A2A_template

February 2, 2024

1 FIT5202 Assignment 2A: Building Models to Predict Loan Default

1.1 Table of Contents

- - Part 1 : Data Loading, Transformation and Exploration
 - Part 2: Feature extraction and ML training
 - Part 3: Applicant Segmentation and Knowledge sharing with K-Mean
 - Part 4: Data Ethics, Privacy, and Security

Please add code/markdown cells as you need.

2 Part 1: Data Loading, Transformation and Exploration

2.1 1.1 Data Loading

In this section, you need to load the given datasets into PySpark DataFrames and use DataFrame functions to process the data, usage of Spark SQL is discouraged. You are allowed to use third-party libraries to format the output. For plotting, different visualisation packages can be used, please ensure that you have included instructions to install the additional packages and the installation will be successful in the provided docker container(in case your marker needs to clear the notebook and rerun it).

2.1.1 1.1.1 Data Loading

Write the code to create a SparkSession. For creating the SparkSession, you need to use a SparkConf object to configure the Spark app with a proper application name, to ensure the maximum partition size does not exceed 20MB, and to run locally with 4 CPU cores on your machine. (2%)

```
.set("spark.driver.memory", "8g")

# Create SparkSession
spark = SparkSession.builder.config(conf = spark_conf).getOrCreate()
sc = spark.sparkContext
sc.setLogLevel('ERROR')
```

1.1.2 Write code to define the schemas for previous_application and application_data, following the data types suggested in the metadata file. (3%)

```
[39]: from pyspark.sql import functions as F
      from pyspark.sql.types import StructType, StructField, IntegerType, StringType,
       →FloatType, LongType
      pre_app_schema = StructType([
          StructField("id_app", IntegerType()),
          StructField("contract_type", IntegerType()),
          StructField("amt_annuity", FloatType()),
          StructField("amt_application", FloatType()),
          StructField("amt_credit", FloatType()),
          StructField("amt_down_payment", FloatType()),
          StructField("amt_goods_price", FloatType()),
          StructField("hour_appr_process_start", IntegerType()),
          StructField("rate_down_payment", FloatType()),
          StructField("rate_interest_primary", FloatType()),
          StructField("rate_interest_privileged", FloatType()),
          StructField("name_cash_loan_purpose", StringType()),
          StructField("name_contract_status", StringType()),
          StructField("days_decision", IntegerType()),
          StructField("name_payment_type", StringType()),
          StructField("code_reject_reason", StringType()),
          StructField("name_type_suite", StringType()),
          StructField("name_client_type", StringType()),
          StructField("name_goods_category", StringType()),
          StructField("name_portfolio", StringType()),
          StructField("name_product_type", StringType()),
          StructField("channel_type", StringType()),
          StructField("sellerplace_area", IntegerType()),
          StructField("name_seller_industry", StringType()),
          StructField("cnt_payment", FloatType()),
          StructField("name_yield_group", StringType()),
          StructField("product_combination", StringType()),
          StructField("days_first_drawing", FloatType()),
          StructField("days_first_due", FloatType()),
          StructField("days_last_due_1st_version", FloatType()),
          StructField("days_last_due", FloatType()),
          StructField("days_termination", FloatType()),
```

```
StructField("nflag_insured_on_approval", FloatType()),
    StructField("id", LongType())
])
app_schema = StructType([
    StructField("id_app", IntegerType()),
    StructField("target", IntegerType()),
    StructField("contract_type", IntegerType()),
    StructField("gender", StringType()),
    StructField("own_car", StringType()),
    StructField("own_property", StringType()),
    StructField("num_of_children", IntegerType()),
    StructField("income_total", FloatType()),
    StructField("amt_credit", FloatType()),
    StructField("amt_annuity", FloatType()),
    StructField("amt_goods_price", FloatType()),
    StructField("income_type", IntegerType()),
    StructField("education_type", IntegerType()),
    StructField("family_status", IntegerType()),
    StructField("housing_type", IntegerType()),
    StructField("region_population_relative", FloatType()),
    StructField("days_birth", IntegerType()),
    StructField("days_employed", IntegerType()),
    StructField("own car age", FloatType()),
    StructField("flag_mobile", IntegerType()),
    StructField("flag_emp_phone", IntegerType()),
    StructField("flag_work_phone", IntegerType()),
    StructField("flag_cont_mobile", IntegerType()),
    StructField("flag_phone", IntegerType()),
    StructField("flag_email", IntegerType()),
    StructField("occupation_type", IntegerType()),
    StructField("cnt_fam_members", FloatType()),
    StructField("weekday_appr_process_start", StringType()),
    StructField("hour_appr_process_start", IntegerType()),
    StructField("organization_type", IntegerType()),
    StructField("credit_score_1", FloatType()),
    StructField("credit score 2", FloatType()),
    StructField("credit_score_3", FloatType()),
    StructField("days_last_phone_change", FloatType()),
    StructField("amt credit reg last hour", FloatType()),
    StructField("amt_credit_req_last_day", FloatType()),
    StructField("amt_credit_req_last_week", FloatType()),
    StructField("amt_credit_req_last_month", FloatType()),
    StructField("amt_credit_req_last_quarter", FloatType()),
    StructField("amt_credit_req_last_year", FloatType())
])
```

1.1.3 Using your schemas from step 2, write code to load all CSV files into separate data frames(note: value_dict and loan_default are simple and don't need schemas). Print the schemas of all data frames. (2%)

Previous Application Schema:

```
root
 |-- id app: integer (nullable = true)
 |-- contract_type: integer (nullable = true)
 |-- amt_annuity: float (nullable = true)
 |-- amt_application: float (nullable = true)
 |-- amt_credit: float (nullable = true)
 |-- amt_down_payment: float (nullable = true)
 |-- amt_goods_price: float (nullable = true)
 |-- hour_appr_process_start: integer (nullable = true)
 |-- rate_down_payment: float (nullable = true)
 |-- rate_interest_primary: float (nullable = true)
 |-- rate_interest_privileged: float (nullable = true)
 |-- name_cash_loan_purpose: string (nullable = true)
 |-- name_contract_status: string (nullable = true)
 |-- days decision: integer (nullable = true)
 |-- name_payment_type: string (nullable = true)
 |-- code reject reason: string (nullable = true)
 |-- name_type_suite: string (nullable = true)
 |-- name_client_type: string (nullable = true)
 |-- name_goods_category: string (nullable = true)
 |-- name_portfolio: string (nullable = true)
 |-- name_product_type: string (nullable = true)
 |-- channel_type: string (nullable = true)
```

```
|-- sellerplace_area: integer (nullable = true)
 |-- name_seller_industry: string (nullable = true)
 |-- cnt_payment: float (nullable = true)
 |-- name_yield_group: string (nullable = true)
 |-- product combination: string (nullable = true)
 |-- days_first_drawing: float (nullable = true)
 |-- days first due: float (nullable = true)
 |-- days_last_due_1st_version: float (nullable = true)
 |-- days_last_due: float (nullable = true)
 |-- days_termination: float (nullable = true)
 |-- nflag_insured_on_approval: float (nullable = true)
 |-- id: long (nullable = true)
Application Data Schema:
root
 |-- id_app: integer (nullable = true)
 |-- target: integer (nullable = true)
 |-- contract_type: integer (nullable = true)
 |-- gender: string (nullable = true)
 |-- own car: string (nullable = true)
 |-- own_property: string (nullable = true)
 |-- num of children: integer (nullable = true)
 |-- income_total: float (nullable = true)
 |-- amt_credit: float (nullable = true)
 |-- amt_annuity: float (nullable = true)
 |-- amt_goods_price: float (nullable = true)
 |-- income_type: integer (nullable = true)
 |-- education_type: integer (nullable = true)
 |-- family_status: integer (nullable = true)
 |-- housing_type: integer (nullable = true)
 |-- region_population_relative: float (nullable = true)
 |-- days_birth: integer (nullable = true)
 |-- days_employed: integer (nullable = true)
 |-- own_car_age: float (nullable = true)
 |-- flag mobile: integer (nullable = true)
 |-- flag_emp_phone: integer (nullable = true)
 |-- flag work phone: integer (nullable = true)
 |-- flag_cont_mobile: integer (nullable = true)
 |-- flag_phone: integer (nullable = true)
 |-- flag_email: integer (nullable = true)
 |-- occupation_type: integer (nullable = true)
 |-- cnt_fam_members: float (nullable = true)
 |-- weekday_appr_process_start: string (nullable = true)
 |-- hour_appr_process_start: integer (nullable = true)
 |-- organization_type: integer (nullable = true)
 |-- credit_score_1: float (nullable = true)
 |-- credit_score_2: float (nullable = true)
 |-- credit_score_3: float (nullable = true)
```

```
|-- days_last_phone_change: float (nullable = true)
 |-- amt_credit_req_last_hour: float (nullable = true)
 |-- amt_credit_req_last_day: float (nullable = true)
 |-- amt_credit_req_last_week: float (nullable = true)
 |-- amt credit reg last month: float (nullable = true)
 |-- amt_credit_req_last_quarter: float (nullable = true)
 |-- amt credit reg last year: float (nullable = true)
Value Dict Schema:
root
 |-- id: integer (nullable = true)
 |-- category: string (nullable = true)
 |-- key: string (nullable = true)
 |-- value: integer (nullable = true)
Loan Default Schema:
root
 |-- id_app: integer (nullable = true)
 |-- is_default: boolean (nullable = true)
```

2.1.2 1.2 Data Transformation and Create Features

In this step, we're going to perform data transformation and create some new features using existing information. (note: you are allowed to use your own code from assignment 1 for some transformation.)

Perform the following tasks on the application data data frame:

1.2.1 Create a new column called loan_to_income_ratio(loan to income ratio) defined as amt_credit/income_total.

```
[41]: app_df = app_df.withColumn('loan_to_income_ratio', F.col('amt_credit') / F.

col('income_total'))
app_df.select('id_app','amt_credit','income_total', 'loan_to_income_ratio').

show(10)
```

```
+----+
|id_app|amt_credit|income_total|loan_to_income_ratio|
+----+
                             2.695909090909091|
|118100| 667237.5|
                   247500.0
11101331 1374480.01
                   112500.01
                                     12.2176
|110215| 545040.0|
                   166500.0 | 3.2735135135135134|
|194051| 900000.0|
                   112500.0
                                         8.01
|110368| 1237684.5|
                   261000.0
                             4.742086206896552|
|110498| 179865.0|
                   157500.0
                                       1.142
|110561| 1256400.0|
                   157500.0
                             7.977142857142857
|110836| 454500.0|
                   126000.0
                             3.607142857142857
|110985| 454500.0|
                    76500.0
                            5.9411764705882355
|109621| 513531.0|
                    67500.01
                             7.60786666666666
```

```
+----+
only showing top 10 rows
```

1.2.2. Perform age bucketing and create a new string column called age_bucket and set the value below:

```
age < 25: Y

25 <= age < 35: E

35 <= age < 45: M

45 <= age < 55: L

55 <= age < 65: N

Age >= 65: R
```

```
[42]: import math
      from datetime import datetime, timedelta
      from pyspark.sql.functions import udf
      from pyspark.sql.types import DateType
      def age_calculate(days_birth):
          age = math.floor(days_birth/-365)
          return age
      def classify_age(age):
          if age < 25:
              return 'Y'
          elif 25 <= age < 35:
             return 'E'
          elif 35 <= age < 45:
              return 'M'
          elif 45 <= age < 55:
             return 'L'
          elif 55 <= age < 65:
              return 'N'
          elif age >= 65:
              return 'R'
      # Register the functions as UDFs
      age_calculate_udf = udf(age_calculate, IntegerType())
      classify_age_udf = udf(classify_age, StringType())
      # Calculate applicants' age and create 'age_bucket' column
      app_df = app_df.withColumn("age_bucket", classify_age_udf(age_calculate_udf(F.

¬col('days_birth'))))
      app_df.select('id_app', 'age_bucket').show(10)
```

```
+----+
|id_app|age_bucket|
+----+
```

```
|118100|
                Εl
                Εl
|110133|
|110215|
                Ll
                L
|194051|
11103681
                Νl
|110498|
                Νl
|110561|
                Εl
11108361
                МΙ
                Ll
|110985|
11096211
                Εl
+----+
only showing top 10 rows
```

1.2.3 Create a new string column named credit_worthiness. It takes the average value of credit_score_1,2,3 (note: replace null value with 0.5, not 0). If the average >= 0.7, set credit_worthiness to "high"; 0.4 <= average <= 0.7 set to "medium", < 0.4 set to "low".

```
[43]: def set_credit_worthiness(avg_score):
         if avg_score >= 0.7:
             return 'high'
         elif 0.4 <= avg_score < 0.7:</pre>
             return 'medium'
         elif avg_score < 0.4:</pre>
             return 'low'
      # replace null value with 0.5
     columns = ['credit_score_1', 'credit_score_2', 'credit_score_3']
     for col in columns:
         app_df = app_df.withColumn(col, F.coalesce(col, F.lit(0.5)))
     # Register the function as UDF
     set_credit_worthiness_udf = udf(set_credit_worthiness, StringType())
      # Create 'credit_worthiness' column
     app_df = app_df.withColumn('credit_worthiness', set_credit_worthiness_udf((F.
       ⇔col('credit_score_1') + F.col('credit_score_2') + F.col('credit_score_3')) / □
       →3))
     app_df.select('id_app', 'credit_score_1', 'credit_score_2', 'credit_score_3', __
```

```
+----+
----+
|id_app| credit_score_1| credit_score_2|
credit_score_3|credit_worthiness|
+----+
|118100| 0.6099422574043274| 0.5884348154067993| 0.5|
```

```
medium
|110133| 0.7081763744354248| 0.6865754127502441|
                                                        0.51
medium
|110215|0.49497994780540466| 0.5847758650779724|0.47225335240364075|
medium
11940511
                     0.5 | 0.5962075591087341 | 0.6195276975631714 |
medium
11103681
              0.5 | 0.64156574010849 | 0.3996756076812744 |
medium
11104981
                     0.5|0.14626194536685944| 0.5064842104911804|
low
|110561|0.13320907950401306| 0.5543783903121948|
                                                        0.51
low
|110836|
                   0.5 | 0.7807371616363525 | 0.5797274112701416 |
medium
l 110985 l
              0.5|0.19403037428855896|
                                                        0.51
lowl
109621 | 0.42454174160957336 | 0.17806705832481384 | 0.5989262461662292 |
medium
only showing top 10 rows
```

 $1.2.4 \quad Create \quad 4 \quad columns: \quad num_of_prev_app(number \quad of \quad previous \quad applications), \\ num_of_approved_app \quad (number \quad of \quad approved \quad applications), \quad total_credit \quad (sum \quad of \quad credit \quad of \quad all \quad approved \quad previous \quad applications), \quad total_credit_to_income_ratio \quad (total \quad credit/income). \quad (note: \quad you \quad need \quad to \quad join \quad previous \quad applications \quad to \quad fill \quad in \quad the \quad values.)$

```
[45]: # Create 'num_of_approved_app' column
     joined_df_count_approved = joined_df.filter(F.col('name_contract_status') ==__
       →'Approved').groupby('id_app')\
                                         .agg(F.count('id').
      ⇔alias('num_of_approved_app'))
     # Rename column to avoid duplicate column name
     joined_df_count_approved = joined_df_count_approved.withColumnRenamed('id_app',_
       app_df_2 = app_df_1.join(joined_df_count_approved, app_df_1.id_app ==_
       →joined_df_count_approved.id_app_2, how = 'left_outer')\
                         .drop('id_app_2')
     # Replace null value with O
     app_df_2 = app_df_2.withColumn('num_of_approved_app', F.when(F.

¬col('num_of_approved_app').isNull(), 0).otherwise(F.

¬col('num_of_approved_app')))
[46]: # Create 'total_credit' column
     joined_df_total = joined_df.filter(F.col('name_contract_status') == 'Approved').

¬groupBy('id_app')\
                                 .agg(F.sum('amt_credit_1').alias('total_credit'))
     # Rename column to avoid duplicate column name
     joined_df_total = joined_df_total.withColumnRenamed('id_app', 'id_app_2')
     app_df_3 = app_df_2.join(joined_df_total, app_df_2.id_app == joined_df_total.
       →id_app_2, how = 'left_outer')\
                         .drop('id_app_2')
     # Replace null value with O
     app_df_3 = app_df_3.withColumn('total_credit', F.when(F.col('total_credit').
       →isNull(), 0).otherwise(F.col('total_credit')))
[47]: # Create 'total_credit_to_income_ratio' column
     app_df_4 = app_df_3.withColumn('total_credit_to_income_ratio', F.

¬col('total_credit')/F.col('income_total'))
     app_df_4.select('id_app', 'num_of_prev_app', 'num_of_approved_app', '
       .show(10)
     |id_app|num_of_prev_app|num_of_approved_app|total_credit|total_credit_to_income_
     ratio
```

```
----+
|100003|
                       3|
                                            31
                                                 1452573.0|
5.37991
|100007|
                       6|
                                            6|
                                                  999832.5
8.229074074074074|
11000081
                       5|
                                            4|
                                                  813838.5
8.2205909090909091
11000161
                       41
                                            41
                                                  424885.51
6.2946
                       21
                                            21
|100020|
                                                   83412.0
0.77233333333333333333
11000241
                                            0|
                                                       0.01
                       0|
0.01
11000251
                                            7 | 2363406.25 |
                      81
11.671141975308641
l1000351
                      221
                                            81
                                                 1624342.5
5.553307692307692
                       4|
11000391
                                            3|
                                                 1535143.5
4.2642875
                       31
11000501
                                            21
                                                  333598.5
3.0888751
----+
only showing top 10 rows
```

1.2.5 Replace education_type, occupation_type, income_type and family_status with matching strings from value_dict (hint: consider reusing code from your A1).

```
education_type|occupation_type| income_type|
|id_app|
family status
|118100|
         Higher education | Laborers |
                                             Working
Married|
|110133|Secondary / secon...| Sales staff|Commercial associate|
Married|
|110215|Secondary / secon...| Core staff|
                                            Working | Single / not
married
|194051|Secondary / secon...| Security staff|
                                                       Civil
                                            Working|
marriage|
|110368|
         Higher education
                             (Empty)|
                                            Pensioner|
Married
|110498|Secondary / secon...|
                          (Empty) |
                                         Pensioner
Married
         Higher education | Accountants | Commercial associate | Single / not
11105611
married
|110836|Secondary / secon...|
                          (Empty) | Commercial associate |
Married
|110985|
         Higher education | Core staff | Commercial associate | Civil
marriage|
|109621|Secondary / secon...| Accountants|
                                            Working|
Married
----+
only showing top 10 rows
```

1.2.6 Join the loan_default data frame and add is_default to application data. We'll use this column as the label.

```
[49]: # Rename column to avoid duplicate column name loan_df = loan_df.withColumnRenamed('id_app', 'id_app_1')
```

Print 10 records from the application_data data frame.

```
[50]: import pandas as pd

# Use pandas to display dataframe
app_df = joined_loan
pandas_df = app_df.toPandas()
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 100)
print(pandas_df.head(10))
```

	id_app	target	contract	_type	gender	own_car	own_property	y num_	of_children	
in	come_tota	al \								
0	100003	0		2	F	N	1	N	0	
27	0.000									
1	100007	0		2	M	N	7	Y	0	
12	1500.0									
2	100008	0		2	М	N	7	Y	0	
99	0.00									
3	100016	0		2	F	N	7	Y	0	
67	500.0									
4	100020	0		2	М	N	1	N	0	
10	3000.0									
5	100024	0		1	M	Y	7	Y	0	
13	5000.0									
6	100025	0		2	F	Y	7	Y	1	
20	2500.0									
7	100035	0		2	F	N	7	Y	0	
29:	2500.0									
8	100039	0		2	М	Y	1	N	1	
36	0.000									
9	100050	0		2	F	N	3	Y	0	
10	8000.0									
	amt cred	dit amt	_annuity	amt g	goods pi	rice	income	e_type		
ed [.]	_ ucation_t		- ,					_ 01		
0	1293502		35698.5		112950	0.0	State se	ervant		
Hi	gher educ									
1	513000		21865.5		51300	0.0	Wo	orking	Secondary ,	/
se	condary s							3	,	
2	490495	-	27517.5		45450	0.0	State se	ervant	Secondary ,	/
	condary s								,	
3	80865	-	5881.5		6750	0.0	Wo	orking	Secondary ,	/
se	condary s							3	,	
4	509602	-	26149.5		38700	0.0	Wo	orking	Secondary ,	/

secondary special 5 427500.0	al 21375.0	427500.0	Working	Secondary /
secondary specia				2000 <u>1144</u> 2,
6 1132573.5	37561.5	927000.0	Commercial associate	Secondary /
secondary specia		477000	a	Q 1 /
7 665892.0 secondary specia	24592.5	477000.0	Commercial associate	Secondary /
8 733315.5	39069.0	679500.0	Commercial associate	Secondary /
secondary specia				, ,
9 746280.0	42970.5	675000.0	Pensioner	
Higher education	n			
£ ± 1 .				1 11
days_employed \	·	sing_type regio	n_population_relative	days_birth
0	\ Married	6	0.003541	-16765
-1188		· ·	0.000012	20.00
1 Single / not	married	6	0.028663	-19932
-3038				
2	Married	6	0.035792	-16941
-1588				
3	Married	6	0.031329	-13439
-2717 4	Married	6	0.018634	-12931
-1317	Married	6	0.010034	-12931
5	Married	6	0.015221	-18252
-4286				
6	Married	6	0.025164	-14815
-1652				
	marriage	6	0.025164	-15280
-2668			0.045004	44004
8 -2060	Married	6	0.015221	-11694
9 Single / not	married	6	0.010966	-23548
365243	marrioa	· ·	0.01000	20010
	flag_mobile	flag_emp_phone	flag_work_phone flag	g_cont_mobile
flag_phone \				
0 NaN	1	1	0	1
1 1 NaN	1	1	0	1
0 Nan	1	1	U	1
2 NaN	1	1	1	1
1				
3 NaN	1	1	1	1
1				
4 NaN	1	1	0	1
0			_	
5 7.0	1	1	0	1

```
0
6
          14.0
                           1
                                             1
                                                               0
                                                                                  1
0
7
           NaN
                           1
                                             1
                                                               0
                                                                                  1
0
8
           3.0
                           1
                                             1
                                                               0
                                                                                  1
0
                           1
                                                               0
9
           NaN
                                             0
0
   flag_email occupation_type cnt_fam_members weekday_appr_process_start
0
            0
                    Core staff
                                              2.0
                                                                       MONDAY
             0
                                                                     THURSDAY
1
                    Core staff
                                              1.0
2
                                              2.0
             0
                                                                    WEDNESDAY
                      Laborers
3
                                              2.0
                      Laborers
                                                                       FRIDAY
4
            0
                       Drivers
                                              2.0
                                                                     THURSDAY
5
             0
                      Laborers
                                              2.0
                                                                       FRIDAY
                                              3.0
6
            0
                                                                       MONDAY
                   Sales staff
7
             1
                       (Empty)
                                              2.0
                                                                    WEDNESDAY
8
             0
                       Drivers
                                              3.0
                                                                     THURSDAY
9
                                                                    WEDNESDAY
                       (Empty)
                                              1.0
   hour_appr_process_start organization_type credit_score_1 credit_score_2
credit_score_3 \
                         11
                                              30
                                                        0.311267
                                                                         0.622246
0.500000
                                                        0.500000
                                                                         0.322738
                                               4
                         11
0.500000
                                                        0.500000
                         16
                                                                         0.354225
0.621226
                                                        0.464831
                                                                         0.715042
                         10
0.176653
                                              28
                                                        0.500000
                                                                          0.236378
                         12
0.062103
                         13
                                              50
                                                        0.565655
                                                                         0.113375
0.500000
                          9
                                              42
                                                        0.437709
                                                                         0.233767
0.542445
                                                        0.500000
                         13
                                              36
                                                                         0.479987
0.410103
                         10
                                                        0.500000
                                                                         0.321745
                                              50
0.411849
                          9
                                              31
                                                        0.500000
                                                                         0.766138
0.684828
   days_last_phone_change amt_credit_req_last_hour amt_credit_req_last_day \
                                                                              0.0
0
                    -828.0
                                                   0.0
1
                   -1106.0
                                                   0.0
                                                                              0.0
```

2 -2536.0	0.0	0.0
3 -2370.0	0.0	0.0
4 -3.0	0.0	0.0
5 -296.0	NaN	NaN
6 0.0	0.0	0.0
7 -1634.0	0.0	0.0
8 -697.0	0.0	0.0
9 -491.0	0.0	0.0
amt_credit_req_last_week	amt_credit_req_last_month	
amt_credit_req_last_quarter	\	
0.0	0.0	
0.0		
1 0.0	0.0	
0.0		
2 0.0	0.0	
1.0		
3 0.0	1.0	
0.0	- "	
4 0.0	0.0	
1.0		
5 NaN	NaN	
NaN	Nan	
6 0.0	0.0	
1.0	0.0	
7 0.0	1.0	
0.0	1.0	
	0.0	
	0.0	
1.0	0.0	
9 0.0	0.0	
0.0		
	loan_to_income_ratio age_bucke	t credit_worthiness
<pre>num_of_prev_app \</pre>		
0.0	4.790750	L medium
3		
1 0.0	4.222222	L medium
6		
2 1.0	4.954500	L medium
5		
3 0.0	1.198000	M medium
4		
4 0.0	4.718542	M low
2		
5 NaN	3.166667	L low
0		
6 4.0	5.592956	M medium
8		

7		5.0	2.276554	М	medium
22 8		1.0	2.036987	E	medium
4		1.0	2.030901	12	mearum
9		3.0	6.910000	N	medium
3					
	<pre>num_of_approved_app</pre>	total_credit	total_credit_to	income ratio	is default
0	3	1452573.00		5.379900	- False
1	6	999832.50		8.229074	False
2	4	813838.50		8.220591	False
3	4	424885.50		6.294600	False
4	2	83412.00		0.772333	False
5	0	0.00		0.000000	False
6	7	2363406.25		11.671142	False
7	8	1624342.50		5.553308	False
8	3	1535143.50		4.264288	False
9	2	333598.50		3.088875	False

2.1.3 1.3 Exploring the Data

- 1.3.1 With the transformed data frame from 1.2, write code to show the basic statistics (3%) (pandas is allowed for this task):
- a) For each numeric column, show count, mean, stddev, min, max, 25 percentile, 50 percentile, and 75 percentile;
- b) For each non-numeric column, display the top 5 based on counts in descending order;
- c) For each boolean column, display the value and count (i.e., two rows in total).

```
'region_population_relative', 'days_birth', 'days_employed', __
'hour_appr_process_start', 'credit_score_1', 'credit_score_2', \( \)
'amt_credit_req_last_hour', 'amt_credit_req_last_day',
amt_credit_req_last_week', 'amt_credit_req_last_month',
           'amt_credit_req_last_quarter', 'amt_credit_req_last_year', _
'total_credit', 'total_credit_to_income_ratio']
nonnumeric_column = ['contract_type', 'gender', 'income_type', |
'occupation_type', 'weekday_appr_process_start', _
boolean_column = ['own_car', 'own_property', 'flag_mobile', 'flag_emp_phone', __
'flag_phone', 'flag_email', 'is_default']
```

a) For each numeric column, show count, mean, stddev, min, max, 25 percentile, 50 percentile, and 75 percentile;

```
[52]: import pandas as pd

for col in numeric_column:
    numeric_df = app_df.select(col)
    numeric_pd_df = numeric_df.toPandas()
    with pd.option_context('display.float_format', '{:.6f}'.format):
        print(f"Statistics for column {col}:")
        print(numeric_pd_df.describe() )
        print("\n" + "-" * 30 + "\n")
```

Statistics for column target:

max 1.000000

75%

0.000000

std	0.724401	
min	0.000000	
25%	0.000000	
50%	0.000000	
75%	1.000000	
max	19.000000	

Statistics for column income_total:

income_total 172591.000000 count mean 168919.906250 std 299292.031250 min 25650.000000 25% 112500.000000 50% 144000.000000 75% 202500.000000 117000000.000000 max

Statistics for column amt_credit:

amt_credit count 172591.000000 599010.312500 mean std 402946.343750 min 45000.000000 25% 270000.000000 50% 512446.500000 75% 808650.000000 4050000.000000 max

Statistics for column amt_annuity:

amt_annuity
count 172583.000000
mean 27115.226562
std 14580.680664
min 1980.000000
25% 16506.000000
50% 24894.000000
75% 34596.000000
max 258025.500000

Statistics for column amt_goods_price:

	amt_goods_price	
count	172449.000000	
mean	538425.187500	
std	370185.125000	
min	45000.000000	
25%	238500.000000	
50%	450000.000000	
75%	679500.000000	
max	4050000.000000	

Statistics for column region_population_relative:

	region_population_relative
count	172591.000000
mean	0.020880
std	0.013841
min	0.000533
25%	0.010006
50%	0.018850
75%	0.028663
max	0.072508

Statistics for column days_birth:

days_birth
count 172591.000000
mean -16026.153084
std 4367.826105
min -25201.000000
25% -19672.000000
50% -15728.000000
75% -12395.500000
max -7673.000000

Statistics for column days_employed:

days_employed
count 172591.000000
mean 63626.667868
std 141115.249490
min -17531.000000
25% -2757.000000
50% -1215.000000
75% -289.000000

```
max 365243.000000
```

```
Statistics for column own_car_age:
```

own_car_age count 58703.000000 mean 12.039402 std 11.937061 0.000000 min 25% 5.000000 50% 9.000000 75% 15.000000 69.000000 max

Statistics for column cnt_fam_members:

cnt_fam_members count 172590.000000 mean 2.156614 std 0.912762 min 1.000000 2.000000 25% 50% 2.000000 75% 3.000000 20.000000 max

Statistics for column hour_appr_process_start:

hour_appr_process_start count 172591.000000 12.062338 mean std 3.265509 min 0.000000 25% 10.000000 50% 12.000000 75% 14.000000 23.000000 max

Statistics for column credit_score_1:

credit_score_1
count 172591.000000
mean 0.500757
std 0.139774

min	0.014568	
25%	0.500000	
50%	0.500000	
	0.00000	
75%	0.500000	
max	0.951624	

Statistics for column credit_score_2:

credit_score_2 count 172591.000000 0.513977 mean std 0.191304 0.000000 min 25% 0.391532 50% 0.565430 75% 0.663754 0.855000 max

Statistics for column credit_score_3:

credit_score_3 count 172591.000000 0.508452 mean std 0.174561 0.000527 min 25% 0.417100 50% 0.500000 75% 0.634706 0.896010 max

Statistics for column days_last_phone_change:

days_last_phone_change 172590.000000 count mean -961.946533 std 826.945496 min -4185.000000 25% -1569.000000 50% -756.000000 75% -272.000000 0.000000 max

Statistics for column amt_credit_req_last_hour:

	amt_credit_req_last_hour
count	149402.000000
mean	0.006526
std	0.085924
min	0.00000
25%	0.00000
50%	0.00000
75%	0.00000
max	4.000000
Statis	tics for column amt_credit_req_last_day:
	amt_credit_req_last_day
count	149402.000000
mean	0.007169
std	0.113801
min	0.00000
25%	0.000000
50%	0.000000
75%	0.000000
max	9.000000
Statis	tics for column amt_credit_req_last_week:
	amt_credit_req_last_week
count	149402.000000
mean	0.033955
std	0.203978
min	0.00000

max 8.000000

min 25%

50%

75%

Statistics for column amt_credit_req_last_month:

0.000000

0.000000

0.000000

amt_credit_req_last_month count 149402.000000 0.266255 mean std 0.914857 0.000000 min 25% 0.000000 50% 0.000000 75% 0.000000 24.000000 ${\tt max}$

Statistics	for	column	$\mathtt{amt}_{\mathtt{_}}$	credit	_req	_last_	quarter:
------------	-----	--------	------------------------------	--------	------	--------	----------

	amt_credit_req_last_quarter
count	149402.000000
mean	0.264019
std	0.610364
min	0.000000
25%	0.000000
50%	0.000000
75%	0.000000
max	8.000000

Statistics for column amt_credit_req_last_year:

amt_credit_req_last_year 149402.000000 count mean 1.890985 std 1.863520 min 0.000000 25% 0.000000 50% 1.000000 75% 3.000000 25.000000 max

Statistics for column loan_to_income_ratio:

loan_to_income_ratio 172591.000000 count 3.960632 mean 2.697759 std 0.004808 min 25% 2.018667 50% 3.269067 75% 5.171429 84.736842 max

Statistics for column num_of_prev_app:

num_of_prev_app count 172591.000000 mean 4.579659 std 4.163129 min 0.000000

0.5%	0.00000
25%	2.000000
50%	3.000000
75%	6.00000
max	73.000000
Q+n+i	stics for column num_of_approved_app:
Stati	
count	num_of_approved_app 172591.000000
0 0 0	2.875781
mean	
std	2.178800
min or"	0.00000
25%	1.00000
50%	2.00000
75%	4.00000
max	24.000000
C+-+;	
Stati	stics for column total_credit:
	total_credit
	172591.000000
	579670.400685
	757286.921769
min	0.000000
	107716.500000
	284107.500000
	753993.000000
max	10370380.500000
C+ n+ i	stics for column total_credit_to_income_ratio:
Stati	total_credit_to_income_ratio
count	172591.000000
	3.811772
mean	3.811772 4.971278
std	
min	0.00000
25%	0.742500
50%	2.002667

75%

5.009034 104.130571

b) For each non-numeric column, display the top 5 based on counts in descending order;

```
[53]: for col in nonnumeric_column:
        count_df = app_df.groupBy(col).count().orderBy(F.desc("count"))
        print(f"Top 5 most common values for column {col}:")
        count_df.show(5, truncate = False)
    Top 5 most common values for column contract_type:
    +----+
    |contract_type |count |
    +----+
    |Revolving loans|156155|
    IXNA
                 |16436 |
    +----+
    Top 5 most common values for column gender:
    +----+
    |gender|count |
    +----+
    ۱F
         11134671
         |59121 |
    M
    IXNA |3
    +----+
    Top 5 most common values for column income_type:
    +----+
    |income_type
    +----+
                     [89283]
    Working
    |Commercial associate|40237|
    Pensioner
                    |30983|
    |State servant
                    |12057|
    Unemployed
    +----+
    only showing top 5 rows
    Top 5 most common values for column education_type:
    +----+
    |education_type
                            |count |
    +----+
    |Secondary / secondary special|122629|
    |Higher education
                           |42044 |
    |Incomplete higher
                            |5720 |
    |Lower secondary
                            |2108 |
    |Academic degree
                            190
    Top 5 most common values for column family_status:
```

+----+

family_status	count	
+	+	+
Married	110626	1
Single / not married	25327	
Civil marriage	16639	
Separated	111004	
Widow	8994	
+	+	+
only showing top 5 ro	WS	

Top 5 most common values for column housing_type:

only bhowing top o lows

Top 5 most common values for column occupation_type:

```
+----+
| occupation_type | count |
+----+
| (Empty) | 54225 |
| Laborers | 31108 |
| Sales staff | 17808 |
| Core staff | 15490 |
| Managers | 11993 |
+----+
only showing top 5 rows
```

Top 5 most common values for column weekday_appr_process_start:

only showing top 5 rows

Top 5 most common values for column organization_type:

+----+

```
|organization_type
                        |count|
    +----+
    |Business Entity Type 3|38394|
    | XNA
                        |30989|
    |Self-employed
                        |21404|
    Other
                        |9323 |
    Medicine
                        |6298 |
    +----+
    only showing top 5 rows
    Top 5 most common values for column age_bucket:
    +----+
    |age_bucket|count|
    +----+
    M
              |47282|
    lΕ
              1407331
    |L
              |39218|
    l N
              |33957|
    ΙY
              |6833 |
    +----+
    only showing top 5 rows
    Top 5 most common values for column credit_worthiness:
    +----+
    |credit_worthiness|count |
    +----+
    medium
                    |140188|
                    |28238 |
    llow
    high
                    |4165 |
    +----+
      c) For each boolean column, display the value and count(i.e., two rows in total).
[54]: for col in boolean_column:
        count_df = app_df.groupBy(col).count()
        print(f"Value and count for boolean column {col}:")
        count_df.show()
    Value and count for boolean column own_car:
    +----+
    |own_car| count|
    +----+
          Y| 58704|
          N|113887|
```

+----+

```
+----+
|own_property| count|
+----+
        Y|119580|
        N| 53011|
+----+
Value and count for boolean column flag_mobile:
+----+
|flag_mobile| count|
+----+
       1|172590|
       0|
+----+
Value and count for boolean column flag_emp_phone:
+----+
|flag_emp_phone| count|
+----+
         1 | 141593 |
         0 | 30998 |
+----+
Value and count for boolean column flag_work_phone:
+----+
|flag_work_phone| count|
+----+
          1 | 34441 |
          0|138150|
+----+
Value and count for boolean column flag_cont_mobile:
+----+
|flag_cont_mobile| count|
+----+
           1 | 172250 |
           0| 341|
+----+
Value and count for boolean column flag_phone:
+----+
|flag_phone| count|
+----+
       1 | 48413 |
       0 | 124178 |
+----+
```

Value and count for boolean column own_property:

```
Value and count for boolean column flag_email:
+-----+
|flag_email| count|
+-----+
| 1| 9804|
| 0|162787|
+-----+

Value and count for boolean column is_default:
+-----+
|is_default| count|
+-----+
| true| 5162|
| false|167429|
+-----+
```

- 1.3.2 Explore the data frame and write code to present two plots worthy of presentation to MoLoCo, describe your plots and discuss the findings from the plots. (8%)
- One plot must be related to the default. (e.g. what attribute/attributes are correlated to default, what kind of application/applicant has a higher probability of default, etc.)
- Feel free to choose any for the other plot.
- Hint: you can use the basic plots (e.g., histograms, line charts, scatter plots) for the relationship between a column and the label; or more advanced plots like correlation plots. If the data is too large for the plotting, consider using sampling before plotting.
- 150 words max for each plot's description and discussion
- Feel free to use any plotting libraries: matplotlib, seabon, plotly, etc.

The scatter plot illustrates the correlation between two attributes, namely "to-tal_credit_to_income_ratio" and "is_default," within the application dataframe. The x-axis shows the default status (True or False), while the y-axis represents the ratio. Each data point on the plot corresponds to the information of an applicant.

Default

True

False

0

Upon examining the graph, it is evident that the distribution of true and false points below the ratio of 30 is fairly similar. However, as the ratio surpasses 30, the concentration of true points significantly increases, which indicates a higher likelihood of the default value being true with a higher ratio of total credit to income.

```
# Plot a bar chart
pandas_result_df = result_df.toPandas()
plt.figure(figsize = (12, 8))
pandas_result_df.groupby(['income_type', 'is_default']).mean()['percentage'].

ounstack().plot(kind = 'bar',
              stacked = True)
plt.title("Percentage of Default within Each Income Type")
plt.xlabel("Income Type")
plt.ylabel("Percentage")
plt.xticks(rotation=45)
plt.show()
```

<Figure size 1200x800 with 0 Axes>

Income Type

The bar chart demonstrates the percentage distribution of default value (True and False) within each income type. Each bar is stacked to visually represent the proportion of true and false defaults corresponding to a particular income type.

From this chart, it is obvious that the "Unemployed" income type has a higher percentage of true defaults, followed by the "Pensioner" income type. These two types are generally associated with economic instability, which suggest a higher likelihood of true defaults. The chart highlights the connection between income types and default values.

2.2 Part 2. Feature extraction and ML training

In this section, you are only allowed to use PySpark DataFrame functions and ML packages for data preparation, model building, and evaluation. Other ML packages, such as scikit-learn, would receive zero marks. Excessive usage of Spark SQL is discouraged. ### 2.1 Discuss the feature selection and prepare the feature columns

2.1.1 Based on the data exploration from 1.2 and considering the use case, discuss the importance of those features. (For example, which features may be useless and should be removed, which feature has a great impact on the label column, which should be transformed) Which features you are planning to use? Discuss the reasons for selecting them and how you create/transform them - 300 words max for the discussion - Feel free to add/remove features based on your exploration

To prepare the dataset for machine learning, I start by removing the "id_app" column, which serves as an identifier, and the "target" column, as it is not in use. For the label column, I convert boolean values to integers, assigning 1 for True and 0 for False.

For numerical attributes, Pearson Correlation is adopted to evaluate their relationship with the label (see the below result). The attributes with correlation value within the range are selected: value >= 0.1 and value <= 0.1. The chosen numerical attributes include days_birth, days_employed, flag_emp_phone, days_last_phone_change, amt_credit_request_last_year, loan_to_income_ratio, num_of_prev_app, num_of_approved_app, total_credit, total_credit_to_income_ratio.

Among these numerical attributes, "total_credit" and "total_credit_to_income_ratio" are especially significant as the correlation value is 0.8 and 1.0. Additionally, "days_birth" is replaced by "age_bucket"; "days_employed" will be transformed into "work_year" with the same logic as the transformation for "days_birth" and "days_last_phone_change" will be transformed into "changephone year".

For categorical attributes, gender, own_car, own_property, income_type, education_type, family_status, housing_type, occapation_type, age_bucket, credit_worthiness are selected because these attributes are particularly relevant to the prediction of defaults.

In summary, all the chosen attributes for machine learning models include 'gender', 'own_car', 'own_property', 'income_type', 'education_type', 'family_status', 'housing_type', 'flag_emp_phone', 'occupation_type', 'amt_credit_req_last_year', 'age_bucket', 'loan_to_income_ratio', 'credit_worthiness', 'total_credit', 'total_credit_to_income_ratio', 'work year', 'num of prev app', 'num of approved app', 'changephone year', 'is default'.

^{***} Correlation Results ***

```
[57]: from pyspark.ml.feature import VectorAssembler
     from pyspark.ml.stat import Correlation
     from pyspark.sql.functions import when
     numeric_cols = ['target', 'num_of_children', 'income_total', 'amt_credit', |
      ⇔'amt_annuity', 'amt_goods_price',
                   'region_population_relative', 'days_birth', 'days_employed', |
      'flag_mobile', 'flag_emp_phone', 'flag_work_phone', u
      'hour_appr_process_start', 'credit_score_1', 'credit_score_2', \_

¬'credit_score_3', 'days_last_phone_change',
                   'amt_credit_req_last_hour', 'amt_credit_req_last_day',
      'amt_credit_req_last_quarter', 'amt_credit_req_last_year',
      'num_of_approved_app', 'total_credit', u
      df_cor = app_df[numeric_cols]
     df cor = df cor.withColumn('is default', when(df cor['is default'] == True, 1).
      →otherwise(0))
     # Fill null with O
     df_cor = df_cor.fillna(0)
     df_cor = df_cor.withColumnRenamed('is_default', 'label')
     assembler = VectorAssembler(inputCols=numeric_cols[:-1], outputCol="features", __
      ⇔handleInvalid = "keep")
     assembled_data = assembler.transform(df_cor)
     # Compute the correlation values
     correlation matrix = Correlation.corr(assembled data, "features").head()
     # Extract the correlation valus from the result
     corr_matrix = correlation_matrix[0].toArray()
     # Display the correlation results
     for i in range(len(numeric cols) - 1):
        print(f"Correlation between {numeric_cols[i]} and label:⊔
```

Correlation between target and label: -0.01807841206407206 Correlation between num_of_children and label: -0.06383746065375039 Correlation between income_total and label: -0.04315781273848933 Correlation between amt_credit and label: -0.016667599302042514

```
Correlation between amt_annuity and label: -0.0449886824671642
Correlation between amt_goods_price and label: -0.016365599697350606
Correlation between region population relative and label: -0.008317297127011706
Correlation between days_birth and label: -0.19979663076787507
Correlation between days employed and label: 0.13463261021111117
Correlation between own_car_age and label: -0.041415374885985096
Correlation between cnt fam members and label: -0.009309780553431297
Correlation between flag_mobile and label: 0.0018456625868547827
Correlation between flag_emp_phone and label: -0.13574535619977138
Correlation between flag_work_phone and label: -0.060848602031071036
Correlation between flag_cont_mobile and label: 0.019493989694038417
Correlation between flag phone and label: 0.012991871189041167
Correlation between flag_email and label: 0.03563108241674096
Correlation between hour appr process start and label: -0.05320213213513396
Correlation between credit_score_1 and label: 0.08221394543153275
Correlation between credit_score_2 and label: 0.004425984096463248
Correlation between credit_score_3 and label: 0.042802982447522606
Correlation between days_last_phone_change and label: -0.1687381131740679
Correlation between amt_credit_req_last_hour and label: -0.001632924064716796
Correlation between amt credit reg last day and label: -0.005321906185296472
Correlation between amt credit req last week and label: 0.011131679402898473
Correlation between amt credit reg last month and label: 0.024631736639039135
Correlation between amt_credit_req_last_quarter and label: 0.07819611769209611
Correlation between amt_credit_req_last_year and label: 0.38104174588608897
Correlation between loan_to_income_ratio and label: 0.10612514744898638
Correlation between num_of_prev_app and label: 0.531440264746293
Correlation between num of approved app and label: 0.6404988148337947
Correlation between total_credit and label: 0.8324735875685986
Correlation between total_credit_to_income_ratio and label: 1.0
```

2.1.2 Write code to create/transform the columns based on your discussion above.

```
[58]: # Transform "days_employed" into "work_year"

def workyear_calculate(days_employed):
    workyear = days_employed/-365
    return workyear

def classify_workyear(workyear):
    if 0 < workyear < 1:
        return '< 1'
    elif 1 <= workyear <= 10:
        return '1-10'
    elif 10 < workyear <= 20:
        return '11-20'
    elif 20 < workyear <= 30:
        return '21-30'
    elif 30 < workyear <= 40:</pre>
```

```
+----+
|id_app|work_year|
+----+
|118100|
         1-10|
|110133|
         1-10|
|110215|
         1-10|
|194051| 11-20|
|110368|
            01
|110498|
            01
|110561| < 1|
|110836| 11-20|
|110985|
         1-10|
        1-10|
|109621|
+----+
only showing top 10 rows
```

```
[59]: # Transform "days_last_phone_change" into "changephone_year"

def changephone_calculate(days_last_phone_change):
    if days_last_phone_change is not None:
        changeyear = days_last_phone_change / -365
        return changeyear
    else:
        return 0

def classify_changephone(changeyear):
    if 0 < changeyear < 1:
        return '< 1'</pre>
```

```
elif 1 <= changeyear <= 5:</pre>
        return '1-5'
    elif 5 < changeyear <= 10:</pre>
        return '6-10'
    elif 10 < changeyear <= 15:</pre>
        return '11-15'
    elif 15 < changeyear <= 20:</pre>
        return '16-20'
    else:
        return '0'
# Register the functions as UDFs
changephone_calculate_udf = udf(changephone_calculate, IntegerType())
classify_changephone_udf = udf(classify_changephone, StringType())
# Calculate the change phone year and create 'changephone year' column
app_df = app_df.withColumn("changephone_year", ___
 ⇔classify_changephone_udf(changephone_calculate_udf(F.

¬col('days_last_phone_change'))))
app_df.select('id_app', 'changephone_year').show(10)
+----+
|id_app|changephone_year|
```

```
|118100|
                 1-5|
|110133|
                   01
|110215|
                1-5 l
11940511
                 1-5 l
|110368|
                1-5|
|110498|
                   01
|110561|
                1-5|
|110836|
                1-5|
|110985|
                 1-5|
1109621
                   01
+----+
only showing top 10 rows
```

```
[60]: # Fill null with 0 for "amt_credit_req_last_year"
app_df = app_df.fillna(0, subset=['amt_credit_req_last_year'])
app_df.select("id_app", "amt_credit_req_last_year").show(10)
```

```
+----+
|id_app|amt_credit_req_last_year|
+----+
|118100| 0.0|
|110133| 0.0|
```

```
11102151
                             3.01
                             1.01
|194051|
11103681
                             0.01
|110498|
                             4.01
                             0.01
|110561|
                             1.01
|110836|
|110985|
                             0.0
11096211
                             2.01
+----
only showing top 10 rows
```

```
[61]: from pyspark.sql.functions import isnan, when, count, col
     cols = ['gender', 'own car', 'own property', 'income type', 'education type', |
      'flag_emp_phone', 'occupation_type', 'amt_credit_req_last_year', _

¬'age_bucket', 'loan_to_income_ratio',
             'credit_worthiness', 'total_credit', 'total_credit_to_income_ratio', u
      'num_of_approved_app', 'changephone_year','is_default']
     df = app_df[cols]
     # Change the default value to 1 (True) and 0 (False)
     df = df.withColumn('is default', when(df['is default'] == True, 1).otherwise(0))
     # Change "is_default" to "label"
     df = df.withColumnRenamed('is_default', 'label')
     # Check for missing data, drop the rows for missing data.
     df = df.na.drop()
```

2.2.1 2.2 Preparing Spark ML Transformers/Estimators for features, labels, and mod-

2.2.1 Write code to create Transformers/Estimators for transforming/assembling the columns you selected above in 2.1, and create ML model Estimators for Random Forest (RF) and Gradientboosted tree (GBT) model.

Please DO NOT fit/transform the data yet

```
[62]: # Seperate numerical and non-numerical columns
     categoryInputCols = ['gender','own_car', 'own_property', 'income_type',_
      'housing_type','occupation_type', 'age_bucket', u

¬'credit_worthiness', 'work_year',
```

```
[63]: from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
     from pyspark.ml import Pipeline
     from pyspark.ml.classification import RandomForestClassifier, GBTClassifier
      # String Indexer
      # Define the output columns
     outputCols=[f'{x}_index' for x in categoryInputCols]
      # Initialise StringIndexer
     indexer = StringIndexer(inputCols = categoryInputCols, outputCols = outputCols, __
       ⇔handleInvalid = 'keep')
     # One Hot Encoder
      # Define input columns and outpu columns for OHE
     inputCols OHE = outputCols
     outputCols_OHE = [f'{x}_vec' for x in categoryInputCols]
      # Initialise OneHotEncoder
     encoder = OneHotEncoder(inputCols = inputCols OHE, outputCols = outputCols OHE)
     # Vector Assembler
      # Define input columns and output columns (plus numerical columns)
      #inputCols = outputCols_OHE
     assemblerInputs = outputCols_OHE + [x for x in numericInputCols if x != 'label']
      # Initialise VectorAssembler
     assembler = VectorAssembler(inputCols = assemblerInputs, outputCol = 'features')
     # Create ML model Estimators for RF and GBT
     rf = RandomForestClassifier(labelCol = 'label', featuresCol = 'features', u
       onumTrees = 10)
     gbt = GBTClassifier(labelCol = 'label', featuresCol = 'features')
```

2.2.2 Write code to include the above Transformers/Estimators into two pipelines(RF and GBT). Please DO NOT fit/transform the data yet

```
[64]: rf_pipeline = Pipeline(stages = [indexer, encoder, assembler, rf])
gbt_pipeline = Pipeline(stages = [indexer, encoder, assembler, gbt])
```

2.2.2 2.3 Prepare, Train and Evaluate models

2.3.1 Write code to split the data for training and testing purposes. (Note: if the dataset is too large for your machine to train, sampling/sub-sampling is allowed.)

```
[65]: train, test = df.randomSplit([0.8, 0.2], seed = 2020)

print('Number of records in training set: ', train.count())
print('Number of records in testing set: ', test.count())
```

Number of records in training set: 138017 Number of records in testing set: 34574

2.3.2 Write code to use the corresponding ML Pipelines to train the models on the training data. And then use the trained models to predict the testing data from 2.3.

```
[66]: # Train the RF model
    rf_model = rf_pipeline.fit(train)

# Train the GBT model
    gbt_model = gbt_pipeline.fit(train)

# Make predictions on the testing data with models
    rf_predictions = rf_model.transform(test)
    gbt_predictions = gbt_model.transform(test)

# Display the predictions
    rf_predictions.select('features','label','prediction','probability').show()
    gbt_predictions.select('features','label','prediction','probability').show()
```

```
-----
             features|label|prediction|
                                                 probability|
+----+
|(78,[0,3,6,8,16,2...|
                        0|
                                  0.0 | [0.97855845553545...|
| (78, [0,3,6,8,16,2...|
                        0|
                                  0.0 | [0.96922887206139...|
|(78,[0,3,6,8,16,2...|
                        0|
                                  0.0 | [0.97855845553545...|
                        01
|(78, [0,3,6,8,16,2...]
                                  0.0 | [0.97394204921974...]
|(78,[0,3,6,8,16,2...|
                        0|
                                  0.0 | [0.97394204921974...|
|(78,[0,3,6,8,16,2...|
                        0|
                                  0.0 | [0.97855845553545...|
|(78, [0,3,6,8,16,2...|
                        01
                                  0.0 | [0.97855845553545...]
                        0|
                                  0.0 | [0.94721835458229...|
|(78, [0,3,6,8,16,2...|
|(78,[0,3,6,8,16,2...|
                        1|
                                  0.0 | [0.97855845553545...]
                        0|
|(78, [0,3,6,8,16,2...|
                                  0.0 | [0.97764762114476... |
                        01
|(78,[0,3,6,8,16,2...|
                                  0.0 | [0.97855845553545...]
| (78, [0,3,6,8,16,2...|
                        0|
                                  0.0 | [0.97855845553545...]
| (78, [0,3,6,8,16,2...|
                        01
                                  0.0 | [0.97855845553545...]
                                  0.0 | [0.97764762114476...|
|(78,[0,3,6,8,16,2...|
                        11
| (78, [0,3,6,8,16,2...|
                        0|
                                  0.0 | [0.96922887206139...|
|(78,[0,3,6,8,16,2...|
                        0|
                                  0.0 | [0.97394204921974...|
```

```
+----+
                                                      probability|
              features | label | prediction |
| (78, [0,3,6,8,16,2...|
                           0|
                                     0.0 | [0.95523188876905... |
                           0|
                                     0.0|[0.95170786590695...|
|(78, [0,3,6,8,16,2...]
                           0|
                                     0.0 | [0.82622211645018... |
|(78, [0,3,6,8,16,2...]
|(78, [0,3,6,8,16,2...]
                           0|
                                     0.0 | [0.95523188876905...]
|(78,[0,3,6,8,16,2...|
                           0|
                                     0.0 | [0.93906611989137...|
                           0|
                                     0.0 | [0.95523188876905...|
|(78, [0,3,6,8,16,2...]
|(78,[0,3,6,8,16,2...|
                           0|
                                     0.0 | [0.95523188876905...|
                           0|
                                     0.0 | [0.95170786590695... |
|(78,[0,3,6,8,16,2...|
                           1|
                                     0.0 | [0.93565741347025... |
| (78, [0,3,6,8,16,2...|
|(78, [0,3,6,8,16,2...]
                           01
                                     0.0 | [0.95442435522548...]
|(78, [0,3,6,8,16,2...|
                           0|
                                     0.0 | [0.95523188876905...]
|(78, [0,3,6,8,16,2...|
                           0|
                                     0.0 | [0.95170786590695... |
| (78, [0,3,6,8,16,2...|
                           0|
                                     0.0 | [0.95523188876905...]
|(78, [0,3,6,8,16,2...|
                           1|
                                     0.0 | [0.93618372148223...|
|(78, [0,3,6,8,16,2...|
                           0|
                                     0.0 | [0.95442435522548...|
| (78, [0,3,6,8,16,2...|
                           0|
                                     0.0 | [0.95170786590695... |
                           0|
                                     0.0 | [0.95170786590695... |
|(78,[0,3,6,8,16,2...]
| (78, [0,3,6,8,16,2...|
                           0|
                                     0.0 | [0.95523188876905... |
                           0|
|(78,[0,3,6,8,16,2...]
                                     0.0 | [0.95523188876905...]
|(78, [0,3,6,8,16,2...|
                           01
                                     0.0 | [0.94695663802877...|
```

only showing top 20 rows

2.4.2 For both models(RF and GBT) and testing data, write code to display the count of TP/TN/FP/FN. Compute the AUC, accuracy, recall, and precision for the above-threshold/below-threshold label from each model testing result using pyspark MLlib/ML APIs. 1. Draw an ROC plot. 2. Discuss which one is the better model and use metrics to support your claim (no word limit, please keep it concise)

*** The count of TP/TN/FP/FN ***

```
Random Forest:
```

```
TP: 0, TN: 33523, FN: 1051, FP: 0

Gradient_Boosted Tree:
TP: 148, TN: 33416, FN: 903, FP: 107

*** The AUC, accuracy, recall, and precision for the above-threshold/below-threshold labe ***
```

```
[68]: from pyspark.ml.evaluation import BinaryClassificationEvaluator
      import matplotlib.pyplot as plt
      # Compute accuracy, precision, recall
      def compute_metrics(predictions):
          TP = predictions.filter(F.col('prediction') == 1.0).filter(F.col('label')
       \Rightarrow== 1).count()
          TN = predictions.filter(F.col('prediction') == 0.0).filter(F.col('label')
       \hookrightarrow== 0).count()
          FN = predictions.filter(F.col('prediction') == 0.0).filter(F.col('label')_
       \Rightarrow = 1).count()
          FP = predictions.filter(F.col('prediction') == 1.0).filter(F.col('label')
       \hookrightarrow== 0).count()
          accuracy = 'NA'
          precision = 'NA'
          recall = 'NA'
          if TN + TP + FN + FP != 0:
               accuracy = (TN + TP) / (TN + TP + FN + FP)
          if TP + FP != 0:
              precision = TP / (TP + FP)
```

```
if TP + FN != 0:
        recall = TP / (TP + FN)
    print(f'Accuracy: {accuracy}')
    print(f'Precision: {precision}')
    print(f'Recall: {recall}')
# Compute above/below threshold values and AUC
def calculate_metrics(predictions):
    ⇔metricName='areaUnderROC')
    auc = evaluator.evaluate(predictions)
    # Default threshold = 0.5
    print('Metrics for above-threshold label:')
    compute_metrics(predictions.filter(F.col('prediction') == 1.0))
    print('\nMetrics for below-threshold label:')
    compute_metrics(predictions.filter(F.col('prediction') == 0.0))
    print(f'\nAUC: {auc}')
# Calculate metrics for Random Forest predictions
print('=== Random Forest Metrics ===')
calculate_metrics(rf_predictions)
# Calculate metrics for Gradient-Boosted Tree predictions
print('\n=== Gradient-Boosted Tree Metrics ===')
calculate_metrics(gbt_predictions)
=== Random Forest Metrics ===
Metrics for above-threshold label:
Accuracy: NA
Precision: NA
Recall: NA
Metrics for below-threshold label:
Accuracy: 0.9696014346040377
Precision: NA
Recall: 0.0
AUC: 0.8862498170377253
=== Gradient-Boosted Tree Metrics ===
Metrics for above-threshold label:
Accuracy: 0.5803921568627451
```

Precision: 0.5803921568627451

Recall: 1.0

Metrics for below-threshold label:

Accuracy: 0.9736880445234418

Precision: NA Recall: 0.0

AUC: 0.9572122160586568

```
[69]: # Plot Random Forest ROC curve
    trainingSummary = rf_model.stages[-1].summary
    roc = trainingSummary.roc.toPandas()
    plt.plot(roc['FPR'], roc['TPR'])
    plt.plot([0, 1], [0, 1],linestyle='--')
    plt.ylabel('True Positive Rate (TPR)')
    plt.xlabel('False Positive Rate (FPR)')
    plt.title('ROC Curve - Random Forest')
    plt.show()
```



```
[70]: # GBT plotting reference: https://stackoverflow.com/questions/52847408/
      \rightarrow pyspark-extract-roc-curve
     from pyspark.mllib.evaluation import BinaryClassificationMetrics
     class CurveMetrics(BinaryClassificationMetrics):
         def __init__(self, *args):
             super(CurveMetrics, self).__init__(*args)
         def _to_list(self, rdd):
             return [(float(row._1()), float(row._2())) for row in rdd.collect()]
         def plot_curve(self, method):
             rdd = getattr(self._java_model, method)().toJavaRDD()
             return self._to_list(rdd)
     # Extract 'label' and 'probability' from dataframe
     preds = gbt predictions.select('label', 'probability').rdd.map(lambda row:
      roc_curve = CurveMetrics(preds).plot_curve('roc')
     # Plot ROC Curve
     plt.figure()
     x_vals, y_vals = zip(*roc_curve)
     plt.plot(x_vals, y_vals)
     plt.plot([0, 1], [0, 1], linestyle='--')
     plt.title('ROC Curve - Gradient-Boosted Tree')
     plt.xlabel('False Positive Rate (FPR)')
     plt.ylabel('True Positive Rate (TPR)')
     plt.show()
```

/opt/conda/lib/python3.10/site-packages/pyspark/sql/context.py:158: FutureWarning: Deprecated in 3.0.0. Use SparkSession.builder.getOrCreate() instead.

warnings.warn(

2.4.3 Save the better model, we will need this for Part B of assignment 2. (note: You may need to go through a few training loops, adjust features, use more data and other techniques to create a better-performing model.)

```
[71]: # Save GBT model
gbt_model.save('default_gbt_prediction_model')
```

2.2.3 Part 3. Applicant Segmentation and Knowledge sharing with K-Mean

Please see the specification for this task and add code/markdown cells. 1. Utilize K-Mean clustering/hyperparameter tuning you have learned in this unit and try to find the optimal K value and train the model. 2. Based on your trained model parameters, make recommendations on how to segment the applicants. Write a paragraph with 300 words maximum.

1. Utilize K-Mean clustering/hyperparameter tuning you have learned in this unit and try to find the optimal K value and train the model.

```
[72]: from pyspark.ml.feature import StandardScaler from pyspark.ml.feature import VectorAssembler from pyspark.ml.clustering import KMeans from pyspark.ml.evaluation import ClusteringEvaluator
```

```
from pyspark.sql.functions import count, isnan, col, when
df_new = spark.read.csv('application_data.csv', header = True, inferSchema = __
 →True)
# Prepare the datagrame for K-means clustering
df_new = df_new.withColumn('gender', when(df_new['gender'] == 'M', 1).
 →when(df_new['gender'] == 'F', 2).otherwise(3))\
             .withColumn('age', age_calculate_udf(F.col('days_birth')))\
             .withColumn('loan_to_income_ratio', F.col('amt_credit') / F.

¬col('income_total'))\
             .select('id_app','gender', 'income_type', 'education_type',

    'family_status', 'age', 'loan_to_income_ratio')
df_2 = df_new.drop('id_app')
df_2 = df_2.na.drop()
df_2_{cols} = df_2.columns
df_2_assembler = VectorAssembler(inputCols = df_2_cols, outputCol = 'features')
df_2_scaler = StandardScaler(inputCol = 'features', outputCol =__
 df_2_pipeline = Pipeline(stages = [df_2_assembler, df_2_scaler])
df_2_model = df_2_pipeline.fit(df_2)
scaled_data = df_2_model.transform(df_2)
# Find the best K value
evaluator = ClusteringEvaluator()
silhouette_arr=[]
for k in range(2,10):
    k_means= KMeans(featuresCol = 'scaledFeatures', k = k)
    model = k_means.fit(scaled_data)
    predictions = model.transform(scaled data)
    silhouette = evaluator.evaluate(predictions)
    silhouette_arr.append(silhouette)
    print('No of clusters:',k,'Silhouette Score:',silhouette)
No of clusters: 2 Silhouette Score: 0.22575217847308604
```

```
No of clusters: 2 Silhouette Score: 0.22575217847308604
No of clusters: 3 Silhouette Score: 0.04049325756989309
No of clusters: 4 Silhouette Score: 0.14268557204023644
No of clusters: 5 Silhouette Score: -0.016519195519834832
No of clusters: 6 Silhouette Score: -0.033622285806179375
No of clusters: 7 Silhouette Score: -0.18200395445180764
No of clusters: 8 Silhouette Score: -0.23547361633161948
No of clusters: 9 Silhouette Score: -0.18981257273379365
```

2. Based on your trained model parameters, make recommendations on how to segment the

applicants. Write a paragraph with 300 words maximum.

The optimal clustering model suggests that the K value is 2, which mean that it is better to divide the applicants into two distinct clusters. To improve the accuracy of default likelihood, specific attributes have been chosen for segmentation. The selected attributes include "gender," "income_type," "education_type," "family_status," and "loan_to_income_ratio. Through an analysis of the relationship between these attributes and defaults (see below), it is recommended to create a cluster composed of individuals with lower or secondary education, widowed family status, pensioner or unemployed income types, an age above 45, and a higher loan-to-income ratio. This cluster is expected to have a higher likelihood of defaults based on previous data. On the contrary, the second cluster contains the applicants who do not possess these characteristics.

*** The relationship between attributes and defaults ***

```
[73]: df ch = df new.join(loan df, df new.id app == loan df.id app 1, how = 'inner')
      df_ch = df_ch.drop('id_app', 'id_app_1')
      def calculate ratio(column):
          selected_df = df_ch.select(column, 'is_default')
          # Count the number of true within each income type
          count_df = selected_df.groupBy(column, 'is_default').count()
          # Count the total number of applications in each income type
          total_count_df = count_df.groupBy(column).agg(F.sum('count').
       ⇔alias('total_count'))
          # Join the count df with total count df
          result_df = count_df.join(total_count_df, column)
          # Calculate the percentage
          result_df = result_df.withColumn('percentage', F.col('count') / F.
       Gol('total_count') * 100).sort('percentage', ascending = False)
          # Show the resulting DataFrame
          result_df = result_df.filter(F.col('is_default') == True).
       ⇔sort('percentage', ascending = False).show()
      new_column = df_ch.columns
      for col in new_column:
          calculate_ratio(col)
```

```
+----+
|gender|is_default|count|total_count| percentage|
+----+
| 2| true| 4441| 113467|3.9139132963769203|
| 1| true| 721| 59121| 1.219532822516534|
+-----+
```

+					+				 -		+
	income_type	is_	default	cou	int	tot	al_	count	 	per	centage
ĺ	7		true		4			13	I 30	0.7692307	'6923077 l
i	51		true		- · 945					.27763612	
i	1		true		368					052168864	
i	2		true)30					273669119	
ï	8		true		315					. 02549891	
ا د	·		true	ا د	1			40231	Z	.02049091	
4		4		4	·	+				+	+
	education_ty	7pe∣ 	is_defau	11t +	cou 	int +	tot	al_cou	ınt	 +	percentage
١		3		rue		76					30929791273
!		1		rue		156					1481215697
!		4		rue		350				•	5612215773
١		2		rue		79		57			8881118881
١		5	tı	rue		1					11111111112
+		+		4		+				+	+
1	family_statu	+- ıs i	.s_defaul	+- Lt c	coun	+- nt t			•	F	•
ı		5	trı	1e	56	66		899	94	6.293084	1278407828
		4	trı	ıe	41	181		1100)4 3	3.7986186	8841148677
		3	trı	ıe	376	S9		11062	26	3.406974	1852204726
		2	trı	ıe	20)5		1663	39 :	1.2320451	950237394
		6	trı	ıe	20)4		2532	27 (0.8054645	5240257433
+		-+-		-+-		-+-			+-		+
+	++	+	+				+			+	-
	age is_defau	ılt	count to	otal	L_cc	ount	:		pei	ccentage	
+	++	+	+				+			+	-
		rue	246		2	2885	8	.52686	308	34922011	
	62 tr	rue					•			10084033	
	63 tr	rue	210		2	2951	.	7.1162	2317	78583531	
١	61 tr	rue	210		3	3060	6	.86274	1509	98039216	
	65 tr	rue	115		1	1734	6.	632064	1590	05420985	
١	60 tr	rue	228		3	3438	8 6	6.63176	5265	52705062	
١	59 tr	rue	220		3	3727	' 5	.90287	7094	11776228	
١	58 tr	rue	191		3	3509	5	.44314	1619	95497293	
١	57 tr	rue	200		3	3791	. 5	.27565	5286	32041678	
١	66 tr	rue	57		1	179	14.	834605	5597	79643765	
١	56 tr	rue	_		3	3801	. 4	.44619	9836	38850303	
١	55 tr	rue	159		3	3701	.	4.2961	136:	17941097	
١	54 tr	rue	158		4	193	3 3.	768185	5070	03553543	
١	53 tr	ruel	149		4	1114	3.	621779	9290)2284884	

```
| 51|
                   128
                                3640 | 3.5164835164835164 |
            true
| 52|
                   135|
                                3860 | 3.4974093264248705 |
            true|
| 48|
                   128
                                3919 | 3.266139321255422 |
            true
                                4120 | 3.033980582524272 |
| 46|
                   125|
            true|
| 50|
            true
                   110
                                3664 | 3.002183406113537 |
                                4359 | 2.9823353980270704 |
| 44|
            true
                   130
```

only showing top 20 rows

+-		·	 -		++
1	oan_to_income_ratio	is_default	count	total_count	percentage
 	12.788055555555555	true	1	1	100.0
l	2.98475	true	1	1	100.0
	6.508888888888888	true	1	1	100.0
	9.55	true	1	1	100.0
	13.26666666666667	true	1	1	100.0
	11.320754716981131	true	1	1	100.0
	9.801846153846153	true	1	1	100.0
	19.4684	true	1	1	100.0
	4.714325	true	1	1	100.0
	17.416363636363638	true	1	1	100.0
	24.214	true	1	1	100.0
	12.2611333333333333	true	1	1	100.0
	6.173913043478261	true	1	1	100.0
	10.20904347826087	true	1	1	100.0
	8.715571428571428	true	1	1	100.0
	18.16863157894737	true	1	1	100.0
	27.7777777777778	true	2	2	100.0
	5.667461538461539	true	1	1	100.0
	16.75	true	1	1	100.0
	12.978066666666667	true	1	1	100.0

only showing top 20 rows

```
+-----+
|is_default|count|total_count|percentage|
+-----+
| true| 5162| 5162| 100.0|
+-----+
```

2.2.4 Part 4: Data Ethics, Privacy, and Security

Please see the specification for this task and add markdown cells (word limit: 500).

a. Define the concepts of data ethics, privacy, and security within the big data domain.

Data ethics refers to the ethical responsibilities associated with the collection, protection,

Data privacy is centered on the management and governance of personal data. This involves the As for data security, it is concerned with safeguarding data from malicious attacks and prevent

b. Explain the significance of these issues in today's data-driven world. Data Ethics: Analyze how data ethics can influence big data processing; Examine real-world examples of how data ethics has been handled, both positively and negatively. Analyze the balance between technological advancements and ethical responsibilities

In the realm of big data processing, it is believed that ethical considerations includes information of the key principles is to obtain informed consent, which emphasises on the importance of the balance between technological advancements and ethical responsibilities is essential to entire the consent of the consent of

c. Summarize the key findings of your analysis and include a list of references (see the next section).

Data ethics plays a vital role in today's society particularly due to the widespread use of Bi

2.3 References:

Please add your references below:

Cote, C. (2021, March 16). 5 Principles of Data Ethics for Business. Harvard Business School Online. https://online.hbs.edu/blog/post/data-ethics

Data Ethics Unveiled: Principles & Frameworks Explored. (n.d.). Atlan.com. https://atlan.com/data-ethics-101/#:~:text=Data%20ethics%20refers%20to%20the

Jain, P., Gyanchandani, M., & Khare, N. (2016). Big data privacy: a technological perspective and review. Journal of Big Data, 3(1). https://doi.org/10.1186/s40537-016-0059-y

Herschel, R., & Miori, V. M. (2017). Ethics & Big Data. Technology in Society, 49(0160-791X), 31–36. https://doi.org/10.1016/j.techsoc.2017.03.003

Legal - Apple Privacy Policy - Apple. (n.d.). Apple Legal. https://www.apple.com/legal/privacy/en-ww/#:~:text=Apple%20uses%20personal%20data%20to

Wong, С. (2019,March 18). The Cambridge Analytica Scandal World but Didn't The Guardian. It Change Facebook. https://www.theguardian.com/technology/2019/mar/17/the-cambridge-analytica-scandalchanged-the-world-but-it-didnt-change-facebook