§12.7. Gradient and Directional Derivatives

The first partial derivatives of a function into a single vector function is called a gradient.

Definition 1. Let f(x,y) be any function. The gradient vector, denoted by $\nabla f(x,y) = \mathbf{grad} f(x,y)$, at any point (x,y) is defined as $\nabla f(x,y) = \mathbf{grad} f(x,y) = f_1(x,y)i + f_2(x,y)j$.

The symbol ∇ , is called nabla, is a vector differential operator:

 $\nabla = i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y}$. When the operator nabla is applied to a function f(x,y), the result is the gradient of the function:

$$\nabla f(x,y) = \left(i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y}\right)f(x,y) = f_1(x,y)i + f_2(x,y)j.$$

Example 1. Let $f(x,y) = x^2 + y^2$. The gradient of $f: \nabla f(x,y) = 2xi + 2yj$. At the point (1,2), the gradient vector is: $\nabla f(1,2) = 2i + 4j$. Note that this vector is perpendicular to the tangent line x + 2y = 5 to the circle $x^2 + y^2 = 5$ at (1,2).

Theorem 1. Let f(x,y) be a differentiable at the point (a,b) and $\nabla f(a,b) \neq 0$. Then $\nabla f(a,b)$ is a normal vector to the level curve of f passing through (a,b).

§Direction Derivatives

The first partial derivatives $f_1(a,b)$ and $f_2(a,b)$ give the rates of

changes of f(x, y) at (a, b) measured in the direction of the positive x-axes and y-axes, respectively.

Definition 2. Let $\mathbf{u} = ui + vj$ be a unit vector such that $u^2 + v^2 = 1$. The directional derivative of f(x,y) at (a,b) in the direction of \mathbf{u} is the rate of change f(x,y) with respect to distance measured at the point along a ray in the direction of \mathbf{u} in the xy-plane. This directional derivative is given by:

$$D_{\mathbf{u}} f(a, b) = \lim_{h \to 0+} \frac{f(a + hu, b + hv) - f(a, b)}{h}$$

It is also given by

$$D_{\mathbf{u}}f(a,b) = \frac{d}{dt}f(a+tu,b+tv)\bigg|_{t=0}$$

if the derivative on the right side exists.

Theorem 2. Let Let f(x,y) be a differentiable at the point (a,b)

and $\mathbf{u} = u\mathbf{i} + v\mathbf{j}$ be a unit vector. Then the directional derivative of f(x,y) at the point in the direction of \mathbf{u} is given by:

$$D_{\boldsymbol{u}}f(a,b) = \boldsymbol{u} \bullet \nabla f(a,b).$$

Let \boldsymbol{v} be any nonzero vector. The directional derivative of f at any point (a,b) in the direction of \boldsymbol{v} is:

$$D_{v/|v|}f(a,b) = \frac{v}{|v|} \bullet \nabla f(a,b).$$

Example 2. Find the rate of change of $f(x,y) = y^4 + 2xy^3 + x^2y^2$ at (0,1) measured in each of the following directions:

a).
$$i + 2j$$
 b). $j - 2i$ c). 3i d). $i+j$.

$$\nabla f(x,y) = (2y^3 + 2xy^2)i + (4y^3 + 6xy^2 + 2x^2y)j$$
 and $\nabla f(0,1) = 2i + 4j$.

a) The unit vector in the direction of i + 2j is: $\frac{i+2j}{\sqrt{5}}$.

The directional derivative of f at any point (0,1) in the direction of i+2j is: $\frac{i+2j}{\sqrt{5}} \bullet (2i+4j) = \frac{2+8}{\sqrt{5}} = 2\sqrt{5}$. Note that i+2j is in the same direction as $\nabla f(0,1)$. Then the directional derivative is positive and equal to the length of $\nabla f(0,1)$.

b). The unit vector in the direction of j-2i is: $\frac{-2i+j}{\sqrt{5}}$.

The directional derivative of f at any point (0,1) in the direction of -2i+j is: $\frac{-2i+j}{\sqrt{5}} \bullet (2i+4j) = \frac{-4+4}{\sqrt{5}} = 0$. Since j-2i is perpendicular to $\nabla f(0,1)$, it is tangent to the level curve of f through (0,1) so the directional derivative in that direction is 0.

c). The unit vector in the direction of 3i is: i.

The directional derivative of f at any point (0,1) in the direction of 3i is: $i \cdot (2i+4j) = 2$. The directional derivative of f in direction of positive x-axis is $f_1(0,1)$.

d). The unit vector in the direction of i + j is: $\frac{i+j}{\sqrt{2}}$.

The directional derivative of f at any point (0,1) in the direction of i+j is: $\frac{i+j}{\sqrt{2}} \bullet (2i+4j) = \frac{2+4}{\sqrt{2}} = 3\sqrt{2}$. If we move along the surface z = f(x,y) through the point (0,1,1) in a direction making horizontal angles of 45^0 with the positive directions of x-and y-axes, we would be rising at a rate of $3\sqrt{2}$ vertical units per horizontal unit moved.

Consider the vector \boldsymbol{u} making angle ϕ with the positive direction of the x-axis corresponds to the unit vector (see the above figure).

Then $\mathbf{u}_{\phi} = \cos \phi i + \sin \phi j$. The directional derivative of f at (x, y) in that direction is:

 $D_{\phi}f(x,y) = D_{\boldsymbol{u}_{\phi}}f(x,y) = \boldsymbol{u}_{\phi} \bullet \nabla f(x,y) = f_1(x,y)\cos\phi + f_2(x,y)\sin\phi.$

The symbol $D_{\phi}f(x,y)$ denotes a derivative of f with respect to distance measured in the direction ϕ .

For any unit vector \boldsymbol{u} , $D_{\boldsymbol{u}}f(a,b) = \boldsymbol{u} \bullet \nabla f(a,b) = |\boldsymbol{u}| |\nabla f(a,b)| \cos \theta$ where θ is the angle between the vectors \boldsymbol{u} and $\nabla f(a,b)$. Since $-1 \le \cos \theta \le 1$, then $-|\nabla f(a,b)| \le D_{\boldsymbol{u}}f(a,b) \le |\nabla f(a,b)|$.

Consider the following cases:

- 1. $D_{\boldsymbol{u}}f(a,b) = -|\nabla f(a,b)| \Leftrightarrow \boldsymbol{u}$ points in the opposite direction to $\nabla f(a,b)$ (in this case, $\cos \theta = -1$).
- 2. $D_{\boldsymbol{u}}f(a,b) = |\nabla f(a,b)| \Leftrightarrow \boldsymbol{u}$ points in the same direction to $\nabla f(a,b)$ (in this case, $\cos \theta = 1$).
- 3. If $D_{\boldsymbol{u}}f(a,b)=0$, then $\theta=\pi/2$, thus it is the direction of the tangent line of the level curve of f passing through (a,b).

§Geometric properties of the gradient vector

1. At (a, b), f(x, y) increases most rapidly in the direction of the gradient vector $\nabla f(a, b)$. The maximum rate of increase is $|\nabla f(a, b)|$.

- 2. At (a, b), f(x, y) decreases most rapidly in the direction of the gradient vector $-\nabla f(a, b)$. The maximum rate of decrease is $|\nabla f(a, b)|$.
- 3. The rate of change of f(x, y) at (a, b) is 0 in direction tangent to the level curve of f passing through (a, b).

Example 3. The temperature at position (x, y) in a region of the xy-plane is T^0C where $T(x, y) = x + 2e^{-y}$. In what direction at the point (2, 1) does the temperature increase most rapidly? What is the rate of increase of f in that direction.

$$\nabla T(x,y) = 2xe^{-y}i - x^2e^{-y}j.$$

$$\nabla T(2,1) = \frac{4}{e}i - \frac{4}{e}j = \frac{4}{e}(i-j).$$

At (2,1), T(x,y) increases most rapidly in the direction of the vector i-j. The rate of increase in this direction is $|\nabla T(2,1)| = \frac{4\sqrt{2}}{e}^{0}C/\text{unit}$ distance.

Example 4. Find the second directional derivative of f(x,y) in the direction making angle ϕ with the positive x-axis.

The first directional derivative is $D_{\phi}f(x,y) = (\cos\phi i + \sin\phi j) \bullet$ $\nabla f(x,y) = f_1(x,y)\cos\phi + f_2(x,y)\sin\phi.$

The second directional derivative is:

$$D_{\phi}^{2}f(x,y) = D_{\phi}(D_{\phi}f(x,y)) = (\cos\phi i + \sin\phi j) \bullet \nabla(f_{1}(x,y)\cos\phi +$$

 $f_2(x,y)\sin\phi = (f_{11}(x,y)\cos\phi + f_{21}(x,y)\sin\phi)\cos\phi + (f_{12}(x,y)\cos\phi + f_{22}(x,y)\sin\phi)\sin\phi = f_{11}(x,y)\cos^2\phi + 2f_{12}(x,y)\sin\phi\cos\phi + f_{22}(x,y)\sin^2\phi.$ If $\phi = 0$ or $\phi = \pi$, then the directional derivative is in a direction parallel to the x-axis, namely, $D_{\phi}^2 f(x,y) = f_{11}(x,y)$. Similarly, if $\phi = \pi/2$ or $\phi = 3\pi/2$, then $D_{\phi}^2 f(x,y) = f_{22}(x,y)$.

§The Gradient in Three and More Dimensions

Let $f(x_1, x_2, ..., x_n)$ be a function with n-independent variables. The gradient vector of it is:

 $\nabla f(x_1, x_2, ..., x_n) = \frac{\partial f}{\partial x_1} e_1 + \frac{\partial f}{\partial x_2} e_2 + ... + \frac{\partial f}{\partial x_n} e_n$, where e_j is a unit vector from origin to the unit point on the jth coordinate axis. In particular, for a function of three variables:

$$\nabla f(x, y, z) = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k.$$

The level surface of f(x, y, z) passing through (a, b, c) has a tangent plane there if f is differentiable at (a, b, c) and $\nabla f(a, b, c) \neq 0$. Namely, the vector $\nabla f(P_0)$ is normal to the level surface of f passing through the point P_0 and if f is differentiable at the point, the rate of change of f at the point in the direction of the unit vector \mathbf{u} is given by $\mathbf{u} \bullet \nabla f(P_0)$.

Example 5. Let $f(x, y, z) = x^2 + y^2 + z^2$. Then;

1. Find $\nabla f(x, y, z)$ and $\nabla f(1, -1, 2)$.

- 2. Find the equation of the tangent plane at the sphere $x^2 + y^2 + z^2 = 6$ at the point (1, -1, 2).
- 3. What is the maximum rate of increase of f at (1, -1, 2)?
- 4. What is the rate of change with respect to distance of f at (1,-1,2) measured in the direction from that point toward the point (3,1,1)?
- 1. $\nabla f(x, y, z) = 2xi + 2yj + 2zk$ and $\nabla f(1, -1, 2) = 2i 2j + 4k$.
- 2. $\nabla f(1,-1,2)$ is normal vector of the required tangent plane. Then its equation is : 2(x-1)-2(y+1)+4(z-2)=0.
- 3. The maximum rate of increase of f at (1, -1, 2) is $|\nabla f(1, -1, 2)| = 2\sqrt{6}$ and it occurs in the direction of the vector i j + 2k.
- 4. The direction from (1, -1, 2) toward (3, 1, 1) is specified by 2i + 2j k. The rate of change of f with respect to distance in this direction is :

$$\frac{2i+2j-k}{\sqrt{4+4+1}} \bullet (2i-2j+4k) = \frac{4-4-4}{3} = \frac{-4}{3}.$$

Example 6. The graph of a function f(x,y) of two variables is the graph of the equation z = f(x,y) in 3-space. This surface is the level surface of g(x,y,z) = 0 of the 3-variable function g(x,y,z) = f(x,y) - z.

If f is differentiable at (a, b) and c = f(a, b), then g is differentiable at (a, b, c) and $\nabla g(a, b, c) = f_1(a, b)i + f_2(a, b)j - k$ is a normal to g(x, y, z) = 0 at (a, b, c). The graph of f has nonvertical tangent plane at (a, b) given by

$$f_1(a,b)(x-a) + f_2(a,b)(y-b) - (z-c) = 0$$
 or $z = f_1(a,b)(x-a) + f_2(a,b)(y-b) + c$.

Example 7. Find a vector tangent to the curve of the intersection of the two surfaces $z = x^2 - y^2$ and xyz + 30 = 0 at the point (-3, 2, 5). $n_1 = \nabla(x^2 - y^2 - z)|_{(-3,2,5)} = 2xi - 2yj - k|_{(-3,2,5)} = -6i - 4j - k$. $n_2 = \nabla(xyz + 30)|_{(-3,2,5)} = yzi + xzj + xyk|_{(-3,2,5)} = 10i - 15j - 6k$. For the tangent vector T, we can use the cross product of these normals:

$$T = n_1 \times n_2 = \begin{vmatrix} i & j & k \\ -6 & -4 & -1 \\ 10 & -15 & -6 \end{vmatrix} = 9i - 46j + 130k.$$