Politechnika Wrocławska

Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

Zespół Układów Elektronicznych

Data: 14.04.2015r	Dzień: Wtorek						
Grupa: VII Godzina: 12:15-15:00							
Temat ćwiczenia:							
$Przetwornice\ DC/DC$							
Dane projektowe:							
$U_{we} = 9.00 \text{ V}$	$R_{SC}=0.625\Omega$	L=330uH					
$U_{wy}=6.00 V$	$R_1=1.795\Omega$	$C_0 = 476 uF$					
$I_{\text{max}} = 9.00 \text{ V}$	$R_2=6.720k\Omega$	$C_T=560pF$					
l.p	Nazwisko i imię	Oceny					
1	Arkadiusz Ziółkowski						
2	Jakub Koban						

1 Zadanie projektowe

Zaprojektować zasilacz stabilizowany obniżający napięcie o zadanych parametrach:

- $U_{we} = 9.00 \text{ V}$
- $U_{wv}=6.00 \text{ V}$
- $I_{max} = 0.25 A$

2 Obliczenia projektowe

$$I_{pk} = I_{Lpk} = 2I_{max} = 2 * 0.25 = 0.5A \tag{1}$$

$$\mathbf{R_{SC}} = \frac{0.3V}{I_{pk}} = \frac{0.3}{0.5} = \mathbf{0.6}\Omega \tag{2}$$

Zakadamy
$$\mathbf{R_1} = \mathbf{1.8k\Omega} \rightarrow \mathbf{R_2} = R_1 \frac{|U_{wy}| - 1.25V}{1.25V} = 1800 \frac{6 - 1.25}{1.25} = \mathbf{6.8k\Omega}$$
 (3)

Zakadamy
$$\mathbf{T} = 25\mathbf{u}s \rightarrow \mathbf{t_{on}} = T\frac{U_0}{U_i} = 25 * 10^{-6} \frac{6}{9} = 16.67\mathbf{us}$$
 (4)

$$\mathbf{L} \geqslant \frac{U_i}{I_{Lpk}} t_{ON} = \frac{9}{0.5} * 16.37 * 10^{-6} = \mathbf{300uH}$$
 (5)

$$\mathbf{C_0} \geqslant \frac{I_{Lpk}T}{8U_{tm}} = \frac{0.5 * 25 * 10^{-6}}{8 * 0.5} = \mathbf{3.125uF}$$
 (6)

3 Schemat projektowy

Rysunek 1: Schemat do symulacji projektowanego układu

Rysunek 2: Symulacja — obrazek do porawienia

Rysunek 3: Schemat projektowanego układu

4 Część laboratoryjna

4.1 Charakterystyka napięciowa i napięciowo - prądowa

Stałe o	bciążenie	Zmienne obciążenie				
$U_{we}[V]$	$U_{wy}[V]$	$U_{we}[V]$	$I_{we}[mA]$	$U_{wy}[V]$	$I_{wy}[mA]$	η
0	0	9	25.82	6.197	27.91	0.74
0.5	0.001	9	36.87	6.192	41.32	0.77
0.9	0.010	9	44.92	6.191	51.02	0.78
1.5	0.200	9	66.82	6.188	77.11	0.79
2.0	0.586	9	93.56	6.184	108.47	0.80
2.5	0.940	9	134.13	6.178	154.98	0.79
3.0	1.340	9	168.09	6.126	195.13	0.79
3.5	1.750	9	228.10	5.840	269.77	0.77
4.0	2.170	9	269.00	5.518	330.00	0.75
4.5	2.570	9	300.50	4.791	408.50	0.72
5.0	3.040	9	270.70	3.808	445.30	0.70
5.5	3.480	9	250.80	3.331	464.80	0.69
6.0	3.860					
6.5	4.320					
7.0	4.670					
7.5	5.120					
8.0	5.500					
8.5	6.140					
9.0	6.180					
9.5	6.180					
10.0	6.190					
10.5	6.190					
11.0	6.192					
11.5	6.192					
12.0	6.194					
12.5	6.194					
13.0	6.196					
13.5	6.196					
14.0	6.199					
14.5	6.208					
15.0	6.206					

Rysunek 4: Charakterystyka napięcia wyjściowego od napięcia wejściowego przy stałym obciążeniu

Na powyższjej charakterystyce widzimy, że zasilacz poprawnie stabilizuje napięcie wyjściowe na zadanym poziomie dla napięcia wejściowego mieszczącego się w przedziale od $8.5 \rm V$ do $15 \rm V$.

Rysunek 5: Charakterystyka natężenia prądu wyjściowego od napięcia wyjściowego przy zmiennym obciążeniu

Z powyższego wykresu widzimy, iż przy natężeniu prądu wyjściowego przekraczającemu wartość ok 225 mA napięcie na wyjściu zasilacza spada poniżej 6V.

Rysunek 6: Wykres sprawności od natężenia prądu wyjściowego

Tutaj możemy zauważyć, że sprawność zasilacza w warunkach pracy tj. dla natężenia prądu wyjściowego w zakresie od kilkudziesięciu mili amperów do około 250mA utrzymuje się na poziomie powyżej 0.74, gdzie maksimum osiąga dla ok. 100mA natężenia prądu wyjściowego i wynosi około 0.79. Warto też dodać, iż dla niskich natężeń prądu wyjściowego zmiany sprawności są bardzo szybkie.

5 Wnioski

- Na podstawie Rysunku nr 4 widzimy, iż zasilacz pracuje zgodnie z oczekiwaniami teoretycznymi, ponieważ dla napięcia nominalnego $U_{we} =$ 9V na wyjściu otrzymujemy zadane napięcie ok. 6V.
- Wykres z rysunku nr 5 wskazuje na to, że układ został zaprojektowany i wykonany zgodnie z założeniami projektowymi, gdyż dla wartości od kilkudziesięciu mA do ok. 225mA natężenia prądu wyjściowego układ utrzymuje zadane napięcie wyjściowe na poziomie ok. 6V. Zakres ten jest o ok. 25mA mniejszy od założonego $I_{max}=250mA$. Wynika to najprawdopodobniej z użycia nieco innych wartości elementów niż zakłdają obliczenia projektowe.
- Sprawność wyrysowana w zależności od natężenia prądu wyjściowego na rystunku nr 6 przyjmuje wartości na poziomie 0.7 0.8 co możemy uznać za wartości mieszczące się w normach tego typu układów.