离散数学第四部分之一

代数系统

由于数学和其他科学的发展,人们需要对若干不是数的事物,用类似普通计算的方法进行相似的计算。如矩阵、向量等。

研究代数系统的学科称为"近世代数"或"抽象代数"。

■ 代数运算

称自然数集合N上的加法"+"为运算,这是因为给定两个自然数a, b, 由加法"+",可以得到唯一的自然数c = a + b。加法"+"是函数吗?

N上的加法运算"+"本质上是一个N×N→N的函数

定义1: 设A,B,C是非空集合,从A×B到C的一个函数f: $A\times B\to C$ 称为一个 $A\times B$ 到C的二元代数运算,简称二元运算。

代数运算

一个二元运算就是一个特殊的函数 ,该函数能够对 $a \in A$ 和 $b \in B$ 进行运算,得到C中的一个元c , 即 o(a,b)=c 。

中缀方法表示为

 $a \circ b = c$

例

判别下面的函数或表是否是二元运算:

(1) 设 $A = \{0, 1\}$, $B = \{1, 2\}$, $C = \{\hat{\sigma}, A\}$, 定义函数*:

A×B→C,其中

- *(0,1) =奇,*(0,2) =偶,
- *(1,1)=偶, *(1,2)=奇。

分析 "*"是一个A×B到C的函数,因此,按定义,则 "*" 是一个A×B到C的运算。

运算表

- 当集合A和B有限时,一个A×B到C的代数运算,可以借用一个表,称为运算表(乘法表)来说明。
- 设 "*" 是 $A \times B \to C$ 的运算, $A = \{a_1, a_2, ..., a_n\}$, $B = \{b_1, b_2, ..., b_m\}$,则运算 "*" 可用下表说明。

运算表

*	b ₁	$\mathbf{b_2}$	•••	\mathbf{b}_{m}
a_1	$\mathbf{a_1} * \mathbf{b_1}$	$\mathbf{a_1} * \mathbf{b_2}$	•••	$\mathbf{a_1} * \mathbf{b_m}$
$\mathbf{a_2}$	a ₂ * b ₁	$\mathbf{a_2} * \mathbf{b_2}$	• • •	$\mathbf{a_2} * \mathbf{b_m}$
• • •	• • •	• • •	• • •	• • •
$\mathbf{a}_{\mathbf{n}}$	$\mathbf{a}_{\mathbf{n}} * \mathbf{b}_{1}$	$\mathbf{a_n} * \mathbf{b_2}$	• • •	$\mathbf{a_n} * \mathbf{b_m}$

定义 2

设 A_1 , A_2 , ..., A_n , A是非空集合, $A_1 \times A_2 \times ... \times A_n$ 到A的一个函数(或函数)* : $A_1 \times A_2 \times ... \times A_n \to A$ 称为一个 $A_1 \times A_2 \times ... \times A_n$ 到A的n元代数运算,简称n元运算。当n = 1时,称为一元运算。

1元代数运算表

当元素有限时,一元运算也可以用运算表来说明。

设 "*" 是A到A的一元运算,其中 $A = \{a_1, a_2, ..., a_n\}$,则一元运算 "*" 可以用右表说明。

1元运算表							
a	* (a)						
\mathbf{a}_1	* (a ₁)						
a_2	* (a ₂)						
•••	•••						
a_n	* (a _n)						

代数运算的特点: 封闭性

定义3 如果 "*"是A×A到A的二元运算,则称运算 "*"对集合A是封闭的,或者称 "*"是A上的二元运算。

定义 4: 设 "*" 是一个 $A_1 \times A_2 \times ... \times A_n$ 到A的n元代数运算,如果 $A_1 = A_2 = ... = A_n = A$,则称代数运算 "*" 对集合A是封闭的,或者称 "*" 是A上的n元代数运算。

说明

一般通常用大写的英文字母表示集合,用符号"+"、"-"、"*"、"/"、"∩"、"□"、"∧"、"\"、"∀"、"¬"、"★"、"☆"、"o"、"⊕"、"+"、"×"、"÷"等抽象的符号来表示一个抽象的运算。

定义5

设A是非空集合, $*_1$, $*_2$, ..., $*_m$ 分别是定义在A上 k_1 , k_2 ,..., k_m 元 封闭运算, k_i 是正整数,i=1,2,...,m。称集合A和 $*_1$, $*_2$, ..., $*_m$ 所组成的系统称为代数系统,简称代数,记为<A, $*_1$, $*_2$, ..., $*_m$ >。

当A是有限集合时,该代数系统称为有限代数系统,否则称为 无限代数系统。

注意: 判断集合A和其上的代数运算是否是代数系统,关键是判断两点: 一是集合A非空,二是这些运算关于A是否满足封闭性。

例子

(1) R上的"+"、"×"运算;

解:构成一个代数系统〈R,+,×〉;

(2) P(S)上的"∩"、"∪"、"—"运算;

解:构成代数系统 $\langle P(S), \cap, \cup, -- \rangle$,称集合代数;

(3) 含有n个命题变元的命题集合A与A上的"∧"、"∨"、 "¬"运算;

解:构成代数系统〈A, 〈, 〉, , , 称之为命题代数。

同类型代数系统

定义 6 设<A, $*_1$, $*_2$, ..., $*_m$ >和<B, o_1 , o_2 ,..., o_m >是两个代数系统,若 " o_i "和 " $*_i$ "都是 k_i 元运算,i=1,2,...,m,则称这两个代数同类型。

如:代数系统〈Z, +〉,〈Z, ×〉,〈R, +〉,〈P(S), \cap 〉,〈P(S), \cup 〉都是同类型的代数系统。

代数系统〈Z, +, \times 〉、〈R, +, \times 〉、〈P(S), \cap , \cup 〉都是同类型的代数系统。

子代数

定义7 设<A,*₁,*₂,...,*_m>是代数系统,如果:

- (1) B \subseteq A并且B $\neq\emptyset$;
 - (2) $*_1, *_2, ..., *_m$ 都是B上的封闭运算。

则<B, $*_1$, $*_2$, ..., $*_m$ >也是一个代数系统,称之为<A, $*_1$, $*_2$, ..., $*_m$ >的子代数系统,简称子代数。又若B \subset A,则称<B, $*_1$, $*_2$, ..., $*_m$ >是<A, $*_1$, $*_2$, ..., $*_m$ >的真子代数。

子代数

子代数是抽象代数学中一个非常重要的概念,通过研究子 代数的结构和性质,可以得到原代数系统的某些重要性质。 如在群论中,通过研究子群可得群的某些性质。

注意: 在后面章节中,将会学习半群、群、格、布尔代数等典型的代数系统。将子代数的概念应用到这些典型的代数系统,就会得到子半群、子群、子格、子布尔代数。因此,若没有比要,后面不再赘述某些典型代数系统中子代数的定义。

例4

在代数系统<Z,+>中,令

$$\mathbf{Q} = \{\mathbf{5z} \mid \mathbf{z} \in \mathbf{Z}\},\$$

证明<Q,+>是<Z,+>的子代数。

分析 根据定义,只需证明两点:

(1) Q是非空子集; (2) "+"对集合Q封闭。

显然,集合Q非空。对任意 $5z_1$, $5z_2 \in Q$,有

$$5z_1 + 5z_2 = 5(z_1 + z_2) \in Q$$
,

因此"+"对集合Q封闭。

证明略。

■ 二元运算律

例 设"+"是定义在自然数集合N上的普通加法运算,试回忆N上的加法运算"+"满足哪些运算性质?

分析 对任意 $a, b, c \in \mathbb{N}$,有

(a + b) + c = a + (b + c), 即结合律成立;

a+b=b+a, 即交换律成立;

对任意 $x, y \in \mathbb{N}$, 如果a + x = a + y, 则x = y, 即消去律成立;

 $0 \in \mathbb{N}$,0 + 0 = 0,即0是幂等元,但其他自然数不是幂等元,

即不满足幂等律。

结合律与交换律

定义 设<A, *>是二元代数系统,如果对任意a, b, $c \in A$,都有

$$(a*b)*c=a*(b*c)$$

则称"*"在A上是可结合的,或称满足结合律。

定义 设<A,*>是二元代数系统,如果对任意a,b \in A,都有 a*b=b*a

则称 "*"在A上是可交换的,或称 "*"满足交换律。

消去律

定义 设 $\langle A, * \rangle$ 是二元代数系统,元素 $a \in A$,

(1)对任意x, y∈A,都有
 如果a*x=a*y,那么x=y,
 则称a在A中关于"*"是左可消去元;

(2)对任意x, y∈A,都有
 如果x*a=y*a,那么x=y,
 则称a在A中关于"*"是右可消去元;

消去律(续)

(3)如果a既是A左可消去元又是右可消去元,则称a是A的可消去元;

(4) 若A中所有元素都是可消去元,则称"*"在A上可消去,或称"*"满足消去律。

幂等律

定义 设<A,*>是二元代数系统,若元素a∈A,满足

a*a = a,

则称a是A中关于"*"的一个幂等元,简称a为幂等元。若A中的每一个元素都是幂等元,则称"*"在A中是幂等的,或称"*"满足幂等律。

幂

设 "*" 是集合A上可结合的二元运算,a∈A,则a*a∈A,a*a*a∈A,...,由此,可以归纳定义a的正整数幂方:
 a¹=a,a²=a*a,a³=a²*a,...,
 an=aⁿ⁻¹*a,...

对任意正整数n,m,有以下等式:
 an*a^m=a^{n+m}, (an) m=a^{nm}。

分配律

定义:设"*"、"o"是集合A上的二元运算,<A, *, o >是一个代数系统,对任意 $a,b,c \in S$,有

(1) ao(b*c)=(aob)*(aoc),

则称运算"o"对"*"在S上满足左分配律(或第一分配律);

(2) (b*c) oa=(boa)*(coa),

则称运算"o"对"*"在S上满足右分配律(或第二分配律);

(3) 如果 "o"对 "*" 既满足左分配律又满足右分配律,则称 o"对 "*" 在S上满足分配律。

吸收律

定义 设 "*"、 "o" 是集合A上的二元运算,<A, *, o >是 一个代数系统,如果对任意x, y \in A,都有

$$x * (x o y) = x,$$

$$x o(x * y) = x$$
,

则称"*"和"o"满足吸收律。

特殊元

在代数系统中,有些元素有特殊性质,叫特殊元。

例如在代数系统<N, $\times>$ 中,其中N是自然数," \times "是普通乘法,0 \in N,并且对任意x \in N,有

$$x \times 0 = 0 \times x = 0$$

 $1 \in N$,并且对任意 $x \in N$,有

$$x \times 1 = 1 \times x = x$$

幺元(单位元)

定义设<A,*>是二元代数系统,

(1) 若存在 $e \in A$,对任意 $a \in A$,都有

a * e = e * a = a,

则称e是A中关于运算"*"的一个幺元(单位元)

(2) 若存在 $e_l \in A$,使得对任意 $a \in A$,都有

 $e_l * a = a$,

则称e₁是A中关于运算"*"的一个左幺元(左单位元)

(3) 若存在 $e_r \in A$,使得对任意 $a \in A$,都有

 $a * e_r = a$

称e_r是A中关于运算"*"的一个右幺元(右单位元)

例

下列代数系统是否存在幺元(左幺元或右幺元),如果存在计算之。

- (1) <R, +>, R是实数集, "+"是加法运算;
- (2) <R+, +>, R+是正实数集, "+"是加法运算;
- (3) <**P**(**A**×**A**), **o**>, 其中**P** (**A**×**A**)表示集合**A**上的所有二元 关系集合,运算 "**o**"表示关系的复合;
 - (4) < A, *, o, ^>, 其中A = { a, b, c }, 二元运算 "*", "o", "^"如表12.3.2、表12.3.3和表12.3.4分别所示。

S

表 12.3.2			表 12.3.3				表 12.3.4						
*	a	b	С	•	0	а	b	С	-	^	a	b	С
а	а	b	С	•	а	b	а	а	•	а	а	b	С
b	a	b	С		b	b	b	b		b	b	a	С
C	С	b	С		C	а	C	С		С	С	a	C

分析 可以直接通过定义计算幺元,即首先假设幺元存在,然后计算之,最后验证所计算的元是否是幺元。

(1) 设x是<R, +>的幺元,则由定义,对任意a∈R,有 x + a = a,

这说明,如果<R,+>的幺元存在,那么幺元必是0。

对任意 $a \in R$,0 + a = a + 0 = a,即验证可得,0是< R, + >的 幺元。

(2) 设x是<R+,+>的幺元,对任意a∈R+,有

$$x + a = a$$
,

让 a = 1, 有x + 1 = 1, 则x = 0, 但 $0 \notin R^+$ 。

这说明<R+, +>不存在幺元。同理, 左、右幺元也不存在。

(3) 设X是<P(A×A), o>的幺元, 对任意Y∈P(A×A), 有 XoY=Y,

让 $Y = I_A$,则 $XoI_A = I_A$,又 $XoI_A = X$,因此 $X = I_A$ 。 这说明,如果< $P(A \times A)$,o>的幺元存在,则幺元必是 I_A 。 对任意 $Y \in P(A \times A)$,

 $I_A \circ Y = Y \circ I_A = Y$,

即验证可得 I_{Δ} 是< $P(A \times A)$, o>的幺元。

(4)由于给出了运算表,因此可以根据运算表直接观察可得。

解(1) <R, +>中的幺元是0;

- (2) <R+, +>中无幺元;
- (3) $< P(A \times A)$, o>中的幺元是恒等关系 I_A ;
- (4) <A, *, o, ^>中关于运算 "*" 有左幺元a和b, 但无右幺元, 因此无幺元, 关于运算 "o" 无左幺元, 但有右幺元b和c, 因此无幺元; 关于运算 "o" 有幺元a。

结论

- (1) 计算幺元可根据定义直接进行,即首先假设幺元存在, 并根据定义计算,然后进行验证。
- (2)可以直接从运算表中看出运算是否有左幺元或右幺元。 具体方法是:
- ① 如果元素x所在的行上的元素与行表头完全相同,则x是一个左幺元;
 - ②如果元素x所在的列上的元素与列表头完全相同,则x是
- 一个右幺元;
 - ③同时满足①和②。

■零元

定义12.3.8 设<A,*>是一个二元代数系统,

(1) 若存在 $\theta \in A$,使得对任意 $a \in A$,都有 $a * \theta = \theta * a = \theta$,

则称θ是A中关于运算"*"的一个零元;

(2) 若存在 $\theta_1 \in A$,使得对任意 $a \in A$,都有 $\theta_1 * a = \theta_1$,

则称θ₁是A中关于运算"*"的一个左零元;

(3) 若存在 $\theta_r \in A$,使得对任意 $a \in A$,都有 $a * \theta_r = \theta_r$,

则称 θ_r 是A中关于运算"*"的一个右零元。

■逆元

定义12.3.9 设<A, *>是二元代数系统,e是幺元,a \in A,若存在一个元素b \in A,

(1) 使得: a*b=b*a=e,

则称a可逆,并称b是a的一个逆元,记为a-1;

(2) 使得: b*a = e,

则称a左可逆,并称b是a的一个左逆元,记为a_l-1;

(3) 使得: a*b=e,

则称a右可逆,并称b是a的一个右逆元,记为a,-1。

定理

设<A, *>是一个代数系统, "*" 满足结合律, a∈A, a可逆,则a是可消去元。

证明 记幺元为e, a的逆元为a-1, 设x、y是A中的对任意元素, 假设

$$a * x = a * y_{\circ}$$

$$由 a * x = a * y, 有$$

$$a^{-1} * (a * x) = a^{-1} * (a * y),$$

又结合律成立, 所以有

$$(a^{-1} * a) * x = (a^{-1} * a) * y,$$

即e * x = e * y,可得

$$x = y$$

设<A,*>是二元代数系统,

- (1) 如果<A, *>存在幺元,则幺元唯一;
- (2) 如果<A,*>存在幺元,则该幺元一定是左、右幺元;
- (3)如果<A,*>存在左、右幺元,则该左、右幺元相等, 且是幺元。

证明(1)(反证法)设〈S,*〉存在两个以上的幺元,不妨假设 e_1 , e_2 是〈S,*〉的两个幺元,

则对任意 $x \in S$, $x^*e_1 = e_1^*x = x$, 此时,取 $x = e_2^*$,

有
$$e_2*e_1=e_1*e_2=e_2$$
 ①

则对任意 $x \in S$,有 $x * e_2 = e_2 * x = x$,此时,取 $x = e_1$,

有
$$e_1*e_2=e_2*e_1=e_1$$
 ②

由①、②可知

$$e_1=e_2$$
,

即〈S,*〉的幺元是唯一的。

- (2) 显然成立
- (3) 若 e_l 、 e_r 是〈S,*〉的左、右幺元,

则对任意 $x \in S$,有 $e_l^*x = x$,此时,取 $x = e_r$,有

$$e_l * e_r = e_r$$

(1)

则对任意 $x \in S$,有 $x^*e_r = x$,此时,取 $x = e_1$,有

$$e_l * e_r = e_l$$

(2)

由①、②可知

$$e_l = e_r$$

即左、右幺元相等;显然可得 e=e₁。

设<S,*>是二元代数系统,

- (1) 如果<A, *>存在零元,则零元唯一;
- (2) 如果<A, *>存在零元,则该零元一定是左、右零元;
- (3)如果<A,*>存在左、右零元,则该左、右零元相等, 且是零元。

分析 该定理的证明方法与定理12.3.2证明相似。 证明 略。

设<A,*>是二元代数系统,"*"满足结合律且设e是幺元,则对任意a \in A,

- (1) 如果a存在逆元,则逆元唯一;
- (2) 如果a存在逆元,则该逆元一定是左、右逆元;
- (3)如果a存在左、右逆元,则该左、右逆元相等,且是逆元。

分析 该定理的证明方法与定理12.3.2证明相似

证明(1)(反证法)设 $a \in A$ 存在逆元,且不唯一,不妨设 a_1 , a_2 都是a的逆元,则有

$$a * a_1 = a_1 * a = e$$
,

$$a * a_2 = a_2 * a = e$$
,

由于"*"满足结合律,所以有

$$a_1 = a_1 * e = a_1 * (a * a_2) = (a_1 * a) * a_2 = e * a_2 = a_2, \quad \exists J$$

$$a_1 = a_2$$

即a的逆元唯一;

- (2) 由逆元、左逆元和右逆元的定义直接可得;
- (3) 设a∈A的左、右逆元分别是 a_l^{-1} 和 a_r^{-1} ,则有

$$a_1^{-1} * a = e, a*a_r^{-1} = e,$$

"*"满足结合律,所以有

$$a_r^{-1} = e * a_r^{-1}$$
 $= (a_l^{-1} * a) * a_r^{-1}$
 $= a_l^{-1} * (a * a_r^{-1})$
 $= a_l^{-1} * e = a_l^{-1},$
所以
 $a_r^{-1} = a_r^{-1} = a_l^{-1}$

推论

设<A, *>是二元代数系统, "*"满足结合律, a, b∈A,

- (1) 如果a, b分别有逆元 a^{-1} , b^{-1} ,则 $(a*b)^{-1} = b^{-1}*a^{-1}$;
- (2) 如果a是左(或右)可逆的元素,则a是左(或右)可消去的元素;
 - (3) 如果a是可逆的元素,则a是可消去的元素。

推论 (续)

分析 (1) 根据逆元的定义,只需证明

$$(a * b) * (b^{-1} * a^{-1})$$

$$= (b^{-1} * a^{-1}) * (a * b) = e;$$

同理,(2)和(3)可以直接根据消去元的定义证明。

推论 (续)

证明(1)由于"*"满足结合律,所以有 $(a * b) * (b^{-1} * a^{-1})$ $= a * (b * b^{-1}) * a^{-1}$ $= a * e * a^{-1} = a * a^{-1} = e$ $(b^{-1} * a^{-1}) * (a * b)$ $= b^{-1} * (a^{-1} * a) * b$ $= b^{-1} * e * b = b^{-1} * b = e, \quad \Box$ $(a*b)^{-1} = b^{-1}*a^{-1}$

推论 (续)

(2) 若a是左可逆的元素,设左逆元为 a_l^{-1} ,则对任意x, $y \in A$,如有a*x = a*y,则

$$a_l^{-1} * (a * x) = a_l^{-1} * (a * y),$$

$$(a_l^{-1} * a) * x = (a_l^{-1} * a) * y,$$

$$e * x = e * y$$
,所以

$$x = y$$

则a是左可消去元。

同样可证,如果a是右可逆的,则a是右可消去元。

(3) 由(2)和定理12.3.4直接可证。

例

设 $G = \{f_{a,b}(x) = ax+b \mid a\neq 0, a, b\in R\}$,其中R是实数, "o" 是G上关于函数的复合运算 。

- (1) 验证<G, o>是代数系统;
- (2) 如有幺元计算之;
- (3) 如有零元计算之;
- (4) 如有幂等元, 计算出这些幂等元;
- (5) 说明G中的那些元有逆元,并计算这些元的逆元。

例 (续): 封闭性

分析 (1) 要说明<G, o>是代数系统,只需要说明"o"对 G封闭,即说明对任意 $f_{a,b}$, $f_{c,d} \in G$,

$$f_{a,b}of_{c,d} \in G$$
,

$$\begin{split} \label{eq:continuous} \mathbb{X} & (f_{a,\,b} o f_{c,\,d})(x) = f_{c,\,d}(\,\,f_{a,\,b}(x)) \\ & = f_{c,\,d}(ax+b) = c(ax+b) + d \\ & = cax + bc + d = f_{ca,\,bc+d}(x) \text{, } \end{split}$$

显然 $ca \neq 0$,故

$$f_{ca, bc+d} \in G$$
,

所以"o"对G是封闭的,即〈G,o〉是代数系统。

例 (续): 幺元

(2) 不妨假设幺元是 $f_{c,d} \in G$,则对任意 $f_{a,b} \in G$,有 $f_{a,b}of_{c,d} = f_{a,b}, \quad X$ $f_{a,b}of_{c,d} = f_{ca,bc+d}$, M $f_{a,b} = f_{ca,bc+d}$ 因此,对任意x∈R,有 $f_{a,b}(x) = ax + b = f_{ca,bc+d}(x) = cax + bc + d$ 特别取x=0, x=1, 可得 bc+d=b, ca=a由于 f_{ab} 是G中的对任意元,取a=1,b=2,可得 c = 1, d = 0

例(续): 幺元

上面的分析说明,如果<**G**, o>有幺元,则此幺元必是 $f_{1,0}$,所以需进一步验证 $f_{1,0}$ 就是幺元。

即对任意 $f_{a,b} \in G$,验证等式

$$f_{a, b}of_{1, 0} = f_{1, 0}of_{a, b} = f_{a, b}$$

显然此等式成立,所以f_{1.0}是幺元。

例(续):零元

(3) 按同样的思路,不妨假设零元是 $f_{c,d} \in G$,由零元的定义,对任意 $f_{a,b} \in G$,有

$$f_{a, b} o f_{c, d} = f_{c, d}$$

$$f_{a,b}of_{c,d}(x) = cax+bc+d = f_{c,d}(x) = cx+d$$

取x = 0, 有 bc = 0,

又 $f_{a,b}$ 是对任意,取b=1,可得

$$c = 0$$
,

又 $f_{c,d} \in G$,则 $c \neq 0$, 矛盾,故 $f_{c,d}$ 是零元不成立,故代数系统<G, o>没有零元。

例(续):幂等元

(4) 不妨假设幂等元是 $f_{c,d} \in G$,有

$$f_{c, d} of_{c, d} = f_{c, d},$$

$$f_{c, d} of_{c, d}(x) = c^2x + cd + d = f_{c, d}(x) = cx + d,$$

取x = 0,有cd = 0,又 $c \neq 0$,则

$$d = 0$$
,

取
$$x = 1$$
, 有 $c^2 + cd + d = c + d$, 又 $d = 0$, $c \neq 0$, 则

$$c = 1$$

$$f_{c, d} = f_{1, 0}$$

又
$$f_{1.0}$$
o $f_{1.0} = f_{1.0}$,所以 $f_{1.0}$ 是唯一幂等元。

例(续): 逆元

(5) 对任意 $f_{a,b} \in G$,不妨假设它的逆元为 $f_{c,d}$,当然 $f_{c,d} \in G$,有

$$f_{a,b} o f_{c,d} = f_{1,0},$$
 $f_{a,b} o f_{c,d} (x) = cax + bc + d = f_{1,0}(x) = x,$ 特别取 $x = 0$, $x = 1$,可得 $bc + d = 0$, $ca = 1$,因为 $a \neq 0$,显然 $c = 1/a$, $d = -b/a$,故 $f_{c,d} = f_{1/a,-b/a},$

例(续): 逆元

同理,上面分析说明,如果 $f_{a,b}$ 有逆元,则此逆元是 $f_{1/a,-b/a}$,因此还需验证 $f_{1/a,-b/a}$ 是 $f_{a,b}$ 逆元,即验证等式

$$f_{a, b}of_{1/a, -b/a} = f_{1/a, -b/a}of_{a, b} = f_{1,0}$$

显然此等式成立,所以f_{1/a,-b/a}是f_{a,b}的逆元。

由fa, b的对任意性,可得G中的任何一个元都有逆元。

2022/6/27 79-55

结论

- (1) <G, o >是代数系统;
- (2) 幺元是f_{1.0};
- (3) <G,o>中没有零元;
- (4) <G, o >中唯一幂等元是 $f_{1.0}$;
- (5) <G, o >中对任意元 $f_{a,b}$ 的逆元是 $f_{1/a,-b/a}$ 。

■ 同态与同构

在现实社会中,存在着很多代数系统,但仔细分析这些众多的代数系统发现,有些代数系统,他们之间表面上似乎不相同,但他们实际上"相同"。

如有两个代数系统<{奇,偶},*>和<{正,负}, o>,其运算"*"和"o"分别定义如下表

表 12.4.1				表 12.4.2		
*	奇	偶	-	O	正	负
奇	奇	偶	-	正	正	负
偶	偶	偶		负	负	负

定义

设<A, *>和<B, o>为两个二元代数系统, ψ 是A到B的函数。 对任意x, y∈A,都有

$$\psi(x*y) = \psi(x) \circ \psi(y), \tag{1}$$

则称 ψ 是从<A, *>到<B, o>的同态映射,称 ψ (A)为同态象,其中 ψ (A) = { ψ (x) | x \in A}。

如果存在一个从<A, *>到<B, o >的同态映射,则称<A, *>与 <B, o >同态,记为<A, *> \sim <B, o >。

当<A, *> = <B, o >时, 称其同态为自同态。

定义 (续)

当同态映射ψ分别是单射、满射、双射时,分别称ψ是单一同态映射、满同态映射、同构映射。

如果存在一个从<A,*>到<B,o>的同构映射(单一同态映射、满同态映射),则称代数系统<A,*>与<B,o>同构(单一同态、满同态)。

用<A, *> \(\sep\)<B, o > 表示<A, *> 与<B, o > 同构。

同态与同构

同态与同构是代数系统中一个非常重要的概念,它体现了两个代数系统之间的某种联系,后面章节将会学习半群、群、格、布尔代数等典型的代数系统,那么将同态与同构的概念应用到这些典型的代数系统,就会得到半群、群、格、布尔代数的同态与同态。

例

设代数系统<Z, +>和<E, +>中,Z、E分别是整数集和偶数集,"+"是加法,证明<Z, +> \subseteq <E, +>。

分析 证明两个代数系统同构,关键是找出同构映射。假设f 是<Z, +>到<E, +>的同构映射,根据同构映射的定义,有 对任意 $x,y\in Z$, f(x+y)=f(x)+f(y),

特别取x = 0, y = 0, 有

$$f(0) = f(0+0) = f(0) + f(0), \quad \exists f(0) = 0.$$

例 (续)

对任意 $n \in \mathbb{Z}$, f(n) = f(n-1+1) = f(n-1) + f(1), 可得递推公 式如下:

$$f(n) = f(n-1) + f(1),$$

如果f(1) > 0,则f(n)是递增函数,

$$0 = f(0) < f(1) < f(2),$$

而f又是Z到E的双射,因此此时必有

$$f(1) = 2$$
,

同理,如果f(1) < 0,可得 f(1) = -2。

根据以上分析可知,

对任意
$$n \in \mathbb{Z}$$
, $f(n) = 2n$ 或 $f(n) = -2n$,

例 (续)

以上说明,如果f是同构映射,则

$$f(n) = 2n \vec{x} f(n) = -2n,$$

因此需进一步验证f(n) = 2n或f(n) = -2n是否是同构映射。

证明 对任意 $n \in Z$,令f(n) = 2n,则显然f是Z到E的双射,又对任意x, $y \in Z$,有

$$f(x + y) = 2(x + y) = 2x + 2y = f(x) + f(y),$$

因此f是同构映射,同理可证f(n) = -2n也是同构映射。故有<Z, +> $\le <$ E, +>。

设 ψ 是<A, *>到<B, o >的同态映射,那么< ψ (A), o >是<B, o>的子代数。

分析 需证ψ(A) 非空,且运算 "o" 对ψ(A)封闭。

证明 由于A非空,所以显然ψ(A)为B的非空子集。

对任意 $x, y \in \psi(A)$,存在 $a, b \in A$,使得

$$\psi(a) = x$$
, $\psi(b) = y$, \uparrow

$$x \circ y = \psi(a) \circ \psi(b) = \psi(a * b),$$

因为 $a*b \in A$,所以 $\psi(a*b) \in \psi(A)$,即

$$x \circ y \in \psi(A)$$
,

故"o" $\psi(A)$ 对封闭,得证。

设ψ是二元代数系统<A,*>到<B,o>的满同态,则:

- (1) 若 "*" 可交换,则 "o" 也可交换;
- (2) 若 "*" 可结合,则 "o" 也可结合;
- (3) 若e是<A, *>的幺元,则 ψ (e)是<B, o>的幺元;
- (4) 若 θ 是<A, *>的零元,则 ψ (θ)是<B, o>的零元;

- (5) 若a是<A, *>的幂等元,则ψ(a)是<B, o>的幂等元;
- (6) 若 x^{-1} 是x在<A, *>中的逆元,则 $\psi(x^{-1})$ 是 $\psi(x)$ 在<B, o>中的逆元;
- (7) 若a是<A, *>的(左、右)可消去元,则ψ(a)是<B, o>的(左、右)可消去元。

证明 (1) 对任意x, y∈B,因为ψ是满射,所以存在a, b∈A,使得

$$\psi(a) = x$$
, $\psi(b) = y$,

因为运算"*"在A中可交换,则有

$$a*b=b*a$$
,于是

 $xoy = \psi(a) o \psi(b) = \psi(a * b) = \psi(b * a) = \psi(b) o \psi(a) = yox$

所以运算"o"在B中满足交换律。

(2) 类似(1), 略。

(3) 对任意x ∈ B,因为 ψ 是满射,所以存在a ∈ B,使得 $\psi(a)$

$$a*e=e*a=a$$
,于是

$$xoy(e) = y(a) oy(e)$$

$$= \psi(a * e) = \psi(a) = x,$$

$$\psi(e)$$
 ox = $\psi(e)$ o $\psi(a)$

$$= \psi(e * a) = \psi(a) = x$$
,所以有

$$xo\psi(e) = \psi(e) ox = x$$

由x的对任意性,可知 ψ (e)是<B, o>的幺元。

其它类似(3),略。

设ψ是代数系统<A, *₁, *₂>到<B, o₁, o₂>的满同态,这里*_i和 _i(i = 1, 2)均为二元运算,那么有

- (1) 若运算 " $*_1$ "对 " $*_2$ "在A中满足分配律,则 " o_1 "对 " o_2 "在B中也满足分配律;
- (2) 若运算 " $*_1$ "和 " $*_2$ "在A中满足吸收律,则 " o_1 "和 " o_2 "在B中也满足吸收律。

证明 定理的证明类似与定理12.4.2

同构关系

令 $P = \{x \mid x \in \mathcal{C}(x, y) \mid x, y \in P, \exists x$

本章总结

- •代数系统的定义
- •代数系统中的特殊元素
- •计算代数系统中的特定元素