```
Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
  syntax and semantics of LTL
   automata-based LTL model checking
  complexity of LTL model checking
Computation-Tree Logic
Equivalences and Abstraction
```

Complexity of LTL model checking

main steps of automata-based LTL model checking:

construction of an NBA ${\cal A}$ for $\neg \varphi$

persistence checking in the product $T \otimes A$

construction of an NBA \mathcal{A} for $\neg \varphi$

 $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$

construction of an NBA \mathcal{A} for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$ persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

construction of an NBA
$$\mathcal{A}$$
 for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

complexity: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

construction of an NBA
$$\mathcal{A}$$
 for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

complexity: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

product $T \otimes A$

The LTL model checking problem is **PSPACE**-complete

Complexity of LTL model checking

LTL model checking problem

given: finite transition system T

LTL-formula φ

question: does $T \models \varphi$ hold ?

Complexity of LTL model checking

LTL model checking problem

given: finite transition system T

LTL-formula φ

question: does $T \models \varphi$ hold ?

we show

- just for fun: **coNP**-hardness
- **PSPACE**-completeness

- P = class of decision problem solvable in deterministic polynomial time
- **NP** = class of decision problem solvable in nondeterministic polynomial time

NPC = class of NP-complete problems

NPC = class of NP-complete problems

- $(1) \quad \mathbf{L} \in \mathbf{NP}$
- (2) \boldsymbol{L} is \boldsymbol{NP} -hard, i.e., $\boldsymbol{K} \leq_{\boldsymbol{poly}} \boldsymbol{L}$ for all $\boldsymbol{K} \in \boldsymbol{NP}$

NPC = class of NP-complete problems

- $(1) \quad \mathbf{L} \in \mathbf{NP}$
- (2) L is NP-hard, i.e., $K \leq_{poly} L$ for all $K \in NP$

$$coNP = \{ \overline{L} : L \in NP \}$$
complement of L

LTLMC3.2-72A

coNPC = class of **coNP**-complete problems

- (1) $L \in coNP$
- (2) \boldsymbol{L} is \boldsymbol{coNP} -hard, i.e., $\boldsymbol{K} \leq_{\boldsymbol{poly}} \boldsymbol{L}$ for all $\boldsymbol{K} \in \boldsymbol{coNP}$

LTLMC3.2-72A

coNPC = class of **coNP**-complete problems

coNP-hardness

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

 $\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

proof by a polynomial reduction

$$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

proof by a polynomial reduction

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

proof by a polynomial reduction

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

LTLMC3.2-72B

HP Hamilton path problem:

given: finite directed graph G

question: does G has a Hamilton path ?, i.e., a

path that visits each node exactly once

given: finite directed graph G

question: does G has a Hamilton path ?, i.e., a

path that visits each node exactly once

given: finite directed graph G

question: does G has a Hamilton path ?, i.e., a

path that visits each node exactly once

G has a Hamilton path

given: finite directed graph G

question: does G has a Hamilton path ?, i.e., a

path that visits each node exactly once

has no Hamilton path

given: finite directed graph G

question: does **G** has a Hamilton path **?**, i.e., a

path that visits each node exactly once

has no Hamilton path

HP is known to be **NP**-complete

 $\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

LTLMC3.2-73

 $\begin{array}{c|c} \textit{HP} & \leq_{\textit{poly}} & \overline{\textit{LTL-MC}} \\ \hline \text{finite directed} & & \text{poly time} \\ \hline \textit{graph } \textit{G} & & \\ \hline \textit{G} \text{ has a} \\ \hline \textit{Hamilton path} & & \text{iff} & \mathcal{T} \not\models \varphi \end{array}$

LTLMC3.2-73

 $\begin{array}{c|cccc} & HP & \leq_{poly} & \overline{LTL\text{-}MC} \\ & \text{finite directed} & \text{poly time} & & \text{finite TS } \mathcal{T} \\ & & \text{LTL formula } \varphi & \\ \hline & & & \text{LTL formula } \varphi & \\ \hline & & & \text{of } G & \cong & \text{states of } \mathcal{T} \\ \end{array}$

LTLMC3.2-73

 $\begin{array}{cccc} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & &$

LTLMC3.2-73

states of T = AP = V additional trap state t

LTLMC3.2-73

LTL-MC HP \leq_{poly} poly time finite TS **T** finite directed LTL formula φ graph G G has a iff $T \not\models \varphi$ Hamilton path **=** states of T AP = Vnode-set V of G

additional trap state t

$$\varphi = ?$$

LTLMC3.2-73

additional trap state t

LTLMC3.2-73

node-set V of G $\widehat{=}$ states of T AP = V additional trap state t

Complexity of LTL model checking

We just saw:

The LTL model checking problem is coNP-hard

We just saw:

The LTL model checking problem is coNP-hard

We now prove:

The LTL model checking problem is PSPACE-complete

For the interested student !!!