TEMA D'ESAME

Domanda A

Si dimostri per via unicamente algebrica che se $xy + \overline{x} = 0$, allora la funzione f calcolata dalla rete a lato assume sempre il valore di z.

Domanda B

La parola d'ingresso $\mathbf{X} = [\mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0]$ rappresenta un numero intero secondo la codifica binaria naturale ed i blocchi "*2" e "mod 3" calcolano rispettivamente il doppio e il modulo 3 di tale valore in ingresso. La parola di uscita $\mathbf{U} = [\mathbf{u}_2 \mathbf{u}_1 \mathbf{u}_0]$, in codifica binaria naturale, indica il numero di 1 presenti complessivamente nelle due parole $\mathbf{Y} = [\mathbf{y}_3 \mathbf{y}_2 \mathbf{y}_1 \mathbf{y}_0]$ e $\mathbf{Z} = [\mathbf{z}_1 \mathbf{z}_0]$. Si richiede di sintetizzare, sfruttando tutte le possibili condizioni di indifferenza, la funzione a più uscite $[\mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_0] = \mathbf{FA} (\mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_0, \mathbf{z}_1, \mathbf{z}_0)$.

Domanda C

Una macchina a stati è dotata di due ingressi \mathbf{x} ed \mathbf{y} ed un'uscita \mathbf{z} . Inizialmente \mathbf{z} assume il valore di \mathbf{y} . Da questo momento l'uscita \mathbf{z} assumerà alternativamente i valori \mathbf{y} oppure \mathbf{y}' . Il passaggio da un valore all'altro avviene ogni volta che sull'ingresso \mathbf{x} si presentano tre 1 consecutivi. Il diagramma qui sotto indica un esempio di funzionamento:

x	0	0	1	1	1	1	0	1	1	1	0	0	0	0	1	1	1	1	1	0
У	0	0	0	0	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1
Z	У	У	У	У	У	У'	У	У	У	У	У'	У′	У′	У′	У'	У'	У'	У	y'	У
7	Ω	Ω	Ω	Λ	Λ	Ω	Λ	1	1	1	1	Λ	Λ	1	1	1	Ω	1	Ω	1

Progettare tale macchina a stati seguendo un approccio strutturale tenendo presente che gli ingressi \mathbf{x} ed \mathbf{y} arrivano già campionati da registri sincroni al clock della macchina. Si richiede inoltre di ricavare le equazioni di stato della macchina così ottenuta.

Domanda D

Si vuole realizzare un contatore modulo 6 con il seguente ciclo di conteggio:

00 00 10 01 11 11

A tale scopo si proceda nei due modi seguenti:

- 1. Si utilizzino un contatore Johnson modulo 8 dotato di reset sincrono e tutte le reti combinatorie necessarie. Si richiede di indicare l'architettura complessiva del sistema e di sintetizzare le reti combinatorie individuate.
- 2. Si proceda alla sintesi per via comportamentale, cioè dal diagramma di transizione alle equazioni di stato della rete.