

什么是ALU

本实验所有电路图都是使用 Logisim Evolution v3.8 完成。

算术逻辑单元(Arithmetic Logic Unit, 简称 ALU)是计算机中央处理器(CPU)中的核心功能部件之一,负责执行各种算术运算(如加法、减法、乘法、除法)和逻辑运算(如与 AND、或 OR、非 NOT、异或 XOR 等)。它接收来自寄存器或内存的数据输入,根据控制单元发出的指令完成运算,并将结果返回到寄存器或写入内存。ALU 的设计直接影响 CPU 的计算能力和速度,是处理器执行指令、进行数据运算的关键硬件基础。

ALU对外部的接口(或叫输入输出) 思考一下必须要两个吗				
Input Name	Bit Width	Description		
A	32	输入给ALU的32位数据		
В	32	输入给ALU的32位数据		
ALUSel @热爱技术的	里子	用于控制 ALU 应执行的算术操作,由于有4bit,理论上支持2的4次方种操作(见后面)		

Output Name	Bit Width	Description
ALUResult	32	将A和B的运算结果输出出去 (注意数据位数不变)

ALU支持的运算

请注意这个表有两列,ALUSel和指令对应关系,不是必须这样的! 指令你可以自由设计和调整,ALUSel和指令的对应关系也可以随意 调整,只是会影响布线!

ALUSel Value	Instruction
0	add: Result = A + B 执行移位时,只需要
1	sll: Result = A << B[4:0] 的低5位,因为最多(
2	slt: Result = (A < B (signed)) ? 1 : 0
3	Unused
4	XOr: Result = A ^ B
5	<pre>Srl: Result = (unsigned) A >> B[4:0]</pre>
	srl: 结果 = (无符号) A >> B[4: 0]
6	Or: Result = A B
7	and: Result = A & B
8	mul: Result = (signed) (A * B)[31:0]
9	mulh: Result = (signed) (A * B)[63:32]
10	Unused
11	mulhu: Result = (A * B)[63:32]
12	Sub: Result = A - B 可以加自己的功能实现
13	Sra: Result = (signed) A >> B[4:0]
14	Unused
15	bsel: Result = B

ALU完整电路图

使用了Tunnel标签,同一个名字默认是连接在一起的!使用这个可以极大地简化电路布线,更清晰易读!

