Handling Missing Data

- The data obtained could have certain values missing.
- There are various means to handles these situations.
- Missing values impact training and predictions.
 - Training Data : Contains "unknown" values.
 - Predictions : Input at prediction time contains "unknown" values.

Strategy 1: Purification by Skipping

Idea 1 - Skipping datapoints missing values

- * In case more than 50% of the data has a ceratin value missing, then removing tho se records from the data could be problematic. It can effect the training process as enough scenrios will not be tested.
- * Make sure only a few data points are skipped.

Idea 2 - Skipping features with missing values

- * The resultant dataset will have fewer features.
- * Should make sure only a few features are skipped.

• Pros:

- Easy to understand and implement.
- Can be applied to any model (decision trees, logistic regression, linear regression, ...)

· Cons:

- Removing datapoints and features may remove important information from the data.
- Unclear when it's better to remove data points versus features.
- Doesn't help if data is missing at prediction time.

Strategy 2: Purification by imputing

• Instead of throwing away the data, impute the data -> no need to reduce the datatset.

Idea - Purification by imputing

Replace the value with the most common value.

Common rules for purification by imputation

- · Impute each feature with missiing values.
 - 1. Categorical features use 'mode' Most popular value (mode) of non-missing xi.
 - 2. Numerical features use average or median Average or median value of non-missing xi.

Pros:

- · Easy to understand and implement.
- Can be applied to any model (decision trees, logistic regression, linear regression, ...)
- Can be used at prediction time same imputation rules.

Cons:

- May result in systematic errors.
- · Could be biased.
- Example If a loan application doesn't take into consideration the age of the applicant and assumes it to be 40, then everybody is elligible for loan.

Idea 2: Purification by imputing

Common (simple) rules for purification by imputation

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	?	low	safe
fair	?	high	safe

Impute each feature with missing values:

- Categorical features use mode: Most popular value (mode) of non-missing x_i
- Numerical features use average or median: Average or median value of non-missing x_i

Many advanced methods exist, e.g., expectation-maximization (EM) algorithm

Strategy 3: Adapt learning algorithm to be robust to missing values

- Add missing value choice to every decision node.(Default missing value node traversal decisions).
 - At credit -> poor

- At credit -> Term -> 3 year
- At credit -> income -> low
- At credit -> income p-> term -> 5 year
- · Explicitly handle missing data by learning algorithm.
- For a given feature, while selecting the branch for the missing values, select the branch with **least** classification error.

Pros:

- · Addresses training and prediction time.
- · More accurate predictions.

Cons:

- Requires modification of learning algorithm.
 - Very simple for decision trees.

Greedy decision tree learning

- · Step 1: Start with an empty tree
- · Step 2: Select a feature to split data
- · For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Must select feature & branch for missing values!

Summary:

- 1. Skip all rows with any missing values.
- 2. Skip all features with many missing values.
- 3. Impute missing values using other data points.
- Modify the learning algorithm:
 - Missing values get added to one branh of split.
 - Use classification error to determine where missing values go.

Quiz

(True/False) Skipping data points (i.e., skipping rows of the data) that have missing features only works when the learning algorithm we are using is decision tree learning.		
\circ	True	
	False	
	are potential downsides of skipping features with missing values (i.e., skipping ns of the data) to handle missing data?	
	So many features are skipped that accuracy can degrade	
	The learning algorithm will have to be modified	
	You will have fewer data points (i.e., rows) in the dataset	
	If an input at prediction time has a feature missing that was always present during training, this approach is not applicable.	
	False) It's always better to remove missing data points (i.e., rows) as opposed to ing missing features (i.e., columns).	
\circ	True	
	False	
	What a column	

4.		Consider a dataset with N training points. After imputing missing values, the number of data points in the data set is		
		2 * N		
		N		
	0	5 * N		
5.		der a dataset with D features. After imputing missing values, the number of features data set is		
		2 * D		
		D		
	0	0.5 * D		
6.	Which	of the following are always true when imputing missing data? Select all that apply.		
		Imputed values can be used in any classification algorithm		
		Imputed values can be used when there is missing data at prediction time		
		Using imputed values results in higher accuracies than skipping data points or skipping features		
	7.	Consider data that has binary features (i.e. the feature values are 0 or 1) with some feature values of some data points missing. When learning the best feature split at a node, how would we best modify the decision tree learning algorithm to handle data points with missing values for a feature?		
		We choose to assign missing values to the branch of the tree (either the one with feature value equal to 0 or with feature value equal to 1) that minimizes classification error.		
		We assume missing data always has value 0.		
		We ignore all data points with missing values.		