AMENDMENTS TO THE CLAIMS

Docket No.: 20241/0204490-US0

1. (Currently Amended) A multi-branched polymer having repeating units represented by a formula (1) (IV):

(wherein R_1 to R_3 each independently represents hydrogen or a hydrocarbon group, R_1 may be bonded to R_3 to form a ring; X represents a connecting group having a valence of 3 or higher; Y may be the same or different and each represents a functional group with a structure where a halogen atom becomes an active halogen atom when the halogen atom is bound to a constituting carbon atom; and a is an integer of 2 or larger; and V represents an alkylenepolyoxy group having a valence of 3 or higher).

2 to 5. (Canceled)

6. (Currently Amended) The multi-branched polymer according to claim <u>1</u> 4 or 5, wherein in the formula (IV), Y is a functional group represented by a formula (V):

(wherein R61 and R71 each independently represents hydrogen, a halogen atom, an alkyl group which may have a substituent, or a linkage with other repeating units with a proviso that R_{61} and R_{71} do not become linkages with other repeating units at the same time).

7. (Currently Amended) A <u>process for preparing</u> multi-branched polymer obtained with a comprising: living radical polymerization method using a metal catalyst by polymerizing of the compounds represented by a formula (VI):

(wherein R_8 to R_{10} each independently represents hydrogen or a hydrocarbon group, and R_8 may be bonded to R_{10} to form a ring; X_1 represents a connecting group having a valence of 3 or higher; Y_1 may be the same or different and each represents a functional group with a structure where a

halogen atom becomes an active halogen atom when the halogen atom is bound to a constituting carbon atom; all is an integer of 2 or larger, Y_1 is selected from the functional groups of

; and,

when X_1 is an aromatic hydrocarbon group or an aromatic heterocyclic group, Y_1 is selected from the functional groups of

; and R_{11} represents a chlorine atom, a bromine atom, or an iodine atom) <u>using a metal catalyst</u>, <u>wherein</u>

the reactions at the polymerization-initiation site and the polymerizable unsaturated bond in formula (VI) are performed simultaneously.

8. (Currently Amended) The <u>process for preparing</u> multi-branched polymer according to claim 7, wherein the compounds represented by the formula (VI) are compounds represented by formula (VII):

(wherein R_8 to R_{10} are as defined above; Z_1 represents a single bond or a connecting group having a valence of 2 or higher; A1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group; R_{24} may be the same or different and each represents a functional group which may have an active halogen atom; b1 is an integer of 2 or larger; R_{25} represents a halogen atom or an organic group and d1 is 0 or an integer of 1 or larger and R_{25} may be the same or different when d1 is 2 or larger; R_{26} represents a chlorine atom, a bromine atom, or an iodine atom).

9. (Currently Amended) The <u>process for preparing multi-branched polymer according to claim</u> 8, wherein in the formula (VII), Z_1 is a single bond, Al is an aromatic hydrocarbon group, and R_{24} is a functional group represented by a formula (VIII):

(wherein R_{60} and R_{70} each independently represents hydrogen, a halogen atom, or a C1 to C6 alkyl group which may have a substituent with a proviso that R_{60} and R_{70} are not halogen atoms other than fluorine atoms at the same time).

10. (Currently Amended) The <u>process for preparing multi-branched polymer according to claim</u> 7, wherein the compounds represented by the formula (VI) are compounds represented by a formula (IX):

(wherein R_8 to R_{10} are as defined above respectively; V_{11} represents a connecting group having a valence of 3 or higher; Y_1 may be the same or different and each represents a functional group which may have an active halogen atom; al is an integer of 2 or larger; and R_{11} represents a chlorine atom, a bromine atom, or an iodine atom).

- 11. (Currently Amended) The <u>process for preparing multi-branched polymer according to claim</u> 10, wherein V_{11} is an alkylenepolyoxy group in the formula (IX).
- 12. (Currently Amended) The <u>process for preparing</u> multi-branched polymer according to claim 10 or 11, wherein in the formula (IX), Y_1 is a functional group represented by a formula (X):

Application No. 10/595,974 Docket No.: 20241/0204490-US0

(wherein R_{610} and R_{710} each independently represents hydrogen, a halogen atom, an alkyl group which may have a substituent, or a linkage with other repeating units with a proviso that R_{610} and R_{710} do not become linkages with other repeating units at the same time).

- 13. (Original) The multi-branched polymer according to any one of claim 1 or 7, wherein a ratio (Mw/Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) of the polymer is in a range between 1.01 and 9.99.
- 14. (Original) The multi-branched polymer according to any one of claim 1 or 7, wherein the number average molecular weight (Mn) of the polymer is in a range between 200 and 20,000,000.
- 15. (Original) The multi-branched polymer according to any one of claim 1 or 7, wherein the multi-branched polymer is a hyperbranched polymer.

16 to 19. (Canceled)

20. (Original) A star polymer having the multi-branched polymer according to claim 1 or 7.