Análise

— folha 1 – — 2019/20 —

- 1. Considere o espaço euclidiano \mathbb{R}^n e, nele, dois vetores x e y. Usando as propriedades que definem um produto interno em \mathbb{R}^n e a definição $||x|| = \sqrt{x \cdot x}$,
 - (a) verifique que

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$
 (lei do paralelogramo).

(b) com x e y vetores não nulos, verifique que existe um ângulo θ , compreendido entre 0 e π , tal que

$$\cos\theta = \frac{x \cdot y}{\|x\| \|y\|}.$$

- 2. Verifique que a função $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definida por $d(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$
 - (a) é uma distância.
 - (b) não permite definir, em \mathbb{R}^2 , uma norma tal que d(x, y) = ||x y||. Sugestão: Observe que teria de ser $||x|| = d(x, \mathbf{0}) = 1, \forall x \neq \mathbf{0}$.
- 3. Verifique que a função $n: \mathbb{R}^2 \to \mathbb{R}$ definida por n(x, y) = |x| + |y|
 - (a) é uma norma.
 - (b) não permite definir, em \mathbb{R}^2 , um produto interno tal que $n(x,y) = \sqrt{(x,y) \cdot (x,y)}$.
- 4. Seja S um subconjunto de \mathbb{R}^n . Complete o seguinte quadro:

Conjunto ${\cal S}$	$\operatorname{int} \mathcal{S}$	$\operatorname{fr} \mathcal{S}$	\mathcal{S}'
Qualquer conjunto finito			
Todos os pontos/vetores de coordenadas inteiras			
Todos os pontos/vetores de coordenadas racionais			
\mathbb{R}^n			
Ø			

- 5. Em cada alínea, determine o interior, a fronteira, a aderência e o derivado de \mathcal{A} . Pronuncie-se ainda sobre se \mathcal{A} é um conjunto fechado ou aberto:

 - (a) $\mathcal{A} = [0, 1] \times [2, 3]$ (b) $\mathcal{A} = [0, 1] \times [2, 3]$
- (c) $A = [0, 1] \times [2, 3]$
- 6. Em cada alínea, determine o interior, a fronteira, a aderência e o derivado de \mathcal{B} . Pronuncie-se ainda sobre se \mathcal{B} é um conjunto fechado ou aberto:
 - (a) $\mathcal{B} = \{-1\} \times [0, 1]$
 - (b) $\mathcal{B} = ([-1, 1] \times]0, 3[) \cup \{(4, 4)\}$
 - (c) $\mathcal{B} = ([0,1] \times [1,2]) \cup ([1,2] \times [2,3])$