

SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

Subject Code: BAS 103 Course: B. Tech.

Subject: Engg. Maths I Semester I

FIRST SESSIONAL EXAMINATION, ODD SEMESTER, (2024-2025)

Branch: COMMON FOR ALL

. Time -1hr. 30 min.

Maximum Marks - 30

1.	Attem	pt any	LIAF	questions
N				

QN	QUESTION		CO	BL
a.	Define rank of Matrix. Find the rank of the matrix $\begin{bmatrix} 2 & -1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$.	2	CO1	
b.	Show that the product of all eigen values of A is equal to determinant of A.	2	CO1	
c.	If the vectors $(0,1,a)$, $(1,a,1)$ and $(a,1,0)$ are linearly dependent then find the value of a.	2	CO1	3,7
d.	Find eigen values of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.	2	CO1	
e.	State Cayley Hamilton theorem. Verify Cayley Hamilton theorem for the matrix $\begin{bmatrix} 2 & 3 \\ 2 & -1 \end{bmatrix}$.	2	CO1	
f.	Verify whether the matrix $\begin{bmatrix} 0 & i & 3 \\ -7 & 0 & 5i \\ 3i & 1 & 0 \end{bmatrix}$ is Hermitian matrix?	2	CO1	

any ONE of the following:

	QUESTION	Marks	CO	BL
Q N	Find the inverse of matrix $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & -4 \\ 0 & -1 & 1 \end{bmatrix}$ by employing elementary transformation.	5	CO1	
b.	Verify Cayley Hamilton theorem for the matrix A and hence find A^{-1} for $\begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \end{bmatrix}$	5	CO1	
c.	Test the consistency and hence, solve the following set of equations $x + 2y - z = 3, 3x - y + 2z = 1, 2x - 2y + 3z$ $= 2, x - y + z = -1$	5	CO1	

3. Attempt any FIVE questions:

-	Possing 2127 Equestions:			
a.	Find the n^{th} derivative of $y = \frac{1}{3-2x}$.	2	CO2	
<u>b.</u>	If $y = x^2 e^{2x}$ then find the value of y_n .	2	CO2	
c.	If $u = \sin^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x}$ then find $xu_x + yu_y$	2	CO2	
d.	If $z = \cos \frac{y}{x}$, find $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$.	2	CO2	
е.	If $u = x^3 + y^3$ where $x = acost, y = bsint$ find $\frac{du}{dt}$ and verify the result.	2	CO2	,
f.	If $u = f(r,s), r = x + at, s = y + bt$ then show that $\frac{\partial u}{\partial t} = au_x + bu_y$.	2	CO2	

4. Attempt any ONE of the following:

QN	QUESTION		CO	BL
a.	If $y = (x^2 - 1)^n$, provethat $(x^2 - 1)y_{n+2} + 2xy_{n+1} - n(n+1)y_n = 0$.		CO2	LASA.
b.	Verify Euler's theorem for $z = \frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}}$.	5	CO2	
c	If $u = x^2 tan^{-1} \frac{y}{x} - y^2 tan^{-1} \frac{x}{y}$, find the value of $\frac{\partial^2 u}{\partial x \partial y}$.	. 5	CO2	

Bloom's Taxonomy Level (BL):Remember (L1), Understanding(L2), Analyze (L4), Evaluating(L5), Creating(L6) Apply (L3),