Indian Statistical Institute

Date: March 28, 2022 Instructor: Jaydeb Sarkar Analysis II (HW - 6)

(1) Let $f \in C[0,1]$, and let

$$f_n(x) = f(x^n)$$
 $(n \ge 1, x \in [0, 1]).$

Verify whether $\{\int_0^1 f_n\}_{n\geq 1}$ converges to f(0).

- (2) Prove that $\sum_{n=1}^{\infty} x^2 e^{-nx}$ converges uniformly on $(0, \infty)$. (3) Prove that $\sum_{n=1}^{\infty} ne^{-nx}$ convergens uniformly on $[\epsilon, \infty)$ for any $\epsilon > 0$, but does not converge uniformly on $(0, \infty)$.
- (4) Prove that $\sum_{n=1}^{\infty} \frac{x^n}{n}$ does not converge uniformly on (0,1).
- (5) Prove that the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges uniformly on [-R, R] for all R > 0. Also, prove that

$$\frac{d}{dx} \left(\sum_{n=0}^{\infty} \frac{x^n}{n!} \right) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad (x \in \mathbb{R}).$$

(6) Examine the uniform convergence of the following series:

$$(i) \sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}, x \in \mathbb{R}, \quad (ii) \sum_{n=1}^{\infty} \frac{1}{(n+x)^2}, x \ge 0, \quad (iii) \sum_{n=1}^{\infty} \frac{\sin nx}{e^n}, x \in \mathbb{R}.$$

(7) Prove that the series

$$\sum_{n=0}^{\infty} \left(\frac{x^{2n+1}}{2n+1} - \frac{x^{n+1}}{2n+2} \right),$$

converges pointwise but not uniformly on [0, 1].

- (8) Let $\sum f_n$ converges uniformly on $S \subseteq \mathbb{R}$. True or false?
 - (i) $\{f_n\}$ is pointwise convergent on S.
 - (ii) $\{f_n\}$ is uniformly convergent on S.
- (9) Let $\{f_n\}$ converges uniformly on each S_1, \ldots, S_m . Prove that $\{f_n\}$ converges uniformly on $\bigcup_{k=1}^m S_k$.
- (10) Give an example where $\{f_n\}$ converges uniformly on each of an infinite sequence of sets S_1, S_2, \ldots , but not on $\bigcup_{k=1}^{\infty} S_k$.