Incentive Compatible Active Learning

Federico Echenique (Caltech)
Siddharth Prasad (CMU)

ITCS 2020

Motivation: model of active learning with incentives for experimental design in economics

- Economic experiments: learner seeks to elicit parameters governing agent's preferences
- Experiments always incentivized: payoff to agent depends on questions/answers in the experiment.
- Passive vs. Active learning:
 - Passive: labeled points $(x_t, y_t \in \{0, 1\})$ produced by unknown distribution. How many samples needed to learn?
 - Active: learner chooses points x_t on which to reveal label. How many labels required to learn?
 - Known as membership queries model in the active learning literature
- Large and growing body of work on both economic applications of PAC learning [Beigman and Vohra, EC '06; Zadimoghaddam and Roth, WINE '12; Balcan, Daniely, Mehta, Urner, and Vazirani, WINE '14; Basu and Echenique, EC '18; Chase and Prasad, ITCS '19] and learning with incentive issues [Abernethy, Chen, Ho, and Waggoner, EC '15; Hardt, Megiddo, Papadimitriou, and Wooters, ITCS '16; Liu and Chen, EC '17; Chen, Podimata, Procaccia, and Shah, EC '18].

Preference elicitation setup

- Type space Θ, equipped with metric d, Θ bounded wrt d.
- Outcome space O.
- Agent of type $\theta \in \Theta$ has utility $u(\theta, o)$ for outcome $o \in O$.
- θ induces preference relation \geq where $o \geq o'$ iff $u(\theta, o) \geq u(\theta, o')$.

Learner executes learning algorithm to learn agent's true type $\theta \in \Theta$.

- Learning: $d(\theta, \theta^h) \le \epsilon$ w.p. $\ge 1-\delta$. Min number of rounds $q(\epsilon, \delta)$ achieving this: learning complexity
- Incentive compatibility: For all types θ , strategies σ , $u(\theta, o_T(truthful)) \ge u(\theta, o_T(\sigma)) \tau$ w.p. ≥ 1 -v. Min number of rounds $T(\tau, v)$ achieving this: *IC complexity*.
- $(\varepsilon, \delta, \tau, \nu)$ -incentive compatible learning algorithm: achieves (ε, δ) -learning and (τ, ν) -incentive compatibility. Max $(q(\varepsilon, \delta), T(\tau, \nu))$ called *IC learning complexity*.

Discretizing the type space:

Suppose s : $\Theta \rightarrow O$ is such that $u(\theta, s(\theta')) > u(\theta, s(\theta''))$ iff $d(\theta, \theta') < d(\theta, \theta'')$ for all $\theta, \theta', \theta''$ (s is *effective*).

Example. Expected utility preferences over $O = R^n$.

- Agent's type is a probability $\alpha = (\alpha_1, ..., \alpha_n)$ [belief over n uncertain "states of the world"]
- Learner offers outcomes $x \in R^n$ where x_i is reward if state i is realized
- $u(\alpha, x) = E_{i \leftarrow \alpha}(x_i) = \alpha.x$

Spherical scoring rule: $s(\alpha) = \frac{\alpha}{\|\alpha\|}$ satisfies $E_{\alpha}(s(\beta)) > E_{\alpha}(s(\gamma))$ iff $dist(\alpha, \beta) < dist(\alpha, \gamma)$ (renormalized L_2 dist)

IC search over type space: Let $\{\theta_1,...,\theta_N\}$ be an ϵ -cover of Θ wrt d.

Iterate over cover to find most preferred outcome $s(\theta_{best})$ using choices " $s(\theta_i)$ or $s(\theta_i)$?".

Agent of type θ will answer according to the θ_{best} closest to θ .

Deterministic (ϵ , 0)-learning, (0, 0)-incentive compatibility

Inefficient: N might be large, e.g. $N_{\epsilon}(\Delta_n) = O((n/\epsilon)^n)$ wrt tvd

Hyperplane Uniqueness: a sufficient condition for (potentially inefficient) IC learnability

- Outcome space R^n . Agent type induces preference relation \geq over R^n .
- Upper contour set: $C(x) = \{y : y \ge x\}$

Theorem. If all upper contour sets C(x) are closed and convex, any supporting hyperplane of C(x) is unique, and hyperplane uniqueness holds, then there is a metric d on Θ wrt which Θ is $(\varepsilon, 0, 0, 0)$ -IC learnable.

Hyperplane uniqueness: For every $x \in \mathbb{R}^n$ and types \geq_1, \geq_2 the supporting hyperplanes of the upper contour sets $C_1(x)$ and $C_2(x)$ are distinct.

$O(n^{3/2} \log n \max\{\log(n/\epsilon), \log(1/\tau)\})$ IC learning algorithm for Expected Utility preferences

- Agent's type is a probability $\alpha = (\alpha_1, ..., \alpha_n)$ [belief over n uncertain "states of the world"]
- Learner asks agent to make choices (x_t, y_t) , $x_t, y_t \in R^n$ encoding rewards for realization of each state.
- $u(\alpha, x) = E_{\alpha}(x) = \alpha.x$

Disagreement based active learning of linear separators

(from [Dasgupta2011]):

1.
$$H_1 = S^{n-1}$$

- For t = 1, 2, ...:
 - Receive unlabeled point x_t

 - 2. If there are w, $w' \in H_t$ such that $sign(w.x_t) \neq sign(w'.x_t)$, get 0/1 label for x_t . $H_{t+1} = \{ w \in H_t : sign(w.x_t) = label(x_t) \}$
 - Else $H_{t+1} = H_t$

Requests $O(\theta VC(H) \log(1/\epsilon))$ labels

> θ = "disagreement" coefficient"

$O(n^{3/2} \log n \max\{\log(n/\epsilon), \log(1/\tau)\})$ IC learning algorithm for Expected Utility preferences

- Agent's type is a probability $\alpha = (\alpha_1, ..., \alpha_n)$ [belief over n uncertain "states of the world"]
- Learner asks agent to make choices (x_t, y_t) , $x_t, y_t \in \mathbb{R}^n$ encoding rewards for realization of each state.
- $u(\alpha, x) = E_{\alpha}(x) = \alpha.x$

Use spherical scoring rule to ensure incentive compatibility

- 1. $H_1 = \Delta_n$
- 2. For t = 1, 2, ..., T:
 - 1. Choose v uniformly at random from Sⁿ⁻¹ (if no disagreement, resample)
 - 2. Find β_1 , β_2 s.t. $s(\beta_1) s(\beta_2)$ is a scalar multiple of v. Ask agent to choose between $x_t = s(\beta_1)$ and $y_t = s(\beta_2)$.
- 3. Pay agent based on preference from (x_T, y_T) .

 $O(n^{3/2} \log n \log(n/\epsilon))$ rounds: any best responding agent reports within ϵ -tvd of true type (whp)

Question: is there a combinatorial characterization of IC learning? Like VC dimension for PAC learning, Littlestone dimension for online learning, private learning (conjectured), etc.