- 1. If A is of order 7, find the signs of the terms: $a_{13}a_{26}a_{32}a_{45}a_{54}a_{67}a_{71}$, $a_{41}a_{52}a_{73}a_{34}a_{15}a_{66}a_{27}$ and $a_{17}a_{24}a_{35}a_{41}a_{53}a_{66}a_{72}$ in the expansion of |A|.
- 2. What is $|\alpha \mathbf{A}|$ if \mathbf{A} is of order n?
- 3. Show that the determinant of a real skew-symmetric matrix of odd order is 0.
- 6. Prove that

$$\begin{vmatrix} 1+a_1 & a_2 & \cdots & a_n \\ a_1 & 1+a_2 & \cdots & a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & \cdots & 1+a_n \end{vmatrix} = 1+a_1+\cdots+a_n$$

11. Let A be an $n \times n$ matrix whose elements are (differentiable) functions of a real variable x. Then show that

$$\frac{d}{dx}|\mathbf{A}| = \sum_{k=1}^{n} |\mathbf{A}_k|$$

where A_k is the matrix obtained from A by differentiating the elements of the k-th row with respect to x.

- 12. Let f be a map from $F^n \times \cdots \times F^n$ (n copies) to F. Consider the following conditions:
 - (i) $f(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = 0$ whenever two of the \mathbf{x}_i 's are equal. (Such an f is said to be alternating.)
 - (ii) $f(x_1, x_2, ..., x_n)$ is linear in each x_i when all the other x_j 's are kept fixed. (Such an f is said to be *multilinear*.)
 - (iii) $f(x_1, x_2, ..., x_n)$ is multiplied by α if any x_i is multiplied by α .
 - (iv) $f(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ is not altered if a scalar multiple of \mathbf{x}_j is added to \mathbf{x}_i , $i \neq j$.
 - (v) $f(e_1, e_2, ..., e_n) = 1$.
 - (a) If f satisfies (i) and (ii), show that $f(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = c|\mathbf{A}|$ for some constant $c \in F$, where $\mathbf{A} = [\mathbf{x}_1 : \dots : \mathbf{x}_n]^T$. (Hint: Use *Exercise* 6.3.10.) If, moreover, f satisfies (v), show that $f(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = |\mathbf{A}|$.
 - (b) Do (a) when f satisfies (iii) and (iv) instead of (i) and (ii).

Thus determinant can be defined as a function of the rows (or columns) satisfying either '(i), (ii) and (v)' or '(iii), (iv) and (v)'.

prove that the area of the triangle formed by the

1 of 3

prove that the area of the triangle formed by the three points $A = (x_1, y_1), P = (x_2, y_2)$ and $Q = (x_3, y_3)$ in \mathbb{R}^2 is

Deduce that A, P and Q are collinear iff the determinant is 0.

3. (a) Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be two distinct points in \mathbb{R}^2 . Show that the equation of the line passing through P and Q is

$$\left|\begin{array}{ccc} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{array}\right| = 0$$

by showing that this equation represents a line, i.e., the coefficients of x and y are not both zero, and that it contains P and Q.

- (b) State and prove an analogous result for the plane containing three non-collinear points in \mathbb{R}^3 .
- (c) Let $P_i = (u_i, v_i, w_i)$, i = 1, 2, 3, be points in \mathbb{R}^3 such that O, P_1, P_2 are not collinear. Show that the equation of the plane containing P_3 and parallel to the plane OP_1P_2 is

$$\begin{vmatrix} x - u_3 & y - v_3 & z - w_3 \\ u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \end{vmatrix} = 0$$

- 4. If A is the $n \times n$ matrix with $a_{ij} = i + j 2$ for all i and j, show that |A| = 0 whenever $n \ge 4$.
- 9. If $A_{ij} \neq 0$, show that by changing the single element a_{ij} , we can change |A| to any specified scalar.
- 11. Prove that if x_1, x_2, \ldots, x_n are distinct real numbers and y_1, y_2, \ldots, y_n are arbitrary real numbers then there exists a unique polynomial $p(t) \in \mathcal{P}_n$ such that $p(x_i) = y_i$ for $i = 1, \ldots, n$.
- 8. Show that the linear operator $x \mapsto Ax$ on \mathbb{R}^2 takes a parallelogram in \mathbb{R}^2 to another in \mathbb{R}^2 whose area is |A| times the area of the former.

- 7. Let A, B, C and D be $m \times m$ matrices.
 - (a) If A is non-singular and A commutes with C, show that

$$\left|\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array}\right| = |\mathbf{A}\mathbf{D} - \mathbf{C}\mathbf{B}|$$

- (b) Find similar expressions for the determinant on the left hand side in each of the cases: (i) D is non-singular and D commutes with B and (ii) A is non-singular and A commutes with B.
- (c) Show that the result in (a) is false even if A, B, C and D are non-singular and m = 2 if A and C do not commute.

3 of 3 24/05/22, 07:02