Music Genre Classification and Hit Prediction

CSE 575 Group 12

> Keval Shah 1225553979 Rithik Goyal 1225572699 Shashank Karanth 1225314194 Vidushi Raturi 1225495622 Bitaan Chakrabarti 1225499119 Aman Peshin 1225476655

Problem Statement

 Given an audio file, extract audio features and classify the genre that it belongs to.

 Consequently, predict whether it is/was/will be a hit based on other songs belonging to that genre.

 (Future Work) - given the features of the sample song, we want to predict the actual features that would make it a Hit song according to the analysis of our models.

Motivation

- Music creation and Hit generation has been a need since forever.
- In the current situation, there are a lot of intangibles which are not in the creators' hands, that make music a Hit or not.
- We want to give the power to create the best music possible, back to creators, based on an analysis about the musical features of their music.
- Music is highly subjective and the abstraction of the Music aggregators and Record Labels doesn't really help the creators in any way.
- People perceive music differently and subtle nuances in tone, pitch, etc. differentiates it.
- Thus it is important to categorize music into different genres.

Methodology

Comparison with Existing Work

The best results were seen when using Spotify Data (features) - for Hit prediction and Genre prediction.

- Song Hit Prediction: Predicting Billboard Hits Using Spotify Data -https://doi.org/10.48550/arXiv.1908.08609 (88% - accuracy)
- HITPREDICT: PREDICTING HIT SONGS USING SPOTIFY DATA https://cs229.stanford.edu/proj2018/report/16.pdf (82% - accuracy)
- Genre Classification of Spotify Songs https://cs229.stanford.edu/proj2017/final-reports/5242682.pdf

 (82% accuracy)

Similar work was done with very similar results as that of ours:

- Music Genre Classification using Spectral features https://github.com/Pedrohgv/Music_Genre_Classification (Accuracy measure 65%)
- MULTI-LABEL MUSIC GENRE CLASSIFICATION FROM AUDIO -https://arxiv.org/pdf/1707.04916v1.pdf (88.8% from the AUC plot)

FMA Dataset

Data Set Information:

 Audio track (encoded as mp3) of each of the 106,574 tracks arranged in a hierarchical taxonomy of 161 genres. It is on average 10 millions samples per track.

Attribute Information:

- Nine audio features computed across time and summarized with seven statistics (mean, standard deviation, skew, kurtosis, median, minimum, maximum):
- Features: Chroma, Tonnetz, Mel Frequency Cepstral Coefficient (MFCC), Spectral centroid, Spectral bandwidth, Spectral contrast, Spectral rolloff, Root Mean Square energy, and Zero-crossing rate.

Music Features

MFCC

 It is based on a logarithmic scale and is able to estimate human auditory response in a better way than the other cepstral feature extraction techniques.

Chroma

It is a powerful tool for analyzing music features whose pitches can be meaningfully categorized. They capture
harmonic and melodic characteristics of music while being robust to changes in timbre and instrumentation.

Spectral Rolloff

Spectral Rolloff is the frequency below which a specified percentage of the total spectral energy

Zero Crossing Rate

 Zero-crossing rate is a measure of the number of times in a given time interval/frame that the amplitude of the speech signals passes through a value of zero. It is a key feature to classify percussive sounds.

Genre Classification

- Genres are categories used to distinguish between various kinds of music.
- Features serve as the input to pattern recognition systems and are the basis upon which classifications are made.
- From here, you can perform other tasks on musical data like beat tracking, music generation, recommender systems, track separation and instrument recognition, etc.
- Music analysis is an interesting challenge in the field of Data Science.

Data

Highly imbalanced data.

 We take a balanced subset of 2000 songs per genre from the top 7 genres.

 We only consider the MFCC feature for genre classification, which has 140 columns in total.

Results

Best model gives close to 60% accuracy.

 Hyperparameter tuning does not improve accuracy significantly.

Accuracy is low.

Hit Prediction

- We used the 'Listens' column/ label to emulate the "Popularity" of music so as to threshold the music as Hits or not.
- We made multiple different models one for each genre, because different genres have different parameters that make it a 'Hit'
- We used more feature sets compared to just 'MFCC' used for Genre prediction, since the Hit classification prediction based simply on the 'MFCC' feature performed significantly poorly than using a model with a combination of features - 'MFCC', 'Chroma', 'Spectral Rolloff' and 'ZCR' - which have been discussed earlier.

Accuracy

Results

Challenges / Lessons Learned

- Low accuracy for both tasks. Hyperparameter tuning also did not change accuracy significantly. Why?
 - ☐ Overlapping clusters. The variance of values of features for different classes is very low.
 - ☐ The given features/data are not good measures to predict genres/hits.
 - ☐ Statistical models are too simple to understand such complex data?

Visualization of Data

PCA for dimensionality reduction

Visualization of Data

t-SNE for dimensionality reduction

Next Steps / Conclusion

- Additional tuning for our base models to reach 70% accuracy.
- Mapping/ Combining spectral features to mimic echonest features. Which in turn could give us better classification accuracy with out of the box models.
- Using Deep Neural Nets to learn this mapping between the two feature sets.
- Stretch Goal: Reconstructing audio using Griffin-Lim algorithm.