1. 基础概念

复杂度

时间复杂度:
$$\lim \frac{T(n)}{O(n)} = C$$

例
$$sum[a_0, a_1, ..., a_{n-1}]$$
与 $var[a_0, a_1, ..., a_{n-1}]$

空间复杂度: 算法执行完所需要的存储空间例如图G=(V,E), |V|=10000, |E|=100000存储矩阵A边列表

目标

存储与效率

基础知识

广度优先搜索(Breadth-First-Search, BFS)

深度优先搜索(Deep-First-Search, DFS)

$$y = A^T * x$$

- 1. 基础概念
- 2. 强连通分量

Kosaraju
$$(O(m+n))$$

Kosaraju Algorithm (G, s, t)

- 1. Input: G
- 2. Output: Component(G)
- 3. Call DFS(G) to compute finishing times f[u] for $v \in V$
- 4. Compute G^T
- 5. Call DFS(G^T).
- 6. but in the main loop of DFS, consider the decreasing
- 7. Output the vertices of

G:

$$1 \rightarrow 2 \rightarrow 5 \rightarrow 6 \rightarrow 3$$

 $\rightarrow 7 \rightarrow 4$

$$G^{T}$$
:
 $4 \rightarrow 1$
 $\rightarrow 7 \rightarrow 2$

Connected $_$ Component $_1 = [1,2,4,7]$

```
tarjan (O(m+n))
```

```
tarjan Algorithm (G, s, t)
```

```
Input: G
1.
   Output: Component(G)
    DFN[u] = Low[u] = ++Index
3.
4.
        Stack.push(u)
        for each (u, v) in E do:
5.
            if (v is not visted) do:
6.
                tarjan(v)
7.
8.
                Low[u] = min(Low[u], Low[v])
            else if (v in S) do:
9.
                Low[u] = min(Low[u], DFN[v])
10.
        if (DFN[u] == Low[u]) do:
11.
12.
            repeat
13.
                v = S.pop
14.
                print v
15.
            until (u== v)
```


Е

2

1.				3.			
+ node	dfn	low	Stack	+ node	dfn	low	Stack
A	1	1	A	G	6	6	A,B,G
В	2	2	A,B	D	7	1	A,B,G,D
E	3	3	A,B,E				
F	4	4	A,B,E,F				
C	5	5	A,B,E,F,C				
2.				4.			
- node	dfn	low	Stack	M_node	dfn	low	Stack
C	4	4	A,B,E,F	G	6	1	A,B,G,D
F	3	3	A,B,E	В	2	1	A.B.G.D

A,B

A,B,G,D

强连通分量

Algebra (O(m+n))

Algebra Algorithm (G, s, t)

```
Input: G
1.
2. Output: Component(G)
   V_list = [1, 2, ..., n]
4.
   Cmp_list = [ ]
    while V_list != Ø do:
5.
         node = V_list[0]
6.
      cmp node = [ ]
7.
8.
         C = Algebra_BFS(G, node)
         D = Algebra_BFS(G^T, node)
9.
         cmp\_node.append(C \cap D)
10.
         Cmp_node.append(cmp_node)
11.
         V list.remove(cmp)
12.
```


Connected Component 1 = [1,2,4,7]

- 1. 基础概念
- 2. 强连通分量
- 3. 最短路算法

Dijkstra Algorithm (有向+非负权)

Dijkstra Algorithm (G, w, s)

- 1. Initialize-Single-Source
- 2. $S = \emptyset$
- 3. Q = V
- 4. while $Q != \emptyset$ do:
- 5. U = EXTRACT-MIN(Q)
- 6. $S = S \cup \{u\}$
- 7. **for** each vertex $v \in G$, Adj[u] **do:**
- 8. RELAX(u, v, w)

Initialize-Single-Source

- 1. **for** each $v \in V$ **do**:
- 2. $d(v) = \infty$
- 3. d(s) = 0

RELAX(u, v, w)

- 1. if p(s,v) > p(s,u) + w(u,v) then:
- 2. p(s,v) = p(s,u) + w(u,v)
- 3. $v.\pi = u$

最短路

Dijkstra Algorithm (有向+非负权)

Fibonacci Heaps Dijkstra Algorithm (G, w, s)

- Initialize-Single-Source
- 2. Make Heap
- 3. $S = \emptyset$
- 4. Q = V
- 5. while Heap != Ø do:
- 6. U = root
- 7. $S = S \cup \{u\}$
- 8. **for** each vertex $v \in Q S$, Adj[u] **do:**
- 9. if p(s,v) > p(s,u) + w(u,v) then:
- 10. decrease node v or insert v
- 11. delete u in Heap

步骤:从a-b的堆示意图

Bellman-Ford Algorithm (有向+正负权)

Bellman-Ford(G, w, s)

- 1. Initialize-Single-Source
- 2. for i from 1 to |V|-1 do:
- 3. **for** each edge(u, v) in |E| **do**:
- 4. RELAX(u, v, w)
- 5. **for** each edge(u, v) in |E| do:
- 6. if p(s,v) > p(s,u) + w(u,v) do:
- 7. return False

RELAX(u, v, w)

- 1. **if** p(s,v) > p(s,u) + w(u,v) **do:**
- 2. p(s,v) = p(s,u) + w(u,v)
- 3. $v.\pi = u$

Bellman-Ford Algorithm (有向+正负权)

Bellman-Ford(G, w, s)

- Initialize-Single-Source 1.
- for i from 1 to |V|-1 do: 2.
- $d = d \min.+ A$ 3.
- **if** d != d min.+ A **do**: 4.
- 5. return "A negative-weight cycle exists."

0	7	6		
-	0	l	-3	9
	8	0	5	-4
		-2	0	
2			7	Λ

\mathbf{B}	U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8
$\begin{array}{c c} A & -2 \\ \hline & -3 \\ \hline & -4 \\ \hline & 7 \end{array}$	8
7 2	8
C 9 E	8
	d_0

0	7	6	I	I
I	0	I	-3	9
I	8	0	5	-4
l	l	-2	0	l
2	-	- 1	7	0

 $d_k(v) = \min_{\forall u \in N} (d_{k-1}(u) + A(u, v))$

Floyd-Warshall(有向+正负权)

Floyd-Warshall Algorithm (G, w, s)

```
1. Input: A matrix
2. Output: D matrix
3. for all i != j do:
4. d_{ij} = A_{ij}
5. for i from 1 to n do:
6. d_{ii} = 0
7. for k from 1 to n do:
8. for i from 1 to n do:
9. for j from 1 to n do:
10. d_{ij} = \min\{d_{ij}, d_{ik} + d_{kj}\}
```


0	8	5	9	7
11	0	2	1	4
9	3	0	4	2
11	19	16	0	4
7	15	12	16	0

Floyd-Warshall(有向+正负权)

Floyd-Warshall Algorithm (G, w, s)

```
1. Input: A matrix
2. Output: D matrix
3. for all i != j do:
4. d_{ij} = A_{ij}
5. for i from 1 to n do:
6. d_{ii} = 0
7. for k from 1 to n do:
8. for i from 1 to n do:
9. for j from 1 to n do:
10. d_{ij} = \min\{d_{ij}, d_{ik} + d_{kj}\}
```


0	8	5	9	7
11	0	2	1	4
9	3	0	4	2
11	19	16	0	4
7	15	12	16	0

- 1. 基础概念
- 2. 强连通分量
- 3. 最短路算法
- 4. 最大流算法

Ford-Fulkerson (O(mn))

Ford-Fulkerson Algorithm (G, s, t)

```
1. Input: (G, s, t)
2. Output: maximum_flow(s,t)
3. for e(u, v) \in E do:
       e(u, v).f = 0
4.
  while find a route from s to t in E
       m = min\{e(u, v).f, e(u, v) \in route\}
6.
       for e(u, v) \in route do:
7.
            if e(u, v) \in f do:
8.
                e(u, v).f = e(u, v).f + m
9.
10.
            else do:
                e(u, v).f = e(u, v).f - m
11.
```


最大流

Edmonds-karp $(O(m^2n))$

Edmonds-karp Algorithm (G, s, t)

- 1. Input: (G, s, t)
- 2. Output: maximum_flow(s,t)
- 3. for $e(u, v) \in E$ do:
- 4. e(u, v).f = 0
- 5. while find a shortest route from s to t in E
- 6. $m = min\{e(u, v).f, e(u, v) \in route\}$
- 7. **for** $e(u, v) \in \text{route } do:$
- 8. **if** $e(u, v) \in f$ **do**:
- 9. e(u, v).f = e(u, v).f + m
- 10. else do:
- 11. e(u, v).f = e(u, v).f m

t

Dinic $(O(n^2m))$

```
Dinic Algorithm (G, s, t)
```

```
    Input: (G, s, t)
    Output: maximum_flow(s,t)
    while there exits a path p from s to t in the residual network do:
```

4. BFS()

5. **while** find a **do**:

6. ans += a

7. return ans

l=1 A,B

1=2 C,D

1=3 t

- 1. 基础概念
- 2. 强连通分量
- 3. 最短路算法
- 4. 最大流算法
- 5. 支撑树算法

Boruvka (O(nlogm))

Boruvka Algorithm (G, s, t)

- 1. Input: G
- 2. Output: Tree(G)
- 3. Tree(G) = \emptyset
- 4. while A does not from a apanning tree do:
- 5. find an edge(u, v) that is safe for Tree(G)
- 6. Tree(G) = Tree(G) \cup {(u, v)}
- 7. return Tree(G)

Kruskal $(O(n^2 log m))$

Boruvka Algorithm (G, s, t)

- 1. Input: G
- 2. Output: Tree(G)
- 3. Tree(G) = \emptyset
- 4. for each vertex $v \in V$ do:
- 5. MAKE-SET(v)
- 6. sort the edges of E into nondecreasing order by weight
- 7. **for** each edge(u, v) \in E **do**:
- 8. taken in nondecreasing order by weight
- 9. **if** FIND-SET(u) != MAKE-SET(v) **then:**
- 10. Tree(G) = Tree(G) \cup {(u, v)}
- 11. UNION(u, v)
- 12. return Tree(G)

$$Prim (O(m + nlog m))$$

Prim Algorithm (G, s, t)

- 1. for each vertex $u \in V$ do:
- 2. $key[u] = \infty$
- 3. $\pi[u] = NIL$
- 4. Key[r]=0
- 5. Q = V
- 6. while Q $!= \emptyset$ do:
- 7. u = EXTRACT-MIN(Q)
- 8. for each $v \in Adj[u]$ do:
- 9. if $v \in Q \& w(u, v) < key[v]$ then:
- 10. $\pi[v] = u$
- 11. key[v] = w(u, v)

