Homework Assignment 2

Matthew Tiger

February 21, 2016

Problem 1. Use the method of variation of parameters to find the general solution of

$$y'' + 2y' + 2y = \sin x.$$

Solution. Suppose that Ly = y'' + 2y' + 2y. The general solution to $Ly = \sin x$ is given by $y = y_0 + y_h$ where y_0 is a particular solution of $Ly = \sin x$ and y_h is the solution to the homogeneous equation Ly = 0.

The characteristic equation of the equation Ly = 0 is $m(x) = x^2 + 2x + 2$, the roots of which are $m_1 = -1 - i$ and $m_2 = -1 + i$. As the roots of the characteristic equation are complex, the solution to Ly = 0 is given by

$$y_h = c_1 e^{-x} \sin x + c_2 e^{-x} \cos x. \tag{1}$$

The method of variation of parameters can be used to find a particular solution y_0 . We wish to find functions $u_1(x), u_2(x)$ such that

$$y_0 = u_1(x)y_1(x) + u_2(x)y_2(x)$$
(2)

satisfies $Ly_0 = \sin x$ where $y_1(x)$ and $y_2(x)$ are solutions to the homogeneous equation Ly = 0. If the functions $u_1(x)$ and $u_2(x)$ are solutions to the system

$$\begin{cases} u'_1 y_1 + u'_2 y_2 = 0 \\ u'_1 y'_1 + u'_2 y'_2 = \sin x \end{cases}$$
 (3)

then (2) will satisfy the original differential equation $Ly = \sin x$ equation. The solution to the system (3) is

$$u_1(x) = -\int \frac{y_2(x)\sin x}{W[\{y_1, y_2\}]} dx \qquad u_2(x) = \int \frac{y_1(x)\sin x}{W[\{y_1, y_2\}]} dx \tag{4}$$

where $W[\{y_1, y_2\}]$ is the Wronskian of the functions y_1 and y_2 .

Using (1), we know that $y_1(x) = e^{-x} \sin x$ and $y_2(x) = e^{-x} \cos x$ so the particular solution has the form $y_0 = u_1(x)e^{-x} \sin x + u_2(x)e^{-x} \cos x$. Further, the Wronskian of y_1 and y_2 is

$$W[\{y_1, y_2\}] = \begin{vmatrix} e^{-x} \sin x & e^{-x} \cos x \\ e^{-x} \cos x - e^{-x} \sin x & -e^{-x} \cos x - e^{-x} \sin x \end{vmatrix} = -e^{-2x}.$$

Thus, using (4), we know that

$$u_1(x) = -\int \frac{y_2(x)\sin x}{W[\{y_1, y_2\}]} dx$$
$$= \int \frac{e^{-x}\cos x \sin x}{e^{-2x}} dx$$
$$= \frac{e^x}{10} \left(-2\cos 2x + \sin 2x\right) + C$$

and

$$u_2(x) = \int \frac{y_1(x)\sin x}{W[\{y_1, y_2\}]} dx$$

= $-\int \frac{e^{-x}\sin^2 x}{e^{-2x}} dx$
= $\frac{e^x}{10} (-5 + \cos 2x + 2\sin 2x) + C.$

Therefore, a particular solution to $Ly = \sin x$ is

$$y_0(x) = \frac{1}{10} \left(-2\cos 2x + \sin 2x \right) \sin x + \frac{1}{10} \left(-5 + \cos 2x + 2\sin 2x \right) \cos x$$

and the general solution to $Ly = \sin x$ is

$$y(x) = y_0(x) + y_h(x)$$

$$= \frac{1}{10} \left(-2\cos 2x + \sin 2x \right) \sin x + \frac{1}{10} \left(-5 + \cos 2x + 2\sin 2x \right) \cos x$$

$$+ c_1 e^{-x} \sin x + c_2 e^{-x} \cos x$$
(5)

Problem 2. Find the Green function of the IVP

$$y'' + 2y' + 2y = f(x), \quad y(0) = y'(0) = 0.$$

Solution. \Box

Problem 3. Use your answer to Problem 2 to solve the IVP

$$y'' + 2y' + 2y = \sin x, \quad y(0) = y'(0) = 0.$$

Solution. \Box

Problem 4. Show that if y_1 , y_2 , and y_3 are three linearly independent solutions of the linear ODE

$$y''' + p_2(x)y'' + p_1(x)y' + p_0(x)y = 0$$

and u_1, u_2, u_3 are solutions of the system

$$\begin{cases} u_1'y_1 + u_2'y_2 + u_3'y_3 = 0, \\ u_1'y_1' + u_2'y_2' + u_3'y_3' = 0, \\ u_1'y_1'' + u_2'y_2'' + u_3'y_3'' = f(x), \end{cases}$$

then the function $u = u_1y_1 + u_2y_2 + u_3y_3$ is a solution of

$$y''' + p_2(x)y'' + p_1(x)y' + p_0(x)y = f(x)$$

Solution. \Box

Problem 5. Find the eigenvalues and the respective eigenfunctions for the BVP

$$x^2y'' + xy' + \lambda y = 0$$
, $y'(1) = 0$, $y'(b) = 0$

where b > 1.

 \Box