Deep Learning for NLP

Lecture 7 – Word Embeddings 3 (Sentence Embeddings)

Dr. Steffen Eger steffen.eger@uni-bielefeld.de

Natural Language Learning Group (NLLG)

This lecture

- 1. Embeddings of sentences (or even documents)
- 2. (Problems with) Evaluation of Sentence Embeddings

Embedding of sentences

- Our methods so far only embedded words in a low dimensional dense space
- How about larger objects such as phrases, sentences, or even whole documents?
 - Would be cool if we could represent the meaning of a sentence in a low-dimensional space
 - Why?

Why sentence/document embeddings?

For clustering

- For retrieval
 - Given question, give me an answer
 - Given sentence, give me a similar sentence
 - Given sentence, give me a translated sentence

- As an alternative to sentence representations learned from word-level models (e.g. CNN)
 - Particularly, when task-specific training data is small

Sentence Embeddings: Naive approaches

Naïve approach number 1:

- Treat sentence as long word, predict surrounding sentences like in CBOW or SKIP-GRAM
 - The cat sat on the mat → The_cat_sat_on_the_mat
- Problems with this approach? Extreme data sparsity

Naïve approach number 2:

- Concatenate word embeddings
- Problems?
 - No fixed size representation
 - Sparseness

Sentence Embeddings: Naive approaches

Naïve approach number 3:

- Take some sort of mean (e.g. arithmetic mean of words in the sentences = centroid)
 - Embedding of "cat sat on the mat" is the average embedding of all of words in the sentence
 - Problems with this:
 - Half of all words in a sentence are function words ("noise") which shouldn't contribute a lot
 - Have to discard high frequency words (e.g. use stop word list or determine them by counting)
 - Or even better: weight them down via, e.g., inverse document frequency
 - Word order is ignored. Embedding for "cat sat on the mat" and "mat cat sat on the" are the same
 - However, the mean (weighted) word vector is often a reasonable baseline

Sentence Embeddings

- To outline more sophisticated approaches, we briefly need to peek ahead
- And introduce so-called encoder-decoder models, discussed in more detail in Lecture 9
 - To understand these, we first need to understand recurrent neural nets (Lecture 8)

Excursion 1: RNNs

We want to do POS tagging

- That is, label each token in a sentence with its part-of-speech (= word class)
- I can see the cat

We want to do POS tagging

 That is, label each token in a sentence with its part-of-speech (= word class)

I can see the cat

can

It's better to include context

see

We want to do POS tagging

That is, label each token in a sentence with its part-of-speech (= word class)

I can see the cat

It's better to include more context

SOS

can

see

that

We want to do POS tagging

- That is, label each token in a sentence with its part-of-speech (= word class)
- I can see the cat
- Problem 1: How much context?
- Problem 2: We cannot simply add more and more context because
 - We have many more parameters then
 - → Overfitting
 - → Speed

We want to do POS tagging

- That is, label each token in a sentence with its part-of-speech (= word class)
- I can see the cat
- We want a different architecture
 - with infinite context size
 - that has few parameters
 - makes a prediction at each time step

Usually we write y instead of h

Universität Bielefeld

Math

Universität Bielefeld

Math:
$$s_t = f(x_t U + s_{t-1} W + b)$$

 $h_t = \operatorname{softmax}(s_t V + c)$

Benefits

- Infinite influence from the past in theory
 - If you make this bidirectional, you also have infinite influence from the future
- Fewer parameters, via parameter sharing and "small" matrices U, V, W

- Input: "A rusty can"
- Embeddings: $x_1 = (1,0,0), x_2 = (1,1,2), x_3 = (1,-1,1)$
- Truth: DET,ADJ,NOUN, encoded as 1-hot vectors (in a 4-d label space)
- Activations: ReLU for hidden layer, Softmax for output layer

Initialization:

$$U = \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 0.5 & 1 \end{pmatrix}$$

- b = c =zero-vectors of appropriate size
- $h_0 = (0,0)$

$$h_1 = \sigma_H(x_1U + h_0W + b)$$

$$h_1 = (1,1)$$

Universität Bielefeld

$$h_2 = \sigma_H(x_2U + h_1W + b)$$

 $h_2 = (5,4)$

$$h_3 = \sigma_H(x_3U + h_2W + b)$$

 $h_3 = (3.5,7)$

Universität Bielefeld

$$\boldsymbol{y}_t = \sigma_Y(\boldsymbol{h}_t\boldsymbol{V} + \boldsymbol{c})$$

Universität Bielefeld

Excursion 2: Encoder-Decoder Models

RNNs

A recurrent neural net (RNN) is a MLP with additional feedback loop

RNNs

A recurrent neural net (RNN) is a MLP with additional feedback loop

RNNs

- The feedback loop can capture information from "previous time steps"
- Thus, RNNs are really sequential models they model variablelength sequences
- An RNN "unrolled in time":

From RNNs to Encoder-Decoder Models

- Encoder-Decoder Models: We stack two RNNs together
- And make some further design changes

Encoder-Decoder models

- Encoder-Decoder Models: We stack two RNNs together
- And make some further design changes

Encoder-Decoder models

- Encoder-Decoder Models: We stack two RNNs together
- The last hidden layer in the input is taken as representation of the input

Application of Encoder-Decoder models

- Encoder-Decoder Models are typically emloyed in Machine Translation
- E.g. Translate a German sentence into an English sentence

Back to SE: Complex/costly methods

Idea

- For sentence embeddings, we can exactly take such encoderdecoder models
- E.g. take an encoder-decoder model, let the input sequence equal the output sequence, and take the final hidden vector on the input side to be the sentence representation
 - Such an approach is sometimes called an auto-encoder

Sequential Denoising Autoencoders

- This is the idea of Hill et al. (2015): SDAE
- They in addition do something called denoising they corrupt the input a little

Skip-thought vectors

- Another possibility is to predict the context sentences, similarly as in Skip-Gram
- This is the idea of Kiros et al. (2015): **Skip-Thought Vectors**

That's the representation we're interested in

| got back home <eos>
| could see the cat on the steps | This was strange <eos>
| This was strange | cos> | This was strange | cos> | cos

- One can of course easily extend these ideas
 - E.g. predict the current, previous and next sentence, etc.
- What is the difference to our naïve idea number 1?

Comparison: Skip-thoughts vs. SDAE

 Skip-thoughts requires text in context – e.g. a novel where preceding and following sentences are coherent

- SDAE only requires individual sentences without context
 - Could be applied easier to, e.g., Twitter etc.
 - Can make use of more data

InferSent

- It is supervised rather than unsupervised as the two methods before
- It trains on high-quality data (Stanford Natural Language Inference Data - SNLI)

Paper: Supervised Learning of Universal Sentence Representations from Natural Language
 Inference Data

InferSent – SNLI Training data

SNLI Corpus

Stanford Natural Language Inference corpus

Premise: Girl in a red coat, blue head wrap and jeans is

making a snow angel.

Hypothesis: A girl outside plays in the snow.

Label: entailment

570k premise/hypothesis/label triplets

Labels: "entailment", "contradiction", "neutral"

http://nlp.stanford.edu/projects/snli/

InferSent – SNLI Training data

Figure 1: Generic NLI training scheme.

InferSent – General Outline

Figure 1: Generic NLI training scheme.

InferSent – Computing the sentence embedding

Universität Bielefeld

- They use an LSTM, an RNN variant (see Lecture 8)
- Their LSTM is bidirectional

Figure 2: Bi-LSTM max-pooling network.

Back to SE: Simple/cheap methods

Why simple?

- The previous models were costly, because at test time one would have to run a new sentence through an RNN to embed
 - There are many matrix-vector multiplications involved
 - May be slow and memory intensive
- Now we discuss simpler techniques, especially at test time

Concatenated Power Mean Embeddings

(https://github.com/UKPLab/arxiv2018-xling-sentence-embeddings)

Universität Bielefeld

- Proposed by Rückle et al. (2018)
- 1st Idea is to generalize the average to the so-called power mean
 - Power mean of numbers x_1, \dots, x_n

•
$$M_p(x_1, \dots, x_n) = \left(\frac{1}{n}\sum_i x_i^p\right)^{1/p}$$

- $p = -\infty$: $M_p = \min(x_1, ..., x_n)$
- $p = +\infty$: $M_p = \max(x_1, ..., x_n)$
- p = 1:?
- p = 2: quadratic mean
- p=0: geometric mean
- •

Concatenated Power Mean Embeddings

- 1st Idea is to generalize the average to the so-called power mean
 - Now instead of taking a per-dimension standard average
 - One takes a per-dimension power mean average
 - Concatenate different power mean representations
 - Why?
- 2nd Idea is to concatenate diverse averaged word embeddings
 - Such as Glove, Word2Vec,....
 - Why?

Sentence Embedding

- Described in Le and Mikolov (2014)
- The idea is to assign to a paragraph (one sentence or several) a vector such that we can predict words in a text
- This model learns word vectors and paragraph vectors at the same time
- Very similar to CBOW and Skip-Gram model, but with an id for each sentence/paragraph

Universität Bielefeld

Figure 3. Distributed Bag of Words version of paragraph vectors. In this version, the paragraph vector is trained to predict the words in a small window.

"The paragraph vector is shared across all contexts generated from the same paragraph but not across paragraphs. The word vector matrix [...], however, is shared across paragraphs"

SBERT

- Sentence BERT
- Fine-tunes BERT on NLI
- Averages BERT embeddings as sentence representation
- Very easy to use software
- Solid results
- Check it out
 - https://www.sbert.net

Multlingual SBERT

- SBERT across multiple languages
- Idea:
 - Use parallel data to map monolingual representations across languages

Figure 1: Given parallel data (e.g. English and German), train the student model such that the produced vectors for the English and German sentences are close to the teacher English sentence vector.

This lecture

- 1. Embeddings of sentences (or even documents)
- 2. (Problems with) Evaluation of Sentence Embeddings

Evaluation of Sentence Embeddings

As for word embeddings

- Extrinsic
 - Feed in to some task
 - Usually apply simple classifier on top of embeddings
 - E.g. logistic regression
- Intrinsic
 - Direct introspection of embeddings

Extrinsic evaluation - Scheme

- A) Take your sentence embedding model
- B) Embed sentences in an extrinsic task
- C) Train classifier on embedded sentences
- D) Repeat with different sentence embedding model and compare performances

Extrinsic tasks

name	N	task	C	examples
MR	11k	sentiment (movies)	2	"Too slow for a younger crowd, too shallow for an older one." (neg)
CR	4k	product reviews	2	"We tried it out christmas night and it worked great ." (pos)
SUBJ	10k	subjectivity/objectivity	2	"A movie that doesn't aim too high, but doesn't need to." (subj)
MPQA	11k	opinion polarity	2	"don't want"; "would like to tell"; (neg, pos)
TREC	6k	question-type	6	"What are the twin cities?" (LOC:city)
SST	70k	sentiment (movies)	2	"Audrey Tautou has a knack for picking roles that magnify her []" (pos)

Table 1: Classification tasks. C is the number of class and N is the number of samples.

Intrinsic evaluation - Scheme

- A) Take your sentence embedding model
- B) Embed sentence pairs in an intrinsic task
- C) Use cosine to measure distance between pairs
- D) Correlate with human judgments

Intrinsic tasks

name	task	N	premise	hypothesis	label
SICK-R	STS	10k	"A man is singing a song and play-	"A man is opening a package that	1.6
bick K	515	TOK	ing the guitar"	contains headphones"	1.0
STS14	STS	4.5k	"Liquid ammonia leak kills 15 in		4.6
			Shanghai"	15 in Shanghai"	

Table 2: **Natural Language Inference and Semantic Textual Similarity tasks**. NLI labels are contradiction, neutral and entailment. STS labels are scores between 0 and 5.

Problems with Evaluation of Sentence (and Word!) Embeddings

- (1) Researchers come up with models of vastly different sizes
 - 300d, 600d, 700d, 3600d, 4096d, 4800d
 - Comparison is unfair
- (2) Different models trained on different datasets (Wikipedia, common crawl, Toronto Book corpus, ...)
- (3) Which classifier to use on top of embeddings in extrinsic tasks?

Sizes

Universität Bielefeld

Wieting and Kiela (2019), ICLR

Eger et al. (2019), Problems with Eval of Sentence Emb., Repl4NLP

Figure 1: Avg. score across 6 transfer tasks for different sizes of Word2Vec embeddings vs. scores of other encoders (with constant embedding sizes as given in Table 1). 'Word2Vec Normalized' is discussed below.

Introspection of Sentence Embeddings

Linguistic Probing Tasks

- What linguistic information is captured in embeddings?
 - Sentence length
 - Word order
 - Whether a certain word is in the sentence
 - Agreement between subject and verb (she likes cats vs. she like cats)
- Extrinsic and intrinsic evaluation give limited insights
 - Because they are complex tasks and may require several knowledge nuggets
- Probing tasks introspect embeddings → help to interpret them

Table 4: Linguistic probing tasks description and samples.

Task	Description	Example	Output
Bigram Shift (BShift)	Whether two words (to- kens) in a sentence have been inverted	This is my Eve Christ- mas.	Inverted
Coordination Inversion (CoordInv)	Sentences comprised of two coordinate clauses. Detect whether clauses are inverted	I returned to my work , and Lisa headed for her office .	Inverted
Object Number (ObjNum)	Number of the direct ob- ject in the main clause (singular and plural)	He received the 200 points.	NNS (Plural)
Sentence Length (SentLen)	Predict the sentence length among 6 classes, which are length intervals	I can 't wait to show you and Mr. Taylor .	9 – 12 words
Semantic Odd Man Out (SOMO)	Random noun or verb re- placed in the sentence by another noun or verb. De- tect whether the sentence has been modified	Tomas surmised as well .	Changed
0.11 - 57 - 1	And the second of the second	ment of the second	er i

Subject Number (SubjNum)	Number of the subject in the main clause (singular and plural)	If there was ever a time to let loose, this vacation would have to be it.	Singular	
Past Present (Tense)	Whether the main verb in the sentence is in the past or present tense	She smiled at him, her eyes alight with love.	Present	
Top-Constituent (TopConst)	Classification task, where the classes are given by the 19 most common top- constituent sequences in the corpus	Did he buy anything from Troy ?	VBD_NP_VP_	
Depth of Syntactic Tree (TreeDepth)	Predict the maximum depth of the syntactic tree of the sentence	The leaves were in vari- ous of stages of life .	10	
Word Content (WC)	Predict which of the tar- get words (among 1000) appear in the sentence	She eyed him skepti- cally.	eyed	

References

- Hill, F., Cho, K. & Korhonen, A.: Learning Distributed Representations of Sentences from Unlabelled Data, in Proceedings of NAACL-HLT, 2016
- Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R.S., Torralba, A., Urtasun, R. & Fidler, S.: Skip-Thought Vectors, in Advances in Neural Information Processing Systems 28, 2015
- Le, Q. & Mikolov, T.: Distributed representations of sentences and documents, in *Proceedings of the 31st International Conference on Machine Learning*, 2014
- Kenter, T., Borisov, A. & Rijke, M.: Siamese CBOW: Optimizing Word Embeddings for Sentence Representations, in *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics*, 2016
- Newman, M.E.J.: Power laws, Pareto distributions and Zipf's law, in Contemporary Physics, 2005
- Xu, Y. & Kemp, C.: A Computational Evaluation of Two Laws of Semantic Change, in CogSci, 2015
- Hamilton, W.L., Leskovec, J. & Jurafsky, D.: Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change, in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016
- Eger, S. & Mehler, A.: On the Linearity of Semantic Change: Investigating Meaning Variation via Dynamic Graph Models, in *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics*, 2016
- Bamman, D., Dyer, C. & Smith, N.A.: Distributed Representations of Geographically Situated Language, in Proceedings of d An nual Meeting of the Association for Computational Linguistics, 2015
- Asgari, E. & Mofrad, M.R.K.: Comparing Fifty Natural Languages and Twelve Genetic Languages Using Word Embedding Language Divergence (WELD) as a Quantitative Measure of Language Distance, in *Proceedings of the* Workshop on Multilingual and Cross-lingual Methods in NLP, 2016
- Eger, S., Hoenen, A. & Mehler, A.: Language classification from bilingual word embedding graphs, in *Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers*, 2016b
- Hamilton et al.: Cultural Shift or Linguistic Drift? Comparing Two Computational Measures of Semantic Change, EMNLP, 2016b

References

- Pagliardini et al., Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features, 2018
- Arora et al., A SIMPLE BUT TOUGH-TO-BEAT BASELINE FOR SENTENCE EMBEDDINGS, 2017

