MNIST Classification Using Convolutional Neural Networks

FINAL PROJECT REPORT

Author: Yazdan Bayat

Date: June 24, 2025

 ${\bf Affiliation:}\ {\bf Department}\ {\bf of}\ {\bf Computer}\ {\bf Science}$

Institution: University of Example

This report is submitted in partial fulfillment of the requirements for the course on Deep Learning.

Contents

1	Introduction			
	1.1	Overview	2	
	1.2	Objective	2	
2	Dataset Preparation			
	2.1	Downloading the MNIST Dataset	3	
	2.2	Data Transformation and Normalization	3	
	2.3	Dataset Summary and Visualization	3	
3	Model Architecture 5			
	3.1	CNN Overview	5	
	3.2	Model Definition	5	
	3.3	Loss Function and Optimizer	3	
4	Training and Evaluation 7			
	4.1	Training the CNN Model	7	
	4.2	Validation Strategy	3	
	4.3	Test Set Performance	3	
5	Res	sults and Discussion)	
	5.1	Accuracy and Loss Curves	9	
	5.2	Sample Predictions)	
6	Conclusion 10			
	6.1	Summary of Findings)	
	6.2	Comparison with MLP Approach)	
	6.3	Future Work)	

Introduction

1.1 Overview

This project applies a Convolutional Neural Network (CNN) to classify images from the MNIST dataset, which consists of handwritten digits (0-9). The goal is to achieve high classification accuracy with a compact and efficient architecture.

1.2 Objective

To build, train, and evaluate a CNN model on MNIST while analyzing its performance using accuracy, loss curves, and sample predictions.

Dataset Preparation

2.1 Downloading the MNIST Dataset

Listing 2.1: Downloading MNIST Dataset

2.2 Data Transformation and Normalization

Listing 2.2: Preprocessing: Splitting and Visualization

2.3 Dataset Summary and Visualization

• Number of training samples: 54000

 $\bullet\,$ Number of test samples: 10000

• Image shape: 1x28x28

Figure 2.1: Sample images from MNIST training set.

Figure 2.2: Digit distribution in training set.

Model Architecture

3.1 CNN Overview

A compact CNN with two convolutional blocks followed by a fully connected layer was used. Batch normalization and ReLU activation are applied after each convolution.

3.2 Model Definition

```
class convnet(nn.Module):
      def __init__(self):
          super(convnet, self).__init__()
          self.layer1 = nn.Sequential(
              nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=2),
              nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(2, 2))
          self.layer2 = nn.Sequential(
              nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=2),
              nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(2, 2))
          with torch.no_grad():
              dummy = torch.zeros(1, 1, 28, 28)
12
              dummy = self.layer1(dummy)
              dummy = self.layer2(dummy)
14
              self.flattened_size = dummy.view(1, -1).shape[1]
          self.fc = nn.Linear(self.flattened_size, 10)
17
18
      def forward(self, x):
19
          x = self.layer1(x)
20
          x = self.layer2(x)
21
          x = x.view(x.size(0), -1)
          x = self.fc(x)
23
          return x
```

Listing 3.1: CNN Architecture Summary

3.3 Loss Function and Optimizer

Cross-entropy loss is used, and the model is trained using the Adam optimizer with a learning rate of 0.001.

Training and Evaluation

4.1 Training the CNN Model

```
model = convnet().to(device)
 loss_fn = nn.CrossEntropyLoss()
  optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
5 train_losses = []
  valid_losses = []
  for epoch in range(num_epochs):
      model.train()
      running_loss = 0.0
10
      for imgs, lbls in train_loader:
11
          imgs, lbls = imgs.to(device), lbls.to(device)
          out = model(imgs)
13
          loss = loss_fn(out, lbls)
          optimizer.zero_grad()
          loss.backward()
          optimizer.step()
          running_loss += loss.item()
18
      train_losses.append(running_loss / len(train_loader))
19
20
21
      model.eval()
      valid_loss = 0.0
22
      correct = 0
23
      total = 0
24
      with torch.no_grad():
          for imgs, lbls in valid_loader:
26
              imgs, lbls = imgs.to(device), lbls.to(device)
              out = model(imgs)
28
              loss = loss_fn(out, lbls)
              valid_loss += loss.item()
30
              predicted = torch.argmax(out, 1)
              correct += (predicted == lbls).sum().item()
              total += lbls.size(0)
      valid_losses.append(valid_loss / len(valid_loader))
```

```
print(f"Epoch [{epoch+1}/{num_epochs}] | Val Loss: {valid_loss:.4f} |
Val Acc: {100.*correct/total:.2f}%")
```

Listing 4.1: Training Loop and Validation

4.2 Validation Strategy

10% of the training set was reserved for validation.

4.3 Test Set Performance

Test Accuracy: 98.80%

Results and Discussion

5.1 Accuracy and Loss Curves

Figure 5.1: Training and validation loss curves.

5.2 Sample Predictions

Future work may include adding a confusion matrix and visualizing model predictions.

Conclusion

6.1 Summary of Findings

The CNN model achieved a final test accuracy of 98.80%. The model was able to generalize well after just five epochs of training, with validation accuracy improving consistently.

6.2 Comparison with MLP Approach

Previously, an MLP model was used on MNIST with a test accuracy around 96%. Although MLPs are easier to implement, they lack spatial awareness and require more parameters for the same performance.

The CNN benefits from:

- Shared weights via convolutional filters
- Pooling and activation functions that preserve local spatial patterns
- Fewer trainable parameters than a similarly sized MLP

In conclusion, CNN is a more effective and scalable architecture for image classification tasks like MNIST.

6.3 Future Work

The architecture can be extended with dropout, more layers, or used as a backbone for more complex datasets like CIFAR-10.