Contents

1	Definizione			1
	1.1	Teorer	'eoremi et al	
		1.1.1	Quella dannata biezione	1
		1.1.2	La retroimmagine di un ideale è un ideale	1
		1.1.3	ogni ideale di Z è un ideale principale	1

1 Definizione

Un ideale è un sottinsieme $I \subseteq R$ di un anello che

- include lo 0 $(0_R \in I)$
- È chiuso rispetto alla somma (se $a, b \in i$ allora $a +_r b \in i$)
- È assorbente rispetto al prodotto (se $a \in I$ allora $a \cdot_R b \in I \forall b \in R$)

Spesso e volentieri questo è solo un modo eccessivamente formale per dire che un ideale è l'insieme dei multipli di qualcosa, per non lasciarlo troppo all'aria verifichiamolo con l'insieme degli interi multipli di 5, multipli di 5 \subseteq \mathbb{Z} .

I multipli di 5

- Includono lo 0
- Sono chiusi rispetto alla somma $(5a +_{\mathbb{Z}} 5b = 5(a +_{\mathbb{Z}} b))$
- Sono assorbenti rispetto al prodotto $(5a \cdot_{\mathbb{Z}} b = 5(a \cdot_{\mathbb{Z}} b))$

Visto che scrivere $multipli\ di\ <\!coso\!>$ ogni volta per paralre di insiemi del genere rompe il cazzo, si introduce la notazione

- (n)=insieme dei multipli di n $=\{y\in R|\; \exists r\in R: y=n\cdot_R r\}$
- (n) si dice anche ideale principale generato da n

1.1 Teoremi et al

- 1.1.1 Quella dannata biezione
- 1.1.2 La retroimmagine di un ideale è un ideale
- 1.1.3 ogni ideale di \mathbb{Z} è un ideale principale