Homework 2 EET 340

Introduction to Computer Organization and Architecture

<u>INSTRUCTIONS</u>: Show the detailed steps of your calculation. The homework solution can either be typed in word or handwritten. However, convert the word or scanned (handwritten) documents to PDF and submit to blackboard. Please comment your assembly code.

1. Convert Decimal value to binary and then convert them to hexadecimal value: (10 Points)

```
a. 45<sub>10</sub>
```

$$2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$$

$$128 64 32 16 8 4 2 1$$

$$32 + 0 + 8 + 4 + 0 + 1$$

$$0010 = 2, 1101 = D$$

$$101101_{2} = 2D_{16}$$
b. 22_{10}

$$16 + 0 + 4 + 2 + 0$$

$$0001 = 1, 0110 = 6$$

2. What will be the value of X1 after running the following instruction: LSL X1, X2, #2. Assume that X2 = 4. (show the steps of calculation) (10 points)

 $10110_2 = 16_{16}$

Instruction is to LoaD Unscaled Register X2 (64 bit) with the contents of the memory pointed at by X5 + 0 (i * 8 bit memory contents). The 8 memory slots from 4000 to 4007 contain 0, 0, 0, 0, 0, 0, 2, 35 in decimal which is being loaded to X5.

 $X2 = 0000 \ 0000 \ 0000 \ 0223_{16}$

4. Convert following assembly instruction to 32 bit machine code and then change it to Hexadecimal format. (25 Points)

```
a. LDUR X10, [X5, #16]
```

- b. SUB X12, X14, X15
- c. LSR X11, X19, #2

a. D-Format

OPCODE (11 bit)	ADDRESS (9 bit)	OP2 (2 bit)	Rn (5 bit)	Rt (5 bit)	
198610	1610	010	510	1010	
1111 1000 0102	0 0001 00002	002	00 1012	0 10102	
F84100AA ₁₆					

b. R-Format

OPCODE (11 bit)	Rm (5 bit)	SHAMT (6 bit)	Rn (5 bit)	Rd (5 bit)
1624 ₁₀	1510	0 ₁₀	14 ₁₀	12 ₁₀
0110 0101 1002	0 11112	0000 002	01 1102	0 1100
658F01CC ₁₆				

c. I-Format

OPCODE (11 bit)	Rm (5 bit)	SHAMT (6 bit)	Rn (5 bit)	Rd (5 bit)
169010	0 ₁₀	2 ₁₀	19 ₁₀	11 ₁₀
1101 0011 0102	0 00002	0000 102	10 0112	0 10112
$D3400A6B_{16}$				

5. Convert C++ code snippet to LEGv8 assembly code. The following variables x, y, and z are associated with registers X19, X20, and X21 respectively, and base address of the array A is in X22. Comment the code. (15 Points)

$$x = x + y;$$

 $z = x + 4;$
 $A[8] = A[3] + z;$

```
ADD X19, X19, X20  // x = x + y

ADDI X21, X19, #4  // z = x + 4

LDUR X9, [X22, #24]  // X9 = A[3]

ADD X9, X9, X21  // X9 = A[3] + z

STUR X9, [X22, #64]  // A[8] = X9
```

6. Convert C++ code snippet to LEGv8 assembly code. The following variables x, y, and z are associated with registers X19, X20, and X21, respectively, and base address of the array d is in X22. Comment the code. (30 Points)

a. if
$$(x > y)$$
 $z = y + 4;$
else $z = y - 16;$

```
b. for (i=0; i< x; i++)
    {y = d[i] + z;}
```

```
LOOP:
    MOVI X9, #0
                        // i = 0
                        // compare i and x
     CMP X9, X19
                        // branch to exit if i is greater than x
    B.GE EXIT
    LSL X10, X9, #3
                       // X10 = X9 * 2^3 = i * 8
    ADD X10, X22, X10 // X10 = X22 + (i*8) = d base + memory index
    STUR X10, [X22, #0] // indexing is stored in d[i] array
    ADD X20, X10, X21 // y = d[i] + z
    B LOOP
EXIT:
```