TUGAS PERTEMUAN 4 ALJABAR LINEAR 2

Daffa Randika (H1A023089)

1. Tahun 1225 Leonardo da Pisa mencari akar persamaan

$$f(x) = x^3 + 2x^2 + 10x - 20 = 0$$

dan menemukan x=1.368808107. Tidak seorang pun yang mengetahui cara Leonardo menemukan nilai ini. Sekarang, rahasia itu dapat dipecahkan dengan metode lelaran titik-tetap. Bentuklah semua kemungkinan prosedur lelaran titik-tetap dari f(x)=0, lalu dengan memberikaan sembarang tebakan awal (misalnya $x_0=1$), tentukan prosedur lelaran mana yang menghasilkan akar persamaan yang ditemukan Leonardo itu.

Jawaban

Kemungkinan pertama:

$$x^{3} + 2x^{2} + 10x - 20 = 0$$

$$x^{3} + 2x^{2} + 10x = 20$$

$$x(x^{2} + 2x + 10) = 20$$

$$x = \frac{20}{(x^{2} + 2x + 10)}$$

Kemungkinan kedua:

$$x^{3} + 2x^{2} + 10x - 20 = 0$$
$$x^{3} = -2x^{2} - 10x + 20$$
$$x = \sqrt[3]{-2x^{2} - 10x + 20}$$

Maka
$$g(x) = \frac{20}{(x^2 + 2x + 10)}$$
, dengan $x_0 = 1$

$$x_{r+1} = \frac{20}{(x_r^2 + 2x_r + 10)}$$

$$x_0 = 1$$

$$x_1 = \frac{20}{(1^2 + 2 \cdot 1 + 10)} = 1.53846$$

$$x_2 = \frac{20}{(1.53846^2 + 2 \cdot 1.53846 + 10)} = 1.29501$$

$$x_3 = \frac{20}{(1.29501^2 + 2 \cdot 1.29501 + 10)} = 1.40182$$

$$x_4 = \frac{20}{(1.40182^2 + 2 \cdot 1.40182 + 10)} = 1.35421$$

$$x_5 = \frac{20}{(1.35421^2 + 2 \cdot 1.35421 + 10)} = 1.37529$$

$$x_6 = \frac{20}{(1.37529^2 + 2 \cdot 1.37529 + 10)} = 1.37008$$

$$x_7 = \frac{20}{(1.36824^2 + 2 \cdot 1.37008 + 10)} = 1.36824$$

$$x_8 = \frac{20}{(1.368906^2 + 2 \cdot 1.36824 + 10)} = 1.36906$$

$$x_9 = \frac{20}{(1.36869^2 + 2 \cdot 1.36869 + 10)} = 1.36886$$

$$x_{10} = \frac{20}{(1.36886^2 + 2 \cdot 1.36886 + 10)} = 1.36886$$

$$x_{11} = \frac{20}{(1.36886^2 + 2 \cdot 1.36886 + 10)} = 1.36888$$

$$x_{12} = \frac{20}{(1.36878^2 + 2 \cdot 1.36878 + 10)} = 1.36882$$

Jadi prosedur lelaran yang menghasilkan akar persamaan yang ditemukan Leonardo itu adalah $g(x) = \frac{20}{(x^2+2x+10)}$

2. Apa yang terjadi jika persaman $x^2=2$ diatur sebagai $x_{r+1}=\frac{2}{x_r}$ dan metode lelaran titik-tetap digunakan untuk menemukan akar kuadrat dari 2?

Jawaban

$$x_{r+1} = \frac{2}{x_r}, \text{ dengan } x_0 = 1$$

$$x_0 = 1.5$$

 $x_1 = \frac{2}{1.5} = 1.33333$
 $x_2 = \frac{2}{1.33333} = 1.5$
 $x_3 = \frac{2}{1.5} = 1.33333$

dst

karena lelaran di atas tidak konvergen, maka dapat disimpulkan bahwa $x_{r+1} = \frac{2}{x_r}$ tidak dapat digunakan untuk mencari akar dari 2

3. Tentukan titik potong kurva $f(x) = e^{-x}$ dengan kurva g(x) = sin(x) dengan metode Newton-Raphson.

Jawaban

Pertama, gambar grafik f(x), g(x), dan h(x) = f(x)-g(x)

dapat dilihat bahwa untuk x > 2 terdapat banyak titik potong antara ketiga fungsi tersebut

4. Tentukan selang sehingga sehingga prosedur lelaran $x_r + 1 = \frac{x_r}{2} - \cos(2x_r)$ konvergen di dalam selang itu (x dalam radian)

Jawaban

$$g(x) = \frac{x_r}{2} - \cos(2x_r)$$

$$g'(x) = 2\sin(2x_r) + \frac{1}{2}$$

Syarat konvergen adalah g'(x) < 1. Jadi,

$$|2\sin(2x_r) + \frac{1}{2}| < 1$$

$$-1 < 2\sin(2x_r) + \frac{1}{2} < 1$$

$$-\frac{3}{2} < 2\sin(2x_r) < \frac{1}{2}$$

Urai satu persatu,

- i. $2\sin(2x_r)>-\frac{3}{2}$ memiliki nilai yang memenuhi
- ii. $2\sin(2x_r)+\frac{1}{2}<1$ memiliki nilai yang memenuhi

Maka selang agar konvergen adalah $-\frac{3}{2} < 2\sin(2x_r) < \frac{1}{2}$

5. Perlihatkan bahwa semua akar $x^{20} - 1 = 0$ berkondisi baik.

Jawaban

Perhatikan graf dari fungsi $x^{20} - 1 = 0$

Dapat dilihat bahwa fungsi tersebut mempunyai dua akar yaitu -1 dan 1

6. Gunakan metode

- (i) bagidua
- (ii) regula-falsi, untuk menemukan akar persaman Leonardo dalam selang $[1,\ 1.5]$, dan juga dengan metode
- (iii) Newton-Raphson, x0 = 1
- (iv) secant, x0=1, x1=1.5

Untuk semua metode, $\epsilon=10^{-6}$

Jawaban

$$f(x) = x^3 + 2x^2 + 10x - 20 = 0$$

i. bagidua

a	b	x	f(a)	f(b)	f(c)
1.000000000	1.500000000	1.250000000	-7.000000000	1.375000000	-3.046875000
1.250000000	1.500000000	1.375000000	-7.000000000	1.375000000	-3.046875000
1.375000000	1.500000000	1.437500000	-3.046875000	1.375000000	-0.900390625
1.375000000	1.437500000	1.406250000	-0.900390625	1.375000000	0.220458984
1.406250000	1.437500000	1.421875000	-0.900390625	0.220458984	-0.344085693
1.421875000	1.437500000	1.429687500	-0.344085693	0.220458984	-0.062854766
1.421875000	1.429687500	1.425781250	-0.062854766	0.220458984	0.078540325
1.421875000	1.425781250	1.423828125	-0.062854766	0.078540325	0.007777512
1.423828125	1.425781250	1.424804687	-0.062854766	0.007777512	-0.027554921
1.424804687	1.425781250	1.425292968	-0.027554921	0.007777512	-0.009892781
1.425292968	1.425781250	1.425537109	-0.009892781	0.007777512	-0.001058654
1.425292968	1.425537109	1.425415039	-0.001058654	0.007777512	0.003359174
1.425292968	1.425415039	1.425354003	-0.001058654	0.003359174	0.001150196
1.425292968	1.425354003	1.425323486	-0.001058654	0.001150196	0.000045755
1.425323486	1.425354003	1.425338745	-0.001058654	0.000045755	-0.000506453
1.425338745	1.425354003	1.425346374	-0.000506453	0.000045755	-0.000230350
1.425346374	1.425354003	1.425350189	-0.000230350	0.000045755	-0.000092297
1.425350189	1.425354003	1.425352096	-0.000092297	0.000045755	-0.000023271
1.425350189	1.425352096	1.425351142	-0.000023271	0.000045755	0.000011241
1.425351142	1.425352096	1.425351619	-0.000023271	0.000011241	-0.000006014
1.425351142	1.425351619	1.425351381	-0.000006014	0.000011241	0.000002613
1.425351381	1.425351619	1.425351500	-0.000006014	0.000002613	-0.000001700
1.425351381	1.425351500	1.425351440	-0.000001700	0.000002613	0.000000456
1.425351440	1.425351500	1.425351470	-0.000001700	0.000000456	-0.000000621
1.425351470	1.425351500	1.425351485	-0.000000621	0.000000456	-0.000000082
1.425351470	1.425351485	1.425351478	-0.000000082	0.000000456	0.000000186
1.425351470	1.425351478	1.425351474	-0.000000082	0.000000186	0.000000052
1.425351474	1.425351478	1.425351476	-0.000000082	0.000000052	-0.000000015
1.425351474	1.425351476	1.425351475	-0.000000015	0.000000052	0.000000018
1.425351474	1.425351475	1.425351474	-0.000000015	0.000000018	0.000000001
1.425351474	1.425351475	1.425351475	-0.000000015	0.000000001	-0.000000006
1.425351475	1.425351475	1.425351475	-0.000000006	0.000000001	-0.000000002
1.425351475	1.425351475	1.425351475	-0.000000002	0.000000001	-0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000001	0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	-0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	-0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	-0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	-0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	-0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	-0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	-0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	0.000000000
1.425351475	1.425351475	1.425351475	-0.000000000	0.000000000	-0.000000000

ii. regula falsi

regula falsi									
	a	b	x	f(a)	f(b)	f(c)			
	1.0000000000	1.5000000000	1.4179104478	-0.1344081553	-7.0000000000	1.3750000000			
	1.4179104478	1.5000000000	1.4252202700	-0.0023740705	-0.1344081553	1.3750000000			
	1.4252202700	1.5000000000	1.4253491619	-0.0000418607	-0.0023740705	1.3750000000			
	1.4253491619	1.50000000000	1.4253514345	-0.0000007381	-0.0000418607	1.3750000000			
	1.4253514345	1.50000000000	1.4253514746	-0.0000000130	-0.0000007381	1.3750000000			
	1.4253514746	1.50000000000	1.4253514753	-0.00000000002	-0.0000000130	1.3750000000			
	1.4253514753	1.5000000000	1.4253514753	-0.0000000000	-0.00000000002	1.3750000000			
	1.4253514753	1.5000000000	1.4253514753	-0.0000000000	-0.0000000000	1.3750000000			
	1.4253514753	1.50000000000	1.4253514753	0.0000000000	-0.0000000000	1.3750000000			
	1.4253514753	1.4253514753	1.4253514753	0.0000000000	-0.0000000000	0.0000000000			

iii. Newton Raphson

$$x_0 = 1$$

 $x_1 = 1.6470588235294117$

 $x_2 = 1.8285178051069293$

 $x_3 = 1.9121971010799943$

 $x_4 = 1.9540961957181762$

 $x_5 = 1.9757662001654153$

 $x_6 = 1.9871438621531745$

 $x_7 = 1.9931625952150789$

 $x_8 = 1.9963588018179341$

 $x_9 = 1.9980595620433097$

 $x_10 = 1.9989655352107734$

 $x_1 = 1.9994484091572369$

 $x_1 = 1.9997058533833614$

 $x_13 = 1.9998431318038132$

 $x_14 = 1.9999163398057687$

iv. Secant

$$x_2 = 2.128205 \ f(x_2) = 1.862725$$

$$x_2 = 1.981709 \ f(x_2) = -0.254747$$

$$x_2 = 1.999333 \ f(x_2) = -0.009333$$

$$x_2 = 2.000003 \ f(x_2) = 0.000049$$

$$x_2 = 2.000000 \ f(x_2) = -0.000000$$

7. Diketahui lingkaran $x^2 + y^2 = 2$ dan hiperbola $x^2 - y^2 = 1$. Tentukan titik potong kedua kurva dengan metode lelaran titik-tetap (Soal ini adalah mencari solusi sistem persamaan nirlanjar).

Jawaban

Dari persamaan lingkaran, kita bisa menyatakan y^2 sebagai fungsi dari x^2 :

$$y^2 = 2x^2$$

Dari persamaan lingkaran, kita bisa menyatakan y^2 sebagai fungsi dari x^2 :

$$u^2 = x^2 1$$

Selanjutnya, dari kedua persamaan di atas, kita dapat mengeliminasi y^2 dengan menyetarakan kedua persamaan:

$$2x^2 = x^21$$

Gabungkan dan selesaikan persamaan berikut:

$$x - x^2 = x^2 - 1$$

$$2+1=2x^2$$

$$3 = 2x^2$$

$$x^2 = \frac{3}{2}$$

$$x = \pm \sqrt{\frac{3}{2}}$$

Untuk mencari y, substitusikan nila
i $x^2=\frac{3}{2}$ ke salah satu persamaan. Misal persamaan lingkaran:

$$y^{2} = 2 - x^{2}$$

$$y^{2} = 2 - \frac{3}{2}$$

$$y^{2} = \frac{1}{2}$$

$$y = \pm \sqrt{\frac{1}{2}}$$

Dengan demikian, titik-titik potong kedua kurva adalah:

$$p_1 = \left(\sqrt{\frac{3}{2}}, \sqrt{\frac{1}{2}}\right)$$

$$p_2 = \left(\sqrt{\frac{3}{2}}, -\sqrt{\frac{1}{2}}\right)$$

$$p_3 = \left(-\sqrt{\frac{3}{2}}, \sqrt{\frac{1}{2}}\right)$$

$$p_4 = \left(-\sqrt{\frac{3}{2}}, -\sqrt{\frac{1}{2}}\right)$$