Homework 2

Problem 5

(a) Derive the triangle inequality $\|\varphi + \psi\| \le \|\varphi\| + \|\psi\|$. (Here $\|\Psi\| = \sqrt{\langle \Psi | \Psi \rangle}$ is the norm of vector $|\Psi \rangle$.)

Suggestion: write $\|\varphi + \psi\|^2 = \langle \varphi + \psi | \varphi + \psi \rangle$ and use the relation $\operatorname{Re} \langle \varphi | \psi \rangle \leq |\langle \varphi | \psi \rangle|$ and the Schwartz inequality.

- (b) When the triangle inequality becomes an equality?
- (c) Show that $\|\varphi \psi\| \ge \|\varphi\| \|\psi\|$.

Problem 6

What is the number of independent real parameters $N(\mathcal{N})$ needed to specify (up to a phase factor) a state vector in \mathcal{N} -dimensional Hilbert space?

Problem 7

For any pure state ψ of spin 1/2 there exists a unique Bloch vector \mathbf{n} such that $\operatorname{Prob}_{\psi}(S_{\mathbf{n}} = \hbar/2) = 1$. Find the angles θ and ϕ specifying the Bloch vector in the spherical coordinates for the state represented by the state vector

$$|\psi\rangle = \frac{1}{\sqrt{2}}|+\mathbf{x}\rangle + \frac{e^{2\pi i/3}}{\sqrt{2}}|-\mathbf{x}\rangle.$$

Suggestion: write $|\psi\rangle$ in $|\pm \mathbf{z}\rangle$ basis and compare with $|\psi\rangle = \cos(\theta/2)|+\mathbf{z}\rangle + e^{i\phi}\sin(\theta/2)|-\mathbf{z}\rangle$ (up to a phase factor).

Problem 8

Verify that the inner product of two spin 1/2 state vectors

$$|\mathbf{n}_1\rangle = \cos(\theta_1/2)|+\mathbf{z}\rangle + e^{i\phi_1}\sin(\theta_1/2)|-\mathbf{z}\rangle, \qquad |\mathbf{n}_2\rangle = \cos(\theta_2/2)|+\mathbf{z}\rangle + e^{i\phi_2}\sin(\theta_2/2)|-\mathbf{z}\rangle$$

with arbitrary angles $\theta_{1,2}$ and $\phi_{1,2}$ satisfies

$$\left| \left\langle \mathbf{n}_1 \right| \mathbf{n}_2 \right\rangle \right|^2 = \frac{1}{2} \left(1 + \mathbf{n}_1 \cdot \mathbf{n}_2 \right).$$

For reference: Cartesian components of a unit vector **n** specified by angles θ and ϕ is spherical polar coordinates read

$$n_{\mathbf{x}} = \sin \theta \cos \phi$$
, $n_{\mathbf{y}} = \sin \theta \sin \phi$, $n_{\mathbf{z}} = \cos \theta$.

You will also need the trigonometric identities

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta, \quad 1 + \cos(2\alpha) = 2\cos^2\alpha, \quad 1 - \cos(2\alpha) = 2\sin^2\alpha, \quad \sin(2\alpha) = 2\sin\alpha\cos\alpha.$$