Third Project: Recommender System - MovieLens

Team members:

- Harry Bhasin
- Oscar Padilla

```
In [54]: %load_ext watermark
%watermark -u -d -v -p numpy,pandas,matplotlib,sklearn
last updated: 2017-08-10

CPython 2.7.12
IPython 5.4.1

numpy 1.11.1
pandas 0.18.1
matplotlib 1.5.3
sklearn 0.18.1
```

TOC

- Background
- Load Data & Libraries
- Exploratory Data Analysis
- Model Building
 - <u>User-Item</u>
 - <u>Item-Item</u>
 - Popularity
- Evaluation
 - <u>Item-Item</u>
 - User-Item
 - Grid Search
- Deployment
- References

0. Background

MovieLens collects the movie rating data through their website and, GroupLens, a research department at the University of Minnesota does further research on this collected data. For our recommender project we decided to use this data as it fits very well in recommending movies using collaborative filtering. This data set consists of the following:

- Over a million ratings from 6040 users on 3952 movies.
- Each user has rated at least 20 movies.

Description of dataset

* users.dat

The user data set consists of 6040 items. There are four columns: user id, gender, age, occupation, zip. In the following format:

* UserID::Gender::Age::Occupation::Zip-code

- Gender is denoted by a "M" for male and "F" for female
- Age is chosen from the following ranges:
 - 1: "Under 18"
 - **18:** "18-24"
 - **25:** "25-34"
 - **35:** "35-44"
 - **45:** "45-49"
 - **50:** "50-55"
 - **56:** "56+"
- Occupation is chosen from the following choices:
 - 0: "other" or not specified
 - 1: "academic/educator"
 - 2: "artist"
 - 3: "clerical/admin"
 - 4: "college/grad student"
 - 5: "customer service"
 - 6: "doctor/health care"
 - 7: "executive/managerial"
 - 8: "farmer"
 - 9: "homemaker"
 - 10: "K-12 student"
 - 11: "lawyer"
 - 12: "programmer"
 - 13: "retired"
 - 14: "sales/marketing"
 - 15: "scientist"
 - 16: "self-employed"
 - 17: "technician/engineer"
 - 18: "tradesman/craftsman"
 - 19: "unemployed"
 - 20: "writer"

The ratings dataset consists of over a million records presented in four columns in the following format:

* UserID::MovieID::Rating::Timestamp

- UserIDs range between 1 and 6040
- MovielDs range between 1 and 3952
- Ratings are made on a 5-star scale (whole-star ratings only)
- Timestamp is represented in seconds since the epoch as returned by time(2)
- Each user has at least 20 ratings

* movies.dat

The movies dataset consists of 3952 records presented in three columns in the following format:

* MovieID::Title::Genres

- Titles are identical to titles provided by the IMDB (including year of release)
- Genres are pipe-separated and are selected from the following genres:
 - Action
 - Adventure

^{*} ratings.dat

Back to Top

1. Load Data & Libraries

Import 1m MovieLens dataset as panda DataFrame

```
In [2]: import pandas as pd
import numpy as np

path = 'data/ml-lm/'

unames = ['user_id', 'gender', 'age', 'occupation', 'zip']
users = pd.read_table(path + 'users.dat', sep = '::', header = None, names = unames, engine='
python')

rnames = ['user_id', 'movie_id', 'rating', 'timestamp']
ratings = pd.read_table(path + 'ratings.dat', sep = '::', header = None, names = rnames, engi
ne='python')

mnames = ['movie_id', 'title', 'genres']
movies = pd.read_table(path + 'movies.dat', sep = '::', header = None, names = mnames, engine
='python')

print(users.shape)
print(ratings.shape)
print(movies.shape)
print(movies.shape)
(6040, 5)
(1000209, 4)
(3883, 3)
```

In [3]: movies.head()

Out[3]:

	movie_id	title	genres
0	1	Toy Story (1995)	Animation Children's Comedy
1	2	Jumanji (1995)	Adventure Children's Fantasy
2	3	Grumpier Old Men (1995)	Comedy Romance
3	4	Waiting to Exhale (1995)	Comedy Drama
4	5	Father of the Bride Part II (1995)	Comedy

Merging movies, users and ratings (on overlapping names: user_id, movie_id)

4 of 52

In [4]: data = pd.merge(pd.merge(ratings, users), movies)
 data.tail()

Out[4]:

	user_id	movie_id	rating	timestamp	gender	age	occupation	zip	title	genres
1000204	5949	2198	5	958846401	М	18	17	47901	Modulations (1998)	Documentary
1000205	5675	2703	3	976029116	М	35	14	30030	Broken Vessels (1998)	Drama
1000206	5780	2845	1	958153068	М	18	17	92886	White Boys (1999)	Drama
1000207	5851	3607	5	957756608	F	18	20	55410	One Little Indian (1973)	Comedy Drama Western
1000208	5938	2909	4	957273353	М	25	1	35401	Five Wives, Three Secretaries and Me (1998)	Documentary

Back to Top

2. EDA

Based on Python for Data Analysis

Contents of a specific row

```
In [5]: data.ix[1000207]
Out[5]: user_id
                                            5851
        movie_id
                                            3607
        rating
                                               5
                                       957756608
        timestamp
        gender
                                               F
        age
                                              18
        occupation
                                              20
        zip
        title
                       One Little Indian (1973)
        genres
                           Comedy | Drama | Western
        Name: 1000207, dtype: object
```

pivot_table function on a DataFrame will construct a movie / gender rating matrix

Out[6]:

gender	F	М
title		
\$1,000,000 Duck (1971)	3.375000	2.761905
'Night Mother (1986)	3.388889	3.352941
'Til There Was You (1997)	2.675676	2.733333
'burbs, The (1989)	2.793478	2.962085
And Justice for All (1979)	3.828571	3.689024
1-900 (1994)	2.000000	3.000000
10 Things I Hate About You (1999)	3.646552	3.311966
101 Dalmatians (1961)	3.791444	3.500000
101 Dalmatians (1996)	3.240000	2.911215
12 Angry Men (1957)	4.184397	4.328421

```
In [7]: ratings_by_title = data.groupby('title').size()
        ratings_by_title.head(10)
Out[7]: title
        $1,000,000 Duck (1971)
                                               70
        'Night Mother (1986)
        'Til There Was You (1997)
                                               52
        'burbs, The (1989)
                                              303
        ...And Justice for All (1979)
                                              199
        1-900 (1994)
                                                2
        10 Things I Hate About You (1999)
                                              700
        101 Dalmatians (1961)
                                              565
        101 Dalmatians (1996)
                                              364
        12 Angry Men (1957)
                                              616
        dtype: int64
```

Filter movies with at least n ratings

Now we select only active titles from the pivot table created above

In [9]: mean_ratings = mean_ratings.ix[active_titles]
 mean_ratings[:10]

Out[9]:

gender	F	м
title		
'burbs, The (1989)	2.793478	2.962085
10 Things I Hate About You (1999)	3.646552	3.311966
101 Dalmatians (1961)	3.791444	3.500000
101 Dalmatians (1996)	3.240000	2.911215
12 Angry Men (1957)	4.184397	4.328421
13th Warrior, The (1999)	3.112000	3.168000
2 Days in the Valley (1996)	3.488889	3.244813
20,000 Leagues Under the Sea (1954)	3.670103	3.709205
2001: A Space Odyssey (1968)	3.825581	4.129738
2010 (1984)	3.446809	3.413712

Top movies for female viewers

In [10]: top_female_ratings = mean_ratings.sort_values(by = 'F', ascending = False)
top_female_ratings[:10]

Out[10]:

gender	F	М
title		
Close Shave, A (1995)	4.644444	4.473795
Wrong Trousers, The (1993)	4.588235	4.478261
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950)	4.572650	4.464589
Wallace & Gromit: The Best of Aardman Animation (1996)	4.563107	4.385075
Schindler's List (1993)	4.562602	4.491415
Shawshank Redemption, The (1994)	4.539075	4.560625
Grand Day Out, A (1992)	4.537879	4.293255
To Kill a Mockingbird (1962)	4.536667	4.372611
Creature Comforts (1990)	4.513889	4.272277
Usual Suspects, The (1995)	4.513317	4.518248

Ratings difference male vs. female: movies preferred by women

Out[11]:

gender	F	М	diff
title			
Dirty Dancing (1987)	3.790378	2.959596	-0.830782
Jumpin¹ Jack Flash (1986)	3.254717	2.578358	-0.676359
Grease (1978)	3.975265	3.367041	-0.608224
Little Women (1994)	3.870588	3.321739	-0.548849
Steel Magnolias (1989)	3.901734	3.365957	-0.535777
Anastasia (1997)	3.800000	3.281609	-0.518391
Rocky Horror Picture Show, The (1975)	3.673016	3.160131	-0.512885
Color Purple, The (1985)	4.158192	3.659341	-0.498851
Age of Innocence, The (1993)	3.827068	3.339506	-0.487561
Free Willy (1993)	2.921348	2.438776	-0.482573
French Kiss (1995)	3.535714	3.056962	-0.478752
Little Shop of Horrors, The (1960)	3.650000	3.179688	-0.470312
Guys and Dolls (1955)	4.051724	3.583333	-0.468391
Mary Poppins (1964)	4.197740	3.730594	-0.467147
Patch Adams (1998)	3.473282	3.008746	-0.464536

Movies preferred by men

In [12]: sorted_by_diff[::-1][:15]

Out[12]:

gender	F	М	diff
title			
Good, The Bad and The Ugly, The (1966)	3.494949	4.221300	0.726351
Kentucky Fried Movie, The (1977)	2.878788	3.555147	0.676359
Dumb & Dumber (1994)	2.697987	3.336595	0.638608
Longest Day, The (1962)	3.411765	4.031447	0.619682
Cable Guy, The (1996)	2.250000	2.863787	0.613787
Evil Dead II (Dead By Dawn) (1987)	3.297297	3.909283	0.611985
Hidden, The (1987)	3.137931	3.745098	0.607167
Rocky III (1982)	2.361702	2.943503	0.581801
Caddyshack (1980)	3.396135	3.969737	0.573602
For a Few Dollars More (1965)	3.409091	3.953795	0.544704
Porky's (1981)	2.296875	2.836364	0.539489
Animal House (1978)	3.628906	4.167192	0.538286
Exorcist, The (1973)	3.537634	4.067239	0.529605
Fright Night (1985)	2.973684	3.500000	0.526316
Barb Wire (1996)	1.585366	2.100386	0.515020

Love it or Hate it: Movies with most disagreement among viewers (as measured per standard deviation)

```
In [13]: rating_std_by_title = data.groupby('title')['rating'].std()
         rating_std_by_title = rating_std_by_title.ix[active_titles]
         rating_std_by_title.sort_values(ascending = False)[:10]
Out[13]: title
         Dumb & Dumber (1994)
                                                   1.321333
         Blair Witch Project, The (1999)
                                                   1.316368
         Natural Born Killers (1994)
                                                   1.307198
         Tank Girl (1995)
                                                   1.277695
         Rocky Horror Picture Show, The (1975)
                                                   1.260177
         Eyes Wide Shut (1999)
                                                   1,259624
         Evita (1996)
                                                   1.253631
         Billy Madison (1995)
                                                   1.249970
         Fear and Loathing in Las Vegas (1998)
                                                   1.246408
         Bicentennial Man (1999)
                                                   1.245533
         Name: rating, dtype: float64
```

Distribution of ratings: histogram

```
In [14]: | %matplotlib inline
         import matplotlib.pyplot as plt
         plt.hist(ratings.rating, bins = [1, 2, 3, 4, 5])
```

Out[14]: (array([56174., 107557., 261197., 575281.]), array([1, 2, 3, 4, 5]), <a list of 4 Patch objects>)


```
In [15]: plt.hist(data.age)
                                0.,
Out[15]: (array([ 27211.,
                                          0., 183536., 395556.,
                                                                        0.,
```

199003., 0., 156123., 38780.]), 1., 6.5, 12., 17.5, 23., 28.5, 34., 39.5, 45., array([50.5, 56.]), <a list of 10 Patch objects>)

400000 350000 300000 250000

200000 150000 100000 50000

```
In [16]: bins = [0, 25, 35, 45, 55, 100]
    group_names = ['young', 'adult', 'mid-age', 'older', 'senior']

#categories = pd.cut(data['age'], bins, labels = group_names)
    data['categories'] = pd.cut(data['age'], bins, labels = group_names)

data.head()
```

Out[16]:

	user_id	movie_id	rating	timestamp	gender	age	occupation	zip	title	genres	categories
C	1	1193	5	978300760	F	1	10	48067	One Flew Over the Cuckoo's Nest (1975)	Drama	young
1	2	1193	5	978298413	М	56	16	70072	One Flew Over the Cuckoo's Nest (1975)	Drama	senior
2	12	1193	4	978220179	М	25	12	32793	One Flew Over the Cuckoo's Nest (1975)	Drama	young
3	15	1193	4	978199279	М	25	7	22903	One Flew Over the Cuckoo's Nest (1975)	Drama	young
4	17	1193	5	978158471	М	50	1	95350	One Flew Over the Cuckoo's Nest (1975)	Drama	older

```
In [17]: plt.hist(data.occupation)
```


In [18]: import seaborn as sns
ax = sns.boxplot(x = "categories", y = "rating", data = data)

GraphLab

```
In [19]: from os import path import graphlab as gl from datetime import datetime

Importerror Traceback (most recent call last)

ipython-input-19-306b684c7233> in <module>()

1 from os import path

---> 2 import graphlab as gl

3 from datetime import datetime

Importerror: No module named graphlab
```

Convert Panda's DataFrames into GraphLab SFrames

```
In [101]: items = gl.SFrame(movies)
    actions = gl.SFrame(ratings)
    users = gl.SFrame(users)
```

Importing the merged DataFrame into the GraphLab environment

```
In [107]: data_gl = gl.SFrame(data)
In [108]: gl.canvas.set_target("ipynb")
          data_gl.show(view = "Bar Chart", x = "Age", y=None)
                                                        count std min max sum var mean
          Statistics of Age vs. movie_id
               400
               300
                                                                                                    Ü
               200
               100
                                          15
                                                 17
                                                        18
                                                                19
                                                                      24
                                                                             28
                                                                                     33
```



```
In [113]: data_gl[["gender", "rating"]].show(view = "BoxWhisker Plot", x = "gender", y = "rating")
```


Data preparation: elimination of rare items, e.g. ratings count <= 5

```
In [11]: rare_items = actions.groupby('movie_id', gl.aggregate.COUNT).sort('Count')
    rare_items = rare_items[rare_items['Count'] <= 5]
    items = items.filter_by(rare_items['movie_id'], 'movie_id', exclude=True)
    actions = actions.filter_by(rare_items['movie_id'], 'movie_id', exclude=True)
    actions['timestamp'] = actions['timestamp'].astype(datetime)</pre>
```

Extracting year from movie title and parsing genres

```
In [12]: items['year'] = items['title'].apply(lambda x: x[-5:-1])
   items['title'] = items['title'].apply(lambda x: x[:-7])
   items['genres'] = items['genres'].apply(lambda x: x.split('|'))
```

Back to Top

3. Model Building

Train Recommender Model

```
In [14]: training_data, validation_data = gl.recommender.util.random_split_by_user(actions, 'user_id',
        'movie_id')
       model = gl.recommender.create(training_data, 'user_id', 'movie_id')
       Recsys training: model = item_similarity
       Warning: Ignoring columns rating, timestamp;
          To use one of these as a target column, set target =
          and use a method that allows the use of a target.
       Preparing data set.
          Data has 964251 observations with 6040 users and 3377 items.
          Data prepared in: 0.441962s
       Training model from provided data.
       Gathering per-item and per-user statistics.
       +----+
       | Elapsed Time (Item Statistics) | % Complete |
       +----+
                                 16.5
       4.401ms
       27.212ms
                                 100
       Setting up lookup tables.
       Processing data in one pass using dense lookup tables.
       | Elapsed Time (Constructing Lookups) | Total % Complete | Items Processed |
       +-----+
       148.246ms
                                      0
       886.549ms
                                      100
                                                     3377
       Finalizing lookup tables.
       Generating candidate set for working with new users.
       Finished training in 1.94232s
```

Interactively explore & evaluate model

Back to Top

3.1 User-Item

"5-lines recommendation model" All code from here is based on Data Mining Notebook # 13 Collaborative Filtering in Turi (formerly Dato, Formerly GraphLab) by Eric Larsson

```
In [114]: model = gl.recommender.create(data_gl, user_id = "user_id", item_id = "title", target = "rati
ng")
    results = model.recommend(users = None, k = 15)
    model.save("user_item")
```

```
Recsys training: model = ranking factorization recommender
Preparing data set.
   Data has 1000209 observations with 6040 users and 3706 items.
   Data prepared in: 1.55031s
Training ranking_factorization_recommender for recommendations.
                          Description
                                                                  Value
    num_factors
                         | Factor Dimension
                                                                  32
regularization
                        L2 Regularization on Factors
                                                                  le-09
solver
                          | Solver used for training
                                                                  adagrad
linear_regularization
                         L2 Regularization on Linear Coefficients
                                                                  | 1e-09
                        Rank-based Regularization Weight
                                                                 0.25
| ranking_regularization
max iterations
                         | Maximum Number of Iterations
                                                                  | 25
 Optimizing model using SGD; tuning step size.
 Using 125026 / 1000209 points for tuning the step size.
| Attempt | Initial Step Size | Estimated Objective Value
                      Not Viable
0
      5.55556
       1.38889
                      Not Viable
1 2
       0.347222
                      0.824167
| 3
       0.173611
                      1.20798
       0.0868056
                      0.646125
       0.0434028
                      0.717895
1 5
       0.0217014
                      1.085
       0.0108507
                      1.72713
| Final | 0.0868056
                      0.646125
Starting Optimization.
+----+
| Iter. | Elapsed Time | Approx. Objective | Approx. Training RMSE | Step Size |
```

+		-+	-+	+	-+	_+
1			2.44693	1.11708	I	1
	1	2.67s	-+ DIVERGED	DIVERGED	0.0868056	-+
1	RESET	3.64s	2.44701	1.11712		
-	1	5.87s	3.90663	1.68493	0.0434028	
1	2	7.86s	3.30251	1.6027	0.0434028	
1	3	9.94s	1.87893	1.24141	0.0434028	
-	4	11.80s	1.45959	1.0962	0.0434028	
-	5	13.55s	1.30216	1.02512	0.0434028	
-	6	15.28s	1.21993	0.994315	0.0434028	
-	7	16.98s	1.15485	0.970963	0.0434028	
-	8	18.68s	1.10102	0.95379	0.0434028	
-	9	20.48s	1.06195	0.939376	0.0434028	
-	10	22.32s	1.03362	0.929486	0.0434028	
-	11	24.05s	1.01308	0.922706	0.0434028	
-	12	25.71s	0.998079	0.917837	0.0434028	
-	13	27.30s	0.982852	0.911275	0.0434028	
-	14	28.98s	0.977212	0.911079	0.0434028	
	15	30.81s	0.96693	0.907214	0.0434028	
-	16	32.58s	0.957616	0.903775	0.0434028	
	17	34.13s	0.954678	0.903094	0.0434028	
-	18	35.67s	0.947747	0.900412	0.0434028	
	19	37.20s	0.944789	0.900455	0.0434028	
	20	38.73s	0.941145	0.898532	0.0434028	
	21	40.26s	0.939263	0.897955	0.0434028	
	22	41.78s	0.935198	0.896202	0.0434028	
-	23	43.29s	0.931502	0.894985	0.0434028	
-	24	44.80s	0.929998	0.894606	0.0434028	
-	25	46.30s	0.926617	0.892427	0.0434028	

Optimization Complete: Maximum number of passes through the data reached.

+-----+

Computing final objective value and training RMSE.

Final objective value: 0.914895 Final training RMSE: 0.885341

recommendations finished on 1000/6040 queries. users per second: 6362.29 recommendations finished on 2000/6040 queries. users per second: 6377.51 recommendations finished on 3000/6040 queries. users per second: 6360.39 recommendations finished on 4000/6040 queries. users per second: 6339.52 recommendations finished on 5000/6040 queries. users per second: 6337.4

recommendations finished on 6000/6040 queries. users per second: 6240.98

In [27]: results

Out[27]:

user_id	title	score	rank
1	Stand by Me (1986)	4.80613530853	1
1	Fifth Element, The (1997)	4.65117407271	2
1	Go (1999)	4.64907295682	3
1	Star Wars: Episode VI - Return of the Jedi (1	4.58215263911	4
1	Matrix, The (1999)	4.53050312453	5
2	Batman (1989)	4.35598371603	1
2	Rock, The (1996)	4.23964182713	2
2	Top Gun (1986)	4.21831451037	3
2	Nutty Professor, The (1996)	4.21780065873	4
2	Bug's Life, A (1998)	4.20996509173	5

[30200 rows x 4 columns]

Note: Only the head of the SFrame is printed.

You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

In [28]: data_gl.head()

Out[28]:

user_id	movie_id	rating	timestamp	gender	age	occupation	zip	title	genre
1	1193	5	978300760	F	1	10	48067	One Flew Over the Cuckoo's Nest (1975)	Drama
2	1193	5	978298413	М	56	16	70072	One Flew Over the Cuckoo's Nest (1975)	Drama
12	1193	4	978220179	М	25	12	32793	One Flew Over the Cuckoo's Nest (1975)	Drama
15	1193	4	978199279	М	25	7	22903	One Flew Over the Cuckoo's Nest (1975)	Drama
17	1193	5	978158471	М	50	1	95350	One Flew Over the Cuckoo's Nest (1975)	Drama
18	1193	4	978156168	F	18	3	95825	One Flew Over the Cuckoo's Nest (1975)	Drama
19	1193	5	982730936	М	1	10	48073	One Flew Over the Cuckoo's Nest (1975)	Drama
24	1193	5	978136709	F	25	7	10023	One Flew Over the Cuckoo's Nest (1975)	Drama
28	1193	3	978125194	F	25	1	14607	One Flew Over the Cuckoo's Nest	Drama

Back to Top

3.2 Item-Item

Based on the high (0.991) sparsity, cosine distance is more appropriate

```
Recsys training: model = item similarity
Warning: Ignoring columns movie_id, timestamp, gender, age, occupation, zip, genres;
   To use these columns in scoring predictions, use a model that allows the use of additiona
1 features.
Preparing data set.
   Data has 1000209 observations with 6040 users and 3706 items.
   Data prepared in: 0.647663s
Training model from provided data.
Gathering per-item and per-user statistics.
+----+
| Elapsed Time (Item Statistics) | % Complete |
+----+
16.189ms
                       16.5
37.315ms
                       100
Setting up lookup tables.
Processing data in one pass using dense lookup tables.
+-----+
| Elapsed Time (Constructing Lookups) | Total % Complete | Items Processed |
+----+
66.285ms
                            0
                                                        952.509ms
                            100
                                          3706
```

Finalizing lookup tables.

Generating candidate set for working with new users.

Finished training in 1.04101s

23 of 52

Out[117]:

title	similar	score	rank
One Flew Over the Cuckoo's Nest (1975)	Godfather, The (1972)	0.538922727108	1
One Flew Over the Cuckoo's Nest (1975)	Fargo (1996)	0.529114544392	2
One Flew Over the Cuckoo's Nest (1975)	Shawshank Redemption, The (1994)	0.514273047447	3
One Flew Over the Cuckoo's Nest (1975)	Taxi Driver (1976)	0.512597680092	4
One Flew Over the Cuckoo's Nest (1975)	Graduate, The (1967)	0.512318372726	5
One Flew Over the Cuckoo's Nest (1975)	Amadeus (1984)	0.511262476444	6
One Flew Over the Cuckoo's Nest (1975)	Apocalypse Now (1979)	0.507278621197	7
One Flew Over the Cuckoo's Nest (1975)	Godfather: Part II, The (1974)	0.498695671558	8
One Flew Over the Cuckoo's Nest (1975)	Schindler's List (1993)	0.49817097187	9
One Flew Over the Cuckoo's Nest (1975)	Pulp Fiction (1994)	0.497593343258	10

[10 rows x 4 columns]

Back to Top

4. Evaluation

Data breakup into training and test

Back to Top

4.1 Item-Item

```
Recsys training: model = item similarity
Warning: Ignoring columns movie_id, timestamp, gender, age, occupation, zip, genres;
   To use these columns in scoring predictions, use a model that allows the use of additiona
1 features.
Preparing data set.
   Data has 800177 observations with 6040 users and 3677 items.
   Data prepared in: 0.548545s
Training model from provided data.
Gathering per-item and per-user statistics.
+----+
| Elapsed Time (Item Statistics) | % Complete |
+----+
10.612ms
                         16.5
30.9ms
                          100
Setting up lookup tables.
Processing data in one pass using dense lookup tables.
| Elapsed Time (Constructing Lookups) | Total % Complete | Items Processed |
+----+
59.729ms
                              0
702.274ms
                              100
                                             3677
                                                            +-----+
Finalizing lookup tables.
Generating candidate set for working with new users.
Finished training in 0.762399s
recommendations finished on 1000/6037 queries. users per second: 20988.1
recommendations finished on 2000/6037 queries. users per second: 25562
recommendations finished on 3000/6037 queries. users per second: 27920.7
recommendations finished on 4000/6037 queries. users per second: 29280.4
recommendations finished on 5000/6037 queries. users per second: 29932.2
recommendations finished on 6000/6037 queries. users per second: 28824.3
```

```
Precision and recall summary statistics by cutoff
+----+
cutoff | mean_precision | mean_recall |
     | 0.432002650323 | 0.0210899733997 |
     0.405747888024 | 0.0384558886512
     0.386505438684 | 0.0538605096694
     0.367069736624 | 0.0664353018696
0.352426702004 | 0.0788688855294
   5
       0.338413119099 | 0.0893152404291
   6
      0.32693627393 | 0.0992976216165
 8 | 0.317044889846 | 0.10872502924
9 | 0.308873060571 | 0.118185556364 |
10 | 0.299569322511 | 0.126349246049
+----+
[10 rows x 3 columns]
('\nOverall RMSE: ', 3.6773714442306926)
Per User RMSE (best)
| user_id | count | rmse |
+----+----
4 | 1 | 0.371690618992 |
[1 rows x 3 columns]
Per User RMSE (worst)
+----+
| user_id | count | rmse |
4338 | 1 | 5.0 |
[1 rows x 3 columns]
Per Item RMSE (best)
+----+
title | count | rmse |
| Century (1993) | 1 | 0.972215128251 |
+----+
[1 rows x 3 columns]
Per Item RMSE (worst)
          title | count | rmse |
Two or Three Things I Know... | 1 | 5.0 |
[1 rows x 3 columns]
```

In [128]: rmse_results['rmse_by_item']

Out[128]:

title	count	rmse
Parent Trap, The (1998)	54	3.41011320465
Sneakers (1992)	220	3.76372074301
Man from Laramie, The (1955)	5	3.99325838832
Much Ado About Nothing (1993)	132	4.09793328035
X-Men (2000)	306	3.91439764803
Psycho (1998)	53	2.98915362295
Black Sabbath (Tre Volti Della Paura, I) (1963)	2	3.53453524366
Boondock Saints, The (1999)	19	3.45649655302
Drop Dead Fred (1991)	60	2.64513308129
Phantasm III: Lord of the Dead (1994)	14	3.0261447089

[3463 rows x 3 columns]

Note: Only the head of the SFrame is printed.

You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

In [129]: rmse_results['rmse_by_user']

Out[129]:

user_id	count	rmse
5288	8	3.70416139188
3143	36	3.50597692124
5684	95	3.77688126409
2779	33	3.80149631736
118	56	3.9018353489
3988	37	3.84118681622
5783	8	3.65595993975
2847	75	2.80578451918
5499	12	4.44373112793
5531	24	3.90787945931

[6037 rows x 3 columns]

Note: Only the head of the SFrame is printed.

You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

1/21/18, 11:57 AM 28 of 52

```
In [134]: from matplotlib import pyplot as plt
%matplotlib inline
plt.style.use('ggplot')

rmsevals = rmse_results['rmse_by_item']['rmse']
rmsevals = rmsevals[rmse_results['rmse_by_item']['count'] > 10]

plt.hist(rmsevals, bins = 10)
plt.title('RMSE by Item')
plt.show()
```



```
In [69]: from matplotlib import pyplot as plt
%matplotlib inline
plt.style.use('ggplot')

rmsevals = rmse_results['rmse_by_user']['rmse']
rmsevals = rmsevals[rmse_results['rmse_by_user']['count'] > 5]

plt.hist(rmsevals, bins = 10)
plt.title('RMSE by User')
plt.show()
```


Precision & Recall

In [37]: rmse_results['precision_recall_by_user']

Out[37]:

user_id	cutoff	precision	recall	count
11	1	0.0	0.0	30
11	2	0.5	0.0333333333333	30
11	3	0.333333333333	0.0333333333333	30
11	4	0.25	0.0333333333333	30
11	5	0.4	0.0666666666667	30
11	6	0.333333333333	0.0666666666667	30
11	7	0.285714285714	0.0666666666667	30
11	8	0.25	0.0666666666667	30
11	9	0.2222222222	0.0666666666667	30
11	10	0.2	0.0666666666667	30

[1800 rows x 5 columns]

Note: Only the head of the SFrame is printed.

You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

In [38]: import graphlab.aggregate as agg

agg_list = [agg.AVG('precision'),agg.STD('precision'),agg.AVG('recall'),agg.STD('recall')] rmse_results['precision_recall_by_user'].groupby('cutoff',agg_list)

Out[38]:

cutoff	Avg of precision	Stdv of precision	Avg of recall	Stdv of recall
36	0.200277777778	0.166216753846	0.27624805404	0.124967878935
2	0.38	0.36823905279	0.0365450061209	0.0533931217992
46	0.18	0.151896641806	0.316741228943	0.132507160652
31	0.211935483871	0.175577240341	0.254322648222	0.125537656118
26	0.226538461538	0.183239665869	0.233224851885	0.117834923208
8	0.29	0.246779253585	0.10114753941	0.0825916547687
5	0.326	0.270784046797	0.0769256156073	0.076594010678
16	0.25625	0.203004772111	0.173224036516	0.100463877923
41	0.191463414634	0.159131155242	0.300390439691	0.128063510805
4	0.34	0.292660212533	0.0652058637624	0.0734827094785

[18 rows x 5 columns]

Note: Only the head of the SFrame is printed.

You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

Back to Top

4.2 User-Item

```
Recsys training: model = ranking factorization recommender
Preparing data set.
   Data has 800177 observations with 6040 users and 3677 items.
  Data prepared in: 1.27397s
Training ranking_factorization_recommender for recommendations.
Parameter
                       Description
                                                             Value
     ------
| num_factors
                       | Factor Dimension
                                                             32
regularization
                       L2 Regularization on Factors
                                                             | 1e-09
solver
                       | Solver used for training
                                                             adagrad
linear_regularization
                       L2 Regularization on Linear Coefficients
                                                             | 1e-09
                      Rank-based Regularization Weight
                                                             0.25
ranking_regularization
max iterations
                       | Maximum Number of Iterations
                                                             | 25
 Optimizing model using SGD; tuning step size.
 Using 100022 / 800177 points for tuning the step size.
| Attempt | Initial Step Size | Estimated Objective Value
                    Not Viable
0
     5.55556
      1.38889
                    Not Viable
       0.347222
                    | Not Viable
       0.0868056
                    0.92645
       0.0434028
                    0.723878
                    1.46887
       0.0217014
 _____+
| Final | 0.0434028
                    0.723878
Starting Optimization.
+-----+
| Iter. | Elapsed Time | Approx. Objective | Approx. Training RMSE | Step Size |
+----+
                               1.11696
| Initial | 95us | 2.44595
```

+	+	+	-+	++
1	2.40s	DIVERGED	DIVERGED	0.0434028
RESET	3.16s	2.4463	1.117	1
1	5.01s	1.75216	1.08099	0.0217014
2	6.80s	1.35801	0.976769	0.0217014
3	8.60s	1.33836	0.996168	0.0217014
4	10.22s	1.39974	1.0326	0.0217014
5	11.80s	1.35495	1.02325	0.0217014
6	13.36s	1.32318	1.01731	0.0217014
7	14.89s	1.28717	1.00637	0.0217014
8	16.36s	1.26941	1.00217	0.0217014
9	17.85s	1.24433	0.993703	0.0217014
10	19.23s	1.25311	0.99852	0.0217014
11	20.59s	1.22235	0.986533	0.0217014
12	22.09s	1.21701	0.984777	0.0217014
13	23.63s	1.20351	0.980044	0.0217014
14	25.18s	1.19516	0.977334	0.0217014
15	26.65s	1.18604	0.974102	0.0217014
16	28.13s	1.18885	0.976827	0.0217014
17	29.53s	1.16565	0.965818	0.0217014
18	30.92s	1.16858	0.966914	0.0217014
19	32.40s	1.15199	0.960259	0.0217014
20	33.78s	1.15421	0.962962	0.0217014
21	35.10s	1.1423	0.957522	0.0217014
22	36.76s	1.13213	0.953483	0.0217014
23	38.21s	1.13219	0.954238	0.0217014
24	39.57s	1.11879	0.948584	0.0217014
25	40.98s	1.1134	0.946701	0.0217014

+-----+

Optimization Complete: Maximum number of passes through the data reached. Computing final objective value and training RMSE.

Final objective value: 1.09663
Final training RMSE: 0.937989

recommendations finished on 1000/6037 queries. users per second: 5686.86 recommendations finished on 2000/6037 queries. users per second: 5807.2 recommendations finished on 3000/6037 queries. users per second: 5903.63 recommendations finished on 4000/6037 queries. users per second: 5955.05 recommendations finished on 5000/6037 queries. users per second: 5990.03 recommendations finished on 6000/6037 queries. users per second: 5912.77

Precision and recall summary statistics by cutoff

+	+	++
cutoff	mean_precision	mean_recall
1	0.115620341229	0.00395175487979
2	0.109325824085	0.00720194420416
3	0.103307382254	0.00993475861744
4	0.100588040417	0.012766008109
5	0.0973662415107	0.0153614683872
6	0.0951355529789	0.0180561728147
7	0.0928322960789	0.0205809938671
8	0.090359450058	0.0229492957761
9	0.0885097454586	0.0255601591297
10	0.0864667881398	0.0277278560888
+	+	++

[10 rows x 3 columns]

('\nOverall RMSE: ', 1.0600954257239266)

Per User RMSE (best)

+	+	++
user_id	'	rmse
373	1	0.127437317788

[1 rows x 3 columns]

Per User RMSE (worst)

user_id	count	rmse
3113	5	4.57797478083

[1 rows x 3 columns]

Per Item RMSE (best)

+	t	t+
title	count	rmse
Uninvited Guest, An (2000)	 1	+ 0.00635918320534
4	L	L

[1 rows x 3 columns]

Per Item RMSE (worst)

+	+	++
title	count	'
Billy's Holiday (19	95) 1	6.66371960458

[1 rows x 3 columns]

In [137]: rmse_results['precision_recall_by_user'].groupby('cutoff',[agg.AVG('precision'),agg.STD('precision'),agg.AVG('recall')])

Out[137]:

cutoff	Avg of precision	Stdv of precision	Avg of recall	Stdv of recall
36	0.0694375425616	0.0919550600307	0.0813871833527	0.0933468625418
2	0.109325824085	0.240039253355	0.00720194420416	0.0243254379396
46	0.0659771985798	0.0849361371357	0.0990916485079	0.102760837876
31	0.0711953704842	0.0960718199412	0.0714448486586	0.0872754011638
26	0.0739223506326	0.101338904683	0.0626773685444	0.0807455795319
8	0.090359450058	0.148003202062	0.0229492957761	0.0463515463475
5	0.0973662415107	0.174395533468	0.0153614683872	0.0367337795136
16	0.0798823919165	0.116795400432	0.041691649143	0.0648863178078
41	0.0674499125313	0.0880359565851	0.0903135399254	0.0982406321046
4	0.100588040417	0.188377909926	0.012766008109	0.0327284811901

[18 rows x 5 columns]

Note: Only the head of the SFrame is printed.

You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

```
In [139]: print rmse_results.viewkeys()
print rmse_results['rmse_by_item']
```

dict_keys(['rmse_by_user', 'precision_recall_overall', 'rmse_by_item', 'precision_recall_by_u
ser', 'rmse_overall'])

+	+	++
title	count	rmse
Parent Trap, The (1998)	54	0.921548548681
Sneakers (1992)	220	0.8547413354
Man from Laramie, The (1955)	5	1.56934482819
Much Ado About Nothing (1993)	132	0.955812859708
X-Men (2000)	306	0.977373415089
Psycho (1998)	53	1.1323777249
Black Sabbath (Tre Volti D	2	1.61740222095
Boondock Saints, The (1999)	19	2.07716212832
Drop Dead Fred (1991)	60	0.965476862456
Phantasm III: Lord of the	14	1.60811593485
±	+	L4

[3463 rows x 3 columns]

Note: Only the head of the SFrame is printed.

You can use $print_rows(num_rows=m, num_columns=n)$ to $print_rows$ and columns.

```
In [140]: from matplotlib import pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
rmsevals=rmse_results['rmse_by_item']['rmse']
plt.hist(rmsevals, bins=20)
plt.xlabel('RMSE')
plt.ylabel('Count')
plt.title('RMSE by item')
plt.show()
```


Tuned Parameters

```
Recsys training: model = ranking factorization recommender
Preparing data set.
   Data has 800177 observations with 6040 users and 3677 items.
   Data prepared in: 1.22614s
Training ranking_factorization_recommender for recommendations.
                          Description
                                                                   Value
| num_factors
                          | Factor Dimension
                                                                   | 16
regularization
                         L2 Regularization on Factors
                                                                   0.01
solver
                          | Solver used for training
                                                                   adagrad
linear_regularization
                          L2 Regularization on Linear Coefficients
                                                                   0.001
ranking_regularization
                         Rank-based Regularization Weight
                                                                   0.25
max iterations
                          | Maximum Number of Iterations
                                                                   | 25
 Optimizing model using SGD; tuning step size.
 Using 100022 / 800177 points for tuning the step size.
| Attempt | Initial Step Size | Estimated Objective Value
      0.00920788
                      2.04109
      0.00460394
                      2.08087
       0.00230197
                       2.12445
       0.00115098
                       2.16827
| Final | 0.00920788
                      2.04109
Starting Optimization.
| Iter. | Elapsed Time | Approx. Objective | Approx. Training RMSE | Step Size |
+-----+
| Initial | 76us
                  2.446
                                   1.11695
+-----+
      | 1.50s | 2.14202
                                  1.10985
                                                      | 0.00920788 |
```

	2	2.94s	2.1083	1.13488	0.00920788	
1	3	4.34s	2.04254	1.11514	0.00920788	
	4	5.77s	2.0179	1.09882	0.00920788	
	5	7.23s	2.00611	1.08928	0.00920788	
1	6	11.62s	1.99985	1.08422	0.00920788	
	7	12.96s	1.99639	1.07819	0.00920788	
1	8	14.36s	1.99457	1.0759	0.00920788	
	9	15.77s	1.99324	1.07303	0.00920788	
	10	17.22s	1.99252	1.0707	0.00920788	
I	11	18.72s	1.99238	1.06849	0.00920788	
I	12	20.20s	1.99249	1.0678	0.00920788	
	13	21.52s	1.99212	1.06644	0.00920788	
I	14	22.81s	1.99245	1.06517	0.00920788	
	15	24.14s	1.99268	1.06443	0.00920788	
	16	25.52s	1.99288	1.06367	0.00920788	
	17	26.85s	1.99287	1.06261	0.00920788	
	18	28.17s	1.99325	1.06242	0.00920788	
	19	29.53s	1.99327	1.06156	0.00920788	
	20	30.90s	1.99332	1.06218	0.00920788	
I	21	32.25s	1.99398	1.06026	0.00920788	
	22	33.58s	1.99397	1.06093	0.00920788	
	23	34.89s	1.99407	1.06011	0.00920788	
	24	36.20s	1.9942	1.05987	0.00920788	
	25	37.52s	1.99424	1.05992	0.00920788	

+----+

Optimization Complete: Maximum number of passes through the data reached.

Computing final objective value and training RMSE.

Final objective value: 2.01029

Final training RMSE: 1.05687

recommendations finished on 1000/6037 queries. users per second: 7507.51 recommendations finished on 2000/6037 queries. users per second: 7573 recommendations finished on 3000/6037 queries. users per second: 7590.57 recommendations finished on 4000/6037 queries. users per second: 7600.18 recommendations finished on 5000/6037 queries. users per second: 7595.48 recommendations finished on 6000/6037 queries. users per second: 7546.14

Precision and recall summary statistics by cutoff

+	+	++
cutoff	mean_precision	mean_recall
1	0.234719231406	0.00918385175136
2	0.205068742753	0.0147712382536
3	0.196676053227	0.020587220923
4	0.191692893821	0.0272190362335
5	0.188570482027	0.0338368097455
6	0.18762078295	0.0418914951166
7	0.184031803876	0.0479747915908
8	0.178234222296	0.053165050724
9	0.173044006405	0.0577342925973
10	0.169239688587	0.0629528662764
+	L	++

[10 rows x 3 columns]

('\nOverall RMSE: ', 1.062040776320665)

Per User RMSE (best)

+		+	+
user_id		rmse +	
1190	1	0.0262226963412	

[1 rows x 3 columns]

Per User RMSE (worst)

user_id	count	rmse
1102	5	2.34008470395

[1 rows x 3 columns]

Per Item RMSE (best)

+	+	++
title	count	rmse
+	+	++
Mummy's Ghost, The (1944)		0.00793184316609

[1 rows x 3 columns]

Per Item RMSE (worst)

+	+	++
title	count	rmse
+		++
Across the Sea of Time (1995)		2.29944664052

[1 rows x 3 columns]

In [144]: print rmse_results.viewkeys()
print rmse_results['rmse_by_item']

dict_keys(['rmse_by_user', 'precision_recall_overall', 'rmse_by_item', 'precision_recall_by_u
ser', 'rmse_overall'])

+	+	
title	count	rmse
Parent Trap, The (1998)	54	0.975727386839
Sneakers (1992)	220	0.942227855552
Man from Laramie, The (1955)	5	0.702016846559
Much Ado About Nothing (1993)	132	1.15290278113
X-Men (2000)	306	1.02087179202
Psycho (1998)	53	1.10291216465
Black Sabbath (Tre Volti D	2	0.902213868132
Boondock Saints, The (1999)	19	1.40181830033
Drop Dead Fred (1991)	60	1.00999418636
Phantasm III: Lord of the	14	1.04484528439
+	+	L

[3463 rows x 3 columns]

Note: Only the head of the SFrame is printed.

You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

```
In [145]: from matplotlib import pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
rmsevals=rmse_results['rmse_by_item']['rmse']
plt.hist(rmsevals, bins=20)
plt.xlabel('RMSE')
plt.ylabel('Count')
plt.title('RMSE by item')
plt.show()
```


In [142]: comparisonstruct = gl.compare(test,[item_item, user_item, tuned])

PROGRESS: Evaluate model M0

recommendations finished on 1000/6037 queries. users per second: 19740.6 recommendations finished on 2000/6037 queries. users per second: 23596 recommendations finished on 3000/6037 queries. users per second: 26298.5 recommendations finished on 4000/6037 queries. users per second: 28373.4 recommendations finished on 5000/6037 queries. users per second: 29426.8 recommendations finished on 6000/6037 queries. users per second: 29616.5

Precision and recall summary statistics by cutoff

+	+	++
cutoff	mean_precision	mean_recall
,	,	,,
1	0.432002650323	0.0210899733997
2	0.405747888024	0.0384558886512
3	0.386505438684	0.0538605096694
4	0.367069736624	0.0664353018696
5	0.352426702004	0.0788688855294
6	0.338413119099	0.0893152404291
7	0.32693627393	0.0992976216165
8	0.317044889846	0.10872502924
9	0.308873060571	0.118185556364
10	0.299569322511	0.126349246049

[10 rows x 3 columns]

PROGRESS: Evaluate model M1

recommendations finished on 1000/6037 queries. users per second: 5882.42 recommendations finished on 2000/6037 queries. users per second: 5971.59 recommendations finished on 3000/6037 queries. users per second: 5952.36 recommendations finished on 4000/6037 queries. users per second: 5991.64 recommendations finished on 5000/6037 queries. users per second: 6000.17 recommendations finished on 6000/6037 queries. users per second: 5858.88

Precision and recall summary statistics by cutoff

+	+	++
cutoff	mean_precision	mean_recall
1	0.115620341229	0.00395175487979
2	0.109325824085	0.00720194420416
3	0.103307382254	0.00993475861744
4	0.100588040417	0.012766008109
5	0.0973662415107	0.0153614683872
6	0.0951355529789	0.0180561728147
7	0.0928322960789	0.0205809938671
8	0.090359450058	0.0229492957761
9	0.0885097454586	0.0255601591297
10	0.0864667881398	0.0277278560888
+	+	++

[10 rows x 3 columns]

PROGRESS: Evaluate model M2

recommendations finished on 1000/6037 queries. users per second: 7497.94 recommendations finished on 2000/6037 queries. users per second: 7628.93 recommendations finished on 3000/6037 queries. users per second: 7661.07 recommendations finished on 4000/6037 queries. users per second: 7600.36 recommendations finished on 5000/6037 queries. users per second: 7650.4 recommendations finished on 6000/6037 queries. users per second: 7585.26

Precision and recall summary statistics by cutoff

cutoff	mean_precision	+ mean_recall
1	0.234719231406 0.205068742753 0.196676053227 0.191692893821 0.188570482027	0.00918385175136 0.0147712382536 0.020587220923 0.0272190362335 0.0338368097455
6 7 8 9 10	0.184031803876 0.178234222296 0.173044006405 0.169239688587	0.0418914951166 0.0479747915908 0.053165050724 0.0577342925973 0.0629528662764

[10 rows x 3 columns]

Model compare metric: precision_recall

0.1

0.2

0.3

0.4

Back to Top

4.3 Grid Search

[INFO] graphlab.deploy.job: Validating job.
[INFO] graphlab.deploy.job: Creating a LocalAsync environment called 'async'.
[INFO] graphlab.deploy.map_job: Validation complete. Job: 'Model-Parameter-Search-Aug-09-2017-23-07-1800000' ready for execution
[INFO] graphlab.deploy.map_job: Job: 'Model-Parameter-Search-Aug-09-2017-23-07-1800000' sched uled.
[INFO] graphlab.deploy.job: Validating job.
[INFO] graphlab.deploy.map_job: A job with name 'Model-Parameter-Search-Aug-09-2017-23-07-1800000-fle09'.
[INFO] graphlab.deploy.map_job: Validation complete. Job: 'Model-Parameter-Search-Aug-09-2017-23-07-1800000-fle09' ready for execution
[INFO] graphlab.deploy.map_job: Job: 'Model-Parameter-Search-Aug-09-2017-23-07-1800000-fle09' scheduled.

Out[48]:

model_id	item_id	linear_regularization	max_iterations	num_factors	num_sampled_negative_exan ples
1	title	0.001	50	12	8
0	title	0.001	25	32	4
3	title	0.001	25	8	8
2	title	0.001	50	16	4
4	title	0.001	25	12	4

regularization	target	user_id	training_precision@5	training_recall@5	training_rmse	validation
0.001	rating	user_id	0.451390728477	0.0210706980023	1.03693392809	(
0.001	rating	user_id	0.444834437086	0.0204716712727	1.08117400197	(
0.001	rating	user_id	0.460099337748	0.0215576169584	1.07826416323	(
0.001	rating	user_id	0.450927152318	0.0210438105479	1.06122767649	(
0.001	rating	user_id	0.448344370861	0.0215513867823	1.16327495325	(

validation_recall@5	validation_rmse		
0.0188589142706	1.03388054098		
0.0292013486135	1.07909429305		
0.0224720473503	1.07294212265		
0.020050006245	1.05586487914		
0.02549362349	1.15627797323		

[5 rows x 16 columns]

In [51]: models = job.get_models()
models

```
Out[51]: [Class
                                              : RankingFactorizationRecommender
           Schema
           User ID
                                              : user_id
           Item ID
                                              : title
           Target
                                             : rating
           Additional observation features : 7
           Additional Observation
User side features : []
: []
           Statistics
          Number of observations : 997128
Number of users : 6040
Number of items : 3705
           Number of items
                                             : 3705
           Training summary
                                              : 62.7761
           Training time
           Model Parameters
                                              : RankingFactorizationRecommender
           Model class
           num factors
                                              : 32
           binary_target
                                            : 0
                                           : 1
           side data factorization
           solver
                                            : auto
           nmf
                                              : 0
           max iterations
                                              : 25
           Regularization Settings
           -----
          regularization : 0.001
regularization_type : normal
linear_regularization : 0.001
ranking_regularization : 0.25
unobserved_rating_value : -1.7976
                                              : -1.79769313486e+308
           num_sampled_negative_examples : 4
ials_confidence_scaling_type : auto
           ials_confidence_scaling_factor : 1
           Optimization Settings
          sgd_trial_sample_minimum_size : 10000
           sgd_trial_sample_proportion : 0.125
step_size_decrease_rate : 0.75
           additional_iterations_if_unhealthy : 5
           adagrad_momentum_weighting : 0.9
           num_tempering_iterations
                                              : 4
           tempering regularization_start_value : 0.0
           track exact loss
                                             : 0,
           Class
                                              : RankingFactorizationRecommender
           Schema
           User ID
                                              : user id
           Item ID
                                            : title
           Target
                                              : rating
           Additional observation features : 7
          User side features : []
Item side features : []
           Statistics
           Number of observations : 997128
           Number of users
                                              : 6040
```

In [52]: comparisonstruct = gl.compare(test,models)
gl.show_comparison(comparisonstruct,models)

PROGRESS: Evaluate model M0

Precision and recall summary statistics by cutoff

cutoff	mean_precision	mean_recall
1	0.18	0.00595617466299
2	0.18	0.0118538111104
3	0.196666666667	0.0216574855281
4	0.1825	0.0257307618318
5	0.172	0.0292013486135
6	0.165	0.0321354184941
7	0.161428571429	0.0367856109295
8	0.15875	0.041730247363
9	0.16222222222	0.0492828703296
10	0.158	0.0543654122912
+	+	++

[10 rows x 3 columns]

PROGRESS: Evaluate model M1

Precision and recall summary statistics by cutoff $% \left(1\right) =\left(1\right) \left(1\right) \left($

+	+	++
cutoff	mean_precision	mean_recall
+	+	++
1	0.22	0.00686047280679
2	0.17	0.00924504718155
3	0.16	0.0136479229208
4	0.1475	0.0167700021864
5	0.136	0.0188589142706
6	0.136666666667	0.0222739168591
7	0.132857142857	0.0243012715791
8	0.12875	0.0286985007741
9	0.126666666667	0.0323092576461
10	0.125	0.035582393275
+	+	++

[10 rows x 3 columns]

PROGRESS: Evaluate model M2

Precision and recall summary statistics by cutoff

cutoff	cutoff mean_precision mean_rec	
1	0.22	0.00689446249268
2	0.165	0.00900465750424
3	0.166666666667	0.0130600887698
4	0.17	0.0182960823883
5	0.152	0.020050006245
6	0.148333333333	0.0246831764154
7	0.14	0.0267041325454
8	0.14125	0.0315136286224
9	0.13888888889	0.0363975232489
10	0.135	0.0397686485526
+	+	++

[10 rows x 3 columns]

PROGRESS: Evaluate model M3

Precision and recall summary statistics by cutoff

cutoff	mean_precision	+ mean_recall	
1	0.22	0.0068842823306	
2	0.175	0.00986638205553	
3	0.17	0.0129619831014	
4	0.165	0.019513770006	
5	0.154	0.0224720473503	
6	0.153333333333	0.0256970955614	
7	0.155714285714	0.0322689146934	
8	0.1575	0.0383768669241	
9	0.15777777778	0.0431455679715	
10	0.154	0.0470924652074	
+	+	++	

In [53]:	data.dtypes	
Out[53]:	user_id	int64
	movie_id	int64
	rating	int64
	timestamp	int64
	gender	object
	age	int64
	occupation	int64
	zip	object
	title	object
	genres	object
	dtype: objec	t

Back to Top

5. Deployment

Tn [] •		
TII [] •		

Back to Top

6. References

Wes McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, O'Reilly

Eric Larsson, 13. Recommendation Systems: Collaborative Filtering in Turi (formerly Dato, Formerly GraphLab), GitHub