MEDIATE AND			
	Roll No.		
THE CASE OF THE CA	Sig. of Car	ndidate	

Answer Sheet No	21
Sig. of Invigilator	

MATHEMATICS SSC-I SECTION - A (Marks 15)

allov	wed: 20	Minutes						(Science Group
: Se	ection—A is	s compulsory. e completed i	n the fl	s of this sections of the section of	and h	anded over to	on the	question paper itsel entre Superintenden
Circ	ie the cor	rect option i.e.	A/B/C	/ D. Each part	arries (one mark.		
(i)	If A is a A. C.	a square matrix Transpose Symmetric	and A' :	= A then A is cal	led: B. D.	Skew Sym metr Scal a r	ic	
(ii)	Produc	et of $\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$	is:					
	A.	[2x+y]	В.	[x-2y]	C.	[2x-y]	D.	[x+2y]
(iii)	If $z < 0$	then $x < y \Rightarrow xz < vz$	В.	xz > vz	C.	xz = yz	D.	$xz \leq vz$
(iv)		will be equal to:				Ý		,
(,	,			$\frac{\log_x z}{\log_y z}$	C.	$\frac{\log_z x}{\log_z y}$	D.	$\frac{\log_z y}{\log_z x}$
(v)		$(\sqrt{b})(\sqrt{a}-\sqrt{b})$ is a^2+b^2			C.	a-b	D.	a+b
(vi)	If $x-2$ A.			2Kx + 8 then $K = -2$	= C.	3	D.	-3
(vii)		$y \; \frac{a^3 - b^3}{a^4 - b^4} \div \frac{a^2 + a^3}{a^4}$						
	A.	$\frac{1}{a+b}$	B.	$\frac{1}{a-b}$	C.	$\frac{a-b}{a^2+b^2}$	D.	$\frac{a+b}{a^2+b^2}$
(viii)	lf xis r A.	no larger than 10 $x \ge 8$	0 then wh B.	nich of the follow $x \le 10$	in g exp r C.	ressions is FALS $x < 10$	E ? D.	<i>x</i> > 10
(ix)	Distanc	ce between the	points (1	,0) and (0,1) is:				
	A.	0	B.	1	C.	$\sqrt{2}$	D.	2
(x)	If a line A.	segment interse Perpendicular		wo sides of a triar Parallel	ng le in th C.	e s ame ratio , ther Congr uen t	it is D.	to the third side An Intersecting line
(xi)	Ā.	congruent Three	triangles B.	can be made by Four	/ j ein ing C.	mid poin ts of the Five	sides of D.	of a triangle. Two
(xii)	Triangl A.	es on equal bas Perimeter	ses and e	equal altitudes ar Area	re eq ual C.	in: Volum e	D.	None of these
(xiii)	Which A.	of the foll owi ng 2cm,3cm,5cm		engths can be the 3cm,4cm,5cm		s of the sides of a 2cm, 4cm, 7cm		lle? 3cm, 4cm, 7cm
(xiv)	A triang A.	gle having all si	des diffei B.	rent is called: Scalene	C.	Equilateral	D.	None of these
(xv)	Poi nt (A.	(2,-3) lies in qua	adrant: B.	II	C.	III	D.	IV

For Examiner's use only:

Total Marks:

15

Marks Obtained:

Roll No.			

Answer	Sheet	Nο	
/ 11101101	OHOOL	110.	

STUDIED LATE AND PERSONS	
and the state of t	

Sig. of Candidate:	· - · · · · · · · · · · · · · · · · · ·
--------------------	---

Sig. of Invigilator:

یاضی ایس ایس سی-۱	سی-ا	ایس	ایس	ضى	ريا
-------------------	------	-----	-----	----	-----

(Science Group)

ھتەاۋل (گل نمبر:15)

وقت: 20 منك

حقداة أللازى بساس كجوابات يرب يري وي جاكي سك ..اس كو يبطين من شي كل كرك ناظم مرز يحوال كرديا جائ - كاث كردوباره لكين كا جازت بيل ب اليذيش كا استعال منوع ب-نوث: ديے ميے الفاظ لين الف اباج او ميں سدرست جواب كرد وائره لگائي مرجز وكا ايك نمبر ب سوال نمبرا_ اگر A ایک مربعی قالب ہوادر A'=A ہوتو A کہلاتا ہے: (i) سكيلر سكبوسمثرك -& $[x \ y]$ مربی عاصل $[x \ y]$ منزی عاصل ا (ii) [x+2y][2x-y][x-2y]-3-(iii) xz = yzxz > yz $xz \le yz$ (iv) $\log_z y$ $\log_{x} x$:ایریز $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$ (v) a^2-b^2 a^2+b^2 الف a+b-3-=K کاجروش کی موتر $P(x) = x^2 + 2Kx + 8$ کاجروش کی موتر x - 2(vi) -33 -2 (vii) $\frac{a-b}{a^2+b^2}$ a+b-2 اگر x کی قیمت 10 ہے بڑی نہ ہوتو مندرجہ ذیل میں سے کون ک expression فلط ہے: (viii) x < 10ج $x \le 10$ x > 10نقاط (1,0) اور (0,1) كاورمياني فاصله (ix) $\sqrt{2}$ 2 (x) متماثل خطرقاطع (xi) (xii) درج شده کوئی نہیں مندرجہ ذیل مثلث کےاصلاع کی لمبائیوں کےسیٹ ہیںان میں *کسیٹ سے مثلث بن*ائی حاسکتی ہے۔ (xiii) _7. 3cm, 4cm, 5cm 3cm, 4cm, 7cm_, 2cm, 4cm, 7cm ایک الیی مثلث جس کے تمام اصلاع مختلف ہوں _____ کہلاتی ہے۔ (xiv) مختف الاضلاع الف _ متساوى الساقين درج شده میں ہے کوئی نہیں مساوى الاضلاع نقطه (2-,-3) مستوی کے رابع مستوی کے رابع (xv) IVIII-3-محل نمبر: برائے متحن : حاصل کرده نمبر: 15

Q. 2

MATHEMATICS SSC-I (Science Group)

Time allowed: 2:40 Hours

Total Marks Sections B and C: 60

Attempt any twelve parts from Section 'B' and any three questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet—B if required. Write your answers neatly and legibly.

SECTION - B (Marka 26)

Attempt any TWELVE parts. All parts carry equal marks.

 $(12 \times 3 = 36)$

(i) If
$$\begin{bmatrix} a+3 & 4 \\ 6 & b-1 \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ 6 & 2 \end{bmatrix}$$
, Find a and b

(ii) Solve the following system of linear equations by using Cramer's rule: 3x-2y=1, -2x+3y=2

(iii) For the Matrices
$$A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$ find $(AB)^t$

(iv) Show that
$$\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a} = 1$$

(v) Simplify
$$\frac{2-6i}{3+i} - \frac{4+i}{3+i}$$
 and write your answer in the form $a+bi$

(vi) Find the value of x from
$$\log_{64} 8 = \frac{x}{2}$$

(vii) Use the log table to find the value of
$$\frac{(8.97)^3 \times (3.95)^2}{\sqrt[3]{15.37}}$$

(viii) If
$$x + y + z = 12$$
 and $x^2 + y^2 + z^2 = 64$ find the value of $xy + yz + zx$

(ix) If
$$x = 2 + \sqrt{3}$$
 find the value of $\left(x + \frac{1}{x}\right)^2$

(x) Factorize
$$1 + 2ab - a^2 - b^2$$

(xi) For what value of
$$m$$
 is the polynomial $P(x) = 4x^3 - 7x^2 + 6x - 3m$ exactly divisible by $x + 2$?

(xii) Find the value of
$$K$$
 for which the given expression will become a perfect square $4x^4 - 12x^3 + 37x^2 - 42x + K$

(xiii) Perform the indicated operation and simplify to the lowest form
$$\frac{x^3-8}{x^2-4} \times \frac{x^2+6x+8}{x^2-2x+1}$$

(xiv) Solve for x when
$$\left| \frac{x+5}{2-x} \right| = 6$$

(xv) Solve
$$\frac{1}{2}x - \frac{2}{3} \le x + \frac{1}{3}$$
, where $x \in R$

(xvi) Find the distance between the given points
$$A(-8,1)$$
, $B(6,1)$

(xvii) Use factorization to find the square root of
$$4(a+b)^2 - 12(a^2 - b^2) + 9(a-b)^2$$

(xviii) Factorize
$$x^3 + 48x - 12x^2 - 64$$

SECTION - C (Marks 24)

Note: Attempt any THREE questions. All questions carry equal marks.

 $(3 \times 8 = 24)$

- Q. 3 Prove that in a correspondence of two triangles if three sides of one triangle are congruent to the corresponding three sides of the other, then the two triangles are congruent. $(S.S.S \cong S.S.S)$
- Q. 4 Prove that any point on the right bisector of a line segment is equidistance from its end point.
- Q. 5 Prove that if the square of one side of a triangle is equal to the sum of squares of the other two sides, then the triangle is a right angled triangle.
- Q. 6 Prove that if three or more parallel lines make congruent segments on a transversal, they also intercept congruent segments on any other line that cuts them.
- Q. 7 Construct the $\triangle xyz$. Draw its medians and show that they are concurrent.

$$m \overline{xy} = 4.5cm$$
, $m \overline{yz} = 3.4cm$, $m \overline{zx} = 5.6cm$

ریاضی ایس ایس سی-۱ (Science Group)

مُكل نبسر حقد دوم اورسوم 60

2.40 محفظ

ت: حقد ''دوم'' اور''سوم'' کے سوالات کے جوابات علیحدہ سے مہیا کا ٹی جوابی کا ٹی ہرویں۔ حقد دوم کے بارہ (12) اجزاء اور حقد سوم میں سے کوئی سے تین (3) سوال حل کریں۔ ایکٹراشیٹ (Sheet-B)طلب کرنے پرمہیا کی جائے گی۔آپ کے جوابات صاف اورواضح ہونے جاہئیں۔

حته دوم (مکل نبر 36)

(12x3=36)

سوال نمبرا _ مندرجه ذیل میں سے کوئی سے بارہ (12) اجزاء ل مجعید:

$$-$$
ي آگر $\begin{bmatrix} a+3 & 4 \\ 6 & b-1 \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ 6 & 2 \end{bmatrix}$ توارکان a اور b کی قیمت معلوم کریں۔

$$3x - 2y = 1$$
 , $-2x + 3y = 2$ ی دی ہوئی مساواتوں کو کر میر کے قانون کی مدو سے طل کریں: (ii)

ار (iii) مار
$$A = \begin{bmatrix} -1 & 3 \\ -3 & -5 \end{bmatrix}$$
 اور $A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$ اگر $A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$

$$\left(\frac{x^{a}}{x^{b}}\right)^{a+b} \times \left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times \left(\frac{x^{c}}{x^{a}}\right)^{c+a} = 1$$
(iv)

ي مين مختر کريں۔
$$a + bi$$
 کو $a + bi$ کی شکل میں مختر کریں۔

میں سے
$$x$$
 کی قیمت معلوم کریں۔ $\log_{64} 8 = \frac{x}{2}$ (vi)

$$\frac{(8.97)^3 \times (3.95)^2}{\sqrt[3]{15.37}}$$
 وگارگتم جدول کی مدو سے مختر کریں (vii)

ر (viii)
$$x + y + z = 12$$
 کی قیمت معلوم کیجیے $x^2 + y^2 + z^2 = 64$ کی قیمت معلوم کیجیے

اگر 3
$$x = 2 + \sqrt{3}$$
 کی قیمت معلوم سیجے۔ $\left(x + \frac{1}{x}\right)^2$ کی قیمت معلوم سیجے۔

$$1 + 2ab - a^2 - b^2 = 5$$
, (x)

معلوم کیجے کہ
$$m$$
 کی کس قبت کے لیے $x + 2$ کثیر رقمی (xi) $x + 2$ کوپوراپور آنسیم کر ہےگا۔

$$4x^4 - 12x^3 + 37x^2 - 42x + K$$
 کی قیمت معلوم کریں جس سے دیے گئے الجبری جملہ کو کمکمل مربع بنایا جا سکتے K^- (Xii)

$$\frac{x^3-8}{x^2-4} \times \frac{x^2+6x+8}{x^2-2x+1}$$
 نا فراہر کیے گیے عوامل کے مل کرنے سے سادہ ترین جملہ میں مختصر کریں (xiii)

$$-$$
ساوات $6 = 6$ کاحل سیٹ معلوم کریں (xiv)

$$x \in R$$
 $x \in R$ $x = \frac{1}{2}x - \frac{2}{3} \le x + \frac{1}{3}$ (xv)

$$A(-8,1)$$
 , $B(6,1)$ درج ذیل نقاط کے جوڑے کے درمیان فاصلہ علوم کریں (xvi)

يزريعة تجزى
$$9(a-b)^2 + 9(a-b)^2 - 12(a^2-b^2) + 9(a-b)^2$$
 کاجذرالمربع معلوم کریں۔

$$x^3 + 48x - 12x^2 - 64$$
ي (xviii)

حتەسوم (كىل نېر24)

(3x8=24)

(کوئی سے تین سوال استعجے۔ تمام سوالوں کے تمبر برابر ہیں۔)

سوال نمبرسا: اگر دونتلثوں کی کسی مطابقت میں ایک مثلث کے تینوں اضلاع دوسری مثلث کے متناظرہ اصلاع کے متماثل ہوں تو وہ مثلثیں متماثل ہوتی ہیں۔ (ض. ض. ض. ض. ض. ض. ص. ص. ض. ص. صوال نمبر ۲۰: اگر ایک نقط کسی قطعہ خط کے عمودی ناصف برواقع ہوتو وہ نقطہ قطعہ خط کے سروں ہے مساوی الفاصلہ ہوگا۔

سوال نمبرہ: اگر کسی مثلث کے ایک ضلع کی لمبائی کا مربع دومرے دونوں اضلاع کی لمبائیوں کے مربعوں کے مجموعہ کے برابر ہوتو وہ مثلث قائمة الزاويہ شلث ہوتی ہے۔

۔ سوا**ل نمبر** ۲: اگر تین یا تین سے زیادہ متوازی خطوط ایک خط قاطع پرمتماثل قطعات بنائیں تو و کسی دوسرے خط قاطع پربھی متماثل قطعات بنائیں گے۔

 $\overline{m} = 5.6cm$ اور m = 3.4cm ، m = 3.4cm ، m = 4.5cm مثلث m = 3.4cm ، m = 3