Name:

[5]

Solve the following **two** questions. (Question #2 is on the back of the page.)

1. Suppose $T \in \mathcal{L}(V)$ and (T-2I)(T-3I)(T-4I)=0. Suppose λ is an eigenvalue of T. Prove that $\lambda=2$ or $\lambda=3$ or $\lambda=4$.

Hint: Compute (T-2I)(T-3I)(T-4I)v, where v is an eigenvector with eigenvalue λ .

2. Suppose $T \in \mathcal{L}(V)$ is invertible. Prove that $E(\lambda, T) = E(\frac{1}{\lambda}, T^{-1})$ for every $\lambda \in \mathbb{F}$ with $\lambda \neq 0$.

Reminder: the eigenspace $E(\lambda,T)$ is defined to be $\operatorname{null}(T-\lambda I).$

Total: 10 points