Sieć Splątania Kwantowego jako Fundament Multiwersum: Nowy Paradygmat Czasu Relacyjnego i Napędu

Autor: Krzysztof Włodzimierz Banasiewicz

Afiliacja: Independent Researcher, The Hague, Netherlands

Data: 29 sierpnia 2025

Abstrakt

Proponujemy hipotezę, zgodnie z którą fundamentalną strukturą rzeczywistości jest globalna sieć

kwantowego spinająca wielość gałęzi (światów) w sensie interpretacji wielu światów. Wprowadzam

Jednostek Przyczynowo-Kontrolnych (CCU) jako elementarnych generatorów korelacji, z których em

2. Architektura hipotezy: CCU i sieć splątania
Niech E oznacza zbiór zdarzeń z relacją przyczynową "<". Para (E, <) tworzy skierowany graf acyk
(DAG) w sensie teorii zbiorów przyczynowych. Węzły (zdarzenia) zgrupowane w CCU pełnią rolę ele
generatorów korelacji kwantowych. Stan CCU traktujemy fenomenologicznie jako superpozycję kor
pól i zasobów splątania; dynamika CCU prowadzi do powstawania/zanikania krawędzi w grafie (E, -

3. Formalizm: przestrzenie Hilberta i most relacyjny
Każdej krawędzi x→y przypisujemy lokalną przestrzeń Hilberta H_xy z efektywnym hamiltonianem
Globalna przestrzeń stanów ma strukturę H = ⊗_{x→y} H_xy. Wprowadzamy operator mostu relac
działający na wybranym zbiorze par P: B_{ΔL→ΔT}(λ) = exp(i λ Σ_{(u,v)∈P} β_{uv}), gdzie β_{uv}
(lub wzmacnia) korelacje splątania między u i v, a λ jest parametrem fenomenologicznym. Intuicyj

4. Paradoksy i problemy pojęciowe
Nielokalność: splątane węzły są sąsiadami w sensie relacji przyczynowo-informacyjnej, co eliminuj
intuicyjny paradoks "działania na odległość". Fine-tuning stałych: parametry efektywnej teorii mog
wynikać z globalnej optymalizacji funkcjonału sieciowego (np. minimalizacji kosztu informacyjnego
zachowaniu stabilności). Rola obserwatora: obserwator jako CCU wpływa na rozgałęzienia poprzez

5. Program badań i testów
(A) Symulacje grafów przyczynowych: generowanie dużych DAG ($ E \sim10^6$); badanie wpływu operation operation in the state of the symulacje grafów przyczynowych: generowanie dużych DAG ($ E \sim10^6$); badanie wpływu operation operation in the state of the symulacje grafów przyczynowych: generowanie dużych DAG ($ E \sim10^6$); badanie wpływu operation operation in the symulacje grafów przyczynowych: generowanie dużych DAG ($ E \sim10^6$); badanie wpływu operation operation operation operation operation operation of the symulacje grafów przyczynowych: generowanie dużych DAG ($ E \sim10^6$); badanie wpływu operation operati
B_{ΔL→ΔT} na rozkłady długości łańcuchów i średnicę grafu; estymacja L(S_ent) metodami uczeni
reprezentacji. (B) Eksperymenty kwantowe (symulacja analogowa): implementacja \hat{b}_{uv} jako
wielokubitowych bramek entanglujących na NISQ/FTQC; pomiary entropii splątania i redukcji głębo

6 Implikacja i zastosowania
6. Implikacje i zastosowania
Czas relacyjny: czas wyłania się jako lokalny porządek zdarzeń. Napęd relacyjny: postulujemy moż
rekonstrukcji ścieżki przyczynowej przez modyfikację połączeń splątania (rekonfiguracja grafu), co
odpowiada skracaniu odległości przyczynowej między stanem początkowym a docelowym, przy za
sygnalizacji. Informatyka kwantowa: mosty relacyjne moga prowadzić do nowych klas algorytmów

7. Status, ograniczenia i dalsze kroki Formalizm ma charakter hipotetyczny. Wyzwania: mikrofizyczna interpretacja λ; operacyjna definic w warunkach kosmologicznych; dobrze określone równania ruchu dla pola η i potencjału V; obserw odróżniające model od standardowych paradygmatów. Dalsze kroki: implementacje symulacyjne, e

PoC na procesorach kwantowych, metaanalizy danych astrofizycznych.

Wnioski
Zarysowaliśmy spójny, choć fenomenologiczny, program badawczy, w którym splątanie pełni rolę
konstytutywną dla struktury przyczynowej i efektywnej geometrii. Operator mostu relacyjnego ora
na T^{(CCU)}_{μν} tworzą ramę do formułowania testowalnych przewidywań. Niezależnie od osta
weryfikacji, hipoteza ta oferuje jednolite ujęcie nielokalności, emergencji czasu i możliwej inżynieri

Wybrane równania

$$|\Psi_{\text{CCU}}\rangle = \int \mathcal{D}\phi \, \mathrm{e}^{iS[\phi]} \, \otimes \, |\text{Ent}\rangle$$

$$\mathcal{H} = \bigotimes_{X \to y} \mathcal{H}_{XY}$$

$$B_{\Delta L \to \Delta T}(\lambda) = \exp\left(i\lambda \sum_{(u,v) \in \mathcal{P}} \hat{b}_{uv}\right)$$

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4} (T_{\mu\nu}^{(m)} + T_{\mu\nu}^{(CCU)})$$

$$T_{\mu\nu}^{(\text{CCU})} = \alpha \, \nabla_{\mu} \eta \, \nabla_{\nu} \eta - g_{\mu\nu} \, V(\eta), \quad \eta \equiv f(S_{\text{ent}})$$

Bibliografia 1. J. Preskill, "Entanglement and the Nature of Space," Caltech Magazine, 2018. 2. H. Everett, "Relative State Formulation of Quantum Mechanics," Reviews of Modern Physics 29,

3. J. Maldacena, L. Suss	skind, "Cool horizons f	or entangled black h	oles," Fortschritte d	er Physik 61
781-811 (2013).				
4. C. Rovelli, Quantum	Gravity, Cambridge U	niversity Press (2004	1).	

Gravitation 42, 2323–2329 (2010).
7. B. Swingle, "Entanglement renormalization and holography," Phys. Rev. D 86, 065007 (2012).

8. R. D. Sorkin,	"Causal Sets:	Discrete Grav	ity," Lectures	on Quantum G	Fravity (2005);	arXiv:gr-
qc/0309009.						