Project Name:	Project - Early Detection of Chronic Kidney		
	Disease using Machine Learning		
Team ID:	PNT2022TMID13778		

FINAL CODE PDF

Collecting, Visualizing, and Preprocessing the Dataset

1.Importing the packages

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from collections import Counter as c

import seaborn as sns

import missingno as msng

from sklearn.metrics import accuracy_score,confusion_matrix

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.linear_model import LogisticRegression

#Data Collections

data=pd.read_csv("/content/drive/MyDrive/chronickidneydisease.csv")
data.head()

data.drop(['id'],axis=1,inplace=True)

data.columns

```
data.columns=['age', 'bp', 'sg', 'al', 'su', 'rbc', 'pc', 'pcc', 'ba', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad', 'appet', 'pe', 'ane', 'classification']
```

data.columns

data['classification'].unique()

data.info()

RangeIndex: 400 entries, 0 to 399					
Data columns (total 25 columns):					
#	Column	Non-	-Null Count	Dtype	
		304	11	6364	
0	age		non-null	float64	
1	bp		non-null	float64	
2	sg		non-null	float64	
3	al		non-null	float64	
4	su		non-null	float64	
5	rbc		non-null	object	
6	pc		non-null	object	
7	рсс		non-null	object	
8	ba	396	non-null	object	
9	bgr	356	non-null	float64	
10	bu	381	non-null	float64	
11	sc	383	non-null	float64	
12	sod	313	non-null	float64	
13	pot	312	non-null	float64	
14	hemo	348	non-null	float64	
15	pcv	330	non-null	object	
16	WC	295	non-null	object	
17	rc	270	non-null	object	
18	htn	398	non-null	object	
19	dm	398	non-null	object	
20	cad	398	non-null	object	
21	appet	399	non-null	object	
22	pe	399	non-null	object	
23	ane	399	non-null	object	
24	classification	400	non-null	object	
dtypes: float64(11), object(14)					

2. Data visualization

from matplotlib import pyplot

data.plot

data.plot.hist()

data.plot.box()

data.boxplot()

data.plot.area()

data.plot.scatter(x='age',y='bp')

pie = data

pie

pie.plot();

data.plot.bar()

data.corr()

plt.figure(figsize=(15,8));

plt.title("Correlation",color="green")

sns.heatmap(data.corr(),linewidth=1,annot=True);


```
sns.set_theme(style="white")
```

fig, ((ax1, ax2,ax3,ax4,ax5), (ax6, ax7,ax8,ax9,ax10))= plt.subplots(nrows=2, ncols=5, figsize=(18,14))

sns.boxplot(data=data,x="age",ax=ax1)

sns.boxplot(data=data,x="bp",ax=ax2)

sns.boxplot(data=data,x="sg",ax=ax3)

sns.boxplot(data=data,x="al",ax=ax4)

sns.boxplot(data=data,x="bgr",ax=ax5)

sns.boxplot(data=data,x="bu",ax=ax6)

sns.boxplot(data=data,x="sc",ax=ax7)

sns.boxplot(data=data,x="sod",ax=ax8)

sns.boxplot(data=data,x="pot",ax=ax9)

sns.boxplot(data=data,x="hemo",ax=ax10)

3. Data Preprocessing

```
data['classification']=data['classification'].replace("ckd\t",'ckd')
catcols=set(data.dtypes[data.dtypes=='O'].index.values)
print(catcols)
for i in catcols:
    print("columns:",i)
    print(c(data[i]))
    print('*'*120+'\n')
catcols.remove('rbc')
catcols.remove('pcv')
catcols.remove('wc')
```

```
appeť',
      classification',
contcols=set(data.dtypes[data.dtypes!='O'].index.values)
contcols
for i in catcols:
  print("continuous columns :",i)
  print(c(data[i]))
  print('*'*120+'\n')
contcols.remove('sg')
contcols.remove('al')
contcols.remove('su')
print(contcols)
contcols.add('rbc')
contcols.add('pc')
contcols.add('wc')
print(contcols)
catcols.add('sg')
catcols.add('al')
catcols.add('su')
print(catcols)
data['cad']=data.cad.replace('\tno','no')
c(data['cad'])
data['dm']=data.dm.replace(to_replace={'\tno':'no','\tyes':'yes',' yes':'yes'})
c(data['dm'])
```

data.isna().any()

age bp sg al su rbc pc pcc ba bgr bu sc sod pot hemo pcv wc rc htn dm	True True True True True True True True
sod pot hemo pcv wc rc htn	True True True True True True True
classification dtype: bool	False

data.isna().sum()

```
9
age
                      12
bр
                      47
sg
                      46
al
                      49
su
                     152
rbc
                      65
рс
pcc
ba
                      44
bgr
                      19
bu
                      17
                      87
sod
                      88
pot
hemo
pcv
                      70
                     105
WC
                     130
rc
htn
dm
                       2
cad
                       1
appet
                       1
pe
                       1
classification
                       0
dtype: int64
```

data.pcv=pd.to_numeric(data.pcv,errors='coerce')
data.wc=pd.to_numeric(data.wc,errors='coerce')
data.rc=pd.to_numeric(data.rc,errors='coerce')
data['bgr'].fillna(data['bgr'].mean(),inplace=True)
data['bp'].fillna(data['bp'].mean(),inplace=True)
data['bu'].fillna(data['bu'].mean(),inplace=True)
data['hemo'].fillna(data['hemo'].mean(),inplace=True)
data['pcv'].fillna(data['pcv'].mean(),inplace=True)
data['pot'].fillna(data['pot'].mean(),inplace=True)
data['rc'].fillna(data['rc'].mean(),inplace=True)
data['sc'].fillna(data['sc'].mean(),inplace=True)
data['sod'].fillna(data['sod'].mean(),inplace=True)
data['wc'].fillna(data['wc'].mean(),inplace=True)
data['age'].fillna(data['age'].mode()[0],inplace=True)
data['htn'].fillna(data['htn'].mode()[0],inplace=True)

```
data['pcc'].fillna(data['pcc'].mode()[0],inplace=True)
data['appet'].fillna(data['appet'].mode()[0],inplace=True)
data['al'].fillna(data['al'].mode()[0],inplace=True)
data['pc'].fillna(data['pc'].mode()[0],inplace=True)
data['rbc'].fillna(data['rbc'].mode()[0],inplace=True)
data['cad'].fillna(data['cad'].mode()[0],inplace=True)
data['ba'].fillna(data['ba'].mode()[0],inplace=True)
data['ane'].fillna(data['ane'].mode()[0],inplace=True)
data['su'].fillna(data['su'].mode()[0],inplace=True)
data['dm'].fillna(data['dm'].mode()[0],inplace=True)
data['pe'].fillna(data['pe'].mode()[0],inplace=True)
data['sg'].fillna(data['sg'].mode()[0],inplace=True)
```

ML MODEL CREATION

Importing the packages

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msng
from sklearn.metrics import accuracy_score,confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
```

1.splitting the dataset

for i in catcols:

```
print("LABEL ENCODING OF :",i)
le=LabelEncoder()
print(c(data[i]))
data[i]=le.fit_transform(data[i])
print(c(data[i]))
```

```
print('*'*100)
```

```
data['rbc']=le.fit_transform(data['rbc'])
selcols=['rbc','pc','bgr','bu','pe','ane','dm','cad']
x=pd.DataFrame(data,columns=selcols)
y=pd.DataFrame(data,columns=['classification'])
```

print(x.shape)

print(y.shape)

```
, (400, 8)
(400, 1)
```

xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.2,random_state=2)
xtrain

2. Model creation

lgr=LogisticRegression()

lgr.fit(xtrain.values,ytrain.values)

```
ypred=lgr.predict(xtest)
ypred1=lgr.predict([[129,99,1,0,0,1,0,1]])
print(ypred1)
c(ypred)
```

3. Accuracy, Confustion Matrix, Classification Report

```
[1]
Counter({0: 48, 1: 32})
```

print(accuracy_score(ytest,ypred)*100)

confmat=confusion_matrix(ytest,ypred)

confmat

from sklearn.metrics import classification_report print(classification_report(ytest, ypred))

	precision	recall	f1-score	support	
0	1.00	0.89	0.94	54	
1	0.81	1.00	0.90	26	
accuracy			0.93	80	
macro avg	0.91	0.94	0.92	80	
weighted avg	0.94	0.93	0.93	80	

from sklearn.model_selection import cross_val_score

```
scores = cross_val_score(lgr, xtrain, ytrain, cv=50)
print('Cross-Validation Accuracy Scores', scores)
```

1.FrontEnd Development

Frontend consists of 3 pages

- 1. Index page
- 2. Prediction page
- 3. Output page

Technology used in Frontend

HTML

CSS

JS

1.Index.html

```
background-repeat: no-repeat;
   background-size: cover;
  }
  .header {
   display: flex;
   flex: 100%;
   flex-direction: row;
   justify-content: flex-end;
   height: 60px;
   padding-right: 30px;
   background-color: #2e6e82;
   align-items: center;
  }
 .btn{
   color: #fff;
   font-size: large;
   text-decoration: none;
 }
 .titleWrapper{
   height: 500px;
   display: flex;
   justify-content: center;
   align-items: center;
 }
 .title{
   background-color: #2e6e82;
   border-radius: 5px;
   padding: 20px 90px;
 }
 </style>
</head>
```

```
<body class="background">
    <div class="header">
        <a href="inputs.html" class="btn"> Predict
        </button>
        </div>
        <div class="titleWrapper">
            <h1 class="title">Chronic Kidney disease predicition</h1>
        </div>
        </body>
        </html>
```

Index page

2.Prediction Page

Inputs.html

```
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Document</title>
```

```
<style>
 .header {
  display: flex;
  justify-content: center;
  align-items: center;
}
 .title {
  background-color: #2e6e82;
  border-radius: 5px;
  padding: 20px 90px;
  color: white;
}
 .inputs {
  display: flex;
  flex-direction: column;
  justify-content: center;
  align-items: center;
  margin-top: 10px;
 background-color: #2e6e82;
  padding: 50px;
  border-radius: 50px;
}
 input {
  width: 300px;
  height: 25px;
  text-align: center;
  margin-bottom: 5px;
  font-size: large;
}
 select {
  width: 310px;
```

```
height: 25px;
 text-align: center;
 margin-bottom: 5px;
 font-size: large;
}
.btn {
 display: flex;
 justify-content: center;
 align-items: center;
 margin-top: 30px;
}
button {
 position: relative;
 font-size: 14px;
 letter-spacing: 3px;
 height: 3em;
 padding: 0 3em;
 border: none;
 background-color: #2e6e82;
 color: #fff;
 text-transform: uppercase;
 overflow: hidden;
 border-radius: 5px;
}
button::before {
 content: "";
 display: block;
 position: absolute;
 z-index: 0;
 bottom: 0;
```

```
left: 0;
 height: 0px;
 width: 100%;
 background: rgb(46, 110, 130);
 background: linear-gradient(
  90deg,
  rgba(46, 110, 130, 1) 20%,
  rgba(46, 110, 130, 1) 100%
 );
 transition: 0.2s;
}
button .label {
 position: relative;
}
button .icon {
 display: flex;
 align-items: center;
 justify-content: center;
 height: 3em;
 width: 3em;
 position: absolute;
 top: 3em;
 right: 0;
 opacity: 0;
 transition: 0.4s;
}
button:hover::before {
 height: 100%;
```

```
}
 button:hover .icon {
  top: 0;
  opacity: 1;
 }
</style>
</head>
<body>
<div class="header">
 <h1 class="title">Chronic Kidney disease predicition</h1>
 </div>
 <div class="inputs">
 <input type="number" placeholder="Blood Urea" />
 <input type="number" placeholder="Blood Glucose Random" />
  <select name="Coronary Artery Disease" id="">
  <option value="Coronary Artery Disease">Coronary Artery Disease
  <option value="yes">Yes</option>
  <option value="no">No</option>
  </select>
  <select name="anemia" id="">
  <option value="anemia">Anemia
  <option value="yes">Yes</option>
  <option value="no">No</option>
  </select>
  <select name="pus cell" id="">
  <option value="pus cell">Pus Cell</option>
  <option value="normal">Normal</option>
  <option value="abnormal">Abnormal
  </select>
  <input type="number" placeholder="Red Blood Cell Count" />
```

```
<select name="diabetes mellitus" id="">
    <option value="diabetes mellitus">Diabetes Mellitus
    <option value="yes">Yes</option>
    <option value="no">No</option>
   </select>
   <select name="pedal edema" id="">
    <option value="pedal edema">Pedal Edema</option>
    <option value="yes">Yes</option>
    <option value="no">No</option>
   </select>
  </div>
  <div class="btn">
   <a href="results.html">
    <button>
     <span class="label">Predict</span>
     <span class="icon">
      <svg
       xmlns="http://www.w3.org/2000/svg"
       viewBox="0 0 24 24"
       width="24"
      height="24"
       <path fill="none" d="M0 0h24v24H0z"></path>
       <path
        fill="currentColor"
        d="M16.172 11|-5.364-5.364 1.414-1.414L20 12|-7.778 7.778-1.414-1.414L16.172
13H4v-2z"
       ></path>
      </svg>
     </span>
    </button>
```

```
</a>
</div>
</body>
</html>
```

Inputs page Or Prediction page

FrontEnd and Backend connection

1.FrontEnd Development

OUTPUT PAGE

Result.html

```
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Document</title>
```

```
<style>
 .header {
  display: flex;
  justify-content: center;
  align-items: center;
}
 .title {
  background-color: #2e6e82;
  border-radius: 5px;
  padding: 20px 90px;
  color: white;
}
 .resultWrapper {
  display: flex;
  height: 200px;
 justify-content: center;
  align-items: center;
}
 .result {
  border-radius: 10px;
  padding: 10px 30px;
}
 .result-positive {
  color: red;
  font-size: larger;
 }
 .result-negative {
  color: blue;
  font-size: larger;
}
 h2 {
```

```
color: #2e6e82;
  }
  </style>
 </head>
 <body>
  <div class="header">
   <h1 class="title">Chronic Kidney disease predicition</h1>
  </div>
  <div class="resultWrapper">
   <div class="result">
    <h2>
     Prediction:
     <samp class="result-positive">You have Chronic Kidney Disease</samp>
    </h2>
    <!-- <h2>
     Prediction:
     <samp class="result-negative"> You Don't Chronic Kidney Disease</samp>
    </h2> -->
   </div>
  </div>
</body>
</html>
```

Results Page

Chronic Kidney disease predicition

Prediction: You have Chronic Kidney Disease

2.Backend development

Flask

```
import pandas as pd
from flask import Flask, request, render_template
import pickle
app = Flask(__name__) # initializing a flask app
model = pickle.load(open('CKD.pkl', 'rb')) #loading the model
@app.route('/')# route to display the home page
def home():
   return render template('home.html') #rendering the home page
@app.route('/Prediction',methods=['POST','GET'])
def prediction(): # route to display prediction page
   return render_template('indexnew.html')
@app.route('/Home',methods=['POST','GET'])
def my home():
    return render_template('home.html')
@app.route('/predict',methods=['POST'])# route to show the predictions in a web UI
def predict():
   #reading the inputs given by the user
   input features = [float(x) for x in request.form.values()]
   features_value = [np.array(input_features)]
```