Introduction to Deep Learning

Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

- In a feedforward network, an input x is read and produces an output ŷ
 - This is forward propagation
- During training forward propagation continues until it produces cost $J(\theta)$
- Back-propagation algorithm allows the information to flow backward in the network to compute the gradient
- Computation of analytical expression for gradient is easy
- . We need to find out gradient of the cost function with respect to the parameters ie. $abla_ heta J(heta$

Computational graph

- Back-propagation algorithm heavily depends on it
- Let x be a real number and y = g(x) and z = f(g(x)) = f(y)
- Chain rule says $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$
- This can be generalized: Let $\underline{x} \in \mathbb{R}^m$, $\underline{y} \in \mathbb{R}^n$, $\underline{g} : \mathbb{R}^m \to \mathbb{R}^n$ and $\underline{f} : \mathbb{R}^n \to \mathbb{R}$ and $\underline{y} = \underline{g}(\underline{x})$ and $\underline{z} = \underline{f}(\underline{y})$ then $\frac{\partial z}{\partial \underline{x}_i} = \sum_i \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$
- In vector notation it will be where $\frac{\partial y}{\partial x}$ is the $\frac{n \times m}{n}$ Jacobian matrix of g

0

CS551

CS551

CS551

_	Backpropagation
	x_1
CS551	
11	x_2

1

Backpropagation out $L = (target - out)^2$ CS551 $a_2 g_2$

 $\label{eq:hidden} \mbox{Hidden and output layer have sigmoid activation function. Loss function - MSE.}$

- Let us consider $(u^{(n)})$ be the loss quantity. Need to find out the gradient for this.
- Let $u^{(1)}$ to $u^{(n_i)}$ are the inputs
- Therefore, we wish to compute $\left(\frac{\partial u^{(n)}}{\partial u^{(i)}}\right)$ where $i=1,2,\ldots,n_i$
- Let us assume the nodes are ordered so that we can compute one after another
- Each $u^{(i)}$ is associated with an operation $f^{(i)}$ ie. $u^{(i)} = f(A^{(i)})$


```
CS551
```

for $i = 1, \ldots, n_i$ do

for $i = n_i + 1, \ldots, n$ do

end for

end for return $u^{(n)}$

Algorithm for backward pass

Computational graph & subexpression

• We have x = f(w), y = f(x), z = f(y)

Forward propagation in MLP

•
$$h^{(0)} = x$$

- Computation for each layer k = 1, ..., I
 - $a^{(k)} = b^{(k)} + W^{(k)}h^{(k-1)} \leftarrow$
 - $h^{(k)} = f(a^{(k)})$
- Computation of output and loss function
 - $\hat{y} = h^{(I)}$
 - $J = L(\hat{y}, y) + \lambda \Omega(\theta)$

Backward computation in MLP

- Compute gradient at the output
 - $\mathbf{g} \leftarrow \nabla_{\hat{\mathbf{y}}} J = \nabla_{\hat{\mathbf{y}}} L(\hat{\mathbf{y}}, \mathbf{y})$
- Convert the gradient at output layer into gradient of pre-activation
 - $g \leftarrow \nabla_{a^{(k)}} J = g \odot f(a^{(k)})$
- Compute gradient on weights and biases

 - $\begin{aligned} \bullet & \nabla_{\mathbf{b}^{(k)}} J = \mathbf{g} + \lambda \nabla_{\mathbf{b}^{(k)}} \Omega(\theta) \\ \bullet & \nabla_{\mathbf{W}^{(k)}} J = \mathbf{g} \mathbf{h}^{(k-1)T} + \lambda \nabla_{\mathbf{W}^{(k)}} \Omega(\theta) \end{aligned}$
- Propagate the gradients wrt the next lower level activation
 - $g \leftarrow \nabla_{h^{(k-1)}} J = W^{(k)T} g$

Computation of derivatives

- Takes a computational graph and a set of numerical values for the inputs, then return a set of numerical values
 - Symbol-to-number differentiation
 - Torch, Caffe
- Takes computational graph and add additional nodes to the graph that provide symbolic description of derivative
 - Symbol-to-symbol derivative
 - Theano, TensorFlow \

Summary

- Writing gradient for each parameter is difficult
 - Recursive application of chain rule along the computational graph help to compute the gradients
- Forward pass compute the value of the operations and store the necessary information
- Backward pass uses the loss function, computes the gradient, updates the parameters.