ICS Problem set 10

November 22, 2019

1 1

S	Machine Code	Assembly Code	Description
0	001 1 0001	LOAD #1	Load the value 1 into the accumulator
1	010 0 1111	STORE 15	Store the value in the accumulator to memory address 15
2	001 1 0000	LOAD #0	Load the value 0 into the accumulator
3	101 1 0100	EQUAL #4	If value in the accumulator equals to 4 skip the next step
4	110 1 0110	JUMP #6	Jump to operation number 6
5	111 1 0000	HALT	Stop Execution
6	001 0 0011	LOAD 3	Load the value in memory address 3 to the accumulator
7	100 1 0001	SUB #1	Subtract 1 from the accumulator
8	010 0 0011	STORE 3	Store the value in the accumulator to memory address 3
9	001 0 1111	LOAD 15	Load the value in memory address 15 to the accumulator
10	011 0 1111	ADD 15	Add the value in memory address 15 to the accumulator
11	010 0 1111	STORE 15	Store the value in the accumulator to memory address 15
12	110 1 0010	JUMP 2	Jump to operation defined in memory address 2
13	000 0 0000	Memory	Memory Address 13
14	000 0 0000	Memory	Memory Address 14
15	000 0 0000	Memory	Memory Address 15

First 1 is loaded into the accumulator(0) and then stored in memory address 15(1). Then 0 is loaded into the accumulator(2) and then checked if it is equal to 4(3). Since the evaluation is false, the next step is not skipped. The value used by the equal statement is decreased by 1(6 and 7). Then the program adds the value stored into memory 15 to itself (9, 10, and 11). The program jumps back to instruction at memory address 2. Eventually, number used by the equal statement is 0. When this happens, execution is stopped(5).

This specific program is computing the following expression:

(2(2(2(2(a)))))

where a = 1.

Figure 1: Signal diagram with no gate delays

2 2

The timing diagram is: Figure 1

Theoretically you could make your flip flop arbitrary long if you do not consider the gate delay. However, realistically, the gate delay will lead to the output signal being delayed in reference to the clock signal.