Lista zadań 4 – elektryczność (prądy stałe i zmienne)

Zadania przygotowujące (niski poziom trudności)

- **Zad. 1.** (P) Miliamperomierz o zakresie 15mA ma opór wewnętrzny Rw = 5 Ω . W jaki sposób i jak duży opór należy połączyć z miliamperomierzem w celu zmierzenia:
 - a) natężenia prądu do I₂ = 1,5 A
 - b) napięcia do U = 150 V
- **Zad. 2.** (P) Opornik składa się z dwóch jednakowej długości odcinków drutu z tego samego materiału. Średnica pierwszej części opornika R_1 jest dwukrotnie większa od średnicy części drugiej. Jaki jest stosunek mocy wydzielonych w dwóch częściach opornika?
- **Zad. 3.** (P) Wzorzec oporu sporządzony niezbyt dokładnie o wartości 0,102 Ω należy wyregulować dokładnie do wartości 0,1 Ω przez dołączenie równoległego rezystora. Jaki rezystor należy dołączyć?
- **Zad. 4.** (P) Oblicz napięcia i ładunki na poszczególnych kondensatorach przedstawionych na schemacie obok. C_1 =1200pF, C_2 =600pF, C_3 =300pF, C_4 =200pF, C_5 =500pF, U=300V.

Zadania

- **Zad. 5*.** Kondensator o pojemności C mający w chwili t=0 potencjał V_0 rozładowujemy przez opór R. Wyznacz czasowy przebieg prądu w obwodzie. (Podpowiedz: Proszę napisać równanie różniczkowe rozwiązaniem tego równania jest $I(t)=Ke^{-\frac{t}{RC}}$ gdzie K jest stałą całkowania, następnie z warunków brzegowych należy wyznaczyć równanie).
- **Zad. 6*.** Wyznacz zależność prądu od czasu i(t) płynącego w szeregowym obwodzie RL ze stałym źródłem napięcia.
- **Zad. 7.** O jakiej pojemności kondensator należy połączyć szeregowo z cewką o indukcyjności L = 2 H i rezystancji R=150 Ω , aby przy napięciu 220 V i f=50 Hz w obwodzie nastąpił rezonans napięć? Oblicz prąd w obwodzie oraz impedancje.
- **Zad. 8.** Wyznacz w oparciu o definicję wartość skuteczną sygnału sinusoidalnego wyprostowanego jedno i dwupołówkowego o amplitudzie U_m i okresie T.
- **Zad. 9.** Do układu podłączonych szeregowo kolejno R_1 = 50 Ω , L_1 = 0,05 H, R_2 = 1 00 Ω , L_2 = 0,02 H, R_3 = 150 Ω , C=2μF podłączono źródło napięcia sinusoidalnego o wartości skutecznej U_S = 10 V i częstotliwości 1000 Hz. Oblicz prąd (wartość zespolona) i przesunięcie fazowe. (obliczenia należy przeprowadzić w liczbach zespolonych)

Zad. 10. Jaka jest indukcyjność własna cewki rzeczywistej mającej schemat szeregowy R, L, jeżeli przy włączeniu jej do napięcia stałego $U_{-}=50 \text{ V}$ płynie przez nią prąd $I_{-}=5 \text{ A}$. Przy włączeniu napięcia sinusoidalnego $U_{-}=50 \text{ V}$ o f=50 Hz przez cewkę płynie prąd $I_{-}=0.2 \text{ A}$?

Zad. 11. Do obwodu przyłożono napięcie sinusoidalne w $U_S = 220V$ i f = 50Hz. Oblicz prądy w gałęziach i wykonaj wykres wskazowy. $R_1 = 10 \Omega$, L = 31.8 mH, $C = 265 \mu F$, $G_2 = 0.03$ S.

Zad. 12. Wyznacz impedancję zastępczą dla elementów R, L, C połączonych jak na rysunku. Wyprowadź wzory na częstotliwość rezonansową i impedancje przy rezonansie. Zaproponuj wartości L, C, R przy których nastąpi rezonans.

Zad. 13. Zadanie do wykonania samodzielnego z pliku z zadaniami z mocy.

Ewa Frączek