Big Data Analytics and Text Mining

Flight Delay Analysis

Final Project Report

Ramakanth Vemula 167004695/rv356

Krishna Anantha Padmanabhan 167007637/ka478

Department of Computer Science Rutgers University, New Brunswick, NJ

May 4, 2017

1 Project Goal

The aim of our project is to perform an analysis of Flight delays in the US and build a model to try and predict future delays for a flight path.

Flight data contained within datasets such as the one from Bureau of Transportation Statistics [1] are pretty comprehensive. Aircraft carriers and the Airport Authorities can use this data to improve and streamline their services. Generally, medium and large airports typically service hundreds to thousands of flights per day which sometimes means that delay in one flight (whatever the cause) might have a cascading effect leading to a delay in subsequent flights. Using the data, we gain an understanding into previous delays and factors affecting these. Airline services can then use this information to appropriately move resources around to prevent and mitigate delays, thereby improving customer satisfaction.

The delays experienced can be looked at from two different perspectives. One, from the customer perspective where only the arrival delay matters to him. The other is through the Airport Authority/Carrier point of view where the other delays such as Weather and security also matter. We perform an analysis with respect to both and present results. We have also implemented machine learning algorithms to gain a deeper insight into the data and predict flight delays.

2 Information on Data

We are using DataBricks community edition in order to collaborate efficiently on the cloud.

2.1 Data Source

We have obtained the data from the Bureau of Transportation Statistics [1] that provides extensive aviation information for flights in the United States of America. We have chosen to work with 3 years' data, that is, 2014, 2015 and 2016. This collection of specific data is done from the website itself.

2.2 Data Format

The data is in the form of multiple csv files containing information for each month. Thus we have a total of 36 files with 17,256,548 records. We now filter the data to keep only the fields that are required.

Fields Used

- YEAR: Integer field that contains the year of flight departure.
- MONTH: Integer field that contains the month in which the flight departed.
- DAY_OF_MONTH: Integer field that contains the day of the month that the flight departs.
- DAY_OF_WEEK: Integer field that contains the day of the week that the flight departs. It starts with 1 for Monday.
- FL DATE: A timestamp that contains the date of flight departure.
- UNIQUE_CARRIER: String field that contains the Unique Carrier Code. When the same code has been used by multiple carriers, a numeric suffix is used for earlier users, for example, PA, PA(1), PA(2).
- ORIGIN_AIRPORT_ID: Integer field that contains the identification number assigned by US DOT to identify a unique airport.
- ORIGIN_CITY_MARKET_ID: Integer field that contains the identification number assigned by US DOT to identify a unique city.
- ORIGIN_CITY_NAME: String field that contains the Origin Airport, City Name.
- DEST_AIRPORT_ID: Integer field that contains the Destination Airport, Airport ID. An identification number assigned by US DOT to identify a unique airport.
- DEST_CITY_NAME: String field that contains the Destination Airport, City Name.
- CRS_DEP_TIME: Integer field that contains the CRS Departure Time (local time: hhmm).
- DEP_DELAY: Double field that contains difference in minutes between scheduled and actual departure time. Early departures show negative numbers.
- DEP_DEL15: Double field that contains Departure Delay Indicator, 15 Minutes or More (1=Yes).

- DEP_DELAY_GROUP: Integer field that contains Departure Delay Group. It groups delays such that 15-40 minutes is group 1, 40-70 is group 2 and so on.
- CRS_ARR_TIME: Integer field that contains the CRS Arrival Time (local time: hhmm).
- ARR_TIME: Integer field that contains the Actual Arrival Time (local time: hhmm).
- ARR_DELAY: Double field that contains difference in minutes between scheduled and actual arrival time. Early arrivals show negative numbers.
- ARR_DELAY_GROUP: Integer field that contains Arrival Delay Group. It groups delays such that 15-40 minutes is group 1, 40-70 is group 2 and so on.
- DISTANCE: Double field that contains the distance between airports (miles).
- CARRIER_DELAY: Double field that contains the Carrier Delay, in minutes.
- WEATHER_DELAY: Double field that contains the Weather Delay, in minutes.
- NAS_DELAY: Double field that contains the National Air System Delay, in minutes.
- SECURITY_DELAY: Double field that contains the Security Delay, in minutes.
- LATE_AIRCRAFT_DELAY: Double field that contains the Late Aircraft Delay, in minutes.

2.3 Data Preprocessing

Our data contains two fields that need to be preprocessed, namely DEP_DELAY and ARR_DELAY. These fields contain negative values that depart or arrive early respectively. We have changed all the negative numbers to 0(zero) since we are only concerned about delayed flights. An example of the work done is in figure 1 with the modified data highlighted. We then remove the records with incomplete data and then use one hot encoder, string indexer, and vector assembler on specific attributes in order to group the data into a set of features along with the label.

Figure 1: Data Preprocessing

3 Analysis of Data

The delays experienced can be looked at from two different perspectives. One, from the customer perspective where only the arrival delay matters to him. The other is through the Airport Authority/Carrier point of view where the other delays such as Weather and security also matter. We perform an analysis with respect to both and present a few results.

3.1 Cause of Most Delay

There are primarily 5 factors affecting delays:

- (a) Carrier Delay
- (b) Weather Delay
- (c) National Air System Delay
- (d) Security Delay
- (e) Late Aircraft Delay

We take a count of all the delays which appear.

By looking at the pie chart in Fig ??, we see that the primary cause of delay is Late Aircrafts i.e Aircrafts which take a longer time to cover the distance they are supposed to. The carrier delay comes at a close second.

Carrier	Weather	NAS	Security	Late Aircraft
60965702	8694985	45025928	228260	77904313

Figure 2: Pie Chart Showing Distribution of Delay Causes

3.2 Airports with the Most Delay

Using the data we can view the numbers of delayed flights in an airport. Figure ?? shows the cities sorted based on the decreasing order of number of flights. As expected, the most Flight delays arise from bigger airports in bigger cities. Also, it an be noted that though there are more flights getting delayed from Atlanta, GA as compared to Los Angeles, CA, the percentage of flights delayed as compared to the total number of flights is smaller.

+		+			++
	ORIGIN_CITY_NA	ME	FlightDelay	FlightTotal	Percentage
İ	Chicago,	IL	260746	1109467	23.50191578478675
	Atlanta,	GA	191264	1133578	16.87259279908396
	Dallas/Fort Worth.		153095	734953	20.830583724401425
	Denver,	CO	141128	664532	21.237201519264687
ĺ	Los Angeles,	CA	131642	647316	20.33658985719494
ĺ	Houston,	ТХ	129979	641604	20.258446019663218
ĺ	New York,	NY	119879	612155	19.58311212029633
	San Francisco,	CA	104602	501429	20.860779891071317
	Las Vegas,	NV	89818	433610	20.714005673300893
ĺ	Phoenix,	AΖ	84784	479337	17.68776455812925
ĺ	Newark,	NJ	75053	337533	22.23575176353127
	Orlando,	FL	69718	356161	19.574855191893555
	Baltimore,	MD	61545	281170	21.888892840630223
	Washington,	DC	59086	360778	16.377384430314486
	Boston,	MA	58427	349907	16.697865432815004
	Charlotte,	NC	53501	332815	16.075297086970238
	Detroit,	MI	53497	348364	15.356638458623738
	Seattle,	WA	51304	362626	14.14790996784566

Figure 3: Table Showing Total number of Flights Delayed, Total Flights and % of Flights Delayed for an Airport

3.3 Carriers with the Most Delay

Similar to the above section, we can view the total number of flights delayed by each carrier. This information can help carriers see their position w.r.t others and also help customers in making a better decision while booking the flight.

For instance from Figure ??, the carrier HA (Hawaiian Airlines) might be more reliable thought it might operate lesser number of flights as compared to the larger ones like WN.

+	++		++
UNIQUE_CARRIER	FlightDelay	FlightTotal	Percentage
+	++		++
WN	809971	3735932	21.68056056694822
AA	374146	2178176	17.177032526297232
DL	351809	2599002	13.536311245624281
UA	326210	1554318	20.987339785037552
EV	324367	1748988	18.545982019316313
00	286797	1807316	15.868669341719986
B6	168615	799214	21.097603395335916
MQ	135195	687333	19.669505174347805
US	82851	613380	13.507287488995402
NK	61000	255578	23.867469030980757
F9	57661	271431	21.243336243833607
AS	49971	510058	9.797121111716706
VX	33783	188534	17.918783879830695
FL	13639	79495	17.15705390276118
HA	13167	227793	5.780247856606656
+	++		++

Figure 4: Table Showing Total number of Flights Delayed, Total Flights and % of Flights Delayed for a Carrier

Figure 5: Carrier Flights On Time and Delayed vs. Total Flights

3.4 Routes with the Most Delay

Every country has popular routes which generally contain more flights. We can analyze which of these paths are the most prone to delays.

From Figure 6 we can see that the routed from Los Angeles to San Francisco and vice versa is a pretty popular route, and it also has the most Delays.

+	+-			·		+
ORIGIN_CITY_	NAME	DEST_CITY_N	AME	FlightDelay	FlightTotal	Percentage
Los Angeles	, CA	San Francisco,	CA	11777	45400	25.940528634361232
Chicago	, IL	New York,	NY	10880	41550	26.18531889290012
San Francisco	, CA	Los Angeles,	CA	9953	46097	21.591426773976615
New York	, NY	Chicago,	ΙL	8328	41803	19.92201516637562
Chicago	, IL	Los Angeles,	CA	8216	31616	25.986842105263158
Chicago	, IL	San Francisco,	CA	8205	26760	30.661434977578477
Chicago	, IL	Washington,	DC	7556	33698	22.42269570894415
Fort Lauderdale	, FL	New York,	NY	7396	28949	25.548378182320633
Los Angeles	, CA	Las Vegas,	NV	7395	33481	22.087153908186732
Miami	, FL	New York,	NY	7303	30904	23.631245146259385
Orlando	, FL	New York,	NY	7120	29316	24.287078728339473
Atlanta	, GA	New York,	NY	7103	32029	22.176777295575885
Chicago	, IL	Minneapolis,	MN	7041	28829	24.423323736515314
Las Vegas	, NV	San Francisco,	CA	6988	25579	27.31928535126471
Los Angeles	, CA	New York,	NY	6986	38223	18.276953666640505
Chicago	, IL	Atlanta,	GA	6911	34538	20.00984422954427
Chicago	, IL	Denver,	CO	6888	26932	25.575523540769346
Los Angeles	, CA	Chicago,	IL	6833	32592	20.965267550319098

Figure 6: Table Showing Total number of Flights Delayed, Total Flights and % of Flights Delayed for Different Routes

3.5 Days with Delayed Flights

We tried to find out if specific days of the week had more delayed flights than other days. The results for that are in Figure 8. DAY_OF_WEEK has numbers from 1 to 7 with 1 being Monday and other days following it. Almost all days have 15 - 18 percent of delayed flights but a key piece of information that we can observe is that during the middle of the week (Tuesdays and Wednesdays), the number of flights is lesser and the percentage of flights delayed is less as compared to weekend flights (Sunday, Monday).

Figure 7: Graph Showing Delays on the Days in the Week

+	+		+
DAY_OF_	WEEK Flig	htsDelayed Flig	ghtsOnDay Percentage
+	+	+	+
	1	474703	2561802 18.53004252475406
	2	428057	2504060 17.09451850195283
	3	437641	2543920 17.203410484606433
	4	497393	2567913 19.369542503971125
	5	494534	2575163 19.20398825239412
	6	331267	2086821 15.874241250207852
	7	425587	2416869 17.609022251516322
+	+		

Figure 8: Delays on Specific Days of the Week

3.6 Months with Delayed Flights

Once we analyzed the days of a week, we moved on to finding out the delays in specific months. The results for the year of 2016 are in Figure 10. 1 represents the month of January and so on. We can observe from the data that the summer months of June, July and August have the highest volume of flights and the delay is also higher in these months. Another important information is that the month of December also has a high number of delayed flights since it contains the Christmas holidays when people travel a lot and it is also during the winter when weather might play a role in flight delays.

Figure 9: Graph Showing Delays based on Month

++ MONTH F	+ FlightsDelayed	FlightsInMonth	++ Percentage
++-	+		++
1	270385	1387744	19.483780870246964
2	242694	1283682	18.906084217119194
3	265640	1487192	17.86184971409206
4	225976	1430280	15.799423889028722
5	258722	1475629	17.532997792805645
6	330022	1494151	22.087593556474545
7	327110	1544055	21.185126177500155
8	288433	1516374	19.021230910052534
9	185306	1389313	13.337959120802871
10	200208	1449802	13.80933396422408
11	200034	1380964	14.48509881503066
12	294652	1417362	20.78876109279069
++-	+		++

Figure 10: Delays on Specific Months

4 Machine Learning Experiments

There are widespread applications of the data depending upon the needs of the user. As stated earlier, customers might need to know about arrival delays while Aviation experts might look at wide ranging data. If we talk in terms of a consumer, a machine learning model could inform the user before booking a flight if that flight would be delayed or not. On the other hand, aviation experts could find out the implications of weather delay, security delay, etc., on overall delay.

For the next phase of the project, we ran different machine learning algorithms to predict if a flight would be delayed or not. Their results are as follows:

Algorithm	Accuracy Percentage
Logistic Regression	83.145 %
Naive Bayes	81.119 %
Decision Tree	84.131 %
Random Forest	80.099 %

Table 1: Comparison of Machine Learning Algorithms

5 Additional Work

We have developed a front end user interface that lets users select flights and displays delays. It determines the user type first and on that basis displays the options available to them. For example, if a traveler starts using the application, it displays a list of all flights between different destinations and then displays the predicted delay for that flight plan. Similarly, for an air traffic controller it will display options to select the analysis that has to be done on different parameters such as carrier, weather, etc. This implementation is not in working stage yet since a Java wrapper has to be built around a working Scala class. Even though the Scala part of the work is complete, we are facing issues with integrating the Scala and Java parts of the code. we believe that we will be able to complete it given another month and the entire application will be hosted on an open source platform such as GitHub. Figures Figures 11 and 12 will give a better understanding of the application.

Figure 11: Main Screen of the Application

Figure 12: Second Screen of the Application

6 Conclusion

This was our first time working on a big data processing engine. Spark is a really powerful tool to learn and perform data operations while at the same time it simplifies the coding constructs.

The distinction between RDDs, Dataframes and Datasets is not obvious initially. Our project has given us a better understanding about these concepts. The Machine Learning algorithms are inbuilt into spark and templates can easily be found. This made it easy for us to quickly build our code and perform checks as to which fields/attributes carried the most weight in performing our classification.

7 Acknowledgements

We have primarily used Databricks to implement the Scala code with Spark engine. We have also used the MLlib library available on spark along with Java for coding the front end part. Python was used to do exploratory data analysis. We would like to thank the professor for motivating us to work on such an interesting project through which we gained valuable insights in Scala and Spark.

References

- [1] "https://www.bts.gov/," January 2017.
- [2] "https://spark.apache.org/docs/1.6.0/sql-programming-guide.html," January 2017.
- [3] "https://www.meta-chart.com/pie#/data," March 2017.
- [4] "http://spark.apache.org/docs/latest/ml-guide.html."