MATH 497 Quiz 2	MA	TΗ	497	Qı	Jiz	2
-----------------	----	----	-----	----	-----	---

>.	l. ha
	١, ١

0.000		
Date:		

- 1. Consider a Markov chain X_n with states 1, 2, and 3. The Markov chain evolves according to the following rules:
 - When in state 1, the chain moves to state 2 with probability 1.
 - When in state 2, the chain moves to state 3 with probability 1.
 - When in state 3, the chain moves to state 1 with probability .5 and state 2 with probability .5.

a) Find the stationary distribution π .

a) Find the stationary distribution
$$\pi$$
.

$$\begin{bmatrix}
\Pi_1 & \Pi_2 & \Pi_3
\end{bmatrix} = \begin{bmatrix}
\Pi_2 & \Pi_3 & \Pi_3
\end{bmatrix} = \begin{bmatrix}
\Pi_3 & \Pi_4 & \Pi_3
\end{bmatrix} = \begin{bmatrix}
\Pi_1 & \Pi_2 & \Pi_3
\end{bmatrix} = \begin{bmatrix}
\Pi_2 & \Pi_3 & \Pi_3
\end{bmatrix} = \begin{bmatrix}
\Pi_3 & \Pi_4 & \Pi_3
\end{bmatrix} = \begin{bmatrix}
\Pi_4 & \Pi_4 & \Pi_4
\end{bmatrix} = \begin{bmatrix}
\Pi_4 & \Pi_4$$

b) Show the chain is irreducible.

Show the chain is irreducible.

Next to show then exists some
$$n > 1$$
. $p^n(i,j) > 0$ for all $p^{(2,1)} = 1 > 0$ $p^{(2,1)} = 1 > 0$

c) Show the chain is aperiodic.

d) Suppose f(x) is a function such that f(2) = 1, f(3) = 2, and f(x) = 0 for all other values of x. Find

$$\lim_{n\to\infty} \frac{1}{n} \sum_{m=1}^{n} f(X_m)$$

$$\begin{cases} f(x) & \text{if } (x) = 0 (1/\epsilon) + 1 (1/\epsilon) + \frac{1}{2} 2(1/\epsilon) = \frac{1}{2} \end{cases}$$