Exercícios de Álgebra Linear

1° Semestre 2006/2007

João Ferreira Alves

Sistemas de Equações Lineares, Matrizes e Determinantes

Exercício 1 Resolva por eliminação de Gauss os seguintes sistemas de equações lineares:

$$a) \begin{cases} x + 2y = 1 \\ x + 3y = 0 \end{cases}$$

$$b) \begin{cases} 2x + 3y = 1 \\ 4x + 6y = 2 \end{cases}$$

b)
$$\begin{cases} 2x + 3y = 1 \\ 4x + 6y = 2 \end{cases}$$
 c) $\begin{cases} 4x + 5y = 1 \\ 12x + 15y = 0 \end{cases}$

$$d \begin{cases} x+y=1\\ 3x-y=2\\ x-y=0 \end{cases}$$

$$d) \begin{cases} x+y=1 \\ 3x-y=2 \\ x-y=0 \end{cases} e) \begin{cases} 2a+2b+3c=1 \\ a+2b+c=0 \\ a-b+c=0 \end{cases} f) \begin{cases} x+2y+3z=1 \\ 4x+7y+7z=3 \\ 2x+3y+z=0 \end{cases}$$

$$\begin{cases}
 x + 2y + 3z = 1 \\
 4x + 7y + 7z = 3 \\
 2x + 3y + z = 0
\end{cases}$$

g)
$$\begin{cases} x + 2y + z = 0 \\ 4x + 10y + 10z = 0 \\ x + 3y + 4z = 0 \end{cases}$$
 h)
$$\begin{cases} 2x + 3y + z = 0 \\ x + y + z = 0 \end{cases}$$
 i)
$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 = 1 \\ 2x_1 + x_2 - x_3 + x_4 = 3 \end{cases}$$

$$h) \begin{cases} 2x + 3y + z = 0 \\ x + y + z = 0 \end{cases}$$

i)
$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 = 1\\ 2x_1 + x_2 - x_3 + x_4 = 3 \end{cases}$$

$$j) \begin{cases} 2x + 2y + 2z + 3w = 3 \\ x + y + z + w = 1 \\ 3x + 3y + 3z + 2w = 2 \end{cases} k) \begin{cases} x + z + 2w = 0 \\ 2x + 3z + 3w = 0 \\ y + 2w = 2 \\ x + 2z + w = 0 \end{cases} l) \begin{cases} y_1 + y_3 + 2y_4 = 0 \\ y_1 + 2y_2 + y_3 + y_4 = 1 \\ y_2 + 2y_4 = 8 \\ y_1 + 2y_3 + y_4 = 0 \end{cases}$$

k)
$$\begin{cases} x + z + 2w = 0 \\ 2x + 3z + 3w = \\ y + 2w = 2 \\ x + 2z + w = 0 \end{cases}$$

$$\begin{cases} y_1 + y_3 + 2y_4 = 0 \\ y_1 + 2y_2 + y_3 + y_4 = 0 \\ y_2 + 2y_4 = 8 \\ y_1 + 2y_3 + y_4 = 0 \end{cases}$$

Exercício 2 Discuta, em função dos parâmetros α e β , os seguintes sistemas de equações lineares:

a)
$$\begin{cases} x + 4y + 3z = 10 \\ 2x + 7y - 2z = 10 \\ x + 5y + \alpha z = \beta \end{cases}$$
 b)
$$\begin{cases} 2x + y + z = -6\beta \\ \alpha x + 3y + 2z = 2\beta \\ 2x + y + (\alpha + 1)z = 4 \end{cases}$$
.

Exercício 3 Considere o sistema de equações lineares

$$\begin{cases} x+y+3z = b_1 \\ 2x+2y-z = b_2 \\ 4x+4y+5z = b_3 \end{cases},$$

e calcule os vectores $(b_1, b_2, b_3) \in \mathbb{R}^3$ para os quais o sistema é possível.

Exercício 4 Determine um sistema de equações lineares cujo conjunto de soluções seja:

a)
$$S = \{(1+t, 1-t) : t \in \mathbb{R}\};$$

b)
$$S = \{(t, 1 - 2t, 1) : t \in \mathbb{R}\};$$

c)
$$S = \{(3t, 2t, t) : s, t \in \mathbb{R}\};$$

d)
$$S = \{(3t, 2s, t - 1) : s, t \in \mathbb{R}\};$$

e)
$$S = \{(1 - t, 2s, t) : s, t \in \mathbb{R}\};$$

Exercício 5 Sempre que possível calcule:

$$a) \ 2 \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} + 3 \begin{bmatrix} 0 & 2 \\ 6 & 1 \end{bmatrix} \quad b) \ \begin{bmatrix} 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} \qquad \qquad c) \ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \qquad e) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad f) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$g) \, \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \qquad h) \, \begin{bmatrix} 1 & 2 & 0 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad i) \, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 2 & 20 \end{bmatrix}$$

$$j) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 2 & 20 \end{bmatrix} \quad k) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 2 & 20 \end{bmatrix} \quad l) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 2 & 20 \end{bmatrix}$$

Exercício 6 Mostre que a inversa de uma matriz $A \in \mathbb{R}^{n \times n}$, quando existe, é única.

Exercício 7 Mostre que se as matrizes A e $B \in \mathbb{R}^{n \times n}$ são invertíveis, então também AB é invertível, tendo-se ainda $(AB)^{-1} = B^{-1}A^{-1}$.

Exercício 8 Mostre que qualquer matriz invertível se pode decompor no produto de matrizes elementares.

Exercício 9 Sempre que possível, calcule a inversa de cada uma das sequintes matrizes:

$$a) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad b) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad c) \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \qquad d) \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$e) \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \quad f) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 3 & 3 & 3 \end{bmatrix} \quad g) \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad h) \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & -1 & 1 & 0 \end{bmatrix}$$

Exercício 10 Utilizando o exercício anterior, resolva os sistemas de equações lineares:

a)
$$\begin{cases} x - y = 0 \\ x + y - z = 1 \\ y + z = -1 \end{cases}$$
 b)
$$\begin{cases} x + z = 1 \\ y + w = 1 \\ x + 2z + w = -1 \\ x - y + z = 1 \end{cases}$$
.

Exercício 11 Calcule o determinante de cada uma das seguintes matrizes e indique as que são invertíveis

$$a) \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \qquad b) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad c) \begin{bmatrix} 1 & 0 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad e) \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 5 & 0 \end{bmatrix} \qquad f) \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$

$$g) \begin{bmatrix} 1 & 12 & 22 & 31 \\ 0 & 3 & 11 & 16 \\ 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad h) \begin{bmatrix} 1 & 0 & 0 & 3 \\ 1 & 1 & 0 & 3 \\ 0 & 3 & 1 & 1 \\ 0 & 2 & 2 & 2 \end{bmatrix} \quad i) \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 1 & 2 \\ 3 & 3 & 0 & 1 \end{bmatrix}$$

Exercício 12 Sabendo que

$$\left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = 5,$$

calcule:

a)
$$\begin{vmatrix} d & e & f \\ g & h & i \\ a & b & c \end{vmatrix}$$
 b) $\begin{vmatrix} -a & -b & -c \\ 2d & 2e & 2f \\ -g & -h & -i \end{vmatrix}$ c) $\begin{vmatrix} a+d & b+e & c+f \\ d & e & f \\ a & h & i \end{vmatrix}$ d) $\begin{vmatrix} a & b & c \\ d-3a & e-3b & f-3c \\ 2a & 2h & 2i \end{vmatrix}$

Exercício 13 Sabendo que os valores reais γ e δ são tais que:

$$\left|\begin{array}{ccc} 1 & 2 & \gamma \\ \delta & 1 & 1 \\ 1 & \gamma + \delta & 2 \end{array}\right| = 1,$$

calcule

$$\left|\begin{array}{ccc} 1 & 2 & \gamma \\ \delta & \delta\gamma + \delta^2 & 2\delta \\ \delta\gamma & \gamma & \gamma \end{array}\right|.$$

Exercício 14 Considere as matrizes

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 5 \\ 3 & 0 & 1 \end{bmatrix} \quad e B = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix}.$$

Calcule: a) $\det(3A)$; b) $\det(A^3B^2)$; c) $\det(A^{-1}B^T)$; d) $\det(A^4B^{-2})$.

Exercício 15 Mostre que

$$\begin{vmatrix} \lambda & 1 & 1 & 1 & 1 & 1 \\ \lambda & \lambda + 1 & 2 & 2 & 2 & 2 \\ \lambda & \lambda + 1 & \lambda + 2 & 3 & 3 & 3 \\ \lambda & \lambda + 1 & \lambda + 2 & \lambda + 3 & 4 & 4 \\ \lambda & \lambda + 1 & \lambda + 2 & \lambda + 3 & \lambda + 4 & 5 \\ \lambda & \lambda + 1 & \lambda + 2 & \lambda + 3 & \lambda + 4 & \lambda + 5 \end{vmatrix} = \lambda^6.$$

Exercício 16 Calcule o determinante da matriz

$$B = \begin{bmatrix} \lambda & \lambda & \lambda & \dots & \lambda \\ 1 & \lambda + 1 & 1 & \dots & 1 \\ 1 & 1 & \lambda + 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 & \lambda + 1 \end{bmatrix}.$$

Exercício 17 Mostre que

$$\begin{vmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{vmatrix} = (\lambda_3 - \lambda_2)(\lambda_3 - \lambda_1)(\lambda_2 - \lambda_1).$$

Exercício 18 Recorra à regra de Laplace para calcular o determinante das seguintes matrizes:

$$a) \begin{bmatrix} 1 & 0 & 3 \\ 1 & 3 & 1 \\ 0 & 0 & -3 \end{bmatrix} \qquad b) \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \\ 1 & 6 & 0 \end{bmatrix} \qquad c) \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 5 & 6 & -3 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 2 & 4 & 3 \\ 1 & 1 & 3 & 3 \\ 0 & 3 & 0 & 0 \\ 0 & 2 & 2 & 2 \end{bmatrix} \quad e) \begin{bmatrix} 1 & 0 & 0 & 3 \\ 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ -5 & 2 & 2 & 2 \end{bmatrix} \quad f) \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 4 & 0 & 6 & 0 \\ 1 & 1 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 & 3 \\ 0 & 0 & 0 & 2 & 5 \end{bmatrix}.$$

Exercício 19 Calcular a matriz dos cofactores e a matriz inversa de cada uma das seguintes matrizes:

a)
$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 4 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.

Exercício 20 Usar a regra de Cramer para resolver os sistemas de equações lineares:

a)
$$\begin{cases} y + 2z = 1 \\ 2x + 4y + z = 0 \\ x + 2y = 1 \end{cases}$$
 b)
$$\begin{cases} x + y = 1 \\ 2x + z = 1 \\ x + 2y + 2z = -1 \end{cases}$$
.

Soluções

1)

a) Sistema possível e determinado: $S = \{(3, -1)\}$; b) Sistema indeterminado com uma incógnita livre: $S = \{(\frac{1}{2} - \frac{3}{2}y, y) : y \in \mathbb{R}\}$; c) Sistema impossível $S = \emptyset$; d) Sistema impossível: $S = \emptyset$; e) Sistema possível e determinado: $S = \{(-1, 0, 1)\}$; f) Sistema impossível: $S = \emptyset$; g) Sistema indeterminado com uma incógnita livre: $S = \{(5z, -3z, z) : z \in \mathbb{R}\}$; h) Sistema indeterminado com uma incógnita livre: $S = \{(-2z, z, z) : z \in \mathbb{R}\}$; i) Sistema indeterminado com duas incógnitas livres:

 $S = \left\{ \left(1 - \frac{1}{2}x_2 - \frac{1}{2}x_4, x_2, -1, x_4\right) : x_2, x_4 \in \mathbb{R} \right\}; j$) Sistema indeterminado com duas incógnitas livres: $S = \left\{ \left(-y - z, y, z, 1\right) : y, z \in \mathbb{R} \right\};$ k) Sistema indeterminado com uma incógnita livre: $S = \left\{ \left(-3w, 2 - 2w, w, w\right) : w \in \mathbb{R} \right\};$ l) Sistema possível e determinado $S = \left\{ \left(-9, 2, 3, 3\right) \right\}.$

2)

a) Se $\alpha \neq 11$ o sistema é possível e determinado; se $\alpha = 11$ e $\beta = 20$ o sistema é indeterminado; se $\alpha = 11$ e $\beta \neq 20$ o sistema é impossível. b) Se $\alpha \neq 0$ e $\alpha \neq 6$ o sistema é possível e determinado; se $\alpha = 0$ e $\beta = -2/3$ o sistema é indeterminado; se $\alpha = 0$ e $\beta \neq -2/3$ o sistema é impossível; se $\alpha = 6$ e $\beta = -2/63$ o sistema é indeterminado; se $\alpha = 6$ e $\beta \neq -2/63$ o sistema é impossível.

3)
$$b_3 - 2b_1 - b_2 = 0$$
.

4)

a)
$$x_1 + x_2 = 2$$
; b) $\begin{cases} 2x_1 + x_2 = 1 \\ x_3 = 1 \end{cases}$; c) $\begin{cases} x_1 - 3x_3 = 0 \\ x_2 - 2x_3 = 0 \end{cases}$; d) $x_1 + 0x_2 - 3x_3 = 3$; e) $x_1 + 0x_2 + x_3 = 1$

a)
$$\begin{bmatrix} 2 & 6 \\ 22 & 5 \end{bmatrix}$$
; b) não é possível; c) não é possível; d) [4]; e) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$; f) $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$;

g)
$$\begin{bmatrix} 5 & 2 & 1 \\ 5 & 1 & 3 \\ 6 & 3 & 0 \end{bmatrix}$$
; h) $\begin{bmatrix} 1 & 2 & 1 \\ 4 & 1 & 4 \end{bmatrix}$; i) $\begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 2 & 20 \end{bmatrix}$; j) $\begin{bmatrix} 2 & 20 \\ 2 & 10 \\ 30 & 4 \end{bmatrix}$; k) $\begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 6 & 60 \end{bmatrix}$; l) $\begin{bmatrix} 30 & 4 \\ 2 & 10 \\ 62 & 28 \end{bmatrix}$.

a) A matriz não é invertível; b)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
; c) $\begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$; d) $\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$; e) $\begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$;

f) A matriz não é invertível; g)
$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
; h)
$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 1 & -1 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$
.

10)

a)
$$(0,0,-1)$$
; b) $(4,0,-3,1)$

11)

a)
$$\det \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = -3;$$
b) $\det \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 0;$ c) $\det \begin{bmatrix} 1 & 0 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} = 9;$ d) $\det \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = 1;$

e)
$$\det \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 5 & 0 \end{bmatrix} = 30; f) \det \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} = 0; g) \det \begin{bmatrix} 1 & 12 & 22 & 31 \\ 0 & 3 & 11 & 16 \\ 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix} = 3;$$

h)
$$\det \begin{bmatrix} 1 & 0 & 0 & 3 \\ 1 & 1 & 0 & 3 \\ 0 & 3 & 1 & 1 \\ 0 & 2 & 2 & 2 \end{bmatrix} = 0$$
; i) $\det \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 1 & 2 \\ 3 & 3 & 0 & 1 \end{bmatrix} = 18$.

Apenas as matrizes das alíneas b), f) e h) não são invertíveis.

12)

13)
$$-\delta\gamma$$
.

14)

a)
$$-54$$
. b) b) -128 ; c) -2 ; d) 1.

16) λ^n .

18)

a)
$$-9$$
; b) -5 ; c) 16; d) 6; e) 15; f) -45 .

a)
$$\begin{bmatrix} -2 & 1 & 0 \\ 4 & -2 & 1 \\ -7 & 4 & -2 \end{bmatrix}$$
; b) $\begin{bmatrix} -2 & -3 & 4 \\ -2 & 2 & -1 \\ 1 & -1 & -2 \end{bmatrix}$; c) $\begin{bmatrix} 3 & -1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 3 \end{bmatrix}$.

a) (-9, 5, -2); b) (1, 0, -1).

Espaços Lineares

Exercício 21 Considere em \mathbb{R}^2 o conjunto $S = \{(1,1),(2,2)\}.$

- a) Mostre que o vector (-5, -5) é combinação linear dos vectores S.
- b) Mostre que o vector (1,0) não é combinação linear dos vectores S.
- c) O conjunto S gera R^2 ?
- d) Determine a forma geral dos vectores $(a, b) \in L(S)$.

Exercício 22 Considere em \mathbb{R}^3 o conjunto $S = \{(1, 1, 1), (0, 1, 1), (1, 2, 2)\}.$

- a) Mostre que o vector (2,3,3) é combinação linear dos vectores S.
- b) Mostre que o vector (0,0,1) não é combinação linear dos vectores S.
- c) O conjunto S gera \mathbb{R}^3 ?
- d) Determine a forma geral dos vectores $(a, b, c) \in L(S)$.

Exercício 23 Sendo A uma matriz com m linhas, mostre que as colunas de A geram \mathbb{R}^m se e só se a característica de A é igual a m.

Exercício 24 Mostre, com base no exercício anterior, que em \mathbb{R}^m qualquer conjunto com menos de m vectores não gera \mathbb{R}^m .

Exercício 25 Decida quais dos sequintes conjuntos geram \mathbb{R}^3 :

- a) $\{(1,3,3),(4,6,4),(-2,0,2),(3,3,1)\};$
- b) $\{(1,0,0),(1,1,0),(1,1,1)\};$
- c) $\{(1,4,2),(0,0,0),(-1,-3,-1),(0,1,1)\}.$
- d) {(26, 47, 29), (123, 0, 498)}.

Exercício 26 Decida quais dos seguintes conjuntos geram \mathbb{R}^4 :

- a) $\{(1,1,0,0),(0,0,1,1),(1,0,0,1),(0,1,1,0),(0,1,1,-1)\};$
- b) $\{(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)\};$
- c) $\{(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,1,0,1)\};$
- d) $\{(11, -12, 1, 1), (45, 17, 1, 20), (21, 3, 41, 122)\}$.

Exercício 27 Calcule o único valor de a que faz com que

$$S = \{(1, 1, 1), (1, 0, 1), (0, 2, 0), (3, 2, a)\}$$

 $n\tilde{a}o$ seja um conjunto gerador de \mathbb{R}^3 .

Exercício 28 Considere em \mathbb{R}^{3} o conjunto $S = \{(1,0,1), (0,1,a), (1,1,b), (1,1,1)\}$. Calcule o único par $(a,b) \in \mathbb{R}^2$ que faz com que S não gere \mathbb{R}^3 .

Exercício 29 Considere em \mathbb{R}^4 o conjunto $S = \{(1,0,1,0), (0,1,0,1), (1,1,0,0), (1,1,1,a)\}$. Calcule o único valor de a que faz com que S não gere \mathbb{R}^4 .

Exercício 30 Mostre que os seguintes conjuntos de vectores são linearmente dependentes:

- a) Em \mathbb{R}^3 , $\overrightarrow{v}_1 = (1,1,2)$, $\overrightarrow{v}_2 = (2,2,4)$; b) Em \mathbb{R}^3 , $\overrightarrow{v}_1 = (1,1,1)$, $\overrightarrow{v}_2 = (3,3,3)$, $\overrightarrow{v}_3 = (0,1,1)$; c) Em \mathbb{R}^4 , $\overrightarrow{v}_1 = (0,1,0,1)$, $\overrightarrow{v}_2 = (1,0,1,0)$, $\overrightarrow{v}_3 = (2,3,2,3)$; d) Em \mathbb{R}^4 , $\overrightarrow{v}_1 = (0,1,0,1)$, $\overrightarrow{v}_2 = (1,0,1,0)$, $\overrightarrow{v}_3 = (2,0,1,3)$, $\overrightarrow{v}_4 = (0,0,0,0)$.

Exercício 31 Decida quais dos seguintes conjuntos de vectores são linearmente independentes:

- a) Em \mathbb{R}^4 , $\overrightarrow{v}_1 = (1, 1, 0, 0)$, $\overrightarrow{v}_2 = (1, 0, 1, 0)$, $\overrightarrow{v}_3 = (0, 0, 1, 1)$, $\overrightarrow{v}_4 = (0, 1, 0, 1)$. b) Em \mathbb{R}^3 , $\overrightarrow{v}_1 = (1, 1, 2)$, $\overrightarrow{v}_2 = (1, 2, 1)$, $\overrightarrow{v}_3 = (3, 1, 1)$.

Exercício 32 Mostre que as colunas de uma matriz A são linearmente independentes se e só se a característica de A é igual ao número de colunas de A.

Exercício 33 Mostre, com base no exercício anterior, que em \mathbb{R}^m qualquer conjunto com mais de m vectores é linearmente dependente.

Exercício 34 Decida quais dos sequintes conjuntos são linearmente independentes:

- a) Em \mathbb{R}^3 , $\{(1,1,1),(1,2,1)\}$;
- b) Em \mathbb{R}^3 , $\{(1,1,1),(0,1,1),(0,0,1)\}$;
- c) Em \mathbb{R}^3 , $\{(1,1,1),(2,2,0),(0,0,1)\}$;
- d) $\text{Em } \mathbb{R}^3$, $\{(2,46,6), (23,2,-123), (1,23,1), (1,10,1)\}$;
- e) Em \mathbb{R}^4 , $\{(1,0,-1,0),(4,0,-3,1),(2,0,-1,1)\}$;
- f) Em \mathbb{R}^4 , $\{(1,0,-1,0),(4,0,-3,1),(2,1,-1,1)\}$;
- g) Em \mathbb{R}^4 , $\{(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)\}$;
- h) $\text{Em } \mathbb{R}^4$, $\{(1, 23, 1, 14), (1, 12, 1, 0), (24, -1, 0, 0), (11, 19, 17, -123), (101, 119, 1, 1)\}$.

Exercício 35 Calcule o único valor de a que faz com que os vectores de \mathbb{R}^4

$$\overrightarrow{v}_1 = (1, 0, 0, 2), \overrightarrow{v}_2 = (1, 0, 1, 0), \overrightarrow{v}_3 = (2, 0, 1, a)$$

sejam linearmente dependentes.

Exercício 36 Considere em \mathcal{P}_2 (espaço dos polinómios com grau ≤ 2) o conjunto $S = \{1 + t, 1 - t^2\}$.

- a) Mostre que o vector $t + t^2$ é combinação linear dos vectores de S.
- b) Mostre que o vector t não é combinação linear dos vectores de S.
- c) O conjunto S gera \mathcal{P}_2 ?
- d) Determine a forma geral dos vectores $p(t) \in L(S)$.

Exercício 37 Mostre que os polinómios

$$p_1(t) = 1 + 2t - t^2$$
, $p_2(t) = 3 + t^2$, $p_3(t) = 5 + 4t - t^2$, $p_4(t) = -2 + 2t - t^2$

geram \mathcal{P}_2 .

Exercício 38 Considere espaço vectorial das funções reais de variável real. Mostre que cada um dos seguintes conjuntos é linearmente dependente.

a)
$$\{2, \sin^2(t), \cos^2(t)\}$$
 b) $\{\cos(2t), \sin^2(t), \cos^2(t)\}$
c) $\{e^t, e^{-t}, \cosh(t)\}$ d) $\{1, t, t^2, (t+1)^2\}$.

Exercício 39 No espaço vectorial das funções reais de variável real considere n vectores $f_1 : \mathbb{R} \to \mathbb{R}$, $f_2 : \mathbb{R} \to \mathbb{R}$,..., $f_n : \mathbb{R} \to \mathbb{R}$. Mostre que se existirem números $t_1, t_2, ..., t_n \in \mathbb{R}$ tais que

$$\begin{vmatrix} f_{1}(t_{1}) & f_{2}(t_{1}) & \dots & f_{n}(t_{1}) \\ f_{1}(t_{2}) & f_{2}(t_{2}) & \dots & f_{n}(t_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}(t_{n}) & f_{2}(t_{n}) & \dots & f_{n}(t_{n}) \end{vmatrix} \neq 0,$$

então os vectores $f_1, f_2,..., f_n$ são linearmente independentes.

Exercício 40 Mostre, recorrendo ao exercício anterior, que os conjuntos de vectores

$$\{1, t, e^t\}$$
 e $\{\sin(t), \cos(t), t\cos(t)\}$

são linearmente independentes. Sugestão: no primeiro caso faça $t_1=0,\,t_2=1,\,t_3=-1,\,no$ segundo faça $t_1=0,\,t_2=\pi/2,\,t_3=\pi.$

Soluções

- 22)
- c) S não gera \mathbb{R}^3 ; d) $L(S) = \{(a, b, c) \in \mathbb{R}^3 : c b = 0\} = \{(a, c, c) : a, c \in \mathbb{R}\}.$
- 25)
- a) S não gera \mathbb{R}^3 ; b) S gera \mathbb{R}^3 ; c) S não gera \mathbb{R}^3 ; d) S não gera \mathbb{R}^3 .
- 26)
- a) S gera \mathbb{R}^4 ; b) S gera \mathbb{R}^4 ; c) S não gera \mathbb{R}^4 ; d) S não gera \mathbb{R}^4 .
- 27) a = 3.
- 28) (a,b) = (0,1).
- 29) a = 1.
- 31)
- a) Linearmente dependentes; b) Linearmente independentes

34)

- a) Linearmente independentes; b) Linearmente independentes; c) Linearmente dependentes; d) Linearmente dependentes; e) Linearmente dependentes; f) Linearmente independentes; g) Linearmente independentes; h) Linearmente dependentes.
- 35) a = 2.

36)

c) S não gera \mathcal{P}_2 ; d) $L(S) = \{c - b + bt + ct^2 : b, c \in \mathbb{R}^2\}.$

Bases e dimensão

Exercício 41 Tendo em conta os exercícios 23 e 32, mostre que as colunas de uma matriz A com m linhas constituem uma base de \mathbb{R}^m se e só se A é uma matriz invertível.

Exercício 42 Mostre que em \mathbb{R}^m quaisquer m vectores linearmente independentes constituem uma base de \mathbb{R}^m . Mostre que em \mathbb{R}^m quaisquer m geradores constituem uma base de \mathbb{R}^m .

Exercício 43 Mostre que qualquer base de \mathbb{R}^m tem m vectores.

Exercício 44 Determine quais dos seguintes conjuntos são bases de \mathbb{R}^2 :

- a) $\{(1,0),(0,1)\};$
- b) $\{(1,1),(0,3)\};$
- c) $\{(1,0),(0,3),(2,5)\};$
- d) $\{(1,2)\};$
- e) $\{(1,1),(0,0)\}.$

Exercício 45 Determine quais dos seguintes conjuntos são bases de \mathbb{R}^3 :

- a) $\{(1,1,1),(1,0,1),(1,1,0)\};$
- b) $\{(1,1,1),(1,0,1),(1,2,1)\};$
- c) $\{(3,0,0),(1,1,0),(2,2,2),(1,3,5)\}$
- d) $\{(1,1,1),(2,2,0)\}.$

Exercício 46 Determine quais dos seguintes conjuntos são bases de \mathbb{R}^4 :

- a) $\{(1,0,1,0),(1,1,0,0),(0,0,1,0),(2,1,-1,0)\};$
- b) $\{(1,3,0,0),(1,1,3,1),(2,2,3,2),(2,3,3,2),(2,4,1,2)\};$
- c) $\{(2,0,0,2),(1,1,0,0),(0,0,2,3),(1,2,1,2)\};$
- d) $\{(2,0,0,2),(1,1,0,0),(1,2,1,2)\}.$

Exercício 47 Seja $\mathcal{B} = \{\overrightarrow{v}_1, \overrightarrow{v}_2\}$ a base de \mathbb{R}^2 constituída pelos vectores

$$\overrightarrow{v}_1 = (1,0) \ e \ \overrightarrow{v}_2 = (1,1).$$

- a) Qual é o vector de \mathbb{R}^2 que nesta base tem coordenadas (2,2)?
- b) Calcule as coordenadas do vector (3,5) nesta base.
- c) Mediante uma matriz de mudança de base apropriada, calcule as coordenadas de um vector $(a, b) \in \mathbb{R}^2$ nesta base.

Exercício 48 Seja $\mathcal{B} = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ a base de \mathbb{R}^3 constituída pelos vectores

$$\overrightarrow{v}_1 = (2,0,0), \overrightarrow{v}_2 = (1,1,0) \ e \ \overrightarrow{v}_3 = (1,1,1).$$

- a) Qual é o vector de \mathbb{R}^3 que nesta base tem coordenadas (0,3,5)?
- b) Calcule as coordenadas do vector (2,0,1) nesta base.
- c) Mediante uma matriz de mudança de base apropriada, calcule as coordenadas de um vector $(a, b, c) \in \mathbb{R}^3$ nesta base.

Exercício 49 Seja $\mathcal{B} = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ o subconjunto de \mathcal{P}_2 constituído pelos polinómios

$$\overrightarrow{v}_1 = 1 + t, \ \overrightarrow{v}_2 = 1 + 2t \ e \ \overrightarrow{v}_3 = t^2$$
.

- a) Mostre que \mathcal{B} é uma base de \mathcal{P}_2 .
- b) Qual é o polinómio que nesta base tem coordenadas (1, 3, -2)?
- c) Calcule as coordenadas do vector $2 + 2t t^2$ nesta base.
- d) Mediante uma matriz de mudança de base apropriada, calcule as coordenadas de um polinómio $a + bt + ct^2$ nesta base.

Exercício 50 Represente graficamente cada um dos seguintes subconjuntos do plano, identificando os que são subespaços lineares de \mathbb{R}^2 :

- a) $S = \{(x, y) \in \mathbb{R}^2 : x = 0\}$;
- b) $S = \{(x, y) \in \mathbb{R}^2 : x + y = 0\};$
- c) $S = \{(x, y) \in \mathbb{R}^2 : x + y = 0 \text{ e } x y = 0\};$
- d) $S = \{(x, y) \in \mathbb{R}^2 : x + y = 1\};$ e) $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$

Exercício 51 Represente graficamente cada um dos seguintes subconjuntos do espaço, identificando os que são subespaços lineares de \mathbb{R}^3 :

- a) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\};$
- b) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$
- c) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0 \text{ e } x y + 2z = 0 \};$
- d) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y = 1 \text{ e } x y + 2z = 0\};$
- e) $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\};$
- f) $S = \{(x, y, z) \in \mathbb{R}^3 : xyz = 0\}.$

Exercício 52 Para cada uma das seguintes matrizes, calcule bases para o espaço das colunas e para o espaço nulo. Calcule ainda a característica e a nulidade:

a)
$$\begin{bmatrix} 1 & 0 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$
d) $\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}$ e) $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ f) $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$
g) $\begin{bmatrix} 1 & 4 & -2 & 3 \\ 3 & 6 & 0 & 3 \\ 3 & 4 & 2 & 1 \end{bmatrix}$ h) $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 3 & 2 & 1 & 2 \\ 4 & 3 & 0 & 1 \end{bmatrix}$ i) $\begin{bmatrix} 1 & 4 & 2 \\ 0 & 0 & 0 \\ -1 & -3 & -1 \\ 0 & 1 & 1 \end{bmatrix}$.

Exercício 53 Calcule uma base e a dimensão de cada um dos seguintes subespaços lineares:

- a) $S = \{(x, y) \in \mathbb{R}^2 : x + y = 0\};$
- b) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + 2z = 0 \};$
- c) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \text{ e } x + y + 2z = 0 \};$
- d) $S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0 \text{ e } x + y + 2z = 0 \};$
- e) $S = L\{(1,1), (2,1), (1,2)\};$
- f) $S = L\{(1, -1, 1), (1, 1, 3), (0, 1, 1)\};$
- g) $S = L\{(1, 4, -2, 3), (3, 6, 0, 3), (3, 4, 2, 1)\}.$

Exercício 54 Mostre que se U e V são subespaços de um espaço linear E, então também $U \cap V$ é um subespaço de E. Mostre ainda que $U \cup V$ é um subespaço de E se e só $U \subseteq V$ ou $V \subseteq U$.

Exercício 55 Mostre que se U e V são subespaços de um espaço linear E, então subconjunto

$$U + V \stackrel{def}{=} \{ \overrightarrow{u} + \overrightarrow{v} : \overrightarrow{u} \in U \ e \ \overrightarrow{v} \in V \}$$

é o menor subespaço de E que contém $U \cup V$.

Exercício 56 Calcule uma base e a dimensão de cada um dos seguintes subespaços de \mathbb{R}^3 :

- a) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \} \cap \{(x, y, z) \in \mathbb{R}^3 : x + y 3z = 0 \};$
- b) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \} \cap L\{(1, 1, 1), (0, 1, 1)\};$
- c) $S = L\{(1,0,0), (0,0,1)\} \cap L\{(1,1,1), (0,1,1)\};$
- d) $S = L\{(1,0,0),(0,0,1)\} + L\{(1,1,1),(0,1,1)\};$
- e) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \} + L\{(1, 1, 1), (0, 1, 1)\};$ f) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \} + \{(x, y, z) \in \mathbb{R}^3 : x + y - 3z = 0 \}.$

Exercício 57 Considere o espaço linear \mathcal{P}_3 (polinómios com grau menor ou igual a 3)

- a) Mostre que o conjunto $\{p(t) \in \mathcal{P}_3 : p(0) = 0\}$ é um subespaço linear
- de \mathcal{P}_3 . Calcule uma base para este subespaço.
- b) Mostre que o conjunto $\{p(t) \in \mathcal{P}_3 : p(1) = 0\}$ é um subespaço linear
- de \mathcal{P}_3 . Calcule uma base para este subespaço.
- c) Mostre que o conjunto $\{p(t) \in \mathcal{P}_3 : p(1) = p(0)\}$ é um subespaço linear
- de \mathcal{P}_3 . Calcule uma base para este subespaço.

Exercício 58 No espaço linear V das funções reais de de variável real duas vezes diferenciáveis, considere o subconjunto

$$S = \{ f \in V : f'' - 2f' + f = 0 \}.$$

- a) Mostre que S é um subespaço linear de V
- b) Mostre que o conjunto $\{e^t, te^t\}$ é uma base de S. Sugestão: mostre que se $f \in S$, então $f(t)e^{-t}$ é um polinómio com grau ≤ 1 .
- c) Mostre que, dados a e $b \in \mathbb{R}$, existe uma e uma só função $f \in S$ tal que f(0) = a e f'(0) = b. Sugestão: tenha em conta que o conjunto $\{e^t, te^t\}$ é uma base de S.

Soluções

- 45)
- a) É base de \mathbb{R}^3 ; b) Não é base de \mathbb{R}^3 ; c) Não é base de \mathbb{R}^3 ; d) Não é base de \mathbb{R}^3 .
- 46)
- a) Não é base de \mathbb{R}^4 ; b) Não é base de \mathbb{R}^4 ; c) É base de \mathbb{R}^4 ; d) Não é base de \mathbb{R}^4 .
- 47)
- a) (4,2); b) (-2,5); c) (a-b,b).
- 48)
- a) (8, 8, 5); b) (1, -1, 1); c) $(\frac{1}{2}a \frac{1}{2}b, b c, c)$.
- 49)
- b) $4 + 7t 2t^2$; c) (2, 0, -1); d) (2a b, b a, c).
- 50)
- a) É subespaço de \mathbb{R}^2 ; b) É subespaço de \mathbb{R}^2 ; c) É subespaço de \mathbb{R}^2 ; d) Não é subespaço de \mathbb{R}^2 ; e) Não é subespaço de \mathbb{R}^2 .
- 51)
- a) É subespaço de \mathbb{R}^3 ; b) Não é subespaço de \mathbb{R}^3 ; c) É subespaço de \mathbb{R}^3 ; d) Não é subespaço de \mathbb{R}^3 ; e) Não é subespaço de \mathbb{R}^3 ; f) Não é subespaço de \mathbb{R}^3 .
- 53)
- a) $\{(-1,1)\}$ é base de S, logo $\dim(S) = 1$; b) $\{(-1,1,0), (-2,0,1)\}$ é base de S, logo $\dim(S) = 2$; c) $\{(-1,1,0)\}$ é uma base de S, logo $\dim(S) = 1$; d) $\{(-1,1,0,0), (-1,-1,1,1)\}$

```
é base de S, logo dim(S) = 2. e) \{(1,1), (1,2)\} é base de S e dim(S) = 2; f) \{(1,-1,1), (1,1,3)\} é base de S, logo dim(S) = 2; g) \{(1,4,-2,3), (3,6,0,3)\} é base de S, logo dim(S) = 2; 56)
a) \{(-1,1,0)\} é base de S, logo dim(S) = 1; b) \{(-2,1,1)\} é base de S, logo dim(S) = 1; d) \{(1,0,0), (0,0,1), (1,1,1)\} é base de S, logo dim(S) = 3..
57)
a) \{t,t^2\} é uma base de S; b) \{t-1,t^2-1\} é uma base de S; c) \{1,t^2-t\} é uma base de S.
```

Tranformações Lineares

Exercício 59 Determine quais das seguintes transformações são lineares:

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (x,y)$;
b) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (x+1,y)$;
c) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (\cos(\theta) x - \sin(\theta) y, \sin(\theta) x + \cos(\theta) y)$, $\cos(\theta) \in \mathbb{R}$;
d) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (2x^2 + xy, x)$;
e) $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(x,y,z) = (2x + y, x + 2y, x + 2y + z)$;
f) $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(x,y,z) = (x + 3, x + 2y + z, y - 4z)$;
g) $T: \mathbb{R}^4 \to \mathbb{R}^2$, $T(x,y,z,w) = (2x + y - z + w, x + y - 3z)$;

Exercício 60 Considere a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por T(x,y) = (2x + y, x + 2y). Calcule a representação matricial de T na base $\mathcal{B} = \{\overrightarrow{v}_1, \overrightarrow{v}_2\}$ quando:

a)
$$\overrightarrow{v}_1 = (1,0), \ \overrightarrow{v}_2 = (0,1);$$

b) $\overrightarrow{v}_1 = (0,2), \ \overrightarrow{v}_2 = (2,0);$
c) $\overrightarrow{v}_1 = (1,1), \ \overrightarrow{v}_2 = (1,2).$

Exercício 61 Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T(x, y, z) = (x + y, x + z, z + y).$$

Calcule a representação matricial de T na base $\mathcal{B} = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ quando:

a)
$$\overrightarrow{v}_1 = (1, 0, 0), \ \overrightarrow{v}_2 = (0, 1, 0), \ \overrightarrow{v}_3 = (0, 0, 1);$$

b)
$$\overrightarrow{v}_1 = (0, 2, 0), \overrightarrow{v}_2 = (0, 0, 2), \overrightarrow{v}_3 = (2, 0, 0);$$

c)
$$\overrightarrow{v}_1 = (1, 0, 0), \overrightarrow{v}_2 = (1, 1, 0), \overrightarrow{v}_3 = (1, 1, 1).$$

Exercício 62 Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por

$$T(x, y, z) = (2x + y, z + 3y).$$

Calcule a representação matricial de T nas bases $\mathcal{B}_1 = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3\}$ e $\mathcal{B}_2 = \{\overrightarrow{v}_1, \overrightarrow{v}_2\}$ quando:

a)
$$\overrightarrow{u}_1 = (1,0,0), \ \overrightarrow{u}_2 = (0,1,0), \ \overrightarrow{u}_3 = (0,0,1), \ \overrightarrow{v}_1 = (1,0), \ \overrightarrow{v}_2 = (0,1);$$

b)
$$\overrightarrow{u}_1 = (0, 2, 0), \ \overrightarrow{u}_2 = (0, 0, 2), \ \overrightarrow{u}_3 = (2, 0, 0), \ \overrightarrow{v}_1 = (1, 0), \ \overrightarrow{v}_2 = (0, 1);$$

c)
$$\overrightarrow{u}_1 = (1,0,0), \ \overrightarrow{u}_2 = (1,1,0), \ \overrightarrow{u}_3 = (1,1,1), \ \overrightarrow{v}_1 = (1,1), \ \overrightarrow{v}_2 = (1,2);$$

$$\mathrm{d})\ \overrightarrow{u}_1=(1,0,0),\ \overrightarrow{u}_2=(0,1,0),\ \overrightarrow{u}_3=(0,0,1),\ \overrightarrow{v}_1=(1,1),\ \overrightarrow{v}_2=(1,2).$$

Exercício 63 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear que na base canónica de \mathbb{R}^2 é representada por

$$\left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right].$$

Calcule mediante uma matriz de mudança de base apropriada:

- a) a representação matricial de T na base $\overrightarrow{v}_1 = (0,2), \overrightarrow{v}_2 = (2,0);$
- b) a representação matricial de T na base $\overrightarrow{v}_1 = (1,1), \ \overrightarrow{v}_2 = (1,2).$

Exercício 64 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que na base canónica de \mathbb{R}^3 é representada por

$$\left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right].$$

calcule mediante uma matriz de mudança de base apropriada:

- a) a representação matricial de T na base $\overrightarrow{v}_1=(0,2,0), \ \overrightarrow{v}_2=(0,0,2), \ \overrightarrow{v}_3=(2,0,0);$
- b) a representação matricial de T na base $\overrightarrow{v}_1 = (1,0,0), \overrightarrow{v}_2 = (1,1,0), \overrightarrow{v}_3 = (1,1,1).$

Exercício 65 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear que na base canónica de \mathbb{R}^2 é representada por

$$\left[\begin{array}{cc} 3 & 2 \\ 1 & 2 \end{array}\right].$$

Calcule T(x, y).

Exercício 66 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear que na base $\overrightarrow{v}_1 = (1,1), \ \overrightarrow{v}_2 = (1,2)$ é representada por

$$\left[\begin{array}{cc} 3 & 2 \\ 1 & 2 \end{array}\right].$$

Calcule T(x, y).

Exercício 67 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que na base canónica de \mathbb{R}^3 é representada por

$$\left[\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{array}\right].$$

Calcule T(x, y, z).

Exercício 68 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que, na base $\overrightarrow{v}_1 = (1,0,0)$, $\overrightarrow{v}_2 = (1,1,0)$, $\overrightarrow{v}_3 = (1,1,1)$ é representada por

$$\left[\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{array}\right].$$

Calcule T(x, y, z).

Exercício 69 Calcule bases para o espaço nulo e para a imagem de cada uma das seguintes transformações lineares.

- a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (2x + y, 2x + y);
- b) $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (x+y, x-y);$
- c) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x + y + z, 2x + 2y + 2z, y z);
- d) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x + 2y z, 2x + 4y 2z, -x 2y + z);
- e) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x z, x + 2z, y + 3z);
- f) $T: \mathbb{R}^3 \to \mathbb{R}^2, T(x, y, z) = (x z, y + z);$
- g) $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (2x + y 3z, -6x 3y + 9z);
- h) $T: \mathbb{R}^2 \to \mathbb{R}^3$, T(x,y) = (x+y, x-y, x);
- i) $T: \mathbb{R}^2 \to \mathbb{R}^3$, T(x, y) = (2x + y, 4x + 2y, 0);

Exercício 70 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear que na base $\overrightarrow{v}_1 = (1,1), \overrightarrow{v}_2 = (1,-1)$ é representada pela matriz

$$\left[\begin{array}{cc} 3 & 3 \\ 2 & 2 \end{array}\right].$$

Calcule bases para o espaço nulo e para a imagem de T.

Exercício 71 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que na base

$$\overrightarrow{v}_1 = (-1, 1, 1), \overrightarrow{v}_2 = (1, -1, 1), \overrightarrow{v}_3 = (1, 1, -1)$$

é representada pela matriz

$$\left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & 2 & 1 \end{array}\right].$$

Calcule bases para o espaço nulo e para a imagem de T.

Exercício 72 Seja $T: \mathbb{R}^n \to \mathbb{R}^m$ uma transformação linear e A a matriz que representa T nas bases canónicas de \mathbb{R}^n e \mathbb{R}^m . Comente as seguintes afirmações:

- a) A dimensão do núcleo de T coincide com a nulidade de A;
- b) T é injectiva se e só se a nulidade de A é igual a zero;
- c) T é injectiva se e só se a característica de A coincide com o número de colunas de A;
- d) A dimensão da imagem de T coincide com a característica de A;
- e) T é sobrejectiva se e só a característica de A coincide com o número de linhas de A.

Exercício 73 Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear definida por

$$T(x, y, z) = (x + y, x + y - z)$$
.

- a) Calcule a matriz que representa T na base canónica.
- b) Calcule uma base para o núcleo de T. A transformação T é injectiva?
- c) Calcule uma base para a imagem de T. T é sobrejectiva?
- d) Resolva a equação T(x, y, z) = (1, 1)
- e) Existe algum vector $(a,b) \in \mathbb{R}^2$ para o qual a equação T(x,y,z) = (a,b)
- é impossível?
- f) Existe algum vector $(a,b) \in \mathbb{R}^2$ para o qual a equação T(x,y,z) = (a,b)
- é possível e determinada?

Exercício 74 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que na base canónica de \mathbb{R}^3 é representada pela matriz

$$\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & 4 \\
0 & 0 & 2
\end{array}\right]$$

- a) Calcule uma base para o núcleo de T. T é injectiva?
- b) Calcule uma base para a imagem de T. T é sobrejectiva?
- c) Resolva a equação T(x, y, z) = (3, 3, 0)
- d) Existe algum vector $(a, b, c) \in \mathbb{R}^3$ para o qual a equação T(x, y, z) = (a, b, c) é impossível?
- e) Existe algum vector $(a,b,c) \in \mathbb{R}^3$ para o qual a equação T(x,y,z) = (a,b,c)
- é indeterminada?

Exercício 75 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear que na base $\overrightarrow{v}_1 = (1,1), \ \overrightarrow{v}_2 = (1,0)$ é representada por

$$\left[\begin{array}{cc} 2 & 4 \\ 1 & 2 \end{array}\right].$$

- a) Calcule uma base para o núcleo de T. T é injectiva?
- b) Calcule uma base para a imagem de T. T é sobrejectiva?
- c) Resolva a equação T(x,y)=(3,2)
- d) Existe algum vector $(a, b) \in \mathbb{R}^2$ para o qual a equação T(x, y) = (a, b) é impossível?
- e) Existe algum vector $(a,b) \in \mathbb{R}^2$ para o qual a equação T(x,y) = (a,b) é possível e determinada?

Exercício 76 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que na base $\overrightarrow{v}_1 = (1, 1, 1)$, $\overrightarrow{v}_2 = (1, 1, 0)$, $\overrightarrow{v}_3 = (1, 0, 0)$ é representada por

$$\left[\begin{array}{ccc} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 0 & 0 & 2 \end{array}\right].$$

- a) Calcule uma base para o núcleo de T. T é injectiva?
- b) Calcule uma base para a imagem de T. T é sobrejectiva?
- c) Mostre que equação T(x, y, z) = (2, 4, 0) não tem soluções.
- e) Existe algum vector $(a, b, c) \in \mathbb{R}^3$ para o qual a equação T(x, y, z) = (a, b, c) é indeterminada;

Exercício 77 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear definida por

$$T(x,y) = (x+y, x+2y).$$

- a) Calcule a matriz que representa T na base canónica.
- b) Mostre que T é bijectiva e calcule $T^{-1}(x, y)$.
- c) Resolva a equação linear T(x,y)=(1,1).

Exercício 78 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z) = (x + y + z, x + 2y - 4z, z).$$

- a) Calcule a matriz que representa T na base canónica.
- b) Mostre que T é bijectiva e calcule $T^{-1}(x, y, z)$.
- c) Resolva a equação linear T(x, y, z) = (1, 1, 2).

Exercício 79 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que na base $\overrightarrow{v}_1 = (1, 1, 1)$, $\overrightarrow{v}_2 = (1, 1, 0)$, $\overrightarrow{v}_3 = (1, 0, 0)$ é representada por

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right].$$

- a) Mostre que T é bijectiva e calcule $T^{-1}(x,y,z)$.
- b) Resolva a equação linear T(x, y, z) = (1, 2, 1).

Exercício 80 Seja $T: \mathcal{P}_2 \to \mathcal{P}_2$ a transformação linear definida por

$$T(p(t)) = p'(t) - 2p(t).$$

a) Calcule a matriz que representa T na base $\{p_1(t), p_2(t), p_3(t)\}$ com

$$p_1(t) = 1, p_2(t) = t e p_3(t) = t^2.$$

- b) Mostre que T é bijectiva, e calcule a matriz que representa T^{-1} na mesma base. Conclua que $T^{-1}(q(t)) = -\frac{1}{2}q(t) - \frac{1}{4}q'(t) - \frac{1}{8}q''(t)$, para qualquer $q(t) \in \mathcal{P}_2$. c) Resolva, em \mathcal{P}_2 , a equação linear $p'(t) - 2p(t) = 1 + t + t^2$.

Exercício 81 Seja $T: \mathcal{P}_2 \to \mathcal{P}_2$ a transformação linear definida por

$$T(p(t)) = t^2 p''(t) - 2p(t).$$

a) Calcule a matriz que representa T na base $\{p_1(t), p_2(t), p_3(t)\}$ com

$$p_1(t) = 1, p_2(t) = t, p_3(t) = t^2.$$

- b) Calcule uma base para $\mathcal{N}(T)$ e conclua que T não é injectiva nem sobrejectiva.
- c) Resolva, em \mathcal{P}_2 , a equação linear $t^2p''(t) 2p(t) = 1$.

Exercício 82 No espaço linear V das funções reais de de variável real duas vezes diferenciáveis, considere a transformação linear $T: V \to V$ definida por T(f) = f'' - 2f' + f.

- a) Recorra ao Exercício 58, para encontrar uma base para $\mathcal{N}(T)$.
- b) Sabendo que $f(t) \equiv 1$ é uma solução da equação linear T(f) = 1, calcule a única solução da mesma equação que verifica f(0) = f'(0) = 0.

Soluções

60)

a)
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
; b) $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$; c) $\begin{bmatrix} 3 & 3 \\ 0 & 1 \end{bmatrix}$.

a)
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$
; b) $\begin{bmatrix} 2 & 0 & 4 \\ 6 & 2 & 0 \end{bmatrix}$; c) $\begin{bmatrix} 4 & 3 & 2 \\ -2 & 0 & 1 \end{bmatrix}$; d) $\begin{bmatrix} 4 & -1 & -1 \\ -2 & 2 & 1 \end{bmatrix}$.

a)
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
; b) $\begin{bmatrix} 3 & 3 \\ 0 & 1 \end{bmatrix}$.

64)

a)
$$B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
; b) $B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$.

- 65) T(x,y) = (3x + 2y, x + 2y).
- 66) T(x,y) = (4x, 4x + y).
- 67) T(x, y, z) = (x + 2y + z, x, y + 2z).
- 68) T(x, y, z) = (2x + y, x + z, y + z).

69)

- a) $\{(1,-2)\}$ é base de N(T) e $\{(1,1)\}$ é base de $\mathcal{I}(T)$;
- b) Tem-se $\mathcal{N}(T)=\{0\},\ \mathrm{logo}\ \varnothing$ é base de $\mathcal{N}(T).$ Uma base para $\mathcal{I}(T)$ pode ser $\{(1,1),(1,-1)\};$
- c) Tem-se $\mathcal{N}(T) = \{(-2z, z, z) : z \in \mathbb{R}\}, \text{ logo } \{(-2, 1, 1)\} \text{ \'e base de } \mathcal{N}(T).$ Uma base para $\mathcal{I}(T)$ pode ser $\{(1, 2, 0), (1, 2, 1)\};$
- d) Tem-se $\mathcal{N}(T) = \{(-2y, y, 0) : z \in \mathbb{R}\}$, logo $\{(-2, 1, 0)\}$ é base de $\mathcal{N}(T)$. Uma base para $\mathcal{I}(T)$ pode ser $\{(1, 2, -1), (-1, -2, -1)\}$;
- e) Tem-se $\mathcal{N}(T) = \{0\}$, logo \emptyset é base de $\mathcal{N}(T)$. Uma base para $\mathcal{I}(T)$ pode ser $\{(1,1,0),(0,0,1),(-1,2,3)\}$;
- f) Tem-se $\mathcal{N}(T) = \{(z, -z, z) : z \in \mathbb{R}\}$, logo $\{(1, -1, 1)\}$ é base de $\mathcal{N}(T)$. Uma base para $\mathcal{I}(T)$ pode ser $\{(1, 0), (0, 1)\}$;
- g) Tem-se $\mathcal{N}(T) = \left\{ \left(\frac{3}{2}z \frac{1}{2}y, y, z \right) : y, z \in \mathbb{R} \right\}$, logo $\left\{ \left(-\frac{1}{2}, 1, 0 \right), \left(\frac{3}{2}, 0, 1 \right) \right\}$ é base de $\mathcal{N}(T)$. Uma base para $\mathcal{I}(T)$ pode ser $\left\{ (2, -6) \right\}$;
- h) Tem-se $\mathcal{N}(T)=\{0\},\ \mathrm{logo}\ \varnothing$ é base de $\mathcal{N}(T).$ Uma base para $\mathcal{I}(T)$ pode ser $\{(1,1,1),(1,-1,0)\};$
- i) Tem-se $\mathcal{N}(T) = \{(-\frac{1}{2}y, y) : y \in \mathbb{R}\}$, logo $\{(-\frac{1}{2}, 1)\}$ é base de $\mathcal{N}(T)$. Uma base para $\mathcal{I}(T)$ pode ser $\{(2, 4, 0)\}$.
- 70) $\{(0,1)\}$ é base de $\mathcal{N}(T)$, e $\{(5,1)\}$ é base de $\mathcal{I}(T)$.
- 71) $\{(-1,0,1)\}$ é base de $\mathcal{N}(T)$, $\{(1,2,1),(0,2,0)\}$ é base de $\mathcal{I}(T)$.

$$a) \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & -1 \end{array} \right].$$

- b) $\{(-1,1,0)\}$ é base de $\mathcal{N}(T)$. A transformação T não é injectiva pois dim $\mathcal{N}(T) \neq 0$.
- c) $\{(1,1),(0,-1)\}$ é base de $\mathcal{I}(T)$. A transformação T é sobrejectiva pois dim $\mathcal{I}(T)=2=\dim\mathbb{R}^2$
- d) O conjunto das soluções é $\mathcal{N}(T)+(1,0,0)=\{(1-y,y,0):y\in\mathbb{R}\}$

- e) Não existe porque T é sobrejectiva.
- f) Como T é sobrejectiva e não injectiva, a equação T(x,y,z)=(a,b) é possível e indeterminada, para qualquer $(a,b)\in\mathbb{R}^2$.

74)

- a) Tem-se $\mathcal{N}(T) = \{(0,0,0)\}$, logo T é injectiva.
- b) Uma base para $\mathcal{I}(T)$ é $\{(1,2,0),(2,1,0),(2,4,2)\}$, logo $\mathcal{I}(T)=\mathbb{R}^3$ pelo que T é sobrejectiva.
- c) A única solução da equação é (-2, 1, 3/2).
- d) e e) Como T é bijectiva a equação T(x,y,z)=(a,b,c) é possível e determinada para qualquer $(a,b,c)\in\mathbb{R}^3$.

75)

- a) $\{(1,2)\}$ é base de $\mathcal{N}(T)$, logo T não é injectiva.
- b) Uma base para $\mathcal{I}(T)$ é $\{(6,4)\}$, pelo que T não é sobrejectiva.
- c) O conjunto das soluções é $\{(0,-1)\} + \mathcal{N}(T)$.
- d) e e) Como T é não injectiva nem sobrejectiva, a equação T(x,y)=(a,b) é impossível ou indeterminada para qualquer $(a,b)\in\mathbb{R}^2$.

76)

- a) $\{(1,1,2)\}$ é base de $\mathcal{N}(T)$, logo T não é injectiva.
- b) Uma base para $\mathcal{I}(T)$ é $\{(8,6,2)\,,(-2,0,0)\},$ pelo que T não é sobrejectiva.
- d) e e) Como T é não injectiva nem sobrejectiva, a equação T(x, y, z) = (a, b, c) é impossível ou indeterminada, para qualquer $(a, b, c) \in \mathbb{R}^2$.

77)

a)
$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
; b) $T^{-1}(x,y)=(2x-y,-x+y)$; c) Como T é bijectiva, a única solução da equação é o vector $(x,y)=T^{-1}(1,1)=(1,0)$.

78)

a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -4 \\ 0 & 0 & 1 \end{bmatrix}$$
; b) $T^{-1}(x, y, z) = (2x - y - 6z, -x + y + 5z, z)$; c) Como T é bijectiva,

a única solução da equação é o vector $(x,y,z)=T^{-1}(1,1,2)=(-11,10,2)$.

79)

a) $T^{-1}(x,y,z)=(-x+2y,y,z)$; b) A única solução da equação é (3,2,1).

a)
$$\begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$
; b)
$$\begin{bmatrix} -\frac{1}{2} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$
; c) $-1 - t - \frac{1}{2}t^2$.

81)
a)
$$\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
; c) O conjunto das soluções é $\{-\frac{1}{2} + a_3 t^2 : a_3 \in \mathbb{R}\}$.

Valores e vectores próprios

Exercício 83 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear definida por T(x,y) = (x+2y,2x+y). Considere os vectores $\overrightarrow{v}_1 = (2,1)$, $\overrightarrow{v}_2 = (-1,1)$, $\overrightarrow{v}_3 = (2,3)$ e $\overrightarrow{v}_4 = (4,4)$, e identifique os que são vectores próprios de T. Diga ainda quais são os valores próprios de T.

Exercício 84 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z) = (0, y + 3z, 3y + z)$$
.

Considere ainda os vectores $\overrightarrow{v}_1=(2,1,1), \ \overrightarrow{v}_2=(0,-1,1), \ \overrightarrow{v}_3=(1,0,0), \ \overrightarrow{v}_4=(-1,1,3)$ e $\overrightarrow{v}_5=(0,3,3),$ e identifique os que são vectores próprios de T. Diga quais são os valores próprios de T.

Exercício 85 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z) = (x + 2y + 2z, 2x + y + 2z, 2x + 2y + z).$$

Considere os vectores $\overrightarrow{v}_1=(2,1,1), \ \overrightarrow{v}_2=(1,1,1), \ \overrightarrow{v}_3=(-2,0,2), \ \overrightarrow{v}_4=(-1,1,3)$ e $\overrightarrow{v}_5=(-1,1,0),$ e identifique os que são vectores próprios de T. Quais são os valores próprios de T?

Exercício 86 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear definida por T(x,y) = (x+y,x+y). Mostre que os vectores $\overrightarrow{v}_1 = (1,-1)$ e $\overrightarrow{v}_2 = (1,1)$ determinam uma base de \mathbb{R}^2 constituída por vectores próprios de T. Calcule a representação matricial de T nesta base.

Exercício 87 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z) = (y, y, y).$$

Mostre que os vectores $\overrightarrow{v}_1 = (1,0,0)$, $\overrightarrow{v}_2 = (1,1,1)$ e $\overrightarrow{v}_3 = (0,0,1)$ determinam uma base de \mathbb{R}^3 constituída por vectores próprios de T. Calcule a representação matricial de T nesta base.

Exercício 88 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear definida por T(x,y) = (x+2y,3y).

- a) Calcule o polinómio característico de T;
- b) Calcule os valores próprios e os subespaços próprios de T;
- c) Determine uma base de \mathbb{R}^2 constituída por vectores próprios de T. Qual
- é a representação matricial de T nesta base?

Exercício 89 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear que na base canónica de \mathbb{R}^2 é representada pela matriz

$$A = \left[\begin{array}{cc} 2 & 3 \\ 3 & 2 \end{array} \right].$$

- a) Calcule o polinómio característico de T;.
- b) Calcule os valores próprios e os subespaços próprios de T;
- c) Determine uma matriz de mudança de base S e uma matriz diagonal
- D tais que $D = S^{-1}AS$.

Exercício 90 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear que na base canónica de \mathbb{R}^2 é representada pela matriz

$$A = \left[\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array} \right].$$

- a) Calcule o polinómio característico de T;.
- b) Calcule os valores próprios e os subespaços próprios de T;
- c) Mostre que não existe uma base de \mathbb{R}^2 constituída por vectores próprios de T.

Exercício 91 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z) = (y + z, 2y + z, y + 2z).$$

- a) Calcule o polinómio característico de T;.
- b) Calcule os valores próprios e os subespaços próprios de T;
- c) Determine uma base de \mathbb{R}^3 constituída por vectores próprios de T. Qual
- é a representação matricial de T nesta base?
- d) Designando por A a matriz que representa T na base canónica de \mathbb{R}^3 , determine uma matriz de mudança de base S e uma matriz diagonal D tais que $D = S^{-1}AS$.

Exercício 92 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z) = (3x, 2y + z, 2z).$$

- a) Calcule o polinómio característico de T;
- b) Calcule os valores próprios e os subespaços próprios de T;
- c) Mostre que não existe uma base de \mathbb{R}^3 constituída por vectores próprios de T.

Exercício 93 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que na base canónica de \mathbb{R}^3 é representada pela matriz

$$A = \left[\begin{array}{ccc} 9 & 0 & 0 \\ 3 & 7 & -1 \\ 3 & -2 & 8 \end{array} \right].$$

- a) Calcule o polinómio característico de T;.
- b) Calcule os valores próprios e os subespaços próprios de T;
- c) Determine uma matriz de mudança de base S e uma matriz diagonal D tais que $D = S^{-1}AS$.

Exercício 94 Considere as matrizes:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 \\ -4 & 5 \end{bmatrix} e C = \begin{bmatrix} 10 & -4 \\ 24 & -10 \end{bmatrix}.$$

Mostre que todas são diagonalizáveis e calcule A^n , B^n e C^n , para $n \in \mathbb{N}$.

Exercício 95 Considere as matrizes:

$$A = \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right] e \ B = \left[\begin{array}{cc} 2 & 1 \\ -4 & 2 \end{array} \right].$$

Mostre que as matrizes A e B (não sendo diagonalizáveis enquanto matrizes reais) são diagonalizáveis enquanto matrizes complexas. Calcule A^n e B^n , para $n \in \mathbb{N}$.

Exercício 96 Mostre que se uma matriz $A \in \mathbb{C}^{2\times 2}$ não é diagonalizável, então existe uma matriz de mudança de base $S \in \mathbb{C}^{2\times 2}$ tal que

$$A = S \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} S^{-1}e \text{ mais geralmente } A^n = S \begin{bmatrix} \lambda^n & \lambda^{n-1} \\ 0 & \lambda^n \end{bmatrix} S^{-1},$$

onde λ designa o único valor próprio de A.

Exercício 97 Com base no exercício anterior calcule A^n e B^n com

$$A = \left[\begin{array}{cc} 1 & 1 \\ -1 & 3 \end{array} \right] \ e \ B = \left[\begin{array}{cc} 2 & 1 \\ -1 & 4 \end{array} \right].$$

Exercício 98 Considere o sistema de equações diferenciais lineares

$$A \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} com A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

Decida quais dos seguintes pares de funções são soluções deste sistema: $(-e^t, e^t)$, (e^{3t}, e^{3t}) , (e^t, e^{3t}) .

Exercício 99 Considere uma matriz $A \in \mathbb{R}^{2\times 2}$ e designe por \mathcal{S}_A o conjunto das soluções do sistema

$$A \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array} \right] = \left[\begin{array}{c} x_1'(t) \\ x_2'(t) \end{array} \right].$$

- a) Mostre que S_A com as operações usuais de adição e multiplicação por escalar tem estrutura de espaço linear.
- b) Mostre que se $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, então os pares de funções $(e^{\lambda_1 t}, 0)$ e $(0, e^{\lambda_2 t})$ constituem uma base para S_D , e portanto

$$\mathcal{S}_D = \left\{ \left(c_1 e^{\lambda_1 t}, c_2 e^{\lambda_2 t} \right) : c_1, c_2 \in \mathbb{R} \right\}.$$

Sugestão: mostre que se $(x_1(t), x_2(t)) \in \mathcal{S}_D$ então $x_1(t)e^{-\lambda_1 t}$ e $x_2(t)e^{-\lambda_2 t}$ são funções constantes.

c) Mostre que se $J = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, então os pares de funções $(e^{\lambda t}, 0)$ e $(te^{\lambda t}, e^{\lambda t})$ constituem uma base para S_J , e portanto

$$S_J = \left\{ \left(c_1 e^{\lambda t} + c_2 t e^{\lambda t}, c_2 e^{\lambda t} \right) : c_1, c_2 \in \mathbb{R} \right\}.$$

Sugestão: mostre que se $(x_1(t), x_2(t)) \in \mathcal{S}_J$ então $x_2(t)e^{-\lambda t}$ é uma função constante e $x_1(t)e^{-\lambda t}$ é um polinómio com grau ≤ 1 .

d) Mostre que se S é uma matriz de mudança de base e $B=S^{-1}AS$, então tem-se:

$$\mathcal{S}_A = \left\{ S \left[\begin{array}{c} y_1(t) \\ y_2(t) \end{array} \right] : (y_1(t), y_2(t)) \in \mathcal{S}_B \right\}.$$

Exercício 100 Considere a matriz

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right].$$

- a) Mostre que A é diagonalizável, identificando uma matriz diagonal D e uma matriz de mudança de base S tais que $A = SDS^{-1}$.
- b) Resolva o sistema de equações diferenciais

$$\begin{cases} 2x_1(t) + x_2(t) = x'_1(t) \\ x_1(t) + 2x_2(t) = x'_2(t) \end{cases}$$

Exercício 101 Considere a matriz

$$A = \left[\begin{array}{cc} 2 & 1 \\ -2 & 5 \end{array} \right].$$

- a) Mostre que A é diagonalizável, identificando uma matriz diagonal D e uma matriz de mudança de base S tais que $A = SDS^{-1}$.
- b) Calcule a única solução do problema de valores iniciais

$$\begin{cases} 2x_1(t) + x_2(t) = x'_1(t) \\ -2x_1(t) + 5x_2(t) = x'_2(t) \end{cases}, x_1(0) = 1, x_2(0) = -1.$$

Exercício 102 Considere a matriz

$$A = \left[\begin{array}{cc} 3 & 1 \\ -1 & 5 \end{array} \right].$$

- a) Mostre que A não é diagonalizável, identificando um bloco de Jordan J e uma matriz de mudança de base S tais que $A = SJS^{-1}$.
- b) Resolva o sistema de equações diferenciais

$$\begin{cases} 3x_1(t) + x_2(t) = x'_1(t) \\ -x_1(t) + 5x_2(t) = x'_2(t) \end{cases}$$

Exercício 103 Considere a matriz

$$A = \left[\begin{array}{cc} -1 & 9 \\ -1 & 5 \end{array} \right].$$

- a) Mostre que A não é diagonalizável, identificando um bloco de Jordan J e uma matriz de mudança de base S tais que $A = SJS^{-1}$.
- b) Calcule a única solução do problema de valores iniciais

$$\begin{cases} -x_1(t) + 9x_2(t) = x_1'(t) \\ -x_1(t) + 5x_2(t) = x_2'(t) \end{cases}, x_1(0) = 5, x_2(0) = 2.$$

Exercício 104 Classificar as seguintes matrizes simétricas, em definidas positivas, definidas negativas, semidefinidas positivas, semidefinidas negativas ou indefinidas:

$$a) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad b) \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad c) \begin{bmatrix} -3 & 1 \\ 1 & -2 \end{bmatrix}$$

$$d) \, \left[\begin{array}{cc} 3 & 2 \\ 2 & 0 \end{array} \right] \quad e) \, \left[\begin{array}{ccc} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3 \end{array} \right] \quad f) \, \left[\begin{array}{ccc} 2 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 2 \end{array} \right].$$

Exercício 105 Classificar as seguintes formas quadráticas, em definidas positivas, definidas negativas, semidefinidas positivas, semidefinidas negativas ou indefinidas:

a)
$$Q(x,y) = x^2 + y^2 + 2xy$$
;

b)
$$Q(x,y) = 2x^2 + 2y^2 + 2xy;$$

c)
$$Q(x,y) = -3x^2 + 2yx - 2y^2$$
;

d)
$$Q(x,y) = 3x^2 + 4yx;$$

e)
$$Q(x, y, z) = x^2 + y^2 + 3z^2 + 4yx;$$

f)
$$Q(x, y, z) = 2x^2 - 2y^2 + 2z^2 + 2zx$$
.

Soluções

- 83) Temos $T(2,1)=(4,5)\neq\lambda(2,1)$, para qualquer $\lambda\in\mathbb{R}$, logo \overrightarrow{v}_1 não é vector próprio de T. Temos T(-1,1)=(1,-1)=-1(-1,1), logo \overrightarrow{v}_2 é vector próprio de T associado ao valor próprio -1. Temos $T(2,3)=(8,7)\neq\lambda(2,3)$, para qualquer $\lambda\in\mathbb{R}$, logo \overrightarrow{v}_3 não é vector próprio de T. Temos T(4,4)=(12,12)=3(4,4), logo \overrightarrow{v}_4 é vector próprio de T associado ao valor próprio 3. Os escalares -1 e 3 são os únicos valores próprios de T.
- 84) Os vectores \overrightarrow{v}_2 , \overrightarrow{v}_3 e \overrightarrow{v}_5 são vectores próprios de T. Os escalares -2, 0 e 4 são os únicos valores próprios de T.
- 85) Os vectores \overrightarrow{v}_2 , \overrightarrow{v}_3 e \overrightarrow{v}_5 são vectores próprios de T. Os escalares -1 e 5 são os únicos valores próprios de T.

$$86) \left[\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right]$$

$$87) \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

88)

a) $P(\lambda) = (1 - \lambda)(3 - \lambda)$; b) Os escalares 1 e 3 são os únicos valores próprios de T. Os subespaços próprios de T são: $E(1) = \{(x,0) : x \in \mathbb{R}\} \in E(3) = \{(y,y) : y \in \mathbb{R}\}$; c) $\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$.

89)

a) $P(\lambda) = (2 - \lambda)^2 - 9$; b) Os escalares -1 e 5 são os únicos valores próprios de T. Os subespaços próprios de T são : $E(-1) = \{(-y,y) : y \in \mathbb{R}\}$ e $E(5) = \{(y,y) : y \in \mathbb{R}\}$; c) $D = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$ e $S = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$.

90)

a) $P(\lambda) = (2 - \lambda)^2$; b) O escalar 2 é o único valor próprio de T, e $E(2) = \{(x, 0) : x \in \mathbb{R}\}$.c) Se existisse uma base de \mathbb{R}^2 constituída por vectores próprios de T, teríamos dim $E(2) = \dim \mathbb{R}^2 = 2$, já que 2 é o único valor próprio de T. Mas isto não pode acontecer, porque pela alínea anterior temos dim E(2) = 1.

91)

a) $P(\lambda) = -\lambda [(2 - \lambda)^2 - 1]$; b) Os escalares 0, 1 e 3 são os únicos valores próprios de T. Tem-se $E(0) = \{(x, 0, 0) : x \in \mathbb{R}\}, E(1) = \{(0, -z, z) : z \in \mathbb{R}\} \in E(3) = \{(2z, 3z, 3z) : z \in \mathbb{R}\}$;

c)
$$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 e $S = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ 0 & 1 & 3 \end{bmatrix}$.

a) $P(\lambda) = (3 - \lambda)(2 - \lambda)^2$; b) Os escalares 2 e 3 são os únicos valores próprios de T. Tem-se $E(2) = \{(0, y, 0) : y \in \mathbb{R}\}, E(3) = \{(x, 0, 0) : x \in \mathbb{R}\}; c)$ Não existe uma base de \mathbb{R}^3 constituída por vectores próprios de T porque dim E(2) + dim E(3) = 2 < dim \mathbb{R}^3 .

93)

a)
$$P(\lambda) = (9 - \lambda)(\lambda^2 - 15\lambda + 54)$$
; b) Valores próprios: 6 e 9. Subespaços próprios:

$$E(6) = \{(0, z, z) : z \in \mathbb{R}\} \text{ e } E(9) = \{(2y + 3z, 3y, 3z) : y, z \in \mathbb{R}\}; \text{ c) } S = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 3 \end{bmatrix} \text{ e}$$

$$D = \left[\begin{array}{ccc} 6 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{array} \right].$$

94)

$$A^{n} = \begin{bmatrix} 1 & 2^{n} - 1 \\ 0 & 2^{n} \end{bmatrix}, B^{n} = \begin{bmatrix} 2 - 3^{n} & 3^{n} - 1 \\ 2 - 2(3^{n}) & 2(3^{n}) - 1 \end{bmatrix}, C^{n} = \begin{bmatrix} 3(2^{n}) - 2(-2)^{n} & (-2)^{n} - (2^{n}) \\ 6(2^{n}) - 6(-2)^{n} & 3(-2)^{n} - 2(2^{n}) \end{bmatrix}.$$

95)

$$A^{n} = \sqrt{2^{n}} \begin{bmatrix} \cos(n\pi/4) & \sin(n\pi/4) \\ -\sin(n\pi/4) & \cos(n\pi/4) \end{bmatrix}; B^{n} = \sqrt{8^{n}} \begin{bmatrix} \cos(\pi n/4) & \frac{1}{2}\sin(\pi n/4) \\ -2\sin(\pi n/4) & \cos(\pi n/4) \end{bmatrix}.$$

97)

$$A^{n} = \begin{bmatrix} 2^{n} - 2^{n-1} & 2^{n-1} \\ -2^{n-1} & 2^{n} + 2^{n-1} \end{bmatrix} e B^{n} = \begin{bmatrix} 3^{n} - 3^{n-1} & 3^{n-1} \\ -3^{n-1} & 3^{n} + 3^{n-1} \end{bmatrix}.$$

a)
$$D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$
 e $S = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$;

b)
$$S_A = \{(-c_1e^t + c_2e^{3t}, c_1e^t + c_2e^{3t}) : c_1, c_2 \in \mathbb{R}\}$$

a)
$$S = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 e $D = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$; b) $(3e^{3t} - 2e^{4t}, 3e^{3t} - 4e^{4t})$

102)

a)
$$S = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, $J = \begin{bmatrix} 4 & 1 \\ 0 & 4 \end{bmatrix}$;

b)
$$S_A = \{(c_1e^{4t} + c_2te^{4t} + 2c_2e^{4t}, c_1e^{4t} + c_2te^{4t} + 3c_2e^{4t}) : c_1, c_2 \in \mathbb{R}\}$$

103)

a)
$$S = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$
, $J = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$; b) $(5e^{2t} + 3te^{2t}, 2e^{2t} + te^{2t})$.

104)

a) Os valores próprios da matriz são 0 e 2, logo é semi-definida positiva; b) Os valores próprios da matriz são 1 e 3, logo é definida positiva; c) Os valores próprios da matriz são $-\frac{1}{2}\sqrt{5} - \frac{5}{2}$ e $\frac{1}{2}\sqrt{5} - \frac{5}{2}$ (ambos negativos), logo é definida negativa; d) Os valores próprios da matriz são -1 e 4, logo é indefinida; e) Os valores próprios da matriz são -1 e 3, logo é indefinida; f) Os valores próprios da matriz são -2, 1 e 3, logo é indefinida.

105)

a) Semi-definida positiva; b) Definida positiva; c) Definida negativa; d) Indefinida; e) Indefinida; f) Indefinida.

Projecções, comprimento e ortogonalidade

Exercício 106 Identifique as aplicações $\langle , \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ que definem em \mathbb{R}^2 um produto interno:

```
a) \langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 + x_2 y_2;
```

b) $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 + x_1 y_2 + x_2 y_2;$

c) $\langle (x_1, x_2), (y_1, y_2) \rangle = -2x_1y_1 + 3x_2y_2;$

d) $\langle (x_1, x_2), (y_1, y_2) \rangle = 3x_1y_1 + 2x_2y_1 + 2x_1y_2 + 3x_2y_2;$

e) $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 + x_2 y_1 + x_1 y_2 + x_2 y_2;$

f) $\langle (x_1, x_2), (y_1, y_2) \rangle = x_2 y_1 + x_1 y_2;$

g) $\langle (x_1, x_2), (y_1, y_2) \rangle = x_2 y_1 y_2 + x_1 y_2$.

Exercício 107 Identifique as aplicações $\langle , \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ que definem um produto interno em \mathbb{R}^3 :

a)
$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3;$$

b)
$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + 2x_1 y_2 + x_2 y_2 + 3x_1 y_3 + x_2 y_3 + x_3 y_3;$$

c)
$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = 2x_1y_1 + x_2y_1 + x_1y_2 + 2x_2y_2 + 2x_3y_3;$$

d)
$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = 2x_1y_1 + 2x_2y_1 + 2x_1y_2 + 2x_2y_2 + x_3y_3;$$

e)
$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_3 x_1 y_1 + x_2 y_1$$
.

Exercício 108 Considere em \mathbb{R}^2 o produto interno definido por

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = 4x_1y_1 + 9x_2y_2.$$

- a) Calcule $\|\overrightarrow{x}\|$, para um qualquer vector $\overrightarrow{x} = (x_1, x_2) \in \mathbb{R}^2$;
- b) Calcule o ângulo determinado pelos vectores (1/2,0) e (0,1/3);
- c) Conclua pelas alíneas anteriores que os vectores $\overrightarrow{v}_1 = (1/2, 0)$ e $\overrightarrow{v}_2 = (0, 1/3)$ constituem uma base ortonormada de \mathbb{R}^2 . Calcule as coordenadadas de um vector $\overrightarrow{x} = (x_1, x_2) \in \mathbb{R}^2$ em relação a esta base.

Exercício 109 Considere em \mathbb{R}^2 o produto interno definido por

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = x_1 y_1 - x_2 y_1 - x_1 y_2 + 2x_2 y_2.$$

- a) Calcule $\|\overrightarrow{x}\|$, para um qualquer vector $\overrightarrow{x} = (x_1, x_2) \in \mathbb{R}^2$;
- b) Calcule o ângulo determinado pelos vectores (1,0) e (1,1);
- c) Conclua pelas alíneas anteriores que os vectores $\overrightarrow{v}_1 = (1,0)$ e $\overrightarrow{v}_2 = (1,1)$ constituem uma base ortonormada de \mathbb{R}^2 . Calcule as coordenadadas de um vector $\overrightarrow{x} = (x_1, x_2) \in \mathbb{R}^2$ em relação a esta base.

Exercício 110 Considere em \mathbb{R}^3 o produto interno definido por

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}.$$

- a) Calcule $\|\overrightarrow{x}\|$, para um qualquer vector $\overrightarrow{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$;
- b) Considere os vectores $\overrightarrow{v}_1 = (1,0,0), \ \overrightarrow{v}_2 = (-1,1,0) \ e^{-\overrightarrow{v}_3} = (0,0,1).$

Calcule os ângulos determinados pelos vectores: $\overrightarrow{v}_1 e \overrightarrow{v}_2$; $\overrightarrow{v}_1 e \overrightarrow{v}_3$; $\overrightarrow{v}_2 e \overrightarrow{v}_3$.

c) Conclua pelas alíneas anteriores que $\{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ é uma base ortonormada de \mathbb{R}^3 . Calcule as coordenadadas de um vector $\overrightarrow{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$ em relação a esta base.

Exercício 111 Considere em \mathbb{R}^3 o produto interno definido por

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = x_1 y_1 + 4x_2 y_2 + 2x_3 y_2 + 2x_2 y_3 + 5x_3 y_3.$$

- a) Calcule $\|\overrightarrow{x}\|$, para um qualquer vector $\overrightarrow{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$;
- b) Considere os vectores $\overrightarrow{v}_1 = (1,0,0), \ \overrightarrow{v}_2 = (0,1/2,0) \ e \ \overrightarrow{v}_3 = (0,-1/4,1/2).$

Calcule os ângulos determinados pelos vectores: \overrightarrow{v}_1 e \overrightarrow{v}_2 ; \overrightarrow{v}_1 e \overrightarrow{v}_3 ; \overrightarrow{v}_2 e \overrightarrow{v}_3 .

c) Conclua pelas alíneas anteriores que $\{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ é uma base ortonormada de \mathbb{R}^3 . Calcule as coordenadadas de um vector $\overrightarrow{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$ em relação a esta base.

Exercício 112 Considere a base de \mathbb{R}^2 constituída pelos vectores $\overrightarrow{v}_1 = (1,0)$ e $\overrightarrow{v}_2 = (1,1)$. Mostre que existe um e um só produto interno em \mathbb{R}^2 para o qual a base $\{\overrightarrow{v}_1, \overrightarrow{v}_2\}$ é ortonormada. Calcule $\|\overrightarrow{x}\|$, para um qualquer vector $\overrightarrow{x} = (x_1, x_2) \in \mathbb{R}^2$.

Exercício 113 Mais geralmente, demonstre que se \overrightarrow{v}_1 , \overrightarrow{v}_2 , ..., \overrightarrow{v}_n é uma base de \mathbb{R}^n , então existe um único produto interno em \mathbb{R}^n para o qual esta base é ortonormada.

Exercício 114 Considere em \mathcal{P}_2 o produto interno definido por

$$\langle p(t), q(t) \rangle = \begin{bmatrix} a_0 & a_1 & a_2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix},$$

 $com p(t) = a_0 + a_1t + a_2t^2 \ e \ q(t) = b_0 + b_1t + b_2t^2.$

- a) Calcule ||p(t)|| para um qualquer polinómio $p(t) \in \mathcal{P}_2$;
- b) Considere os vectores $p_1(t) = 1+t$, $p_2(t) = t$ e $p_3(t) = t+t^2$. Mostre que os vectores $p_1(t)$, $p_2(t)$ e $p_3(t)$ constituem uma base ortonormada de \mathcal{P}_2 . Calcule as coordenadadas de um polinómio $p(t) \in \mathcal{P}_2$ em relação a esta base.

Exercício 115 Considere em \mathcal{P}_2 o produto interno definido por:

$$\langle p(t), q(t) \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).$$

- a) Calcule ||p(t)|| para um qualquer polinómio $p(t) \in \mathcal{P}_2$;
- b) Mostre que os polinómios

$$p_1(t) = 1 - t^2$$
, $p_2(t) = \frac{1}{2}t + \frac{1}{2}t^2$ e $p_3(t) = -\frac{1}{2}t + \frac{1}{2}t^2$

constituem uma base ortonormada de \mathcal{P}_2 . Calcule as coordenadadas do polinómio p(t) = 1 nesta base.

Exercício 116 Considere em \mathcal{P}_2 o produto interno definido por:

$$\langle p(t), q(t) \rangle = p(0) q(0) + p'(0) q'(0) + p'(1) q'(1).$$

- a) Calcule ||p(t)|| para um qualquer polinómio $p(t) \in \mathcal{P}_2$;
- b) Calcule o ângulo determinado pelos polinómios p(t) = 1 e $q(t) = 2 + t^2$.

Exercício 117 Seja V um espaço euclideano com dimensão finita, e U um subespaço de V

- a) Mostre que se $\{\overrightarrow{u}_1, \overrightarrow{u}_2, ..., \overrightarrow{u}_n\}$ é uma base de U então tem-se: $\overrightarrow{x} \in U^{\perp}$ se e só se $\langle \overrightarrow{x}, \overrightarrow{u}_1 \rangle = \langle \overrightarrow{x}, \overrightarrow{u}_2 \rangle = \cdots = \langle \overrightarrow{x}, \overrightarrow{u}_n \rangle = 0$.
- b) Mostre $\dim(U) + \dim(U^{\perp}) = \dim(V)$
- c) Mostre $(U^{\perp})^{\perp} = U$.

Exercício 118 Considerando o produto interno usual em \mathbb{R}^3 , calcule bases para o complemento ortogonal de U quando:

a)
$$U = L\{(1,1,1), (1,0,1)\};$$

b)
$$U = L\{(1,0,2)\};$$

c)
$$U = \{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0 \}$$

b)
$$U = L\{(1,0,2)\};$$

c) $U = \{(x,y,z) \in \mathbb{R}^3 : x+y-z=0 \};$
d) $U = \{(x,y,z) \in \mathbb{R}^3 : x+z=y+z=0\}.$

Exercício 119 Resolva as alíneas b) e c) do problema anterior, quando em \mathbb{R}^3 se considera o seguinte produto interno:

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}.$$

Exercício 120 Considerando o produto interno usual em \mathbb{R}^4 , calcule bases para o complemento ortogonal de U quando:

a)
$$U = L\{(1,0,1,1)\};$$

b)
$$U = \{(x, y, z, w) \in \mathbb{R}^4 : x + 2y + z + 2w = x + 2y - z = 0 \};$$

Exercício 121 Resolva o problema anterior, quando em \mathbb{R}^4 se considera o sequinte produto interno:

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = 2x_1y_1 + x_2y_1 + x_1y_2 + 2x_2y_2 + x_3y_3 + x_4y_4.$$

Exercício 122 Em \mathbb{R}^3 , com o produto interno usual, considere o subespaço

$$U = L\{(1,1,1),(1,0,0)\}.$$

- a) Calcule a projecção ortogonal de (1,0,1) sobre U;
- b) Qual é a distância de (1,0,1) a U?

Exercício 123 $Em \mathbb{R}^3$, com o produto interno usual, considere o subespaço

$$U = \{(x, y, z) \in \mathbb{R}^3 : x - y = 0 \}$$
.

- a) Calcule a projecção ortogonal de (1,0,0) sobre U;
- b) Qual é a distância de (1,0,0) a U?

Exercício 124 Resolva o Exercício 122, quando se considera em \mathbb{R}^3 o sequinte produto interno

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}.$$

Exercício 125 $Em \mathbb{R}^4$, com o produto interno usual, considere o subespaço

$$U = L\{(1, 1, 1, 1), (1, 0, 1, 0)\}.$$

- a) Calcule uma base ortonormada para U;
- b) Calcule a projecção ortogonal de (0,1,0,2) sobre U;
- c) Qual é a distância de (0, 1, 0, 2) a U?

Exercício 126 $Em \mathbb{R}^4$, com o produto interno usual, considere o subespaço

$$U = \{(x, y, z, w) \in \mathbb{R}^4 : x - y + z - w = 0 \}.$$

- a) Calcule uma base ortonormada para U^{\perp} ;
- b) Calcule a projecção ortogonal de (1,0,1,0) sobre U;
- c) Qual é a distância de (1,0,1,0) a U?

Exercício 127 $Em \mathbb{R}^4$, com o produto interno usual, considere o subespaço

$$U = \{(x, y, z, w) \in \mathbb{R}^4 : x - y + z = y - z + w = 0 \}.$$

- a) Calcule uma base ortonormada para U;
- b) Calcule a projecção ortogonal de (0,0,1,0) sobre U;
- c) Qual é a distância de (0,0,1,0) a U?

Exercício 128 Considere o espaço linear \mathcal{P}_2 com o seguinte produto interno:

$$\langle p(t), q(t) \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).$$

Considere ainda o subespaço de \mathcal{P}_2

$$U = \{p(t) \in \mathcal{P}_2 : p(0) = 0 \}.$$

- a) Calcule a projecção ortogonal do polinómio 1 + t sobre U;
- b) Qual é a distância de 1 + t a U?

Exercício 129 Para cada uma das rectas de \mathbb{R}^3 , calcule um ponto P e um subespaço S tais que $r = \{P\} + S$:

- a) r é a recta de \mathbb{R}^3 que passa pelos pontos (1,1,1) e (1,0,1);
- b) r é a recta de \mathbb{R}^3 que passa pelo ponto (1,0,2) e tem a direcção do vector (1,1,0);
- c) r é a recta de \mathbb{R}^3 que passa pelo ponto (1,3,-1) e é ortogonal aos vectores (1,2,1) e (1,0,1).

Exercício 130 Determine uma equação cartesiana para cada uma das rectas do exercício anterior.

Exercício 131 Para cada um dos planos de \mathbb{R}^3 , calcule um ponto P e um subespaço S tais que $\alpha = \{P\} + S$:

- a) α é o plano de \mathbb{R}^3 que passa pelos pontos (1,1,1), (1,0,1) e (1,0,0);
- b) α é o plano de \mathbb{R}^3 que passa pelo ponto (1,0,2) e é paralelo ao plano que passa pelos pontos (0,0,0), (1,1,0) e (1,-1,0);
- c) α é o plano de \mathbb{R}^3 que passa pelo ponto (1,3,-1) e é ortogonal ao vector (1,0,-2).

Exercício 132 Determine uma equação cartesiana para cada um dos planos do exercício anterior.

Exercício 133 Seja r_1 a recta de \mathbb{R}^3 que passa pelos pontos (1,1,1) e (1,0,1), e r_2 a recta de \mathbb{R}^3 que passa pelos pontos (2,5,1) e (0,5,1). Determine a intersecção destas rectas.

Exercício 134 Seja r a recta de \mathbb{R}^3 que passa pelos pontos (2,-1,3) e (4,-5,5), e α o plano de \mathbb{R}^3 que passa pelos pontos (1,0,0), (2,1,1) e (1,1,2). Determine a intersecção da recta r com o plano α .

Exercício 135 Seja β o plano \mathbb{R}^3 que passa pelo ponto (0,1,0) e é ortogonal ao vector (1,1,1). Determine uma equação cartesiana para a intersecção do plano β com o plano α do exercício anterior.

Exercício 136 Mostre que três planos de \mathbb{R}^3 com normais linearmente independentes se intersectam num ponto.

Exercício 137 Mostre que se r_1 e r_2 são rectas não paralelas de \mathbb{R}^3 , então existe um único par de planos paralelos α_1 e α_2 tais que $r_1 \subset \alpha_1$ e $r_2 \subset \alpha_2$.

Exercício 138 Mostre que a distância de um ponto (x_0, y_0, z_0) a um plano de \mathbb{R}^3 com equação cartesiana ax + by + cz = d é

$$\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Exercício 139 Mostre que se α_1 e α_2 são planos paralelos de \mathbb{R}^3 com equações cartesianas $ax + by + cz = d_1$ e $ax + by + cz = d_2$, então a distância de α_1 a α_2 é dada por

$$\frac{|d_2 - d_1|}{\sqrt{a^2 + b^2 + c^2}}.$$

Exercício 140 Sejam r_1 e r_2 duas rectas não paralelas de \mathbb{R}^3 , e $(a,b,c) \in \mathbb{R}^3$ um vector ortogonal a r_1 e r_2 . Mostre que se (x_1,y_1,z_1) é um ponto de r_1 e (x_2,y_2,z_2) é um ponto de r_2 , então a distância de r_1 a r_2 é dada por

$$\frac{|a(x_2-x_1)+b(y_2-y_1)+c(z_2-z_1)|}{\sqrt{a^2+b^2+c^2}}.$$

Soluções

106)

a) Define um produto interno; b) Não define um produto interno; c) Não define um produto interno; d) Define um produto interno; e) Não define um produto interno; f) Não define um produto interno; g) Não define um produto interno.

107)

a) Define um produto interno; b) Não define um produto interno; c) Define um produto interno; d) Não define um produto interno; e) Não define um produto interno.

108)

a)
$$||(x_1, x_2)|| = \sqrt{4x_1^2 + 9x_2^2}$$
; b) $\alpha = \frac{\pi}{2}$; c) $(2x_1, 3x_2)$.

109

a)
$$||(x_1, x_2)|| = \sqrt{x_1^2 - 2x_1x_2 + 2x_2^2}$$
; b) $\alpha = \frac{\pi}{2}$; c) $(x_1 - x_2, x_2)$.

110)

a)
$$||(x_1, x_2, x_3)|| = \sqrt{x_1^2 + x_3^2 + 2x_2^2 + 2x_1x_2}$$
; b) $\alpha = \beta = \gamma = \frac{\pi}{2}$; c) $(x_1 + x_2, x_2, x_3)$.

111)

a)
$$||(x_1, x_2, x_3)|| = \sqrt{x_1^2 + 4x_2^2 + 5x_3^2 + 4x_2x_3};$$
 b) $\alpha = \beta = \gamma = \frac{\pi}{2};$ c) $(x_1, 2x_2 + x_3, 2x_3).$

114)

a)
$$||a_0 + a_1t + a_2t^2|| = \sqrt{2a_0^2 + a_1^2 + 2a_2^2 - 2a_0a_1 + 2a_0a_2 - 2a_1a_2};$$
 c) As coordenadas de $a_0 + a_1t + a_2t^2$ nesta base são $(a_0, a_1 - a_0 - a_2, a_2)$.

115)

a)
$$||p(t)|| = \sqrt{p(-1)^2 + p(0)^2 + p(1)^2}$$
; c) $(1, 1, 1)$.

116)

a)
$$||p(t)|| = \sqrt{p(0)^2 + p'(0)^2 + p'(1)^2}$$
; b) $\alpha = \frac{\pi}{4}$.

118)

a)
$$\{(-1,0,1)\}$$
; b) $\{(-2,0,1),(0,1,0)\}$; c) $\{(1,1,-1)\}$ d) $\{(1,0,1),(0,1,1)\}$.

119

b)
$$\{(-5,0,3),(0,1,0)\}$$
; c) $\{(-3,-1,2)\}$.

120)

a)
$$\{(0,1,0,0),(-1,0,1,0),(-1,0,0,1)\};$$
 b) $\{(1,2,1,2),(1,2,-1,0)\}$

121)

a)
$$\{(-1,2,0,0),(-1,0,2,0),(-1,0,0,2)\};$$
 b) $\{(-1,2,0,0),(1,0,0,2)\}.$

a)
$$(1, \frac{1}{2}, \frac{1}{2})$$
; b) $\frac{\sqrt{2}}{2}$.

a)
$$(1/2, 1/2, 0)$$
; b) $\frac{\sqrt{2}}{2}$.

a)
$$\{(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})\}; b) (0, \frac{3}{2}, 0, \frac{3}{2}); c) \frac{1}{2}\sqrt{2}.$$

a)
$$\{(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})\}$$
; b) $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$; c) 1.

a)
$$\left\{ \left(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right), \frac{\sqrt{10}}{5} \left(-1, -\frac{1}{2}, \frac{1}{2}, 1\right) \right\}; b) \frac{1}{5} (-1, 2, 3, 1); c) \frac{\sqrt{10}}{5}.$$

a)
$$t + t^2$$
; b) 1.

a)
$$P = (1, 1, 1)$$
 e $S = L\{(0, 1, 0)\}$; b) $P = (1, 0, 2)$ e $S = L\{(1, 1, 0)\}$; c) $P = (1, 3, -1)$ e $S = L\{(1, 0, -1)\}$;

130)

a)
$$\begin{cases} x=1 \\ z=1 \end{cases}$$
; b)
$$\begin{cases} -x+y=-1 \\ z=2 \end{cases}$$
; c)
$$\begin{cases} y=3 \\ x+z=0 \end{cases}$$
.

131)

a)
$$P = (1, 1, 1) \in S = L\{(0, 1, 0), (0, 1, 1)\};$$
 b) $P = (1, 0, 2) \in S = L\{(1, 1, 0), (1, -1, 0)\};$

c)
$$P = (1, 3, -1) \in S = L\{(2, 0, 1), (0, 1, 0)\};$$

a)
$$x = 1$$
; b) $z = 2$; c) $-x + 2z = -3$.

133)
$$r_1 \cap r_2 = \{(1, 5, 1)\}.$$

134)
$$r \cap \alpha = \{(1, 1, 2)\}$$

135)
$$\begin{cases} x + y + z = 3 \\ x - 2y + z = 1 \end{cases}$$
.