1. TODO

TODO : / EDP / Physique / rot / div / appl. physique / Schwartz / Poincaré / ... / multiplicateur de Lagrange ...

- 1.1. Intro : topologie de \mathbb{R}^2
- 1.2. Équations aux dérivées partielles
- 1.3.

1.4. Champs de vecteurs

Les équations aux dérivées partielles sont omniprésentes en physique. Elles relient entre elles les dérivées partielles d'ordre 1 et 2, et font intervenir des combinaisons de dérivées partielles comme le gradient, la divergence ou le rotationnel.

On rappelle que le gradient d'une fonction de deux variables f est le champ de vecteurs de \mathbb{R}^2 défini par

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right).$$

On dispose donc d'un opérateur, noté formellement, $\nabla := \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$ sur les fonctions. De même, le gradient d'une fonction de trois variables f est le champ de vecteurs de \mathbb{R}^3 défini par

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

On dispose à nouveau d'un opérateur, noté formellement, $\nabla := \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$.

Définition 1.

Soit U un ouvert de \mathbb{R}^2 . Soit $F:(x,y)\mapsto (P(x,y),Q(x,y))$ une application de classe \mathscr{C}^1 de U dans \mathbb{R}^2 . Une telle application est aussi appelée un champ de vecteurs de \mathbb{R}^2 défini sur U. On définit formellement le rotationnel du champ de vecteurs F comme étant le champ de vecteurs de \mathbb{R} défini sur U par

$$rot(F)(x,y) = \det(\nabla,F) = \begin{vmatrix} \frac{\partial}{\partial x} & P \\ \frac{\partial}{\partial y} & Q \end{vmatrix} (x,y) = \frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y).$$

TODO 1. TODO **2**

Un champ de vecteurs sera noté indifféremment F ou \overrightarrow{F} . On vérifiera à partir de cette définiton et le théorème de Schwarz que, $rot(\nabla f) = 0$.

Définition 2.

Soit U un ouvert de \mathbb{R}^3 et $F:(x,y,z)\mapsto (P(x,y,z),Q(x,y,z),R(x,y,z))$ une application de classe \mathscr{C}^1 de U dans \mathbb{R}^3 , appelée aussi champ de vecteurs de \mathbb{R}^3 défini sur U.

1. Le rotationnel de F est le champ de vecteurs de \mathbb{R}^3 donné par

$$rot(F) = \nabla \wedge F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right).$$

2. La divergence de F est la fonction $\operatorname{div}(F) = \langle \nabla, F \rangle = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$.

On vérifiera à partir de ces définitons et le théorème de Schwarz que, $rot(\nabla f) = 0$ et que, pour un champ de vecteurs F de \mathbb{R}^3 , div(rot(F)) = 0.

Définition 3.

Soit F un champ de vecteurs défini sur U. On dit que F dérivé d'un potentiel sur U s'il existe une fonction $f:U\to\mathbb{R}$ telle que $F=\nabla f$ sur U. Dans ce cas, on dira que f est un potentiel de F.

Théorème 1 (Poincaré).

Soit U un ouvert simplement connexe de \mathbb{R}^2 (resp. \mathbb{R}^3) et F un champ de vecteurs de \mathbb{R}^2 (resp. \mathbb{R}^3) de classe \mathscr{C}^1 sur U. Alors F dérive d'un potentiel sur U si, et seulement si, rotF = 0.

Méthode. Lorsqu'un champ de vecteurs \overrightarrow{F} dérive d'un potentiel f, on écrit $\nabla f = \overrightarrow{F}$. En identifiant les coordonnées, on obtient un système d'équations dont la seule inconnue est f. Il faut donc intégrer ce système pour déterminer f.

Exemple. Montrer que le champ de vecteurs $\overrightarrow{F}(x,y) = y^2 \overrightarrow{i} + (2xy-1) \overrightarrow{j}$ dérive d'un potentiel sur \mathbb{R}^2 et déterminer les potentiels dont il dérive.

<u>Solution</u>. Ici $P(x,y)=y^2$, Q(x,y)=2xy-1 et $\frac{\partial P}{\partial y}=2y=\frac{\partial Q}{\partial x}$. Donc rot $\overrightarrow{F}=0$ et, comme \mathbb{R}^2 est simplement connexe, \overrightarrow{F} dérive d'un potentiel f sur \mathbb{R}^2 . On aura :

$$\frac{\partial f}{\partial x}(x,y) = P(x,y) = y^2 \to f(x,y) = xy^2 + K(y)$$

et

$$\frac{\partial f}{\partial y}(x,y) = Q(x,y) = 2xy - 1 \to K'(y) = -1 \to K(y) = -y + C, \quad C \in \mathbb{R}.$$

Les potentiels de \overrightarrow{F} sur \mathbb{R}^2 sont les fonctions f définies par $f(x,y) = xy^2 - y + C$.

1.5. Exemples d'équations aux dérivées partielles

Soit U un ouvert non vide de \mathbb{R}^2 . On note (x_0, y_0) un point de U et U_1 (resp. U_2) la projection de U sur l'axe y=0 (resp. x=0).

TODO 3

Proposition 1.

Soit h une fonction de classe \mathscr{C}^0 sur U. On note H la primitive de $h_1: x \mapsto h(x,y)$ sur U_1 qui s'annule en x_0 . Une fonction f de classe \mathscr{C}^1 sur U est une solution de

$$(E_1): \frac{\partial f}{\partial x}(x,y) = h(x,y)$$

si, et seulement si, il existe une fonction k de classe \mathscr{C}^1 sur U_2 telle que

$$\forall (x,y) \in U, \ f(x,y) = H(x,y) + k(y).$$

Démonstration. Si f est une solution de (E_1) la fonction $\varphi: x \mapsto f(x,y) - H(x,y)$ est dérivable et de dérivée nulle. Elle est donc constante :

$$\forall x \in U_1, \ \varphi(x) = \varphi(x_0) \rightarrow f(x, y) = H(x, y) + f(x_0, y)$$

et $k: y \mapsto f(x_0, y)$ est bien une fonction de classe \mathscr{C}^1 sur U_2 . Réciproquement, on vérifie qu'une fonction de cette forme est solution de (E_1) .

Proposition 2.

Soit h une fonction de classe \mathscr{C}^0 sur U_1 et H une primitive de h sur U_1 . Une fonction f de classe \mathscr{C}^2 sur U est une solution de

$$(E_2): \frac{\partial^2 f}{\partial x \partial y}(x, y) = h(x)$$

si, et seulement si, il existe une fonction K de classe \mathscr{C}^2 sur U_2 telle que

$$\forall (x, y) \in U, \ f(x, y) = yH(x) + K(y).$$

Démonstration. Si f est une solution de (E_2) la fonction $\frac{\partial f}{\partial y}$ est solution d'une équation du type (E_1) . Donc

$$\forall (x,y) \in U, \ \frac{\partial f}{\partial y}(x,y) = H(x) + k(y)$$

où k est une fonction de classe \mathscr{C}^1 sur U_2 . Ainsi f est une solution d'une équation du type (E_1) . Donc de la forme ci-dessus. Réciproquement, on vérifie qu'une fonction de cette forme est solution de (E_2) .

Proposition 3.

Une fonction f de classe C^2 sur U est une solution de

$$(E_3): \frac{\partial^2 f}{\partial x^2}(x,y) = 0$$

si, et seulement si, il existe deux fonctions K et H de classe \mathscr{C}^2 sur U_2 telles que

$$\forall (x,y) \in U, \ f(x,y) = xH(y) + K(y).$$

Démonstration. Si f est une solution de (E_3) la fonction $\frac{\partial f}{\partial x}$ est solution d'une équation du type (E_1) . Donc

$$\forall (x,y) \in U, \ \frac{\partial f}{\partial x}(x,y) = k(y)$$

où k est une fonction de classe \mathscr{C}^1 sur U_2 . Ainsi f est une solution d'une équation du type (E_1) . Donc de la forme ci-dessus. Réciproquement, on vérifie qu'une fonction de cette forme est solution de (E_3) .

Résolution à l'aide d'un difféomorphisme. Pour intégrer une EDP, (E) donnée, on utilise un changement

de variables pour se ramener à une EDP plus simple. Soit

$$\Phi : U \to V$$
$$(x,y) \mapsto (u,v).$$

un \mathscr{C}^1 -difféomorphisme. Pour une fonction f solution de (E), on pose $g = f \circ \Phi^{-1}$. C'est à dire $f = g \circ \Phi$.

- 1. On utilise la formule de dérivation des fonctions composées pour exprimer les dérivées partielles de f en fonction de g, u et u.
- 2. On remplace dans l'équation (E) ce qui donne l'EDP (E') satisfaite par g.
- 3. On intègre (E') et on en déduit les solutions f de (E).

Exemple. Intégrons dans $U = \{(x, y) \in \mathbb{R}^2 | x > 0\}$ l'EDP suivante :

(E) :
$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = \sqrt{x^2 + y^2}$$
.

On pose $V =]0, +\infty[\times] -\frac{\pi}{2}, \frac{\pi}{2}[$, et on considère l'application $\Phi: V \to U$ définie par

$$\Phi(r,\theta) = (r\cos\theta, r\sin\theta)$$

1. L'application Φ est un \mathcal{C}^1 -difféomorphisme de V sur U, et

$$\forall (x,y) \in U, \ \Phi^{-1}(x,y) = \left(\sqrt{x^2 + y^2}, \arctan \frac{y}{x}\right).$$

2. Soit f une fonction de classe \mathcal{C}^1 solution de (E) sur U. On considère la fonction g définie sur V par

$$g(r, \theta) = f(x, y)$$
 avec $(x, y) = (r \cos \theta, r \sin \theta)$.

- (a) On exprime les dérivées partielles premières de f en fonction de g, r et θ (cf. les relations (**) ci-dessus).
- (b) On reporte dans l'équation (E) ce qui donne :

$$r\frac{\partial g}{\partial r}(r,\theta) = r \Leftrightarrow \frac{\partial g}{\partial r}(r,\theta) = 1.$$

(c) On voit que g est une solution d'une équation du type (E_1) , donc $g(r,\theta)=r+k(\theta)$ où k est une fonction de classe \mathscr{C}^1 sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. On en déduit que toute solution f de (E) est de la forme :

$$f(x,y) = \sqrt{x^2 + y^2} + k\left(\arctan\frac{y}{x}\right).$$

Mini-exercices.

1