Formale Sprachen und Komplexitätstheorie

WS 2019/20

Robert Elsässer

Definition

Eine (deterministische 1-Band) Turingmaschine (DTM) wird beschrieben durch ein 7-Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$.

Dabei sind Q, Σ , Γ endliche, nichtleere Mengen und es gilt:

- Σ ist Teilmenge von Γ
- t in $\Sigma \cap \Gamma$ ist das *Blanksymbol* (auch \sqcup)
- *Q* ist die *Zustandsmenge*
- Σ ist das Eingabealphabet
- Γ ist das Bandalphabet
- q₀ in Q ist der Startzustand
- q_{accept} in Q ist der akzeptierende Endzustand
- q_{reject} in Q ist der ablehnende Endzustand
- $\delta: Q \setminus \{q_{accept}, q_{reject}\} \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ ist die (partielle) Übergangsfunktion. Sie ist für kein Argument aus $\{q_{accept}, q_{reject}\} \times \Gamma$ definiert.

Momentaufnahme einer Turingmaschine:

- Bei Bandinschrift uv (dabei beginnt u am linken Ende des Bandes und hinter v stehen nur Blanks)
- Zustand q
- Kopf auf erstem Zeichen von v

Konfiguration C = uqv

Definition

- Eine Sprache L heißt rekursiv aufzählbar,
 falls es eine Turingmaschine M gibt, die L akzeptiert.
- Eine Sprache L heißt rekursiv oder entscheidbar, falls es eine Turingmaschine M gibt, die L entscheidet.

- Eine Mehrband- oder k-Band Turingmaschine (k-Band DTM) hat k Bänder mit je einem Kopf.
- Die Übergangsfunktion ist dann von der Form $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$
- Zu Beginn steht die Eingabe auf Band 1, sonst stehen überall Blanks. Die Arbeitsweise ist analog zu 1-Band-DTMs definiert.

Universelle Turingmaschinen

- Bislang special purpose Computer.
 eine Sprache eine Turing-Maschine
- Allgemein programmierbare Turing-Maschinen: universelle Turing-Maschinen
- Erhalten als Eingabe die Beschreibung einer Turingmaschine und simulieren diese Maschine
- Benötigen dafür eine einheitliche Beschreibung von Turingmaschinen durch sog. Gödel-Nummern

Definition Gödelnummern

Sei *M* eine 1-Band-Turingmaschine mit

$$Q = \{q_0, ..., q_n\},$$

$$q_{accept} = q_{n-1},$$

$$q_{reject} = q_n.$$

Sei
$$X_1 = 0, X_2 = 1, X_3 = t, D_1 = L, D_2 = R$$
.

Wir kodieren $\delta(q_i, X_j) = (q_k, X_l, D_m)$ durch $0^{i+1}10^j 10^{k+1} 10^l 10^m$.

 $Code_r$: Kodierung des r-ten Eintrags für δ , $1 \le r \le 4(n-1)$

Gödelnummer $\langle M \rangle = 111Code_111Code_211...11Code_g111$

Kurt Gödel

Quelle: www.numbersleuth.org

- Studium an der Universität Wien
- Dozenturen in Wien und Princeton
- Rennomiertester Preis in der theoretischen Informatik wird nach Gödel benannt

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

$$\Sigma = \{0,1\}$$

$$\Gamma = \Sigma \cup \{t\}$$

$$\delta(q_0, 0) = (q_{reject}, 0, R)$$

$$\delta(q_0, 1) = (q_0, 1, R)$$

$$\delta(q_0, t) = (q_{accept}, t, R)$$

$$L = \{1^n \mid n \ge 0\}$$

Gödel-Nummer:

111010100010100110100101001001101000100100100111

Definition Universelle Turingmaschine

Eine Turingmaschine M_0 heißt **universell**, falls für jede 1-Band-Turingmaschine M und jedes x aus $\{0,1\}^*$ gilt:

- M₀ gestartet mit \(\lambda \rangle x \) hält genau dann, wenn M
 gestartet mit \(x \) hält.
- M_0 akzeptiert $\langle M \rangle x$ genau dann, wenn M das Wort x akzeptiert.

Satz

Es gibt eine universelle 2-Band Turingmaschine.

Die Sprache Gödel:

Sprache Gödel $= \{ w \text{ aus } \{0,1\}^* \mid w \text{ ist die Gödel-Nummer einer DTM} \}$

Lemma

Die Sprache Gödel ist entscheidbar.

Die Sprache States:

Sprache States $\coloneqq \{(\langle M \rangle, d) \mid M \text{ besitzt mindestens } d \text{ Zustände}\}$

Lemma

Die Sprache States ist entscheidbar.

Das Halteproblem

 $H := \{(\langle M \rangle, x) \ M \text{ ist DTM, die gestartet mit Eingabe } x \text{ hält}\}$

Satz

Das Halteproblem ist rekursiv aufzählbar.

Die Sprache Useful

Useful
$$\coloneqq \begin{cases} (\langle M \rangle, q) \mid M \text{ ist DTM mit Zustand } q, \text{ und es gibt eine Eingabe } w, \text{ so} \\ \text{dass } M \text{ gestartet mit } w \text{ in den Zustand } q \text{ gerät} \end{cases}$$

Satz

Useful ist rekursiv aufzählbar.

Aufzählung von binären Eingabefolgen:

- für alle natürlichen Zahlen i sei $w_i = w$, falls bin(i) = 1w
- damit werden alle möglichen w aus $\{0,1\}^*$ aufgezählt

Aufzählung von Turingmaschinen:

 M_i ist:

- M_{reject} , falls i keine Gödelnummer ist
- M, falls bin(i) die Gödelnummer der DTM M ist, d.h. $\langle M \rangle = bin(i)$

Die Sprache Diag

Diag := $\{w \text{ in } \{0,1\}^* \mid w = w_i \text{ und die DTM } M_i \text{ akzeptiert } w \text{ nicht}\}$

Satz

Die Sprache Diag ist nicht rekursiv aufzählbar.

	M_1	M_2	M_3		M_7		M_i	
$\widetilde{w_1}$	na	- na	na		na		na	
$\overline{w_2}$	na.		na		na		na	
W_3	na	na ·	,na	***	na		na	
:			,		• • • • • • • • • • • • • • • • • • • •			
w_7	na	na	na	```	na		а	
:							`\	
$\overline{w_i}$	na	na	na		na	***	a	
								. Diagona

Tabelle für Akzeptanz/Nichtakzeptant von DTMs

Quelle: Skript Blömer