Course Code: ESC106A Course Title: Construction Materials and Engineering Mechanics

Lecture No. 2: Building Materials and Masonry

Delivered By: Nimmy Mariam Abraham

Lecture Intended Learning Outcomes

At the end of this lecture, student will be able to:

- Define soil and explain its properties
- Describe materials of construction
- Describe the desirable properties and applications of different building materials such as stone, bricks, lime, mortar, etc.
- Explain the properties of cement and types of foundation
- Differentiate materials used in masonry construction and the construction methods

Contents

Soil- Formation and Index properties

Construction materials and technology: Stones, sand, cement, concrete, bricks, lime and mortar

Soil

Soil is formed from rock due to erosion and weathering action

Properties of soil

Index Properties of Soil

The following are the Index Properties of soil:

- 1. Water content
- 2. Specific Gravity
- 3. In-situ density
- 4. Particle size distribution
- 5. Consistency limits

Foundation

 It is the lower most part of the building that transfers the load of the structure to the soil

Functions and requirements of foundation

To distribute the load from the structure to soil evenly and safely

To anchor the building to the ground so that under lateral loads building will not move

It gives level surface for the construction of super structure

It prevents the building from overturning due to lateral forces

Classification of Foundation

Foundation Shallow Foundations Deep Foundations Spread footings Pile foundations Grillage foundations Pier foundations Eccentrically loaded footings Caisson foundation Combined footings Mat or Raft footings

A shallow foundation is also known as an open foundation since such foundation is constructed by open excavation

Deep foundations are those in which the depth of the foundation is very large in comparison to its width

Shallow Foundations

Deep Foundations

Classification of Foundation

Grillage foundation

Spread footings

Combined footings

Mat/Raft foundation

Eccentrically loaded foundation

column ground surface pile cap pile provides little or no support rock end bearing

Shallow Foundations

Deep Foundations

Deep Foundations - Purpose transfer building loads deep into the earth

Driven Piles

Deep Foundation

Bridge pier

Caisson

Formation of Rocks

Types of Rocks

Igneous rocks

Sedimentary rocks

Metamorphic rocks

Stones

 Stones are derived from rocks, which form the earth's crust and have no definite shape or chemical combination but are mixtures of two or more minerals.

Properties of Stone

- Crushing Strength
- Hardness
- Percentage wear
- Resistance to fire
- Water absorption
- Specific gravity
- Durability
- Appearance

Uses of Stone

Stone masonry

Arches

Walls

Uses of Stone

Piers

Retaining Walls

Sand

 Sand is a naturally occurring granular material composed of finely divided rock and mineral particles

Properties of Sand

It should be,

- well graded
- clean and coarse
- strong and durable
- clean and free from coatings of clay and silt
- not contain salt which absorbs moisture from atmosphere

Uses of Sand

It adds to the density of the mortar and fills up the gap between the building blocks and spreads the binding material

It prevents the shrinkage of the cementing material

The cost of cementing material per unit volume is reduced as this low cost material increases the volume of mortar

It sub-divides the paste of binding material into thin films and allows it to adhere and spread.

Cement

 The cement is obtained by burning admixture of calcareous (calcium) and argillaceous (clay) material at a very high temperature and then grinding the clinker so produced to a fine powder

Cement

QUARRYING

Limestone and small amounts of sand and clay are extracted, usually from a quarry located near the cement manufacturing plant.

RAW MATERIALS PREPARATION

The extracted materials are analyzed, blended with additional mineral components depending on the type of limestone available, and finely ground for further processing.

CLINKER PRODUCTION

The materials are heated in a kiln reaching a temperature of 1,470°C. The heat transforms the materials into a molten product called clinker, which is then rapidly cooled

CEMENT GRINDING AND DISTRIBUTION

The clinker is stored and then finely ground. Gypsum is added to control setting time, along with supplementary cementing materials, such as fly ash or slag, to obtain a fine powder called cement, with the desired properties of strength and chemical resistance.

Properties of cement

Chemical properties

Tricalcium silicate	3 CaO.SiO2 (C3S)	40%
Dicalcium silicate	2CaO.SiO2 (C2S)	30%
Tricalcium aluminate	3CaO.Al2O3 (C3A)	11%
Tetracalcium aluminate	4CaO.Al2O3.Fe2O3 (C3AF)	11%

Physical properties

- •Fineness
- Setting time
- Soundness

Concrete

- Plain concrete, commonly known as concrete is a word of Latin derivation (con – together) (crete – to grow
- Concrete consists of cement, aggregates (fine and coarse), water

Properties of Concrete

- It gains strength over time
- Being naturally fire-resistant concrete forms a highly effective barrier to fire spread
- More durable and is resistant to wear and tear
- Achieves required characteristic strength

Uses of Cement

Bricks

- Bricks are obtained by moulding clay in the rectangular blocks of uniform size and then by drying and burning these blocks
- Standard size of brick is 19cmx9cmx9cm and the nominal size of the brick is 20cmx10cmx10cm

Desirable Properties of Bricks

- The colour of the brick should be red or copper and uniform
- It should be well burnt in kilns
- The surface should be even and free from cracks
- The edges should be sharp

- They are durable
- They are low cost material
- They possess good strength
- They are easily available
- Brick are light in compared to stones

As a building block

Used as aggregates

In lining sewer lines

In Lintels

Faculty of Engineering & Technology

Lime Mortar

 Lime has been used as a cementing material since ancient times in India and abroad

Properties of lime:

- Lime is good at absorbing and releasing moisture
- Condensation on the surface
- Strength and long lasting adhesion
- It is light weight and flexible
- Safer for adjacent materials

Uses of Lime

- Lime is used as a primary ingredient in masonry mortars
- It used for interior and exterior plastering of walls
- Cement-lime mortars have shown higher bond and shear strength, and lower water leakage.

Summary

- Soil is formed from rock due to erosion and weathering action
- The index properties of soil are water content, specific gravity, particle size distribution and consistency limits
- Foundations can be broadly classified into shallow and foundations
- Materials used in building construction include concrete, stone, bricks, lime, mortar, etc.

