Produtos internos, normas e ângulos Álgebra Linear – Videoaula 17

Luiz Gustavo Cordeiro

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Falta uma noção geométrica

Um vetor é uma entidade matemática com direção, sentido e magnitude.

Num espaço vetorial, dois vetores v, w

- têm a mesma direção se um deles é múltiplo do outro.
- têm o mesmo sentido se v = tw para algum $t \ge 0$ ou vice-versa.
- mas e a "magnitude"?

Falta uma noção geométrica

Em \mathbb{R}^n existe uma noção de "tamanho" canônica:

$$\|(x_1,\ldots,x_n)\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}.$$

Mas e em $\mathbb{R}^{\mathbb{R}}$?

Qual a "magnitude" de uma função delta de Kronecker?

$$\delta_0(x) = \begin{cases} 1 & \text{se } x = 0 \\ 0 & \text{se } x \neq 0 \end{cases}$$

O que é "magnitude"?

• Qual a "magnitude" de $\frac{1}{2}\delta_0 - \delta_1$?

• Qual a "magnitude" de I(x) = |x|?

O que é "magnitude"?

• Qual a "magnitude" de

$$q(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \notin \mathbb{Q} \end{cases}$$

.....

Ideia

Lembre-se que o "produto escalar" em \mathbb{R}^2 ou \mathbb{R}^3 satisfaz

$$u \cdot v = ||u|| \cdot ||v|| \cos(\theta),$$

onde

- ||u|| é o comprimento de u;
- ||v|| é o comprimento de v;
- θ é o ângulo entre u e v.

Problema

Como axiomatizar o "produto escalar" acima?

Produto interno

Definição

Um **produto interno** em um espaço vetorial V é uma função

$$\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}, \qquad (v, w) \mapsto \langle v, w \rangle$$

satisfazendo às seguinte propriedades:

• (Linearidade na primeira entrada) Para todos $u, v, b \in V$ e $\lambda \in \mathbb{R}$,

$$\langle u + \lambda v, b \rangle = \langle u, b \rangle + \lambda \langle v, b \rangle.$$

• (Simetria) Para todos $u, v \in V$,

$$\langle u, v \rangle = \langle v, u \rangle.$$

• (Positividade estrita) Para qualquer $v \neq 0_V$,

$$\langle v, v \rangle > 0.$$

Linearidade entrada-a-entrada?

Fixado $b \in V$, a "linearidade na primeira entrada" de um produto interno diz que a função

$$f(v) = \langle v, b \rangle$$

é linear

$$f(u + \lambda v) = f(u) + \lambda f(v)$$

$$\langle u + \lambda v, b \rangle = \langle u, b \rangle + \lambda \langle v, b \rangle$$

Produtos internos também são lineares na segunda entrada: por simetria,

$$\langle a, u + \lambda v \rangle = \langle a, u \rangle + \lambda \langle a, v \rangle$$

Dizemos que produtos internos são bilineares.

Em particular,

$$\langle 0_V, v \rangle = \langle v, 0_V \rangle = 0$$

para qualquer $v \in V$.

O produto de \mathbb{R} é um produto interno:

$$\langle x, y \rangle = xy$$

Linearidade na primeira entrada:

$$\langle x + \lambda y, b \rangle = (x + \lambda y)b = xb + \lambda yb = \langle x, b \rangle + \lambda \langle y, b \rangle$$

Simetria:

$$\langle x, y \rangle = xy = yx = \langle y, x \rangle$$

• Positividade estrita: Se $x \neq 0$, então

$$\langle x, x \rangle = xx = x^2 > 0$$

O produto interno **usual** de
$$\mathbb{R}^n$$
: Se $x=(x_i)_i=(x_1,\ldots,x_n)$ e $y=(y_i)_i=(y_1,\ldots,y_n)$, então
$$\langle x,y\rangle=\langle (x_1,\ldots,x_n), (y_1,\ldots,y_n)\rangle\\ =x_1y_1+\cdots+x_ny_n$$

$$=\sum_{i=1}^n x_iy_i$$

Produto interno usual de \mathbb{R}^n

• Linearidade na primeira entrada: Para $x = (x_i)_i$, $y = (y_i)_i$ e $b = (b_i)_i$,

$$\langle x + \lambda y, b \rangle = \sum_{i} ((x_{i} + \lambda y_{i})b_{i})$$

$$= \sum_{i} (x_{i}b_{i} + \lambda y_{i}b_{i})$$

$$= \left(\sum_{i} x_{i}b_{i}\right) + \lambda \left(\sum_{i} y_{i}b_{i}\right)$$

$$= \langle x, b \rangle + \lambda \langle y, b \rangle$$

Simetria: exercício

Produto interno usual de \mathbb{R}^n

• Positividade estrita: Se $x = (x_i)_i \neq 0_n$, então escolha J tal que $x_J \neq 0$. Daí,

$$\langle x, x \rangle = \underbrace{x_1^2}_{\geq 0} + \underbrace{x_2^2}_{\geq 0} + \cdots + \underbrace{x_J^2}_{> 0} + \cdots + \underbrace{x_n^2}_{\geq 0} > 0.$$

Terminologia e notação

O produto interno usual de \mathbb{R}^n também se chama:

- produto escalar
- produto interno canônico ou padrão
- produto interno Euclidiano
- e também se denota por
 - x ⋅ y;
 - como $\begin{bmatrix} x_1 \cdots x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n x_i y_i \end{bmatrix} = x \cdot y$, também se denota por

 x^Ty ou xy^T (dependendo se os vetores são escritos como linhas ou colunas).

Considere a função $\langle\cdot,\cdot\rangle\colon\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}^2$

$$\langle (x_1, y_1), (x_2, y_2) \rangle = 3x_1x_2 + 4x_1y_2 + 4y_1x_2 + 9y_1y_2$$

O único problema é a positividade:

$$\langle (x,y), (x,y) \rangle = 3x^2 + 4xy + 4yx + 9y^2$$

$$= 3\left(x^2 + \frac{8}{3}xy\right) + 9y^2$$

$$= 3\left(x + \frac{4}{3}y\right)^2 - 3\frac{16}{9}y^2 + 9y^2$$

$$= 3\left(x + \frac{4}{3}y\right)^2 + \frac{11}{3}y^2$$

que é ≥ 0 , e = 0 se, e somente se, y = 0 e $x = -\frac{4}{3}y = 0$.

Considere a mesma função do slide anterior:

$$\langle (x_1, y_1), (x_2, y_2) \rangle = 3x_1x_2 + 4x_1y_2 + 4y_1x_2 + 9y_1y_2$$

$$\langle (x,y), (x,y) \rangle = 3\left(x + \frac{4}{3}y\right)^2 + \frac{11}{3}y^2$$
 (como vimos)
= $\frac{11}{9}x^2 + 9\left(\frac{4}{9}x + y\right)^2$
= $2(x+y)^2 + 2y^2 + \frac{x^2}{5} + 5\left(\frac{2}{5}x + y\right)^2$

Considere a função

$$\langle (x_1, y_1), (x_2, y_2) \rangle = 2x_1x_2 + 4x_1y_2 + 4y_1x_2 + 6y_1y_2$$

$$\langle (x,y), (x,y) \rangle = 2x^2 + 8xy + 6y^2$$

= $2(x+2y)^2 - y^2$,

que pode ser negativo, por exemplo em (x, y) = (-2, 1).

Considere a função

$$\langle (x_1, y_1), (x_2, y_2) \rangle = 5x_1x_2 - 4x_1y_2 - 4y_1x_2 + 5y_1y_2$$

O único problema é a positividade:

$$\langle (x,y), (x,y) \rangle = 5x^2 - 4xy - 4xy + y^2$$

$$= 5x^2 - 8xy + y^2$$

$$= 5\left(x^2 - \frac{8}{5}xy\right) + y^2$$

$$= 5\left(x - \frac{4}{5}y\right)^2 - \frac{16}{25}y^2 + y^2$$

$$= 5\left(x - \frac{4}{5}y\right)^2 + \frac{9}{25}y^2$$

que $é \ge 0$, e = 0 se, e somente se, y = 0 e $x = \frac{4}{5}y = 0$.

Se $f,g:[0,1]\to\mathbb{R}$ são funções contínuas, então

$$\langle f,g\rangle_{L^2}=\int_0^1f(x)g(x)dx$$

é um produto interno, chamado de "produto L^2 ".

EPIs

Definição

Um espaço com produto interno (EPI) é um espaço vetorial V munido de um produto interno " $\langle \cdot, \cdot \rangle$ " sobre V.

Teorema

Se $v, w \in V$, com V um EPI, então

$$v = w \iff \langle v, x \rangle = \langle w, x \rangle$$
 para todo $x \in V$.

 (\Rightarrow) é trivial.

 (\Leftarrow) A condição na direita com x = v - w se reescreve como

$$0 = \langle v - w, x \rangle = \langle v - w, v - w \rangle$$

logo v = w.

Definição

Seja V um EPI. A **norma** de um vetor $v \in V$ é

$$\|v\| = \sqrt{\langle v, v \rangle}$$

Dizemos que v é **unitário** se ||v|| = 1.

Teorema (Desigualdade de Cauchy-Schwarz)

Seja V um EPI. Então para quaisquer $u, v \in V$, vale que

$$|\langle u, v \rangle| \leq ||u|| ||v||.$$

Além disso, vale a igualdade se, e somente se, u é múltiplo de v ou vice-versa.

Teorema

$$|\langle u, v \rangle| \leq ||u|| ||v||$$

Se $u = \alpha v$, então

$$||u|||v|| = \sqrt{\langle u, u \rangle \langle v, v \rangle}$$

$$= \sqrt{\langle \alpha v, \alpha v \rangle \langle v, v \rangle}$$

$$= \sqrt{\alpha^2 \langle v, v \rangle \langle v, v \rangle}$$

$$= |\alpha \langle v, v \rangle|$$

$$= |\langle \alpha v, v \rangle|$$

$$= |\langle u, v \rangle|.$$

e similarmente se $v = \beta u$.

Teorema

$$|\langle u, v \rangle| \leq ||u|| ||v||$$

Se $v = 0_V = 0u$ então o resultado é trivial. Supomos $v \neq 0_V$.

A ideia é considerar vetores da reta que passa por u e v, e ver quão perto esses vetores chegam da origem.

Vamos analizar ||u + tv||.

Teorema

$$|\langle u, v \rangle| \le ||u|| ||v||$$

Para todo $t \in \mathbb{R}$, temos que

$$0 \le \|u + tv\|^{2}$$

$$= \langle u + tv, t + tv \rangle$$

$$= \langle u, u \rangle + t \langle u, v \rangle + t \langle v, u \rangle + t^{2} \langle v, v \rangle$$

$$= \|u\|^{2} + 2t \langle u, v \rangle + t^{2} \|v\|^{2}$$

A última expressão é polinomial! Em particular, vale para o ponto de mínimo, que é alcançado em $t=-\frac{\langle u,v\rangle}{||v||^2}$.

Vamos utilizar este valor.

Teorema

$$|\langle u, v \rangle| \le ||u|| ||v||$$

Seja
$$t_0 = -\frac{\langle u, v \rangle}{\|v\|^2}$$
. Então
$$0 \le \|u + t_0 v\|^2 \\ = \|u\|^2 + 2t_0 \langle u, v \rangle + t^2 \|v\|^2 \\ = \|u\|^2 - 2\frac{\langle u, v \rangle^2}{\|v\|^2} + \frac{\langle u, v \rangle^2}{\|v\|^4} \|v\|^2 \\ = \|u\|^2 - \frac{\langle u, v \rangle^2}{\|v\|^2},$$

com igualdade se, e somente se, $u=-t_0v=rac{\langle u,v
angle}{\|v\|^2}v$.

Teorema

$$|\langle u, v \rangle| \le ||u|| ||v||$$

$$0 \leq \|u\|^2 - \frac{\langle u, v \rangle^2}{\|v\|^2},$$

ou, reordenando,

$$\langle u, v \rangle^2 \le ||u||^2 ||v||^2$$

ou ainda, equivalentemente,

$$|\langle u, v \rangle| \le ||u|| ||v||$$

com igualdade se, e somente se, $u=-t_0v=rac{\langle u,v \rangle}{\|v\|^2}v$.

Em \mathbb{R}^n com produto escalar usual:

$$x \cdot y \leq ||x|| ||y||$$

$$|x_1 y_1 + \dots + x_n y_n| \leq \sqrt{x_1^2 + \dots + x_n^2} \sqrt{y_1^2 + \dots + y_n^2}$$

$$(x_1 y_1 + \dots + x_n y_n)^2 \leq (x_1^2 + \dots + x_n^2) (y_1^2 + \dots + y_n^2)$$

Em C[0,1] com produto $\langle f,g\rangle = \int_0^1 f(x)g(x)dx$:

$$\left(\int_0^1 f(x)g(x)dx\right)^2 \le \left(\int_0^1 f(x)^2 dx\right) \left(\int_0^1 g(x)^2 dx\right)$$

Teorema

A norma em um EPI satisfaz às seguintes propriedades:

- **●** $||v|| \ge 0$.
- **2** ||v|| = 0 se, e somente se, $v = 0_V$.

Teorema

A norma em um EPI satisfaz às seguintes propriedades:

- **①** ||v|| ≥ 0.
- **2** ||v|| = 0 se, e somente se, $v = 0_V$.

Como

$$||v|| = \sqrt{\langle v, v \rangle},$$

então (1) é trivial, e

$$||v|| \iff \langle v, v \rangle = 0 \iff v = 0_V,$$

pela positividade estrita de produto interno. Isso é (2).

Teorema

A norma em um EPI satisfaz às seguintes propriedades:

- **1** ||v|| ≥ 0. \checkmark
- 2 ||v|| = 0 se, e somente se, $v = 0_V$. \checkmark

$$\|\lambda v\| = \sqrt{\langle \lambda v, \lambda v \rangle}.$$

$$= \sqrt{\lambda^2 \langle v, v \rangle}$$

$$= |\lambda| \sqrt{\langle v, v \rangle}$$

$$= |\lambda| \|v\|$$

Teorema

A norma em um EPI satisfaz às seguintes propriedades:

- **1** ||v|| ≥ 0. \checkmark
- ||v|| = 0 se, e somente se, $v = 0_V$. \checkmark

Distância

Definição

Dado um EPI V, a distância entre $v, w \in V$ é

$$d(v,w) = ||v - w|| = \sqrt{\langle v - w, v - w \rangle}.$$

Teorema

A distância em um EPI satisfaz:

- (simetria) d(v, w) = d(w, v)
- **3** (designaldade triangular) $d(u, v) \le d(u, w) + d(w, v)$

Definição

Uma norma em um espaço vetorial V é uma função

$$\|\cdot\|\colon V\to [0,+\infty), \qquad x\mapsto \|x\|$$

satisfazendo às seguintes propriedades, para quaisquer $x, y \in V$ e $\lambda \in \mathbb{R}$:

- (não-degenerecência/positividade estrita)||x|| = 0 se, e somente se, $x = 0_V$.
- (homogeneidade absoluta) $\|\lambda x\| = |\lambda| \|x\|$.
- $\textbf{(designaldade triangular)} \ \|x+y\| \leq \|x\| + \|y\|.$

Só vamos nos preocupar com normas advindas de produtos internos, mas existem outras normas úteis.

Exemplos de normas

• Temos a "norma do taxi" em \mathbb{R}^n : Para $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$,

$$||x||_1 = |x|_1 + \cdots + |x_n|.$$

https://commons.wikimedia.org/wiki/File: Manhattan_distance.svg

Exemplos de normas

• Temos a "norma L^1 " em C[0,1] (funções contínuas em [0,1]):

$$||f||_{L^1} = \int_0^1 |f(t)|dt$$

Exemplos de normas

• Temos a "norma uniforme/infinito/do sup" em C[0,1]:

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$$

Ângulo "Euclidiano"

Lembre-se que "produto interno" é uma abstração do conceito de "produto escalar".

O "produto escalar" de \mathbb{R}^3 satisfaz

$$x \cdot y = |x||y|\cos(\theta)$$

onde |x| e |y| são os comprimentos (usuais) de x e y en \mathbb{R}^3 , e θ é o ângulo entre x e y.

Ademais, sempre consideramos $\theta \in [0, \pi]$, i.e., $\theta = \arccos\left(\frac{x \cdot y}{|x||y|}\right)$.

Ângulo num EPI

Definição

Se V é um EPI e $u,v\in V$ são vetores não-nulos, então o **ângulo** entre u e v é

$$\arccos\left(\frac{\langle u,v\rangle}{\|u\|\|v\|}\right).$$

Exemplo de ângulo

Considere em \mathbb{R}^2 o produto interno

$$\langle (a,b),(c,d) \rangle = 68ac + 38ad + 38bc + 72bd$$

e os vetores

$$u = (2,9)$$
 e $v = (5,4)$

Então

- $\langle u, v \rangle = 5286$
- $\langle u, u \rangle = 7472$, logo $||u|| = \sqrt{\langle u, u \rangle} = 4\sqrt{467}$
- $\langle v, v \rangle = 4372$, logo $||v|| = 2\sqrt{1093}$

e o ângulo entre esses vetores é

$$\arccos\left(\frac{\langle u,v\rangle}{\|u\|\|v\|}\right) = \arccos\left(\frac{5286}{4\sqrt{467}\cdot 2\sqrt{1093}}\right) \approx 0,390170\dots$$