

Analisi e sviluppo di un componente Java per la generazione automatica di modelli NetLogo

Candidato: Aurel Pjetri

Relatore: Prof. Enrico Vicario

Co-Relatore: Dott. Sandro Mehic

Simulazione delle folle

Gli approcci più diffusi si dividono in due categorie:

• Microscopico:

rappresenta ogni persona come un agente, particella o macchina a stati finiti.

• Macroscopico:

studia caratteristiche macroscopiche come densità media e velocità della folla.

Simulazione di evacuazione tramite social force model

Simulazione tramite approccio *fluid dynamics*

Approccio gerarchico

Combina i due approcci per dare una soluzione analitica indipendente dal numero di agenti.

Microscopico

Macroscopico

NetLogo

Ambiente di modellazione di sistemi complessi e linguaggio di programmazione agent-based

- Gli agenti hanno uno stato proprio e agiscono in modo indipendente e concorrenziale.
- Il mondo è suddiviso in **patches** interamente programmabili.
- · Ampiamente accettato dalla comunità.
- È lo strumento più diffuso per la modellazione agent-based.
- Linguaggio di programmazione procedurale poco flessibile e di difficile gestione.

Obiettivo

Automatizzare il processo di scrittura del codice NetLogo che esegue le simulazioni

Logica di dominio

Builder

- XMLParser analizza il documento ed estrae le informazioni di interesse.
- NetLogoGraphBuilder costruisce e compone gli oggetti della struttura.

Visitor

- Usano le interfacce degli oggetti della struttura per estrarre le informazioni.
- Scrivono il codice NetLogo.

Modelli NetLogo

Modellazione dell'ambiente

Modellazione del movimento degli attori e raccolta dei dati

Esperimenti

Simuliamo l'evacuazione su un modello che rappresenta un tessuto urbano

Per gli scenari A e D:

- Due modalità di simulazione: con densità costante e transitoria.
- Tre stati iniziali diversi: alta, media e bassa densità di affollamento.

Risultati

- Nello scenario con maggiore frammentazione il tempo di simulazione è minore
- In caso di modifiche possiamo simulare solo le regioni interessate
- Nel modello monolitico impiego sempre lo stesso tempo

Scenario	Densità costante	Transitorio
Monolitico		9:19:40
A	21:33:36	0:21:51
D	09:09:02	0:23:13

Tempi totali di simulazione

Regione	Densità costante	Transitorio
A1	3:16:25	0:03:06
A2	2:13:11	0:02:40
A3	5:12:48	0:03:40
A4	6:20:39	0:06:08
A5	2:36:25	0:03:29
A6	1:46:20	0:02:46

Tempi di simulazione scenario A

Region	ne	Densità co	ostante	Transitorio
D1		0:27:26		0:01:56
D2	/	0:29:15		0:02:03
D3		0:49:46		0:01:58
D4		0:29:48		0:02:00
D5		1:12:14		0:01:51
D6		1:04:18		0:01:40
D7		1:14:06		0:01:58
D8		1:04:41		0:02:07
D9		1:08:36		0:01:58
D10		0:53:40		0:02:06
D11		0:06:25		0:01:43
D12		0:08:47		0:01:48

Tempi di simulazione scenario D

Risultati

- Con la modalità a densità costante si raccolgono molti più dati
- I dati sono più realistici rispetto al modello transitorio

Scena	ario	Densità costante	Transitorio
Mono	olitico		9949
Α		395650	15998
D		408295	15862

Numero totale di dati raccolti

Scenario	Densità costante	Transitorio
Monolitico		9:19:40
\mathbf{A}	21:33:36	0:21:51
D	4:49:27	0:23:13

Tempi totali di simulazione

Regione	Densità costante	Transitorio
A 1	51325	1693
A2	55661	1528
A3	69095	2423
A4	71533	4057
A5	62510	2582
A 6	85526	3715

Numero di dati estratti dallo scenario A

Regione	Densità costante	Transitorio
D1	23463	803
$\mathbf{D2}$	27834	803
D3	46190	803
D4	35894	803
$\mathbf{D5}$	46454	1100
D6	43967	1100
D7	25052	1900
D8	25902	1900
D9	35990	1450
D10	32826	1450
D11	43770	1450
D12	20953	2300

Numero di dati estratti dallo scenario D

Conclusioni e sviluppi

Risultati conseguiti:

- Componente Java che automatizza la scrittura del codice NetLogo.
- Utilizzo del componente nelle attività di ricerca del Software Science and Technology Laboratory (STLAB), Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Firenze.

Sviluppi abilitati dai risultati conseguiti:

- Estensione della logica di rappresentazione dei comportamenti degli agenti includendo anche aspetti sociali e studio dell'impatto che questo ha sulla correttezza delle simulazioni.
- Implementazione di un'interfaccia che faciliti l'utilizzo.
- Implementazione di nuovi parsers per formati alternativi all'XML.