

Lic. Eng. Informática - Física Aplicada Turma 2DJ Grupo B

1211131 - Pedro Pereira

1211151 – Alexandre Geração

1211128 - Tiago Oliveira

1211089 – José Gouveia

Índice

Índice de ilustrações	3
Introdução	4
Escolha dos materiais	5
Conjunto de materiais para constituir uma parede	5
Material para exterior	5
Material isolante intermédio	5
Material para o interior	5
Porta	5
Janela	5
Telhado	5
Estrutura – Parede sem janela	6
Estrutura – Parede com janela	7
Resistência da parte com janela	8
Resistência da parte sem janela	10
Estrutura – Parede com Porta	11
Resistência da parte com porta	12
Resistência da parte sem porta	14
Estrutura - Telhado	15
Resistência da parte retangular	16
Estrutura Final	17
Resistência total da casa	17
Cálculo da energia necessária para manter uma determinada temperatura num espaço fechado .	18
Temperatura Externa 20ºC	19
Temperatura Interna entre – 5 ºC e os 4 ºC	19
Temperatura Interna entre 5 ºC e os 12 ºC	19
Temperatura Externa 28ºC	20
Temperatura Interna entre – 5 ºC e os 4 ºC	20
Temperatura Interna entre 5 ºC e os 12 ºC	20
Sistema de arrefecimento	21
Sistema de arrefecimento de ar condicionado	21
Ar Condicionado portátil	22
Ar Condicionado Monosplit	22
Analise do melhor sistema	22

Índice de ilustrações

Figura 1 Esquema lateral parede simples	t
Figura 2 equivalente elétrico parede simples	6
Figura 3 Esquema Frontal parede com janela	7
Figura 4 Esquema lateral parede com janela (parte com janela)	8
Figura 5 equivalente elétrico parede com janela (parte com janela)	8
Figura 6 Esquema lateral parede com janela (parte sem janela)	10
Figura 7 equivalente elétrico parede com janela (parte sem janela)	10
Figura 8 Esquema frontal parede com porta	11
Figura 9 Esquema lateral parede com porta (parte com porta)	12
Figura 10 equivalente elétrico parede com porta (parte com porta)	12
Figura 11 Esquema lateral parede com porta (parte com porta)	14
Figura 12 equivalente elétrico parede com porta (parte sem porta)	14
Figura 13 Esquema tridimensional do telhado	15
Figura 14 Esquema lateral telhado parte retangular	16
Figura 15 equivalente elétrico telhado parte retangular	16
Figura 16 Esquema lateral telhado parte triangular	17
Figura 17 equivalente elétrico telhado parte triangular	17
Figura 18 Tabela calculo energia (externa 20°C, interna entre -5°C/4°C)	19
Figura 19 Tabela calculo energia (externa 20°C, interna entre 5°C/12°C)	19
Figura 20 Tabela cálculo energia (externa 28ºC, interna entre -5ºC/4ºC)	20
Figura 21 Tabela cálculo energia (externa 28ºC, interna entre 5ºC/12ºC)	20
Figure 22 Funcionamento de um ar condicionado	21

Introdução

O relatório que se apresenta enquadra-se no contexto da disciplina de Física Aplicada (FSIAP), inserida no 1º semestre do 2º ano da Licenciatura em Engenharia Informática. Neste relatório iremos apresentar as nossas escolhas para os materiais para a constituição de uma casa, em duas situações distintas uma onde a temperatura interna varia entre -5ºC e 4ºC outra onde a temperatura varia entre os 5ºC e os 12ºC. Por fim iremos ainda demonstrar o cálculo da resistência térmica para a casa.

A estrutura da casa deve ter 4 paredes e um telhado, uma porta e duas janelas, as paredes devem ter 3 metros de altura e 5 de comprimento, as janelas devem ter 2 metros por 1 metro e a porta 2,2 metros por um metro. A espessura dependerá dos materiais escolhidos.

O processo de transferência de energia por calor a considerar nesta situação é classificado como condução. A condução ocorre quando há uma diferença de temperatura entre dois meios e existe um material a separar os mesmos. Neste processo, a transferência de calor pode ser representada numa escala atómica como uma troca de energia cinética entre partículas, ocorrendo do meio mais quente para o mais frio.

A taxa de condução térmica depende das propriedades do material que está a ser aquecido. Considerando um pedaço de madeira e um de metal de igual tamanho e temperatura, segurando o pedaço de madeira com a mão esquerda e o de metal com a mão direita e aquecendo-os na mesma fonte de energia iremos sentir a mão direita muito mais quente do que a esquerda, isto ocorre uma vez que a madeira é um mau condutor térmico ao contrário do metal.

Escolha dos materiais

Conjunto de materiais para constituir uma parede:

Material para exterior: Granito

-Condutividade térmica: 3,5 W/(m·K)

Material isolante intermédio: Tijolo cerâmico

-Condutividade térmica: 1,14 W/(m·K)

Material para o interior: Cortiça

-Condutividade térmica: 0,039 W/(m·K)

Porta: Alumínio

-Condutividade térmica: 237 W/(m·K)

Janela: Ar + vidro

-Condutividade térmica vidro: 1 $W/(m \cdot K)$

-Condutividade térmica ar: 0,026 W/(m·K)

Telhado: água dupla de madeira leve

-Condutividade térmica vidro: 0,14 W/(m·K)

-Foi escolhido o telhado de água dupla uma vez que este irá escoar melhor a água. Com um melhor escoamento de águas a superfície do telhado ficará menos molhada o que leva a uma pior condutividade térmica.

Estrutura - Parede sem janela

Parede sem janela (5 metros de comprimento, 3 metros de altura)

Figura 1 Esquema lateral parede simples

Figura 2 equivalente elétrico parede simples

$$Rk = Ri + Rm + Re$$

Ri = Li / (Ki*A1) =
$$0.05 / (0.039*(5*3)) = 0.08547 (m^2 * K)/W$$

$$Rm = Lm / (Km*A2) = 0.09 / (1.14*(5*3)) = 0.00526 (m^2 * K)/W$$

Re = Le / (Ke*A3) =
$$0.09 / (3.5*(5*3)) = 0.00171 (m^2 * K)/W$$

$$Rk = Ri + Rm + Re = 0.08547 + 0.00526 + 0.00171 = 0.09244(m^2 * K)/W$$

Estrutura - Parede com janela

Paredes com janela (5 metros de comprimento, 3 metros de altura, janela 2m x 1m)

Figura 3 Esquema Frontal parede com janela

Resistência da parte com janela

Figura 4 Esquema lateral parede com janela (parte com janela)

Figura 5 equivalente elétrico parede com janela (parte com janela)

```
1/Rk1=X1+X2+X3+X4+X5+X6+X7
X1=(1/Re1+1/Ra1+1/Re1) = (2/Re1+1/Ra1) =
= (2 / (0.09 / (3.5*(2*1)))) + (1 / (0.09 / (0.023*(2*1)))) = 156.06 (m^2 * K)/W
X2 = (1/Rm1 + 1/Ra2 + 1/Rm1) = (2/Rm1 + 1/Ra2)
= (2/(0.035/(1.14*(2*1)))) + (1/(0.035/(0.023*(2*1)))) = 131.6 (m^2 * K)/W
X3 = (1/Rm2 + 1/Rj1 + 1/Rm2) = (2/Rm2 + 1/Rj1)
= (2 / (0.04 / (1.14*(2*1)))) + (1 / (0.04 / (0.8*(2*1)))) = 118 (m^2 * K)/W
X4 = (1/Rm3 + 1/Ra3 + 1/Rm3) = (2/Rm3 + 1/Ra3)
= (2 / (0.016 / (1.14*(2*1)))) + (1 / (0.016 / (0.023*(2*1)))) = 287.88 (m^2 * K)/W
X5 = (1/Rm2 + 1/Rj1 + 1/Rm2) = (2/Rm2 + 1/Rj1)
= (2 / (0.04 / (1.14*(2*1)))) + (1 / (0.04 / (0.8*(2*1)))) = 118 (m^2 * K)/W
X6 = (1/Rm1 + 1/Ra2 + 1/Rm1) = (2/Rm1 + 1/Ra2)
= (2 / (0.035 / (1.14*(2*1)))) + (1 / (0.035 / (0.023*(2*1)))) = 131.6 (m^2 * K)/W
X7 = (1/Ri1 + 1/Ra4 + 1/Ri1) = (2/Ri1 + 1/Ra4)
= (2 / (0.05 / (0.039*(2*1)))) + (1 / (0.05 / (0.023*(2*1)))) = 4.04 (m^2 * K)/W
1/Rk1 = 156.06 + 131.6 + 118 + 287.88 + 118 + 131.6 + 4.04 = 947.18(m^2 * K)/W
Rk1=0.00106 (m^2 * K)/W
```

Resistência da parte sem janela

Figura 6 Esquema lateral parede com janela (parte sem janela)

Figura 7 equivalente elétrico parede com janela (parte sem janela)

$$Rk2 = Ri + Rm + Re$$

Ri = Li / (Ki*A1) =
$$0.05$$
 / $(0.039*(1.5*3))$ = 0.28 ($m^2 * K$)/W

Rm = Lm / (Km*A2) = 0.09 / $(1.14*(1.5*3))$ = 0.018 ($m^2 * K$)/W

Re = Le / (Ke*A3) = 0.09 / $(3.5*(1.5*3))$ = 0.0057 ($m^2 * K$)/W

Rk2 = Ri + Rm + Re = $0.28 + 0.018 + 0.0057 = 0.3037$ ($m^2 * K$)/W

Resistência Total da Parede com Janela =
$$2*Rk2 + Rk1 = 2*0,3037+0,00106 = 0,30476(m^2*K)/W$$

Estrutura - Parede com Porta

Parede com porta (5 metros de comprimento, 3 metros de altura, porta 2,2m x 1m)

Figura 8 Esquema frontal parede com porta

Resistência da parte com porta

Figura 9 Esquema lateral parede com porta (parte com porta)

Figura 10 equivalente elétrico parede com porta (parte com porta)

```
1/Rk1=X1+X2+X3+X4
X1=(1/Re1+1/Rp1)=
= (1/(0,03/(3,5*(1*0,8)))) + (1/(0,03/(237*(1*2,2)))) = 17473,3 \ (m^2*K)/W
X2=(1/Re2+1/Ra1)=
= (1/(0,06/(3,5*(1*0,8)))) + (1/(0,06/(0,023*(1*2,2)))) = 47,51 \ (m^2*K)/W
X3=(1/Rm1+1/Ra2)=
= (1/(0,09/(1,14*(1*0,8)))) + (1/(0,09/(0,023*(1*2,2)))) = 10,695 \ (m^2*K)/W
X4=(1/Ri1+1/Ra3)=
= (1/(0,05/(0,039*(1*0,8)))) + (1/(0,05/(0,023*(1*2,2)))) = 1,636 \ (m^2*K)/W
1/Rk1=17473,3+47,51+10,695+1,636=1/17533,141=0,00005703 \ (m^2*K)/W
```

Resistência da parte sem porta

Figura 11 Esquema lateral parede com porta (parte com porta)

Figura 12 equivalente elétrico parede com porta (parte sem porta)

$$Rk2 = Ri + Rm + Re$$

Ri = Li / (Ki*A1) =
$$0.05 / (0.039*(2*3)) = 0.21 (m^2 * K)/W$$

Rm = Lm / (Km*A2) =
$$0.09 / (1.14*(2*3)) = 0.013 (m^2 * K)/W$$

Re = Le / (Ke*A3) =
$$0.09 / (3.5*(2*3)) = 0.0043 (m^2 * K)/W$$

$$Rk2 = Ri + Rm + Re = 0.21 + 0.013 + 0.0043 = 0.2273(m^2 * K)/W$$

Resistência Total da Parede com porta =
$$2*Rk2 + Rk1 = 2*0,2273 + 0,00005703$$

= $0,4547 (m^2 * K)/W$

Estrutura - Telhado

Telhado (5 metros largura, 5 metros comprimento, 1 metro de altura)

Figura 13 Esquema tridimensional do telhado

Resistência da parte retangular

Figura 14 Esquema lateral telhado parte retangular

Figura 15 equivalente elétrico telhado parte retangular

Rk1 = Rt

Rt = Li / (Ki*A1) =
$$0.02 / (0.14*(5*2.69)) = 0.011 (m^2 * K)/W$$

Resistência total das duas partes retangulares = 0,022 $(m^2 * K)/W$

Resistência da parte triangular

Figura 16 Esquema lateral telhado parte triangular

Figura 17 equivalente elétrico telhado parte triangular

Rk1 = Rt

Rt = Li / (Ki*A1) =
$$0.02 / (0.14*((5*1)/2)) = 0.057 (m^2 * K)/W$$

Resistência total das duas partes triangulares = $0.114 (m^2 * K)/W$

Estrutura Final

Resistência total da casa

Soma resistência de: parede sem janela + 2* parede com janela + parede com porta + telhado = 1,29266 $m^2*K)/W$

Cálculo da energia necessária para manter uma determinada temperatura num espaço fechado

$$Q = \frac{\Delta q}{\Delta t} = \frac{\Delta (T1 - T2)}{Rtotal}$$

 $E = P \cdot t$,

ou seja:

 $E = Q \cdot t$

 $R(total)=1,29266 m^2 * K)/W$

Dia completo de trabalho (t)=8 horas=28800 segundos

Temperatura Externa 20°C

Temperatura Interna entre − 5 ºC e os 4 ºC

Para os materiais e espessuras escolhidas, segue o cálculo da energia necessária a fornecer num dia inteiro de trabalho (8 horas), com uma temperatura exterior de 20°C, para que a temperatura interior varie entre os – 5 °C e os 4 °C.

```
 \begin{array}{lll} T(interna) = -5^{\circ}C & T(externa) = 20^{\circ}C \\ Q = (20 - (-5)) \ / \ 1,29266 = \ 19,33997 \ W \\ E = Q * t = \ 19,33997 * 28800 = \ 556991,0108 \ J \end{array}   \begin{array}{lll} T(interna) = 4^{\circ}C \\ T(externa) = 20^{\circ}C \\ Q = (20 - 4) \ / \ 1,29266 = \ 12,37758 \ W \\ E = Q * t = \ 12,37758 * 28800 = \ 356474,2469 \ J \end{array}
```

Figura 18 Tabela calculo energia (externa 20°C, interna entre -5°C/4°C)

A energia necessária fornecer seria de, aproximadamente, entre $3,56 \times 10^5 \text{ J}$ e $5,57 \times 10^5 \text{ J}$

Temperatura Interna entre 5 °C e os 12 °C

Para os materiais e espessuras escolhidas, segue o cálculo da energia necessária a fornecer num dia inteiro de trabalho (8 horas), com uma temperatura exterior de 20°C, para que a temperatura interior varie entre os 5 °C e os 12 °C.

```
 \begin{array}{lll} T(interna) = 5^{\circ}C & T(interna) = 12^{\circ}C \\ T(externa) = 20^{\circ}C & T(externa) = 20^{\circ}C \\ Q = (20-5) \ / \ 1,29266 = \ 11,60398 \ W \\ E = Q \ * \ t = 11,60398 \ * \ 28800 = \ 334194,6065 \ J \\ \end{array}
```

Figura 19 Tabela calculo energia (externa 20°C, interna entre 5°C/12°C)

A energia necessária fornecer seria de, aproximadamente, entre $1,78 \times 10^5 J$ e $3,34 \times 10^5 J$

Temperatura Externa 28°C

Temperatura Interna entre − 5 ºC e os 4 ºC

Para os materiais e espessuras escolhidas, segue o cálculo da energia necessária a fornecer num dia inteiro de trabalho (8 horas), com uma temperatura exterior de 28°C, para que a temperatura interior varie entre os – 5 °C e os 4 °C.

```
 \begin{array}{lll} T(interna) = -5^{\circ}C & T(interna) = 4^{\circ}C \\ T(externa) = 28^{\circ}C & T(externa) = 28^{\circ}C \\ Q = (28 - (-5)) \ / \ 1,29266 = 25,52875 \ W \\ E = Q * t = 25,52875 * 28800 = 735228,1342 \ J \\ \end{array}
```

Figura 20 Tabela cálculo energia (externa 28ºC, interna entre -5ºC/4ºC)

A energia necessária fornecer seria de, aproximadamente, entre $5,35 \times 10^5 J$ e $7,35 \times 10^5 J$

Temperatura Interna entre 5 ºC e os 12 ºC

Para os materiais e espessuras escolhidas, segue o cálculo da energia necessária a fornecer num dia inteiro de trabalho (8 horas), com uma temperatura exterior de 28°C, para que a temperatura interior varie entre os 5 °C e os 12 °C.

```
 \begin{array}{lll} T(interna) = 5 ^{\circ} C \\ T(externa) = 28 ^{\circ} C \\ Q = (28-5) \ / \ 1,29266 = 17,79277 \ W \\ E = Q * t = 17,79277 * 28800 = 512431,7299 \ J \end{array}   \begin{array}{lll} T(interna) = 12 ^{\circ} C \\ T(externa) = 28 ^{\circ} C \\ Q = (28-12) \ / \ 1,29266 = 12,37758 \ W \\ E = Q * t = 12,37758 * 28800 = 356474,2469 \ J \end{array}
```

Figura 21 Tabela cálculo energia (externa 28ºC, interna entre 5ºC/12ºC)

A energia necessária fornecer seria de, aproximadamente, entre $3,56 \times 10^5 J$ e $5.12 \times 10^5 J$

Sistema de arrefecimento

No sentido de otimizar as energias necessárias ao longo de 2 meses de trabalho de modo a manter uma temperatura interna entre os -5°C e os 4°C e outra entre os 5°C e os 12°C com temperaturas externas de 20°C e 28°C, o sistema de arrefecimento a considerar seria um <u>ar condicionado portátil</u> ou um <u>ar condicionado monosplit</u>.

Sistema de arrefecimento de ar condicionado

O princípio de funcionamento é igual ao de um frigorífico: o interior do ar condicionado é constituído por uma rede de serpentinas, condensadores e evaporadores, percorridos por um fluido frigorígeno que permite realização de trocas de calor entre o interior e o exterior, de modo a fazer o aquecimento e o arrefecimento do espaço interior, consoante o pretendido, neste caso pretendemos um arrefecimento do espaço interior

Como consequência destas trocas de calor, a humidade do ar condensa dentro do ar condicionado razão por que o ar fica mais seco e daí que equipamento preveja um tabuleiro para recolha de condensados.

Figura 22 Funcionamento de um ar condicionado

Ar Condicionado portátil

Unidade única com todos os componentes e com uma ligação ao exterior. É de fácil deslocação e não requer instalação, mas é necessário ter uma janela ou uma abertura perto do aparelho para colocação do tubo.

Vantagens: Fácil deslocação e não requer instalação.

<u>Inconvenientes</u>: É necessário ter uma janela ou uma abertura perto do aparelho para colocação do tubo de ligação ao exterior.

Ar Condicionado Monosplit

Com uma unidade exterior e outra interior. É mais eficiente que os sistemas portáteis e é de fácil instalação, mas só permite climatizar uma única divisão da casa.

Vantagens: Mais eficiente do que os sistemas portáteis.

<u>Inconvenientes</u>: só permite a instalação numa única divisão da casa (no nosso caso não será um problema visto que a casa só tem uma divisão).

Analise do melhor sistema

Comparando os dois sistemas chegamos á conclusão que o Ar condicionado Monosplit será a melhor solução para os dois sistemas onde a temperatura externa é de 28ºC e para o sistema onde a temperatura externa é de 20ºC e a temperatura interna varia entre os -5ºC e os 4ºC, isto porque a energia necessária para os manter á temperatura interna é no mínimo 3,50 x 10⁵J, daí a utilização dum sistema mais potente como o MonoSplit.

No outro sistema onde a temperatura externa é de 20ºC e a temperatura interna varia entre os 5ºC e os 12ºC escolhemos o sistema de ar condicionado portátil dado a necessidade de uma menor quantidade de energia para manter a temperatura interna.

Referências

- https://jornaleconomico.pt/noticias/economize-aquecimento-e-refrigeracao-das-nossas-casas-como-fazer-a-melhor-escolha-397742
- https://www.edp.pt/particulares/content-hub/como-arrefecer-a-casa-nos-dias-de-calor/
- http://www.protolab.com.br/Tabela-Condutividade-Material-Construcao.htm
- https://mc2h2o.blogspot.com/2021 10 03 archive.html