Lezione 19 MSC Bisimulation equivalence come punto fisso

Roberto Gorrieri

Bisimulazione come punto fisso

- Riformuliamo ~ come massimo punto fisso di una opportuna funzione F che trasforma relazioni binarie R su stati
- Useremo l'algoritmo per calcolare massimi punti fissi come algoritmo per determinare la relazione ~ .
- Osservazione: 2^{QxQ} , ovvero l'insieme di tutte le relazioni binarie su Q, è un reticolo completo (finito se Q è finito), con Top = QxQ.

Funzionale F: Trasformatore di relazioni binarie

Definition 2.25. Given an lts $TS = (Q, A, \rightarrow)$, functional $F : \mathcal{P}(Q \times Q) \rightarrow \mathcal{P}(Q \times Q)$ (i.e., a transformer of binary relations over Q) is defined as follows. If $R \subseteq Q \times Q$, then $(q_1, q_2) \in F(R)$ if and only if for all $\mu \in A$

- $\forall q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$, $\exists q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$ and $(q_1', q_2') \in R$
- $\forall q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$, $\exists q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$ and $(q_1', q_2') \in R$.

Proposition 2.10. For any lts $TS = (Q, A, \rightarrow)$, we have that:

- 1. Functional F is monotone, i.e., if $R_1 \subseteq R_2$ then $F(R_1) \subseteq F(R_2)$.
- 2. Relation $R \subseteq Q \times Q$ is a bisimulation if and only if $R \subseteq F(R)$.

Proof. The proof of (1) derives immediately form the definition of F: if $(q_1,q_2) \in F(R_1)$ then for all $\mu \in A$

- $\forall q_1' \text{ such that } q_1 \xrightarrow{\mu} q_1', \exists q_2' \text{ such that } q_2 \xrightarrow{\mu} q_2' \text{ and } (q_1', q_2') \in R_1$
- $\forall q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$, $\exists q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$ and $(q_1', q_2') \in R_1$.

Since $R_1 \subseteq R_2$, the above implies that for all $\mu \in A$

- $\forall q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$, $\exists q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$ and $(q_1', q_2') \in R_2$
- $\forall q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$, $\exists q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$ and $(q_1', q_2') \in R_2$

which means that $(q_1, q_2) \in F(R_2)$.

The proof of (2) is also immediate: if R is a bisimulation, then if $(q_1,q_2) \in R$ then for all $\mu \in A$

- $\forall q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$, $\exists q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$ and $(q_1', q_2') \in R$
- $\forall q_2' \text{ such that } q_2 \xrightarrow{\mu} q_2', \exists q_1' \text{ such that } q_1 \xrightarrow{\mu} q_1' \text{ and } (q_1', q_2') \in R.$

and, by using the reverse implication, this means that $(q_1,q_2) \in F(R)$, i.e., $R \subseteq F(R)$. Similarly, if $R \subseteq F(R)$, then the condition holding for F(R) holds also for all the elements of R, hence R is a bisimulation.

~ è il massimo punto fisso di F

 Poiché F è monotona, il teorema del punto fisso di Knaster-Tarski assicura che il massimo punto fisso per F sia

$$Zmax = U \{R \mid R \subseteq F(R)\}$$

Ma cos'è Zmax?

Poiché R è una bisimulazione sse R \subseteq F(R), alllora:

 $Zmax = U \{R \mid R \text{ è una bisimulazione} \}$ Ovvero $Zmax = ^{\sim}$

Algoritmo per calcolare ~

 Se Q è finito, allora 2^{QxQ} è un reticolo completo finito e possiamo applicare l'algoritmo per calcolare il massimo punto fisso di F:

```
X := QxQ; Y := F(X);
While X ≠ Y do { X:=Y; Y:=F(Y) }
Return X
```

- Sappiamo che l'algoritmo termina sempre se Q è finito.
- Analogie con l'algoritmo con tabella a scala, visto a LP, per minimizzazione di automi deterministici.

Esempio

Q = {q0, q1, q2, q3, q4}

$$F^{0}(QxQ) = QxQ$$

 $F^{1}(QxQ) = {(q0,q1), (q0,q2), (q0,q3), (q1,q2), (q1,q3), (q2,q3)} + simmetriche + riflessive$
 $F^{2}(QxQ) = {(q0,q1), (q0,q2), (q1,q2)} + sim + rifl$
 $F^{3}(QxQ) = {(q0,q1)} + sim + rifl = F^{4}(QxQ)$

Minimizzazione

Dato TS = $(Q, A \rightarrow)$ e calcolata ~ con l'algoritmo iterativo, possiamo costruire un lts minimo TS' = (Q', A, \rightarrow) ') dove:

Q' = {[q]₋ | q
$$\in$$
 Q} e [q]₋ = {q' \in Q | q' ~ q}
 \rightarrow ' = {([q]₋ , a, [q']₋) | (q,a,q') \in \rightarrow }

LTS minimo rispetto a ~ va a fondere gli stati equivalenti; nell'esempio precedente fonde gli stati q0 e q1

Observe that in the definition of the minimum Its TS_{\sim} , any state $[q]_{\sim}$ is an equivalence class of states of TS: for all $q, q' \in Q$, $q \sim q'$ if and only if $[q]_{\sim} = [q']_{\sim}$. Moreover, if $([q]_{\sim}, \mu, [q']_{\sim})$ is a transition in TS_{\sim} , then for all $q_1 \in Q$ such that $q \sim q_1$, there exists a $q_2 \in Q$ such that $q_1 \xrightarrow{\mu} q_2$ and $q' \sim q_2$, and so $([q_1]_{\sim}, \mu, [q_2]_{\sim}) = ([q]_{\sim}, \mu, [q']_{\sim})$. In other words, the definition of TS_{\sim} is independent of the choice of the representative state q for its equivalence class $[q]_{\sim}$.

Proposition 2.12. Given an Its $TS = (Q, A, \rightarrow)$ and its associated minimum Its $TS_{\sim} = (Q_{\sim}, A, \rightarrow_{\sim})$, as defined in Definition 2.27, the following hold:

- $q \sim [q]_{\sim}$ for all $q \in Q$ and $[q]_{\sim} \in Q_{\sim}$, i.e., TS_{\sim} is a correct realization of TS;
- for all $[q]_{\sim}, [q']_{\sim} \in Q_{\sim}$ we have that if $[q]_{\sim} \sim [q']_{\sim}$ then $[q]_{\sim} = [q']_{\sim}$, i.e., TS_{\sim} is the minimum (up to isomorphism).

Proof. For the proof of the first item, consider relation $R \subseteq Q \times Q_{\sim}$ defined as follows: $R = \{(q, [q]_{\sim}) \mid q \in Q\}$. It is easy to see that R is a bisimulation.

For the proof of second item, we have that $q \sim [q]_{\sim}$ as well as $q' \sim [q']_{\sim}$ by the previous item. Therefore, if $[q]_{\sim} \sim [q']_{\sim}$, then by transitivity we also have that $q \sim q'$ and so, by construction of TS_{\sim} , we have that $[q]_{\sim} = [q']_{\sim}$.

Esercizio (1)

Provate a calcolare ~ con l'algoritmo. Troverete che esistono solo due classi di equivalenza {q1,q4} e {q2,q3,q5,q6,q7} e quindi lts minimo ha solo due stati.

Esercizio (2)

 Minimizzare questo lts, attraverso il calcolo di ~ con l'algoritmo iterativo.

Minimo Its rispetto a trace equiv.?

- Dato TS=(Q, A, →, q0), possiamo ottenere il minimo deterministico attraverso questi passi:
 - Trasforma TS in deterministico dTS, con la costruzione per sottoinsiemi
 - Calcola ~ sopra dTS (ricorda che ~ e trace equivalence coincidono su lts deterministici)
 - Minimizza dTS rispetto a ~ per ottenere il minimo lts deterministico per TS.
- Tuttavia è possibile che esistano lts nondeterministici equivalenti più piccoli.
- Esercizio: calcola il minimo lts deterministico equivalente a tracce a quello del lucido precedente, assumendo q1 come stato iniziale.

In generale ... (anche se Q è infinito)

Definition 2.26. Given an Its $TS = (Q, A, \rightarrow)$, for each natural $i \in \mathbb{N}$, define the relations \sim_i over Q as follows:

- $\sim_0 = Q \times Q$.
- $q_1 \sim_{i+1} q_2$ if and only if for all $\mu \in A$
 - $\forall q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$, $\exists q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$ and $q_1' \sim_i q_2'$
 - $\forall q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$, $\exists q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$ and $q_1' \sim_i q_2'$.

We denote with \sim_{ω} the relation $\bigcap_{i\in\mathbb{N}} \sim_i$.

Proposition 2.11. *Prove that, for each* $i \in \mathbb{N}$ *:*

- 1. the relation \sim_i is an equivalence relation,
- $2. \sim_{i+1} \subseteq \sim_i$
- $3. \sim_i = F^i(Q \times Q)$

Moreover, \sim_{ω} is an equivalence relation.

.... ovvero

catena, possibilmente infinita, con ~ω come limite

$$\sim_0 = F^0(Q \times Q) \supseteq \sim_1 = F^1(Q \times Q) \supseteq \dots \supseteq \sim_i = F^i(Q \times Q) \supseteq \dots \supseteq \sim_\omega$$

Ma che relazione c'è con ~?

Teorema:

Se TS = (Q, A, \rightarrow) è image-finite, allora $\sim \omega = \sim$

Dimostrazione

Theorem 2.2. If the lts $TS = (Q, A, \rightarrow)$ is image-finite, then $\sim = \sim_{\omega}$.

Proof. We prove first that $\sim \subseteq \sim_i$ for all i by induction on i. Indeed, $\sim \subseteq \sim_0$ (the universal relation); moreover, assuming $\sim \subseteq \sim_i$, by monotonicity of F and the fact that \sim is a fixed-point for F, we get $\sim = F(\sim) \subseteq F(\sim_i) = \sim_{i+1}$. Hence, $\sim \subseteq \sim_{\omega}$. *Now we prove that* $\sim_{\omega} \subseteq \sim$ *, by proving that relation* $R = \{(q_1, q_2) \mid q_1 \sim_{\omega} q_2\}$ *is* a bisimulation. Assume $(q_1,q_2) \in R$, hence $q_1 \sim_i q_2$ for all $i \in \mathbb{N}$. If $q_1 \xrightarrow{\mu} q'_1$, then for all i, there exists q_{2i} such that $q_2 \xrightarrow{\mu} q_{2i}$ with $q'_1 \sim_i q_{2i}$. Since the lts is imagefinite, the set $K = \{q_{2k} \mid q_2 \xrightarrow{\mu} q_{2k} \land q'_1 \sim_k q_{2k} \land k \in \mathbb{N}\}$ is finite; hence, there is at least one $q_{2n} \in K$ such that $q'_1 \sim_i q_{2n}$ for infinitely many i. But since if $q \sim_i q'$ then $q \sim_i q'$ for any j < i, then we can conclude that $q'_1 \sim_i q_{2n}$ for all i, hence $q'_1 \sim_{\omega} q_{2n}$ and so $(q'_1, q_{2n}) \in R$. The symmetric case when q_2 moves first is analogous, hence omitted. So $R = \sim_{\omega}$ is a bisimulation, hence $\sim_{\omega} \subseteq \sim$.

Perché serve image-finite?

q0 ~ω q0' ma invece q0 non è bisimile a q0' perché da q0 non parte nessuna computazione infinita.