

AULA 1 – INTRODUÇÃO

Denominamos polinômio na variável x e indicamos por P(x) as expressões do tipo:

$$a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_{n-1}x + a_n$$

Obs:

- Chamamos a₀, a₁, a₂, ..., a_{n-1} e a_n de coeficientes do polinômio;
- Chamamos a_0x^n , a_1x^{n-1} , ..., $a_{n-1}x$ e a_n de termos do polinômio;
- Em especial, chamamos a_n de termo independente, pois ele é independente de x;
- A variável x é um número complexo, ou seja, $x \in \mathbb{C}$.

Grau de um polinômio

O grau de um polinômio é indicado por gr(P) e é igual ao maior expoente da variável x com coeficiente não-nulo.

Valor numérico de um polinômio

Obter o valor numérico de um polinômio P(x) para x = k significa calcular o valor do polinômio quando substituímos x por k. Isto é indicado por P(k).

Raiz de um polinômio

Dizemos que um valor k é raiz do polinômio quando P(k)=0, ou seja, é o valor que quando substituído no lugar do x torna o polinômio igual a 0.

AULA 2 - IDENTIDADE DE POLINÔMIOS

Dois polinômios são idênticos se, e somente se, os coeficientes dos termos correspondentes forem iguais.

Polinômio identicamente nulo

Um polinômio é identicamente nulo se, se somente se, todos os seus coeficientes forem nulos. Para polinômio nulo não se define grau.

AULA 3 - SOMA E SUBTRAÇÃO DE POLINÔMIOS

Soma de polinômios

A soma de polinômios é realizada somando-se os coeficientes dos termos que apresentam o mesmo grau.

Subtração de polinômios

A subtração de polinômios é realizada subtraindo-se os coeficientes dos termos que apresentam o mesmo grau.

Obs:

 O polinômio resultante da soma ou da diferença entre dois polinômios não tem, necessariamente, grau igual à soma ou diferença dos graus dos polinômios originais.

AULA 4 - MULTIPLICAÇÃO DE POLINÔMIOS

A multiplicação de polinômios é feita termo a termo, com a utilização da propriedade distributiva, ou seja, realiza-se a multiplicação convencional de expressões algébricas. Após a realização de todas as multiplicações, agrupam-se os termos de mesmo grau.

Obs:

 O grau do produto de dois polinômios não-nulos é a soma dos graus desses polinômios.

AULA 5 – DIVISÃO DE POLINÔMIOS

A divisão de um polinômio A(x) por um polinômio B(x) pode ser indicada na chave por:

$$\begin{array}{c|c} A(x) & B(x) \\ \hline R(x) & Q(x) \\ \end{array}$$

Os polinômios Q(x) e R(x) são chamados respectivamente de quociente e resto da divisão. O polinômio A(x) é chamado de dividendo e o polinômio B(x) é chamado de divisor. Os quatro polinômios são tais que:

$$A(x) = Q(x) \cdot B(x) + R(x)$$

Analogamente à divisão entre números reais, se o resto R(x) for nulo, dizemos que a divisão é exata e que A(x) é divisível por B(x).

1

Obs:

 o grau de Q(x) é igual à diferença dos graus de A(x) e B(x):

$$gr(Q) = gr(A) - gr(B)$$

 o grau de R(x) (para R(x) não-nulo) será sempre menor que o grau do divisor B(x):

Método da Chave

A divisão entre os polinômios pode ser realizada pelo método da chave que consiste nos seguintes passos:

- Escrever os polinômios na ordem decrescente de seus expoentes de x;
- 2. Caso falte algum termo, completar com zero;
- Dividir o primeiro termo do dividendo pelo primeiro termo do divisor e colocar o resultado no quociente;
- Multiplicar este resultado por cada termo do divisor, inverter o sinal e colocar abaixo do termo correspondente no dividendo;
- Realizar a soma do dividendo com este polinômio resultante e escrever o resultado abaixo. Este polinômio será um novo dividendo;
- Se o grau deste polinômio for maior ou igual ao grau do divisor, prosseguir com a divisão, repetindo o procedimento a partir do passo 3. Se o grau deste polinômio for menor do que o grau do divisor, parar o procedimento.

AULA 6 - TEOREMA DO RESTO

O teorema do resto diz que o resto da divisão de um polinômio P(x) por um binômio (x-a) é igual a P(a).

AULA 7 – TEOREMA DE D'ALEMBERT

Teorema de D'Alembert

Este teorema pode ser entendido como consequência do teorema do resto: a divisão de um polinômio P(x) por um binômio (x-a) é exata se, e somente se, P(a)=0.

Teorema

Sendo um polinômio P(x) divisível por x-a e por x-b, com $a \neq b$, então P(x) é divisível pelo produto $(x-a) \cdot (x-b)$.

AULA 8 - DISPOSITIVO DE BRIOT-RUFFINI

O dispositivo de Briot-Ruffini é uma forma prática de encontrar o quociente e o resto da divisão de um polinômio P(x), por um binômio (x-a). O dispositivo consiste nos seguintes passos:

- Escrever o polinômio P(x) na ordem decrescente de seus expoentes de x;
- 2. Caso falte algum termo, completar com zero;
- Colocar o valor de a do lado esquerdo da grade e os coeficientes do polinômio P(x) ao lado direito da grade, na ordem decrescente dos expoentes de x;
- 4. "Descer" o primeiro coeficiente:

5. Multiplicar o número de baixo por a, somar o resultado com o próximo coeficiente de P(x) e escrever o resultado diretamente abaixo deste coeficiente:

 Tomar este resultado obtido e repetir o passo 5 coeficiente a coeficiente, até que se esgotem os coeficientes de P(x);

O último número obtido na linha de baixo será o resto da divisão e os números anteriores serão os coeficientes do quociente da divisão, em ordem decrescente:

Note que, quando dividimos P(x) por um binômio (x-a), o grau do quociente será uma unidade inferior ao grau de P(x).

AULA 9 – BRIOT-RUFFINI PARA DIVISÃO DE P(x) POR (ax-b)

Agora, caso estejamos realizando a divisão de um polinômio P(x) por um binômio do tipo (ax-b), faremos pequenas alterações ao Briot-Ruffini convencional:

- No campo da esquerda da grade colocaremos o valor de ^b/_a para a execução do dispositivo;
- Ao finalizarmos o procedimento, dividiremos os coeficientes do quociente por a;
- O resto permanece inalterado!

AULA 10 - EQUAÇÕES POLINOMIAIS - INTRODUÇÃO

Quando igualamos um polinômio a zero, chegamos a uma equação polinomial (ou equação algébrica):

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

Dizemos que a equação tem grau n.

Raiz ou zero de uma equação polinomial

Os valores que, quando substituídos no lugar de x, tornam a igualdade uma verdade são chamados de raízes ou zeros da equação. Solucionar a equação é encontrar todas as suas raízes, isto é, encontrar os valores que compõem o conjunto solução ou conjunto verdade da equação.

AULA 11 – EQUAÇÕES POLINOMIAIS - TEOREMA FUNDAMENTAL DA ÁLGEBRA

Teorema fundamental da álgebra

Toda equação algébrica P(x)=0 de grau $n\geq 1$ admite, pelo menos, uma raiz complexa.

Obs:

 A raiz complexa n\u00e3o necessariamente tem parte imagin\u00e1ria (mas pode ter!). Um n\u00e4mero real tamb\u00e9m \u00e9 considerado um n\u00e4mero complexo.

Decomposição em fatores do 1º grau

Seja P(x) um polinômio de grau $n \ge 1$:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

O polinômio P(x) pode ser decomposto em um produto de fatores do 1º grau no formato $(x - x_i)$ onde x_i são suas raízes:

$$P(x) = a_n \cdot (x - x_1) \cdot (x - x_2) \cdot (x - x_3) \dots \cdot (x - x_n)$$

AULA 12 – EQUAÇÕES POLINOMIAIS -MULTIPLICIDADE DE UMA RAIZ

Um polinômio na forma fatorada pode apresentar fatores repetidos. Isto indica multiplicidade de raízes.

Se x_k é raiz de multiplicidade m do polinômio P(x), então o fator $(x - x_k)$ aparecerá elevado ao expoente m na forma fatorada de P(x):

$$P(x) = a_n \cdot (x - x_1) \cdot (x - x_2) \cdot \dots \cdot (x - x_k)^m$$

AULA 13 – EQUAÇÕES POLINOMIAIS - REDUÇÃO DE GRAU

Dada uma equação polinomial P(x)=0 de grau n, se conhecermos uma de suas raízes, podemos utilizar o dispositivo de Briot-Ruffini para "reduzir o grau" da equação.

As raízes do quociente obtido também serão raízes do polinômio P(x). Logo, sendo Q(x) o quociente obtido no Briot-Ruffini, para encontrarmos as outras raízes de P(x) basta encontrarmos as raízes de Q(x).

AULA 14 - EQUAÇÕES POLINOMIAIS - RAÍZES COMPLEXAS

Sendo z=a+bi raiz da equação P(x)=0, então $\bar{z}=a-bi$ também será raiz dessa equação. Se z for raiz de multiplicidade m, então \bar{z} também será.

Obs:

- As raízes complexas sempre virão aos pares;
- Se uma equação algébrica tem grau ímpar, então ela terá necessariamente pelo menos uma raiz real.

AULA 15 – EQUAÇÕES POLINOMIAIS - RAÍZES RACIONAIS

Seja a equação algébrica $P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0$ de coeficientes inteiros. Se o número racional $\frac{p}{q}$ ($p\in\mathbb{Z}$ e $q\in\mathbb{Z}^*$, com p e q primos entre si), é raiz dessa equação, então p é divisor de a_0 e q é divisor de a_n . Podemos escrever então um procedimento para encontrar possíveis raízes racionais de P(x):

- 1. Listar os divisores de a_0 (valores de p);
- 2. Listar os divisores de a_n (valores de q);
- 3. Listar todos os possíveis valores de $\frac{p}{a}$;
- 4. Testar os valores e verificar se são raízes.

AULA 16 – EQUAÇÕES POLINOMIAIS - RELAÇÕES DE GIRARD

Equação do 2º grau

Seja a equação $ax^2 + bx + c = 0$, onde $a \neq 0$, cujas raízes são x_1 e x_2 . Então:

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1 \cdot x_2 = \frac{c}{a}$$

Equação do 3º grau

Seja a equação $ax^3+bx^2+cx+d=0$, onde $a\neq 0$, cujas raízes são $x_1,\,x_2$ e x_3 . Então:

$$x_1 + x_2 + x_3 = -\frac{b}{a}$$

$$x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3 = \frac{c}{a}$$

$$x_1 \cdot x_2 \cdot x_3 = -\frac{d}{a}$$

Equação do 4º grau

Seja a equação $ax^4+bx^3+cx^2+dx+e=0$, onde $a\neq 0$, cujas raízes são $x_1,\,x_2,\,x_3$ e x_4 . Então:

$$x_1 + x_2 + x_3 + x_4 = -\frac{b}{a}$$

$$x_1 \cdot x_2 + x_1 \cdot x_3 + x_1 \cdot x_4 + x_2 \cdot x_3 + x_2 \cdot x_4 + x_3 \cdot x_4 = \frac{c}{a}$$

$$x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_4 + x_1 \cdot x_3 \cdot x_4 + x_2 \cdot x_3 \cdot x_4 = -\frac{d}{a}$$

$$x_1 \cdot x_2 \cdot x_3 \cdot x_4 = \frac{e}{a}$$