

AUTONOMOUS SYSTEMS

PROJECTS 2023/24

Instituto Superior Técnico

Departamento de Engenharia Electrotécnica e de Computadores

April 2024

LIST OF AVAILABLE REAL ROBOTS AND DEVICES

Pioneer 3DX (7 units)

Microsoft Kinect

AlphaBot2 with camera (40 units)

Turtlebot3 with RPLIDAR (4 units)

Hokuyo URG-04LX-UG01 (5 units)

PROJECT TOPICS

Project topics and code scheme:

- [L__] Localization: estimate in real-time the pose (position+orientation) of a mobile robot; evaluate estimation accuracy, as well as absolute localization, and robustness to "kidnapping".
- [M__] Mapping: estimate the map of the environment using Occupancy Grid Mapping; evaluate quality of the map with respect to the ground truth.
- [S__] Simultaneous Localization And Mapping (SLAM): estimate simultaneously the trajectory (position+orientation) of a mobile robot and the landmark positions (map); evaluate estimation accuracy of both trajectory and landmarks.

SENSOR CHOICE RECOMMENDATIONS

Localization: fuses relative and absolute sensing:

- for relative sensing, use wheel odometry
- for absolute sensing, prefer Laser or camera (natural landmarks), while sonar is challenging

Mapping: registers distance measurements given known localization

- may use **AMCL** (from ROS) or well-calibrated odometry
- for distance sensor, may use Laser, depth camera (Kinect) or sonars (challenging)

Simultaneous Localization And Mapping (SLAM): fuses landmark measurements with relative sensing:

- for relative sensing, use wheel odometry
- use fiducials markers, e.g., camera with ARuCO or AprilTag markers

LIST OF TOPICS (REAL ROBOTS)

		7x Pioneer 3DX	5x Turtlebot3	40x AlphaBot2
<u>L</u> ocalization	Extended <u>K</u> alman Filter (EKF)	LKP	LKT	LKA
	Monte Carlo Localization (MCL)	LMP	LMT	LMA
<u>M</u> apping	Occupancy Grid Mapping	MP	MT	-
<u>S</u> LAM	E <u>K</u> F-SLAM	SKP	SKT	SKA
	<u>F</u> astSLAM	SFP	SFT	SFA

PROJECT

14 PROJECT TYPOLOGIES:

- Groups of 4 students
- Using real robots and sensors
- Validated and evaluated using collected data
- Students suggested to spread over all project typologies (all with same level of difficulty)

PROJECT TIPS

- Solid theoretical background
 - formalize the problem, but do not write a tutorial
 - explain the algorithm, not the code
- Develop and validate your algorithm on a micro-simulator
- Test as soon as possible: it is better to test partial implementations early,
 than postponing to when everything is implemented
- Avoid running your algorithm in real time: instead, datasets should be used (e.g., rosbags), for work productivity and repeatability
- Thorough experimental results
 - try a variety of experimental conditions
 - for each one, run multiple times and analyze statistically
- Objective analysis of the results is more important than "just working"

PROJECT ASSESSMENT AND SCHEDULE (1)

- Project progress presentations during laboratory sessions start on 22
 April (second week of classes)
- Projects presented by faculty on 15 April in the theoretical classes

Project report and code deadline: 07-Jun-2024

(6 page IEEE paper template)

Project discussions: week of 10-Jun-2024

PROJECT ASSESSMENT AND SCHEDULE (2)

	Seg	Ter	Qua	Qui	Sex
08:00	Seg	161	Qua	Qui	Sex
08:30			L 6.1		L 6.2
		L 2.1			
09:00			LSDC1		LSDC1
09:30	T4	LSDC1	T.4		
10:00	11		T1		L 5.2
10:30		L 4.1			LSDC1
11:00		LSDC1	Ea1		
11:30			PL		
12:00		L 5.1			
12:30	LSDC1	LSDC1			
13:00					L 3.2
13:30	L 3.1				LSDC1
14:00	LSDC1				
14:30					
15:00		L 4.2			
15:30		LSDC1			
16:00					
16:30					
17:00					
17:30					
18:00					
18:30					
19:00					

PROJECT ASSESSMENT AND SCHEDULE (3)

				Session		
Shift	Slot	1	2	3	4	5
2	1	23-April	7-May	14-May	21-May	28-May
	2	22-April	6-May	13-May	20-May	27-May
3	1	22-April	6-May	13-May	20-May	27-May
	2	26-April	10-May	17-May	24-May	31-May
4	1	23-April	7-May	14-May	21-May	28-May
	2	23-April	7-May	14-May	21-May	28-May
5	1	23-April	7-May	14-May	21-May	28-May
	2	26-April	10-May	17-May	24-May	31-May
6	1	24-April	8-May	15-May	22-May	29-May
	2	26-April	10-May	17-May	24-May	31-May

PROJECT ASSESSMENT AND SCHEDULE (3)

Project Grading:

- FAIL: nothing works, not much relevant work done in design + implementation,
 no reasonable explanation for failure to show results
- 10-14: at least some experimental results can be shown, significant design +
 implementation work made of at least fair quality
- 15-17: good experimental results, significant design + implementation work
 made of at least good quality and supported by theory
- 18-19: very good experimental results and design + implementation work made and supported by theory
- 20: excellent and flawless experimental results and design + implementation work made and supported by theory; in exceptional cases could correspond to the factors listed for 18-19, extended with some original unsolicited extra work

WHAT'S NEXT

Hands-on sessions with ROS on first week

- Each shift uses 2 assigned lab slots (all shift students go to both slots)
- Prepare for these sessions by reading the "Laboratory guide" slides
- First slot in LSDC1 and second slot in LSDC4

- 1. [from 15 April 17:00 to 17 April 17:00] Choose the project for your group using a web link that will be made available at the course webpage
- 2. Group start preparing the first presentation, where we expect:
 - i) problem statement
 - ii) literature readings
 - iii) work planning (see next slide)

Workplan suggestion

Session 1: Project presentation - problem statement, readings, workplan

Session 2: Explain by own words the algorithm. Get, visualize and represent robot sensor data

Session 3: Develop and validate in micro-simulator (generate synthetic data from models)

Session 4: Validate in real-data

Session 5: Systematic and comparative (w.r.t. baseline) experimentation with quantitative analysis