تكليف سرى چهارم

مریم سعیدمهر شماره دانشجویی : ۹۶۲۹۳۷۳

فهرست مطالب ۱ سوال اول ۲ سوال دوم ۳ سوال سوم ۴ سوال چهارم ۵ سوال پنجم ۷ سوال ششم ۷ سوال هفتم ۸ سوال هشتم

۲ سوال دوم

$$A \ is \ a \ 3 \times 5 \ matrix \Longrightarrow \left\{ \begin{array}{c} rank(A^T) \leq 5 \\ rank(A) \leq 3 \end{array} \right.$$

$$\implies rank(A^TA) \leq min\{rank(A^T), rank(A)\}$$

$$\implies rank(A^TA) \leq rank(A) \leq 3$$

$$(A^TA)_{5 \times 5} \\ rank(A^TA) \leq 3 \right\} \Longrightarrow A^TA \ is \ NOT \ fullrank$$

$$\implies A^TA \ is \ NOT \ invertible$$

$$\implies \det(A^TA) = 0 \qquad \blacksquare$$

٣ سوال سوم

$$Ax = b \equiv \begin{bmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \end{bmatrix} \implies \begin{bmatrix} 1 & \frac{1}{k} & \frac{1}{k} & \frac{1}{k} \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \end{bmatrix} \implies \begin{bmatrix} 1 & \frac{1}{k} & \frac{1}{k} & \frac{1}{k} \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \end{bmatrix} \implies \begin{bmatrix} 1 & \frac{1}{k} & \frac{1}{k} & \frac{1}{k} \\ 0 & \frac{k^2 - 1}{k} & \frac{k^2 - 1}{k} & \frac{k - 1}{k} \\ 0 & \frac{k^2 - 1}{k} & \frac{k^2 - 1}{k} & \frac{k - 1}{k} \end{bmatrix} \xrightarrow{k \neq 1}$$

$$\begin{bmatrix} 1 & \frac{1}{k} & \frac{1}{k} & \frac{1}{k} \\ 0 & 1 + \frac{1}{k} & \frac{1}{k} & \frac{1}{k} \\ 0 & 1 + \frac{1}{k} & \frac{1}{k} & \frac{1}{k} \end{bmatrix} \xrightarrow{k \neq 2}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{k} & 1 + \frac{1}{k} & \frac{1}{k} \\ 0 & 1 & 0 & \frac{1}{k} & 1 + \frac{1}{k} & \frac{1}{k} \end{bmatrix} \xrightarrow{k \neq 2}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{k + 2} \\ 0 & 1 & 0 & \frac{1}{k + 2} \\ 0 & 0 & 1 & \frac{1}{k + 2} \end{bmatrix}$$

براساس محاسبات فوق:

- . دارد. $x=y=z=rac{1}{k+2}$ دارد. k
 eq -2, 1 دارد.
 - به ازای k = -2 دستگاه جواب ندارد.
 - به ازای k=1 دستگاه بینهایت جواب دارد.

(a) $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A + B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A + B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\det(A) = 0, \det(B) = 1, \det(A + B) = 2 \implies \det(A + B) \neq \det(A) + \det(B)$$

(b) The determinant of any orthogonal matrix is either +1 or -1.

$$A(A+B)^{-1}B + B(A+B)^{-1}B = (A+B)(A+B)^{-1}B$$

$$= B \qquad \because (A+B) \text{ is invertible}$$

$$= B(A+B)^{-1}(A+B)$$

$$= B(A+B)^{-1}A + B(A+B)^{-1}B$$

$$\implies A(A+B)^{-1}B + B(A+B)^{-1}B = B(A+B)^{-1}A + B(A+B)^{-1}B$$

$$\implies A(A+B)^{-1}B = B(A+B)^{-1}A \qquad \blacksquare$$

۶ سوال ششم

If we say that A_i is the *i*th column of $A = (a_{ij})$ and $A^{(j)}$ is the *j*th row and e_i is the $n \times 1$ unit column vector with 1 in the *i*th row (and consequently 0 everywhere else), then for $B = e_i e_i^t$, which is 1 at (i, j) and 0 elsewhere, we find that $AB = Ae_ie_i^t = A_ie_i^t$ and $BA = e_ie_i^t A = e_iA^{(j)}$ are both $n \times n$ matrices, the first with the *i*th column of A in its *j*th column, the second with the jth row of A in its ith row. For these to be equal, we must have $a_{ij} = 0$ whenever $i \neq j$. Furthermore, the single nonzero entry in the products above is again at (i, j), where we find $a_{ii} = (AB)_{ij} = (BA)_{ij} = a_{ij}$. thus A = cI must be a scalar (multiple of the identity) matrix.

٧ سوال هفتم

(a)

$$trace(AB) = \sum_{i=1}^{m} (AB)_{ii}$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}B_{ji}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji}A_{ij}$$

$$= \sum_{j=1}^{n} (BA)_{jj} = trace(BA)$$

(b)
$$\left. \begin{array}{ll} trace(AX-XA) &= trace(AX) - trace(XA) \\ &= trace(AX) - trace(AX) \\ &= 0 \\ trace(I_{n\times n}) &\geq 2 \end{array} \right\} \Longrightarrow AX-XA = I_{n\times n} \ \ has \ \ no \ \ solution$$

	AB Series	is S B U be / Éis	(1)
A man Bnop	ه <i>تا رکتون</i> AB	قنارسن <i>ا</i> A ک	
rank A+Vank B-n	< rankAB <	ming rank A, vank B	<u> </u>
ستهي از تعيير زريدت راكمي،			
vank AB = vank B - o	hw(R(B) () M(A))		
} rankB -	nul(A)		
z Van KB)	- (n - rank A		

شكل ١: جزوه جلسه شانزدهم