Децентрализованный алгоритм управления конвейерной системой с использованием методов мультиагентного обучения с подкреплением

Мухутдинов Дмитрий, группа М4239 Научный руководитель: Фильченков А. А., к.ф-м.н., доцент ФИТиП Консультант: Вяткин В.В., д.т.н., профессор ФИТиП

> Факультет Информационных Технологий и Программирования Мегафакультет Трансляционных Информационных Технологий Университет ИТМО, Санкт-Петербург

> > 23 мая 2019 г.

Конвейерные системы

Применения:

- Промышленность
- Сортировка грузов
- Распределение багажа
- ..

Типы:

- Для насыпных грузов
- Для штучных грузов
 - В т. ч. для транспортировки багажа

Задача управления конвейерной системой

Подзадачи:

- Маршрутизация
- Избежание столкновения грузов
- Оптимизация энергопотребления

Управления конвейерной системой: маршрутизация

- Для насыпных грузов: оптимальный контроль (LP) по заданному расписанию 1
- Для штучных грузов (багажные системы):
 - Оптимальный контроль нецелесообразен
 - Пассажиры сдают багаж в случайном порядке
 - Централизованный статический роутинг (BSR²)
 - Децентрализованный роутинг на основе distance-vector протокола³
 - Закрытые проприетарные подходы от производителей систем

¹Ago, Nishi, Konishi.

²Johnstone, Creighton, Nahavandi.

³Black, Vyatkin.

Управления конвейерной системой: избежание столкновений

- При оптимальном контроле (в насыпных конвейерах): одно из ограничений оптимизационной задачи⁴
- Для штучных грузов:
- Одна идея: взаимная синхронизация скоростей сочленяющихся конвейеров
- Кто-то это патентует⁵
- Описан в рамках децентрализованного контроля у Вяткина⁶

⁴Ago, Nishi, Konishi.

⁵Schäfer.

⁶Black, Vyatkin.

Управления конвейерной системой: энергосбережение

- Для насыпных грузов:
 - Стандартные модели энергопотребления: ISO 5048, DIN 22101, JIS B 9905 (сложные)
 - Упрощенные модели для оптимизации на их основе⁷
 - Оптимальный контроль по заданному расписанию:
 - Включение-выключение питания⁸
 - Управление скоростью⁹ (эффективнее)
- Для штучных грузов:
 - Простая абстрактная модель энергопотребления 10
 - Постулируется линейная зависимость от скорости конвейера и некоторая – от массы грузов на нем

⁷S. Zhang, Xia, "Modeling and energy efficiency optimization of belt conveyors".

⁸Middelberg, J. Zhang, Xia.

⁹S. Zhang, Xia, "Optimal control of operation efficiency of belt conveyor systems".

¹⁰"Design and implementation of intelligent energy efficient conveyor system model based on variable speed drive control and physical modeling".

Децентрализованный подход (Вяткин)

- В рамках стандарта IEC 61499
- Контроллер одного конвейера независимый агент
 - Оснащен датчиком скорости, детекторами сумок у развилок и отклонителями на исходящих развилках
 - Управляет скоростью и отклонителями
 - Моделирует позиции собственных сумок
- Маршрутизация на основе distance-vector
- Протокол для избежания столкновений

Цель работы

Разработать алгоритм управления конвейерной системой со следующими свойствами:

- Децентрализованность
- Оптимизация энергопотребления кроме маршрутизации и избежания столкновений
- Устойчивость к разнородным изменениям в условиях среды
 - Изменения характеристик багажного потока
 - Поломки конвейеров

Идея

- Предполагаем оборудование аналогичное описанному у Вяткина
 - Один конвейер один контроллер
 - Единственное добавление: счетчик электроэнергии
- Аналогичный протокол для избежания столкновений
- Постановка задачи в терминах RL
- Нейросети в качестве маршрутизаторов для каждого сочленения
 - Логика маршрутизатора универсальная, может использоваться и в компьютерных сетях
- Маршрутизация на основе Q-routing¹¹

¹¹Boyan, Littman.

Постановка задачи в терминах RL

- Формально, агентом в сети является сумка
- Действие перенаправление в развилке отклонителем
- Выключаем конвейеры без сумок
- Вознаграждение сумки состоит из времени перемещения и оверхэда на энергопотребление:
 - $r_t = (t_d t_s) + \alpha \int_{t_s}^{t_d} p_k(t) dt$
 - Оверхэд рассчитывается принимающим конвейером

Что было сделано: алгоритм DQN-routing 12

- Объединяет link-state протокол с алгоритмом Q-routing
- Вход нейросети:
 - ullet Текущий узел n, узел назначения d
 - Узлы-соседи Ү
 - Матрица смежности графа
- Выход: $\{Q_x(d,y)\}_{y\in Y}$

Был протестирован в сеттинге компьютерных и конвейерных сетей

¹²"Multi-agent deep learning for simultaneous optimization for time and energy in distributed routing system".

Плюсы и минусы DQN-routing

• Плюсы

- Адаптация под изменения трафика
- Адаптация после поломок
- Оптимизация времени доставки и энергопотребления с заданным приоритетом

• Минусы

- Размер выходного слоя линейно зависит от размера графа
- Размер входного слоя квадратично (!) зависит от размера графа
- Требует предварительного обучения с учителем

Можно ли избавиться от минусов, не потеряв плюсов?

Идеи усовершенствования алгоритма

- Предсказание Q-функции отдельно для каждого исходящего ребра
 - ullet Вместо множества текущих соседей подаем на вход одного соседа y.
 - ullet Один нейрон на выходном слое выдает скалярное значение $Q_x(d,y)$
- Использование графовых эмбеддингов
 - Вместо кодирования меток узлов унитарным кодом использовать их отображения в векторное пространство фиксированной размерности
 - Отказ от подачи на вход матрицы смежности
 - Вместо этого пересчитывать эмбеддинги при изменении топологии
 - Эмбеддинги косвенно передадут информацию о топологии

Модификация: DQN-LE-routing

- Получаем эмбеддинги методом Laplacian Eigenmaps (LE)
- Нормализуем веса ребер по среднему перед расчетом
- Полученные эмбеддинги домножаем на средний вес

Тогда

$$Q_n(d, y) = f_{\theta}((LE_G(d) - LE_G(n)) \odot (LE_G(y) - LE_G(n)))$$

, где:

- $LE_G(\cdot)$ возвращает эмбеддинг по номеру узла
- $f_{\theta}(\cdot)$ feed-forward нейронная сеть

Эксперименты в модели компьютерной сети

- Запуск экспериментов в симуляторе
- Размерность эмбеддинга: 8
- Бейзлайны:
 - Табличный Q-routing
 - Дейкстра с протоколом link-state (shortest paths, SP)
 - Оригинальный DQN-routing (DQN)
- Служебные сообщения доставляются бесплатно
- Зачем?
 - Быстрее симулировать, чем конвейеры
 - Показываем универсальность алгоритма

Эксперименты в модели компьютерной сети: предобучение

- У нетабличного Q-обучения нет гарантий сходимости (2)
- Experience replay не работает в нестационарной среде
- Предобучаем на действиях алгоритма shortest paths
- Получаем данные на базовом графе (1) и его модификациях

Рис. 1: Базовая топология сети для тестов

Рис. 2: Работа DQN без предобучения

Эксперименты: резкое изменение нагрузки

Эксперименты: обрыв и восстановление соединений

Перенос опыта на новую топологию

- DQN-LE-routing все еще требует предобучения
- Однако, если опыт переносится на совершенно новые топологии, это не страшно
- Проверим производительность на случайном графе

Перенос опыта на новую топологию: то же кол-во вершин

Перенос опыта на новую топологию: большее кол-во вершин

Перенос опыта на новую топологию: большее кол-во вершин

300 Shortest paths Q-routing DQN-LE Среднее время пакета в пути 100 100 100 50 10000 20000 30000 40000 Время симулятора

Рис. 3: Низкая нагрузка

Рис. 4: Высокая нагрузка

Эксперименты в модели конвейерной системы

- Бейзлайны:
 - Оригинальный децентрализованный подход Вяткина (обозн. Vyatin-Black)
 - Централизованный статический роутинг (BSR¹³)
 - Плюс централизованное избежание столкновений по аналогии с Vyatkin-Black (самописное, нет в оригинале)
 - Модификация Vyatkin-Black с использованием табличного Q-routing
- Заданы параметры:
 - Длины и максимальные скорости конвейеров
 - Задержка перед остановкой после ухода сумок с конвейера
 - Конфигурация системы: входы, выходы и сочленения
- Модель энергопотребления: модель от Zhang для насыпных конвейеров, адаптированная для штучных
 - $P(V,T) = \frac{1}{\eta} \left(\theta_1 V T^2 + \theta_2 V + \theta_3 \frac{T^2}{V} + \theta_4 T + \frac{V^2 T}{3.6} \right)$
 - $T = M_b * V * 3.6/L$
 - ullet V скорость, M_b масса всех сумок, L длина конвейера

Модель конвейерной системы для проведения экспериментов

Неравномерный поток до выходных вершин

Итоги

- Разработана модификация алгоритма DQN-routing DQN-LE-routing
- Модифицированный алгоритм свободен от ключевых недостатков DQN-routing:
 - Зависимость размера нейронной сети от размера графа
 - Необходимость переобучения с учителем на новых графах
- Превосходит изначальный алгоритм по качеству работы и границам применимости
 - Также работает быстрее ввиду меньшего размера нейросети
 - Гораздо лучше подходит для микроконтроллерной реализации

Спасибо за внимание!

Плавное повышение нагрузки: $\alpha=5e6$

