3 Minute Student Talks

Aoibheann Brady

Attribution of Large Scale Drivers for Environmental Change

Spatial Statistics and Preferential Sampling!

- Stochastic dependence between unknown underlying process and sampling locations.
- ► Dependent on the *utility* of a design.
- ► Example: Monitoring pollution levels.

► How do we deal with this?

Matthew Griffith

An Increased Model Height in the

Met Office's Unified Model

Log-Gaussian Cox Processes

Figure: Locations of 3605 trees in rainforest, bei dataset

Homogeneous	Inhomogeneous	Cox Process
Poisson Process	Poisson Process	
$N(A) \sim Po(\lambda A)$	$N(A) \sim Po(\int_A \lambda(\mathbf{x}) d\mathbf{x})$	Stochastic intensity
		function $\Lambda(x)$
		$\Lambda(\mathbf{x}) = \lambda(\mathbf{x}) \implies$
		Inhom. PP

Understanding Measure-valued Martingales

Definition

A stochastic process $(\mu_t)_{t\geq 0}$ is said to be a **measure-valued martingale** (MVM), i.e. $\mu_t \in \mathcal{P}^1(\mathbb{R})$ (integrable) $\forall t\geq 0$, and $\mu_t(A)$ is a martingale $\forall A\in \mathcal{B}(\mathbb{R})$.

Formulation of the Problem

Given that μ_t has a constant "speed" (exact sense to be determined...), what is the MVM that makes $\text{var}(\mu_t) := \int z^2 \mu_t(dz) - \left(\int z \mu_t(dz)\right)^2$ decrease as fast as possible (on average)? What about general functions F of μ_t , not just variance? The aim is to use the JKO scheme by extending its application to measure-valued processes.

Example $\mu_{t+2\epsilon} \downarrow \mu_{t+4\epsilon}$ $\mu_{t+4\epsilon} \downarrow \mu_{t+4\epsilon}$ $\mu_{t+4\epsilon} \downarrow \mu_{t+4\epsilon}$ $\mu_{t+4\epsilon} \downarrow \mu_{t+4\epsilon}$ $\mu_{t+4\epsilon} \downarrow \mu_{t+4\epsilon}$

Fact: a measure-valued martingale has shrinking support.

Financial Application

Variance swaps: speculating on or hedging the risks associated with the volatility of the underlying financial product (exchange rates, interest rates, stock index).

Jordan-Kinderlehrer-Otto (JKO) scheme

The JKO scheme is a time discretisation scheme that allows us to find the unique (local) minimising direction (gradient flow) of F at each point in the Wasserstein metric space \mathcal{P}_1 . Optimal transport theory tells us that if we take the mesh size to zero we get a geodesic.

- JKO scheme --- Optimal Transport

Large Scale Differential Geometric MCMC

First in Human Trials

Lizzi Pitt

Simple Branching

Figure: GW Process

$$Z_{n+1} = \sum_{n=1}^{Z_n} A_j^{(n+1)}$$

$$\downarrow$$

 $\begin{array}{c} \text{Continuous-time} \quad \text{Galton} \\ \text{Watson process} \rightarrow \end{array}$

Continuous-time BP
Tsogii Saizmaa (University of Bath)

 ${\sf Spatial}\ consideration$

Figure: Branching RW

$$X_n(\cdot) = \sum_{n=1}^{Z_n} \delta_{x_i^n}(\cdot)$$

Figure: Branching Brownian Motion

$$X_t(\cdot) = \sum_{n=1}^{Z_t} \delta_{x_n^t}(\cdot)$$

Ex: Spatial Position = Birth time

Figure: CMJ process

Definition

A spatial branching process is branching phenomenon + spatial motion given by a Markov process.