Eg - (Top-to-random shuffle) - Given in cards

- take top and and insert in it u.a.r in

position { (1,2, , n = 3

- Of Forder walk on $S_n \equiv Symmetric group$ - $O_t \equiv Permutation at finet (i.e., sat of permutations of [n])$

Let $T_{top} = 1 + min \{t \ge 0 \mid \sigma_t(1) = \sigma_0(n)\}$ (i.e., first time bottom and comes to top plus 1)

. Propn - If at time t, be cards below, bottom and, then there are perfetly shuffled. Hence $\sigma_{top} \equiv u_{infamin} S_{n}$

Of-True at t=0. Suppose its true at time t; then in Oth, either # of cards below, bottom and is same, or new card inserted at random position below original bottomed.

· Mixing time = Coupon collecter

· Stopping time T is a.

i) Stationary time if $P_{x}[X_{T} = y] = \Pi(y) \forall x,y$ ii) Strong stationary time if $P_{x}[T=t, X_{T}=y] = P_{x}[T=t]\Pi(y)$ (i.e., X_{T} has dish Π and $T \perp X_{T}$) $P_{x}[X_{t}=y|T=t] = \Pi(y)$

· Lenma - Let Xt ~ MC (O,P) with Stationary distri To If Zatis a strong stopping time for P, then d(t) = max ||Pt(z,)-TIIIITU) < max |Px Lz>t] If For any $x \in \Omega$, $d(t) = \max_{A \in \Omega} ||Pt/x, A| - \pi(A)||_{TV}$. Now A P[Xt EA] = P[XtEA, Tst>t] + [P[XtEA, Tst=t] = 12 [Xt6A | Tst>t] 19 [Tst>t] + TT(A) ZIP[G=t] = P2 [X+EA | Ts+>t] P2 [Ts+>t] + T1(A)(1-P2[G+>1]) => P[X+EA]-TI(A) = P2[Tst>t] (P[X+EA|TG+>t]-TI(A)) This holds to take so, ACBO

 $=) \qquad d(t) \leq \lim_{x \in \mathbb{N}} \mathbb{P}_{x} \left[T_{s+} > t \right]$

- Earlies we showed $t_{mix}(\varepsilon) \leq \frac{6M}{7/2}\varepsilon$ via mixing aguments

- SS time (Broden) - Start with no marked carel

(Sec 8.2 in LPW) (In round t, mark Rt if unmarked) and (Lt

marked OR Lt = Rt)

- E[Tst] = $\frac{2}{5}\frac{n^2}{(\text{Ret)(n-1e)}} = 2n(\log n + O(1))$, $V_{ac}(Tst) = O(n^2)$ By Chebyshev - $t_{mix}(\varepsilon) \leq n \log n.(2+9T\varepsilon)$

0	Some obs en handen mapping representations
	- Not unique
	Some obs on handom mapping representations - Not unique - $\{f(x z)\}$ forms a grand coupling (i.e., $\{f(x z),f(z)\}$) is a coupling for
	- If $ \Omega =n$, then sufficient to consider a discrete n^2 values
	not ho Z with < n2 values
	(Corresponding to breakpoints Fix $\forall (j,k) \in \mathbb{R}^2$)
	- If $(X_t, Y_t) \sim (f(X_t, Z_t), f(Y_t, Z_t))$, then
	Couple related \$ to max zy 11 f(2/2)-f(y/2)/TV
	(or more generally f(f(-f(x z) z)-)zi)-f(f(-f(y z) z) -12
	- Heneforth write $fof(x) = f(f(x z_1) z_2)$
	composition of randon fus
	- Can obtain a SS time from a vandom
	function representation (with $Z \in \Lambda$, $ \Lambda \le n^2$) by
<u>Je</u>	Sampling Z, Zz, Zzst until we hit every

Sampling Z, 22, -- Zzst until we hit every
bon value in A (i.e., compon collector on A)
- Problem - Difficult to specify A ingeneral postopped

