Operator Definitions

Operations are defined on the values 0 and 1 for each operator:

AND	OR	NOT
$0 \cdot 0 = 0$	0 + 0 = 0	$\overline{0} = 1$
$0 \cdot 1 = 0$	0 + 1 = 1	$\overline{1} = 0$
$1 \cdot 0 = 0$	1 + 0 = 1	
$1 \cdot 1 = 1$	1 + 1 = 1	

Order of Evaluation / Precedence

- 1. Parentheses
- 2. NOT
- 3. AND
- 4. OR

Basic Identities of Boolean Algebra

Identity Laws:

1.
$$X + 0 = X$$

$$2. \quad X \cdot 1 = X$$

Annulment Laws:

3.
$$X + 1 = 1$$

4.
$$X \cdot 0 = 0$$

Idempotent Laws:

5.
$$X + X = X$$

6.
$$X \cdot X = X$$

Complement Laws:

7.
$$X + \bar{X} = 1$$

8.
$$X \cdot \overline{X} = 0$$

Double Negation Law:

9.
$$\bar{\bar{X}} = 0$$

Commutative Laws:

10.
$$X + Y = Y + X$$

11.
$$X \cdot Y = Y \cdot X$$

Distributive Laws:

12.
$$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$$

13.
$$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$$

Associative Laws:

14.
$$X + (Y + Z) = (X + Y) + Z = X + Y +$$

15.
$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z = X \cdot Y \cdot Z$$

DeMorgan's Laws:

16.
$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Absorptive Laws:

18.
$$X + (X \cdot Y) = X$$

19.
$$X \cdot (X + Y) = X$$

Dual

The dual is obtained by interchanging + and · and interchanging 0's and 1's.

A self-dual means the dual of the expression is equal to the original expression