

ELSEVIER

Computer Standards & Interfaces 16 (1994) 559–561

**COMPUTER STANDARDS
& INTERFACES**

Author index to volume 16 (1994)

Albrecht, M. , Investigation of erasing effects on magnetic stripes on identification cards	27– 31
Anderson, J.A.D.W. , The programming language standards scene, ten years on. Paper 19: Pop	547–553
Barnes, J. , The programming language standards scene, ten years on. Paper 9: Ada	481–485
Berg, J.L. , A special pleasure	181
Berg, J.L. , Are standardization organizations inhibiting standardization?	85– 86
Bochmann, G. , <i>see</i> Luo, G.	119–132
Bolognesi, T., F. Lucidi and S. Trigila , Converging towards a timed LOTOS standard	87–118
Brainerd, W.S. , The programming language standards scene, ten years on. Paper 5: Fortran	459–464
Carson, G.S. , <i>see</i> Gargaro, A.	139–142
Cho, S.-B. , Neo-statistical methods of recognition: Neural network, hidden Markov model, and their hybridization	221–229
De Blasi, J. , <i>see</i> Gargaro, A.	139–142
Deiss, S. , <i>see</i> Padgett, M.L.	185–203
De Morgan, R.M. , The programming language standards scene, ten years on. Paper 16: C++	531–535
de Oliveira, W.R. , <i>see</i> Ludermir, T.B.	253–263
Diamond, J. , The programming language standards scene, ten years on. Paper 18: M[UMPS]	541–545
Dorffner, G., H. Wiklicky and E. Prem , Formal neural network specification and its implications on standardization	205–219
Dssouli, R. , <i>see</i> Luo, G.	119–132
Emery, D. , <i>see</i> Gargaro, A.	139–142
Fiesler, E. , Neural network classification and formalization	231–239
Frantz, D.R. , The programming language standards scene, ten years on. Paper 14: FIMS (Form Interface Management System)	519–525
Fulcher, J.A. , Artificial Neural Networks	183–184
Fulcher, J.A. , A comparative review of commercial ANN simulators	241–251
Gargaro, A., R. Rada, J. Moore, G.S. Carson, J. De Blasi, D. Emery, C. Haynes, J. Klensin, I. Montanez and E. Spafford , ACM Technical Standards Committee: A new advocacy power	139–142
Ghedamsi, A. , <i>see</i> Luo, G.	119–132
Goh, A., S.C. Hui, B. Song and F.Y. Wang , A study of SDAI implementation on object-oriented databases	33– 43
Grealish, R. , The programming language standards scene, ten years on. Paper 4: Cobol	453–458
Harcken, H. and J.L. Hartke , Diskette test linearity	15– 22
Harcken, H. and J.L. Hartke , Relationships between diskette resolution and peak shift	23– 26
Hartke, J.L. , <i>see</i> Harcken, H.	15– 22
Hartke, J.L. , <i>see</i> Harcken, H.	23– 26
Haynes, C. , <i>see</i> Gargaro, A.	139–142

Hoogeveen, M. , <i>see Kwaaitaal, I.</i>	45– 54
Hui, S.C. , <i>see Goh, A.</i>	33– 43
Jackson, S.A. , <i>see Sharkey, N.E.</i>	279–293
Jones, D. , The programming language standards scene, ten years on. Paper 11: C	495–503
Joslin, D.A. , The programming language standards scene, ten years on. Paper 2: Pascal	439–442
Karplus, W.J. , <i>see Padgett, M.L.</i>	185–203
Klensin, J. , <i>see Gargaro, A.</i>	139–142
Klensin, J.C. , The programming language standards scene, ten years on. Paper 7: PL/I	469–475
Kurtz, T.E. , The programming language standards scene, ten years on. Paper 8: Basic	477–480
Kwaaitaal, I., M. Hoogeveen and T. Van Der Weide , A reference model for the impact of standardization on multimedia database management systems	45– 54
Leymann, F. , Towards the STEP neutral repository	299–319
Lucidi, F. , <i>see Bolognesi, T.</i>	87–118
Ludermir, T.B. and W.R. de Oliveira , Weightless neural models	253–263
Luo, G., R. Dssouli, G. Bochmann, P. Venkataram and A. Ghedamsi , Test generation with respect to distributed interfaces	119–132
Marks, B. , The programming language standards scene, ten years on. Paper 20: Rexx	555–557
McCabe, L. , <i>see Rando, T.</i>	331–340
Meek, B.L. and D. Ziemann , The programming language standards scene, ten years on. Paper 3: APL	443–451
Meek, B.L. , The programming language standards scene, ten years on. Paper 1: The scene and the issues	427–437
Montanez, I. , <i>see Gargaro, A.</i>	139–142
Moore, J. , <i>see Gargaro, A.</i>	139–142
Morell, J.A. , Standards and the market acceptance of information technology: An exploration of relationships	321–329
Nicholls, J. , The programming language standards scene, ten years on. Paper 17: Z Notation	537–539
Ozkul, T. , A new experimental enhancement to GPIB standard: General Purpose Serial Interface network (GPSI)	133–138
Padget, J. , The programming language standards scene, ten years on. Paper 12: Lisp	505–509
Padgett, M.L., W.J. Karplus, S. Deiss and R. Shelton , Computational intelligence standards: Motivation, current activities and progress	185–203
Parkin, G.I. , The programming language standards scene, ten years on. Paper 15: Vienna Development Method Specification Language (VDM-SL)	527–530
Prem, E. , <i>see Dorffner, G.</i>	205–219
Rada, R. , <i>see Gargaro, A.</i>	139–142
Rando, T. and L. McCabe , Issues in implementing the C++ binding to SDAI	331–340
Riedmiller, M. , Advanced supervised learning in multi-layer perceptrons – From backpropagation to adaptive learning algorithms	265–278
Saleh, K. and H. Ural , Formal specification of an information gateway service interface in Estelle	341–368
Schroeder, H.J. , Interchangeability of diskettes	13– 14
Schumny, H. , Standardization and certification	1– 3
Scowen, R. , The programming language standards scene, ten years on. Paper 13: Prolog	511–518
Sharkey, A.J.C. , <i>see Sharkey, N.E.</i>	279–293
Sharkey, N.E., A.J.C. Sharkey and S.A. Jackson , Opening the black box of connectionist nets: Some lessons from cognitive science	279–293
Shelton, R. , <i>see Padgett, M.L.</i>	185–203
Song, B. , <i>see Goh, A.</i>	33– 43
Spafford, E. , <i>see Gargaro, A.</i>	139–142
Trigila, S. , <i>see Bolognesi, T.</i>	87–118
Ural, H. , <i>see Saleh, K.</i>	341–368

- Van Der Weide, T., see Kwaaitaal, I.** 45– 54
van Wingen, J.W., The programming language standards scene, ten years on. Paper 6: The Algol languages 465–467
Venkataram, P., see Luo, G. 119–132
- Wang, F.Y., see Goh, A.** 33– 43
Wiklicky, H., see Dorffner, G. 205–219
Woodman, M., The programming language standards scene, ten years on. Paper 10: Modula-2 487–494
- Zakharov, V.,** Using modern information technology at the ISO Central Secretariat 369–374
Ziemann, D., see Meek, B.L. 443–451

biochemical
parameters
of bone

of lactation. In the second year, although the mean lactation duration was longer than the first year, the mean serum $25(OH)D_3$ concentration was lower.

biochemical
parameters
of bone

of lactation. In the second year, although the mean lactation duration was longer than the first year, the mean serum $25(OH)D_3$ concentration was lower.

biochemical parameters of lactation. In the second year, although the mean lactation duration was longer than the first year, the mean serum $25(OH)D_3$ concentration was lower.

biochemical
parameters
of bone

of lactation. In the second year, although the mean lactation duration was longer than the first year, the mean serum $25(OH)D_3$ concentration was lower.

ELSEVIER

**COMPUTER STANDARDS
& INTERFACES**

Computer Standards & Interfaces 16 (1994) 563-564

Subject index to volume 16 (1994)

ACM Technical Standards Committee	139	Finite state machines	119
Ada	481	Formal description	205
Adaptive learning algorithms	265	Formalization	231
Algol 60	465	Formal semantics	87
Algol 68	465	Form Interface Management System	519
APL	443	Fortran	459
Artificial neural networks	185, 205		
Basic	477	Generalisation	253
Benchmark problems	265	GPIB	133
Black box computing	279		
C	495	Hidden Markov model	221
CAD/CAM	33	High coercivity magnetic stripes	27
CIM	299	Hybrid method	221
C++	33, 531	IEEE-488	133
Cluster analysis	279	Information providers	341
Cobol	453	Information resources	299
Commonality	427	Integration	299
Common Lisp	505	Interchange	13
Communication interfaces	341	Internationalization	427
Comparison	205	Interworking	341
Connectionism	231	IRDS	299
Connectionist representation	279	ISO standard test architectures	119
Database systems	299		
Data modeling	299	Laboratory environment	133
DBMS	45	Learning	253
Decision space analysis	279	Linearity	15
Diskette	13, 15, 23	Lisp	505
Dissemination	139	Logic programming	511
Distributed interfaces	119	LOTOS	87
Enterprise modeling	299		
Erasing	27	Magnetic characteristics	13
Estelle	341	Market development	321
EXPRESS	33, 299, 331	Meta model	299
Extended APL	443	Mnemonic notation	231
Extended Pascal	439	Modula-2	487
Feedforward networks	265	MPLN node	253
FIMS	519	Multi-layer perceptrons	265
		Multimedia	45
		MUMPS	541

Neural computing	231, 241	Robustness	265
(Artificial) neural network	231	RS-485	133
Neural network classification	231		
Neural network classifier	221	Scheme	505
Neural network determination	231	SDAI	33, 299
Neural network paradigms	205	Semantic data model	331
Neural networks	241, 279	Services and protocols	341
Neurocomputing	231	Simula	465
Nomenclature	231	Software simulators	241
Object-oriented database	33	Software testing	119
On-line handwritten character recognition	221	Special interest groups	139
Openness	139	Specification	185, 205
Pascal	439	Specification language	87
Peak shift	23	Standardization	45, 427, 439, 443, 453, 459, 465, 469, 477, 481, 487, 495, 505, 511, 519, 527, 531, 537, 541, 547, 555
Performance evaluation	241	Standards	299
Permanent magnets	27	Standard setting process	321
PL/I	469	Statistical classifiers	221
PLN node	253	STEP	33, 299, 331
Pop	547	Supervised learning	265
Product data sharing	331	Synchronizable test sequences	119
Programming languages	427, 439, 443, 453, 459, 465, 469, 477, 481, 487, 495, 505, 511, 519, 527, 531, 537, 541, 547, 555	Technology acceptance	321
Proliferation	427	Terminology	185, 231
Prolog	511	Testing	15
Protocol conformance testing	119	Timed process algebra	87
Protocol engineering	119	Topological taxonomy	231
q-RAM node	253	VDM	527
Reference diskette	13	Vienna Development Method Specification Language	527
Reference model	45	Virtual reality	185
Repository	299	Weightless neural networks	253
Resolution	23		
Rexx	555	Z Notation	537

