# Dynamische Erde

# Übung 4 – Sedimentologie

12. Oktober 2020

Alex Guthauser alexg@student.ethz.ch D-ERDW, ETH Zürich

# Übung 4 – Sedimentologie

- Ziel der Übung
- Einführung
- Klastische Sedimente Gesteinsbestimmung
- Turbidite
- Verwitterungsresistenz der Mineralien

## ➤Ziel der Übung

- Einführung
- Klastische Sedimente Gesteinsbestimmung
- Turbidite
- Verwitterungsresistenz der Mineralien

# Ziel der Übung

#### Ihr könnt:

die verschiedenen Sedimentgesteine bestimmen und

klassifizieren

• eine mögliche Entstehungsgeschichte rekonstruieren

Ziel der Übung

### **≻**Einführung

- Klastische Sedimente Gesteinsbestimmung
- Turbidite
- Verwitterungsresistenz der Mineralien



Exogener Gesteinskreislauf





## Verwitterung

#### **Physikalische Verwitterung**

- Frostsprengung
- Gewichtsentlastung
- Biologische Aktivität
- Expansion & Kontraktion

#### → Oberflächenvergrösserung

#### **Chemische Verwitterung**

- Oxidation (Zufuhr von Sauerstoff)
- Lösung (Dissolution)
- Hydrolyse (schwache Säuren ziehen Kat raus)
- Hydratation (Zufuhr von Wasser)



#### Lithifikation: Umwandlung Lockergestein in Festgestein

#### Diagenese







### Stratigraphie – Gesetze nach Steno

- Ursprüngliche Horizontalität
  - → Sedimente lagern sich horizontal ab



→ Gestein an verschiedenen Orten mit gleichen Eigenschaften gehören zur selben Schicht

- Superposition
  - → alt unten, jung oben



## Sedimentgesteine

- Allgemein geringer Anteil, aber an der Erdoberfläche dominierend
- Archive der Erdgeschichte und variierender Umweltbedingungen
- Speicher von Ressourcen (z.B. Erdöl, Erdgas)
- Grundwasserleiter

→ Bildung: Akkumulations- / Sedimentationsrate > Erosion

### Sedimentgesteine



#### **Identifizierung** anhand von:

- Gesteinsfragmenten
- Fossilien
- Schichtung
- Sedimentstrukturen

Chemisch

- Ziel der Übung
- Einführung
- >Klastische Sedimente Gesteinsbestimmung
- Turbidite
- Verwitterungsresistenz der Mineralien

### Klastische Sedimente - Gesteinsbestimmung

- 1. Mineralogie
- 2. Korngrösse
- 3. Grundmasse (Matrix / Zement)
- 4. Textur
- 5. Nomenklatur = Namen
- 6. Zusammensetzung Klasten
- 7. Sedimentstrukturen
- 8. Interpretation / Ablagerungsmilleu

#### 3. Grundmasse

Matrix:

Primäre Ablagerung (gleichzeitig wie Klasten) -> Sedimentär

Zement:

Sekundäre Ausfällung während Diagenese -> Bindemittel

#### 4. Textur

- a.) Form der Klasten
  - → Rundung und Spherizität
- b.) Sortierungsgrad
  - → Korngrössenverteilung
- c.) Grundmasse; Klasten-Verhältnis
  - → Klasten-gestüzt / Matrix-gestützt
- d.) Reife (mechanisch / chemisch)

### 4 d). Reife

#### Mechanisch

Gut sortiert & stark gerundet → mechanisch reif



#### Chemisch

Hoher Quarzanteil

→ chemisch reif



### Klastische Sedimente - Gesteinsbestimmung

- 1. Mineralogie
- 2. Korngrösse
- 3. Grundmasse (Matrix / Zement)
- 4. Textur
- 5. Nomenklatur = Namen
- 6. Zusammensetzung Klasten
- 7. Sedimentstrukturen
- 8. Interpretation / Ablagerungsmilleu

### 5. Nomenklatur: Wentworth-Skala

#### → Die Komponente mit dem grössten Anteil ist bestimmend für die Namensgebung!

|                         | Klastische Sedimente                                              |          |         |        |                                                                                                                     |         |           |            |             |              |               |         |
|-------------------------|-------------------------------------------------------------------|----------|---------|--------|---------------------------------------------------------------------------------------------------------------------|---------|-----------|------------|-------------|--------------|---------------|---------|
| Korndurchmesser<br>(mm) | > 200                                                             | 200 - 60 | 60 - 20 | 20 - 6 | 6 - 2                                                                                                               | 2 - 0.6 | 0.6 - 0.2 | 0.2 - 0.06 | 0.06 - 0.02 | 0.02 - 0.006 | 0.006 - 0.002 | < 0.002 |
| Kornfraktion            |                                                                   |          | grob    | mittel | fein                                                                                                                | grob    | mittel    | fein       | grob        | mittel       | fein          |         |
| Lockergestein           | Blöcke                                                            | Steine   | Kies    |        |                                                                                                                     | Sand    |           |            | Silt        |              |               | Ton     |
| Sediment                | Brekzie (Komponenten eckig)<br>Konglomerat (Komponenten gerundet) |          |         |        | Quarzsandstein Arkose (min 25% Feldspat) Litharenit (reichlich Gesteinsbruchstücke) Grauwacke (toniges Bindemittel) |         |           | Siltstein  |             |              | Tonstein      |         |

### Klastische Sedimente - Gesteinsbestimmung

- 1. Mineralogie
- 2. Korngrösse
- 3. Grundmasse (Matrix / Zement)
- 4. Textur
- 5. Nomenklatur = Namen
- 6. Zusammensetzung Klasten
- 7. Sedimentstrukturen
- 8. Interpretation / Ablagerungsmilleu

## 6. Zusammensetzung Klasten





#### 7. Sedimentstrukturen

#### Kreuzschichtung



#### Wellenrippel



8. Interpretation / Ablagerungsmilleu



## Transportmedium Quarzkörner



#### Sandsteine

Litharenit: Arkose: Quarzarenit: Grauwacke: reichlich Gesteinsbruchausschließlich Quarz reichlich Feldspat reichlich Tonmatrix stücke 1 mm 1 mm Schwemmfächer Strand Delta

Welcher Sandstein ist chemisch am reifsten?

Welcher Sandstein ist mechanisch am reifsten?

- Ziel der Übung
- Einführung
- Klastische Sedimente Gesteinsbestimmung
- > Turbidite
- Verwitterungsresistenz der Mineralien

### **Turbidite**

- Trübestrom (= "Unterwassergerölllawine")
- Lagern eine charakteristische sedimentäre Sequenz ab →

**Bouma-Sequenz** 

# Hjulström-Diagramm

- Fliessgeschweindigkeiten:  $v_{Erosion} > v_{Sedimentation}$
- Hohe Fliessgeschwindigkeit v → grosse Korngrössen werden transportiert
- Sehr kleine & sehr grosse Körner → schwer zu erodieren

Dynamische Erde I - HS 2020 Alex Guthauser 29

# Hjulström-Diagramm



- Ziel der Übung
- Einführung
- Klastische Sedimente Gesteinsbestimmung
- Turbidite
- ➤ Verwitterungsresistenz der Mineralien

## Verwitterungsresistenz der Mineralien

Bowen'sche Reaktionsreihe der Silikate Stabilität der Minerale gegen Verwitterung

