Prédicats et quantificateurs

Le matériel

- Synthèse du professeur.
- Site Web: https://www.prodafor.com/informatique

> Section Algèbre de Boole

Ensembles de nombres

N: Ensemble des nombres entiers, positifs (Naturel)

Z: Ensemble des nombres entiers, positifs ET négatifs (Entier)

Q : Ensemble des nombres pouvant être écrits par une fraction entière (Rationnel)

Q': Ensemble des nombres ne pouvant pas être écrits par une fraction entière (Irrationnel)

R: Ensemble des nombres connus (Réels)

Fonction propositionnelle

- Fonction propositionnelle: ((x > 3)), ((x = y+3)), ((x+y=z))
- Ces énoncés ne sont ni vrais ni faux tant que les valeurs des variables ne sont pas précisées.
- L'énoncé « x est plus grand que 3. » comporte deux parties :
- 1- La variable x, est le **sujet** de l'énoncé;
- 2- Le **prédicat** « est plus grand que 3 », désigne une propriété que peut avoir le sujet de l'énoncé.

- On peut désigner la fonction propositionnelle par P(x), où P exprime le prédicat et x la variable.
- Une fois qu'une valeur est attribuée à la variable x, l'énoncé
 P(x) acquiert une valeur de vérité.

Exemple 1

Soit P(x) la fonction propositionnelle « x > 3 ». Quelles sont les valeurs de vérité de P(4) et de P(2)?

Exemple 2

Supposez que Q(x,y) désigne l'énoncé « x = y+3 ». Quelles sont les valeurs de vérité des propositions Q(1,2) et Q(3,0)?

Exemple 3

Considérez l'énoncé

If x > 0 then

$$x := x + 1;$$

end

Lorsqu'un programme rencontre cet énoncé au cours de son exécution la valeur de la variable x est insérée dans P(x), qui est (x) est (x).

Si P(x) est vraie, alors l'affectation x = x + 1 s'effectue. Si P(x) est faux, alors la valeur x ne sera pas modifiée.

Quantificateur

Lorsque l'on a substitué des valeurs aux variables d'une fonction propositionnelle, l'énoncé obtenu a une valeur de vérité. Toutefois, on peut utiliser une autre méthode pour changer les fonctions propositionnelles en propositions : la **quantification**.

Quantificateur universel

La quantification universelle d'une fonction propositionnelle P(x) est la proposition « P(x) est vraie pour toutes les valeurs de x dans l'ensemble de référence ». Symboliquement, on écrit simplement

$$\forall x \in U, P(x)$$

exemple 1

Exprimez l'énoncé « Tous les étudiants de cette classe sont dans l'AEC en développement logiciel ».

E = ensemble des étudiants de la classe

P(x) = faire partie de l'AEC

Exemple 2

Soit P(x) l'énoncé « x + 1 > x ». Quelle est la valeur de vérité de la quantification $\forall x \in \mathbb{Z}$, P(x)

Exemple 3

Soit Q(x) l'énoncé « x < 2 ». Quelle est la valeur de vérité de la quantification $\forall x \in \mathbb{N}$, Q(x)

Remarque

Lorsqu'il est possible d'énumérer tous les éléments de l'ensemble de référence, disons $x_1, x_2, x_3, ..., x_n$, il s'ensuit que la quantification universelle $\forall x, Q(x)$ équivaut logiquement à la conjonction $P(x_1) \land P(x_2) \land P(x_3) \land ... \land P(x_n)$.

Exemple 4

Quelle est la valeur de vérité de $\forall x \in U, P(x)$, où P(x) est l'énoncé $(x^2 < 10)$ et où l'ensemble référence $U = \{1, 2, 3, 4\}$?

Quantificateur existentiel

La quantification existentielle de P(x) est la proposition « Il existe au moins un élément x de l'ensemble de référence tel que P(x) est vraie ». Symboliquement, on écrit simplement

$$\exists x \in U, P(x)$$

Exemple 1

Soit P(x) l'énoncé « x > 3 ». Quelle est la valeur de vérité de la quantification $\exists x \in R, P(x)$?

Exemple 2

Soit Q(x) l'énoncé « x = x+1 ». Quelle est la valeur de vérité de la quantification $\exists x \in R, Q(x)$?

Remarque

Lorsqu'il est possible d'énumérer tous les éléments de l'ensemble de référence, disons $x_1, x_2, x_3, ..., x_n$, il s'ensuit que la quantification existentielle $\exists x, Q(x)$ équivaut logiquement à la disjonction $P(x_1) \vee P(x_2) \vee P(x_3) \vee ... \vee P(x_n)$.

Exemple 3

Quelle est la valeur de vérité de $\exists x \in U, P(x)$, où P(x) est l'énoncé $(x^2 > 10)$ et où l'ensemble référence $U = \{1, 2, 3, 4\}$?

Raisonnement à l'aide d'itérations.

Pour déterminer si $\forall x \in U, P(x)$ est vraie, on peut parcourir toutes les valeurs n de x pour savoir si P(x) est toujours vraie. Si on rencontre une valeur x pour laquelle P(x) est fausse, alors on a démontré que $\forall x \in U, P(x)$ était fausse. Sinon, la proposition est vraie.

Remarque: Si l'ensemble référentiel U est infini, il faut pouvoir <u>prouver</u> que la proposition est vraie. Il existe différents types de démonstrations qui ne seront pas vu dans le cadre de ce cours.

Variables libres et variables liées

- Une variable libre est une variable à laquelle on n'a pas assigné de valeur et qui n'est pas quantifiée. Lorsqu'on assigne une valeur particulière à une variable ou lorsqu'on quantifie cette variable, on dit que la variable est liée.
- Nous obtenons une proposition lorsque toutes les variables d'une fonction propositionnelle sont liées. Pour ce faire, on peut utiliser une combinaison de quantificateurs universels, de quantificateurs existentiels et d'affectations.

Exemple

Donner la valeur de vérité de :

- a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy = 1$
- *b*) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y = y$

Quantifications de deux variables

Énoncé	Quand cet énoncé est- il vrai?
$\forall x \in U, \forall y \in U, P(x, y)$ $\forall y \in U, \forall x \in U, P(x, y)$	P(x,y) est vrai pour chaque paire x, y.
$\forall x \in U, \exists y \in U, P(x, y)$	Pour chaque x , il existe un y pour lequel $P(x,y)$ est vrai.
$\exists x \in U, \forall y \in U, P(x, y)$	Il existe un x pour lequel P(x,y) est vrai pour chaque y (pour tous les y)
$\exists x \in U, \exists y \in U, P(x, y)$ $\exists y \in U, \exists x \in U, P(x, y)$	Il existe une paire x, y pour laquelle P(x,y) est vrai.

En SQL

- Les opérateurs ANY (ou SOME) et ALL permettent de comparer des ensembles de valeurs de manière globale.
- ALL demande une comparaison à toutes les valeurs pour que le prédicat soit vrai.
- ANY est vrai si, au moins une valeur de l'ensemble répond vrai à la comparaison.

Devoir

Faire les exercices du fichier (sur Omnivox):

Exercices quantificateurs

- Écouter, si nécessaire, les capsules vidéo dans la section ALGÈBRE DE BOOLE (sur prodafor.com):
- Boole11 jusqu'à Boole17