Scalable Taxi Fare Prediction

Presented by: Assylbek Khalyk & Abdiakhment Kozhamkulov

Agenda

- Problem Definition
- Data Collection
- <u>Data Exploration (EDA)</u>
- Data Cleaning
- Feature Engineering
- <u>Data Splitting</u>
- Model Selection
- <u>Hyperparameter Tuning</u>
- Model Evaluation
- Interpretation & Conclusion

Problem Definition

O1 Regression Problem

target variable = total_amount

O2 Input – engineered set of features

Trip information
Location pairs (PU_DO_pair)
Weather conditions
Temporal indicators

Data Collection

NYC Taxi & Limousine Commission
 (TLC) — a government-maintained
 open data source.

• ~12 million samples | 17 features

Data Cleaning

Minimizing noise

```
df_cleaned = df_cleaned[(df_cleaned['total_amount'] > 2)
    & (df_cleaned['passenger_count'] > 0)]
df_cleaned.shape

df_cleaned = df_cleaned.dropna()
```

```
print(df_cleaned.shape)
df_cleaned.head()

(11915372, 17)
```

overall initially clean dataset


```
# drop unnecessary columns or columns that might cause data leakage
df_cleaned = df.drop(columns=[
    "VendorID",
    "RatecodeID",
    "tpep_dropoff_datetime",
    "fare_amount",
    "tip_amount",
    "tolls_amount",
    "improvement_surcharge",
    "store_and_fwd_flag",
    "extra",
    "mta_tax",
    "payment_type"
])
```

Feature Engineering

New features

+ haversine_distance

$$a = \sin^2\left(rac{\Delta\phi}{2}
ight) + \cos(\phi_1)\cdot\cos(\phi_2)\cdot\sin^2\left(rac{\Delta\lambda}{2}
ight)$$
 $c = 2\cdotrctan2\left(\sqrt{a},\sqrt{1-a}
ight)$ distance $= R\cdot c$

- + is_airport
- +PU_DO_pair (mapping lon/lat to city zones using geopandas and lookup table)

- + day of week
- + is_weekend
- + is_rush_hour
- + temperature (Open-Meteo API)
- + wind_speed
- + precipitation
- + humidity
- + distance_ratio
- + is_rainy
- + hour_bin ("morning/midday/evening/night")

Correlation Heatmap of Engineered Features -0.00 0.01 passenger_count --0.01 trip_distance - -0.00 0.00 0.01 -0.00 0.00 haversine_distance - 0.01 1.00 0.00 0.09 -0.02 0.01 0.01 -0.05 0.70 -0.01 0.03 0.00 -0.00 0.01 total_amount - 0.00 0.01 0.09 1.00 0.00 -0.00 -0.00 -0.00 0.07 0.00 0.00 0.01 0.00 pickup_hour - 0.01 0.00 -0.02 0.04 0.01 0.22 0.00 -0.09 -0.10 -0.23-0.13 0.05 -0.090.03 1.00 -0.09 pickup_dayofweek --0.00 -0.02 -0.031.00 is weekend -0.03 0.01 -0.00 -0.10 0.78 -0.09 -0.02 -0.270.00 -0.041.00 is rush hour - -0.01 0.04 -0.09 -0.09 -0.00 0.05 -0.050.04 -0.02 0.03 -0.00 is airport -0.01 0.00 0.07 -0.02 -0.02 -0.00 1.00 -0.01 0.02 0.01 temperature - -0.00 -0.01 0.22 -0.12 -0.27 0.05 0.03 -0.03 0.00 0.01 1.00 humidity - -0.01 -0.00 0.03 -0.07 -0.04 -0.05 -0.01 -0.10 -0.22 0.16 0.00 -0.23 -0.00 precipitation - -0.01 1.00 -0.00 0.00 0.00 -0.09 -0.10 0.04 0.02 -0.03 0.05 0.00 0.79 wind_speed --0.01 0.00 0.05 -0.35-0.36-0.02 0.02 0.10 -0.22 0.05 1.00 -0.00 0.03 distance_ratio - 0.00 -0.00 0.01 -0.00 0.01 0.03 0.01 0.01 0.16 0.00 -0.03 -0.04 COURT THO DISTANCE DISTANCE TOTAL SHOUTH BECKER TOTAL STREET TOTAL SESTION FOR STREET TOTAL SESTION BETTER STUTE BUTTON WIND SPEED STREET STORY

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Model Selection

XGBoost Random Forest

Ridge HistGBM

Hyperparameter tuning

Random Forest

```
param_grid = {
    "rf__n_estimators": [100],
    "rf__max_depth": [10, 15, 20],
    "rf__min_samples_split": [2, 5],
    "rf__max_features": ["sqrt"]
}
```

XGBoost

```
param_grid = {
    "xgb__n_estimators": [100, 200],
    "xgb__max_depth": [5, 7, 10],
    "xgb__learning_rate": [0.01, 0.1],
    "xgb__subsample": [0.8, 1.0],
    "xgb__colsample_bytree": [0.8, 1.0]
}
```

Ridge

```
param_grid = {
    "ridge__alpha": np.logspace(-3, 3, 10) # [0.001, 0.01, ..., 1000]
}
```

HistGBM

```
param_grid = {
    "hgb__max_iter": [100, 200],
    "hgb__max_depth": [5, 10],
    "hgb__learning_rate": [0.01, 0.1],
    "hgb__l2_regularization": [0.0, 1.0]
}
```

Model Evaluation

	Random Forest	XGBoost	Ridge	HistGBM
MAE	1.93	1.85	2.33	1.91
R^2	0.91	0.91	0.88	0.91
RMSE	3.66	3.61	4.27	3.64

Limitations & Conclusion

switched from 12million samples → 1million computational power constraints long training time subsampling the data

Project shows potential for scalable fare prediction in real-world settings

Q&A

Best Params: {'rf_max_depth': 20, 'rf_max_features': 'sqrt',

'rf_min_samples_split': 5, 'rf_n_estimators': 100}

MAE: 1.9339617291844997

RMSE: 3.669324583550365

R²: 0.9156658972962635

Fitting 5 folds for each of 10 candidates, totalling 50 fits

Best alpha: {'ridge__alpha': np.float64(1000.0)}

MAE: 2.336484721459339

RMSE: 4.277048386395624

R²: 0.8854172359770055

Fitting 5 folds for each of 48 candidates, totalling 240 fits

Best Params: {'xgb__colsample_bytree': 0.8,

'xgb__learning_rate': 0.1, 'xgb__max_depth': 10,

'xgb_n_estimators': 200, 'xgb_subsample': 1.0}

MAE: 1.8611311739613294

RMSE: 3.6188917960831843

R²: 0.9179682147080562

Fitting 5 folds for each of 16 candidates, totalling 80 fits Best

Params: {'hgb__l2_regularization': 1.0, 'hgb__learning_rate': 0.1,

'hgb_max_depth': 10, 'hgb_max_iter': 200}

MAE: 1.9156819838390302

RMSE: 3.6456114998803493

R²: 0.9167523968111276