Devoir maison 10 - équation aux dérivées partielles

U désigne un ouvert non vide de \mathbb{R}^2 , et $\lambda \in \mathbb{R}$. On considère l'équation aux dérivées partielles

$$E_{\lambda}: x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = \lambda f(x, y).$$

On note $S_{\lambda}(U)$ l'ensemble des fonctions réelles définies sur U, de classe C^1 , solutions de E_{λ} .

PARTIE I : Généralités

- **1.** Vérifier que les applications $p_x:(x,y)\mapsto x$ et $p_y:(x,y)\mapsto y$ appartiennent à $S_1(\mathbb{R}^2)$.
- **2.** Soit $f \in S_{\lambda}(U)$ de classe C^2 . Montrer que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ appartiennent à $S_{\lambda-1}(U)$.
- 3. Soit $(\lambda, \mu) \in \mathbb{R}^2$. Montrer que si $f \in S_{\lambda}(U)$ et $g \in S_{\mu}(U)$ alors $fg \in S_{\theta}(U)$ pour un réel θ que l'on précisera en fonction de λ et μ .
- **4.** Soit $f \in S_{\lambda}(U)$ telle que $\forall (x, y) \in U, f(x, y) > 0$. Montrer que pour $\alpha \in \mathbb{R}, f^{\alpha} : (x, y) \mapsto (f(x, y))^{\alpha}$ appartient à $S_{\alpha\lambda}(U)$.

PARTIE II : Résolution sur $U = \mathbb{R} \times \mathbb{R}^{+*}$

Dans cette partie, $U = \mathbb{R} \times \mathbb{R}^{+*}$.

- 1. Justifier que l'application $\Phi: U \to \mathbb{R}^2$ définie par $\Phi(u, v) = (uv, v)$ réalise une bijection de U sur U, et déterminer sa bijection réciproque.
- **2.** Soient $f \in C^1(U,\mathbb{R})$ et $g: U \to \mathbb{R}$ définie par $g = f \circ \Phi$.
 - **a.** Justifier que g est de classe C^1 , et exprimer $\frac{\partial g}{\partial u}$ et $\frac{\partial g}{\partial v}$ en fonction de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial v}$.
 - **b.** Justifier que $f \in S_{\lambda}(U)$ si, et seulement si g est solution sur U de l'équation

$$(E): v\frac{\partial g}{\partial v} = \lambda g(u, v).$$

c. Résoudre (E) et décrire $S_{\lambda}(U)$.

PARTIE III : Résolution sur $U = \mathbb{R}^2 \setminus \{(0,0\}$

Dans cette partie, $U = \mathbb{R}^2 \setminus \{(0,0)\}.$

- 1. Soit $f \in C^2(U, \mathbb{R})$.
 - **a.** Soit $(x,y) \in U$ fixé. Pour $t \in \mathbb{R}^{+*}$, on pose $\varphi(t) = f(tx,ty)$. Justifier que φ est de classe C^1 , et calculer φ' .
 - **b.** Etablir: $f \in S_0(U) \Leftrightarrow (\forall (x,y) \in U, \forall t > 0, f(tx,ty) = f(x,y)).$
 - **c.** En déduire que les solutions de E_0 sur U sont des fonctions de la forme :

$$(x,y) \mapsto \psi\left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right), \quad \text{où } \psi \in C^1(U, \mathbb{R})$$

- **2.** Soient $r_{\lambda}: U \to \mathbb{R}$ définie par $r_{\lambda}(x,y) = (x^2 + y^2)^{\frac{\lambda}{2}}$, et $g: U \to \mathbb{R}$ définie par $g(x,y) = f(x,y)r_{-\lambda}(x,y)$.
 - **a.** Justifier que $r_{\lambda} \in S_{\lambda}(U)$.
 - **b.** Montrer que $f \in S_{\lambda}(U) \Leftrightarrow g \in S_0(U)$.
 - **c.** En déduire $S_{\lambda}(U)$.