Interleaved Group Convolutions for Efficient Deep Neural Network

Jingdong Wang Senior Researcher Microsoft Research, Beijing, China

Deep learning in the past decade

- Reducing the dimensionality of data with neural networks, Science, 2006
 - Fast learning algorithms for Restricted Boltzmann machine

- ImageNet Classification with deep convolutional neural networks, NIPS, 2012
 - Dramatic performance improvement
 - ImageNet, GPU

Reducing the Dimensionality of Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

classification, visualization, communi-

imensionality reduction facilitates the finds the directions of greatest variance in the data set and represents each data point by its cation, and storage of high-dimensional coordinates along each of these directions. We data. A simple and widely used method is describe a nonlinear generalization of PCA that principal components analysis (PCA), which uses an adaptive, multilayer "encoder" network

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca

University of Toronto

Ilva Sutskever Geoffrey E. Hinton

University of Toronto hinton@cs.utoronto.ca

Abstract

ilva@cs.utoronto.ca

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

Deep convolutional neural networks

8 layers AlexNet, 2012

- Going deeper
 - Stack multiple blocks: vgg
 - Improve information flow by skip connections
 - GoogleNet, Highway, ResNet, Deeply-Fused Nets, FractalNets, DenseNets, Merge-and-run

Stack multiple blocks

19 layers VGGNet, 2014

22 layers GoogLeNet, 2014

100+ layers Highway, 2015

152 layers ResNet, 2015

Deeply-fused nets, 2016

DenseNets, 2016

Merge-and-Run Networks (DMRNets), 2016

- Going deeper
 - Stack multiple blocks: vgg
 - Improve information flow by skip connections
 - GoogleNet, Highway, ResNet, Deeply-Fused Nets, FractalNets, DenseNets, Merge-and-run
- Eliminate the redundancy
 - Convolution operations

$$\begin{pmatrix} 7.39 \\ \end{pmatrix} = \begin{pmatrix} 2.91 & -8.93 & 3.06 & -9.22 & \cdots & 9.01 \\ \end{pmatrix} \times \begin{pmatrix} 0.38 \\ -0.94 \\ 0.47 \\ -0.65 \\ \vdots \\ -0.29 \end{pmatrix}$$

$$\begin{pmatrix} 7.39 \\ -4.82 \end{pmatrix} = \begin{pmatrix} 2.91 & -8.93 & 3.06 & -9.22 & \cdots & 9.01 \\ -3.12 & 6.01 & -5.94 & -5.83 & \cdots & -2.75 \end{pmatrix} \times \begin{pmatrix} 0.38 \\ -0.94 \\ 0.47 \\ -0.65 \\ \vdots \\ -0.29 \end{pmatrix}$$

$$\begin{pmatrix} 7.39 \\ -4.82 \\ 8.14 \end{pmatrix} = \begin{pmatrix} 2.91 & -8.93 & 3.06 & -9.22 & \cdots & 9.01 \\ -3.12 & 6.01 & -5.94 & -5.83 & \cdots & -2.75 \\ -9.13 & -5.82 & 8.78 & 6.23 & \cdots & -8.82 \end{pmatrix} \times \begin{pmatrix} 0.38 \\ -0.94 \\ 0.47 \\ -0.65 \\ \vdots \\ -0.29 \end{pmatrix}$$

$$\begin{pmatrix} 7.39 \\ -4.82 \\ 8.14 \\ -5.27 \end{pmatrix} = \begin{pmatrix} 2.91 & -8.93 & 3.06 & -9.22 & \cdots & 9.01 \\ -3.12 & 6.01 & -5.94 & -5.83 & \cdots & -2.75 \\ -9.13 & -5.82 & 8.78 & 6.23 & \cdots & -8.82 \\ 9.04 & 3.21 & -6.15 & -2.94 & \cdots & 5.94 \end{pmatrix} \times \begin{pmatrix} 0.38 \\ -0.94 \\ 0.47 \\ -0.65 \\ \vdots \\ -0.29 \end{pmatrix}$$

- Going deeper
 - Stack multiple blocks: vgg
 - Improve information flow by skip connections
 - GoogleNet, Highway, ResNet, Deeply-Fused Nets, FractalNets, DenseNets, Merge-and-run
- Eliminate the redundancy
 - Convolution operations
 - Low-precision kernels

Low-precision kernels

Binarization

Integer

Quantization

Low-precision kernels

Binarization

Integer

Quantization

Low-precision kernels

Binarization

Integer

Quantization

- Going deeper
 - Stack multiple blocks: vgg
 - Improve information flow by skip connections
 - GoogleNet, Highway, ResNet, Deeply-Fused Nets, FractalNets, DenseNets, Merge-and-run
- Eliminate the redundancy
 - Convolution operations
 - Low-precision kernels
 - Low-rank kernels

Filter pruning

$$\begin{pmatrix} 7.39 \\ -4.82 \\ 8.14 \\ -5.27 \end{pmatrix} = \begin{pmatrix} 2.91 & -8.93 & 3.06 & -9.22 & \cdots & 9.01 \\ -3.12 & 6.01 & -5.94 & -5.83 & \cdots & -2.75 \\ -9.13 & -5.82 & 8.78 & 6.23 & \cdots & -8.82 \\ 9.04 & 3.21 & -6.15 & -2.94 & \cdots & 5.94 \end{pmatrix} \times \begin{pmatrix} 0.38 \\ -0.94 \\ 0.47 \\ -0.65 \\ \vdots \\ -0.29 \end{pmatrix}$$

Filter pruning

$$\begin{pmatrix}
7.39 \\
-4.82 \\
\hline{8.14} \\
\hline{-5.27}
\end{pmatrix} = \begin{pmatrix}
2.91 & -8.93 & 3.06 & -9.22 & \cdots & 9.01 \\
-3.12 & 6.01 & -5.94 & -5.83 & \cdots & -2.75 \\
-9.13 & -5.82 & 8.78 & 6.23 & \cdots & -8.82 \\
\hline{9.04} & 3.21 & -6.15 & -2.94 & \cdots & 5.94
\end{pmatrix} \times \begin{pmatrix}
0.38 \\
-0.94 \\
0.47 \\
-0.65 \\
\vdots \\
-0.29
\end{pmatrix}$$

Filter pruning

$$\begin{pmatrix} 7.39 \\ -4.82 \\ 8.14 \\ -5.27 \end{pmatrix} = \begin{pmatrix} 2.91 & -8.93 & 3.06 & -9.22 & \cdots & 9.01 \\ -3.12 & 6.01 & -5.94 & -5.83 & \cdots & -2.75 \\ -9.13 & -5.82 & 8.78 & 6.23 & \cdots & -8.82 \\ 9.04 & 3.21 & -6.15 & -2.94 & \cdots & 5.94 \end{pmatrix} \times \begin{pmatrix} 0.38 \\ -0.94 \\ 0.47 \\ -0.65 \\ \vdots \\ -0.29 \end{pmatrix}$$

Filter pruning

$$\begin{pmatrix} 2.91 & -8.93 & 3.06 & -9.22 & \cdots & 9.01 \\ -3.12 & 6.01 & -5.94 & -5.83 & \cdots & -2.75 \\ -9.13 & -5.82 & 8.78 & 6.23 & \cdots & -8.82 \\ 9.04 & 3.21 & -6.15 & -2.94 & \cdots & 5.94 \end{pmatrix} \times \begin{pmatrix} 0.38 \\ -0.94 \\ -0.47 \\ -0.65 \\ \vdots \\ -0.29 \end{pmatrix}$$

- Going deeper
 - Stack multiple blocks: vgg
 - Improve information flow by skip connections
 - GoogleNet, Highway, ResNet, Deeply-Fused Nets, FractalNets, DenseNets, Merge-and-run
- Eliminate the redundancy
 - Convolution operations
 - Low-precision kernels
 - Low-rank kernels
 - Composition from low-rank kernels

Composition from low-rank kernels

$$\begin{pmatrix} 2.91 & -8.93 & 3.06 & -9.22 & -1.56 & 9.01 \\ -3.12 & 6.01 & -5.94 & -5.83 & 6.90 & -2.75 \\ -9.13 & -5.82 & 8.78 & 6.23 & -8.38 & -8.82 \\ 9.04 & 3.21 & -6.15 & -2.94 & 5.63 & 5.94 \end{pmatrix} \times \begin{pmatrix} 0.38 \\ -0.94 \\ 0.47 \\ -0.65 \\ 0.46 \\ -0.29 \end{pmatrix}$$

$$\begin{pmatrix} 1.57 & 2.34 \\ 5.76 & 1.51 \\ -3.78 & 9.03 \\ -7.48 & 5.46 \end{pmatrix} \times \begin{pmatrix} -0.53 & 6.70 & 2.09 & 5.31 & 1.53 & -7.87 \\ 6.22 & 9.16 & 8.12 & -2.69 & -3.48 & 1.55 \end{pmatrix} \times \begin{pmatrix} 0.38 \\ -0.94 \\ 0.47 \\ -0.65 \\ 0.46 \\ -0.29 \end{pmatrix}$$

- Going deeper
 - Stack multiple blocks: vgg
 - Improve information flow by skip connections
 - GoogleNet, Highway, ResNet, Deeply-Fused Nets, FractalNets, DenseNets, Merge-and-run
- Eliminate the redundancy
 - Convolution operations
 - Low-precision kernels
 - Low-rank kernels
 - Composition from low-rank kernels
 - Sparse kernels

Sparse kernels

Sparse kernels

Non-structured sparseStructured sparse

$$\begin{pmatrix}
2.91 & -8.93 & 3.06 & -9.22 & -1.56 & 9.01 \\
-3.12 & 6.01 & -5.94 & -5.83 & 6.90 & -2.75 \\
-9.13 & -5.82 & 8.78 & 6.23 & -8.38 & -8.82 \\
9.04 & 3.21 & -6.15 & -2.94 & 5.63 & 5.94
\end{pmatrix}
\times
\begin{pmatrix}
0.38 \\
-0.94 \\
0.47 \\
-0.65 \\
0.46 \\
-0.29
\end{pmatrix}$$

$$\begin{pmatrix}
0.38 \\
-0.94 \\
0.47 \\
-0.65 \\
0.46 \\
-0.29
\end{pmatrix}$$

$$\begin{pmatrix}
0.38 \\
-0.94 \\
0.47 \\
-0.65 \\
0.46 \\
-0.29
\end{pmatrix}$$

$$\begin{pmatrix}
0.38 \\
-0.94 \\
0.47 \\
-0.65 \\
0.46 \\
0.065 \\
0.46 \\
0.47
\end{pmatrix}$$

$$\begin{pmatrix}
0.38 \\
-0.94 \\
0.47 \\
-0.65 \\
0.46 \\
0.47
\end{pmatrix}$$

$$\begin{pmatrix}
0.38 \\
-0.94 \\
0.47 \\
-0.65 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.46 \\
0.47 \\
0.47 \\
0.47 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48 \\
0.48$$

- Going deeper
 - Stack multiple blocks: vgg
 - Improve information flow by skip connections
 - GoogleNet, Highway, ResNet, Deeply-Fused Nets, FractalNets, DenseNets, Merge-and-run
- Eliminate the redundancy
 - Convolution operations
 - Low-precision kernels
 - Low-rank kernels
 - Composition from low-rank kernels
 - Sparse kernels
 - Composition from sparse kernels

Composition from sparse kernels

$$\begin{pmatrix}
2.91 & -8.93 & 3.06 & -9.22 & -1.56 & 9.01 \\
-3.12 & 6.01 & -5.94 & -5.83 & 6.90 & -2.75 \\
-9.13 & -5.82 & 8.78 & 6.23 & -8.38 & -8.82 \\
9.04 & 3.21 & -6.15 & -2.94 & 5.63 & 5.94
\end{pmatrix} \times \begin{pmatrix}
0.38 \\
-0.94 \\
0.47 \\
-0.65 \\
0.46 \\
-0.29
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1.03 & -5.25 & 0 & 0 \\ 7.45 & -6.93 & 0 & 0 \\ 0 & 0 & 9.02 & -3.58 \\ 0 & 0 & 6.53 & -1.97 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 4.73 & 6.47 & -5.02 & 0 & 0 & 0 \\ 4.08 & 2.59 & 8.54 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5.85 & 3.87 & 9.01 \\ 0 & 0 & 0 & -4.67 & -3.31 & 5.05 \end{pmatrix} \times \begin{pmatrix} 0.38 \\ -0.94 \\ 0.47 \\ -0.65 \\ 0.46 \\ -0.29 \end{pmatrix}$$

Interleaved group convolutions

^[1] Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang: Interleaved Group Convolutions. ICCV 2017: 4383-4392

^[2] Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, and Guo-JunQi. IGCV2: Interleaved Structured Sparse Convolutional Neural Networ \$9\$CVPR 2018. [3] Ke Sun, Mingjie Li, Dong Liu, and Jingdong Wang. IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks. BMVC 2018.

IGCV1: Interleaved group convolutions for large models

Regular convolution

Complexity: $6 \times 5 \times 5 \times 6$

Group convolution

Complexity: $2 \times (3 \times 5 \times 5 \times 3)$

Conduct convolutions *separately* over the partitions Computation cost is lower than regular convolutions

Interleaved group convolution (IGC)

L=2 primary partitions3 channels in each partition

M=3 secondary partitions2 channels in each partition 73

The path connecting each input channel with each output channel

Matrix form

$$\mathbf{x}' = \mathbf{P}\mathbf{W}^d \mathbf{P}^T \mathbf{W}^p \mathbf{x}$$

Criterion: Strict complementary condition

Strict complementary condition:

The channels lying in the *same* branch in one group convolution lie in *different* branches and come from *all* the branches in the other group convolution.

We have: the resulting convolution kernel matrix is dense

$$\mathbf{x}' = \mathbf{P}\mathbf{W}^d \mathbf{P}^T \mathbf{W}^p \mathbf{x}$$

Advantages: Wider than regular convolutions

Thus, our IGC is wider except L=1 under the same #parameters

Comparison to regular convolutions

CIFAR-10 classification accuracy

depth	RegConv-18	IGC
20	92.55 ± 0.14	92.84 ± 0.26
38	91.57 ± 0.09	92.24 ± 0.62
62	88.60 ± 0.49	90.03 ± 0.85

+1.43

Model size: #params ($\times 10^6$)

depth	RegConv-18	IGC
20	0.34	0.15
38	0.71	0.31
62	1.20	0.52

Computation complexity: FLOPS ($\times 10^8$)

depth	RegConv-18	IGC
20	0.51	0.29
38	1.1	0.57
62	1.7	0.95

Comparison to regular convolutions

CIFAR-100 classification accuracy

depth	RegConv-18	IGC
20	68.71 ± 0.32	70.54 ± 0.26
38	65.00 ± 0.57	69.56 ± 0.76
62	58.52 ± 2.31	65.84 ± 0.75

Model size: #params ($\times 10^6$)

depth	RegConv-18	IGC
20	0.34	0.15
38	0.71	0.31
62	1.20	0.52

Computation complexity: FLOPS ($\times 10^8$)

+7.32

depth	RegConv-18	IGC
20	0.51	0.29
38	1.1	0.57
62	1.7	0.95

Comparison to ResNets on ImageNet classification

	#narams (× 107)	FLODC (>< 109)	Trainir	ng error	Validat	ion error
	#params ($\times 10^7$)	FLOPS ($\times 10^9$)	Top-1	Top-5	Top-1	Top-5
ResNet (Reg. Conv.)	1.133	2.1	21.43	5.96	30.58	10.77
Our approach	0.861	1.3	13.93	2.75	26.95	8.92
					+3.63	+1.85

Our approach: replace regular convolutions with our interleaved group convolutions

Regular convolutions are interleaved group convolutions

- Four-branch representation
- Primary group convolution

$$\mathbf{W} = egin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & \mathbf{W}_{22} \end{bmatrix}$$

$$\mathbf{W}^p = \operatorname{diag}(\mathbf{W}_{11}, \mathbf{W}_{12}, \mathbf{W}_{21}, \mathbf{W}_{22})$$

Secondary group convolution

$$\mathbf{W}_{11}^{d} = \mathbf{W}_{22}^{d} = \dots = \mathbf{W}_{MM}^{d} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Xception is a special case of IGC

Accuracy under same #params and FLOPS

Comparison to Xception

CIFAR-100, Small network

	Xception	Our approach	
testing error	36.93 ± 0.54	36.11 ± 0.62	-0.82
#params	3.62×10^4	3.80×10^{4}	
FLOPS	3.05×10^{7}	3.07×10^{7}	

CIFAR-100, Large network

	Xception	Our approach	
testing error	32.87 ± 0.67	31.87 ± 0.58	-1.00
#params	1.21×10^{5}	1.26×10^{5}	
FLOPS	1.11×10^{8}	1.12×10^{8}	

Deep roots: IGC's variant

Primary group convolution

Comparison to deep roots

Comparison with state-of-the-arts

Method	Depth	#Params.	CIFAR-10	CIFAR-100	SVHN
FractalNet	21	38.6M	5.22	23.30	2.01
with DO/DP	21	38.6M	4.60	23.73	1.87
ResNet	110	1.7M	6.41	27.22	2.01
Multi ResNet	200	10.2M	4.35	20.42	-
Wide ResNet	16	11.0M	4.81	22.07	-
	28	36.5M	4.17	20.50	-
DongoNot	40	1.0M	5.24	24.42	1.79
DenseNet	100	27.2M	3.74	19.25	1.59
DMRNet	56	1.7M	4.94	24.46	1.66
DMRNet-Wide	32	14.9M	3.94	19.25	1.51
DMRNet-Wide	50	24.8M	3.57	19.00	1.55
IGC-L16M32	20	17.7M	3.37	19.31	1.63
IGC-L450M2	20	19.3M	3.30	19.00	-
IGC-L32M26	20	24.1M	3.31	18.75	1.56

IGCV2: Interleaved Structured Sparse Convolutional Neural Networks

Interleaved group convolutions for small models

- Structured sparse matrix composition
 - 2 → Multiple structured sparse matrices
 - Benefit: further redundancy reduction (much sparser)

IGCV1

$$x' = P_3W_3P_2W_2P_1W_1x$$
Dense due to complementary condition

L (e.g., 3 or >3) group convolutions

Criterion: Strict complementary condition

Divide the L group convolutions into two convolutions:

$$\mathbf{x}' = \mathbf{P}_L (\mathbf{W}_L \prod_{l=L-1}^m \mathbf{P}_l \mathbf{W}_l) \mathbf{P}_m (\mathbf{W}_{m-1} \prod_{l=m-2}^1 \mathbf{P}_l \mathbf{W}_l) \mathbf{x}$$

Strict complementary condition:

- 1. The multiple group convolutions can be merged to two *group* convolutions.
- 2. The channels lying in the *same* branch in one group convolution lie in *different* branches and come from *all* the branches in the other group convolution.

The resulting convolution kernel matrix is dense

How to design L group convolutions

IGC block: 1 channel-wise 3×3 convolution + (L-1) group 1×1 convolutions

Balance condition: To have *minimum total #parameters*, three conditions hold:

- 1) #parameters for (L-1) group convolutions are the same
- 2) #branches for (L-1) group convolutions are the same
- 3) #channels in each branch are the same

Design: #channels in each branch:
$$K_2 = \cdots = K_L = C^{\frac{1}{L-1}} = K$$

#branches = $\frac{C}{K}$ width

Empirical justification

Meet complementary and balance conditions

Empirical justification

How many group convolutions?

#parameters: When balance condition holds, the amount of parameters for 1 channelwise 3×3 convolution and (L-1) group 1×1 convolutions:

$$Q(L) = C(L-1)(C)^{\frac{1}{L-1}} + 9C$$

We have Q(L=3) < Q(L=2) if C > 4 and $L = \log(C) + 1$ so that Q is minimum

Benefit: Further redundancy reduction by composing more (L > 2) sparse matrices

Empirical analysis of the number of group convolutions L

Comparison to IGCV1

CIFAR-100 classification accuracy

Depth	IGCV1	IGCV2
8	66.52 ± 0.12	67.65 ± 0.29
20	70.87 ± 0.39	72.63 ± 0.07
26	71.82 ± 0.40	73.49 ± 0.34

Model size: #params ($\times 10^6$)

Computation complexity: FLOPS ($\times 10^7$)

Depth	IGCV1	IGCV2
8	0.046	0.046
20	0.151	0.144
26	0.203	0.193

Depth	IGCV1	IGCV2
8	1.00	1.18
20	2.89	3.20
26	3.83	4.21

+1.67

Comparison to IGCV1

Tiny ImageNet classification accuracy

Depth	IGCV1	IGCV2
8	48.57 ± 0.53	51.49 ± 0.33
20	54.83 ± 0.27	56.40 ± 0.17
26	56.64 ± 0.15	57.12 ± 0.09

Model size: #params ($\times 10^6$)

Computation complexity: FLOPS ($\times 10^7$)

Depth	IGCV1	IGCV2
8	0.046	0.046
20	0.151	0.144
26	0.203	0.193

Depth	IGCV1	IGCV2
8	1.00	1.18
20	2.89	3.20
26	3.83	4.21

+0.48

Comparison with small models

Method	Depth	#Params.	CIFAR-10	CIFAR-100	Tiny ImageNet
FractalNet	21	38.6M	5.22	23.30	-
ResNet	110	1.7M	5.52	28.02	46.5
DFN-MR1	56	1.7M	4.94	24.46	-
RiR	18	10.3M	5.01	22.90	-
ResNet34	34	21.4M	-	-	46.9
ResNet18-2x	18	25.7M	-	-	44.6
WRN-32-4	32	7.4M	5.43	23.55	39.63
WRN-40-4	40	8.9M	4.53	21.18	-
DenseNet (k=12)	40	1.0M	-	-	39.09
DenseNet (k=12)	40	1.0M	5.24	24.42	-
DenseNet-BC (k=12)	100	M8.0	4.51	22.27	-
IGC-V2*-C416	20	0.65M	5.49	22.95	38.81

Interleaved group convolutions for small models

- Structured sparse matrix composition
 - 2 → Multiple structured sparse matrices
 - Benefit: further redundancy reduction (much sparser)
- Complementary condition
 - Strict → loose

Design criterion: Strict complementary condition

Goal: There is one and only one path between each pair of input and output channels such that each output channel gets information from each input channel

Design criterion: Strict complementary condition Loose

are more paths

Goal: There is one and only one path between each pair of input and output channels such that each output channel gets information from each input channel

rich

Design criterion: Loose complementary condition

Loose

Strict complementary condition:

- 1. The multiple group convolutions can be merged to two *group* convolutions.
- 2. The channels lying in the *same* branch in one group convolution lie in *different* branches and come from *all* the branches in the other group convolution.

super-channels

A super-channel is composed of 2 or more channels

Interleaved group convolutions for small models

- Structured sparse matrix composition
 - 2 → Multiple structured sparse matrices
 - Benefit: further redundancy reduction (much sparser)

IGCV2

- Complementary condition
 - Strict → loose

Comparison to MobileNetV1 on ImageNet

Model	#Params. (M)	FLOPS (M)	Accuracy (%)
MobileNetV1-1.0	4.2	569	70.6
IGCV2-1.0	4.1	564	70.7
MobileNetV1-0.5	1.3	149	63.7
IGCV2-0.5	1.3	156	65.5
MobileNetV1-0.25	0.5	41	50.6
IGCV2-0.25	0.5	46	54.9

IGCV3: Interleaved Low-Rank Group Convolutions

Ke Sun, Mingjie Li, Dong Liu, and Jingdong Wang. IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks. BMVC 2018.

Interleaved group convolutions for small models

- Structured sparse matrix composition
 - 2 → Multiple structured sparse matrices
 - Benefit: further redundancy reduction (much sparser)
- Complementary condition
 - Strict → loose
- Low-rank structured sparse matrix composition
 - Structured sparse + low-rank

Structured sparse + low-rank

Structured sparse + low-rank:

- 1. Group 1×1 convolution (Gconv.): dimension reduction
- 2. Channel-wise 3×3 convolution (Cconv.)
- 3. Group 1×1 convolution (Gcon.): dimension increasing

Interleaved group convolutions for small models

- Structured sparse matrix composition
 - 2 → Multiple structured sparse matrices
 - Benefit: further redundancy reduction (much sparser)
- Complementary condition
 - Strict → loose

IGCV3

- Low-rank structured sparse matrix composition
 - Structured sparse + low-rank

Comparison to MobileNetV2 on ImageNet

Network	#Params. (M)	FLOPS (M)	Accuracy (%)
MobileNetV1-1.0	4.2	569	70.6
IGCV2-1.0	4.1	564	70.7
MobileNetV2-1.0 (paper)	3.4	300	72.0
MobileNetV2-1.0 (our impl.)	3.4	300	71.01
IGCV3-1.0	3.5	320	72.2

Comparison to MobileNetV2 on ImageNet

Network	#Params. (M)	FLOPS (M)	Accuracy (%)
MobileNetV1-1.0	4.2	569	70.6
IGCV2-1.0	4.1	564	70.7
MobileNetV2-1.0 (paper)	3.4	300	72.0
MobileNetV2-1.0 (our impl.)	3.4	300	71.01
IGCV3-1.0	3.5	320	72.2
MobileNetV2-0.7 (our impl.)	1.9	160	66.57
IGCV3-0.7	2.0	170	68.46

COCO object detection

Network	#Params. (M)	mAP
SSD	36.1M	23.2
YOLOV2	50.7M	21.6
MobileNetV1 SSDLite	5.1M	22.2
MobileNetV2 SSDLite	4.3M	22.1
IGCV3+ SSDLite	4.0M	22.2

Summary

- Advantages
 - Small model
 - Fast computation
 - High accuracy
- Drop-in replacement of regular convolutions
 - Interleaving
 - Group 1 × 1 convolutions
 - Low rank
- Superior to Google's MobileNets

Publications

- [1] Guotian Xie, Jingdong Wang et. al. IGCV2: Interleaved Structured Sparse Convolutional Neural Networks. CVPR 2018.
- [2] Ting Zhang, Guo-Jun Qi, Bin Xiao, and Jingdong Wang: Interleaved Group Convolutions for Deep Neural Networks. ICCV (2017)
- [3] Liming Zhao, Mingjie Li, Depu Meng, Xi Li, Zhuowen Tu, and Jingdong Wang: Deep Convolutional Neural Networks with Merge-and-Run Mappings. IJCAI 2018.
- [4] Guotian Xie, Ting Zhang, Kuiyuan Yang, Jianhuang Lai, and Jingdong Wang: Decoupled Convolutions for CNNs. AAAI 2018
- [5] Ke Sun, Mingjie Li, Dong Liu, and Jingdong Wang: IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks. BMVC 2018.
- [6] Jingdong Wang, Zhen Wei, and Ting Zhang: Deeply-fused nets. 2016.

Collaborators

- Liming Zhao
- Ting Zhang
- Zhen Wei
- Guotian Xie
- Ke Sun
- Depu Meng
- Mingjie Li
- Bin Xiao
- Guojun Qi

Thanks! Q&A

Deep fusion code: https://github.com/zlmzju/fusenet

IGC Code: https://github.com/homles11/IGCV3

Homepage: https://jingdongwang2017.github.io/