CSCI 301 HW 11

Isaac Boaz

April 11, 2023

Problem 1

Let

$$\begin{aligned} |R| &= \operatorname{Rock} &= 150 \\ |C| &= \operatorname{Classical} &= 100 \\ |J| &= \operatorname{Jazz} &= 75 \end{aligned}$$

$$\begin{split} |R \cap C| &= 30 \\ |R \cap J| &= 20 \\ |C \cap J| &= 10 \\ |R \cap C| \wedge J &= 5 \end{split}$$

 \mathbf{a}

Rock Music Only =
$$|R| = 150$$

Classical Music Only = $|C| = 100$
Jazz Music Only = $|J| = 75$

b

Rock and Classical =
$$|R \cap C| = 30$$

Rock and Jazz = $|R \cap J| = 20$
Classical and Jazz = $|C \cap J| = 10$

Problem 2

The thief was wearing a hat, only if it was not Carol.	$ ilde{G} \Longrightarrow ilde{A}$	H	H	H	H	ĹŦ	ĹŦ	H	H	Ĺ	ĹŦ	H	L	Ĺ	T
	$\tilde{C} \Longrightarrow H$	T	Н	H	L	L	L	Н	H	Ĺτι	L	Ĺτι	T	ĹΤι	F
If the burglar was wearing gloves, then it was not Bob.	$G \Longrightarrow \tilde{B}$	H	Н	Ĺ	Ĺ	Н	Н	Н	Н	H	Н	Ĺ	Ĺ		F
The burglar was wearing a hat	Н	Ŀ	L	ഥ	L	ĹΤι	L	ĹΤι	L	ĹΤι	L	ſΞų	L	Ĺτι	F
The burglar was wearing gloves	ŭ	Ē	ſΞı	H	L	ſΞı	ъ	H	L	ſΞı	ъ	H	L	ſΞı	T
Carol comitted the burglary	C	L	H	H	L	⊣	H	H	Ĺ	ĹΉ	Ĺτι	ĹΉ	ĹΉ	ĹΤι	F
Bob committed the burglary	В	L	L	L	L	ĹΤι	ſΞı	ĹΉ	ĹΉ	H	L	L	L	L	\mathbf{T}
Alice committed the burglary	A	ъ	ш	ъ	ш	L	L	L	⊣	L	⊣	H	Н	L	T

Steps Taken

- 1. I first generated all possible 5-long combinations of Truth and Falsehood.
- 2. Since we are told there are two burglars, I filtered any combination that did not have two Truths in the first three positions.
- 3. I then did the logic for each potential combination.
- 4. Since we are told that only the innocent person told the truth (ie only one statement should be true), I filtered combinations that had more than 1 truthful statement.
- 5. This leaves us with the bottom two possible combinations.
- 6. Lastly, since we know the innocent person told the truth, I cross-referenced which person had the truthful statement with which person is marked innocent.
- 7. This gives us the conclusion that Alice and Bob are the burglars and that the burglar was wearing gloves (but not a hat).

Problem 3

1) (a)
$$\forall a, b \in \mathcal{Z}, E(ab) \wedge E(a+b) \implies E(a) \wedge E(b)$$

(b)
$$\exists a, b \in \mathcal{Z}, \neg(E(ab) \vee E(a+b)) \implies \neg(E(a) \vee E(b))$$

(c)
$$(E(ab) \vee E(a+b)) \vee \neg (E(a) \vee E(b))$$

2) (a)
$$\forall a, b \in \mathbb{Z}, 4 \mid (a^2 + b^2) \implies \neg O(a) \land \neg O(b)$$

(b)
$$\exists a, b \in \mathcal{Z}, \neg(4 \mid (a^2 + b^2)) \implies O(a) \lor O(b)$$

(c)
$$\exists a, b \in \mathcal{Z}, (4 \mid (a^2 + b^2)) \lor O(a) \lor O(b)$$