Algorithms for data streams

Maria Serna

Spring 2023

- Finding frequent items
- 2 Counting values
- 3 Sketches

Frequent items

- We have a stream x_1, \ldots, x_m , where $x_i \in \Sigma$.
- This implicitly defines a frequency vector f_1, \ldots, f_n , where $n = |\Sigma|$ with $f_1 + \cdots + f_n = m$.
- Frequent items problem: Given k, output the set $\{j \mid f_j > m/k\}$.
- Frequency estimation problem: Process the stream to get a data structure that can provide an estimate $\hat{f_i}$ of f_i , for a given $i \in [n]$.

Frequency estimation: Naive approach

• Exact algorithm:

```
    procedure FREQ(int n, stream s)
    int j, F[n] = 0
    while not s.end() do
    j = s.read()
    F[j]++
```

- Computes the frequency vector.
- One pass, using $O(n \log m)$ memory and O(1) time per item.

Frequency Estimation: Misra-Gries algorithm

- The algorithm has an additional parameter k.
- Uses an associative array with *n* potential keys.
- The associative array can be implemented using a balanced binary search tree.

Frequency Estimation: Misra-Gries algorithm

```
1: procedure MISRA-GRIES(int n, stream s,int k)
 2:
        int A empty associative array
        while not s.end() do
 3:
           i = s.read()
 4.
           if j \in keys(A) then
 5:
               A[i]++
 6.
           else
 7:
               if |keys(A)| < k-1 then
 8.
                   A[i] = 1
 9:
               else
10.
11:
                   for \ell \in keys(A) do
                       A[\ell]- -
12:
                       if A[\ell] == 0 then
13:
                           remove \ell from A
14:
        On query a, if a \in keys(A), report \hat{f}_a = A[a], else report 0.
15:
```

Misra-Gries algorithm: cost analysis

- Only one pass.
- Each key requires $O(\log n)$ bits and each value $O(\log m)$ bits.
- There are at most k-1 key/value pairs, the total space is $O(k(\log m + \log n))$.
- The time per element is O(k).
- Quality of the solution?

Misra-Gries algorithm: quality analysis

- Let's see A as a vector with A[i] = 0 when $i \notin keys(A)$
- A[j] is incremented only when j appears in s, so $\hat{f}_j \leq f_j$.
- Whenever A[j] is decremented, we decrement the values of other k-1 keys.
 - The decrement is witnessed by k tokens including j, assuming that A[j] first goes to 1 and then down to 0.
- Since the stream has m tokens there can be at most m/k such decrements. Therefore, $\hat{f_i} \ge f_i m/k$.
- Putting all together

$$f_j - \frac{m}{k} \le \hat{f}_j \le f_j$$

Frequent items using Misra-Gries algorithm

- By the analysis, if one key j has $f_j > m/k$, $\hat{f}_j > 0$.
- However, there might be elements for which $\hat{f}_j > 0$ but $f_j \leq m/k$.
- Perform a second pass on the stream, counting exactly the frequencies of the values $i \in keys(A)$. And extracting only those verifying the property.
- 2 pass algorithm, using $O(k(\log m + \log n))$ space, and O(k) time per element.

- Finding frequent items
- 2 Counting values
- 3 Sketches

Counting the number of distinct elements

- Distinct elements problem: output $|\{j \mid f_j > 0\}|$.
- This is a simplification of the Frequent items problem:
- In order to solve the problem using sublinear space we need to use probabilistic algorithms/data structure and some adequate notion of approximation.

An (ϵ, δ) -approximation

- Let A(s) denote the output of a randomized streaming algorithm A on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.
- \mathcal{A} is a (ϵ, δ) -approximation to Φ if we have

$$Pr\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right]\leq\delta.$$

• \mathcal{A} is a (ϵ, δ) -additive approximation to Φ if we have

$$Pr[|\mathcal{A}(s) - \Phi(s)| > \epsilon] \leq \delta.$$

• When $\delta=$ 0, $\mathcal A$ must be deterministic. When $\epsilon=$ 0, $\mathcal A$ must be an exact algorithm.

Randomized data structures

- We need hashing and in particular hash functions selected at random from a universal hash family.
- Recall that a family of functions

$$H = \{h: U \to [m]\}$$

is called a 2-universal family if, $\forall x, y \in U, x \neq y$,

$$\Pr_{h\in H}[h(x)=h(y)]\leq \frac{1}{m}.$$

 A hash function can be easily selected at random from a 2-universal hash family.

Values from the binary representation

• For an integer p > 0, let zeros(p) be the number of zeros at the end of the binary representation of p.

$$zeros(p) = max\{i \mid 2^i \text{ divides } p\}.$$

Counting distinct elements

Algorithm: Flajolet and Martin, 1983

```
1: procedure COUNT-DIF(stream s)
      Choose a random hash function h:[n] \to [n]
3:
      from a universal family
4.
      int z=0
      while not s.end() do
5:
          i = s.read()
6.
          if zeros(h(j)) > z then
7:
              z = zeros(h(i))
8.
      Return |2^{z+\frac{1}{2}}|
g.
```

• Assuming that there are d distinct elements, the algorithm computes $\max \operatorname{zeros}(h(j))$ as a good approximation of $\log d$.

Counting distinct elements

Algorithm: Flajolet and Martin, 1983

```
1: procedure Count-Dif(stream s)
       Choose a random hash function h:[n] \rightarrow [n]
3:
      from a universal family
4.
      int z=0
      while not s.end() do
5:
          i = s.read()
6.
          if zeros(h(j)) > z then
7:
              z = zeros(h(i))
8.
      Return |2^{z+\frac{1}{2}}|
g.
```

- Assuming that there are d distinct elements, the algorithm computes max zeros(h(i)) as a good approximation of log d.
- 1 pass, $O(\log n)$ memory and O(1) time per item.

- For $j \in [n]$ and $r \ge 0$, let $X_{r,j}$ be the indicator r.v. for $zeros(h(j)) \ge r$.
- Since h(j) is uniformly distributed over the log n-bit strings,

$$E[X_{r,j}] = Pr[zeros(h(j)) \ge r] = Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}$$

- Let $Y_r = \sum_{i|f_i>0} X_{r,j}$ and let t denote the final value of z.
- $Y_r > 0$ iff $t \ge r$, or equivalently $Y_r = 0$ iff $t \le r 1$.

$$E[X_{r,j}] = Pr[zeros(h(j)) \ge r] = Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}.$$

$$E[Y_r] = \sum_{j \le r} E[X_{r,j}] = \frac{d}{2^r}$$

• Random variables Y_r are pairwise independent, as they come from a universal hash family.

$$Var[Y_r] = \sum_{j|f_i>0} Var[X_{r,j}] \le \sum_{j|f_i>0} E[X_{r,j}^2] = \sum_{j|f_i>0} E[X_{r,j}] = \frac{d}{2^r}$$

- $E[Y_r] = Var[Y_r] = d/2^r$
- Using Markov's and Chebyshev's inequalities,

$$Pr[Y_r > 0] = Pr[Y_r \ge 1] \le \frac{E[Y_r]}{1} = \frac{d}{2^r}.$$

$$Pr[Y_r = 0] = Pr[|Y_r - E[Y_r]| \ge \frac{d}{2^r}] \le \frac{Var[Y_r]}{(d/2^r)^2} \le \frac{2^r}{d}.$$

- $Pr[Y_r > 0] \le \frac{d}{2^r}$ and $Pr[Y_r = 0] \le \frac{2^r}{d}$.
- Let \hat{d} be the estimate of d, $\hat{d} = 2^{t+\frac{1}{2}}$.
- Let a be the smallest integer so that $2^{a+\frac{1}{2}} \ge 3d$,

$$Pr[\hat{d} \ge 3d] = Pr[t \ge a] = Pr[Y_a = 0] \le \frac{d}{2^a} \le \frac{\sqrt{2}}{3}.$$

• Let b be the largest integer so that $2^{b+\frac{1}{2}} \le 3d$,

$$Pr[\hat{d} \le 3d] = Pr[t \le b] = Pr[Y_{b+1} = 0] \le \frac{2^{b+1}}{d} \le \frac{\sqrt{2}}{3}.$$

- $Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$ and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run k independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
 - If the median exceed 3d at least k/2 of the runs do.
- By standard Chernoff bounds, the median exceed 3d with probability $2^{-\Omega(k)}$ and the median is below 3d with probability $2^{-\Omega(k)}$.
- Choosing $k = \Theta(\log(1/\delta))$, we can make the sum to be at most δ . So we get a $(2, \delta)$ -approximation. However, the used memory is now $O(\log(1/\delta)\log n)$.

- Finding frequent items
- 2 Counting values
- 3 Sketches

Sketches

- We require some property for the data structure computed while processing a stream s.
- A data structure DS(s) is called a sketch when there is a space efficient combining algorithm COMB such that $COMB(DS(s_1), DS(s_2)) = DS(s_1 \cdot s_2)$.
- A sketching algorithm SK is an algorithm that computes a sketch on input s
- A sketching algorithm SK is a linear sketch if for each s over a token univers [n], SK(s) takes values in a linear space of dimension $\ell(n)$, and SK(s) is a linear function.
- For linear sketches the combination algorithm is simply to add the sketches in the appropriate vector space.

The count sketch

- 1: **procedure** $CSKETCH(int n, stream s, real <math>\epsilon)$
- 2: $k = 3/|\epsilon^2, C[1...k] = \vec{0}$
- 3: Choose a random hash function $h:[n] \to [k]$ from a 2-universal family
- 4: Choose a random hash function $g:[n] \to \{-1,1\}$ from a 2-universal family
- 5: int j, C[k] = 0
- 6: **while** not s.end() **do**
- 7: (j,c) = s.read()
- 8: C[h(j)] = C[h(j)] + c g(j)
- 9: On query a, report $\hat{f}_a = g(a)C[h(a)]$

Is CSKETCH a linear sketch? provided h and g are the same, yes!

Frequency Estimation: CSketch

- ullet The algorithm has an additional parameter ϵ that controls the accuracy of the solution.
- For Frequency estimation we take always c = 1.
- One pass, $O(k \log n)$ memory, O(1) ops per element
- Fix an arbitrary a, and consider the random variable $X = \hat{f}(a)$.
- For each $j \in [n]$, let Y_i be the indicator of h(j) = h(a).
- $j \in [n]$ contributes to C[h(a)] only when h(j) = h(a), an the contribution is $g(j)f_j$
- Thus, $X = g(a) \sum_{j \in [n]} g(j) f_j Y_j$

Frequency Estimation: CSketch

- $X = g(a) \sum_{j \in [n]} g(j) f_j Y_j = f_a + \sum_{j \in [n] \{a\}} g(a) g(j) f_j Y_j$ as g(a)g(a) = 1
- Since g and h are independent

$$E[g(j)Y(j)] = E[g(j)]E[Y_j] = 0 E[Y_j] = 0$$

- Therefore, $E[X] = f_a$
- \hat{f}_a is an unbiased estimator of f_a .
- Quality of the solution? again we need a concentration bound

- We analyze the variance of $X = f_a + \sum_{j \in [n] \{a\}} g(a)g(j)f_jY_j$
- By the 2-universality of the families of hash functions For $j \in [n] \{a\}$,

$$E[Y_j^2] = E[Y_j] = Pr[h(j) = h(a)] = \frac{1}{k}$$

For $i \neq j$,

$$E[g(i)g(j)Y_iY_j] = E[g(i)]E[g(j)]E[Y_iY_j] = 0$$

• Now, we compute the variance

$$Var[X] = 0 + g(a)^{2} Var \left[\sum_{j \in [n] - \{a\}} g(j) f_{j} Y_{j} \right]$$

$$= E \left[\sum_{j \in [n] - \{a\}} f_{j}^{2} Y_{j}^{2} + \sum_{i,j \in [n] - \{a\} i \neq j} g(i) g(j) f_{i} f_{j} Y_{i} Y_{j} \right]$$

$$- \left(\sum_{j \in [n] - \{a\}} f_{j} E[g(j) Y_{j}] \right)^{2}$$

$$= \sum_{j \in [n] - \{a\}} \frac{f_{j}^{2}}{k} = \frac{\left(\sum_{j \in [n]} f_{j}^{2} \right) - f_{a}^{2}}{k}$$

- Recall $||f||_2^2 = \sum_{j \in [n] \{a\}} f_j^2$
- Using Chebyshev's inequality

$$Pr\left[|f_{a} - \hat{f}_{a}| \ge \epsilon \sqrt{||f||_{2}^{2} - f_{a}^{2}}\right] = Pr\left[|X - E[X]| \ge \epsilon \sqrt{||f||_{2}^{2} - f_{a}^{2}}\right]$$

$$\le \frac{Var[X]}{\epsilon^{2}(||f||_{2}^{2} - f_{a}^{2})} = \frac{1}{k\epsilon^{2}} = \frac{1}{3}$$

• For $j \in [n]$, define f_{-j} to be the (n-1)-dimensional vector eliminating the j-th component of f.

$$||f_{-a}||_2^2 = ||f||_2^2 - f_a^2$$

We have shown that

$$Pr\left[|f_{a}-\hat{f}_{a}| \geq \epsilon ||f_{-a}||_{2}^{2}\right] \leq \frac{1}{3}$$

- CSketch is an $(\epsilon, 1/3)$ approximation.
- Still not too good! What with the median trick?

The Count sketch

```
1: procedure COUNT SKETCH(int n,\alpha, stream s, double \epsilon, \delta)
        double k = 3/\epsilon^2, t = \alpha \log(1/\delta)
 2:
        Choose t independent random hash functions h_1, \ldots, h_t
    mapping [n] to [k] from a 2-universal family
        Choose t random hash functions g_1 \dots g_t from [n] to
 4:
    \{-1,1\} from a 2-universal family
 5:
        int i, C[t][k] = 0
        while not s.end() do
 6:
 7:
            (i,c) = s.read()
 8:
            for doi = 1, \ldots, t
                 C[i][h_i(j)] = C[i][h_i(j)] + cg_i(j)
 9.
        On query a, report \hat{f}_a = \text{median}_{1 < i < t} g_i(a) C[i][h_i(a)]
10:
Count Sketch is a linear sketch provided h's and g's are the
same
```

The Count sketch

- 1 pass, O(1) time per item.
- Memory:

 $O(t \log n)$ space for storing the hash functions $O(\log m)$ per counter overall $O(t \log n + tk \log m)$ which is

$$O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}(\log m + \log n)\right)$$

Quality: We need Chernoff like bounds for medians.

Chernoff for median

Let X be a random variable with $E[X]=\mu$. For any $\epsilon,\delta>0$, let $t=C\log\frac{1}{\delta}$ and $k=\frac{3Var(X)}{\epsilon^2\mu^2}$, where C is some universal constant. Let X_{ij} , $i\in[t]$ and $j\in[k]$, be independent random variables with

the same distribution as
$$X$$
. Let $Z = \frac{1}{k} \text{median}_{i \in [t]} \left(\sum_{j=1}^{k} X_{ij} \right)$

Then, $E[Z] = \mu$ and $Pr(|Z - \mu| \ge \epsilon \mu) \le \delta$

• Thus, for the sketch

$$\Pr\left[|f_{\mathsf{a}} - \hat{f}_{\mathsf{a}}| \geq \epsilon ||f_{-\mathsf{a}}||_2^2\right] \leq \delta$$

• Count Sketch is an (ϵ, δ) approximation when α is a suitable big enough constant.

