Bounding the Distance to Unsafe Sets with Convex Optimization

Jared Miller, Mario Sznaier

October 4, 2022

DSCD Rising Stars (Robotics)

Safety Example

Safety Example

Safety Example

Main Ideas

Quantify safety of trajectories by distance to unsafe set

Create linear program to bound distance

Solve using Semidefinite Programming

Flow System Setting

$$X_0 = \{x \mid (x_1 - 1.5)^2 + x_2 \le 0.4^2\}$$

$$X_u = \{x \mid x_1^2 + (x_2 + 0.7)^2 \le 0.5^2,$$

$$\sqrt{2}/2(x_1 + x_2 - 0.7) \le 0\}$$

Distance Function

Metric space (X, c) satisfying $\forall x, y \in X$:

$$c(x,y) > 0$$
 $x \neq y$
 $c(x,x) = 0$
 $c(x,y) = c(y,x)$
 $c(x,y) \leq c(x,z) + c(z,y)$ $\forall z \in X$

Point-Unsafe Set distance: $c(x; X_u) = \min_{y \in X_u} c(x, y)$

Distance Estimation Problem (Nonconvex)

$$P^* = \min_{t, x_0 \in X_0} c(x(t \mid x_0); X_u)$$
$$\dot{x}(t) = f(t, x), \quad \forall t \in [0, T].$$

Peak Estimation

Peak Estimation Background

Find minimum value of p(x) along trajectories

$$P^* = \min_{t, x_0 \in X_0} p(x(t \mid x_0))$$
$$\dot{x}(t) = f(t, x(t)) \qquad t \in [0, T]$$

Peak Function Program

Infinite dimensional linear program (Fantuzzi, Goluskin, 2020) Uses auxiliary function v(t,x)

$$d^* = \max_{\gamma \in \mathbb{R}} \quad \gamma \tag{1a}$$

$$v(t,x) \le p(x)$$
 $\forall (t,x) \in [0,T] \times X$ (1b)

$$(\partial_t + f \cdot \nabla_x)v(t,x) \ge 0 \quad \forall (t,x) \in [0,T] \times X \quad (1c)$$

$$\gamma \le \nu(0, x) \qquad \forall x \in X_0 \tag{1d}$$

$$v \in C^1([0,T] \times X) \tag{1e}$$

 $P^* = d^*$ holds if $[0, T] \times X$ is compact, f Lipschitz

Sum-of-Squares Programming

Nonnegativity imposition $p(x) \ge 0 \ \forall x \in \mathbb{R}^n$

Sum-of-squares (SOS) $p(x) = \sum_i q_i(x)^2$ always nonnegative

SDP-representable: $p(x) = m(x)^T Q m(x)$ for $Q \succeq 0$

Putinar Psatz: Positivity over $\{x \mid g_k(x) \geq 0\}$,

$$p(x) = \sigma_0(x) + \sum_i \sigma_i(x) g_i(x)$$

$$\exists \sigma_0(x) \in \Sigma[x], \quad \sigma(x) \in (\Sigma[x])^{N_g}$$

Peak Estimation Example Bounds

Converging bounds to min. $x_2 = -0.5734$ (moment-SOS) Box region X = [-2.5, 2.5], time $t \in [0, 5]$

Distance Program

Distance Estimation Problem (reprise)

$$P^* = \min_{t, x_0 \in X_0} c(x(t \mid x_0); X_u)$$
$$\dot{x}(t) = f(t, x), \quad \forall t \in [0, T].$$

L₂ bound of 0.2831

Connection to Peak Estimation

Specific form of problem

$$p(x) = c(x; X_u)$$

Moment-SOS hierarchy requires polynomial data

Function $c(x; X_u)$ generally non-polynomial

$$\min_{y \in [-1,1]} ||x - y||_2 = \begin{cases} 0 & x \in [-1,1] \\ |x - \operatorname{sign}(x)| & \text{else} \end{cases}$$

Distance Program (Functions)

Auxiliary v(t,x), point-set proxy $w(x) \le c(x; X_u)$:

$$d^* = \max_{\gamma \in \mathbb{R}} \quad \gamma \tag{2a}$$

$$v(0,x) \geq \gamma \qquad \forall x \in X_0 \tag{2b}$$

$$w(x) \geq v(t,x) \qquad \forall (t,x) \in [0,T] \times X \tag{2c}$$

$$c(x,y) \geq w(x) \qquad \forall (x,y) \in X \times X_u \tag{2d}$$

$$(\partial_t + f \cdot \nabla_x)v(t,x) \geq 0 \quad \forall (t,x) \in [0,T] \times X \tag{2e}$$

$$v \in C^1([0,T] \times X) \tag{2f}$$

$$w \in C(X)$$

Chain
$$\forall (t, x, y) \in [0, T] \times X \times X_u : c(x, y) \ge w(x) \ge v(t, x)$$

Computational Complexity

Use moment-SOS hierarchy

Degree d, dynamics degree $\widetilde{d} = d + \lceil \deg(f)/2 \rceil - 1$

Largest PSD matrix size
$$\max\left[\binom{1+n+\tilde{d}}{\tilde{d}},\binom{2n+d}{d}\right]$$

Timing scales approximately as max $\left[(1+n)^{6\tilde{d}},(2n)^{6d}\right]$

Approximation and Recovery

Attempt recovery if SDP (dual) solution has low rank Related to optima extraction in polynomial optimization

 L_2 bound of 0.2831

More Examples

Moon L2 Contours

Inside one circle, outside another

Distance Example (Flow Moon)

Collision if X_u was a half-circle

Distance Example (Flow Moon)

 L_2 bound of 0.1592

Distance Example (Twist)

'Twist' System,
$$T=5$$

$$\dot{x}_i = A_{ij}x_j - B_{ij}(4x_j^3 - 3x_j)/2$$

$$A = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$

$$B = \begin{vmatrix} -1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$

 L_2 bound of 0.0425

Distance Variations

Distance Uncertainty

Time dependent (bounded) uncertainty $w(t) \in W \ \forall t \in [0, T]$

Dynamics
$$\dot{x}(t) = f(t, x(t), w(t))$$

$$(\partial_t + f(t, x, w) \cdot \nabla_x) v(t, x) \ge 0, \quad \forall (t, x, w) \in [0, T] \times X \times W$$

 L_2 bound of 0.1691, $w(t) \in [-1, 1]$

Shapes along Trajectories

Orientation $\omega(t) \in \Omega$, shape S

Body to global coordinate transformation A:

$$A: S \times \Omega \rightarrow X$$

$$(s,\omega)\mapsto A(s;\omega)$$

Angular Velocity = 0 rad/sec

Angular Velocity = 1 rad/sec

Figure 1: Shape translating and (possibly) rotating

Set-Set Distance Problem

Set-Set distance between $A(S; \omega(t))$ and X_u given t

$$P^* = \min_{t, \omega_0 \in \Omega_0, s \in S} c(A(s; \omega(t \mid \omega_0)); X_u)$$
$$\dot{\omega}(t) = f(t, \omega) \qquad \forall t \in [0, T]$$

L₂ bound of 0.1465

Take-aways

Conclusion

Distance as a measure for safety

Distance estimation with polynomial optimization

Approximate recovery if moment matrices are low-rank

Extend to uncertain and set-set scenarios

Future Work

- Distance-Maximizing Control
- Chance-constrained distance
- Further Sparsity
- Efficient Computation
- Other nonnegativity cones and proofs

Acknowledgements

MECC Organizing Committee

Didier Henrion, POP group at LAAS-CNRS

Chateaubriand Fellowship of the Office for Science Technology of the Embassy of France in the United States.

National Science Foundation

Air Force Office of Scientific Research

Thank you for your attention

arxiv:2110.14047

http://github.com/jarmill/distance

Graduating May 2023, looking for postdocs