Language Models

Slides borrowed from Hongning Wang with modifications

Query likelihood language models

Generally involves two steps:

- (1) estimate a language model based on D
- (2) compute the query likelihood according to the estimated model

Language models!

What is a statistical LM?

- A model specifying a probability distribution over word sequences
 - -p("Today is Wednesday") ≈ 0.001
 - p("Today Wednesday is") ≈ 0.000000000001
 - p("The eigenvalue is positive") ≈ 0.00001
- It can be regarded as a probabilistic mechanism for "generating" text, thus is a "generative" model

Why is a LM useful?

- Provides a principled way to quantify the uncertainties associated with natural language
- Allows us to answer questions like:
 - Given that we see "John" and "feels", how likely will we see "happy" as opposed to "habit" as the next word?
 (speech recognition)
 - Given that we observe "baseball" three times and "game" once in a news article, how likely is it about "sports"?
 (text categorization, information retrieval)
 - Given that a user is interested in sports news, how likely would the user use "baseball" in a query? (information retrieval)

Language models

We need independence assumptions!

Probability distribution over word sequences

$$-p(w_1 w_2 \dots w_n) = p(w_1)p(w_2|w_1)p(w_3|w_1,w_2) \dots p(w_n|w_1,w_2,\dots,w_{n-1})$$

- Complexity $O(V^{n^*})$
 - n^* maximum document length sentence

Chain rule: from conditional probability to joint probability

- 475,000 main headwords in Webster's Third New International Dictionary
- Average English sentence length is 14.3 words
- A rough estimate: $O(475000^{14})$

How large is this?
$$\frac{475000^{14}}{8bytes \times (1024)^4} \approx 3.38e^{66}TB$$

Unigram language model

Generate a piece of text by generating each word independently

$$-p(w_1 w_2 \dots w_n) = p(w_1)p(w_2) \dots p(w_n)$$

$$-s.t.\{p(w_i)\}_{i=1}^N$$
, $\sum_i p(w_i) = 1$, $p(w_i) \ge 0$

Essentially a multinomial distribution over the

vocabulary

The simplest and most popular choice!

Higher-order LMs

- N-gram language models
 - In general, $p(w_1 w_2 ... w_n) = p(w_1)p(w_2|w_1) ... p(w_n|w_1 ... w_{n-1})$
 - N-gram: conditioned only on the past N-1 words
 - E.g., bigram: $p(w_1 ... w_n) = p(w_1)p(w_2|w_1) p(w_3|w_2) ... p(w_n|w_{n-1})$

Why just unigram models?

- Difficulty in moving toward more complex models
 - They involve more parameters, so need more data to estimate
 - They increase the computational complexity significantly, both in time and space
- Capturing word order or structure may not add so much value for "topical inference"
- But, using more sophisticated models can still be expected to improve performance ...

Language models for IR [Ponte & Croft SIGIR'98]

Ranking docs by query likelihood

Retrieval as language model estimation

Document ranking based on query likelihood

$$\log p(q \mid d) = \sum_{i} \log p(w_i \mid d)$$

$$where, \ q = w_1 w_2 ... w_n$$
Document language model

- Retrieval problem \approx Estimation of $p(w_i|d)$
- Common approach
 - Maximum likelihood estimation (MLE)

maximum likelihood estimation

- Data: a document d with counts $c(w_1), ..., c(w_N)$
- Model: multinomial distribution $p(W|\theta)$ with parameters $\theta_i = p(w_i)$
- Maximum likelihood estimator: $\hat{\theta} = argmax_{\theta}p(W|\theta)$

$$p(W|\theta) = \binom{N}{c(w_1), \dots, c(w_N)} \prod_{i=1}^N \theta_i^{c(w_i)} \propto \prod_{i=1}^N \theta_i^{c(w_i)} \implies \log p(W|\theta) = \sum_{i=1}^N c(w_i) \log \theta_i$$

$$L(W,\theta) = \sum_{i=1}^{N} c(w_i) \log \theta_i + \lambda \left(\sum_{i=1}^{N} \theta_i - 1 \right)$$
 Using Lagrange multiplier approach, we'll tune θ_i to maximize $L(W,\theta)$

$$\frac{\partial L}{\partial \theta_i} = \frac{c(w_i)}{\theta_i} + \lambda \quad \to \quad \theta_i = -\frac{c(w_i)}{\lambda}$$

Set partial derivatives to zero

Since
$$\sum_{i=1}^{N} \theta_i = 1$$
 we have $\lambda = -\sum_{i=1}^{N} c(w_i)$

Requirement from probability

$$\theta_i = \frac{c(w_i)}{\sum_{i=1}^N c(w_i)}$$

ML estimate

Problem with MLE

- What probability should we give a word that has not been observed in the document?
 - log0?
- If we want to assign non-zero probabilities to such words, we'll have to discount the probabilities of observed words
- This is so-called "smoothing"

General idea of smoothing

- All smoothing methods try to
 - Discount the probability of words seen in a document
 - 2. Re-allocate the extra counts such that unseen words will have a non-zero count

Illustration of language model smoothing

What you should know

- How to estimate a language model
- General idea of smoothing
- Effect of smoothing

Today's reading

- Introduction to information retrieval
 - Chapter 12: Language models for information retrieval