Homework 3 - COMP2020

Student name: Nguyen Tuan Anh

Student ID: V202100512

Question 1

We will choose the Binary Encoding scheme as:

• Init: 00 • X1: 01 • X1-X2: 10 • X1-X2-X2: 11

From the FSM, we can have the following truth table:

Currer	nt State	Int	out	Next	State	Output
s1	s0	i1	i0	s1n	s0n	
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	1	0
0	0	1	1	0	0	0
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	1	0	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	0	1	1	0	0	0
1	1	0	0	1	1	1
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	0	0	0

We can write the binary equation for s_{0n} and s_{1n} as:

$$\begin{split} s_{0n} &= \bar{s_1} \bar{s_0} i_1 \bar{i_0} + \bar{s_1} s_0 \bar{i_1} \bar{i_0} + s_1 \bar{s_0} \bar{i_1} i_0 + s_1 s_0 (\bar{i_1} \bar{i_0} + \bar{i_1} i_0 + i_1 \bar{i_0}) \\ s_{1n} &= \bar{s_1} s_0 \bar{i_1} i_0 + s_1 \bar{s_0} \bar{i_1} \bar{i_0} + s_1 \bar{s_0} \bar{i_1} i_0 + s_1 s_0 (\bar{i_1} \bar{i_0} + \bar{i_1} i_0 + i_1 \bar{i_0}) \end{split}$$

We can implement the circuit like this:

Question 2

For the sequence detector, we have this FSM:

Also, we have this truth table:

State	Inp	Output	
S	1	0	0
00001	00010	00001	0
00010	00010	00100	0
00100	01000	00001	0
01000	10000	00100	0
10000	00010	00100	1

We can write the binary equation for every state s_{xn} : (the output)

$$\begin{split} s_{0n} &= \bar{i} \cdot (s_0 + s_2) \\ s_{1n} &= i \cdot (s_0 + s_1 + s_4) \\ s_{2n} &= \bar{i} \cdot (s_1 + s_3 + s_4) \\ s_{3n} &= i \cdot s_2 \\ s_{4n} &= i \cdot s_3 \end{split}$$

Where s_0, s_1, s_2, s_3, s_4 is the current state, and i is the input.

We can implement the circuit as:

Question 3

Assume the signal will be received on rising edge of the clock. We have the following result:

Question 4

This register file supports 16 8-bit registers, with one write port and two write ports.

About I/O Ports:

- RW: 1 for allowing write to the register, 0 for read-only.
- Activate: Activate the Decoder for selecting the registers to write.
- Select_Reg_W: 4-bit value to select 1/16 registers (0000 to 1111) to write.
- Data: The 8-bit value for parsing to a register, based on the choice of Select_Reg_W.
- Select_Reg_R1, Select_Reg_R2: Two 4-bit values for selecting the data from 1/16 registers.
- Output_Reg1, Output_Reg2: Two 8-bit values, come from the register that selected from Select_Reg_R1 and Select_Reg_R2.

The mechanism of the register file:

- The register file stores data of registers in 16 D Flip-flop, with number of data bits is 8.
- Write: With the RW and Activate enabled, value from Select_Reg_W will be parsed by decoder to the selected register. The AND Gate is used for enabling write action to a register when both write mode and the signal to that register is on.
- Read: 16 values from D Flip-flops will be sent to a multiplexer. The output of multiplexer will be chosen based on our selection of Select_Reg_Rx. Duplicate this design twice and we have two read ports.

