Цифровая обработка изображений. Цветовые модели.

Цифровая обработка изображений Ассистент кафедры КСАИТ Петровец Александр Александрович

Регламент

- Пара раз в две недели
- Домашнее задание после каждой пары
- Учет посещаемости не ведётся
- Баллы за семестр активность по домашним заданиям
- Система проверки на антиплагиат

Петровец Александр Александрович petrovets.for.students@gmail.com

Цифровая обработка изображений

ЦОИ - использование компьютерных алгоритмов для обработки цифровых изображений

- Предобработка
- Без методов ML
- Old School

RGB

RGB - цветовая модель основанная на аддитивном сложении трех основных цветов

- Вдохновлена физиологией человека
- Проста
- Распространена

- Аппаратно-зависимая
- Не близка к человеческому восприятию цветов
- Нелинейна

CMYK

СМҮК - субтрактивная цветовая модель

- Удобна для полиграфии
- Проста
- Распространена

- Аппаратно-зависимая
- Не близка к человеческому восприятию цветов
- Нелинейна

HSV

HSV - цветовая модель, в которой координатами цвета являются

параметры:

Hue

Saturation

Value

• Проста

• Нелинейна

(CIE)LAB

HSV - цветовая модель, в которой устранены основные недостатки предыдущих моделей. Её параметры:

L - светлота (0-100)

(a,b) - хроматическая составляющая

- а от зеленого до красного
- b от синего до желтого

- Близка к человеческому восприятию цветов
- Аппаратно-независима
- Линейна*

• Сложность вычислений

Фильтры Байера

Фильтр Байера - двумерный массив цветных фильтров, которыми накрыты матрицы фотокамер

- Потеря пространственного разрешения
- Артефакты
- Доп фильтрация в момент съемки против артефактов см пункт 1
 Quad Bayer filter

Использование цветовых моделей

- Сегментация объектов или областей по цвету
- Определение подделок изображений

Использование цветовых моделей

• Сегментация объектов или областей по цвету

- Перевести изображение в HSV формат
- Построить цветовую маску, задать базовый цвет поиска (Hue) и пределы изменения Saturation and Value
- Найти контуры объектов (cv2.findContours)
- Построить Bounding Box по контуру (cv2.boundingRect)
- Отобразить найденные Bounding Boxes

CaffeNet accuracy on different color models (ImageNet 2012)

• Почти везде победители RGB- подобные модели

- Is it task specific?
- Is it architecture specific?

The Effect of Color Channel Representations on the Transferability of Convolutional Neural Networks

- Изучали применение Transfer Learning, в случае есть цветовая модель датасета новой задачи отличается от старой.
- Тестировали LAB
- Тестировали более-менее современные свёрточные архитектуры: Inception-V3, ResNet, MobileNet
- Архитектуры использовали только в качестве Feature Extractor (без fine tuning)

Table 1. MobileNet Body Architecture

Type / Stride	Filter Shape	Input Size
Conv/s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
Conv/s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$
Conv/s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$
Conv/s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$
Conv/s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \mathrm{dw}$	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
5× Conv dw/s1	$3 \times 3 \times 512 \mathrm{dw}$	$14 \times 14 \times 512$
Conv/s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv/s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv/s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$
FC/s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

Результаты

Итоги

- RGB король
- Фундаментальных работ, посвященных анализу цветовых моделей на входе нейронных сетей очень мало
- Нужно знакомиться с интересующей вас предметной областью и работами

Задание - исследование скорости и результатов обучения неглубоких сверточных сетей в зависимости от используемых цветовых моделей

- Датасет CIFAR-10
- Использовать функционал opencv для перехода к другим цветовым моделям (RGB, CMYK, HSV, LAB)
- Нормализация по среднему пикселю в обучающей выборке
- Архитектура (conv_3x3xconv_count)+max_pool_s2) x 3 + fc_128 + fc_10, где conv_count=[32,64,128]
- Функции активации Relu
- 50 эпох, optimiser Adam, learning rate = 0.001
- Графики с loss, train accuracy, test accuracy всех моделей на протяжении обучения