Particle spectrograph

Wave operator and propagator

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}=0$	1
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} = $	$0 \partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_1^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} = $	$= 0 \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2^{+}}^{\#1\alpha\beta}$ - 2 <i>i</i> k $\sigma_{2^{+}}^{\#1\alpha\beta}$ =	$= 0 - i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^X \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{X} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}{}_{\delta}) == 0$	
Total constraints/g	value generators:	16

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{lphaeta_{\lambda}}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2
•	-	-	-

0

0

0

0

0

2 i k

 $\frac{1}{t_1+2k^2t_1}$

 $\frac{i \sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$

 $\frac{-4 k^4 r_5 + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$

 $\sigma_{1^{+}\,lphaeta}^{\#1}$

 $\frac{2(t_1+t_2)}{3t_1t_2+2k^2r_5(t_1+t_2)}$

 $\frac{\sqrt{2} (t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$

 $\frac{i \sqrt{2} k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$

0

0

0

0

 $\sigma_{1+}^{\#1}\dagger^{\alpha\beta}$

 $\sigma_{1}^{\#1} + \alpha$

 $\sigma_{1}^{#2} \dagger^{\alpha}$

 $\tau_1^{\#2} \uparrow^{\alpha}$

) 	$\omega^{\alpha l \theta} + 2$ $t_2) \partial^{\theta} f^{\alpha l}$ $\partial^{\theta} \omega^{\alpha \beta l} +$	$\frac{1}{3}\partial_{\kappa}\omega_{\theta}^{\kappa}$, $\frac{1}{3}$	$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{\imath}kt_1$	
	$\partial^{\theta} f^{\alpha l} + 2 (t_1 + t_2) \omega_{\alpha l \theta} (\omega^{\alpha l \theta} + 2)$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$ $((t_1 - 2t_2) \omega^{\alpha l \theta} + 2 (2t_1 - t_2) \partial^{\theta} f^{\alpha l})$	$\int_{0}^{1} \left(\frac{x}{r} \right)^{\alpha} d^{\alpha l t}$ $\int_{0}^{1} \left[\frac{x}{r}, \frac{y}{r}, \frac{z}{r} \right] d^{\alpha l t}$	$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\overline{l}k(t_1+t_2)$	$\frac{1}{3}k^{2}(t_{1}+t_{2})$	0	0	0	0	
	$t_{2} \partial_{\theta} f_{1\alpha} \partial^{\theta} f^{\alpha \prime} + 2 (t_{1} + t_{2}) \omega_{\alpha \prime \theta} (\omega^{\alpha \prime \theta} + 2 2 2 \omega_{\alpha \prime \theta} (\omega^{\alpha \prime \theta} + 2 2 2 \omega_{\alpha \prime \theta} (\omega^{\alpha \prime \theta} + 2 2 2 \omega_{\alpha \prime \theta} ((t_{1} - 2 t_{2}) \omega^{\alpha \prime \theta} + 2 (2 t_{1} - t_{2}) \partial^{\theta} f^{\alpha \prime})$ $8 r_{2} \partial_{\beta} \omega_{\alpha \prime \theta} \partial^{\theta} \omega^{\alpha \beta \prime} - 4 r_{2} \partial_{\beta} \omega_{\alpha \theta \prime} \partial^{\theta} \omega^{\alpha \beta \prime} + 4 r_{2} \partial_{\beta} \omega_{\alpha \beta \prime} \partial^{\theta} \omega^{\alpha \beta \prime} + 4 r_{2} \partial_{\beta} \omega_{\alpha \beta \prime} \partial^{\theta} \omega^{\alpha \beta \prime} + 6 r_{2} \partial_{\theta} \omega_{\alpha \prime \beta} \partial^{\theta} \omega^{\alpha \beta \prime} + 6 r_{2} \partial_{\theta} \omega^{\alpha \prime} \partial^{\theta} \omega^{\alpha \beta \prime} + 6 r_{2} \partial_{\theta} \omega^{\alpha \prime} \partial^{\theta} \omega^{\alpha \beta \prime} \partial^{\phi} \omega^{\alpha \beta \prime} \partial^$	$12 r_5 \partial^{\theta} \omega^{\alpha'}_{\alpha} \partial_{\kappa} \omega^{\kappa}_{j} + 6 r_5 \partial_{\alpha} \omega^{\alpha'\theta} \partial_{\kappa} \omega^{\kappa}_{\theta', j} - 12 r_5 \partial^{\theta} \omega^{\alpha'}_{\alpha} \partial_{\kappa} \omega^{\kappa}_{\theta', j}) [t, x, y, z] dz dy dx$	$\omega_{1}^{\#2}_{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0	
•	$ \begin{array}{c} t_2 \partial_{\theta} \\ 2 \omega_{\varphi} \\ 8 r_2 \\ 4 r_2 \\ 2 r_2 \\ 0 \theta_{\theta} \end{array} $	12 r. 12 r.	$\omega_{1}^{\#1}_{\alpha\beta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0	
				$\omega_{1}^{\#1} + ^{\alpha \beta}$	$\omega_1^{\#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$	_
	$\sigma_{1^{+}lphaeta}^{\#2}$		#1 L ⁺ αβ		$\sigma_1^{\scriptscriptstyle +}$	#1 - α	C	$J_{1}^{\#2}\alpha$	1	#1 1 α	$\tau_{1}^{\#2}$
	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1t_2 + 2k^2r_5(t_1 + t_2))}$	$\frac{i \sqrt{2} k}{(1+k^2)(3t_1t_2)}$	$\frac{(t_1-2t_2)}{+2k^2r_5}$	$t_1+t_2))$		0		0		0	0
	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{i k (6 k^2)}{(1+k^2)^2 (3 t_1 t_2)}$	5+t ₁ +4t ₂ 2+2k ² r ₅			0		0		0	0
	$-\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1+k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 (6 k^2)}{(1+k^2)^2 (3 t_1 t_2)}$	$t_5 + t_1 + 4t_2$ $t_2 + 2k^2r_5$	$\frac{(t_1+t_2)}{(t_1+t_2)}$		0		0		0	0
	0		0			0	${t_1}$	$\frac{\sqrt{2}}{-2 k^2 t_1}$		0	$\frac{2ik}{t_1+2k^2t_1}$
	0		0		$\frac{1}{t_1+2}$	$\frac{\sqrt{2}}{2k^2t_1}$	$\frac{-2 k}{(t_1 +$	$\frac{2}{r_5 + t_1}$ $2 k^2 t_1$	2	0	$-\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$
ď											

 ikt_1

 $\frac{t_1}{\sqrt{2}}$

0

0

0

0

0

0

0

0

0 0

0 0

0

 $\omega_{1}^{\#2}{}_{\alpha}f_{1}^{\#1}{}_{\alpha}f_{1}^{\#2}{}_{\alpha}$

0

0

0

Massive and massless spectra

Massive particle					
Pole residue: $\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$					
Polarisations:	3				
Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$				
Spin:	1				
Parity:	Even				

? $J^{P} = 0^{-}$? ?
·

Massive particle					
Pole residue: $-\frac{1}{r_2} > 0$					
Polarisations:	1				
Square mass:	$-\frac{t_2}{r_2} > 0$				
Spin:	0				
Parity:	Odd				

Unitarity conditions

 $r_2 < 0 \&\& r_5 > 0 \&\& t_1 < 0 \&\& t_2 > -t_1$