

大学物理课程

邓维天

●原子中电子的状态应由四个量子数来决定

n —主量子数	n = 1, 2,	$E_n = -\frac{me^4}{8\varepsilon_0^2 h^2} \cdot \frac{1}{n^2}$
<i>l</i> —角量子数	l = 0, 1, 2,, n-1	$L = \sqrt{l(l+1)}\hbar$
m_l —轨道磁量子数	$m_l = 0, \pm 1, \pm 2,, \pm l$	$L_{Z}=m_{l}\hbar$
m_s —自旋磁量子数	$m_s = \pm 1/2$	$L_{SZ}=m_S\hbar$

无论是单电子原子,还是多电子原子,每一组量子数 (n, l, m_l, m_s) 将决定电子的一个状态。

● 泡利不相容原理

原子中的任何两个电子不可能有完全相同的一组量子数 (n, l, m_l, m_s) 。

每一壳层上容纳的电子数:

主壳层n上可容纳的电子数为: $N_n = 2n^2$

支壳层l上可容纳的电子数: $N_l = 2 2l + 1 = 4l + 2$

-	<i>!</i> =	0 S	1 <i>p</i>	2 d	3 f	4 g	5 h	6 i	N_n
1	K	2							2
2	L	2	6						8
3	M	2	6	10					18
4	N	2	6	10	14				32
5	0	2	6	10	14	18			50
6	P	2	6	10	14	18	22		72
7	Q	2	6	10	14	18	22	26	98

半导体与激光简介

一、半导体的基本概念 固体按导电性能的高低可以分为

导体

半导体

绝缘体

半导体的电阻率介于导体和绝缘体之间。

它们的电学性能可用固体能带理论解释。

1. 固体的能带

固体的晶格结构

固体(晶体)是具有大量 分子、原子或离子的 规则排列的点阵结构。

氯化钠晶体

● 氯离子 Cl⁺

● 钠离子 Na-

a、电子共有化

大量的规则排列的点阵结构 晶体中原子相互影响,形成周期性势垒:

- > 内层电子面对的势垒较宽,不容易跃迁到其他原子
- 对于原子的外层电子(高能级电子、价电子), 其势垒宽度较小,穿透概率较大。

这些电子不再局限于一个原子,可以在整个固体中运动,称为共有化电子。

b. 能带

定态薛定谔方程:
$$\nabla^2 \psi(\vec{r}) + \frac{2m}{\hbar^2} (E - V) \psi(\vec{r}) = 0$$

共有化电子受到周期性势场的作用V(x)=V(x+a)

求解得到:

对应于原来孤立原子的每一个能级,变成了*N*条靠得很近的能级,称为能带。

原子的平衡 原子间距→

能带的宽度记作 ΔE ,量级为 $\Delta E \sim \text{eV}$ 。

6

c. 能带中电子的排布

固体中的一个电子只能处在某个能带中的某一条能级上。

- > 泡里不相容原理
- ▶ 能量最小原理

能带被占据情况

- 1. 禁带(不能排电子)
- 2. 空带 (未排电子)
- 3. 满带(排满电子)
- 4. 导带(部分被排满)
- 5. 价带(价电子所占据的能带) 可以是满带,也可以是导带

钠原子金属的能带示意图

何为导电?

●从现象来看: 在外电场的作用下,大量电子 集体定向移动形成电流。

●从能量的观点来看:

与加外电场前相比,这些定向移动的电子的动能增加了。 也就是说,这些电子的(总)能量增加了。 能量要增加,电子必须从低能级跃迁到高能级上去。

●从能带的观点来看:

由于泡利不相容原理的限制,满带上的电子在满带中只能交换位置。这不能增加它们的总能量。

故满带上的电子不能导电

导带(部分排满的能带)上的电子可以在导带内往上跃迁,从而增加(总)能量。所以导带可以导电

2. 导体、半导体和绝缘体的能级结构

按导电性能的高低 固体可以分为三类:

写体
$$ho = 10^{-8} \sim 10^{-4} \Omega \cdot m$$
半导体 $10^{-4} \sim 10^{8} \Omega \cdot m$

绝缘体 $10^{8} \sim 10^{20} \Omega \cdot m$

它们的导电性能不同, 是因为它们的能带结构不同。

导体: 其共有化电子很容易从(价带内部的)低能级 跃迁到高能级

绝缘体:满带与空带之间有一个较宽的禁带(约3~6 eV)

共有化电子很难从低能级(满带)跃迁到高能级导带(空带或价带)上去。

在外电场的作用下,共有化电子很难吸收外电场的能量,不能形成电流。

半导体:满带与空带之间是禁带。 但是禁带很窄(约0.1~2 eV)

满带中的电子较易进入导带。

导带中的电子在外场作用下可向稍高能级转移,参与导电。

半导体中的载流子:

在外电场(不太大)作用下, 满带中的电子可以跃迁到空带中去 因此,在满带留下空位

满带中的空位向下移动(相当于电子向上移动)可形成电流。

等效地看:满带中的空位可以看成带正电+e的粒子,称为空穴

电子、空穴统称为载流子

载流子的密度决定了半导体的导电性能。

3. 半导体

a. 本征半导体 ——纯净的半导体(不含杂质)。

本征半导体中,载流子数目有限,其导电性能弱,是不良导体。

实际应用中,在本征半导体中加入少量其他元素,形成杂质半导体。

b. 杂质半导体

(1) n型半导体 (negative)

四价的本征半导体 Si、Ge等, 掺入少量五价的杂质元素 (如P、As等)形成电子型 半导体,又称 n型半导体。

量子力学指出,这种掺杂后多余的电子其能级在禁带中紧靠空带处, $\Delta E_D \sim 10^{-2} \, \mathrm{eV}$,极易形成电子导电。

在n型半导体中:

参与导电的载流子主要 是空带中的电子。

b. 杂质半导体

(2) p型半导体 (positive)

四价的本征半导体 Si、Ge等, 掺入少量三价的杂质元素 (如B、Ga、In等)形成空 穴型半导体,称 p 型半导体。

量子力学指出,这种掺杂后多余的空穴其能级在禁带中紧靠满带处, $\Delta E_a \sim 10^{-2} \text{eV}$,极易形成空穴导电。

在p型半导体中:

参与导电的载流子主要 是满带中的空穴。

二. 激光

激光是二十世纪六十年代出现的一种新型光源(激光器)发出的光。

激光 (Laser)全名是

"辐射的受激发射所致的光放大"

Light Amplification by Stimulated Emission of Radiation

LASER

1964年10月,钱学森建议称之为激光。

世界第一台激光器

T. H. Maiman

世界上第一台红宝石激光器

1960年梅曼(T. H. Maiman)发明了世界上第一台红宝石激光器

在器件设计上,梅曼用螺旋管 氙灯照射

我国第一台红宝石激光器(1961.9)

世界上第一台红宝石激光器

我国科学家用光学成像的办法,只用一支较小的直管氙灯。 其尺寸同红宝石棒的大小差不多,用高反射的球形聚光器 聚光,使红宝石棒好象泡在光源(氙灯)的像中,所以效 率很高,用很小的能量就可获得激光。

激光的种类:

按工作物质分

固体激光器(如红宝石Al₂O₃)

气体激光器(如He-Ne, CO,)

有机染料激光器

半导体激光器(如砷化镓 GaAs)

光纤激光器

_自由电子激光器

远红外、红外激光器

可见光激光器

紫外、真空紫外激光器

X光激光器

按工作波段分

按工作方式分 脉冲激光器

连续激光器 超短脉冲激光器

激光的特点:

相干性极好(相干长度可达几十上百甚至上万公里) 方向性极好(发散角~10⁻⁴弧度)

脉冲瞬时功率大(可达~1015瓦以上)

亮度极高(巨型脉冲固体激光器的亮度可比太阳亮度 高100亿倍)

- ---精密测量,全息摄影*****
- ---准直、测距、制导……
- ---切削、武器、手术刀 ……
- ---激光光纤通讯 ······
- ---激光惯性约束核聚变……
- ---激光推进

激光的原理:

1. 原子的跃迁:

a. 自发辐射

各原子自发辐射 的光是相互独立 的非相干光。

普通光源发光

b. 受激辐射

受激辐射光与外来光的频率、偏振方向、相位及传播方向均相同——光的放大作用

获得激光的途径

c.受激吸收

$$E_{2} \frac{N_{2}}{h\nu}$$

$$E_{1} \frac{N_{1}}{N_{1}}$$

上述外来光也 有可能被吸收, 使原子从 $E_1 \rightarrow E_2$ 在光与物质的相互作用中,三种跃迁同时存在。

受激辐射和受激吸收是等几率的。它们中哪个占优势取决于原子数 N_2 和 N_1 。

$$E_2$$
 N_2 $N_2 < N_1$, 吸收跃迁占优势,表现为光的吸收

$$E_1$$
 N_1 $N_2 > N_1$,受激辐射占优势,可获得激光。

正常情况下,由大量原子组成的系统,在温度不太低的平衡态,原子数量按能级的分布服从玻耳兹曼统计分布:

$$N_n \propto e^{-rac{E_n}{kT}}$$

则两能级上的
$$\frac{N_2}{N_1} = \text{Exp}(-\frac{E_2 - E_1}{kT})$$
 原子数目之比: $\frac{N_2}{N_1} = \frac{N_2}{kT}$

因为
$$E_2 > E_1$$
, $\Rightarrow \frac{N_2}{N_1} < 1$ (正常分布)

$E_2 > E_1$,则两能级上的原子数目之比:

但要产生激光必须使 $N_2 >> N_1$,这称为粒子数反转如何实现粒子数反转?

2. He-Ne激光器的工作原理 (1962年在美国贝尔实验室研制成功)

在He-Ne激光器中,

He是辅助物质,Ne是激活物质,

He与 Ne之比为5:1~10:1。

He原子和Ne原子的能级结构:

由于电子的碰撞,He原子被激发到2³S和2¹S能级的概率比Ne原子被激发到高能级的概率大。

He的2³S和2¹S能级都是亚稳态, 很难回到基态。

原子在亚稳态上的寿命(10⁻³s~1s)比在一般高能级上(10⁻⁸s)长得多。

因此,在He的这两个亚稳态上集聚了 较多的He原子。

He的两个亚稳态上集聚了 较多的He原子。

Ne的5S和4S与He的2¹S和 2³S的能量几乎相等,

当两种原子相碰时非常容易产生能量的"共振转移"。

在碰撞中He原子把能量传递 给Ne原子而回到基态,而Ne 原子则被激发到5S或4S:

而Ne的5S、4S也是亚稳态,下能级4P、 3P的寿命比上能级5S、4S要短得多,这 样就可以实现粒子数反转。

Ne的5S、4S聚集了较多原子

要产生激光,除了增加上能级的粒子数外,还要设法减少下能级的粒子数。 比如,减少Ne的3P和4P上的粒子数。

放电管做得较细,可使原子与管壁频繁碰撞。借助这种碰撞,3S态的Ne原子可以将能量交给管壁发生"无辐射跃迁"而回到基态。

及时减少3S态的Ne原子数,有利于激光下能级4P与3P态的抽空。

Ne的5S对4P、3P形成粒子数反转, 4S对3P形成粒子数反转。

Ne原子可产生多个波长的激光谱线。

最强的三条的波长是 3.39 μm 1.15 μm 0.6328μm

它们都是从亚稳态到非亚稳态、非基态之间发生的

如何选择需要的波长(频率)?

3. 光学谐振腔

激光器有两个反射镜,它们构成一个光学谐振腔。

光学谐振腔的作用:

- 1. 使激光具有极好的单色性(选频)。
- 2. 使激光具有极好的方向性(沿轴向);
- 3. 增强光放大作用(放大);

光学谐振腔两端的反射镜处必定是波节,

所以光程满足驻波条件:

$$nL = k \frac{\lambda_k}{2}$$
 $k=1$ $(k=1,2,3,....)$ $k=2$ n —谐振腔内媒质的折射率 $k=3$ λ_k —真空中的波长 L — L

小结:产生激光的必要条件

- (1) 激励能源(使原子激发)
- (2) 激活物质(有合适的亚稳态能级从而实现粒子数反转)
- (3) 光学谐振腔(方向性,单色性,光放大)

作业: 16—T1-T4

作业要求

- 1. 独立完成作业。
- 2. 图和公式要有必要的标注或文字说明。
- 3. 作业纸上每次都要写姓名以及学号(或学号末两位)。
- 4. 课代表收作业后按学号排序,并装入透明文件袋。
- 5. 每周一交上周的作业。迟交不改,早交也不改。
- 6. 作业缺交三分之一及以上者综合成绩按零分计。