Healthcare Capstone project

February 24, 2024

```
[1]: #Load necessary library
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     sns.set(style="white", color_codes=True)
     sns.set(font_scale=1.2)
[2]: df = pd.read_csv('health care diabetes.csv')
     df.head()
[2]:
                    Glucose BloodPressure SkinThickness
       Pregnancies
                                                            Insulin
                                                                      BMI
                 6
                         148
                                                                     33.6
     1
                 1
                          85
                                         66
                                                        29
                                                                  0
                                                                     26.6
     2
                 8
                                                                  0 23.3
                         183
                                         64
                                                        0
     3
                 1
                         89
                                         66
                                                        23
                                                                 94
                                                                     28.1
                                                                168 43.1
     4
                 0
                         137
                                         40
                                                        35
       DiabetesPedigreeFunction Age
                                      Outcome
     0
                           0.627
                                   50
                                             1
                           0.351
                                   31
                                             0
     1
     2
                           0.672
                                   32
                                             1
     3
                           0.167
                                   21
                                             0
                           2.288
                                   33
                                             1
[3]: cols_with_null_as_zero = ['Glucose', 'BloodPressure', 'SkinThickness', __
      df[cols_with_null_as_zero] = df[cols_with_null_as_zero].replace(0, np.NaN)
[4]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 768 entries, 0 to 767
    Data columns (total 9 columns):
     #
         Column
                                   Non-Null Count
                                                   Dtype
         _____
         Pregnancies
                                   768 non-null
                                                   int64
         Glucose
                                   763 non-null
                                                   float64
```

```
2
    BloodPressure
                               733 non-null
                                               float64
3
    SkinThickness
                               541 non-null
                                               float64
4
    Insulin
                               394 non-null
                                               float64
5
    BMI
                               757 non-null
                                               float64
6
    DiabetesPedigreeFunction
                              768 non-null
                                               float64
7
    Age
                               768 non-null
                                               int64
8
    Outcome
                               768 non-null
                                               int64
```

dtypes: float64(6), int64(3)
memory usage: 54.1 KB

[5]: df.isnull().sum()

[5]:	Pregnancies	0
	Glucose	5
	BloodPressure	35
	SkinThickness	227
	Insulin	374
	BMI	11
	${\tt DiabetesPedigreeFunction}$	0
	Age	0
	Outcome	0

dtype: int64

[6]: df.describe()

[6]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin
	count	768.000000	763.000000	733.000000	541.000000	394.000000
	mean	3.845052	121.686763	72.405184	29.153420	155.548223
	std	3.369578	30.535641	12.382158	10.476982	118.775855
	min	0.00000	44.000000	24.000000	7.000000	14.000000
	25%	1.000000	99.000000	64.000000	22.000000	76.250000
	50%	3.000000	117.000000	72.000000	29.000000	125.000000
	75%	6.000000	141.000000	80.000000	36.000000	190.000000
	max	17.000000	199.000000	122.000000	99.000000	846.000000
		BMI	DiabetesPedi	greeFunction	Age O	utcome
		757 000000		700 000000 7	CO 000000 7CO	00000

\

	BMI	${\tt DiabetesPedigreeFunction}$	Age	Outcome
count	757.000000	768.000000	768.000000	768.000000
mean	32.457464	0.471876	33.240885	0.348958
std	6.924988	0.331329	11.760232	0.476951
min	18.200000	0.078000	21.000000	0.000000
25%	27.500000	0.243750	24.000000	0.000000
50%	32.300000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

Visually explore these variables using histograms and treat the missing values

[7]: df['Glucose'].hist();

[8]: df['BloodPressure'].hist();

[9]: df['SkinThickness'].hist();


```
[11]: df['BMI'].hist();
```


From above histograms, it is clear that **Insulin** has highly skewed data distribution * Glucose - replace missing values with mean of values. * BloodPressure - replace missing values with mean of values. * SkinThickness - replace missing values with mean of values. * Insulin - replace missing values with median of values. * BMI - replace missing values with mean of values.

Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action:

```
[15]: df['Outcome'].value_counts().plot(kind='bar')
    df['Outcome'].value_counts()
```

[15]: 0 500 1 268

Name: Outcome, dtype: int64

Since classes in **Outcome** is little skewed so we will generate new samples using **SMOTE** (**Synthetic Minority Oversampling Technique**) for the class '1' which is under-represented in our data. We will use SMOTE out of many other techniques available since:

```
[16]: df_X = df.drop('Outcome', axis=1)
    df_y = df['Outcome']
    print(df_X.shape, df_y.shape)

    (768, 8) (768,)

[17]: from imblearn.over_sampling import SMOTE

[18]: df_X_resampled, df_y_resampled = SMOTE(random_state=108).fit_resample(df_X,_u,_df_y)
    print(df_X_resampled.shape, df_y_resampled.shape)

    (1000, 8) (1000,)

[19]: df_y_resampled.value_counts().plot(kind='bar')
    df_y_resampled.value_counts()

[19]: 1 500
    0 500
    Name: Outcome, dtype: int64
```


(2) Create scatter charts between the pair of variables to understand the relationships. Describe your findings:

[20]:	<pre>df_resampled = pd.concat([df_X_resampled, df_y_resampled], axis=1)</pre>
	df_resampled

	df_r	esampled						
[20]:		Pregnancies	Glucose	BloodPressur	e Si	kinThickness	Insulin	\
	0	6	148.000000	72.00000	0	35.000000	125.000000	
	1	1	85.000000	66.00000	0	29.000000	125.000000	
	2	8	183.000000	64.00000	0	29.153420	125.000000	
	3	1	89.000000	66.00000	0	23.000000	94.000000	
	4	0	137.000000	40.00000	0	35.000000	168.000000	
		•••	•••	•••		•••	•••	
	995	3	164.686765	74.24902	1	29.153420	125.000000	
	996	0	138.913540	69.02272	0	27.713033	127.283849	
	997	10	131.497740	66.33157	4	33.149837	125.000000	
	998	0	105.571347	83.23820	5	29.153420	125.000000	
	999	0	127.727025	108.90887	9	44.468195	129.545366	
		BMI D	iabetesPedig	reeFunction	Age	Outcome		
	0	33.600000	_	0.627000	50	1		
	1	26.600000		0.351000	31	0		
	2	23.300000		0.672000	32	1		
	3	28.100000		0.167000	21	0		
	4	43.100000		2.288000	33	1		
		•••		•••				

```
995 42.767110
                                 0.726091
                                            29
                                                      1
996 39.177649
                                 0.703702
                                            24
                                                      1
997 45.820819
                                 0.498032
                                            38
                                                      1
998 27.728596
                                            60
                                                      1
                                 0.649204
999 65.808840
                                 0.308998
                                            26
                                                      1
```

[1000 rows x 9 columns]

```
[21]: sns.set(rc={'figure.figsize':(5,5)})
sns.scatterplot(x="Pregnancies", y="Glucose", data=df_resampled, hue="Outcome");
```


Perform correlation analysis. Visually explore it using a heat map:

[23]: df_X_resampled.corr()

[23]:		Pregnanci	es Gluco	se BloodPressure	SkinThickness	\
	Pregnancies	1.0000	00 0.0799	53 0.205232	0.082752	
	Glucose	0.0799	53 1.0000	0.200717	0.189776	
	BloodPressure	0.2052	32 0.2007	1.000000	0.176496	
	SkinThickness	0.0827	52 0.1897	76 0.176496	1.000000	
	Insulin	0.0093	65 0.4188	0.034861	0.170719	
	BMI	0.0210	06 0.2425	0.277565	0.538207	
	${\tt DiabetesPedigreeFunction}$	-0.0402	10 0.1389	45 -0.005850	0.120799	
	Age	0.5326	60 0.2355	22 0.332015	0.117644	
		Insulin	BMI	DiabetesPedigreeF	Function \setminus	
	Pregnancies	0.009365	0.021006	-(0.040210	
	Glucose	0.418830	0.242501	().138945	
	BloodPressure	0.034861	0.277565	-(0.005850	
	SkinThickness	0.170719	0.538207	().120799	

Insulin	1.000000	0.168702	0.115187
BMI	0.168702	1.000000	0.177915
DiabetesPedigreeFunction	0.115187	0.177915	1.000000
Age	0.096940	0.017529	0.010532

Age 0.532660 Pregnancies Glucose 0.235522 BloodPressure 0.332015 SkinThickness 0.117644 Insulin 0.096940 BMI 0.017529 DiabetesPedigreeFunction 0.010532 1.000000 Age

[24]: plt.figure(figsize=(12,8))
sns.heatmap(df_X_resampled.corr(), cmap='bwr', annot=True);

[25]: from sklearn.model_selection import train_test_split, KFold, RandomizedSearchCV

```
from sklearn.metrics import accuracy_score, average_precision_score, f1_score,
       →confusion matrix, classification_report, auc, roc_curve, roc_auc_score, __
       ⇔precision_recall_curve
[26]: X_train, X_test, y_train, y_test = train_test_split(df_X_resampled,_
       ⇒df_y_resampled, test_size=0.15, random_state =10)
[27]: X_train.shape, X_test.shape
[27]: ((850, 8), (150, 8))
[28]: models = []
      model_accuracy = []
      model_f1 = []
      model_auc = []
     Logistic Regression:
[29]: from sklearn.linear model import LogisticRegression
      lr1 = LogisticRegression(max_iter=300)
[30]: lr1.fit(X_train,y_train)
[30]: LogisticRegression(max_iter=300)
[31]: lr1.score(X_train,y_train)
[31]: 0.7294117647058823
[32]: lr1.score(X test, y test)
```

Performance evaluation and optimizing parameters using GridSearchCV: Logistic regression does not really have any critical hyperparameters to tune. However we will try to optimize one of its parameters 'C' with the help of GridSearchCV. So we have set this parameter as a list of values form which GridSearchCV will select the best value of parameter.

[32]: 0.76

AUC: 0.884

f1=0.790 auc_pr=0.908 ap=0.909


```
[44]: models.append('LR')
model_accuracy.append(accuracy_score(y_test, pred_y_test))
model_f1.append(f1)
model_auc.append(auc_lr)
```

Decision Tree:

```
[45]: from sklearn.tree import DecisionTreeClassifier
      dt1 = DecisionTreeClassifier(random_state=0)
[46]: dt1.fit(X_train,y_train)
[46]: DecisionTreeClassifier(random_state=0)
[47]: dt1.score(X_train,y_train)
                                           # Decision Tree always 100% accuracy over_
       →train data
[47]: 1.0
[48]: dt1.score(X_test, y_test)
[48]: 0.7733333333333333
     Performance evaluation and optimizing parameters using GridSearchCV:
[49]: parameters = {
          'max_depth': [1,2,3,4,5,None]
      }
[50]: gs_dt = GridSearchCV(dt1, param_grid = parameters, cv=5, verbose=0)
      gs_dt.fit(df_X_resampled, df_y_resampled)
[50]: GridSearchCV(cv=5, estimator=DecisionTreeClassifier(random_state=0),
                   param_grid={'max_depth': [1, 2, 3, 4, 5, None]})
[51]: gs_dt.best_params_
[51]: {'max_depth': 4}
[52]: gs_dt.best_score_
[52]: 0.76
[53]: dt1.feature_importances_
[53]: array([0.06452226, 0.28556999, 0.06715314, 0.04979714, 0.07150365,
             0.20905992, 0.08573109, 0.16666279])
[54]: X_train.columns
[54]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
             'BMI', 'DiabetesPedigreeFunction', 'Age'],
            dtype='object')
```

```
[55]: import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(8,3))
sns.barplot(y=X_train.columns, x=dt1.feature_importances_)
plt.title("Feature Importance in Model");
```



```
[56]: dt2 = DecisionTreeClassifier(max_depth=4)
[57]: dt2.fit(X_train,y_train)
[57]: DecisionTreeClassifier(max_depth=4)
[58]: dt2.score(X_train,y_train)
[58]: 0.8070588235294117
[59]: dt2.score(X_test, y_test)
[59]: 0.82
[60]: # Preparing ROC Curve (Receiver Operating Characteristics Curve)
                                                         # predict probabilities
      probs = dt2.predict_proba(X_test)
      probs = probs[:, 1]
                                                         # keep probabilities for the_
       ⇒positive outcome only
      auc_dt = roc_auc_score(y_test, probs)
                                                         # calculate AUC
      print('AUC: %.3f' %auc_dt)
      fpr, tpr, thresholds = roc_curve(y_test, probs)
                                                        # calculate roc curve
      plt.plot([0, 1], [0, 1], linestyle='--')
                                                         # plot no skill
      plt.plot(fpr, tpr, marker='.')
                                                         # plot the roc curve for the
       \hookrightarrow model
```

```
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC (Receiver Operating Characteristics) Curve");
```



```
[61]: # Precision Recall Curve
      pred_y_test = dt2.predict(X_test)
                                                                             # predict_
       ⇔class values
      precision, recall, thresholds = precision_recall_curve(y_test, probs) #__
       →calculate precision-recall curve
      f1 = f1_score(y_test, pred_y_test)
                                                                             #__
       ⇔calculate F1 score
      auc_dt_pr = auc(recall, precision)
                                                                             #__
       ⇔calculate precision-recall AUC
      ap = average_precision_score(y_test, probs)
                                                                             #__
       →calculate average precision score
      print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_dt_pr, ap))
```

f1=0.844 auc_pr=0.717 ap=0.868


```
[62]: models.append('DT')
model_accuracy.append(accuracy_score(y_test, pred_y_test))
model_f1.append(f1)
model_auc.append(auc_dt)
```

RandomForest Classifier

```
[63]: from sklearn.ensemble import RandomForestClassifier rf1 = RandomForestClassifier()
```

```
[64]: rf1 = RandomForestClassifier(random_state=0)
[65]: rf1.fit(X_train, y_train)
[65]: RandomForestClassifier(random_state=0)
[66]: rf1.score(X_train, y_train)
                                             # Random Forest also 100% accuracy over
       →train data always
[66]: 1.0
[67]: rf1.score(X_test, y_test)
[67]: 0.846666666666667
     Performance evaluation and optimizing parameters using GridSearchCV:
[68]: parameters = {
          'n_estimators': [50,100,150],
          'max depth': [None, 1, 3, 5, 7],
          'min_samples_leaf': [1,3,5]
      }
[69]: gs_dt = GridSearchCV(estimator=rf1, param_grid=parameters, cv=5, verbose=0)
      gs_dt.fit(df_X_resampled, df_y_resampled)
[69]: GridSearchCV(cv=5, estimator=RandomForestClassifier(random_state=0),
                   param_grid={'max_depth': [None, 1, 3, 5, 7],
                               'min_samples_leaf': [1, 3, 5],
                               'n_estimators': [50, 100, 150]})
[70]: gs_dt.best_params_
[70]: {'max_depth': None, 'min_samples_leaf': 1, 'n_estimators': 100}
[71]: gs_dt.best_score_
[71]: 0.813
[72]: rf1.feature_importances_
[72]: array([0.06264995, 0.24106573, 0.08653626, 0.08301549, 0.09945063,
             0.17678287, 0.11685244, 0.13364664])
[73]: plt.figure(figsize=(8,3))
      sns.barplot(y=X train.columns, x=rf1.feature importances );
      plt.title("Feature Importance in Model");
```



```
[74]: rf2 = RandomForestClassifier(max_depth=None, min_samples_leaf=1,_
       →n estimators=100)
[75]: rf2.fit(X_train,y_train)
[75]: RandomForestClassifier()
[76]: rf2.score(X_train,y_train)
[76]: 1.0
[77]: rf2.score(X_test, y_test)
[77]: 0.86
[78]: # Preparing ROC Curve (Receiver Operating Characteristics Curve)
      probs = rf2.predict_proba(X_test)
                                                       # predict probabilities
                                                       # keep probabilities for the
      probs = probs[:, 1]
       ⇔positive outcome only
                                                       # calculate AUC
      auc_rf = roc_auc_score(y_test, probs)
      print('AUC: %.3f' %auc_rf)
      fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
      plt.plot([0, 1], [0, 1], linestyle='--')
                                                       # plot no skill
      plt.plot(fpr, tpr, marker='.')
                                                       # plot the roc curve for the
       ⊶model
      plt.xlabel("False Positive Rate")
      plt.ylabel("True Positive Rate")
      plt.title("ROC (Receiver Operating Characteristics) Curve");
```



```
[79]: # Precision Recall Curve
      pred_y_test = rf2.predict(X_test)
                                                                               # predict_
       ⇔class values
      precision, recall, thresholds = precision_recall_curve(y_test, probs) #__
       ⇔calculate precision-recall curve
      f1 = f1_score(y_test, pred_y_test)
                                                                               #__
       ⇔calculate F1 score
      auc_rf_pr = auc(recall, precision)
                                                                               #__
       ⇔calculate precision-recall AUC
      ap = average_precision_score(y_test, probs)
                                                                               #__
      →calculate average precision score
      print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_rf_pr, ap))
      plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                               # plot nou
       \hookrightarrow skill
      plt.plot(recall, precision, marker='.')
                                                                               # plot_
       ⇔the precision-recall curve for the model
      plt.xlabel("Recall")
      plt.ylabel("Precision")
```

```
plt.title("Precision-Recall Curve");
```

f1=0.873 auc_pr=0.938 ap=0.936


```
[80]: models.append('RF')
model_accuracy.append(accuracy_score(y_test, pred_y_test))
model_f1.append(f1)
model_auc.append(auc_dt)
```

K-Nearest Neighbour (KNN) Classification:

```
[81]: from sklearn.neighbors import KNeighborsClassifier knn1 = KNeighborsClassifier(n_neighbors=3)
```

- [82]: knn1.fit(X_train, y_train)
- [82]: KNeighborsClassifier(n_neighbors=3)
- [83]: knn1.score(X_train,y_train)

```
[83]: 0.8835294117647059
[84]: knn1.score(X_test,y_test)
[84]: 0.78666666666666
     Performance evaluation and optimizing parameters using GridSearchCV:
[85]: knn_neighbors = [i for i in range(2,16)]
      parameters = {
          'n_neighbors': knn_neighbors
[86]: gs_knn = GridSearchCV(estimator=knn1, param_grid=parameters, cv=5, verbose=0)
      gs_knn.fit(df_X_resampled, df_y_resampled)
[86]: GridSearchCV(cv=5, estimator=KNeighborsClassifier(n_neighbors=3),
                   param_grid={'n_neighbors': [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
                                               14, 15]})
[87]: gs_knn.best_params_
[87]: {'n_neighbors': 3}
[88]: gs_knn.best_score_
[88]: 0.771
[89]: # gs_knn.cv_results_
      gs_knn.cv_results_['mean_test_score']
[89]: array([0.76, 0.771, 0.765, 0.757, 0.757, 0.739, 0.744, 0.746, 0.744,
             0.755, 0.751, 0.755, 0.754, 0.749])
[90]: plt.figure(figsize=(6,4))
      sns.barplot(x=knn_neighbors, y=gs_knn.cv_results_['mean_test_score'])
      plt.xlabel("N_Neighbors")
      plt.ylabel("Test Accuracy")
      plt.title("Test Accuracy vs. N_Neighbors");
```



```
[91]: knn2 = KNeighborsClassifier(n_neighbors=3)
[92]: knn2.fit(X_train, y_train)
[92]: KNeighborsClassifier(n_neighbors=3)
[93]: knn2.score(X_train,y_train)
[93]: 0.8835294117647059
[94]: knn2.score(X_test,y_test)
[94]: 0.78666666666666
[95]: # Preparing ROC Curve (Receiver Operating Characteristics Curve)
     probs = knn2.predict_proba(X_test)
                                                      # predict probabilities
     probs = probs[:, 1]
                                                      # keep probabilities for the_
      ⇔positive outcome only
     auc_knn = roc_auc_score(y_test, probs) # calculate AUC
     print('AUC: %.3f' %auc_knn)
     fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
```


f1=0.814 auc_pr=0.885 ap=0.832


```
[97]: models.append('KNN')
model_accuracy.append(accuracy_score(y_test, pred_y_test))
model_f1.append(f1)
model_auc.append(auc_knn)
```

Support Vector Machine (SVM) Algorithm:

```
[98]: from sklearn.svm import SVC
       svm1 = SVC(kernel='rbf')
 [99]: svm1.fit(X_train, y_train)
 [99]: SVC()
[100]: svm1.score(X_train, y_train)
[100]: 0.7282352941176471
[101]: svm1.score(X_test, y_test)
[101]: 0.78
      Performance evaluation and optimizing parameters using GridSearchCV:
[102]: parameters = {
           'C':[1, 5, 10, 15, 20, 25],
           'gamma': [0.001, 0.005, 0.0001, 0.00001]
       }
[103]: | gs_svm = GridSearchCV(estimator=svm1, param_grid=parameters, cv=5, verbose=0)
       gs_svm.fit(df_X_resampled, df_y_resampled)
[103]: GridSearchCV(cv=5, estimator=SVC(),
                    param_grid={'C': [1, 5, 10, 15, 20, 25],
                                 'gamma': [0.001, 0.005, 0.0001, 1e-05]})
[104]: gs_svm.best_params_
[104]: {'C': 20, 'gamma': 0.005}
[105]: gs_svm.best_score_
[105]: 0.808999999999999
[106]: svm2 = SVC(kernel='rbf', C=20, gamma=0.005, probability=True)
[107]: svm2.fit(X_train, y_train)
[107]: SVC(C=20, gamma=0.005, probability=True)
[108]: svm2.score(X_train, y_train)
[108]: 0.9941176470588236
```

```
[109]: svm2.score(X_test, y_test)
```

[109]: 0.81333333333333333

```
[110]: # Preparing ROC Curve (Receiver Operating Characteristics Curve)
      probs = svm2.predict_proba(X_test)
                                                       # predict probabilities
      probs = probs[:, 1]
                                                       # keep probabilities for the_
        ⇒positive outcome only
      auc_svm = roc_auc_score(y_test, probs)
                                              # calculate AUC
      print('AUC: %.3f' %auc_svm)
      fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
      plt.plot([0, 1], [0, 1], linestyle='--')
                                                       # plot no skill
      plt.plot(fpr, tpr, marker='.')
                                                       # plot the roc curve for the_
        ⊶model
      plt.xlabel("False Positive Rate")
      plt.ylabel("True Positive Rate")
      plt.title("ROC (Receiver Operating Characteristics) Curve");
```

AUC: 0.857


```
[111]: # Precision Recall Curve
       pred_y_test = svm2.predict(X_test)
                                                                                # predict_
        ⇔class values
       precision, recall, thresholds = precision_recall_curve(y_test, probs) #__
        ⇔calculate precision-recall curve
       f1 = f1_score(y_test, pred_y_test)
                                                                                #__
        ⇔calculate F1 score
       auc_svm_pr = auc(recall, precision)
                                                                                #
        →calculate precision-recall AUC
       ap = average_precision_score(y_test, probs)
                                                                                #__
        ⇔calculate average precision score
       print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_svm_pr, ap))
       plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                # plot nou
        \hookrightarrow skill
       plt.plot(recall, precision, marker='.')
                                                                                # plot_
        → the precision-recall curve for the model
       plt.xlabel("Recall")
       plt.ylabel("Precision")
       plt.title("Precision-Recall Curve");
```

f1=0.829 auc_pr=0.830 ap=0.837


```
[112]: models.append('SVM')
    model_accuracy.append(accuracy_score(y_test, pred_y_test))
    model_f1.append(f1)
    model_auc.append(auc_svm)

Naive Bayes Algorithm:
[113]: from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB
    gnb = GaussianNB()
[114]: gnb.fit(X_train, y_train)
[115]: gnb.score(X_train, y_train)
[115]: gnb.score(X_train, y_train)
[116]: gnb.score(X_test, y_test)
```

[116]: 0.8

Naive Bayes has almost no hyperparameters to tune, so it usually generalizes well.

```
[117]: | # Preparing ROC Curve (Receiver Operating Characteristics Curve)
      probs = gnb.predict_proba(X_test)
                                                        # predict probabilities
      probs = probs[:, 1]
                                                        # keep probabilities for the_
       ⇒positive outcome only
      auc_gnb = roc_auc_score(y_test, probs)
                                                        # calculate AUC
      print('AUC: %.3f' %auc_gnb)
      fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
      plt.plot([0, 1], [0, 1], linestyle='--')
                                                        # plot no skill
      plt.plot(fpr, tpr, marker='.')
                                                        # plot the roc curve for the_
        ⊶model
      plt.xlabel("False Positive Rate")
      plt.ylabel("True Positive Rate")
      plt.title("ROC (Receiver Operating Characteristics) Curve");
```



```
[118]: # Precision Recall Curve
       pred_y_test = gnb.predict(X_test)
                                                                                # predict_
        ⇔class values
       precision, recall, thresholds = precision_recall_curve(y_test, probs) #__
        ⇔calculate precision-recall curve
       f1 = f1_score(y_test, pred_y_test)
                                                                                #__
        ⇔calculate F1 score
       auc_gnb_pr = auc(recall, precision)
                                                                                 #
       ⇔calculate precision-recall AUC
       ap = average_precision_score(y_test, probs)
                                                                                #__
        ⇔calculate average precision score
       print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_gnb_pr, ap))
       plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                # plot nou
        \hookrightarrow skill
       plt.plot(recall, precision, marker='.')
                                                                                # plot_
        ⇔the precision-recall curve for the model
       plt.xlabel("Recall")
       plt.ylabel("Precision")
       plt.title("Precision-Recall Curve");
```

f1=0.819 auc_pr=0.879 ap=0.880


```
[119]: models.append('GNB')
    model_accuracy.append(accuracy_score(y_test, pred_y_test))
    model_f1.append(f1)
    model_auc.append(auc_gnb)

Ensemble Learning -> Boosting -> Adaptive Boosting:

[120]: from sklearn.ensemble import AdaBoostClassifier
    ada1 = AdaBoostClassifier(n_estimators=100)

[121]: ada1.fit(X_train,y_train)

[121]: AdaBoostClassifier(n_estimators=100)

[122]: ada1.score(X_train,y_train)

[123]: ada1.score(X_train,y_test)
```

[123]: 0.766666666666667

Performance evaluation and optimizing parameters using cross_val_score:


```
[130]: ada2 = AdaBoostClassifier(n_estimators=500)
[131]: ada2.fit(X_train,y_train)
[131]: AdaBoostClassifier(n_estimators=500)
```

```
[132]: ada2.score(X_train,y_train)
[132]: 0.9247058823529412
[133]: ada2.score(X_test, y_test)
[133]: 0.7733333333333333
[134]: | # Preparing ROC Curve (Receiver Operating Characteristics Curve)
                                                        # predict probabilities
       probs = ada2.predict_proba(X_test)
       probs = probs[:, 1]
                                                        # keep probabilities for the_
        ⇔positive outcome only
       auc_ada = roc_auc_score(y_test, probs)
                                                        # calculate AUC
       print('AUC: %.3f' %auc_ada)
       fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
       plt.plot([0, 1], [0, 1], linestyle='--')
                                                        # plot no skill
       plt.plot(fpr, tpr, marker='.')
                                                        # plot the roc curve for the_
        ⊶model
       plt.xlabel("False Positive Rate")
       plt.ylabel("True Positive Rate")
      plt.title("ROC (Receiver Operating Characteristics) Curve");
```



```
[135]: # Precision Recall Curve
       pred_y_test = ada2.predict(X_test)
                                                                                # predict_
        ⇔class values
       precision, recall, thresholds = precision_recall_curve(y_test, probs) #_
        ⇔calculate precision-recall curve
       f1 = f1_score(y_test, pred_y_test)
                                                                                #__
        ⇔calculate F1 score
       auc_ada_pr = auc(recall, precision)
                                                                                #__
        ⇔calculate precision-recall AUC
       ap = average_precision_score(y_test, probs)
                                                                                #__
       →calculate average precision score
       print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_ada_pr, ap))
       plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                # plot nou
        \hookrightarrow skill
       plt.plot(recall, precision, marker='.')
                                                                                # plot⊔
        ⇔the precision-recall curve for the model
       plt.xlabel("Recall")
       plt.ylabel("Precision")
```

```
plt.title("Precision-Recall Curve");
```

f1=0.785 auc_pr=0.838 ap=0.845


```
[136]: models.append('ADA')
  model_accuracy.append(accuracy_score(y_test, pred_y_test))
  model_f1.append(f1)
  model_auc.append(auc_ada)
```

Ensemble Learning -> Boosting -> Gradient Boosting (XGBClassifier):

```
[137]: from xgboost import XGBClassifier xgb1 = XGBClassifier(use_label_encoder=False, objective = 'binary:logistic',usenthread=4, seed=10)
```

```
[138]: xgb1.fit(X_train, y_train)
```

[01:58:23] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from

```
'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
```

```
[138]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, enable_categorical=False, gamma=0, gpu_id=-1, importance_type=None, interaction_constraints='', learning_rate=0.300000012, max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=100, n_jobs=4, nthread=4, num_parallel_tree=1, predictor='auto', random_state=10, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=10, subsample=1, tree_method='exact', use_label_encoder=False, validate_parameters=1, ...)
```

```
[139]: xgb1.score(X_train, y_train)
[139]: 1.0
[140]: xgb1.score(X_test, y_test)
```

[140]: 0.826666666666667

Performance evaluation and optimizing parameters using GridSearchCV:

```
[141]: parameters = {
         'max_depth': range (2, 10, 1),
         'n_estimators': range(60, 220, 40),
         'learning_rate': [0.1, 0.01, 0.05]
}
```

```
[142]: gs_xgb = GridSearchCV(xgb1, param_grid = parameters, scoring = 'roc_auc',u

n_jobs = 10, cv=5, verbose=0)

gs_xgb.fit(df_X_resampled, df_y_resampled)
```

[02:00:05] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[142]: GridSearchCV(cv=5,

```
max_delta_step=0, max_depth=6,
                                              min_child_weight=1, missing=nan,
                                              monotone_constraints='()',
                                              n_estimators=100, n_jobs=4, nthread=4,
                                              num_parallel_tree=1, predictor='auto',
                                              random_state=10, reg_alpha=0, reg_lambda=1,
                                              scale_pos_weight=1, seed=10, subsample=1,
                                              tree_method='exact',
                                              use label encoder=False,
                                              validate_parameters=1, ...),
                     n_{jobs=10},
                     param_grid={'learning_rate': [0.1, 0.01, 0.05],
                                  'max_depth': range(2, 10),
                                  'n_estimators': range(60, 220, 40)},
                     scoring='roc_auc')
[143]: gs_xgb.best_params_
[143]: {'learning_rate': 0.05, 'max_depth': 7, 'n_estimators': 180}
[144]: gs_xgb.best_score_
[144]: 0.88522
[145]: xgb1.feature_importances_
[145]: array([0.09883171, 0.23199296, 0.09590795, 0.08073226, 0.10332598,
              0.15247224, 0.08829137, 0.14844562], dtype=float32)
[146]: plt.figure(figsize=(8,3))
       sns.barplot(y=X_train.columns, x=xgb1.feature_importances_)
       plt.title("Feature Importance in Model");
                                                 Feature Importance in Model
                     Pregnancies
                       Glucose
                   BloodPressure
                   SkinThickness
                        Insulin
                          BMI
            DiabetesPedigreeFunction
```

0.10

0.15

0.20

0.05

0.00

```
[147]: | xgb2 = XGBClassifier(use_label_encoder=False, objective = 'binary:logistic',
                           nthread=4, seed=10, learning_rate= 0.05, max_depth= 7, u
        \rightarrown_estimators= 180)
[148]: xgb2.fit(X_train,y_train)
      [02:00:06] WARNING: C:/Users/Administrator/workspace/xgboost-
      win64 release 1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default
      evaluation metric used with the objective 'binary:logistic' was changed from
      'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the
      old behavior.
[148]: XGBClassifier(base score=0.5, booster='gbtree', colsample_bylevel=1,
                     colsample_bynode=1, colsample_bytree=1, enable_categorical=False,
                     gamma=0, gpu_id=-1, importance_type=None,
                     interaction_constraints='', learning_rate=0.05, max_delta_step=0,
                     max_depth=7, min_child_weight=1, missing=nan,
                     monotone_constraints='()', n_estimators=180, n_jobs=4, nthread=4,
                     num_parallel_tree=1, predictor='auto', random_state=10,
                     reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=10,
                     subsample=1, tree_method='exact', use_label_encoder=False,
                     validate_parameters=1, ...)
[149]: xgb2.score(X_train,y_train)
[149]: 0.9976470588235294
[150]: xgb2.score(X_test, y_test)
[150]: 0.80666666666666
[151]: | # Preparing ROC Curve (Receiver Operating Characteristics Curve)
       probs = xgb2.predict_proba(X_test)
                                                          # predict probabilities
       probs = probs[:, 1]
                                                         # keep probabilities for the_
        ⇔positive outcome only
       auc_xgb = roc_auc_score(y_test, probs)
                                                         # calculate AUC
       print('AUC: %.3f' %auc_xgb)
       fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
       plt.plot([0, 1], [0, 1], linestyle='--')
                                                         # plot no skill
       plt.plot(fpr, tpr, marker='.')
                                                         # plot the roc curve for the
        →model
       plt.xlabel("False Positive Rate")
       plt.ylabel("True Positive Rate")
       plt.title("ROC (Receiver Operating Characteristics) Curve");
```



```
[152]: # Precision Recall Curve
       pred_y_test = xgb2.predict(X_test)
                                                                                 #⊔
        ⇔predict class values
       precision, recall, thresholds = precision_recall_curve(y_test, probs) #_J
        ⇔calculate precision-recall curve
       f1 = f1_score(y_test, pred_y_test)
                                                                                #__
        ⇔calculate F1 score
       auc_xgb_pr = auc(recall, precision)
                                                                                 #⊔
        ⇔calculate precision-recall AUC
       ap = average_precision_score(y_test, probs)
                                                                                #__
       →calculate average precision score
       print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_xgb_pr, ap))
       plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                # plot nou
        \hookrightarrow skill
       plt.plot(recall, precision, marker='.')
                                                                                # plot⊔
        ⇔the precision-recall curve for the model
       plt.xlabel("Recall")
       plt.ylabel("Precision")
```

```
plt.title("Precision-Recall Curve");
```

f1=0.824 auc_pr=0.936 ap=0.937


```
[156]:
      model_summary
[156]:
              accuracy f1_score
                                         auc
       model
                                   0.883967
       LR
              0.773333
                         0.790123
       DT
              0.820000
                         0.843931
                                   0.879484
       RF
              0.860000
                         0.872727
                                   0.879484
       KNN
              0.786667
                         0.813953
                                   0.851865
       SVM
              0.813333
                        0.829268
                                   0.857425
       GNB
              0.800000
                         0.819277
                                   0.872848
       ADA
              0.773333
                         0.784810
                                   0.850430
       XGB
              0.806667
                         0.824242
                                   0.921808
```

Among all models, RandomForest has given best accuracy and f1_score. Therefore we will build final model using RandomForest.

FINAL CLASSIFIER:

[157]: final_model = rf2

[158]: cr = classification_report(y_test, final_model.predict(X_test))
print(cr)

support	f1-score	recall	precision	
68	0.84	0.84	0.85	0
82	0.87	0.88	0.87	1
150	0.86			accuracy
150	0.86	0.86	0.86	macro avg
150	0.86	0.86	0.86	weighted avg

```
[159]: confusion = confusion_matrix(y_test, final_model.predict(X_test))
       print("Confusion Matrix:\n", confusion)
      Confusion Matrix:
       [[57 11]
       [10 72]]
[160]: TP = confusion[1,1] \# true positive
       TN = confusion[0,0] # true negatives
       FP = confusion[0,1] # false positives
       FN = confusion[1,0] # false negatives
       Accuracy = (TP+TN)/(TP+TN+FP+FN)
       Precision = TP/(TP+FP)
       Sensitivity = TP/(TP+FN)
                                                    # also called recall
       Specificity = TN/(TN+FP)
[161]: print("Accuracy: %.3f"%Accuracy)
       print("Precision: %.3f"%Precision)
       print("Sensitivity: %.3f"%Sensitivity)
       print("Specificity: %.3f"%Specificity)
       print("AUC: %.3f"%auc_rf)
      Accuracy: 0.860
      Precision: 0.867
      Sensitivity: 0.878
      Specificity: 0.838
      AUC: 0.928
```