Biochemistry of Electron Transport

- 1. Pathway of the e- from NADH \rightarrow O_2
- 2. Chemiosmotic Hypothesis
- 3. Synthesis of ATP

"Artificial Respiration": Experiments that led to Understanding the sequence of Electron Transport Proteins

Electron Donor Systems

acetoacetate

Where do electrons enter the ETC?

Use: Inhibitors of electron transport

How many moles of ATP are synthesized from the reduction of 1 mole O_2 ?

The Oxidation of NADH or FADH₂ by O₂ is Tightly Coupled to the Phosphorylation of ADP

- Measure the amount of O₂ consumed (reduced to 2H₂O) for any given amount of ADP added.
- Experimental Conditions
 - same as the inhibitor expt (no ADP initially, excess PO₄)
 - isolated mito's in buffer containing excess phosphate
 - addition of ADP + an electron donor starts electron transport

ADP is limiting!

NADH, Pi, O₂ are in excess.

O₂ Consumption as a function of ADP P'n

Conditions: Isolated mitochondria in buffer containing excess PO₄. Reaction is initiated by addition of ADP and e- donor.

Interpretation of Results

- a) β-OH-butyrate
 Conversion of 90 umol ADP (or PO₄) → ATP requires 18 umol O₂ (36 umol O)
 P/O = 90/36 = 2.5
- Succinate
 Conversion of 90 umol ADP (or PO₄) → ATP requires 30 umol O₂ (60 umol O)
 P/O = 90/60 = 1.5
- c) TMPD/Ascorbate P/O = 90/90 = 1

How many protons are pumped for every electron pair?

Complex I

Four Types of Redox Centers in the Electron Transport Chain

- 1. Flavins FMN, FAD
- 2. Iron Sulfur Centers [2Fe–2S], [4Fe-4S]
- 3. Hemes
- 4. Cu lons

Complex I

Flavin mononucleotide (FMN) (oxidized or quinone form)

FMNH• (radical or semiquinone form)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & &$$

$FMNH_2$ (reduced or hydroquinone form)

$$\begin{array}{c} \text{CH}_3\text{CO} \\ \text{H}_3\text{CO} \\ \text{H}_3\text{CO} \\ \text{O} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{(CH}_2 - \text{CH} = \text{C} - \text{CH}_2)_n \text{ H} \\ \text{Isoprenoid units} \end{array}$$

Coenzyme Q (CoQ) or Ubiquinone (oxidized or quinone form)

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Coenzyme QH• or Ubisemiquinone (radical or semiquinone form)

$$\begin{array}{c} \text{H}\bullet]\\ \text{OH}\\ \text{H}_3\text{CO} \\ \text{OH} \\ \end{array}$$

Coenzyme QH₂ or Ubiquinol (reduced or hydroquinone form)

- Oxygen is a bi-radical
- Can accept e-s only 1 at a time
- Problem: ETC starts with e- pairs....

Complex III

Complex I

Α

Complex IV (cytochrome oxidase)

Oxygen free radicals

•
$$O_2$$
 · + e^+ · O_3 : (HO₂·) Superoxide
• O_2 · + $2e^-$ · O_2 : (H₂O₂) Peroxide
• O_3 : (H₂O₂) Peroxide
• O_3 : (H₂O₃) Peroxide

O₂ free radical scavaging systems

$$O_2$$
 + O_2 O_3 O_4 O_5 O_5 O_5 O_5 O_5 O_5 Superoxide Dismutase O_5 O_5 O_6 O_7 O_8 O_8

10 H+'s are pumped per 2e-s transported from NADH to ½ O₂

Look at Fig. 19-19 Lehninger