ЛАБОРАТОРНАЯ РАБОТА №48

ИЗУЧЕНИЕ ПРОЦЕССОВ НАМАГНИЧИВАНИЯ И ПЕРЕМАГНИЧИВАНИЯ В ФЕРРОМАГНЕТИКАХ

Поляков Даниил, 19.Б23-ф3

Цель работы: провести процессы намагничивания и перемагничивания в ферромагнетике, выполненном из электротехнической стали, получить петлю гистерезиса и определить параметры ферромагнетика.

Схема установки

- 1 исследуемый образец;
- 2 намагничивающая катушка;
- 3 регистрирующая катушка;
- 4 интерфейсный модуль Power-CASSY;
- 5 интерфейсный модуль Sensor-CASSY.

Расчётные формулы

• Зависимость магнитной индукции ферромагнетика от напряжённости внешнего магнитного поля в области Рэлея (при $H << H_c$):

$$B = \mu_0 (\mu_{\rm a} H + {\rm Ra} H^2)$$
 H — напряжённость внешнего магнитного поля; B — магнитная индукция; μ_0 — магнитная постоянная; $\mu_{\rm a}$ — начальная магнитная проницаемость; ${\rm Ra}$ — постоянная Рэлея.

• Потери энергии на перемагничивание:

$$w = \int H dB$$
 H — напряжённость внешнего магнитного поля; B — магнитная индукция.

- Формулы для вычисления погрешностей:
 - Среднеквадратичное отклонение среднего:

$$\Delta_{ar{x}} = \sqrt{t^2 rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2}{n(n-1)}}$$
 n — количество измерений; t — коэффициент Стьюдента.

Порядок измерений

- 1. Запускаем CASSY Lab. Вводим формулу, описывающую форму сигнала источника тока, для того, чтобы размагнитить образец. Запускаем процесс размагничивания и ждём, пока он завершится.
- 2. Устанавливаем синусоидальную форму сигнала и период сигнала 50 с. Запускаем измерения и получаем зависимость B(H) в течение одного цикла. После сохранения результатов снова размагничиваем образец. Повторяем измерения для синусоидального сигнала ещё 2 раза.
- 3. Устанавливаем пилообразную форму сигнала и период сигнала 50 с. Запускаем измерения и получаем зависимость B(H) в течение одного цикла. После сохранения результатов снова размагничиваем образец. Повторяем измерения для пилообразного сигнала ещё 2 раза.

Результаты

Из-за большого количества данных (2501 точка на каждый цикл) приводим только графики исследованных зависимостей B(H). Перед изображением и обработкой полученных данных сменили знак у магнитной индукции, чтобы рост H соответствовал росту B.

Петля гистерезиса при синусоидальном напряжении с амплитудой 2 В на намагничивающей катушке, полученная за один цикл длительностью 50 с

Петля гистерезиса при пилообразном напряжении с амплитудой 2 В на намагничивающей катушке, полученная за один цикл длительностью 50 с

Все графики выглядят примерно одинаково, независимо от выбранной формы переменного напряжения. По завершении цикла намагничивания образца магнитная индукция не возвращается в ноль, что связано с остаточной намагниченностью ферромагнетика. Из каждого графика находим соответствующие параметры:

- индукцию насыщения $B_{\rm s}$ находим как модуль индукции, соответствующей максимальному положительному значения напряжённости H;
- остаточную намагниченность $B_{\rm r}$ находим как модуль индукции, соответствующей нулевому значению напряжённости H при движении в сторону уменьшения H;
- коэрцитивную силу H_c находим как модуль напряжённости, соответствующей нулевому значению индукции B при движении в сторону уменьшения B;
- потери на перемагничивание находим, проинтегрировав H по B по методу трапеций;
- начальную магнитную проницаемость $\mu_{\rm a}$ и коэффициент Рэлея Ra получаем аппроксимацией участка Рэлея. Участок Рэлея выбираем такой, чтобы выполнялось $H << H_{\rm c}$. Таким образом, проводим аппроксимацию по первым 50 точкам значение H на этом промежутке не превышает 11 A/м. Аппроксимируем уравнением $B = \mu_0 (\mu_{\rm a} H + {\rm Ra}\,H^2)$, откуда $\mu_{\rm a}$ и Ra находим как коэффициенты аппроксимации.

При расчёте среднего значения пришлось откинуть результаты 5-го измерения (2-го измерения при пилообразной форме сигнала). Почти все параметры при данном измерении сильно отклоняются от параметров при остальных измерениях. Кроме того, наблюдается странное поведение графика в начальном промежутке времени.

Указанные ниже погрешности соответствуют доверительной вероятности P = 95%.

Таблица. Параметры исследованного ферромагнетика

Параметр	1	2	3	4	5	6	Среднее	Δ
Начальная магнитная проницаемость $\mu_{ m a}$	2070	2158	2315	4213	311.3	4053	3000	1300
Коэффициент Рэлея Ra, м/A	393.0	414.6	435.8	806.7	55.80	758.2	600	300
Индукция насыщения $B_{ m s}$, Тл	1.327	1.327	1.324	1.334	1.262	1.319	1.326	0.007
Остаточная на- магниченность $B_{\rm r}$, ${ m T}{ m \pi}$	0.962	0.971	0.961	0.962	0.904	0.940	0.959	0.014
Коэрцитивная сила $H_{ m c}$, ${ m A/m}$	118.7	120.2	117.3	117.6	105.3	111.8	117	4
Потери на перема- гничивание w , Дж/м 3	205.2	216.0	205.6	197.6	208.1	199.4	205	9

Выводы

Ферромагнетики обладают свойством магнитного гистерезиса — их намагниченность зависит не только от приложенного внешнего поля, но и от предыдущих состояний вещества. Ферромагнетики сохраняют намагниченность и при отключении внешнего магнитного поля, а также обладают предельной намагниченностью. В работе экспериментально подтверждено существование явления магнитного гистерезиса в ферромагнетиках.