# Data-Blind ML

Building privacy-aware machine learning models without direct data access

Javier Pastorino – Ashis Kumer Biswas

Machine Learning Laboratory

IEEE AIKE 2021 – Virtual



UNIVERSITY OF COLORADO

DENVER | ANSCHUTZ MEDICAL CAMPUS

## Agenda

- Motivation
- Problem Description
- Related Work and Limitations
- Methodology
- Experiments Datasets
- Results
- Limitations and Future Work

### Motivation

- ML Developers require data access to conduct analysis
- Lack of expertise/infrastructure triggers outsourcing
- Data may have privacy constraints
  - usually requires complex setups
- Data owners may have more control on how the data is accessed/used

## Problem Description

- Building a framework allowing data owners outsource ML developments without sharing sensitive data.
- Do not require ML Expertise for data owners



## Related Work and Limitations

#### Data Anonymization (DA)

- Data Sanitization
- Large quantity of data anonymization algorithms [1-5]

#### Synthetic Data (SD)

- Generate synthetic, fake, data following same data distribution as real data[6, 8]
- Use rigorous differential privacy solutions [7]

#### Limitations

- DA: no "gold-standard" to effectively anonymize data without risk of disclosure [6]
- **SD**: techniques require extensive ML domain knowledge
- There is no automatic toolset

## Methodology



#### Methodology

# Experimental Layout & Evaluation

#### Traditional pipeline development as baseline

- Using the entire real data, train and evaluate a model
- Real-trained model

#### Develop pipeline using Data-blind ML

- Using synthetic data and following the framework methodology
- developed and trained a model using synthetic data
- Evaluate with real data using Data-Blind ML API
- Synthetic-trained model

#### Evaluation

 Comparison based on accuracy difference between real-trained and synthetic-trained models

## Experiments – Datasets

| Dataset                         | # Features | #Data<br>Samples | Load Time            | Synt. Mod<br>1,000 | del Samples<br>2,000 |
|---------------------------------|------------|------------------|----------------------|--------------------|----------------------|
| Iris                            | 5          | 150              | $0.05  \mathrm{s}.$  | 3.84 s.            | 3.84 s.              |
| $\mathbf{Adult}$                | 15         | 32,561           | $0.12  \mathrm{s}.$  | 12.29 s.           | 24.56  s.            |
| $\mathbf{MNIST} \qquad tabular$ | 785        | 42,000           | 2.11 s.              | 154.34 s.          | 276.77  s.           |
| Myocardial                      | 124        | 1,700            | $0.03  \mathrm{s}.$  | 52.27 s.           | 52.27  s.            |
| Coupon                          | 26         | 12,684           | $0.10  \mathrm{s}.$  | 14.51 s.           | 29.40  s.            |
| $AI4\bar{I}2020$                | 13         | 10,000           | $0.07 \mathrm{\ s.}$ | 16.06 s.           | 33.98 s.             |

#### • Synthetic learning runtime:

- Linearity to the number of samples used
- Proportional to the number of features in the training set.

## Results – Performance

| Dataset                                             | Delta<br>Accuracy                                                                           |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------|
| Iris Adult MNIST tabular Myocardial Coupon AI4I2020 | $\begin{array}{c} 0.0491 \\ -0.0336 \\ -0.8345 \\ -0.0036 \\ -0.1049 \\ 0.0034 \end{array}$ |



## Limitations and Future Work

#### Limitations

- Data-Blind ML underperform on image data
  - Uses a CTGAN Core
- Quality of the synthetic data is linked with the samples used generator trainings

#### Future Work

- Currently incorporating generative models for images data
- Analyze the trade-off between generator sampling and data quality

# Thank you!

# Questions

### References

- [1] G. Ghinita, et al. "Fast data anonymization with low information loss," in Proceedings of the 33rd international conference on Very large data bases, 2007
- [2] T. Li, et al. "Slicing: A new approach for privacy preserving data publishing," IEEE transactions on knowledge and data engineering, 2010
- [3] J. Xu, et al., "Utility-based anonymization using local recoding," in Proceedings of the 12th ACM SIGKDD, 2006
- [4] H. Lee, et al., "Utility-preserving anonymization for health data publishing," BMC medical informatics and decision making, 2017
- [5] C. C. Aggarwal, "On k-anonymity and the curse of dimensionality," in VLDB, vol. 5, 2005, pp.901–909.
- [6] N. C. Abay, et al., "Privacy preserving synthetic data release using deep learning," in Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2018
- [7] C. Dwork, et al., "The algorithmic foundations of differential privacy." Foundations and Trends in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211–407, 2014
- [8] L. Xu, et al., "Modeling tabular data using conditional gan," in Advances in Neural Information Processing Systems



https://github.com/jpastorino/Data-Blind-ML