Man Tik Li (ml3546) INFO 371 – Data Mining Applications Assignment 4

Task 1

The test datasets were selected randomly from the HW2 original dataset (abstract.arff). The test dataset has 2 instances from each domain (AI, STAT, ENVS).

AI: Line 6-7 STAT: Line 24-25 ENVS: Line 53-54

Task 2

Setting for the classifier in Weka

Classifier Output:

=== Summary ===

Correctly Classified Instances	6		100	%
Incorrectly Classified Instances	0		0	%
Kappa statistic	1			
Mean absolute error	0			
Root mean squared error	0			
Relative absolute error	0	%		
Root relative squared error	0	%		
Total Number of Instances	6			

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	ΑI
	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	STAT
	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	ENVS
Weighted Avg.	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	

=== Confusion Matrix ===

a b c <--- classified as 2 0 0 | a = AI 0 2 0 | b = STAT 0 0 2 | c = ENVS

Questions:

1. What is the dictionary size of the classifier model?

```
Dictionary size: 878
```

2. What is the total number of instances in the training set?

3. How many instances in each domain in the training set?

4. How many instances in the test set?

5. How many test instances were incorrectly classified?

6. What is the confusion matrix of the test result? What do the values mean in the confusion matrix?

```
=== Confusion Matrix ===
```

```
a b c <-- classified as
```

2 0 0 | a = AI

0 2 0 | b = STAT 0 0 2 | c = ENVS

7. For each domain, list the recall, precision, and F1-Measure. Describe the underlying methods of computing the metrics.

Domain	Recall	Precision	F-Measure
AI	1.000	1.000	1.000
STAT	1.000	1.000	1.000
ENVS	1.000	1.000	1.000

8. What is the average recall, precision, and F1-Measure of the Naïve Bayes Classifier on the datasets? Describe the underlying methods of computing the averages.

, ,	Recall	Precision	F-Measure
Weighted Avg.	1.000	1.000	1.000

Task 3
Setting used for filter in Weka

Term Frequency of selected words:

<u> </u>		Frequency of the Selected 6 Dictionary Word									
Domain	ai										
AI	50	14	5	0	1	0	70				
STAT	0	8	51	21	2	0	82				
ENVS	0	0	2	3	8	29	42				

Pivot Table:

Row Labels	▼ Sum of ai	Sum of computer	Sum of stat	Sum of sampl	Sum of plant	Sum of water	Grand Total
Al	50	14	5	0	1	0	70
ENVS	0	0	4	3	8	29	44
STAT	0	8	49	21	2	0	80
Grand Total	50	22	58	24	11	29	194

Conditional Probability Chart:

conditional Froducticy Chart.											
	Conditional Probability of the Selected 6 Dictionary Word										
Domain	ai	computer	computer stat		plant	water	Sum of the				
							probabilities				
Al	50 + 1	14 + 1	5 + 1	0 + 1	1+1	0 + 1	1.000				
	70 + 6	70 + 6	70 + 6	70 + 6	70 + 6	$\overline{70 + 6}$					
	= 0.672	= 0.197	= 0.079	= 0.013	= 0.026	= 0.013					
STAT	0 + 1	0 + 1	4 + 1	3 + 1	8 + 1	29 + 1	1.000				
	44 + 6	44 + 6	44 + 6	44 + 6	44 + 6	44 + 6					
	= 0.02	= 0.02	= 0.1	= 0.08	= 0.18	= 0.6					
ENVS	0 + 1	8 + 1	49 + 1	21 + 1	2 + 1	0 + 1	1.000				
	80 + 6	80 + 6	80 + 6	80 + 6	80 + 6	80 + 6					
	= 0.012	= 0.105	= 0.581	= 0.255	= 0.035	= 0.012					

In Excel

Conditional probability of the Selected 6 Dictionary Words									
domain ai computersar stat sampl plant water sum of the pro									
Al	0.672	0.197	0.079	0.013	0.026	0.013	1.000		
STAT	0.02	0.02	0.1	0.08	0.18	0.6	1.000		
ENVS	0.012	0.105	0.581	0.255	0.035	0.012	1.000		

When doing the test data, I put all the data into excel sheet to make it filter easier. I identify the rows in the term frequency output and corresponded with the testing data, All the calculation completed in abstract-tf.csv. I created an auxiliary table to computed $P(w|d)^n$ for each instance words. Then, I used the data to calculate the un-normalized conditional probability for each instance and given a different domain. After the calculation, I used the higher of the 3 values to predict which instance belongs to the domain.

Auxiliary table calculating $P(w|d)^n$ in Excel

Instance# (domain)		P(w d)^n									
1. Al	0.0619	1.0000	1.0000	1.0000	1.0000	1.0000	Al				
1. Al	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	STAT				
1. Al	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	ENVS				
2. Al	0.4516	1.0000	1.0000	1.0000	1.0000	1.0000	Al				
2. Al	0.0004	1.0000	1.0000	1.0000	1.0000	1.0000	STAT				
2. Al	0.0001	1.0000	1.0000	1.0000	1.0000	1.0000	ENVS				
3. STAT	1.0000	1.0000	0.0062	1.0000	1.0000	1.0000	Al				
3. STAT	1.0000	1.0000	0.0100	1.0000	1.0000	1.0000	STAT				
3. STAT	1.0000	1.0000	0.3376	1.0000	1.0000	1.0000	ENVS				
4. STAT	1.000	1.000	0.006	1.000	0.026	1.000	Al				
4. STAT	1.000	1.000	0.010	1.000	0.180	1.000	STAT				
4. STAT	1.000	1.000	0.338	1.000	0.035	1.000	ENVS				
5. ENVS	1.000	1.000	1.000	1.000	1.000	0.000	Al				
5. ENVS	1.000	1.000	1.000	1.000	1.000	0.216	STAT				
5. ENVS	1.000	1.000	1.000	1.000	1.000	0.000	ENVS				
6. ENVS	1.000	1.000	1.000	1.000	1.000	1.000	Al				
6. ENVS	1.000	1.000	1.000	1.000	1.000	1.000	STAT				
6. ENVS	1.000	1.000	1.000	1.000	1.000	1.000	ENVS				

Result Table:

	Fre	Frequency of the selected 6 Dictonary Word in Test Instance						Un-normalized Conditional Probability			Classification	
Instance# (domain)	ai	computer	stat	sampl	р	lant	water	Giv	ven Al	Given STAT	Given ENVS	Result
1 (AI)	7	, ,	כ	0	0	0	()	0.0619	0.0000	0.0000	Al
2 (AI)	2	2)	0	0	0	()	0.4516	0.0004	0.0001	Al
3 (STAT)) (ס	2	0	0	()	0.0062	0.0100	0.3376	STAT
4 (STAT)	())	2	0	1	()	0.0002	0.0018	0.0118	STAT
5 (ENVS)	())	0	0	0	:	3	0.0000	0.2160	0.0000	ENVS
6 (ENVS)	() ()	0	0	0	()	1.0000	1.0000	1.0000	ENVS

Create the Confusion Matrix:

a b c ← classified as

2 0 0 | a = AI

0 2 0 | b = STAT

0 0 2 | c = ENVS

Create a Performance Evaluation:

Domain	Precision	Recall	F1 Score
Al	1.000	1.000	1.000
STAT	1.000	1.000	1.000
ENVS	1.000	1.000	1.000

Overall

After everything is completed, I see that running the test manually can produced precise and accurate result. I had the same result as the Weka output.