Puntos de interés Lección 04.1

Dr. Pablo Alvarado Moya

MP6127 Visión por Computadora Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Cuatrimestre 2013

Contenido

Introducción

- Varias áreas de la Visión por Computador requieren detección de "puntos de referencia" o "puntos de interés"
- Preámbulo a busqueda de correspondencias
- Uso en reconocimiento de objetos, panoramas, reconstrucción...
- Los puntos de interés deben ser invariantes ante variaciones como
 - Rotación
 - Escala
 - Traslación
 - Cambio de perspectiva
 - Cambio de iluminación
 - Deterioro de objetos
 - Envejecimiento de personas
 - . . .

Encontrar puntos de interés y correspondiencias

Dos métodos principales para encontrar correspondencias

- Rastreo de puntos en secuencias de imágenes (flujo óptico)
- Búsqueda independiente con posterior emparejamiento (match)

Pasos con métodos de detección y emparejamiento

Tres pasos:

- Detección de puntos de interés estables
- @ Generación de descriptores invariantes
- 6 Emparejamiento de descriptores

Últimos pasos pueden reemplazarse por

• rastreo de los puntos de interés.

Szelisky, 2011

Obsérvese que:

- Si no hay bordes, incertidumbre es total
- Si hay un borde, incertidumbre es en dirección del borde
- Si hay una esquina, incertidumbre es baja

Necesaria estructura que describa distribución de direcciones de bordes en una región

Recordando el gradiente

• En PDI gradiente se usa como detector de bordicidad:

$$\nabla I(x,y) = \begin{bmatrix} \frac{\partial}{\partial x} I(x,y) \\ \frac{\partial}{\partial y} I(x,y) \end{bmatrix} = \begin{bmatrix} I_x(x,y) \\ I_y(x,y) \end{bmatrix}$$

 $|\operatorname{Sobel}[I(x,y]| \approx |\nabla I(x,y)|$

Aproximaciones: variaciones de diferencias finitas centradas

$$\frac{\partial}{\partial x}I(x,y)\approx \frac{I(x+1,y)-I(x-1,y)}{2}$$

Varios tipos: Sobel, Roberts, Prewitt, Ando, DoG, etc.

ACP de gradientes

- Idea: realizar en una pequeña región análisis de componentes principales de los gradientes
- Datos son:

$$\mathbf{X} = \begin{bmatrix} I_{x}(x - \Delta x_{1}, y - \Delta y_{1}) & I_{y}(x - \Delta x_{1}, y - \Delta y_{1}) \\ I_{x}(x - \Delta x_{2}, y - \Delta y_{2}) & I_{y}(x - \Delta x_{2}, y - \Delta y_{2}) \\ I_{x}(x - \Delta x_{3}, y - \Delta y_{3}) & I_{y}(x - \Delta x_{3}, y - \Delta y_{3}) \\ \vdots & \vdots & \vdots \\ I_{x}(x - \Delta x_{n}, y - \Delta y_{n}) & I_{y}(x - \Delta x_{n}, y - \Delta y_{n}) \end{bmatrix}^{T}$$

donde los desplazamientos $(\Delta x_i, \Delta y_i)$ recorren con $i = 1 \dots n$ la región alrededor de (x, y).

Covarianza dada por

$$\Sigma_{\mathbf{X}}(x,y) = \frac{1}{n} \mathbf{X} \mathbf{X}^{T} = \begin{bmatrix} \langle I_{x}^{2}(x,y) \rangle & \langle I_{x}(x,y)I_{y}(x,y) \rangle \\ \langle I_{x}(x,y)I_{y}(x,y) \rangle & \langle I_{y}^{2}(x,y) \rangle \end{bmatrix}$$

donde

$$\langle F(x,y)\rangle = \frac{1}{n}\sum_{i=1}^{n}F(x+\Delta x_i,y+\Delta y_i)$$

- $\Sigma_{\mathbf{X}}(x,y)$ es el tensor de estructura
- La covarianza contiene información de la distribución de los gradientes en la ventana.

Tensor de estructura

- Sean λ_1 y λ_2 los eigenvalores de $\Sigma_{\mathbf{X}}(x,y)$
- ullet Sean $\underline{\mathbf{e}}_1$ y $\underline{\mathbf{e}}_1$ los eigenvectores correspondientes
- Asúmase $\lambda_1 \geq \lambda_2$
- e₁ es la dirección dominante
- λ_i indica la varianza de los gradientes proyectados a $\underline{\mathbf{e}}_i$.
- Si I(x,y) = cte $\Rightarrow I_x(x,y) = I_y(x,y) = 0 \land \lambda_1 = \lambda_2 = 0$
- Si hay borde lineal, todos los gradientes o son cero (fuera del borde) o están alineados en la dirección $\underline{\mathbf{e_1}}$, lo que implica $\lambda_2=0$
- Si hay esquina, hay varias direcciones y $\lambda_1 \neq 0 \land \lambda_2 \neq 0$

Los eigenvalores indican qué tan confiable es (x, y) como punto de interés

Complejidad computacional

- Matriz $\Sigma_{\mathbf{X}}(x,y)$ es siempre 2 × 2 y simétrica
- ullet Existe forma cerrada de calcular λ_1 y λ_2
- Algunos métodos usan $\underline{\mathbf{e}}_1$, otros no.

Invarianza a la rotación

- Ventana cuadrada: si se rota imagen, cambia $\Sigma_{\mathbf{X}}(x,y)$
- Solución, redefinir $\langle F(x,y) \rangle$
- Usual: usar una ventana gaussiana

Puntos al centro tienen más peso que en borde

Métricas de interés

- Shi y Tomasi (1994): ¿Qué tan lejos está λ_2 de cero? Máximos de $\sqrt{\lambda_2}$ indican menor incertidumbre
- Harris y Stephens (1988), con $\alpha = 0,06$

$$\det (\Sigma_{\mathbf{X}}(x,y)) - \alpha \operatorname{tr}^{2} (\Sigma_{\mathbf{X}}(x,y)) =$$

$$\langle I_{x}^{2} \rangle \langle I_{y}^{2} \rangle - \langle I_{x}I_{y} \rangle^{2} - \alpha (\langle I_{x}^{2} \rangle + \langle I_{y}^{2} \rangle)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{0} + \lambda_{1})^{2}$$

que no requiere resolver el eigensistema ni raíces cuadradas.

Brown, Szeliski y Winder (2005):

$$\frac{\det \Sigma_{\mathbf{X}}(x,y)}{\operatorname{tr} \Sigma_{\mathbf{X}}(x,y)} = \frac{\lambda_0 \lambda_1}{\lambda_0 + \lambda_1}$$

Detector Hessiano

• Matriz Hessiana: alternativa a $\Sigma_{\mathbf{X}}(x,y)$

$$H(x, y; \sigma) = \begin{bmatrix} L_{xx}(x, y; \sigma) & L_{xy}(x, y; \sigma) \\ L_{xy}(x, y; \sigma) & L_{yy}(x, y; \sigma) \end{bmatrix}$$

con
$$L_{\nu\tau}(x,y;\sigma) = G_{\nu\tau}(x,y;\sigma) * I(x,y)$$
 y

$$G_{\nu\tau}(x,y;\sigma) = \frac{\partial^2}{\partial \nu \partial \tau} G(x,y;\sigma)$$

У

$$G(x, y; \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2+y^2)/\sigma^2}$$

- \bullet σ determina tamaño de ventana
- Grado de interés se mide con det $[H(x, y; \sigma)]$

P. Alvarado

Puntos de interés

Atribuntos de un punto de interés

- Lo anterior permite encontrar posición de puntos de interés
- Invarianza a escala: requiere además radio
- Invarianza a rotación: requiere orientación
- Invarianza afín: requiere aspecto

Laplaciano de gaussianos

 Mikolajczyk (2002) demostró empiricamente que método más estable busca máximos y mínimos del laplaciano de gaussianos normalizado en escala:

$$\sigma^{2}\nabla^{2}G(x, y; \sigma) = \sigma^{2}\nabla \cdot \nabla G(x, y; \sigma)$$

$$= \sigma^{2} \left[\frac{\partial^{2}}{\partial x^{2}}G(x, y; \sigma) + \frac{\partial^{2}}{\partial y^{2}}G(x, y; \sigma) \right]$$

$$\sigma^{2}\nabla^{2}G(x, y; \sigma) * I(x, y) = \sigma^{2} \operatorname{tr} \left[H(x, y; \sigma) \right]$$

P. Alvarado Puntos de interés 17 / 1

¿Cómo alcanzar la invarianza en escala?

- Si imagen se escala pero ventana es constante $\Rightarrow \Sigma_{\mathbf{X}}(x,y)$ o $H(x,y;\sigma)$ varían
- La idea básica: detectar máximos de mediciones de interés no solo en I(x, y), sino en $L(x, y; \sigma)$ donde

$$L(x, y; \sigma) = G(x, y; \sigma) * I(x, y)$$

¿Cómo alcanzar la invarianza en escala?

- Si imagen se escala pero ventana es constante $\Rightarrow \Sigma_{\mathbf{X}}(x,y)$ o $H(x,y;\sigma)$ varían
- La idea básica: detectar máximos de mediciones de interés no solo en I(x, y), sino en $L(x, y; \sigma)$ donde

$$L(x, y; \sigma) = G(x, y; \sigma) * I(x, y)$$

Carlos Moya, 2004

¿Cómo alcanzar la invarianza en escala?

- Si imagen se escala pero ventana es constante $\Rightarrow \Sigma_{\mathbf{X}}(x,y)$ o $H(x,y;\sigma)$ varían
- La idea básica: detectar máximos de mediciones de interés no solo en I(x, y), sino en $L(x, y; \sigma)$ donde

$$L(x, y; \sigma) = G(x, y; \sigma) * I(x, y)$$

Carlos Moya, 2004

Espacio de escalas

 Método aproxima laplaciano de gaussianos normalizado en escala con diferencias de gaussianas

$$D(x, y; \sigma) = (G(x, y; k\sigma) - G(x, y; \sigma)) * I(x, y)$$

= $L(x, y; k\sigma) - L(x, y; \sigma)$

Espacio de escalas de Lowe y Brown

Lowe, 2004

Escala y orientación

- La escala la determina el σ del nivel con el máximo
- La orientación se puede determinar con eigenvectores
- Lowe utiliza histograma de direcciones y selecciona máximo con interpolación
- Lowe también replica puntos de interés si hay varios máximos (el segundo mayor a 80 % del máximo)

Invarianza afín

- Transformaciones proyectivas se aproximan con afines
- Necesaria cuando hay cambios de perspectiva en 3D
- Opción: usar ambos eigenvectores del tensor de estructura o de matriz Hessiana
- MSER

- Imagen: I mapeo $I:D\in\mathbb{N}^2\to S$
- S es ordenado, y existe predicado de adyacencia A (4-vecinos, p.ej.)
- Región: $Q \subset D$
- Borde externo de region ∂Q

$$\partial Q = \{ q \in D \setminus Q : \exists p \in Q : A(p,q) \}$$

- Región extrema: $Q \in D$ region que para todo $p \in Q$:
 - $q \in \partial Q : I(p) > I(q)$ (región de intensidad máxima), o
 - $q \in \partial Q : I(p) < I(q)$ (región de intensidad mínima)

- Región extrema de máxima estabilidad (MSER):
 - Sea $Q_1, \ldots Q_{i-1}, Q_i \ldots$ una sucesión de regiones extremas anidadas $(Q_i \subset Q_{i+1})$.
 - Q_{i^*} es de máxima estabilidad sii $q(i) = |Q_{i+\Delta} \setminus Q_{i-\Delta}|/|Q_i|$ tiene un mínimo local en i^* .
 - | · | denota cardinalidad.
 - $\Delta \in S$ es un parámetro del método.
- Existen algoritmos muy eficientes para su cálculo (quasi $\mathcal{O}(n)$), similares al algoritmo de divisorias (watersheds)

Matas et al., 2004

Descriptores

- ¿Cómo describir las regiones alrededor del punto de interés?
- Imagen: sensible a iluminación: intensidad, sombras, distorsiones perspectivas, etc.
- Bordes deseables
- Muchas propuestas: MOPS, SIFT, PCA-SIFT, SURF, GLOH, etc.

- SIFT: Scale Invariant Feature Transform
- Proposed by Lowe, 1999 (U British Columbia)

- Histogramas de orientación, con entradas proporcionales a $|\nabla I|$
- Ejemplo: descriptor 2×2 a partir de 8×8 muestras
- Lowe: descriptor 4×4 a partir de 16×16 muestras con 8 bins por histograma (128 dimensiones)

SURF

- SURF: Speeded Up Robust Features
- Propuesto por Bay, Tuytelaars, Van Gool, 2006 (ETHZ, KU Leuven)
- Interés principal: aceleración del cálculo
- Descriptor se basa en wavelets de Haar
- Se describen subregiones con sumas de componentes de la transformada de Haar en las direcciones x y y:

$$\underline{\mathbf{v}} = (\sum d_{\mathsf{x}}, \sum d_{\mathsf{y}}, \sum |d_{\mathsf{x}}|, \sum |d_{\mathsf{y}}|)$$

Búsqueda de correspondencias

- Objetivo: encontrar descriptores más cercanos en otra imagen
- Suposición: distancia entre descriptores inversamente proporcional a similitud
- Métodos: dependen de la aplicación
- Panoramas: buscar en regiones cercanas (se supone traslape)
- Reconocimiento: estructuras de datos (kd-tree)

Resumen

Tarea 4

- Revisar artículo de Lowe sobre SIFT
- Trabajar en el proyecto

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make, Kazam, Xournal y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2013 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica