

Contrôle continu de mécanique du solide

Exercice 1

Soit le repère $\mathcal{R}=(0,\vec{x},\vec{y},\vec{z})$ et les points suivants : A=(2d,0,0), B=(3d,0,0), C=(4d,2d,0) avec d = 500 mm

OC est une poutre sur laquelle s'appliquent trois forces : $\overrightarrow{F_A}$, $\overrightarrow{F_B}$, $\overrightarrow{F_C}$

On donne : II $\overrightarrow{F_A}$ II = 500 N ; II $\overrightarrow{F_B}$ II = 400 N ; II $\overrightarrow{F_C}$ II = 200 N

Question 1: Ecrire $\overrightarrow{F_A}$, $\overrightarrow{F_B}$, $\overrightarrow{F_C}$ en fonction de leurs projections sur les axes x et y

Question 2 : Déterminer la résultante de $\overrightarrow{F_A}$, $\overrightarrow{F_B}$, $\overrightarrow{F_C}$, écrire ses projections sur les axes et calculer sa norme

Question 3 : Déterminer le moment résultant de $\overrightarrow{F_A}$, $\overrightarrow{F_C}$ en O , écrire ses projections sur les axes et calculer sa norme

Question 5 : Ecrire le torseur de $\overrightarrow{F_A}$, $\overrightarrow{F_B}$, $\overrightarrow{F_C}$ au point 0

Question 6 : Ecrire le torseur de $\overrightarrow{F_A}$, $\overrightarrow{F_B}$, $\overrightarrow{F_C}$ au point A

Exercice 2

MISE EN SITUATION

Un robot industriel est constitué:

- par un support (1)
- par un bras (2) en liaison pivot en O
- par un bras (3) en liaison pivot en A
- par une tige (4) en liaison pivot glissant en B et en liaison pivot en C
- par un support de pince (5) en liaison pivot en C
- par une pince gauche (6) en liaison pivot en D
- par une pince droite (7) en liaison pivot en E

On souhaite connaître les forces supportées par les articulations, afin de pouvoir les dimensionner.

HYPOTHESES ET DONNEES

Le mécanisme est plan, toutes les liaisons sont parfaites.

Une charge de 200 N est appliquée en C (modélise le poids des pièces 5, 6, 7 et objet manipulé)

On donne : $\overrightarrow{OA} = 40.\vec{x} - 700 \vec{y}$; $\overrightarrow{AB} = 500.\vec{x} - 50 \vec{y}$; $\overrightarrow{BC} = 200.\vec{x} - 20 \vec{y}$

On considère que le poids $\overrightarrow{P_M}$ de la masse (m = 20 kg) de l'objet manipulé s'applique en C (on prendra g = 10 m/s²)

Question 1: Sur le schéma cinématique, placer les points O, A, B, C, D et E ainsi que les axes x et y

Repasser en rouge (2), en vert (3), en bleu (4), en rouge (5), en vert (6), en bleu (7)

Question 2 : Réalisez le graphe des liaisons du mécanisme en indiquant :

- Le nom des liaisons
- Le centre des liaisons
- Les axes principaux des liaisons

Question 3: Ecrire le torseur de l'action de liaison en A

Ecrire le torseur de l'action de liaison en B

Ecrire le torseur de l'action de liaison en C

Rappel : Le torseur $\{\tau_{(2 \to 1)}\}$ associé à l'action mécanique exercée en A, par un solide 2 sur un solide 1 sera noté :

$$\left\{ \mathcal{T}_{(2\to 1)} \right\} = \left\{ \frac{\overrightarrow{R_{2\to 1}}}{M_{A_{2\to 1}}} \right\} = \left\{ \frac{\overrightarrow{R_{2\to 1}}}{M_{A_{2\to 1}}} = X_{21}.\overrightarrow{x} + Y_{21}.\overrightarrow{y} + Z_{21}.\overrightarrow{z} \right\}$$

Question 4: Ecrire le torseur de l'action $\overrightarrow{P_M}$ exprimé au point C puis au point A