Introduction to Software Testing Chapter 7.3 Graph Coverage for Source Code

Paul Ammann & Jeff Offutt

http://www.cs.gmu.edu/~offutt/softwaretest/

Overview

- A common application of graph criteria is to program source
- Graph: Usually the control flow graph (CFG)
- Node coverage : Execute every statement
- Edge coverage: Execute every branch
- Loops: Looping structures such as for loops, while loops, etc.
- Data flow coverage: Augment the CFG
 - defs are statements that assign values to variables
 - uses are statements that use variables

Control Flow Graphs

- A CFG models all executions of a method by describing control structures
- Nodes: Statements or sequences of statements (basic blocks)
- Edges: Transfers of control
- Basic Block: A sequence of statements such that if the first statement is executed, all statements will be (no branches)
- · CFGs are sometimes annotated with extra information
 - branch predicates
 - defs
 - uses
- Rules for translating statements into graphs ...

CFG: The if Statement

```
if (x < y)
{
    y = 0;
    x = x + 1;
}
else
{
    x = y;
}</pre>
```



```
if (x < y)
{
    y = 0;
    x = x + 1;
}</pre>
```


CFG: The if-Return Statement

```
if (x < y)
{
    return;
}
print (x);
return;</pre>
```


No edge from node 2 to 3.

The return nodes must be distinct.

Loops

· Loops require "extra" nodes to be added

Nodes that do not represent statements or basic blocks

CFG: while and for Loops

```
x = 0
x = 0;
while (x < y)
                                      dummy node
 y = f(x, y);
                                                implicitly
                      x < y
                                x >= v
 x = x + 1;
                                                               x = 0
                                             initializes loop
return (x);
                       y = f(x,y)
                      x = x + 1
                                                                x < y
                                                                          x >= y
                            for (x = 0; x < y; x++)
                                                     y = f(x, y)
                              y = f(x, y);
                                                                  4
                            return (x);
                                           implicitly
                                       increments loop
```

CFG: do Loop, break and continue

```
x = 0;
do
{
    y = f (x, y);
    x = x + 1;
} while (x < y);
return (y);</pre>
```



```
x = 0;
while (x < y)
 y = f(x, y);
 if (y == 0)
    break;
  } else if (y < 0)
   y = y^*2;
    continue;
 x = x + 1;
return (y);
```


CFG: The case (switch) Structure

```
read (c);
switch (c)
 case 'N':
   z = 25;
 case 'Y':
   x = 50;
   break;
 default:
   x = 0;
   break;
print (x);
```

```
read (c);
c == 'N'
                 default
                         x = 0;
           x = 50
                         break;
           break
                print (x);
```

Cases without breaks fall through to the next case

CFG: Exceptions (try-catch)

```
trv
  s = br.readLine();
  if (s.length() > 96)
   throw new Exception
     ("too long");
  if (s.length() == 0)
   throw new Exception
     ("too short");
} (catch IOException e) {
  e.printStackTrace();
} (catch Exception e) {
  e.getMessage();
return (s);
```


Example Control Flow - Stats

```
public static void computeStats (int [ ] numbers)
   int length = numbers.length;
   double med, var, sd, mean, sum, varsum;
   sum = 0;
   for (int i = 0; i < length; i++)
      sum += numbers [ i ];
   med = numbers [length / 2];
   mean = sum / (double) length;
   varsum = 0;
   for (int i = 0; i < length; i++)
      varsum = varsum + ((numbers [ i ] - mean) * (numbers [ i ] - mean));
   var = varsum / (length - 1.0);
   sd = Math.sqrt (var);
   System.out.println ("length:
                                          " + length);
   System.out.println ("mean:
                                          " + mean);
                                          " + med);
   System.out.println ("median:
   System.out.println ("variance:
                                          " + var):
   System.out.println ("standard deviation: " + sd);
```

Control Flow Graph for Stats

Control Flow TRs and Test Paths—EC

Edge Coverage

TR

A. [1, 2]
B. [2, 3]
C. [3, 4]
D. [3, 5]
E. [4, 3]
F. [5, 6]
G. [6, 7]
H. [6, 8]

I. [7, 6]

Test Path

[1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

Control Flow TRs and Test Paths—EPC

Edge-Pair Coverage

TR

A. [1, 2, 3] B. [2, 3, 4] **C**. [2, 3, 5] D. [3, 4, 3] **E**. [3, 5, 6] F. [4, 3, 5] G. [5, 6, 7] H. [5, 6, 8] **I.** [6, 7, 6] **J.** [7, 6, 8] K. [4, 3, 4] L. [7, 6, 7]

Test Paths

i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8] ii. [1, 2, 3, 5, 6, 8] iii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 8]

TP	TRs toured	sidetrips
÷	A, B, D, <mark>F</mark> , F, G, I, J	—С, Н
ii	A ., C, E, H	
iii	A, B, D, E, F, G, I, J, K, L	C, H

TP iii makes TP i redundant. A minimal set of TPs is cheaper.

Control Flow TRs and Test Paths—PPC

Test Paths i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8] ii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 8] iii. [1, 2, 3, 4, 3, 5, 6, 8] iv. [1, 2, 3, 5, 6, 7, 6, 8] v. [1, 2, 3, 5, 6, 8]

TP	TRs toured	sidetrips
+	A, D, E, F, G	H, I, J
ii	A, B, C, D, E, F, G,	H, I, J
iii	A, F, H	J
iv	D, E, F, I	J
V	J	

Data Flow Coverage for Source

- def: a location where a value is stored into memory
 - -x appears on the left side of an assignment (x = 44;)
 - x is an actual parameter in a call and the method changes its value
 - x is a formal parameter of a method (implicit def when method starts)
 - x is an input to a program
- use: a location where variable's value is accessed
 - x appears on the right side of an assignment
 - x appears in a conditional test
 - x is an actual parameter to a method
 - x is an output of the program
 - x is an output of a method in a return statement
- If a def and a use appear on the same node, then it is only
 a DU-pair if the def occurs after the use and the node is in
 a loop

Example Data Flow - Stats

```
public static void computeStats (int [] numbers)
   int length = numbers.length;
   double med, var, sd, mean, sum, varsum;
   sum = 0.0:
   for (int i = 0; i < length; i++)
      sum += numbers [ i ];
   med = numbers [length / 2];
   mean = sum / (double) length;
   varsum = 0.0;
   for (int i = 0; i < length; i++)
      varsum = varsum + ((numbers [ i ] - mean) * (numbers [ i ] - mean));
   var = varsum / (length - 1);
   sd = Math.sqrt ( var );
                                          " + length);
   System.out.println ("length:
   System.out.println ("mean:
                                          " + mean);
   System.out.println ("median:
                                          " + med);
                                          " + var):
   System.out.println ("variance:
   System.out.println ("standard deviation: " + sd);
```

Control Flow Graph for Stats

CFG for Stats – With Defs & Uses

Defs and Uses Tables for Stats

Node	Def	Use
T	{ numbers, sum, length }	{ numbers }
2	{ i }	
3		
4	{ sum, i }	{ numbers, i, sum }
5	{ med, mean, varsum, i }	{ numbers, length, sum }
6		
7	{ varsum, i }	{ varsum, numbers, i, mean }
8	{ var, sd }	{ varsum, length, var, mean, med, var, sd }

Edge	Use
(1, 2)	
(2, 3)	
(3, 4)	{ i, length }
(4, 3)	
(3, 5)	{ i, length }
(5, 6)	
(6, 7)	{ i, length }
(7, 6)	
(6, 8)	{ i, length }

DU Pairs for Stats

		defs come before uses,
variable	DU Pairs	do not count as DU pairs
numbers	(1,4) (1,5) (1,7)	
length	(1,5)(1,8)(1,(3,4))(1,(3,5))(1,(6,7))(1,(6,8))	
med	(5.8)	
var	(8, 8)	defs <u>after</u> use in loop,
sd	(8,8)	these are valid DU pairs
mean	(5,7) (5,8)	
sum	(1,4) (1,5) (4,4) (4,5)	No def-clear path different scope for i
varsum	(5,7) (5,8) (7,7) (7,8)	differ ent scope for 1
i	(2,4) (2,(3,4)) (2,(3,5)) (7,7) (2,(6,7)) (2,(6,8))	
	(4,4) $(4,(3,4))$ $(4,(3,5))$ $(4,7)$ $(4,(6,7))$ $(4,(6,8))$	
	(5, 7) (5, (6,7)) (5, (6,8))	
		lo path through graph
	fr	om nodes 5 and 7 to 4 or 3

DU Paths for Stats

variable	DU Pairs	DU Paths
numbers	(1, 4) (1, 5) (1, 7)	[1, 2, 3, 4] [1, 2, 3, 5] [1, 2, 3, 5, 6, 7]
length	(1,5) (1,8) (1,(3,4)) (1,(3,5)) (1,(6,7)) (1,(6,8))	[1, 2, 3, 5] [1, 2, 3, 5, 6, 8] [1, 2, 3, 4] [1, 2, 3, 5] [1, 2, 3, 5, 6, 7] [1, 2, 3, 5, 6, 8]
med	(5, 8)	[5,6,8]
var	(8, 8)	No path needed
sd	(8, 8)	No path needed
sum	(1, 4) (1, 5) (4, 4) (4, 5)	[1, 2, 3, 4] [1, 2, 3, 5] [4, 3, 4] [4, 3, 5]

variable	DU Pairs	DU Paths
mean	(5, 7)	[5,6,7]
	(5, 8)	[5, 6, 8]
varsum	(5, 7)	[5,6,7]
	(5, 8)	[5, 6, 8]
	(7, 7)	[7,6,7]
	(7, 8)	[7, 6, 8]
i	(2, 4)	[2, 3, 4]
	(2, (3,4))	[2, 3, 4]
	(2, (3,5))	[2, 3, 5]
	(4, 4)	[4, 3, 4]
	(4, (3,4))	[4, 3, 4]
	(4, (3,5))	[4, 3, 5]
	(5, 7)	[5,6,7]
	(5, (6,7))	[5,6,7]
	(5, (6,8))	[5, 6, 8]
	(7, 7)	[7,6,7]
	(7, (6,7))	[7,6,7]
	(7, (6,8))	[7, 6, 8]

DU Paths for Stats—No Duplicates

There are 38 DU paths for Stats, but only 12 unique

```
      ↑ [ 1, 2, 3, 4 ]
      [ 4, 3, 4 ]

      ★ [ 1, 2, 3, 5 ]
      [ 4, 3, 5 ]

      ↑ [ 1, 2, 3, 5, 6, 7 ]
      [ 5, 6, 7 ]

      ★ [ 1, 2, 3, 5, 6, 8 ]
      [ 5, 6, 8 ]

      ↑ [ 2, 3, 4 ]
      [ 7, 6, 7 ]

      ★ [ 2, 3, 5 ]
      [ 7, 6, 8 ]
```

★ 4 expect a loop not to be "entered"

- ♦ 6 require at least one iteration of a loop
- 2 require at least two iterations of a loop

Test Cases and Test Paths

```
Test Case: numbers = (44); length = I

Test Path: [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

Additional DU Paths covered (no sidetrips)

[1, 2, 3, 4] [2, 3, 4] [4, 3, 5] [5, 6, 7] [7, 6, 8]

The five stars +that require at least one iteration of a loop
```

```
Test Case: numbers = (2, 10, 15); length = 3

Test Path: [1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8]

DU Paths covered (no sidetrips)

[4, 3, 4] [7, 6, 7]

The two stars  that require at least two iterations of a loop
```

Other DU paths require arrays with length 0 to skip loops

But the method fails with index out of bounds exception...

med = numbers [length / 2];

A fault was

found

Summary

- Applying the graph test criteria to control flow graphs is relatively straightforward
 - Most of the developmental research work was done with CFGs
- A few subtle decisions must be made to translate control structures into the graph
- Some tools will assign each statement to a unique node
 - These slides and the book uses basic blocks
 - Coverage is the same, although the bookkeeping will differ