

¿Qué entendemos por IoT?

- Miles de dispositivos conectados a Internet.
- Se estima que para 2020, cerca de 20 billones (20.000 millones) estarán conectados a Internet.

Mandal, S., Hewelt, M., Oestreich, M., & Weske, M. (2018, September). A Classification Framework for IoT Scenarios. In International Conference on Business Process Management (pp. 458-469). Springer, Cham

Impacto de IoT

- Las redes, en el sentido tradicional, interconectan computadoras e intercambian datos en un sistema distribuido.
- IoT conforma una red de dispositivos heterogéneos que tienen capacidades de percepción del mundo, son reactivos a eventos.

Impacto de IoT

- Facilita el desarrollo de escenarios comerciales como:
 - Seguimiento de contenedores con sensores GPS
 - Control remoto de la calefacción en el hogar
 - Coordinación de dispositivos en una fábrica inteligente.

Impacto de IoT

- La mayoría de estos escenarios se centran en torno a:
 - Recopilación de datos utilizando sensores distribuidos
 - Intercambio y procesamiento de datos.
 - Visualización de datos.

¿Como encaja aquí BPM?

BPM e IoT

- Un escenario obvio es utilizar los eventos producidos por los sensores para guiar la ejecución, pero esto funciona solamente si se conocen previamente los eventos.
- Una consecuencia de integrar loT con BPM son los procesos dinámicos

BPM e IoT

- Otro escenario para facilitar BPM con loT es incorporar el concepto de CEP (Complex Event Processing) combinado con OLC (Object Life Cycle)
 - Un OLC es una red de Petri, donde un nodo describe un estado de datos y una transición representa un cambio entre estos

Historia de IoT

- 1972 ATM
- Uso de smartphones como efvo https://www.apple.com/apple-pay/
- Conductores inteligentes

 https://www.bosch-

 presse.de/pressportal/de/en/bosch-

 unclutters-vehicle-cockpit-139008.html

Historia de IoT

- Autos compartidos (Uber) usa los telefonos celulares para tomar datos (ubicación) y interacción (encontar el auto).
- Hogares inteligentes
- Uso para tracking

Usos de IoT

Agricultura

- Condiciones ambientales para los cultivos al aprovechar sensores para recolectar en tiempo real.
- Información sobre las condiciones climáticas.

Usos de IoT

Salud

- Dispositivos médicos como servicio. https://www.sysmex.com/us/en/Pages/Bey ond-A-Better-Box.aspx
- Dispositivos portátiles (por ejemplo, relojes, pulseras) para monitorear constantemente información vital

Tendencias

- Conectividad ubicua (nuevas redes + IPV6)
- Proyectos importantes como
 https://ec.europa.eu/digital-single-market/en/ecall-time-saved-lives-saved/
- 2017 Industria 4.0

http://www.utgjiu.ro/rev_mec/mecanica/pdf/2017-01/11_Alin%20ST%C4%82NCIOIU%20-%20THE%20FOURTH%20INDUSTRIAL%20REVOLUTION%20%E2%80%9EINDUSTRY%204.0%E2%80%9D.pdf

BPM en clave IoT

- Participantes
- Control
- Interacción
- Procesamiento de Datos

Sensor

Elemento que detecta cambios en el entorno y envía información a otros elementos o al procesador

Actor

Elemento o dispositivo que recibe información y reacciona en el entorno.

Display

Elemento para visualizar información relevante acerca del contexto

Controlador

Procesador central que envia y recibe datos, puede ser una computadora central o una plataforma.

- Dispositivo Complejo
 - Dispositivo que combina algunas de las funcionalidades anteriores. Ej: un smartphone que actúa como sensor.
- Web Service
 - Servicios provistos por aplicaciones Web en las cuales el controlodor delega procesamiento, si lo require.

Seres Humanos

Recursos humanos responsables de operar el controlador y tambien los usuarios finales que reciben el beneficio de IoT.

BPM en clave IoT - Control

Central

Un controlador central toma las decisions y los dispositivos ejecutan las instrucciones desde una ubicación remota. Ej: plantaciones.

On Device

Un programa central dirige las operaciones del dispositivo. Ej. Smart car

BPM en clave IoT - Control

Distribuido

Si el controlador está a cargo, los dispositivos tambien cuentan con una minima lógica para ciertas tareas. Ej: heladera inteligente, es parte de la casa inteligente y tambien regula su propia temperature.

BPM en clave IoT - Interacción

- Things to Things
 Sensores y actores se comunican unos con otros.
- Things to Controller
 - Los sensores envían datos al controlador y el controlador instrucciones a los actores.
 - Suele usarse un gateway para coordinar la comunicación y unificar protocolos.

BPM en clave IoT – Procesamiento de datos

Nivel	Descricpción	Ejemplo
Ninguno	Los datos quedan en los sensores	Log de errores del dispostivo
Agrupado	Procesa información de dispositivos similares	Monitoreo de cosechas
Temporal	Datos recolectados en los dispositivos	Rastreo de cargas
Temporal agrupado	Datos almacenados en dispositivos similares	Estacionamiento inteligente
Complejo	Se agregan elementos a los sensores para captar información adicional	Tableros de Control

BPM en clave IoT - Requisitos

- Colaboración entre participantes
- BPMN mejorado para IoT, donde se pueda modelar la interacción entre las cosas y el controlador.

IoT- Arquitectura de referencia

(a) The IoT reference architecture [21]

(b) The IoT 5-layer architecture [22]

Referencias de la arquitectura

21. Guth, J., Breitenb¨ucher, U., Falkenthal, M., Leymann, F., Reinfurt, L.: Comparison of IoT Platform Architectures: A Field Study based on a Reference Architecture. In: 2016 Cloudification of the Internet of Things (CIoT), IEEE (Nov 2016) 1–6

22. Wu, M., Lu, T.J., Ling, F.Y., Sun, J., Du, H.Y.: Research on the Architecture of Internet of Things. In: 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE). Volume 5. (Aug 2010) V5–484–V5–487