Mechanisms of Acute Toxicity

Dan Wilson, PhD, DABT
Science Leader – Cheminformatics
The Dow Chemical Company
Acute Tox Workshop
Sep 24, 2015

Acknowledgements

- Barun Bhhatarai
- Ed Carney
- Amanda Parks
- Paul Price

Pop quiz: Put these in order of lethality

Which substance has lowest lethal dose? (i.e. the most 'toxic')

Agent	Toxicity ranking	LD50 (/kg bw)	GHS Cat
Caffeine	?	?	?
Arsenic	?	?	?
Aspirin	?	?	?
Salt (NaCl)	?	?	?
Ethanol	?	?	?
Nicotine	?	?	?
Botulism toxin	?	?	?

Pop quiz: Put these in order of lethality

 Which substance has lowest lethal dose? (i.e. the most 'toxic')

Agent	Toxicity ranking	LD50 (/kg bw)	GHS Cat
Caffeine	4	130-320 mg	3
Arsenic	3	46 mg	2
Aspirin	5	1000 mg	4
Salt (NaCl)	6	3000 mg	5
Ethanol	7	14000 mg	5
Nicotine	2	1 mg	1
Botulism toxin	1	0.02 ng	1

Acute classification categories

Regulatory Agency (Authorizing Act)	Animals	Endpoint	Classification
EPA (FIFRA)	Use current	Death ¹	I - LD ₅₀ ≤50 mg/kg
	EPA or		II - $50 < LD_{50} \le 500 \text{ mg/kg}$
	OECD		III - 500 < LD ₅₀ ≤5000 mg/kg
	protocol		IV - LD ₅₀ >5000 mg/kg
CPSC (Federal Hazardous	White rats,	Death ¹ within 14 days	Highly toxic - LD ₅₀ ≤50 mg/kg
Substances Act)	200-300 g	for \geq half of a group of	Toxic - 50 mg/kg < LD ₅₀ < 5 g/kg
		≥10 animals	
OSHA (Occupational	Albino rats,	Death ¹ , duration not	Highly toxic - LD ₅₀ ≤50 mg/kg
Safety and Health Act)	200-300 g	specified.	Toxic - 50 < LD ₅₀ <500 mg/kg
DOT (Federal Hazardous	Male and	Death ¹ within 14 days	Packing Group 1 - LD ₅₀ ≤5 mg/kg
Material Transportation	female young	of half the animals	Packing Group II - 5 < LD ₅₀ ≤50 mg/kg
Act)	adult albino	tested. Number of	Packing Group III - LD ₅₀ <500 mg/kg (liquid)
	rats	animals tested must be	LD ₅₀ <200 mg/kg (solid)
		sufficient for	
		statistically valid	
		results.	
OECD Guidance for Use	Protocols not	Not specified	I - LD ₅₀ ≤5 mg/kg
of GHS (2001b)	specified		II - $5 < LD_{50} \le 50 \text{ mg/kg}$
			III - $50 < LD_{50} \le 300 \text{ mg/kg}$
			IV - 300 < LD ₅₀ ≤2000 mg/kg
			$V - 2000 \le LD_{50} \le 5000 \text{ mg/kg}$
			Unclassified - LD ₅₀ >5000 mg/kg

Abbreviations: EPA=U.S. Environmental Protection Agency; OECD=Organisation for Economic Co-operation and Development; LD₅₀=Dose producing death in 50% of the animals tested; CPSC=U.S. Consumer Product Safety Commission; FIFRA=Federal Insecticide, Fungicide, and Rodenticide Act; OSHA=U.S. Occupational Safety and Health Administration; DOT=U.S. Department of Transportation; GHS=Globally Harmonized System of Classification and Labelling of Chemicals (UN 2005).

Requirement is to classify by LD/LC₅₀

- This can be done using guideline animal studies
- Do in vitro alternative methods offer a replacement?
- Do in silico alternative methods offer a replacement?

In silico approaches - QSAR

QSAR Tools

- TOPKAT
- ChemBench
- DEREK
- EPA-TEST
- OASIS-beta
- Terra-QSAR
- ACD/ToxSuite
- ADMET Predictor

Global QSAR models not as applicable for compounds acting via highly specific mechanisms

Why study acute mechanisms?

- In vitro and in silico approaches not yet a total replacement
- May direct in vitro HTS assays and enable building of QSARs
- The 'future' is mechanism- (AOP-) based
- Better enable read-across
- Focus on identify compounds of high inherent toxicity
- Important in poisoning cases
- Acute mechanism in scope for repeat-dose studies
- Understand if animal data relevant to humans
- Understanding mechanisms makes us better toxicologists and better able to interpret and troubleshoot studies

Challenges of identifying acute MOAs

- A workshop like THIS has never been held...
- Not a guideline study requirement
- Study doesn't include organ weights, histopath or clin path
- DBs of LD/LC50 values don't contain other mechanistic info
- Studies often conducted at CROs blinded to TM identity
- Specific mechanisms rarely examined
- Relationship of mechanistic effect to apical effect not clear
- Risk assessors didn't consider acute toxicity 'sexy' rare focus
- Mechanistic in vitro HTS assays may only look above cytotoxicity noise level yet the MOA may drive cytotoxicity

Facts about acute data

 Distribution of GHS classification not evenly distributed for oral route - most compounds are GHS 4-5

	GHS 1	GHS 2	GHS 3	GHS 4	GHS 5
Daphnia	498	456	970	484	
Fish	640	565	830	580	
Rat	311	828	1885	5189	3284

- Provides information on inherent toxicity
- IV Data
 - Compounds average 40x more toxic by iv than oral route
 - Sometimes it's the only data you have, especially for highly insoluble compounds
 - Compounds that pass limit dose orally may cause lethality in seconds intravenously
 - Directly applicable for medical devices

Ways to identify potential mechanisms

- Determine whether 'reactive' or 'pharmacologic'
- 3-D crystalline protein structure mapping
- HT Gene expression data-mining
- Identify protein targets using wet-lab binding interactions
- Examine pathology and clinical pathology data
- Consider Time-to-death
- Examine relationship of acute toxicity to HTS data results
- Similarity to compounds with known mechanisms
- Years of experience resulting in a logical 'hunch'
- Use systems biology approach
- Focus on critical targets for high acute toxicity

Chemical reactivity

- Electrophilicity
- Hardness (HOMO/LUMO)
- Acylation
- Schiff base formation
- Michael addition reaction
- SN1 mechanism
- SN2 mechanism
- SNAr mechanism
- Polarizability

- Molecular wt
- Protein/DNA binding
- Substructures
- Solubility
- pKa
- Log KoW

Systems biology approach

Gluconeogenesis, Pentose phosphate pathway, Kreb's cycle, Electron transport, Fatty acid metabolism, Lipolysis, Lipogenesis, Pyrimidine/Purine biosynthesis, Urea cycle, Glycolysis, Vitamins...

Some mechanisms of acute toxicity

- Inhibit energy production
- Antimetabolites
- Anticoagulants
- Chelants
- Inhibit signal transduction
- Ion channel blockers
- Inhibit Na+/K+ ATPase
- Protein synthesis inhibitors
- Non-specific high chemical reactivity
- Physico-chemical properties
 - Acids, Bases
 - Surfactants
 - Accept protons and uncouple mitochondrial during diffusion

Metabolism - Bioavailability

- Physical
 - Mucous
 - Chewing
 - Mixing/churning
 - Acid
 - Emulsification
- Hormones
- Enzymes

Protein Digestion

- Stomach
 - HCl denatures
 - Pepsinogen → pepsin
- Small Intestine
 - Hormones
 - Cholecystokinin
 - Secretin
 - Pancreatic enzymes
 - Trypsin, peptidases, elastase
- Amino acids ↑ insulin, ↓ glucagon
- No storage form for protein
 - amino acids → protein; carbons → carbohydrate/lipid; amino "N" as urea

Carbohydrate Digestion

- Starch: glucose polymer $\alpha(1\rightarrow 4)$ glycosidic bonds
 - Amylose
 - linear, 100's glucoses
 - Amylopectin
 - branched, 1000's units
 - linear $\alpha(1\rightarrow 4)$
 - branch $\alpha(1\rightarrow 6)$ each 24-30 units
 - Glycogen
 - branch each 8-12 units
- Pancreatic *amylase* breaks α-1,4-bonds

Lipid Digestion

- Stomach
 - Lingual and Gastric Lipase
- Small intestine
 - − Cystokinin → gallbladder
 - ↓ gastric motility
 - Secretin → pancreas
 - bicarbonate neutralizes pH
 - Emulsification → Bile saltss
 - Pancreatic Lipase → FA at C1 and C3
 - Colipase → stabilizes Lipase
 - Cholesteryl ester hydrolase
 - Phospholipase A2 → FA at C2
 - Lysophospholipase → C2

Lipid emulsified by bile acids, hydrolized by pancreatic enzymes

Potentially labile subfragments

Compound Name	Structures	Compound Name	Structures
Acyl Halides	O CH ₃	Aldoxime	H-ON-R
O-Alkyloxime	R = 0 $N = R$	Amides	R R
Anhydride	ماري	Carboximidate	R—O R
Ester	ROPA	Ether	RO_R
Hydrazone	R H H	Imine-Hydrazone	RNNR
Imides	$O \longrightarrow \mathbb{R}$ \mathbb{R} \mathbb{R}	Imine	R R
Ketoxime	H-O N R	Sulphonamide	R O R N — S
Phosphoramide	R R O	Organohosphates (thiophosphates, etc)	0

Modeling Systemic Bioavailability

Energy production

- Adenosine Triphosphate (ATP) used for most energy requiring reactions (e.g., active transport). Isn't stored, consumption closely follows synthesis
- 1 kg created-recycled/hr. A cell uses 10 million ATP molecules/sec and recycles all of its ATP every 20-30 sec
- Guanosine Triphosphate (GTP) equivalent to ATP in energy content and preferentially used in some cellular reactions
- Flavin Adenine Dinucleotide (FAD) a cofactor reduced to FADH2, an energyrich molecule
- Nicotinamide Adenine Dinucleotide (NADH): a cofactor; reducing potential converted to ATP through the electron transport chain
- Nicotinamide adenine dinucleotide phosphate (NADPH) is used in fatty acid and nucleic acid synthesis
- Phosphocreatine is used to replenish ATP from creatine and ADP

Pyruvate Dehydrogenase Complex

Mitochondria

Lipoic Acid: Cofactor for 2nd Enzyme

Dihydrolipoyl transacetylase

Niacin – Vitamin B3

Riboflavin – Vit B2

FMN and FAD tightly bound to enzymes that catalyze oxidation or reduction

Fish acute toxicity vs. ToxCast HTS

Mitochondrial Electron Transport

Mitochondria membrane potential assay

Sakamuru S et al. Physiol. Genomics 2012;44:495-503

Mitochondrial tox predicts upper boundary to Daphnia toxicity

AC₅₀ Inhibition of Mitochondrial Membrane Potential (uM)

Mitochondrial toxicity predicts upper bound to acute intravenous toxicity

AC₅₀ Inhibition of Mitochondrial Membrane Potential (uM)

Mitochondrial toxicity doesn't predict upper bound to oral rat toxicity

AC₅₀ Inhibition of Mitochondrial Membrane Potential (uM)

LD₅₀ values adjusted downward by %

AC₅₀ Inhibition of Mitochondrial Membrane Potential (uM)

Antimetabolites

Purine synthesis

Pyrimidine Biosynthesis

Base synthesized then added to preformed ribose

Anticoagulants

- Cofactor of enzyme that carboxylates γ-glutamyls in Prothrombin and Factors VII, IX and X
- Without carboxylation, don't bind membrane phospholipids
- Deficiency in infants hemorrhagic disease of the newborn
- Natural K vitamins free of toxic side effects

Chelators

104mg/kg rat iv

280 ug/kg rat iv

Signal transduction

Tetrodotoxin

Inhibits voltage-gated sodium channels
Oral LD50 334ug/kg

Cardiac glycosides (Inh Na+/K+ ATPase)

10.8 mg/kg rat LD50 iv

Michael acceptors

Acrolein LD50 26 mg/kg

Acids

- Trifluoromethanesulfonic acid
- pH of 10% solution = 0.1
- Acute oral LD50: 1605.3 mg/kg bw
 - GHS Cat 4; H302: Harmful if swallowed
- Acute dermal LD50: > 50 mg/kg bw
 - test results inconclusive because of severe local effects on skin at 2000 mg/kg bw
- Acute inhalation LC50: ????
 - study scientifically unjustified

Future mechanistic approaches...

Phenotypic readouts

- Cytotoxicity
- Apoptosis: caspase 3/7, 8, 9)
- Membrane integrity: LDH, protease release
- Mitochondrial toxicity (membrane potential)
- Gene tox: p53, ELG1, DNA damage gene deficient lines (DT40 lines and mouse)
- Cell Signaling
 - Stress response: ARE, ESRE, HSP, Hypoxia, AP-1
 - Immune response: IL-8, TNFα, TTP
 - Other: AP-1, CRE, ERK, HRE, JNK3, NFkB, LDR
- Drug metabolism
 - CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4

Target specific assays

- Nuclear receptors: AR, AhR, ERα, FXR, GR, LXR, PPARα, PPARδ, PPARγ, PXR, RXR, TRβ, VDR, RORα, RORγ
- hERG channel
- Isolated molecular targets: 12hLO, 15hLO1, 15hLO2, ALDH1A1, HADH560, HPGD, HSD17b4, α-Glucosidase, α-Galactosidase, Glucocerebrosidase, APE1, TDP1, DNA polymerase III, RECQ1 helicase, RGS4, BRCA, IMPase, O-Glc NAc Transferase, Caspase-1/7, CBFβ-RUNX1, PK, Tau, Cruzain, β-Lactamase, PRX, YjeE, NPS, Proteasome, SF1, SMN2, beta-globin splicing, Anthrax Lethal Factor, TSHR

Genetic variation: 87 HapMap lines

Nuclear Receptor, 30, 15% Apoptosis, 14, 7% Cellular Signaling, 20, 10%

Mitochondria Toxicity, 1, 1%

Membrane integrity, 3, 2%

Isolated Molecular Target, 33,16%

Output

Cytotoxicity, 23, 12%

Cytotoxicity, 23, 12%

Genetic Variation, 40, 20%

Gene Tox, 14, 7%

New Robot Can Test 10,000 Chemicals

Print Comment Share:

Questions?