

В данном модуле изучим задания КЕГЭ #1 и #13, содержащие такие взаимозаменяемые информационные модели как таблицы и графы.

Граф — это совокупность вершин/точек и соединяющих их ребер/дорог.

Граф можно представить в виде таблицы/матрицы

В заданиях КЕГЭ дан взвешенный граф — граф, где с каждым ребром связано некоторое число (вес). Вес обозначает расстояние между городами.

Степень вершины — это количество рёбер, соединённых с данной вершиной.

Для определения степени вершины по таблице нужно считать число непустых ячеек в строке/столбце.

Алгоритм выполнения задания #1

- 1. Определяем степень всех вершин графа
 - 2. Сопоставляем степени вершин на рисунке с количеством весов в строках/столбцах таблицы.
 - 3. Читаем вопрос задания и по таблице даём ответ, при необходимости проведя дополнительные вычисления.

Пример задания #1

На рисунке справа схема дорог некоторого района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова протяжённость дороги из пункта Г в пункт К. В ответе запишите целое число.

	П1	П2	П3	П4	П5	П6	П7
П1		45		10			
П2	45			40		55	
П3					15	60	
П4	10	40				20	35
П5			15			55	
П6		55	60	20	55		45
П7				35		45	

Виды заданий #1

- В КЕГЭ встречаются всего два типа заданий на соотнесение таблицы и графа:
- Однозначное соотнесение таблицы и графа В таких заданиях достаточно действовать по алгоритму.
- Неоднозначное соотнесение таблицы и графа В таких заданиях, как правило, даны симметричные графы с некоторым количеством вершин, у которых степени совпадают.

Алгоритм выполнения задания #13

- 1. Начальную вершину отмечаем цифрой 1. Это количество путей в данную вершину.
- 2. «Читаем» граф слева направо. Если в какую-то вершину можно попасть только из начальной, то также помечаем её единицей.
- 3. Если в одну вершину можно попасть из нескольких, то количество путей в эту вершину будет равно сумме путей в эти несколько вершин.
- 4. Внимательно читаем условие и обращаем внимание на дополнительные условия: необходимо ли «обходить» какой-то пункт, или наоборот «проходить» через него.

Пример задания #13

На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город М, проходящих через город В?

Виды заданий #13

Исходя из условия, некоторые вершины необходимо избегать, а некоторые нужно обязательно посетить. Различают четыре типа таких заданий:

- Подсчёт путей
- Подсчёт путей с обязательной вершиной
- Подсчёт путей с избегаемой вершиной
- Подсчёт путей с обязательной и избетаемой вершинами