

# About the "vector quantization" concept

a "vector quantization" (VQ) is nothing more than an approximator; the idea is similar to that of "rounding-off" (e.g., to the nearest integer); the original motivation is *dimensionality reduction* or *data compression* 



each number in [-4 .. -2[ is approximated by -3 each number in [-2 .. 0[ is approximated by -1 each number in [0 .. 2[ is approximated by 1 each number in [2 .. 4[ is approximated by 3

the approximate values are uniquely represented by 2 bits

00 for -3, 01 for -1, 10 for 1, 11 for 3

so, the approximation is also a "compressed" way of representing the data; we use 2 bits instead of the 4 bits that would needed to represent the 9 different integers

a VQ example of a 2-dimensional (2D) space



each pair of numbers (i.e. each 2D point) falling in a particular region is approximated by the red cross associated with that region;

notice that there are 16 regions and 16 red crosses each of which can be uniquely represented by 4 bits; thus, this is a 2-dimensional, 4-bit VQ so, the general formulation is that "vector quantization" maps k-dimensional vectors into a finite set of vectors  $Y = \{y_i: i=1, 2, ..., n\}$ ;

each vector  $y_i$  is called a "codebook vector" (cBv), and the set, Y, of all cBv is called a "codebook"

the "Learning Vector Quantization" (LVQ) goal is that:

given a dataset (training sequence) and given a number of "codebook vectors", find a codebook which best represents the class values in the dataset

example: each + is a training example (from the dataset) end each red-circle is a cBv

the lines represent the decision boundaries



## LVQ representation – Neural Network (no Hidden Layers)

 $O_M$ 

Competitive

layer

one layer of:
INPUT OUTPUT
nodes nodes

one INPUT node for:
each feature (i.e., dataset column)

X1

O2

X2

O3

 $X_d$ 

Input layer

Paulo Trigo Silva @ ISEI

the OUTPUT layer is also called; a "codebook"

each OUTPUT node is also called:

a "codebook vector"

at least one OUTPUT node for: each class value

one weight (connection) from each INPUT node to each OUTPUT node

- ... there are as many **input** nodes as **features** in the dataset
- ... there is at least one **output** node for each **class** value

here, D input and M output nodes; so D features and if using 2 nodes for each class value we have M/2 class values

#### Example – dataset and "codebook vectors"

| Dataset    |            |   |
|------------|------------|---|
| X1         | X2         | Y |
| 3,39353321 | 2,33127338 | 0 |
| 3,11007348 | 1,78153964 | 0 |
| 1,34380883 | 3,36836095 | 0 |
| 3,58229404 | 4,67917911 | 0 |
| 2,28036244 | 2,86699026 | 0 |
| 7,42343694 | 4,69652288 | 1 |
| 5,745052   | 3,5339898  | 1 |
| 9,17216862 | 2,51110105 | 1 |
| 7,79278348 | 3,42408894 | 1 |
| 7,93982082 | 0,79163723 | 1 |

#### dataset



features: X1, X2

class: Y

class values: 0, 1

| Codebook Vectors |            |   |  |  |  |  |  |
|------------------|------------|---|--|--|--|--|--|
| X1               | X2         | Y |  |  |  |  |  |
| 3,58229404       | 0,79163723 | 0 |  |  |  |  |  |
| 7,79278348       | 2,33127338 | 0 |  |  |  |  |  |
| 7,93982082       | 2,86699026 | 1 |  |  |  |  |  |
| 3,39353321       | 4,67917911 | 1 |  |  |  |  |  |

#### Exercise:

given these dataset and codebook vectors draw the LVQ neural network representation;

tag the connections using the weights taken from these codebook vectors and, as input, consider the third (3<sup>rd</sup>) instance of the dataset.





... the intuition is that, given a training example, each output unit (codebook vector) "competes" with all other output units

and, the winner is, the output unit **closer** to that training example

and, the winner gets (as a reward):
an **update of its weights** aiming to get more adapted than other units;
the adaptation is processed via **attraction** and **repulsion** rules

**attraction** rule – move codebook vector **closer to** the training example **repulsion** rule – move codebook vector **away from** the training example

because <u>one</u> codebook vector is selected for modification <u>for each training instance</u>, the algorithm is referred to as a <u>winner-take-all</u> (type of <u>competitive</u> learning)

#### The LVQ learning process – from the Data to the Model

the LVQ algorithm learns the "codebook vectors" from the training data

- [1] choose the number of codebook vectors (cBv) to use
  - possibly (but not necessarily) an equal number of cBv for each class
- [2] start the learning process with a pool of cBv
  - either randomly selected from training data,
  - or randomly generated with the same scale as the training data
  - ... each cBv has the same number of attributes as data and an output class value
- [3] the instances in the training data are processed one-at-a-time
  - for a given training instance, select its most similar cBv
  - the selected cBv is the "winner", also called the "best matching unit" (BMU)
- [4] the BMU gets its weights updated
  - if the BMU has the same class as the training instance, apply the attraction rule
  - otherwise, apply the **repulsion** rule (in relation to that training instance)

... for a given instance, select its **most similar** cBv

a common way of computing similarity is to establish a **distance** criteria and assume such **distance** as **the similarity order** relation i.e., the *closer the higher similarity* 

so, we need to define&compute a distance between vectors

and **rank** the distance from an instance data to each cBv the **closer** they are the **more similar** they are!

# "similar to" – define&compute a distance criteria

a general formulation of several distance functions (or, distance criteria) commonly used for numeric data

$$d_k(ec{x},ec{y}) = \left(\sum_{i=1}^n [x_i - y_i]^k
ight)^{rac{1}{k}}$$

Well-known special cases from this family are:

k=1: Manhattan or city block distance,

k=2: Euclidean distance,

 $k \to \infty$ : maximum distance, i.e.  $d_{\infty}(\vec{x}, \vec{y}) = \max_{i=1}^{n} |x_i - y_i|$ .



all points lying on a circle or rectangle are sharing the **same distance to the center point** according to the corresponding distance function

#### "similar to" - the Manhattan distance

the Manhattan distance, or the "city block" distance inspired on the idea of Manhattan having a "grid format"

the Manhattan distance between

$$A = <0, 1>$$
 and  $B = <3, 3>$ 

$$3 - 0 + 3 - 1 = 3 + 2 = 5$$



the Manhattan distance

$$ManhDist(X,Y) = \sum_{i=1}^{n} |x_i - y_i|$$

compute Manhattan distance between

$$A=<0,3,2,1,10>$$
 and  $B=<2,7,1,0,0>$ 

$$|0-2|+|3-7|+|2-1|+|1-0|+|10-0| = 18$$

#### "similar to" - the Eclidean distance

straight line distance between two points

the Euclidean distance between

$$A = <0, 1>$$
 and  $B = <3, 3>$ 

$$[(3-0)^2 + (3-1)^2]^{1/2} = [9+4]^{1/2} = 3.6$$



the Euclidean distance between vectors d<sub>i</sub> and d<sub>k</sub>

$$|d_j - d_k| = \sqrt{\sum_{i=1}^n (d_{i,j} - d_{i,k})^2}$$

compute Euclidean distance between

$$d_1 = \langle a, b, c \rangle$$
 and  $d_2 = \langle x, y, z \rangle$ 

$$\sqrt{\text{Abs}[a-x]^2 + \text{Abs}[b-y]^2 + \text{Abs}[d-z]^2}$$

... if the BMU has the same class as the training instance, then apply attraction rule; otherwise apply repulsion rule

... and an additional question is: what is the **amount** that the vector is **moved**? such amount is called the "**learning rate**"

**attraction** rule – move codebook vector, *x*, **closer to** the training example, *t*, by the amount of *LearningRate*,

$$x = x + LearningRate \times (t - x)$$

**repulsion** rule – move codebook vector, *x*, **away from** the training example, *t*, by the amount of *LearningRate*,

$$x = x - LearningRate \times (t - x)$$

# "attraction/repulsion" - an illustrative example





attraction rule

repulsion rule

- $\vec{x}$ : data point,  $\vec{r_i}$ : reference vector
- $\eta = 0.4$  (learning rate)

... this would be repeated for each training instance;

one iteration of the training dataset is called an epoch;

the process is completed for a number of epochs that we define, e.g., 200

## "attraction/repulsion and epoch" – an illustrative example

each training instance originates the attraction/repulsion of <u>only one</u> cBv an **epoch** has as many cBv movements as the number, N, of training instances a **number of epochs**, MaxEpoch, originates MaxEpoch × N movements of cBv



in this illustration we have one codebook vector (cBv) associated with each class value; but we may have several cBv associated with each class value

the amount that each cBv is moved is controlled by the *LearningRate*; in this illustration we have a **fixed** *LearningRate* = 0.1

Paulo Trigo Silva @ ISEI

## The *LearningRate* – fixed or time-dependent?



problem – a **fixed** learning ratethe process may get trapped into an oscillatory mode

solution – a time-dependent learning rate the rate decreases with epoch

$$LearningRate = alpha \times (1 - \frac{Epoch}{MaxEpoch})$$

LearningRate is the learning rate for the current Epoch (from 0 to MaxEpoch – 1) alpha is the learning rate specified to the algorithm at the start of training run

so, as *Epoch* increases (i.e., as time goes) the *LearningRate* decreases, and therefore the attraction/repulsion movements get smaller and smaller

using the above approach the *LearningRate* decreases linearly with the *Epoch* 

but, there are other alternatives to define a time-dependent LearningRate, such as,  $LearningRate = alpha ^{Epoch}$ , with  $0 \le alpha \le 1$ 

where the *LearningRate* decreases in a non-linearly with the *Epoch* 

## The time-dependent *LearningRate* – an example

non-Linear

alpha = 0,7 MaxEpoch = 20

|          |       | Lilleai      | HOH-LIHEAI   |
|----------|-------|--------------|--------------|
|          | Epoch | LearningRate | LearningRate |
| alpha    | 0     | 0,70000      | 1,00000      |
|          | 1     | 0,66500      | 0,70000      |
|          | 2     | 0,63000      | 0,49000      |
|          | 3     | 0,59500      | 0,34300      |
|          | 4     | 0,56000      | 0,24010      |
|          | 5     | 0,52500      | 0,16807      |
|          | 6     | 0,49000      | 0,11765      |
|          | 7     | 0,45500      | 0,08235      |
|          | 8     | 0,42000      | 0,05765      |
|          | 9     | 0,38500      | 0,04035      |
|          | 10    | 0,35000      | 0,02825      |
|          | 11    | 0,31500      | 0,01977      |
|          | 12    | 0,28000      | 0,01384      |
|          | 13    | 0,24500      | 0,00969      |
|          | 14    | 0,21000      | 0,00678      |
|          | 15    | 0,17500      | 0,00475      |
|          | 16    | 0,14000      | 0,00332      |
|          | 17    | 0,10500      | 0,00233      |
|          | 18    | 0,07000      | 0,00163      |
|          | 19    | 0,03500      | 0,00114      |
| MaxEpoch | 20    |              |              |
|          |       |              |              |

Linear

 $LearningRate = alpha \times (1 - \frac{Epoch}{MaxEpoch})$ 



LearningRate = alpha  $^{Epoch}$ , with  $0 \le alpha \le 1$ 



## [recall] The overall learning process – an example

the LVQ algorithm learns the "codebook vectors" from the training data

- [1] choose the number of codebook vectors (cBv) to use
  - possibly (but not necessarily) an equal number of cBv for each class
- [2] start the learning process with a pool of cBv
  - either randomly selected from training data,
  - or randomly generated with the same scale as the training data
  - ... each cBv has the same number of attributes as data and an output class value
- [3] the instances in the training data are processed one-at-a-time
  - for a given training instance, select its most similar cBv
  - ... the selected cBv is the "winner", also called the "best matching unit" (**BMU**)
- [4] the BMU gets its weights updated
  - if the BMU has the same class as the training instance, apply the attraction rule
  - otherwise, apply the repulsion rule (in relation to that training instance)

| Dataset    |            |   |
|------------|------------|---|
| X1         | X2         | Y |
| 3,39353321 | 2,33127338 | 0 |
| 3,11007348 | 1,78153964 | 0 |
| 1,34380883 | 3,36836095 | 0 |
| 3,58229404 | 4,67917911 | 0 |
| 2,28036244 | 2,86699026 | 0 |
| 7,42343694 | 4,69652288 | 1 |
| 5,745052   | 3,5339898  | 1 |
| 9,17216862 | 2,51110105 | 1 |
| 7,79278348 | 3,42408894 | 1 |
| 7,93982082 | 0,79163723 | 1 |

| Codebook Vectors |            |   |  |  |  |  |  |  |  |
|------------------|------------|---|--|--|--|--|--|--|--|
| X1               | X2         | Y |  |  |  |  |  |  |  |
| 3,58229404       | 0,79163723 | 0 |  |  |  |  |  |  |  |
| 7,79278348       | 2,33127338 | 0 |  |  |  |  |  |  |  |
| 7,93982082       | 2,86699026 | 1 |  |  |  |  |  |  |  |
| 3,39353321       | 4,67917911 | 1 |  |  |  |  |  |  |  |

#### ... example – the first 4 dataset examples

| Dataset    |            |   |
|------------|------------|---|
| X1         | X2         | Υ |
| 3,39353321 | 2,33127338 | 0 |
| 3,11007348 | 1,78153964 | 0 |
| 1,34380883 | 3,36836095 | 0 |
| 3,58229404 | 4,67917911 | 0 |
| 2,28036244 | 2,86699026 | 0 |
| 7,42343694 | 4,69652288 | 1 |
| 5,745052   | 3,5339898  | 1 |
| 9,17216862 | 2,51110105 | 1 |
| 7,79278348 | 3,42408894 | 1 |
| 7,93982082 | 0,79163723 | 1 |
|            |            |   |

- ..
- [3] the instances in the training data are processed one-at-a-time
  - for a given training instance, select its most similar cBv
  - ... the selected cBy is the "winner", also called the "best matching unit" (**BMU**)
- [4] the BMU gets its weights updated
  - if the BMU has the same class as the training instance, apply the attraction rule
  - otherwise, apply the repulsion rule (in relation to that training instance)

| Codebook Vectors |            |   |  |  |  |  |  |  |  |  |
|------------------|------------|---|--|--|--|--|--|--|--|--|
| X1               | X2         | Υ |  |  |  |  |  |  |  |  |
| 3,58229404       | 0,79163723 | 0 |  |  |  |  |  |  |  |  |
| 7,79278348       | 2,33127338 | 0 |  |  |  |  |  |  |  |  |
| 7,93982082       | 2,86699026 | 1 |  |  |  |  |  |  |  |  |
| 3,39353321       | 4,67917911 | 1 |  |  |  |  |  |  |  |  |

 $EuclideanDistance(a,b) = \sqrt{\sum_{i=1}^{n}(a_i-b_i)^2}$ 

(fixed) LearningRate = 0,7

| Training |     |              |            |   | Y          |            |   |           | 1        |         |               |            |            |   |
|----------|-----|--------------|------------|---|------------|------------|---|-----------|----------|---------|---------------|------------|------------|---|
| П        | (   | Codebook vec | tors       |   | Input      |            |   | Distances |          |         | \             | Codebook v | ectors t+1 |   |
| Ш        | # ) | X1           | X2         | Υ | X1         | X2         | Υ | (X1-X1)^2 | (x2-X2)^ | Sum     | Distance BMU? | X1         | X2         | Y |
| Ш        | 1   | 3,58229404   | 0,79163723 | 0 | 3,39353321 | 2,33127338 | 0 | 0,035631  | 2,37048  | 2,40611 | 1,5511 BMU    | 3,450161   | 1,869383   | 0 |
| Ш        | 2   | 7,79278348   | 2,33127338 | 0 | 3,39353321 | 2,33127338 | 0 | 19,3534   | 0        | 19,3534 | 4,39925       | 7,792783   | 2,331273   | 0 |
| Ш        | 3   | 7,93982082   | 2,86699026 | 1 | 3,39353321 | 2,33127338 | 0 | 20,66873  | 0,28699  | 20,9557 | 4,57774       | 7,939821   | 2,86699    | 1 |
| Ш        | 4   | 3,39353321   | 4,67917911 | 1 | 3,39353321 | 2,33127338 | 0 | 0         | 5,51266  | 5,51266 | 2,34791       | 3,393533   | 4,679179   | 1 |
| П        | 1   | 3,45016146   | 1,86938254 | 0 | 3,11007348 | 1,78153964 | 0 | 0,11566   | 0,00772  | 0,12338 | 0,35125 BMU   | 3,2121     | 1,807893   | 0 |
| Ш        | 2   | 7,79278348   | 2,33127338 | 0 | 3,11007348 | 1,78153964 | 0 | 21,92777  | 0,30221  | 22,23   | 4,71487       | 7,792783   | 2,331273   | 0 |
| Ш        | 3   | 7,93982082   | 2,86699026 | 1 | 3,11007348 | 1,78153964 | 0 | 23,32646  | 1,1782   | 24,5047 | 4,95022       | 7,939821   | 2,86699    | 1 |
| Ш        | 4   | 3,39353321   | 4,67917911 | 1 | 3,11007348 | 1,78153964 | 0 | 0,080349  | 8,39631  | 8,47666 | 2,91147       | 3,393533   | 4,679179   | 1 |
| П        | 1   | 3,21209988   | 1,80789251 | 0 | 1,34380883 | 3,36836095 | 0 | 3,490511  | 2,43506  | 5,92557 | 2,43425       | 3,2121     | 1,807893   | 0 |
| Ш        | 2   | 7,79278348   | 2,33127338 | 0 | 1,34380883 | 3,36836095 | 0 | 41,58927  | 1,07555  | 42,6648 | 6,53183       | 7,792783   | 2,331273   | 0 |
| Ш        | 3   | 7,93982082   | 2,86699026 | 1 | 1,34380883 | 3,36836095 | 0 | 43,50737  | 0,25137  | 43,7587 | 6,61504       | 7,939821   | 2,86699    | 1 |
| Ш        | 4   | 3,39353321   | 4,67917911 | 1 | 1,34380883 | 3,36836095 | 0 | 4,20137   | 1,71824  | 5,91961 | 2,43303 BMU   | 4,82834    | 5,596752   | 1 |
| П        | 1   | 3,21209988   | 1,80789251 | 0 | 3,58229404 | 4,67917911 | 0 | 0,137044  | 8,24429  | 8,38133 | 2,89505       | 3,2121     | 1,807893   | 0 |
| П        | 2   | 7,79278348   | 2,33127338 | 0 | 3,58229404 | 4,67917911 | 0 | 17,72822  | 5,51266  | 23,2409 | 4,82088       | 7,792783   | 2,331273   | 0 |
| П        | 3   | 7,93982082   | 2,86699026 | 1 | 3,58229404 | 4,67917911 | 0 | 18,98804  | 3,28403  | 22,2721 | 4,71933       | 7,939821   | 2,86699    | 1 |
| Ш        | 4   | 4,82834028   | 5,59675182 | 1 | 3,58229404 | 4,67917911 | 0 | 1,552631  | 0,84194  | 2,39457 | 1,54744 BMU   | 5,700573   | 6,239053   | 1 |

## ... example – for each BMU attraction or repulsion rule?

# Codebook Vectors X1 X2 Y 3,58229404 0,79163723 0 7,79278348 2,33127338 0 7,93982082 2,86699026 1 3,39353321 4,67917911 1

- ...
- [4] the BMU gets its weights updated
  - if the BMU has the same class as the training instance, apply the attraction rule
  - otherwise, apply the repulsion rule (in relation to that training instance)

| Ш        | Tra | aining        |            |   |            |            |   | •         |          |         |               |                 | / /                        |            |
|----------|-----|---------------|------------|---|------------|------------|---|-----------|----------|---------|---------------|-----------------|----------------------------|------------|
| Ш        |     | Codebook vect | tors       |   | Input      |            |   | Distances |          |         |               | Codebook        | ctors 1 - 1                | <u>ا</u> ا |
| Ш        | #   | X1            | X2         | Υ | X1         | X2         | Υ | (X1-X1)^2 | (x2-X2)^ | Sum     | Distance BMU? | X1              | <b>(2/</b>                 | Y          |
| Ш        | 1   | 3,58229404    | 0,79163723 | 0 | 3,39353321 | 2,33127338 | 0 | 0,035631  | 2,37048  | 2,40611 | 1,55116 BMU   | 3,450161        | <b>/</b> 1,86 <b>9</b> 383 | 3 0        |
| Ш        | 2   | 7,79278348    | 2,33127338 | 0 | 3,39353321 | 2,33127338 | 0 | 19,3534   | 0        | 19,3534 | 4,39925       | 7,792783        | 2,331273                   | 3 0        |
| Ш        | 3   | 7,93982082    | 2,86699026 | 1 | 3,39353321 | 2,33127338 | 0 | 20,66873  | 0,28699  | 20,9557 | 4,57774       | 7,939821        | 2/85699                    | ) 1∐       |
| Ш        | 4   | 3,39353321    | 4,67917911 | 1 | 3,39353321 | 2,33127338 | 0 | 0         | 5,51266  | 5,51266 | 2,34791       | 3,393533        | 4 6 9179                   | ) 1        |
| П        | 1   | 3,45016146    | 1,86938254 | 0 | 3,11007348 | 1,78153964 | 0 | 0,11566   | 0,00772  | 0,12338 | 0,35125 BMU   | 3,2121          | 1,807893                   | 3 0        |
| Ш        | 2   | 7,79278348    | 2,33127338 | 0 | 3,11007348 | 1,78153964 | 0 | 21,92777  | 0,30221  | 22,23   | 4,71487       | 7,792783        | 2,831273                   | 3 0        |
| Ш        | 3   | 7,93982082    | 2,86699026 | 1 | 3,11007348 | 1,78153964 | 0 | 23,32646  | 1,1782   | 24,5047 | 4,95022       | 7,939821        | 2,86699                    | ) 1        |
| Ш        | 4   | 3,39353321    | 4,67917911 | 1 | 3,11007348 | 1,78153964 | 0 | 0,080349  | 8,39631  | 8,47666 | 2,91147       | 3,393533        | ,679179                    | ) 1        |
| JΠ       | 1   | 3,21209988    | 1,80789251 | 0 | 1,34380883 | 3,36836095 | 0 | 3,490511  | 2,43506  | 5,92557 | 2,43425       | 3,21 <b>/</b> 1 | 1,807893                   | 3 0        |
| <u> </u> | 2   | 7,79278348    | 2,33127338 | 0 | 1,34380883 | 3,36836095 | 0 | 41,58927  | 1,07555  | 42,6648 | 6,53183       | 7,792783        | 2,331273                   | 3 0        |
| 3) [     | 3   | 7,93982082    | 2,86699026 | 1 | 1,34380883 | 3,36836095 | 0 | 43,50737  | 0,25137  | 43,7587 | 6,61504       | 7 839821        | 2,86699                    | ) 1∐       |
| الق      | 4   | 3,39353321    | 4,67917911 | 1 | 1,34380883 | 3,36836095 | 0 | 4,20137   | 1,71824  | 5,91961 | 2,43303 BMU   | 4,82834         | 5,596752                   | 2 1        |
| 5 T      | 1   | 3,21209988    | 1,80789251 | 0 | 3,58229404 | 4,67917911 | 0 | 0,137044  | 8,24429  | 8,38133 | 2,89505       | 3,2721          | 1,807893                   | - 1        |
|          | 2   | 7,79278348    | 2,33127338 | 0 | 3,58229404 | 4,67917911 | 0 | 17,72822  | 5,51266  | 23,2409 | 4,82088       | 7,792783        | 2,331273                   | 3 0        |
| =        | 3   | 7,93982082    | 2,86699026 | 1 | 3,58229404 | 4,67917911 | 0 | 18,98804  | 3,28403  | 22,2721 | 4,71933       | 7,939821        | 2,86699                    | ) 1        |
|          | 4   | 4,82834028    | 5,59675182 | 1 | 3,58229404 | 4,67917911 | 0 | 1,552631  | 0,84194  | 2,39457 | 1,54744 BMU   | 5,700573        | 6,239053                   | 31         |
| <u> </u> | •   |               |            |   |            |            |   |           |          |         |               |                 |                            |            |





#### ... a question!

| Dataset    |            |   |
|------------|------------|---|
| X1         | X2         | Υ |
| 3,39353321 | 2,33127338 | 0 |
| 3,11007348 | 1,78153964 | 0 |
| 1,34380883 | 3,36836095 | 0 |
| 3,58229404 | 4,67917911 | 0 |
| 2,28036244 | 2,86699026 | 0 |
| 7,42343694 | 4,69652288 | 1 |
| 5,745052   | 3,5339898  | 1 |
| 9,17216862 | 2,51110105 | 1 |
| 7,79278348 | 3,42408894 | 1 |
| 7,93982082 | 0,79163723 | 1 |

6,57012799

given the dataset, the "codebook vectors" and the Euclidean distance how is the point marked (with a red diamond) classified (as a zero or as a one)?



4,10547856 1



notice that the point marked (with a red diamond) belongs to the dataset and is the instance (with class one) in the "lowest-and-most-right" location...



we can identify, in the dataset, the point to be classified we can (visually) see which cBv are closer to the point to be classified so, we **just need** to calculate the **distance** (Euclidean) from **each cBv to the point**..



Paulo Trigo Silva @ ISEL





#### LVQ – some additional approaches

#### an alternative update-rule

Idea: update not only the BMU (closest cBv), but update the two closest cBv

additionally we may also impose that such update only occurs in case the **two closest cBv represent different classes** 

#### other ideas

#### **Frequency Sensitive Competitive Learning**

the distance to a cBv is modified according to the number of data points that are assigned to this cBv

#### **Size and Shape Parameters**

associate each cVb with a cluster radius; update radius depending on how close the data points are

#### **Fuzzy LVQ**

exploits the close relationship to fuzzy clustering (an online version of it)

usually, a feature may be either numeric or categorical (nominal or ordinal)

nominal – values belong to a limited and set of categories without natural ordering e.g., "arthritis", "asthma", "diabetes", "ulcers"

ordinal – values have particular order but unknown distance e.g., "very-low", "low", "normal", "high", "very-high"

LVQ is originally designed for metric vector spaces (numeric features)

when extending LVQ to non-vector representation (i.e., to include categorical domain features) we find two main difficulties:

- a. define the distance measurement, and
  - b. define the learning update rules

extend distance measurement – e.g., mismatch measurement on categorical features extend update rules – is more complex and a "nice" approach is proposed in, "Extending Learning Vector Quantization for Classifying Data with Categorical Values"; by Ning Chen and Nuno Marques; Communications in Computer and Information Science