TÓM TẮT PHƯƠNG TRÌNH VI PHÂN CHƯƠNG 9 VÀ 17

A. Phương trình vi phân cấp 1 dạng tách biến:

$$y' = P(x).Q(y) \tag{1a}$$

Cách giải: đưa (1a) về dạng $\frac{y'}{Q(y)} = P(x)$, suy ra $\int \frac{y'}{Q(y)} dx = \int P(x) dx$, từ đây sẽ xuất hiện một phương trình xác định ẩn hàm (implicit) hoặc biểu thức tường minh (explicit formula) của y theo biến x.

Dang biến thể của (1a):

$$y' = f\left(\frac{y}{x}\right) \tag{2a}$$

trong đó $f\left(\frac{y}{x}\right)$ là một biểu thức theo $\frac{y}{x}$.

 $\emph{Cách giải:} \ \ \emph{Dặt} \ \ u=rac{y}{x}\Rightarrow y=ux\Rightarrow y'=u'x+u, \ \ \ \ \$ thay vào (2) ta được

$$u' = \frac{f(u) - u}{r} \tag{3a}$$

- * $Trường\ hợp\ 1$, nếu $f(u)\equiv u$, nghĩa là (2a) có dạng $y'=\frac{y}{x}$, chính là dạng phương trình (1a).
- * $Trường\ hợp\ 2$, nếu a_0 là nghiệm (số thực) của phương trình f(a)-a=0 thì hàm số $y=a_0x$ sẽ thỏa phương trình (2a), ta được một nghiệm riêng (particular solution) của (2a).
- * Trường hợp 3, xét f(u) u không đồng nhất 0 thì (3a) trở thành

$$\frac{u'}{f(u)-u} = \frac{1}{x} \Rightarrow \int \frac{u'}{f(u)-u} dx = \int \frac{1}{x} dx.$$

Bài tập

Giải bài tập mục 9.3 Stewart: 1-9; 11-18; 19-22; 29-32. Ngoài ra giải thêm các bài tập sau:

1)
$$y' = e^{\frac{y}{x}} + \frac{y}{x} + 1$$

$$2) \quad xy' = x\sin\frac{y}{x} + y$$

3)
$$x^2y' + y^2 + xy + x^2 = 0$$

4)
$$xy' = x + 2y$$

5)
$$(x^2 - xy)y' = -y^2$$

6)
$$xyy' - y^2 = (x+y)^2 e^{-\frac{y}{x}}$$

7)
$$xy' + y \ln x = y \ln y$$
 thỏa $y(1) = 1$.

B. Phương trình vi phân tuyến tính cấp 1:

$$y' + P(x)y = Q(x) \tag{1b}$$

Cách giải: nhân hai vế của (4) với $e^{F(x)}$, trong đó $F(x)=\int P(x)dx$ là một nguyên hàm của P(x). Khi đó (4) có dạng

$$ye^{F(x)}' = Q(x).e^{F(x)} \Rightarrow ye^{F(x)} = \int Q(x).e^{F(x)}dx$$

từ đó giải ra y.

Bài tập

Giải các bài tập mục 9.5 Stewart: 1-4; 5-14; 15-20.

C. Phương trình vi phân tuyến tính cấp 2, hệ số hằng:

$$ay'' + by' + cy = G(x) \tag{1c}$$

trong đó a, b, c là các hằng số và $a \neq 0$, G(x) là hàm số cho trước. Phương trình (5) được gọi là phương trình không thuần nhất (nonhomogeneous equation). Phương trình thuần nhất tương ứng của (5) (complementary equation of (5)) là

$$ay'' + by' + cy = 0 (2c)$$

Phương trình đặc trưng (characteristic equation) là

$$ar^2 + br + c = 0 (3c)$$

1. Cách giải phương trình (2c):

a) Nếu phương trình đặc trưng (3c) có nghiệm kép r_0 thì nghiệm tổng quát (general solution) của (2c) là

$$y_c = c_1 e^{r_0 x} + c_2 x e^{r_0 x}$$
,

trong đó c_1 , c_2 là hai hằng số tùy ý. Ký hiệu y_c ám chỉ chữ $complementary\ equation\ (2c)$.

b) Nếu phương trình (3c) có hai nghiệm thực phân biệt r_1, r_2 thì nghiệm tổng quát của (2c) là

$$y_c = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

c) Nếu phương trình (3c) có hai nghiệm phức $r_1=\alpha+i\beta, r_2=\alpha-i\beta$ thì nghiệm tổng quát của (2c)

$$y_c = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x).$$

2. Cách giải phương trình (1c):

Nếu y_c là nghiệm tổng quát của (2c) và y_p là một nghiệm riêng (particular solution) thì nghiệm tổng quát của (1c) là

$$y(x) = y_c(x) + y_p(x)$$

Cách tìm một nghiệm riêng của (1c) như sau:

- a) Nếu hàm số $G(x)=P_n(x)e^{rx}$, trong đó P_n là đa thức bậc n theo biến x. Ta có ba trường hợp sau
- * Trường hợp r không là nghiệm của phương trình đặc trưng (3c) thì y_p có dạng $y_p(x) = Q_n(x)e^{rx}, \text{ trong đó } Q_n \text{ là đa thức bậc } n \text{ được tìm bằng phương pháp hệ số bất định (the method of undetermined coefficients) khi thay dạng đó vào (1c).}$
 - * Trường hợp r là nghiệm (thực) đơn của của (3c) thì y_p có dạng $y_p = xQ_n(x)e^{rx}$.
 - * Trường hợp r là nghiệm kép của (3c) thì y_p có dạng $y_p = x^2 Q_n(x) e^{rx}$.

- **b)** Nếu hàm số $G(x)=e^{\alpha x}\left[P_n(x)\cos\beta x+Q_m(x)\sin\beta x\right]$ thì ta đặt $s=\max\{m,n\}$ và ta có hai trường hợp sau
- * Trường hợp $\alpha\pm i\beta$ không là nghiệm phức của phương trình (3c) thì $y_p=e^{\alpha x}\big[R_s(x)\cos\beta x+T_s(x)\sin\beta x\big].$
 - * Trường hợp $\alpha \pm i \beta$ là nghiệm phức của (3c) thì $y_p = x e^{\alpha x} \left[R_s(x) \cos \beta x + T_s(x) \sin \beta x \right]$.
- c) Nếu hàm số G(x) không thuộc hai dạng a) b) ở trên thì ta dùng phương pháp biến thiên hằng số (the method of variation of parameters): giả sử nghiệm tổng quát của (2c) có dạng $y_c=c_1y_1(x)+c_2y_2(x)$ thì ta tìm một nghiệm riêng của (1c) là $y_p(x)=u_1(x)y_1(x)+u_2(x)y_2(x)$, nghĩa là ta thay hằng số c_1 và c_2 bởi hai hàm số $u_1(x)$ và $u_2(x)$ thỏa hệ phương trình sau

$$egin{cases} u_1' y_1 + u_2' y_2 &= 0 \ u_1' y_1' + u_2' y_2' &= G \end{cases}.$$

Bài tập

Làm bài mục 17.2 Stewart: 1-10; 13-18; 19-22; 23-28.