DS 100/200: Principles and Techniques of Data Science Date: April 5, 2019					
Discussion #9 Exam Prep Solutions					
Name:					
1. Of the choices below, why do we prefer to use ridge regression over linear regression (i.e. the normal equation) in certain cases? Select all that apply.					
\square A. Ridge regression always guarantees an analytic solution, but the normal equation does not.					
\square B. Ridge regression encourages sparsity in our model parameters, which is helpful for inferring useful features.					
☐ C. Ridge regression isn't sensitive to outliers, which makes it preferable over linear regression.					
☐ D. Ridge regression always performs just as well as linear regression, with the added benefit of reduced variance.					
\square E. None of the above					
Solution:					
\square A. The regularization term guarantees $(A^TA + \lambda I)$ is invertible, as discussed in discussion 7.					
\square B. This is the description for LASSO.					
\square C. It is sensitive to outliers.					
\square D. Doesn't always perform better.					
2. Which of the following are indications that you should regularize? Select all that apply.					
\square A. Our training loss is 0.					
\square B. Our model bias is too high.					
☐ C. Our model variance is too high.					
\square D. Our weights are too large.					
\square E. Our model does better on unseen data than training data.					
\square F. We have linearly dependent features.					
\square G. We are training a classification model and the data is linearly separable.					

- 3. Suppose we have a data set which we divide into 3 equally sized parts, A, B, and C. We fit 3 linear regression models with L2 regularization (i.e. ridge regression), X, Y, and Z, all on A. Each model uses the same features and training set, the only difference is the λ used by each model. Select all below that are **always true**.
 - \square A. Suppose Z has the lowest average loss on B. Model Z will have the lowest average loss when evaluated on C.
 - \square B. If A and B have the same exact mean and variance, the average loss of model Y on B will be exactly equal to the average loss of Y on A.
 - \square C. If $\lambda = 0$ for model X, $Loss(X, A) \leq Loss(Y, A)$ and $Loss(X, A) \leq Loss(Z, A)$.
 - \square D. If $\lambda_Y < \lambda_Z$, then $Loss(Y, A) \leq Loss(Z, A)$.
 - \square E. If $\lambda_Y > \lambda_Z$, then $Loss(Y, B) \ge Loss(Z, B)$.
 - \square F. None of the above.

Solution:

- A: Not guaranteed since we don't know the distributions of B, C.
- B: Having the same mean and variance does not imply that the data are the same.
- C: Since increasing λ increases bias, the loss of X must be less than or equal to the loss of Y, Z on A.
- D: Since Y and Z were trained on A, and Y is less restricted than Z, the loss of Y on A must be less than the loss of Z on A. E: Even though Z is a more restricted (i.e. simpler) model, it is possible that the dataset B is slightly better for Z. In other words, minimizing training error with a regularized model does not guarantee minimized error on unseen datasets.
- 4. True or False.

(a)	A binary $(0/1)$ classifier that always predicts 1 can get 100% precision, and its reca	11
	will be the fraction of ones in the training set.	

○ A. True ○ B. False

(b) If the training data is linearly separable we expect a logistic regression model to obtain 100% training accuracy.

○ A. True ○ B. False

(c) We should use classification if the response variable is categorical.

○ A. True ○ B. False

(d) A binary classifier that only predicts class 1 may still achieve 99% accuracy on some prediction tasks.

○ A. True ○ B. False

- 5. The plot below is a scatter plot of a dataset with two dimensional features and binary labels (e.g., Class 0 and Class 1). Without additional feature transformations, is the this dataset linearly separable?
 - (A. Yes. (B. No. () C. We cannot tell that from this plot.

6. We perform a 4-fold cross validation on 4 different hyper-parameters, the mean square error are shown in the table below. Which λ should we select?

Fold Num	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.3$	$\lambda = 0.4$	Row Max	Row Min	Row Avg
1	80.2	84.1	70.1	91.2	91.2	70.1	83.36
2	76.8	77.3	83.3	88.8	88.8	76.8	83
3	81.5	74.5	81.6	86.5	86.5	74.5	82.12
4	79.4	75.2	79.2	85.4	85.4	75.2	80.92
Col Avg	79.475	77.775	78.55	87.975			

$$\bigcirc \text{ A. } \lambda = 0.1 \quad \bigcirc \text{ B. } \lambda = 0.2 \quad \bigcirc \text{ C. } \lambda = 0.3 \quad \bigcirc \text{ D. } \lambda = 0.4$$

- 7. Answer **true** or **false** for each of the following statements about logistic regression:
 - (a) If no regularization is used and the training data is linearly separable, the optimal model parameters will tend towards positive or negative infinity.

○ A. True ○ B. False

(b) After using L^2 regularization, the optimal model parameter will be the mean of the data, since L^2 regularization is similar to the square loss.

○ A. True ○ B. False

- (c) L^1 regularization can help us select a subset of the features that are important.
 - A. True B. False
- (d) After using the regularization, we expect the training accuracy to increase and the test accuracy to decrease.
 - A. True B. False
- 8. Suppose you are given the following dataset $\{(x_i, y_i)\}_{i=1}^n$ consisting of x and y pairs where the covariate $x_i \in \mathbb{R}$ and the response $y_i \in \{0, 1\}$.

Given this data, the value $\mathbb{P}(Y=1 \mid x=-1)$ is likely closest to:

- B. 0.50
- O. C. 0.05
- \bigcirc D. -0.95
- 9. Suppose we train a binary classifier on some dataset. Suppose y is the set of true labels, and \hat{y} is the set of predicted labels.

y	0	0	0	0	0	1	1	1	1	1
\hat{y}	0	1	1	1	1	1	1	0	0	0

Determine each of the following quantities.

(a) The number of true positives

Solution: 2

(b) The number of false negatives

Solution: 3

(c) The precision of our classifier. Write your answer as a simplified fraction.

Solution: $\frac{2}{2+4} = \frac{1}{3}$

10. You have a classification data set, where x is some value and y is the label for that value:

x	y
2	1
$\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$	0
0	1
1	0

Suppose that we're using a logistic regression model to predict the probability that Y=1 given x:

$$\mathbb{P}(Y = 1|x) = \sigma(\phi^T(x)\theta)$$

- (a) Suppose that $\phi(x) = [\phi_1 \quad \phi_2 \quad \phi_3]^T = [1 \quad x \quad x^2]^T$ and our model parameters are $\theta^* = \begin{bmatrix} 1 & 0 & -2 \end{bmatrix}^T$. For the following parts, leave your answer as an expression (do not numerically evaluate log, e, π , etc).
 - i. Compute $\hat{\mathbb{P}}(y=1|x=0)$.

Solution:
$$\frac{1}{1+\exp(-1)}$$

ii. What is the loss for this single prediction $\hat{\mathbb{P}}(y=1|x=0)$, assuming we are using KL divergence as our loss function (or equivalently that we are using the cross entropy as our loss function)?

Solution:
$$\log(1 + \exp(-1))$$

(b) Suppose $\phi(x) = \begin{bmatrix} 1 & x & x\%2 \end{bmatrix}^T$, where % is the modulus operator. Are the data from part a linearly separable with these features? If so, give the equation for a separating plane, e.g. $\phi_2 = 3\phi_3 + 1$. Use 1-indexing, e.g. we have ϕ_1 , ϕ_2 , and ϕ_3 . If not, just write "no".

Solution: Yes, they can be separated by the hyperplane $\phi_3 = 0.5$.

11. Suppose we have the dataset below.

x	y
1	1
-1	0

Suppose we have the feature set $\phi(x) = [\phi_1 \quad \phi_2]^T = [1 \quad x]^T$. Suppose we use gradient descent to compute the θ which minimizes the KL divergence under a logistic model without regularization, i.e.

$$\arg\min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} (y_i \phi(x_i)^T + \log(\sigma(-\phi(x_i)^T \theta)))$$

Select all that are true regarding the data points and the optimal theta value θ .

- \square A. The data is linearly separable.
- \square B. The optimal θ yields an average cross entropy loss of zero.
- \square C. The optimal θ diverges to $-\infty$
- \square D. The optimal θ diverges to $+\infty$
- \square E. The equation of the line that separates the 2 classes is $\phi_2 = 0$.
- \square F. None of the above.

Solution:

- □ A. True. When drawn in the 2-D feature space, the points are linearly separable.
- \square B. True. If the data is linearly separable, we can achieve an average cross entropy loss of zero and our parameter value θ will diverge.
- \square C. False. The optimal theta value θ diverges to $+\infty$
- \Box D. True. The optimal theta value θ diverges to $+\infty$
- \square E. True. If we draw the line $\phi_2 = 0$ in the 2-D feature space, this separates the points.
- \square F. False. 4 choices were true above.
- 12. Suppose we have the dataset below.

x	y
-3	1
-1	0
1	0
3	1

Suppose we have the feature set $\phi(x) = \begin{bmatrix} 1 & x^2 \end{bmatrix}^T$. Suppose we use gradient descent to compute the θ which minimizes the KL divergence under a logistic model without regularization, i.e.

$$\arg\min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} (y_i \phi(x_i)^T + \log(\sigma(-\phi(x_i)^T \theta)))$$

(a) Explain in 10 words or fewer why the magnitudes of θ_1 and θ_2 will be very large.

Solution: Because the data is linearly separable.

- (b) Will the sign of θ_2 be negative or positive?
 - A. Could be either, it depends on where our gradient descent starts
 - O B. Positive
 - C. Negative
 - \bigcirc D. Neither, θ_2 will be zero
- (c) If we use L_1 regularization, which of our θ values would you expect to be zero?
 - A. Neither of them
 - \bigcirc B. θ_1
 - \bigcirc C. θ_2
 - \bigcirc D. Both θ_1 and θ_2