Generating Random Numbers and Random Variables

Ozgur KARAYALCIN

Technische Universität Kaiserslautern, Germany

Monte Carlo Methods in Finance Seminar, 2007

Outline

Introduction

Random Number Generation

Linear Congruential Generator
Implementation of Linear Congruential Generator
Lattice structure
Combining generators

General Sampling Methods

Inverse transform method Acceptance-Rejection Method

Normal Random variables and vectors

Basic properties
Box-Muler method
Approximating the inverse normal
Approximating the cumulative normal

Which methods do we investigate?

- Methods for generating uniformly distributed random variables.
- Methods for transforming those variables to other distributions.

Which methods do we investigate?

- Methods for generating uniformly distributed random variables.
- Methods for transforming those variables to other distributions.

Which methods do we investigate?

- Methods for generating uniformly distributed random variables.
- Methods for transforming those variables to other distributions.

- to discuss primary considerations of random number generators.
- to present a few simple generators.
- to discuss their implementation.

- to discuss primary considerations of random number generators.
- to present a few simple generators.
- to discuss their implementation.

- to discuss primary considerations of random number generators.
- to present a few simple generators.
- to discuss their implementation.

- to discuss primary considerations of random number generators.
- to present a few simple generators.
- to discuss their implementation.

A generator of genuinely random numbers is a mechanism for producing a sequence of random variables $U_1, U_2, ...$ with the properties

- ightharpoonup each U_i uniformly distributed between 0 and 1.
- the U_i are mutually independent.

A generator of genuinely random numbers is a mechanism for producing a sequence of random variables $U_1, U_2, ...$ with the properties

- ightharpoonup each U_i uniformly distributed between 0 and 1.
- the U_i are mutually independent.

A generator of genuinely random numbers is a mechanism for producing a sequence of random variables $U_1, U_2, ...$ with the properties

- \triangleright each U_i uniformly distributed between 0 and 1.
- the U_i are mutually independent.

Modular arithmetic

The operation $y \mod m$ is the remainder of y after division by m.

$$y \bmod m = y - \lfloor y/m \rfloor m$$

where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x.

For instance $7 \mod 5 = 2$, $10 \mod 5 = 0$, $43 \mod 5 = 3$,

An example: Linear Congruential Generator

Linear Congruential Generator

$$x_{i+1} = ax_i \mod m$$

$$u_{i+1} = x_{i+1}/m$$

Consider a = 6, m = 11 and seed $x_0 = 1$. We have the sequence

$$1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, \dots$$

This sequence is full period.

- period length
- reproducibility
- speed
- portability
- randomness

- period length
- reproducibility
- speed
- portability
- randomness

- period length
- reproducibility
- speed
- portability
- randomness

- period length
- reproducibility
- speed
- portability
- randomness

- period length
- reproducibility
- speed
- portability
- randomness

Some parameters

$\stackrel{\cdot}{\operatorname{Modulus}}m$	Multiplier a	Reference
$2^{31}-1$	16807	Lewis, Goodman, and Miller [234],
(=2147483647)		Park and Miller [294]
	39373	L'Ecuyer [222]
	742938285	Fishman and Moore [123]
	950706376	Fishman and Moore [123]
	1226874159	Fishman and Moore [123]
2147483399	40692	L'Ecuyer [222]
2147483563	40014	L'Ecuyer [222]

Lattice structure of linear congruential generators

Spectral test \Longrightarrow measures the degree of equidistribution of points on a lattice.

- ► For each dimension *d* and each set of parallel hyperplanes containing all points in the lattice, it takes the maximum of the distances between adjacent hyperplanes.
- Computing the spectral test becomes increasingly difficult for higher dimensions.

Spectral test \Longrightarrow measures the degree of equidistribution of points on a lattice.

- ► For each dimension *d* and each set of parallel hyperplanes containing all points in the lattice, it takes the maximum of the distances between adjacent hyperplanes.
- ► Computing the spectral test becomes increasingly difficult for higher dimensions.

Spectral test \Longrightarrow measures the degree of equidistribution of points on a lattice.

- ► For each dimension *d* and each set of parallel hyperplanes containing all points in the lattice, it takes the maximum of the distances between adjacent hyperplanes.
- ► Computing the spectral test becomes increasingly difficult for higher dimensions.

Spectral test \Longrightarrow measures the degree of equidistribution of points on a lattice.

- ► For each dimension *d* and each set of parallel hyperplanes containing all points in the lattice, it takes the maximum of the distances between adjacent hyperplanes.
- Computing the spectral test becomes increasingly difficult for higher dimensions.

- They preserve attractive computational features of original generators
- They extend the period
- They decrease the lattice structure (Some cases)

- They preserve attractive computational features of original generators
- They extend the period
- They decrease the lattice structure (Some cases)

- They preserve attractive computational features of original generators
- They extend the period
- They decrease the lattice structure (Some cases)

- They preserve attractive computational features of original generators
- They extend the period
- ▶ They decrease the lattice structure (Some cases)

Wichmann-Hill and L'Ecuyer

Consider J generators, the jth having parameters a_j, m_j :

$$x_{j,i+1} = a_j x_{j,i} \mod m_j, \quad u_{j,i+1} = x_{j,i+1}/m_j \quad j = 1, \dots, J$$

The Wichmann-Hill combination sets u_{i+1} equal to the fractional part of

$$u_{1,i+1} + u_{2,i+1} + \cdots + u_{J,i+1}.$$

L'Ecuyer's combination has the form

$$x_{i+1} = \sum_{j=1}^{J} (-1)^{(j-1)} x_{j,i+1} \mod (m_1 - 1)$$

and

$$u_{i+1} = \begin{cases} x_{i+1}/m_1 & x_{i+1} > 0 \\ (m_1 - 1)/m_1 & x_{i+1} = 0 \end{cases}.$$

It assumes that m_1 is the largest of the m_j .

General Sampling Methods

We assume that we have a sequence U_1,U_2,\ldots of independent random variables which which are uniformly distributed. We will investigate two methods

- Inverse Transform Method
- Acceptance -Rejection Method

General Sampling Methods

We assume that we have a sequence U_1,U_2,\ldots of independent random variables which which are uniformly distributed. We will investigate two methods

- Inverse Transform Method
- Acceptance -Rejection Method

General Sampling Methods

We assume that we have a sequence U_1,U_2,\ldots of independent random variables which which are uniformly distributed. We will investigate two methods

- Inverse Transform Method
- Acceptance -Rejection Method

Inverse transform method

Suppose we want to sample from a cumulative distribution F, which means we want to generate a r.v. X s.t. $P(X \le x) = F(x) \ \forall x$.

$$X = F^{-1}(U), \ \ U \sim \mathsf{Unif}[0,1],$$

where F^{-1} is the inverse of F and $\mathsf{Unif}[0,1]$ denotes the uniform distribution on [0,1] Let's verify this method generates sample from F:

$$P(X \le x) = P(F^{-1}(U) \le x)$$
$$= P(U \le F(x))$$
$$= F(x)$$

F(x) is the CDF of the pdf f(x). The x drawn from this method is distributed as f(x). The method is called Inverse transform because $x = F^{-1}(u)$

Inverse transform method

Inverse transform method.

Examples (Exponential distribution)

$$\begin{array}{rcl} F(x) & = & 1 - e^{-x/\theta}, & x \geq 0 \\ U & = & 1 - e^{-X/\theta} \\ 1 - U & = & e^{-X/\theta} \\ \log(1 - U) & = & -X/\theta \\ \log(1 - U) * (-\theta) & = & X \\ -\theta \log(U) & = & X \end{array}$$

$$f(x) = dF(x)/dx = 1/\theta * e^{-x/\theta}$$

x is distributed ad $f(X)$

- It is easy to sample from conditional distribution
- It is useful for implementation of variance reduction techniques.
- It uses just ine uniform r.v. This is important in using quasi-Monte Carlo methods

- It is easy to sample from conditional distribution
- It is useful for implementation of variance reduction techniques.
- It uses just ine uniform r.v. This is important in using quasi-Monte Carlo methods

- It is easy to sample from conditional distribution
- It is useful for implementation of variance reduction techniques.
- It uses just ine uniform r.v. This is important in using quasi-Monte Carlo methods

- It is easy to sample from conditional distribution
- ▶ It is useful for implementation of variance reduction techniques.
- It uses just ine uniform r.v. This is important in using quasi-Monte Carlo methods

Suppose we want to generate samples from a density f defined on some set X.

Let g be a density on X from which we know how to generate samples and with the property that

$$f(x) \le cg(x), \quad \forall x \in X$$

for some constant c.


```
1. generate X from distribution g
```

2. generate U from $\mathrm{Unif}[0,1]$

3. if
$$U \le f(X)/cg(X)$$

return X
otherwise

go to Step 1.

The acceptance-rejection method for sampling from density f using candidates from density g.

Illustration of the acceptance-rejection method using uniformly distributed

Let us verify the validity of this method. Let Y be a sample we got from the algorithm and Y has the distribution of X conditional on $U \leq \frac{f(X)}{cg(X)}$.

$$P(Y \in A) = P(X \in A \setminus U \le \frac{f(X)}{cg(X)}) = \frac{P(X \in A, U \le \frac{f(X)}{cg(X)})}{P(U \le \frac{f(X)}{cg(X)})}$$

$$P(U \le \frac{f(X)}{cg(X)}) = \int_X P(U \le \frac{f(X)}{cg(X)} \mid X = x) P(X = x) dx$$
$$= \int_X \frac{f(x)}{cg(x)} g(x) dx = 1/c$$

$$P(Y \in A) = cP(X \in A, U \leq \frac{f(X)}{cg(X)}) = c\int_A \frac{f(x)}{cg(x)}g(x)dx = \int\limits_{\text{Example of the lattice of the property of the p$$

Normal from double exponential

Pdf of double exponential on $(-\infty, \infty)$:

$$g(x) = \exp\left(-\frac{|x|}{2}\right)$$

Pdf of normal distribution when $\mu = 0$ and $\sigma^2 = 1$:

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

The rejection test $u > \frac{f(x)}{cq(x)}$ can be implemented as

$$u > \exp{(-\frac{1}{2}x^2 + \mid x \mid -\frac{1}{2})} = \exp{(-\frac{1}{2}(\mid x \mid -1)^2)}$$

Normal from double exponential

Normal density and scaled double exponential.

- It can be accelerated through squeeze method, in which simpler tests are applied before the exact one.
- It can be also applied to discrete distributions.
- It is generally used combining with other techniques.
- It uses one uniform r.v. per nonuniform r.v. generated. When simulation problems are formulated as numerical integration problems, the dimension of the integrand is equal to maximum number of uniform variables.
- It is generall inapplicable with quasi-Monte Carlo methods.

- It can be accelerated through squeeze method, in which simpler tests are applied before the exact one.
- It can be also applied to discrete distributions.
- It is generally used combining with other techniques.
- It uses one uniform r.v. per nonuniform r.v. generated. When simulation problems are formulated as numerical integration problems, the dimension of the integrand is equal to maximum number of uniform variables.
- It is generall inapplicable with quasi-Monte Carlo methods.

- It can be accelerated through squeeze method, in which simpler tests are applied before the exact one.
- It can be also applied to discrete distributions.
- It is generally used combining with other techniques.
- It uses one uniform r.v. per nonuniform r.v. generated. When simulation problems are formulated as numerical integration problems, the dimension of the integrand is equal to maximum number of uniform variables.
- It is generall inapplicable with quasi-Monte Carlo methods.

- It can be accelerated through squeeze method, in which simpler tests are applied before the exact one.
- It can be also applied to discrete distributions.
- It is generally used combining with other techniques.
- It uses one uniform r.v. per nonuniform r.v. generated. When simulation problems are formulated as numerical integration problems, the dimension of the integrand is equal to maximum number of uniform variables.
- It is generall inapplicable with quasi-Monte Carlo methods.

- It can be accelerated through squeeze method, in which simpler tests are applied before the exact one.
- It can be also applied to discrete distributions.
- It is generally used combining with other techniques.
- It uses one uniform r.v. per nonuniform r.v. generated. When simulation problems are formulated as numerical integration problems, the dimension of the integrand is equal to maximum number of uniform variables.
- It is generall inapplicable with quasi-Monte Carlo methods.

- It can be accelerated through squeeze method, in which simpler tests are applied before the exact one.
- It can be also applied to discrete distributions.
- It is generally used combining with other techniques.
- It uses one uniform r.v. per nonuniform r.v. generated. When simulation problems are formulated as numerical integration problems, the dimension of the integrand is equal to maximum number of uniform variables.
- It is generall inapplicable with quasi-Monte Carlo methods.

Basic properties

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad -\infty < x < \infty$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

$$\phi_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

$$\Phi_{\mu,\sigma}(x) = \Phi(\frac{x-\mu}{\sigma})$$

This method generates a sample from bivariate standard normal.

If $Z \sim N(0, I_2)$ then

▶ $R = Z_1^2 + Z_2^2$ is exponentially distributed with mean 2, i.e.

$$P(R \le x) = 1 - e^{-x/2}$$

▶ given R, the point (Z_1, Z_2) is uniformly distributed on the circle of radius \sqrt{R} centered at the origin.

This method generates a sample from bivariate standard normal.

If $Z \sim N(0, I_2)$ then

 $ightharpoonup R = Z_1^2 + Z_2^2$ is exponentially distributed with mean 2, i.e.

$$P(R \le x) = 1 - e^{-x/2}$$

▶ given R, the point (Z_1, Z_2) is uniformly distributed on the circle of radius \sqrt{R} centered at the origin.

This method generates a sample from bivariate standard normal.

If $Z \sim N(0, I_2)$ then

 $ightharpoonup R = Z_1^2 + Z_2^2$ is exponentially distributed with mean 2, i.e.

$$P(R \le x) = 1 - e^{-x/2}$$

• given R, the point (Z_1, Z_2) is uniformly distributed on the circle of radius \sqrt{R} centered at the origin.

- ▶ Generate R and choose a point uniformly from the circle of radius \sqrt{R} . $(R = -2\log(U_1))$
- ▶ To generate a random point on a circle , generate a random angle uniformly between 0 and 2π and map the angle to a point on the circle.
- ▶ The random angle can be generated as $V = 2\pi U_2$ and the corresponding point has coordinates $(\sqrt{R}\cos(V)), (\sqrt{R}\sin(V))$.

- ▶ Generate R and choose a point uniformly from the circle of radius \sqrt{R} . $(R = -2\log(U_1))$
- ▶ To generate a random point on a circle , generate a random angle uniformly between 0 and 2π and map the angle to a point on the circle.
- ▶ The random angle can be generated as $V = 2\pi U_2$ and the corresponding point has coordinates $(\sqrt{R}\cos(V)), (\sqrt{R}\sin(V))$.

- ▶ Generate R and choose a point uniformly from the circle of radius \sqrt{R} . $(R = -2\log(U_1))$
- ▶ To generate a random point on a circle , generate a random angle uniformly between 0 and 2π and map the angle to a point on the circle.
- ▶ The random angle can be generated as $V = 2\pi U_2$ and the corresponding point has coordinates $(\sqrt{R}\cos(V)), (\sqrt{R}\sin(V))$.

- ▶ Generate R and choose a point uniformly from the circle of radius \sqrt{R} . $(R = -2\log(U_1))$
- ▶ To generate a random point on a circle , generate a random angle uniformly between 0 and 2π and map the angle to a point on the circle.
- ▶ The random angle can be generated as $V=2\pi U_2$ and the corresponding point has coordinates $(\sqrt{R}\cos(V)), (\sqrt{R}\sin(V))$.

generate
$$U_1, U_2$$
 independent Unif[0,1] $R \leftarrow -2 \log(U_1)$ $V \leftarrow 2\pi U_2$ $Z_1 \leftarrow \sqrt{R} \cos(V), Z_2 \leftarrow \sqrt{R} \sin(V)$ return Z_1, Z_2 .

Box-Muller algorithm for generating normal random variables.

$$R^{2} = u^{2} + v^{2}$$

$$\cos \theta = \frac{u}{R}$$

$$\sin \theta = \frac{v}{R}$$

Modification of Box-Muler method

$$\begin{array}{l} \text{while } (X>1) \\ \text{generate } U_1, U_2 \sim \text{Unif}[0,1] \\ U_1 \leftarrow 2*U_1-1, \quad U_2 \leftarrow 2*U_2-1 \\ X \leftarrow U_1^2 + U_2^2 \\ \text{end} \\ Y \leftarrow \sqrt{-2\log X/X} \\ Z_1 \leftarrow U_1Y, \quad Z_2 \leftarrow U_2Y \\ \text{return } Z_1, Z_2. \end{array}$$

Marsaglia-Bray algorithm for generating normal random variables.

Because of the symetry of normal distribution;

$$\Phi^{-1}(1-u) = -\Phi^{-1}(u), \quad 0 < u < 1;$$

Beasley and Springers approximation

$$\Phi^{-1}(u) \approx \frac{\sum_{n=0}^{3} a_n (u - \frac{1}{2})^{2n+1}}{1 + \sum_{n=0}^{3} b_n (u - \frac{1}{2})^{2n}}, \text{ for } 0.5 \le u \le 0.92$$

$$\Phi^{-1}(u) \approx g(u) = \sum_{n=0}^{8} c_n [\log(-\log(1-u))]^n, \quad 0.92 \le u < 1$$


```
Input: u between 0 and 1
    Output: x, approximation to \Phi^{-1}(u).
  u \leftarrow u - 0.5
 if |y| < 0.42
                r \leftarrow u * u
                 x \leftarrow y * (((a_3 * r + a_2) * r + a_1) * r + a_0) /
                                                             ((((b_3 * r + b_2) * r + b_1) * r + b_0) * r + 1)
 else
             r \leftarrow u:
                if (y > 0) r \leftarrow 1 - u
               r \leftarrow \log(-\log(r))
                x \leftarrow c_0 + r * (c_1 + r * (c_2 + r * (c_3 + r * (c_4 + c_4 
                                                           r * (c_5 + r * (c_6 + r * (c_7 + r * c_8)))))))
                if (y < 0) x \leftarrow -x
return x
```

Beasley-Springer-Moro algorithm for approximating the inverse normal. CAISERSLAUTERN

```
2.50662823884
                            b_0 =
                                      -8.47351093090
a_0 =
         -18.61500062529
                            b_1 =
                                      23.08336743743
a_1 =
                            b_2 =
         41.39119773534
                                     -21.06224101826
a_2 =
         -25.44106049637
                            b_3 =
                                       3.13082909833
a_3 =
c_0 = 0.3374754822726147
                            c_5 = 0.0003951896511919
c_1 = 0.9761690190917186
                            c_6 = 0.0000321767881768
c_2 = 0.1607979714918209
                            c_7 = 0.0000002888167364
c_3 = 0.0276438810333863
                            c_8 = 0.0000003960315187
c_4 = 0.0038405729373609
```

Constants for approximations to inverse normal.

We can simply try to find the root x of the equation $\Phi(x)=u$. For instance Newtons method produces the iteration

Marsaglia and Zaman

$$x_{n+1} = x_n - \frac{\Phi(x_n) - u}{\phi(x_n)},$$

which can be written also

$$x_{n+1} = x_n + (u - \Phi(x_n)) \exp(-0.5x_n \cdot x_n + c), \ c \equiv \log(\sqrt{\frac{2}{\pi}})$$

Marsaglia and Zaman recommend the starting point

$$x_0 = \pm \sqrt{|-1.6\log(1.0004 - (1-2u)^2)|}$$

Approximating the cumulative normal

```
\begin{array}{ll} b_1 = 0.319381530 & p = 0.2316419 \\ b_2 = -0.356563782 & c = \log(\sqrt{2\pi}) = 0.918938533204672 \\ b_3 = 1.781477937 & b_4 = -1.821255978 \\ b_5 = 1.330274429 & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

Hastings' [171] approximation to the cumulative normal distribution as modified in Abramowitz and Stegun [3].

Approximating the cumulative normal

```
v_0 = 0.1231319632579329
 v_1 = 1.253314137315500
 v_2 = 0.6556795424187985
                                    v_{10} = 0.1097872825783083
 v_3 = 0.4213692292880545
                                    v_{11} = 0.09902859647173193
 v_4 = 0.3045902987101033
                                    v_{12} = 0.09017567550106468
 v_5 = 0.2366523829135607
                                    v_{13} = 0.08276628650136917
 v_6 = 0.1928081047153158
                                    v_{14} = 0.0764757610162485
 v_7 = 0.1623776608968675
                                    v_{15} = 0.07106958053885211
 v_8 = 0.1401041834530502
  c = \log(\sqrt{2\pi}) = 0.918938533204672
Input: x between -15 and 15
Output: y, approximation to \Phi(x).
i \leftarrow |\min(|x| + 0.5, 14)|
z \leftarrow i, h \leftarrow |x| - z, a \leftarrow v_{i+1}
b \leftarrow z * a - 1, a \leftarrow 1, s \leftarrow a + h * b
for i = 2, 4, 6, \dots, 24 - j
   a \leftarrow (a + z * b)/i
   b \leftarrow (b + z * a)/(i + 1)
   q \leftarrow q * h * h
   s \leftarrow s + q * (a + h * b)
end
y = s * \exp(-0.5 * x * x - c)
if (x > 0) y \leftarrow 1 - y
return y
```

Algorithm of Marsaglia et al. [251] to approximate the cumulative normal distribution.

Basic properties
Box-Muler method
Approximating the inverse normal
Approximating the cumulative normal

Thank you for your attention!

