Случайные величины

Василий Терешков

Инженер-математик, преподаватель

Василий Терешков

Инженер-математик, преподаватель Кандидат технических наук

Аккаунты в соц.сетях

vk.com/vtereshkov

@vtereshkov

Содержание

1 Мотивация

2 Случайные события и случайные величины

3 Вероятность и частота

4 Среднее значение и риск

5 Распределения

6 Условная вероятность

7 Полная вероятность и теорема Байеса

Мотивация

Случайные величины полезно понимать:

- _____ **Инженерам** чтобы обрабатывать неточные показания приборов
- → **Врачам** чтобы верно интерпретировать результаты анализов
- →) **Маркетологам** чтобы строить надежные прогнозы спроса
 - **Чиновникам** чтобы оценивать требуемые резервы бюджета

Мотивация

Примеры задач, которые мы научимся решать:

Задача «для врача»: тестирование на COVID-19. Ни один тест не является абсолютно достоверным. Поэтому можно поставить вопрос: какова вероятность того, что человек заражен, если тест дал положительный результат?

Задача «для маркетолога»: прогнозирование эффективности рекламы в соцсетях. Есть несколько возрастных категорий покупателей, причем вероятность интереса к продукту различна у разных категорий. Есть сообщество в соцсети, где предполагается разместить рекламу. Известен возраст участников сообщества. Какова вероятность того, что случайный участник заинтересуется продуктом?

Случайные события

Случайное событие – событие, о наступлении которого мы не можем определенно сказать заранее

N.B. Почти все случайные события в мире, кроме событий внутри атомов, выглядят случайными лишь из-за ограниченности нашего знания

Примеры

____ Выпадение трёх очков на игральной кости

Заражение коронавирусом

→) Падение метеорита

Сдача экзамена на «отлично»

Случайные величины

Случайная величина – величина, о значении которой мы не можем определённо сказать заранее

То, что случайная величина приняла какое-то значение, является случайным событием

Примеры дискретных величин

- Количество очков, выпавших на игральной кости
- Оценка на экзамене

Примеры непрерывных величин

- Курс доллара
- Время в дороге до работы
- Продолжительность жизни

Случайные величины

Генерация случайных величин возможна с помощью функций пакета numpy.random:

- numpy.random.randint (low, high, size) дискретная целая величина из диапазона [low, high). Если задан size, возвращает массив величин размера size
- numpy.random.uniform (low, high, size) непрерывная величина из диапазона [low, high) или массив таких величин

N.B. Все функции на самом деле возвращают псевдослучайные величины. Они рассчитываются по алгоритму, но для тех, кто не видит алгоритм, его результат неотличим от случайного

Вероятность

Если в опыте одинаково возможны *N* исходов, из которых *M* исходов приводят к событию *A*, то вероятность события A – это

$$P(A) = \frac{M}{N}$$

Пример. Какова вероятность выпадения нечетного числа очков на игральной кости? Возможны N = 6 исходов, из них M = 3 исхода (выпадение 1, 3, 5 очков) приводят к требуемому событию A. Поэтому P(A) = 3/6 = 0,5

Частота

Не всегда можно перечислить все исходы и воспользоваться определением вероятности напрямую. Нам нужен универсальный практический способ вычисления вероятности.

Можно многократно повторить (или смоделировать на компьютере) опыт и вычислить **частоту** события A — долю «успешных» опытов, в которых происходит событие. Это **метод Монте-Карло**

При большом количестве повторений опыта частота близка к вероятности:

$$P(A) \approx \frac{\text{Количество успехов}}{\text{Количество опытов}}$$

Jupyter Notebook: задача 1

Среднее значение

Если дискретная случайная величина X принимает значения $X_1, X_2 \dots$ с вероятностями $P_1, P_2 \dots$, то ее **среднее значение** равно

$$\overline{X} = P_1 X_1 + P_2 X_2 + \dots$$

Пример. Эта формула объясняет, например, необходимость содержания противопожарных служб, несмотря на крайне низкую вероятность пожаров в современных городах. Хотя вероятность очень мала, но очень велик потенциальный ущерб, и их произведение не будет малым. Пусть вероятность пожара P_1 = 0,001, а ущерб при пожаре X_1 = 1 млрд руб. Тогда средний ущерб Именно произведение вероятности на ущерб считают определением **риска**

$$\bar{X} = P_1 X_1 + (1 - P_1) \cdot 0 = 1$$
 млн руб.

Распределения

Если спрашивать у случайных прохожих их рост или возраст, изучать суммы ресторанных чеков, то окажется, что очень большие и очень малые значения встречаются редко, а близкие к средним – часто

Возьмем какую-нибудь непрерывную случайную величину и посмотрим, как часто её значения попадают в тот или иной интервал. Для этого построим **гистограмму**. С ростом числа значений случайной величины и количества интервалов гистограмма будет превращаться в гладкую кривую – **плотность распределения**

Распределения

Плотность распределения связана с вероятностью: площадь фигуры под графиком плотности равна вероятности того, что случайная величина X примет значение из интервала (a, b), которым ограничена фигура

N.B. Вероятность того, что непрерывная случайная величина примет точно заданное значение, равна нулю. Фигура под графиком плотности схлопнется в вертикальный отрезок, имеющий нулевую площадь

Равномерное распределение

Случайная величина X равновероятно принимает любые значения в интервале (a, b)

Пример. Если поезда метро следуют с одинаковыми промежутками 2 мин, то время ожидания поезда равномерно распределено между 0 и 2 мин

Генерация numpy.random.uniform(low, high, size)

Нормальное распределение

Случайная величина *X* принимает любые значения, однако вероятность тем меньше, чем дальше значение от среднего значения *m*. Чем меньше среднеквадратичное отклонение о, тем сильнее значения «концентрируются» вокруг среднего, тем выше «пик» и тоньше «хвосты»

N.B. Вероятности попадания в интервалы:

$$P(m - 1\sigma \le X \le m + 1\sigma) = 0,68$$

 $P(m - 2\sigma \le X \le m + 2\sigma) = 0,95$
 $P(m - 3\sigma \le X \le m + 3\sigma) = 0,997$

Нормальное распределение

Исключительная роль нормального распределения связана с законом больших чисел: сумма большого числа случайных величин с произвольным распределением имеет нормальное распределение

Пример. При стрельбе по мишени на величину промаха влияет множество случайных факторов: дрожь руки, дыхание, ветер, сбитый прицел. Мы не знаем, как распределен каждый из этих факторов, однако в сумме они приводят к тому, что отверстия от пуль распределены по нормальному закону

Генерация: numpy.random.normal(m, sigma, size)

Jupyter Notebook: задачи 2, 3

Условная вероятность

Бывают события, наступление которых изменяет вероятность других событий. Вероятность события *А* при условии наступления события *В* обозначается

P(A|B)

Пример. Изменится ли вероятность извлечения прибыли в бизнесе, если вдруг станет известно, что конкуренты резко снизили цены?

A = "Бизнес принесет прибыль"

B = "Конкуренты снизили цены"

Здравый смысл подсказывает, что в данном случае P(A|B) < P(A)

Полная вероятность

Пусть известно, что некоторые случайные события («гипотезы») H_1 , H_2 ... приводят к одному и тому же событию A с разными вероятностями $P(A|H_1)$, $P(A|H_2)$... Известны вероятности осуществления самих гипотез $P(H_1)$, $P(H_2)$..., причём всегда осуществляется ровно одна гипотеза. Какова вероятность события A?

Ответ даёт формула полной вероятности:

$$P(A) = P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + ...$$

N. B. Поскольку всегда какая-то гипотеза осуществляется, то

$$P(H_1) + P(H_2) + \dots = 1$$

Полная вероятность

Пример: вернемся к задаче «для маркетолога». Пусть вероятность интереса к продукту равна 20 % для людей младше 30 лет и 10 % для людей 30 лет и старше Пусть 60 % участников сообщества младше 30 лет. Какова вероятность того, что случайный участник сообщества заинтересуется продуктом?

События:

 H_1 = "Человеку до 30 лет" H_2 = "Человеку 30 лет или больше" A = "Человек заинтересовался продуктом"

Вероятности:

$$P(H_1) = 0, 6; P(H_2) = 0, 4; P(A|H_1) = 0, 2; P(A|H_2) = 0, 1$$

Решение:

$$P(A) = 0.2 \cdot 0.6 + 0.1 \cdot 0.4 = 0.16 = 16\%$$

Вернёмся к гипотезам H_r H_2 ... Предположим, что событие A случилось. Как это повлияет на наше доверие к гипотезам?

Формализуем вопрос: насколько отличается апостериорная вероятность гипотезы $P(H_i|A)$ от априорной вероятности $P(H_i|A)$?

Ответ даёт теорема Байеса:

$$P(H_i|A) = rac{P(A|H_i)P(H_i)}{P(A)}$$
Вычислить по формуле полной вероятности

Пример: вернемся к задаче «для врача» — анализу теста на COVID-19. Какова вероятность того, что человек заражен, если тест дал положительный результат?

Исходные данные

- → Pacпространенность инфекции (Prevalence) доля зараженных в популяции
- → **Чувствительность теста** (Sensitivity) способность теста реагировать на вирус (вероятность положительного результата при наличии вируса)
- → Специфичность теста (Specificity) способность теста не реагировать ни на что, кроме вируса (вероятность отрицательного результата при отсутствии вируса)

События:

$$H_1$$
 = "Человек заражен" H_2 = "Человек не заражен" A = "Тест дал положительный результат"

Вероятности:

$$P(H_1)$$
 = Prevalence
 $P(H_2)$ = 1 – Prevalence
 $P(A|H_1)$ = Sensitivity
 $P(A|H_2)$ = 1 – Specificity

Решение:

$$P(H_1|A) = ?$$

Решение: применим теорему Байеса:

$$P(H_i|A) = \underbrace{\frac{P(A|H_i)}{P(A|H_i)} \underbrace{P(H_i)}_{P(H_1)}}_{\substack{Sensitivity Prevalence}} \underbrace{\frac{P(A|H_i)}{P(H_i)} \underbrace{P(H_i)}_{1-\text{Specificity } 1-\text{Prevalence}}}_{1-\text{Specificity } 1-\text{Prevalence}}$$

$$P(H_i|A) = \frac{\text{Sensitivity} \times \text{Prevalence}}{\text{Sensitivity} \times \text{Prevalence} + (1 - \text{Specificity}) \times (1 - \text{Prevalence})}$$

Jupyter Notebook: задача 4

Вывод: вероятность наличия вируса повышается, если становится известно о положительном результате теста, но не достигает 100 % из-за несовершенства самого теста

Домашнее задание

Смоделировать игру против лотерейного автомата типа "777". Игрок платит 1 руб., после чего выпадает случайное целое число, равномерно распределенное от 0 до 999. При некоторых значениях числа игрок получает выигрыш (см. справа)

- Выгодна ли игра игроку?
- Сколько в среднем приобретает или теряет игрок за одну игру?

Дополнительное задание повышенной сложности. Теоретически рассчитать средний выигрыш (проигрыш) и сравнить с результатами моделирования

777: 200 руб.

999: 100 руб.

555: 50 руб.

333: 15 руб.

111: 10 руб.

***77**: 5 руб.

****7**: 3 руб.

***00**: 2 руб.

****0**: 1 руб.

* – любая цифра

Спасибо за внимание!

Василий Терешков

Инженер-математик, преподаватель. Кандидат технических наук

vk.com/vtereshkov

@vtereshkov

vtereshkov@mail.ru

🔀 нетология