

Process determining content of magnesium and calcium oxides in magnesite ore includes sequential irradiation of rocks by fluxes of gamma rays and fast neutrons, registration of flux of scattered gamma radiation

Patent Assignee: GEOL PROSPECTING BOREHOLE GEOPHYS RES; KAZAN GEOPHYS EXPEDITION

Inventors: KUCHURIN E S; KUCHURINA O E; MUKHAMADIEV R S

Patent Family (1 patent, 1 country)

Patent Number	Kind	Date	Application Number	Kind	Date	Update	Type
RU 2155975	C2	20000910	RU 1997104633	A	19970326	200109	B

Priority Application Number (Number Kind Date): RU 1997104633 A 19970326

Patent Details

Patent Number	Kind	Language	Pages	Drawings	Filing Notes
RU 2155975	C2	RU	0	1	

Alerting Abstract: RU C2

NOVELTY - Process includes sequential irradiation of rocks by fluxes of gamma- quanta and fast neutrons, registration of flux of scattered gamma radiation at fixed distance from gamma source whose intensity is used to evaluate presence of magnesite strata in section of boreholes. Soft N1 and hard N2 components of scattered gamma radiation are recorded, flux of thermal neutrons N3 is measured, effective atomic number Zeff is calculated and lifetime N3 of thermal neutrons in strata is computed by intensity of flux tau and known diameter of borehole. Contents of MgO and CaO in strata are found correspondingly by nomograms $P(MgO)=f(Z_{eff},\tau)$ and $P(CaO)=f(Z_{eff},\tau)$. $Z_{eff}=a-b \lg N_1/N_2$, where a and b are constant coefficients. τ_{ui} in i-th interval of boreholes is found as τ_{ui} , where $\tau_{uref} = N_{3i}(r,d)/N_{3ref}(r,d)$ where τ_{uref} is lifetime of thermal neutrons in reference interval; $N_{3i}(r,d)$ and $N_{3ref}(r,d)$ are counting rate of thermal neutrons in i-th and reference intervals of boreholes with fixed dimension r of sonde and diameter d of borehole. Nomograms (Z_{eff},τ) and (Z_{eff},τ) are constructed with known computed values Zeff, tau and with known contents of MgO and CaO in core samples by plotting of isocurves of equal contents of MgO and CaO by interpolation method in coordinates Zeff, tau.

USE - Geophysical examination of boreholes, specifically, nuclear physical methods of investigation of mineral resources.

ADVANTAGE - Enhanced accuracy of evaluation of quality of magnesite ores. 3 cl, 4 dwg, 1 tbl

Main Drawing Sheet(s) or Clipped Structure(s)
" WIDTH="1808" HEIGHT="1104"/>

International Classification (Main): G01V-005/14

Original Publication Data by Authority

Russia

Publication Number: RU 2155975 C2 (Update 200109 B)

Publication Date: 20000910

Assignee: KAZAN GEOPHYS EXPEDITION; RU (KZGE-R) GEOL PROSPECTING
BOREHOLE GEOPHYS RES; RU (GEOL-R)

Inventor: KUCHURIN E S MUKHAMADIEV R S KUCHURINA O E

Language: RU (0 pages, 1 drawings)

Application: RU 1997104633 A 19970326 (Local application)

Original IPC: G01V-5/14(A)

Current IPC: G01V-5/14(A)

Derwent World Patents Index

© 2006 Derwent Information Ltd. All rights reserved.

Dialog® File Number 351 Accession Number 10478518

(19) RU (11) 2 155 975 (13) C2
(51) МПК⁷ G 01 V 5/14

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 97104633/28, 26.03.1997
(24) Дата начала действия патента: 26.03.1997
(46) Дата публикации: 10.09.2000
(56) Ссылки: Геофизические методы поисков и разведки неметаллических полезных ископаемых./Под ред. Вишневского П.В. - М.: Недра, 1984, с.124-125. RU 2075098 С1, 10.03.1997. SU 1806396 A1, 30.03.1993. US 4208580 A, 17.01.1980. GB 4520267 A, 28.05.1985. GB 1319376 A, 06.06.1971. GB 2055191 A, 25.02.1981.
(98) Адрес для переписки:
452620, Башкортостан, г.Октябрьский, ул. Горького 1, АО НПП "ВНИИГИС", отдел промышленной собственности

- (71) Заявитель:
Казанская геофизическая экспедиция,
Акционерное общество открытого типа
Научно-производственное предприятие
"Научно-исследовательский и
проектно-конструкторский институт
геофизических исследований
геологоразведочных скважин"
(72) Изобретатель: Кучурин Е.С.,
Мухамадиев Р.С., Кучурина О.Е.
(73) Патентообладатель:
Казанская геофизическая экспедиция,
Акционерное общество открытого типа
Научно-производственное предприятие
"Научно-исследовательский и
проектно-конструкторский институт
геофизических исследований
геологоразведочных скважин"

(54) СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ОКИСЛОВ МАГНИЯ И КАЛЬЦИЯ В МАГНЕЗИТОВЫХ РУДАХ

(57) Изобретение относится к геофизическим исследованиям скважин, а именно к группе ядерно-физических методов исследования минерального сырья. Способ заключается в последовательном облучении горных пород потоками гамма-квантов и быстрых нейтронов, регистрации потока рассеянного гамма-излучения на фиксированном расстоянии от гамма-источника, по интенсивности которого судят о наличии в разрезе скважин магнезитовых пластов. Осуществляют регистрацию мягкой N₁ и жесткой N₂ компонент рассеянного гамма-излучения и измеряют поток тепловых нейтронов N₃, рассчитывают эффективный атомный номер Z_{эфф}, а по интенсивности потока N₃ и известному диаметру скважин время жизни тепловых нейтронов τ в пластах, при этом содержания MgO и CaO в пластах определяют по номограммам соответственно P(MgO) = f(Z_{эфф}, τ) и P(CaO) = (Z_{эфф}, τ) • Z_{эфф} = a - b lg N₁/N₂, где a и b - постоянные коэффициенты. τ_i в i-м интервале скважин определяют как τ_i = τ_{эт} • N_{3i}(r, d)/N_{3et}(r, d), где τ_{эт} - время жизни тепловых нейтронов в эталонном интервале, N_{3i}(r, d) и N_{3et}(r, d) - скорости

счета тепловых нейтронов в i-м и эталонном интервалах скважин при фиксированном размере зонда (r) и диаметре скважин (d). Построение номограммы P(MgO) = f(Z_{эфф}, τ) и P(CaO) = f(Z_{эфф}, τ) осуществляют при известных расчетных значениях Z_{эфф}, τ и известных по данным химического анализа керновых проб содержаниях MgO и CaO путем построения методом интерполяции в координатах Z_{эфф}, τ изолиний равных содержаний MgO и CaO. Техническим результатом изобретения является повышение точности оценки качества магнезитовых руд. З.з.п.ф.-лы, 1 табл., 4 ил.

Фиг. 1

R U ? 1 5 5 9 7 5 C 2

R U
2 1 5 5 9 7 5 C 2

(19) RU (11) 2 155 975 (13) C2

(51) Int. Cl. 7 G 01 V 5/14

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 97104633/28, 26.03.1997

(24) Effective date for property rights: 26.03.1997

(46) Date of publication: 10.09.2000

(98) Mail address:
452620, Bashkortostan, g.Oktjabr'skij, ul.
Gor'kogo 1, AO NPP "VNIIGIS", otdel
promyshlennoj sobstvennosti

(71) Applicant:
Kazanskaja geofizicheskaja ehkspeditsija,
Aktionernoe obshchestvo otkrytogo tipa
Nauchno-proizvodstvennoe predpriyatiye
"Nauchno-issledovatel'skij i
proektno-konstruktorskij institut
geofizicheskikh issledovanij
geologorazvedochnykh skvazhin"

(72) Inventor: Kuchurin E.S.,
Mukhamadiev R.S., Kuchurina O.E.

(73) Proprietor:
Kazanskaja geofizicheskaja ehkspeditsija,
Aktionernoe obshchestvo otkrytogo tipa
Nauchno-proizvodstvennoe predpriyatiye
"Nauchno-issledovatel'skij i
proektno-konstruktorskij institut
geofizicheskikh issledovanij
geologorazvedochnykh skvazhin"

(54) PROCESS DETERMINING CONTENT OF OXIDES OF MAGNESIUM AND CALCIUM IN MAGNESITE ORE

(57) Abstract:

FIELD: geophysical examination of boreholes, specifically, nuclear physical methods of investigation of mineral resources. SUBSTANCE: process includes sequential irradiation of rocks by fluxes of gamma-quanta and fast neutrons, registration of flux of scattered gamma radiation at fixed distance from gamma source whose intensity is used to evaluate presence of magnesite strata in section of boreholes. Soft N_1 and hard N_2 components of scattered gamma radiation are recorded, flux of thermal neutrons N_3 is measured, effective atomic number Z_{eff} is calculated and lifetime τ of thermal neutrons in strata is computed by intensity of flux τ and known diameter of borehole. Contents of MgO and CaO in strata are found correspondingly by nomograms $P(MgO)=f(Z_{eff}, \tau)$ and $P(CaO)=f(Z_{eff}, \tau)$. $Z_{eff}=a-b \lg N_1/N_2$, where a and b are constant coefficients. τ_i in i -th interval of boreholes is found as $\tau_i = \tau_{ref} N_3(r, d)/N_{3ref}(r, d)$ where τ_{ref} is lifetime of thermal neutrons in reference

interval; $N_3(r, d)$ and $N_{3ref}(r, d)$ are counting rate of thermal neutrons in i -th and reference intervals of boreholes with fixed dimension r of sonde and diameter d of borehole. Nomograms (Z_{eff}, τ) and (Z_{eff}, t) are constructed with known computed values Z_{eff} , τ and with known contents of MgO and CaO in core samples by plotting of isocurves of equal contents of MgO and CaO by interpolation method in coordinates Z_{eff} , τ . EFFECT: enhanced accuracy of evaluation of quality of magnesite ores. 3 cl, 4 dwg, 1 tbl

Фиг. 1

R U
2 1 5 5 9 7 5
C 2

2 1 5 5 9 7 5
R U

Изобретение относится к области геофизических исследований скважин, а более конкретно к группе ядерно-геофизических методов исследования минерального сырья, и может быть использован в геологии, геофизике, горнодобывающей, металлургической промышленности и др. областях народного хозяйства.

Известен способ определения содержания окислов магния и кальция в магнезитовых пластах, пересеченных скважинами, основанный на отборе керновых образцов в процессе бурения скважины и последующем их химическом анализе (1-й аналог. Борзунов В.М. Месторождения нерудных полезных ископаемых, их разведка и промышленная оценка. -М.: Недра, 1969. - С. 149, 161). Основным недостатком способа является необходимость отбора представительных кернов, что сопряжено с большими трудозатратами. Кроме того, химический анализ проводится по дискретным пробам, исключающим оценку качества искомых магнезитовых руд непосредственно в естественном залегании.

Второй известный способ определения содержания окислов магния и кальция в магнезитовых рудах также предполагает отбор керновых проб при бурении скважин и экспресс-анализ дробленых и истертых проб с применением современной рентгеноспектральной аппаратуры типа Х-МЕТ. (2-й аналог. Хейки Сипалия. Х-МЕТ. Портативный рентгеновский анализатор. А/О Оутакумпу, Финляндия, Научно-исследовательский институт физики). Недостатки второго аналога те же, что и для первого. Преимуществом его является высокая производительность, что удешевляет стоимость аналитических работ при массовых определениях.

Наиболее близким по физической сущности и технологии работ является способ изучения магнезитовых пластов в скважинах, основанный на проведении комплекса геофизических методов каротажа, включающий метод магнитной восприимчивости (КМВ), плотностного гамма каротажа (ГГК-П), гамма каротажа (ГК) и нейтронного гамма каротажа (Прототип. Под редакцией П.В.Вишневского, Г.С. Вахромеева, И. Л. Шаманского. Геофизические методы поисков и разведки неметаллических полезных ископаемых. - М.: Недра.- 1984.- С. 124- 125). Данный комплекс методов обеспечивает выделение пластов магнезитовых руд по несколько пониженному уровню естественной радиоактивности (ГК), увеличению плотности (ГГК-П) и повышению интегрального потока гамма-излучения радиационного захвата (НГК).

Два последних метода реализуются путем облучения исследуемой среды соответственно потоком гамма-квантов и быстрых нейтронов стационарных изотопных источников с регистрацией на фиксированных расстояниях от источников вторичного рассеянного и индуцированного гамма-излучения радиационного захвата. В качестве детекторов гамма-квантов используются сцинтилляционные счетчики типа NaI(Te) размером от 18x40 до 30x70 мм. Каротаж магнитной восприимчивости проводится для выделения контактов,

включающих магнезитовые пласти пород, отличающихся повышенной магнитной проницаемостью. Недостатком прототипа является невозможность количественного определения основных компонентов магнезитовых руд - окислов магния и кальция. По этой причине он не обеспечивает решение задачи - количественной оценки промышленной значимости магнезитовых руд.

Решение задачи количественного определения содержания окислов магния и кальция в магнезитовых пластах в условиях буровых скважин известного диаметра возможно на основе последовательного облучения горных пород потоками гамма-квантов и быстрых нейтронов с использованием соответственно стационарных изотопных источников цезий-137 и калифорний-252, регистрации потока рассеянного гамма-излучения на фиксированном расстоянии от источника гамма-квантов, равном 5-40 см, по интенсивности которого судят о наличии в разрезе скважин магнезитовых пластов. В предлагаемом способе осуществляют раздельную регистрацию компонент рассеянного гамма-излучения с энергией менее 200-300 КэВ N_1 и с энергией более

200-300 КэВ N_2 и дополнительно на расстоянии 30-60 см измеряют поток тепловых нейтронов N_3 , по отношению потоков N_1 и N_2 рассчитывают эффективный атомный номер $Z_{\text{эфф}}$, а по интенсивности

потока N_3 и известному диаметру скважин - время жизни тепловых нейтронов τ в пластах, при этом содержания окислов магния и кальция в пластах определяют по двухмерным номограммам соответственно

$P(\text{MgO}) = f(Z_{\text{эфф}}, \tau)$ и $P(\text{CaO}) = f(Z_{\text{эфф}}, \tau)$, построенных по результатам измерений $Z_{\text{эфф}}, \tau, P(\text{MgO})$ и $P(\text{CaO})$ в параметрических скважинах.

Расчет эффективного атомного номера проводят по экспериментально установленной зависимости вида $Z_{\text{эфф}} = a \cdot b \cdot \lg N_1/N_2$, где a и b - постоянные коэффициенты, определяемые при градуировании измерительной аппаратуры гамма-гамма каротажа.

Время жизни тепловых нейтронов в i -м интервале скважин осуществляют по формуле: $\tau_i = \tau_{\text{эт}} \cdot N_3(r, d)/N_{3\text{эт}}(r, d)$, где $\tau_{\text{эт}}$ - время жизни тепловых нейтронов в эталонном интервале, $N_3(r, d)$ и $N_{3\text{эт}}(r, d)$ - скорости счета тепловых нейтронов в i -м и эталонном интервалах скважин при фиксированном размере зонда (r) и диаметре скважин (d).

Способ отличается тем, что построение номограммы $P(\text{MgO})=f(Z_{\text{эфф}}, \tau)$ и $P(\text{CaO})=f(Z_{\text{эфф}}, \tau)$ осуществляют раздельно при известных расчетных значениях $Z_{\text{эфф}}, \tau$ и известных по данным химического анализа керновых проб содержания окислов магния и кальция путем построения методом интерполяции в координатах $Z_{\text{эфф}}, \tau$ изолиний равных содержаний MgO и CaO с шагом 1-2% MgO и CaO.

Указанные отличительные признаки не встречены в известных технических решениях, поэтому предлагаемый способ является оригинальным, позволяя обеспечивать оценку качества магнезитовых руд на количественном уровне.

РУ 2155675

С 2 155975

R U ? 1 5 5 9 7 5 C 2

Физическая сущность способа может быть понята из анализа объективно существующих в природных условиях закономерностей в вещественном составе магнезитов и их петрофизических свойствах, проявляющихся в наличии сильных корреляционных связей между ними. Характер петрофизических связей и принципы определения содержания окиси магния и кальция могут быть поняты из анализа основных зависимостей и номограмм, представленных на фиг. 1, 2, 3 и 4.

На чертежах приняты следующие обозначения:

$Z_{\text{эф}}$ - эффективный атомный номер горных пород, отн. ед.;

τ - время жизни тепловых нейтронов в пласте, мкс;

$P(\text{MgO})$, $P(\text{CaO})$ - весовые содержания окислов магния и кальция в пластах, %.

Зависимости, указанные на фиг. 1-4, построены по результатам обработки 286 керновых проб Исмакаевского месторождения магнезитов Республики Башкортостан. С этой целью по всем пробам выполнен полный химический анализ, по результатам которого с использованием программы "НЕРПА" рассчитаны нейтронно-диффузионные параметры, в т.ч. время жизни тепловых нейтронов, а также эффективный атомный номер:

$$Z_{\text{эф}} = \sqrt[3]{\sum_i P_i Z_i^3}, \quad (1)$$

где P_i , Z_i - относительное весовое содержание и атомный номер i -го элемента в анализируемой пробе.

Из анализа зависимости $Z_{\text{эф}} = f(P(\text{MgO}))$, представленной на фиг.1, следует, что по мере возрастания содержания окиси магния от 0 до 45% эффективный атомный номер руд закономерно уменьшается от 15,4 отн. ед. (известняк) до 9,5 отн. ед. (чистый магнезит) и наоборот увеличивается по мере роста содержания в рудах окиси кальция. Благодаря этому непосредственно по зависимости с $Z_{\text{эф}}$ возможна количественная оценка содержания окиси магния с абсолютной погрешностью 1,5-2,0% и окиси кальция с погрешностью $\pm 1,5\%$. Наличие такой сильной связи объясняется закономерным изменением соотношения в карбонатных породах легкого (MgO) и тяжелого (CaO) окислов в ряду известняк (CaCO_3) - доломит [$\text{CaMg}(\text{CO}_3)_2$] - магнезит (MgCO_3). Достаточно высокие погрешности определения содержания MgO и CaO через $Z_{\text{эф}}$ объясняются существенным влиянием на этот параметр природной дисперсии относительно тяжелых компонентов - окислов железа (FeO , Fe_2O_3), а также алюмосиликатов (Al_2O_3 и SiO_2). Поскольку, как следует из формулы (1), расчет $Z_{\text{эф}}$ осуществляется через Z_i в кубической степени, даже небольшие изменения окислов железа и кальция могут приводить к значительным вариациям $Z_{\text{эф}}$.

Точно также не обеспечивает высокую точность расчета MgO и CaO в магнезитах и зависимость, представленная на фиг.2, аппроксимируемая уравнением вида

$$\ln[P(\text{MgO})] = a + b \cdot \tau, \quad (2)$$

где a и b - коэффициенты уравнения

регрессии.

Коэффициент корреляции для зависимости (2) составляет 0,76. Наличие столь сильной связи между $P(\text{MgO})$ и временем жизни тепловых нейтронов в магнезитах объясняется аномально низкой поглащающей способностью ядер магния, кислорода и углерода, составляющей соответственно 0,00171 $\text{cm}^2/\text{г}$,

$7,57 \cdot 10^{-6} \text{ см}^2/\text{г}$ и $0,000187 \text{ см}^2/\text{г}$, тогда как

для кальция макросечение поглощения составляет $0,00661 \text{ см}^2/\text{г}$. Отсюда следует, что по мере повышения содержания в рудах окиси магния макросечение поглощения тепловых нейтронов (Σ_3) уменьшается, а время жизни $\tau = 1/V \cdot \Sigma_3$ закономерно

возрастает, где V - скорость тепловых нейтронов, равная 2200 м/с. Фактическая абсолютная среднеквадратичная погрешность определения содержания окиси магния по корреляционной связи с временем жизни тепловых нейтронов составляет 2-2,5% MgO ,

что также недостаточно для оценки качества магнезитов с достоверностью, равной химическому анализу керновых проб.

Обратная связь прослеживается между τ и содержанием окиси кальция. Однако при относительно низких содержаниях CaO в магнезитах связь эта выражена менее устойчиво. Удовлетворительное решение задачи может быть обеспечено по многомерным зависимостям вида:

$$P(\text{MgO}) = a_0 + a_1 Z_{\text{эф}} + a_2 Z_{\text{эф}}^2 + b_1 \tau + b_2 \tau^2 + \dots \quad (3)$$

$$P(\text{CaO}) = a'_0 + a'_1 Z_{\text{эф}} + a'_2 Z_{\text{эф}}^2 + b'_1 \tau + b'_2 \tau^2 + \dots$$

где $a_0, a_1, a_2, a'_0, a'_1, a'_2, b_1, b_2, b'_1, b'_2$ - постоянные коэффициенты, определяемые известными способами для уравнений множественной корреляции.

В общем случае уравнения (3) являются нелинейными. Поэтому для практического использования более удобным является построение 2-х мерных номограмм раздельно для окислов магния и кальция типа: $P(\text{MgO}) = f(Z_{\text{эф}}, \tau)$ и $P(\text{CaO}) = f(Z_{\text{эф}}, \tau)$. Для этой цели по параметрическим скважинам отбираются не менее 100 образцов магнезитовых руд, которые подвергаются полному химическому анализу с определением всех компонент пород при выполнении условия:

$$\Sigma P_i = 1, \quad (4)$$

где P_i - весовое содержание окислов в горной породе.

Располагая данными полных химических анализов далее рассчитываются для каждой пробы $Z_{\text{эф}}$ по формуле (1) и τ по аналитическим формулам, приведенным, например, в книге Кожевникова Д.А. Нейтронные характеристики горных пород и их использование в нефтепромысловой геофизике. - М.: Недра. - 1974.

В координатах $Z_{\text{эф}}$ и τ выносятся точки с различным содержанием $P(\text{MgO})$ и $P(\text{CaO})$. Далее интерполяционным методом в полях содержаний проводятся изоконцентраты раздельно для окиси магния и кальция с шагом 1-2% (фиг.3, 4). Решение обратной задачи количественной оценки содержания MgO и CaO в i -х интервалах осуществляют по значениям $Z_{\text{эф}}^i$ и τ_i с интерполяцией положения искомой точки между смежными

С 2
С 1
С 5
С 7
С 5
С 9
С 2

Р У

Р У
2 1 5 6 9 7 5
С 2

изоконцентратами.

Для практической реализации предлагаемого способа в условиях скважины могут быть использованы известные технологии измерения времени жизни тепловых нейтронов (τ) и эффективного атомного номера ($Z_{\text{эф}}$), например, описанные в монографии Давыдова Ю.Б., Кузина В.Ф. Теоретические предпосылки каротажа нейтронов деления. - Новосибирск.: ВО "Наука". - 1994. - С.49-76. и книге: Гамма-гамма методы в рудной геологии. /Под редакцией А.П.Очкура. - М. : Недра. - 1975. В частности, технология определения $Z_{\text{эф}}$ может базироваться на облучении исследуемой среды потоком гамма-квантов с энергией 0,6-1,0 МэВ и регистрации двух компонент рассеянного излучения N_1 и N_2 на расстоянии 5,0-40 см от источника гамма-квантов типа Cs-137, Co-60 и др.). Первая компонента регистрируется в энергетической области менее 200-300 КэВ, вторая более 200-300 КэВ. Отношение интенсивностей N_1/N_2 является функцией эффективного атомного номера. Реальный алгоритм для расчета $Z_{\text{эф}}$ выглядит следующим образом:

$$Z_{\text{эф}} = a \ln N_1/N_2,$$

где a и b - постоянные коэффициенты, определяемые при градуировке скважинного прибора гамма-гамма каротажа (ГГК) на аттестованных образцах пластов эффективного атомного номера.

При использовании гамма-источника с низкоэнергетическим спектром первичного гамма-излучения, например, кобальта-57 (123 КэВ), селена-75 (138 и 268 КэВ), осуществляются интегральные измерения, а в качестве аналитического параметра используется величина отношения $N_i/N_{\text{эт}}$, где N_i , $N_{\text{эт}}$ - интегральные потоки в неизвестной и эталонной среде. Алгоритм расчета $Z_{\text{эф}}$ и в этом случае соответствует уравнению (5).

Определение времени жизни тепловых нейтронов горных пород, пересеченных скважинами, осуществляется по данным нейтрон-нейтронного каротажа. Метод реализуется путем облучения исследуемой среды потоком нейтронов стационарного изотопного источника, например, калифорния-252, и регистрации на расстоянии 30-60 см потока тепловых нейтронов.

Расчет времени жизни для i-го пласта возможен по алгоритму, описанному, например, в упомянутой выше книге Давыдова Ю.Б., Кузина В.Ф.,

$$\tau_i = \tau_{\text{эт}} \cdot N_i/N_{\text{эт}}, \quad (6)$$

где τ_i и $\tau_{\text{эт}}$ - время жизни тепловых нейтронов в i-й и эталонной среде;

N_i , $N_{\text{эт}}$ - регистрируемые потоки в i-й и эталонной среде.

Алгоритм (6) обеспечивает удовлетворительную точность расчета при фиксированном диаметре скважин. Поэтому на практике значение $\tau_{\text{эт}}$ и $N_{\text{эт}}$ определяются для типового ряда диаметров скважин в тех же параметрических скважинах, данные по которым использованы при построении 2-х мерных nomogramm $P(\text{MgO}) = f(Z_{\text{эф}}, \tau)$ и $P(\text{CaO}) = f(Z_{\text{эф}}, \tau)$. Для практической реализации метода ННК по тепловым

нейтронам может быть использована любая серийная аппаратура, например СРК-2, МАРК-1 и др.

Измерение эффективного атомного номера в скважинах возможно с приборами ГГК-ПС-36, ГГК-ПС-42, малыми сериями выпускаемыми опытным производством ОАО НПП "ВНИИГИС" (г.Октябрьский).

В настоящее время предложенный способ широко опробирован в скважинах Исмакаевского месторождения магнезитов.

Основные результаты статистической обработки по определению содержания окислов магния и кальция в сопоставлении с данными химического анализа представлены в таблице. Как видно из таблицы, предложенный способ обеспечивает сходимость с данными химического анализа в пределах $\pm 0,98\%$ MgO и $\pm 0,65\%$ CaO, систематические погрешности отсутствуют, относительные среднеквадратичные

случайные ошибки в среднем по трем скважинам составляют $\pm 2,5\%$ для окиси магния и $\pm 12-15\%$ для окиси кальция. Причем в эти погрешности входят ошибки данного способа, а также погрешности пробоотбора, пробоподготовки и собственно химического анализа.

Опыт показывает, что эти погрешности примерно того же порядка, что и для ядерно-геофизического опробования. С учетом отмеченного собственная относительная погрешность способа для окиси магния составит

$$\delta = \delta/\sqrt{2} = 1,8\%, \quad \text{окиси кальция} -$$

9,3-10,0%, где δ - суммарные среднеквадратичные относительные расхождения. Значительно более высокая относительная погрешность расчета

содержаний окиси кальция обусловлена его низким средним содержанием в магнезитах, составляющем 3,6%, тогда как среднее содержание окиси магния в магнезитах составляет порядка 38,5%. Абсолютные погрешности количественной оценки содержаний окислов магния и кальция в магнезитовых рудах, соответственно равны $\pm 0,98\%$ и $\pm 0,65\%$, что соизмеримо с результатами химического анализа кернового материала.

По прототипу аналогичная задача в лучшем случае решается с относительной погрешностью $\pm 50-100\%$. Высокая точность и достоверность оценки качества магнезитовых руд предполагают использование предложенного способа для массовых определений окислов магния и кальция непосредственно в естественном залегании магнезитовых пластов. Благодаря этому представляется возможным существенным образом уточнить геологический разрез и обеспечить значительный экономический эффект.

Внедрение способа может быть осуществлено с использованием отечественной аппаратуры селективного гамма-гамма- и нейтрон-нейтронного каротажа.

Формула изобретения:

- Способ определения содержания окислов магния P(MgO) и кальция P(CaO) в магнезитовых рудах в условиях скважин известного диаметра, заключающийся в последовательном облучении горных пород потоками гамма-квантов и нейтронов с

R U 2 1 5 5 9 7 5 C 2

использованием соответственно стационарных изотопных источников Cs-137 и калифорний-252, регистрации потока рассеянного гамма-излучения на фиксированном расстоянии от источника гамма-квантов, по интенсивности которого судят о наличии в разрезах скважин магнезитовых пластов, отличающейся тем, что осуществляют раздельную регистрацию компонент рассеянного излучения с энергией менее 200 - 300 КэВ N_1 и с энергией более 200 - 300 КэВ N_2 и дополнительно на расстоянии $r=30 - 60$ см измеряют поток тепловых нейтронов N_3 , по отношению потоков N_1 и N_2 рассчитывают эффективный атомный номер ($Z_{\text{эфф}}$), а по интенсивности потока N_3 и известному диаметру скважин время жизни тепловых нейтронов в пластах (τ), при этом содержание окислов магния и кальция в пластах проводят по двухмерным nomogrammам $P(\text{MgO})=f(Z_{\text{эфф}}, \tau)$ и $P(\text{CaO})=f(Z_{\text{эфф}}, \tau)$, построенным по результатам измерений $Z_{\text{эфф}}$, τ , $P(\text{MgO})$ и $P(\text{CaO})$ в параметрических скважинах.

2. Способ по п.1, отличающийся тем, что расчет эффективного атомного номера проводят по экспериментально установленной зависимости вида

$$Z_{\text{эфф}} = a - b \ln N_1 / N_2,$$

где a и b - постоянные коэффициенты, определяемые при градуировании измерительной аппаратуры гамма-гамма-каротажа.

3. Способ по п.1, отличающийся тем, что расчет времени жизни тепловых нейтронов в пластах горных пород (τ_i), пересеченных скважинами известного диаметра, осуществляют по отношению

$$\tau_i = \tau_{\text{эт}} N_3(r, d) / N_{3\text{эт}}(r, d),$$

где $\tau_{\text{эт}}$ - время жизни тепловых нейтронов в эталонном интервале;

$N_3(r, d)$ и $N_{3\text{эт}}(r, d)$ - скорости счета тепловых нейтронов в i -м и эталонном интервале скважин, при фиксированной длине зонда (r) и диаметре скважины (d).

4. Способ по п. 1, отличающийся тем, что построение nomogramm $P(\text{MgO})= f(Z_{\text{эфф}}, \tau)$ и $P(\text{CaO})=f(Z_{\text{эфф}}, \tau)$ осуществляют раздельно при известных расчетных значениях $Z_{\text{эфф}}$, τ и известных содержаниях окислов магния и кальция по данным химического анализа керновых проб путем построения методом интерполяции в координатах $Z_{\text{эфф}}$ и τ изолиний равных содержаний MgO и CaO с шагом 1 - 2% MgO и CaO.

30

35

40

45

50

55

60

R U 2 1 5 5 9 7 5 C 2

Таблица

РЕЗУЛЬТАТЫ СОПОСТАВЛЕНИЯ СОДЕРЖАНИЯ ОКИСЛОВ
МАГНИЯ И КАЛЬЦИЯ ПРЕДЛОЖЕННЫМ СПОСОБОМ И ПО
ДАННЫМ ХИМИЧЕСКОГО АНАЛИЗА КЕРНОВЫХ ПРОБ.

№ п/п	Кол-во сопостав- лений	Ср. содер- жание окислов по хим. анализу, %	Ср. содер- жание окислов по спо- собу, %	Средне- квадратичное расхождение		Коэффи- циент системати- ческого расхожде- ния
				абсо- лютное	относи- тельное	
Для MgO						
1	287	38,52	38,64	0,98	2,5	1,00
Для CaO						
2	245	3,58	3,59	0,65	13,9	1,0

Фиг. 2

R U 2 1 5 5 9 7 5 C 2

R U 2 1 5 5 9 7 5 C 2

Фиг. 3

R U 2 1 5 5 9 7 5 C 2

R U ? 1 5 5 9 7 5 C 2

Фиг. 4

R U 2 1 5 5 9 7 5 C 2