CCNA SECURITY

Implémentation de pare-feux

LES ACL BASIQUES

Définition des ACL

- ACL signifie Access Control List.
- Sur un routeur, un PIX ou un ASA: liste d'adresses, de ports ou de trafics autorisés ou interdits.
- Trois catégories d'ACL :
 - ACL standard : ne peut contrôler que l'adresse IP source, ou une partie de celle-ci via l'utilisation de masque générique.
 - <u>ACL étendue</u>: peut contrôler quasiment tous les champs présents dans les en-têtes IP, TCP et UDP (les adresses IP source et destination (ou une partie de celles-ci), le protocole, les ports source et destination, les priorités, ...).
 - ACL nommée-étendue : ACL étendue à laquelle on donne un nom.

Schéma du fonctionnement des ACLs

 Une ACL peut être appliquée sur du trafic entrant ou sortant :

Logique de fonctionnement des ACLs

- Vérification du paquet par rapport au premier critère défini.
- S'il vérifie le critère, application de l'action définie.
- S'il ne vérifie pas le critère, vérification du paquet par les ACLs suivantes.
- S'il ne vérifie aucun critère, le paquet est supprimé (action "deny" par défaut).

Les masques inversés

- Spécifie la partie de l'adresse IP devant être examinée.
- Exemple : Le masque inversé « 0.0.255.255 » veut dire que seuls les 16 premiers bits (deux premiers octets) de l'IP à laquelle il est associé doivent être examinés.

Exemple :

 « deny 192.168.1.0 0.0.0.255 » signifie que le système doit refuser toutes les adresses IP commençant par 192.168.1

Les ACLs standards

- access-list [numéro] {permit | deny} [ip source] [masque inversé]
 - Numéro : de 1 à 99 ou de 1300 à 1999.
- Associer une description à une ACL :
 - access-list [numéro] remark [description]
- Activation d'une ACL sur une interface :
 - ip access-group [numéro | nom] {in | out}
- Commandes de visualisation :
 - show access-lists [numéro | nom]

Exemples d'ACLs standards

- access-list 1 remark Stoppe tout le trafic venant du réseau 192.168.1.0/24
 - Description de l'access-list
- access-list 1 deny 192.168.1.0 0.0.0.255
 - Refuse tous les paquets provenant du réseau 192.168.1.0/24
- access-list 1 permit 0.0.0.0 255.255.255.255
 - Autorise tous les autres paquets
- interface Fa0/0
- ip access-group 1 out
 - Appliquer l'ACL sur le trafic sortant de l'interface fa0/0

Exemples d'ACLs standards (2)

- access-list 2 remark Stoppe tout le trafic venant de l'ordinateur 172.16.1.1
 - Description de l'access-list
- access-list 2 deny 172.16.1.1 0.0.0.0
 - Refuse tous les paquets provenant de l'IP 172.16.1.1
- access-list 2 permit 0.0.0.0 255.255.255.255
 - Autorise tous les autres paquets
- interface Fa0/0
- ip access-group 2 out
 - Appliquer l'ACL sur le trafic sortant de l'interface fa0/0

Exemples d'ACLs standards (2)

- access-list 3 remark Stoppe tout le trafic venant de l'ordinateur 172.16.1.1
 - Description de l'access-list
- access-list 3 deny host 172.16.1.1
 - Refuse tous les paquets provenant de l'IP 172.16.1.1
- access-list 3 permit 0.0.0.0 255.255.255.255
 - Autorise tous les autres paquets
- interface Fa0/0
- ip access-group 3 out
 - Appliquer l'ACL sur le trafic sortant de l'interface fa0/0

Exemples d'ACLs standards (3)

- access-list 3 remark Stoppe tout le trafic venant de l'ordinateur 172.16.1.1
- access-list 3 deny host 172.16.1.1
- access-list 3 permit any
- access-list 1 remark N'autorise que les paquets du réseau 172.16.3.0/24
- •access-list 1 permit 172.16.3.0 0.0.0.255
- interface Fa0/0
- ip access-group 3 out
- ip access-group 1 in

Les ACLs étendues

- access-list [numéro] {permit | deny} [protocole] [ip source] [masque inversé] [ip destination] [masque inversé]
 - Numéro : de 100 à 199 ou de 2000 à 2699.

Exemples :

- Refuse les paquets IP provenant de n'importe quelle source et à destination du client 10.1.1.1 :
 - access-list 101 deny ip any host 10.1.1.1
- Refuse les paquets TCP provenant de n'importe quel port supérieur à 1023 et à destination du port 23 du client 10.1.1.1 :
 - access-list 101 deny tcp any gt 1023 host 10.1.1.1 eq 23

Les ACLs nommées

- Une ACL peut être composée de plusieurs règles ; pour en modifier une partie, par défaut, la seule méthode consiste à supprimer entièrement l'ACL pour la refaire (commande : "no access-list [numéro]").
- Avec une ACL nommée-étendue, possibilité de ne supprimer qu'une seule règle.

Les ACLs nommées

Exemple d'ACL nommée :

- Router (config) # ip access-list extended SafACL.
- Router(config-ext-nacl) # deny tcp host 10.1.1.2 eq www any
- Router (config-ext-nacl) # deny ip 10.1.1.0 0.0.0.255 any
- Router (config-ext-nacl) # permit ip any any

Exemple de suppression d'une règle dans cette ACL :

- Router(config) # ip access-list extended SafACL
- Router(config-ext-nacl) # no deny ip 10.1.1.0 0.0.0.255 any

Activation d'une ACL sur une ligne vty

- Commande sur la ligne vty :
 - access-class [numéro] {in | out}
- Exemple :
 - access-list 3 permit 10.1.1.0 0.0.0.255
 - line vty 0 4
 - login
 - password Cisco
 - access-class 3 in

Conseils à suivre

- Ne pas créer les ACL depuis un éditeur de texte pour les coller ensuite dans la configuration de l'équipement, mais travailler directement sur celui-ci.
- Placer les ACLs étendues au plus près de la source du paquet (pour le détruire le plus tôt possible).
- Placer les ACLs standards au plus près de la destination du paquet (pour ne pas détruire trop tôt un paquet en se basant sur des critères insuffisants).
- Placer la règle la plus spécifique en premier.
- Avant de faire un changement sur une ACL, la désactiver sur les interface où elle est appliquée (commande : "no ip access-group" en mode de configuration d'interface).

ACLs basiques exemple

- Router(config)# ip access-list standard restrict_VTY
- Router(config-std-nacl)# permit 192.168.1.10
- Router(config-std-nacl)# permit 192.168.1.11
- Router(config-std-nacl)# exit
- Router(config)# line vty 0 4
- Router(config-line)# access-class restrict_VTY in

ACLs basiques exemple (2)

- Router(config)# ip access-list extended EX1
- Router(config-ext-nacl)# deny ip any 200.1.2.10 0.0.0.0
- Router(config-ext-nacl)# permit tcp any host 200.1.1.11 eq 80
- Router(config-ext-nacl)# permit tcp any host 200.1.1.10 eq 25
- Router(config-ext-nacl)# permit tcp any eq 25 host 200.1.1.10 any
- Router(config-ext-nacl)# permit tcp any 200.1.2.0 0.0.0.255
- Router(config-ext-nacl)# permit udp any eq 53 200.1.2.0 0.0.0.255
- Router(config-ext-nacl)# deny ip any any
- •
- Router(config-ext-nacl)# interface FastEthernet 1
- Router(config-if)# ip access-group EX1 in
- Router(config-if)# exit

ACLs basiques exemple (3)

- Router1(config)# access-list 1 deny 172.16.4.0 0.0.0.255
- Router1(config)# access-list 1 permit any
- •
- Router1(config)# interface FastEthernet 0
- Router1(config-if)# ip access-group 1 out

ACLs basiques exemple (4)

- Router1(config)# access-list 101 deny tcp 172.16.4.0 0.0.0.255 172.16.3.0 0.0.0.255 eq 21
- Router1(config)# access-list 101 deny tcp 172.16.4.0 0.0.0.255 172.16.3.0 0.0.0.255 eq 20
- Router1(config)# access-list 101 permit ip any any
- •
- Router1(config)# interface FastEthernet 1
- Router1(config-if)# ip access-group 101 in

ACLs basiques – utilisation des protocoles

- Autorise les paquets DNS, SMTP et FTP vers l'adresse 192.168.20.2 :
 - R1(config)#access-list 122 permit udp any host 192.168.20.2 eq domain
 - R1(config)#access-list 122 permit tcp any host 192.168.20.2 eq smtp
 - R1(config)#access-list 122 permit tcp any host 192.168.20.2 eq ftp
- Autorise les paquets Telnet, SSH, Syslog, et SNMP depuis 200.5.5.5 vers 10.0.1.1
 - R1(config)#access-list 180 permit tcp host 200.5.5.5 host 10.0.1.1 eq telnet
 - R1(config)#access-list 180 permit tcp host 200.5.5.5 host 10.0.1.1 eq 22
 - R1(config)#access-list 180 permit udp host 200.5.5.5 host 10.0.1.1 eq syslog
 - R1(config)#access-list 180 permit udp host 200.5.5.5 host 10.0.1.1 eq snmptrap

LES ACL AVANCÉES

Qu'est-ce que les ACLs avancées ?

- ACL étendues avec utilisation de "TCP established".
- ACL réflexives.
- ACL dynamiques.
- ACL avec gestion du temps (Time-Based).
- ACL Context-Based Access Control (CBAC).

ACL « TCP established » - Exemple

- access-list 100 permit tcp any eq 443 192.168.1.0 0.0.0.255 established
- access-list 100 permit tcp any 192.168.1.3 eq 22
- access-list 100 deny ip any any
- •
- interface Serial0/0/0
- ip access-group 100 in

ACL « TCP established »

- Consiste à rajouter le mot-clé "established" à la fin d'une ACL avancée.
- Sur les en-têtes TCP, force une vérification de la présence des drapeaux URG, ACK, PSH, RST, SYN et FIN.
- Option ne s'appliquant pas aux trafics UDP et ICMP.
- Permet de se protéger des attaques "man-in-themiddle".

ACLs Réflexives

- Création d'une ACL sur le trafic sortant qui recherche des nouvelles sessions sortantes et crée automatiquement des ACE (Access Control Entries) réflexives associées à un timeout (trois minutes par défaut).
- Création d'une ACL sur le trafic entrant qui utilise les ACLs réflexives pour examiner le trafic entrant de retour.
- Activation des ACLs sur les interfaces appropriées.

ACLs Réflexives - Exemples

- Création d'une ACL réflexive « RetourDNS »
 - ip access-list extended ToVlan5
 - permit udp any host 192.168.5.12 reflect RetourDNS
- Application de l'ACL réflexive « RetourDNS »
 - ip access-list extended ToVlan15
 - permit icmp any any echo-reply
 - permit tcp any any established
 - evaluate RetourDNS
 - deny ip any any

ACLs dynamiques

- Disponible seulement pour le trafic IP.
- ACL orientée connexion.
- Principe : à chaque connexion légitime d'un utilisateur, une ACL est créé pour lui ouvrir des droits spécifiques.
- access-list [numéro] dynamic [nom-acl-dynamique]
 timeout [minutes] {permit | deny} [protocole] [ip-source]
 [masque-générique] [ip-destination] [masque-générique].

ACLs dynamiques - exemple

- 1. Un utilisateur distant ouvre une connexion Telnet ou SSH sur le routeur et saisit ses identifiants
- 2. Le routeur authentifie l'utilisateur
- 3. Une règle d'ACL dynamique est ajoutée pour autoriser les accès à cet utilisateur
- 4. L'utilisateur peut enfin accéder aux ressources

ACLs dynamiques - exemple

- R3(config)#username jordan password 0 jordan
- R3(config)#access-list 101 permit tcp any host 10.2.2.2 eq telnet
- R3(config)#access-list 101 dynamic testList timeout 15 permit ip 192.168.10.0 0.0.0.255 192.168.30.0 0.0.0.255
- R3(config)#interface serial 0/0/1
- R3(config-if)#ip access-group 101 in
- R3(config)#line vty 0 4
- R3(config-line)#login local
- R3(config-line)#autocommand access-enable host timeout 5

ACL avec gestion du temps

- Time-Based ACL.
- Permet à une ACL de n'être activée qu'à certains moments.
- Utile pour restreindre les accès à des périodes particulières.

ACL avec gestion du temps - Exemple

Time-based ACLs

- R3(config)#time-range PERIOD
- R3(config-time-range)#periodic Monday Wednesday Friday 8:00 to 17:00
- R3(config)#access-list 101 permit tcp 192.168.10.0 0.0.0.255 any eq telnet time-range PERIOD
- R3(config)#interface serial 0/0/0
- R3(config-if)#ip access-group 101 out

ACL avec gestion du temps - Exemple

- R3(config)#time-range employee-time
- R3(config-time-range)#periodic weekdays 12:00 to 13:00
- R3(config-time)# periodic weekdays 17:00 to 19:00
- R3(config-time)# exit
- R3(config)# access-list 100 permit tcp any host 200.1.1.11 eq 25
- R3(config)# access-list 100 permit tcp any eq 25 host 200.1.1.11 established
- R3(config)# access-list 100 permit udp any host 200.1.1.12 eq 53
- R3(config)# access-list 100 permit udp any eq 53 host 200.1.1.12
- R3(config)# access-list 100 permit tcp any 200.1.1.0 0.0.0.255 established time-range employee-time
- R3(config)# access-list 100 deny ip any any
- R3(config)# interface FastEthernet0/1
- R3(config-if)# ip access-group 100 in
- R3(config-if)# exit
- R3(config)# access-list 101 permit top host 200.1.1.11 eq 25 any
- R3(config)# access-list 101 permit tcp host 200.1.1.11 any eq 25
- R3(config)# access-list 101 permit udp host 200.1.1.12 eq 53 any
- R3(config)# access-list 101 permit udp host 200.1.1.12 any eq 53
- R3(config)# access-list 101 permit tcp 200.1.1.0 0.0.0.255 any time-range employee-time
- R3(config)# access-list 101 deny ip any any
- R3(config)# interface FastEthernet0/1
- R3(config-if)# ip access-group 101 out

LE PACKET FILTERING

Propriétés communes aux pare-feux

- Résistant aux attaques.
- Unique point de transit entre réseaux différents.
- Empêche l'exposition d'hôtes et d'applications sensibles à des utilisateurs non fiables.
- Prévient l'exploitation des failles de protocoles.
- Empêches les données "malveillantes" de parvenir aux serveurs et clients.
- Rend l'application de la politique de sécurité plus simple, évolutive et robuste.
- Simplifie la gestion de la sécurité en déchargeant la plupart des contrôles d'accès au réseau sur des matériels dédiés.

Type de filtrage

- Filtrage de paquets (packet-filtering) : par exemple, un routeur qui filtre sur les couches 3 et parfois 4.
- **Statefull** (orienté connexion) : se base sur l'état de la connexion (initiation, transfert de données en cours, ou terminaison) grâce aux ACLs réflexives/dynamiques.
- Passerelles applicatives (Proxy): filtrage sur les couches 3, 4, 5, 6 et 7 (contrôle et filtre les actions effectuées dans les logiciels).
- Translation d'adresses : étend le nombre d'IP disponibles et masque la réalité du design de l'adressage réseau.
- Host-based : pare-feu applicatif installé directement sur un poste serveur ou client.
- Hybride: combinaison des autres types de filtrage.

Avantages du Packet-Filtering

- Basé sur des règles "permit" ou "deny".
- Faible impact sur les performances réseau.
- Simple à mettre à en place.
- Supporté par la majorité des routeurs.
- Offre un premier niveau de sécurité sur des couches OSI basses (3 et parfois 4).
- Gère 90% des fonctionnalités des pare-feux haut de gamme à un coût beaucoup plus faible.

Inconvénients du Packet-Filtering

- Ne permet pas de se prémunir de l'IP spoofing (les pirates envoient des paquets aléatoires dont certains passent à travers les règles des ACL).
- Ne fonctionne pas bien avec des paquets fragmentés (si le premier paquet contenant les en-têtes de couche 4 est accepté, les autres le sont également sans condition).
- Les ACLs très complexes sont difficiles à appliquer correctement et à maintenir.
- Ne permet pas de filtrer dynamiquement certains services.

PARE-FEUX STATEFUL

Les pare-feux Stateful

ACLs entrantes (trafic sortant du LAN) permit ip 10.0.0.0 0.0.0.255 permit tcp host 10.0.0.1 eq 1500 host 200.3.3.3 eq 80 any deny ip any any

Les avantages du pare-feu stateful

- Souvent utilisé comme premier moyen de défense pour filtrer les trafics non désirés ou non nécessaires.
- Renforce le filtrage en apportant des règles plus strictes que le filtrage de paquets.
- Protège contre les attaques de spoofing ou de DoS.
- Donne davantage de logs que le filtrage de paquets.

Les inconvénients du pare-feu stateful

- Ne permet pas de se prémunir des attaques en couche application.
- Incompatible avec les protocoles qui ne sont pas orientés connexion (UDP, ICMP, ...).
- Difficile à maintenir avec des applications actuelles ouvrant toujours plus de connexions simultanément.

Les solutions Cisco ASA

- Politique de gestion des zones assez intuitive.
- Filtrage des applications de messagerie instantanée et de P2P.
- Protection des protocoles de VoIP/ToIP.
- Protection des VRF (Virtual Routing and Forwarding).
- Intégration de la sécurité des réseaux sans fil (Wifi).
- Gestion des "listes blanches" et listes noires" d'URL.
- Inspection des trafics Internet et mail.
- Implémentation de technologies de pare-feu□
- Les pare-feux

Les règles de bonnes pratiques

- Positionner les pare-feux en bordure de réseau.
- Ne pas s'appuyer exclusivement sur les pare-feux, mais utiliser d'autres dispositifs de sécurité.
- Refuser tous les trafics par défaut, puis n'autoriser que ceux qui sont nécessaires.
- S'assurer que les pare-feux sont physiquement installés dans un espace sécurisé.
- Monitorer les pare-feux avec grande attention.
- Utiliser des outils d'historisation des modifications de configuration sur les parefeux (exemple : résilience de la configuration).
- Se souvenir que les pare-feux ne protègent pas des attaques provenant de l'intérieur du réseau.