(a) Determining the Minimal and Maximal Grey Levels and the Number of Different Grey Levels

First, let's list the grey levels and their probabilities from the given histogram:

$$f=0$$
 with probability $P(f)=0.1$
 $f=0.7$ with probability $P(f)=0.2$
 $f=0.8$ with probability $P(f)=0.3$
 $f=0.9$ with probability $P(f)=0.2$
 $f=1$ with probability $P(f)=c$

Since the sum of all probabilities must equal 1, we can solve for c:

$$0.1 + 0.2 + 0.3 + 0.2 + c = 1$$
 $0.8 + c = 1$
 $c = 0.2$

Now, the minimal grey level is $f_{\min}=0$, and the maximal grey level is $f_{\max}=1$. The image has **5 different grey levels**: 0, 0.7, 0.8, 0.9, and 1.

(b) Plotting the Histogram $P_{of}(f)$

The histogram can be represented by vertical lines (since it's composed of Dirac delta functions) at the specified grey levels with heights corresponding to their probabilities:

• At
$$f=0.7$$
, $\mathsf{height}=0.2$

• At f=0, height =0.1

$$ullet$$
 At $f=0.8$, height $=0.3$

• At
$$f=0.9$$
, height $=0.2$

ullet At f=1, height =0.2

(c) Computing and Plotting the Histogram After Gamma Correction $g=f^2$ We apply the gamma correction to each grey level:

 $f=0 \quad \Rightarrow \quad g=(0)^2=0$

$$f = 0.7$$
 \Rightarrow $g = (0.7)^2 = 0.49$
 $f = 0.8$ \Rightarrow $g = (0.8)^2 = 0.64$
 $f = 0.9$ \Rightarrow $g = (0.9)^2 = 0.81$
 $f = 1$ \Rightarrow $g = (1)^2 = 1$

The probabilities remain the same for the corresponding g values. The new histogram $P_{Yg}(g)$ is:

$$\bullet \ \ \mathsf{At} \ g = 0 \text{, height} = 0.1$$

• At
$$g=0.49$$
, height $=0.2$

• At
$$g=0.64$$
, height $=0.3$

• At
$$g=0.81$$
, height $=0.2$

• At g=1, height =0.2

(d) Computing and Plotting the Histogram After Histogram Equalization First, we compute the cumulative distribution function (CDF) of the original histogram:

At f=0 $\mathrm{CDF}(0)=0.1$

 $g=\mathrm{CDF}(f)$

 $f=0 \Rightarrow g=0.1$

Applying this mapping:

$$f=0.7 \quad \Rightarrow \quad g=0.3$$
 $f=0.8 \quad \Rightarrow \quad g=0.6$ $f=0.9 \quad \Rightarrow \quad g=0.8$ $f=1 \quad \Rightarrow \quad g=1.0$ The probabilities remain unchanged. The new histogram $P_{
m heg}(g)$ is:

• At g=0.1, $\mathsf{height}=0.1$

• At
$$g = 0.3$$
, height $= 0.2$
• At $g = 0.6$, height $= 0.3$

• At
$$g=0.8$$
, height $=0.2$
• At $g=1.0$, height $=0.2$

Summary:

ullet (a) The minimal grey level is $f_{ m min}=0$, the maximal grey level is $f_{ m max}=1$, and there are

- 5 different grey levels. • (b) The histogram $P_{of}(f)$ is plotted with grey levels at 0, 0.7, 0.8, 0.9, and 1, with
- corresponding probabilities. • (c) After gamma correction, the new histogram $P_{Yg}(g)$ has grey levels at 0, 0.49, 0.64,
- **(d)** After histogram equalization, the new histogram $P_{
 m heg}(g)$ has grey levels at 0.1, 0.3, 0.6, 0.8, and 1, with probabilities unchanged.

0.81, and 1.

- Answer to Part (a):
 - ullet Minimal grey level: $f_{
 m min}=0$
 - Maximal grey level: $f_{\rm max}=1$ Number of different grey levels: 5