Design and Stabilization of a One Legged Hopper

Pratik Chaudhari

06D01015

Prof. Hemendra Arya

Guide

Prof. Bhartendu Seth Co-guide

B.Tech. Project

Outline

- 1 Introduction
- 2 SLON
- Mechanical Design
- 4 Analysis
- 5 Embedded System

Springy Leg Offset Mass

Figure: SLOM motion

Stages

- Lift-off
- Free fall
- Touch-down
- Stance

Terms

- Energy Pumping Mechanism
- Constraint
- Energy Release

Outline

- 1 Introduction
- 2 SLOM
- Mechanical Design
- Analysis
- 5 Embedded System

Previous Work

SLOM hopper

- Compression spring
- Ratchet and paul activated by voice coil
 - Large leg mass : Small hopping height
- In-place hopping : Feed forward control law

- Spring compressed by a motor
- Use of impact to release energy

Previous Work

SLOM hopper

- Compression spring
- Ratchet and paul activated by voice coil
 - Large leg mass : Small hopping height
- In-place hopping : Feed forward control law

1D hopper

- Spring compressed by a motor
- Bell-crank constraint mechanism
- Use of impact to release energy

Outline

- 1 Introduction
- 2 SLOW
- Mechanical Design
- 4 Analysis
- 5 Embedded System

Problem Definition

Features

- SLOM concept, 2D / 3D hopping
- Tension springs instead of compression spring
- Reduce leg mass, higher hopping heights
- Reaction wheel
 - Necessary for inplace hopping
 - Stable running gait
- Onboard embedded system

Figure: Winch pulley design

Features

- EPM:
 - Motor pulls itself down
 - Moves twice the extension
- Constraint :
 - Toothed pulley constrained by the hatch
 - Impact pushes hatch inside
 - Momentum transfer

Figure: Winch pulley design

Evaluation

- Pros:
 - Simple constraint mechanism
 - Easier to make a light leg
- Cons:
 - Winch can slide off the pulley
 - Torsion spring : potentional point of failure
 - Torques on roller bearings

Figure: Rack and pinion design

Features

- EPM:
 - Rack worm-worm wheel
 - Band drive
 - Main spring can push the worm onto the rack
- Constraint :
 - Friction pulley
 - Ratchet with paul
 - Motor sleeve moves left

Figure: Rack and pinion design

Evaluation

- Pros:
 - Mechanical advantage
 - Less moving parts, easier to build
- Cons:
 - Friction pulley
 - Lower resolution

Outline

- 1 Introduction
- 2 SLON
- Mechanical Design
- Analysis
- 5 Embedded System

Objectives

Objective

- Estimate masses, dimensions
- Choose motors and electronics

Design 1

- Reaction wheel
- Springs
- Winding motor
- Platform
- Lower leg, main leg masses

Design 2

- Reaction wheel
- Springs
- Rack-pinion drive and motor
- Platform and leg mass

Objectives

Objective

- Estimate masses, dimensions
- Choose motors and electronics

Design 1

- Reaction wheel
- Springs
- Winding motor
- Platform
- Lower leg, main leg masses

Design 2

- Reaction wheel
- Springs
- Rack-pinion drive and motor
- Platform and leg mass

•

•

Two Mass Problem

$$h_n = \frac{Mh_{n-1} + ml_0}{M + m}$$

$$E_{loss} = \frac{Mg (H - I_0)}{1 + M/m}$$

•

Two Mass Problem

$$h_n = \frac{Mh_{n-1} + ml_0}{M + m}$$

$$E_{loss} = \frac{Mg (H - I_0)}{1 + M/m}$$

Torque Requirements

Torque Requirements

Results

- \bullet m \sim 0.5 kg
- $k \sim 300 N$
- $M \sim 2 \text{ kg}$
- ullet Lower leg \sim 12 cms
- Standard rack-pinion
- Faulhabeur 2342 motor
- 43 : 1 gearbox

ReWac: Idea and Advantages

Figure: ReWac: Schematic

Inertia Wheel Assembly

Conserve angular momentum

$$\dot{\theta}_b = -\frac{J_w}{J_b + J_w} \dot{\theta}_w$$

Uses

- Initial condition
- Changing hopping height online
- Change from an arbitrary pitch to steady state pitch within one hop

ReWac: Radius

ReWac: CG distance

Impact Analysis

Concept

- Desired hopping height dictates impact frequency
- Masses dictate energy loss
- Natural frequency of the system should be much higher than hopping frequency

Results

- Hopping frequency is a weak function of hopping height and M
- A large dependence on leg mass

Impact Analysis

Concept

- Desired hopping height dictates impact frequency
- Masses dictate energy loss
- Natural frequency of the system should be much higher than hopping frequency

Results

- Hopping frequency is a weak function of hopping height and M
- A large dependence on leg mass

Impact: Leg mass

Outline

- 1 Introduction
- 2 SLON
- Mechanical Design
- 4 Analysis
- 5 Embedded System

ReWac Board Hardware

- Microchip dsPIC33F
 40 MIPS
- Accelerometer
 2.162 LSB/mg
- Gyroscope (50 Hz)
 0.07326 °/s/LSB
- Quadrature Encoders
- XBee module

Kalman Filter

Why

- Pitch attitude estimate
- Computing power

How

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T = \begin{bmatrix} \theta & \dot{\theta} \end{bmatrix}^T$$

$$\boldsymbol{x}_{k+1} = \boldsymbol{A} \, \boldsymbol{x}_k + \boldsymbol{B} \, \boldsymbol{u}_k + \boldsymbol{w}_k$$

$$y_{k+1} = C x_{k+1} + z_{k+1}$$

Tricks

- Sparse covariance matrix
- Remove matrix operations
- Fixed point arithmetic

Attitude Estimation

Accelerometer

- Slow, absolute reading
- Body accelerations Noise
- High frequency noise

Gyroscope

- Fast
- Drifts slowly, randomly

- After liftoff ∼ 250 ms
 - Only force is gravity
 - Both sensors used
- Free fall \sim 250 ms
 - No accelerometer reading
 - Propagate using rate only
- Stance ∼ 150 ms
 - Ankle potentiometer

High Frequency Input sampled at 50 Hz

