Event Management System : Design and implementation with an application

Maj Amit Pathania (163054001) Dharmendra (163050032)

April 2017

Contents

1	Pro	blem Description	3
2	Vie	wpoints	4
	2.1	Functional viewpoint	4
	2.2	Information viewpoint	5
	2.3	Concurrency viewpoint	8
	2.4	Development viewpoint	10
	2.5	Deployment viewpoint	12
	2.6	Operational viewpoint	13
3	Per	spectives	14
	3.1	Security perspective	14
	3.2	Performance perspective	16
	3.3	Availability and resilience perspective	17

List of Figures

1	UML component diagram for functional viewpoint	4
2	ER diagram between user and event	5
3	ER diagram as Subscriber and publisher	5
4	UML class diagram for information viewpoint	6
5	Data flow diagram diagram for information viewpoint	7
6	Thread based concurrency model using UML	8
7	Statechart for query processing	9
8	Development model for server using UML module structure .	10
9	Development model for client using UML module structure .	11
10	Deployment viewpoint using UML	12
11	Attacktree for security perspective	15
12	UML model for performance perspective	16
13	Recovery diagram	18
List	of Tables	
1	Sensitive Resource Identification	14
2	Access Control list	14
3	Incident recovery Table for availability perspective	17

1 Problem Description

We aim to create a event management system using C++ where client connects to server suing TCP connection. Server has mysql server which is used to authenticate the users and once authenticated, user can create events and events will be pushed to user as per his interests/topics.

2 Viewpoints

2.1 Functional viewpoint

Figure 1: UML component diagram for functional viewpoint

2.2 Information viewpoint

Figure 2: ER diagram between user and event

Figure 3: ER diagram as Subscriber and publisher

Figure 4: UML class diagram for information viewpoint

Figure 5: Data flow diagram diagram for information viewpoint

2.3 Concurrency viewpoint

Figure 6: Thread based concurrency model using UML

Figure 7: Statechart for query processing

2.4 Development viewpoint

Figure 8: Development model for server using UML module structure

Figure 9: Development model for client using UML module structure

2.5 Deployment viewpoint

Figure 10: Deployment viewpoint using UML

2.6 Operational viewpoint

Installation model helps in moving a system from its development environment to its production environment. It explains how system can be installed.

• Installation Groups

Server.o

Ubuntu 14.0 or above Server

Installation using "make" script

Client.o

Ubuntu 14.0 or above desktop client

Installation using "make" script.

Mysql Database server

Install using command on server: sudo apt-get install mysql-server

mysql.h header file

Install using command on server: sudo apt-get install libmysqlclient-dev

• Dependencies

Server.o depends on mysql.h and mysql database server.

Client.o and server.o depends on gcc compiler and standard gcc libraries.

• Constraints

Server.o: A access to mysql database is required by server. Hence, adequate privileges should be granted to server

3 Perspectives

3.1 Security perspective

Resource	Sensitivity	Owner	Owner Access
/ Table			Control
name			
user	Personal information of	Client Manage-	No direct access
	value for identity theft or	ment Group	allowed for other
	invasion of privacy	(Admin)	users
Event	Defines what events have	Event man-	Access to events
	been created and its de-	agement group	records per-
	scription; if changed mali-	(Registered	mitted after
	ciously, could harm the au-	users)	authentication
	thenticity of the system.		of client(user).

Table 1: Sensitive Resource Identification

	User	Event
Database Ad-	All with audit	All with audit
ministrator		
Registered Cus-	All on own record only	Read-only
tomer		operation to
		pull event and
		publish events
Unknown user	None. Can create new account.	None

Table 2: Access Control list

Attack Tree for the goal of extracting user account details from server

Goal: Obtain user account details.

- Extract details from the system database.
 - 1.1. Access the database directly.
 - 1.1.1. Crack/guess database passwords.
 - 1.1.2. Crack/guess operating system passwords that allow database security to be bypassed.
 - 1.2. Access the details via a server management staff.
 - 1.2.1. Bribe a database administrator (DBA) at server side.
- Extract details from the client.
 - **2.1.** Set up a dummy/attack server and intimate clients/users the new IP address and listening port to trick them into getting connected to server at new IP which asks user for authenticating and thereby fooling client to enter its username and password.
 - **2.2.** Monitor the TCP traffic originating from client terminal using TCP packet analyser and copy user account details.

Figure 11: Attacktree for security perspective

3.2 Performance perspective

Figure 12: UML model for performance perspective

3.3 Availability and resilience perspective

Incident	Impact	Remedial Action	Time to
			Repair
Server Hardware	Reduced availability	Replace the faulty	2 hours
(nondisk) failure	(throughput affected)	component, and	
		possibly reconfigure	
		the hardware or the	
		operating system	
Server Disk fail-	Total unavailability	Replace the faulty	8-10 hours
ure	(service offline)	disk, and possibly	
		recover data from	
		backup	
Local network	Temporary service	Switch over to	5 mins to 1
failure	outage, in-flight	standby network	hour
	transactions aborted.	Or repair the network	
		after finding fault	
Operating sys-	Temporary service	Reboot; although	5 mins for
tem crash	outage, normal avail-	crash may be some	reboot
	ability within 5–10	other problem (such	
	minutes	as faulty memory or	
		disk) that needs to be	
N. C. 1		addressed	0.5
Mysql server	Temporary service	Restart the service	2-5 mins to
crash	outage		restart the
C		D + + +1 1:	service
Segmentation	Temporary service	Restart the applica-	1 min
fault	outage	tion	

Table 3: Incident recovery Table for availability perspective

Figure 13: Recovery diagram