

DIRECTION DE L'ÉNERGIE NUCLÉAIRE DIRECTION DÉLÉGUÉE AUX ACTIVITÉS NUCLÉAIRES DE SACLAY DÉPARTEMENT DE MODÉLISATION DES SYSTÈMES ET STRUCTURES SERVICE DE THERMO-HYDRAULIQUE ET DE MÉCANIQUE DES FLUIDES

LABORATOIRE DE MODELISATION ET SIMULATION A L'ECHELLE SYSTEME

CATHARE

CATHARE 2 V2.5_3mod2.1: MAIN NEW FEATURES AND IMPROVEMENTS

CSSI

DEN/DANS/DM2S/STMF/LMES/RT/12-042/A

Décembre 2012

Document technique DEN

Page 1/28

DIRECTION DE L'ÉNERGIE NUCLÉAIRE DIRECTION DÉLÉGUÉE AUX ACTIVITÉS NUCLÉAIRES DE SACLAY DÉPARTEMENT DE MODÉLISATION DES SYSTÈMES ET STRUCTURES SERVICE DE THERMO-HYDRAULIQUE ET DE MÉCANIQUE DES FLUIDES

Rapport technique DEN

CATHARE 2 V2.5_3mod2.1 : PRINCIPALES NOUVELLES FONCTIONALITESET AMELIORATIONS

CATHARE 2 V2.5_3mod2.1 : MAIN NEW FEATURES AND IMPROVEMENTS

DEN/DANS/DM2S/STMF/LMES/RT/12-042/A

CSSI

Commissariat à l'énergie atomique et aux énergies alternatives

Centre: SACLAY

Adresse: 91191 Gif/Yvette Cedex

Tél.: 01 69 08 91 12 Fax: 01 69 08 96 96 Courriel: bernard.faydide@cea.fr

Établissement public à caractère industriel et commercial

RCS Paris B 775 685 019

Document technique DEN

Page 2/28

	Niv	EAU DE CONFIDENTIALITE		
DO	DR	CCEA	CD	SD
X			***	

PARTENAIRES/CLIENTS	ACCORD	TYPE D'ACTION
CEA - AREVA NP - EDF - IRSN	C7102	Quadripartite

	REFERENCES INTERN	ES CEA	
DIRECTION D'OBJECTIFS	DOMAINE	PROJET	EOTP
DISN	Programme simulation	SITHY	A-SITHY-06-01-02-
JALON	ÎNTITULE DU JALON	DELAI CONTRACTUEL DE CONFIDENTIALITE	CAHIERS DE LABORATOIRE

		Suivi des versions	
INDICE	DATE	NATURE DE L'EVOLUTION	PAGES, CHAPITRES
Α	14/12/2012	Emission initiale	28, 3

Nom			DATE
CSSI	Ingénieur Tél. (33) 04 76 85 99	00 - Fax (38) 04 76 85 99	12/12/1
G. LAVIALLE	Ingénieur	Des	121212
D. DUMONT	Correspondant qualité	Bill	12/12/2052
P. EMONOT	Chef du LMES	\$	12/12/12
B. FAYDIDE	Chef du STMF	P.O. FiDucus	17/12/2012
	CSSI G. LAVIALLE D. DUMONT P. EMONOT	CSSI Ingénieur Tél. (33) 04 76 85 99 RCS Cr G. LAVIALLE Ingénieur D. DUMONT Correspondant qualité P. EMONOT Chef du LMES	G. LAVIALLE Ingénieur D. DUMONT Chef du LMES GRue d'Arcelle - 71 des Plans - F 38600 FONTAI Ingénieur Tel. (33) 04 76 85 99 00 - Fax (38) 04 76 85 90 00 - Fax (38) 04 76 9

Document technique DEN

Page 3/28

MOTS CLEFS

CATHARE V2.5 3, INPUT DECK; FEATURES

RESUME / CONCLUSIONS

L'objectif de ce document est de décrire la version V2.5_3 de CATHARE 2 et de comparer cette nouvelle version avec la dernière version livrée. Ce document donne les nouvelles fonctionnalités de la version CATHARE 2 V2.5_3 et les principales modifications par rapport à la précédente CATHARE 2 V2.5_2. L'objectif de ce document est aussi d'aider les utilisateurs à migrer leurs jeux de données vers la nouvelle version CATHARE 2 V2.5_3.

ABSTRACT:

The purpose of this document is to describe the CATHARE 2 V2.5_3 version and to compare this new version with the latest industrial version (V2.5_2). This document gives the new features and functionalities of the CATHARE 2 V2.5_3 version and the main modifications compared to the previous one CATHARE 2 V2.5_2. The goal of the document is also to help an experienced CATHARE user to migrate his existing V2.5_2 input decks into their equivalent form suitable with the new V2.5_3 version.

Document technique DEN

Page 4/28

DIFFUSION

DIFFUSION EXTERNE

(Uniquement par fichier PDF courriel)

EDF/SEPTEN

T. POLACK, J.L. VACHER, B.F. FAIVRE, M TOMASELLO,

EDF/R&D (Chatou)

O. MARCHAND, A. SOUYRI

AREVA-NP

J.Y. SAUVAGE, J.L.GANDRILLE, L. CATALANI, A. CAILLAUX

IRSN/DPAM (Cad)

J. FLEUROT, F. BARRE

IRSN/DSR (Far)

Ph. DUFEIL, R. FREITAS

DIFFUSION INTERNE CEA

(Uniquement par fichier PDF courriel)

DPIE/SA2P (Saclay)

M. RAEPSAET

DEN/DISN

J.P. DEFFAIN, D. CARUGE

DEN/DER/SESI

J.C. GARNIER, S. DARDOUR

DEN/DANS/DM2S/SERMA

M. BLANC-TRANCHANT

DEN/DANS/DM2S

E. PROUST, Ph. MONTARNAL

DEN/DANS/DM2S/STMF
DEN/DANS/DM2S/STMF/LATF

B. FAYDIDE, F. DUCROS

DEN/DANS/DM2S/STMF/LGLS

D. GALLO V. BERGEAUD

DEN/DANS/DM2S/STMF/LIEFT

V. BERGEAUD

DEN/DANS/DM2S/STMF/LMEC

F. FAYDIDE

DEN/DANS/DM2S/STMF/LMSF

D. JAMET, M. CHANDESRIS O. ANTONI

DEN/DANS/DM2S/STMF/LMES

P. EMONOT, tous les salariés du LMES

Document technique DEN

Page 5/28

CONTENTS

Contents

CONTENTS	5
DICTIONARY INDEX	7
LIST OF TABLES	9
1 INTRODUCTION	10
2 NEW FEATURES IN THE CATHARE 2 V2.5_3 VERSION	11
2.1 Fluid used in CATHARE	11
2.2 User-friendliness of the code	11
2.3 Physical models	
2.4 The 1-D module	
2.5 The 3-D module	13
2.6 The 0-D module	13
2.7 The wall sub-module	14
2.8 The fuel and plate fuel sub-module	14
2.9 The reflooding sub-module	16
2.10 The flow-limiter sub-module	
2.11 The flow-mixer sub-module	17
2.12 Simulator use	17
2.13 Coupling with others codes	18
2.14 The kinetic sub-module	18
2.15 Others functionnalities	19
3 MAIN MODIFICATIONS IN THE CATHARE 2 V2.5_3 VERSION	20
3.1 User-friendliness of the code	
3.2 Portability of the code	20
3.3 Physico-numerical aspect	21
3.4 The 0-D module	21
3.5 The 3-D module	21
3.6 The fuel sub-modules	22
3.7 The reflooding sub-module	

Document technique DEN

Page 6/28

3.9 The accumulator sub-module	23
3.10 The flow-mixer sub-module	23
3.11 The radio-chemical sub-module	23
3.12 Simulator use	
3.13 SFR models	24
BIBLIOGRAPHY	25
NOTATIONS	26
ACRONYMS	27
END OF DOCUMENT	28

Document technique DEN

Page 7/28

DICTIONARY INDEX

Symbols
0-D (VOLUME) MODULE
GEOM
VOLUME
1-D (AXIAL) MODULE
HYDR
B
BOUNDARY CONDITION
BCONDIT2
RUPTURE
C
COMPUTATION OPTIONS
MANAGE1
OPTION
PESEE
F
FLOWMIXER SUB-MODULE
FLOMIXER ZOOM
FLOMIXER
MANIFOLD. 1
STARTMIX1
FLUID, NON CONDENSABLE GASES
FLUID
FUEL SUB-MODULE
FUELCHAR1
FUELPLAQ
FUEL
RELOC
I
INPUT DECK
BRUTEF77
VALUE
WRITE
M

Document technique DEN

Page 8/28

MASS INJECTION OR EXTRACTION SUB-MODULE	
ACCUMOD	23
ACCU	
PIQBREK	
PIQREV	
T	
NEUTRONIC SUB-MODULE	
CORE	18
SPECIFIC SUB-MODULE	
ASSIGN	19
COMPONEN	11, 12
EXHYLINK	22
SENSOR	
STEADY STATE	
LEVEL	14
TEE SUB-MODULE	
GEOM	1(
THERMAL SUB-MODULE	1
EXCHANGER	12 2
EXWALINK.	,
WALLOM	
WALLMOD	
WALL	16, 19
7	
VALVES SUB-MODULE	
FLOW LIMITER	1

Document technique DEN

Page 9/28

LIST OF TABLES

2.1.1	Fluid used in CATHARE	11
2.2.1	User-friendliness of the code	11
2.3.1	Physical models	12
2.4.1	The 1-D module	13
2.5.1	The 3-D module	13
2.6.1	The 0-D module	14
2.7.1	The wall sub-module	14
2.8.1	The fuel and plate fuel sub-module	16
2.9.1	The reflooding sub-module	
2.10.1	The flow-limiter sub-module	17
2.11.1	The flow-mixer sub-module	17
2.12.1	Simulator use	17
2.13.1	Coupling with others codes	18
2.14.1	The kinetic sub-module	18
2.15.1	Others functionnalities	19
3.1.1	User-friendliness of the code	
3.2.1	Portability of the code	
3.3.1	Physico-numerical aspect	
3.4.1	The 0-D module	
3.5.1	The 3-D module	
3.6.1	The fuel sub-modules	
3.7.1	The reflooding sub-module	22
3.8.1	The explicit hydraulic link sub-module	
3.9.1	The accumulator sub-module	23
3.10.1	The flow-mixer sub-module	23
3.11.1	The radio-chemical sub-module	23
3.12.1	Simulator use	23
3 13 1	SER models	24

DEN/DANS/DM2S/STMF/LMES/
RT/12-042/A

Document technique DEN Page 10/28

1

INTRODUCTION

The purpose of this document is to describe the **CATHARE** 2 V2.5_3 version and to compare this new version with the latest industrial version (V2.5_2).

The first chapter (NEW FEATURES IN THE CATHARE 2 V2.5_3 VERSION) of this document gives the new features and functionalities of the **CATHARE** 2 V2.5_3 version and the second chapter (MAIN MODIFICATIONS IN THE CATHARE 2 V2.5_3 VERSION gives the main modifications compared to the previous one **CATHARE** 2 V2.5_2.

By this document, the goal is also to help an experienced **CATHARE** user to migrate his existing V2.5_2 input decks into their equivalent form suitable with the new V2.5_3 version:

- 1. the detailed description of obsolete operators, directives and options in V2.5_3 version.
- 2. all new features of V2.5 3.

For such a goal, the modifications of input decks are given in the "input data deck" culumn of this following tables where:

- the "MAND" label refers to mandatory modification,
- the "NF" label to new functionnality,
- the "NOM" label to new models, options or variables.

CATHARE 2 V1.3 users willing to use the **CATHARE** 2 V2.5_3 version should refer to [9] and complete the migration process of their applications using :

- 1. from **CATHARE** 2 V1.5 to **CATHARE** 2 V1.5 [5],
- 2. from **CATHARE** 2 V1.5A to **CATHARE** 2 V1.5B [6],
- 3. from **CATHARE** 2 V1.5B to **CATHARE** 2 V2.5 [7],
- 4. from **CATHARE** 2 V2.5 to **CATHARE** 2 V2.5_1 [8],
- 5. from **CATHARE** 2 V2.5_1 to **CATHARE** 2 V2.5_2 [4] using the "CATHARE 2 V2.5_3 mod2.1 code : Dictionary of operators and directives[1]".

It is assumed that the delivered package has been properly installed on your computer according to the procedure presented in the CATHARE 2 V2.5_3 installation manual [2].

DEN/DANS/DM2S/STMF/LMES/
RT/12-042/A

Document technique DEN	Page 11/28
-------------------------------	------------

2

NEW FEATURES IN THE CATHARE 2 V2.5_3 VERSION

New features are functionnalities developed either in the frame of the **CATHARE** 2 V2.5_3 development (new functionalities) or in the frame of the maintenance of the industrial and frozen versions (**CATHARE** V2.5_1 and V2.5_2 for improvement of existing functionalities).

2.1 Fluid used in CATHARE

Operator,	Comment	Input
Directive		data
		deck
FLUID	Implementation of the the heavy water (DHO, option HEAVYWAT) fluid	NOM
FLUID	Implementation of the lead (Pb, option LEAD) and the Lead bismuth eutectic	NOM
	(LBE, option LEADBISM) fluids	

Table 2.1.1: Fluid used in CATHARE

2.2 User-friendliness of the code

Operator,	Comment	Input
Directive		data
		deck
WRITE,	The LIQMASS CCV (liquid mass) is available for a CIRCUIT and a ZONE	NOM
VALUE		
WRITE,	The PRESXi CCV (partial pressure for the <i>i</i> th non-condensible gas for the	NOM
VALUE	boundary condition element) is available	
COMPONEN	The name of the PITCH option is changed to PINPITCH for the COMPONEN	MAND
	PINGEONA	

Table 2.2.1: User-friendliness of the code

2.3 Physical models

Operator, Directive	Comment	Input data deck
COMPONEN	New option (PINWIRNA) to use the a specific friction correlation (REHME) applied to pin with wire (SFR applications)	NOM
COMPONEN	New option (FRICLAW) to use the user correlation for the wall friction under forced convection (SFR, Pb and LBE applications)	NOM
OPTION	New option (NUSSELT) to use a different nusselt number in the (q_{pg}) wall to gas heat flux	NOM
ACCU	New option (NOADIAB) to take into account the influence of the wall and the interface heat exchange in the gas volume	NOM
VOLUME	New option (QLEFR62) in order to modify the flashing term of the (q_{le}) interface to liquid heat flux for the 0-D module	NOM
WRITE, VALUE	 The following CCV for film condensation are available: PQSHER: interface to liquid heat transfer (q_{le}) sensitivity parameter in case of CHEN correlation with non condensible gas (modification of SHERWOOD number): PPCH: wall to interface heat transfer (q_{pi}) sensitivity parameter with CHEN correlation (WALL and EXCHANGER sub-modules). PPSHER: wall to interface heat transfer (q_{pi}) sensitivity parameter with CHEN correlation (WALL and EXCHANGER sub-modules). 	NOM
WRITE, VALUE	 The following CCV are available: PQGT: droplet flow sensitivity parameter for the (q_{le}) liquid-interface heat flux. PVBR: rising of bubbles sensitivity parameter in lower sub-volume (module 0-D only). 	NOM
WRITE, VALUE	The SHENT sensitivity parameter of limit level used for liquid (for horizontal and upward Tee) or gas (for downward Tee) entrainment calculation and phase separation is avalaible.	NOM

Table 2.3.1: Physical models

	DEN/DANS/DM2S/STMF/LMES/ RT/12-042/A
Document technique DEN	Page 13/28

2.4 The 1-D module

Operator, Directive	Comment	Input data deck
HYDR	Implementation of an automatic calculation model for the coefficient FRIMAPE used in the IMAPE transport scheme	NOM

Table 2.4.1: The 1-D module

2.5 The 3-D module

Operator,	Comment	Input
Directive		data
		deck
WRITE,	NRJERROR CCV variable removed for any kind of 3-D element. Its value is	MAND
VALUE	set to INF	

Table 2.5.1: The 3-D module

2.6 The 0-D module

Operator,	Comment	Input
Directive		data
		deck
MANIFOLD	The MANIFOLD directive, used in the data block, can be applied to any vol-	NF
	ume element to model the imbalance of liquid temperatures or radio-chemical	
	products at the volume inlets and to carry it at the volume outlets. This direc-	
	tive triggers an incomplete mixture model inside the specified volume	
GEOM	Implementation of the inclination sub-module for NP applications	NF
GEOM	New option (GAUGE) allowing the definition of 0-D module as level function	NOM
	of the capacity for NP applications	
GEOM	New option (LAW) allowing the definition of 0-D module as level function of	NOM
	the volume by a law	
GEOM	New option (L_INFLUEN) to define the influence length at the junctions : in-	NOM
	fluence length used to calculate the flow distribution coefficients at junctions.	
	By default this length is calculated by CATHARE . Option also activates spe-	
	cific distribution coefficients for SFR fluid only	
	continued on	next page

	DEN/DANS/DM2S/STMF/LMES/ RT/12-042/A	
Document technique DEN	Page 14/28	

Operator,	Comment	Input
Directive		data
		deck
GEOM	Implementation of a PWR accumulator model (option (PWRACC)	NOM
LEVEL	New option (CONSERVH) to kept the initialised enthalpy of the liquid phase in the lower sub-volume and to automatically calculate the non-condensible mass fraction in the upper sub-volume. Only used in 0-D module with non condensible gas	NOM

Table 2.6.1: The 0-D module

2.7 The wall sub-module

Operator,	Comment	Input
Directive		data
		deck
EXWALINK	Model of thermal coupling by radiation between two walls of a 3-D module	NF
WRITE,	The ZSW CCV (curvilinear coordinate of one wall axial mesh) is available for	NOM
VALUE	WALL sub-module only	

Table 2.7.1: The wall sub-module

2.8 The fuel and plate fuel sub-module

Operator, Directive	Comment	Input data deck
Post- processing [3]	Add of specific anti-reactivities for fuel (SFR applications) • REACTCLA: Fuel cladding thermal expansion effect on reactivity (RNR application) (\$)	NOM
	• REACTCOO : Coolant density effect on reactivity (RNR application) (\$)	
	• REACTDUC : Hexagonal duct thermal expansion effect on reactivity (RNR application) (\$)	
	• REACTFUE: Fuel pin thermal expansion effect on reactivity (RNR application) (\$)	
	continued on	next page

Document technique DEN

Page 15/28

Operator, Directive	Comment	Input data deck
FUELPLAQ	New option (FREE) for SFR free fuel. The anti-reactivity coefficient is resulting from fuel axial thermal expansion at a given radial mesh of the fuel layer	NOM
FUELPLAQ	The contact resistance between two materials (option RESIST) can be defined by an axial profile on a given segment	NOM
FUELPLAQ	In FNR and HTR applications, the fuel enrichment and the pellet compaction rate can be given as a axial profile (options ENRICH and TAUREMP)	NOM
FUELPLAQ	In HTR applications, new option (COEFKFE, FCOEFKFA) to take into account the thermal dilatation	NOM
FUELCHAR, FUELPLAQ	Option (LININTER) to choose between a logarithmique or a linear interpolation for the calculation of the residual and non residual power	NOM
RELOC	The RELOC directive enables the fuel relocation model after cladding burst (private library)	NF
WRITE, VALUE	The following variables are available for the FUEL relocation model (RELOC):	NF
	RELOCDGA : diameter of fuel fragments used to calculate the residual gap.	
	RELOCDCO: diameter of fuel fragments used to calculate the equivalent thermal conductivity.	
	RELOCTXO : volume fraction of balloon filled by fuel after relocation.	
	 RELOCGAP: gap calculated by relocation model and imposed after the cladding burst at the rupture location. 	
	RELOCPWR: power coefficient calculated by relocation model after the cladding burst at the rupture location.	
	GAPCOND : conductivity in the gap.	
	• LAMBDUO2 : UO ₂ pellet conductivity.	
	HGAPC : conductance of gas in the gap.	
	FLURADI : additional external oxide heat flow.	
	continued on	next page

DEN/DANS/DM2S/STMF/LMES/	
RT/12-042/A	

Document technique DEN	Page 16/28
-------------------------------	------------

Operator,	Comment	Input
Directive		data
		deck
WRITE,	The following CCV for the power generated by cladding oxydation (FUEL,	NOM
VALUE	WALL or FUELPLAQ sub-modules) are available :	
	POWEROXY : power generated by cladding oxidation.	
	POWEROXE : power generated by cladding oxidation on external face.	
	POWEROXI : power generated by cladding oxidation on internal face.	
WRITE,	The PXNEUT CCV (fraction of kinetic power dissipated in the fluid) is avail-	NOM
VALUE	able	

Table 2.8.1: The fuel and plate fuel sub-module

2.9 The reflooding sub-module

Operator, Directive	Comment	Input data
		deck
WRITE, VALUE	The following CCV are available for reflooding sensitivity parameters :	NOM
VILLOE	• the rate of entrainment used in the (τ_i) interfacial friction, the (q_{le}) interface to liquid and the (q_{ge}) interface to gas heat fluxes,	
	$ullet$ the droplet diameter used in the interface to liquid (q_{le}) and gas (q_{ge}) heat fluxes,	
	$ullet$ the threshold distance used in the the (q_{pvi}) wall to interface reflooding heat flux.	

Table 2.9.1: The reflooding sub-module

DEN/DANS/DM2S/STMF/LMES/	
RT/12-042/A	

Document technique DEN	Page 17/28
-------------------------------	------------

2.10 The flow-limiter sub-module

Operator, Directive	Comment	Input data deck
FLOW	For a steam FLOW LIMITER, the reduced surface SR is now used for calcu-	NOM
LIMITER	lating the critical mass flow rate	

Table 2.10.1: The flow-limiter sub-module

2.11 The flow-mixer sub-module

Operator,	Comment	Input
Directive		data
		deck
STARTMIX	The option DTMIX is no longer allowed	MAND

Table 2.11.1: The flow-mixer sub-module

2.12 Simulator use

Operator, Directive	Comment	Input data deck
OPTION	The parallel computing is available for EPR data set (ctree=EPRTH)	NF
MANAGE	Correction in order to enable the time management by cycles after the time	MAND
	specified by the user specified in MANAGE	

Table 2.12.1: Simulator use

Document technique DEN Page 18/28

2.13 Coupling with others codes

Operator,	Comment	Input
Directive		data
		deck
WRITE,	Integration of tools for the coupling of CATHARE with other codes :	NOM
VALUE	DPGEXT : pure momentum source sent to the gas phase.	
	DPLEXT : pure momentum source sent to the liquid phase.	
	OVPGEXT: indicator giving the advective term in the gas momentum equation.	
	OVPLEXT: indicator giving the advective term in the liquid momentum equation.	
	OVHGEXT: indicator giving the enthalpy considered in the convective term of the gas energy equation.	
	OVHLEXT: indicator giving the enthalpy considered in the convective term of the liquid energy equation.	
	• ENTHEXT : enthalpy considered in the convective term of the gas (resp. liquid) energy equation when the OVHGEXT (resp. OVHLEXT) is < -1 or > 1 .	

Table 2.13.1: Coupling with others codes

2.14 The kinetic sub-module

Operator,	Comment	Input
Directive		data
		deck
CORE	New option (CSPLATE) to describe the core support plate conductive time	NOM
	constant and the anti-reactivity of core support plate (HTR applications)	
CORE	New option (LINEARIZ) to model the boron effect on the moderator and the	NOM
	density anti-reactivity (PWR applications)	

Table 2.14.1: The kinetic sub-module

DEN/DANS/DM2S/STMF/LMES/	
RT/12-042/A	

Document technique DEN Page 19/28

2.15 Others functionnalities

Operator,	Comment	Input
Directive		data
		deck
GEOM	New option (SECTOT) to define the overall section of the jetpump (NP appli-	NOM
	cations)	
WALLCOM,	New option (NONETABLI): a geometric factor due to transient operating con-	NOM
WALLMOD	ditions will be taken into account or not in the calculation of the heat transfer	
and WALL	coefficient (for COMETE project)	
BRUTEF77	The BRUTEF77 directive is used to places FORTRAN instructions provided	NF
	by the user in the executable block directly into the PILOT.f subroutine (trans-	
	lation of the calculation scenario). This directive allows control statements	
	during the processing, or additional steps for the scenario	
ASSIGN	New model for the RUPTURE module to define an external rupture (option	NF
	EXTERNAL)	
WRITE,	The following variables are available for the external RUPTURE sub-	NF
VALUE	module:	
	TI IOEVT . It wild to me anothers in the containment building	
	TLIQEXT : liquid temperature in the containment building.	
	AGEXT : void fraction in the containment building.	

Table 2.15.1: Others functionnalities

	DEN/DANS/DM2S/STMF/LMES/ RT/12-042/A
Document technique DEN	Page 20/28

3

MAIN MODIFICATIONS IN THE CATHARE 2 V2.5_3 VERSION

The **CATHARE** 2 V2.5_3 version benefit from the maintenance work in the V2.5_2 version. All modifications (if applicable) include in the V2.5_2 version and particularly in the last updated V2.5_2 version (mod8.1, from update 1 to 397) have been integrated in the V2.5_3 version. The main modifications (or updates) are given in this section.

3.1 User-friendliness of the code

Operator,	Comment
Directive	
	Improvement of the linear interpolation with decreasing abscisses
Post-	The maximum number of CATHARE evolutions for a post-processing job is increased
processing	to 500
[3]	

Table 3.1.1: User-friendliness of the code

3.2 Portability of the code

Operator,	Comment
Directive	
	Improvment in the liquid average velocities to take into account a big step of void frac-
	tion between two adjacent meshes. Only available for the H ₂ 0 fluid
	Modification of the interface to liquid heat flux in case of liquid injection for 1-D and
	3-D modules
	Accumulator's discharge is done only once per time step and not at each iteration (done
	in the frame of the modification)

Table 3.2.1: Portability of the code

Document technique DEN Page 21/28

3.3 Physico-numerical aspect

Operator,	Comment
Directive	
	Correction of the CCFL for 1-D and 3-D elements
	The traitment of the residual phases in the 3-D elements become consistent with the 1-D
	module

Table 3.3.1: Physico-numerical aspect

3.4 The 0-D module

Operator,	Comment
Directive	
	Correction of pressure calculation on the port of volumes
	Modification to take into the initial volume of the containment in the TAGAMI film
	condensation model
	Modification to take into account the gas void fraction in the ratio of the mass fraction
	of non condensible gas TAGAMI film condensation model

Table 3.4.1: The 0-D module

3.5 The 3-D module

Operator,	Comment
Directive	
	Correction to verify that the face of 3-D on teta direction are closed. The sum of all the
	mesh cell lenghts on teta direction are compared to $2*pi$. An error message is introduced
	to avoid a sum of angles is different from $2 * pi$ in the 3-D cylindrical
	Correction of the convection schema in the momentum equation (flag IDISCRET=3). A
	new calculation of the Coriolis force is available
	Verification tools of porosity for 3-D elements. Messages are redirected in the file
	*.porosity3D_warning
WRITE,	Correction of sensitivity parameters for the 3-D module
VALUE	
WRITE,	Correction of the level location (IPOSNIV) calculation for a SENSOR in a 3-D module
VALUE	

Table 3.5.1: The 3-D module

	<i>DEN/DANS/DM2S/STMF/LMES/ RT/12-042/A</i>	
Document technique DEN	Page 22/28	

3.6 The fuel sub-modules

Operator, Directive	Comment	
	Correct the maximale deformation when burst occurs on maximale rupture deformation	1

Table 3.6.1: The fuel sub-modules

3.7 The reflooding sub-module

Operator, Directive	Comment
Directive	
	Improvement for the stop of the quench front level progression

Table 3.7.1: The reflooding sub-module

3.8 The explicit hydraulic link sub-module

Operator,	Comment
Directive	
EXHYLINK	Correction in order to allow the definition of an EXHYLINK between an external source
	and an external PIQREV
EXHYLINK	Correction of the communication between a source and a rupture element when radio-
	chemical components are defined
EXHYLINK	Correction of the void fraction for two linked elements. It must be greater than or equal
	to the minimum allowed value
EXHYLINK	Correction of the mass balance equations for two linked elements (weight of the element)
EXHYLINK	Correction concerning the link between a boundary condition and a source (or equiva-
	lent) object when radio-chemicals elements are defined
EXHYLINK	Correction of the radiochemical transfert for RUPTURE-PIQREV and BCONDIT-
	PIQREV links
EXHYLINK	Correction for PIQBREK-PIQREVlinks

Table 3.8.1: The explicit hydraulic link sub-module

Document technique DEN Page 23/28

3.9 The accumulator sub-module

Operator, Directive	Comment
ACCUMOD	Correction of the ACCUMOD directive used to change the boron concentration in the water of the accumulator

Table 3.9.1: The accumulator sub-module

3.10 The flow-mixer sub-module

Operator,	Comment	
Directive		
FLOMIXER	Correction in case of EXCHANGER sub-module use	
FLOMIXER	Correction for the radio-chemical flux distribution	
FLOMIXER	Correction of the radio-chemical flux distribution at in the outlet ports of the outgoing	
ZOOM	0-D module	
FLOMIXER	Correction of the reading of the mixing matrices	
ZOOM		
FLOMIXER	Correction of the matrix normalization	
ZOOM		

Table 3.10.1: The flow-mixer sub-module

3.11 The radio-chemical sub-module

Operator, Directive	Comment	
	Limitation of radio-chemical concentrations between 0 and $\frac{1}{ka}$ and creation of a radio-	
	chemical mass error parameter	

Table 3.11.1: The radio-chemical sub-module

3.12 Simulator use

Operator, Directive	Comment	
PESEE	Correction of the MAILLAGE log file when using the "PESEE ON" directive	

Table 3.12.1: Simulator use

DEN/DANS/DM2S/STMF/LMES/
<i>RT/12-042/A</i>

Document technique DEN Page 24/28

3.13 SFR models

Operator, Directive	Comment	
	Correction of the Pontier law for low Reynolds number (SFR applications)	
	Modification of the entrainement term use in the wall friction calculation for void fra	
	tion $\alpha > 0.5$ (SFR, applications)	

Table 3.13.1: SFR models

DEN/DANS/DM2S/STMF/LMES/	
RT/12-042/A	

Document technique DEN Page 25/28

BIBLIOGRAPHY

- [1] CSSI. CATHARE 2 V2.5_3 mod2.1 code: Dictionary of operators and directives. Technical Report STMF/LMES/12-040, CEA, 2012.
- [2] CSSI. CATHARE 2 V2.5_3 mod2.1 code and GUITHARE V1.7.3 GUI : Installation manual. Technical Report STMF/LMES/12-041, CEA, 2012.
- [3] CSSI. CATHARE 2 V2.5_3 mod2.1 code: Dictionary of the post-processing. Technical Report STMF/LMES/12-039, CEA, 2012.
- [4] CSSI. CATHARE 2 V2.5_2: main differences with V2.5_1 input decks. Technical Report SSTH/LDAS/EM/2008-026, CEA, 2008.
- [5] EYMARD C. CATHARE 2 v1.5A main differences with v1.5 decks. Technical Report SMTH/LMDS/EM/2000-077, CEA, 2000.
- [6] EYMARD C. CATHARE 2 V1.5B main differences with V1.5A input decks. Technical Report SMTH/LMDS/2002-088, CEA, 2002.
- [7] EYMARD C. CATHARE 2 V2.5 Main differences with V1.5B input decks. Technical Report SMTH/LMDS/EM/2003-063, CEA, 2003.
- [8] EYMARD C. CATHARE 2 V2.5_1: main differences with V2.5 input decks. Technical Report SSTH/LDAS/EM/2005-018, CEA, 2005.
- [9] MAHJOUB F. CATHARE 2 v1.5 main differences with v1.3 input descks. Technical Report SMTH/LMDS/99-029, CEA, 1999.

DEN/DANS/DM2S/STMF/LMES/
RT/12-042/A

Document technique DEN

Page 26/28

NOTATIONS

ka: weight of 1 Gbq for radio-chemical component (kg). 23

 q_{ge} : Interface to gas heat flux (W.m⁻²). 16 q_{le} : Interface to liquid heat flux (W.m⁻²). 12, 16 q_{pg} : Wall to gas heat flux (W.m⁻²). 12

 q_{pi} : Wall to interface heat flux (W.m⁻²). 12

 q_{pvi} : Wall to interface heat flux added in case of reflooding (W.m⁻²). 16

 α : Void fraction. 24 τ_i : Interfacial friction. 16

DEN/DANS/DM2S/STMF/LMES/
RT/12-042/A

Document technique DEN

Page 27/28

ACRONYMS

CCFL: Counter Currant Flow Limitation. 21

CCV: CATHARE Computational Variables (VCC). 11-14, 16

COMETE: CATHARE application for rocket motors and engines. 19

EPR: European Pressurized Reactor. 17

FNR: Fast Neutron Reactor. 15

HTR: High Temperature Reactor. 15, 18
NP: Nuclear propulsion (navy). 13, 19
PWR: Pressurized Water Reactor. 14, 18
SFR: Sodium Cooled Fast Reactor. 12–15, 24

DHO: Heavy Water fluid. 11 **H**₂**0**: Light Water fluid. 20

LBE: Lead bismuth eutectic (LBE: eutectic alloy of lead (44.5%) and bismuth (55.5%) fluid. 11, 12

Pb: Lead fluid. 11, 12

UO₂: Uranium pellet component. 15

Document technique DEN Page 28/28

	END OF DOCUMENT