Math 76 Exercises - 5.5 Alternating Series; Absolute and Conditional Convergence

1. Determine whether each of the following alternating series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
 $b_n = \left| \frac{(-1)^n}{\sqrt{n}} \right| = \frac{1}{\sqrt{n}}$. $\{b_n\}$ is decreasing and $\lim_{n \to \infty} b_n = 0$. Therefore $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges

(b)
$$\sum_{n=2}^{\infty} \frac{(-2)^{n+1} n}{8n^2 - 5}$$
 $b_n = \left| \frac{(-2)^{n+1} n}{8n^2 - 5} \right| = \frac{2^{n+1} n}{8n^2 - 5}$ $\frac{1}{8n^2 -$

= $\frac{1 - \ln x}{x^2}$, which is negative for x > e. So $\frac{x}{x^2}$ is decreasing. Thus $\sum_{n=3}^{\infty} \frac{(-1)^n \ln n}{n}$ converges

$$(d) \sum_{n=1}^{\infty} \left(-\frac{2}{3}\right)^{n} \cdot \frac{1}{n} \qquad \qquad b_{n} = \left| \left(-\frac{2}{3}\right)^{n} \cdot \frac{1}{n} \right| = \left(\frac{2}{3}\right)^{n} \cdot \frac{1}{n}$$

$$a_{n} = \left(-\frac{2}{3}\right)^{n} \cdot \frac{1}{n} \qquad \qquad \left| \lim_{n \to \infty} b_{n} = 0 \cdot 0 = 0 \right| \qquad \qquad b_{n+1} = \left(\frac{2}{3}\right)^{n+1} \cdot \frac{1}{n+1} = \left(\frac{2}{3}\right) \left(\frac{2}{3}\right)^{n} \cdot \frac{1}{n+1}$$

$$< \frac{2}{3} \cdot \left(\frac{2}{3}\right)^{n} \cdot \frac{1}{n}$$

$$= \frac{2}{3} b_{n} < b_{n}$$

$$So \left\{b_{n}\right\} \text{ is decreasing.}$$
Therefore
$$\sum_{n=1}^{\infty} \left(-\frac{2}{3}\right)^{n} \cdot \frac{1}{n} \quad \text{converges}$$

- 2. For each convergent series above, determine whether the series is absolutely convergent or conditionally convergent.
- (a) The series $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n!}$ is a p-series with $p = \frac{1}{2} \le 1$, so $\sum b_n = \sum |a_n|$ diverges. But $\sum a_n$ converges (where $a_n = \frac{(-1)^n}{\sqrt{n}}$), so $\sum a_n$ converges conditionally
- (b) (The series diverges)
- (c) By the Integral Test (see class exercises 5.3 # 1(c)), the series $\Sigma |a_n| = \Sigma |b_n| = \sum \frac{\ln(n)}{n} \text{ diverges}$. [Or use direct comparison test: $\frac{\ln(n)}{n} \ge \frac{1}{n}$, and $\Sigma \frac{1}{n}$ diverges.] But Σa_n converges (where $a_n = (-1)^n \ln(n)$). Therefore Σa_n converges conditionally.
- (d) By direct comparison with $\sum \left(\frac{2}{3}\right)^n$: $\left(\frac{2}{3}\right)^n \cdot \frac{1}{n} < \left(\frac{2}{3}\right)^n$, and $\sum \left(\frac{2}{3}\right)^n$ is a convergent geometric series (irt= $\frac{2}{3}$ <1). Thus $\sum |a_n| = \sum b_n = \sum \left(\frac{2}{3}\right)^n \cdot \frac{1}{n}$ converges (where $a_n = \left(\frac{-2}{3}\right)^n \cdot \frac{1}{n}$). So $\sum a_n$ converges absolutely

3. Consider the conditionally convergent series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 6 - \frac{6}{2} + \frac{6}{3} - \frac{6}{4} + \frac{6}{5} - \frac{6}{6} + \cdots$$

(a) Write a rearrangement of the terms so that the sum of this series is 5.

$$6 - \frac{6}{2} = 3$$
$$3 + \frac{6}{2} = 5$$

$$5 + \frac{6}{5} = 6.2$$

$$6.2 - \frac{6}{4} = 4.7$$

$$5.02 - \frac{6}{10} \approx 4.4$$

$$4.88 + \frac{6}{15} \approx 5.28$$
, etc.

(b) Write a rearrangement of the terms so that the sum of this series is 1.

$$6 - \frac{6}{2} = 3$$

$$3 - \frac{6}{4} = 1.5$$

$$1.5 - \frac{6}{6} = 0.5$$

$$0.5 + \frac{6}{3} = 2.5$$

$$2.5 - \frac{6}{8} = 1.75$$

$$1.75 - \frac{1}{10} = 1.15$$

$$1.15 - \frac{6}{12} = 0.65$$

$$0.65 + \frac{6}{5} = 1.85$$

$$1.85 - \frac{6}{14} \approx 1.4$$

$$1.05 - \frac{6}{18} \approx 0.71$$

$$0.71 + \frac{6}{7} \approx 1.57$$

4. Give an example of a_n for which the sequence $\{a_n\}$ converges, but the series $\sum a_n$ diverges.

Consider $a_n = \frac{1}{n}$. The sequence $\{a_n\}$ converges to 0 since $\lim_{n \to \infty} a_n = 0$, but $\sum a_n$ diverges since $\sum \frac{1}{n}$ is a p-series with p = 1.

5. Is there an example of a_n for which the series $\sum a_n$ converges, but the sequence $\{a_n\}$ diverges? If so, find one. If not, explain why not.

It is not possible. By the Divergence Test, if lim an #0, then Zan diverges.