$12a_{0247} (K12a_{0247})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{81} + u^{80} + \dots + u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 81 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{81} + u^{80} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{10} + 2u^{8} + 3u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{16} + 3u^{14} + 5u^{12} + 4u^{10} + 3u^{8} + 2u^{6} + 2u^{4} + 1 \\ u^{18} + 4u^{16} + 9u^{14} + 12u^{12} + 11u^{10} + 6u^{8} + 2u^{6} + u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{11} - 2u^{9} - 2u^{7} + u^{3} \\ u^{11} + 3u^{9} + 4u^{7} + 3u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{32} - 7u^{30} + \dots + 2u^{4} + 1 \\ u^{32} + 8u^{30} + \dots + 4u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{53} - 12u^{51} + \dots + 2u^{3} + u \\ u^{53} + 13u^{51} + \dots + 3u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{74} - 17u^{72} + \dots + u^{2} + 1 \\ u^{74} + 18u^{72} + \dots + 8u^{4} + 3u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{80} 4u^{79} + \cdots 8u^2 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{81} + 39u^{80} + \dots + u - 1$
c_2, c_6	$u^{81} - u^{80} + \dots + u + 1$
c_3	$u^{81} + u^{80} + \dots - 277u + 65$
c_4,c_{10}	$u^{81} - u^{80} + \dots + u + 1$
c_5,c_{12}	$u^{81} + 7u^{80} + \dots + 2761u + 101$
	$u^{81} - 5u^{80} + \dots - 11u + 3$
c_8, c_9, c_{11}	$u^{81} + 21u^{80} + \dots + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{81} + 7y^{80} + \dots + 17y - 1$
c_2, c_6	$y^{81} + 39y^{80} + \dots + y - 1$
c_3	$y^{81} - 25y^{80} + \dots - 421431y - 4225$
c_4, c_{10}	$y^{81} - 21y^{80} + \dots + y - 1$
c_5, c_{12}	$y^{81} + 51y^{80} + \dots + 2274161y - 10201$
c_7	$y^{81} + 3y^{80} + \dots - 563y - 9$
c_8, c_9, c_{11}	$y^{81} + 79y^{80} + \dots + 9y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.330756 + 0.928246I	-1.98935 - 0.55410I	0
u = 0.330756 - 0.928246I	-1.98935 + 0.55410I	0
u = 0.555231 + 0.887447I	4.58988 - 4.17415I	0
u = 0.555231 - 0.887447I	4.58988 + 4.17415I	0
u = -0.550578 + 0.902148I	4.97491 - 1.96297I	0
u = -0.550578 - 0.902148I	4.97491 + 1.96297I	0
u = 0.021905 + 0.940885I	4.01374 - 3.02957I	-4.00000 + 2.75966I
u = 0.021905 - 0.940885I	4.01374 + 3.02957I	-4.00000 - 2.75966I
u = 0.631971 + 0.668959I	5.23666 + 8.85428I	0.25550 - 7.99532I
u = 0.631971 - 0.668959I	5.23666 - 8.85428I	0.25550 + 7.99532I
u = 0.483592 + 0.777442I	-2.06562 - 0.44729I	-7.29217 + 1.06967I
u = 0.483592 - 0.777442I	-2.06562 + 0.44729I	-7.29217 - 1.06967I
u = -0.474582 + 0.979170I	-0.31365 - 2.38173I	0
u = -0.474582 - 0.979170I	-0.31365 + 2.38173I	0
u = -0.630050 + 0.657774I	5.69407 - 2.69657I	1.28923 + 3.02747I
u = -0.630050 - 0.657774I	5.69407 + 2.69657I	1.28923 - 3.02747I
u = 0.580245 + 0.690845I	-1.70309 + 4.76740I	-5.47059 - 8.11597I
u = 0.580245 - 0.690845I	-1.70309 - 4.76740I	-5.47059 + 8.11597I
u = 0.446078 + 1.061030I	-3.47656 + 3.43189I	0
u = 0.446078 - 1.061030I	-3.47656 - 3.43189I	0
u = -0.519943 + 1.034750I	0.30103 - 3.37806I	0
u = -0.519943 - 1.034750I	0.30103 + 3.37806I	0
u = 0.285545 + 1.130800I	-5.01539 - 0.16721I	0
u = 0.285545 - 1.130800I	-5.01539 + 0.16721I	0
u = -0.540133 + 0.631709I	0.70198 - 1.71974I	1.35755 + 3.78809I
u = -0.540133 - 0.631709I	0.70198 + 1.71974I	1.35755 - 3.78809I
u = -0.771211 + 0.309758I	3.47094 + 10.85050I	-1.26204 - 7.02651I
u = -0.771211 - 0.309758I	3.47094 - 10.85050I	-1.26204 + 7.02651I
u = 0.249724 + 1.142850I	-0.48830 - 1.78736I	0
u = 0.249724 - 1.142850I	-0.48830 + 1.78736I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.683944 + 0.470341I	8.62833 - 2.03896I	3.69559 + 2.22375I
u = -0.683944 - 0.470341I	8.62833 + 2.03896I	3.69559 - 2.22375I
u = 0.689016 + 0.459096I	8.57475 - 4.19689I	3.50201 + 3.13868I
u = 0.689016 - 0.459096I	8.57475 + 4.19689I	3.50201 - 3.13868I
u = 0.765943 + 0.314154I	4.01700 - 4.68092I	-0.19311 + 2.19687I
u = 0.765943 - 0.314154I	4.01700 + 4.68092I	-0.19311 - 2.19687I
u = -0.250936 + 1.149570I	-1.05501 + 7.90870I	0
u = -0.250936 - 1.149570I	-1.05501 - 7.90870I	0
u = -0.275321 + 1.148290I	-7.91963 + 3.33484I	0
u = -0.275321 - 1.148290I	-7.91963 - 3.33484I	0
u = 0.333976 + 1.136910I	-1.43197 + 1.29517I	0
u = 0.333976 - 1.136910I	-1.43197 - 1.29517I	0
u = -0.301260 + 1.146810I	-8.21875 - 2.62295I	0
u = -0.301260 - 1.146810I	-8.21875 + 2.62295I	0
u = -0.755307 + 0.286115I	-3.56728 + 6.37685I	-6.68349 - 6.54893I
u = -0.755307 - 0.286115I	-3.56728 - 6.37685I	-6.68349 + 6.54893I
u = -0.330768 + 1.146950I	-1.97419 - 7.22380I	0
u = -0.330768 - 1.146950I	-1.97419 + 7.22380I	0
u = -0.569017 + 1.049970I	6.92763 - 2.80448I	0
u = -0.569017 - 1.049970I	6.92763 + 2.80448I	0
u = 0.569598 + 1.056390I	6.82301 + 9.05454I	0
u = 0.569598 - 1.056390I	6.82301 - 9.05454I	0
u = 0.529876 + 1.077230I	-0.50944 + 7.02202I	0
u = 0.529876 - 1.077230I	-0.50944 - 7.02202I	0
u = 0.728882 + 0.290469I	-0.81550 - 3.12081I	-0.65919 + 2.66104I
u = 0.728882 - 0.290469I	-0.81550 + 3.12081I	-0.65919 - 2.66104I
u = -0.732942 + 0.254989I	-4.07021 + 0.53547I	-8.23201 + 1.09852I
u = -0.732942 - 0.254989I	-4.07021 - 0.53547I	-8.23201 - 1.09852I
u = 0.512335 + 1.126340I	-0.22713 + 6.52430I	0
u = 0.512335 - 1.126340I	-0.22713 - 6.52430I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.578778 + 0.484061I	1.91397 - 1.02951I	2.98287 + 4.00023I
u = -0.578778 - 0.484061I	1.91397 + 1.02951I	2.98287 - 4.00023I
u = -0.515985 + 1.136090I	-0.720055 - 0.730088I	0
u = -0.515985 - 1.136090I	-0.720055 + 0.730088I	0
u = 0.546823 + 1.128660I	-3.24659 + 7.96298I	0
u = 0.546823 - 1.128660I	-3.24659 - 7.96298I	0
u = -0.537260 + 1.136870I	-6.61921 - 5.33206I	0
u = -0.537260 - 1.136870I	-6.61921 + 5.33206I	0
u = -0.708940 + 0.201872I	1.93893 - 3.88483I	-3.08441 + 2.98468I
u = -0.708940 - 0.201872I	1.93893 + 3.88483I	-3.08441 - 2.98468I
u = -0.551751 + 1.137250I	-6.05282 - 11.29930I	0
u = -0.551751 - 1.137250I	-6.05282 + 11.29930I	0
u = 0.563166 + 1.133120I	1.61264 + 9.68341I	0
u = 0.563166 - 1.133120I	1.61264 - 9.68341I	0
u = 0.629075 + 0.379382I	1.50547 - 2.46200I	0.64686 + 5.57955I
u = 0.629075 - 0.379382I	1.50547 + 2.46200I	0.64686 - 5.57955I
u = -0.563360 + 1.136020I	1.0430 - 15.8655I	0
u = -0.563360 - 1.136020I	1.0430 + 15.8655I	0
u = 0.684512 + 0.197850I	2.38107 - 1.99261I	-2.22631 + 2.45378I
u = 0.684512 - 0.197850I	2.38107 + 1.99261I	-2.22631 - 2.45378I
u = 0.407633	-1.06455	-9.20770

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{81} + 39u^{80} + \dots + u - 1$
c_{2}, c_{6}	$u^{81} - u^{80} + \dots + u + 1$
c_3	$u^{81} + u^{80} + \dots - 277u + 65$
c_4, c_{10}	$u^{81} - u^{80} + \dots + u + 1$
c_5,c_{12}	$u^{81} + 7u^{80} + \dots + 2761u + 101$
c_7	$u^{81} - 5u^{80} + \dots - 11u + 3$
c_8, c_9, c_{11}	$u^{81} + 21u^{80} + \dots + u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{81} + 7y^{80} + \dots + 17y - 1$
c_2, c_6	$y^{81} + 39y^{80} + \dots + y - 1$
c_3	$y^{81} - 25y^{80} + \dots - 421431y - 4225$
c_4,c_{10}	$y^{81} - 21y^{80} + \dots + y - 1$
c_5,c_{12}	$y^{81} + 51y^{80} + \dots + 2274161y - 10201$
c_7	$y^{81} + 3y^{80} + \dots - 563y - 9$
c_8, c_9, c_{11}	$y^{81} + 79y^{80} + \dots + 9y - 1$