LAPORAN STATISTIKA

Tim Penyusun:

1.	Khofiyatul Hasanah	212410103012
2.	Lintang Arsa Naura	212410103019
3.	Nando Oktavian S	212410103095
4.	Bagas Cahyo	212410103041
5.	Tegar Wahyu Akbar	212410103092
6.	M. Thariq Aziz	212410103086

Kelas : Statistika A Kelompok : 5

PRODI INFORMATIKA
FAKULTAS ILMU KOMPUTER
UNIVERSITAS JEMBER
2022/2023

Kami menggunakan Data berat badan mahasiswa Unej yang kami dapat melalui penyebaran Gform yang pada akhirnya mendapatkan 211 responden /data. Namun untuk memudahkan pengerjaan tugasini kami hanya menggunakan 200 data sesuai dengan arahan dosen mata kuliah statistika ini. Berikut adalah bukti pengumpulan data yang telah kelompok kami lakukan

Berikut ini adalah diagram yang telah kami buat :

Untuk tugas pasca UTS ini kami menggunakan bantuan Bahasa R dan aplikasi Rstudio. Langkah 1 adalah mengimport csv ke data ke dalam R studio, setelah itu kami juga mencari nilai terbesar,terkecil serta banyak data:

Input:

```
#Mengambil data dari csv
databerat <- read.csv2(file = "d:/data_berat.csv", header = TRUE)
databerat
```

Output:

₩ K4.2.1 · ~/	~		
189 Fakultas	Ilmu Komputer	Informatika	73
190	Ilmu Komputer	Informatika	74
191 Fakultas	Ilmu Komputer	Informatika	74
192	Fasilkom	IF	75
193 Fakultas	Ilmu Komputer	Informatika	75
194 Fakultas	Ilmu Komputer	Informatika	76
195	Ilkom	If	78
196	Ilkom	If	80
197	Fasilkom	Informatika	80
198	ilkom	Informatika	80
199	Hukum	Ilmu Hukum	83
200	FASLIKOM	INFORMATIKA	105

Meghitung Banyak data dan nilai min max:

Input:

```
#Menghitung banyak data
  banyak_data <- nrow(databerat)</pre>
  banyak_data
) #Mencari nilai terkecil dan terbesar
nilai_terkecil <- min(databerat$berat)</pre>
  nilai_terbesar <- max(databerat$berat)</pre>
  nilai_terkecil
3 nilai_terbesar
1
                  Output:
> #Menghitung banyak data
 > banyak_data <- nrow(databerat)</pre>
 > banyak_data
[1] 200
 > nilai_terkecil <- min(databerat$berat)</pre>
 > nilai_terbesar <- max(databerat$berat)
 > nilai_terkecil
```

```
Range(R)/Jarak:
```

[1] 38

[1] 105

> nilai_terbesar

```
Range (R) = Data tertinggi - data terendah R = 105 - 38 = 67
```

Implementasi di Rstudio:

Menentukan banyak kelas menggunakan aturan strugess:

$$k = 1 + 3.3 \log R$$

 $k = 1 + 3.3 \log 67$
 $k = 7.02 = 7 \text{ (pembulatan)}$

Implementasi di Rstudio:

Menentukan panjang kelas (i)

```
i = (R / k)

i = (67/7) = 9.57 = 10 \text{ (pembulatan)}
```

Implementasi di Rstudio:

```
interval <- range/k
interval <- interval
interval <- round(interval) > interval
interval (1) 10
```

Data dalam Bentuk Tabel Frekuensi:

Nilai Interval	Tally	Frekuensi
38 - 47	IIIII IIIII IIIII II	17
48 - 57		71
58 - 67		79
68 - 77	IIIII IIIII IIIII IIIII IIIII II	27
78 - 87	IIIII	5
88 - 97		0
98 - 107	I	1
	TOTAL	200

Bagian-Bagian Distribusi Frekuensi:

- o Banyaknya kelas adalah 7
- Datas kelas-kelas adalah 38, 47, 48, 57, 58, 67, 68, 77, 78, 87, 88, 97, 98, 107
- O Batas bawah kelas-kelas adalah 38, 48, 58, 68, 78, 88, 98
- O Batas atas kelas-kelas adalah 47,57, 67, 77, 87, 97, 107
- o Tepi bawah kelas-kelas adalah 37.5, 47.5, 57.5, 67.5, 77.5, 87.5, 97.5
- o Tepi atas kelas-kelas adalah 47.5, 57.5, 67.5, 77.5, 87.5, 97.5, 107.5
- o Titik tengah kelas-kelas adalah 42.5, 52.5, 62.5, 72.5, 82.5, 92.5, 102.5
- o Interval kelas-kelas adalah 38 47, 48 57, 58 67, 68 77, 78 87, 88 97,98 107
- o Panjang interval kelas-kelas adalah 10
- Frekuensi kelas-kelas adalah 17, 71, 79, 27, 5, 0, 1

Tabel Untuk memudahkan mencari mean, dll:

Nilai Interval	Frekuensi(fi)	Nilai Tengah(xi)	fi.xi
38 - 47	17	42.5	722.5
48 - 57	71	52.5	3727.5
58 - 67	79	62.5	4937.5
68 - 77	27	72.5	1957.5
78 - 87	5	82.5	412.5
88 - 97	0	92.5	0
98 - 107	1	102.5	102.5
TOTAL			11860

Untuk mempermudah pemrosean selanjutnya kamimembuat table di Rstudio , Berikut ini adalah implementasinya:

Output:

```
kelas2 = c(48,49,50,51,52,53,54,55,56,57),
                      kelas3 = c(58, 59, 60, 61, 62, 63, 64, 65, 66, 67),
                      kelas4 = c(68,69,70,71,72,73,74,75,76,77),
                      kelas5 = c(78,79,80,81,82,83,84,85,86,87),
                      kelas6 = c(88,89,90,91,92,93,94,95,96,97),
                      kelas7 = c(98,99,100,101,102,103,104,105,106,107))
 frekuensi1 <- 17
> frekuensi2 <- 71
> frekuensi3 <- 79</p>
> frekuensi4 <- 27</p>
> frekuensi5 <- 5</pre>
> frekuensi6 <- 0
> frekuensi7 <- 1
             > fixi <- c(median(tabel$kelas1)*frekuensi1,</p>
                          median(tabel$kelas2)*frekuensi2,
                          median(tabel$kelas3)*frekuensi3,
                          median(tabel$kelas4)*frekuensi4,
                          median(tabel$kelas5)*frekuensi5,
                          median(tabel$kelas6)*frekuensi6,
                          median(tabel$kelas7)*frekuensi7)
```

```
1. Mean(x) = (\Sigma fi xi) / \Sigma fi)
```

Mean(x) = 11860/200

Mean(x) = 59,3

Mean(x) = 59 (dibulatkan)

keterangan:

xi = titiktengah

fi = frekuensi

Implementasi di Rstudio:

2. Median(Me) = b + p (1/2N - F)/f

$$Me = 57.5 + 10(100 - 71)/79$$

$$Me = 57,5 + 3,67$$

Me = 61,17

keterangan:

b = batas bawah kelas modal

p = panjang kelas interval

n = banyaknya data

F = jumlah frekuensi sebelum tanda kelas median

f = frekuensi kelas median

Implementasi di Rstudio:

3. Modus:

keterangan:

Mo = Modus

b = batas bawah kelas modal

p = panjang kelas interval

b1 = frekuensi kelas modal dikurangi kelas sebelumnya

b2 = frekuensi kelas modal dikurangi kelas setelahnya

Implementasi di Rstudio:

```
b1 <- frekuensi3-frekuensi2
b2 <- frekuensi3-frekuensi4
modus <- Tb+10*(b1/(b1+b2)) > modus
modus [1] 58.83333
```

4. Ukuran Jarak (Range)

Menghitung nilai tengah kelas terakhir dan kelas pertama

Nilai tengah kelas terakhir = 102.5

Nilai tengah kelas pertama = 42.5

Range = 102.5-42.5

Range = 60

Implementasi di Rstudio:

5. Simpangan Rata-Rata

$$SR = \frac{\displaystyle\sum_{i=1}^{k} f_i |x_i - \bar{x}|}{\displaystyle\sum_{i=1}^{k} f_i}$$
 SR = Simpangan Rata-rata
$$f_i = \text{besar frekuensi data}$$

$$x_i = \text{nilai tengah data ke-i}$$

$$\bar{x} = \text{nilai rata-rata dari data berkelompok}$$

Nilai Interval	Frekuensi
38 - 47	17
48 - 57	71
58 - 67	79
68 - 77	27
78 - 87	5
88 - 97	0
98 - 107	1
TOTAL	200

- 1. Menentukan nilai tengah dari setiap kelompok yang ada, kemudian dikalikan dengan frekuensinya
- 2. Rata-rata = 59.3

Nilai Interval	Frekuensi	xi	fi.xi	Xi - <i>x</i>	fi Xi-x
38 - 47	17	42.5	722.5	16.8	285.6
48 - 57	71	52.5	3727.5	6.8	482.8
58 - 67	79	62.5	4937.5	3.2	252.8

68 - 77	27	72.5	1957.5	13.2	356.4
78 - 87	5	82.5	412.5	23,2	116
88 - 97	0	92.5	0	33.2	0
98 - 107	1	102.5	102.5	43.2	43.2
TOTAL	200		11860		1536.8

Implementasi Tabel dalam Rstudio:

```
xi <- data.frame(xi1 = median(tabel$kelas1),</pre>
                 xi2 = median(tabel$kelas2),
                 xi3 = median(tabel$kelas3),
                 xi4 = median(tabel$kelas4),
                 xi5 = median(tabel$kelas5),
                 xi6 = median(tabel$kelas6),
                 xi7 = median(tabel$kelas7))
xi_xbar <- data.frame(a1 = xi$xi1-rata2,
                      a2 = xi xi2-rata2
                      a3 = xi$xi3-rata2,
                      a4 = xi xi4-rata2
                      a5 = xi$xi5-rata2,
                      a6 = xi$xi6-rata2,
                      a7 = xi$xi7-rata2
fi_xi_xbar <- data.frame(b1 = frekuensi1*abs(xi_xbar$a1),
                          b2 = frekuensi2*abs(xi_xbar$a2),
                          b3 = frekuensi3*abs(xi_xbar$a3),
                          b4 = frekuensi4*abs(xi_xbar$a4),
                          b5 = frekuensi5*abs(xi_xbar$a5),
                          b6 = frekuensi6*abs(xi_xbar$a6),
                          b7 = frekuensi7*abs(xi_xbar$a7))
  xi <- data.frame(xi1 = median(tabel$kelas1),</pre>
                    xi2 = median(tabel$kelas2),
                    xi3 = median(tabel$kelas3),
                    xi4 = median(tabel$kelas4),
                    xi5 = median(tabel$kelas5),
                    xi6 = median(tabel$kelas6),
                    xi7 = median(tabel$kelas7))
  xi_xbar <- data.frame(a1 = xi$xi1-rata2,
                         a2 = xi$xi2-rata2,
                         a3 = xi$xi3-rata2,
                         a4 = xi$xi4-rata2,
                         a5 = xi$xi5-rata2,
                         a6 = xi$xi6-rata2,
                         a7 = xi$xi7-rata2)
  fi_xi_xbar <- data.frame(b1 = frekuensi1*abs(xi_xbar$a1),
                            b2 = frekuensi2*abs(xi_xbar$a2),
                            b3 = frekuensi3*abs(xi_xbar$a3),
                            b4 = frekuensi4*abs(xi_xbar$a4),
                            b5 = frekuensi5*abs(xi_xbar$a5),
                            b6 = frekuensi6*abs(xi_xbar$a6),
                            h7 - frakuanci7*shc(vi vhar$s7))
```

SR = 1536.8/200 = 7.684

Jadi Simpangan rata-rata kelompok tersebut adalah 7.684

Implementasi di Rstudio:

6. Simpangan Baku

Rumus:

$$S = \sqrt{\frac{\sum fi (xi - \overline{x})^2}{n}}$$

Keterangan:

S = Standar deviasi

 f_i = frekuensi kelompok

 x_i = nilai tengah x ke-i

 \bar{x} = nilai rata-rata data

n = jumlah data

Diketahui:

Nilai	Frekuensi	хi	fi mi	$vi - \overline{v}$	$(xi-\overline{x})^2$	$fi(xi - \overline{x})^2$
Interval	rickuciisi	χι	fi.xi	$x \iota - x$	(xi - x)	$\int t(xt-x)$
interval						
38 - 47	17	42.5	722.5	-16.8	282.24	4798.08
48 - 57	71	52.5	3727.5	-6.8	46.24	3283.04
58 - 67	79	62.5	4937.5	3.2	10.24	808.96
68 - 77	27	72.5	1957.5	13.2	174.24	4704.48
78 - 87	5	82.5	412.5	23,2	538.24	2691.2
88 - 97	0	92.5	0	33.2	1056.25	0
98 - 107	1	102.5	102.5	43.2	1866.24	1866.24
TOTAL	200		11860			18152

Implementasi Tabel di Rstudio:

```
ki_xbar2 <- data.frame(a1 = xi_xbar$a1**2,
                         a2 = xi_xbar$a2**2,
                         a3 = xi_xbar$a3**2,
                         a4 = xi_xbar$a4**2,
                         a5 = xi_xbar$a5**2,
                         a6 = xi_xbar\$a6**2,
                         a7 = xi_xbar$a7**2
fi_xi_xbar2 <- data.frame(b1 = frekuensi1*xi_xbar2$a1,
                            b2 = frekuensi2*xi_xbar2$a2,
                            b3 = frekuensi3*xi_xbar2$a3,
                            b4 = frekuensi4*xi_xbar2$a4,
                            b5 = frekuensi5*xi_xbar2$a5,
                            b6 = frekuensi6*xi_xbar2$a6,
                            b7 = frekuensi7*xi_xbar2$a7)
 x_ sort(sum(fi vi vhar2)/harvak data)
X1_Xbar2 <- data.trame(al = X1_Xbar$al**2,</pre>
                          a2 = xi_xbar$a2**2,
                          a3 = xi_xbar$a3**2,
                          a4 = xi_xbar$a4**2,
                          a5 = xi_xbar$a5**2,
                          a6 = xi_xbar$a6**2,
                          a7 = xi_xbar$a7**2
 fi_xi_xbar2 <- data.frame(b1 = frekuensi1*xi_xbar2$a1,
                              b2 = frekuensi2*xi_xbar2$a2.
                              b3 = frekuensi3*xi_xbar2$a3.
                              b4 = frekuensi4*xi_xbar2$a4.
                              b5 = frekuensi5*xi_xbar2$a5,
                              b6 = frekuensi6*xi_xbar2$a6,
                              b7 = frekuensi7*xi_xbar2$a7)
```

Maka:

$$S = \sqrt{\sum fi (xi - \overline{x})^2}/n$$

 $S = \sqrt{18152/200}$
 $S = \sqrt{90.76}$
 $S = 9.52$

Jadi Simpangan baku kelompok tersebut adalah $\sqrt{90,76}$ = 9,52

Implementasi di Rstudio: