Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Лекция 5. Плоские алгебраические кривые: точки перегиба

Общая прямая, проходящая через гладкую точку плоской кривой, пересекает эту кривую в этой точке с кратностью 1. Через каждую гладкую точку проходит единственная прямая, пересекающая кривую с кратностью, большей 1 — касательная к кривой в точке. Если степень кривой больше 1, то для всех ее гладких точек кроме конечного числа кратность пересечения кривой с касательной в точке касания равна 2.

Гладкая точка плоской алгебраической кривой называется точкой перегиба, если кратность пересечения касательной к кривой в этой точке с кривой больше 2.

Лекция 5. Плоские алгебраические кривые: Точки перегиба

Точки перегиба плоской кривой F(x,y,z)=0 выделяются условием обращения в нуль гессиана многочлена F. Гессианом H(F) многочлена F от трех переменных называется определитель его матрицы Гессе

$$\begin{pmatrix} \frac{\partial^2 F}{\partial x^2} & \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial x \partial z} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y^2} & \frac{\partial^2 F}{\partial y \partial z} \\ \frac{\partial^2 F}{\partial z \partial x} & \frac{\partial^2 F}{\partial z \partial y} & \frac{\partial^2 F}{\partial z^2} \end{pmatrix}$$

Нетрудно проверить, что в точке перегиба кривой F=0 гессиан H(F) многочлена F действительно обращается в 0, и что это свойство сохраняется при проективной замене координат.

Лекция 5. Плоские алгебраические кривые: точки перегиба на кубике

Если степень многочлена F равна d, то степень его гессиана равна 3(d-2). Поэтому в общем положении у кривой F=0 степени d имеется 3d(d-2) точек перегиба. В частности, у квадрик точек перегиба нет, а у общей гладкой кубики $3\cdot 3\cdot 1=9$ точек перегиба.

Лекция 5. Плоские алгебраические кривые: точки перегиба на кубике

Если степень многочлена F равна d, то степень его гессиана равна 3(d-2). Поэтому в общем положении у кривой F=0 степени d имеется 3d(d-2) точек перегиба. В частности, у квадрик точек перегиба нет, а у общей гладкой кубики $3\cdot 3\cdot 1=9$ точек перегиба.

Найдем точки перегиба для кубики Ферма $x^3+y^3+z^3=0$. Гессиан этой кривой равен, с точностью до постоянного множителя,

$$\left| \begin{array}{ccc} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{array} \right| = xyz.$$

Гессиан обращается в 0, если и только если одна из координат обращается в 0. На кубике Ферма есть три точки с координатой z=0, и то же самое справедливо при y=0 и x=0. Две другие координаты тогда имеют вид $(1:\varepsilon_3^i)$, i=0,1,2, где ε_3 — примитивный корень степени 3 из -1. Тем самым, каждая из прямых x=0, y=0, z=0 содержит три из девяти точек перегиба.

Упражнение. Докажите, что каждая прямая на плоскости, проходящая через две точки перегиба кубики Ферма, проходит еще через одну ее точку перегиба. Сколько всего есть прямых, проходящих через три точки перегиба кубики Ферма?

Лекция 5. Задание комплексной структуры: опускание комплексной структуры

Есть способы наделения двумерной поверхности структурой комплексной кривой, отличные от рассмотрения алгебраических кривых в проективных пространствах. Один из этих способов — опускание комплексной структуры.

Пусть X — комплексная кривая, группа G действует на X голоморфными преобразованиями дискретно и без неподвижных точек. Тогда на факторкривой Y = X/G имеется естественно заданная комплексная структура.

Лекция 5. Задание комплексной структуры: опускание комплексной структуры

Есть способы наделения двумерной поверхности структурой комплексной кривой, отличные от рассмотрения алгебраических кривых в проективных пространствах. Один из этих способов — опускание комплексной структуры.

Пусть X — комплексная кривая, группа G действует на X голоморфными преобразованиями дискретно и без неподвижных точек. Тогда на факторкривой Y = X/G имеется естественно заданная комплексная структура.

Важный пример — действие группы \mathbb{Z}^2 на комплексной прямой \mathbb{C} сдвигами на элементы решетки. Всякий сдвиг комплексной прямой является ее голоморфным отображением и не имеет неподвижных точек (если он не тождественный). Фактор комплексной прямой по действию группы \mathbb{Z}^2 является тором (компактной ориентируемой поверхностью рода 1). На всяком торе задана структура комплексной кривой. Замена комплексной координаты $z\mapsto az$ устанавливает биголоморфное соответствие между разными торами. С помощью такой замены одну из образующих решетки \mathbb{Z}^2 можно перевести в 1.

Лекция 5. Задание комплексной структуры: опускание комплексной структуры

С другой стороны, всякий двумерный тор с комплексной структурой накрывается комплекскной прямой. Тем самым,

Lemma

Всякая комплексная кривая рода 1 биголоморфна фактору комплексной прямой по решетке, натянутой на вектора 1 и τ , где τ — некоторое комплексное число с положительной мнимой частью.

Выбрав в торе \mathbb{C}/\mathbb{Z}^2 образ решетки в качестве нуля, мы вводим на нем структуру абелевой группы. Как мы увидим впоследствии, всякий комплексный тор реализуется гладкой плоской кубикой. При этом если в качестве нуля выбрать одну из точек перегиба, то 9 точек перегиба кубики образуют подгруппу элементов 3-го порядка в торе.

Лекция 5. Задание комплексной структуры: поднятие комплексной структуры

Комплексную структуру на кривой можно не только опускать, но и поднимать. Пусть $f:X\to Y$ — накрытие двумерных поверхностей, причем на поверхности Y есть комплексная структура. Тогда комплексная структура возникает на поверхности X: в качестве окрестности точки $A\in X$ возьмем компоненту связности прообраза относительно f окрестности V точки $f(A)\in Y$, содержащую точку A; локальной комплексной координатой в окрестности точки A будет композиция $\psi\circ f$, где $\psi:V\to D$ — локальная комплексная координата в окрестности V точки f(A). Очевидно, что относительно выбранной комплексной структуры на поверхности X отображение f становится голоморфным отображением комплексных кривых.

Лекция 5. Задание комплексной структуры: поднятие комплексной структуры

Замечательно, что эту конструкцию можно распространить на разветвленные накрытия. Пусть f:X o Y — разветвленное накрытие двумерных поверхностей, причем на поверхности Y есть комплексная структура. Выколов из поверхности Y все точки ветвления, а из поверхности X — все их прообразы при f, мы получаем накрытие проколотых поверхностей, а значит, комплексную структуру на проколотой поверхности X, поднятую с комплексной структуры на проколотой поверхности Y. Эту поднятую комплексную структуру можно продолжить в точки прокола поверхности X. Для этого выберем в окрестности точки прокола, являющейся критической точкой кратности k отображения f, локальную координату z, в которой композиция $\psi \circ f$ записывается в виде $z \mapsto z^k$. Как и в случае неразветвленных накрытий, относительно выбранной комплексной

структуры на поверхности X отображение f становится голоморфным отображением комплексных кривых.

Лекция 5. Задание комплексной структуры: поднятие комплексной структуры

Пусть теперь $Y=\mathbb{C}P^1$ — проективная прямая, $\{t_1,\dots,t_m\}\subset\mathbb{C}P^1$ — набор попарно различных точек на проективной прямой, $t_0\in\mathbb{C}P^1$ — точка, отличная от уже выбранных. Всякий гомоморфизм фундаментальной группы $\pi_1(\mathbb{C}P^1\setminus\{t_1,\dots,t_m\},t_0)\to S_d$ проколотой сферы с базисной точкой t_0 в симметрическую группу S_d однозначно определяет разветвленное накрытие $X\to Y$, все точки ветвления которого — это точки t_1,\dots,t_m , а группа накрытия проколотых поверхностей — это указанная фундаментальная группа.

Тем самым, выбор а) набора точек прокола на проективной прямой; б) базисной точки в дополнении к точкам прокола; в) гомоморфизма из фундаментальной группы проколотой сферы с выбранной базисной точкой в симметрическую группу S_d однозначно определяет голоморфное отображение $f:X\to \mathbb{C}P^1$ степени d некоторой компактной комплексной кривой X в $\mathbb{C}P^1$.

Вопрос. Верно ли, что это соответствие взаимно-однозначно?

При данном числе m точек ветвления и данной степени d голоморфного отображения множество гомоморфизмов фундаментальной группы проколотой в m точках сферы в S_d конечно.

Лекция 5. Задание комплексной структуры: мероморфные функции

Голоморфное отображение $f:C\to \mathbb{C}P^1$ комплексной кривой C в проективную прямую называется мероморфной функцией на C. Прообразы бесконечности называются полюсами мероморфной функции. Примером мероморфной функции может служить многочлен $P:\mathbb{C}P^1\to\mathbb{C}P^1$ степени $n,P:z\mapsto p_0z^n+p_1z^{n-1}+\cdots+p_n,\ p_0\neq 0$. Голоморфность этого отображения очевидна во всех конечных точках. Для проверки его голоморфности в бесконечности выберем локальную координату y=1/z в окрестности бесконечности. В этой координате

$$P(1/y) = \frac{1}{y^n}(p_0 + p_1y + \dots p_ny^n).$$

В локальной координате s в окрестности бесконечности в образе отображение P приобретает вид

$$s = \frac{1}{P(1/y)} = y^n \frac{1}{p_0 + p_1 y + \dots p_n y^n} = \frac{1}{p_0} y^n - \frac{p_1}{p_0^2} y^{n+1} + \dots$$

Это голоморфное отображение. Кроме того, мы видим, что бесконечность в прообразе является прообразом кратности n бесконечности в образе.

Лекция 5. Мероморфные функции

Theorem

Мероморфные функции на данной кривой C образуют поле относительно естественных операций сложения, умножения на число и умножения.

Theorem

Всякая мероморфная функция на проективной прямой рациональна, т.е. является отношением двух многочленов.

Действительно, пусть z_1,\ldots,z_m — все нули и полюса мероморфной функции f на комплексной проективной прямой, e_1,\ldots,e_m — их порядки (порядки нулей положительны, полюсов — отрицательны). Тогда $\frac{f}{(z-z_1)^{e_1}(z-z_2)^{e_2}...(z-z_m)^{e_m}}$ — мероморфная функция на проективной прямой, не имеющая ни нулей, ни полюсов, а значит, константа.

Лекция 5. Мероморфные функции

Theorem

Если мероморфная функция $f:C \to \mathbb{C}P^1$ имеет единственный полюс, причем его порядок равен 1, то C — комплексная проективная прямая.

Действительно, f задает разветвленное накрытие проективной двумерной сферы степени 1, а значит, является гомеоморфизмом.

Лекция 5.

Лекция 5.

- Докажите, что любая прямая, проходящая через две точки перегиба гладкой плоской кубики содержит еще одну ее точку перегиба.
- Докажите, что все кубики из пучка aF + bH(F) имеют один и тот же набор точек перегиба.
- Отношение $R_k(x,y,z)/S_k(x,y,z)$ двух однородных многочленов одной и той же степени k задает функцию на проективной плоскости. Докажите, что ограничение этой функции на гладкую плоскую алгебраическую кривую, на которой R_k и S_k не обращаются тождественно в 0, задает на этой кривой мероморфную функцию. Чему равна степень этой функции на кривой степени d, если многочлены R_k и S_k не имеют общих множителей?

• Разветвленное накрытие степени 2 над проективной прямой однозначно определяется набором своих точек ветвления. Чему равен род накрывающей кривой, если количество точек ветвления равно n?

- Разветвленное накрытие степени 2 над проективной прямой однозначно определяется набором своих точек ветвления. Чему равен род накрывающей кривой, если количество точек ветвления равно n?

 Если род накрывающей кривой больше 1, то накрытие степени 2 называется гиперэллиптическим, а накрывающая кривая гиперэллиптической кривой. Отображение гиперэллиптической кривой в себя, меняющее местами листы накрытия, называется гиперэллиптической инволюцией.
- ullet Чему равна размерность пространства гиперэллиптических кривых рода $g\geq 2$?

- Докажите, что всякую гиперэллиптическую кривую можно задать уравнением $y^2 = P_n(x)$, где P_n многочлен, корнями которого являются точки ветвления гиперэллиптической кривой. При этом гиперэллиптическое накрытие задается проекцией на ось x, а гиперэллиптическая инволюция преобразованием $(x,y) \mapsto (x,-y)$.
- Докажите, что всякая мероморфная функция на гиперэллиптической кривой $y^2 = P(x)$ имеет вид f = R(X) + yS(X), где R и S рациональные функции одной переменной.

- •
- •