

COMP309/AIML421 — ML Tools and Techniques

Week 1

Machine Learning Overview

Dr Qi Chen

School of Engineering and Computer Science
Victoria University of Wellington

Qi.Chen@vuw.ac.nz

Week Overview

★ Al and Machine Learning

★ Machine Learning Scope: Data, Task, Model, and Algorithm

★ Data in Machine Learning

★ Machine Learning Tasks

Artificial Intelligence and Machine Learning

- Artificial Intelligence is the broader concept of machines being able to carry out tasks in a way that we would consider "smart".
- Machine Learning is a current application of AI based around the idea that giving machines access to data and let them learn for themselves.

Machine Learning

- science of getting computers to act without being explicitly programmed.
- a branch of artificial intelligence focuses on the development of algorithms and statistical models
- based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention.
- a method of data analysis that automates analytical model building.

Machine Learning Applications

- In the past decade, machine learning has given us selfdriving cars, speech recognition, effective web search, and a vastly improved understanding of the human genome
- Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it.

Five Tribes of Machine Learning

The Scope of Machine Learning

ML involves a wide variety of each of these:

- Data: foundational input of machine learning algorithms
- Task: specific problems that machine learning try to solve
- Model: mathematical frameworks/structures that interpret the data and perform the tasks
- Algorithm: the step-by-step procedures or rules followed by the models to learn from the data

The first 3 weeks --

- Today we'll address a couple of aspects of data.
- Next lecture: the tasks in Machine Learning
- Then: on to the most common models and algorithms (in overview only)

Data

- datahub.io
- openml.org

```
e.g.
```

- o iris -- https://www.openml.org/d/61
- o penguins -- https://www.openml.org/d/42585
- o diabetes -- https://www.openml.org/d/37
- o banknotes -- https://www.openml.org/d/1462

0 ...

Data

- eg: banknotes -- https://www.openml.org/d/1462
- someone having a go at clustering with this data: <u>https://towardsdatascience.com/k-means-clustering-project-banknote-authentication-289cfe773873</u>
- there are many blogs / tutorials / notebooks out there doing similar
- there are lots of new tools all the time, but near-generic tools at the moment:
 - o python
 - o numpy
 - o sklearn
 - o pandas
 - o matplotlib
 - jupyter notebooks

Data

- Consider banknotes.csv:
- V1-V4 are values of 4 "features"
- the Class is 1 (legit) or 2 (forged)
- Common to talk separately about X and Y:

V1	V2	V3	V4
3.6216	8.6661	-2.8073	-0.44699
4.5459	8.1674	-2.4586	-1.4621
3.866	-2.6383	1.9242	0.10645
3.4566	9.522	4.0112	-3.5944
0.32924	-4.4552	4.5718	-0.9888
4.3684	9.6718	3.9606	-3.1625
3.5912	3.0129	0.72888	0.56421
2.0922	-6.81	8.4636	-0.60216
3.2032	5.7588	-0.75345	-0.61251
1.5356	9.1772	-2.2718	-0.73535
1.2247	8.7779	-2.2135	-0.80647
0.0000	0.7000	0.0040	0.00004

V1	V2	V3	V4	Class
3.6216	8.6661	-2.8073	-0.44699	1
4.5459	8.1674	-2.4586	-1.4621	1
3.866	-2.6383	1.9242	0.10645	1
3.4566	9.5228	-4.0112	-3.5944	1
0.32924	-4.4552	4.5718	-0.9888	1
4.3684	9.6718	-3.9606	-3.1625	1
3.5912	3.0129	0.72888	0.56421	1
2.0922	-6.81	8.4636	-0.60216	1
3.2032	5.7588	-0.75345	-0.61251	1
1.5356	9.1772	-2.2718	-0.73535	1
1.2247	8.7779	-2.2135	-0.80647	1
0 0000	0.7000	0 00 40	0.00004	

~1300 rows in this case. The "Class=2" ones are further down.

Data as "Vectors" in a "Space"

each row is one data item, here consisting of a pairing:

- we might talk about $\mathbf{X} = (\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ instead of the names \mathbf{v}_1 , etc specific to this dataset.
- X is a 4-dimensional <u>vector</u>
- x_i is the value for the ith dimension

Data as points in a space

A "row" can be thought of as a "point" in a "space" of data It's easy to visualise when dimensionality is low:

- 1 dimension, e.g. just V1
- 2 dimensions, easy
- 3 dimensions, easy

V1	/2	V3	/4	Class
3.6216	8.6661	-2.8073	-0.44699	1
4.5459	8.1674	-2.4586	-1.4621	1
3.866	-2.6383	1.9242	0.10645	1
3.4566	9.5228	-4.0112	-3.5944	1
0.32924	-4.4552	4.5718	-0.9888	1
4.3684	9.6718	-3.9606	-3.1625	1
3.5912	3.0129	0.72888	0.56421	1
2.0922	-6.81	8.4636	-0.60216	1
3.2032	5.7588	-0.75345	-0.61251	1
1.5356	9.1772	-2.2718	-0.73535	1
1.2247	8.7779	-2.2135	-0.80647	1
0.0000	0.7000	0.0040	0.00004	

Data as Points in a Vector Space

Humans can't see in more than 3d Some of our intuitions hold, some fail

V1	V2	V3	V4	Class
3.6216	8,6661	-2.8073	-0.44699	1
4.5459	8.1674	-2.4586	-1.4621	1
3.866	-2.6383	1.9242	0.10645	1
3.4566	9.5228	-4.0112	-3.5944	1
0.32924	-4.4552	4.5718	-0.9888	1
4.3684	9.6718	-3.9606	-3.1625	1
3.5912	3.0129	0.72888	0.56421	1
2.0922	-6.81	8.4636	-0.60216	1
3.2032	5.7588	-0.75345	-0.61251	1
1.5356	9.1772	-2.2718	-0.73535	1
1.2247	8.7779	-2.2135	-0.80647	1
0 0000	0.7000	0 00 40	0 00004	

https://sporf.neurodata.io/demos/openml_banknote

Data in High dimensions

```
roughly speaking,
                                           for dims in range(1,21):
                                               print(dims, countInside(1000000,dims))
  it's all "in the corners"
                                          1000000
                                          785776
  it's all "at right-angles"
                                          164873
  it's all "equally far apart"
                                          80816
                                          37145
                                          15879
                                         9 6370
                                         10 2581
                                        11 915
Eg: I made a million data points
                                        12 324
                                        13 113
that were d-dimensional,
                                         14 41
                                         15 11
with each dimension being
                                         17 1
                                        18 0
randomly chosen in range
                                                      none
                                        20 0
-1 to +1. i.e. in a "box" of side 2.
```

A ball with diameter 2 fits snugly inside this box. Out of a million random points, how many land inside the ball?

The Curse of Dimensionality

consider a vector space that is bounded within 0 to 1 for each dimension.

I decide to just brutally summarise / compress the function, by giving just one value per "quadrant". Eg. in 2d, I need 4 numbers.

how many numbers do I need, in d-dimensions?