Assignment 1

Rin Meng Student ID: 51940633

October 2, 2024

1. (a) The linear regression model can be written as,

$$P = \beta_0 + \beta_1 C + \epsilon$$

where,

- P is the prime interest rate
- ullet C is the core inflation rate
- β_0 is the intercept of the regression line
- β_1 is the slope of the regression line
- ϵ is the error term

Assumptions of the linear regression model are,

- i. Linearity: The relationship between P and C is linear
- ii. Independence: The error term ϵ is independent of C
- iii. Normality: The error term ϵ is normally distributed
- iv. Homoscedasticity: The error term ϵ has a constant variance across all levels of C
- 2. Remark: from ch2A.pdf slide 9 and 13,
 - $\bullet \ \hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$

 - $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$ $S_{xy} = \sum_{i=1}^n (x_i \bar{x})(y_i \bar{y})$
 - $S_{xx} = \sum_{i=1}^{n} (x_i \bar{x})^2$

Let e_i be the *i*th residual term. Then for each observation, we can see that the residual for each observation *i* is defined as:

$$e_i = y_i - \hat{y_i}$$

then we can say that the predicted value \hat{y}_i is equivalent to

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

(a) $\sum_{i=1}^{n} e_i = 0$

Proof. LHS:

$$\sum_{i=1}^{n} e_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})$$

$$= \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})$$

$$= \sum_{i=1}^{n} (y_{i} - \bar{y} + \hat{\beta}_{1}\bar{x} - \hat{\beta}_{1}x_{i})$$

$$= \sum_{i=1}^{n} y_{i} - n\bar{y} + \hat{\beta}_{1}n\bar{x} - \hat{\beta}_{1}\sum_{i=1}^{n} x_{i}$$

$$= n\bar{y} - n\bar{y} + \hat{\beta}_{1}n\bar{x} - \hat{\beta}_{1}n\bar{x}$$

$$= 0$$

$$LHS = 0 = RHS$$

 \therefore It is true that the sum of residuals e_i is zero.

(b)
$$\sum_{i=1}^{n} x_i e_i = 0$$

Proof. LHS:

$$\begin{split} \sum_{i=1}^{n} x_{i}e_{i} &= \sum_{i=1}^{n} x_{i}(y_{i} - \hat{y}_{i}) \\ &= \sum_{i=1}^{n} x_{i}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i}) \\ &= \sum_{i=1}^{n} (x_{i}y_{i} - x_{i}(\bar{y} - \hat{\beta}_{1}\bar{x}) - \hat{\beta}_{1}x_{i}^{2}) \\ &= \sum_{i=1}^{n} (x_{i}y_{i} - x_{i}\bar{y} + x_{i}\hat{\beta}_{1}\bar{x} - \hat{\beta}_{1}x_{i}^{2}) \\ &= \sum_{i=1}^{n} (x_{i}(y_{i} - \bar{y}) + \hat{\beta}_{1}(\bar{x}x_{i} - x_{i}^{2})) \\ &= \sum_{i=1}^{n} x_{i}y_{i} - \bar{y}\sum_{i=1}^{n} x_{i} - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - \bar{x}\sum_{i=1}^{n} x_{i}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}\bar{x} - n\bar{x}\bar{x} + n\bar{x}\bar{x}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y} - n\bar{x}\bar{y} + n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\bar{x}\bar{x} + n\bar{x}\bar{x}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y} - n\bar{x}\bar{y} + n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\bar{x}\bar{x} + n\bar{x}\bar{x}\right) \\ &= \left(\sum_{i=1}^{n} x_{i}y_{i} - \bar{y}\sum_{i=1}^{n} x_{i} - \bar{x}\sum_{i=1}^{n} y_{i} + n\bar{x}\bar{y}\right) - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - 2\bar{x}\sum_{i=1}^{n} x_{i} + n\bar{x}^{2}\right) \\ &= \sum_{i=1}^{n} \left(x_{i}y_{i} - \bar{y}x_{i} - \bar{x}y_{i} + \bar{x}\bar{y}\right) - \hat{\beta}_{1} \sum_{i=1}^{n} \left(x_{i}^{2} - 2\bar{x}x_{i} + \bar{x}^{2}\right) \\ &= \sum_{i=1}^{n} \left(x_{i}(y_{i} - \bar{y}) + \bar{x}(y_{i} - \bar{y})\right) - \hat{\beta}_{1} \sum_{i=1}^{n} \left(x_{i} - \bar{x}\right)^{2} \\ &= \sum_{i=1}^{n} \left(x_{i} + \bar{x}\right) \left(y_{i} - \bar{y}\right) - \hat{\beta}_{1} \sum_{i=1}^{n} \left(x_{i} - \bar{x}\right)^{2} \\ &= S_{xy} - \frac{S_{xy}}{S_{xx}} \\ &= S_{xy} - \frac{S_{xy}}{S_{xx}} \\ &= S_{xy} - S_{xy} \end{aligned}$$

$$LHS = 0 = RHS$$

 \therefore It is true that the independent variables x_i is completly uncorrelated to the residuals e_i .

(c) $\sum_{i=1}^{n} \hat{y}_i e_i = 0$

Proof. LHS:

$$\begin{split} \sum_{i=1}^{n} \hat{y}_{i}e_{i} &= \sum_{i=1}^{n} \hat{y}_{i}(y_{i} - \hat{y}_{i}) \\ &= \sum_{i=1}^{n} (y_{i}\hat{y}_{i} - \hat{y}_{i}^{2}) \\ &= \sum_{i=1}^{n} (y_{i}(\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}) - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i})^{2}) \\ &= \sum_{i=1}^{n} (y_{i}(\bar{y} - \hat{\beta}_{1}\bar{x} + \hat{\beta}_{1}x_{i}) - (\bar{y} - \hat{\beta}_{1}\bar{x} + \hat{\beta}_{1}x_{i})^{2}) \\ &= \sum_{i=1}^{n} (y_{i}\bar{y} - y_{i}\hat{\beta}_{1}\bar{x} + y_{i}\hat{\beta}_{1}x_{i} \\ &- (\bar{y}^{2} - 2\hat{\beta}_{1}\bar{y}\bar{x} + \hat{\beta}_{1}^{2}\bar{x}^{2} + 2\hat{\beta}_{1}\bar{y}x_{i} - 2\hat{\beta}_{1}^{2}\bar{x}x_{i} + \hat{\beta}_{1}^{2}x_{i}^{2})) \\ &= (\sum_{i=1}^{n} y_{i}\bar{y} - \sum_{i=1}^{n} y_{i}\hat{\beta}_{1}\bar{x} + \sum_{i=1}^{n} y_{i}\hat{\beta}_{1}x_{i} \\ &- \sum_{i=1}^{n} (\bar{y}^{2} - 2\hat{\beta}_{1}\bar{y}\bar{x} + \hat{\beta}_{1}^{2}\bar{x}^{2} + 2\hat{\beta}_{1}\bar{y}x_{i} - 2\hat{\beta}_{1}^{2}\bar{x}x_{i} + \hat{\beta}_{1}^{2}x_{i}^{2})) \\ &= (n\bar{y}^{2} - \hat{\beta}_{1}\bar{y}\bar{x} + \hat{\beta}_{1}\bar{y}\hat{\beta}_{1}x_{i} \\ &- (\sum_{i=1}^{n} \bar{y}^{2} - \sum_{i=1}^{n} 2\hat{\beta}_{1}\bar{y}\bar{x} + \sum_{i=1}^{n} \hat{\beta}_{1}^{2}\bar{x}^{2} + \sum_{i=1}^{n} 2\hat{\beta}_{1}\bar{y}x_{i} - \sum_{i=1}^{n} 2\hat{\beta}_{1}^{2}\bar{x}x_{i} + \hat{\beta}_{1}^{2}\sum_{i=1}^{n} \hat{\beta}_{1}^{2}x_{i}^{2})) \\ &= (n\bar{y}^{2} - (n\bar{y}^{2} - 2\hat{\beta}_{1}n\bar{y}\bar{x} + \hat{\beta}_{1}^{2}n\bar{x}^{2} + 2\hat{\beta}_{1}n\bar{y}\bar{x} - 2\hat{\beta}_{1}^{2}n\bar{x}\bar{x} + \hat{\beta}_{1}^{2}\sum_{i=1}^{n} x_{i}^{2})) \end{split}$$

proof continued.

$$\sum_{i=1}^{n} \hat{y}_{i}e_{i} = (n\bar{y}^{2} - (n\bar{y}^{2} - \hat{\beta}_{1}^{2}n\bar{x}^{2} + \hat{\beta}_{1}^{2}n\bar{x}^{2}))$$

$$= (n\bar{y}^{2} - n\bar{y}^{2})$$

$$= 0$$

$$LHS = 0 = RHS$$

... It is true that the predicted values $\hat{y_i}$ is completely orthogonal to the residuals e_i .

3. (a) It is given that:

•
$$\hat{\beta}_1 = \frac{S_{xx}}{S_{xy}}$$

•
$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

• $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$

•
$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

•
$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i$$

•
$$\bar{y} = \beta_0 + \beta_1 \bar{x}$$

We want to show that

$$\hat{\beta_1} \sim N(\beta_1, \frac{\sigma^2}{S_{xx}})$$

Where β_1 is the mean of the distribution and $\frac{\sigma^2}{S_{xx}}$ is the variance.

Proof. Let $k_i = \frac{x_i - \bar{x}}{S_{xx}}$ then we have

$$\hat{\beta}_1 = \sum k_i (y_i - \bar{y})$$

$$E[\hat{\beta}_1] = E\left[\sum k_i (y_i - \bar{y})\right]$$

$$= \sum k_i E[(y_i - \bar{y})]$$

$$= \sum k_i E[(\hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i - \beta_0 - \beta_1 \bar{x})]$$

$$= \sum k_i (E[\hat{\beta}_0] + E[\hat{\beta}_1 x_i] + E[\epsilon_i] - E[\beta_0] - E[\beta_1 \bar{x}])$$

5

$$= \sum k_i (0 + \beta_1 x_i + 0 - 0 - \beta_1 \bar{x})$$

$$= \sum k_i (\beta_1 x_i - \beta_1 \bar{x})$$

$$= \beta_1 \sum k_i (x_i - \bar{x})$$

$$= \beta_1 \sum \frac{x_i - \bar{x}}{S_{xx}} (x_i - \bar{x})$$

$$= \beta_1 \sum \frac{(x_i - \bar{x})^2}{(x_i - \bar{x})^2}$$

$$= \beta_1$$

$$\therefore E[\hat{\beta}_1] = \beta_1$$

Using k_i from earlier, we can proof that $Var[\hat{\beta}_1] = \frac{\sigma^2}{S_{xx}}$

$$Var[\hat{\beta}_1] = Var[\sum k_i(y_i - \bar{y})]$$
$$Var[\hat{\beta}_1] = \sum Var[k_i(y_i - \bar{y})]$$
$$Var[\hat{\beta}_1] = \sum k_i^2 Var[(y_i - \bar{y})]$$

4. Given the model:

$$y_i = \beta_1 + \beta_2 i + \epsilon_i$$

(a) Let us derive the least-squares estimators for β_1 and β_2 .

$$S(\beta_{1}, \beta_{2}) = \sum (y_{i} - \beta_{1}x_{i} - \beta_{2}i)^{2}$$

$$\frac{\delta S}{\delta \beta_{1}} = -2 \sum (y_{i} - \beta_{1}x_{i} - \beta_{2}i)x_{i} = 0$$

$$= -2 \sum (y_{i}x_{i} - \beta_{1}x_{i}^{2} - \beta_{2}ix_{i}) = 0$$

$$\sum y_{i}x_{i} = \beta_{1} \sum x_{i}^{2} + \beta_{2} \sum x_{i}i$$

$$\frac{\delta S}{\delta \beta_{2}} = -2 \sum (y_{i} - \beta_{1}x_{i} - \beta_{2}i)i = 0$$

$$= -2 \sum (y_{i}i - \beta_{1}x_{i}i - \beta_{2}i^{2}) = 0$$

$$\sum y_{i}i = \beta_{1} \sum x_{i}i + \beta_{2} \sum i^{2}$$

Solving for β_2

$$\sum y_i x_i = \beta_1 \sum x_i^2 + \beta_2 \sum x_i i$$

$$\beta_1 \sum x_i^2 = \sum y_i x_i - \beta_2 \sum x_i i$$

$$\beta_1 = \frac{\sum y_i x_i - \beta_2 \sum x_i i}{\sum x_i^2}$$

$$\sum y_i i = \beta_1 \sum x_i i + \beta_2 \sum i^2$$

$$\beta_1 \sum x_i i = \sum y_i i - \beta_2 \sum i^2$$

$$\beta_1 = \frac{\sum y_i i - \beta_2 \sum i^2}{\sum x_i i}$$

Now set them equal to each other and solve for β_2

$$\frac{\sum y_{i}x_{i} - \beta_{2} \sum x_{i}i}{\sum x_{i}^{2}} = \frac{\sum y_{i}i - \beta_{2} \sum i^{2}}{\sum x_{i}i}$$

$$(\sum y_{i}x_{i} - \beta_{2} \sum x_{i}i)(\sum x_{i}i) = (\sum x_{i}^{2})(\sum y_{i}i - \beta_{2} \sum i^{2})$$

$$\sum y_{i}x_{i}(\sum x_{i}i) - \beta_{2}(\sum x_{i}i)^{2} = \sum y_{i}i(\sum x_{i}^{2}) - \beta_{2} \sum i^{2}(\sum x_{i}^{2})$$

$$\beta_{2} \sum i^{2} \sum x_{i}^{2} - \beta_{2}(\sum x_{i}i)^{2} = \sum y_{i}i \sum x_{i}^{2} - \sum y_{i}x_{i} \sum x_{i}i$$

$$\beta_{2}(\sum i^{2} \sum x_{i}^{2} - (\sum x_{i}i)^{2}) = \sum y_{i}i \sum x_{i}^{2} - \sum y_{i}x_{i} \sum x_{i}i$$

Finally, we have:

$$\beta_2 = \frac{\sum y_i i \sum x_i^2 - \sum y_i x_i \sum x_i i}{\sum i^2 \sum x_i^2 - (\sum x_i i)^2}$$

Solving for β_1 using same approach:

$$\sum y_i x_i = \beta_1 \sum x_i^2 + \beta_2 \sum x_i i$$

$$\beta_2 \sum x_i i = \sum y_i x_i - \beta_1 \sum x_i^2$$

$$\beta_2 = \frac{\sum y_i x_i - \beta_1 \sum x_i^2}{\sum x_i i}$$

$$\sum y_i i = \beta_1 \sum x_i i + \beta_2 \sum i^2$$

$$\beta_2 \sum i^2 = \sum y_i i - \beta_1 \sum x_i i$$

$$\beta_2 = \frac{\sum y_i i - \beta_1 \sum x_i i}{\sum i^2}$$

Now set them equal to each other and solve for β_1

$$\frac{\sum y_{i}x_{i} - \beta_{1} \sum x_{i}^{2}}{\sum x_{i}i} = \frac{\sum y_{i}i - \beta_{1} \sum x_{i}i}{\sum i^{2}}$$

$$(\sum y_{i}x_{i} - \beta_{1} \sum x_{i}^{2})(\sum i^{2}) = (\sum x_{i}i)(\sum y_{i}i - \beta_{1} \sum x_{i}i)$$

$$\sum y_{i}x_{i} \sum i^{2} - \beta_{1} \sum x_{i}^{2} \sum i^{2} = \sum y_{i}i \sum x_{i}i - \beta_{1}(\sum x_{i}i)^{2}$$

$$\beta_{1}(\sum x_{i}i)^{2} - \beta_{1} \sum x_{i}^{2} \sum i^{2} = \sum y_{i}i \sum x_{i}i - \sum y_{i}x_{i} \sum i^{2}$$

$$\beta_{1}((\sum x_{i}i)^{2} - \sum x_{i}^{2} \sum i^{2}) = \sum y_{i}i \sum x_{i}i - \sum y_{i}x_{i} \sum i^{2}$$

Finally, we have:

$$\beta_1 = \frac{\sum y_i i \sum x_i i - \sum y_i x_i \sum i^2}{(\sum x_i i)^2 - \sum x_i^2 \sum i^2}$$

To find the conditions where x_i makes the estimators not well-defined, we let $x_i = i$. so then we have our β_1 ,

$$\beta_{1} = \frac{\sum y_{i}i \sum x_{i}i - \sum y_{i}x_{i} \sum i^{2}}{(\sum x_{i})^{2} - \sum x_{i}^{2} \sum i^{2}}$$

$$= \frac{\sum y_{i}i \sum i^{2} - \sum y_{i}i \sum i^{2}}{(\sum i^{2})^{2} - \sum i^{2} \sum i^{2}}$$

$$= \frac{\sum y_{i}i \sum i^{2} - \sum y_{i}i \sum i^{2}}{\sum i^{2} \sum i^{2} - \sum i^{2} \sum i^{2}}$$

$$= \frac{0}{0}$$

and then our β_2 ,

$$\beta_{2} = \frac{\sum y_{i}i \sum x_{i}^{2} - \sum y_{i}x_{i} \sum x_{i}i}{\sum i^{2} \sum x_{i}^{2} - (\sum x_{i}i)^{2}}$$

$$= \frac{\sum y_{i}i \sum i^{2} - \sum y_{i}i \sum i^{2}}{(\sum i^{2})^{2} - \sum i^{2} \sum i^{2}}$$

$$= \frac{\sum y_{i}i \sum i^{2} - \sum y_{i}i \sum i^{2}}{\sum i^{2} \sum i^{2} - \sum i^{2} \sum i^{2}}$$

$$= \frac{0}{0}$$

... The estimator β_1 and β_2 is not well-defined at $x_i = i$.

(b) For the case where the coefficient estimators are well-defined, the unbiased estimator for σ^2 is:

$$E[\sum \epsilon^{2}] = (n-2)\sigma^{2}$$
$$\sigma^{2} = \frac{\sum \epsilon^{2}}{n-2}$$

Derived from, Question 3b.

[(a)]

5. Proof. We want to show that MSE is an unbiased estimator σ^2 then we want to show that:

$$E[MSE] = E\left[\frac{1}{n-1}\sum (y_i - \bar{y})^2\right] = \sigma^2$$

so then we can start by recalling the model,

$$y_i = \alpha + \epsilon_i$$

then it is true that the sample mean is,

$$\bar{y} = \alpha + \bar{\epsilon}$$

then, $y_i - \bar{y}$ can be rewritten as,

$$y_i - \bar{y} = (\alpha + \epsilon_i) - (\alpha + \bar{\epsilon}) = \epsilon_i - \bar{\epsilon}$$

Now, we have

$$E[MSE] = E\left[\frac{1}{n-1}\sum(\epsilon_i - \bar{\epsilon})^2\right]$$
$$= \frac{1}{n-1}E\left[\left(\sum \epsilon_i^2 - \sum \bar{\epsilon}^2\right)\right]$$
$$= \frac{1}{n-1}\left(\sum E[\epsilon_i^2] - E[n\bar{\epsilon}^2]\right)$$

We know that

$$E[\epsilon_i] = 0 \Rightarrow E[\epsilon_i^2] = Var[\epsilon_i] + E[\epsilon_i]^2 = \sigma^2$$

$$\sum E[\epsilon_i] = n\sigma^2$$

now we find that,

$$E[n\bar{\epsilon}^2] = nE[\bar{\epsilon}^2]$$

$$\Rightarrow E[\bar{\epsilon}^2] = Var[\bar{\epsilon}] + E[\bar{\epsilon}]^2$$

$$= \frac{\sigma^2}{n}$$

$$\Leftrightarrow Var[\bar{\epsilon}] = Var[\frac{1}{n} \sum \epsilon_i]$$

$$= \frac{1}{n^2} \sum Var[\epsilon_i]$$

$$= \frac{1}{n^2} \sum \sigma^2$$

$$= \frac{1}{n^2} n\sigma^2 = \frac{\sigma^2}{n}$$

$$\Leftrightarrow E[\bar{\epsilon}]^2 = E[\frac{1}{n} \sum \epsilon_i]^2$$

$$= (\frac{1}{n} \sum E[\epsilon_i])^2$$

$$= (\frac{1}{n} \cdot 0)^2 = 0$$

$$E[n\bar{\epsilon}^2] = n \cdot \frac{\sigma^2}{n} = \sigma^2$$

so then finally we have:

$$E[MSE] = \frac{1}{n-1}(n\sigma^2 - \sigma^2)$$
$$= \frac{1}{n-1}(n-1)\sigma^2$$
$$= \sigma^2$$

- $\therefore MSE$ is an unbiased estimator for σ^2 .
- 6. (a) The linear regression model can be written as,

$$R = \beta_0 + \beta_1 W + \epsilon$$

Where,

- R is the rate of the spread of a wildfire m/s
- W is the wind speed km/h
- β_0 is the the rate of spread when W=0
- β_1 is the slope the rate of spread increases with one-unit wind speed
- ϵ is the error term
- (b) Assumptions that is made on the error term ϵ are:
 - i. Independence: The error term ϵ is independent of W
 - ii. $E[\epsilon] = 0$
 - iii. $Var[\epsilon] = \sigma^2$
- (c) The expected value of R given that W = x is:

$$E[R|W=x] = \beta_0 + \beta_1 x \Leftrightarrow E[\epsilon] = 0$$

(d) The variance of R given that W = x is:

$$Var[R|W=x] = Var(\beta_0 + \beta_1 x + \epsilon|x) = \sigma^2$$

- (e) Given that W is a random variable with mean μ_W and variance σ_W^2 ,
 - i. The unconditional expected value of R is:

$$E[R] = E[\beta_0 + \beta_1 W + \epsilon] = \beta_0 + \beta_1 E[W] + E[\epsilon] = \beta_0 + \beta_1 \mu_W$$

Here, μ_W is the mean of the wind speed. This contrasts with part (c) because in (c) we are looking for the expected value of R given W = x, and here we are looking for expected value of R given that W is a random variable.

ii. The unconditional variance of R is:

$$Var[R] = Var[\beta_0 + \beta_1 W + \epsilon] = Var[\beta_0] + \beta_1^2 Var[W] + Var[\epsilon]$$
$$= \beta_1^2 \sigma_W^2 + \sigma^2$$

This contrasts with part (d) because in (d) we are looking for the specific condition where speed is fixed at x and which equates to σ^2 . Now, we are including all of the variability of W instead of fixing it to a particular value.

(f) If the rate of spread of a wildfire W is linearly related to the square root of wind speed \sqrt{W} , then the model will intuitively be:

$$R = \beta_0 + \beta_1 \sqrt{W} + \epsilon$$

7. From Question 6, we have,

$$R: \{30, 32, 18, 35, 12\}$$

$$W: \{35, 40, 20, 50, 15\}$$

(a)

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$= \frac{\sum_{i=1}^n (W_i - \bar{W})(R_i - \bar{R})}{\sum_{i=1}^n (W_i - \bar{W})^2}$$

$$\bar{R} = \frac{30 + 32 + 18 + 35 + 12}{5} = 25.4$$

$$\bar{W} = \frac{35 + 40 + 20 + 50 + 15}{5} = 32$$

Calculating S_{xy} :

W_i	R_i	$W_i - \bar{W}$	$R_i - \bar{R}$	$(W_i - \bar{W})(R_i - \bar{R})$
35	30	35 - 32 = 3	30 - 25.4 = 4.6	$3 \cdot 4.6 = 13.8$
40	32	40 - 32 = 8	32 - 25.4 = 6.6	$8 \cdot 6.6 = 52.8$
20	18	20 - 32 = -12	18 - 25.4 = -7.4	$-12 \cdot -7.4 = 88.8$
50	35	50 - 32 = 18	35 - 25.4 = 9.6	$18 \cdot 9.6 = 172.8$
15	12	15 - 32 = -17	12 - 25.4 = -13.4	$-17 \cdot -13.4 = 227.8$

$$S_{xy} = 13.8 + 52.8 + 88.8 + 172.8 + 227.8 = 556$$

Calculating S_{xx} :

W_i	$W_i - \bar{W}$	$(W_i - \bar{W})^2$
35	35 - 32 = 3	$3^2 = 9$
40	40 - 32 = 8	$8^2 = 64$
20	20 - 32 = -12	$(-12)^2 = 144$
50	50 - 32 = 18	$18^2 = 324$
15	15 - 32 = -17	$(-17)^2 = 289$

$$S_{xx} = 9 + 64 + 144 + 324 + 289 = 830$$

Finally, we have:

$$\hat{\beta}_1 = \frac{556}{830} = 0.6707$$

(b) Recall from (a) that $\bar{R}=25.4$ and $\bar{W}=32$. We can now calculate $\hat{\beta}_0$:

$$\hat{\beta}_0 = \bar{R} - \hat{\beta}_1 \bar{W}$$
= 25.4 - 0.6707 · 32
= 25.4 - 21.47
= 3.9376

(c)
$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i} (y_i - \hat{y}_i)^2 = \frac{1}{5-2} \sum_{i} (R_i - \hat{R}_i)^2$$

With the values, our model is now:

$$\hat{R} = 3.9376 + 0.6707W$$

W_i	R_i	$\hat{R_i}$	$R_i - \hat{R}_i$	$(R_i - \hat{R}_i)^2$
35	30	27.4121	2.5879	6.6972
40	32	30.7656	1.2344	1.5237
20	18	17.3516	0.6484	0.4204
50	35	37.4726	-2.4726	6.1137
15	12	13.9981	-1.9981	3.9924

$$\hat{\sigma}^2 = \frac{6.6972 + 1.5237 + 0.4204 + 6.1137 + 3.9924}{3} = \frac{18.7474}{6.2491} \simeq 6.25$$

- (d) [language=R] R ;- c(30, 32, 18, 35, 12) W ;- c(35, 40, 20, 50, 15) speedwind ;- data.frame(R, W)
- (e) [language=R] model ;- lm(R W, data = speedwind) summary(model)