Chiral Dirac Superconductors: Second-order and Boundary-obstructed Topology

University of Florida, May 2020

► The Dirac + (p+ip) model: $\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x\tau_z + f_2(\mathbf{k})\sigma_z\tau_z + \Delta g_1(\mathbf{k})\tau_x + \Delta g_2(\mathbf{k})\tau_y - \mu\tau_z$

► The Dirac + (p+ip) model: $\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x\tau_z + f_2(\mathbf{k})\sigma_z\tau_z + \Delta g_1(\mathbf{k})\tau_x + \Delta g_2(\mathbf{k})\tau_y - \mu\tau_z$

▶ In the topological phase the model looks like: ※

- The Dirac + (p+ip) model: $\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x\tau_z + f_2(\mathbf{k})\sigma_z\tau_z + \Delta g_1(\mathbf{k})\tau_x + \Delta g_2(\mathbf{k})\tau_y - \mu\tau_z$
- \blacktriangleright In the topological phase the model looks like: $\mbox{\ensuremath{\mbox{\sc W}}}\mbox{\ensuremath{\mbox{\sc W}}}\mbox{\en$
- Discussed different phases for atomic insulators; obstructed atomic phases and the filling anomaly.

- The Dirac + (p+ip) model: $\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x\tau_z + f_2(\mathbf{k})\sigma_z\tau_z + \Delta g_1(\mathbf{k})\tau_x + \Delta g_2(\mathbf{k})\tau_y - \mu\tau_z$
- Discussed different phases for atomic insulators; obstructed atomic phases and the filling anomaly.
- lacktriangle With C_4 symmetry (had we thought of the system as an

insulator): $\mathcal{H}(m{k})$ pprox

- The Dirac + (p+ip) model: $\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x\tau_z + f_2(\mathbf{k})\sigma_z\tau_z + \Delta g_1(\mathbf{k})\tau_x + \Delta g_2(\mathbf{k})\tau_y - \mu\tau_z$
- Discussed different phases for atomic insulators; obstructed atomic phases and the filling anomaly.
- lacktriangle With C_4 symmetry (had we thought of the system as an

Particle-hole symmetry implies that the corner charges of the obstructed atomic phase can be interpreted as Majorana zero modes for our BdG system.

Outline

Model	With C_4	With C_2			
With PH	HOTSC ₂ ; corner Majorana	BOTSC ₂ ; corner Majorana			
Without PH	HOTI ₂ ; filling anomaly	Trivial			

- Understanding the corner mode from defect classification.
- ► Discuss the second column of the table.

Defect classification

- ► Teo-Kane classification of defect Hamiltonians, $\mathcal{H}(k, r)$.
- ▶ d is dimension of k. D is the dimension of r.
- Depends on the symmetry class and the dimension of the defect.

Symmetry				$\delta = d - D$								
S	AZ	Θ^2	Ξ^2	Π^2	0	1	2	3	4	5	6	7
0	A	0	0	0	Z	0	Z	0	Z	0	Z	0
1	AIII	0	0	1	0	Z	0	Z	0	Z	0	Z
0	AI	1	0	0	Z	0	0	0	2Z	0	\mathbb{Z}_2	\mathbb{Z}_2
1	BDI	1	1	1	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
2	D	0	1	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$	0
3	DIII	-1	1	1	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$
4	AII	-1	0	0	2Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0
5	CII	-1	-1	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0
6	C	0	-1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0
7	CI	1	-1	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z

- The basic idea is to treat the corner of the sample as a defect, $\mathcal{H}(\mathbf{k}, \Phi)$.
- For class BDI the topological invariant corresponds to the number of Majorana modes bound to the corner.

		Symmetry						$\delta = \epsilon$	l-D			
S	AZ	Θ^2	Ξ^2	Π^2	0	1	2	3	4	5	6	7
0	A	0	0	0	Z	0	Z	0	Z	0	Z	0
1	AIII	0	0	1	0	Z	0	Z	0	Z	0	Z
0	AI	1	0	0	Z	0	0	0	2Z	0	\mathbb{Z}_2	\mathbb{Z}_2
1	BDI	1	1	1	\mathbb{Z}_2	(z)	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
2	D	0	1	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$	0
3	DIII	-1	1	1	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$
4	AII	-1	0	0	2Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0
5	CII	-1	-1	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0
6	C	0	-1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0
7	CI	1	-1	1	0	0	0	2Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z

Model the outside by:

$$\mathcal{H}_{\mathsf{triv}}(\boldsymbol{k}) = -f_0(\sigma_x \tau_z + \sigma_z \tau_z) + \Delta \sin(k_x) \tau_x + \Delta \sin(k_y) \tau_y - \mu \tau_z$$

Model the outside by:

$$\mathcal{H}_{\mathsf{triv}}(\boldsymbol{k}) = -f_0(\sigma_x \tau_z + \sigma_z \tau_z) + \Delta \sin(k_x) \tau_x + \Delta \sin(k_y) \tau_y - \mu \tau_z$$

▶ If our system with $\operatorname{sgn}(f_{\Gamma})\operatorname{sgn}(f_M) = -1$ has $f_{\Gamma} = f_0$, then the physics of the system is completely determined by what happens near the Γ point.

Model the outside by:

$$\mathcal{H}_{\mathsf{triv}}(\boldsymbol{k}) = -f_0(\sigma_x \tau_z + \sigma_z \tau_z) + \Delta \sin(k_x) \tau_x + \Delta \sin(k_y) \tau_y - \mu \tau_z$$

▶ If our system with $\operatorname{sgn}(f_{\Gamma})\operatorname{sgn}(f_M) = -1$ has $f_{\Gamma} = f_0$, then the physics of the system is completely determined by what happens near the Γ point.

Define q to be a small momentum deviation from the Γ point. The defect Hamiltonian near the Γ point (for $\mu=0$):

$$\mathcal{H}(\boldsymbol{q} + \boldsymbol{\Phi}) = \Delta q_x \tau_x + \Delta q_y \tau_y$$
$$+ f_0 \left[\cos(\boldsymbol{\Phi}) \sigma_x \tau_z + \sin(\boldsymbol{\Phi}) \sigma_z \tau_z \right]$$
$$\boldsymbol{\Phi} = \pi/4 \rightarrow \text{inside material}$$

$$\Phi=5\pi/4 \rightarrow {\rm outside}$$
 material

$$\mathcal{H}(\boldsymbol{q}, \Phi) = \Delta q_x \tau_x + \Delta q_y \tau_y + f_0 \left[\cos(\Phi) \sigma_x \tau_z + \sin(\Phi) \sigma_z \tau_z \right]$$

With C_4 symmetry it can be shown:

$$\mathsf{N}_{\mathsf{w}} := \frac{1}{2\pi} \oint_{\ell} \mathrm{d}\Phi = (2n+1).$$

Adding the Chemical potential reduces the Z topological invariant to a Z_2 .

Consider the following cheap way of getting Majorana zero modes on the corners:

Consider the following cheap way of getting Majorana zero modes on the corners:

Not C_4 symmetric, relax C_4 to C_2 .

Consider the following cheap way of getting Majorana zero modes on the corners:

- Not C_4 symmetric, relax C_4 to C_2 .
- Majorana zero modes can be removed without closing a bulk gap.

Consider the following cheap way of getting Majorana zero modes on the corners:

- Not C_4 symmetric, relax C_4 to C_2 .
- Majorana zero modes can be removed without closing a bulk gap.
- The edge gap become essential for capturing the topology of the system.

Consider the following cheap way of getting Majorana zero modes on the corners:

- Not C_4 symmetric, relax C_4 to C_2 .
- Majorana zero modes can be removed without closing a bulk gap.
- The edge gap become essential for capturing the topology of the system.

Such topological phases protected by an edge gap closing are called boundary obstructed topological phases.

The prototypical Hamiltonian as an example of BOTSC₂

Our prototypical model with only ${\cal C}_2$ symmetry can at best be boundary obstructed.

$$\mathcal{H}(\mathbf{k}) = (\gamma_x + \cos(k_x))\tau_z + (\gamma_y + \cos(k_y))\sigma_z\tau_z + \Delta\sin(k_x)\tau_x + \Delta\sin(k_y)\tau_y - \mu\tau_z,$$

Topological phase can be deformed into trivial phase without closing the bulk gap.

Phase diagram for $\mu = 0$:

The prototypical Hamiltonian as an example of BOTSC₂

Our prototypical model with only ${\cal C}_2$ symmetry can at best be boundary obstructed.

$$\mathcal{H}(\mathbf{k}) = (\gamma_x + \cos(k_x))\tau_z + (\gamma_y + \cos(k_y))\sigma_z\tau_z + \Delta\sin(k_x)\tau_x + \Delta\sin(k_y)\tau_y - \mu\tau_z,$$

Topological phase can be deformed into trivial phase without closing the bulk gap.

Need to study the edges carefully.

Phase diagram for $\mu = 0$:

Boundary obstruction protected by mirror symmetry:

Mirror symmetry broken on the boundaries.

Filling anomaly

No boundary obstruction protected by only C_2 symmetry:

 ${\it C}_2$ symmetry is NOT broken on the boundaries.

No filling anomaly

Boundary obstruction protected by C_2 and $\mathcal P$ symmetry:

Boundary obstruction protected by C_2 and \mathcal{P} symmetry:

Boundary obstruction protected by C_2 and $\mathcal P$ symmetry:

Boundary obstruction protected by C_2 and \mathcal{P} symmetry:

 ${\cal P}$ is broken on the boundaries.

Boundary obstruction protected by C_2 and \mathcal{P} symmetry:

Majorana zero modes

Model	With C_4	With C_2			
With PH	HOTSC ₂ ; corner Majorana	BOTSC ₂ ; corner Majorana			
Without PH	HOTI ₂ ; filling anomaly	Trivial			

Atomic phases show the importance of particle-hole symmetry to protect the boundary obstructed phase.

Boundary obstructed atomic phases.

Model	With C_4	With C_2
With PH	HOTSC ₂ ; corner Majorana	BOTSC ₂ ; corner Majorana
Without PH	$HOTI_2;$ filling anomaly	Trivial

- Atomic phases show the importance of particle-hole symmetry to protect the boundary obstructed phase.
- Next we show explicitly that our 'Dirac + (p + ip)' model with C_2 symmetry is indeed boundary obstructed, by studying its edge theory.

Interlude: The Wannier bands

Loosely, the Wannier Hamiltonian is a bulk defined object that has a spectrum that is smoothly connected to that of the edges.

Interlude: The Wannier bands

Loosely, the Wannier Hamiltonian is a bulk defined object that has a spectrum that is smoothly connected to that of the edges. Wannier Hamiltonian is defined using Wilson loops as:

$$\hat{\nu}_y^{mn}(k_x) \equiv \frac{1}{2\pi i} \oint dk_y \left\langle u^m(k_x, k_y) | \partial_{k_y} u^n(k_x, k_y) \right\rangle$$

 $|u^m({m k})\rangle$ are the occupied states of the Hamiltonian.

Interlude: The Wannier bands

Loosely, the Wannier Hamiltonian is a bulk defined object that has a spectrum that is smoothly connected to that of the edges. Wannier Hamiltonian is defined using Wilson loops as:

$$\hat{\nu}_y^{mn}(k_x) \equiv \frac{1}{2\pi i} \oint dk_y \left\langle u^m(k_x, k_y) | \partial_{k_y} u^n(k_x, k_y) \right\rangle$$

 $|u^m(\mathbf{k})\rangle$ are the occupied states of the Hamiltonian.

Wannier bands detect boundary gap closing.

A relative bulk topological invariant

$$H = (\cos k_x + \gamma_x)\sigma_x\tau_z + \cos k_y\sigma_z\tau_z - 0.2\tau_z + 0.4\sin k_x\tau_x + 0.4\sin k_y\tau_y$$

► That the Wannier bands gap closing, being a property of the bulk, can be used to define some bulk topological invariant. However the exact form of that invariant may be complicated.

Wannier-projected Hamiltonian

$$\begin{split} H_{P^{\pm}}(k_x) = & P^{\pm}(k_x) H P^{\pm}(k_x), \text{ where} \\ P^{\pm}(k_x) \equiv & \frac{1 \pm \hat{P}_{\text{occ}}(\boldsymbol{k}) \operatorname{sgn}(\hat{\nu}_y) \pm \hat{P}_{\text{emp}}(\boldsymbol{k}) \operatorname{sgn}(\hat{\nu}_y')}{2} \\ \tilde{\mathcal{P}}(k_x) K = & P^{\pm}(k_x) \mathcal{P} \left[P^{\pm}(-k_x) \right]^* K \\ H_{P^{\pm}}(k_x) = & - \tilde{\mathcal{P}}(k_x) H_{P^{\pm}}^*(-k_x) \tilde{\mathcal{P}}^{\dagger}(k_x) \end{split}$$

Wannier-projected Hamiltonian

$$H_{P^{\pm}}(k_x) = P^{\pm}(k_x)HP^{\pm}(k_x), \text{ where}$$

$$P^{\pm}(k_x) \equiv \frac{1 \pm \hat{P}_{\text{occ}}(\boldsymbol{k})\operatorname{sgn}(\hat{\nu}_y) \pm \hat{P}_{\text{emp}}(\boldsymbol{k})\operatorname{sgn}(\hat{\nu}_y')}{2}$$

$$\tilde{\mathcal{P}}(k_x)K = P^{\pm}(k_x)\mathcal{P}\left[P^{\pm}(-k_x)\right]^*K$$

$$H_{P^{\pm}}(k_x) = -\tilde{\mathcal{P}}(k_x)H_{P^{\pm}}^*(-k_x)\tilde{\mathcal{P}}^{\dagger}(k_x)$$

We use $H_{P^\pm}(k_x=0,\pi)$ as a zero dimensional subsystems.

		Symmetry						$\delta = \delta$	d-D			
S	AZ	Θ^2	Ξ^2	Π^2	0	1	2	3	4	5	6	7
0	A	0	0	0	Z	0	Z	0	Z	0	Z	0
1	AIII	0	0	1	0	Z	0	Z	0	Z	0	Z
0	AI	1	0	0	Z	0	0	0	2Z	0	\mathbb{Z}_2	\mathbb{Z}_2
1	BDI	1	1	1	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
2	D	0	1	0	\mathbb{Z}_2	(\mathbb{Z}_2)	Z	0	0	0	$2\mathbb{Z}$	0
3	DIII	-1	1	1	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$
4	AII	-1	0	0	2Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0
5	CII	-1	-1	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0
6	C	0	-1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0
7	CI	1	-1	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z

1. Choose a direction, θ , to put the edge.

- 1. Choose a direction, θ , to put the edge.
- 2. Choose how you model empty space. (Different choices will lead to different boundary conditions but doesn't change the physics of the boundary.) $\mathcal{H}(\mathbf{k}) \to \mathcal{H}(\partial_{x_{\perp}}, k_{||}, x_{\perp})$

- 1. Choose a direction, θ , to put the edge.
- 2. Choose how you model empty space. (Different choices will lead to different boundary conditions but doesn't change the physics of the boundary.) $\mathcal{H}(\boldsymbol{k}) \to \mathcal{H}(\partial_{x_\perp}, k_{||}, x_\perp)$
- 3. Solve for the localized edge states. $\Psi_{\alpha}^{\rm edge}(x_{\perp},k_{||})=e^{ik_{||}x_{||}}\chi_{\alpha}(k_{||})\phi(x_{\perp})\text{, such that, }\mathcal{H}\Psi_{\alpha}^{\rm edge}=\epsilon^{\alpha}(k_{||})\Psi_{\alpha}^{\rm edge}$

- 1. Choose a direction, θ , to put the edge.
- 2. Choose how you model empty space. (Different choices will lead to different boundary conditions but doesn't change the physics of the boundary.) $\mathcal{H}(\boldsymbol{k}) \to \mathcal{H}(\partial_{x_{\perp}}, k_{||}, x_{\perp})$

$$\mathcal{H}(\mathbf{k}) \to \mathcal{H}(\partial_{x_{\perp}}, k_{||}, x_{\perp})$$

- 3. Solve for the localized edge states. $\Psi_{\alpha}^{\text{edge}}(x_{\perp},k_{\parallel})=e^{ik_{\parallel}x_{\parallel}}\chi_{\alpha}(k_{\parallel})\phi(x_{\perp}), \text{ such }$ that, $\mathcal{H}\Psi_{\alpha}^{\mathsf{edge}} = \epsilon^{\alpha}(k_{||})\Psi_{\alpha}^{\mathsf{edge}}$
- 4. The edge Hamiltonian is then, $h^{\text{edge}}(k_{||}) = \sum_{\alpha} |\chi_{\alpha}(k_{||})\rangle \epsilon^{\alpha}(k_{||}) \langle \chi_{\alpha}(k_{||})|$

Majorana zero modes as a defect of the edge

$$\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x \tau_z + f_2(\mathbf{k})\sigma_z \tau_z$$

$$+ \epsilon g_1(\mathbf{k})\tau_x + \epsilon g_2(\mathbf{k})\tau_y - \mu \tau_z$$

$$k_x(\theta) = k_{\perp} \cos \theta - k_{\parallel} \sin \theta$$

$$k_y(\theta) = k_{\perp} \sin \theta + k_{\parallel} \cos \theta$$

$$H \to \tilde{H} = UHU^{\dagger}$$

$$\tilde{H}(k_{\perp}, k_{\parallel} = 0; \theta_0) = \tilde{f}_1(k_{\perp})\sigma_x \tau_z + \epsilon \tilde{g}_1(k_{\perp})\tau_x - \mu \tau_z$$

Do a perturbative expansion for: (i) Small k_{\parallel} , (ii) Small $\delta \theta$

$$h(k_{\parallel}, \theta_0 + \delta\theta) = \alpha k_{\parallel} s_x + \beta \delta\theta s_y.$$

This looks like a kitaev chain with a domain wall, hence it host a Majorana zero mode.

Summary

Model	With C_4	With C ₂
With PH	HOTSC ₂ ; corner Majorana	BOTSC ₂ ; corner Majorana
Without PH	$HOTI_2;$ filling anomaly	Trivial