JEE ASSIGNMENT 5

1

(2022 - 4 Marks)

(2022 - 4 Marks)

d) 126

EE1030: Matrix Theory Indian Institute of Technology Hyderabad

Yellanki Siddhanth (EE24BTECH11059)

1) The total number of functions, $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4, 5, 6\}$ such that f(1)+f(2)=

2) If α , β , γ , δ are the roots of the equation $x^4 + x^3 + x^2 + x + 1 = 0$, then $\alpha^{2022} + \beta^{2022} + \gamma^{2022} + \delta^{2022}$ is equal to (2022 - 4 Marks)

c) 108

2022 July 25 Shift 1 1 to 15

b) 90

in the interval [-3,0] is $f(\alpha)$, then

f(3), is equal to

a) 60

a) -4	b) -1	c) 1	d) 4			
		$2i = \frac{n}{4}$ and $T_n = \{z \in \{n \in N : S_n \cap T_n = \phi\}$				
a) 0	b) 2	c) 3	d) 4			
4) The number of $q \in (0, 4\pi)$ for which the system of linear equations						
$3 (\sin 3\theta) x - y + z = 2$ $3 (\cos 2\theta) x + 4y + 3z = 3$ $6x + 7y + 7z = 9$						
has no solution	on, is		(2022 - 4 N	(larks		
a) 6	b) 7	c) 8	d) 9			
5) If $\lim_{n\to\infty} \left(\sqrt{n}\right)$	$\overline{n^2-n-1}+n\alpha+\beta$):	= 0 then $8(\alpha + \beta)$ is eq	ual to (2022 - 4 M	(1arks		
a) 4	b) -8	c) -4	d) 8			
6) If the absolut	e maximum value of	the function $f(x) = (x)$	$e^{2}-2x+7$) $e^{(4x^{3}-12x^{2}-18)}$	30 <i>x</i> +31)		

a) $\alpha = 0$	b) $\alpha = -3$	c) $\alpha \in (-1, 0)$	d) $\alpha \in (-3,$, –1]
· ·		touches the x-axis at the is equal to 3. Then the le	•	alue of
a) $\frac{27}{4}$	b) $\frac{29}{4}$	c) $\frac{37}{4}$	d) $\frac{9}{2}$	
8) The area of the text	ne region given by $A =$	$= \{(x, y); x^2 \le y \le \min \{x\}$	$+2,4-3x$ } is (2022 - 41)	Marks)

9) For any real number x, let [x] denote the largest integer less than or equal to x. Let f be a real valued function defined on the interval [-10, 10] by

$$f(x) = \begin{cases} x - [x], & \text{if } [x] \text{ is odd} \\ 1 + [x] - x, & \text{if } [x] \text{ is even} \end{cases}$$

Then the value of $\int_{-10}^{\pi^2} \int_{-10}^{10} f(x) \cos \pi x \, dx$ is (2022 - 4 Marks)

- a) 4 b) 2 c) 1 d) 0
- 10) The slope of the tangent to a curve C: y = y(x) at any point (x, y) on it is $\frac{2e^{2x} 6e^{-x} + 9}{2 + 9e^{-2x}}$. If C passes through the points $\left(0, \frac{1}{2} + \frac{\pi}{2\sqrt{2}}\right)$ and $\left(\alpha, \frac{1}{2}e^{2\alpha}\right)$, then e^{α} is equal to (2022 4 Marks)
- 11) The general solution of the differential equation $(x y^2)dx + y(5x + y^2)dy = 0$ is : (2022 4 Marks)

a)
$$(y^2 + x)^4 = C |(y^2 + 2x)^3|$$

b) $(y^2 + 2x)^4 = C |(y^2 + x)^3|$
c) $|(y^2 + x)^3| = C (2y^2 + x)^4$
d) $|(y^2 + 2x)^3| = C (2y^2 + x)^4$

12) A line, with the slope greater than one, passes through the point A(4,3) and intersects the line x - y - 2 = 0 at the point B. If the length of the line segment AB is $\frac{\sqrt{29}}{3}$, then B also lies on the line (2022 - 4 Marks)

- a) 2x + y = 9 b) 3x 2y = 7 c) x + 2y = 6 d) 2x 3y = 3
- 13) Let the locus of the centre (α, β) , $\beta > 0$, of the circle which touches the circle $x^2 + (y 1)^2 = 1$ externally and also touches the x-axis be L. Then the area bounded by L and the line y = 4 is: (2022 4 Marks)
 - a) $\frac{32\sqrt{2}}{3}$ b) $\frac{40\sqrt{2}}{3}$ c) $\frac{64}{3}$ d) $\frac{32}{3}$
- 14) Let *P* be the plane containing the straight line $\frac{x-3}{9} = \frac{y+4}{-1} = \frac{z-7}{-5}$ and perpendicular to the plane containing the straight lines $\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$ and $\frac{x}{3} = \frac{y}{7} = \frac{z}{8}$. If *d* is the distance *P* from the point (2, -5, 11), then d^2 is equal to: (2022 4 Marks)
 - a) $\frac{147}{2}$ b) 96 c) $\frac{32}{3}$ d) 54
- 15) Let ABC be a triangle such that $\overrightarrow{BC} = \overrightarrow{d}$, $\overrightarrow{CA} = \overrightarrow{b}$, $\overrightarrow{AB} = \overrightarrow{c}$, $|\overrightarrow{a}| = 6\sqrt{2}$, $|\overrightarrow{b}| = 2\sqrt{3}$ and $|\overrightarrow{b}| \cdot |\overrightarrow{c}| = 1$. Consider the statements:

$$(S1): \left| \left(\overrightarrow{a} \times \overrightarrow{b} \right) + \left(\overrightarrow{c} \times \overrightarrow{b} \right) \right| - \left| \overrightarrow{c} \right| = 6 \left(2\sqrt{2} - 1 \right)$$
$$(S2): \angle ACB = \cos^{-1} \left(\sqrt{\frac{2}{3}} \right)$$

, then (2022 - 4 Marks)

- a) Both (S1) and (S2) are true
- c) Only (S2) is true

b) Only (S1) is true

d) Both (S1) and (S2) are false