Job No.: DML McManaway 5 Address: 146 Schoolhouse Rd, KAIKOURA, New Date: 23/06/2025

Zealand

Latitude: -42.36317 **Longitude:** 173.670845 **Elevation:** 18.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N3	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.8 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	50.04 m/s
Wind Pressure	1.5 KPa	Lee Zone	YES	Ultimate Snow ARI	50 Years
Wind Category	extra High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp,i = 0.6367

For roof CP,e from 0 m To 4.40 m Cpe = -0.9 pe = -1.22 KPa pnet = -1.22 KPa

For roof CP,e from 4.40 m To 8.80 m Cpe = -0.5 pe = -0.68 KPa pnet = -0.68 KPa

For wall Windward Cp, i = 0.6367 side Wall Cp, i = -0.5324

For wall Windward and Leeward CP,e from 0 m To 22.5 m Cpe = 0.7 pe = 0.95 KPa pnet = 1.82 KPa

For side wall CP,e from 0 m To 4.40 m Cpe = pe = -0.88 KPa pnet = -0.88 KPa

Maximum Upward pressure used in roof member Design = 1.22 KPa

Maximum Downward pressure used in roof member Design = 1.14 KPa

Maximum Wall pressure used in Design = 1.82 KPa

Maximum Racking pressure used in Design = 1.63 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 4350 mm Try Purlin 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

Second page

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.38 S1 Downward =12.68 S1 Upward =27.71

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.72 Kn-m	Capacity	3.40 Kn-m	Passing Percentage	472.22 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	3.07 Kn-m	Capacity	4.53 Kn-m	Passing Percentage	147.56 %
M0.9D-WnUp	-2.12 Kn-m	Capacity	-2.21 Kn-m	Passing Percentage	104.25 %
V _{1.35D}	0.66 Kn	Capacity	12.06 Kn	Passing Percentage	1827.27 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	2.82 Kn	Capacity	16.08 Kn	Passing Percentage	570.21 %
$ m V_{0.9D ext{-}WnUp}$	-1.95 Kn	Capacity	-20.10 Kn	Passing Percentage	1030.77 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 8.77 mm

Limit by Woolcock et al, 1999 Span/240 = 17.92 mm

Deflection under Dead and Service Wind = 9.83 mm

Limit by Woolcock et al, 1999 Span/100 = 43.00 mm

Reactions

Maximum downward = 2.82 kn Maximum upward = -1.95 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 4500 mm Internal Rafter Span = 4850 mm Try Rafter 2x300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 6.81 S1 Upward = 6.81

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	2.77 Kn-m	Capacity	10.08 Kn-m	Passing Percentage	363.90 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	5.21 Kn-m	Capacity	13.44 Kn-m	Passing Percentage	257.97 %

$M_{0.9D ext{-W}nUp}$	12.49 Kn-m	Capacity -16.8 Kn-m	Passing Percentage	134.51 %
V _{1.35D}	3.42 Kn	Capacity 28.94 Kn	Passing Percentage	846.20 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	6.41 Kn	Capacity 38.6 Kn	Passing Percentage	602.18 %
$ m V_{0.9D ext{-}WnUp}$	15.73 Kn	Capacity -48.24 Kn	Passing Percentage	306.68 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 1 mm

Limit by Woolcock et al, 1999 Span/240 = 20.83 mm

Deflection under Dead and Service Wind = 20.5 mm

Limit by Woolcock et al, 1999 Span/100 = 50.00 mm

Reactions

Maximum downward = 6.41 kn Maximum upward = 15.73 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 100 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 32.51 Kn > 15.73 Kn

Prop on Sides = $2 ext{ 2/SG830050Dry} ext{ 1100mm} ext{ Reaction Prop} = 14.10 ext{ Kn down } 38.00 ext{ Kn Up}$

Prop Combined axial and bending ratios (My/Phi x Mny)+(Nc/Phi x Ncy) should be less than or equal to 1

For Short Term Load = 0.97 < 1 OK

For Medium Term Load = 0.45 < 1 OK

For Long Term Load = 0.12 < 1 OK

Prop Connection check

Effective width of Pole used in Calculations = 225 mm - 20mm (Margin for chamfer)

Bolt Size = M12 Number of Bolts = 4

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Angle of prop = 45 degree

Prop Connection Capacity under Short term loads: 49.69 Kn > 38.0 Kn OK

Prop Connection Capacity under Medium term loads: 39.75 Kn > 14.10 Kn OK

Prop Connection Capacity under Long term loads: 29.81 Kn > 2.88 Kn OK

Intermediate Design Sides

Intermediate Spacing = 2500 mm Intermediate Span = 4450 mm Try Intermediate 2x250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward = 1.00 S1 Downward = 12.68 S1 Upward = 0.89

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	5.63 Kn-m	Capacity	11.66 Kn-m	Passing Percentage	207.10 %
$ m V_{0.9D ext{-}WnUp}$	5.06 Kn	Capacity	40.2 Kn	Passing Percentage	794.47 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 33.035 mm Limit by Woolcock et al, 1999 Span/100 = 44.50 mm

Reactions

Maximum = 5.06 kn

Girt Design Front and Back

Girt's Spacing = 800 mm Girt's Span = 4500 mm Try Girt 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet

condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.67 S1 Downward =12.68 S1 Upward =20.04

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	3.69 Kn-m	Capacity	3.90 Kn-m	Passing Percentage	105.69 %
$ m V_{0.9D ext{-}WnUp}$	3.28 Kn	Capacity	20.10 Kn	Passing Percentage	612.80 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 17.82 mm Limit by Woolcock et al, 1999 Span/100 = 45.00 mm Sag during installation = 24.86 mm

Reactions

Maximum = 3.28 kn

Girt Design Sides

Girt's Spacing = 1300 mm Girt's Span = 2500 mm Try Girt 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.62 S1 Downward =12.68 S1 Upward =21.13

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.85 Kn-m	Capacity	3.59 Kn-m	Passing Percentage	194.05 %
$V_{0.9D\text{-W}nUp}$	2.96 Kn	Capacity	20.10 Kn	Passing Percentage	679.05 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 2.76 mm Limit by Woolcock et al. 1999 Span/100 = 25.00 mm

Sag during installation = 2.37 mm

Reactions

Maximum = 2.96 kn

Middle Pole Design

Geometry

225 SED H5 (Minimum 250 dia. at Floor Level)	Dry Use	Height	4500 mm
Area	44279 mm2	As	33209.1796875 mm2
Ix	156100441 mm4	Zx	1314530 mm3
Iy	156100441 mm4	Zx	1314530 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 22.5 m^2

Dead	8.68 Kn	Live	6.39 Kn
Wind Down	29.14 Kn	Snow	0.00 Kn
Moment wind	9.07 Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	637.62 Kn	PhiMnx Wind	38.17 Kn-m	PhiVnx Wind	78.64 Kn
PhiNcx Dead	382.57 Kn	PhiMnx Dead	22.90 Kn-m	PhiVnx Dead	47.18 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.37 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.16 < 1 OK$

Deflection at top under service lateral loads = 44.26 mm < 45.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1900 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 9.07 Kn-m Shear Wind = 5.85 Kn

Pile Properties

Safety Factory 0.55

Hu = 11.11 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 23.96 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.53 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level) Dry Use Height 4500 mm

Area 35448 mm2 As 26585.7421875 mm2

Lateral Restraint mm c/c

Loads

Total Area over Pole = 5.625 m^2

Dead	1.41 Kn	Live	1.41 Kn
Wind Down	6.41 Kn	Snow	0.00 Kn
Moment Wind	10.54 Kn-m		
Phi	0.8	K8	0.61
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	313.16 Kn	PhiMnx Wind	16.78 Kn-m	PhiVnx Wind	62.96 Kn
PhiNcx Dead	187.89 Kn	PhiMnx Dead	10.07 Kn-m	PhiVnx Dead	37.77 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.66 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.42 < 1 \text{ OK}$

Deflection at top under service lateral loads = 36.74 mm < 47.88 mm

Ds =	0.6 mm	Pile Diameter
L=	1500 mm	Pile embedment length
f1 =	3600 mm	Distance at which the shear force is applied
f2 =	0 mm	Distance of top soil at rest pressure

Loads

Total Area over Pole = 5.625 m^2

Moment Wind =	10.54 Kn-m
Shear Wind =	2.93 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.90 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 12.43 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.85 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30))}{(1+\sin(30))}$ $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1500 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 10.54 Kn-m Shear Wind = 2.93 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.90 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 12.43 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.85 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between

10/11

both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1900) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1900)

Skin Friction = 29.16 Kn

Weight of Pile + Pile Skin Friction = 33.51 Kn

Uplift on one Pile = 22.39 Kn

Uplift is ok