1 General Least Square

Let $c_0, c_1, \ldots, c_n \in \mathbb{R}$ be unknown coefficients. We are given a sample of size s of measurements (z_i, y_i) where $z_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ for $i = 1, \ldots, s$. Furthermore let f_1, \ldots, f_n be functions $f_k : \mathbb{R}^d \to \mathbb{R}$ for $k = 1, \ldots, n$. We assume that the relation between z and y is of the form

$$\sum_{k=1}^{n} c_0 + f_k(z)c_k \approx y.$$

Please set up the design matrix of the problem

$$\min_{c_0,c_1,...,c_n} \sum_{i=1}^s \left(\sum_{k=1}^n c_0 + f_k(z_i) c_k - y_i \right)^2.$$

Solution:

• Given: s measurements (z_i, y_i) , i = 1, ..., s

• Model: $f(z) := \sum_{k=1}^{n} c_0 + f_k(z)c_k \approx y$

• Unknown coefficients: $x := (c_0, c_1, \dots, c_n) \in \mathbb{R}^{n+1}$

• LQ-formulation:

$$i = 1: \sum_{k=1}^{n} c_0 + f_k(z_1)c_k = f(z_1) \stackrel{!}{=} y_1$$

$$\vdots$$

$$i = s: \sum_{k=1}^{n} c_0 + f_k(z_s)c_k = f(z_s) \stackrel{!}{=} y_s$$

$$\Leftrightarrow \underbrace{\begin{pmatrix} 1 & f_1(z_1) & \cdots & f_n(z_1) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & f_1(z_s) & \cdots & f_n(z_s) \end{pmatrix}}_{=:A} \underbrace{\begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{pmatrix}}_{=:A} = \underbrace{\begin{pmatrix} y_1 \\ \vdots \\ y_s \end{pmatrix}}_{=:b}$$

$$\Leftrightarrow Ax = b$$

Thus $\hat{\alpha}$ is LQ solution if it minimizes

$$\min_{x\in\mathbb{R}^{n+1}}\|Ax-b\|_2^2.$$

We find:

$$||Ax - b||_{2}^{2} = \sum_{i=1}^{s} [Ax - b]_{i}^{2} = \sum_{i=1}^{s} (f(z_{i}) - y_{i})^{2}$$

$$= \sum_{i=1}^{s} \underbrace{\left(\sum_{k=1}^{n} c_{0} + f_{k}(z_{i}) - y_{i}\right)^{2}}_{\in \mathbb{R} \text{ (note: for } r \in \mathbb{R}: r^{2} = ||r||_{2}^{2})}$$