Chapter 5. Vector random variables

- A vector random variable $\mathbf{X} = (X_1, X_2, \dots, X_n)$ is a collection of random numbers with probabilities assigned to outcomes.
- X can also be called a multivariate random variable.
- The case with n=2 we call a **bivariate random variable**.
- Saying X and Y are **jointly distributed random variables** is equivalent to saying (X,Y) is a bivariate random variable.
- Vector random variables let us model relationships between quantities.

Example: midterm and final scores

• We will look at the anonymized test scores for a previous course.

```
download.file(destfile="course_progress.txt",
  url="https://ionides.github.io/401f18/01/course_progress.txt")
```

```
# Anonymized scores for a random subset of 50 students "final" "quiz" "hw" "midterm"  
"1" 52.3 76.7 91 61.7
```

"2" 68.2 65.4 94.5 48.3 "3" 78.4 91.2 95.5 80

 A probability model lets us answer a question like, "What is the probability that someone gets at least 70% in both the midterm and the final"

```
x <- read.table("course_progress.txt")
plot(final~midterm,data=x)</pre>
```

The bivariate normal distribution and covariance

- Let $X \sim \operatorname{normal}(\mu_X, \sigma_X)$ and $Y \sim \operatorname{normal}(\mu_Y, \sigma_Y)$.
- If X and Y are bivariate random variables we need another parameter to describe their dependence. If X is big, does Y tend to be big, or small, or does the value of X make no difference to the outcome of Y?
- This parameter is the **covariance**, defined to be

$$\operatorname{Cov}(X, Y) = \operatorname{E}\Big[\big(X - \operatorname{E}[X]\big) \big(Y - \operatorname{E}[Y]\big)\Big]$$

• The parameters of the bivariate normal distribution in matrix form are the mean vector $\mu = (\mu_X, \mu_Y)$ and the variance/covariance matrix,

$$\mathbb{V} = \begin{bmatrix} \operatorname{Var}(X) & \operatorname{Cov}(X,Y) \\ \operatorname{Cov}(Y,X) & \operatorname{Var}(Y) \end{bmatrix}$$

• In R, the mvtnorm package lets us simulate the bivariate and multivariate normal distribution via the rmvnorm() function. It has the mean vector and variance/covariance matrix as arguments.

Experimenting with the bivariate normal distribution


```
library(mvtnorm)
mvn <- rmvnorm(n=50,
   mean=c(X=65,Y=65),
   sigma=matrix(
      c(200,100,100,150),
      2,2)
)
plot(Y~X,data=mvn)</pre>
```

• We write $(X,Y) \sim \text{MVN}(\mu, \mathbb{V})$, where MVN is read "multivariate normal".

Question 5.1. What are μ_X , μ_Y , $\mathrm{Var}(X)$, $\mathrm{Var}(Y)$, and $\mathrm{Cov}(X,Y)$ for this simulation?

The bivariate normal as a model for exam scores

Question 5.2. Compare the data on midterm and final scores with the simulation. Does a normal model seem to fit? Would you expect it to?

Why, and why not?

More on covariance

• Covariance is **symmetric**: we see from the definition

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[(Y - E[Y])(X - E[X])] = Cov(Y,X)$$

- Also, we see from the definition that Cov(X, X) = Var(X).
- The **sample covariance** of n pairs of measurements $(x_1, y_1), \ldots, (x_n, y_n)$ is

$$cov(\mathbf{x}, \mathbf{y}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

where \bar{x} and \bar{y} are the sample means of $\mathbf{x}=(x_1,\ldots,x_n)$ and $\mathbf{y}=(y_1,\ldots,y_n).$

Scaling covariance to give correlation

- The standard deviation of a random variable is interpretable as its scale.
- Variance is interpretable as the square of standard deviation

```
var(x$midterm)
## [1] 218.2155
var(x$final)
## [1] 169.7518
cov(x$midterm,x$final)
## [1] 75.61269
```

• Covariance is interpretable when scaled to give the correlation

$$Cor(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

$$cor(\mathbf{x}, \mathbf{y}) = \frac{cov(\mathbf{x}, \mathbf{y})}{\sqrt{var(\mathbf{x})var(\mathbf{y})}}$$

```
cor(x$midterm,x$final)
## [1] 0.3928662
```

rho <- 0


```
library(mvtnorm)
mvn <- rmvnorm(n=100,
  mean=c(X=0,Y=0),
  sigma=matrix(
    c(1,rho,rho,1),
    2,2)
)</pre>
```

rho <- -0.8

rho <- 0.95

More on interpreting correlation

- Random variables with a correlation of ± 1 (or data with a sample correlation of ± 1) are **linearly dependent**.
- Random variables with a correlation of 0 (or data with a sample correlation of 0) are **uncorrelated**.
- Random variables with a covariance of 0 are also uncorrelated!

Question 5.3. Suppose two data vectors $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ have been **standardized**. That is, each data point has had the sample mean substracted and then been divided by the sample standard deviation. You calculate $\operatorname{cov}(\mathbf{x}, \mathbf{y}) = 0.8$. What is the sample correlation, $\operatorname{cor}(\mathbf{x}, \mathbf{y})$?

The variance of a sum

A basic property of covariance is

(Eq. C1)
$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$$

• Sample covariance has the same formula,

(Eq. C2)
$$\operatorname{var}(\mathbf{x} + \mathbf{y}) = \operatorname{var}(\mathbf{x}) + \operatorname{var}(\mathbf{y}) + 2\operatorname{cov}(\mathbf{x}, \mathbf{y})$$

 These nice formulas mean it can be easier to calculate using variances and covariances rather than standard deviations and correlations.

Question 5.4. Rewrite (Eq. C1) to give a formula for SD(X + Y) in terms of SD(X), SD(Y) and Cor(X, Y).

More properties of covariance

Covariance is not affected by adding constants to either variable

(Eq. C3)
$$Cov(X + a, Y + b) = Cov(X, Y)$$

- Recall the definition $\mathrm{Cov}(X,Y) = \mathrm{E}\big[\big(X-\mathrm{E}[X]\big)\,\big(Y-\mathrm{E}[Y]\big)\big]$. In words, covariance is the mean product of deviations from average. These deviations are unchanged when we add a constant to the variable.
- Covariance scales bilinearly with each variable

(Eq. C3)
$$\operatorname{Cov}(aX, bY) = ab\operatorname{Cov}(X, Y)$$

• Covariance distributes across sums

(Eq. C4)
$$\operatorname{Cov}(X, Y + Z) = \operatorname{Cov}(X, Y) + \operatorname{Cov}(X, Z)$$

Sample covariances also have these properties. You can test them in R
using bivariate normal random variables, constructed as previously using
'rmvnorm()'.

The variance/covariance matrix of vector random variables

- Let $\mathbf{X}=(X_1,\ldots,X_p)$ be a vector random variable. For any pair of elements, say X_i and X_j , we can compute the usual scalar covariance, $v_{ij}=\operatorname{Cov}(X_i,X_j)$.
- ullet The variance/covariance matrix $\mathbb{V}=[v_{ij}]_{p imes p}$ collects together all these covariances.

$$\mathbb{V} = \operatorname{Var}(\mathbf{X}) = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_p) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) & & \operatorname{Cov}(X_2, X_p) \\ \vdots & & \ddots & \vdots \\ \operatorname{Cov}(X_p, X_1) & \operatorname{Cov}(X_p, X_2) & \dots & \operatorname{Cov}(X_p, X_p) \end{bmatrix}$$

• The diagonal entries of \mathbb{V} are $v_{ii} = \operatorname{Cov}(X_i, X_i) = \operatorname{Var}(X_i)$ for $i = 1, \dots, p$ so the variance/covariance matrix can be written as

$$\mathbb{V} = \operatorname{Var}(\mathbf{X}) = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_p) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & & \operatorname{Cov}(X_2, X_p) \\ \vdots & & \ddots & \vdots \\ \operatorname{Cov}(X_p, X_1) & \operatorname{Cov}(X_p, X_2) & \dots & \operatorname{Var}(X_p) \end{bmatrix}$$

The correlation matrix

- Covariance is harder to interpret than correlation, but easier for calculations.
- We can put together all the correlations into a correlation matrix, using the fact that $Cor(X_i, X_i) = 1$.

$$Cor(\mathbf{X}) = \begin{bmatrix} 1 & Cor(X_1, X_2) & \dots & Cor(X_1, X_p) \\ Cor(X_2, X_1) & 1 & & Cor(X_2, X_p) \\ \vdots & & \ddots & \vdots \\ Cor(X_p, X_1) & Cor(X_p, X_2) & \dots & 1 \end{bmatrix}$$

- Multivariate distributions can be very complicated.
- The variance/covariance and correlation matrices deal only with **pairwise** relationships between variables.
- Pairwise relationships can be graphed.

The sample variance/covariance matrix

- The **sample variance/covariance matrix** places all the sample variances and covariances in a matrix.
- Let $\mathbb{X} = [x_{ij}]_{n \times p}$ be a data matrix made up of p data vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$ each of length n.

$$\operatorname{var}(\mathbb{X}) = \begin{bmatrix} \operatorname{var}(\mathbf{x}_1) & \operatorname{cov}(\mathbf{x}_1, \mathbf{x}_2) & \dots & \operatorname{cov}(\mathbf{x}_1, \mathbf{x}_p) \\ \operatorname{cov}(\mathbf{x}_2, \mathbf{x}_1) & \operatorname{var}(\mathbf{x}_2) & & \operatorname{cov}(\mathbf{x}_2, \mathbf{x}_p) \\ \vdots & & \ddots & \vdots \\ \operatorname{cov}(\mathbf{x}_p, \mathbf{x}_1) & \operatorname{cov}(\mathbf{x}_p, \mathbf{x}_2) & \dots & \operatorname{var}(\mathbf{x}_p) \end{bmatrix}$$

ullet R uses the same notation. If x is a matrix or dataframe, var(x) returns the sample variance/covariance matrix.

```
var(x)
## final quiz hw midterm
## final 169.75184 78.14294 51.27143 75.61269
## quiz 78.14294 224.39664 103.57755 107.32550
## hw 51.27143 103.57755 120.13265 61.44694
## midterm 75.61269 107.32550 61.44694 218.21553
```

The sample correlation matrix

- The **sample correlation matrix** places all the sample correlations in a matrix.
- Let $\mathbb{X} = [x_{ij}]_{n \times p}$ be a data matrix made up of p data vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$ each of length n.

$$cor(\mathbb{X}) = \begin{bmatrix} 1 & cor(\mathbf{x}_1, \mathbf{x}_2) & \dots & cor(\mathbf{x}_1, \mathbf{x}_p) \\ cor(\mathbf{x}_2, \mathbf{x}_1) & 1 & & cor(\mathbf{x}_2, \mathbf{x}_p) \\ \vdots & & \ddots & \vdots \\ cor(\mathbf{x}_p, \mathbf{x}_1) & cor(\mathbf{x}_p, \mathbf{x}_2) & \dots & 1 \end{bmatrix}$$

ullet R uses the same notation. If x is a matrix or dataframe, cor(x) returns the sample correlation matrix.

```
cor(x)

## final quiz hw midterm

## final 1.0000000 0.4003818 0.3590357 0.3928662

## quiz 0.4003818 1.0000000 0.6308512 0.4850114

## hw 0.3590357 0.6308512 1.0000000 0.3795132

## midterm 0.3928662 0.4850114 0.3795132 1.0000000
```

pairs(x)

mvn <- rmvnorm(50,mean=apply(x,2,mean),sigma=var(x))
pairs(mvn)</pre>

Question 5.5. From looking at the scatterplots, what are the strengths and weaknesses of a multivariate normal model for test scores in this course?

Question 5.6. To what extent is it appropriate to summarize the data by the mean and variance/covariance matrix (or correlation matrix) when the normal approximation is dubious?

Linear combinations

- Let $\mathbf{X} = (X_1, \dots, X_p)$ be a vector random variable with mean vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_p)$ and $p \times p$ variance/covariance matrix \mathbb{V} .
- Let \mathbb{X} be a $n \times p$ data matrix.
- Let \mathbb{A} be a $q \times p$ matrix.
- $\mathbf{Z} = \mathbb{A}\mathbf{X}$ is a collection of q linear combinations of the p random variables in the vector \mathbf{X} , viewed as a **column** vector.
- $\mathbb{Z} = \mathbb{X}\mathbb{A}^{\mathrm{T}}$ is an $n \times q$ collection of linear combinations of the p data points in each **row** of \mathbb{X} .
- Mental gymnastics are required: vectors are often interpreted as **column vectors** (e.g., $p \times 1$ matrices) but the vector of measurements for each unit is a **row vector** when considered as a row of an $n \times p$ data matrix.

Question 5.7. How would you construct a simulated data matrix \mathbb{Z}_{sim} from n realizations $\mathbf{Z}_1, \ldots, \mathbf{Z}_n$ of the random column vector $\mathbf{Z} = \mathbb{A}\mathbf{X}$? Be careful with transposes and keep track of dimensions.

Solution:

 There is a useful matrix variance/covariance formula for a linear combination.

$$\operatorname{Var}(\mathbb{A}|\mathbf{X}) = \mathbb{A}\operatorname{Var}(\mathbf{X})\mathbb{A}^{T} \qquad \operatorname{var}(\mathbb{X}|\mathbb{A}^{T}) = \mathbb{A}\operatorname{var}(\mathbb{X})\mathbb{A}^{T}$$

Question 5.8. Add dimensions to each term in these equations to check they make sense.

Testing the variance/covariance formula

##

[1,] 104.2624

[,1]

- \bullet Suppose that the overall course score is weighted 40% on the final and 20% on each of the miterm, homework and quiz.
- We can find the sample variance of the overall score two different ways.
- (i) Directly computing the overall score for each student.

weights <- c(final=0.4,quiz=0.2,hw=0.2,midterm=0.2)</pre>

```
overall <- as.matrix(x) %*% weights
var(overall)

##        [,1]
## [1,] 104.2624

(ii) Using var(XA<sup>T</sup>) = A var(X)A<sup>T</sup>.

weights %*% var(x) %*% weights
```

• R interprets the vector 'weights' as a row or column vector as necessary.