SIMPLE IMPUTER TECHNIQUE

NAME : G.AKHILA MISSING VALUE TREATMENT

SIMPLE IMPUTER TECHNIQUES (Numerical Data)

SIMPLE IMPUTER TECHNIQUES (Numerical Data)

SIMPLE IMPUTER

- Q. Why do we use simple imputer?
- A. When we have missing values in either categorical data or numerical data we will use simple imputer to impute missing values in the dataset

DATASET FOR PRACTICE

	Α	В	С	D
1	Country	Age	Salary	Purchased
2	France	44	72000	No
3	Spain	27	48000	Yes
4	Germany	30	54000	No
5	Spain	38	61000	No
6	Germany	40	4	Yes
7	France	45	58000	Yes
8	Spain	4	52000	No
9	France	48	79000	Yes
10	Germany	50	83000	No
11	France	37	67000	Yes

PACKAGES WE NEED

- > numpy
- > pandas
- sklearn (model_selection, preprocessing)

CODE FOR IMPUTING MISSING VALUES USING MEAN TECHNIQUE

MEAN TECHNIQUE CODE

DATASET (BEFORE & AFTER IMPUTING MEAN TECHNIQUE & LABEL ENCODER)

Index	Country	Aae	Salarv	Purchased
0	France	44	72000	No
1	Spain	27	48000	Yes
2	Germany	30	54000	No
3	Spain	38	61000	No
4	Germany	40	nan	Yes
5	France	45	58000	Yes
6	Spain	nan	52000	No
7	France	48	79000	Yes
8	Germany	50	83000	No
9	France	37	67000	Yes

	0	31	2
0	0	44.0	72000.0
1	2	27.0	48000.0
2	1	30.0	54000.0
3	2	38.0	61000.0
4	1	40.0	63777.7777777
5	0	45.0	58000.0
б	2	39.8888888888	52000.0
7	. 0	48.0	79000.0
8	1	50.0	83000.0
9	0	37.0	67000.0

MEAN TECHNIQUE

G.AKHILA SIMPLE IMPUTER EDA

BEFORE

AFTER

CODE FOR IMPUTING MISSING VALUES USING MEDIAN TECHNIQUE

MEDIAN TECHNIQUE CODE

DATASET (BEFORE & AFTER IMPUTING MEAN TECHNIQUE & LABEL ENCODER)

dataset - DataFrame

Index	Country	Aae	Salarv	Purchased
0	France	44	72000	No
1	Spain	27	48000	Yes
2	Germany	30	54000	No
3	Spain	38	61000	No
4	Germany	40	nan	Yes
5	France	45	58000	Yes
6	Spain	nan	52000	No
7	France	48	79000	Yes
8	Germany	50	83000	No
9	France	37	67000	Yes

₹ X -	NumPy	object array	(read	only)
-------	-------	--------------	-------	-------

J	0	1	2
0	0	44.0	72000.0
1	2	27.0	48000.0
2	1	30.0	54000.0
3	2	38.0	61000.0
4	1	40.0	61000.0
5	0	45.0	58000.0
6	2	40.0	52000.0
	0	48.0	79000.0
8	1	50.0	83000.0
9	0	37.0	67000.0

MEDIAN TECHNIQUE

G.AKHILA SIMPLE IMPUTER EDA

BEFORE

AFTER

CODE FOR IMPUTING MISSING VALUES USING MODE TECHNIQUE

MODE TECHNIQUE CODE

DATASET (BEFORE & AFTER IMPUTING MEAN TECHNIQUE & LABEL ENCODER)

dataset - DataFrame

Index	Country	Aae	Salarv	Purchased
0	France	44	72000	No
1	Spain	27	48000	Yes
2	Germany	30	54000	No
3	Spain	38	61000	No
4	Germany	40	nan	Yes
5	France	45	58000	Yes
6	Spain	nan	52000	No
7	France	48	79000	Yes
8	Germany	50	83000	No
9	France	37	67000	Yes

₹ X -	NumPy	object	array	(read	only)
-------	-------	--------	-------	-------	-------

	0	1	2
0	0	44.0	72000.0
1	2	27.0	48000.0
2	1	30.0	54000.0
3	2	38.0	61000.0
4	1	40.0	48000.0
5	0	45.0	58000.0
6	2	27.0	52000.0
7	0	48.0	79000.0
8	1	50.0	83000.0
9	0	37.0	67000.0

MODE TECHNIQUE

G.AKHILA SIMPLE IMPUTER EDA

BEFORE

AFTER