线性回归分析

授课教师: 吴翔

邮箱: wuhsiang@hust.edu.cn

March 16, 2019

- 1 线性回归概述
- 2 线性回归原理
- 3 线性回归案例
- 4 线性回归诊断

线性回归概述

简单案例

考虑智力测验成绩 x、教育年限 z 和年收入 y (万元) 之间的关系。数据生成过程 (data generating process, DGP) $y=-0.5+0.2\cdot x$ 得到的样本。

```
# generate dataset
x <- rnorm(n = 200, mean = 110, sd = 10)
beta <- c(-0.5, 0.2)
y <- beta[1] + beta[2] * x + rnorm(n = 200, mean = 0, sd = 0.8)
z <- round(-2 + 0.1 * x + rnorm(n = 200, mean = 0, sd = 0.4))
dat <- data.frame(x = x, y = y, z = z)</pre>
```

Estimate Std. Error t value Pr(>|t|)

7.6 0.63 12 3.1e-25

0.07 22 1.6e-55

回归分析

##

```
## (Intercept) -0.32 0.4138 -0.77 4.4e-01 ## x 0.20 0.0038 52.93 8.0e-119 考虑 x 对 y 的效应,线性模型 R^2=0.93,预测值 \hat{\beta}=(-0.32,0.2) 接近实际值 \beta=(-0.5,0.2)。 ## Estimate Std. Error t value \Pr(>|t|)
```

考虑 z 对 y 的效应, y = 7.58 + 1.55z, 且 $R^2 = 0.71$ 。

1.5

(Intercept)

z

虚假 vs 真实效应

```
# linear regression
fit3 <- lm(y ~ x + z, data = dat)
summary(fit3)$coef</pre>
```

考虑模型
$$y=\beta_0+\beta_1x+\beta_2z$$
。结果显示, $y=-0.36+0.2x$,且 $R^2=0.93$ 。

Q1: z 对 y 的效应, 是否显著?

正效应 vs 负效应?

```
# add a sample
dat1 <- rbind(dat, c(160, -100, 10))
fit4 <- lm(y ~ x, data = dat1)
summary(fit4)$coef</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.76 6.784 5.1 7.1e-07
## x -0.13 0.061 -2.1 4.2e-02
```

增加一个样本 c(160,-100,10), 重新考虑 x 对 y 的效应, $R^2=0.02$, 预测值 $\hat{\beta}=(34.76,-0.13)$ 大幅偏离实际值 $\beta=(-0.5,0.2)$ 。

Q2: x 对 y 的效应, 到底是正还是负?

如何学习线性回归?

图 1: Master & PhD students who are learning regression models

8 / 35

理念

- 方便有多门,归元无二路
- 挽弓当挽强, 用箭当用长

课程存储地址

• 课程存储地址: https://github.com/wuhsiang/Courses

● 资源:课件、案例数据及代码

图 2: 课程存储地址

参考教材

- 谢宇. 回归分析. 北京: 社会科学文献出版社. 2010.
- 威廉·贝里. 理解回归假设. 上海: 格致出版社. 2012.
- 欧文·琼斯. R 语言的科学编程与仿真. 西安: 西安交通大学出版社. 2014.

线性回归原理

缘起

变异与个体差异

- 随着物种的变异, 其个体差异是否会一直增大?
- 个体差异上的两极分化是否是一般规律?

Galton 的身高研究

什么是"回归"?

Galton 的身高研究发现:

- 父代的身高增加时, 子代的身高也倾向于增加
- 当父代高于平均身高时,子代身高比他更高的概率要小于比他更矮的概率;父代矮于平均身高时,子代身高比他更矮的概率要小于比他更高的概率。
- 同一族群中,子代的身高通常介于其父代的身高和族群的平均身高之间。

回归效应:

- 向平均数方向的回归 (regression toward mediocrity)
- 天之道, 损有余而补不足

Galton 的开创性研究

Francis Galton (以及 Karl Pearson) 研究

- 个体差异: 确立了社会科学研究与自然科学研究的根本区别
- 遗传与个体差异的关系: 倡导"优生学"
- 双生儿法 (twin method): 匹配方法 (matching) 之先河

理解回归的三种视角

回归模型

$$y_i = f(X_i) + \epsilon_i = \beta X_i + \epsilon_i$$

将观测值 y_i 分为结构部分 $f(X_i)$ 和随机部分 ϵ_i 并可以从**三个视角**来理解:

- 因果性 (计量经济领域): 观测项 = 机制项 + 干扰项
- 预测性 (机器学习领域): 观测项 = 预测项 + 误差项
- 描述性 (统计领域): 观测项 = 概括项 + 残差项

回归模型设定

考虑收入 x 与中老年人抑郁水平 y 的关系,回归模型为:

$$y_i = \alpha + \beta x_i + \epsilon_i.$$

暗含的假设:

- A1. 线性假设 ($E(y|x)=\beta x$): 非线性模型、结构模型
- A2. 同质性假设: 随机参数/效应模型、分层线性模型

总体回归方程

给定 $x=x^k$, 在的 ϵ_i i.i.d $\sim N(0,\sigma^2)$ 假定下,对回归模型求条件期望得到如下总体回归方程。

$$E(y|x = x^k) = \mu_{y|x^k} = \alpha + \beta x^k.$$

含义:

- 给定任意 x^k , 对应的 $y^k \sim N(\mu_{y|x^k}, \sigma^2)$ 。
- 回归线穿过 $(x^k, \mu_{y|x^k})$.

总体回归线

图 3: 总体回归线

暗含的假设

- A3. 独立同分布假设:
 - $E(\epsilon_i) = 0$: 随机效应模型中的随机截距参数
 - $Cov(\epsilon_i,\epsilon_j)=0$: 时间序列模型、空间计量模型、嵌套模型
 - $\sigma_i = \sigma$: 异方差问题
- A4. 关于 y 的假设:
 - y 应是连续变量:广义线性模型
 - y 的条件期望 $\mu_{y|x^k}=E(y|x=x^k)$ 符合正态分布: 分位数回归
- A5. 正交 (严格外生) 假设
 - 误差项 ϵ 和 x 不相关,即 $Cov(x,\epsilon)=0$
 - 内生性问题

变异分解逻辑

样本观测值 y_i 、均值 \bar{y} 、预测值 \hat{y} 之间的关系

- \hat{y} is the predicted value of y given x, using the equation $y = 0 + \beta x$.
- Ye is the actual observed value of y
- 7 is the mean of y.

The distances that RSS, ESS and TSS represent are shown in the diagram to the left - but remember that the actual calculations are squares of these distances.

$$TSS = \Sigma (y_i - \bar{y})^2$$

$$RSS = \Sigma (v_i - \hat{v})^2$$

$$ESS = \Sigma (\hat{y} - \bar{y})^2$$

图 4: 变异的分解

变异分解公式

总平方和 (sum of squares total, SST) 可以分解为回归平方和 (sum of squares regression, SSR) 和残差平方和 (sum of squares error, SSE) 之和,

具体而言:

$$\begin{split} SST &= \sum_{i=1}^{n} (y_i - \bar{y})^2 \\ &= \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})]^2 \\ &= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \\ &= SSE + SSR \end{split}$$

参数估计

最小化残差平方和 (扩展到多元回归的情境 $y = \beta X + \epsilon$):

$$\min \, SSE = \min \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - \beta X_i)^2$$

由偏导公式

$$\frac{\partial SSE}{\partial \beta} = 0$$

得到参数估计值

$$\hat{\beta} = (X'X)^{-1}X'y.$$

Q3: 如何在熟悉的编程语言中, 撰写函数估计多元线性模型?

多元线性回归与方差分析

假定多元线性模型中,待估计的参数个数为 p,那么方差和自由度的分解如下:

- SST: 自由度为 n − 1
- SSE: 自由度为 n − p
- SSR: 自由度为 p − 1

因而,自由度的分解为:

$$n-1 = (n-p) + (p-1)$$

Q4: 假设模型有两个解释变量,其中 x_1 是连续变量, x_2 是包含 5 个分类的分类变量,SSR 的自由度为多少?

方差分析表

表 1: 多元线性回归的方差分析表

变异来源	平方和	自由度	均方
回归模型	SSR	p-1	MSR = SSR/(p-1)
误差	SSE	n-p	MSE = SSE/(n-p)
总变异	SST	n-1	MST = SST/(n-1)

相应地,可以构造 F 检验:

$$F(\mathsf{df}_{\mathsf{SSR}},\mathsf{df}_{\mathsf{SSE}}) = \frac{\mathsf{MSR}}{\mathsf{MSE}}$$

线性回归案例

中老年精神健康案例

从 CHARLS 数据中随机抽取 n=500 个样本,考虑收入 x 对中老年抑郁水平 y 的 影响。

收入与精神健康

变异的分解

```
# regression model
fit <- lm(cesd10 ~ income + educ, data = charlswh)
# calculate predicted values
yhat <- predict.lm(fit)</pre>
# calculate and print SST, SSR, and SSE
ybar <- mean(charlswh$cesd10)
sst <- sum((charlswh$cesd10 - ybar) ^ 2)
ssr <- sum((yhat - ybar) ^ 2)
sse <- sum((charlswh$cesd10 - yhat) ^ 2)
c(sst, ssr, sse)
```

[1] 17487 944 16543

Gauss-Markov 定理

线性回归诊断

因变量分布

Q5: 取对数是否合适?

残差分布

异常值处理