$\ensuremath{\mathsf{HW}}$ 7 - Graph Theory

Ethan Beaird

 $March\ 12,\ 2023$

1.

2.

Let G be a graph with bipartition X,Y. Since G is bipartite and k-regular, $\sum_{v \in X} d(v) = |E(G)| = k|X| = k|Y|.$ So |X| = |Y|. Let $S \subset X$ and let E_1 be all

edges incident to S and E_2 be all edges incident to the neighbors of S, N(S). $E_1 \subset E_2$ so $|E_2| = k|N(S)| \ge |E_1| = k|S|$. $|N(S)| \ge |S|$. This works for all S. So by theorem 5.2, there exists a matching M saturating X. Every edge in M has exactly 1 $v \in X, Y$. So M saturates the same number of X vertices and Y vertices. But |Y| = |X|, so M saturates all vertices and is a perfect matching. But we know $\sum_{v \in X} d(v) = k|X| = k|Y|$, and G is simple. WOLOG, each vertex

in X is incident to exactly k vertices in Y. It is clear that $k \leq |X| = |Y|$ (if this were not true, then we would have more edges that vertices available for these edges to connect). Delete all edges in our found perfect matching, leaving us with a k-1-regular bipartite graph. We repeat this process k-1 times, and we find k disjoint perfect matchings.

3.

a.

Consider \mathbb{Q}_n . \mathbb{Q}_n has 2^n vertices. Each vertex has a unique binary sequence with length n. If two vertices are adjacent, then their binary strings may only differ by exactly one bit (per our construction). So one of n bits may vary between a vertex and its neighbors, i.e. we have n ways to vary the binary string and reach an adjacent vertex. So each vertex is connected to n other vertices in $V(\mathbb{Q}_n)$, or \mathbb{Q}_n is n-regular. We know that $\sum_{v \in V(\mathbb{Q}_n)} d(v) = 2\epsilon(\mathbb{Q}_n)$.

But each vertex has degree n and we have 2^n vertices, so $n2^n = 2\epsilon(\mathbb{Q}_n)$, or $\epsilon(\mathbb{Q}_n) = n2^{n-1}$.

b.

Let

 $X = \{v \in V(\mathbb{Q}_n) : v$'s binary string has an even number of 1s $\}$ $Y = \{v \in V(\mathbb{Q}_n) : v$'s binary string has an odd number of 1s $\}$

A number is either odd or even, so clearly $V(\mathbb{Q}_n) = X \sqcup Y$. Flipping exactly 1 bit in a binary string changes either a $0 \to 1$ (and the number of 1s increases by one) or a $1 \to 0$ (and the number of 1s decreases by one). WOLOG, the neighbors of $v \in X$, $u_0, u_1, ..., u_k$, differ from v by one bit in their binary sequences. So

each neighbor's binary string has 1 less or 1 more number of 1s than v's binary string. But v's binary string has an even number of 1s, so each neighbor has an even number of 1s \pm 1 \Rightarrow each neighbor of v has an odd number of 1s in its binary string, or each neighbor of v is in Y. So \mathbb{Q}_n is bipartite.

c.

We have shown that \mathbb{Q}_n is both n-regular and bipartite. By corollary 5.2, \mathbb{Q}_n has a perfect matching for n > 0.

4.

Consider a game board that is a 6 by 6 grid of squares. Let each square in this grid be represented by a vertex labeled by the sum of its column and row position (e.g. the square at 5, 4 would be called labeled v_9). Each vertex is connected by an edge to each vertex that its square shares an edge with. Let $X = \{vertices\}$ with even label and $Y = \{vertices \text{ with odd label}\}$. For all $v_i \in G$, $v_{i\pm 1}$ differs by either one row position or one column position. WOLOG, $v_i \in X$ means that i must be even, so $i \pm 1$ must be odd, and $v_{i\pm 1} \in Y$. But differing by only one row position or column position means that all $v_{i\pm 1}$ must be neighbors of v_i . \therefore Every neighbor of each vertex in X must be in Y. Removing the corner vertices of the game board does not connect any $v \in X$ to any $v \in Y$ (since we are removing a vertex and not connecting anything), so our game board is bipartite. We removed the top left and bottom right square, so we removed v_2 and v_{12} . By counting each $v \in X$ and each $v \in Y$, we have 18 vertices in Y and 16 vertices in X. We know that each domino must occupy 2 adjacent squares. Furthermore, we know that all adjacent squares are of opposite color since our game board is bipartite. So a domino must occupy a black square and a white square, or a vertex in X and a vertex in Y, to be placed on our board. We can match at most 16 vertices in X to 16 vertices in Y, but we still have 2 vertices in Y that remain unsaturated. So our game board cannot be tiled by dominoes.