Ordnungsrelationen

Definition 1:

- a) Eine Relation $T \subseteq M \times M$ heißt Ordnungsrelation auf M, wenn sie reflexiv, antisymmetrisch und transitiv ist.
- b) Eine Ordnungsrelation heißt vollständig oder linear, wenn für alle $x, y \in M$ $(x,y) \in T \lor (y,x) \in T$ gilt.

Definition 2:

- a) Eine Relation $T \subseteq M \times M$ heißt strikte Ordnungsrelation auf M, wenn sie asymmetrisch und transitiv ist.
- b) Eine strikte Ordnungsrelation heißt vollständig, wenn für alle $x, y \in M$ mit $x \neq y$ gilt: $(x,y) \in T \lor (y,x) \in T$.

Achtung: In der Literatur wird manchmal eine Relation im Sinne der Definition 1 als Halbordnung und nur eine vollständige Ordnung als Ordnungsrelation bezeichnet.

Zu jeder Ordnung T_1 auf M gehört die strikte Ordnung $T_2 = T_1 \setminus I_M$ (dabei ist I_M die Identitätsrelation). Umgekehrt ist $T_1 = T_2 \cup I_M$ die zu einer strikten Ordnung T_2 gehörende Ordnungsrelation. (T_1 ist die reflexive Hülle von T_2 .)

Beispiele: 1) Es sei $M = \mathbb{R}$. $T \subseteq \mathbb{R} \times \mathbb{R}$ sei folgende Relation. $(x,y) \in T$ genau dann, wenn gilt: $x \le y$. T bzw. $y \le y$ ist eine vollständige Ordnung auf \mathbb{R} .

- 2) Die Relation " < " ist die zu " \leq " gehörende vollständige strikte Ordnung auf \mathbb{R} .
- 3) E sei eine Menge. $M = \mathcal{P}(E)$ sei die Potenzmenge von E, d.h. die Menge aller Teilmengen von E. Die Relation $T \subseteq M \times M$ mit $(A,B) \in T$ genau dann, wenn $A \subseteq B$ gilt (Inklusion), ist eine Ordnungsrelation auf $\mathcal{P}(E)$.

Bemerkung: Die Symbole ≤ bzw. < können anstelle der Paarschreibweise auch bei beliebigen Ordnungen bzw. strikten Ordnungen verwendet werden.

Definition 3: T sei eine Ordnungsrelation auf einer Menge M. Weiter sei A eine Teilmenge von M.

- a) Ein Element $a \in M$ heißt obere Schranke von A, wenn $x \le a$ für alle $x \in A$ gilt.
- b) Die Menge B der oberen Schranken sei nichtleer. Falls es eine kleinste obere Schranke s von A gibt, d.h. $\exists_{s \in B} \forall_{b \in B} \ s \leq b$, so heißt diese das Supremum von A. Bezeichnung: $s = \sup A$.
- c) Gilt $s \in A$ (mit $s = \sup A$), so heißt s das Maximum von A: $s = \max A$ (= $\sup A$).
- d) Ein Element $m \in A$ heißt maximal, wenn es kein größeres Element in A gibt, d.h. $\forall_{x \in A} (m \le x \Rightarrow x = m)$.

Völlig analog ist die folgende Definition.

Definition 4: T sei eine Ordnungsrelation auf einer Menge M. Weiter sei A eine Teilmenge von M.

a) Ein Element $a \in M$ heißt untere Schranke von A, wenn $a \le x$ für alle $x \in A$ gilt.

- b) Die Menge C der unteren Schranken sei nichtleer. Falls es eine größte untere Schranke s von A gibt, d.h. $\exists_{s \in C} \forall_{c \in C} \ c \leq s$, so heißt diese das Infimum von A. Bezeichnung: $s = \inf A$.
- c) Gilt $s \in A$ (mit $s = \inf A$), so heißt s das Minimum von A: $s = \min A$ (= $\inf A$).
- d) Ein Element $m \in A$ heißt minimal, wenn es kein kleineres Element in A gibt, d.h. $\forall_{x \in A} (x \le m \Rightarrow x = m)$.

Die Begriffe aus den Definitionen 3 und 4 lassen sich auch für strikte Ordnungen S verwenden, wenn anstelle von S die reflexive Hülle $T = S \cup I_M$ verwendet wird.

Die graphische Darstellung einer Ordnungsrelation T (auch einer strikten) lässt sich im endlichen Fall durch das HASSE-Diagramm vereinfachen. Dabei bedeutet $a \rightarrow b$: $(a, b) \in T$ und es gibt kein Zwischenglied $c \neq a$ und $c \neq b$ mit $(a, c) \in T \land (c, b) \in T$, d.h., a ist unmittelbarer Vorgänger von b bzw. b ist unmittelbarer Nachfolger von a. Die transitiv-reflexive Hülle (bzw. die transitive Hülle im strikten Fall) der durch das HASSE-Diagramm erklärten Teilrelation $U \subseteq T$ ist dann die ursprüngliche Relation T.

Beispiel: Es sei $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ eine Menge von Arbeitsgängen. Die Arbeitsgänge $\{4, 5, 6, 7\}$ =: B werden von einer Subfirma durchgeführt. Für die Reihenfolge gilt: 1 und 2 müssen vor 3, 3 vor 4 und 5, 4 vor 7, 5 vor 6, 6 vor 7 und 9 sowie 7 vor 8 ausgeführt werden. Durch diese Forderungen wird die Relation $U = \{(1, 3), (2, 3), (3, 4), (3, 5), (4, 7), (5, 6), (6, 7), (6, 9), (7, 8)\} \subseteq A \times A$ erklärt. Die

transitive Hülle T:=U⁺von U stellt dann eine strikte Ordnung dar. (x, y)∈T bedeutet, dass der Arbeitsgang x vor y stattfinden muss. Ermittlung der transitiven Hülle:

$$U^{2} = U \circ U = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 7), (3, 6), (4, 8), (5, 7), (5, 9), (6, 8)\},$$

$$U^{3} = U \circ U^{2} = \{(1, 7), (1, 6), (2, 7), (2, 6), (3, 8), (3, 7), (3, 9), (5, 8)\},$$

$$U^{4} = U \circ U^{3} = \{(1, 8), (1, 7), (1, 9), (2, 8), (2, 7), (2, 9), (3, 8)\},$$

$$U^{5} = U \circ U^{4} = \{(1, 8), (2, 8)\}, U^{6} = U \circ U^{5} = \Phi \implies T = U^{+} = \bigcup_{i=1}^{5} U^{i}$$

(Man beachte bei der Bildung der Vereinigung, dass die farbig markierten Elemente nur einmal gezählt werden dürfen!)

HASSE-Diagramm

Obere Schranken von B: 7 und 8, sup B = 7 (kleinste obere Schranke = Supremum), wegen $7 \in B$ gilt max $B = \sup B = 7$. Damit ist 7 auch das einzige maximale Element von B.

Untere Schranken von B: 1, 2 und 3, inf B = 3 (größte untere Schranke = Infimum), wegen 3 ∉ B besitzt B kein Minimum! Minimale Elemente von B sind 4 und 5, da es keine kleineren Elemente gibt!