

Aprendre amb Bayes II

Coneixement, Raonament i Incertesa.

El contingut d'aquest document s'ha derivat de material provinent de Tom Mitchell, William Cohen, Andrew Moore, Aarti Singh, Eric Xing, Carlos Guestrin.

On som?

- Necessitem 2ⁿ files en la joint distribution per poder fer inferencia (m és el número de variables)
 - Solució? No sempre podem assegurar independència
- No sempre tenim informació de tots els casos Solució? Buscar maneres alternatives a la 'joint distribution'

D'on surten les 'Joint Distribution'

- Idea 1: Humans Experts
- Idea 2: fets probabilistics simples + algebra

Exemple: Suposem que coneixem P(A) = 0.7

$$P(B|A) = 0.2$$
 $P(B|\sim A) = 0.1$

$$P(C|A^B) = 0.1$$
 $P(C|A^B) = 0.8$

$$P(C|A^B) = 0.8$$
 $P(C|A^B) = 0.3$

$$P(C|\sim A^{\sim}B) = 0.1$$

Llavors podem calcular la JD usant la regla de la cadena

$$P(A=x \land B=y \land C=z) =$$

$$P(C=z|A=x \land B=y) P(B=y|A=x) P(A=x)$$

Recordar

$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

Recordar:

$$P(C = c \mid X) = \frac{P(X \mid C = c)P(C = c)}{P(X)}$$

$$P(X \mid C = c)P(X)$$

$$P(X \mid C = c)$$

$$P(X)$$

$$P(X)$$

$$P(X)$$

$$P(X)$$

$$P(X)$$

C = c mostra pertany a la classe c

 $X = \langle x_1, x_2, ..., x_n \rangle$ mostra amb n característiques

Classificador bayesià:

$$P(C = c \mid X) = \frac{P(X \mid C = c)P(C = c)}{P(X)}$$

Com obtenim P(X)?

Classificador bayesià:

Com obtenim P(X)?

$$\sum_{\forall c} P(C = c \mid X) = 1$$

Classificador MAP (maximum a posteriori):

$$P(C = c \mid X) = P(X \mid C = c)P(C = c)$$

 $\sum_{\forall c} P(C = c \mid X) = 1$?????

Classificador MAP (maximum a posteriori):

$$P(C = c \mid X) = P(X \mid C = c)P(C = c)$$
$$\sum_{x \in C} P(C = e \mid X) = 1$$

$$P(C = c \mid X) \propto P(X \mid C = c)P(C = c)$$

Si P(C = c|X) > 0.5 no ha de significar que X sigui de classe c

$$MAP(X) = \underset{\forall c}{\operatorname{arg max}} P(X \mid C = c)P(C = c)$$

On MAP(X) és la classe que assignem la mostra X

Classificador MAP (maximum a posteriori):

$$P(C = c \mid X) = P(X \mid C = c)P(C = c)$$
$$\sum_{x \in C} P(C = e \mid X) = 1$$

$$P(C = c \mid X) \propto P(X \mid C = c)P(C = c)$$

Si P(C = c|X) > 0.5 no ha de significar que X sigui de classe c

$$MAP(X) = \underset{\forall c}{\operatorname{arg max}} P(X \mid C = c)P(C = c)$$

On MAP(X) és la classe que assignem la mostra X

Classificador MAP Exemple:

determinar 'cancer' donat un test {+,-}

P(cancer) = 0.008 $P(\neg cancer) = 0.992$ P(+|cancer) = 0.98 P(-|cancer) = 0.02 $P(+|\neg cancer) = 0.03$ $P(-|\neg cancer) = 0.97$

Pregunta: Hem de diagnosticar com a malalt un pacient X per al que el resultat del laboratori ha resultat que té cancer?

Resposta: NO

Hem de trobar $argmax\{P(cancer|+), P(\neg cancer|-)\}$

Aplicant el teorema de Bayes per (per a $X=\{+\}$):

$$P(+ \mid cancer)P(cancer) = 0.98 \times 0.08 = 0.0078$$

$$P(+ \mid \neg cancer)P(\neg cancer) = 0.03 \times 0.992 = 0.0298$$

$$\Rightarrow h_{MAP} = \neg cancer$$