

Attack Detection in Water Distribution System part of SCADA

MU-EGCO623 Data Mining and EGCO611 Programming Techniques for Advanced Application

10th December 2023

Sukkarin Ruensukont (G6538138)

Instructor: Asst. Prof. Tanasanee Phienthrakul, Ph.D.

Instructor: Asst. Prof. Vasin Suttichaya, Ph.D.

Problem and Objective

negative, missing, train_test_split, downsampling

Features

Select features

Methodologies: 3ML, 5 Ensembles, features selection

Bonus Track + Q & A

SCADA

- Supervisory Control and Data Acquisition(SCADA)
- Stuxnet, Siemens PLC Iran
- Water, Electricity, GAS
- Critical Infrastructure Security Showdown(CISS) 2016-2023

DCS - Water'24

BATADAL2017

Features of BATADAL

- 7 **Tank water levels**, denoted L_<tank_id>
- 12 **Pressure** for actuated valve, denoted P_<junction id>
- 12 **flows** for actuated valve, denoted F_<actuator id>
- 12 **status** for actuated valve, denoted S_<actuator id>
- Total 43 features
- But we mainly **use WADI2019** which more complex

Fig. 1. C-Town water distribution system. (Adapted from Taormina et al. 2017.)

	0	1	2	3	4	5	6	7	8	9
0	Row	Date	Time	1_AIT_001_PV	1_AIT_002_PV	1_AIT_003_PV	1_AIT_004_PV	1_AIT_005_PV	1_FIT_001_PV	1_LS_001_AL
1	1	10/9/17	00:00.0	164.21	0.529486	11.9972	482.48	0.331167	0.00127323	0
2	2	10/9/17	00:01.0	164.21	0.529486	11.9972	482.48	0.331167	0.00127323	0
3	3	10/9/17	00:02.0	164.21	0.529486	11.9972	482.48	0.331167	0.00127323	0
4	4	10/9/17	00:03.0	164.21	0.529486	11.9972	482.48	0.331167	0.00127323	0
172799	172799.0	10/11/17	59:58.0	172.915	0.583479	11.9211	466.051	0.318317	0.00126	0.0
172800	172800.0	10/11/17	59:59.0	172.915	0.583479	11.9211	466.051	0.318317	0.00126	0.0
172801	172801.0	10/11/17	00:00.0	172.915	0.583479	11.9211	466.051	0.318317	0.00126	0.0
172802	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
172803	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
172804 ro	ws × 131 c	olumns								

129	130
123	
_FLOW	Attack LABLE (1:No Attack, -1:Attack)
0.39	1
0.39	1
0.39	1
0.39	1
0.0	1
0.0	1
0.0	1
NaN	1
NaN	1

Attack on WADI2019

- Overflow the tank
- ChangeChemical level

• **Overflow** the tank

 Pump malfunction on/off repeatedly

	~			
Attack Identifier	Starting Time	Ending Time	Duration (minutes)	Attack description
1	9/10/17 19:25:00	9/10/17 19:50:16	25.16	Motorized valve 1_MV_001 is mali-
				ciously turned on, this causes an over-
				flow on primary tank should reflect
				on 1LT001 and 1FIT001
2	10/10/17 10:24:10	10/10/17 10:34:00	9.50	Flow Indication Transmitter
	, ,	, ,		1_FIT_001 is tuned off, a false
				reading is seen by PLC for 1_FIT_001.
				This will turn chemical dosing pump
				on while leaving the water level in
				primary tank constant. Consequently
				the attacker is increasing the level of
				chemicals inside water.
3-4	10/10/17 10:55:00	10/10/17 11:24:00	29.0	Stealthy attack. Attacker aims to
	10/10/11 10:00:00	10/10/11/11/21/00	20.0	drain elevated reservoir 2_LT_002.
				This is done controlling manipulat-
				ing tank level draining and filling
				speed. 1_AIT_001 Moreover the at-
				tacker changes the reading seen by wa-
				ter quality sensor, this causes the raw
				water tank drain.
				water tank dram.

- Shape = 172801 row, 130 columns
- Column contain both positive and negative value

	85	86	87	88	89	90
47125	1.0	NaN	NaN	23.5320	2.0	0.001922
47126	1.0	NaN	NaN	23.5320	2.0	0.001922
47127	1.0	NaN	NaN	23.5091	2.0	-0.002741
47128	1.0	NaN	NaN	23.5091	2.0	-0.002741
47129	1.0	NaN	NaN	23.5091	2.0	-0.002741
47130	1.0	NaN	NaN	23.5091	2.0	-0.002741
47131	1.0	NaN	NaN	23.5091	2.0	-0.002741
47132	1.0	NaN	NaN	23.5622	2.0	0.001947
47133	1.0	NaN	NaN	23.5622	2.0	0.001947

	89	90	90-sign
47125	2.0	0.001922	1
47126	2.0	0.001922	1
47127	2.0	0.002741	2
47128	2.0	0.002741	2
47129	2.0	0.002741	2
47130	2.0	0.002741	2
47131	2.0	0.002741	2
47132	2.0	0.001947	1
47133	2.0	0.001947	1

Find and remove empty column

```
The following columns have all values empty (except the header): ['50', '51', '86', '87']

49 50 51 52

0 0.051166 NaN NaN 0.0

1 0.051166 NaN NaN 0.0

2 0.051166 NaN NaN 0.0

3 0.051166 NaN NaN 0.0

4 0.051166 NaN NaN 0.0

85 86 87 88

0 2.0 NaN NaN 0.016157

1 2.0 NaN NaN 0.016157

2 2.0 NaN NaN 0.016157

3 2.0 NaN NaN 0.016157

4 2.0 NaN NaN 0.016157
```

				[
		49	52	53	54
0	0.05	1166	0.0	0.0	0.0
1	0.05	1166	0.0	0.0	0.0
2	0.05	1166	0.0	0.0	0.0
3	0.05	1166	0.0	0.0	0.0
4	0.05	1166	0.0	0.0	0.0
	85		88	88-s	ign
0	2.0	0.01	6157		2.0
1	2.0	0.01	6157		2.0
2	2.0	0.01	6157		2.0
3	2.0	0.01	6157		2.0
4	2.0	0.01	6157		2.0

Find and drop 2 rows with missing value

```
Column '3' has missing values:
172801 NaN
172802 NaN
Name: 3, dtype: float64

Column '4' has missing values:
172801 NaN
172802 NaN
Name: 4, dtype: float64

Column '5' has missing values:
172801 NaN
172802 NaN
Name: 5, dtype: float64
```

```
Column '127' has missing values:
172801 NaN
172802 NaN
Name: 127, dtype: float64

Column '128' has missing values:
172801 NaN
172802 NaN
Name: 128, dtype: float64

Column '129' has missing values:
172801 NaN
172802 NaN
Name: 129, dtype: float64
```

No missing values found in the DataFrame.

Before Normalization

	3	4	5	6	7	8	9	10	11	12	
count	172801.000000	172801.000000	172801.000000	172801.000000	172801.000000	172801.000000	172801.0	172801.0	172801.000000	172801.000000	
mean	176.210422	0.648910	11.928407	453.784271	0.274574	0.542569	0.0	0.0	55.539636	1.274287	
std	18.669165	0.351526	0.139214	18.862597	0.037848	0.862086	0.0	0.0	8.706924	0.452633	
min	0.000000	0.000000	0.000000	0.000000	0.201966	0.000605	0.0	0.0	37.002300	0.000000	
25%	170.866000	0.589479	11.911300	440.867000	0.241040	0.001102	0.0	0.0	47.829700	1.000000	
50%	177.234000	0.631472	11.927600	454.977000	0.273966	0.001186	0.0	0.0	55.932900	1.000000	
75%	179.533000	0.661469	11.952000	468.240000	0.305849	1.872090	0.0	0.0	62.489400	2.000000	
max	634.492000	6.000000	12.109800	484.871000	0.351282	2.495160	0.0	0.0	75.216100	2.000000	
8 rows ×	127 columns										

After Normalization, MinMaxScaler

		3	4	5	6	7	8	9	10	11	12
C	ount	172801.000000	172801.000000	172801.000000	172801.000000	172801.000000	172801.000000	172801.0	172801.0	172801.000000	172801.000000
n	nean	0.277719	0.108152	0.985021	0.935887	0.486273	0.217259	0.0	0.0	0.485095	0.637143
	std	0.029424	0.058588	0.011496	0.038902	0.253473	0.345587	0.0	0.0	0.227848	0.226316
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.0	0.000000	0.000000 .
	25%	0.269296	0.098246	0.983608	0.909246	0.261687	0.000199	0.0	0.0	0.283337	0.500000
	50%	0.279332	0.105245	0.984954	0.938346	0.482199	0.000233	0.0	0.0	0.495386	0.500000
	75%	0.282955	0.110245	0.986969	0.965700	0.695726	0.750228	0.0	0.0	0.666961	1.000000
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	0.0	0.0	1.000000	1.000000 .
8	rows ×	127 columns									
1											•

- Train:test = 70:30
- stratify based on class(1 = No Attack, -1 = Attack)

```
[ ] 1 from sklearn.model_selection import train_test_split
2
3 df_pre6 = pd.read_csv(path+'WADI_6_undersampling.csv')
4
5 feature_cols = df_pre6.columns.tolist()[:-1] # select all features(-1 = exclude class at the last column)
6 # feature_cols = ['109','66'] #can perform feature selection here
7
8 X_to_trainTestSplit = df_pre6[feature_cols]
9 Y_to_trainTestSplit = df_pre6['130']
10
11 X_train, X_test, y_train, y_test = train_test_split(X_to_trainTestSplit, Y_to_trainTestSplit, test_size=0.3, stratify=Y_to_trainTestSplit)
```


Process

- Top best feature scores
- Top worst feature scores
- Select only feature score > 100
 count = 49 from original 130 features

```
Top 10 best features selected by this method are :
66: 12054.955263772104
16: 4538.045647704014
18: 4487.315854347481
8: 4350.468063608258
37: 3387.726424933425
89: 2191.9522378488746
90-sign: 2179.735695068156
69: 1703.569038191479
34: 1546.9967666436596
129 : 1538.0722013467896
Top 10 worst features selected by this method are :
94: 0.006322622591439416
63: 0.028701978538930605
5: 0.03238054284976486
55 : 0.16195704792978696
116: 0.35304909001758367
35 : 0.39265259199205804
85: 0.4255473206577616
39: 0.6160590566327536
49: 0.6424503252307319
6: 0.895688901082101
```

```
Feature score more than 100, count = 49
['66', '16', '18', '8', '37', '89', '90-sign', '69', '34', '129', '20', '64', '88', '72', '41', '43', '21', '70', '11', '12', '93', '23', '88-si{
```


- Downsampling
- Before Downsampling: No Attack = 162824, Attack = 9977
- After Downsampling : No Attack = 9977, Attack = 9977

No Attack class, count = 162824 Attack class, count = 9977 New total row = 9977 * 2 = 19954

	66	16	18	8	37	89	90-sign	69	34	129	78	31	71	32	119	
count	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000000	19954.000
mean	0.054285	0.471785	0.470482	0.383091	0.497435	0.248071	0.159467	0.250370	0.452602	0.341339	0.625739	0.352342	0.184584	0.542774	0.212132	0.150
std	0.206885	0.499216	0.499140	0.384585	0.364434	0.431904	0.366120	0.301613	0.343617	0.278215	0.226874	0.271429	0.240744	0.408076	0.230422	0.230
min	0.000000	0.000000	0.000000	0.000098	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.008524	0.003520	0.000
25%	0.000000	0.000000	0.000000	0.000219	0.071429	0.000000	0.000000	0.000000	0.097561	0.133047	0.500000	0.073171	0.000000	0.142649	0.070816	0.000
50%	0.000000	0.000000	0.000000	0.096444	0.666667	0.000000	0.000000	0.178334	0.390244	0.296137	0.500000	0.365854	0.156002	0.339241	0.088087	0.000
75%	0.000000	1.000000	1.000000	0.765028	0.809524	0.000000	0.000000	0.275087	0.731707	0.510730	1.000000	0.560976	0.271092	1.000000	0.274820	0.23
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	0.999942	1.000
8 rows ×	50 columns															
4													<u> </u>			+

- replacement
 - = False
- class1
 - = No Attack

```
1 from sklearn.utils import resample
 3 df pre5 = pd.read csv(path+"WADI 5 featureScore100Up.csv")
 5 # Separate the two classes based on values in column '130'
 6 class 1 = df pre5[df pre5['130'] == 1]
 7 class minus 1 = df pre5[df pre5['130'] == -1]
 9 # Determine the minimum number of samples in either class
10 min samples = min(len(class 1), len(class minus 1))
11 print("No Attack class, count = ", class 1.shape[0])
12 print("Attack class, count = ", class minus_1.shape[0])
13 print("New total row
                                = ",min samples,'* 2 =',min samples*2)
14 print()
16 # Undersample both classes to have an equal number of samples
17 undersampled class 1 = resample(class 1, replace=False, n samples=min samples, random state=42)
18 undersampled_class_minus_1 = resample(class_minus_1, replace=False, n_samples=min_samples, random_state=42)
19
20 # Concatenate the undersampled classes back together
21 undersampled_df = pd.concat([undersampled_class_1, undersampled_class_minus_1])
22
23 undersampled df.to csv(path+"WADI 6 undersampling.csv", index=False)
24 undersampled_df.describe()
```


Method and post process

- 49 features which feature score > 100
- Train model **DT, KNN, RF**
- Ensemble 5 models
 - **Ensemble1**: Majority Votes
 - Ensemble2: Voting with adjusted weight, DT=2, KNN=1, RF=1
 - Ensemble3: Voting with adjusted weight, DT=2, KNN=2, RF=1
 - Ensemble4: Voting with adjusted weight, DT=4, KNN=3, RF=2
 - Ensemble5: Voting with adjusted weight, DT=2, KNN=1, RF=3

Results and Evaluation

DT vs KNN vs RF

Model	Accuracy	Precision	Recall	F1-Score
DT	98.998	99.613	<u>98.594</u>	99.063
KNN	98.680	99.077	<u>98.292</u>	98.679
RF	89.276	90.082	88.349	89.186

Results and Evaluation

• DT vs 5 Ensemble models

Model	Accuracy	Precision	Recall	F1-Score
DT	98.998	99.613	<u>98.594</u>	99.063
Ensemble1 – Maj	99.048	99.379	98.536	99.022
Ensemble2 – 211	98.931	<u>99.757</u>	98.205	98.973
Ensemble3 – 221	98.948	99.413	98.638	99.055
Ensemble4 – 432	98.964	99.379	96.601	99.007
Ensemble5 – 113	89.276	90.082	88.349	89.186

Results and Evaluation

- Confusion Matrix
- False Positive >
 False Negative
- RF give high FN and high FP

Remove some features

Remove 5 features
 44 features left
 DT Inspect 13 FP

Remove 10 features
 39 features left
 DT Inspect 9 FP

Remove some features

Remove 30 features
 19 features left
 DT Inspect 26 FP

Remove 40 features
 9 features left
 DT Inspect 52 FP, 5 FN

Remove some features

- Remove 45 features4 features left
- DT Inspect 77 FP

Analyze more

- 90-sign(6th) get higher features score than 90(23rd).
- 88(12th) get higher feature score than 88sign(22nd)
- This mean for feature 90, sign(positive/negative) is more significant than it's value. But for feature 88, sign(positive/negative) is less significant than it's value.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 172801 entries, 0 to 172800
Data columns (total 50 columns):
     Column
             Non-Null Count
                              Dtype
              172801 non-null
                              float64
              172801 non-null
                              float64
              172801 non-null
                              float64
              172801 non-null float64
              172801 non-null float64
    89
              172801 non-null float64
    90-sign
             172801 non-null float64
    69
              172801 non-null float64
     34
              172801 non-null float64
    129
              172801 non-null float64
    20
              172801 non-null float64
11
    64
              172801 non-null float64
12
    88
             172801 non-null float64
 13
    72
              172801 non-null
                              float64
              172801 non-null float64
                             float64
              172801 non-null
 16
    21
              172801 non-null float64
 17
    70
              172801 non-null float64
 18
    11
              172801 non-null float64
 19
    12
              172801 non-null float64
 20 93
             172801 non-null float64
             172801 non-null float64
 21 23
    88-sign
            172801 non-null float64
             172801 non-null float64
23
             172801 non-null float64
 24
    97
```


Bonus: BATADAL2017

- 4177 rows, 45 Features
- L_<Tank name>
 Tank level
- F_<Pump name>Pump flow
- S_<Pump name>Pump status
- P_<point> press at given point
- **'ATT_FLAG'** (1, -999)

Bonus: BATADAL

- 4177 rows, 45 Features
- L_<Tank name>
 Tank level
- F_<Pump name>Pump flow
- S_<Pump name>Pump status
- P_<point> press at given point
- 'ATT_FLAG' (1, -999)

```
Top 10 best features selected by this method are :
F_PU6 : 695.6036391089294
S PU6: 685.6517140148434
S PU11 : 313.42573044363075
F PU11: 289.9837332248577
F PU7: 17.728121058156763
5 PU7 : 16.900190917996746
L T1: 3.5553826455702273
P J14 : 2.0296320559887167
S PU2: 1.1024679456696937
P J269 : 1.0682360601717962
Top 10 worst features selected by this method are :
S PU8 : 5.033210882264993e-05
L T2: 0.0014803037674457193
L T3: 0.010753601483845862
P J289 : 0.01148811139117855
P J300 : 0.01189105092839934
L T4: 0.012425482745645273
P J422 : 0.012583932773734138
F V2: 0.014477739198065338
P J415 : 0.01711877962242293
L T6: 0.019690658313144066
F PU6: 695.6036391089294
S PU6: 685.6517140148434
S PU11 : 313.42573044363075
```

F DI11 + 289 9837332248577

Conclusion

Model	Accuracy	Precision	Recall	F1-Score
DT	98.998	99.613	98.594	99.063
KNN	98.680	99.077	98.292	98.679
RF	89.276	90.082	88.349	89.186

Model	Accuracy	Precision	Recall	F1-Score
DT	98.998	99.613	<u>98.594</u>	99.063
Ensemble1 – AVG	99.048	99.379	98.536	99.022
Ensemble2 – 211	98.931	99.757	98.205	98.973
Ensemble3 – 221	98.948	99.413	98.638	99.055
Ensemble4 – 432	98.964	99.379	96.601	99.007 89.186
Ensemble5 – 113	89.276	90.082	88.349	89.186

Conclusion

- Decision tree model give highest recall and F1-score
- If target to **reduce False Positive**, consider **Ensemble model** weight DT=2, KNN=1, RF=1
- Some features, such as '90' sign is more significant than it's numerical value
- Some features, such as '88' it's numerical value is more significant than it's sign
- Newer Water Distribution System(WADI2019) is tolerant to removing top features and still giving high recall and F1-score.
- BATADAL2017 show that features on Pump flow and Pump status are the most 2 important features to determines the attack.

Future Improvement

- Given **features with low score** to **Deep Learning** Model since we have 172,801 row. Already Prepare Deep Learning Model(Mine, Rock) from Aj. Wasin. Next step input dataset.
- Train model on **newer dataset** when labeled dataset available
- Train model on **Electricity system**, **Gas system**
- Use transformer(Improve from LSTM) to train model

linear? Tensorflow use sigmoid

BCELoss()

```
model. X train, v train, x val. v val. learning rate - 1e-3. n epochs - 250. batch size - 10
 batch_start = torch.arange(0, len(x_train), batch_size
  with tgdm(batch start, unit = 'batch', mininterval = 0, disable = True) as ba
     x batch = X train[start: start + batch size]
       acc = (y_pred.round() == y_batch).float().mean()
   acc = (y_pred.round() == y_val).float().mean()
model.load_state_dict(best_weights
or train, val in kfold.split(X train, y train)
```


Q&A

BATADAL2017

- [DT] cross validation
- Accuracy 94.898%
- Precision 61.179%
- Recall 54.460%
- F1-Score 54.632%

```
###### Features: count = 43 ######
Index([' L T1', ' L T2', ' L T3', ' L T4', ' L T5', ' L T6', ' L T7', ' F PU1',
      'S_PU1', 'F_PU2', 'S_PU2', 'F_PU3', 'S_PU3', 'F_PU4', 'S_PU4',
      'F_PU5', 'S_PU5', 'F_PU6', 'S_PU6', 'F_PU7', 'S_PU7', 'F_PU8',
      'S_PU8', 'F_PU9', 'S_PU9', 'F_PU10', 'S_PU10', 'F_PU11',
      'S_PU11', 'F_V2', 'S_V2', 'P_J280', 'P_J269', 'P_J300', 'P_J256',
      'P_J289', 'P_J415', 'P_J302', 'P_J306', 'P_J307', 'P_J317',
      ' P J14', ' P J422'],
     dtype='object')
=== [ DT ] Cross validation performance ===
 Accuracy: 94.898 +-(2.596)
 Precision: 61.179 +-(20.998)
 Recall : 54.460 +-(20.476)
     [0.85714286 0.4
                                               0.83333333 0.66666667
                           0.55555556 0.5
0.28571429 0.3 0.33333333 0.71428571
 F1-Score : 54.632 +-(14.795)
```


BATADAL2017

- [DT] focus on Attack
- Accuracy 95.375%
- Precision 64.625%
- Recall 65.625%
- F1-Scorre 65.121%

Water Treatment Network Diagram

PLC: Allen-Bradley

Subnet: 192.168.1.0/24

Protocol:

EtherNet/IP (ENIP)

