Homework for week 1, FunkAn 2018/19

Problem 1: Justify (briefly) that the following are Banach spaces over \mathbb{R} :

- (a) \mathbb{R} with the norm given by ||x|| := |x|, for all $x \in \mathbb{R}$.
- (b) \mathbb{R}^2 with any of the following norms

$$\begin{aligned} \|(x,y)\|_{\infty} \colon &= \max\{|x|,|y|\} & \|(x,y)\|_{2} \colon &= \sqrt{|x|^{2} + |y|^{2}} \\ & \|(x,y)\|_{1} \colon &= |x| + |y| \,, \quad x,y \in \mathbb{R}. \end{aligned}$$

Problem 2:

- (a) If X is a normed vector space, then the closure of any subspace of X is again a subspace. (Exercise 5, Section 5.1, Folland.)
- (b) Every closed subspace of a Banach space is a Banach space.
- (c) Show that $c(\mathbb{N})$ (the space of convergent sequences, defined in Lecture 1) is a closed subspace of $l_{\infty}(\mathbb{N})$, and hence a Banach space.

Problem 3: As usual, \mathbb{K} denotes the field \mathbb{R} of real numbers or the complex field \mathbb{C} . Let $c_c(\mathbb{N}) := \{(x_n)_{n \geq 1} \subset \mathbb{K} : \{n \geq 1 : x_n \neq 0\} \text{ is finite}\}$. Recall also that for $(x_n)_{n \geq 1} \in c_c(\mathbb{N})$ we have defined

$$||(x_n)_{n\geq 1}||_{\infty} : = \sup\{|x_n| : n \geq 1\},\$$

$$||(x_n)_{n\geq 1}||_{2} : = \left(\sum_{n=1}^{\infty} |x_n|^2\right)^{1/2},$$

$$||(x_n)_{n\geq 1}||_{1} : = \sum_{n=1}^{\infty} |x_n|.$$

- (a) Verify that these are all norms on $c_c(\mathbb{N})$.
- (b) Show that $c_c(\mathbb{N})$ is <u>not</u> complete with respect to any of the three norms. In other words, for each of the three norms you should find a Cauchy sequence in $c_c(\mathbb{N})$ with no limit inside $c_c(\mathbb{N})$.
- (c) Show that $c_c(\mathbb{N})$ is dense in $c_0(\mathbb{N})$ with respect to $\|\cdot\|_{\infty}$, respectively that $c_c(\mathbb{N})$ is dense in $l_2(\mathbb{N})$ with respect to $\|\cdot\|_2$, and that $c_c(\mathbb{N})$ is dense in $l_1(\mathbb{N})$ with respect to $\|\cdot\|_1$.

Problem 4: The purpose of this exercise is to show that the dual space of $c_0(\mathbb{N})$ can be identified with $\ell_1(\mathbb{N})$, in short $c_0(\mathbb{N})^* \cong \ell_1(\mathbb{N})$ (isometrically isomorphic).

Let $x = (x_n)_{n \geq 1} \in \ell_1(\mathbb{N})$ be given and define $f_x \colon c_0(\mathbb{N}) \to \mathbb{C}$ by

$$f_x(y) = \sum_{n=1}^{\infty} x_n y_n, \quad \text{for all } y = (y_n)_{n \ge 1} \in c_0(\mathbb{N}).$$
 (1)

- (a) Argue that the sum in (1) is absolutely convergent, i.e. that $\sum_{n=1}^{\infty} |x_n y_n| < \infty$, and hence f_x is well-defined.
- (b) Show that f_x is a linear functional on $c_0(\mathbb{N})$ and that its norm satisfies $||f_x|| \leq ||x||_1$.
- (c) To prove $||f_x|| \geq ||x||_1$, apply f_x to appropriate $y \in c_0(\mathbb{N})$ such that

$$f_x(y) = \sum_{n=1}^k |x_n|,$$

and take the supremum over $k \in \mathbb{N}$.

- (d) Let $f \in c_0(\mathbb{N})^*$ be arbitrary. Construct $x \in \ell_1(\mathbb{N})$ so $f = f_x$.
- (e) Let $T: \ell_1(\mathbb{N}) \to c_0(\mathbb{N})^*$ be defined by $T(x) = f_x$, $x \in \ell_1(\mathbb{N})$. Show that T is a linear, norm-preserving bijection. (Hint: most of this follows from what you have done so far)

If you have completed all the steps above, you have proved that $c_0(\mathbb{N})^* \cong l_1(\mathbb{N})$ (isometrically isomorphic).

Problem 5: Show that $l_1(\mathbb{N})$ is a Banach space.

If $x = (x_n)_{n \geq 1} \in \ell_{\infty}(\mathbb{N})$ is given, define $f_x \colon \ell_1(\mathbb{N}) \to \mathbb{C}$ by

$$f_x(y) = \sum_{n=1}^{\infty} x_n y_n$$
, for all $y = (y_n)_{n \ge 1} \in \ell_1(\mathbb{N})$.

Follow the steps of Problem 4 to show that $(l_1(\mathbb{N}))^* \cong l_{\infty}(\mathbb{N})$ (isometrically isomorphic). Furthermore, show that for every $1 , <math>l_p(\mathbb{N})$ is a Banach space and $(l_p(\mathbb{N}))^* \cong l_q(\mathbb{N})$ (isometrically isomorphic), where 1/p + 1/q = 1. In this part, it may be useful to recall Hölder's inequality:

$$\sum_{n=1}^{\infty} |x_n y_n| \le ||x||_p ||y||_q$$

for all $(x_n)_{n\geq 1} = x \in \ell_p(\mathbb{N})$ and $(y_n)_{n\geq 1} = y \in \ell_q(\mathbb{N})$.