

L1C ENSEMBLE FCDR

Progress update

HARMONISE → ENSEMBLE

- 9 harmonised AVHRR Easy FCDRa (MetOp-A → NOAA-11)
- 3 IR channels (3.7 μm, 11 & 12 μm)
- 3 (or 4) harmonisation coefficients (without WV) per channel per sensor → 27 (or 36) coefficients per channel
- We know the uncertainty on each coefficient
- We know their correlation matrices [27 x 27] or [36 x 36]

'best-case'
harmonised
AVHRR Easy
FCDR

Ch3B (3.7 µm)

```
L = a0 + ( (Lict * (0.985140 + a1)) / (Cict - Cs) ) * (Ce - Cs) + a2 * Tinst + a3 * f(WV)
L = a0 + ( (Lict * (0.985140 + a1)) / (Cict - Cs) + a2 * (Ce - Cict) ) * (Ce - Cs) + a3 * Tinst +a4 * f(WV)
```

Ch4 (11 μm) & Ch5 (12 μm)

Q: Can we generate another 10 FCDRs within the range of uncertainty but having a similar inter-sensor correlation structure to the best-case?

Q: Why?

THE BEST CASE

NOAA19

NOAA11

NOAA12

MONTE CARLO: 2D CHECK

Blue = 10000 draws from bi-normal X \sim N(μ =[0,0], σ =[1,1])

Red = 100 random draws with numpy.random.multinormal_norm al(mean(X), cov(X), 100))

MONTE CARLO: 27D (& 36D)

METHOD #1: CDF NORM

Index [min(Norm)] → ensemble

ENSEMBLE STATS

We would like the sorted ensemble to pass through (5,0) and present a CDF-shaped spread – it more or less does

ENSEMBLE RADIANCE

Using L1B counts and temperatures from an orbit from MetOp-A, I calculated the radiance for each ensemble member and then used LUTs from the L1C Easy FCDR (thanks James!) to convert to BTs:

https://github.com/FIDUCEO/MMD HARM

ORBITAL ENSEMBLE DELTAS

METHOD #2: PCA-MC CHECK

Suppose there are n-samples of p-variables \rightarrow [n \times p] matrix

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

$$\begin{cases} z_1 = l_{11}x_1 + l_{12}x_2 + \dots + l_{1p}x_p \\ z_2 = l_{21}x_1 + l_{22}x_2 + \dots + l_{2p}x_p \\ & \dots \\ z_m = l_{m1}x_1 + l_{m2}x_2 + \dots + l_{mp}x_p \end{cases}$$

$$l_{i1}^2 + \dots + l_{ip}^2 = 1$$

PCA

THANKS!

I've put the python code here for re-use / revision:

https://github.com/patternizer/ENSEMBLE_SST

ENSEMBLE CORRELATIONS

MC ON EIGENVECTORS

