# VACUUM - (tuneBuildTest\_C\_scale, e1)



VISUAL AUDIO COMPARISION UTILITY [FOR] UNDERSTANDING [AND] MEASUREMENT

A testing and analysis workflow

### **Table of Contents**

- 1 VACUUM
- 2 Imports
- 3 Let's bring the files in
  - 3.1 Source1 Track()
    - 3.1.1 Open Source1, get some basic statistics and create a player
    - 3.1.2 Let's take a first look at the file
  - 3.2 Source 2 Track ()
    - 3.2.1 Open Source2, get some basic statistics and create a player
    - 3.2.2 Let's take a first look at the file
- 4 Enhanced chroma and chroma variants (source1)
  - 4.1 Original source1
  - 4.2 Correct Tuning Deviations
  - 4.3 Isolate harmonic component
  - 4.4 Non-local filtering
  - 4.5 Horizontal Median Filter
  - 4.6 Before and After
- 5 Applying chroma enchancement techniques to source files
  - 5.1 Source1
  - 5.2 Source2
- 6 Output comparisions for testing
- 7 Run imageDiff

## **Imports**

Librosa IPython Numpy Scipy Matplotlib

# Let's bring the files in

### Source1 Track ( tuneBuildTest\_C\_scale.wav )

Open Source1, get some basic statistics and create a player

File: source/tuneBuildTest\_C\_scale.wav
Duration: 8.0000 sec
Tuning estimate: 0.0100000000000000000

#### Let's take a first look at the file



### Source 2 Track ( tuneBuildTest\_C\_scale\_e1.wav )

Open Source2, get some basic statistics and create a player

File: source/tuneBuildTest\_C\_scale\_e1.wav
Duration: 8.0000 sec
Tuning estimate: 0.0100000000000000009

#### Let's take a first look at the file



# **Enhanced chroma and chroma variants (source1)**

Enhanced chroma and chroma variants

## Original source1



## **Correct Tuning Deviations**



### Isolate harmonic component



# Non-local filtering



**Horizontal Median Filter** 



### **Before and After**



Applying chroma enchancement techniques to source files

Source1



### Source2



**Output comparisions for testing** 





# **Run imageDiff**

