Concrete topological spaces

Danny Nygård Hansen

14th March 2023

1 • Introduction

In this note we elaborate on some of the examples of topological spaces discussed in John M. Lee's *Introduction to Topological Manifolds*, henceforth denoted [TM]. References are placed in brackets at the end of each text unit. All references are to [TM].

We follow the notation used in [TM], except that we write $X \cong Y$ to denote that topological spaces X and Y are homeomorphic. Furthermore, norms are denoted $\|\cdot\|$.

Furthermore, we make frequent use of a few central results without explicit reference: First of all the closed map lemma [TM, Lemma 4.50], which says that continuous maps from compact spaces into Hausdorff spaces are closed. Secondly the uniqueness of quotient spaces [TM, Theorem 3.75], which says that if two quotient maps make the same identifications, then the associated quotient spaces are homeomorphic.

2 • Basic spaces

EXAMPLE 2.1: $\mathbb{B}^n \cong \mathbb{R}^n$. The unit ball \mathbb{B}^n is homemorphic to \mathbb{R}^n through the map $F \colon \mathbb{B}^n \to \mathbb{R}^n$ given by

$$F(x) = \frac{x}{1 - ||x||}.$$

Direct computation shows that *F* has inverse $G: \mathbb{R}^n \to \mathbb{B}^n$ given by

$$G(y) = \frac{y}{1 + ||y||}.$$

[2.25]

3. Quotient spaces

EXAMPLE 2.2: Homeomorphic spheres. Let $n \in \mathbb{N}$, and let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms on \mathbb{R}^{n+1} . For $p \in \{0,1\}$, define the 'sphere' $\mathbb{S}_p^n = \{x \in \mathbb{R}^{n+1} \mid ||x||_p = 1\}$. If also $q \in \{0,1\}$, then we claim that $\mathbb{S}_p^n \cong \mathbb{S}_q^n$. For define maps $\varphi_{q,p} \colon \mathbb{S}_p^n \to \mathbb{S}_q^n$ by

2

$$\varphi_{q,p}(x) = \frac{x}{\|x\|_q}.$$

This is clearly continuous, and notice that

$$\varphi_{p,q} \circ \varphi_{q,p}(x) = \varphi_{p,q}\left(\frac{x}{\|x\|_q}\right) = \frac{x/\|x\|_q}{\left\|x/\|x\|_q\right\|_p} = \frac{x}{\|x\|_p} = x,$$

since $x \in \mathbb{S}_p^n$. [2.26]

EXAMPLE 2.3: Graphs of continuous functions. Let $U \subseteq \mathbb{R}^n$ be open, and let $f: U \to \mathbb{R}^k$ be continuous. Then U is homeomorphic to the graph $\Gamma(f)$ of f through the homeomorphism $\Phi_f: U \to \mathbb{R}^{n+k}$ given by $\Phi_f(x) = (x, f(x))$. Thus $\Gamma(f)$ is a manifold. [3.20]

EXAMPLE 2.4: Spheres as manifolds. The sphere \mathbb{S}^n is a manifold. We produce two sets of charts:

For i = 1, ..., n + 1, let

$$U_i^{\pm} = \{ x \in \mathbb{R}^{n+1} \mid \pm x_i > 0 \}.$$

These sets cover \mathbb{S}^n . On U_i^{\pm} we can solve the equation ||x|| = 1 and find that x_i is a continuous function of the other coordinates. Thus $\mathbb{S}^n \cap U_i^{\pm}$ is the graph of a continuous function.

Stereographic projection: Let $N=(0,\ldots,0,1)$ be the 'north pole' in \mathbb{S}^n , and define the stereographic projection $\sigma\colon \mathbb{S}^n\setminus\{N\}\to\mathbb{R}^n$ as the map that sends $x\in\mathbb{S}^n\setminus\{N\}$ to a point $u\in\mathbb{R}^n$ such that U=(u,0) is the intersection of the line through N and x with the subspace where $x_{n+1}=0$. Note that $u=\sigma(x)$ can be written $U-N=\lambda(x-N)$ for some $\lambda\in\mathbb{R}$. Solving this for λ gives an explicit form for σ , whose inverse can also be found explicitly. In particular, this provides a Euclidean neighbourhood of every point of \mathbb{S}^n except for N. [3.21]

3 • Quotient spaces

EXAMPLE 3.1: Spheres as quotients. Define a map $q: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{S}^n$ by

$$q(x) = \frac{x}{\|x\|}.$$

3. Quotient spaces

3

This is continuous and surjective, and its fibres are open rays in $\mathbb{R}^{n+1} \setminus \{0\}$, so the saturated sets are unions of open rays. Let $U \subseteq \mathbb{R}^{n+1} \setminus \{0\}$ be an open saturated set. Then clearly $q(U) = U \cap \mathbb{S}^n$, and this is open in the subspace topology. Thus q sends saturated open sets to open subsets of \mathbb{S}^n , and so q is a quotient map. Thus \mathbb{S}^n is obtained from $\mathbb{R}^{n+1} \setminus \{0\}$ by collapsing open rays to a point. [3.64]

EXAMPLE 3.2: \mathbb{T}^n as a quotient of \mathbb{R}^n . The subgroup \mathbb{Z}^n of acts freely on \mathbb{R}^n by translation, and gives rise to the coset space $\mathbb{R}^n/\mathbb{Z}^n$. We claim that this is homeomorphic to \mathbb{T}^n .

Consider the exponential map $\varepsilon \colon \mathbb{R} \to \mathbb{T}$ given by $\varepsilon(r) = \mathrm{e}^{2\pi \mathrm{i} r}$ and its n-fold product $\varepsilon^n \colon \mathbb{R}^n \to \mathbb{T}^n$. Since ε is a covering map, then so is ε^n by Proposition 11.1, and the same proposition then says that ε^n is a quotient map. But it makes the same identifications as the quotient map $\mathbb{R}^n \to \mathbb{R}^n/\mathbb{Z}^n$, so the claim follows by the uniqueness of quotient spaces. [3.92]

EXAMPLE 3.3: \mathbb{T}^n as a quotient of I^n . Define an equivalence relation \sim on I^n by letting $(x_1,\ldots,x_n)\sim (y_1,\ldots,y_n)$ if there is an $i\in\{1,\ldots n\}$ such that $x_i=0$ and $y_i=1$, and such that $x_j=y_j$ when $j\neq i$. (That is, we identify points on the sides of the cube that are immediately opposite each other.) Then define a map $q\colon I^n\to\mathbb{T}^n$ by

$$q(r_1,\ldots,r_n)=(e^{2\pi i r_1},\ldots,e^{2\pi i r_n}).$$

This is open as in Example 3.2, hence a quotient map. Furthermore, it makes the same identifications as \sim , so \mathbb{T}^n is homeomorphic to I^n/\sim .

EXAMPLE 3.4: The doughnut surface. Consider the doughnut surface $D \subseteq \mathbb{R}^3$ obtained by revolving the circle $(x-2)^2+z^2=1$ around the z-axis. It is characterised by the equation $(r-2)^2+z^2=1$, where $r=\sqrt{x^2+y^2}$. Thus there is an angle φ such that $z=\sin\varphi$ and $r-2=\cos\varphi$. It follows that

$$x = r\cos\theta = (2 + \cos\varphi)\cos\theta$$
 and $y = r\sin\theta = (2 + \cos\varphi)\sin\theta$,

for some angle θ . Making the substitutions $\varphi = 2\pi u$ and $\theta = 2\pi v$ yields a surjective map $F \colon \mathbb{R}^2 \to D$ given by

$$F(u,v) = ((2 + \cos 2\pi u)\cos 2\pi v, (2 + \cos 2\pi u)\sin 2\pi v, \sin 2\pi u).$$

This map is clearly not injective, but restricting it to the square $I \times I$ yields a surjective map that makes the same identifications as the quotient map $I \times I \to \mathbb{T}^2$. By the closed map lemma it is a quotient map, so D and \mathbb{T}^2 are homeomorphic. [3.22, 3.49, 4.52, 4.53]

3. Quotient spaces

EXAMPLE 3.5: Real projective space. Let \mathbb{P}^n be the set of one-dimensional (linear) subspaces of \mathbb{R}^{n+1} , and let $q: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ send points to their span. Give \mathbb{P}^n the quotient topology with respect to q. Alternatively define an equivalence relation on $\mathbb{R}^{n+1} \setminus \{0\}$ by declaring that x and y be equivalent if $x = \lambda y$ for some $y \in \mathbb{R} \setminus \{0\}$. Except for the point 0, the equivalence classes are the fibres of q. Notice that \mathbb{P}^n is precisely the orbit space of the action of \mathbb{R}^* on $\mathbb{R}^{n+1} \setminus \{0\}$.

We claim that \mathbb{P}^n is Hausdorff: Given two distinct points $u, v \in \mathbb{P}^n$, notice that there exist $x, y \in \mathbb{R}^{n+1}$ such that

$$\{x, -x\} = q^{-1}(u) \cap \mathbb{S}^n$$
 and $\{y, -y\} = q^{-1}(v) \cap \mathbb{S}^n$.

Let $\varepsilon = \frac{1}{2}\min\{||x-y||, ||x+y||\}$, and let $U = B(x,\varepsilon)$ and $V = B(y,\varepsilon)$. Then no one-dimensional subspace intersects both U and V, so q(U) and q(V) are disjoint. But q is open by Problem 3.22, so these are disjoint open neighbourhoods of q(x) and q(y) respectively.

We can also represent \mathbb{P}^n as a quotient of \mathbb{S}^n by identifying antipodal points. Let \sim denote this equivalence relation, and let $p \colon \mathbb{S}^n \to \mathbb{S}^n / \sim$ be the associated quotient map. Consider the composite map

$$\mathbb{S}^n \stackrel{\iota}{\longleftarrow} \mathbb{R}^{n+1} \setminus \{0\} \stackrel{q}{\longrightarrow} \mathbb{P}^n$$
,

where ι is the inclusion. The composition $q \circ \iota$ is a quotient map by the closed map lemma, and it makes the same identifications as p, so \mathbb{P}^n is homeomorphic to \mathbb{S}^n/\sim . This also shows that \mathbb{P}^n is compact. [3.51, 3.91, 4.54]

EXAMPLE 3.6: Collapsing $\partial \overline{\mathbb{B}}^n$ to a point. Let $\overline{\mathbb{B}}^n/\mathbb{S}^{n-1}$ be the quotient space obtained by collapsing the boundary of $\overline{\mathbb{B}}^n$ to a point. We show that this is homeomorphic to \mathbb{S}^n . To this end, let $q: \overline{\mathbb{B}}^n \to \mathbb{S}^n$ be the map given by

$$q(x) = (2\sqrt{1 - ||x||^2}x, 2||x||^2 - 1).$$

Computing the norm of q(x) shows that this is well-defined. The map is surjective and continuous, and a quotient map by the closed map lemma. Notice that it is injective on \mathbb{B}^n and constant on $\partial \mathbb{B}^n$, so it makes the same identifications as the quotient map $\overline{\mathbb{B}}^n \to \overline{\mathbb{B}}^n/\mathbb{S}^{n-1}$. Hence this quotient space is homeomorphic to \mathbb{S}^n . [3.52, 4.55]

EXAMPLE 3.7: $C\mathbb{S}^n \cong \overline{\mathbb{B}}^{n+1}$. The map $F \colon \mathbb{S}^n \times I \to \overline{\mathbb{B}}^{n+1}$ defined by F(x,s) = sx is continuous and surjective, and by the closed map lemma it is a quotient map. It maps $\mathbb{S}^n \times \{0\}$ to $0 \in \overline{\mathbb{B}}^{n+1}$ and is injective elsewhere, so it makes the same identifications as the quotient map $\mathbb{S}^n \times I \to C\mathbb{S}^n$. Hence $C\mathbb{S}^n$ is homeomorphic to $\overline{\mathbb{B}}^{n+1}$. [3.65, 4.56]

4 • Adjunction spaces

EXAMPLE 4.1. Let (X, x) and (Y, y) be pointed topological spaces. Let $A = \{y\}$ and define $f: A \to X$ by f(y) = x. Then the adjunction space $X \cup_f Y$ and the wedge sum $X \vee Y$ are identical. [3.78(a)]

EXAMPLE 4.2: Gluing two balls together. Let $A = \mathbb{S}^1 \subseteq \overline{\mathbb{B}}^2$, and let $f: A \hookrightarrow \overline{\mathbb{B}}^2$ be the inclusion map. Then the adjunction space $\overline{\mathbb{B}}^2 \cup_f \overline{\mathbb{B}}^2$ is homeomorphic to \mathbb{S}^2 : Let $q: \overline{\mathbb{B}}^2 \sqcup \overline{\mathbb{B}}^2 \to \mathbb{S}^2$ be the map that sends the first copy of $\overline{\mathbb{B}}^2$ to the upper hemisphere of \mathbb{S}^2 and the second copy to the lower hemisphere. This makes the same identifications as f, so the adjunction space is homeomorphic to \mathbb{S}^2 . [3.78(b)]