# Introdução à arquitetura de computadores EMB5642 - Aula 1



# Quais os componentes básicos de um computador?



### Arquitetura de um Pentium



#### E dentro da CPU...



### Conceitos importantes: Arquitetura





# Conjunto de Instruções

- RISC (Reduced Instruction Set Computer) é uma estratégia para projeto de processadores que favorece um conjunto simples e pequeno de instruções que levam aproximadamente a mesma quantidade de tempo para serem executados (geralmente um ciclo de máquina).
- Embora haja diversas abordagens implementadas, há algumas características comum à todas, como:
  - Uma operação por ciclo
  - Operações registrador-para-registrador
  - Modos de endereçamento simples (no máximo 5 tipos)
  - Formato das instruções simples (pois o tamanho da instrução é fixo)



# Conjunto de Instruções

 CISC (Complex instruction set computing) via não mais a redução do conjunto de instruções, mas a existência de um conjunto maior de instruções complexas que executem tarefas complexas com maior eficiência e rapidez e que também simplifiquem os compiladores.

#### Barramento

- Barramento é um caminho elétrico comum entre dois ou mais dispositivos, um ponto chave é que barramento é um meio de transmissão compartilhado, múltiplos dispositivos podem se conectar ao barramento, mas somente um dispositivo de cada vez pode transmitir com sucesso.
  - Barramento de endereço
  - Barramento de dados
  - Barramento de controle



#### Memórias

- Em sistemas, memória refere-se aos dispositivos usados para armazenar programas (sequências de instruções) e/ou dados de forma temporária ou permanente.
- As memórias, no âmbito de sistema, possuem três características principais: capacidade, tempo de acesso e custo, existindo a seguinte relação entre elas:
  - Tempo de acesso mais rápido, maior o custo por bit
  - Maior capacidade, menor o custo por bit
  - Maior capacidade, tempo de acesso mais lento

#### Memórias

- Diminuição de custo por bit
- Aumento da capacidade
- Aumento do tempo de acesso
- Diminuição da frequência de acesso à memória





# Memórias: Registradores

- São pequenas unidades de memória para alocação temporária de dados. Ou seja, trabalham diretamente com o processador, armazenando os resultados de suas operações lógicas e aritméticas temporariamente até que esse dado seja reutilizado em outra instrução ou transferido para outra forma de memória.
  - Registradores visíveis ao usuário. Uso geral, de dados, de endereços (ponteiros de segmentos, registrados de índice e ponteiros de pilha) e códigos condicionais (flags).
  - Registradores de controle e estado.
    - Contador de Programa (PC)
    - Registrador da instrução (IR)
    - Registrador de endereço de memória (MAR)
    - Registrador de buffer de memória (MBR)



#### Memórias: Cache

- O uso da cache visa obter velocidade de memória próximo das memórias mais rápidas com um custo não tão elevado. A memória cache inicialmente transferia palavras com a CPU e requisitava blocos com a RAM.
- Alguns estudos relacionaram a quantidade de acertos com a capacidade da CACHE e observaram que a partir de 32KBytes não há mais aumento. Assim o que vem sendo utilizado são múltiplos níveis de cache (L1, L2 e L3) sendo que a L1 é a mais rápida e menor e a L3 a mais lenta e maior.
- Por exemplo o i7 a L1 é de 64kB (32kB de dados e 32kB de instrução) por núcleo, I2 são 256 kB por núcleo e I# são 8MB compartilhada por todos os núcleos, sendo a L2 e L3 combinam dados e instruções.
- Essas sendo as caches internas ao núcleo, podendo existir além das caches externas processador-memória principal, caches para comunicação com dispositivos.



# Memórias: Mem. Principal

- A memória principal é a memória básica de um sistema de computação desde seus primórdios, é o dispositivo onde o programa e seus dados, do que vai ser executado é armazenado para que o processador vá buscando as informações quando necessárias.
- A tecnologia hoje utilizada na fabricação de Memórias Principais é Memória de Acesso Aleatório (RAM) do tipo dinâmico (SDRAM).

#### Memórias: Armazenam. em Massa

 Nos PCs há um ou mais dispositivos de armazenamento em massa, HDs que podem ser discos magnéticos ou memórias flash (SSD), que são responsáveis por armazenar permanentemente os programas e dados do sistema.

Uso de Memórias em computadores

RAM e ROM formam a memória principal.



A memória principal do computador - sua memória de trabalho - está em constante comunicação com a unidade central de processamento (CPU) conforme um programa de instruções é executado.



# Princípios de Operação da Memória

• Diagrama de uma memória 32 x 4 e arranjo virtual das células de memória em 32 palavras de quatro bits:



# Princípios de Operação de Memória



Os três barramentos são necessários para permitir que a CPU escreva e leia dados na memória.

# Operação escrita

- CPU fornece endereço e coloca informação no barramento de endereço.
- Decodificador de endereço habilita o pino CS da memória desejada.
- CPU coloca os dados a serem armazenados no barramento de dados.
- CPU ativa as linhas de controle para operação de gravação
- Cls de memória decodificam o endereço e armazenam o dado

UFSC UNIVERSIDADE FEDERAL
DE SANTA CATARINA

### Operação leitura

- CPU fornece endereço e coloca informação no barramento de endereço.
- Decodificador de endereço habilita o pino CS da memória desejada.
- CPU ativa as linhas de controle para operação de leitura
- Cls de memória decodificam o endereço e recuperam o dado
- Cls colocam os dados no barramento de dados para leitura pela CPU

### Tipos de Memória

- Memória apenas de leitura ROM
  - MROM
  - PROM
  - EPROM
  - EEPROM
- Memória FLASH
- Memória RAM
  - DRAM
  - SRAM
  - FRAM



# Memória Apenas de Leitura - ROM

- Manter dados permanentemente ou que não mudam com frequência.
- ROMs são não voláteis



# Memória Apenas de Leitura - ROM

Arquitetura
de uma
ROM 16 x 8
cadaregistroarmazenauma palavrade 8 bits:



DERAL INA

### Temporização de ROM



\*t<sub>OE</sub> é medido a partir do momento em que  $\overline{\text{CS}}$  e  $\overline{\text{OE}}$  foram ambos ativados.

UF DE SANTA CATARINA

# MROM – ROM por Máscara



ADE FEDERAL CATARINA

# PROMs – ROMs Programáveis

ROM's programáveis uma única vez.



# **EPROM – Erasable Programmable ROM**





# **EEPROM – Eletrically Erasable PROM**

- Usa eletricidade para apagar os dados.
- Pode apagar e reescrever bytes individuais
- Processo interno de armazenamento de um valor é lento, velocidade da operação de transferência também é lento.

Memória Flash

Uma célula de memória flash é como a célula EPROM simples de um único transistor com um custo consideravelmente menor que de EEPROM.

> Pode ser apagada eletricamente no circuito, byte a byte

Pode ser apagada eletricamente no circuito, por setor ou em bloco (todas as células)

Pode ser apagada em bloco por luz UV, apagada e reprogramada fora do circuito

Não pode ser apagada e reprogramada







 Baseados nas EEPROMs usavam flash NOR, cada transistor pode ser lido ou escrito individualmente.



 Aumento na densidade resultou em flash NAND, mas obrigada a leitura e escrita dos dados de forma conjunta com outros bits.





 Flash NAND proporciona apagamento rápido e tempo de programação curto, mas precisa tratar os dados em blocos.



### Aplicação das ROMs



#### Memória RAM

- Random access memory memória de acesso aleatório.
- É volátil.







#### Memória RAM - SRAM

- Static RAM RAM estática
- Flip-flops, ficam em um determinado estado indefinidamente, desde que a energia do sistema não seja interrompida.



DERAL NA

#### Memória RAM - SRAM





### SRAM - IS61LV12816L

- 128K x16
- Access Time 8 ou 10 ns

#### PIN CONFIGURATION 44-Pin TSOP (Type II) (T)



#### PIN DESCRIPTIONS

| A0-A16     | Address Inputs                  |
|------------|---------------------------------|
| I/O0-I/O15 | Data Inputs/Outputs             |
| CE         | Chip Enable Input               |
| ŌĒ         | Output Enable Input             |
| WE         | Write Enable Input              |
| ĪB         | Lower-byte Control (I/O0-I/O7)  |
| ŪB         | Upper-byte Control (I/O8-I/O15) |
| NC         | No Connection                   |
| VDD        | Power                           |
| GND        | Ground                          |
|            |                                 |

- Armazena dados como cargas em capacitores, que gradualmente desaparecem devido a descarga do capacitor.
- É necessário dar recargas (refresh) nos dados periodicamente, através da recarga dos capacitores, a cada, 2, 4, ou 8 ms.
- Têm capacidades muito maiores e consumo de energia muito menor.







Durante uma operação de escrita, as chaves SW1 e SW2 são fechadas. Durante uma operação de leitura, todas as chaves são fechadas, exceto SW1.



- Para reduzir a quantidade de pinos nas DRAM de alta capacidade os fabricantes utilizam a multiplexação de endereços:
- Cada pino de entrada de endereço acomoda dois bits de endereço diferentes.
- No endereçamento multiplexado, o endereço é aplicado em duas partes,
   o de linha e o de coluna:
- Ele é conectado diretamente aos registradores de linha e coluna.
- O registrador de linha armazena a parte alta do endereço e o de coluna, a baixa.
- O strobe de endereço de linha (row address strobe, RAS) armazena os conteúdos das entradas de endereço no registro de endereço de linha.
- O strobe de endereço de coluna (column address strobe, CAS) armazena os conteúdos das entradas de endereço no registro de endereço de coluna.





 $t_0$ : MUX é acionado em nível BAIXO para aplicar os bits de endereço da linha ( $A_8$  a  $A_{15}$ ) nas entradas de endereço da DRAM.

 $t_1$ : a entrada  $\overline{RAS}$  é acionada em nível BAIXO para carregar o endereço de linha na DRAM.

 $t_2$ : MUX vai para nível ALTO para colocar o endereço de coluna ( $A_0$  a  $A_7$ ) nas entradas de endereço da DRAM.

 $t_3$ : a entrada  $\overline{CAS}$  vai para nível BAIXO para carregar o endereço da coluna na DRAM.

*t*<sub>4</sub>: a DRAM responde colocando dados válidos, provenientes da célula de memória selecionada, na linha de saída de dados (DATA OUT).

 $t_5$ : os sinais MUX,  $\overline{RAS}$  e  $\overline{CAS}$ , e DATA OUT retornam para os estados iniciais.



 $t_0$ : o nível BAIXO em *MUX* coloca o endereço da linha nas entradas da DRAM.

 $t_1$ : a borda de descida em  $\overline{RAS}$  carrega o endereço da linha na DRAM.

 $t_2$ : MUX vai para nível ALTO para colocar o endereço da coluna nas entradas da DRAM.

 $t_3$ : a borda de descida em  $\overline{CAS}$  carrega o endereço da coluna na DRAM.

t<sub>4</sub>: o dado a ser escrito é colocado na linha de entrada de dados (DATA IN).

 $t_5$ : a entrada  $\overline{WE}$  é pulsada em nível BAIXO para escrever o dado na célula selecionada.

t<sub>6</sub>: os dados de entrada são removidos de DATA IN.

 $t_7$ : os sinais MUX,  $\overline{RAS}$ ,  $\overline{CAS}$  e  $\overline{WE}$  retornam a seus estados iniciais.



### IS43/46TR16128A

• 128M x16 – 2 Gb DDR3 SDRAM 933MHz

|   | 1               | 2      | 3          | 4 | 5 | 6 | 7        | 8      | 9    |
|---|-----------------|--------|------------|---|---|---|----------|--------|------|
| Α | VSS             | VDD    | NC         |   |   |   | NU/TDQS# | VSS    | VDD  |
| В | VSS             | VSSQ   | DQ0        |   |   |   | DM/TDQS  | VSSQ   | VDDQ |
| C | VDDQ            | DQ2    | DQS        |   |   |   | DQ1      | DQ3    | VSSQ |
| D | VSSQ            | DQ6    | DQS#       |   |   |   | VDD      | VSS    | VSSQ |
| Е | VREFDQ          | VDDQ   | DQ4        |   |   |   | DQ7      | DQ5    | VDDQ |
| F | NC <sup>1</sup> | VSS    | RAS#       |   |   |   | CK       | VSS    | NC   |
| G | ODT             | VDD    | CAS#       |   |   |   | CK#      | VDD    | CKE  |
| Н | NC              | CS#    | WE#        |   |   |   | A10/AP   | ZQ     | NC   |
| J | VSS             | BA0    | BA2        |   |   |   | NC(A15)  | VREFCA | VSS  |
| K | VDD             | A3     | A0         |   |   |   | A12/BC#  | BA1    | VDD  |
| L | VSS             | A5     | A2         |   |   |   | A1       | A4     | VSS  |
| M | VDD             | A7     | <b>A</b> 9 |   |   |   | A11      | A6     | VDD  |
| N | VSS             | RESET# | A13        |   |   |   | A14      | A8     | VSS  |



### FRAM - Ferroelectric RAM

- Similar in construction to <u>DRAM</u> but uses a <u>ferroelectric</u> layer instead of a <u>dielectric</u> layer to achieve non-volatility.
- FeRAM advantages over flash include:
  - · lower power usage,
  - faster write performance<sup>[1]</sup> and
  - a much greater maximum number of write-erase cycles (exceeding 10<sup>16</sup> for 3.3 V devices).
- Disadvantages of FeRAM are:
  - much lower <u>storage densities</u> than flash devices,
  - storage capacity limitations, and
  - higher cost.



### FRAM - Ferroelectric RAM

#### FM23MLD16

8Mbit F-RAM Memory



#### **Features**

#### 8Mbit Ferroelectric Nonvolatile RAM

- Organized as 512Kx16
- Configurable as 1Mx8 Using /UB, /LB
- High Endurance 100 Trillion (10<sup>14</sup>) Read/Writes
- NoDelay<sup>TM</sup> Writes
- Page Mode Operation to 33MHz
- Advanced High-Reliability Ferroelectric Process

#### SRAM Compatible

- JEDEC 512Kx16 SRAM Pinout
- 60 ns Access Time, 115 ns Cycle Time

#### **Advanced Features**

 Low V<sub>DD</sub> Monitor Protects Memory against Inadvertent Writes

#### Superior to Battery-backed SRAM Modules

- No Battery Concerns
- Monolithic Reliability
- True Surface Mount Solution, No Rework Steps
- Superior for Moisture, Shock, and Vibration

#### **Low Power Operation**

- 2.7V 3.6V Power Supply
- 14 mA Active Current

#### **Industry Standard Configuration**

- Industrial Temperature -40° C to +85° C
- 48-pin "Green"/RoHS FBGA package

- \$65 8Mbit
- IS43TR16128AL-125KBL \$11 2Gbit UNIVERSIDADE FEDERAL

Computers & Internet > Software

Next >



Heyy! If I install Windows 7 32-bit twice, will it make it 64-bit? PLease help me, im all confused..?

Heyy! If I install Windows 7 32-bit twice, will it make it 64-bit? PLease help me, im all confused...

I wanted to upgrade to 64 bit, but then I came up with an idea of installing 32-bit twice, so it will make it 64 bit. Is it so? If it is then I'll save a lot of money ...

it is cause 2x32 = 64:)



Tollow 2 7 answers

Intel® Core™ i7-4770R Processor (6M Cache, up to 3.90 GHz)

de memória)

Tipos de memória



| Especificações                                  |                     |
|-------------------------------------------------|---------------------|
| <ul><li>Essenciais</li></ul>                    |                     |
| Status                                          | Launched            |
| Data de introdução                              | Q2'13               |
| Número do processador                           | i7-4770R            |
| Cache inteligente Intel®                        | 6 MB                |
| DMI2                                            | 5 GT/s              |
| Nº de links de QPI                              | 0                   |
| Conjunto de instruções                          | 64-bit              |
| Extensões do conjunto de instruções             | SSE4.1/4.2, AVX 2.0 |
| Opções integradas disponíveis                   | No                  |
| Litografia                                      | 22 nm               |
| Escalabilidade                                  | 1S Only             |
| Preço recomendado para o cliente                | TRAY: \$358.00      |
| Ficha técnica                                   | Link                |
| <ul><li>Desempenho</li></ul>                    |                     |
| Número de núcleos                               | 4                   |
| Nº de threads                                   |                     |
|                                                 | 3 3 6117            |
| Frequência baseada em processador               | 3.2 GHz             |
| Frequência turbo max                            | 3.9 GHz             |
| TDP                                             | 65 W                |
| <ul> <li>Especificações de memória</li> </ul>   |                     |
| Tamanho máximo de memória (de acordo com o tipo | 32 GB               |

DDR3L 1333/1600





Posso rodar Windows no meu iMac?





#### Modelos [editar|editar código-fonte]

Os primeiros Pentiums foram fabricados com uma técnica de 0.8 microns, trabalhavam com clocks de 60 MHz e de 66 MHz<sup>2</sup> e foram considerados algo problemáticos devido a problemas de aquecimento. Mais tarde, foram surgindo gradualmente versões de 75, 90, 120, 133, 150, 166, 200, e 233 MHz. Versões de 266 e 300 MHz foram posteriormente lançadas para uso em computadores portáteis. Processadores Pentium OverDrive foram lançados com velocidades de 63 e 83 MHz como uma opção de upgrade para computadores 486 mais antigos.

| Nome-Código                                     | P5           |      | P54 |    |              |     | P54C |                 |     |                  |                 | P550 |                  |                 | P55C (Tillamook) |                 |                 |     |
|-------------------------------------------------|--------------|------|-----|----|--------------|-----|------|-----------------|-----|------------------|-----------------|------|------------------|-----------------|------------------|-----------------|-----------------|-----|
| Processo de fabricação utilizado (μm) 0.80 0.60 |              |      |     |    |              |     | 0.35 |                 |     |                  |                 |      | .25              |                 |                  |                 |                 |     |
| CI Hz)                                          | 60           | 66   | 75  | 90 | 100          | 120 |      | 133             | 150 | 166              | 200             | 166  | 200              | 233             | 200              | 233             | 266             | 300 |
| La m:                                           | Marg<br>1993 | o de | '   |    | Març<br>1995 |     |      | Jan. de<br>1996 |     | Junho de<br>1996 | Out. de<br>1996 |      | Junho de<br>1997 | Set. de<br>1997 |                  | Jan. de<br>1998 | Jan. de<br>1999 |     |

```
DX, 1
                DX,1
        SHL
        AND
                DI, OFH
                SHORT PACKIN
ALIGNED:
                DI, OFOOOH
PACKIN:
                DI, DX
                [BX], DI
        MOV
        RET
DEVNAME:
                SI, OFFSET DOSGROUP: IONAME ; List of I/O devices with file names
        MOV
                BH, NUMDEV
                                         ;BH = number of device names
LOOKIO:
                DI, OFFSET DOSGROUP: NAME1
        MOV
        MOV
                CX.4
                                         :All devices are 4 letters
        REPE
                CMPSB
                                         :Check for name in list
                IOCHK
                                         :If first 3 letters OK, check for the rest
                SI, CX
                                         :Point to next device name
        DEC
                LOOKIO
CRET:
        STC
                                         :Not found
        RET
IOCHK:
        IF
                IBM
                BH, NUMDEV
                                ;Is it the first device?
        JNZ
                NOTCOM1
                BH, 2
                                 ;Make it the same as AUX
NOTCOM1:
        ENDIF
        NEG
                BH
        MOV
                CX, 2
                                 ;Check rest of name but not extension
                AX, 2020H
        MOV
```

:Make sure rest of name is blanks

REPE

SCASW

- UNIVERSIDADE FEDERAL
- DE SANTA CATARINA

### Próxima aula:

• Arquitetura de Microcontroladores.

### **Anderson Wedderhoff Spengler**

E-mail: anderson.spengler@ufsc.br

Telefone: +55 (48) 3721 7489

