11-12-3高数B期末A卷参考答案及评分标准

一、 填空题(本题共9小题,每小题4分,共36分)

1.
$$y^2 dx + 2xy dy$$
; 2. 3; 3. $\frac{\pi}{4}$; 4. $2x + y - 4 = 0$;

5.
$$\int_0^1 dx \int_0^{x^2} f(x,y) dy + \int_1^3 dx \int_0^{\frac{3-x}{2}} f(x,y) dy;$$

6.
$$\frac{\sqrt{1378}}{3}$$
; 7. 5π ; 8. $\frac{1}{5}x^5 - y^5 + 2x^2y^3 + C$; 9. $8\sqrt{3}\pi$

二、 计算下列各题(本题共5小题,每小题7分,满分35分)

1. 解
$$\iint_D xy dx dy = \iint_D (x-1)y dx dy + \iint_D (y-1)dx dy + \iint_D dx dy = 2\pi (2+2+2+1分)$$

2. 解
$$A = \iint_{x^2+y^2 \le 2} (\sqrt{1+4(x^2+y^2)} + \frac{\sqrt{6}}{\sqrt{6-x^2-y^2}}) dxdy$$
 (2+2分)

$$=2\pi \int_0^{\sqrt{2}} (\sqrt{1+4\rho^2} + \frac{\sqrt{6}}{\sqrt{6-\rho^2}}) \rho d\rho = (\frac{49}{3} - 4\sqrt{6})\pi \ (3\cancel{2})$$

3.
$$\mathbf{AF} \int_0^1 \mathrm{d}x \int_0^{\sqrt{x}} \mathrm{e}^{-\frac{y^2}{2}} \mathrm{d}y = \int_0^1 \mathrm{d}y \int_{y^2}^1 \mathrm{e}^{-\frac{y^2}{2}} \mathrm{d}x = \int_0^1 (1 - y^2) \mathrm{e}^{-\frac{y^2}{2}} \mathrm{d}y = \mathrm{e}^{-\frac{1}{2}}$$
 (3+1+3\$\frac{\frac{1}}{2}}

4. **解** 设所求直线 L_1 与 z 轴的交点为 $(0,0,z_0)$,则 L_1 的方向向量 $\{3,-1,2-z_0\}$

与直线
$$L$$
 的方向向量 $\{1, \frac{1}{2}, \frac{1}{3}\}$ 垂直,即 $3 - \frac{1}{2} + \frac{1}{3}(2 - z_0) = 0$, $z_0 = \frac{19}{2}$, (4分)

$$L_1$$
 的方向向量为 $\{3, -1, -\frac{15}{2}\}, L_1$ 的方程为 $\frac{x-3}{6} = \frac{y+1}{-2} = \frac{z-2}{-15}$ (3分)

5. 解
$$D = D_1 \cup D_2$$
, 其中 $D_1 = \{(\rho, \theta) | \sqrt{\cos 2\theta} \le \rho \le \frac{1}{\cos \theta}, 0 \le \theta \le \frac{\pi}{4} \}$,

$$D_2 = \{(\rho, \theta) | 0 \le \rho \le 2\cos\theta, \frac{\pi}{4} \le \theta \le \frac{\pi}{2}\} \quad (3\%)$$

$$\int_{0}^{\frac{\pi}{4}} d\theta \int_{\sqrt{\cos 2\theta}}^{\frac{1}{\cos \theta}} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos \theta} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$$

$$(2 \mathcal{H})$$

三、 (本题满分8分) 解 记点 D(2,1),补有向线段 \overline{BD} , \overline{DA} ,由Green公式得 $I = -12 \int_0^1 \mathrm{d}y \int_{-\sqrt{y}}^2 x \mathrm{d}x + \int_0^1 (\cos y - 2\mathrm{e}^y) \mathrm{d}y - \int_{\overline{b}}^{1/2} (12x + \mathrm{e}) \mathrm{d}x = \mathrm{e} - 1 + \sin 1$ (4分) (1分) (2分)

四、 (本题满分8分) 解补一个面 $\Sigma_1: z=0$, 取下侧, Σ 与 Σ_1 所围区域记为 Ω ,由Gauss公式得 I=2 $\iiint_{\Omega} (1+z) \mathrm{d}v$ $\bigcirc 3$ $\iiint_{x^2+y^2\leq 2} \mathrm{d}x \mathrm{d}y = \frac{20}{3}\pi$ $\bigcirc 6\pi = \frac{.38}{3}\pi$ (3分) (1分)

五、 (本题满分7分) 解 设切点为 $P_0(x_0,y_0,z_0)$, 切平面方程为 $\frac{x_0}{2}x+2y_0y+z=8-z_0$, (1分) 三个坐标平面与切平面所围四面体的体积为 $V^*=\frac{(8-z_0)^3}{6x_0y_0}$, Lagrange函数为 $L=\frac{(8-z_0)^3}{6x_0y_0}+\lambda(\frac{x_0^2}{4}+y_0^2+z_0-4)$, 令 $L_{x_0}=-\frac{(8-z_0)^3}{6x_0^2y_0}+\frac{1}{2}\lambda x_0=0$, $L_{y_0}=-\frac{(8-z_0)^3}{6x_0y_0^2}+2\lambda y_0=0$, $L_{z_0}=-\frac{(8-z_0)^2}{2x_0y_0}+\lambda=0$,解得 $(x_0,y_0,z_0)=(2,1,2)$,由问题的实际意义知,该

点即为所求切点,(4分)最小体积 $V_{\min} = V^* - \frac{\pi}{4} \int_0^4 2(4-z) dz = 18 - 4\pi (2分)$ 六、 (本题满分6分) 解 设球体方程为 $\Omega: x^2 + y^2 + z^2 \leq 2Rz$, Ox 轴为其切线.则

$$I_{x} = \iiint_{\Omega} (y^{2} + z^{2}) dv = \pi \int_{0}^{2R} z^{2} (2Rz - z^{2}) dz + \int_{0}^{2R} dz \int_{0}^{2\pi} \sin^{2}\theta d\theta \int_{0}^{\sqrt{2Rz - z^{2}}} \rho^{3} d\rho$$

$$(2 \mathcal{H})$$

$$= \frac{8}{5} \pi R^{5} + \frac{4}{15} \pi R^{5} = \frac{28}{15} \pi R^{5} = \frac{7}{5} M R^{2} \quad (2 \mathcal{H})$$