MATHEMATICAL TOOLS - SOLUTION 5

Problem 1.

(1) From recitation we know that the solution space is of dimension k+1, so it's enough to show that the solutions $\{\lambda_i^n\}_{n=0}^{\infty}$ are linearly independent. For

this it's enough to show that the vectors $\begin{pmatrix} 1 \\ \lambda_i \\ \vdots \\ \lambda_k \end{pmatrix}$ are linearly independent,

and this follows from problem 2.

(2) We prove this inductively:

$$\det(xI - A) = (x - \alpha_k) \det\begin{pmatrix} x & 0 & \dots & 0 \\ -1 & x & & & \\ & -1 & \dots & & \\ & & -1 & x \end{pmatrix} + \det\begin{pmatrix} -\alpha_{k-1} & \dots & -\alpha_0 \\ -1 & x & & & \\ & & \dots & & \\ & & & -1 & x \end{pmatrix}$$

$$= x^{k+1} - \alpha_k x^k - \alpha_{k-1} \det \begin{pmatrix} x & 0 & \dots & 0 \\ -1 & x & & & \\ & -1 & \dots & & \\ & & -1 & x \end{pmatrix} + \det \begin{pmatrix} -\alpha_{k-2} & \dots & -\alpha_0 \\ -1 & x & & & \\ & & \dots & & \\ & & & -1 & x \end{pmatrix}$$

$$= \ldots = x^{k+1} - \alpha_k x^k - \ldots - \alpha_1 x + \det(-\alpha_0) = p(x)$$

- (3) The roots of the characteristic polynomial are 1,2,3,4, so the solution space is $span \{\{1\}_{n=0}^{\infty}, \{2^n\}_{n=0}^{\infty}, \{3^n\}_{n=0}^{\infty}, \{4^n\}_{n=0}^{\infty}\}.$ (4) $a_n = 1 + 2^n$

Problem 2.

- Take p_i (x) = ∏_{i≠j} (x-α_j)/((α_i-α_j).
 If the α_i-s aren't distinct there are two identical rows so the determinant

is 0. Otherwise: Note that if
$$p(x) = \sum_{i=0}^{k-1} c_i x^i$$
 then $A \begin{pmatrix} c_0 \\ c_1 \\ \dots \\ c_{k-1} \end{pmatrix} =$

$$\begin{pmatrix} p(\alpha_1) \\ p(\alpha_2) \\ \dots \\ p(\alpha_k) \end{pmatrix}.$$
 So for each i , let $c_{i,0},\dots,c_{i,k-1}$ be the coefficients of $p_i(x)$.

$$A \begin{pmatrix} c_{1,0} & c_{2,0} & \dots & c_{k,0} \\ c_{1,1} & c_{2,1} & \dots & c_{k,1} \\ \dots & & & \dots \\ c_{1,k-1} & c_{2,k-1} & \dots & c_{k,k-1} \end{pmatrix} = I$$

1

Since A is invertible, it's determinant is non-zero.

Problem 3.

- (1) This is a straightforward verification.
- (2) For every $\lambda \in \mathbb{R}$, $D(e^{\lambda x}) = \lambda e^{\lambda x}$.
- (3) Straightforward verification.
 (4) Note that ^{dⁱ}/_{dxⁱ} e^{λx} = Dⁱ (e^{λx}) = λⁱ e^{λx}. Thus: Σ^{k-1}_{i=0} α_iDⁱ (e^{λx}) = e^{λx} Σ^{k-1}_{i=0} α_iλⁱ. By assumption this is equal to λ^k e^{λx} = D^k (e^{λx}), as desired.
- (5) We can use the Vandermonde matrix to show linear independence.

Problem 4.

(1) This is really just a special case of problem 1. The characteristic polynomial is $x^n - 1$, whose roots are $e^{\frac{2\pi i}{n}k}$, $k = 0, 1, \dots, n - 1$. The eigenvectors are

$$v_k = \begin{pmatrix} 1 \\ e^{\frac{2\pi i}{n}k} \\ e^{2\frac{2\pi i}{n}k} \\ e^{3\frac{2\pi i}{n}k} \\ \dots \\ e^{(n-1)\frac{2\pi i}{n}k} \end{pmatrix}. \text{ Now, for } \ell \neq k \text{ (applying the formula for sum of }$$

geometric sequences):

$$\langle v_k, v_\ell \rangle = \sum_{i=0}^{n-1} e^{\frac{2\pi i}{n} j(k-\ell)} = \frac{\left(e^{\frac{2\pi i}{n}(k-\ell)}\right)^n - 1}{e^{\frac{2\pi i}{n}(k-\ell)}} = 0$$

(2) Let $\omega = e^{\frac{\pi i}{2}}$. Let $U_{k,\ell} = \frac{1}{2}\omega^{-k\ell}$. U is unitary: $UU*_{k,\ell} = \sum_{j=0}^{3} U_{k,j}\overline{U_{\ell,j}} = \frac{1}{4}\sum_{j=0}^{3}\omega^{j(\ell-k)}$. If $k=\ell$ this equals 1. Otherwise, by applying the formula for geometric sums, this equals 0. Furthermore, by what we've observed, column k of U is an eigenvector with eigenvalue ω^{ℓ} of T (with n=4), so

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\omega^{-1} & \frac{1}{2}\omega^{-2} & \frac{1}{2}\omega^{-3} \\ \frac{1}{2} & \frac{1}{2}\omega^{-2} & \frac{1}{2} & \frac{1}{2}\omega^{-2} \\ \frac{1}{2} & \frac{1}{2}\omega^{-3} & \frac{1}{2}\omega^{-2} & \frac{1}{2}\omega^{-1} \end{pmatrix} \begin{pmatrix} 1 & & & & \\ & \omega^{1} & & & \\ & & \omega^{2} & & \\ & & & \omega^{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\omega^{2} & \frac{1}{2}\omega^{2} & \frac{1}{2}\omega^{3} \\ \frac{1}{2} & \frac{1}{2}\omega^{3} & \frac{1}{2}\omega^{2} & \frac{1}{2}\omega^{2} \end{pmatrix}$$