1	Uncertainty	Model	Epistemic uncertainty
4	Aleatoric uncertainty	Model classification	Fuzzy membership function
7	Frame of cognition	Fuzzy partition	lpha-cut
10	Support	Height	Normal set
13	Convex set	Complement	Union
16	Intersection	Knowledge	Linguistic variable

3	2	1
Factors that, in theory, could be known but are not known in practice. Reducible by enhancing the model	A model is a representation of an entity, defined for a particular purpose. A model includes only the relevant aspects of the modeled entity.	Uncertainty pertains to epistemic situations that involve imperfect or unknown information. It is relevant to predictions of future events, existing physical measurements, or the unknown.
Epistemic uncertainty	Model	Uncertainty
A membership function defines a set by specifying the degree of membership of an element from the universe of discourse to the set.	Symbolic, sub-symbolic and black-box	Unknowns that vary each time the same experiment is conducted. In general, it is present when the model lacks comprehensive coverage.
Fuzzy membership function	Model classification 8	Aleatoric uncertainty
The α -cut of a fuzzy set is the crisp set of values of x such that $\mu(x) \geq \alpha$: $\alpha_{\mu}(x) = \{x \mid \mu(x) \geq \alpha\}$	A frame of cognition for which the sum of the membership values of each value of the base variable is equal to one.	Set of fuzzy sets that fully covers the universe of discourse. Properties: coverage and uni modality.
$lpha ext{-cut}$ 12	Fuzzy partition	Frame of cognition
If and only if $h_f(X) = 1$	The height h_f of a fuzzy set f on the universe X is the highest membership degree of an element of X in the fuzzy set: $h_f(X) = \max_{x \in X} \mu_f(x)$	Crisp set of values x such that $\mu_f(x) > 0$.
Normal set	Height	Support 13
$\mu_{f_1 \cup f_2}(x) = \max[\mu_{f_1}(x), \mu_{f_2}(x)]$	$\mu_{\bar{f}}(x) = 1 - \mu_f(x)$	A fuzzy set is convex if and only if $\mu[\lambda x_1+(1-\lambda)x_2]\geq \min[\mu(x_1),\mu(x_2)]$ for any $(x_1,x_2)\in R$ and any $\lambda\in[0,1].$
Union 18	Complement 17	Convex set
Variables whose values are words or sentences in a natural or artificial language	The combination of information and potential relationships constitutes what we refer to as knowledge.	$\mu_{f_1 \cap f_2}(x) = \min[\mu_{f_1}(x), \mu_{f_2}(x)]$

Linguistic variable Knowledge Intersection

Inference rule	Fuzzy rule	AND implementation
OR implementation	Fuzzification	Fuzzy numbers constraints
Arithmetic's properties	Addition	Subtraction
Multiplication 28	Division	Borel field
Fuzzy measure	Basic probability assignment	Belief
Plausibility	Information sources	Possibility 36

19

Plausibility

Minimum or product	A fuzzy rule is a rule whose clauses have the form " V is L ", where V is a linguistic variable, and L is a label representing a value for V associated with a fuzzy set. Each of these clauses is referred to as a linguistic clause.	An inference rule is a model, essentially defining a mapping from input to output. These rules are utilized to represent inferential relationships among various pieces of knowledge.
AND implementation 24	Fuzzy rule	Inference rule
Normal, convex, and bounded support	Converting crisp input values into fuzzy values	Maximum or probabilistic sum
Fuzzy numbers constraints	Fuzzification 26	OR implementation
[a, b] - [d, e] = [a - e, b - d]	[a, b] + [d, e] = [a + d, b + e]	uniqueness of α -cuts and closed intervals
Subtraction 30	Addition 29	Arithmetic's properties
A field is considered a Borel field if it possesses the property that when all the A_n sets belong to the field, the union and intersection of these sets also belong to the field.	$\begin{split} [a,b] \div [d,e] = \\ \left[\min \left(\frac{a}{d}, \frac{a}{e}, \frac{b}{d}, \frac{b}{e} \right), \max \left(\frac{a}{d}, \frac{a}{e}, \frac{b}{d}, \frac{b}{e} \right) \right] \end{split}$	$[a,b] \times [d,e] = \\ [\min(ad,ae,bd,be),\max(ad,ae,bd,be)]$
Borel field	Division 32	Multiplication 31
Page 23 notes	Page 23 notes	Page 23 notes
Belief 36	Basic probability assignment 35	Fuzzy measure
Page 26 notes	Conflict, consonance, arbitrary and consistent	Page 23 notes

Information sources

Possibility

37	38	39
Necessity	Confirmation degree	Fuzziness measure
	acgree	measure
3	7 38	39

Given $A = \{x, \mu_A(x)\}$, the entropy is:

$$d(A) = K \sum_{i=1}^{n} S(\mu_A(x_i))$$

Page 26 notes

Page 26 notes

Where S(x) is Shannon's function:

$$S(x) = -x \ln(x) - (1-x) \ln(1-x)$$

Fuzziness measure Confirmation degree

Necessity