IFT 608 / IFT 702 Planification en intelligence artificielle Introduction

Professeur: Froduald Kabanza

Assistants: D'Jeff Nkashama & Jordan Félicien Masakuna

Problème de planification

- □ La planification est le problème de choisir des actions en vue d'accomplir un but.
- Cela suppose qu'il y a plusieurs alternatifs possibles.
- ☐ Cela suppose aussi généralement une optimisation choisir la meilleure séquence d'actions.
- Cela suppose aussi une prédiction du future
 - explorations des possibilités

Méthodes pour choisir les actions

Il y a trois approches algorithmiques principales en IA pour développer un agent capable de choisir ses actions :

- Programmer directement le plan (policy, controler) Donne la capacité d'avoir des comportements automatiques, mais pas autonome.
 Algorithmes de planification
- 2. Apprendre par renforcement le plan (policy, controler) à partir d'interactions Confère l'autonomie à l'agent, mais pas encore suffisamment mature pour bien d'application.
- **3.** Générer automatiquement un plan (policy, controler) à partir d'un modèle d'actions spécifié manuellement Peut fonctionner pour des problèmes complexes, mais énormes défis de représentation des modèles d'actions.

Ces approches sont complémentaires et peuvent être combinées.

Plan/Politique/Contrôleur

Contrôleur: programme qui contrôle le robot pour effectuer des tâches domestiques. C'est le « cerveau » de l'agent!

Entrées continues du contrôleur:

- Données des capteurs (observations du monde)
- Les buts

Sortie continue du contrôleur:

La prochaine action à exécuter.

Programmer explicitement le contrôleur

Deep Reinforcement Learning

Planification avec des modèles d'actions

Intégration de la planification, exécution et observations buts apprentissage --> observations buts Controleur ≡ Plan ≡ Politique Avancer; Saisir l'objet; action Générateur Reculer; Modèle d'actions Apprentissage Exécution de l'action ---World

Architecture d'un agent qui apprend, planifie et agit

Utility-Based Agent

9

Learning agent

Architecture d'un agent qui apprend, planifie et agit

Applications

asimo.honda.com

 Plusieurs prototypes de robots, de plus en plus agiles, visant plusieurs domaines d'application.

Exemples d'applications

Credit: New York Times

Credit: Blizzard

Kal Lorry Polerry grate mill for treat | Daniel

Credit: CNN

Canadarm3

https://www.youtube.com/watch?v=iFjElYdLt2E

Problème de reconnaissance d'intention

☐ Un problème connexe que je vais seulement effleurer est celui de reconnaître les intentions, les buts, ou les plans d'un autre agent.

Quel est son but? Comment va-t-il l'accomplir?

- Ce problème peut être formulé et résolu comme
 l'inverse de la planification.
- C'est un problème fondamental dans l'interaction humain-machine.
- C'est un problème pertinent aussi dans l'analyse de la menace dans les jeux vidéo, la sécurité publique et la défense nationale.

Prérequis : Introduction à l'IA (IFT615)

- MDP et apprentissage par renforcement
 - MDP
 - Reward
 - Policy
 - Value function
 - Équations de Bellman
 - Programmation dymanique (Value iteration, Policy Iteration)
 - Q function (state-action pairs)
 - Monte-Carlo Prediction
 - Temporal Difference
 - Q-Learning, SARSA
 - Approximation des fonctions
- Apprentissage supervisée avec un réseau de neurones
- Recherche heuristique dans l'espace d'états
 - A*
 - Monte-Carlo Tree-Search
- Raisonnement avec logique du premier ordre

Promesse

- À la fin de ce cours vous comprendrez
 - Pourquoi l'apprentissage supervisé est fondamentale en IA
 - Ses limites
 - Les alternatives en attendant qu'elle soit mature
- Projet stimulant, de votre choix, sinon un robotique projet défini pour vous, utilisant Open AI Gym et ROS

Principales Références

Références complètes

- 1. Richard S. Sutton & Andrew H. Barto (2020). *Reinforcement Learning: An Introduction*. Second Edition, 2020, publié par MIT Press et disponible en ligne: http://www.incompleteideas.net/book/the-book-2nd.html
- 2. Zoltan Lorincz. A brief Overview of Imitation Learning. https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c
- 3. Steven Lavalle (2006). *Planning Algorithms*. Morgan Kaufmann. Cambridge University Press. http://planning.cs.uiuc.edu/
- 4. Malik Ghallab, Dana Nau & Paolo Traverso (2016). *Automated Planning and Acting*. http://projects.laas.fr/planning/book.pdf
- 5. PDDL Language (2005): https://helios.hud.ac.uk/scommv/IPC-14/repository/gerevini-long-unpublished-2005.pdf
- 6. Durfee (2001). Distributed problem solving and planning. https://pdfs.semanticscholar.org/8f03/09b15dc027dcf4d6642aa7d13f7d5617e4ba.pdf
- 7. Masters & Sardina (2019). Cost-Based Goal Recognition in Navigational Domains. *JAIR*. https://www.jair.org/index.php/jair/article/view/11343
- 8. Les diapositives du cours sont disponibles en ligne
- **9. Optionnel:** *Artificial Intelligence: A Modern Approach (AIMA)* de Stuart Russel & Peter Norvig. *Fourth Edition*, 2020, publiée par Pearson. Ce livre est utilisé par le cours IFT615. Il recoupe les références précédentes à beaucoup d'égards. Il est moins profond sur certains aspects.

Logiciels

- 1. OpenAI Gym https://gymnasium.farama.org/
- 2. ROS (framework de programmation de robots): http://www.ros.org/
- 3. OMPL (planification de trajectoires): http://ompl.kavrakilab.org/

Évaluations

3 Devoir individuels. 1 Projet par 4

Travail pratique	Publication de l'énoncé	Date limite de remise	Pondération IFT608	Pondération IFT702
Devoir 1	Vendredi 19 janvier	Jeudi 26 janvier à minuit	5%	5%
Devoir 2	Vendredi 27 janvier	Jeudi 2 février à minuit	5%	5%
Devoir 3	Vendredi 24 mars	Jeudi 30 mars à minuit	5%	5%
Projet / Étape 1	Vendredi 3 février	Jeudi 16 mars à minuit	10 %	10 %
Projet / Étape 2	Vendredi 3 février	Jeudi 30 mars à minuit	15 %	15 %
Projet / Étape 3	Vendredi 3 février	Jeudi 13 avril à minuit	30 %	23 %
Sujet avancé	Vendredi 3 février	Jeudi 13 avril à minuit	N/A	7 %

Plan de cours complet avec calendrier

Voir Team