CHAPTER-7 COORDINATE GEOMETRY

Excercise 7.1.

Q8. Find the Value of y for which the distance between the points P(2,-3) and Q(10,y) is 10 units:

1.
$$(2, -3,), (10, y)$$

Solution:

1. The coordinates are given as

$$\mathbf{P} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} 10 \\ y \end{pmatrix}, \tag{1}$$

$$\mathbf{P} - \mathbf{Q} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} - \begin{pmatrix} 10 \\ y \end{pmatrix} = \begin{pmatrix} -8 \\ -3 - y \end{pmatrix} \tag{2}$$

$$(\mathbf{P} - \mathbf{Q})^{\top}(\mathbf{P} - \mathbf{Q}) = \begin{pmatrix} -8 & -3 - y \end{pmatrix} \begin{pmatrix} -8 \\ -3 - y \end{pmatrix} = y^2 + 6y + 9 + 64$$
(4)

$$d = \|\mathbf{P} - \mathbf{Q}\| = \sqrt{(\mathbf{P} - \mathbf{Q})^{\top} (\mathbf{P} - \mathbf{Q})}$$
 (5)

$$Given, d = 10units, therefore$$
 (6)

$$10 = \sqrt{y^2 + 6y + 9 + 64} \tag{7}$$

Removing root on Right Hand
$$Side(RHS)$$
 (8)

$$100 = y^2 + 6y + 73 \tag{9}$$

$$y^{2} + 6y + 73 - 100 = 0$$
 (10)
$$y^{2} + 6y - 27 = 0$$
 (11)

$$y^2 + 6y - 27 = 0 (11)$$

$$(y-3)(y+9) = 0 (12)$$

(13)

Hence, the values of y for given point P(2,-3) and Q(10,y) is " y=3or y = -9".

Figure 1: Graph for the line