

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba

Engenharia I	Mecatrônica – I	Departamento o	le Eletrônica ((DAELN)
Disciplina: E	Eletricidade Pro	f. José Jair Alv	es Mendes Jú	ınior

A 1,,,,,,,,,	Data
Aluno:	Data

Experiência 3 – Características de Circuitos Série, Paralelo e Potenciômetro

Antes da aula de laboratório, cada aluno deve fazer os cálculos e preencher as tabelas com os valores teóricos e, quando for o caso, montar e soldar previamente cada circuito que será testado. Deve-se preparar os cabos para as medidas de corrente em cada circuito que será testado.

- 1. Objetivos de Aprendizagem
- -Determinar as características de circuitos série, paralelo e misto
- Conhecer os tipos de potenciômetro
- 2. Componentes utilizados
- Resistores de 1/4W: $1k\Omega$, $1,2k\Omega$ e $4,7k\Omega$;
- Potenciômetro de fio de $1k\Omega$;
- Fonte de tensão variável 0V-12V;
- Multímetro digital.
- 3. Experiência 3

3.1 Circuitos Série, Paralelo e Misto

Um circuito série é aquele no qual a mesma corrente percorre todos os resistores. Um circuito em paralelo é aquele em que a mesma tensão é aplicada em todos os resistores. Um circuito misto é aquele formado por associações tanto série quanto paralelo.

Monte o circuito da Figura 1, faça o cálculo teórico e meça a resistência equivalente entre os pontos "A" e "D"

Figura 1 – Montagem do circuito série

D.	D D
R _{A-D calculado} =	KA-D medido =

Alimente o circuito com a fonte de 12V, como apresentado na Figura 2, calcule e meça as correntes e as tensões apresentadas e complete a Tabela 1.

Figura 2 – Alimentação do circuito série.

Tabela 1

I _T [mA]		I _{R1} [mA]		I _{R2} [mA]		I _{R3} [mA]	
Teórico	Prático	Teórico	Prático	Teórico	Prático	Teórico	Prático
T 7	EX 77	* 7	EX 77	T 7	FX 77	T 7	EX 73
$ m V_{AD}$	[V]	V_{R1}	[V]	V_{R2}	[V]	V_{R3}	[V]
V _{AD} Teórico	o[V] Prático	V _{R1} Teórico	[V] Prático	V _{R2} Teórico	[V] Prático	V _{R3} Teórico	[V] Prático
			L -		<u> </u>		

Monte o circuito da Figura 3, calcule e meça a resistência equivalente entre os pontos "A" e "B"

Figura 3 – Circuito Paralelo

 $R_{A-B \ calculado} = R_{A-B \ medido} =$

Alimente o circuito com a fonte de 12V (Figura 4), calcule e meça as correntes e as tensões indicadas, preenchendo na Tabela 2.

Figura 4 – Alimentação do circuito paralelo

Tabela 2

I _T [mA]		I _{R1} [mA]		I _{R2} [mA]		I _{R3} [mA]	
Teórico	Prático	Teórico	Prático	Teórico	Prático	Teórico	Prático
$V_{AB}[V]$		T 7	FX 77	T 7	FX 77	3.7	[3/7]
V_{AE}	B[V]	V_{R1}	[V]	V_{R2}	[V]	V_{R3}	[V]
V _{AE} Teórico	Prático	V _{R1} Teórico	Prático	V _{R2} Teórico	Prático	V _{R3} Teórico	Prático
-							

3.2 Potenciômetro

Um potenciômetro consiste basicamente de uma película de carbono ou um fio que, percorrido por um cursos móvel por meio de um sistema rotativo ou deslizante, altera o valor da resistência entre seus terminais, como apresentado na Figura 5. Comercialmente, os potenciômetros são especificador pelo valor nominal da resistência máxima, impresso em seu corpo.

Figura 5 - Potenciômetro

Os potenciômetros de fio (Figura 6) são utilizados em situações em que é maior a sua dissipação de potência, possuindo uma faixa de baixos valores de resistência (até $k\Omega$), já os potenciômetros de película de carbono (Figura 7) são aplicados em situações de menor dissipação de potência, possuindo uma ampla faixa de valores de resistências (até $M\Omega$).

Figura 7: Modelos de potenciômetros: (a) simples; (b) trimpot; (c) multivoltas.

Quanto à variação da resistência, os potenciômetros de película de carbono podem ser lineares ou logarítmicos: conforme a rotação do seu eixo, sua resistência varia, obedecendo a uma característica linear ou logarítmica, como apresentado na Figura 8.

Figura 8 – Exemplo das variações de resistência de um potenciômetro

Para o potenciômetro de fio de $1k\Omega$ (Figura 9):

- Coloque as pontas de prova de ohmímetro entre os extremos (pontos "A" e "B" $-R_{AB}$) e anote o valor medido na Tabela 3.
- Coloque o ohmímetro entre os pontos "A" e "C", gire o potenciômetro totalmente no sentido horário e anote na Tabela 3.
- Repita o procedimento anterior girando o potenciômetro totalmente no sentido anti-horário. Observe a variação da resistência entre os pontos "A" e "C" a medida que se gira o potenciômetro;
- Coloque o ohmímetro entre os pontos "B" e "C", gire o potenciômetro totalmente no sentido horário e anote na Tabela 3. Repita esse procedimento girando o potenciômetro totalmente no sentido anti-horário. Em seguida, observe a variação da resistência entre os pontos "B" e "C" a medida que se gira o potenciômetro.

Figura 9 – Identificação dos terminais dos potenciômetros

Tabela 3

R_{AB}	R _{AC_sentido_horário_total}	R _{AC_sentidoanti-horário_total}	R _{BC_sentido_horário_total}	R _{BC_sentido_anti_horário_total}