Поперечная длина когерентности

Рассмотрим протяженный источник света, имеющий в некоторой точке наблюдения угловой размер $\alpha \ll 1$. Ненулевой угловой размер приводит к тому, что волновой вектор в точке наблюдения равен не \mathbf{k}_0 , а

$$\mathbf{k}_0 + \delta \mathbf{k}_x$$

где второе слагаемое принимает все значения в интервале от $-k_0\alpha/2$ до $k_0\alpha/2$.

Фаза волны, испускаемой таким источником, записывается как

$$\mathbf{k} \cdot \mathbf{r} = k_0 z + \delta k_x x.$$

Второе слагаемое представляется собой случайную величину с амплитудой шума

$$\delta \Phi = k_0 \alpha \cdot x$$
.

Таким образом, с увеличением x неопределенность в фазе волны линейно растет. Если разность фаз между точками с координатами x_1 и x_2 вследствие флуктуаций может достигать 2π и больше, то волны в этих точках уже нельзя считать когерентными. Отсюда получаем оценку:

$$k_0 \alpha \cdot \Delta x = 2\pi \rightarrow \Delta x = \frac{2\pi}{k_0 \alpha} = \frac{\lambda}{\alpha} = l_{\perp}.$$

Величина $l_{\perp} = \frac{\lambda}{\alpha}$ называется *поперечной длиной когерентности*. Она определяет максимальное расстояние в поперечном направлении между точками, в которых волны, приходящие от протяженного источника, еще можно считать когерентными.

Продольная длина когерентности

Рассмотрим точечный источник света, длина волны которого распределена в интервале $\lambda_0 \pm \delta \lambda$. Тогда волновой вектор имеет разброс в продольном направлении, равный

$$\delta k = \delta \left(\frac{2\pi}{\lambda}\right) = \frac{2\pi\delta\lambda}{\lambda^2}.$$

Фаза волны, испускаемой таким источником, записывается как

$$\mathbf{k} \cdot \mathbf{r} = k_0 z + (\delta k) z.$$

Второе слагаемое представляется собой случайную величину с амплитудой шума

$$\delta \Phi = \frac{2\pi\delta\lambda}{\lambda^2} \cdot z.$$

Таким образом, с увеличением z неопределенность в фазе волны линейно растет. Если разлтчие по фазе между точками с координатами z_1 и z_2 вследствие флуктуаций может составлять 2π и больше, то волны в этих точках уже нельзя считать когерентными. Отсюда получаем оценку:

$$\frac{2\pi\delta\lambda}{\lambda^2}\cdot\Delta z = 2\pi \to \Delta z = \frac{\lambda^2}{\delta\lambda} = l_{\parallel}.$$

Величина $l_{\parallel}=\frac{\lambda^2}{\delta\lambda}$ называется *продольной длиной когерентности*. Она определяет максимальное расстояние в продольном направлении между точками, в которых волны, приходящие от немонохроматичного источника, еще можно считать когерентными.