Mean-field theory of graph neural networks in graph partitioning

Tatsuro Kawamoto, Masashi Tsubaki (AIST, Japan), Tomoyuki Obuchi (Tokyo Tech., Japan)

Background

When Graph Neural Networks (GNN) perform well, is it thanks to

- · learning of model parameters (e.g., backprop.)? or
- · architecture of the model (nonlinear structure + input graph) itself?

Question

For a simple graph partitioning problem, does a GNN already perform well without training?

Can we evaluate the performance analytically?

$\begin{array}{c} \textbf{Stochastic block model inference} & \textbf{Graph partitioning} \\ |V| = N \\ P(A_{ij} = 1) = p_{\text{in}} \\ \hline P(A_{ij} = 1) = p_{\text{in}} \\ \hline \\ (\text{equal-size groups}) \\ \end{array}$

GNN is related to many other algorithms

$$x_{i\mu}^{t+1} = \sum_{j} M_{ij} \varphi \left(\sum_{\nu} \phi(x_{j\nu}^t) W_{\nu\mu}^t \right) + b_{i\mu}^t$$

algorithm	domain	M	$\phi(x)$	$\varphi(x)$	W^t	b^t	$\{W^t, b^t\}$ update
untrained GNN	V	\overline{A}	anh	I(x)	random	omitted	not trained
trained GNN [KipfWelling2016]	V	$I\!-\!L$	ReLu	I(x)	trained	omitted	trained via backpro
Spectral method	V	L	I(x)	I(x)	QR	/	updated at each lay
EM + BP	E	B	softmax	$\log(x)$	learned	learned	learned via M-step

Mean-field (Martin-Siggia-Rose formalism)

[A Crisanti, HJ Sommers, and H Sompolinsky, (1990)]

We introduce a group-wise (macroscopic) state variable.

$$\mathbf{x}_{\sigma\mu}^t \equiv (\gamma_\sigma N)^{-1} \sum_{i \in V_\sigma} x_{i\mu}^t \qquad \qquad \mathbf{x}^t = [\mathbf{x}_{\sigma\mu}^t] \quad (2 \times \mathbf{D} \text{ matrix})$$

$$\sigma \in \{1,2\} \quad \text{group label}$$

The state equation

$$P(\mathbf{x}^{t+1}) = \left\langle \prod_{\sigma\mu} \delta \left(\mathbf{x}_{\sigma\mu}^{t+1} - \frac{1}{\gamma_{\sigma}N} \sum_{i \in V_{\sigma}} \sum_{j\nu} A_{ij} \phi(\mathbf{x}_{j\nu}^{t}) W_{\nu\mu}^{t} \right) \right\rangle_{A,W^{t},X^{t}}$$

Covariance matrix of \mathbf{x}^t in the limit of $\mathbf{T} = \mathbf{\infty}$ $C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \quad B = \frac{N}{4} \begin{pmatrix} p_{\rm in} & p_{\rm out} \\ p_{\rm out} & p_{\rm in} \end{pmatrix}$

Averages w.r.t.

- graph(stochastic block model)
- $W^t_{\nu\mu} \sim \mathcal{N}(0, 1/D)$
- state in the previous layer t

Comparison of the (algorithmic) detectability limit estimates between the mean-field result & numerical experiments

Numerical experiments

Even a minimal GNN performs well, indeed.

Self-consistent equation w.r.t.C

$$C_{\sigma\sigma'} = \frac{1}{\gamma_{\sigma}\gamma_{\sigma'}} \sum_{\tilde{\sigma}\tilde{\sigma}'} B_{\sigma\tilde{\sigma}} B_{\sigma'\tilde{\sigma}'} \int \frac{d\mathsf{x} \,\mathrm{e}^{-\frac{1}{2}\mathsf{x}^{\top}C^{-1}\mathsf{x}}}{(2\pi)^{\frac{N}{2}} \sqrt{\det C}} \,\phi(\mathsf{x}_{\tilde{\sigma}}) \phi(\mathsf{x}_{\tilde{\sigma}'})$$

A trained GNN

(This is not the only way, and probably not the best way.)

normalized mutual information error function

$$a_{i\sigma} = \sum_{\mu} x_{i\mu} W_{\mu\sigma}^{\text{out}} \qquad p_{i\sigma} \equiv \text{softmax}(a_{i\sigma})$$

$$P_{\sigma\hat{\sigma}} = \frac{1}{N} \sum_{i=1}^{N} P(i \in V_{\sigma}, i \in V_{\hat{\sigma}}) = \frac{1}{N} \sum_{i \in V_{\sigma}} p_{i\hat{\sigma}},$$

$$P_{\sigma} = \sum_{\hat{\sigma}} P_{\sigma\hat{\sigma}} = \gamma_{\sigma},$$

$$\text{NMI}([P_{\sigma\hat{\sigma}}]) = 2 \left(1 - \frac{\sum_{\sigma\hat{\sigma}} P_{\sigma\hat{\sigma}} \log P_{\sigma\hat{\sigma}}}{\sum_{\sigma} \gamma_{\sigma} \log \gamma_{\sigma} + \sum_{\sigma\hat{\sigma}} P_{\sigma\hat{\sigma}} \log \sum_{\sigma} P_{\sigma\hat{\sigma}}}\right)$$

