Applied Bayesian Data Analysis — Chapter 9

Kim Albertsson

CERN and Lulea University of Technology

kim.albertsson@ltu.se

October 23, 2019

Chapter 9

Hierarchical models: When parameters depend upon parameters

Caveat: Minimal coverage of JAGS.

Personal reflections

- Hierarchical models: neat technique to lend statistical strength to model. Like priors, it seems an artform, as opposed to rigorous science. Not saying science cannot be done, just that it's "softer".
- Good examples to give one experience to lean back on. Explains intuitions behind and interpretations of distributions and paramters.
 E.g. mode of the beta distribution.
- Advice for double checking resutls helpful. E.g.
- Weak discussion on meaningful differences between predictions. So far only "HDI interval covers null hypotesis" therefore no difference between groups. Unsure if I use "null hypothesis" correctly here.

Trick — useful insight applicable once; Technique — insight with repeated, general, usefulness.

Introduction

Hierarchical models arise in many situations

- E.g. patient recovery after surgery. (Team success rate (θ_s) depends on ω , recovery rate for hospital.)
- E.g. student buying lunch. (Child prob. of buying (θ_s) depends on ω , typical buy rate for school.)

Hierarchical refactoring:

$$p(\theta, \omega|D) \propto p(D|\theta, \omega)p(\theta, \omega)$$

= $p(D|\theta)p(\theta|\omega)p(\omega)$ (9.1)

Compare to Eq. (5.3) applied to the joint parameter probability

$$p(\theta, \omega|D) \propto p(D|\theta, \omega)p(\theta, \omega)$$

$$= p(D|\theta, \omega)p(\theta|\omega)p(\omega) \qquad \text{(Using 5.3)}$$

I.e. in hierarchical models, data is not dependent on hidden parameters.

Introduction

Benefits of hierarchical models:

- Interpretability
- Data efficiency
- Sampling efficiency (e.g. Gibbs sampling depends upon conditionals)

A single coin from a single mint

Hierarchical coin model: Factory produces coins with a typical bias.

$$\gamma_{i} \sim Bernoulli(\theta) \qquad (9.2)$$

$$\theta \sim \beta(a_{\theta}, b_{\theta}) \qquad (9.3)$$

$$\theta \sim \beta(\omega(\kappa - 2) + 1, (1 - \omega)(\kappa - 2) + 1) \qquad (9.4)$$

$$\omega \sim \beta(a_{\omega}, b_{\omega}) \qquad (9.5)$$

$$\kappa = K$$

 ω is both mode of β and parameter of model. κ is concentration of β . Figure: Graphical representation of eq. system.

$$p(\theta, \omega | \gamma) = \frac{p(\gamma | \theta, \omega)p(\theta, \omega)}{p(\gamma)}$$

$$= \frac{p(\gamma | \theta)p(\theta | \omega)p(\theta)}{p(\gamma)}$$
(9.6)

From def.: γ depends only on θ . From Eq. 5.3: factor joint.

Aside: Hierarchy of data

Given

$$\gamma_i \sim Bernoulli(\theta)$$
 (9.2)
 $\theta \sim \beta(a, b)$ (9.3)
 $p(\theta|\gamma) = p(\gamma|\theta)p(\theta)$

I.e. the posterior is factored into a chain of dependencies.

Can we consider the system $\{\gamma,\theta\}$ a hierarchical model? Why; Why not?

Posterior through grid approximation (I)

Eq. 9.6 is difficult to solve analytically. Approximate with grid.

Prior uses $b_{\omega}=2, b_{\omega}=2, K=100$. I.e. if we know ω we're fairly certain about θ (see $p(\theta|\omega=0.25)$ plot).

Likelihood contours parallel, data depends only on θ .

Data mostly heads implies ω biased toward upper right quadrant due to tight coupling θ , ω .

Note: Could use second coin to improve estimate of first!

Posterior through grid approximation (II)

Prior uses $b_{\omega}=20, b_{\omega}=20, K=6$. I.e. ω certain but $\theta|\omega$ uncertain.

Posterior mostly refines idea about θ .

Warning: Mismodelling? See posterior conditional plots. (Model supposes θ close to ω .)

Multiple coins from single mint (I)

Typical case: E.g. testing memory after taking new drug (Note: Acutal variable of interest is the hidden one).

Same as previous figure, with multiple θ s.

Multiple coins from single mint (II)

Weak coupling between coins (K = 5).

$$\begin{split} \rho(\theta_1, \theta_2, \omega | D) &= \frac{\rho(D | \theta_1, \theta_2, \omega) \rho(\theta_1, \theta_2, \omega)}{\rho(D)} \\ &= \frac{\rho(D_1 | \theta_1) \rho(D_2 | \theta_2) \rho(\theta_1 | \omega) \rho(\theta_2 | \omega) \rho(\omega)}{\rho(D)} \end{split}$$

(Not shown) Conditionals $(p(\theta_s|\omega))$ are spread out.

Datasets imply spread in coin bias. Does little for ω .

Multiple coins from single mint (III)

Strong coupling between coins (K = 75).

(Not shown) Conditionals $(p(\theta_s|\omega))$ are concentrated.

Datasets are contradictory (with strong coupling). Data from larger set dominates. Constrains ω .

Grid approximation only feasible in low dimensions.

Gamma distribution

Generalised exponential distribution much like β is generalised uniform (among others).

Gamma($\kappa | s, r = \theta^{-1}$); where s: shape, r: rate

$$s = \frac{\mu^2}{\sigma^2}$$
; $r = \frac{\mu}{\sigma^2}$; $\mu > 0$ (mean) (9.7)

$$s = 1 + \omega r; \ r = \frac{\omega \sqrt{\omega^2 + 4\sigma^2}}{2\sigma^2}; \ \omega > 0 \text{ (mode)}$$
 (9.8)

Related distributions:

- Exponential distribution $\exp(\lambda) = \operatorname{Gamma}(1, \lambda^{-1})$, models e.g. random decay of particles or electronical components.
- Chi-square $\chi^2(k) = \operatorname{Gamma}(k/2, 2)$, models sum of k independent standard normal random variables.
- ... and many more ...

A realistic model with MCMC

Add realism by

- Relax constraint on κ (draw from Gamma).
- More subjects/coins!

Intuitively, for each coin, κ small: data clustered. If κ large: data spread out.

Therapeutic touch (I)

Recreate investigation of Rosa et al. (1998): Can practitioners feel a body's energy field?

- Flip coin and place experimenter hand near practitioner hand.
- Practitioner reports which hand is closest (binary classification).
- 28 subjects (with caveat)
- Skill of each practitioner: θ_s .
- Effect in group: ω .
- Data in Figure.

Therapeutic touch (II)

 κ shows high auto-correlation (common for chains for high-level parameters). Accuracy of κ not a concern (Why: small changes in κ does induces only small change in other variables).

Practitioners, as a class: No effect.

Plus shows score of individual. Deviates from mode due to hierarchical modelling.

Differences: Do subjects perform differently? No!

Priors in mid-level paramters

Priors (imputed from top-level priors) are sometimes unintended.

In our case: Group mode prior is uniform. This results in uniform priors in θ .

Priors on differences: Difference between two uniform distributions (triangular).

Shrinkage

Low level paramters cluster where high-level paramters are likely, called *shrinkage*.

In previous example: Estimates closer to group mode than sample mean.

HL parameters influenced by all data. Low level, only by individual data. Property of hierarchical models.

End!

Aside: Efficiency vs. Effectiveness vs. Efficacy

According to the Cambrigde Dictionary:

Efficiency the good use of time and energy in a way that does not waste any

Effectiveness the ability to be successful and produce the intended results

Efficacy the ability, especially of a medicine or a method of achieving something, to produce the intended result (Am. E.: the quality of being effective; effectiveness)

Efficient working or operating quickly and effectively in an organized way

Effective successful or achieving the results that you want

Efficacious able to produce the intended result

Remaining figures

The rest of the chapter is mainly a more involved example, so figures are only included for discusion if necessary.

