coloproctology

Leitlinien

coloproctology

https://doi.org/10.1007/s00053-020-00488-z

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2020

A. Ommer¹ · I. lesalnieks² · D. Doll³

- ¹End- und Dickdarm-Zentrum Essen, Essen, Deutschland
- ² Klinik München Bogenhausen, München, Deutschland
- ³ St. Marienhospital Vechta, Vechta, Deutschland

S3-Leitlinie: Sinus pilonidalis.revidierte Fassung 2020

AWMF-Registriernummer: 081-009

Beteiligte Fachgesellschaften

Deutsche Gesellschaft für Koloproktologie (DGK): federführend

Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV)

Chirurgische Arbeitsgemeinschaft für Coloproktologie (CACP)

Berufsverband der Coloproktologen Deutschlands (BCD)

Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten

Deutsche Dermatologische Gesellschaft (DDG)

1. Einleitung und Definition

Der Pilonidalsinus oder Sinus pilonidalis (pilus = Haar, nidus = Nest) ist eine akut oder chronisch verlaufende Entzündung im subkutanen Fettgewebe, überwiegend im Bereich der Steißbeinregion. Synonyme sind Haarnestgrübchen und Haarnestfistel; unzutreffend sind die Bezeichnungen Steißbeindermoid, Sakraldermoid, Dermoidzyste, Steißbeinfistel, Jeep's Disease, Raphefistel, Pilonidalzyste und Sakrokokzygealzyste.

Erstellungsdatum: 04/2020, nächste Überarbeitung erforderlich: 5/2025

Eine Kurzfassung und eine Patientenfassung finden sich im Internet unter https://www.awmf.org/leitlinien/detail/ll/081-009.html.

Alle nennenswerten neuen Abschnitte, die über grammatikalische Korrekturen hinausgingen, wurden in blauer Schriftfarbe markiert.

2. Methodik

Die vorliegende Leitlinie entstand auf der Grundlage und als Weiterentwicklung einer bestehenden S3-Leitlinie zum gleichen Thema aus dem Jahr 2014 [228, 360, 361].

Die Kenntnis der ersten Fassung dieser Leitlinie wird vorausgesetzt [360]. Einige Aussagen insbesondere im allgemeinen Teil, die weiterhin vollkommene Gültigkeit haben, wurden in dieser Fassung nicht wiederaufgenommen, um den Umfang des Textes nicht unnötigerweise zu erhöhen. Lediglich die Evidenztabellen wurden komplett mit den ergänzten Arbeiten wiederaufgenommen.

Der Inhalt der Leitlinie basiert auf einer erneuten systematischen Suche der Literatur unter Nutzung der Datenbank PubMed mit den Stichworten "sinus" und "pilonidal*" und "201*". Stichtag für die aktuelle Recherche war der 15.05.2019. Auf diese Weise wurden ins-

Infobox 1 Mitglieder der Konsensusgruppe

Deutsche Gesellschaft für Koloproktologie (DGK)

In Zusammenarbeit mit

dem Berufsverband der Coloproktologen Deutschlands (BCD)

der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV)

der Chirurgischen Arbeitsgemeinschaft für Coloproktologie (CACP),

der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS),

und der Deutschen Dermatologischen Gesellschaft (DDG),

Dr. A. Ommer, End- und Dickdarm-Zentrum Essen

Prof. Dr. I. Iesalnieks, Klinikum Bogenhausen München

Prof. Dr. Dr. Dietrich Doll, St. Marienhospital, Vechta

Dr. E. Berg, Prosper-Hospital Recklinghausen

Prof. Dr. D. Bussen, End- und Dickdarm-Zentrum Mannheim

Prof. Dr. A. Fürst, Caritas Krankenhaus Regensburg

Prof. Dr. A. Herold, End- und Dickdarm-Zentrum Mannheim

Prof. Dr. F. Hetzer, Viszeralchirurgie Bellaria, Zürich, Schweiz

Dr. G. Osterholzer, Enddarmzentrum München Bavaria München

PD Dr. S. Petersen, Asklepios-Klinik Altona, Hamburg

Dr. R. Ruppert, Klinikum Neuperlach München

Prof. Dr. O. Schwandner, Krankenhaus der Barmherzigen Brüder, Regensburg

Prof. Dr. M. Sailer, Bethesda-Krankenhaus Hamburg

Prof. Dr. T. H. K. Schiedeck, Klinikum Ludwigsburg

Dr. M. Stoll, End- und Dickdarmzentrum Hannover

Dr. B. Strittmatter, Praxisklinik 2000, Koloproktologie Freiburg i. Br.

für die Deutsche Dermatologische Gesellschaft

Dr. B. H. Lenhard, Praxis für Enddarmerkrankungen Heidelberg

Dr. C. Breitkopf, Enddarmpraxis Münster im FranziskusCarré Münster

für die Deutsche Gesellschaft für Verdauungs- und Stoffwechselkrankheiten

Prof. Dr. H. Krammer, Gastroenterologie am End- und Dickdarm-Zentrum

Dr. M. Schmidt-Lauber, Gastroenterologische Praxis Oldenburg

Published online: 07 October 2020

Tab. 1 D	efinition von Evidenzlevel und Empfehlungsgrad. [386, 410]	
Evidenz- level	Typen von Therapiestudien	Empfehlungs- grad
1-a	Systematisches Review randomisierter kontrollierter Studien (RCT)	A ("soll")
1-b	Eine geeignete geplante RCT	
1-c	Alles-oder-nichts-Prinzip	
2-a	Systematisches Review gut geplanter Kohortenstudien	B ("sollte")
2-b	Eine gut geplante Kohortenstudie, einschließlich RCT mit mäßigem Follow-up (<80 %)	
3-a	Systematisches Review von gut geplanten Fall-Kontroll-Studien	0 ("kann")
3-b	Eine gut geplante Fall-Kontroll-Studie	
4	Fallserien, einschließlich schlechter Kohorten- und Fall-Kontroll- Studien	0 ("kann")
5	Meinungen ohne explizite kritische Bewertung, physiologische Modelle, Vergleiche oder Grundsätze	0 ("kann")

gesamt 111 Arbeiten identifiziert. Nach Auswertung der Titel wurden zunächst bereits vorhandene Literaturstellen und dann alle Stellen ausgeschlossen, bei denen sich bereits aus dem Titel eine relevante Beziehung zur Leitlinie ausschließen ließ. Insgesamt konnten so jedoch nur 10 neue Publikationen mit Relevanz für diese Leitlinie identifiziert werden.

Ergänzend erfolgte daraufhin eine direkte Internet-Suche auf den Seiten der folgenden proktologisch-relevanten Journale:

- Annals of Colorectal Diseases (n = 1)
- \blacksquare ANZ Journal of Surgery (n=4)
- Asian Journal of Surgery (n = 8)
- British Journal of Dermatology (n = 3)
- \blacksquare Der Chirurg (n = 4)
- Coloproctology (n = 11)
- Colorectal Disease (n = 5)
- Diseases of Colon and Rectum (n = 11)
- International Journal of Colorectal Disease (*n* = 11)
- **—** Journal of Coloproctology (n = 2)
- Langenbecks Archiv for Surgery (n = 1)
- \blacksquare Laser Medicine Science (n = 4)
- \blacksquare Pilonidal Sinus Journal (n = 8)
- Surgery Today (n = 2)
- Surgical Endoscopy (n = 4)
- Techniques in Coloproctology (n = 19)
- **—** World Journal of Surgery (n = 4)
- **—** Zentralblatt für Chirurgie (n = 3)
- Sonstige (n = 106)

■ Letters aus verschiedenen Zeitschriften (*n* = 39) (nicht ausgewertet)

Dabei wurden auch weitere Arbeiten, die im Zeitraum der Erstellung des Leitlinientextes bis zum 31.03.2020 erschienen sind, bei entsprechender Eignung berücksichtigt. Insgesamt konnten so 211 potenziell relevante Arbeiten gefunden und ausgewertet werden (Zuordnung zu den einzelnen Zeitschriften s. oben).

Nicht zugänglich für die Leitlinienerstellung waren folgende Journals: *J Korean Surg Soc, J Wound Care, Int J Surg, J R Coll Surg Engl, Dermatol. Surg, Surgery, Egyptian J Surg, Ann Plast Surg.* Hier konnten aufgrund der fehlenden Verfügbarkeit über die vorhandenen Bibliothekzugänge nur einzelne Artikel im Volltext berücksichtigt werden.

Aktuelle Reviews, Leitlinien anderer Fachgesellschaften und Cochrane-Analysen wurden im Rahmen der Literaturanalyse-Analyse erfasst und im entsprechenden Kapitel dargestellt. Handlungsanweisungen wurden daraus nicht abgeleitet.

Die Publikationen wurden in folgende Bereiche eingeteilt: Arbeiten zur Epidemiologie, Diagnostik, intra- und perioperative Maßnahmen, Spätfolgen, Karzinomentstehung sowie Vorstellung und Vergleich der diversen Operationstechniken. Die Ergebnisse dieser letzteren Arbeiten wurden gezielt ausgewertet. In Evidenztabellen wurden dabei folgende Ergebnisse der einzelnen Studien erfasst: Anzahl der behandelten Patienten, Studiendesign (retro-, prospektiv, randomi-

Tab. 2 Klassifika ke.(Nach [216])	ition der Konsensusstär-
Starker Konsens	Zustimmung von >95 % der Teilnehmer
Konsens	Zustimmung von >75–90 % der Teilneh- mer
Mehrheitliche Zustimmung	Zustimmung von >50–75 % der Teilneh- mer
Kein Konsens	Zustimmung von <50 % der Teilnehmer

siert), Therapieverfahren, Häufigkeit der Rezidiveingriffe, Rezidivhäufigkeit (definiert als Häufigkeit erneuter operativer Eingriffe wegen gleicher Diagnose), Häufigkeit der postoperativen Wundheilungsstörungen (definiert als alle Ereignisse, die zur kompletten oder partiellen Wundöffnung führten) sowie die Followup-Zeit.

Die Bewertung der vorliegenden Literatur zur Behandlung des Sinus pilonidalis erfolgte im Sinne eines methodenkritischen Lesens. Problematische Punkte in einigen Publikationen waren dabei kleine Fallzahlen, retrospektive Aufarbeitung des Patientengutes, fehlendes Vergleichskollektiv sowie unvollständige Nachuntersuchung. Da jedoch die vorliegenden randomisierten Studien das Therapiespektrum nicht komplett wiedergeben, wurden auch alle nicht randomisierten Studien für die Evidenztabellen ausgewertet.

Definitionen von Evidenzlevel und Evidenzgraduierung wurden in Anlehnung an die Empfehlungen des Centre for Evidence-Based Medicine, Oxford, UK [386, 410] festgelegt (■ Tab. 1). Für die jeweilige Bestimmung des Empfehlungsgrades wurde das Diagramm der ■ Abb. 1 zugrunde gelegt (nach [410]). Die Konsensusstärke wurde anhand der ■ Tab. 2 festgelegt [216].

Die Ausarbeitung des Textes geschah zwischen Mai 2019 und April 2020 durch Dr. A. Ommer, Prof. Dr. Dr. D. Doll und Prof. Dr. I. Iesalnieks.

Diese Leitlinie stellt eine Weiterentwicklung der im Jahr 2014 erstmals publizierten S3-Leitlinie auf dem Boden einer Sichtung der neuen Literatur dar. Da sich nur geringe Veränderungen in den jeweiligen Fazits durch neuere Erkenntnisse

Zusammenfassung · Abstract

coloproctology https://doi.org/10.1007/s00053-020-00488-z © Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2020

A. Ommer · I. lesalnieks · D. Doll

S3-Leitlinie: Sinus pilonidalis. 2. revidierte Fassung 2020. AWMF-Registriernummer: 081–009

Zusammenfassung

Hintergrund. Der Sinus pilonidalis ist eine erworbene Erkrankung. Scharfe, steife Haarfragmente spielen bei der Pathogenese eine wichtige Rolle. Das Ziel dieser Leitlinie ist, die Vor- und Nachteile verschiedener Behandlungsverfahren aufzuzeigen und eine optimale, evidenzbasierte Therapieempfehlung abzugeben.

Methode. Es wurde ein systematisches Review der Literatur vorgenommen.

Ergebnisse. Es können 3 Erscheinungsformen des Sinus pilonidalis differenziert werden: der blande Befund ohne stattgehabte Exsudation, der akut abszedierende und der chronische Sinus pilonidalis. Die häufigste Erscheinungsform des Pilonidalsinus ist das chronische Stadium mit intermittierenden Absonderungen. Zurzeit existiert keine universelle Therapie, die alle Anforderungen an eine einfache, schmerzfreie Behandlung mit schneller Wundheilung und geringer Rezidivrate erfüllt. Die Behandlung der ver-

schiedenen klinischen Erscheinungsformen des Pilonidalsinus erfordert vielmehr ein Portfolio an verschiedenen chirurgischen Therapieoptionen.

Schlussfolgerung. Ein blander Sinus pilonidalis bedarf keiner Therapie. Bei der akut abszedierenden Form gibt es Hinweise darauf, dass eine primäre Abszessentdeckelung in Verbindung mit einer sekundären Versorgung des Sinus pilonidalis im entzündungsfreien Intervall durch eine der unten beschriebenen Behandlungsmethoden vorteilhaft ist. Beim chronischen Sinus stellt die Exzision derzeit die Standardbehandlung dar. Die offene Wundbehandlung mit sekundärer Wundheilung ist ein sicheres Verfahren, das aber mit einer langen Wundheilungsdauer, Arbeitsunfähigkeit und nicht zu vernachlässigenden Rezidivrate einhergeht. Die Größe der Exzision sollte auf das absolut Notwendige beschränkt werden. Die minimal-invasiven Techniken – u. a. das sog. Pit-Picking – stellen

ebenfalls eine Behandlungsoption für die chronische Erscheinungsform dar, wobei mit einer höheren Rezidivrate im Vergleich zu den Exzisionstechniken gerechnet werden muss. Sie können aber als erste Methode bei unkompliziertem Pilonidalsinus eingesetzt werden. Die Exzision mit primärem Verschluss in der Mittellinie ist mit deutlich schlechteren Ergebnissen verbunden und somit obsolet. Wenn minimal-invasive Methoden nicht zum Einsatz kommen, sollten die plastischen (asymmetrischen) Techniken und Verschiebelappen verwendet werden. Limbergund Karydakis-Lappen sind die derzeit am häufigsten angewendeten Verfahren und hinsichtlich der Ergebnisse gleichwertig.

Schlüsselwörter

Sinus pilonidalis \cdot Pilonidalsinus \cdot Abszess \cdot Operative Therapie \cdot Steißbeinfistel

S3 guidelines: pilonidal sinus. 2nd revised edition 2020. AWMF register number: 081-009

Abstract

Background. Pilonidal sinus is an acquired disease in which stiff sharp hair fragments play an important role in the pathogenesis. The aim of these guidelines is to present the advantages and disadvantages of the various treatment methods and to assist physicians with evidence-based treatment recommendations.

Methods. A systemic review of the literature was carried out.

Results. Three types of manifestation of pilonidal sinus can be differentiated: asymptomatic without exudation, an acute abscess and chronic pilonidal sinus. The most frequent form of pilonidal sinus is the chronic stage with intermittent dissociations. At present, there is no universal treatment fulfilling all desired criteria of a simple, painless procedure associated with rapid wound healing and low

recurrence rate. Treatment modalities of the various clinically manifested forms should be tailored according to disease manifestation

Conclusion. Asymptomatic pilonidal disease does not need to be treated. A pilonidal abscess should be deroofed, followed by one of the definitive treatment methods after regression of the acute inflammation.

The basic treatment method of chronic pilonidal disease is surgical excision. Wide excision and open treatment of chronic disease leads to prolonged secondary healing and a considerable recurrence rate. The volume of excised tissue should be restricted to the absolutely necessary. Excision and midline wound closure is associated with an increased morbidity and recurrence rate and should not be performed at all. The minimally

invasive procedures (e.g., pit picking surgery) represent a treatment option for chronic pilonidal disease; however, the recurrence rate is higher compared to other more extensive methods. Nevertheless, they may be used in small primary disease. Off-midline methods should be used for disease not suitable for minimally invasive procedures and lead to the lowest known recurrence rates. The Limberg flap and the Karydakis procedure are the two best described methods, which are associated with comparable short-term and long-term results.

Keywords

Pilonidal sinus · Pilonidal disease · Abscess · Surgery · Coccygeal fistula

ergaben, wurde auf die Einberufung einer Konsensuskonferenz verzichtet und der Text allen Co-Autoren der ersten Leitlinienversion im Sinne eines DELPHI-Verfahrens zur Abstimmung vorgelegt. Die Abstimmung erfolgte in den Monaten März und April 2020. Der Text war allen Mitgliedern der Leitliniengruppe

(s. **■ Infobox 1**) zuvor per Mail zugegangen.

Alle Mitglieder erhielten den Leitlinientext und die Empfehlungen. Die Empfehlungen wurden mittels DELPHI-Verfahren konsentriert. Dabei hatten die Mandatsträger folgende Möglichkeiten: 1. der Empfehlung zuzustimmen,

- 2. diese abzulehnen,
- 3. einen Alternativvorschlag zu nennen.

Von den ursprünglich vorgesehenen 21 Autoren der ersten Leitliniengruppe stimmten 20 ab. Ein Kollege sah sich aus Klinikgründen in der Coronaphase zeitlich nicht in der Lage, an der Abstim-

Abb. 1 ▲ Korrelation zwischen Evidenzstärke (Evidenzgrad) und Empfehlungsgrad. (Nach [386,410])

mung teilzunehmen und bat um seinen Ausschluss. Diesem wurde stattgegeben. Eine Zustimmung von 95 % wurde bei der Feststellung der Leitliniengruppe 9.1 erreicht. Ein Alternativvorschlag wurde hier nicht erarbeitet, da hier primär eine Einzelmeinung vorlag.

Bei der Feststellung der Leitliniengruppe 10.1.4–10.1.6 und 10.2.1–10.2.2 lag die Zustimmung unter 75 %. Deshalb wurden für diese Punkte Alternativen erarbeitet und diese in einer zweiten Runde erneut allen Mitgliedern der Leitlinie vorgelegt. Die Alternativen erreichten dabei jeweils eine Zustimmung von 100 %.

Schwieriger lag die Situation bei der Feststellung der Leitliniengruppe 12.7. Auch hier wurde ein Alternativvorschlag erarbeitet, dem jedoch nur 18 Kollegen zustimmten. Da hier keine Einstimmigkeit zu erzielen sein dürfte, wurde die Aussage als Konsens belassen.

Insgesamt waren somit 2 Konsensrunden erforderlich.

Auch die jeweiligen Vorstände der beteiligten Fachgesellschaften bekundeten sekundär im Laufe des Monats Mai und Juni 2020 ihre Zustimmung zu der vorliegenden definitiven Textfassung.

3. Was gibt es Neues?

Insgesamt wurden für die Neufassung dieser Leitlinie fast 300 neue Publikationen gesichtet. Nur in wenigen Fällen kam es dadurch zu einer Neubewertung der vorhandenen Empfehlungen. Es wurden drei neue Operationsmethoden, die den minimal-invasiven Verfahren zuzuordnen sind, aufgenommen: Lay-open (Fistelspaltung), endoskopische Methoden, Methoden mit Anwendung des Lasers. Sie stellen grundsätzlich eine Erweiterung des Behandlungsspektrums dar, machen alte Verfahren aber nicht überflüssig. Bezüglich der Laseranwendung wurde in der neuen Fassung durch ein größeres Angebot an Literatur eine Unterscheidung zwischen Laseranwendung zur Operation und zur Rezidivprophylaxe eingeführt. Die derzeit vorliegende Evidenz lässt aber noch keine Empfehlung für eines dieser Verfahren zu.

Bezüglich der Therapie wurde beim Abszess die Indikation zur primären kleineren Inzision gegenüber der radikaleren, aber dafür einzeitig definitiven Resektion deutlicher dargestellt. Gleiches gilt auch für die radikale Exzision mit offener Wundbehandlung, deren Nachteile klarer dargestellt werden.

Bezüglich der Rezidivbehandlung wurde der Stellenwert der Laserepilation in neueren Publikationen untermauert.

Ältere Reviews wurden nicht in die neue Version übernommen. Dafür wurden die neuen Leitlinien der amerikanischen und italienischen Gesellschaft für Koloproktologie umfangreich dargestellt, ohne dass hier Handlungsanweisungen für Deutschland grundsätzlich übernommen wurden.

Das Kapitel zu Spätfolgen wurde stark gekürzt, da sich hier keine relevanten neuen Erkenntnisse fanden.

4. Epidemiologie

Die Häufigkeit des Sinus pilonidalis wurde 1995 mit 26/100.000 Einwohner angegeben [435], ist aber aus noch unbekannten Gründen in Europa und Nordamerika zunehmend, wie bereits Allen-Mersh [27] und Karydakis [249] vermuteten. Sie ist innerhalb der Bundeswehr von 30/100.000 im Jahr 1985 auf 240/100.000 Soldaten im Jahr 2007 angestiegen [171]. In der Bundesrepublik Deutschland betrug sie im Jahr 2000 30/100.000 Einwohner und stieg 2012 bis auf 48/100.000 Einwohner [88]. Das Krankheitsbild tritt vorwiegend bei Männern unterhalb des 40. Lebensjahres, und hier meist im 2. bis 3. Lebensjahrzehnt auf [435]. In einem Krankengut von 322 Patienten waren Männer 2,2-mal so oft betroffen wie Frauen [435]. Eine aktuelle Arbeit untersucht Hormonspiegel als Risikofaktoren für die Entstehung eines Sinus pilonidalis [370]. Dabei fanden sich bei Männern keine Unterschiede, während bei Frauen mit einem Sinus pilonidalis die Serum-Prolaktin-Spiegel erhöht waren. Während des 2. Weltkrieges mussten sich insgesamt 77.637 amerikanische Soldaten einer Pilonidalsinus-Operation unterziehen, bei weiteren 9000 Männern wurde die Diagnose als Nebenbefund erhoben [95]. Eine ältere türkische Arbeit aus dem Jahr 1999 [15], welche die Inzidenz bei 1000 Soldaten im Rahmen der Erstuntersuchung behandelt, beschreibt eine Inzidenz von 8,8 % (symptomatisch 4,8%, asymptomatisch 4,0%). Eine aktuellere Arbeit aus dem Jahr 2017 [147] untersuchte 19.000 Studenten zwischen dem 17. und dem 28. Lebensjahr. Es fand

sich eine Prävalenz von 6,6%. Die Erkrankung findet sich vornehmlich bei Kaukasiern, selten bei Dunkelhäutigen [113]. In asiatischen Ländern ist die Inzidenz sehr niedrig [101, 289].

In einer türkischen Autopsiestudie an 432 Körpern [51] wurden bei 9,4% sinustypische Veränderungen gefunden. Die Häufigkeit des Sinus pilonidalis auf dem Boden einer klinischen Untersuchung (stumme Erkrankung) wird mit 4,6% angegeben. Leider ist die Spannbreite des Alters der Untersuchten in der Studie von Aysan et al. mit 7-87 Jahren (Mittelwert 44 Jahre) sehr groß und entspricht nicht dem aus anderen Studien bekannten Altersgipfel. Die Autoren folgern, dass nur die Hälfte der klinisch nachweisbaren Veränderungen zu einem typischen Sinus pilonidalis führt, was natürlich eine Bedeutung für das Vorgehen bei asymptomatischen Veränderungen

Histologisch lassen sich bei allen Sinusformen (auch der asymptomatischen, zufällig entdeckten Form) stets Zeichen einer chronischen oder akuten Entzündung oder einer Kombination beider Formen nachweisen [134].

5. Ätiologie

Bis Mitte des 20. Jahrhunderts wurde davon ausgegangen, dass der Pilonidalsinus angeboren sei, da er ausschließlich in der Mittellinie zu finden ist. Das Haarnest, so wurde postuliert, sei während eines fehlerhaften Ektodermschlusses über dem Neuralrohr durch Versprengung von Haarfollikeln in das Subkutangewebe entstanden [476]. Auch könne ein Neuroporus (eine Öffnung am Ende eines Neuralrohres bzw. Nervenrohres) erhalten geblieben sein, der eine Verbindung zu Steißbeinspitze, Analrand, Damm oder Sakralhaut schaffe [183, 277]. Alternativ sei eine embryologisch angelegte Vestigialdrüse (ähnlich der am schwanznahen Rücken der Vögel angelegten Talgdrüse) die Ursache [300, 465]. Für embryologisch interessierte Leser gibt Stone hier eine für seine Zeit - 1924 - gute Übersicht [450].

In der Tat kann der Pilonidalsinus in seltenen Fällen bereits in utero im Ultraschall dargestellt werden [152, 489] und auch mit Rückbildungsstörungen wie dem sog. Faunenschwanz verknüpft sein [152, 288, 489]. Kongenitale Sinus sind mit einer erhöhten Inzidenz an kongenitalen Anomalien von Rückenmark und Spinalkanal behaftet [53, 195]. Ferner ist bekannt, dass durch hohe Phenytoin-Spiegel während der Schwangerschaft eine Pilonidalsinusbildung bei Neugeborenen hervorgerufen werden kann [482].

Für die ektodermale Theorie der versprengten Hautanhangsgebilde spricht, dass Pilonidalsinus nur streng in der Mittellinie der hinteren Schweißrinne auftreten – der Fusionslinie der dorsalen Raphe. Für eine genetische Veranlagung spricht weiter, dass eine familiäre Häufung des Pilonidalsinus zu beobachten ist [15, 435]. Hier scheint der Beginn der Erkrankung früher und die Rezidivrate höher zu liegen [139].

Dennoch ist der im präpubertären Alter auftretende [98] und entzündete Sinus pilonidalis eine Seltenheit; wenn, tritt er 4,5-fach häufiger bei Jungen als bei Mädchen auf [196].

Gegen die Theorie des Neuroporus spricht, dass nur selten über Meningitiden als Folge einer Pilonidalsinuserkrankung berichtet wird [84, 179, 209, 295, 309, 343, 380]. Gegen die Theorie des versprengten Ektoderms spricht, dass sich keine weiteren, mitversprengten Hautanhangsgebilde wie Talgdrüsen, Follikel oder Schweißdrüsen in den Gängen oder dem Haarnest des Pilonidalsinus darstellen lassen [115, 446]. Auch erklären die kongenitalen Theorien nicht, warum die Erkrankung in der Pubertät gehäuft, und dort vermehrt bei Männern auftritt [15], oder warum Patienten mit einem steileren Gesäßspalt [18] und einer dickeren präsakralen Fettpolsterung [56] zur Sinusbildung neigen.

Der Pilonidalsinus wird heute als eine vornehmlich in der Pubertät [37, 133] erworbene Erkrankung bei möglicherweise genetischer Co-Disposition angesehen [58, 139, 374, 446]. Seiner Entstehung scheint ein multifaktorielles Geschehen ausgelöst durch folgenden Mechanismus zugrunde zu liegen: Die Reibebewegungen der Nates drehen vom Kopf herabfallende scharfkantige Schnitthaare [137]

mit ihrem wurzelnahen Ende voran in die Haut hinein. Hierdurch entstehen bevorzugt bei steifen Haarcharakteristika [129] Mikroinjektionen von Haaren, die in der Regel zwischen 5 und 10 mm lang sind [77]. Da die Hornschuppen der Haare als Widerhaken fungieren [115, 197], dringt das Haar immer tiefer bis in das subkutane Fettgewebe [446] ein. Dort entwickelt sich ein Fremdkörpergranulom, das nicht spontan heilt (asymptomatische Form), sich aber infizieren kann (abszedierende und chronische Form; [115]). Starke Behaarung [68, 435] sowie Adipositas [36] sowie Militärdienst scheinen die Konversion des asymptomatischen in den symptomatischen Pilonidalsinus zu begünstigen [15]. Auch wenn stets über unzureichende Körperhygiene als Co-Faktor [76, 109] gemutmaßt wird, deuten die niedrige Inzidenz bei Kleinkindern und bettlägerigen alten Menschen darauf hin, dass weder chronische Urin- noch Stuhlkontamination die Entstehung von Pilonidalsinus fördern [136, 428]. Auch vergrößert sich während jahrzehntelanger putrider Krankheit die Anzahl der Pori nicht; Doll et al. fanden in ihrer Untersuchung an Soldaten eine Neubildungsrate von 6 Pori pro 1000 Krankheitsjahren. Dieses wird von ihnen so interpretiert, dass bei 6/1000 der Patienten fälschlicherweise ein paramedianer Perforationsporus als primärer Mittellinienporus angesehen wurde. Eine chronische Benetzung der Interglutealregion mit Pus fördert die Exazerbation des Pilonidalsinus nach dieser Studie nicht [144]. Favre [173] stellte bereits in den 1960er Jahren Untersuchungen zur Hygiene an, fand aber, dass eine Gleichverteilung der Pilonidalsinuserkrankung durch alle Dienstgradgruppen der französischen Armee hindurch vorlag. Auch längere Krankheitsverläufe mit putrider Sekretion fördern die Bildung von Pori nicht [133]. Somit gibt es derzeit keine Evidenz, dass die Hygiene eine kausale Rolle bei der Entstehung, Exazerbation oder Rezidivneigung des Pilonidalsinus spielt; es handelt sich hierbei vielmehr um einen begleitenden Umstand nichtkausaler Art, der aber seit Dekaden abgeschrieben und tradiert wird. Eine höhere Konzentration von Schnitthaaren in der Rima durch häufigere Haarschnitte (v. a. bei Männern mit Kurzhaarfrisuren und

im Militär) kann erklären, warum in der Altersgruppe der jungen Erwachsenen um die Pubertät herum und danach Pilonidalsinus derart häufig nachweisbar ist. Die regelmäßige Entfernung der scharfen Haarfragmente aus der Interglutealfalte – durch Duschen oder Baden – hingegen scheint vorteilhaft zu sein [76].

Sowohl die Dicke des präsakralen subkutanen Fettgewebes [15, 56] als auch die Tiefe der Analfalte [18] scheinen Risikofaktoren für die Entstehung eines Sinus pilonidalis darzustellen. Andererseits konnten andere Autoren keinen Zusammenhang zwischen einer Adipositas und der Entstehung eines Sinus pilonidalis nachweisen [111] und sahen die Risiken für ein Rezidiv v.a. in der postoperativen Phase [112]. Die Rolle lokaler Traumata wird kontrovers diskutiert [144]; dennoch bilden Reiter und LKW-Fahrer keine Risikogruppe mit einer erhöhten Krankheitsinzidenz.

Eine Auffälligkeit von Hormonspiegeln konnten Özkan et al. [370] für Männer nicht nachweisen, während sie bei betroffenen Frauen signifikant erhöhte Prolaktinspiegel fanden.

Es wurde mehrfach der Verdacht geäußert, dass eine sitzende Tätigkeit die Erkrankung begünstigen könnte [15, 76, 110]. Dies spiegelte sich in der Bezeichnung "Jeep's disease" bei Soldaten [95] wider. Da im 2. Weltkrieg in den 4 Jahren von 1942-1945 insgesamt 77.637 GIs an einem Pilonidalsinus erkrankten und zur Behandlung in die USA zurückgeführt wurden, folgerten Patey und Scarff [375], dass der Pilonidalsinus als eine erworbene Erkrankung zu klassifizieren sei. Eine detaillierte Analyse dieser Erkrankungsinzidenz von Favre (s. oben) widerspricht diesem Postulat. Favre konnte ebenfalls 1964 in einer Auswertung von 1006 operierten Patienten zeigen, dass sich die Mehrzahl der Patienten aus unmotorisierten Verbänden rekrutierte [173].

Die mittlere Zeit zwischen ersten Symptomen und der Behandlung wird mit 2 Jahren angegeben [435]. Patienten mit akuter Abszedierung weisen weniger Pori auf als Patienten mit längerer Krankheitsdauer; dieses ist durch 2 Faktoren bedingt. Einerseits schwellen im akuten Zustand Gänge zu und werden erst postoperativ nachweisbar [134].

Weiterhin abszedieren Pilonidalsinus mit weniger Pori häufiger als Fistelsysteme mit multiplen Pori [141]. Eine lange Krankheitsdauer führt nicht per se zur Ausbildung von extensiveren Fistelgängen und Pori, sodass aus der Anzahl der Pori nicht auf das Ausmaß der notwendigen Exzision *ex ante* geschlossen werden soll [133]. Ob sich das subkutane Fistelsystem allein mit der Zeit verändert oder vergrößert, ist nicht bekannt; morphometrische Hinweise hierfür liegen in der Literatur bisher nicht vor.

6. Lokalisation

Der Pilonidalsinus tritt vornehmlich in der Rima ani auf, wird aber auch im Nabelbereich [106, 170, 175, 247, 316], inter- und submammillär [422], an Vulva, Mons pubis und Klitoris, [212, 213, 239], Penis [268, 350], Anus [365, 452], interdigital (z. B. bei Friseuren; [57, 168, 376, 447]), an der Fingerspitze [198] im Bereich der Brust [176] und auch im Bereich der Nase [238] und hinter den Ohren gesehen [485]. Die Berufsgruppe der Friseure ist ausschließlich an ihrer Körpervorderseite multiplen Haareinspießungen ausgesetzt [137]. Die aufgeführten Literaturstellen erheben dabei keinen Anspruch auf Vollständigkeit. Grundlage dieser Leitlinie ist ausschließlich die Behandlung des Sinus pilonidalis in der Rima ani.

Die für den Pilonidalsinus verantwortlich zeichnenden Schnitthaare sind bereits Minuten nach einem Haarschnitt im Schulter-, Rücken- und Lendenbereich der Kunden nachweisbar, also bevorzugt an der Körperrückseite [145].

7. Differenzialdiagnose

Differenzialdiagnostisch müssen Analund Crohn-Fisteln [445] und die Acne inversa [69, 82] ausgeschlossen werden, wobei andererseits eine aktuelle Arbeit Parallelen zu Acne inversa nachweist [473]. Die retrorektalen zystischen Formationen können sich infizieren und in die Rima ani perforieren. Im Einzelfall kann die Unterscheidung zu Dermatosen, v.a. Rhagaden in der Rima ani und die Psoriasis wichtig sein. Auch eine Manifestation unmittelbar am bzw. im

Analkanal wurde beschrieben [29, 452]. Es existiert auch eine Publikation über eine maligne Entartung im Zusammenhang mit einer Analfistel [10]. Ardelt et al. [39] berichten über ein Fadengranulom, das sich wie ein Malignom bzw. Rezidiy manifestierte.

8. Symptomatik, Diagnostik, Klassifikation

Die Beschwerden sind vom Erscheinungsbild abhängig: Die asymptomatische Form ist durch eine oder mehrere reizlose Pori (englisch: "pits") in der Rima ani gekennzeichnet und wird nur zufällig diagnostiziert. Sie wird definiert durch den Nachweis von Pori ohne aktuelle oder vorhergehende relevante Beschwerden (Schmerzen, Sekretion, Blutung). Es gibt keine Spontanheilung. Anderseits ist eine längere Zeit zwischen ersten Beschwerden und Behandlungsbeginn nicht ungewöhnlich [435]. Ein spontanes Fortschreiten der Erkrankung tritt nicht unbedingt auf [133].

Die akut abszedierende Form imponiert mit Schwellung und Schmerzen meist paramedian der Rima ani.

Im chronischen Stadium leiden die Patienten unter permanenten oder intermittierenden serös-eitrigen Absonderungen aus dem Porus selbst (Pit, Primäröffnung) bzw. aus den lateralen Sekundäröffnungen.

Die mikrobiologische Besiedlung des infizierten Sinus pilonidalis wird in mehreren älteren Publikationen untersucht. Überwiegend finden sich anaerobe Bakterien (v. a. *Bacteroides*) und als aerobe Keime *E. coli, Proteus, Streptokokken* und *Pseudomonas* [38, 85, 378]. Aktuelle Untersuchungen insbesondere unter Berücksichtigung multiresistenter Keime liegen nicht vor.

Die Diagnostik erfolgt mittels Inspektion, Palpation und ggf. Sondierung. Bei Druck auf den chronischen Pilonidalsinus tritt oft eine blutig-seröse Flüssigkeit aus der in der Rima ani gelegenen Primäröffnung aus. Die Injektion von Farbstoffen oder Röntgenkontrastmittel in das Fistelsystem ist in der Diagnostik überflüssig. Eine intraoperativ Anfärbung mit Methylenblau scheint die Rezidivrate nach Exzision und offener Wund-

behandlung senken zu können [140]. Bildgebende Verfahren wie Sonographie, Computertomographie (CT) und Magnetresonanztomographie (MRT) sind nur bei speziellen Fragestellungen und bei spezieller differenzialdiagnostischer Abgrenzung sinnvoll. Eine Endoskopie ist entbehrlich.

Eine derzeit allgemein anerkannte Klassifikation der Sinuserkrankung existiert nicht. Ein in der Literatur vorgeschlagenes Scoring-System [46] konnte keinen Nutzen für die tägliche Praxis erbringen. Eine Metaanalyse von Beal et al. [67] kann diesbezüglich ebenfalls keinen validierten Score oder ähnliches aufzeigen.

8.1 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt
Es muss zwischen der akuten Abszedierung und einer chronischen Form unterschieden werden. Nicht- und geringsymptomatische Formen kommen vor. Bei symptomatischen Formen ist eine langfristige Heilung nur durch eine operative Maßnahme zu erzielen. Die Symptomatik bestimmt dabei den Zeitpunkt. Eine prophylaktische Behandlung bei asymptomatischen Veränderungen soll nicht erfolgen. Außer Anamnese und klinischer Untersuchung sollen keine weiterführenden Diagnostikmaßnahmen erfolgen.

Konsensstärke: starker Konsensus (100 %)

9. Therapie

1. Asymptomatische Form

Ein asymptomatischer Pilonidalsinus persistiert lebenslang und kann in eine akute (abszedierende) Form oder in das chronische Stadium übergehen. Eine prophylaktische Behandlung erscheint jedoch nicht erforderlich [134].

2. Akute Abszedierung

Methode der Wahl ist die notfallmäßige Operation. Nur in Ausnahmefällen sollte eine definitive Exzision erfolgen. Der Abszess sollte zunächst entdeckelt werden, um eine wirksame Drainage zu ermöglichen. Die definitive Versorgung des Sinus pilonidalis erfolgt sekundär nach Abschwellen und Abklingen der entzündlichen Umgebungsreaktion (z. B. nach 10-14 Tagen). Mehrere Publikationen deuten darauf hin, dass die einfache Inzision und Drainage, gefolgt von einer definitiven Versorgung durch eine plastische Rekonstruktion nach Abklingen des Infektes auch im Langzeitverlauf mit einer niedrigeren Rezidivrate assoziiert ist [138, 222]. Die einfache Inzision beim kleinen Abszess kann in 60% der Fälle zur definitiven Heilung führen [234, 444]. Die Publikationen sprechen für einen lateralen Zugang [475]. Einige Autoren führen statt einer Inzision eine Aspiration des Eiters mit anschließender Antibiotikatherapie vor der definitiven Versorgung durch [222, 267]. Eine weitere Studie konnte einen Unterschied in Bezug auf Rezidivrate zwischen der elektiven und der notfallmäßigen Versorgung herausarbeiten [130].

3. Chronischer Sinus pilonidalis

Eine spontane Abheilung des chronischen Pilonidalsinus ist sehr unwahrscheinlich. Die Therapie erfolgt als elektiver Eingriff, wobei verschiedene Techniken zur Anwendung kommen.

9.1 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt
Bei der akuten Abszedierung sollte der
Abszess eröffnet werden, um eine ausreichende Drainage zu gewährleisten.
Die definitive Versorgung sollte erst
nach Abklingen der lokalen, durch den
Abszess hervorgerufenen Inflammation
erfolgen. Der chronische Pilonidalsinus
stellt eine elektive Operationsindikation
dar.

Konsensstärke: Konsensus (95 %)

10. Behandlungsverfahren

In den folgenden Abschnitten wird die Literatur im Hinblick auf die möglichen operativen Therapieverfahren und den Heilungserfolg ausgewertet. Der Krankheitsrückfall (das Rezidiv) stellt die wichtigste Variable in der Bewertung

verschiedener Behandlungsmethoden des Sinus pilonidalis dar. Obwohl auch ein Pilonidalsinusrezidiv per definitionem durch das erneute Auftreten eines Fistelgangs charakterisiert ist, werden in der Mehrzahl der Studien, selbst in den insgesamt 43 prospektiv-randomisierten Arbeiten, die Kriterien des Krankheitsrückfalls (das Rezidiv) oft gar nicht definiert. Eine Definition konnte lediglich in 8 der prospektiv-randomisierten Studien gefunden werden: bei Al-Salamah [30], Rao [395], Sondenaa [436, 438], Gencosmanoglu [187], Othman [367], Can [94] und Guner [200]. In 4 Studien lautete die Definition "Wiederauftreten der Symptome nach abgeschlossener Wundheilung" [30, 187, 200, 395]. In 2 Studien von Sondenaa et al. [436, 438] wurde das Rezidiv als "Wiederentstehung (reestablishment) des Sinus pilonidalis mit den typischen Symptomen unabhängig von der initialen Wundheilung" definiert. Bei Othman ("re-existence of sinus openings"; [367]) war die Definition unklar. Bei Can [94] hieß es "Rezidiv seien alle Beschwerden nach unkompliziertem (uneventful) Verlauf".

Somit scheinen die meisten Autoren den Terminus "Rezidiv" von den chronischen nichtheilenden Wunden sowie jeglichen operativen Revisionen bei Wundheilungsstörungen zu trennen. Dies mag zwar aus der akademischen Sicht korrekt sein, da eine Wundheilungsstörung sich histologisch sicherlich von einer neuen, auf dem Boden eines Haars entstandenen Fistel unterscheidet. Eine solche Definition lässt jedoch die viel wichtigere - die Sicht des Patienten außer Acht. Für den Betroffenen stellt jede erneute operative Therapie - ob wegen einer chronischen Wunde oder einer neuen Fistel - eine ähnliche Belastung dar. Würde man jede erneute operative Therapie als Krankheitsrezidiv bezeichnen, ergäben sich allerdings erheblich höhere Rezidivraten als meist übermittelt werden, da offensichtlich ein signifikanter Anteil der Patienten wegen nichtheilender Wunden reoperiert werden muss [224, 227]. Es wurde versucht, die Literaturergebnisse dahingehend zu analysieren.

Eine systematische Herangehensweise an die Rezidivkriterien wird bei Doll et al. [135] definiert.

Abb. 2 ▲ Schematische Darstellung der Pit-Picking-Operation

10.1 Semioperative und minimalinvasive Verfahren

Unterminimal-invasiven Verfahren wurden in dieser Arbeit Behandlungsmethoden zusammengefasst, die unter ambu-

lanten Bedingungen durchgeführt werden können und ohne eine vollständige Exzision/Präparation einhergehen.

10.1.1 Phenol-Instillation

Die Instillation des flüssigen Phenols in die Fistelgänge des Sinus pilonidalis wurde bereits 1964 von Maurice [313] beschrieben. Die Phenollösung (meist 80%) soll eine entzündliche Reaktion mit nachfolgender Vernarbung in den Fisteln auslösen und zu deren Abheilung führen. In der Literatur werden Heilungsraten zwischen 30 und 94% übermittelt (■ Tab. 3). In den letzten Jahren wurde die Methode zunehmend unter Verwendung von Phenolkristallen eingesetzt [126]. Der Eingriff wird unter ambulanten Bedingungen in Lokalanästhesie durchgeführt. Einige Autoren [66] führen zu Beginn des Eingriffs die Exzision der Primärfistel (des Pits) durch. Andere [186] kombinieren den Eingriff mit endoskopischen Verfahren. Die Dauer der Arbeitsunfähigkeit ist kurz. In den letzten 10-20 Jahren sind zahlreiche Studien zu dem Thema erschienen, in überwiegender Mehrzahl aus der Türkei. Patienten mit purulentem Ausfluss und Abszessen [126] sowie mit ausgedehnten Befunden [260, 359] werden aus den Studien häufig ausgeschlossen. Regelmäßig

werden pro Patient mehrere Sitzungen durchgeführt, bis die Heilung erreicht wird. Daher wird in den Publikationen weniger die Rezidiv-, sondern eher die Erfolgsrate präsentiert [50]. In der Arbeit von Dogru [126] benötigten 70% der Patienten eine zweite Sitzung (d. h. Rezidivrate von 70%), nach der zweiten Sitzung waren allerdings die Fisteln nur noch bei 5% der Patienten nicht verheilt. Von den Autoren wurde also eine Rezidivrate von 5% angegeben. Überwiegend wird von Rezidivraten zwischen 9% und 40% bei Nachsorgezeiten von 14 bis 56 Monaten berichtet.

Im Jahr 2009 wurde von Kayaalp und Aydin [255] ein Review mit 13 Studien zur Phenolinjektion vorgelegt. Sechs Arbeiten aus diesem Review stammen aus der Zeit vor 1990 und sind nicht in ■ Tab. 3 aufgeführt. Mit einer Ausnahme handelt es sich dabei um retrospektive Arbeiten. In 5 Publikationen fanden die Eingriffe in Lokalanästhesie statt. Die Dauer der Arbeitsunfähigkeit war mit 2,3 ± 3,8 Tagen kurz, die Heilungsrate mit 87 ± 10 % hoch. Ein Vorteil wurde bei wenigen (1-3) Pits gesehen. In der aktuellen amerikanischen Leitlinie (Johnson [236]) wird die Phenolinjektion weiterhin für primäre Fälle empfohlen. Die Langzeit-Rezidivrate nach Phenolbehandlung liegt in der Metaanalyse von Stauffer et al. [444] 5 Jahre postoperativ bei 40,4 %. In Deutschland ist die Injektion von Phenollösung wegen der hohen Toxizität und einer möglichen Resorption des Phenols nicht zugelassen (Bundesgesundheitsamt 22.04.1991; [87]), was auch Gegenstand eines aktuellen Leserbriefes von Yuksel ist [487].

Prospektiv-randomisierte Studie Calikoglu et al. [92] verglichen in einer prospektiv-randomisierten Studie die Phenolinjektion mit offener Wundbehandlung und demonstrierten eine vergleichbare Rezidivrate (23 % nach 4 Jahren in der Phenolgruppe und 15 % nach 4 Jahren nach offener Behandlung), die unmittelbaren postoperativen Parameter waren jedoch zu Gunsten der Phenolinjektion (Tab. 3).

10.1.1 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Da in Deutschland Phenol wegen der Toxizität nicht zugelassen ist, kann trotz entsprechender Evidenz keine Empfehlung ausgesprochen werden.

Konsensstärke: starker Konsensus (100 %)

10.1.2 Pit-Picking und ähnliche Verfahren

Lord und Millar [296] beschrieben 1965 eine minimal-invasive Behandlungsmethode des Sinus pilonidalis. Die Voraussetzungen für die Einführung der Methode waren zum einen die zunehmend akzeptierte Erkenntnis, dass die Pits in der Rima ani eine entscheidende Bedeutung in der Pathogenese der Erkrankung spielen [296, 375] und zum anderen die allgemeine Unzufriedenheit mit den Ergebnissen der traditionellen medianen Exzisionsverfahren [277]. Die Autoren führten unter Lokalanästhesie eine knappe Exzision der Pits durch, wobei ein Hautsaum von <5 mm mit exzidiert wurde. Konnte eine laterale Ausbreitung des Befundes identifiziert werden (chronische Abszesse, Fistelausgänge lateral der Rima etc.), so wurde lateral der Rima eine Gegeninzision gesetzt (Abb. 2). Die Fistelgänge selbst wurden mit einem Bürstchen débridiert. Die Methode wurde eine Zeit lang unter dem Namen der Autoren zitiert [27, 151]. Von Lord selbst wurde eine Rezidivrate von 3 % nach 6-24 Monaten angegeben [296]. Andere Autoren [151, 312] zeigten allerdings eine höhere Rezidivrate.

Anfang der 80er Jahre wurde von John Bascom die sog. Follicle-removal-Operation beschrieben, die er später "pit picking" benannte ([58]; s. auch www. pilonidal.org). Die Technik der Operation ähnelte stark der Methode nach Lord, allerdings wurden die Pits mit einem Hautsaum von lediglich ca. 1 mm exzidiert und die Tiefe der Exzision betrug ebenfalls maximal 2–3 mm, was das Ausmaß der Operation noch weiter verringerte.

Mittlerweile wurde das Verfahren in ähnlicher Form von zahlreichen Autoren (Tab. 4) durchgeführt und veröf-

fentlicht. Es existiert keine einheitliche Bezeichnung der Methode. Manche Autoren sprechen von "minimally invasive surgery" [194], "Bascom surgery" [304, 419], "pit pick" [107] oder "ambulatory surgery of pilonidal disease" [302]. Die erste Veröffentlichung in deutscher Sprache stammt von Iesalnieks et al. [224], wobei die von J. Bascom selbst verwendete Bezeichnung "pit picking" übernommen wurde.

Die Methode eignet sich für nicht voroperierte Patienten mit relativ geringem Befund. In den Arbeiten von Bascom [58], Senapati [419] und Gips [194] wurden Rezidivraten von ca. 8-16% nach 12-120 Monaten beschrieben, wenn "pit picking" oder eine ähnliche Operationen angewendet wurde. Die Unterschiede der Technik zwischen den einzelnen Autoren bestehen v.a. im Umgang mit dem chronischen subkutanen Hohlraum (Sinus). Dieser kann einfach entdeckelt werden [58, 224, 296], débridiert [59, 194], offen gelassen oder auch unter den exzidierten Pits mittels subkutaner Nähte geschlossen werden [270, 304].

Die von verschiedenen Autoren berichteten Rezidivraten (Tab. 4) sind aus gleichen Gründen wie die Ergebnisse der Behandlung mit Phenolinstillation (s. oben) kaum vergleichbar: Manche Autoren schließen purulent sezernierende Befunde oder voroperierte Patienten aus [224, 302, 359]. Auch ist die Rezidivdefinition unterschiedlich: Eine innerhalb von 6 Wochen nicht abgeschlossene Heilung und jede Reoperation wird von einigen Autoren als Rezidiv bezeichnet [224, 354], während andere lediglich ein erneutes Auftreten der Erkrankung nach abgeschlossener Wundheilung als Rezidiv definieren [194]. Auch wird die Notwendigkeit mehrerer Operationen oder auch eine über längeren Zeitraum nicht abgeschlossene Wundheilung [107, 194] von einigen Autoren nicht als Rezidiv bezeichnet. In der Studie von Colov [107] entwickelten 9 der 74 über 1 Jahr nachverfolgten Patienten ein Rezidiv nach abgeschlossener Wundheilung, was in der Arbeit als eine Rezidivrate von 12% angegeben wurde. Bei weiteren 13 Patienten (18%) waren jedoch die Wunden zu gleichem Zeitpunkt noch nicht verheilt - diese Fälle wurden

nicht als Rezidiv definiert, obwohl diese Patienten sich weiteren Operationen unterziehen mussten. Die Nachsorgezeiten sind in den meisten Studien kurz.

In der größten publizierten Studie von Gips et al. ([194]; n = 1358 Patienten) bei einer Nachsorgezeit von 120 Monaten betrug die Rezidivrate 16%. Weitere 4% der Patienten hatten zum Zeitpunkt des letzten Kontakts nicht verheilte Wunden/ Fisteln. Bei Iesalnieks [226] betrug die Rezidivrate 26 % nach 3 Jahren, bei Khodakaram [270] - 23 % nach 3 Jahren. Die letzte Studie verglich die Langzeitergebnisse mit der offenen Wundbehandlung und dokumentierte vergleichbare Rezidivraten in beiden Gruppen. Hier sind wie auch bei anderen Therapien - regionale Unterschiede zwischen verschiedenen Ländergruppen offensichtlich[142].

Prospektiv-randomisierte Studien Die einzige prospektiv-randomisierte Studie [354], die *Pit-Picking*-Operationen mit dem *Cleft-lift*-Verfahren vergleicht, weist eine Rezidivrate von 24 % auf – signifikant mehr als "cleft lift".

Eine Metaanalyse von Thompson et al. [459] zeigt einen Vorteil für die minimal-invasiven Verfahren in Bezug auf Krankenhausaufenthalt, postoperative Betreuung und frühzeitigere Wiederaufnahme der Arbeit.

10.1.2 | Empfehlung | Stand 2020

Empfehlungsgrad: B

Die sog. Pit-Picking-Operation sollte bei lokal limitierten Befunden in Erwägung gezogen werden. Objektive Langzeitergebnisse fehlen derzeit noch.

Evidenzgrad: 2

Literatur: [194, 226, 354]

Konsensstärke: starker Konsensus (100%)

10.1.3 Sinusektomie

Eine weitere minimal-invasive Operationsmethode wurde von den Züricher Autoren Soll et al. [432] als Sinusektomie bezeichnet (Tab. 5). Von der gleichen Gruppe und auch von Mohamed [337] wurde das Verfahren auch als "limited excision" bezeichnet. Dabei handelt es sich um eine Exkoriation einzelner Fistelgänge. Allerdings wird im Gegensatz

zu der traditionellen Exzisionsbehandlung keine "radikale Exzision en bloc" durchgeführt, sondern jeder Fistelgang wird von dem Primärporus (Pit) aus in seiner fibrösen Kapsel knapp exzidiert. Die Wunden werden offengelassen. Der Eingriff wird in Lokalanästhesie durchgeführt. Ergebnisse wurden von 3 Arbeitsgruppen veröffentlicht, die sich gegenseitig nicht zitieren und unterschiedliche Bezeichnungen der Methode verwenden. In allen Fällen wurde die Indikation auf Patienten mit max. 3 Pits beschränkt. Die mittelfristigen Ergebnisse scheinen vielversprechend zu sein. Die Rezidivrate wird in den wenigen Veröffentlichungen zwischen 1,6 % und 7 % angegeben (Tab. 5).

Prospektiv-randomisierte Studien. Die ägyptische Arbeitsgruppe um Mohamed und Oncel [337] demonstrierte eine Rezidivrate von nur 3% bei 29 Patienten, die sich in einer prospektiv-randomisierten Studie der Sinusektomie unterzogen. Die Ergebnisse waren gleichwertig mit der Exzision und offener Wundbehandlung und Exzision mit Mittelliniennaht, wobei die Sinusektomie im Gegensatz zu den traditionellen Verfahren ambulant durchgeführt wurde. Bei 13 % der Patienten in der Sinusektomie-Gruppe konnten die Fistelgänge nicht verfolgt werden und mussten breiter exzidiert werden. Die gleiche Arbeitsgruppe [363] führte eine kleine (n = 40) prospektiv-randomisierte Studie durch und verglich die Sinusektomie ("sinus excision") mit der Marsupialisation. Die Rezidivrate betrug 0 % bei einer Nachsorgezeit von 10 Monaten.

Trotz der prinzipiell sehr hohen Evidenzlage mit randomisierten Studien ist aufgrund der kleinen Studiengruppen und lediglich zweier Studien keine abschließende Empfehlung möglich.

10.1.3 | Empfehlung | Stand 2020

Empfehlungsgrad: 0

Die Sinusektomie kann als minimal-invasives Verfahren in Erwägung gezogen werden. Die Ergebnisse sollten jedoch durch aktuellere Studien mit höheren Fallzahlen bestätigt werden.

Evidenzgrad: 1b Literatur: [337, 363]

Konsensstärke: starker Konsensus (100%)

10.1.4. Lay-open (Fistelspaltung, Fistulotomie)

Ein Verfahren, das sich an der Grenze zwischen den minimal-invasiven Methoden und der Exzision und offener Wundbehandlung befindet, ist das Lay-open-Verfahren. Auf Deutsch kann auch der Begriff *Fistelspaltung* verwendet werden, wobei dieses jedoch wegen Verwechslung mit der Analfistelbehandlung irreführend sein kann.

Bei der Lay-open-Technik wird der Fistelgang vom Pit bis zur Sekundäröffnung bzw. bis zum subkutanen Hohlraum in ganzer Länge eröffnet, ohne jedoch das Fistelsystem komplett zu exzidieren. Dabei entstehen offene sekundär heilende Wunden. Im Gegensatz zur Exzision mit offener Wundbehandlung sind die Wunden schmaler und oberflächlicher. Der Eingriff kann beinahe immer in Lokalanästhesie durchgeführt werden, deswegen kann man ihn zu den minimalinvasiven Methoden zählen. Bei Patienten mit mehreren Pits werden diese alle in gleiche Spaltungswunde eingeschlossen, wodurch die in der Rima befindliche Wunde sich verlängerte.

In der Literatur werden Rezidivraten von 2% [263] bis 56% [217] gezeigt, was doch an erheblichen Variationen der Technik oder Selektion denken lässt. Der Eingriff wird von verschiedenen Autoren sowohl ambulant als auch mit 1- bis 3-tägigem stationärem Aufenthalt durchgeführt, die Heilungsdauer beträgt 11 bis 35 Tage (Tab. 6).

In einer Metaanalyse von Garg [185], die 13 retrospektive Kohortenanalysen einschloss, wies das Lay-open-Verfahren eine Rezidivrate von 4,5 %, Heilungszeit von 21 bis 72 Tagen und eine Arbeitsunfähigkeit von 8 Tagen auf. Allerdings

beinhaltete die Analyse 5 Studien zur Marsupialisation, was die Wertigkeit der Arbeit für die Fragestellung dieser Leitlinie verringert. Auf Grund der spärlichen Datenlage war es nicht möglich, in dieser Metaanalyse einen Direktvergleich zu anderen Verfahren anzustellen.

Trotz einer vorhandenen Metaanalyse, die sich aber lediglich auf retrospektive Studien stützt, ist aufgrund der kleinen Studiengruppen und divergierender Ergebnisse derzeit keine abschließende Empfehlung möglich.

10.1.4 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Für das Lay-open-Verfahren kann mangels Literatur-Evidenz derzeit keine Empfehlung ausgesprochen werden. Konsensstärke: starker Konsensus (100%)

10.1.5. Endoskopische Verfahren

Zur Anwendung der endoskopisch assistierten Verfahren sind in den letzten 5 Jahren verschiedene Veröffentlichungen erschienen. Das Prinzip dieser Methoden beinhaltet meistens eine lokale Exzision der Primärfisteln (Pits) in der Mittelinie und ein endoskopisch assistiertes Débridement der Fistelgänge. Das Ziel der Methode ist eine besonders vollständige − weil unter Sicht kontrollierte − Reinigung der subkutanen Gänge. Die Bezeichnungen der Methode können variieren, die populärste ist EPSiT ("endoscopic pilonidal sinus treatment"; [100, 190, 320, 322, 323]; ■ Tab. 7).

In zwei systemischen Metaanalysen [161,460], die 8 bzw. 9 Studien aus 6 Zentren und 497 Patienten beinhalteten, wurde ein Therapieversagen von 8 % (4 % Rezidive und 4 % persistierende Befunde) berechnet. Die durchschnittliche Zeit der Arbeitsunfähigkeit betrug 3 Tage und die Heilungszeit durchschnittlich 33 Tage.

Prospektiv-randomisierte Studie Milone et al. [333] verglichen in einer prospektiv-randomisierten Studie (n= 145) die endoskopische Behandlung mit dem Cleft-lift-Verfahren bei nicht voroperierten Patienten. Die Dauer der Arbeitsunfähigkeit war in der Cleft-lift-Gruppe sig-

nifikant länger, die Rezidivrate (ca. 3% nach 1 Jahr) und Infektionsrate waren in beiden Gruppen vergleichbar.

Für den deutschen Bereich kann trotz optimistischer Ergebnisse und einer prinzipiell sehr hohen Evidenzlage auf dem Boden jedoch lediglich einer randomisierten Studie aus Sicht der Autoren derzeit keine Empfehlung für dieses Verfahren gegeben werden. Zu berücksichtigen sind auch die relativ hohen Kosten für das Equipment und mögliche Folgekosten.

10.1.5 | Feststellung der Leitliniengruppe | 2020

Klinischer Konsensuspunkt Für die endoskopischen Verfahren kann mangels Literatur-Evidenz derzeit keine Empfehlung ausgesprochen werden. Konsensstärke: starker Konsensus (100%)

10.1.6. Laserbasierte Operationen

Die Anwendung von Laser hat in der Medizin einen nahezu mythischen Charakter, der mit optimalem Heilungserfolg und geringer Invasivität assoziiert ist. Die Popularität in der Bevölkerung ist dementsprechend hoch. Der Laser wird dabei zu zwei Zwecken genutzt: als Behandlungsmethode und als postoperative Prophylaxe (siehe Abschn. 11.7). In diesem Abschnitt gehen wir auf die operative Behandlung mittels Laser ein.

Als minimal-invasive laserbasierte Behandlung wird v. a. eine Technik angewendet, bei der die Pits (die Poren) in der Rima ani zunächst exzidiert oder erweitert werden ([189, 372]; ■ Tab. 8). Über der Sekundärläsion wird eine Gegeninzision gesetzt (ähnlich wie bei Pit-Picking). Über die exzidierten Pits wird der subkutane Hohlraum mechanisch gereinigt, die Haare entfernt und anschließend der Hohlraum ("das Fistelsystem") mit einer Dioden-Lasersonde koaguliert und versiegelt. Die Methode hat verschiedene Namen, z. B. Laser-Pit-Picking [477], Pi-LaT ("pilonidal laser treatment") [189] und SiLat und Silac [372]. Es liegen keine randomisierten oder zumindest retrospektiven Vergleichsstudien vor, lediglich Kohortenanalysen. Voroperierte Patienten werden meist ausgeschlossen.

Die Heilungsraten liegen bei etwa 90%. Bemerkenswert ist, dass in der Publikation von Pappas [372] die Methode bei 23 voroperierten Patienten angewendet wurde und bei 18 von ihnen zur Heilung führte. Das Instrumentarium wird von der deutschen Firma BioLitec hergestellt, die auch eine aktive Marketingkampagne betreibt.

Für den deutschen Bereich kann trotz optimistischer Ergebnisse bei noch niedriger Evidenz auch vor dem Hintergrund höherer Kosten aus Sicht der Autoren derzeit keine grundsätzliche Empfehlung für dieses Verfahren gegeben werden.

10.1.6 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Für laserbasierte Operationsverfahren kann mangels Literatur-Evidenz derzeit keine Empfehlung ausgesprochen werden.

Konsensstärke: starker Konsensus (100 %)

10.2 Mediane Exzisionsverfahren

Unter medianem Exzisionsverfahren versteht man Techniken, bei denen die postoperative Wunde in der Mittellinie zu liegen kommt. Diese Operationsmethoden können auch als die traditionellen oder klassischen bezeichnet werden, da sie seit mindestens 80 Jahren [277] in fast unveränderter Technik durchgeführt werden. Außerdem stellen sie heute noch die in der Behandlung des Sinus pilonidalis am häufigsten angewendeten Operationsmethoden dar. Diese Tatsache ist v.a. auf die einfache Durchführung und die bei Chirurgen immer noch bestehende allgemeine Akzeptanz der Operationstechnik zurückzuführen.

10.2.1 Exzision und offene Wundbehandlung

Die Exzision des gesamten Fistelsystems und anschließende offene Wundbehandlung stellt die in Deutschland am häufigsten angewendete Operationsmethode bei Patienten mit Sinus pilonidalis dar (• Tab. 9). Die Mehrzahl der Autoren verwendet die gleiche Operationstechnik: Markieren der Fistelgänge z. B. mit

Blaulösung und anschließend komplette Exzision des markierten Gewebes.

In zahlreichen Publikationen werden Rezidivraten zwischen 2 und 6% angegeben [24, 175, 181, 315, 337, 396, 436, 456]. Es finden sich jedoch mit gewisser Regelmäßigkeit auch Arbeiten, die eine Rezidivrate von 15-35% angeben [23, 188, 191, 223, 232, 270, 312, 393, 434, 443]. Vor allem die voroperierten Patienten scheinen besonders hohe Rerezidivraten zu haben [224]. Die 20-Jahres-Rezidivrate bei Letzteren wird mit 20% angegeben [127]. Die wohl höchste Belastung für die Patienten stellt allerdings die langwierige offene Wundbehandlung dar. Die Heilungszeit beträgt 1,5-3 Monate [217, 224, 227, 280] und führt zu einer Arbeitsunfähigkeit von durchschnittlich einem Monat [54, 201, 362]. Ein Teil der offenen medianen Wunden chronifiziert sich und verheilt über Jahre nicht. Weitere Eingriffe können nicht ausgeschlossen werden. Die Aussagen dieses Leitlinienabschnittes beziehen sich jedoch grundsätzlich auf die Primärbehandlung eines Sinus pilonidalis durch Exzision und offene Wundbehandlung. Sie gelten nicht für die Behandlung der Wundheilungsstörung nach offener Wundheilung.

Prospektiv-randomisierte Studien Es

liegen mehrere Studien vor, welche die Exzision mit offener Wundbehandlung mit anderen Verfahren vergleichen. Die bereits oben erwähnte Studie von Mohamed [337] fand eine ähnliche Rezidivrate nach Sinusektomie (3%) und Exzision mit offener Wundbehandlung (4%). Eine Reihe von Studien verglich die beiden traditionellen Verfahren miteinander: Exzision mit offener Wundbehandlung und Exzision mit Mittelliniennaht [23, 30, 280, 294]. Alle Studien zeigen eine höhere Rezidivrate nach primärem medianem Wundverschluss, allerdings ist der Unterschied lediglich bei Al-Hassan [23] statistisch signifikant. In absoluten Zahlen lag die Rezidivrate nach Exzision und offener Wundbehandlung in allen diesen Studien bei 2-13 %. Die Dauer der Arbeitsunfähigkeit war allerdings in der Studie von Al-Salamah [30] nach Exzision mit offener Wundbehandlung signifikant länger als nach primärem medianem Wundverschluss.

In der Studie von Füzün et al. [181], welche die Exzision mit offener Wundbehandlung mit Marsupialisation verglich, wies die Marsupialisation eine signifikant kürzere Dauer der Arbeitsunfähigkeit bei gleicher Rezidivrate auf.

Eine Studie aus dem Jahr 2019 [381] konnte im Hinblick auf die Kosten herausarbeiten, dass die offene Wundbehandlung sowohl für die Krankenversicherungsträger als auch im Hinblick auf die Arbeitsunfähigkeit deutlich teurer als die geschlossenen Verfahren ist. Hier spielt aber auch die Verwendung teurer, in ihrer Wirksamkeit nicht bewiesener Verbandsmaterialien eine Rolle. Lappenplastiken sind im geltenden DRG-System allerdings eher untervergütet.

Lediglich 3 Studien vergleichen die Exzision mit offener Wundbehandlung mit einem plastischen Verfahren: eine von Fazeli et al. mit der Z-Plastik [174] und zwei mit der Limberg-Plastik [232, 251, 252]. Dabei zeigte sich eine im Vergleich zu Z-Plastik signifikant prolongierte Dauer der Wundheilung (41 vs. 15 Tage) bei gleicher Rezidivrate und eine signifikant höhere Rezidivrate als nach der Limberg-Plastik (33 % vs. 4 %) in der Studie von Jamal [232]. In einer randomisierten Studie aus der Schweiz [251, 252] fand sich dagegen kein Unterschied zwischen den Gruppen bezüglich der Rezidivrate. In der letzteren Studie wurde die nichtmodifizierte Limberg-Plastik eingesetzt, und die Wundheilungsstörungen traten in dieser Gruppe mit 49% sehr häufig auf. Die Rezidivrate war mit 13 % in der Gruppe der Limberg-Plastik höher (6 % nach offener Wundbehandlung), doch in der Gruppe der offen Wundbehandlung mussten weitere 6% der Patienten wegen Wundheilungsstörungen nachoperiert werden. In der Metaanalyse von Stauffer et al. mit über 89.000 Patienten (davon 10.116 primär operierte Patienten) zeigte sich eine 10-Jahres-Rezidivrate von 19,9 % für das offene Vorgehen gegenüber 2,9 % nach der Karydakis-Operation und 11,4 % nach der Limberg-Operation [444].

Eine Metaanalyse von Brown und Lund [86] konnte keinen Vorteil im Hinblick auf die Rezidivrate für das offene Vorgehen herausarbeiten. **Zusammenfassung** Die komplette Exzision mit nachfolgender offener Wundbehandlung ist grundsätzlich sowohl im stationären als auch im ambulanten Bereich einfach durchführbar. Die Größe der Wunde korreliert jedoch direkt mit der Dauer der Wundheilung und damit auch der Arbeitsunfähigkeit. Das Ausmaß der Exzision sollte deshalb an den jeweiligen Befund angepasst werden und so limitiert wie möglich erfolgen. Hier ist möglichweise die Abgrenzung zu den lokalen minimal-invasiven Exzisionsverfahren (Pit-Picking, Lay-open-Verfahren) fließend. Eine Metaanalyse von Stauffer et al. [444] zeigt einen Nachteil gegenüber den plastischen Verfahren bezüglich der Wundheilungsdauer, der Dauer der Arbeitsunfähigkeit und, wie oben dargestellt, tendenzmäßig auch in Bezug auf die Rezidivrate.

10.2.1 | Feststellung der Leitliniengruppe | 2020

Klinischer Konsensuspunkt

Die komplette Exzision mit nachfolgender offener Wundbehandlung ist einfach durchführbar. Sie ist an den Befund anzupassen und so limitiert wie möglich zu gestalten. Aktuelle Metaanalysen zeigen jedoch einen Nachteil bezüglich der Wundheilungsdauer, der Dauer der Arbeitsunfähigkeit und der Rezidivrate gegenüber den plastischen Verfahrena. Konsensstärke: starker Konsensus (100%) ^a Die Deutsche Dermatologische Gesellschaft (DDG) stimmt diesem Statement nicht zu. Aus Sicht der DDG belegt die herangezogene Evidenz aus Stauffer et al. das höhere Rezidivrisiko nicht ausreichend.

10.2.2. Exzision, Marsupialisation der Wundränder und offene Wundbehandlung

Um die Ausdehnung der Wunde nach En-bloc-Exzision des Sinus pilonidalis zu verringern, wurde bereits in den 1950er Jahren von Abramson [7] die sog. Marsupialisation der Wundränder eingeführt. Nach Exzision der markierten Fistelgänge werden die Hautränder mobilisiert und an der Sakralfaszie fixiert (Tab. 10). Dabei resultiert eine schmale

(1–2 cm), sekundär heilende Wunde in der Rima ani. Die veröffentlichten Rezidivraten sind mit 0–10% niedrig [49, 165, 434], die Heilungsdauer beträgt 3–4 Wochen [319, 474]. Die berichtete Dauer der Arbeitsunfähigkeit liegt bei 0,5–1,5 Monaten [49, 181, 434]. In einer retrospektiven Studie von Doll et al. [136] wiesen Patienten, die sich 7 bis 28 Jahre vorher einer Marsupialisation unterzogen hatten, signifikant niedrigere Zufriedenheitswerte auf als die Patienten, die eine offene Wundbehandlung oder eine Mittelliniennaht erhalten hatten.

Prospektiv-randomisierte Studien Eine

Studie aus Ägypten (n = 40; s. oben) verglich Marsupialisation mit Sinusektomie [363] und fand eine signifikante Verkürzung der Dauer der Arbeitsunfähigkeit nach Sinusektomie (2 vs. 5 Tage). Gencosmanoglu et al. [187] (n=142)verglichen Marsupialisation mit Exzision und Mittelliniennaht und fanden eine signifikant niedrigere Rezidivrate (1% vs. 17%) sowie eine signifikant verkürzte Dauer der Arbeitsunfähigkeit (3 vs. 21 Tage) nach Marsupialisation. Eine Studie verglich Marsupialisation mit der Limberg-Plastik (n = 140; [246]). Hier fand sich eine signifikant verkürzte Dauer der Arbeitsunfähigkeit nach einer Limberg-Plastik (11 vs. 18 Tage) bei gleicher Rezidivrate (0 bzw. 1%).

Durch die Marsupialisation der Wundränder nach der In-toto-Exzision des Sinus pilonidalis kann die Wundheilungszeit und die Dauer der Arbeitsunfähigkeit im Vergleich zu der Exzision und offenen Wundbehandlung reduziert werden. Die berichteten Rezidivraten sind sehr niedrig. Die Nachteile der offenen Wundbehandlung bleiben jedoch erhalten. Nach der Erfahrung der Mitglieder der Konsensuskonferenz spielt dieses Verfahren jedoch in Deutschland aufgrund starker postoperativer Schmerzen und niedriger Patientenzufriedenheit keine Rolle mehr und kann daher nicht empfohlen werden.

10.2.2 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Für die Marsupialisation der Wundränder nach der In-toto-Exzision des Sinus pilonidalis kann mangels Literatur-Evidenz derzeit keine Empfehlung ausgesprochen werden.

Konsensstärke: starker Konsensus (100%)

10.2.3 Exzision und primäre Mittelliniennaht

Bereits in den 1940er Jahren [277] wurde der Versuch unternommen, die Dauer der Wundheilung nach radikaler Exzision des Sinus pilonidalis durch einen sofortigen Wundverschluss zu verkürzen (Tab. 11). In der Mehrzahl der Fälle wurde die Wunde mit Hilfe einer subkutanen Nahtreihe und der Hautnaht verschlossen. Obwohl die durchschnittliche Dauer der Wundheilung dadurch in der Tat verkürzt werden konnte [187, 217], wurde zugleich in zahlreichen Arbeiten eine mit 14-74 signifikante Inzidenz von Wunddehiszenzen vermerkt [8, 54, 83, 123, 132, 146, 217, 290, 347, 348, 355, 436, 453]. Ein Bericht aus Italien [466], der einen medianen Wundverschluss mit Einlage einer Drainage zur Antibiotikaspülung beschreibt, demonstrierte eine Rezidivrate von 0% und eine Wundheilungsrate von 100 % bei insgesamt 243 Patienten. Die mit einem Fragezeichen zu versehenden Ergebnisse wurden bis jetzt von keiner weiteren Arbeitsgruppe bestätigt.

Eine Modifikation wurde von El Shaer [159] 2010 beschrieben: Durch die Plikation der Mm. glutei maximi wurde eine Anhebung und Abflachung der medianen Wunde erreicht (n = 56). Die Autoren berichteten über eine Rezidivrate von 1,2% bei einer Wundinfektionsrate von 14%. Ein ähnliches Verfahren (Anhebung und Abflachung der Rima durch Schaffen eines "subcutaneous fat pad") wurde von Ross 1956 [399] und Zimmermann 1978 [490] beschrieben. Eine Abflachung der Rima kann möglicherweise auch durch eine beidseitige Mobilisation des Fettgewebes über 3-5 cm in der sog. spannungsfreien Mittelliniennaht erreicht werden, wie von Sevinc [421] beschrie-

Abb. 3 ▲ Schematische Darstellung der Z-Plastik

ben. Die Rezidivraten betrugen in den Arbeiten von Ross, Zimmermann und Sevinc 9 %, 0 % bzw. 4 %. Letztlich stehen aber diese Untersuchungen im Gegensatz zu den Ergebnissen der Mittelliniennaht in der allgemeinen Literatur.

Prospektiv-randomisierte Studien Eine Reihe von Studien vergleicht die Exzision mit offener Wundbehandlung und die Exzision mit Mittelliniennaht [23, 30, 280, 294]. Alle Studien zeigen eine höhere Rezidivrate nach primärem medianem Wundverschluss, allerdings ist der Unterschied lediglich bei Al-Hassan [23] statistisch signifikant.

Gencosmanoglu et al. (n = 142; [187])verglichen Marsupialisation mit Exzision und Mittelliniennaht und fanden eine signifikant niedrigere Rezidivrate (1 % vs. 17%) sowie eine signifikant verkürzte Dauer der Arbeitsunfähigkeit (3 vs. 21 Tage) nach Marsupialisation. Mehrere Studien verglichen die Exzision mit Mittelliniennaht mit der Limberg-Plastik [8, 12, 347, 358, 453, 421, 486]. In der Studie von Youssef [486] wurde auch noch ein dritter Studienarm (Karydakis-Plastik) eingeschlossen. Vier von diesen 7 Studien zeigten eine niedrigere Rezidivrate nach der Limberg-Plastik im Vergleich zur Mittelliniennaht (0-4 % vs. 4-45%); in einer von diesen Studien war der Unterschied statistisch signifikant. Fünf Studien zeigten außerdem eine höhere Wunddehiszenzrate nach Mittelliniennaht im Vergleich zur Limberg-Plastik, in 3 Studien war das Ergebnis statistisch

signifikant (0-15 % vs. 11-23 %). Bei Sevinc et al. [421] und Youssef [486] schnitt die sog. spannungsfreie Mittelliniennaht genauso gut ab wie die Limberg- bzw. die Karydakis-Plastik - sowohl kurz- als auch langfristig. In der Studie von Sevinc verwendeten die Autoren die klassische Technik der Limberg-Plastik, und die voroperierten Patienten wurden ausgeschlossen. In der Studie von Youssef [486] wurde die modifizierte Limberg-Plastik verwendet. Die Autoren betonten, dass sie durch ausgedehnte subkutane Mobilisation auf beiden Seiten eine Abflachung der Wunde in der Gruppe der Mittelliniennaht erreicht haben.

Zwei weitere Studien verglichen die Mittelliniennaht mit der Z-Plastik [342] bzw. mit der V-Y-Plastik [355], wobei in beiden Studien die Rezidivrate nach Mittelliniennaht höher war (10–22 % vs. 9–16 %), jedoch nicht statistisch signifikant.

Zahlreiche Metaanalysen [23, 30, 280, 294] bewerten die Rezidivrate nach Mittelliniennaht als signifikant höher gegenüber der offenen Wundbehandlung. Auch wenn diese Ergebnisse nicht immer statistisch signifikant sind, scheint die Mittelliniennaht im Vergleich zu den plastischen Verfahren mit schlechteren Kurz- und Langzeitergebnissen assoziiert zu sein und kann somit nicht empfohlen werden.

10.2.3 | Empfehlung | Stand 2020

Empfehlungsgrad: B

Eine Mittelliniennaht sollte wegen einer erhöhten Rezidivrate und einer hohen Inzidenz von Wunddehiszenzen nicht durchgeführt werden.

Evidenzgrad: 1a

Literatur: [23, 30, 280, 294]

Konsensstärke: starker Konsensus (100%)

10.3 Plastische (asymmetrische, off-midline) Verfahren

Als *plastisch* werden Verfahren bezeichnet, bei denen Lappen unterschiedlicher Art für die Deckung des nach der Exzision des Sinus pilonidalis entstandenen Defekts gebildet werden. Die Lappen schließen meist die Haut und das subkutane Fettgewebe ein. Wegen einer

Schnittführung rechts oder links der Mittellinie werden diese Verfahren auch als asymmetrisch bezeichnet [27, 384]. Da die postoperative Wunde (fast) vollständig lateral der Mittellinie liegt, werden die Verfahren in der englischen Literatur auch als "off-midline procedures" bezeichnet [315]. Die letztere Bezeichnung ist besonders treffend.

Von den meisten Autoren, die plastische Verfahren anwenden, wird als erster Schritt der Operation eine komplette Exzision des markierten Fistelsystems durchgeführt.

10.3.1 Plastischer Verschluss mit Z-Plastik

Patey und Scarff [375] hinterfragten 1946 in Lancet die damals gängige hereditäre Theorie der Pathogenese des Sinus pilonidalis [277]. Der Sinus pilonidalis wurde damals mit den retrorektalen Dermoidzysten gleichgesetzt, obwohl sich diese in einer anderen anatomischen Schicht befinden. Die Autoren kamen zu dem Schluss, dass die Erkrankung v.a. durch die Penetration der Haare in der Rima ani zustande kommt. Die postoperativen Wundheilungsstörungen und Rezidive seien demnach weniger auf das nicht ausreichend radikal resezierte Fistelepithel, sondern vielmehr auf das Schaffen seiner Operationswunde in der Tiefe der Rima ani zurückzuführen [374, 375]. In den 1950er Jahren wurden daraufhin die ersten Versuche unternommen, statt auf die Radikalität der Exzision nun auf eine anatomische Modifikation der Rima ani zu setzen. Monro und McDermott [338, 339] beschrieben als erste die Anwendung einer Z-Plastik (Abb. 3). Das Ziel der Operation war die Abflachung der Rima ani und Schaffung einer Operationsnarbe, die nicht in der Tiefe der Rima liegt. Bei den 20 operierten Patienten wurde eine Rezidivrate von 0% festgestellt. Zu gleicher Zeit (1968) demonstrierte Middleton [328] eine Rezidivrate von 10 % bei 30 Patienten, die sich einer Z-Plastik unterzogen. Trotz erster positiver Berichte wurde die Methode nur von relativ wenigen Gruppen angewendet und analysiert. Tschudi et al. [467] veröffentlichten 1988 ihre Erfahrungen mit der Z-Plastik. Die Autoren berichteten von einer 67 %igen Wund-

Abb. 4 ▲ Schematische Darstellung der Karydakis-Plastik

dehiszenzrate, die v.a. auf Zipfelspitzennekrosen zurückzuführen war. Die Bildung von Hautnekrosen und die Rezidivbildung an der Kreuzung der Operationswunde mit der Rima ani wurden in den letzten Jahrzehnten als die wichtigsten Gründe genannt, warum die Methode wenig Ausbreitung erzielte [250]. Mutaf et al. haben eine Abwandlung der Z-Plastik vorgestellt, in der er an 27 Patienten 3,6 Monate nach der Operation noch kein Rezidiv entdecken konnte; dabei trat nur eine partielle Lappennekrose als Komplikation auf [345]. Lappenspitzennekrosen werden auch bei Einsatz des Lotus-Flaps von Hamnet et al. berichtet, wobei sich sein Patientengut aus ein- bis mehrfach voroperierten Patienten rekrutierte [205]. Eine Befragung von Burnett zeigte, dass in Australien/Neuseeland 7 % der Chirurgen die Z-Plastik in der Pilonidalsinus-Chirurgie anwenden [90]. Die Ergebnisse sind in **Tab. 12** dargestellt.

Prospektiv-randomisierte Studien Zu erwähnen sind die Studien aus dem Iran von Fazeli et al. (Z-Plastik vs. Exzision und offene Wundbehandlung, n=144; [174]) und Morrison (Z-Plastik vs. Mittelliniennaht, n=20; [342]). Es konnten keine signifikanten Unterschiede zwischen den Studiengruppen nachgewiesen werden.

In Deutschland spielt die Z-Plastik eine untergeordnete Rolle, sodass diesbezüglich keine Empfehlung ausgesprochen werden kann. Randomisierte Studien konnten keinen Vorteil gegenüber den jeweiligen Vergleichsgruppen nachweisen.

10.3.1 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Für das plastische Verfahren der Z-Plastik kann mangels Literatur-Evidenz keine Empfehlung ausgesprochen werden. Konsensstärke: starker Konsensus (100%)

10.3.2 Plastischer Verschluss nach Karydakis

Der griechische Heeresarzt G. Karydakis stellte 1973 in Lancet [249] eine neue Methode zur Behandlung des Sinus pilonidalis vor, die bis heute unter seinem Namen Anwendung findet. Karydakis berief sich auf die von Patey [296, 375] postulierte Ätiologie des Sinus pilonidalis: die Insertion der Haare in die Haut der Rima ani und Bildung von Fremdkörpergranulomen. Die Operation sollte zur Abflachung der Rima ani und Schaffung einer Narbe (im Gegensatz zur Z-Plastik) lateral der Rima führen. Dies wurde durch eine asymmetrische, elliptische Exzision der Haut unter Mitnahme der Fisteln (Pits) in der Mittellinie erreicht. Es folgte die Mobilisation eines subkutanen Lappens auf der Gegenseite. Der dreischichtige Wundverschluss führte dann zu dem gewünschten Ergebnis (Abb. 4). Die Methode fand bei 1687 Soldaten Anwendung - damals die bis dahin größte Studie zum Sinus pilonidalis. Wundheilungsstörungen traten bei 8,5 % und Rezidive bei 9 von 754 der nachgesorgten Patienten auf (1,3%). Obwohl diese Ergebnisse v. a. für die damalige Zeit beeindruckend waren, sollte aus heutiger Sicht festgehalten werden, dass lediglich 40% der Patienten nachgesorgt wurden. Karydakis veröffentlichte eine Nachfolgearbeit 1992 [250]. Er berichtete über eine Rezidivrate von <1 % bei 5876 (!) operierten Patienten. Diesmal wurden alle Patienten nachgesorgt (was trotzdem mit einem Fragezeichen zu versehen ist) und die Nachsorgezeit betrug 2 bis 20 Jahre. Obwohl wenige Patienten ein Rezidiv entwickelten, dokumentierte der Autor die Ursache: Bei einzelnen Patienten wurde keine ausreichende Lateralisierung der Wunde erreicht, sodass die Wunde die Rima kreuzte. An dieser Lokalisation kam es zum Rezidiv. Bei mehreren Patienten kam es außerdem im Laufe der Jahre zur Ausdehnung der Haut und Bildung einer *Neo-Rima*. Ein Teil der beschriebenen Rezidive fiel auf die Bildung neuer Pits in der Neo-Rima.

Seit Mitte der 1990er Jahre wurden zahlreiche Arbeiten zur Karydakis-Plastik veröffentlicht (Tab. 13). Besonders erwähnenswert ist die Arbeit von Kitchen 1996 [273]. Der Autor demonstrierte eine Rezidivrate von 4 % nach 2 Jahren und eine Wunddehiszensrate von 9 % bei 141 operierten Patienten. 23 % der Patienten waren voroperiert. Die Bedeutung dieser Arbeit liegt v. a. in der präzisen Anleitung zur Schnittführung und Rekonstruktion. In den Studien der letzten 15-20 Jahre wird konstant von einer Rezidvrate zwischen 0 und 6 % nach 5 Jahren Follow-up und einer Wundinfektionsrate von 8 bis 23 % berichtet [16, 72, 73, 273, 340, 341, 440]. Der stationäre Aufenthalt beträgt meist 0-3 Tage, die Arbeitsunfähigkeit 2-3 Wochen.

Prospektiv-randomisierte Studien Fünf Studien aus der Türkei vergleichen die Karydakis-Plastik mit der Limberg-Plastik [41, 45, 73, 93, 164]. In einer Studie werden lediglich die Kurzzeitergebnisse [164] vorgestellt. Eine Studie demonstrierte eine statistisch signifikant höhere Rezidivrate nach der Karydakis-Operation als nach der Limberg-Plastik (11 % vs. 2% [41]), in 3 anderen Studien fand sich diesbezüglich keine Differenz zwischen den beiden Methoden (2–5 % vs. 3–7 %). In 2 Studien wurde eine signifikant höhere Wunddehiszenzrate nach Karydakis-Plastik im Vergleich zur Limberg-Plastik gezeigt (26 % vs. 8 % bei Ersoy [164] und 15 % vs. 4 % bei Arslan [41]); 2 zwei Studien war die Wundheilung nach der Karydakis-Plastik besser (11 % vs. 21 % bei Ates [45] und 18 % vs. 38 % bei Bessa [73]). Limberg- und Karydakis-Plastik zeigen im Vergleich mit primär offenem Verfahren geringere Rezidivraten [4, 421]. In der Studie von Sevinc et al. liegt jedoch das Follow-up lediglich bei 24 Monaten, da andere Autoren eine Mindestnachuntersuchungszeit von 5 Jahren für eine realistische Beurteilung fordern.

Die Arbeitsgruppen um Prassas und Sahebally finden in ihren Metaanalysen 2018, dass sich Karydakis- und Limberg-Plastik in niedriger Rezidivrate gleichen und Wunddehiszenzrate und Wundinfektrate gleich niedrig waren; lediglich die Seromrate war in der Limberg-Gruppe niedriger [389, 403]. Auch scheint die Schmerzhaftigkeit in der Limberg-Gruppe im Vergleich zum Karydakis reduziert zu sein; dieses findet jedoch nur eine prospektiv-randomisierte Studie mit 80 Patienten um Alvandipour et al. [32]. Wundheilungsstörungen sind v. a. bei Nähe der Exzision zum Analkanal [265] und zur Mittellinie zu erwarten [244].

10.3.2 | Empfehlung | Stand 2020

Empfehlungsgrad: B
Das Verfahren nach Karydakis sollte
als eines der plastischen Verfahren in
Erwägung gezogen werden.
Evidenzgrad: 1b

Literatur: [45, 73, 93, 164]

Konsensstärke: starker Konsensus (100%)

10.3.3 Cleft-lift-Verfahren

Dieses Verfahren wurde in den 1980er Jahren von Bascom [64] beschrieben ("cleft": Spalte, "lift": anheben). Diese Methode ist eine Modifikation der Karydakis-Plastik. Das Exzidat und der mobilisierte Lappen sind dünner: statt ca. 1 cm (bei Karydakis und Kitchen) jetzt nur noch 2-3 mm. Grundlage war die Annahme, dass die komplette Exzision des Befundes, wie das von Karydakis noch empfohlen wurde, überflüssig sei, und dass die Lateralisierung und die Abflachung der Wunde an sich bereits ausreichen würden, um eine optimale Heilung zu erreichen. Die Lateralisierung der Naht des Karydakis-Lappens gestaltet sich wegen einer Dicke von 1 cm nicht immer einfach. Da die Dicke des Lappens jedoch keinerlei Rolle im Prozess der Heilung hat, postulierte Bascom, dass ein alleiniger Hautlappen im Gegensatz zu einem Haut-Fett-Lappen ausreicht, da dieser im Vergleich zu Haut-Fett-Lappen einfacher zu lateralisieren ist. Dies betraf v.a. Patienten mit einer tiefen Rima ani. Doch die entscheidende Änderung im Vergleich

zu Karydakis-Plastik war die Schnittführung: Karydakis hatte seine Methode v. a. für Primärbefunde beschrieben, wo die Rima ani durch die vorausgegangenen Operationen noch nicht narbig verändert war. Bei voroperierten Patienten ist die Rima jedoch nicht selten stark verändert, z.B. findet sich in der Rima oft eine breite offene Wunde, aber nur wenig intakte Haut. Auch verteilt sich die intakte Haut unregelmäßig - es findet sich nur noch ein schmaler Streifen im Bereich der Wunde, dagegen ein breites Areal kaudal davon. Kranial der Wunde ist das Hautareal in der Rima wieder sehr schmal. Führt man die Exzisionslinie also wie bei der Karydakis-Methode, so kann es passieren, dass im Bereich der Wunde der verbliebene intakte Hautstreifen zu schmal ist und die Wunde so zu stark unter Spannung kommt. Bascom passte dementsprechend die Schnittführung den Verhältnissen in der Rima ani. Das Letzte ist der Grund, warum die Erlernbarkeit des Cleft-lift-Verfahrens insgesamt komplizierter v.a. in Bezug auf die Positionierung der Inzisionslinie

Bascom beschrieb 2007 Ergebnisse von 69 Cleft-lift-Operationen, wobei alle Patienten voroperiert waren. Alle Patienten waren am Ende der Nachsorgezeit von 30 Monaten genesen, allerdings wurden 6 Patienten mindestens 2-mal operiert, was einer Rezidivrate von 12 % entspricht (nur 52 Patienten konnten nachgesorgt werden).

Den von Patey und Karydakis eingeläuteten Paradigmenwechsel – Modifikation der lokalen Anatomie anstatt kompletter Exzision – veränderte Bascom [61, 63] in der Hinsicht, dass er das Fistelsystem weder markierte noch vollständig exzidierte. Die chronische Sinushöhle (Abszesshöhle) wurde nun lediglich débridiert. Somit sollte der zu deckende Defekt nach der Exzision verringert werden.

Zahlreiche Publikationen konnten die niedrige Rezidivrate von 0 bis 5% bei gleichzeitiger Dauer der Arbeitsunfähigkeit von 2–3 Wochen nach "cleft lift" bestätigen. Allerdings wird auch eine mit 18–40% relativ hohe Rate an Wundheilungsstörungen dokumentiert. Die Wunddehiszenzen nach dem Cleft-

lift-Verfahren sind, ähnlich wie nach der Karydakis-Operation, v.a. auf eine Serombildung und sekundäre Infektionen zurückzuführen [62, 250]. Alle Ergebnisse sind in **Tab. 14** dargestellt. In ihrer nichtrandomisierten Untersuchung finden Koca et al. eine moderat höhere Rezidivrate bei "cleft lift" als bei fasziokutanen V-Y-Plastiken; aufgrund der kleinen Studie und des retrospektiven Designs ohne Randomisierung ist dieser Effekt jedoch fraglich relevant [275].

Prospektiv-randomisierte Studien Es liegen keine randomisierten Studien vor, die das Cleft-lift-Verfahren mit den medianen Exzisionsverfahren vergleichen. In den nichtrandomisierten Studien [146, 188] traten jedoch nach "cleft lift" weniger Rezidive auf.

Nordon et al. [354] verglichen die beiden von Bascom eingeführten Operationen: die minimal-invasive (Pit-Picking) und das Cleft-lift-Verfahren. Letzteres war mit einer signifikant niedrigeren Rezidivrate (0% vs. 24% assoziiert), die Wunddehiszenzrate betrug 24%. Guner et al. [200] analysierten die Ergebnisse nach "cleft lift"bzw. der Limberg-Plastik: Die Rezidivrate (0 bzw. 1,6%) und die Wunddehiszenzrate (8,1% bzw. 9,7%) waren in beiden Gruppen gleich, allerdings war die Nachbeobachtungszeit mit 13 Monaten kurz.

10.3.3 | Empfehlung | Stand 2020

Empfehlungsgrad: 0
Das Cleft-lift-Verfahr

Das Cleft-lift-Verfahren kann als eines der plastischen Verfahren in Erwägung gezogen werden. Zu den Nachteilen gehören jedoch die schlechte Erlernbarkeit der Schnittführung und eine tendenziell höhere Wunddehiszenzrate. Evidenzgrad: 4

Literatur: [200, 354]

Konsensstärke: starker Konsensus (100%)

10.3.4 Plastischer Verschluss nach Limberg

Die Limberg-Plastik ist die am häufigsten beschriebene und am besten analysierte plastische Operationsmethode des Sinus pilonidalis (Abb. 5). Die Mehrzahl der randomisierten Studien zu Lim-

Abb. 5 ▲ Schematische Darstellung der klassischen Limberg-Plastik

berg-Plastik wurden in der Türkei durchgeführt [12, 31, 41, 103–105, 164, 166, 200, 272, 358]. Zugleich stellt die Limberg-Plastik die wohl am häufigsten in Deutschland angewendete plastische Behandlungsmethode des Sinus pilonidalis dar [210, 233, 237, 344].

Die Limberg-Plastik wurde 1948 von dem Leningrader Mund-Kiefer-Gesichts-Chirurgen Alexander Limberg (1894-1974) beschrieben. Er setzte die Methode in der Behandlung der Weichteildefekte im Gesicht ein. Einer rautenförmigen Exzision des Sinusgewebes (wobei von den meisten Autoren nach wie vor eine komplette Exzision nach Markierung des Fistelsystems bevorzugt wird) folgt die Mobilisation eines ebenfalls rautenförmigen subkutanen Lappens, mit dem der Defekt gedeckt wird. Die Anwendung der Limberg-Plastik bei Patienten mit einem Sinus pilonidalis wurde zum ersten Mal von Gwynn [204] beschrieben, wobei der Autor auf seine Erfahrung aus der Mammachirurgie zurückgriff.

Durch die Limberg-Plastik wird die Rima ani abgeflacht und die Wunde lateralisiert. Allerdings kommt es bei der klassischen Schnittführung zu einer Kreuzung des unteren Wundpols mit der Rima ani, falls das Verfahren wie ursprünglich beschrieben durchgeführt wird [45, 204, 246]. Diese programmierte Schwachstelle führte in Einzelfällen zu Heilungsstörungen/Rezidiven [104]. Von zahlreichen Autoren wurde die Methode modifiziert und fortan als mo-

difizierte Limberg-Plastik bezeichnet: Der Unterpol der zu exzidierenden Raute lag nun genau wie die resultierende Narbe bis auf den oberen Wundpol 2–3 cm lateral der Rima.

In den über 50 veröffentlichten Arbeiten zu der Limberg-Plastik werden durchweg niedrige Rezidivraten von weniger als 1% je Jahr der Nachuntersuchung demonstriert (● Tab. 15). Die Autoren, die höhere Rezidivraten angaben – Holmebakk (20%; [217]), Kirkil (7–11%; [272]), Saylam (9%; [408]), Arumugam (7%; [43]), Ates (7%; [45]) – führten die Operation in ihrer ursprünglichen Form durch. Die Rezidivraten nach der modifizierten Limberg-Plastik scheinen niedriger zu sein (0–3%).

Die Wunddehiszenzrate nach der Limberg-Plastik liegt bei 0-45 %, wobei häufiger über eine Inzidenz zwischen 5 und 15% berichtet wird. Auch in diesem Kriterium schneidet die Modifikation besser ab [41, 103]. Wesentliches Kriterium scheint dabei zu sein, ob ein spannungsfreier Verschluss realisiert wurde. Dies kann auch ohne die Hebung der Glutealfaszie ermöglicht werden. Die Dauer der Arbeitsunfähigkeit betrug in den meisten Studien 1-3 Wochen. Enriquez-Navascues et al. [162] beschreiben in ihrer Metaanalyse die geringe Rezidivrate und die geringen Wundkomplikationen nach Limbergund Karydakis-Operationen. Boshnaq et al. unterstreichen diese Ergebnisse in ihrer Metaanalyse mit eigenen Zahlen

Bei Bessa [73] waren nach der Limberg-Plastik deutlich weniger Patienten mit dem kosmetischen Ergebnis zufrieden als nach der Karydakis-Plastik. Auch bei Eryilmaz [169] waren 63 % der Patienten mit dem kosmetischen Ergebnis nicht zufrieden.

Prospektiv-randomisierte Studien In

5 prospektiv-randomisierten Studien wurde die Limberg- mit der Karydakis-Plastik verglichen, ohne dass nennenswerte Unterschiede herausgearbeitet wurden [41, 45, 73, 93, 164]. In der prospektiv-randomisierten Studie, die die Limberg-Plastik mit dem Cleftlift-Verfahren vergleicht [200], fanden sich ebenfalls keine signifikanten Unter-

schiede. Sieben Studien [8, 12, 166, 246, 347, 358, 453] vergleichen die Limberg-Plastik mit den traditionellen medianen Exzisionsverfahren und kommen zu besseren Ergebnissen für das erste Verfahren.

Arslan et al. [41] verglichen die Limberg-Plastik mit ihrer Modifikation (n=330) und fanden eine nicht signifikant niedrigere Rezidivrate bei Patienten, die sich der Modifikation des Verfahren unterzogen (1,9 vs. 6,3 %). In einer ähnlichen Studie von Mentes und Tekin [324, 454] fand sich ebenfalls eine nicht signifikant niedrigere Rezidivrate bei Patienten, die sich der Modifikation der Methode unterzogen (0 vs. 6%), allerdings konnte die Wunddehiszenzrate durch die Modifikation signifikant reduziert werden (6 % vs. 45 %). Die Verwendung von Diathermie vs. Skalpell bei der Limberg-Plastik zeigt in der prospektiv-randomisierten Studie von Das et al. keinen Einfluss auf Drainagemenge und Krankenhausliegedauer [120]. Die intrakutane Nahttechnik scheint dabei mit der geringsten Anzahl an Wundheilungsstörungen vorteilhaft im Vergleich zu horizontalen Matratzennähten bei der Limberg-Plastik zu sein [97]. Jabbar et al. [231] vergleichen in ihrer 30/30 RCT-Studie die Limberg-Plastik mit der primär offenen Methode und finden eine vergleichbare Infektrate (17 % bzw. 20 %); die Sinnhaftigkeit eines Vergleichs von geschlossener (Lappenplastik) und primär offener Methode mit allzeitiger Abflussmöglichkeit von infiziertem Wundsekret darf jedoch angezweifelt werden.

Abb. 6 ▲ Schematische Darstellung der V-Y-Plastik

10.3.4 | Empfehlung | Stand 2020

Empfehlungsgrad: B

Die Limberg-Plastik sollte als eines der plastischen Verfahren in Erwägung gezogen werden. Es soll hierbei die modifizierte Version des Verfahrens angewendet werden, die eine tiefe Kreuzung der Wunde mit der Mittellinie vermeidet.

Evidenzgrad: **1b** Literatur: [12, 31, 41, 45, 79, 103, 164, 166, 246, 347]

Konsensstärke: starker Konsensus (100%)

10.3.5 V-Y-Plastik

Die V-Y-Plastik führt analog zu den anderen plastischen Verfahren zur Abflachung der Rima ani (Abb. 6), allerdings nicht zur kompletten Lateralisierung der Narbe. In 5 (allesamt nicht kontrollierten) kleineren Studien werden Rezidivraten von 0 bis 6% angegeben, die Wunddehiszenzrate betrug in diesen Arbeiten 0–17%. In einer nichtrandomisierten Vergleichsstudie [469] war die Rezidivrate nach der Limberg-Plastik signifikant niedriger als nach der V-Y-Plastik (1,5% vs. 11%). Alle Ergebnisse sind in Tab. 16 dargestellt.

Prospektiv-randomisierte Studien Eine Studie verglich die Mittelliniennaht mit der V-Y-Plastik [355], wobei die Rezidivrate nach Mittelliniennaht höher war. Dies war jedoch nicht statistisch signifikant.

Abb. 7 ▲ Schematische Darstellung des Dufourmentel-Lappens

10.3.5 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Für die V-Y-Plastik kann mangels Literatur-Evidenz keine Empfehlung ausgesprochen werden.

Konsensstärke: starker Konsensus (100 %)

10.3.6 Plastischer Verschluss mit Dufourmentel-Lappen

Die Dufourmentel-Plastik (Tab. 17) unterscheidet sich in Schnittführung von der Limberg-Plastik insofern, dass die Exzidats- und Lappenform eher spitz sind und bei mehr Gewebedefizit in kraniokaudaler Richtung verwendet werden kann (Abb. 7). Auch die wenigen publizierten Ergebnisse entsprechen denen der Limberg-Plastik. Sie kann aufgrund dessen universell und auch bei großen Gewebedefiziten nebenwirkungsarm eingesetzt werden [479].

10.3.6 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Für das Verfahren nach Dufourmentel kann mangels Literatur-Evidenz keine Empfehlung ausgesprochen werden. Konsensstärke: starker Konsensus (100 %)

10.3.7 Verschiedene plastische Verfahren

Aus historischen Gründen ist die bereits 1965 von Kahn [240] beschriebene Technik des sog. lumbalen Lappens interessant. Dabei wurde die Haut kranial des Exzidats mobilisiert und nach kaudal verschoben. Der Autor erklärte die Bedeutung der Abflachung der Rima ani ähnlich, wie Munro [339] dies für die Z-Plastik tat (Tab. 18).

Weitere plastische Verfahren - insbesondere zahlreiche Rotationslappen und Gluteus-Maximus-Lappen wurden v.a. in den letzten 20 Jahren in der Behandlung des Sinus pilonidalis angewendet (Tab. 18). Die publizierten Ergebnisse zeigen Wundheilungsstörungen bei <15% der Patienten und niedrige Rezidivraten. Alle Verfahren führen zur Abflachung der Rima ani, allerdings kommt es bei den meisten Rotationslappen zur Kreuzung der Operationswunde und der Rima [178, 351, 387]. Wegen der hohen Patientenzahl (n = 278) ist die Studie von Krand et al. [279] erwähnenswert. Die Autoren mobilisierten einen bilateralen M.-gluteus-maximus-Lappen. Die resultierende Wunde lag zwar median, doch die Rima ani wurde komplett abgeflacht. Die Rezidivrate betrug 0,7 % und Wundheilungsstörungen 7%. Es fehlen Studien, die diese zahlreichen plastischen Operationsmethoden mit den herkömmlichen vergleichen.

10.4 Diverse Verfahren

Weitere Therapieergebnisse von überwiegend Fallpublikationen sind in **Tab. 19** dargestellt.

10.4.1 Fibrin-Instillation

Die Fibrin-Instillation wird in wenigen Publikationen dargestellt [199, 299, 416]. Gleichzeitig wird von den meisten Autoren zuvor eine lokale Exzision durchgeführt. Die Arbeitsgruppe um Isik führte 2014 eine Fibrininjektion bei Patienten mit blanden Single-Porus-Befunden durch, und sie fanden eine Rezidivrate von bereits 10 % nach einem Jahr [230]. Im Vergleich der "pit excision" plus Fibrin mit lateralisierender Lappenplastik plus Fibrin fanden Smith et al. Rezidivraten von 17 % und 21 % nach 2,5 Jahren

[431]. Da diese hohe Rezidivrate an Kindern gefunden wurde, kann dem von den Autoren postulierten Einsatz der Methode so nicht gefolgt werden. Derselben Meinung ist auch Kayaalp in seiner Metaanalyse; selbst für die Auffüllung von Toträumen in der Tiefe oder zur Verhinderung von Seromen eigne sich die Fibrininjektion nicht [256, 257]. Dem folgen auch Lund et al. in ihrer Cochrane-Analyse [298]. Der Einsatz von Fibrin als Ergänzung zur chirurgischen Therapie oder als Monotherapie hat derzeit keine nachgewiesene Behandlungseffizienz [298]. Eine Studie von Hardy et al., die Kürettage und Fibrineinspritzung bei Kindern kombinierte, fand ein Rezidiv bei 18 Kindern nach einem Jahr Nachbeobachtungszeit (5,6%); hier wurde aber lediglich ein Aktenstudium vorgenommen, was zu einer falsch-niedrigen Rezidivrate führen kann[206]. Saedon et al. verglichen Fibrin-Obliteration mit primärem Mittellinienverschluss, kommen aber aufgrund der geringen Fallzahl von n = 17 Patienten pro Gruppe zu keinem signifikanten Ergebnis [402]. Dieses methodologische Problem übernahmen Sian et al. in ihrer Studie mit 146 Patienten; sie fanden eine Rezidivrate von 27 % nach einmaliger Fibrin-Applikation. Bei einer mittleren Dauer von 4 Monaten bis zum Rezidiv waren 96% der Patienten nach 2 Fibrin-Applikationen geheilt [427]. Bei insgesamt niedrigen Rezidivraten unter mehrfacher Applikation ist es möglich, dass bei retrospektiver Auswertung ohne Nachuntersuchung die tatsächlichen Rezidivraten die vorstehenden Zahlen überschreiten. Alamdari und Mitarbeiter [20] setzten Fibrin in einer RCT zum Vergleich von Schmerzhaftigkeit nach Mittellinienversschluss mit und ohne Fibringabe in die Wundspalte ein. Boereboom et al. hingegen finden in einem RCT-Vergleich von Fibrin (allein) und Bascom-Operation eine Rezidivrate von 16 % nach 4,6 Jahren, was mit mehr als 3% Rezidivrate pro Jahr Follow-up deutlich zu hoch ist [75].

In Deutschland spielt die Fibrininstillation eine untergeordnete Rolle, sodass diesbezüglich keine Empfehlung ausgesprochen werden kann. Sie besticht als Monotherapie in ihrer Schnelligkeit, Einfachheit und Repetierbarkeit, zeigt jedoch eine Rezidivrate von 16% nach 5 Jahren.

10.4.1 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Für die Fibrininstillation kann mangels Literatur-Evidenz keine Empfehlung ausgesprochen werden.

Konsensstärke: starker Konsensus (100%)

10.4.2 Autologe Stammzellen

Eine besondere und derzeit aktuelle Therapieoption stellt die Unterstützung der Wundheilung mit autologen Stammzellen dar. Derzeit liegen 3 Arbeiten aus 2 Kliniken vor, die klinische Ergebnisse darstellen [193, 396, 442]. Spyridakis et al. [442] führten eine Exzision mit primärem Verschluss (Rhomboid-Lappen) durch. Bei der Hälfte der Operationen wurden zusätzlich Stammzellen infiltriert. Die Wundheilung wurde dadurch von 30 auf 24 Tage reduziert, und die Arbeitsunfähigkeit sank von 25 auf 17 Tage. Langzeitergebnisse und Rezidivraten werden nicht übermittelt. Reboa et al. [396] kommen zu ähnlichen Ergebnissen, während die dritte Arbeit [193] zwei verschiedene Zubereitungen der Stammzellen verglich. In einer Studie von Alamdari et al. [20] verringerte die Instillation von Stammzellen plus Fibrin die Schmerzintensität nach Mittellinienverschluss. In Deutschland ist eine Stammzellbehandlung beim Sinus pilonidalis nicht vorgesehen. Zu berücksichtigen sind hierbei auch die sehr hohen Kosten einer Stammzellbehandlung.

10.4.2 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Für die Anwendung von autologen Stammzellen kann mangels Literatur-Evidenz keine Empfehlung ausgesprochen werden.

Konsensstärke: starker Konsensus (100%)

11. Operative Therapie: Reviews und Leitlinien

In der Literatur wird die Behandlung des Sinus pilonidalis in vielen Übersichtsund Weiterbildungsartikeln abgehandelt, was die Bedeutung des Krankheitsbildes widerspiegelt. Eine Vielzahl dieser Reviews wird in der Vollversion der letzten Fassung [360] dargestellt, die hier nicht wieder aufgenommen werden sollen.

Das Review von Enriques-Navarrete aus dem Jahr 2014 [162], das verschiedene Verschlusstechniken vergleicht, nennt als bevorzugte Verfahren die Sinusotomie (Lay-open) und die Off-midline-Verfahren

Die Metaanalyse von Hosseini et al. aus dem Jahr 2014 [219] beklagt die fehlenden Scoring-Systeme und somit die fehlende Vergleichbarkeit der verschiedenen Ergebnisse. Insgesamt sei die Patientenzufriedenheit mit den Verfahren mit Nahtverschluss höher, wobei die Autoren einen leichten Vorteil für die Karydakis-Methode sehen. Die Rezidivrate steige durch eine Rasur und nehme durch eine Enthaarung mittels Laser ab.

Kalaiselvan et al. [241] beurteilten in ihrem Review aus dem Jahr 2019 die minimal-invasiven Techniken. Bei einer Auswertung von 377 Arbeiten fanden sie 10 Studien zu diesem Thema (6 randomisiert, 4 Fallserien). Sie werden ausgewiesen als sicher und effektiv mit einer geringen Kurzzeit-Komplikationsrate. Es wird aber, wie so häufig, auf die Notwendigkeit weiterer Studien verwiesen.

Ein weiteres Review von Doll et al. [142] zeigte Unterschiede in der Erfolgsrate nicht nur in Bezug auf die einzelnen Operationstechniken, sondern auch auf die Anwendung der Operationstechniken in den einzelnen Ländern.

Weitere Reviews der einzelnen Techniken werden in den entsprechenden Kapiteln aufgearbeitet.

Neu sind die Leitlinien der italienischen Gesellschaft für Koloproktologie (SICCR) [415] und der Amerikanischen Gesellschaft für Koloproktologie [236], die hier kurz vorgestellt werden sollen. Sie repräsentieren jedoch Empfehlungen der jeweiligen lokalen Fachgesellschaften und sind teilweise konträr zu den Empfehlungen der deutschen Leitlinie.

Sie sind für Deutschland nicht bindend und werden deshalb nur der Vollständigkeit halber aufgeführt.

Die italienische Leitlinie aus dem Jahr 2015 kommt zu folgenden Empfehlungen:

- Die Rasur sollte als Primärbehandlung bei Patienten ohne Abszess gesehen und bei allen Patienten postoperativ angewendet werden.
- Phenol und Fibrinkleber kann bei selektionierten Patienten mit chronischer Erkrankung angewendet werden.
- Antibiotika sollten nur bei Patienten mit Immunsuppression, schweren Nebenerkrankungen und bei Phlegmone eingesetzt werden.
- Ein Abszess wird mit einer paramedianen Inzision behandelt.
- Die offene Behandlung nach Exzision weist keine Vorteile gegenüber dem primären Wundverschluss auf.
 Wenn die Wunde verschlossen wird, sollte ein Off-midline-Verfahren angewendet werden. Drainagen sollten individuell eingesetzt werden.
- Minimal-invasive Verfahren sollten bei Patienten mit einer leichten und mäßiggradigen Erkrankung zum Einsatz kommen.
- Bei stark behaarten Patienten mit ausgedehnter Primärerkrankung, Rezidiven und chronischen Wunden können lappenbasierte Methoden notwendig werden.
- Bei Rezidiven ist einzig das Vorliegen eines Abszesses und nicht die chronische Entzündung per se Indikation für die Exzision.

Die amerikanische Leitlinie aus dem Jahr 2019 kommt zu ähnlichen Empfehlungen:

- Rasur oder Laserepilation können in Abwesenheit eines Abszesses als Primärbehandlung, ansonsten als adjuvante Behandlung zur Anwendung kommen.
- Phenol ist eine effektive Therapiemethode, die zu einer schnellen und anhaltenden Heilung führen kann.
- Fibrinkleber kann als Primär- oder zusätzliche Behandlung effektiv sein.
- Die Bedeutung der Antibiotikaprophylaxe ist nicht klar und über

- deren Anwendung sollte individuell entschieden werden.
- Ein Pilonidalabszess sollte mittels Inzision und Drainage behandelt werden.
- Patienten mit chronischem Sinus pilonidalis, die eine Exzision benötigen, können mittels offener Wundbehandlung, Marsupialisation sowie Off-midline-Verfahren behandelt werden. Ob eine Drainage platziert wird, sollte individuell entschieden werden.
- Lappenbasierte Methoden können angewendet werden, besonders, falls eine komplexe und Rezidiverkrankung vorliegt.
- Minimal-invasive Methoden mit Verwendung eines Endoskops können eingesetzt werden, doch sie benötigen spezialisiertes Equipment und Erfahrung.

12. Intra- und perioperatives Management

12.1 Anästhesie

Naja et al. [349] verglichen in einer randomisierten Studie Lokalanästhesie und Vollnarkose miteinander. Als operative Techniken wurden entweder die Mittelliniennaht oder eine offene Wundbehandlung durchgeführt. Der Aufenthalt im Operationssaal und Aufwachraum war erwartungsgemäß bei einer Vollnarkose länger. Der überwiegende Teil der Patienten konnte nach Lokalanästhesie am Operationstag entlassen werden. Der Schmerzmittelbedarf war postoperativ nach Vollnarkose höher. Insgesamt wurde die Lokalanästhesie als vorteilhafte Alternative dargestellt.

In einer randomisierten Studie verglichen Schmittner et al. [411] die Spinalanästhesie mit der Vollnarkose. Die Spinalanästhesie erwies sich der Vollnarkose in Bezug auf Analgetikaverbrauch im Aufwachraum, Erholungszeit und postoperativen Komplikationen überlegen. Die Daten sind jedoch sehr differenziert zu bewerten. Ausgewertet wurde die Fähigkeit zu trinken (40 vs. 171 min postoperativ) und zu essen (55 vs. 282 min postoperativ). Der Schmerzmittelbedarf im Aufwachraum war erwartungsgemäß in

der Vollnarkose-Gruppe höher (0/25 vs. 6/25), wobei keine zusätzliche Schmerzmittelgabe in der Vollnarkose-Gruppe intraoperativ erfolgte. Letztendlich war die Zufriedenheit in beiden Gruppen gleich. Zusammenfassend muss festgestellt werden, dass sich die Vorteile für eine Spinalanästhesie bei direkter Auswertung der Ergebnisse relativieren. Die Wahl des Anästhesieverfahrens obliegt daher den Präferenzen des Anästhesisten und des Patienten [297].

Operationen beim Sinus pilonidalis können sowohl unter ambulanten als auch unter stationären Bedingungen durchgeführt werden. Eingriffe in Lokalanästhesie beziehen sich v.a. auf kleinere Befunde und lokalisierte Verfahren (Phenol, Pit-Picking, lokale Exzision mit offener Wundbehandlung). Diese Eingriffe werden laut Literatur bei vielen Patienten auch ambulant durchgeführt (• Tab. 3–6 und 17–19). Bei geeigneten Patienten ist das Vorgehen auch in Narkose ambulant möglich.

Größere Exzisionen mit offener Wundbehandlung sollten wegen Nachblutungsgefahr eher unter stationären Bedingungen erfolgen. Bis auf sehr wenige Ausnahmen [62] werden so gut wie alle plastischen Verfahren unter stationären Bedingungen durchgeführt (▶ Tab. 9–15). In der Regel beträgt die stationäre Verweildauer bei den plastischen Verfahren (Limberg, Karydakis etc.) 1–5 Tage.

12.1 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt
Die minimal-invasiven Verfahren können meist in Lokalanästhesie durchgeführt werden. Die größeren Exzisionen und die plastischen Verfahren werden meist in Allgemein- oder Regionalanästhesie durchgeführt, wobei beide Verfahren gleichwertig sind.

Konsensstärke: starker Konsensus (100 %)

12.2 Wundinfektion, Wundheilungsstörungen und Antibiose

Eine wichtige Komplikation und möglicher Risikofaktor für ein Rezidiv nach

geschlossenen Verfahren stellt der postoperative Wundinfekt dar.

Al-Khayat et al. [26] sahen Adipositas und Rauchen als schwerwiegende Risiko-faktoren für Wundkomplikationen. Gleiches beschreiben Cubukcu et al. [112] sowie Doll et al. [141] für die Adipositas. In anderen Publikationen konnte dies jedoch nicht bestätigt werden [405, 428].

Alptekin et al. [28] gingen dem Zusammenhang zwischen Exzisionsgröße und der Rate an Wundinfekten nach. Erwartungsgemäß steigerte die Größe des Resektats die Rate der Wundinfekte und letztlich auch die Heilungszeit. Als operative Technik kamen die Mittelliniennaht und der Limberg–Lappen zur Anwendung.

Bereits 1995 untersuchten Sondenaa et al. [439] die Bedeutung einer Antibiotikaprophylaxe mit Cefoxitin bei Patienten mit Mittelliniennaht. Einen Wundinfekt entwickelten 61 %. Die Zahl der Wundinfekte konnte in dieser Studie durch die Antibiotikagabe nicht gesenkt werden. Bei Kronborg et al. [280] zeigte die präoperative Single-shot-Antibiotikaprophylaxe in einer prospektivrandomisierten Studie ebenfalls keinen Einfluss auf die Wundkomplikationsrate nach Mittelliniennaht. Die gleiche Fragestellung wurde in der randomisierten Studie von Kundes et al. [283] untersucht, allerdings in einer 124 Patienten umfassenden Population, welche die Limberg-Plastik erhielt. Patienten in der Studiengruppe erhielten Cefazolin/Metronidazol binnen 60 min vor dem Hautschnitt, in der Kontrollgruppe wurden keine Antibiotika gegeben. Die Wundheilungsstörungen traten mit 8,9 % bzw. 5 % in beiden Gruppen gleich oft auf. Lediglich in der retrospektiven Analyse von Popeskou et al. [388] war der Verzicht auf eine perioperative Antibiotikagabe mit postoperativer Wundinfektion assoziiert.

Chaudhuri und Beckdash [99] verglichen in einer randomisierten Studie eine Single-shot-Antibiose mit Metronidazol und eine postoperative 5-Tage-Antibiose (Cephuroxim, Metronidazol, Co-Amoxiclav). Sie sahen keinen Vorteil für die längere Antibiotikagabe.

In einem Review von Mavros et al. zeigte sich entsprechend kein grundsätzlicher Vorteil für die Antibiose, wobei die Single-shot-Behandlung besser als die postoperative Antibiose zu sein scheint [314].

Insgesamt erlaubt die derzeitige Literaturlage keine Empfehlung für eine intraoperative Antibiotikagabe, obwohl diese bei vielen Operateuren ein durchaus gängiges Vorgehen ist.

12.2.1 | Empfehlung | Stand 2020

Empfehlungsgrad: A

Nach der aktuellen Literatur soll keine perioperative Single-shot-Antibiotikaprophylaxe bei Patienten mit Sinus pilonidalis erfolgen.

Evidenzgrad: 1b Literatur: [99, 283]

Konsensstärke: starker Konsensus (100%)

Mehrere Studien untersuchen die Auswirkung einer lokalen Gentamycin-Anwendung. Holzer et al. [218] sahen einen Vorteil für den primären Verschluss in der Mittellinie mit Septocoll® (Gentamycin-Kollagenfleece) gegenüber der offenen Wundbehandlung. Ein tiefer Wundinfekt mit Eröffnung der Wunde trat jedoch bei 27 % der Operierten auf.

In einer randomisierten Studie [34] mit 161 Patienten in 11 Krankenhäusern zeigte die Verwendung von Gentamycin nur einen marginalen Vorteil mit weniger Wunddehiszenzen und Reoperationen, sodass die routinemäßige Anwendung nicht empfohlen wurde. In der randomisierten Studie von Yetim [484] (n = 80)wiesen Patienten nach Mittelliniennaht eine schnellere Wundheilung, kürzeren stationären Aufenthalt und Arbeitsunfähigkeit und eine niedrigere Rezidivrate auf, wenn ein Gentamycin-Schwamm angewendet wurde (Tab. 8). Weitere Studien sind in den Evidenztabellen im Hinblick auf Infekte und Rezidive erfasst [83, 280, 472]. In einer Kohortenstudie sahen Doll et al. [131] im Langzeitverlauf bei 178 Patienten einen Vorteil für die Gentamycin-Anwendung in der Wundheilung, nicht aber in der Rezidivrate.

Ein Review von de Bruin et al. [121] wertete 13 Studien aus. Elf Studien sahen eine deutliche Reduktion der Wundin-

fektionsrate durch die lokale Gentamycin-Anwendung.

In einer im Jahr 2016 veröffentlichten neueren Metaanalyse von Nguyen et al. [353] wurden 5 prospektiv-randomisierte Studien zur gleichen Fragestellung eingeschlossen. Die Autoren schlussfolgerten im Gegensatz zur vorherigen Studie, dass die Einlage eines Gentamycin-Schwamms weder die Infektions- noch die Rezidivrate verringert.

12.2.2 | Empfehlung | Stand 2020

Empfehlungsgrad: 0

Die intraoperative lokale Applikation von Sulmycin oder Gentamycin kann v. a. bei adipösen Patienten und bei Lappenplastiken die erhöhte Inzidenz an Wundinfekten reduzieren. Die Ergebnisse der Literatur sind trotz hohen Evidenzlevels sehr uneinheitlich, sodass eine generelle Empfehlung derzeit nicht ausgesprochen werden kann.

Evidenzgrad: 1b Literatur: [121, 353]

Konsensstärke: starker Konsensus (100%)

12.3 Darmvorbereitung

Terzi et al. [455] untersuchten in einer randomisierten Studie die Rolle einer präoperativen Darmvorbereitung. Ein Vorteil für eine solche wurde nicht gesehen. Die Wundinfektionsrate mit Vorbereitung betrug 14,3 % (7/49) bzw. 11,5 % (6/52) ohne Vorbereitung.

Der Empfehlungsgrad wurde mit B angegeben, da lediglich eine Studie zu diesem Thema vorliegt, die sich jedoch auch mit der klinischen Realität deckt.

12.3 | Empfehlung | Stand 2020

Empfehlungsgrad: B

Eine Darmvorbereitung vor einer Sinuspilonidalis-Operation sollte nicht erfolgen.

Evidenzgrad: 1b Literatur: [455]

Konsensstärke: starker Konsensus (100%)

12.4 Intraoperative Maßnahmen und Nahttechniken

In einer randomisierten Studie sahen Duxbury et al. [148] Vorteile für die Verwendung eines elektrischen Messers gegenüber dem Skalpell in Bezug auf Operationsdauer, postoperative Schmerzen und Morbidität. Es wurde eine Exzision mit offener Wundbehandlung durchgeführt. Die Heilungsrate war in beiden Gruppen gleich. Shpitz et al. [426] sahen Vorteile für die Anwendung des Elektromessers beim akuten Abszess. Parlakgumus [373] verglichen die Gefäßversiegelung mit Ligasure® mit der monopolaren Blutstillung in einer randomisierten Studie. Die Rate an Wundinfekten und Deshiszenzen war nach Gefäßversiegelung deutlich niedriger.

In einer prospektiv-randomisierten Studie [332] verglichen Milone et al. die intrakutane vs. Hautnaht in Einzelknopftechnik bei jeweils ca. 100 Patienten, die sich einer Mittelliniennaht unterzogen. Die Wundinfektionsrate unterschied sich in beiden Gruppen nicht (ca. 10%). Die Patienten, die eine Intrakutannaht erhielten, waren allerdings mit dem kosmetischen Ergebnis signifikant zufriedener. In einer randomisierten Studie [367] wurde die Auswirkung der Verwendung von Histoacryl-Hautkleber untersucht. Die Autoren sahen einen signifikanten Vorteil in Bezug auf postoperative Komplikationen und Rezidivrate.

Doll et al. [140] untersuchten die Bedeutung einer präoperativen Anfärbung der Fistelgänge mit Methylenblau in einer randomisierten Studie an 247 Patienten. Im Langzeitverlauf konnte die 20-Jahres-Rezidivrate durch die Instillation von Methylenblau halbiert werden. Neben der Anfärbung von Seitengängen und somit der kompletteren Exzision wird dem Methylenblau auch eine coantibiotische Wirkung bei akuter Abszedierung zugesprochen. Ergänzend muss hier angemerkt werden, dass Methylenblau aufgrund der Toxizität nicht mehr im Handel erhältlich ist und durch Toluidinblau ersetzt werden sollte.

12.4 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt
Eine Exzision mit dem elektrischen Messer scheint einen Vorteil gegenüber dem Skalpell in Bezug auf Blutungen zu haben. Der Hautverschluss kann sowohl in Einzelknopftechnik als auch mittels Intrakutannaht erfolgen. Ein Vorteil in Bezug auf die Rezidivrate wurde nach Exzision und offener Wundbehandlung für die Instillation von Methylenblau beschrieben. Methylenblau steht in Deutschland derzeit jedoch nicht zur Verfügung. Daher kann keine Anwendungsempfehlung gegeben werden. Konsensstärke: starker Konsensus (100 %)

12.5 Drainage

Der Stellenwert einer Drainageeinlage wird kontrovers diskutiert.

Zwei Studien vergleichen die Wunddehiszenzrate nach Karydakis-Operation mit und ohne subkutane Drainageplatzierung und kommen beide zum Schluss, dass der Verzicht auf eine subkutane Drainage zu einer Zunahme der Wundheilungsstörungen führt (32 vs. 8 % bei Gürer [203] und 24 % vs. 8 % bei Sözen [440]).

Zwei weitere randomisierte Studien beschäftigen sich mit der Frage, ob die Platzierung einer subkutanen Drainage bei der Limberg-Plastik das postoperative Ergebnis beeinflusst [105, 272]. In der Studie von Colak [105] kamen die Autoren zum Ergebnis, dass das Platzieren der Drainage die Wunddehiszenzrate zweifach erhöht. Bei Kirkil [272] fand sich dagegen kein statistisch signifikanter Unterschied zwischen den Gruppen, obwohl Patienten ohne Drainage eine höhere Wunddehiszenzrate (22 % vs. 14 %) und Rezidivrate (11 % v s. 7 %) aufwiesen.

Eine weitere größere randomisierte Studie stammt aus Italien [336]. Es wurden jeweils 400 Patienten, die sich einer Mittelliniennaht unterzogen, mit und ohne Drainage (Jackson-Pratt-Drainage) verglichen. Alle Eingriffe fanden in Lokalanästhesie statt. Die Auswertung ergab keinen signifikanten Unterschied in Bezug auf Wundinfekte (10 bzw. 9%) und Rezidivraten (9 bzw. 10%). Die Ar-

beitsunfähigkeit war in beiden Gruppen gleich lang (2 Tage).

Aktuell wurde in der gleichen italienischen Arbeitsgruppe die Rolle der Drainage in einer Metaanalyse aufgearbeitet [332]. Trotz einer Tendenz zu weniger Wundinfekten und Rezidiven wird die Anlage einer Drainage für nicht zwingend erforderlich angesehen.

12.5 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Die Studienlage zur Notwendigkeit der Drainageeinlage ist uneinheitlich. Eine Empfehlung kann deshalb nicht abgegeben werden.

Konsensstärke: starker Konsensus (100%)

12.6 Postoperative Wundversorgung

Bei der offenen Wundbehandlung spielt die pflegerische Betreuung eine wichtige Rolle [310, 448, 461]. Wichtig erscheint eine individuelle Versorgung und ausreichende Schmerztherapie.

Grundsätzlich ist die Dauer der Wundheilung von der Größe der Wunde abhängig. Marks et al. [307] sehen eine verlängerte Wundheilung im Zusammenhang mit einer bakteriellen Besiedlung.

Die sekundär heilende Wunde sollte regelmäßig ausgeduscht werden. Das Ausduschen der Wunde mit einem kräftigen Strahl reinigt die offene Wunde und unterstützt die Granulation [215].

Spezielle klinische Studien zur Behandlung von sog. septischen Wunden liegen nicht vor. Im Rahmen der Eröffnung von Abszessen wird eine einmalige antiseptische Spülung empfohlen [220]. In Frage kommen dabei folgende Substanzen: Octenidin, Polihexanid und ggf. PVP-Jod. Insgesamt wird jedoch empfohlen, diese nur nach sorgfältiger Indikationsstellung anzuwenden, da ansonsten Störungen der Wundheilung resultieren können [278]. Untersuchungen zur Wundbehandlung mit Leitungswasser speziell für Wunden im erweiterten perianalen Raum existieren nicht. Hübner et al. [221] verweisen auf die mögliche Kontamination des Wassers mit Legionellen oder *Pseudomonas aeruginosa*, was jedoch in Anbetracht des perianalen Keimspektrums von untergeordneter Bedeutung sein dürfte. Durch regelmäßiges Austasten der Wunde können Sekretverhalte in der Tiefe vermieden werden. Dies erscheint insbesondere bei großen Wunden wichtig, bei denen eine zu frühe Verklebung der Hautränder in jedem Fall verhindert werden muss. Dies sollte auch bei der primären Schnittführung berücksichtigt werden, wenn eine offene Wundbehandlung vorgesehen ist.

Hydrokolloid- und Alginat-Verbände können Schmerzen und Patientenkomfort verbessern, verkürzen aber nur unwesentlich die Heilungsdauer [471]. In einer Metaanalyse von Sing et al. aus dem Jahr 2004 [429] wird der Hydrokolloid-Verband mit einer einfachen Gaze bei der Behandlung chronischer Wunden verglichen. Man fand damals 12 randomisierte Studien, die insgesamt eine verkürzte Heilungsdauer ergaben. Hier müssen jedoch die deutlich höheren Kosten in Betracht gezogen werden.

Eine weitere Möglichkeit der Versorgung größerer offener Wunden stellt die Vakuumversiegelung dar. Diese wurde in der Literatur in einigen Falldemonstrationen beschrieben [74, 301, 317, 409]. In der Falldarstellung von McGuinness et al. [317] wird die Heilungsdauer mit 8 Wochen angegeben. Biter et al. [74] sehen lediglich Vorteile in den ersten 2 Wochen. Die Gesamtdauer der Wundheilung lag bei 84 (VAC) bzw. 93 Tagen für das konventionelle Vorgehen. Analog dazu betrug die Zeit bis zur Wiederaufnahme des täglichen Lebens 27 bzw. 29 Tage. In der täglichen Routine dürfte das Verfahren Schwierigkeiten in Bezug auf die relativ hohen Kosten und den in einigen Fällen erforderlichen stationären Aufenthalt bereiten, sodass das Vorgehen nur bei seltenen ausgewählten Fällen in Erwägung gezogen werden sollte.

Eine weitere randomisierte Studie zeigt einen leichten Vorteil für die lokale Anwendung von Zinkoxid-Salbe bei offenen Wunden [11].

Eine Studie aus Portugal beschreibt die lokale Anwendung von Honig zur Beschleunigung der Wundheilung [214].

12.6 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt
Bei der offenen Wundbehandlung spielt
die richtige Wundpflege eine wichtige Rolle. Eine frühzeitige Verklebung
im Hautniveau sollte verhindert werden. Regelmäßiges, mehrfach tägliches
Ausduschen mit Leitungswasser ist in
der Regel ausreichend und sollte erfolgen. Ein Vorteil für die Anwendung von
Hydrokolloidverbänden und der Vakuumversiegelung konnte in der Literatur
bisher nicht aufgezeigt werden.
Konsensstärke: starker Konsensus (100 %)

12.7 Rezidivprophylaxe

Eine der wichtigsten und für den/die Betroffenen belastendsten Spätfolgen stellt das Rezidiv dar. Es sollte zwischen Persistenz, das heißt der anhaltenden Sekretion durch inkomplette Wundheilung, und dem wirklichen Rezidiv, definiert als Auftreten von erneuten Pori und Symptomen nach kurativer Behandlung und kompletter Abheilung, unterschieden werden [143]. Leider erfolgt diese Differenzierung nur in wenigen Publikationen. Dieses Problem wird verstärkt durch oft kurze Nachbeobachtungszeiten. So konnten Doll et al. [128, 133] in einer Langzeitbeobachtung von im Mittel 15 Jahren eine Rezidivrate von 21% konstatieren. Fast 30 % der Rezidive traten mehr als 4 Jahre nach der Erstbehandlung auf [444]. In dieser Leitlinie werden die Rezidivraten im Rahmen der Besprechung der einzelnen Therapieverfahren dargestellt und bewertet.

Der positive Effekt einer rein konservativen Behandlung mittels Optimierung der Entfernung der Haare durch Rasur wird von Armstrong et al. [40] beschrieben. In ihrem Soldaten-Patientengut mussten nur 15 % der Betroffenen einer Operation zugeführt werden.

Auch bei der postoperativen Rezidivprophylaxe kommt der Haarentfernung eine wichtige Rolle zu. Die Epilation scheint einen positiven Effekt für die Wundheilung nach einer Operation zu haben [40]. Viele Publikationen verweisen in Nebensätzen auf den positiven Effekt, dezidierte Studien liegen jedoch nicht vor. Bezüglich der Rasur wird insbesondere bei offener Wundbehandlung die Entfernung der Haare, die die Granulation behindern, als positiv beschrieben [242, 451], obwohl dieser Effekt der Klingenrasur in einer weiteren Publikation [385] an einem umfangreichen Patientengut nicht bestätigt werden konnte. Hier führt die Klingenrasur zu einer signifikanten Erhöhung der Langzeit-Rezidivrate. Das Problem stellt die wiederholte Notwendigkeit der Haarentfernung in einer schlecht zugänglichen Region dar, sodass möglicherweise eine dauerhafte Epilation durch Enthaarungscreme oder Laser zu bevorzugen ist. Der Nachteil von Epilationscremes besteht in einer Veränderung des pH-Wertes, die die gesunde Barrierefunktion der Haut verändert. Bei Friseuren wurden auch Allergien gegen das in den Salben enthaltene Ammoniumthioglykolat beschrieben [293, 480].

Scharfkantiges Schnitthaar lässt sich reichlich im Pilonialsinusnest [77] und auch bereits unmittelbar nach dem Frisieren in der Rima ani nachweisen [137]. Hier wird Schnitthaar in der sog. "catching zone" von bestehendem Interglutealhaar aufgefangen und gehalten.

Vorteile werden somit hier durch die definitive Haarentfernung z.B. mittels Laser gesehen, da hierdurch kein Bruch- oder Schnitthaar erzeugt wird. Der Vorteil einer postoperativen Laser-Epilation wird in mehreren Publikationen beschrieben (Tab. 17; [109, 184, 364]). Der Beginn der Behandlung erfolgte entweder am Tag vor der Operation [364], intraoperativ [483] oder lediglich postoperativ [53, 109, 184]. Demircan untersuchte in einer randomisierten Studie mit 60 Patienten mit Karydakis-Plastik, ob eine zweimalige Laserepilation perioperativ die postoperative Rezidivrate senken kann [122]. Es fand sich dabei eine signifikant höhere Rezidivrate bei depilierten Patienten. Die Studie wurde kritisiert, weil eine reguläre Epilation mindestens 5-10 Behandlungen benötigt, um Haarlosigkeit bzw. die Umwandlung von telogenem Haar in Vellushaar zu erreichen.

Bütter und Mitarbeiter behandelten n = 33/134 pädiatrische Patienten mit Laser, und weitere 50/134 mit primär offener

Behandlung. Bei 34% Rezidiven in den primär offenen Gruppe nach 2,5 Jahren finden sich 54% Rezidive in der Laser-Epilations-Monotherapie-Gruppe [91].

Koch und Mitarbeiter weisen darauf hin, dass Laserepilationen vor Abschluss der Narbenbildung die größte Effizienz haben, da Laserstrahlen weniger tief in Narbengewebe eindringen können [276]. Braungart et al. zeigen an 18 Kindern mit Mittellinienverschluss (!) mit und ohne Laserepilation, dass eine Rezidivrate von 4/18 (22%) bereits nach 9 Monaten auftreten kann. Natürlich findet sich bei diesen kleinen Zahlen und der verfahrensbedingt hohen Rezidivrate kein Einfluss der Laserepilation [81]. Mutus hingegen findet bei seinen Patienten der retrospektiven Kohorte mit Mittellinienverschluss keine Rezidive in der laserepilierten Gruppe, hingegen aber 7,8% in der nichtepilierten Gruppe nach 2 Jahren [346].

Eine Metaanalyse aus dem Jahr 2018 [390] zeigte einen leichten Vorteil für die Haarentfernung mittels Laser, wobei weitere Studien gefordert werden.

Zu berücksichtigen sind die Kosten von 300–500 €, die in Deutschland derzeit noch keine Kassenleistung darstellen.

12.7 | Empfehlung | Stand 2020

Empfehlungsgrad: 0
Aufgrund der Datenlage kann eine
Empfehlung zur grundsätzlichen LaserHaarentfernung derzeit nicht abgegeben werden. Wenn bei jungen Patienten
mit familiärer Belastung, mit frühen
oder mehrfachen Rezidiven alle Mittel
zur Rezidivprophylaxe ausgeschöpft
werden müssen, kann eine Laserepilation tief intergluteal als Einzelfallentscheidung erwogen werden.

Evidenzgrad: 4 Literatur: [77, 109, 137, 276, 364, 390] Konsensstärke: Konsensus (90%)

13 Spätfolgen

Als mögliche Spätfolgen werden in der Literatur infektiöse und maligne Folgeerkrankungen beschrieben. Eine umfangreiche Darstellung erfolgte in der ersten Version dieser Leitlinie [360]. Eine aktuelle Studie aus der Türkei fand bei fast 1000 untersuchten Präparaten keinen malignen Befund, fordert aber trotzdem eine routinemäßige histologische Untersuchung [488].

13 | Feststellung der Leitliniengruppe | Stand 2020

Klinischer Konsensuspunkt Spätfolgen, insbesondere die maligne Entartung (Plattenepithelkarzinom), sind möglich, aber sehr selten. In den meisten Fällen bestand eine Krankheitsdauer von mehr als 15 Jahren. Konsensstärke: starker Konsensus (100 %)

Korrespondenzadresse

Dr. A. Ommer

End- und Dickdarm-Zentrum Essen Rüttenscheider Straße 66, 45130 Essen, Deutschland aommer@online.de

Einhaltung ethischer Richtlinien

Interessenkonflikt. Eine Aufstellung der Interessenkonflikte der beteiligten Autoren findet sich online unter https://www.awmf.org/fileadmin/user_upload/Leitlinien/081_D_Ges_fuer_Koloproktologie/081-009i_S3_Sinus_pilonidalis_2020-07.pdf.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Anhang

Evidenztabellen

In den folgenden Evidenztabellen wird die vorhandene Literatur erfasst.

Exzision mit nachfolgender

Definitionen

"Offen"

	offener W	undbe	handlung
"Median"	Exzision	mit	Wundver-
	schluss in	der M	Iittellinie
"Marsupi-	Exzision 1	mit M	arsupialisa-
alisation"	tion der V	Vundr	änder

Ein "m" vor dem Operationsverfahren bedeutet "modifiziert"(z. B. mLimberg = modifizierte Limberg-Plastik)

Rezidiv

jegliche Notwendigkeit einer erneuten operativen Therapie. Die Zahl kann sich also von der in der Arbeit angegebenen "recurrence rate" unterscheiden falls dort eine andere Rezidivdefinition angewendet wurde.

Die Bewertung der Studienqualität wurde analog • Tab. 1 festgelegt.

 $\label{eq:Dauer} Dauer\,der\,station \ddot{a}ren\,Behandlung = 0$ steht für einen ambulanten Eingriff

Vor-OP (%) Anteil der voroperierten Patienten (eine Abszessspaltung wurde nicht als eine Voroperation defi-

niert)

FU Follow-up (Nachsorge) FU (%) Anteil der nach gesorgten

Patienten

Wundkom- jegliche Störungen der plikationen Wundidentität, die eine

(partielle) Eröffnung der Wunde zur Folge hatten.

AU Arbeitsunfähigkeit

Die *leerstehenden Felder* in der Tabelle bedeuten, dass in der Studie zu der entsprechenden Variablen keine auswertbaren Angaben gemacht wurden

® steht für "randomisiert"

Tab. 3 Phenol	linjektior	ı										
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Aksoy [19]	2010	258	Phenolinjektion	25	21	77	33	-		0	-	4
Aygen [50]	2010	36	Phenolinjektion (3–7 Injektionen/Pat.)	100	54	100	14	-		0		4
Bayhan [66]	2016	81	Phenolinjektion (44) ^d mLimberg (37)	0	16,5 17,9		18,9 6,8	18,5		01 1,25		4
Calikoglu [92]	2017	147	Phenolinjektion (74) Offen (73)	6	39	96	19 13		16 40*	01		1b [®]
Dag [114]	2012	76	Phenolinjektion (80 %)	0			33	-		0		4
Dogru [126]	2004	41	Phenolinjektion (70 % >1 Injektion)	17	24		70 nach wiederholter Injektion 5 %	-		0		4
Gecim [186]	2017	23	Endoskopische Behand- lung + Phenol	4	12	95	0	0			2	4
Kayaalp [258]	2010	30	Phenolinjektion	3	14		30	-	25	0	2	4
Kaymakcioglu [260]	2005	143	Phenolinjektion	0			8			0		4
Kelly ^a [261]	1989	54	Phenolinjektion (31) (1–5 Injektionen/Pat.) Phenolinjektion + weiterer Eingriff (Exzisionen, Küretta- ge, Z-Plastik etc.) (23)				30		2 (1–31)	2		4
Olmez ^b [359]	2013	83	Pit-Picking + Phenolinjektion	0	26	64	13	-		0	3	4
Sakcak ^c [404]	2009	112	Phenolinjektion 40 % (54) Phenolinjektion 80 % (58)	11	34		7,4 15,5	Abszess: 2 Abszess: 4 Nekrose: 5		0	3 8*	4
Schneider ^b [412]	1994	45	Phenolinjektion	33	>48	82	40	-		0		4
Shorey [425]	1975	253	Offen (179) Mittelliniennaht (42) Brush (9) Phenolinjektion (23)				8 17 22 9	-			amb	4
Stansby [443]	1989	169	Offen + Phenol (65) Phenolinjektion (104)		8 (3–48)		17 35	-		10,4 1,8*		4
Stewart [449]	1969	30	Phenolinjektion	7	>18		27			2,9	11,6	4

^aDer Unterschied zwischen den Gruppen war statistisch signifikant (**p** < 0,05) ^bNachsorgeerhebung per Fragebogen ^cAusschluss aller Patienten mit anhaltender putrider Sekretion ^dMultiple Injektionen

Autor	Jahr	N	Methode	Vor-OP	FU	FU	Rezidive	Wund-	Heilungs-	Stationär	AU	Studien-
			(Anzahl)	(%)	(Monate)	(%)	(%)	infektion (%)	dauer (Tage)	(Tage)	(Tage)	art
Edwards [151]	1977	120	Lord-Millar	15	60	97,5	23	-		0 (n = 77) 1,5 (n = 43)	10	4
Matter ^a [312]	1995	42	Lord-Millar (21) Offen (21)		72		28 28	-	14 30*	4 5	7 15*	4
Bascom [60]	1980	50	"Follicle removal"		24	98	8			0		4
Bascom [59]	1983	163	"Follicle removal"		42	92	17			0		4
Colov [107]	2011	75	"Bascoms pit pick operation"	16	12	99	24			0	3,2	4
Di Castro [125]	2016	2347	"Gips procedure"		16		5,8		28 (7–147)6	0		4
Gips ^b [194]	2008	1358	"Minimal surgery"	17	120	86	16			0	-	4
lesalnieks [224]	2011	157	Pit-Picking	4	7	78	17			0		4
lesalnieks [226]	2015	153	Pit-Picking	4	30	97	26			0		4

Autor	Jahr	N	Methode	Vor-OP	FU	FU	Rezidive	Wund-	Uailumaa	Ctationäu	AU	Studien-
Autor	Janr	IN	(Anzahl)	(%)	(Monate)	(%)	(%)	infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	(Tage)	art
Khodakaram [270]	2017	241	"Modified Lord-Millar" (113) Offen (129)	0	40 61	91	23 32				1 35*	4
Lord [296]	1965	33	Lord-Millar	0	6-24	100	3	-		0		4
Maghsoudi ^c [302]	2011	150	"Ambulatory treatment"		30	100	0			0		4
Majeski ^d [304]	2011	127	"Bascom procedure"	4	<24	94	2,4		12 (8–30)	0 (n = 61) 1 (n = 66)		4
Nordon [354]	2009	55	"Bascoms simple surgery" (29) Cleft lift (26)		36	91	24	19			14 14	2b [®]
Olmez ^e [359]	2013	83	"Pit excision" plus Phenol	0	26	64	13			0	3	4
Petersen [382]	2017	19	Pit picking	32	12		18			0		
Qayyum [391]	2016	102	Loop Drainage (17)7 Verschiedenes, meist Offen (85)		17		18 7					
Senapati [417]	2003	218	"Bascoms Operation"		12	95	10			0		4
Smith [431]	2015	41	Pit Excision + Fibrin (12) Bascom; mKarydakis (26) Midline suture (5)		32	100 ^f 92 ^f 80 ^f	17 21 0	8 7 20				4

Von vielen Autoren wurde die Operation anders als "pit picking" bezeichnet. Es wurde jedoch in allen Fällen ein Operationsverfahren, das mit der Beschreibung von Bascom [58, 59] vergleichbar ist, angewendet. Alle diese Beschreibungen werden hier aufgeführt

Gemäß Aktenstudium = Return on recurrence

Tab. 5 Sinusel	ktomie (,	,limited	l excision")									
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Kement ^a [262]	2006	62	Sinus excision	0	20	100	1,6			0 (n = 45) 1 (n = 17)	1,9	4
Mohamed [337]	2004	83	Limited excision (29) Mittelliniennaht (28) Offen (26)	0	>15		3 11 4			0 4 3		2b®
Oncel [363]	2002	40	Sinus excision (20) Marsupialisation (20)		10	100	0 10			0,4 1,3*	2 4,6*	2b [®]
Ortiz [366]	1977	32	Limited excision (14) Offen (14) Marsupialisation (14)					-	39 82 37	3 3 3	7 7 7	4
Soll ^a [432]	2012	257	Sinusektomie	0	43	72	7			0	7	4
Soll ^a [433]	2008	93	Sinusektomie	0	28	81	5			0		4

^{*} Der Unterschied zwischen den Gruppen war statistisch signifikant (p < 0,05)

^a Der Unterschied zwischen den Gruppen war statistisch signifikant (p < 0,05)

^b Am Ende des FU hatten noch 4% der Pat. nicht verheilte Wunden

^c Die Gegeninzision war größer als bei Bascom und wurde vernäht

^d Subkutis und Haut wurden in der Rima primär verschlossen

^e Nachuntersuchung durch Fragebögen

^a Indikation <4 Pits

^b Einschluss von akuten und chronischen Fällen

Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Al-Hamoud [24]	2001	98	Lay open	32	6	94	6	-		5,4	-	4
Gidwani [191]	2010	204	Offen (24) Lay-open (34) Mittelliniennaht (19) Inzision bei Abszess (136)		<12	k	21 9 40 -			1 (0-4)	14 (7–35)	4
Gupta [201]	2003	18	Lay open Inzision mit Radiofrequenz		18	100?	5,6	67	11	0	7	4
Holmebakk [217]	2005	71	Offen (9) Mittelliniennaht (23) Limberg (25) Lay-Open (16)		20	75	11 17 20 56	- 43 40 -	77 21 18 26			4
Isbister [229]	1995	311	Lay open				4					4
Kepenekci ^b [263]	2009	297	Entdachung und Kürrettage Lay open		>6		2		35	1	3	4
Lorant [294]	2011	80	Mittelliniennaht (40) Offen (40)		12		10 2,4	8 -				1b®
Rabie [393]	2007	81	Offen (15) Mittelliniennaht (29) Limberg (8) Lay-open (14)			65	25 41 0 13			3 5,4 6 3		4

Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Chia [100]	2015	9	Endoskopische Behandlung	11	2,5	100	11		42			5
Gecim [186]	2017	23	Endoskopische Behand- lung + Phenol	4	12	22	0	0			2	4
Giarratano [190]	2017	77	Endoskopische Behandlung (EPSiT)	12	25	100	8		26	0	5	4
Meinero [321]	2014	11	Endoskopische Behandlung		6 (1–9)	100?	0	-	<28	0	3,5	5
Meinero [322]	2016	250	Endoskopische Behandlung (EPSiT)	30	12	98	5 ^a	0	27	0	2	4
Mendes [323]	2019	67	Endoskopische Behandlung				9	7	28	0		4
Milone [334]	2014	28	Endoskopische Behandlung		12	96	4		15	0	3	4
Milone [333]	2016	145	Endoskopische Behandlung (VAAPS) (76) Cleft Lift (69)	0	12	100	4 6	1 7			2,6 8,2*	2b [®]

* Der Unterschied zwischen den Gruppen war statistisch signifikant (p < 0,05) **EPSiT** Endoscopic Pilonidal Sinus Treatment, **VAAPS** Video-Assisted Ablation of Pilonidal Sinus

^a Weitere 5% der Patienten mussten wegen nicht verheilter Wunden erneut operiert werden

Autor	Jahr	N	Methode	Vor-OP	FU	FU	Rezidive	Wund-	Heilungs-	Stationär	AU	Studien-
			(Anzahl)	(%)	(Monate)	(%)	(%)	infektion (%)	dauer (Tage)	(Tage)	(Tage)	art
Abbas [1]	2010	5	Alexandrite-Laser (755 nm) (2–3 Sitzungen)	60	>12	100	0	-		0		5
Butter [91]	2015	134	Abscess Excision po (50) Laser depil. alone (33) Observation (51)		29 9 19	94 54 67	34 55,6 26,5	k. A.	k.A.	k.A.	k. A	4
Dessily [124]	2017	40	Pilonidal Sinus destruction with radial laser probe		8	87,5	33		19	1		
Georgiou [189]	2018	60	PiLaT (Pilonidal Laser Treatment)	0	12	100	81			0	02	4
Klin [274]	1990	70	IND, Kürettage, CO ₂ -Laser		12		11,4		28	0	7–14	4
Landa [287]	2005	6	Alexandrite-Laser Laser Epilation alone					0		0	0	4
Palesty [371]	2000	40	Mittelliniennaht (23) Mittelliniennaht mit Nd:YAG-Laser (17)						-	1	Mit Laser 2 Tage kürzer	4
Pappas [372]	2018	237	SiLaT (Sinus Laser Treatment)	11	12		11	7	47	0		4
Yeo [483]	2010	2	Fasziokutaner Limberg-Lap- pen + Laser-Epilation 1 bzw. 4 Sitzungen, 1×/Mo		10/9	100	0					5

^a Die Autoren sprachen nicht von Rezidiven, sondern von primärer Heilung in 92 % der Fälle ^b Mittelliniennaht

^c Es wird eine "success rate" von 87 % angegeben, jedoch eine Rezidivrate von nur 3 %

Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Al-Hassan [23]	1990	96	Offen (50) Mittelliniennaht (46)	30	30	94	12 20*	- 2		3	28 14	2b [®]
Al-Salamah [30]	2007	380	Offen (192) Mittelliniennaht (188)	5	36		3 4	- 4,2		4 3,6*	42 15*	2b®
Baier ^a [54]	2002	162	Offen (30) Mittelliniennaht (34)	28		41	13 12	60		9,5 6,9*	33 29	4
Calikoglu [92]	2017	147	Offen (73) Phenolinjektion (74)	6	39	96	13 19		40* 16	0*		1b [®]
Dahmann [116]	2016	33	Offen (16) Limberg (17)								63* 29	4
Dudink [146]	2011	62	Offen (18) Mittelliniennaht (19) Cleft-lift (25)	49		89	12 17 5	- 74 42				4
Ersoy [164]	2007	175	Offen (20) Marsupialisation (82) Mittelliniennaht (29) Limberg (44)				? 8,5* 13 ?	- - 31 16		2,3 1,5 1,1 3,6*	12,6 20* 10,7 13,5	4
Fazeli [174]	2006	144	Offen (72) Z-Plastik (72)		22	96	4,2 4,2	- 10	41 15*	1,7 2,8*		1b®
Fike ^b [177]	2011	120	Offen (28) Median (74) Karydakis/Limberg (14/4)				25 19 28	- 46 39			-	4
Füzün [181]	1994	110	Offen (55) Marsupialisation (55)		23	83	4,4 0	-		4,7 2,4*	11 18*	2b [®]
Gendy [188]	2011	73	Offen (34) Cleft lift (36)		44 19		21	- 15				4
Gidwani [191]	2010	204	Offen (24) Lay-Open (34) Mittelliniennaht (19) Inzision bei Abszess (136)		<12	k	21 9 40 -			1 (0-4)	14 (7–35)	4

Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Gupta ^c [202]	2005	44	Offen (23) Offen mit Radiofrequenz (21)		30	93	10,5 4,5	8,7 0	80 49*	2	29 8*	2b®
Healy [208]	1954	245	Offen (47) Marsupialisation (67) Mittelliniennaht (89) Inzision (40)		34	93				26 21 14 -		4
Holmebakk [217]	2005	71	Offen (9) Mittelliniennaht (23) Limberg (25) Lay-Open (16)		20	75	11 17 20 56	- 43 40 -	77 21 18 26			4
lesalnieks [224]	2003	73	Offen (24) Mittelliniennaht (55)	38	50	89	21 42					4
lesalnieks [225]	2013	124	Gruppe 1: Offen (12) Mittelliniennaht (25) Gruppe 2: Karydakis (87)	10	>12	90	43 4	28 19				4
Jabbar [231]		60	Limberg (30) Primär offen (30)	0	1			17 20				2b [®]
Jamal [232]	2009	49	Offen (25) Limberg (24)		18	92	33 4	- 8		6 4		2b®
Kareem [248]	2006	77	Offen (37) Mittelliniennaht n (40)		49 (18–66)	92	13,5 10	43 30	48 20	4	35,5 10	2b®
Käser [251, 252]	2014	102	Offen (51) Limberg (51)	9	12	95	66 13	12 49*				2b [®]
Khodakaram [270]	2017	241	Offen (129) "Modified Lord-Millar" (113)	0	61 40	91	32 23				35* 1	4
Kronborg [280]	1985	99	Offen (32) Mittelliniennaht (32) Mittelliniennaht plus Clindamycin i.m. (34)	56	36	95	13 25 19		67 33 13			2b [®]
Lorant [294]	2011	80	Offen (40) Mittelliniennaht (40)		12		2,4 10	- 8				1b®
Marks [306]	1985	100	Offen Diverse Verfahren	Keine diff	erenzierte Au	swertung)					5
Matter [312]	1995	42	Lord-Millar (21) Offen (21)		72		28 28	-	14 30*	4 5	7 15*	4
McLaren [318]	1984	157	Offen (34) Mittelliniennaht (41) Marsupialisation (22) Abszessinzision (42)				9 20 0 -	- 12 5 -		21 14 20		4
Menzel [327]	1997	103	Offen	21	28	83	13			7,6		4
Mohamed [337]	2004	83	Offen (26) Sinusektomie (29) Mittelliniennaht (28)	0	>15		4 3 11			3 1 4		2b [®]
Ommer [362]	2004	45	Offen (11) Mittelliniennaht (34)	22	12	100	0 18	- 38		3,4 4,5	52 19–38	4
Ortiz [366]	1977	32	Offen (14) Limited excision (14) Marsupialisation (14)					-	82 39 37	3 3 3	7 7 7	4
Petersen [383]	2007	188	Offen (91) Karydakis (97)		1			- 21		4 5		4
Rabie [393]	2007	81	Offen (15) Mittelliniennaht (29) Limberg (8) Lay-open (14)			65	25 41 0 13			3 5,4 6 3		4
Rao [395]	2009	60	Offen (30) Mittelliniennaht (30)		60	82	7 8			12 12		2b®

Tab. 9 (Fortse	tzung)											
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Reboa [396]	2007	45	Offen (15) Mittelliniennaht (15) Mittelliniennaht plus autologous cryoplatelets (15)				6 13 0	- 13 0		1,5 3	3	4
Rogers [397]	1938	140	Offen	Überwieg	end deskripti	v						5
Shorey ^d [425]	1975	253	Offen (179) Mittelliniennaht (42) Brush (9) Phenol Injection (23)				8 17 22 9					4
Solla [434]	1990	150	Offen (16) Marsupialisation (125) Median (9)	0			19 6 22	- - 11		1 1 1		4
Sondena [436]	1992	120	Offen (60) Mittelliniennaht (60)		12	100	2 7	- 27			27 15,4	1b [®]
Sondena [438]	1996	120	Offen (60) Mittelliniennaht (60)		50	94	5 10					1b®
Spivak [441]	1996	129	Offen (47) Mittelliniennaht (56) Marsupialisation (26)	10	Ca. 36		13 11 4	- 14				4
Stansby [443]	1989	169	Offen (65) Phenol (104)				17 35			10,4 1,8*		4
Testini [456]	2001	100	Offen (50) Mittelliniennaht (50)	0	37–89		2	- 16		0		2b [®]

^{*} Der Unterschied zwischen den Gruppen war statistisch signifikant (p < 0,05)

Weitere 6% wurde wegen Wundheilungsstörungen nachoperiert

Tab. 10 Marsi	upialisati	ion										
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Abramson [7]	1954	73	Marsupialisation	18	18	66	2,1					
Abramson [5]	1960	225	Marsupialisation	8	12–96	71	7					
Abramson [6]	1970	118	Marsupialisation	15	12-120	78	5,8	4,2				
Aldemir ^a [22]	2003	40	Marsupialisation ± Kollagenase	35	10	100	0	-		-	-	2b [®]
Aydede [49]	2001	203	Marsupialisation (101) Mittelliniennaht (82) Gluteus maximus Rotations- lappen (20)		54		4,5 5 5	6 7 5		3 3 6*	38* 20 20	4
Ekici [154]	2019	303	Marsupialisation (53) Mittelliniennaht (55) Limberg (114) Karydakis (81)	11	22		6 9* 2 2	9 14 20 14		2,2 2,2 2,1 1,9	11 9,5* 10,5 11,3	
Ersoy [165]	2007	175	Marsupialisation (82) Offen (20) Mittelliniennaht (29) Limberg (44)				8,5* ? 14* ?	- - 31 16		1,5 2,3 1,1 3,6*	20 12,6 10,7 13,5	4
Füzün [181]	1994	110	Marsupialisation Offen		23	83	0 4,4	-		2,4* 4,7	18* 11	2b [®]
Gencosmanoglu [187]	2005	142	Marsupialisation Mittelliniennaht	11	24	100	1,4* 17	- 13	49* 14		3* 21	1b [®]

^a Nachuntersuchung mit Fragebögen b nur Kinder

Ein der Gruppe der Radiofrequenzexzision ähnelt die Technik der Sinusektomie, allerdings ist der "Sicherheitsabstand" deutlich größer "Brush" – Débridieren mit einem Bürstchen

Die Creme besteht aus Hyaluronsäure, einem Alginat und anderen Bestandteilen

Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Healy [208]	1954	245	Marsupialisation (67) Mittelliniennaht (89) Offen (47) Inzision (40)		34	93				21 14 26		4
Karakayali ^b [246]	2009	140	Marsupialisation (70) Limberg (70)	0	15		0 1,4	3 13*		1,3 1,6*	11 18*	2b [®]
Lee [290]	2008	26	Marsupialisation (17) Mittelliniennaht (9)		7	100	0* 56	0* 78				4
Marks [308]	1947	618	Marsupialisation	Kein diffe	renzierte Aus	wertung						5
McLaren [318]	1984	157	Marsupialisation (22) Offen (34) Mittelliniennaht (41) Abszessinzision (42)				0 9 20 -	5 - 12 -		20 21 14		4
Meban [319]	1982	31	Marsupialisation				3,2		29	0		4
Neumeister [352]	1963	24	Marsupialisation						4–21	3–4		4
Obeid [356]	1988	27	Marsupialisation		6–72	78	0	-		2	21	4
Özbalci [368]	2014	50	Marsupialisation (25) Marsupialisation + Gentamy- cin Schwamm (25)		6–30		0		kU			2b [®]
Oncel [363]	2002	40	Marsupialisation (20) Sinusektomie (20)		10	100	10 0			1,3 0,4	5* 2	2b®
Ortiz [366]	1977	32	Marsupialisation (14) Offen (14) Limited excision (14)					-	37 82 39	3 3 3	7 7 7	4
Solla [434]	1990	150	Marsupialisation (125) Offen (16) Mittelliniennaht (9)	0			6 19 22	- - 11		1		4
Spivak [441]	1996	129	Marsupialisation (26) Offen (47) Mittelliniennaht (56)	10	Ca. 36		4 13 11	- - 14				4
Watters [474]	1958	127	Marsupialisation (33) Marsupialisation beim Abszess (13) Offen (81)	8			3 7 18		18 18 18	5,7 5,7 26	4 4 4	4

^{*} Der Unterschied zwischen den Gruppen war statistisch signifikant (p < 0,05) k.U.:kein statistisch signifikanter Unterschied $^{\rm a}$ große Befunde ausgeschlossen $^{\rm b}$ Limberg: unterer Pol der Narbe kreuzt Rima

Tab. 11 Exzisi	on und p	rimäre	Mittelliniennaht									
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Abu-Galala [8]	1999	46	Mittelliniennaht (22) Limberg (24)	0	18		9	23 0*		9 6*	23 14*	2b®
Akca [12]	2005	200	Mittelliniennaht Limberg	0	28,5		11 0*	15 2*		5 2*	19 9,5*	2b [®]
Aldean [21]	2004	54	Mittelliniennaht		25	94	2	4		?	?	4
Al-Hassan [23]	1990	96	Mittelliniennaht Offen	30	30	94	20* 12	2 -		3	14 28	1b [®]
Al-Jaberi [25]	2001	46	Mittelliniennaht		36 (12–60)		4	7		1	<21	4
Al-Salamah [30]	2007	380	Mittelliniennaht Offen	5	36		4	4,3 -		3,6* -	15* 42	2b [®]
Arslan [42]	2018	177	Mittelliniennaht Mittelliniennaht. Naht mit Triclosan 6 beschichteten Fäden	0	1	100%		21 %* 10 %				1b [®]

Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Aydede [49]	2001	203	Mittelliniennaht (82) Marsupialisation (101) Gluteus maximus Rotations- lappen (20)		54		5 4,5 5	7 6 5		3 3 6*	20 38 20*	4
Baier ^a [54]	2002	162	Mittelliniennaht Offen	28		41	12 13	60		6,9 9,5*	29 33	4
Brieler [83]	1997	272	Mittelliniennaht mit Antibio- tika-Kette Mittelliniennaht ohne Antibiotika-Kette	21				31 35				4
Bunke ^a [89]	1995	140	Mittelliniennaht	12	24	58	5	9				4
Can [94]	2009	200	Mittelliniennaht (122) Karydakis (78) (Pat.mit Nebenerkrankun- gen (Diabetes, Abszess) ausgeschlossen)	3,5	15–18	81	18* 4,6	30* 9		5,4	25* 18	4
Chaudhuri [99]	2005	50	Mittelliniennaht	24				28				4
Ciccolo [102]	2004	315	Mittelliniennaht (in LA)				3	4				4
Comarr [108]	1959	12	Mittelliniennaht	17	60	50	0					4
Dalenbäck [117]	2004	131	Mittelliniennaht	41	88		8	17		0		4
Denkers [123]	1996	14	Mittelliniennaht (nur Pat.mit Abszessen)	29	100	100	14	21				4
Dudink [146]	2011	62	Mittelliniennaht (19) Offen (18) Cleft-lift (25)	49		89	17 12 5	74 - 42*				4
Ekici [154]	2019	303	Marsupialisation (53) Mittelliniennaht (55) Limberg (114) Karydakis (81)	11	22		6 9* 2 2	9 14 20 14		2,2 2,2 2,1 1,9	11 9,5* 10,5 11,3	
El-Shaer ^b [159]	2010	56	Mittelliniennaht mit Gluteus maximus sliding plication	18	12		1,2	14,3		?	?	4
Ersoy [165]	2007	175	Mittelliniennaht (29) Marsupialisation (82) Offen (20) Limberg (44)				14* 8,5* ?	31 - - 16		1,1 1,5 2,3 3,6*	10,7 20 12,6 13,5	4
Fike ^c [177]	2011	120	Mittelliniennaht (74) Offen (28) Karydakis/Limberg (14/4)				19 - 28	46 - 39			-	4
Futch [180]	1976	0	Mittelliniennaht	Nur Besch	reibung der l	Methode	20	3,				5
Gencosmanoglu [187]	2005	142	Mittelliniennaht Marsupialisation	11	24	100	17 1,4*	13	14 49*		21 3*	1b [®]
Gidwani [191]	2010	204	Mittelliniennaht (19) Offen (24) Lay-Open (34) Inzision bei Abszess (136)		<12		21 40 9					4
Gilani [192]	2011	114	Mittelliniennaht	38,6	36		9	22			20,5	4
Gipponi [193]	2010	100	Mittelliniennaht und autolo- ge Stammzellen Mittelliniennaht und "Vivo- stat"	11	21	100	4 0	10 2*			16 11*	2b®
Healy [208]	1955	245	Mittelliniennaht (89) Offen (47) Marsupialisation (67) Inzision (40)		34	93				14 26 21		5

Tab. 11 (Forts	etzung)											
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Holmebakk [217]	2005	71	Mittelliniennaht (23) Limberg (25) Lay-open (16) Offen (9)		20	75	17 20 56 11	43 40 - -	21 18 26 77			4
lesalnieks [224]	2003	73	Mittelliniennaht (55) Offen (24)	38	50	89	42 21					4
lesalnieks [225]	2013	124	Gruppe 1: Mittelliniennaht (25) Offen (12) Gruppe 2: Karydakis (87)	10	>12	90	43	28 19				4
Kareem [248]	2006	77	Mittelliniennaht (40) Offen (37)		49 (18–66)	92	10 13,5	30 43	20 48	1 4	10 35,5	2b [®]
Khaira [266]	1995	46	Mittelliniennaht	9	23	87	17	9		1		4
Kronborg [280]	1985	99	Mittelliniennaht (32) Mittelliniennaht plus Clinda- mycin i.m. (34) Offen (32)	56	36	95	25 19 13		33 13 67			2b®
Laforet [284]	1957	10	Mittelliniennaht				10	10				5
Lee ^c [290]	2008	26	Mittelliniennaht (9) Marsupialisation (17)		7	100	56 0*	78 0*	224 42			4
Leichtling [291]	1967	11	Mittelliniennaht	22			0	9				4
Lorant [294]	2011	80	Mittelliniennaht (40) Offen (40)		12		10 2,4	8 –				1b®
Mahdy [303]	2008	60	Mittelliniennaht mLimberg		21		25* 5	25* 5		4,8* 2,9	25* 15	4
Marzouk ^d [311]	2008	66	Mittelliniennaht		22,5	100	0	26		2	14	4
McLaren [318]	1984	157	Mittelliniennaht (41) Marsupialisation (22) Abszessinzision (42) Offen (34)				20 0 - 9	12 5 -		14 20 - 21		4
Milone [336]	2011	803	Mittelliniennaht mit Draina- ge Mittelliniennaht ohne Drainage	11	15,6	94	9	10 11			21 21	2b [®]
Milone [335]	2014	203	Mittelliniennaht mit Haut- naht in Einzelknopftechnik (103) Mittelliniennaht mit intra- kutanem Hautverschluss (100)	13				9			20 21	
Mohamed [337]	2004	83	Mittelliniennaht (28) Offen (26) Sinusektomie (29)		>15		11 4 3			4 3 1		2b [®]
Morden ^c [341]	2005	68	Mittelliniennaht (44) Karydakis (24)		49		11 0	11 8				4
Morrison [342]	1985	20	Mittelliniennaht (9) Z-Plastik (11)		6	90	22 9	0 18				2b®
Muzi ^e [348]	2008	152	Mittelliniennaht	16	22		0	6				4
Muzi [348]	2010	260	Mittelliniennaht Limberg		46	100	4 0	23 11*		0 5*	9 8	2b®
Nursal [355]	2010	238	Mittelliniennaht einschichtig (83) Mittelliniennaht zweischich- tig (78) V-Y-Plastik (77)	7,5	30	81	12 10 16	35 25 20		1,2 1,3	17 11 15	1b [®]
Okus [358]	2012	93	Mittelliniennaht Limberg		29,5		4,5 4,1	11 0				2b [®]
Ommer [362]	2004	45	Mittelliniennaht (34) Offen (11)	22	12	100		38		4,5 3,4	19–38 52	4

Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Othman [367]	2010	40	Mittelliniennaht plus Skin glue (20) Mittelliniennaht (20)				5 15	15 20				2b®
Palesty [371]	2000	40	Mittelliniennaht (23) Mittelliniennaht mit Laser (17)		60				1	0	Laser 2 Tage kürzer	4
Popeskou [388]	2011	131	Mittelliniennaht	10				31				4
Rabie [393]	2007	81	Mittelliniennaht (29) Offen (15) Limberg (8) Lay-open (14)			65	41 25 0 13			5,4 3 6 3		4
Rao [395]	2009	60	Mittelliniennaht (30) Offen (30)		60	82	8 7	?		12 12	?	2b®
Reboa [396]	2007	45	Mittelliniennaht (15) Mittelliniennaht plus autolo- ge Thrombozyten (15) Offen (15)				13 0 6	13 0 -		1,5 3 -	3	
Ross ^e [399]	1956	50	Mittelliniennaht	100	120	66	9					4
Russell [401]	1949	20	Mittelliniennaht				10					4
Sakr [406]	2012	497 125	Mittelliniennaht Karydakis Mittelliniennaht Karydakis	0 0 100 100	<72		12 2 14 2	21 9 37 13		2 3 2 3	21–28 21–28 21–28 21–28	4
Saylam [408]	2011	354	Mittelliniennaht (133) Dufourmentel (101) Karydakis (74) Limberg (46)	90	37		7 10 13 9	16 30* 13 17			20 30*	4
Serour ^c [420]	2002	34	Mittelliniennaht	6			3	12		0		4
Sevinc [421]	2015	150	Spannungsfreie Mittellinien- naht (50) Limberg (50) Karydakis (50)	0	24		4 6 6	14 14 16				2b [®]
Shons [424]	1971	57	Mittelliniennaht			77	2,4	9				5
Shorey [425]	1975	253	Mittelliniennaht (42) Offen (179) Brush (9) Phenol Injection (23)				17 8 22 9					4
Smith [431]	2015	41	Pit excision + Fibrin (12) Bascom; mKarydakis (26) Midline suture (5)		32	100 ^g 92 ^g 80 ^g	17 21 0	8 7 20				5
Solla [434]	1990	150	Mittelliniennaht (9) Marsupialisation (125) Offen (16)	0			22 6 19	11 - -		- - 1		4
Sondena [436]	1992	120	Mittelliniennaht (60) Offen (60)		12	100	7 2	27 -			15,4 27	1b [®]
Sondena [206]	1996	120	Mittelliniennaht (60) Offen (60)		50	94	10 5					1b [®]
Sondena [437]	1995	153	Mittelliniennaht Mittelliniennaht und peri- operativ Cefoxitin i.v.	0	6–30		7 3 wenn Re-Op=Rezidiv 13 17	43 44				2b [®]
Spivak [441]	1996	129	Mittelliniennaht (56) Offen (47) Marsupialisation (26)	10	Ca. 36		11 13 4	14 - -				4
Tavassoli [453]	2011	100	Mittelliniennaht (50) Limberg (50)		6		8	20 15	6		13 8*	2b®

Tab. 11 (Fortse	etzung)											
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Testini [456]	2001	100	Mittelliniennaht Offen	0	37–99		6 2	16 -		0		2b [®]
Tritapepe [466]	2002	243	Mittelliniennaht und Drai- nage für antiseptische Spülungen	16	60–180		0	0		0,5		4
Tocchi [462]	2008	103	Mittelliniennaht mit Drai- nage (53) Mittelliniennaht ohne Drainage (50)	0		100	2	6 42*	Mit > ohne	0	11 17*	2b [®]
Vogel [472]	1992	80	Mittelliniennaht (40) Mittelliniennaht plus Sulmy- cin (40)		12	76	0 2,5	65 13				2b [®]
Williams [478]	1990	31	Mittelliniennaht		32		0	6				4
Yetim [484]	2010	80	Mittelliniennaht (40) Mittelliniennaht mit Genta- mycinSchwamm (40)				15 0*	20 5*	15 8*	4 2*		2b®
Youssef [486]	2015	120	Spannungsfreie Mittellinien- naht (60) mLimberg (60)		43	100	3,3 1,6	5		1,8 3,8*		2b®
Zimmerman ^e [490]	1978	32	Mittelliniennaht		24	87	0	6		0		4
Zimmerman [491]	1984	58	Mittelliniennaht		63	84	0	3,4		0		4

^{*} Der Unterschied zwischen den Gruppen war statistisch signifikant (${\it p}$ < 0,05)

⁹ Rezidivrate gemäss Aktenstudium = Return on recurrence

			ner Verschluss mit Z-Plast				D. J.P.	,	11.21	C 1		Ct. II
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Bose [78]	1970	20	Z-Plastik		5-48	100		20				4
Fazeli [174]	2006	144	Z-Plastik Offen		22	96	4,2 4,2	10 -	15* 41	2,8* 1,7		1b [®]
Hamnet [205]	2018	14	Lotus petal flap	36	25		14	28				4
Kayal [259]	2014	50	Double Z (25) Karydakis (25)		6 6		32 0	60 16	30 13	11 4	36 11	2b [®]
Lamke ^a [286]	1979	16	Z-Plastik (6) Rotationslappen (10)		12–48		6	12,5		6,1		4
Middleton [328]	1968	30	Z-Plastik	13			10	7		16		4
Monro ^a [339]	1965	20	Z-Plastik		72		0			21		4
Monro ^a [338]	1967	20	Z-Plastik				0			21		4
Morrison [342]	1985	20	Mittelliniennaht (9) Z-Plastik (11)		6	90	22 9	0 18	<36	10		2b [®]
Mutaf [345]	2017	27	Mutaf-Technik		44	Excl	0	4		1–3	4–10	4
Quinodoz [392]	1999	218	Z-Plastik W-Plastik Dufourmentel		4–84		7					4
Sharma [423]	2006	115	Multiple Z-Plastiken	6		88	2	6				4
Tschudi [467]	1988	21	Z-Plastik	67			10	67		11		4

^{*} Der Unterschied zwischen den Gruppen war statistisch signifikant (p < 0,05)

^a Nachsorge mit Fragebögen ^b Durch Plikation der Gluteus maximus Ansätze wurde eine Anhebung und Abflachung der Mittellinie erreicht

C Nur Kinder bzw. Jugendliche
d Spezielle Nahttechnik

e Versuchen mit subkutanen Nähten oder Nähten der Glutealfaszie die Rima zu heben

^f Antibakterielle Substanz

^a Naht kreuzt die Rima ani

	ation nac											
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Abdul-Ghani [3]	2006	49	Karydakis		12-38	100	8	12		0		4
Akinci [17]	2000	112	Karydakis	7	29	95	0,9	7		2,6	12,4	4
Akinci [16]	2006	24	Karydakis	33	33	100	4	12			11	4
Alvandipour [32]	2019	64	Limberg (28) Karydakis (37)	0	6 6	96 100	0 3	15 46		1	9 12	2b [®]
Anderson [33]	2008	51	Karydakis		13	96	0	20		0	21	4
Anyanwu [35]	1998	28	Karydakis	43	36	96	0	14		4	-	4
Arslan [41]	2013	330	Karydakis (91) Limberg (96) mLimberg (108)		33	89	11* 6,3 1,9	15* 2 4		1,3 1,3 1,3	19 21 19	2b [®]
Ates [45]	2011	269	Karydakis (135) Limberg (134)	0	26,4	96	3 7	11 21*		3,4 3,8*		2b®
Bali [55]	2015		Karydakis (34) Limberg (37)		28 28	100 100	0	59 49	22 24			2b [®]
Bessa [72]	2007	82	Karydakis	20	20	100	0	7		2		4
Bessa ^a [73]	2013	120	mKarydakis (60) mLimberg (60)	13	20		2 3	18 38*				2b [®]
Can [93]	2010	145	Karydakis (68) mLimberg (77)	8	17	94	5 5	10 13		6 5	19 21	2b [®]
Ersoy ^c [164]	2009	100	Karydakis Limberg					26 8*			14 15	2b [®]
Fike ^b [177]	2011	120	Karydakis/Limberg (14/4) Offen (28) Mittelliniennaht (74)				28 - 19	39 - 46			-	4
Gurer ^c [203]	2005	50	Karydakis mit Drainage (25) Karydakis ohne Drainage (25)	0	21		0	8 32*				2b®
lesalnieks [225]	2013	124	Gruppe 2: Karydakis (87) Gruppe 1: Offen (12) Mittelliniennaht (25)	100	>12	90	4 43	19 28				4
Karaca ^d [245]	2012	81	Karydakis (43) mLimberg (61)	9 20			6 0	23* 4	24 19			3
Karydakis [249]	1973	1687	Karydakis			40	1,3	8,5		8,2		4
Karydakis [250]	1992	5876	Karydakis		24-240		0,8	8,5				4
Kayal [259]	2014	50	Double Z (25) Karydakis (25)		6 6		32 0	60 16	30 13	11 4	36 11	2b [®]
Keshava ^e [264]	2007	70	Karydakis	17	36		4,2	46				4
Keshvari [265]	2016	179	Karydakis	16	31	100	1	18		1	14	4
Kitchen [273]	1996	141	Karydakis	23	1–108	81	4	9		4		4
Kulacoglu [282]	2006	14	Karydakis		16	100	0	7				4
Kulacoglu [281]	2008		Karydakis	Nur Besch	reibung der (OP-Techn	iik					5
Moran [340]	2011	106	Karydakis	11	30	87	4				13	4
Morden ^b [341]	2005	68	Karydakis (24) Mittelliniennaht (44)		49		0 11	8 11				4
Petersen [383]	2007	188	Karydakis (97) Offen (91)		1			21 0		5 4		4
Sakr [405]	2003	41	Karydakis	17	26		3	10		3		4
Sakr [406]	2012	497 125	Karydakis Median Karydakis Mittelliniennaht	0 0 100 100	<72		2 12 2 14	9 21 13 37		3 2 3 2	21–28 21–28 21–28 21–28	4
Saylam ^e [408]	2011	354	Karydakis (74) Median (133) Dufourmentel (101) Limberg (46)	9	37		13 7 10 9	13 16 30* 17			20 20 30* 20	4

Tab. 13 (Forts	etzung)											
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Sevinc [421]	2016	150	Limberg (50) Karydakis (50) Mittellinie (50)		24 24 24		6 6 4	14 16 14				2b [®]
Sözen [440]	2011	50	Karydakis plus Drainage (25) Karydakis plus Fibrin (25)		10	100	0	8 24*		2,5		2b [®]
Tokac [463]	2015	91	mLimberg (49) Karydakis (47)		27 25	94 96	7	7 7		1	21 23	2b [®]

^{*} Der Unterschied zwischen den Gruppen war statistisch signifikant (p < 0,05)

Tab. 14 Cleft-	liftVerfal	hren										
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Abdelrazeq ^a [2]	2008	70	Cleft-lift	24	24	67	2	18		0	14	4
Bascom [64]	1987	30	Cleft-lift	100		100	0	13		0	4	4
Bascom ^b [62]	2002	28	Cleft-lift	100	20	96	11	21		0		4
Bascom [63]	2007	69	Cleft-lift	100	30	75	12					4
Bertelsen [71]	2011	83	Cleft-lift	45		91		25		0	3	4
Dudink [146]	2011	62	Cleft-lift (25) Offen (18) Mittelliniennaht (19)	49		89	5 12 17	42* - 74				4
Gendy [188]	2011	70	Cleft-lift (36) Offen (34)		44 19		2* 21	15 -				4
Guner [200]	2013	122	Cleft-lift (61) Limberg (61)	8 7	13	100	0 1,6	8,1 9,7	12 12	1,2 1,4		2b [®]
Nordon [354]	2009	55	Cleft lift (26) Pit-Picking (29)		36	91	0 24	19 -			14 14	2b [®]
Rushfeldt [400]	2008	33	Cleft-lift	15	17	88	17	29		0	11	4
Senapati [418]	2011	150	Cleft-lift	49	13,5		5,3	40		0,5		4
Tezel [457]	2009	76	Cleft-lift	10	16	100	1,3	33		0,7	18	4
Theodoropoulos [458]	2003	24	Cleft-lift	100	10		0	4		0	21	4

^a Befunde in Anusnähe und Pat. mit Fisteln außerhalb des Exzisionsbereiches wurden ausgeschlossen

^b Nur Kinder

^c Pat.mit großen Befunden wurden ausgeschlossen

d Nachuntersuchung mittels Telefon-Interview e Assoziation zw. Wundinfekt und Rezidiv

^{*} Der Unterschied zwischen den Gruppen war statistisch signifikant (*p* < 0,05)

a Nachsorge mittels Fragebögen

b Es wird eine 100 %ige Heilung beschrieben, Allerdings mussten insgesamt 11–12% der Patienten mehr als einmal operiert werden, 3 Die Rate der Wundkomplikationen ist unklar – evtl. Mehrfachnennung

	rg-Plast											
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Abu-Galala [8]	1999	46	Limberg (24) Mittelliniennaht (22)	0	18		0 9	0* 23		6* 9	14* 23	2b [®]
Akca [12]	2005	200	Limberg Mittelliniennaht	0	29		0* 11	2* 15		2* 5	9,5* 19	2b®
Akin [13]	2008	411	Limberg	6,8	109	85	3	6,5		3,2	12,4	4
Akin [14]	2010	416	Limberg (211) mLimberg (205)	4,5	42	100	4,7 1	6,1 1,5*		2,5	9,8 8,1*	3b
Altinli [31]	2007	32	Limberg (16) Limberg plus Fibrin (16)	0	8,3			6 0		3,9 2*	-	2b [®]
Alvandipour [32]	2019	64	Limberg (28) Karydakis (37)	0	6 6	96 100	0	15 46		1	9 12	2b [®]
Arslan [41]	2013	330	Limberg (96) mLimberg (108) Karydakis (91)		33	89	6,3 1,9 11*	2 4 15*		1,3 1,3 1,3	21 19 19	2b®
Arumugam [43]	2003	53	Limberg	0	24		7	23		-	28	4
Aslam[44]	2009	110	Limberg	6	12		1	5,4		4	21	4
Ates [45]	2011	269	Limberg (134) Karydakis (135)	0	26	96	7 3	21* 11		3,8* 3,4		2b [®]
Azab [52]	1984	30	Limberg		6-36		0	20				4
Bali [55]	2015		Karydakis (34) Limberg (37)		28 28	100 100	0	59 49	22 24			2b [®]
Bessa ^a [73]	2013	120	mLimberg (60) mKarydakis (60)	13	20		3 2	38 18				2b®
Boshnaq [79]	2018	26	Limberg (26)	23	18		7,7	11		4–7		4
Bozkurt [80]	1998	24	Limberg		18	100	0	12,5		4,1	17,5	4
Can [93]	2010	145	mLimberg (77) Karydakis (68)	8	17	94	5 5	13 10		5 6	21 19	2b [®]
Cetin [97]	2018	92	Limberg absorbable (46) Limberg matress (46)	0	7 8		2,2 4,4	4,4 17,4		1	11 15	2b [®]
Cihan [104]	2005	70	Limberg (35) mLimberg (35)		29	97	6 0	45 6*		6 4*	12 9*	2b [®]
Colak [105]	2010	101	Limberg mit Drainage Limberg ohne Drainage		39		0 2	20 10*		2,8 1,3*		2b [®]
Cubukcu [112]	2000	114	Limberg	13	24	100	5	7		5,3		4
Daphan ^b [118]	2004	147	Limberg	15	13		5	6		6	18	4
Darwish ^{b,c} [119]	2010	25	Umgedrehter Limberg		8–30		0	12		2	12,5	4
Das [120]	2014	60	Limberg Skalpell (30) Limberg Diathermie (30)	24 17	10 10	97 100	0	3		2	22 21	2b [®]
El-Khadrawy [156]	2009	60	Limberg	100			10	15		5–11		4
El-Tawil [160]	2009	8	Double-Limberg ^d	100	33	100	0	12,5		1		4
Erdem [163]	1998	40	Limberg				2,5	7,5				4
Ersoy ^e [164]	2009	100	Limberg Karydakis					8* 26			14 15	2b®
Ersoy [165]	2007	175	Limberg (44) Marsupialisation (82) Offen (20) Mittelliniennaht (29)				8,5* 13,5	16 - - 31		3,6* 1,5 2,3 1,1	13,5 20 12,6 10,7	4
Ertan ^b [166]	2005	100	Limberg Mittelliniennaht		19		2 12	8* 32		3,4* 4,6	28	2b®
Eryilmaz ^b [169]	2003	63	Limberg				3	6		3	15	4
Faux [172]	2005	120	Limberg	12			0	6				4
Guner [200]	2013	122	Limberg Cleft-lift	7 8	13	100	1,6 0	9,7 8,1	12 12	1,4 1,3		2b [®]
Gwynn ^b [204]	1986	20	Limberg		19	100	5	0				4

Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Hegele [210]	2003	38	Limberg		23		2,6	10,4		3,2		4
Holmebakk [217]	2005	71	Limberg (23) Offen (9) Mittelliniennaht (25) Lay-Open (16)		20	75	20 11 17 56	40 - 43 -	18 77 21 26			4
Jaschke [233]	2002	40	Limberg	15	6–22		0	3		7,9	15	4
Jimenez-Romero [235]	1990	23	Limberg	?	12		0	9		9		4
Jonas [237]	2000	42	Limberg	?	26	69	0	0		9,4		4
Kapan [243]	2002	85	Limberg	?	69		3,5	4,9		5,3		4
Kaplan [244]	2017	155	Recurrences (61) Non-Recurrences (194)	Bei Limber	-	60 60	Nur Vergleich o	der Schnittfüh	rung/Narbenv	verlauf		4
Karaca ^f [245]	2012	81	mLimberg (61) mKarydakis (43)	20 9			0 6	0 6	19 24			3
Karakayali ^b [246]	2009	140	Limberg Marsupialisation	0	15		1,4 0	13* 3		1,6* 1,3	11	2b [®]
Katsoulis [253]	2006	25	Limberg	48	20		4	16		4	16	4
Kaya [254]	2012	94	Limberg	6	31		4,2	17		1	9–15	4
Kirkil [272]	2011	55	Limberg mit Drainage Limberg ohne Drainage	0	31		7 11	14 22		3,1 3,1		2b®
Mentes [324]	2004	238	mLimberg		29	100	1,3	0,8		2,1		4
Mentes [326]	2008	353	mLimberg	11			3,1	9		4,5	17	4
Milito [330]	1993	27	Limberg		12		0	8		8	14-21	4
Milito [329]	1998	67	Limberg	9	74		0	4,5		5,3	14	4
Milito ^g [331]	2007	216	mLimberg		74		7,4	0,9		3,1	10,8	4
Müller [344]	2011	70	mLimberg	43	17	91	1,6	26			19	4
Muzi [348]	2010	260	Limberg (130) Mittelliniennaht (130)		46	100	0	11* 23		5* 0	9	2b [®]
Okus [358]	2012	93	Limberg (49) Mittelliniennaht (44)		29,5		4,1 4,5	0 11				2b®
Özgültekin [369]	1995	92	Limberg	2		98	0	2		5		4
Rabie [393]	2009	81	Limberg (8) Offen (15) Mittelliniennaht (29) Sinotomie (14)			65	0 25 41 13			5,4 - 3 -		4
Saylam ^h [408]	2011	354	Limberg (46) Mittelliniennaht (133) Dufourmantel (101) Karydakis (74)	9	37		9 7 10 13	17 16 30* 13			20	4
Sevinc [421]	2016	150	Limberg (50) Karydakis (50) Mittellinie (50)		24 24 24		6 6 4	14 16 14				2b [®]
Singh [430]	2005	62	Lateraler Verschiebelappen (adipofasziokutan) (40) Z-Plastik (4) Rotationslappen (4) Limberg-Lappen (1) V-Y-Plastik (1)		48	81	0	10		5,7	<18	4
Sözen [440]	2011	132	Limberg + drain (66) Limberg + fibrin glue (66)	0	6 2		0	13,7 3	22 8	3,5 2	17 8	2b [®]
Tavassoli [453]	2011	100	Limberg (50) Mittelliniennaht (50)		6		2 8	15 20	2 6		13 8	2b [®]
Tekin [454]	2005	148	mLimberg				0	4		2,7	10	4
Tokac [463]	2015	91	mLimberg (49) Karydakis (47)		27 25	94 96	7	7		1	21 23	2b®
			.,									

Tab. 15 (Fortse	etzung)											
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Topgül [464]	2003	200	Limberg	13			2,5	4,5		3,1	12,8	4
Unalp [469]	2007	111	Limberg (66) V-Y-Plastik (45)	14	46		1,5 11*	17 15		3,6 3,5	15 14	4
Urhan [470]	2002	110	Limberg	6	35	93	4,9	6		3,7		4
Yamout ^{b,i} [481]	2009	16	Limberg	12	11		6	25		1,8		4
Yeo [483]	2010	2	Fasziokutaner Limberg-Lap- pen + Laser-Epilation 1 bzw. 4 Sitzungen, 1×/Mo		10/9	100	0					5

ⁱ Nur Kinder

Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art
Berkem [70]	2005	34	V-Y-Plastik	23	32	100	6	0		3	21	4
Dylek [150]	1998	23	V-Y-Plastik	39	18	100	0	17		9	21	4
Ekci [153]	2009	17	V-Y-Plastik	12	12 (6–24)		0	0		2		4
Eryilmaz ^a [167]	2009	43	V-Y-Plastik	14	48		2,3	16		3	17	4
Khatri [269]	1994	5	V-Y-Plastik	100			0	0				4
Nursal [351]	2010	238	V-Y-Plastik (77) Mittelliniennaht einschichtig (83) Mittelliniennaht zweischich- tig (78)	7,5	30	81	16 12 10	20 35 25		1,2 1,3	15 17 11	1b [®]
Saray [407]	2002	11	V-Y-Plastik	100	20	100	0	0		4	16	4
Schoeller [413]	1997	24	V-Y-Plastik	100	54	100	0	8		7		4
Singh [430]	2005	62	Lateraler Verschiebelappen (adipofasziokutan) (40) Z-Plastik (4) Rotationslappen (4) Limberg-Lappen (1) V-Y-Plastik (1)		48	81	0	10		5,7	<18	4
Unalp [469]	2007	111	V-Y-Plastik (45) Limberg (66)	14	46		11* 1,5	15 17		3,5 3,6	14 15	4

^{*}Der Unterschied zwischen den Gruppen war statistisch signifikant (ρ < 0,05) $^{\rm a}$ 91 % der Patienten waren unzufrieden mit dem kosmetischen Ergebnis!

^{*} Der Unterschied zwischen den Gruppen war statistisch signifikant (p < 0,05) ^a Befund in Anusnähe und Pat. mit Fisteln außerhalb des Exzisionsbereiches wurden ausgeschlossen

^b Wunde bzw. Narbe kreuzt die Rima ani

^c Die Exzisionslinie ist um 180° gegenüber der gewöhnlichen Methode gedreht

^d Doppelseitiger Limberg-Lappen für sehr große Defekte

e Große Befunde ausgeschlossen
f Nachuntersuchung mittels Telefon-Interview

⁹ Feststellung: "kein Rezidiv nach Modifikation der Technik"

h Wundinfekt beeinflusst die Rezidive

Tab. 17 Exzision und plastischer Verschluss mit Dufourmentel-Lappen													
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien- art	
Hasse [207]	1998	37	Dufourmentel		8–37	86	0	16		6,3	17	4	
Lieto ^{a,b} [292]	2010	310	Dufourmentel	18	103	100	2,3	11		1	7	4	
Manterola ^a [305]	1991	25	Dufourmentel		41		0	8		4		4	
Quinodoz [392]	1999	218	Dufourmentel Z-Plastik W-Plastik		4–84			7 (Ge- samt- gruppe)				4	

^a Narbe kreuzt Rima ani

^b Mehr Rezidive bei Adipösen

		•	the Verfahren	.,								
Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Acartürk ^a [9]	2010	15	Superior gluteal artery perforator flap	0	10	100	0	0		1	10	4
Awad ^a [47]	2006	32	Bilobärer Rotationslappen	31	22	100	0	10		1,5	14	
Awad [48]	2007	62	(Bilobärer) Rotationslappen		12	100	0	5			11	4 fraglich rando- misiert
Aydede [49]	2001	203	Gluteus maximus Rotations- lappen (20) Marsupialisation (101) Mittelliniennaht (82)		54		5 4,5 5	5 6 7		6* 3 3	20 38* 20	4
Basterzi ^a [65]	2008	10	Superior gluteal artery perforator flap		6,5	100	0	0		2,3		4
El-Khatib [157]	2009	8	Bilobärer fasziokutaner Lappen		6–24	100	0	12,5		6,8		5
Fishbein ^a [178]	1979	50	Rotationslappen				2	6				4
Kahn [240]	1965		Lumbarer Lappen	Nur Beschreibung der Methode								
Kim [271]	2010	1	Superior gluteal artery perforator flap	100	11		0	0				5
Krand ^b [279]	2009	278	Bilateraler Gluteus Maximus Fascienflap	8	66		0,7	7		1	12	4
Lahooti [285]	2008	52	Rotationslappen	23	18		0	19		2	7	4
Lamke ^a [286]	1979	16	Rotationslappen Z-Plastik		12–48		6	12,5		6,1		4
Nessar ^a [351]	2004	20	Rotationslappen		42		0	9		1		4
Perez-Gurri [379]	1984	1	Myokutaner Lappen (Guteus maximus)	100	30	100	0	0				5
Polat ^a [387]	2011	133	Rotationslappen	6	22		1,5	7,5		2,3		4
Rosen [398]	1996	5	Gluteus maximus Lappen	100	40	100	0	60		13	60	4
Schrögendorfer [414]	2012	21	Superior gluteal artery perforator flap	90	36	100	0	10		9		4
Singh [430]	2005	62	Lateraler Verschiebelappen (adipofasziokutan) (40) Z-Plastik (4) Rotationslappen (4) Limberg-Lappen (1) V-Y-Plastik (1)		48	81	0	10		5,7	<18	4
Turan [468]	2007	10	Lumbarer adipofaszialer Lappen		20		0	0		4	15	4

^a Wunde bzw. Narbe kreuzt Rima ani ^b Wunde mittig, doch abgeflacht. Pat. mit weit lateral liegenden und beidseitigen Fisteln ausgeschlossen (11 %)

Autor	Jahr	N	Methode (Anzahl)	Vor-OP (%)	FU (Monate)	FU (%)	Rezidive (%)	Wund- infektion (%)	Heilungs- dauer (Tage)	Stationär (Tage)	AU (Tage)	Studien art
Alamdari [20]	2019	40	Midline suture (20) Midline + Platelet ich plasma fibrin glue (20)	00	6		"Kein signif. Unterschied"					2b [®]
Altinli [31]	2007	32	Limberg (16) Limberg plus Fibrin (16)	0	8,3			6 0		3,9 2*	-	2b [®]
Armstrong [40]	1994	150	Rasur plus Hygiene				15 (= not- wendige Exzision)			0		5
Casten [96]	1972	154 (132)	Schräge oder transversale Exzision und Verschluss				1					5
Dwivedi [149]	2010	1	Kshar Sutra (Ayurweda)	100	1	100	0	-	21			5
Elbanna [155]	2016	50	Kürettage + Thrombin- Gelatin-Matrix Injektion	6	12		4	2		0	2	4
Elsey [158]	2013	93	Kürettage und Fibrin-Kleber	0	23	61	26			0	7–14	4
Gage [182]	1977	0	Kryochirurgie				-		21–42	2-5		5
Greenberg [199]	2004	30	Subkutane Exzision und Fibrin-Kleber	27	23		0	0		0	11	4
Gupta [201]	2003	18	Lay-open Inzision mit Radiofrequenz		18	100?	5,6	67	11	0	7	4
Hardy [206]	2018	18	Kürettage + Fibrin		12		5,6 ^b	11,2		0	3	4
Isik [230]	2014	40	Tract cleaning + Fibrin	0	18	100	100			0	1	4
Lund [299]	2005	6	Kürettage und Fibrin-Kleber		12	100?	17	0		0		5
Meinero [321]	2014	11	Endoskopische Behandlung		6 (1–9)	100?	0	-	<28	0	3,5	5
Mentes [325]	2005	493	Oblique	4	?/?		5,6	2,6		5,5	?	4
O'Connor [357]	1979	12	Kryochirurgie		12		0			0		4
Patti [377]	2006	8	Lay open + Fibrin	0			0	0	26			
Rao [394]	2006	8	Cutting seton		22	100	0			0		4
Saedon [402]	2018	34	Débridement + Fibrin (17) Midline suture (17)		4		29 ^b 24 ^b	6 47		0		4
Seleem [416]	2005	25	Exzision und Fibrin-Kleber (maximal 3 Pits)	0	11 (4–36)		4	-				4
Sian [427]	2018	146	Kürettage + Fibrin	13	3		27	4		0		4
Smith [431]	2015	41	Pit excision + Fibrin (12) Bascom; mKarydakis (26) Midline suture (5)		32	100 ^a 92 ^a 80 ^a	17 21 0	8 7 20				4
Sözen [440]	2011	50	Karydakis plus Drainage (25) Karydakis plus Fibrin (25)		10	100	0	8 24*		2,5		2b [®]
Sözen [440]	2011	132	Limberg + drain (66) Limberg + Fibrin-Kleber (66)	0	6 2		0	13,7 3	22 8	3,5 2	17 8	2b [®]

^a Rezidivrate gemäß Aktenstudium = Return on recurrence

Literatur

- Abbas O, Sidani M, Rubeiz N et al (2010) Letter:
 755-nm Alexandrite laser epilation as an adjuvant
 and primary treatment for pilonidal sinus disease.
 Dermatol Surg 36:430–432
- Abdelrazeq AS, Rahman M, Botterill ID et al (2008) Short-term and long-term outcomes of the cleft lift procedure in the management of nonacute pilonidal disorders. Dis Colon Rectum 51:1100–1106
- 3. Abdul-Ghani AK, Abdul-Ghani AN, Clark ICL (2006) Day-care surgery for pilonidal sinus. Ann R Coll Surg Engl 88:656–658
- Abou Ashour H, Abelshahid M (2015) Outcome of karydakis lateral flap versus open technique in the treatment of pilonidal sinus. Egypt J Surg 34:251–257
- 5. Abramson DJ (1960) A simple marsupialization technic for treatment of pilonidal sinus: long-term follow up. Ann Surg 151:261–267
- Abramson DJ (1970) An open, semiprimary closure operation for pilonidal sinuses, using local anesthesia. Dis Colon Rectum 13:215–219
- Abramson DJ, Cox PA (1954) The marsupialization operation for pilonidal cysts and sinuses under local anesthesia with lidocaine; an ambulatory method of treatment. Ann Surg 139:341–349
- 8. Galala AKH, Salam IM, Samaan AKR et al (1999) Treatment of pilonidal sinus by primary closure with a transposed rhomboid flap compared with deep suturing: a prospective randomised clinical trial. Eur J Surg 165:468–472
- Acartürk TO, Parsak CK, Sakman G et al (2010) Superior gluteal artery perforator flap in the reconstruction of pilonidal sinus. J Plast Reconstr Aesthet Surg 63:133–139

^b Rezidivrate nach mehrfachen Anwendungen