VE216 RC1

Chapter 1

- Classifications of Signals
- Transformation of Variables
- Singularity Functions
- Systems

- continuous & discrete
- even & odd
- periodic & non periodic
- deterministic & random
- energy & power

- continuous signal x(t) & discrete signal x[n]
 - + whether a signal varies continuously with time

- even & odd
 - + even signal: x(t)=x(-t); x[n]=x[-n] for all t/n
 - + odd signal: x(t) = -x(-t); x[n] = -x[-n] for all t/n

- even/odd part of an arbitrary signal
 - + $x(t)=x_e(t)+x_o(t)$
 - + $x_e(t)=1/2*[x(t)+x(-t)]$
 - + $x_o(t) = 1/2*[x(t)-x(-t)]$
 - + Example: Lecture 1 Slides P 26-29

- periodic & non periodic
 - + x(t)=x(t+T), x[n]=x[n+N]; T,N>0
 - + fundamental period
- Ex: Assume $x_1(t) = x_1(t+T_1)$, $x_2(t) = x_2(t+T_2)$. Let $x(t) = x_1(t) + x_2(t)$, is x(t) periodic?

- continuous & discrete
- even & odd
- periodic & non periodic
- deterministic & random
- energy & power

• energy & power

	x(t)	x[n]		
average power during an infinite period: P	$\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{T} x(t) ^2\ dt$	$\lim_{N\to\infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} x[n] ^2$		
total energy during an infinite period: E	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\sum_{n=-\infty}^{+\infty} x[n] ^2$		
average power for a periodic signal: P _T	$\frac{1}{T}\int_{0}^{T}\left x(t)\right ^{2}dt$	$\frac{1}{N} \sum_{n=0}^{N-1} x[n] ^2$		

- energy & power
 - + energy signal: 0<E<Inf
 - + power signal: 0<P<Inf

- Classifications of Signals
- Transformation of Variables
- Singularity Functions
- Systems

Transformation of Variables

- $y(t)=x(at-b)=x[(t-t_0)/w]$
 - + first time delay by b; then time scaling by a
 - + first time scaling by 1/w; then time delay by to
- Exponential signals: Lecture 2 Slides P49

Singularity Functions

	Discrete			Continuous	
	$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$			$\delta(t) = 0, t \neq 0$ $\int_{-\infty}^{\infty} \delta(t)dt = 1$	
	u[n] = 0, n < 0, $u[n] = 1, n \ge 0.$			u(t) = 0, t < 0, u(t) = 1, t > 0.	
$\delta[n] = u[n] - u[n-1]$		$\delta\left(t\right) = \frac{du(t)}{dt.}$			
ı	$u[n] = \sum_{k=0}^{\infty} \delta[n -$	- k]	u($f(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$	$d\tau$

Singularity Functions

• sampling property of unit impulse

$$x[n]\delta[n-n_o] = x[n_o]\delta[n-n_o]$$

$$\mathbf{x}(\mathbf{t})\delta(\mathbf{t}-\mathbf{t}_o) = \mathbf{x}(t_o)\delta(t-t_o)$$

- Classifications of Signals
- Transformation of Variables
- Singularity Functions
- Systems

Systems

- Block Diagram
- Properties of Systems
 - + with/without memory
 - + causality
 - + BIBO stable
 - + Time-invariance
 - + linearity

Thank you!

Q&A