CS150A Database

Lu Sun

School of Information Science and Technology ShanghaiTech University

Oct. 27, 2022

Today:

- Query Optimization II:
 - Costing and Searching

Readings:

 Database Management Systems (DBMS), Chapter 15

What is needed for query optimization?

- Given: A closed set of operators
 - Relational ops (table in, table out)
 - Physical implementations (of those ops and a few more)

1. Plan space

Based on relational equivalences, different implementations

Cost estimation based on

- Cost formulas
- Size estimation, in turn based on
 - Catalog information on base tables
 - Selectivity (Reduction Factor) estimation

3. A search algorithm

To sift through the plan space and find lowest cost option!

Reminder

- We're focusing on "System R" ("Selinger") optimizers
 - Remarkably comprehensive framework
 - Many of the details have been refined over time
 - We'll see some refinements today
 - This remains an area of ongoing research!

Big Picture of System R Optimizer

- Works well for up to 10-15 joins.
- Plan Space: Too large, must be pruned.
 - Algorithmic insight:
 - Many plans could have the same "overpriced" subtree
 - Ignore all those plans
 - Common heuristic: consider only left-deep plans
 - Common heuristic: avoid Cartesian products
- Cost estimation
 - Very inexact, but works ok in practice.
 - Stats in system catalogs used to estimate sizes & costs
 - Considers combination of CPU and I/O costs.
 - System R's scheme has been improved since that time.
- Search Algorithm: Dynamic Programming

Query Blocks: Units of Optimization

- Break query into query blocks
- Optimize one block at a time
- Uncorrelated nested blocks computed once
- Correlated nested blocks are like function calls
 - But sometimes can be "decorrelated"
 - Beyond the scope of CS150A!

```
SELECT S.sname
FROM Sailors S
WHERE S.age IN
```

Outer block

(SELECT MAX (S2.age) FROM Sailors S2 GROUP BY S2.rating)

Nested block

Query Blocks: Units of Optimization Pt 2

- For each block, the plans considered are:
 - All relevant access methods, for each relation in FROM clause.
 - All left-deep join trees
 - right branch always a base table
 - consider all join orders and join methods


```
SELECT S.sname
FROM Sailors S
WHERE S.age IN
```

Outer block

(SELECT MAX (S2.age) FROM Sailors S2 GROUP BY S2.rating)

Nested block

"Physical" Properties

- Two common "physical" properties of an output:
 - Sort order
 - Hash Grouping
- Certain operators produce these properties in output
 - E.g. Index scan (result is sorted)
 - E.g. Sort (result is sorted)
 - E.g. Hash (result is grouped)
- Certain operators require these properties at input
 - E.g. MergeJoin requires sorted input
- Certain operators preserve these properties from inputs
 - E.g. MergeJoin preserves sort order of inputs
 - E.g. INLJ preserves sort order of outer (left) input

Queries Over Multiple Relations

- A System R heuristic: only left-deep join trees considered.
 - Restricts the search space
 - Left-deep trees allow us to generate all fully pipelined plans.
 - Intermediate results not written to temporary files.
 - Not all left-deep trees are fully pipelined (e.g., SM join).

Plan Space Review

- For a SQL query, full plan space:
 - All equivalent relational algebra expressions
 - Based on the equivalence rules we learned
 - All mixes of physical implementations of those algebra expressions
- We might prune this space:
 - Selection/Projection pushdown
 - Left-deep trees only
 - Avoid cartesian products
- Along the way we may care about physical properties like sorting
 - Because downstream ops may depend on them
 - And enforcing them later may be expensive

Query Optimization: Cost Estimation

- 1. Plan Space
- 2. Cost Estimation
- 3. Search Algorithm

Cost Estimation

- For each plan considered, must estimate total cost:
 - Must estimate cost of each operation in plan tree.
 - Depends on input cardinalities.
 - We've already discussed this for various operators
 - sequential scan, index scan, joins, etc.
 - Must estimate size of result for each operation in tree!
 - Because it determines downstream input cardinalities!
 - Use information about the input relations.
 - For selections and joins, assume independence of predicates.
- In System R, cost is boiled down to a single number consisting of #I/O + CPU-factor * #tuples

Statistics and Catalogs

- Need info on relations and indexes involved.
- Catalogs typically contain at least:

Statistic	Meaning
NTuples	# of tuples in a table (cardinality)
NPages	# of disk pages in a table
Low/High	min/max value in a column
Nkeys	# of distinct values in a column
lHeight	the height of an index
INPages	# of disk pages in an index

- Catalogs updated periodically.
 - Too expensive to do continuously
 - Lots of approximation anyway, so a little slop here is ok.
- Modern systems do more
 - Esp. keep more detailed statistical information on data values
 - e.g., histograms

Size Estimation and Selectivity

- Max output cardinality = product of input cardinalities
- Selectivity (sel) associated with each term
 - reflects the impact of the term in reducing result size.
 - selectivity = |output| / |input|
 - Book calls selectivity "Reduction Factor" (RF)
- Avoid confusion:
 - "highly selective" in common English is opposite of a high selectivity value (|output|/|input| high!)

```
SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk
```

Result Size Estimation

- Result cardinality = Max # tuples * product of all selectivities.
- Term col=value (given Nkeys(I) on col)
 - sel = 1/NKeys(I)
- Term col1=col2 (handy for joins too...)
 - sel = 1/MAX(NKeys(I1), NKeys(I2))
 - Why MAX? See bunnies in 2 slides...
- Term col>value
 - sel = (High(I)-value)/(High(I)-Low(I) + 1)
- Note, if missing the needed stats, assume 1/10!!!

Let's dig into selectivity estimation more deeply

- Clarify how some of these estimates came to be
- Refine our stored statistics
- Expose our statistical assumptions

P(leftEar = rightEar)

- 100 bunnies
- 2 distinct LeftEar colors
 - {C1, C2}
- 10 distinct RightEar colors
 - {C1..C10}
- Independent ears
- What's the probability of matching ears?

$$\begin{split} &P(L=R)\\ &= \sum_{i} P(C_{i},C_{i})\\ &= P(C_{1},C_{1}) + P(C_{2},C_{2}) + P(C_{3},C_{3}) + \dots\\ &= (\frac{1}{2} \cdot \frac{1}{10}) + (\frac{1}{2} \cdot \frac{1}{10}) + (0 \cdot \frac{1}{10}) + \dots\\ &= 1/10\\ &= 1/\text{MAX}(2,10) \end{split}$$

Postgres 10.0: src/include/utils/selfuncs.h

```
/* default selectivity estimate for equalities such as "A = b" */
    #define DEFAULT EQ SEL 0.005
    /* default selectivity estimate for inequalities such as "A < b" */
    /* default selectivity estimate for range inequalities "A > b AND A < c" */
    #define DEFAULT RANGE INEQ SEL 0.005
/* default selectivity estimate for pattern-match operators such as LIKE */
    #define DEFAULT_MATCH_SEL 0.005
    /* default number of distinct values in a table */
    #define DEFAULT NUM DISTINCT 200
    /* default selectivity estimate for boolean and null test nodes */
    #define DEFAULT UNK SEL 0.005
    #define DEFAULT_NOT_UNK_SEL (1.0 - DEFAULT_UNK_SEL)
```

Reduction Factors & Histograms

For better estimation, use a histogram

equiwidth

No. of Values	2	3	3	1	8	2	1
Value	099	1-1.99	2-2.99	3-3.99	4-4.99	5-5.99	6-6.99

equidepth

No. of Values	2	3	3	3	3	2	4
Value	099	1-1.99	2-2.99	3-4.05	4.06-4.67	4.68-4.99	5-6.99

Note: 10-bucket equidepth histogram divides the data into deciles

- akin to quantiles, median, etc.

Common trick: "end-biased" histogram

- very frequent values in their own buckets

See also V-Optimal histograms on Wikipedia

- 100 rows
- $\sigma_{p > 99}$?

- 100 rows
- $\sigma_{p > 99}$?

- 100 rows
- $\sigma_{p > 99}$? 50/100 = 50%.

- 100 rows
- $\sigma_{\text{age} < 26}$?

- 100 rows
- $\sigma_{\text{age} < 26}$?

- 100 rows
- $\sigma_{\text{age} < 26}$?

25-20-15-0 40 60 80 100 120 140 p = # potatoes consumed per yr

Uniformity assumption:

Uniform distribution within each bin
Each vertical slice the same
Hence ⅓ of the population of bin [25,30)
has age < 26.

$$10 + 10 + 15 + 10 + (\frac{1}{5} * 5) = 46/100 = 46\%$$

Selectivity of Conjunction

- 100 rows
- $\sigma_{p > 99 \land age < 26}$?
 50% 46%

Selectivity of Conjunction, cont

- 100 rows
- $\sigma_{p > 99 \land age < 26}$?

25 25-20 20 count count 10 10 100 120 80 25 35 45 15 p = # potatoes consumed per yr age

Independence assumption:

- Age and potato consumption are independent
- Hence p bins all shrink by 46%.
- Hence age bins all shrink by 50%.

Selectivity: $50\% \times 46\% = 23\%$

Selectivity of Disjunction

- 100 rows
- $\sigma_{p > 99 \text{ v } p < 60}$?

 50%
 3%

Selectivity of Disjunction, Part 2

- 100 rows
- $\sigma_{p > 99 \text{ v } p < 60}$?
- Selectivity: 50% + 3% = 53%

Selectivity of Disjunction, Part 3

100 rows

20

10

 $\sigma_{p > 99 \text{ v age } < 26}$

100 120 140

80

p = # potatoes consumed per yr

25-20count 15-

35

age

- Answer tuples satisfy one or both predicates
- By independence assumption:
 - Satisfy the first predicate: 50%
 - Satisfy the second predicate: 46%
 - Satisfy both: 50% x 46%
 - Don't double-count!

Selectivity: $50\% + 46\% - (50\% \times 46\%) = 73\%$

Selectivity for more complicated queries?

- R $\bowtie_p \sigma_q(S)$
 - Selectivity of join predicate p is s_p
 - Selectivity of selection predicate q is s_q
 - How to think about overall selectivity?

Join Selectivity

- Recall from algebraic equivalences: $R \bowtie_p S \equiv \sigma_p(R \times S)$
- Hence join selectivity is "just" selectivity s_p
 - Over a big input: |R| x |S|!
- Total rows: $s_p \times |R| \times |S|$

Selectivity for our earlier query?

Recall from algebraic equivalences

$$\mathsf{R}\bowtie_{\mathsf{p}}\sigma_{\mathsf{q}}(\mathsf{S})\equiv\sigma_{\mathsf{p}}(\mathsf{R}\times\sigma_{\mathsf{q}}(\mathsf{S}))\equiv\sigma_{\mathsf{p}\wedge\mathsf{q}}(\mathsf{R}\times\mathsf{S}))$$

- Hence selectivity just s_ps_q
 - Applied to |R| x |S|!
- Total rows: $s_p s_q |R||S|$

Column Equality?

T.p = T.age ?? Intuition: similar to bunny ears, but weighted by the histogram bins.

```
s = 0
For each value v covered in either histogram:
    // uniformity assumption within bins:
    // P(T.p = v) = height(binp(v))/n * 1/width(binp(v))
    // P(T.age = v) = height(binage(v))/n * 1/width(binage(v))
```


Column Equality?

T.p = T.age ?? Intuition: similar to bunny ears, but weighted by the histogram bins.

```
s = 0
For each value v covered in either histogram:
    // uniformity assumption within bins:
    // P(T.p = v) = height(binp(v))/n * 1/width(binp(v))
    // P(T.age = v) = height(binage(v))/n * 1/width(binage(v))
    // independence assumption across columns:
    // P(T.p = v \land T.age = v)
    // = P(T.p = v) * P(T.age = v)
    s += height(binp(v))/(n*width(binp(v)))
              * height(binage(v))/(n*width(binage(v)))
```

Upshot

- Know how to compute selectivities for basic predicates
 - The original Selinger version
 - The histogram version
- Assumption 1: uniform distribution within histogram bins
 - Within a bin, fraction of range = fraction of count

- Assumption 2: independent predicates
 - Selectivity of AND = product of selectivities of predicates
 - Selectivity of OR = sum of selectivities of predicates product of selectivities of predicates
 - Selectivity of NOT = 1 selectivity of predicates
- Joins are not a special case
 - Simply compute the selectivity of all predicates
 - And multiply by the product of the table sizes

Query Optimization

- 1. Plan Space
- 2. Cost Estimation
- 3. Search Algorithm

Enumeration of Alternative Plans

- There are two main cases:
 - Single-table plans (base case)
 - Multiple-table plans (induction)
- Single-table queries include selects, projects, and groupBy/agg:
 - Consider each available access path (file scan / index)
 - Choose the one with the least estimated cost
 - Selection/Projection done on the fly
 - Result pipelined into grouping/aggregation

Cost Estimates for Single-Relation Plans

- Index I on primary key matches selection:
 - Cost is (Height(I) + 1) + 1 for a B+ tree.
- Clustered index I matching selection:
 - (NPages(I)+NPages(R)) * selectivity.
- Non-clustered index I matching selection:
 - (NPages(I)+NTuples(R)) * selectivity.
- Sequential scan of file:
 - NPages(R).
- Recall: Must also charge for duplicate elimination if required

Schema for Examples

Reserves:

- Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- 100 distinct bids.

Sailors:

- Each tuple is 50 bytes long,
- 80 tuples per page, 500 pages.
- 10 ratings, 40,000 sids.

Example

```
SELECT S.sid
FROM Sailors S
WHERE S.rating=8
```

- If we have an index on rating:
 - Cardinality = (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples
 - Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R))
 = (1/10) * (50+500) = 55 pages are retrieved. (This is the cost.)
 - Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R))
 = (1/10) * (50+40000) = 4005 pages are retrieved.
- If we have an index on sid:
 - Would have to retrieve all tuples/pages. With a clustered index, the cost is 50+500, with unclustered index, 50+40000.
- Doing a file scan:
 - We retrieve all file pages (500).

Enumeration of Left-Deep Plans

- Left-deep plans differ in
 - the order of relations
 - the access method for each leaf operator
 - the join method for each join operator

- Enumerated using N passes (if N relations joined):
 - Pass 1: Find best 1-relation plan for each relation
 - **Pass i:** Find best way to join result of an (*i* -1)-relation plan (as outer) to the *i*' th relation. (*i* between 2 and N.)
- For each subset of relations, retain only:
 - Cheapest plan overall, plus
 - Cheapest plan for each interesting order of the tuples.

The Principle of Optimality

- Richard Bellman (slightly adapted to our setting)
- The best overall plan is composed of best decisions on the subplans
 - Optimal result has optimal substructure
- For example, the best left-deep plan to join tables A, B, C is either:
 - (The best plan for joining A, B) ⋈ C
 - (The best plan for joining A, C) ⋈ B
 - (The best plan for joining B, C) ⋈ A
- This is great!
 - When optimizing a subplan (e.g. A ⋈ B), we don't have to think about how it will be used later (e.g. when dealing with C)!

{A, B}

• When optimizing a higher-level plan (e.g. $A \bowtie B \bowtie C$) we can reuse the best results of subroutines (e.g. $A \bowtie B$)!

Dynamic Programming Algorithm for System R

- Principle of optimality allows us to build best subplans "bottom up"
 - Pass 1: Find best plans of height 1 (base table accesses), and record them in a table
 - Pass 2: Find best plans of height 2 (joins of base tables) by combining plans of height 1, record them in a table
 - •
 - Pass i: Find best plans of height i by combining plans of height i 1 with plans of height 1, record them in a table
 - ..
 - Pass n: Find best plan overall by combining plans of height n-1 with plans of height 1.

The Basic Dynamic Programming Table

Table keyed on 1st column

Subset of tables in FROM clause	Best plan	Cost
{R, S}	hashjoin(R,S)	1000
{R, T}	mergejoin(R,T)	700

A Wrinkle: Interesting Orders

- Physical properties can break the principle of optimality
 - For example, consider a suboptimal plan p for A ⋈ B that is ordered on column x
 - Suppose we need to join with table C on column x
 - Sort-merge of p with C might be the best overall plan
 - The best plan for A ⋈ B requires us to sort for Sort-Merge join
 - But the suboptimal plan p doesn't require us to sort A ⋈ B
- Solution: expand our definition of "optimal substructure"
 - The structure will include both the set of tables and the physical properties (order)
 - But not all orders are "interesting"! We can prune further

A Note on "Interesting Orders"

- Physical property: Order.
 When should we care? When is it "interesting"?
- An intermediate result has an "interesting order" if it is sorted by anything we can use later in the query ("downstream" the arrows):
 - ORDER BY attributes
 - GROUP BY attributes
 - Join attributes of yet-to-be-added joins
 - subsequent merge join might be good

The Dynamic Programming Table

Subset of tables in FROM clause	Interesting- order columns	Best plan	Cost
{R, S}	<none></none>	hashjoin(R,S)	1000
{R, S}	<r.a, s.a=""></r.a,>	sortmerge(R,S)	1500

Table keyed on concatenation of 1st two columns

Enumeration of Plans (Contd.)

- First figure out the scans and joins (select-project-join) using D.P.
 - **Avoid Cartesian Products** in dynamic programming as follows: When matching an *i* -1 way subplan with another table, only consider it if
 - There is a join condition between them, or
 - All predicates in WHERE have been "used up" in the i -1 way subplan.
- Then handle ORDER BY, GROUP BY, aggregates etc. as a post-processing step
 - Via "interestingly ordered" plan if chosen (free!)
 - Or via an additional sort/hash operator
- Despite pruning, this System R D.P. algorithm is exponential in #tables.

Example

```
SELECT S.sid, COUNT(*) AS number
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = "red"
GROUP BY S.sid
```

Sailors:

Hash, B+ tree indexes on sid

Reserves:

Clustered B+ tree on bid

B+ on sid

Boats

B+ on *color*

Pass 1: Best plan(s) for each relation

- Sailors, Reserves: File Scan
- Also B+ tree on Reserves.bid as interesting order
- Also B+ tree on Sailors.sid as interesting order
- Boats: B+ tree on color

Subset of tables in FROM clause	Interesting- order columns	Best plan	Cost
{Sailors}		filescan	
{Reserves}		Filescan	
{Boats}		B-tree on color	
{Reserves}	(bid)	B-tree on bid	
{Sailors}	(sid)	B-tree on sid	

Pass 2

```
// for each left-deep logical plan
for each plan P in pass 1
for each FROM table T not in P
// for each physical plan
for each access method M on T
for each join method
generate P ⋈ M(T)
```

- File Scan Reserves (outer) with Boats (inner)
- File Scan Reserves (outer) with Sailors (inner)
- Reserves Btree on bid (outer) with Boats (inner)
- Reserves Btree on bid (outer) with Sailors (inner)
- File Scan Sailors (outer) with Boats (inner)
- File Scan Sailors (outer) with Reserves (inner)
- Boats Btree on color with Sailors (inner)
- Boats Btree on color with Reserves (inner)
- Retain cheapest plan for each (pair of relations, order)

Subset of tables in FROM clause	Interesting- order columns	Best plan	Cost
{Sailors}		filescan	
{Reserves}		Filescan	
{Boats}		B-tree on color	
{Reserves}	(bid)	B-tree on bid	
{Sailors}	(sid)	B-tree on sid	
{Boats, Reserves}	(B.bid) (R.bid)	SortMerge(B-tree on Boats.color, filescan Reserves)	
Etc			

Pass 3 and beyond

- Using Pass 2 plans as outer relations, generate plans for the next join in the same way as Pass 2
 - E.g. {SortMerge(B-tree on Boats.color, filescan Reserves)} (outer) |
 with Sailors (B-tree sid) (inner)
- Then, add cost for groupby/aggregate:
 - This is the cost to sort the result by sid, unless it has already been sorted by a previous operator.
- Then, choose the cheapest plan

```
SELECT S.sid, COUNT(*) AS number
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = "red"
GROUP BY S.sid
```

Now you understand the optimizer!

- Benefit #1: You could build one.
 - And you will!
- Benefit #2: You can influence one
 - People who write non-trivial SQL often get frustrated with the optimizer
 - It picked a crummy plan!
 - It didn't use the index I built!
 - Etc.
 - Understanding the optimizer can lead you to:
 - Design your DB & Indexes better
 - Avoid "weak spots" in your optimizer's implementation
 - Coax your optimizer to do what you want