Supplemental materials: How environmental tracking shapes communities in stationary & non-stationary systems

E. M. Wolkovich & M. J. Donohue

1 Literature review

We systematically reviewed the literature for studies examining tracking and other traits. We searched ISI in August 2019 for:

- 1. Topic: 'phenolog* chang*' and Title: phenolog* AND trait*
- 2. Topic: 'warming shift*' AND trait* and Title: phenolog*
- 3. Topic: 'phenolog* track*' AND trait* and Title: phenolog*
- 4. Topic: 'phenolog* sensitiv*' AND trait* and Title: phenolog*

which resulted in 231 papers. From here we used the following criteria to determine from which papers we could not extract data: no phenology or phenological change measured (73 papers), no trait(s) measured or analyzed (49 papers), single-species studies focused on intra-specific variation (54 papers), modeling or theory studies without data (12 papers), or papers without new data presented (reviews, etc.: 4 papers), or miscellaneous reasons leading to no data relevant to our aims (7 papers). This left us with 30 papers including relevant data (Suzuki & Kudo, 1997; Post & Stenseth, 1999; Adrian et al., 2006; Xu et al., 2009; Goodenough et al., 2010; Diamond et al., 2011; Moussus et al., 2011; Szilvia et al., 2012; Dorji et al., 2013; Ishioka et al., 2013; Xia & Wan, 2013; Bock et al., 2014; Kharouba et al., 2014; Vegvari et al., 2015; Bell et al., 2015; Lasky et al., 2016; McDermott & DeGroote, 2016; Zhu et al., 2016; Brooks et al., 2017; Du et al., 2017; Munson & Long, 2017; Arfin Khan et al., 2018; Zhang et al., 2018; Ladwig et al., 2019; Park et al., 2019; ?; Sharma & Upadhyaya, 2019; Xavier et al., 2019; Zettlemoyer et al., 2019), eight of which did not test for a relationship between tracking and the other studied traits (Suzuki & Kudo, 1997; Adrian et al., 2006; Xu et al., 2009; Bell et al., 2015; McDermott & DeGroote, 2016; Sherwood et al., 2017; Sharma & Upadhyaya, 2019; Xavier et al., 2019). We present data from the remaining papers in Tables S2-S3. Most studies examined tracking as how a phenophase related to temperature (86% of all tracking metrics), followed by precipitation (10%, includes snow removal), followed by photoperiod (3%), followed by the climate mode NAO (1%) and water table depth (0.5%). Four of the 30 studies examined more than one major climate metric, though some measured many versions of temperature and/or precipitation metrics (e.g., 15 precipitation and/or temperature metrics considered in Munson & Long, 2017).

2 Model

Table S1: Table of parameter values, their definitions and lightweight version of their dimensions (i.e., not yet deemed 'grams' or such).

(i.e., not yet deemed	- ,	
Parameter	Definition	Unit
$\mid N_i \mid$	seedbank of species i	seeds
s_i	survival of species i	unitless
δ (peak biomass)	total length of growing season	days
B_i	biomass of species i	biomass
R	resource	resource
c_i	conversion of R uptake to biomass	biomass resource
	of species i	
m_i	maintenance costs of species i	$days^{-1}$
a_i	uptake increase as R increases for	$days^{-1}$
	species i	
u_i	\max uptake for species i	(days)(biomass) resource
ϕ_i	conversion of biomass to seedbank	biomass ⁻¹ , but concep-
	for species, includes overwintering of	tually $\frac{\text{seeds}}{(\text{biomass})(\text{seeds})}$
	seeds i	(Sioinass)(Socas)
ϵ	abiotic loss of R	$days^{-1}$
$g_{max,i}$	max germination of species i	unitless
h_i	controls the the rate at which germi-	$days^{-2}$
	nation declines as τ_p deviates from	
	optimum for species i	
g_i	germination fraction	unitless
$ au_p$	timing of pulse	days
$ au_i$	timing of max germination of	days
	species i	
α_i	phenological tracking of species i	unitless
θ_i	shape of uptake for species i	unitless
b_i	seedling biomass of species i	biomass seeds
$f_i(R)$	R uptake $f(x)$ for species i	resource (days)(biomass)
d_i	death rate of species i , used in cal-	unitless
	culations of lifespan	
t	between year time (formerly T)	years
$0 \to \delta$	within season time (formerly τ)	days
b_0	initial biomass per germinant (seed)	biomass
ξ	final biomass initial biomass	unitless
		1

- Adrian, R., Wilhelm, S. & Gerten, D. (2006). Life-history traits of lake plankton species may govern their phenological response to climate warming. *Global Change Biology*, 12, 652–661.
- Arfin Khan, M.A.S., Beierkuhnlein, C., Kreyling, J., Backhaus, S., Varga, S. & Jentsch, A. (2018). Phenological sensitivity of early and late flowering species under seasonal warming and altered precipitation in a seminatural temperate grassland ecosystem. *Ecosystems*, 21, 1306–1320.
- Bell, J.R., Alderson, L., Izera, D., Kruger, T., Parker, S., Pickup, J., Shortall, C.R., Taylor, M.S., Verrier, P. & Harrington, R. (2015). Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids. *Journal of Animal Ecology*, 84, 21–34.
- Bock, A., Sparks, T.H., Estrella, N., Jee, N., Casebow, A., Schunk, C., Leuchner, M. & Menzel, A. (2014). Changes in first flowering dates and flowering duration of 232 plant species on the island of guernsey. *Glob Chang Biol*, 20, 3508–19.
- Brooks, S.J., Self, A., Powney, G.D., Pearse, W.D., Penn, M. & Paterson, G.L.J. (2017). The influence of life history traits on the phenological response of british butterflies to climate variability since the late-19th century. *Ecography*, 40, 1152–1165.
- Diamond, S.E., Frame, A.M., Martin, R.A. & Buckley, L.B. (2011). Species' traits predict phenological responses to climate change in butterflies. *Ecology*, 92, 1005–1012.
- Dorji, T., Totland, O., Moe, S.R., Hopping, K.A., Pan, J. & Klein, J.A. (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. *Global Change Biology*, 19, 459–472.
- Du, Y.J., Chen, J.R., Willis, C.G., Zhou, Z.Q., Liu, T., Dai, W.J., Zhao, Y. & Ma, K.P. (2017). Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast china. *Ecology and Evolution*, 7, 6747–6757.
- Goodenough, A.E., Hart, A.G. & Stafford, R. (2010). Is adjustment of breeding phenology keeping pace with the need for change? linking observed response in woodland birds to changes in temperature and selection pressure. *Climatic Change*, 102, 687–697.
- Ishioka, R., Muller, O., Hiura, T. & Kudo, G. (2013). Responses of leafing phenology and photosynthesis to soil warming in forest-floor plants. *Acta Oecologica-International Journal of Ecology*, 51, 34–41.
- Kharouba, H.M., Paquette, S.R., Kerr, J.T. & Vellend, M. (2014). Predicting the sensitivity of butterfly phenology to temperature over the past century. *Global Change Biology*, 20, 504–514.
- Ladwig, L.M., Chandler, J.L., Guiden, P.W. & Henn, J.J. (2019). Extreme winter warm event causes exceptionally early bud break for many woody species. *Ecosphere*, 10.

- Lasky, J.R., Uriarte, M. & Muscarella, R. (2016). Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality. *Environmental Research Letters*, 11.
- McDermott, M.E. & DeGroote, L.W. (2016). Long-term climate impacts on breeding bird phenology in pennsylvania, usa. *Global Change Biology*, 22, 3304–3319.
- Moussus, J.P., Clavel, J., Jiguet, F. & Julliard, R. (2011). Which are the phenologically flexible species? a case study with common passerine birds. *Oikos*, 120, 991–998.
- Munson, S.M. & Long, A.L. (2017). Climate drives shifts in grass reproductive phenology across the western USA. *New Phytologist*, 213, 1945–1955.
- Park, D.S., Breckheimer, I., Williams, A.C., Law, E., Ellison, A.M. & Davis, C.C. (2019). Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern united states. *Philosophical Transactions of the Royal Society B-Biological Sciences*, 374.
- Post, E. & Stenseth, N. (1999). Climatic variability, plant phenology, and northern ungulates. *Ecology*, 80, 1322–1339.
- Sharma, S. & Upadhyaya, H.D. (2019). Photoperiod response of annual wild cicer species and cultivated chickpea on phenology, growth, and yield traits. *Crop Science*, 59, 632–639.
- Sherwood, J.A., Debinski, D.M., Caragea, P.C. & Germino, M.J. (2017). Effects of experimentally reduced snowpack and passive warming on montane meadow plant phenology and floral resources. *Ecosphere*, 8.
- Suzuki, S. & Kudo, G. (1997). Short-term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. *Global Change Biology*, 3, 108–115.
- Szilvia, K., Fehervari, P., Krisztina, N., Andrea, H. & Tibor, C. (2012). Changes in migration phenology and biometrical traits of reed, marsh and sedge warblers. *Central European Journal* of Biology, 7, 115–125.
- Vegvari, Z., Juhasz, E., Toth, J.P., Barta, Z., Boldogh, S., Szabo, S. & Varga, Z. (2015). Life-history traits and climatic responsiveness in noctuid moths. *Oikos*, 124, 235–242.
- Xavier, R.D., Leite, M.B. & Matos, D.M.D. (2019). Phenological and reproductive traits and their response to environmental variation differ among native and invasive grasses in a neotropical savanna. *Biological Invasions*, 21, 2761–2779.
- Xia, J.Y. & Wan, S.Q. (2013). Independent effects of warming and nitrogen addition on plant phenology in the inner mongolian steppe. *Annals of Botany*, 111, 1207–1217.
- Xu, Z.F., Hu, T.X., Wang, K.Y., Zhang, Y.B. & Xian, J.R. (2009). Short-term responses of phenology, shoot growth and leaf traits of four alpine shrubs in a timberline ecotone to simulated global warming, eastern tibetan plateau, china. *Plant Species Biology*, 24, 27–34.

- Zettlemoyer, M.A., Schultheis, E.H. & Lau, J.A. (2019). Phenology in a warming world: differences between native and nonâĂŘnative plant species. *Ecology Letters*.
- Zhang, J.H., Yi, Q.F., Xing, F.W., Tang, C.Y., Wang, L., Ye, W., Ng, I., Chan, T.I., Chen, H.F. & Liu, D.M. (2018). Rapid shifts of peak flowering phenology in 12 species under the effects of extreme climate events in macao. *Scientific Reports*, 8.
- Zhu, J.T., Zhang, Y.J. & Wang, W.F. (2016). Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. *Biology Letters*, 12, 4.

Figure S1: Trends in all papers using search terms over time. Of papers from which we could extract data all were published in 2016 or onward.

Table S2: Summary of traits related to phenological tracking in the literature and whether papers reported statistical evidence that they were linked or not. See Table S2 for an extended version.

Trait	n linked	n not linked	
diet traits	0	4	
early/late phenophase	10	4	
habitat traits	1	4	
height	1	0	
hibernation stage	0	4	
leaf/shoot size	1	0	
migration traits	3	3	
mobility	1	3	
nativeness	1	3	
niche breadth	3	2	
other Lepidopteran traits	3	4	
other bird traits	1	1	
other leaf traits	4	3	
other plant traits	1	1	
overwintering	2	1	
range traits	1	4	
root traits	3	0	
seed weight/size/number	1	2	
woody/herbaceous	1	0	

Table S3: Summary of results from literature on phenological tracking showing which phenophases researchers found were linked to which traits, or not.

Taxa	Phenophase	Trait	n linked	n not linked
Lepidoptera	activity length	hibernation stage		1
Lepidoptera	activity length	migration traits		1
Lepidoptera	activity length	other Lepidopteran traits	1	
Lepidoptera	appearance/collection date	diet traits		1
Lepidoptera	appearance/collection date	early/late phenophase	2	
Lepidoptera	appearance/collection date	habitat traits		2
Lepidoptera	appearance/collection date	hibernation stage		1
Lepidoptera	appearance/collection date	migration traits	1	
Lepidoptera	appearance/collection date	mobility		2
Lepidoptera	appearance/collection date	niche breadth	2	1
Lepidoptera	appearance/collection date	other Lepidopteran traits	1	2
Lepidoptera	appearance/collection date	overwintering	2	
Lepidoptera	appearance/collection date	range traits	1	2
Lepidoptera	flight timing	early/late phenophase	1	1
Lepidoptera	flight timing	mobility	1	1
Lepidoptera	flight timing	niche breadth		1
Lepidoptera	flight timing	other Lepidopteran traits		1
Lepidoptera	flight timing	overwintering		1
Lepidoptera	flight timing	range traits		1
Lepidoptera	last/median emergence dates	diet traits		2
Lepidoptera	last/median emergence dates	habitat traits		2
Lepidoptera	last/median emergence dates	hibernation stage		2
Lepidoptera	last/median emergence dates	migration traits		2
Lepidoptera	last/median emergence dates	other Lepidopteran traits	1	1
passerine birds	breeding time	diet traits		1
passerine birds	breeding time	habitat traits	1	
passerine birds	breeding time	migration traits	2	
passerine birds	breeding time	niche breadth	1	
passerine birds	breeding time	other bird traits	1	1
plants	budbreak/leafing	early/late phenophase	3	1
plants	budbreak/leafing	nativeness		1
plants	budbreak/leafing	other leaf traits	2	1
plants	budbreak/leafing	range traits		1
plants	flowering/fruiting	early/late phenophase	4	2
plants	flowering/fruiting	height	1	
plants	flowering/fruiting	leaf/shoot size	1	
plants	flowering/fruiting	nativeness	1	2
plants	flowering/fruiting	other leaf traits	2	2
plants	flowering/fruiting	other plant traits	1	1
plants	flowering/fruiting	root traits	3	
plants	flowering/fruiting	seed weight/size/number	1	2
plants	flowering/fruiting	woody/herbaceous	1	

Figure S2: How non-stationarity reshapes two-species communities in a simple model where effective start time (X axis: species 1/species 2) trades off with R^* (Y axis: species 1/species 2): each point represents one two-species community that persisted through 500 years of stationary dynamics while the shape and color represent the outcome for that two-species community of 500 years of non-stationarity, where the abiotic start of the season shifts earlier.

Figure S3: How non-stationarity reshapes two-species communities in a simple model where tracking (X axis: species 1/species 2) trades off with R^* (Y axis: species 1/species 2): each point represents one two-species community that persisted through 500 years of stationary dynamics while the shape and color represent the outcome for that two-species community of 500 years of non-stationarity, where the abiotic start of the season shifts earlier.