Set 25-27 Part B: Hypothesis Tests

Stat 260: July 19

Hypothesis Testing on proportion

- A value p_0 is proposed for p (the true population proportion)
- A study/experiment collects data that may support or refute this proposed value.

• Requirements:

every confidence interval andhypothesis test

- (i) A random sample "
- (ii) Large sample size $(n\geq 30)$ game as in the (iii) $n\hat{p}\geq 5, \text{ and } n(1-\hat{p})\geq 5.$

• Hypotheses:

Right-Tailed:	Left-Tailed:	Two-Tailed:
$H_0: p = p_0 \text{ (or } H_0: p \le p_0 \text{)}$	$H_0: p = p_0 \text{ (or } H_0: p \ge p_0 \text{)}$	$H_0: p = p_0$
$H_a: p > p_0$	$H_a: p < p_0$	$H_a: p \neq p_0$

• Test Statistic:

Never use t-distribution

• p-values:

Right-tailed Test: p-value = $P(Z > z_{obs})$ Left-tailed Test: p-value = $P(Z < z_{obs})$ Two-tailed Test: p-value = $2P(Z < -|z_{obs}|)$

• For small sample, hypothesis tests for p use the binomial distribution, but this is beyond the scope of this course.

$$\beta = \frac{75}{200}$$

Example 1: Astigmatism is a common refractive error, in which the eye does not focus light evenly on the retina, causing blurred vision. In a sample of 200 random Canadians, it was found that 75 had some form of astigmatism. Is there evidence to suggest that more than 30% of Canadians have astigmatism? Report your conclusion, and state the estimated value of the parameter being tested and the (estimated) standard error.

pc population of Canadians with astigmatism

Assumptions: n=200 = 30

ASSUMPTIONS. NOTES IN (1-P) =
$$(200)(\frac{125}{200}) = 125 = 5$$

Test Statistic:

$$Z = p - p$$

$$\sqrt{\frac{p(1-p)}{n}}$$

Observed value oftest statistic:

Observed value oftest statistic:

$$\frac{75}{200} = \frac{75}{200}$$

always

Standard

 $\frac{0.3(1-0.3)}{200}$
 $\frac{0.3(1-0.3)}{200}$

Conclusions:

Strong evidence against Ho

Strong evidence to suggest that the true proportion of Canadians with Astigmatism is not at most 30%.

- Estimated value of parameter: \$ = 75/200 - Standard error $\sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.3(1-0.3)}{200}}$

Extra Example 1: A 2015 study found that 90% of all seabirds had plastics in their stomachs. Suppose that a similar study is performed in 2020, which finds that in a sample of 350 Vancouver Island seabirds, 320 had plastics in their stomachs.
(a) Using the p -value approach, is there evidence to suggest that the proportion of Vancouver Island seabirds with plastics in their stomach is not 90% ?

[Ans: p-value=0.3734; no evidence against H_0]

(b) If we were testing the hypothesis at the level $\alpha = 0.05$, would we reject H_0 ?

[Ans: p-value > 0.05; Fail to reject H_0]

(c)	Determine the 95% CI for p , the true population proportion of Vancouver Island seabirds with plastics in their stomach. Does this result agree with your solution in (b)?
	planting in their stemach. Book this repair agree with your solution in (5).
(1)	[Ans: $[0.885, 0.944]$]
(d)	Suppose the researchers receive funding to conduct yet another study in 2025. Use the data from the 2020 study to determine the sample size needed to estimate p with 96% confidence
	to within a 0.02 margin of error.
	[Ans: $n = 824$]