Problem 1:

Problem 2

package new1;

```
import java.util.ArrayList;
import java.util.List;
public class Main
   public static void main(String[] args)
      int arr[] = \{1,10,9,7,6,20,62,3\};
      int k=19;
      sumSubSet(arr,k);
   static void sumSubSet(int arr[],int k)
      int n = arr.length;
      List<Integer>num = new ArrayList<>();
      for (int i = 0; i < (Math.pow(2,n)); i++)
       {
          int sum=0;
          for (int j = 0; j < n; j++)
             if ((i \& ((int)Math.pow(2,j))) > 0)
                 num.add(arr[j]);
          for(int a:num)
             sum+=a;
          if (sum==k)
          System.out.println(num);
          num.clear();
```

Problem 3:

The algorithm will not work for all values, for example consider $S=\{2,3,6,7\}$ and k=10. Even though we have a working subset $T=\{3,7\}$, the algorithm will return $T=\{2,3\}$.

Problem 4:

Since we are assuming that s_{n-1} is part of T, and we are deducting/removing it from k, S' =S-{ s_{n-1} } and T'=T- s_{n-1} , therefore its true that T' will always be a solution to S'.

Examples:

 $S=\{7,2,6,3\}$ k=10, $T=\{7,3\}$ then $s_{n-1}=3$, $S'=\{7,2,6\}$ k'=7, T'=7 so T' is a solution for S'.

 $S=\{8,2,4,1\}$ k=11, $T=\{8,2,1\}$ then $s_{n-1}=1$, $S'=\{8,2\}$ k'=10, $T'=\{8,2\}$ so T' is a solution for S'.