

Espacios Vectoriales

Definición (Espacio Vectorial)

Sea $V \neq \emptyset$ sobre el que están definidas dos operaciones (una llamada suma vectorial + y otra llamada producto por escalar *). Si los siguientes 10 axiomas se cumplen para todos $u, v, w \in V$ y para todo $c, d \in \mathbb{R}$, entonces V se denomina **espacio vectorial**.

- $u+v\in V$ $cu \in V$
- u+v=v+u
- (u+v) + w = u + (v+w)**6** u + O = u
 - u + (-u) = 0
 - $oldsymbol{o}$ c(u+v) = cu + cv
 - (c+d)u = cu + du
 - c(du) = (cd)u
 - $\bigcirc 1(u) = u, \quad 1 \in \mathbb{R}$

$$(3_1-2)+(-1,5)=(-3_1-10)$$

$$(-1,5) + (-2) = (-3,-10)$$

$$((3,-2) + (-1,5) + (2,1) = (-3,-10) + (2,1)$$

 $(x_1, y_1) + (x_2, y_2) = (x_1y_1, x_2+y_2)$

Definición (Espacio Vectorial)

Sea $V \neq \emptyset$ sobre el que están definidas dos operaciones (una llamada suma vectorial + y otra llamada producto por escalar *). Si los siguientes 10 axiomas se cumplen para todos $u, v, w \in V$ y para todo $c, d \in \mathbb{R}$, entonces V se denomina espacio vectorial.

- $\mathbf{0} \ u + v \in V$
- $cu \in V$
- (u+v) + w = u + (v+w)
- **6** u + O = u
- u + (-u) = 0
- c(u+v) = cu + cv
- (c+d)u = cu + du
- $\int \mathbf{0} \ c(du) = (cd)u$
- $(u) = u, \quad 1 \in \mathbb{R}$

Def. R² con la suna usual pero el prod- con escalar como: \(\(\(\(\) \) = (\(\X \) 0) \(\R^2 \) Como:

(0) X = 1

=>1(7,5)=(7.1,0)=(7.0)

 $(7,5) \neq (7,0)$

Ejemplo $(\mathbb{R},\mathbb{R},+,*)$

El conjunto $V=\mathbb{R}$ bajo la suma + usual en \mathbb{R} y el producto entre ellos usual forma un e.v.

Ejemplo $(\mathbb{R}^2, \mathbb{R}, +, *)$

El conjunto $V=\mathbb{R}^2$ bajo la suma + estándar en \mathbb{R}^2 y el producto con escalares estándar forma un e.v.

Ejemplo ($\mathbb{R}^3, \mathbb{R}, +, *$)

El conjunto $V=\mathbb{R}^3$ bajo la suma + usual en \mathbb{R}^3 y el producto con escalares usual forma un e.v.

Ejemplo $(\mathbb{R}^n, \mathbb{R}, +, *)$

En general el conjunto $V=\mathbb{R}^n$ bajo la suma + estándar en \mathbb{R}^n y el producto con escalares estándar forma un e.v.

Ejemplo $(M_{m \times n}(\mathbb{R}), \mathbb{R}, +, *)$

El conjunto $V=M_{m\times n}(\mathbb{R})$ bajo la suma + usual en $M_{m\times n}(\mathbb{R})$ y el producto con escalares forma un e.v.

Reto:($\mathbb{R}^+, \mathbb{R}, +, *$)

Definamos en el conjunto $V=\underline{\mathbb{R}^+}=(0,\infty)$ la siguiente suma: $\forall x,y\in\mathbb{R}^+$, $x+y=xy\quad \text{producto usual en }\mathbb{R},$

y $\forall x \in \mathbb{R}^+$ y $\forall c \in \mathbb{R}$, el producto con escalar como

 $* \implies cx = x^c$ potenciación usual en \mathbb{R} .

Determine si \mathbb{R}^+ bajo estas operaciones es un e.v., de lo contrario, describa cada axioma que no se cumple y por qué.

$$\mathbb{R}^+ = (0, \infty) \neq \emptyset$$

la ciencia de datos

Teorema

Sean $v \in V$ y $c \in \mathbb{R}$ arbitrarios. Entonces se cumplen las siguientes propiedades:

- $0 \quad 0v = O \checkmark$
- $cO = O \checkmark$
- **3** Si cv = O, entonces c = 0 o bien v = O
- **○** (-1)v=-v ✓
- $\begin{array}{c} (3) \quad C \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Ejemplo (Conjuntos que no son espacios vectoriales)

Definición (Subespacio vectorial)

Decimos que W es un <u>subespacio</u> de un espacio vectorial V si:

- \bullet $W \subseteq V$, y
- ${f 2}$ W es un espacio vectorial bajo las operaciones +, * definidas en V.

Teorema (Condición para un subespacio vectorial)

El conjunto W es un subespacio de un e.v. V bajo las operaciones + , * en V si y sólo sí

- 2 El $O \in V$ también cumple que $O \in W$.
- \bullet W satisface las condiciones de clausura.

Ejemplo (Subespacios de \mathbb{R}^2)

- $\mathbf{0}$ $W = \mathbb{R}^2$, porque $\mathbb{R}^2 \subset \mathbb{R}^2$ (subespacio trivial de dimensión 2).
- B2 C R2
- ② Toda recta que pase por el origen, $W = \{(x,y) : ax + by = 0\}$ (subespacios no triviales de dimensión 1) **3** $W = \{O\}$ (subespacio trivial de dimensión 0).

Ejemplo (Subespacios de \mathbb{R}^3)

- $W = \mathbb{R}^3$ (s.t.-dim 3-).
- 2 Todo plano que contenga el origen (s.n.t.-dim 2-)
- Toda recta que pase por el origen (s.n.t.-dim 1-)
- \bullet $W = \{O\}$ (s.t.-dim 0-).

Ejemplo (Subespacios de \mathbb{R}^n)

- **1** Subespacios triviales dos: \mathbb{R}^n y $W = \{O\}$.
- 2 Subespacios no triviales dim n-1
- Subespacios no triviales de dim 1.

Definición (Combinación Lineal)

Sea \underline{V} un espacio vectorial. Decimos que $\underline{u}\in \underline{V}$ es una combinación lineal de elementos $\underline{v_1,v_2,...,v_n}$ en V, si existen escalares $\alpha_1,\overline{...,\alpha_n}\in\mathbb{R}$ tales que

$$\alpha_1 v_1 + \dots + \alpha_n v_n = u. \longleftarrow$$

$$= \begin{cases} -1 & -4 & 5 \\ 4 & 1 & 10 \end{cases} \approx \begin{pmatrix} 1 & 4 & -5 \\ 0 & -15 & 30 \end{pmatrix} \approx \begin{pmatrix} 1 & 4 & -5 \\ 0 & 1 & -2 \end{pmatrix} \\ \approx \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \end{pmatrix} : \alpha_1 = 3 + \alpha_2 = -2.$$

$$\Rightarrow 3 \begin{pmatrix} -1 \\ 4 \end{pmatrix} + (-2) \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$
$$= (-3) \cdot (8) \cdot (-3+8) = (5)$$

$$= \begin{pmatrix} -3 \\ 12 \end{pmatrix} + \begin{pmatrix} 8 \\ -2 \end{pmatrix} = \begin{pmatrix} -3+8 \\ 12-2 \end{pmatrix} = \begin{pmatrix} 5\\ 10 \end{pmatrix}$$

Ejemplo

El vector u=(25,3,-15) es combinación lineal de $v_1=(2,-1,4),\ v_2=(5,3,-3)$ y $v_3=(-3,2,7)$, porque

$$\underline{u = 2v_1 + 3v_2 - 2v_3} = 2 \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} + 3 \begin{pmatrix} 5 \\ 3 \\ -3 \end{pmatrix} - 2 \begin{pmatrix} -3 \\ 2 \\ 7 \end{pmatrix}$$

esto es

$$(25,3,-15) = 2(2,-1,4) + 3(5,3,-3) - 2(-3,2,7).$$

Por lo tanto, los escalares son: 2,3,-2.

$$\alpha_1 V_1 + \alpha_2 V_2 + \alpha_3 V_3 = \mathcal{U}$$
 (D2x + Sy - 3= 25)
 $\begin{pmatrix} 2 & 5 & -3 & 25 \\ -1 & 3 & 2 & 3 \\ 4 & -3 & 7 & -15 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{pmatrix}$

$$5 = \{u_1 v_1, v_2, v_3\}$$
 seran $\{v_1, v_2, v_3\}$ seran $\{v_1, v_3\}$ seran $\{v_1, v_2, v_3\}$ seran $\{v_1, v_3\}$ seran $\{v_1, v_2, v_3\}$ seran $\{v_1, v_2, v_3\}$ seran $\{v_1, v_3\}$

depends enter

Definición (Vectores linealmente independientes)

Un conjunto $S = \{v_1, ..., v_n\}$ de elementos en un espacio vectorial V decimos que es linealmente independiente (l.i) si la combinación lineal

$$\alpha_1 v_1 + \dots + \alpha_{\mathbf{i} \mathbf{q}} v_n = \mathbf{0}. \mathbf{e}^{\bigvee}$$
 (1)

se satisface únicamente para cuando $\alpha_1=\alpha_2=\cdots=\alpha_n=0$ (la solución trivial). En caso contrario, esto es, si una constante $\alpha_i \neq 0$, diremos que es el conjunto es linealmente dependiente (1.d).

Observación 1: Un conjunto de vectores $S = \{v_1, ..., v_n\}$ en un espacio vectorial V es linealmente dependiente si al menos uno de los vectores es combinación lineal de los otros. El caso más sencillo es cuando dos vectores son paralelos.

Ulv, M=KV, K±0
KV-N=0 J.d.

Observación 2: Si un conjunto de vectores $S = \{v_1, ..., v_n\}$ en un espacio vectorial V contiene al neutro de V, entonces S es linealmente dependiente

linearly independent
$$(1,2,3)(2,3,1)(1,2,3)$$
 $A = \{ (1,2,3), (2,3,1), (7,-1,0), (0,0,0) \} \Rightarrow A \text{ es } I \cdot A$
 $S = \{ v_1, v_2, v_{N-1}, 0 \}$
 $a_1 v_1 + a_2 v_2 + \cdots + a_{N-1} v_{N-1} + a_N \cdot 0 = 0$
 $a_1 v_2 + a_2 v_3 + \cdots + a_{N-1} = 0$
 $a_1 v_2 + a_2 v_3 + \cdots + a_{N-1} = 0$
 $a_1 v_2 + a_2 v_3 + \cdots + a_{N-1} = 0$
 $a_1 v_2 + a_2 v_3 + \cdots + a_{N-1} = 0$

Teorema

Si $S = \{v_1, ..., v_n\}$ es linealmente independiente, entonces

- lacksquare Ninguno de los vectores v_i es el vector nulo,
- 2 cualquier subconjunto no vacío de él es también l.i.

Teorema

Un conjunto $S=\{v_1,...,v_n\}$ de elementos en un espacio vectorial V es l.d. si y sólo si al menos un vector de S es combinación lineal de los otros vectores en S.

Teorema

Todo conjunto $S=\{v_1,...,v_n\}$ de elementos en un espacio vectorial V que contenga el neutro O es l.d. $S_{\mathbf{c}}$ of \mathbf{c} \mathbf{c} \mathbf{c}

Definición (Conjunto generador)

Un conjunto $S=\{v_1,...,v_n\}$ de un espacio vectorial V decimos que genera o expande a V si todo elemento $u\in V$ se puede escribir como combinación lineal de elementos en S, en notación < S>=V, es decir,

$$\langle S \rangle = \{a_1v_1 + a_2v_2 + \dots + a_nv_n : a_i \in \mathbb{R}, \forall i = 1, ..., n\}.$$

Otra notación para el generado de S es $gen\{S\}$ o $span\{S\}.$

$$<5>=V$$

El generado de 5 expande a V.
Ej. $5=\{(-1,3,1),(2,0,-1)\}$

 $(av_1 + bv_2), a_1b \in \mathbb{R}$.

Vittuz ynonulos

Input interpretation
$$\begin{vmatrix} x & y & z & 1 \\ -1 & 3 & 1 & 1 \\ 2 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 0$$

esult

$$-3x + y - 6z = 0$$

Definición (Base para un espacio vectorial)

Decimos que un conjunto $S = \{v_1, v_2, ..., v_n\}$ de un espacio vectorial V es una base para V, si cumple la siguientes dos condiciones:

- S es un conjunto linealmente independiente, y
- S genera a V.

A la cantidad de elementos n en la base se denomina dimensión del espacio V.

basis ((-1,1,0),((-1,0,1),(1,-1,0))

Ejemplo (Bases estándares o usuales)

En \mathbb{R}^2 la base estándar es

$$\beta = \{e_1, e_2\} = \{(1, 0), (0, 1)\},$$
 dimensión 2.

En \mathbb{R}^3 la base estándar es

$$\beta = \{e_1, e_2, e_3\} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\},$$
 dimensión 3 .

En \mathbb{R}^n la base estándar es

$$\beta = \{e_1, e_2, ..., e_n\} = \{(1, 0, ..., 0), ..., (0, 0, ..., 0, 1)\}, \quad \textit{dimensión } n.$$

Ejemplo

Verifique que $S = \{(1,3), (2,5)\}$ es una base para \mathbb{R}^2 .

(a)
$$\frac{3}{9}$$
 $\frac{4}{5}$ $\frac{1}{5}$ $\frac{1}{5}$

Obs: 1 un conjunto generado no necesariamente es l.i. Un conjon to 1.7 no necesarramente es generador a(-1,1), $\forall a \in \mathbb{R}$. es una vecta que para por (op).

Ejemplo

Verifique que $S = \{(-1, 1, 3), (0, 2, 1), (1, -1, -5)\}$ es una base para \mathbb{R}^3 .

En un espacio de dimensión finita (R", Mmxn) una base con mxn elementos base con n'elementos Sólo basta tener n'elementos di.

$$2\begin{pmatrix} -1\\ \frac{1}{3} \end{pmatrix} + 3\begin{pmatrix} 0\\ 2\\ \frac{1}{6} \end{pmatrix} = \begin{pmatrix} -2\\ 2\\ 6 \end{pmatrix} + \begin{pmatrix} 0\\ 6\\ 3 \end{pmatrix} = \begin{pmatrix} -2\\ 8\\ 9 \end{pmatrix}$$

Teorema (Representación única)

Sea V un espacio vectorial y sea $\beta=\{v_1,...,v_n\}$ una base para V. Entonces para todo $u\in V$, existen escalares únicos $a_1,...,a_n$ tales que

$$u = a_1 v_1 + \cdots + a_n v_n.$$

En caso de que β genere a V pero no sea l.i., entonces los escalares no serán únicos, de hecho son infinitos.

Teorema (Bases y dependencia lineal)

Si $S=\{v_1,v_2,...,v_n\}$ una base para V, entonces todo conjunto que contenga más de n vectores en V es linealmente dependiente.

The Max son e. V. a de delles

or generadores

bases

Bases

M 2x2 usual

Bases

$$P = (3,4)$$

$$P =$$

 $\beta = \left\{ \left(-\frac{1}{12} \right), \left(1, 2 \right) \right\}$ es una base par a \mathbb{R}^2

$$42b = 4$$

$$4 \left[\begin{array}{cccc} & & & & \\ & &$$

-2(-1) +7 (12)=P