Physics II: Electromagnetism

Avery Karlin

Spring 2016

Contents

1	Chapter 21 - Electric Charge	•
	1.1 Charge	3
	1.2 Charging	3
	1.3 Coulomb's Law	4
2	Chapter 22 - Electric Field	4
	2.1 Point Charges	4
	2.2 Solid Bodies	4
3	Chapter 23 - Electric Flux	4
	3.1 Electric Flux	
	3.2 Gauss's Law	
4	Chapter 24 - Electric Potential	

<u>Teacher</u>: Ali

1 Chapter 21 - Electric Charge

1.1 Charge

- 1. Matter is composed of specific particles (electrons, protons, and neutrons), each with a property of charge (-ve, +ve, or 0)
 - (a) Electrons have a charge of $-1.6*10^{-19}C$ and a mass of $9.11*10^{-31}kg$
 - (b) Protons have a charge of $-1.6*10^{-19}C$ and a mass of $1.673*10^{-27}kg$
 - (c) Neutrons have a charge of 0C and a mass of $1.674 * 10^{-27} kg$, such that the mass is approximately the sum of that of an electron and proton
- 2. The Law of Charges state that like charges repel and unlike charges attract
- 3. Quantization of Charge states that the charge of any body is equal to the multiple of the charge of an electron/proton
- 4. Materials can be divided into conductors, insulators, and semiconductors
 - (a) The distance between the atomic radiuses of each of the atoms in the material determine the type, such that the further the distance, the less conductive, making conductors dense
 - (b) Conductors have electrons free to move from orbit to orbit, such as metals
 - i. It is noted that this creates the difference of charged conducting bodies, such that the charges isolate themselves on the edges of the object, unlike insulators which are dispersed evenly
 - (c) Insulators have a large energy gap (E_g) , such that the electrons are bound to atoms, unable to jump/move, such as wood, glass, and rubber
 - (d) Semiconductors are not free or bound, such that they can be converted to either a conductor or insulator
 - i. Addings impurities to the material through doping allows electrons to jump easier, such that it conducts better
 - ii. Increasing temperature increases electron energy, allowing jumps temporarily, while decreasing temperature does the opposite

1.2 Charging

- 1. Charging by friction is done by rubbing objects together, using the frictional force to force electron transfer to the material with greater attraction to electrons
 - (a) Valence electrons are the ones lost from the material
 - (b) Glass and silk are known for producing positively charged glass
 - (c) Plastic and fur are known for producing negatively charged plastic
- 2. Charging by contact is done by contact between two non-insulators, causing the charge to move until equilibrium
- 3. Charging by induction is done by placing a charged rod near a neutral conductor, such that the material is polarized into a seperation of charges, giving a temporary charge
 - (a) If the object is then split up in the case of a conductor, where the polarization is on a super-molecular scale, it can be charged
 - (b) If the object is an insulator, such that it is on a dipole molecular scale, it is temporary, but can allow it to be attracted to the object
- 4. Electroscopes have two flat leaves connected to a rod, which is attached to the ball on top, such that it detects charge by charging by contact, after which the leaves seperate
 - (a) It can be decharged by attaching it to a grounding wire, attached to the Earth, which acts as a giant neutral body to neutralize the charges

1.3 Coulomb's Law

- 1. $F_e = \frac{k|q_1||q_2|}{r^2}$, where the direction of the vector is determined by the law of charges

 - (a) $k = 9 * 10^9 \frac{Nm^2}{C^2} = \frac{1}{4\pi\epsilon_0}$ (b) The overall force must be found before breaking it up into components, rather than in finding it as components first
- 2. The ratio of electrostatic force to gravitational force on a molecular scale approximates as 10^{40} , such that gravity can be ignored on that scale
 - (a) Based on the hydrogen atom, with a radius of 0.53 Angstrom $(0.53 * 10^{-10}m)$

Chapter 22 - Electric Field $\mathbf{2}$

Point Charges 2.1

- 1. The electric field (\vec{E}) is related to the number of field lines per unit area, such that lines are drawn from positive to negative
 - (a) Electric fields are found by measuring the force on a positive test charge with a small enough size that it doesn't disrupt the surrounding field
 - (b) $\vec{E} = \frac{\vec{F}}{q_0} = \frac{k|q|}{r^2}$, where the direction is determined by the type of charge, where q_0 is the test charge, and q is the charge of the point mass producing the field
- 2. Dipole moments are created by two point charges of opposite charge, seperated by some
 - (a) Dipole moment (P) = qr, where r is the distance between them, and q is the charge of each point, for cases where the charges are of equal, but opposite charge, moving from negative to positive
 - (b) Thus, $\tau = PxE$ and $PE = -E \cdot P$ for dipole moments
 - (c) $E_{dipole} = \frac{kP}{r^3}$

2.2**Solid Bodies**

- 1. $\vec{E} = \sum_{i} \frac{k\Delta q_i}{r_i^2} = \int \frac{k}{r^2} dq$
 - (a) $q = \lambda x, q = \sigma A, q = \rho V$ (depending on the dimensions of the solid body)
 - (b) If the density functions are non-uniform, the integral is taken to solve for q, with respect to each dimension variable
- 2. These calculations can be made simpler if one of the dimensions of the field cancels out, but a multiplier of some trig function must be added to the equation to remove that component
- 3. For parallel plates, $\vec{E} = \frac{\sigma}{\epsilon_0}$, such that each plate is half of that value, where ϵ_0 is the permittivity of free space, or $8.854 * 10^{-12} C^2/Nm^2$, and σ is the charge density of the plates

3 Chapter 23 - Electric Flux

Electric Flux 3.1

1. Electric flux is the number of electric field lines passing through an area, such that Φ_E $\vec{E} \cdot \vec{A}_n = \vec{E} \vec{A}_n cos(\theta)$, where \vec{A}_n is the normal to the surface, perpendicular and with a magnitude equal to the area

- (a) For an enclosed object, lines entering the surface of the object is negative, outward is positive
- (b) Thus, positive objects have lines entering but not leaving, negative objects have vice
- 2. $\Phi = \vec{E} \cdot \vec{A}_n$ for uniform surfaces
 (a) $\Phi = \lim_{\Delta A_n \to 0} \sum_i \vec{E}_i \cdot \Delta A_n = \oint \vec{E} \cdot dA_n$

3.2 Gauss's Law

- 1. Gauss's Law is used to calculate the gravitaional field at a point, by creating a gaussian surface including that point
 - (a) Gaussian surfaces must be closed (compact/effectively-continuous without boundary in any direction), 3D surfaces, such that they are the boundary of a 3D region with a constant field throughout (symmetrical)
 - (b) The electric field must also be parallel to the normal of the tangent plane, A_N , on the surface A
 - (c) $\Phi_e = \oint \vec{E} dA = \vec{E} \oint dA = \frac{kq_{enc}}{r^2} (4\pi r^2) = \frac{q_{enc}}{\epsilon_0}$, where q_{enc} is the charge of the body inside the surface creating the field, and the surface integral of dA is the surface area
- 2. This is used to derive the field of a sheet of charge, by creating a cylinder in the center around some area of the sheet of some height, thus calculating the field of the section of the sheet
- 3. For varying charge density, $q_{enc} = \int \rho dV$ is substituted in, where dV can be converted to cartesian, cylindrical, or spherical depending

Chapter 24 - Electric Potential 4

- 1. Electric potential energy can be defined in a system from infinity as a reference as the negative work done to move a particle from infinity towards some stationary second charge $(U_r =$
 - (a) Electrostatic force is conservative, and thus path independent
 - (b) Electric potential (V) is a quantity not dependent on the particle being moved, such that $V_r q_0 = U$, where q_0 is the charge of the moving particle and r is the distance from the stationary particle
 - (c) Thus, $V = \int \frac{kdq}{r}$
- 2. The work moving a series of charges is equal to the sum of the work to move each charge with respect to the work of the charges moved previously
- 3. By the relationship of potential energy and force, $E = -\vec{\nabla}V(\vec{r})$ or $\Delta V = \int -E \cdot dr$