Vegetation community patterns, Reference sheet, JUST LAYOUT!!! October 11, 2024

Michel Ferré¹, Induja Pavithran¹ and Hannes Uecker²,

In [FPB²24] we give a bifurcation analysis of the vegetation community–water model

$$\partial_t B_i = \dots \tag{1}$$

where ... For further details and in particular parametr values we refer to [FPB+24].

The main focus is on the interplay of spatial pattern formation and community reassembly under drying trends, i.e., under a decrease of P, in the Matlab folder bwhcom. However, as a preparatory step we also study the single species models with $\chi=0$ and $\chi=1$, respectively, in the folder bwhsingle, which we describe first.

The single species models (SSM) are standard semilinear RD systems and hence can be treated similar to the models in [Uec21, Ch.9], and associated demos available at [Uec24]. We also refer to [Uec21] and the tutorials at [Uec24] for general background and usage of pde2path. However, the SSM folder also come with a few tricks such as the computation of Busse Ballons (BBS) via branch point continuation (BPC). Table I lists the pertinent files.

Table 1: Scripts and functions in bwhsingle. Associated to most cmds*-scripts are cmds*plot scripts for plotting; all figure numbers refer to [FPB+24]. 1st two blocks: scripts; 3rd block: problem describing functions and overloads of pde2path library functions and convenience functions.

file	purpose, remarks
cmds1	starting script Fig.4
bwhinit	initialization of problem struct p with standard parameter values, call of
	stanpdeo1D to generate a 1D PDE object (interval, with mesh), initialization
	of u with u^* , call of oosetfemops to generate the FEM matrices, and finally
	resetting of some pde2path parameters to problem adapted values.
oosetfemops	assemble and store the mass matrix M , and the (1-component) Neumann-
	Laplacian K.
sG,sGjac	rhs of (???), and Jacobian; these here have a simple standard structure.
nodalf	"nonlinearity", i.e., terms without spatial derivatives, called in hotintxs.
nodaljac	Jacobian of "nonlinearity", called in sGjac.
bpjac	implements $\partial_u(G_u\phi)$ for BPC, see [Uec21, §3.6.1].
sgbra	mod of library function stanbra;
secobraHPC	mod of secobra used for output during HPC.

The community model (1) is different from the "standard" RD system demos of pde2path, and hence requires some special setup. See Tab.2...

Table 2: Scripts and functions in bwhcom. Associated to most cmds*-scripts are cmds*plot scripts for plotting; all figure numbers refer to [FPB+24]. 1st two blocks: scripts; 3rd block: problem describing functions; 4th block: overloads of pde2path library functions and convenience functions.

file	purpose, remarks
cmds1	
bwhinit	initialization
sgbra	
userplot bbdns	
bbdns	

 $^{^1}$ BGU, michel.ferre.diaz@gmail.com and indujap
2013@gmail.com, 2 Institut für Mathematik, Universität Oldenburg
 hannes.uecker@uol.de,

References

FPBUM24

- [FPB⁺24] M. A. Ferré, I. Pavithran, B. Bera, H. Uecker, and E. Meron. Vegetation pattern formation and community assembly under drying climate trends, 2024. p2pbook
- [Uec21] H. Uecker. Numerical continuation and bifurcation in Nonlinear PDEs. SIAM, Philadelphia, PA, 2021. p2phome
- [Uec24] H. Uecker. www.staff.uni-oldenburg.de/hannes.uecker/pde2path, 2024.