Practice Problems 1

Office Hours: Tuesdays, Thursdays from 4:30 to 5:30 at SS 6470.

E-mail: gabriel.martinez@wisc.edu

If you need help, reach out: your classmates, the TA, textbooks, or the Professor.

- Comon Symbols
 - Quantifiers: \forall : for all, \exists : exists, \exists !: exists a unique.
 - Common symbols:

 \in : element of >: grater than \Rightarrow : implies \land : and \lor : or \equiv : equivalent to \subset : subset \cup : union

 \cap : intersection \emptyset : empty set $\neg P$: not $P A^c$: complement of A

 $A \setminus B = A \cap B^c$ 2^A : power set of $A \cap f(A)^{-1}$: pre-image of A

NEGATIONS

- 1. Negate the following:
 - (a) * For some $x \in \mathbb{R}, x^2 = 2$
 - (b) $\forall a \in \mathbb{Q}, \sqrt{a} \in \mathbb{Q}$
 - (c) * $\forall \epsilon \in \mathbb{R}$ such that $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$, satisfying $n \geq N$, $1/n < \epsilon$.
 - (d) Between every two distinct real numbers, there is a rational number.

SETS AND EQUIVALENCE RELATIONS

- 2. For any sets A, B, C, prove that:
 - (a) $(A \cap B) \cap C = A \cap (B \cap C)$
 - (b) * $A \cup B = A \Leftrightarrow B \subseteq A$
 - (c) $(A \cup B)^c = A^c \cap B^c$
- 3. * Let Q be the statement 2x > 4 and P: 10x + 2 > 15. Show that $Q \implies P$ using:
 - (a) a direct proof
 - (b) contrapositive principle
 - (c) contradiction
- 4. * Assume B is a countable set. Let $A \subset B$ be an infinite set. Prove that A is countable.
- 5. (Challenge) Let X be uncountably infinite. Let A and B be subsets of X such that their complements are countably infinite.

- (a) Prove that A and B are uncountably infinite. Hint: $X = A \cup A^c$.
- (b) Prove that $A \cap B \neq \emptyset$.

FUNCTIONS

- 6. Let $f: S \to T$, $U_1, U_2 \subset S$ and $V_1, V_2 \subset T$.
 - (a) * Prove that $V_1 \subset V_2 \implies f^{-1}(V_1) \subset f^{-1}(V_2)$.
 - (b) Prove that $f(U_1 \cap U_2) \subset f(U_1) \cap f(U_2)$.
- 7. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Give an example of the following or show that it is impossible to do so:
 - (a) a function that is neither injective nor surjective
 - (b) a one-to-one function that is not onto
 - (c) a bijection
 - (d) a surjection that is not one-to-one

INDUCTION

Use induction to prove the following statements:

- 8. * If a set A contains n elements, the number of different subsets of A is equal to 2^n .
- 9. * $\sum_{i=1}^{n} i^3 = (\sum_{i=1}^{n} i)^2$ for all $n \in \mathbb{N}$
- 10. $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \ge \sqrt{n}$ for all $n \in \mathbb{N}$