

Algèbre Linéaire

Author: CatMono

Date: July, 2025

Version: 0.1

Contents

Preface		iii
Chapte	er 1 Determinants	1
1.1	Special Determinants	1
Chapte	er 2 Systems of Linear Equations	3
Chapte	er 3 Matrices	4
3.1	Basic Operations	4
3.2	Matrix Equivalence	4
3.3	Special Matrices	4
3.4	Inverse Matrix	4
3.5	Block Matrix	4
3.6	Operations of Rank	5
3.7	Low-Rank Update	5
Chapte	er 4 Linear Spaces	7
4.1	Linear Spaces over the Field $\mathbb F$	7
	4.1.1 Linear Spaces	7
	4.1.2 Dimension, Basis, and Coordinates	7
	4.1.3 Basis Transformation and Coordinate Transformation	7
4.2	Subspaces	7
	4.2.1 Linear Subspaces	7
	4.2.2 Intersection and Sum of Subspaces	7
	4.2.3 Dimension Formula	7
	4.2.4 Direct Sum of Subspaces	7
4.3	Isomorphisms	7
4.4	Quotient Spaces	7
Chapte	r 5 Linear Mappings	8
5.1	Linear Mappings and Their Computation	8
	5.1.1 Definition of Linear Mappings	8
	5.1.2 Existence and Uniqueness of Linear Mappings	8
	5.1.3 Operations of Linear Mappings	8
	5.1.4 Special Linear Transformations	8
5.2	Kernel and Image of Linear Mappings	8
5.3	Matrix Representation of Linear Mappings	8
5.4	Linear Functions and Dual Spaces	8
Chapte	er 6 Diagonalization	9
6.1	Similarity of Matrices	q

6.2	Eigenvectors and Diagonalization	9
	6.2.1 Eigenvalues and Eigenvectors	9
	6.2.2 Necessary and Sufficient Conditions for Diagonalization	9
6.3	Space Decomposition and Diagonalization	9
	6.3.1 Invariant Subspace	9
	6.3.2 Hamilton-Cayley Theorem	9
6.4	Least Squares and Diagonalization	9
Chapte	r 7 Jordan Forms	10
7.1	Polynomial Matrices	10
7.2	Invariant Factors	10
7.3	Rational Canonical Form	10
7.4	Elementary Divisors	10
7.5	Jordan Canonical Form	10
Chapte	r 8 Quadratic Forms	11
8.1	Quadratic Forms and Their Standard Forms	11
8.2	Canonical Forms	11
8.3	Definite Quadratic Forms	11
Chapte	r 9 Inner Product Spaces	12
9.1	Bilinear Forms	12
9.2	Real Inner Product Spaces	12
9.3	Metric Matrices and Standard Orthonormal Bases	12
9.4	Isomorphism of Real Inner Product Spaces	12
9.5	Orthogonal Completion and Orthogonal Projection	12
	9.5.1 Orthogonal Completion	12
	9.5.2 Least Squares Method	12
9.6	Orthogonal Transformations and Symmetric Transformations	12
	9.6.1 Orthogonal Transformations	12
	9.6.2 Symmetric Transformations	12
9.7	Unitary Spaces and Unitary Transformations	12
9.8	Symplectic Spaces	12

Preface

This is the preface of the book...

Chapter 1 Determinants

1.1 Special Determinants

Definition 1.1 (Vandermonde Determinant)

The Vandermonde determinant is defined as

$$V_n = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix}$$

where x_1, x_2, \ldots, x_n are distinct variables.

The value of the Vandermonde determinant is given by

$$V_n = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Definition 1.2 (Arrow Determinant)

The Arrow determinant (\nwarrow) is defined as

$$A_n = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 0 & 0 & \cdots & a_{nn} \end{vmatrix}.$$

The value of the Arrow determinant is given by

$$A_n = \left(a_{11} - \sum_{k=2}^n \frac{a_{1k} a_{k1}}{a_{kk}}\right) \prod_{k=2}^n a_{kk}.$$

From the first column sequentially, subtract $\frac{a_{21}}{a_{22}}$ times the second column, \cdots , $\frac{a_{n1}}{a_{nn}}$ times the n-th column, so that the first column becomes:

$$\left[a_{11} - \sum_{k=2}^{n} \frac{a_{1k} a_{k1}}{a_{kk}} \quad 0 \quad 0 \quad \vdots \quad 0 \right]^{\mathrm{T}}.$$

Then expand along the first column.

Definition 1.3 (Two-Triangular Determinant)

If the determinant satisfies

$$a_{ij} = \begin{cases} a, & i < j, \\ x_i, & i = j, \\ b, & i > j, \end{cases}$$

, then D_n is called a two-triangular determinant.

The value of the two-triangular determinant is given by

$$\begin{vmatrix} x_1 & a & a & \dots & a \\ b & x_2 & a & \dots & a \\ b & b & x_3 & \dots & a \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \dots & x_n \end{vmatrix} = \begin{cases} \left[x_1 + a \sum_{k=2}^n \frac{x_1 - a}{x_k - a} \right] \cdot \prod_{k=2}^n (x_k - a), & a = b \\ (x_n - b)D_{n-1} + \prod_{k=1}^{n-1} (x_k - a), & a \neq b \end{cases}$$

Chapter 2 Systems of Linear Equations

Chapter 3 Matrices

3.1 Basic Operations

- ¶ Addition
- ¶ Scalar Multiplication
- ¶ Transpose
- ¶ Matrix Multiplication

Theorem 3.1 (Cauchy-Binet Formula,

Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{n \times m}$:

- 1. If m > n, then |AB| = 0;
- 2. If $m \leq n$, then |AB| is equal to the sum of products of all m-step minors of A and the corresponding m-step minors of B, that is:

$$|AB| = \sum_{1 \le v_1 < v_2 < \dots < v_m \le n} \left| A \begin{pmatrix} 1, 2, \dots, m \\ v_1, v_2, \dots, v_m \end{pmatrix} \right| \cdot \left| B \begin{pmatrix} v_1, v_2, \dots, v_m \\ 1, 2, \dots, m \end{pmatrix} \right|.$$

3.2 Matrix Equivalence

3.3 Special Matrices

3.4 Inverse Matrix

- ¶ Inverse Matrix and Its Operations
- ¶ Equivalent Propositions and Method of Inversion
- ¶ Generalized Inverse

3.5 Block Matrix

Theorem 3.2 (Determinant Reduction Formula)

Let $A_{m \times m}, B_{m \times n}, C_{n \times m}, D_{n \times n}$ be matrices. Then:

1. If *A* is invertible, then:

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A| \cdot |D - CA^{-1}B|.$$

2. If *D* is invertible, then:

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |D| \cdot |A - BD^{-1}C|.$$

3. If both A and D are invertible, then:

$$|D| \cdot |A - BD^{-1}C| = |A| \cdot |D - CA^{-1}B|.$$

Zermark The mnemonic is: For $\begin{vmatrix} A & B \\ C & D \end{vmatrix}$, for example, if A is invertible, one factor is |A|, and the other factor is D (the diagonal element of A) minus the product of the other three terms arranged clockwise, where the middle one is the inverse matrix.

3.6 Operations of Rank

Proposition 3.1

The matrices A and B in the following operations do not need to be square matrices; they only need to be compatible for multiplication or addition.

1. Addition

$$rank(A + B) \leq rank(A) + rank(B)$$
.

2. Multiplication

$$rank(AB) \leqslant rank(A)$$
, $rank(AB) \leqslant rank(B)$.

2.1. Sylvester's Inequality

$$\operatorname{rank}(AB) \geqslant \operatorname{rank}(A) + \operatorname{rank}(B) - n \quad (A_{s \times n}, B_{n \times m}).$$

Specially, if AB = O, then:

$$rank(A) + rank(B) \leq n$$
.

2.2. Frobenius Inequality

$$rank(ABC) \ge rank(AB) + rank(BC) - rank(B)$$
.

3. Transpose

$$rank(AA^{T}) = rank(A^{T}A) = rank(A) = rank(A^{T}).$$

4. Inverse

$$\operatorname{rank}(A) = \operatorname{rank}(A^{-1}) = n.$$

3.7 Low-Rank Update

Due to all the row and column vectors of a rank-1 matrix are linearly dependent, it can be expressed as the outer product of two non-zero vectors; in other words, a rank-1 matrix can be expressed as $\alpha\beta^T$, where α and β are non-zero column vectors.

Based on the decomposition $A = \alpha \beta^T$, the matrix of rank-1 has simplified calculation rules:

Property

Exponentiation For any positive integer $k \geq 1$,

$$A^k = (\beta^T \alpha)^{k-1} \cdot A,$$

where $\beta^T \alpha$ is a constant (the inner product of vectors).

Rank Transmission *If B is any matrix, then:*

$$rank(AB) \le 1$$
 and $rank(BA) \le 1$,

(rank 1 matrices multiplied by arbitrary matrices result in ranks not exceeding 1).

Theorem 3.3 (Sherman-Morrison Formula)

If $A \in \mathbb{R}^{n \times n}$ is an invertible matrix, and α , $\beta \in \mathbb{R}^n$ are column vectors, then $A + \alpha \beta^T$ is invertible if and only if $1 + \beta^T A^{-1} \alpha \neq 0$. In this case, the inverse of $A + \alpha \beta^T$ is given by:

$$(A + \alpha \beta^T)^{-1} = A^{-1} - \frac{A^{-1} \alpha \beta^T A^{-1}}{1 + \beta^T A^{-1} \alpha},$$

where $\alpha \beta^{\mathrm{T}}$ is the outer product of α and β .

 \Diamond

🕏 Note Combining the properties of determinants, we can derive the determinant version of the Sherman-Morrison formula:

$$|A + \alpha \beta^T| = |A| \cdot (1 + \beta^T A^{-1} \alpha),$$

which is known as the matrix determinant lemma.

The theorem can also be stated in terms of the adjugate matrix of A:

$$\det(A + uv^T) = \det(A) + v^T \operatorname{adj}(A)u,$$

in which case it applies whether or not the matrix \boldsymbol{A} is invertible.

Chapter 4 Linear Spaces

- **4.1** Linear Spaces over the Field \mathbb{F}
- **4.1.1 Linear Spaces**
- 4.1.2 Dimension, Basis, and Coordinates
- 4.1.3 Basis Transformation and Coordinate Transformation
- 4.2 Subspaces
- **4.2.1 Linear Subspaces**
- 4.2.2 Intersection and Sum of Subspaces
- 4.2.3 Dimension Formula
- **4.2.4 Direct Sum of Subspaces**
- 4.3 Isomorphisms
- **4.4 Quotient Spaces**

Chapter 5 Linear Mappings

- 5.1 Linear Mappings and Their Computation
- 5.1.1 Definition of Linear Mappings
- 5.1.2 Existence and Uniqueness of Linear Mappings
- **5.1.3 Operations of Linear Mappings**
- **5.1.4 Special Linear Transformations**
- 5.2 Kernel and Image of Linear Mappings
- **5.3 Matrix Representation of Linear Mappings**
- **5.4** Linear Functions and Dual Spaces

Chapter 6 Diagonalization

- **6.1 Similarity of Matrices**
- **6.2 Eigenvectors and Diagonalization**
- 6.2.1 Eigenvalues and Eigenvectors
- 6.2.2 Necessary and Sufficient Conditions for Diagonalization
- ¶ Geometric Multiplicity of Eigenvectors
- \P Algebraic Multiplicity
 - **6.3 Space Decomposition and Diagonalization**
 - **6.3.1 Invariant Subspace**
 - **6.3.2 Hamilton-Cayley Theorem**
 - 6.4 Least Squares and Diagonalization

Chapter 7 Jordan Forms

- 7.1 Polynomial Matrices
- **7.2 Invariant Factors**
- 7.3 Rational Canonical Form
- 7.4 Elementary Divisors
- 7.5 Jordan Canonical Form

Chapter 8 Quadratic Forms

- 8.1 Quadratic Forms and Their Standard Forms
- **8.2 Canonical Forms**
- 8.3 Definite Quadratic Forms

Chapter 9 Inner Product Spaces

- 9.1 Bilinear Forms
- 9.2 Real Inner Product Spaces
- 9.3 Metric Matrices and Standard Orthonormal Bases
- 9.4 Isomorphism of Real Inner Product Spaces
- 9.5 Orthogonal Completion and Orthogonal Projection
- 9.5.1 Orthogonal Completion
- 9.5.2 Least Squares Method
- 9.6 Orthogonal Transformations and Symmetric Transformations
- 9.6.1 Orthogonal Transformations
- 9.6.2 Symmetric Transformations
- 9.7 Unitary Spaces and Unitary Transformations
- 9.8 Symplectic Spaces

Bibliography

- [1] 丘维声, 高等代数 (2nd edition), 清华大学出版社, 2019.
- [2] 谢启鸿,姚慕生,吴泉水,高等代数学(4th edition),复旦大学出版社,2022.
- [3] 王萼芳, 石生明 高等代数 (5th edition), 高等教育出版社, 2019.
- [4] 樊启斌, 高等代数典型问题与方法 (1st edition), 高等教育出版社, 2021.
- [5] Wikipedia.https://en.wikipedia.org/wiki/.