DESKRIPSI MATERI

PERTEMUAN 7: Komposisi Relasi

Mata Kuliah Matematika Diskrit Dosen Pengampu: Devi Yunita, S.Kom

PENGANTAR

Komposisi R1 dan R2 adalah relasi dari elemen pertamanya R1 dan elemen keduanya adalah R2.

TUJUAN PERKULIAHAN

Pada bab ini akan dijelaskan mengenai definisi komposisi relasi. Setelah menyelesaikan perkuliahan, mahasiswa diharapkan mampu :

- Mengetahui definisi & contoh komposisi relasi
- Menyelesaikan soal komposisi relasi

DESKRIPSI MATERI: Komposisi Relasi

Misalkan R adalah relasi dari himpunan A ke himpunan B, dan T adalah relasi dari himpunan B ke himpunan C. Komposisi R dan S, dinotasikan dengan T o R, adalah relasi dari A ke C yang didefinisikan oleh :

 $T \circ R = \{(a, c) \mid a \in A, c \in C, \text{ dan untuk suatu } b \in B \text{ sehingga } (a, b) \in R \text{ dan } (b, c) \in S \}$

Contoh 2.15.

Misalkan, $A = \{a, b, c\}, B = \{2, 4, 6, 8\} \text{ dan } C = \{s, t, u\}$

Sementara itu, relasi dari A ke B didefinisikan oleh :

$$R = \{(a, 2), (a, 6), (b, 4), (c, 4), (c, 6), (c, 8)\}$$

Sedangkan relasi dari himpunan B ke himpunan C didefisikan oleh :

$$T = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}$$

Maka komposisi relasi R dan T adalah

$$T \circ R = \{(a, u), (a, t), (b, s), (b, t), (c, s), (c, t), (c, u)\}$$

Jika disajikan dengan diagram panah, komposisi relasi R dan T adalah :

• Jika relasi R_1 dan R_2 masing-masing dinyatakan dengan matriks M_{R1} dan M_{R2} , maka matriks yang menyatakan komposisi dari kedua relasi tersebut adalah

$$M_{R2 \text{ o } R1} = M_{R1} \cdot M_{R2}$$

yang dalam hal ini operator "." sama seperti pada perkalian matriks biasa, tetapi dengan mengganti tanda kali dengan "∧" dan tanda tambah dengan "∨".

Contoh 2.16.

Misalkan bahwa relasi R_1 dan R_2 pada himpunan A dinyatakan oleh matriks

$$R_1 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \text{dan} \qquad R_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

maka matriks yang menyatakan R₂ o R₁ adalah

$$M_{R2 \text{ o } R1} = M_{R1} \cdot M_{R2}$$

$$=\begin{bmatrix} (1 \wedge 0) \vee (0 \wedge 0) \vee (1 \wedge 1) & (1 \wedge 1) \vee (0 \wedge 0) \vee (1 \wedge 0) & (1 \wedge 0) \vee (0 \wedge 1) \vee (1 \wedge 1) \\ (1 \wedge 0) \vee (1 \wedge 0) \vee (0 \wedge 1) & (1 \wedge 1) \vee (1 \wedge 0) \vee (0 \wedge 0) & (1 \wedge 0) \vee (1 \wedge 1) \vee (0 \wedge 1) \\ (0 \wedge 0) \vee (0 \wedge 0) \vee (0 \wedge 1) & (0 \wedge 1) \vee (0 \wedge 0) \vee (0 \wedge 0) & (0 \wedge 0) \vee (0 \wedge 1) \vee (0 \wedge 1) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$