Combo 10 de definiciones y convenciones notacionales

Emanuel Nicolás Herrador - November 2024

1 Tesis del bloque $\langle i, j \rangle$ en (φ, \mathbf{J})

Defina "tesis del bloque $\langle i, j \rangle$ en (φ, \mathbf{J}) "

Sea (φ, \mathbf{J}) un par adecuado de tipo τ y $\langle i, j \rangle \in \mathcal{B}^{\mathbf{J}}$. Entonces φ_j será la tesis del bloque $\langle i, j \rangle$ en (φ, \mathbf{J}) .

2 Teoría de primer orden consistente

Defina cuándo una teoría de primer orden (Σ, τ) es consistente

Una teoría (Σ, τ) será inconsistente cuando haya una sentencia φ tal que $(\Sigma, \tau) \vdash (\varphi \land \neg \varphi)$. Una teoría (Σ, τ) será consistente cuando no sea inconsistente.

3 Prueba elemental φ en (Σ, τ)

Dada una teoría elemental (Σ, τ) y una sentencia elemental pura φ de tipo τ , defina "prueba elemental φ en (Σ, τ) "

Dada una teoría elemental (Σ, τ) y una sentencia elemental φ la cual no posea nombres de elementos fijos, una prueba elemental de φ en (Σ, τ) será una prueba de φ que posea las siguientes características:

- 1. En la prueba se parte de una estructura de tipo τ fija pero arbitraria, en el sentido de que lo único que sabemos es que ella satisface los axiomas de Σ (i.e., es un modelo de (Σ, τ)). Además, esta es la única información particular que podemos usar. Notar que este punto nos garantiza que una prueba elemental de φ en (Σ, τ) es una forma sólida de justificar que cualquier estructura de tipo τ que satisfaga los axiomas de (Σ, τ) también satisfará φ .
- 2. Las deducciones en la prueba son muy simples y obvias de justificar con mínimas frases en castellano.
- 3. En la escritura de la prueba, lo concerniente a la matemática misma se expresa usando solo sentencias elementales de tipo τ .