# (19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

# 特開平6-81068

(43)公開日 平成6年(1994)3月22日

(51) Int.Cl.5

識別記号

FΙ

技術表示箇所

C 2 2 C 23/00

B 2 2 D 21/04

8926-4E

庁内整理番号

審査請求 未請求 請求項の数6(全19頁)

(21)出願番号

特願平4-257298

(22)出顧日

平成4年(1992)9月1日

(71)出願人 000005326

本田技研工業株式会社

東京都港区南青山二丁目1番1号

(72)発明者 小池 精一

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(72)発明者 綱島 栄

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(74)代理人 弁理士 落合 健 (外1名)

## (54) 【発明の名称】 耐熱Mg合金の鋳造方法

#### (57) 【要約】

【目的】 優秀な耐熱強度を備えたMg合金を得る。

【構成】 Si含有量が1.3重量%≦Si≦20重量 %であるMg合金組成の素材がデンドライト状Mg2 S iを含む固液共存域にあるとき、その素材に機械的攪拌 処理を施してデンドライト状Mg2 Siを微細化すると 共にその微細Mg2 Siを均一に分散させ、次いで素材 を金型内に注入して凝固させる。Mg2 Siは低比重 で、且つ高融点であることから、微細Mg2 Si(図1 における黒色の小塊状物)を均一に分散させたMg合金 は優れた耐熱強度を有する。





#### 【特許請求の範囲】

【請求項1】 Si含有量が1. 3重量%≤Si≤20 重量%であるMg合金組成の素材がデンドライト状Mg 2 Siを含む固液共存域にあるとき、その素材に機械的 攪拌処理を施して前記デンドライト状Mg2 Siを微細 化すると共にその微細Mg2Siを均一に分散させ、次 いで前記素材を凝固させることを特徴とする耐熱Mg合 金の鋳造方法。

【請求項2】 前記素材は、A1、Zn、Zr、Y、N d, Sc, Sm, Ag, La, Ce, Pr, Mn, Th 10 およびGeから選択される少なくとも一種のMgマトリ ックス強化用合金元素AEをAE≤5重量%含有する、 請求項1記載の耐熱Mg合金の鋳造方法。

【請求項3】 前記素材は、Mg2 Siの微細化促進元 素であるPを0.005 重量%≤P≤0.20 重量%含 有する、請求項1または2記載の耐熱Mg合金の鋳造方 法。

【請求項4】 Ge含有量が3.4重量%≤Ge≤20 重量%であるMg合金組成の素材がデンドライト状Mg 2 Geを含む固液共存域にあるとき、その素材に機械的 20 攪拌処理を施して前記デンドライト状Mg2 Geを微細 化すると共にその微細Mg2 Geを均一に分散させ、次 いで前記素材を凝固させることを特徴とする耐熱Mg合 金の鋳造方法。

【請求項5】 前記素材は、A1、Zn、Zr、Y、N d, Sc, Sm, Ag, La, Ce, Pr, Mn, Th およびSiから選択される少なくとも一種のMgマトリ ックス強化用合金元素AEをAE≤5重量%含有する、 請求項4記載の耐熱Mg合金の鋳造方法。

【請求項6】 前記素材は、Mg2 Geの微細化促進元 30 素であるPを0,005重量%≤P≤0,20重量%含 有する、請求項4または5記載の耐熱Mg合金の鋳造方 法。

#### 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は耐熱Mg合金の鋳造方法 に関する。

[0002]

【従来の技術】従来、耐熱Mg合金としては、低比重 マトリックスに分散させたMg-S1系合金が知られて いる。この場合、Mg-Si系合金の耐熱強度、例えば 高温下での機械的強度およびクリープ強さを向上させる ためには、Mg2 Siを微細化すると共にその微細Mg 2Siを均一に分散させることが必要である。

【0003】そこで、従来法においてはMg-Si系合 金組成の溶湯にP単体等のP系物質を添加してMg2 S iよりなるデンドライトの晶出を抑制するようにしてい る(特公昭43-20892号公報参照)。

[0004]

【発明が解決しようとする課題】しかしながら従来法に よると、Si含有量が共晶組成(Si=1.3重量%) に近い場合には好結果が得られるものの、より一層の耐 熱強度の向上を狙ってSi含有量を20重量%程度と高 く設定してMg2Siの晶出量を増すと、その微細化お よび均一分散を十分に達成することができない場合があ った。これは、Mg2 Si同様に高融点の金属間化合物 であるMg2 Geを有するMg-Ge系合金(共晶組成 Ge=3. 4重量%) についても言える。

【0005】本発明は前記に鑑み、デンドライト状Mg 2 SiまたはMg2 Geの存在量の多少に拘らず、それ を確実に微細化すると共に均一に分散させ、これにより 要求耐熱強度を備えた耐熱Mg合金を容易に得ることの できる前記鋳造方法を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明に係る耐熱Mg合 金の鋳造方法は、Si含有量が1.3重量%≦Si≦2 0 重量%であるMg合金組成の素材がデンドライト状M gzSiを含む固液共存域にあるとき、その素材に機械 的攪拌処理を施して前記デンドライト状Mg2Siを微 細化すると共にその微細Mg2 Siを均一に分散させ、 次いで前記素材を凝固させることを特徴とする。

【0007】また本発明に係る耐熱Mg合金の鋳造方法 は、Ge含有量が3.4重量%≤Ge≤20重量%であ るMg合金組成の素材がデンドライト状Mg2 Geを含 む固液共存域にあるとき、その素材に機械的攪拌処理を 施して前配デンドライト状Mg2 Geを微細化すると共 にその微細Mg2 Geを均一に分散させ、次いで前記素 材を凝固させることを特徴とする。

[0008]

【作用】前記のように機械的攪拌処理を適用すると、デ ンドライト状Mg2SiまたはMg2Geの存在量の多 少に拘らず、それを確実に微細化すると共に均一に分散 させることが可能となり、これによりSiまたはGeの 含有量を適宜調節してMg合金に対する要求耐熱強度に 容易に対応することができる。

【0009】またMg2 SiまたはMg2 Geの微細化 に伴い素材の流動性が、Mg2 SiまたはMg2 Geと いった固相の現出にも拘らず良好に維持されるので、そ で、且つ高融点の金属間化合物であるMg2 SiをMg 40 の素材の凝固に際し空孔等の鋳造欠陥の発生を回避する ことができる。

> 【0010】なお、Si含有量がSi<1.3重量%で ある場合またはGe含有量がGe<3. 4重量%である 場合には、素材においてMg2 SiまたはMg2 Geの 晶出量が過少となり、一方、Si>20重量%である場 合またはGe>20重量%である場合には、Mg2 Si またはMg2 Geの晶出量が過多となるため、それらを 微細化してもMg合金の室温域における靱性が低下す る。

50 [0011]

【実施例】耐熱Mg-Si系合金の鋳造に当っては、半 凝固鋳造法または半溶融鋳造法が適用され、その方法の 実施過程に機械的攪拌処理が組込まれる。

【0012】半凝固鋳造法において、その原材料は、M gの高純度インゴット、Siの高純度フレーク、Mgマ トリックスを強化すべく、必要に応じて用いられるA 1, Zn, Zr, Y, Nd, Sc, Sm, Ag, La, Ce、Pr、Mn、ThおよびGeから選択される少な くとも一種の合金元素AEの高純度インゴットならびに 必要に応じて用いられるMg2 Siの微細化促進元素で 10 Si系合金の具体的鋳造例について説明する。 あるPを含む高純度P系物質を用いて調製される。

【0013】この場合、Si含有量は前記理由から1. 3 重量%≤S i ≤ 2 0 重量%に設定される。またAE含 有量はAE≦5重量%に設定される。AE>5重量%で はMg-Si系合金の強度は高くなるが伸びが低下す る。さらにP系物質としては、AlCuP化合物、赤リ ン、Mg。 (PO。) 2 等が用いられ、原材料における P含有量は0.005重量%≤P≤0.20重量%に設 定される。P<0.005重量%ではMg2 Siの微細 化促進効果が少なくなり、一方、P>0.20重量%で 20 はP添加による微細化促進効果が飽和するからである。

【0014】半凝固鋳造法を適用した耐熱Mg-Si系 合金の鋳造は次の各工程を経て行われる。即ち、Mg、 Siおよび必要に応じて合金元素AEを含む原材料を軟 鋼製るつぼ内に投入し、次いで原材料にArガスを吹付 けながらそれを溶解してMg合金組成の溶湯を調製し、 その後溶湯に必要に応じてP系物質を添加して溶融状態 の素材を得る工程と、素材を降温させてその素材がデン ドライト状Mg2 Siを含む固液共存域(半凝固領域) にあるとき、その素材にスタラ等による機械的攪拌処理 30 を施してデンドライト状Mg2 Siを微細化すると共に その微細Mg2Siを均一に分散させる工程と、素材を 金型内に注入して凝固させる工程とを順次行うものであ る。Mg-S1系合金の耐熱強度向上の観点から、微細 Mg2 Siの平均粒径Dは10μm≦D≦100μm、 その体積分率Vfは3%≦Vf≦50%であることが望 ましい。

【0015】このようにして得られたMg-Si系合金 は微細Mg2 Siを均一に分散させた金属組織を備え、 また鋳造欠陥もないもので、優れた耐熱強度を有する。 前記方法によって鋳造されたMg-Si系合金には、必 要に応じて熱間押出し加工が施される。

【0016】半溶融鋳造法としては射出成形法が適用さ れ、したがって原材料としては、前記半凝固鋳造法の場 合と同一組成でデンドライト状Mg2 Siを有する粒径  $0.5 \sim 3$  皿のペレット状のものが用いられる。

【0017】射出成形法の実施に当っては、原材料をホ ッパ内に投入する、原材料をホッパからスクリュを備え たパレル内に供給する、原材料をパレル内でスクリュに 含み且つ固液共存域(半溶融領域)にある素材を調製 し、その素材にスクリュによる機械的攪拌処理を施して デンドライト状Mg2 Siを微細化すると共にその微細 Mg2 Siを均一に分散させる、索材を金型内に射出し て凝固させる、といった手段が採用される。射出条件の 一例を挙げれば次の通りである。Arガス雰囲気、金型 のゲート通過時における素材温度650℃、射出速度4 m/sec 、 金型温度 1 5 0 ℃。

【0018】以下、半凝固鋳造法を適用した耐熱Mg-

【0019】純度4ナインのMgインゴットおよび純度 5ナインのS1フレークを用いて、Mg含有量が96重 量%、Si含有量が4重量%で総重量が500gの原材 料を調製した。

【0020】原材料を内径120m、深さ200mの軟 鋼製るつぼ内に投入し、次いでるつぼを電気炉内に設置 し、その後原材料にArガスを吹付けながらそれを溶解 して980℃のMg合金組成の素材を調製した。

【0021】素材を降温させてその温度を750℃に保 持することによりデンドライト状Mg2 Siを晶出さ せ、そのデンドライト状Mg2 Siの体積分率VfがV f≒40%となったとき、幅60mm、長さ80mmのスタ ラを用いてその回転速度200rpm 、攪拌時間30分間 の条件下で素材に機械的攪拌処理を施した。

【0022】素材温度750℃にて、その素材を、金型 における内径40㎜、深さ800㎜のキャピティに注入 して凝固させ、耐熱Mg-4重量%Si合金を得た。

【0023】図1は、前記方法によって得られた耐熱M g-4重量%Si合金の金属組織を示す顕微鏡写真(1 00倍)であり、(a)は表層部に、また(b)は心部 にそれぞれ該当する。図1において、黒色の小塊状物が Mg2 Siであり、本図より、Mg2 Siの微細化と均 一分散が図られていることが判る。

【0024】図2は、従来鋳造法、即ち前配と同一組成 の溶湯を、それに前記のような機械的攪拌処理を施すこ となく、前記と同一の金型に注入することによって得ら れたMg-4重量%Si合金の金属組織を示す顕微鏡写 真(100倍)であり、(a) は表層部に、また(b) は心部にそれぞれ該当する。図2 (a) より、前記合金 40 の表層部にはデンドライト状Mg2 Siが晶出している ことが明らかであり、また同図(b)より、前記合金の 心部にはデンドライト状Mg2 Siおよび比較的大きな 塊状Mg2 Siが晶出していることが明らかである。な お、Mg-S1系合金に熱間押出し加工を施す場合に は、押出し温度を400℃に、押出し比を11程度にそ れぞれ設定する。

【0025】表1は、前記半凝固鋳造法の適用下で得ら れた各種Mg-Si系合金(1)~(11)および前記 従来鋳造法により得られた各種Mg-Si系合金(1 より攪拌しながら加熱してデンドライト状Mg2 Sie 50  $2) \sim (16)$  の組成、Mg2 Si の平均粒径D、その

体積分率Vf、室温および200℃における引張強さT Sおよび伸びE<sub>1</sub> を示す。Mg-Si系合金(6)は図 1のものに、またMg-Si系合金(13)は図2のも のにそれぞれ該当する。表中、評価の欄において、

\*「×」印は耐熱Mg合金として不適当であることをそれ ぞれ示す。この評価は以下の各表について同じである。 [0026] 【表1】

「〇」印は耐熱Mg合金として適当であることを、また\*

|              |              | T    |      |      |      |      | Ţ    |      |      |      | Ī    |      |      |      |         | Ι    |      |
|--------------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|------|------|
|              |              | ×    | ×    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ×    | ×    | ×    | ×       | ×    | ×    |
| 0 C          | (E)          | 34.1 | 26.5 | 25.5 | 18.0 | 12.5 | 11.5 | 8.2  | 4.0  | 3.2  | 3.2  | 1.2  |      | ı    | 1       | ı    | -    |
| 2 0          | T S<br>(MPa) | 81   | 122  | 140  | 185  | 215  | 215  | 220  | 237  | 251  | 255  | 264  | 1    | I    | 1       | I    | -    |
| 副            | (E)          | 23.1 | 18.9 | 17.6 | 12.0 | 8.9  | 8.0  | 5.1  | 3.5  | 3.2  | 3.0  | 0    | 0    | 0    | 0       | 0    | 0    |
| <b>\$8</b> € | T S<br>(MPa) | 95   | 142  | 198  | 203  | 240  | 245  | 255  | 386  | 292  | 295  | 305  | 145  | 147  | 150     | 150  | 159  |
| S i          | <b>j</b> %   | 1.0  | 2.0  | 3.0  | 4.0  | 8.5  | 10.0 | 20.0 | 27.5 | 45.5 | 49.5 | 55.5 | 4.0  | 10.0 | 21.0    | 26.5 | 45.0 |
| Mgs          | ( m #)       | 30   | 20   | 100  | 100  | 100  | 100  | 100  | 001  | 100  | 001  | 300  |      |      | ずンドライト状 |      |      |
| 章 (公)        | Mg           | 残部      | 残部   | 残部   |
| 化學           | Si           | 0.5  | 1.0  | 1.3  | 1.5  | 3.0  | 4.0  | 7.0  | 10.0 | 17.0 | 20.0 | 22.0 | 1.5  | 4.0  | 7.0     | 10.0 | 17.0 |
| Ya           | 今            | (1)  | (2)  | (3)  | (4)  | (2)  | (9)  | (1)  | (8)  | (6)  | (10) | (11) | (12) | (13) | (14)    | (15) | (16) |

表1から明らかなように、Mg-Si系合金(3)~ (10) はSi含有量が前記範囲に収められており、ま た機械的攪拌処理を組込まれた半凝固鋳造法の適用下で 得られたことから微細Mg2 Siの均一分散とその適当 な分散量(Vf)とによって優れた耐熱強度を有する。

AEとしてA1、Zr、YまたはNdを用い、前記半凝 固鋳造法の適用下で得られた各種Mg-Si系合金(1 7)~(28)の組成、Mg2 Siの平均粒径D、その 体積分率Vf、室温および200℃における引張強さT Sおよび伸びE<sub>1</sub> を示す。なお、各合金(17)~(2 【0027】表2は、Mgマトリックス強化用合金元素 50 8)には鋳造後T6処理が施されている。

[0028]

\* \*【表2】

| #     |              | 0    | 0    | ×    | 0    | 0    | ×    | 0    | 0    | ×    | 0    | 0    | ×    |
|-------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0 C   | E. S.        | 10.5 | 4.1  | 2.1  | 12.9 | 2.5  | 2.5  | 5.5  | 3.2  | 1.1  | 12.5 | 3.5  | 1.7  |
| 2 0 ( | T S<br>(MPa) | 215  | 227  | 257  | 210  | 235  | 259  | 175  | 214  | 312  | 210  | 230  | 022  |
| 驒     | E. (%)       | 6.2  | 3.3  | 0    | 9.5  | 4.4  | 0.5  | 8.9  | 5.4  | 0    | 9.5  | 2.0  | 0    |
| 棚     | TS<br>(MPa)  | 255  | 294  | 323  | 255  | 280  | 599  | 201  | 240  | 341  | 240  | 295  | 362  |
| S i   | V f          | 8.5  | 9.0  | 9.0  | 8.2  | 8.7  | 8.7  | 8.3  | 8.5  | 9.0  | 8.5  | 8.2  | 8.7  |
| M g : | D<br>(##)    | 100  | 70   | 100  | 100  | 70   | 100  | 100  | 100  | 100  | 100  | 100  | 100  |
|       | Mg           | 强部   | 残部   | 獲部   | 雅部   | 残部   | 残郡   | 残部   | 舜郡   | 残部   | 残都   | 残部   | 展部   |
| #     | P<br>Z       | ı    | -    | _    | ı    | ı    | -    | 1    | _    | 1    | 0.5  | 4.0  | 7.0  |
| 成の    |              | 1    | 1    | _    | 1    | l    | 1    | 0.5  | 4.0  | 7.0  | ŀ    | 1    | _    |
| 种堆    |              | 1    | _    | _    | 9.0  | 4.0  | 7.0  | ı    | -    | 1    | -    | 1    | 1    |
| क्र   | A 1          | 0.5  | 4.0  | 7.0  | l    | 1    | -    | ·T   | 1    | _    | -    | -    | 1    |
|       | S i          | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |
|       | 条<br>令<br>令  | (11) | (18) | (19) | (20) | (21) | (22) | (23) | (24) | (52) | (92) | (22) | (38) |

表 3 は、Mgマトリックス強化用合金元素AEとしてS c、SmまたはAgを用い、前記半疑固鋳造法の適用下で得られた各種Mg-Si系合金(29)~(37)の組成、Mg2 Siの平均粒径D、その体積分率Vf、室温および200℃における引張強さTSおよび伸びEL

を示す。なお、各合金(29)~(37)には鋳造後T6処理が施されている。

[0029]

【表3】

| 1    |     | 1E, | 等等 电线线 | #   |     | M 8 2  | S i            | 184   | 理           | 200    | 0 C  | 題 |
|------|-----|-----|--------|-----|-----|--------|----------------|-------|-------------|--------|------|---|
|      | ŀ   | 7   |        | _   |     | ٥      | Λ .            | T C   | Ţ           | r<br>E | ÇZ   | F |
| S    |     | Sc  | Sm     | A 8 | M g | ( # H) | <del>[</del> 3 | (MPa) | <b>1</b> 33 | (MPa)  | -£   |   |
| 3.0  | 0   | 0.5 | 1      | l   | 船   | 100    | 8.2            | 252   | 8.0         | 210    | 10.5 | 0 |
| က    | 3.0 | 4.0 | I      | ı   | 展   | 100    | 8.3            | 291   | 4.2         | 082    | 0.9  | 0 |
| က    | 3.0 | 7.0 | ı      | 1   | 强部  | 100    | 8.2            | 304   | 0           | 012    | 1.0  | × |
| €    | 3.0 | 1   | 0.5    | ı   | 残部  | 100    | 8.5            | 232   | 6.3         | 190    | 10.0 | 0 |
| က    | 3.0 | I   | 4.0    | -   | 残部  | 100    | 9.0            | 270   | 3.8         | 200    | 5.0  | 0 |
| ~ ·  | 3.0 | 1   | 7.0    | 1   | 残部  | 100    | 8.7            | 330   | 0           | 275    | 2.0  | × |
| (C)  | 3.0 | l   | 1      | 0.5 | 残部  | 100    | 8.2            | 241   | 5.2         | 202    | 7.5  | 0 |
| ကြ   | 3.0 | ı   | ı      | 4.0 | 残部  | 08     | 8.3            | 279   | 2.7         | 235    | 3.0  | 0 |
| ကြော | 3.0 | I   | ł      | 7.0 | 残部  | 100    | 8.7            | 340   | 0           | 280    | 0.5  | × |
|      |     |     |        |     |     |        |                |       |             |        |      |   |

表4は、Mgマトリックス強化用合金元素AEとしてL a、CeまたはPrを用い、前記半凝固鋳造法の適用下 40 6処理が施されている。 で得られた各種Mg-Si系合金(38)~(46)の 組成、Mg2 Siの平均粒径D、その体積分率Vf、室 温および200℃における引張強さTSおよび伸びEL

を示す。なお、各合金 (38) ~ (46) には鋳造後T

[0030]

【表4】

| 4 | n |  |
|---|---|--|
|   | _ |  |

| ;             |     | 7   | 李   | *   |     | M g z | S i | 064         | 瓔   | 200   | າ ເ  | 8 |
|---------------|-----|-----|-----|-----|-----|-------|-----|-------------|-----|-------|------|---|
| 78-31<br>4.44 |     |     |     | _   |     | ٥     | • A | <b>ل</b> لا | ъ.  | £     | С    | Ī |
| E<br>E        | S i | La  | ပ   | Pr  | M 8 | (m m) | · 8 | (MPa)       | 33  | (MPa) | 33   |   |
| (38)          | 3.0 | 0.5 | I   | I   | 残部  | 100   | 8.5 | 250         | 5.1 | 190   | 1.0  | 0 |
| (33)          | 3.0 | 4.0 | ı   | ı   | 殿部  | 100   | 8.0 | 289         | 3.1 | 220   | 4.0  | 0 |
| (40)          | 3.0 | 7.0 | l   | ı   | 残部  | 100   | 8.2 | 290         | 0.5 | 230   | 1.5  | × |
| (41)          | 3.0 | 1   | 2.0 | ı   | 八月  | 100   | 8.0 | 221         | 6.6 | 190   | 12.0 | 0 |
| (42)          | 3.0 |     | 4.0 | I   | 、残部 | 100   | 8.5 | 255         | 4.4 | 225   | 5.5  | 0 |
| (43)          | 3.0 | j   | 1.0 | ì   | 残部  | 100   | 8.2 | 278         | 1.2 | 250   | 1.8  | × |
| (44)          | 3.0 | - 1 | 1   | 0.5 | 残部  | 100   | 8.3 | 220         | 3.5 | 170   | 6.5  | 0 |
| (45)          | 3.0 | 1   | ı   | 4.0 | 発部  | 100   | 8.7 | 291         | 2.9 | 230   | 5.0  | 0 |
| (46)          | 3.0 | f   | ŀ   | 7.0 | 强部  | 100   | 9.0 | 342         | 0   | 280   | 2.0  | × |

表5は、Mgマトリックス強化用合金元素AEとしてM n、ThまたはGeを用い、前記半凝固鋳造法の適用下 40 6処理が施されている。 で得られた各種Mg-Si系合金(47)~(55)の 組成、Mg2 Siの平均粒径D、その体積分率Vf、室 温および200℃における引張強さTSおよび伸びEL

を示す。なお、各合金 (47) ~ (55) には鋳造後T

[0031]

【表5】

|       | 13                |             |      |      |      |      |      |      |      | 1    | 4    |
|-------|-------------------|-------------|------|------|------|------|------|------|------|------|------|
| 22 92 |                   | :           | 0    | 0    | ×    | 0    | 0    | ×    | 0    | 0    | ×    |
| a 0   | Į.                | (%)         | 8.5  | 5.0  | 0.5  | 12.0 | 12.0 | 1.5  | 12.0 | 6.5  | 0.7  |
| 2 0 ( | TC                | (MPa)       | 210  | 250  | 260  | 195  | 230  | 275  | 170  | 205  | 270  |
| 刘     | Π.                | 33          | 5.5  | 3.2  | 0    | 8.6  | 4.1  | 7.0  | 8.1  | 4.2  | 0    |
| . 164 | S E               | (MPa)       | 251  | 304  | 308  | 218  | 295  | 305  | 209  | 366  | 319  |
| S i   | Λ                 | 3           | 8.0  | 8.5  | 8.7  | 8.2  | 8.5  | 8.0  | 8.3  | 9.0  | 8.5  |
| Mgz   | D (# #)           |             | 100  | 75   | 100  | 100  | 80   | 100  | 100  | . 08 | 100  |
|       |                   | <b>X</b>    | 機帶   | 級部   | 数等   | 强部   | 展部   | 紫    | 聚    | 張部   | 独部   |
| #     | ,                 | ි<br>ර      | ı    | ı    | 1    | ı    | 1    | I    | 0.5  | 4.0  | 7.0  |
| 中中日   |                   | Th          | I    | ļ    | ı    | 0.5  | 4.0  | 7.0  | 1    | 1    |      |
| £,    |                   | M n         | 0.5  | 4.0  | 7.0  | · I  | 1    | 1    | 1    | 1    | _    |
|       |                   | Si          | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |
| 3     | 18 - 21<br>43 A A | 元<br>口<br>词 | (47) | (48) | (49) | (20) | (21) | (25) | (53) | (54) | (55) |

表6は、Mgマトリックス強化用合金元素AEとしてA 1およびZnを用い、前記半凝固鋳造法の適用下で得ら 40 れた各種Mg-Si系合金(56)~(58)の組成、 Mg: Siの平均粒径D、その体積分率Vf、室温およ び200℃における引張強さTSおよび伸びE」を示 す。なお、各合金 (56) ~ (58) には鋳造後T6処 理が施されている。

[0032]

【表6】

| 20,000        |         |                                          | 0          | 0      | ×    |
|---------------|---------|------------------------------------------|------------|--------|------|
| 200C          | Α.      | (%)                                      | 10.5       | 5.1    | 3.8  |
| 2 0           | Τς      | (MPa)                                    | 228        | 248    | 260  |
| 曍             | В.      | (%)                                      | 7.5        | 5.5    | 1.2  |
| 1 <b>3</b> 84 | ų<br>E  | (MPa)                                    | 261        | 295    | 304  |
| S i           | ۷ ۲     | <u> 8</u>                                | 8.5        | 9.0    | 8.7  |
| Mg 2 Si       | د       | (# #)                                    | 75         | 75     | 100  |
| 4             |         | M g                                      | 級          | 强部     | 級    |
| 成。            | , ex 1  | u Z                                      | 0.5 0.5 残部 | 3.0 残部 | 5.0  |
| 化 华 成         |         | SIAI                                     | 0.5        | 0.5    | 0.5  |
| -             |         | S                                        | 3.0        | 3.0    | 3.0  |
| ;             | 78 - S1 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | (26)       | (57)   | (28) |

表7は、Mgマトリックス強化用合金元素AEとしてA1、2nおよびYを用いるか、またはA1、2nおよびYを用いるか、またはA1、2nおよびYと共にMg2Siの微細化促進元素であるPを用い、前記半疑固鋳造法の適用下で得られた各種Mg-Si系合金(59)~(69)の組成、Mg2Siの平均粒径D、その体積分率Vf、室温および200℃における引張強さTSおよび伸びE1を示す。なお、各合金(59)~(69)には鋳造後T6処理が施されている。【0033】

10 【表7】

20

*30* 

|             |             | ,         |          |          |     |          | (10)     |      |      |      |      | ••       | 华        | řĒ |
|-------------|-------------|-----------|----------|----------|-----|----------|----------|------|------|------|------|----------|----------|----|
|             | 17          |           |          |          |     |          |          |      |      |      |      | 18       |          |    |
| H           | E E         |           | 0        | 0        | 0   | 0        | ×        | 0    | 0    | 0    | 0    | 0        | 0        |    |
| ၁ 0         | н.          | <b>18</b> | 6.9      | 5.5      | 4.1 | 3.0      | 0.5      | 10.0 | 8.2  | 7.6  | 12.5 | 12.5     | 13.0     |    |
| 20(         | T.S.        | (MPa)     | 242      | 255      | 289 | 320      | 340      | 250  | 270  | 290  | 235  | 240      | 230      |    |
| 類           | ᅜ.          | (%)       | 5.5      | 4.1      | 3.5 | 2.0      | 0        | 8.3  | 5.9  | 4.6  | 9.5  | 9.8      | 10.0     |    |
| <b>1</b> 84 | <i>U</i> :  | (MPa)     | 292      | 315      | 324 | 359      | 381      | 187  | 320  | 345  | 290  | 283      | 283      |    |
| S i         | λ (         | (X)       | 8.0      | 8.0      | 8.0 | 8.0      | 8.0      | 8.0  | 8.0  | 8.0  | 8.0  | 8.0      | 8.0      |    |
| MB:         | c           | (##)      | 100      | 100      | 100 | 100      | 100      | 15   | 15   | 15   | 10   | 10       | 10       |    |
|             |             | M 8       | 强部       | 残部       | 强部  | 强部       | 残部       | 残部   | 残部   | 残部   | 強部   | 残部       | 残部       |    |
| #           |             | Ф         | 1        | 1        | -   | l        | -        | 0.01 | 0.01 | 0.01 | 0.05 | 0.10     | 0.25     |    |
| 成           | へ<br>え<br>関 | >         | 0.5      | 1.0      | 2.0 | 4.0      | 5.0      | 0.5  | 1.0  | 2.5  | 0.5  | 0.5      | 0.5      |    |
| ath 9       | - 1         | u Z       | 0.5      | 0.5      | 0.5 | 0.5      | 0.5      | 0.5  | 0.5  | 0.5  | 0.5  | 0.5      | 0.5      |    |
| 4           |             | A 1       | 0.5      | 0.5      | 0.5 | 0.5      | 0.5      | 0.5  | 0.5  | 0.5  | 0.5  | 0.5      | 0.5      |    |
|             |             | S i       | 3.0      | 3.0      | 3.0 | 3.0      | 3.0      | 3.0  | 3.0  | 3.0  | 3.0  | 3.0      | 3.0      |    |
| ;           | 24          | Ħ         | <u>~</u> | <u> </u> |     | <u>a</u> | <b>≘</b> |      |      |      |      | <u> </u> | <u> </u> |    |

表7、合金 (67) ~ (69) より、P含有量をその上 40 Ce、Pr、Mn、ThおよびSiから選択される少な 限値(0.20重量%)を超えるように設定してもMg 2 Siの平均粒径Dが変化しないことが判る。

能系

【0034】耐熱Mg-Ge系合金の鋳造に当っては、 前記同様に半凝固鋳造法または半溶融鋳造法が適用さ れ、その方法の実施過程に機械的攪拌処理が組込まれ る。

【0035】半凝固鋳造法において、その原材料は、M gの高純度インゴット、Geの高純度フレーク、Mgマ トリックスを強化すべく、必要に応じて用いられるA

くとも一種の合金元素AEの高純度インゴットならびに 必要に応じて用いられるMg2 Geの微細化促進元素で あるPを含む高純度P系物質を用いて調製される。

【0036】この場合、Ge含有量は前記理由から3. 4 重量%≤G e ≤ 2 0 重量%に設定される。またAE含 有量はAE≦5重量%に設定される。AE>5重量%で はMg-Ge系合金の強度は高くなるが伸びが低下す る。さらにP系物質としては、AICuP化合物、赤リ ン、Mgs (POs) 2 等が用いられ、原材料における 1、Zn、Zr、Y、Nd、Sc、Sm、Ag、La、 50 P含有量は0.005重量%≦P≦0.20重量%に設

(65 | 64 | 68 |

定される。P<0.005重量%ではMg2Geの微細 化促進効果が少なくなり、一方、P>0. 20重量%で はP添加による微細化促進効果が飽和するからである。

【0037】半凝固鋳造法を適用した耐熱Mg-Ge系 合金の鋳造は次の各工程を経て実施される。即ち、M g、Geおよび必要に応じて合金元素AEを含む原材料 を軟鋼製るつぼ内に投入し、次いで原材料にArガスを 吹付けながらそれを溶解してMg合金組成の溶湯を調製 し、その後溶湯に必要に応じてP系物質を添加して溶融 状態の素材を得る工程と、素材を降温させてその素材が 10 デンドライト状Mg2 Geを含む固液共存域(半凝固領 域)にあるとき、その素材にスタラ等による機械的攪拌 処理を施してデンドライト状Mg2 Geを微細化すると 共にその微細Mg2 Geを均一に分散させる工程と、素 材を金型内に注入して疑固させる工程とを順次行うもの である。Mg-Ge系合金の耐熱強度向上の観点から、 微細Mg2Geの平均粒径Dは5μm≤D≤100μ m、その体積分率Vfは6%≤Vf≤50%であること が望ましい。

【0038】このようにして得られたMg-Ge系合金 20 の条件下で素材に機械的攪拌処理を施した。 は微細Mg2 Geを均一に分散させた金属組織を備え、 また鋳造欠陥もないもので、優れた耐熱強度を有する。 前記方法によって鋳造されたMg-Ge系合金には、必 要に応じて熱間押出し加工が施される。

【0039】半溶融鋳造法としては射出成形法が適用さ れ、したがって原材料としては、前記半凝固鋳造法の場 合と同一組成でデンドライト状Mg2 Geを有する粒径 0. 5~3 皿のペレット状のものが用いられる。

【0040】射出成形法の実施に当っては、原材料をホ たバレル内に供給する、原材料をバレル内でスクリュに より攪拌しながら加熱してデンドライト状Mg2 Geを 含み、且つ固液共存域(半溶融領域)にある素材を調製 し、その素材にスクリュによる機械的攪拌処理を施して デンドライト状Mg2 Geを微細化すると共にその微細 Mg2 Geを均一に分散させる、素材を金型内に射出し

て凝固させる、といった手段が採用される。射出条件の

一例を挙げれば次の通りである。Arガス雰囲気、金型 のゲート通過時における素材温度650℃、射出速度4

m/sec 、金型温度150℃。

【0041】以下、半凝固鋳造法を適用した耐熱Mg-Ge系合金の具体的鋳造例について説明する。

【0042】純度4ナインのMgインゴットおよび純度 5ナインのGeフレークを用いて、Mg含有量が95重 量%、Ge含有量が5重量%で総重量が500gの原材 料を調製した。

【0043】原材料を内径120mm、深さ200mmの軟 鋼製るつぼ内に投入し、次いでるつぼを電気炉内に設置 し、その後原材料にArガスを吹付けながらそれを溶解 して800℃のMg合金組成の素材を調製した。

【0044】素材を降温させてその温度を660℃に保 持することによりデンドライト状Mg2 Geを晶出さ せ、そのデンドライト状Mg2 Geの体積分率VfがV f≒30%となったとき、幅60m、長さ80mのスタ ラを用いてその回転速度300rpm 、攪拌時間40分間

【0045】素材温度660℃にて、その素材を、金型 における内径40㎜、深さ800㎜のキャピティに注入 して凝固させ、耐熱Mg-5重量%Ge合金を得た。な お、Mg-Ge系合金に熱間押出し加工を施す場合に は、押出し温度を400℃に、押出し比を11程度にそ れぞれ設定する。

【0046】表8は、前配半凝固鋳造法の適用下で得ら れた各種Mg-Ge系合金(1)~(11)および前記 従来鋳造法により得られた各Mg-Ge系合金(12) ッパ内に投入する、原材料をホッパからスクリュを備え 30 ~ (14)の組成、Mg2 Geの平均粒径D、その体積 分率Vf、室温および200℃における引張強さTSお よび伸びE」を示す。Mg-Ge系合金(5)は前記具 体例で述べたものに該当する。

[0047]

【表8】

|              |          | 21        |      |      |      |      |      | (12  | )    |      |      |          |      | 2        | 22             | 符朗   |
|--------------|----------|-----------|------|------|------|------|------|------|------|------|------|----------|------|----------|----------------|------|
| 19           | 基        |           | ×    | ×    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ×        | ×    | ×        | ×              | ×    |
| 20           | មា       | ્ટ્ર<br>જ | 35.0 | 25.0 | 19.0 | 17.0 | 17.0 | 16.0 | 8.5  | 4.5  | 4.2  | 3.0      | 0    | 1        | -              | ı    |
| 2 0 (        | TS       | (MPa)     | 75   | 95   | 115  | 122  | 140  | 160  | 200  | 220  | 225  | 240      | 210  | ţ        | 1              |      |
| 瑚            | B.       | (%)       | 25.0 | 18.0 | 14.0 | 12.5 | 0.11 | 0.01 | 5.7  | 3.5  | 3.1  | 1.2      | 0    | 2.0      | 1.0            | 0.5  |
| <b>1</b> 76H | TS       | (MPa)     | 96   | 110  | 150  | 153  | 170  | 185  | 230  | 250  | 255  | 280      | 270  | 120      | 110            | 105  |
| 9 0          | γţ       | (%)       | 3.0  | 5.0  | 0.9  | 6.5  | 8.5  | 18.0 | 25.0 | 31.5 | 34.0 | 36.0     | 41.5 | 9.0      | 18.5           | 32.0 |
| M 8 z        | Q        | (mm)      | 20   | 50   | 001  | 100  | 100  | 100  | 100  | 00 T | 100  | 250      | 300  |          | <b>デンドライト状</b> |      |
| 政分           | (R       | M 8       | 残部   | 残部   | 残部   | 残部   | 聚部   | 発部   | 残部   | . 残部 | 残部   | 残部       | 残部   | 残部       | 残部             | 残部   |
| 化學           |          | G e       | 2.0  | 3.0  | 3.4  | 4.0  | 5.0  | 11.0 | 15.0 | 19.0 | 20.0 | 22.0     | 25.0 | 5.0      | 11.0           | 19.0 |
| ,            | <u>.</u> |           | _    | _    | _    | _    | _    | _    | _    | ~    | ~    | <u> </u> | (    | <u> </u> | <u> </u>       | _    |

(9) は、Ge含有量が前記範囲に収められており、ま た機械的攪拌処理を組込まれた半凝固鋳造法の適用下で 得られたことから、微細Mg2 Geの均一分散とその適 当な分散量 (Vf) とによって優れた耐熱強度を有す る。従来鋳造法によるMg-Ge系合金(12)~(1 4) において、そのデンドライト状Mg2 Geの平均粒 径Dは500~1000 $\mu$ mであった。

【0048】表9は、Mgマトリックス強化用合金元素

表8から明らかなように、Mg-Ge系合金(3)~ 40 AEとしてA1、Zn、ZrまたはYを用い、前記半凝 固鋳造法の適用下で得られた各種Mg-Ge系合金(1 5)~(26)の組成、Mg2 Geの平均粒径D、その 体積分率Vf、室温および200℃における引張強さT Sおよび伸びE1 を示す。なお、各合金(15)~(2 6) には鋳造後T6処理が施されている。

[0049]

【表9】

| 23 |  |
|----|--|
|    |  |

| 損        | E E        |          | 0    | 0    | ×    | 0    | 0          | ×    | 0    | 0    | ×    | 0     | 0    | ×    |
|----------|------------|----------|------|------|------|------|------------|------|------|------|------|-------|------|------|
| ၁ ၀      | 18         | (%)      | 13.0 | 9.0  | 1.5  | 12.0 | 9.5        | 1.5  | 11.5 | 8.5  | 2.5  | 11.0  | 8.0  | 2.5  |
| 2 0 (    | T S        | (nr 8/   | 170  | 200  | 260  | 160  | 190        | 190  | 160  | 190  | 200  | 165   | 200  | 190  |
| 瓔        | 35°        | (4)      | 9.0  | 7.0  | 1.0  | 8.0  | 7.0        | 1.0  | 9.0  | 6.5  | 1.8  | 9.0   | 0.9  | 1.2  |
| (\$6H)   | T S        | (mra)    | 200  | 240  | 290  | 190  | 210        | 230  | 195  | 220  | 230  | 190   | 220  | 230  |
| g e      | J A        | 3        | 8.0  | 8.0  | 8.5  | 8.5  | 9.0        | 8.5  | 8.2  | 8.3  | 8.0  | 8.5   | 8.5  | 9.0  |
| M g s    | D          | ( JA 11) | 100  | 50   | 100  | 100  | 0 <i>L</i> | 100  | 100  | 02   | 100  | 100   | 100  | 100  |
|          |            | M B      | 残部   | 賽部   | 残部   | 殞部   | 残部         | 残部   | 残郡   | 残部   | 残部   | 残部    | 残部   | 残部   |
| #        | >          | I .      | _    | _    | 1    | ı    | ı          | 1    | -    | ı    | 1    | 0.5   | 4.0  | 7.0  |
| 松谷       | ۲   ۲      | 7 7      | -    | _    | 1    | 1    | ı          | 1    | 0.5  | 4.0  | 7.0  | 1     | ı    | I    |
| <b>*</b> | (          | 2 n      | -    | -    | _    | 0.5  | 4.0        | 7.0  | ı    | 1    | ı    | ı     | ı    | ı    |
| 名        |            | A I      | 0.5  | 4.0  | 1.0  | _    | -          | 1    | .    | 1    | }    | ı     | ı    | _    |
|          |            | U e      | 5.0  | 5.0  | 5.0  | 5.0  | 5.0        | 5.0  | 5.0  | 0.3  | 5.0  | 5.0   | 5.0  | 5.0  |
| <br>     | <b>米</b> 合 |          | (12) | (91) | (11) | (18) | (61)       | (02) | (12) | (22) | (23) | (\$4) | (22) | (36) |

表10は、Mgマトリックス強化用合金元素AEとして Nd、Sc、SmまたはAgを用い、前記半凝固鋳造法 の適用下で得られた各種Mg-Ge系合金(27)~ (38)の組成、Mg2 Geの平均粒径D、その体積分 率Vf、室温および200℃における引張強さTSおよ

表 10 は、Mgマトリックス強化用合金元素AEとして 40 び伸び $E_L$  を示す。なお、各合金(27)~(38)に Nd、Sc、SmまたはAgを用い、前記半凝固鋳造法 は鋳造後T6 処理が施されている。

[0050]

【表10】

|               |                    | γ    |      |      |      |      |      |      |      |      |      | 20   |      |
|---------------|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1             |                    | 0    | 0    | ×    | 0    | 0    | ×    | 0    | 0    | ×    | 0    | 0    | ×    |
| ၁ ၀           | B.                 | 12.0 | 10.0 | 3.0  | 13.0 | 10.0 | 2.5  | 10.0 | 10.0 | 2.0  | 13.0 | 9.0  | 1.5  |
| 2 0           | T S (MPa)          | 150  | 160  | 200  | 150  | 175  | 210  | 155  | 180  | 190  | 175  | 200  | 210  |
| 颵             | E,                 | 9.5  | 8.0  | 1.5  | 10.0 | 1.0  | 1.0  | 9.5  | 1.0  | 1.5  | 0.6  | 1.5  | 1.0  |
| <b>(</b> 199) | TS<br>(MPa)        | 175  | 200  | 250  | 165  | 200  | 220  | 170  | 210  | 210  | 190  | 230  | 240  |
| G e           | ۲ <del>ک</del>     | 8.5  | 9.0  | 9.0  | 8.0  | 8.3  | 8.5  | 8.2  | 8.5  | 8.5  | 8.5  | 8.7  | 8.7  |
| Mgr           | D<br>(##)          | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  |
|               | M                  | 級部   | 機器   | 残部   | 級部   | 强部   | 独部   | 强部   | 強部   | 獨部   | 强部   | 風等   | 残部   |
| \$            | A 8                | 1    | ı    | 1    | 1    | I    | ١    | i    | ı    | 1    | 0.5  | 4.0  | 7.0  |
| 松。            | E S                | 1    | 1    | l    | ı    | ı    | ı    | 0.5  | 4.0  | 7.0  | ı    | 1    | ł    |
| <b>**</b>     |                    |      | 1    | ı    | 0.5  | 4.0  | 7.0  | -    | ı    | ı    | ı    | 1    | ı    |
| 名             | P<br>Z             | 0.5  | 4.0  | 7.0  | 1    | ŀ    | ı    | 1    | 1    | 1    | ı    | ı    | i    |
|               | ල<br>ව             | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  |
|               | 786<br>A<br>会<br>会 | (27) | (38) | (53) | (30) | (31) | (32) | (33) | (34) | (35) | (36) | (37) | (38) |

表11は、Mgマトリックス強化用合金元素AEとして 40 を示す。なお、各合金(39)  $\sim$ (47)には鋳造後TLa、CeまたはPrを用い、前記半凝固鋳造法の適用 下で得られた各種Mg-Ge系合金 (39) ~47) の 組成、Mg2 Geの平均粒径D、その体積分率Vf、室 温および200℃における引張強さTSおよび伸びEL

6処理が施されている。

[0051]

【表11】

| 2       |     | #   | 李 章        | #      |     | M 8 2 | G 6 | <b>1</b> %H | 蝉    | 200     | ည<br>( | 15     |
|---------|-----|-----|------------|--------|-----|-------|-----|-------------|------|---------|--------|--------|
| 78 - te |     | []  |            |        | -   | ٥     |     | r<br>E      | Œ    | ٧.<br>۲ | Įr.    | i<br>L |
| F<br>D  | e g | L a | <b>a</b> 0 | a<br>a | M g | (H H) | (%) | (MPa)       | £    | (MPa)   | 38     |        |
| . (39)  | 5.0 | 0.5 | 1          | ŀ      | 雅報  | 100   | 8.0 | 195         | 8.0  | 165     | 11.0   | 0      |
| (40)    | 5.0 | 4.0 | ı          | ı      | 発部  | 100   | 8.2 | 210         | 6.5  | 190     | 8.5    | 0      |
| (41)    | 5.0 | 7.0 | ı          | ı      | 残部  | 100   | 8.5 | 230         | 1.5  | 200     | 2.0    | ×      |
| (42)    | 5.0 | 1   | 0.5        | I      | 風部  | 100   | 8.2 | 165         | 10.0 | 150     | 11.0   | 0      |
| (43)    | 5.0 | 1   | 4.0        | 1      | 残部  | 100   | 8.7 | 200         | 7.0  | 165     | 10.0   | 0      |
| (44)    | 5.0 | ı   | 7.0        | 1      | 残部  | 100   | 8.5 | 210         | 1.0  | 190     | 3.0    | ×      |
| (45)    | 5.0 | -   | 1          | 0.5    | 機部  | 100   | 8.2 | 170         | 0.6  | 150     | 10.0   | 0      |
| (46)    | 5.0 | ı   | 1 :        | 4.0    | 残部  | 100   | 8.0 | 190         | 6.5  | 170     | 9.0    | 0      |
| (41)    | 5.0 | 1   | -          | 7.0    | 撰部  | 100   | 8.5 | 210         | 1.0  | 175     | 1.5    | ×      |
|         |     |     |            |        |     |       |     |             |      |         |        |        |

Mn、ThまたはSiを用い、前記半凝固鋳造法の適用 40 T6処理が施されている。 下で得られた各種Mg-Ge系合金(48)~(56) の組成、Mg2 Geの平均粒径D、その体積分率Vf、 室温および200℃における引張強さTSおよび伸びE

表 12は、Mgマトリックス強化用合金元素AEとして  $\iota$  を示す。なお、各合金(48)  $\sim$  (56)には鋳造後

[0052]

【表12】

| ·#) |
|-----|
|     |
|     |

| 5    |        | 4      | 李章  | *   |     | z 8 M  | g e  | trai   | 蜒    | 2 0 ( | သ 0  | 55 |    |
|------|--------|--------|-----|-----|-----|--------|------|--------|------|-------|------|----|----|
| 8    |        | _      |     | ,   |     | ۲      | 4 6  | ٠<br>٤ | C    | 6     | Ċ    |    | 29 |
|      | e<br>G | Мn     | Th  | S ł | M g | (m n/) | 3    | (MPa)  | (%)  | (MPa) | (%)  |    |    |
| (48) | 5.0    | 0.5    | ı   | -   | 殞部  | 100    | 9.0  | 175    | 9.0  | 160   | 11.0 | 0  |    |
| (43) | 5.0    | 4.0    | ı   | 1   | 路器  | 0.2    | 8.2  | 200    | 7.0  | 180   | 9.5  | 0  |    |
| (20) | 5.0    | 7.0    | 1   | ı   | 残部  | 100    | 8.7  | 230    | 1.8  | 205   | 2.0  | ×  |    |
| (21) | 5.0    | i      | 0.5 | ı   | 残部. | 100    | 8.0  | 180    | 8.0  | 155   | 10.5 | 0  |    |
| (25) | 5.0    | ·<br>1 | 4.0 | ı   | 機部  | 70     | 8.3  | 195    | 6.5  | 170   | 8.0  | 0  |    |
| (53) | 5.0    | ı      | 7.0 | _   | 残部  | 100    | 8.3  | 220    | 1.0  | 190   | 1.8  | ×  |    |
| (54) | 5.0    | 1      | -   | 0.5 | 展部  | 100    | 9.0  | 170    | 10.0 | 155   | 13.0 | 0  |    |
| (22) | 5.0    | I      | _   | 4.0 | 残部  | 100    | 15.0 | 240    | 6.5  | 200   | 9.0  | 0  | 3  |
| (26) | 5.0    | I      | 1   | 7.0 | 強部  | 100    | 20.0 | 260    | 1.0  | 210   | 3.0  | ×  |    |
| 1    |        |        |     |     |     |        |      |        |      |       |      |    | ,  |

表13は、Mgマトリックス強化用合金元素AEとして A 1 および Z n を用い、前記半疑固鋳造法の適用下で得 40 処理が施されている。 られた各種Mg-Ge系合金(57)~(63)の組 成、Mg2 Geの平均粒径D、その体積分率Vf、室温 および200℃における引張強さTSおよび伸びE」を

示す。なお、各合金 (57) ~ (63) には鋳造後T6

[0053]

【表13】

| 3           | 1       |        |      |      | ,    |      |      |      | 32   |
|-------------|---------|--------|------|------|------|------|------|------|------|
| 五部          | #       |        | 0    | 0    | 0    | ×    | 0    | ×    | ×    |
| 200c        | D       | (%)    | 13.0 | 10.5 | 4.5  | 2.5  | 11.0 | 2.0  | 1.8  |
| 2 0         | υL      | (MPa)  | 170  | 210  | 220  | 240  | 220  | 235  | 240  |
| 関           | 0       | (%)    | 11.0 | 0.7  | 3.3  | 1.0  | 8.0  | 1.2  | 1.0  |
| 1964        | e<br>E  | (MPa)  | 190  | 250  | 260  | 270  | 255  | 275  | 270  |
| e g         | 2 12    | (%)    | 0.6  | 8.7  | 9.0  | 9.0  | 9.0  | 10.0 | 10.0 |
| 2 8 M       | 2       | (m m)  | 20   | 100  | 100  | 100  | 70   | 100  | 100  |
| *           |         | 8 W    | 残部   | 残部   | 残部   | 强部   | 残部   | 残部   | 残部   |
| 4 <u>5</u>  | 1 20 H  | u Z    | 0.5  | 3.5  | 4.5  | 5.5  | 0.5  | 3.5  | 0.5  |
| 化学          |         | A 1    | 0.5  | 0.5  | 0.5  | 0.5  | 3.5  | 3.5  | 5.5  |
| 4           |         | e 5    | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  |
| (<br>(<br>) | 78 - Le | H<br>H | (21) | (28) | (23) | (09) | (61) | (62) | (63) |

表 14 は、 $Mg_2$  G e の 額細化促進元素である P を用い、前記半疑固鋳造法の適用下で得られた各種Mg-G 40 e 系合金(64)~(66)の組成、 $Mg_2$  G e の平均粒径 D、その体積分率 V f、室温および 200 C における引張強さ T S および伸び  $E_L$  を示す。

【表14】

| <u>E</u> |                                       | 0                                                     | 0                                                                                     | 0                                                                                                                                     |
|----------|---------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Ç        | (%)                                   | 17.0                                                  | 17.0                                                                                  | 16.0                                                                                                                                  |
| ·E       | (MPa)                                 | 130                                                   | 155                                                                                   | 180                                                                                                                                   |
| 2        | (%)<br>(%)                            | 12.0                                                  | 11.0                                                                                  | 9.5                                                                                                                                   |
| 6        | (MPa)                                 | 165                                                   | 180                                                                                   | 200                                                                                                                                   |
| 3 11     | (%)                                   | 7.0                                                   | 8.0                                                                                   | 18.0                                                                                                                                  |
| ¢        | (mm)                                  | 15                                                    | 10                                                                                    | 10                                                                                                                                    |
| ,        | Mg                                    | 聚                                                     | 强部                                                                                    | 残部                                                                                                                                    |
| 田 東 70   | ď                                     | 0.005                                                 | 0.05                                                                                  | 0.20                                                                                                                                  |
| -        | <b>a</b> 5                            | 4.0                                                   | 5.0                                                                                   | 11.0                                                                                                                                  |
| A A A    | · · · · · · · · · · · · · · · · · · · | (64)                                                  | (99)                                                                                  | (99)                                                                                                                                  |
|          |                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Ge P Mg (μm) (%) (MPa) (%) (MPa) (%) (MPa) (%) (4.0 0.005 残部 15 7.0 165 12.0 130 17.0 | Ge P M g (μ m) V f T S B <sub>L</sub> T S E <sub>L</sub> 4.0 0.005 残部 15 7.0 165 12.0 130 17.0   5.0 0.05 残部 10 8.0 180 11.0 155 17.0 |

## [0055]

【発明の効果】請求項1または請求項4記載の発明によれば、デンドライト状Mg2 S1またはデンドライト状Mg2 Geの存在量の多少に拘らず、それを確実に微細化すると共に均一に分散させることができ、これにより要求耐熱強度を備えた耐熱Mg合金を容易に得ることができる。

【0056】また請求項2または請求項5記載の発明によれば、Mgマトリックスを強化して耐熱強度を一層向 10上させた耐熱Mg合金を得ることができる。

【0057】さらに請求項3または請求項6記載の発明によれば、Mg2 SiまたはMg2Geをさらに微細化して耐熱強度をなお一層向上させた耐熱Mg合金を得ることができる。

## 【図面の簡単な説明】

【図1】本発明方法によって得られたMg-4重量%Si合金の金属組織を示す顕微鏡写真であり、(a) は表層部に、(b) は心部にそれぞれ該当する。

【図2】従来法によって得られたMg-4重量%Si合 20 金の金属組織を示す顕微鏡写真であり、(a) は表層部 に、(b) は心部にそれぞれ該当する。

30