Standard RS Latch

R S	$Q \overline{Q}$
1 0	0 1
0 1	1 0
0 0	$Q \overline{Q}$
1 1	1 1 – not valid!

Clocked RS Latch
Output can only change when
CLK=1

Edge-triggered R-S Flip-flop Can only change output state during the transition from CLK=1 to CLK=0

K	J	Q
0	0	Q
0	1	1
1	0	0
1	1	\overline{Q}

Standard J-K Flip Flip

Only one of the inputs to the R-S latch can be 1 at any given time, thus the invalid R=1, S=1 condition is resolved

D	Q
1	1
0	0

D (data) Flip Flop

When CLK=1 data in the D line is reflected by Q, remains stored after CLK=0 regardless of D

T (toggle) Flip Flip

Just a J-K with both inputs set to 1, Output changes state at each clock pulse

Registers: Storing more than 1 bit of data

4 bit parallel-load register
Data is loaded on the clock pulse

You know already what to do if you want, say, 2 of these, or 4 of these, or 8 of these: i.e. you can build memory blocks!

Registers: Storing more than 1 bit of data

4 bit shift register

Data shifts to the 'left' (in binary terms)
on each clock pulse

4 bit ripple counter
Counts the number of pulses
In CLK

Each individual output works also as a frequency divider for CLK