CLPL3b: Creating Morphological Analyzers

Tafseer Ahmed May 2020

Plan

• Finite State Transducer

How to use Foma

Modeling Urdu Noun

Finite State Transduce

Why Finite State Approach?

- Finite state systems are mathematically well-understood, elegant, flexible.
- Finite state systems are computationally efficient.
- Finite state systems are inherently bidirectional.

A simple FST of nouns

Some Terms

- Lexical (upper) form
- Surface (down) form

```
Lexical: s u n +N +PL
```

Surface: s u n s

Lexical: f o x +N +PL

Surface: f o x e s

Two alternate approaches

There are two alternate approaches for the creation of FST for morphological analysis/generation.

- Parallel constraint approach
 - Two level morphology e.g. PC-Kimmo

- Sequential constraint approach
 - Cascade rules e.g. XFST and FOMA

Tools for sequential FST

XFST: Xerox Finite State Transducer
 used by PARallel GRAMmmer (Pargram) project.

• **FOMA**: Open source equivalent of XFST

https://fomafst.github.io/

https://code.google.com/archive/p/foma/wikis/MorphologicalAnalysisTutorial.wiki

Foma

A simple FST of nouns

Foma Rules

- Matching Rules
- Replacement Rules

Regex (REGular EXpression)

regex a+;

down

CTRL+D

Matching Rules

```
regex a*;
regex cat ;
regex c a t;

    regex c a [t|b];
```

regex c a ?;

```
foma[0]: regex a*;
197 bytes. 1 state, 1 arc, Cyclic.
foma[1]: down aa
aa
foma[1]: down b
foma[1]:
foma[1]: regex cat ;
184 bytes. 2 states, 1 arc, 1 path.
foma[2]: down cat
cat
foma[2]: down cab
???
foma[2]:
foma[2]: regex c a t ;
273 bytes. 4 states, 3 arcs, 1 path.
foma[3]:
foma[3]: regex c a [t¦b] ;
303 bytes. 4 states, 4 arcs, 2 paths.
foma[4]: down cat
cat
foma[4]: down cab
cab
foma[4]: down cap
foma[4]:
foma[4]: regex c a ? ;
323 bytes. 4 states, 5 arcs, 3 paths.
foma[5]: down cat
cat
foma[5]: down cap
cap
foma[5]: _
```

Matching Rules

cat vs c a t

Practice Questions

give Regex for the following

• The words start with b and end at k

• Four letter words that start with b or c and ends at k

Days of the week

Practice Questions

```
foma[6]: regex b ?* k ;
339 bytes. 3 states, 7 arcs, Cyclic.
foma[7]: down book
book
foma[7]:
     [7]: regex [blc] ? ? k
133 bytes. 5 states, 11 arcs, 32 paths.
 oma[8]: down book
book
foma[8]: down cook
cook
 oma[8]: down baeik
oma[8]:
 oma[8]:
         regex [monlfrilsun]day;
    bytes. 10 states, 11 arcs, 3 paths.
          down monday
monday
foma[9]: print lowe
monday
friday
```

Matching Methods

Regex

regex

Wordlist

read text

Lexc

read lexc

read text filename

```
foma[12]: read text C:/fomacode/days.txt
606 bytes. 15 states, 17 arcs, 4 paths.
foma[13]: print lower-words
wednesday
sunday
monday
friday
```

Lexc (LEXical Compiler)

```
LEXICON Root
mon SUFF;
wednes SUFF;
fri SUFF;
sun SUFF;
LEXICON SUFF
day #;
```

```
foma[14]: read lexc C:/fomacode/days_c.txt
Root...4, SUFF...1
Building lexicon...
Determinizing...
Minimizing...
Done!
606 bytes. 15 states, 17 arcs, 4 paths.
foma[15]: print lower-words
sunday
friday
wednesday
monday__
```

Lower and Upper Form

- regex c:k a:e t:T;
 - down
 - up

regex [c a t]:[k e T];

regex [c a t]:[b i l l i];

Lower and Upper Form

```
foma[15]: regex [c a t]:[b i l l i];
347 bytes. 6 states, 5 arcs, 1 path.
foma[16]: down cat
billi
foma[16]: up billi
cat
foma[16]: up cat
???
```

Replacement Rules

```
    regex c -> k;
    regex c -> k || _ [a|o];
```

```
foma[16]: regex c -> k || _ [alo];
478 bytes. 3 states, 12 arcs, Cyclic.
foma[17]: down catch
katch
foma[17]: down conference
konference
```

Combining the automata

- Compose
- Union
- Intersection
- Difference
- Priority Union
-

Modeling Urdu Noun

Form/Case	Number	Gender	
Nominal	Singular	Masculine	لڑکا آیا
Nominal	Plural	Masculine	دو لڑکے آئے
Oblique	Singular	Masculine	لڑکے نے کہا
Oblique	Plural	Masculine	دو لڑکوں نے کہا

Form/Case	Number	Gender	
Nominal	Singular	Masculine	سیب گرا
Nominal	Plural	Masculine	دو سیب گر ہے
Oblique	Singular	Masculine	سیب کو گرایا
Oblique	Plural	Masculine	دو سیبوں کو گرایا

Case/Form	Number	Gender	
Nominal	Singular	Feminine	لڑکی آئی
Nominal	Plural	Feminine	دو لڑکیاں آئیں
Oblique	Singular	Feminine	لڑکی نے کہا
Oblique	Plural	Feminine	دو لڑکیوں نے کہا

Case/Form	Number	Gender	
Nominal	Singular	Feminine	عورت آئی
Nominal	Plural	Feminine	دو عورتیں آئیں
Oblique	Singular	Feminine	عورت نے کہا
Oblique	Plural	Feminine	دو عورتوں نے کہا

Lexc (LEXical Compiler)

```
LEXICON Root
mon SUFF;
wednes SUFF;
fri SUFF;
sun SUFF;
LEXICON SUFF
day #;
```

```
foma[14]: read lexc C:/fomacode/days_c.txt
Root...4, SUFF...1
Building lexicon...
Determinizing...
Minimizing...
Done!
606 bytes. 15 states, 17 arcs, 4 paths.
foma[15]: print lower-words
sunday
friday
wednesday
monday__
```

```
Multichar Symbols +N +SG +PL +NOM +OBL
LEXICON Root
Noun ;
LEXICON Noun
laRk NMA;
laRkI NFI;
kitAb NF;
mEz NF;
sEb NM:
LEXICON NM
+SG+NOM: 0 #;
+SG+OBL:0
+PL+NOM: 0 #;
+PL+OBL:ON
LEXICON NF
+SG+NOM: 0
            # ;
+SG+OBL:0
            # ;
+PL+NOM: EN
+PL+OBL:ON
LEXICON NMA
+SG+NOM: A
            #;
```

```
foma[20]: read lexc C:/fomacode/urdu2.lex
Root...1, Noun...5, NM...4, NF...4, NMA...4, NFI...4
Building lexicon...
Determinizing...
Minimizing...
Done!
1019 bytes. 22 states, 35 arcs, 20 paths.
foma[21]: down laRkON
???
foma[21]: up laRkON
 aRk+PL+0BL
foma[21]: up laRkE
 aRk+PL+NOM
laRk+SG+0BL
foma[21]: down laRkI+PL+NOM
foma[21]: down laRkI+PL+OBL
 aRkION
foma[21]: print lower-words
kitAbON
kitAb
kitAb
kitAbEN
sEb0N
sEb
sEb
sEb
mĒzON
mEz
mEz
mEzEN
laRkON
laRkE
laRkION
laRkI
laRk <u>I</u>
laRkIAN
f = = = [ ?1] .
```

Using Urdu Script

```
foma[22]: read lexc C:/fomacode/urdu3.lex
ROOT...1, Noun...4, NM...4, NF...4, NMA...4, NFI...4
Building lexicon...
*Warning: no Root lexicon, using 'ROOT' as Root.
Determinizing...
Minimizing...
Done!
Bone!
894 bytes. 18 states, 30 arcs, 16 paths.
foma[23]: print lower-words > c:/fomacode/urduwords.txt
Writing.to c:/fomacode/urduwords.txt.
```

Non-Concatenative Morphology

Example from Arabic

Root		$C_1C_2C_3$	
Templates		$C_1AC_2iC_3$,	$mC_1C_2UC_3$
Root	f?l	ktb	?lm
	فعل	كتب	علم
T1	fA?iI	kAtib	?Alim
	فاعل	كاتب	عالم
T2	mf?U	l mktUb	m?lUm

Soultions

 An Open-Source Finite State Morphological Transducer for Modern Standard Arabic, Mohammed Attia et al.,

https://www.aclweb.org/anthology/W11-4417.pdf

https://sourceforge.net/projects/aracomlex/