Model Formulation

Table 1: List of Variables

Variable	Definition	Unit
k_s^B	Battery power rating at charging station s	MW
e_s^B	Energy capacity for battery at charging station s	MWh
g_{st}^B	Battery electricity generation at charging station s at time t	MWh
d_{st}^B	Inflow demand for battery at charging station s at time t	MWh
x_{st}^B	State of charge for battery at charging station s at time t	MWh
k_s^H	H_2 power rating at charging station s	MW
e_s^H	Energy capacity for H_2 at charging station s	kg
g_{st}^H	H_2 electricity generation at charging station s at time t	kg
x_{st}^H	State of charge for H_2 at charging station s at time t	kg
d_{st}^H	Inflow demand for H_2 at charging station s at time t	kg
k_s^P	Solar capacity at charging station s	MW
g_{st}^{P}	Solar electricity generation at charging station s at time t	MWh
g_{st}^{M}	SMR electricity generation at charging station s at time t	MWh
u_s^M	Number of SMR modules to build at charging station s	Whole number
u_{si}^W	Whether to build (1) or not build (0) transmission line of capacity group i at station s	Binary
g_{st}^W	Electricity generation purchased from wholesale markets to charging station \boldsymbol{s} at time t	MWh

Table 2: List of Parameters and Sets

Parameter/Set	Definition	Unit
Parameters:		
p^{BK}	Battery annual capital cos	\$/MW
p^{BC}	Battery energy cost	\$/MWl
p^{BE}	Battery operating cost	\$/MWl
h^B	Battery hour	hour
p^{HK}	H ₂ capital cost	\$/MW
p^{HC}	H ₂ energy cost	\$/kg
p^{HE}	$\rm H_2$ operating cost	\$/kg
$ar{d}_{st}^H$	H_2 demand at charging station s at time t	kg
c^H	Conversion factor from 1 MWh to kg of H_2 (= 49.3)	_
p^{PK}	Solar capital cost	\$/MW
p^{PE}	Solar operating cost	\$/MWl
f_{st}^P	Solar capacity factor at charging station s at time t	%
g_{min}^{M}	SMR minimum stable load	MWh
p^{MK}	SMR capital cost	\$/MW
p^{ME}	SMR operating cost	\$/MW]
$ar{k}^M$	SMR module capacity	MW
$ar{k}^W_{si}$	Effective capacity of transmission line at charging station s in group i	MW
p_{si}^{WK}	Annualized capital cost for transmission capacity group i at charging station s	\$/MW
p_{st}^{WE}	Wholesale electricity cost at charging station s at time t	\$/MW]
p_s^{WO}	Overhead add-ons at charging station s	%
d_{st}^E	Electricity demand at charging station s at time t	MWh
Sets:		
I	Set of transmission line capacity levels, index $i = \{1, 2, 3,, 7\}$	_
S	Set of stations, index $s = \{1, 2, 3,, 170\}$	_
${\mathbb T}$	Set of hours, index $t = \{1, 2, 3,, 24\}$	_
\mathbb{Z}_0^+	Set of whole numbers, $\mathbb{Z}_{0}^{+} = \{0, 1, 2, 3,\}$	_
\mathbb{Z}_2	Set of binary numbers, $\mathbb{Z}_2 = \{0,1\}$	_

$$\min_{\substack{u_{si}^{W}, k_{s}^{B}, k_{s}^{H}, k_{s}^{P}, u_{s}^{M}, \\ g_{st}^{W}, g_{st}^{B}, g_{st}^{B}, g_{st}^{B}, g_{st}^{B}, g_{st}^{H}, \\ d_{st}^{B}, d_{st}^{H}}} \sum_{s} \left\{ \underbrace{\left[p^{BK} k_{s}^{B} + p^{BC} e_{s}^{B} + \sum_{t} p^{BE} g_{st}^{B} \right]}_{\text{Battery Expansion and Operating Costs}} + \underbrace{\left[p^{HK} k_{s}^{H} + p^{HC} e_{s}^{H} + \sum_{t} p^{HE} g_{st}^{H} \right]}_{\text{H_2 Expansion and Operating Costs}} + \underbrace{\left[p^{PK} k_{s}^{P} + \sum_{t} p^{PE} g_{st}^{P} \right]}_{\text{Solar PV Expansion and Operating Costs}} \right]$$

$$(1)$$

$$+ \underbrace{\left[p^{MK}u_{s}^{M}\bar{k}^{M} + \sum_{t}p^{ME}g_{st}^{M}\right]}_{\text{SMR Expansion and Operating Costs}} + \underbrace{\left[\sum_{i}\left(1 + p^{WO}\right)p_{si}^{WK}\bar{k}_{si}^{W}u_{si}^{W} + \sum_{t}p_{st}^{WE}g_{st}^{W}\right]}_{\text{Transmission Expansion and Operating Costs}}\right]$$

s.t.

General Non-negativity:
$$k_s^B, k_s^H, k_s^P, k_s^W, e_s^B, e_s^H \ge 0,$$
 $\forall s \in \mathbb{S}$ (2)

Market Clearing Conditions:
$$g_{st}^B + g_{st}^P + g_{st}^M + g_{st}^W \ge d_{st}^E + d_{st}^B + \left(\frac{1}{c^H}\right) d_{st}^H$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (3)

Battery Constraints:
$$0 \le d_{st}^B \le k_s^B$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (4) $0 \le g_{st}^B \le k_s^B$, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (5)

$$0 \le g_{st}^B \le x_{st}^B, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (6)

$$e_s^B = h^B k_s^B, \qquad \forall s \in \mathbb{S}$$

$$0 \le x_{st}^B \le e_s^B, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
(8)

$$x_{st}^{B} = x_{s(t-1)}^{B} + d_{st}^{B} - g_{st}^{B}, \qquad \forall s \in \mathbb{S}, \forall t > 1 \in \mathbb{T}$$
 (9)

$$x_{s(t=1)}^{B} = 0.5 \times e_s^{B}, \qquad \forall s \in \mathbb{S}$$
 (10)

Hydrogen Constraints:
$$0 \le \left(\frac{1}{c^H}\right) d_{st}^H \le k_s^H$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (11)

$$0 \le \left(\frac{1}{c^H}\right) g_{st}^H \le k_s^H, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (12)

$$0 \le g_{st}^H \le x_{st}^H, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (13)

$$0 \le x_{st}^H \le e_s^H, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (14)

$$x_{st}^{H} = x_{s(t-1)}^{H} + d_{st}^{H} - g_{st}^{H}, \qquad \forall s \in \mathbb{S}, \forall t > 1 \in \mathbb{T}$$
 (15)

$$x_{s(t=1)}^{H} = 0, \qquad \forall s \in \mathbb{S}$$
 (16)

$$g_{st}^{H} \ge \bar{d}_{st}^{H}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (17)

Solar PV Constraints:
$$0 \le g_{st}^P \le f_{st}^P k_s^P$$
, $\forall s \in \mathbb{S}, \ \forall t \in \mathbb{T}$ (18)

SMR Constraints:
$$0 \le g_{st}^M \le u_s^M \bar{k}^M$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (19)

$$u_s^M \in \mathbb{Z}_0^+, \qquad \forall s \in \mathbb{S}$$
 (20)

$$g_{st}^{M} \ge g_{min}^{M}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (21)

$$\|g_{st}^{M} - g_{s(t-1)}^{M}\| \le r_s^{M} u_s^{M} \bar{k}^{M}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (22)

Wholesale Power Constraints:
$$0 \le g_{st}^W \le \sum_i u_{si}^W \bar{k}_{si}^W$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (23)

$$u_{si}^{W} \in \mathbb{Z}_{2}, \qquad \forall s \in \mathbb{S}, \forall i \in \mathbb{I}$$
 (24)

$$\sum_{i} u_{si}^{W} \le 1, \qquad \forall s \in \mathbb{S}, \forall i \in \mathbb{I}$$
 (25)