Module # 1.1.1

INTRODUCTION Control: Why and How

Lectures on

CHEMICAL PROCESS CONTROL
Theory and Practice

Why do we need to control a system

- To stabilize an inherently unstable system
 - Examples:
 - Bicycle
 - Stick on palm
 - LCA Tejas (India's own fighter aircraft)
 - Unstable nonisothermal CSTR
- To deliver minimum performance guarantees for a system
 - Examples:
 - Petrol is octane number 92 or more
 - To produce X tph of commercial grade propylene
 - Missile strike accuracy guaranteed within 2 m radius
 - Driving a taxi in a manner that minimizes fuel consumption...

Day-to-Day Control Examples

Tuning Guitar Strings

Balancing a Stick

Grocery Weighing

Pictures from google images

Room Example

PROCESS VARIABLES

Temperature T

Odor Od

Relative Humidity RH

Heater Duty Q_{htr} Solar heating rate Q_{solar} Heat leak rate Q_{leaks} Wall heat loss rate Q_{walls}

Manipulated Variable
Control dof
Control Input

Q_{solar,} Q_{walls}, Q_{leaks} Disturbances

Q_{htr}, Q_{solar}, Q_{leaks}, Q_{walls} Input PVs T, RH, Od Output PVs

PV Classification

Input PVs affect output PVs through cause-and-effect relationships

An MV with 'strong' effect on a PV can be adjusted to control the PV

 $M \gg N$

Output PVs: Several. May be designed

MVs: Limited. Fixed by process design

SISO Feedback Control

FEEDBACK

Adjust MV based only on CV values (current and past) to drive CV to CV setpoint (desired value)

SINGLE-INPUT-SINGLE-OUTPUT (SISO)

Controller Input: Single PV measurement

Controller Output: Single MV signal

Control Inverts MV-CV Relation

Control as Transformation of Variability

CV Variability

MV Variability

Alters dynamic characteristics of the process to more desirable

PVs of Interest?

PVs of Interest?

Process Control

- Alters dynamic characteristics of a process
 - Transforms variability from CVs to MVs
 - Altered characteristics are 'desirable'
 - Safety, stability, economics, performance guarantees
- PV feedback a powerful mechanism for control
 - Inverts MV-CV relation
- Several available PV measurements
- What PV to control and how tightly to control it is a key decision
 - Requires process understanding