année scolaire 2022-2023

Professeur : Zakaria Haouzan Établissement : Lycée SKHOR qualifiant

Devoir Surveillé N°1 2ème année baccalauréat Sciences Mathématiques Durée 2h00

Chimie 7pts/42min

Les deux parties sont indépendantes

Partie 1 :Etude cinétique de la dismutation de l'eau oxygénée (1.5pts)

La solution aqueuse d'eau oxygénée se décompose entièrement en dioxygène et en eau . Cette transformation étant très lente, la solution doit être mélangée avec les ions Fe^{3+} pour être accélérée.

Une solution d'eau oxygénée à "n volumes" peut dégager n litres de dioxygène par litre de solution d'eau oxygénée.

(volume gazeux mesuré sous la pression P = 1013hPa et à la température T = 273, 15K). On donne la constante des gaz parfaits R = 8,31 SI.

- 0.75 1. Ecrire l'équation équilibrée de la décomposition de l'eau oxygénée.
- 0.25 **2.** Quel est le rôle des ions Fe^{3+} ?
- 0.5 3. Montrer que la concentration de la solution de H_2O_2 à n volumes est : $C=8,92.10^{-2} mol.L^{-1}$

Partie 2 :Etude cinétique d'un mélange réactionnel (5.5pts)

On prépare maintenant une solution S_1 d'eau oxygénée à "0,5 volume". A l'instant t = 0s, on mélange dans un bécher $V_1 = 100mL$ de la solution S_1 avec $V_2 = V_1$ d'une solution d'iodure de potassium $(K_{(aq)}^+ + I_{(aq)}^-)$ S_2 de concentration $C_2 = 2.10^{-1} mol.L^{-1}$ et $V_3 = 15mL$ d'acide sulfurique S_3 $(2H^+ + SO_4^{2-})$ de concentration $C_3 = 5, 0.10^{-1} mol.L^{-1}$.

Pour avoir 10 échantillons identiques du mélange réactionnel initial, on répartit celui-ci dans 10 béchers à raisons de V=21,5mL par bécher. A l'instant t=3min, on ajoute rapidement de la glace au premier bécher et on dose le diiode formé (I_2) avec une solution S_4 de thiosulfate d'ammonium $(2NH_4^+ + S_2O_3^{2-}{}_{(aq)})$ de concentration $C_4=1,0.10^{-1}mol.L^{-1}$, en présence d'empois d'amidon. Soit V_{4E} le volume de thiosulfate versé à l'équivalence. Toutes les 3 minutes, on renouvelle l'opération précédente successivement sur le deuxième puis le troisième bécher ... etc.

- 0.75 **4.** Donner les couples Ox/Red des solutions S_1 , S_2 et S_4 .
 - 5. Ecrire les deux équations relatives à la formation de diiode et au dosage de cette espèce.
- 0.75 **6.** Montrer que la concentration des ions oxonium issus de l'acide utilisé, dans chaque bécher à t=0s vaut $[H_3O^+]_0=7,0.10^{-2}mol/L$
- 0.25 7. Expliquer brièvement le rôle des gouttes d'empois d'amidon ajoutées.
- 0.25 \mid 8. Pourquoi ajoute-t-on de la glace rapidement à l'instant t, dans chaque bécher ?
- 0.5 **9.** Déterminer l'expression de la concentration, du diiode apparu dans un bécher à l'instant t en fonction de V_{4E} .

La relation précédente a permis de déterminer les variations

- de $[I_2]$ en diiode en fonction du temps t comme le montre la courbe de la figure ci-contre.
 - 0.5 **10.** Déterminer la valeur de $[I_2]_f$ à la fin de la réaction de formation de diiode dans le dernier bécher.
 - 0.5 **11.** Montrer que la vitesse de formation du diiode est donnée par la relation : $V = \frac{d[I_2]}{dt}$ puis calculer sa vitesse à t = 310s.
 - 0.5 **12.** Comment évolue cette vitesse au cours du temps ? Quel est le facteur cinétique responsable de cette variation ?
 - 0.5 | 13. déduire graphiquement $t_{1/2}$ le temps de demi réaction.

_Physique 13pts _____

Les deux parties sont indépendantes

Partie 1 : Etude d'une onde se propageant le long d'une corde (6pts)

Un vibreur provoque à l'extrémité S d'une corde élastique un mouvement vibratoire sinusoïdal d'équation $y_{S(t)} = a.cos(2.\pi Nt + \phi)$ où a, N et ϕ désignent respectivement, l'amplitude, la fréquence et la phase à l'origine de S. La source S débute son mouvement à l'instant de date $t_0 = 0s$. On néglige toute atténuation de l'amplitude et toute réflexion de l'onde issue de S.

- 0.25 1. L'onde se propageant le long de la corde est-elle transversale ou longitudinale? Justifier.
 - 2. A l'instant $t_1=2.10^{-2}s$, le point M_1 de la corde d'abscisse $x_1=10cm$ entre en vibration. Déterminer la célérité de l'onde se propageant le long de la corde.
- 3. La courbe représentant l'aspect de la corde à un instant t2 est donnée comme suivante :

Figure 2. Propagation d'une onde se propageant le long d'une corde

- 0.75 **3.1.** En exploitant cette courbe, déterminer en unités internationales les valeurs de l'amplitude a , la longueur d'onde λ et l'instant t_2 .
- 0.25 | **3.2.** Déterminer la valeur de la fréquence N.
 - 1 3.3. Déterminer la valeur de la phase initiale ϕ de S .
- 1.75 | **3.4.** Représenter, le diagramme du mouvement du point M_1 à la date t_2 .
 - 5. Représenter , le diagramme du mouvement du point M_1 à la date t_2 .

Partie 2: Etude d'une diffraction(7pts)

On réalise l'expérience de diffraction d'une lumière monochromatique de longueur d'onde λ dans le vide issue d'un appareil laser en utilisant une fente de largeur a et un écran situé à la distance D=1,5m de cette fente . On obtient le schéma et la courbe de la figure suivante :

- 0.75 1. Quelle est sa seule caractéristique qui ne change pas quel que soit le milieu de propagation?
- 0.25 **2.** Décrire la disposition de la fente. Est-elle placée horizontalement ou verticalement ?
- 0.25 **3.** Expliquer comment a-t-on trouvé expérimentalement les résultats convertis en graphe ci-dessus.
- 0.75 4. Déterminer l'expression de a en fonction de λ , D
 - 1 5. Déterminer la valeur de ? est-elle visible ? si oui quelle est sa couleur ?
 - 6. On met maintenant entre la fente et l'écran une lame en plexiglas de forme parallélépipédique comme le montre la figure ci-dessous. L'indice de réfraction du verre pour le rayon lumineux monochromatique utilisé est n=1,63. La tache centrale a pour rayon r'. Déterminer l'expression de r' en fonction de a et n.

- Figure 5. L'ajout de lame en plexiglas
- 7. On intercale le diaphragme comportant la fente vers la gauche d'une distance $D' = \frac{D}{4}$. Déterminer l'expression du rayon R de la nouvelle tâche centrale en fonction des paramètres de l'exercice puis déduire l'ordre de grandeur du rapport R/r'.
- 1 8. Calculer n puis déduire la valeur de la longueur d'onde de la radiation traversant le plexiglas.
- 9. On enlève la plaque entre la fente et l'écran et on remplace la radiation monochromatique par une lumière blanche .Expliquer brièvement et avec précision ce qu'on pourrait visualiser sur l'écran.

Vitesse d'onde et tension d'une corde(2pts)

On admet que la vitesse de propagation d'une onde le long d'une corde est liée à la tension de cette corde T et sa masse linéique telle que : $V = T^{\alpha}.\gamma^{\beta}$. Soit une corde dont l'une des extrémités est fixé , passe par une gorge et à l'autre extrémité est suspendu un solide de masse m=2,0Kg. La longueur de la corde est de l=1,60m et sa masse st de m=20g.

- 1 1. Par les équations aux dimensions donner les valeurs de α et β .
- 2. Soient deux cordes de même matière. Le diamètre de la première est le double de la deuxième mais supporte un solide dont la masse est la moitié du solide suspendue à la première corde. Déterminer le rapport $\frac{V_2}{V_1}$