MATH 308 D200, Fall 2019

13. Non-canonical LP problems - equations of constraints (based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

1/6

Method I: Replacing an equality constraint by two inequality constraints.

Example 3

Maximize
$$f(x, y, z) = 2x + y - 2z$$
 subject to

$$x + y + z \le 1$$
$$y + 4z = 2$$
$$x, y, z \ge 0$$

Method I: Replacing an equality constraint by two inequality constraints.

Example 3

Maximize
$$f(x, y, z) = 2x + y - 2z$$
 subject to

$$x + y + z \leqslant 1$$
$$y + 4z \le 2$$
$$-y - 4z \le -2$$
$$x, y, z \geqslant 0$$

Method I: Replacing an equality constraint by two inequality constraints.

Example 3

Maximize f(x, y, z) = 2x + y - 2z subject to

$$x + y + z \le 1$$

$$y + 4z \le 2$$

$$-y - 4z \le -2$$

$$x, y, z \ge 0$$

		x t_3	Z	-1		
	1	1	-3*	-1	$=-t_{1}$	
>	0	1	0	0	$=-t_{2}$	\Rightarrow
	0	-1	4	2	=-y	
	2	1	-6	-2	=P	

	-1	ι1	12	
=-z	1/3	-1/3	-1/3	-1/3
$=-t_{1}$	0 2/3	0	1	0
=-y	2/3	4/3	1/3	4/3
$=P^*$	0	-2	-1	0

Optimum Solution: (x, y, z) = (0, 2/3, 1/3)

Method I: Replacing an equality constraint by two inequality constraints.

= -z

 $= -t_1$

= -y $= P^*$

Example 3

Maximize f(x, y, z) = 2x + y - 2zsubject to

$$x + y + z \le 1$$
$$y + 4z \le 2$$
$$-y - 4z \le -2$$
$$x, y, z \ge 0$$

		$x = t_3$	Z	-1	
	1	1	-3*	-1	$=-t_{1}$
>	0	1	0	0	$=-t_{2}$
	0	-1	4	2	=-y
	2	1	-6	-2	= P

	- 2	-1	-
-1/3	-1/3	-1/3	1/3
0	1	0	0
4/3	1/3	4/3	2/3
0	-1	-2	0

Optimum Solution: (x, y, z) = (0, 2/3, 1/3)

There may be infinitely many optimum solutions

Example 3 has infinitely many solutions.

X	<i>t</i> ₃	t_1	-1	
-1/3	-1/3	-1/3	1/3	=-z
0	1	0	0	$= -t_2$
4/3	1/3	4/3	2/3	=-y
0	-1	-2	0	= f

Example 3 has infinitely many solutions.

X	<i>t</i> ₃	t_1	-1	
-1/3	-1/3	-1/3	1/3	=-z
0	1	0	0	$=-t_{2}$
4/3	1/3	4/3	2/3	=-y
0	-1	-2	0	= f

Increasing x while the equations hold at $t_3 = t_1 = 0$ will not affect the objective value f.

Example 3 has infinitely many solutions.

Increasing x while the equations hold at $t_3 = t_1 = 0$ will not affect the objective value f.

Example 3 has infinitely many solutions.

Increasing x while the equations hold at $t_3 = t_1 = 0$ will not affect the objective value f.

Example 3 has infinitely many solutions.

Increasing x while the equations hold at $t_3=t_1=0$ will not affect the objective value f. We may increase x until z, t_2 or y becomes negative.

Example 3 has infinitely many solutions.

Increasing x while the equations hold at $t_3=t_1=0$ will not affect the objective value f. We may increase x until z, t_2 or y becomes negative. (Here $y\geq 0$ implies $x\leq \frac{1}{2}$)

Example 3 has infinitely many solutions.

Increasing x while the equations hold at $t_3=t_1=0$ will not affect the objective value f. We may increase x until z, t_2 or y becomes negative. (Here $y\geq 0$ implies $x\leq \frac{1}{2}$) Shortcut: Compute ratios as if we were pivoting column x.

Example 3 has infinitely many solutions.

Increasing x while the equations hold at $t_3=t_1=0$ will not affect the objective value f. We may increase x until z, t_2 or y becomes negative. (Here $y\geq 0$ implies $x\leq \frac{1}{2}$) Shortcut: Compute ratios as if we were pivoting column x.

The optimal solutions form a line segment in \mathbb{R}^3 parameterized by x

$$\left\{ \left(x,\; \frac{2}{3} - \frac{4}{3}x,\; \frac{1}{3}x + \frac{1}{3}\right) : 0 \le x \le \frac{1}{2} \right\}$$

Example 3 has infinitely many solutions.

Increasing x while the equations hold at $t_3=t_1=0$ will not affect the objective value f. We may increase x until z, t_2 or y becomes negative. (Here $y\geq 0$ implies $x\leq \frac{1}{2}$) Shortcut: Compute ratios as if we were pivoting column x.

The optimal solutions form a line segment in \mathbb{R}^3 parameterized by x

$$\begin{split} \left\{ \left(x, \ \frac{2}{3} - \frac{4}{3}x, \ \frac{1}{3}x + \frac{1}{3} \right) : 0 \leq x \leq \frac{1}{2} \right\} \\ &= \overline{\boldsymbol{ab}}, \quad \text{where } \boldsymbol{a} = \left(0, \frac{2}{3}, \frac{1}{3} \right), \quad \boldsymbol{b} = \left(\frac{1}{2}, 0, \frac{1}{2} \right) \end{split}$$

SFU department of mathematics

3/6

Example 3 has infinitely many solutions.

Increasing x while the equations hold at $t_3=t_1=0$ will not affect the objective value f. We may increase x until z, t_2 or y becomes negative. (Here $y\geq 0$ implies $x\leq \frac{1}{2}$) Shortcut: Compute ratios as if we were pivoting column x.

The optimal solutions form a line segment in \mathbb{R}^3 parameterized by x

$$\begin{split} \left\{ \left(x, \ \frac{2}{3} - \frac{4}{3}x, \ \frac{1}{3}x + \frac{1}{3} \right) : 0 &\leq x \leq \frac{1}{2} \right\} \\ &= \overline{ab}, \quad \text{where } \pmb{a} = \left(0, \frac{2}{3}, \frac{1}{3} \right), \quad \pmb{b} = \left(\frac{1}{2}, 0, \frac{1}{2} \right) \\ &= \left\{ t \left(0, \frac{2}{3}, \frac{1}{3} \right) + (1 - t) \left(\frac{1}{2}, 0, \frac{1}{2} \right) \ | \ 0 \leq t \leq 1 \right\} \end{split}$$

SFU department of mathematics

Example 3'

Maximize
$$f(x,y,z)=2x+y-2z$$
, subject to
$$x+y+z\leqslant 1$$

$$y+4z=2$$

$$x,y,z\geqslant 0$$

Record second slack variable as "0"

X	y	Z	-1	
1	1	1	1	$=-t_1$
0	1	4	2	=-0
2	1	-2	0	= f

Example 3'

Maximize
$$f(x,y,z)=2x+y-2z$$
, subject to
$$x+y+z\leqslant 1$$

$$y+4z=2$$

$$x,y,z\geqslant 0$$

Record second slack variable as "0" Find non-zero entry in 0-row (e.g. column y)

X	y	Z	-1		-1	
1	1	1	1	$=-t_1$		=
0	1*	4	2	=-0		=
2	1	-2	0	= f		= f

Example 3'

Maximize
$$f(x,y,z)=2x+y-2z$$
, subject to
$$x+y+z\leqslant 1$$

$$y+4z=2$$

$$x,y,z\geqslant 0$$

Record second slack variable as "0"

Find non-zero entry in 0-row (e.g. column y) and pivot.

			-1						
1	1	1	1	$=-t_1$	1	-1	-3	-1	$=-t_1$
0	1*	4	2	$ \begin{vmatrix} =-t_1\\ =-0 \end{vmatrix} \rightarrow$	0	1	4	2	=-y
2	1	-2	0	= f	2	-1	-6	-2	= f

Example 3'

Maximize
$$f(x,y,z)=2x+y-2z$$
, subject to
$$x+y+z\leqslant 1$$

$$y+4z=2$$

$$x,y,z\geqslant 0$$

Record second slack variable as "0" Find non-zero entry in 0-row (e.g. column y) and pivot. Delete 0-column

Example 3'

Maximize
$$f(x,y,z)=2x+y-2z$$
, subject to
$$x+y+z\leqslant 1$$

$$y+4z=2$$

$$x,y,z\geqslant 0$$

Record second slack variable as "0"

Find non-zero entry in 0-row (e.g. column y) and pivot.

Delete 0-column.

Run simplex algorithm.

Example 3'

Maximize
$$f(x,y,z)=2x+y-2z$$
, subject to
$$x+y+z\leqslant 1$$

$$y+4z=2$$

$$x,y,z\geqslant 0$$

Record second slack variable as "0"

Find non-zero entry in 0-row (e.g. column y) and pivot.

Delete 0-column.

Run simplex algorithm.

Again we have infinitely many solutions, for $0 \le x \le \frac{1}{2}$

Maximize
$$f(x,y,z)=x+2y-3z$$
, subject to
$$x-y+z=3$$

$$x+2y-z\leqslant 4$$

$$x-z\leqslant 6$$

$$x,y,z\geqslant 0$$

X	y	Z	-1		
1	-1	1	3	= -0	
1	2	-1	4	$= -t_1$	\rightarrow
1	0	-1	6	$=-t_{2}$	
1	2	-3	0	= f	

Maximize
$$f(x,y,z)=x+2y-3z$$
, subject to
$$x-y+z=3$$

$$x+2y-z\leqslant 4$$

$$x-z\leqslant 6$$

$$x,y,z\geqslant 0$$

X	y	Z	-1	
1*	-1	1	3	= -0
1	2	-1	4	$=-t_1 \rightarrow$
1	0	-1	6	$=-t_2$
1	2	-3	0	= f

0	-1	
		=-x
		=
		=
		= f

Maximize
$$f(x,y,z)=x+2y-3z$$
, subject to
$$x-y+z=3$$

$$x+2y-z\leqslant 4$$

$$x-z\leqslant 6$$

$$x,y,z\geqslant 0$$

X	y	Z	-1	
1*	-1	1	3	=-0
1	2	-1	4	$=-t_1 \rightarrow$
1	0	-1	6	$=-t_2$
1	2	-3	0	= f

0	y	Z	-1	
1	-1	1	3	=-x
-1	3	-2	1	$=-t_1$
-1	1	-2	3	$=-t_2$
-1	3	-4	-3	= f

Maximize
$$f(x,y,z)=x+2y-3z$$
, subject to
$$x-y+z=3$$

$$x+2y-z\leqslant 4$$

$$x-z\leqslant 6$$

$$x,y,z\geqslant 0$$

X	У	Z	-1		
1*	-1	1	3	=-0	
1	2	-1	4	$=-t_1$	\rightarrow
1	0	-1	6	$=-t_{2}$	
1	2	-3	0	= f	

		-1	z	y	0
	=-x	3	1	-1	1
\rightarrow	$= -t_1$	1	-2	3	-1
	$= -x$ $= -t_1$ $= -t_2$	3	-2	1	-1
	= f	-3	-4	3	-1

Maximize
$$f(x,y,z)=x+2y-3z$$
, subject to
$$x-y+z=3$$

$$x+2y-z\leqslant 4$$

$$x-z\leqslant 6$$

$$x,y,z\geqslant 0$$

	X	y	Z	-1		
	1*	-1	1	3	= -0	
	1	2	-1	4	$= -t_1$	\rightarrow
	1	0	-1	6	$=-t_{2}$	
Ì	1	2	-3	0	= f	

y	Z	-1	
-1	1	3	=-x
3*	-2	1	$= -t_1$
1	-2	3	$=-t_{2}$
3	-4	-3	= f

		-1	Z	y	0
	=-x	3	1	-1	1
\rightarrow	$= -t_1$	1	-2	3	-1
	$= -x$ $= -t_1$ $= -t_2$	3	-2	1	-1
	= f	-3	-4	3	-1

Maximize
$$f(x,y,z)=x+2y-3z$$
, subject to
$$x-y+z=3$$

$$x+2y-z\leqslant 4$$

$$x-z\leqslant 6$$

$$x,y,z\geqslant 0$$

0	y	z	-1		
1	-1	1	3	=-x	
-1	3	-2	1	$= -t_1$	-
-1	1	-2	3	$=-t_{2}$	
-1	3	-4	-3	= f	

t_1	Z	-1	
1/3	1/3	10/3	=-x
1/3	-2/3	1/3	=-y
-1/3	-4/3	8/3	$=-t_{2}$
-1	-2	-4	= f

Maximize f(x, y, z) = x + 2y + z subject to

$$x - y + z = 6$$
$$x + y \leqslant 1$$
$$x, z \geqslant 0$$

This has both an unrestricted variable and an equality constraint.

Maximize
$$f(x, y, z) = x + 2y + z$$
 subject to

$$x - y + z = 6$$
$$x + y \leqslant 1$$
$$x, z \geqslant 0$$

This has $\color{red} both$ an unrestricted variable and an equality constraint.

We can do both at once!

X	y	Z	-1	
1	-1	1	6	=-0
1	1	0	1	$=-t_{1}$
1	2	1	0	= f

Maximize
$$f(x, y, z) = x + 2y + z$$
 subject to

$$x - y + z = 6$$
$$x + y \leqslant 1$$
$$x, z \geqslant 0$$

This has both an unrestricted variable and an equality constraint.

We can do both at once!

Maximize
$$f(x, y, z) = x + 2y + z$$
 subject to

$$x - y + z = 6$$
$$x + y \leqslant 1$$
$$x, z \geqslant 0$$

This has both an unrestricted variable and an equality constraint.

We can do both at once!

$$= -0$$
 $= -t_1$

X	0	Z	-1	
-1	-1	-1	-6	=-
2	1	1	7	$=-t_{1}$
3	2	3	12	= f
				,

Maximize
$$f(x, y, z) = x + 2y + z$$
 subject to

$$x - y + z = 6$$
$$x + y \le 1$$
$$x, z \ge 0$$

This has both an unrestricted variable and an equality constraint.

We can do both at once!

$$\rightarrow$$

X	0	Z	-1	
-1	-1	-1	-6	$=-\emptyset$
2	1	1	7	$=-t_1$
3	2	3	12	= f

Delete row and delete column, record -x - z + 6 = -y.

$$x z -1$$

faculty of science

Maximize
$$f(x, y, z) = x + 2y + z$$
 subject to

$$x - y + z = 6$$
$$x + y \le 1$$
$$x, z \ge 0$$

This has both an unrestricted variable and an equality constraint.

We can do both at once!

Delete row and delete column, record -x - z + 6 = -y.

Run SA as usual.

Maximize
$$f(x, y, z) = x + 2y + z$$
 subject to

$$x - y + z = 6$$
$$x + y \le 1$$
$$x, z \ge 0$$

This has both an unrestricted variable and an equality constraint.

We can do both at once!

$$= -0$$

$$= -t_1$$

$$= f$$

X	0	z	-1	
-1	-1	-1	-6	$=-\emptyset$
2	1	1	7	$= -t_1$
3	2	3	12	= f

Delete row and delete column, record -x - z + 6 = -y.

$$\begin{vmatrix} =-t_1 & -t_1 \\ =f & \end{vmatrix}$$

t_1	Z	-1
1/2	1/2*	7/2
-3/2	3/2	3/2

$$\leftarrow$$

Run SA as usual.

The optimum is at x = 0, z = 7, so y = 0 + 7 - 6 = 1.