



(1) Veröffentlichungsnummer: 0 492 366 A2

(2)

# **EUROPÄISCHE PATENTANMELDUNG**

(21) Anmeldenummer: 91121622.4

Anmeldetag: 17.12.91

(i) Int. Cl.5: **C07D** 215/28, A01N 25/32, C07F 7/18

3 Priorität: 21.12.90 DE 4041121

(4) Veröffentlichungstag der Anmeldung: 01.07.92 Patentblatt 92/27

 Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB IT LI NL (1) Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 W-6230 Frankfurt am Main 80(DE)

Erfinder: Schütze, Rainer, Dr.

Am Flachsland 54

W-6233 Kelkhelm (Taunus)(DE) Erfinder: Löher, Heinz-Josef, Dr.

Ahornweg 14

W-6237 Llederbach(DE) Erfinder: Zlemer, Frank, Dr.

Gerlachstrasse 30

W-6230 Frankfurt am Main(DE) Erfinder: Bauer, Klaus, Dr. **Doorner Strasse 53d** W-6450 Hanau(DE)

Erfinder: Bleringer, Hermann, Dr.

Eichenweg 26

W-6239 Eppstein/Taunus(DE)

- Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden.
- Die Erfindung betrifft Herbizid-Safener der in Anspruch 1 gezeigten Formel I, worin R¹,R² H oder (C₁-C₄)-Alkyl, X O oder S oder NR4, wobei R4 H, (C1-C6)-Alkyl, (C1-C6)-Alkoxy oder gegebenenfalls substituiertes Phenyl bedeutet, A  $(C_1-C_6)$ -Alkylen,  $(C_4-C_8)$ -Alkenylen,  $(C_4-C_8)$ -Alkinylen,  $(C_3-C_8)$ -Cycloalkylen oder  $(C_3-C_8)$ -Alkinylen,  $(C_3-C_8)$ -Cycloalkylen oder  $(C_3-C_8)$ -Alkinylen,  $(C_3-C_8)$ -Cycloalkylen oder  $(C_3-C_8)$ -Cycloalkyle Cycloalkenylen,

R³ (C₃-C₄)-Alkenyloxy, (C₃-C₄)-Alkinyloxy, (subst.) Phenyl-(C₁-C₄)-alkoxy, R⁵R⁵R7Si-, R⁵R⁵R7Si-O-, R⁵R⁵R7Si-O-(C<sub>1</sub>-C<sub>4</sub>)-alkoxy, (C<sub>3</sub>-C<sub>6</sub>)-Alkenyloxycarbonyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkinyloxycarbonyl, (subst.) Phenyl-(C<sub>1</sub>-C<sub>4</sub>)-alkoxycarbonyl,  $R^5R^6C = N-O-CO-$ ,  $R^5R^6C = N-O-$ ,  $R^5R^6N-O-$ ,  $R^5R^6C = N-$ ,  $(C_2-C_6)-Alkenylcarbonyl$  $(Hydroxyimino)-(C_1-C_6)-alkyl,\ 1-[(C_1-C_4)-Alkylimino]-(C_1-C_6)-alkyl,\ 1-((C_1-C_4)-Alkoxyimino)-(C_1-C_6)-alkyl,\ ain\ Rest$ der Formel R8O-CH(OR9)- oder R8O-CH(OR9)-(CH2)n-O-, worin n 0,1 oder 2 bedeutet, oder ein Alkoxy-Rest der  $Formel\ R^8O-CHR^{10}-CH(OR^9)-(C_1-C_4)-alkoxy,\ (subst.)\ (C_1-C_6)-Alkylcarbonyloxy,\ (C_2-C_6)-Alkenylcarbonyloxy,\ (C_2-C_6)-Alkenylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbony$  $C_6$ )-Alkinylcarbonyloxy,  $(C_1-C_6)$ -Alkylcarbonylamino,  $(C_2-C_6)$ -Alkenylcarbonylamino,  $(C_2-C_6)$ -Alkinylcarbonylamino,  $(C_3-C_6)$ -Al no, (subst.) Phenylcarbonyloxy, (subst.) Phenylcarbonylamino, (subst.) Phenyl-(C1-C4)-alkylcarbonylamino, Aminocarbonyl, (C<sub>1</sub>-C<sub>6</sub>)-Alkylaminocarbonyl, (C<sub>1</sub>-C<sub>6</sub>)-Dialkylaminocarbonyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkenylaminocarbonyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkinylaminocarbonyl, (C<sub>1</sub>-C<sub>6</sub>)-Alkoxycarbonylamino, (C<sub>1</sub>-C<sub>6</sub>)-Alkylaminocarbonylamino oder (C<sub>1</sub>-C<sub>6</sub>)-Alkylthiocarbonyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkenylthio, (C<sub>3</sub>-C<sub>6</sub>)-Alkinylthio,

R<sup>5</sup>,R<sup>6</sup>,R<sup>7</sup> H, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl oder (subst.) Phenyl oder R<sup>5</sup> und R<sup>6</sup> zusammen mit dem sie verbindenden N- bzw. C-Atom einen (subst.) Ring mit 3 bis 7 Ringatomen, R8,R9 (C1-C4)-Alkyl oder R8 und R9 zusammen eine geradkettige oder verzweigte (C<sub>1</sub>-C<sub>4</sub>)-Alkylenbrücke und R<sup>10</sup> H oder (C<sub>1</sub>-C<sub>4</sub>)-Alkyl bedeuten.

Die Erfindung betrifft das technische Gebiet der Pflanzenschutzmittel, speziell der Antidote oder Safener zum Schützen von Kultur-Pflanzen gegen unerwünschte Nebenwirkungen von Herbiziden.

Es ist bereits bekannt, Verbindungen aus der Reihe der Chinolinoxyalkancarbonsäurederivate als Antidote oder Safener zusammen mit Herbiziden einzusetzen (siehe z. B. EP-A-94 349 (US-A-4,902,340), EP-A-191 736 (US-4,881,966), EP-A-0159287 (US-A-4,851,031), DE-A-25 46 845, EP-A-159 290), Jedoch zeigte sich, daß die bekannten Verbindungen anwendungstechnische Nachteile haben, beispielsweise zu geringe Safener-Wirkung aufweisen oder die Wirkung der Herbizide gegen Schadpflanzen in unerwünschter Weise vermindern.

Gegenstand der Erfindung sind neue 5-Chlorchinolin-8-oxyalkançarbonsäurederivate der Formel I,

10

15

20

25

30

$$C1$$

$$CR^{1}R^{2} - CO - X - A - R^{3}$$

$$(1)$$

 $R^1,R^2$ unabhängig voneinander Wasserstoff oder (C1-C4)-Alkyl, vorzugsweise Wasserstoff oder Methyl, und

ein Sauerstoff- oder Schwefelatom oder NR<sup>4</sup>, wobei R<sup>4</sup> Wasserstoff, (C<sub>1</sub>-C<sub>6</sub>)-Alkyl, (C<sub>1</sub>-C<sub>6</sub>)-Alkoxy oder gegebenenfalls substituiertes Phenyl bedeutet, vorzugsweise O, NH oder NCH<sub>3</sub>, insbesondere O,

 $(C_1-C_6)$ -Alkylen,  $(C_4-C_8)$ -Alkenylen,  $(C_4-C_8)$ -Alkinylen,  $(C_3-C_8)$ -Cycloalkylen oder  $(C_3-C_8)$ -Cycloalkenylen,

 $(C_3-C_6)$ -Alkenyloxy,  $(C_3-C_6)$ -Alkinyloxy, Phenyl- $(C_1-C_4)$ -alkoxy, worin der Phenylring unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl,  $(C_1-C_4)$ -Alkoxy,  $(C_1-C_4)$ -Haloalkyl und  $(C_1-C_4)$ -Haloalkoxy substituiert ist,  $R^5R^6R^7Si$ -,  $R^5 R^6 R^7 Si-O-$ ,  $R^5 R^6 R^7 Si-(C_1-C_4)-alkoxy$ ,  $(C_3-C_6)-Alkenyloxycarbonyl$ ,  $(C_3-C_6)-Alkinyloxycar$ bonyl, Phenyl-(C1-C4)-alkoxycarbonyl, worin der Phenylring unsubstituiert oder ein- bzw. mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, (C<sub>1</sub>-C4)-Haloalkyl oder (C1-C4)-Haloalkoxy substituiert ist, R5R6C=N-O-CO-, R5R6C=N-O-,  $R^5 R^6 N-O-$ ,  $R^5 R^6 C=N-$ ,  $(C_2-C_6)$ -Alkenylcarbonyl,  $(C_2-C_6)$ -Alkinylcarbonyl, 1-(Hydroxyimino)- $(C_1-C_6)$ -alkyl, 1- $[(C_1-C_4)$ -Alkylimino]- $(C_1-C_6)$ -alkyl, 1- $[(C_1-C_4)$ -Alkoxyimino]- $(C_1-C_6)$ -alkyl, ein Rest der Formel R<sup>8</sup>O-CH(OR<sup>9</sup>)- oder R<sup>8</sup>O-CH(OR<sup>9</sup>)-(CH<sub>2</sub>)<sub>n</sub>-O-, worin n 0,1 oder 2 bedeutet, oder ein Alkoxy-Rest der Formel R8O-CHR10-CH(OR3)-(C1-C4)-alkoxy, (C1-C6)-Alkylcarbonyloxy, worin Alkyl unsubstituiert oder durch Halogen, Nitro, gegebenenfalls substituiertes Phenyl oder (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy substituiert ist, (C<sub>2</sub>-C<sub>6</sub>)-Alkenylcarbonyloxy, (C<sub>2</sub>-C<sub>6</sub>)-Alkinylcarbonyloxy,  $(C_1-C_6)$ -Alkylcarbonylamino,  $(C_2-C_6)$ -Alkenylcarbonylamino,  $(C_2-C_6)$ -Alkinylcarbonylamino, Phenylcarbonyloxy, Phenylcarbonylamino, Phenyl-(C1-C4)-alkylcarbonylamino, wobei Phenyl in den letztgenannten drei Resten jeweils unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, (C<sub>1</sub>-C4)-Haloalkyl und (C1-C4)-Haloalkoxy substituiert ist, Aminocarbonyl, (C1-C6)-Alkylaminocarbonyl,  $(C_1-C_6)$ -Dialkylaminocarbonyl,  $(C_3-C_6)$ -Alkenylaminocarbonyl,  $(C_3-C_6)$ -Alkinylaminocarbonyl, (C<sub>1</sub>-C<sub>6</sub>)-Alkoxycarbonylamino, (C<sub>1</sub>-C<sub>6</sub>)-Alkylaminocarbonylamino oder (C<sub>1</sub>-C<sub>6</sub>)-Alkylthiocarbonyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkenylthio oder (C<sub>3</sub>-C<sub>6</sub>)-Alkinylthio,

R5,R6,R7 unabhängig voneinander H, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl oder gegebenenfalls substituiertes Phenyl oder R<sup>5</sup> und R<sup>6</sup> zusammen mit dem sie verbindenden N- bzw. C-Atom einen Ring mit 3 bis 7 Ringatomen, vorzugsweise 5 oder 6 Ringatomen, der unsubstituiert oder durch (C1-C4)-Alkyl oder (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy substituiert ist,

unabhängig voneinander (C<sub>1</sub>-C<sub>4</sub>)-Alkyl oder R<sup>8</sup> und R<sup>9</sup> zusammen eine geradkettige oder R8,R9 verzweigte (C<sub>1</sub>-C<sub>4</sub>)-Alkylenbrücke und

worin

Х

Α

 $R^3$ 

35

40

45

50

R<sup>10</sup> Wasserstoff oder (C<sub>1</sub>-C<sub>4</sub>)-Alkyl

bedeuten.

 $\mathbb{R}^3$ 

25

30

35

40

50

55

In den Formeln sind Alkyl, Alkenyl und Alkinyl geradkettig oder verzweigt; entsprechendes gilt für substituierte Alkyl-, Alkenyl- und Alkinylreste wie Haloalkyl, Hydroxyalkyl, Alkoxycarbonyl etc.; Alkyl bedeutet z. B. Methyl, Ethyl, n- und i-Propyl, n-, i-, t- und 2-Butyl, Pentyle, Hexyle, wie n-Hexyl, i-Hexyl und 1,3-Dimethylbutyl, Heptyle, wie n-Heptyl, 1-Methylhexyl und 1,4-Dimethylpentyl; Alkenyl bedeutet z. B. Allyl, 1-Methylprop-2-en-1-yl, But-2-en-1-yl, But-3-en-1-yl, 1-Methyl-but-3-en und 1-Methylbut-2-en; Alkinyl bedeutet z. B. Propargyl, But-2-in-1-yl, But-3-in-1-yl, 1-Methyl-but-3-in; Halogen bedeutet Fluor, Chlor, Brom oder lod, vorzugsweise Fluor, Chlor oder Brom, besonders Fluor oder Chlor; Haloalkyl, -alkenyl und -alkinyl bedeuten durch Halogen substituiertes Alkyl, Alkenyl bzw. Alkinyl, z. B. CF<sub>3</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>CF<sub>2</sub>, CH<sub>2</sub>FCHCl, CCl<sub>3</sub>, CHCl<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>Cl; Haloalkoxy ist z. B. OCF<sub>3</sub>, OCHF<sub>2</sub>, OCH<sub>2</sub>F, CF<sub>3</sub>CF<sub>2</sub>O, OCH<sub>2</sub>CF<sub>3</sub>; gegebenenfalls substituiertes Phenyl ist z. B. Phenyl, das unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, (C<sub>1</sub>-C<sub>4</sub>)-Halogenalkyl, (C<sub>1</sub>-C<sub>4</sub>)-Halogenalkyl, (C<sub>1</sub>-C<sub>4</sub>)-Halogenalkoxy und Nitro substituiert ist, z. B. o-, m- und p-Tolyl, Dimethylphenyle, 2-, 3- und 4-Chlorphenyl, 2-, 3- und 4-Trifluor- und -Trichlorphenyl, 2,4-, 3,5-, 2,5- und 2,3-Dichlorphenyl, o-, m- und p-Methoxyphenyl.

Manche Verbindungen der Formel I enthalten ein oder mehrere asymmetrische C-Atome oder Doppelbindungen, die in der allgemeinen Formel I nicht gesondert angegeben sind. Die durch ihre spezifische Raumform definierten möglichen Stereoisomeren, wie Enantiomere, Diastereomere, E- und Z-Isomere sowie deren Gemische sind jedoch alle von der Formel I umfaßt. Die reinen oder angereicherten Stereoisomeren können nach üblichen Methoden aus Gemischen der Stereoisomeren erhalten werden oder auch durch stereoselektive Reaktionen aus stereochemisch reinen Ausgangsstoffen hergestellt werden. Die genannten Stereoisomeren in reiner Form als auch ihre Gemische sind somit Gegenstand dieser Erfindung.

Von besonderem Interesse sind erfindungsgemäße Verbindungen der Formel (I), worin

(C<sub>3</sub>-C<sub>4</sub>)-Alkenyloxy, (C<sub>3</sub>-C<sub>4</sub>)-Alkinyloxy, Phenyl-(C<sub>1</sub>-C<sub>2</sub>)-alkoxy, worin der Phenylring unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C1-C2)-Alkyl, (C<sub>1</sub>-C<sub>2</sub>)-Alkoxy, (C<sub>1</sub>-C<sub>2</sub>)-Haloalkyl und (C<sub>1</sub>-C<sub>2</sub>)-Haloalkoxy substituiert ist, R<sup>5</sup>R<sup>6</sup>R<sup>7</sup>Si-, R<sup>5</sup> R<sup>6</sup> R<sup>7</sup> Si-O-, R<sup>5</sup> R<sup>6</sup> R<sup>7</sup> Si-(C<sub>1</sub>-C<sub>2</sub>)-alkoxy, (C<sub>3</sub>-C<sub>4</sub>)-Alkenyloxycarbonyl, (C<sub>3</sub>-C<sub>4</sub>)-Alkinyloxycarbonyl, Phenyl-(C1-C2)-alkoxycarbonyl, worin der Phenylring unsubstituiert oder ein- bzw. mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C<sub>1</sub>-C<sub>2</sub>)-Alkyl, (C<sub>1</sub>-C<sub>2</sub>)-Alkoxy, (C<sub>1</sub>-C<sub>2</sub>)-Haloalkyl oder (C<sub>1</sub>-C<sub>2</sub>)-Haloalkoxy substituiert ist, R<sup>5</sup>R<sup>6</sup>C = N-O-CO-, R<sup>5</sup>R<sup>6</sup>C = N-O-,  $R^5 R^6 N-O-$ ,  $R^5 R^6 C=N-$ ,  $(C_2-C_4)$ -Alkenylcarbonyl,  $(C_2-C_4)$ -Alkinylcarbonyl 1-(Hydroxyimino)- $(C_1-C_4)$ -alkyl, 1- $[(C_1-C_4)$ -Alkylimino]- $(C_1-C_4)$ -alkyl, 1- $[(C_1-C_4)$ -Alkoxyimino]- $(C_1-C_4)$ -alkyl,  $R^8$ O-CH(OR $^9$ )-(C<sub>1</sub>-C<sub>5</sub>)-alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkylcarbonyloxy, (C<sub>3</sub>-C<sub>4</sub>)-Alkenylcarbonyloxy, (C<sub>3</sub>-C<sub>4</sub>)-Alkinylcarbonyloxy, (C<sub>1</sub>-C<sub>4</sub>)-Alkylcarbonylamino, (C<sub>3</sub>-C<sub>4</sub>)-Alkenylcarbonylamino, (C<sub>3</sub>-C<sub>4</sub>)-Alkinylcarbonylamino, Phenylcarbonyloxy, Phenylcarbonylamino, Phenyl-(C1-C2)-alkylcarbonylamino, wobei Phenyl in den drei letztgenannten Resten gegebenenfalls substituiert ist. (C<sub>1</sub>-C<sub>4</sub>)-Alkylaminocarbonyl, Di-(C<sub>1</sub>-C<sub>4</sub>)-alkylaminocarbonyl, (C<sub>3</sub>-C<sub>4</sub>)-Alkenylaminocarbonyl,  $(C_1-C_4)$ -Alkylthiocarbonyl,  $(C_3-C_4)$ -Alkenylthio,  $(C_1-C_4)$ -Alkoxycarbonylamino,  $(C_1-C_4)$ -Alkylaminocarbonylaminooder ein Rest der Formel -O-CH2-CH(OR')-CH2-OR', worin die R' zusammen für die divalente Gruppe CH2, CHCH3 oder C(CH3)2 stehen,

R<sup>5</sup>,R<sup>6</sup>,R<sup>7</sup> unabhängig voneinander H oder (C<sub>1</sub>-C<sub>2</sub>)-Alkyl oder R<sup>5</sup> und R<sup>6</sup> zusammen mit dem sie verbindenden N- bzw. C-Atom einen Ring mit 3 bis 7 Ringatomen, vorzugsweise 5 oder 6 Ringatomen und

R<sup>8</sup>,R<sup>9</sup> unabhängig voneinander (C<sub>1</sub>-C<sub>4</sub>)-Alkyl,

#### 45 bedeuten.

Vorzugsweise ist

R³ (C₃-C₄)-Alkenyloxy, (C₃-C₄)-Alkinyloxy, Benzyloxy, Trimethylsilyl, Triethylsilyl, Trimethylsilylmethoxy, 1-(Hydroxyimino)-(C₁-C₄)-alkyl, 1-[(C₁-C₄)-Alkylimino]-(C₁-C₄)-alkyl, 1-[(C₁-C₄)-Alkoxyimino]-(C₁-C₄)-alkyl, (C₃-C₄)-Alkenyloxycarbonyl, (C₃-C₄)-Alkinyloxycarbonyl oder R⁵-R⁶-C = N-O-, wobei R⁵ und R⁶ in dem letztgenannten Rest unabhängig voneinander Methyl oder Ethyl oder zusammen mit dem verbindenden C-Atom Cyclopentyliden oder Cyclohexyliden bedeutet.

Vorzugsweise ist

A  $(C_1-C_4)$ -Alkylen oder  $(C_4-C_6)$ -Alkenylen, insbesondere  $CH_2CH_2$ ,  $CH(CH_3)CH_2$ ,  $C(CH_3)_2CH_2$ ,  $CH_2$ ,  $CH_3$ ).

Besonders bevorzugt bedeutet die Gruppe

-A-R<sup>3</sup> ( $C_3$ -C<sub>4</sub>)-Alkenyloxy-( $C_2$ -C<sub>4</sub>)-alkyl, ( $C_3$ -C<sub>4</sub>)-Alkinyloxy-( $C_2$ -C<sub>4</sub>)-alkyl, Benzyloxy-( $C_2$ -C<sub>4</sub>)-alkyl, Trimethylsilyl-( $C_1$ -C<sub>4</sub>)-alkyl, -( $C_2$ -C<sub>4</sub>)-alkenyl oder -( $C_2$ -C<sub>4</sub>)-alkinyl, Triethylsilyl-( $C_1$ -C<sub>4</sub>)-alkyl,

-( $C_2$ - $C_4$ )-alkenyl oder -( $C_2$ - $C_4$ )-alkinyl, Trimethylsilylmethoxy-( $C_2$ - $C_4$ )-alkyl, ( $C_3$ - $C_4$ )-Alkenyloxycarbonyl-( $C_1$ - $C_4$ )-alkyl, ( $C_3$ - $C_4$ )-Alkinyloxycarbonyl-( $C_1$ - $C_4$ )-alkyl oder R<sup>5</sup> R<sup>6</sup> C = N-O-( $C_2$ - $C_4$ )-alkyl, wobei R<sup>5</sup> und R<sup>6</sup> in dem letztgenannten Rest unabhängig voneinander Methyl oder Ethyl oder zusammen mit dem verbindenden C-Atom Cyclopentyliden oder Cyclohexyliden bedeutet.

Bevorzugt sind erfindungsgemäße Verbindungen der Formel I, worin die Gruppe der Formel

-A-R³ 2-(Allyloxy)-ethyl, 3-(Allyloxy)-n-propyl, 4-(Allyloxy)-n-butyl, 2-(Propargyloxy)-1-methyl-ethyl, 2-(2-Methylprop-2-en-1-yl)-ethyl, 2-(Propargyloxy)-ethyl, 2-(Propargyloxy)-1-methyl-ethyl, 3-Propargyloxy-propyl, 4-Propargyloxybutyl, 2-Benzyloxy-ethyl, Allyloxycarbonylmethyl, 1-(Allyloxycarbonyl)-1-ethyl, 1-(Allyloxycarbonyl)-1,1-dimethylmethyl, Propargyloxycarbonylmethyl, 1-(Propargyloxycarbonyl)-1-ethyl, 3-Trimethylsilyl-prop-2-en-1-yl, 3-Trimethylsilyl-prop-2-in-1-yl, 3-Trimethylsilyl-1-methyl-prop-2-in-1-yl, 3-Trimethylsilylmethoxycarbonylmethyl, Trimethylsilylmethoxyethyl, Trimethylsilylmethoxycarbonylmethyl, Cyclohexylidenaminoxy-ethyl oder -1-(methyl)-ethyl, 2-Propylidenaminoxy-ethyl oder -1-(methyl)-ethyl, 3-Pentylidenaminoxy-ethyl oder -1-(methyl)-ethyl, 2-Propylidenaminoxycarbonylmethyl oder (2,2-Dimethyl-1,3-dioxolan-4-yl)-methyl bedeutet.

Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der Formel I, dadurch gekennzeichnet, daß man

a) 5-Chlor-8-hydroxychinolin mit einem Alkancarbonsäurederivat der Formel II,

worin

5

10

15

20

25

30

35

Υ

eine Abgangsgruppe, wie z.B. Chlor, Brom, Methansulfonyl oder Toluolsulfonyl, bedeutet und

R<sup>1</sup>,R<sup>2</sup>,R<sup>3</sup>, X und A wie bei der genannten Formel I definiert sind, oder

b) 5-Chlorchinolin-8-oxy-alkancarbonsäuren der Formel I, worin -X-A-R³ durch Hydroxy ersetzt ist, mit Alkoholen, Mercaptanen oder Aminen der Formel

H-X-A-R3

wobei X, A und R<sup>3</sup> wie bei Formel I definiert sind, umsetzt.

Die in Variante b) eingesetzten 5-Chlorchinolin-8-oxy-alkancarbonsäuren erhält man beispielsweise aus dem Ethylester, der nach Variante a) hergestellt werden kann, durch alkalische Hydrolyse.

Die Umsetzung der Verbindung II mit 5-Chlor-8-hydroxychinolin nach Variante a) wird vorzugsweise in dipolar aprotischen Lösungsmitteln, wie Dimethylsulfoxid oder N,N-Dimethylformamid, bei erhöhter Temperatur, insbesondere zwischen 80 und 120°C, in Gegenwart einer Base, insbesondere Alkalicarbonaten wie z.B. Kaliumcarbonat, durchgeführt.

Die Umsetzung nach Variante b) erfolgt vorzugsweise in dipolar aprotischen Lösungsmitteln insbesondere Ethern, wie z.B. Tetrahydrofuran oder 1,4-Dioxan, oder Halogenkohlenwasserstoffen, wie z.B. Chloroform oder Tetrachlorkohlenstoff, in Gegenwart eines die Carboxylgruppe in ein aktiviertes Derivat überführendes Reagenz, wie z.B. Thionylchlorid, N,N'-Carbonyldiimidazol oder Dicyclohexylcarbodiimid, bei Temperaturen von Raumtemperatur bis zum Siedepunkt des Reaktionsgemisches, insbesondere bei Rückflußtemperatur.

5-Chlor-8-hydroxychinolin ist kommerziell erhältlich. Die Bromalkancarbonsäurederivate der Formel II sind nach in der Literatur bekannten Verfahren aus Bromalkancarbonsäurechloriden und Verbindungen der Formel H-X-A-R³, wobei X, A und R³ wie in Formel I definiert sind, herstellbar. Alkohole, Mercaptane oder Amine der Formel H-X-A-R³ sind, sofern sie nicht ebenfalls kommerziell erhältlich sind, nach literaturbekannten Verfahren zugänglich; siehe z.B. Helv. Chim Acta 67, Seite 1470 ff. (1984); J. Am. Chem. Soc. 71, Seiten 1152 ff. (1949); J. Am. Chem. Soc. 60, Seiten 1472 ff. (1938); US-A-3 123 639; EP-A-52 798.

Verbindungen der Formel I reduzieren oder unterbinden phytotoxische Nebenwirkungen von Herbiziden, die beim Einsatz der Herbizide in Nutzpflanzenkulturen auftreten können, und können deshalb in Üblicher Weise als Antidote oder Safener bezeichnet werden.

Die erfindungsgemäßen Verbindungen der Formel I können zusammen mit herbiziden Wirkstoffen oder in beliebiger Reihenfolge ausgebracht werden und sind dann in der Lage, schädliche Nebenwirkungen dieser Herbizide bei Kulturpflanzen zu reduzieren oder völlig aufzuheben, ohne die Wirksamkeit dieser

Herbizide gegen Schadpflanzen zu beeinträchtigen.

Hierdurch kann das Einsatzgebiet herkömmlicher Pflanzenschutzmittel ganz erheblich erweitert werden. Herbizide, deren phytotoxische Nebenwirkungen auf Kulturpflanzen mittels Verbindungen der Formel I herabgesetzt werden können, sind z.B. Carbamate, Thiocarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy- und Phenoxy-phenoxycarbonsäurederivate sowie Heteroaryloxy-phenoxyalkancarbonsäurederivate, wie Chinolyloxy-, Chinoxalyloxy-, Pyridyloxy-, Benzoxalyloxy- und Benzthiazolyloxy-phenoxyalkancarbonsäureester, Cyclohexandionabkömmlinge, Imidazolinone sowie Sulfonylharnstoffe. Bevorzugt sind dabei Phenoxyphenoxy- und Heteroaryloxy-phenoxycarbonsäureester und - salze, Sulfonylharnstoffe und Imidazolinone.

10 Geeignete Herbizide, die mit den erfindungsgemäßen Safenern kombiniert werden können sind beispielsweise:

- A) Herbizide vom Typ der Phenoxyphenoxy- und Heteroarylphenoxycarbonsäure- $(C_1-C_4)$ alkyl-,  $(C_2-C_4)$ -alkenyl- und  $(C_3-C_4)$ alkinylester wie
- A1) Phenoxy-phenoxy- und Benzyloxy-phenoxy-carbonsäure-derivate, z.B.
- 2-(4-(2,4-Dichlorphenoxy)-phenoxy)-propionsäuremethylester (Diclofop-methyl),
  - 2-(4-(4-Brom-2-chlorphenoxy)-phenoxy)-propionsäuremethylester (s. DE-A-2601548),
  - 2-(4-(4-Brom-2-fluorphenoxy)-phenoxy)-propionsäuremethylester (s. US-A-4808750),
  - 2-(4-(2-Chlor-4-trifluormethylphenoxy)-phenoxy)-propionsäuremethylester (s. DE-A-2433067),
  - 2-(4-(2-Fluor-4-trifluormethylphenoxy)-phenoxy)-propionsäuremethylester (s. US-A-4808750),
- 20 2-(4-(2,4-Dichlorbenzyl)-phenoxy)propionsäuremethylester (s. DE-A-2417487),
  - 4-(4-(4-Trifluormethylphenoxy)-phenoxy)-pent-2-en-säureethylester,
  - 2-(4-(4-Trifluormethylphenoxy)-phenoxy)-propionsäuremethylester (s. DE-A-2433067),
  - A2) "Einkernige" Heteroaryloxy-phenoxy-alkancarbonsäurederivate, z.B.
  - 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäureethylester (s. EP-A-2925),
- 25 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäurepropargylester (EP-A-3114),
  - 2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy-propionsäure-methylester (s. EP-A-3890),
  - 2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäure-ethylester (s. EP-A-3890),
  - 2-(4-(5-Chlor-3-fluor-2-pyridyloxy)-phenoxy)-propionsäurepropargylester (EP-A-191736),
  - 2-(4-(5-Trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäurebutylester (Fluazifopbutyl),
- 30 A3) "Zweikernige" Heteroaryloxy-phenoxy-alkancarbonsäurederivate, z.B.
  - 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)-propionsäuremethylester und -ethylester (Quizalofop-methyl und -ethyl)
  - 2-(4-(6-Fluor-2-chinoxalyloxy)-phenoxy)-propionsäuremethylester (s. J. Pest. Sci. Vol. 10,61 (1985)),
  - 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)-propionsäure, -methylester, -tetrahydrofurfuryl-, und -2-isopropylidenaminooxyethylester (Propaquizafop u. verschiedenste Ester),
  - 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester (Fenoxapropethyl),
  - 2-(4-(6-Chlorbenzthiazol-2-yloxy)phenoxypropionsäureethylester (s. DE-A-2640730).
  - B) Herbizide aus der Sulfonylharnstoff-Reihe, wie z.B. Pyrimidin- oder Triazinylaminocarbonyl-[benzol-, pyridin-, pyrazol-, thiophen- und (alkylsulfonyl)alkylamino-]-sulfamide. Bevorzugt als Substituenten am Pyrimidinring oder Triazinring sind Alkoxy, Alkyl, Haloalkoxy, Haloalkyl, Halogen oder Dimethylamino, wobei alle Substituenten unabhängig voneinander kombinierbar sind. Bevorzugte Substituenten im Benzol-, Pyridin-, Pyrazol-, Thiophen- oder (Alkylsulfonyl)alkylamino-Teil sind Alkyl, Alkoxy, Halogen, Nitro, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkoxyaminocarbonyl,

Alkyl, Alkoxyaminocarbonyl, Haloalkoxy, Haloalkyl, Alkylcarbonyl, Alkoxyalkyl, (Alkansulfonyl)alkylamino.

45 Geeignete Sulfonylharnstoffe sind beispielsweise

35

- B1) Phenyl- und Benzylsulfonylharnstoffe und verwandte Verbindungen, z.B.
- 1-(2-Chlorphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Chlorsulfuron),
- 1-(2-Ethoxycarbonylphenylsulfonyl)-3-(4-chlor-6-methoxypyrimidin-2-yl)harnstoff (Chlorimuron-ethyl),
- 1-(2-Methoxyphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Metsulfuron-methyl),
- 50 1-(2-Chlorethoxy-phenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Triasulfuron),
  - 1-(2-Methoxycarbonyl-phenylsulfonyl)-3-(4,6-dimethyl-pyrimidin-2-yl)harnstoff (Sulfometuron-methyl,
  - 1-(2-Methoxycarbonylphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-3-methylharnstoff (Tribenuron-methyl)
  - 1-(2-Methoxycarbonylbenzylsulfonyl)-3-(4,6-dimethoxy-pyrimidin-2-yl)harnstoff (Bensulfuron-methyl)
- 55 1-(2-Methoxycarbonylphenylsulfonyl)-3-(4,6-bis-(difluormethoxy)pyrimidin-2-yl)harnstoff (Primisulfuronmethyl).
  - 3-(4-Ethyl-6-methoxy-1,3,5-triazin-2-yl)-1-(2,3-dihydro-1,1-dioxo-2-methylbenzo[b]thiophen-7-sulfonyl)-harnstoff (s. EP-A-79683),

3-(4-Ethoxy-6-ethyl-1,3,5-triazin-2-yl)-1-(2,3-dihydro-1,1-dioxo-2-methylbenzo[b]thiophen-7-sulfonyl)-harnstoff (s. EP-A-79683),

B2) Thienylsulfonylharnstoffe, z.B.

5

10

20

1-(2-Methoxycarbonylthiophen-3-yl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)harnstoff (Thifensulfuron-methyl),

B3) Pyrazolylsulfonylharnstoffe, z.B.

1-(4-Ethoxycarbonyl-1-methylpyrazol-5-yl-sulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)harnstoff (Pyrazosulfuron-methyl),

Methyl-3-chlor-5-(4,6-dimethoxypyrimidin-2-ylcarbamoylsulfamoyl)-1-methyl-pyrazol-4-carboxylat (s. EP 282613).

B4) Sulfondiamid-Derivate, z.B.

3-(4,6-Dimethoxypyrimidin-2-yl)-1-(N-methyl-N-methylsulfonylaminosulfonyl)harnstoff (Amidosulfuron) und Strukturanaloge (s. EP-A-0131258 und Z. Pfl. Krankh. Pfl. Schutz, Sonderheft XII, 489-497 (1990)), B5) Pyridylsulfonylharnstoffe, z.B.

1-(3-N,N-Dimethylaminocarbonylpyridin-2-yl-sulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)harnstoff (Nicosulfuron),

1-(3-Ethylsulfonylpyridin-2-yl-sulfonyl)-3-(4,6-dimethoxy-pyrimidin-2-yl)harnstoff (DPX-E 9636, s. Brighton Crop Prot. Conf. - Weeds - 1989, S. 23 ff.),

Pyridylsulfonylharnstoffe, wie sie in WO 91/10660 und der deutschen Patentanmeldung P 4030577.5 beschrieben sind, vorzugsweise solche der Formel III oder deren Salze,

$$\mathbb{R}^{12} \xrightarrow{\mathbb{R}^{11}} \mathbb{N} \xrightarrow{\mathbb{R}^{13}} \mathbb{R} = \mathbb{R}^{14}$$

$$\mathbb{R}^{12} \xrightarrow{\mathbb{N}} \mathbb{N} \xrightarrow{\mathbb{N}} \mathbb{R}^{13} \times \mathbb{R}^{14}$$

$$\mathbb{R}^{12} \xrightarrow{\mathbb{R}^{14}} \mathbb{R}^{14}$$

$$\mathbb{R}^{12} \xrightarrow{\mathbb{R}^{14}} \mathbb{R}^{14}$$

$$\mathbb{R}^{12} \xrightarrow{\mathbb{R}^{14}} \mathbb{R}^{14}$$

$$\mathbb{R}^{15} \xrightarrow{\mathbb{R}^{15}} \mathbb{R}^{14}$$

worin

35 E CH oder N vorzugsweise CH,

R<sup>11</sup> lod oder NR<sup>16</sup> R<sup>17</sup>,

H, Halogen, Cyano, C<sub>1</sub>-C<sub>3</sub>-Alkyl, C<sub>1</sub>-C<sub>3</sub>-Alkoxy, C<sub>1</sub>-C<sub>3</sub>-Haloalkyl, C<sub>1</sub>-C<sub>3</sub>-Haloalkoxy, C<sub>1</sub>-C<sub>3</sub>-Alkylthio, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy)-C<sub>1</sub>-C<sub>3</sub>-alkyl, (C<sub>1</sub>-C<sub>3</sub>-Alkoxy)-carbonyl, Mono- oder Di-(C<sub>1</sub>-C<sub>3</sub>-alkyl)-amino, C<sub>1</sub>-C<sub>3</sub>-Alkyl-sulfinyl oder -sulfonyl, SO<sub>2</sub>-NR<sup>a</sup>R<sup>b</sup> oder CO-NR<sup>a</sup>R<sup>b</sup>, insbesondere H

40 Ra,Rb unabhängig voneinander H, C<sub>1</sub>-C<sub>3</sub>-Alkyl, C<sub>1</sub>-C<sub>3</sub>-Alkenyl, C<sub>1</sub>-C<sub>3</sub>-Alkinyl oder zusammen -(CH<sub>2</sub>)<sub>4</sub>-, -(CH<sub>2</sub>)<sub>5</sub>- oder -(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-,

R<sup>13</sup> H oder CH<sub>3</sub>,

Halogen, C<sub>1</sub>-C<sub>2</sub>-Alkyl, C<sub>1</sub>-C<sub>2</sub>-Alkoxy, C<sub>1</sub>-C<sub>2</sub>-Haloalkyl, vorzugsweise CF<sub>3</sub>, C<sub>1</sub>-C<sub>2</sub>-Haloalkoxy, vorzugsweise OCHF<sub>2</sub> oder OCH<sub>2</sub>CF<sub>3</sub>,

R<sup>15</sup> C<sub>1</sub>-C<sub>2</sub>-Alkyl, C<sub>1</sub>-C<sub>2</sub>-Haloalkoxy, vorzugsweise OCHF<sub>2</sub>, oder C<sub>1</sub>-C<sub>2</sub>-Alkoxy, und

R<sup>16</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl und R<sup>17</sup> C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl oder R<sup>16</sup> und R<sup>17</sup> gemeinsam eine Kette der Formel -(CH<sub>2</sub>)<sub>3</sub>SO<sub>2</sub>- oder -(CH<sub>2</sub>)<sub>4</sub>SO<sub>2</sub> bedeuten, z.B. 3-(4,6-Dimethoxypyrimidin-2-yl)-1-(3-N-methylsulfonyl-N-methylaminopyridin-2-yl)sulfonylharnstoff,

B6) Alkoxyphenoxysulfonylharnstoffe, wie sie in EP-A-0342569 beschrieben sind, vorzugsweise solche der Formel IV oder deren Salze,

55

45

$$(R^{19})_{n} = R^{18}$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 =$$

worin

15

20

25

45

E CH oder N, vorzugsweise CH,

R<sup>18</sup> Ethoxy, Propoxy oder Isopropoxy,

R<sup>19</sup> Wasserstoff, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CN, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio oder (C<sub>1</sub>-

C<sub>3</sub>-Alkoxy)-carbonyl, vorzugsweise in 6-Position am Phenylring,

n 1, 2 oder 3, vorzugsweise 1,

R<sup>20</sup> Wasserstoff, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>3</sub>-C<sub>4</sub>-Alkenyl,

R<sup>21</sup>,R<sup>22</sup> unabhängig voneinander Halogen, C<sub>1</sub>-C<sub>2</sub>-Alkyl, C<sub>1</sub>-C<sub>2</sub>-Alkoxy, C<sub>1</sub>-C<sub>2</sub>-Haloalkyl, C<sub>1</sub>-C<sub>2</sub>-

 $\label{eq:control_loss} Haloalkoxy\ oder\ (C_1-C_2-Alkoxy)-C_1-C_2-alkyl,\ vorzugsweise\ OCH_3\ oder\ CH_3,\ bedeuten,\ z.B.$ 

3-(4,6-Dimethoxypyrimidin-2-yl)-1-(2-ethoxyphenoxy)-sulfonylharnstoff,

und andere verwandte Sulfonylharnstoffderivate und Mischungen daraus;

C) Chloracetanilid-Herbizide wie

N-Methoxymethyl-2,6-diethyl-chloracetanilid (Alachlor),

N-(3'-Methoxyprop-2'-yl)-2-methyl-6-ethyl-chloracetanilid (Metolachlor),

N-(3-Methyl-1,2,4-oxdiazol-5-yl-methyl)-chloressigsäure-2,6-dimethylanilid,

N-(2,6-Dimethylphenyl)-N-(1-pyrazolylmethyl)-chloressigsäureamid (Metazachlor),

D) Thiocarbamate wie

30 S-Ethyl-N,N-dipropylthiocarbamat (EPTC) oder

S-Ethyl-N,N-diisobutylthiocarbamat (Butylate);

E) Cyclohexandion-Derivate wie

Methyl-3-(1-allyloxyimino)butyl)-4-hydroxy-6,6-dimethyl-2- oxocyclohex-3-encarboxylat (Alloxydim);

2-(N-Ethoxybutyrimidoyl)-5-(2-ethylthiopropyl)-3-hydroxy-2-cyclohexen-1-on (Sethoxydim),

35 2-(N-Ethoxybutyrimidoyl)-5-(2-phenylthiopropyl)-3-hydroxy-2-cyclohexen-1-on (Cloproxydim),

2-(1-(3-Chlorallyloxy)iminobutyl)-5-(2-ethylthio)propyl)-3-hydroxy-2-cyclohexen-1-on,

2-(1-(3-Chlorallyloxy)iminopropyl)-5-2-ethylthio)propyl)-3-hydroxy-cyclohex-2-enon (Clethodim),

2-(1-Allyloxyiminobutyl)-4-methoxycarbonyl-5,5-dimethyl-3-oxocyclohexenol,

2-(1-(Ethoxyimino)-butyl)-3-hydroxy-5-(thian-3-yl)-cyclohex-2-enon (Cycloxydim) oder

2-(1-Ethoxyiminopropyl)-5-(2,4,6-trimethylphenyl)-3-hydroxy-2-cyclohexen-1-on (Tralkoxydim);

F) 2-Carboxyphenyl- oder 2-Carboxyheteroaryl-imidazolinone, deren Salze und Ester (z.B. Alkylester), z.B. die Mischung von 2-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-5-methylbenzoesäuremethylester und 2-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-4-methylbenzoesäuremethylester

(Imazamethabenz), 5-Ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-4-methyloenzoesauremethylester

(Imazethapyr), deren Ester und Salze (z. B. NH<sub>4</sub>-Salz), 2-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-chinolin-3-carbonsäure (Imazaquin), deren Ester und Salze (z.B. NH<sub>4</sub>-salz) und rac-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridin-carbonsäure (Imazethamethapyr), deren Ester und Salze.

Die obengenannten Herbizide der Gruppe A bis F sind dem Fachmann bekannt und in der Regel in "The Pesticide Manual", British Crop Protection Council, 9. Auflage 1991 oder 8. Auflage 1987 oder in "Agricultural Chemicals Book II, Herbicides", by W.T. Thompson, Thompson Publications, Fresno CA, USA 1990 oder in "Farm Chemicals Handbook '90", Meister Publishing Company, Willoughby OH, USA 1990 beschrieben. Imazethamethapyr ist aus Weed Techn. 1991, Vol. 5, 430-438 bekannt.

Die herbiziden Wirkstoffe und die erwähnten Safener können zusammen (als fertige Formulierung oder im Tank-mix-Verfahren) oder in beliebiger Reihenfolge nacheinander ausgebracht werden. Das Gewichtsverhältnis Safener:Herbizid kann innerhalb weiter Grenzen variieren und ist vorzugsweise im Bereich von 1:10 bis 10:1, insbesondere von 1:10 bis 5:1. Die jeweils optimalen Mengen an Herbizid und Safener sind vom Typ des verwendeten Herbizids oder vom verwendeten Safener sowie von der Art des zu behandelnden

Pflanzenbestandes abhängig und lassen sich von Fall zu Fall durch entsprechende Vorversuche ermitteln.

5

25

Haupteinsatzgebiete für die Anwendung der Safener sind vor allem Getreidekulturen (Weizen, Roggen, Gerste, Hafer), Reis, Mais, Sorghum, aber auch Baumwolle und Sojabohne, vorzugsweise Getreide und Mais.

Ein besonderer Vorteil der erfindungsgemäßen Safener der Formel I ist bei deren Kombination mit Herbiziden aus der Gruppe der Sulfonylharnstoffen und/oder Imidazolinone festzustellen. Herbizide der genannten Strukturklassen hemmen primär das Schlüsselenzym Acetolactatsynthase (ALS) in den Pflanzen und sind bezüglich des Wirkungsmechanismus daher zumindest partiell verwandt. Einige Herbizide dieser Strukturklassen können speziell in Getreidekulturen und/oder Mais nicht oder nicht genügend selektiv 10 eingesetzt werden. Durch die Kombination mit den erfindungsgemäßen Safenern sind auch bei diesen Herbiziden in Getreide oder Mais hervorragende Selektivitäten zu erreichen.

Die Safener der Formel I je nach ihren Eigenschaften zur Vorbehandlung des Saatgutes der Kulturpflanze (Beizung der Samen) verwendet werden oder vor der Saat in die Saatfurchen eingebracht oder zusammen mit dem Herbizid vor oder nach dem Auflaufen der Pflanzen angewendet werden. Vorauflaufbehandlung schließt sowohl die Behandlung der Anbaufläche vor der Aussaat als auch die Behandlung der angesäten, aber noch nicht bewachsenen Anbauflächen ein. Bevorzugt ist die gemeinsame Anwendung mit dem Herbizid. Hierzu können Tankmischungen oder Fertigformulierungen eingesetzt werden.

Die benötigten Aufwandmengen der Safener können je nach Indikation und verwendetem Herbizid innerhalb weiter Grenzen schwanken und sind in der Regel im Bereich von 0,001 bis 5 kg, vorzugsweise 0,005 bis 0,5 kg Wirkstoff je Hektar.

Gegenstand der vorliegenden Erfindung ist deshalb auch ein Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, das dadurch gekennzeichnet ist, daß eine wirksame Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid auf die Pflanzen, Pflanzensamen oder die Anbaufläche appliziert wird.

Gegenstand der Erfindung sind auch pflanzenschützende Mittel, die einen Wirkstoff der Formel I und übliche Formulierungshilfsmittel enthalten, sowie herbizide Mittel, die einen Wirkstoff der Formel I und ein Herbizid sowie im Bereich des Pflanzenschutzes übliche Formulierungshilfsmittel enthalten.

Die Verbindungen der Formel I und deren Kombinationen mit einem oder mehreren der genannten Herbizide können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wasserlösliche Pulver (SP), wasserlösliche Konzentrate (SL), konzentrierte Emulsionen (EW) wie Öl-in-Wasser und Wasser-in- Öl-Emulsionen, versprühbare Lösungen oder Emulsionen, Kapselsuspensionen (CS), Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen, Suspensionskonzentrate, Stäubemittel (DP), ölmischbare Lösungen (OL), Beiz-35 mittel, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, Granulate für die Boden- bzw. Streuapplikation, wasserlösliche Granulate (SG), wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln und Wachse.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie" Band 7, C. Hauser Verlag München, 4. Aufl. 1986; Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker N.Y., 1973; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H.v.Olphen "Intruduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y. Marsden "Solvents Guide", 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler "Chemische Technolgie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole und Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate oder Alkylarylsulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalinsulfonsaures Natrium oder auch oleylmethyltaurinsaures Natrium enthalten.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel,

z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlen-wasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid Kondensationsprodukte (z.B. Blockpolymere), Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitanfettsäureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophillit, oder Diatomeenerde.

Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99 Gewichtsprozent, insbesondere 0,1 bis 95 Gew.-%, Wirkstoffe der Formel I (Antidot) oder des Antidot/Herbizid-Wirkstoffgemischs und 1 bis 99,9 Gew.-%, insbesondere 5 bis 99,8 Gew.-%, eines festen oder flüssigen Zusatzstoffes und 0 bis 25 Gew.-%, insbesondere 0,1 bis 25 Gew.-%, eines Tensides.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten beträgt die Wirkstoffkonzentration etwa 1 bis 80 Gew.-% Wirkstoffe. Staubförmige Formulierungen enthalten etwa 1 bis 20 Gew.-% an Wirkstoffen, versprühbare Lösungen etwa 0,2 bis 20 Gew.-% Wirkstoffe. Bei Granulaten wie wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt. In der Regel liegt der Gehalt bei den in Wasser dispergierbaren Granulaten zwischen 10 und 90 Gew.-%.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Granulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids u.a. variiert die erforderliche Aufwandmenge der "Antidots".

Folgende Beispiele dienen zur Erläuterung der Erfindung:

#### A. Formulierungsbeispiele

- a) Ein Stäubmittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel I oder eines Wirkstoffgemischs aus einem Herbizid und eine Verbindung der Formel I und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel I oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel I, 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der Formel I oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel I, 6 Gew.-Teilen Alkylphenolpolyglykolether (<sup>R</sup>Triton X 207), 3 Gew.-Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew.- Teilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der Formel I oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel I, 75 Gew. Teilen Cyclohexanon als Lösemittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.
- e) Ein in Wasser dispergierbares Granulat wird erhalten, indem man

55

35

40

45

| 75 GewTeile | einer Verbindung der Formel I oder eines Wirkstoffgemischs aus |
|-------------|----------------------------------------------------------------|
|             | einem Herbizid und einem Safener der Formel I,                 |

- <sup>5</sup> 10 " ligninsulfonsaures Calcium,
  - 5 " Natriumlaurylsulfat,
  - 3 " Polyvinylalkohol und
- <sup>10</sup> 7 " Kaolin

mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.

15 f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man

- 25 Gew.-Teile einer Verbindung der Formel I oder eines Wirkstoffgemischs aus einem Herbizid und einem Safener der Formel I.
- 5 \* 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium,
- 2 " oleoylmethyltaurinsaures Natrium,
- 25 1 " Polyvinylalkohol,
  - 17 " Calciumcarbonat und
  - 50 " Wasser

auf einer Kolloidmühle homogensiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.

### B. Herstellungsbeispiele

35

30

20

5-Chlorchinolin-8-oxyessigsäure-1-isopropylidenaminooxy-2-propylester (Beispiel 33 in Tabelle 1)

4,75 g (0,02 mol) 5-Chlorchinolin-8-oxyessigsäure werden in 50 ml THF suspendiert und 3,2 g (0,02 mol) N,N'-Carbonyldiimidazol hinzugefügt und die Suspension auf 50 °C erwärmt, bis die Gasentwicklung beendet ist. Zu dieser Suspension tropft man eine Lösung aus 2,62 g (0,02 mol) 1-Isopropylidenamino-oxy-2-propanol und 50 mg Natrium in 10 ml Tetrahydrofuran (THF) hinzu und erwärmt zum Rückfluß. Nach der Umsetzung wird das THF unter reduziertem Druck abgezogen, der Rückstand in Essigsäureethylester aufgenommen und die Lösung mit 5 % NaOH und NaCl-Lösung gewaschen. Die organische Phase wird über MgSO4 getrocknet, eingeengt und der Rückstand aus Heptan umkristallisiert. Man erhält 3,6 g (45,6 % d. Th.) 5-Chlorchinolin-8-oxyessigsäure-1-isopropylidenaminooxy-2-propylester vom Schmp. 102 °C.

5-Chlorchinolin-8-oxyessigsäure-3-(allyloxy)propylester (Bsp. 19 in Tabelle 1)

3,78 g (0,021 mol) 5-Chlor-8-hydroxychinolin und 2,91 g (0,021 mol) Kaliumcarbonat werden in 100 ml Dimethylsulfoxid (DMSO) für 30 min auf 60°C erwärmt. Man läßt wieder auf Raumtemperatur abkühlen und tropft dann 5,0 g (0,021 mol) Bromessigsäure-3-(allyloxy)propylester hinzu und erwärmt die Lösung anschließend für 4 h auf 90°C. Das DMSO wird dann im Vakuum abdestilliert, der Rückstand in Essigsäureethylester aufgenommen und die Lösung mit Wasser und 5 proz. Natriumhydroxidlösung gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet, das Trockenmittel abfiltriert und das Lösungsmittel unter reduziertem Druck abgezogen. Nach Umkristallisieren des Rückstandes aus n-Heptan erhält man 5,4 g (76,3 % d. Th.) 5-Chlorchinolin-8-oxyessigsäure-3-(allyloxy)propylester vom Schmp. 69°C.

5-Chlorchinolin-8-oxyessigsäure-2-(propargyloxy)ethylester (Bsp. 18 in Tabelle 1)

5,0 g (0,021 mol) 5-Chlorchinolin-8-oxyessigsäure werden in 70 ml Thionylchlorid eine Stunde lang auf 70°C erwärmt. Anschließend wird das überschüssige Thionylchlorid im Vakuum abdestilliert und der Rückstand in 150 ml Tetrachlorkohlenstoff suspendiert. Zu dieser Suspension fügt man 2,10 g (0,021 mol) 2-Propargyloxyethanol hinzu, tropft dann 2,30 g (0,023 mol) Triethylamin hinzu und erhitzt 12 h zum Rückfluß. Anschließend wäscht man die Suspension mit je 70 ml 2 n HCl und 5 proz. Natronlauge, trocknet die org. Phase über Magnesiumsulfat und zieht das Lösungsmittel i. Vak. ab. Der Rückstand wird aus n-Heptan umkristallisiert. Man erhält so 1,1 g (16,3 % d. Th.) 5-Chlorchinolin-8-oxyessigsäure-2-(propargyloxy)ethylester vom Schmp. 53°C.

5-Chlorchinolin-8-oxyessigsäure-2-allyloxy-1-methylethylester (Bsp. 24 in Tabelle 1)

5,0 g (0,021 mol) 5-Chlorchinolin-8-oxyessigsäure und 2,44 g (0,021 mol) 2-Allyloxy-1-methylethanol werden in einem Gemisch aus 40 ml Dichlormethan und 40 ml Dimethylformamid suspendiert und auf 0° C abgekühlt. Bei dieser Temperatur werden 4,78 g (0,023 mol) Dicyclohexylcarbodiimid in 10 ml Dichlormethan gelöst hinzugetropft und dann 200 mg 3-(N,N-Dimethylamino)-pyridin hinzugegeben. Man rührt 15 h bei Raumtemperatur und saugt den ausgefallenen Niederschlag ab und wäscht ihn mit 50 ml Dichlormethan nach. Das Filtrat wird mit 100 ml 0,5 n HCl, mit 100 ml Kaliumhydrogencarbonatlösung und 3 mal mit je 50 ml Wasser gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum abgezogen. Der Rückstand wird aus n-Heptan umkristallisiert. Auf diese Weise erhält man 5,1 g (72,4 % d. Th.) 5-Chlorchinolin-8-oxyessigsäure-2-allyloxy-1-methylethylester vom Schmelzpunkt 59° C.

In den folgenden Tabellen 1a und 1b sind die obengenannten Herstellungsbeispiele mit weiteren Beispielen für Verbindungen der Formel I aufgeführt, die in analoger Weise hergestellt werden.

25

30

35

40

45

50

Tabelle 1°

 $\begin{array}{c|c}
Cl \\
N \\
R^{1} \\
0 \\
0 \\
R \\
0
\end{array}$   $\begin{array}{c}
R^{1} \\
0 \\
0 \\
R
\end{array}$ 

| 20 | Beispiel | R <sup>1</sup> | R <sup>2</sup> | A-R³                                                                                                                                     | Smp.[ <sup>0</sup> C] |
|----|----------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 20 | 1        | Н              | н              | CH <sub>2</sub> -Si(CH <sub>3</sub> ) <sub>3</sub>                                                                                       | 79                    |
|    | 2        | н              | Н              | $CH_2$ - $CH_2$ -O-N= $C(n.C_4H_9)_2$                                                                                                    |                       |
| 25 | 3        | Н              | н              | CH-CH <sub>2</sub> -O-N=C(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub>                                                                   | 46                    |
| 30 | 4        | н              | Н              | CH <sub>3</sub> ,C <sub>2</sub> H <sub>5</sub> CH-CH <sub>2</sub> -O-N=C ,n.C <sub>5</sub> H <sub>11</sub> C <sub>2</sub> H <sub>5</sub> | Harz                  |
| 35 |          | :              |                |                                                                                                                                          |                       |
| 40 | 5        | н              | н              | $CH_2 - C \equiv C - Si(CH_3)_3$                                                                                                         | 122                   |

EP 0 492 366 A2

|    | Beispiel | $\mathbb{R}^1$  | R <sup>2</sup> | A-R <sup>3</sup>                                                                         | Smp.[ <sup>0</sup> C] |
|----|----------|-----------------|----------------|------------------------------------------------------------------------------------------|-----------------------|
| 5  | 6        | CH₃             | Н              | $CH_2$ · $C \equiv C - Si(CH_3)_3$                                                       | 95                    |
| 40 | 7        | н               | н              | CH−C≡C−Si(CH <sub>3</sub> ) <sub>3</sub><br>H <sub>3</sub> C                             | <b>72</b>             |
| 10 | 8        | СН3             | н              | CH— C === C Si(CH <sub>3</sub> ) <sub>3</sub><br>H <sub>3</sub> C                        | Oel                   |
| 15 | 9        | н               | н              | $C(CH_3)_2$ — $C = C - Si(CH_3)_3$                                                       | 75                    |
| 20 | 10       | CH <sub>3</sub> | н              | $C(CH_3)_2$ — $C \equiv C - Si(CH_3)_3$                                                  | Oel                   |
|    |          |                 |                |                                                                                          |                       |
| 25 | 11       | н               | Н              | CH <sub>2</sub> -CO <sub>2</sub> -CH <sub>2</sub> -CH=CH <sub>2</sub>                    | 85                    |
|    | 12       | н               | н              | $CH_2$ - $CO_2$ - $CH_2$ - $C \equiv CH$                                                 |                       |
| 30 | 13       | н               | н              | CH <sub>2</sub> -CO <sub>2</sub> -CH <sub>2</sub> -Si(CH <sub>3</sub> ) <sub>3</sub>     |                       |
|    | 14       | CH <sub>3</sub> | н              | CH <sub>2</sub> -CO <sub>2</sub> -CH <sub>2</sub> -CH=CH <sub>2</sub>                    |                       |
| 35 | 15       | CH₃             | н              | $CH_2$ - $CO_2$ - $CH_2$ - $C \equiv CH$                                                 |                       |
| 00 | 16       | CH <sub>3</sub> | Н              | CH <sub>2</sub> -CO <sub>2</sub> -CH <sub>2</sub> -Si(CH <sub>3</sub> ) <sub>3</sub>     |                       |
|    | 17       | н               | н              | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                  |                       |
| 40 | 18       | н               | н              | $CH_2$ - $CH_2$ - $O$ — $CH_2$ - $C \equiv CH$                                           | 53                    |
| 45 | 19       | н               | н              | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub> | 69                    |

EP 0 492 366 A2

|    | Beispiel | R <sup>1</sup> | R <sup>2</sup> | A-R <sup>3</sup>                                                                                          | Smp.[ <sup>0</sup> C] |
|----|----------|----------------|----------------|-----------------------------------------------------------------------------------------------------------|-----------------------|
| 5  | 20       | н              | . н            | $CH_2$ - $CH_2$ - $CH_2$ O — $CH_2$ - $C \equiv CH$                                                       | 73                    |
|    | 21       | н              | н              | (CH <sub>2</sub> ) <sub>4</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                    | 61                    |
| 10 | 22       | н              | н              | (CH <sub>2</sub> ) <sub>4</sub> -O — CH <sub>2</sub> - C ≡ CH                                             |                       |
|    | 23       | н              | н              | (CH <sub>2</sub> ) <sub>5</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                    | 63                    |
| 15 | 24       | н              | н              | CH-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub><br> <br>  CH <sub>3</sub>                       | 59                    |
| 20 | 25       | н              | Н              | $CH - CH_2 - O - CH_2 - C \equiv CH$ $H_3C$                                                               |                       |
| 25 | 26       | н              | н              | $CH_3$ $CH_2-CH_2-O-CH_2-C=CH_2$                                                                          | 66                    |
| 30 | 27       | н              | н              | $ \begin{array}{ccc} CH_3 & CH_3 \\  &   \\ CH - CH_2 - O - CH_2 - C = CH_2 \end{array} $                 |                       |
|    | 28       | н              | н              | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -Si(CH <sub>3</sub> ) <sub>3</sub><br>CH <sub>3</sub> | 56                    |
| 35 | 29       | н              | н              | $CH_2-CH_2-O-N=CH_3$                                                                                      | 93                    |
| 40 | 30       | Н              | н              | $CH_2 \cdot CH_2 - O - N = CH_3$ $CH_3 \cdot CH_3$                                                        | 58                    |
| 45 | 31       | Н              | н              | CH <sub>2</sub> - CH <sub>2</sub> - O - N =                                                               | 79                    |

EP 0 492 366 A2

|    | Beispiel | $\mathbb{R}^1$ | R <sup>2</sup> | A-R³                                                                            | Smp.[ <sup>0</sup> C] |
|----|----------|----------------|----------------|---------------------------------------------------------------------------------|-----------------------|
| 5  | 32       | Н              | н              | CH <sub>2</sub> - CH <sub>2</sub> - O - N =                                     | 83                    |
| 10 | 33       | н              | н              | CH-CH2-O-N = CH3 $CH3C CH3$                                                     | 102                   |
| 15 | 34       | н              | н              | CH-CH2-O-N = CH3                                                                | 87                    |
| 20 | 35       | н              | н              | CH- CH <sub>2</sub> -O - N =                                                    |                       |
| 25 | 36       | Н              | н              | CH- CH <sub>2</sub> -O - N = CH <sub>3</sub> CH <sub>3</sub> C  CH <sub>3</sub> | Öl                    |
| 30 | 37       | н              | н              | CH— CO <sub>2</sub> — CH <sub>2</sub> — CH= CH <sub>2</sub> H <sub>3</sub> C    | Öl                    |
| 35 | 38       | н              | н              | $CH_2 \swarrow^{O}_{O-N} = \swarrow^{CH_3}_{CH_3}$                              |                       |
| 40 | 39       | н              | н              | CH2 CH2 O - CH2                                                                 | 76                    |
| 45 |          |                |                |                                                                                 |                       |

EP 0 492 366 A2

|    | Beispiel | R <sup>1</sup> | R <sup>2</sup> | A-R <sup>3</sup>                                                                                            | Smp.[ <sup>0</sup> C] |
|----|----------|----------------|----------------|-------------------------------------------------------------------------------------------------------------|-----------------------|
| 5  | 40       | н              | н              | CH- CH <sub>2</sub> -0 - N =                                                                                | 64                    |
| 10 | 41       | н              | н              | CH <sub>2</sub> - CH <sub>2</sub> - O - N                                                                   | 87                    |
| 15 | 42       | н              | н              | CH- CH <sub>2</sub> -O-N=CH <sub>2</sub> - CH <sub>3</sub>                                                  | Oel                   |
| 20 | 43       | н              | н              | CH- CH <sub>2</sub> O - N = CH <sub>2</sub> CH <sub>3</sub>                                                 |                       |
| 25 |          |                |                |                                                                                                             |                       |
| 30 | 44       | Н              | н              | $CH_2 = 0$ $O - N = 0$                                                                                      |                       |
| 35 | 45       | н              | н              | $CH_2 = \left\langle \begin{array}{c} O \\ O - N = \left\langle \begin{array}{c} \end{array} \right\rangle$ |                       |
| 40 | 46       | н              | Н              | $CH_2 \longrightarrow O \longrightarrow O$                                                                  |                       |
| 45 | 47       | н              | н              | CH—(O—N—(CH <sub>3</sub> )                                                                                  |                       |
|    |          |                |                | l                                                                                                           |                       |

EP 0 492 366 A2

|          | Beispiel | $\mathbb{R}^1$ | R <sup>2</sup> | A-R <sup>3</sup>                                                       | Smp.[ <sup>0</sup> C] |
|----------|----------|----------------|----------------|------------------------------------------------------------------------|-----------------------|
| 5        | 48       | н              | н              | CH2 CH2 O - CO-                                                        | 126                   |
| 10       | 49       | н              | н              | $CH_2 CH_2 N = CH_3$ $CH_3$                                            |                       |
| 15       | 50       | н              | н              | $CH_2$ $CH_3$ $CH_3$                                                   | 90                    |
| 20       | 51       | н              | н              | O<br>CH <sub>2</sub> —<br>HN — CH <sub>2</sub> - CH= CH <sub>2</sub>   |                       |
| 25       | 52       | н              | н              | $CH_2$ — $CH_2$ — $CH=CH_2$                                            |                       |
| 30       | 53       | н              | н              | N —— n.C <sub>4</sub> H <sub>9</sub> CH <sub>2</sub> ——CH <sub>3</sub> |                       |
| 35       | 54       | н              | н              | N —— OH                                                                |                       |
| 40<br>45 | 55       | н              | н              | CH <sub>2</sub> O N O                                                  |                       |

EP 0 492 366 A2

|    | Beispiel | R <sup>1</sup> | R <sup>2</sup> | A-R <sup>3</sup>                                                                                            | Smp.[ <sup>0</sup> C] |
|----|----------|----------------|----------------|-------------------------------------------------------------------------------------------------------------|-----------------------|
| 5  | 56       | н              | Н              | CH <sub>2</sub> N O CH <sub>3</sub>                                                                         |                       |
| 10 | 57       | н              | Н              | O<br>CH <sub>2</sub> · CH <sub>2</sub> · NH <sup>-11</sup> — NH- CH <sub>2</sub> CH- CH <sub>2</sub>        |                       |
| 15 | 58       | н              | н              | CH <sub>2</sub> - CH <sub>2</sub> - O CH <sub>2</sub> - CH <sub>2</sub> -                                   |                       |
| 20 | 59       | н              | н              | $CH_2 \xrightarrow{\qquad \qquad C_2H_5} CH_3$                                                              |                       |
| 25 |          |                |                |                                                                                                             |                       |
| 30 | 60       | н              | н              | $CH_2-CH_2$ · $N$ $CH_3$                                                                                    |                       |
|    | 61       | н              | Н              | CH <sub>2</sub> - CH <sub>2</sub> - CH <sub>2</sub> - O — CH <sub>2</sub> Si(CH <sub>3</sub> ) <sub>3</sub> |                       |
| 35 | 62       | н              | н              | $CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-$                                                                  |                       |
| 40 |          |                |                |                                                                                                             |                       |
| 45 | 63       | н              | Н              | $CH_2 - CH = CH_2$ $CH_2 - CH = CH_2$ $CH_2 - CH = CH_2$                                                    |                       |
|    |          |                | :              |                                                                                                             |                       |

|    | Beispiel | R¹              | R² | A-R³                                                                                      | Smp.<br>[°C] |
|----|----------|-----------------|----|-------------------------------------------------------------------------------------------|--------------|
| 5  | 64       | Н               | Н  | CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> )-OCH <sub>2</sub> CH=CHCH <sub>3</sub>           | Wachs        |
|    | 65       | CH₃             | Н  | CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> )-OCH <sub>2</sub> CH=CHCH <sub>3</sub>           | ÕI           |
|    | 66       | CH <sub>3</sub> | Н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH = CH-CH <sub>3</sub>              | Öl           |
| 10 | 67       | CH <sub>3</sub> | Н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH = CH <sub>2</sub>                 | Öl           |
|    | 68       | CH₃             | Н  | CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> )-OCH <sub>2</sub> CH=CH <sub>2</sub>             | Öl           |
|    | 69       | н               | Н  | $CH_2$ - $CH(CH_3)$ - $OCH_2$ CH = $CH_2$                                                 | 53           |
| 15 | 70       | Н               | Н  | CH₂-C≖C-CH₂-O-CO-CH₃                                                                      | 116          |
|    | 71       | CH <sub>3</sub> | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH-CH <sub>3</sub>          | Ö١           |
|    | 72       | н               | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH-CH <sub>3</sub>          | 43           |
| 20 | 73       | CH₃             | Н  | (CH <sub>2</sub> ) <sub>4</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                    | Öl           |
| 20 | 74       | н               | Н  | CH(CH₃)-CH(CH₃)-O-CO-CH₃                                                                  | Ōl           |
|    | 75       | Н               | н  | CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> )-O-CO-t-C <sub>4</sub> H <sub>9</sub>            | ŌI           |
|    | 76       | н               | Н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH-CH <sub>3</sub>                | 83           |
| 25 | 77       | н               | Н  | CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> )-OCH <sub>2</sub> CH=CH <sub>2</sub>             | ÖI           |
|    | 78       | н               | н  | CH <sub>2</sub> -CH <sub>2</sub> -N=                                                      | 155          |
| 30 | 79       | Н               | Н  | CH(C₂H₅)-CH₂-OCH₂C≡CH                                                                     | Öl           |
|    | 80       | Н               | H  | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-t-C <sub>4</sub> H <sub>9</sub>                    | 38           |
|    | 81       | Н               | Ξ  | $CH_2$ - $CH_2$ - $O$ - $N = C(CH_3)C_2H_5$                                               | 68           |
| 35 | 82       | Н               | Ξ  | CH(C <sub>2</sub> H <sub>5</sub> )-CH <sub>2</sub> -OCH <sub>2</sub> CH=CH <sub>2</sub>   | Öl           |
|    | 83       | Н               | Ι  | $CH(C_2H_5)-CH_2-O-N=C(CH_3)_2$                                                           | Öl           |
|    | 84       | Н               | Н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>3</sub>                                    | 87           |
| 40 | 85       | Н               | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CO-CH <sub>3</sub>                              | 73           |
|    | 86       | н               | Н  | CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CF <sub>3</sub>                                   | 117          |
|    | 87       | н               | н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>             | 47           |
| 45 | 88       | н               | н  | $CH(CH_3)-CH_2-O-N=C(C_2H_5)n-C_5H_{11}$                                                  | Harz         |
|    | 89       | н               | н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH <sub>3</sub>                  | 133          |
|    | 90       | н               | Н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH <sub>2</sub> -CH <sub>3</sub> | 105          |
| 50 | 91       | н               | Н  | CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH <sub>2</sub> -CH <sub>3</sub>                  | 119          |

|     | Beispiel | R¹              | R²  | A-R³                                                                                                                                       | Smp.<br>[°C] |
|-----|----------|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 5   | 92       | Н               | Н   | $CH_2$ - $CH_2$ - $O$ - $N = C(n$ - $C_4H_9)$ $C_2H_5$                                                                                     |              |
|     | 93       | Н               | Н   | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH=C(CH <sub>3</sub> ) <sub>2</sub>                                                   | 67           |
| 10  | 94       | н               | Н   | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub>                                                                                        | 38           |
|     | 95       | CH₃             | Н   | CH(CH <sub>3</sub> )-CH <sub>2</sub> -OCH <sub>2</sub> -CH=CH <sub>2</sub>                                                                 | Öl           |
|     | 96       | Н               | Н   | CH <sub>3</sub><br>CH <sub>2</sub> - CH <sub>2</sub> - CH <sub>2</sub> - C=N-OH                                                            | 84           |
| 15  | 97       | Н               | Н   | CH <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -CH <sub>2</sub> -NH-CO-C <sub>6</sub> H <sub>5</sub>                                    | ÖI           |
|     | 98       | н               | Н   | CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-C <sub>6</sub> H <sub>5</sub>                                                                      | 122          |
| 20  | 99       | н               | Н   | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> — C — N-O-CO-CH <sub>3</sub>                                                             | 85           |
|     | 100      | н               | Н   | CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> )-O-CO-CH <sub>2</sub> -O-CH <sub>3</sub>                                                          | 92           |
|     | 101      | н               | Н   | (CH <sub>2</sub> ) <sub>2</sub> OCH <sub>2</sub> CH=C(CH <sub>3</sub> )CH <sub>2</sub> CH <sub>2</sub> CH=C(CH <sub>3</sub> ) <sub>2</sub> | <b>3</b> 9   |
| 0.5 | 102      | Н               | H   | CH <sub>2</sub> -CH = CH-CH <sub>2</sub> -O-CO-CH <sub>3</sub>                                                                             | 75           |
| 25  | 103      | Н               | Н   | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-C <sub>6</sub> H <sub>5</sub>                                                     |              |
|     | 104      | Н               | Н   | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>2</sub> -CH <sub>3</sub>                                                                    | 55           |
|     | 100      | Н               | CH₃ | CH <sub>2</sub> -CO-O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                                                  | ÖI           |
| 30  | 106      | CH <sub>3</sub> | H   | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                              |              |
|     | 107      | CH <sub>3</sub> | CH₃ | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                              |              |
|     | 108      | CH₃             | Н   | CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CF <sub>3</sub>                                                                                    |              |
| 35  | 109      | CH₃             | Н   | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CO-CH <sub>3</sub>                                                                               |              |
|     | 110      | CH <sub>3</sub> | Н   | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>3</sub>                                                                                     |              |
|     | 111      | CH <sub>3</sub> | Н   | $CH(C_2H_5)-CH_2-O-N=C(CH_3)_2$                                                                                                            |              |
| 40  | 112      | CH <sub>3</sub> | Н   | $CH(C_2H_5)-CH_2-O-CH_2-CH=CH_2$                                                                                                           |              |
|     | 113      | CH <sub>3</sub> | Н   | $CH_2$ - $CH_2$ - $O$ - $N = C(CH_3)C_2H_5$                                                                                                |              |
|     | 114      | CH₃             | Н   | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-t-C <sub>4</sub> H <sub>9</sub>                                                                     | II.          |
| 45  | 115      | CH <sub>3</sub> | Н   | CH(C₂H₅)-CH₂-O-CH₂-C≡CH                                                                                                                    |              |
|     | 116      | CH₃             | Н   | CH <sub>2</sub> -CH <sub>2</sub> -N =                                                                                                      |              |
| 50  | 117      | CH <sub>3</sub> | Н   | CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> )-O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                            |              |

|    | Beispiel | R¹              | R² | A-R³                                                                                                                   | Smp.<br>[°C] |
|----|----------|-----------------|----|------------------------------------------------------------------------------------------------------------------------|--------------|
| 5  | 118      | CH <sub>3</sub> | Н  | CH2-CH2-O-CH2-CH=CH-CH3                                                                                                |              |
|    | 119      | CH <sub>3</sub> | Н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>2</sub> -O-CH <sub>3</sub>                                              |              |
| 10 | 120      | CH <sub>3</sub> | Н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> — C=N-O-CO-CH <sub>3</sub>                                           |              |
| 10 | 121      | CH <sub>3</sub> | Н  | CH₂-CH₂-NH-CO-C₀H₅                                                                                                     |              |
|    | 122      | CH <sub>3</sub> | н  | CH <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -CH <sub>2</sub> -NH-CO-C <sub>6</sub> H <sub>5</sub>                |              |
| 15 | 123      | CH₃             | Н  | $CH2-CH2-CH2 \longrightarrow C = N-OH$                                                                                 |              |
|    | 124      | Н               | н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH=CH <sub>2</sub>                                            |              |
|    | 125      | Н               | Н  | CH₂-CH₂-CH₂-NH-CO-C≡CH                                                                                                 |              |
| 20 | 126      | CH <sub>3</sub> | Н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH=CH <sub>2</sub>                                            |              |
|    | 127      | CH <sub>3</sub> | Ι  | CH₂-CH₂-CH₂-NH-CO-C≡CH                                                                                                 |              |
|    | 128      | Н               | Ŧ  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -NH-CO-CH <sub>3</sub>                                                          |              |
| 25 | 129      | н               | Н  | O-CH <sub>2</sub> -CH = CH <sub>2</sub>                                                                                |              |
| 30 | 130      | н               | Н  | O-CH₂-C≡CH                                                                                                             |              |
|    | 131      | CH <sub>3</sub> | Н  | O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                                                  |              |
| 35 | 132      | CH₃             | Н  | O-CH₂-CH≡CH₂                                                                                                           |              |
| 40 | 133      | н               | Н  | O-N=C(CH <sub>3</sub> ) <sub>2</sub>                                                                                   |              |
|    | 134      | Н               | Н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -p-C <sub>6</sub> H <sub>4</sub> -Br                               |              |
|    | 135      | Н               | H  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -p-C <sub>6</sub> H <sub>4</sub> -NO <sub>2</sub> |              |
| 45 | 136      | Н               | н  | CH(CH <sub>3</sub> )-CH <sub>2</sub> -O-CH <sub>2</sub> -m-C <sub>6</sub> H <sub>4</sub> -CH <sub>3</sub>              |              |
| 45 | 137      | Н               | Н  | CH <sub>2</sub> -CH(CH <sub>3</sub> )-O-CH <sub>2</sub> -p-C <sub>6</sub> H <sub>4</sub> -CF <sub>3</sub>              |              |
|    | 138      | Н               | Н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -p-C <sub>6</sub> H <sub>4</sub> -O-CHF <sub>2</sub>               |              |
| 50 | 139      | Н               | Н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                                  |              |

|    | Beispiel | R¹ | R² | A-R³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Smp.<br>[°C] |
|----|----------|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 5  | 140      | Н  | H  | CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>3</sub> - |              |
| 10 | 141      | Н  | Н  | CH <sub>2</sub> -CH <sub>2</sub> — CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
|    | 142      | Н  | Н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>2</sub> -Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|    | 143      | Н  | Н  | CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-2,4-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| 15 | 144      | Н  | н  | CH <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|    | 145      | Н  | н  | CH <sub>2</sub> -CH <sub>2</sub> -CO-N(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
|    | 146      | Н  | н  | CH <sub>2</sub> -CO-NH-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| 20 | 147      | Н  | Н  | CH(CH <sub>3</sub> )-CO-NH-n-C <sub>4</sub> H <sub>9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|    | 148      | Н  | Н  | CH₂-CH₂-CH₂-CO-NH-CH₂-C≡CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|    | 149      | Н  | н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -C(=S)-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| 25 | 150      | Н  | н  | CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub> -S-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|    | 151      | Н  | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -CO-N(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|    | 152      | Н  | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -S-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| 30 | 153      | Н  | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CO-CH <sub>2</sub> -Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|    | 154      | Н  | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CO-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|    | 155      | Н  | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -NH-CO-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| 35 | 156      | Н  | н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -CO-NH-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|    | 157      | Н  | Н  | CH2-CH=CH-CH2-O-CH2-p-C6H4 -OCHF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|    | 158      | Н  | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-N=C(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| 40 | 159      | Н  | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CH <sub>2</sub> -C=CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| 10 | 160      | н  | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|    | 161      | Н  | Н  | CH <sub>2</sub> -C≡C-CH <sub>2</sub> -O-CO-C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|    | 162      | Н  | Н  | CH₂-C≡C-CH₂-NH-CO-CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| 45 | 163      | н  | Н  | CH₂-C≡C-CH₂-NH-CO-CH₂-OCH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|    | 164      | н  | н  | CH <sub>2</sub> -C=C-CH <sub>2</sub> -O-N=C(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|    | 165      | Н  | н  | CH <sub>2</sub> -C=C-CH <sub>2</sub> -O-CH <sub>2</sub> -C=CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| 50 |          |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |

|    | Beispiel | R¹  | R²              | A-R <sup>3</sup>                                                                                                           | Smp.<br>[°C] |
|----|----------|-----|-----------------|----------------------------------------------------------------------------------------------------------------------------|--------------|
| 5  | 166      | н   | н               | CH₂-C≡C-CH₂-NH-CO-CH₂-C₀H₅                                                                                                 |              |
|    | 167      | Н   | Н               | CH₂-C≡C-CH₂-CS-CH₃                                                                                                         |              |
|    | 168      | Н   | CH <sub>3</sub> | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -p-C <sub>6</sub> H <sub>4</sub> Br                                    |              |
| 10 | 169      | Н   | CH₃             | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> -O-CH <sub>2</sub> -p-C <sub>6</sub> H <sub>4</sub> NO <sub>2</sub>        |              |
|    | 170      | н   | CH₃             | CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -m-C <sub>6</sub> H <sub>4</sub> -CH <sub>3</sub> |              |
|    | 171      | Н   | CH₃             | CH <sub>2</sub> -CH(CH <sub>3</sub> )-O-CH <sub>2</sub> -p-C <sub>6</sub> H <sub>4</sub> -CF <sub>3</sub>                  |              |
| 15 | 172      | Н   | CH₃             | CH <sub>2</sub> -CH <sub>2</sub> -CO-O-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                                      |              |
|    | 173      | Н   | CH <sub>3</sub> | CH <sub>2</sub> -CH <sub>2</sub> -C(OCH <sub>2</sub> -CH <sub>3</sub> ) <sub>2</sub> (CH <sub>3</sub> )                    |              |
| 20 | 174      | Н   | CH₃             | CH <sub>2</sub> -CH <sub>2</sub> -C-O-7                                                                                    |              |
|    | 175      | Н   | CH <sub>3</sub> | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>2</sub> -Cl                                                |              |
|    | 176      | Н   | CH₃             | CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-2,4-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                                  | -            |
| 25 | 177      | Ξ   | CH₃             | CH <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>   |              |
| 20 | 178      | Н   | CH₃             | CH <sub>2</sub> -CH <sub>2</sub> -CO-N(CH <sub>3</sub> ) <sub>2</sub>                                                      |              |
|    | 179      | Н   | CH <sub>3</sub> | CH <sub>2</sub> -CO-NH-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                                 |              |
|    | 180      | Η   | CH <sub>3</sub> | CH(CH <sub>3</sub> )-CO-NH-n-C <sub>4</sub> H <sub>9</sub>                                                                 |              |
| 30 | 181      | CH₃ | H               | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CO-NH-CH <sub>2</sub> -C≡CH                                             |              |
|    | 182      | Н   | CH₃             | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CS-CH <sub>3</sub>                                                      |              |
|    | 183      | Н   | CH <sub>3</sub> | CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub> -S-CH <sub>2</sub> -CH=CH <sub>2</sub>                               |              |
| 35 | 184      | н   | CH <sub>3</sub> | $CH_2$ - $CH$ = $CH$ - $CH_2$ - $CO$ - $N(CH_3)_2$                                                                         |              |
|    | 185      | Н   | CH₃             | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -S-CH <sub>2</sub> -CH=CH <sub>2</sub>                                              |              |
|    | 186      | Н   | CH₃             | CH <sub>2</sub> -CH = CH-CH <sub>2</sub> -O-CO-CH <sub>2</sub> -CI                                                         |              |
| 40 | 187      | Н   | CH <sub>3</sub> | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -NH-CO-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                               |              |
|    | 188      | н   | CH₃             | $CH_2$ - $CH$ = $CH$ - $CH_2$ - $O$ - $N$ = $C(CH_3)_2$                                                                    |              |
|    | 189      | Н   | CH₃             | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CH <sub>2</sub> -C=CH                                                            |              |
| 45 | 190      | Н   | CH3             | $CH_2$ - $CH$ = $CH$ - $CH_2$ - $O$ - $CH_2$ - $C(CH_3)$ = $CH_2$                                                          |              |
|    | 191      | Н   | CH <sub>3</sub> | $CH_2$ - $C$ = $C$ - $CH_2$ - $O$ - $N$ = $C$ ( $CH_3$ ) <sub>2</sub>                                                      |              |
|    | 192      | н   | CH <sub>3</sub> | CH <sub>2</sub> -C=C-CH <sub>2</sub> -NH-CO-CH <sub>3</sub>                                                                |              |
| 50 | 193      | н   | СН₃             | CH <sub>2</sub> -C=C-CH <sub>2</sub> -NH-CO-CH <sub>2</sub> -O-CH <sub>3</sub>                                             |              |

. 30

| Beispiel | R¹ | R²              | A-R³                                                                                         | Smp.<br>[℃] |
|----------|----|-----------------|----------------------------------------------------------------------------------------------|-------------|
| 194      | Н  | CH₃             | CH₂-C≡C-CH₂-O-CH₂-C≡CH                                                                       | -           |
| 195      | Н  | CH <sub>3</sub> | CH₂-C≡C-CH₂-NH-CO-CH₂-C <sub>6</sub> H <sub>5</sub>                                          |             |
| 196      | H  | CH <sub>3</sub> | CH₂-C≡C-CH₂-O-CO-CH₃                                                                         |             |
| 197      | Ι  | Н               | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CO-t-C <sub>4</sub> H <sub>9</sub>      | 82          |
| 198      | H  | Н               | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>2</sub> -CH <sub>3</sub>     | 76          |
| 199      | Н  | Н               | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>3</sub>                      | 113         |
| 200      | Н  | н               | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CO-CH <sub>2</sub> -CH(CH <sub>3</sub> ) <sub>2</sub> | 61          |
| 201      | Н  | Н               | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>2</sub> -Cl                                   | 90          |
| 202      | Н  | Н               | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CF <sub>3</sub>                                       | 103         |
| 203      | н  | Н               | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-cyclo-C <sub>3</sub> H <sub>5</sub>                   | 72          |

Tabelle 1b

 $\begin{array}{c|c}
Cl & & \\
N & & \\
R^1 & & N - A - R^3
\end{array}$ 

| Beispiel | R¹ | R² | A-R³                                                                                                      | Smp.<br>[°C] |
|----------|----|----|-----------------------------------------------------------------------------------------------------------|--------------|
| 204      | н  | Н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>3</sub>                                                    | 106          |
| 205      | н  | н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-t-C <sub>4</sub> H <sub>8</sub>                                    | 96           |
| 206      | Н  | н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH = C(CH <sub>3</sub> ) <sub>2</sub>             | Öl           |
| 207      | н  | н  | CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-C <sub>2</sub> H <sub>6</sub>                                     | 164          |
| 208      | н  | н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH <sub>3</sub>                                  | 81           |
| 209      | н  | н  | CH(CH <sub>3</sub> )-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                               |              |
| 210      | Н  | н  | $CH_2$ - $CH_2$ - $O$ - $N$ = $C(CH_3)_2$                                                                 |              |
| 211      | Н  | н  | CH <sub>2</sub> -CO-O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                 |              |
| 212      | Н  | Н  | CH <sub>2</sub> -CO-O-CH <sub>2</sub> -C≡CH                                                               |              |
| 213      | Н  | Н  | CH <sub>2</sub> -CH(CH <sub>3</sub> )-O-CH <sub>2</sub> -CH=CH <sub>2</sub>                               |              |
| 214      | Н  | Н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub> |              |
| 215      | Н  | Н  | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                   |              |
| 216      | Н  | Н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                  |              |
| 217      | Ξ  | Н  | CH₂-CH₂-O-CH₂-C≡CH                                                                                        |              |
| 218      | Н  | Н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -C <b>≡</b> CH                       |              |
| 219      | Н  | Н  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -C≖CH               |              |
| 220      | Н  | Н  | CH <sub>2</sub> -CH <sub>2</sub> -CO-NH-CH <sub>2</sub> -C <sub>8</sub> H <sub>5</sub>                    |              |
| 221      | Н  | Н  | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                             |              |
| 222      | Н  | Н  | CH <sub>2</sub> -CH = CH-CH <sub>2</sub> -O-CH <sub>2</sub> -C <b>=</b> CH                                |              |
| 223      | н  | Н  | CH <sub>2</sub> -CH = CH-CH <sub>2</sub> -O-CH <sub>2</sub> -C <sub>8</sub> H <sub>5</sub>                |              |

|    | Beispiel | R¹ | R²              | A-R³                                                                                                 | Smp. |
|----|----------|----|-----------------|------------------------------------------------------------------------------------------------------|------|
| 5  | 224      | Н  | Н               | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                |      |
|    | 225      | Н  | Н               | $CH_2-CH_2-N=$                                                                                       |      |
| 10 | 226      | Н  | н               | O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                                |      |
| 15 | 227      | н  | Н               | O-CH₂-C≡CH                                                                                           |      |
| 20 | 228      | Н  | Н               | $OC_2H_5$ $CH_2-CH_2$ — $CH_3$ $CH_3$                                                                |      |
| 20 | 229      | Н  | Н               | CH₂-CH₂— Ç-0-7<br>O—7                                                                                |      |
| 25 | 230      | Н  | H               | CH₂-CH₂-NH-CO-C∈CH                                                                                   |      |
|    | 231      | н  | Н               | CH <sub>2</sub> -CH <sub>2</sub> -O-CH-p-C <sub>6</sub> H <sub>4</sub> -NO <sub>2</sub>              |      |
|    | 232      | Н  | Н               | CH <sub>2</sub> -CH <sub>2</sub> -O-CO-CH <sub>2</sub> -O-CH <sub>3</sub>                            |      |
| 30 | 233      | Н  | Н               | CH <sub>2</sub> -CH <sub>2</sub> -CO-N(CH <sub>3</sub> ) <sub>2</sub>                                |      |
| 30 | 234      | Н  | Н               | CH(CH <sub>3</sub> )-CO-NH-C <sub>4</sub> H <sub>9</sub>                                             |      |
|    | 235      | Н  | Н               | $CH_2$ - $CH$ = $CH$ - $CH_2$ - $CO$ - $N(CH_3)_2$                                                   |      |
|    | 236      | Н  | н               | CH <sub>2</sub> -C≡C-CH <sub>2</sub> -CO-NH-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>           |      |
| 35 | 237      | Н  | CH <sub>3</sub> | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH <sub>3</sub>                             |      |
|    | 238      | Н  | CH <sub>3</sub> | $CH_2$ - $CH_2$ - $O$ - $N$ = $C(CH_3)_2$                                                            |      |
|    | 239      | н  | CH₃             | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -C=CH                                            |      |
| 40 | 240      | н  | CH <sub>3</sub> |                                                                                                      |      |
|    | 241      | Н  | CH₃             | CH <sub>2</sub> -CO-O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                            |      |
|    | 242      | Н  | CH <sub>3</sub> | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> |      |
| 45 | 243      | Н  | CH₃             | CH <sub>2</sub> -CH(CH <sub>3</sub> )-O-CH <sub>2</sub> -CH=CH <sub>2</sub>                          |      |
|    | 244      | Н  | CH <sub>3</sub> | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                        |      |
|    | 245      | Н  | CH <sub>3</sub> | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -O-CO-CH <sub>3</sub>                                         |      |
| 50 | 246      | Н  | CH <sub>3</sub> | CH <sub>2</sub> -CH=CH-CH <sub>2</sub> -NH-CO-C <sub>6</sub> H <sub>5</sub>                          |      |

|                                                                                                                                                                                                                                                                                                  | Beispiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R¹              | R²              | A-R³                                                                                                                     | Smp.<br>[°C] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|--------------|
| 5                                                                                                                                                                                                                                                                                                | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | CH <sub>3</sub> | CH <sub>2</sub> -CH <sub>2</sub> -N=                                                                                     |              |
| 10                                                                                                                                                                                                                                                                                               | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | CH₃             | CH <sub>3</sub><br>CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - C=N-O-CO-CH <sub>3</sub>                          |              |
|                                                                                                                                                                                                                                                                                                  | 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | CH₃             | CH₃<br>CH₂-CH₂-CH₂- C=N-OH                                                                                               |              |
| 15                                                                                                                                                                                                                                                                                               | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | CH₃             | CH₂-CH₂-NH-CO-C≡CH                                                                                                       |              |
| 15                                                                                                                                                                                                                                                                                               | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | CH₃             | CH <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> |              |
|                                                                                                                                                                                                                                                                                                  | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | CH₃             | CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CF <sub>3</sub>                                                                  |              |
|                                                                                                                                                                                                                                                                                                  | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н               | CH₃             | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -Si(CH <sub>3</sub> ) <sub>3</sub>                                   | l            |
| 20                                                                                                                                                                                                                                                                                               | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | CH <sub>3</sub> | CH <sub>2</sub> -C≡C-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                              |              |
| 254 H CH <sub>3</sub> CH <sub>2</sub> -C≡C-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub> 255 H CH <sub>3</sub> CH <sub>2</sub> -C≡C-CH <sub>2</sub> -NH-CO-CH <sub>3</sub> 256 H CH <sub>3</sub> CH <sub>2</sub> -C≡C-CH <sub>2</sub> -O-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                                                                                                                          |              |
|                                                                                                                                                                                                                                                                                                  | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | CH₃             | CH <sub>2</sub> -C≡C-CH <sub>2</sub> -O-CH <sub>2</sub> -C <sub>e</sub> H <sub>5</sub>                                   |              |
| 25                                                                                                                                                                                                                                                                                               | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | CH₃             | CH₂-C≡C-CH₂-CS-CH₃                                                                                                       |              |
|                                                                                                                                                                                                                                                                                                  | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | CH₃             | CH <sub>2</sub> -C=C-CH <sub>2</sub> -O-N=C(CH <sub>3</sub> ) <sub>2</sub>                                               |              |
|                                                                                                                                                                                                                                                                                                  | 259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> | CH₃             | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -C=CH                                                                |              |
| 30                                                                                                                                                                                                                                                                                               | 247 H CH <sub>3</sub> CH <sub>2</sub> -CH <sub>2</sub> -N=  248 H CH <sub>3</sub> CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -C=N-O-CO-CH <sub>3</sub> 249 H CH <sub>3</sub> CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -C=N-OH  250 H CH <sub>3</sub> CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-C=CH  251 H CH <sub>3</sub> CH <sub>2</sub> -C(CH <sub>3</sub> ) <sub>2</sub> -CH <sub>2</sub> -NH-CO-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> 252 H CH <sub>3</sub> CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CF <sub>3</sub> 253 H CH <sub>3</sub> CH <sub>2</sub> -CH <sub>2</sub> -NH-CO-CF <sub>3</sub> 254 H CH <sub>3</sub> CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -Si(CH <sub>3</sub> ) <sub>3</sub> 254 H CH <sub>3</sub> CH <sub>2</sub> -C=C-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub> 255 H CH <sub>3</sub> CH <sub>2</sub> -C=C-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub> 256 H CH <sub>3</sub> CH <sub>2</sub> -C=C-CH <sub>2</sub> -O-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> 257 H CH <sub>3</sub> CH <sub>2</sub> -C=C-CH <sub>2</sub> -O-CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> |                 |                 |                                                                                                                          |              |
|                                                                                                                                                                                                                                                                                                  | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -Si(CH <sub>3</sub> ) <sub>3</sub>                                   |              |
|                                                                                                                                                                                                                                                                                                  | 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> | CH₃             | CH(CH <sub>3</sub> )-CH <sub>2</sub> -O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                              |              |
| 35                                                                                                                                                                                                                                                                                               | 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> | CH <sub>3</sub> | CH2-CH2-O-N=C(CH3)2                                                                                                      |              |
|                                                                                                                                                                                                                                                                                                  | 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> | CH₃             | CH <sub>2</sub> -CO-O-CH <sub>2</sub> -CH=CH <sub>2</sub>                                                                |              |
|                                                                                                                                                                                                                                                                                                  | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> -CO-NH-CH <sub>2</sub> -C=CH                                                                             |              |
| 40                                                                                                                                                                                                                                                                                               | 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | Н               | CH <sub>2</sub> CH <sub>2</sub> -O-CO-CH <sub>2</sub> -O-CH <sub>3</sub>                                                 | ŌI           |
|                                                                                                                                                                                                                                                                                                  | 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н               | Н               | CH <sub>2</sub> CH <sub>2</sub> -O-CO-CH <sub>2</sub> -O-C <sub>2</sub> H <sub>5</sub>                                   | 81           |
| 9                                                                                                                                                                                                                                                                                                | 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н               | Н               | CH <sub>2</sub> CH <sub>2</sub> -NH-CO-NH-C <sub>6</sub> H <sub>5</sub>                                                  | 158          |

### C. Biologische Beispiele

### Beispiel 1

50

Weizen und Gerste wurden im Gewächshaus in Plastiktöpfen bis zum 3-4 Blattstadium herangezogen und dann nacheinander mit den erfindungsgemäßen Verbindungen und den getesteten Herbiziden im Nachauflaufverfahren behandelt. Die Herbizide und die Verbindungen der Formel I wurden dabei in Form wässriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 300 I/ha ausgebracht. 3-4 Wochen nach der Behandlung wurden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshemmung berücksichtigt wurde. Die Bewertung erfolgte in Prozentwerten im Vergleich zu unbehandelten Kontrollen.

Die Ergebnisse aus Tabelle 2 veranschaulichen, daß die erfindungsgemäßen Verbindungen starke Herbizidschäden an Kulturpflanzen effektiv reduzieren können.

Selbst bei starken Überdosierungen des Herbizids werden bei den Kulturpflanzen auftretende schwere Schädigungen deutlich reduziert, geringere Schäden völlig aufgehoben.

5 Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen eignen sich deshalb in ausgeziechneter Weise zur selektiven Unkrautbekämpfung in Getreidekulturen.

| Pflanzenart                       | Wachsstadium | Wuchshöhe (cm) |
|-----------------------------------|--------------|----------------|
| TRAE - Triticum aestivum (Sommer) | 13 - 21      | 23 - 25        |
| HOVU - Hordeum vulgare (Sommer)   | 13 - 21      | 30 - 32        |
| TRDU - Triticum durum             | 21 - 22      | 18 - 20        |
| ALMY - Alopecurus myosuroides     | 21 - 22      | 12 - 14        |

Tabelle 2

| J |
|---|
|   |

| Wirkstoff(e) | Dosis   |        | % Schä | idigung ar | 1    |      |
|--------------|---------|--------|--------|------------|------|------|
|              | kg AS/i | na     | TRAE   | HOVU       | TRDU | ALMY |
| Н            | 0,8     |        | 0      | 100        | 93   | •    |
|              | 0,4     |        | 0      | 100        | 50   | -    |
|              | 0,2     |        | 0      | 100        | 40   | •    |
|              | 0,1     |        | 0      | 99         | 20   | 70   |
|              | 0,05    |        | -      | -          | -    | 10   |
|              | 0,025   |        | -      | <b>-</b>   | -    | 0    |
| H + 39       | 0,8     | +0,2   | 0      | 10         | 0    | •    |
|              | 0,4     | +0,1   | 0      | 10         | 0    | -    |
|              | 0,2     | +0,05  | 0      | 10         | 0    | •    |
|              | 0,1     | +0,025 | 0      | 10         | 0    | 95   |
|              | 0,5     | +0,012 | -      | -          | -    | 93   |
|              | 0,025   | +0,006 | -      | -          | -    | 85   |
| H + 19       | 0,8     | +0,2   | 0      | 0          | 0    | •    |
|              | 0,4     | +0,1   | 0      | 0          | 0    | -    |
|              | 0,2     | +0,05  | 0      | 0          | 0    | •    |
|              | 0,1     | +0,025 | 0      | 0          | 0    | 97   |
|              | 0,05    | +0,012 | •      | -          | -    | 85   |
|              | 0,025   | +0,006 | •      | -          | •    | 30   |
| H + 11       | 0,8     | +0,2   | 0      | 0          | 0    | -    |
|              | 0,4     | +0,05  | 0      | 0          | 0    |      |
|              | 0,2     | +0,05  | 0      | 0          | 0    | -    |
|              | 0,1     | +0,025 | 0      | 0          | 0    | 95   |
|              | 0,05    | +0,012 | -      | •          | -    | 95   |
|              | 0,025   | +0,006 | -      | -          | •    | 60   |

|             | Wirkstoff(a) | Dosis   |        | % Schädigung an |      |      |      |
|-------------|--------------|---------|--------|-----------------|------|------|------|
|             | Wirkstoff(e) |         | na     | TRAE            | HOVU | TRDU | ALMY |
| 5           |              | kg AS/h |        |                 |      |      |      |
|             | H + 20       | 0,8     | +0,2   | 0               | 0    | 0    | -    |
|             |              | 0,4     | +0,1   | 0               | 0    | 0    | -    |
| 10          |              | 0,2     | +0,05  | 0               | 0    | 0    | -    |
| ļ           |              | 0,1     | +0,025 | 0               | 0    | 0    | 95   |
| 15          |              | 0,05    | +0,012 | -               | -    | -    | 93   |
| 15          |              | 0,025   | +0,006 | •               | •    | •    | 70   |
|             | H + 28       | 0,8     | +0,2   | 0               | 10   | 35   | •    |
| 20          |              | 0,4     | +0,1   | 0               | 10   | 40   | -    |
|             |              | 0,2     | +0,05  | 0               | 0    | 10   | -    |
|             |              | 0,1     | +0,025 | 0               | 0    | 0 .  | 85   |
| 25          |              | 0,05    | +0,012 | -               | -    | -    | 85   |
|             |              | 0,025   | +0,006 |                 | -    |      | 70   |
| 30          | H + 24       | 0,8     | +0,2   | 0               | 0    | 0    | -    |
| 1           |              | 0,4     | +0,1   | 0               | 0    | 0    | •    |
|             |              | 0,2     | +0,05  | 0               | 0    | 0    | -    |
| 35          |              | 0,1     | +0,025 | 0               | 0    | 0    | 99   |
|             |              | 0,05    | +0,012 | -               | -    | •    | 95   |
|             |              | 0,025   | +0,006 | •               | -    | •    | 80   |
| 40          | H + 23       | 0,8     | +0,2   | 0               | 0    | 0    | -    |
|             |              | 0,4     | +0,1   | 0               | 0    | 0    | -    |
| 45          |              | 0,2     | +0,05  | 0               | 0    | 0    | •    |
| <del></del> |              | 0,1     | +0,025 | 0               | 0    | 0    | 93   |
|             |              | 0,05    | +0,012 | •               | •    | •    | 93   |
| 50          |              | 0,025   | +0,006 | _               | •    | -    | 55   |

| I   | 7            |         |        |                 |      |      |          |  |
|-----|--------------|---------|--------|-----------------|------|------|----------|--|
|     | Wirkstoff(e) | Dosis   |        | % Schädigung an |      |      |          |  |
| 5   |              | kg AS/I | na     | TRAE            | HOVU | TRDU | ALMY     |  |
|     | H + 21       | 0,8     | +0,2   | 0               | 0    | 0    | -        |  |
|     |              | 0,4     | +0,1   | 0               | 0    | 0    | -        |  |
| 10  |              | 0,2     | +0,05  | 0               | 0    | 0    | -        |  |
|     |              | 0,1     | +0,025 | 0               | 0    | 0    | 95       |  |
| :   |              | 0,05    | +0,012 | -               | -    | -    | 93       |  |
| 15  |              | 0,025   | +0,006 | -               | -    | •    | 45       |  |
|     | H + 29       | 0,8     | +0,2   | 0               | 0    | 0    | -        |  |
|     |              | 0,4     | +0,1   | 0               | 0    | 0    | -        |  |
| 20  |              | 0,2     | +0,05  | 0               | 0    | 0    | -        |  |
|     |              | 0,1     | +0,025 | 0               | 0    | 0    | 98       |  |
|     |              | 0,05    | +0,012 | -               | -    | -    | 90       |  |
| 25  |              | 0,025   | +0,006 | -               | -    | -    | 90       |  |
|     | H + 18       | 0,8     | +0,2   | 0               | 10   | 0    | •        |  |
| 30  |              | 0,4     | +0,1   | 0               | 0    | 0    | -        |  |
| 30  |              | 0,2     | +0,05  | 0               | 0    | 0    | -        |  |
|     |              | 0,1     | +0,025 | 0               | 0    | 0    | 98       |  |
| 0.5 |              | 0,05    | +0,012 | -               | -    | -    | 90       |  |
| 35  |              | 0,025   | +0,006 | -               | •    | -    | 60       |  |
|     | H + 22       | 0,8     | +0,2   | 0               | 5    | 5    | -        |  |
| 40  |              | 0,4     | +0,1   | 0               | 0    | 0    | -        |  |
|     |              | 0,2     | +0,05  | 0               | 0    | 0    | -        |  |
|     |              | 0,1     | +0,025 | 0               | 0    | 0    | •        |  |
| 45  | H + 98       | 0,8     | +0,2   | 0               | 10   | 0    | -        |  |
|     |              | 0,4     | +0,1   | 0               | 0    | 0    | <u>-</u> |  |
|     |              | 0,2     | +0,05  | 0               | 0    | 0    | -        |  |
| 50  |              | 0,1     | +0,025 | 0               | 0    | 0    | -        |  |

|    | Wirkstoff(e) | Dosis    |        | % Schädigung an |      |      |      |
|----|--------------|----------|--------|-----------------|------|------|------|
| 5  |              | kg AS/ha |        | TRAE            | HOVU | TRDU | ALMY |
|    | H + 99       | 0,8      | +0,2   | 0               | 10   | 10   | •    |
|    |              | 0,4      | +0,1   | 0               | 0    | 0    | -    |
| 10 |              | 0,2      | +0,05  | 0               | 0    | 0    | -    |
|    | H + 100      | 0,8      | +0,2   | 0               | 0    | 5    | •    |
|    |              | 0,4      | +0,1   | 0               | 0    | 0    | -    |
| 15 |              | 0,2      | +0,05  | 0               | 0    | 0    | -    |
|    | H + 96       | 0,8      | +0,2   | 0               | 10   | 5    | -    |
| 20 |              | 0,4      | +0,1   | 0               | 0    | 0    | -    |
| 20 |              | 0,2      | +0,05  | 0               | 0    | 0    | •    |
|    | H + 201      | 0,8      | +0,2   | 0               | 10   | 15   | -    |
| 25 |              | 0,4      | +0,1   | 0               | 10   | 5    | -    |
|    |              | 0,2      | +0,05  | 0               | 0    | 0    | -    |
|    | H +          | 0,8      | +0,2   | 0               | 0    | 35   | -    |
| 30 | Vergleichs-  | 0,4      | +0,1   | 0               | 0    | 10   | -    |
|    | beispiel aus | 0,2      | +0,05  | 0               | 0    | 0    | -    |
|    | EP 191 736   | 0,1      | +0,025 | 0               | 0    | 0    | 95   |
| 35 |              | 0,05     | +0,012 | -               | -    | •    | 90   |
|    |              | 0,025    | +0,006 | -               | •    | •    | 25   |
|    | H +          | 0,8      | +0,2   | 0               | 0    | 5    | •    |
| 40 | Vergleichs-  | 0,4      | +0,1   | 0               | 0    | 5    | -    |
|    | beispiel aus | 0,2      | +0,05  | 0               | 0    | 0    | -    |
|    | EP 94 349    | 0,1      | +0,025 | 0               | 0    | 0    | 95   |
| 45 |              | 0,05     | +0,012 | •               | •    | -    | 95   |
|    |              | 0,024    | +0,006 | -               | -    | -    | 35   |

Abkürzungen zu Tabelle 2:

AS = Aktive Substanz (bezogen auf reinen Wirkstoff)

55

- = nicht geprüft
- H = 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäure-ethylester
- <sup>5</sup> (Zahl) = Antidot mit gleicher Zahl (oder Nummer) aus Tabellen 1a bzw. 1b Vergleichsbeispiel aus EP-191 736 entspricht Formel I, worin R<sup>1</sup> = R<sup>2</sup> = H bedeutet und X-A-R<sup>3</sup> durch 2-Phenoxyethoxy ersetzt ist
- Vergleichsbeispiel aus EP-94 349 entspricht Formel I, worin  $R^1 = R^2 = H$  bedeutet und 2X-A-R<sup>3</sup> durch Ethoxy ersetzt ist.

### Beispiel 2

15

Die Maispflanzen, Unkräuter und Ungräser wurden im Freiland oder im Gewächshaus in Plastiktöpfen bis zum 4- bis 5-Blattstadium herangezogen und nacheinander mit Herbiziden und erfindungsgemäßen Verbindungen der Formel I im Nachauflaufverfahren behandelt. Die Wirkstoffe wurden dabei in Form wäßriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 300 I/ha ausgebracht. 4 Wochen nach der Behandlung wurden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshemmung berücksichtigt wurde. Die Bewertung erfolgte in Prozentwerten im Vergleich zu unbehandelten Kontrollen.

Die Ergebnisse zeigen (siehe z. B. Tabelle 3), daß die erfindungsgemäßen eingesetzten Verbindungen der Formel I starke Herbizidschäden an den Maispflanzen effektiv reduzieren können. Selbst bei starken Überdosierungen der Herbizide werden bei den Kulturpflanzen auftretende schwere Schädigungen deutlich reduziert und geringere Schäden völlig aufgehoben. Mischungen aus Herbiziden und Verbindungen der Formel I eigenen sich deshalb in ausgezeichneter Weise zur selektiven Unkrautbekämpfung in Mais.

35

40

45

50

Tabelle 3

| • | 5 |  |  |
|---|---|--|--|
|   |   |  |  |

| Wirkstoff(e) | Dosis [kg AS/ha] | % Schädigung am Mais |
|--------------|------------------|----------------------|
| SH1          | 50               | 90                   |
|              | 25               | 75                   |
|              | 12               | 35                   |
| SH1 + 1      | 50 + 50          | 10                   |
|              | 25 + 25          | 0                    |
|              | 12 + 12          | 0                    |
| SH1 + 11     | 50 + 50          | 5                    |
|              | 25 + 25          | 0                    |
|              | 12 + 12          | 0                    |
| SH1 + 21     | 50 + 50          | 10                   |
|              | 25 + 25          | 0                    |
|              | 12 + 12          | 0                    |
| SH1 + 24     | 50 + 50          | 5                    |
|              | 25 + 25          | 0                    |
|              | 12 + 12          | 0                    |
| SH1 + 17     | 50 + 50          | 0                    |
|              | 25 + 25          | 0                    |
|              | 12 + 12          | 0                    |
| SH1 + 50     | 50 + 50          | 10                   |
|              | 25 + 25          | 0                    |
|              | 12 + 12          | 0                    |
| SH1 + 70     | 50 + 50          | 10                   |
|              | 25 + 25          | 0                    |
|              | 12 + 12          | 0                    |
| SH1 + 84     | 50 + 50          | 5                    |
|              | 25 + 25          | 0                    |

|    | Wirkstoff(e) | Dosis [kg AS/ha]   | % Schädigung am Mais |
|----|--------------|--------------------|----------------------|
| 5  | SH1 + 86     | 50 + 50<br>25 + 25 | 15<br>0              |
| 10 | SH1 + 87     | 50 + 50<br>25 + 25 | 20<br>0              |
| 15 | SH1 + 95     | 50 + 50<br>25 + 25 | 15<br>0              |
|    | SH1 + 96     | 50 + 50<br>25 + 25 | 5<br>0               |
| 20 | SH1 + 98     | 50 + 50<br>25 + 25 | 5<br>0               |
| 25 | SH1 + 99     | 50 + 50<br>25 + 25 | 10<br>0              |
| 30 | SH1 + 100    | 50 + 50<br>25 + 25 | 10<br>0              |
| 35 | SH1 + 201    | 50 + 50<br>25 + 25 | 15<br>0              |
| 40 | SH1 + 204    | 50 + 50<br>25 + 25 | 5<br>0               |
| 40 | SH1 + 207    | 50 + 50<br>25 + 25 | 15                   |
| 45 | IM1          | 200<br>100         | 60<br>30             |
|    |              | 50                 | 20                   |

|   | Wirkstoff(e) | Dosis [kg AS/ha] | % Schädigung am Mais |
|---|--------------|------------------|----------------------|
| 5 | IM1 + 24     | 200 + 200        | 5                    |
| , | <u>;</u>     | 100 + 100        | 0                    |
|   |              | 50 + 50          | 0                    |
| 0 | IM1 + 96     | 200 + 200        | 5                    |
|   |              | 100 + 100        | 0                    |
|   |              | 50 + 50          | 0                    |
| 5 | IM1 + 96     | 200 + 200        | 10                   |
|   |              | 100 + 100        | 0                    |
|   |              | 50 + 50          | 0                    |
|   | IM2          | 100              | 40                   |
|   |              | 50               | 25                   |
|   | IM2 + 21     | 100 + 100        | 0                    |
|   |              | 50 + 50          | 0                    |
|   | IM2 + 24     | 100 + 100        | 0                    |
| ) |              | 50 + 50          | 0                    |
|   | IM2 + 96     | 100 + 100        | 10                   |
|   |              | 50 + 50          | 0                    |

Abkürzungen zu Tabelle 3:

- AS = Aktive Substanz (bezogen auf reinen Wirkstoff)
- SH1 = 3-(4,6-Dimethoxypyrimidin-2-yl)-1-[3-(N-methyl-N-methylsulfonyl-amino)-2-pyridyl-sulfonyl]-harnstoff
- IM1 = 5-Ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-pyridin-3-carbonsäure-ammoniumsalz (Imazethapyr-ammonium)
- IM2 = rac-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5methyl-3-pyridin-carbonsäure (Imazethamethapyr)
- <sup>50</sup> (Zahl) = Antidot mit gleicher Zahl (oder Nummer) aus Tabellen 1a bzw. 1b

### Patentansprüche

35

40

45

55

1. Verbindungen der Formel I,

$$\begin{array}{c}
C1 \\
CR^{1}R^{2} - CO - X - A - R^{3}
\end{array}$$

worin

5

10

15

20

25

30

 $R^1,R^2$ 

unabhängig voneinander Wasserstoff oder (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, vorzugsweise Wasserstoff oder Methyl, und

Χ

ein Sauerstoff- oder Schwefelatom oder  $NR^4$ , wobei  $R^4$  Wasserstoff,  $(C_1-C_6)$ -Alkyl,  $(C_1-C_6)$ -Alkoxy oder gegebenenfalls substituiertes Phenyl bedeutet,

Α

 $(C_1-C_6)$ -Alkylen,  $(C_4-C_8)$ -Alkenylen,  $(C_4-C_8)$ -Alkinylen,  $(C_3-C_8)$ -Cycloalkylen oder  $(C_3-C_8)$ -Cycloalkenylen,

R<sup>3</sup>

(C<sub>3</sub>-C<sub>6</sub>)-Alkenyloxy, (C<sub>3</sub>-C<sub>5</sub>)-Alkinyloxy, Phenyl-(C<sub>1</sub>-C<sub>4</sub>)-alkoxy, worin der Phenylring unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, (C<sub>1</sub>-C<sub>4</sub>)-Haloalkyl und (C<sub>1</sub>-C<sub>4</sub>)-Haloalkoxy substituiert ist,  $R^5R^6R^7Si$ -,  $R^5R^6R^7Si$ -O-,  $R^5R^6R^7Si$ -(C<sub>1</sub>-C<sub>4</sub>)-alkoxy, (C<sub>3</sub>-C<sub>6</sub>)-Alkenyloxycarbonyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkenyloxycarbonyl, C<sub>5</sub>)-Alkinyloxycarbonyl, Phenyl-(C<sub>1</sub>-C<sub>4</sub>)-alkoxycarbonyl, worin der Phenylring unsubstituiert oder ein- bzw. mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C1-C4)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, (C<sub>1</sub>-C<sub>4</sub>)-Haloalkyl oder (C<sub>1</sub>-C<sub>4</sub>)-Haloalkoxy substituiert ist,  $R^5 R^6 C = N-O-CO-$ ,  $R^5 R^6 C = N-O-$ ,  $R^5 R^6 N-O-$ ,  $R^5 R^6 C = N-$ ,  $(C_2-C_6)$ -Alkenylcarbonyl,  $(C_2-C_6)$ -Alkenylcarbonylcarbonyl,  $(C_2-C_6)$ -Alkenylcarbonylcarbonylcarbonyl,  $(C_2-C_6)$ -Alkenylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylc  $C_6$ )-Alkinylcarbonyl, 1-(Hydroxyimino)-( $C_1$ - $C_6$ )-alkyl, 1-[( $C_1$ - $C_4$ )-Alkylimino]-( $C_1$ - $C_6$ )-alkyl, 1-[(C<sub>1</sub>-C<sub>4</sub>)-Alkoxyimino]-(C<sub>1</sub>-C<sub>6</sub>)-alkyl, ein Rest der Formel R<sup>8</sup>O-CH(OR<sup>9</sup>)-oder R<sup>8</sup> O-CH(OR<sup>9</sup>)-(CH<sub>2</sub>)<sub>n</sub>-O-, worin n 0,1 oder 2 bedeutet, oder ein Alkoxy-Rest der Formel R<sup>8</sup>O-CHR<sup>10</sup>-CH(OR<sup>9</sup>)-(C<sub>1</sub>-C<sub>4</sub>)-alkoxy, (C<sub>1</sub>-C<sub>6</sub>)-Alkylcarbonyloxy, worin Alkyl unsubstituiert oder durch Halogen, Nitro, gegebenenfalls substituiertes Phenyl oder (C1-C4)-Alkoxy substituiert ist,  $(C_2-C_6)$ -Alkenylcarbonyloxy,  $(C_2-C_6)$ -Alkinylcarbonyloxy,  $(C_1-C_6)$ -Alkylcarbonylamino, (C2-C6)-Alkenylcarbonylamino, (C2-C6)-Alkinylcarbonylamino, Phenylcarbonyloxy, Phenylcarbonylamino, Phenyl-(C<sub>1</sub>-C<sub>4</sub>)-alkylcarbonylamino, wobei Phenyl in den letztgenannten drei Resten jeweils unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, (C<sub>1</sub>-C<sub>4</sub>)-Haloalkyl und (C<sub>1</sub>-C<sub>4</sub>)-Haloalkoxy substituiert ist, Aminocarbonyl, (C<sub>1</sub>-C<sub>6</sub>)-Alkylaminocarbonyl,  $(C_1-C_6)$ -Dialkylaminocarbonyl,  $(C_3-C_6)$ -Alkenylaminocarbonyl,  $(C_3-C_6)$ -Alkinylaminocarbonyl,  $(C_1-C_6)$ -Alkoxycarbonylamino,  $(C_1-C_6)$ -Alkylaminocarbonylamino oder (C<sub>1</sub>-C<sub>6</sub>)-Alkylthiocarbonyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkenylthio oder (C<sub>3</sub>-C<sub>6</sub>)-Alkinylthio,

35

40

45

50

unabhängig voneinander H,  $(C_1-C_4)$ -Alkyl oder gegebenenfalls substituiertes Phenyl oder R<sup>5</sup> und R<sup>6</sup> zusammen mit dem sie verbindenden N- bzw. C-Atom einen Ring mit 3 bis 7 Ringatomen, vorzugsweise 5 oder 6 Ringatomen, der unsubstituiert oder durch  $(C_1-C_4)$ -Alkyl oder  $(C_1-C_4)$ -Alkoxy substituiert ist,

R8,R9

unabhängig voneinander ( $C_1$ - $C_4$ )-Alkyl oder  $R^8$  und  $R^9$  zusammen eine geradkettige oder verzweigte ( $C_1$ - $C_4$ )-Alkylenbrücke und

R<sup>10</sup>

R5,R6,R7

Wasserstoff oder (C<sub>1</sub>-C<sub>4</sub>)-Alkyl

bedeuten.

2. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß

 $\mathbb{R}^3$ 

 $(C_3-C_4)$ -Alkenyloxy,  $(C_3-C_4)$ -Alkinyloxy, Phenyl- $(C_1-C_2)$ -alkoxy, worin der Phenylring unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Halogen, Nitro,  $(C_1-C_2)$ -Alkyl,  $(C_1-C_2)$ -Alkoxy,  $(C_1-C_2)$ -Haloalkyl und  $(C_1-C_2)$ -Haloalkoxy substituiert ist,  $R^5$   $R^6$   $R^7$  Si- $R^5$   $R^7$  Si- $R^6$  Si- $R^6$ 

R<sup>5</sup> R<sup>6</sup> C = N-O-CO-, R<sup>5</sup> R<sup>6</sup> C = N-O-, R<sup>5</sup> R<sup>6</sup> N-O-, R<sup>5</sup> R<sup>6</sup> C = N-, (C<sub>2</sub>-C<sub>4</sub>)-Alkenylcarbonyl, (C<sub>2</sub>- $C_4$ )-Alkinylcarbonyl, 1-(Hydroxyimino)-( $C_1$ - $C_4$ )-alkyl, 1-[( $C_1$ - $C_4$ )-Alkylimino]-( $C_1$ - $C_4$ )-alkyl,  $1-[(C_1-C_4)-Alkoxyimino]-(C_1-C_4)-alkyl, R^8O-CH(OR^9)-(C_1-C_5)-alkyl, (C_1-C_4)-Alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl-alkyl$ carbonyloxy, (C<sub>3</sub>-C<sub>4</sub>)-Alkenylcarbonyloxy, (C<sub>3</sub>-C<sub>4</sub>)-Alkinylcarbonyloxy, (C<sub>1</sub>-C<sub>4</sub>)-Alkylcarbonylamino, (C<sub>3</sub>-C<sub>4</sub>)-Alkenylcarbonylamino, (C<sub>3</sub>-C<sub>4</sub>)-Alkinylcarbonylamino, Phenylcarbonyloxy, Phenylcarbonylamino, Phenyl-(C<sub>1</sub>-C<sub>2</sub>)-alkylcarbonylamino, wobei Phenyl in den drei letztgenannten Resten gegebenenfalls substituiert ist, (C<sub>1</sub>-C<sub>4</sub>)-Alkylaminocarbonyl, Di-(C<sub>1</sub>-C<sub>4</sub>)-alkylaminocarbonyl, (C<sub>3</sub>-C<sub>4</sub>)-Alkenylaminocarbonyl, (C<sub>1</sub>-C<sub>4</sub>)-Alkylthiocarbonyl, (C<sub>3</sub>-C<sub>4</sub>)-Alkenylthio, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxycarbonylamino, (C<sub>1</sub>-C<sub>4</sub>)-Alkylaminocarbonylaminooder ein Rest der Formel -O-CH2-CH(OR')-CH2-OR', worin die R' zusammen für die divalente Gruppe CH2, CHCH3 oder C(CH3)2 stehen,

R5,R6,R7

unabhängig voneinander H oder (C<sub>1</sub>-C<sub>2</sub>)-Alkyl oder R<sup>5</sup> und R<sup>6</sup> zusammen mit dem sie verbindenden N- bzw. C-Atom einen Ring mit 3 bis 7 Ringatomen, vorzugsweise 5 oder 6 Ringatomen und

R8,R9 unabhängig voneinander (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, bedeuten.

- Verbindung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß
  - (C<sub>3</sub>-C<sub>4</sub>)-Alkenyloxy, (C<sub>3</sub>-C<sub>4</sub>)-Alkinyloxy, Benzyloxy, Trimethylsilyl, Triethylsilyl, Trimethylsilylmethoxy,  $1-(Hydroxyimino)-(C_1-C_4)-alkyl, 1-[(C_1-C_4)-Alkylimino]-(C_1-C_4)-alkyl, 1-[(C_1-C_4)-alkyl, 1-[(C_1-C_4)-alkyl,$ Alkoxyimino]- $(C_1-C_4)$ -alkyl,  $(C_3-C_4)$ -Alkenyloxycarbonyl, (C<sub>3</sub>-C<sub>4</sub>)-Alkinyloxycarbonyl oder  $R^5R^6C$  = N-O-, wobei  $R^5$  und  $R^6$  in dem letztgenannten Rest unabhängig voneinander Methyl oder Ethyl oder zusammen mit dem verbindenden C-Atom Cyclopentyliden oder Cyclohexyliden bedeutet.

25

30

35

5

10

15

20

- Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 1, dadurch gekennzeichnet,
  - a) 5-Chlor-8-hydroxychinolin mit einem Alkancarbonsäurederivat der Formel II,

Y - CR1R2 - CO - X - A - R3

worin Υ

eine Abgangsgruppe, wie z.B. Chlor, Brom, Methansulfonyl oder Toluolsulfonyl, bedeutet und

R<sup>1</sup>,R<sup>2</sup>,R<sup>3</sup> X und A wie bei der genannten Formel I definiert sind, oder

b) 5-Chlorchinolin-8-oxy-alkancarbonsäuren der Formel I, worin -X-A-R3 durch Hydroxy ersetzt ist, mit Alkoholen, Mercaptanen oder Aminen der Formel

H - X - A - R3

40

wobei X, A und R3 wie bei Formel I definiert sind, umsetzt.

- Pflanzenschützende Mittel, dadurch gekennzeichnet, daß sie eine oder mehrere Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 bis 3 und übliche Formulierungshilfsmittel enthalten.
- Herbizide Mittel, dadurch gekennzeichnet, daß sie ein oder mehrere Herbizide und ein oder mehrere Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 bis 3 enthalten.

50

- Mittel nach Anspruch 6, dadurch gekennzeichnet, daß die Herbizide aus der Gruppe Carbamate, Thiocarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy- und Phenoxyphenoxyalkancarbonsäurederivate, Cyclohexandionabkömmlinge, Imidazolinone und Sulfonylharnstoffe sind.
- Mittel nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß Verbindungen der Formel I (Safener) und Herbizide im Gewichtsverhältnis 1:10 bis 10:1 enthalten sind.
  - Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, dadurch

gekennzeichnet, daß eine wirksame Menge einer oder mehrerer Verbindungen der Formel I (Safener) nach einem oder mehreren der Ansprüche 1 bis 3 vor, nach oder gleichzeitig mit dem Herbizid auf die Pflanzen, Pflanzensamen oder die Anbaufläche appliziert wird.

| 5                                                                               | 10. | Verwendung von Verbindungen der Forme | el I nach einem | oder mehreren | der Ansprüche | 1 bis 3 zur |
|---------------------------------------------------------------------------------|-----|---------------------------------------|-----------------|---------------|---------------|-------------|
| Reduzierung von phytotoxischen Nebenwirkungen von Herbiziden an Kulturpflanzen. |     |                                       |                 |               |               |             |





① Veröffentlichungsnummer: 0 492 366 A3

### (12)

# EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 91121622.4

2 Anmeldetag: 17.12.91

(a) Int. Cl.5: **C07D** 215/28, A01N 25/32, C07F 7/18

- (3) Priorität: 21.12.90 DE 4041121
- (3) Veröffentlichungstag der Anmeldung: 01.07.92 Patentblatt 92/27
- Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB IT LI NL
- Veröffentlichungstag des später veröffentlichten Recherchenberichts: 25.11.92 Patentblatt 92/48

(7) Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 W-6230 Frankfurt am Main 80(DE)

Erfinder: Schütze, Rainer, Dr.

Am Flachsland 54

W-6233 Kelkhelm (Taunus)(DE)

Erfinder: Löher, Heinz-Josef, Dr.

Ahornweg 14

W-6237 Liederbach(DE) Erfinder: Ziemer, Frank, Dr.

Gerlachstrasse 30

W-6230 Frankfurt am Main(DE) Erfinder: Bauer, Klaus, Dr. Doorner Strasse 53d W-6450 Hanau(DE)

Erfinder: Bleringer, Hermann, Dr.

Eichenweg 26

W-6239 Eppstein/Taunus(DE)

- (A) Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu Ihrer Herstellung und Ihre Verwendung als Antidots von Herbiziden.
- Die Erfindung betrifft Herbizid-Safener der in Anspruch 1 gezeigten Formel I, worin R1,R2 H oder (C1-C4)-Alkyl, X O oder S oder NR4, wobei R4 H,  $(C_1-C_6)$ -Alkyl,  $(C_1-C_6)$ -Alkoxy oder gegebenenfalls substituiertes Phenyl bedeutet, A (C1-C6)-Alkylen, (C<sub>4</sub>-C<sub>8</sub>)-Alkenylen, (C<sub>4</sub>-C<sub>8</sub>)-Alkinylen, (C<sub>3</sub>-C<sub>8</sub>)-Cycloalkylen oder (C3-C8)-Cycloalkenylen,

 $R^3$  ( $C_3$ - $C_6$ )-Alkenyloxy, ( $C_3$ - $C_6$ )-Alkinyloxy, (subst.) Phenyl-(C<sub>1</sub>-C<sub>4</sub>)-alkoxy, R<sup>5</sup>R<sup>6</sup>R<sup>7</sup>Si-, R<sup>5</sup>R<sup>6</sup>R<sup>7</sup>Si-O-,  $R^5 R^6 R^7 Si-(C_1-C_4)$ -alkoxy,  $(C_3-C_6)$ -Alkenyloxycarbonyl, (C3-C6)-Alkinyloxycarbonyl, (subst.) Phenyl-(C1- $C_4$ )-alkoxycarbonyl,  $R^5R^6C = N-O-CO-$ ,  $R^5R^6C = N-O-$ ,  $R^5R^6N-O$ -,  $R^5R^6C=N$ -,  $(C_2-C_6)$ -Alkenylcarbonyl, (C2-C6)-Alkinylcarbonyl, 1-(Hydroxyimino)-(C1-C6)-alkyl,  $1-[(C_1-C_4)-Alkylimino]-(C_1-C_6)-alkyl, 1-((C_1-C_4)-alkyl)$ Alkoxyimino]-(C1-C6)-alkyl, ein Rest der Formel R8 O-CH(OR9)- oder R8O-CH(OR9)-(CH2)n-O-, worin n 0,1 oder 2 bedeutet, oder ein Alkoxy-Rest der Formel  $R^8$  O-CHR<sup>10</sup>-CH(OR<sup>9</sup>)-(C<sub>1</sub>-C<sub>4</sub>)-alkoxy, (subst.) (C<sub>1</sub>-C<sub>6</sub>)-Alkylcarbonyloxy, (C<sub>2</sub>-C<sub>6</sub>)-Alkenylcarbonyloxy, (C2-C6)-Alkinylcarbonyloxy, (C1-C6)-Alkylcarbonylamino, (C2-C6)-Alkenylcarbonylamino, (C2-C6)-Alkinylcarbonylamino, (subst.) Phenylcarbonyloxy, (subst.) Phenylcarbonylamino, (subst.) Phenyl-(C1-C<sub>4</sub>)-alkylcarbonylamino, Aminocarbonyl, (C<sub>1</sub>-C<sub>6</sub>)-Alkylaminocarbonyl, (C<sub>1</sub>-C<sub>6</sub>)-Dialkylaminocarbonyl, ( C<sub>3</sub>-C<sub>6</sub>)-Alkenylaminocarbonyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkinylaminocarbonyl, (C<sub>1</sub>-C<sub>6</sub>)-Alkoxycarbonylamino, (C<sub>1</sub>-C<sub>6</sub>)-Alkylaminocarbonylamino oder (C1-C6)-Alkylthiocarbonyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkenylthio, (C<sub>3</sub>-C<sub>6</sub>)-Alkinylthio,

R5,R6,R7 H, (C1-C4)-Alkyl oder (subst.) Phenyl oder R5 und R6 zusammen mit dem sie verbindenden Nbzw. C-Atom einen (subst.) Ring mit 3 bis 7 Ringatomen, R8,R9 (C1-C4)-Alkyl oder R8 und R9 zusammen eine geradkettige oder verzweigte (C1-C4)-Alkylenbrücke und R<sup>10</sup> H oder (C<sub>1</sub>-C<sub>4</sub>)-Alkyl bedeuten.

EP 91 12 1622

|                                                                                                                                                                                                                                                                                        | EINSCHLÄGIG                                 | E DOKUMENT                          | E                                                                                                                                                                                                                                                        |                      |                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|
| Kategorie                                                                                                                                                                                                                                                                              | Kennzeichnung des Dokume<br>der maßgeblie   | nts mit Angabe, soweit<br>nen Teile | erforderlich,                                                                                                                                                                                                                                            | Betrifft<br>Anspruch | KLASSIFIKATION DER<br>ANMELDUNG (Lat. CL5 )    |
| A                                                                                                                                                                                                                                                                                      | EP-A-0 258 184 (CIB<br>* Ansprüche; Tabell  | A-GEIGY AG)                         | 1                                                                                                                                                                                                                                                        | l-10                 | C07D215/28<br>C07D405/12<br>C07F7/18           |
| A,D                                                                                                                                                                                                                                                                                    | EP-A-O 191 736 (CIB<br>* das ganze Dokumen  |                                     | 1                                                                                                                                                                                                                                                        | l-10                 | A01N43/42<br>//(C07D405/12,<br>317:00, 215:00) |
| A,D                                                                                                                                                                                                                                                                                    | EP-A-0 159 290 (CIB.<br>* Ansprüche; Tabell |                                     | 1                                                                                                                                                                                                                                                        | l-10                 | 2, 2,                                          |
| A                                                                                                                                                                                                                                                                                      | EP-A-O 138 773 (CIB<br>* Ansprüche; Tabell  |                                     | 1                                                                                                                                                                                                                                                        | 1-10                 |                                                |
| A,D                                                                                                                                                                                                                                                                                    | EP-A-O 094 349 (CIB<br>* das ganze Dokumen  |                                     |                                                                                                                                                                                                                                                          | l-10                 |                                                |
|                                                                                                                                                                                                                                                                                        |                                             |                                     |                                                                                                                                                                                                                                                          |                      |                                                |
|                                                                                                                                                                                                                                                                                        |                                             |                                     |                                                                                                                                                                                                                                                          | ;                    |                                                |
|                                                                                                                                                                                                                                                                                        |                                             |                                     |                                                                                                                                                                                                                                                          |                      | RECHERCHIERTE<br>SACHGEBIETE (Int. Cl.5)       |
|                                                                                                                                                                                                                                                                                        |                                             |                                     |                                                                                                                                                                                                                                                          |                      | C07D                                           |
|                                                                                                                                                                                                                                                                                        |                                             |                                     |                                                                                                                                                                                                                                                          |                      |                                                |
|                                                                                                                                                                                                                                                                                        |                                             |                                     | ĺ                                                                                                                                                                                                                                                        |                      |                                                |
|                                                                                                                                                                                                                                                                                        |                                             |                                     |                                                                                                                                                                                                                                                          |                      |                                                |
|                                                                                                                                                                                                                                                                                        |                                             |                                     |                                                                                                                                                                                                                                                          |                      |                                                |
|                                                                                                                                                                                                                                                                                        |                                             |                                     |                                                                                                                                                                                                                                                          |                      |                                                |
|                                                                                                                                                                                                                                                                                        |                                             |                                     |                                                                                                                                                                                                                                                          |                      |                                                |
|                                                                                                                                                                                                                                                                                        |                                             |                                     |                                                                                                                                                                                                                                                          |                      |                                                |
| Der vorliegende Recherchenbericht wurde für alle Patentansprüche erste                                                                                                                                                                                                                 |                                             |                                     |                                                                                                                                                                                                                                                          |                      |                                                |
|                                                                                                                                                                                                                                                                                        | Recharchement                               |                                     | n der Recherche                                                                                                                                                                                                                                          |                      | Pitter<br>D. DOSMA                             |
|                                                                                                                                                                                                                                                                                        | DEN HAAG                                    |                                     | MBER 1992                                                                                                                                                                                                                                                |                      | P. BOSMA                                       |
| KATEGORIE DER GENANNTEN DOKUMENTE  X: von besonderer Bedeutung allein betrachtet  Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derseiben Kategorie                                                                                                     |                                             | tet<br>g mit einer                  | T : der Erfindung zugrunde liegende Theorien oder Grundsitze E : Eiteres Patentiokunsent, das jedoch erst am oder nach den Anneidenfatum verüffentlicht worden ist D : in der Anneidung angeführtes Dokument L : aus andern Gründen angeführtes Dokument |                      |                                                |
| LEN HAAG 25 St  KATEGORIE DER GENANNTEN DOKUMENTE  X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenberung P: Zwischenliteratur |                                             |                                     | & : Mitglied der gleichen Patentfamilie, übereinstimmendes<br>Dokument                                                                                                                                                                                   |                      |                                                |