Problem K: Upside down primes

Last night, I must have dropped my alarm clock. When the alarm went off in the morning, it showed 51:80 instead of 08:15. This made me realize that if you rotate a seven segment display like it is used in digital clocks by 180 degrees, some numbers still are numbers after turning them upside down.

Figure K.1: Prime number 18115211 on a seven segment display (see third sample).

Figure K.2: 18115211 turned upside down (i.e. rotated by 180 degrees) gives 11251181, which is not prime.

As you can see,

- 8, 8, 9, and 8 still are 8, 8, 9, and 8.
- is still readable as (only moved left).
- $\mathbf{8}$ turns into $\mathbf{9}$, while $\mathbf{9}$ turns into $\mathbf{6}$.
- \Box , \Box and \Box are no longer valid numbers (\Box , \Box and \Box)

My favourite numbers are primes, of course. Your job is to check whether a number is a prime and still a prime when turned upside down.

Input

One line with the integer N in question ($1 \le N \le 10^{16}$). N will not have leading zeros.

Output

Print one line of output containing "yes" if the number is a prime and still a prime if turned upside down, "no" otherwise.

Sample Input 1	Sample Output 1
151	yes
Sample Input 2	Sample Output 2
23	no
Sample Input 3	Sample Output 3
18115211	no