BIA-667-A: Introduction to Deep Learning and Business Applications

References:

deeplearningbook.org
Dive into Deep Learning, https://d2l.ai/index.html
introtodeeplearning.com
deeplearningindaba.com

Agenda

- Introduction
 - Tell us about yourself, e.g. major, interest, expectation from this class, ...
- Syllabus
- Hands-on Labs
 - o Try it yourself!
 - Recitation schedule
 - Homework assignments will be similar to labs
- Poll Everywhere
- Introduction to Deep Learning
- Review of Probability Theory

What is Deep Learning?

- A. If sender contains "xxx.com" -> move to Junk
- B. Detect spam emails based on email content
- C. Use Recurrent Neural Network to detect spam emails

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

313472

Historical Waves

Three historical waves:

- Cybernetics (1940s–1960s): development of theories of biological learning and implementation of the first models such as the perceptron allowing the training of a single neuron
- Connectionism or Neural Networks (1980–1995): back-propagation to train a neural network with one or two hidden layers
- Deep learning (2006)

Number of Neurons

ImageNet Challenge: Classification Task

2012: AlexNet. First CNN to win.

- 8 layers, 61 million parameters

2013: ZFNet

- 8 layers, more filters

2014:VGG

- 19 layers

2014: GoogLeNet

- "Inception" modules
- 22 layers, 5million parameters

2015: ResNet

- 152 layers

Why Deep Learning and Why Now?

Why Deep Learning?

Hand engineered features are time consuming, brittle and not scalable in practice

Can we learn the **underlying features** directly from data?

Low Level Features

Lines & Edges

Mid Level Features

Eyes & Nose & Ears

High Level Features

Facial Structure

Why Now?

Neural Networks date back decades, so why the resurgence?

Stochastic Gradient Descent

Perceptron

Learnable Weights

Backpropagation

Multi-Layer Perceptron

Deep Convolutional NN

• Digit Recognition

I. Big Data

- Larger Datasets
- Easier Collection& Storage

2. Hardware

- Graphics Processing Units (GPUs)
- Massively
 Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

1958

1986

1995

Historical Trends: Growing Datasets

Kinds of Deep Learning Problems

Regression: How much a house costs?

Fig. 1.3.2 Death cap-do not eat!

Recommendation

Sequence learning: Patient clinical event prediction

Sample Generation: Generative Adversarial Networks

aciaciaciaciaciaciaciaciaciac

aclaclaclaclaclaclaclaclac

aciaciaciaciaciaciaciaciaciac

ed sels els els els els els els els els ed estected estected estected olaslaslaslaslaslaslaslaslas

Unsupervised

learning: self

supervised learning

Sequence learning: Image Captioning

Sequence to sequence learning: Translation

1.3.3 A donkey, a dog, a cat, and a rooster.

Multi-label classification:

Tagging