S444 analysis -update 4

11.09.2024

Multi-hit-capable, 2 PMTs,left,right

Cut:

iTraw[iDet * nChs + iCh][mult[iDet * nChs + iCh]] = hit → GetRawTimeNs(); // RawPos = TrawRIGHT - TrawLEFT corresponds to x increasing from RIGHT to LEFT iRawPos = iTraw[0][multR] - iTraw[1][multL];

if (iRawPos < fRawPosPar->GetParam(0)) continue: if (iRawPos > fRawPosPar → GetParam(1))

continue;

Going to singleTcal level (making constrain to t_diff) Between 0.555 and 1.946

Start Detector

Reaction cross section $Z \rightarrow 5$ (Boron)

400 AMeV

Empty

Empty

550 AMeV

650 AMeV

Charge Last 8 anodes

800 AMeV

Empty

Cross section results $Z = 6 \rightarrow Z = 5$

Cross section: mbarn Energy:

400 79.5 83.9 550

81.7

83.0 800

650

93.3 650

800 95.4

Cross sections need to be scaled as 12C(p,2p)11B is not the same as pp But nevertheless cross section difference between 400 and 800 AmeV is not same.

89.6

95.9

Can this be because of both projectile and target proton have non-negligible inner momentum?

Drift Times in TWIM MUSIC

Calibration of x position in TWIM Music done by:

- Interpolate x position on anode by x MW1 &2
- Plot x pos anode vs drift time
- Fit with x_pos = v*drift_time + c

 e^{-} drift velocity ~ 0.005-0.006cm /ns

Why don't we have negative values of twim times? Or why are they limited by around 32k?

Timining concept - "window of interest",see : https://www.mesytec.com/products/datasheets/MDPP-16_SCP-RCP.pdf The input trigger can be shifted internally by +/-25 us and starts a **window of interest** with adjustable width (1.5 ns to 25 us). All triggers generated by the CFD discriminators from the channel inputs, which fall into this window, are sent to a large data buffer for read out by The VME bus. The transmitted data are:

- the time difference to the window start (in 24 ps resolution)
- the converted shaper amplitude.
- over/underflow, and pileup flags

Time diff between two hits in anodenr = 10 vs overall meas. Charge (a.u.!)

Time diff between two hits in anodenr = 10 vs overall meas. Charge (a.u.!)

25000

Time of max ene val [ns]

30000

Overall charge (a.u.) vs $abs(t_diff)$, for anode = 10

abs(energy_diff) vs abs(t_diff), for anode = 10

550 AMeV

Time diff [ns]

800 AMeV

Time diff [ns]

You should select E1, not E2 (noise, delta electrons...)

How can I have events with t_ref/t_trig in TWIM, but no energy deposition?

Old E-Mail from Julien:

This is something which can happen if an ion came just befor your window of interest. It internally triggers the MDPP-16, which treats the data.until 2 x shaping times. during that time period, the module get unavailable and cannot operate anymore. Thus, there is a slight change to miss the good guy which woulld come in the time interval when the module is in actual dead time.