Algebrske strukture - zapiski predavanj prof. Klavžarja

Yon Ploj

2. semester 2021

Kazalo

	0.1 Lastnosti operacij	1
1	Algebrske strukture 1.1 Množica \mathbb{Z}_n	2
2	Grupe	3
3	Podgrupe	4
4	Ciklične in permutacijske grupe, izomorfizmi 4.1 Permutacijske grupe	
5	Odseki in pogrupe edinke 5.1 Podgrupe edinke in faktorske grupe	8
6	Kolobarji in polja 6.1 Lastnosti kolobarjev 6.2 Podkolobarji 6.3 Delitelji niča in celi kolobarji 6.4 Polja in obsegi 6.5 Podpolja	12 13 13 14 15
7	Kolobarji polinomov 7.1 Ničle polinomov in nerazcepni polinomi	16 19

0.1 Lastnosti operacij

Definicija 0.1 (Asociativnost).

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Definicija 0.2 (Komutativnost).

$$a \cdot b = b \cdot a$$

Definicija 0.3 (Enota).

$$a \cdot e = e \cdot a = a$$

Izrek 0.4. Enota je enolična.

Dokaz. Predpostavimo, da obstajata dve enoti e_1 in e_2 . Ker je e_1 enota, je $e_1 \cdot e_2 = e_2$. Ker je e_2 enota, je $e_1 \cdot e_2 = e_1$. Sledi, da je $e_1 = e_2$.

Definicija 0.5 (Inverz / Obratna vrednost a).

$$a \cdot a^{-1} = a^{-1} \cdot a = e$$

Opomba. Inverz abstraktnega množenja označujemo z a^{-1} , inverz abstraktnega seštevanja pa z -a.

Izrek 0.6. Inverz je enoličen, če imamo asociativnost.

Dokaz. Predpostavimo asociativnost in obstoj dveh inverzov b_1 in b_2 .

$$b_1 = b_1 \cdot e = b_1 \cdot (a \cdot b_2) = (b_1 \cdot a) \cdot b_2 = e \cdot b_2 = b_2$$

1 Algebrske strukture

Definicija 1.1 (Notranja operacija množice A).

$$f: A \times A \to A$$

Z infiksno notacijo označujemo f(a,b) kot $a \cdot b$ ali ab

Definicija 1.2 (Algebrska struktura). Množica z vsaj eno notrajno operacijo

Definicija 1.3 (Grupoid). Množica z notrajno operacijo. (M, \cdot)

Definicija 1.4 (Polgrupa). Asociativen grupoid.

Definicija 1.5 (Monoid). Polgrupa z enoto.

Definicija 1.6 (Grupa). Monoid, kjer je vsak element obrnljiv.

Definicija 1.7 (Abelova grupa). Komutativna grupa.

1.1 Množica \mathbb{Z}_n

Definicija 1.8 (Kongruenca). a in b sta kongruentna po modulu m ntk. obstajajo $p, q, r \in \mathbb{Z}_n$, da velja:

$$a = p * m + r$$

$$b = q * m + r$$

$$r$$

Relacija kongruence je ekvivalenčna, zato razdeli \mathbb{Z}_n na ekvivalenčne razrede ostankov: $\{0, 1, \dots, n-1\}$

Opomba. V nadaljevanju bomo uporabljali operaciji $+_n$ in \cdot_n kot seštevanje/množenje po modulu n.

Trditev 1.9. $(\mathbb{Z}_n, +_n)$ je grupa

Trditev 1.10. (\mathbb{Z}_n, \cdot_n) je monoid

 $x \in \mathbb{Z}_n$ je obrnljiv $\iff x \perp m$. Zato velja, da so vsi elementi v \mathbb{Z}_p (kjer je p praštevilo) obrnljivi. \mathbb{Z}_p je torej grupa.

2 Grupe

Definicija 2.1 (Cayleyeva tabela). Tabela, ki prikazuje definicijo operacije v končnem monoidu.

Opomba. V Cayleyevi tabeli grupe so vsi elementi v vsakem stolpcu in vsaki vrstici med seboj različni (Cayleyeva tabela je latinski kvadrat reda n). To sledi iz izreka 2.2

Izrek 2.2 (Pravilo krajšanja). Če je (G,\cdot) grupa in $a,b,c\in G$, potem velja:

$$ba = ca \implies b = c$$

$$ab = ac \implies b = c$$

Dokaz. Naj bo ba = ca. Na desni pomnožimo z a^{-1} in zaradi asociativnosti dobimo:

$$(ba)a^{-1} = (ca)a^{-1}$$

$$b(aa^{-1}) = c(aa^{-1})$$

$$be = ce$$

$$b = c$$

Definicija 2.3 (Red elementa). Naj bo (G,\cdot) končna grupa. Tedaj je red elementa $a\in G$ najmanjše naravno število n, za katerega velja

$$a^n = e$$

Če je G neskončna in za a ne obstaja noben n da velja $a^n = e$, je red a neskončno.

Trditev 2.4. Red elementa je dobro definiran

Dokaz. Poglejmo zaporedje: a^1, a^2, \dots, a^{k+1} , kjer je k = |G|. Zaporedje ima k+1 elementov, naša grupa pa jih ima k. Po dirichletovem načelu

$$\exists p, q : (p \neq q \land (B\check{S}S \ p < q) \land a^p = a^q)$$

Tedaj

$$e = (a^p)(a^p)^{-1} = (a^q)(a^p)^{-1} = a^q a^{-p} = a^{q-p}$$

Sledi $a^{q-p} = e$, kar smo želeli pokazati.

Opomba. Red enote je 1 in ker je enota enolična, je enota edini element reda 1.

3 Podgrupe

Definicija 3.1 (Podgrupa). Naj bo (G, \cdot) grupa. Tedaj je $H \subseteq G$ podgrupa, če je (H, \cdot) tudi grupa. Pri tem je operacija obakrat ista. Označimo $H \subseteq G$.

Definicija 3.2 (Prava podgrupa). Naj bo (H, \cdot) podrgupa (G, \cdot) . Če je $H \subset G$ (torej $H \neq G$), je H prava podgrupa G. Označimo H < G.

Primer (Trivialna podgrupa). Za vsako grupo G velja $G \leq G$ in $\{e\} \leq G$.

Primer. $(\mathbb{Q}^+,\cdot)<(\mathbb{R}^+,\cdot)$

Primer. $F := \{f : \mathbb{R} \to \mathbb{R}\}.$ (F, +) je grupa.

 $C := \{f : \mathbb{R} \to \mathbb{R}; f \text{ je zvezna}\}. (C, +) \text{ je grupa.}$

(C,+) < (F,+)

Izrek 3.3 (Glavni izrek o podgrupah). Naj bo (G,\cdot) grupa in $\emptyset \neq H \subseteq G$. Tedaj je (H,\cdot) podgrupa v (G,\cdot) natanko tedaj, ko

$$\forall x, y \in H : (x^{-1}y \in H)$$

 $Dokaz. \ (\Rightarrow)$ Naj bosta $x,y \in H.$ Ker je (H,\cdot) podgrupa in s tem sama zase grupa, je tudi $x^{-1} \in H.$ Zato je tudi $x^{-1}y \in H.$

 (\Leftarrow) Naj $\forall x, y \in H : (x^{-1}y \in H)$.

- asociativnost če so $x, y, z \in H$, potem so tudi $x, y, z \in G$. Ker v G velja asociativnost, velja tudi v H.
- enota Ker je $H \neq \emptyset$, $\exists x \in H$. Postavimo y = x. Potem je tudi $x^{-1}x = e \in H$.
- inverz Vemo, da je $e \in H$. Naj bo $x \in H$. Postavimo y = e: $x^{-1}y \in H \implies x^{-1}e \in H \implies x^{-1} \in H$.
- zaprtost $x, y \in H$. Vemo že, da je $x^{-1} \in H$, zato je tudi $(x^{-1})^{-1} \in H$. Zato je $xy = (x^{-1})^{-1}y \in H$.

Za končne grupe je kriterij še enostavnejši:

Izrek 3.4. Naj bo (G,\cdot) končna grupa in $\emptyset \neq H \subseteq G$. Tedaj je

$$(H,\cdot) \le (G,\cdot) \iff (x,y \in H \implies xy \in H)$$

Dokaz. Dokaz je tako zelo enostaven, da ga ne bomo šli dokazovat. Glavna ideja je, da malo gledate ta zaporedja in potem dobite neke zaključke. ■

Definicija 3.5 (Ciklična podgrupa). Naj bo (G.) grupa in $a \in G$. Potem naj bo

$$\langle a \rangle := \{ a^n : n \in \mathbb{Z} \}$$

Podgrupa $(\langle a \rangle, \cdot)$ je ciklična podgrupa v G, generirana z elementom a.

Trditev 3.6. Če je (G, \cdot) grupa in $a \in G$, potem je

$$(\langle a \rangle, \cdot) \leq (G, \cdot)$$

Dokaz. Ker je $a^1 = a$, je $a \in \langle a \rangle$, torej $\langle a \rangle \neq \emptyset$. Naj bosta sedaj $a^n, a^m \in \langle a \rangle$. Ker je

$$(a^n)^{-1}a^m = (a^{-1})^n a^m = a^{m-n} \in \langle a \rangle$$

je po glavnem izreku potem $(\langle a \rangle, \cdot)$ podgrupa grupe G.

Primer.
$$(\mathbb{Z}_{12}, +_{12})$$

 $\langle 3 \rangle = \{3, 6, 9, 0\}$
 $(\{0, 3, 6, 9\}, +_{12}) \leq (\mathbb{Z}_{12}), +_{12})$

Definicija 3.7 (Center grupe). Naj bo (G,\cdot) grupa. Potem je Z(G) center grupe G podmnožica z natanko tistimi elementi, ki komutirajo z vsemi elementi v G.

$$Z(G) = \{ a \in G : \forall x \in G(ax = xa) \}$$

Opomba. Če je G abelova, je Z(G) = G.

Izrek 3.8. Če je (G, \cdot) grupa, potem je $(Z(G), \cdot) \leq (G, \cdot)$.

Dokaz. Pokažimo najprej, da $a \in Z(G) \implies a^{-1} \in Z(G)$. Če a komutira z vsemi $x \in G$, potem tudi a^{-1} komutira z vsemi $x \in G$:

$$a^{-1} \cdot / ax = xa / \cdot a^{-1}$$

 $a^{-1}axa^{-1} = a^{-1}xaa^{-1}$
 $(a^{-1}a)xa^{-1} = a^{-1}ax(a^{-1})$
 $xa^{-1} = a^{-1}x$

Sedaj pa še $a^{-1}b \in Z(G)$:

$$(a^{-1}b)x = a^{-1}(bx) = a^{-1}(xb) = (a^{-1}x)b = (xa^{-1})b = x(a^{-1}b)$$

Po izreku 3.3 je to zadosti.

4 Ciklične in permutacijske grupe, izomorfizmi

Definicija 4.1 (Ciklična grupa). Naj bo (G.) grupa in $a \in G$. Če velja

$$\langle a \rangle = G$$

kjer je $\langle a \rangle$ definiran kot v 3.5:

$$\langle a \rangle := \{ a^n : n \in \mathbb{Z} \}$$

potem je G ciklična grupa, a pa njen generator.

Primer. $(\mathbb{Z},+)$ je ciklična grupa. Njen generator je lahko 1 ali -1.

Primer. ($\mathbb{Z}_9, +$) je ciklična grupa. 1 je gotovo generator, obstajajo pa tudi drugi (recimo 4). Našteli jih bomo kasneje.

Izrek 4.2. Naj bo G grupa in $a \in G$.

- 1. Če ima a neskončen red, potem so vse potence a^n med seboj paroma različne.
- 2. Če ima a končen red, potem je

$$\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$$

3. $a^i = a^j$ velja natanko tedaj, ko n|(i-j).

Dokaz.

1. Naj ima a neskončen red. Opazujmo a^i in a^j , i > j. Če bi veljalo $a^i = a^j$, bi $a^{i-j} = e$. Ampak $i - j \in \mathbb{N}$: to bi pomenilo, da ima a končen red.

2. Naj ima a končen red n.

$$X := \{e, a, a^2, \dots, a^{n-1}\}$$

Pokažimo $\langle a \rangle = X$. Očitno je $X \subseteq \langle a \rangle$, saj $a^i \in X \stackrel{\text{def.}}{\Longrightarrow} a^i \in \langle a \rangle$. Pokažimo torej, da $\langle a \rangle \subseteq X$, oziroma:

$$a^k, k \in \mathbb{Z} \implies a^k \in X$$

Po izreku o deljenju:

$$k = p \cdot n + r \quad 0 \le r < n$$

$$a^{k} = a^{p \cdot n + r} = a^{pn} \cdot a^{r} = (a^{n})^{p} \cdot a^{r} = e^{p} \cdot a^{r} = a^{r}$$

ampak $0 \le r < n$, torej $a^k = a^r \in X$

3. $a^i = a^j \iff n|(i-j)$:

$$i - j = p \cdot n + r$$

 (\Rightarrow) Naj bo $a^i = a^j$. Tedaj

$$e = a^{i-j} = a^{p \cdot n + r} = a^p \cdot a^r = a^r \quad r < n$$

Ker je red a enak n in je r < n, velja r = 0. Torej $i - j = p \cdot n$, oziroma n | (i - j).

 (\Leftarrow) Naj n|(i-j).

$$i - j = p \cdot n + r$$
 $(0 \le r < n) \xrightarrow{n \mid (i-j)} r = 0 \implies i - j = p \cdot n$
$$a^{i} = a^{p \cdot n + j} = (a^{n})^{p} \cdot a^{j} = a^{j}$$

Posledica 4.3. Naj bo G grupa in $a \in G$ reda n. Če $a^k = e$, potem n|k.

Dokaz.

$$a^0 = e = a^k$$

Poprej vemo, da $a^i = a^j \iff n|(i-j)$. Vstavimo i = k, j = 0, dobimo n|(k-0), torej n|k.

Izrek 4.4. Naj boGciklična grupa in $a \in G$ element redan. Potem je $G = \langle a^k \rangle$ natanko tedaj, ko je $\gcd(n,k) = 1$

Primer.

$$(\mathbb{Z}_9,+)=\langle 1\rangle=\langle 9\rangle$$

$$\mathbb{Z}_9 = \langle 1^k \rangle \iff \langle k, 9 \rangle = 1$$

Torej generatorji so 1, 2, 4, 5, 7, 8.

4.1 Permutacijske grupe

Definicija 4.5 (Permutacija množice A). Je bijekcija $A \to A$.

Definicija 4.6 (Permutacijska grupa). Je množica permutacij, ki za komponiranje preslikav tvorijo grupo.

Definicija 4.7 (Simetrična grupa S_n). Če vzamemo vse permutacije množice [n], dobimo simetrično grupo S_n . Ta grupa ni abelova.

Trditev 4.8. $|S_n| = n!$

Trditev 4.9. Vsako permutacijo lahko enolično (do vrstnega reda faktorjev natančno) zapišemo kot produkt disjunktnih ciklov.

Trditev 4.10. Vsako permutacijo lahko zapišemo kot produkt transpozicij.

Trditev 4.11. Neko permutcijo lahko zapišemo bodisi samo kot produkt sodo ali liho število transpozicij. Pravimo, da je permutacija liha ali soda.

Definicija 4.12 (Alternirajoča grupa A_n). Je grupa vseh sodih permutacij množice [n].

Dokaz, da je to grupa, lahko naredite sami.

Izrek 4.13. Če je n > 1, potem je $|A_n| = \frac{n!}{2}$

Dokaz. Pokažimo, da je lihih in sodih permutacij enako mnogo. Za to bomo konstruirali injekcijo v obe smeri.

$$\begin{array}{ccc} \Pi & \longrightarrow & (12) \cdot \Pi \\ \text{liha} & \text{injektivno} & \text{soda} \end{array}$$

$$\forall \Pi, \Sigma \text{ lihi: } \Pi \neq \Sigma \implies (12) \cdot \Pi \neq (12) \cdot \Sigma$$

Število sodih permutacij \geq število lihih permutacij. Z obratnim razmislekom ugotovimo, da je število sodih = število lihih permutacij.

4.2 Izomorfizmi grup

Definicija 4.14 (Homomorfizem). Naj bosta (G, \cdot) in (H, *) grupe. Preslikava $\alpha G \to H$ je homomorfizem, če

$$\forall a, b \in G : \alpha(a \cdot b) = \alpha(a) * \alpha(b)$$

Definicija 4.15 (Avtomorfizem). Homomorfizem $G \to G$.

Definicija 4.16 (Izomorfizem). Bijektivni homomorfizem.

Definicija 4.17 (Izomorfni grupi). Grupi, med katerima obstaja izomorfizem.

Izrek 4.18 (Cayleyev). Vsaka grupa je izomorfna neki permutacijski grupi.

Dokaz. Naj bo G poljubna grupa in $g \in G$. Definirajmo $T_g : G \to G$:

$$T_g(x) = gx$$

 T_g je permutacija množice G.

 $H = \{T_q : g \in G\}$ je grupa za komponiranje.

 $H \cong G$

Trditev 4.19. Če je $\alpha: G \to H$ izomorfizem grup, potem (med drugim) veljajo naslednje lastnosti:

- α preslika enoto G v enoto H.
- če je $a \in G, a \in \mathbb{Z} \implies \alpha(a^n) = (\alpha(a))^n$
- če a in b komutirata v G, potem $\alpha(a)$ in $\alpha(b)$ komutirata v H.
- G je abelova $\iff H$ je abelova.
- G je ciklična $\iff H$ je ciklična.
- če je $K \leq G$, potem je $\alpha(K) = {\alpha(k) : k \in K} \leq H$

5 Odseki in pogrupe edinke

Naj bo G grupa in $H \subseteq G$. Za $a \in G$ definirajmo:

Definicija 5.1 (Levi odsek aH).

$$aH = \{ak : k \in H\}$$

Definicija 5.2 (Desni odsek Ha).

$$Ha = \{ka : k \in H\}$$

Primer. $G = S_3$. $H = \{(1), (2)\}$

- (1)H = H
- $(12)H = \{(12)(1), (12)(12)\} = \{(12), (1)(2)(3)\} = H$
- $(13)H = \{(13)(1), (13)(12)\} = \{(13), (123)\}$
- $(23)H = \{(23)(1), (23)(12)\} = \{(23), (123)\}$
- $(123)H = \{(123)(1), (123)(12)\} = \{(123), (13)\}$
- $(132)H = \{(132)(1), (132)(12)\} = \{(132), (23)\}$

Primer. $G = (\mathbb{Z}_{10}, +)$. $H = (\{0, 2, 4, 6, 9\}, +)$

- 0+H=2+H=4+H=6+H=8+H
- 1+H=3+H=5+H=7+H=9+H

Ugotovitve:

- Opazimo, da odseki niso nujno podgrupe.
- Lahko se zgodi, da je aH = bH za $a \neq b$ (H(13) = (13)H).
- Tudi $aH \neq Ha$ je povsem možno.

Trditev 5.3 (Najpomembnejše lastnosti odsekov). Naj bo H poljubna podgrupa grupe $G, a, b \in G$. Tedaj veljajo naslednje lastnosti:

- 1. $a \in aH \land a \in Ha$
- $2. \ aH = H \iff a \in H \iff Ha = H$
- 3. bodisi aH = bH bodisi $aH \cap bH = \emptyset$
- 4. $aH = bH \iff a^{-1}b \in H \iff Ha = Hb$
- 5. $|aH| = |bH| \wedge |Ha| = |Hb|$
- 6. $aH = Ha \iff H = aHa^{-1}$
- 7. $aH \le G \iff a \in H \iff Ha \le G$

Dokaz. Dokazali bomo prve tri trditve, ostale si boste pa sami.

- $1. \ e \in H \implies a \cdot e \in aH$
- 2. $aH = H \iff a \in H$:
 - (\Rightarrow) Naj velja aH = H. Ker je $a \in aH$ (po 1.) in ker je aH = H, je $a \in H$.
 - (\Leftarrow) Naj bo $a \in H$. Dokažimo aH = H.

Najprej $aH \subseteq H$: Naj bo $x \in aH$. Torej je x = ak za nek $k \in H$.

$$a \in H, k \in H \implies ak \in H$$

Sedaj še $H \subseteq aH$: naj bo $k \in H$. Ker je $a \in H$, je

$$a^{-1} \in H \implies a^{-1}k \in H$$

$$a(a^{-1}k) = k \in aH$$

3. Če sta odseka disjunktna, ni kaj dokazovati. Recimo, da obstaja $x \in aH \cup bH$. $x \in aH \implies x = ak$ za nek $k \in H$. $x \in bH \implies x = bk'$ za nek $k' \in H$. Torej ak = bk'.

$$a = bk'k^{-1}$$

$$aH = (bk'k^{-1})H = (bk')(k^{-1}H)$$

Točka 2 pravi, da $k^{-1}H = H$ (ker je $k^{-1} \in H$).

$$aH = (bk')H = b(k'H) = bH$$

Če združimo lastnosti 1, 2 in 5, ugotovimo, da levi odseki po podgrupi H razdelijo grupo G v (paroma disjunktne) bloke iste moči.

Primer. $G = (\mathbb{R}^2, +)$. H = premica skozi izhodišče.

$$(a,b) \in \mathbb{R}^2 : (a,b)H = (a,b) + H = \{(a+x,b+y) : (x,y) \in H\}$$

Desni odseki po podgrupi H (premica p) nam razdelijo ravnino v premice, ki so vzporedne s p.

Izrek 5.4 (Lagrange). Moč podgrupe deli moč grupe. Število različnih levih (in desnih) odsekov po H je $\frac{|G|}{|H|}$.

Dokaz. Naj bodo a_1H, \ldots, a_kH paroma različni levi odseki podgrupe H. Tedaj velja:

$$|G| = |a_1 H \cup \ldots \cup a_k H|$$

To nam zagotavlja prva lastnost trditve 5.3 ($a \in aH$).

$$= |a_1H| + \ldots + |a_kH|$$

(po lastnosti 3)

$$= k \cdot |H|$$

(po lastnosti 5)

$$\implies k = \frac{|G|}{|H|}$$

Posledica 5.5. Red elementa končne grupe deli moč grupe.

Dokaz. Vzemimo poljuben element $a \in G$ reda n.

$$\langle a \rangle = \{e, a, \dots, a^{n-1}\} \le G \stackrel{\text{lagrange}}{\Longrightarrow} n = |\langle a \rangle| \operatorname{deli} |G|$$

Posledica 5.6. Grupa praštevilske moči je ciklična.

Dokaz.

$$|\langle a \rangle| \operatorname{deli} p \qquad |\langle a \rangle| \ge 2$$

Od tod sledi, da $|\langle a \rangle| = p$, torej $\langle a \rangle = G$.

Posledica 5.7. Če je a element končne grupe G, velja $a^{|G|} = e$.

Dokaz. Po posledici 5.5 n deli |G|, torej $|G| = k \cdot n$.

$$a^{|G|} = a^{k \cdot n} = (a^n)^p = e$$

Posledica 5.8 (Mali Fermatov izrek). Če je p praštevilo in $a \in \mathbb{Z}$, potem je

$$a^p \mod p = a \mod p$$

 $Dokaz.~a=k\cdot p+r,$ kjer $0\leq r< p.$ Naj bo $r=0:~a\bmod p=0,~a^p\bmod p=0.$ Naj bo $1\leq r< p.$ poglejmo grupo

$$G := (\mathbb{Z}_p - \{0\}, \cdot) \qquad |G| = p - 1$$

Po posledici 5.7 velja $r^{p-1} = 1$, torej $r^p = r$.

5.1 Podgrupe edinke in faktorske grupe

Definicija 5.9 (Podgrupa edinka). Podgrupa H je edinka, če velja

$$\forall a \in G : (aH = Ha)$$

Označimo $H \triangleleft G$.

Po točki 6 iz lastnosti odsekov (5.3) je torej

$$H \triangleleft G \iff H = aHa^{-1} \quad \forall a \in G$$

Trditev 5.10. $aHa^{-1} \le G$

Dokaz.

$$x, y \in aHa^{-1} \implies x^{-1}y \in aHa^{-1}$$

 $x = aka^{-1}$ za nek $k \in H$
 $y = ak'a^{-1}$ za nek $k' \in H$

$$x^{-1}y = (aka^{-1})^{-1}(ak'a^{-1}) = (ak^{-1}a^{-1})(ak'a^{-1}) = a(k^{-1}k')a^{-1} \implies x^{-1}y \in aHa^{-1}$$

Primer.

$$a = e \quad eHe^{-1} = \{eke^{-1} : k \in H\} = \{k : k \in H\} = H$$

Definicija 5.11 (Konjugirana grupa). aHa^{-1} je konjugirana grupa v G

Trditev 5.12. $H \triangleleft G$, če je to edina možna konjugirana grupa v G.

Definicija 5.13 (Enostavna grupa). Je grupa, katere edini edinki sta G in $\{e\}$.

Osrednji razlog za pomembnost edink je to, da lahko iz odsekov edink tvorimo grupo.

Naj bo G grupa in $H \leq G$. Definirajmo množico odsekov

$$G/H := \{aH : a \in G\}$$

in vpeljimo operacijo

$$(aH) * (bH) := (ab)H$$

Izrek 5.14. Če je $H \triangleleft G$, potem je (G/H, *) grupa.

Dokaz. Vse lastnosti grupe zelo lahko sledijo iz definicije odseka in operacije med njimi.

• enota: eH

• inverz: $a^{-1}H$

• . . .

Bistvo je, da pokažemo, da je * dobro definirana, t.j. da je rezultat neodvisen od izbire elementa iz odseka.

Naj bosta a in a' iz istega odseka (aH = a'H) ter b in b' iz istega odseka (bH = b'H). Pokazati moramo, da je (aH) * (bH) = (a'H) * (b'H).

$$a' \in aH \implies a' = ak' \quad k' \in H$$

$$b' \in bH \implies b' = bk'' \quad k'' \in H$$

$$(a'H) * (b'H) \stackrel{\text{def.}}{=} (a'b')H = ak'bk''H = ak'b(k''H)$$

$$ak'(bH) \stackrel{\text{edinka}}{=} ak'(Hb) = a(k'H)b \stackrel{k' \in H}{=} aHb$$

$$a(Hb) \stackrel{\text{edinka}}{=} a(bH) \stackrel{\text{def.}}{=} (aH) * (bH)$$

Definicija 5.15 (Faktorska grupa grupe G po edinki H). Grupa (G/H,*) po zgoraj definiranih operacijah * in /.

Izrek 5.16. Če je G grupa in G/Z(G) ciklična grupa, potem je G abelova.

$$Dokaz.$$
 QED.

6 Kolobarji in polja

Opomba. Hi, author here. V naslednjem razdelku spuščam nekatere dokaze in primere, ker so bodisi zelo trivialni, ali pa smo jih že videli pri Linearni algebri. Spuščeni dokazi so označeni z "Redacted". Author out.

Definicija 6.1 (Kolobar). Množica z 2 operacijama $(R, +, \cdot)$ kjer je (R, +) abelova grupa in (R, \cdot) polgrupa.

Velja distributivnost množenja prek seštevanja:

$$a(b+c) = ab + ac$$
 \wedge $(a+b)c = ac + bc$

Definicija 6.2 (Komutativen kolobar). Kolobar, v katerem je množenje komutativno.

 $Primer. 2\mathbb{Z}$ soda cela števila.

Definicija 6.3 (Kolobar z enoto). Kolobar, v katerem obstaja enota za množenje.

Primer. $M_2(\mathbb{Z})$ 2x2 matrike z elementi iz \mathbb{Z} .

Definicija 6.4 (Kokoid). Komutativen kolobar z identiteto (enoto).

Definicija 6.5 (Direktna vsota).

$$(R, +_R, \cdot_R) \oplus (S, +_S, \cdot_S) := (R \times S, +_{R \times S}, \cdot_{R \times S})$$

 $(r, s) +_{R \times S} (r', s') := (r +_R r', s +_S s')$
 $(r, s) \cdot_{R \times S} (r', s') := (r \cdot_R r', s \cdot_S s')$

Izrek 6.6. Če sta R in S kolobarja, je $R \oplus S$ kolobar. Če imata enoto, jo ima tudi produkt. Če sta komutativna, je tak tudi produkt.

Dokaz. Z enostavnim izračunom.

Opomba. Konstrukcijo lahko razširimo na direktne vsote končnega števila kolobarjev: $R_1 \oplus R_2 \oplus \dots R_n$. To je v bistvu posplošitev \mathbb{R}^n .

6.1 Lastnosti kolobarjev

- Nevtralni element za +, torej 0, je enoličen.
- Če je R kolobar z enoto 1, je tudi ta enolična.

Izrek 6.7. Naj bo R kolobar in $a, b \in R$. Potem velja:

- 1. $0 \cdot a = a \cdot 0 = 0$
- 2. $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$
- 3. $(-a) \cdot (-b) = a \cdot b$

Dokaz. Redacted.

Posledica 6.8. Če ima kolobar enoto 1, velja $(-1) \cdot a = -(1 \cdot a) = -a$

6.2 Podkolobarji

Definicija 6.9. Naj bo R kolobar in $S \subseteq R$. Če je S kolobar za isti operaciji kot jih ima R, je S podkolobar kolobarja R.

Primer. $\mathbb{Z} \subseteq \mathbb{Q}$

Primer. $\mathbb{Q} \subseteq \mathbb{R}$

Primer. $n \geq 2$ $n\mathbb{Z} \subseteq \mathbb{Z}$

Izrek 6.10. S je podkolobar R natanko tedaj, ko velja vse izmed:

- $S \subseteq R$
- $0 \in S$
- $\forall a, b \in S : a b \in S$
- $\forall a, b \in S : a \cdot b \in S$

Dokaz. Redacted.

Definicija 6.11 (Center kolobarja). Je množica tistih elementov, ki komutirajo z vsemi elementi.

$$\{x \in R : ax = xa \quad \forall x \in R\}$$

Trditev 6.12. Center kolobarja je njegov podkolobar.

Dokaz. Redacted.

6.3 Delitelji niča in celi kolobarji

Primer. Kolobar ($\mathbb{Z}_6, +, *$). Vemo, da je 1 * 3 = 5 * 3, iz tega pa ne sledi, da 1 = 5.

Definicija 6.13 (Delitelj niča). $a \in R$ je delitelj niča, če obstaja $b \in R, b \neq 0$, tako da je ab = 0.

Definicija 6.14 (Cel kolobar). Komutativen kolobar z enoto (kokoid) brez deliteljev niča.

 $Primer. \mathbb{Z}_n$, kjer n ni praštevilo, ni cel kolobar.

Primer. $\{a + b\sqrt{2}; a, b \in \mathbb{Z}\}$ je cel kolobar.

Izrek 6.15 (Pravilo krajšanja). Če je (R, +, *) cel kolobar, potem v njem velja pravilo krajšanja (2.2) za *.

Dokaz.

$$ab - ac = 0 \implies a(b - c) = 0 \stackrel{R \text{ je cel}}{\Longrightarrow} b - c = 0 \implies b = c$$

Trditev 6.16. Pravilo krajšanja implicira poln kolobar.

Dokaz.

$$ab = 0, a \neq 0$$
$$a0 = 0$$
$$ab = a0 \implies b = 0$$

6.4 Polja in obsegi

Definicija 6.17 (Obseg). Kolobar, kjer so neničelni elementi grupa za množenje. Torej, vsak element $a \neq 0$ mora imeti inverz za množenje.

Definicija 6.18 (Polje). Komutativni obseg.

Trditev 6.19. Polje je cel kolobar.

Dokaz. Naj bosta $a,b\in R$, kjer je R polje in recimo, da je ab=0 in $a\neq 0$. Ker je $a\neq 0$, $\exists a^{-1}\in R$.

$$a^{-1}/ab = 0$$
$$(a^{-1}a)b = a^{-1}0$$
$$b = 0$$

Opomba. Obstajajo celi kolobarji, ki niso polja. Primer bi bil $(\mathbb{Z}, +, *)$.

Izrek 6.20. Če je R končen cel koloar, potem je R polje.

Dokaz. Naj bo $a \in R, a \neq 0$. Radi bi pričarali njegov inverz.

Poglejmo $\{a^k; k \in \mathbb{N}\}$. $\forall k \in \mathbb{N} : a^k \in R$. Ker je R končen, velja

$$\exists i, j : i > j \ge 1 : a^i = a^j$$

 $a^j a^{i-j} = a^i = a^j = a^j 1$

$$\stackrel{\text{pravilo krajšanja}}{\Longrightarrow} a^{i-1} = 1$$

Ločimo dva primera:

1. i-j=1: $a^1=1 \implies a=1$, tedaj je a očitno obrnljiv (inverz enote je enota).

2. i-j>1: $a^{i-j}=aa^{i-j-1}=1$, kjer i-j-1>0. Ta enačba pravi, da je a^{i-j-1} inverz za a.

Poglejmo končen kolobar \mathbb{Z}_n .

Izrek 6.21. Če je $n \ge 2$, potem so naslednje trditve ekvivalentne:

- \mathbb{Z}_n je cel kolobar
- \mathbb{Z}_n je polje
- n je praštevilo

Dokaz. Prvi dve točki smo dokazali v prejšnjem izreku (6.20). Pokažimo, da je tretja točka ekvivalentna prvi.

Naj bo n = pq (sestavljeno število), $2 \le p, q \le n$. Tedaj v \mathbb{Z}_n velja pq = n = 0, torej sta p in q delitelja niča.

Naj bo n praštevilo. Vzemimo delitelj niča $ij=0,\,i\neq0,\,j\neq0.$ Tedaj

$$n|ij \implies n|i \lor n|j$$

torej n ni praštevilo.

6.5 Podpolja

Definicija 6.22 (Podpolje). Podmnožica polja, ki je tudi sama polje.

Izrek 6.23. Če je F polje, potem je $K \subseteq F$ njegovo podpolje natano tedaj, ko veljajo naslednje trditve:

- 1. $1 \in K$
- $2. \ a,b \in K \implies a-b \in K$
- 3. $a, b \in K \quad (b \neq 0) \implies ab^{-1} \in K$

Dokaz. Tega ne bomo šli dokazovat, ker je preprosto in zelo podobno izreku 6.10.

Opomba. V prvi točki ne moremo zahtevati samo $0 \in K$, ker $\{0\}$ zadošča 2. in 3. točki, a ni polje, saj nima $1 \neq 0$.

Lahko pa bi ekvivalentno zahtevali, da $\exists a \in K, a \neq 0$:

$$\implies \exists a^{-1} \in K \implies aa^{-1} \in K \implies 1 \in K$$

Primer. $F = \{a + \sqrt{2} : a, b \in \mathbb{Q}\}$, F je podpolje v \mathbb{R} . $1 + 0\sqrt{2} \in F \implies 1 \in F$ $(a + b\sqrt{2}) - (a' + b'\sqrt{2}) = (a - a') + (b - b')\sqrt{2} \in F$ $(a + b\sqrt{2}) * (a' + b'\sqrt{2}) = (aa' + 2bb') + (ab' + ba')\sqrt{2} \in F$ $(a + b\sqrt{2})^{-1} \in F$: $b = 0 : a + b\sqrt{2} = a \neq 0 \implies \exists a^{-1} \in \mathbb{Q}$ $b \neq 0 : (a + b\sqrt{2})(a - b\sqrt{2}) = (a^2 - 2b^2) \in \mathbb{Q}$ $(a^2 - 2b^2) \neq 0$ (sicer bi $\sqrt{2} = \frac{a}{b}) \implies \exists c := (a^2 - 2b^2)^{-1} \in \mathbb{Q}$ $(a + b\sqrt{2})^{-1} = (ac - bc\sqrt{2})$

6.6 Karakteristika kolobarja

Naj bo R kolobar in $a \in R$. Naj zapis $n \cdot a$ pomeni $a + a + \ldots + a$.

Definicija 6.24 (Karakteristika kolobarja). Najmanjši $n \in \mathbb{N}$, da je $n \cdot a = 0$ za vse $a \in R$. Če tak n ne obstaja, potem je karakteristika R enaka 0. Oznaka: char R

Primer. char $\mathbb{Z}_n = n$

Če imamo kolobar z enoto (kot primer zgoraj), potem je za določitev njegove karakteritike dovolj opazovati enoto.

Izrek 6.25. Če je red 1 v grupi (R, +) enak $n < \infty$, potem je char R = n. Če ima 1 neskončen red, potem je char R = 0.

Dokaz. Naj ima 1 red n. To že pomeni, da je char $R \geq n$. Naj bo sedaj $a \in R$. Tedaj je

$$n \cdot a = a + \ldots + a = 1 \cdot a + 1 \cdot a + \ldots + 1 \cdot a = (1 + 1 + \ldots + 1) \cdot a = 0 \cdot a = 0$$

Izrek 6.26. Če je R cel kolobar, potem je char R bodisi 0, bodisi praštevilo.

Dokaz. Naj bo char R > 0, torej je $n \ge 2$. Recimo, da n ni praštevilo: n = pq.

$$0 = n1 = (pq)1 = \underbrace{1 + \ldots + 1}_{\text{pq-krat}} = \underbrace{(1 + \ldots + 1)}_{p\text{-krat}} \underbrace{(1 + \ldots + 1)}_{q\text{-krat}} = (p1)(q1)$$
$$p1 = 0 \quad \lor \quad q1 = 0$$

6.7 Ideali

Definicija 6.27 (Ideal). Podkolobar I kolobarja R je ideal, če velja:

$$a \in I, x \in R \implies ax, xa \in I$$

Če združimo kriterij za "biti podkolobar" takoj dobimo:

Izrek 6.28. Če je R kolobar in I njegova podmnožica, je I ideal natanko tedaj, ko veljajo naslednje trditve:

1. $0 \in I$

$$2. \ a,b \in I \implies a-b \in I$$

$$3. \ a \in I, x \in R \implies ax, xa \in I$$

Primer. $n\mathbb{Z} = \{0, \pm n, \pm 2n, \ldots\}$ je ideal v \mathbb{Z} .

Primer. \mathbb{Z} je podkolobar v \mathbb{Q} , ni pa ideal.

Trditev 6.29. Če je R kolobar z enoto in ideal I vsebuje obrnljiv element, potem je I = R.

Dokaz. Naj bo a obrnljiv element ideala I.

$$a \in I, a^{-1} \in R \implies aa^{-1} = 1 \in I$$

 $1 \in I, x \in R \implies 1x \in I \implies x \in I \implies I = R$

Posledica 6.30. Če je F polje, sta edina ideala F in $\{0\}$.

Naj bosta I in J ideala v kolobarju R in definirajmo

$$I + J = \{i + j : i \in I, j \in J\}$$

$$I \cdot J = \{i_1 \cdot j_1 + i_2 \cdot j_2 + \dots + i_n \cdot j_n : i_1, \dots, i_n \in I, j_1, \dots, j_n \in J, n \in \mathbb{N}\}$$

Izrek 6.31. Če sta I in J ideala v R, potem je sta tudi I + J in $I \cdot J$ ideala v R.

Naj bo I ideal v kolobarju R. Definirajmo:

$$R/I = \{a+I : a \in R\}$$

in vpeljimo operacijo

$$(a+I) + (b+I) = (a+b) + I$$

 $(a+I) \cdot (b+I) = (ab) + I$

Definicija 6.32 (Faktorski kolobar (po idealu I)). Če je I ideal kolobarja R, potem R/I za zgornji dve operaciji imenujemo faktorski kolobar.

Primer. $R = M_2(\mathbb{Z}), I = \{A \in M_2(\mathbb{Z}) : \text{ elementi v } A \text{ so sodi} \}.$ I je ideal v R.

7 Kolobarji polinomov

Definicija 7.1 (Kolobar polinomov). Komutativen kolobar $R[x] := \{a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x^1 + a_0 x^0 : a_i \in \mathbb{R}, n \in \mathbb{N}\}$

Opomba. x-i tu niso neznanke oz. spremenljivke, temveč nam povedo samo mesto za koeficient a_i . Zanimajo nas v resnici samo zaporedja (a_n, \ldots, a_0) .

Definicija 7.2 (Ekvivalenčna relacija polinomov).

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 x^0 = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x^1 + b_0 x^0$$

$$\updownarrow$$

$$a_n = b_n \quad \land \quad a_{n-1} = b_{n-1} \quad \land \quad \dots \quad \land \quad a_0 = b_0$$

Definicija 7.3 (Stopnja polinoma). Je največji n, da je $a_n \neq 0$. Označimo $\deg(f(x)) = n$.

Primer (Konstantni polinom). $f(x) = a_0$ je bodisi ničeln, bodisi ima stopnjo 0.

Opomba. Ničelni polinom nima definirane stopnje.

Primer. Poglejmo si polinoma v $\mathbb{Z}_3[x]$.

$$f(x) = 2x^{3} + x^{2} + x + 2$$

$$g(x) = x^{2} + 2x + 2$$

$$f(x) + g(x) = 2x^{3} + 2x^{2} + 3x + 4 = 2x^{3} + 2x^{2} + 1$$

$$f(x) \cdot g(x) = (2x^{3} + x^{2} + x + 2) \cdot (x^{2} + 2x + 2) =$$

$$= 2x^{5} + x^{4} + x^{3} + x^{4} + 2x^{3} + 2x^{2} + x^{3} + 2x^{2} + 2x + 2x^{2} + x + 1$$

$$= 2x^{5} + 2x^{4} + x^{3} + 1$$

Izrek 7.4. Če je R komutativen kolobar, potem je tudi R[x] komutativen kolobar.

Dokaz. Rutinsko računanje. Enota za seštevanje je ničelni polinom. Nasprotni element je -f(x). Več si lahko preverite sami.

Izrek 7.5. Če je R cel kolobar, potem je tudi R[x] cel kolobar.

Dokaz. R[x] je komutativen. To vemo iz prejšnjega dokaza. Nismo dokazal, ampak vemo.

Naj bo $1 \in R$ enota za kolobar R. Enota za R[x] je tedaj f(x) = 1. R[x] je torej komutativen z enoto. Pokažimo še, da nima deliteljev niča.

$$p(x), q(x) \neq 0 \implies p(x)q(x) \neq 0$$

Naj bo deg(p(x)) = n, deg(q(x)) = m:

$$p(x) = a_n x^n + \cdots$$

$$q(x) = b_m x^m + \cdots$$

Ker je $a_n \neq 0$ in $b_m \neq 0$ in R brez deliteljev niča, potem $a_n b_m \neq 0$.

$$\implies p(x)q(x) \neq 0$$

Izrek 7.6. Naj bo R cel kolobar. Če je $\deg(p(x)) = n$ in $\deg(q(x)) = m$, potem je:

- $\deg(p(x) + q(x)) \le \max\{n, m\}$ (ali pa je p(x) + q(x) = 0)
- $deg(p(x) \cdot q(x)) = n + m$

Opomba. Za drugo točko zadnjega izreka potrebujemo predpostavko, da je R cel kolobar.

Primer. Vzemimo $\mathbb{Z}_8[x]$.

$$p(x) = 2x^{4} + 3x + 1$$

$$q(x) = 4x^{4} + 2x^{2} + 3$$

$$p(x) \cdot q(x) = \underbrace{2 \cdot 4}_{=0} x^{2} + \cdots$$

Produkt je stopnje 6 < 7 = 3 + 4, ker \mathbb{Z}_8 ni cel kolbar.

Izrek 7.7 (O deljenju polinomov). Naj bo F polje in $f(x), g(x) \in F[x], g(x) \neq 0$. Potem obstajata enolična g(x) in F(x), da velja:

$$f(x) = p(x) \cdot q(x) + r(x)$$

kjer je bodisi r(x) = 0, bodisi $\deg(r(x)) < \deg(q(x))$.

Dokaz. Najprej dokažimo obstoj q(x) in r(x). To bomo naredili z indukcijo po $\deg(f(x))$. Še prej preverimo primer f(x) = 0: $q(x) = r(x) = 0 \to OK$.

 $\deg(f(x)) = 0: \ f(x) = a_0 \in F, a_0 \neq 0.$

- $\deg(g(x)) > 0$: $a_0 = g(x) \cdot q(x) + r(x)$
- $\deg(g(x)) = 0$: sedaj je $g(x) = b_0 \in F, b_0 \neq 0$. Ker je F polje, $b_0 \neq 0 \Longrightarrow \exists b_0^{-1}$ postavimo $q(x) = b_0^{-1} f(x)$ in r(x) = 0.
- $\deg(f(x)) = n > 0$

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

$$g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_0$$

• n < m:

$$f(x) = g(x) \cdot q(x) + r(x)$$
$$r(x) = f(x) \implies \deg(r) \le n < m = \deg(g)$$

• $n \ge m$: poglejmo polinom:

$$k(x) = f(x) - \underbrace{a_n b_m^{-1} g(x) x^{n-m}}_{a_n x^n}$$

kar je polinom stopnje < n. Po IP obstajata polinoma q(x) in r(x), tako da se

$$k(x) = g(x) \cdot q(x) + r(x)$$

$$f(x) - a_n b_m^{-1} g(x) x^{n-m} = g(x) \cdot q(x) + r(x)$$

$$f(x) = g(x) \left[q(x) + a_n b_m^{-1} x^{n-m} \right] + r(x)$$

Kar je to, kar smo želeli.

Dokaz. (Enoličnost)

$$f(x) = g(x) \cdot q_1(x) + r_1(x)$$

$$f(x) = g(x) \cdot q_2(x) + r_2(x)$$

$$g(x)q_1(x) + r_1(x) = g(x)q_2(x) + r_2(x)$$

$$g(x) [q_1(x) - q_2(x)] = [r_2(x) - r_1(x)]$$

če $q_1 \neq q_2$, potem $q_1 - q_2 \neq 0$.

$$\implies \deg(q_1(x) - q_2(x)) \ge \deg(q(x)) \quad \deg(r_2(x) - r_1(x)) < \deg(q(x))$$

kar je protislovje. Torej velja $q_1 = q_2$, torej tudi $r_1 = r_2$.

7.1 Ničle polinomov in nerazcepni polinomi

Definicija 7.8 (Nerazcepni polinom). $f(x) \in F[x]$ je nerazcepen polinom, če iz $f(x) = g(x) \cdot k(x)$ sledi, da je $g(x) \in F$ ali $k(x) \in F$. Sicer je polinom razcepen.

Primer. $p(x) = x^2 - 2 \in \mathbb{Q}[x]$ je nerazcepen polinom. V $\mathbb{R}[x]$ je razcepen.

Primer (Pozor!). V $\mathbb{R}[x]$ funkcije identificiramo s samim polinomom. V spošnem to ni res! Na primer v \mathbb{Z}_5 sta polinoma $f(x) = x^3 + x + 1$ in $g(x) = x^5 + x^3 + 1$ očitno različna, vendar velja $\forall x \in \mathbb{Z}_5 : (f(x) = g(x))$, torej določata isto funkcijo.

Izrek 7.9. Obstaja $q(x) \in F[x]$, tako da velja:

$$f(x) = (x - a) \cdot q(x) + f(a)$$

Dokaz. Izrek o deljenju pravi: f(x) = (x - a)q(x) = r(x) kjer velja bodisi r(x) = 0, ali pa $\deg(r(x)) < \deg(x - a) = 1$, torej $r(x) \in F$.

$$f(a) = (a - a)q(a) + r(a) = r(a) = b \implies r(x) = f(a)$$

Definicija 7.10 (Ničla polinoma). Je tisti $a \in F$ za katerega velja f(a) = 0.

Izrek 7.11. a je ničla za f(x) natanko tedaj, ko x - a deli f(x).

Dokaz. Po prejšnjem izreku f(x) = (x-a)q(x) + f(a). Ker je f(a) = 0, lahko zapišemo f(x) = (x-a)q(x), torej (x-a)|q(x).

Naj
$$(x-a)|q(x)$$
, torej $f(x)=(x-a)q(x)$. Tedaj je $f(a)=(a-a)q(a)=0$.

Posledica 7.12. Če je polinom stopnje > 1 in ima ničlo, potem je razcepen.

Primer (Obrat zadnje posledice ne velja). $x^4 + 2x^2 + 1 = (x^2 + 1)(x^2 + 1)$ je razcepen v $\mathbb{R}[x]$, nima pa ničle.

Posledica 7.13. Če je deg(f(x)) stopnje 2 ali 3, potem je nerazcepen natanko tedaj, ko nima ničle.

Dokaz. Edini razcep polinoma stopnje 2 ali 3 bi vseboval vsaj en polinom stopnje 1, od koder dobimo ničlo.

Izrek 7.14. Če je $\deg(f(x)) = n$, potem ima f(x) kvečjemu n ničel.

Dokaz. (indukcija po n)

n=0: $f(x)=a, a\in F, a\neq 0$. Ta očitno nima ničel.

Naj bo f(x) polinom z deg(f(x)) > 0. Če nima ničel, ni kaj dokazovati. Če jih ima, naj bo a poljubna ničla polinoma. Tedaj obstaja razcep

$$f(x) = (x - a)q(x)$$

kjer je $\deg(q(x)) = \deg(f(x)) - 1$ (po zadnjem izreku). Po IP ima tedaj q(x) največ $\deg(f(x)) - 1$ ničel.

Naj bo $b \neq a$ poljubna druga ničla f. Tedaj f(b) = (b-a)q(b) = 0, torej je b ničla od q(x). Zato v f ne more biti več ničel kot v q.