Homework 5 for Math 1530

Due day: Tuesday October 8 recitations.

Problem 43. Prove that there is an increasing sequence of integers $a_1 < a_2 < a_3 < \dots$ such that for every $k \in \mathbb{N}$, the sequence $\{\sin(ka_n)\}_{n=1}^{\infty}$ converges.

Proof. Every sequence in compact space has a convergent subsequence. And since $\sin n$ is dense [-1,1], then $\sin n$ has a convergent subsequence as $\{\sin b_1, \sin b_2, \cdots\}$. Then, we can know that $\{\sin(2b_1), \sin(2b_2), \cdots\}$ has a convergent subsequence $\{\sin(2c_1), \sin(2c_2), \cdots\}$, where $2c_k \in \{2b_n\}$. So we have a sequence $\{c_n\}$ such that both $\{\sin c_n\}$ and $\{\sin(2c_n)\}$ converge as $n \to \infty$. Moreover, $\{\sin(3c_n)\}$ has a convergent subsequence $\{\sin(3d_1), \sin(3d_2), \cdots\}$. And we can continue this process and define $a_1 = b_1, a_2 = c_2, a_3 = d_3, \cdots$, and we can know that $\{\sin(ka_n)\}, \forall k \in \mathbb{N}$ converges.

Problem 44. Fix $k \in \mathbb{N}$ and define

$$z_n = \frac{1^k + 2^k + \ldots + n^k}{n^{k+1}}, \quad n = 1, 2, 3, \ldots$$

Prove that

$$\lim_{n \to \infty} n\left(z_n - \frac{1}{k+1}\right) = \frac{1}{2}.$$

Proof. We have $\lim_{n\to\infty} n\left(z_n - \frac{1}{k+1}\right) = \lim_{n\to\infty} \frac{(k+1)(1^k + \dots + n^k) - n^{k+1}}{(k+1)n^k} = \lim_{n\to\infty} \frac{x_n}{y_n}$. Then we have

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \frac{(k+1)((1^k + \dots + n^k) - n^{k+1} - (k+1)(1^k + \dots + (n-1)^k) + (n-1)^{k+1}}{n^k(k+1) - (k+1)(n-1)^k}$$

$$= \lim_{n \to \infty} \frac{\frac{(k+1)k}{2}n^{k-1} + {k \choose 2}n^{k-2} + \dots}{(k+1)(kn^{k-1} - {k \choose 2}n^{k-2})}$$

$$= \frac{1}{2}$$

According to Stolz theorem, $\lim_{n\to\infty} \frac{x_n}{y_n} = \lim_{n\to\infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = 1/2$. Thus, this series converges to 1/2.

Problem 45. Let $\beta > 0$ and $\{u_n\}$ be a sequence of positive real numbers such that $\frac{u_{n+1}}{u_n} \leq \beta$ for every $n \in \mathbb{N}$. Prove that

$$\limsup_{n \to \infty} \sqrt[n]{u_n} \le \limsup_{n \to \infty} \left(\frac{u_{n+1}}{u_n}\right).$$

Proof. For $\forall N > 0$, with $\frac{u_{n+1}}{u_n} \leq \beta$, we have $u_n \leq c_N \beta^{n-N} = c_N \beta^{-N} \beta^n$. Then we can have

$$\sqrt[n]{u_n} \le \sqrt[n]{c_N \beta^{-N}} \beta$$

$$\Rightarrow \limsup_{n \to \infty} \sqrt[n]{u_n} \le \beta$$

Since
$$\frac{u_{n+1}}{u_n} \leq \beta$$
 for all β , then $\limsup_{n \to \infty} \sqrt[n]{u_n} \leq \limsup_{n \to \infty} \left(\frac{u_{n+1}}{u_n}\right)$

Problem 46. Prove that if a sequence (a_n) of real numbers is convergent to a finite limit, $\lim_{n\to\infty} a_n = g \in \mathbb{R}$, then

$$\lim_{x \to \infty} e^{-x} \sum_{n=0}^{\infty} a_n \frac{x^n}{n!} = g.$$

Proof. We have

$$\left| e^{-x} \sum_{n=0}^{\infty} a_n \frac{x^n}{n!} - g \right| = \left| e^{-x} \sum_{n=0}^{\infty} (a_n - g) \frac{x^n}{n!} \right|$$

Since $\lim_{n\to\infty} a_n = g$, then $\forall \varepsilon > 0$, there exists an N > 0, such that $\forall n > N$, $|a_n - g| < \varepsilon$. Then,

$$\begin{vmatrix} e^{-x} \sum_{n=0}^{\infty} a_n \frac{x^n}{n!} - g \end{vmatrix} = \begin{vmatrix} e^{-x} \sum_{n=0}^{N-1} (a_n - g) \frac{x^n}{n!} + e^{-x} \sum_{n=N}^{\infty} (a_n - g) \frac{x^n}{n!} \end{vmatrix}$$

$$\leq \begin{vmatrix} e^{-x} \sum_{n=0}^{N-1} (a_n - g - \varepsilon) \frac{x^n}{n!} \end{vmatrix} + \begin{vmatrix} e^{-x} \sum_{n=0}^{N-1} \varepsilon \frac{x^n}{n!} \end{vmatrix} + \begin{vmatrix} e^{-x} \sum_{n=N}^{\infty} \varepsilon \frac{x^n}{n!} \end{vmatrix}$$

$$= \begin{vmatrix} e^{-x} \sum_{n=0}^{N-1} (a_n - g - \varepsilon) \frac{x^n}{n!} \end{vmatrix} + \begin{vmatrix} e^{-x} \sum_{n=0}^{\infty} \varepsilon \frac{x^n}{n!} \end{vmatrix}$$

$$= \begin{vmatrix} e^{-x} \sum_{n=0}^{N-1} (a_n - g - \varepsilon) \frac{x^n}{n!} \end{vmatrix} + \varepsilon$$

Also, for the first term on the right hand, we have

$$\lim_{x \to \infty} \left| e^{-x} \sum_{n=0}^{N-1} (a_n - g - \varepsilon) \frac{x^n}{n!} \right| = \sum_{n=0}^{N-1} \lim_{x \to \infty} (a_n - g - \varepsilon) \frac{x^n}{e^x n!} = 0$$

Then we have $\left|e^{-x}\sum_{n=0}^{\infty}a_n\frac{x^n}{n!}-g\right|\leq \varepsilon$, which means the limit goes to g.

Problem 47. Suppose that a sequence of functions f_1, f_2, \ldots converges uniformly on [0, 1] to some function f. Suppose also that there is a constant M such that $|f_i(x)| \leq M$ for all i and x. Prove that the sequence of squares f_1^2, f_2^2, \ldots converges uniformly to f^2 .

Proof. Since f_1, f_2, \cdots converges uniformly on [0,1], then for $\forall \varepsilon > 0$, $\exists \delta > 0$, then $\forall x, y \in [0,1]$, if $|x-y| < \delta$, then $|f_i(x) - f_i(y)| < \frac{\varepsilon}{2M}$. Also, f_1, f_2, \cdots converges to function f, then for the same ε as before, there exists an N > 0 such that $\forall n > N$, we have $|f_n(x) - f(x)| < \frac{\varepsilon}{2M}, \forall x \in [0,1]$. Then, if $|x-y| < \delta$ and n > N, we have

$$|f_i^2(x) - f_i^2(y)| \le |f_i(x) - f_i(y)||f_i(x) + f_i(y)| \le 2M \frac{\varepsilon}{2M} = \varepsilon$$
$$|f_n^2(x) - f^2(x)| \le |f_n(x) - f(x)||f_n(x) + f(x)| \le 2M \frac{\varepsilon}{2M} = \varepsilon$$

Then we know that f_1^2, f_2^2, \cdots converges uniformly to f^2 .

Problem 48. Prove that if $f:(0,1)\to\mathbb{R}$ is uniformly continuous, then there is a continuous function $F:[0,1]\to\mathbb{R}$ such that F(x)=f(x) for all $x\in(0,1)$.

Proof. Consider the sequence $a_n = 1/n, n \in \mathbb{N}$ and $b_n = 1 - 1/n, n \in \mathbb{N}$, and we define

$$F(0) = \lim_{n \to \infty} f(a_n) = A$$
$$F(1) = \lim_{n \to \infty} f(b_n) = B$$
$$F(x) = f(x), x \in (0, 1)$$

Now we prove that F(x) defined above is continuous. It is obvious that F is continuous on (0,1). Now consider a sequence $\{x_n\}$ converges to 0, and we need to prove that $\lim_{n\to\infty} F(x_n) = \lim_{n\to\infty} f(x_n) = A$. For $\forall \varepsilon > 0$, there exists an $N_1 > 0$, such that for $n > N_1$, we have $|f(a_n) - A| < \varepsilon/2$. Since f(x) is uniformly continuous, then for the same ε , there exists $\delta > 0$, such that $\forall x, y \in (0,1)$ if $|x-y| < \delta$, then $|f(x) - f(y)| < \varepsilon/2$. Since $\{x_n\}$ converges to 0, and $a_n = 1/n$, then there exists an N_2 such that $x_n < \delta$ and $x_n < \delta$, then we have $|x_n - a_n| < \delta$, and we have

$$|f(x_n) - A| \le |f(a_n) - A| + |f(x_n) - f(a_n)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Then we proved that F(x) is continuous at x = 0, similarly, F(x) is also continuous at x = 1. Then F is continuous.

Problem 49. Prove that if $f:[0,\infty)\to\mathbb{R}$ is continuous and the limit $\lim_{x\to\infty} f(x)$ exists and is finite, then f is uniformly continuous.

Proof. Suppose f(x) is not uniformly continuous, then $\exists \varepsilon > 0$, for $\forall \delta > 0$ and $\exists x, y \in (0, \infty)$, such that if $|x - y| < \delta$, then $|f(x) - f(y)| \ge \varepsilon$. Set ε be such that the above statement is true, and set $\delta = 1/n$. So we can find $x_n, y_n \in [0, \infty)$ such that $|x_n - y_n| < 1/n$ and $|f(x_n) - f(y_n)| \ge \varepsilon$. For x_n , we can find a subsequence $\{x_{n_k}\}$ such that $\lim_{n \to \infty} x_{n_k} = x_0$. And we have $|x_{n_k} - y_{n_k}| < 1/n_k$, then we have $\lim_{n \to \infty} y_{n_k} = x_0$. Hence, we have $\lim_{n \to \infty} |f(x_{n_k}) - f(y_{n_k})| = |f(x_0) - f(x_0)| = 0$, which is a contradiction. The proof is complete.

Problem 50. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous, then there exist constants $a \geq 0$, $b \geq 0$ such that $|f(x)| \leq a|x| + b$ for all $x \in \mathbb{R}$.

Proof. Since $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous, then $\forall \varepsilon > 0$, there exists $\delta > 0$, for $\forall x, y$, such that $|x - y| < \delta$, $|f(x) - f(y)| \le \varepsilon$. This holds for $\varepsilon = 1$.

We can present x as $x = m\delta + r$, where $0 \le r < \delta$, then we have

$$|f(x) - f(0)| = |f(m\delta + r) - f(0)|$$

$$= |f(m\delta + r) - f((m - 1)\delta + r) + f((m - 1)\delta + r) - f((m - 2)\delta + r) + \cdots$$

$$+ f(2\delta + r) - f(\delta + r) + f(\delta + r) - f(r) + f(r) - f(0)|$$

$$\leq m + 1$$

$$\leq \frac{1}{\delta}x - \frac{r}{\delta} + 1$$

$$\leq \frac{1}{\delta}|x| - \frac{r}{\delta} + 1$$

Then we have $|f(x)| \leq \frac{1}{\delta}|x| + f(0) + 2$. Set $a = \frac{1}{\delta}$ and b = f(0) + 2, and the proof is complete.

Problem 51. Prove that there is no continuous function $f : \mathbb{R} \to \mathbb{R}$ such that f(f(x)) = -x for all $x \in \mathbb{R}$.

Proof. We can know that f is invertible, since f(f(f(f(x)))) = f(f(-x)) = x. Any invertible function is either increasing or decreasing. If f is increasing, we take x < y, then we have f(x) < f(y) and f(f(x)) = -x < f(f(y)) = -y, which is a contradiction. If f is decreasing, we take x > y, then we have f(x) > f(y) and f(f(x)) = -x < f(f(y)) = -y, which is a contradiction. Thus, f cannot be a continuous function.

Problem 52. Suppose that $f:(0,1)\to\mathbb{R}$ is continuous. Suppose also that there are two sequences $x_n,y_n\in(0,1)$ both convergent to 0 such that $f(x_n)\to 0$, $f(y_n)\to 1$. Prove that there is a sequence $z_n\in(0,1)$ convergent to 0 such that $f(z_n)\to 1/2$.

Proof. Since f(x) is continuous and $\lim_{n\to\infty} f(x_n) = 0$, $\lim_{n\to\infty} f(y_n) = y$, then there for $\forall \varepsilon > 0$, there exists a $\delta > 0$, such that $|x_n - 0| < \delta$, $|y_n - 0| < \delta$, then we have $|f(x_n) - 0| < \varepsilon$ and $|f(y_n) - 1| < \varepsilon$. Also $\{x_n\}, \{y_n\} \to 0$, then for the same $\delta > 0$, there exists an N > 0, such that $\forall n > N$, we have $|x_n - 0| < \delta$ and $|y_n - 1| < \delta$.

Now we pick the n=N+1 and $\varepsilon</2$, and we have $f(x_n)<\delta=1/2$ and $1/2< f(y_n)<3/2$. Since f is continuous, there exists a z between x_n and y_n such that $f(x_n)< f(z)=1/2< f(y_n)$. We denote this z by z_1 . Then we set n=N+2, then we can find z_2 . Continue this process and we can get a sequence $\{z_n\}$ between sequence $\{x_n\}$ and $\{y_n\}$ such that $\lim_{n\to\infty} z_n=0$ and $\lim_{n\to\infty} f(z_n)=1/2$.

Problem 53. Let $f:[a,b]\to\mathbb{R}$ be continuous. Prove that the function

$$g(x) = \sup_{t \in [a,x]} f(t)$$

is continuous.

Proof. Since f is continuous, then $\forall \varepsilon > 0$, there exists a $\delta > 0$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \varepsilon$. Now we fix $y \in [a, b]$ and we assume $|x - y| < \delta$.

Firstly, we consider $x \in (y, y + \delta)$. If $\sup_{t \in [a,x]} f(t) = f(x_0)$ for some $x_0 \in (y,x)$, then we have two conditions. One is that $\sup_{t \in [a,y]} f(t) = f(y)$, then we have $|g(x) - g(y)| < \varepsilon$. The second one is that $\sup_{t \in [a,y]} f(t) = f(t_0)$ for some $t_0 \in [a,y]$, and since $\sup_{t \in [a,x]} f(t) = f(x_0)$ for some $x_0 \in (y,x)$, we have $f(y) < f(t_0) \le f(x_0)$. Thus, we have $|g(x) - g(y)| = |f(x_0) - f(t_0)| < |f(x_0) - f(y)| < \varepsilon$.

Similarly, we can know that $|g(x) - g(y)| < \varepsilon$ for $x \in (y - \delta, y)$. Then we proved that g is continuous.

Problem 54. A function $f:[0,1]\to\mathbb{R}$ is continuous and has the property that

$$\lim_{x \to 0^+} \frac{f(x+1/3) + f(x+2/3)}{x} = 1.$$

Prove that there is $x_0 \in [0,1]$ such that $f(x_0) = 0$.

Proof. Denote $x = 1/n, n \ge 3, n \in \mathbb{N}$, then we have

$$\lim_{n \to \infty} f\left(\frac{1}{n} + \frac{1}{3}\right) + f\left(\frac{1}{n} + \frac{2}{3}\right) = \frac{1}{n} = 0$$

Take $n \to \infty$, and we have f(1/3) + f(2/3) = 0. If both f(1/3) and f(2/3) are equal to zero, the the proof is complete. If not, then one of f(1/3) and f(2/3) is greater than zero, and the other is less than zero. Since f is continuous, there must exist a x_0 such that $f(x_0) = 0$.

Method 2.

Proof. We want to prove that f(1/3)+f(2/3)=0, and we only need to prove f(1/3)f(2/3)<0. Now we prove it by contradiction.

Suppose f(1/3)f(2/3)>0, and we assume f(1/3)>0 and f(2/3)>0. Without losing generality, we assume f(1/3)< f(2/3). Since f is continuous, then for $\forall \varepsilon>0$, there exists a $\delta>0$, such that if $x\in(0,\delta)$, $|f(1/3)-f(x+1/3)|<\varepsilon$ and $|f(2/3)-f(x+2/3)|<\varepsilon$. Now we set $\varepsilon=\frac{f(1/3)}{2}$, then we have

$$f(x+1/3) > f(1/3) - \varepsilon = \frac{f(1/3)}{2} > 0$$

 $f(x+2/3) > f(2/3) - \varepsilon = \frac{f(1/3)}{2} > 0$

which implies that, when x < f(1/3), we have

$$\frac{f(x+1/3) + f(x+2/3)}{x} > \frac{f(1/3)}{x} > 1$$

And it is contradiction. Then f(1/3)f(2/3) < 0.