DR. LOUISE BREUVAL

lbreuval@jhu.edu breuval.github.io

CURRENT POSITION

Postdoctoral Researcher

Jan 2022 - Dec 2024

Johns Hopkins University, Baltimore, MD, USA

Advisor: Adam G. Riess

RESEARCH INTERESTS

Cosmology: the Cepheid-SNIa distance ladder and the Hubble tension

Stellar physics: metallicity effects, open clusters and applications to distance measurements Techniques: photometry (HST, JWST), light curve fitting, spectroscopy (metallicity gradients)

EDUCATION

Observatoire de Paris, LESIA, France

Sept 2018 - Oct 2021

PhD in Astronomy

Thesis: The Cepheid distance scale: from the local Gaia calibration to distant galaxies (link)

Advisor: Pierre Kervella

Université Paris Saclay, France

Master's Degree in Astronomy
2018
Bachelor's Degree in Fundamental Physics
2016

COMPUTATIONAL SKILLS

Operating Systems MacOS, Windows, Linux Computer Languages Python, IDL, LATEX

Observation Software APT (HST, JWST), Aspro2 (VLTI), TUI (APO)

Astronomical Software DS9, DrizzlePac, DAOPHOT, DOLPHOT

Miscellaneous/Tools MAST, CDS/VizieR

ACTIVITIES FOR THE COMMUNITY

♦ JWST Cycle 3 Time Allocation Committee Panel Member (Large Scale Structures)	2024
♦ Organizing Committee of the weekly AstroCoffee Talks, JHU	2022 - 2024
♦ Referee for ApJ, A&A, MNRAS (4+ papers)	2021 - Present
♦ Elected Student Representative at the Executive Board of Paris Observatory	2019 - 2021

COLLABORATIONS

The SH0ES Collaboration (PI: Adam Riess)	2022 - Present
The Araucaria Project (PI: Grzegorz Pietrzyński & Wolfgang Gieren; website)	2018 - 2022

PUBLICATION SUMMARY

NASA/ADS Link to All Publications

23 Refereed Publications (5 as first author)

1490 Citations (145 as first author)

${\bf HONORS/AWARDS/GRANTS}$

HST Grant as PI of program GO-17520: \$81,000 Awarded by the Space Telescope Science Institute Nominated Young Scientist 12021- ISSI Team on the Hubble tension (PI: Gisella Clementini; website) Prize of the Best Poster Cosmic Controversies Conference, Chicago, IL, USA OBSERVING TIME AWARDED HST Cycle 31, GO-17520 (PI) - 33 orbits A 1% cross-calibration of Cepheids, TRGB, and JAGB in five nearby galaxies with HST Apache Point Observatory, ARCES (co-1) - 1 half night (PI: S. Li) Towards a Standardization of the J-region Asymptotic Giant Branch JWST Cycle 2, GO-4087 (co-1) - 2.9 hours (PI: C. Huang) Refining the Mira Distance Ladder with NIRCam Observations of M101 JWST Cycle 2, GO-2875 (co-1) - 16 hours (PI: A. Riess) Scrutinizing the Dirtiest Cepheids, a Test of the Hubble Tension HST Cycle 30, GO-17097 (co-1) - 15 orbits (PI: A. Riess) Reinforcing the Distance Ladder with Cepheids in the Core of the SMC HST Cycle 30, SNAP-17098 (co-1) - 140 orbits (PI: A. Riess) Resinforcing the Distance Ladder with Cepheids in the Core of the Distance Ladder Apache Point Observatory, ARCES (PI) - 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-1) - 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-1) - 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-1) - program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary Modern methods of cosmic distance determination, Lecture April: Paris Doctoral School in Astrophysics (ED 127), France		
Awarded by the Space Telescope Science Institute Nominated Young Scientist 1SSI Team on the Hubble tension (PI: Gisella Clementini; website) Prize of the Best Poster Cosmic Controversies Conference, Chicago, IL, USA OBSERVING TIME AWARDED HST Cycle 31, GO-17520 (PI) - 33 orbits A 1% cross-calibration of Cepheids, TRGB, and JAGB in five nearby galaxies with HST Apache Point Observatory, ARCES (co-I) - 1 half night (PI: S. Li) Towards a Standardization of the J-region Asymptotic Giant Branch JWST Cycle 2, GO-4087 (co-I) - 2.9 hours (PI: C. Huang) Refining the Mira Distance Ladder with NIRCam Observations of M101 JWST Cycle 2, GO-2875 (co-I) - 16 hours (PI: A. Riess) Scrutinizing the Dirtiest Cepheids, a Test of the Hubble Tension HST Cycle 30, GO-17097 (co-I) - 15 orbits (PI: A. Riess) Reinforcing the Distance Ladder with Cepheids in the Core of the SMC HST Cycle 30, SNAP-17098 (co-I) - 140 orbits (PI: A. Riess) HST and Gaia, with Light and Distances, a Foundational Legacy of the Distance Ladder Apache Point Observatory, ARCES (PI) - 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-I) - 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) - 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) - program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheids variables Cerro Armazones Observatory, Chile (co-I) - 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary • Modern methods of cosmic distance determination, Lecture April Paris Doctoral School in Astrophysics (ED 127), France		202
Prize of the Best Poster Cosmic Controversies Conference, Chicago, IL, USA OBSERVING TIME AWARDED HST Cycle 31, GO-17520 (PI) − 33 orbits A 1% cross-calibration of Cepheids, TRGB, and JAGB in five nearby galaxies with HST Apache Point Observatory, ARCES (co-I) − 1 half night (PI: S. Li) Towards a Standardization of the J-region Asymptotic Giant Brunch JWST Cycle 2, GO-4087 (co-I) − 2.9 hours (PI: C. Huang) Refining the Mira Distance Ladder with NIRCam Observations of M101 JWST Cycle 2, GO-2875 (co-I) − 16 hours (PI: A. Riess) Scrutinizing the Dirtiest Cepheids, a Test of the Hubble Tension HST Cycle 30, GO-17097 (co-I) − 15 orbits (PI: A. Riess) Reinforcing the Distance Ladder with Cepheids in the Core of the SMC HST Cycle 30, SNAP-17098 (co-I) − 140 orbits (PI: A. Riess) HST and Gaia, with Light and Distances, a Foundational Legacy of the Distance Ladder Apache Point Observatory, ARCES (PI) − 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-I) − 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaces to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) − 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLIT/PIONIER (co-I) − program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) − 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary Modern methods of cosmic distance determination, Lecture April 19 Paris Doctoral School in Astrophysics (ED 127), France		202
OBSERVING TIME AWARDED HST Cycle 31, GO-17520 (PI) – 33 orbits A 1% cross-calibration of Cepheids, TRGB, and JAGB in five nearby galaxies with HST Apache Point Observatory, ARCES (co-I) – 1 half night (PI: S. Li) Towards a Standardization of the J-region Asymptotic Giant Branch JWST Cycle 2, GO-4087 (co-I) – 2.9 hours (PI: C. Huang) Refining the Mira Distance Ladder with NIRCam Observations of M101 JWST Cycle 2, GO-2875 (co-I) – 16 hours (PI: A. Riess) Scrutinizing the Dirtiest Cepheids, a Test of the Hubble Tension HST Cycle 30, GO-17097 (co-I) – 15 orbits (PI: A. Riess) Reinforcing the Distance Ladder with Cepheids in the Core of the SMC HST Cycle 30, SNAP-17098 (co-I) – 140 orbits (PI: A. Riess) HST and Gaia, with Light and Distances, a Foundational Legacy of the Distance Ladder Apache Point Observatory, ARCES (PI) – 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-I) – 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) – 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) – program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) – 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary ◇ Modern methods of cosmic distance determination, Lecture April •	_	202
HST Cycle 31, GO-17520 (PI) − 33 orbits A 1% cross-calibration of Cepheids, TRGB, and JAGB in five nearby galaxies with HST Apache Point Observatory, ARCES (co-I) − 1 half night (PI: S. Li) Towards a Standardization of the J-region Asymptotic Giant Branch JWST Cycle 2, GO-4087 (co-I) − 2.9 hours (PI: C. Huang) Refining the Mira Distance Ladder with NIRCam Observations of M101 JWST Cycle 2, GO-2875 (co-I) − 16 hours (PI: A. Riess) Scrutinizing the Dirtiest Cepheids, a Test of the Hubble Tension HST Cycle 30, GO-17097 (co-I) − 15 orbits (PI: A. Riess) Reinforcing the Distance Ladder with Cepheids in the Core of the SMC HST Cycle 30, SNAP-17098 (co-I) − 140 orbits (PI: A. Riess) HST and Gaia, with Light and Distances, a Foundational Legacy of the Distance Ladder Apache Point Observatory, ARCES (PI) − 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-I) − 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) − 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) − program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) − 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary ◇ Modern methods of cosmic distance determination, Lecture April Paris Doctoral School in Astrophysics (ED 127), France		2019
A 1% cross-calibration of Cepheids, TRGB, and JAGB in five nearby galaxies with HST Apache Point Observatory, ARCES (co-I) – 1 half night (PI: S. Li) Towards a Standardization of the J-region Asymptotic Giant Branch JWST Cycle 2, GO-4087 (co-I) – 2.9 hours (PI: C. Huang) Refining the Mira Distance Ladder with NIRCam Observations of M101 JWST Cycle 2, GO-2875 (co-I) – 16 hours (PI: A. Riess) Scrutinizing the Dirtiest Cepheids, a Test of the Hubble Tension HST Cycle 30, GO-17097 (co-I) – 15 orbits (PI: A. Riess) Reinforcing the Distance Ladder with Cepheids in the Core of the SMC HST Cycle 30, SNAP-17098 (co-I) – 140 orbits (PI: A. Riess) HST and Gaia, with Light and Distances, a Foundational Legacy of the Distance Ladder Apache Point Observatory, ARCES (PI) – 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-I) – 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) – 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) – program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) – 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary April Paris Doctoral School in Astrophysics (ED 127), France	TIME AWARDED	
Towards a Standardization of the J-region Asymptotic Giant Branch JWST Cycle 2, GO-4087 (co-I) – 2.9 hours (PI: C. Huang) Refining the Mira Distance Ladder with NIRCam Observations of M101 JWST Cycle 2, GO-2875 (co-I) – 16 hours (PI: A. Riess) Scrutinizing the Dirtiest Cepheids, a Test of the Hubble Tension HST Cycle 30, GO-17097 (co-I) – 15 orbits (PI: A. Riess) Reinforcing the Distance Ladder with Cepheids in the Core of the SMC HST Cycle 30, SNAP-17098 (co-I) – 140 orbits (PI: A. Riess) HST and Gaia, with Light and Distances, a Foundational Legacy of the Distance Ladder Apache Point Observatory, ARCES (PI) – 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-I) – 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) – 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) – program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) – 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary \$\lambda\$ Modern methods of cosmic distance determination, Lecture April Paris Doctoral School in Astrophysics (ED 127), France		202
Refining the Mira Distance Ladder with NIRCam Observations of M101 JWST Cycle 2, GO-2875 (co-I) – 16 hours (PI: A. Riess) Scrutinizing the Dirtiest Cepheids, a Test of the Hubble Tension HST Cycle 30, GO-17097 (co-I) – 15 orbits (PI: A. Riess) Reinforcing the Distance Ladder with Cepheids in the Core of the SMC HST Cycle 30, SNAP-17098 (co-I) – 140 orbits (PI: A. Riess) HST and Gaia, with Light and Distances, a Foundational Legacy of the Distance Ladder Apache Point Observatory, ARCES (PI) – 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-I) – 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) – 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) – program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) – 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary \$\int Modern methods of cosmic distance determination, Lecture April: Paris Doctoral School in Astrophysics (ED 127), France	nt Observatory, ARCES (co-I) – 1 half night (PI: S. Li)	2024
Scrutinizing the Dirtiest Cepheids, a Test of the Hubble Tension HST Cycle 30, GO-17097 (co-I) – 15 orbits (PI: A. Riess) Reinforcing the Distance Ladder with Cepheids in the Core of the SMC HST Cycle 30, SNAP-17098 (co-I) – 140 orbits (PI: A. Riess) HST and Gaia, with Light and Distances, a Foundational Legacy of the Distance Ladder Apache Point Observatory, ARCES (PI) – 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-I) – 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) – 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) – program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) – 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary April 1 Paris Doctoral School in Astrophysics (ED 127), France	Mira Distance Ladder with NIRCam Observations of M101	2023
Reinforcing the Distance Ladder with Cepheids in the Core of the SMC HST Cycle 30, SNAP-17098 (co-I) – 140 orbits (PI: A. Riess) HST and Gaia, with Light and Distances, a Foundational Legacy of the Distance Ladder Apache Point Observatory, ARCES (PI) – 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-I) – 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) – 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) – program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) – 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary April Paris Doctoral School in Astrophysics (ED 127), France	the Dirtiest Cepheids, a Test of the Hubble Tension	2023
HST and Gaia, with Light and Distances, a Foundational Legacy of the Distance Ladder Apache Point Observatory, ARCES (PI) − 4 half nights (Q2, Q3) Chemical abundances of Galactic Cepheids to reduce systematics in the distance scale HST Cycle 29, GO-16676 (co-I) − 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) − 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) − program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) − 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary ◇ Modern methods of cosmic distance determination, Lecture April Paris Doctoral School in Astrophysics (ED 127), France	he Distance Ladder with Cepheids in the Core of the SMC	202
HST Cycle 29, GO-16676 (co-I) − 10 orbits (PI: A. Riess) A 1% Calibration of the Distance Ladder from Cepheids Using High Precision Cluster Parallaxes to Reveal the Origin of the Hubble Tension JWST Cycle 1, GO-1685 (co-I) − 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) − program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) − 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary ⋄ Modern methods of cosmic distance determination, Lecture April 19 Paris Doctoral School in Astrophysics (ED 127), France	ia, with Light and Distances, a Foundational Legacy of the Distance Ladder nt Observatory, ARCES (PI) – 4 half nights (Q2, Q3)	202
JWST Cycle 1, GO-1685 (co-I) – 25.5 hours (PI: A. Riess) Uncrowding the Cepheids for an Improved Determination of the Hubble Constant ESO VLTI/PIONIER (co-I) – program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) – 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary \$\int Modern methods of cosmic distance determination, Lecture April : Paris Doctoral School in Astrophysics (ED 127), France	29, GO-16676 (co-I) – 10 orbits (PI: A. Riess) tion of the Distance Ladder from Cepheids Using High Precision Cluster	202
ESO VLTI/PIONIER (co-I) – program 0103.D-0711 (PI: B. Trahin) IR interferometry to measure angular diameter of Cepheid variables Cerro Armazones Observatory, Chile (co-I) – 50 nights (PI: Araucaria Project, link) IR photometry of Milky Way Cepheids and RR Lyrae variables TEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary \$\diamega\$ Modern methods of cosmic distance determination, Lecture Paris Doctoral School in Astrophysics (ED 127), France	e 1, GO-1685 (co-I) – 25.5 hours (PI: A. Riess)	202
IR photometry of Milky Way Cepheids and RR Lyrae variables FEACHING EXPERIENCE International Spring School, Konkoly Observatory, Budapest, Hungary ⋄ Modern methods of cosmic distance determination, Lecture Paris Doctoral School in Astrophysics (ED 127), France	PIONIER (co-I) – program 0103.D-0711 (PI: B. Trahin)	202
International Spring School, Konkoly Observatory, Budapest, Hungary > Modern methods of cosmic distance determination, Lecture April : Paris Doctoral School in Astrophysics (ED 127), France		2020
 ⋄ Modern methods of cosmic distance determination, Lecture April : Paris Doctoral School in Astrophysics (ED 127), France 	XPERIENCE	
· · · · · · · · · · · · · · · · · · ·		2023
	·	2022
 ♦ Optics, 1st year of Physics Degree ♦ Introduction to Astronomy, 1st and 2nd year of Physics Degree Sept 2019 - Jun Sept 2019 - Jun 	of a Master Student, Lab Insertion Unit year of Physics Degree n to Astronomy, 1st and 2nd year of Physics Degree Sept 2020 - Dec Sept 2019 - Jun Sept 2019 - Jun	202

\mathbf{TALKS}

RRL/Cep Conference - Marrakesh, Morocco (invited)	23 Nov 2024
APS Meeting – Sacramento, CA, USA (invited)	4 Apr 2024
Seminar – Florida State University, online (invited)	11 Oct 2023
MIAPP Workshop - The extragalactic distance scale, Garching, Germany	3 July 2023
AstroCoffee Talk – Johns Hopkins University, Baltimore, MD, USA	1 June 2023
IAU Symposium 376 – Budapest, Hungary	17 Apr 2023
Seminar – Johns Hopkins University, Baltimore, MD, USA	27 Mar 2023
AAS Meeting 241 SH0ES Special Session – Seattle, WA, USA	8 Jan 2023
RRL/Cep Conference – La Palma, Spain	26 Sep 2022
Tensions in Cosmology Conference – Corfu Summer Institute, Greece	7 Sep 2022
Hot Science Colloquium – STScI, Baltimore, MD, USA	29 June 2022
Rencontres de Blois Exploring the Dark Universe – Blois, France	25 May 2022
MIAPP Workshop The Hubble Tension - online (invited)	29 Sep 2021
EAS Annual Meeting – online	29 June 2021
Hypatia Colloquium – European Southern Observatory, online	8 June 2021
Gaia EDR3 Day Presentation of Gaia DR2 results – Observatoire de Paris	3 Dec 2020
Seminar – Nuclear and High Energy Physics Laboratory, Paris, France (invited)	28 Sep 2020
Workshop MW-Gaia Frontiers of Stellar Physics – Zagreb, Croatia	21 Jan 2020
Dark Energy Colloquium – Institut Henri Poincaré, Paris, France	20 Nov 2019
RRL/Cep Conference Frontiers of Classical Pulsators - Cloudcroft, NM, USA	18 Oct 2019
Cosmic Controversies Conference – Chicago, IL, USA	8 Oct 2019
Annual Meeting of the SF2A – Nice, France	15 May 2019
	· ·
OUTREACH	
Educational projects with primary schools (Paris, France – 3 projects/yr)	2019 - 2021
Member of the French Association Femmes & Sciences that promotes science to women	2019 - 2022
MEDIA COVERAGE	
"Looking Ahead as We Look Far Through the JWST", Astrobites at APS April 2024 (li	<u>nk</u>) Apr 2024
"La cosmologie en crise ?! Hubble sous tension", Science Etonnante (YouTube, link)	Feb 2022
"L'expansion qui gonfle les astrophysiciens", Sciences & Vie Junior (<u>link</u>)	July 2022
"Constante de Hubble: une estimation plus précise grâce à Gaia", Pour La Science (link	<u>s</u>) Jan 2021
"Expansion de l'univers: rien ne va plus!", Sciences & Vie (<u>link</u>)	Dec 2020

LANGUAGES

French (native), English (fluent), Spanish (fluent), German (intermediate)

REFEREED PUBLICATIONS

FIRST AUTHOR

Breuval, L., Riess, A. G., Casertano, S., Yuan, W., Macri, L. M., Romaniello, M., Murakami, Y. S., Scolnic, D., Anand, G. S., Soszyński, I., Small Magellanic Cloud Cepheids Observed with the Hubble Space Telescope Provide a New Anchor for the SH0ES Distance Ladder, arXiv:2404.08038 (2024)

Breuval, L., Riess, A. G., Macri, L. M., Li, S., Yuan, W., Casertano, S., Konchady, T., Trahin, B., Durbin, M. J., Williams, B. F., A 1.3% Distance to M33 from Hubble Space Telescope Cepheid Photometry, ApJ 951, 118 (2023)

Breuval, L., Riess A. G., Kervella P., Anderson R. I., Romaniello M., An Improved Calibration of the Wavelength Dependence of Metallicity on the Cepheid Leavitt law, ApJ 939, 89 (2022)

Breuval, L., Kervella, P., Wielgórski, P., Gieren, W., Graczyk, D., Trahin, B., Pietrzyński, G., Arenou, F., Javanmardi, B., Zgirski, B., *The influence of metallicity on the Leavitt law from geometrical distances of Milky Way and Magellanic Cloud Cepheids*, ApJ 913, 38 (2021)

Breuval, L., Kervella, P., Anderson, R. I., Riess, A. G., Arenou, F., Trahin, B., Mérand, A., Gallenne, A., Gieren, W., Storm, J., Bono, G., Pietrzyński, G., Nardetto, N., Javanmardi, B., Hocdé, V., *The Milky Way Cepheid Leavitt law based on Gaia DR2 parallaxes of companion stars and host open cluster populations*, A&A 643, A115 (2020)

SECOND AUTHOR

Riess, A. G., **Breuval, L.**, Yuan, W., Casertano, S., Macri, L. M., Bowers, J. B., Scolnic, D., Cantat-Gaudin, T., Anderson, R. I., Cruz-Reyes, M., *Cluster Cepheids with High Precision Gaia Parallaxes*, Low Zeropoint Uncertainties, and Hubble Space Telescope Photometry, ApJ, 938, 36 (2022)

Trahin, B., **Breuval, L.**, Kervella, P., Mérand, A., Nardetto, N., Gallenne, A., Hocdé, V., Gieren, W., Inspecting the Cepheid parallax-of-pulsation using Gaia EDR3 parallaxes, A&A 656, A102 (2021)

CO-AUTHOR

Li, S., Riess, A. G., Casertano, S., Anand, G. S.; Scolnic, D. M.; Yuan, W.; **Breuval, L.**; Huang, C. D, Reconnaissance with JWST of the J-region Asymptotic Giant Branch in Distance Ladder Galaxies: From Irregular Luminosity Functions to Approximation of the Hubble Constant, ApJ 966, 20 (2024)

Riess, A. G., Anand, G. S., Yuan, W., Casertano, S., Dolphin, A., Macri, L. M., **Breuval, L.**, Scolnic, D., Perrin, M., Anderson, R. I., *JWST Observations Reject Unrecognized Crowding of Cepheid Photometry as an Explanation for the Hubble Tension at 8\sigma Confidence, ApJ, 962, 17 (2024)*

Anand, G. S., Riess, A. G., Yuan, W., Beaton, R., Casertano, S., Li, S., Makarov, D. I., Makarova, L. N., Tully, R. B., Anderson, R. I., **Breuval, L.**, Dolphin, A., Karachentsev, I. D., Macri, L. M., Scolnic, D., *Tip of the Red Giant Branch Distances with JWST: An Absolute Calibration in NGC 4258 and First Applications to Type Ia Supernova Hosts*, ApJ 966, 89 (2024)

- Bras, G., Kervella, P., Trahin, B., Wielgórski, P., Zgirski, B., Mérand, A., Nardetto, N., Gallenne, A., Hocdé, V., **Breuval, L.**, Afanasiev, A., Pietrzyński, G., Gieren, W., *The Baade-Wesselink projection factor of RR Lyrae stars Calibration from OHP/SOPHIE spectroscopy and Gaia DR3 parallaxes*, A&A 684, 126 (2024)
- Riess, A. G., Anand, G. S., Yuan, W., Casertano, S., Dolphin, A., Macri, L. M., **Breuval, L.**, Scolnic, D., Perrin, M., Anderson, R. I., *Crowded No More: The Accuracy of the Hubble Constant Tested with High Resolution Observations of Cepheids by JWST*, ApJ 956, L18 (2023)
- Evans, N. R., Engle, S., Pillitteri, I., Guinan, E., Günther, H. M., Wolk, S., Neilson, H., Marengo, M., Matthews, L. D., Moschou, S., Drake, J. J., Winston, E. M., Moe, M., Kervella, P., **Breuval, L.**, X-rays in Cepheids: Identifying Low-Mass Companions of Intermediate-Mass Stars, ApJ 938, 153 (2022)
- Riess, A. G., Yuan, W., Macri, L. M., Scolnic, D., Brout, D., Casertano, S., Jones, D. O., Murakami, Y., Anand, G. S., **Breuval, L.**, Brink, T. G., Filippenko, A. V., Hoffmann, S., Jha, S. W., Kenworthy, D. W., Mackenty, J., Stahl, B. E., Zheng, W., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s⁻¹ Mpc⁻¹ uncertainty from the Hubble Space Telescope and the SH0ES team, ApJL 934, 7 (2022)
- Wielgórski, P., Pietrzyński, G., Pilecki, B., Gieren, W., Zgirski, B., Górski, M., Hajdu, G., Narloch, W., Karczmarek, P., Smolec, R., Kervella, P., Storm, J., Gallenne, A., **Breuval, L.**, Lewis, M., Kaluszyński, M., Graczyk, D., Pych, W., Suchomska, K., Taormina, M., Rojas Garcia, G., Kotek, A., Chini, R., Pozo Nũnez, F., Noroozi, S., Sobrino Figaredo, C., Haas, M., Hodapp, K., Mikolajczyk, P., Kotysz, K., Moździerski, D., Kolaczek-Szymański, P., An absolute calibration of the near-infrared Period-Luminosity Relations of Type II Cepheids in the Milky Way and in the Large Magellanic Cloud, ApJ 927, 89 (2022)
- Gallenne, A., Mérand, A., Kervella, P., Pietrzyński, G., Gieren, W., Hocdé, V., **Breuval, L.**, Nardetto, N., Lagadec, E., *Extended envelopes around Galactic Cepheids. V. Multi-wavelength and time- dependent analysis of IR excess*, A&A 651, A113 (2021)
- Javanmardi, B., Mérand, A., Kervella, P., **Breuval, L.**, Gallenne, A., Nardetto, N., Gieren, W., Pietrzyński, G., Hocdé, V., Borgniet, S., *Inspecting the Cepheid distance ladder: The Hubble Space Telescope distance to SNIa host galaxy NGC 5584*, ApJ 911, 12 (2021)
- Hocdé V., Nardetto, N., Matter, A., Lagadec, E., [+50 authors], **Breuval, L.**, [+99 authors], *Mid-infrared circumstellar emission of the long-period Cepheid l Carinae resolved with VLTI/ MATISSE*, A&A 651, A92 (2021)
- Hocdé, V., Nardetto, N., Borgniet, S., Lagadec, E., Kervella, P., Mérand, A., Evans, N., Gillet, D., Mathias, Ph., Chiavassa, A., Gallenne, A., **Breuval, L.**, Javanmardi, B., *Pulsating chromosphere of classical Cepheids. Calcium infrared triplet and Hα profile variations*, <u>A&A 641, A74 (2020)</u>
- Hocdé, V., Nardetto, N., Lagadec, E., Niccolini, G., Domiciano de Souza, A., Mérand, A., Kervella, P., Gallenne, A., Marengo, M., Trahin, B., Gieren, W., Pietrzyński, G., Borgniet, S., **Breuval, L.**, Javanmardi, B., A thin shell of ionized gas as the explanation of infrared excess among classical Cepheids, A&A 633, A47 (2020)

Borgniet, S., Kervella, P., Nardetto, N., Gallenne, A., Mérand, A., Anderson, R.I., Aufdenberg, J., **Breuval, L.**, Gieren W., Hocdé V., Javanmardi B., Lagadec E., Pietrzyński G., Trahin B., *Consistent radial velocities of classical Cepheids from the cross-correlation technique*, A&A 613, A37 (2019)

Graczyk, D., Pietrzyński, G., Gieren, W., Storm, J., Nardetto, N., Gallenne, A., Maxted, P. F. L., Kervella, P., Kołaczkowski, Z., Konorski, P., Pilecki, B., Zgirski, B., Górski, M., Suchomska, K., Karczmarek, P., Taormina, M., Wielgórski, P., Narloch, W., Smolec, R., Chini, R., **Breuval, L.**, Testing systematics of Gaia DR2 parallaxes with empirical surface brightness: color relations applied to eclipsing binaries, ApJ 872, 85 (2019)

Last updated: 3 May 2024