

LaplacesDemon Examples

Byron Hall STATISTICAT, LLC

Abstract

The **LaplacesDemon** package in R enables Bayesian inference with any Bayesian model, provided the user specifies the likelihood. This vignette is a compendium of examples of how to specify different model forms.

Keywords: Bayesian, Bayesian Inference, Laplace's Demon, LaplacesDemon, R, STATISTI-CAT.

LaplacesDemon (Hall 2011), usually referred to as Laplace's Demon, is an R package that is available on CRAN (R Development Core Team 2010). A formal introduction to Laplace's Demon is provided in an accompanying vignette entitled "**LaplacesDemon** Tutorial", and an introduction to Bayesian inference is provided in the "Bayesian Inference" vignette.

The purpose of this document is to provide users of the LaplacesDemon package with examples of a variety of Bayesian methods. To conserve space, the examples are not worked out in detail, and only the minimum of necessary materials is provided for using the various methodologies. Necessary materials include the form expressed in notation, data (which is often simulated), initial values, and the Model function. This vignette will grow over time as examples of more methods become included. Contributed examples are welcome. Please send contributed examples in a similar format in an email to statisticat@gmail.com for review and testing. All accepted contributions are, of course, credited.

Contents

- Autoregression, AR(1) 1
- Binary Logit 2
- Binomial Probit 3
- Dynamic Linear Model (DLM) 4
- Factor Analysis, Exploratory (EFA) 5
- Laplace Regression 6

- Linear Regression 7
- Linear Regression with Full Missingness 8
- Linear Regression with Missing Response 9
- Multinomial Logit 10
- Normal, Multilevel 11
- Poisson Regression 12
- Seemingly Unrelated Regression (SUR) 13
- Zero-Inflated Poisson (ZIP) 14

1. Autoregression, AR(1)

1.1. Form

$$y_t \sim N(\mu_{t-1}, \tau^{-1}), \quad t = 2, \dots, (T-1)$$

$$y_T^{new} \sim N(\mu_T, \tau^{-1})$$

$$\mu_t = \alpha + \phi y_t, \quad t = 1, \dots, T$$

$$\alpha \sim N(0, 1000)$$

$$\phi \sim N(0, 1000)$$

$$\tau \sim \Gamma(0.001, 0.001)$$

1.2. Data

```
T <- 100
y <- rep(0,T)
y[1] <- 0
for (t in 2:T) {y[t] <- y[t-1] + rnorm(1,0,0.1)}
mon.names <- c("LP", "tau", paste("mu[",T,"]", sep=""))
parm.names <- c("alpha","phi","log.tau")
MyData <- list(T=T, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

1.3. Initial Values

```
Initial. Values \leftarrow c(rep(0,2), log(1))
```

1.4. Model

```
Model <- function(parm, Data)</pre>
    ### Prior Parameters
    alpha.mu <- 0; alpha.tau <- 1.0E-3
    phi.mu <- 0; phi.tau <- 1.0E-3
    tau.alpha <- 1.0E-3; tau.beta <- 1.0E-3
    ### Parameters
    alpha <- parm[1]; phi <- parm[2]; tau <- exp(parm[3])</pre>
    ### Log(Prior Densities)
    alpha.prior <- dnorm(alpha, alpha.mu, 1/sqrt(alpha.tau), log=TRUE)</pre>
    phi.prior <- dnorm(phi, phi.mu, 1/sqrt(phi.tau), log=TRUE)</pre>
    tau.prior <- dgamma(tau, tau.alpha, tau.beta, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- alpha + phi*Data$y</pre>
    LL <- sum(dnorm(Data$y[2:(Data$T-1)], mu[1:(Data$T-2)],
         1/sqrt(tau), log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + tau.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,tau,mu[Data$T]),</pre>
         yhat=mu, parm=parm)
    return(Modelout)
    }
```

2. Binary Logit

2.1. Form

$$y \sim Bern(\eta)$$

$$\eta = \log[1 + \exp(\mu)]$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim N(0, 1000), \quad j = 1, \dots, J$$

```
data(demonsnacks)
N <- NROW(demonsnacks)
J <- 3
y <- ifelse(demonsnacks$Calories <= 137, 0, 1)
X <- cbind(1, as.matrix(demonsnacks[,c(7,8)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- "LP"</pre>
```

```
parm.names <- rep(NA,J)</pre>
for (j in 1:J) {parm.names[j] <- paste("beta[",j,"]",sep="")}</pre>
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)
2.3. Initial Values
Initial.Values <- rep(0,J)</pre>
2.4. Model
Model <- function(parm, Data)</pre>
     ### Prior Parameters
    beta.mu <- rep(0,Data$J)</pre>
     beta.tau <- rep(1.0E-3,Data$J)</pre>
     ### Parameters
    beta <- parm[1:Data$J]</pre>
     ### Log(Prior Densities)
     beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)</pre>
     ### Log-Posterior
     mu <- beta %*% t(Data$X)</pre>
     eta <- invlogit(mu)</pre>
     ### Log-Likelihood
     LL <- sum(dbern(Data$y, eta, log=TRUE))</pre>
     ### Log-Posterior
     LP <- LL + sum(beta.prior)</pre>
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=eta, parm=parm)
```

3. Binomial Probit

3.1. Form

}

return(Modelout)

$$y \sim Bin(p, n)$$

$$p = \phi(\mu)$$

$$\mu = \beta_1 + \beta_2 x$$

$$\beta_j \sim N(0, 1000), \quad j = 1, \dots, J$$

where ϕ is the inverse CDF, and J=2.

3.2. Data

}

```
#10 Trials
exposed < c(100,100,100,100,100,100,100,100,100)
deaths < c(10,20,30,40,50,60,70,80,90,100)
dose <-c(1,2,3,4,5,6,7,8,9,10)
J <- 2 #Number of parameters
mon.names <- "LP"
parm.names <- c("beta[1]","beta[2]")</pre>
MyData <- list(J=J, n=exposed, mon.names=mon.names, parm.names=parm.names,
    x=dose, y=deaths)
3.3. Initial Values
Initial.Values <- rep(0,J)</pre>
3.4. Model
Model <- function(parm, Data)</pre>
    {
    ### Prior Parameters
    beta.mu <- rep(0,Data$J)</pre>
    beta.tau <- rep(1.0E-3,Data$J)</pre>
    ### Parameters
    beta <- parm
    ### Log of Prior Densities
    beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)</pre>
    ### Log-Likelihood
    mu <- beta[1] + beta[2]*Data$x</pre>
    mu <- ifelse(mu < -10, -10, mu); mu <- ifelse(mu > 10, 10, mu)
    p <- pnorm(mu)
    LL <- sum(dbinom(Data$y, Data$n, p, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + sum(beta.prior)</pre>
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
         yhat=p, parm=parm)
    return(Modelout)
```

4. Dynamic Linear Model (DLM)

The data is presented so that the time-series is subdivided into three sections: modeled $(t = 1, ..., T_m)$, one-step ahead forecast $(t = T_m + 1)$, and future forecast $[t = (T_m + 2), ..., T]$.

4.1. Form

$$y_{t} \sim N(\mu_{t}, \tau_{V}^{-1}), \quad t = 1, \dots, T_{m}$$

$$y_{t}^{new} \sim N(\mu_{t}, \tau_{V}^{-1}), \quad t = (T_{m} + 1), \dots, T$$

$$\mu_{t} = \alpha + x_{t}\beta_{t}, \quad t = 1, \dots, T$$

$$\alpha \sim N(0, 1000)$$

$$\beta_{1} \sim N(0, 1000)$$

$$\beta_{t} \sim N(\beta_{t-1}, \tau_{W}^{-1}), \quad t = 2, \dots, T$$

$$\tau_{V} \sim \Gamma(0.001, 0.001)$$

$$\tau_{W} \sim \Gamma(0.001, 0.001)$$

4.2. Data

```
T <- 20
T.m < -14
beta.orig <- x <- rep(0,T)
for (t in 2:T) {
beta.orig[t] \leftarrow beta.orig[t-1] + rnorm(1,0,0.1)
x[t] \leftarrow x[t-1] + rnorm(1,0,0.1)
y <- 10 + beta.orig*x + rnorm(T,0,0.1)
y[(T.m+2):T] \leftarrow NA
mon.names <- rep(NA, (T-T.m))</pre>
for (i in 1:(T-T.m)) mon.names[i] <- paste("mu[",(T.m+i),"]", sep="")</pre>
parm.names <- rep(NA, T+3)</pre>
parm.names[1] <- "alpha"</pre>
for (i in 1:T) {parm.names[i+1] <- paste("beta[", i, "]", sep="")}</pre>
parm.names[(T+2):(T+3)] <- c("log.beta.w.tau","log.v.tau")</pre>
MyData <- list(T=T, T.m=T.m, mon.names=mon.names, parm.names=parm.names,</pre>
     x=x, y=y)
```

4.3. Initial Values

```
Initial.Values <- rep(0,T+3)</pre>
```

```
Model <- function(parm, Data)
{
    ### Parameters
    alpha <- parm[1]
    beta <- parm[2:(Data$T+1)]
    beta.w.tau <- exp(parm[Data$T+2])</pre>
```

```
v.tau <- exp(parm[Data$T+3])</pre>
### Log(Prior Densities)
alpha.prior <- dnorm(alpha, 0, 1/sqrt(1.0E-3), log=TRUE)
beta.prior <- rep(0,Data$T)</pre>
beta.prior[1] <- dnorm(beta[1], 0, 1/sqrt(1.0E-3), log=TRUE)</pre>
beta.prior[2:Data$T] <- dnorm(beta[2:Data$T], beta[1:(Data$T-1)],</pre>
    1/sqrt(beta.w.tau), log=TRUE)
beta.w.tau.prior <- dgamma(beta.w.tau, 0.001, 0.001, log=TRUE)
v.tau.prior <- dgamma(v.tau, 1.0E-3, 1.0E-3, log=TRUE)
### Log-Likelihood
mu <- alpha + beta*Data$x</pre>
LL <- sum(dnorm(Data$y[1:Data$T.m], mu[1:Data$T.m], 1/sqrt(v.tau),
    log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + sum(beta.prior) + beta.w.tau.prior +
    v.tau.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=mu[(Data$T.m+1):Data$T],</pre>
    yhat=mu, parm=parm)
return(Modelout)
```

5. Factor Analysis, Exploratory

Factor scores are in matrix \mathbf{F} and factor loadings are in matrix Λ . Although the calculation for the recommended number of factors to explore P is also provided below (Fokoue 2004), this example sets P=3.

5.1. Form

$$\begin{aligned} \mathbf{Y}_{i,m} &\sim N(\mu_{i,m}, \tau_m^{-1}), & i = 1, \dots, N, & m = 1, \dots, M \\ \mu_{i,m} &= \alpha_m + \Sigma_{p=1}^P \nu_{i,m,p}, & i = 1, \dots, N, & m = 1, \dots, M \\ \nu_{i,m,p} &= \mathbf{F}_{i,p} \Lambda_{p,m}, & i = 1, \dots, N, & m = 1, \dots, M, & p = 1, \dots, P \\ &\mathbf{F}_{i,1:P} &\sim N_P(\gamma, \Omega^{-1}), & i = 1, \dots, N \\ &\alpha_m &\sim N(0, 1000), & m = 1, \dots, M \\ &\gamma_p &= 0, & p = 1, \dots, P \\ &\Lambda_{p,m} &\sim N(0, 1000), & p = 1, \dots, P, & m = 1, \dots, M \\ &\Omega &\sim W(N, \mathbf{S}), & \mathbf{S} &= \mathbf{I}_P \\ &\tau_m &\sim \Gamma(0.001, 0.001), & m = 1, \dots, M \end{aligned}$$

5.2. Data

data(swiss) Y <- cbind(swiss\$Agriculture, swiss\$Examination, swiss\$Education, swiss\$Catholic, swiss\$Infant.Mortality)

```
M <- NCOL(Y) #Number of variables
N <- NROW(Y) #Number of records
P \leftarrow trunc(0.5*(2*M + 1 - sqrt(8*M + 1))) #Number of factors to explore
P <- 3 #Number of factors to explore (override for this example)
gamma \leftarrow rep(0,P)
S <- diag(P)
mon.names <- c("LP","mu[1,1]")</pre>
cnt <- 1
parm.names <- rep(NA, (N*P + P*M + length(S[upper.tri(S, diag=TRUE)]) +
for (p in 1:P) {for (i in 1:N) {
    parm.names[cnt] <- paste("F[", i, ",", p, "]", sep="")</pre>
    cnt <- cnt + 1}}</pre>
for (m in 1:M) {for (p in 1:P) {
    parm.names[cnt] <- paste("Lambda[", p, ",", m, "]", sep="")</pre>
    cnt <- cnt + 1}}
for (q in 1:P) {for (p in 1:P) {
    if(upper.tri(S, diag=TRUE)[p,q] == TRUE) {
         parm.names[cnt] <- paste("Omega[", p, ",", q, "]", sep="")</pre>
         cnt <- cnt + 1}}}
for (m in 1:M) {
    parm.names[cnt] <- paste("alpha[", m, "]", sep="")</pre>
    cnt <- cnt + 1}
for (m in 1:M) {
    parm.names[cnt] <- paste("log.tau[", m, "]", sep="")</pre>
    cnt <- cnt + 1}
MyData <- list(M=M, N=N, P=P, S=S, Y=Y, gamma=gamma, mon.names=mon.names,
    parm.names=parm.names)
5.3. Initial Values
Initial. Values \leftarrow c(rep(0, (N*P + P*M)),
    S[upper.tri(S, diag=TRUE)], rep(0,M), rep(0,M))
5.4. Model
Model <- function(parm, Data)</pre>
    ### Prior Parameters
    alpha.mu <- rep(0,Data$M)
    alpha.tau <- rep(1.0E-3,Data$M)</pre>
    Lambda.mu <- 0
    Lambda.tau <- 1.0E-3
    tau.alpha <- 1.0E-3
    tau.beta <- 1.0E-3
    ### Parameters
    alpha <- parm[(length(parm) - 2 * Data$M + 1):(length(parm) - Data$M)]</pre>
```

```
tau <- exp(parm[(length(parm) - Data$M + 1):length(parm)])</pre>
F <- matrix(parm[1:(Data$N * Data$P)], Data$N, Data$P)</pre>
Lambda <- matrix(parm[(Data$N * Data$P + 1):(Data$N * Data$P +</pre>
    Data$P * Data$M)], Data$P, Data$M)
Omega <- matrix(NA, Data$P, Data$P)</pre>
Omega[upper.tri(Omega, diag=TRUE)] <- parm[(Data$N * Data$P +</pre>
    Data$P * Data$M + 1):(Data$N * Data$P + Data$P * Data$M +
    length(Data$S[upper.tri(Data$S, diag=TRUE)]))]
Omega[lower.tri(Omega)] <- Omega[upper.tri(Omega)]</pre>
Sigma <- solve(Omega)
### Log of Prior Densities
alpha.prior <- dnorm(alpha, alpha.mu, 1/sqrt(alpha.tau), log=TRUE)
tau.prior <- dgamma(tau, tau.alpha, tau.beta, log=TRUE)</pre>
Omega.prior <- dwishart(Omega, Data$N, Data$S, log=TRUE)</pre>
F.prior <- rep(NA, Data$N)
for (i in 1:Data$N) {
    F.prior[i] <- dmvn(F[i,], Data$gamma, Sigma, log=TRUE)}</pre>
Lambda.prior <- dnorm(Lambda, Lambda.mu, 1/sqrt(Lambda.tau),</pre>
    log=TRUE)
### Log-Likelihood
mu <- Data$Y
nu <- array(NA, dim=c(Data$N, Data$M, Data$P))</pre>
for (i in 1:DataN) {for (m in 1:DataM) {for (p in 1:DataP) {
    nu[i,m,p] <- Lambda[p,m] * F[i,p] }}}</pre>
for (i in 1:Data$N) {for (m in 1:Data$M) {
    mu[i,m] <- alpha[m] + sum(nu[i,m,])}}</pre>
LL <- sum(dnorm(Data$Y, mu, 1/sqrt(tau), log=TRUE))
### Log-Posterior
LP <- sum(LL) + sum(alpha.prior) + sum(tau.prior) + Omega.prior +
    sum(F.prior) + sum(Lambda.prior)
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,mu[1,1]),</pre>
    yhat=mu, parm=parm)
return(Modelout)
}
```

6. Laplace Regression

This linear regression specifies that y is Laplace-distributed, where it is usually Gaussian or normally-distributed. It has been claimed that it should be surprising that the normal distribution became the standard, when the Laplace distribution usually fits better and has wider tails (Kotz, Kozubowski, and Podgorski 2001). Another popular alternative is to use the t-distribution, though it is more computationally expensive to estimate, because it has three parameters. The Laplace distribution has only two parameters, location and scale like the normal distribution, and is computationally easier to fit. This example could be taken one step further, and the parameter vector β could be Laplace-distributed. Laplace's Demon recommends that users experiment with replacing the normal distribution with the Laplace

distribution.

6.1. Form

```
y \sim L(\mu, \tau^{-1})\mu = \mathbf{X}\beta\beta_j \sim N(0, 1000), \quad j = 1, \dots, J\tau \sim \Gamma(0.001, 0.001)
```

6.2. Data

```
N <- 10000
J <- 5
X <- matrix(1,N,J)
for (j in 2:J) {X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))}
beta <- runif(J,-3,3)
e <- rlaplace(N,0,0.1)
y <- as.vector(beta %*% t(X) + e)
mon.names <- c("LP", "tau")
parm.names <- rep(NA, J+1)
for (j in 1:J) {parm.names[j] <- paste("beta[",j,"]",sep="")}
parm.names[J+1] <- "log.tau"
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

6.3. Initial Values

```
Initial.Values <- c(rep(0,J), log(1))</pre>
```

```
Model <- function(parm, Data)
    {
        ### Prior Parameters
        beta.mu <- rep(0,Data$J)
        beta.tau <- rep(1.0E-3,Data$J)
        tau.alpha <- 1.0E-3
        tau.beta <- 1.0E-3
        ### Parameters
        beta <- parm[1:Data$J]
        tau <- exp(parm[Data$J+1])
        ### Log(Prior Densities)
        beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)
        tau.prior <- dgamma(tau, tau.alpha, tau.beta, log=TRUE)
        ### Log-Likelihood</pre>
```

```
mu <- beta %*% t(Data$X)
LL <- sum(dlaplace(Data$y, mu, 1/sqrt(tau), log=TRUE))
### Log-Posterior
LP <- LL + sum(beta.prior) + tau.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, tau), yhat=mu, parm=parm)
return(Modelout)
}</pre>
```

7. Linear Regression

7.1. Form

$$y \sim N(\mu, \tau^{-1})$$
$$\mu = \mathbf{X}\beta$$
$$\beta_j \sim N(0, 1000), \quad j = 1, \dots, J$$
$$\tau \sim \Gamma(0.001, 0.001)$$

7.2. Data

```
N <- 10000
J <- 5
X <- matrix(1,N,J)
for (j in 2:J) {X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))}
beta <- runif(J,-3,3)
e <- rnorm(N,0,0.1)
y <- as.vector(beta %*% t(X) + e)
mon.names <- c("LP", "tau")
parm.names <- rep(NA, J+1)
for (j in 1:J) {parm.names[j] <- paste("beta[",j,"]",sep="")}
parm.names[J+1] <- "log.tau"
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

7.3. Initial Values

```
Initial.Values <- c(rep(0,J), log(1))</pre>
```

```
Model <- function(parm, Data)
{
    ### Prior Parameters</pre>
```

```
beta.mu <- rep(0,Data$J)
beta.tau <- rep(1.0E-3,Data$J)
tau.alpha <- 1.0E-3
tau.beta <- 1.0E-3
### Parameters
beta <- parm[1:Data$J]</pre>
tau <- exp(parm[Data$J+1])</pre>
### Log(Prior Densities)
beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)</pre>
tau.prior <- dgamma(tau, tau.alpha, tau.beta, log=TRUE)
### Log-Likelihood
mu <- beta %*% t(Data$X)</pre>
LL <- sum(dnorm(Data$y, mu, 1/sqrt(tau), log=TRUE))</pre>
### Log-Posterior
LP <- LL + sum(beta.prior) + tau.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, tau), yhat=mu,
    parm=parm)
return(Modelout)
}
```

8. Linear Regression with Full Missingness

With 'full missingness', there are missing values for both the response and at least one predictor. This is a minimal example, since there are missing values in only one of the predictors. Initial values do not need to be specified for missing values in a predictor, unless another predictor variable with missing values is used to predict the missing values of a predictor. More effort is involved in specifying a model with a missing predictor that is predicted by another missing predictor. The full likelihood approach to full missingness is excellent as long as the model is identifiable. When it is not identifiable, then imputation may be done in a previous stage. In this example, X[,2] is the only predictor with missing values.

8.1. Form

$$y \sim N(\mu_2, \tau_2^{-1})$$

$$\mu_2 = \mathbf{X}\beta$$

$$X_{1:N,2} \sim N(\mu_1, \tau_1^{-1})$$

$$\mu_1 = \mathbf{X}_{1:N,(1,3:J)}\alpha$$

$$\alpha_j \sim N(0, 1000), \quad j = 1, \dots, J - 1$$

$$\beta_j \sim N(0, 1000), \quad j = 1, \dots, J$$

$$\tau_k \sim \Gamma(0.001, 0.001), \quad k = 1, \dots, 2$$

```
8.2. Data
N <- 1000
J <- 5
X <- matrix(runif(N*J,-2,2),N,J)</pre>
X[,1] <- 1
alpha <- runif((J-1),-2,2)
X[,2] \leftarrow alpha %*% t(X[,-2]) + rnorm(N,0,0.1)
beta \leftarrow runif(J,-2,2)
y \leftarrow as.vector(beta %*% t(X) + rnorm(N,0,0.1))
y[sample(1:N, round(N*0.05))] <- NA
X[sample(1:N, round(N*0.05)), 2] \leftarrow NA
mon.names <- c("LP","tau[1]","tau[2]")</pre>
parm.names \leftarrow rep(NA,(2*J+1))
for (j in 1:(J-1)) {parm.names[j] <- paste("alpha[",j,"]",sep="")}</pre>
for (j in J:(2*J-1)) {parm.names[j] <- paste("beta[",(j-J+1),"]",sep="")}
parm.names[(2*J):(2*J+1)] <- c("log.tau[1]","log.tau[2]")
MyData <- list(J=J, N=N, X=X, mon.names=mon.names, parm.names=parm.names,
     y=y)
8.3. Initial Values
Initial. Values \leftarrow c(rep(0,(J-1)), rep(0,J), rep(0,2))
8.4. Model
Model <- function(parm, Data)</pre>
     ### Prior Parameters
     alpha.mu <- rep(0,(Data$J-1))</pre>
     alpha.tau <- rep(1.0E-3,(Data$J-1))
     beta.mu <- rep(0,Data$J)</pre>
     beta.tau <- rep(1.0E-3,Data$J)</pre>
     tau.alpha \leftarrow rep(1.0E-3,2)
     tau.beta <- rep(1.0E-3,2)
     ### Parameters
     alpha <- parm[1:(Data$J-1)]</pre>
     beta <- parm[Data$J:(2*Data$J - 1)]</pre>
     tau <- exp(parm[(2*Data$J):(2*Data$J+1)])</pre>
     ### Log of Prior Densities
     alpha.prior <- dnorm(alpha, alpha.mu, 1/sqrt(alpha.tau), log=TRUE)</pre>
     beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)</pre>
     tau.prior <- dgamma(tau, tau.alpha, tau.beta, log=TRUE)</pre>
     ### Log-Likelihood
     mu1 <- alpha %*% t(Data$X[,-2])</pre>
     X.imputed <- Data$X
     X.imputed[,2] <- ifelse(is.na(Data$X[,2]), mu1, Data$X[,2])</pre>
```

LL1 <- sum(dnorm(X.imputed[,2], mu1, 1/sqrt(tau[1]), log=TRUE))

9. Linear Regression with Missing Response

Initial values do not need to be specified for missing values in this response, y. Instead, at each iteration, missing values in y are replaced with their estimate in μ .

9.1. Form

$$y \sim N(\mu, \tau^{-1})$$
$$\mu = \mathbf{X}\beta$$
$$\beta_j \sim N(0, 1000), \quad j = 1, \dots, J$$
$$\tau \sim \Gamma(0.001, 0.001)$$

9.2. Data

```
data(demonsnacks)
N <- NROW(demonsnacks)
J <- NCOL(demonsnacks)
y <- log(demonsnacks$Calories)
y[sample(1:N, round(N*0.05))] <- NA
X <- cbind(1, as.matrix(demonsnacks[,c(1,3:10)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- c("LP","tau")
parm.names <- rep(NA,J+1)
for (j in 1:J) {parm.names[j] <- paste("beta[",j,"]",sep="")}
parm.names[J+1] <- "log.tau"
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

9.3. Initial Values

```
Initial.Values <- c(rep(0,J), log(1))</pre>
```

```
Model <- function(parm, Data)</pre>
```

```
### Prior Parameters
beta.mu <- rep(0,Data$J)</pre>
beta.tau <- rep(1.0E-3,Data$J)</pre>
tau.alpha <- 1.0E-3
tau.beta <- 1.0E-3
### Parameters
beta <- parm[1:Data$J]</pre>
tau <- exp(parm[Data$J+1])</pre>
### Log of Prior Densities
beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)</pre>
tau.prior <- dgamma(tau, tau.alpha, tau.beta, log=TRUE)</pre>
### Log-Likelihood
mu <- beta %*% t(Data$X)</pre>
y.imputed <- ifelse(is.na(Data$y), mu, Data$y)</pre>
LL <- sum(dnorm(y.imputed, mu, 1/sqrt(tau), log=TRUE))
### Log-Posterior
LP <- LL + sum(beta.prior) + tau.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,tau),</pre>
    yhat=mu, parm=parm)
return(Modelout)
}
```

10. Multinomial Logit

10.1. Form

$$y_{i} \sim Cat(p_{i,1:J})$$

$$p_{i,j} = \frac{\phi_{i,j}}{\sum_{j=1}^{J} \phi_{i,j}}, \quad \sum_{j=1}^{J} p_{i,j} = 1$$

$$\phi = \exp(\mu)$$

$$\mu_{i,J} = 0$$

$$\mu_{i,j} = \mathbf{X}_{i,1:K}\beta_{j,1:K}, \quad j = 1, \dots, (J-1)$$

$$\beta_{j,k} \sim N(0, 1000) \quad j = 1, \dots, (J-1)$$

```
y <- x01 <- x02 <- c(1:300)
y[1:100] <- 1
y[101:200] <- 2
y[201:300] <- 3
x01[1:100] <- rnorm(100, 25, 2.5)
```

```
x01[101:200] \leftarrow rnorm(100, 40, 4.0)
x01[201:300] <- rnorm(100, 35, 3.5)
x02[1:100] \leftarrow rnorm(100, 2.51, 0.25)
x02[101:200] \leftarrow rnorm(100, 2.01, 0.20)
x02[201:300] \leftarrow rnorm(100, 2.70, 0.27)
N <- length(y)
J <- 3 #Number of categories in y
K <- 3 #Number of predictors (including the intercept)</pre>
X \leftarrow matrix(c(rep(1,N),x01,x02),N,K)
mon.names <- "LP"
parm.names <- c("beta[1,1]","beta[1,2]","beta[1,3]","beta[2,1]",
     "beta[2,2]", "beta[2,3]") ### Parameter Names [J,K]
MyData <- list(J=J, K=K, N=N, X=X, mon.names=mon.names,
     parm.names=parm.names, y=y)
10.3. Initial Values
Initial.Values <- c(rep(0,(J-1)*K))</pre>
10.4. Model
Model <- function(parm, Data)</pre>
     {
     ### Prior Parameters
     beta.mu <- rep(0,(Data$J-1)*Data$K)</pre>
     beta.tau <- rep(1.0E-3,(Data$J-1)*Data$K)
     ### Parameters
     beta <- parm
     ### Log(Prior Densities)
     beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)</pre>
     ### Log-Posterior
     mu <- matrix(0,Data$N,(Data$J-1))</pre>
     mu[,1] <- beta[1] + beta[2]*Data$X[,2] + beta[3]*Data$X[,3]</pre>
     mu[,2] <- beta[4] + beta[5]*Data$X[,2] + beta[6]*Data$X[,3]</pre>
     mu <- ifelse(mu > 700, 700, mu)
     mu \leftarrow ifelse(mu \leftarrow -700, -700, mu)
     p <- phi <- matrix(c(exp(mu[,1]),exp(mu[,2]),rep(1,Data$N))),</pre>
          Data$N, Data$J)
     for(j in 1:Data$J) {p[,j] <- phi[,j] / apply(phi,1,sum)}</pre>
     ### Log-Likelihood
     Y <- matrix(0,Data$N,Data$J)</pre>
     for (j in 1:Data\$J) \{Y[,j] \leftarrow ifelse(Data\$y == j, 1, 0)\}
     LL \leftarrow sum(Y * log(p))
     ### Log-Posterior
     LP <- LL + sum(beta.prior)</pre>
```

Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>

```
yhat=as.vector(phi), parm=parm)
return(Modelout)
}
```

11. Normal, Multilevel

This is Gelman's school example (Gelman, Carlin, Stern, and Rubin 2004). Note that **LaplacesDemon** is much slower to converge compared to this example that uses the **R2WinBUGS** package (Gelman 2009), an R package on CRAN. However, also note that Laplace's Demon (eventually) provides a better answer (higher ESS, lower DIC, etc.).

11.1. Form

$$y_j \sim N(\theta_j, \tau_j^{-1})$$
$$\theta_j \sim N(\theta_\mu, \theta_\tau^{-1})$$
$$\theta_\mu \sim N(0, 1000)$$
$$\theta_\tau \sim \Gamma(0.001, 0.001)$$
$$\tau_j = sd^{-2}$$

11.2. Data

```
J <- 8
y <- c(28.4, 7.9, -2.8, 6.8, -0.6, 0.6, 18.0, 12.2)
sd <- c(14.9, 10.2, 16.3, 11.0, 9.4, 11.4, 10.4, 17.6)
mon.names <- c("LP","theta.sigma")
parm.names <- 2*J+2
for (j in 1:J) {parm.names[j] <- paste("theta[",j,"]",sep="")}
parm.names[J+1] <- paste("theta.mu[",j,"]",sep="")
parm.names[J+2] <- paste("log.theta.sigma[",j,"]",sep="")
MyData <- list(J=J, mon.names=mon.names, parm.names=parm.names, sd=sd, y=y)</pre>
```

11.3. Initial Values

```
Initial.Values <- rep(0,J+2)</pre>
```

```
Model <- function(parm, Data)
{
    ### Hyperprior Parameters
    theta.mu.mu <- 0
    theta.mu.tau <- 1.0E-3
    ### Prior Parameters</pre>
```

```
theta.mu <- parm[Data$J+1]</pre>
theta.sigma <- exp(parm[Data$J+2])</pre>
tau.alpha <- 1.0E-3
tau.beta <- 1.0E-3
### Parameters
theta <- parm[1:Data$J]; tau <- 1/(sd*sd)
### Log(Prior Densities)
theta.mu.prior <- dnorm(theta.mu, theta.mu.mu,
    1/sqrt(theta.mu.tau), log=TRUE)
tau.prior <- dgamma(tau, tau.alpha, tau.beta, log=TRUE)</pre>
theta.prior <- dnorm(theta, theta.mu, theta.sigma, log=TRUE)
### Log-Likelihood
LL <- sum(dnorm(Data$y, theta, 1/sqrt(tau), log=TRUE))
### Log-Posterior
LP <- LL + theta.mu.prior + sum(theta.prior) + sum(tau.prior)</pre>
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, theta.sigma),</pre>
    yhat=theta, parm=parm)
return(Modelout)
}
```

12. Poisson Regression

12.1. Form

$$y \sim Pois(\lambda)$$

$$\lambda = \exp(\mathbf{X}\beta)$$

$$\beta_j \sim N(0, 1000), \quad j = 1, \dots, J$$

```
N <- 10000
J <- 5
X <- matrix(runif(N*J,-2,2),N,J); X[,1] <- 1
beta <- runif(J,-2,2)
y <- as.vector(round(exp(beta %*% t(X))))
mon.names <- "LP"
parm.names <- rep(NA,J)
for (j in 1:J) {parm.names[j] <- paste("beta[",j,"]",sep="")}
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

12.3. Initial Values

```
Initial.Values <- rep(0,J)</pre>
12.4. Model
Model <- function(parm, Data)</pre>
     ### Prior Parameters
     beta.mu <- rep(0,Data$J)
     beta.tau <- rep(1.0E-3,Data$J)</pre>
     ### Parameters
     beta <- parm
     ### Log(Prior Densities)
     beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)</pre>
     ### Log-Likelihood
     lambda <- exp(beta %*% t(Data$X))</pre>
     LL <- sum(dpois(Data$y, lambda, log=TRUE))</pre>
     ### Log-Posterior
     LP <- LL + sum(beta.prior)</pre>
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,</pre>
          yhat=lambda, parm=parm)
```

13. Seemingly Unrelated Regression (SUR)

The following data was used by Zellner (1962) when introducing the Seemingly Unrelated Regression methodology.

13.1. Form

}

return(Modelout)

$$Y_{t,k} \sim N_K(\mu_{t,k}, \Sigma), \quad t = 1, \dots, T; \quad k = 1, \dots, K$$

$$\mu_{1,t} = \alpha_1 + \alpha_2 X_{t,1} + \alpha_3 X_{t,2}, \quad t = 1, \dots, T$$

$$\mu_{2,t} = \beta_1 + \beta_2 X_{t,3} + \beta_3 X_{t,4}, \quad t = 1, \dots, T$$

$$\Sigma = \Omega^{-1}$$

$$\Omega \sim Wishart(K, \mathbf{S}), \quad \mathbf{S} = \mathbf{I}_K$$

$$\alpha_j \sim N(0, 1000), \quad j = 1, \dots, J$$

$$\beta_j \sim N(0, 1000), \quad j = 1, \dots, J$$

where J=3, K=2, and T=20.

```
T <- 20
year <- c(1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,
    1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954)
IG <- c(33.1,45.0,77.2,44.6,48.1,74.4,113.0,91.9,61.3,56.8,93.6,159.9,
    147.2,146.3,98.3,93.5,135.2,157.3,179.5,189.6)
VG <- c(1170.6,2015.8,2803.3,2039.7,2256.2,2132.2,1834.1,1588.0,1749.4,
     1687.2,2007.7,2208.3,1656.7,1604.4,1431.8,1610.5,1819.4,2079.7,
    2371.6,2759.9)
CG <- c(97.8,104.4,118.0,156.2,172.6,186.6,220.9,287.8,319.9,321.3,319.6,
    346.0,456.4,543.4,618.3,647.4,671.3,726.1,800.3,888.9)
IW <- c(12.93,25.90,35.05,22.89,18.84,28.57,48.51,43.34,37.02,37.81,
    39.27,53.46,55.56,49.56,32.04,32.24,54.38,71.78,90.08,68.60)
VW <- c(191.5,516.0,729.0,560.4,519.9,628.5,537.1,561.2,617.2,626.7,
    737.2,760.5,581.4,662.3,583.8,635.2,723.8,864.1,1193.5,1188.9)
CW \leftarrow c(1.8, 0.8, 7.4, 18.1, 23.5, 26.5, 36.2, 60.8, 84.4, 91.2, 92.4, 86.0, 111.1,
     130.6,141.8,136.7,129.7,145.5,174.8,213.5)
Y <- matrix(c(IG,IW),T,2)
S <- diag(NCOL(Y))
mon.names <- c("LP", "Sigma[1,1]", "Sigma[2,1]", "Sigma[1,2]", "Sigma[2,2]")
parm.names <- c("alpha[1]", "alpha[2]", "alpha[3]", "beta[1]", "beta[2]",</pre>
     "beta[3]", "Omega[1,1]", "Omega[2,1]", "Omega[2,2]")
MyData <- list(S=S, T=T, Y=Y, CG=CG, CW=CW, IG=IG, IW=IW, VG=VG, VW=VW,
    mon.names=mon.names, parm.names=parm.names)
13.3. Initial Values
Initial.Values <- c(rep(0,3), rep(0,3), S[upper.tri(S, diag=TRUE)])</pre>
13.4. Model
Model <- function(parm, Data)</pre>
    ### Prior Parameters
    alpha.mu \leftarrow rep(0,3)
    alpha.tau \leftarrow rep(1.0E-3,3)
    beta.mu \leftarrow rep(0,3)
    beta.tau \leftarrow rep(1.0E-3,3)
    ### Parameters
    alpha <- parm[1:3]
    beta <- parm[4:6]
    Omega <- matrix(parm[c(7,8,8,9)], NROW(Data$S), NROW(Data$S))</pre>
    Sigma <- solve(Omega)
    ### Log(Prior Densities)
    alpha.prior <- dnorm(alpha, alpha.mu, 1/sqrt(alpha.tau), log=TRUE)
    beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)</pre>
```

```
Omega.prior <- dwishart(Omega, NROW(Data$S), Data$S, log=TRUE)
### Log-Likelihood
mu <- matrix(0,Data$T,2)
mu[,1] <- alpha[1] + alpha[2]*Data$CG + alpha[3]*Data$VG
mu[,2] <- beta[1] + beta[2]*Data$CW + beta[3]*Data$VW
LL <- rep(0, Data$T)
for (t in 1:Data$T) {
    LL[t] <- sum(dmvn(Data$Y[t,], mu[t,], Sigma, log=TRUE))}
### Log-Posterior
LP <- sum(LL) + sum(alpha.prior) + sum(beta.prior) + Omega.prior
Modelout <- list(LP=LP, Dev=-2*sum(LL),
    Monitor=c(LP, as.vector(Sigma)), yhat=as.vector(mu), parm=parm)
return(Modelout)
}</pre>
```

14. Zero-Inflated Poisson (ZIP)

14.1. Form

$$y \sim Pois(\Lambda_{1:N,2})$$
 $z \sim Bern(\Lambda_{1:N,1})$
 $z_i = 1$ when $y_i = 0$, else $z_i = 0$, $i = 1, ..., N$

$$\Lambda_{i,2} = 0 \quad if \quad \Lambda_{i,1} \ge 0.5, \quad i = 1, ..., N$$

$$\Lambda_{1:N,1} = \log[1 + \exp(\mathbf{X}_1\alpha)]$$

$$\Lambda_{1:N,2} = \exp(\mathbf{X}_2\beta)$$
 $\alpha_j \sim N(0, 1000), \quad j = 1, ..., J_1$
 $\beta_j \sim N(0, 1000), \quad j = 1, ..., J_2$

```
N <- 1000
J1 <- 4
J2 <- 3
X1 <- matrix(runif(N*J1,-2,2),N,J1); X1[,1] <- 1
X2 <- matrix(runif(N*J2,-2,2),N,J2); X2[,1] <- 1
alpha <- runif(J1,-1,1)
beta <- runif(J2,-1,1)
p <- as.vector(invlogit(alpha %*% t(X1) + rnorm(N,0,0.1)))
mu <- as.vector(round(exp(beta %*% t(X2) + rnorm(N,0,0.1))))
y <- ifelse(p > 0.5, 0, mu)
```

```
z \leftarrow ifelse(y == 0, 1, 0)
mon.names <- "LP"
parm.names <- rep(NA, J1+J2)
for (j in 1:J1) {parm.names[j] <- paste("alpha[", j, "]", sep="")}</pre>
for (j in 1:J2) {parm.names[J1+j] <- paste("beta[", j, "]", sep="")}
MyData <- list(J1=J1, J2=J2, N=N, X1=X1, X2=X2, mon.names=mon.names,
    parm.names=parm.names, y=y, z=z)
14.3. Initial Values
Initial.Values <- rep(0,J1+J2)</pre>
14.4. Model
Model <- function(parm, Data)</pre>
    ### Prior Parameters
     alpha.mu <- rep(0, Data$J1)</pre>
     alpha.tau <- rep(1.0E-3, Data$J1)</pre>
    beta.mu <- rep(0, Data$J2)
    beta.tau <- rep(1.0E-3, Data$J2)
     ### Parameters
    alpha <- parm[1:Data$J1]</pre>
    beta <- parm[(Data$J1+1):(Data$J1 + Data$J2)]</pre>
    ### Log(Prior Densities)
    alpha.prior <- dnorm(alpha, alpha.mu, 1/sqrt(alpha.tau), log=TRUE)</pre>
    beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)
    ### Log-Likelihood
    Lambda <- matrix(NA, Data$N, 2)</pre>
    Lambda[,1] <- invlogit(alpha %*% t(Data$X1))</pre>
    Lambda[,2] <- exp(beta %*% t(Data$X2))</pre>
    Lambda[,2] \leftarrow ifelse(Lambda[,1] >= 0.5, 0, Lambda[,2])
    LL1 <- sum(dbern(Data$z, Lambda[,1], log=TRUE))</pre>
    LL2 <- sum(dpois(Data$y, Lambda[,2], log=TRUE))
    ### Log-Posterior
    LP <- LL1 + LL2 + sum(alpha.prior) + sum(beta.prior)</pre>
    Modelout <- list(LP=LP, Dev=-2*LL2, Monitor=LP,</pre>
         yhat=Lambda[,2], parm=parm)
    return(Modelout)
```

References

Fokoue E (2004). "Stochastic Determination of the Intrinsic Structure in Bayesian Factor Analysis." Technical Report 2004-17, Statistical and Mathematical Sciences Institute, Research Triangle Park, NC, www.samsi.info.

- Gelman A (2009). R2WinBUGS: Running WinBUGS and OpenBUGS from R / S-PLUS. R package version 2.1-16, URL http://www.R-project.org/package=R2WinBUGS.
- Gelman A, Carlin J, Stern H, Rubin D (2004). Bayesian Data Analysis. 2nd edition. Chapman & Hall, Boca Raton, FL.
- Hall B (2011). *LaplacesDemon:* Software for Bayesian Inference. R package version 11.03.14, URL http://www.R-project.org/package=LaplacesDemon.
- Kotz S, Kozubowski T, Podgorski K (2001). The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Birkauser, Boston.
- R Development Core Team (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
- Zellner A (1962). "An Efficient Method of Estimating Seemingly Unrelated Regression Equations and Tests for Aggregation Bias." *Journal of the American Statistical Assocation*, **57**, 348–368.

Affiliation:

Byron Hall STATISTICAT, LLC Farmington, CT

E-mail: statisticat@gmail.com

URL: http://www.statisticat.com/laplacesdemon.html