Parsing Binomials & Multinomials in Probability

Andrew Jones

Introduction

Note that

- i. first point
- ii. second point
- iii. third point

1 Binomial Theorem

The binomial theorem expresses the expansion of two monomial terms such as $(x+y)^2 = x^2 + 2xy + y^2$. In probability the binomial theorem can express the total probability of two independent events.

Example 1. Let an unfair coin be flipped twice with P(Tails) = 0.3 and P(Heads) = 0.7

We know the probability must sum to 1. In two flips then, $(T+H)^2 = T^2 + 2TH + H^2$. This aligns with the outcomes of TT, TH, HT, and HH for two flips. Substituting in the probabilities we have $0.3^2 + 2*0.3*0.7 + 0.7^2 = 1$.

To do this the theorem uses:

Definition 1 (Factorial n!). Count everyway to permute a set of n distinct objects

$$n! = \prod_{i=1}^{n} i$$

with 0! = 1 and $n \ge 0$.

Building on factorials, the theorem uses the

Definition 2 (Binomial Coefficient). $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

to count combinations of groups of events. The inductive proof of the theorem uses:

Pascal's Identity.

$$\binom{n-1}{k} + \binom{n-1}{k-1} = \frac{(n-1)!}{k!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= (n-1)! \left[\frac{n-k}{k!(n-k)!} + \frac{k}{k(n-k)!} \right]$$

$$= (n-1)! \frac{n}{k!(n-k)!}$$

$$= \frac{n!}{k!(n-k)!}$$

$$= \binom{n}{k}$$

Proof.

2 Multinomial Theorem

Lemma 1. We have

$$\int_0^\pi \sin(3x) \, \mathrm{d}x = \frac{2}{3}.$$

Proof. A direct computation yields

$$\int_0^{\pi} \sin(3x) dx = \frac{1}{3} \int_0^{3\pi} \sin u du, \qquad u = 3x,$$

$$= \frac{1}{3} \left[-\cos u \right]_0^{3\pi}$$

$$= \frac{1}{3} \left[1 - (-1) \right]$$

$$= \frac{2}{3}.$$

Remark 1. This is interesting since...

3 Possible Outcomes to Equations