Aufgabe 1

Aufgabe 2

Eine Zelle der Kantenlänge s kann bei einem Punkt-Mindestabstand ϵ maximal $n_{max}=(\frac{s}{\epsilon}+1)^2$ Punkte enthalten, da am meisten Punkte in die Zelle passen, wenn diese Gitterförmig angeordnet sind:

 $\begin{array}{c} \bullet \\ \leftarrow \\ \epsilon \\ \leftarrow \\ \leftarrow \\ \end{array}$

Ein Octree hat bei einer Tiefe t maximal $n=8^t$ Blätter, bzw. Punkte. Nach t umgestellt ergibt sich für die maximale Tiefe bei n_{max} Punkten:

$$t_{max} = log_8(n_{max}) = 2 \cdot log_8(\frac{s}{\epsilon} + 1)$$

Aufgabe 3

Aufgabe 4

Aufgabe 5