Analyse

Chapitre 1 : Calcul différentiel et théorèmes de point fixe

Lucie Le Briquer

$23\ {\rm novembre}\ 2017$

Table des matières

1	Rappels de compacité	2
	Schémas itératifs 2.1 Schéma de Picard	
3	Théorème d'inversion locale	5
4	Théorème de Cauchy-Lispchitz	7

1 Rappels de compacité

Nous allons nous intéresser dans ce cours à la résolution d'équations du type $\phi(x) = 0$.

- **Théorème 1** (Riesz) -

Soit E un evn. Si la boule unité fermée est compacte, alors E est de dimension finie.

Lemme 1

Soit F un sous-espace fermé de E, différent de E. Alors pour tout réel $r \in]0,1[$, il existe $u \in E$ tel que ||u|| = 1 et $d(u,F) \geqslant r$.

Preuve.

Soit $x \in E \setminus F$. On a $r \in]0,1[$ donc $\frac{1}{r}d(x,F) > d(x,F)$. Alors $\exists y \in F$ tel que $||x-y|| \leqslant \frac{d(x,F)}{r}$. Posons $u = \frac{1}{||x-y||}(x-y)$.

On a bien ||u|| = 1 et $d(u, F) \ge r$ car pour tout $z \in F$:

$$||u - z|| = \left\| \frac{1}{||x - y||} (x - y) - z \right\|$$

$$= \frac{1}{||x - y||} ||x - y - ||x - y||z||$$

$$\geqslant \frac{1}{||x - y||} d(x, F) \quad \text{puisque } y + ||x - y||z \in F$$

Donc $||u - z|| \ge r$.

Preuve. (du théorème de Riesz)

Par contraposition, supposons E de dimension infinie. On cherche à construire une suite $(u_n)_{n\in\mathbb{N}}$, bornée, sans valeur d'adhérence. On en déduira le théorème. On construit (u_n) telle que :

- 1. $\forall n, ||u_n|| = 1$
- 2. $\forall n, m, n \neq m \Rightarrow ||u_n u_m|| \geqslant \frac{1}{2}$

On choisit u_0 de norme 1, puis par récurrence on définit u_{n+1} grâce au lemme appliqué à F_n le sev engendré par $u_0,...,u_n$.

2 Schémas itératifs

Soit X un espace de Banach (evn complet pour la distance induite de sa norme) et $\phi \colon X \to X$. On veut résoudre $\phi(x) = 0$.

2.1 Schéma de Picard

Définition 1

Soit (E,d) un espace métrique et $k \in]0,1[$. Une application F est k-contractante si

$$\forall (x,y) \in E \times E, \ d(F(x),F(y)) \leqslant kd(x,y)$$

Théorème 2 (Picard) -

Soit (E, d) un espace métrique complet et F une application k-contractante, $k \in]0, 1[$. Alors F admet un unique point fixe.

$$\exists ! \ x_* \in E \ F(x_*) = x_*$$

Preuve.

Soit $x_0 \in E$. Définissons (x_n) par $x_{n+1} = F(x_n)$. Alors $d(x_{N+1}, x_N) \leq kd(x_N, x_{N-1})$ donc on a :

$$d(x_{N+1}, x_N) \leq k^N d(x_1, x_0)$$

et

$$d(x_{N+P}, x_N) \leqslant \sum_{k=0}^{p-1} k^{N+k} d(x_1, x_0) \leqslant \frac{k^N}{1-k} d(x_1, x_0)$$

Donc la suite (x_n) est de Cauchy. Sa limite vérifie $F(x_*) = x_*$.

2.2 Schéma de Newton

Théorème 3

Soit E un espace de Banach et posons :

$$B = \{u \in E, \|u\| \le 1\}, 5B = \{u \in E, \|u\| \le 5\}$$

Soit $\phi \colon 5B \to 5B$ une application de classe C^2 . Supposons que $u_0 \in B$ est tel que $\phi(u_0) \in B$ et que :

- 1. La différentielle seconde de ϕ est bornée sur 5B par c_1
- 2. $\forall u \in 5F, \ \phi'(u)$ est inversible et $\phi'(u)^{-1}$ est bornée sur 5B par c_2

Alors si $\varepsilon_0 = \|\phi(u_0)\|$ est assez petit, la suite (u_n) définie par :

$$u_{n+1} = u_n - \phi'(u_n)^{-1}\phi(u_n)$$

converge vers une solution de $\phi(u) = 0$.

Remarque. Attention, il existe $F: E \to E$ continue et non bornée sur la boule unité fermée. Soit (u_n) donnée par la démonstration du théorème de Riesz. Définissons :

$$F(x) = \sum_{n \in \mathbb{N}} n \times \max \left\{ 0, \frac{1}{10} - ||x - u_n|| \right\} . u_E$$

(avec u_E un vecteur quelconque de E) Pour x fixé au plus un terme est non nul. F est continue et $F(u_n) = \frac{n}{10}$, donc F n'est pas bornée sur la boule unité fermée.

Preuve.

On montre:

•
$$P_n$$
 $u_n \in 2B$

•
$$Q_n$$
 $\varepsilon_n = \|\phi(u_n)\| \leqslant \frac{(A\varepsilon_0)^{2^n}}{A}$ où $A = c_1 c_2^2$

On a $\|\phi'(u_n)^{-1}\phi(u_n)\| \le c_2 u_n$ par hypothèse. Donc :

$$||u_{n+1}|| = \left\| \sum u_{k+1} - u_k \right\| + ||u_0|| \le c_2 \sum_{k=0}^n \varepsilon_k + ||u_0|| \le 2$$
 si Q_n

Pour démontrer Q_{n+1} on va utiliser :

$$\|\phi(u+v) - \phi(u) - \phi'(u)v\| \le c_1 \|v\|^2$$

On applique Taylor à l'ordre 2 à $g(t) = \phi(u + tv)$, on a :

$$\phi(u+v) = \phi(u) + \phi'(u)v + \int_0^1 (1-t)d^2\phi(u+tv)(v,v)dt$$

Posons $v_n = -\phi'(u_n)^{-1}\phi(u_n)$, $(u_{n+1} = u_n + v_n)$, alors :

$$\|\phi(u_n + v_n) - \phi(u_n) + \phi'(u_n)v_n\| \le c_1 \|v_n\|^2$$

$$\|\phi(u_{n+1}) - (\phi(u_n) - \phi(u_n))\| \le c_1 \|v_n\|^2$$

$$\varepsilon_{n+1} \le c_1 c_2^2 \varepsilon_n^2$$

Ainsi,

$$\varepsilon_{n+1} \leqslant A \left(\frac{(A\varepsilon_0)^{2^n}}{A} \right)^2 \leqslant \frac{(A\varepsilon_0)^{2^{n+1}}}{A}$$

3 Théorème d'inversion locale

Définition 2 (C^k -difféomorphisme)

Soient B_1, B_2 deux espaces normés, $U_1 \subset B_1$, $U_2 \subset B_2$ des ouverts. $F: U_1 \to U_2$ est un \mathcal{C}^k -difféomorphisme $(1 \leq k \leq +\infty)$ si c'est une fonction $F \in \mathcal{C}^k(U_1)$ telle que $F: U_1 \to U_2$ est une bijection et F^{-1} est \mathcal{C}^k .

Remarque. $x \longmapsto x^3$ est \mathcal{C}^{∞} mais $\sqrt[3]{}$ n'est pas \mathcal{C}^{∞}

- Lemme 2 (séries de Neumann) -

Soit B un espace de Banach et $T \in \mathcal{L}(B)$ vérifiant $||T||_{\mathcal{L}(B)} < 1$. Alors id -T est inversible et :

$$(\mathrm{id} - T)^{-1} = \sum_{n=0}^{+\infty} T^n$$

Théorème 4

Soit $f: U \to B_2$ où U est un ouvert de B et où B_1 et B_2 sont des espaces de Banach. Si $df(x_0)$ est un isomorphisme de B_1 sur B_2 et si $f \in \mathcal{C}^1(U)$, alors f est un \mathcal{C}^1 -difféomorphisme d'un voisinage de x_0 vers un voisinage de $f(x_0)$.

Preuve.

On peut supposer $B_1 = B_2$, $x_0 = 0$, $f(x_0) = 0$ et $df(x_0) = \mathrm{id}$ quitte à travailler avec $\tilde{f}(x) = (df(x_0))^{-1}(f(x_0 + x) - f(x_0))$. Soit $\varphi(x) = f(x) - x$. Alors $d\varphi(0) = 0$ et il existe r > 0 tel que $\|d\varphi(x)\|_{\mathcal{L}(B)} \leqslant \frac{1}{2} \ \forall x \in B(0, r)$ par continuité.

Posons $W = B\left(0, \frac{r}{2}\right), V = B(0, r) \cap f^{-1}(W)$. Montrons que $f: V \to W$ est bijective. L'inégalité des accroissements finis implique que :

$$\|\varphi(x) - \varphi(y)\| \leqslant \frac{1}{2} \|x - y\| \quad \forall x, y \in B(0, r)$$

Donc:

$$\begin{split} \|x - y\| &= \|f(x) - \varphi(x) - f(y) + \varphi(y)\| \\ &\leqslant \|f(x) - f(y)\| + \|\varphi(x) - \varphi(y)\| \\ &\leqslant \|f(x) - f(y)\| + \frac{1}{2}\|x - y\| \end{split}$$

 $\Rightarrow ||x - y|| \leqslant 2||f(x) - f(y)|| \ \forall x, y \in V.$

Donc $f|_V$ est injective. Il reste à montrer la surjectivité. Soit $y \in W = B(0, \frac{r}{2})$. Montrons que $\exists x \in V$ tel que f(x) = y. Posons h(x) = y + x - f(x). On cherche alors $x \in V$ tel que h(x) = x.

Montrons que $h(\overline{B}_r) \subset \overline{B}_r$ et h est $\frac{1}{2}$ -contractante sur \overline{B}_r . Soit $x \in \overline{B}_r$.

$$\begin{split} \|h(x)\| &= \|y - \varphi(x)\| \\ &\leqslant \|y\| + \|\varphi(x)\| \\ &\leqslant \frac{r}{2} + \frac{r}{2} = r \end{split}$$

 $\operatorname{car} \|y\| \leqslant \frac{r}{2} \text{ et } \|\varphi(x)\| = \|\varphi(x) - \varphi(0)\| \leqslant \frac{1}{2} \|x\| \leqslant \frac{r}{2}.$

De plus $h(x_1) - h(x_2) = \varphi(x_2) - \varphi(x_1)$ donc h est $\frac{1}{2}$ -contractante. Alors $\exists!$ point fixe $x \in \overline{B}_r$. On a $x = h(x) \in B_r$ et $f(x) = y \in W$ donc $x \in V$.

Enfin, montrons que $f^{-1}: X \to V$ est \mathcal{C}^1 . On a $df(x) = 1 - d\varphi(x)$ puisque $f(x) = x - \varphi(x)$ et $\|d\varphi(x)\| < \frac{1}{2}$ sur B(0,r) donc df(x) est inversible pour $x \in B(0,r)$ et $\|(df(x))^{-1}\|_{\mathcal{L}(B)} \leq 2$. On utilise ensuite le lemme.

Montrons que f^{-1} est différentiable. Soit $y \in W$. Notons $x = f^{-1}(y)$ et posons :

$$L = (df(f^{-1}(y)))^{-1} = (df(x))^{-1}$$

On veut montrer que:

$$||f^{-1}(y+z) - f^{-1}(y) - Lz|| = o(||z||)$$

Introduisons h tel que f(x+h)=y+z. Alors :

$$||f^{-1}(y+z) - f^{-1}(y) - Lz|| = ||x+h-x-Lz||$$

$$= ||L(L^{-1}h-z)||$$

$$\leq 2||L^{-1}h-z||$$

$$\leq ||df(x)h - f(x+h) + f(x)||$$

car $||L|| \le 2$ et z = f(x+h) - y = f(x+h) - f(x).

Or $f(x+h) - f(x) - df(x)h = ||h||\varepsilon(h)$ avec $\lim_{\|h\|\to 0} \varepsilon(h) = 0$. On conclut car on a déjà vu que :

$$||z|| = ||f(x+h) - f(x)|| \ge \frac{1}{2}||h||$$

Théorème 5 (fonctions implicites) -

Soient B_0, B_1, B_2 trois espaces de Banach, U un voisinage (x_0, y_0) dans $B_0 \times B_1$ et $f \colon U \to B_2$ de classe \mathcal{C}^1 . Supposons qu'il existe une application linéaire continue $A \colon B_2 \to B_1$ telle que $f'_y(x_0, y_0) \circ A = \mathrm{id}$. Alors il existe $g \in \mathcal{C}^1$ au voisinage de x_0 telle que $f(x, g(x)) = f(x_0, y_0)$. Si de plus $f'_y(x_0, y_0)$ est bijective, alors g est unique.

Preuve.

Théorème d'inversion locale pour F(x,y) = (x, f(x,y))

4 Théorème de Cauchy-Lispchitz

Théorème 6 (de Cauchy-Lipschitz) –

Soit $n \ge 1$, $f \in \mathcal{C}^1(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$. Pour tout $y_0 \in \mathbb{R}^n$ il existe T > 0 tel que il existe une unique fonction $y \in \mathcal{C}^1([-T,T],\mathbb{R}^n)$ vérifiant :

$$\begin{cases} y'(t) = f(t, y(t)) & \forall t \in [-T, T] \\ y(0) = y_0 \end{cases}$$
 (1)

Preuve.

Soit T > 0. y est solution de (1) ssi la fonction $z(t) = y(Tt) - y_0$ est solution de :

$$\begin{cases} z(t) = Tf(Tt, z(t) + y_0) & \forall t \in [-1, 1] \\ z(0) = 0 \end{cases}$$

Posons $F(T, z) = z'(\cdot) - Tf(Tt, z(\cdot)).$

$$F\colon \left\{ \begin{array}{ccc} \mathbb{R} \times \mathcal{C}^1_*([-1,1]) & \longrightarrow & \mathcal{C}^0([-1,1]) \\ (T,z) & \longmapsto & F(T,z)(t) = z'(t) - Tf(Tt,z(t)) \end{array} \right.$$

F est une application \mathcal{C}^1 entre espaces de Banach où $\mathcal{C}^1_*=\{z\in\mathcal{C}^1,z(0)=0\}.$ On a :

$$F_z'(0,0) = \frac{d}{dt}$$

Soit

$$A \colon \left\{ \begin{array}{ccc} \mathcal{C}^0([-1,1]) & \longrightarrow & \mathcal{C}^1_*([-1,1]) \\ u & \longmapsto & \int_0^t u(s) ds \end{array} \right.$$

Alors $F_z'(0,0) \circ A = \text{id}$ et on peut appliquer le théorème des fonctions implicites. $\exists g$ définie sur un voisinage de $0_{\mathbb{R}}$ telle que F(T,g(T)) = F(0,0) = 0. Alors :

$$z = g(T)$$
 est solution de
$$\begin{cases} z' - Tf(Tt, z) = 0 \\ z(0) = 0 \end{cases}$$

Théorème 7 (point fixe de Brouwer) -

Soit $\psi \colon B \to B$ où $B = \{x \in \mathbb{R}^n : ||x|| \leq 1\}$ continue. Alors ψ admet un point fixe.

Lemme 3

Soit $\theta \colon B \to \mathbb{R}^n$ continue telle que $\theta = \mathrm{id} \, \mathrm{sur} \, S^{n-1}$. Alors $B \subset \theta(B)$

Preuve. (du théorème à partir du lemme)

Par l'absurde : supposons $\psi(x) \neq x \ \forall x \in B$. On peut tracer une droite de $\psi(x)$ vers x qui intersecte S^{n-1} en un point noté $\varphi(x)$. $\varphi \colon B \to S^{n-1}$ est continue et $\varphi|_{S^{n-1}} = \mathrm{id}$. On peut voir φ comme une fonction continue de B dans B qui vaut l'identité sur S^{n-1} . D'après le lemme 1, $B \subset \varphi(B)$. Or $\varphi(B) \subset S^{n-1}$. Contradiction.

Lemme 4

Soit f une fonction continue à support compact. Soit $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ une fonction \mathcal{C}^1 telle que $\varphi|_{\mathbb{R}^n \setminus B} = \mathrm{id}$. Alors :

$$\int_{\mathbb{R}^n} f(\varphi(x))J(x)dx = \int_{\mathbb{R}^n} f(y)dy$$

où
$$J = \left| \det \left(\frac{\partial \varphi_j}{\partial x_i} \right) \right|$$
.

Preuve.

Introduisons $g(y) = \int_{-\infty}^{y_1} f(s, y_2, ..., y_n) ds$. Soit $Q = [-c, c]^n$ un cube tel que $\mathrm{supp} f \subset Q$. $f(\varphi(x)) = 0$ si $x \notin Q$ et $(c \ge 1)$.

Notons que $\int f(\varphi(x))J(x)dx = \int (\partial_{y_1}g)(\varphi(x))J(x)dx$.

$$\frac{\partial g}{\partial y_1}(\varphi(x))\det(D\varphi_1,...,D\varphi_n) = \det\left(D(g(\varphi(x)),D\varphi_2,...,D\varphi_n)\right)$$

(en développant $D(g(\varphi))$). On a :

$$\det(D(g(\varphi)), D\varphi_2, ..., D\varphi_n) = M_1 \partial_{x_1}(g(\varphi)) + ... + M_n \partial_{x_n}(g(\varphi))$$

Donc,

$$\int f(\varphi)Jdx = -\int g(\varphi)\underbrace{(\partial_1 M_1 + \dots + \partial_n M_n)}_{0} + \text{Bord}$$

En effet :

$$\begin{split} \partial_1 M_1 + \ldots + \partial_n M_n &= \det(D, D\varphi_2, \ldots, D\varphi_n) \\ &= \det\begin{pmatrix} \partial_1 & \partial_1 \varphi_2 \\ \partial_2 & \partial_2 \varphi_2 \end{pmatrix} \quad \text{si } n = 2 \\ &= \partial_1 \partial_2 \varphi_2 - \partial_2 \partial_1 \varphi_2 \quad \text{si } n = 2 \\ &= 0 \end{split}$$

$$\begin{aligned} \det(D, D\varphi_2, ..., \varphi_n) &= \sum_{\sigma} \varepsilon(\sigma) \prod a_{\sigma(j)j} \\ &= \sum_{\sigma} \varepsilon(\sigma) \partial_{\sigma(1)} \left(\prod_{j=2}^n \partial_{\sigma(j)} \varphi(j) \right) \\ &= \sum_{\sigma} \varepsilon(\sigma) (\partial_{\sigma(1)} \partial_{\sigma(2)} \varphi_2) ... (\partial_{\sigma(n)} \varphi_n) + ... + \sum_{\sigma} \varepsilon(\sigma) (\partial_{\sigma(2)} \varphi_2) ... (\partial_{\sigma(n)} \varphi_n) \end{aligned}$$

Posons:

$$A = \sum_{\sigma} \varepsilon(\sigma)(\partial_{\sigma(1)}\partial_{\sigma(2)}\varphi_2)...(\partial_{\sigma(n)}\varphi_n)$$

Soit τ une transposition :

$$A = \sum_{\sigma} \varepsilon(\sigma \circ \tau)(\partial_{\sigma \circ \tau(1)} \partial_{\sigma \circ \tau(2)} \varphi_2)...(\partial_{\sigma \circ \tau(n)} \varphi_n) = -A$$

Donc A = 0. Et:

$$\int M_1 \partial_1(g(\varphi)) + \dots + M_n \partial_n(g(\varphi)) = -\int \left[\partial_1 M_1 + \dots \partial_n M_n\right] g(\varphi) + \text{Bord}$$

 $\int_{Q} \partial_{1}(M_{1}g \circ \varphi) + \dots + \partial_{n}(M_{n}g \circ \varphi), \text{ or } \varphi(x) = x \text{ si } |x| \geqslant 1 \text{ donc } g(\varphi(x)) = xg(x) \text{ si } |x| \geqslant 1. \text{ Si } |x| \geqslant x \geqslant 1, |x_{2}| = c, g(\varphi(x)) = 0:$

$$g(y) = \int_{-\infty}^{y_1} f(s, y_2, ..., y_n) ds$$

Il reste $\int g(c, x_2, ..., x_n) = \int \int f(s, x_2, ..., x_n) ds dx_2 ... dx_n$.

- Lemme 5 -

Soit $\varphi \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R}^n)$ avec $\varphi(x) = x$ si $|x| \ge 1$. Alors $B \subset \varphi(B)$.

Preuve.

Par l'absurde. Supposons qu'il existe $y_0 \in B, y_0 \notin \varphi(B)$. $B = \overline{\mathcal{B}(0,1)}$ donc $\varphi(B)$ est compact donc fermé. Donc $\mathbb{R}^n \backslash \varphi(B)$ est ouvert donc $\exists r > 0$ tel que $\mathcal{B}(y_0, r) \subset \mathbb{R}^n \backslash \varphi(B)$.

On applique alors la relation $\int f(\varphi(x))J(x)dx = \int f(y)dy$ avec $f \in \mathcal{C}_0^{+\infty}(\mathbb{R}^n)$, supp $f \subset \mathcal{B}(y_0, r)$. On trouve $\int f(\varphi(x))J(x)dx = 0$. Absurde dès que $\int f \neq 0$.

Preuve. (du Lemme 3, démonstration de Peter Lax)

On prolonge φ sur \mathbb{R}^n par $\varphi(x) = x$ si $|x| \geqslant 1$. On approche φ par des fonctions \mathcal{C}^2 , φ_n , avec $\varphi_n(x) = x$ si $|x| > 1 + \varepsilon_n$. Soit $y \in B$. Alors $\exists x_n \in \overline{\mathcal{B}(0, 1 + \varepsilon_n)}$ tel que $\varphi_n(x_n) = y$. Par compacité x_n a une sous-suite qui converge vers $x \in B$, avec $\varphi(x) = y$.

- **Théorème 8** (invariance du domaine) -

Soit $U \subset \mathbb{R}^n$ un ouvert et $f: U \to \mathbb{R}^n$ continue et injective. Alors f(U) est ouvert.

- Corollaire 1

Si \mathbb{R}^n est homéomorphe à \mathbb{R}^m alors n=m.

Remarque.

- Il existe $f: \mathbb{R} \to \mathbb{R}^2$ surjective et continue (courbe de Péano).
- Il existe $f: \mathbb{R}^2 \to \mathbb{R}$ injective, par exemple :

$$\left\{ \begin{array}{ccc} [0,1]^2 & \longrightarrow & [0,1] \\ (0,d_1d_2...; \ 0,d_1'd_2'...) & \longmapsto & 0,d_1d_1'd_2d_2'... \end{array} \right.$$

• Le résultat est faux en dimension infinie :

$$\tau \colon \left\{ \begin{array}{ccc} l^{\infty}(\mathbb{N}) & \to & l^{\infty}(\mathbb{N}) \\ (x_0, ..., x_n, ...) & \longmapsto & (0, x_0, ..., x_n, ...) \end{array} \right.$$

• $f: \tau \mapsto (t,0)$ différence de dimension et l'image n'est pas ouverte.

Corollaire 2

Soit $U \subset \mathbb{R}^n$ ouvert et $f: U \to \mathbb{R}^n$ une injection continue. Alors f est un homéomorphisme de U sur f(U).

Preuve.

Soit V un ouvert de U. Montrons que $g = f^{-1}$ vérifie $g^{-1}(V)$ est ouvert. Or $g^{-1}(V) = f(V)$, ouvert d'après le théorème. Donc f^{-1} est continue. f est un homéomorphisme.

Preuve. (du Corollaire 1)

Supposons \mathbb{R}^n homéomorphe à \mathbb{R}^n et m < n. Posons $E_m = \mathbb{R}^m \times \{0\}^{n-m}$ et $p : \mathbb{R}^m \to \mathbb{R}^n$ tel que $(x_1, ..., x_m) \mapsto (x_1, ..., x_m, 0, ..., 0)$. Soit $f : \mathbb{R}^n \to \mathbb{R}^m$ homéomorphisme. Alors F(x) = p(f(x)) est continue et injective. Donc $F(\mathbb{R}^n)$ est ouvert. Or $F(\mathbb{R}^n) \subset E_m$, absurde.

Lemme 6

Soit $f: B \to \mathbb{R}^n$ continue et injective. Alors f(0) appartient à l'intérieur de f(B) où $B = \overline{\mathcal{B}(0,1)}$.

Preuve. (du Théorème 8 à partir du Lemme 6)

Soit $y_0 \in f(U)$, alors $\exists ! \ x_0 \in U$ tel que $f(x_0) = y_0$. Posons $F(x) = f(x_0 + \varepsilon x)$, $F: B \to \mathbb{R}^n$ pour ε assez petit. D'après le lemme, $y_0 \in \operatorname{Int}(F(B))$. Or $F(B) \subset f(U)$ donc f(U) est un voisinage de y_0 . Donc f(U) est un ouvert.

Théorème 9 (Tietze) -

On dit que X est normal si $\forall F_1, F_2 \subset X, F_1 \cap F_2 = \emptyset$ fermés, $\exists U_1, U_2$ ouverts disjoints tels que $F_1 \subset U_1$. Soit alors $f \colon A \to \mathbb{R}$ continue sur un fermé de X, $\exists \tilde{f} \colon X \to \mathbb{R}$ continue telle que $\tilde{f}|_A = f$.

Preuve. (du Lemme 6)

Soit $f: B \to f(B)$ une bijection continue. On veut montrer que $f(0) \in \widehat{f(B)}$.

Notons que f^{-1} est continue. En effet si F est un fermé de B, alors $(f^{-1})^{-1}(F) = f(F)$ est un compact donc fermé. On utilise alors le théorème de Tietze.

Alors $\exists G \colon \mathbb{R}^n \to \mathbb{R}^n$ continue qui prolonge $f^{-1} \colon f(B) \to B$. On a $G(f(0)) = f^{-1}(f(0)) = 0$. G s'annule!

Montrons que si \tilde{G} : $f(B) \to B$ est telle que $|\tilde{G}(y) - G(y)| \le 1 \ \forall y \in f(B)$ alors $\exists y_0 \in f(B)$ tel que $\tilde{G}(y_0) = 0$.

En effet l'application $h(x) = G(f(x)) - \tilde{G}(f(x))$ vérifie : h est continue et $|h(x)| \leq 1 \ \forall x \in B$. Donc $h: B \to B$ a un point fixe d'après Brouwer. Or $h(x) = x - \tilde{G}(f(x))$ car $G = f^{-1}$ sur f(B). Donc $h(x) = x \Rightarrow \tilde{G}(f(x)) = 0$.

Supposons que $f(0) \notin \widehat{f(B)}$. Par continuité de G, $\exists \varepsilon > 0$ tel que $|G(y)| < \frac{1}{10} \ \forall y \in \mathcal{B}(f(0), 2\varepsilon)$. $\exists c \in \mathbb{R}^n, \ |c - f(0)| < \varepsilon \text{ et } c \notin f(B)$. On peut supposer c = 0.

Alors $|f(0)| < \varepsilon$ et $|G(y)| < \frac{1}{10}$ si $y \in \overline{\mathcal{B}(0,\varepsilon)}$. On pose :

$$\Sigma = \Sigma_1 \cup \Sigma_2 \quad \text{avec } \Sigma_1 = \{ y \in f(\overline{B}) \mid |y| \geqslant \varepsilon \} \quad \text{et} \quad \Sigma_2 = \partial \mathcal{B}(0, \varepsilon)$$

• G ne s'annule pas sur Σ_1 car si $y \in f(B)$, $G(y) = f^{-1}(y)$ et G(f(0)) = 0. G bijective, G s'annule en f(0), $f(0) \notin \Sigma_1$ car $|f(0)| < \varepsilon$.

- Donc $\exists \delta > 0$ tel que $|G(y)| > \delta \ \forall y \in \Sigma_1$
- $\exists P \colon \mathbb{R}^n \to \mathbb{R}^n$ polynôme tel que $|P(y) G(y)| < \delta$. P ne s'annule pas sur Σ_1 .
- Quitte à modifier P en ajoutant une constante arbitrairement petite, P ne s'annule pas sur σ_2 . Soit

$$\tilde{G}(y) = P\left(\max\left\{\frac{\varepsilon}{|y|}, 1\right\}y\right)$$

- 1. \tilde{G} est continue sur f(B) $(0 \notin f(B))$.
- 2. $\max\left\{\frac{\varepsilon}{|y|},1\right\}\in\Sigma$ si $y\in f(B).$ Donc $\tilde{G}(y)\neq0.$

Donc $\tilde{G}(y) \neq 0 \ \forall y \in f(B)$.

• Si $y \in f(B)$ avec $|y| \geqslant \varepsilon$ alors :

$$|G(y) - \tilde{G}(y)| = |G(y) - P(y)| \le \delta$$

• si $y \in f(B)$ et $|y| < \varepsilon$ alors $|G(y)| < \frac{1}{10}$ car $|G(z)| \leqslant \frac{1}{10}$ $\forall z \in \overline{\mathcal{B}(0,\varepsilon)}$ et $\max\left\{\frac{\varepsilon}{|y|},1\right\} \in \partial \mathcal{B}(0,\varepsilon)$ donc :

$$\begin{split} |\tilde{G}(y)| \leqslant |P(y) - G(y)| + |G(y)| \\ \leqslant \delta + \frac{1}{10} \end{split}$$

Donc:

$$|\tilde{G}(y) - G(y)| \le |G(y)| + |\tilde{G}(y)| \le \frac{2}{10} + \delta \le 1$$

• Donc $|G-\tilde{G}|\leqslant 1,\,\tilde{G}$ continue, n'a pas de zéro. Absurde.