PROPOSED MARKING GUIDE UACE 2024 APPLIED MATHEMATICS UMTA P425/2

NO	SOLUTION	MKS	COMMENT
1	Let E = Economy class		
	G= Good night		
	P(E) = 0.82, P(G/E) = x		
	P(E') = 0.18, P(G/E') = 0.9		
	a) $P(G) = P(E) \cdot P(G/E) + P(E') \cdot P(G/E')$		
	$0.285 = 0.82x + 0.18 \times 0.9$		
	0.285 = 0.82x + 0.162		
	0.82x = 0.123		
	$x = \frac{3}{20}$ or 0.15		
	b) $P(E/G') = \frac{P(E \cap G')}{P(G')}$		
	$=\frac{0.82\times0.85}{1-0.285}$		
	$= \frac{697}{715} \text{ or } 0.9748$		
		05	
2			
		05	
3	P_0 P_1 $\frac{P_1}{P_0} \times 100$		
	$6,000 7,800 \frac{7,800}{6,000} \times 100 = 130$		
	$5,000 \qquad 4,000 \qquad \frac{4,000}{5,000} \times 100 = 80$		
	$500 700 \frac{700}{500} \times 100 = 140$		
	$2,000 2,500 \frac{2,500}{2,000} \times 100 = 125$		

	$S.P.I = \frac{130+}{}$	80+140+125				
	= 118.75					
	Comment: the cost increased by 18.75%					
			·		05	
4	Let $y = \frac{x}{2+c}$	os x				
	$h = \frac{1.0 - 0.2}{4} = 1.0 $					
	1.0	0.394]		
	1.0	0.394	0.508			
	1.4		0.645	†		
	1.6		0.812			
	1.8		1.015			
	2.0	1.263				
		1.657	2.980			
	$\int_{0.2}^{1.0} \frac{x}{2 + \cos x} \alpha$	$dx \approx \frac{1}{2} \times 0.2$	[1.657 + 2	(2.980)]		
	≈ 0.7617					
	$\approx 0.76(2sfs)$					
					05	
5	y ♠					
	D 1N	C				
	3 (1) 8N					
	$A \xrightarrow{\theta} B \xrightarrow{R} X$					
	$\tan \theta = \frac{a}{a}$					
	$\theta = \tan^{-1}(1)$	1)				

	$\theta = 45^{\circ}$		
	$(\to); F_x = 3\sqrt{2}\cos 45^0 - 1$		
	=2N		
	$(\uparrow); F_y = 3\sqrt{2}\sin 45^0 - 8$		
	=-5 N		
	$\stackrel{\frown}{A}$; $G = 1 \times a - 8 \times a = -7a$		
	From $G - xF_y + yF_x = 0$		
	-7a + 5x + 2y = 0		
	$\therefore 2y + 5x - 7a = 0$		
		05	
6	$f(x) = \frac{4}{9}(x - x^3)$		
	$f(x) = \frac{4}{9}(x - x^3)$ $f'(x) = \frac{4}{9}(1 - 3x^2)$		
	For mode, $f'(x) = 0$		
	$\frac{4}{9}(1-3x^2)=0$		
	$x = \pm \frac{1}{\sqrt{3}}$		
	$f''(x) = \frac{4}{9}(-6x)$		
	$f''(x) = -\frac{8}{9}x$		
	When $x = \frac{1}{\sqrt{3}}$; $f''\left(\frac{1}{\sqrt{3}}\right) = -\frac{4}{9} \times \frac{1}{\sqrt{3}} = -\frac{4}{9\sqrt{3}}$		
	When $x = -\frac{1}{\sqrt{3}}$; $f''\left(-\frac{1}{\sqrt{3}}\right) = -\frac{4}{9} \times -\frac{1}{\sqrt{3}} = \frac{4}{9\sqrt{3}}$		
	$Mode = \frac{1}{\sqrt{3}}, \text{ since } f''\left(\frac{1}{\sqrt{3}}\right) < 0$		
		05	

7	Diagram		
	Parallel to the plane;		
	-		
	$F = \mu R + 49 \sin 35^{\circ}$ (i)		
	Perpendicular to the plane;		
	$R = 49 \cos 35^0$ (ii)		
	Putting (ii) into (i)		
	$F = 49\mu\cos 35^0 + 49\sin 35^0$		
	But $\mu = \tan \theta$		
	$F = 49 \tan 20^{0} \cos 35^{0} + 49 \sin 35^{0}$		
	F= 42.7144 N		
		05	
8	B A		
	10 8		
	2 6 4		
	0 2		
	4 0		
	A = 2		
		05	
9	a)		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	-0.5 - 9.5 5 4.5 22.5 5 10 0.5		
	9.5 - 14.5 8 12 96 13 5 1.6 14.5 - 19.5 32 17 544 45 5 6.4		
	14.5 - 19.5 32 17 544 45 5 6.4 19.5 - 29.5 41 24.5 1004.5 86 10 4.1		
	29.5 – 39.5 16 34.5 552 102 10 1.6		
	39.5 – 49.5 2 44.5 89 104 10 0.2		
	Σ 104 2308		

(i) Mean, $\bar{x} = \frac{\sum fx}{\sum f}$		
$\begin{array}{c c} \Sigma f \\ \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
$={104}$		
= 22.1923		
≈ 22 cigarettes		
(ii)		
19.5 25 29.5 45 <i>A</i> 86		
$\frac{A-45}{25-19.5} = \frac{86-45}{29.5-19.5}$		
A = 67.55		
≈ 68		
∴ 68 patients smoked 25 cigarettes and below		
b) See graph		
	12	
10 a) (i)	12	
	12	
$2a ms^{-2}$ $a ms^{-2}$	12	
$2a ms^{-2}$ $8g$ $a ms^{-2}$	12	
T T T T T A B A ms ⁻² For 8 kg mass:	12	

	T - 5g = 5a(ii)		
	(i)+(ii);		
	3g = 13a		
	$a = \frac{3 \times 9.8}{13}$		
	$= \frac{147}{65} ms^{-2} \text{ or } 2.2615 ms^{-2}$		
	∴ Acceleration of particle, $C = 2 \times \frac{3 \times 9.8}{13}$		
	$= \frac{294}{65} \ ms^{-2} \text{ or } 4.5231$		
	(ii) From (i); $4g - T = 8a$		
	$T = 4 \times 9.8 - 8 \times \frac{3 \times 9.8}{13}$		
	$T = \frac{1372}{65} \text{ N or } 21.1077 \text{ N}$		
	b) RA V3g		
	$ \begin{array}{c c} a ms^{-2} & \hline B \\ \hline R - 3g = 3a \end{array} $		
	R = 3(a+g)		
	$R = 3\left(\frac{147}{65} + 9.8\right)$		
	$R = \frac{2352}{65}$ N or 36.1846 N		
		12	
11	$Let f(x) = x^2 - 3x + 1$		
	$f(2) = 2^2 - 3(2) + 1$		
	= -1		

f(3) = 3	3 ² –	3(3)	+	1
= 1				

 \therefore Since $f(2) \cdot f(3) < 0$, then 2 < root < 3

2	x_0	3
-1	0	1

$$\frac{x_0 - 2}{0 + 1} = \frac{3 - 2}{1 + 1}$$

$$x_0 = 2.5$$

$$f(2.5) = (2.5)^2 - 3(2.5) + 1 = -0.25$$

2.5	x_1	3
-0.25	0	1

$$\frac{x_1 - 2.5}{0 + 0.25} = \frac{3 - 2.5}{1 + 0.25}$$

$$x_1 = 2.6$$

$$f(2.6) = (2.6)^2 - 3(2.6) + 1 = -0.04$$

2.6	x_2	3
-0.04	0	1

$$\frac{x_2 - 2.6}{0 + 0.04} = \frac{3 - 2.6}{1 + 0.04}$$

$$x_2 = 2.615$$

$$f(2.615) = (2.615)^2 - 3(2.615) + 1 = -0.006775$$

2.615	x_3	3
-0.006775	0	1

$$\frac{x_3 - 2.615}{0 + 0.006775} = \frac{3 - 2.615}{1 + 0.006775}$$

$$x_3 = 2.618$$

$$|x_3 - x_2| = 0.003 < 0.005$$

	$\therefore \text{ root} = 2.62(2\text{dps})$		
	100t 2.02(2 u ps)		
10	\ T \ XZ 1	12	
12	a) Let X be marks scored.		
	$\mu = 54$, $\delta = 9$		
	$P(X \ge 38) = P\left(z > \frac{38 - 54}{9}\right)$		
	=P(z > -1.778)		
	-1.778 ⁰		
	= 0.5 + P(0 < z < 1.778)		
	= 0.5 + 0.4623		
	= 0.9623		
	\therefore Number of students = 0.9623×400		
	= 384.92		
	≈ 385		
	b) $P(49 < X < 57) = P(\frac{49-54}{9} < z < \frac{57-54}{9})$		
	=P(-0.556 < z < 0.333)		
	-0.556 ⁰ 0.333		
	=P(0 < z < 0.556) + P(0 < z < 0.333)		
	= 0.2109 + 0.1304		

	= 0.3413		
	c) $p = 0.3413, q = 0.6587, n = 10$		
	Let Y be the number of students who scored between		
	49 and 57.		
	$P(Y \ge 1) = 1 - P(Y = 0)$		
	$= 1 - {}^{10}\text{C}_0 \cdot (0.3413)^0 \cdot (0.6587)^{10}$		
	= 1 - 0.0154		
	= 0.9846		
		12	
13			
		12	
14	a) Let $T = X\sqrt{Y}$		
	Squaring both sides.		
	$T^2 = X^2 Y$		
	$(T + \Delta T)^2 = (X + \Delta X)^2 (Y + \Delta Y)$		
	$T^2 + 2T\Delta T + (\Delta T)^2 = (X^2 + 2X\Delta X + (\Delta X)^2)(Y + \Delta Y)$		
	ΔX and ΔT are too small, then $(\Delta T)^2 \approx 0$, $(\Delta X)^2 \approx 0$		
	$T^2 + 2T\Delta T = X^2Y + X^2\Delta Y + 2XY\Delta X + 2X\Delta X\Delta Y$		
	ΔY is also too small, then $2X\Delta X\Delta Y\approx 0$		
	$2T\Delta T = X^2\Delta Y + 2XY\Delta X$		
	$\Delta T = \frac{X^2 \Delta Y + 2XY \Delta X}{2T}$		
	$R.E = \frac{\Delta T}{T}$		
	$R.E = \frac{X^2 \Delta Y + 2XY \Delta X}{2T^2}$		

	$= \frac{X^2 \Delta Y + 2XY \Delta X}{2X^2 Y}$ $= \frac{\Delta Y}{2Y} + \frac{\Delta X}{X}$ $\left \frac{\Delta T}{T}\right = \left \frac{\Delta Y}{2Y} + \frac{\Delta X}{X}\right \le \left \frac{\Delta X}{X}\right + \frac{1}{2}\left \frac{\Delta Y}{Y}\right $ $\therefore \left \frac{\Delta T}{T}\right _{max} = \left \frac{\Delta X}{X}\right + \frac{1}{2}\left \frac{\Delta Y}{Y}\right $ $b) \Delta X = 0.0005, \Delta Y = 0.05$ $\% \text{ age error} = \left \left \frac{\Delta X}{X}\right + \frac{1}{2}\left \frac{\Delta Y}{Y}\right \times 100$ $= \left(\frac{0.0005}{1.824} + \frac{1}{2}\left(\frac{0.05}{3.9}\right)\right) \times 100$ $= 0.6684\%$		
		12	
15	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		12	
16	a) Let <i>k</i> be weight per unit area.		
	Area of square = $8 \times 8 = 64 \ cm^2$		

Area of right-angled triangle = $\frac{1}{2} \times 3 \times 4 = 6 \text{ cm}^2$

Area of semi-circle = $\frac{1}{2} \times \pi \times 2^2 = 2\pi \ cm^2$

Area of the remainder = $64 - (6 + 2\pi)$

$$= (58-2\pi) cm^2$$

Figure	Weight	Distance of C.O.G	
		AB	AD
Square	64 <i>k</i>	4	4
Right-angled	6 <i>k</i>	$^{10}/_{3}$	3
Semi-circle	$2\pi k$	2	$\frac{8+12\pi}{3\pi}$
Remainder	$(58 - 2\pi)k$	\bar{y}	\bar{x}

Taking moments about AB;

$$(58 - 2\pi)k \times \bar{x} = 64k \times 4 - 6k \times 3 - 2\pi k \times \frac{8 + 12\pi}{3\pi}$$

$$(58 - 2\pi)\bar{x} = 256 - 18 - \frac{16}{3} - 8\pi$$

$$(58-2\pi)\bar{x}=\frac{698}{3}-8\pi$$

$$(58 - 2\pi)\bar{x} = \frac{698 - 24\pi}{3}$$

$$\bar{\chi} = \frac{698-24\pi}{174-6\pi}$$

$$\bar{x} = 4.0129 \ cm$$

Taking moments about AD;

$$(58 - 2\pi)k \times \bar{y} = 64k \times 4 - 6k \times \frac{10}{3} - 2\pi k \times 2$$

$$(58 - 2\pi)\bar{y} = 256 - 20 - 4\pi$$

$$(58 - 2\pi)\bar{y} = 236 - 4\pi$$

$$\bar{y} = \frac{236-4\pi}{58-2\pi}$$

$$\bar{y} = 4.3203 \ cm$$

$: G(\bar{x}, \bar{y}) = G(4.0129, 4.3203)$		
b) $\tan \theta = \frac{\bar{y}}{8-\bar{x}}$		
$\tan \theta = \frac{4.3203}{8 - 4.0129}$		
$\theta = \tan^{-1} \left(\frac{4.3203}{3.9871} \right)$		
$\theta = 47.30^{0}$		
$\therefore \text{ Required angle} = 90^{0} - 47.30^{0}$		
$=42.70^{0}$		
	12	