```
In [1]:
        import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         import plotly.graph_objects as go
         import datetime as dt
         import calendar
         import warnings
        warnings.filterwarnings("ignore")
         %matplotlib inline
In [2]: df1=pd.read_csv(r"C:\Users\user\Downloads\Unemployment in India.csv")
         df2=pd.read_csv(r"C:\Users\user\Downloads\Unemployment_Rate_upto_11_2020.csv")
In [3]:
        df1.head()
Out[3]:
                                                                            Estimated
                                               Estimated
                                                            Estimated
                                                                               Labour
             Region
                      Date Frequency
                                          Unemployment
                                                                                       Area
                                                            Employed
                                                                          Participation
                                                Rate (%)
                                                                              Rate (%)
                       31-
             Andhra
                       05-
                              Monthly
                                                    3.65
                                                           11999139.0
                                                                                 43.24 Rural
             Pradesh
                      2019
                       30-
             Andhra
                              Monthly
                                                    3.05
                                                                                 42.05 Rural
                       06-
                                                           11755881.0
             Pradesh
                      2019
                       31-
             Andhra
         2
                       07-
                              Monthly
                                                    3.75
                                                           12086707.0
                                                                                 43.50 Rural
             Pradesh
                      2019
                       31-
             Andhra
         3
                       -80
                              Monthly
                                                    3.32
                                                           12285693.0
                                                                                 43.97 Rural
             Pradesh
                      2019
                       30-
             Andhra
                       09-
                              Monthly
                                                    5.17
                                                           12256762.0
                                                                                 44.68 Rural
             Pradesh
                      2019
In [4]:
        df1.columns
Out[4]: Index(['Region', 'Date', 'Frequency', 'Estimated Unemployment Rate (%)',
                 'Estimated Employed', 'Estimated Labour Participation Rate (%)',
                'Area'],
               dtype='object')
In [5]:
        df1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Region	740 non-null	object
1	Date	740 non-null	object
2	Frequency	740 non-null	object
3	Estimated Unemployment Rate (%)	740 non-null	float64
4	Estimated Employed	740 non-null	float64
5	Estimated Labour Participation Rate (%)	740 non-null	float64
6	Area	740 non-null	object

dtypes: float64(3), object(4)
memory usage: 42.1+ KB

In [6]: df1.describe()

In [10]: df1.isnull().sum()

Out[6]:		Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)
	count	740.000000	7.400000e+02	740.000000
	mean	11.787946	7.204460e+06	42.630122
	std	10.721298	8.087988e+06	8.111094
	min	0.000000	4.942000e+04	13.330000
	25%	4.657500	1.190404e+06	38.062500
	50%	8.350000	4.744178e+06	41.160000
	75%	15.887500	1.127549e+07	45.505000
	max	76.740000	4.577751e+07	72.570000

```
In [7]: df1.isnull().sum()
                                                     28
Out[7]: Region
          Date
                                                     28
          Frequency
                                                     28
          Estimated Unemployment Rate (%)
                                                     28
          Estimated Employed
                                                     28
          Estimated Labour Participation Rate (%)
                                                     28
                                                     28
        Area
         dtype: int64
In [8]:
        df1.shape
Out[8]: (768, 7)
In [9]:
        df1=df1.dropna()
```

```
Out[10]: Region
                                                        0
           Date
                                                        0
                                                        0
           Frequency
           Estimated Unemployment Rate (%)
                                                        0
           Estimated Employed
                                                        0
           Estimated Labour Participation Rate (%)
          dtype: int64
In [11]: df1.describe()
Out[11]:
                    Estimated Unemployment
                                                     Estimated
                                                                  Estimated Labour Participation
                                    Rate (%)
                                                     Employed
                                                                                      Rate (%)
                                  740.000000
                                                  7.400000e+02
                                                                                    740.000000
          count
          mean
                                   11.787946
                                                  7.204460e+06
                                                                                    42.630122
            std
                                   10.721298
                                                  8.087988e+06
                                                                                      8.111094
                                                  4.942000e+04
            min
                                    0.000000
                                                                                     13.330000
           25%
                                                  1.190404e+06
                                                                                     38.062500
                                    4.657500
           50%
                                    8.350000
                                                  4.744178e+06
                                                                                    41.160000
           75%
                                   15.887500
                                                  1.127549e+07
                                                                                    45.505000
                                   76.740000
                                                  4.577751e+07
                                                                                     72.570000
           max
In [12]:
         #remove leading and trailing spaces from the column names
          df1.columns = df1.columns.str.strip()
In [13]: df1["Estimated Unemployment Rate (%)"]
Out[13]: 0
                  3.65
          1
                  3.05
          2
                  3.75
          3
                  3.32
          4
                  5.17
                  7.55
          749
          750
                  6.67
                 15.63
          751
          752
                 15.22
          753
                  9.86
          Name: Estimated Unemployment Rate (%), Length: 740, dtype: float64
In [14]: df1.duplicated().any()
Out[14]: False
In [15]: df1.Region.value_counts()
```

```
Out[15]: Region
         Andhra Pradesh
                              28
                              28
         Kerala
         West Bengal
                              28
         Uttar Pradesh
                              28
                              28
         Tripura
                              28
         Telangana
         Tamil Nadu
                              28
         Rajasthan
                              28
         Punjab
                              28
         Odisha
                              28
                              28
         Madhya Pradesh
                              28
         Maharashtra
         Karnataka
                              28
          Jharkhand
                              28
         Himachal Pradesh
                              28
         Haryana
                              28
         Gujarat
                              28
         Delhi
                              28
         Chhattisgarh
                              28
         Bihar
                              28
         Meghalaya
                              27
         Uttarakhand
                              27
         Assam
                              26
         Puducherry
                              26
                              24
         Goa
          Jammu & Kashmir
                              21
                              17
         Sikkim
         Chandigarh
         Name: count, dtype: int64
In [16]: plt.figure(figsize=(15,10))
         sns.countplot(y="Region",data=df1)
         plt.show()
```


Analysis: The count plot provides an overview of the number of unemployment rate observations across different regions. Analyzing the distribution reveals whether certain regions are over- or underrepresented in the dataset.n.

Conclusion: The data collection appears uneven across regions, which may lead to biases in regional comparisons. Regions with fewer observations might not reflect the true economic conditions, necessitating careful interpretation.

```
In [19]: #Changing the datatype of 'Date' from object to datetime
df1['Date'] = pd.to_datetime(df1['Date'],dayfirst = True)
df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
       Index: 740 entries, 0 to 753
       Data columns (total 7 columns):
        # Column
                                                  Non-Null Count Dtype
       --- -----
                                                  -----
        0 Region
                                                 740 non-null
                                                                object
        1
           Date
                                                  740 non-null
                                                                datetime64[ns]
                                                 740 non-null
        2 Frequency
                                                                object
        3 Estimated Unemployment Rate (%)
                                                 740 non-null float64
        4 Estimated Employed
                                                 740 non-null float64
        5
           Estimated Labour Participation Rate (%) 740 non-null
                                                                float64
                                                  740 non-null
                                                                object
       dtypes: datetime64[ns](1), float64(3), object(3)
       memory usage: 46.2+ KB
In [20]: #Extracting month from date attribute
        df1['month_int'] = df1['Date'].dt.month
        df1.head()
```

Out[20]:

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area	month_int
0	Andhra Pradesh	2019- 05-31	Monthly	3.65	11999139.0	43.24	Rural	5
1	Andhra Pradesh	2019- 06-30	Monthly	3.05	11755881.0	42.05	Rural	6
2	Andhra Pradesh	2019- 07-31	Monthly	3.75	12086707.0	43.50	Rural	7
3	Andhra Pradesh	2019- 08-31	Monthly	3.32	12285693.0	43.97	Rural	8
4	Andhra Pradesh	2019- 09-30	Monthly	5.17	12256762.0	44.68	Rural	9

The months are in integer datetype. We need to convert the months into words for better analysis.

```
In [21]: df1['month'] = df1['month_int'].apply(lambda x: calendar.month_abbr[x])
    df1.head()
```

_		$\Gamma \circ$	- 7	
()ı	11	1)	7 1	0
\cup	u u	1 4	_	

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area	month_int
0	Andhra Pradesh	2019- 05-31	Monthly	3.65	11999139.0	43.24	Rural	5
1	Andhra Pradesh	2019- 06-30	Monthly	3.05	11755881.0	42.05	Rural	6
2	Andhra Pradesh	2019- 07-31	Monthly	3.75	12086707.0	43.50	Rural	7
3	Andhra Pradesh	2019- 08-31	Monthly	3.32	12285693.0	43.97	Rural	8
4	Andhra Pradesh	2019- 09-30	Monthly	5.17	12256762.0	44.68	Rural	9

Numeric data grouped by months.

```
In [25]: data = df1.groupby(['month'])[['Estimated Unemployment Rate (%)','Estimated Employe
    data=pd.DataFrame(data).reset_index()
```

Bar plot of unemployment rate and labour participation rate.

Unemployment Rate and Labour Participation

Estimated employed people from Jan 2020 to Oct 2020

Region(State) wise Analysis

```
In [45]: Region = df1.groupby(['Region'])[['Estimated Unemployment Rate (%)','Estimated Emp
Region = pd.DataFrame(Region).reset_index()

In [49]: # Box plot
fig = px.box(data_frame=df1,x='Region',y='Estimated Unemployment Rate (%)',color='R
fig.update_layout(xaxis={'categoryorder':'total descending'})
fig.show()
```

Unemployment rate


```
In [55]: # average unemployment rate bar plot

fig = px.bar(Region, x='Region', y='Estimated Unemployment Rate (%)',color='Region',t
fig.update_layout(xaxis={'categoryorder':'total descending'})
fig.show()
```

Average unemployment rate (Region)

Hariyana and Tripura were having the highest average amount of Unemployment rate.

Meghalaya was having the lowest average amount of Unemployment ra.te

Unemployment rate from Jan 2020 to Oct 2020(Region)

Monthly unemployment rate

```
In [66]: # numeric data grouped by region

Region = df1.groupby(['Region'])[['Estimated Unemployment Rate (%)','Estimated Empl
Region = pd.DataFrame(Region).reset_index()

In [70]: #Scatter plot
pd.DataFrame.iteritems = pd.DataFrame.items
fig= px.scatter_matrix(df1,dimensions=['Estimated Unemployment Rate (%)','Estimated
fig.show()
```


In [74]: unemployment =df1.groupby(['Region'])['Estimated Unemployment Rate (%)'].mean().res
unemployment.head()

Out[74]:		Region	Estimated Unemployment Rate (%)
	0	Andhra Pradesh	7.477143
	1	Assam	6.428077
	2	Bihar	18.918214
	3	Chandigarh	15.991667
	4	Chhattisgarh	9.240357

Unemployment rate in state and region

Analysis: The countplot illustrates the distribution of observations across two categories: Rural and Urban. The plot reveals a higher frequency of Urban observations compared to Rural.

Conclusion: A potential bias towards urban areas exists in the data, which may limit the generalizability of findings to rural India and obscure the true nature of unemployment challenges in these regions.

Time Series Line Plot for Unemployment Rate by Region

Unemployment Rate Over Time

In [127... sns.histplot(data=df1, x="Estimated Unemployment Rate (%)", kde=True,color="pink")
plt.show()

Analysis: The histogram shows the distribution of the estimated unemployment rates across various regions in India. The majority of regions have unemployment rates concentrated at the lower end of the spectrum, with a few regions experiencing much higher rates. The KDE curve overlaid on the histogram provides a smooth estimate of the distribution, highlighting the skewness towards lower unemployment rates.

Conclusion: Most regions have relatively low unemployment rates, with a majority falling below 20%. However, there are a few regions with significantly higher unemployment rates, which may indicate regional economic challenges or structural unemployment issues. The left-skewed distribution suggests that while low unemployment is common, high unemployment, though less frequent, is a concern in certain areas.

```
In [122... sns.histplot(data=df1, x="Estimated Employed", kde=True,color="brown")
    plt.show()
```


Analysis: The histogram shows that most regions have lower numbers of employed individuals, with a few regions showing much higher employment figures. The right-skewed distribution is evident, with the KDE curve confirming this pattern.

Conclusion: Most regions have relatively low employment numbers, while a few outliers have significantly higher figures, suggesting regional economic or population differences.

```
In [125... sns.histplot(data=df1, x="Estimated Labour Participation Rate (%)", kde=True,color=
plt.show()
```


Analysis: The histogram illustrates the distribution of the estimated labor participation rate across different regions. The data is fairly normally distributed, with most regions having a labor participation rate around 40%. The KDE curve confirms this central tendency.

Conclusion: Most regions have a labor participation rate centered around 40%, indicating a typical engagement level. The normal distribution suggests consistent labor participation across regions with fewer deviations towards the extremes.

```
In [130... plt.figure(figsize=(10,7))
    sns.scatterplot(data=df1, x="Estimated Unemployment Rate (%)", y="Estimated Labour plt.show()
```


Analysis: The scatter plot illustrates a negative correlation between unemployment and labor participation rates across Indian states. Higher unemployment is generally associated with lower labor force participation.

Conclusion: The data suggests that increasing labor force participation may require addressing unemployment challenges in India. Targeted policies addressing regional disparities could be beneficial.

```
In [133... plt.figure(figsize=(10,7))
    sns.violinplot(x=df1["Estimated Employed"])
    plt.show()
```


Analysis: The violin plot shows that most regions have a relatively low estimated number of employed individuals.

Conclusion: Employment numbers are concentrated in the lower range, with fewer regions reporting significantly higher employment figures.

Unemployment rate before and after Lockdown

```
In [84]: # data representation before and after Lockdown

before_lockdown = df1[(df1['month_int']>=1) &(df1['month_int'] <4)]
    after_lockdown = df1[(df1['month_int'] >=4) & (df1['month_int'] <=6)]

In [86]: af_lockdown = after_lockdown.groupby('Region')['Estimated Unemployment Rate (%)'].m

lockdown = before_lockdown.groupby('Region')['Estimated Unemployment Rate (%)'].mea
    lockdown['unemployment rate before lockdown'] = af_lockdown['Estimated Unemployment
    lockdown.columns = ['Region', 'unemployment rate before lockdown', 'unemployment rate
    lockdown.head()</pre>
```

Out[86]:		Region	unemployment rate before lockdown	unemployment rate after lockdown
	0	Andhra Pradesh	6.243333	11.126000
	1	Assam	6.480000	6.563333
	2	Bihar	14.276667	27.459000
	3	Chandigarh	19.366667	12.656667
	4	Chhattisgarh	8.683333	12.720000

Percentage change in Unemployment

Highest, Lowest Unemployment rate

avg_unemployment_rate=df1.groupby('Region')['Estimated Unemployment Rate (%)'].mean
state_with_highest_unemployment=avg_unemployment_rate.idxmax()
high_unemployment_rate=avg_unemployment_rate.max()
state_with_lowest_unemployment=avg_unemployment_rate.idxmin()
low_unemploy_rate=avg_unemployment_rate.min()
print(f"state with high employment: {state_with_highest_unemployment}")
print(f"high employment rate: {high_unemployment_rate}")
print(f"state with low employment: {state_with_lowest_unemployment}")
print(f"low employment rate: {low_unemploy_rate}")

state with high employment : Tripura
high employment rate : 28.350357142857142
state with low employment : Meghalaya
low employment rate : 4.7988888888888888