

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/551,805	09/30/2005	Yasunobu Tsukio	MAT-8751US	6765
52473	7590	07/10/2007	EXAMINER	
RATNERPRESTIA P.O. BOX 980 VALLEY FORGE, PA 19482			DAO, MINH D	
		ART UNIT	PAPER NUMBER	
		2618		
		MAIL DATE	DELIVERY MODE	
		07/10/2007	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/551,805	TSUKIO ET AL.	
	Examiner MINH D. DAO	Art Unit 2618	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 05 April 2007.

2a) This action is FINAL. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-6 is/are pending in the application.

4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 1-6 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date _____.

4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.
 5) Notice of Informal Patent Application
 6) Other: _____.

DETAILED ACTION

Response to Arguments

1. Applicant's arguments filed 04/05/07 with respect to the rejection(s) of claim(s) 1-6 under Kosaki (US 5,889,488) have been fully considered and are persuasive.

Therefore, the rejection has been withdrawn. However, upon further consideration, a new ground(s) of rejection is made in view of Javor et al. (US 2004/0266356).

Claim Rejections - 35 USC § 103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

3. Claims 1,3-6 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kosaki (US 5,889,488) in view of Javor et al. (US 2004/0266356).

Regarding claim 1, Kosaki teaches a mobile receiver apparatus (see fig. 14) comprising: a directivity variable antenna (see fig. 14; col. 2, lines 14-29); an antenna controller connected with the directivity variable antenna for conducting a control action to align the directivity with a desired direction (see fig. 14, col. 1, lines 53 to col. 2, lines 29); and an optimum directivity calculator connected with the antenna controller for calculating from the current position of a mobile and its surrounding

geographical features an optimum pattern of the directivity for improving the response to a desired broadcast signal (see fig. 11; col. 13, lines 10-55. In this case, the Tracking Unit 2 and the Control Unit 6C of Kosaki read on the antenna controller and the Directivity Calculator of the present invention respectively).

However, Kosaki does not mention determining (1) whether to align the plurality of antenna elements in one direction so that antenna directivity is in said direction and (2) whether to align at least one of the plurality of antenna elements in a direction different from at least another one of the plurality of antenna elements so that antenna directivity is omni directional. Javor, in an analogous art, teaches a receiver antenna diversity system equipped with two different antenna (one directional and one omni-directional), the omni-directional antenna may be used in conjunction with the directional antenna to provide radiation pattern diversity antenna selection technique which selects, based on received signal strength of each antenna as it's well known in the art, the best antenna for the receiver system (see figs. 1 and 2; sections [0008-0021]). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention was made to modify the antenna system of Kosaki to implement the receiver antenna diversity technique in order to reduce problems due to destructive interference from multipath fading or interference signals as taught by Javor.

Regarding claim 3, the combination of Kosaki and Javor teaches a mobile receiver apparatus according to claim 1, wherein the optimum directivity calculator comprises at least: a directivity calculator; a current position detector for detecting the current position of the mobile; a broadcasting tower position retriever; and a geographic data storage for storing the geographic data about the current position; wherein the directivity calculator calculates an optimum pattern of the directivity for improving the response to a desired broadcast signal from the positional relationship between the mobile and the broadcasting tower determined by a combination of the current position detector and the broadcast tower position retriever and the environment for broadcast signal reception estimated by a combination of the current position detector and the geographical data storage; and wherein the antenna controller conducts the control action over the directivity variable antenna corresponding to the output of the directivity calculator (see Kosaki, fig. 1 and 14; col. 13, lines 10-55; col. 1, line 14 to col. 2, line 36; also see figs. 1 and 2). In addition, Kosaki obviously teaches a storage that stores GPS data received from the antenna 7.

Regarding claim 4, the combination of Kosaki and Javor teaches a mobile receiver apparatus according to claim 1, wherein the optimum directivity calculator comprises at least: a directivity control data retriever; a current position detector for detecting the current position of the mobile; and a directivity control data storage for storing a directivity control data determined from the current position or the geographic data about the current position; wherein the directivity control data retriever examines the

current position of the mobile received from the current position detector to retrieve a corresponding directivity control data from the directivity control data storage; and wherein the antenna controller conducts the control action over the directivity variable antenna (see Kosaki, fig. 1 and 14; col. 13, lines 10-55; col. 1, line 14 to col. 2, line 36; also see figs. 1 and 2). In addition, Kosaki obviously teaches a storage that stores the direction information to where the tracking unit should point the antenna in order for the system to communicate the best.

Regarding claim 5, the combination of Kosaki and Javor teaches a mobile receiver apparatus according to claim 4, wherein the directivity control data storage is connected with a broadcast signal receiver or communicator for receiving directivity control data via the broadcast signal receiver or communicator to update or modify the directivity control data assigned to the current position or the geographical features (see Kosaki, fig. 1 and 14; col. 13, lines 10-55; col. 1, line 14 to col. 2, line 36; also see figs. 1 and 2). In addition, Kosaki obviously teaches a storage that stores the direction information to where the tracking unit should point the antenna in order for the system to communicate the best.

Regarding claim 6, the combination of Kosaki and Javor teaches a mobile receiver apparatus according to claim 1, wherein the directivity variable antenna is connected at the output to the optimum directivity calculator; and wherein the optimum directivity calculator is arranged to calculate an optimum pattern of the directivity using an output

of the directivity variable antenna (see Kosaki, fig. 1 and 14; col. 13, lines 10-55; col. 1, line 14 to col. 2, line 36; also see figs. 1 and 2).

4. Claim 2 is rejected under 35 U.S.C. 103(a) as being unpatentable over Kosaki (US 5,889,488), Javor et al. (US 2004/0266356) in view of Toda et al. (US2004/0140929).

Regarding claim 2, the combination of Kosaki and Javor, as mentioned above, teaches the limitations of claim 1 but does not mention that the antenna controller is arranged to conduct its control action over the directivity variable antenna in guard intervals which are assigned by an applicable digital broadcast system. Such limitation is taught by Toda in an analogous art for adjusting the antenna directivity (see fig. 3 of Toda; section [0031]). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention was made to provide the above teaching of Toda to Kosaki in order for the combined system to suppress the delayed waves over the guard intervals as taught by Toda (see section [0031]).

Conclusion

5. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP

§ 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to MINH D. DAO whose telephone number is 571-272-7851. The examiner can normally be reached on 8:30 AM - 5:00 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, MATTHEW ANDERSON can be reached on 571-272-4177. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Minh Dao
AU 2618

Matthew Anderson
Superviser AU 2618