Budgeted Reinforcement Learning in Continuous State Space

Nicolas Carrara ³ Edouard Leurent^{3,4} Tanguy Urvoy ¹ Romain Laroche ² Odalric-Ambrym Maillard ³ Olivier Pietquin ^{3,4}

¹Orange Labs

²Microsoft Montréal.

³Univ. Lille, CNRS, Centrale Lille, INRIA UMR 9189 - CRIStAL

⁴Google Research, Brain Team, Paris

⁴Renault

10 august 2018.

Problem

Given past trajectories, find a way to:

- gather gold as much as possible;
- limit the villager casualties under some budget;
- being able to change the budget in real time.

Solution

► This problem can be cast as a Budgeted Markov Decision Process.

Setting

Markov Decision Process

We define a MDP as a tuple (S, A, P, R_r, γ) where:

- $ightharpoonup \mathcal{S}$ is the state space, \mathcal{A} the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S imes \mathcal{A}}$ the rewards,
- ▶ $P \in \mathcal{M}(S)^{S \times A}$ the dynamics,
- and γ the discounted factor.

Objective

- $G_r^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t)$ the γ -discounted return of rewards.
- ▶ Find π^* s.t $\forall s \in \mathcal{S}$:

$$\pi^* \in \operatorname*{arg\,max}_{\pi \in \mathcal{M}(\mathcal{A})^{\mathcal{S}}} \mathbb{E}[G_r^{\pi}|s_0 = s] \tag{1}$$

Setting

Constrained Markov Decision Process

We define a CMDP as a tuple $(S, A, P, R_r, R_c, \gamma, \beta)$ where:

- $ightharpoonup \mathcal{S}$ is the state space, \mathcal{A} the action space,
- $ightharpoonup R_r \in \mathbb{R}^{S imes \mathcal{A}}$ the rewards, and $R_c \in \mathbb{R}^{S imes \mathcal{A}}$ the costs
- ▶ $P \in \mathcal{M}(S)^{S \times A}$ the dynamics,
- $ightharpoonup \gamma$ the discounted factor, and β the budget.

Objective

- $G_r^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t)$ the γ -discounted return of rewards.
- $G_c^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_c(s_t, a_t)$ the γ -discounted return of costs.
- ▶ Find π^* s.t $\forall s \in S$:

$$\pi^* \in \underset{\pi \in \mathcal{M}(\mathcal{A})^S}{\arg \max} \mathbb{E}[G_r^{\pi}|s_0 = s]$$
s.t.
$$\mathbb{E}[G_c^{\pi}|s_0 = s] \leq \beta$$
(2)

Setting

Budgeted Markov Decision Process

We define a BMDP as a tuple $(S, A, P, R_r, R_c, \gamma, \mathcal{B})$ where:

- $ightharpoonup \mathcal{S}$ is the state space, \mathcal{A} the action space,
- $ightharpoonup R_r \in \mathbb{R}^{\mathcal{S} imes \mathcal{A}}$ the rewards, and $R_c \in \mathbb{R}^{\mathcal{S} imes \mathcal{A}}$ the costs
- ▶ $P \in \mathcal{M}(S)^{S \times A}$ the dynamics,
- $ightharpoonup \gamma$ the discounted factor, and ${\cal B}$ the budget space.

Objective

- $G_r^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t)$ the γ -discounted return of rewards.
- $G_c^{\pi} = \sum_{t=0}^{\infty} \gamma^t R_c(s_t, a_t)$ the γ -discounted return of costs.
- ▶ Find π^* s.t $\forall (s, \beta) \in \mathcal{S} \times \mathcal{B}$:

$$\pi^* \in \underset{\pi \in \mathcal{M}(\mathcal{A} \times \mathcal{B})^{\mathcal{S} \times \mathcal{B}}}{\arg \max} \mathbb{E}[G_r^{\pi} | s_0 = s, \beta_0 = \beta]$$
s.t.
$$\mathbb{E}[G_c^{\pi} | s_0 = s, \beta_0 = \beta] \le \beta$$
(3)

Augmented Settings

Budgeted policies π

- ▶ Take a budget β as an additional input
- ightharpoonup Output a next budget β'

$$\qquad \qquad \pi: \underbrace{\left(s,\beta\right)}_{\overline{s}} \to \underbrace{\left(a,\beta'\right)}_{\overline{a}}$$

Domain

- ▶ States $\overline{S} = S \times B$.
- Actions $\overline{\mathcal{A}} = \mathcal{A} \times \mathcal{B}$.
- ▶ Dynamics $\overline{P}((s', \beta') | (s, \beta), (a, \beta_a)) \stackrel{\text{def}}{=} P(s'|s, a)\delta(\beta' \beta_a)$.

2D signals

- 1. Rewards $R = (R_r, R_c)$
- 2. Returns $G^{\pi} = (G_r^{\pi}, G_c^{\pi})$
- 3. $V^{\pi}(\overline{s}) = (V_r^{\pi}, V_c^{\pi}) \stackrel{\text{def}}{=} \mathbb{E} [G^{\pi} \mid \overline{s_0} = \overline{s}]$
- 4. $Q^{\pi}(\overline{s}, \overline{a}) = (Q_r^{\pi}, Q_c^{\pi}) \stackrel{\text{def}}{=} \mathbb{E} [G^{\pi} \mid \overline{s_0} = \overline{s}, \overline{a_0} = \overline{a}]$

Policy Evaluation

The Bellman Expectation equations are preserved, and the Bellman Expectation Operator \mathcal{T}^{π} is a γ -contraction.

Augmented Optimality

Definition

In that order, we want to:

(i) Respect the budget β :

$$\Pi_{\boldsymbol{a}}(\overline{s}) \stackrel{\text{def}}{=} \{ \pi \in \Pi : V_c^{\pi}(s,\beta) \leq \beta \}$$

(ii) Maximise the rewards :

$$V_r^*(\overline{s}) \stackrel{\text{def}}{=} \max_{\pi \in \Pi_{\mathfrak{a}}(\overline{s})} V_r^{\pi}(\overline{s}) \qquad \qquad \Pi_r(\overline{s}) \stackrel{\text{def}}{=} \operatorname{arg\,max}_{\pi \in \Pi_{\mathfrak{a}}(\overline{s})} V_r^{\pi}(\overline{s})$$

(iii) Minimise the costs:

$$V_c^*(\overline{s}) \stackrel{\text{def}}{=} \min_{\pi \in \Pi_r(\overline{s})} V_c^{\pi}(\overline{s}), \qquad \Pi^*(\overline{s}) \stackrel{\text{def}}{=} \arg\min_{\pi \in \Pi_r(\overline{s})} V_c^{\pi}(\overline{s})$$

We define the budgeted action-value function Q^* similarly

Budgeted Bellman Optimality Equation

Theorem (Budgeted Bellman Optimality Equation)

 Q^* verifies the following equation:

$$\begin{split} Q^*(\overline{s}, \overline{a}) &= \mathcal{T}Q^*(\overline{s}, \overline{a}) \\ &\stackrel{\text{def}}{=} R(\overline{s}, \overline{a}) + \gamma \sum_{\overline{s}' \in \overline{\mathcal{S}}} \overline{P}(\overline{s'}|\overline{s}, \overline{a}) \sum_{\overline{a'} \in \overline{\mathcal{A}}} \pi_{greedy}(\overline{a'}|\overline{s'}; Q^*) Q^*(\overline{s'}, \overline{a'}), \end{split}$$

where the greedy policy π_{greedy} is defined by:

$$\pi_{greedy}(\overline{a}|\overline{s};Q) \in \underset{\rho \in \Pi_r^Q}{\operatorname{arg \, min}} \underset{\overline{a} \sim \rho}{\mathbb{E}} Q_c(\overline{s},\overline{a}),$$

$$\text{where} \quad \Pi_r^Q \stackrel{\text{def}}{=} \underset{\overline{a} \sim \rho}{\operatorname{arg \, max}} \underset{\rho \in \mathcal{M}(\overline{\mathcal{A}})}{\mathbb{E}} \underset{\overline{a} \sim \rho}{\mathbb{E}} Q_r(\overline{s},\overline{a})$$

$$s.t. \quad \underset{\overline{a} \sim \rho}{\mathbb{E}} Q_c(\overline{s},\overline{a}) \stackrel{\underline{\mathcal{E}}}{\leq \beta}$$

Optimality of the policy

Proposition (Optimality of the policy)

 $\pi_{greedy}(\cdot ; Q^*)$ is simultaneously optimal in all states $\overline{s} \in \overline{\mathcal{S}}$:

$$\pi_{greedy}(\cdot; Q^*) \in \Pi^*(\overline{s})$$

In particular, $V^{\pi_{greedy}(\cdot\,;\,Q^*)}=V^*$ and $Q^{\pi_{greedy}(\cdot\,;\,Q^*)}=Q^*$.

Solving the untractable program

Proposition $(\pi_{\text{greedy}} = \pi_{\text{hull}})$

 π_{greedy} can be computed explicitly, as a mixture of two points that lie on the convex hull of Q.

Not a contraction

Theorem (Non-Contractivity)

For any BMDP $(S, A, P, R_r, R_c, \gamma)$ with $|A| \ge 2$, T is not a contraction.

$$orall arepsilon > 0, \exists Q^1, Q^2 \in (\mathbb{R}^2)^{\overline{\mathcal{SA}}} : \|\mathcal{T}Q^1 - \mathcal{T}Q^2\|_{\infty} \geq rac{1}{arepsilon} \|Q^1 - Q^2\|_{\infty}$$

Not a contraction: intuition

Not a contraction: intuition

Not a contraction: intuition

Contractivity on smooth *Q*-functions

Conjecture (Contractivity \mathcal{L}_{γ})

 ${\cal T}$ is a contraction when restricted to the subset ${\cal L}_{\gamma}$ of Q-functions such that " Q_r is L-Lipschitz with respect to Q_c ", with $L<\frac{1}{\gamma}-1$.

Budgeted Dynamic Programming

Algorithm 1: Budgeted Value-Iteration

Data: P, R_r, R_c

Result: Q*

- $\mathbf{1} \ Q_0 \leftarrow \mathbf{0}$
- 2 repeat
- $Q_{k+1} \leftarrow \mathcal{T}Q_k$
- 4 until convergence

Budgeted Reinforcement Learning

We address several limitations of Budgeted Value-Iteration

- 1. If the P, R_r and R_c are unknown:
 - ▶ Work with a batch of samples $\mathcal{D} = \{(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i'\}_{i \in [0, N]}\}$
 - ▶ Replace \mathcal{T} with a sampling operator $\hat{\mathcal{T}}$:

$$\hat{\mathcal{T}}Q(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i') \stackrel{\text{def}}{=} r_i + \gamma \sum_{\overline{a}_i' \in \mathcal{A}_i} \pi_{\text{greedy}}(\overline{a}_i' | \overline{s}_i'; Q) Q(\overline{s}_i', \overline{a}_i').$$

- 2. If S is continuous:
 - Employ function approximation Q_{θ} , and minimise a regression loss

$$\mathcal{L}(\textit{Q}_{\theta}, \textit{Q}_{\mathsf{target}}; \mathcal{D}) = \sum_{\mathcal{D}} ||\textit{Q}_{\theta}(\overline{s}, \overline{a}) - \textit{Q}_{\mathsf{target}}(\overline{s}, \overline{a}, \textit{r}, \overline{s}')||_{2}^{2}$$

Budgeted Fitted-Q

Algorithm 2: Budgeted Fitted-Q Iteration

Data: \mathcal{D}

Result: Q*

- $\mathbf{1} \ Q_{\theta_0} \leftarrow \mathbf{0}$
- 2 repeat
- $\mathbf{3} \quad \Big| \quad \theta_{k+1} \leftarrow \arg\min_{\theta} \mathcal{L}(Q_{\theta}, \hat{\mathcal{T}}Q_{\theta_k}; \mathcal{D})$
- 4 until convergence

More scaling

- ► CPU parallel computing of the targets $\sum_{\overline{a_i'} \in \mathcal{A}_i} \pi_{\text{greedy}}(\overline{a_i'}|\overline{s_i'}; Q) Q(\overline{s_i'}, \overline{a_i'}) \ \forall i$
- ▶ Same for samples generation.
- Neural Network as function approximator:

Experiments: performances of BFTQ

- ▶ Baseline: λ -FTQ, Lagrangian relaxation
 - ▶ $R_r(s, a) \leftarrow R_r(s, a) \lambda R_c(s, a)$ where $\lambda \ge 0$
- Applications:
 - dialogue systems
 - autonomous driving

Experiments: dialogue systems

- ▶ A slot-filling problem: the agent (the dialogue system) fills a form by asking the user each slot.
- ► Two ways to deal with recognition errors:
 - ask to repeat with voice (safe/slow),
 - Ask to repeat with numeric pad (unsafe/fast).

Experiments: dialogue systems

Experiments: autonomous driving

- the agent (the car) is on a two-way road with a car in front of it:
 - it can stay behind (safe/slow),
 - ▶ it can overtake (unsafe/fast).

Experiments: autonomous driving

Experiments: autonomous driving

► BFTQ on the highway environment

Risk-sensitive exploration

How to collect the batch \mathcal{D} ?

- We propose an ε -greedy exploration procedure
 - ▶ Sample an initial budget β_0
 - At each step, where $\overline{s} = (s, \beta)$ only explore feasible budgets:

$$\overline{a} = (a, \beta_a) \sim \mathcal{U}(\Delta_{\mathcal{AB}})$$
 where Δ is s.t. $\mathbb{P}(a, \beta_a | s, \beta)$ verifies $\mathbb{E}[\beta_a] \leq \beta$

Experiments: risk-sensitive exploration

- Validate the risk-sensitive exploration procedure on the corridor environment
- ▶ Learn 2 BFTQ policies with respectively:
 - A batch generated by a risk-neutral ε -greedy procedure
 - A batch generated by a risk-sensitive ε -greedy procedure

Experiments: corridors

- ▶ 2 corridors:
 - high costs/high rewards around the starting state
 - no costs/low rewards around the starting state
- The outermost cell is the one yielding the most reward

Experiments: corridors

Experiments: corridors

▶ Risk-sensitive vs Risk-Neutral on the corridors environmen

Summary

- + Budgeted Bellman Optimality Operator.
 - Fixed point.
 - Not a contraction but converging in practice.
- + Scalable for RL in continuous state space.
 - Function approximation with Neural Network (dedicated architecture).
 - Solving of the untractable program using convex hull.
 - CPU parallel computing of the target.
 - Risk-sensitive exploration procedure.
- + Experiments on two applications.
 - ▶ BFTQ reaches similar performances as Lagrangian relaxation,
 - with no need for calibration,
 - and less variance.