1. Prove that the sequence $(-1)^n$ does not converge.

Solution:

Seeking contradiction assume that $(-1)^n$ converges to some number a

$$\lim_{n \to \infty} (-1)^n = a$$

Fix $\varepsilon = 1/2$ then by definition of convergence there is some $N \in \mathbb{R}$ such that for all n > N

$$|(-1)^n - a| < 1/2$$

For odd n > N

$$\begin{aligned} |-1-a| &< 1/2 \\ -1/2 &< -1-a < 1/2 \\ 1/2 &< -a < 3/2 \\ -3/2 &< a < -1/2 \end{aligned}$$

For even n > N

$$|1 - a| < 1/2$$

$$-1/2 < 1 - a < 1/2$$

$$-3/2 < -a < -1/2$$

$$1/2 < a < 3/2$$

We have shown $a \in (-3/2, 1/2)$ and that $a \in (1/2, 3/2)$ which is a contradiction. Thus $(-1)^n$ does not converge.

2. Prove that every Cauchy sequence is bounded.

Solution:

Assume that (x_n) is a Cauchy sequence then for every $\varepsilon > 0$ there exists some $N \in \mathbb{R}$ such that for all n, m > N we have $|x_n - x_m| < \varepsilon$. Note that $|x_n| = |x_n - x_m + x_m| \le |x_n - x_m| + |x_m|$. Fix $\varepsilon = 1$, combining this with the Cauchy criterion we get that for n, m > N

$$|x_n| \le |x_n - x_m| + |x_m| < |x_m| + 1$$

Let m = N + 1 then we get that

$$|x_n| < |x_{N+1}| + 1$$

this is true for all n > N. This bounds all the terms past the Nth term. For all terms before the Nth terms we can bound it by the maximum of the terms thus for $n \le N$

$$|x_n| \le \max\{|x_1|, |x_2|, \cdots, |x_N|\}$$

Thus to bound all terms we can choose the maximum of $|x_{N+1}|+1$ and $\max\{|x_1|, |x_2|, \cdots, |x_N|\}$. Let $R = \max\{|x_1|, |x_2|, \cdots, |x_N|, 1+|x_{N+1}|\}$. Then $|x_n| \leq R$ for all $n \in \mathbb{N}$ and thus (x_n) is bounded.

3. Prove that if (x_n) and (y_n) are convergent sequences, $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ and $x_n \leq y_n$ for all $n \in \mathbb{N}$, then $x \leq y$

Solution:

We have that $y_n - x_n \ge 0$ and by limit laws we have that $(y_n - x_n)$ converges to y - x. If we can show that $y - x \ge 0$ then we have the desired result. By problem 10 on the worksheet we showed that if (s_n) is a convergent sequence and $s_n \ge 0$ for all but finitely many values of n, then $\lim_{n\to\infty} s_n \ge 0$. Applying this result to $(y_n - x_n)$ we get that $y - x \ge 0$ and thus $x \le y$.

4. Suppose that $(a_n), (b_n)$ and (s_n) are three sequences and that

$$a_n \leq s_n \leq b_n$$

for all $n \in \mathbb{N}$. Prove that if (a_n) and (b_n) both converge to s, then (s_n) also converges to s.

Solution:

Fix $\varepsilon > 0$. (a_n) converges to s thus there exists $N_1 \in \mathbb{R}$ such that $|a_n - s| < \varepsilon$ likewise (b_n) converges to s thus there exists $N_2 \in \mathbb{R}$ such that $|b_n - s| < \varepsilon$. Let $N = \max\{N_1, N_2\}$ then by combining $a_n \le s_n \le b_n$ and a_n converging to s

$$-\varepsilon < a_n - s < \varepsilon$$

and that b_n converges to s

$$-\varepsilon < b_n - s < \varepsilon$$

we have that for n > N

$$s_n - s \le b_n - s < \varepsilon$$

and

$$-\varepsilon < a_n - s \le s_n - s$$

thus $|s_n - s| < \varepsilon$. Thus for all $\varepsilon > 0$ we have shown an $N \in \mathbb{R}$ such that if n > N then $|s_n - s| < \varepsilon$, thus (s_n) converges to s.