ECE537 Random Processes Midterm 1 Oct 18, 2023 E. S. Sousa

- 1. Consider a probably experiment consisting of flipping two coins repeatedly until they both turn up heads.
- a) Define the sample space Ω . How many points are there in Ω . Enumerate them.
- b) Describe the smallest sigma field that contains all singleton sets. Specify the collection of sets in the σ -field.
- c) Let the total number of flips be *N*. Give the probability mass function for the random variable *N*.
- d) Determine the probability that the number of flips will be greater than 5.
- e) Now, define a random variable equal to the total number of heads, $X = \sum_{i=1}^{N} X_i$, where X_i is the number of heads at the i^{th} flip, and N is the number of flips (note that we must have $X_N = 2$, and $X_i < 2$ for i < N). Find the expected value of the random variable X.
- 2. Consider a random vector $\mathbf{X} = (X_1, X_2)$ with covariance matrix equal to $C_X = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}$
- a) Determine a linear transformation Y = AX so that $Y = (Y_1, Y_2)$ is a random vector with uncorrelated components.
- b) For the linear transformation given in a) determine the covariance matrix of Y, i.e. C_Y .
- 3. Consider a random vector $\mathbf{X} = (X_1, X_2, X_3)$ with mean $\mathbf{m} = (2, 0, -1)$ and covariance matrix equal to

$$C_X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Let $Y = 2X_1 + X_2 + 2X_3$.

- a) Use the Chebychev inequality to give an upper bound for the probability P(Y > 5).
- b) Assuming that X is a Gaussian random vector with the same mean and covariance matrix, give a procedure to determine the probability P(Y > 5) exactly.