Carleman estimate for the Navier-Stokes equations and an application to a lateral Cauchy problem

Mourad Bellassoued

Department of Mathematics, Faculty of Sciences of Bizerte University of Carthage, 7021 Jarzouna Bizerte, Tunisia

e-mail: mourad.bellassoued@fsb.rnu.tn

Oleg Imanuvilov

Department of Mathematics, Colorado State University 101 Weber Building, Fort Collins, CO 80523-1874, USA

e-mail: oleg@math.colostate.edu*

Masahiro Yamamoto

Graduate School of Mathematical Sciences, the University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan.

e-mail: $myama@ms.u-tokyo.ac.jp^{\dagger}$

Abstract

We consider the nonstationary linearized Navier-Stokes equations in a bounded domain and first we prove a Carleman estimate with a regular weight function. Second we apply the Carleman estimate to a lateral Cauchy problem for the

^{*}Partially supported by NSF grant DMS 1312900

 $^{^{\}dagger}$ Partially supported by Grant-in-Aid for Scientific Research (S) 15H05740 of Japan Society for the Promotion of Science

Navier-Stokes equations and prove the Hölder stability in determining the velocity and pressure field in an interior domain.

1 Introduction

Let $\Omega \subset \mathbb{R}^n$, n = 2, 3, be a bounded domain with smooth boundary $\partial\Omega$ (e.g., of C^2 -class), and let $\nu = \nu(x)$ be the outward unit normal vector on $\partial\Omega$ at x. We set $Q := \Omega \times (0, T)$.

We consider the linearized Navier-Stokes equations for an incompressible viscous fluid:

$$\partial_t v(x,t) - \kappa \Delta v(x,t) + (A \cdot \nabla)v + (v \cdot \nabla)B + \nabla p = F(x,t) \quad \text{in } Q, \tag{1.1}$$

and

$$\operatorname{div} v(x,t) = 0 \quad \text{in } Q. \tag{1.2}$$

Here $v=(v_1,\cdots,v_n)^T,\ n=2,3,\ \cdot^T$ denotes the transpose of matrices, $\kappa>0$ is a constant describing the viscosity, and for simplicity we assume that the density is one. Let $\partial_t=\frac{\partial}{\partial t},\ \partial_j=\frac{\partial}{\partial x_j},\ 1\leq j\leq n,\ \Delta=\sum_{j=1}^n\partial_j^2,\ \nabla=(\partial_1,\cdots,\partial_n)^T,\ \nabla_{x,t}=(\nabla,\partial_t)^T,$ $\partial_x^\beta=\partial_1^{\beta_1}\cdots\partial_n^{\beta_n}$ with $\beta=(\beta_1,\cdots,\beta_n)\in(\mathbb{N}\cup\{0\})^n,\ |\beta|=\beta_1+\cdots+\beta_n,$

$$(w \cdot \nabla)v = \left(\sum_{j=1}^{n} w_j \partial_j v_1, \cdots, \sum_{j=1}^{n} w_j \partial_j v_n\right)^T$$

for $v = (v_1, \dots, v_n)^T$ and $w = (w_1, \dots, w_n)^T$. Throughout this paper, we assume

$$A \in W^{2,\infty}(Q), \quad \nabla B \in L^{\infty}(Q).$$
 (1.3)

In this paper, we establish a Carleman estimate with a regular weight function and apply it to a lateral Cauchy problem for the Navier-Stokes equations and prove the Hölder stability in an arbitrarily given interior domain. For stating the main results, we introduce notations. Let I_n be the $n \times n$ identity matrix and let the stress tensor $\sigma(v, p)$ be defined by the $n \times n$ matrix

$$\sigma(v, p) := \kappa(\nabla v + (\nabla v)^T) - pI_n,$$

where κ is some positive constant. We assume

$$d \in C^2(\overline{\Omega}), \quad |\nabla d(x)| > 0 \quad \text{on } \overline{\Omega}$$
 (1.4)

and we arbitrarily choose $t_0 \in (0,T)$ and $\beta > 0$. We set

$$\psi(x,t) = d(x) - \beta(t-t_0)^2, \quad \varphi(x,t) = e^{\lambda\psi(x,t)}$$

with a sufficiently fixed large constant $\lambda > 0$. We choose a non-empty relatively open subboundary $\Gamma \subset \partial \Omega$ arbitrarily.

Let $D \subset Q$ be a bounded domain with smooth boundary ∂Q such that $\overline{D \cap (\partial \Omega \times (0,T))} \subset \Gamma \times (0,T)$.

For $k, \ell \in \mathbb{N} \cup \{0\}$, we set

$$H^{k,\ell}(D) = \{ v \in L^2(D); \, \partial_x^\beta v \in L^2(D), \, |\beta| < k, \, \partial_t^j v \in L^2(D) \, \, 0 < j < \ell \}$$

and

$$\|(v,p)\|_{\mathcal{X}_s(D)}^2 := \int_D \left\{ \frac{1}{s^2} \left(|\partial_t v|^2 + \sum_{i,j=1}^n |\partial_i \partial_j v|^2 \right) + |\nabla v|^2 + s^2 |v|^2 + \frac{1}{s} |\nabla p|^2 + s|p|^2 \right\} e^{2s\varphi} dx dt.$$

We are ready to state our Carleman estimate.

Theorem 1.

There exist constants $s_0 > 0$ and C > 0, independent of s, such that

$$||(v,p)||_{\mathcal{X}_{s}(D)}^{2} \leq C \int_{D} |F|^{2} e^{2s\varphi} dx dt + C \int_{D} (|h|^{2} + |\nabla_{x,t}h|^{2}) e^{2s\varphi} dx dt$$

$$+ Ce^{Cs} (||v||_{L^{2}(0,T;H^{\frac{3}{2}}(\Gamma))}^{2} + ||\partial_{t}v||_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2} + ||\sigma(v,p)\nu||_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2})$$

$$(1.5)$$

for all $s \ge s_0$ and $(v, p) \in H^{2,1}(D) \times H^{1,0}(D)$ satisfying (1.1),

$$div v = h$$
 in D with $h \in H^{1,1}(D)$,

and

$$\begin{cases} v(\cdot,0) = v(\cdot,T) = 0 & in \ \Omega, \\ |v| = |\nabla v| = |p| = 0 & on \ \partial D \setminus (\Gamma \times (0,T)). \end{cases}$$
 (1.6)

This is a Carleman estimate for the linearized Navier-Stokes equations (1.1) with (1.2) with boundary data on $\Gamma \subset \partial \Omega$.

Boulakia [2] proves a Carleman estimate with a weight function similar to ours for the homogeneous Stokes equations: $\partial_t v = \Delta v - \nabla p$ and div v = 0 with extra interior or boundary data. The Carleman estimate in [2] requires a stronger norm of boundary data than our Carleman estimate if it is applied to the case of the Stokes equations. As for other Carleman estimates for the Navier-Stokes equations, we refer to Choulli, Imanuvilov, Puel and Yamamoto [3], Fernández-Cara, Guerrero, Imanuvilov and Puel [6], where the authors use a weight function in the form

$$\exp\left(\frac{2sw(x)}{t(T-t)}\right)$$

with some function w and the weight function decays to 0 at t=0,T exponentially. Their Carleman estimates hold over the whole domain Q for v satisfying v=0 on $\partial\Omega$ but not necessarily $v(\cdot,0)=v(\cdot,T)=0$. Those global Carleman estimate is convenient for proving the Lipschitz stability for an inverse source problem (e.g., [3]) and the exact null controllability ([6]), but is not suitable for proving the unique continuation, and such a weight function does not admit Carleman estimates for the Navier-Stokes equations coupled with first-order equation or hyperbolic equation such as a conservation law. As for Carleman estimates for the Navier-Stokes equations, see also Fan, Di Cristo, Jiang and Nakamura [4] and Fan, Jiang and Nakamura [5] with extra data in a neighborhood of the whole boundary, which is too much by considering the parabolicity of the equations.

2 Proof of Theorem 1

First Step.

Let $E \subset \mathbb{R}^n$ be a bounded domain with smooth boundary ∂E and let $E_{\delta} := \{x \in E; \text{ dist } (x, E) > \delta\}$ with small $\delta > 0$.

We prove

Lemma 1.

Let $p \in H^1(E)$ satisfy

$$\Delta p = f_0 + \sum_{i=1}^{n} \partial_j f_j \quad in \ E$$

and supp $p \subset E_{\delta}$. Let $d_0 \in C^2(\overline{E})$ satisfy $d_0(x) > 0$ for $x \in E$ and $|\nabla d(x)| > 0$ for $x \in E_{\delta}$. We set $\varphi_0(x) = e^{\lambda d_0(x)}$ with large constant $\lambda > 0$. Then there exist constants C > 0 and $s_1 > 0$ such that

$$\int_{E} \left(\frac{1}{s} |\nabla p|^{2} + s|p|^{2} \right) e^{2s\varphi_{0}(x)} dx \le C \int_{E} \left(\frac{1}{s^{2}} |f_{0}|^{2} + \sum_{j=1}^{n} |f_{j}|^{2} \right) e^{2s\varphi_{0}(x)} dx$$

for all $s \geq s_1$. The constants C and s_1 are independent of choices of p.

Proof. Since ∂E is of C^3 -class, we choose a function $\mu \in C^3(\overline{E})$ such that $0 \le \mu \le 1$,

$$\mu > 0 \text{ in } E \text{ and } \mu = \begin{cases} 0, & \text{in } \mathbb{R}^n \setminus E, \\ 1, & \text{in } E_{\delta/2}. \end{cases}$$
. We set $\widetilde{d}_0(x) = \mu(x)d_0(x)$ and $\widetilde{\varphi}_0(x) = e^{\lambda \widetilde{d}_0(x)}$

for $x \in \overline{E}$. Then $\widetilde{d_0}(x) = 0$ for $x \in \partial E$ and $\widetilde{d_0} > 0$, $|\nabla \widetilde{d_0}| = |\mu \nabla d_0 + d_0 \nabla \mu| = |\mu \nabla d_0| > 0$ in E_{δ} . Hence the H^{-1} -Carleman estimate for an elliptic operator by Imanvilov and Puel [9] yields

$$\int_{E} \left(\frac{1}{s} |\nabla p|^{2} + s|p|^{2} \right) e^{2s\widetilde{\varphi_{0}}(x)} dx \le C \int_{E} \left(\frac{1}{s^{2}} |f_{0}|^{2} + \sum_{j=1}^{n} |f_{j}|^{2} \right) e^{2s\widetilde{\varphi_{0}}(x)} dx$$

for all $s \geq s_1$. Here we note that in Theorem 1.2 in [9], we set $\omega = E \setminus \overline{E_\delta}$ and use $p|_{\omega} = 0$. Since p = 0 in $E \setminus E_\delta$ and $\widetilde{d_0} = d_0$ in E_δ , we complete the proof of Lemma 1.

Lemma 2.

There exist constants $s_0 > 0$ and C > 0 such that

$$\|(v,p)\|_{\mathcal{X}_s(Q)}^2 \le C \int_{\mathcal{Q}} |F|^2 e^{2s\varphi} dx dt + C \int_{\mathcal{Q}} (|h|^2 + |\nabla_{x,t} h|^2) e^{2s\varphi} dx dt$$
 (2.1)

for all $s \geq s_0$ and $(v, p) \in H^{2,1}(Q) \times H^{1,0}(Q)$ satisfying (1.1),

$$v(\cdot,0) = v(\cdot,T) = 0$$
 in Ω ,
 $|v| = |\nabla v| = |p| = 0$ in $\partial \Omega \times (0,T)$,

and

$$div v = h$$
 in Q

with some $h \in H^{1,1}(Q)$.

Proof of Lemma 2. Thanks to the large parameter s>0, in view of (1.3), it is sufficient to prove Lemma 1 for B=0 in (1.1). In fact, the Carleman estimate with $B\neq 0$ follows from the case of B=0 by replacing F by $F-(v\cdot\nabla)B$ and estimating $|(F-(v\cdot\nabla)B)(x,t)|\leq |F(x,t)|+C|v(x,t)|$ for $(x,t)\in Q$. Then, choosing $s_0>0$ large, we can absorb the term $\int_{Q}|v|^2e^{2s\varphi}dxdt$ into the left-hand side of the Carleman estimate.

By the density argument, it is sufficient to prove the lemma for (v, p) such that supp v and supp p are compact in Q. We consider

$$\partial_t v = \kappa \Delta v - (A \cdot \nabla)v - \nabla p + F \tag{2.2}$$

and

$$\operatorname{div} v = h \qquad \text{in } Q. \tag{2.3}$$

Taking the divergence of (2.2) and using (2.3), we obtain

$$\Delta p = -\sum_{j,k=1}^{n} \{\partial_{j}((\partial_{k}A_{j})v_{k}) - (\partial_{j}\partial_{k}A_{j})v_{k}\} + \operatorname{div} F - \partial_{t}h - (A \cdot \nabla)h + \kappa \operatorname{div}(\nabla h) \quad \text{in } Q.$$
(2.4)

Here we used

$$\operatorname{div}((A \cdot \nabla)v) = \sum_{j,k=1}^{n} \partial_{k}(A_{j}\partial_{j}v_{k}) = \sum_{j=1}^{n} A_{j}\partial_{j}\left(\sum_{k=1}^{n} \partial_{k}v_{k}\right) + \sum_{j,k=1}^{n} (\partial_{k}A_{j})\partial_{j}v_{k}$$

$$= A \cdot \nabla(\operatorname{div}v) + \sum_{j,k=1}^{n} \{\partial_{j}((\partial_{k}A_{j})v_{k}) - (\partial_{j}\partial_{k}A_{j})v_{k}\}. \tag{2.5}$$

Moreover on the right-hand side of (2.4), the term $\kappa \text{div}(\nabla h)$ is not in $L^2(Q)$ because we assume only $h \in H^{1,1}(Q)$. Thus we cannot apply a usual Carleman estimate requiring $\Delta p \in L^2(Q)$, and we need the H^{-1} -Carleman estimate.

By a usual density argument, we can assume that supp $p \subset Q$. By supp $p \subset Q$, fixing $t \in [0, T]$, we apply Lemma 1 to (2.4) and obtain

$$\int_{\Omega} \left(\frac{1}{s} |\nabla p(x,t)|^2 + s|p(x,t)|^2 \right) e^{2s\varphi(x,t_0)} dx$$

$$\leq C \int_{\Omega} (|F|^2 + |\partial_t h|^2 + |\nabla h|^2 + |h|^2) e^{2s\varphi(x,t_0)} dx + C \int_{\Omega} |v(x,t)|^2 e^{2s\varphi(x,t_0)} dx \tag{2.6}$$

for $s \geq s_1$ where $s_1 > 0$ is a sufficiently large constant.

Let
$$s_0 := s_1 e^{\lambda \beta T^2}$$
. Then, $s \ge s_0$ implies

$$se^{-\lambda\beta(t-t_0)^2} \ge se^{-\lambda\beta T^2} \ge s_1$$

for $0 \le t \le T$, so that for fixed $t \in [0,T]$ by replacing s by $se^{-\lambda\beta(t-t_0)^2}$, by (2.5) we can see

$$\begin{split} & \int_{\Omega} \left(\frac{1}{s} |\nabla p(x,t)|^2 + s |p(x,t)|^2 \right) \exp(2(se^{-\lambda\beta(t-t_0)^2})\varphi(x,t_0)) dx \\ \leq & C \int_{\Omega} (|F|^2 + |\partial_t h|^2 + |\nabla h|^2 + |h|^2) \exp(2(se^{-\lambda\beta(t-t_0)^2})\varphi(x,t_0)) dx \\ + & C \int_{\Omega} |v(x,t)|^2 \exp(2(se^{-\lambda\beta(t-t_0)^2})\varphi(x,t_0)) dx, \end{split}$$

that is,

$$\int_{\Omega} \left(\frac{1}{s} |\nabla p(x,t)|^2 + s|p(x,t)|^2 \right) e^{2s\varphi(x,t)} dx$$

$$\leq C \int_{\Omega} (|F|^2 + |\partial_t h|^2 + |\nabla h|^2 + |h|^2) e^{2s\varphi(x,t)} dx + C \int_{\Omega} |v(x,t)|^2 e^{2s\varphi(x,t)} dx$$

for $s \geq s_0$ and $0 \leq t \leq T$. Integrating this inequality in t over (0,T), we have

$$\int_{Q} \left(\frac{1}{s} |\nabla p|^{2} + s|p|^{2}\right) e^{2s\varphi} dx dt$$

$$\leq C \int_{Q} (|F|^{2} + |\partial_{t}h|^{2} + |\nabla h|^{2} + |h|^{2}) e^{2s\varphi} dx dt + C \int_{Q} |v|^{2} e^{2s\varphi} dx dt \tag{2.7}$$

for all $s \geq s_0$.

Next, regarding $F - \nabla p$ in (2.2) as non-homogeneous term, we apply a Carleman estimate for the parabolic operator $\partial_t v - \kappa \Delta v + (A \cdot \nabla)v$ (e.g., Theorem 3.1 in Yamamoto [21]) to (2.2):

$$\frac{1}{s} \int_{Q} \left\{ \frac{1}{s} \left(|\partial_{t}v|^{2} + \sum_{i,j=1}^{n} |\partial_{i}\partial_{j}v|^{2} \right) + s|\nabla v|^{2} + s^{3}|v|^{2} \right\} e^{2s\varphi} dxdt$$

$$\leq C \int_{Q} \frac{1}{s} |\nabla p|^{2} e^{2s\varphi} dxdt + C \int_{Q} \frac{1}{s} |F|^{2} e^{2s\varphi} dxdt. \tag{2.8}$$

Substituting (2.7) into (2.8), we obtain

$$\int_{Q} \left\{ \frac{1}{s^{2}} \left(|\partial_{t}v|^{2} + \sum_{i,j=1}^{n} |\partial_{i}\partial_{j}v|^{2} \right) + |\nabla v|^{2} + s^{2}|v|^{2} \right\} e^{2s\varphi} dx dt
\leq C \int_{Q} |F|^{2} e^{2s\varphi} dx dt + C \int_{Q} (|\partial_{t}h|^{2} + |\nabla h|^{2} + |h|^{2}) e^{2s\varphi} dx dt
+ C \int_{Q} |v|^{2} e^{2s\varphi} dx dt + \frac{C}{s} \int_{Q} |F|^{2} e^{2s\varphi} dx dt.$$

Choosing $s_0 > 0$ large, we can absorb the third term on the right-hand side into the left-hand side, again with (2.7), we complete the proof of Lemma 2.

Second Step.

Without loss of generality, we can assume that d > 0 in Ω because we replace d by $d + C_0$ with large constant $C_0 > 0$ if necessary.

In this step, we will prove

Lemma 3.

There exist constants $s_0 > 0$ and C > 0 such that

$$\|(v,p)\|_{\mathcal{X}_s(D)}^2$$

$$\leq C \int_{D} |F|^{2} e^{2s\varphi} dx dt + C \int_{D} (|h|^{2} + |\nabla_{x,t}h|^{2}) e^{2s\varphi} dx dt$$

$$+ C e^{Cs} (\|v\|_{L^{2}(0,T;H^{\frac{3}{2}}(\Gamma))}^{2} + \|\partial_{t}v\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2} + \|\partial_{\nu}v\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2} + \|p\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2})$$

for all $s \ge s_0$ and $(v, p) \in H^{2,1}(D) \times H^{1,0}(D)$ satisfying (1.1), (1.6) and

$$div v = h \quad in \ D. \tag{2.9}$$

Proof of Lemma 3. We take the zero extensions of v, p, A, F to Q from D and by the same letters we denote them:

$$v = \begin{cases} v & \text{on } \overline{D}, \\ 0 & \text{in } Q \setminus D, \end{cases} \quad p = \begin{cases} p & \text{on } \overline{D}, \\ 0 & \text{in } Q \setminus D, \text{ etc.} \end{cases}$$

By (1.6) we easily see that

$$\partial_i v = \begin{cases} \partial_i v & \text{on } \overline{D}, \\ 0 & \text{in } Q \setminus D, \end{cases} \quad \partial_t v = \begin{cases} \partial_t v & \text{on } \overline{D}, \\ 0 & \text{in } Q \setminus D, \end{cases} \quad \partial_i \partial_j v = \begin{cases} \partial_i \partial_j v, & \text{on } \overline{D}, \\ 0, & \text{in } Q \setminus D, \end{cases}$$

and

$$\partial_i p = \begin{cases} \partial_i p, & \text{on } \overline{D}, \\ 0, & \text{in } Q \setminus D \end{cases}$$

for $1 \le i, j \le n$. Moreover, since v = 0 on $\partial D \setminus (\Gamma \times (0, T))$ by (1.6), setting $h = \begin{cases} h & \text{on } \overline{D}, \\ 0 & \text{in } Q \setminus D \end{cases}$, we see that $h \in H^{1,1}(Q)$ and

$$\operatorname{div} v = h \quad \text{in } Q \tag{2.10}$$

and

$$\partial_t v = \kappa \Delta v + (A \cdot \nabla)v + \nabla p + F \quad \text{in } Q.$$
 (2.11)

By the Sobolev extension theorem, there exist $\widetilde{p} \in L^2(0,T;H^1(\Omega))$ and $v \in H^{2,1}(Q)$ such that

$$\begin{cases}
\widetilde{v} = v, \, \partial_{\nu}\widetilde{v} = \partial_{\nu}v, \, \widetilde{p} = p \quad \text{on } \partial\Omega \times (0, T), \\
\text{supp } \widetilde{v}(x, \cdot) \subset (0, T) \text{ for almost all } x \in \Omega
\end{cases}$$
(2.12)

and

$$\|\widetilde{v}\|_{H^{2,1}(Q)} + \|\partial_t \widetilde{v}\|_{L^2(0,T;H^1(\Omega))} + \|\widetilde{p}\|_{L^2(0,T;H^1(\Omega))}$$

 $\leq C(\|v\|_{L^{2}(0,T;H^{\frac{3}{2}}(\Gamma))} + \|\partial_{t}v\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))} + \|\partial_{\nu}v\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))} + \|p\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}). \tag{2.13}$ The last condition in (2.12) can be seen by $v(\cdot,0) = v(\cdot,T) = 0$ in Ω which follows from (1.6).

We set

$$u = v - \widetilde{v}, \quad q = p - \widetilde{p} \quad \text{in } Q.$$

Then, in view of (2.10) - (2.12), we have

$$|u| = |\nabla u| = |q| = 0 \quad \text{on } \partial\Omega \times (0, T) \tag{2.14}$$

and

$$\partial_t u - \kappa \Delta u + \nabla q + (A \cdot \nabla)u = F - (\partial_t \widetilde{v} - \kappa \Delta \widetilde{v} + (A \cdot \nabla)\widetilde{v} + \nabla \widetilde{p}) =: G \text{ in } Q, \quad (2.15)$$

$$\operatorname{div} u = h - \operatorname{div} \widetilde{v} \in H^{1,1}(Q). \tag{2.16}$$

We choose a bounded domain $\widetilde{\Omega}$ with smooth boundary $\partial \widetilde{\Omega}$ such that $\widetilde{\Omega} \supset \Omega$, $\overline{\Gamma} = \partial \Omega \cap \widetilde{\Omega}$ and $\partial \widetilde{\Omega} \cap \overline{\Omega} = \partial \Omega \setminus \Gamma$. In other words, the domain $\widetilde{\Omega}$ is constructed by expanding Ω only over Γ to the exterior such that the boundary $\partial \widetilde{\Omega}$ is smooth. We set

$$\widetilde{Q} = \widetilde{\Omega} \times (0, T).$$

Let us recall that d satisfies (1.4). Since we can further choose $\widetilde{\Omega}$ such that $\widetilde{\Omega} \setminus \Omega$ is included in a sufficiently small ball, we see that there exists an extension \widetilde{d} in $\widetilde{\Omega}$ of d satisfying $|\nabla \widetilde{d}| > 0$ in $\widetilde{\Omega}$.

We take the zero extensions of u, q, A, G and $h - \operatorname{div} \widetilde{v}$ to $\widetilde{\Omega}$ and by the same letters we denote them. Therefore by (2.14) - (2.16), the zero extensions of u and $h - \operatorname{div} \widetilde{v}$ satisfies

$$\operatorname{div} u = h - \operatorname{div} \widetilde{v} \in H^{1,1}(\widetilde{Q}) \tag{2.17}$$

and

$$\partial_t u - \kappa \Delta u + \nabla q + (A \cdot \nabla)u = G \quad \text{in } \widetilde{Q}.$$
 (2.18)

By the zero extensions and (1.6), we obtain

$$u(\cdot,0) = u(\cdot,T) = 0 \text{ in } \widetilde{\Omega},$$

 $|u| = |\nabla u| = |q| = 0 \text{ on } \partial \widetilde{\Omega} \times (0,T).$ (2.19)

Therefore, by noting (2.19), we apply Lemma 2 to (2.17) and (2.18), and we obtain

$$\|(u,q)\|_{\mathcal{X}_s(\tilde{Q})}^2 \le C \int_{\tilde{Q}} |G|^2 e^{2s\varphi} dx dt$$

$$+C\int_{\widetilde{Q}}(|h-\operatorname{div}\widetilde{v}|^2+|\nabla_{x,t}(h-\operatorname{div}\widetilde{v})|^2)e^{2s\varphi}dxdt$$

for $s \geq s_0$. Hence

$$\begin{split} &\|(v-\tilde{v},p-\tilde{p})\|_{\mathcal{X}_{s}(Q)}^{2} \\ \leq &C \int_{Q} |F|^{2} e^{2s\varphi} dx dt \\ &+ C \int_{Q} |\partial_{t} \widetilde{v} - \kappa \Delta \widetilde{v} + (A \cdot \nabla) \widetilde{v} + \nabla \widetilde{p}|^{2} e^{2s\varphi} dx dt \\ &+ C \int_{Q} \left(|h|^{2} + |\nabla_{x,t} h|^{2} + |\nabla \widetilde{v}|^{2} + \sum_{i,j=1}^{n} |\partial_{i} \partial_{j} \widetilde{v}|^{2} + |\nabla (\partial_{t} \widetilde{v})|^{2} \right) e^{2s\varphi} dx dt. \end{split}$$

Using $|\partial_t v|^2 \leq 2|\partial_t \widetilde{v}|^2 + 2|\partial_t (v - \widetilde{v})|^2$, etc. on the left-hand side, we have

$$||(v,p)||_{\mathcal{X}_{s}(Q)}^{2} \leq 2||(\tilde{v},\tilde{p})||_{\mathcal{X}_{s}(Q)}^{2}$$

$$+2C \int_{Q} |F|^{2} e^{2s\varphi} dx dt$$

$$+2C \int_{Q} |\partial_{t} \tilde{v} - \kappa \Delta \tilde{v} + (A \cdot \nabla)\tilde{v} + \nabla \tilde{p}|^{2} e^{2s\varphi} dx dt$$

$$+2C \int_{Q} \left(|h|^{2} + |\nabla_{x,t} h|^{2} + |\nabla \tilde{v}|^{2} + \sum_{i,j=1}^{n} |\partial_{i} \partial_{j} \tilde{v}|^{2} + |\nabla (\partial_{t} \tilde{v})|^{2} \right) e^{2s\varphi} dx dt$$

$$\leq C \int_{Q} |F|^{2} e^{2s\varphi} dx dt$$

$$+Ce^{Cs} (||\tilde{v}||_{H^{2,1}(Q)}^{2} + ||\tilde{p}||_{H^{1,0}(Q)}^{2} + ||\nabla \partial_{t} \tilde{v}||_{L^{2}(Q)}^{2})$$

$$+C \int_{Q} (|h|^{2} + |\nabla_{x,t} h|^{2}) e^{2s\varphi} dx dt$$

for $s \geq s_0$. Since F and h are zero outside of D, in view of (2.13), the proof of Lemma 3 is completed.

Third Step.

For r > 0 and $x_0 \in \mathbb{R}^n$, we set $B_r(x_0) := \{x \in \mathbb{R}^n; |x - x_0| < r\}$. Then we prove **Lemma 4.**

Let $v \in H^2(\Omega)$ and $p \in H^1(\Omega)$.

(1) Case n = 3: For any $x_0 \in \partial \Omega$, there exist r > 0 and a 10×10 matrix $A \in C^1(\overline{B_r(x_0)})$ such that

$$\partial\Omega\cap B_r(x_0)=\{x(\theta_1,\theta_2);\,(\theta_1,\theta_2)\in D_1\}$$

where $x(\theta_1, \theta_2) = (x_1(\theta_1, \theta_2), x_2(\theta_1, \theta_2), x_3(\theta_1, \theta_2)) \in \mathbb{R}^3$, $D_1 \subset \mathbb{R}^2$ is a bounded domain and the functions x_1, x_2, x_3 with respect to θ_1, θ_2 are in $C^2(\overline{D_1})$ and

$$det A(x(\theta_1, \theta_2)) \neq 0, \quad (\theta_1, \theta_2) \in \overline{D_1}$$

and

$$A(x(\theta_{1}, \theta_{2})) \begin{pmatrix} (\nabla_{x}v_{1})(x(\theta_{1}, \theta_{2})) \\ (\nabla_{x}v_{2})(x(\theta_{1}, \theta_{2})) \\ (\nabla_{x}v_{3})(x(\theta_{1}, \theta_{2})) \\ p(x(\theta_{1}, \theta_{2})) \end{pmatrix} = \begin{pmatrix} \nabla_{\theta_{1}, \theta_{2}}(v_{1}(x(\theta_{1}, \theta_{2}))) \\ \nabla_{\theta_{1}, \theta_{2}}(v_{2}(x(\theta_{1}, \theta_{2}))) \\ \nabla_{\theta_{1}, \theta_{2}}(v_{3}(x(\theta_{1}, \theta_{2}))) \\ (\sigma(v, p)\nu)(x(\theta_{1}, \theta_{2})) \end{pmatrix}, \quad (\theta_{1}, \theta_{2}) \in D_{1}.$$

(2) Case n = 2: For any $x_0 \in \partial \Omega$, there exist r > 0 and a 5×5 matrix $A \in C^1(\overline{B_r(x_0)})$ such that

$$\partial\Omega\cap B_r(x_0)=\{x(\theta_1);\,\theta_1\in I_1\}$$

where $x(\theta_1) := (x_1(\theta_1), x_2(\theta_1)) \in \mathbb{R}^2$, $I_1 \subset \mathbb{R}$ is an open interval, and the functions x_1, x_2 are in $C^2(\overline{I_1})$, and

$$\det A(x(\theta_1)) \neq 0, \quad \theta_1 \in \overline{I_1}$$

and

$$A(x(\theta_1)) \begin{pmatrix} (\nabla_x v_1)(x(\theta_1)) \\ (\nabla_x v_2)(x(\theta_1)) \\ p(x(\theta_1)) \end{pmatrix} = \begin{pmatrix} \frac{\frac{d}{d\theta_1}}{\theta_1} v_1(x(\theta_1)) \\ \frac{\frac{d}{d\theta_1}}{\theta_1} v_2(x(\theta_1)) \\ (\sigma(v, p)\nu)(x(\theta_1)) \\ (divv)(x(\theta_1)) \end{pmatrix}, \quad \theta_1 \in I_1.$$

Remark. The lemma guarantees that the boundary data $(v, \partial_{\nu}v, p)$ and $(v, \sigma(v, p)\nu)$ are equivalent (e.g., Imanuvilov and Yamamoto [12]). As related papers on inverse boundary value problems for the Navier-Stokes equations in view of this equivalence, see Imanuvilov and Yamamoto [11], Lai, Uhlmann and Wang [15].

Proof of Lemma 4. We prove only in the case of n=3. The case of n=2 is similar and simpler. It is sufficient to consider only on a sufficiently small subboundary Γ_0 of $\partial\Omega$. Without loss of generality, we can assume that Γ_0 is represented by by $(x_1, x_2, \gamma(x_1, x_2))$ where $\gamma \in C^2(\overline{D_1})$, $\theta_1 = x_1$, $\theta_2 = x_2$, $x_3 = \gamma(x_1, x_2)$ for $(x_1, x_2) \in D_1$. Moreover we assume that Ω is located upper $x_3 = \gamma(x_1, x_2)$.

By the density argument, we can assume that $v \in C^1(\overline{\Omega})$ and $p \in C(\overline{\Omega})$.

We set $\gamma_1 := \partial_1 \gamma$ and $\gamma_2 := \partial_2 \gamma$. On Γ_0 , we have

$$\nu(x) = \frac{1}{1 + \gamma_1^2 + \gamma_2^2} \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ -1 \end{pmatrix}. \tag{2.20}$$

By the definition, we have

$$\sigma(v,p)\nu = \kappa \begin{pmatrix} 2\partial_1 v_1 - \frac{p}{\kappa} & \partial_1 v_2 + \partial_2 v_1 & \partial_1 v_3 + \partial_3 v_1 \\ \partial_1 v_2 + \partial_2 v_1 & 2\partial_2 v_2 - \frac{p}{\kappa} & \partial_2 v_3 + \partial_3 v_2 \\ \partial_1 v_3 + \partial_3 v_1 & \partial_2 v_3 + \partial_3 v_2 & 2\partial_3 v_3 - \frac{p}{\kappa} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
(2.21)

$$=: \left(\begin{array}{c} q_1 \\ q_2 \\ q_3 \end{array} \right).$$

We further set

$$q_4 := (\operatorname{div} v)(x_1, x_2, \gamma(x_1, x_2)),$$

$$g_k(x_1, x_2) := v_k(x_1, x_2, \gamma(x_1, x_2)), \quad k = 1, 2, 3.$$

Then

$$\partial_1 g_k = \partial_1 v_k + \gamma_1 (\partial_3 v_k) (x_1, x_2, \gamma(x_1, x_2)),$$

$$\partial_2 g_k = \partial_2 v_k + \gamma_2 (\partial_3 v_k) (x_1, x_2, \gamma(x_1, x_2)),$$

that is,

$$\begin{cases}
\partial_1 v_k(x_1, x_2, \gamma(x_1, x_2)) = \partial_1 g_k - \gamma_1(\partial_3 v_k)(x_1, x_2, \gamma(x_1, x_2)), \\
\partial_2 v_k(x_1, x_2, \gamma(x_1, x_2)) = \partial_2 g_k - \gamma_2(\partial_3 v_k)(x_1, x_2, \gamma(x_1, x_2)), \quad k = 1, 2, 3,
\end{cases} (2.22)$$

and

$$(\partial_3 v_3)(x_1, x_2, \gamma(x_1, x_2)) = q_4 - (\partial_1 v_1 + \partial_2 v_2)(x_1, x_2, \gamma(x_1, x_2))$$
(2.23)

for $(x_1, x_2) \in D_1$. Setting

$$\begin{cases}
h_1(x_1, x_2) = (\partial_3 v_1)(x_1, x_2, \gamma(x_1, x_2)), \\
h_2(x_1, x_2) = (\partial_3 v_2)(x_1, x_2, \gamma(x_1, x_2)),
\end{cases} (2.24)$$

by (2.22) and (2.23) we obtain

$$(\partial_3 v_3)(x_1, x_2, \gamma(x_1, x_2)) = q_4 - (\partial_1 v_1 + \partial_2 v_2)(x_1, x_2, \gamma(x_1, x_2))$$

$$= (q_4 - \partial_1 g_1 - \partial_2 g_2)(x_1, x_2) + (\gamma_1 \partial_3 v_1 + \gamma_2 \partial_3 v_2)(x_1, x_2, \gamma(x_1, x_2))$$

$$=: g_0(x_1, x_2) + (\gamma_1 \partial_3 v_1 + \gamma_2 \partial_3 v_2)(x_1, x_2, \gamma(x_1, x_2))$$

$$= (g_0 + \gamma_1 h_1 + \gamma_2 h_2)(x_1, x_2)$$
(2.25)

and so

$$\begin{cases}
(\partial_{1}v_{1})(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) = (\partial_{1}g_{1} - \gamma_{1}h_{1})(x_{1}, x_{2}, \gamma(x_{1}, x_{2})), \\
(\partial_{2}v_{1})(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) = (\partial_{2}g_{1} - \gamma_{2}h_{1})(x_{1}, x_{2}, \gamma(x_{1}, x_{2})), \\
(\partial_{1}v_{2})(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) = (\partial_{1}g_{2} - \gamma_{1}h_{2})(x_{1}, x_{2}, \gamma(x_{1}, x_{2})), \\
(\partial_{2}v_{2})(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) = (\partial_{2}g_{2} - \gamma_{2}h_{2})(x_{1}, x_{2}, \gamma(x_{1}, x_{2})), \\
(\partial_{1}v_{3})(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) = \partial_{1}g_{3} - \gamma_{1}g_{0} - \gamma_{1}^{2}h_{1} - \gamma_{1}\gamma_{2}h_{2}, \\
(\partial_{2}v_{3})(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) = \partial_{2}g_{3} - \gamma_{2}g_{0} - \gamma_{1}\gamma_{2}h_{1} - \gamma_{2}^{2}h_{2}, \quad (x_{1}, x_{2}) \in D_{1}.
\end{cases}$$
(2.26)

On the other hand, (2.21) yields

$$\frac{1+\gamma_{1}^{2}+\gamma_{2}^{2}}{\kappa}q_{1}=(2\gamma_{1}\partial_{1}v_{1}+\gamma_{2}\partial_{1}v_{2}+\gamma_{2}\partial_{2}v_{1}-\partial_{1}v_{3}-\partial_{3}v_{1})(x_{1},x_{2},\gamma(x_{1},x_{2}))-\frac{\gamma_{1}}{\kappa}p,$$

$$\frac{1+\gamma_{1}^{2}+\gamma_{2}^{2}}{\kappa}q_{2}=(\gamma_{1}\partial_{1}v_{2}+\gamma_{2}\partial_{2}v_{1}+2\gamma_{2}\partial_{2}v_{2}-\partial_{2}v_{3}-\partial_{3}v_{2})(x_{1},x_{2},\gamma(x_{1},x_{2}))-\frac{\gamma_{2}}{\kappa}p$$
 and
$$\frac{1+\gamma_{1}^{2}+\gamma_{2}^{2}}{\kappa}q_{3}=(\gamma_{1}\partial_{1}v_{3}+\gamma_{1}\partial_{3}v_{1}+\gamma_{2}\partial_{2}v_{3}+\gamma_{2}\partial_{3}v_{2}-2\partial_{3}v_{3})(x_{1},x_{2},\gamma(x_{1},x_{2}))+\frac{1}{\kappa}p,\quad (x_{1},x_{2})\in D_{1}.$$

$$\frac{1 + \gamma_1^2 + \gamma_2^2}{\kappa} q_3 = (\gamma_1 \partial_1 v_3 + \gamma_1 \partial_3 v_1 + \gamma_2 \partial_2 v_3 + \gamma_2 \partial_3 v_2 - 2\partial_3 v_3)(x_1, x_2, \gamma(x_1, x_2)) + \frac{1}{\kappa} p, \quad (x_1, x_2) \in D_1.$$

Substitute (2.25) and (2.26), we have

$$\begin{cases}
\frac{1+\gamma_1^2+\gamma_2^2}{\kappa}q_1 = -(1+\gamma_1^2+\gamma_2^2)h_1 - \frac{\gamma_1}{\kappa}p + G_1, \\
\frac{1+\gamma_1^2+\gamma_2^2}{\kappa}q_2 = -(1+\gamma_1^2+\gamma_2^2)h_2 - \frac{\gamma_2}{\kappa}p + G_2, \\
\frac{1+\gamma_1^2+\gamma_2^2}{\kappa}q_3 = -\gamma_1(1+\gamma_1^2+\gamma_2^2)h_1 - \gamma_2(1+\gamma_1^2+\gamma_2^2)h_2 + \frac{1}{\kappa}p + G_3.
\end{cases} (2.27)$$

Here G_k , k=1,2,3, are linear combinations of $\partial_j g_k, q_1, q_2, q_3, q_4, j=1,2,k=1,2,3$, with coefficients given by γ and its first-order derivatives. We can uniquely solve (2.27) with respect to h_1, h_2, p :

$$\begin{pmatrix} h_1(x_1, x_2) \\ h_2(x_2, x_2) \\ p(x_1, x_2, \gamma(x_1, x_2)) \end{pmatrix} = \widetilde{A}(x_1, x_2) \begin{pmatrix} \frac{1+\gamma_1^2+\gamma_2^2}{\kappa} q_1 - G_1 \\ \frac{1+\gamma_1^2+\gamma_2^2}{\kappa} q_2 - G_2 \\ \frac{1+\gamma_1^2+\gamma_2^2}{\kappa} q_3 - G_3 \end{pmatrix}, \quad (x_1, x_2) \in D_1. \quad (2.28)$$

Here $\widetilde{A} \in C^1(\overline{D_1})$ and $\det \widetilde{A} \neq 0$ on $\overline{D_1}$. The equations (2.25), (2.26) and (2.28) imply the existence of a 10×10 matrix $A \in C^1(\overline{D_1})$ satisfying the conditions in the lemma. Thus the proof of Lemma 4 is completed.

Now, in terms of Lemmata 3 and 4, we complete the proof of Theorem 1 as follows. We consider only the case of n=3. Without loss of generality, Γ is given by $\Gamma=\{(x_1,x_2,\gamma(x_1,x_2)); x_1,x_2\in D_1\}$ with $\gamma\in C^2(\overline{D_1})$.

We set $\nabla_{x_1,x_2}v = (\partial_1v_1, \partial_2v_1, \partial_1v_2, \partial_2v_2, \partial_1v_3, \partial_2v_3)^T$. Then, by Lemmata 2 and 3, we have

$$\begin{pmatrix} \partial_{\nu}v(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) \\ p(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) \end{pmatrix} = \begin{pmatrix} \frac{1}{1+\gamma_{1}^{2}+\gamma_{2}^{2}}((\partial_{1}\gamma)\partial_{1}v + (\partial_{2}\gamma)\partial_{2}v - \partial_{3}v)(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) \\ p(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) \end{pmatrix}$$

$$= B_{1}(x_{1}, x_{2}) \begin{pmatrix} (\nabla_{x_{1}, x_{2}}v)(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) \\ (\sigma(v, p)\nu)(x_{1}, x_{2}, \gamma(x_{1}, x_{2})) \end{pmatrix}, \quad (x_{1}, x_{2}) \in D_{1},$$

with a 4×6 matrix $B_1 \in C^1(\overline{D_1})$. Therefore

$$\|\partial_{\nu}v(\cdot,t)\|_{H^{1}(\Gamma)} + \|p(\cdot,t)\|_{H^{1}(\Gamma)} = \left\|B\begin{pmatrix} & \nabla_{x_{1},x_{2}}v\\ & \sigma(v,p)\nu \end{pmatrix}(\cdot,t)\right\|_{H^{1}(\Gamma)} \leq C \left\|\begin{pmatrix} & \nabla_{x_{1},x_{2}}v\\ & \sigma(v,p)\nu \end{pmatrix}(\cdot,t)\right\|_{H^{1}(\Gamma)}$$

and

$$\|\partial_{\nu}v(\cdot,t)\|_{L^{2}(\Gamma)} \leq C \left\| \begin{pmatrix} & \nabla_{x_{1},x_{2}}v \\ & \sigma(v,p)\nu \end{pmatrix} (\cdot,t) \right\|_{L^{2}(\Gamma)}$$

by $B \in C^1(\overline{D_1})$. Consequently the interpolation inequality (e.g., Theorem 7.7 (p.36) in Lions and Magenes [17]) yields

$$\|\partial_{\nu}v(\cdot,t)\|_{H^{\frac{1}{2}}(\Gamma)} + \|p(\cdot,t)\|_{H^{\frac{1}{2}}(\Gamma)} \le \left\| \begin{pmatrix} & \nabla_{x_{1},x_{2}}v \\ & \sigma(v,p)\nu \end{pmatrix} (\cdot,t) \right\|_{H^{\frac{1}{2}}(\Gamma)}$$

for $0 \le t \le T$. Hence

$$\|\partial_{\nu}v\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))} + \|p(\cdot,t)\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))} \leq C(\|v\|_{L^{2}(0,T;H^{1}(\Gamma))} + \|\sigma(v,p)\nu\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}).$$

With this, Lemma 3 completes the proof of Theorem 1. ■

3 Conditional stability for the lateral Cauchy problem

In this section, we discuss

lateral Cauchy problem

We are given a suboundary Γ of $\partial\Omega$ arbitrarily. Let $(v,p) \in H^{2,1}(Q) \times H^{1,0}(Q)$ satisfy (1.1) and (1.2). Determine (v,p) in some subdomain of Q by $(v,\sigma(v,p)\nu)$ on $\Gamma \times (0,T)$.

In the case of the parabolic equation, there are very many works, and here we do not list up comprehensively and as restricted references, see Landis [16], Mizohata [18], Saut and Scheurer [19], Sogge [20]. See also the monographs Beilina and Klibanov [1], Isakov [13], Klibanov and Timonov [14].

Combining a Carleman estimate and a cut-off function, we can prove

Proposition 1.

Let $\varphi(x,t)$ be given in Theorem 1. We set

$$Q(\varepsilon) = \{(x, t) \in \Omega \times (0, T); \varphi(x, t) > \varepsilon\}$$

with $\varepsilon > 0$. Moreover we assume that

$$\overline{Q(0)}\subset Q\cup (\Gamma\times [0,T])$$

with subboundary $\Gamma \subset \partial \Omega$. Then for any small $\varepsilon > 0$, there exist constants C > 0 and $\theta \in (0,1)$ such that

$$||v||_{H^{2,1}(Q(\varepsilon))} + ||p||_{H^{1,0}(Q(\varepsilon))} \le C(||v||_{H^{1,1}(Q)}^{1-\theta} + ||p||_{L^2(Q)})G^{\theta} + CG,$$

where we set

$$G^{2} := \|F\|_{L^{2}(Q)}^{2} + \|v\|_{L^{2}(0,T;H^{\frac{3}{2}}(\Gamma))}^{2} + \|\partial_{t}v\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2} + \|\sigma(v,p)\nu\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2}.$$

As for the proof of Proposition 1, see Theorem 3.2.2 in section 3.2 of [13] for example.

Proposition 1 gives an estimate of the solution in $Q(\varepsilon)$ by data on $\Gamma \times (0,T)$, and $Q(\varepsilon)$ and Γ are determined by an a priori given function d(x). Therefore the proposition does not give a suitable answer to our lateral Cauchy problem as stated above, where we are requested to estimate the solution by data on as a small subboundary $\Gamma \times (0,T)$ as possible.

In fact, in this section, we prove

Theorem 2 (conditional stability)

Let $\Gamma \subset \partial \Omega$ be an arbitrary non-empty subboundary of $\partial \Omega$. For any $\varepsilon > 0$ and an arbitrary bounded domain Ω_0 such that $\overline{\Omega_0} \subset \Omega \cup \Gamma$, $\partial \Omega_0 \cap \partial \Omega$ is a non-empty open subset of $\partial \Omega$ and $\partial \Omega_0 \cap \partial \Omega \subsetneq \Gamma$, there exist constants C > 0 and $\theta \in (0,1)$ such that

$$||v||_{H^{2,1}(\Omega_0\times(\varepsilon,T-\varepsilon))}+||p||_{H^{1,0}(\Omega_0\times(\varepsilon,T-\varepsilon))}$$

$$\leq C(\|v\|_{H^{1,1}(Q)} + \|p\|_{L^{2}(Q)})^{1-\theta} (\|F\|_{L^{2}(Q)} + \|v\|_{L^{2}(0,T;H^{\frac{3}{2}}(\Gamma))} + \|v\|_{H^{1}(0,T;H^{\frac{1}{2}}(\Gamma))} + \|\sigma(v,p)\nu\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))})^{\theta}
+ C(\|F\|_{L^{2}(Q)} + \|v\|_{L^{2}(0,T;H^{\frac{3}{2}}(\Gamma))} + \|\partial_{t}v\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))} + \|\sigma(v,p)\nu\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}).$$
(3.1)

In Theorem 2, in order to estimate (v, p), we have to assume a priori bounds of $||v||_{H^{1,1}(Q)}$ and $||p||_{L^2(Q)}$. Thus estimate (3.1) is called a conditional stability estimate. We note that (3.1) is rewritten as

$$||v||_{H^{2,1}(\Omega_0 \times (\varepsilon, T-\varepsilon))} + ||p||_{H^{1,0}(\Omega_0 \times (\varepsilon, T-\varepsilon))}$$

$$= O((||F||_{L^2(Q)} + ||v||_{L^2(0,T;H^{\frac{3}{2}}(\Gamma))} + ||v||_{H^1(0,T;H^{\frac{1}{2}}(\Gamma))} + ||\sigma(v,p)\nu||_{L^2(0,T;H^{\frac{1}{2}}(\Gamma))})^{\theta})$$

as $||F||_{L^2(Q)} + ||v||_{L^2(0,T;H^{\frac{3}{2}}(\Gamma))} + ||v||_{H^1(0,T;H^{\frac{1}{2}}(\Gamma))} + ||\sigma(v,p)\nu||_{L^2(0,T;H^{\frac{1}{2}}(\Gamma))} \longrightarrow 0$. Thus the estimate indicates stability of Hölder type.

For the homogeneous Stokes equations:

$$\partial_t v - \Delta v + \nabla p = 0$$
, div $v = 0$ in Q ,

Boulakia [2] (Proposition 2) proved the conditional stability in $\Omega_0 \times (\varepsilon, T - \varepsilon)$ on the basis of a Carleman estimate in [2]. The norm of boundary data in [2] is stronger than our chosen norm.

The theorem does not directly give an estimate when $\Omega_0 = \Omega$, but we can derive an estimate in Ω by an argument similar to Theorem 5.2 in Yamamoto [21] and we do not discuss details. Boulakia [2] (Theorem 1) established a conditional stability estimate up to $\partial\Omega$ by boundary or interior data. The argument is based on the interior estimate in $\Omega_0 \times (\varepsilon, T - \varepsilon)$ and an argument similar to Theorem 5.2 in [21].

Theorem 2 immediately implies the global uniqueness of the solution:

Corollary.

Let $\Gamma \subset \partial \Omega$ be an arbitrarily fixed subboundary. If $(v,p) \in H^{2,1}(Q) \times H^{1,0}(Q)$ satisfies

(1.1) and (1.2), and
$$v = \sigma(v, p)\nu = 0$$
 on $\Gamma \times (0, T)$, then $|v| = \sigma(v, p)\nu = 0$ in $\Omega \times (0, T)$.

Proof of Theorem 2. Once a relevant Carleman estimate for the Navier-Stokes equations is proved, the proof is similar to Theorem 5.1 in [21]. Thus, according to Ω_0 and Γ , we have to choose a suitable weight function φ . For this, we show

Lemma 5.

Let ω be an arbitrarily fixed subdomain of Ω such that $\overline{\omega} \subset \Omega$. Then there exists a function $d \in C^2(\overline{\Omega})$ such that

$$d(x) > 0$$
 $x \in \Omega$, $d|_{\partial\Omega} = 0$, $|\nabla d(x)| > 0$, $x \in \overline{\Omega \setminus \omega}$.

For the proof, see Fursikov and Imanuvilov [7], Imanuvilov [8], Imanuvilov, Puel and Yamamoto [10].

We choose a bounded domain Ω_1 with smooth boundary such that

$$\Omega \subsetneq \Omega_1, \quad \overline{\Gamma} = \overline{\partial \Omega \cap \Omega_1}, \quad \partial \Omega \setminus \Gamma \subset \partial \Omega_1,$$
 (3.2)

and $\Omega_1 \setminus \overline{\Omega}$ contains some non-empty open set. We note that Ω_1 is constructed by taking a union of Ω and a domain $\widetilde{\Omega} \subset \mathbb{R}^n \setminus \overline{\Omega}$ such that $\widetilde{\Omega} \cap \partial \Omega = \Gamma$. Choosing $\overline{\omega} \subset \Omega_1 \setminus \overline{\Omega}$, and applying Lemma 5 to obtain $d \in C^2(\overline{\Omega}_1)$ satisfying

$$d(x) > 0, \quad x \in \Omega_1, \quad d(x) = 0, \quad x \in \partial \Omega_1, \quad |\nabla d(x)| > 0, \quad x \in \overline{\Omega}.$$
 (3.3)

Then, since $\overline{\Omega_0} \subset \Omega_1$, we can choose sufficiently large N > 1 such that

$$\{x \in \Omega_1; d(x) > \frac{4}{N} \|d\|_{C(\overline{\Omega_1})}\} \cap \overline{\Omega} \supset \Omega_0.$$
(3.4)

Moreover we choose sufficiently large $\beta > 0$ such that

$$\beta \varepsilon^2 < \|d\|_{C(\overline{\Omega_1})} < 2\beta \varepsilon^2.$$
 (3.5)

We arbitrarily fix $t_0 \in [\sqrt{2}\varepsilon, T - \sqrt{2}\varepsilon]$. We set $\varphi(x,t) = e^{\lambda\psi(x,t)}$ with fixed large parameter $\lambda > 0$ and $\psi(x,t) = d(x) - \beta(t-t_0)^2$, $\mu_k = \exp\left(\lambda\left(\frac{k}{N}\|d\|_{C(\overline{\Omega_1})} - \frac{\beta\varepsilon^2}{N}\right)\right)$, k = 1, 2, 3, 4, and $D = \{(x,t); x \in \overline{\Omega}, \quad \varphi(x,t) > \mu_1\}$.

Then we can verify that

$$\Omega_0 \times \left(t_0 - \frac{\varepsilon}{\sqrt{N}}, t_0 + \frac{\varepsilon}{\sqrt{N}} \right) \subset D \subset \overline{\Omega} \times (t_0 - \sqrt{2}\varepsilon, t_0 + \sqrt{2}\varepsilon).$$
(3.6)

In fact, let $(x,t) \in \Omega_0 \times \left(t_0 - \frac{\varepsilon}{\sqrt{N}}, t_0 + \frac{\varepsilon}{\sqrt{N}}\right)$. Then, by (3.4) we have $x \in \overline{\Omega}$ and $d(x) > \frac{4}{N} \|d\|_{C(\overline{\Omega_1})}$, so that

$$d(x) - \beta(t - t_0)^2 > \frac{4}{N} ||d||_{C(\overline{\Omega_1})} - \frac{\beta \varepsilon^2}{N},$$

that is, $\varphi(x,t) > \mu_4$, which implies that $(x,t) \in D$ by the definition of D. Next let $(x,t) \in D$. Then $d(x) - \beta(t-t_0)^2 > \frac{1}{N} \|d\|_{C(\overline{\Omega_1})} - \frac{\beta \varepsilon^2}{N}$. Therefore

$$||d||_{C(\overline{\Omega_1})} - \frac{1}{N} ||d||_{C(\overline{\Omega_1})} + \frac{\beta \varepsilon^2}{N} > \beta (t - t_0)^2.$$

Applying (3.5), we have $2\left(1-\frac{1}{N}\right)\beta\varepsilon^2 + \frac{\beta\varepsilon^2}{N} > \left(1-\frac{1}{N}\right)\|d\|_{C(\overline{\Omega_1})} + \frac{\beta\varepsilon^2}{N} > \beta(t-t_0)^2$, that is, $2\beta\varepsilon^2 > \beta(t-t_0)^2$, which implies that $t_0 - \sqrt{2}\varepsilon < t < t_0 + \sqrt{2}\varepsilon$. The verification of (3.6) is completed.

Next we have

$$\begin{cases}
\partial D \subset \Sigma_1 \cup \Sigma_2, \\
\Sigma_1 \subset \Gamma \times (0, T), \quad \Sigma_2 = \{(x, t); x \in \Omega, \varphi(x, t) = \mu_1\}.
\end{cases}$$
(3.7)

In fact, let $(x,t) \in \partial D$. Then $x \in \overline{\Omega}$ and $\varphi(x,t) \geq \mu_1$. We separately consider the cases $x \in \Omega$ and $x \in \partial \Omega$. First let $x \in \Omega$. If $\varphi(x,t) > \mu_1$, then (x,t) is an interior point of D, which is impossible. Therefore $\varphi(x,t) = \mu_1$, which implies $(x,t) \in \Sigma_2$. Next let $x \in \partial \Omega$. Let $x \in \partial \Omega \setminus \Gamma$. Then $x \in \partial \Omega_1$ by the third condition in (3.2), and d(x) = 0 by the second condition in (3.3). On the other hand, $\varphi(x,t) \geq \mu_1$ yields that

$$d(x) - \beta(t - t_0)^2 = -\beta(t - t_0)^2 \ge \frac{1}{N} ||d||_{C(\overline{\Omega_1})} - \frac{\beta \varepsilon^2}{N},$$

that is, $0 \le \beta(t - t_0)^2 \le \frac{1}{N}(-\|d\|_{C(\overline{\Omega_1})} + \beta \varepsilon^2)$, which is impossible by (3.5). Therefore $x \in \Gamma$. By (3.6), we see that 0 < t < T and the verification of (3.7) is completed.

We apply Theorem 1 in D. Henceforth C>0 denotes generic constants independent of s and choices of v, p. We need a cut-off function because we have no data on $\partial D \setminus (\Gamma \times (0,T))$. Let $\chi \in C^{\infty}(\mathbb{R}^{n+1})$ satisfying $0 \le \chi \le 1$ and

$$\chi(x,t) = \begin{cases} 1, & \varphi(x,t) > \mu_3, \\ 0, & \varphi(x,t) < \mu_2. \end{cases}$$
 (3.8)

We set $y = \chi v$ and $q = \chi p$. Then, by (1.1) and (1.2), we have

$$\partial_t y - \kappa \Delta y + (A \cdot \nabla)y + (y \cdot \nabla)B + \nabla q$$

$$= \chi F + v \partial_t \chi - 2\kappa \nabla \chi \cdot \nabla v - \kappa(\Delta \chi) v + (A \cdot \nabla \chi) v + p(\nabla \chi) \quad \text{in } D$$

and

$$\operatorname{div} y = \nabla \chi \cdot v \quad \text{in } D.$$

By (3.7) and (3.8), we see that

$$|y| = |\nabla y| = |q| = 0 \quad \text{on } \Sigma_2.$$

Hence Theorem 1 yields

$$||(y,q)||_{\mathcal{X}_{s}(D)}^{2} \leq C \int_{D} |F|^{2} e^{2s\varphi} dx dt$$

$$+C \int_{D} |v\partial_{t}\chi - 2\kappa \nabla \chi \cdot \nabla v - \kappa(\Delta \chi)v + (A \cdot \nabla \chi)v + p(\nabla \chi)|^{2} e^{2s\varphi} dx dt$$

$$+C \int_{D} (|\nabla \chi \cdot v|^{2} + |\nabla_{x,t}(\nabla \chi \cdot v)|^{2}) e^{2s\varphi} dx dt$$

$$+Ce^{Cs}(\|\chi v\|_{L^{2}(0,T;H^{\frac{3}{2}}(\Gamma))}^{2}+\|\partial_{t}(\chi v)\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2}+\|\sigma(\chi v,\chi p)\nu\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2})$$
(3.9)

for $s \geq s_0$. We can verify $\|\chi v\|_{H^{\gamma}(\Gamma)} \leq C\|v\|_{H^{\gamma}(\Gamma)}$ with $\gamma = 0, 1, 2$, and for $j = \frac{1}{2}$ and $j = \frac{3}{2}$, the interpolation inequality yields

$$\|\chi v\|_{L^{2}(0,T;H^{j}(\Gamma))}^{2} \leq C\|v\|_{L^{2}(0,T;H^{j}(\Gamma))}^{2}, \quad \|\partial_{t}(\chi v)\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2} \leq C\|\partial_{t}v\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2}.$$

Therefore, since

$$\sigma(\chi v, \chi p)\nu = \chi \sigma(v, p)\nu + \kappa((\partial_i \chi)v_j + (\partial_j \chi)v_i)_{1 \le i, j \le n}\nu,$$

we have

$$\|\sigma(\chi v, \chi p)\nu\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))} \leq \|\sigma(v,p)\nu\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))} + C\|v\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}$$

by $\chi \in C^{\infty}(\mathbb{R}^{n+1})$. Hence

$$\begin{split} &\|\chi v\|_{L^2(0,T;H^{\frac{3}{2}}(\Gamma))}^2 + \|\partial_t(\chi v)\|_{L^2(0,T;H^{\frac{1}{2}}(\Gamma))}^2 + \|\sigma(\chi v,\chi p)\nu\|_{L^2(0,T;H^{\frac{1}{2}}(\Gamma))}^2 \\ \leq &C(\|v\|_{L^2(0,T;H^{\frac{3}{2}}(\Gamma))}^2 + \|\partial_t v\|_{L^2(0,T;H^{\frac{1}{2}}(\Gamma))}^2 + \|\sigma(v,p)\nu\|_{L^2(0,T;H^{\frac{1}{2}}(\Gamma))}^2). \end{split}$$

We recall that

$$G^{2} = \|F\|_{L^{2}(Q)}^{2} + \|v\|_{L^{2}(0,T;H^{\frac{3}{2}}(\Gamma))}^{2} + \|\partial_{t}v\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2} + \|\sigma(v,p)\nu\|_{L^{2}(0,T;H^{\frac{1}{2}}(\Gamma))}^{2}.$$

The integrands of the second and the third terms on the right-hand side of (3.9) do not vanish only if $\varphi(x,t) \leq \mu_3$, because these coefficients include derivatives of χ as factors and by (3.8) vanish if $\varphi(x,t) > \mu_3$. Therefore

[[the second and the third terms on the right-hand side of (3.9)]

$$\leq C(\|v\|_{H^{1,1}(Q)}^2 + \|p\|_{L^2(Q)}^2)e^{2s\mu_3}.$$

Consequently (3.9) yields

$$\|(y,q)\|_{\mathcal{X}_s(D)}^2 \le C(\|v\|_{H^{1,1}(Q)}^2 + \|p\|_{L^2(Q)}^2)e^{2s\mu_3} + Ce^{Cs}G^2 \quad \forall s \ge s_0.$$
(3.10)

By (3.4) and the definition of D, we can directly verify that $(x,t) \in \Omega_0 \times \left(t_0 - \frac{\varepsilon}{\sqrt{N}}, t_0 + \frac{\varepsilon}{\sqrt{N}}\right)$ implies $\varphi(x,t) > \mu_4$. Therefore, noting (3.6) and (3.8), we see that

$$||(y,q)||_{\mathcal{X}_{s}(D)}^{2} \ge ||(v,p)||_{\mathcal{X}_{s}(\Omega_{0}\times(t_{0}-\frac{\varepsilon}{\sqrt{N}},t_{0}+\frac{\varepsilon}{\sqrt{N}}))}^{2}$$

$$\ge e^{2s\mu_{4}} \int_{t_{0}-\frac{\varepsilon}{\sqrt{N}}}^{t_{0}+\frac{\varepsilon}{\sqrt{N}}} \int_{\Omega_{0}} \left\{ \frac{1}{s^{2}} \left(|\partial_{t}v|^{2} + \sum_{i,j=1}^{n} |\partial_{i}\partial_{j}v|^{2} \right) + |\nabla v|^{2} + s^{2}|v|^{2} + \frac{1}{s}|\nabla p|^{2} + s|p|^{2} \right\} dxdt.$$

Hence (3.10) yields

$$e^{2s\mu_4} \int_{t_0 - \frac{\varepsilon}{\sqrt{N}}}^{t_0 + \frac{\varepsilon}{\sqrt{N}}} \int_{\Omega_0} \left\{ \frac{1}{s^2} \left(|\partial_t v|^2 + \sum_{i,j=1}^n |\partial_i \partial_j v|^2 \right) + |\nabla v|^2 + s^2 |v|^2 + \frac{1}{s} |\nabla p|^2 + s|p|^2 \right\} dxdt$$

$$\leq C(\|v\|_{H^{1,1}(Q)}^2 + \|p\|_{L^2(Q)}^2) e^{2s\mu_3} + Ce^{Cs} G^2.$$

Therefore

$$\int_{t_0 - \frac{\varepsilon}{\sqrt{N}}}^{t_0 + \frac{\varepsilon}{\sqrt{N}}} \int_{\Omega_0} \left\{ \left(|\partial_t v|^2 + \sum_{i,j=1}^n |\partial_i \partial_j v|^2 \right) + |\nabla v|^2 + |v|^2 + |\nabla p|^2 + |p|^2 \right\} dxdt \\
\leq Cs^2 e^{-2s(\mu_4 - \mu_3)} (\|v\|_{H^{1,1}(Q)}^2 + \|p\|_{L^2(Q)}^2) + Ce^{Cs}G^2 \quad \forall s \geq s_0.$$

By $\sup_{s>0} se^{-s(\mu_4-\mu_3)} < \infty$, we estimate $se^{-2s(\mu_4-\mu_3)}$ by $e^{-s(\mu_4-\mu_3)}$ on the right-hand side. Moreover, replacing C by Ce^{Cs_0} , we can have

$$||v||_{H^{2,1}\left(\Omega_{0}\times\left(t_{0}-\frac{\varepsilon}{\sqrt{N}},t_{0}+\frac{\varepsilon}{\sqrt{N}}\right)\right)}^{2}+||p||_{H^{1,0}\left(\Omega_{0}\times\left(t_{0}-\frac{\varepsilon}{\sqrt{N}},t_{0}+\frac{\varepsilon}{\sqrt{N}}\right)\right)}^{2}$$

$$\leq Ce^{-s(\mu_{4}-\mu_{3})}(||v||_{H^{1,1}(Q)}^{2}+||p||_{L^{2}(Q)}^{2})+Ce^{Cs}G^{2}$$
(3.11)

for all $s \geq 0$. Let $m \in \mathbb{N}$ satisfy $\sqrt{2\varepsilon} + \frac{m\varepsilon}{\sqrt{N}} \leq T - \sqrt{2\varepsilon} \leq \sqrt{2\varepsilon} + \frac{(m+1)\varepsilon}{\sqrt{N}} \leq T$.

We here notice that the constant C in (3.11) is independent also of t_0 , provided that $\sqrt{2\varepsilon} \leq t_0 \leq T - \sqrt{2\varepsilon}$. In (3.11), taking $t_0 = \sqrt{2\varepsilon} + \frac{j\varepsilon}{\sqrt{N}}$, j = 0, 1, 2, ..., m and summing up over j, we have

$$||v||_{H^{2,1}\left(\Omega_0 \times \left(\sqrt{2\varepsilon} - \frac{\varepsilon}{\sqrt{N}}, T - \sqrt{2\varepsilon} - \frac{\varepsilon}{\sqrt{N}}\right)\right)}^2 + ||p||_{H^{1,0}\left(\Omega_0 \times \left(\sqrt{2\varepsilon} - \frac{\varepsilon}{\sqrt{N}}, T - \sqrt{2\varepsilon} - \frac{\varepsilon}{\sqrt{N}}\right)\right)}^2$$

$$\leq Ce^{-s(\mu_4 - \mu_3)} (||v||_{H^{1,1}(O)}^2 + ||p||_{L^2(O)}^2) + Ce^{Cs}G^2$$

for all $s \geq 0$. Here we note that $T - \sqrt{2\varepsilon} \leq \sqrt{2\varepsilon} + \frac{(m+1)\varepsilon}{\sqrt{N}}$ implies $T - \sqrt{2\varepsilon} - \frac{m\varepsilon}{\sqrt{N}} \leq \sqrt{2\varepsilon} + \frac{1}{\sqrt{N}}\varepsilon$. Replacing $\left(\sqrt{2} + \frac{1}{\sqrt{N}}\right)\varepsilon$ by ε , we have

$$||v||_{H^{2,1}(\Omega_0 \times (\varepsilon, T - \varepsilon))}^2 + ||p||_{H^{1,0}(\Omega_0 \times (\varepsilon, T - \varepsilon))}^2$$

$$\leq Ce^{-s(\mu_4 - \mu_3)} (||v||_{H^{1,1}(\Omega)}^2 + ||p||_{L^2(\Omega)}^2) + Ce^{Cs}G^2$$
(3.12)

for all $s \geq s_0$.

First let G=0. Then letting $s\to\infty$ in (3.12), we see that |v|=|p|=0 in $\Omega_0\times(\varepsilon,T-\varepsilon)$, so that the conclusion of Theorem 2 holds true. Next let $G\neq0$. First let $G\geq\|v\|_{H^{1,1}(Q)}+\|p\|_{L^2(Q)}$. Then (3.12) implies $\|v\|_{H^{2,1}(\Omega_0\times(\varepsilon,T-\varepsilon))}+\|p\|_{H^{1,0}(\Omega_0\times(\varepsilon,T-\varepsilon))}\leq Ce^{Cs}G$ for $s\geq0$, which already proves the theorem. Second let $G<\|v\|_{H^{1,1}(Q)}+\|p\|_{L^2(Q)}$. In order to make the right-hand side of (3.12) smaller, we choose s>0 such that

$$e^{-s(\mu_4 - \mu_3)}(\|v\|_{H^{1,1}(Q)}^2 + \|p\|_{L^2(Q)}^2) = e^{Cs}G^2.$$

By $G \neq 0$, we can choose

$$s = \frac{1}{C + \mu_4 - \mu_3} \log \frac{\|v\|_{H^{1,1}(Q)}^2 + \|p\|_{L^2(Q)}^2}{G^2} > 0.$$

Then (3.12) gives

$$||v||_{H^{2,1}(\Omega_0 \times (\varepsilon, T - \varepsilon))}^2 + ||p||_{H^{1,0}(\Omega_0 \times (\varepsilon, T - \varepsilon))}^2 \le 2C(||v||_{H^{1,1}(Q)}^2 + ||p||_{L^2(Q)}^2)^{\frac{C}{C + \mu_4 - \mu_3}} G^{\frac{2(\mu_4 - \mu_3)}{C + \mu_4 - \mu_3}}.$$

The the proof of Theorem 2 is completed. ■

References

[1] L. Beilina and M.V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer-Verlag, Berlin, 2012.

- [2] M. Boulakia, Quantification of the unique continuation property for the nonstationary Stokes problem, preprint.
- [3] M. Choulli, O. Y. Imanuvilov, J.-P. Puel and M. Yamamoto, Inverse source problem for linearized Navier-Stokes equations with data in arbitrary sub-domain, Appl. Anal. 92 (2013), 2127-2143.
- [4] J. Fan, M. Di Cristo, Y. Jiang, and G. Nakamura, Inverse viscosity problem for the Navier-Stokes equation, J. Math. Anal. Appl. **365** (2010), 750-757.
- [5] J. Fan, Y. Jiang, and G. Nakamura, Inverse problems for the Boussinesq system, Inverse Probl. **25** (2009), 085007 (10pp).
- [6] E. Fernández-Cara, S. Guerrero S, O.Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. 83 (2004), 1501-1542.
- [7] A.V. Fursikov and O.Y. Imanuvilov, Controllability of Evolution Equations, Seoul National University, Korea, 1996.
- [8] O.Y. Imanuvilov, Controllability of parabolic equations, Sbornik Math. 186 (1995), 879-900.
- [9] O.Y. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems, International Mathematics Research Notices 16 (2003), 883-913.
- [10] O.Y. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions, Chin. Ann. Math. **30B** (2009), 333-378.
- [11] O.Y. Imanuvilov and M. Yamamoto, Global uniqueness in inverse boundary value problems for Navier-Stokes equations and Lamé system in two dimensions, Inverse Problems 31 (2015), 035004.
- [12] O.Y. Imanuvilov and Μ. Yamamoto, Equivalence of two inverse boundary value problems the Navier-Stokes 2015, equations, http://arxiv.org/pdf/1501.02550.pdf
- [13] V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, Berlin, 2006.

- [14] M.V. Klibanov and A.A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004.
- [15] R.Y. Lai, G. Uhlmann and J.-N. Wang, Inverse boundary value problem for the Stokes and the Navier-Stokes equations in the plane, Arch. Rational Mech. Anal., Digital Object Identifier (DOI) 10.1007/s00205-014-0794-1
- [16] E.M. Landis, Some questions in the qualitative theory of elliptic and parabolic equations, AMS Transl. Series 2 **20** (1962) 173-238.
- [17] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, 1972.
- [18] S. Mizohata, Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques, Mem. College Sci. Univ. Kyoto A 31 (1958) 219-239.
- [19] J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Diff. Eqns 66 (1987) 118-139.
- [20] C.D. Sogge, A unique continuation theorem for second order parabolic differential operators, Ark. Mat. 28 (1990) 159-182.
- [21] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems **25** (2009) 123013 (75pp).