

Utilizando Estratégias de Monitoramento Leve em Ambientes Conteinerizados para Detecção de Anomalias via HIDS

Anderson Frasão¹, Tiago Heinrich², Vinicius Fulber-Garcia¹, Newton C. Will³, Rafael R. Obelheiro⁴, Carlos A. Maziero¹

¹Universidade Federal do Paraná - Curitiba, Brasil
²Instituto Max Planck de Informática - Saarbrücken, Alemanha
³Universidade Tecnológica Federal do Paraná - Dois Vizinhos, Brasil
⁴Universidade Estadual de Santa Catarina - Joinville, Brasil

Índice

Introdução

Fundamentação Teórica

Proposta

Avaliação Experimental

Conclusão

Introdução

- ► Virtualização...
 - Surgiu como uma solução para os desafios de hardware dedicado;
 - ► Permite que uma única máquina física gerencie vários ambientes virtuais;
 - Oferece controle refinado sobre os recursos de computação, aumentando a flexibilidade, a mobilidade e a escalabilidade.
- ► Conteinerização...
 - Utiliza o kernel do sistema operacional para criar ambientes isolados para processos específicos;
 - ► Conhecido pelo baixo consumo de recursos e pela sobrecarga mínima de processamento;
 - ▶ A popularidade gera preocupações de segurança devido ao menor isolamento em comparação com a virtualização baseada em hipervisor.

Problema

- ► Preocupações de segurança com contêineres:
 - Aumento dos vetores de ataque, incluindo escalonamento de privilégios, ataques de canal lateral e negação de serviço:
 - ► CVE-2017-5123
 - ► CVE-2018-10846
 - ► CVE-2018-12122
 - Requer sistemas robustos de detecção de intrusão (IDS) para monitorar e proteger ambientes de contêineres.
- ➤ As ferramentas de IDS existentes, como o strace, impõem uma sobrecarga de desempenho significativa;
- Necessidade de coleta de dados eficiente e em tempo real e detecção de anomalias em ambientes de contêineres.

Virtualização com Contêineres

- ► Utiliza o *kernel* de um sistema para isolar processos;
- ► Permite inicializações rápidas, em milissegundos, e maior eficiência em comparação às máquinas virtuais convencionais.
- Não necessitam incluir uma cadeia completa de ferramentas para executar um sistema operacional;
- Eliminação da emulação de hardware e da inicialização de um sistema operacional completo.

Detecção de anomalias

- ► Definição de anomalia:
 - Desvio do comportamento esperado dos dados;
 - ► Causas:
 - Atividade maliciosa;
 - Mau funcionamento do software/hardware;
 - Configurações incorretas, etc.
- ▶ Detecção de anomalias:
 - Identificação de padrões inesperados;
 - ► Envolve sistemas de detecção de intrusão que coletam eventos;
 - Avaliação de novos dados em relação ao modelo para identificar desvios.

Uso de Chamadas de Sistema em Segurança

- ► Interface que um sistema operacional oferece às aplicações;
- ► Acesso a funcionalidades do sistema;
- Ponto privilegiado de observação e controle do comportamento de aplicações do ponto de vista de segurança;
- ► Ataque tem um ponto em comum: Uso da interface de chamadas de sistema;
- Monitoramento de chamadas do sistema é amplamente empregada para detectar aplicações comprometidas;
 - Compara a captura com comportamento normal previamente salvo, interrompendo a execução se desvios forem detectados.

Avaliação e Objetivo

- Avaliação: Aplicação em contêineres para detecção de anomalias usando aprendizado de máquina;
- Objetivo: Investigar o uso de chamadas de sistema para detecção de anomalias e a viabilidade de HIDS baseados em aprendizado de máquina.

Arquitetura do Sysdig

- ► A ferramenta *Sysdig* foi utilizada para a coleta de dados (*syscalls*);
- ► Utiliza um driver chamado *sysdig-probe* para capturar eventos no kernel via *tracepoints*;
- Tracepoints permitem instalação de handlers em funções específicas do kernel, copiando detalhes do evento para um buffer compartilhado;
- libscap e libsinsp ajudam na leitura, decodificação e análise dos eventos capturados.

Processo de Coleta e Análise

- Uso do sysdig para capturar chamadas de sistema e atividades em um contêiner Docker;
- ► Estrutura de coleta: Identificador de evento, *timestamp*, *thread*, nome/ID do contêiner e processo, *system call* com parâmetros;
- Extração de características relevantes e redução de ruído nos dados coletados;
- ▶ 10 execuções por amostra (benigna/maliciosa) para garantir diversidade no conjunto de dados.

Treinamento e Detecção de Anomalias

- ► Uso de grid search para determinar os melhores parâmetros para modelos de aprendizado de máquina;
- ▶ Possível implementação de HIDS para identificar anomalias e intrusões em tempo real;
- Detecção desvios significativos dos padrões estabelecidos, identificando possíveis ameaças.

Descrição do Cenário

- ► Ambiente de Teste:
 - ► Linux 5.15.0-56-generic 62-Ubuntu;
 - ► Linux Mint 21.2;
 - ► Docker 20.10.21.
- ► Algoritmos Selecionados
 - ► Random Forest (RF);
 - ► XGBoost (XGB);
 - ▶ Decision Tree (DT);
 - ► Nu-Support Vector (NuSV);
 - ► Multi-layer Perceptron (MLP);
 - ► AdaBoost (AB);
 - ► Stochastic Gradient Descent (SGD).
- Com esses algoritmos, pudemos avaliar o uso de aprendizado de máquina para a detecção de anomalias.

Coleta e Conjunto de Dados

- ► Aplicação utilizada: Wordpress, versão 4.9.2;
- Conjunto de dados composto por 200 arquivos com sequências de chamadas de sistema;
- Vulnerabilidades exploradas:
 - Injeção de código arbitrário (Social Warfare);
 - ▶ Upload e execução de código PHP arbitrário (Gerenciador de arquivos);
 - ► Falha na validação de extensões de arquivos, permitindo que arquivos PHP sejam carregados e executados (Simple File List);
 - ► Injeção de SQL (LeagueManager);
 - ▶ Download de arquivo remoto (Paypal Currency Converter Basic For WooCommerce).

Resultados e Discussão

- ► Grid Search utilizado com o pacote scikit-learn.
- ► Identificado os melhores parâmetros para maximizar a eficácia dos modelos.
- ▶ Configuração dos Experimentos:
 - ► Técnica Utilizada: k-fold de 5
 - ► Conjunto de dados dividido em 5 partes iguais para treinamento e teste.
- Métricas de Desempenho Consideradas:
 - ► ROC (Receiver Operating Characteristic);
 - ▶ Precision (Precisão);
 - ► Recall:
 - ► f1-Score;
 - ► Accuracy (Acurácia);
 - ► Balanced Accuracy (BAC);
 - ► Brier Score (BS).

Resultados e Discussão

- ► Modelo de Destague: AdaBoost;
- ► Precisão: 93,48%;
- ► *Recall*: 87,76%;
- ► ROC: 97,68%;
- ► BS: 9%;
- ► Analise:
 - ► Alta precisão: baixa taxa de falsos positivos;
 - ► Alta capacidade de discriminação e calibração;
 - ► Sólida taxa de recall: reduz falsos negativos.

Outros Modelos Avaliados

- ► Modelos com desempenho médio:
 - ► Random Forest, Nu-Support Vector, Multilayer Perceptron, XGBoost;
- ► Taxas de precisão e recall acima de 77%;
- ▶ ROC, BAC, e BS na média;
- Considerações:
 - ► Balanceamento entre falsos positivos e falsos negativos.
 - ► Adequados para diversas aplicações, dependendo do contexto.

Conclusões e Relevância dos Resultados

- ► Uso de Grid Search:
 - ► Identificação de parâmetros adequados para detecção de anomalias;
 - Viabilidade do uso de modelos de aprendizado de máquina para soluções HIDS.
- ► Efetividade do Sysdig:
 - Confirmação do uso de chamadas de sistema coletadas para detecção de anomalias;
 - Desenvolvimento de HIDS mais eficientes e menos intrusivos.
- ► Conclusão Principal:
 - O uso de dados de monitoramento do sysdig permite a criação de modelos eficazes de aprendizado de máquina, melhorando a segurança em ambientes virtualizados.

Conclusão

- ➤ Adoção de Contêineres...
 - Permite o compartilhamento eficiente de um sistema operacional entre múltiplas instâncias de aplicativos;
 - ▶ Benefícios: Portabilidade, economia de memória, facilidade de migração;
 - ► Riscos: Implementação inadequada e vulnerabilidades.
- ► Monitoramento e Detecção de Intrusões
 - ▶ Uso de HIDS e monitoramento leve para detectar anomalias em contêineres;
 - Possibilidade do uso de dados de monitoramento provenientes do sysdig;
 - ▶ Modelos de aprendizado de máquina utilizados para análise de dados coletados.

Conclusão

▶ Resultados do Modelo AdaBoost:

▶ Precisão: 93,48%;▶ Recall: 87,76%;▶ ROC: 97,68%;

► Brier Score: 9%;

► Conclusão: Monitoramento leve é eficaz para HIDS.

▶ Trabalhos Futuros:

- ► Testar soluções de monitoramento leve adicionais (eBPF, Ftrace, LTTng);
- Comparar eficácia e adequação dos dados para modelos de aprendizagem de máquina;
- Desenvolver soluções de HIDS mais abrangentes com um conjunto de dados maior e rotulado.

Obrigado!

Contato: aacf20@inf.ufpr.br