18.02 Practice Exam 1 – Solutions

Problem 1.

a)
$$\overrightarrow{OQ} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}; \overrightarrow{OR} = \frac{1}{2}\hat{\mathbf{i}} + \hat{\mathbf{j}} + \frac{1}{2}\hat{\mathbf{k}}.$$

b)
$$\cos \theta = \frac{\overrightarrow{OQ} \cdot \overrightarrow{OR}}{|\overrightarrow{OQ}| |\overrightarrow{OR}|} = \frac{\langle 1, 1, 1 \rangle \cdot \langle \frac{1}{2}, 1, \frac{1}{2} \rangle}{\sqrt{3} \sqrt{\frac{3}{2}}} = \frac{2\sqrt{2}}{3}.$$

Problem 2.

Velocity:
$$\vec{V} = \frac{d\vec{R}}{dt} = \langle -3\sin t, 3\cos t, 1 \rangle$$
. Speed: $|\vec{V}| = \sqrt{9\sin^2 t + 9\cos^2 t + 1} = \sqrt{10}$.

Problem 3.

a) Minors:
$$\begin{bmatrix} 1 & 1 & 2 \\ -2 & -2 & -2 \\ -3 & -5 & -6 \end{bmatrix}$$
. Cofactors: $\begin{bmatrix} 1 & -1 & 2 \\ 2 & -2 & 2 \\ -3 & 5 & -6 \end{bmatrix}$. Inverse: $\frac{1}{2} \begin{bmatrix} 1 & \boxed{2} & \boxed{-3} \\ -1 & -2 & 5 \\ 2 & 2 & -6 \end{bmatrix}$.

b)
$$X = A^{-1}B = \begin{bmatrix} -3 \\ 4 \\ -4 \end{bmatrix}$$
.

c) Not invertible is equivalent to determinant is 0:

$$\begin{vmatrix} 1 & 3 & c \\ 2 & 0 & -1 \\ 1 & 1 & 0 \end{vmatrix} = (1) - 3(1) + c(2) = 2c - 2 = 0 \Leftrightarrow c = 1.$$

One solution to the equation comes from the cross product of 2 of the rows:

$$\langle 1, 3, 1 \rangle \times \langle 2, 0, -1 \rangle = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 3 & 1 \\ 2 & 0 & -1 \end{vmatrix} = \hat{\mathbf{i}}(-3) - \hat{\mathbf{j}}(-3) + \hat{\mathbf{k}}(-6) = \langle -3, 3, -6 \rangle.$$

(Any non-zero multiple of this is also correct.)

Problem 4.

Q = top of the ladder: $\overrightarrow{OQ} = \langle 0, L \sin \theta \rangle$; R = bottom of the ladder: $\overrightarrow{OR} = \langle -L \cos \theta, 0 \rangle$.

1

Midpoint: $\overrightarrow{OP} = \frac{1}{2}(\overrightarrow{OQ} + \overrightarrow{OR}) = \langle -\frac{L}{2}\cos\theta, \frac{L}{2}\sin\theta \rangle$.

Parametric equations: $x = -\frac{L}{2}\cos\theta$, $y = \frac{L}{2}\sin\theta$.

Problem 5.

a)
$$\overrightarrow{P_0P_1} \times \overrightarrow{P_0P_2} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -1 & -1 & 1 \\ 0 & -2 & 1 \end{vmatrix} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}. \quad \text{Area} = \frac{1}{2} |\overrightarrow{P_0P_1} \times \overrightarrow{P_0P_2}| = \frac{1}{2}\sqrt{6}.$$

b) Normal vector: $\overrightarrow{P_0P_1} \times \overrightarrow{P_0P_2} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$. Equation: x + y + 2z = 3.

c) Parametric equations for the line: x = -1 + t, y = t, z = t.

Substituting: -1 + 4t = 3, t = 1, intersection point (0, 1, 1).

Problem 6.

a)
$$\frac{d}{dt}(\vec{R}\cdot\vec{R}) = \vec{V}\cdot\vec{R} + \vec{R}\cdot\vec{V} = 2\vec{R}\cdot\vec{V}.$$

- b) Assume $|\vec{R}|$ is constant: then $\frac{d}{dt}(\vec{R}\cdot\vec{R})=2\vec{R}\cdot\vec{V}=0$, i.e. $\vec{R}\perp\vec{V}.$
- c) $\vec{R} \cdot \vec{V} = 0$, so $\frac{d}{dt}(\vec{R} \cdot \vec{V}) = \vec{V} \cdot \vec{V} + \vec{R} \cdot \vec{A} = 0$. Therefore $\vec{R} \cdot \vec{A} = -|\vec{V}|^2$.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.