Closure Properties for Turing Machines (9.1, 9.2)

Recall, an input x on TM M. M can

- Halt and accept $x, x \in L(M)$
- Halt and reject x, x ∉ L(M)
- Crash, $x \notin L(M)$
- Run forever, $x \notin L(M)$

This defines 2 different classes of languages:

TM M accepts language L if L = L(M).

- M accepts x if and only if $x \in L$
- May loop forever

TM M decides language L if L = L(M) and if $x \notin L$, M rejects or crashes on x.

- M always stops
- No infinite looping

A language is **recursive** (or decidable) if there exists a TM M that decides L.

A language is **recursively enumerable** if there exists a TM M that accepts L.

If L is recursive then L is also recursively enumerable.

• A TM that decides L also accepts L.

If L is recursive then the complement L' is also recursive.

TM for L': Run x on M (the TM that decides L)

- If M accepts x then reject x.
- If M rejects or crashes, then accept x.

Union and Intersection

Recursive

If L_1 is recursive and L_2 is recursive then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursive. Use a multitape TM:

- Copy input to tape 2 and tape 3
- Execute M₁ on tape 2 and M₂ on tape 3 (neither will run forever; i.e. we get a result)
- They will decide whether x is in L₁ and/or L₂
- Test if both M₁ and M₂ accepted (intersection)

• Test if one of M₁ and M₂ accepted (union)

If L_1 and L_2 are recursive then the difference $L_1 - L_2 = L_1 \cap L_2'$ is recursive.

Recursively Enumerable

If L_1 and L_2 are recursively enumerable then $L_1 \cup L_2$ and $L_1 \cap L_2$ are recursively enumerable.

- Similar to the recursive case but need to handle the case where M₁ and M₂ can run forever.
- Simulate M₁ and M₂ running simultaneously alternate one step from each machine.

For example, union

- If either machine ever accepts then accept
- If either machine ever rejects or crashes then continue to work on the other machine.

If L is recursively enumerated and L' is recursively enumerable then L is recursive.

- Let M and M' be TMs that accept L and L', respectively.
- Run M and M' simultaneously.
- For any word x, it must be accepted by one of M or M'
- So, either M or M' will halt and accept
- If M halts and accepts then halt and accept
- If M' halts and accepts then halt and reject

The TM that runs M and M' simultaneously always halts and accepts or rejects so it decides L and L is recursive.

If L is recursively enumerable and L is not recursive then L' is not recursively enumerable.

Some Interesting Languages

```
E = \{ e(T) \mid T \text{ is a TM } \}
```

Create a TM to check if e(T) is a valid encoding of a TM

```
LSA = { e(T) | TM T accepts on input e(T) }

LNSA = { e(T) | T does not accept input e(T) }

LH = { e(T)\Delta z | TM accepts input z }
```