

Лабораторная работа 5.1.3 Эффект Рамзауэра

Студенты:

Панченко Наталья
Исламов Сардор
Физтех-школа физики и исследований им. Ландау
Московский Физико-Технический Институт

Аннотация. Исследуется энергетическая зависимость вероятности рассеяния электронов атомами инертного газа, определяются энергии электронов при которых наблюдается «просветление» инертного газа и оценивается размер его внешней электронной оболочки.

Теоретическое введение

Эффект Рамзауэра — явление аномально слабого рассеяния медленных электронов атомами нейтральных газов. Рассеяние электрона на атоме можно приближённого рассматривать как рассеяние частицы энергии E на потенциальной яме длины ℓ и глубины U_0 . Уравнение Шрёдингера имеет вид

$$\Psi'' + k^2 \Psi = 0.$$

где вне ямы

$$k^2 = k_1^2 = \frac{2mE}{\hbar^2},$$

а внутри

$$k^2 = k_2^2 = \frac{2m(E + U_0)}{h^2}.$$

Коэффициент прохождения в таком случае равен

$$D = \frac{16k_1^2k_2^2}{16k_1^2k_2^2 + 4(k_1^2 - k_2^2)^2\sin^2(k_2\ell)}.$$

Заметим, что коэффициент прохождения имеет ряд максимумов и минимумов. Он максимальнем (D=1 - условие просветления, т.е. условие наблюдения эффекта Рамзауэра) при

$$\sqrt{\frac{2m(E+U_0)}{\hbar^2}}\ell = n\pi, \ n = 1,2,3,\dots$$
 (1)

Рис. 1: Зависимость коэффициента прохождения от параметров задачи

Экспериментальная установка

Рис. 2: Схема тиратрона (слева) и его конструкция (справа)

Для изучения эффекта испульзуется тиратрон $T\Gamma 3$ -01/1.3Б, заполненный инертным газом (Рис. 2). Электроны эмитируются катодом, ускоряются напряжением V и рассеиваются на атомах газа. Сетки соединены между собой и имеют один потенциал, примерно равный потенциалу анода. Рассеянные электроны отклоняются и уходят на сетку, а оставшиеся достигают анода, создавая ток $I_{\rm a}$. Таким образом, поток электронов на расстоянии x от ускоряющей сетки уменьшается с ростом x. ВАХ анода должна быть

$$I_{\mathbf{a}} = I_0 \exp\left(-Cw(V)\right),\tag{2}$$

где $I_0 = eN_0$ – ток катода, $I_a = eN_a$ – ток анода, $C = Ln_a\Delta_a(L$ – расстояние между катодом и анодом, Δ_a – площадь поперечного сечения атома, n_a – концентрация газа в лампе), w(V) – вероятность рассеяния на атоме. Формулу (2) можно переписать в виде

$$w(V) = -\frac{1}{C} \ln \frac{I_{\mathbf{a}}(V)}{I_0} \tag{3}$$

Рис. 3: Схема экспериментальной

Лампа-тиратрон расположена непосредственно на корпусе блока источников питания (БИП), напряжение к электродам лампы подаётся от источников питания, находящихся в корпусе прибора. Регулировка напряжения и выбор режима работы установки производится при помощи ручек управления, выведенных на лицевую панель БИП.

Ход работы

Динамический метод. Масштабы: по оси х - 2 В/дел, по оси у - 20 мВ/дел.

Рис. 4: ВАХ

Посчитаем чему равен размер электронной оболочки атома по формулам:

$$2l = \frac{h}{\sqrt{2m(E_1 + U_0)}} \implies l = 0.29nm \tag{4}$$

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}} = 0.3nm \tag{5}$$

где E_1, E_2 - энергия максимума и минимума соответсвенно, а U_0 = 2,5эВ

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 = 1,08eV \tag{6}$$

Статический метод. Занесем в таблицу и отобразим значения, полученые статическим методом на графике (рис. 5). Все измерения проводились при U=2.94V

U_c , B	0.0	0.3	0.52	0.72	0.84	0.93	1.0	1.1
U_a , MB	0.0	0.2	1.2	10.3	27.9	50.5	71.3	104.0
U_c , B	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
U_a , MB	130.9	159.0	176.7	191.6	198.6	201.0	198.5	193.1
U_c , B	2.0	2.1	2.2	2.3	2.4	2.56	2.7	2.8
U_a , мВ	186.0	178.6	170.0	162.0	155.0	143.3	134.5	130.0
U_c , B	2.9	3.0	3.2	3.5	3.7	4.0	4.26	4.5
U_c , B U_a , MB	2.9 124.5	3.0 119.7	3.2 112.8	3.5 104.0	3.7 99.0	4.0 93.0	4.26 89.0	4.5 86.0
67								
U_a , MB	124.5	119.7	112.8	104.0	99.0	93.0	89.0	86.0
U_a , мВ U_c , В	124.5 5.0	119.7 5.4	112.8 5.5	104.0	99.0 5.74	93.0 5.8	89.0 6.06	86.0

Таблица 1: ВАХ

Рис. 5: ВАХ

Проведем те же расчеты, что и для динамического метода. Из графика видно, что максимум приходится на $U_1 = 1.7V$, минимум на $U_2 = 5.7V$. Тогда $l \sim 0.29nm$, $U_0 \sim 1.5eV$. По формуле (3) отобразим зависимость вероятности рассеяния электрона от его энер-

гии с точностью до константы (рис. 6)

Рис. 6: $\omega(V_c)$

Выводы

В ходе работы была статическим и динамическим методом исследована ВАХ титратрона, в обоих случаях соответствующая теоретической. Также получено значение размера внешней оболочки атома инертного газа $l \sim 0.3 nm$ и потенциал его ионизации, по которому было определено, что это ксенон.