

Universidade Tecnológica Federal do Paraná Campus Campo Mourão

Departamento de Computação - DACOM Prof. Dr. Diego Bertolini Disciplina: BCC31-A - Algoritmos

Esta lista foi elaborada pelo Monitor Emanuel Mazzer.

Conteúdo: Estrutura Condicional - Lista

Data de Entrega: 31/10/2014

- 1. Implemente um programa que leia um número real, se o número for positivo imprima a raiz quadrada, senão imprima o número ao quadrado.
- 2. Faça um programa para verificar se um determinado número inteiro e divisível por 3 ou 5, mas não simultaneamente pelos dois.
- 3. Receber o salário de um trabalhador e o valor da prestação de um empréstimo, se a prestação for maior que 20% do salário imprima: Empréstimo não concedido, caso contrário imprima: Empréstimo concedido.
- 4. Criar um programa em C que efetue o cálculo do salário líquido de um professor. Os dados fornecidos serão: valor da hora aula, número de aulas dadas no mês e percentual de desconto do INSS.
- 5. Escreva um algoritmo que leia um número inteiro. Se o número lido for positivo, escreva uma mensagem indicando se ele é par ou ímpar. Se o número for negativo, escreva a seguinte mensagem "Este número não é positivo".
- 6. Escreva o menu de opções abaixo, leia a opção do usuário e execute a operação escolhida. Escreva uma mensagem de erro se a opção for inválida.

Escolha a opção:

- 1- Soma de 2 números.
- 2- Diferença entre 2 números (maior pelo menor).
- 3- Produto entre 2 números.
- 4- Divisão entre 2 números (o denominador não pode ser zero).
- 7. Determine se um determinado ano lido é bissexto. Sendo que um ano é bissexto se for divisível por 400 ou se for divisível por 4 e não for divisível por 100. Por exemplo: 1988, 1992, 1996.
- 8. Faça um programa que receba três números e mostre-os em ordem crescente.
- 9. Faça um programa que receba a altura e o peso de uma pessoa. De acordo com a tabela a seguir, verifique e mostra qual a classificação dessa pessoa.
- 10. Dados três verificar se

Altura	Peso		
	Até 60	Entre 60 e 90 (Inclusive)	Acima de 90
Menor que 1,20	Α	D	G
De 1,20 a 1,70	В	E	Н
Maior que 1,70	С	F	I

valores, A, B, C, eles podem ser

valores dos lados de um triângulo e, se forem se é um triângulo escaleno, um triângulo equilátero ou um triângulo isóscele. Considerando os seguintes conceitos:

- O comprimento de cada lado de um triângulo é menor do que a soma dos outros dois lados.
- Chama-se equilátero o triângulo que tem três lados iguais.
- Denominam-se isósceles o triângulo que tem o comprimento de dois lados iguais.
- Recebe o nome de escaleno o triângulo que tem os três lados diferentes.
- 11. Uma empresa vende o mesmo produto para quatro diferentes estados. Cada estado possui uma taxa diferente de imposto sobre o produto (MG 7%; SP 12%; RJ 15%; MS 8%). Faça um programa em que o usuário entre com o valor e o estado destino do produto e o programa retorne o preço final do produto acrescido do imposto do estado em que ele será vendido. Se o estado digitado não for válido, mostrar uma mensagem de erro.
- 12. Criar um algoritmo em C que a partir da idade e peso do paciente calcule a dosagem de determinado medicamento e imprima a receita informando quantas gotas do medicamento o paciente deve tomar por dose. Considere que o medicamento em questão possui 500 mg por ml, e que cada ml corresponde a 20 gotas.
 - Adultos ou adolescentes desde 12 anos, inclusive, se tiverem peso igual ou acima de 60 quilos devem tomar 1000 mg; com peso abaixo de 60 quilos devem tomar 875 mg.
 - Para crianças e adolescentes abaixo de 12 anos a dosagem é calculada pelo peso corpóreo conforme a tabela a seguir:

Peso	Dosagem
5 kg a 9 kg	125 mg
9.1 kg a 16 kg	250 mg
16.1 kg a 24 kg	375 mg
24.1 kg a 30 kg	500 mg
Acima de 30 kg	750 mg

13. Leia a distância em Km e a quantidade de litros de gasolina consumidos por um carro em um percurso, calcule o consumo em Km/l e escreva uma mensagem de acordo com a tabela abaixo:

CONSUMO	(Km/l)	MENSAGEM
menor que	8	Venda o carro!
entre	8 e 14	Econômico!
maior que	12	Super econômico!

14. A nota final de um estudante é calculada a partir de três notas atribuídas respectivamente a um trabalho de laboratório, a uma avaliação semestral e a um exame final. A média das três notas mencionadas anteriormente obedece aos pesos: Trabalho de Laboratório:2; Avaliação Semestral: 3; Exame Final: 5. E de acordo com o resultado mostre na tela se o aluno está reprovado (média entre 0 e < 3), de recuperação (entre 3 e < 5) ou se foi aprovado. Caso o aluno fique de recuperação o programa deve ler uma quarta nota (avaliação de recuperação) e calcular a média dessa nota com a média obtida anteriormente, se o estudante

atingiu a média de aprovação com essa nova média ele está aprovado. Faça todas as verificações necessárias.

- 15. Uma empresa decide dar um aumento aos seus funcionários de acordo com uma tabela que considera o salário atual e o tempo de serviço de cada funcionário. Os funcionários com menor salário terão um aumento proporcionalmente maior do que os funcionários com um salário maior, e conforme o tempo de serviço na empresa, cada funcionário irá receber um bônus adicional de salário. Faça um programa que leia:
 - O valor do salário atual do funcionário;
 - O tempo de serviço deste funcionário na empresa (número de anos de trabalho na empresa).

Use as tabelas abaixo para calcular o salário reajustado deste funcionário e imprima o valor do salário final reajustado, ou uma mensagem caso o funcionário não tenha direito a nenhum aumento.

Salário Atual	Reajuste(%)	Tempo de Serviço	Bônus
Até 500,00	25%	Abaixo de 1 ano	Sem bônus
Até 1000,00	20%	De 1 a 3 anos	100,00
Até 1500,00	15%	De 4 a 6 anos	200,00
Até 2000,00	10%	De 7 a 10 anos	300,00
Acima de 2000,00	Sem reajuste	Mais de 10 anos	500,00

16. Certo dia o professor de Johann Friederich Carl Gauss (aos 10 anos de idade) mandou que os alunos somassem os números de 1 a 100. Imediatamente Gauss achou a resposta – 5050 – aparentemente sem cálculos. Supõe-se que já aí, Gauss, houvesse descoberto a fórmula de uma soma de uma progressão aritmética.

$$S_n = \frac{(a_1 + a_n) \times n}{2}$$

Construa uma algoritmo para realizar a soma de uma P.A. de N termos, com o primeiro a1 e o último an. O programa deve imprimir "A soma aritmética e: ".

18 Considere a tabela abaixo:

Venda mensal	Comissão
Maior ou igual a R\$100.000,00	R\$700,00 + 16% das vendas
Menor que R\$100.000,00 e maior ou igual a R\$80.000,00	R\$650,00 +14% das vendas
Menor que R\$80.000,00 e maior ou igual a R\$60.000,00	R\$600,00 +14% das vendas
Menor que R\$60.000,00 e maior ou igual a R\$40.000,00	R\$550,00 +14% das vendas
Menor que R\$40.000,00 e maior ou igual a R\$20.000,00	R\$500,00 +14% das vendas
Menor que R\$20.000,00	R\$400,00 +14% das vendas

Escreva um programa que, dado o valor da venda, imprima a comissão que deverá ser paga ao vendedor.

19. Leia a nota e o número de faltas de um aluno, e escreva seu conceito. De acordo com a tabela abaixo, quando o aluno tem mais de 20 faltas ocorre uma redução de conceito.

NOTA	CONCEITO (ATÉ 20 FALTAS)	CONCEITO (MAIS DE 20 FALTAS)
9.0 até 10.0	A	В
7.5 até 8.9	В	С
5.0 até 7.4	С	D
4.0 até 4.9	D	E
0.0 até 3.9	E	E

- 20. As tarifas de certo parque de estacionamento são as seguintes:
 - 1° e 2° hora R\$ 1,00 cada
 - 3° e 4° hora R\$ 1,40 cada
 - 5° hora e seguintes R\$ 2,00 cada

O número de horas a pagar é sempre inteiro e arredondado por excesso. Deste modo, quem estacionar durante 61 minutos pagará por duas horas, que é o mesmo que pagaria se tivesse permanecido 120 minutos. Os momentos de chegada ao parque e partida deste são apresentados na forma de pares de inteiros, representando horas e minutos. Por exemplo, o par 12 50 representará "dez para a uma da tarde". Pretende-se um programa que, lidos pelo teclado os momentos de chegada e de partida, escreva na tela o preço cobrado pelo estacionamento. Deverá haver validação de dados. Admite-se que a chegada e a partida se dão com intervalo não superior a 24 horas (mas cujo controle de verificação não passa pelo programa aqui em causa). Portanto, se uma dada hora de chegada for superior à da partida, isso não é uma situação de erro, antes significará que a partida ocorreu no dia seguinte ao da chegada.