

STEPHEN SURYASENTANA

UNIVERSITY OF OXFORD

Academic supervisors: Prof. B.W. Byrne, Prof. H.J. Burd (University of Oxford)

Industry supervisor: A. Shonberg (DONG Energy Wind Power)

Simplified model for the stiffness of suction caisson foundations under 6 DOF loading

background

Getting larger

Need for speed

Source: Kallehave et al. (2015)

6 DOF

Source: Doherty et al. (2005)

1 Accuracy

2 Efficiency

3 Completeness

existing methods

Source: Doherty et al. (2005)

Source: Gerolymos et al. (2006)

MACRO ELEMENT MODEL

- Does not work for multi-layered

3DFE MODEL

- Works for multi-layered
- **⊗** Slow

WINKLER MODEL

- Incomplete (< 6 DOF)</p>

new method

1

2

3DFE MODEL

- Accurate
- Slow

CALIBRATION

Calibrate using local soil stress
Validate using global stiffness

1D WINKLER MODEL

- Accurate

results

1

3DFE ANALYSES

4 Displacements (Axial, Lateral, Rotational, Torsional)

EXTRACTION

Nodal forces to 1D soil reactions

Skirt (distributed) & base reactions

FORMULATION

Simplify 1D soil reactions

Formulate relationships between

1D soil reactions and local dof

 $\overline{GU_z}$, $\overline{GDU_z}$

implications

Accurate

'3DFE-equivalent' predictions Minimal loss of precision after calibration

Fast

Instantaneous predictions
Ideal for time-consuming applications
e.g. wind farm foundation optimisation

Complete

Stiffness predictions for fully three-dimensional loading

