R15

B.Tech II Year II Semester (R15) Supplementary Examinations December 2017

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science & Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Define symbol, string and language.
 - (b) Differentiate between DFA and NFA.
 - (c) Draw DFA that accepts strings which has a substring of 101 over an alphabet {0, 1}.
 - (d) Differentiate between left and right linear grammars.
 - (e) Justify the statement CFLs are note closed under intersection with an example.
 - (f) Draw derivation tree for the string id+id* id from the grammar $E \rightarrow E + E | E * E |$ id.
 - (g) Formally define a push down automata.
 - (h) Briefly explain when we call a CFG is in Chomsky's normal form.
 - (i) List the closure properties of recursive languages.
 - (j) Briefly explain the functioning of a counter machine.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

2 Convert the following NFA with ε moves to NFA without ε moves.

OR

3 Construct a DFA for the regular expressions 10 + (0 + 11) 0*1 and optimize the states.

UNIT - II

4 Prove that $0^n \mid n$ is a perfect square is not a regular language using pumping lemma.

OR

5 List and explain the closure properties of regular languages.

R15

UNIT - III

- 6 (a) Simplify the following grammar. $S \rightarrow AB \mid CD; \rightarrow 0A \mid 1B; B \rightarrow 2 \mid 3; D \rightarrow AC \mid BDE; E \rightarrow 4E \mid D \mid 5.$
 - (b) Remove left recursion from the grammar $A \rightarrow AX$; $A \rightarrow Y$.

OR

- 7 (a) Define Ambiguous grammar.
 - (b) Remove ambiguity from the grammar $E \rightarrow E + E \mid E * E \mid id$.

UNIT - IV

8 Construct a pushdown automaton that recognizes even length palindromes over an alphabet {0, 1}.

OR

9 Construct a PDA that recognizes strings which contain equal number of 0's and 1's.

UNIT - V

10 Construct a Turing machine which multiplies two unary numbers.

OR

- 11 (a) Define the Turing machine Halting problem.
 - (b) Define the post correspondence problem. Let $\Sigma = \{0,1\}$ and take A and B as $\{w1=11,\ w2=100,\ w3=111\}$ $\{v1=111,\ v2=001,\ v3=11\}$. Give a PCP solution for this problem. If we take $\{w1=00,\ w2=001,\ w3=1000\}$ $\{v1=0,v2=11,\ v3=011\}$. Then, is there PC solution exist. Justify your answer.

B.Tech II Year II Semester (R15) Supplementary Examinations December 2018

www.anaroia.previousquesiionpapers.com | www.previousquesiionpapers.com | www.ios.previousquesiionpapers.com

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science & Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
- (a) Define inductive proof.
 - (b) Differentiate NFA and DFA.
 - (c) Write the regular expression to denote a language L which accepts all the strings which begin or end with either 00 or 11.
 - (d) State the pumping lemma for regular language.
 - (e) If $\delta \to a\delta b/aAb$, $A \to bAa$, $A \to bAa$, $A \to ba$. Find the language generated by the grammar.
 - (f) Generate context free grammar L={w/w contain at least three a's}.
 - (g) What do you mean by instantaneous description for push down automata?
 - (h) Mention the normal forms of context free grammar. Justify the need of normal forms.
 - (i) Draw transition diagram of the tuning machine to recognize all strings consisting of an even number of 1's over ∑={1}.
 - (j) Distinguish between regular languages and recursively enumerable languages.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

2 Convert the following NFA to DFA.

	0	1
$\rightarrow p$	p, r	q
q	r, s	р
*r	p, s	r
*s	a. r	¢

OR

3 Minimize the finite automaton shown in figure below.

UNIT – II

4 Convert the following NFA into regular expression.

5 Summarize the closure properties of regular language.

R15

UNIT – III

6 Find the CNF of the following grammar:

 $S \rightarrow OAO||B||BB$

 $A \rightarrow C$

B→S/A

C→S/∈

OR

7 Show that the following grammars are ambiguous:

 $S \rightarrow asbs/bsas/\epsilon$

 $S \to AB/aaB, A \to a/Aa, B \to b.$

UNIT – IV

8 Let $M=(\{q_0,q_1\}, \{0,1\}, \{x,z_0\}, \delta, q_0, z_0, c)$ where δ is given by:

 $\delta(q_0,0,z_0)=(q_0,xz_0)$

 $\delta(q_1,1,x)=(q_1,\in)$

 $\delta(q_0,0,x)=(q_0,xx)$

 $\delta(q_1, \in, x) = (q_1, \in)$

 $\delta(q_0,1,x)=(q_1,\in)$

 $\delta(q_1, \in, z_0) = (q_1, \in)$

Construct a CFG for the PDAM.

OR

9 Show that the language L={aibici/ i≥1} is not context free language.

UNIT – V

Define post correspondence problem. Let $\Sigma = \{0, 1\}$. Let A and B be the lists of three strings each, defined as:

	List A	List B
-	Wi	Xi
1	1	111
2	10111	10
3	10	0

Does this PCP have a solution?

OR

11 Design a Turing machine for multiplying two numbers using subroutine.

R15

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Define a DFA formally.
 - (b) Differentiate between a Moore machine and a mealy machine.
 - (c) What are various forms in which we can represent regular languages?
 - (d) Construct a DFA that accepts strings which does not contain a substring of 110.
 - (e) State and prove ARDEN's theorem.
 - (f) When do we say a CFG is in Greibach Normal Form?
 - (g) Compare and contrast DPDA and NPDA.
 - (h) State the properties of LR grammars.
 - (i) Write short notes on Linear Bounded Automata.
 - (j) List the closure properties of Recursively Enumerable Languages.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

2 Convert the following mealy machine into its equivalent Moore machine.

From state	i/p	To state	o/p	i/p	To state	o/p
Q_0	0	Q ₁	N	1	Q_3	N
Q ₁	0	Q_2	N	1	Q_3	Ν
Q_2	0	Q_2	Υ	1	Q_3	Ν
Q_3	0	Q ₁	N	1	Q_4	N
Q_4	0	Q_1	N	1	Q_4	Υ

OR

3 Minimize the following automata.

UNIT – II

4 Prove that the language 0^p p is a prime number is not regular.

OR

- 5 (a) Explain how equivalence between two FA is verified with an example.
 - (b) What are the applications of regular expressions and finite automaton?

R15

UNIT – III

6 Convert the following grammar into Greibach Normal form:

$$A_1 \rightarrow A_2 A_3; \ A_2 \rightarrow A_3 A_1 | \ b; \ A_3 \rightarrow A_1 A_2 | \ a;$$

OR

7 Explain the closure properties of Context Free languages.

UNIT – IV

8 Construct a PDA that recognizes balanced parentheses.

OR

9 Construct a PDA that recognizes strings of type aⁱb^jc^{i+j}.

UNIT – V

10 Construct a Turing machine which carries out proper subtraction (a-b=0, if a<b).

OR

11 (a) Explain Chomsky Hierarchy of languages.

(b) Explain any four variations of Turing machines.

R15

B.Tech II Year II Semester (R15) Regular & Supplementary Examinations May/June 2018

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science & Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) What is induction principle? Give an example.
 - (b) Draw finite automata that accept a string start with '1' and ends with '0', $\Sigma = \{0, 1\}$.
 - (c) Construct a regular expression that accepts 3rd symbol from right end as 'a'.
 - (d) Define Arden's theorem.
 - (e) Construct the language L for S→aCa, C→aCa/b.
 - (f) Give the general forms of CNF.
 - (g) What is instantaneous description of PDA?
 - (h) Draw push down automata that accept the language L = {aⁿbⁿ/n≥1}.
 - (i) Differentiate multi tape and multi track turing machine.
 - (j) List the properties of recursively enumerable language.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

Determine minimal deterministic finite automata (DFA) for the given transition table over $\Sigma = \{0,1\}$, where A is the initial state and C is the final state

Symbol state	0	1
\rightarrow A	F	В
В	C	G
C *	С	Α
D	G	С
Е	F	Ι
F	G	С
G	Е	G
Η	С	G

OR

3 Construct DFA equivalent to NFA

 $\mu = (\{p,q,r\}, \{0,1), \delta, p, \{q,s\})$

Where δ is defined in the following table:

δ	0	1
р	{q,s}	{q}
q*	{r}	$\{q,r\}$
r	{s}	{p}
S*	-	{p}

UNIT – II

Find whether the languages $\{ww/w \text{ is in } (1+0)^*\}$ and $\{1^k / k = n^2, n > = 1\}$ are regular or not.

OR

5 Construct an NFA for the regular expression (a+b)*aab(a+b)*

R15

UNIT – III

6 For the given context free grammar (CFG) G, find Chomsky normal form (CNF). G has productions

 $S \rightarrow AaA / CA / BaB$

A → aaBa / CDA / aa / DC

 $B \rightarrow bB / bAB/bb / aS$

 $C \rightarrow Ca/bC/D$

 $D \rightarrow bD / b$

OR

- 7 (a) Explain the closure properties of Context Free languages.
 - (b) Find the left most derivation and right most derivation to the following parse tree.

UNIT - IV

8 Convert the grammar S→oAA, A→OS/1S/o to a PDA that accepts the same language by empty stack.

OR

9 Construct pushdown automata (PDA) for the following language:

 $L = \{a^{n+1} b^n : n \ge 0\}$

Draw the transition diagram trace the string 'aaaabbb'.

UNIT – V

Design a Turing machine for the given language L = {0ⁿ1³ⁿ : n≥1}. Write the transition table for the turning machine and show the tracing of string 00111111.

OR

11 Prove that Ld is not recursively enumerable.
