OWL

an Ontology Language for the Semantic Web

Ian Horrocks

horrocks@cs.man.ac.uk

University of Manchester Manchester, UK

The Semantic Web

The Semantic Web
Web Ontology Languages

The Semantic Web
Web Ontology Languages
OWL

The Semantic Web

Web Ontology Languages

OWL

Reasoning with OWL
OilEd Demo

The Semantic Web

Web Ontology Languages

OWL

Reasoning with OWL
OilEd Demo

Research Challenges

The Semantic Web

- Web made possible through established standards
 - TCP/IP for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text

- Web made possible through established standards
 - TCP/IP for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it

- Web made possible through established standards
 - TCP/IP for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- 1st generation web mostly handwritten HTML pages

- Web made possible through established standards
 - TCP/IP for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- 1st generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active

- Web made possible through established standards
 - TCP/IP for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- 1st generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction

- Web made possible through established standards
 - TCP/IP for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- 1st generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated processes

- Web made possible through established standards
 - TCP/IP for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- 1st generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated processes
 - To be achieved via semantic markup
 - Metadata annotations that describe content/function

- Web made possible through established standards
 - TCP/IP for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- 1st generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated processes
 - To be achieved via semantic markup
 - Metadata annotations that describe content/function
- Coincides with Tim Berners-Lee's vision of a Semantic Web

- Web made possible through established standards
 - TCP/IP for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- 1st generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated processes
 - To be achieved via semantic markup
 - Metadata annotations that describe content/function
- Coincides with Tim Berners-Lee's vision of a Semantic Web

Semantic markup must be **meaningful** to automated processes

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of precisely defined terms (vocabulary)
 - Can be shared across applications (and humans)

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of precisely defined terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:
 - Hierarchical description of important concepts in domain
 - Descriptions of properties of instances of each concept

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of precisely defined terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:
 - Hierarchical description of important concepts in domain
 - Descriptions of properties of instances of each concept
- Degree of formality can be quite variable (NL-logic)

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of precisely defined terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:
 - Hierarchical description of important concepts in domain
 - Descriptions of properties of instances of each concept
- Degree of formality can be quite variable (NL-logic)
- Increased formality and regularity facilitates machine understanding

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of precisely defined terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:
 - Hierarchical description of important concepts in domain
 - Descriptions of properties of instances of each concept
- Degree of formality can be quite variable (NL-logic)
- Increased formality and regularity facilitates machine understanding
- Ontologies can be used, e.g.:
 - To facilitate agent-agent communication in e-commerce
 - In semantic based search
 - To provide richer service descriptions that can be more flexibly interpreted by intelligent agents

Degr

Incre

Ontd

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of precisely defined terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:

scription of important concepts in domain

properties of instances of each concept

an be quite variable (NL-logic)

and regularity facilitates machine understanding

sed, e.g.:

ht-agent communication in **e-commerce**

ed **search**

r service descriptions that can be more flexibly

interpreted by intelligent agents

Degr

Incre

Ontd

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of precisely defined terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:

scription of important concepts in domain

properties of instances of each concept

an be quite variable (NL-logic)

o (ITE logic)

ates machine understanding

nt-a ation in e-commerce

r some flexibly

interpreted by intelligent agents

sec

ed

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of precisely defined terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:

Web Ontology Languages

- Web languages already extended to facilitate content description
 - XML Schema (XMLS)
 - RDF and RDF Schema (RDFS)

- Web languages already extended to facilitate content description
 - XML Schema (XMLS)
 - RDF and RDF Schema (RDFS)
- RDFS recognisable as an ontology language
 - Classes and properties
 - Range and domain
 - Sub/super-classes (and properties)

- Web languages already extended to facilitate content description
 - XML Schema (XMLS)
 - RDF and RDF Schema (RDFS)
- RDFS recognisable as an ontology language
 - Classes and properties
 - Range and domain
 - Sub/super-classes (and properties)
- But RDFS not a suitable foundation for Semantic Web
 - Too weak to describe resources in sufficient detail

- Web languages already extended to facilitate content description
 - XML Schema (XMLS)
 - RDF and RDF Schema (RDFS)
- RDFS recognisable as an ontology language
 - Classes and properties
 - Range and domain
 - Sub/super-classes (and properties)
- But RDFS not a suitable foundation for Semantic Web
 - Too weak to describe resources in sufficient detail
- Requirements for web ontology language:
 - Compatible with existing Web standards (XML, RDF, RDFS)
 - Easy to understand and use (based on familiar KR idioms)
 - Formally specified and of "adequate" expressive power
 - Possible to provide automated reasoning support

OIL, DAML-ONT, DAML+OIL and OWL

OIL, DAML-ONT, DAML+OIL and OWL

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - DAML-ONT: developed in DARPA DAML programme

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - DAML-ONT: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - DAML-ONT: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL
- Submitted to W3C as basis for standardisation
 - WebOnt working group developing OWL language standard

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - DAML-ONT: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL
- Submitted to W3C as basis for standardisation
 - WebOnt working group developing OWL language standard
- OWL "layered" on top of RDFS
 - RDFS based syntax and ontological primitives (subclass etc.)
 - Adds much richer set of primitives (transitivity, cardinality, ...)

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - DAML-ONT: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL
- Submitted to W3C as basis for standardisation
 - WebOnt working group developing OWL language standard
- OWL "layered" on top of RDFS
 - RDFS based syntax and ontological primitives (subclass etc.)
 - Adds much richer set of primitives (transitivity, cardinality, ...)

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - DAML-ONT: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL
- Submitted to W3C as basis for standardisation
 - WebOnt working group developing OWL language standard
- OWL "layered" on top of RDFS
 - RDFS based syntax and ontological primitives (subclass etc.)
 - Adds much richer set of primitives (transitivity, cardinality, ...)
- Describes structure of domain in terms of Classes and Properties
 - Ontology is set of axioms describing classes and properties
 - E.g., Person subclass of Animal whose parents are all Persons

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - DAML-ONT: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL
- Submitted to W3C as basis for standardisation
 - WebOnt working group developing OWL language standard
- OWL "layered" on top of RDFS
 - RDFS based syntax and ontological primitives (subclass etc.)
 - Adds much richer set of primitives (transitivity, cardinality, ...)
- Describes structure of domain in terms of Classes and Properties
 - Ontology is set of axioms describing classes and properties
 - E.g., Person subclass of Animal whose parents are all Persons
- Uses RDF for class/property membership assertions (ground facts)
 - E.g., john instance of Person; (john, mary) instance of parent

OWL Language

- Three species of OWL
 - OWL full is union of OWL syntax and RDF
 - OWL DL restricted to FOL fragment (≈DAML+OIL)
 - OWL Lite is "easier to implement" subset of OWL DL

- Three species of OWL
 - OWL full is union of OWL syntax and RDF
 - OWL DL restricted to FOL fragment (≈DAML+OIL)
 - OWL Lite is "easier to implement" subset of OWL DL
- Semantic layering
 - OWL DL ≡ OWL full within DL fragment
 - DL semantics officially definitive

- Three species of OWL
 - OWL full is union of OWL syntax and RDF
 - OWL DL restricted to FOL fragment (≈DAML+OIL)
 - OWL Lite is "easier to implement" subset of OWL DL
- Semantic layering
 - OWL DL ≡ OWL full within DL fragment
 - DL semantics officially definitive
- OWL DL based on SHIQ Description Logic

- Three species of OWL
 - OWL full is union of OWL syntax and RDF
 - OWL DL restricted to FOL fragment (≈DAML+OIL)
 - OWL Lite is "easier to implement" subset of OWL DL
- Semantic layering
 - OWL DL ≡ OWL full within DL fragment
 - DL semantics officially definitive
- OWL DL based on SHIQ Description Logic
- Benefits from many years of DL research
 - Well defined semantics
 - Formal properties well understood (complexity, decidability)
 - Known reasoning algorithms
 - Implemented systems (highly optimised)

OWL Class Constructors

Constructor	DL Syntax	Example	(Modal Syntax)
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human □ Male	$C_1 \wedge \ldots \wedge C_n$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1 \vee \ldots \vee C_n$
complementOf	$\neg C$	¬Male	$\neg C$
oneOf	$\{x_1 \dots x_n\}$	{john, mary}	$x_1 \vee \ldots \vee x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	P
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\langle P \rangle C$
maxCardinality	$\leqslant nP$	≼1hasChild	P
minCardinality	$\geqslant nP$	≽2hasChild	$\langle P \rangle_n$

OWL Class Constructors

Constructor	DL Syntax	Example	(Modal Syntax)
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human □ Male	$C_1 \wedge \ldots \wedge C_n$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1 \vee \ldots \vee C_n$
complementOf	$\neg C$	⊸Male	$\neg C$
oneOf	$\{x_1 \dots x_n\}$	{john, mary}	$x_1 \vee \ldots \vee x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	P
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\langle P \rangle C$
maxCardinality	$\leq nP$	≼1hasChild	$[P]_{n+1}$
minCardinality	$\geqslant nP$	≥2hasChild	$\langle P \rangle_n$

- riangleq XMLS datatypes as well as classes in $\forall P.C$ and $\exists P.C$
 - E.g., ∃hasAge.nonNegativeInteger

OWL Class Constructors

Constructor	DL Syntax	Example	(Modal Syntax)
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human □ Male	$C_1 \wedge \ldots \wedge C_n$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1 \vee \ldots \vee C_n$
complementOf	$\neg C$	¬Male	$\neg C$
oneOf	$\{x_1 \dots x_n\}$	$\{john, mary\}$	$x_1 \vee \ldots \vee x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	P
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\langle P \rangle C$
maxCardinality	$\leqslant nP$	$\leqslant 1$ hasChild	P
minCardinality	$\geqslant nP$	≽2hasChild	$\langle P \rangle_n$

- Arr XMLS datatypes as well as classes in $\forall P.C$ and $\exists P.C$
 - E.g., ∃hasAge.nonNegativeInteger
- Arbitrarily complex nesting of constructors
 - E.g., Person □ ∀hasChild.(Doctor ⊔ ∃hasChild.Doctor)

RDFS Syntax

```
<owl>Class>
  <owl:intersectionOf rdf:parseType="collection">
    <owl:Class rdf:about="#Person"/>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasChild"/>
      <owl:toClass>
        <owl:unionOf rdf:parseType="collection">
          <owl:Class rdf:about="#Doctor"/>
          <owl:Restriction>
            <owl:onProperty rdf:resource="#hasChild"/>
            <owl:hasClass rdf:resource="#Doctor"/>
          </owl:Restriction>
        </owl:unionOf>
      </owl:toClass>
    </owl:Restriction>
  </owl:intersectionOf>
</owll:Class>
```

OWL DL Semantics

OWL DL Semantics

- Semantics defined by **interpretations**: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - concepts \longrightarrow subsets of $\Delta^{\mathcal{I}}$
 - roles \longrightarrow binary relations over $\Delta^{\mathcal{I}}$ (subsets of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$)
 - individuals \longrightarrow elements of $\Delta^{\mathcal{I}}$

OWL DL Semantics

- Semantics defined by **interpretations**: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - concepts \longrightarrow subsets of $\Delta^{\mathcal{I}}$
 - roles \longrightarrow binary relations over $\Delta^{\mathcal{I}}$ (subsets of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$)
 - individuals \longrightarrow elements of $\Delta^{\mathcal{I}}$
- Interpretation function $\cdot^{\mathcal{I}}$ extended to concept expressions

•
$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \quad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}} \quad (\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

- $\bullet \quad \{x_n, \dots, x_n\}^{\mathcal{I}} = \{x_n^{\mathcal{I}}, \dots, x_n^{\mathcal{I}}\}$
- $(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$
- $(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y.(x,y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$
- $(\leqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\}$
- $(\geqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geqslant n\}$

OWL Axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human ⊓ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male ⊑ ¬Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	$\{President_Bush\} \equiv \{G_W_Bush\}$
differentFrom	$ \{x_1\} \sqsubseteq \neg \{x_2\} $	$\{john\} \sqsubseteq \neg \{peter\}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	cost ≡ price
inverseOf	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$
transitiveProperty	$P^+ \sqsubseteq P$	$ancestor^+ \sqsubseteq ancestor$
functionalProperty	$\top \sqsubseteq \leqslant 1P$	⊤ ⊑ ≼1hasMother
inverseFunctionalProperty	$\top \sqsubseteq \leqslant 1P^-$	$ op \sqsubseteq \leqslant 1$ has SSN^-

OWL Axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human ⊓ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male ⊑ ¬Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	$\{President_Bush\} \equiv \{G_W_Bush\}$
differentFrom		$\{john\} \sqsubseteq \neg \{peter\}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	cost ≡ price
inverseOf	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$
transitiveProperty	$P^+ \sqsubseteq P$	ancestor $^+ \sqsubseteq$ ancestor
functionalProperty	$\top \sqsubseteq \leqslant 1P$	$ op \sqsubseteq \leqslant 1$ hasMother
inverseFunctionalProperty	$\top \sqsubseteq \leqslant 1P^-$	$ op \sqsubseteq \leqslant 1$ has SSN^-

 \mathcal{I} satisfies $C_1 \sqsubseteq C_2$ iff $C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$; satisfies $P_1 \sqsubseteq P_2$ iff $P_1^{\mathcal{I}} \subseteq P_2^{\mathcal{I}}$

OWL Axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human ⊓ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male ⊑ ¬Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	$\{President_Bush\} \equiv \{G_W_Bush\}$
differentFrom		$\{john\} \sqsubseteq \neg \{peter\}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	cost ≡ price
inverseOf	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$
transitiveProperty	$P^+ \sqsubseteq P$	ancestor $^+ \sqsubseteq$ ancestor
functionalProperty	$\top \sqsubseteq \leqslant 1P$	$ op \sqsubseteq \leqslant 1$ hasMother
inverseFunctionalProperty	$\top \sqsubseteq \leqslant 1P^-$	$ op \sqsubseteq \leqslant 1$ has SSN^-

- \mathcal{I} satisfies $C_1 \sqsubseteq C_2$ iff $C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$; satisfies $P_1 \sqsubseteq P_2$ iff $P_1^{\mathcal{I}} \subseteq P_2^{\mathcal{I}}$
- \mathcal{I} satisfies ontology \mathcal{O} (is a **model** of \mathcal{O}) iff satisfies every axiom in \mathcal{O}

Reasoning with OWL DL

Why do we want it?

- Why do we want it?
 - Semantic Web aims at "machine understanding"
 - Understanding closely related to reasoning

- Why do we want it?
 - Semantic Web aims at "machine understanding"
 - Understanding closely related to reasoning
- What can we do with it?

- Why do we want it?
 - Semantic Web aims at "machine understanding"
 - Understanding closely related to reasoning
- What can we do with it?
 - Design and maintenance of ontologies
 - Check class consistency and compute class hierarchy
 - Particularly important with large ontologies/multiple authors

- Why do we want it?
 - Semantic Web aims at "machine understanding"
 - Understanding closely related to reasoning
- What can we do with it?
 - Design and maintenance of ontologies
 - Check class consistency and compute class hierarchy
 - Particularly important with large ontologies/multiple authors
 - Integration of ontologies
 - Assert inter-ontology relationships
 - Reasoner computes integrated class hierarchy/consistency

- Why do we want it?
 - Semantic Web aims at "machine understanding"
 - Understanding closely related to reasoning
- What can we do with it?
 - Design and maintenance of ontologies
 - Check class consistency and compute class hierarchy
 - Particularly important with large ontologies/multiple authors
 - Integration of ontologies
 - Assert inter-ontology relationships
 - Reasoner computes integrated class hierarchy/consistency
 - Querying class and instance data w.r.t. ontologies
 - Determine if set of facts are consistent w.r.t. ontologies
 - Determine if individuals are instances of ontology classes
 - Retrieve individuals/tuples satisfying a query expression
 - Check if one class subsumes (is more general than) another w.r.t. ontology

— ...

OWL DL constructors/axioms restricted so reasoning is decidable

- OWL DL constructors/axioms restricted so reasoning is decidable
- Consistent with Semantic Web's layered architecture
 - XML provides syntax transport layer
 - RDF(S) provides basic relational language and simple ontological primitives
 - OWL DL provides powerful but still decidable ontology language
 - Further layers may (will) extend OWL
 - Will almost certainly be undecidable

- OWL DL constructors/axioms restricted so reasoning is decidable
- Consistent with Semantic Web's layered architecture
 - XML provides syntax transport layer
 - RDF(S) provides basic relational language and simple ontological primitives
 - OWL DL provides powerful but still decidable ontology language
 - Further layers may (will) extend OWL
 - Will almost certainly be undecidable
- Facilitates provision of reasoning services
 - Known "practical" algorithms
 - Several implemented systems
 - Evidence of empirical tractability

- OWL DL constructors/axioms restricted so reasoning is decidable
- Consistent with Semantic Web's layered architecture
 - XML provides syntax transport layer
 - RDF(S) provides basic relational language and simple ontological primitives
 - OWL DL provides powerful but still decidable ontology language
 - Further layers may (will) extend OWL
 - Will almost certainly be undecidable
- Facilitates provision of reasoning services
 - Known "practical" algorithms
 - Several implemented systems
 - Evidence of empirical tractability
- Understanding dependent on reliable & consistent reasoning

Reasoning Support for Ontology Design: OilEd

Description Logic Reasoning

DL reasoning based on tableaux algorithms

- DL reasoning based on tableaux algorithms
- Naive implementation effective non-termination

- DL reasoning based on tableaux algorithms
- Naive implementation → effective non-termination
- Modern systems include MANY optimisations

- DL reasoning based on tableaux algorithms
- Naive implementation → effective non-termination
- Modern systems include MANY optimisations
- Optimised classification (compute partial ordering)
 - Use enhanced traversal (exploit information from previous tests)
 - Use structural information to select classification order

- DL reasoning based on tableaux algorithms
- Naive implementation effective non-termination
- Modern systems include MANY optimisations
- Optimised classification (compute partial ordering)
 - Use enhanced traversal (exploit information from previous tests)
 - Use structural information to select classification order
- Optimised subsumption testing (search for models)
 - Normalisation and simplification of concepts
 - Absorption (simplification) of general axioms
 - Davis-Putnam style semantic branching search
 - Dependency directed backtracking
 - Caching of satisfiability results and (partial) models
 - Heuristic ordering of propositional and modal expansion

• . . .

Research and Implementation Challenges

- Increased expressive power
 - Existing DL systems implement (at most) SHIQ
 - OWL extends SHIQ with datatypes and nominals

Increased expressive power

- Existing DL systems implement (at most) SHIQ
- OWL extends SHIQ with datatypes and nominals

Scalability

- Very large KBs
- Reasoning with (very large numbers of) individuals

Increased expressive power

- Existing DL systems implement (at most) SHIQ
- OWL extends SHIQ with datatypes and nominals

Scalability

- Very large KBs
- Reasoning with (very large numbers of) individuals

Other reasoning tasks

- Querying
- Matching
- Least common subsumer
- . . .

Increased expressive power

- Existing DL systems implement (at most) SHIQ
- OWL extends SHIQ with datatypes and nominals

Scalability

- Very large KBs
- Reasoning with (very large numbers of) individuals

Other reasoning tasks

- Querying
- Matching
- Least common subsumer
- . . .

Tools and Infrastructure

Support for large scale ontological engineering and deployment

Semantic Web aims to make web resources accessible to automated processes

- Semantic Web aims to make web resources accessible to automated processes
- Ontologies will play key role by providing vocabulary for semantic markup

- Semantic Web aims to make web resources accessible to automated processes
- Ontologies will play key role by providing vocabulary for semantic markup
- OWL is an ontology language designed for the web
 - Exploits existing standards: XML, RDF(S)
 - Adds KR idioms from object oriented and frame systems
 - Formal rigor of a logic
 - Facilitates provision of reasoning support

- Semantic Web aims to make web resources accessible to automated processes
- Ontologies will play key role by providing vocabulary for semantic markup
- OWL is an ontology language designed for the web
 - Exploits existing standards: XML, RDF(S)
 - Adds KR idioms from object oriented and frame systems
 - Formal rigor of a logic
 - Facilitates provision of reasoning support
- Challenges remain
 - Reasoning with nominals
 - (Convincing) demonstration(s) of scalability
 - New reasoning tasks

Members of the OIL, DAML+OIL and OWL development teams, in particular Dieter Fensel and Frank van Harmelen (Amsterdam) and Peter Patel-Schneider (Bell Labs)

- Members of the OIL, DAML+OIL and OWL development teams, in particular Dieter Fensel and Frank van Harmelen (Amsterdam) and Peter Patel-Schneider (Bell Labs)
- Franz Baader, Uli Sattler and Stefan Tobies (Dresden)

- Members of the OIL, DAML+OIL and OWL development teams, in particular Dieter Fensel and Frank van Harmelen (Amsterdam) and Peter Patel-Schneider (Bell Labs)
- Franz Baader, Uli Sattler and Stefan Tobies (Dresden)
- Members of the Information Management, Medical Informatics and Formal Methods Groups at the University of Manchester

Resources

```
Slides from this talk
 http://www.cs.man.ac.uk/~horrocks/Slides/ilash.pdf
FaCT system (open source)
 http://www.cs.man.ac.uk/FaCT/
OilEd (open source)
 http://oiled.man.ac.uk/
W3C Web-Ontology (WebOnt) working group (OWL)
 http://www.w3.org/2001/sw/WebOnt/
Description Logic Handbook
 Baader et al., Cambridge University Press
```

Select Bibliography

- I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the design of DAML+OIL: An ontology language for the Semantic Web. In *Proc. of AAAI 2002*, 2002.
- I. Horrocks and P. F. Patel-Schneider. Three theses of representation in the Semantic Web. In *Proc. of WWW 2003*, 2003. To appear
- I. Horrocks and S. Tessaris. Querying the semantic web: a formal approach. In I. Horrocks and J. Hendler, editors, *Proc. of the 2002 International Semantic Web Conference (ISWC 2002)*, number 2342 in Lecture Notes in Computer Science. Springer-Verlag, 2002.
- C. Lutz. *The Complexity of Reasoning with Concrete Domains*. PhD thesis, Teaching and Research Area for Theoretical Computer Science, RWTH Aachen, 2001.

Select Bibliography

- I. Horrocks and U. Sattler. Ontology reasoning in the $\mathcal{SHOQ}(\mathbf{D})$ description logic. In B. Nebel, editor, *Proc. of IJCAI-01*, pages 199–204. Morgan Kaufmann, 2001.
- F. Baader, S. Brandt, and R. Küsters. Matching under side conditions in description logics. In B. Nebel, editor, *Proc. of IJCAI-01*, pages 213–218, Seattle, Washington, 2001. Morgan Kaufmann.
- A. Borgida, E. Franconi, and I. Horrocks. Explaining \mathcal{ALC} subsumption. In *Proc. of ECAI 2000*, pages 209–213. IOS Press, 2000.
- D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A principled approach to data integration and reconciliation in data warehousing. In *Proceedings of the International Workshop on Design and Management of Data Warehouses (DWDM'99)*, 1999.