

¹Despite the effort to eliminate all typographic errors, some of them could still be present. Hence be careful. Note that this summary is intended as a guideline for the materials covered in lectures and it is not supposed to replace the textbook.

Vector Algebra (Chapter 7)

- Orthonormal vectors: The vectors $\mathbf{a_1}, \mathbf{a_2}, \cdots, \mathbf{a_n}$ are said to be orthonormal if they are unit vectors mutually orthogonal (Example: the three dimensional vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$).
- (Einstein) summation convention: An index that appears twice in a given term is understood to be summed over all values that the index can take. (Example: $\sum_{i=1}^{n} a_i b_i \equiv a_i b_i$.)

Consider the three dimensional space with basis $\{i, j, k\}$ (Standard basis).

• Kronecker delta:

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

• Levi-Civita symbol:

$$\epsilon_{ijk} = \begin{cases} 1 & \text{if } (i, j, k) = (1, 2, 3) = (2, 3, 1) = (3, 1, 2), \\ -1 & \text{if } (i, j, k) = (1, 3, 2) = (3, 2, 1) = (2, 1, 3), \\ 0 & \text{otherwise.} \end{cases}$$

• Scalar (or dot) product:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta = a_1b_1 + a_2b_2 + a_3b_3 = a_ib_i.$$

where θ is the angle between the vectors **a** and **b**.

- i) $|\mathbf{b}|\cos\theta = (\mathbf{a}\cdot\mathbf{b})/|\mathbf{a}|$ is the modulus of the orthogonal projection of \mathbf{b} onto the direction of \mathbf{a} .
- ii) $|\mathbf{a}|^2 = \mathbf{a} \cdot \mathbf{a}$.
- iii) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$.
- iv) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$, $\mathbf{a} \cdot (\beta \mathbf{b}) = \beta \mathbf{a} \cdot \mathbf{b}$, where β is a scalar.
- Vector (or cross) product:

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}, \quad |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta,$$
$$(\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk}a_jb_k.$$

where θ is the angle between the vectors **a** and **b**.

- i) $|\mathbf{a} \times \mathbf{b}|$ is the area of the parallelogram with sides \mathbf{a} and \mathbf{b} .
- ii) $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$.

iii)
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}, \quad \mathbf{a} \times (\beta \mathbf{b}) = \beta \mathbf{a} \times \mathbf{b}.$$

iv)
$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c}).$$

• Scalar triple product:

$$[\mathbf{a}, \mathbf{b}, \mathbf{c}] = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \epsilon_{ijk} a_i b_j c_k.$$

i) $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$ is the volume of the parallelepiped with sides \mathbf{a} , \mathbf{b} and \mathbf{c} .

ii)
$$[\alpha \mathbf{a} + \beta \mathbf{b}, \mathbf{c}, \mathbf{d}] = \alpha [\mathbf{a}, \mathbf{c}, \mathbf{d}] + \beta [\mathbf{b}, \mathbf{c}, \mathbf{d}].$$

iii)
$$[\mathbf{a}, \mathbf{b}, \mathbf{c}] = [\mathbf{b}, \mathbf{c}, \mathbf{a}] = [\mathbf{c}, \mathbf{a}, \mathbf{b}] = -[\mathbf{a}, \mathbf{c}, \mathbf{b}] = -[\mathbf{c}, \mathbf{b}, \mathbf{a}] = -[\mathbf{b}, \mathbf{a}, \mathbf{c}]$$

• Equation of a line.

A point R on a line passing through the point A and having a direction $\hat{\mathbf{b}}$ is:

$$\mathbf{r} = \mathbf{a} + \lambda \hat{\mathbf{b}}, \qquad (\mathbf{r} - \mathbf{a}) \times \hat{\mathbf{b}} = 0$$

where λ is a scalar and \mathbf{a} , $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ are the position vectors of A, R, respectively.

• Equation of a plane.

i) A point R on a plane perpendicular to the unit vector $\hat{\mathbf{n}}$ and passing through the point A is

$$(\mathbf{r} - \mathbf{a}) \cdot \hat{\mathbf{n}} = 0,$$

where \mathbf{a} and \mathbf{r} are the position vectors of A and R, respectively.

ii) A point R on a plane passing through the point A, B and C is

$$\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) + \mu(\mathbf{c} - \mathbf{a}),$$

where \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{r} are the position vectors of A, B, C and R, respectively.

Vector Spaces (Chapter 8)

Vector space. A set of objects called *vectors* forms a vector space V if there are two operations defined on the elements of the set called *addition* and *multiplication by scalars* and if the following properties are satisfied (\mathbf{u} , \mathbf{v} , \mathbf{w} are vectors and α , β are scalars):

- i) If \mathbf{u} and \mathbf{v} are in V then $\mathbf{u} + \mathbf{v}$ (addition) is in V. If \mathbf{v} is in V then $\alpha \mathbf{v}$ (scalar multiplication) is in V.
- ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}), \quad (\alpha \beta)\mathbf{v} = \alpha(\beta \mathbf{v}).$
- iii) There exists a neutral element 0 such that v + 0 = 0 for all v.
- iv) There exists an inverse element $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$ for all \mathbf{v} .
- v) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- vi) $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}, \quad (\alpha + \beta)\mathbf{v} = \alpha \mathbf{v} + \beta \mathbf{v}.$
- vii) $1 \mathbf{v} = \mathbf{v}$ for all \mathbf{v} .

If the scalars α are real V is called a real vector space, otherwise V is a complex vector space.

• Linear combinations:

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_k \mathbf{v}_k = \alpha_i \mathbf{v}_i$$

where $\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k$, are k vectors in V.

The set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k$, is called a span of $\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k$, and denoted $\mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k)$.

• Linearly independent vectors: k vectors $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k}$ are said to be *linearly independent* if the equation

$$\alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_k \mathbf{v_k} = 0$$

is satisfied if and only if all $\alpha_i = 0$. Otherwise, the vectors are said to be *linearly dependent*.

• Basis: A set of vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k$, in V is called a basis of V if and only if $\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k$, are linearly independent and $V = \mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k)$.

The numbers of vector in a basis is called the dimension of the space V (dim V).

- Inner (or scalar) product: Consider a vector space V. The inner product between two elements of V is a scalar function denoted $\langle \mathbf{u} | \mathbf{v} \rangle = (\mathbf{u}, \mathbf{v})$ that satisfies the following properties
 - i) $\langle \mathbf{u} | \mathbf{v} \rangle = \langle \mathbf{v} | \mathbf{u} \rangle^*$.
 - ii) $\langle \mathbf{u} | (\lambda \mathbf{v} + \mu \mathbf{w}) \rangle = \lambda \langle \mathbf{u} | \mathbf{v} \rangle + \mu \langle \mathbf{u} | \mathbf{w} \rangle$, λ, μ scalars.
 - iii) $\langle \mathbf{u} | \mathbf{u} \rangle > 0$ if $\mathbf{v} \neq 0$.

The length of a vector (norm) is $|\mathbf{u}| = \sqrt{\langle \mathbf{u} | \mathbf{u} \rangle}$.

two vectors are *orthogonal* if $\langle \mathbf{u} | \mathbf{w} \rangle = 0$.

Matrices (Chapter 8)

• Linear operators: An object A is called a linear operator if its action on vectors \mathbf{u} and \mathbf{v} is as follows

$$\mathcal{A}\left(\alpha\mathbf{u} + \beta\mathbf{v}\right) = \alpha\mathcal{A}\mathbf{u} + \beta\mathcal{A}\mathbf{v},$$

where α and β are scalars. Matrices are examples of operators.

• Matrix operations:

- i) Matrix addition: $(A + B)_{ij} = A_{ij} + B_{ij}$.
- ii) Multiplication by a scalar: $(\alpha A)_{ij} = \alpha A_{ij}$.
- iii) Multiplication of matrices: $(AB)_{ij} = A_{ik}B_{kj}$, with $AB \neq BA$.
- iv) Transposition: $(A^T)_{ij} = A_{ji}$, with $(ABC \dots F)^T = F^T \dots C^T B^T A^T$.
- v) Complex conjugation: $(A^*)_{ij} = (A_{ij})^*$.
- vi) Hermitian conjugation (adjoint): $(A^{\dagger})_{ij} = (A_{ji})^*$, with $(ABC \dots F)^{\dagger} = F^{\dagger} \dots C^{\dagger} B^{\dagger} A^{\dagger}$.
- vii) Trace of a square matrix: $\operatorname{Tr} A = \sum_k A_{kk}$, with $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$, $\operatorname{Tr} A^T = \operatorname{Tr} A$; $\operatorname{Tr} A^{\dagger} = (\operatorname{Tr} A)^*$.
- The determinant of a square matrix:

$$|A| = A_{jk}C_{jk}$$
, for any row j , $|A| = A_{kj}C_{kj}$, for any column j ,

where $C_{mn} = (-1)^{m+n} |A_{mn}|$ is the *cofactor* associated to the matrix element A_{mn} . In turn, $|A_{mn}|$ is the *minor* associated to the matrix element A_{mn} . The minor is the determinant of the matrix obtained by removing the m-th row and n-th column from the matrix A.

Properties:

- i) |AB...F| = |A||B|...|F|.
- ii) $|A^T| = |A|$, $|A^*| = |A|^*$, $|A^{\dagger}| = |A|^*$, $|A^{-1}| = |A|^{-1}$.
- iii) If the rows (or the columns) are linearly dependent, then |A| = 0.
- iv) If B is obtained from A by multiplying the elements of any row (or column) by a factor α , then $|B| = \alpha |A$.
- v) If B is obtained from A by interchanging two rows (or columns), then |B| = -|A|.
- vi) If B is obtained from A by adding k times one row (or column) to the other row (or column), then |A| = |B|.

• Elementary row operations (on matrices):

- i) Multiply any row by a non zero constant.
- ii) Interchange any two rows.
- iii) Add some multiple of one row to any other row.

• The inverse of a square matrix:

$$A^{-1} = \frac{C^T}{|A|}$$
, that is $A_{ij}^{-1} = \frac{C_{ji}}{|A|}$, $A^{-1}A = AA^{-1} = I$,

where C is the cofactor matrix and I the identity matrix $(I_{ij} = \delta_{ij})$. If |A| = 0 the inverse does not exist and the matrix A is said to be *singular*.

Note that in order to find the inverse of a matrix, you can also use the Gauss-Jordan method shown in the lectures, which makes use of the elementary row operations.

Properties:

i)
$$(AB \dots F)^{-1} = F^{-1} \dots B^{-1}A^{-1}$$
.

ii)
$$(A^T)^{-1} = (A^{-1})^T$$
, $(A^{\dagger})^{-1} = (A^{-1})^{\dagger}$.

• Eigenvalue problem:

- i) Eigenvalue equation: $A\mathbf{x} = \lambda \mathbf{x}$. The vector \mathbf{x} is called *eigenvector* and λ is called the corresponding *eigenvalue*
- ii) Characteristic equation (or characteristic polynomial): $|A \lambda I| = 0$.
- iii) The eigenvalues of the matrix A are the roots of the characteristic polynomial.
- iv) The eigenvectors associated to the eigenvalue μ are the vectors \mathbf{x} such that $(A \mu I)\mathbf{x} = 0$.
- v) Eigenvectors associated to different eigenvalues are linearly independent.
- vi) If a $n \times n$ matrix A has n distinct eigenvalues, then the set of corresponding eigenvectors represents a basis in the vector space on which the matrix acts. If the eigenvalues are not all distinct, it may or it may not exist a basis of eigenvectors.

- Special types of square matrices:
 - i) Hermitian matrix: $A^{\dagger}=A$ (real matrix $A^T=A$ symmetric matrix) The eigenvalues are real.
 - ii) Anti-Hermitian matrix: $A^{\dagger}=-A$ (real matrix $A^{T}=-A$ antisymmetric matrix)

The eigenvalues are purely imaginary ore zero.

iii) Unitary matrix: $A^{\dagger} = A^{-1}$ (real matrix $A^{T} = A^{-1}$ - orthogonal matrix) The eigenvalues have absolute value equal to one.

The eigenvectors of symmetric, hermitian, anti-symmetric, anti-hermitian, orthogonal, unitary matrices are linearly independent. They can always be chosen in such a way that they form a mutually orthogonal set.

• Similar matrices: Two matrices A and B are said to be similar if it exist a matrix S such that

$$B = S^{-1}AS.$$

Then, the matrices A and B have the same determinant, the same trace and the same set of eigenvalues.

• Diagonalisation of a matrix: If a $(n \times n)$ matrix A has a set of eigenvectors that forms a basis, then

$$D = S^{-1}AS,$$

where D is a diagonal matrix with the eigenvalues of A as entries of the main diagonal and S is a matrix whose columns are the eigenvectors of the matrix A.

- i) $|A| = \prod_i \lambda_i$, $\operatorname{Tr} A = \sum_i \lambda_i$.
- ii) If A is a special matrix, then A is diagonalisable and S is unitary, i.e.

$$D = S^{\dagger} A S,$$

where the columns of S are the **orthonormal** eigenvectors of A.

7

Fourier Series (Chapter 12)

The Fourier series of a function f(x) is a representation of the function f(x) as an infinite series of cosine and sine functions

$$f(x) = \frac{a_0}{2} + \sum_{r=1}^{\infty} \left[a_r \cos\left(\frac{2\pi rx}{L}\right) + b_r \sin\left(\frac{2\pi rx}{L}\right) \right].$$

The Fourier coefficients a_0 , a_r and b_r are:

$$a_{0} = \frac{2}{L} \int_{x_{0}}^{x_{0}+L} f(x) dx,$$

$$a_{r} = \frac{2}{L} \int_{x_{0}}^{x_{0}+L} f(x) \cos\left(\frac{2\pi rx}{L}\right) dx \qquad r = 1, 2, 3, \dots,$$

$$b_{r} = \frac{2}{L} \int_{x_{0}}^{x_{0}+L} f(x) \sin\left(\frac{2\pi rx}{L}\right) dx \qquad r = 1, 2, 3, \dots,$$

where x_0 is an arbitrary point along the x-axis. For a function f(x) to be represented as a Fourier series the following conditions must be satisfied:

- The function f(x) is periodic, that is f(x) = f(x + L) where L is the period.
- The function is single-valued.
- The function f(x) has a finite number of extreme points (maxima and minima) in the interval L.
- The function f(x) has a finite number of finite discontinuities in the interval L.

Properties of the Fourier series:

- If the function f(x) is even, that is f(-x) = f(x), $b_r = 0$ for r = 1, 2, 3, ...
- If the function f(x) is odd, that is f(-x) = -f(x), $a_r = 0$ for r = 0, 1, 2, 3, ...
- If x_1 is a point of discontinuity for the function f(x) in the interval L, then the value of the Fourier series at that point is:

$$f(x_1) = \frac{f(x_1^-) + f(x_1^+)}{2},$$

where $f(x_1^-)$ and $f(x_1^+)$ are the left and right limits of the function at x_1 , respectively.

- \bullet The set of all periodic functions on the interval L that can be represented as Fourier series forms an infinite dimensional vector space:
 - i) Orthogonal basis:

$$\cos\left(\frac{2\pi rx}{L}\right), \quad r = 0, 1, 2, 3, \dots; \qquad \sin\left(\frac{2\pi rx}{L}\right), \quad r = 1, 2, 3, \dots$$

ii) Inner product:

$$\frac{2}{L} \int_0^L f(x)g(x)dx = \langle f|g\rangle.$$

Complex form of the Fourier series:

$$f(x) = \sum_{r=-\infty}^{\infty} c_r e^{2\pi i r x/L}, \qquad c_r = \frac{1}{L} \int_{x_0}^{x_0+L} f(x) e^{-2\pi i r x/L} dx.$$

Integral Transforms (Chapter 13)

An integral transform is a function g that can be expressed as an integral of another function f in the form

$$\mathcal{I}[f(x)](y) \equiv g(y) = \int_{-\infty}^{\infty} K(x, y) f(x) dx,$$

where K(x, y) is called the kernel of the transform.

• \mathcal{I} is a linear operator, that is:

$$\mathcal{I}[c_1f_1 + c_2f_2] = c_1\mathcal{I}[f_1] + c_2\mathcal{I}[f_2], \qquad c_1, c_2 \text{ constants.}$$

• Given \mathcal{I} such that $\mathcal{I}[f] = g$, the inverse operator \mathcal{I}^{-1} is also a linear operator and $\mathcal{I}^{-1}[g] = f$.

The Fourier Transform of the function f(t) is:

$$\mathcal{F}[f(t)](\omega) \equiv \hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt.$$

The integral exists if:

- The function f(x) has a finite number of finite discontinuities.
- $\int_{-\infty}^{\infty} |f(t)| dt$ is finite.

Its f is continuous the inverse is:

$$\mathcal{F}^{-1}[\hat{f}(\omega)](t) = f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t} dw.$$

Properties of the Fourier transform

• Scaling:

$$\mathcal{F}[f(at)](\omega) = \frac{1}{a}\hat{f}\left(\frac{\omega}{a}\right), \quad a \neq 0 \text{ constant.}$$

• Translation:

$$\mathcal{F}[f(t+a)](\omega) = e^{ia\omega}\hat{f}(\omega), \quad a \text{ constant.}$$

• Exponential multiplication:

$$\mathcal{F}[e^{\alpha t}f(t)](\omega) = \hat{f}(\omega + i\alpha), \qquad \alpha \quad \text{constant.}$$

• The Fourier transform of a derivative:

$$\mathcal{F}[f^{(n)}(t)](\omega) = (i\omega)^n \hat{f}(\omega).$$

where $f^{(n)}$ is the n^{th} derivative of the function f.

The convolution of two functions f and g is a function h defined as follows:

$$h(y) = \int_{-\infty}^{\infty} f(x)g(y-x) \, dx \equiv (f * g)(y) = (g * f)(y).$$

The convolution theorem for Fourier transforms.

The Fourier transform of the convolution h(y) is:

$$\mathcal{F}[h(z)](\omega) = \sqrt{2\pi} \hat{f}(\omega) \hat{g}(\omega).$$

The Laplace transform of the function f(t) is:

$$\mathcal{L}[f(t)](s) \equiv \bar{f}(s) = \int_{0}^{\infty} f(t) e^{-st} dt,$$

where s is taken to be real. Note that, sometimes a constrain on the variable s should be imposed in order for the integral to exist.

Properties of the Laplace transform.

• Delay rule:

$$\mathcal{L}[H(t-a)f(t-a)](s) = e^{-sa}\bar{f}(s),$$
 a constant.

• Exponential multiplication:

$$\mathcal{L}[e^{at}f(t)](s) = \bar{f}(s-a), \quad a \text{ constant.}$$

• Scaling:

$$\mathcal{L}[f(at)](s) = \frac{1}{a}\bar{f}\left(\frac{s}{a}\right), \quad a \neq 0 \text{ constant.}$$

• Polynomial multiplication:

$$\mathcal{L}[t^n f(t)](s) = (-1)^n \frac{d^n \bar{f}(s)}{ds^n}, \quad n = 1, 2, 3 \dots$$

• The Laplace transform of a derivative:

$$\mathcal{L}[f^{(n)}(t)](s) = s^n \bar{f}(s) - s^{n-1} f(0) - s^{n-2} f^{(1)}(0) - \dots - f^{(n-1)}(0), \quad s > 0,$$

where $f^{(n)}$ is the n^{th} derivative of the function f.

• The Laplace transform for integration:

$$\mathcal{L}\left[\int_{0}^{t} f(u)du\right] = \frac{\bar{f}(s)}{s}.$$

The convolution theorem for a Laplace transform:

If the functions f and g have Laplace transforms \bar{f} and \bar{g} , then:

$$\mathcal{L}[(f*g)](s) = \mathcal{L}[(g*f)](s) = \mathcal{L}\left[\int_{0}^{t} f(u)g(t-u) du\right](s) = \bar{f}(s)\bar{g}(s).$$

The inverse of a Laplace transform: $\mathcal{L}^{-1}[\bar{f}(s)] = f(t)$.

- Complex Analysis.
- Inspection, that is partial fraction decomposition together with Laplace transform properties and tables of known Laplace transforms.
- Convolution theorem.

The Dirac delta function (Chapter 13)

The Dirac delta function $\delta(x-a)$ - with a a constant - is a generalised function (or distribution) and it is defined as the limit of a sequence of functions. Its defining properties are:

$$\delta(x-a) = 0 \text{ for } x \neq a, \qquad \int_{\alpha}^{\beta} f(x)\delta(x-a) \, dx = \begin{cases} f(a) & \alpha < a < \beta \\ 0 & \text{otherwise} \end{cases}$$

where f is a well behaved function.

Integral representation of the Dirac delta function:

$$\delta(t-x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega(t-x)} d\omega$$

Properties of the Dirac delta function.

•

$$\delta(x) = \delta(-x).$$

ullet

$$x\delta(x) = 0.$$

•

$$\delta(g(x)) = \sum_{a; g(a)=0; g'(a)\neq 0} \frac{\delta(x-a)}{|g'(a)|}.$$

•

$$\int_{-\infty}^{\infty} f(x)\delta'(x-a)dx = -f'(a).$$

• $H'(x) = \delta(x)$ where H(x) is the Heaviside step function defined as follows

$$H(x) = \left\{ \begin{array}{ll} 1 & x \ge 0 \\ 0 & x < 0 \end{array} \right..$$

Vector Calculus (Chapter 10)

• Differentiation of vector functions:

$$\frac{d\mathbf{a}}{du} \equiv a'(u) = \frac{da_x}{du}\,\mathbf{i} + \frac{da_y}{du}\,\mathbf{j} + \frac{da_z}{du}\,\mathbf{k}.$$

Rules:

i)
$$\frac{d}{du}(\phi \mathbf{a}) = \frac{d\phi}{du}\mathbf{a} + \phi \frac{d\mathbf{a}}{du}, \qquad \frac{d}{du}(\phi(u)) = \frac{d\mathbf{a}}{d\phi}\frac{d\phi}{du},$$

ii)
$$\frac{d}{du}(\mathbf{a} \cdot \mathbf{b}) = \frac{d\mathbf{a}}{du} \cdot \mathbf{b} + \mathbf{a} \cdot \frac{d\mathbf{b}}{du}, \qquad \qquad \frac{d}{du}(\mathbf{a} \times \mathbf{b}) = \frac{d\mathbf{a}}{du} \times \mathbf{b} + \mathbf{a} \times \frac{d\mathbf{b}}{du},$$

where **a**, **b** are vector functions and ϕ , ϕ are scalar functions.

• Differential of a vector function:

$$d\mathbf{a} = \frac{d\mathbf{a}}{du} du \quad \text{for } \mathbf{a} = \mathbf{a}(u),$$

$$d\mathbf{a} = \frac{\partial \mathbf{a}}{\partial u} du + \frac{\partial \mathbf{a}}{\partial v} dv + \cdots \quad \text{for } \mathbf{a} = \mathbf{a}(u, v \cdots).$$

Gradient, divergence and curl in cartesian coordinates.

• The vector differential operator del (or nabla):

$$\nabla = \frac{\partial}{\partial x} \, \mathbf{i} + \frac{\partial}{\partial y} \, \mathbf{j} + \frac{\partial}{\partial z} \, \mathbf{k}$$

• The scalar differential operator Laplacian:

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

• The gradient of a scalar field ϕ :

grad
$$\phi = \nabla \phi = \frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k}$$

Properties:

- i) $\nabla(\phi + \psi) = \nabla\phi + \nabla\psi$
- ii) $\nabla(\phi\psi) = \psi\nabla\phi + \phi\nabla\psi$
- iii) $\nabla(\psi(\phi)) = \psi'(\phi)\nabla\phi$
- iv) Special cases: $\nabla r = \mathbf{r}/r$, $\nabla (1/r) = -\mathbf{r}/r^3$, $\nabla \phi(r) = \phi' \mathbf{r}/r$, where r is the modulus of the position vector \mathbf{r} , i.e. $r = \sqrt{x^2 + y^2 + z^2}$.
- The divergence of a vector field a:

$$\operatorname{div} \mathbf{a} = \nabla \cdot \mathbf{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$$

- i) $\nabla \cdot (\mathbf{a} + \mathbf{b}) = \nabla \cdot \mathbf{a} + \nabla \cdot \mathbf{b}$
- ii) $\nabla \cdot (\phi \mathbf{a}) = \nabla \phi \cdot \mathbf{a} + \phi (\nabla \cdot \mathbf{a}), \quad \nabla \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot (\nabla \times \mathbf{a}) \mathbf{a} \cdot (\nabla \times \mathbf{b})$
- iii) Special case: $\nabla \cdot \mathbf{r} = 3$
- The Laplacian of a scalar field ϕ :

$$\nabla \cdot (\nabla \phi) = \nabla^2 \phi = \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial z}$$

• The curl of a vector field **a**:

$$\operatorname{curl} \mathbf{a} = \nabla \times \mathbf{a} = \mathbf{i} \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) + \mathbf{j} \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) + \mathbf{k} \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right)$$

- i) $\nabla \times (\mathbf{a} + \mathbf{b}) = \nabla \times \mathbf{a} + \nabla \times \mathbf{b}$
- ii) $\nabla \times (\phi \mathbf{a}) = (\nabla \phi) \times \mathbf{a} + \phi(\nabla \times \mathbf{a}),$ $\nabla \times (\mathbf{a} \times \mathbf{b}) = (\mathbf{b} \cdot \nabla)\mathbf{a} - (\nabla \cdot \mathbf{a})\mathbf{b} - (\mathbf{a} \cdot \nabla)\mathbf{b} + (\nabla \cdot \mathbf{b})\mathbf{a}$
- iii) Special case: $\nabla \times \mathbf{r} = 0$
 - i) If a vector field **a** can be written as $\mathbf{a} = \nabla \phi$, the vector field **a** is said to be *irrotational* or *conservative* and the scalar field ϕ is called *potential*. Since $\nabla \times (\nabla \phi) = 0$ it follows that $\nabla \times \mathbf{a} = 0$.

• Curves: A curve C can be represented by a vector function \mathbf{r} that depends on one parameter u (parametric representation)

$$\mathbf{r}(u) = x(u)\,\mathbf{i} + y(u)\,\mathbf{j} + z(u)\,\mathbf{k}$$

- i) The derivative $\mathbf{r}'(u) \equiv \mathbf{t}(u)$ is a vector tangent to the curve at each point.
- ii) The $arch\ length\ s$ measured along the curve satisfies:

$$\left(\frac{ds}{du}\right)^2 = \frac{d\mathbf{r}}{du} \cdot \frac{d\mathbf{r}}{du}, \quad ds = \pm \sqrt{\frac{d\mathbf{r}}{du} \cdot \frac{d\mathbf{r}}{du}} du,$$

where the sign fixes the direction of measuring s, for increasing or decreasing u.

iii) Unit tangent vector to the curve:

$$\hat{\mathbf{t}} = \frac{d\mathbf{r}}{ds} = \frac{d\mathbf{r}}{du} \frac{du}{ds}.$$

iv) Principal normal to the curve:

$$\frac{\hat{\mathbf{n}}}{\rho} = \frac{d^2 \mathbf{r}}{ds^2}.$$

where ρ is the radius of curvature.

• Surfaces: A surface S can be represented by a vector function \mathbf{r} that depends on two parameters u and v (parametric representation)

$$\mathbf{r}(u,v) = x(u,v)\,\mathbf{i} + y(u,v)\,\mathbf{j} + z(u,v)\,\mathbf{k}$$

- i) The vectors $\partial \mathbf{r}/\partial u$, $\partial \mathbf{r}/\partial v$ are linear independent and tangent to curves on S with v and u constant, respectively.
- ii) A vector normal to the surface is:

$$\mathbf{n} = \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}.$$

iii) Vector area element:

$$d\mathbf{S} = \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right) du dv = \mathbf{n} du dv.$$

iv) Scalar area element:

$$dS = \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| du \, dv = |\mathbf{n}| \, du \, dv.$$

- v) A surface can be represented by the equation $\phi(\mathbf{r}) = c$, where c is a constant. Then $\nabla \phi$ is perpendicular to the surface.
- vi) The orientation of the surface S is determined by the sign of \mathbf{n} .
- vii) A surface S is orientable if the vector \mathbf{n} can be determined everywhere by a choice of sign.

Change of variables: orthogonal curvilinear coordinates

Given the position vector \mathbf{r} expressed in cartesian coordinates x, y, z we can use a change of variable to express this vector in terms of a new set of coordinates u, v, w

$$\mathbf{r}(u, v, w) = x(u, v, w) \mathbf{i} + y(u, v, w) \mathbf{j} + z(u, v, w) \mathbf{k}$$

• Line element:

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial u} du + \frac{\partial \mathbf{r}}{\partial v} dv + \frac{\partial \mathbf{r}}{\partial w} dw.$$

• New basis:

$$\frac{\partial \mathbf{r}}{\partial u} = h_u \,\hat{\mathbf{e}}_u, \quad \frac{\partial \mathbf{r}}{\partial v} = h_v \,\hat{\mathbf{e}}_v, \quad \frac{\partial \mathbf{r}}{\partial w} = h_w \,\hat{\mathbf{e}}_w,$$

where h_u , h_v h_w are called *scale factors*. In an orthogonal curvilinear coordinate system these vectors are orthogonal and $\hat{\mathbf{e}}_u$, $\hat{\mathbf{e}}_v$, $\hat{\mathbf{e}}w$ form an orthonormal basis of the three dimensional vector space \mathbb{R}^3 .

• New line element:

$$d\mathbf{r} = h_u \,\hat{\mathbf{e}}_u \, du + h_v \,\hat{\mathbf{e}}_v \, dv + h_w \,\hat{\mathbf{e}}_w \, dw.$$

• Arc length:

$$ds^{2} = d\mathbf{r} \cdot d\mathbf{r} = h_{1}^{2} (du_{1})^{2} + h_{2}^{2} (du_{2})^{2} + h_{3}^{2} (du_{3})^{2}$$

• Vector area element (surface of constant w):

$$d\mathbf{S} = \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right) du dv = h_u h_v du dv.$$

• Volume element:

$$dV = \left| \frac{\partial \mathbf{r}}{\partial u} \cdot \left(\frac{\partial \mathbf{r}}{\partial v} \times \frac{\partial \mathbf{r}}{\partial w} \right) \right| du \, dv \, dw = h_u h_v h_w \, du \, dv \, dw.$$

• Del operator:

$$\nabla = \frac{\hat{\mathbf{e}}_u}{h_u} \frac{\partial}{\partial u} + \frac{\hat{\mathbf{e}}_v}{h_v} \frac{\partial}{\partial v} + \frac{\hat{\mathbf{e}}_w}{h_w} \frac{\partial}{\partial w}.$$

• Gradient:

$$\nabla \phi = \frac{\hat{\mathbf{e}}_u}{h_u} \frac{\partial \phi}{\partial u} + \frac{\hat{\mathbf{e}}_v}{h_v} \frac{\partial \phi}{\partial v} + \frac{\hat{\mathbf{e}}_w}{h_w} \frac{\partial \phi}{\partial w}$$

• Divergence:

$$\nabla \cdot \mathbf{a} = \frac{1}{h_u h_v h_w} \left[\frac{\partial}{\partial u} (h_v h_w a_u) + \frac{\partial}{\partial v} (h_w h_u a_v) + \frac{\partial}{\partial w} (h_u h_v a_w) \right],$$

where $\mathbf{a} = a_u \, \mathbf{\hat{e}}_u + a_v \, \mathbf{\hat{e}}_v + a_w \, \mathbf{\hat{e}}_w$.

• Curl:

$$\nabla \times \mathbf{a} = \frac{1}{h_u h_v h_w} \begin{vmatrix} h_u \, \hat{\mathbf{e}}_u & h_v \, \hat{\mathbf{e}}_v & h_w \, \hat{\mathbf{e}}_w \\ \frac{\partial}{\partial u} & \frac{\partial}{\partial v} & \frac{\partial}{\partial w} \\ h_u \, a_u & h_v \, a_v & h_w \, a_w. \end{vmatrix}$$

• Laplacian:

$$\nabla^2 \phi = \frac{1}{h_u h_v h_w} \left[\frac{\partial}{\partial u} \left(\frac{h_v h_w}{h_u} \frac{\partial \phi}{\partial u} \right) + \frac{\partial}{\partial v} \left(\frac{h_w h_u}{h_v} \frac{\partial \phi}{\partial v} \right) + \frac{\partial}{\partial w} \left(\frac{h_u h_v}{h_w} \frac{\partial \phi}{\partial w} \right) \right].$$

Examples of orthogonal curvilinear coordinates:

• Cylindrical polar coordinates:

$$\mathbf{r}(\rho, \phi, z) = \rho \cos \phi \,\mathbf{i} + \rho \sin \phi \,\mathbf{j} + z \,\mathbf{k}, \qquad \rho \ge 0, \quad 0 \le \phi < 2\pi, \quad -\infty < z < \infty$$

$$h_{\rho} = 1$$
, $\hat{\mathbf{e}}_{\rho} = \cos \phi \, \mathbf{i} + \sin \phi \, \mathbf{j}$

$$\begin{array}{ll} h_{\rho}=1, & \hat{\mathbf{e}}_{\rho}=\cos\phi\,\mathbf{i}+\sin\phi\,\mathbf{j},\\ \mathrm{i}) & h_{\phi}=\rho, & \hat{\mathbf{e}}_{\phi}=-\sin\phi\,\mathbf{i}+\cos\phi\,\mathbf{j},\\ & h_{z}=1, & \hat{\mathbf{e}}_{z}=\mathbf{k}. \end{array}$$

ii)
$$d\mathbf{S} = \begin{cases} \hat{\mathbf{e}}_{\rho} \rho \, d\phi dz & (\rho = \text{const}) \\ \hat{\mathbf{e}}_{\phi} \, d\rho dz & (\phi = \text{const}) \\ \hat{\mathbf{e}}_{z} \, \rho \, d\rho d\phi & (z = \text{const}). \end{cases}$$

iii)
$$dV = \rho d\rho d\phi dz$$
.

• Spherical polar coordinates:

$$\mathbf{r}(r, \theta, \phi) = r \sin \theta \cos \phi \, \mathbf{i} + r \sin \theta \sin \phi \, \mathbf{j} + r \cos \theta \, \mathbf{k}, \qquad r \ge 0, \quad 0 \le \phi < 2\pi, \quad 0 \le \theta \le \pi$$

$$\begin{array}{ll} h_r = 1, & \hat{\mathbf{e}}_r = \sin\theta\cos\phi\,\mathbf{i} + \sin\theta\sin\phi\,\mathbf{j} + \cos\theta\,\mathbf{k}, \\ \mathrm{i}) & h_\theta = r, & \hat{\mathbf{e}}_\theta = \cos\theta\cos\phi\,\mathbf{i} + \cos\theta\sin\phi\,\mathbf{j} - \sin\theta\,\mathbf{k}, \end{array}$$

i)
$$h_{\theta} = r$$
, $\hat{\mathbf{e}}_{\theta} = \cos \theta \cos \phi \, \mathbf{i} + \cos \theta \sin \phi \, \mathbf{j} - \sin \theta \, \mathbf{k}$, $h_{\phi} = r \sin \theta$, $\hat{\mathbf{e}}_{\phi} = \sin \phi \, \mathbf{i} + \cos \phi \, \mathbf{j}$.

ii)
$$d\mathbf{S} = \begin{cases} \hat{\mathbf{e}}_r r^2 \sin \theta \, d\theta d\phi & (r = \text{const}) \\ \hat{\mathbf{e}}_\theta r \sin \theta \, dr d\phi & (\theta = \text{const}) \\ \hat{\mathbf{e}}_\phi r \, dr d\theta & (\phi = \text{const}). \end{cases}$$

iii)
$$dV = r^2 \sin \theta \, dr d\theta d\phi$$
.

Integrals (Chapter 11)

• The line integral (or path integral) of a vector field $\mathbf{a}(\mathbf{r})$ along the curve C is:

$$\int_{C} \mathbf{a}(\mathbf{r}) \cdot d\mathbf{r} = \int_{u_{min}}^{u_{max}} \mathbf{a}(\mathbf{r}(u)) \cdot \frac{d\mathbf{r}}{du} du,$$

where C is a smooth *oriented* (a direction along C must be specified) curve defined by the equation $\mathbf{r}(u)$ with endpoints $A = \mathbf{r}(u_{min})$ and $B = \mathbf{r}(u_{max})$.

Properties/Observations.

- i) In general the integral depends on the endpoints and the path C.
- ii) $\int_C \mathbf{a} \cdot d\mathbf{r} = -\int_{-C} \mathbf{a} \cdot d\mathbf{r}$, where C is a curve with orientation $A \longrightarrow B$ and -C is a curve with orientation $B \longrightarrow A$.

iii) If
$$C = C_1 + C_2 + \cdots + C_n$$
 then $\int_C \mathbf{a} \cdot d\mathbf{r} = \int_{C_1} \mathbf{a} \cdot d\mathbf{r} + \int_{C_2} \mathbf{a} \cdot d\mathbf{r}, \cdots + \int_{C_n} \mathbf{a} \cdot d\mathbf{r}$.

iv) Other kinds of line integrals are possible. For instance:

$$\int_{C} \phi d\mathbf{r}, \qquad \int_{C} \mathbf{a} \times d\mathbf{r}, \qquad \int_{C} \phi ds, \qquad \int_{C} \mathbf{a} ds.$$

- Simply connected region. A region D is simply connected if every closed path within D can be shrunk to a point without leaving the region.
- Theorem: Consider the integral $I = \int_C \mathbf{a} \cdot d\mathbf{r}$, where the path C is in a simply connected region D. Then, the following statements are equivalent:
 - i) The line integral I is independent of the path C. It only depends on the endpoints of the path C.
 - ii) It exists a scalar function ϕ (a potential) such that $\mathbf{a} = \nabla \phi$.
 - iii) $\nabla \times \mathbf{a} = 0$.

The vector field **a** is said to be *conservative* (or *irrotational*) and ϕ is its *potential*. In addition:

- i) $I = \phi(B) \phi(A)$ where A and B are the endpoints of the path C.
- ii) The line integral I along any closed path C in D is zero.

• The surface integrals of vector functions $\mathbf{a}(\mathbf{r})$ over a smooth surface S, defined by $\mathbf{r}(u,v)$ with orientation given by the normal $\hat{\mathbf{n}}$, is:

$$\int_{S} \mathbf{a}(\mathbf{r}) \cdot d\mathbf{S} = \int_{S} \mathbf{a}(\mathbf{r}) \cdot \hat{\mathbf{n}} dS = \int_{u_{min}}^{u_{max}} \int_{v_{min}}^{v_{max}} \mathbf{a}(\mathbf{r}(u.v)) \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right) du dv.$$

Observation.

- i) The integral depends on the orientation of the surface S.
- ii) If the surface is closed, by convention, the vector \mathbf{n} is pointed outwards the volume enclosed.
- iii) Other kinds of integrals are possible. For instance:

$$\int_{S} \phi \, d\mathbf{S}, \qquad \int_{S} \mathbf{a} \times d\mathbf{S}, \qquad \int_{S} \phi \, dS, \qquad \int_{S} \mathbf{a} \, dS.$$

• Volume integrals of a function $\phi(\mathbf{r})$ (or $\mathbf{a}(\mathbf{r})$) over a volume V described by $\mathbf{r}(u, v, w)$ is:

$$\int\limits_{V} \phi(\mathbf{r}) \, dV = \int\limits_{u_{min}} \int\limits_{v_{min}} \int\limits_{w_{min}} \phi(\mathbf{r}(u,v,w)) \left| \frac{\partial \mathbf{r}}{\partial u} \cdot \left(\frac{\partial \mathbf{r}}{\partial v} \times \frac{\partial \mathbf{r}}{\partial w} \right) \right| \, du dv dw.$$

• Divergence theorem (Gauss' theorem):

$$\iiint\limits_{V} (\nabla \cdot \mathbf{a}) \, dV = \iint\limits_{S} \mathbf{a} \cdot d\mathbf{S},$$

where V is a bounded volume with boundary $\partial V = S$ and S is a closed surface with normal pointing onwards.

• Stokes' theorem:

$$\iint_{S} (\nabla \times \mathbf{a}) \cdot d\mathbf{S} = \int_{C} \mathbf{a} \cdot d\mathbf{r},$$

where S is a bounded smooth surface with boundary $\partial S = C$ and S is a piecewise smooth curve. C and S must have compatible orientation.