EDP AVS

Generated by Doxygen 1.8.14

Contents

1	Clas	s Index			1
	1.1	Class I	List		1
2	File	Index			3
	2.1	File Lis	st		3
3	Clas	s Docu	mentation		5
	3.1	Naviga	ntor Class F	Reference	5
		3.1.1	Detailed	Description	6
		3.1.2	Construc	tor & Destructor Documentation	6
			3.1.2.1	Navigator()	6
		3.1.3	Member	Function Documentation	6
			3.1.3.1	addObstacle()	6
			3.1.3.2	convertToArray()	7
			3.1.3.3	createMap()	7
			3.1.3.4	milliToGrid()	7
			3.1.3.5	nextDirection()	8
			3.1.3.6	nextMove()	8
			3.1.3.7	noObstacle()	9
			3.1.3.8	printMap()	9
			3.1.3.9	printMoveData()	9
			3.1.3.10	printReturnMoveData()	9
			3.1.3.11	prioritiseMap()	10
			3.1.3.12	reprioritiseMap()	10

ii CONTENTS

		3.1.3.13 sidesClear()	10
		3.1.3.14 testMap()	11
		3.1.3.15 testMilliToGrid()	11
		3.1.3.16 testMove()	11
		3.1.3.17 testObstacleData()	11
	3.1.4	Member Data Documentation	11
		3.1.4.1 grid	11
3.2	Obstac	eDetection Class Reference	12
	3.2.1	Detailed Description	12
	3.2.2	Constructor & Destructor Documentation	13
		3.2.2.1 ObstacleDetection() [1/2]	13
		3.2.2.2 ObstacleDetection() [2/2]	13
	3.2.3	Member Function Documentation	13
		3.2.3.1 detectAllSensors()	13
		3.2.3.2 detectFrontSensor()	13
		3.2.3.3 detectLeftSensor()	14
		3.2.3.4 detectRightSensor()	14
		3.2.3.5 odsToNavTestObstacles()	14
	3.2.4	Member Data Documentation	14
		3.2.4.1 frontSensorPtr	14
		3.2.4.2 iterations	15
		3.2.4.3 leftSensorPtr	15
		3.2.4.4 navPtr	15
		3.2.4.5 rightSensorPtr	15
3.3	Obstac	eSensor Class Reference	15
	3.3.1	Detailed Description	17
	3.3.2	Constructor & Destructor Documentation	17
		3.3.2.1 ObstacleSensor() [1/2]	17
		3.3.2.2 ObstacleSensor() [2/2]	17
	3.3.3	Member Function Documentation	18

CONTENTS

	3.3.3.1	activateSensor()	18
	3.3.3.2	calculateSoundCm()	. 18
	3.3.3.3	printDistance()	. 18
	3.3.3.4	printSound()	. 19
	3.3.3.5	updateOdsData()	. 19
3.3.4	Member	Data Documentation	. 19
	3.3.4.1	bias	. 19
	3.3.4.2	distance	. 19
	3.3.4.3	duration	20
	3.3.4.4	echoPin	20
	3.3.4.5	gridX	20
	3.3.4.6	gridY	20
	3.3.4.7	heading	20
	3.3.4.8	maxDistance	20
	3.3.4.9	objGridRef	21
	3.3.4.10	objX	21
	3.3.4.11	objXDist	21
	3.3.4.12	objY	21
	3.3.4.13	objYDist	21
	3.3.4.14	offsetX	21
	3.3.4.15	offsetY	21
	3.3.4.16	sensorAngle	22
	3.3.4.17	sensorGridAngle	22
	3.3.4.18	sonar	22
	3.3.4.19	soundcm	22
	3.3.4.20	triggerPin	22
	3.3.4.21	unitVect	22
	3.3.4.22	xDistComp	23
	3.3.4.23	xPos	23
	3.3.4.24	yDistComp	. 23
	3.3.4.25	yPos	23

iv CONTENTS

1	File	Docume	entation		25
	4.1	botMai	n.ino File f	Reference	25
		4.1.1	Detailed	Description	28
		4.1.2	Macro De	efinition Documentation	28
			4.1.2.1	BACKWARD_DIR	28
			4.1.2.2	DIAG_BACK_LEFT	28
			4.1.2.3	DIAG_BACK_RIGHT	28
			4.1.2.4	DIAG_FOR_LEFT	28
			4.1.2.5	DIAG_FOR_RIGHT	29
			4.1.2.6	FORWARD_DIR	29
			4.1.2.7	LEFT_DIR	29
			4.1.2.8	RIGHT_DIR	29
		4.1.3	Function	Documentation	29
			4.1.3.1	BT()	29
			4.1.3.2	btPrintMap()	29
			4.1.3.3	btPrintSensorDistances()	30
			4.1.3.4	cgk_left()	30
			4.1.3.5	cgk_right()	30
			4.1.3.6	getCoordinates()	30
			4.1.3.7	getCoordinatesV2()	30
			4.1.3.8	getHeading()	30
			4.1.3.9	headingInit()	31
			4.1.3.10	loop()	31
			4.1.3.11	moveBackward()	31
			4.1.3.12	moveForward()	31
			4.1.3.13	sendBTData()	31
			4.1.3.14	setAnchorsManual()	31
			4.1.3.15	setup()	32
			4.1.3.16	turnLeft()	32
			4.1.3.17	turnRight()	32

CONTENTS

4.1.4	Variable I	Documentation	32
	4.1.4.1	AFMS	32
	4.1.4.2	algorithm	32
	4.1.4.3	anchors	32
	4.1.4.4	anchors_x	32
	4.1.4.5	anchors_y	33
	4.1.4.6	basicAvgAmt	33
	4.1.4.7	cgk_back_little	33
	4.1.4.8	cgk_back_one	33
	4.1.4.9	cgk_brake_time	33
	4.1.4.10	cgk_first_angle_divider	33
	4.1.4.11	cgk_fwd_end_turn	33
	4.1.4.12	cgk_fwd_little	33
	4.1.4.13	cgk_fwd_one	34
	4.1.4.14	cgk_motor_speed	34
	4.1.4.15	cgk_straight	34
	4.1.4.16	cgk_turn_delay	34
	4.1.4.17	dimension	34
	4.1.4.18	frontEchoPin	34
	4.1.4.19	frontSensor	34
	4.1.4.20	frontsensorAngle	35
	4.1.4.21	frontTriggerPin	35
	4.1.4.22	frontXOffset	35
	4.1.4.23	frontYOffset	35
	4.1.4.24	heading	35
	4.1.4.25	headingOffset	35
	4.1.4.26	height	35
	4.1.4.27	heights	36
	4.1.4.28	leftEchoPin	36
	4.1.4.29	leftSensor	36

vi

	4.1.4.30) leftsensorAngle	. 36
	4.1.4.31	I leftTriggerPin	. 36
	4.1.4.32	2 leftXOffset	. 36
	4.1.4.33	3 leftYOffset	. 37
	4.1.4.34	1 myMotor	. 37
	4.1.4.35	5 nav	. 37
	4.1.4.36	6 num_anchors	. 37
	4.1.4.37	7 num_to_avg	. 37
	4.1.4.38	3 result	. 37
	4.1.4.39	PreturnToStart	. 37
	4.1.4.40	rightEchoPin	. 38
	4.1.4.41	I rightSensor	. 38
	4.1.4.42	2 rightsensorAngle	. 38
	4.1.4.43	3 rightTriggerPin	. 38
	4.1.4.44	4 rightXOffset	. 38
	4.1.4.45	5 rightYOffset	. 38
	4.1.4.46	6 servo1	. 39
	4.1.4.47	7 tempPin	. 39
	4.1.4.48	3 x_loc	. 39
	4.1.4.49	9 x_loc_prev	. 39
	4.1.4.50	xPosStart	. 39
	4.1.4.51	xPosTarget	. 39
	4.1.4.52	2 y_loc	. 39
	4.1.4.53	3 y_loc_prev	. 40
	4.1.4.54	4 yPosStart	. 40
	4.1.4.55	5 yPosTarget	. 40
4.2	common.h File I	Reference	. 40
	4.2.1 Variable	Documentation	. 40
	4.2.1.1	DATA	. 40
	4.2.1.2	ELEMENT_VALUE	. 40

CONTENTS vii

		4.2.1.3	ELEMENT_XPOS	41
		4.2.1.4	ELEMENT_YPOS	41
		4.2.1.5	HEIGHT	41
		4.2.1.6	OBSTACLE_COUNT	41
		4.2.1.7	test_mode	41
		4.2.1.8	WIDTH	41
4.3	Naviga	ator.cpp Fi	le Reference	41
	4.3.1	Variable	Documentation	42
		4.3.1.1	moveHistory	42
		4.3.1.2	xPosStartNav	42
		4.3.1.3	xPosTargetNav	42
		4.3.1.4	yPosStartNav	42
		4.3.1.5	yPosTargetNav	42
4.4	Naviga	ator.h File	Reference	42
	4.4.1	Variable	Documentation	43
		4.4.1.1	DATA	43
		4.4.1.2	ELEMENT_VALUE	43
		4.4.1.3	ELEMENT_XPOS	43
		4.4.1.4	ELEMENT_YPOS	43
		4.4.1.5	HEIGHT	44
		4.4.1.6	OBSTACLE_COUNT	44
		4.4.1.7	WIDTH	44
4.5	Obstac	cleDetection	on.cpp File Reference	44
4.6	Obstac	cleDetection	on.h File Reference	44
4.7	Obstac	cleSensor.	cpp File Reference	44
4.8	Obstac	cleSensor.	h File Reference	44

45

Index

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Navigator	
Navigator object controls all aspects of navigation command and decision making	5
ObstacleDetection	
ObstacleDetection object controls the activation patterns of all ObstacleSensor objects and outputs detected obstacle grid references to the navigation system	12
ObstacleSensor	
ObstacleSensor object contains all angles and distances/locations of a particular sensor allowing for distance calculations from the pozyx locator to be conducted	15

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

otMain.ino
Top level file for the AVS which integrates all sub-systems on the arduino
ommon.h
lavigator.cpp
lavigator.h
ObstacleDetection.cpp
ObstacleDetection.h
ObstacleSensor.cpp
ObstacleSensor.h

File Index

Chapter 3

Class Documentation

3.1 Navigator Class Reference

Navigator object controls all aspects of navigation command and decision making.

```
#include <Navigator.h>
```

Public Member Functions

- Navigator (int xPosBegin, int yPosBegin, int xPosEnd, int yPosEnd)
- void prioritiseMap (int xPos, int yPos)
- void reprioritiseMap (int xPos, int yPos)
- void addObstacle (int xPos, int yPos)
- void noObstacle (int xPos, int yPos)
- int nextDirection (int xPos, int yPos, int xPosTarget, int yPosTarget, int heading)
- int nextMove (int xPos, int yPos, int xPosTarget, int yPosTarget, int heading)
- int sidesClear (int xPos, int yPos, int heading)
- void testMap ()
- void printMap ()
- void testObstacleData ()
- void testMilliToGrid (int i)
- void testMove ()
- void printMoveData (int id, int direction, int heading, int command)
- void printReturnMoveData ()
- int milliToGrid (int milliCoord)

Public Attributes

• int grid_ [HEIGHT+2][WIDTH+2][DATA]

Private Member Functions

- void createMap ()
- int convertToArray (int coord)

3.1.1 Detailed Description

Navigator object controls all aspects of navigation command and decision making.

Navigator takes information regarding location, heading and obstacle locations to populate a live map utilising a flood fill algorithm to prioritise movements. It then decides on a movement based on these priorities and commands the motor control sub-system to make the appropriate movement. It also outputs the map via bluetooth to the GUI including obstacles which are stored as a large number within this map.

3.1.2 Constructor & Destructor Documentation

3.1.2.1 Navigator()

Default constructor

Parameters

xPosBegin	Cartesian x-coordinate of the start grid square
yPosBegin	Cartesian y-coordinate of the start grid square
xPosTarget	Cartesian x-coordinate of the target grid square
yPosTarget	Cartesian y-coordinate of the target grid square

3.1.3 Member Function Documentation

3.1.3.1 addObstacle()

```
void Navigator::addObstacle (
    int xPos,
    int yPos)
```

Adds an obstacle to the map

xPos	Cartesian x-coordinate of the obstacle grid square
yPos	Cartesian y-coordinate of the obstacle grid square

3.1.3.2 convertToArray()

Converts y grid coordinate to y array coordinate

Parameters

coord	Grid coordinate

Returns

Array coordinate

3.1.3.3 createMap()

```
void Navigator::createMap ( ) [private]
```

Creates a map that with a given length, height and a boundary wall of obstacles assigning an initial weighting of -1

Parameters

height	Height of the grid to be traversed
length	Length of the grid to be traversed

3.1.3.4 milliToGrid()

Converts millimetre coordinate to grid coordinate

coord	Millimetre coordinate

Returns

Grid coordinate

3.1.3.5 nextDirection()

```
int Navigator::nextDirection (
    int xPos,
    int yPos,
    int xPosTarget,
    int yPosTarget,
    int heading )
```

Determines direction of movement with respect to the current grid square and neighbouring values

Parameters

xPos	Current horizontal position
yPos	Current vertical position
xPosTarget	Target horizontal position
yPosTarget	Target vertical position
heading	Current heading

Returns

Integer uniquely mapped to cardinal direction required to advance to target location

3.1.3.6 nextMove()

Determines move required to move to a grid square determined by nextDirection()

xPos	Current horizontal position
yPos	Current vertical position
xPosTarget	Target horizontal position
yPosTarget	Target vertical position
heading	Current heading

Returns

Integer uniquely mapped to motor controller move function

3.1.3.7 noObstacle()

Removes an obstacle from the map and gives it an element value of 0

Parameters

xPos	Cartesian x-coordinate of the obstacle grid square
yPos	Cartesian y-coordinate of the obstacle grid square

3.1.3.8 printMap()

```
void Navigator::printMap ( )
```

Prints the grid with the associated priority value for each grid square

3.1.3.9 printMoveData()

```
void Navigator::printMoveData (
    int id,
    int direction,
    int heading,
    int command)
```

Prints movement related data for each move including its number, direction, resultant heading and command

Parameters

id	move number
direction	movement direction
heading	resultant heading after movement
command	movement command to be sent to motor controller

3.1.3.10 printReturnMoveData()

```
void Navigator::printReturnMoveData ( )
```

Prints movement commands for a required return pathway

3.1.3.11 prioritiseMap()

Prioritises each grid square using the flood-fill algorithm

Parameters

xPosTarget	Cartesian x-coordinate of the target grid square
yPosTarget	Cartesian y-coordinate of the target grid square

3.1.3.12 reprioritiseMap()

Clears current grid and reprioritises each grid square using the flood-fill algorithm

Parameters

xPosTarget	Cartesian x-coordinate of the target grid square
yPosTarget	Cartesian y-coordinate of the target grid square

3.1.3.13 sidesClear()

```
int Navigator::sidesClear (
    int xPos,
    int yPos,
    int heading )
```

Determines if the grid squares of the position

xPos	Current horizontal position
yPos	Current vertical position
heading	Current heading

Returns

integer uniquely mapped to a clear side

```
3.1.3.14 testMap()
```

```
void Navigator::testMap ( )
```

Tests the createMap() function with a length of 10 and height of 10. Tests the prioritiseMap() function with a target location at 9, 9

3.1.3.15 testMilliToGrid()

Tests and prints

Parameters

i Number of iterations to test the conversion of a millimetre location [0, 5000] to grid location [0, 10]

3.1.3.16 testMove()

```
void Navigator::testMove ( )
```

Tests moves functions

3.1.3.17 testObstacleData()

```
void Navigator::testObstacleData ( )
```

Adds obstacles from hardcoded obstacle position data

3.1.4 Member Data Documentation

3.1.4.1 grid_

```
int Navigator::grid_[HEIGHT+2][WIDTH+2][DATA]
```

The documentation for this class was generated from the following files:

- Navigator.h
- Navigator.cpp

3.2 ObstacleDetection Class Reference

ObstacleDetection object controls the activation patterns of all ObstacleSensor objects and outputs detected obstacle grid references to the navigation system.

```
#include <ObstacleDetection.h>
```

Public Member Functions

· ObstacleDetection ()

Default constructor - not used currently.

- ObstacleDetection (ObstacleSensor *frontSensorPtr, ObstacleSensor *leftSensorPtr, ObstacleSensor *rightSensorPtr, Navigator *navPtr)
- void detectAllSensors ()
- void odsToNavTestObstacles ()

Filled with dummy obstacles to be outputted to navigation system for testing of OD-NM interface.

Private Member Functions

- int detectLeftSensor ()
- int detectRightSensor ()
- int detectFrontSensor ()

Private Attributes

ObstacleSensor * frontSensorPtr_

Pointer to front sensor.

• ObstacleSensor * leftSensorPtr_

Pointer to left sensor.

ObstacleSensor * rightSensorPtr_

Pointer to right sensor.

Navigator * navPtr_

Pointer to the navigation system object.

Static Private Attributes

static const int iterations = 5

Number of times the sensors are activated to average distance of detection.

3.2.1 Detailed Description

ObstacleDetection object controls the activation patterns of all ObstacleSensor objects and outputs detected obstacle grid references to the navigation system.

A single ObstacleDetection object is used per AVS unit, and it contains all of the details of the specific respective ObstacleSensor objects. The ObstacleDetection object has at its disposal a number of ObstacleSensor activation patterns based on the needs of the particular environment and AVS configuration. INPUTS: Requires information detailing ObstacleSensor objects OUTPUTS TO: Grid reference to navigation system

3.2.2 Constructor & Destructor Documentation

```
3.2.2.1 ObstacleDetection() [1/2]
ObstacleDetection::ObstacleDetection ( )
```

Default constructor - not used currently.

3.2.2.2 ObstacleDetection() [2/2]

Constructor which takes in three ObstacleSensor object pointers and navigator object pointer used to activate in different sequences as required

Parameters

*frontSensorPtr	Pointer to front sensor Obstacle Sensor Object
*leftSensororPtr	Pointer to left sensor Obstacle Sensor Object
*rightSensorPtr	Pointer to right sensor Obstacle Sensor Object
*navPtr	Pointer to Navigator object in order to call addObstacle function and pass obstalce details to navigation system

3.2.3 Member Function Documentation

3.2.3.1 detectAllSensors()

```
void ObstacleDetection::detectAllSensors ( )
```

Standard detection function which activates all sensors and converts any obstacles to grid references. Will be in loop function so constantly firing.

3.2.3.2 detectFrontSensor()

```
int ObstacleDetection::detectFrontSensor ( ) [private]
```

Fire front sensor only

Returns

0 or 1 for legal obstacle distance detected

3.2.3.3 detectLeftSensor()

```
int ObstacleDetection::detectLeftSensor ( ) [private]
```

Fire left sensor only

Returns

0 or 1 for legal obstacle distance detected

3.2.3.4 detectRightSensor()

```
int ObstacleDetection::detectRightSensor ( ) [private]
```

Fire right sensor only

Returns

0 or 1 for legal obstacle distance detected

3.2.3.5 odsToNavTestObstacles()

```
void ObstacleDetection::odsToNavTestObstacles ( )
```

Filled with dummy obstacles to be outputted to navigation system for testing of OD-NM interface.

3.2.4 Member Data Documentation

3.2.4.1 frontSensorPtr_

```
ObstacleSensor* ObstacleDetection::frontSensorPtr_ [private]
```

Pointer to front sensor.

3.2.4.2 iterations

```
const int ObstacleDetection::iterations = 5 [static], [private]
```

Number of times the sensors are activated to average distance of detection.

3.2.4.3 leftSensorPtr_

```
ObstacleSensor* ObstacleDetection::leftSensorPtr_ [private]
```

Pointer to left sensor.

3.2.4.4 navPtr_

```
Navigator* ObstacleDetection::navPtr_ [private]
```

Pointer to the navigation system object.

3.2.4.5 rightSensorPtr_

```
ObstacleSensor* ObstacleDetection::rightSensorPtr_ [private]
```

Pointer to right sensor.

The documentation for this class was generated from the following files:

- ObstacleDetection.h
- ObstacleDetection.cpp

3.3 ObstacleSensor Class Reference

ObstacleSensor object contains all angles and distances/locations of a particular sensor allowing for distance calculations from the pozyx locator to be conducted.

```
#include <ObstacleSensor.h>
```

Public Member Functions

• ObstacleSensor ()

Default constructor - not used.

- ObstacleSensor (int triggerPin, int echoPin, float offsetX, float offsetY, float sensorAngle)
- int activateSensor (int iterations)
- void printDistance (String sensorName)

Static Public Member Functions

- static void calculateSoundCm (int dhtPin)
- static void printSound (float temp, float hum)
- static void updateOdsData (int x, int y, int heading)

Public Attributes

float offsetX

Locations and directions on vehicle relative to Posyx sensor or center or some other reference.

- float offsetY
- float sensorAngle
- float xDistComp_

X and Y Components of distance from sensor.

- · float yDistComp_
- float sensorGridAngle

Angle of sensor relative to the grid (i.e. sensorAngle_ + heading_))

int unitVect_[2]

Unit vector of vector from sensor to detected obstacle (i.e xComp + yComp)

· float distance_

Distance from sensor to object detected.

· float objXDist_

Distances from pozyx to object detected.

- float objYDist
- float objX_

Grid coordinates at location object detected.

- float objY
- int gridX_

Grid reference of obstacle detected converted from coordinates above.

- int gridY_
- NewPing sonar_

NewPing object causes HC-SR04 sensor pulses and enable.

Static Public Attributes

• static int xPos_

AVS pozyx x position.

static int yPos_

AVS pozyx y position.

• static int bias_ = 170

Bias for grid reference conversion.

Private Attributes

· int triggerPin_

Pin definitions.

- int echoPin
- const unsigned int maxDistance_ = 400

Maximum distance of sensor (i.e. 400cm)

· unsigned long duration_

Stores First HC-SR04 pulse duration value.

• float objGridRef_[2]

objGridRef_[0] = x coordinate, objGridRef_[1] = y coordinate

Static Private Attributes

• static float soundcm_ = 0.0343f

Stores calculated speed of sound in cm/ms - defaults to speed at 20 degrees Celcius.

· static float heading_

AVS pozyx heading data.

3.3.1 Detailed Description

ObstacleSensor object contains all angles and distances/locations of a particular sensor allowing for distance calculations from the pozyx locator to be conducted.

The ObstacleSensor object represents a single sensor on the AVS and as such multiple ObstacleSensor objects will exist in the botMain and ObstacleDetection modules. The ObstacleSensor class controls all of the sensor calculations to determine the distance to an obstacle and its grid reference. Once grid reference is determined the ObstacleDetection object will confirm its accuracy and legality. INPUTS: Still require pozyx heading angle (interface between sensor and pozyx) Humidity and temperature details from DHT-22 for improved accuracy Interfaces with HC-SR04 sensors via NewPing class OUTPUTS TO: Objects used by ObstacleDetection class to output grid references to nav.

3.3.2 Constructor & Destructor Documentation

```
3.3.2.1 ObstacleSensor() [1/2]
ObstacleSensor::ObstacleSensor ( )
```

Default constructor - not used.

3.3.2.2 ObstacleSensor() [2/2]

```
ObstacleSensor::ObstacleSensor (
    int triggerPin,
    int echoPin,
    float offsetX,
    float offsetY,
    float sensorAngle )
```

Constructor reads in pin details as well as relative to car location and direction details

Parameters

triggerPin	Arduino pin number of sensor trigger
echoPin	Arduino pin number of sensor echo
offsetX	Left or right offset from pozyx placement on AVS chassis
offsetY	Forward or backward offset from pozyx placement on AVS chassis
sensorAngle	Angle sensor is placed at relative to forward direction of AVS chassis

Generated by Doxygen

3.3.3 Member Function Documentation

3.3.3.1 activateSensor()

Calculates x and y components to obstacle found by this sensor averaged iterations times by taking into account the heading of the vehicle, the offset of the sensor relative to the pozyx tag, the angle of the sensor relative to the vehicle and the distance the sensor calculates relative to itself. Returns 0 if no obstacle detected, 1 if obstacle detected

Parameters

iterations Number of iterations sensor measures distance to calculate average over
--

Returns

0 or 1 for legal obstacle distance detected

3.3.3.2 calculateSoundCm()

Calculates the speed of sound based on humidity and temperature found by DHT22 sensor with paramater dhtPin which is the arduino pin assigned to be the data input of the dht. Will be used in setup function so only accessed once at the start. This could be changed if conditions are expected to vary throughout use time.

Parameters

dhtPin	Arduino connected pin number of DHT sensor
--------	--

3.3.3.3 printDistance()

Prints on serial monitor the detected sensor distance, and converted x and y components relative to pozyx system

cancorNama	Name of sensor to be printed
scrisurvanic	I Name di Sensoi lo de dinilea

3.3.3.4 printSound()

Parameters

temp	Calculated temperature
hum	Calcualted humidity

3.3.3.5 updateOdsData()

Updates all sensor data. Will be in loop function so constnatly firing

Parameters

X	Current X location of pozyx
У	Current Y location of pozyx
heading	Current heading of pozyx

3.3.4 Member Data Documentation

```
3.3.4.1 bias_
```

```
int ObstacleSensor::bias_ = 170 [static]
```

Bias for grid reference conversion.

3.3.4.2 distance_

```
float ObstacleSensor::distance_
```

Distance from sensor to object detected.

```
3.3.4.3 duration_
unsigned long ObstacleSensor::duration_ [private]
Stores First HC-SR04 pulse duration value.
3.3.4.4 echoPin_
int ObstacleSensor::echoPin_ [private]
3.3.4.5 gridX_
int ObstacleSensor::gridX_
Grid reference of obstacle detected converted from coordinates above.
3.3.4.6 gridY_
int ObstacleSensor::gridY_
3.3.4.7 heading_
float ObstacleSensor::heading_ [static], [private]
AVS pozyx heading data.
3.3.4.8 maxDistance_
const unsigned int ObstacleSensor::maxDistance_ = 400 [private]
Maximum distance of sensor (i.e. 400cm)
```

```
3.3.4.9 objGridRef_
float ObstacleSensor::objGridRef_[2] [private]
objGridRef_[0] = x coordinate, objGridRef_[1] = y coordinate
3.3.4.10 objX_
float ObstacleSensor::objX_
Grid coordinates at location object detected.
3.3.4.11 objXDist_
float ObstacleSensor::objXDist_
Distances from pozyx to object detected.
3.3.4.12 objY_
float ObstacleSensor::objY_
3.3.4.13 objYDist_
float ObstacleSensor::objYDist_
3.3.4.14 offsetX_
float ObstacleSensor::offsetX_
Locations and directions on vehicle relative to Posyx sensor or center or some other reference.
3.3.4.15 offsetY_
float ObstacleSensor::offsetY_
```

```
3.3.4.16 sensorAngle_
float ObstacleSensor::sensorAngle_
3.3.4.17 sensorGridAngle_
float ObstacleSensor::sensorGridAngle_
Angle of sensor relative to the grid (i.e. sensorAngle_ + heading_))
3.3.4.18 sonar_
NewPing ObstacleSensor::sonar_
NewPing object causes HC-SR04 sensor pulses and enable.
3.3.4.19 soundcm_
float ObstacleSensor::soundcm_ = 0.0343f [static], [private]
Stores calculated speed of sound in cm/ms - defaults to speed at 20 degrees Celcius.
3.3.4.20 triggerPin_
int ObstacleSensor::triggerPin_ [private]
Pin definitions.
3.3.4.21 unitVect_
int ObstacleSensor::unitVect_[2]
Unit vector of vector from sensor to detected obstacle (i.e xComp + yComp)
```

```
3.3.4.22 xDistComp_

float ObstacleSensor::xDistComp_

X and Y Components of distance from sensor.

3.3.4.23 xPos_
int ObstacleSensor::xPos_ [static]

AVS pozyx x position.

3.3.4.24 yDistComp_

float ObstacleSensor::yDistComp_

3.3.4.25 yPos_
```

AVS pozyx y position.

The documentation for this class was generated from the following files:

- ObstacleSensor.h
- ObstacleSensor.cpp

int ObstacleSensor::yPos_ [static]

Chapter 4

File Documentation

4.1 botMain.ino File Reference

Top level file for the AVS which integrates all sub-systems on the arduino.

```
#include "ObstacleSensor.h"
#include "ObstacleDetection.h"
#include "common.h"
#include <Pozyx.h>
#include <Pozyx_definitions.h>
#include <Servo.h>
#include <Adafruit_MotorShield.h>
#include <SoftwareSerial.h>
```

Macros

```
#define LEFT_DIR 270*(PI/180);
```

Left direction relative to front of AVS in radians.

• #define FORWARD DIR 0*(PI/180);

Forward direction relative to front of AVS in radians.

#define RIGHT_DIR 90*(PI/180);

Right direction relative to front of AVS in radians.

#define BACKWARD_DIR 180*(PI/180);

Backward direction relative to front of AVS in radians.

• #define DIAG_FOR_RIGHT 45*(PI/180);

Forward right diagonal direction relative to front of AVS in radians.

#define DIAG_FOR_LEFT 315*(PI/180);

Forward diagonal left direction relative to front of AVS in radians.

#define DIAG_BACK_LEFT 225*(PI/180);

Backward diagonal left direction relative to front of AVS in radians.

#define DIAG_BACK_RIGHT 135*(PI/180);

Backward diagonal right direction relative to front of AVS in radians.

26 File Documentation

Functions

```
    SoftwareSerial BT (19, 18)

• void setup ()
• void loop ()

    void setAnchorsManual ()

      Function to manually set the anchor coordinates as supplied by pozyx website.

    void getCoordinates (int avgNum)

      Get position information.

    void getCoordinatesV2 (int avgNum)

      Get position information more accurately by filtering outliers.
• void headingInit ()
      Initializes the heading by creating an offset so that the heading at init is 0deg NEW 31/05.
· void getHeading ()
      Get heading info updates global heading variable with what appears to be magnetic heading.

    void sendBTData ()

      Get all data from Mazing and Pozyx and concat into string for BT send (HOFFY)

    void turnLeft ()

• void turnRight ()
• void cgk left ()
      cgk Adjusts AVS left - turns hard right, then goes backwards, then hard left, then goes forwards.
void cgk_right ()
      cgk Adjusts AVS right - turns hard left, then goes backwards, then hard right, then goes forwards.
• void moveForward ()
· void moveBackward ()

    void btPrintMap ()

    void btPrintSensorDistances (String sensorName, ObstacleSensor *sensor)
```

Variables

```
• const int basicAvgAmt = 50
• const int num_to_avg = 5
• const int num anchors = 4
uint16_t anchors [num_anchors] = {0x687c, 0x6821, 0x6827, 0x6851}
int32_t anchors_x [num_anchors] = {0, 0, 4998, 4985}
int32_t anchors_y [num_anchors] = {0, 5005, 4985, 0}
• int32_t heights [num_anchors] = {810, 1720, 765, 1715}
• int algorithm = POZYX POS ALG UWB ONLY
• int dimension = POZYX 2D
• int32_t height = 0
• int x loc = 1750
• int y_{loc} = 3250
• int heading = 90
• int headingOffset = 0
• int x_loc_prev = 0
• int y_loc_prev = 0

    String result = ";911;"

• int xPosStart = 2
int yPosStart = 9
• int xPosTarget = 7
• int yPosTarget = 2

    bool returnToStart = false
```

- Navigator nav (xPosStart, yPosStart, xPosTarget, yPosTarget)
- const int frontTriggerPin = 35

Front sensor arduino trigger pin number.

• const int frontEchoPin = 37

Front sensor arduino echo pin number.

const float frontXOffset = 0

Front sensor x offset on chassis from pozyx location.

• const float frontYOffset = 130

Front sensor y offset on chassis from pozyx location.

const float frontsensorAngle = FORWARD_DIR

Front sensor angle relative to forward of chassis.

• const int leftTriggerPin = 31

Left sensor arduino trigger pin number.

• const int leftEchoPin = 33

Left sensor arduino echo pin number.

• const float leftXOffset = 80

Left sensor x offset on chassis from pozyx location.

• const float leftYOffset = 130

Left sensor y offset on chassis from pozyx location.

const float leftsensorAngle = LEFT_DIR

Left sensor angle relative to forward of chassis.

• const int rightTriggerPin = 39

Right sensor arduino trigger pin number.

const int rightEchoPin = 41

Right sensor arduino echo pin number.

• const float rightXOffset = 80

Right sensor x offset on chassis from pozyx location.

• const float rightYOffset = 130

Right sensor y offset on chassis from pozyx location.

const float rightsensorAngle = RIGHT_DIR

Right sensor angle relative to forward of chassis.

• const int tempPin = A0

Temperature Sensor arduino pin number.

• ObstacleSensor frontSensor (frontTriggerPin, frontEchoPin, frontXOffset, frontYOffset, frontsensorAngle)

Front sensor ObstacleSensor object initialisation - used to detect obstacles at front of AVS.

ObstacleSensor leftSensor (leftTriggerPin, leftEchoPin, leftXOffset, leftYOffset, leftsensorAngle)

Left sensor ObstacleSensor object initialisation - used to detect obstacles at left of AVS.

• ObstacleSensor rightSensor (rightTriggerPin, rightEchoPin, rightXOffset, rightYOffset, rightsensorAngle)

Right sensor ObstacleSensor object initialisation - used to detect obstacles at right of AVS.

- Adafruit_MotorShield AFMS = Adafruit_MotorShield()
- Adafruit_DCMotor * myMotor = AFMS.getMotor(1)
- Servo servo1
- int cgk_straight = 110
- int cgk back little = 370
- int cgk_fwd_little = 330
- int cgk_fwd_end_turn = 350
- int cgk_turn_delay = 1000
- int cgk_brake_time = 100
- int cgk_motor_speed = 254
- int cgk_fwd_one = 470
- int cgk_back_one = 500
- int cgk_first_angle_divider = 2

4.1.1 Detailed Description

Top level file for the AVS which integrates all sub-systems on the arduino.

The botMain file will contain the initial setup and loop functions along with all sub-system object initialisations including parameter setting. Ideally all of the sub-systems shall implement separate classes to improve modularity and readability of this top file. Requires specific libraries be downloaded using the Include Library function explained as per INSTRUCTIONS below.

4.1.2 Macro Definition Documentation

4.1.2.1 BACKWARD_DIR

```
#define BACKWARD_DIR 180*(PI/180);
```

Backward direction relative to front of AVS in radians.

4.1.2.2 DIAG_BACK_LEFT

```
#define DIAG_BACK_LEFT 225*(PI/180);
```

Backward diagonal left direction relative to front of AVS in radians.

4.1.2.3 DIAG_BACK_RIGHT

```
#define DIAG_BACK_RIGHT 135*(PI/180);
```

Backward diagonal right direction relative to front of AVS in radians.

4.1.2.4 DIAG_FOR_LEFT

```
#define DIAG_FOR_LEFT 315*(PI/180);
```

Forward diagonal left direction relative to front of AVS in radians.

4.1.2.5 DIAG_FOR_RIGHT

```
#define DIAG_FOR_RIGHT 45*(PI/180);
```

Forward right diagonal direction relative to front of AVS in radians.

4.1.2.6 FORWARD_DIR

```
#define FORWARD_DIR 0*(PI/180);
```

Forward direction relative to front of AVS in radians.

4.1.2.7 LEFT_DIR

```
#define LEFT_DIR 270*(PI/180);
```

Left direction relative to front of AVS in radians.

4.1.2.8 RIGHT_DIR

```
#define RIGHT_DIR 90*(PI/180);
```

Right direction relative to front of AVS in radians.

4.1.3 Function Documentation

4.1.3.1 BT()

```
SoftwareSerial BT ( 19 , 18 )
```

4.1.3.2 btPrintMap()

```
void btPrintMap ( )
```

Print map function equivalent to that used in the navigator class but used in test_mode 2 when serial monitor occurs through the bluetooth port.

4.1.3.3 btPrintSensorDistances()

Print sensor distances equivalent to that used in the obstacle sensor class but used in test_mode 2 when serial monitor occurs through the bluetooth port.

```
4.1.3.4 cgk_left()
```

```
void cgk_left ( )
```

cgk Adjusts AVS left - turns hard right, then goes backwards, then hard left, then goes forwards.

4.1.3.5 cgk_right()

```
void cgk_right ( )
```

cgk Adjusts AVS right - turns hard left, then goes backwards, then hard right, then goes forwards.

4.1.3.6 getCoordinates()

Get position information.

4.1.3.7 getCoordinatesV2()

```
void getCoordinatesV2 ( int \ \textit{avgNum} \ )
```

Get position information more accurately by filtering outliers.

4.1.3.8 getHeading()

```
void getHeading ( )
```

Get heading info updates global heading variable with what appears to be magnetic heading.

4.1.3.9 headingInit()

```
void headingInit ( )
```

Initializes the heading by creating an offset so that the heading at init is 0deg NEW 31/05.

4.1.3.10 loop()

```
void loop ( )
```

Main loop function which runs while the AVS is working. Utilises all subsystem functions to inform and command the AVS to complete its task.

4.1.3.11 moveBackward()

```
void moveBackward ( )
```

cgk move the car backward 500mm. cgk the plan is to take the current position to determine how far backward to move, and at cgk what perpendicular offset, so that the final heading and position is centred in the cgk backward gird square. It aims to finish on the correct heading too.

4.1.3.12 moveForward()

```
void moveForward ( )
```

cgk move the car forward 500mm. cgk the plan is to take the current position to determine how far forward to move, and at cgk what perpendicular offset, so that the final heading and position is centred in the cgk forward gird square. It aims to finish on the correct heading too.

4.1.3.13 sendBTData()

```
void sendBTData ( )
```

Get all data from Mazing and Pozyx and concat into string for BT send (HOFFY)

4.1.3.14 setAnchorsManual()

```
void setAnchorsManual ( )
```

Function to manually set the anchor coordinates as supplied by pozyx website.

4.1.3.15 setup()

```
void setup ( )
```

Initial setup function begins the various serial monitors, sets up pozyx anchors and heading values, passes location and heading information to obstacle sensor objects and if in operational mode produces a 10 second delay once complete to allow time to reposition the AVS after initial heading has been captured.

4.1.3.16 turnLeft()

```
void turnLeft ( )
```

Turns the AVS in left direction of current heading and moves to left of starting grid square.

4.1.3.17 turnRight()

```
void turnRight ( )
```

Turns the AVS in right direction of current heading and moves to right of starting grid square.

4.1.4 Variable Documentation

4.1.4.1 AFMS

```
Adafruit_MotorShield AFMS = Adafruit_MotorShield()
```

4.1.4.2 algorithm

```
\verb"int algorithm" = \verb"POZYX_POS_ALG_UWB_ONLY"
```

4.1.4.3 anchors

```
uint16_t anchors[num_anchors] = {0x687c, 0x6821, 0x6827, 0x6851}
```

4.1.4.4 anchors_x

```
int32_t anchors_x[num_anchors] = {0, 0, 4998, 4985}
```

4.1.4.5 anchors_y

```
int32_t anchors_y[num_anchors] = {0, 5005, 4985, 0}
```

4.1.4.6 basicAvgAmt

```
const int basicAvgAmt = 50
```

4.1.4.7 cgk_back_little

```
int cgk_back_little = 370
```

4.1.4.8 cgk_back_one

```
int cgk_back_one = 500
```

4.1.4.9 cgk_brake_time

```
int cgk_brake_time = 100
```

4.1.4.10 cgk_first_angle_divider

```
int cgk_first_angle_divider = 2
```

4.1.4.11 cgk_fwd_end_turn

```
int cgk_fwd_end_turn = 350
```

4.1.4.12 cgk_fwd_little

```
int cgk_fwd_little = 330
```

4.1.4.13 cgk_fwd_one

```
int cgk_fwd_one = 470
```

4.1.4.14 cgk_motor_speed

```
int cgk_motor_speed = 254
```

4.1.4.15 cgk_straight

```
int cgk\_straight = 110
```

4.1.4.16 cgk_turn_delay

```
int cgk\_turn\_delay = 1000
```

4.1.4.17 dimension

```
int dimension = POZYX_2D
```

4.1.4.18 frontEchoPin

```
const int frontEchoPin = 37
```

Front sensor arduino echo pin number.

4.1.4.19 frontSensor

ObstacleDetection ods & frontSensor

Front sensor ObstacleSensor object initialisation - used to detect obstacles at front of AVS.

Obstacle detection system object initialisation - used to activate ObstacleSensor objects as required and pass on information to the navigation system

4.1.4.20 frontsensorAngle

```
const float frontsensorAngle = FORWARD_DIR
```

Front sensor angle relative to forward of chassis.

4.1.4.21 frontTriggerPin

```
const int frontTriggerPin = 35
```

Front sensor arduino trigger pin number.

4.1.4.22 frontXOffset

```
const float frontXOffset = 0
```

Front sensor x offset on chassis from pozyx location.

4.1.4.23 frontYOffset

```
const float frontYOffset = 130
```

Front sensor y offset on chassis from pozyx location.

4.1.4.24 heading

```
int heading = 90
```

4.1.4.25 headingOffset

```
int headingOffset = 0
```

4.1.4.26 height

```
int32\_t height = 0
```

4.1.4.27 heights

```
int32_t heights[num_anchors] = {810, 1720, 765, 1715}
```

4.1.4.28 leftEchoPin

```
const int leftEchoPin = 33
```

Left sensor arduino echo pin number.

4.1.4.29 leftSensor

ObstacleSensor leftSensor(leftTriggerPin, leftEchoPin, leftXOffset, leftYOffset, leftsensorAngle)

Left sensor ObstacleSensor object initialisation - used to detect obstacles at left of AVS.

4.1.4.30 leftsensorAngle

```
const float leftsensorAngle = LEFT_DIR
```

Left sensor angle relative to forward of chassis.

4.1.4.31 leftTriggerPin

```
const int leftTriggerPin = 31
```

Left sensor arduino trigger pin number.

4.1.4.32 leftXOffset

```
const float leftXOffset = 80
```

Left sensor x offset on chassis from pozyx location.

4.1.4.33 leftYOffset

```
const float leftYOffset = 130
```

Left sensor y offset on chassis from pozyx location.

4.1.4.34 myMotor

```
Adafruit_DCMotor* myMotor = AFMS.getMotor(1)
```

4.1.4.35 nav

Navigator nav(xPosStart, yPosStart, xPosTarget, yPosTarget)

4.1.4.36 num_anchors

```
const int num_anchors = 4
```

4.1.4.37 num_to_avg

```
const int num_to_avg = 5
```

4.1.4.38 result

```
String result = ";911;"
```

4.1.4.39 returnToStart

bool returnToStart = false

4.1.4.40 rightEchoPin

```
const int rightEchoPin = 41
```

Right sensor arduino echo pin number.

4.1.4.41 rightSensor

```
ObstacleSensor rightSensor(rightTriggerPin, rightEchoPin, rightXOffset, rightYOffset, rightSensorAngle)
```

Right sensor ObstacleSensor object initialisation - used to detect obstacles at right of AVS.

4.1.4.42 rightsensorAngle

```
const float rightsensorAngle = RIGHT_DIR
```

Right sensor angle relative to forward of chassis.

4.1.4.43 rightTriggerPin

```
const int rightTriggerPin = 39
```

Right sensor arduino trigger pin number.

4.1.4.44 rightXOffset

```
const float rightXOffset = 80
```

Right sensor x offset on chassis from pozyx location.

4.1.4.45 rightYOffset

```
const float rightYOffset = 130
```

Right sensor y offset on chassis from pozyx location.

4.1.4.46 servo1

Servo servol

4.1.4.47 tempPin

```
const int tempPin = A0
```

Temperature Sensor arduino pin number.

4.1.4.48 x_loc

 $int x_loc = 1750$

4.1.4.49 x_loc_prev

int x_loc_prev = 0

4.1.4.50 xPosStart

int xPosStart = 2

4.1.4.51 xPosTarget

int xPosTarget = 7

4.1.4.52 y_loc

int y_loc = 3250

4.1.4.53 y_loc_prev

```
int y_loc_prev = 0
```

4.1.4.54 yPosStart

```
int yPosStart = 9
```

4.1.4.55 yPosTarget

```
int yPosTarget = 2
```

4.2 common.h File Reference

Variables

• static const int HEIGHT = 10

Contains variables common to multiple classes allowing easy sharing of this information rather than passing the variables or doubling up on them.

- static const int WIDTH = 10
- static const int DATA = 4
- const int ELEMENT_XPOS = 0
- const int ELEMENT_YPOS = 1
- const int ELEMENT_VALUE = 2
- const int OBSTACLE_COUNT = 3
- const int test_mode = 2

4.2.1 Variable Documentation

4.2.1.1 DATA

```
const int DATA = 4 [static]
```

4.2.1.2 ELEMENT_VALUE

```
const int ELEMENT_VALUE = 2
```

4.2.1.3 ELEMENT_XPOS

```
const int ELEMENT\_XPOS = 0
```

4.2.1.4 ELEMENT_YPOS

```
const int ELEMENT_YPOS = 1
```

4.2.1.5 HEIGHT

```
const int HEIGHT = 10 [static]
```

Contains variables common to multiple classes allowing easy sharing of this information rather than passing the variables or doubling up on them.

4.2.1.6 OBSTACLE_COUNT

```
const int OBSTACLE_COUNT = 3
```

4.2.1.7 test_mode

```
const int test_{mode} = 2
```

test_mode changes the type of test output provided to user. USB serial monitor, BT serial monitor and operational mode (i.e. no test data and 10 sec delay enforced after initial setup complete.

4.2.1.8 WIDTH

```
const int WIDTH = 10 [static]
```

4.3 Navigator.cpp File Reference

```
#include "Navigator.h"
```

Variables

- StackArray< int > moveHistory
- int xPosStartNav
- int yPosStartNav
- int xPosTargetNav
- int yPosTargetNav

4.3.1 Variable Documentation

4.3.1.1 moveHistory

StackArray<int> moveHistory

4.3.1.2 xPosStartNav

int xPosStartNav

4.3.1.3 xPosTargetNav

int xPosTargetNav

4.3.1.4 yPosStartNav

int yPosStartNav

4.3.1.5 yPosTargetNav

int yPosTargetNav

4.4 Navigator.h File Reference

```
#include <Arduino.h>
#include "QueueList.h"
#include "StackArray.h"
#include "common.h"
```

Classes

• class Navigator

Navigator object controls all aspects of navigation command and decision making.

Variables

- · const int HEIGHT
- const int WIDTH
- const int DATA
- const int ELEMENT_XPOS
- const int ELEMENT_YPOS
- const int ELEMENT_VALUE
- const int OBSTACLE_COUNT

4.4.1 Variable Documentation

4.4.1.1 DATA

const int DATA

4.4.1.2 ELEMENT_VALUE

const int ELEMENT_VALUE

4.4.1.3 ELEMENT_XPOS

const int ELEMENT_XPOS

4.4.1.4 ELEMENT_YPOS

const int ELEMENT_YPOS

4.4.1.5 HEIGHT

```
const int HEIGHT
```

4.4.1.6 OBSTACLE_COUNT

```
const int OBSTACLE_COUNT
```

4.4.1.7 WIDTH

const int WIDTH

4.5 ObstacleDetection.cpp File Reference

```
#include "ObstacleDetection.h"
```

4.6 ObstacleDetection.h File Reference

```
#include "ObstacleSensor.h"
#include <stdint.h>
#include "Navigator.h"
```

Classes

· class ObstacleDetection

ObstacleDetection object controls the activation patterns of all ObstacleSensor objects and outputs detected obstacle grid references to the navigation system.

4.7 ObstacleSensor.cpp File Reference

```
#include "ObstacleSensor.h"
#include "common.h"
#include "DHT.h"
```

4.8 ObstacleSensor.h File Reference

```
#include "NewPing.h"
```

Classes

· class ObstacleSensor

ObstacleSensor object contains all angles and distances/locations of a particular sensor allowing for distance calculations from the pozyx locator to be conducted.

Index

_echoBit	LEFT, 27
NewPing, 12	leftEchoPin, 30
_echoInput	leftSensor, 30
NewPing, 12	leftTriggerPin, 30
_maxEchoTime	leftXOffset, 30
NewPing, 12	leftYOffset, 30
_max_time	leftsensorAngle, 30
NewPing, 12	loop, 27
ms cnt	nav, 31
NewPing.cpp, 35	RIGHT, 27
_ms_cnt_reset	rightEchoPin, 31
NewPing.cpp, 35	
_triggerBit	rightSensor, 31
NewPing, 12	rightTriggerPin, 31
_triggerMode	rightXOffset, 31
NewPing, 12	rightYOffset, 32
_triggerOutput	rightsensorAngle, 31
NewPing, 13	setup, 28
Now mg, To	testBlueToothGrid, 28
activateSensor	
ObstacleSensor, 19	calculateSoundCm
addObstacle	ObstacleSensor, 20
Navigator, 6	check_timer
avsHeading_	NewPing, 9
botMain.ino, 28	common.h
avsX_	DATA, 32
botMain.ino, 28	ELEMENT VALUE, 32
avsY_	ELEMENT_XPOS, 32
botMain.ino, 28	
bouvailino, 20	ELEMENT_YPOS, 32
BACKWARD	HEIGHT, 33
botMain.ino, 26	WIDTH, 33
bias_	convert_cm
ObstacleSensor, 21	NewPing, 9
botMain.ino	convert_in
avsHeading_, 28	NewPing, 10
avsX_, 28	convertToArray
avsY , 28	Navigator, 7
BACKWARD, 26	createMap
DIAG_BACK_LEFT, 27	Navigator, 7
DIAG FOR LEFT, 27	
DIAG_FOR_RIGHT, 27	D:/OneDrive - UNSW/Alex/ADFA/2018/Semester 1/-
dhtPin, 28	Engineering Design Practise/git edpAuto
FORWARD, 27	Car/botMain/Navigator.cpp, 33
frontEchoPin, 29	D:/OneDrive - UNSW/Alex/ADFA/2018/Semester 1/
frontSensor, 29	Engineering Design Practise/git_edpAuto←
frontTriggerPin, 29	Car/botMain/Navigator.h, 33
frontXOffset, 29	D:/OneDrive - UNSW/Alex/ADFA/2018/Semester 1/
frontYOffset, 29	
•	Engineering Design Practise/git_edpAuto
frontsensorAngle, 29	Car/botMain/NewPing.cpp, 34

D:/OneDrive - UNSW/Alex/ADFA/2018/Semester 1/←	ObstacleSensor, 21
Engineering Design Practise/git_edpAuto ←	
Car/botMain/NewPing.h, 36	FORWARD
D:/OneDrive - UNSW/Alex/ADFA/2018/Semester 1/-	botMain.ino, 27
Engineering Design Practise/git_edpAuto←	frontEchoPin
Car/botMain/ObstacleDetection.cpp, 39	botMain.ino, 29
D:/OneDrive - UNSW/Alex/ADFA/2018/Semester 1/←	frontSensor
Engineering Design Practise/git_edpAuto←	botMain.ino, 29
Car/botMain/ObstacleDetection.h, 39	frontSensorPtr
D:/OneDrive - UNSW/Alex/ADFA/2018/Semester 1/←	ObstacleDetection, 16
Engineering Design Practise/git_edpAuto←	frontTriggerPin
Car/botMain/ObstacleSensor.cpp, 39	botMain.ino, 29
D:/OneDrive - UNSW/Alex/ADFA/2018/Semester 1/	frontXOffset
Engineering Design Practise/git_edpAuto←	botMain.ino, 29
Car/botMain/ObstacleSensor.h, 39	frontYOffset
D:/OneDrive - UNSW/Alex/ADFA/2018/Semester 1/	botMain.ino, 29
Engineering Design Practise/git_edpAuto←	frontsensorAngle
Car/botMain/botMain.ino, 25	botMain.ino, 29
D:/OneDrive - UNSW/Alex/ADFA/2018/Semester 1/	botiviani.no, 23
Engineering Design Practise/git_edpAuto	grid_
Car/botMain/common.h, 32	Navigator, 8
DATA	gridX_
	ObstacleSensor, 22
common.h, 32 Navigator.h, 34	gridY_
· ·	ObstacleSensor, 22
DIAG_BACK_LEFT	Obstaclederisor, 22
botMain.ino, 27	HEIGHT
DIAG_FOR_LEFT	common.h, 33
botMain.ino, 27	Navigator.h, 34
DIAG_FOR_RIGHT	heading_
botMain.ino, 27	
DO_BITWISE	ObstacleSensor, 22
NewPing.h, 36	ISR
detectAllSensors	NewPing.cpp, 35
ObstacleDetection, 15	intFunc
detectFrontSensor	NewPing.cpp, 35
ObstacleDetection, 15	intFunc2
detectLeftSensor	
ObstacleDetection, 15	NewPing.cpp, 35
detectRightSensor	iterations
ObstacleDetection, 15	ObstacleDetection, 16
dhtPin	LEFT
botMain.ino, 28	
distance_	botMain.ino, 27
ObstacleSensor, 21	leftEchoPin
duration_	botMain.ino, 30
ObstacleSensor, 21	leftSensor
	botMain.ino, 30
ECHO_TIMER_FREQ	leftSensorPtr_
NewPing.h, 36	ObstacleDetection, 16
ELEMENT_VALUE	leftTriggerPin
common.h, 32	botMain.ino, 30
Navigator.h, 34	leftXOffset
ELEMENT_XPOS	botMain.ino, 30
common.h, 32	leftYOffset
Navigator.h, 34	botMain.ino, 30
ELEMENT_YPOS	leftsensorAngle
common.h, 32	botMain.ino, 30
Navigator.h, 34	loop
echoPin	botMain.ino. 27

MAX_SENSOR_DELAY	ISR, 35
NewPing.h, 36	intFunc, 35
MAX_SENSOR_DISTANCE	intFunc2, 35
NewPing.h, 37	NewPing.h
maxDistance	DO BITWISE, 36
ObstacleSensor, 22	ECHO_TIMER_FREQ, 36
Obstacio Grisor, EE	MAX SENSOR DELAY, 36
NO_ECHO	MAX_SENSOR_DISTANCE, 37
NewPing.h, 37	
nav	NO_ECHO, 37
botMain.ino, 31	NewPingConvert, 37
<i>,</i>	ONE_PIN_ENABLED, 37
navPtr_	PING_MEDIAN_DELAY, 37
ObstacleDetection, 16	PING_OVERHEAD, 37
Navigator, 5	PING_TIMER_OVERHEAD, 38
addObstacle, 6	ROUNDING_ENABLED, 38
convertToArray, 7	TIMER ENABLED, 38
createMap, 7	URM37_ENABLED, 38
grid_, 8	US_ROUNDTRIP_CM, 38
Navigator, 5	US_ROUNDTRIP_IN, 39
printMap, 7	NewPingConvert
testMap, 7	•
testObstacleData, 7	NewPing.h, 37
Navigator.h	ONE PIN ENABLED
-	_
DATA, 34	NewPing.h, 37
ELEMENT_VALUE, 34	objGridRef_
ELEMENT_XPOS, 34	ObstacleSensor, 22
ELEMENT_YPOS, 34	objX_
HEIGHT, 34	ObstacleSensor, 22
WIDTH, 34	objXDist_
NewPing, 8	ObstacleSensor, 23
echoBit, 12	objY
_echoInput, 12	ObstacleSensor, 23
maxEchoTime, 12	objYDist
_max_time, 12	ObstacleSensor, 23
_triggerBit, 12	ObstacleDetection, 13
_triggerMode, 12	detectAllSensors, 15
_triggerOutput, 13	detectFrontSensor, 15
check timer, 9	
— · · · · · · · · · · · · · · · · · · ·	detectLeftSensor, 15
convert_cm, 9	detectRightSensor, 15
convert_in, 10	frontSensorPtr_, 16
NewPing, 9	iterations, 16
ping, 10	leftSensorPtr_, 16
ping_cm, 10	navPtr_, 16
ping_in, 10	ObstacleDetection, 14
ping_median, 10	odsToNavTestObstacles, 16
ping_result, 13	rightSensorPtr_, 17
ping_timer, 10	ObstacleSensor, 17
ping_trigger, 10	activateSensor, 19
ping_trigger_timer, 11	bias_, 21
ping_wait_timer, 11	calculateSoundCm, 20
set_max_distance, 11	distance_, 21
	duration , 21
timer_ms, 11	_
timer_ms_cntdwn, 11	echoPin_, 21
timer_setup, 11	gridX_, 22
timer_stop, 11	gridY_, 22
timer_us, 12	heading_, 22
NewPing.cpp	maxDistance_, 22
. 05	maxbistance_, 22
_ms_cnt, 35	objGridRef_, 22
_ms_cnt, 35 _ms_cnt_reset, 35	

objXDist_, 23	rightEchoPin
objY_, 23	botMain.ino, 31
objYDist_, 23	rightSensor
ObstacleSensor, 19	botMain.ino, 31
offsetX_, 23	rightSensorPtr_
offsetY_, 23	ObstacleDetection, 17
printDistance, 20	rightTriggerPin
printSound, 20	botMain.ino, 31
sensorAngle , 23	rightXOffset
sensorGridAngle_, 23	botMain.ino, 31
sonar_, 24	rightYOffset
soundcm_, 24	botMain.ino, 32
triggerPin_, 24	rightsensorAngle
unitVect_, 24	botMain.ino, 31
updateOdsData, 21	A 1
xPos_, 24	sensorAngle_
yPos_, 24	ObstacleSensor, 23
odsToNavTestObstacles	sensorGridAngle_
ObstacleDetection, 16	ObstacleSensor, 23
offsetX_	set_max_distance
ObstacleSensor, 23	NewPing, 11
offsetY_	setup
ObstacleSensor, 23	botMain.ino, 28
	sonar_
PING_MEDIAN_DELAY	ObstacleSensor, 24
NewPing.h, 37	soundcm
PING OVERHEAD	ObstacleSensor, 24
NewPing.h, 37	,
PING_TIMER_OVERHEAD	TIMER_ENABLED
NewPing.h, 38	NewPing.h, 38
ping	testBlueToothGrid
NewPing, 10	botMain.ino, 28
ping cm	testMap
NewPing, 10	Navigator, 7
•	testObstacleData
ping_in NewPing, 10	Navigator, 7
3,	
ping_median	timer_ms
NewPing, 10	NewPing, 11
ping_result	timer_ms_cntdwn
NewPing, 13	NewPing, 11
ping_timer	timer_setup
NewPing, 10	NewPing, 11
ping_trigger	timer_stop
NewPing, 10	NewPing, 11
ping_trigger_timer	timer_us
NewPing, 11	NewPing, 12
ping_wait_timer	triggerPin_
NewPing, 11	ObstacleSensor, 24
printDistance	
ObstacleSensor, 20	URM37_ENABLED
printMap	NewPing.h, 38
Navigator, 7	US_ROUNDTRIP_CM
printSound	NewPing.h, 38
ObstacleSensor, 20	US_ROUNDTRIP_IN
555000000000000000000000000000000000000	NewPing.h, 39
RIGHT	unitVect
botMain.ino, 27	ObstacleSensor, 24
ROUNDING ENABLED	updateOdsData
NewPing.h, 38	ObstacleSensor, 21
NEWI IIIG.II, JU	ObstacleSelisti, 21

WIDTH common.h, 33 Navigator.h, 34 xPos_ ObstacleSensor, 24 yPos_ ObstacleSensor, 24