Algoritmos y Estructuras de Datos II

Trabajo Práctico 1

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Pacalgo2

Los inertes

Integrante	LU	Correo electrónico
Valentina Madelaine Saravia Ruiz	257/18	valentina.saraviaruiz@gmail.com
Bruno Robbio	480/09	brobbio@hotmail.com
Nicolas Andres Kinaschuk	248/15	nicolaskinaschuk@gmail.com
Pedro Joel Burgos	804/18	${\tt facultadburgospedrojoel@hotmail.com}$

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

1. Desarrollo

1.1. Parte 1

```
TAD CASILLERO
```

```
Tupla(nat, nat)
extiende
usa
                Nat
géneros
                casillero
exporta
                casillero, +, -, aDistanciaMenosDeN
otras operaciones
  ullet + ullet : casillero 	imes casillero 	imes casillero
  ullet - ullet : casillero 	imes casillero 	imes casillero
  a
Distancia<br/>Menos
DeN : casillero \times nat \longrightarrow conj(casillero)
axiomas
  \pi_1(c1 + c2)
                                      \equiv \pi_1(c_1) + \pi_1(c_2)
  \pi_2(c1+c2)
                                      \equiv \pi_2(c_1) + \pi_2(c_2)
  \pi_1(c1 - c2)
                                      \equiv if \pi_1(c_2) > \pi_1(c_1) then 0 else \pi_1(c_1) - \pi_1(c_2) fi
  \pi_2(c1 - c2)
                                      \equiv if \pi_2(c_2) > \pi_2(c_1) then 0 else \pi_2(c_1) - \pi_2(c_2) fi
  a
Distancia<br/>Menos
DeN(c, n) \equiv if n = 0? then
                                              \{c\}
                                          else
                                              (aDistanciaMenosDeN(c + \langle 1,0 \rangle, n-1) \cup
                                              aDistanciaMenosDeN(c - \langle 1,0 \rangle, n-1) \cup
                                              aDistancia
Menos<br/>DeN(c + \langle 0,1 \rangle, n-1) \cup
                                              aDistanciaMenosDeN(c - \langle 0,1 \rangle, n-1) \cup
                                              aDistanciaMenosDeN(c, n-1))
                                          fi
```

Fin TAD

TAD MAPA

usa Nat, Casillero

géneros mapa

exporta mapa, observadores, generadores, casillerosLibres

igualdad observacional

$$(\forall m_1, m_2 : \text{mapa}) \left(m_1 =_{\text{obs}} m_2 \iff \begin{pmatrix} \text{fantasmas}(m_1) =_{\text{obs}} \text{fantasmas}(m_2) \land \\ \text{paredes}(m_1) =_{\text{obs}} \text{paredes}(m_2) \land \\ \text{dimensiones}(m_1) =_{\text{obs}} \text{dimensiones}(m_2) \land \\ \text{casilleroInicial}(m_1) =_{\text{obs}} \text{casilleroInicial}(m_2) \land \\ \text{casilleroDeLlegada}(m_1) =_{\text{obs}} \text{casilleroDeLlegada}(m_2) \end{pmatrix} \right)$$

observadores básicos

```
fantasmas : mapa \longrightarrow conj(casillero)
paredes : mapa \longrightarrow conj(casillero)
dimensiones : mapa \longrightarrow tupla(nat,nat)
casilleroInicial : mapa \longrightarrow casillero
casilleroDeLlegada : mapa \longrightarrow casillero
```

generadores

```
nuevo
Mapa : tupla(nat;nat) d \times \text{casillero } inicio \times \text{casillero } fin \times \text{conj(casillero)} \ fs \times \text{conj(casillero)} \ ps \longrightarrow \text{mapa}  \begin{cases} \emptyset?(fs \cap ps) \land \\ \emptyset?(\text{aDistanciaMenosDeN}(inicio, 3) \cap fs) \land \\ (inicio \neq fin) \land \\ (\forall f \in fs)(\pi_1(f) \leq \pi_1(d) \land \pi_2(f) \leq \pi_2(d)) \land \\ (\forall p \in ps)(\pi_1(p) \leq \pi_1(d) \land \pi_2(p) \leq \pi_2(d)) \end{cases}
```

otras operaciones

```
casillerosLibres : mapa \longrightarrow conj(casillero)
```

axiomas

```
fantasmas(nuevoMapa(dimension, inicio, fin, fs, ps)) \equiv fs
paredes(nuevoMapa(dimension, inicio, fin, fs, ps)) \equiv ps
dimensiones(nuevoMapa(dimension, inicio, fin, fs, ps)) \equiv dimension
casilleroInicial(nuevoMapa(dimension, inicio, fin, fs, ps)) \equiv inicio
casilleroDeLlegada(nuevoMapa(dimension, inicio, fin, fs, ps)) \equiv fin
casillerosLibres(m) \equiv { (c:casillero)
(\pi_1(c) \leq \pi_1(\text{dimensiones}(m)) \land
\pi_2(c) \leq \pi_2(\text{dimensiones}(m))) } - (fantasmas(m) \cup paredes(m))
```

Fin TAD

TAD PACALGO2

ganó?(p)

posiciónActual(p)

usa mapa, conj géneros pacalgo2 exporta pacalgo2, observadores, generadores igualdad observacional $(\forall p_1, p_2 : \text{pacalgo2}) \left(p_1 =_{\text{obs}} p_2 \iff \left(\begin{array}{c} \text{verMapa}(p_1) =_{\text{obs}} \text{verMapa}(p_2) \land \\ \text{trayectoria}(p_1) =_{\text{obs}} \text{trayectoria}(p_2) \end{array} \right) \right)$ observadores básicos : pacalgo2 \longrightarrow mapa verMapa : pacalgo2 \longrightarrow sec(casillero) trayectoria generadores inicializarJuego: mapa \longrightarrow pacalgo2 arriba : pacalgo2 $p \longrightarrow \text{pacalgo2}$ $\{(\text{posiciónActual}(p) + (0, 1)) \in \text{direccionesPosibles}(p) \land \neg \text{ganó}?(p) \land \neg \text{perdió}?(p)\}$ abajo : pacalgo2 $p \longrightarrow \text{pacalgo2}$ $\{(\text{posiciónActual}(p) - \langle 0, 1 \rangle) \in \text{direccionesPosibles}(p) \land \neg \text{ganó}?(p) \land \neg \text{perdió}?(p)\}$ derecha : pacalgo2 $p \longrightarrow \text{pacalgo2}$ $\{(\text{posiciónActual}(p) + \langle 1, 0 \rangle) \in \text{direccionesPosibles}(p) \land \neg \text{ganó}?(p) \land \neg \text{perdió}?(p)\}$ izquierda : pacalgo2 $p \longrightarrow \text{pacalgo2}$ $\{(\text{posiciónActual}(p) - \langle 1, 0 \rangle) \in \text{direccionesPosibles}(p) \land \neg \text{ganó}?(p) \land \neg \text{perdió}?(p)\}$ otras operaciones directionesPosibles : pacalgo2 \longrightarrow conj(casillero) perdió? : pacalgo2 \longrightarrow bool ganó? : pacalgo2 \longrightarrow bool posicionActual : pacalgo2 \longrightarrow casillero axiomas verMapa(inicializarJuego(m))verMapa(arriba(p)) $\equiv \operatorname{verMapa}(p)$ verMapa(abajo(p)) $\equiv \operatorname{verMapa}(p)$ verMapa(izquierda(p)) $\equiv \operatorname{verMapa}(p)$ verMapa(derecha(p)) $\equiv \operatorname{verMapa}(p)$ trayectoria(inicializar Juego m) \equiv casillero Inicial(m) $\bullet \langle \rangle$ trayectoria(arriba(p)) $(posiciónActual(p) + \langle 0, 1 \rangle) \bullet trayectoria(p)$ trayectoria(abajo(p))(posiciónActual(p) - (0,1)) • trayectoria(p)trayectoria(izquierda(p))(posición $Actual(p) - \langle 1, 0 \rangle$) • trayectoria(p) (posiciónActual $(p) + \langle 1, 0 \rangle$) • trayectoria(p)trayectoria(derecha(p))perdió?(p) $\exists (f \in fantasmas(verMapa(p)))$ $(f \in aDistanciaMenosDeN(posiciónActual(p),3))$

 $\equiv \operatorname{prim}(\operatorname{trayectoria}(p))$

 \equiv posiciónActual(p)=casilleroDeLlegada(verMapa(p))

 ${\it direccionesPosibles}(p)$

 \equiv a Distancia Menos De
N(posición Actual(p),1)\capcasilleros Libres(ver
Mapa(p)) - posición Actual(p)

Fin TAD

1.2. Parte 2

2. Conclusiones

 ${\rm Cosa}$