Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 26. března 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 9:

Měření elektrického napětí a proudu

 $T=21,1~^{\circ}\mathrm{C}$ $p=101,35~\mathrm{kPa}$ $\varphi=47,7~\%$

1. Úvod

V úloze se budu zabývat měřením vnitřního odporu ručkového ampérmetru a navržením obvodů pro rozsíření jeho rozsahu. Druhá část úlohy je zaměřená na digitálně analogové a analogově digitální převodníky a jejich vlastnosti.

2. Teorie

2.1. Měření vnitřního odporu ampérmetru

Určit vnitřní odpor ručkového ampermetru jde jednoduše přímo z Ohmova zákona zapojením obvodu na obrázku 1.

Obrázek 1: Měření vnitřního odporu ampérmetru z Ohmova zákona

2. možnost využívá nastavitelného odporu podle obrázku 2. Nejprve necháme dekádu nepřipojenou a řiditelným zdrojem nastavíme na ampérmetru maximální výchylku rozsahu I_0 . Poté dekádu připojíme a snažíme se nastavením hodnoty jejího odporu dosáhnout poloviční výchylky $I=\frac{I_0}{2}$. Nyní protéká oběma větvemi stejný proud, což nastane právě tehdy, když obě větve mají stejný odpor.

Obrázek 2: Měření vnitřního odporu ampérmetru pomocí odporové dekády

2.2. Změna rozsahu ampérmetru

Obecně můžeme rozsah přístroje pouze zvětšit. Měřený proud jde pomocí bočníku rozdělit do dvou větví a proud se měří jen v jdené, jako na obrázku 3. Celkový proud dopočítáme pomocí odporu bočníku R_B .

Obrázek 3: Zapojení bočníku

Protože napětí je na měřicím přístroji i na celkovém obvodu je stejné

$$I_N \frac{R_A R_B}{R_A + R_B} = R_A I_A = U \tag{1}$$

$$R_B = \frac{R_A}{\frac{I_N}{I_A} - 1},\tag{2}$$

kde I_N je celkový proud a I_A proud měřený ampérmetrem. Ze vztahu (2) můžu spočítat potřebný odpor R_B pro $\frac{I_N}{I_A}$ =n-násobné zvětšení rozsahu měření proudu.

2.3. Změna rozsahu voltmetru

Rozsah voltmetru změní sériově zapojený odpor jako na obrázku 4, tzv. předřadník. Místo voltmetru se taky dá použít ampérmetr se známým vnitřním odporem a napětí spočítat z ohmova zákona.

Obrázek 4: Zapojení předřadníku

Protože proud, který teče voltmetrem je stejný jako ten, který teče celým obvodem

$$\frac{U_V}{R_V} = \frac{U_N}{R_P + R_V} \tag{3}$$

$$R_P = \left(\frac{U_N}{U_V} - 1\right)R_V,\tag{4}$$

(5)

kde $\frac{U_N}{U_A}=n,$ což je koeficient zvětšení rozsahu. Pokud namísto voltmetru použijeme ampérmetr

$$U_N = (R_A + R_B) * I_A \tag{6}$$

$$R_B = \frac{U_N}{I_A} - R_A. (7)$$

2.4. Digitální část

Číselný rozsah n-bitového převodníku určíme jako $[0, 2^n - 1]$ a jeho kvantizační krok

$$k = \frac{U_m - U_0}{2^n - 1},\tag{8}$$

kde U_0 je minimální a U_m maximální napětí. Pokud pro žádané napětí hledáme odpovídající vstup použijeme

$$x = \frac{U(x) - U_0}{k}. (9)$$

Na obrázku 5 je uvedený jeden možný n-bitový přechodník, který obecně patří do skupiny převodníků konstruovaných pro mapování rozsahu $(0, 2^n - 1)$ na napěťový rozsah $(0, U_m)$. Reálné získané napětí ale může být odlišné. Zavádíme proto veličny charakterizující tyto odchylky jako

chyba ofsetu
$$\delta_0 = \frac{U_0}{k} \tag{10}$$

chyba ofsetu
$$\delta_0 = \frac{U_0}{k} \tag{10}$$
 chyba zesílení
$$\delta_m = \frac{U_m - U_0}{k}. \tag{11}$$

Obrázek 5: D/A převodník s váhovými rezistory

3. Výsledky měření

3.1. Měření vnitřního odporu ampérmetru

Použil jsem dvě metody měření vnitřního odporu ampérmetru R_A . Přímo z ohmova zákona zapojením obvodu z obrázku 1 a pomocí odporové dekády podle obrázku 2.

měření z Ohmova zákona | (1650
$$\pm$$
 20) Ω
měření Dekádou | (1670 \pm 20) Ω

Tabulka 1: výsledky měření vnitřního odporu ručkového ampérmetru

3.2. Zvětšení rozsahu ampérmetru

N-násobné zvětšení rozsahu jde realizovat zapojením obvodu z obrázku 3 s odporem R_B , který spočítám ze vztahu (2). Nejjednodušší způsob kontroly je použít velmi přesně nastavitelný zdroj proudu a nastavit ho tak, aby na ručkovém ampérmetru byla právě maximální hodnota. Nakonec porovnám předpokládanou hodnotu proudu s tou nastavenou na zdroji.

n	$R_B [\Omega]$	$I_A [\mu A]$	předpokládáme $I = nI_0$ [mA]	opravdový proud I [mA]
5	(420 ± 5)	100	0.5	0.4929
10	(187 ± 2)	100	1	0.9790
20	(88 ± 1)	100	2	1.9664

Tabulka 2: Tabulka měření proudu použitím bočníku podle vztahu (2)

3.3. Zvětšení rozsahu voltmertu

Pokud znám vnitřní odpor ampérmetru, můžu ho použít jako voltmetr. S přeřadníkem o odporu R_B navíc můžu zvětšit jeho rozsah na hodnotu U_N podle vztahu (7). Ke kontrole použiju podobný postup jako u bočníku.

předpokládané napětí U_N [V]	$I_A [\mu A]$	$R_B [k\Omega]$	opravdové napětí U_N [V]
5	100	(48.34 ± 0.04)	5.086
10	100	98.34 ± 0.04	10.420

Tabulka 3: Tabulka měření napětí použitím přeřadníku podle vztahu (7)

3.4. D/A převodníky

Určím rozsah 8-bitového převodníku MDAC08 a 16-bitobého USB - 9162.

převodník	n	U_m [V]	U_0 [V]	k [mV]
MDAC08	8	9.88121	$1.2560 \cdot 10^{-3}$	38.6
USB - 9162	16	10.6970	-10.6735	0.326

Tabulka 4: rozsahy dvou D/A převodníků a jejich kvantizační kroky

Interpolací podle vztahu (9) teď můžu nastavit libovolné napětí v rozsahu. Třeba pro U(x)=3.2 je x = 42545. Skutečné napětí bylo 3.19917 V.

Nominální rozsah př
vodníku MDAC08 je 0 - 10 V. Ze vztaů (10) a (11) spočítám chybu of
setu a chybu zesílení

$$\delta_0 = 1.26 * 10^{-3} \tag{12}$$

$$\delta_m = 11.8 * 10^{-3}. (13)$$

3.5. Vliv vzorkovací frekvence na kvalitu záznamu

Různými vzorkovacími frekvencemi jsem A/D převodníkem zaznamenával signál o frekvenci 1 kHz. Výsledky jsou uvedeny v tabulce 3.

Vzorkovací frekvence	frekvence záznamu	
20 kHz	1 kHz	
2 kHz	$1~\mathrm{kHz}$	
$1,1~\mathrm{kHz}$	$100~\mathrm{Hz}$	
1 kHz	-	
100 Hz	-	

Tabulka 5: Vliv vzorkovací frekvence na kvalitu záznamu A/D převodníku

3.6. Kvantizační krok A/D převodníku

Kvantizační krok vyjadřuje minimální rozdíl napětí, který jde A/D převodníkem změřit. K jeho určení existuje následující postup. Zkratováním vstupních svorek začne karta měřit malé náhodné rozdíly napětí. Kvantizační krok se v získaných datech, projeví jako nejmenší nenulový rozdíl dvou následujících hodnot. Použil jsem 12-bitový A/D převodník na kartě ICP DAS PCI-1202LU z měřícího systému ISES. Nejmenší naměřený rozdíl byl 1.22099 mV.

4. Závěr

Použil jsem dvě různé metody pro měření vnitřního odporu ručkového ampérmetru. Obě měření uvedené v tabulce 1 jsou docela přesné a zhodují se. Dál jsem chtěl zvětšit měřící rozsah. Podle vztahů (2) a (7) jsem odhadl velikosti odporů bočníků a přeřadníků a výsledky uvedl v tabulkách 2 a 3. Rozdíl vypočítaných hodnot a skutečných byl v obou případech minimální.

Určil jsem velikosti kvantizačních kroků dvou D/A přeřadníků MDAC08 a USB - 9162 uvedené v tabulce 4. Povedlo se správně odhadnout potřebné vstupní číslo pro nastavení 3.2 V a chyby ofsetu a zesílení byly obě minimální.

V tabulce 5 jsem testoval různé vzorkovací frekvence při měření signálu o frekvenci 1 kHz. Pro vzorkovací frekvenci 2 kHz už vyšla správná hodnota, ale spolehlivé měření by to nebylo. Vzorkovací frekvence by měla být alespoň o řád vyšší než ta měřená, aby mezi nimi nedošlo k nějaké harmonii.

Určil jsem kvantizační krok 12-bitového A/D převodníku s rozsahem 0 - 5 V na kartě ICP DAS PCI-1202LU jako 1.22099 mV, což odpovídá teoretickému výsledku $k=\frac{U_r}{2^n-1}=1.221$ mV.

Reference

[1] Návod k úloze 9 https://www.physics.muni.cz/kof/vyuka/fp1_09.pdf.