

— Parte 3. —

Serie temporali e ARIMA

Paolo Bosetti (paolo.bosetti@unitn.it)

Data creazione: 2022-01-28 11:02:21

Indice

1	Tin	ne series	1
	1.1	La classe ts	1
	1.2	Multivarate time series	
	1.3	Finestre e Smoothing	4
	1.4	Consolidamento	Ę
	1.5	La classe xts	Ę
2	Reg	gressione e Predizione	8
	2.1	Verifiche iniziali	8
	2.2	Auto-ARIMA	10
	2.3	ARIMA, the hard way	12
		2.3.1 Parametri del modello	12
		2.3.2 Esempio: Anomalia terra-mare	
		2.3.3 Esempio: Seasonal ARIMA (SARIMA)	19
3	Sim	vulazione di processi ARIMA	24

1 Time series

1.1 La classe ts

Le serie temporali vengono create con la funzione nativa ts(data, start, end, frequency), dove:

- data è un vettore di dati equi-spaziati nel tempo
- start è la data della prima osservazione
- end è la data dell'ultima osservazione
- frequency è il numero di osservazioni per unità temporale

Il significato dell'unità tempo base è arbitrario: se ad esempio indichiamo start=2019 e frequency=12 significa che i dati partono dal 2019 e hanno cadenza mensile. È possibile indicare start=c(2019,6) per stabilire che il primo dato è di Giugno 2019. NOTA: start deve essere o uno scalare o un vettore di due elementi, nel cui caso il secondo elemento è l'indice (base 1) del sotto-periodo quando frequency è maggiore di 1.

Le opzioni end o deltat possono essere indicate quando si vuole troncare il vettore di ingresso.

1.1 La classe ts 1 TIME SERIES

Figura 1: https://xkcd.com/2563/

Come dati di esempio, carichiamo i dati della pandemia COVID-19 da Our World in Data:

```
url <- "https://covid.ourworldindata.org/data/owid-covid-data.csv"
datafile <- basename(url)
if (!file.exists(datafile) | difftime(now(), file.mtime(datafile), units="hours") > 24 ) {
   print("Downloading new data from the Internet")
   download.file(url, datafile)
}
covid <- read.csv(datafile)</pre>
```

Dell'intero set di dati filtriamo e selezioniamo solo i nuovi casi per milione in Italia, costruendo poi un oggetto time series. Usiamo la libreria lubridate per semplificare la gestione delle date:

```
st <- decimal_date(ymd(covid[covid$location=="Italy",]$date[1]))
cpm <- ts(
    covid[covid$location=="Italy",]$new_cases_per_million,
    start=st,
    frequency=365.25
)
plot(cpm,
    main="COVID-19 nuovi casi in Italia",
    sub="In casi giornalieri per milione di abitanti",
    xlab="Data",
    ylab="Nuovi casi (/1E6)",
    xaxs="i"
    )
grid()</pre>
```


In casi giornalieri per milione di abitanti

Si noti che l'espressione decimal_date(ymd(covid\$date[1])) converte la data 2020-02-24 (una stringa) in un oggetto tempo 2020-02-24 e infine in un valore decimale a base annuale: 2020.147541 (data astrale):

```
cat("Data astrale: "); print(c(start(cpm), end(cpm)))
## Data astrale:
## [1] 2020.082 2022.070
cat("Data POSIX: "); print(date_decimal(c(start(cpm), end(cpm))))
## Data POSIX:
## [1] "2020-01-30 23:59:59 UTC" "2022-01-26 10:06:24 UTC"
```

1.2 Multivarate time series

È possibile creare oggetti timeseries multi-variati, passando all'argomento data una matrice con più colonne:

```
cpmv <- ts(
   data=cbind(
        covid[covid$location=="Italy",]$new_cases_per_million,
        covid[covid$location=="Italy",]$people_vaccinated_per_hundred
),
   names=c("NCPM", "VC"),
   start=st,
   frequency=365.25
)
plot(cpmv,
        main="COVID-19 nuovi casi in Italia",
        sub="In casi giornalieri per milione di abitanti",
        xlab="Data",
        ylab="Nuovi casi (/1E6)",
        )</pre>
```


1.3 Finestre e Smoothing

Funzioni utili per manipolare le serie temporali sono window() e time(): la prima consente di estrarre una finestra temporale tra due date, la seconda consente di estrarre il vettore dei tempi. Inoltre, sono utili le funzioni di smoothing fornite dalla libreria zoo

COVID-19 nuovi casi in Italia

1.4 Consolidamento 1 TIME SERIES

1.4 Consolidamento

È spesso utile consolidare una serie temporale per sotto-periodi: ad esempio trasformare una serie giornaliera come cpm in una serie mensile o settimanale. La libreria xts mette a disposizione le funzioni apply. [dayly|wekly|monthly|quarterly|yearly] (), che però operano su un differente tipo di oggetti, appunto la classe xts. La libreria tsbox contiene appunto la funzione ts_xts() per convertire un ts in un xts:

```
cpmm <- apply.weekly(ts_xts(cpm), sum)
plot(cpmm)</pre>
```


Ora cpmm è un oggetto xts: la conversione di nuovo verso ts può essere fatta così:

1.5 La classe xts

In realtà, la classe xts è molto più potente di ts nella gestione della serie temporale, ed è quindi in certi casi preferibile. Invece che convertire cpm come fatto sopra, vediamo come creare direttamente un oggetto xts:

1.5 La classe xts 1 TIME SERIES

L'estrazione di sottoinsiemi (subsetting) viene effettuata, anziché con il metodo window(), come una semplice indicizzazione (cioè il metodo [.xts()). È possibile usare sia indici numerici (convenzionali) sia stringhe in standard ISO-8601. La data può cioè essere espressa come intervallo:

```
plot(cpmx["202108/2021-09-30"])
```



```
# p1 <- autoplot(cpmx["202108/2021-09-30"]) +
# geom_line() +
# geom_area(fill="gray", alpha=1/3) +
# geom_line(data=cpmx["2021-10-1/"], aes(x=Index, y=cpmx["2021-10-1/"]))
# p1</pre>
```

La data di inizio (prima di /) o di fine dell'intervallo (dopo la /) possono essere omesse, in tal caso significa "dall'inizio fino a ..." oppure "da ... fino alla fine". Inoltre, è possibile omettere componenti della data, intendendo così un intero sotto-periodo:

```
length(cpmx["2021"]) # Tutto l'anno
## [1] 365
length(cpmx["2021-6"]) # Tutto Giuqno
## [1] 30
last(cpmx, "2 week") # Ultime due settimane
##
                  [,1]
## 2022-01-17 1381.323
## 2022-01-18 3778.906
## 2022-01-19 3329.045
## 2022-01-20 3294.241
## 2022-01-21 3074.503
## 2022-01-22 2937.592
## 2022-01-23 2360.327
## 2022-01-24 1286.554
## 2022-01-25 3499.848
## 2022-01-26 2831.657
plot(first(cpmx["2021"], "2 weeks")) # Prime due settimane del 2021"
```

1.5 La classe xts 1 TIME SERIES

Infine, la funzione endpoints() consente di identificare gli indici della serie a cui terminano specifici periodi (anno, mese, settimana, giorno...). Inoltre, combinazioni di first() e last() possono essere utilizzate per selezionare i dati fino all'ultima domenica:

```
invisible( # necessario, addPanel crea un nuovo grafico
  plot(cpmx[paste0("/", index(last(first(last(cpmx, "2 weeks"), "week"))))]
        ["2021-11/"],
     main="cpmx")
)
addPanel(rollmedian, k=7, on=1, col="red")
                                                        2021-11-01 / 2022-01-23
                         cpmx
                   3000
                                                                               3000
                   2000
                                                                               2000
                   1000
                                                                               1000
                      Nov 01
                               Nov 15
                                        Nov 29
                                                 Dec 13
                                                          Dec 27
                                                                   Jan 10
                                                                           Jan 23
```

2021

2021

Ci sono anche utili funzioni per convertire il periodo in un periodo più lungo: ad esempio, da una serie giornaliera ad una serie settimanale mediante to_weekly(). Questi comandi restituiscono quattro serie "OHLC": Opening, High, Low, Closing, cioè il primo valore del sotto-periodo, il massimo, il minimo e l'ultimo valore:

2021

2021

2022

```
plot(to.weekly(cpmx))
```


La classe xts è quindi molto potente ma ha alcuni punti deboli:

- non va molto d'accordo con le funzioni Arima() e predict(): gli oggetti regressione che si ottengono sono convertiti nella classe base ts ma perdono l'informazione temporale (quindi iniziano con tempo 1 e hanno passo 1)
- il metodo xts.plot() è apparentemente più carino, ma molto meno flessibile dell metodo generico: ad esempio è molto complesso estendere una serie sullo stesso plot con dati successivi.

Per questi motivi, si consiglia l'uso di xts per la gestione della serie temporale, l'estrazione di sotto-periodi e l'eventuale aggregazione, ma poi si consiglia di convertire di nuovo in ts mediante il metodo ts_ts() prima di effettuare le regressioni.

2 Regressione e Predizione

2.1 Verifiche iniziali

La prima verifica è sempre quella sui dati mancanti. Eliminiamo qualche dato dalla serie cpm per vedere, in seguito, come gestire i dati mancanti:

```
cpmx[c(30, 213, 401)] \leftarrow NA
```

Decidiamo di sostituire i dati mancanti con la mediana dei dati adiacenti:

```
nas <- which(is.na(cpmx))
for (i in nas) {
  cpmx[i] = median(cpmx[i-1], cpmx[i+1])
}</pre>
```

In maniera più efficiente si possono usare le funzioni na.locf() o na.approx(): la prima sostituisce ogni NA con l'ultimo valore noto, la seconda lo approssima con un'interpolazione lineare (e na.spline() con una bicubica):

```
cpmx[c(30, 213, 401)] <- NA
cpmx <- na.locf(cpmx)</pre>
```

Prima di qualsiasi analisi su una serie temporale è utile visualizzare il cosiddetto **lag plot**, che è un particolare grafico a dispersione in cui si confrontano i dati di una serie con gli stessi dati con un certo ritardo: se il segnale è puramente casuale, il risultato sarà una nuvola dispersa; viceversa, ogni pattern significa che i dati sono affetti da un andamento regolare. Inoltre, nel nostro caso si nota che la dispersione è molto stretta al lag 7, il che dimostra la regolarità settimanale della serie temporale.

```
lag.plot(log(cpmx["2021-06/"]), lags=9)
```


lag.plot(runif(length(cpmx["2021-06/"])), lags=9)

lag.plot(rnorm(length(cpmx)), lags=9)

2.2 Auto-ARIMA

La libreria forecast mette a disposizione il metodo più semplice per effettuare la regressione di una serie temporale mediante ARIMA (*Auto-Regressive Integrative Moving Average*). Mettiamolo alla prova sulla serie temporale COVID-19, addestrando il modello fino alla data 2021.7 = 2021-09-13 12:00:00, utilizzando il modello per predire i successivi 30 giorni, e poi confrontandolo con i dati reali.

È importante ricordare che un modello ARIMA si applica a serie temporali che devono essere **stazionarie** (cioè a media più o meno costante) e **a varianza costante**. Se le oscillazioni della serie storica non sono costanti si può applicare una trasformazione: tipicamente si prova con il logaritmo, ma altre possibilità sono l'inversa, la radice, o una potenza. In generale, si parla di *trasformazioni Box-Cox* utilizzando il parametro λ : se esso è uguale a zero, la trasformazione è il logaritmo, altrimenti è l'elevazione alla potenza λ (ad es. $\lambda = -0.5$ corrisponde all'inverso della radice, ecc.)

Se la serie non ha una media stazionaria si può effettuare una **differenziazione** (cioè derivata), un numero di volte sufficiente. L'ordine di differenziazione è il parametro d del modello ARIMA.

La funzione auto.arima() individua automaticamente i coefficienti p, d, q e, se si specifica il parametro lambda="auto", anche il λ più appropriato per rendere stazionaria anche la varianza.

Si noti che le funzioni auto.arima() e forecast() perdono l'asse dei tempi quando vengono utilizzate su oggetti xts, quindi usiamo xts per selezionare i peridi (più comodo) ma convertiamo in oggetti ts per l'analisi:

```
d0 <- "/2021-08-20"
d1 <- "2021-08-21/"
win <- ts_ts(cpmx[d0])
(fit2 <- auto.arima(win, lambda="auto"))</pre>
## Series: win
## ARIMA(3,1,3)
## Box Cox transformation: lambda= 1
##
## Coefficients:
##
            ar1
                     ar2
                                                          ma3
                               ar3
                                        ma1
                                                  ma2
##
         0.3362
                  0.1400
                          -0.8473
                                    -0.3508
                                             -0.4186
                                                       0.7974
         0.0388
                           0.0480
                                     0.0456
                                              0.0876
## s.e.
                 0.0468
                                                       0.0571
## sigma^2 estimated as 722.2: log likelihood=-2668.85
## AIC=5351.69
                  AICc=5351.89
                                 BIC=5382.08
plot(forecast(fit2, 30, level=c(80, 95, 99)),
     xlim=c(-120,+30)/365+decimal_date(ymd(d0))
     )
new <- ts_ts(cpmx[d1])</pre>
lines(new, col="red")
```


Forecasts from ARIMA(3,1,3)

Vediamo le predizioni odierne:

```
win <- last(cpmx, "16 weeks")</pre>
(fit <- auto.arima(ts_ts(win), lambda=0))</pre>
## Series: ts_ts(win)
## ARIMA(4,1,3) with drift
## Box Cox transformation: lambda= 0
##
##
   Coefficients:
##
                      ar2
                                ar3
                                                             ma2
                                                                     ma3
                                                                            drift
             ar1
                                         ar4
                                                   ma1
                           -0.5461
         -0.0044
                   0.0881
##
                                     -0.4075
                                               -0.5408
                                                        -0.3797
                                                                  0.6725
                                                                           0.0399
## s.e.
          0.1303
                   0.1455
                             0.1108
                                      0.1243
                                                0.1287
                                                          0.1950
                                                                  0.1017
##
## sigma^2 estimated as 0.07441:
                                    log likelihood=-10.1
## AIC=38.19
                AICc=40.05
                              BIC=62.25
plot(forecast(fit, 30),
     xlim=c(-60,+30)/365+decimal_date(end(cpmx)),
     ylim=c(0, 10000)
)
abline(v=decimal_date(end(cpmx)))
```

Forecasts from ARIMA(4,1,3) with drift

Si noti che si è forzata una trasformazione con $\lambda=0$, cioè il logaritmo, dato che la varianza della finestra considerata è evidentemente non costante, anche se auto.arima(..., lambda="auto") individuerebbe un $\lambda=1$ (nessuna trasformazione). A volte gli automatismi non funzionano!

In realtà, le oscillazioni settimanali sono più un artefatto di misura che una proprietà intrinseca del fenomeno, quindi è più corretto effettuare predizioni su, ad esempio, i valori settimanali. Quindi utilizziamo lo stesso oggetto cpmm sopra ottenuto sommando i valori settimanali, e ci concentriamo sulla finestra 2021.4 – 2021.911. Inoltre, come vedremo più avanti, il metodo ARIMA si applica a serie stazionarie, in cui cioè valore medio e varianza sono stabili. Il metodo più comune per stabilizzare la varianza è trasformare i dati applicando il logaritmo:

```
cpmm <- apply.weekly(ts_xts(cpm), sum)
win <- ts_ts(cpmm["2021-05-27/2021-11-29"])
# Fino all'ultima domenica
#win <- ts_ts(cpmm[1:(last(endpoints(cpmm, on="weeks")-1))]["2021-6/"])
fit <- auto.arima(win, lambda="auto")
plot(forecast(fit, h=5))</pre>
```

Forecasts from ARIMA(1,1,0)

2.3 ARIMA, the hard way

2.3.1 Parametri del modello

Per calibrare un modello ARIMA è necessario identificare i parametri $p, d \in q$.

Anzitutto, come deto sopra un modello ARMA (d=0) si può applicare solo ad una serie temporale *stazionaria*, cioè priva di deriva e a varianza costante. Se la serie in questione non ha queste caratteristiche, è possibile applicare delle trasformazioni: ad esempio, possiamo applicare il logaritmo per comprimere la varianza, e differenziare una o più volte per rimuovere la deriva. Il numero di differenziazioni corrisponde al parametro d che trasforma un modello ARMA(p,q) in ARIMA(p,d,q).

Il passo successivo è individuare il grado dei processi AR e MA. Per quanto riguarda un processo MA, il suo grado q è il numero di elementi consecutivi interessati alla media mobile:

$$x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q}$$

È evidente, quindi, che i campioni più vicini di q saranno fortemente correlati, mentre quelli più lontani risulteranno non correlati. Possiamo cioè stimare q sulla base della funzione di autocorrelazione (ACF), che valuta l'autocorrelazione tra due copie della stessa serie traslate di una certa distanza in passi temporali h, detta lag:

$$ACF(h) = corr(x_t, x_{t+h})$$

Tale funzione vale sempre 1 per un lag 0 (autocorrelazione con se stesso), e per un processo MA(q) va a zero al lag q + 1.

Per quanto riguarda i processi AR(p), essi rappresentano un'auto-regressione:

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t$$

Per stimare p abbiamo quindi bisogno di stimare la correlazione tra x_t e una sua versione ritardata, eliminando i contributi a lag intermedi. Si costruisce cioè la funzione di autocorrelazione parziale (PACF), che riporta, in funzione del lag h, l'autocorrelazione avendo eliminato (sostituendolo con una regressione) il contributo tra lag 1 e lag n-1:

$$PACF(h) = corr(x_{t+h} - \hat{x}_{t+h}, x_t - \hat{x}_t)$$

dove $\hat{x}_{t+h} = \beta_1 x_{t+h-q} + \beta_2 x_{t+h-2} + \dots + \beta_{h-1} x_{t+1}$ e $x_t = \beta_1 x_{t+1} + \beta_2 x_{t+2} + \dots + \beta_{h-1} x_{t+h-q}$, e i coefficienti β_i sono calcolati minimizzando i residui.

Anche in questo caso, il grado del processo q corrisponde al lag al di là del quale la PACF va a zero (drop-off).

Quindi, come regola base, dopo aver reso stazionaria la serie storica mediante differenziazione, si studiano ACF e PACF per identificare q e p, rispettivamente. Valgono le seguenti linee guida:

- se il processo è AR, la PACF ha un drop-off dopo il lag p e la ACF decade geometricamente
- se il processo è MA, la ACF ha un drop-off dopo il lag q e la PACF decade geometricamente
- se il processo è ARMA, sia ACF che PACF manifestano un drop-off, e possono essere utilizzate per stimare p e q; tuttavia esse sono spesso meno chiare che nei casi precedenti
- se un processo è puro noise, né ACF né PACF mostrano alcuna struttura
- eventuali *stagionalità* si mostrano come picchi intensi a lag elevati (corrispondenti al periodo della stagionalità)

Generalmente, a meno che un processo non risulti AR o MA puro, le funzioni ACF e PACF vengono utilizzate per identificare set di possibili parametri p e q, scegliendo poi la combinazione migliore mediante gli stimatori di bontà della regressione. Il più adatto a questo scopo è AIC ($Akaike\ Information\ Criterion$), che deve essere minimizzato.

2.3.2 Esempio: Anomalia terra-mare

Consideriamo i dati di anomalia termica terra-mare, disponibili su Our World in Data.

Carichiamo i dati e li importiamo in una serie temporale:

```
datafile <- "temperature-anomaly.csv"
data <- read.csv(mydata(datafile))
t.global <- ts(data[data$Entity=="Global",]$Median.temp, start=1850)
plot(t.global, ylab="Anomalia termica (°C)", main="Anomalia termica globale")
abline(h=0)</pre>
```

Anomalia termica globale

La serie temporale rappresenta i valori tra 1850, 1, 2019, 1.

Dividiamo il dataset in due parti: dal 1850 fino al 2000, da usare per il training del modello, e una dal 1851 fino al 2019 da usare per la validazione:

Un modello ARIMA deve essere applicato ad una serie **stazionaria**: la serie cioè deve avere una varianza stabile nel tempo e non deve mostrare trend. Per stabilizzare la varianza si applicano delle *trasformazioni* alla serie: elevazioni a potenza o logaritmi. Per eliminare i trend si differenzia il segnale una o più volte: il numero di differenziazioni è l'indice di integrazione del modello ARIMA.

La trasformazione migliore è quella che minimizza il coefficiente di varianza della serie. Il metodo Box-Cox è comunemente adottato per individuare il parametro di trasformazione λ che minimizza il coefficiente di variazione:

```
(lambda <- BoxCox.lambda(temp.global))
## [1] 0.7753935</pre>
```

Il valore di λ ottenuto è vicino a 1, per cui si ritiene che non sia necessaria alcuna trasformazione.

Se λ fosse molto diversa da 1, si procederebbe così:

```
temp.global.BC <- BoxCox(temp.global + 273.15, lambda)
# utilizzando di seguito la trasformata temp.global.BC</pre>
```

Il prossimo passo è eliminare il trend mediante differenziazione. Il comando ndiffs() restituisce l'opportuno ordine di differenziazione per stabilizzare la serie, dopodiché il comando diff(ts, differences=n) applica la differenziazione di ordine n:

```
(d <- ndiffs(temp.global))
## [1] 1
temp.global.diff <- diff(temp.global, diff=d)
plot(temp.global.diff)</pre>
```


Come si vede, la varianza è stazionaria e la serie trasformata non mostra tendenze.

A questo punto applichiamo quindi le funzioni di autocorrelazione (acf) e di autocorrelazione parziale (pacf) per identificare i parametri rispettivamente q e p del modello ARIMA(p,d,q), avendo già identificato d con il comando ndiffs.

```
# Separatamente:
## Pacf(temp.global.diff)
## Acf(temp.qlobal.diff)
# in alternativa:
tsdisplay(temp.global.diff)
                                                temp.global.diff
                           1850
                                            1900
                                                              1950
                                                                               2000
                                                         9
                                    10
                                         15
                                              20
                                                                 5
                                                                      10
                                                                           15
                                                                                20
```

Lag

La pacf mostra 3 picchi prima del drop-off, quindi p=3. Analogamente, anche la acf mostra due picchi prima del drop-off, quindi q=2

Lag

Possiamo effettuare la regressione ARIMA con i parametri (3,1,2). Utilizziamo la funzione Arima della libreria forecast anziché la versione standard arima, dato che la prima consente anche di considerare il trend (o drift) e di specificare il parametro λ della trasformazione. Per confronto, verifichiamo anche il modello ottenuto con auto.arima, laciando anche stimare il valore appropriato di λ con lambda="auto":

```
fit <- Arima(temp.global, order=c(3, 1, 2), include.drift = T, lambda=1)
summary(fit)
## Series: temp.global
## ARIMA(3,1,2) with drift
## Box Cox transformation: lambda= 1
##</pre>
```



```
## Coefficients:
##
             ar1
                      ar2
                               ar3
                                       ma1
                                                 ma2
                                                       drift
##
         -0.6007
                  0.0957
                           -0.2149
                                    0.1703
                                             -0.6394
                                                      0.0043
## s.e.
          0.1468
                  0.1687
                            0.0961
                                    0.1356
                                              0.1264
                                                      0.0026
##
## sigma^2 estimated as 0.01103: log likelihood=127.89
## AIC=-241.79
                 AICc=-241
                              BIC=-220.71
##
## Training set error measures:
##
                                   RMSE
                                                MAE
                                                         MPE
                                                                  MAPE
                                                                            MASE
## Training set 0.0003292531 0.1025512 0.08439941 5.178568 96.67594 0.9003564
##
## Training set 0.003542436
fit.auto <- auto.arima(temp.global, lambda="auto")</pre>
summary(fit.auto)
## Series: temp.global
## ARIMA(3,1,2) with drift
## Box Cox transformation: lambda= 0.7753935
##
##
  Coefficients:
##
             ar1
                     ar2
                               ar3
                                       ma1
                                                ma2
                                                       drift
##
         -0.5966
                  0.0394
                           -0.2764
                                    0.1745
                                             -0.5912
                                                      0.0072
## s.e.
          0.1358
                  0.1696
                            0.0955
                                    0.1300
                                             0.1255
                                                      0.0043
##
## sigma^2 estimated as 0.02741:
                                   log likelihood=59.54
## AIC=-105.08
                 AICc=-104.29
                                 BIC=-84.01
##
## Training set error measures:
                                   RMSE
                                                         MPE
                                                                 MAPE
                                                                            MASE
##
                           ME
                                                MAE
## Training set -0.004164867 0.1029321 0.08476047 10.13711 87.57378 0.9042081
##
                       ACF1
## Training set 0.00687904
```

Come si osserva, la versione automatica propone lo stesso modello ARIMA(3,1,2).

Il prossimo passo è verificare i residui: perché il modello sia adeguato, essi devo essere casuali e normali. La casualità può essere studiata con la acf: se la serie temporale è casuale, l'unico indice di correlazione deve essere il primo.

acf(fit\$residuals)

Series fit\$residuals

acf(fit.auto\$residuals)

Series fit.auto\$residuals

La normalità può essere studiata al solito con un diagramma Q-Q:

qqPlot(fit\$residuals)

[1] 28 115

qqPlot(fit.auto\$residuals)

[1] 115 125

Entrambi i modelli risultano quindi adeguati.

Possiamo infine verificare la predizione, confrontandola con i dati successivi al 2000, per entrambi i modelli:

```
plot(forecast(fit, h=16), ylim=c(-0.6, 0.8))
lines(temp.global.test, col="red")
lines(fit$fitted, col="gray")
```

Forecasts from ARIMA(3,1,2) with drift


```
plot(forecast(fit.auto, h=16), ylim=c(-0.6, 0.8))
lines(temp.global.test, col="red")
lines(fit.auto$fitted, col="gray")
```


Forecasts from ARIMA(3,1,2) with drift

ggplot:

autoplot(forecast(fit, h=16)) + geom_line(aes(x=index(fit\$x), y=fit\$fitted), color="gray") + geom_line(aes(x=index(fit), y=fit)) + geom_line(aes(x=index(

2.3.3 Esempio: Seasonal ARIMA (SARIMA)

Consideriamo l'effetto della stagionalità. Utilizziamo la serie storica AirPassengers integrata in R.

x <- AirPassengers

```
lx <- log(x) # logaritmo per stabilizzare la varianza
dlx = diff(lx) # prima differenziazione
plot.ts(cbind(x,lx,dlx), main="")</pre>
```


La serie dlx mostra ancora un evidente periodicità stagionale. Questa può essere evidenziata mediante la funzione monthplot(), che raggruppa anni diversi per lo stesso mese:

monthplot(dlx)

È evidente come i valori per lo stesso mese tendono a raggrupparsi. Possiamo quindi provare a differenziare con lag 12 oltre che con lag 1:

ddlx <- diff(dlx, 12)
plot.ts(cbind(x,lx,dlx, ddlx), main="")</pre>

monthplot(ddlx)

La stagionalità può essere analizzata anche con il metodo stl():

plot(stl(x, "periodic"))

Si noti che stl(x, "periodic") restituisce un oggetto ts multi-variato, le cui colonne possono essere estratte, ad es., così: plot(s\$time.series[,"seasonal"]).

A questo punto studiamo l'autocorrelazione per identificare i parametri del modello SARIMA:

tsdisplay(ddlx, lag.max = 4*12)

Anzitutto, per eliminare il trend abbiamo differenziato 1 volta sia a lag 1 che a lag 12, quindi i parametri d della parte stagionale e di quella non stagionale saranno entrambi 1. In formula, si scrive che il modello trasformato è $\nabla_{12}\nabla \log x_t$.

Per quanto riguarda i parametri p e q, entrambi i diagrammi di autocorrelazione mostrano un forte picco a lag 12 (riprova della stagionalità) e entrambi i grafici mostrano una rapida caduta verso un'oscillazione stabilizzata: dopo un picco a lag 1, sia la PACF che la ACF passano all'oscillazione stabilizzata, quindi p=1 e q=1. Dopo il picco a lag 12, invece, la PACF mostra una decrescita geometrica, il che indica il termine p=0 (modello AR), mentre la ACF mostra un rapido smorzamento subito dopo il primo picco, che indica q=1 nel modello MA. Secondo la notazione comune, il modello appropriato è quindi ARIMA $(1,1,1) \times (0,1,1)_{12}$, ovvero un modello stagionale con lag 12 con parametri (1,1,1) per la parte non-stagionale, e (0,1,1) per la parte stagionale.

```
(fit1 <- arima(lx, order=c(1,1,1), seasonal=list(order=c(0,1,1), period = 12)))
##
## Call:
## arima(x = lx, order = c(1, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))</pre>
```



```
##
## Coefficients:
##
            ar1
                              sma1
                      ma1
                 -0.5784
                           -0.5643
##
         0.1960
## s.e. 0.2475
                   0.2132
                            0.0747
##
## sigma^2 estimated as 0.001341: log likelihood = 244.95, aic = -481.9
Per sicurezza valutiamo anche il modello ARIMA(1,1,1) \times (1,1,1)_{12}:
(fit2 \leftarrow arima(lx, order=c(1,1,1), seasonal=list(order=c(1,1,1), period = 12)))
##
## Call:
## arima(x = lx, order = c(1, 1, 1), seasonal = list(order = c(1, 1, 1), period = 12))
##
## Coefficients:
##
            ar1
                             sar1
                      ma1
                                       sma1
##
         0.1666
                 -0.5615
                           -0.099
                                   -0.4973
## s.e. 0.2459
                  0.2115
                            0.154
                                    0.1360
##
## sigma^2 estimated as 0.001336: log likelihood = 245.16, aic = -480.31
```

Come si nota, il valore di AIC è leggermente inferiore, quindi potremmo adottare il secondo modello ed effettuare una predizione per i successivi 12 mesi:

```
plot(forecast(fit1, h=12))
```

Forecasts from ARIMA(1,1,1)(0,1,1)[12]

plot(forecast(fit2, h=12))

Forecasts from ARIMA(1,1,1)(1,1,1)[12]

Si noti che i grafici sopra riportano la regressione di lx, che è log(x), quindi la scala delle ordinate andrebbe opportunamente anti-trasformata. Purtroppo gli oggetti fit1 e fit2 non sono immediatamente trasformabili: sarebbe necessario scomporli nei dati originali e poi applicare l'esponenziale exp(). Per questo motivo è sempre preferibile applicare le trasformazioni con il parametro lambda della funzione arima(), dato che è trasparentemente gestito nei plot. In questo esempio si è preferito trasformare manualmente la serie storica in modo da rendere più chiara la logica del processo.

Affidandoci agli automatismi, possiamo ridurre quanto sopra a:

```
(fit3 <- auto.arima(x, lambda="auto"))</pre>
## Series: x
## ARIMA(0,1,1)(0,1,1)[12]
## Box Cox transformation: lambda= -0.2947046
##
##
   Coefficients:
##
                      sma1
##
         -0.4355
                   -0.5847
          0.0908
                    0.0725
## s.e.
##
## sigma^2 estimated as 5.856e-05: log likelihood=451.59
## AIC=-897.18
                 AICc=-896.99
                                 BIC=-888.55
plot(forecast(fit3, h=12))
```

Forecasts from ARIMA(0,1,1)(0,1,1)[12]

3 Simulazione di processi ARIMA

Per motivi di studio è spesso utile poter *simulare* un processo ARIMA. A questo scopo possiamo utilizzare la funzione arima.sim(), che genera una serie temporale a partire dai termini p, d, e q del modello desiderato.

Vediamo ad esempio un processo auto-regressivo di tipo AR(1):

Come si vede, la ACF degrada in maniera geometrica mentre la PACF ha un brusco calo sotto la soglia di significatività a lag=1, indice appunto di un modello con p=1

Simuliamo invece un processo a media mobile MA(2):

set.seed(123)
tsdisplay(arima.sim(model=list(ma=c(1.5, 0.75)), n=500))

arima.sim(model = list(ma = c(1.5, 0.75)), n = 500)

Questa volta è la PACF a diminuire geometricamente (seppure con segni alternati), mentre la ACF si smorza rapidamente dopo due lag, per cui si deduce q = 2.

Vediamo ora l'effetto combinato, ARMA(1, 2), per cui ci aspettiamo p = 1 e q = 2:

```
set.seed(123)
x <- arima.sim(model=list(ar=c(0.6, -0.2), ma=c(0.4)), n=1000)
tsdisplay(x)</pre>
```


Х

Come si vede, quando entrambi i termini sono presenti i grafici ACF e PACF possono non essere facilmente interpretabili. In questo caso, ad esempio, saremmo portati a proporre un modello ARMA(3, 2). Per questo motivo è opportuno, partendo da questa ipotesi, valutare anche condizioni simili e scegliere quella con AIC minimo, che è appunto ciò che fa auto.arima(), di cui possiamo vedere il processo mediante il parametro trace=T:

```
auto.arima(x, start.p=3, start.q=2, trace=T)
##
   Fitting models using approximations to speed things up...
##
##
   ARIMA(3,0,2) with non-zero mean : 2848.929
##
   ARIMA(0,0,0) with non-zero mean: 3564.117
   ARIMA(1,0,0) with non-zero mean: 3059.461
##
##
   ARIMA(0,0,1) with non-zero mean : 2948.729
##
   ARIMA(0,0,0) with zero mean
                                     : 3562.742
   ARIMA(2,0,2) with non-zero mean : 2846.754
##
##
   ARIMA(1,0,2) with non-zero mean: 2847.234
##
   ARIMA(2,0,1) with non-zero mean : 2844.742
##
   ARIMA(1,0,1) with non-zero mean : 2861.169
##
   ARIMA(2,0,0) with non-zero mean : 2869.806
##
   ARIMA(3,0,1) with non-zero mean : 2847.434
##
   ARIMA(3,0,0) with non-zero mean : 2849.622
##
   ARIMA(2,0,1) with zero mean
                                     : 2843.007
##
   ARIMA(1,0,1) with zero mean
                                     : 2859.387
##
   ARIMA(2,0,0) with zero mean
                                     : 2868.114
##
   ARIMA(3,0,1) with zero mean
                                     : 2845.667
##
   ARIMA(2,0,2) with zero mean
                                     : 2845.015
##
   ARIMA(1,0,0) with zero mean
                                     : 3057.599
##
   ARIMA(1,0,2) with zero mean
                                     : 2845.52
##
   ARIMA(3,0,0) with zero mean
                                     : 2847.854
##
   ARIMA(3,0,2) with zero mean
                                     : 2847.142
##
##
   Now re-fitting the best model(s) without approximations...
##
##
   ARIMA(2,0,1) with zero mean
                                     : 2842.923
##
##
   Best model: ARIMA(2,0,1) with zero mean
## Series: x
```



```
## ARIMA(2,0,1) with zero mean
##
## Coefficients:
##
            ar1
                      ar2
                              ma1
##
         0.5987 -0.2312 0.3710
## s.e. 0.0621
                   0.0499 0.0607
##
## sigma^2 estimated as 0.999: log likelihood=-1417.44
## AIC=2842.88 AICc=2842.92
                                  BIC=2862.51
È possibile ovviamente generare una serie temporale con un parametro d non nullo:
set.seed(123)
ar <- c(0.6, -0.2)
ma < -c(0.4)
d <- 1
order <- c(length(ar), d, length(ma))</pre>
s <- arima.sim(model=list(ar=ar, ma=ma, order=order), n=1000)
tsdisplay(diff(s, differences = d))
                                          diff(s, differences = d)
                                   200
                                             400
                                                      600
                                                                800
                                                                         1000
                      9.0
                                                     9.0
                     0.2
                                                     0.2
                      4.0
                            5
                              10
                                  15
                                     20
                                        25
                                                        n
                                                           5
                                                              10
                                                                 15
                                                                     20 25 30
                                  Lag
                                                                 Lag
Anche in questo caso possiamo verificare il risultato:
auto.arima(s, start.p=3, start.q=2, trace=T)
##
##
   Fitting models using approximations to speed things up...
##
##
  ARIMA(3,1,2) with drift
                                      : 2848.206
##
    ARIMA(0,1,0) with drift
                                      : 3563.394
##
    ARIMA(1,1,0) with drift
                                      : 3058.739
##
  ARIMA(0,1,1) with drift
                                      : 2948.006
  ARIMA(0,1,0)
##
                                      : 3562.019
##
    ARIMA(2,1,2) with drift
                                      : 2846.031
                                      : 2846.511
##
    ARIMA(1,1,2) with drift
  ARIMA(2,1,1) with drift
                                      : 2844.019
  ARIMA(1,1,1) with drift
##
                                      : 2860.446
    ARIMA(2,1,0) with drift
                                      : 2869.083
## ARIMA(3,1,1) with drift
                                      : 2846.711
## ARIMA(3,1,0) with drift
                                      : 2848.9
```

: 2842.284

ARIMA(2,1,1)


```
ARIMA(1,1,1)
                                        : 2858.664
##
    ARIMA(2,1,0)
##
                                          2867.391
##
    ARIMA(3,1,1)
                                          2844.944
    ARIMA(2,1,2)
                                          2844.292
##
##
    ARIMA(1,1,0)
                                          3056.876
##
    ARIMA(1,1,2)
                                          2844.797
##
    ARIMA(3,1,0)
                                          2847.132
    ARIMA(3,1,2)
##
                                          2846.419
##
##
    Now re-fitting the best model(s) without approximations...
##
##
    ARIMA(2,1,1)
                                        : 2842.923
##
##
    Best model: ARIMA(2,1,1)
## Series: s
## ARIMA(2,1,1)
##
## Coefficients:
##
             ar1
                       ar2
##
          0.5987
                  -0.2312
                            0.3710
          0.0621
                    0.0499
                            0.0607
##
## sigma^2 estimated as 0.999: log likelihood=-1417.44
## AIC=2842.88
                   AICc=2842.92
                                   BIC=2862.51
Il numero di differenziazioni necessarie per rendere la serie stazionaria può essere calcolato con ndiffs():
(d <- ndiffs(s))</pre>
## [1] 1
tsdisplay(diff(s, diff=d))
                                               diff(s, diff = d)
                                     200
                                               400
                           0
                                                         600
                                                                   800
                                                                             1000
                                                       9.0
                       9.0
                                                       0.2
                   ACF
```

Se non volessimo utilizzare auto. arima(), potremmo verificare l'AIC di una combinazione di parametri esplorati a tappeto. Le funzioni di autocorrelazione suggeriscono un modello ARIMA(3,1,2). Il modello ottimale dovrebbe avere quindi una combinazione di p e q inferiori a 3 e 2. Li proviamo tutti e selezioniamo quello con AIC minore:

10

15

Lag

0

20 25

```
g <- expand.grid(p=1:3, q=1:2, drift=c(F, T), aic=NA)
for (i in 1:dim(g)[1]) {</pre>
```

10 15 20 25

Lag


```
g$aic[i] <- Arima(s, order=c(g$p[i], d, g$q[i]), include.drift=g$drift[i])$aic</pre>
}
g[which.min(g$aic),]
     p q drift
                       aic
## 2 2 1 FALSE 2842.883
Vediamo come si comporta auto.arima() su serie temporali generate in altro modo:
n <- 200
t1 \leftarrow ts(0.5*rnorm(n), start=2020, frequency = 365.25)
t2 \leftarrow ts(sin((1:n)*365.25/(12*n)), start=2020, frequency=365.25)
tsdisplay(t1+t2)
                                                     t1 + t2
                           2020.0
                                     2020.1
                                               2020.2
                                                        2020.3
                                                                  2020.4
                                                                            2020.5
                                                          9.0
                        9.0
                                                          0.0
                        9.0-
                                                          9.0-
                              10 20 30 40 50 60
                                                                10 20 30 40 50 60
                                     Lag
                                                                        Lag
fit <- auto.arima(t1+t2)</pre>
```

Possiamo visualizzare la regressione, ossia il termine fit\$fitted:

```
plot(t1+t2, col=1)
lines(fit$fitted, col=2)
legend("topright", legend=c("t1+t2", "ARIMA fit"), lty=1, col=1:2)
```


Infine, ricordiamo sempre di verificare la normalità dei residui:

invisible(qqPlot(residuals(fit)))

