

19 BUNDESREPUBLIK DEUTSCHLAND

© Offenlegungsschrift © DE 19523497 A 1

(51) Int. Cl.6: B 29 C 43/30 B 29 C 65/66

DEUTSCHES

PATENTAMT

21) Aktenzeichen: 195 23 497.9
 22) Anmeldetag: 28. 6. 95

Offenlegungstag: 2. 1.97

2. 1.07

① Anmelder:

Coronor Composites GmbH, 31224 Peine, DE

(74) Vertreter:

Hoffmeister, H., Dipl.-Phys. Dr.rer.nat., Pat.-Anw., 48147 Münster

2 Erfinder:

Schwinn, Georg, 48599 Gronau, DE; Baldauf, Georg, Dipl.-Ing., 48366 Bad Laer, DE; Boich, Heinz Horst, Dipl.-Ing., 31224 Peine, DE; Thiele, Reiner, Dr.rer.nat. Dipl.-Chem., 31311 Uetze, DE

36 Entgegenhaltungen:

DE 42 43 012 A1 DE 42 38 541 A1 WO 94 00 292

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Verfahren zur Herstellung einer voluminösen Verbundfolie

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung einer voluminösen Verbundfolie, bei der ein Vliesbahn auf eine Seite einer polymerischen Folie aufgelegt und mit Hilfe einer Druckwalze, die mit einer Anordnung von Walzenstacheln versehen ist, an zahlreichen, gegebenenfalls ein erkennbares Muster bildenden Punktbereichen mit der polymerischen Folie fest verbunden wird.

Verfahren zur Herstellung von voluminösen Verbundfolie der genannten Art sind bekannt. US-A-5 399 174 beschreibt ein Verfahren, mit dessen Hilfe eine Verbundfolie hergestellt werden kann, bei der eine primäre polymerische Folie mit einem speziell herge- 15 stellten Vlies verbunden wird, dessen Stränge drucklos miteinander verbunden sind. Mit einem hitzeaktivierten Klebstoff werden die Folie und die Vliesbahn miteinander verbunden. Dabei wird mit Hilfe einer erwärmten Prägewalze, die dem Verbund aus Vliesbahn und poly- 20 merischer Folie bei der Verbindung ein Muster einprägt, eine Verschweißung geschaffen. Insbesondere handelt es sich bei der polymerischen Folie um eine solche, die eine Flüssigkeitsbarriere bildet. Besonderen Wert wird auf die Bauschigkeit und Lockerheit des Vlie- 25 se gelegt, da es auch nach der Befestigung auf der polymerischen Folie seine Bauschigkeit behalten soll.

Das vorbekannte Material wird angewandt insbesondere zur Herstellung eines sogenannten Backsheets bei Windeihösenen. Festzustellen ist, daß das bekannte Verfahren eine sehr aufwendige Herstellung und Vorbehandlung des Vlieses erfordert, wenn dieser eine erhöhte Bauschigkeit erhalten soll.

Es stellt sich die Aufgabe, ein Verfahren zur Herstellung einer voluminösen Verbundfolie anzugeben, bei 35 dem ähnlich wie bei dem bekannten und eingangs beschriebenen Verfahren die Möglichkeit besteht, ein Muster mit Hilfe einer Prägewalze einzubringen und trotzdem eine hohe Bauschigkeit und gute Griffeigenschaften einer insbesondere für Hygieneartikel geeigneten 40 Verbundfolie zu erreichen.

Diese Aufgabe wird gelöst bei einem Verfahren der eingangs genannten Art, das dadurch gekennzeichnet ist, daß die polymerische Folie eine hitzschrumpfende Folie ("Schrumpffolie") ist, deren Schrumpftemperatur 45 Ts unterhalb der Temperatur Tv liegt, bei der das Material, aus dem die Vliesbahn besteht, unerwünschte Änderungen erfährt, und die Schrumpffolie nach der Verbindung mit der Vliesbahn bei der Temperatur Ts geschrumpft wird, so daß die zwischen den Punktbereichen liegenden Vliesabschnitte aufgrund der Verkürzung der Abstände zwischen den Punktbereichen sich bauschen.

Als Material für die polymerische Folie eignet sich beispielsweise eine mehrschichtige Polyethylen 55 (PE)-Folie, die ein Flächengewicht zwischen etwa 30 und 50 g/m² hat. Der darauf aufgebrauchte Vliesstoff kann eine PE-Spinnvliesstoff sein mit einem Flächengewicht von etwa 15 — 20, vorzugsweise 20 g/m². Dabei wird angestrebt, daß das Produkt möglichst voluminös 60 ist, gleichzeitig aber mit einem erkennbaren "Prägemuster" versehen werden kann, wie dies auch aus dem Stand der Technik bekannt ist.

Als Vliesstoffe eignen sich bauschige Vliesstoffe, wie sie aus dem zitierten Stand der Technik und anderen 65 Quellen bekannt sind, beispielsweise Vliesstoffe aus einem oder mehreren Polyolefinen, aus einem Polyester, insbesondere PEPT, oder aus Polyamid. Entsprechend

den eingangs genannten Erfordernissen wird darauf geachtet, daß das Material, aus dem die Vliesbahn besteht, bei der vorgenannten Schrumpftemperatur keine unerwünschten Änderungen erfährt. Diese Formulierung bedeutet, daß möglichst keine Änd rung des Vliesstoffe durch die Wärmebehandlung eintreten soll. Allerdings ist davon auszugehen, daß beispielsweise ein PE-Spinnvlies auch einer gewissen Wärmeschrumpfung unterliegt, wobei diese - unter den gewählten Prozeßbedingungen - aber normalerweise unter 10% liegt und damit wesentlich geringer ausfällt als die anzunehmende Schrumpfung der polymerischen Folie. Durch die Ausnutzung der durch die Schrumpfung sich ergebenden Zugkräfte der polymerischen Folie werden die sich zwischen den Abständen zwischen den Punktbereichen befindenden Strangabschnitte aufgebauscht. Es wird also beobachtet, daß von einer zuvor eher glatten Struktur des Vlieses in eine flauschige Struktur übergegangen wird. Diese flauschige Struktur vergrößert die räumliche Ausdehnung des Verbundstoffes, der damit "dicker" wird, eine angenehme Griffigkeit bekommt und auch ein höheres Flüssigkeitsvolumen aufnehmen kann.

Vorzugsweise wird die zum Schrumpfungsprozeß übliche Wärme von der freien (Rück-)Seite der Folie her zugeführt. Es ist aber auch möglich, die zum Schrumpfungsprozeß erforderliche Wärme von beiden Seiten der aus polymerischer Folie und Vliesbahn bestehenden Verbundbahn zuzuführen.

Vorzugsweise erfolgt die Wärmezufuhr durch Warmluft, Ultraschall oder Infrarotstrahlung. Dabei kann insbesondere von der Vliesbahnseite her die Verbundbahn
die Wärmezufuhr mit einem Warmluftgebläse erwärmt
werden, während sie von der Rückseite her über Infrarotstrahlung aufgeheizt wird. Die Verwendung eines
Wärmegebläses hat den Vorteil, daß es zu einer erhöhten Auflockerung des auf zubauschenden Vlieses
kommt.

Dabei wird normalerweise die Rückseite der polymerischen Folie vollflächig erwärmt.

Entsprechend der geforderten Bauschigkeit sollte die Wärmeschrumpfung der polymerischen Folie wenigstens 10% der Ursprungslänge betragen, d. h., die Folie sollte sich wenigstens auf 90% ihrer Ursprungslänge zusammenziehen. Es sind aber geeignete Schrumpffolien bekannt, die sich bis zu 50% ihrer Ursprungslänge zusammenziehen, so daß eine ausgesprochen stark erkennbare Bauschigkeit eintritt.

Für die Verbindung zwischen der Vliesbahn und der polymerischen Folie wird eine an sich bekannte und im wesentlichen in dem eingangs genannten Stand der Technik auch dargestellte gemusterte Kalanderwalze mit einer besonderen Anordnung von Walzenstacheln verwendet. Eine im Prinzip ähnliche Walze wird auch im vorliegenden Fall verwendet. Dabei verbindet sich die Vliesbahn mit der polymerischen Folie insbesondere durch Heißschmelzen, indem die Amboßwalze und/oder die Druckwalze entsprechend erwärmt werden, wie dies auch dem Stand der Technik an sich bekannt ist.

Vorzugsweise wird daher die polymerische Folie mit wenigstens einer Schmelzkleberbeschichtung versehen, gegebenenfalls auch on-line mit einem solchen Schmelzkleber beschichtet.

Als polymerische Folien eignen sich solche aus einem oder mehrer n Polyolefinen, aus Polyester, insbesondere PEPT, aus Polyamid oder aus PVC; es können auch mehrschichtige Polyethylenfolien vorgesehen werden, wobei eine Schicht als wärmeaktivierbare Haftschicht für Vliesbahn fungiert. Diese Folien werden, wie an sich

3

bekannt, vorgereckt.

Wesentlich ist auch, daß vorzugsweise die verbindenden Punktbereiche (Schweißpunkte) einen Flächenanteil von 2-35%, vorzugsweise von 20-25% der Gesamtfläche der Verbundbahn einnehmen sollten.

Zwar wird vom Verwendungszweck her üblicherweise die polymerische Folie nur auf einer Seite mit einer Vliesbahn oder einer Meltblown-Blasfolie belegt sein. Es soll aber nicht ausgeschlossen sein, daß die polymerische Folie auch auf beiden Seiten mit einer solchen 10 Vliesschicht oder Blasfolie belegt ist.

Wie für den Fachmann ersichtlich, kann die polymerische, wärmeschrumpfende Folie auch durch ein entsprechendes Gewebe oder Gewirke ersetzt sein, das die Schrumpfeigenschaften aufweist. Beispielsweise läßt 15 sich ein solches Gewebe oder Gewirke aus Bändchen herstellen, die aus entsprechender Folie geschnitten sind.

Schließlich sei darauf hingewiesen, daß sich die Erfindung auch auf eine Verbundfolie bezieht, die nach dem 20 vorgenannten Verfahren hergestellt ist.

Ausführungsbeispiele der Erfindung werden im folgenden dargestellt. Die Erläuterung der Erfindung erfolgt anhand der Zeichnung, deren Figuren im einzelnen zeigen:

Fig. 1 in schematischer Ansicht die einzelnen Schritte der Herstellung;

Fig. 2 eine Walzenanordnung, mit der eine Vliesbahn auf einer polymerischen Folie befestigt wird, im Detail;

Fig. 3a —3d Details der Verbundfolienherstellung 30 und deren Verfahrensschritte.

Beispiel 1

In Fig. 1 ist schematisch der Werdegang einer volumi- 35 nösen Verbundfolie gemäß Erfindung dargestellt. In einem Vorratssilo 1 ist ein thermoplastisches Granulat. beispielsweise aus einem entsprechend zu einem Vlies verarbeitbaren Polyethylen, enthalten. Es gelangt in einen Extruder 2, wird von der Extruderschnecke 2' bis 40 zum Mundstück 3 des Extruders vorgetrieben und dann über einen Führungsrüssel 4 in eine Spinndüse 5 eingespeist. Aus der Spinndüse 5 gelangt ein in feinste Fäden aufgeteilter Spinnstrang 6 in den Bereich eines Abschreckgebläses 22, mit dem der Spinnstrang 6 abge- 45 kühlt wird. Der Spinnstrang 6 wird auf einen Netzförderer 7 gegeben, der mit einem Vakuum 8 unterlegt ist, so daß sich der Spinnstrang flach auf den Netzförderer 7 auflegt und mit Hilfe der Kalanderwalzen 9a und 9b komprimiert wird. Er hat in diesem Zustand, nach 50 Durchlauf durch die Walzen 9a und 9b. etwa ein Fläiliangaminht ron 20 g/m?.

Die so gebildete Vliesbahn 10 wird über eine Umlenkwalze 11 und 12 bis zu einer Zuführwalze 12 geführt und dort nochmals umgelenkt. Im Bereich der Zuführwalze 55 12 wird von einer Vorratsrolle 15 eine mit einem Heißkleber beschichtete, hitzeschrumpfende Polyethylenfolie 16 des Flächengewichtes 40 g/m² abgezogen und über Reckwalzen 14a, 14b um etwa den Faktor 1.2 gereckt, d. h., die neue Länge ist 20% größer als die ursprüngliche Länge. Die gereckte PE-Folie 16 wird von unten an die Zuführwalze 12 herangeführt, so daß sich Vliesbahn 10 fest auf die PE-Folie 16 auflegt.

Ein weiterer entscheidender Schritt der Erfindung findet in dem Spalt der beiden übereinander angeordneten 65 Walzen 17 und 18 statt, von denen die obere (17) eine Druckwalze und die untere (18) eine Gegendruck- oder Amboßwalze ist.

4

Wie aus Fig. 2 erkennbar ist, hat die Druckwalze 17 zahlreiche Vorsprünge, die im folgenden als Walzenstachel 23 bezeichnet werden. Diese Walzenstachel bilden ein Muster, das sich entsprechend negativ auf der durch das Walzenpaar 17, 18 laufenden, auf der PE-Folie liegenden Vliesbahn abbildet, die nach dem Durchlauf mit der Bezugszahl 10' bezeichnet wird.

In der Fig. 3a ist dargestellt, daß nach dem Durchlauf durch das Walzenpaar 17, 18 die PE-Folie, die mit einer Heißkleberschicht 29 versehen ist, jeweils an Punktbereichen 24, die den Positionen der Walzenstacheln 23 entsprechen, unter völliger Abflachung mit der Vliesbahn verbunden worden ist. Die Abstände dieser Punktbereiche 24 seien mit d1 bezeichnet. Zwischen den Punktbereichen liegen die Verbindungsstränge 26 der Vliesbahn 10' auf der Oberseite der Folie 16 auf.

Die so hergestellte Verbundbahn 25 wird nunmehr quasi spannungsfrei weitergeführt durch eine Heizstation 19, in der von unten her durch Infrarotstrahlung die hitzeschrumpfende Folie 16 auf eine Schrumpftemperatur Ts aufgeheizt wird, beispielsweise auf eine Temperatur von 180°C. Die Erwärmung erfolgt vollflächig. Die Temperatur Ts liegt unterhalb der Temperatur Tv, bei der das Material der Vliesbahn 10' eine unerwünschte Änderung erfährt. Zwar schrumpft auch dieses Material um einen geringen Betrag. Dieser ist jedoch wesentlich geringer als der Schrumpf der PE-Folie 16.

Wenn die PE-Folie 16 geschrumpft ist, haben sich Abstände d2 zwischen den Punktbereichen 24 ausgebildet, daß der Verbindungsstrang 26 sich zu einem Bausch 28 aufwölbt. Die mit der Vliesbahn belegte Seite der Verbundbahn bekommt damit eine füllige und griffige Struktur, so daß damit eine voluminöse Verbundfolie 30 hergestellt worden ist.

Beispiel 2

Das Verfahren wird durchgeführt wie bei Beispiel 1, jedoch wird in der Heizstation 19 mit Hilfe eines Warmluftgebläses die Verbundbahn von oben erwärmt und gleichzeitig durch Infrarotstrahlung von unten, d. h., von der Rückseite der Vliesbahn her. Durch die Verwendung der strömenden Warmluft wird die Aufbauschung verbessert.

Beispiel 3

Anstelle eines Spinnvliesstoffes als Vliesbahn 10 wird eine Meltblownbahn aus Polypropylen, Polyolefinen, Polyester oder Polyamid verwendet, wobei die Meltblownbahn ein Flächengewicht zwischen 5 g/m² und 15 g/m² haben kann.

Beispiel 4

Es wird eine mehrschichtige Folie 16 als Blas- oder Gießfolie hergestellt, gegebenenfalls auch als ein Co-Extrudat mit mehreren Schichten. Als Material werden Polyolefine, Polyester oder Polyamide verwendet, die einseitig oder beidseitig mit einem druckauslösbaren Klebstoff ("pressure sensitive") versehen sind. Das Walzenpaar 17 und 18 führt die Verbindung hierbei bei Zimmertemperaturen (22-25°C) herbei.

Es ist darauf hinzuweisen, daß die Druckwalze 17 mit einer Prägegravur versehen ist, die eine aktive Schweißoder Druckfläche im Bereich von 2 bis 30% der Gesamtfläche besitzt. Hierbei werden Gravuren bevorzugt, die Walzstacheln haben, deren geometrische Ach-

20

se senkrecht zur Schrumpfrichtung der Folie 16 liegt.

In Mithilf der Druckwalzen- und Kalandertechnik können auch andere Verbindungstechniken, wie beispielsweise das Verkleben mit Hotmelt als Gespinst, vorgesehen sein. Das Hotmelt kann als Pulver oder aus einer Lösung aufgetragen werden. Auch eine Verschweißung mit Ultraschall ist möglich, wenn die Druckwalze 17 und die Amboßwalze 18 entsprechend ausgestaltet.sind.

Auch eine beidseitig mit einer Vliesbahn belegte Folie 10 kann entsprechend dem Verfahren hergestellt werden kann. Eine solche Folie ist in den Fig. 3c und 3d dargestellt. Hier wird die Vliesbahn 10 mit zwei Druckwalzen auf eine Folie 16 über Walzenstacheln (nicht dargestellt) aufgedrückt, wobei sich gegenüberliegende Punktbereiten 24, 24' ergeben, die sich anschließend bei Schrumpfen der Folie 16 zu beiden Seiten der Folie zu Bauschen 28, 28' aufwölben.

Durch entsprechende Musterung der Walzen lassen sich verschiedene Prägemuster herstellen.

Patentansprüche

- 1. Verfahren zur Herstellung einer voluminösen Verbundfolie (25; 30), bei der eine Vliesbahn (10; 25 10') auf eine Seite einer polymerischen Folie (16) aufgelegt und mit Hilfe einer Druckwalze (17), die mit einer Anordnung von Walzenstacheln (23) versehen ist, an zahlreichen, gegebenenfalls ein erkennbares Muster bildenden Punktbereichen (24; 30 24') mit der polymerischen Folie (16) fest verbunden wird, dadurch gekennzeichnet, daß die polymerische Folie (16) eine hitzeschrumpfende Folie ("Schrumpffolie") ist, deren Schrumpftemperatur Ts unterhalb der Temperatur Tv liegt, bei der das 35 Material, aus dem die Vliesbahn besteht, unerwünschte Anderungen erfährt, und die Schrumpffolie nach der Verbindung mit der Vliesbahn (10; 10') bei der Temperatur Ts geschrumpft wird, so daß die zwischen den Punktbereichen liegenden 40 Vliesabschnitte aufgrund der Verkürzung der Abstände (d₁; d₂) zwischen den Punktbereichen (24; 24') sich bauschen.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die zum Schrumpfungsprozeß erforderliche Warme von der freien (Rück-)Seite der Folie her zugeführt wird.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die zum Schrumpfungsprozeß erforderliche Wärme von beiden Seiten der aus polyme-50 rischer Folie (16) und Vliesbahn (10; 10') bestehenden Verbundbahn (25; 30) zugeführt wird.
- 4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Wärmezufuhr durch Warmluft, Ultraschall oder Infrarotstrahlung erfolgt.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß von der Vliesbahn-Seite der Verbundbahn her die Wärmezufuhr mit einem warmluftgebläse erfolgt.
- 6. Verfahren nach Anspruch 1 bis 5, dadurch ge- 60 kennzeichnet, daß die Rückseite des polymerischen Folie (16) vollflächig erwärmt wird.
- 7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Wärmeschrumpfung der polymerischen Folie (16) wenigstens 10% der Ur- 65 sprungslänge beträgt.
- 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die polymerische Foli (16) mit der

- Vliesbahn (10; 10') durch Heißschmelzen verbunden wird.
- 9. Verfahren nach Anspruch 1 oder 8, dadurch gekennzeichnet, daß die polymerische Folie (16) wenigstens eine Schmelzkleberbeschichtung aufweist oder on-line mit einer solchen beschichtet wird.
- 10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die polymerische Folie (16) mehrere Folienschichten aufweist.
- 11. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die verbindenden Punktbereiche (Schweißpunkte) (24; 24') einen Flächenanteil von 2 bis 35%, vorzugsweise von 20 bis 25% der Gesamtsläche der Verbundbahn einnehmen.
- 12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die polymerische Folie (16) aus einem oder mehreren Polyolefinen, aus Polyester, insbesondere PEPT, einem Polyamid oder aus PVC besteht.
- 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Vlies für die Vliesbahn (10; 10') aus einem oder mehreren Polyolefinen, aus Polyester, insbesondere PEPT, oder Polyamid besteht.
- 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Vliesbahn (10; 10') durch eine Blasfolie ersetzt ist.
- 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die polymerische Folie (16) auf beiden Seiten mit einer Vliesbahn (10; 10') bzw. einer Blasfolie belegt ist.
- 16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die polymerische Folie (16) durch ein schrumpffähiges Gewebe oder Gewirke ersetzt ist.
- 17. Verbundfolie, hergestellt nach wenigstens einem der vorgenannten Verfahrensschritte.

Hierzu 4 Seite(n) Zeichnungen

Int. Cl.6:

Offenlegungstag:

DE 195 23 497 A1

B 29 C 43/30 2. Januar 1997

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 195 23 497 A1 B 29 C 43/30

2. Januar 1997

Tig.2

Int. Cl.6:

Offenlegungstag:

DE 195 23 497 A1 B 29 C 43/30

2. Januar 1997

Tig.3b

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 195 23 497 A1 B 29 C 43/30

2. Januar 1997

int. Ci.⁶: Offenlegungstag: DE 196 23 497 A1 B 29 C 43/30

2. Januar 1997

Nummer: Int. CL^B:

B 29 C 43/30 2. Januar 1997

DE 198 23 497 A1

Offentegungstag:

Tig.2

int. Cl.⁶;

Offenlegungstag:

DE 188 23 497 A1

B 29 C 43/30

2. Jenuar 1997

Tig.3b

Nummer: Int. Cl.⁴:

Offenlegungstag: 2. Januar 19

9 29 C 43/30 2. Januar 1997

DE 188 23 497 A1

