Трансформатори

Васил Николов

1. Теоретична обосновка

Трансформаторът е устройство, което може да понижава или повишава променливи напрежения. Той се състои от поне две намотки, през които минава обща феромагнитна сърцевина. Така потокът на магнитното поле през едната е приблизително равен на потокът през другата, и токовете и напреженията през едната и другата намотка са свързани. Обикновено свързваме даден източник на напрежение към едната намотка на трансформатора, и използваме другата намотка за създаденото в нея напрежение. Нека входното и изходното напрежение са съответно U_1 и U_2 . Тогава за ненатоварена изходна намотка ($I_2 = 0$) е в сила равенството

$$\frac{U_2}{U_1} = \frac{N_2}{N_1} = k \tag{1}$$

Тук N_1 и N_2 са броя на навивките на първичната и вторичната намотка около сърцевината. Коефициентът k се нарича коефициент на трансформация и е фиксиран за даденото устройство.

Когато вторичната намотка е закъсена $(U_2=0)$, то между токовете, протичащи в двете намотки има следната зависимост:

$$\frac{I_2}{I_1} = \frac{N_1}{N_2} = \frac{1}{k} \tag{2}$$

2. Експериментални данни

2.1 Ненатоварена вторична намотка

Първата част на експеримента цели да провери уравнение (1). За целта се свързва първичната намотка към източник на променливо напрежение, и се мери резултантното напрежение на вторичната намотка. На графика 1 е представена зависимостта на U_2 от U_1 за различни отношения на броя навивки $\frac{N_1}{N_2}$.

Фигура 1: U_2 vs U_1

От графиката се виждат уравненията на фитираните линии към съответните серии данни. Те, както и очакваните им теоретични стойности, са представени в долната таблица

$\mathbf{k} = \frac{N_2}{N_1}$	$\frac{U_2}{U_1}$	$(\frac{U_2}{U_1})_0$
1	1.026	1
2	2.161	2
0.5	0.524	0.5

2.2 Закъсена вторична намотка

Втората част на експеримента проверява равенство (2). За целта закъсяваме вторичната намотка с амперметър, а токът през първичната се мери с втори амперметър. Зависимостите на I_2 от I_1 за различни стойности на k са представени на Фигура 2.

Фигура 2: I_2 vs I_1

Експерименталните и теоретичните стойности на $\frac{I_2}{I_1}$ са представени в следващата таблица:

$k=\frac{N_2}{N_1}$	$\frac{I_2}{I_1}$	$(\frac{I_2}{I_1})_0$
1	1.138	1
0.5	2.401	2
2	0.578	0.5

Резултатите и от двата експеримента са в добро съгласие с теорията. Възможни неточности са неточност в направата на трансформаторите и съпротивление на навивките. Второто е причина за по-големите разлики между теория и експеримент във втората част на опита.