Scilab Textbook Companion for Fiber Optics and Optoelectronics by R. P. Khare¹

Created by
Shubham Arya
B.TECH
Electronics Engineering
Uttrakhand Technical University
College Teacher
Rizwan
Cross-Checked by
KVP Pradeep

May 31, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fiber Optics and Optoelectronics

Author: R. P. Khare

Publisher: Oxford Press, New Delhi

Edition: 8

Year: 2009

ISBN: 0-19-566930-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
2	Ray propagation in optical fibers	5
3	Wave propagation in planar waveguides	10
4	Wave propagation in cylindrical waveguides	14
5	Single mode fibers	18
6	Optical fiber cables and connections	22
7	Optoelectronic Sources	26
8	Optoelectronic Detectors	32
9	Optoelectronic Modulators	39
10	Optical amplifiers	43
11	Wavelength division multiplexing	46
12	Fiber optic communication system	49
13	Fiber optic sensors	54
14	Laser based systems	57

List of Scilab Codes

Exa 2.1	NA angles and pulse broadning	5
Exa 2.2	number of reflections	6
Exa 2.3	pulse broadning	6
Exa 2.4	pulse broadning	7
Exa 2.5	pulse broadning	8
Exa 3.1	range of propagation constants and maximum number	
	of modes	10
Exa 3.2	thickness	11
Exa 3.3	number of TE modes and propagation parameters	11
Exa 3.4	G factor	13
Exa 4.1	normalised frequency propagation constants and phase	
	velocity	14
Exa 4.2	frational power propagation	15
Exa 4.3	normalised frequency parameters and number of modes	15
Exa 4.4	${\rm diameter} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	16
Exa 4.5	wavelength and diameter	16
Exa 5.1	w and wp	18
Exa 5.2	difference between propogation constant and modal bire-	
	fringence	19
Exa 5.3	waveguide dispersion parameter	19
Exa 5.4	diameter of core and total dispersion	20
Exa 5.5	splice loss	21
Exa 6.1	refrative index	22
Exa 6.2	loss	22
Exa 6.3	insertion loss at joint	23
Exa 6.4	insertion loss at joint	24
Exa 6.5	insertion loss at joint in the forward and backward di-	
	rection	25

Exa 7.1	intrinsic carrier density	26
Exa 7.2	· · · · · · · · · · · · · · · · · · ·	27
Exa 7.3		27
Exa 7.4		28
Exa 7.5		28
Exa 7.6		29
Exa 7.7	Internal and external power efficiency	30
Exa 8.1	wavelength and optical power and	32
Exa 8.2	quantum efficiency maximum possible band gap energy	
		33
Exa 8.3		34
Exa 8.4		34
Exa 8.5		35
Exa 8.6		35
Exa 8.7	rms value of shot noise current dark current and thermal	
	noise current and singnal to noise ratio	36
Exa 9.1	thickness	39
Exa 9.2	thickness	39
Exa 9.3	change in refrative index and vpi	10
Exa 9.4	phase difference additional phase difference and Vpi . 4	11
Exa 9.5	angle and relative intensity	12
Exa 10.1	refractive index and spectral bandwidth	13
Exa 10.2		14
Exa 10.3	output signal power and overall gain	14
Exa 11.1	interaction length	16
Exa 11.2		16
Exa 11.4	order	17
Exa 12.1		19
Exa 12.2	link length and bandwidth	60
Exa 12.3	number of subscribers	51
Exa 12.4	total power	51
Exa 12.5		52
Exa 13.1	plot the graph	54
Exa 13.2		55
Exa 13.3		6
Exa 14.1		57
Exa 14.3		68
Exa 14.4		59

Exa 14.5 time difference	-59
--------------------------	-----

Ray propagation in optical fibers

Scilab code Exa 2.1 NA angles and pulse broadning

```
1 //Example 2.1 // NA ,angles and pulse broadning
2 clc;
3 clear;
4 close;
5 format('v',9)
6 disp("part (a)")
7 n1=1.5; //core refrative index
8 n2=1.48; //claddin refractive index
9 a=100/2; //radius in micro meter
10 na=1; //air refrative index
11 NA=sqrt(n1^2-n2^2); // numerical aperture
12 disp(NA, "numerical aperture is")
13 disp("part (b)")
14 am = (asind(NA)); //
15 tm=asind(NA/n1);//
16 tc=asind(n2/n1);//
17 disp(am, "angle in degree is ( m)")
18 disp(tm, "angle in degree is (Om)")
19 disp(tc, "angle in degree is ( c)")
```

Scilab code Exa 2.2 number of reflections

```
1 //Example 2.2 // minimum and maximum number of
      reflections
2 clc;
3 clear;
4 close;
5 format('v',5)
6 n1=1.5; //core refrative index
7 n2=1.48; //claddin refractive index
8 a=100/2; //radius in micro meter
9 na=1; //air refrative index
10 NA=sqrt(n1^2-n2^2); // numerical aperture
11 am = (asind(NA)); //
12 tm=asind(NA/n1);/
13 tc=asind(n2/n1);//
14 L=((a*10^-6)/(tand(tm))); //length in meter
15 x=(1/(2*L));//maximum number of reflections per
     meter
16 disp("all other rays will suffer reflections between
      these two extremes of "+string(0)+" and "+string
      (x) + "m^-1"
17 //answer is wrong in the textbook
```

Scilab code Exa 2.3 pulse broadning

```
1 //Example 2.3 // pulse broadning
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 h=0.85;//WAVELENGTH IN MICRO METER
7 y=0.035;//spectral width
8 c=0.021;//constant
9 cl=3;//speed of light in m/s
10 dtl=(y/cl)*c;//
11 disp(dtl*10^4,"pulse broadning in ns km^-1")
```

Scilab code Exa 2.4 pulse broadning

```
1 //Example 2.4 // pulse broadning
2 clc;
3 clear;
4 close;
5 format('v',6)
6 disp("part (a)")
7 h=850; //WAVELENGTH IN NANO METER
8 1=80; // fiber length in Km
9 dh=30; //in Nano Meter
10 m1=105.5; // material dispersion for h=850nm in ps/nm-
11 m2=2.8; // material dispersion for h=1300nm in ps/nm-
12 t=m1*1*dh*10^-3;//material dispersion in ns when h
13 disp(t, "material dispersion in ns when h=850nm")
14 disp("part (b)")
15 h=1300; //WAVELENGTH IN NANO METER
16 1=80; // fiber length in Km
17 dh=30; //in Nano Meter
18 m1=105.5; // material dispersion for h=850nm in ps/nm-
     Km
```

Scilab code Exa 2.5 pulse broadning

```
1 //Example 2.5; pulse broadning
2 clc;
3 clear;
4 close;
5 format('v',6)
6 disp("part (a)")
7 h=850;//WAVELENGTH IN NANO METER
8 1=80; // fiber length in Km
9 dh=2; //in Nano Meter
10 m1=105.5; // material dispersion for h=850nm in ps/nm-
11 m2=2.8; // material dispersion for h=1300nm in ps/nm-
12 t=m1*1*dh*10^-3; // material dispersion in ns when h
      =850 \text{nm}
13 disp(t, "material dispersion in ns when h=850nm")
14 disp("part (b)")
15 h=1300; //WAVELENGTH IN NANO METER
16 l=80; //fiber length in Km
17 dh=2; //in Nano Meter
18 m1=105.5; // material dispersion for h=850nm in ps/nm-
19 m2=2.8; // material dispersion for h=1300nm in ps/nm-
20 t=m2*1*dh*10^-3; // material dispersion in ns when h
      =850 \text{nm}
21 disp(t," material dispersion in ns when h=1300nm")
```

Wave propagation in planar waveguides

Scilab code Exa 3.1 range of propagation constants and maximum number of modes

```
1 //Example 3.1 // range of propagation constants and
     maximum no. of modes
2 clc;
3 clear;
4 close;
5 format('v',9)
6 n1=1.5; //core refractive index
7 n2=1.49; //cladding refrative index
8 t=9.83; //thickness of guided layer in micro meter
9 h=0.85; //wavelength in
10 b1=((2*%pi*n1)/(h*10^-6));//phase propagation
      constant in m<sup>-1</sup>
11 b2 = ((2*\%pi*n2)/(h*10^-6)); //phase propagation
      constant in m^-1
12 m=((4*t)/h)*(sqrt(n1^2-n2^2));//number of modes
13 disp("range of propagation constant is "+string(b1)+
     " to "+string(b2)+" in m^-1")
14 disp(round(m/2), "number of modes are")
```

Scilab code Exa 3.2 thickness

```
1 //Example 3.2 // thickness
2 clc;
3 clear;
4 close;
5 format('v',6)
6 n1=3.6;//core refractive index
7 n2=3.56;//cladding refrative index
8 h=0.85;//wavelength in m
9 a=((h/(2*sqrt(n1^2-n2^2))));//thickness in m
10 disp("thickness of the slab should not be greater than "+string(a)+" m")
```

Scilab code Exa 3.3 number of TE modes and propagation parameters

```
14 disp(round(m/2), "number of modes are")
15 disp("part (b)")
16 n1=1.5;//core refractive index
17 n2=1.48; //cladding refrative index
18 t1=10.11; //thickness of guided layer in micro meter
19 t=t1/2;
20 h=1.55; //wavelength in
21 b1=((2*\%pi*n1)/(h*10^-6)); //phase propagation
      constant in m^-1
22 b2=((2*\%pi*n2)/(h*10^-6)); //phase propagation
      constant in m^-1
23 mo = (((2*\%pi*t1)/h)*(sqrt(n1^2-n2^2)))/2; //number of
     modes
24 uma0=1.30644; // for m=0 from the curve
25 uma1=2.59574; // for m=1 from the curve
26 uma2=3.83747; // for m=2 from the curve
27 uma3=4.9063; // for m=3 from the curve
28 \text{wma0=4.8263}; // for m=0 from the curve
29 wma1=4.27342; // for m=1 from the curve
30 wma2=3.20529; // for m=2 from the curve
31 wma3=0.963466; // for m=3 from the curve
32 um0=uma0/(t*10^-6); //in m^-1
33 um1=uma1/(t*10^-6); //in m^-1
34 um2=uma2/(t*10^-6); //in m^-1
35 um3=uma3/(t*10^-6); //in m^-1
36 wm0=wma0/(t*10^-6); //in m^-1
37 wm1=wma1/(t*10^-6); //in m^-1
38 wm2=wma2/(t*10^-6); //in m^-1
39 wm3=wma3/(t*10^-6); //in m^-1
40 bm0=((wm0*t*10^-6)/mo)^2; //for m=0
41 bm1=((wm1*t*10^-6)/mo)^2; // for m=1
42 bm2 = ((wm2*t*10^-6)/mo)^2; //for m=2
43 bm3=((wm3*t*10^-6)/mo)^2; //for m=3
44 m0 = sqrt((bm0*(b1^2-b2^2))+b2^2); // for m=0 in m^-1
45 m1 = sqrt((bm1*(b1^2-b2^2))+b2^2); // for m=1 in m^-1
46 m2 = sqrt((bm2*(b1^2-b2^2))+b2^2); // for m=2 in m^-1
47 m3 = sqrt((bm3*(b1^2-b2^2))+b2^2); // for m=3 in m^-1
48 params = ["""m""um[m^-1]""wm[m^-1]""bm"
```

```
49 \text{ m} = ["0" "1" "2" "3"];
50 \text{ um} = ["um0" "um1" "um2" "um3"];
51 \text{ wm} = \text{string}([22.41 \ 11.77 \ 33.41 \ 4.24]');
52 \text{ bm} = \text{string}([26 \ 19 \ 22 \ 17]');
53 params = ["m" "um[m^-1]" "wm[m^-1]" "bm" " m [m^-1]"
54 city=string([0 1 2 3]');
55 towns = string([um0 um1 um2 um3]');
56 country = string([wm0 wm1 wm2 wm3]');
    pop = string([bm0 bm1 bm2 bm3]');
57
    temp = string([m0 m1 m2 m3]');
58
59
    table = [params; [ city towns country pop temp ]]
60
    disp(table , "constants are :")
```

Scilab code Exa 3.4 G factor

```
//Example 3.4 //G factor
clc;
clc;
clear;
close;
format('v',10)
d=0.793;//in micro meter
v=%pi/2;//point of intersection
ua=0.934;//
wa=1.262;//
Y=(wa*(1+(sind(ua))*(cosd(ua))/ua));//
G=(1+((cosd(ua))^2)/Y)^(-1);//
disp(G,"G factor is")
//answer is wrong in the textbook
```

Wave propagation in cylindrical waveguides

Scilab code Exa 4.1 normalised frequency propagation constants and phase velocity

```
1 //Example 4.1;//normalised frequency, propagation
      constants and phase velocity
2 clc;
3 clear;
4 close;
5 format('v',5)
6 disp("part (a)")
7 n1=1.46; //core refrative index
8 di=7.2; //core diameter
9 n=1.46; //core refrative index
10 d=1; // relative differnce
11 h=1.55; // in micro meter
12 v = ((2*\%pi*(di*10^-6)/2)*n*sqrt(2*(d/100)))/(h*10^-6)
      ;//normalised frequency parameter
13 disp(v, "normalised frequency parameter is")
14 disp("part (b)")
15 format ('e', 11)
16 b1=(2*\%pi*n1)/(h*10^-6); // in m^-1
```

```
17 n2=n1-(d/100); //cladding refrative index
18 b2=(2*\%pi*n2)/(h*10^-6);// in m^-1
19 bo1=0.82; //
20 b11=0.18; //
21 B01=(b2^2+(bo1*(b1^2-b2^2)))^(1/2);//
22 B11=(b2^2+(b11*(b1^2-b2^2)))^(1/2);/
23 disp("propogation constants are Bo1 "+string(B01)+"
     and B11 "+string(B11)+" ")
24 //propogation constants are calculated wrong in the
      text bOOK
25 disp("part (c)")
26 format('e',9)
27 c=3*10^8; // in ms^-1
28 vp1=(2*%pi*c)/(h*10^-6*B01);//IN MS^-1
29 vp2=(2*\%pi*c)/(h*10^-6*B11);//IN MS^-1
30 disp("phase velocity are (Vp)01 "+string(vp1)+" ms
     ^{-1} and (Vp)11 "+string(vp2)+" ms^{-1}")
```

Scilab code Exa 4.2 frational power propagation

```
1 //Example 4.2;// frational power
2 clc;
3 clear;
4 close;
5 format('v',4)
6 p01=0.11;//from the graph
7 p11=0.347;//from the graph
8 disp(p01*100,"power for LP01 mode is (%)")
9 disp(p11*100,"power for LP11 mode is (%)")
```

Scilab code Exa 4.3 normalised frequency parameters and number of modes

```
1 // Example 4.3: Number of the modes
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 h= 0.85; // Wavelenght in micrometers
7 a= 50; // Core radius in micrometers
8 NA=0.17; //
9 v1=(2*%pi*a*NA)/h;
10 m2= round((v1^2)/2);
11 disp(m2,"Number of modes")
```

Scilab code Exa 4.4 diameter

```
1 // Example 4.4:core diameter
2 clc;
3 clear;
4 close;
5 format('v',4)
6 d=0.02; // difference
7 n1=1.5; // core refrative index
8 m=1000; // number of modes
9 h= 1.3; // Wavelenght in micrometers
10 a=((h/(%pi*n1))*(m/d)^(1/2)); // core diameter in micrometer
11 disp(a, "core diameter in micrometer")
```

Scilab code Exa 4.5 wavelength and diameter

```
1 // Example 4.5:core diameter
2 clc;
3 clear;
4 close;
5 format('v',5)
```

```
6 d=0.02; // difference
7 a1=75; //in micro meter
8 n1=1.45; //core refrative index
9 m=700; // number of modes
10 v=sqrt(4*m); //
11 h=((2*%pi*(a1/2)*n1*sqrt(2*(d/100)))/v); //in micro meter
12 vc=2.405*sqrt(2); // for single mode fiber
13 a=((vc*h)/(%pi*n1*sqrt(2*(d/100)))); //core diamter in micro meter
14 disp(a, "maximum core diameter in micro meter")
```

Single mode fibers

Scilab code Exa 5.1 w and wp

```
1 // Example 5.1:w and wp
2 clc;
3 clear;
4 close;
5 format('v',7)
6 n=1.46; //core refractive index
7 d=0.003; // differnce in core-cladding refrative index
8 a=4;//core radius in micro meter
9 h1=1.30; // inmicro meter
10 h2=1.55; //in micro meter
11 v1 = ((2*\%pi*(a*10^-6))*n*sqrt(2*(d)))/(h1*10^-6);//
      normalised frequency parameter
12 v2=((2*%pi*(a*10^-6))*n*sqrt(2*(d)))/(h2*10^-6);//
     normalised frequency parameter
13 w1=(a*10^-6)*(0.65+((1.619)/(v1)^(3/2))+(2.879/(v1)
     ^6));//in meter
14 wp1=w1-(a*10^-6)*(0.016+((1.567)/(v1)^7)); // in micro
      meter
15 w2=(a*10^-6)*(0.65+((1.619)/(v2)^(3/2))+(2.879/(v2)
      ^6));//in meter
16 wp2=w2-(a*10^-6)*(0.016+((1.567)/(v2)^7)); // in micro
```

Scilab code Exa 5.2 difference between propogation constant and modal birefringence

```
1 // Example 5.2;//difference between propagation
     constant and modal birefringence
2 clc;
3 clear;
4 close;
5 format('v',6)
6 disp("part (a)")
7 bl=10; //beat length in cm
8 h=1; //in micro meter
9 db = ((2*\%pi)/(b1*10^-2)); //in m^-1
10 disp(db, "difference between propagation constant in
     m^{-1}")
11 disp("part (b)")
12 format('v',8)
13 mb=db*((h*10^-6)/(2*%pi));//modal birefringence
14 disp(mb, "modal birefringence is")
15 //answer is approximately equal to the answer in the
      book
```

Scilab code Exa 5.3 waveguide dispersion parameter

```
1 // Example 5.3: waveguide dispersion factor
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 n=1.45; //core refractive index
7 d=0.003; // differnce in core-cladding refrative index
8 n2=1.45*(1-d);//cladding refractive index
9 d1=8.2; //core diameter in micro meter
10 a=d1/2; //core radius in micro meter
11 h1=1.30; // inmicro meter
12 h2=1.55; //in micro meter
13 v1=(2*\%pi*a*n*sqrt(2*d))/h1;//normalised frequency
      parameter
14 v2=((2*\%pi*(a))*n*sqrt(2*(d)))/(h2);//normalised
      frequency parameter
15 v1dv = 0.080 + 0.549 * (2.834 - v1)^2; //
16 \text{ v} 2 \text{dv} = 0.080 + 0.549 * (2.834 - v2)^2; //
17 c=3*10^8; // in m/s
18 \text{ dw1} = -((n2*d*v1dv)/(c*h1))*10^12; //waveguide
      dispersion factor in ps nm^-1 km^-1
19 dw2=-((n2*d*v2dv)/(c*h2))*10^12; //waveguide
      dispersion factor in ps nm^-1 km^-1
20 disp(" waveguide dispersion factor is "+string(dw1)+
        in ps nm^-1 km^-1 at wavelength 1.3 micro
      meter")
21 disp(" waveguide dispersion factor is "+string(dw2)+
      " in ps nm^-1 km^-1 at wavelength 1.55 micro
      meter")
```

Scilab code Exa 5.4 diameter of core and total dispersion

```
1 // Example 5.4: diameter of the core
2 clc;
3 clear;
4 close;
```

```
5  format('v',4)
6  c=3*10^8; //in m/s
7  dm=6; // material dispersion in ps nm^-1 km^-1
8  h=1.55; //in micro meter
9  n1=1.45; // core refrative index
10  d=0.005; // differnce
11  n2=n1*(1-d); // cladding refrative index
12  x=((-dm/(((-n2*d)/(c*h))*10^12))-0.080)/0.549; //
13  v=-(sqrt(x)-2.834); //
14  d=((v*h)/(%pi*n1*sqrt(2*d))); // diameter in micro meter
15  disp(d," diameter of the core in micro meter")
```

Scilab code Exa 5.5 splice loss

```
1 // Example 5.5: splice loss
2 clc;
3 clear;
4 close;
5 format('v',5)
6 h1=1.30; // in micro meter
7 wp1=4.6155; // in micro meter
8 h2=1.55; // in micro meter
9 wp2=5.355; // in micro meter
10 sl1=4.34*(1/wp1)^2; // splice loss in dB
11 sl2=4.34*(1/wp2)^2; // splice loss in dB
12 disp(sl1," splice loss in dB when wavelength is 1.30 micro meter")
13 disp(sl2," splice loss in dB when wavelength is 1.55 micro meter")
```

Optical fiber cables and connections

Scilab code Exa 6.1 refrative index

```
1 // Example 6.1: refractive index
2 clc;
3 clear;
4 close;
5 format('v',5)
6 l=0.47; //in db
7 nf=10^((1/-10)); //
8 x=poly(0,"x");
9 p=1+-2.22*x+x^2; //
10 y=roots(p); //
11 disp(y(1,1)," refractive index is")
```

Scilab code Exa 6.2 loss

```
1 // Example 6.2: loss 2 clc;
```

```
3 clear;
4 close;
5 disp("part (a)")
6 format('v',5)
7 dya=0.1; //
8 n1=1.50; // refrative index
9 na=1; //
10 k1=n1/n1;//
11 k2=1;//
12 nf = ((16*(n1)^2)/((n1+1)^4)); //
13 nlat = (2/(3.14))*(acos(dya/2)-(dya/2)*(1-(dya/2)^2)
      ^(1/2));//
14 nt=nf*nlat;//
15 lt=(-10*log10(nt)); //in dB
16 disp(lt, "insertion loss at the joint in dB is")
17 disp("part (b)")
18 format('v',6)
19 dya=0.1; //
20 n1=1.50; // refrative index
21 na=1;//
22 k1=n1/n1;//
23 \text{ k2=1;} //
24 nf = ((16*(n1)^2)/((n1+1)^4)); //
25 nlat = (2/(\%pi))*(acos(dya/2)-(dya/2)*(1-(dya/2)^2)
      ^(1/2));//
26 nt=k2*nlat; //
27 \text{ lt} = (-10*\log 10 \text{ (nt)}); // \text{in } dB
28 disp(lt, "insertion loss at the joint in dB is")
```

Scilab code Exa 6.3 insertion loss at joint

```
1  // Example 6.3:loss
2  clc;
3  clear;
4  close;
```

```
5 format('v',5)
6 d=100; //micro meter
7 dx = 0; //
8 dy=3; //in micro mete
9 dth=3;//in degree
10 dthr=dth*(%pi/180);//
11 dya=0.02; //
12 n1=1.48; // refrative index
13 na=1;//
14 k1=n1/n1; //
15 \text{ k2=1;} //
16 nf = ((16*(n1)^2)/((n1+1)^4)); //
17 nlat = (2/(\%pi))*(acos(dy/100)-(dy/100)*(1-(dy/100)^2)
      ^(1/2));//
18 NA=n1*(sqrt(2*dya));//
19 nang=((1-(na*dthr)/(%pi*NA)));//
20 nt=nf*nlat*nang;//
21 lt=(-10*log10(nt)); //in dB
22 disp(lt, "total loss in dB is")
```

Scilab code Exa 6.4 insertion loss at joint

```
1 // Example 6.4:loss
2 clc;
3 clear;
4 close;
5 format('v',8)
6 d1=80;//micro meter
7 na1=0.25;//
8 alpha1=2;//
9 d2=60;//in micro meter
10 na2=0.21;//
11 alpha2=1.9;//
12 ncd=(d2/d1)^2;//
13 nna=(na2/na1)^2;//
```

```
14  nalpha=((1+(2/alpha1))/(1+((2/alpha2)))); //
15  nt=ncd*nna*nalpha; //
16  lt=(-10*log10(nt)); // in dB
17  disp(lt," total loss in dB is")
```

Scilab code Exa 6.5 insertion loss at joint in the forward and backward direction

```
1 // Example 6.5: loss
2 clc;
3 clear;
4 close;
5 format('v',5)
6 d1=60; // micro meter
7 na1=0.25;//
8 alpha1=2.1;//
9 d2=50;//in micro meter
10 na2=0.20;//
11 alpha2=1.9;//
12 ncd=(d2/d1)^2;//
13 nna=(na2/na1)^2;//
14 nalpha1=1;//
15 nalpha=((1+(2/alpha1))/(1+((2/alpha2))));//
16 ncd1=1;//
17 nna1=1;//
18 nt=ncd*nna*nalpha1;//
19 ltf=(-10*log10(nt)); //in dB
20 nt1=ncd1*nna1*nalpha;//
21 ltb=(-10*log10(nt1)); //in dB
22 disp(ltf, "total loss forward direction in dB is")
23 format('v',6)
24 disp(ltb, "total loss backward direction in dB is")
```

Optoelectronic Sources

Scilab code Exa 7.1 intrinsic carrier density

```
1 //Example 7.1: Intrinsic carrier
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',9)
7 \text{ m=9.11*10}^{-31}; // in kg
8 k=1.38*10^-23; // in JK^-1
9 h=6.626*10^-34;// in Js
10 ev=1.6*10^-19; // in J
11 T = 300; // in K
12 me=0.07*m; // in kg
13 mh = 0.56*m; // in kg
14 Eg=1.43*ev; // in J
15 ni=2*((2*\%pi*k*T)/h^2)^(3/2)*(me*mh)^(3/4)*exp(-Eg
      /(2*k*T));
16 disp(ni, "Intrinsic carrier concentration, ni(m^{2}-3) =
```

Scilab code Exa 7.2 diffusion potential

```
1 //Example 7.2: Diffusion potential
2 clc;
3 clear;
4 close;
5 format('v',6)
6 //given data :
7 Na=5*10^23; // in m^-3
8 Nd=5*10^21; // in m^-3
9 T=300; // in K
10 e=1.6*10^-19; // in J
11 k=1.38*10^-23; // in JK^-1
12 V=(k*T)/e;
13 ni=2.2*10^12; // in m^-3
14 Vd=V*log((Na*Nd)/ni^2);
15 disp(Vd," Diffusion potential, Vd(V) = ")
```

Scilab code Exa 7.3 injection efficiency

```
//Example 7.3: Injection efficiency
clc;
clear;
close;
format('v',7)
//given data :
Na=10^23; // in m^-3
Nd=10^21; // in m^-3
T=300; // in K
e=1.6*10^-19; // in J
k=1.38*10^-23; // in JK^-1
mue=0.85; // in m^2V^-1s^-1
muh=0.04; // in m^2V^-1s^-1
De=(mue*k*T)/e; // in m^2s^-1
Dh=(muh*k*T)/e; // in m^2s^-1
```

```
16 Le=1;
17 Lh=Le;
18 eta_inj=1/(1+((De/Dh)*(Lh/Le)*(Nd/Na)));
19 disp(eta_inj,"Injection efficiency, eta_inj = ")
```

Scilab code Exa 7.4 internal and quantum efficiency

```
1 //Example 7.4: Internal and quantum efficiency
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',4)
7 disp("part (a)")
8 tau_rr=1;
9 tau_nr=tau_rr;
10 eta_int=1/(1+(tau_rr/tau_nr));
11 disp(eta_int,"Internal quantum efficiency = ")
12 disp("part (b)")
13 format('v',7)
14 \text{ ns} = 3.7;
15 na=1.5;
16 \text{ as} = 0;
17 eta_ext=eta_int*(1-as)*((2*na^3)/(ns*(ns+na)^2));
18 disp(eta_ext, "External quantum efficiency = ")
```

Scilab code Exa 7.5 number of longitudinal modes

Scilab code Exa 7.6 The reduction and Differential quantum efficiency

```
1 //Example 7.6: The reduction and Differential
      quantum efficiency
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 disp("part (a)")
8 alfa_eff=1.5; // in mm<sup>^</sup>-1
9 \text{ gama} = 0.8;
10 L=0.5; // in mm
11 R1 = 0.35;
12 R2 = R1;
13 R2a=1.0;
14 g_{th1}=(1/g_{ma})*(alfa_eff+(1/(2*L))*log(1/(R1*R2)));
15 g_{th2}=(1/gama)*(alfa_eff+(1/(2*L))*log(1/(R1*R2a)));
16 del_gth=g_th1-g_th2;
17 disp(del_gth,"The reduction in threshold gain ,(mm
      \hat{} -1) = ")
18 disp("part (b)")
19 eta_D=(gama*(g_th2-alfa_eff))/(g_th2);
20 disp(eta_D, "Differential quantum efficiency = ")
```

Scilab code Exa 7.7 Internal and external power efficiency

```
1 //Example 7.7: Internal and external power
      efficiency
2 clc;
3 clear;
4 close;
5 //given data :
6 disp("part (a)")
7 \text{ as} = 0; //
8 ns=3.7; // assuming that the example 7.4
9 eta_int=0.50;// internal efficiency
10 V = 1.5; // in V
11 I=120*10^{-3}; // in A
12 IBYe=120*10^-3; //
13 Eph=1.43; // in eV
14 eta_int=0.50; // internal efficiency
15 fi_int=eta_int*IBYe*Eph;
16 \text{ t_power=I*V};
17 P_int=fi_int/t_power;
18 disp(P_int, "The internal power efficiency = ")
19 disp("part (b)")
20 format('v',6)
21 eta_ext=eta_int*(1-as)*2/(ns*(ns+1)^2);
22 fi_ext=eta_ext*IBYe*Eph;
23 t_power=I*V;
24 P_ext=fi_ext/t_power;
25 disp(P_ext, "The external power efficiency = ")
26 disp("part (c)")
27 format('e',9)
28 \text{ V=1.5;}//\text{ in V}
29 I=120*10^{-3}; // in A
30 IBYe=120*10^-3; //
31 Eph=1.43; // in eV
```

```
32     n1=1.5;
33     n2=1.48;
34     na=n1;
35     eta_ext=0.0337;
36     eta_T=eta_ext*((n1^2-n2^2)/na^2);
37     fi_T=eta_T*IBYe*Eph;
38     t_power=I*V;
39     sfpc=fi_T/t_power;
40     0_loss=-10*log10(sfpc);
41     disp(sfpc,"The overall source fiber power coupling efficiency = ")
42     format('v',5)
43     disp(0_loss,"The optical loss,(dB) = ")
```

Optoelectronic Detectors

Scilab code Exa 8.1 wavelength and optical power and

```
1 //Example 8.1: The photon energy and optical power
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 disp("part (a)")
8 h=6.626*10^{-34}; // in Js
9 c=3*10^8; // in ms^-1
10 E=1.52*10^-19; // in J
11 lamda=((h*c)/E)*10^6;
12 disp(lamda, "The photon energy, (micro-m) = ")
13 disp("part (b)")
14 e=1.6*10^-19; // in J
15 Ip=3*10^6; // in A
16 E=1.52*10^-19; // in J
17 \text{ eta} = 70/100;
18 R=(eta*e)/E;
19 P_{in} = (Ip/R) *10^-6;
20 disp(P_in, "The optical power, (micro W)")
```

Scilab code Exa 8.2 quantum efficiency maximum possible band gap energy and photocurrent

```
1 //Example 8.2: The quantum efficiency, Maximum
      possible band gap energy and mean output
2 clc;
3 clear;
4 close;
5 //given data :
6 disp("part (a)")
7 format('v',5)
8 \text{ e=1;}// \text{ electron}
9 p=2;// photon
10 eta=(e/p)*100;
11 disp(eta, "The quantum efficiency, eta(\%) = ")
12 disp("part (b)")
13 h=6.626*10^-34; //in Js
14 c=3*10^8; // in m s^-1
15 lamda_c=0.85*10^-6; // in m
16 Eg=((h*c)/lamda_c)/1.6*10^19;
17 disp(Eg, "Maximum possible band gap energy, Eg(eV) = "
18 disp("part (c)")
19 e=1;// electron
20 p=2; // photon
21 \text{ eta=(e/p)};
22 e=1.6*10^-19; // in J
23 h=6.626*10^-34; //in Js
24 c=3*10^8; // in m s^-1
25 \quad lamda_c=0.85*10^-6; // in m
26 Eg=((h*c)/lamda_c);
27 P_{in}=10*10^{-6}; // in W
28 Ip=((eta*e*P_in)/Eg)*10^6;
29 disp(Ip, "The mean output, Ip(micro A) = ")
```

Scilab code Exa 8.3 quantum efficiency and responsivity

```
1 //Example 8.3: The quantum efficiency and The
      responsivity of the diode
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 disp("part (a)")
8 e=2*10^10; // in s^-1
9 p=5*10^10; // in s^-1
10 eta=e/p;
11 disp(eta, "The quantum efficiency = ")
12 disp("part (b)")
13 e=2*10^10; // in s^-1
14 p=5*10^10; // in s^-1
15 eta=e/p;
16 e=1.6*10^-19; // in J
17 h=6.626*10^-34; //in Js
18 c=3*10^8; // in m s^-1
19 lamda=0.90*10^-6; // in m
20 R=(eta*e*lamda)/(h*c);
21 disp(R, "The responsivity of the diode, R(AW^-1) = ")
```

Scilab code Exa 8.4 multiplication factor

```
1 //Example 8.4: The multiplication
2 clc;
3 clear;
4 close;
5 format('v',5)
```

```
6 //given data :
7 eta=40/100; //
8 e=1.6*10^-19; // in J
9 h=6.626*10^-34; //in Js
10 c=3*10^8; // in m s^-1
11 lamda=1.3*10^-6; // in m
12 P_in=0.3*10^-6; // in W
13 I=6*10^-6; // in A
14 M=(I*h*c)/(P_in*eta*e*lamda);
15 disp(M,"The multiplication factor, M = ")
```

Scilab code Exa 8.5 incident rate of photon

```
1 //Example 8.5: Photon rate
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',9)
7 e=1.6*10^-19; // in J
8 M=800;
9 eta=90/100; // quantum efficiency
10 I=2*10^-9; // in A
11 P_rate=I/(e*eta*M);
12 disp(P_rate, "Photon incident rate(s^-1) = ")
```

Scilab code Exa 8.6 gain and photocurrent

```
1 //Example 8.6: Gain and The output photocurrent
2 clc;
3 clear;
4 close;
5 //given data :
```

```
6 format('v',6)
7 disp("part (a)")
8 tf = 6*10^-12; // in s
9 del_f = 450*10^6; // in Hz
10 G=1/(2*%pi*tf*del_f);
11 disp(G,"the gain = ")
12 disp("part (b)")
13 format('e',10)
14 tf = 6*10^-12; // in s
15 del_f = 450 * 10^6; // in Hz
16 G=1/(2*%pi*tf*del_f);
17 eta=75/100;
18 P_{in}=5*10^{-6}; // in W
19 e=1.6*10^-19; // in J
20 \quad lamda=1.3*10^-6;
21 h=6.626*10^-34; //in Js
22 c=3*10^8; // in m s^-1
23 I=(G*eta*P_in*e*lamda)/(h*c);
24 disp(I, "The output photo-current, I(A)")
```

Scilab code Exa 8.7 rms value of shot noise current dark current and thermal noise current and singula to noise ratio

```
//Example 8.7: rms value of shot noise ,dark noise
and thermal noise current and S/N ratio

clc;
clc;
clear;
close;
format('v',6)
disp("part (a)")
n=0.7;//efficiency
e=1.6*10^-19;//charge
h=1.3;//in micro meter
hc=6.626*10^-34;//plack constant
c=3*10^8;//m/s
```

```
12 pin=500; / \text{nW}
13 Ip=((n*e*h*10^-6*pin*10^-9)/(hc*c)); //in amperes
14 df = 25; //Mhz
15 f1=1;//
16 is2=(2*e*Ip*df*10^6*f1); //
17 is=sqrt(is2);//in amperes
18 Id=5*10^-9; //amperes
19 id2=(2*e*Id*df*10^6);//
20 id=sqrt(id2);//in amperes
21 k=1.38*10^-23;//
22 t=300; //in kelvin
23 rl=1000;//ohms
24 it2=((4*k*t*df*10^6)/rl);//
25 it=sqrt(it2);//in amperes
26 disp(is*10^9,"rms value of shot noise current is, (nA
      )=")
27 disp(id*10^9, "rms value of dark current is, (nA)=")
28 disp(it*10^9, "rms value of thermal noise current is
      (nA)=")
29 format('v',4)
30 disp("part (b)")
31 n=0.7; //efficiency
32 e=1.6*10^-19; // charge
33 h=1.3; //in micro meter
34 hc=6.626*10^-34; // plack constant
35 \text{ c=}3*10^8; //m/s
36 \text{ pin} = 500; //\text{nW}
37 \text{ Ip} = ((n*e*h*10^-6*pin*10^-9)/(hc*c)); //in \text{ amperes}
38 	 df = 25; //Mhz
39 f1=1;//
40 is2=(2*e*Ip*df*10^6*f1);/
41 is=sqrt(is2);//in amperes
42 Id=5*10^-9; //amperes
43 id2=(2*e*Id*df*10^6);//
44 id=sqrt(id2);//in amperes
45 \text{ k=1.38*10}^-23; //
46 t=300; //in kelvin
47 rl=1000; //ohms
```

```
48 it2=((4*k*t*df*10^6)/r1);//
49 it=sqrt(it2);//in amperes
50 itt2=is2+id2+it2;//in A^2
51 ip2=Ip^2;//
52 sn=ip2/itt2;//
53 disp(sn,"S/N ratio is")
54 //S/N ratio is calculated wrong in the textbook
```

Optoelectronic Modulators

Scilab code Exa 9.1 thickness

```
1 //Example 9.1: The thickness
2 clc;
3 clear;
4 close;
5 format('v',7)
6 //given data:
7 lamda=589.3*10^-9;// in m
8 ne=1.553;
9 no=1.544;
10 x=(lamda/(4*(ne-no)))*10^3;
11 disp(x,"The thickness of the a quarter wave plate,x(mm) = ")
```

Scilab code Exa 9.2 thickness

```
1 //Example 9.2: The thickness
2 clc;
3 clear;
```

```
4 close;
5 //given data:
6 format('v',7)
7 lamda=589.3*10^-9;// in m
8 ne=1.486;
9 no=1.658;
10 x=(lamda/(2*(no-ne)))*10^3;
11 disp(x,"The thickness of the a quarter wave plate,x(mm) = ")
```

Scilab code Exa 9.3 change in refrative index and vpi

```
1 //Example 9.3: change in refractive index , net phase
      shiftand Vpi
2 clc;
3 clear;
4 close;
5 format('v',6)
6 v=5; //kV
7 1=1; //cm
8 ez=(v*10^3)/(1*10^-2); //in V/m
9 no=1.51;//
10 r63=10.5*10^{-12}; //m/V
11 dn = ((1/2)*no^3*r63*ez); //
12 h=550; /nm
13 dfi = ((2*\%pi*dn*l*10^-2)/(h*10^-9)); //
14 fi=2*dfi;//
15 vpi = ((h*10^-9)/(2*no^3*r63))*10^-3; //kV
16 disp(dfi, "change in refrative index is")
17 disp(fi,"net phase shift is")
18 format('v',4)
19 disp(vpi, "Vpi in kV is")
20 //refractive index and phase shift is in the form of
       pi in the textbook
```

Scilab code Exa 9.4 phase difference additional phase difference and Vpi

```
1 //Example 9.4: phase difference, additional phase
      difference and Vpi
2 clc;
3 clear;
4 close;
5 format('v',7)
6 disp("part (a)")
7 h=550; //nm
8 1=3; //cm
9 no=1.51; //
10 ne=1.47; //
11 dfi = ((2*\%pi*1*10^-2*(no-ne))/(h*10^-9)); //
12 disp(dfi, "phase differnce is")
13 //phase difference is in the form of pi in the
      textbook
14 disp("part (b)")
15 no=1.51;//
16 r63=26.4*10^--12; //m/V
17 V = 200; //
18 d=0.25; //cm
19 dfi = ((\%pi*r63*no^3*(V)*(1*10^-2))/(h*10^-9*d*10^-2))
      ; / /
20 disp(dfi, "additional phase differnce is")
21 //additional phase difference is in the form of pi
     in the textbook
22 disp("part (c)")
23 r63=26.4*10^-12; //m/V
24 format('v',5)
25 V = 200; //
26 d=0.25; /cm
27 dfi = ((\%pi*r63*no^3*(V)*(1*10^-2))/(h*10^-9*d*10^-2))
      ;//
```

```
28 vpi=((h*10^-9)/(no^3*r63))*(d/1);//V
29 disp(vpi,"Vpi in V is")
```

Scilab code Exa 9.5 angle and relative intensity

```
1 //Example 9.5: angle and relative intensity
2 clc;
3 clear;
4 close;
5 //given data :
6 disp("part (a)")
7 format('v',5)
8 m = 1;
9 1=633*10^-9; // in m
10 f = 5*10^6; // in Hz
11 v=1500; //in m/s
12 n=1.33; // for water
13 A=v/f;
14 theta=asind((1/(n*A)));
15 disp(theta, "angle (degree) = ")
16 disp("part (b)")
17 format('v',6)
18 \text{ del_n=} 10^-5;
19 L=1*10^-2; // in m
20 lamda=633*10^-9; // in m
21 eta=(%pi^2*del_n^2*L^2)/lamda^2;
22 disp(eta, "The relative intensity = ")
```

Optical amplifiers

Scilab code Exa 10.1 refractive index and spectral bandwidth

```
1 //Example 10.1; refractive index and bandwidth
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 lamda=1.55*10^-6; // in m
8 del_lamda=1*10^-9; // in m
9 L=320*10^-6; // in m
10 n=(lamda)^2/(2*del_lamda*L);
11 Gs=10^{(5/10)}; // 5 dB is equivalent to 3.16
12 R1 = 30/100;
13 R2 = R1;
14 c=3*10^8; // in m/s
15 del_v=(c/(pi*n*L))*asin((1-(Gs*sqrt(R1*R2)))/(sqrt)
      (4*Gs*sqrt(R1*R2))));
16 disp(n, "refrative index is")
17 format('v',6)
18 disp(del_v*10^-9, "spectral bandwidth in GHz is")
19 //bandwidth is calculated wrong in the textbook
```

Scilab code Exa 10.2 small signal gain and maximum possible achievable gain

```
1 //Example 10.2; small-signal gain of EDFA and maximum
       pssible achievable gain
2 clc;
3 clear;
4 close;
5 \text{ ts=0.80;} //
6 sa=4.6444*10^-25; //in m^2
7 n12=6*10^24; //m^3
8 se=4.644*10^-25; //m^2
9 n21=0.70; //
10 l=7; //in meter
11 x=((sa*n12*l*(((se/sa)+1)*n21-1))); //
12 G=ts*exp(x);//
13 Gdb=10*log10(G);//
14 Gmax = exp(se*n12*1); //
15 Gmaxdb=10*log10(Gmax);//
16 disp(Gdb, "small signal gain of EDFA in dB is")
17 disp(Gmaxdb, "maximum possible achievable gain in dB
      is")
```

Scilab code Exa 10.3 output signal power and overall gain

```
1 //Example 10.3; output signal power and overall gain
2 clc;
3 clear;
4 close;
5 format('v',6)
6 disp("part (a)")
7 psin=1*10^-6; //in watts
```

```
8 ppin=1;//in watts
9 gr=5*10^-14; /mW^-1
10 ap1=60*10^-12; //\text{m}^2
11 1 = 2000; //meter
12 asdb=0.15; //dB/km
13 as=3.39*10^-5; //m^-1
14 apdb=0.20; //db/km
15 ap=4.50*10^-5; //m^-1
16 z = (1 - \exp(-ap*1))/ap; //
17 y=(gr/ap1);//
18 y1=z*y; //
19 y2=y1-(as*1);//
20 psl=psin*exp(y2);//
21 disp(psl*10^6, output signal power for forward
      pumping in micro Watt is")
22 format('v',5)
23 disp("part (b)")
24 y1=z*y; //
25 y2=y1-(as*1); //
26 psl=psin*exp(y2);//
27 gfra=psl/(psin);//
28 Gdb=10*log10(gfra);//
29 disp(Gdb, "overall gain in dB is")
```

Wavelength division multiplexing

Scilab code Exa 11.1 interaction length

```
1 //Example 11.1:interaction length
2 clc;
3 clear;
4 close;
5 format('v',6)
6 po=1;//assume
7 p1=po/2;//
8 p2=p1;//
9 kl=asin(sqrt(p1));//in degree
10 disp(kl,"interaction length is")
11 //answer is in the form of pi in the textbook
```

Scilab code Exa 11.2 position of the output ports

```
1 //Example 11.2:position
2 clc;
```

```
3 clear;
4 close;
5 a=8.2; //in micro meter
6 \text{ n1=1.45;} //
7 n2=1.446; //
8 h1=1.31; //in micro meter
9 h2=1.55; ///in micro meter
10 v1=((2*%pi*a*sqrt(n1^2-n2^2))/h1);//
11 v2=((2*%pi*a*sqrt(n1^2-n2^2))/h2);//
12 db=2.439; //
13 del=5.5096*10^-3;//
14 k1=1.0483; /mm^-1; //
15 k2=1.2839///m^{-1}
16 l1=((\%pi)/(4*k1));//in mm
17 12 = ((\%pi)/(4*k2)); //in mm
18 disp("output port positioned at "+string(12)+" mm
      with respect to the input port will gather
      signals at h1=1310nm")
19 disp("output port positioned at "+string(11)+" mm
      with respect to the input port will gather
      signals at h1=1550nm")
```

Scilab code Exa 11.4 order

```
1 //Example 11.4: ARRAYED GUIDE
2 clc;
3 clear;
4 close;
5 //given data:
6 c=3*10^8;
7 lamda_c=1.55*10^-6; // in m
8 vc=c/lamda_c;
9 n=16; // number of channel
10 f=100*10^9; // in Hz
11 delV_FSR=n*f;
```

```
12 m=round(vc/delV_FSR);
13 disp(m,"required order of the arrayed waveguide, = "
     )
```

Fiber optic communication system

Scilab code Exa 12.1 maximum possible link length and total rise time

```
1 //Example 12.1: link length and reise time
2 clc;
3 clear;
4 close;
5 af = 2.5; //dB/km
6 ac=0.5; //dB/splice
7 nc=1; //
8 1c=1; //dB
9 ncc=2;//
10 plx = -10; //dBm
11 prx=-42; //dBm
12 Ms=6; //dB
13 L=((plx-prx-Ms-(lc*ncc))/(af+ac));//
14 TTX=12; //NS
15 TRX=11; //NS
16 NS1=3; //NS/KM
17 NS2=1; //NS/KM
18 tmat=(NS1*L); //ns
19 tint=(NS2*L); //ns
```

```
20 tsys=sqrt((TTX^2+tmat^2+tint^2+TRX^2)); // ns
21 disp(L,"maximum possible link length in km is")
22 disp(round(tsys),"total rise time of the system in ns is")
```

Scilab code Exa 12.2 link length and bandwidth

```
1 //Example 12.2: link length and bandwidth
2 clc;
3 clear;
4 close;
5 format('v',4)
6 disp("part (a)")
7 af = 3; //dB/km
8 ac=0.5; //dB/splice
9 \text{ nc=1;} //
10 1c=1; //dB
11 ncc=1.5; //
12 plx=0; //dBm
13 prx=-25; //dBm
14 Ms=7; //dB
15 L=((plx-prx-Ms-(lc*ncc))/(af+ac));
16 TTX=12; //NS
17 TRX=11; //NS
18 NS1=3; //NS/KM
19 NS2=1; //NS/KM
20 tmat=(NS1*L); //ns
21 tint=(NS2*L); //ns
22 tsys=sqrt((TTX^2+tmat^2+tint^2+TRX^2));//ns
23 disp(L,"maximum possible link length in km is")
24 format('v',3)
25 disp("part (b)")
26 af = 3; //dB/km
27 ac=0.5; //dB/splice
28 nc=1; //
```

```
29  lc=1; //dB
30  ncc=1.5; //
31  plx=-0; //dBm
32  prx=-25; //dBm
33  Ms=7; //dB
34  L=((plx-prx-Ms-(lc*ncc))/(af+ac)); //
35  TTX=1; //NS
36  TRX=5; //NS
37  NS1=9; //NS/KM
38  NS2=2; //NS/KM
39  tf=((NS1*L)^2+(NS2*L)^2); //
40  tsys=sqrt((TTX^2+tf+TRX^2)); //ns
41  df=0.35/(tsys*10^-3); //
42  disp(round(df), "system bandwidth in MHz iz")
```

Scilab code Exa 12.3 number of subscribers

```
1 //Example 12.3;no. of subscribers
2 clc;
3 clear;
4 close;
5 pt=1; //mW
6 pn=-40; //dBm
7 pn1=10^(pn/10); //
8 c=0.05; //
9 d=0.11; //
10 x=((pn1)/(pt*c)); //
11 y=((log10(x))/(log10((1-d)*(1-c)))); //
12 n=y+1; //
13 disp(round(n), "no. of subscribers are")
```

Scilab code Exa 12.4 total power

```
//Example 12.4: Total power
clc;
clear;
close;
//given data :
L_eff=20;// in km
del_lamdaC=125;// in nm
gR=6*10^-14;// m/W
A_eff=55*10^-12;// in m^2;
del_lamdaS=0.8;// in nm
N=32;// number of channels
F=0.1;// constant
P_tot=(4*F*del_lamdaC*A_eff)/(gR*del_lamdaS*L_eff*(N-1));
disp(P_tot,"Total power, P_tot(mW) = ")
```

Scilab code Exa 12.5 SBS threshold power

```
1 //Example 12.5: SBS threshold power
2 clc;
3 clear;
4 close;
5 //given data :
6 gb=4*10^-11; // in m/W
7 A_eff=55*10^-12; // in m<sup>2</sup>
8 L_eff=20; // in km
9 lamda_p=1.55; // micro-m
10 n=1.46; // constant
11 Va=5960; // for the silica fiber in m-s^-1
12 Vb=(2*n*Va)/lamda_p;
13 del_v=100*10^6; // in Hz
14 del_Vb=20*10^6; // in Hz
15 b1=1;
16 b2=2;
17 P_{th}=((21*b1*A_eff)/(gb*L_eff))*(1+(del_v/del_Vb))
```

- 18 P_th1=((21*b2*A_eff)/(gb*L_eff))*(1+(del_v/del_Vb))
- 19 disp(P_th,"SBS threshold power for the worst case in mW")
- 20 disp(P_th1,"SBS threshold power for the best
 possible case in mW")

Fiber optic sensors

Scilab code Exa 13.1 plot the graph

```
1 //Example 13.1: plot
2 clc;
3 clear;
4 close;
5 lod=[0;20;40;60;80;100;160];//in micro meter
6 slong=[1.0;0.95;0.92;0.89;0.86;0.83;0.80];//
7 lad=[0;10;20;30;40;50;60;70;80;90;100];//in micro
     meter
8 slat=[0;0.1;0.2;0.3;0.4;0.5;0.6;0.7;0.8;0.9;1.0];//
9 add=[0;1;2;3;4;5;6;7;8;9;10];//
10 sang=[0;0.5;0.6;0.7;0.8;0.9;1.0;1.1;.12];//
11 t=0:20:200;
12 s1=1.0:-0.03:0.7;//
13 subplot (131)
14 plot(t,s1);//
15 xtitle("Variation of Slong as a function of x (
            y = 0 and
                         =0) ")
16 xlabel ("Longitudinal displacement x (micro meter)
17 ylabel("Slong (normalised)")
18 t1=0:10:100;
```

```
19 s2=1:-0.1:0; //
20 subplot (132)
21 plot(t1,s2);//
22 xtitle ("Variation of Slat as a function of
                                                    y (
      with
            x = 0 and
                          =0) ")
23 xlabel ("Lateral displacement
                                     y (micro meter)")
24 ylabel("Slat (normalised)")
25 t2=0:1:10;
26 s3=1.0:-0.03:0.7;//
27 subplot (133)
28 plot(t2,s3);//
29 xtitle ("Variation of Sang as a function of
           x = 0 and
                      y = 0) ")
                                        (deg)")
30 xlabel ("Angular displacement
31 ylabel("Sang (normalised)")
```

Scilab code Exa 13.2 phase change per unit length

```
1 //Example 13.2: phase change
    2 clc;
    3 clear;
   4 close;
    5 format('v',6)
    6 //given data :
    7 n=1.45; // index of core
   8 a=10^-5; // in C^-1
    9 b=5.1*10^-7; // in C^-1
10 lamda=.633*10^-6; // in m
11 // formula:- (1/L)*(del_fi/del_T)=((2*PI)/lamda)[(n/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/del_fi/d
                                L)*(del_L/del_T)+(del_n/del_T)
12 \ // \, let \ we \ assume \ a = del_n \, / \, del_T \, \, , \ b = (1/L) \, * ( \, del_L \, / \, del_T \, )
                                   , c = (1/L) * (del_fi/del_T)
13 c=((2*\%pi)/lamda)*((n*b)+a);
14 disp(c, "phase change, (rad/m C) = ")
```

Scilab code Exa 13.3 phase shift

```
1 //Example 13.3: phase shift
2 clc;
3 clear;
4 close;
5 //given data :
6 format('e',9)
7 L=500; // in m
8 D=0.1; // in m
9 ohm=7.3*10^-5; // in rad s^-1
10 lamda=0.85*10^-6; // in m
11 c=3*10^8; // in m/s
12 del_fi=(2*%pi*L*D*ohm)/(c*lamda);
13 disp(del_fi,"phase shift, del_fi(rad) = ")
```

Laser based systems

Scilab code Exa 14.1 energy and threshold electrical energy

```
1 //Example 14.1: energy and threshold electrical
      energy
2 clc;
3 clear;
4 close;
5 format('v',4)
6 disp("part (a)")
7 no=1.9*10^19; //\text{cm}^-3; //
8 hc=6.6*10^-34;
9 v=5.45*10^14; //Hz
10 av=2; //
11 nv=1; //
12 n2=no/2;//
13 eng=((n2*hc*v)/(av*nv));// J cm^-2
14 disp(eng, "energy in J \text{ cm}^-2 \text{ is}")
15 format('v',5)
16 disp("part (b)")
17 oe=0.50;//
18 mr = 0.15; //
19 lr=0.20;//
20 teng=eng/(oe*mr*lr);//
```

```
21 disp(teng,"threshold energy in J cm^-2 is")
22 //electrical energy is calculated wrong in the textbook
```

Scilab code Exa 14.3 maximum power emerging

```
1 //Example 14.3: output power
2 clc;
3 clear;
4 close;
5 h=0.6943*10^-6;//
6 \text{ lm}=10; //\text{in cm}
7 r1=1.0;//
8 \text{ r2=0.8;} //
9 t1=0.98; //
10 as=1; //\text{cm}^2; //
11 Ls=2; //cm
12 gth=((1/(2*lm))*log((1/(r1*r2*(t1)^8))))+(as*Ls)/lm;
13 sg=1.5*10^-20; //
14 ndth = gth/sg; //cm^-3; //
15 nth=ndth*as*lm; //atoms
16 ni=5*nth; //atoms
17 ng=1.78;//
18 ns=2.7;//
19 lair=2;//
20 c=3*10^10; //
21 trt = ((2*ng*lm)/c) + ((2*ns*Ls)/c) + ((2*lair)/c); //
       seconds
22 \operatorname{npmax} = ((\operatorname{ni-nth})/2) - (\operatorname{nth}/2) * \log(\operatorname{ni/nth}); // \operatorname{photons}
23 L=14; //cm
24 at=((as*Ls)/L)+((1/(2*L))*log(1/(r1*t1^8)));//
25 aext=((1/(2*L))*log(1/r2));//
26 tp=((trt)/(1-(r1*r2*t1^8*exp(-2*as*Ls)))); // seconds
27 \text{ hc} = 6.6 * 10^{-34}; //
```

```
28 pmax=((aext/at)*hc*c*npmax)/(h*tp);//in watts
29 disp(pmax*10^-6, "maximum power in MW is")
30 //answer is wrong in the textbook
```

Scilab code Exa 14.4 pulse width and spatial length

```
1 //Example 14.4: pulse width and spatial length
2 clc;
3 clear;
4 close;
5 format('v',5)
6 disp("part (a)")
7 //given data :
8 del_v=1.5*10^9; // in Hz
9 tau_p=1/del_v;
10 C=3*10^8; // constant
11 disp(tau_p*10^9, "pulse width, del_v(ns) = ")
12 Lp=C*tau_p;
13 disp(Lp*10^2, "spatial length, Lp(cm) = ")
14 //spatial length is calculated wrong in the textbook
15 format('v',5)
16 disp("part (b)")
17 del_v=6*10^10; // in Hz
18 tau_p=1/del_v;
19 C=3*10^8; // constant
20 \operatorname{disp}(\operatorname{tau_p*10^12}, \operatorname{"pulse} \operatorname{width}, \operatorname{del_v}(\operatorname{ps}) = \operatorname{"})
21 Lp=C*tau_p*10^3;
22 disp(Lp, "spatial length, Lp(mm) = ")
```

Scilab code Exa 14.5 time difference

```
1 //Example 14.5: time difference 2 clc;
```

```
3 clear;
4 close;
5 format('v',5)
6 n=1.33;//
7 x=2;//
8 l=50;//m
9 c=3*10^8;//m/s
10 dt=((n*x*1)/c);//s
11 disp(dt*10^6,"time difference is,(micro-seconds)=")
```