2526-MA140: Week 01, Lecture 2 (L02)

Functions Dr Niall Madden

University of Galway

16 September, 2025

Outline

- 1 Functions: notation
 - Domain of a function
- 2 4 Ways to Represent a Function
- 3 Graphical Representation
- 4 A Catalog of Functions

- Linear functions
- 5 Polynomials
 - Sketching polynomials
- 6 Rational Functions
 - Long division
- 7 Exercises

For more, see Sections 1.1 and 1.2 of https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/01%3A_Functions_and_Graphs

Functions: notation

Recall: This section is all about **functions**, which a "rule" for mapping inputs to outputs.

- 1. Writing $f: A \to B$ means the inputs come from the set A, and the outputs come from the set B. (A **set** is just a collection of things).
- 2. A is called the **domain**, and B is called the **co-domain**.
- 3. y = f(x) means "x gets mapped to y according to the rule defined by f". We sometimes also say "y is the image of x".
- 4. The subset of *B* that contains all the images of the things in *A* is called the **range** of *f*.
- 5. When we write $x \in A$ we mean "x is an element of X, or "x belongs to A".

Often, the domain of a function is not expilicitly stated. In such a case the following **Domain Convention** applies.

The **domain** of a function f is the set of all numbers x for which f(x) makes sense and gives a real-number output.

Example

1. Find the subset of \mathbb{R} that is the **domain** of $f_1(x) = \frac{1}{x^2 - x}$.

Find the subset of $\mathbb R$ that is the **domain** of the function $f_2(x) = \sqrt{x+2}$.

Given the function $f_3(x) = 3x^2 + 1$, find the largest subset of \mathbb{R} that is the domain of f_3 . What is the corresponding range?

Identify the domain (in \mathbb{R}) and range of $f_4(x) = \sqrt{(x+4)(3-x)}$

Identify the domain and range of $f_5(x) = \frac{1}{x}$.

4 Ways to Represent a Function

A function can be represented in different ways:

- 1. **verbally** (by a description in *words*);
- numerically (as a table of values);
- 3. visually (as a graph);
- 4. algebraically (by an explicit formula).

Often it is possible, and useful, to go from one way to another.

Graphical Representation

Graph \rightarrow **Table**

A common way to *visualize* a function $f: X \to \mathbb{R}$ is its *graph* in the x, y-plane. In this example, $f(x) = x^2 - x + 4$.

X	f(x)
-4	24
-2	10
0	4
2	6
4	16

A Catalog of Functions

There are many different types of functions that can be used to model relationships between objects in the real world.

The most common types of functions (in MA140) are:

- Linear Functions,
- Polynomial Functions,
- Power Functions,
- Rational Functions,
- Algebraic Functions,
- Trigonometric Functions,
- Exponential Functions,
- Logarithms.

Linear functions have formulae such as f(x) = mx + c, where m and c are some given numbers.

It is often represented graphically as a straight line of slope m through the point (0, c).

Polynomials

A **polynomial function** (or just **polynomial**) is a function of the form

$$y = f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0, \quad x \in \mathbb{R},$$

where $a_0, a_1, ..., a_n$ are real numbers called the **coefficients** of the polynomial.

The number n is called the **degree** of the polynomial.

There are special names for polynomials of low degree:

Example: Linear Polynomial

y = 3x - 0.5 is a **linear** polynomial: it has degree n = 1.

Example: quadratic

 $x^2 - 2x - 3$ is a **quadratic** polynomial: it has degree n = 2.

There are many occasions when we want to **factorise** such quadratics, meaning we write them as the product of a pair of linear polynomials.

For example, we can **factorise** $x^2 - 2x - 3$ as

$$x^2 - 4x + 3 = (x - 3)(x + 1)$$

It is important to note that not all quadratic polynomials can be factorised as two linear polynomials. Such quadratics are called **irreducible**.

For example, $x^2 + 1$ is irreducible.

Example

$$y = x^3 - 4x^2 + x + 6$$
 is a **cubic** function with degree $n = 3$.

Fact

A polynomial function of grade n has **up to** n-1 truning points ("bends").

Examples:

When sketching the graph of a function, we first find the **intercepts**:

- The *y*-intercept is where the graph of the function cuts the *y*-axis: found by letting x = 0.
- ► The x-intercepts are where the function's graph cuts the x-axis. These points are also called the roots (or zeros). To find them, set y equal to zero and solve for x.

Sketch the graph of $y = -x^3 + x^2 + 2x$

Rational Functions

Rational Functions have the general form

$$f(x) = \frac{p(x)}{q(x)},$$

where p(x) and q(x) are polynomials.

- If degree of p(x) < degree of q(x), f(x) is called a strictly proper rational function.
- If degree of p(x) = degree of q(x), f(x) is called a proper rational function.
- If degree of p(x) > degree of q(x), f(x) is called an improper rational function.

Rational Functions

An improper or proper rational function can always be expressed as a polynomial plus a strictly proper rational function, for example by algebraic division.

Example

$$\frac{4x^3 + 4x^2 + 4}{x^2 - 3} = 4x + 4 + \frac{12x + 16}{x^2 - 3}$$

Rational Functions

Long division

For the previous example, we can work this out ourselves using **Long Division** to divide numerator by denominator:

Example 2.30 from text book

Use long division to show that

$$\frac{3x^4 + 2x^3 - 5x^2 + 6x - 7}{x^2 - 2x + 3} = 3x^2 + 8x + 2 - \frac{14x + 13}{x^2 - 2x + 3}$$

Exercises

Exercise 1.2.1

Identify the largest possible subset of \mathbb{R} that could be the domain and range of these functions:

1.
$$f(x) = (x-4)^2 + 5$$

2.
$$f(x) = \sqrt{3x+2} - 1$$

3.
$$f(x) = 3/(x-2)$$
.

(See Example 1.1.2 of the textbook).

Exercise 1.2.2

Sketch the graphs of

(i)
$$y = 5x^2 - 7$$

(ii)
$$y = x^2 - 4x + 3$$

(iii)
$$y = x^3 - 6x^2 - 11x - 6$$