Differentiation and Convexity

Andrew Nobel

February, 2020

Gradients and Hessians

Definition: Let $f: \mathbb{R}^d \to \mathbb{R}$ be nice. The *gradient* of f is the vector of partial derivatives

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_d}(\mathbf{x})\right)^t \in \mathbb{R}^d$$

The *Hessian* of *f* is the matrix of second partial derivatives

$$H(\mathbf{x}) = \nabla^2 f(\mathbf{x}) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}) : 1 \le i, j, \le d \right] \in \mathbb{R}^{d \times d}$$

Note: Under mild conditions $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$, so $\nabla^2 f$ is symmetric

Examples

Ex 1: Linear
$$f(\mathbf{x}) = \langle \mathbf{u}, \mathbf{x} \rangle + b$$
.

- $\triangleright \nabla f(\mathbf{x}) = \mathbf{u}$
- $\nabla^2 f(\mathbf{x}) = \mathbf{0}$

Ex 2: Quadratic $f(\mathbf{x}) = \mathbf{x}^t \mathbf{A} \mathbf{x}$ with $\mathbf{A} \in \mathbb{R}^{d \times d}$ symmetric

Convex Sets

Definition: A set $C \subseteq \mathbb{R}^d$ is *convex* if for every $x,y \in C$ and every $\alpha \in [0,1]$ the point $\alpha x + (1-\alpha)y \in C$.

Interpretation: the line between any two points in \mathcal{C} is contained in \mathcal{C}

Examples

- ▶ Case d = 1: C = (a, b) finite or infinite interval
- ▶ Case d > 1: $C = (a_1, b_1) \times \cdots \times (a_d, b_d)$ Cartesian product of d intervals
- $ightharpoonup B_r := \{x: ||x|| < r\}$ open ball of radius r centered at the origin
- $ightharpoonup C = \{x : w^t x b \ge 0\}$ half-space with direction w, offset b
- $ightharpoonup C = \{x: w^t x = b\}$ hyperplane, (n-1)-dimensional

Fact: If C_1, \ldots, C_n are convex sets then so is their intersection $\bigcap_{i=1}^n C_i$.

Convex Functions

Definition: Let $C\subseteq\mathbb{R}^d$ be convex. A function $f:C\to\mathbb{R}$ is *convex* if for every $x,y\in C$ and every $\alpha\in(0,1)$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \tag{0.1}$$

Interpretation: Line connecting (x, f(x)) and (y, f(y)) lies above graph of f

Definition

- ▶ $f: C \to \mathbb{R}$ is *concave* if (0.1) holds with \leq replaced by \geq
- ▶ $f: C \to \mathbb{R}$ is *strictly convex* if (0.1) holds with \leq replaced by <

Note: f is convex if -f is concave and v.v.

Examples of Convex/Concave Functions

Case d=1

- f(x) = |x| is convex, but *not* strictly convex
- lacksquare $f(x)=x^2,\,e^x,\,e^{-x},\,x^{-1},\,{\rm and}\,\,x\log x$ are strictly convex
- $f(x) = \log x$, \sqrt{x} are strictly concave

Case $d \ge 2$

- f(x) = ||x|| is convex
- affine function $f(x) = \langle x, u \rangle + b$ is convex and concave
- ▶ if $A \subseteq \mathbb{R}^d$ is finite then $f(x) = \min_{u \in A} \langle x, u \rangle$ is concave
- quadratic form $f(x) = x^t A x$ is convex if $A \ge 0$, concave if $A \le 0$

Properties of Convex Functions

Fact: If $f_1,\ldots,f_n:C o\mathbb{R}$ are convex so is $f=\max\{f_1,\ldots,f_n\}$

Checking convexity: Case d=1

- $f:(a,b)\to\mathbb{R}$ is convex if $f''(x)\geq 0$ for all $x\in(a,b)$
- $\blacktriangleright \ f:(a,b)\to \mathbb{R} \text{ is concave if } f''(x)\le 0 \text{ for all } x\in (a,b)$

Checking convexity: Case d > 1

- ▶ $f: C \to \mathbb{R}$ is convex if $\nabla^2 f(x)$ is non-negative definite for each $x \in C$
- ▶ $f: C \to \mathbb{R}$ is concave if $-\nabla^2 f(x)$ is non-negative definite for each $x \in C$

Jensen's Inequality in 1-Dimension

Theorem: Let $X \in (a, b)$ be a random variable

- (1) The expected value $\mathbb{E}X \in (a,c)$
- (2) If $f:(a,b)\to\mathbb{R}$ is convex then $f(\mathbb{E}X)\leq\mathbb{E}f(X)$.
- (3) If $f:(a,b)\to\mathbb{R}$ is concave then $f(\mathbb{E}X)\geq\mathbb{E}f(X)$.

First Applications of Jensen's Inequality

Fact

AM-GM inequality: If $a_1,\ldots,a_n>0$ then $\left(\prod_{i=1}^n a_i\right)^{1/n}\leq \frac{1}{n}\sum_{i=1}^n a_i$

Cauchy-Schwartz: If X and Y are r.v. then $\mathbb{E}|XY| \leq \sqrt{\mathbb{E}X^2} \, \mathbb{E}Y^2$