Prog. inf. I. (BSc.)

3. vizsgadolgozat

2015. január 15.

- A. Minden feladatban írjuk be a megfelelő választ a sor végén levő keretbe. Csak az eredmény lesz pontozva. Minden helyes válasz 1 pontot ér. Az elégségeshez legalább 6 pontot kell szerezni az A kérdéscsoportból. (15 pont)
 - 1. Melyek azok az $x \in \mathbb{R}$ valós számok, melyekre az $[1 \ 0 \ x]^T$, a $[2 \ 2 \ 2]^T$ és a $[4 \ 2 \ 3]^T$ vektorok lineárisan függetlenek?

$$x \neq 1/2$$

2. Egy $U \leq \mathbb{R}^4$ altérben van 2 vektor, ami lineárisan összefüggő, és van 3 vektor, ami lineárisan független. Ha $\mathbf{u} \in U$ nem nullvektor, akkor hány olyan generátorrendszere van U-nak, amely tartalmazza \mathbf{u} -t?

Számuk: végtelen

3. Legyen $U \leq \mathbb{R}^3$ azon vektoroknak a halmaza, amelyeknek a komponensei (a megadott sorrendben) számtani sorozatot alkotnak. Adjuk meg U-nak egy bázisát.

Bázis pl.
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$$

4. Mi lehet $X \in \mathbb{R}^{2 \times 2}$, ha $X \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix}$?

$$X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- 5. Ha $A \in \mathbb{R}^{2\times 2}$ olyan, melyre $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ és $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, akkor adjunk meg két különböző vektort, \mathbf{y}_1 -et és \mathbf{y}_2 -t, melyekre $A\mathbf{y}_1 = A\mathbf{y}_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
- Pl. $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \ \mathbf{y}_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$
- 6. Ha egy $n \times n$ -es mátrix invertálható, mennyi lehet benne az $(n-1) \times (n-1)$ -es nem nulla aldeterminánsok minimális száma?

Számuk legalább: n

7. Legyenek \mathbf{a}, \mathbf{b} egymásra merőleges geometriai egységvektorok. Határozzuk meg a $\mathbf{v} = (((\mathbf{a} \times \mathbf{b}) \times \mathbf{b}) \times \mathbf{b}) \times \mathbf{b}$ vektor \mathbf{a} -val bezárt γ szögét.

 $\gamma = 0^{\circ}$

8. Az $A \in \mathbb{R}^{4\times 4}$ mátrix elemeiből képzett $a_{21}a_{32}a_{43}a_{14}$ szorzat milyen előjellel kerül bele a det A-t definiáló összegbe?

Előjel: –

9. Az $A \in \mathbb{R}^{n \times n}$ mátrix első oszlopának első eleme 3, a többi 0, $B \in \mathbb{R}^{n \times n}$ pedig tetszőleges invertálható mátrix. Határozzuk meg $\det(B^{-1}AB - 3I_n)$ értékét.

 $\det(B^{-1}AB - 3I_n) = 0$

10. Tekintsük az $A=\begin{bmatrix}1&2\\2&1\end{bmatrix}$ mátrixhoz tartozó Q kvadratikus alakot. Keressünk olyan $\mathbf{u}\in\mathbb{R}^2$ vektort, melyre $Q(\mathbf{u})$ negatív.

Pl. $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

11. Legyenek $\varphi, \psi \in \mathcal{H}om(\mathbb{R}^3, \mathbb{R}^3)$ lineáris transzformációk, méghozzá φ a tér forgatása a z tengely körül 90°-kal, ψ pedig a tér tükrözése az x-y-síkra. Hány dimenziós lesz $\mathcal{K}er(\varphi\psi\varphi)$?

 $\dim \mathcal{K}er(\varphi\psi\varphi) = 0$

12. Az $A=\begin{bmatrix}1&c\\3&4\end{bmatrix}\in\mathbb{R}^{2\times 2}$ mátrix nem diagonalizálható $\mathbb R$ fölött. Mik lehetnek $c\in\mathbb R$ értékei?

$$c \leq -3/4$$

13. Határozzuk meg az $\mathbf{u} = [1+i \quad 2i-3 \quad 1+3i]^T \in \mathbb{C}^3$ vektor normáját a szokásos $\mathbf{v}^*\mathbf{u}$ skaláris szorzatra nézve.

$$\|\mathbf{u}\| = 5$$

14. Adjunk meg egy, a nullvektortól különböző \mathbf{v} vektort \mathbb{R}^4 -ben, mely (a szokásos $\mathbf{x}^T\mathbf{y}$ skaláris szorzatra nézve) merőleges mindazon vektorokra, melyekben a komponensek összege 0?

Pl.
$$\mathbf{v} = [1 \ 1 \ 1 \ 1]^T$$

15. Egy $\varphi \in \mathcal{H}om(\mathbb{R}^2, \mathbb{R}^2)$ lineáris transzformáció mátrixa az \mathbf{u}, \mathbf{v} bázisban $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Mi lesz a transzformáció mátrixa a $2\mathbf{u}, 2\mathbf{v}$ bázisban?

$$[\varphi]^{2\mathbf{u},2\mathbf{v};2\mathbf{u},2\mathbf{v}} = \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}$$

- B. Válaszoljuk meg az alábbi kérdéseket. A kimondandó állításokat nem kell bizonyítani. Ügyeljünk a pontos fogalmazásra. Minden teljes válasz 2 pontot ér. Az elégségeshez legalább 4 pontot kell szerezni a B kérdéscsoportból. (10 pont)
- 16. Mit jelent az, hogy az $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{R}^n$ vektorok lineárisan függetlenek?

Az $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{R}^n$ vektorok pontosan akkor lineárisan függetlenek, ha csak a triviális lineáris kombinációjuk adja a nullvektort, azaz $\sum_{i=1}^k \lambda_i \mathbf{u}_i = \mathbf{0}$ esetén $\lambda_i = 0$ minden $1 \le i \le k$ -ra.

17. Definiáljuk két geometriai vektor, a és b vektoriális szorzatát.

Az \mathbf{a} és \mathbf{b} vektorok vektoriális szorzata az az $\mathbf{a} \times \mathbf{b}$ -vel jelölt vektor, melyre:

- 1) $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \sin \gamma(\mathbf{a}, \mathbf{b})$ (ahol $\gamma(\mathbf{a}, \mathbf{b})$ a két vektor közötti hajlásszög);
- 2) $\mathbf{a} \times \mathbf{b} \perp \mathbf{a}, \mathbf{b}$;
- 3) $\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}$ jobbrendszert alkotnak (feltéve hogy $|\mathbf{a} \times \mathbf{b}|$ nem nulla).
- 18. Mondjuk ki a determinánsokra vonatkozó kifejtési tételt. (Ne feledkezzünk meg a tételben szereplő jelek magyarázatáról sem!)

Ha $A \in \mathbb{R}^{n \times n}$, és a_{ij} jelöli az A mátrix i-edik sorának j-edik elemét, A_{ij} pedig az ehhez tartozó előjelezett aldeterminánst, akkor tetszőleges i-re det $A = \sum_{j=1}^{n} a_{ij} A_{ij}$ (ez az i-edik sor szerinti kifejtés).

19. Mit jelent az, hogy az $A \in \mathbb{R}^{n \times n}$ mátrix hasonló \mathbb{R} fölött a $B \in \mathbb{R}^{n \times n}$ mátrixhoz?

Azt mondjuk, hogy az A mátrix hasonló $\mathbb R$ fölött a $B \in \mathbb R^{n \times n}$ mátrixhoz, ha létezik olyan invertálható $D \in \mathbb R^{n \times n}$ mátrix, melyre $B = D^{-1}AD$.

20. Mondjuk ki azt a tételt, amely egy $A \in \mathbb{R}^{n \times n}$ mátrix \mathbb{R} fölötti diagonalizálhatóságára ad szükséges és elégséges feltételt. (Figyelem, itt nem a diagonalizálhatóság definícióját kérdezzük!)

Egy $A \in \mathbb{R}^{n \times n}$ mátrix pontosan akkor diagonalizálható \mathbb{R} fölött, ha \mathbb{R}^n -nek létezik A sajátvektoraiból álló bázisa.

Az elégségeshez a dolgozat második részével együtt legalább 15 pontot kell szerezni.

NÉV:	ELTE AZON.:	
Prog. inf. I. (BSc.)	$3.\ { m vizsgadolgozat/3}$ Második rész (40 perc)	2015. január 15.
		a részben nincs minimum-
		vektorok lineáris függésének (4 pont)
	$A\ h\'{a}tlapon\ folytathat\'{o}!$	
Definiáljuk a Vandermonde- determináns értékére vonat	determináns fogalmát, majd mondjuk ki és bizo kozó állítást.	onyítsuk be a Vandermonde- (6 pont)
	$A\ hátlapon\ folytathat\'o!$	
	Prog. inf. I. (BSc.) Bizonyítsuk az alábbi állítás követelmény az elégségeshez Mondjuk ki és bizonyítsuk fogalmát összekapcsoló téte Definiáljuk a Vandermonde-	Prog. inf. I. (BSc.) 3. vizsgadolgozat/3 Második rész (40 perc) Bizonyítsuk az alábbi állításokat. Ügyeljünk a pontos fogalmazásra. Ebben követelmény az elégségeshez. Mondjuk ki és bizonyítsuk be a vektorok lineáris összefüggőségének és a v fogalmát összekapcsoló tételt. A hátlapon folytatható! Definiáljuk a Vandermonde-determináns fogalmát, majd mondjuk ki és bizodetermináns értékére vonatkozó állítást.

Ha az I. rész két kérdéscsoportjából a megszerzett pontszám eléri a 6-ot, illetve a 4-et, akkor a dolgozat érdemjegye az összpontszám alapján:

0 - 14: 1 15 - 18: 19 - 22:23 - 26:

23 - 20: 27 - 35: 5

EREDMÉNYHIRDETÉS: 2015. január 15-én, csütörtökön 17 és 18 óra között a Déli tömb 3-711-es szobájában. Ezt követően a vizsgadolgozatok Szalay tanár úrtól vehetők át a szóbeli vizsgák napjain (többnyire kedden, szerdán és csütörtökön a délelőtti órákban).