Fractional Knapsack

Greedy Algorithms

- Introduction
- The Knapsack problem.
- A greedy algorithm for the fractional knapsack problem
- Correctness

Introduction to Greedy Algorithm

• A greedy algorithm for an optimization problem always makes the choice that looks best at the moment and adds it to the current sub solution.

- Final output is an optimal solution.
- Greedy algorithms don't always yield optimal solutions but, when they do, they're usually the simplest and most efficient algorithms available.

- Introduction
- The Knapsack problem.
- A greedy algorithm for the fractional knapsack problem
- Correctness

The Knapsack Problem

Capacity of knapsack: K = 4

knapsack 201 30pd \$120

K = 50 pd Total Value = 1220

The Knapsack Problem

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

Solution:

2 pd	2 pd
A	C
\$100	\$80

Solution:

0-1 Knapsack Problem: Can only take or leave item. You can't take a fraction. 3 pd C \$120

The Fractional Knapsack Problem: Formal Definition

• Given *K* and a set of *n* items:

weight	w_1	W2	 Wn	✓
value	v_1	<i>V</i> ₂	 v _n	~

Find: $0 \le x_i \le 1$, $i = 1, 2, \ldots, n$ such that

$$\sum_{i=1}^{n} X_{i} W_{i} \leq \boxed{K}$$

and the following is maximized:

$$\sum_{i=1}^{n} X_{i} V_{i}$$

- Introduction
- The Knapsack problem.
- A greedy algorithm for the fractional knapsack problem
- Correctness

 \mathbf{C}

Capacity of knapsack: K = 4

Solution 1: Sort by value, select the item with maximum value first

Solution 1 is not correct Counter example

C A \$120 \$50 3 pd 1 pd

Total value = \$170

Solution 2: Sort by weight, select the item with minimum weight first

Solution 2 is not correct Counter example

Α	В
\$100	\$10
2 pd	2pd

Total value = \$110

Solution 3: Sort by value per pound, select the item with maximum value per pound first

Solution is correct example

А	С
\$100	\$80
2 pd	2 pd

Total value = \$180

Capacity of knapsack: K = 4

If knapsack holds K = 5 pd, solution is:

pd	А
pd	В
pd	С
	pd

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.
- Sort the items by decreasing ρ_i . Let the sorted item sequence be $1, 2, \ldots, i, \ldots n$, and the $\bigcirc (\land \downarrow) \land)$ corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K). In each iteration, we choose item i from the head of the unselected list.
 - $\sqrt[4]{}$ If $k \ge w_i$, set $x_i = 1$ (we take item i), and reduce $k = k w_i$, then consider the next unselected item.
 - If $k < w_i$, set $x_i = k/w_i$ (we take a fraction k/w_i of item i), Then the algorithm terminates. nt ulåntn = O(n)å

Running time: $O(n \log n)$.

Observe that the algorithm may take a fraction of an item.
This can only be the last selected item.

 We claim that the total value for this set of items is the optimal value.

- Introduction
- The Knapsack problem.
- A greedy algorithm for the fractional knapsack problem
- Correctness

Correctness

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

• x_i indicates fraction of item i taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

- y_i indicates fraction of item i taken in O (for all i, $0 \le y_i \le 1$).
- Knapsack must be full in both G and O:

$$\sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} y_i w_i = K.$$

Consider the first item i where the two selections differ.

• By definition, solution G takes a greater amount of item i than solution O (because the greedy solution always takes as much as it can). Let $x = x_i - y_i$.

のとればと of yi = Total reight si\vex of 0 = Tota.

Correctness

Consider the following new solution O' constructed from O:

- For j < i, keep $y'_i = y_j$.
- Set $y_i' = x_i$.
- In O, remove items of total weight w_i from items i+1 to n, resetting the y_i' appropriately.

This is always doable because $\sum_{j=i}^{n} x_j = \sum_{j=i}^{n} y_j$

- The total value of solution O' is greater than or equal to the total value of solution O (why?)
- Since O is largest possible solution and value of O' cannot be smaller than that of O, O and O' must be equal.
- Thus solution O' is also optimal.

By repeating this process, we will eventually convert O into G, without changing the total value of the selection. Therefore G is also optimal!

えまれて ろうしい