Computer Architecture

Using Tanenbaum's Modern Operating Systems (3rd edition)

© 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Hardware View

Figure 1-6. Some of the components of a simple personal computer

Buses

Data bus

 Carries data between CPU, memory and I/O. Note that data is anything stored or retrieved to or from memory or I/O devices.

Address bus

 Carries the address of the memory location or I/O device the CPU is accessing.

Control bus

 Carries control signals such as an interrupt has occurred, clock signals, etc.

Bus schematics (I)

Bus schematics (II)

CPU Operation

CPU Operation (I)

- Basic CPU cycles:
 - Fetch, Decode, Execute.
 - Pipeline organization.

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

CPU Operation (II)

CPU Registers:

- Program Counter (PC) next instruction to be fetched.
- Instruction register (IR) current execution instruction.
- Program Status Word (PSW) condition bits, CPU priority, user/kernel mode, ...
- Stack pointer(SP) top of the stack.
- Frame pointer (FP) current stack frame.

MMU

- Memory management unit.
- Memory access (RAM), using virtual memory mechanism.

CPU Operation (III)

Image from: http://homepages.ius.edu/rwisman/C335/html/Chapter2.htm

CPU Operation (IV)

- At least two CPU modes of operation:
 - Kernel mode
 - Every instruction & HW feature is allowed.
 - User mode
 - Some instructions are disallowed (I/O, Memory,...)
 - Using system-call to trap the OS service.

Multiprocessor / Multicore

Figure 1-8.

- (a) A quad-core chip with a shared L2 cache.
- (b) A quad-core chip with separate L2 caches.

Memory

Memory Hierarchy (I)

Figure 1-9. A typical memory hierarchy.

The numbers are very rough approximations.

Memory Hierarchy (II)

Cache:

- Level 1 (L1) Inside the CPU, 16 KB, No delay.
- Level 2 (L2) Outside the CPU (AMD/Intel), several MB,
 1-2 clock cycles delay.
- RAM Main memory:
 - Random access memory, several GB.
- ROM, EPROM:
 - Nonvolatile, R/O, inexpensive, fast.
 - Bootstrap loader, low-level device control.
- E²PROM (Flash):
 - Nonvolatile, R/W memory, slow writing.

I/O Devices – Storage

Magnetic Disk (Persistent Storage)

Figure 1-10. Structure of a disk drive.

Magnetic Disk Single Plate

- Disk might be formatted with 10,000 sectors of 512 Bytes per track
- Modern disks sector may be more than 4KB

Image from:

http://en.wikipedia.org/wiki/Disk_sector

Disk Performance

Bandwidth

- Number of bytes transferred divided by time between the request for service and the completion of the transfer
- Depends on Access time that depends on:
 - Seek time Time to move the head (\simeq 10 msec).
 - Latency time -Time for disk to rotate to desired place (≈ 4 msec)
 - To make it clear: disk write takes only $\simeq 50 \mu sec$

Solid-State Disk (SSD)

- Solid state (electronic disk) is
 - Essentially a Flash memory formatted as disk in blocks
 - Have no moving (mechanical) components
 - Uses integrated circuit assemblies as memory to store data persistently
- SSDs are typically:
 - More resistant to physical shock
 - Run silently
 - Have lower access time, and less latency
 - Six to seven times more expensive per unit of storage than HDDs (for now)

SSHD

 Combines the features of SSD and HDD in the same unit, containing a large HD and SSD cache to improve performance

Figure 1-12. Modern 2.5-inch SSD http://en.wikipedia.org/wiki/Solid-state_drive

I/O Devices – Operation

I/O Devices

- Device Driver
- I/O Modes of Operation:
 - Polling, Busy waiting
 - Application → System Call → Device Driver → Device.
 - Driver sits in a tight loop poling the device, to see if done.
 - Interrupt
 - Application → System Call → Device Driver → Device.
 - The caller is blocked the OS is free to look for other task.
 - The device generates an interrupt to signal completion.

Interrupts (I)

Figure 1-13. (a) The steps in starting an I/O device and getting an interrupt. (b) Interrupt processing involves taking the interrupt, running the interrupt handler, returning to the user program.

Interrupts (II)

<u>Legend</u>: HW

SW

I/O using interrupt mechanism:

- 1. The driver writes to device registers (Using the controller).
- 2. The controller signals the job done.
- 3. If the interrupt is accepted by the interrupt controller the CPU is signaled.
- 4. The CPU itself *mask* the interrupt if accepted:
 - I. Push the PC & PSW of the current program.
 - Switch to kernel mode.
 - III. Extract the *interrupt handler* from the *interrupt vector* using the device index.
 - IV. Run the interrupt handler.
 - V. Return to the pushed program.

Interrupts (III)

- CPU can be interrupted by 3 types of events
 - HW Interrupt asynchronous events
 - Trap (a.k.a. SW Interrupt) synchronous event
 - Command execution Exception error event

Pentium architecture (I)

Pentium architecture (II)

Two main buses:

- ISA for b/w compatible, old and slow I/O cards.
- PCI high-speed I/O devices.

Three secondary busses:

- IDE for Disk controller interface.
- USB to attach all slow I/O devices.
- SCSI (SATA today) for fast disks, scanners, etc.

Two working methods:

- Fixed: each I/O had a fixed interrupt # and registers.
- Plug & Play: collect info and assign interrupt # and registers for each device.

Boot Sequence

BIOS (Basic Input Output System):

- Held in a flash RAM
- Started while booting
- Checks:
 - How much RAM?
 - Are basic devices installed?
 - Detect other devices (Legacy / Plug&Play)
 - Determine the boot device
 - Secondary boot loader is read
 - The OS is read from the active partition and started
 - Performs its own checking (drivers, etc.), login...

HW + Interview Questions

- What are the 3 components of the BUS?
 Explain the R&R of each one.
- Explain the following:
 - Kernel Mode
 - User Mode
 - Differences between them
- Explain the R&R of the following registers:
 - PC
 - IR
 - PSW
 - SP
 - FP