Modelagem e inversão em coordenadas esféricas na gravimetria

Leonardo Uieda

Valéria C. F. Barbosa (Orientadora)

- 1. Calcular grav de um modelo (tesseroides)
- 2. Calcular modelo a partir da gravidade
- 3. Software

Grav de um modelo

Integração numérica

Quadratura Gauss-Legendre

Integral

Soma de massas pontuais

Acurácia

Nº de massas pontuais

+

Distância massas / Distância obs.

gxy

h = 400 km

Massas: 2 x 2 x 2

gxy

h = 150 km

Massas: 2 x 2 x 2

gxy

h = 150 km

Massas: 30 x 30

Erro grande

Mais massas

Erro menor

OU

Mais massas

Mais tesseroides

Mais massas

Mais tesseroides

ou

r determina no de divisões.

tempo de computação + acurácia

$$\Gamma = 2$$

$$r = 6$$

Casca esférica

Solução analítica

Discretiza casca em tesseroides

Diferença entre resultados = erro

... para **vários r**

Conclusão

Garante erro máximo de 0.5%

1. Calcular grav de um modelo (tesseroides)

2. Calcular modelo a partir da gravidade

3. Software

Calcular modelo a partir da grav.

Algoritmo de plantação

Gravidade + gradientes

Solução cresce em torno de sementes

Não resolve sistemas lineares

Cálculo eficiente da Jacobiana

Sintético: lineamentos

Braitenberg et al. (2011)

Conclusão

Capaz de recuperar lineamentos.

Investigando:

Geometria do mesh influencia o resultado.

Células alongadas - resultado alongado.

Células achatadas – resultado achatado.

Mesh - informação a priori.

1. Calcular grav de um modelo (tesseroides)

2. Calcular modelo a partir da gravidade

3. Software

Software

Software para modelagem

Tesseroids: leouieda.com/tesseroids

Modelagem direta

(tesseroides e prismas)

Fatiando a Terra: fatiando.org

Modelagem direta (prisma, esfera, tesseroide, prisma poligonal)

Visualização

fatiando.inversion

Automatizar construção de problemas inversos.

Reutilização, simplicidade, flexibilidade

$$\Gamma(\overline{p}) = \phi(\overline{p}) + \mu \theta(\overline{p})$$

gamma = Misfit(...) + 0.01*Smoothness(...)

$$\Gamma(\overline{p}) = \phi(\overline{p}) + \mu \theta(\overline{p})$$

dados, modelo interpretativo, etc

Minimizar Γ com método de Newton

$$\delta p = (A^T A + \mu W)^{-1} [A^T (d - f(p 0)) - \mu W p 0]$$

gamma.config('newton', inital=p0).fit()

Minimizar Γ com método de Newton

$$\delta p = (A^T A + \mu W)^{-1} [A^T (d - f(p 0)) - \mu W p 0]$$

gamma.config('newton', inital=p0).fit()
gamma.config('levmarq', inital=p0).fit()

Minimizar Γ com método de Newton

$$\delta p = [A^T A + \mu W]^{-1} [A^T (d - f(p 0)) - \mu W p 0]$$

gamma.config('newton', inital=p0).fit()
gamma.config('levmarq', inital=p0).fit()
gamma.config('acor', bounds=[-3, 4]).fit()

Conclusões

Igual para ajuste de reta e inversão 3D.

Vários algoritmos:

Newton, Levemberg-Marquardt, Steepest Descent, Ant Colony Optimization.

Fácil de implementar.

Optimizar quando necessário.

Atividades 2013-2014

Artigos

The Leading Edge

"Geophysical tutorial: Euler deconvolution of potential-field data"

doi:10.1190/tle33040448.1

Ore Geology Reviews (Dionísio)

"Imaging iron ore from the Quadrilátero Ferrífero (Brazil) using geophysical inversion and drill hole data"

doi:10.1016/j.oregeorev.2014.02.011

Congressos

• Oral: EGU General Assembly

"Gravity inversion in spherical coordinates using tesseroids"

github.com/leouieda/egu2014

• Poster: *Scipy 2014*

"Using Fatiando a Terra to solve inverse problems in geophysics"

github.com/leouieda/scipy2014

Cronograma 2014-2015

Resultados

• Modelagem direta (refeitos e aprimorados)

• Sintéticos inversão (apresentado na EGU)

- Lineamentos

Underplating

Dado real inversão (GOCE)

🧪 – Região: lineamento Chad, África

- Baixar dados: TIM, EIGEN, EGG, ETOPO

- Corrigir topografia
- Inversão

Escrita

- Modelagem direta (fazendo): ~ 30/09
- Inversão: ~ 11/2014 01/2015
- Artigos sobre software

Todo material online

github.com/pinga-lab

github.com/leouieda