RBE550 – MOTION PLANNING ASSIGNMENT: FLATLAND

Submitted by: Suketu Parekh

> Algorithm Overview:

- a) Random Planner:
 - 1. Start at (1,1)
 - 2. For any random direction, check for already visited cell or obstacle
 - 3. Move to any connected random cell
 - 4. Start from 1. (Until 1000 iterations or reaching (128,128))
- b) Breadth First Search (BFS):
 - 1. Start at (1,1)
 - 2. Add all the valid neighbouring cells of the current node into a queue
 - 3. Make a separate matrix for Parent cells
 - 4. Traverse through the queue until reached at (128,128)
 - 5. Traverse through **specific** Parent cells in reverse to get to (1,1)
 - 6. Add all the specific elements to the Path matrix
- c) Depth First Search (DFS):
 - 1. Start at (1,1)
 - 2. Add one of the valid neighbours of current cell into a stack
 - 3. Move on to the top of the stack
 - 4. Check for validity of the next cell before pushing into stack
 - 5. Check for local **blockages** until (128,128) is reached
- d) Dijkstra's Algorithm:
 - 1. Start at (1,1)
 - 2. Add all the **valid** neighbouring cells of the current node into a queue
 - 3. Make a **Cost** array to account for the cost of visiting each cell
 - 4. Make a separate matrix for Parent cells
 - 5. Traverse through the queue until reached at (128,128)
 - 6. Traverse through the path with the least cost of (128,128)

> Output Figures:

a) Random Planner

Occupancy = 20%

Occupancy = 50%

b) Breadth First Search (BFS) Occupancy = 10%

c) Depth First Search (DFS) Occupancy = 10%

Occupancy = 30%

Occupancy = 50%

d) Dijkstra's Algorithm Occupancy = 10%

Occupancy = 30%

Occupancy = 50%

> Performance Plot:

DENSITY	0	10	20	30	40	50	60
RANDOM**	891	1398	1122	692	1113	1143	697
BFS	16384	14866	13548	12327	11008	9747	-
DFS	254	300	496	620	2894	4332	12519
DIJKSTRA	16384	14883	13602	12310	10840	9169	-

** - Values extrapolated for (128,128)

> Observations and Result:

- i. Number of iterations of the Random Planner can be used as the control. It is more or less random as well.
- ii. Most of the algorithms fail to detect a possible path for Occupancies above around 60%. This is because of absence of a possible path. The below figure depicts DFS failing (after about 10.5k iterations) at an occupancy of 60%.

- iii. DFS performs better at lower occupancies and takes more and more iterations as the occupancy increases.
- iv. BFS and Dijkstra's algorithm performs almost equally well for all the situations. Both the algorithms take more iteration at lower occupancies and vice versa.