Recitation 5

Recitation Instructor: Shivam Verma

Email: shivamverma@nyu.edu

Ph: 718-362-7836

Office hours: WWH 605 (2.50 - 4.50 pm, Tuesdays)

Brief Overview

- Underdetermined linear system
- Eigenvalues and eigenvectors
- Jacobi's method for finding eigenvalues
- Application of eigenvalue problem
- Gershgorin's disc theorems
- Examples of the disc theorems using MATLAB (see [7], [8])
- Sturm's sequence property

Underdetermined systems of linear equations

This is a system with fewer equations than unknowns.

Example.

Can you find the solutions for these?

1.
$$x + y + z = 1$$
, $x + y + z = 0$

2.
$$x + y + z = 1$$
, $x + y + 2z = 3$

Eigenvalue Problems

Theorem 5.1 Suppose that $A \in \mathbb{R}_{\text{sym}}^{n \times n}$; then, the following statements are valid.

- (i) There exist n linearly independent eigenvectors $\mathbf{x}^{(i)} \in \mathbb{R}^n$ and corresponding eigenvalues $\lambda_i \in \mathbb{R}$ such that $A\mathbf{x}^{(i)} = \lambda_i \mathbf{x}^{(i)}$ for all $i = 1, 2, \ldots, n$.
- (ii) The function

$$\lambda \mapsto \det(A - \lambda I) \tag{5.2}$$

is a polynomial of degree n with leading term $(-1)^n \lambda^n$, called the **characteristic polynomial of** A. The eigenvalues of A are the zeros of the characteristic polynomial.

(iii) If the eigenvalues λ_i and λ_j of A are distinct, then the corresponding eigenvectors $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$ are orthogonal in \mathbb{R}^n , i.e.,

$$oldsymbol{x}^{(i) ext{T}}oldsymbol{x}^{(j)}=0 \qquad if \; \lambda_i
eq \lambda_j \,, \qquad i,j \in \left\{1,2,\ldots,n
ight\}.$$

- (iv) If λ_i is a root of multiplicity m of (5.2), then there is a linear subspace in \mathbb{R}^n of dimension m, spanned by m mutually orthogonal eigenvectors associated with the eigenvalue λ_i .
- (v) Suppose that each of the eigenvectors $\mathbf{x}^{(i)}$ of A is normalised, in other words, $\mathbf{x}^{(i)\mathrm{T}}\mathbf{x}^{(i)}=1$ for $i=1,2,\ldots,n,$ and let X denote the square matrix whose columns are the normalised (orthogonal) eigenvectors; then, the matrix $\Lambda=X^{\mathrm{T}}AX$ is diagonal, and the diagonal elements of Λ are the eigenvalues of A.
- (vi) Let $Q \in \mathbb{R}^{n \times n}$ be an orthogonal matrix and define $B \in \mathbb{R}^{n \times n}_{sym}$ by $B = Q^{T}AQ$; then, $\det(B \lambda I) = \det(A \lambda I)$ for each $\lambda \in \mathbb{R}$. The eigenvalues of B are the same as the eigenvalues of A, and the eigenvectors of B are the vectors $Q^{T}\mathbf{x}^{(i)}$, i = 1, 2, ..., n.
- (vii) Any vector $\mathbf{v} \in \mathbb{R}^n$ can be expressed as a linear combination of the (ortho)normalised eigenvectors $\mathbf{x}^{(i)}$, i = 1, 2, ..., n, of A, i.e.,

$$oldsymbol{v} = \sum_{i=1}^n lpha_i oldsymbol{x}^{(i)}, ~~ lpha_i = oldsymbol{x}^{(i)\mathrm{T}} oldsymbol{v} \,.$$

(viii) The trace of A, $Trace(A) = \sum_{i=1}^{n} a_{ii}$, is equal to the sum of the eigenvalues of A.

- Recap of some important properties (see image from book)
- If $A \in R_{symm}^{n \times n}$ (A is a real, symmetric matrix):
 - There exist 'n' linearly independent eigenvectors
 - o $det(\lambda I A) = 0$ gives the characteristic polynomial (in general)
 - o If two eigenvalues are distinct, corresponding eigenvectors are orthogonal
 - Other properties in textbook.
- Why are Eigenvalue problems important? Ubiquitous in numerical linear algebra, especially solving ODEs, modelling symmetric physical systems or laws etc.
- How can we calculate Eigenvalues of large matrices?
 - method 1: Write down characteristic polynomial, and find its roots numerically. This is not very practical for three reasons:
 - A 100x100 matrix will have 100 eigenvalues. Newton's method works well when starting very close to the optimal value, but may diverge otherwise.
 - ii. May divide the characteristic polynomial once a root has been found, but polynomial division can be numerically dangerous/unstable.
 - iii. To find eigenvectors, still have to solve 'n' linear equations, which will take $O(n^3)$ time!
 - iv. Note: In general, polynomial root-finding is an ill-conditioned problem. See eg. 5.12 (p. 92, Numerical Linear Algebra, Trefethen & Bau) on Wilkinson's polynomial.
 - method 2: Use an iterative solving method (like Newton's method) which diagonalizes the matrix! Some popular methods are:
 - i. Jacobi
 - ii. QR
 - iii. Sturm sequence
 - iv. Power (and power-inverse)

• A bad example. Consider the matrix:

$$A = egin{pmatrix} 0 & & & & & arepsilon \ 1 & 0 & & & & & \ & 1 & 0 & & & & \ & & 1 & 0 & & & \ & & & \ddots & \ddots & \ & & & & 1 & 0 \end{pmatrix}$$

- Charac. polynomial: $\lambda^n \varepsilon = 0$
 - i. Case 1: $\varepsilon = 0, \lambda_i = 0$
 - ii. Case 2: $\epsilon=10^{-40}$, relative error = $10^{-40}/1=10^{-40}$. One eigenvalue, $\lambda_k=1/10=0.1$. Thus, adding an epsilon term changes one eigenvalue by $10^{39}\times\epsilon$ times! This is an ill-conditioned problem, and numerically unstable.
- See [1] for more info. on this problem.

Jacobi's method

Idea: Use orthogonal transformations (pre- and post- multiply) to convert matrix to diagonal form.

• Use a plane rotation matrix of the form:

$$R(\varphi) = \left(egin{array}{ccc} \cos \varphi & \sin \varphi \ -\sin \varphi & \cos \varphi \end{array}
ight)$$

- Can check that this is an orthogonal matrix.
- Choose φ to make (p,q) and (q,p) element zero:

$$\varphi = \frac{1}{2} \tan^{-1} \frac{2a_{pq}}{a_{qq} - a_{pp}}$$

• See [2] for example. Also see sec. 5.2 in [1] for good discussion.

Gershgorin's theorems

Theorem 1:

Every eigenvalue of matrix A_{nn} satisfies:

$$|\lambda - A_{ii}| \le \sum_{j \ne i} |A_{ij}| \quad i \in \{1, 2, ..., n\}$$

Every eigenvalue of a matrix A must lie in a Gershgorin disc corresponding to the columns of A.

Theorem 2:

A Subset G of the Gershgorin discs is called a disjoint group of discs if no disc in the group G intersects a disc which is not in G. If a disjoint group G contains r nonconcentric discs, then there are r eigenvalues.

Visualizing Gershgorin's discs

Examples:

- 1. A = [1 2; 1 -1]
- 2. A = [1 -1; 2 -1]
- 3. A = [5 0 0 -1; 1 0 -1 1; -1.5 1 -2 1; -1 1 3 -3]

You can visualize the Gershgorin discs for the above examples in MATLAB as follows:

- 1. Define a function gershdisc.m using the code below.
- 2. Define A = [...] from the example above.
- 3. Run gershdisc (A) in the folder where you saved this function.
- 4. Try to understand what the function is doing. Try some examples of your own!

```
% gershdisc.m
% This function plots the Gershgorin Discs for the matrix A passed as an argument.
% It will also plot the centers of such discs, and the actual eigenvalues
% of the matrix.
function gershdisc(A)
error(nargchk(nargin,1,1));
if size(A,1) \sim = size(A,2)
  error('Matrix should be square');
  return;
end
for i=1:size(A,1)
  h=real(A(i,i)); k=imag(A(i,i));
  r=0;
  for j=1:size(A,1)
   if i ~= j
       r=r+(norm(A(i,j)));
  end
  N=256;
  t=(0:N)*2*pi/N;
  plot( r*cos(t)+h, r*sin(t)+k ,'-');
  hold on;
  plot( h, k,'+');
end
axis equal;
ev=eig(A);
for i=1:size(ev)
  rev=plot(real(ev(i)),imag(ev(i)),'ro');
hold off:
legend(rev,'Actual Eigenvalues');
%code source: http://www.mathworks.com/matlabcentral/fileexchange/13989-gershgorin-discs-plot/content/gershdisc.m
```

For eg. 3, you should get:

Sturm sequence

See ref. [10, 11] for proof and explanation of Sturm's sequence property.

See example 5.7 in book for help regarding Q3 in HW3. Also see sec. 4.6.2 in [12].

Also this -

https://www.win.tue.nl/casa/meetings/seminar/previous/_abstract051109_files/presentation_full.pdf

HW3 tips

For Q3, you can use a function SturmSequence(A) which returns the eigen values of A. You can use a separate function for finding out $p_i(v)$, which takes in (A,i,v) as parameters for a matrix A and submatrix 'i' and returns $det(T_i - vI)$, which is just $p_i(v)$.

Helpful links

- 1. See p. 1 & 2 on bad eigen value problems
- 2. See sec. 2 on Jacobi method
- 3. More about Jacobi's method
- 4. Nice reference on Gerschgorin's theorems
- 5. Found this nice MATLAB tutorial
- 6. Quick overview of linear algebra and relevant numerical algorithms
- 7. Jacobi convergence and eigenvalue problem examples
- 8. See topics 'markov chain 1 / 2' for applications of eigenvalue problem in probability
- 9. <u>Underdetermined systems</u>
- 10. Sturm's theorem
- 11. Proof of Sturm's sequence property
- 12. <u>Using Sturm's theorem for finding eigenvalues (sec. 4.6.2)</u>