Ordered Pairs and Cartesian Products

· $\bigcap \{ \} = \bigcap \emptyset \text{ is not defined.}$ · Power set: $\mathcal{P}(A)$ is the set of all subsets of A.

$$\frac{E.g.}{p(\{1,2\})} = \{ \emptyset, \{1\}, \{2\}, \{1,2\} \}$$

•
$$UP(\{1,2\}) = \emptyset U \{1\} U \{2\} U \{1,2\} = \{1,2\} = A$$
• $OP(\{1,2\}) = \emptyset \cap \{1\} \cap \{2\} \cap \{1,2\} = \emptyset$

In general, for a set A, $U P(A) = A \qquad , \cap P(A) = \emptyset.$

Ordered Pairs

Ordered Pairs

Sets:
$$\{1,3\} = \{3,1\}$$

We write (a,b) for the ordered pair whose first entry is a and whose second entry is b. Unlike sets, the order by which the entries are listed does matter.

Theorem 1 (Fundamental Property of Ordered Pairs)

Let a and b be any objects. We have (a,b)=(a',b') if and only if a=a' and b=b'.

Example.

- (1,1) = (1,1)
- $(3,8) \neq (8,3)$

Notes on Ordered Pairs

$$\{a,b\} = \{b,a\}$$

The proof of the seemingly obvious statement in the theorem relies on a careful definition of the ordered pair (a, b).

Definition 2 (Ordered Pairs as Sets; Kuratowski)

Let a and b be any objects. The *ordered pair* (a,b) is the set $\{\{a\},\{a,b\}\}$.

Notes on Ordered Pairs (cont')

• The ordered triple (a,b,c) can be defined as ((a,b),c). The analogue of the fundamental property of ordered pairs holds for ordered triples. Namely,

$$(a, b, c) = (a', b', c')$$
 iff $a = a'$, $b = b'$, and $c = c'$.

- The ordered quadruple (a,b,c,d) can be defined as ((a,b,c),d). We have (a,b,c,d)=(a',b',c',d') iff a=a',b=b',c=c', and d=d'.
- Continuing in the same fashion, the ordered n-tuple (a_1, a_2, \ldots, a_n) can be defined for each natural number $n \ge 2$. The fundamental property of ordered n-tuple states

$$(a_1, a_2, \dots, a_n) = (a'_1, a'_2, \dots, a'_n)$$
 iff for each $j \in \{1, 2, \dots, n\}, a_j = a'_j$.

Sketch of proof (of tund. Prop. of ordered pains)

(a,b) = (a',b')

Backward implication is clear because

equals can be replaced by equals.

(a) Assume
$$(a,b) = (a',b')$$
.

That is, $\{a_1, a_1b_1\} = \{a_1, a_2, b_1\}$. (Kuratowski's defin)

S

(a) $\{a_1b_2\} \in \{a_1b_2\} = \{a_1b_2\}$.

(b) Assume $\{a_1b_2\} = \{a_1b_2\} = \{a_2b_2\} = \{a_1b_2\} = \{a_2b_2\} = \{a_2b_2\} = \{a_2b_2\} = \{a_1b_2\} = \{a_2b_2\} = \{a_$

•
$$\{a',b'\}\in S'$$
 and $S=S'\Rightarrow \{a',b'\}=\{a\}$ or $\{a',b'\}=\{a,b\}$
 $\{b=b'\}$

Cartesian Products

Definition 3 (Cartesian Products)

Let A and B be sets. Then the <u>Cartesian product of A and B</u> (denoted $A \times B$) is the set of all ordered pairs (x, y) such that $x \in A$ and $y \in B$; in other words,

$$A \times B = \{(x,y) : x \in A \text{ and } y \in B\}$$

Example.

- For a set A, the Cartesian product of A with itself, $A \times A$, is also denoted A^2 .
- $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, the Cartesian product of \mathbb{R} with itself. This is the coordinate plane in analytical geometry. $\mathbb{R}^2 = \left\{ (\iota, \psi) : \psi \in \mathbb{R} \right\} \text{ and } \psi \in \mathbb{R}^{\frac{1}{2}}.$
- $[1,4] \times [2,3]$ is a rectangle in \mathbb{R}^2 . Specifically, it is the set

$$\{(x,y): 1 \leqslant x \leqslant 4 \text{ and } 2 \leqslant y \leqslant 3\}.$$

Cartesian Products (cont')

Example 4

Let $A = \{1, 3\}$ and $B = \{2, 4, 6\}$. Find $A \times B$.

$$A \times B = \{ (x, y) : x \in A \text{ and } y \in B \}$$

$$= \{ (1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6) \}$$

A	t B	2	4	6
	1	(1,2)	(1,4)	(1,6)
	3	(3,2)	(3,4)	(3,6)

Cartesian Products of More Than Two Sets

The Cartesian product of three sets A, B, and C (denoted $A \times B \times C$) is defined in a similar way, namely,

$$A \times B \times C = \{(x, y, z) : x \in A, y \in B, \text{ and } z \in C\}.$$

In general:

Definition 5 (Cartesian Product of *n* Sets)

Let $n \in \mathbb{N}$ such that $n \geqslant 2$ and let A_1, \ldots, A_n be sets. Then the *Cartesian product of* A_1, A_2, \ldots, A_n (denoted $A_1 \times A_2 \times \cdots A_n$) is the set of all ordered n-tuples (x_1, x_2, \ldots, x_n) such that $x_1 \in A_1, x_2 \in A_2, \ldots, x_n \in A_n$; in other words,

$$A_1\times A_2\times \cdots \times A_n=\{(x_1,x_2,\ldots,x_n): \text{for each } j\in\{1,2,\ldots,n\}, \, x_j\in A_j\}.$$

Cartesian Products of More Than Two Sets (cont')

Example 6

Let $A = \{0, 1\}$. Find $A^3 = A \times A \times A$.