Discrete Mathematics MT16: Problem Sheet 4

Chapters 6 (Modular Arithmetic) and 7 (Asymptotic Notation)

4.1 What are the possible values of $x^3 \pmod{7}$?

Prove that an integer n cannot be written as the sum of two integer cubes if $n \equiv \pm 3 \pmod{7}$. Give a counterexample to show that the converse is false.

4.2 Euclid's Algorithm works because gcd(m, n) = gcd(n - km, m) for all $k \in \mathbb{N}$ (though we only use it for k = n DIV m). Prove this statement.

Hint: Let gcd(m, n) = g. You need to prove that gcd(n - km, m) = g. Use the alternative definition in the lecture notes: it is sufficient to show that i) $g \mid n - km$, ii) $g \mid m$, and iii) $l \mid n - km$ and $l \mid m$ together imply $l \mid g$.

- **4.3** Let n > 0 be a fixed modulus. Prove that $m \in \mathbb{Z}_n$ has a multiplicative inverse (i.e. there exists m' satisfying $mm' \equiv 1 \pmod{n}$) if and only if $\gcd(m, n) = 1$. How many elements of \mathbb{Z}_{12} have a multiplicative inverse (mod 12)?
- **4.4** Prove that, given any sequence of n integers (not necessarily distinct) a_1, a_2, \ldots, a_n , there is some non-empty segment whose elements sum to a multiple of n, i.e. $\sum_{i=l}^{m} a_i \equiv 0 \pmod{n}$ for some l and m satisfying $1 \leq l \leq m \leq n$.
- **4.5** Which of the following statements are true? Explain your answers briefly.
 - (i) $n^{\log_2 3} = O(n^2)$,
 - (ii) $n + 2n^2 + 3n^3 + 4n^4 = O(n^4)$,
- (iii) $\sqrt{n^2 + n \log n} = O(n)$,
- (iv) $n^{\log n} = O(n^2)$.

Let b > 1 be a constant. For which values of a is it true that $n^a = O(b^n)$? Give a full proof that your answer is correct.

4.6 Consider the recurrence relation.

$$x_0 = 0$$
, $x_n = x_{\left|\frac{n}{3}\right|} + 3x_{\left|\frac{n}{5}\right|} + n$ for $n \ge 1$

Prove that $x_n = O(n)$.

Hint: show, by strong induction on n, that $x_n \le cn$ for $n \ge 0$, where c is a constant you will determine towards the end of the proof.

4.7 Suppose that $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$. Prove that $f_1(n)f_2(n) = O(g_1(n)g_2(n))$.

Is it true that, under the same conditions, $f_1(n)/f_2(n) = O(g_1(n)/g_2(n))$?