University of California Santa Barbara

Search for new physics using the M_{T2} variable in all-hadronic final states produced in 13 TeV proton-proton collisions at the CMS detector

A dissertation submitted in partial satisfaction of the requirements for the degree

Doctor of Philosophy in Physics

by

Bennett J. Marsh

Committee in charge:

Professor Claudio Campagnari, Chair Professor David Stuart Professor Nathaniel Craig

The Dissertation of Bennett J. Marsh is approved.
Professor David Stuart
Professor Nathaniel Craig
Professor Claudio Campagnari, Committee Chair

Search for new physics using the $\rm M_{T2}$ variable in all-hadronic final states produced in 13 TeV proton-proton collisions at the CMS detector

Copyright © 2019

by

Bennett J. Marsh

${\bf Acknowledgements}$

Acknowledgements here.

Curriculum Vitæ Bennett J. Marsh

Education

2020	Ph.D. in Physics (Expected), University of California, Santa Barbara.
2018	M.A. in Physics, University of California, Santa Barbara.
2015	B.Sc. in Physics and Mathematics, Purdue University, West Lafayette, IN.

Publications

- CMS Collaboration, "Search for new physics with the $M_{\rm T2}$ variable in hadronic final states, with or without disappearing tracks, in proton-proton collisions at $\sqrt{s} = 13$ TeV." [CMS-PAS-SUS-19-005] (In progress).
- CMS Collaboration, "Constraints on models of scalar and vector leptoquarks decaying to a quark and a neutrino at $\sqrt{s} = 13$ TeV." *Phys. Rev.* **D98** (2018), no. 3, 032005, [arXiv:1805.10228].
- CMS Collaboration, "Search for new phenomena with the M_{T2} variable in the all-hadronic final state produced in proton-proton collisions at $\sqrt{s} = 13$ TeV." Eur. Phys J. C77 (2017), no. 10, 710, [arXiv:1705.04650].
- A. Ball et al. "A Letter of Intent to Install a milli-charged Particle Detector at LHC P5". [arXiv:1607.04669].

Abstract

Search for new physics using the $\rm M_{T2}$ variable in all-hadronic final states produced in 13 TeV proton-proton collisions at the CMS detector

by

Bennett J. Marsh

Two related searches for Standard Model and beyond the Standard Model physics with a final state containing a pair of same-charged leptons and jets are performed using a sample of $\sqrt{s} = 13$ TeV data corresponding to an integrated luminosity of 137 fb⁻¹, collected by the CMS detector between 2016 and 2018. The first inclusive search observes no excess above the Standard Model and thus places constraints on R-parity violating and R-parity conserving supersymmetric models with pair production of gluinos and squarks. Gluino masses are excluded up to 2.1 TeV, while top and bottom squarks are excluded up to 0.9 TeV. The second search measures the cross-section of the production of four top quarks within the Standard Model using both cut-based and multivariate approaches. The observed (expected) significance of the multivariate approach is 2.6 (2.7) standard deviations, with a measured cross-section of $12.6^{+5.8}_{-5.2}$ fb, consistent with the Standard Model prediction of $12.0^{+2.2}_{-2.5}$ fb. These results are translated into constraints on the Yukawa coupling of the top quark, as well as constraints on heavy scalar or pseudoscalar production in a type II 2HDM scenario.

Contents

\mathbf{C}_{1}	urriculum Vitae	v
\mathbf{A}	bstract	vi
1	The Standard Model and Beyond	1
2	The CMS Experiment	2
	2.1 The Large Hadron Colllider	2
	2.2 The CMS detector	2
	2.3 Computing and reconstruction pipeline	2
3	Overview of the M_{T2} Analysis	3
	3.1 Motivation for an all-hadronic search	3
	3.2 The $M_{\rm T2}$ variable	3
	3.3 Sources of backgrounds	3
4	Event Selection and Triggering	4
	4.1 Object and variable definitions	4
	4.2 Triggers	4
	4.3 Baseline selections	4
	4.4 Signal region definitions	4
5	Invisible Z Background	5
6	Lost Lepton Background	6
7	QCD Background: The Rebalance and Smear Method	7
	7.1 The $\Delta\phi$ -ratio method	7
	7.2 Overview of Rebalance and Smear	8
	7.3 Derivation of jet response templates	8
	7.4 Performance in Monte Carlo	8
	7.5 Electroweak contamination	8

	7.6 Performance in data control regions	
	7.7 Extension to monojet regions	
	7.8 Systematic uncertainties	
8	Results and Interpretation	
	8.1 Pre-fit results	
	8.2 SUSY interpretations	
	8.3 Leptoquark interpretations	
9	Summary and Conclusions	
\mathbf{A}	Detailed results for the M_{T2} analysis	
В	Bonus: A Search for Milli-Charged Particles at the LHC	•
В	Bonus: A Search for Milli-Charged Particles at the LHC B.1 Overview of the Milliqan experiment	
В	S S S S S S S S S S S S S S S S S S S	
В	B.1 Overview of the Milliqan experiment	

The Standard Model and Beyond

[1]

The CMS Experiment

- 2.1 The Large Hadron Colllider
- 2.2 The CMS detector
- 2.3 Computing and reconstruction pipeline

Overview of the M_{T2} Analysis

- 3.1 Motivation for an all-hadronic search
- 3.2 The $M_{\rm T2}$ variable
- 3.3 Sources of backgrounds

Event Selection and Triggering

- 4.1 Object and variable definitions
- 4.2 Triggers
- 4.3 Baseline selections
- 4.4 Signal region definitions

Chapter 5 Invisible Z Background

Chapter 6
Lost Lepton Background

QCD Background: The Rebalance and Smear Method

The third and final background of the $M_{\rm T2}$ analysis arises from mis-measured jets in QCD multijet events. This background is greatly suppressed by the $M_{\rm T2}$ and $\Delta\phi_{\rm min}$ cuts and hence is the smallest of the three backgrounds. However, it is also the most difficult to model and estimate since it depends strongly on the peculiarities of the CMS detector and its imperfect response to jets. This iteration of the analysis employs a new "Rebalance and Smear" method to estimate this background. We briefly describe the old method and reasons for switching, then explain in detail the new technique.

7.1 The $\Delta \phi$ -ratio method

Previous iterations of this analysis [1, 2] used the " $\Delta \phi$ -ratio" method to estimate QCD background.

- 7.2 Overview of Rebalance and Smear
- 7.3 Derivation of jet response templates
- 7.4 Performance in Monte Carlo
- 7.5 Electroweak contamination
- 7.6 Performance in data control regions
- 7.7 Extension to monojet regions
- 7.8 Systematic uncertainties

Results and Interpretation

- 8.1 Pre-fit results
- 8.2 SUSY interpretations
- 8.3 Leptoquark interpretations

Chapter 9
Summary and Conclusions

Appendix A

Detailed results for the M_{T2} analysis

Table A.1: Predictions and observations for the 12 search regions with $N_{\rm j}=1$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$N_{ m j}=1$									
$N_{ m j},N_{ m b}$	$p_{\mathrm{T}}^{\mathrm{jet1}}$ [GeV]	Lost lepton	$Z o u \bar{ u}$	Multijet	Total background	Data			
-	250-350	$70700 \pm 400 \pm 4100$	$167000 \pm 1000 \pm 11000$	$530 \pm 20 \pm 160$	$238000 \pm 1000 \pm 14000$	251941			
	350-450	$13440 \pm 130 \pm 790$	$40100 \pm 500 \pm 3100$	$55 \pm 5 \pm 16$	$53600 \pm 500 \pm 3700$	54870			
	450-575	$3050 \pm 50 \pm 180$	$10850^{+230}_{-220} \pm 690$	$5.6 \pm 1.1 \pm 1.6$	$13910 \pm 230 \pm 840$	14473			
1j, 0b	575-700	$603^{+20}_{-19} \pm 38$	$2590^{+110}_{-100} \pm 160$	$0.38 \pm 0.06 \pm 0.11$	$3200 \pm 110 \pm 190$	3432			
	700-1000	$220 \pm 13 \pm 16$	$1076^{+70}_{-66} \pm 66$	$0.12 \pm 0.03 \pm 0.03$	$1295^{+71}_{-67} \pm 79$	1304			
	1000-1200	$11.7^{+4.1}_{-3.2} \pm 0.9$	$86^{+23}_{-19} \pm 6$	< 0.01	$98^{+24}_{-19}\pm7$	98			
	≥ 1200	$2.8^{+2.7}_{-1.5} \pm 0.6$	$23^{+12}_{-8} \pm 2$	< 0.01	$26_{-9}^{+13}\pm 2$	30			
1j, ≥ 1b	250-350	$4210 \pm 110 \pm 260$	$9030 \pm 230 \pm 630$	$58 \pm 10 \pm 17$	$13310^{+260}_{-250} \pm 820$	13549			
	350-450	$878 \pm 38 \pm 56$	$2180^{+110}_{-100} \pm 170$	$4.6 \pm 0.4 \pm 1.3$	$3060 \pm 110 \pm 220$	3078			
	450-575	$211^{+16}_{-15} \pm 13$	$651^{+57}_{-53} \pm 44$	$0.63 \pm 0.18 \pm 0.18$	$863^{+59}_{-55} \pm 53$	810			
	575-700	$40.3^{+6.0}_{-5.5} \pm 2.5$	$164^{+30}_{-26} \pm 11$	$0.04 \pm 0.02 \pm 0.02$	$205_{-26}^{+31} \pm 13$	184			
	≥ 700	$19.2^{+5.7}_{-4.6} \pm 1.3$	$74^{+21}_{-16} \pm 7$	< 0.01	$94^{+21}_{-17}\pm7$	83			

Table A.2: Predictions and observations for the 30 search regions with $250 \leq H_{\rm T} < 450$ GeV. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$250 \le H_{\rm T} < 450 \; {\rm GeV}$								
$N_{\rm j},N_{\rm b}$	M_{T2} [GeV]	Lost lepton	$Z o \nu \bar{\nu}$	Multijet	Total background	Data		
	200-300	$73700 \pm 500 \pm 5000$	$156000 \pm 1000 \pm 12000$	$580 \pm 20 \pm 140$	$231000 \pm 1000 \pm 16000$	240867		
2-3j, 0b	300-400	$12030 \pm 200 \pm 820$	$31300 \pm 200 \pm 2500$	$50 \pm 5 \pm 10$	$43400 \pm 300 \pm 3200$	44074		
	≥ 400	$417^{+51}_{-47} \pm 28$	$1450 \pm 10 \pm 140$	$0.44 \pm 0.09 \pm 0.09$	$1870 \pm 50 \pm 160$	2022		
	200-300	$12450 \pm 170 \pm 820$	$18700 \pm 300 \pm 1500$	$90 \pm 8 \pm 21$	$31300 \pm 300 \pm 2200$	32120		
2-3j, 1b	300-400	$2380 \pm 80 \pm 160$	$3750 \pm 60 \pm 310$	$6.9 \pm 1.0 \pm 1.5$	$6130 \pm 100 \pm 430$	6258		
	≥ 400	$97 \pm 8 \pm 39$	$174 \pm 3 \pm 17$	$0.01 \pm 0.01 \pm 0.00$	$271^{+9}_{-8} \pm 45$	275		
	200-300	$2240 \pm 70 \pm 150$	$2340^{+110}_{-100} \pm 200$	$9.7 \pm 1.1 \pm 2.3$	$4600^{+130}_{-120} \pm 320$	4709		
2-3j, $2b$	300-400	$398^{+34}_{-32} \pm 27$	$469^{+21}_{-20} \pm 39$	$0.68 \pm 0.17 \pm 0.15$	$868^{+40}_{-38} \pm 61$	984		
	≥ 400	$13.3 \pm 2.3 \pm 5.4$	$21.7^{+1.0}_{-0.9} \pm 2.2$	< 0.01	$35.0 \pm 2.5 \pm 6.0$	30		
	200-300	$507^{+32}_{-31} \pm 38$	$179^{+35}_{-30} \pm 27$	$1.77 \pm 0.46 \pm 0.46$	$688_{-43}^{+47} \pm 54$	699		
$2\text{-}6j, \geq 3b$	300-400	$69 \pm 6 \pm 15$	$40.0^{+7.8}_{-6.6} \pm 6.0$	$0.16 \pm 0.12 \pm 0.04$	$109_{-9}^{+10} \pm 16$	102		
	≥ 400	$1.50 \pm 0.80 \pm 0.61$	$1.43^{+0.28}_{-0.24} \pm 0.25$	< 0.01	$2.92^{+0.85}_{-0.83} \pm 0.67$	0		
	200-300	$12500 \pm 180 \pm 800$	$21600 \pm 300 \pm 1800$	$250 \pm 17 \pm 58$	$34400 \pm 400 \pm 2400$	35187		
4-6j, 0b	300-400	$2070 \pm 80 \pm 130$	$4660 \pm 70 \pm 410$	$18.2 \pm 3.6 \pm 3.8$	$6750 \pm 110 \pm 510$	6725		
	≥ 400	$42 \pm 5 \pm 17$	$155 \pm 2 \pm 64$	$0.06 \pm 0.03 \pm 0.01$	$197 \pm 5 \pm 67$	170		
	200-300	$5750 \pm 100 \pm 380$	$4300 \pm 150 \pm 360$	$61 \pm 7 \pm 15$	$10120 \pm 180 \pm 680$	10564		
4-6j, 1b	300-400	$784^{+43}_{-42} \pm 52$	$928^{+32}_{-31} \pm 84$	$2.07 \pm 0.29 \pm 0.45$	$1710 \pm 50 \pm 120$	1769		
	≥ 400	$14.0 \pm 2.5 \pm 5.7$	$31\pm1\pm13$	$0.04 \pm 0.02 \pm 0.01$	$45 \pm 3 \pm 14$	40		
	200-300	$2550^{+70}_{-60} \pm 170$	$921^{+68}_{-63} \pm 87$	$10.0 \pm 1.5 \pm 2.2$	$3480 \pm 90 \pm 230$	3621		
4-6j, 2b	300-400	$220^{+23}_{-21} \pm 15$	$198^{+15}_{-14} \pm 20$	$0.47 \pm 0.15 \pm 0.11$	$419_{-25}^{+27} \pm 31$	496		
	≥ 400	$3.2 \pm 0.8 \pm 1.3$	$6.6 \pm 0.5 \pm 2.7$	< 0.01	$9.8 \pm 0.9 \pm 3.1$	14		
	200-300	$55^{+15}_{-13} \pm 4$	$61^{+23}_{-17} \pm 26$	$2.64 \pm 0.39 \pm 0.57$	$119^{+28}_{-22}\pm 27$	108		
\geq 7j, 0b	300-500	$3.8^{+2.1}_{-2.0} \pm 0.8$	$8.1^{+3.1}_{-2.3} \pm 4.3$	$0.08 \pm 0.04 \pm 0.02$	$12.0_{-3.1}^{+3.7} \pm 4.4$	30		
	≥ 500	$0.0^{+3.2}_{-0.0} \pm 0.0$	$0.0^{+1.2}_{-0.0} \pm 0.0$	< 0.01	$0.0_{-0.0}^{+3.4} \pm 0.0$	0		
> 7i 1b	200-300	$48.0^{+9.1}_{-8.2} \pm 3.5$	$19^{+19}_{-11} \pm 10$	$0.33 \pm 0.14 \pm 0.09$	$68^{+21}_{-13} \pm 11$	95		
≥ 7j, 1b	≥ 300	$3.0 \pm 1.4 \pm 1.2$	$2.5^{+2.4}_{-1.3} \pm 1.7$	$0.03 \pm 0.02 \pm 0.01$	$\mathbf{5.6_{-1.9}^{+2.8}\pm2.1}$	12		
≥ 7j, 2b	200-300	$41.3^{+7.7}_{-7.0} \pm 3.1$	$6.0^{+5.8}_{-3.2} \pm 3.7$	$0.29 \pm 0.14 \pm 0.06$	$47.6^{+9.7}_{-7.7} \pm 5.0$	30		
≤ 1J, 2D	≥ 300	$2.15^{+0.78}_{-0.76} \pm 0.87$	$0.74^{+0.72}_{-0.40} \pm 0.57$	< 0.01	$2.9_{-0.9}^{+1.1} \pm 1.1$	1		
\geq 7j, \geq 3b	200-300	$7.3^{+1.7}_{-1.5} \pm 0.9$	$1.0^{+1.0}_{-0.6} \pm 1.1$	$0.04 \pm 0.04 \pm 0.01$	$8.4^{+1.9}_{-1.6} \pm 1.5$	17		
≥ 1J, ≥ 0D	≥ 300	$0.47 \pm 0.35 \pm 0.20$	$0.12^{+0.11}_{-0.06} \pm 0.14$	< 0.01	$0.59_{-0.35}^{+0.37} \pm 0.24$	0		

Table A.3: Predictions and observations for the 28 search regions with $450 \leq H_{\rm T} < 575$ GeV, $N_{\rm j} < 7$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$\frac{450 \leq H_{\rm T} < 575 \; {\rm GeV}, N_{\rm j} < 7}{450 \leq H_{\rm T} < 575 \; {\rm GeV}, N_{\rm j} < 7}$									
$N_{\rm j}, N_{\rm b}$	$M_{\mathrm{T2}} \; [\mathrm{GeV} \;]$	Lost lepton	$Z o \nu \bar{\nu}$	Multijet	Total background	Data			
	200-300	$8860 \pm 110 \pm 640$	$20100 \pm 200 \pm 1300$	$69 \pm 13 \pm 16$	$29100 \pm 300 \pm 1900$	28956			
9 2; Ob	300-400	$4230 \pm 80 \pm 300$	$11770 \pm 140 \pm 790$	$10.6 \pm 0.8 \pm 2.4$	$16000 \pm 200 \pm 1000$	15876			
2-3j, 0b	400-500	$1510 \pm 60 \pm 110$	$5020 \pm 60 \pm 360$	$2.86 \pm 0.62 \pm 0.60$	$6540 \pm 80 \pm 440$	6527			
	≥ 500	$121^{+24}_{-21} \pm 9$	$580 \pm 7 \pm 63$	$0.07 \pm 0.03 \pm 0.02$	$701^{+25}_{-22} \pm 68$	740			
	200-300	$1326 \pm 43 \pm 88$	$2500 \pm 80 \pm 170$	$17.0 \pm 8.4 \pm 3.8$	$3840^{+100}_{-90} \pm 240$	3859			
2-3j, 1b	300-400	$737 \pm 35 \pm 49$	$1464^{+49}_{-48} \pm 99$	$1.62 \pm 0.20 \pm 0.43$	$2200 \pm 60 \pm 140$	2065			
2-3J, 1D	400-500	$259^{+25}_{-23} \pm 19$	$626^{+21}_{-20} \pm 45$	$0.49 \pm 0.10 \pm 0.12$	$885^{+32}_{-31} \pm 58$	907			
	≥ 500	$19.1^{+2.8}_{-2.7} \pm 7.8$	$72.4 \pm 2.4 \pm 7.9$	$0.04 \pm 0.02 \pm 0.02$	$92 \pm 4 \pm 11$	79			
	200-300	$201 \pm 15 \pm 13$	$322^{+31}_{-28} \pm 25$	$1.34 \pm 0.62 \pm 0.47$	$524_{-32}^{+35} \pm 35$	463			
9 9; 9h	300-400	$83.8^{+9.6}_{-9.1} \pm 9.1$	$188^{+18}_{-17} \pm 15$	$0.26 \pm 0.07 \pm 0.07$	$272_{-19}^{+21} \pm 20$	304			
2-3j, 2b	400-500	$31.8^{+4.1}_{-4.0} \pm 6.7$	$80.4^{+7.7}_{-7.1} \pm 6.6$	$0.02 \pm 0.01 \pm 0.01$	$112^{+9}_{-8} \pm 10$	120			
	≥ 500	$2.16^{+0.67}_{-0.66} \pm 0.88$	$9.3^{+0.9}_{-0.8} \pm 1.1$	< 0.01	$11.4 \pm 1.1 \pm 1.4$	15			
	200-300	$232^{+17}_{-16} \pm 15$	$57^{+17}_{-13} \pm 7$	$2.20 \pm 0.70 \pm 0.80$	$291^{+24}_{-21} \pm 19$	297			
$2-6j, \ge 3b$	300-400	$81^{+12}_{-11} \pm 6$	$33.6^{+9.9}_{-7.8} \pm 4.3$	$0.26 \pm 0.08 \pm 0.08$	$115_{-14}^{+16} \pm 8$	76			
2-0J, ≥ 3D	400-500	$10.7^{+2.1}_{-2.0} \pm 2.3$	$11.4^{+3.4}_{-2.7} \pm 1.5$	< 0.01	$22.1_{-3.4}^{+4.0} \pm 2.8$	24			
	≥ 500	$1.08 \pm 0.58 \pm 0.44$	$1.03^{+0.30}_{-0.24} \pm 0.17$	< 0.01	$2.11^{+0.65}_{-0.62} \pm 0.48$	0			
	200-300	$5660 \pm 90 \pm 370$	$8560 \pm 170 \pm 600$	$143 \pm 7 \pm 35$	$14360 \pm 190 \pm 890$	15047			
4-6j, 0b	300-400	$2250 \pm 60 \pm 150$	$4790^{+100}_{-90} \pm 350$	$24.3 \pm 2.6 \pm 6.2$	$7060 \pm 110 \pm 460$	6939			
4-0J, 0D	400-500	$428^{+32}_{-30} \pm 28$	$1220 \pm 20 \pm 110$	$1.42 \pm 0.21 \pm 0.52$	$1650 \pm 40 \pm 130$	1817			
	≥ 500	$14.8 \pm 2.2 \pm 6.0$	$86 \pm 2 \pm 35$	$0.04 \pm 0.02 \pm 0.01$	$101 \pm 3 \pm 36$	104			
	200-300	$2810 \pm 60 \pm 190$	$1880 \pm 80 \pm 130$	$63 \pm 15 \pm 19$	$4750 \pm 100 \pm 300$	4736			
4-6j, 1b	300-400	$937 \pm 36 \pm 63$	$1054^{+45}_{-43} \pm 78$	$5.4 \pm 0.4 \pm 1.4$	$2000 \pm 60 \pm 130$	2039			
4-0J, 1D	400-500	$138^{+17}_{-16} \pm 10$	$269 \pm 11 \pm 25$	$0.36 \pm 0.10 \pm 0.10$	$407_{-19}^{+20} \pm 31$	403			
	≥ 500	$7.5 \pm 2.2 \pm 3.0$	$19.1 \pm 0.8 \pm 7.9$	$0.01 \pm 0.01 \pm 0.00$	$26.5 \pm 2.3 \pm 8.5$	27			
	200-300	$1343^{+38}_{-37} \pm 89$	$414^{+39}_{-35} \pm 33$	$11.5 \pm 1.0 \pm 3.3$	$1770 \pm 50 \pm 110$	1767			
4-6j, 2b	300-400	$418^{+24}_{-23} \pm 29$	$232^{+22}_{-20} \pm 19$	$1.35 \pm 0.35 \pm 0.39$	$651_{-31}^{+32} \pm 43$	636			
4-0J, 2D	400-500	$45.6^{+3.9}_{-3.8} \pm 9.6$	$59.1^{+5.5}_{-5.1} \pm 5.9$	$0.03 \pm 0.02 \pm 0.01$	$105_{-6}^{+7} \pm 12$	120			
	≥ 500	$1.59 \pm 0.89 \pm 0.65$	$4.2 \pm 0.4 \pm 1.7$	< 0.01	$5.8 \pm 1.0 \pm 1.9$	7			

Table A.4: Predictions and observations for the 12 search regions with $450 \leq H_{\rm T} < 575$ GeV, $N_{\rm j} \geq 7$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$450 \le H_{\rm T} < 575 \; {\rm GeV}, N_{\rm j} \ge 7$									
$N_{\rm j},N_{ m b}$	$M_{\mathrm{T2}} \; [\mathrm{GeV} \;]$	Lost lepton	$Z o u ar{ u}$	Multijet	Total background	Data			
	200-300	$149^{+17}_{-16} \pm 13$	$169^{+31}_{-27} \pm 34$	$11.5 \pm 0.8 \pm 3.0$	$329^{+36}_{-31} \pm 38$	354			
\geq 7j, 0b	300-400	$38.9^{+5.8}_{-5.6} \pm 8.2$	$64^{+12}_{-10} \pm 17$	$1.24 \pm 0.42 \pm 0.32$	$104_{-12}^{+13} \pm 20$	110			
	≥ 400	$1.28 \pm 0.82 \pm 0.52$	$8.8^{+1.6}_{-1.4} \pm 3.8$	$0.03 \pm 0.02 \pm 0.01$	$10.1_{-1.6}^{+1.8} \pm 3.8$	10			
	200-300	$191^{+13}_{-12} \pm 15$	$67^{+19}_{-15} \pm 15$	$4.4 \pm 0.5 \pm 1.2$	$262_{-19}^{+23} \pm 23$	268			
\geq 7j, 1b	300-400	$37.8^{+3.4}_{-3.3} \pm 8.0$	$25.3^{+7.2}_{-5.7} \pm 7.3$	$0.30 \pm 0.07 \pm 0.08$	$63^{+8}_{-7} \pm 11$	65			
	≥ 400	$2.31 \pm 0.69 \pm 0.94$	$3.5^{+1.0}_{-0.8} \pm 1.5$	$0.01 \pm 0.01 \pm 0.00$	$5.8_{-1.0}^{+1.2} \pm 1.8$	3			
	200-300	$173^{+12}_{-11} \pm 13$	$19.9^{+5.7}_{-4.5} \pm 5.2$	$1.24 \pm 0.18 \pm 0.33$	$194_{-12}^{+13} \pm 15$	197			
\geq 7j, 2b	300-400	$26.8 \pm 2.6 \pm 5.7$	$7.6^{+2.2}_{-1.7} \pm 2.4$	$0.09 \pm 0.04 \pm 0.03$	$34.6^{+3.4}_{-3.1} \pm 6.3$	44			
	≥ 400	$1.40 \pm 0.44 \pm 0.57$	$1.02^{+0.29}_{-0.23} \pm 0.46$	< 0.01	$2.42^{+0.53}_{-0.49} \pm 0.73$	3			
\geq 7j, \geq 3b	200-300	$55.4^{+4.8}_{-4.7} \pm 7.3$	$2.3^{+0.7}_{-0.5} \pm 1.1$	$0.15 \pm 0.06 \pm 0.06$	$57.8_{-4.7}^{+4.8} \pm 7.4$	37			
	300-400	$6.4 \pm 1.2 \pm 1.5$	$0.86^{+0.25}_{-0.20} \pm 0.46$	$0.01 \pm 0.01 \pm 0.00$	$7.3 \pm 1.2 \pm 1.6$	9			
	≥ 400	$0.06 \pm 0.01 \pm 0.03$	$0.12 \pm 0.03 \pm 0.06$	< 0.01	$0.18^{+0.04}_{-0.03} \pm 0.07$	0			

Table A.5: Predictions and observations for the 20 search regions with $575 \leq H_{\rm T} < 1200$ GeV, $N_{\rm j} < 7$, $N_{\rm b} = 0$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$575 \le H_{\rm T} < 1200 \; {\rm GeV}, N_{\rm j} < 7, N_{\rm b} = 0$									
$N_{\rm j}, N_{\rm b}$	$M_{\mathrm{T2}} \; [\mathrm{GeV} \;]$	Lost lepton	$Z o u ar{ u}$	Multijet	Total background	Data			
,,	200-300	$5270 \pm 60 \pm 370$	$11550 \pm 160 \pm 790$	$93 \pm 20 \pm 30$	$16900 \pm 200 \pm 1100$	17256			
	300-400	$2560 \pm 50 \pm 180$	$7770^{+110}_{-100} \pm 540$	$11.9 \pm 1.3 \pm 4.4$	$10340^{+120}_{-110} \pm 680$	10145			
	400-500	$1101^{+32}_{-31} \pm 77$	$3900 \pm 50 \pm 280$	$1.33 \pm 0.24 \pm 0.41$	$5000 \pm 60 \pm 340$	5021			
	500-600	$502^{+24}_{-23} \pm 35$	$2250 \pm 30 \pm 170$	$0.37 \pm 0.07 \pm 0.12$	$2760 \pm 40 \pm 200$	2706			
2-3j, 0b	600-700	$180^{+16}_{-15} \pm 13$	$746 \pm 10 \pm 73$	$0.09 \pm 0.03 \pm 0.03$	$926_{-18}^{+19} \pm 80$	1066			
2-3j, 00	700-800	$52.1^{+7.3}_{-6.5} \pm 5.5$	$256 \pm 3 \pm 36$	$0.01 \pm 0.01 \pm 0.00$	$308^{+8}_{-7} \pm 38$	347			
	800-900	$17.7^{+2.6}_{-2.3} \pm 2.2$	$107 \pm 1 \pm 20$	< 0.01	$125 \pm 3 \pm 21$	111			
	900-1000	$6.0 \pm 0.9 \pm 1.3$	$39.4 \pm 0.5 \pm 8.5$	$0.01 \pm 0.01 \pm 0.00$	$45.4_{-1.0}^{+1.1} \pm 8.7$	39			
	1000-1100	$3.3^{+1.1}_{-1.0} \pm 1.0$	$13.3 \pm 0.2 \pm 3.9$	< 0.01	$16.6 \pm 1.1 \pm 4.1$	11			
	≥ 1100	$0.31^{+0.09}_{-0.08} \pm 0.12$	$2.5 \pm 0.0 \pm 1.1$	< 0.01	$2.8 \pm 0.1 \pm 1.1$	2			
	200-300	$6280 \pm 70 \pm 420$	$9470 \pm 160 \pm 650$	$360 \pm 20 \pm 110$	$16100 \pm 180 \pm 1000$	16292			
	300-400	$2700 \pm 50 \pm 180$	$5410 \pm 90 \pm 380$	$53 \pm 1 \pm 17$	$8160 \pm 100 \pm 520$	8330			
	400-500	$927^{+28}_{-27} \pm 62$	$2420 \pm 40 \pm 180$	$7.7 \pm 0.4 \pm 2.4$	$3350 \pm 50 \pm 230$	3576			
	500-600	$324^{+17}_{-16} \pm 22$	$1171^{+20}_{-19} \pm 100$	$1.46 \pm 0.12 \pm 0.46$	$1500 \pm 30 \pm 110$	1516			
4-6j, 0b	600-700	$95.4^{+9.4}_{-8.7} \pm 6.4$	$413 \pm 7 \pm 47$	$0.33 \pm 0.06 \pm 0.10$	$509^{+12}_{-11} \pm 50$	543			
4-0J, 0D	700-800	$35.6^{+5.0}_{-4.5} \pm 3.6$	$171 \pm 3 \pm 27$	$0.03 \pm 0.02 \pm 0.01$	$206^{+6}_{-5} \pm 27$	178			
	800-900	$13.4^{+2.0}_{-1.8} \pm 1.6$	$64 \pm 1 \pm 11$	$0.02 \pm 0.01 \pm 0.01$	$77 \pm 2 \pm 11$	62			
	900-1000	$4.39^{+0.78}_{-0.73} \pm 0.93$	$23.6 \pm 0.4 \pm 5.3$	< 0.01	$28.0_{-0.8}^{+0.9} \pm 5.4$	20			
	1000-1100	$0.64 \pm 0.16 \pm 0.20$	$6.3 \pm 0.1 \pm 2.0$	< 0.01	$6.9 \pm 0.2 \pm 2.0$	3			
	≥ 1100	$0.78 \pm 0.58 \pm 0.32$	$0.89^{+0.02}_{-0.01} \pm 0.40$	< 0.01	$1.68 \pm 0.58 \pm 0.52$	1			

Table A.6: Predictions and observations for the 27 search regions with $575 \leq H_{\rm T} < 1200$ GeV, $N_{\rm j} < 7$, $N_{\rm b} \geq 1$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$\frac{\text{Notice Carto samples}), \text{ and the second is systematic.}}{575 \leq H_{\rm T} < 1200 \ \text{GeV}, N_{\rm j} < 7, N_{\rm b} \geq 1}$									
$N_{\rm j},N_{ m b}$	M_{T2} [GeV]	Lost lepton	$Z o u \bar{ u}$	Multijet	Total background	Data			
	200-300	$826^{+27}_{-26} \pm 54$	$1480^{+60}_{-50} \pm 100$	$38 \pm 15 \pm 12$	$2340 \pm 60 \pm 140$	2499			
	300-400	$426^{+21}_{-20} \pm 28$	$994^{+38}_{-37} \pm 69$	$2.33 \pm 0.26 \pm 0.84$	$1422^{+43}_{-42} \pm 90$	1366			
2-3j, 1b	400-600	$282^{+18}_{-17} \pm 20$	$788^{+30}_{-29} \pm 55$	$0.27 \pm 0.06 \pm 0.10$	$1071^{+35}_{-34} \pm 69$	1057			
2-3J, 1D	600-800	$43.5^{+3.2}_{-3.1} \pm 6.5$	$129 \pm 5 \pm 12$	< 0.01	$172 \pm 6 \pm 15$	225			
	800-1000	$4.6 \pm 0.7 \pm 1.3$	$18.8 \pm 0.7 \pm 3.3$	< 0.01	$23.4 \pm 1.0 \pm 3.6$	22			
	≥ 1000	$0.34 \pm 0.08 \pm 0.14$	$2.05 \pm 0.08 \pm 0.90$	< 0.01	$2.38 \pm 0.11 \pm 0.91$	1			
	200-300	$105.1^{+9.2}_{-8.7} \pm 7.6$	$181^{+20}_{-18} \pm 15$	$3.8 \pm 0.5 \pm 1.3$	$290^{+22}_{-20} \pm 20$	316			
	300-400	$55.0^{+6.7}_{-6.3} \pm 7.5$	$122^{+14}_{-12} \pm 10$	$0.27 \pm 0.06 \pm 0.10$	$177_{-14}^{+15} \pm 14$	159			
2-3j, $2b$	400-600	$36.5^{+4.6}_{-4.3} \pm 5.5$	$97^{+11}_{-10} \pm 8$	$0.08 \pm 0.03 \pm 0.03$	$133_{-11}^{+12}\pm11$	107			
	600-800	$4.7 \pm 0.8 \pm 1.3$	$15.8^{+1.8}_{-1.6} \pm 1.6$	< 0.01	$20.6_{-1.8}^{+1.9} \pm 2.2$	21			
	≥ 800	$0.59 \pm 0.19 \pm 0.24$	$2.56^{+0.29}_{-0.26} \pm 0.45$	< 0.01	$3.14_{-0.32}^{+0.35} \pm 0.52$	1			
	200-300	$2900 \pm 50 \pm 200$	$2220^{+80}_{-70} \pm 150$	$154 \pm 16 \pm 50$	$5270 \pm 90 \pm 330$	5335			
	300-400	$1066 \pm 29 \pm 74$	$1267^{+44}_{-42} \pm 89$	$19.2 \pm 0.9 \pm 6.2$	$2350 \pm 50 \pm 150$	2547			
4-6j, 1b	400-600	$504^{+22}_{-21} \pm 35$	$840^{+29}_{-28} \pm 61$	$2.98 \pm 0.21 \pm 0.93$	$1347_{-35}^{+36} \pm 88$	1284			
4-0J, 10	600-800	$35.3^{+5.9}_{-5.2} \pm 2.6$	$138 \pm 5 \pm 14$	$0.09 \pm 0.03 \pm 0.03$	$174^{+8}_{-7} \pm 16$	151			
	800-1000	$3.89^{+0.83}_{-0.77} \pm 0.82$	$19.3^{+0.7}_{-0.6} \pm 4.3$	$0.01 \pm 0.01 \pm 0.00$	$23.2_{-1.0}^{+1.1} \pm 4.5$	18			
	≥ 1000	$0.18 \pm 0.07 \pm 0.07$	$1.57 \pm 0.05 \pm 0.65$	< 0.01	$1.75 \pm 0.09 \pm 0.65$	1			
	200-300	$1500 \pm 30 \pm 100$	$473^{+36}_{-33} \pm 36$	$42 \pm 2 \pm 13$	$2020 \pm 50 \pm 130$	1968			
	300-400	$508 \pm 20 \pm 35$	$270^{+20}_{-19} \pm 21$	$4.9 \pm 0.3 \pm 1.6$	$783^{+29}_{-28} \pm 50$	788			
4-6j, 2b	400-600	$167 \pm 12 \pm 12$	$179^{+14}_{-13} \pm 14$	$0.57 \pm 0.08 \pm 0.18$	$346^{+18}_{-17} \pm 23$	354			
	600-800	$11.9^{+1.3}_{-1.2} \pm 2.5$	$29.5^{+2.2}_{-2.1} \pm 3.5$	$0.02 \pm 0.01 \pm 0.01$	$41.4_{-2.4}^{+2.6} \pm 4.6$	37			
	≥ 800	$0.91 \pm 0.23 \pm 0.37$	$4.4 \pm 0.3 \pm 1.8$	< 0.01	$5.4 \pm 0.4 \pm 1.9$	7			
	200-300	$299^{+17}_{-16} \pm 22$	$73^{+15}_{-13} \pm 10$	$6.2 \pm 0.4 \pm 2.1$	$379^{+22}_{-21} \pm 28$	345			
	300-400	$100 \pm 10 \pm 7$	$43.5^{+8.8}_{-7.4} \pm 6.2$	$0.68 \pm 0.09 \pm 0.24$	$144^{+14}_{-12} \pm 11$	132			
2 -6 j , $\geq 3b$	400-600	$32.5^{+6.3}_{-5.6} \pm 2.5$	$31.2^{+6.3}_{-5.3} \pm 4.4$	$0.08 \pm 0.03 \pm 0.03$	$63.8^{+8.9}_{-7.7} \pm 5.8$	48			
	600-800	$3.16^{+0.95}_{-0.90} \pm 0.68$	$5.4^{+1.1}_{-0.9} \pm 0.8$	< 0.01	$8.6^{+1.4}_{-1.3} \pm 1.1$	4			
	≥ 800	$0.10 \pm 0.03 \pm 0.04$	$0.71^{+0.14}_{-0.12} \pm 0.15$	< 0.01	$0.81_{-0.12}^{+0.15} \pm 0.16$	0			

Table A.7: Predictions and observations for the 34 search regions with $575 \leq H_{\rm T} < 1200$ GeV, $N_{\rm j} \geq 7$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$575 \le H_{ m T} < 1200 \; { m GeV}, N_{ m j} \ge 7$								
$N_{ m j},N_{ m b}$	$M_{\mathrm{T2}} \; [\mathrm{GeV} \;]$	Lost lepton	$Z o u \bar{ u}$	Multijet	Total background	Data		
	200-300	$589^{+27}_{-26} \pm 39$	$573^{+47}_{-43} \pm 64$	$90 \pm 10 \pm 28$	$1252_{-52}^{+55} \pm 93$	1340		
	300-400	$265^{+19}_{-18} \pm 18$	$279^{+23}_{-21} \pm 42$	$14.9 \pm 0.5 \pm 4.7$	$559^{+29}_{-28} \pm 51$	581		
7-9j, 0b	400-600	$92^{+10}_{-9} \pm 6$	$159^{+13}_{-12} \pm 28$	$2.72 \pm 0.18 \pm 0.85$	$253_{-15}^{+16} \pm 30$	243		
	600-800	$8.6 \pm 1.2 \pm 1.8$	$22.8^{+1.9}_{-1.7} \pm 6.4$	$0.10 \pm 0.03 \pm 0.03$	$\mathbf{31.6^{+2.2}_{-2.1}\pm 6.8}$	32		
	≥ 800	$0.51 \pm 0.16 \pm 0.21$	$3.0 \pm 0.2 \pm 1.3$	< 0.01	$3.5 \pm 0.3 \pm 1.3$	2		
	200-300	$733 \pm 21 \pm 52$	$278^{+28}_{-25} \pm 33$	$48 \pm 3 \pm 16$	$1059^{+35}_{-33} \pm 73$	1052		
	300-400	$252^{+13}_{-12} \pm 18$	$135^{+14}_{-12} \pm 21$	$7.7 \pm 0.4 \pm 2.5$	$395^{+19}_{-17} \pm 32$	387		
7-9j, 1b	400-600	$71.3^{+6.9}_{-6.5} \pm 5.2$	$77^{+8}_{-7} \pm 14$	$1.36 \pm 0.13 \pm 0.45$	$150 \pm 10 \pm 16$	131		
	600-800	$4.26^{+0.73}_{-0.71} \pm 0.90$	$11.0^{+1.1}_{-1.0} \pm 3.1$	$0.03 \pm 0.02 \pm 0.01$	$15.3^{+1.3}_{-1.2} \pm 3.3$	20		
	≥ 800	$0.11 \pm 0.04 \pm 0.05$	$1.48^{+0.15}_{-0.13} \pm 0.63$	< 0.01	$1.60_{-0.14}^{+0.15} \pm 0.63$	1		
	200-300	$675 \pm 20 \pm 51$	$82^{+8}_{-7} \pm 10$	$20.9 \pm 3.0 \pm 6.7$	$777^{+22}_{-21} \pm 56$	750		
	300-400	$211 \pm 11 \pm 16$	$39.8^{+4.0}_{-3.6} \pm 6.4$	$2.42 \pm 0.19 \pm 0.79$	$253_{-11}^{+12} \pm 19$	259		
7-9j, 2b	400-600	$55.4^{+5.5}_{-5.2} \pm 4.2$	$22.7^{+2.3}_{-2.1} \pm 4.2$	$0.50 \pm 0.07 \pm 0.16$	$78.6_{-5.6}^{+5.9} \pm 6.6$	72		
	600-800	$3.00^{+0.63}_{-0.62} \pm 0.64$	$3.25^{+0.32}_{-0.30} \pm 0.93$	$0.01 \pm 0.01 \pm 0.01$	$6.3 \pm 0.7 \pm 1.2$	7		
	≥ 800	$0.27 \pm 0.20 \pm 0.11$	$0.44 \pm 0.04 \pm 0.19$	< 0.01	$0.71 \pm 0.20 \pm 0.22$	1		
	200-300	$185 \pm 8 \pm 18$	$11.3^{+1.1}_{-1.0} \pm 1.9$	$3.6 \pm 0.2 \pm 1.2$	$200 \pm 8 \pm 18$	184		
7-9j, 3b	300-400	$52.0 \pm 3.8 \pm 5.0$	$5.5 \pm 0.5 \pm 1.2$	$0.72 \pm 0.12 \pm 0.26$	$58.3_{-3.8}^{+3.9} \pm 5.3$	59		
1-5], 55	400-600	$13.6 \pm 1.8 \pm 1.3$	$3.13^{+0.31}_{-0.29} \pm 0.82$	$0.05 \pm 0.02 \pm 0.02$	$16.8 \pm 1.8 \pm 1.6$	14		
	≥ 600	$0.49 \pm 0.21 \pm 0.20$	$0.51 \pm 0.05 \pm 0.21$	< 0.01	$1.00 \pm 0.21 \pm 0.29$	2		
	200-300	$38.8 \pm 3.1 \pm 7.4$	$2.01^{+0.20}_{-0.18} \pm 0.71$	$0.55 \pm 0.08 \pm 0.19$	$41.3_{-3.1}^{+3.2} \pm 7.4$	38		
$7-9j, \ge 4b$	300-400	$14.5^{+2.0}_{-1.9} \pm 2.8$	$0.98^{+0.10}_{-0.09} \pm 0.43$	$0.06 \pm 0.02 \pm 0.02$	$15.6^{+2.0}_{-1.9} \pm 2.8$	16		
	≥ 400	$3.75^{+0.98}_{-0.97} \pm 0.70$	$0.65 \pm 0.06 \pm 0.35$	< 0.01	$4.40^{+0.98}_{-0.97} \pm 0.79$	3		
	200-300	$11.5 \pm 1.6 \pm 1.0$	$4.4^{+0.4}_{-0.3} \pm 2.3$	$3.1 \pm 0.8 \pm 1.1$	$19.0 \pm 1.8 \pm 2.8$	27		
$\geq 10j$, 0b	300-500	$5.6 \pm 1.0 \pm 0.5$	$3.0 \pm 0.2 \pm 1.7$	$0.55 \pm 0.08 \pm 0.20$	$9.1 \pm 1.0 \pm 1.8$	4		
	≥ 500	$0.30 \pm 0.11 \pm 0.12$	$0.44^{+0.04}_{-0.03} \pm 0.24$	$0.02 \pm 0.01 \pm 0.01$	$0.76 \pm 0.11 \pm 0.27$	3		
	200-300	$21.0 \pm 1.8 \pm 1.6$	$3.5 \pm 0.3 \pm 1.9$	$1.92 \pm 0.18 \pm 0.72$	$26.4 \pm 1.8 \pm 2.7$	32		
≥ 10j, 1b	300-500	$7.7 \pm 1.0 \pm 0.6$	$2.4 \pm 0.2 \pm 1.4$	$0.45 \pm 0.07 \pm 0.17$	$10.5 \pm 1.1 \pm 1.6$	15		
	≥ 500	$0.83^{+0.42}_{-0.41} \pm 0.07$	$0.36^{+0.04}_{-0.03} \pm 0.20$	$0.02 \pm 0.01 \pm 0.01$	$1.20^{+0.42}_{-0.41} \pm 0.22$	0		
≥ 10j, 2b	200-300	$21.8 \pm 1.8 \pm 1.6$	$1.05 \pm 0.10 \pm 0.66$	$0.64 \pm 0.08 \pm 0.24$	$23.5 \pm 1.8 \pm 1.8$	26		
	300-500	$8.8 \pm 1.2 \pm 0.6$	$0.69^{+0.07}_{-0.06} \pm 0.45$	$0.16 \pm 0.04 \pm 0.06$	$9.6_{-1.2}^{+1.3} \pm 0.8$	9		
	≥ 500	$0.22 \pm 0.13 \pm 0.02$	$0.10 \pm 0.01 \pm 0.06$	< 0.01	$0.32 \pm 0.13 \pm 0.07$	0		
≥ 10j, 3b	200-300	$9.9 \pm 1.3 \pm 1.2$	$0.25 \pm 0.02 \pm 0.20$	$0.29 \pm 0.05 \pm 0.12$	$10.4 \pm 1.3 \pm 1.2$	14		
	≥ 300	$1.59 \pm 0.50 \pm 0.18$	$0.19 \pm 0.02 \pm 0.16$	$0.02 \pm 0.01 \pm 0.01$	$1.80 \pm 0.50 \pm 0.25$	2		
$\geq 10j, \geq 4b$	≥ 200	$3.9 \pm 1.2 \pm 0.8$	$0.00^{+0.17}_{-0.00} \pm 0.00$	$0.05 \pm 0.02 \pm 0.02$	$4.0 \pm 1.2 \pm 0.8$	6		

Table A.8: Predictions and observations for the 12 search regions with $1200 \leq H_{\rm T} < 1500$ GeV, $N_{\rm j} < 7$, $N_{\rm b} = 0$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$1200 \le H_{\rm T} < 1500 \text{ GeV}, N_{\rm j} < 7, N_{\rm b} = 0$									
$N_{\rm j},N_{\rm b}$	$M_{\mathrm{T2}} \; [\mathrm{GeV} \;]$	Lost lepton	$Z o u ar{ u}$	Multijet	Total background	Data			
	200-400	$315 \pm 15 \pm 21$	$656^{+51}_{-47} \pm 73$	$39 \pm 16 \pm 12$	$1009^{+55}_{-52} \pm 85$	1128			
	400-600	$43.0^{+5.2}_{-4.7} \pm 4.9$	$185^{+14}_{-13} \pm 30$	$0.03 \pm 0.02 \pm 0.01$	$228_{-14}^{+15} \pm 31$	207			
2-3j, 0b	600-800	$14.1^{+2.1}_{-2.0} \pm 1.7$	$64 \pm 5 \pm 17$	< 0.01	$78 \pm 5 \pm 17$	83			
2-3J, 0D	800-1000	$6.4^{+1.1}_{-1.0} \pm 1.3$	$32.5^{+2.5}_{-2.3} \pm 7.6$	< 0.01	$38.9_{-2.5}^{+2.7} \pm 7.8$	36			
	1000-1200	$3.23^{+0.61}_{-0.59} \pm 0.99$	$17.5 \pm 1.3 \pm 5.2$	< 0.01	$20.7_{-1.4}^{+1.5} \pm 5.3$	19			
	≥ 1200	$0.87^{+0.14}_{-0.13} \pm 0.35$	$6.0^{+0.5}_{-0.4} \pm 2.6$	< 0.01	$6.9 \pm 0.5 \pm 2.6$	4			
	200-400	$606^{+21}_{-20} \pm 41$	$909^{+63}_{-59} \pm 90$	$208 \pm 12 \pm 64$	$1720^{+70}_{-60} \pm 130$	1768			
	400-600	$84.3^{+7.4}_{-6.9} \pm 5.8$	$234^{+16}_{-15} \pm 34$	$0.88 \pm 0.09 \pm 0.27$	$319^{+18}_{-17} \pm 36$	301			
4-6j, 0b	600-800	$21.1^{+3.2}_{-2.9} \pm 2.3$	$75 \pm 5 \pm 17$	$0.06 \pm 0.02 \pm 0.02$	$96 \pm 6 \pm 17$	99			
4-0J, 0D	800-1000	$7.6^{+1.2}_{-1.1} \pm 1.1$	$35.2^{+2.4}_{-2.3} \pm 8.0$	$0.01 \pm 0.01 \pm 0.00$	$42.7^{+2.7}_{-2.5}\pm 8.2$	41			
	1000-1200	$2.23^{+0.36}_{-0.33} \pm 0.61$	$14.1^{+1.0}_{-0.9} \pm 4.2$	< 0.01	$16.3 \pm 1.0 \pm 4.2$	15			
	≥ 1200	$0.47^{+0.10}_{-0.09} \pm 0.19$	$3.0 \pm 0.2 \pm 1.3$	< 0.01	$3.5 \pm 0.2 \pm 1.3$	5			

Table A.9: Predictions and observations for the 25 search regions with $1200 \leq H_{\rm T} < 1500$ GeV, $N_{\rm j} < 7$, $N_{\rm b} \geq 1$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$1200 \le H_{\rm T} < 1500 \text{ GeV}, N_{\rm j} < 7, N_{\rm b} \ge 1$							
$N_{\rm j}, N_{\rm b}$	$M_{\mathrm{T2}} \; [\mathrm{GeV} \;]$	Lost lepton	$Z o u \bar{ u}$	Multijet	Total background	Data	
2-3j, 1b	200-400	$61.5^{+7.2}_{-6.5} \pm 4.2$	$78^{+19}_{-16} \pm 10$	$9.7 \pm 0.7 \pm 3.0$	$149^{+21}_{-17}\pm12$	157	
	400-600	$10.1 \pm 1.4 \pm 1.0$	$21.9^{+5.4}_{-4.4} \pm 3.8$	$0.03 \pm 0.02 \pm 0.01$	$32.0_{-4.6}^{+5.6} \pm 4.1$	27	
	600-800	$2.36^{+0.36}_{-0.35} \pm 0.41$	$7.5^{+1.9}_{-1.5} \pm 2.0$	< 0.01	$9.8^{+1.9}_{-1.6} \pm 2.1$	9	
	800-1000	$0.78^{+0.16}_{-0.15} \pm 0.19$	$3.84^{+0.95}_{-0.78} \pm 0.93$	< 0.01	$4.62^{+0.97}_{-0.79} \pm 0.96$	6	
	1000-1200	$0.43 \pm 0.08 \pm 0.14$	$2.13^{+0.53}_{-0.43} \pm 0.64$	< 0.01	$2.56_{-0.44}^{+0.54} \pm 0.66$	2	
	≥ 1200	$0.14^{+0.05}_{-0.04} \pm 0.06$	$0.71^{+0.18}_{-0.14} \pm 0.31$	< 0.01	$0.86^{+0.18}_{-0.15} \pm 0.31$	0	
2-3j, 2b	200-400	$4.8^{+2.0}_{-1.6} \pm 0.3$	$11^{+11}_{-6} \pm 2$	$1.38 \pm 0.13 \pm 0.43$	$18_{-6}^{+11} \pm 2$	18	
	400-600	$0.61^{+0.30}_{-0.25} \pm 0.07$	$3.2^{+3.1}_{-1.7} \pm 0.7$	< 0.01	$3.8_{-1.8}^{+3.1} \pm 0.7$	5	
	600-800	$0.21^{+0.11}_{-0.09} \pm 0.04$	$1.1^{+1.1}_{-0.6} \pm 0.4$	< 0.01	$1.3_{-0.6}^{+1.1} \pm 0.4$	2	
	800-1000	$0.07^{+0.04}_{-0.03} \pm 0.02$	$0.56^{+0.55}_{-0.31} \pm 0.18$	< 0.01	$0.63^{+0.55}_{-0.31} \pm 0.18$	1	
	≥ 1000	$0.03 \pm 0.02 \pm 0.01$	$0.42^{+0.41}_{-0.23} \pm 0.18$	< 0.01	$0.46^{+0.41}_{-0.23} \pm 0.18$	1	
$2-6j, \ge 3b$	200-400	$22.6^{+4.7}_{-4.2} \pm 1.8$	$0.0^{+6.6}_{-0.0} \pm 0.0$	$4.4 \pm 0.2 \pm 1.5$	$27.0_{-4.2}^{+8.1} \pm 2.4$	25	
	400-600	$1.58^{+0.51}_{-0.48} \pm 0.34$	$0.0^{+1.6}_{-0.0} \pm 0.0$	$0.02 \pm 0.01 \pm 0.01$	$1.6_{-0.5}^{+1.7} \pm 0.3$	3	
	≥ 600	$0.47^{+0.27}_{-0.26} \pm 0.19$	$0.00^{+0.94}_{-0.00} \pm 0.00$	< 0.01	$0.47^{+0.98}_{-0.26} \pm 0.19$	4	
	200-400	$278^{+15}_{-14} \pm 20$	$254^{+33}_{-30} \pm 28$	$97 \pm 2 \pm 30$	$629_{-33}^{+36} \pm 50$	579	
	400-600	$30.3^{+4.0}_{-3.7} \pm 2.7$	$65^{+9}_{-8} \pm 10$	$0.33 \pm 0.06 \pm 0.10$	$96_{-8}^{+9} \pm 11$	7 9	
4-6j, 1b	600-800	$8.2^{+1.4}_{-1.3} \pm 1.0$	$21.0^{+2.8}_{-2.5} \pm 4.8$	$0.02 \pm 0.01 \pm 0.01$	$29.2_{-2.8}^{+3.1} \pm 5.0$	16	
	800-1000	$2.36^{+0.56}_{-0.54} \pm 0.50$	$9.8^{+1.3}_{-1.1} \pm 2.3$	$0.01 \pm 0.01 \pm 0.00$	$12.2_{-1.3}^{+1.4} \pm 2.4$	9	
	1000-1200	$1.00 \pm 0.24 \pm 0.31$	$4.0 \pm 0.5 \pm 1.2$	< 0.01	$5.0_{-0.5}^{+0.6} \pm 1.2$	6	
	≥ 1200	$0.07 \pm 0.02 \pm 0.03$	$0.86^{+0.11}_{-0.10} \pm 0.37$	< 0.01	$0.92^{+0.11}_{-0.10} \pm 0.37$	1	
4-6j, 2b	200-400	$120.4^{+9.1}_{-8.7} \pm 9.8$	$45^{+18}_{-13} \pm 5$	$26.0 \pm 0.6 \pm 8.1$	$191^{+20}_{-16} \pm 15$	194	
	400-600	$11.9 \pm 1.4 \pm 1.5$	$11.5^{+4.6}_{-3.4} \pm 1.8$	$0.11 \pm 0.03 \pm 0.04$	$23.4_{-3.7}^{+4.8} \pm 2.6$	27	
	600-800	$3.49 \pm 0.83 \pm 0.75$	$3.7^{+1.5}_{-1.1} \pm 1.0$	< 0.01	$7.2_{-1.4}^{+1.7} \pm 1.3$	7	
	800-1000	$0.66 \pm 0.16 \pm 0.20$	$1.73^{+0.69}_{-0.51} \pm 0.48$	< 0.01	$2.38^{+0.71}_{-0.54} \pm 0.53$	3	
	≥ 1000	$0.15 \pm 0.04 \pm 0.06$	$0.84^{+0.34}_{-0.25} \pm 0.36$	< 0.01	$1.00^{+0.34}_{-0.25} \pm 0.36$	0	

Table A.10: Predictions and observations for the 31 search regions with $1200 \leq H_{\rm T} < 1500$ GeV, $N_{\rm j} \geq 7$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$\frac{1200 \le H_{\rm T} < 1500 \text{ GeV}, N_{\rm j} \ge 7}{N_{\rm j}, N_{\rm b} M_{\rm T2} \text{ [GeV]} \text{Lost lepton} Z \to \nu \bar{\nu} \text{Multijet} \text{Total background}}$	Dit
	Data
200-400 $120.4^{+9.8}_{-9.2} \pm 9.0$ $108^{+26}_{-21} \pm 21$ $91 \pm 3 \pm 29$ $319^{+28}_{-24} \pm 38$	379
400-600 $16.5^{+1.9}_{-1.8} \pm 2.0$ $25.8^{+6.3}_{-5.1} \pm 5.7$ $0.80 \pm 0.09 \pm 0.25$ $43.1^{+6.5}_{-5.4} \pm 6.3$	45
7-9j, 0b 600-800 $2.94 \pm 0.42 \pm 0.63$ $8.6^{+2.1}_{-1.7} \pm 2.1$ $0.06 \pm 0.02 \pm 0.02$ $11.6^{+2.1}_{-1.8} \pm 2.2$	17
800-1000 $0.77^{+0.14}_{-0.13} \pm 0.24$ $2.90^{+0.70}_{-0.58} \pm 1.00$ $0.01 \pm 0.01 \pm 0.00$ $3.7^{+0.7}_{-0.6} \pm 1.0$	3
≥ 1000 $0.11 \pm 0.03 \pm 0.05$ $1.09^{+0.26}_{-0.22} \pm 0.50$ < 0.01 $1.21^{+0.27}_{-0.22} \pm 0.50$	0
200-400 $133.8^{+8.0}_{-7.7} \pm 9.8$ $36^{+13}_{-10} \pm 8$ $58 \pm 2 \pm 18$ $228^{+15}_{-13} \pm 23$	247
400-600 $16.6^{+2.9}_{-2.7} \pm 1.3$ $8.7^{+3.2}_{-2.4} \pm 2.1$ $0.46 \pm 0.07 \pm 0.14$ $25.8^{+4.3}_{-3.6} \pm 2.7$	23
7-9j, 1b 600-800 $1.83^{+0.43}_{-0.41} \pm 0.28$ $2.9^{+1.1}_{-0.8} \pm 0.8$ $0.03 \pm 0.02 \pm 0.01$ $4.8^{+1.1}_{-0.9} \pm 0.8$	7
800-1000 $0.65_{-0.23}^{+0.24} \pm 0.18$ $0.95_{-0.26}^{+0.34} \pm 0.34$ $0.02 \pm 0.01 \pm 0.01$ $1.62_{-0.35}^{+0.42} \pm 0.39$	2
≥ 1000 $0.22 \pm 0.19 \pm 0.09$ $0.36^{+0.13}_{-0.10} \pm 0.17$ < 0.01 $0.58^{+0.23}_{-0.21} \pm 0.19$	0
200-400 $124.0^{+7.6}_{-7.4} \pm 9.1$ $9.9^{+3.6}_{-2.7} \pm 2.5$ $21.4 \pm 0.5 \pm 6.9$ 155 $\pm 8 \pm 12$	162
7.03 2b 400-600 $15.0^{+2.8}_{-2.6} \pm 1.3$ $2.41^{+0.87}_{-0.66} \pm 0.67$ $0.12 \pm 0.03 \pm 0.04$ $17.5^{+3.0}_{-2.7} \pm 1.5$	18
7-9j, 2b 600-800 $2.47^{+0.78}_{-0.76} \pm 0.53$ $0.81^{+0.29}_{-0.22} \pm 0.26$ $0.01 \pm 0.01 \pm 0.00$ $3.29^{+0.83}_{-0.79} \pm 0.60$	1
≥ 800 $0.24 \pm 0.11 \pm 0.10$ $0.36^{+0.13}_{-0.10} \pm 0.16$ < 0.01 $0.60^{+0.17}_{-0.15} \pm 0.19$	1
200-400 $30.0 \pm 2.6 \pm 3.2$ $1.89^{+0.68}_{-0.52} \pm 0.64$ $5.0 \pm 0.3 \pm 1.8$ $36.9^{+2.7}_{-2.6} \pm 3.8$	46
7-9j, 3b 400-600 $4.1^{+1.1}_{-1.0} \pm 0.6$ $0.45^{+0.16}_{-0.12} \pm 0.18$ $0.02 \pm 0.01 \pm 0.01$ $4.6^{+1.1}_{-1.0} \pm 0.6$	2
≥ 600 $0.92^{+0.50}_{-0.49} \pm 0.38$ $0.23^{+0.08}_{-0.06} \pm 0.11$ < 0.01 $1.15 \pm 0.50 \pm 0.40$	1
7.0: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9
7-9j, \geq 4b \geq 400 $0.44^{+0.24}_{-0.23} \pm 0.08$ $0.10^{+0.04}_{-0.03} \pm 0.09$ < 0.01 $0.53 \pm 0.24 \pm 0.12$	0
200-400 $7.7^{+1.2}_{-1.1} \pm 0.8$ $2.7^{+0.6}_{-0.5} \pm 2.8$ $8.3 \pm 0.9 \pm 3.0$ $18.7^{+1.6}_{-1.5} \pm 4.1$	17
≥ 10 j, 0b $400-600$ $1.00 \pm 0.32 \pm 0.22$ $0.56^{+0.13}_{-0.11} \pm 0.62$ $0.11 \pm 0.03 \pm 0.04$ $1.66^{+0.35}_{-0.34} \pm 0.66$	1
≥ 600 $0.10^{+0.35}_{-0.04} \pm 0.04$ $0.14^{+0.08}_{-0.03} \pm 0.14$ $0.01 \pm 0.01 \pm 0.00$ $0.24^{+0.36}_{-0.05} \pm 0.15$	0
200-400 $15.2 \pm 1.8 \pm 1.4$ $1.1^{+0.4}_{-0.3} \pm 1.2$ $5.3 \pm 0.2 \pm 1.9$ 21.6 ^{+1.9} _{-1.8} ± 2.7	22
≥ 10 j, 1b 400-600 $1.27^{+0.38}_{-0.36} \pm 0.11$ $0.22^{+0.08}_{-0.06} \pm 0.26$ $0.05 \pm 0.02 \pm 0.02$ $1.55^{+0.39}_{-0.37} \pm 0.29$	6
≥ 600 $0.03 \pm 0.02 \pm 0.01$ $0.05^{+0.10}_{-0.01} \pm 0.05$ < 0.01 $0.07^{+0.11}_{-0.02} \pm 0.05$	0
200-400 $16.9 \pm 1.8 \pm 1.5$ $0.44^{+0.16}_{-0.12} \pm 0.50$ $2.7 \pm 0.2 \pm 1.0$ 20.1 $\pm 1.8 \pm 1.9$	16
≥ 10 j, 2b 400-600 $2.62^{+0.71}_{-0.68} \pm 0.30$ $0.09 \pm 0.03 \pm 0.11$ $0.01 \pm 0.01 \pm 0.00$ $2.73^{+0.71}_{-0.68} \pm 0.32$	2
≥ 600 $0.23 \pm 0.15 \pm 0.10$ $0.02^{+0.08}_{-0.01} \pm 0.02$ < 0.01 $0.25^{+0.17}_{-0.15} \pm 0.10$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6
$\geq 10 \text{j}, 3 \text{b}$ ≥ 400 $0.51 \pm 0.22 \pm 0.06$ $0.03^{+0.11}_{-0.01} \pm 0.04$ < 0.01 $0.54^{+0.25}_{-0.22} \pm 0.08$	0
$\geq 10 \text{j}, \geq 4 \text{b}$ ≥ 200 $2.59 \pm 0.82 \pm 0.62$ $0.10^{+0.13}_{-0.03} \pm 0.13$ $0.31 \pm 0.06 \pm 0.13$ $3.00^{+0.83}_{-0.82} \pm 0.65$	7

Table A.11: Predictions and observations for the 30 search regions with $H_{\rm T} \geq 1500$ GeV, $N_{\rm j} < 7$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$H_{ m T} \geq 1500 \ { m GeV}, N_{ m j} < 7$							
$N_{\rm j}, N_{\rm b}$	$M_{\mathrm{T2}} \; [\mathrm{GeV} \;]$	Lost lepton	$Z o u \bar{ u}$	Multijet	Total background	Data	
2-3j, 0b	400-600	$27.2^{+4.4}_{-3.9} \pm 2.5$	$150^{+14}_{-13} \pm 19$	$0.16 \pm 0.04 \pm 0.05$	$177_{-13}^{+15} \pm 20$	125	
	600-800	$7.8^{+1.4}_{-1.2} \pm 0.8$	$38.7^{+3.6}_{-3.3} \pm 8.4$	< 0.01	$46.5_{-3.6}^{+3.9} \pm 8.6$	37	
	800-1000	$2.29^{+0.39}_{-0.34} \pm 0.35$	$17.2^{+1.6}_{-1.5} \pm 3.4$	< 0.01	$19.5_{-1.5}^{+1.7} \pm 3.4$	19	
	1000-1200	$1.20^{+0.21}_{-0.19} \pm 0.26$	$9.0 \pm 0.8 \pm 1.8$	< 0.01	$10.2^{+0.9}_{-0.8} \pm 1.9$	14	
	1200-1400	$0.80^{+0.16}_{-0.14} \pm 0.22$	$4.9^{+0.5}_{-0.4} \pm 1.3$	< 0.01	$5.7_{-0.4}^{+0.5} \pm 1.4$	4	
	1400-1800	$0.43^{+0.09}_{-0.08} \pm 0.15$	$2.80^{+0.26}_{-0.24} \pm 0.98$	< 0.01	$3.23^{+0.28}_{-0.26} \pm 0.99$	3	
	≥ 1800	$0.05 \pm 0.02 \pm 0.02$	$0.41^{+0.04}_{-0.03} \pm 0.19$	< 0.01	$0.46 \pm 0.04 \pm 0.19$	0	
	400-600	$5.2^{+1.1}_{-1.0} \pm 0.6$	$13.4^{+4.9}_{-3.7} \pm 1.9$	$0.09 \pm 0.03 \pm 0.03$	$18.7^{+5.0}_{-3.8} \pm 2.1$	23	
	600-800	$1.52^{+0.43}_{-0.41} \pm 0.27$	$3.5^{+1.3}_{-1.0} \pm 1.0$	< 0.01	$5.0_{-1.0}^{+1.3} \pm 1.0$	3	
2-3j, $1b$	800-1000	$0.38 \pm 0.09 \pm 0.10$	$1.53^{+0.55}_{-0.42} \pm 0.35$	< 0.01	$1.90^{+0.56}_{-0.43} \pm 0.37$	3	
	1000-1200	$0.10 \pm 0.03 \pm 0.03$	$0.81^{+0.29}_{-0.22} \pm 0.24$	< 0.01	$0.91^{+0.29}_{-0.22} \pm 0.24$	4	
	≥ 1200	$0.19 \pm 0.06 \pm 0.08$	$0.73^{+0.26}_{-0.20} \pm 0.31$	< 0.01	$0.92^{+0.27}_{-0.21} \pm 0.32$	0	
2-3j, 2b	≥ 400	$0.63^{+0.49}_{-0.36} \pm 0.26$	$0.0^{+3.0}_{-0.0} \pm 0.0$	< 0.01	$0.6^{+3.0}_{-0.4} \pm 0.3$	2	
2-6i > 3h	400-600	$1.72^{+0.73}_{-0.68} \pm 0.42$	$1.1^{+2.4}_{-0.9} \pm 0.3$	$0.03 \pm 0.02 \pm 0.01$	$2.8_{-1.1}^{+2.5} \pm 0.6$	1	
$2-6j, \ge 3b$	≥ 600	$0.37^{+0.19}_{-0.18} \pm 0.16$	$0.5^{+1.2}_{-0.4} \pm 0.2$	< 0.01	$0.9^{+1.2}_{-0.5} \pm 0.2$	0	
	400-600	$46.4^{+5.6}_{-5.1} \pm 3.6$	$176^{+15}_{-14} \pm 23$	$1.62 \pm 0.13 \pm 0.46$	$224_{-15}^{+16} \pm 24$	207	
	600-800	$10.6^{+2.3}_{-1.9} \pm 1.2$	$45.5^{+4.0}_{-3.7} \pm 9.9$	$0.07 \pm 0.03 \pm 0.02$	$56_{-4}^{+5} \pm 10$	62	
	800-1000	$4.5^{+1.1}_{-1.0} \pm 0.5$	$20.3^{+1.8}_{-1.6} \pm 3.9$	< 0.01	$24.8_{-1.9}^{+2.1} \pm 4.1$	31	
4-6j, 0b	1000-1200	$1.35^{+0.30}_{-0.26} \pm 0.24$	$10.6 \pm 0.9 \pm 2.1$	< 0.01	$11.9_{-0.9}^{+1.0} \pm 2.2$	12	
	1200-1400	$0.89^{+0.27}_{-0.25} \pm 0.23$	$5.7 \pm 0.5 \pm 1.5$	< 0.01	$6.6_{-0.5}^{+0.6} \pm 1.6$	9	
	1400-1600	$0.20 \pm 0.05 \pm 0.07$	$2.64^{+0.23}_{-0.21} \pm 0.92$	< 0.01	$2.84^{+0.24}_{-0.22} \pm 0.92$	3	
	≥ 1600	$0.09 \pm 0.03 \pm 0.04$	$1.18 \pm 0.10 \pm 0.51$	< 0.01	$1.27^{+0.11}_{-0.10} \pm 0.51$	2	
4-6j, 1b	400-600	$21.0^{+3.7}_{-3.3} \pm 2.0$	$32.6^{+7.0}_{-5.8} \pm 5.5$	$0.81 \pm 0.09 \pm 0.23$	$54.5_{-6.7}^{+7.9} \pm 6.3$	72	
	600-800	$4.79^{+0.91}_{-0.83} \pm 0.62$	$8.4^{+1.8}_{-1.5} \pm 2.3$	$0.02 \pm 0.01 \pm 0.01$	$\mathbf{13.2^{+2.0}_{-1.7}} \pm 2.5$	20	
	800-1000	$1.27^{+0.26}_{-0.24} \pm 0.27$	$3.71^{+0.79}_{-0.66} \pm 0.92$	$0.03 \pm 0.02 \pm 0.01$	$5.01^{+0.84}_{-0.71} \pm 0.97$	8	
	1000-1400	$0.89^{+0.21}_{-0.20} \pm 0.28$	$3.00^{+0.64}_{-0.54} \pm 0.93$	< 0.01	$3.89^{+0.68}_{-0.57} \pm 0.98$	6	
	≥ 1400	$0.40^{+0.34}_{-0.33} \pm 0.16$	$0.72^{+0.15}_{-0.13} \pm 0.31$	< 0.01	$1.12^{+0.37}_{-0.36} \pm 0.36$	3	
4-6j, 2b	400-600	$7.2^{+1.2}_{-1.1} \pm 1.1$	$4.3^{+2.9}_{-1.9} \pm 1.4$	$0.17 \pm 0.04 \pm 0.05$	$11.7_{-2.2}^{+3.2} \pm 1.9$	11	
	600-800	$1.66^{+0.41}_{-0.40} \pm 0.46$	$1.12^{+0.76}_{-0.48} \pm 0.55$	$0.01 \pm 0.01 \pm 0.00$	$2.79^{+0.86}_{-0.63} \pm 0.73$	3	
	≥ 800	$0.32 \pm 0.13 \pm 0.13$	$0.99^{+0.67}_{-0.43} \pm 0.52$	< 0.01	$1.31^{+0.68}_{-0.45} \pm 0.54$	4	

Table A.12: Predictions and observations for the 21 search regions with $H_{\rm T} \geq 1500$ GeV, $N_{\rm j} \geq 7$. For each of the background predictions, the first uncertainty listed is statistical (from the limited size of data control samples and Monte Carlo samples), and the second is systematic.

$H_{ m T} \geq 1500 { m GeV}, N_{ m j} \geq 7$							
$N_{ m j},N_{ m b}$	$M_{\mathrm{T2}} \; [\mathrm{GeV} \;]$	Lost lepton	$Z o u \bar{ u}$	Multijet	Total background	Data	
	400-600	$14.3^{+1.8}_{-1.7} \pm 1.7$	$32.3^{+7.5}_{-6.2} \pm 4.3$	$1.50 \pm 0.13 \pm 0.44$	$48.1^{+7.7}_{-6.4} \pm 5.0$	36	
7-9j, 0b	600-800	$3.77^{+0.56}_{-0.55} \pm 0.69$	$8.3^{+1.9}_{-1.6} \pm 2.2$	$0.18 \pm 0.04 \pm 0.05$	$12.3_{-1.7}^{+2.0} \pm 2.3$	9	
	800-1000	$1.16^{+0.18}_{-0.17} \pm 0.30$	$3.70^{+0.86}_{-0.71} \pm 0.83$	$0.01 \pm 0.01 \pm 0.00$	$4.86^{+0.88}_{-0.73} \pm 0.90$	6	
	1000-1400	$0.58 \pm 0.11 \pm 0.19$	$2.96^{+0.69}_{-0.57} \pm 0.86$	$0.01 \pm 0.01 \pm 0.00$	$3.55_{-0.58}^{+0.69} \pm 0.89$	4	
	≥ 1400	$0.05 \pm 0.01 \pm 0.02$	$0.71^{+0.17}_{-0.14} \pm 0.30$	< 0.01	$0.76_{-0.14}^{+0.17} \pm 0.30$	2	
	400-600	$12.8^{+2.5}_{-2.3} \pm 1.6$	$9.2^{+4.2}_{-3.0} \pm 1.4$	$0.82 \pm 0.09 \pm 0.24$	$22.9_{-3.8}^{+4.9} \pm 2.3$	25	
7-9j, 1b	600-800	$3.49^{+0.94}_{-0.89} \pm 0.76$	$2.4^{+1.1}_{-0.8} \pm 1.0$	$0.06 \pm 0.02 \pm 0.02$	$5.9_{-1.2}^{+1.4} \pm 1.2$	7	
	≥ 800	$1.09^{+0.34}_{-0.32} \pm 0.45$	$2.10^{+0.96}_{-0.69} \pm 0.93$	< 0.01	$3.2_{-0.8}^{+1.0} \pm 1.0$	2	
	400-600	$8.1^{+1.8}_{-1.6} \pm 1.0$	$2.4^{+1.1}_{-0.8} \pm 0.4$	$0.35 \pm 0.06 \pm 0.10$	$10.9^{+2.1}_{-1.8} \pm 1.2$	10	
7-9j, $2b$	600-800	$1.78^{+0.54}_{-0.52} \pm 0.40$	$0.62^{+0.28}_{-0.20} \pm 0.25$	$0.02 \pm 0.01 \pm 0.01$	$2.41^{+0.61}_{-0.56} \pm 0.49$	5	
	≥ 800	$0.40^{+0.19}_{-0.18} \pm 0.17$	$0.55^{+0.25}_{-0.18} \pm 0.25$	$0.01 \pm 0.01 \pm 0.00$	$0.96^{+0.31}_{-0.26} \pm 0.30$	0	
7-9j, 3b	400-800	$2.40^{+0.74}_{-0.72} \pm 0.29$	$0.32^{+0.15}_{-0.10} \pm 0.12$	$0.10 \pm 0.03 \pm 0.03$	$2.82^{+0.76}_{-0.72} \pm 0.32$	2	
7-9J, 5D	≥ 800	$0.16 \pm 0.09 \pm 0.07$	$0.08^{+0.04}_{-0.03} \pm 0.04$	< 0.01	$0.24 \pm 0.09 \pm 0.08$	0	
$7-9j, \ge 4b$	≥ 400	$0.52^{+0.23}_{-0.22} \pm 0.08$	$0.07^{+0.03}_{-0.02} \pm 0.06$	$0.02 \pm 0.01 \pm 0.01$	$0.61^{+0.23}_{-0.22} \pm 0.10$	1	
≥ 10j, 0b	400-800	$1.41 \pm 0.38 \pm 0.33$	$1.52^{+0.35}_{-0.29} \pm 0.34$	$0.23 \pm 0.05 \pm 0.08$	$3.17_{-0.48}^{+0.52} \pm 0.49$	11	
	≥ 800	$0.05 \pm 0.02 \pm 0.02$	$0.37^{+0.09}_{-0.07} \pm 0.17$	$0.01 \pm 0.01 \pm 0.00$	$0.43^{+0.09}_{-0.08} \pm 0.17$	0	
≥ 10j, 1b	400-800	$2.16^{+0.71}_{-0.69} \pm 0.25$	$0.56^{+0.25}_{-0.18} \pm 0.16$	$0.14 \pm 0.04 \pm 0.05$	$2.85_{-0.71}^{+0.76} \pm 0.31$	3	
≥ 10J, 10	≥ 800	$0.55 \pm 0.30 \pm 0.22$	$0.13^{+0.06}_{-0.04} \pm 0.07$	< 0.01	$0.68^{+0.31}_{-0.30} \pm 0.23$	0	
$\geq 10j$, 2b	≥ 400	$1.98^{+0.69}_{-0.67} \pm 0.24$	$0.30^{+0.14}_{-0.10} \pm 0.12$	$0.05 \pm 0.02 \pm 0.02$	$2.33^{+0.70}_{-0.68} \pm 0.28$	0	
≥ 10j, 3b	≥ 400	$0.77 \pm 0.35 \pm 0.09$	$0.00^{+0.45}_{-0.00} \pm 0.00$	$0.05 \pm 0.03 \pm 0.02$	$0.82^{+0.57}_{-0.35} \pm 0.09$	1	
$\geq 10j, \geq 4b$	≥ 400	$0.09 \pm 0.05 \pm 0.01$	$0.00^{+0.45}_{-0.00} \pm 0.00$	< 0.01	$0.09^{+0.45}_{-0.05} \pm 0.01$	0	

Appendix B

Bonus: A Search for Milli-Charged Particles at the LHC

- B.1 Overview of the Milliqan experiment
- B.2 Bench tests for PMT calibration
- **B.3** Generation of signal Monte Carlo

Bibliography

- [1] CMS Collaboration, "Search for new phenomena with the $M_{\rm T2}$ variable in the all-hadronic final state produced in proton-proton collisions at $\sqrt{s}=13$ TeV." Eur. Phys. J. C77 (2017), no. 10, 710, [arXiv:1705.04650].
- [2] CMS Collaboration, "Search for new physics with the $M_{\rm T2}$ variable in all-jets final states produced in pp collisions at $\sqrt{s}=13$ TeV." J. High Energy. Phys. (2016), no. 6, [arXiv:1603.04053].