

Graph Data Structure & Algorithms

Sunbeam Infotech

Agenda

- Graph terminologies & types
- Graph implementation Adjacency Matrix & Adjacency List
- Breadth First & Depth First Search/Traversal
- BFS & DFS Spanning Tree
- Check connected graph
- Check bi-partite graph
- Single source path length algorithm
- Greedy approach
 - Kruskal MST algorithm
 - Prim's MST algorithm
 - Dijkstra's Shortest Path algorithm
- Dynamic programming
 - Optimizing recursion
 - Dynamic programming
 - Bellman Ford Algorithm
 - Floyd-Warshall Algorithm
- A* Search Algorithm

- G= {V, E } V= {A,B,C,D,E,F} E= {(A,B),(A,C),(A,D),(B,C),(B,E),(D,F),(B,E)(F,F)}
- Graph is a non-linear data structure.
- Graph is defined as set of vertices and edges. Vertices (also called as nodes) hold data, while edges connect vertices and represent relations between them.
 - G = { V, E }
- Vertices hold the data and Edges represents relation between vertices.
- When there is an edge from vertex P to vertex Q, P is said to be adjacent to Q.
- Multi-graph
 - Contains multiple edges in adjacent vertices or loops (edge connecting a vertex to it-self).
- Simple graph
 - Doesn't contain multiple edges in adjacent vertices or loops.

- Graph edges may or may not have directions.
- Undirected Graph: G = { V, E }
 - V = { A, B, C, D, E, F}
 - $E = \{ (A,B), (A,C), (A,D), (B,C), (B,E), (D,E), (D,F) \}$
 - If P is adjacent to Q, then Q is also adjacent to P.
 - Degree of node: Number of nodes adjacent to the node.
 - Degree of graph: Maximum degree of any node in graph.
- Directed Graph: G = { V, E }
 - $V = \{A, B, C, D, E, F\}$
 - \bullet E = $\{A,B>, <B,C>, <B,E>, <C,A>, <D,A>, <D,E>, <D,F>, <E,F>, <F,D>$
 - If P is adjacent to Q, then Q is may or may not be adjacent to P.
 - Out-degree: Number of edges originated from the node
 - In-degree: Number of edges terminated on the node

• Path: Set of edges between two vertices. There can be multiple paths between two vertices.

$$A-D-E$$
 $A-B-E$
 $A-C-B-E$

Cycle: Path whose start and end vertex is same.

$$A-B-C-A$$
 $A-B-E-D-A$

• Loop: Edge connecting vertex to itself. It is smallest cycle.

$$\mathbf{v} \mathbf{F} - \mathbf{F}$$

• <u>Sub-Graph</u>: A graph having few vertices and few edges in the given graph, is said to be sub-graph of given graph.

- Weighted graph
 - Graph edges have weight associated with them.
 - Weight represent some value e.g. distance, resistance.
- Directed Weighted graph (Network)
 - Graph edges have directions as well as weights.
- Applications of graph

 DAG → scheduling
 - DAG > scheduling

 YARH

Spark

Tez

- Electronic circuits
- Social media
- Communication network
- Road network
- Flight/Train/Bus services
- Bio-logical & Chemical experiments
- Deep learning (Neural network, Tensor flow)
- Graph databases (Neo4j)

Connected graph

- From each vertex some path exists for every other vertex.
- Can traverse the entire graph starting from any vertex.

- Each vertex of a graph is adjacent to every other vertex.
- Directed graph: Number of edges = n (n-1)

514=20

Bi-partite graph

- Vertices can be divided in two disjoint sets.
- Vertices in first set are connected to vertices in second set.
- Vertices in a set are not directly connected to each other.

Spanning Tree

- Tree is a graph without cycles.
- Spanning tree is connected sub-graph of the given graph that contains all the vertices and sub-set of edges (V-1).
- Spanning tree can be created by removing few edges from the graph which are causing cycles to form.
- One graph can have multiple different spanning trees.
- In weighted graph, spanning tree can be made who has minimum weight (sum of weights of edges). Such spanning tree is called as Minimum Spanning Tree.
- Spanning tree can be made by various algorithms.
 - BFS Spanning tree \(\cdot \)
 DFS Spanning tree \(\cdot \)
 Prim's MST \(\cdot \)
 Kruskal's MST \(\cdot \)

В

Graph Implementation – Adjacency Matrix

- If graph have V vertices, a V x V matrix can be formed to store edges of the graph.
- Each matrix element represent presence or absence of the edge between vertices.
- For <u>non-weighted graph</u>, 1 indicate edge and 0 indicate no edge.
- For un-directed graph, adjacency matrix is always symmetric across the diagonal.
- Space complexity of this implementation is O(V²).

Graph Implementation – Adjacency Matrix

- If graph have V vertices, a V x V matrix can be formed to store edges of the graph.
- Each matrix element represent presence or absence of the edge between vertices.
- For <u>weighted graph</u>, weight value indicate the edge and infinity sign ∞ represent no edge.
- For un-directed graph, adjacency matrix is always symmetric across the diagonal.
- Space complexity of this implementation is O(V²).

	A	В	С	D	Ε	F
A	8	7	4	8	8	8
В	7	8	9	8	W	8
U	4	9	8	8	8	00
۵	00	8	8	8	6	2
ш	8	لکا	8	6	8	00
ш	8	8	8	2	8	Ø

Graph Implementation – Adjacency List

- Each vertex holds list of its adjacent vertices.
- For non-weighted graphs only, neighbour vertices are stored.
- For weighted graph, neighbour vertices and weights of connecting edges are stored.
- Space complexity of this implementation is O(V*E).
- If graph is <u>sparse graph</u> (with fewer number of edges), this implementation is more efficient (as compared to adjacency matrix method).

0

Graph Traversal – DFS Algorithm

- 1. Choose a vertex as start vertex.
- Push start vertex on stack & mark it.
- 3. Pop vertex from stack.
- 4. Visit (Print) the vertex.5. Put all non-visited neighbours of the vertex on the stack and mark them.
- 6. Repeat 3-5 until stack is empty.

Graph Traversal – BFS Algorithm

- Choose a vertex as start vertex.
- 2. Push start vertex on queue & mark it.
- 3. Pop vertex from queue.
- 4. Visit (Print) the vertex.5. Put all non-visited neighbours of the vertex on the queue and mark them.
- Repeat 3-5 until queue is empty.
- BFS is also referred as level-wise search algorithm.

Check Connected-ness

- 1. push starting vertex on stack & mark it.
- 2. begin counting marked vertices from 1.
- 3. pop a vertex from stack.
- push all its non-marked neighbors on the stack, mark them and increment count.
- 5. if count is same as number of vertices, graph is connected (return).
- 6. repeat steps 3-5 until stack is empty.
- 7. graph is not connected (return)

DFS Spanning Tree

- push starting vertex on stack & mark it.
- 2. pop the vertex.
- 3. push all its non-marked neighbors on the stack, mark them. Also print the vertex to neighboring vertex edges.
- 4. repeat steps 2-3 until stack is empty.

BFS Spanning Tree

- push starting vertex on queue & mark it.
- pop the vertex.
- 3. push all its non-marked neighbors on the queue, mark them. Also print the vertex to neighboring vertex edges.
- 4. repeat steps 2-3 until queue is empty.

Single Source Path Length

- 1. Create path length array to keep distance of vertex from start vertex.
- 2. Consider dist of start vertex as 0.
- 3. push start vertex on queue & mark it.
- 4. pop the vertex.
- push all its non-marked neighbors on the queue, mark them.
- For each such vertex calculate its distance as dist[neighbor] = dist[current] + 1
- 7. repeat steps 3-6 until queue is empty.
- 8. Print path length array.

Check Bipartite-ness

- 1. keep colors of all vertices in an array. Initially vertices have no color.
- 2. push start on queue & mark it. Assign it color1.
- 3. pop the vertex.
- push all its non-marked neighbors on the queue, mark them.
- 5. For each such vertex if no color is assigned yet, assign opposite color of current vertex (c1-c2, c2-c1).
- 6. If vertex is already colored with same of current vertex, graph is not bipartite (return).
- 7. repeat steps 3-6 until queue is empty.

Check Bipartite-ness

- 1. keep colors of all vertices in an array. Initially vertices have no color.
- 2. push start on queue & mark it. Assign it color1.
- 3. pop the vertex.
- push all its non-marked neighbors on the queue, mark them.
- 5. For each such vertex if no color is assigned yet, assign opposite color of current vertex (c1-c2, c2-c1).
- 6. If vertex is already colored with same of current vertex, graph is not bipartite (return).
- 7. repeat steps 3-6 until queue is empty.

Problem solving technique: Greedy approach

- A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage with the intent of finding a global optimum.
- We can make choice that seems best at the moment and then solve the sub-problems that arise later.
- The choice made by a greedy algorithm may depend on choices made so far, but not on future choices or all the solutions to the sub-problem.
- It iteratively makes one greedy choice after another, reducing each given problem into a smaller one.
- A greedy algorithm never reconsiders its choices.
- A greedy strategy may not always produce an optimal solution.

 Greedy algorithm decides minimum number of coins to give while making change.

Union Find Algorithm

- Consider all vertices as disjoint sets (parent = -1).
- 2. For each edge in the graph
 - 1. Find set of first vertex.
 - 2. Find set of second vertex.
 - 3. If both are in same set, cycle is detected.
 - 4. Otherwise, merge both the sets i.e. add root of first set under second set

3	5	14
1	7	11
5	4	10
3	4	9
1	2	8
0	7	8
7	8	7
2	3	7
8	6	6
2	5	4
0	1	4

des wt

2

6

src

6

 \vdash

2

 \mathfrak{C}

2

9

 ∞

0

Kruskal's MST

- 1. Sort all the edges in ascending order of their weight.
- 2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
- 3. Repeat step 2 until there are (V-1) edges in the spanning tree.

src	des	wt
7	6	1
~ 8	2	2
- 6	5	2
_0	1	4
_2	5	4
× 8	6	6
_ 2	3	7
× 7	8	7
/ 0	7	8
x 1	2	8
/3	4	9
~ 5	4	10
X 1	7	11
× 3	5	14

Union Find Algorithm – Analysis

- Consider all vertices as disjoint sets (parent = -1).
- 2. For each edge in the graph
 - Find set of first vertex.
 - Find set of second vertex.
 - 3. If both are in same set, cycle is detected.
 - 4. Otherwise, merge both the sets i.e. add root of first set under second set

- Time complexity
 - Skewed tree implementation
 - O(V)
- Improved time complexity
 - Rank based tree implementation
 - O(log V)

Kruskal's MST – Analysis

- 1. Sort all the edges in ascending order of their weight.
- 2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
- 3. Repeat step 2 until there are (V-1) edges in the spanning tree.

- Time complexity
 - Sort edges: O(E log E)
 - Pick edges (E edges): O(E)
 - Union Find: O(log V)
- Time complexity
 - $O(E \log E + E \log V)$
 - E can max V².
 - So max time complexity: O(E log V).

Thank you!

Nilesh Ghule <Nilesh@sunbeaminfo.com>

