Testi di esame precedenti a.a. e soluzioni

1 Problemi

Problema 3.1: Sia Σ un alfabeto (finito) e siano $L_1 \subseteq \Sigma^*$ e $L_2 \subseteq \Sigma^*$ due linguaggi decidibili. Dimostrare che $L_1 \cup L_2$ è decidibile.

Problema 3.2: Sia Σ un alfabeto (finito) e siano $L_1 \subseteq \Sigma^*$ e $L_2 \subseteq \Sigma^*$ due linguaggi accettabili. Dimostrare che $L_1 \cap L_2$ è accettabile.

Problema 3.3: Siano $L_1 \subseteq \Sigma^*$ un linguaggio accettabile e $L_2 \subseteq \Sigma^*$ un linguaggio decidibile. Cosa si può dire circa la accettabilità/decidibilità del linguaggio $L = L_1 \cap L_2$? Motivare la risposta con una opportuna dimostrazione.

Problema 3.4: Siano $L_1 \subseteq \Sigma^*$ e $L_2 \subseteq \Sigma^*$ due linguaggi decidibili e sia

$$L = \{x \in L_1 : \exists k \in \mathbb{N} \ [\ |x| = 2k\]\ \} \cup \{x \in L_2 : \exists k \in \mathbb{N} \ [\ |x| = 2k+1\]\ \}.$$

Dimostrare che il linguaggio L è decidibile.

Problema 3.5: Siano $L_1 \subseteq \Sigma^*$ un linguaggio decidibile e $L_2 \subseteq \Sigma^*$ un linguaggio accettabile. Cosa si può dedurre circa le proprietà di accettabilità/decidibilità di $L = L_1 - L_2^c$? (Si ricordi che L_2^c è il linguaggio complemento di L_2).

Problema 3.6: Siano $L_1 \subseteq \mathbb{N} \times \mathbb{N}$ un liguaggio decidibile e $L_H \subseteq \mathbb{N} \times \mathbb{N}$ il linguaggio che definisce l'Halting Problem. Dimostrare se il linguaggio

$$L_2 = L_1 - L_H^c$$

è accettabile (ove, ricordiamo, L_H^c è il linguaggio complemento di L_H).

Problema 3.7: Sia $\Sigma = \{0,1\}$ e sia $L \subseteq \Sigma^*$ l'insieme delle parole della forma 1^n01^k tali che $n \in \mathbb{N}$ è un multiplo di $k \in \mathbb{N}$. Dimostrare che L è decidibile.

Problema 3.8: Sia Σ un alfabeto finito e siano $L_1, L_2 \subseteq \Sigma^*$ due linguaggi tali che L_1 è decidibile e L_2 è accettabile. Cosa si può dire circa le proprietà di accettabilità e decidibilità del linguaggio $L = L_1 \cap L_2^c$? Dimostrare la propria affermazione.

2 Soluzioni

Soluzione del problema 3.1

Indichiamo con T_1 la macchina di Turing che decide L_1 e con T_2 la macchina di Turing che decide L_2 . Utilizzando T_1 e T_2 , definiamo ora una nuova macchina di Turing T che decide $L = L_1 \cup L_2$. Indichiamo con Q_1 e Q_2 , rispettivamente, l'insieme degli stati di T_1 e l'insieme degli stati di T_2 ed assumiamo (senza perdita di generalità) La macchina Tè definita sull'alfabeto Σ e sull'insieme degli stati $Q = Q_1 \cup Q_2 \cup \{q_{A_T}, q_{R_T}\}$, dove $q_{A_T} \notin Q_1 \cup Q_2$ è lo stato di accettazione di T e $q_{R_T} \notin Q_1 \cup Q_2$ è lo stato di rigetto di T. T utilizza due nastri, su ciascuno dei quali, all'inizio della computazione, è scritto l'input $x \in \Sigma^*$ ed opera come di seguito descritto.

- 1) T inizia la sua computazione simulando sul nastro 1 la computazione $T_1(x)$: se tale computazione termina nello stato di accettazione di T_1 allora T entra nello stato di accettazione q_{A_T} e termina. Se, invece, $T_1(x)$ non termina nello stato di accettazione allora, poiché L_1 è un linguaggio decidibile ed è deciso da T_1 , $T_1(x)$ termina nello stato di rigetto; in questo secondo caso, viene eseguito il passo 2).
- 2) T prosegue la sua computazione simulando sul nastro 2 la computazione $T_2(x)$: se tale computazione termina nello stato di accettazione di T_2 allora T entra nello stato di accettazione q_{A_T} e termina. Se, invece, $T_2(x)$ non termina nello stato di accettazione allora, poiché L_2 è un linguaggio decidibile ed è deciso da T_2 , $T_2(x)$ termina nello stato di rigetto; in questo secondo caso, T entra nello stato di rigetto q_{R_T} e termina.

Quindi, la macchina T termina per ogni input x e, inoltre, termina nello stato di accettazione se e soltanto se $x \in L_1$ oppure $x \in L_2$, ossia, se e soltanto se $x \in L_1 \cup L_2$. Questo prova che L è decidibile.

Soluzione del problema 3.2

Indichiamo con T_1 la macchina di Turing che accetta L_1 e con T_2 la macchina di Turing che accetta L_2 . Utilizzando T_1 e T_2 , definiamo ora una nuova macchina di Turing T che accetta $L = L_1 \cap L_2$. Indichiamo con Q_1 e Q_2 , rispettivamente, l'insieme degli stati di T_1 e l'insieme degli stati di T_2 ed assumiamo (senza perdita di generalità) $Q_1 \cap Q_2 = \emptyset$. Analogamente, siano q_{01} e q_{02} , rispettivamente, gli stati iniziali di T_1 e T_2 e T_2 e T_3 e T_4 e

- 1) T inizia la sua computazione simulando sul nastro 1 la computazione $T_1(x)$: se tale computazione termina nello stato q_{R1} allora T entra nello stato di rigetto q_{R_T} e termina. Se, invece, $T_1(x)$ termina nello stato q_{A1} allora T entra nello stato q_{02} ed esegue il passo 2).
- 2) T prosegue la sua computazione simulando sul nastro 2 la computazione $T_2(x)$: se tale computazione termina nello stato di accettazione di T_2 allora T entra nello stato di accettazione q_{A_T} e termina. Se, invece, $T_2(x)$ termina nello stato di rigetto, T entra nello stato di rigetto T0 e termina.

Quindi, la computazione T(x) termina nello stato di accettazione se e soltanto se $x \in L_1 \cap L_2$, dunque T accetta $L_1 \cap L_2$. Osserviamo esplicitamente che nulla si può dire circa l'esito della computazione T(x) per $x \notin L_1 \cap L_2$.

Soluzione del problema 3.3

Poiché L_1 è accettabile, esiste una macchina di Turing T_1 tale che, per ogni $x \in \Sigma^*$, $T_1(x)$ accetta se e soltanto se $x \in L_1$; inoltre, poiché L_2 è decidibile, esiste una macchina di Turing T_2 tale che $L_2 = L(T_2)$.

Mostriamo ora che L è un linguaggio accettabile. La macchina T che accetta L opera come di seguito descritto. Con input $x \in \Sigma^*$, T esegue, inizialmente, la computazione $T_2(x)$ (che termina sempre): se tale computazione termina nello stato di rigetto, allora $x \notin L_2$ e, dunque, $x \notin L$. Se, invece, $T_2(x)$ termina nello stato di accettazione, allora $x \in L$ se e soltanto se $x \in L_1$: allora, la computazione T(x) prosegue eseguendo la computazione $T_1(x)$ e, se essa termina

nello stato di accettazione, allora anche T(x) termina nello stato di accettazione. Quindi, T accetta L. Osserviamo esplicitamente che la computazione $T_1(x)$ potrebbe non terminare e, quindi, l'esistenza della macchina T non permette di affermare che L è decidibile.

In effetti, è anche possibile mostrare un esempio in cui il linguaggio intersezione fra un linguaggio accettabile ed uno decidibile è non decidibile. Infatti, siano L_H il linguaggio che definisce l'halting problem ed $L_2 = \Sigma^*$: ricordiamo che L_H è accettabile ma non decidibile e, inoltre, osserviamo che L_2 è banalmente decidibile (è sufficiente utilizzare una macchina di Turing che accetta ogni input). Allora, $L_1 \cap L_2 = L_H$.

Soluzione del problema 3.4

Poiché L_1 è decidibile, esiste una macchina di Turing T_1 tale che $L_1 = L(T_1)$; inoltre, poiché anche L_2 è decidibile, esiste una macchina di Turing T_2 tale che $L_2 = L(T_2)$. Assumiamo, senza perdita di generalità, che T_1 e T_2 siano macchine dotate di un solo nastro e che l'insieme degli stati di T_1 e di T_2 siano disgiunti. Indichiamo con T_1 e T_2 rispettivamente, lo stato iniziale di T_1 e lo stato iniziale di T_2 . Analogamente, indichiamo con T_1 0, T_2 1 gli stati finali (di accettazione e di rigetto) di T_1 1 e di T_2 2.

Mostriamo ora che L è un linguaggio decidibile. La macchina T che decide L utilizza un solo nastro e quattro nuovi stati: lo stato iniziale q_0 , uno stato intermedio q_1 , lo stato finale di accettazione q_A e lo stato finale di rigetto q_R . Con input $x \in \Sigma^*$, T esegue, inizialmente, una computazione che le permette di decidere se x ha lunghezza pari o dispari:

- se nello stato q_0 legge un simbolo diverso da \square riscrive tale simbolo, entra nello stato q_1 e muove la testina a destra di una posizione;
- se nello stato q_1 legge un simbolo diverso da \square riscrive tale simbolo, entra nello stato q_0 e muove la testina a destra di una posizione.

Quando la macchina incontra il simbolo \Box ha terminato la scansione dell'input: se si trova nello stato q_0 allora l'input ha lunghezza pari e, per decidere l'appartenenza a L, è necessario decidere l'appartenenza ad L_1 mentre se si trova nello stato q_1 allora l'input ha lunghezza dispari e, per decidere l'appartenenza a L, è necessario decidere l'appartenenza ad L_2 . Dunque, quando la macchina incontra il simbolo \Box

- se è nello stato q_0 muove la testina a sinistra fino a riportarla sul primo simbolo di x ed entra nello stato q_{01} ,
- se è nello stato q_1 muove la testina a sinistra fino a riportarla sul primo simbolo di x ed entra nello stato q_0 .

Infine, se T entra nello stato q_{A_1} oppure nello stato q_{A_2} allora esegue un'ultima istruzione che la porta nello stato q_A , altrimenti se T entra nello stato q_{R_1} oppure nello stato q_{R_2} allora esegue un'ultima istruzione che la porta nello stato q_R .

Soluzione del problema 3.5

Si osservi che $L = L_1 - L_2^c = L_1 \cap L_2$.

Sia T_1 la macchina di Turing che decide L_1 e sia T_2 la macchina di Turing che accetta L_2 . Definiamo una macchina di Turing T che, con input $x \in \Sigma^*$, opera come segue:

- 1) simula la computazione $T_1(x)$: se rigetta (e, dunque, $x \notin L_1$) allora rigetta, altrimenti (se $x \in L_1$) esegue il passo 2);
- 2) simula la computazione $T_2(x)$: se accetta (e, dunque, $x \in L_2$) allora accetta, se rigetta (e, dunque, $x \notin L_2$) allora rigetta.

Poiché L_1 è un linguaggio decidibile, il passo 1) termina per ogni $x \in \Sigma^*$. Poiché L_2 è un linguaggio accettabile, il passo 2) termina per ogni $x \in L_2$ (e nulla si può dire se $x \notin L_2$). Quindi, se $x \in L_1 \cap L_2 = L$ la computazione T(x) termina nello stato di accettazione (e nulla si può dire se $x \notin L_2$), ossia, L è un linguaggio accettabile.

Soluzione del problema 3.6

Si osservi, innanzi tutto, che $L_2 = L_1 \cap L_H$. Ricordiamo, inoltre, che L_H è un linguaggio accettabile.

Siano T_1 e T_H , rispettivamente, la macchina di Turing che accetta L_1 e la macchina di Turing che accetta L_H . Descriviamo, ora, una macchina T_2 che utilizza 3 nastri e simula le due macchine T_1 e T_H operando in due fasi, come di seguito descritto. Con input x scritto sul primo nastro,

- **fase 1)** simula $T_1(x)$ sul secondo nastro: se la computazione $T_1(x)$ rigetta allora anche la macchina T_2 rigetta, mentre se la computazione $T_1(x)$ accetta allora T_2 esegue la fase 2;
- **fase 2)** simula $T_H(x)$ sul terzo nastro: se la computazione $T_H(x)$ rigetta allora anche la macchina T_2 rigetta, mentre se la computazione $T_H(x)$ accetta allora anche $T_H(x)$ accetta.

Dimostriamo che la macchina T_2 appena descritta accetta L_2 . Sia $x \in L_2$: allora, per quanto osservato, $x \in L_1$ e $x \in L_H$. Allora, poiché T_1 accetta L_1 e $x \in L_1$, la prima fase termina quando $T_1(x)$ raggiunge lo stato di accettazione e, quindi, per definizione della macchina T_2 , ha inizio la fase 2. Poiché T_H accetta T_H e T_H la seconda fase termina quando T_H raggiunge lo stato di accettazione e, quindi, per definizione della macchina T_2 , anche $T_2(x)$ accetta.

Osserviamo, infine, che, poiché L_1 è decidibile, la fase 1 di qualunque computazione della macchina T_2 termina per ogni $x \in \mathbb{N} \times \mathbb{N}$. D'altra parte, poiché L_H è un linguaggio non decidibile, esiste $y \in \mathbb{N} \times \mathbb{N}$ tale che $T_H(y)$ non termina: pertanto, se esiste $z \in L_1$ tale che $T_H(z)$ non termina, allora $T_2(z)$ non termina. Pertanto, nulla è possibile concludere circa la decidibilità di L_2 .

Soluzione del problema 3.7

Dimostriamo la decidibilità di L descrivendo una macchina di Turing T, a due nastri e a testine indipendenti, che lo decide.

L'alfabeto di lavoro di T è lo stesso $\Sigma = \{0,1\}$ ed il suo insieme degli stati è $Q = \{q_0, q_1, q_2, q_A, q_R\}$, ove q_0 è lo stato iniziale, q_A lo stato di accettazione e q_R lo stato di rigetto.

All'inizio della computazione, l'input è scritto sul nastro N_1 mentre il nastro N_2 è vuoto.

Descriviamo, ora, le quintuple di T illustrando, contestualmente, una computazione della macchina.

1) la macchina copia sul nastro N_2 il contenuto del nastro N_1 , cancellandolo da N_1 , fino a quando non incontra il carattere '0' (ossia, se l'input appartiene ad L, copia 1^n sul nastro N_2):

```
\langle q_0, (1, \square), (\square, 1), q_0, (d, d) \rangle, \qquad \langle q_0, (0, \square), (\square, \square), q_1, (d, s) \rangle.
```

A questo punto, la testina del nastro N_1 è posizionata sul carattere a destra del primo carattere '0' che ha incontrato, e la testina del nastro N_2 è posizionata sul carattere '1' più a destra che vi ha scritto. Inoltre, se l'input appartiene ad L, sul nastro N_1 è scritto 1^k , ossia, una parola non contenente il carattere '0' (poiché l'input è una parola di Σ^* e quindi non può contenere il carattere ' \square ').

2) La macchina verifica che la parola sul nastro N_1 non contenga '0' e che n sia un multiplo di k mediante il seguente procedimento:

```
fino a quando non legge '\square' sul nastro N_1 prova a cancellare dal nastro N_2 tanti '1' quanti ne incontra sul nastro N_1: se non vi riesce (perché non sono rimasti abbastanza '1' sul nastro N_2), allora rigetta.
```

Tale procedimento è implementato dalle quintuple seguenti:

```
\langle q_1, (1,1), (1,\square), q_1, (d,s) \rangle (cancella un '1' da N_2 se legge '1' sia su N_1 che su N_2) \langle q_1, (\square,1), (\square,1), q_2, (s,f) \rangle (si predispone a riposizionare la testina sul nastro N_1)
```

 $\langle q_2,(1,1),(1,1),q_2,(s,f)\rangle$, $\langle q_2,(\square,1),(\square,1),q_1,(d,f)\rangle$ (ha riposizionato la testina sul nastro N_1 sul carattere '1' più a sinistra e si predispone ad eseguire una nuova sequenza di cancellazioni sul nastro N_2)

```
\langle q_1, (0, x), (0, x), q_R, (f, f) \rangle (la parola su N_1 contiene uno '0' e, quindi, l'input non appartiene al linguaggio)
```

```
\langle q_1, (1, \square), (1, \square), q_R, (f, f) \rangle (n non è multiplo di k) \langle q_1, (\square, \square), (\square, \square), q_A, (f, f) \rangle (n è multiplo di k).
```

Soluzione del problema 3.8

Poiché L_1 è decidibile, esiste una macchina di Turing T_1 (di tipo riconoscitore) tale che, per ogni $x \in \Sigma^*$, $T_1(x)$ termina ed inoltre

$$o_{T_1}(x) = \begin{cases} q_A^1 & \text{se } x \in L_1. \\ q_R^1 & \text{se } x \notin L_1, \end{cases}$$

dove q_A^1 e q_R^1 sono, rispettivamente, gli stati di accettazione e di rigetto di T_1 .

Analogamente, poiché L_2 è accettabile, esiste una macchina di Turing T_2 (di tipo riconoscitore) tale che, per ogni $x \in L_2$, $T_2(x)$ termina ed inoltre $o_{T_2}(x) = q_A^2$ dove q_A^2 è lo stato di accettazione di T_2 ; osserviamo che nulla si può affermare circa le computazioni $T_2(y)$ con $y \notin L_2$.

Osserviamo, ora, che per poter affermare " $x \in L$ " è necessario mostrare che $x \in L_1$ e $x \notin L_2$: poiché per affermare $x \notin L_2$ è necessario disporre di una macchina di Turing che accetti L_2^c . Dunque, la sola accettabilità di L_2 non è sufficiente ad assicurare la accettabilità di L.

Osserviamo, infine, che invece è accettabile il linguaggio $L^c = (L_1 \cap L_2^c)^c = L_1^c \cup L_2$: infatti, tale linguaggio è accettato dalla macchina che, con input $x \in \Sigma^*$, esegue i passi seguenti

- a) simula la computazione $T_1(x)$: se $o_{T_1}(x) = q_A^1$, allora accetta, altrimenti esegue il passo b);
- b) simula la computazione $T_2(x)$: se $o_{T_1}(x) = q_A^2$, allora accetta.