POLITECHNIKA POZNAŃSKA

Wydział Elektroniki i Telekomunikacji

SYMULACJA CYFROWA PROJEKT

1. Treść zadania

W chińskiej restauracji pracuje k kelnerów obsługujących n_2 stolików dwuosobowych, n_3 stolików trzyosobowych oraz n₄ stolików czteroosobowych. Klienci pojawiają się w restauracji jako grupy 1-, 2, 3- lub 4-osobowe z prawdopodobieństwami odpowiednio p_1, p_2, p_3 oraz p_4 . Odstęp czasu rozdzielający pojawienie się kolejnych grup klientów jest zmienną losową o rozkładzie normalnym ze średnią μ_a i wariancja σ_a^2 . Jeśli jest dostępny stolik odpowiadający wielkości grupy (lub większy), klienci są do niego prowadzeni przez kierownika sali (czynność ta zajmuje s jednostek czasu). W przeciwnym przypadku grupa oczekuje na stolik w kolejce. Średnio połowa klientów korzysta z samoobsługowego bufetu, przy którym może znajdować się jednocześnie b osób. Czas spędzany przy bufecie przez grupę klientów jest zmienną losową o rozkładzie normalnym ze średnią μ_b i wariancją σ_b^2 . Pozostali klienci są obsługiwani przez tego z kelnerów, który jako pierwszy będzie wolny. W pierwszej kolejności klienci otrzymują napoje, a następnie serwowane jest danie główne. Czas obsługi w obu przypadkach jest zmienną losową o rozkładzie wykładniczym ze średnimi odpowiednio λ_n oraz λ_i (te dwie wielkości uwzględniają zarówno czas oczekiwania na zrealizowanie zamówienia jak i sam czas podania napojów i posiłku głównego) Po zakończeniu konsumpcji, której długość jest zmienną losową o rozkładzie wykładniczym ze średnią λ_f , klient płaci jednemu z c zatrudnionych kasjerów. Czas obsługi przez kasjera jest zmienną losową o rozkładzie wykładniczym ze średnią λ_p .

W restauracji zamontowano nieprawidłowo system przeciwpożarowy. Co jakiś czas, bez przyczyny, rozlega się dźwięk alarmu. Część gości, świadoma nieprawidłowości, pozostaje na miejscu, natomiast reszta opuszcza restaurację. Odstęp czasu rozdzialający kolejne alarmy jest zmienną losową o rozkładzie normalnym ze średnią $\mu_e = 4200$ i wariancją $\sigma_e^2 = 50^2$. Prawdopodobieństwo, że dana grupa nie opuści restauracji wynosi 70%.

Zakładając, że kierownik sali zawsze wybiera stolik najlepiej pasujący do danej grupy oraz stosuje jedną z podanych niżej zasad obsługi kolejki, oszacuj za pomocą odpowiedniego eksperymentu symulacyjnego:

- a) średni czas oczekiwania na stolik,
- b) średnią długość kolejki oczekujących na stolik,
- c) średni czas oczekiwania na obsługę przez kelnera od momentu zajęcia miejsca przy stoliku,
- d) średnią długość kolejki przy kasach.

2. Parametry

Przyjmujemy następujące parametry:

Tab. 1. Parametry.

Grupa:	D1	D2	D3	D4
\boldsymbol{k}	7	11	13	17
n_2 , n_3 , n_4	4,10,4	5,12,6	8,14,4	20,12,5
p_1, p_2, p_3, p_4	0.11, 0.33, 0.33, 0.23	0.11, 0.33, 0.33, 0.23	0.11, 0.33, 0.33, 0.23	0.11, 0.33, 0.33, 0.23
$\mu_a (\sigma_a^2)$	$1900 (200^2)$	$1800 (300^2)$	$1500 (100^2)$	$2500 (500^2)$
S	30	35	40	50
b	14	18	20	25
$\mu_b (\sigma_b^2)$	$3200 (100^2)$	3700 (90 ²)	2900 (80 ²)	$3400 (110^2)$
λ_n	300	330	370	400
λ_j	1700	1900	2000	2500
λ_f	1900	2400	2020	1810
\boldsymbol{c}	4	5	6	7
λ_p	200	240	220	210

Tab. 2. Parametry.

Grupa:	Strategia:
S1	Kierownik sali czeka, aż znajdzie się stolik o rozmiarze zdolnym pomieścić pierwszą grupę w kolejce
<i>S2</i>	Kierownik sali szuka w kolejce pierwszej grupy mieszczącej się w wolnych stolikach
<i>S3</i>	Kierownik sali szuka w kolejce pierwszej największej grupy mieszczącej się w wolnych stolikach
<i>S4</i>	Kierownik sali łączy wolne stoliki tak, aby zmieściła się pierwsza grupa w kolejce

Tab. 3. Metoda symulacji.

M	Opis
M1	Przeglądanie działań
M2	Planowanie zdarzeń
M3	Metoda ABC
M4	Metoda interakcji procesów