Paradigmas de Programación

Correspondencia de Curry-Howard

2do cuatrimestre de 2024

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Sistema de tipos para el cálculo Lambda

Sistema de tipos para el cálculo Lambda

Sistema de tipos para el cálculo Lambda

- Ignoremos los términos del lambda cálculo
- Notar que las reglas de tipado se corresponden con reglas de deducción natural:

Correspondencia de Curry

Pruebas y Programas

Observación realizada sobre la lógica combinatoria:

Lógica combinatoria

Variante del cálculo lambda que sustituye a las abstracciones por un conjunto limitado de combinadores.

▶ Curry & Feys observaron que si se lee el tipo $\sigma \to \tau$ como una implicación $\sigma \Rightarrow \tau$, luego

la regla de tipado de la aplicación de una función es la regla **modus ponens**

 $\begin{array}{ccc} \mathsf{Proposiciones} & \leftrightarrow & \mathsf{Tipos} \\ \mathsf{Pruebas} & \leftrightarrow & \mathsf{T\acute{e}rminos} \end{array}$

Un juicio $\vdash \tau$ es derivable sí y sólo sí el tipo τ está habitado, esto es, existe un término M tal que $\vdash M$: σ es derivable.

Ejemplo

¿Es derivable $\vdash \sigma \Rightarrow \sigma$?

Si, por ejemplo:

$$\frac{\overline{\sigma \vdash \sigma} ax}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_i$$

Corresponde al siguiente juicio de tipado:

$$\frac{\overline{x : \sigma \vdash x : \sigma}^{\text{T-VAR}}}{\vdash \lambda x : \sigma . x : \sigma \to \sigma}^{\text{T-ABS}}$$

El **término** $\lambda x : \sigma.x$ se asocia con la **prueba** de $\sigma \Rightarrow \sigma$ que se muestra en la parte superior

Ejemplo

; Es derivable $\vdash \sigma \Rightarrow \sigma$?

También existe la siguiente prueba

$$\frac{\overrightarrow{\sigma} \Rightarrow \sigma \vdash \sigma \Rightarrow \sigma}{\vdash (\sigma \Rightarrow \sigma) \Rightarrow \sigma \Rightarrow \sigma} \Rightarrow_{i} \frac{\overrightarrow{\sigma} \vdash \sigma}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \frac{\overrightarrow{\sigma} \vdash \sigma}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{e}$$

Corresponde al siguiente juicio de tipado:

$$\frac{\overline{x : \sigma \to \sigma \vdash x : \sigma \to \sigma}^{\text{T-VAR}}}{\vdash \lambda x : \sigma \to \sigma.x : (\sigma \to \sigma) \to \sigma \to \sigma}^{\text{T-VAR}} \xrightarrow{\overline{y : \sigma \vdash y : \sigma}^{\text{T-VAR}}} \xrightarrow{\text{T-ABS}} \frac{\overline{y : \sigma \vdash y : \sigma}^{\text{T-VAR}}}{\vdash \lambda y : \sigma.y : \sigma \to \sigma}^{\text{T-ABS}}}$$

$$\vdash (\lambda x : \sigma \to \sigma.x)(\lambda y : \sigma.y) : \sigma \to \sigma$$

El **término** $(\lambda x : \sigma \to \sigma.x)(\lambda y : \sigma.y)$ se asocia con la **prueba** que se muestra en la parte superior.

Ejemplo

¿Es derivable $\vdash \sigma \Rightarrow \sigma$?

También existe la siguiente prueba

$$\frac{\frac{\overline{\sigma \vdash \sigma} ax}{\sigma \vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \quad \frac{}{\sigma \vdash \sigma} ax}{\sigma \vdash \sigma} \Rightarrow_{e} \\
 \frac{}{\vdash \sigma \Rightarrow \sigma}$$

$$\frac{\overline{x : \sigma, y : \sigma \vdash y : \sigma}^{\text{T-VAR}}}{x : \sigma \vdash \lambda y : \sigma . y : \sigma \to \sigma}^{\text{T-ABS}} \frac{\overline{x : \sigma \vdash x : \sigma}^{\text{T-VAR}}}{x : \sigma \vdash \lambda y : \sigma . y) x : \sigma}^{\text{T-APP}}$$

$$\frac{x : \sigma \vdash (\lambda y : \sigma. y) x : \sigma}{\vdash \lambda x : \sigma. (\lambda y : \sigma. y) x : \sigma \to \sigma}^{\text{T-APP}}$$

El **término** $\lambda x : \sigma(\lambda y : \sigma y)$ se asocia con la **prueba** que se muestra en la parte superior.

Pruebas vs términos

- ▶ Una fórmula puede tener muchas pruebas distintas.
- Distintas pruebas corresponden a distintos juicios de tipado, es decir distintos términos.
- Notar que algunas pruebas de la misma proposición son mas complejas que otras:

Distintas pruebas de
$$\sigma \Rightarrow \sigma$$

$$\frac{\overline{\sigma \vdash \sigma}^{\mathsf{ax}}}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \qquad \frac{\overline{\sigma \Rightarrow \sigma \vdash \sigma \Rightarrow \sigma}^{\mathsf{ax}}}{\vdash (\sigma \Rightarrow \sigma) \Rightarrow \sigma \Rightarrow \sigma} \Rightarrow_{i} \qquad \frac{\overline{\sigma \vdash \sigma}^{\mathsf{ax}}}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \qquad \frac{\overline{\sigma \vdash \sigma}^{\mathsf{ax}}}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \qquad \frac{\overline{\sigma \vdash \sigma}^{\mathsf{ax}}}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \qquad \frac{\overline{\sigma} \vdash \sigma}{\vdash \sigma} \Rightarrow_{i}$$

Correspondencia de Curry-Howard

- ▶ William Alvin Howard extiende la correspondencia:
 - ► Tratando los restantes conectivos lógicos.
 - Usando el cálculo lambda en lugar de la lógica combinatoria.
 - Mostrando una correspondencia entre la simplificación de pruebas y la computación.

Simplificación de pruebas

Corte (Cut)

10

Un corte es una afirmación intermedia (un lema) que probamos a pesar de que no es una subfórmula de la afirmación final (el teorema)

$$\frac{\frac{\vdots}{\Gamma, \sigma \vdash \rho}}{\frac{\Gamma \vdash \sigma \Rightarrow \rho}{\Gamma \vdash \rho}} \Rightarrow_{i} \frac{\vdots}{\Gamma \vdash \sigma} \Rightarrow_{e}$$

σ es un corte

- Asumimos σ para probar ρ
- Probamos σ (como lemma)

Simplificación de pruebas

Corte (Cut)

Un corte es una afirmación intermedia (un lema) que probamos a pesar de que no es una subfórmula de la afirmación final (el teorema)

$$\frac{\frac{\vdots}{\Gamma, \sigma \vdash \rho}}{\frac{\Gamma \vdash \sigma \Rightarrow \rho}{\Gamma \vdash \rho}} \Rightarrow_{i} \frac{\vdots}{\Gamma \vdash \sigma} \Rightarrow_{e}$$

σ es un corte

Caracterizado por el uso de \Rightarrow_i seguido por \Rightarrow_e

Simplificación de pruebas

Eliminación de Corte (Cut)

Reescribir una prueba de manera tal que no tenga cortes:

 \blacktriangleright Eliminamos σ reemplazando cada uso σ en la prueba de ρ por una copia de la prueba de σ .

Eliminación del corte

11

Eliminación de corte : Ejemplo

Eliminación de corte $\frac{\int_{\sigma \Rightarrow \sigma \vdash \sigma \Rightarrow \sigma}^{\Phi} ax}{\frac{\sigma \vdash \sigma \Rightarrow \sigma}{\vdash (\sigma \Rightarrow \sigma) \Rightarrow \sigma \Rightarrow \sigma}} \Rightarrow_{i} \frac{\sigma \vdash \sigma}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \frac{\sigma \vdash \sigma}{\vdash \sigma} \Rightarrow_{i} \frac{\sigma}{\vdash \sigma} \Rightarrow_{i} \frac{\sigma}$

Computación como simplificación de pruebas

Eliminación de corte y reducción β

Un paso de reducción β (esto es, aplicar E-APPABS) se corresponde con una eliminación de corte.

$$\frac{\vdots}{\Gamma, \sigma \vdash M : \rho} \qquad \vdots \qquad \rightarrow \qquad \frac{\vdots}{\Gamma \vdash N : \sigma} \\
\frac{\Gamma \vdash \lambda x : \sigma.M : \sigma \to \rho}{\Gamma \vdash (\lambda x : \sigma.M)N : \rho} \qquad \text{T-APP} \qquad \frac{\Gamma \vdash N : \sigma}{\Gamma \vdash M\{x := N\} : \rho}$$

Normalización

Conjunción

Forma normal

Una prueba está en forma normal si no posee cortes.

Theorem (Normalización de pruebas)

Toda prueba puede ser "normalizada" mediante la eliminación sucesiva de cortes.

Extendemos la sintaxis

$$\sigma, \tau, \dots ::= \dots \mid \sigma \times \tau$$

 $M, N, \dots ::= \dots \mid \langle M, N \rangle \mid \text{fst } M \mid \text{snd } N$

$$\frac{\Gamma \vdash \sigma \quad \Gamma \vdash \tau}{\sigma \vdash \sigma \land \tau} \land_{i}$$

$$\frac{\Gamma \vdash \sigma \land \tau}{\Gamma \vdash \sigma} \land_{e_{1}} \frac{\Gamma \vdash \sigma \land \tau}{\Gamma \vdash \tau} \land_{e_{2}}$$

15

Producto

to Conjunción : Corte

Extendemos la sintaxis

$$\sigma, \tau, \dots ::= \dots \mid \sigma \times \tau$$

 $M, N, \dots ::= \dots \mid \langle M, N \rangle \mid \text{fst } M \mid \text{snd } N$

$$\frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash N : \tau}{\sigma \vdash \langle M, N \rangle : \sigma \times \tau}$$

$$\frac{\Gamma \vdash M : \sigma \times \tau}{\Gamma \vdash \mathsf{fst} \ M : \sigma} \qquad \frac{\Gamma \vdash M : \sigma \times \tau}{\Gamma \vdash \mathsf{snd} \ M : \tau}$$

$$\begin{array}{cccc} \vdots & & \vdots \\ \hline \Gamma \vdash & \sigma & \overline{\Gamma \vdash & \tau} \\ \hline \Gamma \vdash & \sigma \wedge \tau & \\ \hline \Gamma \vdash & \sigma & \sigma \\ \end{array} \land_{e_1} \qquad \boxed{ \tau \text{ es un corte} }$$

$$\begin{array}{cccc} \vdots & & \vdots & & \\ \hline \Gamma \vdash & \sigma & \overline{\Gamma} \vdash & \tau \\ \hline \Gamma \vdash & & \sigma \wedge \tau \\ \hline \Gamma \vdash & & \tau \\ \hline \end{array} \wedge_{e_2} \qquad \qquad \sigma \text{ es un corte}$$

17

Conjunción: Eliminación de corte

Producto: Reducción

$$\begin{array}{cccc} \vdots & \vdots & \vdots & \\ \hline \Gamma \vdash M : \sigma & \hline \Gamma \vdash N : \tau \\ \hline \Gamma \vdash \langle M, N \rangle : \sigma \times \tau & \\ \hline \Gamma \vdash \text{fst } \langle M, N \rangle : \sigma & \\ \hline \vdots & \vdots & \\ \hline \hline \Gamma \vdash M : \sigma & \hline \Gamma \vdash N : \tau \\ \hline \hline \Gamma \vdash \langle M, N \rangle : \sigma \times \tau & \\ \hline \hline \Gamma \vdash \text{snd } \langle M, N \rangle : \tau & \\ \hline \end{array}$$

19

21

Disjunción

Extendemos la sintaxis

$$\begin{array}{lll} \sigma, \tau, \dots & ::= & \dots & \mid \sigma + \tau \\ M, N, P, \dots & ::= & \dots & \mid \mathsf{left}^\sigma \ M \mid \mathsf{right}^\sigma \ M \\ & \mid \mathsf{case} \ M \ \mathsf{with} \{\mathsf{left} \ x \to N, \mathsf{right} \ x \to P\} \end{array}$$

$$\frac{\Gamma \vdash \sigma}{\Gamma \vdash \sigma \vee \tau} \vee_{i_1} \frac{\Gamma \vdash \tau}{\Gamma \vdash \sigma \vee \tau} \vee_{i_2}$$

$$\frac{\sigma \vee \tau \quad \Gamma, \quad \sigma \vdash \rho \quad \Gamma, \quad \tau \vdash \rho}{\sigma \vee_{\sigma}} \vee_{\sigma}$$

Suma

$$\begin{array}{lll} \sigma, \tau, \dots & ::= & \dots & \mid \sigma + \tau \\ M, N, P, \dots & ::= & \dots & \mid \mathsf{left}^\sigma & M \mid \mathsf{right}^\sigma & M \\ & & \mid \mathsf{case} & M \; \mathsf{with} \{\mathsf{left} \; x \to N, \mathsf{right} \; x \to P\} \end{array}$$

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \mathsf{left}^{\tau} \ M : \sigma + \tau} \qquad \frac{\Gamma \vdash M : \tau}{\Gamma \vdash \mathsf{right}^{\sigma} \ M : \sigma + \tau}$$

$$\frac{\Gamma \vdash M : \sigma + \tau \qquad \Gamma, x : \sigma \vdash M : \rho \qquad \Gamma, x : \sigma \vdash N : \rho}{\Gamma \vdash \mathsf{case} \ M \ \mathsf{with} \{\mathsf{left} \ x \to N, \mathsf{right} \ x \to P\} : \rho}$$

20

Disjunción: Corte

$$\begin{array}{c|c} \vdots & & & & & & \\ \hline \Gamma \vdash M : \sigma & & \vdots & & & & \\ \hline \hline \Gamma \vdash \mathsf{left}^{\tau} M : \sigma + \tau^{\bigvee_{i_1}} & \overline{\Gamma, x : \sigma \vdash N : \rho} & \overline{\Gamma, x : \tau \vdash P : \rho} \\ \hline \hline \Gamma \vdash \mathsf{case} \ \mathsf{left}^{\tau} M \ \mathsf{with} \{\mathsf{left} \ x \to N, \mathsf{right} \ x \to P\} : \rho \end{array}$$

```
 \begin{array}{c|c} \vdots & & & & & & \\ \hline \hline \Gamma \vdash M : \tau & & \vdots & & & \\ \hline \hline \Gamma \vdash \mathsf{right}^\sigma \ M : \sigma + \tau^{\bigvee_{i_2}} & \overline{\Gamma, x : \sigma \vdash N : \rho} & \overline{\Gamma, x : \tau \vdash P : \rho} \\ \hline \hline \Gamma \vdash \mathsf{case} \ \mathsf{right}^\tau \ M \ \mathsf{with} \{\mathsf{left} \ x \to N, \mathsf{right} \ x \to P\} : \rho \end{array}
```

Suma: Reducción (1)

```
\frac{\vdots}{\Gamma \vdash M : \sigma} \qquad \vdots \qquad \vdots \qquad \vdots \\
\frac{\Gamma \vdash \mathsf{left}^{\tau} \ M : \sigma + \tau}{\Gamma \vdash \mathsf{left}^{\tau} \ M : \sigma + \tau} \lor_{i_{1}} \qquad \overline{\Gamma, x : \sigma \vdash N : \rho} \qquad \overline{\Gamma, x : \tau \vdash P : \rho} \lor_{e}

\Gamma \vdash \mathsf{case} \ \mathsf{left}^{\tau} \ M \ \mathsf{with} \{\mathsf{left} \ x \to N, \mathsf{right} \ x \to P\} : \rho

\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots

\Gamma \vdash M \colon \sigma

\vdots \qquad \vdots \qquad \vdots \qquad \vdots

\Gamma \vdash N \{x := M\} : \rho
```

23

25

Suma: Reducción (2)

Absurdo

$$rac{\Gamma \vdash \qquad \perp}{\sigma} \perp_{e}$$

24

Absurdo

Extendemos la sintaxis σ, τ, \dots ::= ... | \bot $M, N, P, \ldots ::= \ldots \mid \mathsf{case} \ M \ \mathsf{with} \{\}$

$$\frac{\Gamma \vdash M : \bot}{\Gamma \vdash \mathsf{case} \ M \ \mathsf{with}\{\} : \sigma} \bot_{\mathbf{e}}$$

- ▶ Notar que no hay constructores para el tipo ⊥.
- ► El tipo ⊥ (Void) es el tipo vacío.
- ► Se puede definir como un tipo de dato algebraico sin constructores.

Correspondencia de Curry-Howard

Theorem (Correspondencia de Curry-Howard)

 $A_1, \ldots, A_n \vdash \sigma$ es derivable en NJ ssi existe un término M donde $fv(M) \subseteq \{x_1, \ldots, x_n\}$ tal que $x_1 : A_1, \ldots, x_n : A_n \vdash M : \sigma$.

27

Consistencia de la lógica

La relación entre reducción y pruebas permite concluir que la lógica es consistente.

Corollary

 $\forall \perp$ (en NJ).

Se obtiene a partir del siguiente razonamiento:

- ▶ Debe existir M, tal que $\vdash M : \bot$.
- Por terminación y preservación de tipos, debería existir un valor V, tal que $\vdash V : \bot$. Por analisis de casos en los posibles valores, se puede concluir que no existe.

Sobre la negación

La negación se puede codificar como:

$$\neg \sigma \equiv \sigma \rightarrow \bot$$

- Notar que la regla:
 - $ightharpoonup \neg_i$ corresponde a \Rightarrow_i
 - ightharpoonup \neg_e corresponde $a \Rightarrow_e$
- De esta manera no hay necesidad de extender al sistema de tipos

Tipo Unit

- Se puede considerar que la lógica está extendida con la fórmula ⊤ (fórmula válida).
- ► Se considera NJ extendido con la siguiente regla:

$$\overline{\Gamma \vdash \top}^{\top_i}$$

► En el cálculo lambda extendemos la sintaxis con el tipo ⊤ que tiene un único elemento.

$$\sigma, \tau, \dots$$
 ::= ... | T
 M, N, P, \dots ::= ... | T

▶ Una única regla de tipado (que se corresponde con T_i)

$$\frac{}{\Gamma \vdash \top : \top}^{\mathrm{T-UNIT}}$$

ightharpoonup El tipo op es un tipo algebraico con un único constructor op.

Recursión

Extendemos la sintaxis con un nuevo operador

$$M ::= \dots \mid \text{fix } M$$

No se precisan nuevos tipos pero sí una regla de tipado.

$$\frac{\Gamma \vdash M : \sigma \to \sigma}{\Gamma \vdash \text{fix } M : \sigma} \text{T-FIX}$$

Sobre los booleanos

Los ignoramos porque se pueden codificar.

Booleanos como sumas

$$\begin{aligned} \mathsf{Bool} &\equiv \top + \top \\ \mathsf{true} &\equiv \mathsf{left}^\top \\ \mathsf{false} &\equiv \mathsf{right}^\top \\ \mathsf{if} \ \mathit{M} \ \mathsf{then} \ \mathit{N} \ \mathsf{else} \ \mathit{P} \equiv \mathsf{case} \ \mathit{M} \ \mathsf{with} \{ \mathsf{left}^\top \ _ \to \mathit{N}, \mathsf{right}^\top \ _ \to \mathit{P} \} \end{aligned}$$

► Existen codificaciones en el fragmento implicativo (booleanos de Church)

Semántica operacional small-step

No hay valores nuevos pero sí reglas de evaluación nuevas.

$$\frac{M \to M'}{\text{fix } M \to \text{fix } M'} \text{E-FIX}$$

$$\overline{\operatorname{fix}(\lambda x : \sigma.M) \to M\{x := \operatorname{fix}(\lambda x : \sigma.M)\}} \text{E-FIXBETA}$$

32

Ejemplos

Sea *M* el término

$$\lambda f: \mathsf{nat} \to \mathsf{nat}.$$

 $\lambda x: \mathsf{nat}.$
if $\mathsf{iszero}(x)$ then $\underline{1}$ else $x * f(\mathsf{pred}(x))$

en

Ejemplos

► Ahora podemos definir funciones parciales:

fix
$$(\lambda x : \sigma.x)$$

- ▶ Notar que \vdash fix $(\lambda x : \sigma.x) : \sigma$ para cualquier σ .
- ▶ En particular, vale para $\sigma = \bot$.
- ▶ En consecuencia, si se extiende NJ con un operador fix , la lógica sería inconsistente ($\vdash \bot$ sería derivable)

35