3011979 Practical Python for Data Sciences and Machine Learning

L8: Tree models

Mar 4th, 2022

Sira Sriswasdi, Ph.D.

Research Affairs, Faculty of Medicine Chulalongkorn University

Decision tree

Decision tree

Source: Programming collective intelligence by Toby Segaran

Decision boundary

Miller, C. "Screening meter data: Characterization of temporal energy data from large groups of non-residential buildings"

Quality measurement of an internal node

- Construction of a decision at internal node
 - Pick a feature
 - Pick a cutoff for splitting
- Evaluate the quality of samples on the left and right branches
 - How good is the 85 healthy, 5 sick and 15 healthy, 95 sick split?
 - ightharpoonup Gini: $\sum p(1-p)$
 - ightharpoonup Entropy: $-\sum p \log p$
 - Compare Gini or Entropy over no-split

Decision tree building

Greedy algorithm

- At each internal node, find the feature-cutoff combination with the lowest Gini or entropy score
 - Sample feature and cutoff
- But using the best combination at current node may not lead to the best decision tree at the end

Controlling the complexity

- Depth
 - Stop splitting at certain depth
- Minimum number of samples for splitting
 - Do not split if one branch contains too few samples
- Minimum impurity decrease
 - Do not split if the gain in quality is too low
- Minimum leaf size
 - Stop splitting if the current number of samples is too low
 - Prevent overfitting

Tree pruning

Patel, N. and Upadhyay, S. "Study of Various Decision Tree Pruning Methods with their Empirical Comparison in WEKA" IJCA 2012

- Model complexity = number of decisions
 - $R_{\alpha}(\text{Tree}) = \text{Performance}(\text{Tree}) + \alpha \cdot \text{Number of leaves}$
 - α indicates the penalty on tree complexity

Benefit of tree pruning

Image from scikit-learn,org

Moderate pruning improve generalizability

Feature bagging

- At each node, different subsets of features were allowed
 - Default = All features
 - Other options are sqrt(n_feature) or log2(n_feature)
- This is a type of regularization!
 - The model cannot rely on the same features every time

Decision tree in Python

sklearn.tree.DecisionTreeClassifier

class sklearn.tree. DecisionTreeClassifier(*, <u>criterion='gini'</u>, splitter='best', <u>max_depth=None</u>, min_samples_split=2, <u>min_samples_leaf=1</u>, min_weight_fraction_leaf=0.0, <u>max_features=None</u>, <u>random_state=None</u>, max_leaf_nodes=None, <u>min_impurity_decrease=0.0</u>, min_impurity_split=None, class_weight=None, ccp_alpha=0.0)

[source]

A decision tree classifier.

Read more in the User Guide.

Parameters:

criterion: {"gini", "entropy"}, default="gini"

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain.

splitter: {"best", "random"}, default="best"

The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split.

max_depth: int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int or float, default=2

The minimum number of samples required to split an internal node:

- If int, then consider min samples split as the minimum number.
- If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

Extending decision tree to regression

Image from saedsayad.com

- Each decision split data points with similar values (instead of coming from the same classes)
- Splitting criterion = MSE, MAE, etc.
 - Predict mean/median value of data points in each leaf

Decision tree regression prediction

Image from scikit-learn,org

Piece-wise constant function

Linear Tree Model = the best of both worlds

Image from towarddatascience.com

 Fit linear regression model on each leaf instead of predicting the mean values

Extending decision tree with bagging and boosting

Bagging (bootstrap aggregating)

Impact of bagging

The origin of random forest

Published: August 1996

Bagging predictors

Leo Breiman

Machine Learning 24, 123-140(1996)

Abstract

Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy.

Random forest = bootstrap + feature bagging

- Bootstrap bagging prevent the model from overfitting samples
- Feature bagging prevents the model from overfitting features
- Both leads to generation of multiple slightly different models

Random forest in Python

sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) [source]

A random forest classifier.

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the max_samples parameter if bootstrap=True (default), otherwise the whole dataset is used to build each tree.

Pros and cons of bagging

- Bagging is parallelizable
 - Fitting of each model can be done independently
- Bootstrapping and averaging reduce overfitting but does not help underfitted models
- Works well with decision tree, which tends to overfit

Boosting

Boosting with sample weights

Iteration 1

 Next predictor gives more weights to the mistakes made by prior models

Iteration 2

Iteration 3

Adaptive boosting (AdaBoost)

- Ensemble predictor = $\alpha_1 f_1(x) + \alpha_2 f_2(x) + \cdots + \alpha_n f_n(x)$
 - Where $f_i(x)$'s are weak classifiers
- Given $\{\alpha_1, f_1(x), ..., \alpha_{n-1}, f_{n-1}(x)\}$ how do we find $\{\alpha_n, f_n(x)\}$?
 - Classification problem with $y_i \in \{+1, -1\}$
 - Define $C_{n-1}(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_{n-1} f_{n-1}(x)$
 - Current model
 - Exponential loss $E = \sum_{i} e^{-y_i C_{n-1}(x_i)}$
 - \triangleright High when the signs of y_i and $C_{n-1}(x_i)$ differ
- $f_n(x)$ minimizes $\sum_{y_i \neq f_n(x_i)} e^{-y_i C_{n-1}(x_i)}$
- $\hat{\alpha}_{n} = \frac{1}{2} \ln \left(\frac{\sum_{y_{i}=f_{n}(x_{i})} e^{-y_{i}C_{n-1}(x_{i})}}{\sum_{y_{i}\neq f_{n}(x_{i})} e^{-y_{i}C_{n-1}(x_{i})}} \right)$

AdaBoost in Python

sklearn.ensemble.AdaBoostClassifier

class $sklearn.ensemble.AdaBoostClassifier(base_estimator=None, *, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None)$ [source]

An AdaBoost classifier.

An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases.

This class implements the algorithm known as AdaBoost-SAMME [2].

- AdaBoost with learning rate
 - $\hat{\alpha}_n = \gamma \frac{1}{2} \ln \left(\frac{\sum_{y_i = f_n(x_i)} e^{-y_i C_{n-1}(x_i)}}{\sum_{y_i \neq f_n(x_i)} e^{-y_i C_{n-1}(x_i)}} \right)$
 - Learning rate controls how much to trust the next classifier
- Stop after a certain number of models are made

Boosting with gradient

Image from geeksforgeeks.org

 Next predictor fits the residual, or regression error, made by the prior models

Gradient boosting in Python

sklearn.ensemble.GradientBoostingClassifier

class sklearn.ensemble. GradientBoostingClassifier(*, loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, min_impurity_split=None, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0) [source]

Gradient Boosting for classification.

Use decision tree by default

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage n_classes_ regression trees are fit on the negative gradient of the binomial or multinomial deviance loss function. Binary classification is a special case where only a single regression tree is induced.

Read more in the User Guide.

Parameters:

loss : {'deviance', 'exponential'}, default='deviance'

The loss function to be optimized. 'deviance' refers to deviance (= logistic regression) for classification with probabilistic outputs. For loss 'exponential' gradient boosting recovers the AdaBoost algorithm.

learning_rate : float, default=0.1

Learning rate shrinks the contribution of each tree by <code>learning_rate</code>. There is a trade-off between learning_rate and n_estimators.

n_estimators : int, default=100

The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance.

subsample : float, default=1.0

The fraction of samples to be used for fitting the individual base learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. subsample interacts with the parameter n_estimators. Choosing subsample < 1.0 leads to a reduction of variance and an increase in bias.

criterion: {'friedman_mse', 'mse', 'mae'}, default='friedman_mse'

The function to measure the quality of a split. Supported criteria are 'friedman_mse' for the mean squared error with improvement score by Friedman, 'mse' for mean squared error, and 'mae' for the mean absolute error. The default value of 'friedman_mse' is generally the best as it can provide a better approximation in

Early stopping

sklearn.ensemble.GradientBoostingClassifier

class sklearn.ensemble. GradientBoostingClassifier(*, loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, min_impurity_split=None, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0) [source]

validation_fraction: float, default=0.1

The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if n_iter_no_change is set to an integer.

New in version 0.20.

n_iter_no_change : int, default=None

n_iter_no_change is used to decide if early stopping will be used to terminate training when validation score is not improving. By default it is set to None to disable early stopping. If set to a number, it will set aside validation_fraction size of the training data as validation and terminate training when validation score is not improving in all of the previous n_iter_no_change numbers of iterations. The split is stratified.

New in version 0.20.

- Stop training if performance on validation set does not improve for a certain number of steps
 - The model is overfitting to the training data

Pros and cons of boosting

- Build additional predictors iteratively
 - Cannot be parallelized
- Address the errors of current predictors directly
 - Help with underfitting
- Sensitive to misclassified outliers
 - Multiple models will try to fit them
- Will overfit to the training set
 - Prevented by using small learning rate and early stopping on validation
 - Validation performance will overestimate true performance

Next week: XGBoost

XGBoost Documentation

XGBoost is an optimized distributed gradient boosting library designed to be highly **efficient**, **flexible** and **portable**. It implements machine learning algorithms under the <u>Gradient Boosting</u> framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

- Optimized implementation of gradient boosting
- Can handle missing data
- Can handle monotonicity constraint
 - "Prediction must increase if feature X increases"
- pip install xgboost

Any question?