Connectionless Service

- End-to-end delivery service is *connectionless*
- Extension of LAN abstraction
- Universal addressing
- Data delivered in packets (frames), each with a header
- Combines collection of physical networks into single, virtual network
- Transport protocols use this connectionless service to provide connectionless data delivery (UDP) and connection-oriented data delivery (TCP)

Virtual Packets (1/2)

- *Packets* serve same purpose in internet as frames on LAN
- Created and understood only by software
- Contain sender and destination addresses
- Each has a header
- Routers (formerly gateways) forward between physical networks
- Packets have a uniform, hardware-independent format
- Includes header and data
- Can't use format from any particular hardware
- Encapsulated in hardware frames for delivery across each physical network

Virtual Packets (2/2)

- Because it can connect heterogeneous networks, a router cannot transmit a copy of a frame that arrives on one network across another.
- To accommodate heterogeneity, an internet must define a hardware-independent packet format.

IP Datagram Format

- Formally, the unit of IP data delivery is called a datagram
- Includes header area and data area
- Datagrams can have different sizes
- Header area *usually* fixed (20 bytes) but can have options that increase the size
- Data area (payload) can contain between 1 and 65,535 bytes
 - No minimum size
- Usually, data area much larger than header

Best-effort Delivery

- IP provides a service equivalent to LAN
- Does *not* guarantee to prevent:
- Duplicate datagrams
- Delayed or out-of-order delivery
- Corruption of data
- Datagram loss
- Reliable delivery provided by transport layer
- Network layer (IP) can detect and report errors without actually fixing them
- Network layer focuses on datagram delivery
- Application layer not interested in differentiating among delivery problems at intermediate routers

Network Byte Order

- One problem that often arises is that different machines represent integers in different ways:
- *Big Endian* machines such as IBM and Sun computers store the most significant byte of a 32-bit integer in the lowest memory address of the word (e.g. to the left)
 - * The integer 0x01020304 is laid out in memory as bytes 0x01, 0x02, 0x03, and 0x04
- Little Endian machines such as Intel computers store the most significant byte at the highest address
 - * The integer 0x01020304 is laid out in memory as bytes 0x04, 0x03, 0x02, 0x01
- Other machines (such as DEC-10s) use 36-bit words to hold integers
- As with all network protocols, the standards specify the meanings of all bits in each field, right down to the bit and byte order
- The Internet defines a network Big Endian standard byte order that is used when referring to the fields of Internet datagrams

IPv4 Datagram Header Format

0	4	8	16	19	24	31	
VERS	H. LEN	SERVICE TYPE	TOTAL LENGTH				
IDENTIFICATION			FLAGS	LAGS FRAGMENT OFFSET			
TIME TO LIVE TYPE			HEADER CHECKSUM				
SOURCE IP ADDRESS							
DESTINATION IP ADDRESS							
IP OPTIONS (MAY BE OMITTED) PADDING							
BEGINNING OF DATA							

- VERS -- Version of IP (currently 4)
- H. LEN -- Header length (in units of 32 bits)
- SERVICE TYPE -- Sender's preference for low latency, high reliability (rarely used)
- TOTAL LENGTH -- Total bytes in datagram
- IDENT, FLAGS, FRAGMENT OFFSET -- Used with fragmentation
- TTL -- *Time-To-Live*; decremented at each router; datagram discarded when TTL == 0
- TYPE -- Type of protocol carried in datagram; e.g.: TCP, UDP
- HEADER CHECKSUM -- 1s complement of 1s complement sum
- SOURCE, DEST IP ADDRESS -- IP addresses of *original* source and *ultimate* destination

IPv4 Header Fields (1/6)

- Version number (4-bits):
- The current protocol version is 4
- Including a version number allows a future version of IP be used along side the current version, facilitating migration to new protocols
- Header length (4-bits):
- Length of the datagram header (excluding data) in 32-bit words (or units)
- The minimum length is 5 words (== 20 bytes), but can be up to 15 words if IPv4 options are used
- In practice, the length field is used to locate the start of the data portion of the datagram

IPv4 Header Fields (2/6)

- Type-of-service (8-bits):
- A hint to the routing algorithms as to what type of service we desire
- In practice, routers ignore the TOS field in IPv4
 - *Precedence (3-bits)*: A priority indication, where 0 is the lowest and means normal service, while 7 is highest and is intended for network control messages (e.g., routing, congestion control)
 - *Delay (1-bit)*: An application can request low delay service (e.g., for interactive use)
 - *Throughput (1-bit)*: Application requests high throughput
 - *Reliability (1-bit)*: Application requests high reliability
- Does setting the low-delay bit guarantee getting such service? No
- The type-of-service field is meant as a request or hint to the routing algorithms, but does not guarantee that your request can be honored

IPv4 Header Fields (3/6)

- Total length (16-bits):
- Total length of the IP datagram (in bytes), including data and header
- The size of the data portion of the datagram is the total length minus the size of the header
- <u>Identification (16-bits)</u>:
- The identification field uniquely identifies fragments of the same original datagram
- Whenever a host sends a datagram, it sets the identification field of the outgoing datagram and increments its local identification counter.
- <u>Flags (3-bits)</u>:
- *Don't fragment* indication (set by host, honored by routers)
- More fragments field indicates that another fragment follows this one
- An unfragmented datagram has an offset of 0, and a More fragments bit of 0
- The last fragment of a fragmented datagram contains *More fragments* == 0 and the *Fragment offset* non-zero
- Fragment offset (13-bits):
- The offset field shows order of the fragments
- When a gateway fragments a datagram, it sets the offset field of each fragment to reflect at what data offset with respect to the original datagram the current fragment belongs

IPv4 Header Fields (4/6)

- Time-To-Live (8-bits):
- A counter that is decremented by each gateway
- Should this hop count reach 0, discard the datagram
- Originally, the time-to-live field was intended to reflect real time
- In practice, it is now a hop count
- The time-to-live field squashes looping packets
- It also guarantees that packets don't stay in the network for longe, a property needed by higher layer protocols that reuse sequence numbers
- Protocol (8-bits):
- What type of data the IP datagram carries (e.g., TCP, UDP, etc.)
- Needed by the receiving IP to know the higher level service that will next handle the data

An aside (Opus1 traceroute server)

- traceroute to 134.226.1.64 (134.226.1.64), 30 hops max, 40 byte packets
- 1 Firewall (192.245.12.78) 3.906 ms TTL =1
- 2 Opus-GW (207.182.35.49) 3.906 ms TTL =2
- 3 Opus-Login-T3 (204.17.35.105) 3.96 ms TTL=3
- 4 phv-edge-01.inet.qwest.net (65.121.93.133) 10.742 ms TTL =
- 5 tmp-core-01.inet.qwest.net (205.171.129.85) 19.530 ms
- 6 bur-core-01.inet.qwest.net (67.14.10.6) 20.507 ms
- 7 lap-brdr-01.inet.qwest.net (205.171.213.106) 20.506 ms
- 8 205.171.1.82 (205.171.1.82) 23.436 ms
- 9 so0-0-0-2488M.ar1.DUB1.gblx.net (67.17.66.6) 170.887 ms
- 10 HEAnet-2.so-3-0-0.ar1.dub1.gblx.net (208.48.23.54) 170.887 ms
- 11 mantova-gige5-2.bh.access.hea.net (193.1.195.136) 171.864 ms
- 12 spike-gig1-5.tcd.access.hea.net (193.1.196.150) 171.864 ms
- 13 134.226.254.45 (134.226.254.45) 172.840 ms

IPv4 Header Fields (5/6)

- Header checksum (16-bits):
- A checksum of the IP header (excluding data)
- The IP checksum is computed as follows:
 - * Treat the data as a stream of 16-bit words (appending a 0 byte if needed)
 - * Compute the 1's complement sum of the 16-bit words
 - * Take the 1's complement of the computed sum
- This checksum is much weaker than CRC
- It has the property that the order in which the 16-bit words are summed is irrelevant
- We can place the checksum in a fixed location in the header, set it to zero, compute the checksum, and store its value in the checksum field
- On receipt of a datagram, the computed checksum calculated over the received packet should be zero
- Checksumming only the header reduces the processing time at each gateway, but forces transport layer protocols to perform error detection (if desired)
- The header must be recalculated at every router since TTL is decremented ₁₃

IPv4 Header Fields (6/6)

- Source address (32-bits):
 - Original sender's address
- This is an IP address, not a MAC address
- Destination address (32-bits):
- Datagram's ultimate destination
- When a gateway forwards a frame to another gateway, it forwards an Ethernet frame
- The IP embedded datagram contains the source of the original sender (not the forwarding gateway) and the destination address of the ultimate destination

IPv4 Header Options (1/2)

- IP datagrams allow the inclusion of optional, varying length fields that need not appear in every datagram
- We may sometimes want to send special information, but we don't want to dedicate a field in the packet header for this purpose
- Options start with a 1-byte *option code*, followed by zero or more bytes of *option data*
- The option code byte contains three parts:
- Copy flag (1 bit):
 - * If 1, replicate option in each fragment of a fragmented datagram
 - * If 0, option need only appear in first fragment
- Option class (2 bits):
 - * 0: Network control
 - * 1: Reserved
 - * 2: Debugging and measurement
 - * 3: Reserved

IPv4 Header Options (2/2)

• Option number (5 bits):

Option	Description			
Security	Specifies how secret the datagram is			
Strict source routing	Gives the complete path to be followed			
Loose source routing	Gives a list of routers not to be missed			
Record route	Makes each router append its IP address			
Timestamp	Makes each router append its address and timestamp			