CS 346 Class Notes

Mark Lindberg

Feb 10, 2016

Last Time:

Message Authentication Code (MAC)

 $Gen(1^n) \to n$ -bit key k.

 $\mathsf{Mac}_k(m) \to \mathrm{tag}\ t.$

 $\mathsf{Vrfy}_k(m,t) \to \mathsf{valid/invalid}.$

This Time:

 $\mathsf{Mac}\text{-}\mathsf{forge}_{A,t}(n), \mathcal{A} \text{ gets access to } \mathsf{Mac}_k \text{ oracle, eventually outputs } (m,t).$

 \mathcal{A} "succeeds" if $\mathsf{Vrfy}_k(m,t)$ outputs valid AND $m \not\in Q$, where Q is the set of all messages passed to the Mac_k oracle.

The Mac Π is secure if \forall PPT \mathcal{A} , $\Pr[A \text{ succeeds}] = \text{negl}(m)$.

Today we will examine several Macs.

A first secure Mac for fixed-length messages of length n.

Assume F is a PRF. Let m be an n-bit message. Gen will work as normal, generating an n-bit key.

A natural first urge is to set $\mathsf{Mac}_k(m) = F_k(m)$. We will go ahead and do this.

This is a deterministic Mac, so we can use the "canonical verification", which is the Vrfy algorithm defined above.

Proof that Π defined here is a secure Mac.

Proof by contradiction sketch: If Π were not secure, F would not be a PRF. Assume Π is not secure. Then there is a PPT adversary \mathcal{A} such that $\Pr[A \text{ succeeds}] = f(m)$, such that f(m) is non-negligible.

Actual proof presented, direct proof. Let \mathcal{A} be an arbitrary PPT adversary in the experiment $\mathsf{Mac\text{-}forge}_{\mathcal{A},\Pi}(n)$. Let h(n) denote the success probability of A. Construct a PT distinguisher D for F based on \mathcal{A} .

The advantage of D is $\Pr[D^{F_k}(1^n) = 1] - \Pr[D^f(1^n) = 1]$.

D will simulate \mathcal{A} , using its oracle to answer \mathcal{A} 's queries to Mac_k . Finally, D gets output (m,t) of \mathcal{A} . D should output 1 when \mathcal{A} succeeds. This involves a single oracle call, for Vrfy , maintaining Q.

Scenario 1: D's oracle is F_k . Then $\Pr[D^{F_k}(1^m) = 1] = \Pr[\mathsf{Mac}\text{-}\mathsf{forge}_{\mathcal{A},\Pi}(m) = 1]$.

Scenario 2: D's oracle is f. $\Pr[D^f(1^n) = 1] \leq \frac{1}{2^n}$.

Now we will examine secure $\mathsf{Mac}\ \Pi$ for arbitrary-length messages. It will be based on the secure fixed-length $\mathsf{Mac}\ \Pi'$ ($\mathsf{Mac}',\mathsf{Vrfy}'$) shown above.

First idea for Mac_k . Chop m into n-bit blocks, m_1, m_2, \ldots, m_d , let $t_i = \mathsf{Mac}'(m_i)$, and use (t_1, t_2, \ldots, t_d) as the tag.

This is bad. This can be easily broken using a reordering attack. Present $m=m_1,m_2$, get tag t_1,t_2 . Then message $m'=m_2,m_1$ will have tag t_2,t_1 , which will pass Vrfy.

To combat this attack, break m into $\frac{n}{2}$ -bit blocks m_1, \ldots, m_d , then $t_i = \mathsf{Mac}'_k(\langle i \rangle \mid\mid m_i)$, where $\langle i \rangle$ is the $\frac{n}{2}$ -bit binary encoding of i. This prevents the reordering attack.

This scheme is still insecure. Since we have an arbitrary-length message Mac, we can use a truncation attack, and present $m = m_1, m_2, m_3$, get (t_1, t_2, t_3) . Then we can present $m' = m_1, m_2$. The tag (t_1, t_2) will be valid for m'.

To prevent the truncation attack, we will include the length ℓ of the full message in the calculation. We will chop our message into $\frac{n}{3}$ -bit blocks. Then $t_i = \mathsf{Mac}_k'(\langle \ell \rangle \mid \mid \langle i \rangle \mid \mid m_i)$. Note: We pad the last block with 0's if necessary. The tag will be (t_1, \ldots) . By this point, we are sending 4ℓ bits.

Unfortunately, even this scheme is still insecure. It can be attacked with a "mix and match" attack. For example, get tag $t = (t_1, t_2, t_3)$ for $m = m_1, m_2, m_3$. Take another message, same length, $m' = m_4, m_5, m_6$, get tag $t' = (t_4, t_5, t_6)$. Then (t_1, t_5, t_6) is a valid tag for m_1, m_5, m_6 , which has never been queried from the oracle before.

Finally, let's fix all of this! We'll chop our message $m = m_1, \ldots, m_d$ into $\frac{n}{4}$ bit blocks, and pick a random $\frac{n}{4}$ -bit value r for the entire message, and $t_i = \mathsf{Mac}'_k(r \mid\mid \langle l \rangle \mid\mid \langle i \rangle \mid\mid m_i)$. $\mathsf{Mac}_k(m) = (r, t_1, \ldots, t_d)$. At this point, this is not a deterministic Mac , so Vrfy has to behave slightly differently, taking into account the random r passed to it. It can reconstruct the tag as above, with this slight extra step.

This is secure!

Proof-ish. Fix the PPT adversary \mathcal{A} in the forging experiment. We need to show that $\Pr[\mathcal{A}]$ succeeding is negligible. More formally, $\Pr[\mathsf{Mac}\text{-}\mathsf{forge}_{\mathcal{A},=P_i}(m)=1]$ is negl.

Fix a message m. There are three events of interest in the experiment $\mathsf{Mac}\text{-}\mathsf{forge}_{\mathcal{A},\Pi}(m)$.

 E_1 : \mathcal{A} succeeds.

 E_2 : Some r repeats.

 E_3 : Some $(r||\langle \ell \rangle||\langle i \rangle||m_i)$ is passed to Mac_k' when checking \mathcal{A} 's output is "new".

$$\Pr[E_1] = \Pr[E_1 \wedge E_2] + \Pr[E_1 \wedge \overline{E_2} \wedge E_3] + \Pr[E_1 \wedge \overline{E_2} \wedge \overline{E_3}]$$

$$< \Pr[E_2] + \Pr[E_1 \wedge E_3] + \Pr[E_1 \wedge \overline{E_2} \wedge \overline{E_3}]$$

Proof to be completed at the beginning of the next class.