1.3 — Data Visualization with ggplot2 - R Practice (Answers)

ECON 480 — Fall 2021

Tuesday, August 30, 2021

Getting Set Up

Before we begin, start a new file with File \rightarrow New File \rightarrow R Script. As you work through this sheet in the console in R, also add (copy/paste) your commands that work into this new file. At the end, save it, and run to execute all of your commands at once.

Exploring the Data

1. We will look at GDP per Capita and Life Expectancy using some data from the gapminder project. There is a handy package called gapminder that uses a small snippet of this data for exploratory analysis. Install and load the package gapminder. Type ?gapminder and hit enter to see a description of the data.

```
# first time only
# install.packages("gapminder")

# load gapminder
library(gapminder)

# get help
?gapminder
```

- 2. Let's get a quick look at gapminder to see what we're dealing with.
 - a. Get the structure of the gapminder data.

- country: a factor
- continent: a factor
- year: an integer

```
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 3 3 ...
## $ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
## $ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 163
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
b. What variables are there?
```

```
# - lifeExp: a number
# - gdpPercap: a number
```

c. Look at the head of the dataset to get an idea of what the data looks like.

head(gapminder)

```
## # A tibble: 6 x 6
##
     country
                 continent year lifeExp
                                               pop gdpPercap
##
     <fct>
                 <fct>
                            <int>
                                    <dbl>
                                             <int>
                                                        <dbl>
## 1 Afghanistan Asia
                            1952
                                     28.8 8425333
                                                         779.
## 2 Afghanistan Asia
                            1957
                                     30.3 9240934
                                                         821.
## 3 Afghanistan Asia
                                                         853.
                             1962
                                     32.0 10267083
## 4 Afghanistan Asia
                             1967
                                     34.0 11537966
                                                         836.
## 5 Afghanistan Asia
                             1972
                                     36.1 13079460
                                                         740.
## 6 Afghanistan Asia
                             1977
                                     38.4 14880372
                                                         786.
```

d. Get summary statistics of all variables.

summary(gapminder)

```
##
           country
                          continent
                                                        lifeExp
                                           year
##
   Afghanistan:
                       Africa:624
                                                             :23.60
                  12
                                      Min.
                                             :1952
                                                     Min.
##
   Albania
                  12
                       Americas:300
                                      1st Qu.:1966
                                                     1st Qu.:48.20
## Algeria
                  12
                       Asia
                               :396
                                      Median:1980
                                                     Median :60.71
                       Europe :360
                                             :1980
                                                            :59.47
  Angola
                  12
                                      Mean
                                                     Mean
                       Oceania: 24
                                      3rd Qu.:1993
                                                     3rd Qu.:70.85
##
  Argentina :
                  12
##
   Australia
                                      Max.
                                             :2007
                                                     Max.
                                                            :82.60
##
   (Other)
               :1632
                          gdpPercap
##
         pop
                                   241.2
##
  Min.
          :6.001e+04
                        Min. :
##
   1st Qu.:2.794e+06
                        1st Qu.:
                                  1202.1
                                  3531.8
##
  Median :7.024e+06
                        Median:
## Mean
           :2.960e+07
                               : 7215.3
                        Mean
##
   3rd Qu.:1.959e+07
                        3rd Qu.:
                                  9325.5
##
   Max.
           :1.319e+09
                               :113523.1
                        Max.
##
```

Simple Plots in Base R

3. Let's make sure you can do some basic plots before we get into the gg. Use base R's hist() function to plot a *histogram* of gdpPercap.

```
hist(gapminder$gdpPercap)
```

Histogram of gapminder\$gdpPercap

4. Use base R's boxplot() function to plot a boxplot of gdpPercap.

boxplot(gapminder\$gdpPercap)

5. Now make it a boxplot by continent.1

boxplot(gapminder\$gdpPercap~gapminder\$continent)

¹Hint: use formula notation with~.


```
# alternate method
# boxplot(gdpPercap~continent, data = gapminder)
```

6. Now make a scatterplot of gdpPercap on the x-axis and LifeExp on the y-axis.

plot(gapminder\$lifeExp~gapminder\$gdpPercap)

alternate method
boxplot(lifeExp~gdpPercap, data = gapminder)

Plots with ggplot2

7. Load the package ggplot2 (you should have installed it previously. If not, install first with install.packages("ggplot2")).

```
# install if you don't have
# install.packages("ggplot2")

# load ggplot2
library(ggplot2)
```

8. Let's first make a bar graph to see how many countries are in each continent. The only aesthetic you need is to map continent to x. Bar graphs are great for representing categories, but not quantitative data.

```
ggplot(data = gapminder,
    aes(x = continent))+
geom_bar()

600-

400-

Africa Americas Asia Europe Oceania
continent
```

9. For quantitative data, we want a histogram to visualize the distribution of a variable. Make a histogram of gdpPercap. Your only aesthetic here is to map gdpPercap to x.

```
ggplot(data = gapminder,
    aes(x = gdpPercap))+
```

geom_histogram()

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

10. Now let's try adding some color, specifically, add an aesthetic that maps continent to fill.²

```
ggplot(data = gapminder,
    aes(x = gdpPercap,
        fill = continent))+
    geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

²In general, color refers to the outside borders of a geom (except points), fill is the interior of an object.

11. Instead of a histogram, change the geom to make it a density graph. To avoid overplotting, add alpha=0.4 to the geom argument (alpha changes the *transparency* of a fill).

```
ggplot(data = gapminder,
    aes(x = gdpPercap,
        fill = continent))+
    geom_density(alpha=0.4)
```


12. Redo your plot from 11 for lifeExp instead of gdpPercap.

13. Now let's try a scatterplot for lifeExp (as y) on gdpPercap (as x). You'll need both for aesthetics. The geom here is $geom_point()$.

14. Add some color by mapping continent to color in your aesthetics.

15. Now let's try adding a regression line with geom_smooth(). Add this layer on top of your geom_point() layer.

```
ggplot(data = gapminder,
    aes(x = gdpPercap,
        y = lifeExp,
        color = continent))+
    geom_point()+
    geom_smooth()
```

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

16. Did you notice that you got multiple regression lines (colored by continent)? That's because we set a global aesthetic of mapping continent to color. If we want just *one* regression line, we need to instead move the color = continent inside the aes of geom_point. This will only map continent to color for points, not for anything else.

17. Now add an aesthetic to your points to map pop to size.

18. Change the color of the regression line to "black". Try first by putting this inside an aes() in your geom_smooth, and try a second time by just putting it inside geom_smooth without an aes(). What's the difference, and why?

```
ggplot(data = gapminder,
    aes(x = gdpPercap,
        y = lifeExp))+
geom_point(aes(color = continent,
        size = pop))+
geom_smooth(aes(color = "black"))
```


'geom_smooth()' using method = 'gam' and formula 'y $\sim s(x, bs = "cs")$ '

size = pop))+

geom_smooth(color = "black")

putting it outside aesthetics (correctly) sets color to black

19. Another way to separate out continents is with faceting. Add +facet_wrap(~continent) to create subplots by continent.

```
ggplot(data = gapminder,
    aes(x = gdpPercap,
        y = lifeExp))+
geom_point(aes(color = continent,
        size = pop))+
geom_smooth(color = "black")+
facet_wrap(~continent)
```

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

20. Remove the facet layer. The scale is quite annoying for the x-axis, a lot of points are clustered on the lower level. Let's try changing the scale by adding a layer: +scale_x_log10().

21. Now let's fix the labels by adding +labs(). Inside labs, make proper axes titles for x, y, and a title to the plot. If you want to change the name of the legends (continent color), add one for color and size.

22. Now let's try subsetting by looking only at North America. Take the gapminder dataframe and subset it to only look at continent=="Americas"). Assign this to a new dataframe object (call it something like america.) Now, use *this* as your data, and redo the graph from question 17. (You might want to take a look at your new dataframe to make sure it worked first!)

```
america<-gapminder[gapminder$continent=="Americas",]</pre>
# verify this worked
america
## # A tibble: 300 x 6
                continent year lifeExp
##
      country
                                              pop gdpPercap
##
      <fct>
                <fct>
                           <int>
                                   <dbl>
                                            <int>
                                                       <dbl>
   1 Argentina Americas
                           1952
                                    62.5 17876956
                                                       5911.
##
  2 Argentina Americas
                            1957
                                    64.4 19610538
                                                       6857.
##
   3 Argentina Americas
                            1962
                                    65.1 21283783
                                                       7133.
##
  4 Argentina Americas
                            1967
                                    65.6 22934225
                                                       8053.
## 5 Argentina Americas
                            1972
                                    67.1 24779799
                                                       9443.
##
  6 Argentina Americas
                            1977
                                    68.5 26983828
                                                      10079.
##
   7 Argentina Americas
                            1982
                                    69.9 29341374
                                                       8998.
  8 Argentina Americas
                            1987
                                    70.8 31620918
                                                       9140.
##
   9 Argentina Americas
                            1992
                                    71.9 33958947
                                                       9308.
                            1997
                                    73.3 36203463
## 10 Argentina Americas
                                                      10967.
## # ... with 290 more rows
```

```
ggplot(data = america,
    aes(x = gdpPercap,
        y = lifeExp))+
geom_point(aes(color = continent,
        size = pop))+
geom_smooth()
```

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

23. Try this again for the whole world, but just for observations in the year 2002.

```
gap_2002<-gapminder[gapminder$year==2002,]
# verify this worked
gap_2002</pre>
```

```
## # A tibble: 142 x 6
##
      country
                   continent year lifeExp
                                                   pop gdpPercap
##
      <fct>
                   <fct>
                                      <dbl>
                                                 <int>
                                                           <dbl>
                              <int>
##
    1 Afghanistan Asia
                               2002
                                       42.1
                                             25268405
                                                            727.
    2 Albania
                              2002
                                       75.7
                                               3508512
                                                           4604.
##
                   Europe
##
    3 Algeria
                   Africa
                               2002
                                       71.0
                                             31287142
                                                           5288.
    4 Angola
                   Africa
                              2002
                                       41.0
                                             10866106
                                                           2773.
##
##
    5 Argentina
                   Americas
                               2002
                                       74.3
                                             38331121
                                                           8798.
                              2002
##
    6 Australia
                  Oceania
                                       80.4 19546792
                                                          30688.
   7 Austria
                  Europe
                              2002
                                       79.0
                                              8148312
                                                          32418.
    8 Bahrain
                              2002
                                       74.8
                                               656397
                                                          23404.
##
                   Asia
```

'geom_smooth()' using method = 'loess' and formula 'y \sim x'

