Final Exam

Name:		
StudentID:		
Major:		
Time: 120 minutes.		

Date: Tuesday, 3rd March 2011.

Justify your solutions and show all your steps. Write down the formulae used.

${ m Number}$	1	2	3	4	5	6	7	8	9	10	\sum
Possible Points	8	8	8	8	8	8	8	8	8	8	80
Points											

- 1. Find each limit if it exists:
 - (a) $\lim_{x\to 3} \frac{x^2-16}{x-3}$
 - (b) $\lim_{x\to 3} \frac{x^2-9}{x-3}$

2. Is the following function continuous? Justify.

$$y = \begin{cases} x^4 - 3 & \text{if } x \le 1\\ 2x - 3 & \text{if } x > 1 \end{cases}$$

3. Define the derivative for a continuous function.

4. If $\frac{d^2y}{dx^2} = \frac{x}{x^2+1}$ find $\frac{d^4y}{dx^4}$

5. Find any relative maxima, minima, zeros, points of inflection and sketch the graph. Hint: $\sqrt{3}\approx 1.7$. $y=x^3-12x.$

- 6. Evaluate the integrals. Use substitution if necessary:
 - (a) $\int \frac{x^2 dx}{x^3 + 1}$
 - (b) $\int \left(\frac{e^{2x}}{2} + \frac{2}{e^{2x}}\right) dx$

7. Find the general solution for the differential equation

$$\frac{dy}{dx} = \frac{x}{e^y}$$

8. Find the area between the curve $y = -x^2 - 3x - 1$ and the x-axis from x = 1 to x = 2.

- 9. Evaluate the integrals. Use integration by parts if necessary.
 - (a) $\int_{3}^{3} \frac{\sqrt{x^{3}-x}}{\sqrt{x^{3}+1}} dx$

 (b) $\int x^{2} \ln x dx$

 (c) $\int_{1}^{\infty} \frac{dx}{x}$

10. If $z = e^{xy}$ find each of the four second partial derivatives.