Eletromagnetismo I (2024.1) GF100220

Potenciais magnéticos

Professor: Carlos Eduardo Souza (Cadu)

$$ec{E} = -
abla V$$

tendo em vista que o potencial elétrico é uma função escalar...

Uma das finalidades do uso dos **potenciais elétricos** na eletrostática é o **cálculo** mais simplificado **do campo elétrico**

$$ec{E} = -
abla V$$

tendo em vista que o potencial elétrico é uma função escalar...

Pergunta

e no Magnetismo: seria possível definirmos um potencial magnético?

Tipicamente, desejamos calcular

uma expressão que envolve

Tipicamente, desejamos calcular

A ideia é calcularmos isso mais facilmente!!

Seria possível definirmos um potencial magnético?

Sim, mas neste caso, um potencial vetor!!

Seria possível definirmos um potencial magnético?

INSTITUTO DE FÍSICA
Universidade Federal Fluminonae

Sim, mas neste caso, um potencial vetor!!

Ponto de partida: a lei de Gauss Magnética

$$abla \cdot \vec{B} = 0$$

Seria possível definirmos um potencial magnético?

Sim, mas neste caso, um potencial vetor!!

Ponto de partida: a lei de Gauss Magnética

$$abla \cdot \vec{B} = 0$$

Mas, de imediato, usando o fato identidade vetorial $\
abla \cdot (
abla imes ec{A}) = 0$ para um campo $ec{A}$ qualquer,

definimos:

$$ec{B} \equiv
abla imes ec{A}$$

Classificação dos campos vetoriais em termos do Divergente e do Rotacional

- se
$$abla \cdot ec{A} = 0$$
 (solenoidal)

- se
$$abla imes ec{A} = 0$$
 $(potencial)$

Um campo no qual o fluxo através de uma área fechada é nulo...

$$\oint_S ec{A} \cdot dec{S}' = 0$$

De forma que, usando o teo. da divergência

$$\oint_{S} ec{A} \cdot dec{S}' = \iiint_{v} (
abla \cdot ec{A}) dv = 0$$

$$abla \cdot \vec{A} = 0$$

Devido à identidade $\nabla \cdot (\nabla imes \vec{F}) = 0, \ \ orall \vec{F}$, podemos escrever \vec{F}

$$ec{A} =
abla imes ec{F} = 0, \;\; orall ec{F}$$

Classificação dos campos vetoriais em termos do Divergente e do Rotacional

 $\nabla \cdot \vec{A} = 0$

- se $abla \cdot ec{A} = 0$ (solenoidal)
- se $abla imes ec{A} = 0$ (potencial)

Um campo no qual o fluxo do rotacional através de uma área fechada é nulo...

$$\oint_S (
abla imes ec{A}) \cdot dec{S}' = 0$$

De forma que, usando o teo de Stokes

$$\oint_S (
abla imes ec{A}) \cdot dec{S}' = \oint_C ec{A} \cdot dec{l} = 0$$

A integral de linha independe do caminho: campo conservativo

Devido à identidade $\nabla \times (\nabla V) = 0$, $\forall V$, podemos escrever

$$ec{A} = -
abla V, \quad orall V$$

Um campo no qual o fluxo através de uma área fechada é nulo...

$$\oint_S ec{A} \cdot dec{S}' = 0$$

De forma que, usando o teo da divergência

$$\oint_S ec{A} \cdot dec{S}' = \iiint_v (
abla \cdot ec{A}) dv = 0$$

Devido à identidade
$$\
abla \cdot (
abla imes ec{F}) = 0, \ \ orall ec{F}$$
 ,

podemos escrever

$$ec{A} =
abla imes ec{F} = 0, \;\; orall ec{F}$$

Classificação dos campos vetoriais em termos do Divergente e do Rotacional

- se $abla \cdot ec{A} = 0$ (solenoidal)
- se $abla imes ec{A} = 0$ (potencial)

Um campo no qual o fluxo do rotacional através de uma área fechada é nulo...

$$\oint_S (
abla imes ec{A}) \cdot dec{S}' = 0$$

De forma que, usando o teo de Stokes

$$\oint_S (
abla imes ec{A}) \cdot dec{S}' = \oint_C ec{A} \cdot dec{l} = 0$$

A integral de linha independe do caminho: campo conservativo

Devido à identidade $\nabla imes (\nabla V) = 0, \ \ \forall V,$ podemos escrever

$$ec{A} = -
abla V, \quad orall V$$

Um campo no qual o fluxo através de uma área fechada é nulo...

$$\oint_S ec{A} \cdot dec{S}' = 0$$

De forma que, usando o teo da divergência

$$\oint_S ec{A} \cdot dec{S}' = \iiint_v (
abla \cdot ec{A}) dv = 0$$

$$abla \cdot ec{A} = 0$$

Devido à identidade $\
abla \cdot (
abla imes ec{F}) = 0, \ orall ec{F}$ podemos escrever

$$ec{A}=
abla imesec{F}=0,\,\,\,orallec{F}$$

Transformações de Calibre

Em resumo:

Classificação dos campos vetoriais em termos do

Divergente e do Rotacional

Transformações de Calibre

- se
$$abla \cdot ec{A} = 0$$
 $(solenoidal)$ $ec{A} =
abla imes ec{F} = 0, \; orall ec{F}$

- se
$$abla imes ec{A} = 0$$
 $(potencial)$ $ec{A} = -
abla V, \ orall V$

Em resumo:

Classificação dos campos vetoriais em termos do

Divergente e do Rotacional

- se
$$abla \cdot \vec{A} = 0$$
 (solenoidal) $\vec{A} =
abla imes \vec{F} = 0, \ orall \vec{F}$

$$ec{A}=
abla imesec{F}=0,\,\,\,orallec{F}$$

Transformações de Calibre

- se
$$abla imes ec{A} = 0$$
 $(potencial)$ $ec{A} = -
abla V, \; orall V$

De forma geral, um campo $ec{A}$ é completamente descrito em uma região se conhecermos:

(1)
$$abla \cdot \vec{A} =
ho_v$$
 Densidade de fonte $abla imes \vec{A} = ec{
ho}_S$ Densidade de circulação

Em especial, qq vetor que satisfaça as eqs (1) com $ho_v=
ho_S=0$ no infinito pode ser expresso como:

$$ec{A} = -
abla V +
abla imes ec{F}$$

Teo de Helmholtz

Dado que

$$ec{A} = -
abla V +
abla imes ec{F}$$

e a identidade vetorial

$$abla^2ec{A}=
abla(
abla\cdotec{A})-
abla imes(
abla imesec{A})$$
 , tal que: $abla^2ec{A}=
abla^2A_x\hat{x}+
abla^2A_y\hat{y}+
abla^2A_z\hat{z}$

Obtemos

$$abla^2ec{A} =
abla(
ho_v) -
abla imes (ec{
ho}_S).$$

$$abla \cdot ec{B} = 0 \
abla imes ec{B} = \mu_0 ec{J}$$

$$abla \cdot (
abla imes ec{A}) = 0 \implies ec{B} \equiv
abla imes ec{A}$$

O campo magnético pode ser escrito como um rotacional de um Pot Vetor **A**.

$$egin{aligned}
abla \cdot ec{B} &= 0 \
abla imes ec{B} &= \mu_0 ec{J} \end{aligned}$$

Portanto,

$$egin{aligned}
abla imes ec{B} &=
abla imes (
abla imes ec{A}) \ &=
abla (
abla \cdot ec{A}) -
abla^2 ec{A} &= \mu_0 ec{J} \end{aligned}$$

Esse resultado pode ser generalizado para um Pot Vetor mais geral ainda da forma:

$${ec A}' = {ec A} +
abla f$$

onde f é um Potencial escalar.

$$abla \cdot (
abla imes ec{A}) = 0 \implies ec{B} \equiv
abla imes ec{A}$$

O campo magnético pode ser escrito como um rotacional de um Pot Vetor **A**.

$$egin{aligned}
abla \cdot ec{B} &= 0 \
abla imes ec{B} &= \mu_0 ec{J} \end{aligned}$$

Portanto,

$$egin{aligned}
abla imes ec{B} &=
abla imes (
abla imes ec{A}) \ &=
abla (
abla \cdot ec{A}) -
abla^2 ec{A} &= \mu_0 ec{J} \end{aligned}$$

Esse resultado pode ser generalizado para um Pot Vetor mais geral ainda da forma:

$${ec A}' = {ec A} +
abla f$$

onde f é um Potencial escalar.

Observe que: $abla imes (
abla f) = 0, \quad orall f,$

De forma que

$$egin{aligned}
abla imes ec{A}' &=
abla imes (ec{A} +
abla f) \ &=
abla imes ec{A} +
abla imes
abla f &=
abla imes ec{A}. \end{aligned}$$

Qual a vantagem disso tudo?

$$egin{aligned}
abla \cdot ec{B} &= 0 \
abla imes ec{B} &= \mu_0 ec{J} \end{aligned}$$

Portanto,

$$abla imes ec{B} =
abla imes (
abla imes ec{A}) ext{ essa eq aqui!!}$$
 $abla imes (
abla imes ec{A}) -
abla^2 ec{A} = \mu_0 ec{J}$

Esse resultado pode ser generalizado para um Pot Vetor mais geral ainda da forma:

$${ec A}' = {ec A} +
abla f$$

onde f é um Potencial escalar.

Observe que: $\nabla \times (\nabla f) = 0$, $\forall f$,

De forma que

$$egin{aligned}
abla imes ec{A}' &=
abla imes (ec{A} +
abla f) \ &=
abla imes ec{A} +
abla imes
abla f &=
abla imes ec{A}. \end{aligned}$$

Qual a vantagem disso tudo?

$$egin{aligned}
abla \cdot ec{B} &= 0 \
abla imes ec{B} &= \mu_0 ec{J} \end{aligned}$$

Portanto,

$$abla imes ec{B} =
abla imes (
abla imes ec{A}) ext{ essa eq aqui!!}$$
 $abla imes (
abla imes ec{A}) -
abla^2 ec{A} = \mu_0 ec{J}$

Esse resultado pode ser generalizado para um Pot Vetor mais geral ainda da forma:

$${ec A}' = {ec A} +
abla f$$

onde f é um Potencial escalar.

Observe que: $\nabla \times (\nabla f) = 0$, $\forall f$,

De forma que

$$egin{aligned}
abla imes ec{A}' &=
abla imes (ec{A} +
abla f) \ &=
abla imes ec{A} +
abla imes
abla f &=
abla imes ec{A}. \end{aligned}$$

Qual a vantagem disso tudo?

Com uma escolha adequada de f, podemos eliminar $\nabla \cdot \vec{A}$ e obter uma **Equação de Poisson**, a qual sabemos resolver.

Em resumo,

dada a Eq de Poisson para o Pot Vetor:

$$abla (
abla \cdot \vec{A}) -
abla^2 \vec{A} = \mu_0 \vec{J}$$

$$ec{A}=rac{\mu_0}{4\pi}\int_vrac{ec{J}(ec{r}')}{|ec{r}-ec{r}'|}dv'$$

$$abla^2 A_x = -\mu_0 J_x \Rightarrow A_x(ec{r}) = rac{\mu_0}{4\pi} \int_v rac{J_x(ec{r}')}{|ec{r}-ec{r}'|} dv' \
onumber \
abla^2 A_x = -\mu_0 J_y \Rightarrow A_y(ec{r}) = rac{\mu_0}{4\pi} \int_v rac{J_y(ec{r}')}{|ec{r}-ec{r}'|} dv' \
onumber \
onumbe$$

Em resumo,

dada a Eq de Poisson para o Pot Vetor:

$$abla (
abla \cdot \vec{A}) -
abla^2 \vec{A} = \mu_0 \vec{J}$$

3D
$$ightarrow$$
 $ec{A}=rac{\mu_0}{4\pi}\iiint_v dv'rac{ec{J}(ec{r}')}{|ec{R}|}$

2D
$$ightarrow$$
 $ec{A}=rac{\mu_0}{4\pi}\iint_s dv' rac{ec{K}(ec{r}')}{|ec{R}|}$

1D
$$ightarrow$$
 $ec{A}=rac{\mu_0}{4\pi}\int_C dec{l}'rac{I(ec{r}')}{|ec{R}|}$

Exemplo 1

Corrente em uma lâmina infinita. Quanto vale o campo magnético no ponto P? Resolva esse problema via Potencial vetor

Verificando o resultado, temos:

$$abla imes ec{A} = ec{B}$$

$$ec{B} =
abla imes ec{A}$$

$$\vec{A}$$
 \vec{A} \vec{A} \vec{A} \vec{A} \vec{A} \vec{A} \vec{A} \vec{A}

Verificando o resultado, temos:

$$abla imes ec{A} = ec{B}$$

$$\nabla \times \Delta$$

$$ec{B} =
abla imes ec{A}$$

$$7 imesec{A}$$

$$imes \dot{A}$$

$$\times A \times (-\frac{\mu_0 I}{2} \ln(\frac{a}{\epsilon}) \hat{z}$$

$$egin{aligned} &=
abla imes (-rac{\mu_0 I}{2\pi} ext{ln}(rac{a}{
ho})\hat{z})^{igstar} \ &= -rac{\mu_0 I}{2\pi} rac{1}{a/
ho} (rac{-a}{
ho^2})\hat{\phi} \end{aligned}$$

 $\star
abla imes ec{A} = (rac{1}{
ho} rac{\partial A_z}{\partial \phi} - rac{\partial A_\phi}{\partial z}) \hat{
ho} + (rac{\partial A_
ho}{\partial z} - rac{\partial A_z}{\partial o}) \hat{\phi} + rac{1}{
ho} (rac{\partial (
ho A_\phi)}{\partial o} - rac{\partial A_
ho}{\partial \phi}) \hat{
ho}$

 $ec{A}_P = -rac{\mu_0 I}{2\pi} ext{ln}(rac{a}{r})\hat{z}$

$$_{l}$$
 $_{l}$

$$a$$
 P

Verificando o resultado, temos:
$$abla imes ec{A} = ec{B}$$

$$\nabla \times 1$$

$$ec{B} =
abla imes ec{A}$$

$$imes ec{A}$$

$$egin{aligned} &=
abla imes (-rac{\mu_0 I}{2\pi} ext{ln}(rac{a}{
ho})\hat{z})^{igstar} \ &= -rac{\mu_0 I}{2\pi} rac{1}{2\pi} (rac{-a}{2\pi})\hat{\phi} - rac{\mu_0 I}{2\pi}\hat{\phi} \end{aligned}$$

$$\alpha$$

$$=-rac{\mu_0 I}{2\pi}rac{1}{a/
ho}(rac{-a}{
ho^2})\hat{\phi}=rac{\mu_0 I}{2\pi
ho}\hat{\phi}$$

 $\star
abla imes ec{A} = (rac{1}{
ho} rac{\partial A_z}{\partial \phi} - rac{\partial A_\phi}{\partial z})\hat{
ho} + (rac{\partial A_
ho}{\partial z} - rac{\partial A_z}{\partial o})\hat{\phi} + rac{1}{
ho} (rac{\partial (
ho A_\phi)}{\partial o} - rac{\partial A_
ho}{\partial \phi})\hat{
ho}$

$$ec{A}_P = -rac{\mu_0 I}{2\pi} ext{ln}(rac{a}{r}) \hat{z}$$

