- 2.1 $2/N, 37, \sqrt{N}, N, N \log \log N, N \log N, N \log(N^2), N \log^2 N, N^{1.5}, N^2, N^2 \log N, N^3, 2^{N/2}, 2^N, N \log N \text{ and } N \log(N^2) \text{ grow at the same rate.}$
- 2.3 We claim that $N \log N$ is the slower growing function. To see this, suppose otherwise. Then, $N^{\epsilon/\sqrt{\log N}}$ would grow slower than $\log N$. Taking logs of both sides, we find that, under this assumption, $\epsilon/\sqrt{\log N}\log N$ grows slower than $\log\log N$. But the first expression simplifies to $\epsilon\sqrt{\log N}$. If $L=\log N$, then we are chiming that $\epsilon\sqrt{L}$ grows slower than $\log L$, or equivalently, that $\epsilon^2 L$ grows slower than $\log^2 L$. But we know that $\log^2 L=o(L)$, so the original assumption is false, proving the claim.
- 2.7 Far all these programs, the following analysis will agree with a simulation:
 - (I) The running time is O(N).
 - (II) The running time is $O(N^2)$.
 - (III) The running time is $O(N^3)$.
 - (IV) The running time is $O(N^2)$.
 - (V) j can be as large as i^2 , which could be as large as N^2 . It can be as large as j, which is N^2 . The running time is thus proportional to N^2N^2 , which is $O(N^5)$.
 - (VI) The *if* statement is executed at most N^3 times, by previous arguments, but it is true only $O(N^2)$ times (because it is true exactly *i* times for each *i*). Thus the innermost loop is only executed $O(N^2)$ times. Each time through, it takes $O(j^2) = O(N^2)$ times for a total of $O(N^4)$. This is an example where multiplying loop sizes can occasionally give an overestimate

2.12

- (a) N=12000000
- (b) If they can get to NlogN=log100 * 12000000, give full points
- (c) N≈34641
- (d)N4932
- 2.20 in! Test to see if N is an odd number (or 21 and is not divisible by 3, 5, 7, ... \sqrt{N}
 - (b) $O(\sqrt{N})$, assuming that all divisions count for one unit of time
 - (c) $B = O(\log N)$.
 - (d) $O(2^{B/2})$.
 - (e) If a 20-bit number can be tested in time T, then a 40-bit number would require about T^2 time.
 - (f) B is the better measure because it more accurately represents the size of the input.

3.23

(a, b) This function will read m from standard input an infix expression of single lower case characters and the operators, +, -,/,*,^ and (,), and output a postfix expression. void inToPostfix() { stack<char> s; char token; cin>> token; while (token!= '=') { if (token >= 'a' && token <= 'z') cout<<token<<""; else switch (token) {

```
case ')': while(!s.empty() && s.top() != '(')
{ cout << s.top() << " "; s.pop(); }
s.pop(); break;
s.tob()==,(,))
{cout<<s.top(); s.pop();}
s.push(token); break;
case '*':
case '/': while(!s.empty() & & s.top() != '+'
&& s.top() != '-' && s.top() != '(')
{cout<<s.top(); s.pop();}
s.push(token); break;
case '+':
case '-': while(!s.empty() & & stop()!= '(')
{cout<<s.top()<<''; s.pop();}
s.push(token); break;
}
cin>> token;
}
while (!s.empty())
{cout<<s.top()<<" "; s.pop();}
cout << " = \n";
}
(c) The function converts postfix to infix with the same restrictions as above.
string postToInfix() {
stack<string>s;
string token;
string a, b;
cin>>token;
while (token[0]!= '=') {
if (token[0] >= 'a' & & token[0] <= 'z')
s.push(token);
else
switch (token[0]) {
case '+' : a = s.top(); s.pop(); b = s.top(); s.pop(); s.push("("+a+"+"+b+")"); break;
case '-' : a = s.top(); s.pop(); b = s.top(); s.pop();
s.push("("+a+" = "+b+")"); break;
case '*' : a = s.top(); s.pop(); b = s.top(); s.pop();
s.push("("+a+" * "+b+")"); break,
case '/' : a = s.top(); s.pop(); b = s.top(); s.pop();
s.push("("+a+"/"+b+")"); break;
case '\hat{\gamma}': a = s.top(); s.pop(); b = s.top(); s.pop();
s.push("("+a+" ^ " + b+")"); break;
}
cin>> token;
return s.top();
} //Converts postfix to infix
```