garantidonos et F

Positive Properties of Context-Free languages

Union

Context-free languages are closed under: Union

$$L_1$$
 is context free
$$L_1 \cup L_2$$

$$L_2$$
 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

injunsumion wollo assistations of

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \cdot \{ww^R\} \quad S \to S_1 S_2$$

ctfosion

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\bigsqcup}$ is context-free

Example

Language

Grammar

$$L = \{a^nb^n\}$$
 $S \to aSb \mid \lambda$ Star Operation $S_1 \to SS_1 \mid \lambda$ $S_1 \to SS_1 \mid \lambda$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Datamorrison

Negative Properties of Context-Free Languages

Intersection

Context-free languages are <u>not</u> closed under: <u>intersection</u>

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\underbrace{ \begin{array}{c} L_1 \cap L_2 \\ \text{not necessarily} \\ \text{context-free} \end{array} }$

Example

$$L_1 = \{a^nb^nc^m\} \qquad L_2 = \{a^nb^mc^m\}$$

$$Context-free: \qquad Context-free: \qquad S \to AB$$

$$A \to aAb \mid \lambda \qquad \qquad S \to AB$$

$$A \to aAb \mid \lambda \qquad \qquad A \to aA \mid \lambda$$

$$C \to cC \mid \lambda \qquad \qquad B \to bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are <u>not</u> closed under:

complement

L is context free \longrightarrow L

not necessarily context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \to AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1} \cup \overline{L_2} = \underline{L_1} \cap \underline{L_2} = \{a^n b^n c^n\}$$

NOT context-free

Intersection
of
Context-free languages
and
Regular Languages

Example:

context-free

$$L_{1} = \{ w_{1}w_{2} : | w_{1} | = | w_{2} |, w_{1} \in \{a,b\}^{*}, w_{2} \in \{c,d\}^{*} \}$$

prome - context with create NPDA for Ma

NPDA M_1

regular
$$L_2 = \{a, c\}^*$$

DFA M_2

Automaton for:
$$L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$$

NPDA M
 $a, \lambda \to 1$
 $c, 1 \to \lambda$
 $a, \lambda \to$

Applications of Regular Closure

Uspare Diamontane gr

The intersection of

a context-free language and
a regular language
is a context-free language

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

We know:

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\} \quad \text{is regular}$$

$$\lim_{compleme} = \text{onessoid}$$

$$L_1 \neq \{(a+b)^*\} - \{a^{100}b^{100}\} \quad \text{is regular}$$

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\}\cap L_1$ context-free

$$\{a^nb^n\}\cap \overline{L_1}$$

1970 June 10 1976

$$\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n : n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

Then
$$L \cap \{a * b * c *\} = \{a^n b^n c^n\}$$

context-free regular context-free

Therefore, L is not context free