機器學習_服裝辨識

08160971 黃凱勵 08160422 孫振寧 08160723 鄧晨言 08160130 林采葳

目錄

- 1. 研究動機
- 2. 研究方法
- 3. 實驗
- 4. 參考文獻

研究動機

一開始在選擇題目的時候參考網路上很多的應用,發現很多的例子,像

是手寫辨識、地價預測.......等等的,其中服裝辨識對我們而言是相對好

理解的,因此我們最後決定做服裝辨識。

研究方法

資料

透過MNIST的數據庫讀取資料,

採用分類的方式,將服裝分為10類,

分別為T恤/上衣、褲子、套頭衫、禮服、

外套、涼鞋、襯衫、運動鞋、包包靴子、長靴

資料

標籤

- 0 T-shirt/top:T恤/上衣
- 1 Trouser: 褲子
- 2 Pullover: 套頭衫
- 3 Dress: 禮服
- 4 Coat:外套
- 5 Sandal:涼鞋
- 6 Shirt: 襯衫
- 7 Sneaker: 運動鞋
- 8 Bag:包包袋子
- 9 Ankle boot: 長靴

屬性

服飾的特徵

每個點的灰階資料

模型

- 1. Sequential模型
- 2. 用來構建深度神經網絡

第一層是Flattening layer(展平層),第二層為全連接層,並設

置128個神經元,第三層則輸出10維的向量,分別代表這張

圖片屬於 0 到 9 的機率

優化器

接下來選擇優化器,我們使用'Adam'優化器,一般而言比

SGD模型(隨機梯度下降法)成本低。

損失函數

損失函數爲' sparse_categorical_crossentropy',就是**交叉熵**,而 categorical_crossentropy 和 sparse_categorical_crossentropy這二者都是針對多分類任務。

差別在於輸入參數形式上的區別,在 loss 的計算在本質上沒有區別

成效衡量指標

成效衡量指標則是'accuracy'

(tp+tn)/(tp+fp+fn+tn)

		True Class		
		Positive	Negative	
Predicted Class	Positive	True Positive Count (TP)	False Positive Count (FP)	
	Negative	False Negative Count (FN)	True Negative Count (TN)	

訓練數據(epochs)的設置

通常,epochs 越大,最後訓練的損失值會越小,但是訓練次

數過大,會導致過擬合的現象。

```
model.compile(optimizer = tf.keras.optimizers.Adam(),
                   #編譯模型 優化函數
    loss = 'sparse_categorical_crossentropy',
                   #遺失函數
    metrics=['accuracy'])
                    #正確率
                   #訓練5個訓練集
model.fit(training images, training labels, epochs=5)
Epoch 1/5
Epoch 2/5
Epoch 3/5
Epoch 4/5
Epoch 5/5
```

訓練數據(epochs)的設置

將epochs 設為50,訓練50次訓練集,從測試集劃分80%給訓

練集,測試的間隔為20次

```
model.compile(optimizer = tf.keras.optimizers.Adam(),
                      #編譯模型 優化函數
     loss = 'sparse categorical crossentropy',
                      #遺失函數
     metrics=['accuracy'])
                      #正確率
model.fit(training images, training labels, epochs=50, validation split=0.2, validation freq=20)
Epoch 1/50
Epoch 40/50
0.8926
Epoch 20/50
0.8908
Epoch 50/50
```

實驗1

實驗平台

- 1. 使用 python 進行程式的撰寫。
- 2. 能夠把**軟體代碼、計算輸出、解釋文檔、多 媒體資源**整合在一起的多功能科學運算平台。
- 3. 不需要切換窗口去找資料,只要看一個文件, 就可以獲得項目的所有信息。
- 4. 每次實驗可以只跑一小個 Cell 裡的代碼,在 代碼下面**立刻**就可以**看到结果**。

實驗環境

實驗環境

實驗函式庫簡介

import tensorflow as tf

用於**機器學習和深度神經網路方面** 的研究

import tkinter as tk

用來在 Python 中**建構 GUI 圖形介** 面程式

from tkinter import filedialog

開啟**檔案對話框**用法

import tensorflow as tf
import tkinter as tk

from tkinter import filedialog
import matplotlib.pyplot as plt
import numpy as np
import random

import matplotlib.pyplot as plt

用來繪圖、圖表呈現及數據表示

import numpy as np

支援**大量的維度陣列與矩陣運算**,也針對陣列 運算提供大量的數學函式庫

import random

匯入標準模組庫中(standard library) 的**亂數模組(random)**

實驗資料來源

訓練資料與測試資料數量皆為MNIST數據庫

```
mnist = tf.keras.datasets.fashion_mnist

(training_images, training_labels),(test_images,test_labels) = mnist.load_data()
```

實驗資料筆數

訓練資料數量 有 60000 張 28*28大小的圖片

測試資料數量 有 10000 張 28*28大小的圖片

```
print( 'training_image' + str(training_images.shape)) #資料大小
print( 'training_label' + str(training_labels.shape))
print( 'test_image' + str(test_images.shape))
print( 'test_label' + str(test_labels.shape))

training_image(60000, 28, 28)
training_label(60000,)
test_image(10000, 28, 28)
test_label(10000,)
```

```
import tensorflow as tf
                                                     #匯入模型
import tkinter as tk
from tkinter import filedialog
import matplotlib.pyplot as plt
import numpy as np
import random
mnist = tf.keras.datasets.fashion_mnist
(training_images, training_labels),(test_images,test_labels) = mnist.load_data()
print( 'training_image' + str(training_images.shape)) #資料大小
print( 'training label' + str(training labels.shape))
print( 'test image' + str(test images.shape))
print( 'test label' + str(test labels.shape))
training_image(60000, 28, 28)
training label(60000,)
test image(10000, 28, 28)
test label(10000,)
```

```
取前16張圖來檢查處理過的資料是否正常可顯示
for num in range(0,16):
    plt.subplot(4,4,num+1)
    plt.title('[%d]Label: %d' % (num,training_labels[num]))
    plt.imshow(training_images[num],
                                           cmap=plt.get_cmap('gray_r'))
plt.tight_layout()
plt.show()
 [0]Label: 9
               [1]Label: 0
                             [2]Label: 0
                                           [3]Label: 3
               [5]Label: 2
                             [6]Label: 7
                                           [7]Label: 2
 [4]Label: 0
                                             0
               [9]Label: 5
                            [10]Label: 0
                                          [11]Label: 9
 [8]Label: 5
               25
 [12]Label: 5
               [13]Label: 5
                            [14]Label: 7
                                          [15]Label: 9
               25
```

```
plt.imshow(training images[0])
                                 #訓練圖
def printMatrixE(a):
    rows = a.shape[0]
                                        以第一張圖為例
   cols = a.shape[1]
   for i in range (0, rows):
       str1=""
                                        顯示每行每列的特徵值(圖像的RGB值)
       for j in range(0,cols):
           str1=str1+("%3.0f" % a[i,j])
       print(str1)
   print("")
printMatrixE(training images[0])
                                                                        0102204176134144123 23
                                                                        0155236207178107156161109 64 23 77130 72 15
                                                                     0 69207223218216216163127121122146141 88172 66
                                                                     0200232232233229223223215213164127123196229
                                                                     0183225216223228235227224222224221223245173
                                                                     0193228218213198180212210211213223220243202 0
                                                                  0 12219220212218192169227208218224212226197209 52
                                                                  0 9924422220218203198221215213222220245119167 56
                                                                  0 55236228230228240232213218223234217217209 92 0
                                                                  0237226217223222219222221216223229215218255 77
                                                         0 62145204228207213221218208211218224223219215224244159
                                           0 18 44 82107189228220222217226200205211230224234176188250248233238215
                                  0 57187208224221224208204214208209200159245193206223255255221234221211220232246
                                  3202228224221211211214205205205220240 8015025522922118815419121020420922222825
                                 98233198210222229229234249220194215217241 65 73106117168219221215217223223224229 29
                                 75204212204193205211225216185197206198213240195227245239223218212209222220221230 67
                                 48203183194213197185190194192202214219221220236225216199206186181177172181205206115
                                  0122219193179171183196204210213207211210200196194191195191198192176156167177210 92
                                       74189212191175172175181185188189188193198204209210210211188188194192216170
```


間,總和等於1,適合多分類使用

```
由於灰階影像的值是0~255,所以我們可以選擇
training images = training images / 255.0
                               全數除以255.0來等比例縮小
test_images = test_images / 255.0
model = tf.keras.models.Sequential([tf.keras.layers.Flatten(),
                         tf.keras.layers.Dense(128, activation=tf.nn.relu),
                         tf.keras.layers.Dense(10, activation=tf.nn.softmax)])
建立模型(Model):
確立Input格式 => Sequential()
要經過幾層處理 =>3層
每一層要作什麼處理
第一層=>Flattening layer(展平層),
第二層=>全連接層,設置128個神經元,激活函數為非線性激活函數(ReLU函數)。
此模型輸入一個向量(為校正點中心的 28*28 服飾圖片)
第三層=>輸出 10 維的向量,分別代表這張圖片屬於 0 到 9 的機率,且機率值介於 [0,1] 之
```

確立目標及求解方法:以compile函數 定義損失函數(loss)、

```
model.compile(optimizer = tf.keras.optimizers.Adam(), 優化函數(Optimizer)及
loss = 'sparse_categorical_crossentropy',
metrics=['accuracy'])

成效衡量指標(mertrics)

model.fit(training_images, training_labels, epochs=50, validation_split=0.2, validation_freq=20)
```

訓練50個訓練集,從測試集劃分80%給訓練集,測試的間隔為20次

print(model.summary()) 顯示目前網路架構

Model: "sequential"

Output Shape	Param #
(32, 784)	0
(32, 128)	100480
(32, 10)	1290
	(32, 784) (32, 128)

Total params: 101,770 Trainable params: 101,770 Non-trainable params: 0

None

實驗不同參數下的結果

● 改變神經元數量

```
model = tf.keras.models.Sequential([tf.keras.layers.Flatten(),
                   tf.keras.layers.Dense(512, activation=tf.nn.relu),
                   tf.keras.layers.Dense(10, activation=tf.nn.softmax)])
Epoch 1/50
Epoch 20/50
0.8931
Epoch 40/50
0.8925
Epoch 50/50
```

實驗2

研究方法

資料

透過MNIST的數據庫讀取資料,

採用分類的方式,將服裝分為10類,

分別為T恤/上衣、褲子、套頭衫、禮服、

外套、涼鞋、襯衫、運動鞋、包包靴子、長靴

資料

標籤

- 0 T-shirt/top:T恤/上衣
- 1 Trouser: 褲子
- 2 Pullover: 套頭衫
- 3 Dress: 禮服
- 4 Coat:外套
- 5 Sandal:涼鞋
- 6 Shirt:襯衫
- 7 Sneaker: 運動鞋
- 8 Bag:包包袋子
- 9 Ankle boot: 長靴

屬性

服飾的特徵

每個點的灰階資料

模型

- 1.RNN模型循環神經網絡
- 2. output 不只受上一層輸入的影響,也受到同一層前一個 output 的影響

```
model = keras.Sequential([
    keras.layers.SimpleRNN(
    input_shape=(28, 28),
    units=256,
    unroll=True),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])
```

優化器

接下來選擇優化器,我們使用' AdamOptimizer()'優化器,

隨機梯度下降算法的擴展式,近來其廣泛用於深度學習應用

中,尤其是計算機視覺和自然語言處理等任務。

AdamOptimizer()

• 適應性梯度算法(AdaGrad)可以每一個參數保留一個學習 習率以提升在稀疏梯度上的性能。

 均方根傳播(RMSProp)基於權重梯度最近量級的均值為 每一個參數適應性地保留學習率。

損失函數

損失函數爲' sparse_categorical_crossentropy',就是**交叉熵**,而 categorical_crossentropy 和 sparse_categorical_crossentropy這二者都是針對多分類任務。

差別在於輸入參數形式上的區別,在 loss 的計算在本質上沒有區別

成效衡量指標

成效衡量指標則是'accuracy'

(tp+tn)/(tp+fp+fn+tn)

•		True Class	
		Positive	Negative
Predicted Class	Positive	True Positive Count (TP)	False Positive Count (FP)
	Negative	False Negative Count (FN)	True Negative Count (TN)

實驗2

實驗平台

- 1. 使用 python 進行程式的撰寫。
- 2. 能夠把**軟體代碼、計算輸出、解釋文檔、多 媒體資源**整合在一起的多功能科學運算平台。
- 3. 不需要切換窗口去找資料,只要看一個文件, 就可以獲得項目的所有信息。
- 4. 每次實驗可以只跑一小個 Cell 裡的代碼,在 代碼下面**立刻**就可以**看到结果**。

實驗環境

實驗環境

實驗函式庫簡介

import tensorflow as tf

用於**機器學習和深度神經網路方面** 的研究

import tkinter as tk

用來在 Python 中**建構 GUI 圖形介 面**程式

from tkinter import filedialog

開啟**檔案對話框**用法

import tensorflow as tf
import tkinter as tk

from tkinter import filedialog
import matplotlib.pyplot as plt
import numpy as np
import random

import matplotlib.pyplot as plt

用來繪圖、圖表呈現及數據表示

import numpy as np

支援**大量的維度陣列與矩陣運算**,也針對陣列 運算提供大量的數學函式庫

import random

匯入標準模組庫中(standard library) 的**亂數模組(random)**


```
In [1]:

from tensorflow import keras
import tensorflow as tf
import tkinter as tk

from tkinter import filedialog
import matplotlib.pyplot as plt
import numpy as np
import random
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
```

在windows顯示圖像的時候可能會遇到一個錯誤,

需要添加這個語句才可以正常通過,

意思是允許重複加載動態鏈接庫

訓練資料與測試資料數量皆為MNIST數據庫

In [3]: EAGER = True 計算時會先展開結構

Dropout可以作為訓練深度神經網路的一種方法。 在每個訓練中,通過忽略一半的特徵檢測器(讓一半的隱層節點值為0),可以明顯地減少過擬合現象。 這種方式可以減少特徵檢測器(隱層節點)間的相互作用

```
In [5]: training_images = training_images / 255.0
test_images = test_images / 255.0
```

由於灰階影像的值是0~255,所以我們可以選擇 全數除以255.0來等比例縮小

Learning_rate

學習速率,值越大則表示權值調整動作越大

```
In [6]: lr = 0.001
                                      訓練數據 (epochs) 的設置 = 20
    epochs = 20
    model.compile(optimizer=tf.compat.v1.train.AdamOptimizer(lr),
           loss='sparse categorical crossentropy',
           metrics=['accuracy'])
    model.fit(training_images, training_labels, epochs=epochs, validation_data=[test_images[:1000], test_labels[:1000]])
Epoch 1/20
0.8110
Epoch 9/20
0.8410
Epoch 20/20
0.7910
```

```
print(model.summary())
                           顯示目前網路架構
Model: "sequential"
 Layer (type)
                             Output Shape
                                                      Param #
 simple rnn (SimpleRNN)
                             (None, 256)
                                                      72960
 dropout (Dropout)
                             (None, 256)
                                                      0
 dense (Dense)
                             (None, 10)
                                                      2570
Total params: 75,530
Trainable params: 75,530
Non-trainable params: 0
None
```


實驗不同參數下的結果

● 改變神經元數量

```
In [12]: 1r = 0.05
   epochs = 5
   model.compile(optimizer=tf.compat.v1.train.AdamOptimizer(lr),
        loss='sparse categorical crossentropy',
        metrics=['accuracy'])
   model.fit(training_images, training_labels, epochs=epochs, validation_data=[test_images[:1000],test_labels[:1000]])
   Epoch 1/5
   y: 0.0870
   Epoch 2/5
   0.0970
   Epoch 3/5
   0.1110
   Epoch 4/5
   0.1070
   Epoch 5/5
   0.0970
```

```
In [17]: print(model.summary())
       Model: "sequential"
        Layer (type)
                               Output Shape
                                                    Param #
        simple_rnn (SimpleRNN)
                                                    276992
                               (None, 512)
        dropout (Dropout)
                               (None, 512)
                                                    0
        dense (Dense)
                               (None, 10)
                                                    5130
       Total params: 282,122
       Trainable params: 282,122
       Non-trainable params: 0
       None
In [14]: model.evaluate(test_images, test_labels) #測試
       Out[14]: [7.12483024597168, 0.10000000149011612]
```


謝謝大家