Домашнее задание 7

Цифры Вашего кода — a_0, \ldots, a_9 . В каждом из четырех блоков задач Вам нужно решить только один вариант, выбор которого определяется цифрами Вашего кода так, как указано.

1. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_2+a_8+1 . Допускает ли росток, заданный в точке 0 указанным степенным рядом s(z), аналитическое продолжение вдоль указанной кривой $\gamma:[0,1]\to\mathbb{C}$. Строго обоснуйте ответ.

(0)
$$s(z) = \sum_{k=0}^{\infty} z^k$$
, $\gamma(t) = -t$.

(1)
$$s(z) = \sum_{k=0}^{\infty} z^k {\binom{1/2}{k}}, \ \gamma(t) = -2t.$$

(2)
$$s(z) = \sum_{k=0}^{\infty} z^k, \, \gamma(t) = t.$$

(3)
$$s(z) = \sum_{k=0}^{\infty} kz^k$$
, $\gamma(t) = -t$.

(4)
$$s(z) = \sum_{k=0}^{\infty} kz^k, \ \gamma(t) = t.$$

(5)
$$s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k}, \ \gamma(t) = t.$$

(6)
$$s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k}, \ \gamma(t) = -t.$$

(7)
$$s(z) = \sum_{k=0}^{\infty} z^k {\binom{1/2}{k}}, \ \gamma(t) = -t + it^2$$

(8)
$$s(z) = \sum_{k=0}^{\infty} z^{4k}, \ \gamma(t) = \frac{i}{2} (1 - e^{\pi i t}).$$

(9)
$$s(z) = \sum_{k=0}^{\infty} z^{k^2}, \, \gamma(t) = t.$$

Напомним, что $\binom{\alpha}{k}=\frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!}$ при k>0 и $\binom{\alpha}{0}=1$, если $\alpha\neq 0$.

2. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_5+a_7+1 . Докажите или опровергните существование и единственность ростка аналитической функции f(z) в точке z=0, удовлетворяющего указанным условиям. (Для решения этой задачи *не требуется* знакомства с теорией дифференциальных уравнений).

1

(0)
$$f(z)^2 = 1 + z$$
, $f(0) = -1$.

(1)
$$f'(z) = f(z), f(0) = 1.$$

(2)
$$f'(z) = f(z) + e^z - 1$$
, $f(0) = 1$.

(3)
$$zf'(z) = f(z), f(0) = 1.$$

(4)
$$zf'(z) = f(z), f(0) = 0.$$

(5)
$$f''(z) = f(z), f(0) = 0.$$

(6)
$$z^2 f''(z) + z f'(z) = 4z^2 f(z), f(0) = 1.$$

(7)
$$f''(z) = f(z)$$
, $f(0) = 1$, $f'(0) = 0$.

(8)
$$z^2 f''(z) + z f'(z) + z^2 f(z) = 0$$
, $f(0) = 1$.

(9)
$$(1-z^2)f''(z) - zf'(z) + m^2f(z) = 0$$
, $f(0) = 1$, $f'(0) = im$. Здесь m — целое число.

3. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_2+a_6+1 . Росток функции w(z) в точке $\gamma(0)$ (для указанного пути $\gamma:[0,1]\to\mathbb{C}$) задан выписанными ниже неявным уравнением на функцию w и ее значением $w(\gamma(0))$. Найдите значение $w(\gamma(1))$.

(0)
$$w^2 = z^2 + 9$$
, $w(4) = 5$, $\gamma(t) = 4e^{\pi it}$.

(1)
$$w^2 = z^2 + 9$$
, $w(4) = 5$, $\gamma(t) = 4e^{-\pi it}$.

(2)
$$w^2 = z^2 + 9$$
, $w(4) = 5$, $\gamma(t) = 4(1 - 2t)$.

(3)
$$e^w = z$$
, $w(1) = 0$, $\gamma(t) = e^{6\pi it}$.

(4)
$$\sin w = z$$
, $w(0) = 0$, $\gamma(t) = 1 - e^{2\pi i t}$.

(5)
$$\cos w = z$$
, $w(0) = \pi/2$, $\gamma(t) = \frac{\pi}{2}e^{\pi it}$.

(6)
$$w^3 = z^2$$
, $w(1) = 1$, $\gamma(t) = e^{2\pi i t}$.

(7)
$$w^2 = 6z(z^2 - 1), w(2) = 6, \gamma(t) = \frac{3 + 5e^{2\pi it}}{4}.$$

(8)
$$w^2 = z^2$$
, $w(1) = -1$, $\gamma(t) = e^{2\pi i t}$.

(9)
$$w = z + w^2$$
, $w(1) = 0$, $\gamma(t) = e^{3\pi i t}$.

4. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_0+a_7+1 . Для указанного ниже ростка аналитической функции f в указанной точке a найдите радиус сходимости степенного ряда для f с центром в a, не вычисляя коэффициенты этого ряда.

(0)
$$f(z) = \sqrt{\cos z}$$
, $a = 0$, $f(a) = 1$.

(1)
$$f(z) = e^{\sin z}$$
, $a = \pi$.

(2)
$$f(z) = \frac{z}{e^z - 1}$$
, $a = 0$.

(3)
$$f(z) = \sqrt{z(z^2 - 1)(z^2 - 4)}$$
, $a = i$, $f(a) = \sqrt{5}(1 + i)$.

(4)
$$f(z) = \frac{1}{z(z^2-1)}, a = i, f(a) = \frac{i}{2}$$
.

(5)
$$f(z) = \log z$$
, $a = 1 + i$, $\text{Im}(f(a)) \in [0, 2\pi)$.

(6)
$$f(z) = \log(\log z), a = 3, f(a) > 0.$$

(7)
$$f(z) = e^{1/z}$$
, $a = 1 + i$.

- (8) $f(z) = \arcsin(z), a = 0, f(a) = 0.$
- (9) $f(z) = \frac{1}{\log z}$, a = 2, f(a) > 0.
- **5.** Бонусная задача. Эту задачу не надо записывать. Вы можете рассказать ее вашему семинаристу и получить за нее бонусные баллы. Решайте тот пункт, номер которого совпадает с последней цифрой числа $a_3 + a_4 + 1$.
 - (0) Упражнение 6.4 на страницах 101-102 основного учебника.
 - (1) Упражнение 6.5 на странице 102 основного учебника.
 - (2) Упражнение 6.6 на странице 102 основного учебника.
 - (3) Упражнение 6.7 на странице 102 основного учебника.
 - (4) Упражнение 6.8 на странице 102 основного учебника.
 - (5) Упражнение 6.9 на странице 102 основного учебника.
 - (6) Упражнение 5.18 на странице 82 основного учебника.
- (7) Рассмотрим аналитическую функцию, заданную в диске $\mathbb{D}(0,1)$ с центром в 0 и радиусом 1 сходящимся рядом

$$f(z) = \sum_{n=1}^{\infty} z^{n!}.$$

Докажите, что f не продолжается аналитически ни в какую точку вне диска $\mathbb{D}(0,1)$.

- (8) Рассмотрим непрерывную функцию $f: \mathbb{S} \to \mathbb{C}$, где $\mathbb{S} = \partial \mathbb{D}(0,1)$ единичная окружность. Последовательность многочленов $P_n: \mathbb{C} \to \mathbb{C}$, равномерно сходящаяся к f на \mathbb{S} , существует тогда и только тогда, когда существует непрерывная функция $F: \overline{\mathbb{D}}(0,1) \to \mathbb{C}$ такая, что $F|_{\mathbb{S}} = f$ и $F: \mathbb{D}(0,1) \to \mathbb{C}$ голоморфна. Докажите это утверждение.
- (9) Пусть $U \subset \mathbb{C}$ открытое множество, такое, что пара точек $\{1,-1\}$ лежит в одной и той же компоненте множества $\mathbb{C} \setminus U$. Докажите, что на U существует однозначная аналитическая ветвь функции $\sqrt{z^2-1}$, то есть такая голоморфная функция $f:U\to\mathbb{C}$, что $f(z)^2=z^2-1$.