rising edge of each SCLK pulse. The MSB is shifted in first as shown in Figure 4. Note that if CS is not kept low during the entire data stream, the data will be corrupted and the device

will need to be reloaded. After all 8 data bits have been loaded into the shift register, they are latched into the decoder once $\overline{\text{CS}}$ is taken high. The decoder switches the potentiometer wiper to the tap position that corresponds to the 8-bit input data. Each resistor cell is $50\text{k}\Omega/255$ or 196.1Ω for the MAX5400 and $100\text{k}\Omega/255$ or 392.2Ω for the MAX5401.

The MAX5400/MAX5401 feature power-on reset (POR) circuitry that sets the wiper to the midscale position at power-up by loading a binary value of 128 into the 8-bit latch.

The MAX5400/MAX5401 can be used as a variable resistor by connecting pin W to either pin H or pin L.

	DATA WORD						
B0 (D7)	B1 (D6)	B2 (D5)	B3 (D4)	B4 (D3)	B5 (D2)	B6 (D1)	B7 (D0)
(MSB)							(LSB)
FIRST							LAST
BIT IN							BIT IN

Figure 4. Serial Data Format

_Applications Information

The MAX5400/MAX5401 are intended for a variety of circuits that require accurate, fine-tuning adjustable resistance, such as adjustable voltage or adjustable gain circuit configurations. The MAX5400/MAX5401 are primarily used in either a potentiometer divider or a variable resistor configuration.

Adjustable Current-to-Voltage Converter

Figure 5 shows the MAX5400/MAX5401 being used with a MAX4250 low-noise op amp to fine tune a current-to-voltage converter. Pins H and W of the MAX5400/MAX5401 are connected to the node between R3 and R2 and pin L is connected to ground.

Adjustable Gain Amplifier

The MAX5400/MAX5401 are used again with the MAX4250 to make a digitally adjustable gain circuit as shown in Figure 6. The normal feedback resistor is replaced with the MAX5400/MAX5401 in a variable

resistor configuration so that the gain of the circuit can be digitally controlled.

Adjustable Voltage Reference

In Figure 7, the MAX5400/MAX5401 are shown with the MAX6160 to make an adjustable voltage reference. In this circuit, the H pin of the MAX5400/MAX5401 is connected to the OUT pin of the MAX6160, the L pin of the MAX5400/MAX5401 is connected to GND, and the W pin of the MAX5400/MAX5401 is connected to the ADJ pin of the MAX6160. The MAX5400/MAX5401 allow precise tuning of the voltage reference output. A low 5ppm/°C ratiometric tempco allows a very stable adjustable voltage over temperature.

Figure 5. I to V Converter

Figure 6. Noninverting Amplifier

$\begin{array}{c} +5V \\ \hline V_{\text{IN}} \\ \hline \\ \text{MAX6160} \\ \text{ADJ} \\ \hline \\ V_0 = 1.23V \times \frac{100k\Omega}{R_2(k\Omega)} \text{ FOR MAX5401} \\ \hline \\ V_0 = 1.23V \times \frac{50k\Omega}{R_2(k\Omega)} \text{ FOR MAX5400} \end{array}$

Figure 7. Adjustable Voltage Reference

Chip Information

TRANSISTOR COUNT: 3769 TECHNOLOGY: BiCMOS

Pin Configuration

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.