1 Найти производные функций:

1)
$$y = x^4 - 2x + 1$$

2)
$$y = 3\sqrt[3]{x^2} + 2x^3\sqrt{x} + \frac{1}{x^3}$$

3)
$$y = \frac{x^3 - 2x^2 + 1}{x - 1}$$

$$4) \quad y = \frac{1 - \cos 2x}{1 + \cos 2x}$$

$$5) \quad y = e^{x^3 - 5x^2}$$

$$6) \quad y = \sin 2x \operatorname{tg} x$$

 $\mathbf{2}$ Вычислить значения производной функции при указанном значении переменной:

1)
$$f(x) = \frac{x^2 - 2}{x^2 + 2}$$
; $f'(2)$;

2)
$$f(x) = \frac{x}{3} - \frac{3}{x}$$
; $f'(3)$;

1)
$$f(x) = \frac{x^2 - 2}{x^2 + 2}$$
; $f'(2)$; 2) $f(x) = \frac{x}{3} - \frac{3}{x}$; $f'(3)$; 3) $f(x) = \frac{\cos x}{1 + \sin x}$; $f'\left(\frac{\pi}{2}\right)$.

Найти точку максимума функции $y = 7 + 12x - x^3$. 3

Найти наибольшее значение функции $y = x^3 + 2x^2 + x + \sin\left(\frac{\pi}{6}\right)$ на отрезке [-4; -1]. 4

Найти точку максимума функции $y = -\frac{x}{r^2 + 280}$. **5**

Найдите наименьшее значение функции $y = 3 + \frac{5\pi}{4} - 5x - 5\sqrt{2}\cos x$ на отрезке $\left[0; \frac{\pi}{2}\right]$. 6

Найдите наименьшее значение функции $y = \sqrt{x^2 - 6x + 13}$. 7