Lineare Algebra Übungsstunde 4

Wiona Glänzer

12.10.2020

Definition: Gruppe

Eine Menge G zusammen mit einer Verknüpfung * heisst eine **Gruppe** falls das folgende gilt:

- 1. a*(b*c) = (a*b)*c für alle $a,b,c \in G$ (Assoziativgesetz),
- 2. Es gibt ein **neutrales Element** $e \in G$ so dass:
 - 2.1 e * a = a, für alle $a \in G$,
 - 2.2 zu jedem $a \in G$ gibt es ein **inverses Element** $a' \in G$, d.h. a' * a = e.

Sei G eine Gruppe. Eine Teilmenge $H \subseteq G$ heisst **Untergruppe** falls:

- 1. *H* ist nicht die leere Menge.
- 2. Wenn $a, b \in H$, dann ist $ab \in H$,
- 3. Wenn $a \in H$, dann ist $a^{-1} \in H$.

Um 1. zu überprüfen kann auch $e \in H$ geprüft werden, denn:

Sei G eine Gruppe. Eine Teilmenge $H \subseteq G$ heisst **Untergruppe** falls:

- 1. *H* ist nicht die leere Menge.
- 2. Wenn $a, b \in H$, dann ist $ab \in H$,
- 3. Wenn $a \in H$, dann ist $a^{-1} \in H$.

Um 1. zu überprüfen kann auch $e \in H$ geprüft werden, denn: \Leftarrow Gilt $e \in H$ so folgt direkt $H \neq \emptyset$.

Sei G eine Gruppe. Eine Teilmenge $H \subseteq G$ heisst **Untergruppe** falls:

- 1. *H* ist nicht die leere Menge.
- 2. Wenn $a, b \in H$, dann ist $ab \in H$,
- 3. Wenn $a \in H$, dann ist $a^{-1} \in H$.

Um 1. zu überprüfen kann auch $e \in H$ geprüft werden, denn:

- \Leftarrow Gilt $e \in H$ so folgt direkt $H \neq \emptyset$.
- \Rightarrow Es gelten Bedingungen 1,2 und 3.

Dann existiert nach 1. ein $a \in H$.

Sei G eine Gruppe. Eine Teilmenge $H \subseteq G$ heisst **Untergruppe** falls:

- 1. *H* ist nicht die leere Menge.
- 2. Wenn $a, b \in H$, dann ist $ab \in H$,
- 3. Wenn $a \in H$, dann ist $a^{-1} \in H$.

Um 1. zu überprüfen kann auch $e \in H$ geprüft werden, denn:

- \Leftarrow Gilt $e \in H$ so folgt direkt $H \neq \emptyset$.
- \Rightarrow Es gelten Bedingungen 1,2 und 3.

Dann existiert nach 1. ein $a \in H$.

Da $a \in H$ existiert nach 3. ein $a^{-1} \in H$ sodass $a * a^{-1} = e$.

Mit 2. folgt $e \in H$.

Gruppenhomomorphismen

Seien G, und H Gruppen mit Verknüpfungen \cdot , und \odot , so heisst eine Abbildung

$$\varphi\colon G\to H$$
,

Homomorphismus von Gruppen, wenn

$$\varphi(a \cdot b) = \varphi(a) \odot \varphi(b), \quad \forall a, b \in G.$$

Ein Homomorphismus, der auch bijektiv ist, heisst Isomorphismus.

Definition: Ringe

Eine Menge R mit zwei Verknüpfungen

$$+: R \times R \to R, (a, b) \mapsto a + b,$$

 $: R \times R \to R, (a, b) \mapsto a \cdot b$

heisst Ring falls folgendes gilt:

- 1. R zusammen mit + ist eine abelsche Gruppe.
- 2. Die Multiplikation ist assoziativ.
- 3. Es gelten die Distributivgesetze, d.h. für alle $a,b,c\in R$ gilt

$$a + (b + c) = (a + b) + c$$
, und $a \cdot (b \cdot c) = a \cdot (b \cdot c)$.

Restklassenring $\mathbb{Z}/n\mathbb{Z}$

- ▶ Definiert über Äquivalenzrelation: $a \sim b \Leftrightarrow a = bn$ für alle $a, b \in \mathbb{Z}$
- ▶ $\bar{0}$ bezeichnet die Äquivalenzklasse von n, also alle $a \in \mathbb{Z}$ für die ein $b \in \mathbb{Z}$ existiert, sodass a = bn.

Betrachte den Körper $\mathbb{F}_5=\mathbb{Z}/5\mathbb{Z}.$ $\overline{4}^{2018}$

Definition: Körper

Eine Menge K mit zwei Verknüpfungen

$$+: K \times K \to K, (a, b) \mapsto a + b,$$

 $\cdot: K \times K \to K, (a, b) \mapsto a \cdot b$

heisst Körper falls folgendes gilt:

- 1. K zusammen mit + ist eine abelsche Gruppe
- 2. Bezeichnet $K^* = K \setminus \{0\}$, so gilt für $a, b \in K^*$ auch $a \cdot b \in K^*$, und K^* mit der so erhaltene Multiplikation ist eine abelsche Gruppe.
- 3. Es gelten die Distributivgesetze, d.h. für alle $a, b, c \in K$ gilt

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
, und $(a+b) \cdot c = a \cdot c + b \cdot c$.

Sind Restklassenringe auch Körper?

- ightharpoonup für p Primzahl ist \mathbb{Z} /p \mathbb{Z} ein Körper
- Dies wir gezeigt über die Nullteilerfreiheit.
- Für n keine Primzahl ist \mathbb{Z} /n \mathbb{Z} **kein** Körper.
- ▶ Denn es existieren $a, b \neq 0 \in \mathbb{Z}$, sodass ab = n = 0

Betrachte den Körper $\mathbb{F}_5=\mathbb{Z}/5\mathbb{Z}.$ $\overline{4}^{2018}.$

$$\overline{4}^{2018} = \overline{4^2}^{1009} = \overline{16}^{1009} = \overline{1}^{1009} = \overline{1}.$$

Betrachte den Körper $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$.

$$\frac{\bar{3}}{4} + \frac{\bar{1}}{3} = ?$$

Wir bearbeiten den ersten Term zuerst, und benutzen, dass

$$\overline{3} \cdot \overline{2} = \overline{6} = \overline{1}$$
, also $\overline{\frac{1}{3}} = \overline{3}^{-1} = \overline{2}$

$$\frac{\overline{2}}{\overline{3}} = \overline{2} \cdot \overline{2} = \overline{4}.$$

Betrachte den Körper $\mathbb{F}_5=\mathbb{Z}/5\mathbb{Z}.$

$$\frac{\bar{3}}{\bar{4}} + \frac{\bar{1}}{\bar{3}} = ?$$

Wir bearbeiten den ersten Term zuerst, und benutzen, dass $\overline{2}$, $\overline{2}$, $\overline{6}$, $\overline{1}$, also $\overline{1}$, $\overline{2}^{-1}$, $\overline{2}$

$$\overline{3} \cdot \overline{2} = \overline{6} = \overline{1}$$
, also $\overline{\frac{1}{3}} = \overline{3}^{-1} = \overline{2}$

$$\frac{\overline{2}}{\overline{3}} = \overline{2} \cdot \overline{2} = \overline{4}.$$

Weiter ist
$$\overline{4} \cdot \overline{4} = \overline{1}$$
, also $\frac{\overline{1}}{\overline{4}} = \overline{4}^{-1} = \overline{4}$ und

$$\frac{\overline{1}}{\overline{4}} = \overline{1} \cdot \overline{4} = \overline{4}.$$

Betrachte den Körper $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$.

$$\frac{\bar{3}}{\bar{4}} + \frac{\bar{1}}{\bar{3}} = ?$$

Wir bearbeiten den ersten Term zuerst, und benutzen, dass

$$\overline{3} \cdot \overline{2} = \overline{6} = \overline{1}$$
, also $\frac{\overline{1}}{\overline{3}} = \overline{3}^{-1} = \overline{2}$

$$\frac{\overline{2}}{\overline{3}} = \overline{2} \cdot \overline{2} = \overline{4}.$$

Weiter ist $\overline{4} \cdot \overline{4} = \overline{1}$, also $\frac{\overline{1}}{\overline{4}} = \overline{4}^{-1} = \overline{4}$ und

$$\frac{\overline{1}}{\overline{4}} = \overline{1} \cdot \overline{4} = \overline{4}.$$

Also

$$\frac{\overline{2}}{\overline{3}} + \frac{\overline{1}}{\overline{4}} = \overline{4} + \overline{4} = \overline{3}.$$

Sei ${\mathbb F}$ ein Körper. Zeigen oder widerlegen Sie die folgenden Aussagen.

Tipp: Für das Widerlegen genügt es, ein Gegenbeispiel zu finden.

- ▶ Für alle $a, b \in \mathbb{F}$ gilt -(a b) = b a.
- Für $a, b \in \mathbb{F}$ folgt aus a + a + a = b + b + b, dass a = b
- Für $a, b \in \mathbb{F}$ folgt aus a + a + a + a = b + b + b + b, dass a = b

Gibt es ein surjektiven Gruppenhomomorphismus von $\mathbb{Z}/6\mathbb{Z}$ nach $\mathbb{Z}/2\mathbb{Z}?$

Gibt es ein surjektiven Gruppenhomomorphismus von $\mathbb{Z}/5\mathbb{Z}$ nach $\mathbb{Z}/2\mathbb{Z}?$

Seien $G_1, G_2, ..., G_n$ Gruppen, mit neutralen Elementen $e_i \in G_i$ für $i \in \{1, ..., n\}$, und betrachte das kartesische Produkt $G = G_1 \times G_2 \times \cdots \times G_n$. Definiere die Verknüpfung in G als $(g_1, g_2, \ldots, g_n) * (h_1, h_2, \ldots, h_n) = (g_1 h_1, g_2 h_2, \ldots, g_n h_n)$. Zeige: Die Menge G mit Verknüpfung G ist eine Gruppe.