KEY TO THE EXERCISES

IN THE

FIRST SIX BOOKS

OP

CASEY'S ELEMENTS OF EUCLID.

SECOND EDITION.

NOW READY.

Fourth Edition, Revised and Enlarged, Price 3s. 6d., Cloth.

A SECTION THE WIRST SIX ROOKS OF THE

A SEQUEL TO THE FIRST SIX BOOKS OF THE ELEMENTS OF EUCLID,

Containing an Easy Introduction to Modern Geometry:
With numerous Examples.

Fourth Edition, Price 4s. 6d.; or in two parts, each 2s. 6d.

THE ELEMENTS OF EUCLID, BOOKS I.—VI., AND

PROPOSITIONS I.—XXI., OF BOOK XI.;

Together with an Appendix on the Cylinder, Sphere, Cone, &c.: with

Copious Annotations & numerous Exercises.

Second Edition, Price 6s.

A KEY TO THE EXERCISES IN THE FIRST SIX BOOKS OF CASEY'S "ELEMENTS OF EUCLID."

Price 3s.

A TREATISE ON ELEMENTARY TRIGONOMETRY,

With Numerous Examples

AND

Questions for Examination.

DUBLIN: HODGES, FIGGIS, & CO. LONDON: LONGMANS, GREEN & CO.

DEPARTMENT OF MATHEMATICS CORNELL UNIVERSITY

A

KEY TO THE EXERCISES

IN THE

FIRST SIX BOOKS

OF

CASEY'S ELEMENTS OF EUCLID.

 \mathbf{BY}

JOSEPH B. CASEY,
TUTOR, UNIVERSITY COLLEGE, DUBLIN.

SECOND EDITION, REVISED.

DUBLIN: HODGES, FIGGIS, & CO., GRAFTON-ST.

LONDON: LONGMANS, GREEN, & CO.

1887.

DUBLIN:

PRINTED AT THE UNIVERSITY PRESS,
BY PONSONBY AND WELDRICK.

CONTENTS.

B 0/) TZ T										PAGES 1-52
DU)K I.	•	•	•	•	•	•	•	•	•	1-94
				$\mathbf{P}_{\mathbf{R}}$	oposi	TION	s.				
	i. 1; i xii. 8; xxiii. xxxi. xxxvi. xxvvi. xLv. Exerci	xvii 13; x 18; . 26; 31;	. 9; x xxv. 1 xxxi xxx xxx	vIII. 14; z 1. 21 vII. 31	9; xi xxv. I ; x: 27; ; xl	x. 10 4; x xxiii.	; xx xvi.] . 24; viii.	. 11; 15; : xx 28;	XXI. XXIX. XXIV. XL.	12; 17; 25; 29;	
					-	_					
во	OK II.	•	•	•	•		•	•	•	•	53-70
				PR	oposi	TION	s.				
 Iv. 53; v. 54; vi. 55; viii. 56; ix. 57; x. 58; xi. 59; xii. 61; xiii. 62; xiv. 63; Miscellaneous Exercises on Book II. 63. 											
BO	ok III				٠		•			. 7	71 –13 8
				PR	o Po si	TION	s.				
	III. 71 xx1. 8 xxXIII Miscel	2; x x . 93;	11. 84 XXXV	; xxv	711 1. 8	88 ; x: xvi. :	xx. 9 102;	0; x xxx	xxII.	91;	

CONTENTS.

BOOK IV		•				•			AGES 139–183
			$\mathbf{P}_{\mathbf{B}}$	opos	ITIO	78.			
rv. 139 cises o					KI. 14	15; x	v. 14	6; E :	xer-
				-	_				
B00K V.	•	•	•						184-186
Miscel	laneo	us Exc	ercise	s, 18	3.				
					_				
BOOK VI.	•	•			•		•	•	187-282
			Pr	OPOS	ITION	īs.			
п. 186 xvii. 1 xxx. 2	96; 2	kix. 20	00; x	x. 20	0; x	xı. 20	4; xx	m. 2	05;

EXERCISES ON EUCLID.

BOOK I.

PROPOSITION I.

- 1. Dem.—The four lines AC, AF, BC, BF are each = AB, and \therefore = to each other. Hence ACBF is a lozenge.
- 2. Dem.—Because AC = BC, and CF common, and the base AF = BF; ... (VIII.) the \angle ACF = BCF; ... ACF is $\frac{1}{2}$ an \angle of an equilateral \triangle . Again, the \angle CAB = ACD + ADC (xxxII.); but ACD = ADC; ... CAB = 2ACD; ... ACD is $\frac{1}{2}$ an \angle of an equilateral \triangle , and ACF is $\frac{1}{2}$ an \angle of an equilateral \triangle ; ... DCF is an \angle of an equilateral \triangle . Similarly DFC is an \angle of an equilateral \triangle . Hence the \triangle CDF is equilateral.
- 3. Dem.—Join AF. Because $\overline{AG} = AF$, the $\angle AGF = AFG$; and because AF = AC, the $\angle ACF = AFC$; ... the $\angle GFC = FGC + FCG$, and is ... (xxxii. Cor. 7) a right \angle . In like manner HFC is a right \angle . Hence (xiv.) G, F, H are collinear.
- 4. Dem.— $GC^2 = GF^2 + FC^2$ (xLVII.), and $GC^2 = 4AG^2$; $\therefore GF^2 + FC^2 = 4AG^2$; but GF = AG. Therefore $FC^2 = 3AG^2$ $= 3AB^2$.
 - 5. Sol.—Join CF. Divide AD into four equal parts in E, G, H.

From DC cut off DJ = ED. J is the centre of the required \odot . Dem.—Join AJ, BJ, and produce them to meet the \odot in K, L.

Because the \angle ADJ is right, $AJ^2 = JD^2 + DA^2 = 3^2 + 4^2 = 5^2$; ... AJ is = 5 of the parts into which AD is divided; but AK = AB; ... JK = 3 of the parts; ... JK = JD. Again, AD = DB, and DJ common, and the \angle ADJ equal BDJ; ... (iv.) AJ = BJ; but AK = BL; ... JK = JL. Hence the lines JD, JK, JL are equal; and the \bigcirc , with J as centre and JD as radius, will pass through the points K, L.

PROPOSITION II.

1. Sol.—On AB describe the equilateral △ ABD. With B as centre and BC as radius, describe the ⊙ CEG, and produce DB

to meet it in E. With D as centre and DE as radius, describe the \odot EFH, and produce DA to meet it in F. AF is the required line.

Dem.—Because D is the centre of the \bigcirc **EFH**, \therefore **DE** = **DF**; but **DB** = **DA**; \therefore **BE** = **AF**, and **BE** = **BC**; \therefore **AF** = **BC**.

2. Sol.—Let A be the given point, and BC the given line.

It is required from the point A to inflect to BC a line equal to a given line DE. From A draw AF = DE [m.]. With A as centre,

and AF as radius, describe a O cutting BC in G, H. Join AG, AH. AG, AH are the required lines.

Dem.—Because AF = AG, and AF = DE; $\therefore AG = DE$. In like manner AH = DE. Hence there are two solutions.

PROPOSITION IV.

- 1. Let AD bisect the vertical \angle of the isosceles \triangle ABC. It is required to prove that it bisects the base BC perpendicularly.
- **Dem.**—AB = AC, and AD common, and the \angle BAD = CAD \therefore (iv.) the \angle ADB = ADC, and the side BD = CD. Hence BC is bisected, and (Def. xiv.) AD is \bot to BC.
- 2. Dem.—Let ABCD be the quadrilateral, and BD its diagonal. Because AB = CB, and BD common, and the $\angle ABD = CBD$; ... (IV.) the base AD = CD.
 - 3. Let the lines AB, CD, bisect each other in E.
- **Dem.**—Take any point F in ED. Join AF, BF. Because AE = BE, and EF common, and the $\angle AEF = BEF$; ... the base AF = BF.
- 4. Let ABC be the \triangle . On the sides AB, AC, describe equilateral \triangle ABD, ACE. Join CD, BE. It is required to prove that CD = BE.

Dem.—Because the \angle DAB = CAE, to each add the \angle BAC; then the \angle DAC = BAE; and since DA = BA, and CA = EA, the sides DA, AC = BA, AE, and we have shown that the \angle DAC = BAE; ... (IV.) the bases CD, BE, are equal.

PROPOSITION V.

1. (1) **Dem.**—Take any point D in AB, and from AC cut off AE = AD (III). Join BE, CD, DE. Because AB = AC, and AE = AD; ... BA and AE = CA and AD, and the \angle A is common; ... BE = CD, and the \angle ABE = ACD. Again, because BE = CD, and BD = CE; ... BD and BE = CE and CD, and the \angle DBE = ECD; ... (IV.) the \angle BDE = CED, and the \angle BED = CDE; hence the remainders, the \angle BDC, BEC, are equal. Again, BD = CE, and DC = EB; ... BD and DC = CE and EB, and the contained \angle BDC, CEB, have been shown to be equal; ... (IV.) the \angle DBC, ECB, are equal.

(2) Dem,—Produce BA, CA, to J, H, in AJ; take any points E, G, and from AH cut off AD = AE, and AF = AG. Join DG,

DB, EC, EF. Because AF = AG, and AE = AD; ... AF and AE = AG and AD, and the $\angle FAG$ common; ... the base FE = DG, and the $\angle AFE = AGD$, and the $\angle FEA = GDA$.

Again, because BG = CF, and GD = FE; ... BG and GD = CF and FE, and the \angle DGB = EFC; ... the base DB = EC, and the \angle GDB = FEC; but the \angle GDA = FEA; ... the remainders, the \angle BDC, BEC, are equal.

Now, since BD = CE, and DC = EB; ... BD and DC = CE and EB, and the $\angle BDC = CEB$; ... the $\angle DCB = EBC$.

2. Dem.—If AH be not an axis of symmetry, let AJ be one. Join JG. Because AF = AG, and AJ common, and the \angle FAJ

GAJ (hyp.); ... the \angle AFJ = AGJ; but the \angle AFC = AGB; ... the \angle AGJ = AGB, a part = to the whole, which is absurd; ... AH must be an axis of symmetry.

3. Let ABC, DBC, be the two isosceles Δ^s on the same base. Join their vertices A, D.

Dem.—The \angle ABC = ACB (v.), and the \angle DBC = DCB (v.); ... the \angle ABD = ACD. Now, the two \triangle s ABD, ACD, have the two sides AB, BD = the two sides AC, CD, and the contained \angle s ABD, ACD, equal; ... (iv.) the \angle BAD = CAD. Hence AD is an axis of symmetry.

4. Let AD be the bisector of the \(\mathcal{L} \) BAC.

Dem.—Because BA and AD = CA and AD, and the \angle BAD = CAD (hyp.); ... (iv.) the \angle ABD = ACD.

5. Let ABCD be the lozenge, and AD, BC, its diagonals.

Dem.—Because AB = AC, the \angle ACB = ABC, and because DB = DC, the \angle DCB = DBC; ... the \angle ACD = ABD. Now, the \triangle s ACD, ABD, have two sides AC, CD, and the contained \angle ACD, equal to the sides AB, BD, and the contained \angle ABD; ... (iv.) the \angle CAD = BAD, and the \angle CDA = BDA. Hence AD is an axis of symmetry.

6. Let ABC be the \triangle .

Dem.—Take three points D, E, F, in the sides AB, BC, CA, equally distant from the vertices A, B, C. Join DE, EF, FD. It is required to prove that the \triangle DEF is equilateral. Evidently

from the given conditions the \triangle ^s BDE, CEF, AFD, are equal; ... their bases DE, EF, FD, are equal. Hence the \triangle DEF is equilateral.

PROPOSITION VII.

3. If possible let two Os whose centres are A, B, intersect in the points C, D, on the same side of the line AB.

Dem.—Join CA, DA, CB, DB. Because A is the centre of the O ECD, AC = AD; and because B is the centre of the

© FCD, BC = BD; but this is contrary to Prop. vII. Hence

the O cannot intersect in more than one point on the same side of the line AB.

PROPOSITION IX.

- 3. Dem.—Because AD = AE, the \angle AED = ADE; and because FE = FD, the \angle FDE = FED. Now we have two \triangle ADF, AEF, having two sides AD, DF, and the contained \angle ADF respectively = to the two sides AE, EF, and the contained \angle AEF; \therefore (IV.) the \angle DAF = EAF.
- 4. Dem.—Let G be the point where AF meets DE. Because AD = AE, and AG common, and the \angle DAG = EAG; ... the \angle AGD = AGE. Hence (Def. xiv.) AF is \bot to DE.
 - 5. See Ex. 3, Prop. IV.
- 6. Dem.—Take any point G in AF, and from G let fall the \bot GH on AB. From AC cut off AJ = AH, and join GJ. Because AH = AJ, and AG common, and the \angle HAG = JAG; ... (IV.) the \angle AJG = AHG. Hence the \angle AJG is right, and the base GH = GJ.

PROPOSITION X.

1. Sol.—Let AB be the given line. Take a part AE greater than half AB. With A as centre and AE as radius, describe the \odot CED. Take BF = AE. With B as centre and BF as radius, describe the \odot CFD, cutting the \odot CED in C, D. Join CD, cutting AB in G. AB is bisected in G.

Dem.—Join AC, BC, AD, BD. Because AC = BC, and CD common, and the base AD = BD; \therefore (VIII.) the \angle ACD = BCD.

Again, since AC = BC, and CG common, and the $\angle ACG = BCG$; ... (iv.) AG = BG.

2. Dem.—Take any point H equally distant from A, B. Join AH, BH, CH. Because AC = BC, and CH common, and the base AH = BH; ... (VIII.) the \angle ACH = BCH. Hence any point equally distant from A, B, is in the bisector of the \angle ACB.

PROPOSITION XI.

- 1. Dem.—Let the diagonals AD, BC, of the lozenge ABCD, intersect in E. Because AB = AC, and AD common, and the base BD = CD; ... (VIII.) the \(\alpha \) BAE = CAE. Again, AB = AC, AE common, and the \(\alpha \) BAE = CAE; ... (IV.) BE = CE, and the \(\alpha \) AEB = AEC. Hence AD bisects BC perpendicularly.
- 2. **Dem.**—Because DF = EF, the $\angle FED = FDE$ (v.), and CD = CE; ... (iv.) the $\triangle DCF = ECF$; ... the $\angle DCF = ECF$, and (Def. xiv.) each of them is a right angle.
- 3. Sol.—Let AB be the given line. At the point A draw AC, making an angle with AB. In AC take AD = AB. At D erect DE \perp to AC. Bisect the \angle BAC by AE, meeting DE in E. Join BE. BE is \perp to AB.

Dem.—AD = AB, AE common, and the \angle DAE = BAE; \therefore (iv.) the \angle ADE = ABE; but ADE is a right angle (const.); hence ABE is a right angle.

4. Sol.—Let AB be the given line, and C, D, the points. Join CD; bisect CD in E. Draw EF \(\perp \) to CD, meeting AB in F. F is the required point.

Dem.—Join CF, DF. Because (iv.) the \triangle CEF = DEF; \therefore FC = FD. Hence the point F is equally distant from C and D.

5. Sol.—Let AB be the given line, and C, D, the points. From C let fall a \perp CG on AB, and produce it to E, so that GE will be equal to CG. Join ED, and produce it to meet AB in F. F is the required point.

Dem.—Join CF. Because CG = EG, and GF common, and the $\angle CGF = EGF$; ... (iv.) the $\angle CFG = EFG$. Hence the $\angle CFD$ is bisected by the line AB.

6. Sol.—Let A, B, C, be the three given points. Join AB, BC. Bisect AB at D, and erect DF ⊥ to AB. Bisect BC at E, and erect EF ⊥ to BC. F is the required point.

Dem.—Join AF, BF, CF. Because AD = BD, and DF common, and the \angle ADF = BDF; \therefore (iv.) AF = BF. In like manner BF = CF. Hence the three lines AF, BF, CF, are equal.

PROPOSITION XII.

1. Dem.—If possible let FGJK be a O meeting AB in the points F, G, J, K. Bisect FG in H. Join CH, and produce it to

M. Join CF, CG. Bisect GJ in N. Join CN, CJ, CK. Because FH = GH, and HC common, and the base FC = CG; ... the \angle FHC = GHC, and (Def. xiv.) each of them is a right angle.

Again, since GN = JN, and CN common, and the base CG = CJ; ... the \angle CNG = CNJ, and each is a right angle. Hence the \angle CNH = CHN; ... CH = CN; but CN is greater than CK, because the point N is outside the \bigcirc ; ... CH is greater than CK, and CM = CK; ... CH is greater than CM, which is absurd. Hence the \bigcirc cannot meet AB in more than two points.

2. Dem.—Let ABC be the \triangle , having the \angle BAC equal to the sum of the \angle ⁸ ABC, ACB. Bisect AB in D, and erect DE \bot to AB, meeting BC in E. Join AE.

Because AD = BD, DE common, and the $\angle ADE = BDE$; \therefore (rv.) the $\angle DAE = DBE$; but the $\angle BAC = ABC + ACB$; hence the $\angle EAC = ECA$; \therefore each of the \triangle ^s ABE, ACE, is isosceles; and since AE = BE = CE; $\therefore BC = 2AE$.

PROPOSITION XVII.

Dem.—Let ABC be the \triangle . Take any point D in BC. Join AD. The \angle ADC is greater than ABC (xvi.), and the \angle ADB is greater than ACB; but ADC and ADB equal two right angles; \triangle ABC and ACB are less than two right angles.

PROPOSITION XVIII.

- 1. Dem.—Let ABC be the \triangle , of which AC is greater than AB. From AC cut off AD = AB. With A as centre, and AB as radius, describe the circle ADE, cutting CD produced in E. Join AE. Now the \angle ABC is greater than AEB; but AEB = ABE; ... ABC is greater than ABE, and ABE is greater than ACB (xvi.). Hence ABC is greater than ACB.
- 2. Dem.—Produce AB to D, so that AD = AC. Join CD. Now the \angle ABC is greater than ADC (xvi.); but ADC = ACD; ... ABC is greater than ACD. Much more is ABC greater than ACB.
- 3. Dem.—Let ABCD be a quadrilateral, whose sides AB, CD, are the greatest and least. It is required to prove that the \angle ADC is greater than ABC. Join BD. Because BC is greater than DC, the \angle BDC is greater than DBC (xviii.). Similarly the \angle ADB is greater than ABD. Hence the \angle ADC is greater than ABC.
- 4. Dem.—Let ABC be a \triangle , whose side BC is not less than AB or AC. From A let fall a \bot AD on BC. Because BC is not less than AB, the \angle BAC is not less than BCA; ... BCA must be acute. In like manner CBA must be acute. Hence AD must fall within the \triangle ABC.

PROPOSITION XIX.

1. Dem.—Bisect BC in D. Join AD; produce it to E, so that DE = AD. Join BE. Now the $\triangle \cdot$ BDE, ADC, have the sides BD, DE, of one respectively equal to CD, DA, of the other, and the contained $\angle \cdot$ equal (xv.); ... (iv.) BE = AC, and the

 \angle DBE = DCA; but the \angle ABD is greater than DCA (hyp.); \therefore ABD is greater than EBD; hence the line BF which bisects the \angle ABE falls above BC. Produce BF to G, and make GF = BF. Now, since ED = AD, EF is greater than AF. Cut off FH = AF. Join GH, and produce it to meet BE in I. Now we have in the \triangle s AFB, GFH, two sides AF, FB, in one equal HF, FG, in the other, and the contained \angle s equal; hence AB = GH, and the \angle ABF = HGF; but ABF = FBI (const.); \therefore BGI = GBI, and \therefore (v.) IB = IG; but EB is greater that IB, and IG greater than HG; \therefore EB is greater than GH, and we have proved BE = AC, and GH = AB. Hence AC is greater than AB.

2. Dem.—Take any point D in the base BC of an isosceles ∆ ABC. Join AD. Now the ∠ ADC is greater than ABD (xvi.), and ∴ greater than ACD. Hence (xix.) AC is greater than AD.

If we take the point D in the base produced, we have the \angle ACB, that is, ABC greater than ADC; ... AD is greater than AB.

3. Dem.—This follows from the last exercise. For when we took the point in the base, and joined it to the vertex, the joining line was less than either side of the triangle; and when the point was in the base produced, the joining line was greater.

- 4. (1) Dem.—Let A be the given point, and EF the given line. From A let fall a ⊥ AB, and draw any other line AC to EF. The ∠ ACB is less than ABC (xvII); ∴ (xIX.) AC is greater than AB.
- (2) Dem.—Take another point D in EF. Join AD. Now the \angle ACD is greater than ABC, and therefore obtuse; hence ADC must be acute; ... AD is greater than AC.
- 5. Dem.—Because AB is greater than AC, the \angle ACB is greater than ABC (xviii.). Much more is the \angle BCF greater than CBF. Hence (xix.) BF is greater than CF. Again (hyp.), AB is greater than BC; but AB = CF (iv.); ... CF is greater than BC; ... (xviii.) the \angle CBF is greater than CFB, that is, than ABE. Hence ABE or CFB is less than half ABC.

PROPOSITION XX.

- 1. Dem.—Let ABC be a \triangle . It is required to prove that the difference between two sides AB, AC, is less than BC. From AC cut off AD = AB, and join BD. Now AB and BC are greater than AD and DC; but AB = AD; \therefore BC is greater than DC, that is, greater than the difference between AB and AC.
- 2. **Dem.**—Let D be any point within a \triangle ABC. Join AD, BD, CD. Now (xx.) DA + DB > AB; DB + DC > BC; DC + DA > AC. Adding, we get 2 (DA + DB + DC) > (AB + BC + CA); \therefore (DA + DB + DC) > $\left(\frac{AB + BC + CA}{2}\right)$.
- 3. Dem.—Let AD be the bisector of the \angle BAC. Take any point E in AD. Join BE, CE. From AB cut off AF = AC, and join EF. Because AF = AC, and AE common, and the \angle EAF = EAC; ... (iv.) the base EF = EC. Again, since EF = EC, the difference between BE and EC is equal to the difference between BE and EF; but BE EF is less than BF (Ex. 1); ... BE EC is less than BF; but BF is the difference between BA and AC. Hence the difference between BE and EC is less than the difference between BA and AC.
- 4. Dem.—Produce BA to F, so that AF = AC. Take any point E in the external bisector AD. Join EB, EC, EF. Now (IV.) EF = EC. To each add EB, and we have EF and EB = EC and EB; but EF and EB are greater than FB, that is, greater than AB and AC. Hence EB and EC are greater than AB and AC.

- 5. Dem.—Let ABCD be the polygon. Join BD. Now (xx.) AB + AD > BD; and BC + BD > CD; ... hence AB + AD + BC > CD.
- 6. Dem.—Let the \triangle DEF be inscribed in ABC. Now (xx.) AD + AE > DE; EC + CF > EF; FB + BD > FD. Adding, we get (AB + BC + CA) > (DE + EF + FD).
- 7. Dem.—Let the polygon FGHJK be inscribed in the polygon ABCDE. Now (xx.) AF + AG > FG; BG + BH > GH; CH + CJ > HJ; DJ + DK > JK; EK + EF > KF. Adding, we get the perimeter of ABCDE greater than that of FGHJK.
- 8. Dem.—Let ABCD be a quadrilateral, AC, BD, its diagonals. Now, if AC, BD, are not equal, one of them must be the greater. Let BD be the greater; then we have the sum of the sides AB, BC, CD, DA, greater than 2BD, and ... greater than AC and BD.
- 9. Dem.—Let ABC be the \triangle , AD one of its medians. Produce AD to E, so that ED = AD. Join EC. Now (iv.) EC = AB, and (xx.) AC and CE, that is, AC and AB, are greater than AE, that is, greater than 2AD. Similarly BC and CA are greater than 2CG, and AB and BC are greater than 2BF; ... (AB + BC + CA) > (AD + BF + CG).
- 10. Dem.—Let the diagonals AC, BD, of the quadrilateral ABCD intersect in E. Take any other point F in the quadrilateral. Join AF, BF, CF, DF. Now (xx.) BF + FD > BD, and AF + FC > AC. Adding, we get (AF + BF + CF + DF) > (AC + BD).

PROPOSITION XXI.

- 1. Dem.—Let ABC be the \triangle , and O any point within it. Join OA, OB, OC. Now, AB+AC>OB+OC(xxi.); AC+BC > OA + OB; and AB + BC > OA + OC. Adding, we get 2(AB+BC+CA) > 2(OA+OB+OC); \therefore (OA + OB + OC) > (AB+BC+CA).
- 2. Dem.—Produce BC both ways to meet AM, DN, in E, F. Now (xx.) AE + EB > AB, and DF + FC > DC. To each add BC, and we have AE + EF + FD > AB + BC + CD. Again, EM + MN + NF > EF (Ex. 5, xx.). To each add AE and DF, and we get AM + MN + ND > AE + EF + FD; but we have shown that AE + EF + FD > AB + BC + CD; AM + AB + AB + BC + CD.

PROPOSITION XXIII.

- 1. Sol.—Let A, B, be the given sides, and C the \angle between them. Draw any line DG, and from DG cut off DE = A. At the point D in DG draw DH, making the \angle GDH = C (xxIII.). In DH take DF = B, and join EF. DEF is the \triangle required.
- 2. So1.—Let AB be the given side, and D, E, the given angles. At the point A in AB make the \angle BAC = D, and at the point B in AB make the \angle ABC = E. ABC is the \triangle required.
- 3. Sol.—Let A, B, be the given sides, and C the given angle, Draw any line DG, and in it make DE = A, and EF = B. At the point D in DG make the \angle GDH = C. With E as centre,

and EF as radius, describe a \odot , cutting DH in J, K. Join EK, EJ. Then evidently either of the Δ ^s DEJ, DEK, will fulfil the given conditions.

4. (1) Sol.—Let AB be the base, C the given \angle , and S the sum of the sides. At the point A in AB make the \angle BAF = C, and in AF take AE = S. Join BE. At the point B in BE make the \angle EBG = BEG. ABG is the \triangle required.

Dem.—Because the \angle EBG = BEG; ... (vi.) EG = BG. To each add AG, and we have AG + GB = AE; but AE = S (const.); ... AG + GB = S.

(2) Sol.—Let AB be the base, C the given \angle , and D the difference of the sides. At the point A in AB make the \angle BAG = C, and let AG = D. Produce AG to E. Join BG, and at the point B in BG make the \angle GBE = EGB. AEB is the \triangle required.

Dem.—Because the \angle GBE = EGB; ... (vi.) EG = EB; but AE - GE = AG; ... AE - BE = AG = D. Hence the difference between AE and BE is D.

5. (1) Let A, B, be two points, one of which, B, is in the given line GF. It is required to find another point C in GF, such that CB + CA may be equal to a given line D.

Sol.—In GF take a part BE = D. Join AE, and at the point A in AE make the $\angle CAE = CEA$; then C is the required point.

Dem.—Because the \angle CAE = CEA, CA = CE (vi.). To each add CB, then CA + CB = BE; but BE = D; \therefore CA + CB = D. Hence C is the required point.

(2) Let A, B, be the points, GF the given line.

Sol.—In GF take a part BG = D. Join AG, and at the point A in AG make the $\angle GAE = AGE$. E is the required point.

Dem.—Because the \angle GAE = AGE, GE = AE; \therefore AE - EB = GE - EB; but GE - EB = GB; that is, equal to D. Hence AE - EB = D.

PROPOSITION XXIV.

- 1. Dem.—At the point A, in AB, make the \angle BAH = EDF, and make AH = AC or DF. Join BH. Now (iv.) BH = EF. And because the \angle BAC is greater than EDF, the bisector of the \angle HAC must fall to the right of AB. Let AG be the bisector. Join HG. Now since AH = AC, and AG common, and the \angle HAG = CAG; ... (iv.) GH = GC. To each add BG, and we have BC = HG + GB; ... (xx.) BC is greater than BH; that is, greater than EF.
- 2. Dem. (Diagram to Ex. 1).—The \angle AHG = ACG; but AHG is greater than AHB; ... ACG is greater than AHB; that is, greater than EFD.

PROPOSITION XXV.

1. Dem.—From BC cut off BH = EF. On BH describe the

 \triangle BGH = DEF; that is, having BG = DE, and GH = DF. Join

AG. Because BA = DE, and BG = DE; ... BA = BG; ... (v1.) the \angle BGA = BAG. Produce GH to meet AC in K. Now since AC = DF, and GH = DF; ... AC = GH; ... GK is > AK; ... (xv111.) the \angle GAK is > AGK; but BAG = BGA; ... BAC is > BGH, that is, > EDF.

PROPOSITION XXVI.

1. Let ABC be the triangle.

Dem.—Let fall the \bot AD on BC. Now (xxvi.) the \triangle ADB, ADC, are equal; ... DB = DC. Take any point E in AD. Join BE, CE. Now (iv.) the \triangle BDE, CDE, are equal; ... BE = CE. Hence the point E is equally distant from the points A, B.

2. Let AD bisect the vertical \(\times BAC, \) and also the base BC.

Dem.—Produce AD to E, so that DE = AD. Join EC. Now (iv.) the $\triangle \bullet$ ADB, EDC, are equal; \therefore AB = CE, and the $\triangle ADB = CED$; but BAD = CAD (hyp.); \therefore CAD = CED; hence (vi.) CE = CA; but CE = BA; \therefore CA = BA. Hence the \triangle BAC is isosceles.

3. Let AB, AC, be two fixed lines, and D a point equally distant from them.

Dem.—Let fall \perp * DE, DF, on AB, AC. Join EF, AD. Because DE=DF, the \angle DFE=DEF; but the \angle DFA=DEA; \therefore the \angle AFE = AEF, and \therefore AE = AF. Now AE = AF, AD common, and the base DE=DF; \therefore the \angle EAD=FAD; \therefore the bisector of the \angle BAC is the locus of the point D. In like manner, if we produce BA to G, the locus of a point equally distant from AC, AG, will be the bisector of the \angle CAG.

4. Let AB be the given right line, and CD, EF, the other lines.

Sol.—Let CD, EF, intersect in G, and meet AB in H, J. Bisect the \angle HGJ by GK, meeting AB in K. K is the point required.

Dem.—Let fall 1 KM, KN, on CD, EF. Because the \angle NGK = MGK, and GNK = GMK, and GK common; ... (xxvi.) KN = KM.

5. Let ABC, DEF, be two right-angled \triangle ⁵, having the base BC = EF, and the acute \angle ABC = DEF.

Dem.—The \triangle ABC, DEF, have the \angle BAC, ABC, equal to the \angle EDF, DEF, and the side BC = EF; ... (xxvi.) they are equal in every respect.

6. Let the right-angled \triangle *ABC, DEF, have the sides AB, DE, equal, and also their hypotenuses BC, EF equal. It is required to prove that the \triangle * are equal in every respect.

Dem.—At the point B in BC make the \angle GBC = DEF (xxIII.), and make BG = DE or AB. Join CG, AG.

Now the \triangle^s GBC, DEF, have the sides GB, BC = DE, EF, and the \angle GBC = DEF; ... (iv.) CG = DF, and the \angle BGC = EDF; but EDF is a right \angle ; ... BGC is right, and ... = BAC. Now BG = DE, and DE = AB; ... BG = AB; ... the \angle BAG = BGA; but BAC = BGC; ... CAG = CGA; hence CG = CA; but CG = DF; ... AC = DF. Hence the \triangle^s ABC, DEF, are equal in every respect.

7. Let ABC be the \triangle , and let the bisectors of the \triangle • ABC, ACB, meet in O. Join OA. It is required to prove that OA bisects the \angle BAC.

Dem.—From O let fall \bot * OD, OE, OF, on AB, BC, CA. Join DF. The \triangle *OBD, OBE, are equal (xxvi.); ... OD = OE. Similarly OE = OF; ... OF = OD, and ... (v.) the \angle ODF = OFD; but the \angle ODA = OFA (const.); ... the \angle ADF = AFD; ... (vi.) AF = AD. Now AF = AD, AO common, and the base OF = OD; hence (viii.) the \angle OAF = OAD. Therefore AO is the bisector of the \angle BAC.

8. Let ABC be the \triangle , and let BO, CO, bisecting the two external \angle ⁸ meet in O. Join OA. It is required to prove that OA bisects the \angle BAC.

Dem.—From O let fall $\bot \circ$ OD, OE, OF, on AB, BC, CA. Join DF. Now, as in the last Exercise, OD = OF; ... the \angle OFD = ODF; but the \angle OFA = ODA; ... AFD = ADF, and ... AD = AF. Now AD = AF, AO common, and the base OD = OF; ... the \angle OAD = OAF. Therefore AO bisects the \angle BAC.

9. Let A, B, C, be the given points. It is required to draw a line through C, such that the \pm ^s on it from A, B, may be equal.

Sol.—Join AB; bisect it in O. Join CO, and produce it to D. From A, B, let fall the \(\perp \)* AE, BF, on CD.

Dem.—Because AO = BO, and the \angle ⁸ AEO, AOE = BFO, BOF; \therefore (xxvi.) AE = BF.

10. Let AB, AC, be the given lines, and D the given point.

Sol.—Bisect the \angle BAC by AE. From D let fall a \bot DE on AE, and produce it both ways to meet AB, \blacktriangle C, in B, C.

Dem.—The $\triangle \circ ABE$, ACE, have the $\angle \circ AEB$, EAB, equal to the $\angle \circ AEC$, EAC, and the side AE common; ... the $\angle ABE$

= ACE. Hence the \triangle ABC is isosceles. There are two solutions. For if we produce BA to F, bisect the \angle CAF by AG,

and from D let fall the \perp DH on AG, and produce it to meet BA in F, we will have another isosceles triangle.

PROPOSITION XXIX.

- 1. (1) Dem.—If AB, CD, are not parallel, let them meet in K. Then we have the exterior \angle EGK of the \triangle GKH equal to the interior \angle GHK; but this is impossible (xvi.). Therefore AB, CD, must be parallel.
- (2) If AB, CD, are not parallel, let them meet in K. Then we have the $\angle * KGH$, GHK, of the \triangle GHK, equal to two right angles, which is impossible (xvII.). Hence AB, CD, must be parallel.
- 2. Let AB, CD, be the || lines, and AC, BD, the L* intercepted between them.

Dem.—Join AD. Now, the \angle ACD is right (hyp.), and ABD, CDB, together equal two right \angle • (xxix.); but CDB is right; .. ABD is right, and hence = ACD, and the \angle BAD = ADC (xxix.). Therefore the \triangle • ABD, ACD, have two \angle • of one equal to two \angle • of the other, and the side AD common. Hence (xxvi.) BD = AC.

3. Let EF be \parallel to AB.

Dem. Bisect the \(\alpha \) ACD, BCD, by CE, CF. Now (xxix.)

the \angle ACE = DEC; but ACE = DCE; \therefore DEC = DCE, and $\cdot \cdot$ DC = DE. In like manner DC = DF. Therefore DE = DF.

4. Let EF be the line whose middle point is 0, and terminated by the parallels AB, CD

Dem.—Through O draw a line GH, meeting AB, CD in G, H. The \angle GOE = HOF (xv.), and the \angle GEO = OFH (xxix.), and OE = OF (hyp.); therefore (xxvi.) OG = OH.

5. Let AB, CD, be the ||s, and O the point equidistant from them.

Dem.—Through O draw EF, meeting AB, CD, in E, F, and draw GH, JK, meeting them in G, H, J, K. Because EF is bisected in O, ... (4) GH, JK, are bisected in O; then the \triangle ^s GOJ, HOK, have two sides GO, OJ, and the \angle GOJ in one equal to the sides HO, OK, and the \angle HOK in the other. Hence (iv.) GJ = HK.

6. Let AEFD be the parallelogram formed by drawing parallel lines from a point F in BC to the sides AB, AC, of the equilateral \triangle ABC.

Dem.—The \angle EFB = ACB (xxix.); ... EFB is an \angle of an equilateral \triangle , and EBF is an \angle of an equilateral \triangle (hyp.); ... EBF is an equilateral \triangle ; ... EF = BF; but EF = AD; ... EF + AD = 2BF. In like manner, AE + DF = 2CF. Hence AE + AD + FE + FD = 2BC.

7. Let ABCDEF be the hexagon, and let its diagonals AD, BE intersect in O. Join CO, FO. It is required to prove that CO, FO are in one straight line.

Dem.—The \angle ABO = DEO (xxxx.), and the \angle AOB = DOE (xv.), and the side AB = DE (hyp.); ... (xxvi.) BO = EO. Again (xxix.) the \angle CBO = FEO, and CB = EF (hyp.), and we have shown that BO = EO; ... (iv.) the \angle BOC = EOF; to each add the \angle FOB, and we have BOC + FOB = EOF + FOB; but EOF + FOB = two right angles (xiii.); ... BOC + FOB = two right angles, and ... (xiv.) CO, OF are in one straight line.

PROPOSITION XXXI.

1. Let A, B, be the given \angle , and H the altitude.

Sol.—Draw any line CD, and make the \angle DCE = A, and the \angle CDE = B; let fall a \bot EF on CD. If EF = H, the \triangle is constructed. If not, produce it, and cut off EG = H. Through G draw JK \parallel to CD, and produce EC, ED, to meet it in J, K.

Dem.—The \angle EJK = ECD (xxix.) = A. In like manner EKJ = B, and EG = H. Therefore EJK is the \triangle required.

2. Let AB be the given line, C the given point, and M the given \angle .

Sol.—Through C draw CE \parallel to AB (xxx.). At the point C in CE make the \angle ECD = M. The \angle ECD = CDA (xxix.) \therefore CDA = M.

- 3. Dem.—The \angle CAD = ADE (xxix.); but CAD = EAD (const.); \therefore ADE = EAD, and \therefore EA = ED. In like manner FB = FD. Again, the \angle CAB = DEF (xxix.); but CAB is an \angle of an equilateral \triangle ; \therefore DEF is an \angle of an equilateral \triangle . Similarly DFE is an \angle of an equilateral \triangle ; hence DEF is an equilateral \triangle ; \therefore DE = EF; but DE = AE; \therefore AE = EF. In like manner BF = EF. Hence AB is trisected.
 - 4. Let ABC be the equilateral triangle.

Sol.—Let fall a \bot AD on BC. Bisect the \angle BAD by AE, meeting BC in E. Through E draw EF \parallel to AD, meeting AB in F. Through F draw FG \parallel to BC, and complete the \Box EFGH. EFGH is a square.

Dem.—The \angle FEA = EAD (xxix.), = FAE; ... FA = FE; but FAG is an equilateral \triangle , because FG is \parallel to BC; ... AF = FG; but AF = EF; ... EF = GF, and EF = GH, and GF = EH; ... the four sides are equal, and (xxix.) the \angle GFE = BEF; but BEF is a right \angle , ... GFE is right. Hence EFGH is a square.

5. (1) Let ABC be the triangle.

Sol.—Produce AB to G. Bisect the \angle GBC by BF, meeting AC produced in F. Through F draw FG \parallel to BC.

Dem.—The \angle CBF = BFG (xxix); but CBF = GBF (const.); \therefore GBF = BFG, and \therefore FG = BG. If we bisect the \angle BCF, we get another solution.

(2) Sol.—Produce AB, AC to E, F. Bisect the $\angle \circ$ CBE, BCF; and through D, where the bisectors meet, draw EF \parallel to BC, meeting AE, AF, in E, F.

Dem.—The \angle CBD = EDB (xxix.); but CBD = EBD (const.); \therefore EDB = EBD; and \therefore (vi.) EB = ED. Similarly, FC = FD. Hence EB + FC = EF.

If we bisect the \angle * ABC, ACB, we have another solution.

(8) Sol.—Produce the base BC to G. Bisect the \angle * ABC, ACG, by BD, CD. Through D draw DF || to BC, meeting AB, AC in F, E.

Dem.—The \angle FDB = CBD (xxix.); but CBD = FBD (const.); ... FBD = FDB; and therefore FB = FD. In like manner CE = DE. Hence BF - CE = FD - DE = FE. If we produce CB to H, and bisect the \angle ⁶ ACB, ABH, we will have another solution.

6. Let AB, DC be the | lines, and B, D the given points.

Sol.—Join BD; bisect it in E. At E erect EA 1 to BD; produce it to meet CD in C. Join AD, BC.

Dem.—Because EB = ED, EA common, and the \angle AEB = AED; ... (iv.) AB = AD. In like manner BC = DC, and the four sides are equal to each other. Hence (Def. xxix.) ABCD is a lozenge.

7. Let AB, AC be the lines given in position, M the line of given length, and FG the line to which the required line is to be parallel.

Sol.—(1) In FG take a part DE = M; through D draw D^B is to AC, and through B draw BC is to DE. BC fulfils the requiremental conditions.

Dem.—Because DBCE is a parallelogram, BC = DE; but DE = M; ... BC = M.

(2) Sol.—In FG take FH = M. Through F draw FJ to AB, meeting CA produced in J; and through J draw JK to FH. JK fulfils the required conditions.

Dem.—Because FJKH is a parallelogram, FH = JK; but FH = M; ... JK = M.

PROPOSITION XXXII.

1. Let ABC be the right angle.

Sol.—Make the \angle ABD equal an \angle of an equilateral \triangle (xxIII.), and draw BE bisecting it.

Dem.—Because the \angle ABD is an angle of an equilateral \triangle , it is two-thirds of a right \angle ; ... CDB is one-third, and half ABD is one-third. Hence ABC is trisected.

2. (1) Let ABC be the triangle.

Dem.—Draw the median AD. Now if BD be greater than AD, the \angle BAD will be greater than ABD (xvIII.) Similarly the \angle CAD will be greater than ACD. Hence the \angle BAC will be greater than ABC + BCA, and ... will be obtuse, when the side BC is greater than 2AD.

- (2) Dem.—If BD = AD, the $\angle BAD = ABD$; and if CB = AD, the $\angle CAD = ACD$. Hence the $\angle BAC$ is = ABC + BCA, and ... right when BC = 2AD.
- (3) In like manner it can be shown that the \angle BAC is acute, when BC is less than 2AD.
 - 3. Let ABCDE be the polygon.

Dem.—Produce AB, DC to meet in A'; BC, ED to meet in B', &c.

Now the sum of the \angle s of the \triangle BA'C is two right \angle s; similarly the sum of the \angle s of each of the external \triangle s is two right \angle s. Hence if there be n external triangles, the sum of their \angle s will be 2n right \angle s; but the sum of the exterior \angle s BCA', CDB', &c., is four right \angle s; and the sum of the exterior \angle s CBA', DCB', &c., is four right \angle s. Hence the sum of the remaining \angle s must be (2n-8) right \angle s; that is, 2(n-4) right \angle s.

4. Let BAC be the triangle.

Dem.—Produce BA to D, and bisect the \angle CAD by the line AE \parallel to BC.

The \angle EAC = ACB (xxix.); but EAC = EAD, and EAD = ABC; \therefore ACB = ABC. And hence AB = AC.

5. Let E be the point where CD cuts AB.

Dem.—Bisect AB in F. Join CF, DF. Now the lines AF, BF, CF, DF are equal (x11., Ex. 2). And because FD = FB, the \angle FBD = FDB = FDE + EDB; to each add the \angle EDB; then the \angle s EBD + EDB = FDE + 2EDB; but the \angle CEB = EBD + EDB (xxx11.); ... CEB = FDE + 2EDB; but CEB = FCB + CFE, and FCD = FDE; ... CFE = 2EDB. Again,

CFE = ACF + CAF; but ACF = CAF (v.); ... CFE = 2CAF, ... 2CAF = 2EDB. And hence CAF = EDB.

6. Let ABC be the triangle.

From B, C draw 1 BD, CE to the sides AC, AB, and let them meet in G; join AG, and produce it to meet BC in F. It is required to prove that AF is 1 to BC.

Dem.—Join DE. Now we have two right-angled triangles BEC, BDC, and we have joined their vertices E, D; hence (5) the \angle EDB = ECB. Similarly from the \triangle • AEG, ADG, the \angle EAG = EDG (5); ... EAG = FCG, and AGE = CGF (xv.); hence (Cor. 2) the \angle AEG = GFC; but AEG is a right angle; ... CFG is right; and hence AF is \bot to BC.

7. Let ABCD be the \square , and BE, CE the bisectors of the adjacent angles B, C. It is required to prove that the \angle BEC is right.

Dem.—The $\angle \cdot$ ABC, DCB equal two right angles (xxix); ... EBC + ECB equal a right angle; and hence the \angle BEC is right.

8. Let ABCD be the quadrilateral. Bisect the external \angle * A, B, C, D; let the bisectors meet in E, F, G, H. It is required to prove that the \angle * EHG, EFG, of the quadrilateral EFGH, are together equal to two right angles.

Dem.—Produce BA, CD to J, K. Now the ∠s ADC, ADK, DAB, DAJ equal four right angles; and the ∠s DHA, HAD, ADH equal two right angles; ... the ∠s of the △ HAD equal half sum of the ∠s ADC, ADK, DAB, DAJ; but the ∠s HAD, ADH are the halves of JAD, ADK; hence the ∠ DHA is half sum of BAD, ADC; in like manner BFC is half sum of ABC, BCD. Hence the sum of the angles DHA, BFC is half sum of the four angles of the quadrilateral ABCD, and ... equal to two right angles.

9. Let the sides of the triangle DEF be perpendicular to the

sides of ABC. It is required to prove that the Δ s DEF, ABC are equiangular.

Dem.—Since the \angle CHE, EGC are right, the sum of the \angle HCG + HEG = two right \angle (Cor. 3), and HED + HEG = two right \angle Reject the common \angle HEG, and we have the \angle HCG = DEF, that is, the \angle ACB = DEF. In like manner the \angle BAC = EFD, and ABC = EDF.

10. (1) Let M equal sum of sides, and N the hypotenuse...

Sol.—Draw any line AC, and make it equal to M. In AC take a part AD = N. At the point C in AC make the \angle ACB equal half a right angle. With A as centre, and AD as radius, describe the \bigcirc DBF, cutting CB in B. Join AB, and at the point B in BC make the \angle EBC = ACB. AEB is the required triangle.

Dem.—Because the \angle EBC = ACB, EC = EB (vi.). To each add AE, and we have AC = AE + EB; but AC = M (const.);

... AE + EB = M. Again, the $\angle AEB = EBC + ECB$ (xxxII.); but EBC = ECB; ... AEB = 2ECB, and is therefore a right angle.

(2) Let M equal differences of sides, and N the hypotenuse.

Sol.—Draw any line AC = N. In AC take AD = M. At the point D in AC make the \angle CDB = half a right angle. With A as centre, and AC as radius, describe the \bigcirc CBF, cutting DB in B. From B let fall the \bot BE on AC. Join AB. AEB is the required triangle.

Dem.—Because the \angle AEB is right, and EDB half right, ... EBD is half right, and (vi.) ED = EB. Hence AD is the

difference between AE and EB. Again, AC = AB; but AC = N. Hence AB = N.

11. Let ABC be an isosceles \triangle . From B let fall a \bot BD on AC. It is required to prove that the \angle DBC = half BAC.

Dem.—Bisect the \angle BAC by AE, meeting BC in E, and BD in F. Now the \angle BFE = AFD (xv.), and BEF = ADF (xx., Ex. 2); hence (Cor. 2) EBF = FAD; but FAD = half BAC. Therefore EBF = half BAC.

12. Let ABC be a triangle. Produce BC to E. Bisect the $\angle \bullet$ ABC, ACE by BD, CD. It is required to prove that the \angle BDC = half BAC.

Dem.—The \angle ACE = ABC + BAC (xxxII.), and DCE = DBC + BDC; but DCE = $\frac{1}{2}$ ACE; \therefore DBC + BDC = $\frac{1}{2}$ (ABC + BAC); but DBC = $\frac{1}{2}$ ABC. Hence BDC = $\frac{1}{2}$ BAC.

13. Dem.—Because AB = AD, the \angle ADB = ABD; but ADB = ACB + CBD (xxxII.); ... ABD = ACB + CBD. To each add the \angle CBD, and we have the \angle ABC = ACB + 2CBD; ... 2 CBD = ABC - ACB; and hence CBD = $\frac{1}{2}$ (ABC - ACB).

14. Dem.—Produce BA, BC to D, E. Bisect the $\angle \cdot$ CAD, ACE by AF, CF.

Now the \angle ACE = (A + B) (xxxII.); ... ACF = $\frac{1}{2}$ (A + B). Similarly the \angle CAF = $\frac{1}{2}$ (B + C). Hence the \angle AFC = $\frac{1}{2}$ (C + A).

PROPOSITION XXXIII.

1. Dem.—Join AD, BE, CF. Now, because AB is equal and parallel to DE, ... (xxxIII.) AD is equal and parallel to BE.

In like manner CF is equal and parallel to BE; hence CF is equal and parallel to AD; and ... (xxxIII.) AC is equal and parallel to DF.

2. (1) Let AB, CD be equal and parallel lines, and EH any other line. From A, B, C, D let fall \bot AE, BG, CF, DH on EH. It is required to prove that EG = FH.

Dem.—Through A, C draw AJ, CK | to EF.

Now, because AJ, CK are each || to EF, they are || to one another, and AB is || to CD; hence (xxix., Ex. 8) the \(\alpha \) BAJ = DCK, also the \(\alpha \) AJB = CKD, because each is right, and the side AB = CD; ... (xxvi.) AJ = CK; but AJ = EG, and CK = FH. Hence EG = FH.

- (2) As in (1) the $\angle \cdot$ BAJ, AJB are respectively equal to the $\angle \cdot$ DCK, CKD, and the side AJ = CK. Hence AB = CD.
- 3. Dem.—Since AB=CD, and AJ=CK, and the $\angle AJB=CKD$, each being right; ... (xxvi., Ex. 6) the $\triangle \cdot ABJ$, CDK are equal in every respect; hence the $\angle ABJ=CDK$; but CDK = CMG (xxix.); ... ABJ=CMG. Hence AB is parallel to CD.
- 4. Let AB, CD be the equal and parallel lines. Join AD, BC, intersecting in E. It is required to prove that AD, BC bisect each other in E.

Dem.—The \angle ^s ABE, BAE are respectively equal to the \angle ^s DCE, EDC, and the side AB = CD (hyp.). Hence (**xxv**₁.) BE = CE, and AE = DE.

PROPOSITION XXXIV.

1. See last exercise to Prop. xxxIII.

2. Let ABCD be the \square ; AC, BD its diagonals, which are equal. It is required to prove that the \angle ⁸ of ABCD are right \angle ⁸.

Dem.—Because AD = BC, and AB common, and the bases BD, AC equal, \cdot : (VIII.) the \angle BAD = ABC; but (XXIX.) BAD + ABC equal two right angles; hence each is right, and (XXXIV.) the \angle BAD = BCD, and ABC = ADC. Therefore all the \angle s are right angles.

3. See "Sequel to Euclid," Prop. xv., p. 11, 3rd Edition.

4. Let AB, CD be two | lines, of which AB is the greater. Join AC, BD. It is required to prove that AC, BD produced will meet.

Dem.—From BA cut off EB = CD. Join EC. Because EB is equal and parallel to CD; ... (xxxiii.) EC is equal and parallel to BD; and ... (xxix.) the \angle AEC = ABD. To each add the \angle CAE; then CAE + AEC = CAE + ABD; but CAE and AEC are less than two right angles (xvii.); hence CAE and ABD are less than two right angles. And ... AC, BD, if produced, will meet.

5. Let ABCD be a quadrilateral, having AB, CD parallel, but not equal; and AC, BD equal, but not parallel. It is required to prove that the \angle * CAB, CBD are supplemental.

Dem.—In CD take CE = AB. Join BE. Now (xxxIII.) AC is = and || to BE; but AC = BD '(hyp.); ... BE = BD; and ... (v.) the \(\text{DE} = BED, \) and (xxxIV.) the \(\text{CAB} = CEB; \) hence the \(\text{CAB} + BDE = CEB + BED. \) But CEB and BED are supplemental; hence CAB and BDE are supplemental.

6. Let A, B, C be the middle points of the sides.

Sol.—Join AB, BC, CA; and through the points A, B, C draw DE, EF, FD | to BC, AC, AB. DEF is the required triangle.

Dem.—AB = CD (xxxiv.), and AB = CF; hence CD = CF. In like manner AD = AE, and BF = BE.

7. Let ABCD be a quadrilateral, whose diagonals are AC, BD. Through B, D, draw FG, EH \parallel to AC, and through C, A, draw GH, EF \parallel to BD. Join FH. It is required to prove that the area of the \triangle EFH is equal to the area of ABCD.

Dem.—The area of the \triangle EFH is half the area of the \square EFGH (xxxiv.), and the area of ABCD is half the area of EFGH; \therefore EFH = ABCD; and the sides EF, EH are equal to BD, AC; and the \angle FEH = AJD, which is the \angle between AC, BD.

PROPOSITION XXXVI.

Dem.—Produce AB, EF to meet in J. Through J draw JK || to AH or BG, and produce DC to meet it in K. Join KG. Now JK = BC (xxxiv.); but BC = FG (hyp.); ... JK = FG, and it is || to it; hence JFGK is a \subseteq; ... JF is || to KG; but JE is || to GH. Hence KG, GH are in one straight line; ... JEHK is a \subseteq and it is equal to JADK (xxxv.); but JBCK = JFGK. Hence ABCD = EFGH.

PROPOSITION XXXVII.

- 1. See "Sequel to Euclid," Prop. vi., p. 4, 3rd Edition.
- 2. Let ABCD be a given quadrilateral. It is required to construct a triangle equal in area to ABCD.
- Sol.—Join AC. Produce DC to E; and through B draw BE || to AC. Join AE. ADE is the △ required.
- Dem.—The As ABC, AEC are equal (xxxvII.) To each add the A ACD, and we have the A ADE equal to the quadrilateral ABCD.
- 3. Let the pentagon ABCDE be the given rectilineal figure. It is required to construct a Δ equal in area to ABCDE.
- Sol.—Join AC, AD. Through B, E draw BF, EG || to AC, AD, and meeting DC produced both ways in F, G. Join AF, AGF is the \triangle required.
- Dem.—The As ABC, AFC are equal (XXXVII.); to each add ACDE, and we have the pentagon ABCDE equal to the quadrilateral AFDE. Again (xxxvII.), the \triangle AGD = AED. To each add the \triangle ADF, and we have the \triangle AGF equal to the quadrilateral AFDE; but AFDE = ABCDE. Hence AGF = ABCDE.
- 4. Let ABCD be a given parallelogram. It is required to construct a lozenge equal to ABCD, and having CD as base.
- Sol.—If AD = DC, the thing required is done. If not, let DC be the greater. With D as centre, and DC as radius, describe Through C draw CF a O ECG, cutting AB in E. Join DE. | to DE, meeting AB produced in F. DEFC is the required lozenge.
- **Dem.**—DE = DC; but DC = EF (xxxiv.); \therefore DE = EF. Hence the four sides are equal; ... DEFC is a lozenge, and (xxxv.) is equal to ABCD.
- 5. Let ABC be a \triangle , whose base BC is given, and whose area is given. It is required to find the locus of its vertex A.
- Sol.—Through A draw DE || to BC. DE is the required locus. Join BF, CF. Now Dem.—Take any other point F in DE. (xxxvII.) the As ABC, FBC are equal. Hence DE is the locus of the vertex of all triangles, having BC as base, and whose area is equal to the area of the \triangle ABC.
- 6. Dem.—Through E draw EG | to FD, and meeting AD Join GF, GC. Now (xxxvII.) the \triangle EFD = GFD; but GFD = GCD, and GCD is less than ACD; .. EFD is less than ACD, that is, is less than half ABCD.

PROPOSITION XXXVIII.

1. Let ABC be the \triangle , and AD one of its medians. It is required to prove that AD bisects the triangle.

Dem.—BD = CD (Def. Prop. xx.); \therefore (xxxviii.) the \triangle ABD = ACD.

2. Let ABC, DEF be two \triangle ^s, having the sides AB, BC equal o the sides DE, EF, and the contained \angle ^s supplemental. It is required to prove that the \triangle ^s are equal.

Dem.—Produce CB to G, and make BG = BC or EF. Join AG. Now the ∠* ABC, DEF are supplements (hyp.), and ABC, ABG are supplements (xIII.) Reject ABC, and we have ABG = DEF; hence (iv.) the Δ ABG = DEF; but ABG = ABC xxxvIII.) Hence DEF = ABC.

3. Dem.—Divide the base BC of the \triangle ABC into any number, such as four equal parts, in the points D, E, F. Join AD, AE, AF. It is required to prove that the four \triangle • into which ABC is divided are equal.

The \triangle BAD = EAD (xxxviii.) Similarly EAD = EAF, and EAF = CAF. Hence the four \triangle are equal.

4. Let ABDC be a \square , whose diagonals AD, BC intersect in F. In BC take a point E. Join EA, ED. It is required to prove that the \triangle ABE = DBE, and that ACE = DCE.

Dem.—AF = DF (xxxiv., Ex. 1); hence (xxxviii.) the Δ AFB = DFB, and AFE = DFE; hence AEB = DEB; but ABC = DBC; ... AEC = DEC.

5. Let ABCD be a quadrilateral; and let AC, one of its diagonals, bisect the other, BD in E. It is required to prove that AC bisects ABCD.

Dem.—The \triangle AEB = AED (xxxvIII.), and the \triangle CEB = CED. Hence ABC = ADC.

- 6. See "Sequel to Euclid," Prop. xIII., p. 10, 3rd Edition.
- 7. See "Sequel to Euclid," Prop. xIII., p. 10, Cor. 1.
- 8. See "Sequel to Euclid," Prop III., Cor 1, p. 2.
- 9. Let ABC be a \triangle ; D, E the middle points of AB, AC; F any point in BC. Join DE, EF, FD. It is required to prove that DEF = $\frac{1}{4}$ ABC.

Dem.—Bisect BC in G. Join DG, EG. Now (xxxvII.) the \triangle DEF = DEG; but DEG = $\frac{1}{4}$ ABC (8). Hence DEF = $\frac{1}{4}$ ABC.

10. Let ABC be a given \triangle , and D a given point in BC. It is required to draw a line through D, bisecting the \triangle ABC.

Sol.—Join AD. Bisect BC in E. Through E draw EF || to-AD, and meeting AB in F. Join DF. DF is the required line.

Dem.—Join AE. Now (xxxvII.) the $\triangle \cdot EFD$, EFA are equal. To each add the $\triangle BEF$, and we have the $\triangle BFD = BAE$; but BAE. = $\frac{1}{4}$ BAC. Hence BFD = $\frac{1}{2}$ BAC.

11. Let ABC be a given \triangle , and D a given point within it. It is required to trisect ABC by three lines drawn from D.

Sol.—Trisect BC in E, F (xxxiv., Ex. 3) Join AD, DE, DF. Through A draw AG, AH || to DE, DF. Join DG, DH. AD, DG, DH trisect ABC.

Dem.—Join AE, AF. Now (xxxvII.) the $\triangle \circ ADG$, AEG are equal. To each add the $\triangle AGB$, and we have the quadrilateral ADGB equal to the $\triangle AEB$; but AEB = $\frac{1}{3}$ ABC (3); hence ADGB = $\frac{1}{3}$ ABC. In like manner ADHC = $\frac{1}{3}$ ABC; ... the $\triangle DGH = \frac{1}{3}$ ABC. Hence the $\triangle ABC$ is trisected by the lines AD, GD, HD.

12. Let ABCD be a □, whose diagonals AC, BD intersect in E. Through E draw any line FG, meeting AB, CD in F, G. It is required to prove that FG bisects ABCD.

Dem.—The \angle BEF = GED (xv.), and the \angle FBE = GDE (xxix.), and the side EB = ED (xxxiv., Ex. 1); hence (xxvi.) the \triangle ^s BEF, DEG are equal. Similarly, AEF = CEG, and AED = CEB. Hence FG bisects ABCD.

13. Let ABCD be a trapezium. Bisect AD in E. Join EB, EC. It is required to prove that the \triangle BEC = $\frac{1}{2}$ ABCD.

Dem.—Produce BE, CD to meet in F. Now (xxvi.) the \triangle AEB = DEF, and EB = EF. And since AEB = DEF, AEB + CED = CEF; but (xxxviii.) CEF = BEC. Hence BEC = AEB + CED.

PROPOSITION XL.

1. Let ABC, DEF be two \triangle s whose bases and altitudes are equal. It is required to prove that the \triangle s are equal.

Dem.—Produce BC; and in BC produced cut off GH = EF or BC, and construct the \triangle JGH, having its sides JG, GH, HJ respectively equal to the sides DE, EF, FD of the \triangle DEF. Join AJ; and from A, J let fall \bot AL, JK on BH. Because the \triangle DEF = JGH, their altitudes are equal; but the altitudes of DEF and ABC are equal (hyp.); hence the altitudes of JGH

and ABC are equal; that is, JK = AL, and they are parallel; hence (xxxIII.) AJ, BH are parallel; ... (xxxVIII.) the \triangle ABC = JGH; but JGH = DEF. Hence ABC = DEF.

- 3. See "Sequel to Euclid," Prop. 11., p. 2.
- 4. See "Sequel to Euclid," Prop. III., Cor. 1, p. 2.
- 5. See "Sequel to Euclid," Prop. 11., Cor., p. 2.
- 6. See "Sequel to Euclid," Prop. v., p. 3.
- 7. Let ABCD be a trapezium, whose opposite sides AD, BC are \parallel ; E, F the middle points of AB, DC. Join EF. It is required to prove that AD + BC = 2EF.

Dem.—Through A draw AH | to DC, meeting EF, BC in G, H.

Now (xxxiv.) AD = GF, and HC = GF; ... AD + HC = 2GF, and (5) BH = 2EG. Hence AD + BC = 2EF.

- 8. See "Sequel to Euclid," Prop. III., Cor. 2, p. 3.
- 9. Let ABCD be a quadrilateral; AC, BD its diagonals. Bisect AC, BD in E, F. Join EF. Bisect AB, CD, BC, AD in G, H, J, K. Join GH, JK. It is required to prove that the lines EF, GH, JK are concurrent.

Dem.—Join EG, EH, FG, FH, GJ, GK, HJ, HK.

Now ((2) and (5)) GF is \parallel to AD, and $=\frac{1}{2}$ AD. Similarly, EH is \parallel to AD, and $=\frac{1}{2}$ AD; hence GF is = and \parallel to EH; ... (xxxIII.) GFHE is a \square ; hence (xxxIV., 1) the diagonal EF bisects GH in L. In like manner GJHK is a \square , and the diagonal JK bisects GH. Hence the lines EF, GH, JK are concurrent.

PROPOSITION XLV.

1. Let A and B be two rectilineal figures. It is required to construct a rectangle equal to the sum of A and B.

Sol.—Construct a rectangular parallelogram EFGH equal to A (xlv.), and to the straight line GH apply a \square GHIK equal to B, and having the \angle GHI a right angle. FI is the required rectangle.

Dem.—The figure FI is equal to the sum of A and B, and it

is evidently a rectangle.

2. If we apply the
GHIK to the left of GH, it is evident that EFKI will be the required rectangle.

PROPOSITION XLVI.

1. (1) Let AB, CD be equal lines. Upon AB, CD describe squares ABEF, CDGH. It is required to prove that ABEF = CDGH.

Dem.—Join AE, CG. Now AB = BE, and CD = DG; but AB = CD; hence AB and BE = CD and DG, and the \angle ABE = CDG; ... (iv.) the \triangle ABE = CDG; but ABEF = 2ABE, and CDGH = 2CDG. Hence ABEF = CDGH.

(2) Let ABEF = CDGH. It is required to prove that AB = CD.

Dem.—If not, from AB cut off AJ = CD; and on AJ describe the square AJKL. Now since AJ = CD, AJKL = CDGH; but CDGH = ABEF (hyp.); ... AJKL = ABEF, which is absurd. Hence AB = CD.

2. Let ABCD be a square, and BD one of its diagonals. In BD take a point E, and through E draw FG, HJ || to AB, AD. It is required to prove that HG, FJ are squares.

Dem.—The \angle ADB = ABD (v.); but ADB = HEB (xxix.); \therefore ABD = HEB; hence the side HE = HB; but HB = EG, and HE = BG; \therefore HB, HE, GB, EG are all equal. Again, the \angle EHB, GBH equal two right \angle but GBH is right; \therefore EHB is right, and (xxxiv.) the opposite \angle are equal. Hence EGBH is a square.

3. Let ABCD be a square, and E, F, G, H points in the sides AB, BC, CD, DA respectively equidistant from A, B, C, D. Join EF, FG, GH, HJ. It is required to prove that EFGH is a square.

Dem.—The $\triangle \bullet$ AHE, BEF are equal in every respect (iv.); ... the side EH = EF. Similarly, EF = GF, and EH = GH. Hence the four sides are equal. Again, the \angle AHE = BEF. To each add the \angle AEH, and we have the $\angle \bullet$ AHE, AEH equal to the $\angle \bullet$ BEF, AEH; but AHE + AEH = a right \angle , since the \angle at A is right; ... BEF + AEH = a right \angle . Hence the \angle FEH is right. In like manner the other $\angle \bullet$ are right; ... EFGH is a square.

4. Let ABCD be a square. It is required to divide it into five equal parts, namely, four right-angled triangles and a square.

Sol.—Divide AC into five equal parts, and let $AE = \frac{2}{5} AC$. Through E draw EF || to AB. Upon AB describe the semicircle AGHB, cutting EF in the points G, H. Join AG, and produce

it. From C let fall a \perp CK on AK, and produce it. Join BG. From D let fall DM \perp to BG, meeting CK produced in L. ABCD is divided into five equal parts.

Dem.—Join OG. Because O is the centre of AGHB, OG = OA; ... (v.) the $\angle OAG = OGA$. Similarly, the $\angle OBG = OGB$. Hence (xxxII., Cor. 7) the & AGB is right. Again, since the & AKC is right, the L. KCA, KAC are together equal to a right L, and therefore equal to the L CAB, which is right. Reject the L KAC, and we have the \angle KCA = KAB, and the \angle CKA = AGB, because each is right, and the side AC = AB; hence (xxvi.) the $\triangle AKC = AGB$; $\therefore AK = BG$, and CK = AG. In like manner it can be shown that the A. CLD, BMD are each equal to AGB. Hence the four A are equal, and the lines AK, BG, CL, DM are equal, and also the lines AG, BM, CK, DL; hence the remainders GK, GM, LK, LM, are equal. Again, the rectangle ABEF is \$ ABCD, and the △ AGB is \$ ABEF; .. AGB is \$ ABCD; ... AKC, CLD, BMD are each } ABCD. Hence KGML. must be } ABCD, and it is a square, for we have proved the sides equal, and the Lo are right angles.

PROPOSITION XLVII.

- 1. Dem.—ACHK=AOLG; but AOLG is the rectangle AG.AO; that is, AB. AO, and ACHK is AC^2 . Hence $AC^2 = AB \cdot AO$. Similarly, $BC^2 = AB \cdot BO$.
- 2. Dem.—From GA cut off GM = GL, and draw MN || to GL. Now the figure AL = AH (xLVII.); but AH = $AC^2 = AO^2 + OC^2$; and GN = $MN^2 = AO^2$; hence OM = CO^2 ; but OM = AO . OB, since ON = OB. Hence $CO^2 = AO \cdot OB$.
- 3. Dem.— $AC^2 = AO^2 + OC^2$, and $BC^2 = BO^2 + OC^2$. Subtracting, we get $AC^2 BC^2 = AO^2 BO^2$.
- 4. Let AB, CD be the lines whose squares are given. It is required to find a line whose square shall be equal to the sum of the squares on AB and CD.
- Sol.—Erect AE \perp to AB, and make it equal to CD. Join BE. Now (XLVII.) BE² = AB² + AE² = AB² + CD².
- 5. Let ACB be a \triangle whose base AB is given, and the difference of the squares of its sides. It is required to prove that the locus of C is a right line \bot to AB.
- **Dem.**—From C let fall a \perp CO on AB. Now (3) AC² BC² = AO² BO²; but AC² BC² is given; ... AO² BO² is given, and ... O is a given point; ... the line OC is given in position. Hence OC is the locus of C.
- 6. **Dem.**—Let P, Q be the points in which AC, GC intersect BK. Now (iv.) the \triangle CAG, BAK are equal in every respect; ... the \angle ACG=AKB, and the \angle CPQ=APK (xv.); ... (xxxii., Cor. 7) the \angle CQP=KAP; ... CQP is a right \angle , and CG is \bot to BK.
 - 7. See "Sequel to Euclid," Book I., Prop. xxIII. (3).
- 8. Dem.—Since EB = AH, AB = AE + AH, and AC is the square on AB; ... AC is equal to the square on the sum of AE and AH; but AC exceeds EG by four times the \triangle AEH, and EG is the square on EH; hence the square on the sum of AE and AH exceeds the square on EH by four times the \triangle AEH.
- 9. Dem.—Join PH, QC. Now (xxxvii.) the \triangle PCQ = PBQ. To each add APQ, and we have the \triangle ACQ = APB. Again, the sum of the \triangle * KAP, HCP equals $\frac{1}{2}$ KC, and the \triangle KAB = $\frac{1}{2}$ KC (xii.); ... KAB = KAP and HCP. Reject the \triangle KAP, and we have the \triangle APB = HCP; but APB = AQC; hence HCP = AQC, and their bases HC, AC are equal. Hence (xii.) their altitudes PQ, PC are equal.

10. See "Sequel to Euclid," Book I., Prop. xxIII. (2).

11. Let M, N be two lines. It is required to find a line whose square shall be equal to $M^2 - N^2$.

Sol.—Draw a line AB = M, and in it take AC = N. Erect $CE \perp$ to AB. With A as centre, and AB as radius, describe a \odot cutting CE in D. CD is the required line.

Dem.—Join AD. Now AD² = AC² + CD²; ... CD² = AD² - AC² = AB² - AC² = M² - N².

12. Dem.—From AC cut off AD = BC; then, evidently, CD is the difference between AC and CB. On AB describe a square ABFG, and on CD describe a square CDEH; and produce DE, EH to meet ABFG in G, F (figure similar to that on p. 89, "Elements").

Now $\Im E$ is less than AF by the sum of the four triangles; that is, by four times the \triangle ABC. Hence $CD^2 + 4$ ABC = AB².

- 13. Dem.—Join CF, CG, cutting AE, BK in P, Q. Through A draw AM \parallel to GC, cutting BK in R, and meeting LC produced in M. Join BM, cutting AE in N. Now, because AM is \parallel to GC, and AG to ML, AGCM is a \square ; ... AG = CM; but AG = BF; ... BF = CM; ... FCMB is a \square ; ... CF is \parallel to BM; hence (xxix.) the \angle ANM = APC; but APC is a right \angle (6); ... ANM is right, and AN is \bot to BM. In like manner BR is \bot to AM; and OM being \bot to AB, ... AN, BR, OM are the \bot ° of the \triangle AMB; ... (xxxii., Ex. 6) these lines are concurrent; that is, the lines AE, BK, CL are concurrent.
- 14. Let ABC be an equilateral triangle. Let fall a \perp AD on BC. **Dem.**—AB² = AD² + BD² (xLVII.); ... 4 AB² = 4 AD² + 4 BD², but AB² = 4 BD², since AB = BC = 2 BD. Subtracting, we get $3 \text{ AB}^2 = 4 \text{ AD}^2$.
 - 15. Sol.—In AB take AH = BG. Join DH, FH. These lines

divide the figure into the parts required.

Dem.—For if we take the \triangle AHD and place it in the position DCK, and place the \triangle FHG in the position FKE, the figure HFKD will be equal to the figure AGFECD; and it is evidently a square.

16. Let AB be the hypotenuse of the right-angled \triangle ACB. Bisect BC, AC in D, E. Join AD, BE. It is required to prove that $4 \text{ AD}^2 + 4 \text{ BE}^2 = 5 \text{ AB}^2$.

Dem.— $4 \text{ AD}^2 = 4 \text{ AC}^2 + 4 \text{ CD}^2$; but BC² = 4 CD^2 ; ... 4 AD^2 = $4 \text{ AC}^2 + \text{ BC}^2$. Similarly, $4 \text{ BE}^2 = 4 \text{ BC}^2 + \text{ AC}^2$. Adding, we get $4(\text{AD}^2 + \text{BE}^2) = 5(\text{AC}^2 + \text{BC}^2) = 5 \text{ AB}^2$.

17. Let ABC be a \triangle , and O a point within it. Through O draw \bot ⁸ AD, BE, CF to BC, CA, AB. It is required to prove that AF² + BD² + CE² = BF² + DC² + EA². Now (2) AF² - BF² = AO² - BO²; BD² - CD² = BO² - CO²; and CE² - AE² = CO² - OA². Adding, we get AF² + BD² + CE² - (BF² + DC² + EA²) = 0; and hence AF² + BD² + CE² = BF² + DC² + EA². Similarly for a figure of any number of sides.

18. Let ABCD be a rectangle, and O any point. Join OA, OB, OC, OD. It is required to prove that $OA^2 + OC^2 = OB^2 + OD^2$.

Dem.—Produce DA, CB to F, G, and let fall \perp ⁵ OF, OG on DF, CG.

Now, $OD^2 = DF^2 + OF^2$; and $OA^2 = AF^2 + OF^2$; ... $OD^2 - OA^2 = DF^2 - AF^2$. Similarly, $OC^2 - OB^2 = CG^2 - GB^2$; but $DF^2 = CG^2$, and $AF^2 = GB^2$; ... $OD^2 - OA^2 = OC^2 - OB^2$; and, by transposition, we have $OD^2 + OB^2 = OC^2 + OA^2$.

19. Let AB be the hypotenuse of a right-angled \triangle ABC. It is required to divide it into two parts, such that the difference of their squares shall equal AC².

Sol.—Bisect BC in D. Join AD, and let fall the \perp DE on AB. $AE^2 - BE^2 = AC^2$.

Dem.— $AD^2 - BD^2 = AE^2 - BE^2$ (3); that is, $AC^2 + CD^2 - BD^2 = AE^2 - BE^2$; but $CD^2 = BD^2$ (const.); ... $AC^2 = AE^2 - BE^2$.

20. Let ABC be the \triangle . From B, C let fall \bot BE, CD on AC, AB. It is required to prove that AB. BD + AC.CE = BC².

Dem.—On BC describe a square BCFG. Produce BE, CD to H, J; and through B, C draw BL, CK \parallel to DJ, EH, and make BL = AB, and CK = AC. Complete the \square BLJD, CKHE. Draw AM \parallel to CF, meeting GF in M. Now it can be shown, as in (xLVII.), that BM = BJ, and CM = CH; \therefore BF = BJ + CH; but BF = BC², BJ = AB. BD, and CH = AC. CE. Hence BC² = AB. BD + AC. CE.

Miscellaneous Exercises on Book I.

- 1. See "Sequel to Euclid," Book I., Prop. III., Cor. 1.
- 2. Let DEF be the original \triangle , ABC the \triangle formed by drawing through each vertex a \parallel to the opposite side. Let fall a \perp FG on DE. It is required to prove that GF bisects BC perpendicularly.
- **Dem.**—The \angle CFG = DGF (xxix.); but DGF is right; ... CFG is right. Again, BF = DE (xxxiv.), and CF = DE; ... BF = CF. Hence GF bisects BC perpendicularly. Similarly, the \bot ^s from D, E on EF, DF bisect AB, AC perpendicularly.
- 3. Let ABC be a given \(\alpha \), and D a given point. It is required to draw a line through D, so that the parts DA, DC, intercepted by AB, BC, may be equal.
- Sol.—Through D draw DE \parallel to AB, meeting BC in E, and make EC = BE. Join CD, and produce it to meet AB in A.

Dem.—AC is bisected in D (xL., Ex. 3).

- 4. Let BD, CE, two of the medians of the \triangle ABC, intersect in H. Join AH, and produce it to meet BC in F. It is required to prove that AF is the third median.
- **Dem.**—Produce AF to G; draw BG \parallel to EH, and join GC. Now (xL., Ex. 3) AG is bisected in H; and in the \triangle AGC, HD is \parallel to GC (xL., Ex. 2); hence BHCG is a \square ; and \therefore (xxxrv., Ex. 1) BC is bisected by HG, in F. Hence AF is a median of the \triangle ABC.
 - 5. See "Sequel to Euclid," Book I., Prop. iv., Cor.
 - 6. Let a, b be the two sides, and c the median of the third side. It is required to construct a \triangle having two sides respectively equal to a and b, and the median of the third side equal to c.
 - **Sol.**—Construct the \triangle ABC, having AB = a, AC = b, and BC = 2c. Bisect BC in D. Join AD, and produce it until DE = AD. Join EC. ACE is the required triangle.
 - Dem.—The As ADB, CDE are equal (iv.) in every respect;

... AB = CE; but AB = a; ... CE = a, and AC = b, and BC = 2e; ... CD = c.

7. (1) See (xx., Ex. 9).

(2) Let a, b, c be the sides of the Δ , and a, β , γ the medians.

Dem. $-\frac{2}{3}\beta + \frac{2}{3}\gamma > a$ (Ex. 5). In like manner $\frac{2}{3}\gamma + \frac{2}{3}a > b$; and $\frac{2}{3}a + \frac{2}{3}\beta > c$. Adding, we have $\frac{4}{3}(a + \beta + \gamma) > (a + b + c)$; and therefore $(a + \beta + \gamma) > \frac{3}{4}(a + b + c)$.

8. Let a be the side, and b, c, the medians. It is required to construct a \triangle , having a side equal to a, and the medians of the remaining sides equal to b, c.

Sol.—Construct a \triangle ABC (xxII.), having BC (the base) = a, AB = $\frac{2}{3}b$, and AC = $\frac{2}{3}c$. Bisect BC in D. Join DA, and produce to E, so that AE = 2 AD. BEC is the required \triangle .

Dem.—Produce BA, CA to meet CE, BE in F, G. Now ED is a median of the \triangle EBC (const.), ... (4) BF, CG are medians; hence (5) BA = $\frac{2}{3}$ BF; but BA = $\frac{2}{3}b$; ... BF = b. Similarly, CG = c.

9. Let a, b, c be the medians of a Δ . It is required to construct it.

Sol.—Construct a \triangle ABC, having AB = $\frac{2}{3}a$, BC = $\frac{2}{5}b$, and CA = $\frac{2}{3}c$. Bisect BC in D. Join AD, and produce it to E, so that DE = AD. Produce CB to F, and make BF = BC. Join AF, EF. AFE is the \triangle required.

Dem.—Join EB, and produce it to meet AF in H. Produce AB to meet EF in G. Join CE. Now since AD = DE, and BD = CD, ABEC is a parallelogram; ... BH is \parallel to AC. Hence (xL., Ex. 3) AF is bisected in H. Similarly, FE is bisected in G, and (const.) AE is bisected in D; ... (Def.) AG, DF, EH are the medians; hence (Ex. 5) AB = 2BG; but AB = $\frac{2a}{3}$; ... AG = a. In like manner it can be shown that FD = b, and EH = c.

10. Let ABC be the \triangle . Let fall a \perp AD on BC. Bisect the \angle BAC by AE, meeting BC in E. It is required to prove the \angle DAE = $\frac{1}{2}$ (ACB – ABC).

Dem.—From AB cut off AF = AC. Join CF, cutting AD, AE in G, H. Join EF. Now (v.) the \angle AFC = ACF, and (iv.) the base EC = EF; ... the \angle EFC = ECF; hence the \angle AFE = ACE; but AFE = FBE + FEB (xxxii.); ... ACB = ABC + FEB; hence FEB = ACB - ABC; but ECF = $\frac{1}{2}$ FEB; ... ECF = $\frac{1}{2}$ (ACB - ABC). Again, the \angle AHG is right (iv., Ex. 1), and GDC is right, and the \angle AGH = CGD (xv.); ... the \angle GAH = GCD. Hence GAH = $\frac{1}{2}$ (ACB - ABC).

11. Let AM, BN be the two || lines, and P the given point. It is required to find in AM, BN two points equidistant from P, and whose line of connexion shall be || to a given line MN.

Sol.—From P let fall a \perp PQ on MN. Bisect the part CD

between AM, BN in E. Through E draw AB | to MN. A, B are the required points.

Dem.—Join AP, BP. Now the \angle PEB = PQN (xxix.); but PQN is a right \angle , ... PEB is right; and since CD is bisected in E, ... (xxix., Ex. 4) AB is bisected in E. Now AE = BE, and EP common, and the \angle AEP = BEP; ... (iv.) AP = BP.

12. Let a be the side, and b, c the two diagonals.

Sol.—Construct the \triangle AEB, having AB = a, $AE = \frac{1}{2}b$, and $BE = \frac{1}{2}c$. Produce AE, BE to C, D, so that CE = AE, and DE = BE. Join CD, AD, BC. ABCD is the required parallelogram. Dem.—The side AB = a, and AC, BD = b, e.

13. Let ABC be a \triangle , having the side AB greater than AC. It is required to prove that BE, the median of AC, is greater than CF, the median of AB.

Dem.—Let BE, CF intersect in G. Join AG, and produce it to meet BC in D. AD is the median of BC. Now because BD=CD, AD common, and the base AB greater than AC, ... (xxv.), the \angle ADB is greater than ADC. Again, BD=CD, GD common, and the \angle BDG greater than CDG; ... (xxiv.) BG is greater than CG; but BG= $\frac{2}{3}$ BE, and CG= $\frac{2}{3}$ CF (5). Hence-BE is greater than CF.

14. Let AB, CD be two | lines, and E a given point. It is required to find in AB, CD two points that shall subtend a right angle at E, and be equally distant from it.

Sol.—From E let fall a \perp EF on AB. Draw EG || to AB, and make it equal to EF. From G draw GH \perp to CD. In AB take FJ=GH. H, J are the required points.

Dem.—Join EH, EJ. Because EF = EG, and FJ = GH, and the \angle EFJ = EGH, \therefore (iv.) EJ = EH, and the \angle FEJ = GEH. To each add the \angle FEH, and we have the \angle JEH = FEG; but FEG is a right \angle . Hence JEH is right.

15. Let ABC be an isosceles \triangle , and D a point in the base BC. From D let fall \bot DE, DF on AB, AC. From B let fall a \bot BG on AC. It is required to prove that BG = DE + DF.

Dem.—From D draw DH || to AC, meeting BG in H. Now (xxix.) the \angle HDB = ACD; but ACD = ABD (hyp.); ... HDB = EBD, and the \angle BHD = BED, each being right; ... (xxvi.) BH = DE; but HG = DF (xxxiv.). Hence BG = DE + DF.

16. See Book IV., Prop. v., Ex. 1, second proof.

17. Let ABC be the \triangle . Bisect the \angle BAC by AD, meeting BC in D. From D draw DE, DF \parallel to AB, AC. AEDF is an inscribed lozenge.

Dem.—The \angle EAD = ADF (xxix.); but EAD = FAD (const.); \therefore ADF = FAD, and \therefore AF = DF. Similarly, AE = DE; but (xxxiv.) AF = DE, and AE = DF. Hence the four sides AF, DF, AE, DE are equal; \therefore AEDF is a lozenge.

18. See "Sequel to Euclid," Book I., Prop. xiv.

19. (1) Let AB, AC be two fixed lines, and P the point. Let fall 1 PD, PE on AB, AC; then, being given the sum of PD and PE, it is required to find the locus of P.

Dem.—Produce EP to F, and make PF = PD. Through F draw GF || to AC, meeting AB in G. Join GP, and produce it both ways; GP is the required locus. Because PF = PD, to each add PE, and we have EF = PD + PE; ... EF is given; and since GF is at a given distance from AC, GF is given in position. Again, since each of the \angle ⁵ PFG, PDG is right, PF² + FG² = PD² + DG²; but PF² = PD² (const.); ... GF² = GD²; ... GF = GD. Now GF = GD, GP common, and the base PF = PD; ... (VIII.) the \angle PGF = PGD. Then, since AB, GF are

two fixed lines, and GP bisects the \angle between them, \therefore GP is given in position, and is the locus of P.

(2) May be done in like manner.

20. Let ABC be an equilateral Δ , and P any point within it. From P let fall \perp ⁸ PD, PE, PF on AB, BC, CA, and from A let fall a \perp AK on BC. It is required to prove that PD+PE+PF=AK.

Dem.—Through P draw GH || to BC, meeting AB, AC, AK in G, H, L; and from G let fall a \perp GJ on AC. Now the \angle AGH = ABC (xxix.); ... AGH is an \angle of an equilateral \triangle . Similarly, AHG is an \angle of an equilateral \triangle . Hence AGH is an equilateral \triangle ; ... AL = GJ; but GJ = PD + PF (Ex. 15); ... AL = PD + PF, and PE = LK. Hence AK = PD + PE + PF.

21. See "Sequel to Euclid," Book I., Prop. XI.

22. See "Sequel to Euclid," Book I., Prop. x1., Cor. 1.

23. Let ABC be a \triangle , and L a given length. It is required to find a point F in BC, such that if FK, FG be drawn || to AB, AC, the sum of AG, AK shall be equal to L.

Sol.—From B draw BD || to AC, and make it = L. From D

draw DE | to AB, and produce AC to meet it in E. Bisect the \angle AED by EF, meeting BC in F. F is the point required.

Dem.—Through F draw GH \parallel to BD, and FK \parallel to AB. Now the \angle HEF = KEF (const.), and (xxxx.) the \angle KEF = EFH; \therefore EFH = HEF, and \therefore HE = HF; but HE = FK, \therefore FK = FH. To each add FG, and we have FK + FG = GH; that is, AG + AK = GH; but GH = BD = L. Hence AG + AK = L.

24. (1) Let BAC, EDF be two \angle , whose legs AB, DE, AC, DF are respectively \parallel . Bisect BAC, EDF by AG, DH. It is required to prove that AG, DH are \parallel .

Dem.—Join AD, and produce it to J. Now (xxxx.) the \angle JDE = JAB, and JDF = JAC; ... FDE = CAB; hence FDH = CAG.

And it has been shown that JDF = JAC; ... JDH = JAG. Hence (xxviii.) DH is parallel to AG.

(2) Let BAC, EDF be the \angle . Bisect BAC, EDF by AG, DH. Produce GA, HD to meet in L. It is required to prove that HL is \perp to GL.

Dem.—Produce FD to J, and bisect the \angle JDE by DK. Now the \angle FDH = EDH, and JDK = EDK; hence HDK = half sum

of JDE and EDF; but JDE and EDF = two right $\angle *$; ... HDK is a right \angle , and HDK = HLG; ... HLG is right. And hence HL is \bot to GL.

25. Let ABC be the △ of which A is the vertex; produce BA, CA to D, E. Bisect the ∠ SCAD, BAE, by the line FG. From

B, C let fall \perp ^s BG, CF, on GF. Bisect the \angle BAC by AH. Join BF, CG. It is required to prove that BF, CG meet on AH.

Dem.—Produce CF to meet AD in D. Now the ∠ CAF = DAF, and CFA = DFA, and AF is common; ... (xxvi.) CF = DF; and because the ∠ DFA = HAF, each being right, AH is || to CD. Now, since F is the middle point of the base CD of the Δ CBD, and BF joined, and AH || to CD, ... (xxviii., Ex. 7), BF bisects AH. In like manner CG bisects AH. Hence BF, CG meet on AH.

26. Dem.—From the vertices A, B, C, of the \triangle ABC, let fall \bot AD, BE, CF on the opposite sides; let them intersect in G. Join DE, EF, FD. It is required to prove that the \bot AD, BE, CF bisect the \angle EDF, DEF, and EFD.

Now the \angle CDE = CGE (xxxII., Ex. 5), and BDF = BGF; but (xv.) CGE = BGF; ... CDE = BDF; and CDA = BDA, since each is right; ... EDA = FDA; hence the \angle EDF is bisected by AD. In like manner the \angle ° DEF, EFD are bisected by BE and CF.

27. Let ABC be a given \triangle , and D a given point within it. It is required to inscribe, in ABC, a \square whose diagonals shall intersect in D.

Sol.—Through D draw DE || to AC, and from BE cut off FE = EC. Join FD, and produce it to meet AC in G. Draw DH || to AB; and from HC cut off HK = BH. Join KD, and produce it to meet AB in L. Join GL, FL, GK. GLFK is the required parallelogram.

Dem.—FG is bisected in D (xL., Ex. 3). Similarly, KL is bisected in D. Hence (xxxiv., Cor. 5) GLFK is a parallelogram,

28. Let s_1 , s_2 , s_3 , s_4 be the sides of the quadrilateral; and A, B the middle points of two opposite sides. It is required to construct it.

Sol.—Join AB, and on it describe the \triangle ACB, having BC = $\frac{1}{2}s_1$, and CA = $\frac{1}{2}s_3$. Complete the \square ABCD. Join DC; and describe the \triangle CDE, having DE = $\frac{1}{2}s_2$, and CE = $\frac{1}{2}s_4$. Complete the

DECF. Through A, E, B, F draw GH, GK, JK, JH || respectively to DE, BC, CE, CA. GHJK is the required quadrilateral.

Dem.—HF = AC (xxxiv.), and JF = BD; but AC + BD = 2 AC; hence HJ = s_3 . In like manner GH = s_2 , GK = s_1 , and JK = s_4 .

29. See "Sequel to Euclid," Book I., Prop. viii.

30. Let ABC be the given rectilineal figure, and O the given point. From O let fall \perp ^s on BC, CA, AB; and let them be denoted by p, p_1 , p_2 ; then, if $p + p_1 + p_2$ be given, it is required to prove that the locus of O is a right line.

Dem.—In BC take a part EF, equal to any given line. Join OE, OF. In AC, AB take GH, JK, each equal to EF. Join OG, OH, OJ, OK. Now let EF be denoted by b, and we have $bp = 2\triangle$ OEF (II. 1. Cor. 1), and, similarly, for the \triangle OGH, OJK. Therefore $b(p + p_1 + p_2)$ is equal to twice the sum of the areas of those triangles; but the bases, and sum of the areas, are given. Hence (Ex. 29) the locus of O is a right line.

31. Dem.—Through C and B' draw CD, B'D || to BB' and BC. Join DC', cutting BC in E. Now (xxxiv.) BB' = CD; but BB' = CC' (hyp.); ... CD = CC', and CE is common; and the \angle ACB = DCB, because each is equal to ABC; hence (iv.) the \angle CEC' = CED; ... each is a right \angle ; ... (xxix.) B'DE is

right; hence B'C'D is acute; and ... (xix.) B'C' is greater than B'D; that is, greater than BC.

- 32. (1) Dem.—From B let fall a \perp BC on L; and produce it to meet AP in Q. In L take any other point S. Join AS, BS, QS. Now, because BCP = QCP, and the \angle BPC = QPC, and CP common, \therefore (xxvi.) BP = QP. Similarly, BS = QS. Hence AS SQ = AS SB; but AS SQ is less than AQ; \therefore AS SB is less than AQ; that is, less than AP BP.
 - (2) See "Sequel to Euclid," Book I., Prop. xx1.

33. Let ABCD be a quadrilateral. It is required to bisect it by a line drawn from A, one of its angular points.

Dem.—Join AC. Produce DC to E. Through B draw BE \parallel to AC. Join AE. Bisect DE in F. Join AF. AF bisects ABCD. Now the \triangle AEC = ABC (xxxvii.) To each add the \triangle ACD, and we have the \triangle AED = the quadrilateral ABCD; but AED = 2ADF (xxxviii.); \therefore ABCD = 2ADF.

34. Dem.—Bisect ED in F. Join AF. Now (xII., Ex. 2), where the EF, AF, DF are equal; hence the \angle FAD = FDA;

but (xxxII.) the \angle AFE = FAD + FDA; ... AFE = 2FDA, and ... (xxIX.) = 2DBC; but AF = AB, because each is equal to $\frac{1}{2}$ ED; ... the \angle ABF = AFB; but AFB = 2DBC. Hence ABF = 2DBC.

35. Dem.—The three ∠⁸ ABC, BCA, CAB are equal to two right ∠⁸; ∴ ABO, BAO, BCO are equal to a right ∠; but BOD = ABO + BAO; ∴ BOD and BCO equal a right ∠; and EOC + BCO equal a right ∠; hence BOD + BCO = EOC + B'CO; ∴ the ∠ BOD = EOC.

36. The angles of each external triangle are respectively equal to $\frac{1}{2}(A + B)$, $\frac{1}{2}(B + C)$, $\frac{1}{2}(A + B)$. See (xxxII., Ex. 14). Hence the three external triangles are equiangular.

37. (1) Dem.—Let ABCD be the quadrilateral. Bisect the \angle * BCD, CDA by CE, DE. It is required to prove that the \angle CED = $\frac{1}{2}$ (DAB + ABC).

Now the \angle * DAB, ABC, BCD, CDA are together equal tofour right \angle *, and the \angle * CED, EDC, DCE are equal to two right \angle *; hence (CED + EDC + DCE) = $\frac{1}{2}$ (DAB + ABC + BCD + CDA); but EDC = $\frac{1}{2}$ ADC, and DCE = $\frac{1}{2}$ DCB. Hence CED = $\frac{1}{2}$ (DAB + ABC).

(2) Bisect the \angle * ABD, ACD by BE, CE. Produce BE, CE: to meet AC, BD in F, G. It is required to prove that the \angle CEF = $\frac{1}{2}$ (BAC - BDC).

Dem.—Join AE. Now the La of the figure ABEC are equal to

four right ∠s; and the ∠s of the figure BECD equal to four right ∠s; hence the ∠s (BAC + ABE + BEC + ACE) = (BEG + GEF + FEC + ECD + CDB + DBE); but ABE = DBE, and ACE = ECD, and BEC = GEF. Reject these, and we have BAC = CDB + GEB + CEF = CDB + 2 CEF. Hence the ∠BAC exceeds CDB by 2 CEF; that is, CEF = ½ (BAC - CDB).

38. Dem.—It has been proved (xLVII., Ex. 7) that $EF^2 = AC^2 + 4 BC^2$. Similarly, $KG^2 = BC^2 + 4 AC^2$. Adding, we get $EF^2 + KG^2 = 5 (AC^2 + BC^2) = 5 AB^2$.

39. Let A, B, C, D, E be the middle points of the sides of a convex polygon of an odd number of sides. It is required to construct it.

Sol.—Join CD, DE; and through C, E draw CF, EF \parallel to DE, CD; and (xxxiv., Ex. 6) construct the \triangle GHJ, having A, B, F for the middle points of its sides. Join AF, BF, JC, and produce JC to K, so that CK = CJ. Join KD, HE, and produce them to meet in L. GHLKJ is the required polygon.

Dem.—Join HK. Now in the \triangle HJK, HJ, JK are bisected in F, C; hence (xL., Exercises 2 and 5) FC is \parallel to HK, and

equal to half of it; but FC = ED; ... ED is | to HK, and

equal to half HK. And hence (xL., Ex. 3) HL, LK are bisected in E, D.

40. Let ABCD be a quadrilateral. It is required to trisect it by lines drawn from C, one of its angular points.

Sol.—Join BC. Produce DB to E, and draw AE | to BC. Join CE. Trisect ED in F, G (xxxiv., Ex. 3). Join CF, CG. CF, CG trisect the quadrilateral.

Dem.—The \triangle CEB = CAB (xxxvII.). To each add CBD, and we have the \triangle CED = the quadrilateral CABD; but the \triangle CGD = $\frac{1}{3}$ CED; ... CGD = $\frac{1}{3}$ CABD. In like manner CFG = $\frac{1}{3}$ CABD.

41. Let ABC be a \triangle whose base BC is given in magnitude and position; and the sum of its sides BA, AC also given. Produce BA to D, and make AD = AC. Bisect the \angle CAD by AE. Erect CE \bot to AC. Join BE, DE; and from E let fall a \bot EF on BC produced. It is required to prove that the locus of E is the perpendicular EF.

Dem.—Because AC = AD, and AE common, and the \(\cap CAE \)

= DAE, ... (rv.) CE = DE, and the ∠ ACE = ADE; but ACE is a right ∠ (const.); ... ADE is right; hence (xlvii.) BE² - ED² = BD²; but BD is given, since it is equal to BA + AC; and ED = EC; ... BE² - EC² is given, and the base BC is given. Hence (xlvii., Ex. 5) the locus of E is EF, the ⊥ from E on BC.

- 42. (1) See xxxII., Ex. 8.
- (2) Let ABCD be a parallelogram. It is required to prove that EFGH is a rectangle.

Dem.—The \angle ^s ABC, BAD are together equal to two right \angle ^s (xxix.); ... the \angle ^s EBA, EAB together make a right \angle ; hence the \angle AEB is right. Similarly, the \angle ^s at F, G, H are right. Hence EFGH is a rectangle.

(3) Let ABCD be a rectangle. It is required to prove that EFGH is a square.

Dem.—Because the \angle BAD = CDA; the \angle BAE = CDG. In like manner the \angle ABE = DCG, and the side AB = CD; \therefore (xxvi.) AE = DG; but AH = DH, since the \angle ADH = DAH; \therefore HE = HG. In like manner all the sides are equal, and the \angle ⁵ are right \angle ⁵. Hence EFGH is a square.

- 43. Dem.—Join AE. Now (xL., Ex. 5) EF = $\frac{1}{2}$ AB = BD; and FG = BD; ... EF = FG, and AF = CF (hyp.); ... CF and FG = AF, FE; and the \angle CFG = AFE (xv.); hence (rv.) CG = AE; but AE is a median of the \triangle ABC; also CD, a side of the \triangle CDG, is one of the medians of ABC; and BF, the remaining median, is equal to DG (xxxiv.). Hence the sides of the \triangle CDG are equal to the medians of ABC.
- 44. Let ABCD be the billiard table, E the point from which the ball starts, and F the point through which it will pass.
- Sol.—From E let fall a \bot EG on AB; produce EG to H, so that GH = EG. From H let fall a \bot HJ on CB produced; and produce HJ to K, so that JK = HJ. From F let fall a \bot FL on AD, and produce to M, so that LM = LF; and from M let fall a

⊥ MN on CD produced, and produce to P, so that NP = MN. Join KP, intersecting BC in Q and CD in R. Join HQ, MR, inter-

secting AB in S, and AD in T. Join ES, FT. ESQRTF will be the path of the ball.

Dem.—Because EG=HG, GS common, and the \angle EGS=HGS, ... the \angle ESG = HSG; but HSG = BSQ (xv.); ... ESG=BSQ; hence the ball will be reflected in the direction SQ. In like manner it can be shown that the \angle HQJ = RQC, and therefore the ball will be reflected from Q in the direction QR. Similarly, it will be reflected from R to RT, and from T to TF.

45. Let ABC be the \triangle , AD, BE the bisectors of the $\angle \cdot$ A, B. It is required to prove, if AD = BE, that the \angle CAB = ABC.

Dem.—If the angle CAB be not equal to ABC, let CAB be the greater; then, since the \angle CAB is greater than ABC, its

half, the \angle DAC, is greater than EBC, the half of ABC; then make DAF equal to EBC. Now, since the \angle DAB is greater than ABE, the whole \angle FAB is greater than FBA; ... the side FB is greater than FA. Cut off BG = FA, and draw GH parallel to FA; then the \triangle ^s GBH, FAD have evidently two angles in one respectively equal to two angles in the other, and the side BG = AF. Hence BH is equal to AD; but BE is = AD (hyp.). Hence BH = BE, which is absurd. Hence the angle CAB is not unequal to ABC; that is, it is equal to it, and ... (vi.) the \triangle ABC is isosceles.

46. Let ABC be a △, whose base and difference of sides are given. Bisect the ∠ BAC by AD. Erect CD ⊥ to AC. The locus of D is a right line.

Dem.—Let fall a \bot DE on AB. Join BD. Now (I. xxvi.) the \triangle ACD, AED are equal in every respect; ... DC = DE, and AC = AE; ... AB - AC = BE; but AB - AC is given; ... BE is given. Again, BD² - DE² = BE²; that is, BD² - CD² = BE²;

hence $BD^2 - CD^2$ is given, and the base BC is given. Now we are given the base, and the difference of the squares of the sides of the \triangle BCD. Hence (xLVII., Ex. 5) the locus of the vertex D is a right line perpendicular to the base.

47. Let EFGH be a square inscribed in the \triangle ABC. It is required to prove that $(BC + AD) s = 2 \triangle$ ABC, where s denotes the side of the square.

Dem.—Let fall a \bot AD on BC. Join DF, DG. Now BD.EF = $2 \triangle$ BFD (II. 1., Cor. 1); that is, BD. $s = 2 \triangle$ BFD. Similarly, DC. $s = 2 \triangle$ DGC; ... BC. $s = 2 \triangle$ BFD + $2 \triangle$ DGC.

Again, AD. FK = $2 \triangle AFD$, and $AD.GK = 2 \triangle AGD$; ... AD. $s = 2 \triangle AFDG$. Adding, we get $(BC + AD) s = 2 \triangle ABC$.

- 48. Dem.—Let fall a \perp CE on AB. Now (xLvII., Ex. 20) BC² = AB.BE + AC.CD; but (xxvI.) the \triangle BEC, BDC are equal; since the \triangle ABC is isosceles; ... BE = DC, and AB = AC. Hence BC² = 2 AC.CD.
- 49. Let ABC be a right-angled \triangle , and let equilateral \triangle * be described on its three sides. It is required to prove that the \triangle ABD is equal to the sum of the \triangle * ACF, BCE.

Dem.—Bisect AC in G. Join FG, BG, FB, CD. Now the \angle CAF = BAD; to each add CAB, and we have the \angle FAB = CAD, and AF = AC, and AB = AD; ... (iv.) the \triangle ⁵ AFB, ACD are equal. Again, because each of the \angle ⁵ FGC, ACB is right, BC, FG are parallel; ... (xxxvii.) the \triangle FGC = FGB. To

each add the \triangle FGA, and we have AFC = to the quadrilateral AFBG. Again, to each add the \triangle AGB, which is $\frac{1}{2}$ ACB, and we have AFC + $\frac{1}{2}$ ACB = AFB. Hence ACD = AFC + $\frac{1}{2}$ ACB. Similarly BCD = BEC + $\frac{1}{2}$ ACB. Add, and we have ACBD = AFC + ACB + BEC. Reject the right angled \triangle ACB, which is common, and the \triangle ABD = AFC + BEC.

50. (1) Let AB be the base, X the difference of the base \angle *, and S the sum of the sides. It is required to construct the triangle.

Sol.—Draw BD, making the \angle ABD = $\frac{1}{2}$ X, and draw BC \bot to BD. With A as centre, and a radius equal to S, describe a \bigcirc , cutting BC in C. Join AC, cutting BD in E. Bisect CE in F. Join BF. AFB is the required triangle.

Dem.—The lines BF, CF, EF are equal (xn., Ex. 2); ... FE

= FB; ... the \angle FBE = FEB; but FEB = FAB + ABE (xxxii.); ... FBE = FAB + ABE; hence the \angle FBA = FAB + 2 ABE;

and hence the $^{\bullet}\angle$ ABE is half the difference of the base \angle ^{*}; but ABE = $\frac{1}{2}$ X. Hence the difference of the base \angle ^{*} = X; and since FB = FC, AF + FB = AC = S, ... the sum of the sides = S.

(2) Let AB be the base, X the difference of the base \angle ^{\bullet}, and D the difference of the sides.

Sol.—Draw BE, making the \angle ABE = $\frac{1}{2}$ X. With A as centre, and a radius equal to D, describe a \bigcirc , cutting BE in E. Join AE,

and produce it. Draw BC, making the \angle CBE = CEB, and meeting AE produced in C. ACB is the required triangle.

Dem.—CB = CE (vi.); ... AE = AC - CB; but AE = D; ... AC - CB = D, and, as before, the difference of the base angles = X.

51. Sol.—Let AB be the base, and M the median that bisects the base. To AB apply a ABCD, whose area is equal to twice the given area (x_Lv_.). Bisect AB in E. With E as centre, and a radius equal to M, describe a Θ, cutting CD in F. Join AF, BF. AFB is the required Δ.

52. Dem.—Join AG, CG, FG. The \triangle CED = CGD + CEG, and the \triangle EBC = BGC - CEG. Subtracting, we get CED - EBC

= 2 CEG. Similarly AED – AEB = 2 AEG. Subtracting, we have AEB + CED – (AED + EBC) = 2 (CEG – AEG). Again, CEG = CFG + EFG, and AEG = AFG – EFG; ... CEG – AEG = 2 EFG. And hence 4 EFG = AEB + CED – (AED + EBC).

53. (1) Let ACB be the Δ. Describe squares AH, AF, CE on the sides AC, AB, BC respectively. Bisect AC in J. Join BJ, EF. It is required to prove that EF = 2 BJ.

Dem.—Produce BJ to M, so that JM = JB, and join MC.

Now (IV.) the \triangle^s MJC, AJB are equal in every respect; ... MC = AB = BF, and CB = BE; hence MC, CB equals BF, BE. And because AC and BM bisect each other in J, MC and AB are parallel; ... the \angle^s MCB and ABC are together equal to two right \angle^s , and the \angle^s EBF, ABC are equal to two right \angle^s ; since ABF and CBE are right; ... the \angle MCB = EBF; hence (IV.) MB = EF; but MB = 2 BJ; ... EF = 2 BJ.

(2) Produce MB to meet EF in N. MN is ⊥ to EF.

Dem.—From the equal triangles CMB, BFE we have the \angle CMB = BFE, but CMB = ABM; \therefore BFE = ABM. To each add NBF; and we have BFN + NBF = ABM + NBF; but since ABF is right, ABM + NBF equal a right \angle ; \therefore BFN + NBF equal a right \angle ; and hence the \angle BNF is right.

BOOK II.

PROPOSITION IV.

1. Dem.— $AB^2 = AB \cdot AC + AB \cdot BC$ (II.);

but $AB \cdot AC = AC^2 + AC \cdot CB$ (III.);

and $AB \cdot BC = BC^2 + AC \cdot CB$ (III.);

Therefore $AB \cdot AC + AB \cdot BC = AB^2 + BC^2 + 2AC \cdot CB$;

that is, $AB^2 = AC^2 + BC^2 + 2AC \cdot CB$.

2. Let C be the vertical \angle of the right-angled \triangle ABC. From C let fall a \bot CD on AB. It is required to prove that DC² = AD. DB.

Dem.— $AB^2 = AC^2 + CB^2$ (I. xLvII.); but $AC^2 = AD^2 + DC^2$; and $CB^2 = BD^2 + DC^2$; ... $AB^2 = AD^2 + BD^2 + 2 DC^2$. Again, $AB^2 = AD^2 + DB^2 + 2 AD \cdot DB$ (iv.). Hence $DC^2 = AD \cdot DB$.

3. Let ABC be the right-angled Δ . In the base AB cut off AD = AC, and BE = BC. It is required to prove that ED² = 2 AE. DB.

Dem.— $AB^2 = AC^2 + CB^2$ (I. xlvii.) = $AD^2 + BE^2$; but $AD^2 = AE^2 + ED^2 + 2 AE \cdot ED$ (iv.); and $BE^2 = BD^2 + DE^2 + 2 BD \cdot DE$; ... $AB^2 = AE^2 + ED^2 + 2 AE \cdot ED + BD^2 + DE^2 + 2 BD \cdot DE$; also $AB^2 = AE^2 + ED^2 + DB^2 + 2 AE \cdot ED + 2 ED \cdot DB + 2 AE \cdot DB$ (iv., Cor. 3). Hence $ED^2 = 2 AE \cdot DB$.

4. Let ABC be the right-angled \triangle , CD the \bot from the right angle on the base. It is required to prove that $(AB + CD)^2$ exceeds $(AC + CB)^2$ by CD^2 .

1 em.—AC. CB is equal to twice the \triangle ACB, and AB. CD is equal to twice the \triangle ACB; \therefore AC. CB = AB. CD.

Now $(AB + CD)^2 = AB^2 + CD^2 + 2 AB \cdot CD;$

and $(AC + CB)^2 = AC^2 + CB^2 + 2AC \cdot CB$.

Subtracting, we have $(AB_a + CD)^2 - (AC + CB)^2 = AB^2 - BC^2$

$$-CA^{2} + DC^{2}$$
; but $AB^{2} - BC^{2} = AC^{2}$; ... $(AB + CD)^{2} - (AC + CB)^{2}$
= $AC^{2} - AC^{2} + DC^{2} = DC^{2}$.

5. Let the sides of the \triangle be denoted by a, b, c, c being t hypotenuse. It is required to prove that (a+b+c)=2(c+a)(c+b).

Dem.—
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$
; but $(a^2 + b^2) = c^2$ (I. XLVII.); ... $(a^2 + b^2 + c^2) = 2c^2$. Hence $(a + b + b^2) = 2(c^2 + ac + bc + ab) = 2(c + a)(c + b)$.

PROPOSITION V.

1. Let AB be the given straight line. Bisect it in C. It is required to prove that AC. CB is a maximum.

Dem.—Take any other point D in AB; then AD. DB + CD² = CB² (v.); but $CB^2 = AC \cdot CB$; ... $AC \cdot CB = AD \cdot DB + CD^2$; that is, AC. CB is greater than AD. DB by CD^2 . Hence, when a line is bisected, the rectangle contained by the parts is a maximum.

2. Let AB be the given straight line, and L the line whose square is given. It is required to divide AB, so that the rectangle contained by its segments will be equal to L².

Sol.—Bisect AB in C; with C as centre, and CB as radius, describe a semicircle. Draw BD \perp to AB, and = to L. Through D draw DE \parallel to AB, cutting the semicircle in E; let fall a \perp EF on AB. The rectangle AF. FB = L².

Dem.—Join CE. Now AF. FB + CF² = CB² (v.) = CE² = CF² + FE² (I. xLvII.). Take away CF², which is common, and AF. FB = FE² = BD² = L².

3. Let ABC be the \triangle . From C let fall a \perp CD on AB. It is required to prove that (AC + BC) (AC - BC) = AB (AD - DB).

Dem.— $AC^2 = AD^2 + DC^2$ (I. xLvII.); and $BC^2 = BD^2 + DC^2$. Subtracting, we get $AC^2 - BC^2 = AD^2 - DB^2$; that is (AC

- + BC) (AC BC) = (AD + DB) (AD DB) = AB (AD DB).
- 4. Dem.—(AC + BC) (AC BC) = AB (AD DB) (Ex. 3); but (AC + BC) is greater than AB (I. xx.); \therefore (AC BC) is less than (AD DB).
- 5. Let ABC be an isosceles \triangle . From C let fall a \perp CE on AB. In AB take any other point D. Join CD. It is required to prove that $CB^2 CD^2 = AD \cdot DB$.

Dem.—AD. DB + ED² = EB², and EC² = ED². Add together, and we get AD. DB + CD² = CB²; ... AD. DB = CB² - CD².

6. Let ABC be the \triangle . It is required to prove that AC² = (AB + BC) (AB - BC).

 $Dem. -AC^2 + BC^2 = AB^2; ... AC^2 = AB^2 - BC^2 = (AB + BC)(AB - BC).$

PROPOSITION VI.

1. Let AD be the straight line which is bisected in C, and divided unequally in B. It is required to prove Prop. vi. by Prop. v., by producing the line DA in the opposite direction.

Dem.—Produce DA to O, and make OA = BD.

Now OB. BD + $CB^2 = CD^2$ (v.); but since OA = BD, OB = AD. Therefore AD. DB + $CB^2 = CD^2$.

- 2. Let AB be the given line. It is required to divide it externally in E, so that $AE \cdot EB = L^2$, L being a given line.
- Sol.—Bisect AB in C (vi.). Erect BD \perp to AB, and make it equal to L. Join CD. With C as centre, and CD as radius, describe a circle, meeting AB in E. E is the point required.

Dem.—Now AE. EB + $CB^2 = CE^2 = CD^2 = CB^2 + BD^2$. Reject CB^2 , which is common, and AE. EB = $BD^2 = L^2$.

- 3. See Ex. 2.
- 4. Let AD, DB be two lines. Bisect AB in C.

Dem.—Because AB is the sum, CB is half sum; and AD = AC + CD, and DB = CB - CD; ... AD - DB = 2 CD; hence CD is half difference. Now AD . DB + CD² = CB² (v.); ... AD . DB = CB² - CD².

5. Dem.—Let AB be the sum, and D^2 the difference of their squares. To AB apply the rectangular \square ABCE = D^2 . Now, since the sum multiplied by the difference is equal to the difference of the squares, and that AB is the sum, therefore AE must be the difference. Produce BA to F, and make AF = AE. Therefore,

since the sum together with the difference is equal to twice the greater; therefore if we bisect BF in G, BG will be the greater, and AG the less.

If we take AE equal to the difference, and apply the rectangular \square ABCE = D^2 , we have the second case.

6. See "Sequel to Euclid," Book II., Prop. 1., Cor.

7. The rectangle contained by two straight lines, together with the square described on half their difference, is equal to the square on half their sum.

PROPOSITION VIII.

1. **Dem.**—By the third proof of Prop. viii. $(AB + BO)^2 = 4 AB \cdot BO + AO^2$; but $AB \cdot BO = BC^2$ (I. xlvii., Ex. 1), and $A()^2 = AC^2 - CO^2$; $\therefore (AB + BO)^2 = 4 BC^2 + AC^2 - CO^2$; but $4 BC^2 + AC^2 = EF^2$ (I. xlvii., Ex. 7); $\therefore (AB + BO)^2 = EF^2 - CO^2$.

2. Dem.— $GK^2 = 4 AC^2 + BC^2$ (I. xLvII., Ex. 7), and EF² = $4 BC^2 + AC^2$; ... $GK^2 - EF^2 = 3 AC^2 - 3 BC^2$; but (I. xLvII., Ex. 1) $AC^2 = AB \cdot AO$, and $BC^2 = AB \cdot BO$; ... $GK^2 - EF^2 = 3 (AB \cdot AO - AB \cdot BO) = 3 AB (AO - BO)$.

3. Sol.—Let AB be the difference of the lines. Bisect AB in C; erect BE 1 to AB, and make it equal 2 AB = 2 R. Join CE, and produce CB to D. Cut off CD = CE. AD, DB are the required lines.

Dem \rightarrow AD. DB + CB² = CD² (vi.) = CE² = CB² + BE².

Reject CB^2 , which is common, and we have $AD \cdot DB = BE^2 = 4 R^2$. Hence AD, BD are the required lines; for their difference is AB, that is, R, and their rectangle is equal to $4R^2$.

PROPOSITION IX.

1. Let AB be the given line. Bisect it in C. It is required to prove that $AC^2 + CB^2$ is a minimum.

Dem.—Take any other point D in AB. Now $AD^2 + DB^2 = 2AC^2 + 2CD^2$ (ix.) = $AC^2 + CB^2 + 2CD^2$; therefore $AC^2 + CB^2$ is less than $AD^2 + DB^2$ by $2CD^2$. Hence, when a line is bisected, the sum of the squares on its segments is a minimum.

2. Let AB be a given line. It is required to divide it internally, so that the sum of the squares on the parts may be equal to L^2 .

Sol.—Draw BC, making the \angle ABC half a right \angle . With A as centre, and a radius equal to L, describe a \bigcirc , cutting BC in D. From D let fall a \bot DE on AB. E is the point required.

? Dem.—Because the \angle EBD is half a right \angle , and the \angle BED right, the \angle BDE is half a right \angle ; ... EB = ED; ... EB² = ED²; ... AE² + ED², that is, AD², that is L² = AE² + EB². If the circle does not meet the line BC, the question is impossible.

3. Dem.—From AC cut off AE = DB. Now AD² + AE² = 2 AD . AE + ED² (vii.); that is, AD² + DB² = 2 AD . DB + 4 CD².

- 4. Let AEB be the \triangle . In AB take any point D. Join ED. It is required to prove that $2 ED^2 = AD^2 + DB^2$. From E let fall a \perp EC on AB. Now AD² + DB² = $2 AC^2 + 2 CD^2$ (IX.); but AC = CE. Therefore AD² + DB² = $2 EC^2 + 2 CD^2 = 2 ED^2$.
 - 5. See "Sequel to Euclid," Book II., Prop. xII.

PROPOSITION X.

1. (1) Let AB be the sum of the lines, and 2 X² the sum of the squares.

Sol.—Bisect AB in C. Erect CD \perp to AB, and make it equal to AC or CB. Produce DC to E. Cut off DE = X. With D as centre and DE as radius, describe a \odot , cutting AB in F. AF and FB are the required lines.

Dem.—Join DF, DB. Now AF² + FB² = $2 \text{ AC}^2 + 2 \text{ CF}^2$ (1x.) = $2 \text{ DC}^2 + 2 \text{ CF}^2 = 2 \text{ DF}^2 = 2 \text{ DE}^2 = 2 \text{ X}^2$.

(2) Let AB be the difference, and 2 X² the sum of the squares. Sol.—Bisect AB in C, and erect CD ⊥ to AB, and make it equal to AC or CB. Produce DC to E. Cut off DE = X. With D as centre, and DE as radius, describe a ⊙, cutting AB produced in F. AF and FB are the required lines.

Dem.—Join DB, DF. Now $AF^2 + FB^2 = 2AC^2 + 2CF^2 = 2DC^2 + 2CF^2 = 2DE^2 = 2DE^2 = 2X^2$.

2. Let CE be the median which bisects the base AB. It is required to prove that $AC^2 + CB^2 = 2 AE^2 + 2 CE^2$.

Dem.—From C let fall a \perp CD on AB. Now AD² + DB² = 2 AE² + 2 ED² (ix.), and CD² + CD² = 2 CD². Add, and we get AC² + CB² = 2 AE² + 2 CE².

3. Let BC be the given base of a \triangle ABC, the sum of the squares of whose sides AB, AC, is equal to a given square. It is required to prove that the locus of the vertex A is a circle.

Dem.—Bisect BC in D. Join AD. Now (Ex. 2), BA² + AC² = $2 BD^2 + 2 DA^2$; but BA² + AC² is given (hyp.): $2 BD^2 + 2 DA^2$ is given, and $2 BD^2$ is given, since BD is half of the given base BC, $2 DA^2$ is given; DA is given, and the point D is given. Hence the locus of A is a circle, having D as centre, and DA as radius.

- 4. Dem.—Bisect AD in E. Join BE, CE. Now (Ex. 2) $AB^2 + BD^2 = 2AE^2 + 2BE^2$, and $AC^2 + CD^2 = 2AE^2 + 2CE^2$; but $AB^2 + BD^2 = AC^2 + CD^2$ (hyp.); hence $2AE^2 + 2BE^2 = 2AE^2 + 2CE^2$, and therefore $2BE^2 = 2CE^2$; ... BE = CE.
 - 5. See "Sequel to Euclid," Book II., Prop. III.

PROPOSITION XI.

1. Let AB be the line. It is required to cut it externally in extreme and mean ratio.

Sol.—Erect BC \perp to and equal to AB. Bisect AB in D. Join DC. Produce AB to E. Cut off DE = DC. AB is cut in E in extreme and mean ratio.

Dem.—AE. EB + DB² = DE² (vi.) = DC² = DB² + BC². Reject DB², which is common, and AE. EB = BC² = AB².

2. Let AB be a line divided in extreme and mean ratio at C. It is required to prove that $AC^2 - CB^2 = AC \cdot CB$.

Dem.—AB. $\overrightarrow{BC} = \overrightarrow{AC^2}$ (hyp.); but $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$; ... (AC + CB) $\overrightarrow{CB} = \overrightarrow{AC^2}$; that is, $\overrightarrow{AC} \cdot \overrightarrow{CB} + \overrightarrow{CB^2} = \overrightarrow{AC^2}$; and therefore $\overrightarrow{AC} \cdot \overrightarrow{CB} = \overrightarrow{AC^2} - \overrightarrow{CB^2}$.

3. Let ACB be a right-angled \triangle , having AC² = AB. BC. From C let fall a \perp CD on AB. It is required to prove that AB. BD = AD².

Dem.— $AC^2 = AB \cdot BC$ (hyp.), and $AC^2 = AB \cdot AD$ (I. xLVII., Ex. 1); ... AD = BC; ... $AD^2 = BC^2$; but $BC^2 = AB \cdot BD$ (I. xLVII., Ex. 1). Hence $AB \cdot BD = AD^2$.

4. (1), Dem.— $AB^2 + BC^2 = 2 AB . BC + AC^2$ (vn.); but $AB . BC = AC^2$ (hyp.) Hence $AB^2 + BC^2 = 3 AC^2$.

(2) **Dem.**— $(AB + BC)^2 = 4AB \cdot BC + AC^2$ (VIII.); but AB · BC = AC² (hyp.) Hence $(AB + BC)^2 = 5 AC^2$.

*5. Dem.—Join FK, AD. Now the square AFGH is double of the \triangle AFK (I. XLI.) And the rectangle HBDK is double of AKD; but AFGH = HBDK (XI.); ... the \triangle AFK = AKD; and hence (I. XXXIX.) AK is parallel to FD. In like manner, by joining BF, GD, it can be shown that GB is parallel to FD. Hence the three lines AK, FD, GB are parallel.

6. Dem.—Join BF, and produce CH to meet it in L.

Because EB = EF, the \angle EBF = EFB, and the \angle s at L are right (x1., Ex. 7); ... the \angle BOL = FCL; but BOL = EOC; ... EOC = ECO, and ... EC = EO; but EC = EA; ... EO = EA; ... the \angle EOA = EAO, and EOC = ECO. Hence the \angle AOC = OAC + OCA, and is therefore (I. xxxII., Cor. 7) a right angle.

7. Let CH be produced to meet BF at L. It is required to prove that CH is perpendicular to BF.

Dem.—The $\triangle \bullet$ FAB, HAC, are equal (I. iv.) in every respect; ... the \angle FBA = HCA, and the \angle LHB = AHC (I. xv.); ... the \angle HLB = HAC (I. xxxII., Cor. 2); but HAC is a right angle. Hence HLB is right.

8. Dem.—In AB take AH = BC - AC. Produce CA to F, so that AF = AH, then evidently CF = CB. Complete the square AFGH. Produce AC to E, and make CE = AC, and complete

the square ABDE. Produce GH to meet ED in K. Now we have the construction as in Prop. x1., and ... AB. BH = AH². Hence AB is divided in "extreme and mean ratio" at H.

^{*} See diagram in Euclid [II. x1.] for this and the two following Exercises.

PROPOSITION XII.

1. Dem.—Produce AC, and let fall a \bot BD on AC produced. Make DE = CD, and join BE. Now the \triangle * BCD, BED are equal in every respect (I. iv.); ... the \angle BCE = BEC. And

since the \angle ACB is twice an \angle of an equilateral \triangle , each of the \angle • BCE, BEC is an \angle of an equilateral \triangle ; hence the \triangle BCE is equilateral; \therefore BC = CE = 2 CD.

Again, $AB^2 = AC^2 + CB^2 + 2 AC \cdot CD$; but we have shown that BC = 2 CD. Hence $AB^2 = AC^2 + CB^2 + AC \cdot CB$.

2. Dem.—Join AC; bisect it in O. Join BO, DO, EO. Now the lines AO, BO, CO are equal (I. xII., Ex. 2); hence OBC is

an isosceles \triangle ; \therefore OE² - OC² = BE.CE (vr., Ex. 6). In likemanner OE² - OD² = AE.DE; but OC = OD. Hence AE.DE = BE.CE.

3. Dem.—Produce AB, DB. Cut off BE = DC, and BF = BC...

Join AF, FE. Now the \angle FBC = BDC + BCD (I. xxxII.); but EBC and BDC are right angles; ... FBE = BCD; hence (I. iv.) the \triangle BEF and BDC are equal in every respect; therefore the \angle BEF = BDC; hence the \angle BEF is right. Now AF² = AB² + BF² + 2 AB . BE (xII.), and AF² = AB² + BF² + 2 BF . BD; ... AB . BE = BF . BD; but BE = DC, and BF = BC. Hence AB . DC = BD . BC.

- 4. Dem.—Erect BD \perp to AB, and equal BC. Join AD, CD. Now AD² = AC² + CD² + 2 AC. CB (xII.), and CD² = CB² + BD² = 2 CB² = AC²; \therefore AC² + CD² = 2 AC²; \therefore AD² = 2 AC² + 2 AC. CB = 2 AC (AC + CB) = 2 AC. AB. Again, AD² = AB² + BD²; but BD = BC; \therefore AD² = AB² + BC². Hence AB² + BC² = 2 AC. AB.
- 5. Sol.—Bisect AB in O. From D let fall a \perp DF on AB. Divide OF in C, so that $2 \text{ OC. CF} = p^2$ (the given square). C is the point required.

Dem.—Erect CE 1 to AB. Join OE, OD, CD.

Now OD² = OC² + CD² + 2 OC. CF (XII.) = OC² + CD² + p^2 ; but OE = OD; ... OE² = OC² + CD² + p^2 ; that is, OC² + CE² = OC² + CD² + p^2 ; ... CE² - CD² = p^2 .

6. Dem.—AD.DB = $CD^2 - CB^2$ (vi., Ex. 6); but $CD^2 = 2 AB^2$ (hyp.); ... AD.DB = $2 AB^2 - CB^2 = 2 AB^2 - AB^2 = AB^2$.

PROPOSITION XIII.

1. Dem.—From the vertex A let fall a \bot AD on BC. From DB cut off DE = DC. Join AE. Now the \triangle ACD = AED in every respect (I. iv.); \therefore AC = AE, and the \angle AEC = ACE; hence AEC is an \angle of an equilateral \triangle ; \therefore the \triangle ACE is equilateral; \therefore AC = CE = 2 CD. Again, AB² = BC² + CA² - 2 BC. CD (xiii.); but we have shown that 2 CD = AC. Hence AB² = BC² + CA² - BC. AC.

2. See "Sequel to Euclid," Book II., Prop. iv.

3. Sol.—Erect BD \perp to and equal to AB. Join AD. Produce AB to C. Cut off AC = AD. C is the point required.

Dem.— $AD^2 = AB^2 + BD^2 = 2AB^2$; $AC^2 = 2AB^2$. To each add BC^2 , and we have $2AB^2 + BC^2 = AC^2 + BC^2 = 2AC \cdot BC + AB^2$ (VII.); $AB^2 + BC^2 = 2AC \cdot BC$.

PROPOSITION XIV.

1. Sol.—Let a line CD be found (xiv.) whose square is equal to the given difference of squares. On CD construct a rectangle CE, equal to the given rectangle. Produce CD to A, so that CA.AD = DE² (vi., Ex. 2). Produce ED. From A inflect AB = DE to the line DB, and join BC. BC and BD are the required lines.

Dem.—Because $AB^2 = DE^2 = CA \cdot AD$, the \angle ABC is right (I. xLVII., Ex. 1); ... AB. DC = BD. BC (xII., Ex. 3); hence the rectangle CE = BD. BC, and CE is equal to the given rectangle. Also because the \angle BDC is right, $BD^2 - BC^2 = DC^2$, which is equal to the given difference of squares.

2. See Book II., Ex. 6, Miscellaneous.

Miscellaneous Exercises on Book II.

1. Let ABCD be a quadrilateral, AC, BD its diagonals, and EF, GH lines joining the middle points of BC, AD, AB, CD It is required to prove that $AC^2 + BD^2 = 2 EF^2 + 2 GH^2$.

Dem.—Join GE, EH, HF, FG. Now GEHF is a parallelogram (I. xL., Ex. 6); \therefore 2 GH² + 2 EF² = 2 GE² + 2 EH² + 2 HF² + 2 FG² (x., Ex. 5) = 4 GE² + 4 EH².

Again, $GE = \frac{1}{2} AC$ (I. xl., Ex. 5), and $EH = \frac{1}{2} BD$; ... 4 $GE^2 + 4 EH^2 = AC^2 + BD^2$. Hence 2 $GH^2 + 2 EF^2 = AC^2 + BD^2$. 2. Let AD, BE, CF be the medians.

Dem.—AB² + AC² = 2 BD² + 2 AD² (x., Ex. 2); ... 2 AB² + 2 AC² = BC² + 4 AD²; but AO = $\frac{2}{3}$ AD; ... AO² = $\frac{4}{5}$ AD²; ... 9 AO² = 4 AD²; hence 2 AB² + 2 AC² = BC² + 9 AO². Similarly 2 AC² + 2 CB² = AB² + 9 CO², and 2 CB² + 2 AB² = AC² + 9 BO²; ... 3 (AB² + BC² + CA²) = 9 (AO² + BO² + CO²). Hence AB² + BC² + CA² = 3 (AO² + BO² + CO²).

3. Sol.—Construct the \triangle OCG, having OC = D, OG = 2 E, and CG = F. Bisect OG in B. Join CB, and produce it to A. Cut off AB = BC. Join AO. OA, OB, OC are the required lines.

Dem.—The Δ * ABO, CBG are equal in every respect (I. iv.); \therefore AO = CG = F, and OC = D, and OB = E.

4. Let ABCD be a quadrilateral; AC, BD its diagonals. Bisect AB, CD in EF. Join EF. It is required to prove that $AD^2 + BC^2 + AC^2 + BD^2 = AB^2 + DC^2 + 4 EF^2$.

Dem.—Join CE, DE. Now $AD^2 + BD^2 = 2 AE^2 + 2 ED^2$ (x., Ex. 2), and $AC^2 + BC^2 = 2 BE^2 + 2 CE^2$; ... $AD^2 + BD^2 + AC^2 + BC^2 = 2 AE^2 + 2 BE^2 + 2 CE^2$; but $2 AE^2 + 2 BE^2 = 4 AE^2 = AB^2$; and $2 CE^2 + 2 DE^2 = 4 DF^2 + 4 EF^2 = DC^2 + 4 EF^2$. Therefore $AD^2 + BD^2 + BC^2 + AC^2 = AB^2 + DC^2 + 4 EF^2$.

5. Let a, b, c be the sides of the triangle. On a, b, c describe squares. Join the adjacent corners, and let the joining lines be

denoted by α , β , γ . It is required to prove that $\alpha^2 + \beta^2 + \gamma^2 = 3 (\alpha^2 + b^2 + c^2)$.

Dem.—Complete the construction, as in I. XLVII., Ex. 6. Now we have (x., Ex. 2) $a^2 + a^2 = 2 b^2 + 2 c^2$; $\beta^2 + b^2 = 2 c^2 + 2 a^2$; and $\gamma^2 + c^2 = 2 a^2 + 2 b^2$. Add together, and we get $a^2 + \beta^2 + \gamma^2 + (a^2 + b^2 + c^2) = 4 (a^2 + b^2 + c^2)$; and $\therefore a^2 + \beta^2 + \gamma^2 = 3 (a^2 + b^2 + c^2)$.

6. Let AB be a given line. It is required to divide it into two parts at C, so that the rectangle contained by another given line X, and one segment BC, will be equal to AC².

Sol.—Erect AD \perp to AB, and equal to X. Complete the rectangular \square ABDE. Construct a square equal to ABDE, and let

AF be one of its sides. Bisect AD in G. Join GF. Produce DA to H. Cut off GH = GF. In AB take AC = AH. C is the required point.

Dem.—Complete the square AHKC. Produce KC to meet DE

in M. Now DH. HA + AG² = GH² (vi.); but GH² = GF² = AG² + AF²; ... DH. HA = AF²; but AF² = ABDE (const.); ... the figure HM = BD. Reject DC, and HC = BM; but BM is the rectangle BC. BE; that is, BC. X; and HC is AC²; ... BC. X = AC².

If we put $\frac{AB}{m} = X$, where m is any quantity, we get AB. BC = $m AC^2$.

7. Dem.—Bisect AB in O. Erect OE \(\perp \) to AB, and join OC, EP. Now (111., 3) CD is bisected at E; ... (x., Ex. 2)

 $CP^2 + PD^2 = 2 CE^2 + 2 EP^2 = 2 CE^2 + 2 EO^2 + 2 OP^2 = 2 CO^2 + 2 OP^2 = 2 AO^2 + 2 OP^2 = AP^2 + PB^2$ (ix.).

- 8. See "Sequel to Euclid," Book II., Prop. vn.
- 9. Let ABCDE be the pentagon; AC, BD, CE, AD, BE its diagonals. Bisect the diagonals. Let α be the line joining the middle points of AC, BD; β of BD, CE; γ of CE, AD; δ of AD, BE; and ϵ of BE, AC. It is required to prove that $3 (AB^2 + BC^2 + CD^2 + DE^2 + EA^2) = AC^2 + BD^2 + CE^2 + AD^2 + BE^2 + 4 (a^2 + \beta^2 + \gamma^2 + \delta^2 + \epsilon^2)$.

Dem.—

AB² + BC² + CD³ + DA² = AC² + BD² +
$$\frac{1}{6}$$
²
(XIII., Ex. 2).

BC² + CD² + DE² + EB² = BD² + CE² + $\frac{1}{4}$ β ²;
CD² + DE² + EA² + AC² = CE² + DA³ + $\frac{1}{4}$ γ ²;
DE² + EA² + AB² + BD² = DA² + EB³ + $\frac{1}{4}$ δ ²;
EA² + AB² + BC² + CE² = EB² + AC² + $\frac{1}{4}$ ϵ ².

Add together, and we have

$$3 (AB^{2} + BC^{2} + CD^{2} + DE^{2} + EA^{2}) = AC^{2} + BD^{2} + CE^{2} + AD^{2} + BE^{2} + 4 (a^{2} + \beta^{2} + \gamma^{2} + \delta^{2} + \epsilon^{2}).$$

- 10. See "Sequel to Euclid," Book II., Prop. v.
- 11. See "Sequel to Euclid," Book II., Prop. viii.
- 12. See "Sequel to Euclid," Book II., Prop. 1x.
- 13. See "Sequel to Euclid," Book H., Prop. IX., Cor.

14. (1) Dem.—It is proved in Ex. 12 that

 $m AC^2 + n BC^2 = m AD^2 + n DB^2 + (m + n) DC^2;$

but $m ext{ AC}^2 + n ext{ BC}^2$ is given (hyp.); $\therefore m ext{ AD}^2 + n ext{ DB}^2 + (m+n)$ DC² is given, and $m ext{ AD}^2 + n ext{ DB}^2$ is given; $\therefore (m+n) ext{ DC}^2$ is given; but (m+n) is given; $\therefore ext{ DC}^2$ is given; $\therefore ext{ DC}$ is given, and D is a given point. Hence the locus of the vertex is a \odot , having D as centre, and DC as radius.

- (2) This case can be proved in a similar manner by using Ex. 13.
- 15. Let ABCD be a rectangle, of which AB, AD are adjacent sides. On AB, AD describe squares AF, AE. Draw the diagonals AF, AE. It is required to prove that AF. AE is equal to twice the rectangle AC.

Dem.—Let fall a \perp BG on AF. Now, because the \angle ABF is right, AF² = AB² + BF² = 2 AB². For a similar reason AE²

= 2 AD²; hence AF². AE² = 4 AB². AD²; therefore AF. AE = 2 AB. AD; that is, AF. AE is equal to twice the rectangle AC. 16. Dem.—Join AB, BC. Bisect AB in G. Join PG, CG,

AP, BP, CP. Divide GC in H, so that HC = 2 GH. Join PH. Now $AP^2 + BP^2 = 2$ $AG^2 + 2$ GP^2 (x., Ex. 2), and 2 $PG^2 + PC^2$

= $2 \text{ GH}^2 + \text{HC}^2 + 3 \text{ HP}^2$ (Ex. 12); \therefore AP² + BP² + CP² = 2 AG^2 + $2 \text{ GH}^2 + \text{HC}^2 + 3 \text{ HP}^2$; but AP² + BP² + CP² is given (hyp.); \therefore 2 AG² + 2 GH² + HC² + 3 HP² is given; but 2 AG² is given, and 2 GH², and HC²; hence 3 HP² is given; \therefore HP is given, and the point H is given. Hence the locus of P is a circle.

17. Let ABCD be a square, and AEGH a rectangle of equal area. It is required to prove that the perimeter of ABCD is less than that of AEGH.

Dem.—ABCD = AEGH (hyp.). Take away the common part AEFB, and we have EDCF = BFGH; hence these must be the complements about the diagonal of a parallelogram; ... if DC, AF, HG be produced, they are concurrent. Let them meet in K. Now DK is greater than DA; ... the \(\triangle DAK \) is greater than DKA;

that is, CFK is greater than CKF; ... CK is greater than CF, and therefore greater than DE. To each add CD + EA, and we get KD + EA; that is, GE + EA, greater than CD + DA. Hence the perimeter of the rectangle is greater than that of the square.

18. Let the transversal be divided by the lines, so that m.AC

$$= n.CB$$
; then $\frac{m}{n} = \frac{BC}{AC}$.

Dem.— $m.AD^2 + n.DB^2 = m.AC^2 + n.BC^2 + (m+n) CD^2$ (Ex. 12);

$$\therefore \frac{m}{n} AD^2 + DB^2 = \frac{m}{n} AC^2 + BC^2 + \left(\frac{m}{n} + 1\right) CD^2; \text{ but } \frac{m}{n} = \frac{BC}{AC};$$

$$\therefore \frac{BC}{AC} \cdot AD^2 + DB^2 = \frac{BC}{AC} \cdot AC^2 + BC^2 + \left(\frac{BC}{AC} + 1\right)CD^2;$$

$$\therefore BC.AD^2 + AC.DB^2 = BC.AC^2 + AC.BC^2 + AB.CD^2;$$

$$\therefore BC.AD^2 + AC.DB^2 - AB.CD^2 = AC.CB (AC + CB);$$

$$...BC.AD^2 + AC.DB^2 - AB.CD^2 = AB.BC.CA.$$

Lemma.—If a circle be described about an equilateral triangle, the square of the side of the triangle is equal to three times the square of the radius.

Dem.—Let BC be the side of the equilateral \triangle ABC, and O the centre of the circumscribing circle. Join BO, and produce it to meet the circumference in D. Join DC, OC, OA.

Now, in the \triangle^s AOB, BOC, the \angle ABO = CBO (I. VIII.); ... CBO is half an \angle of an equilateral \triangle . In like manner BCO is half an \angle of an equilateral \triangle , and ... DOC is an \angle of an equilateral \triangle , and OD = OC, being radii of the circle; ... ODC is an equilateral \triangle ; ... DC = OC; but it has been shown that BCO is half an \angle of an equilateral \triangle , and DCO an \angle of an equilateral \triangle ; ... BCD is a right \angle ; ... BD² = BC² + CD² = BC² + CO². Let BO be denoted by r, then BD² = $4r^2$, and OC² = r^2 ; ... $4r^2$ = BC² + r^2 . And therefore BC² = $3r^2$.

19. **Dem.**—Join AD, CD, CD'. Now in the \triangle DCD', DD'² = DC² + CD'² + DC. CD' (xII., Ex. 1); ... 6 DD'² = 6 DC² + 6 CD'² + 6 DC. CD'.

Again, $AC^2 = 3 CD^2$ (Lemma), and $CB^2 = 3 CD'^2$; ... $AC^2 \cdot CB^2 = 9 CD^2 \cdot CD'^2$; ... $AC \cdot CB = 3 CD \cdot CD'$; ... $2AC \cdot CB = 6 CD \cdot CD'$; hence we have $6 DD'^2 = 2 AC^2 + 2 CB^2 + 2 AC \cdot CB = AC^2 + CB^2 + (AC^2 + CB^2 + 2 AC \cdot CB) = AC^2 + CB^2 + AB^2$.

20.—Dem.—Let c be the hypotenuse; then ab = cp (1., Cor. 1); ... $a^2 b^2 = c^2 p^2$; ... $a^2 b^2 = (a^2 + b^2) p^2 = a^2 p^2 + b^2 p^2$. Divide by $a^2 b^2 p^2$, and $\frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{a^2}$.

- 21. Dem.—Since ABD is an isoceles \triangle , DC² DB² = AC. CB (v_I., Ex. 6) = AB² (hyp.). Hence DC² = DB² + AB² = 2 AB².
- 22. Let a variable line AB, whose extremities rest on the circumferences of two given concentric \bigcirc ³, subtend a right \angle at a fixed point P. It is required to prove that the locus of its middle point C is a \bigcirc .

Dem.—Join OA, OB, OP. Bisect OP in D. Join CO, CD, CP.

Now $AO^2 + OB^2 = 2 BC^2 + 2 CO^2$ (x., Ex. 2); but AO, OB are given, being radii of the given \bigcirc ⁸; \therefore 2 BC² + 2 CO² is given; \therefore BC² + CO² is given; but BC = CP (I. xII., Ex. 2); \therefore CO² + CP² is given; that is, $2 OD^2 + 2 DC^2$ is given; but $2 OD^2$ is

EXERCISES ON EUCLID.

BOOK II.

given, since OP is bisected in D; ... 2 DC2 is given; ... DC is a

given line, and D is a fixed point. Hence the locus of C is a O, having D as centre, and DC as radius.

BOOK III.

PROPOSITION III.

1. Let AB be the chord subtending a right ∠ at the point C. It is required to prove that the locus of the middle point of AB is a circle.

Dem.—Let D be the centre. Draw DE 1 to AB, and join CD, AD, CE.

Now (III.) AB is bisected in E; ... the lines AE, BE, CE are equal (I. xII., Ex. 2). Again, $AD^2 = AE^2 + ED^2 = ED^2 + EC^2$; but AD^2 is given, since AD is the radius; ... $ED^2 + EC^2$ is given, and the base DC is given; ... (II. x., Ex. 3), the locus of E is a circle.

2. Let AB be the given line, and C the given point. Take any

point D in AB. Join DC. With D as centre, and DC as radius,

describe a \odot . From C let fall a \bot CE on AB, and produce it to meet the circumference in F. It is required to prove that every \odot having its centre in AB, and passing through C, must pass through F.

Dem.—Take any other point G in AB. Join GC. With G as centre, and GC as radius, describe a \odot . Join FG. Now EC = EF (III.), and EG common, and the \angle CEG = FEG; ... (I. IV.) CG = FG. Hence the second circle must pass through F.

3. Let CDE be the given circle, AB the given line, and F the given point. It is required to draw a chord in CDE which shall subtend a right \angle at F, and be \parallel to AB.

Sol.—Let G be the centre of CDE. From G let fall a ⊥ GK on AB. Join FG, and produce it to meet the ⊙ in E. Bisect EG in H. Erect HM ⊥ to EG, and make it equal to GH.

Join GM. Bisect FG in N, and erect NP \perp to FG. With G as centre, and GM as radius, describe a \odot , meeting NP in P. With N as centre, and NP as radius, describe a \odot , cutting GK in Q. Through Q draw CD \parallel to AB. CD is the required line.

Dem.—Join GP, GC, CF, QF, QN, FD. Now, since EG = 2 GH, EG² = 4 GH²; but MG² = MH² + HG² = 2 GH². Hence EG² = 2 MG² = 2 GP² = 2 PN² + 2 NG² = 2 GN² + 2 NQ²; but 2 GN² + 2 NQ² = QG² + QF² (II. x., Ex. 2), and EG² = GC²; \therefore GC² = QG² + QF²; but GC² = QC² + QG²; \therefore QF² = QC², and QF = QC; but QC = QD (III.); hence the three lines QC, QF, QD are equal; \therefore (I. xII., Ex. 2) the \angle CFD is right.

PROPOSITION XIII.

1. (1) **Dem.**—Let A, B be the centres of the fixed circles, and P the centre of the variable one. Join AP, BP; and let the radii be denoted by R, r, r'. Now AP = R + r, and BP = R + r'; ... AP - BP = r - r'.

- (2) If the contact of the variable \odot with the \odot whose centre is B be of the second species, we have AP = R + r, and BP = R r'; $\therefore AP BP = r + r'$.
- 2. (1) Dem.—Let the \odot whose centre is P touch that whose centre is A internally, and be touched by the one whose centre is B externally; then, denoting the radii as in the last Exercise, we get AP = r R, BP = r' + R; and $\therefore AP + BP = r + r'$.

- (2) If the \odot whose centre is B touches the variable \odot internally, we get AP = r R, and BP = R r; $\therefore AP + BP = r r'$.
 - 3. Dem.—Let A, B be the centres, and C the point of con-

tact. Join AB. Through C draw DE, meeting the ⊙s in D, E. Join AD, BE.

Now the \angle ADC = ACD, and BCE = BEC; but ACD = BCE (I. xv.); ... ADC = BEC; and hence (I. xxvii.) AD is parallel to BE.

4. Let AB, CD be the diameters, G the point of contact, and E, F the centres. Join BG. It is required to prove that BG produced must pass through C.

Dem.—If possible, let it pass through H. Produce DC to meet BH. Join GE, GF.

Now the \angle EBG = FHG (I. xxix.); but EBG = EGB = FGH; ... FHG = FGH; ... FG = FH; but FG = FC; ... FC = FH, which is absurd. Hence BG produced must pass through C. In like manner DG produced must pass through A.

PROPOSITION XIV.

1. (1) Dem.—Let ABC be the fixed circle, and AB the chord. From the centre D let fall a \perp DE on AB. Join AD.

Now AB is bisected in E (111.); ... AE is a line of given length, and AD is given, since it is the radius; but $AD^2 = AE^2 + DE^2$; ... DE is given, and the point D is given. Hence the locus of E is a circle.

(2) Let ABC be the O, AB the chord, and E any fixed point in AB.

Dem.—Let D be the centre. Join AD, BD, ED. Now, because AB is given, and E is a fixed point in it, ... AE and EB are each given; ... AE. EB is given; and because ADB is an isosceles \triangle , AE. EB = BD² – DE² (II. vi., Ex. 6); but AE. EB is given, and BD² is given, since BD is the radius; ... DE is given, and the point D is given. Hence the locus of E is a circle.

PROPOSITION XV.

1. Let ABC be the ⊙, and P the point. Through P draw a chord AB ⊥ to the diameter CD. It is required to prove that AB is the minimum chord.

Dem.—Through P draw any other chord FG; and from E, the centre, let fall a ⊥ EH on it. Now the ∠ EHP is right, ... EPH is acute; ... EP is greater than EH; ... (xv.) FG is greater than AB.

2. Let ABC be the given circle, AB the given chord, and P

the point. It is required, through the point P, to draw a chord equal in length to AB.

Sol.—From the centre D let fall a \bot DE on AB. With D as centre, and DE as radius, describe a \odot EFG. Through P draw PCFH, touching EFG in F, and cutting ABC in C and H. CH is the chord required.

Dem.—Join DF. Now because DF = DE, \therefore (xiv.) CH = AB.

3. See "Sequel to Euclid," Book III., Prop. xv.

4. Dem.—Let 0, 0', 0" be the centres. Now the lines joining 00', 0'0", 0"0 must pass through A, C, B (xII.).

And because OA = OB, the ∠ OBA = OAB. Similarly, the ∠ O"BD = O"DB; but O"BD = OBA; hence O"DB = OAB, and ∴ O"D is parallel to OA. In like manner O"E is parallel to O'A; and hence O"D, O"E are in the same straight line.

PROPOSITION XVI.

1. Dem.—Let D be the common centre, and AB, CH the

chords of the greater which touch the less; then AB = CH (xiv.). See diagram to Prop. xv., Ex. 2.

2. Let AB be the given line, and O the centre of the given circle. It is required to draw a parallel to AB which shall touch the circle. (See last diagram.)

Sol.—Let fall a \perp OC on AB; and through D, where OC cuts the \odot , draw EF parallel to AB. EF is the required line.

Dem.—Now the \angle ODF = OCB (I. xxix.); ... ODF is a right \angle ; hence (xvi.) EF touches the circle.

- 3. Let AB be the given line, and O the centre of the given circle. It is required to draw a perpendicular to AB which shall touch the circle.
- Sol.—From O let fall a \perp OC on AB. Draw OF || to AB, and from F, where it meets the \odot , draw FB || to OC. FB is the required line.

Dem.—The \angle ^s OCB, FBC are together equal to two right \angle ^s (I. xxix.); ... the \angle FBC is right, and FB is \bot to AB.

- 4. (1) Sol.—Let O be the given point, and AB the given line. Let fall a \perp OC on AB. With O as centre, and OC as radius, describe a circle.
- (2) Let O be the given point, and O' the centre of the given circle. It is required to describe a \odot having its centre at O, and touching the \odot whose centre is O'.

Sol.—Join OO', and produce to meet the circumference of O in C; with O as centre, and OC as radius, describe a \odot ; or, with O as centre, and OD as radius, describe a \odot . Hence there are two solutions.

5. Let AB, AC be the given lines, and R the given radius. It is required to describe a \odot , touching AB, AC, and having a radius equal to R.

Sol.—Erect AD \(\perp \) to AB, and equal to R. Draw DE \(\psi\) to AB.

Bisect the \angle BAC by AE, meeting the line DE in E. E is the centre of the required \odot .

Dem.—Draw EB, EC, 1 to AB, AC.

Now the ∠ BAE = CAE, and the right ∠• ABE, ACE are equal, and AE common; ∴ (I. xxvi.) BE = CE; and the ⊙, with E as centre and BE as radius, will pass through C. If we produce BA, we can describe another ⊙ touching AC and the production of BA.

6. Let AB, AC be the given lines, and E the centre of one of the Os which touch AB, AC.

Sol.—Join AE, and produce it. Join E to the points B, C, where the \odot touches AB, AC. Now, since the \angle ² at B, C are right (xvi.), AE² = AB² + BE² = AC² + CE²; but BE² = CE²; \therefore AB² = AC²; \therefore AB = AC, AE common, and the base BE = CE; \therefore (I. viii.) the \angle BAE = CAE, \therefore the \angle between the lines is bisected by the line joining their intersection to the centre of one of the circles. Hence the locus of the centres is the right line bisecting the angle between the two given lines.

7. (1) Let C be the centre of the given circle, AB the given

line, and R the radius. It is required to describe a O that shall

touch the \odot whose centre is C and the line AB, and have a radius equal to R.

Sol.—Take any point A in AB, and erect AD \perp to it and = R; draw DE \parallel to AB; from C draw any radius CF, and produce it to G, so that FG = R. With C as centre, and CG as radius, describe a \odot cutting DE in E. E is the centre of the required circle.

Dem.—Join CE, and draw EB \parallel to AD. Now CG = CE, and CF = CH; ... FG = EH; but FG = R; ... EH = R, and EB = AD = R, ... EH = EB, and the \odot , with E as centre and EB as radius, will pass through H. Hence it will touch the given \odot , the given line, and have a radius of given length.

(2) Let C, C' be the centres of the given ⊙, and R the given radius.

Sol.—Draw any two radii CD, C'D', and produce them to E, E', so that DE, D'E' are each equal to R; with C, C' as centres, and CE, C'E' as radii, describe two O's. Let them intersect in C". C" is the centre of the required circle.

Dem.—Join CC", C'C". Now CE = CC", and CD = CF; hence DE = FC"; but DE = R (const.); ... FC" = R. In like manner F'C" = R; ... the \odot described with C" as centre, and C"F as radius, will pass through F', and touch the two \odot , and have the given radius.

PROPOSITION XVII.

2. Let 0 be the common centre. From any points A, B, on the outer circle tangents AC, BD are drawn to the inner one. It is required to prove that AC = BD.

Dem.—Join OA, OB, OC, OD. Now (xvi.) the \angle ⁰ at C, D are right; \therefore OA² = OC² + CA², and OB² = OD² + DB²; but OA² = OB², and OC² = OD², \therefore AC = BD.

3. Let ABCD be the quadrilateral. It is required to prove that AB + CD = AD + BC.

Dem.—Let E, F, G, H be the points of contact. Now (xvII., Ex. 1) AE = AH, and BE = BF; $\therefore AB = AH + BF$. In like manner CD = DH + CF; $\therefore AB + CD = AD + BC$.

4. Dem.—Let ABCD be the circumscribed parallelogram. Now AB + CD = 2 CD, and AD + BC = 2 AD; but AB + CD = AD + BC; $\therefore 2 CD = 2 AD$; $\therefore CD = AD$. In like manner all the sides are equal. Hence ABCD is a lozenge.

Again, the line joining the centre to the intersection of tangents bisects the angle between the tangents; conversely, the line bisecting the angle between the tangents passes through the centre; therefore AC passes through the centre. Similarly, BD passes through the centre. Hence E is the centre.

- 5. Dem.—OB = OD, and OP common, and the base BP = DP; ... (I. viii.) the $\angle BOP = DOP$. Again, OB = OD, OF common, and the $\angle BOF = DOF$; ... (I. iv.) the $\angle OFB = OFD$. Hence each is a right \angle , and OP is \bot to BD.
- 6. Let A, B be the centres of the ⊙^s. Let P be a point from which the tangents PC, PD to the ⊙^s are equal. It is required to prove that the locus of P is a right line.

Dem.—Join AC, AP, BD, BP, and from P let fall a \bot PE on AB. Now AP² = AC² + CP²; ... CP² = AP² - AC². In like manner DP² = BP² - BD²; but CP² = DP²; ... AP² - AC² = BP² - BD²; ... AP² - BD² is given, since AC, BD are the radii of the \bigcirc ²; ... AP² - BP² is given,

... AE² — EB² is given; ... E is a given point; hence EP is given in position, and therefore the locus of P is the right line EP (called the radical axis of the two circles).

Cor.—To construct the line EP, join the centres, divide the joining line in E, so that $AE^2 - EB^2 = AC^2 - BD^2$; and erect EP \perp to AB.

7. Let the three circles be denoted by A, B, C. It is required

to find a point such that the tangents from it to A, B, C shall be equal.

Sol.—Find a line DE, such that the tangents from any point of it to A and B will be equal (xvii., Ex. 6); and find a line FE, such that the tangents from any point of it to A and C shall be equal. E, where the lines DE, FE intersect, is the required point.

8. **Dem**.—OBP is a right-angled \triangle , and BF is \bot to OP (xvII., Ex. 5); ... (I. xLVII., Ex. 1) OB² = OF. OP.

9. Let AB, AC be two fixed tangents, and EF a variable tangent, cutting AB, AC in E, F, and touching the ⊙ in D. Let O be the centre. Join OE, OF. It is required to prove that the ∠ EOF is constant.

Dem.—Join OB, OC, OD. Now (I. viii.) the \angle EOD = EOB; \therefore EOD = $\frac{1}{2}$ BOD. In like manner FOD = $\frac{1}{2}$ COD; \therefore EOF = $\frac{1}{2}$ BOC; but the \angle BOC is constant, since the tangents AB, AC are fixed; \therefore the \angle EOF is constant.

10. (1) See "Sequel to Euclid," Book III., Prop. vii.

(2) Draw a line cutting two circles, X, Y, so that the intercepted chords shall be of given lengths A, B.

Sol.—Let O, O' be the centres of X, Y; R, R' their radii. Then with O, O' as centres, describe O CDE, FGH, the squares

of whose radii shall be equal to $R^2 - \frac{1}{4}A^2$, and $R'^2 - \frac{1}{4}B^2$ respectively, and draw the line IM a common tangent to both circles. IM is the line required.

Dem.—Let C, F be the points of contact. Join OC, OI; O'F, O'L. Now $OC^2 = OI^2 - IC^2 = R^2 - IC^2$; but $OC^2 = R^2 - \frac{1}{4}A^2$ (const.); $\therefore IC^2 = \frac{1}{4}A^2$. Hence $IC = \frac{1}{2}A$; but $IC = \frac{1}{2}IK$ (III. III.); $\therefore IK = A$. In like manner LM = B.

PROPOSITION XXI.

1. (1) Let ABC be a \triangle , whose base BC, and vertical \angle BAC, are given. From B, C let fall \bot BE, CF on AC, AB, and let them intersect in G. It is required to find the locus of G.

Dem.—The four \angle ^s A, F, G, E of the quadrilateral AFGE are together equal to four right \angle ^s (I. xxxii., Cor. 3); but the \angle ^s E, F are right; ... the \angle ^s A, G are together equal to two right \angle ^s; but A is given (hyp.); ... G is given; ... (I. xv.) the \angle BGC is given. And hence (xxi., Cor. 2), the locus of G is a circle.

(2) Let the internal bisectors meet in D. Now, the three \angle so of the \triangle ABC are equal to two right \angle s; but the \angle A is given; the sum of the \angle s, C is given; half their sum is given;

that is, DBC + DCB is given; ... the \(\alpha \) BDC is given; and hence (xxi., Cor. 2) the locus of D is a circle.

- (3) Let the external bisectors meet in D. Then, as before, the sum of the ∠ B, C is given; ... (I. xxxII., Ex. 14) the ∠ D is given. Hence (xxI., Cor. 2) the locus of D is a circle.
- (4) **Dem.**—Let the external bisector of the \angle C, and the internal bisector of B meet in D; then the \angle BDC = $\frac{1}{2}$ BAC (I. xxxII., Ex. 2); ... the \angle BDC is given. Hence (xxI., Cor. 2) the locus of D is a circle.
 - 2. Let AB² be equal to the sum of the squares of the two lines.

It is required to prove that their sum is a maximum when the lines are equal.

Sol.—Upon AB describe a semicircle ADB. Bisect AB in C, and erect $CD \perp to$ AB. Join AD, BD. In ADB take any other point E. Join AE, BE. Produce AD to F, so that DF = DB. Join BF. Produce AE to G, so that EG = EB, and join BG.

Dem.—The \(\text{DFB} = \text{DBF} \) (I. v.); but BDF is a right \(\text{\(\text{\(\text{C}} \)} \); DFB is half a right \(\text{\(\text{\(\text{C}} \)} \); hence (xxi., Cor. 1) the four points A, F, G, B are concyclic. Now, since D is a point in a \(\text{O} \) from which the three equal lines DA, DB, DF are drawn to the circumference, D is the centre; \(\text{...} \) AF is the diameter; but the diameter is the greatest chord; \(\text{...} \) AF is greater than AG; that is, the sum of AD and DB is greater than the sum of AE and EB.

3. Let there be two \triangle ⁸ ADB, AEB on the same base AB, and having equal vertical \triangle ⁸, and let ADB be isosceles. It is required to prove that the sum of the sides AD and DB is greater than the sum of the sides AE and EB. (Diagram, Ex. 2.)

Dem.—Produce AD to F, so that DF = DB. Join BF. Produce AE to G, so that EG = EB, and join BG. Now the ∠ DFB = DBF (I. v.); but ADB = DFB + DBF (I. xxxII.); ∴ ADB = 2 DFB. Similarly, AEB = 2 EGB; but ADB = AEB (hyp.); ∴ DFB = EGB; and ∴ (xxI., Cor. 1) the points A, F, G, B are concyclic; and it can be shown, as in Exercise 2, that AD + DB is greater than AE + EB.

4. Dem.—Let ABC be an inscribed \triangle . Then if any two sides AC, CB be unequal, by supposing the points A, B to remain fixed while C varies, the perimeter will be increased by making AC, CB equal. Hence, when the three sides AB, BC, CA become all equal, the perimeter will be a maximum.

Lemma.—Let ABC, DBC be two △s on the same base inscribed

in a circle, of which ABC is isosceles. It is required to prove that the area of ABC is greater than the area of BDC.

Dem.—Through A draw AF, touching the \bigcirc . Produce BD to meet it in F, and join CF. Now the \angle FAC = ABC (xxxII.) = ACB; \therefore AF is \parallel to BC; hence (I. xxxVII.) the \triangle BFC = BAC; but BFC is greater than BDC; \therefore BAC is greater than BDC. Similarly it can be shown that BAC is greater than any other \triangle inscribed in the \bigcirc , having BC for base, whose sides are unequal. Hence the area of the isosceles \triangle is a maximum.

5. Let ABCDE be a polygon inscribed in a circle. It is required to prove that the area is a maximum when all the sides are equal.

Dem.—Join AC. Now, if we suppose the point B to move about whilst the others remain fixed, when AB = BC, the \triangle ABC will be a maximum (Ex. 5), and therefore the area of the whole

figure will be increased. In like manner, if any other of the sides be unequal, we can increase the area by making them equal. Hence the area will be a maximum when all the sides are equal.

PROPOSITION XXII.

1. Let ABCD be a quadrilateral, whose opposite \angle s B, D are supplemental. It is required to prove that it is cyclic.

Dem.—If not, let the O through A, D, C, intersect the line

AB produced in E. Join CE. Now the \angle ^s ADC, CBA are together equal to two right \angle ^s (hyp.), and the \angle ^s ADC, CEA are equal to two right \angle ^s (xxII.) Reject ADC, and we have the \angle CBA = CEA, which is impossible (I. xvI.). Hence the \bigcirc must pass through B.

2. Let ABCDEF be a hexagon inscribed in a \odot . It is required to prove that the sum of the alternate \angle * ABC, CDE, EFA is equal to four right angles.

Dem.—Join CF. Now the \angle ^s ABC, CFA are together equal to two right \angle ^s (XXII.), and the \angle ^s CDE, EFC are equal to two right \angle ^s. Hence, by addition, the \angle ^s ABC, CDE, EFA are equal to four right angles.

3. (1) Let ABDC be a cyclic quadrilateral, and let the opposite sides meet in E, F. Draw any line GK, cutting the four sides, and making the \angle EJK = EKJ. It is required to prove that the \angle GHF = HGF.

Dem.—The \angle ⁸ BDC and BAC are equal to two right \angle ⁸ (xxII.), and the \angle ⁸ BAC, BAG equal to two right \angle ⁸. Reject the

 \angle BAC, and we have the \angle BDC = BAG, and the \angle DKJ = AJG (hyp.); ... the remaining \angle DHK = AGJ; that is, the \angle GHF = HGF.

(2) Let GK cut the diagonals in M, N. It is required to prove the \angle OMN = ONM.

Dem.—The \angle EJK = EKJ (hyp.), and the \angle ABC = ADC (**xxi.**); ... the remaining \angle BMJ = DNK; that is, the \angle OMN = ONM.

4. Bisect the \angle AEC by ES, meeting the diagonals in Q, R. From O let fall a \bot OP on ES. It is required to prove that OP bisects the \angle QOR.

Dem.—The ∠ ABC = BER + BRE (I. xxxII.), and ADC = DEQ + DQE; but (xxI.) ABC = ADC; ∴ BER + BRE = DEQ + DQE; but BER = DEQ (hyp.); ∴ BRE = DQE = OQR, and the ∠ OPR = OPQ. Hence the ∠ ROP = QOP.

5. Let ABCDEF be a cyclic hexagon, having the side AB || to DE, and BC to EF. It is required to prove that the side AF is || to CD.

Dem.—Join CF. Now the \angle ABC = DEF (I. xxix., Ex. 8); and since ABCF is a cyclic quadrilateral, the \angle ABC, AFC are together equal to two right \angle s. For the same reason the \angle s DCF, DEF are equal to two right \angle s; ... the \angle ABC and AFC = DCF and DEF; but ABC = DEF; ... AFC = DCF. And hence (I. xxvii.) AF is \parallel to CD.

6. Dem.—Join AB. Now the \angle BAD = BFD (xxi.), and BAC = BEC; ... BFD = BEC. And hence (I. xxviii.) CE is \parallel to DF.

BOOK III.

7. On the sides of any \triangle ABC, equilateral \triangle ^s are described, BF and CD joined and intersecting in G. Join AG, EG. It is required to prove that AG and GE are in the same straight line.

Dem.—Since AB = AD, and AC = AF, and the \(\text{BAD} \)

= CAF; to each add BAC, therefore the $\angle DAC = BAF$; hence (I. iv.) the \angle ADC = ABF, and ACD = AFB. Now, because the \angle ACG = AFG, AFCG is a cyclic quadrilateral; hence the L. AFC, AGC are together equal to two right Ls (XXII.); similarly ADBG is a cyclic quadrilateral; and the L. ADB, AGB are equal to two right Ls; ... these four Ls are together equal to four right \angle ⁸, and the \angle ⁸ AGB, BGC, AGC are equal to four right L. Reject the L. AGB, AGC, and we have the L BGC equal to the sum of AFC and ADB. To each add BEC, and we have BGC + BEC = AFC + ADB + BEC; but these three L* are equal to two right L*, since each is an \angle of an equilateral \triangle ; ... BGC, BEC are equal to two right L*; and hence BGCE is a cyclic quadrilateral; ... the L EGC = EBC; ... EGC is equal to an \angle of an equilateral \triangle , and therefore equal to AFC; but AFC and AGC are equal to two right ∠s; ... EGC and AGC are equal to two right ∠s, and hence (I. xiv.) AG and EG are in the same straight line. Therefore AE, BF, CD are concurrent.

8. If we join the centres H, J, K, it is required to prove that HJK is an equilatoral triangle.

Dem.—Let HJ, JK, HK cut BG, CG, AG in the points L, M, N. Now, because the $\angle *$ L, N are right (III., Cor. 4), ... the $\angle *$ H, G are equal to two right $\angle *$, and the $\angle *$ G, D are equal to two right $\angle *$; hence the \angle H = D; ... H is an \angle of an equilateral \triangle . Similarly, K is an \angle of an equilateral \triangle . Hence the \triangle HJK is equilateral.

9. Let ABCD be the quadrilateral, O the centre of the inscribed circle, and E, F, G, H the points of contact. Join O to A, B, C, D. It is required to prove that the ∠•'AOB, DOC are supplemental.

Dem.—Join OE, OF, OG, OH. Now the \angle AOB = half sum of the \angle EOH, EOF (xvii., Ex. 9), and the \angle DOC = half sum of GOH, GOF; but the sum of EOH, EOF, GOH, GOF is four right \angle s; \therefore AOB and DOC are together equal to two right angles.

10. Let ABC be a \triangle , whose perpendiculars CD, BE intersect

in G. Join AG, and produce it to meet BC in F. It is required to prove that AF is \bot to BC.

Dem.—Join DE. Now, because each of the \angle * ADG, AEG is right, ADGE is a cyclic quadrilateral; hence the \angle DEG = DAG (xxi.) Again, since the \angle * BDC, BEC are right, the points B, D, E, C are concyclic, and therefore the \angle DEB = DCB; \therefore DAG = DCB, and DGA = FGC (I. xv.); \therefore ADG = AFC; but ADG is a right \angle ; \therefore AFC is a right \angle , and AF is perpendicular to BC.

11. Let a variable tangent CD meet two parallel tangents AC, BD. Join the centre O to C, D. It is required to prove that the \(\subseteq \text{DOC} is right. \)

Dem.—Draw the diameter AB, and join O to the point E where CD touches the circle.

Now the \angle DOC is equal to half the sum of the \angle * EOB, EOA (xvii., Ex. 9); but EOB and EOA are together equal to two right \angle *; ... the \angle DOC is right.

12. See "Sequel to Euclid," Book III., Prop. xII.

13. Let ABCDEF be the hexagon, O the centre of the inscribed circle, and G, H, J, K, L, M the points of contact of the hexagon and circle. Join O to the points A, B, C, D, E, F. It is required to prove that the sum of the $\angle \cdot$ AOB, COD, EOF is two right angles.

Dem.—Join O to the points G, H, J, K, L, M. Now the \angle AOB = $\frac{1}{2}$ MOH (xvii., Ex. 9), COD = $\frac{1}{2}$ HOK, and EOF = $\frac{1}{2}$ KOM; ... the sum of AOB, COD, EOF is two right \angle .

PROPOSITION XXVIII.

1. Let AB, CD be the two diameters given in position. Take any point E in the circumference, and let fall \perp ⁵ EF, EG on AB, CD. Join FG. It is required to prove that FG is given in magnitude.

Dem.—Join OE, and from A let fall a \bot AH on CD. Now, since the \angle OHA is right, the circle on OA as diameter will pass through H (xxxi.); and because the \angle s OFE, OGE are right, the \odot on OE as diameter will pass through F and G; but OA = OE; \therefore the \bigcirc s on OA and OE are equal, and the \angle AOH is in both those \bigcirc s; \therefore the arc AH is equal to the arc FG (xxvi.), and therefore the chord AH = FG; but AH is given in magnitude, since it is a \bot from the extremity of one of the

diameters given in position on the other. Hence FG is given in magnitude.

2. Let OA, OD be two lines given in position, and FG a line

of given length sliding between them. At the extremities of FG, perpendiculars EF, EG are erected to OA, OD. It is required to prove that the locus of E, where these perpendiculars meet, is a circle. (Diagram to Ex. 1).

Dem.—Join OE. Erect ON \perp to OD, and equal to FG; draw NA \parallel to OD.

Now, because ONA is a right \angle , the \bigcirc described on OA as diameter will pass through N; for a similar reason, the \bigcirc on OE as diameter will pass through F and G. Now since ON and FG are equal, and subtend equal angles OAN, FOG in the \bigcirc s OAN, FOG, the \bigcirc s are equal; therefore the diameters OA, OE are equal. Again, since ON = FG, ON is given, and AN is \parallel to OD; ... the point A is given, and hence the line OA is given in magnitude; but OE = OA; ... OE is given in magnitude, and the point O is given. Hence the locus of E is a \bigcirc , having O as centre and OE as radius.

PROPOSITION XXX.

1. Dem.—Let O be the centre. Through C draw CG | to DA. Join OB, OC, OG. Now the \angle GCO = COE (I. xxix.); but GCO = CGO, and CGO = AOG, ... DOC = AOG; ... the arc

DC = AG (xxvi.). Again, the \angle GOB is double GCB (xx.); but GCB = AEB (I. xxix.), and AEB = COE; because CE = OC (hyp.); ... GOB is double DOC; hence the arc GB is double CD, and therefore the arc AB is three times the arc CD.

2. (1) Let AD be the internal bisector of the vertical \angle of the \triangle ABC. Join BD, CD. It is required to prove that BD = CD.

Dem.—Because the \angle BAD = CAD, the arc BD = CD (xxvi.), and therefore the chord BD = CD (xxix.).

(2) Produce CA to E. Bisect the \angle BAE by AF, meeting the circumference in F. It is required to prove that the point F is equally distant from B and C.

Dem.—Join BF, CF. Now the $\angle *$ FBC and FAC are together equal to two right $\angle *$ (xxii.), and FAC and FAE are equal to two right $\angle *$ (I. xiii.); ... the \angle FBC = FAE. Again, the \angle BAF = BCF (xxi.); but BAF = FAE, BCF = FAE; ... BCF = FBC; ... BF = CF.

3. Dem.—The \angle ADB = AD'B (xxi.), and the \angle ACB = AC'B; but the \angle ACB and DCB are together equal to two right \angle *,

and the \angle * AC'B, D'C'B are together equal to two right \angle *; ... the \angle DCB = D'C'B; and hence (I. xxxII., Cor. 2) the remaining \angle * DBC, D'BC', are equal.

4. **Dem.**—Join AD, DB. Now because the \angle ACD = BCD, the line AD = BD. Again, the \angle ⁵ DBC, DAC, together equal to two right \angle ⁶ (XXII.), and the \angle ⁶ DBC, DBF equal to two right \angle ⁶ (I. XIII.); ... the \angle DAE = DBF, and the right \angle ⁶ DEA, DFB are equal; ... (I. XXVI.) AE = BF. Hence AC - CE = CF - CB; ... AC + CB = CF + CE = 2 CE; because CF = CE.

PROPOSITION XXXII.

1. Let the circles touch in A. Through A draw any line BAC. It is required to prove that BAC divides the circles into similar segments.

Dem.—Through A draw a common tangent DE; take any

points F, G, in the \bigcirc ⁸. Join AF, BF, AG, CG. Now the \angle BAD = AFB (xxxII.), and the \angle CAE = AGC; but BAD = CAE (I. xv.);

- ... AFB = AGC; and hence the segments AFB, AGC are similar.
- 2. Let the circles touch in A. Through A draw two lines BC, FG, meeting the ⊙^s in B, C; F, G. Join BF, CG. It is required to prove that BF, CG are parallel.

Dem.—Through A draw a common tangent DE. Now it may be proved, as in Ex. 1, that the \angle AFB = AGC; hence (I. xxvII.), BF is parallel to CG.

3. Dem.—Join AC, BC. Now the lines CA, CD, CE are

equal (I. xII., Ex. 2); ... the \angle AEC = EAC; but (xxxII.) EAC = BCE; hence the \angle BCE = BEC; ... BCE and BEC = 2 BEC; ... (I. xxxII.) the \angle CBA = 2 BEC; but BEC = CAB, since CE = CA; ... CBA = 2 CAB. Hence the arc AC = 2 CB.

- 4. (1) See "Sequel to Euclid," Book III., Prop. III.
- (2) Dem.—Let GBF and ECH be the tangents to the circles at the points B, C. Join CF, CG. Now the \angle GFC = FCH (I. xxix.); but FCH = FGC (xxxii.); ... GFC = FGC; and hence the chords GC, FC are equal.
- 5. (1) Let the circles ABC, DBE touch at B. Draw a common tangent AD. Join AB, DB. It is required to prove that the angle ABD is right.

Dem.—Draw a common tangent BF. Now AF = BF (xvII., (Ex. 1); ... the \angle ABF = BAF; and because BF = DF, the \angle BDF = DBF; ... the \angle ABD = BAD + BDA, and hence (I. xxxII., Cor. 7) the \angle ABD is right.

(2) Dem.—Produce AB, DB to meet the circumferences in E, C. Join AC, DE. Produce ED to G, and draw AG parallel to CD.

Now, because the \angle ABD is right, EBD is right, and therefore ED is a diameter, and hence (xix.) the \angle ADE is right; ... AD

is 1 to EG. Again, since AG, CD are parallel, the 2 GAE

= DBE, and is therefore a right \angle . Hence (I.] xLvII., Ex. 2) $AD^2 = DE \cdot DG = DE \cdot AC$.

PROPOSITION XXXIII.

1. (1) Let AB be the base, X the vertical \angle , and P the perpendicular.

Sol.—On AB describe a segment ACB containing an \angle equal to X (xxxIII.). Erect AD \bot to AB, and = P. Through D draw

DC | to AB, cutting the circle in C. Join AC, CB. ACB is the required triangle.

Dem.—Let fall a \perp CE on AB. The vertical \angle ACB = X; AB is the base, and the \perp CE = AD = P.

(2) Let the sum of the sides be equal to S.

Sol.—On AB describe a segment ACB containing an \angle equal $\frac{1}{2}$ X. Produce AB to E. Cut off AE=S. With A as centre, and AE as radius, describe a \bigcirc , cutting ACB in C. Join AC, BC, and at the point B in the line BC make the \angle FBC = FCB. AFB is the required triangle.

Dem.—FC = FB (I. vi.); \therefore AC = AF + FB; but AC = AE = S; \therefore AF + FB = S; and the \angle AFB = FBC + FCB (I. **xxxii.**) = 2 FCB = X.

(2') Let MN be the base, D the difference of sides, and ABC the vertical angle.

Sol.—Produce AB to E. Bisect the \angle CBE by BF. On MN describe a segment MGN containing an \angle = ABF; in MN take MH = D. With M as centre, and MH as radius, describe a \bigcirc , cutting MGN in G. Join MG, NG. Produce MG, and at the point N in GN make the \angle GNK = NGK. MKN is the required triangle.

Dem.—Produce MK to L, and draw KP parallel to GN. Now KN = KG (I. vi.); ... MG is the difference between MK and NK; but MG = MH = D; ... the difference between MK and NK is equal to D. Again, the \angle PKN = GNK (I. xxix.), and LKP = KGN; but GNK and KGN are equal (const.); ... PKN and LKP are equal; and since the \angle MKP = MGN = ABF,

the \angle LKF = EBF; but LKP = NKP, and EBF = FBC, ... FBC = NKP. Hence the \angle MKN = ABC.

(3) Let AB be the given base, X the vertical \angle , and let the sum of the squares of the sides be equal to $2 S^2$.

Sol.—On AB describe a segment containing an $\angle = X$. Bisect AB in D, and erect DE \bot to AB; from A inflect AF on DE = S (I. 11., Ex. 2). With D as centre, and DF as radius, describe a \odot , cutting ACB in C. Join AC, BC. ACB is the \triangle required.

Dem.—Join CD. Now, DF = DC; ... DF² = DC²; ... AD² + DF² = AD² + DC²; ... AF², that is S² = AD² + DC²; but AC² + CB² = 2 AD² + 2 DC² (II. x., Ex. 2). Hence AC² + CB₂ = 2 S².

(3') Let AB be the base, X the vertical \angle , and D² the difference of the squares of the sides.

Sol.—On AB describe a segment ACB containing an $\angle = X$. Divide AB in E, so that $AE^2 - EB^2 = D^2$ ("Sequel," Book I., Prop. ix.). Erect EC \bot to AB, and join AC, BC. ACB is the triangle required.

Dem.— $AC^2 = AE^2 + EC^2$, and $BC^2 = BE^2 + EC^3$; ... $AC^2 - BC^2 = AE^2 - EB^2 = D^2$.

(4) Let AB be the base, X the vertical \angle , and S the side of the inscribed square.

Sol.—On AB describe a segment containing an L = X. Erect

AD \perp to AB. In AD take AE = S. On AE describe a square AEFG. Join BF, and produce it to meet AD in H. Through H draw HC \parallel to AB, meeting the \odot in C. Join AC, BC. ACB is the required triangle.

Dem.—Produce EF to meet AC, BC in J, K; and draw JL, KM || to AE. Now, JK = EF (I. xxxviii., Ex. 6); but EF = AE = JL; \therefore JK = JL; hence the sides of JKLM are equal, and the \angle ⁸ are right (const.); \therefore it is a square, and is inscribed in the \triangle ABC.

(5) Let AB be the base, M the median, and X the vertical angle.

Sol.—On AB describe a segment ACB containing an $\angle = X$; bisect AB in D. With D as centre, and a radius equal to M, describe a \bigcirc , cutting ACB in C. Join AC, BC, DC. ACB is the triangle required.

Dem.—Because D is the centre of the \odot cutting ACB, DC is the radius; but the radius is equal to M; \therefore DC = M, and it is the median bisecting the base AB.

2. Let A be the fixed point, and O the centre of the given circle. Take any point B in the circumference of the \odot . Join AB, and bisect it in C. It is required to prove that the locus of C is a circle.

Dem.—Join AO, OB, and through C draw CD || to OB.

Now AO is bisected in D (I. xL., Ex. 3); but A and O are given points, \therefore the point D is given; and since CD is parallel to OB, \therefore CD = $\frac{1}{2}$ OB; but OB is a given line; \therefore CD is given, and the point D is given. Hence the locus of C is a \odot , having D as centre and DC as radius.

3. Let AB be the base, and ACB the vertical \angle . About ACB describe a segment of a circle containing an \angle = ACB; then the

circle must pass through C. On AC, BC describe equilateral Δ ^s-ADC, BEC. Join DE. It is required to find the locus of the middle point of DE.

Dem.—On AB describe an equilateral \triangle AFB. Join CF, DF, EF. Now the \angle BAF = DAC, \therefore the \angle BAC = DAF; and since DA = AC, and BA = AF, we have DA and AF equal AC and AB, and the contained \angle are equal; hence (I. iv.) DF = CB = CE. Similarly, DC = EF; \therefore DCEF is a parallelogram; hence (I. xxxiv., Ex. 1) DE, CF bisect each other in G. Now F is a given point, and C a point on the circumference of the

circle, and FC is bisected in G; ... (xxxiii., Ex. 2) the locus of G is a circle.

4. Let ACB be a \triangle , whose base and vertical \angle are given. On BC describe a square BEDC. It is required to find the locus of

E. On AB describe a square ABGF. Join EG. Now AB and BC = GB and BE, and the contained \angle are equal; ... (I. iv.) the \angle ACB = BEG; ... BEG is a given \angle , and the base BG is given, since it is equal to AB; ... (xxi., Cor. 2) the locus of E is a circle.

PROPOSITION XXXV.

1. Let ACB be the triangle. About ACB describe a circle. Draw the diameter CE, and from C let fall a \perp CD on AB. It is required to prove that AC. CB = CD. CE.

Dem.—Join AE. Now the \angle CAE is right (xxxi.), and is equal to CDB, and the \angle AEC = ABC (xxi.); ... (I. xxxii., Cor. 2) the \angle ACE = BCD, and hence (xxxv., Cor. 3) AC.CB = CD.CE.

2. Let ABD be a circle, of which AC is the diameter; let AB be the chord of an arc, then BC is the chord of its supplement. Join B to the centre E. Let fall a \(\pextsup BF\) on AC, and produce it

to meet the circumference in D. It is required to prove that AB. BC = BE. BD.

Dem.—Join CD. Now the \angle BDC = BAC (xxi.); but BAC = ABE, and BDC = DBC; \therefore ABE = DBC; hence the \triangle * ABE, DBC are equiangular; and \therefore (xxxv., Cor. 3) AB. BC = BE. BD.

3. Let ABC be a triangle whose base and the sum of whose sides are given. Produce AC to D, and bisect the ∠BCD by EF. From A, B let fall ⊥• AF, BE on EF. It is required to prove that AF. BE is given.

Dem.—Produce BE to meet AD. Bisect AB in G. Join EG, FG. Now because the \angle BCE = DCE, and CEB = CED, each being right, and CE common, ... (I xxvi.) BE = DE, and BC = DC. Now, since BC = DC, ... AD = AC + CB; hence AD is given; and because AB, DB are bisected in G, E, ... GE is to AD, and equal to half AD (I. xL., Exs. 2 and 5); that is, $=\frac{1}{2}(AC + CB)$. Similarly, $GF = \frac{1}{2}(AC + CB)$; ... the \bigcirc , with G as centre, and GE as radius, will pass through F, and will be a given \bigcirc . Produce EG to meet the circumference in H, and join AH. Now because AG = GB, and GH = GE, and the

 \angle AGH = BGE, \therefore (I. rv.) AH = BE, and the \angle GAH = GBE. To each add the \angle GAF, and we have the \angle GAH, GAF = GBE, GAF; but GBE, GAF are equal to two right \angle , since BE and AF are parallel, \therefore GAH and GAF are equal to two right \angle ; hence AH, AF are in the same straight line. Now FGH is an isosceles \triangle , \therefore (II. vi., Ex. 6) AF. AH = FG² - AG²; but FG is given, since it is half the sum of AC and CB; and AG is given, because it is half AB. Hence AF. AH s given; that is, AF. BE is given.

4. Let ABC be a triangle whose base AB, and the difference of whose sides AC, CB is given. Bisect the \angle ACB by CD. From

A, B let fall the \bot • AD, BE on CD. It is required to prove that AD. BE is given.

Dem.—Produce BE to meet AC in F. Bisect AB in G. Join EG, and produce it to meet AD in H. Join GD. Now because the \angle BCE = FCE, and the \angle BEC = FEC, and CE common; \therefore (I. xxvi.) CB = CF, and EB = EF, \therefore AF is the difference between AC and BC; and because EB = EF, and GB = GA, GE is to AF, and equal to half AF (I. xL., Exs. 2 and 5) or half EH; \therefore GE = GH; and the three lines HG, EG, DG are equal (I. xii., Ex. 2); \therefore the \triangle HGD is isosceles; hence (II. vi., Ex. 6) AD AH = AG² - GH²; but AG is given, since it is half AB; and GH is given, because it is equal EG = $\frac{1}{2}$ AF; \therefore AD AH is given; that is, AD BE is given.

5. Let ACD, BCD be two circles intersecting in C, D. At D draw a tangent to the \odot BCD, meeting ACD in E. From G, the centre of ACD, let fall a \perp GH on DE, and let it meet ACD in

A. Join AD, and produce it to meet BCD in B. AB is the required line.

Dem.—Draw AK || to DE. Join CD, and produce it to meet

AK. Take any other point L in ACD, and draw LM || to DE. Join LD, and produce it to meet BCD in F. Join CF, CB. Now the \(\alpha \) EDC = CBD (xxxxx); but EDC = AKC (I. xxxx.), \(\cdot \) AKC = CBD, \(\cdot \) AKBC is a cyclic quadrilateral; hence (xxxv., Cor. 3) AD. DB = CD. DK. In like manner LMFC is a cyclic quadrilateral; \(\cdot \) LD. DF = CD. DM; but CD. DK is greater than CD. DM, \(\cdot \) AD. DB is greater than LD. DF.

8. Let AB, AC be two lines given in position, and P a given point. It is required through P to draw a transversal, so that $PE \cdot PB = S^2$.

Sol.—Join AP, and produce it to D, so that AP.PD = S^2 . On PD describe a segment of a \odot PED, cutting AC in E, and containing an \angle = BAD. Join ED, EP, and produce EP to meet AB. EPB is the required line.

Dem.—Because the \angle PED = BAD, AEDF is a cyclic quadrilateral; ... (xxxv., Cor. 3) EP.PB = AP.PD; but AP.PD is equal to S². Hence EP.PB is equal to S².

PROPOSITION XXXVI.

1. Dem.—Describe a circle about the triangle ACB; then because the \angle BAD = ACB, AD is a tangent (xxxII.). Hence (xxxVI.) DB. DC = DA².

PROPOSITION XXXVII.

1. (1) Let A, B be the given points, and EC the given line. It is required to describe a \odot passing through A, B, and touching the line EC.

Sol.—Join AB, and produce it to meet EC. Find a point D in EC, so that $CD^2 = AC \cdot CB$; and through the points A, B, D

describe a circle. Then because $CD^2 = AC \cdot CB$, the line CE touches the circle.

(2) Let A, B be the given points, and CDE the given circle. It is required to describe a ⊙ passing through A, B, and touching CDE.

Sol.—Describe a \odot passing through A, B, and cutting CDE in D, E. Join AB, DE, and produce them to meet in F. From F draw a tangent FC to CDE, and through the points A, B, C describe a circle. ABC is the required circle.

Dem.—DF. FE = AF. FB; but DF. $FE = FC^2$; ... AF. FB

=FC²; ... CF touches ABC, and it touches CDE. Hence ABC touches CDE, and it passes through A and B.

2. (1) Let AB, AC be the given lines, and P the point. It is required to describe a ⊙, touching AB, AC, and passing through P. Sol.—Bisect the ∠ BAC by AD. From P let fall a ⊥ PE on AD, and produce it until EF = EP; let it meet AB in B. In AB.

take a point G, so that $BG^2 = FB \cdot BP$. Erect $GH \perp$ to AB; and from H, where GH meets AD, let fall a \perp on AC. The \odot through the points F, P, G will be the required circle.

Dem.—Because $BG^2 = FB$. BP, the \odot passing through F, P, G must touch AB; and since AB touches the \odot , and GH is \bot to AB, GH passes through the centre (xix.), and AD passes through the centre (iii.); ... H is the centre, and (I. xxvi.) the \triangle ⁸ AGH, AKH are equal in every respect; ... HG = HK; but HG is the radius; ... HK is the radius. Hence the circle must touch AC in K.

3. Let AB be the line, CDE the O, and P the point.

Sol.—From P let fall a perpendicular PF on AB, and produce it until FG = PF; and through P and G describe a circle PEG, touching CDE (Ex. 1). PEG is the required circle.

Dem.—Because PG is bisected at right \angle by AB, the centre of PKG is in AB (III.)

4. Let ABCD be the given \odot , P, P' the points.

Sol.—Draw a line AB, cutting off an arc AB in ABCD equal to the given arc. Let E be the centre. From E draw EF \(\perp \) to AB. With E as centre, and EF as radius, describe a \(\circ \) FG. Through P, P' describe a \(\circ \) PP'HK, cutting ABCD in H, K. Join KH, PP', and produce them to meet in L. Through L. draw LCGD, a tangent to FG, and cutting ABCD in C, D. The \(\circ \) through P, P', C will be the required one.

Dem.—Join EG. Now because PP'KH and DCKH are cyclic-quadrilaterals, PL.LP' = HL.LK = DL.LC; hence PP'CD is a cyclic qualrilateral; ... the ⊙ through P, P', C must pass through D; and since E is the centre of FG, EF = EG; ... AB = CD (xiv.), and therefore the arc AB = CD. Hence through P, P' we have described a ⊙ PP'CD, intercepting an arc CD = AB, on a given ⊙ ABCD.

5. Dem.—Let O, O' be the centres. Join OE, O'F. Now since OE, O'F are each \bot to EF, they are \parallel to each other; hence the \angle DOE = DO'F; but the \angle BOE is (III. xx.) double of the

- \angle BAE, and DO'F is double of DCF; hence the \angle BAE = DCF. In like manner, the \angle ABE = CDF. Hence the \triangle ^s ABE, CDF are equiangular.
- 6. If r be the radius of the inscribed circle of a right-angled triangle, by making the construction, we see at once that 2r is equal to the excess of the sum of the legs above the hypotenuse.

Again, if ρ , ρ' be the radii of circles touching the hypotenuse, the \bot from the right angle on the hypotenuse, and the \odot described about the right-angled \triangle , it follows at once from the Demonstration, Book VI., Ex. 59, that $\rho + \rho'$ is equal to the same excess. Hence $2r = \rho + \rho'$.

Miscellaneous Exercises on Book III.

1. Let AB, CD be two chords of a circle intersecting at right \angle ^s. It is required to prove that the sum of the squares of the four segments is equal to the square of the diameter.

Dem.—Draw BF || to CD. Join CB, FD, AF, AD. Now $CB^2 = CE^2 + EB^2$; but CB = FD (xxvi., Cor. 2); $\therefore FD^2 = CE^2 + EB^2$, and $AD^2 = AE^2 + ED^2$; $\therefore AD^2 + FD^2 = AE^2 + EB^2$

+ CE^2 + ED^2 ; but since the \angle ABF = AED (I. xxix.), ... ABF is a right \angle ; hence AF is the diameter; ... the \angle ADF is right; ... $AF^2 = AD^2 + DF^2 = AE^2 + EB^2 + CE^2 + ED^2$.

2. (1) Let AB, a chord of a given O, subtend a right \angle at a

fixed point P. From P, and C, the centre of the \odot , let fall \perp^s PE, CD on AB. It is required to prove that CD. PE is constant.

Dem.—Join CP, CA, PD, and let fall a \perp PQ on CD. Now AB is bisected in D (III.); ... the lines AD, DP, DB are equal (I. XII., Ex. 2), and AC² = AD² + DC² = DC² + DP²; but DC² + DP² is greater than CP² by 2 CD . DQ (II. XIII.); that is, by 2 CD . PE; ... AC² is greater than CP² by 2 CD . PE; but AC² and CP² are given; ... CD . PE is given.

(2) Join CP, and bisect it in F. Erect $FG \perp to$ CP, and equal to CF or PF. Produce GF to H, so that FH = FG, and join CG, PG, CH, PH. From C, G, H, P let fall \perp ⁸ CJ, GD, HK, PE on AB. It is required to prove that $GD^2 + HK^2$ is constant.

Dem.—Because CGPH is a square, GD² + HK² is greater than 2 CJ. PE, by the area of CGPH ("Sequel," Book II., Prop. viii.);

but 2 CJ. PE is given (1), and the area of the square is given. Hence $GD^2 + HK^2$ is given.

3. Let the \bigcirc ^s intersect in A, B. Through B draw a line BCD, meeting the \bigcirc ^s in C, D. Join AC, AD. It is required to prove that AC = AD.

Dem.—Because the Os are equal, the arcs AB are equal;

- ... the L. ACB, ADB are supplemental. Hence the L. ACD, ADC are equal. And hence AC = AD.
- 4. (1) Let AB, AC be two fixed tangents, and EF a tangent cutting off with AB, AC an isosceles \triangle AEF. AEF is greater than any other \triangle AHG, made by a tangent HG, which does not cut off an isosceles \triangle with AB, AC.

Dem.—Let EF, HG intersect in J. Join OJ, OB, OC, OD, OG, OH, and produce OH to L. Now, because AB = AC, and AE = AF; ... BE = CF; but BE = DE, and CF = DF; ... DE = DF; ... JF is greater than JE.

Again, the \angle HOG = BOD, because each = $\frac{1}{2}$ BOC (xvn.), Ex. 9), and H()J = $\frac{1}{2}$ BOD; ... HOJ = JOG, and the \angle HJO = KJO, and JO common; ... (I. xxvi.) JH = JK. Now the \angle LHG is greater than HGO; but LHG = GKJ, because they are the supplements of the equal \angle OHG, OKG; ... GKJ is greater than JGK; ... JG is greater than JK; ... JG is greater than JH, and JF is greater than JE; ... the \triangle FJG is greater than EJH. To each add the figure AGJE, and we have the \triangle AEF greater than AHG.

- (2) Let the tangent be drawn below the \odot , making an isosceles Δ with the fixed tangents; then it can be shown, as in (1), that the isosceles Δ is less than the Δ formed by any other tangent which does not cut off an isosceles Δ with the fixed tangents.
 - 5. Dem.—Join CF, DE, AB. Now the ∠s ADE and ABE

are equal (xxi.), and ACF, ABF equal; ... ADE, ACF are equal; ... CE is || to DF; ... CDEF is a parallelogram, and ... (I. xxxiv.)

CD = EF.

- 6. See Book I., Miscellaneous Ex. 45.
- 7. Let the sides of the cyclic quadrilateral ABCD be the diameters of four circles. It is required to prove that those circles intersect in four concyclic points E, F, G, H.

Dem.—Draw the diagonals AC, BD, and let fall \bot AE, BF, CG, DH on AC, BD. Join EF, EH, GF. Now, because the \angle AHD, CHD are right, the \bigcirc on AD, CD, as diameters, will pass through H. In like manner the \bigcirc on the other sides will pass through E, F, G. And since the \angle AHD, AED are right,

AHED is a cyclic quadrilateral; ... the $\angle \cdot$ AHE, ADE are together equal to two right $\angle \cdot$ (xxii.), and the $\angle \cdot$ AHE, FHE are equal to two right $\angle \cdot$; ... the \angle ADE = FHE. Similarly, BCF = EGF; but ADE = BCF (xxi.); ... FHE = EGF. And hence (xxi., Cor. 1) the points E, F, G, H are concyclic.

38. Let ABCD be a cyclic quadrilateral. Draw the diagonals

AC, BD. It is required to prove that the orthocentres of the Δ * ADB, ACB, CAD, CBD are the angular points of a quadrilateral which is equal to ABCD.

Dem.—From D and C let fall $\bot \bullet$ DE, CF on AB. Let C', D'. be the orthocentres of the $\triangle \circ$ ADB, ACB; and let A', B' be the orthocentres of the $\triangle \circ$ BCD, ADC. Join C'D', D'A', A'B', B'C'; and from O, the centre, let fall a \bot OM on AB.

Now $OM = \frac{1}{2}CD'$ ("Sequel," Book I., Prop. xII., Cor. 3). Similarly $OM = \frac{1}{2}C'D$; ... CD' = C'D, and they are parallel; hence DCD'C' is a parallelogram, ... DC = D'C'. In a similar manner it can be shown that the other sides of A'B'C'D' are respectively equal and parallel to the remaining sides of ABCD. Hence A'B'C'D' = ABCD.

9. Let the circles intersect in A, B. Through A draw ACD, AEF, cutting the ⊙s in C, E; D, F. Join EC, FD, and produce them to meet in G. It is required to prove that EGF is a given angle.

Dem.—Join AB, BC, BD. Now the L BAE, BCE are equal

to two right \angle * (xxxx.), and BCE, BCG are equal to two right \angle * (I. xxxx.); ... BAE = BCG. Similarly BAE = BDG, ... BCG = BDG, and hence (xxx., Cor. 1) the points B, C, D, G are concyclic; ... the \angle CBD = CGD. Again, the \angle * ACB, ADB are given, since they are in given segments, and the \angle CBD is equal to ACB - CBD; ... CBD is a given \angle ; that is, CGD is a given angle.

- 10. See "Sequel to Euclid," Book III., Prop. x.
- 11. Let P, P' be the points in the circle.

Sol.—Join PP'. Bisect it in D. Join D to the centre E, and produce it to meet the circumference in C. C is the point required.

Take any other point B in the circumference. Join BP, BP', CP, CP', BD. Now because E is the centre, DC is greater than DB, \therefore 2 DC² is greater than 2 DB². To each add 2 DP², and we have 2 DC² + 2 DP² greater than 2 DB² + 2 DP²; but CP² + CP'² = 2 DC² + 2 DP² (II. x., Ex. 2), and BP² + BP'² = 2 DB² + 2 DP²; \therefore CP² + CP'² is greater than BP² + BP'². Hence CP² + CP'² is a maximum. In like manner it can be shown, if we produce CD to A, that AP² + AP'² is a minimum.

- 12. Let ABCD (see fig., Ex. 7) be the quadrilateral. Draw AC one of the diagonals; and from B, D let fall \bot ^s BF, DH on AC. It is evident, from the proof of Ex. 7, that BF and DH are the common chords of the \bigcirc ^s on CD, AD, and on AB, CB as diameters, and that they are parallel.
 - 13. See "Sequel to Euclid," Book III., Prop. xt.
- 14. Let ACB be the \triangle , and CD the internal bisector of the vertical \angle . It is required to prove that AC. CB = CD² + AD. DB.
- **Dem.**—Describe a \odot about ACB. Produce CD to meet the circumference in E, and join BE. Now the \angle ACE = BCE, and CAD = CEB (xxi.); \therefore (I. xxxii., Cor. 2) the \triangle ^s ACD, BCE are equiangular; hence (xxxv. Cor. 3) AC. CB = EC. CD; but EC. CD = ED. DC + CD² (II. III.), and ED. DC = AD. DB (xxxv.), \therefore AC. CB = CD² + AD. DB.
- 15. Draw BD, CD tangents to the circles. It is required to prove that BDC is a given angle.

Demr.—Join AE, BE, CE. Now the \angle DCE = CAE (xxxII.), and DBE = CAE; ... DCE = DBE, and CFD = BFE (I. xv.), ... CDF = BEF; but BEF = ABE - ACE (I. xxxII.), and

ABE and ACE are given $\angle *$; ... the \angle BEF, that is, CDF, is given.

16. Let AB, a chord of a given circle, pass through a given point P; at A, B tangents AD, BD are drawn. It is required to prove that the locus of D is a right line.

Dem.—Let E be the centre. Join ED, EP. Produce EP, and from D draw DF 1 to it. Now, denoting the

radius by R, we have (xvII., Ex. 8) DE.EG = R^2 ; but because the \angle BGP, DFP are right, DFPG is a cyclic quadrilateral, and ... DE.EG = FE.EP; ... FE.EP = R^2 ; ... FE.EP is given, and EP is given; ... EF is given; hence F is a given point, and FD is \bot to EF; ... FD is a line given in position. Hence the locus of D is a right line.

17. Let ABC be the triangle. Describe a O about ABC. Bisect the \(\mathcal{L} \) BAC by AJ, and produce it to meet the circum-

ference in D. Through D draw the diameter DE. From A let fall a \perp AL on BC. Produce AC to G; and let fall \perp DF, DG on AB, AG; then CG = $\frac{1}{2}$ (AB - AC) (Dem. of xxx., Ex. 4). It is required to prove that HJ.HL = CG².

Dem.-Join FH, GH, DC, CE, EA, and from A let fall a

 \perp AM on DE. Now the \angle EAD is right (xxx1.), and EHJ is right, ... EAJH is a cyclic quadrilateral, ... ED.DH = AD.DJ; but because the \angle ECD is right, and CH \perp to ED, ED.DH = DC² (I. xLVII., Ex. 1); ... AD.DJ = DC², and AD.DK = DG²; hence, by subtraction, AD.JK = CG²; and since the \triangle • ADM, HJK are equiangular, we have (xxxv., Cor. 3) AD.JK = HJ.AM = HJ.HL. Hence HJ.HL = CG².

18. The rectangle contained by the distances of the point where the external bisector of the vertical \angle meets the base, and the point where the \bot from the vertex meets it from the middle point of the base, is equal to the square of half the sum of the sides.

Let the same construction be made as in Ex. 17. Join EA, and produce it to meet BC produced in N; then EA is the external bisector of the vertical \angle (xxx., Ex. 2). It is required to prove HN.HL = AG².

Dem.—Through H draw HO || to AD, meeting EN in O, and AM in P. Now the $\angle \cdot$ NOH, AMD are equal, each being right, and the \angle PAJ = PHJ (I. xxxiv.); ... the \angle MDA = ANH, ... the $\triangle \cdot$ HNO, AMD are equiangular, ... (xxxv., Cor. 3) HN.AM = DA.OH; but AM = HL, and OH = AK, ... HN.HL = DA.AK; but (I. xLVII., Ex. 1) DA.AK = AG². Hence HN.HL = AG².

19. Let ABCD be a cyclic quadrilateral. Produce AB, DC to meet in E, and AD, BC to meet in F. Join EF; and from E, F draw tangents t, t' to the \odot described about ABCD. It is required to prove that $EF^2 = t^2 + t'^2$.

Dem.—About the △ CDF describe a ⊙ CDFG, cutting EF

in G. Join CG. Now (xxII.) the \angle * BAD, BCD are together equal to two right \angle *, and the \angle * DFG, DCG are equal to two right \angle *; ... the \angle * BAD, BCD, DFG, DCG are equal to four right \angle *; and the \angle * BCD, BCG, DCG are equal to four right \angle *. Reject BCD, DCG, and we have the \angle BCG = BAD + DFG. To each add the \angle BEG, and we get BCG + BEG = EAF + AFE + AEF; hence the \angle * ECG, BEG are equal to two right \angle *; ... BCGE is a cyclic quadrilateral; ... FE.EG = DE.EC = t^2 (xxxvi.), and EF.FG = BF.FC = t'^2 ; but EF² = FE.EG + EF.FG; ... EF² = $t^2 + t'^2$.

20. Let AB be a given line, CDE a given \odot , and DKJ a variable \odot , touching CDE in D, and AB in J. It is required to prove that JD produced passes through a given point.

Dem.—From the centre F let fall a ⊥ FH on AB, and produce it to meet the ⊙ in C. Let G be the centre of DKJ. Join FG, GJ, CD, and produce JG to L. Now (xx.) the ∠ LGD = 2 GJD = 2 GDJ, and the ∠ EFD = 2 FDC; but LGD = EFD (I. xxix.), ∴ GDJ = FDC, ∴ JD, and DC are in one straight line; that is, the chord of contact JD produced passes through the point C

where the \bot from the centre of the given \odot on the given line meets the circumference.

21. Dem.—Join DA, AE. Now the \angle DEA = DAB (xxvII.), and EAC = ADE; but AFG = FDA + FAD (I. xxxII.) and AGF,

= GAE + GEA, ... AFG = AGF, and hence (I vi.) the lines AF and AG are equal.

22. Dem.—Join BD, B'D', and produce them to meet in F.

Join EC, E'C', and produce them to meet in G. Produce FB', GE to meet in F', and FB, GE' to meet in G'.

Now the \angle BDE = BCE (xxi.), and B'D'E' = B'C'E'; but B'D'E' = DD'F (I. xv.), and B'C'E' = CC'G; hence the \angle DFD' = CGC', and ... (xxi. Cor. 1) the four points F, G, F', G' are concyclic.

23. Let ABCD be a cyclic quadrilateral, such that a circle cam be inscribed in it. It is required to prove that the lines A'B', C'D', joining the points of contact, are perpendicular to each other.

Dem.—Because AC' and BD' are tangents, if we produce

them until they meet, they will be equal, ... the \angle AC'D' = BD'C'. To each add the \angle CD'C', and we have AC'D' + CD'C' = BD'C' + CD'C'; but BD'C' + CD'C' equal two right \angle *; ... AC'D' + CD'C' equal two right \angle *. Similarly, AA'B' + CB'A' equal two right \angle *, and (xx11.) DAB + DCB equal two right \angle *, ... the sum of those six \angle * is six right \angle *; and those \angle *, together with the \angle * A'OC' + B'OD' equal eight right \angle *; ... A'OC' + B'OD equal two right \angle *; but A'OC' = B'OD'. Hence each is right, and therefore A'B' and C'D' are perpendicular to each other.

24. Let ABCD be a cyclic quadrilateral; AC, BD its diagonals intersecting in E. Through E draw the minimum chord FG (xv., Ex. 1). It is required to prove that EH = EJ.

Dem.—Through C draw CK || to FG, and join KE, KH, KD. Now, because FG is bisected in E, and CK is || to FG, ... EC

= EK, and the ∠ JEC = HEK; but JEC = ECK; ∴ HEK = ECK; but ECK = ADK (xxi.); ∴ HEK = ADK, and

... HEDK is a cyclic quadrilateral; ... the \angle HDE = HKE; but HDE = ACB (xxi.); ... HKE = ACB. And the \triangle ⁵ EHK, EJC have two \angle ⁵ and a side in one equal to two \angle ⁵ and a side in the other. Hence (I. xxvi.) EH = EK.

25. See "Sequel to Euclid," Book VI., Sec. 1., Prop. xv. (3).

26. See "Sequel to Euclid," Book III., Prop. xx., Cor. 2.

27. Let AB, AC, BD, CE be four lines forming four \triangle * ABD, ACE, BEF, DCF. About the \triangle * BEF, DCF two \bigcirc * are de-

scribed intersecting in F, G. It is required to prove that the \bigcirc about the \triangle ABD, ACE will pass through G.

Dem.—Join GB, GF, GD. Now the \angle BEF = BAC + ACE; but ACE = FGD (xxi.); ... BEF = BAC + FGD; ... BEF

age of thirt is

+ BGF = BAD + BGD; but (xxII.) BEF + BGF equal two right $\angle s$; ... BAD + BGD equal two right $\angle s$; hence the \bigcirc about BAD will pass through G. Similarly the \bigcirc about ACE will pass through G.

28. About AYZ, CXY describe Os intersecting in O. It is required to prove that the O about BXZ will pass through O.

Dem.—Join OX, OY, OZ. Now the $\angle *ZAY + ZOY$ equal two right $\angle *$ (xxii.), and YCX + YOX equal two right $\angle *$; ... those four $\angle *$ equal four right $\angle *$, and the three $\angle *$ ZOY,

YOX, XOZ equal four right \angle ^s; hence the \angle XOZ = ZAY + YCX; \therefore ZOX + ZBX = BAC + ACB + CBA, and \therefore equal two right \angle ^s. Hence the \bigcirc about ZBX will pass through O.

29. Dem.—Join OC, OB. Now, because the points O and G are given, the line OC is given in position, and YC is given in position; ... the \angle YCO is given; ... (xxi.) the \angle YXO is given. In like manner OXZ is given; hence the \angle YXZ is given. Similarly, it can be shown that the \angle ⁸ XZY and XYZ are each given.

30. Let XYZ be a given \triangle , and A, B, C three given points. It is required to place a \triangle equal to XYZ whose sides shall pass-through A, B, C.

Sol.—Join AB, AC, BC. On BC, AC describe segments containing \angle ⁸ respectively equal to the \angle ⁸ X, Y. Join O, O', thecentres. On OO' describe a semicircle, and in it place a chord O'D = $\frac{1}{2}$ XY. Through C draw AB || to O'D. Join BA,

BOOK III.] EXERCISES ON EUCLID.

A'B, and produce them to meet in C'. A'B'C' is the required triangle.

Dem.—From O' let fall a \perp O'F on A'B'. Join OD, and produce it to meet A'B' in E. Now the \angle ODO' is right (xxxx.);

... OEF is right; hence (III.) B'C is bisected in E, and CA' is bisected in F; ... B'A' = 2 EF = 2 O'D = XY; and since the \angle ⁶ A', B' = X, Y respectively, the \triangle A'B'C' = XYZ.

31. Let XYZ be the given \triangle , and AB, AC, BC the given lines. It is required to place a \triangle equal to XYZ whose vertices shall be on AB, AC, BC.

Sol.—Through the points X, Y, Z describe a \triangle X'Y'Z' equal to ABC (Ex. 30), and in BC take BA' = Y'Z; in BA take BC'.

= Y'X, and in AC take B'C = X'Y. Join A'B', B'C', C'A'. A'B'C' is the \triangle required.

Dem.—Because A'B = Y'Z, and BC' = XY', and the \angle A'B'C' = XY'Z; ... (I. iv.) A'C = XZ. Similarly A'B' = YZ, and B'C' = XY. Hence the \triangle A'B'C' = XYZ.

32. Let ABC be the given Δ , and X, Y, Z the three points. It is required to construct the greatest Δ equiangular to ABC, whose sides shall pass through X, Y, Z.

Sol.—Join XZ, YZ, and on them describe segments of \bigcirc ⁸ containing \angle ⁸ respectively equal to the \angle ⁸ B, C. Through Z draw

B'C' || to the line joining the centres. Join B'X, C'Y, and produce them to meet in A'. A'B'C' is the Δ required.

Dem.—Through Z draw any other line DE. Join DX, EY, and produce them to meet in F. Now (xxi.) the \angle EDF = C'B'A', and the \angle DEF = B'C'A', and the side B'C' greater than DE ("Sequel," Book III., Prop. xv.). Hence the \triangle A'B'C' is greater than DEF.

33. Let AB, AC, BC be the three given lines, and A'B'C' the given Δ . It is required to construct the minimum Δ equiangular to A'B'C, whose vertices shall be on AB, AC, BC.

Sol.—On BC describe a segment of a \odot containing an \angle equal to the sum of the \angle ⁰ A, A'. On AB describe a segment containing an \angle equal to the sum of the \angle ⁰ C, C'. From D let fall \bot ¹ DE, DF, DG on AB, AC, BC. Join EF, GF, EG. EFG is the required triangle.

Dem.—The \angle CDB = A + A' (const.); but CDB = A + DCF + DBE; \therefore A' = DCF + DBE. Again (const.), FCGD and EBGD

are cyclic quadrilaterals; ... the \angle FCD = FGD, and DBE = DGE; hence the \angle FGE = FCD + DBE; hence the \angle FGE = A'. Simi-

larly GFE = B', and GEF = C'. Therefore the \triangle FGE is equiangular to A'B'C'.

Draw any line DG', and draw DF', DE', making each of the \angle s FDF', EDE' equal to GDG'. Join G'F', F'E', E'G'. Now the \angle FDF' = GDG'. To each add FDG', and we have the \angle F'DG' = FDG. To each add the \angle F'CG, and we get F'DG' + F'CG' = FDG + FCG; but FDG + FCG = two right \angle s; \therefore F'DG' + F'CG' = two right \angle s; hence F'CGD is a cyclic quadrilateral; \therefore the \angle F'G'D = FCD; but FCD has been shown to be equal to FGD; \therefore F'G'D = FGD. Similarly E'G'D = EGD; \therefore F'G'E' = FGE. In like manner G'F'E' = GFE, and F'E'G' = FEG. Hence the \triangle s F'E'G', FEG are equiangular; and since DG' is greater than DG, and DF' greater than DF, and the \angle G'DF' = GDF, the side G'F' is greater than GF; \therefore the \triangle s F'E'G' is greater than FEG. Hence FEG is a minimum.

34. Let O, O', O'' be the centres of the given O^s . It is required to construct the greatest Δ equiangular to a given one, whose sides shall touch the three circles.

Sol.—Through the points O, O' O'', describe the maximum \triangle ABC, equiangular to the given one. Draw tangents A'B', B'C', C'A' respectively \parallel to AB, BC, CA. A'B'C' is the required \triangle .

Dem.—From A, B, C let fall \perp on the sides of the \triangle A'B'C'. Because the \angle about B are together equal to four

right \angle ^{\$}; and that the \angle ^{\$} EBA, E'BC are each right, the \angle ^{\$} EBE', ABC are together equal to two right \angle ^{\$}; but ABC is a given \angle ; ... EBE' is given, and the sides BE, BE' are given, since they are equal to the radii of the \bigcirc ^{\$} O, O". Hence the figure EBE'B' is given in magnitude. Similarly the figures ADA'D', CFC'F' are given in magnitude. Again, since the

ABC is a maximum, the side BC is a maximum; therefore BCFE' must be a maximum, because it is contained by BC and BE', which is a given line, being equal to the radius of O". In like manner each of the figures ABDE, ACD'F' is a maximum. Hence the whole figure A'B'C' is a maximum.

35. Let AB, AC, two sides of a given \triangle ABC, pass through two fixed points P, P'. It is required to prove that the side BC touches a fixed circle.

Dem.—Join PP'. Describe a ⊙ about the △ APP'. Draw the diameter AD, and join DP, DP'. From D let fall a ⊥ DE on BC, and produce it to meet the ⊙ in F. Join AF, and let fall a ⊥ AG on BC.

Now since the points P, P' are given, PP' is a given line, and the \angle PAP' is given; hence (xxi., Cor. 2) the circle PAP' is given; and because the \angle ^s EBP, EDP are together equal to two right \angle ^s, and EDP, FDP are together two right \angle ^s, ... the \angle FDP = EBP, and is therefore a given \angle ; hence the arc PF is given, and ... F is a given point. Again (xxxi.) the \angle AFD is right, and FEG is right; hence AFEG is a parallelogram; ... EF = AG; but AG is given, since it is the \bot from the vertex on the base of a given \triangle ; ... EF is given, and the point F is given;

hence the locus of E is a O, having F as a centre, and EF as

radius. Hence the base BC touches a fixed circle.

36. Let the sides CA, CB of the △ ABC touch fixed ⊙. It is required to prove that AB touches a fixed ⊙.

Dem.—Through the centres O, O' draw ||• A'C', B'C' to AC, BC. Join O, O' to the points of contact D, E; and through A, B, C draw ||• AF, BG, CH, CJ to OD, O'E.

Now the \angle BAC = B'A'C'; ... BA'C' is given, and the \angle AFA' is right; ... the \triangle AA'F is given in species, and the side AF is given, being equal to OD; ... AA', A'F are each given. Again, the \angle ³ ACB, HCJ are equal to two right \angle ³; but ACB is given

... HCJ is given, and the sides CH, CJ are given; ... HCJC' is a given figure; ... C'H is given, and HF is given, being equal to AC; ... A'C is a given line. Similarly B'C' is given, and A'B' is given; ... the \triangle A'B'C' is given. And hence (Ex. 35 A'B' touches a fixed circle.

37. Let P be the given point, and C the centre of the circle.

Sol.—Join PC, and on it describe an equilateral \triangle PAC. Draw PB, bisecting the \angle APC. From B let fall a \bot BD on PC, and produce it to meet the \bigcirc in E. Join EP. EPB is the required triangle.

Dem.—BD = ED (III.), and DP common, and the \angle BDP = EDP; ... (I. IV.) PB = PE, and the \angle BPD = EPD; but

BPD is $\frac{1}{2}$ an \angle of an equilateral \triangle ; ... EPD is $\frac{1}{2}$ an \angle of an equilateral \triangle . Hence EPB is an \angle of an equilateral \triangle , and the \angle PEB = PBE. Hence the \triangle EPB is equilateral.

38. Let P be the given point, and C, C' the centres of the given O^s . It is required to construct an equilateral \triangle , having its vertex at P, and the extremities of its base on the circumferences of C and C'.

Sol.—Join PC, and on it describe an equilateral \triangle PAC. With A as centre, and a radius equal to CD, describe a \bigcirc , cut-

ting the \odot whose centre is C' in B. Join AB, and at the point C in CP make the \angle PCE = BAP (I. xxIII.). Join BE, EP, PB. BEP is the required \triangle .

Dem.—Because AP = CP, and AB = CE, and the \angle BAP = ECP, ... (I. iv.) the base BP = EP, and the \angle BPA = CPE. To each add the \angle APE, ... the angle BPE = CPA, hence BPE is an \angle of an equilateral \triangle . And since PB = PE, the \triangle PBE is equilateral.

39. Let ABC be a given Δ . It is required to place it so that its sides shall touch three given \bigcirc 0, 0', 0".

Sol.—If two sides of a \triangle equal to ABC touch two \bigcirc ³ 0, 0', the third must touch a fixed \bigcirc (Ex. 36). Let PP' be the fixed \bigcirc .

Draw DE a common tangent to O", PP' (xvII., Ex. 10)... Through O, O' draw OE', O'D', meeting DE produced, and making the ∠⁵ OE'D', O'D'E' respectively equal to the ∠⁶ CBA, CAB. At O, O' draw OF', OG' at right ∠⁶ to OE', O'D'; and through F', G draw EF, DF, touching the ⊙⁶. DEF is the △ required.

Dem.—Because each of the \angle ⁵ E'OF', EF'O is right, E'O, EF are \parallel ; ... the \angle DEF = DE'O, and ... equal CBA. Similarly, EDF is = CAB. Hence DEF is the \triangle required.

40. Let ABCD be a given quadrilateral. It is required todescribe a square about it. Sol.—On AD, BC, two opposite sides, as diameters, describe O AED, BFC. Bisect the semicircles AED, BFC in E, F.

Join EF, and produce to meet the O again in G, H. Join HB, GA, and produce them to meet in J. Join GD, HC, and produce them to meet in K. GJHK is the required square.

Dem.—Because the arc AE = DE, the \angle AGE = DGE; but the \angle AGD is right (xxx1.), ... AGE is half a right \angle . In like manner BHF is half a right \angle , ... AGE = BHF, ... JH = JG. Similarly, KG = KH; hence the sides are equal, and the \angle are evidently right. Therefore GJHK is a square.

Lemma.—To find a point O in a \triangle ABC, such that the \angle BOC

may exceed the \angle BAC by a given \angle X, and that the \angle AOC may exceed the \angle ABC by a given \angle Y.

Sol.—On BC describe a segment of a \odot containing an \angle equal to BAC + X, and on AC describe a segment containing an \angle equal

to ABC + Y. The point O, in which these segments intersect, is evidently the required one.

41. Let ABCD be a given quadrilateral. It is required to inscribe a square in it.

Sol.—Produce AB, DC to meet in E, and AD, BC to meet in F. In the \triangle AED find a point O, such that the \angle AOD is equal to AED, together with a right \angle , and that the \angle DOE is equal to FAE, together with half a right \angle (Lemma); and in AFB find a point O', so that the \angle AO'B is equal to AFB, together with a right \angle ; and the \angle AO'F = ABF, together with half a right \angle . Describe a \bigcirc through the points O, O', A; cutting AF, AE in G, H. Through O, G, D describe a \bigcirc , cutting DE in J; and through O', H, B describe a \bigcirc , cutting BF in I. Join GJ, JI, IH, HG. GJIH is the required square.

Dem.—Join OG, OH, OJ. Now the difference between the \angle * AOD and AED is equal to a right \angle (const.), and AOD — AED = EAO + ODE; hence EAO and ODE are together equal to a right \angle ; but EAO = HGO (xxi.), and ODE = OGJ, hence the \angle HGJ is right. Similarly, by joining JH, it can be shown that GJH is half a right \angle , \therefore GH = GJ. Similarly, it can be shown that the \angle GJI is right, and that GJ=JI. Hence GJIH is a square.

42. (1) Lemma.—To find the radical axis of a \odot and a point. Let A be the centre of the \odot , and B the point.

Sol.—Join AB, and divide it in C, so that $AC^2 - CB^2$ is equal

to the square of the radius AE ("Sequel," Prop. 1x., p. 7). Erect CD \(\pm \) to AB. CD is the required radical axis.

Dem.—Draw DG a tangent from any point D. Join DB. Draw CE a tangent, and join AE. Now $AC^2 - CB^2 = AE^2$, ... $AC^2 - AE^2 = CB^2$; that is, $CE^2 = CB^2$, ... $CE^2 + CD^2 = CB^2 + CD^2$; but $CE^2 + CD^2 = GD^2$ ("Sequel," Prop. xx1., p. 42), and $CB^2 + CD^2 = DB^2$; ... $DG^2 = DB^2$. Hence CD is the radical axis (xv11., Ex. 6).

Sol.—Let C be the centre of the \odot , and A, B the points. Join AB, and bisect it in D. Erect DE \perp to AB. Join AC,

and find the radical axis FE (Lemma) of the \odot and the point A, and let it cut DE in E. E is the centre of the required \odot .

Dem.—From E draw the tangent EG to the \odot . Join EA, EB. EG = EA (Lemma), and EA = EB; ... EA, EB, EG are equal; and the \odot , with E as centre and EA as radius, will pass through B, and cut the given \odot orthogonally in G ("Sequel," Book III., Prop. xxII.).

(2) Lemma.—To find the radical axis of two circles. Let A, B be the centres. Join AB, and divide in E, so that AE² – EB² is equal to the difference of the squares of the radii. Erect EC ⊥ to AB. From C and E draw tangents CD, EH, CG, EJ to A and B. Join AH, BJ. Now AE² – EB² = AH²

- BJ^2 , ... $EH^2 = EJ^3$, ... $CE^2 + EH^2 = CE^2 + EJ^2$; hence ("Sequel," Book III., Prop. xxi.) $CD^2 = CG^2$. Hence EC is the radical axis of the circles.

Sol.—Let A, B be the centres, and P the point. Join AB,

and find the radical axis CE (Lemma). Join BP, and find the radical axis CF of the point P, and the \odot B. From C, where CE, CF intersect, draw tangents CD, CG to A and B. Join CP. C is the centre of the required circle.

Dem.—Since CE is the radical axis of the ⊙^a A, B, CG = CD (*Lemma*); and because CF is the radical axis of the ⊙ B and the point P, CG = CP; ... CG, CD, CP are equal, and therefore the ⊙, whose centre is C, and radius CP, will cut the ⊙^a A and B orthogonally ("Sequel," Book III., Prop. xxI.).

(3) Let A, B, C be the O. Find DE, the radical axis of A

and B, and DF the radical axis of A and C. From D, where DE, DF intersect, draw tangents to A, B, C. Now these tangents are equal; and the \odot , with D as centre, and one of them as distance, will pass through the ends of the other two, and will cut the \odot ^s A, B, C orthogonally ("Sequel," Book III., Prop. xxi.).

43. Dem.—Join BD, AE, and let them intersect in O. Join CO, and produce it to meet AB in H.

Now (xxxi.) each of the $\angle \cdot$ ADB, AEB is right, ... BD, AE are $\bot \cdot$ to AC, BC; hence (I., Ex. 16, Miscellaneous) CH is \bot to AB. Now (xxii., Ex. 1) AHEC is a cyclic quadrilateral;

... (xxxvi.) BC.BE = AB.BH. And since BHDC is a cyclic quadrilateral, AC.AD = AB.AH. Adding, we get AC.AD + BC.BE = AB (AH + BH) = AB².

44. Dem.—Join AE, BF, CG, DH. Now (xx11.) the \angle AEF, ABF are together equal to two right \angle , and similarly the \angle AEH, ADH are together equal to two right \angle ; hence the sum of those \angle is four right \angle , and the sum of the \angle AEF, AEH,

FEH is four right $\angle \circ$; ... the \angle FEH = ABF + ADH. In like manner the \angle FGH = FBC + HDC; ... the $\angle \circ$ FEH and FGH = ABC and ADC, and ... are equal to two right $\angle \circ$. Hence (xxII., Ex. 1) EFGH is a cyclic quadrilateral.

45. Dem.—Describe a O about ABC. Take any point M in

the circumference. Join MA, MB, MC. It is required to prove that MA = MB + MC. Produce BM to D, so that MD = MC. Join CD. Now (xxii.) the \angle ⁸ BAC and BMC are together

equal to two right \angle ⁸, and BMC, DMC together equal to two right \angle ⁸; ... DMC = BAC, and is an \angle of an equilateral \triangle ; and because MC = MD, MCD is an equilateral \triangle .

Again, because BMCA is a cyclic quadrilateral, the \angle MBC = MAC, and ABC = AMC; but ABC = MDC, since each is an \angle of an equilateral \triangle ; ... AMC = MDC; hence (I. xxvi.) the \triangle • AMC, BDC are equal; ... AM = BD; that is, AM = MB + MC.

46. (1) Let ABC be a \triangle , the sum of whose sides AB, AC is given, and the \angle BAC, both in magnitude and position. About the \triangle ABC describe a \bigcirc . It is required to prove that the locus of its centre F is a right line.

Dem.—Bisect the are BC in D. Join AD. Let fall a \(\pm\) DE

on AB. From F let fall a \perp FG on AD. Now AE = $\frac{1}{2}$ (AB K 2

+ AC) (xxx., Ex. 4); hence AE is a given line; ... E is a given point. And since DE is \bot to AE, at a given point, DE is given in position; and because the \angle BAD = $\frac{1}{2}$ BAC, BAD is a given \angle ; ... AD is given in position, and DE is given in position; ... D is a given point, and the point A is given; hence AD is a given line, and (111.) AD is bisected in G; ... G is a given point, and FG is \bot to a line given in position; hence FG is given in position. Hence the locus of F is the line FG.

(2) Bisect the ∠ BAC by AD. Erect DE ⊥ to BC. DE is

the diameter. Join EA, and from E, F let fall 1 s EG, FH on AB and AE.

Now the line AG is given, for it is equal to $\frac{1}{2}$ (AB - AC); ... EG, which is \perp to it, is given in position, and EA is given in position, since it is \perp to AD; ... E is a given point, and EA is bisected in H (111.); ... FH is given in position. Hence the locus of F is the line FH.

47. (1) Let O be the centre of the given \odot , and A, B the points. It is required to describe a \odot which shall pass through A, B, and bisect the circumference of the given \odot .

Sol.—Bisect AB in C. Join CO, and divide it in D, so that $CD^2 - OD^2 = R^2 - BC^2$ (R being the radius of the given \odot). Erect DE, CE, \bot ⁵ to OC, AB, and join AE, BE, OE. E is the centre of the required \odot .

Dem.—The \triangle ⁸ ACE, BCE are equal (I. iv.); ... AE = BE; hence the \bigcirc , with E as centre, and AE as radius, will pass through B. Let it cut the given \bigcirc in G, H. Join OG, OH, EG, EH. Now $CD^2 - OD^2 = R^2 - BC^2$; ... $CE^2 - OE^2 = R^2$

- BC²; ... BC² + CE² = R² + OE²; that is, BE² = R² + OE²; ... GE² = R² + OE²; but OG = R; ... GE² = OG² + OE²; hence

the \angle EOG is right. Similarly EOH is a right angle; ... OG and OH are in the same straight line; hence GH is the diameter of the given \odot . Hence the circumference of the given \odot is bisected by the \odot ABH in the points G, H.

(2) Let A be the given point, and O, O' the centres of the given O. It is required to describe a O passing through A which shall bisect the circumferences of the O. whose centres are O, O'.

Sol.—Join AO, and divide it in B, so that $AB^2 - BO^2 = R^2$ (R being the radius of the \bigcirc whose centre is \bigcirc). Join AO', and divide it in C, so that $AC^2 - CO'^2 = R'^2$. Erect BD, CD \bot^* to \triangle O, AO'. Join AD. With D as centre, and AD as radius,

describe a \odot EAG, cutting the given \odot in the points E, F; G, H. This is the \odot required.

Dem.—Join OE, OF, O'G, O'H, OD, FD. Now $AB^2 - OB^2 = OF^2$ (const.), $\therefore AD^2 - OD^2 = OF^2$, $\therefore AD^2 = OD^2 + OF^2$; that is, $FD^2 = OD^2 + OF^2$, \therefore the $\angle DOF$ is right. Similarly, the $\angle DOE$ is right, \therefore OE and OF are in the same straight line. Hence EF is the diameter of one of the given \odot . In like manner GH is the diameter of the other given \odot . Hence the circumferences of the given \odot s are bisected by the \odot EAG.

48. Let a \odot , whose centre is D, bisect the circumferences of two given \odot ^s in the points E, F; G, H. It is required to find the locus of D. (See last diagram.)

Sol.—Join EF, GH. Now since the circumferences are bisected in E, F; G, H, the centres, must be in the lines EF, GH. Bisect these lines in O, O'. Join OO', DO, DO'. From D let fall a \perp DJ on OO'. DJ is the locus of D.

Dem.—Join DF, DH. Now (III.) the $\angle \cdot$ DOF, DO'H are right, \therefore DF² = DO² + OF², and DH² = DO'² + O'H²; but DF² = DH², \therefore DO² + OF² = DO'² + O'H², \therefore DO² - DO'² = O'H² - OF²; but O'H² - OF² is given, since O'H and OF are the radii of two given $\bigcirc \cdot$, \therefore DO² - DO'² is given, \therefore OJ² - O'J² is given; \therefore J is a given point; \therefore the line DJ is given in position. Hence the locus of D is the line DJ.

49. Let 0, 0', 0" be the centres of the given ⊙s; and R, R',

R" their radii. It is required to describe a \odot which shall bisect the circumferences of the given circles.

Sol.—Join OO', and divide it in G, so that $OG^2 - O'G^2 = R'^2 - R^2$. Join O'O'', and divide it in H, so that O"H - O'H² = $R'^2 - R''^2$; and at G, H erect GJ, HJ \perp ⁸ to OO', O'O''. The point J, where these perpendiculars intersect, is the centre of the required circle.

Dem.—Join OJ, O'J, O"J. Through O, O', O" draw AB, CD, EF at right angles to OJ, O'J, O"J, and join JA, JB, JC, JD JE, JF. Now $OA^2 = OB^2$, $\cdots OA^2 + OJ^2 = OB^2 + OJ^2$; $\cdots AJ^2 = BJ^2$; $\cdots AJ = BJ$. In like manner CJ = DJ, and EJ = FJ. Again, $OG^2 - O'G^2 = R'^2 - R^2$; $\cdots OG^2 + R^2 = O'G^2 + R'^2$, $\cdots OG^2 + JG^2 + R'^2$; that is, $OJ^2 + R^2 = O'J^2 + R'^2$; $\cdots AJ^2 = DJ^2$; $\cdots AJ = DJ$. Similarly, BJ = EJ, and CJ = FJ. Hence those six lines are equal; and the \odot , with J as centre, and AJ as radius, will pass through the points B, C, D, E, F, and will bisect the circumferences of the given circles in those points.

50. Dem.—Join BC, CD, DB. Now, since ABE is a right-angled \triangle , and BC is \perp to AE, we have AE. AC = AB²

(I. XLVII., Ex. 1). In like manner $AF \cdot AD = AB^2$; therefore $AE \cdot AC = AF \cdot AD$. Hence the points C, E, F, D are concyclic.

51. (1) Dem.—Let J, K be the centres of the ⊙. Join JK, and produce it. JK produced must pass through G (x1.) Join KF. If GF does not pass through A, let it pass through H. Now (xvIII.) the ∠ CFK is right, and the ∠ CDB is right, ∴ FK and AB are parallel, ∴ the ∠ GFK = GHB; but GFK

= FGK (I. v.); ... the $\angle JHG = JGH$; hence JG = JH; but JG

= JA; ... JH = JA, which is absurd. Hence GF produced must pass through A.

- (2) Complete the \bigcirc ACD, and produce CD to meet the circumference again in M. Now (III.) DC = DM, ... the arc AC = AM; hence (Ex. 26) AF. AG = AC², and (xxxvi.) AF. AG = AE², ... AC² = AE²; ... AC = AE.
- 52. Let ACB be an obtuse-angled triangle. It is required to draw from C a line CE, so that $CE^2 = AE \cdot EB$.

Sol.—Describe a \odot about ACB. Let D be its centre. Join CD. On CD as diameter describe a \odot , cutting AB in E. Join CE. CE is the required line.

Dem.—Produce CE to meet the circumference again in F, and join DE.

Now the \angle CED is right (xxxi.), ... FED is right; hence (III.) CF is bisected in E; ... FE.EC = EC²; but (xxxv.) FE.EC = AE.EB, ... AE.EB = CE².

53. Dem.—From E let fall \bot ⁸ EF, EG on AB, CD, and join AE, CE. Now AF = BF (III.); ... AB² = 4 AF². Similarly, CD² = 4 CG²; ... AB² + CD² = 4 AF² + 4 CG². Again (I. xLvII.),

 $OE^2 = OG^2 + EG^2 = EF^2 + EG^2$; ... $4 OE^2 = 4 EF^2 + 4 EG^2$. Adding, we get $AB^2 + CD^2 + 4 OE^2 = 4 AF^2 + 4 EF^2 + 4 CG^2$

 $^{-1}$ 4 EG²; but 4 AF² + 4 EF² = 4 AE² = 4 R², and 4 CG² + 4 EG² = 4 CE² = 4 R². Hence AB² + CD² + 4 OE² = 8 R².

54. (1) Let ABC be the triangle. From A, B, C let fall \bot AD, BE, CF on the sides, and intersecting in O. It is required to

prove that $AB^2+BC^2+CA^2$ is equal to 2 AO . AD + 2 BO . BE + 2 CO . CF.

Dem. — $AC^3 = AO^2 + OC^2 + 2 AO \cdot OD \cdot (II. xII.)$, $BC^2 = CO^2 + OB^2 + 2 CO \cdot OF$, and $AB^2 = AO^2 + OB^2 + 2 BO \cdot OE$. Adding, we get $AB^2 + BC^2 + CA^2 = (2 AO^2 + 2 AO \cdot OD) + (2 OB^2 + 2 OB \cdot OE) + (2 CO^2 + 2 CO \cdot OF) = 2 AO \cdot (AO + OD) + 2 BO \cdot (BO + OE) + 2 CO \cdot (CO + OF) = 2 AO \cdot AD + 2 BO \cdot BE + 2 CO \cdot CF$.

(2) Describe a \odot about ABC, and from its centre Q let fall \bot ^s QG, QH, QJ on the sides, and join AQ. Now (111.) AJ = BJ: ... AB² = 4 AJ² = 4 AQ² - 4 QJ²; but AQ = R, and 2 QJ = OC

("Sequel," Book I., Prop. xII., Cor. 3); ... $AB^2 = 4 R^2 - 0C^2$. Similarly, $BC^2 = 4 R^2 - 0A^2$, and $CA^2 = 4 R^2 - 0B^2$. Hence $AB^2 + BC^2 + CA^2 = 12 R^2 - (OA^2 + OB^2 + OC^2)$.

55. Dem.—Join the centres O, O'. Produce DC, and let it meet the circles again in the points G, H. Join OG, O'H.

Now the \angle DCO' = OCG (I. xv.); but OCG = OGC; ... DCO' = OGC, and O'DC = ODG (hyp.); ... the \triangle s ODG, O'DC are equiangular; hence (xxxv., Cor. 3) OG. CD = O'C. DG. Again, the \angle s O'HD, O'HC are equal to two right \angle s; and the \angle s OCD, O'CD are equal to two right \angle s; and O'CD = O'HC; ... the \angle O'HD = OCD, and (hyp.) O'DH = ODC; ... the \triangle s O'HD, OCD are equiangular; hence (xxxv., Cor. 3) O'H.CD = DH. OC. Multiplying these results, we get CD² = DH. DG. Now DG. DC = DE² (xxxvi.), and DH. DC = DF²; ... DG. DH. DC² = DE². DF²; ... DC⁴ = DE². DF²; ... DC² = DE. DF.

BOOK IV.

PROPOSITION IV.

- 1. Dem.—CF = CD, OC common, and the base OF = OD; hence (I. viii.) the \angle OCF = OCD. (Fig., Prop. iv.).
- 2. Dem.—BD = BE, CD = CF, AE = AF (III. xvII.); ... CB + AE = $\frac{1}{2}$ (AB + BC + CA) = s; that is, a + AE = s; ... AE = (s a). In like manner BD = (s b), and CF = (s c). (Fig., Prop. iv.)
- 3. Dem.—From O' let fall \perp s O'F, O'G, O'H on the sides AB, BC, CA of the \triangle ABC. Now, because the \angle O'CG = O'CH, and the \angle O'GC = O'HC, and the side O'C common, ... (I. xxvi.) O'G = O'H. Similarly, O'G = O'F; ... O'F, O'G, O'H are equal, and the \bigcirc with O' as centre, and O'F as radius, will pass through G and H.
- 4. Let D, E be the points in which AC, CB produced touch the \odot whose centre is O'''. It is required to prove that BE = (s-a).

Dem.—Let J be the point of contact of AB and O". Now it may be proved, as in Ex. 2, that CB + BJ = s; that is, CB + BE = s; but CB = a; hence BE = (s - a).

- 5. (1) It is required to prove that the points O, O", A, B are concyclic.
- **Dem.**—Let E be the point in which BC produced touches O". Now since the \angle * ABC, ABE are bisected, the \angle OBO" is equal to half the sum of the \angle * ABC, ABE, and is therefore a right angle. Similarly, OAO" is a right angle; ... the \angle * OAO", OBG" are together equal to two right angles. Hence (III. xxII.) the points O, O", A, B are concyclic.
- (2) It can be shown as in (1) that the ∠⁸ O'AO", O'BO" are right ∠⁸. Hence (III. xxII., Cor. 1) the points O', B, A, O" are concyclic.
- 6. It is required to prove that O is the orthocentre of the Δ O'O"O".

- Dem.—Because the \angle 0"B0" is right, 0"B is the perpendicular from 0" on 0'00". Similarly, 0'A, 0""C are the perpendiculars from 0', 0" on 0"0", 0'0". Hence the point 0 is the orthocentre of the \triangle 0'0"0".
 - 7. See Book I., Miscellaneous Ex. 36.
- 8. Dem.—It can be shown, as in Ex. 5, that the four points O, A, O''', B are concyclic; hence (III. xxI.) the \angle AO'''O=ABO; but ABO = CBO; ... CBO = AO'''C, and the \angle ACO''' = BCO, since ACB is bisected; hence (I. xxXII., Cor 2) the \triangle BOC, ACO''' are equiangular; ... (III. xxxv., Cor. 3) CO.CO''' = BC. AC = ab. In like manner AO.AO' = bc, and BO.BO'' = ca.
- 10. Dem.—From O' let fall $\perp s$ r' on AB and AC produced, and on BC join O'A, O'B, O'C. Now $br' = 2 \triangle ACO'$, cr' = 2ABO'; $\therefore r'(b+c) = t$ wice the quadrilateral ACO'B, and ar' = 2BO'C; $\therefore r'(b+c-a) = 2ABC$; but (a+b+c) = 2s; $\therefore (b+c-a) = 2(s-a)$; $\therefore 2r'(s-a) = 2ABC$. Hence r'(s-a) = a area of the $\triangle ABC$.
- 11. From O, O' let fall $\perp s$ OK, O'H on AC. It is required to prove that OK. O'H = (s b)(s c); that is, rr' = (s b)(s c).

Dem.—The line AH = s(Ex. 4), and CH, CK are (s - b) and (s - c) (Exs. 4 and 2). Now the \angle OCO' is right (Ex. 5), ... the \angle OCK, O'CH are together equal to a right \angle ; and since the \angle O'HC is right, the \angle HO'C, HCO' make together a right \angle ; ... the \angle HO'C = OCK, and the \angle O'HC = OKC, each being right; ... the \triangle O'HC, OKC are equiangular. Hence (III. xxxv., Cor. 3) OK. O'H = (s - b)(s - c); that is, rr' = (s - b)(s - c).

- 12. Dem.—Area of \triangle ABC = rs (Ex. 9), and r' (s-a) = area of ABC (Ex. 10); rr'. s.s-a = square of area of ABC; but rr' = s-b.s-c (Ex. 11). Hence square of area of ABC = s.s-a.s-b.s-c.
- 13. Dem.—Let the area of ABC be denoted by Δ . Now $rs = \Delta$ (Ex. 9), and $r' \cdot s a = \Delta$ (Ex. 10). Similarly $r'' \cdot s b = \Delta$, and $r''' \cdot s c = \Delta$; hence $(r \cdot r' \cdot r'' \cdot r''')(s \cdot s a \cdot s b \cdot s c) = \Delta^2$; but $(s \cdot s a \cdot s b \cdot s c) = \Delta^2$ (Ex. 12). Therefore $r \cdot r' \cdot r'' \cdot r''' = \Delta^2$.
- 14. Dem.—From O''' let fall $\bot \circ$ O'''D, O'''D' on CB, CA. Now in the \triangle O'''D'C the \angle O'''D'C is right, and the \angle D'CO''' is half a right \angle ; ... the \angle CO'''D' is half right; ... (I. vi.) D'O''' = D'C; but D'O''' = r'' and D'C = s (Ex. 4); ... r''' = s. Similarly it can be shown, if we let fall $\bot \circ$ OE, OE' from O on CB, CA, that E'C

= E'O; but E'O = r, and E'C = (s-c) (Ex. 2); $\cdot \cdot \cdot r - (s-c)$. In like manner r' = (s-b), and r'' = (s-a).

15. (1) Let AB be the base, CDE the vertical ∠, and R the radius of the inscribed circle. It is required to construct the triangle.

Sol.—Produce CD to F, and bisect the \angle EDF by DG. On AB describe a segment of a \bigcirc containing an \angle = CDG. Erect BJ \perp to AB and = R. Through J draw JH \parallel to AB, and cut-

ting the \odot in H. Join AH, BH, and let fall a \bot HI on AB. At the points A, B, in the lines AH, BH, make the \angle ⁵ HAK, HBL respectively equal to the \angle ⁵ HAB, HBA, and produce AK, BL to meet in N. ANB is the required triangle.

Dem.—From H let fall ⊥⁸ HM, HL on AN, BN. Now in the △⁸ HIB, HLB we have the ∠⁸ HIB, HLB = HLB, HBL, and the side HB common; ... (I. xxvi.) HI = HL. Similarly HI = HM; hence the ⊙ with H as centre, and HI as radius, will pass through L and M, and its radius = R, for HI = BJ = R.

Again, the \angle ⁸ of the \triangle HAB are equal to two right \angle ⁸, and the \angle ⁸ CDG, FDG are equal to two right \angle ⁸; but the \angle AHB = CDG, \therefore the \angle FDG = HAB + HBA; and because the \angle ⁸ of the \triangle ANB are two right \angle ⁸, \therefore the \angle ⁸ of ANB are equal to the \angle ⁸ CDG, FDG; but the \angle ⁸ NAB + NBA = 2 (HAB + HBA) = 2 FDG = FDE. Hence the remaining \angle ANB = CDE.

(2) Let AB be the base, CDE the vertical ∠, and R the radius of the escribed ⊙ which touches the base and one of the sides produced.

Sol.—Bisect the \angle CDE by DF, and on AB describe a segment containing an \angle = CDF. Erect BJ \perp to AB and = R.

Through J draw JH || to AB, and from H, where it meets the ⊙, let fall a ⊥ HK on AB produced. With H as centre, and HK

as radius, describe a \odot . From A, B draw tangents to this \odot , meeting in N. ANB is the required triangle.

Dem.—Join AH, BH. Now HK = JB = R, and because H is the centre of the escribed \odot of the \triangle ANB, AH, BH are the bisectors of the internal \angle NAB and the external \angle NBK (I. XXXII., Ex. 12), the \angle AHB = $\frac{1}{2}$ ANB; but AHB = $\frac{1}{2}$ CDE. Hence ANB = CDE.

(3) Let AB be the base, CDE the vertical ∠, and R the radius of the escribed ⊙ which touches the base externally and the sides produced.

Sol.—Produce CD to F, and bisect the \(\subseteq EDF \) by DG. On

AB describe a segment of a \odot containing an $\angle = EDG$. Erect

BJ \perp to AB, and make it equal to R. Through J draw JK || to AB, and cutting the \odot in K. From K let fall a \perp KL on AB. With K as centre, and KL as radius, describe a \odot . Through A, B draw tangents IN, MN to this \odot , meeting in N. ANB is the triangle required.

Dem.—Join KA, KB. Since K is the centre of the escribed \odot of the \triangle ABN, the \angle AKB = $\frac{1}{2}$ (NAB + ABN) (I. XXXII., Ex. 12); but AKB = $\frac{1}{2}$ FDE (const.); \therefore NAB + ABN = FDE; hence the \angle ANB = CDE, and LK, the radius of the escribed \bigcirc , = BJ = R.

PROPOSITION V.

- 2. **Dem.**—Because each of the ∠* APB, AQB is right, AQPB is a cyclic quadrilateral, and AP, BQ are chords in the ⊙; hence (III. xxxv.) OA.OP = OB.OQ. Similarly OB.OQ = OC.OR. (Diagram 2, Ex. 1.)
- 3. Dem.—The ∠ AOF = DOC (I. xv.), and AFO = CDO, each being right; FAO = OCD; but OCD = GAF (III. xxi.):
 ∴ FAO = GAF, and AFO = AFG, each being right, and AF common. Hence (I. xxvi.) OF = GF. (Diagram, Ex. 1.)
- 5. Dem.—In the \triangle 0'0"0" the lines 0'A, 0"B, 0"C are \bot from 0', 0", 0"' on 0"0", 0"'0', 0'0" (iv., Ex. 6), and the points A, B, C are the feet of these \bot ; hence (Ex. 4), the \odot about ABC is the nine-points \odot of the \triangle 0'0"0". In like manner it is the nine-points \odot of the \triangle 00'0", 00"0", 00"0". (Diagram, Ex. 3, Prop. iv.)
- 6. Dem.—Because the lines IF, IH, IK are equal (Ex. 4), and the \angle KFH is right, HK is the diameter of the \bigcirc about the \triangle KFH; ... IK, IH are in one straight line; and since KH is \parallel to CP, and CK to PH, PCKH is a parallelogram; ... CK = PH; but CO = 2 CK, ... CO = 2 PH. (Diagram, Ex. 4.)
 - 7. Dem.—IF = $\frac{1}{2}$ PG. This is proved in Ex. 4.

PROPOSITION X.

- 1. **Dem.**—The \angle ACD = CBD + CDB (I. xxxII.); but CBD = 2 CAD (x.), and CDB = CAD. Hence the \angle ACD = 3 CAD.
- 2. **Dem.**—The \angle s of the \triangle ABD are equal to two right \angle s; but each of the \angle s ABD, ADB is equal to 2 BAD; hence the \angle BAD is $\frac{1}{6}$ of two right \angle s; that is, $\frac{1}{10}$ of four right \angle s; ... the are BD is $\frac{1}{10}$ of the whole circumference. Hence the line BD is a side of a regular decayon.
- 3. Dem.—Let A be the centre. Join AB, AD, AE, AF, and join BF, cutting AD in G. Now since BD is a side of a regular inscribed decagon, ABD is an isosceles \triangle , having each of its base \angle ^s double of the vertical \angle (Ex. 2), the \angle BAD is $\frac{1}{5}$ of two right \angle ^s, ... the \angle BAF is $\frac{3}{6}$ of two right \angle ^s; hence the \angle AFB is $\frac{1}{5}$ of two right \angle ^s; ... AF = GF, that is, BF BG = R. Now the \angle DBG is $\frac{1}{6}$ of two right \angle ^s, and BDG is $\frac{2}{5}$, ... BGD is $\frac{2}{5}$, ... BG = BD. Hence BF BD = R.
- 4. Dem.—Because ACDE is a cyclic quadrilateral, the ∠s ACD, AED are together equal to two right ∠s (III. xxII.); and the ∠s ACD, BCD are together = to two right ∠s, ∴ the ∠AED = BCD; that is, AED = CBD; but AED = ADE, and CBD = ADB, ∴ ADE = ADB, and AD common. Hence (I. xxVI.) DE = DB.

Again, the \angle ACE = ADE (III. xxI.), and the \angle CDA = CEA; but (x.) CDA = CAD = DAE; ... CEA = DAE, and the side AE = AD. Hence (I. xxVI.) the \triangle • ACE, ADE are congruent.

5. **Dem.**—Let O be the centre of the \odot ACD. Join OA, OC. Now (Ex. 4) AEC is an isosceles \triangle , having each base \angle double of the vertical \angle ; and since the \angle of the \triangle AEC are together equal to two right \angle , the \angle AEC is $\frac{1}{5}$ of two right \angle ; hence (III. xx.) the \angle AOC is $\frac{2}{5}$ of two right \angle ; that is, $\frac{1}{5}$ of four right \angle . Hence AC is the side of a regular pentagon.

PROPOSITION XI.

1. Let ABCDE be a regular pentagon inscribed in a \odot , and let its diagonals CE, AD intersect in A'; BD, CE in B'; CA, BD in C'; AC, BE in D'; and BE, AD in E'. It is required to prove that A'B'C'D'E' is a regular pentagon.

Dem.—Because the arc AE = BC (x1.), the \angle ECA = BAC, ... CE is \parallel to AB; hence (I. xx1x.) the \angle ⁸ EB'B, B'BA, are together equal to two right \angle ⁸; for the same reason the \angle ⁸ CA'A, A'AB are equal to two right \angle ⁸; but the \angle DBA = DAB; hence the \angle A'B'B = B'A'A. In like manner the \angle ⁸ at C', D', E' are equal. Hence the figure A'B'C'D'E' is equiangular.

Again, because the arc BC = DE, the $\angle BDC = DCE$; ... the side B'C = B'D, and (I. xv.) the $\angle CB'C' = A'B'D$; and the $\angle B'C'C = B'A'D$, because they are the supplements of the equal $\angle B'C'D'$, B'A'E'; hence the side C'B' = A'B'. Similarly, the other sides of A'B'C'D'E' are equal. Hence it is a regular pentagon.

2. Produce AE, CD to meet in A'; ED, BC in B'; DC, AB in C'; CB, EA in D'; BA, DE in E'. Join A'B', B'C', &c. It is required to prove that A'B'C'D'E' is a regular pentagon.

Dem.—In the \triangle^s ABD', CBC', the \angle ABD' = CBC', and the \angle D'AB = BCC', being the supplements of equal \angle^s , and the side AB = CB; hence (I. xxvi.) BD' = BC', and the \angle AD'B = BC'C. Similarly, AD' = AE'; EE' = EA'; DA' = DB'; and CB' = CC'. Again, because the \angle ABC = EAB, the \angle D'BA = D'AB; ... D'A = D'B. Now in the \triangle^s D'AE', D'BC', we have the sides AD', AE' = BD', BC', and the contained \angle^s equal; hence the base D'E' = D'C'. In like manner the other sides are equal. Hence the figure is equilateral. Again, we proved the \angle BD'C' = BC'D', and the \angle AD'B = BC'C; and the \angle AD'E is = CC'B', since the \triangle^s AD'E', CC'B' are equal in every respect. Hence the \angle E'D'C' = D'C'B'. In like manner the other \angle^s are equal. Hence the pentagon A'B'C'D'E' is regular.

3. Let AD, BE, two consecutive diagonals of a regular pentagon, intersect in E'. It is required to prove that EB. EE' $= E'B^2$.

Dem.—Join CE, and describe a \odot about the \triangle AE'B. Now because DE = BC, the \angle DCE = BEC; ... DC is \parallel to BE. Similarly, BC is \parallel to AD; hence (I. xxxiv.) DC = BE'; but DC = AB (hyp.): ... AB = BE'. Again, because AE = DE, the \triangle ABE = EAD, and hence (III. xxxii.) AE is a tangent to the \bigcirc ABE'; ... (III. xxxvi.) EB. EE' = AE² = AB² = E'B². Hence BE is cut in extreme and mean ratio in E'.

4. Let AB be a side of a regular pentagon. It is required to construct it.

Sol.—Erect BC \perp to AB, and make it equal to $\frac{1}{2}$ AB. Join AC, and produce it to D, so that CD = CB. On AB describe an isosceles \triangle ABE, having each of its equal sides equal to AD. About the \triangle ABE describe a \bigcirc . Bisect the \angle ⁸ BAE, ABE by the lines AF, BG, meeting the circumference in F and G. Join AG, GE, EF, BF. ABFEG is the required pentagon.

Dem.—From AC cut off CH = CB or CD. Now DA. AH + CH² = AC² (II. vi.); but CH² = BC², and AC² = AB² + BC²; ... DA. AH = AB² = DH²; ... AD is divided in extreme and mean ratio in H. Therefore, since AE = AD, if we divide AE in extreme and mean ratio, the greater segment would be equal to AB, and hence (x.) AEB is an isosceles \triangle , having each base \angle double the vertical \angle ; but the base \angle ⁸ are bisected by the lines AF, BG; ... the \angle ⁸ EAF, FAB, ABG, GBE, AEB are equal; ... the chords EF, BF, AG, EG, AB are equal. Hence ABFEG is a regular pentagon.

5. Let ABC be a right \angle . It is required to divide it into five equal parts.

Sol.—Draw BD, making the \angle ABD equal to the vertical \angle of an isosceles \triangle having each of its base \angle s double the vertical \angle . Bisect the \angle ABD by BE; each of the \angle s ABE, DBE is $\frac{1}{3}$ of a right \angle . Draw BF, BG, making the \angle s DBF, FBG each equal to EBD. Then the \angle ABC is divided into five equal parts by the lines BE, BD, BF, BG.

PROPOSITION XV.

1. (1) Let ABCDEF be the hexagon. Join, AC, AE, CE. It is required to prove that the area of the hexagon is double the area of the \triangle ACE.

Dem.—Let the diagonals of the hexagon intersect in O. Now

the $\triangle * OCD$, OED are equilateral, and hence OCDE is a lozenge, and CE is its diagonal; ... OCDE = 2 OCE. Similarly OACB = 2 OAC, and OAFE = 2 OAC. Hence ABCDEF = 2 ACE.

- (2) See Book I., Prop. 1., Ex. 4.
- 2. Let AB be the diameter, and O the centre. Produce AB to \mathbb{C} , so that BC = BO. From C draw tangents CD, CE to the \mathbb{O} , and join DE. It is required to prove that the Δ CDE is equilateral.
- **Dem.**—Join OD, OE, BD, BE. Now (III. xvIII.) the \angle CDO is right; ... (Book I., Prop. xII., Ex. 2) the lines BD, BO, BC are equal; but OB = FO; ... the \triangle ODB is equilateral; and because each of the \angle ⁸ CDO, CEO is right, CDOE is a cyclic quadrilateral, ... the \angle ⁸ DOE, DCE are together equal to two right \angle ⁸; but each of the \angle ⁸ DOB, BOE is an \angle of an equilateral \triangle , ... DCE is an \angle of an equilateral \triangle ; and because CD = CE, the \triangle CDE is equilateral.
- 3. (1) Let ABCDEF be the hexagon, and GHJ the equilateral \triangle . It is required to prove that the area of the \triangle is double the area of the hexagon.

Dem.—Let the diagonals of the hexagon intersect in O. Join

AG, CH, EJ. Now, because AB = AF, AG common, and the base GB = GF, ... (I. viii.) the \angle BAG = FAG, and the \angle OAB = OAF; ... the \angle ^s FAG, OAF are together equal to two right \angle ^s; hence (I. xiv.) OA and AG are in the same straight line.

Again (III. xvIII.), the \angle OFG is right, ... the \angle • FOG, FGO make one right \angle ; but the \angle AFO = FOA; ... the \angle AFG

- = AGF; \therefore AF = AG; but AO = AF; \therefore AO = AG; hence (I. xxxvii.) the \triangle AFO = AFG; \therefore the \triangle OFG = 2 OFA. Similarly, OBG = 2 OBA; \therefore OFGB = 2 OFAB. In like manner OBHD = 2 OBCD, and OFJD = 2 OFED. Hence the \triangle GHJ = 2 ABCDEF.
- (2) Let A'B'C'D'E'F' be the circumscribed hexagon. It is required to prove that the area of ABCDEF is three-fourths the area of A'B'C'D'E'F'.

Dem.—Because each of the \angle ^s F'AO, F'FO is right (III. xviii.), the \angle ^s AF'F, AOF are together equal to two right \angle ^s, and the \angle ^s AF'F, AF'G are together equal to two right \angle ^s; hence the \angle AF'G = AOF; \therefore AF'G is an \angle of an equilateral \triangle . In like manner AA'G is an \angle of an equilateral \triangle ; \therefore GF'A' is an equilateral \triangle ; and because GA is \bot , it bisects the base; \therefore AF' = AA'; \therefore A'F' or GF' = 2 AF' = 2 FF'; hence the \triangle F'GA = 2 FF'A; \therefore FGA = 3 FF'A; hence (1) AOF = 3 FF'A; \therefore AOF = $\frac{3}{4}$ OFF'A. In like manner AOB= $\frac{3}{4}$ OAA'B, &c. Hence ABCDEF = $\frac{3}{4}$ A'B'C'D'E'F'.

Exercises on Book IV.

1. (1) Let ABCDE be a regular polygon circumscribing a \odot . It is required to prove that the corresponding inscribed polygon is regular.

Dem.—Let O be the centre. Join OF, OG, OH, OI, OJ.

Now (III. xvIII.) the Ls OHD, OID are right, ... the

- \angle * IDH, IOH are together equal to two right \angle *. In like manner the \angle * GCH, GOH are together equal to two right \angle *; but IDH = GCH (hyp.); ... the \angle IOH = GOH. In the same way it can be shown that all the \angle * at O are equal. Hence the arcs are all equal, and therefore the five chords FG, GH, HI, IJ, JF are all equal.
 - (2) Proved as in Book IV., Prop. x11.
- 2. Let the \triangle ABC be isosceles. It is required to prove that the \triangle DEF is isosceles.

Dem.—Let O be the centre. Join OD, OE, OF. Now the $\angle \circ$ ODB, OEB are right (III. xvIII.), ... the $\angle \circ$ EBD, EOD are together equal to two right $\angle \circ$. Similarly the $\angle \circ$

FCD, **FOD** are together equal to two right $\angle s$; but the \angle **EBD** = **FCD** (hyp.); \therefore the \angle EOD = FOD; \therefore the arc ED = FD; \therefore the chord ED = FD. And hence the \triangle DEF is isosceles.

3. Let the \angle BAC = EDF. It is required to prove that both \triangle * are equilateral.

Dem.—Because the \triangle ^s are isosceles, and the \angle BAC = EDF, their remaining \angle ^s are equal; ... the \angle ABC = EFD; but EFD = EDB (III. xxxII.); ... EBD = EDB, and EDB = BED; ... EBD is an \angle of an equilateral \triangle . Similarly FCD is an \angle of an equilateral \triangle . Hence ABC and DEF are equilateral triangles.

4. Let ACB be an \angle of an equilateral \triangle . It is required to divide it into five equal parts.

Sol.—Describe a \odot about the \triangle ABC, and in it inscribe a regular polygon of fifteen sides (xvi.); then five of those sides

will be in the arc AB. Let D, E, F, G be the points of division.

Join CD, CE, CF, CG. Now since the arcs AD, DE, EF, FG, GB are equal, the \angle ⁸ ACD, DCE, ECF, FCG, GCB are equal.

5. Let ABC be a sector of a given circle. It is required to inscribe a circle in it.

Sol.—Bisect the \angle BAC by AD, meeting the arc BC in D. Through D draw EF a tangent to the sector. Produce AB, AC

to meet EF. Bisect the \angle AEF by EG, meeting AD in G. G isthe centre of the required circle.

Dem.—From G let fall ⊥* GH, GJ on AE, AF. Now (III. xvIII.) the ∠ EDG is right, and the ∠ EHG is right (const.), and the ∠ DEG = HEG, and EG common; ... (I. xxvI.) GD = GH. Similarly GH = GJ. Hence the ⊙, with G as centre and GD as radius, will pass through H and J.

- 6. Dem.—Describe a ① about ABC, and through A draw AF touching this ①. Now (III. xxxII.) the ∠ FAC = ABC; but ABC = ADE (I. xxIX.); ∴ FAC = ADE; ∴ the ② about ADE will touch AF in A. Hence the circles touch each other in A.
- 7. Dem.—Let EF be the tangent at E to the circle about ABE. Now the \angle FEA = EBA (III. xxxII.); but EBA = DCA (III. xxII.). Hence the \angle FEA = DCA, and therefore the lines EF, CD are parallel.

8. Let ABCD be a given square. It is required to describe a regular octagon in it.

Sol.—Draw the diagonals AC, BD, intersecting in O. Cut off AE, AF = AO; BI, BJ = BO; CG, CH = CO; DK, DL = DO. Join EG, JL, HF, KI. EGJLHFKI is the octagon required.

Dem.—Join OE, OG, OI. Now, because AE = AO, and the

∠EAO is half a right ∠, ... each of the ∠ * AEO, AOE is three-

fourths of a right \angle , and the \angle AOB is right; ... EOB is one-fourth of a right \angle . Similarly, each of the \angle GOB, AOI is one-fourth of a right \angle ; hence EOI is half a right \angle , and we have seen that AEO is three-fourths of a right \angle ; ... EIO is three-fourths of a right \angle ; ... OI = OE. And because the \angle EOB = GOB, and EBO = GBO, and the side BO common, OG = OE = OI. Now OG = OI, and OE common, and the \angle GOE = IOE; ... the bases EG, EI are equal. In like manner all the sides are equal. Again, because BE = BG, the \angle BEG = BGE; ... each is half a right \angle ; each of the \angle GEI, EGJ is three halves of a right \angle . In like manner all the \angle are equal. Hence the octagon is regular.

9. Let AB, AC be two given lines, and BC a line of given length sliding between them. From B, C 1 BD, CE are let fall on AC, AB, intersecting in F. It is required to find the locus of F.

Sol.—At B, C erect L^s BG, CG to AB, AC. Join FG, cutting BC in H. Join AF, AG, AH. Now, because CE and GB are perpendicular to AB, and CG, BD to AC, CGBF is a parallelogram; hence (I. xxxiv., Ex. 1) BH = CH, and FH = GH. Again, since BC is a line of given length sliding between two fixed lines, AB, AC, and BG, CG are perpendiculars at its ex-

tremities; ... (III. xxviii., Ex. 2) the locus of G is a \odot , having A as centre, and AG as radius; hence AG is a given line, and (I. xlvii.) $AC^2 + CG^2 = AG^2$, and $AB^2 + BG^2 = AG^2$; ... $AC^2 + CG^2 + AB^2 + BG^2$ is given; but (II. x., Ex. 2) $BG^2 + CG^2 = 2 CH^2 + 2 HG^2$, and $AB^2 + AC^2 = 2 CH^2 + 2 AH^2$; ... $4 CH^2 + 2 AH^2 + 2 GH^2$ is given; but $4 CH^2 = CB^2$; ... $4 CH^2$ is given, and ... $2 AH^2 + 2 GH^2$ is given; ... $AF^2 + AG^2$ is given;

but AG^2 is given, ... AF is given; hence AF is a line of given length; and since A is a fixed point, the locus of F is a Θ having A as centre, and AF as radius.

10. Let ABC be the triangle. About ABC describe a ⊙. Let DF be a ⊥ at the middle point of AB. Produce DF to meet the circumference in E. Join AD, BD, CD, CE. It is required to prove that CE is the internal, and CD the external bisector of the ∠ ACB.

Dem.—Produce BC to H, and join AE, BE. Now, because AF = BF and FE common, and the $\angle AFE = BFE$, the base AE is equal to BE; ... the arc AE = BE; hence the $\angle ACE = BCE$. Therefore CE is the internal bisector of the $\angle ACB$. Again (I. iv.), AD = BD, and the $\angle FAD = FBD$;

and because ABCD is a cyclic quadrilateral, the \angle BAD and BCD are together equal to two right \angle , and the \angle BCD, DCH are together equal to two right \angle ; ... the \angle BAD = DCH, and (III. xxi.) the \angle ACD = ABD, and ABD = BAD; hence ACD = DCH. Therefore CD is the external bisector of the \angle ACB.

11. Sol.—Draw any tangent AB to the ⊙. At the point B make the ∠ ABC = X. From the centre O draw OD ⊥ to BC; and with O as centre, and OD as radius, describe a ⊙. Through P draw a tangent to this ⊙, cutting BCE in E and F. PEF is the line required.

Dem.—Take any point G in BCE, and join BG, CG, EG, FG.

Now (III. xiv.) EF = BC, ... the $\angle EGF = BGC$; but (III. xxxII.) BGC = ABC = X. Hence the $\angle EGF = X$.

12. Let IJK be the given ⊙; A, B the given points, and CD the given line. It is required to inscribe a △ in IJK, having

two of its sides passing through A, B, and the third parallel to CD.

Sol.—Join BA, and produce it to meet CD. Produce EB to F, and make AB. BF = EB. BG. Through F draw FHI, cutting the \odot in H, I, and subtending an \angle = CDF (Ex. 11). Join IB, and produce it to meet the \odot in J. Join JA, and produce it to meet the \odot in K. Join IK. IJK is the required triangle.

Dem. — Join HK. Now, because AB.BF = EB.BG, ∴ AB.BF = JB.BI; hence the points A, J, F, I are concyclic, ∴ the ∠ AJI = AFI; but AJI = KHI (III. xxI.); ∴ AFI = KHI. Hence AF and KH are parallel; and since the \angle HKI = CDF, IK is || to CD.

13. Let A, B, C, D be four points, no three of which are collinear. It is required to describe a © which shall be equidistant from them.

Sol.—Describe a \odot passing through A, B, C. Let O be itscentre. Join OD, cutting the \odot in E. Bisect ED in F. With O as centre, and OF as radius, describe a \odot GHI. This is the \odot required.

Dem.—Join OA, OB, OC, and produce them to meet the \odot GHI. Because OF = OI, and OE = OC; \cdot . EF = CI; but EF = DF, \cdot . CI = DF. In like manner BH and AG are equal to DF. Hence the \odot through G, H, I, F is equally distant from the points A, B, C, D.

14. Let ABC be a given ⊙. It is required to inscribe a △ in-

it, whose sides shall pass through three given points D, E, F.

Analysis.—Let ABC be the \triangle . Join EF. Through B draw BH parallel to EF, and meeting the \bigcirc in H. Join AH, and produce it to meet EF produced. Join GD. Through H draw HJ parallel to GD, and meeting the \bigcirc in J. Join JB, and produce GD to meet JB in I. Now because BH is \parallel to EG, the \triangle CEG; CBH; but CBH = CAH (III. xxi.); \triangle CEG = CAH; hence ECGA is a cyclic quadrilateral; \triangle EF. FG = AF. FC; but AF. FC is given, since F is a given point; \triangle EF. FG is given; but EF is given, \triangle FG is given; \triangle G is a given point.

Again, the \angle ABJ = AHJ (III. xxi.); but AHJ = AGI (I. xxix.), \therefore ABJ = AGI; hence BIAG is a cyclic quadrilateral; \therefore GD. DI = AD. DB; but AD. DB is given, \therefore GD. DI is given, \therefore DI is given; hence I is a given point. Now the \angle JHB = IGE (I. xxix., Ex. 8); but the \angle IGE is given, since the lines EG, IG are given in position; \therefore the \angle JHB is given. Hence the question reduces to Ex. 11.

15. (1) Let R be the radius of the inscribed circle; X the vertical \angle , and P the perpendicular from the vertical \angle on the base. It is required to construct the triangle.

Sol.—With any point A as centre, and a radius equal to R, describe a O. Draw BC a diameter, and at the point A in AB

make the \angle BAD = X. Through C, D draw EF, EG tangents to the \odot . With E as centre, and a radius equal to P, describe a \odot . Draw FG a common tangent, touching the \odot ^s in K, L. EFG is the required triangle.

Dem.—Join EL. Now the \angle ELF is right; EL is the \bot from the vertical \angle on the base, and it is equal to P (const.); and AD, the radius of the inscribed \bigcirc , is equal to R. Again, each of the \angle ⁸ ACE, ADE is right (III. xvIII.); ... the \angle ⁵ CAD, CED are

together equal to two right \angle ^s; and the \angle ^s CAD, BAD are together equal to two right \angle ^s; ... CED = BAD = X.

(2) Let X be the sum of the sides, Y the base, and R the radius of the inscribed circle.

Sol.—Take a line AB, and from it cut off BC = $\frac{1}{2}$ (X + Y) and CD = Y. Erect DE \perp to AB, and make it equal to R. With E.

as centre, and ED as radius, describe a \odot . Draw BG, touching this \odot at F. Join BE, and produce it. Erect CH \bot to AB, and meeting BE produced in H. From H draw HG \bot to BG. With H as centre, and HC as radius, describe a \odot . Draw IJ a common tangent, touching the \odot ^s in K and L. BIJ is the required triangle.

Dem.—ED, the radius of the inscribed \odot , is equal to R; and (IV., Ex. 2) IJ + BD = $\frac{1}{2}$ (IB + BJ + IJ), and (IV., Ex. 4) BC = $\frac{1}{2}$ (IB + BJ + IJ); hence IJ = CD = Y. Again, BC = $\frac{1}{2}$ (IB + BJ + IJ), and BC = $\frac{1}{2}$ (X + Y) (const.); hence (IB + BJ + IJ) = (X + Y); \therefore (IB + BJ) = X.

(2') Let X be the base, Y the difference of the sides, and R the radius of the inscribed circle.

Sol.—With any point O as centre, and a radius equal to R, describe a \odot . In the circumference take a point D. Through D draw a tangent BC. From DB cut off DG = Y. Bisect DG in H, and make BH, CH each equal to $\frac{1}{2}$ X. Through B, C draw AB, AC tangents to the circle. ABC is the triangle required.

Dem.—BC = BH + CH = X; and AB = AF + FB, and AC = AE + EC. Hence AB - AC = FB - EC = BD - CD = BD.

BG = DG = Y.

(3) (Diagram, Prop. iv., Ex. 3).—Let O', O'', O''' be the centres of the escribed circles. Join them, and let fall ⊥ O'A, O''B, O'''C, on O''O'', O''O', O'O''. Join AB, BC, CA. ABC is the triangle required.

Dem.—Produce AB, AC to F and H. Let O be the point where the \bot ^s intersect. Now because each of the \angle ^s O"CO", O'AO" is right, AOCO" is a cyclic quadrilateral; ... the \angle ACO" = AOO". Similarly the \angle BCO' = BOO'; but AOO" = BOO', and ACO" = O'CH, ... BCO' = O'CH; hence CO' is the external bisector of the \angle ACB. Similarly, BO' is the external bisector of the \angle ABC. Hence O' is the centre of the escribed \odot touching BC externally and the other sides produced. In like manner O", O" are the centres of the other escribed circles.

16. (1) Dem.—From D let fall \bot ⁶ DH, DJ on AC and CB produced. Join DA, DB, HF, FJ; the points H, F, J are collinear (III. xxII., Ex. 12). Join DC, CE, and through F draw FG parallel to DC. Now because the \angle ACB is bisected by CD, HC = $\frac{1}{2}$ (AC + CB) (III. xxx., Ex. 4); and since the \angle DHC is right, DC. CO = HC² (I. xLVII., Ex. 1); that is, DC. FG = HC². Again (III. xxxi.), the \angle DCE is right; \therefore EGF is right, and CLD is right; \therefore EGF = CLD, and (I. xxix.) the \angle EFG = LDC; \therefore the \triangle ⁶ DCL, EFG are equiangular; hence (III. xxxv., Cor. 3) DC. FG = DL. FE; \therefore DL. FE = HC².

(2) From C let fall a \perp CK on AB. Now (III. Ex. 17) FM. FK is equal to the square of half the difference of AC and CB; that is, equal to AH².

Again, the \angle ELC = DFM, each being right; and because DCE is right, the \angle CED, CDE are together equal to a right \angle ; and the \angle LEC, LCE are equal to a right \angle ; ... LCE = CDE; hence the \triangle DFM, CLE are equiangular, ... (III. xxxv., Cor. 3) DF. LE = LC. FM = FK. FM = AH².

17. Let the regular polygon of n sides be a pentagon ABCDE, P a point within it, and p_1 , p_2 , &c., the \perp ^s from P on the sides.

Let O be the centre of the inscribed \odot , and R its radius. It is required to prove that $(p_1 + p_2 + p_3 + p_4 + p_5) = 5$ R.

Dem.—Join AP, BP, &c., and let the sides be denoted by s. Now $sp_1 = t$ wice the \triangle APB; $sp_2 = t$ wice the \triangle BPC, &c.; hence

s $(p_1 + p_2 + p_3 + p_4 + p_5) =$ twice the area of the pentagon. Again, sR = twice the \triangle AOB, &c., \therefore 5 sR = twice the area of the pentagon; \therefore s $(p_1 + p_2 + p_3 + p_4 + p_5) = 5 <math>sR$. Hence $(p_1 + p_2 + p_3 + p_4 + p_5) = 5 R$. Similarly for a regular polygon of any number of sides.

18. Let A, B, C, D, E be the angular points of a regular polygon of five sides. About ABCDE describe a \odot ; and through

A, B, C, D, E draw tangents to this \odot . It is required to prove that the sum of the \bot ^s from A, B, C, D, E on any line is equal to five times the \bot from O, the centre of the \odot , on the same line.

(1) Dem.—Let the line be a tangent at any point P in the circumference. From P, C let fall \perp ° PF, CG on the tangents through C and P. Produce CF to meet PG in H. Now in the Δ ° CGH, PFH, the \angle CGH = PFH, and PHC is common, and the side CH = PH; hence (I. xxvi.) CG = PF. Similarly, the \perp ° from A, B, D, E on the tangent at P are equal to the \perp ° from P on the tangents through those points; but (Ex. 17) the sum of the \perp ° from P on the sides of ABCDE is equal to 5 R; hence the sum of the \perp ° from A, B, C, D, E on PH = 5 R; that is, equal to five times the \perp from O on PH; and similarly for a regular polygon of any number of sides.

(2) Let the line not touch the circle.

Dem.—From A, B, C, D, E let fall \bot * AA", BB", CC", DD", EE" on the line, and from O let fall OO". At O', where OO" cuts the \bigcirc , draw a line parallel to C"E", and let the \bot * from A, B, C, D, E cut this line in A', B', C', D', E'. Now (1) AA' + BB'

+ CC' + DD' + EE' = 600', and A'A' + B'B'' + C'C'' + D'D''

+ E'E'' = 5 O'O''. Hence, by addition, we get AA'' + BB'' + CC'' + DD'' + EE'' = 5 OO''.

19. (1) Let ABC be a \triangle inscribed in a \bigcirc . Bisect the base AB in F, and erect a \bot , meeting the circle in D, E;

then (III. 111.) DE is the diameter. Join CD, CE. CD and CE are the external and internal bisectors of the \angle ACB (Ex. 10). Produce AB to G, H. Bisect the \angle CBG, CAH by BO', AO'', meeting CD produced in O', O''. Produce O'B, O''A to meet in

O". O', O", O" are the centres of the escribed ⊙s (iv., Ex. 3). Produce CE. CE produced will pass through O" (I. xxvi., Ex. 8). From O" let fall a ⊥ O" J on AB. Join AO', meeting CE in O. From O draw OK parallel to O"J, and from O" and E draw O"K and EL parallel to AB. From O', O" let fall ⊥s O'G (r'), O"H (r") on GH. Join BE.

Now, since AO', BO', CO' meet in O', and that BO', CO' are two external bisectors, hence (I. xxvi., Ex. 8) AO' is the internal bisector of the \angle BAC. Similarly, BO" is the internal bisector of the \angle ABC.

Again, AG, BH are each equal to s (iv., Ex. 4); ... AH = BG; ... HF = GF; hence HG is bisected in F; ... (I. xl., Ex. 8) O'G + O''H = 2 DF; that is, r' + r'' = 2 DF. And because the \angle ECB = ACE, ... (III. xxi.) ECB = ABE, and CBO = ABO; hence (I. xxxii.) EOB = EBO; ... EB = EO; but the \angle OBO'' is right, ... the \angle BOO'', BO''O are together equal to a right \angle ; but EOB = EBO; ... EO'''B = EBO'''; ... EB = EO'''; hence OO''' is bisected in E, and EL is parallel to O'''K; ... (I. xl., Ex. 3) OK is bisected in L, and divided unequally in M; hence KM - OM = 2 LM; that is, r''' - r = 2 EF; and we have proved r' + r'' = 2 DF; ... r' + r'' + r''' - r = 2 DE = 4 R. Hence r' + r'' + r''' = 4 R + r.

- (2) It has been shown that r''' r = 2 EF; but EF is $= \mu$; hence $r''' r = 2 \mu$. Similarly $r r = 2 \mu'$, and $r'' r = 2 \mu''$; hence $r' + r'' + r''' 3 r = 2 (\mu + \mu' + \mu'')$, that is, $4 R + r 3 r = 2 (\mu + \mu' + \mu'')$. And therefore $(\mu + \mu' + \mu'') = 2 R r$.
 - (3) Dem. $-\mu + \delta = R$, $\mu' + \delta' = R$, and $\mu'' + \delta'' = R$; hence we

have $\mu + \mu' + \mu'' + \delta + \delta' + \delta'' = 3 R$; that is, $2R - r + \delta + \delta' + \delta'' = 3R$. And hence $\delta + \delta' + \delta'' = R + r$.

20. Dem.—Let G be the second point of intersection. Join GB, GC, GD. Now (III. xxII.) the sum of the \angle ^s DGC, DEC is two right \angle ^s; but DEC = EAF + AFE, and AFE = BGD

(III. xxi.); ... BGC + BAC is equal to two right \angle *; hence BACG is a cyclic quadrilateral; ... the circle through B, A, C will pass through G. And the locus of G is a circle.

21. Let ABCD be the quadrilateral, E, F the middle points of the diagonals, and O the centre of the inscribed ⊙. It is required to prove that the points E, O, F are collinear.

Dem.—Join EB, ED, and join O to the points of contact G, H, I, J.

Now (I. xxxvIII.) the \triangle ABE = CBE, and the \triangle ADE = CDE; \therefore AEB + CDE = $\frac{1}{2}$ ABCD; hence the sum of the areas of AEB and CDE is given, and their bases AB, CD are given; \therefore (I., Ex. 29) the locus of E is a straight line, and F is a point on the locus; since it can be shown in the same manner that AFB + CFD = $\frac{1}{2}$ ABCD. Again, the \triangle OAG = OAH, and OIB = OBH; \therefore the area of OAB is half the area of the figure GABIO. Similarly, OCD = $\frac{1}{2}$ GOICD; hence OAB + OCD = $\frac{1}{2}$ ABCD, and \therefore (I., Ex. 29) O is a point on the locus; that is, the points E, O, F are on the same straight line.

22. (1) Let AB be a given line; C, D two given points. It is required to find a point P on AB, so that CP + DP = R (a given line).

Sol.—With C as centre, and a radius equal to R, describe a \bigcirc , and describe a second \bigcirc DEF, having its centre on AB, passing through D, and touching the first \bigcirc internally in E (III. xxxvII., Ex. 3). Let P be its centre. P is the required point.

Dem.—Join CP, and produce it; then (III. xi.) CP produced passes through E. Join PD. Now PE = PD; ... CP + PD = CE = R.

(2) It is required to find a point P, so that CP - DP = R.

Sol.—With C as centre, and a radius equal to R, describe a O,

and describe a second \odot DEF, having its centre on AB, passing through D, and touching the first \odot externally in E. Let P be its centre. P is the required point.

Dem.—Join CP, DP. Now CP = CE + EP; $\cdot \cdot \cdot$ CP - EP = CE = R; that is, CP - DP = R.

23. Let AB, AD, CB, CF be the four lines. About the \triangle ^s AFE, CDE describe \bigcirc ^s; let them intersect in P. P is the point required.

Dem.—From P let fall \perp s PG, PH, PI, PJ on the sides of the \triangle s AFE, CDE.

Now (III. xxII., Ex. 12) the feet of the \perp s on the sides of the \triangle AFE are collinear. Similarly the feet of the \perp s on the sides

of the \triangle CDE are collinear. Hence the feet of the \bot ⁸ PG, PH, PI, PJ are collinear; and these are the \bot ⁸ on the four given lines AB, AD, CB, CF.

- 24. See "Sequel to Euclid," Book III., Prop. xiv.
- 25. See "Sequel to Euclid," Book III., Prop. xiv., Cor.
- 26. (1) See "Sequel to Euclid," Book III., Prop. v.
- (2) Dem.—Let AB be the diameter of the semicircle ACB. Produce BA to D, and let a ⊙ whose centre is O touch ACB in C, and BD in D. From O let fall a ⊥ OD on BD. Join OO'. OO' passes through C (III. xII.). Produce OO' to meet ACB in E, and from O, D draw OF, DG tangents to ACB. Now EO. OC = OF²(III. xxxvI.) = OD² + DG² ("Sequel," Book III.,

Prop. xxi.), and $OC^2 = OD^2$. Subtracting, we get (EO – OC) OC; that is, EC. $OC = DG^2$; that is, $2Rr = DG^2 = DA \cdot DB$.

27. Lemma.—If a \triangle ABC have a \bigcirc inscribed in it, and another circumscribed to it, the rectangle contained by the diameter of the circumscribed \bigcirc and the radius of the inscribed \bigcirc is equal to the rectangle contained by the segments of any chord of the circumcircle passing through the centre of the inscribed circle.

Dem.—Let O be the centre of the inscribed \odot . Join AO, and produce it to meet the circumscribed \odot in D. From D let fall a \bot DF on BC, and produce it to meet the circumference in E. Join EC, OG, OC, BD, CD. Now the arc BD = CD; ... the

chord BD = CD; hence BF = CF; ... DE is the diameter of the circumscribed \odot ; ... the \angle DCE is right, and (III. xvIII.) the \angle OGA is right, and (III. xxII.) the \angle DEC = OAG;

hence the $\triangle \bullet$ DEC, OAG are equiangular; ... (III. xxxv., Cor. 3) ED. OG = OA. DC; but DC = DO (Dem., Ex. 19 (1)). Hence ED. OG = OA. OD.

Let ABC be the \triangle , O, O' the centres of the inscribed and circumscribed \bigcirc , and ρ , ρ' the radii of two \bigcirc , touching each other at O, and touching the circumscribed \bigcirc . It is required to prove that $\frac{1}{\rho} + \frac{1}{\rho'} = \frac{2}{r}$, r being the radius of the inscribed circle.

Dem.—Through O draw a common tangent to those \bigcirc , meeting the circumscribed \bigcirc in D, E. Join the centres of the \bigcirc • whose radii are ρ , ρ' , and produce to meet the circumferences

in I, J. Through O' draw FH || to IJ, and cutting DE in G. Now FG. 2ρ = EO.OD ("Sequel," Book III., Prop. vi.);

$$\therefore \mathbf{FG} = \frac{\mathbf{EO.OD}}{2\rho}. \quad \text{Similarly, HG} = \frac{\mathbf{EO.OD}}{2\rho'}; \quad \therefore \mathbf{FH} = \frac{\mathbf{EO.OD}}{2\rho} + \frac{\mathbf{EO.OD}}{2\rho'}. \quad \text{Again, 2 R} r = \mathbf{EO.OD} \; (\textit{Lemma}); \quad \therefore \mathbf{2 R} = \frac{\mathbf{EO.OD}}{r}; \\ \therefore \frac{\mathbf{EO.OD}}{2\rho} + \frac{\mathbf{EO.OD}}{2\rho'} = \frac{\mathbf{EO.OD}}{r}; \quad \text{therefore } \frac{1}{2\rho} + \frac{1}{2\rho'} = \frac{1}{r}; \\ 1 \cdot 1 \quad 2$$

$$\therefore \frac{1}{\rho} + \frac{1}{\rho'} = \frac{2}{r}.$$

28. Lemma.—Let AB be the diameter of a O, AD a tangent.

From C, any point in the circumference, a \bot CD is let fall on \land D, and AC joined. It is required to prove that AB.CD = AC². Dem.—Through C draw CE \parallel to AD. Join BC. Now

(I. XLVII., Ex. 1) AB.AE = AC²; but AE = CD; ... AB.CD = AC².

Dem.—Let the polygon be a regular pentagon ABCDE. Take any point F in the circumference. At F draw a tangent to the \odot . Join F to the angular points of the pentagon, and let the joining

lines be denoted by c_1 , c_2 , &c. From the angular points let fall $\perp^s p_1$, p_2 , &c., on the tangent, and let the radius be denoted by R.

Now (Lemma) $2 Rp_1 = c_1^2$, and $2 Rp_2 = c_2^2$, &c.; ... $2 R (p_1 + p_2 \dots p_5) = (c_1^2 + c_2^2 \dots c_5^2)$; but $(p_1 + p_2 \dots p_5) = 5 R$ (Ex. 18); ... $10 R^2 = (c_1^2 + c_2^2 \dots c_5^2)$. And similarly for a figure of any number of sides.

- 29. This is a special case of the next exercise.
- 30. If any point G in the circumference of any concentric \odot be joined to the angular points of an inscribed regular polygon, the sum of the squares of the joining lines is equal to n times the square of the radius of the concentric \odot , together with n times the square of the radius of the circumscribed \odot ; that is, $\rho_1^2 + \rho_2^2 + \ldots \rho_5^2 = 5 R^2 + 5 r^2$.

Dem.—Let 0 be the common centre. Through 0 draw the

diameter. From A let fall a $\perp p_1$ on IJ, and draw AK parallel to IJ.

Now $AG^2 = OG^2 + OA^2 - 2 OG \cdot OK$ (II. xIII.); that is, $\rho_1^2 = R^2 + r^2 - 2 Rp_1$. Similarly, $\rho_2^2 = R^2 + r^2 + 2 Rp_2$, &c., the sign of $2 Rp_2$ being positive, since the \perp is let fall from above the line. Adding, we get, since the terms by which 2 R is multiplied cancel each other, $\rho_1^2 + \rho_2^2 + \dots \rho_5^2 = 5 (R^2 + r^2)$.

31. Let ABC be an equilateral \triangle inscribed in a \bigcirc . From P, any point in the circumference of a concentric \bigcirc , \bot^s p_1 , p_2 , p_3 , are let fall on the sides of ABC. It is required to prove that $p_1^2 + p_2^2 + p_3^2 =$ three times the square of the radius of the inscribed \bigcirc , together with three half times the square of the radius of the concentric circle.

Dem.—From O, the centre, let fall \perp s on the sides of ABC. Through P draw PD || to AC, meeting the \perp from O on AC in D; draw PE || to BC, meeting the \perp from O on BC in E. Produce the \perp from O on AB to F, and draw PF || to AB. Join OP. Now, since the \angle s ODP, OEP, OFP are right, the

⊙ on OP as diameter will pass through D, E, F; and because PD is \parallel to AC, and PE \parallel to BC, ... (I. xxxx., Ex. 8) the ∠DPE = ACB = an ∠ of an equilateral \triangle ; ... DE is $\frac{1}{3}$ of the circumference of DEF. In like manner, EF, DF are each $\frac{1}{3}$ of the circumference of DEF; ... D, E, F are the angular points of an

equilateral \triangle inscribed in DEF, and \therefore (Ex. 28) $OD^2 + OE^2 + OF^2 = 6 \left(\frac{OP}{2}\right)^2 = \frac{3 OP^2}{2}$. Again, $p_1 = (r - OD)$, r being the radius of the inscribed \bigcirc ; $\therefore p_1^2 = r^2 - 2r$. $OD + OD^2 = (r^2 + OD^2) - 2r (r - p_1)$, and $p_2^2 = (r^2 + OE^2) - 2r (r - p_2)$, and $p_3^2 = (r^2 + OF^2) - 2r (r - p_3)$; $\therefore p_1^2 + p_2^2 + p_3^2 = 3r^2 + \frac{3 OP^2}{2} - 2r \{3r - (p_1 + p_2 + p_3)\}$; but $(p_1 + p_2 + p_3) = 3r$ (Ex. 17). Hence $p_1^2 + p_2^2 + p_3^2 = 3r^2 + \frac{3 OP^2}{2}$. And in general, in the case o a figure of n sides, the sum of the squares of the \bot s will equal $nr^2 + \frac{nOP^2}{2}$.

32 & 33. These are special cases of Ex. 31.

35. Let A, B, C, D be the four concyclic points. From O, the centre of the \odot , let fall \bot • Oa, Oβ, Oγ, Oδ on the sides of ABCD; then (III. III.) the sides of the quadrilateral are bisected in a, β , γ , δ . From a, γ let fall \bot • aE, γ F on AB, CD, and let them intersect in O'. Join β O', and produce it to meet AD in G. It is required to prove that β G is \bot to AD.

Dem.—Join $\alpha\gamma$, $\beta\delta$, 00'. Now, because α , β , γ , δ are the angular points of a parallelogram (I. xl., Ex. 6), and that $\alpha O \gamma O'$

is a parallelogram; ... (I. XXXIV., Ex. 1) the lines $\alpha \gamma$, $\beta \delta$, OO^* bisect each other. Let P be their common point. Now, in the $\triangle * OP\delta$, $O'P\beta$ we have the sides OP and $P\delta$ equal to O'P and $P\beta$, and the contained $\angle *$ equal; ... the $\angle O\delta P = O'\beta P$; ... βG is \parallel to $O\delta$; ... βG is \perp to AD. Similarly, if we join $\delta O'$ and produce it, δH will be \perp to BC.

36. Let MN be an arc of a O whose centre is O. Let AB be-

the side of a regular pentagon, and A'B' the side of a regular

hexagon circumscribed about it. It is required to prove that the perimeter of the pentagon is greater than that of the hexagon.

Dem.—Let AB touch MN in P. Join OA, OB, OA', OB', OP. Now (XII.) the \triangle AOP = BOP; ... the \angle AOP = $\frac{1}{2}$ AOB; but AOB = $\frac{4 \ rt. \ \angle^s}{5}$; ... AOP = $\frac{2 \ rt. \ \angle^s}{5}$ In like manner the \angle A'OP = $\frac{2 \ rt. \ \angle^s}{6}$; ... the \angle AOA' = $\frac{2 \ rt. \ \angle^s}{30}$.

Let C be the point where OA' cuts the O. Then if we divide the arc CP into five equal parts in the points D, E, F, G, join OD, &c., and produce to meet AB in the points D', E', F', G', the \angle A'OD', D'OE', &c., will be each $\frac{1}{30}$ of two right \angle *. Again, the line OA is greater than OD' (I. x1x., Ex. 4). Cut off ()H = OD'. Join A'H. Then (I. iv.) A'D' = A'H, and the $\angle OD'A' = OHA'$; ... the $\angle OD'E' = AHA'$; but OD'E' is greater than OAD' (I. xvi.); ... AHA' is greater than A'AH; and hence AA' is greater than A'H; that is, than A'D'. larly, A'D' is greater than D'E'; D'E' greater than E'F', &c.; hence 5 AA' is greater than A'P. To each add 5 A'P, and we have 5 AP greater than 6 A'P; ... 5 AB is greater than 6 A'B'; but 5 AB is the perimeter of the pentagon, and 6 A'B' that of the Hence the perimeter of the pentagon is greater than that of the hexagon; and in general the greater the number of sides, the less the perimeter.

37. By the last exercise the area of a pentagon is less than the area of a square; but the area of a square is equal to the square of the diameter. Hence the area of a pentagon is less than the square of the diameter.

38. Dem.—Join the four concyclic points A, B, C, D. Bisect the joining lines in E, F, G, H. Join BD, and bisect it in I. Then (v., Ex. 4) the nine-points ⊙ of the △ ABD will pass through the points H, E, I. Similarly, the nine-points ⊙ of the △ ABC will pass through E, F, and the middle point of AC. Hence two of the nine-points ⊙s will pass through E. In like manner two of them will pass through each of the points F, G, H. From E, F, G, H let fall ⊥s EE', FF', GG', HH' on the opposite sides; these ⊥s will co-intersect in a point O (Ex. 35). Join IF, IG. Now, because each of the ∠s AG'O, AF'O is right, ∴ the ∠s F'AG', F'OG' are together equal to two right ∠s, and the ∠s BAD, BCD are equal to two right ∠s; ∴ the ∠ F'OG' = BCD; that is, the ∠ FOG = BCG; but (I. xxxiv.) BCG

= FIG; ... FOG = FIG; and hence the \odot through the points F, G, I, must pass through O. In like manner each of the four ninepoints \odot ^s must pass through O. Now, since two of these \odot ^s pass through E and O, if we bisect EO, and erect $XX_1 \perp$ to it, their centres must be in XX_1 . Similarly, the centres of each other pair must be in the lines X_1X_2 , X_2X_3 , X_3X_1 . Hence the points X, X_1 , X_2 , X_3 must be the centres. And because each of the lines

 XX_1 , CD is \bot to EE', they are parallel to each other. Similarly, the remaining sides of $XX_1X_2X_3$ are parallel to the remaining sides of ABCD; hence the \angle ⁸ X and X_2 are equal to the \angle ⁸ A and C; but A and C are together equal to two right \angle ⁸, ... X and X_2 are equal to two right \angle ⁸. Hence the points X, X_1 , X_2 , X_3 are concyclic.

39. Let AB, AC be two fixed lines, having their included.

/ BAC equal to an ∠ of an equilateral △; and let BC be a

third line forming a \triangle with AB, AC. Bisect BC, AC, AB in D, E, F. Join DE, EF, DF. The \bigcirc through D, E, F is the nine-points \bigcirc of the \triangle ABC (v., Ex. 4). It is required to prove that the locus of its centre O is a right line.

Dem.—Join OA, OE, OF. Now DE, DF are respectively

1 to AB, AC (I. xl., Ex. 2); ... AEDF is a parallelogram;

... the ∠ FDE = FAE; but FOE = 2 FDE (III. xx.); ... FOE

= 2 FAE; hence FOE is twice an ∠ of an equilateral △:

... FOE + FAE are equal to two right ∠s; hence FAOE is a

cyclic quadrilateral. Again, because OE = OF, the arc OE

= OF, and ... (III. xxvi.) the ∠ OAE = OAF; ... the ∠ FAE

is bisected. Hence the line OA is given in position; and since O

is a point on it, the locus of O is a right line.

41. Let AB, AC be two lines given in position, P a given point, and let the line FG be equal to the given perimeter. It is required to draw a transversal through P, so that the \triangle DAE shall have a perimeter equal to FG.

Sol.—Bisect FG in H. In AB take AB = GH, and erect BO \bot to AB. Bisect the \angle BAC by AO, and let fall a \bot OC on \blacktriangle C. Then (I. xxvi.) the \triangle ABO, ACO are equal in every

respect; ... OB = OC; hence the \bigcirc , with O as centre and OB as radius, will pass through C, and touch the lines AB, AC in B, C. Through P draw DE, touching this \bigcirc , and cutting AB, AC in D, E. ADE is the \triangle required. For (IV., Ex. 4) AB is

equal to half the perimeter of ADE. Hence the perimeter is equal to 2 AB, or FG.

- 42. (1) Let BAC be the vertical \angle , X its bisector, and FG the perimeter.
- Sol.—Bisect the \angle BAC by AP, and make AP = X. Through P draw DE, cutting off a \triangle ADE whose perimeter is equal to FG (Ex. 41).
- (2) Let BAC be the vertical \angle , FG the perimeter, and X the perpendicular.
- Sol.—Bisect FG in H, take AB = GH, erect BO \perp to AB, bisect the \angle BAC by AO, and from O let fall OC \perp on AC; then the \odot , with O as centre, and OB as radius, will pass through C, and will touch AB, AC, in B, C. With A as centre, and a radius equal to X, describe a \odot , cutting AB, AC in M, N. Draw a common tangent to the two \odot ⁸, meeting AB, AC in D, E. ADE is the required triangle.
- Dem.—Join AP, P being the point where DE touches the ⊙ MN. Now (III. xvIII.) the ∠ APE is right, ∴ AP is a ⊥, and it is equal to X; and, as in Ex. 41, the perimeter of the Δ ADE = FG.
- (3) Let BAC be the vertical \angle , FG the perimeter, and R the radius of the inscribed circle.
 - Sol.—Bisect BAC by AO. Draw AD 1 to AC, and make it

equal to R. Through D draw DE || to AO, and where it meets AC draw EH || to AD. From H let fall HI \(\perp \) on AB. Take AB

 $=\frac{1}{2}$ FG; erect BO \perp to AB, and from O let fall a \perp OC on AC. Now, as in Ex. 41, HE = HI, and OB = OC; hence the \bigcirc ^s with H, O as centres, and HE, OC as radii, will pass through the points I, B. Draw a common tangent, touching the \bigcirc ^s in K and L, and cutting AB, AC in M, N. AMN is the required triangle.

For, as before, the perimeter of AMN = FG. And since ADEH is a parallelogram, EH = AD = R.

43. (1) Let ABC be the given \odot , D, E the points. It is required to inscribe a \triangle in ABC, so that two sides may pass through D, E, and the third be a maximum.

Sol.—Describe a © passing through D, E, and touching ABC in A (III. xxxvII., Ex. 1). Join AD, AE, and produce to meet ABC in B, C. Join BC. ABC is the required triangle.

Dem.—Take any other point F in ABC. Join FD, FE, and produce to meet ABC in GH. Join GH, JE, J being the point

where FG cuts the ⊙ ADE. Now the ∠ DJE is greater than DFE; ∴ the ∠ DAE is greater than DFE; ∴ the arc BC is greater than GH. Hence the chord BC is greater than GH.

(2) Let ADE be the given \odot ; B, C the points.

Sol.—Through B, C describe a \odot ABC, touching ADE in A. Join AB, AC, cutting the \odot ADE in D, E. Join DE. ADE is the required triangle.

Dem.—Take any point F in ADE. Join BF, CF, cutting the \odot ADE in GH. Join GH. Produce CF to meet ABC in J. Join BJ. Now the \angle BFC is greater than BJC, that is, greater

than BAC; ... the arc GH is greater than DE. Hence the chord GH is greater than DE.

44. Let △ represent the area of the triangle.

Now $r' = \frac{\Delta}{s-a}$ (iv., Ex. 10), $r'' = \frac{\Delta}{s-b}$; $\therefore r'r'' = \frac{\Delta^2}{(s-a)(s-b)}$; but $\Delta^2 = s \cdot s - a \cdot s - b \cdot s - c$ (iv., Ex. 12); therefore rr' $= \frac{s \cdot s - a \cdot s - b \cdot s - c}{(s-a)(s-b)} = s \cdot s - c$. Similarly, $r'' r'' = s \cdot s - a$, and $r'''r' = s \cdot s - b$. Hence $r'r'' + r''r''' + r'''r'' + s \cdot s - (a+b+c)$; but (a+b+c) = 2s (iv., Ex. 2); $\therefore r'r'' + r''r''' + r'''r'' + s \cdot s \cdot s - 2s$ $= s \cdot s = s^2$.

45. Let ABC be a △ inscribed in a ⊙. Draw the diameter

DE. Join AD. AD is the internal bisector of the vertical 4.

From A let fall a \perp AJ on BC. From B and C let fall \perp BG, CF on AD, and let H be the point where DE bisects BC. It is required to prove that the points F, H, G, J are concyclic.

Dem.—Join FH, GJ, CD. Now, since each of the ∠* BGA, BJA is right, BGJA is a cyclic quadrilateral; ∴ the ∠ BAG = BJG. And because DHFC is a cyclic quadrilateral, the ∠ DCH = DFH; but (III. xxi.) DCH = BAD; ∴ DFH = BJG. Hence the points F, H, G, J are concyclic.

46. Let ABC be the \triangle whose base AB and vertical \angle ACB are given.

Describe a © about ACB. Let O be its centre. Draw DE, the diameter, perpendicular to AB. Join CD, CE. CD, CE are the internal and external bisectors of the \angle ACB (III. xxx., Ex. 2). Bisect the external \angle CAB by AO", meeting CE produced. Produce CD, O"A to meet in O"". Join O"B. Produce

O"B, O"C to meet in O'. O'B is the external bisector of the \angle CBA (I. xxvi., Ex. 8); O', O", O" are the centres of the escribed \bigcirc s. Join O'A, O"B, intersecting CD in F. Join FO. Draw EG || to CD, meeting FO produced in G. G is the centre of the \bigcirc passing through O', O", O". It is required to find its locus.

Dem.-Join BD. Now, because F is the orthocentre of the △ 0'0"0" (IV. IV., Ex. 6), O the centre of its nine-points ⊙ (IV. v., Ex. 5), and EG the \(\perp \) from the middle point of O'O", ... OF = OG (IV. v., Ex. 4); and since the \angle GEO = FDO (I. xxix.), and GOE = FOD; ... EG = DF; but DF = DB (Dem. of Ex. 27), and DB is given, ... EG is given, and the point E is given. Hence the locus of G is a O, having E as centre and EG as radius.

47. Let ABC be the \triangle ; O', O", O" the centres of the escribed circles.

Dem.—Describe a O about the A O'O"O". Let O be its centre. Join O"O, and produce it to meet the circumference in

D, and cutting AC in E. We shall prove that O'O is \(\perp \) to AC. Join O"B, and produce it to meet the circumference in F. Join DF. Now the \(\text{O''FD} is right (III. xxxi.), and O''BO''' is right, since O"B is \perp to O'O"; ... O'O" and FD are parallel; ... (III. xxvi., Cor. 2) the arc O"D = O'F; hence the $\angle O$ "O"D = $0^{\circ}0^{\circ}F$, and the \angle $0^{\circ}AE = 0^{\circ}0^{\circ}B$ (1., Ex. 36); ... the ∠ O"EA = O"BO'; but O"BO' is right, ∴ O"EA is right; hence 0"0 is \(\perp \) to AC. Similarly, if we join 0'0, 0""0, they will be \(\perp \) to BC, AB. Hence the three \(\perp \sigma \) are concurrent.

48. Dem.-Join BE, BQ, BD. Now (III. xxxx.) the \(AQB \) is right, and EOB is right (hyp.); ... OEQB is a cyclic quadrilateral; ... the \(\text{OQB} = \text{OEB} ; \text{ but OQB} = \text{PAB (III. xxi.);} n2

therefore OEB is equal to PAB. And hence the O through the points A, E, B will pass through D.

49. Let ABC be a \triangle whose sides a, b, c are in arithmetical progression; a being the greatest, and c the least. It is required to prove that 6 Rr = ac.

Dem.—From B let fall $a \perp p$ on b, and draw the diameter. Now 2 Rp = ac (III. xxxv., Ex. 1), $\therefore 2 R \cdot bp = abc$; but bp is

equal to twice the area; that is, equal to 2Δ (suppose), $\therefore 2R.2\Delta$ = abc, $\therefore R = \frac{abc}{4\Delta}$; and since the sides are in A.P., a+c=2b; $\therefore a+b+c=3b$; but (a+b+c)=2s, therefore 2s=3b. Again (iv. Ex. 9), $r=\frac{\Delta}{s}$; and multiplying this and the equation $R=\frac{abc}{4\Delta}$ we get $Rr=\frac{abc}{4s}$, $\therefore Rr=\frac{abc}{6b}$; and hence 6Rr=ac.

50. Let A'B'C' be the \odot ; and AB, BC, CA three lines in the form of a \triangle . It is required to inscribe in A'B'C' a \triangle whose sides shall be parallel to the sides of ABC.

Sol.—Take a point A' in the circumference, and draw A'B' || to-

AB, and A'C' | to AC. Join B'C'. If B'C' is | to BC, the thing required is done. If not, from the centre O let fall a \(\perp \) OD on

B'C'. With O as centre, and OD as radius, describe a \odot . Draw EF, touching this \odot , and \parallel to BC (III. xvi., Ex. 2). Join O to G, the point of contact. Draw FH \parallel to C'A', and join HE. HFE is the \triangle required.

Dem.—Because OG = OD, EF = B'C' (III. xiv.), ... the arc EF = B'C'; hence the arc FC' = B'E; but FC = HA' (III. xxvi., Cor. 2), ... B'E = HA', ... HE is parallel to A'B'; that is parallel to AB; and FH is parallel to A'C', that is to AC; and EF is parallel to BC. Hence the sides of the \triangle HFE are parallel to the sides of ACB.

51. Dem.—Let 0 be the centre of the circumscribed O. Join

DA", CE", OA, OB, OE, &c. Now the \triangle A"OE" + DOC - (A"OC + E"OD) = 4 A'OE' (Book I., Ex. 52); that is, AA"E" + AOA" + ACE" + DOC - (BOC + A"OB + EOD + EOE") = 4 A'OE'; but evidently AOA" = A"OB, AOE" = EOE", and DOC = EOD; \therefore AA"E" - BOC = 4 A'OE', and BOC = A'OE' + A'AE'. Adding, we get AA"E' - A'AE' + 5 A'OE' = pentagon A'B'C'D'E'.

52. (1) **Dem.**—Let ABCDE be the equilateral inscribed polygon.

Now, since the sides are equal, the arcs are equal; therefore the whole arc EABC = DEAB; hence the \angle CDE = BCD. Similarly, the \angle BCD = ABC, &c. Hence the polygon is regular.

(2) **Dem.**—Let ABCDE be the equilateral circumscribed polygon; F, G, H, I, J the points of contact, and O the centre. Join OA, OB, OF, OG, OH.

Now ID = HD, \therefore IE = HC, \therefore JE = GC, \therefore AJ = BG, \therefore AF = BF. Now since AF = BF, OF common, and the \angle AFO = BFO, \therefore the \angle OAF = OBF; \therefore the \angle BAE = ABC. Similarly all the \angle s are equal. Hence the polygon is regular.

53. (1) Let ABCDE be the equiangular circumscribed polygon; F, G, H, I, J the points of contact, and O the centre. Join OA, OB, OG, OH.

Now since the \angle CBA = EAB, their halves are equal; that is, the \angle OBF = OAF, and the \angle OFB = OFA, each being right, and the side OF common, \therefore (I. xxvi.) BF = AF; that is, AB = 2 AF. Similarly, AE = 2 AJ; but AF = AJ, \therefore AB = AE. In like manner all the sides are equal. Hence the polygon is regular.

(2) **Dem.**—Let ABCDE be the inscribed polygon, and O the centre. Join OA, OB, OC, OD, OE. Now the \angle ABC = EAB (hyp.); but the \angle OBA = OAB, since OA = OB, therefore the \angle OBC = OAE; that is, OCB = OEA; but the \angle BCD = AED, \therefore OCD = OED; that is, ODC = ODE. Now, in the \triangle s ODC, ODE, the \angle s OCD, ODC are equal to the \angle s OED, ODE, and the side OD common; hence (I. xxvi.) DC = DE. Similarly all the sides are equal. Hence the polygon is regular.

54. The sum of the L^s drawn to the sides of an equiangular polygon X from any point P inside the figure is constant.

Dem.—Suppose a regular polygon Y of the same number as X constructed so as to include X, and have its sides parallel to those of X. Then, if the \perp^s from P on the sides of X be produced to meet the sides of Y, their sum is constant (Book IV., Ex. 17); but the excess of the latter sum over the former is constant. Hence the former sum is constant.

55. Express the sides of a \triangle in terms of the radii of its escribed circles.

If the radii be r', r'', r''', we have, denoting the area of the triangle by Δ (Book IV., Prop. iv., Ex. 10),

$$r' = \frac{\Delta}{s - a}, \ r'' = \frac{\Delta}{s - b}, \ r''' = \frac{\Delta}{s - c};$$

$$\therefore \ r' (r'' + r''') = \frac{\Delta^2}{(s - a)(s - b)} + \frac{\Delta^2}{(s - a)(s - c)};$$
but (Book IV., Prop. IV., Ex. 12) $\Delta^2 = s \cdot s - a \cdot s - b \cdot s - c;$

$$\therefore \ r' (r'' + r''') = s \cdot s - c + s \cdot s - a = sa,$$
and (Book IV., Ex.) $\sqrt{r' \ r'' + r'' \ r''' + r''' \ r''} = s;$

$$\therefore \ a = \frac{r' \ (r'' + r''')}{\sqrt{r' \ r'' + r''' \ r''' + r''' \ r''' + r''' \ r''}};$$
Similarly,
$$b = \frac{r''' \ (r'' + r'')}{\sqrt{r' \ r'' + r''' \ r''' + r''' \ r''' + r''' \ r''' + r''' \ r'''' \ r''' \ r'''' \ r''' \ r'''' \ r''' \ r'''' \ r''' \ r'''' \ r''' \ r'''' \ r''' \ r'''' \ r''' \ r'''' \ r''' \ r'''' \ r''' \ r'''' \ r''' \ r''' \ r''' \ r''' \ r''' \ r''' \ r'''' \ r''' \ r''' \ r''' \ r''' \ r''' \ r'''' \ r''''' \ r''''' \ r''''' \ r'''' \ r''''' \ r''''' \ r''''' \ r'''' \ r'''' \ r'''' \ r$$

BOOK V.

Miscellaneous Exercises.

1. (1) Let a be greater than b. It is required to prove that $\frac{a-x}{b-x}$ is greater than $\frac{a}{b}$.

Dem.—Subtract, and we get $\frac{ab-bx-ab+ax}{b(b-x)}$; that is $\frac{(a-b)x}{b(b-x)}$; but since a is greater than b, $\frac{(a-b)x}{b(b-x)}$ is positive. Hence $\frac{a-x}{b-x}$ is greater than $\frac{a}{b}$.

(2) To prove that $\frac{a}{b}$ is greater than $\frac{a+x}{b+x}$

Dem.—Subtract, and we get $\frac{a}{b} - \frac{a+x}{+x} = \frac{ab+ax-ab-bx}{b(b+x)}$

= $\frac{(a-b) x}{b(b+x)}$; but because a is greater than b, $\frac{(a-b) x}{b(b+x)}$ is positive.

Hence $\frac{a}{b}$ is greater than $\frac{a+x}{b+x}$.

2. The proof of this is similar to that of Ex. 1.

3. Let a, b, c, d be the four magnitudes; then if a:b::c:d, it is required to prove that $\frac{a+b}{a-b} = \frac{c+d}{c-d}$.

Dem.—Because a:b::c:d, we have a+b:b::c+d:d(**x**viii.); that is $\frac{a+b}{b} = \frac{c+d}{d}$ Again, a-b:b::c-d:d (**x**vii.);

that is, $\frac{a-b}{b} = \frac{c-d}{d}$. Dividing, we get $\frac{a+b}{a-b} = \frac{c+d}{c-d}$.

4. Let a, b, c, d, and e, f, g, h, be the two sets of four magnitudes that are proportionals; that is, a:b::c:d; and e:f::g:h. It is required to prove that ae:bf::cg:dh.

Dem.—Because a:b::c:d, we have $\frac{a}{b}=\frac{c}{d}$. Similarly,

 $\frac{e}{f} = \frac{g}{h}$. Multiplying together, we get $\frac{ae}{bf} = \frac{cg}{dh}$; that is, ae : bf :: cg : dh.

5. It is required to prove that $\frac{a}{c}:\frac{b}{f}:\frac{c}{a}:\frac{d}{h}$.

Dem.—As in (4), we have $a = \frac{c}{d}$, and $\frac{e}{f} = \frac{g}{h}$; $\therefore \frac{a}{b} \div \frac{e}{f} = \frac{c}{d}$ $\div \frac{g}{h}$; but $\frac{a}{b} \div \frac{e}{f} = \frac{af}{be} = \frac{a}{e} \div \frac{b}{f}$ and $\frac{c}{d} \div \frac{g}{h} = \frac{ch}{dg} = \frac{c}{g} \div \frac{d}{h}$; $\therefore \frac{a}{e}$ $\div \frac{b}{f} = \frac{c}{g} \div \frac{d}{h}$. Hence $\frac{a}{e} : \frac{b}{f} : : \frac{c}{g} : \frac{d}{h}$.

6. Let a, b, c, d be the four magnitudes.

Dem.—a:b::c:d, $\therefore \frac{a}{b} = \frac{c}{d}$, $\therefore \frac{a^2}{b^2} = \frac{c^2}{d^2}$; that is, $a^2:b^2$

:. $c^2 : d^2$. Similarly $a^3 : b^3 :: c^3 : d^3$.

7. Let a, b, c, d; a, b, c, d', be the two sets of magnitudes. It is required to prove that d = d'.

Dem.—a:b::c:d, and $a:\dot{b}::c:d'$, $\therefore \frac{a}{b} = \frac{c}{d}$, and $\frac{a}{b} = \frac{c}{d'}$;

 $\therefore \frac{c}{d} = \frac{c}{d'}. \quad \text{Hence } d = d'.$

8. Dem.—Since the three magnitudes are continual proportions,

we have $\frac{a}{b} = \frac{b}{c}$, and $\frac{b}{c} = \frac{b}{c}$. Multiplying these equalities, we get

 $\frac{a}{c} = \frac{b^2}{c^2}$; that is, $a:c::b^2:c^2$. Again, $\frac{a}{b} = \frac{b}{c}$; $\therefore \left(\frac{a}{b} - 1\right)$

 $= \left(\frac{b}{c} - 1\right); \quad \frac{a - b}{b} = \frac{b - c}{c}, \text{ and therefore } \frac{(a - b)^2}{b^2} = \frac{(b - c)^2}{c^2};$ that is, $(a - b)^2 : (b - c)^2 : : b^2 : c^2$. Hence we have $a : c : : (a - b)^2$

 $(b-c)^2$. 9. **Dem.**—AC : CB :: AD : DB (hyp.), ... AC - CB : AC

A O C B O T

+ CB:: AD - DB: AD + DB; that is, 2 OC: 2 OB:: 2 OB: 2 OD. Hence OC: OB:: OB: OD.

10. Dem.—Because CD is bisected in O', and produced to O, we have (II. vi.) $OD \cdot OC + O'C^2 = OO'^2$; but $OD \cdot OC = OB^2$ (Ex. 9); $\cdots OB^2 + O'C^2 = OO'^2$; that is, $OO'^2 = OB^2 + O'D^2$.

11. **Dem.**—AC : CB :: AD : DB (hyp.), ... AC : AB – AC :: AD : AD – AB, ... $\frac{AC}{AB - AC} = \frac{AD}{AD - AB}$, ... AC (AD – AB) = AD (AB – AC); ... AC.AD – AC.AB = AD.AB – AD.AC.

A (: ''

Transposing, we get 2 AC.AD = AB (AC + AD). Divide by AB.AC.AD, and we have $\frac{2}{\text{AB}} = \frac{1}{\text{AD}} + \frac{1}{\text{AC}}$.

- 12. Dem.—BD : BC :: AD : AC (hyp.). Working, as in Ex. 11, we get $\frac{2}{CD} = \frac{1}{BD} + \frac{1}{AD}$.
- 13. **Dem.**—AC: CB:: AD: BD (hyp.), ∴ AC. BD = CB. AD, ∴ AC. BD + CB. AD = 2 CB. AD. Again, AB. CD = (AC + CB) (CB + BD) = AC. BD + AC. CB + CB² + CB. BD = AC. BD + CB (AC + CB + BD) = AC. BD + CB. AD = 2 CB. AD.

BOOK VI.

PROPOSITION II.

1. Let AE, BF be two lines cut by the parallels AB, CD, EF.. It is required to prove that AC: CE:: BD: DF.

Dem.—Join BE, cutting CD in G. Now in the \triangle AEB we have AC: CE::BG:GE (II.); and in the \triangle BEF, BG:GE::BD:DF. Hence AC:CE::BD:DF.

PROPOSITION III.

- 2. (1) **Dem.**—Through C draw CF || to AD. Now (I. xxix.) the \angle EAD = EFC, and the \angle DAC = ACF; but EAD = DAC (hyp.); \therefore AFC = ACF; \therefore AC = AF. Now (II.) BA: AF: \therefore BD: DC; that is, BA: AC:: BD: DC.
- (2) **Dem.**—Produce AB through A, cut off AE = AC, and join DE. Now (I. iv.) the \triangle ⁸ EAD, CAD are congruent; ... DE = DC, and the \angle ADE = ADC; hence BD: DE:: BA: AE; that is, BD: DC:: BA: AC.
- 3. Let AB be the base, ACB the vertical \angle , CO, CO' the internal and external bisectors. It is required to prove that AB is divided harmonically in O and O'.

Dem.—In the \triangle ACB, AO: OB:: AC: CB (III.); and in the same \triangle , AO:: O'B:: AC: CB (Ex. 1); ... AO: OB:: AO': O'B. Hence AB is divided harmonically in O and O'.

- 4. This is the same as Ex. 3.
- 5. Let ACB be the right \angle , AB the line intersecting the sides CA, CB, and CD, CE any two lines making equal \angle with CA. Produce BA to meet CD. It is required to prove that AB is cut harmonically in E and D.

Dem.—Produce DC to F. Now in the △ DCE, DA: AE: DC: CE (III.). Again, since the ∠ ACB is right, the ∠ DCA, BCF are together equal to a right ∠; but DCA = ACE; ∴ ECB = BCF; ∴ BC is the bisector of the external ∠ ECF;

hence (Ex. 1) DC: CE:: DB: BE; ... DA: AE:: DB: BE. Hence AB is cut harmonically in E and D.

6. Let AB be the base, AC and CB the sides.

Sol.—Bisect the \angle ACB by CD. Produce AC to F, and bisect the \angle BCF by CE, meeting AB produced in E.

Now AD: DB:: AC: CB (III.); but the ratio AC: CB is given (hyp.); ... the ratio AD: DB is given; ... D is a given point. Again, AC: CB:: AE: EB (Ex. 1); ... the ratio AE: EB is given, and AB is given; hence the point E is given. And

because the \angle ACD = BCD, and FCE = BCE, the \angle DCE is right; hence the \bigcirc on DE as diameter will pass through C; and because the points D, E are given, it will be a given \bigcirc . It divides the base in the points D, E harmonically, in the ratio of AC: CB, and is the locus of the vertex. It is called the "Apollonian locus."

7. Dem.—b:c::CD:DB (III.); ... b+c:c::CD+DB2. DB; but CD + DB = CB = a; ... b+c:c::a:DB; ... (b+c)DB = ac; hence $DB = \frac{ac}{b+c}$. Similarly, $D'B = \frac{ac}{b-c}$. Adding, we get $DD' = \frac{ac}{b+c} + \frac{ac}{b-c} = \frac{2abc}{b^2-c^2}$. 8. (1) Dem.—In the last Exercise we got $DD' = \frac{2^2abc}{b^2-c^2}$. $DD' = \frac{b^2-c^2}{2abc}$. Similarly, $\frac{1}{EE'} = \frac{c^2-a^2}{2abc}$, and $\frac{1}{FF'} = \frac{a^2-b^2}{2abc}$. Adding, we get $\frac{1}{DD'} + \frac{1}{EE'} + \frac{1}{FF'} = 0$.

(2) Dem.—From (1) we have

$$\frac{1}{DD'} = \frac{b^2 - c^2}{2 abc}, \ \ \cdot \bullet \ \ \frac{a^2}{DD'} = \frac{a^2 b^2 - c^2 a^2}{2 abc} \bullet$$

Similarly,

$$rac{b^2}{{
m EE'}} = rac{b^2c^2 - a^2b^2}{2\,abc}$$
, and $rac{c^2}{{
m FF'}} = rac{c^2a^2 - b^2c^2}{2\,abc}$.

Adding, we have

$$\frac{a^2}{\overline{\mathrm{DD'}}} + \frac{b^2}{\overline{\mathrm{EE'}}} + \frac{c^2}{\overline{\mathrm{FF'}}} = 0.$$

PROPOSITION IV.

1. Dem.—Let O, O' be the centres. Join OA, O'A', and let fall \perp s OC, O'C' on AA'. From T let fall a \perp TD on AA'.

Now in the \triangle s ACO, ADT we have the \angle s ACO, ADT equal, and the \angle OAT is right (III. xvIII.), and is equal to the sum of the \angle s OAC, AOC. Reject OAC, and we have AOC = TAD;

.. the $\triangle \bullet$ OAC, ADT are equiangular; hence (iv.) OA: AC: AT: TD; alternation, OA: AT:: AC: TD. Similarly, O'A': A'T:: A'C': TD; but AC = A'C', since AB, A'B' are

equal, and (III. III.) are bisected in C, C'; hence the ratio of AC: TD is equal to the ratio of A'C': TD; ... AO: A'T: A'O': A'T; alternation, AO: A'O':: AT: A'T.

2. **Dem**.—As in the last exercise, let AB, A'B' be the chords, having a given ratio. The construction will be as before, and we will have the \triangle ^s ATD, ACO equiangular; then (iv.) AT: TD: AO: AC, and TD: TA':: C'A': A'O'. Multiply together, and we get AT: TA':: AO. C'A': AC. A'O'; hence

$$\frac{AT}{TA'} = \frac{AO}{A'O'} \cdot \frac{C'A'}{AC} = \frac{AO}{A'O'} \cdot \frac{A'B'}{AB}.$$

3. Let ABC be the O, and DE the line.

Sol.—From the centre O let fall a \perp OF on DE. Draw FG a tangent. In FO take FH = FG. H is the required point.

Dem.—Through H draw CD, meeting the ⊙ in B, C, and DE in D. From B, C let fall ⊥* BJ, CE on DE, and draw AD a tangent to the circle.

Now ("Sequel," Book III., Prop. xxi.) $DA^2 = DF^2 + FG^2$ = $DF^2 + FH^2 = DH^2$; but $DA^2 = CD \cdot DB$ (III. xxxvi.); ... $CD \cdot DB = DH^2$; ... CD : DH : DH : DB.

Again, CD: DH:: CE: HF (IV.), and DH: DB:: HF: BJ; $\cdot \cdot \cdot \cdot$ CE: HF:: HF: BJ; that is, CE: BJ = HF².

4. Let the given ratio be the ratio of AC: AG.

Sol.—Join BD, and produce GA to H, so that GH . AH = BD² (II. vi., Ex. 2). Place a chord BF in ADB = AH (IV. 1.). Join AF. AF is the required line.

Dem.—Join AD, and produce CD, BF to meet in J.

Now the \angle AFB is right (III. xxxI.), \therefore AFJ is right, and ACJ is right; hence ACFJ is a cyclic quadrilateral; hence JB • BF = AB · BC; but AB · BC = BD², that is = to GH · AH; \therefore JB · BF = GH · AH; but BF = AH (const.); \therefore JB = GH, and JF = AG.

Again, AC: CE:: JF: EF (iv.); alternation, AC: JF:: CE

EF; but JF = AG. Hence AC : AG : : CE : EF.

PROPOSITION X.

- 3. See "Sequel," Book VI., Prop. v., Sect. iii.
- 4. Let the sum of the squares of the lines be equal to the squares on AB, and their ratio that of m:n.

Sol.—On AB as diameter describe a \odot ABC. Divide AB in D, so that AD: DB:: m : n (Ex. 1). Bisect the arc ACB in C

Join CD, and produce it to meet the circumference in E. Join AE, BE. AE, BE are the required lines.

Dem.—AB² = AE² + BE², and (III. xxvII.) the \angle AEB is bisected; hence AE : EB :: AD : DB; but AD : DB :: m : n. Hence AE : EB :: m : n.

5. Let the difference of the squares of the lines be equal to AB^2 , and their ratio that of m:n.

Sol.—Divide AB internally and externally in C and D, in the ratio of m:n. On CD as diameter describe a semicircle. Let

O be its centre. Erect BE 1 to AD, and join AE. AE and BE are the required lines.

Dem.—Join OE, CE. Now (I. XLVII.) $AE^2 - BE^2 = AB^2$. And because AB is divided harmonically in C and D, and CD is bisected in O, OB, OC, OA are in geometrical progression (Book V., Ex. 9). Hence OA. OB = $OC^2 = OE^2$, ... the \angle AEO is right, ... the \angle OAE = BEO; but ECO = CEO (I. v.). Hence (I. XXXII.) the \angle AEC = CEB; ... (III.) AE: EB:: AC: CB; that is, :: m:n.

6. (1) Let AB be the base; m:n the ratio of the sides, and the rectangle X the area.

Sol.—Divide AB internally and externally in C and D, in the

ratio m: n (Ex. 1). On CD as diameter describe a \odot ; to AB apply a parallelogram AF, whose area is 2 X. Let its side EF cut the \odot in G. Join AG, BG. AGB is the \triangle required.

Dem.—AG: GB:: AC: CB (Dem. of Ex. 4), that is as m:n, and the parallelogram AF = 2 AGB; but AF = 2 X; AGB = X.

(2) Let AB be the base; m:n the ratio of the sides, and \mathbb{R}^2 the difference of the squares of the sides.

Sol.—Divide AB as in (1). On CD as diameter describe a \odot . Divide AB in F, so that $AF^2 - BF^2 = R^2$ ("Sequel," Book I.,

Prop. ix.). Erect $FE \perp$ to AD, cutting the \odot in E. Join AE, BE. AEB is the \triangle required.

Dem.—AE: EB:: AC: CB, that is as m:n, and AE² – EB² = AF² – FB² = R².

(3) Let AB be the base; m:n the ratio of the sides, and 2 \mathbb{R}^2 the sum of the squares of the sides.

Sol.—Divide AB as in (1), and on CD as diameter describe a ⊙ CDE. Bisect AB in F. Erect FG ⊥ to AD. From A inflect AG on FG, and equal to R. With F as centre, and FG as radius, describe a ⊙, cutting CDE in E. Join AE, BE. AEB is the △ required.

Dem.—Join FE. Now as in (1) AE: BE:: m:n, and FG = FE (const.); ... FG² = FE²; ... AF² + FG²; that is, AG² = AF² + FE², ... 2 AG², that is, 2 R² = 2 AF² + 2 FE². Hence (II. x., Ex. 2) AE² + BE² = 2 R².

(4) Let AB be the base; m:n the ratio of the sides, and X the vertical \angle .

Sol.—Divide AB as in (1). On CD as diameter describe a \odot CDE; and on AB describe a \odot AEB, containing an $\angle = X$. Join AE, BE. AEB is the \triangle required.

Dem.—AE: BE:: m:n, and the vertical \angle AEB = X.

(5) Let X be the difference of the base angles.

Sol.—Divide AB as in (1), and on CD describe a \bigcirc CDF. Erect CE \perp to AD; and at C, in the line CE, make the \angle ECF $= \frac{1}{2}$ X. Join AF, BF. AFB is the \triangle required.

Dem.—AF: BF:: m:n; and the difference between the $\angle ACF$, BCF is equal to $\angle BCF = X$; but ACF = CBF + CFB, and BCF = CAF + CFA, and CFA = CFB. Hence CBF - CAF = ACF - BCF = X.

PROPOSITION XI.

- 1. **Dem.**—Join OB, B'C, &c. Now in the \triangle ⁸ OAB, BB'C, we have OA: AB:: B'B: BC, and the right \triangle OAB = B'BC; hence (vi.) the \triangle ⁸ are equiangular, ... the \triangle ABO = BCB'; hence OB, B'C are parallel. Similarly B'C, C'D are parallel. Now, since the lines AO, BB', CC' are parallel, we have (ii., Ex. 1) OB': B'C': AB: BC; and because OB, B'C, C'D are parallel, OB': BC: BC: CD; hence AB: BC:: BC: CD. In like manner BC: CD:: CD: DE. Hence AB, BC, CD, &c., are in continued proportion.
- 2. **Dem.**—Because B'M is \parallel to A Ω , the \triangle s OMB', OA Ω are equiangular; ... OM: MB'::OA:A Ω ; but OM = OA AM = AB BB' = AB BC, and MB' = AB, and OA = AB. Hence AB BC:AB::AB:A Ω .

PROPOSITION XIII.

- 1. (Diagram to Prop. viii.).
- Sol.—Let AB, BD be the two lines. On AB describe a semicircle. At D erect DC \perp to AB, and meeting the semicircle in C. Join BC. BC is a mean proportional between AB, BD.
- Dem.—Join AC. Now the \angle ^s ABC, BCD are equiangular (viii.), ... AB: BC:: BC: BD. Hence BC is a mean proportional between AB and BD.
- 2. Sol.—Let O be any point taken within a \odot ABC; O' the centre. Join OO', and produce both ways to meet the circumference in A, B. Through O draw CD \perp to AB. CD is bisected in O (III. III.). Through O draw any other chord FE. OC is a mean proportional between OF and OE.
- **Dem.**—Join CF, DE. Now, because the \triangle ^s OCF, OED are equiangular (III. xxi.), we have (iv.) OF: OC:: OD: OE; but OD = OC; ... OF: OC:: OC: OE. Hence OC is a mean proportional between OF and OE.
- 3. Let ABC be a \odot , O any external point. From B draw a secant BO, and from O draw OC a tangent to the \odot . It is

required to prove that OC is a mean proportional between OB and OA.

Dem.—Join AC, BC. Now in the \triangle ⁸ OAC, OBC, we have the \angle OCA = OBC (III. xxxII.), and the \angle BOC common; hence the \triangle ⁸ are equiangular, \therefore BO: OC::OC: OA. Hence OC is a mean proportional between OB and OA.

- 4. **Dem.**—Let AB be the chord of the arc. Join AE, AC, CB. Now because the arc AC = BC, the \angle CAB = CBA; but CBA = AEC (III. xxi.); ... AEC = CAD, and the \angle ACD is common; ... the \triangle s ACE, ACD are equiangular; ... EC: AC: AC: CD. Hence AC is a mean proportional between CE and CD.
- 5. Let ACB be a \odot whose diameter is AB; FG, HJ two parallel chords; CDE a \odot touching ACB internally in C; and

FG, HJ in D, E. From O, the centre of CDE, let fall a \perp OK on AB. It is required to prove that OK is a mean proportional between AG and JB.

Dem.—Join OD, OE, CD, CE. CD, CE produced must

pass through A, B (III., Ex. 51). Now (III. xVIII.) the \angle ODG is right, and DGB is right; ... OD is \parallel to AB. Similarly OE is \parallel to AB; ... OD, OE are in the same straight line. Again, since the \angle AGD is right, the \angle ⁸ GAD, GDA are equal to a right \angle ; and because ACB is right (III. xxxI.), the \angle ⁸ CAB, CBA are equal to a right \angle ; hence the \angle GDA = JBE, and the \angle DGA = EJB; ... the \triangle ⁸ ADG, JEB are equiangular; hence AG: GD:: EJ: JB; but GD and EJ are each equal to OK; ... AG: OK:: OK: JB. Hence OK is a mean proportional between AG and JB.

6. Let ADB be a semicircle whose diameter is AB; CEF a ⊙ touching ADB in E and AB in C. Through O, its centre, draw

the diameter CF, and produce it to meet ADB in D. It is required to prove that CF is a harmonic mean between AC and CB.

Dem.—AB. $r = \text{CD}^2$ ("Sequel," III., Prop. v.); but AC. CB = CD², ... AB. r = AC.CB, ... $r = \frac{\text{AC.CB}}{\text{AC+CB}}$; ... $2r = \frac{2 \text{ AC.CB}}{\text{AC+CB}}$. Hence (V., Miscellaneous, Ex. 11.) 2r, that is CF, is a harmonic mean between AC and CB.

7. Let ACB be a \odot whose diameter is AB; FG, HJ, two parallel chords meeting the \odot in F, H, and the diameter in G, J. Describe a \odot CDE touching ACB externally in C, and GF, JH produced in D, E. From O, its centre, let fall a \bot OK on AB. It is required to prove that OK is a mean proportional between AJ and GB.

The proof is the same as in Ex. 5.

PROPOSITION XVII.

- 2. **Dem.**—Describe a ⊙ about the △. Produce AC to G, and bisect the external ∠ BCG by CD', meeting AB produced in D'. Produce D'C to meet the ⊙ in F, and join AF. Now the ∠ BCD' = GCD', and GCD' = FCA, ∴ BCD' = FCA; and since the ∠ * CBD', CBA are together equal to two right ∠ *, and the ∠ * CFA, CBA are equal to two right ∠ *, the ∠ CBD' = CFA; ∴ the △ * AFC, BCD' are equiangular; ∴ AC: CF: D'C: CB (iv.); hence AC. CB = D'C. CF. Again AD'. D'B = FD'. D'C; but FD'. D'C = FC. CD' + CD'² (II. 111.) = AC. CB + CD'². Hence AD'. D'B' CD'² = AC. CB.
- 4. Dem.—Let O' be the centre of the escribed ⊙, touching AB externally, and the other sides produced. Join O'C, cutting the circumscribed ⊙ in E. Through E draw EF, the diameter of the circumscribed ⊙. Join O'B, EB, FB, O'G, G being the point where CB produced touches the escribed ⊙.

Now the \angle s O'GC, EBF are equal, each being right, and the \angle O'CG = EFB (III. xxi.); ... the \triangle s O'CG, BFE are equiangular; hence (iv.) FE: EB:: O'C: O'G, and EB = EO' (Dem. of iv., Ex. 19); hence FE: EO':: O'C: O'G, ... FE. O'G = EO'. O'C; that is, the rectangle contained by the diameter of the circumscribed \bigcirc , and the radius of the escribed \bigcirc , is equal to the rectangle contained by the segments of any chord of the circumscribed \bigcirc passing through the centre of the escribed \bigcirc .

- 7. Dem.—Produce AD to meet the circumference in G; then (Ex. 6) we have AB. AE + AC. AF = AG. AD; but AG. AD = GD. DA + DA² (II. III.), and GD. DA = BD. DC (III. xxxv.). Hence AB. AE + AC. AF = BD. DC + DA².
- 9. Dem.—Let ABC be the \triangle , and FGG'F' the inscribed square. From B let fall a \perp BD on AC, cutting the side FG of the square in E.

Now AC: FG:: AB: FB (iv.); but AB: FB:: BD: BE (iv.); ... AC: FG:: BD: BE. Hence, putting b for base, p for

 \perp , and s for side of square, we have b:s::p:p-s; ... bp-bs=sp. Hence bp=(b+p)s.

10. Dem.—Let ABC be the \triangle , and FGF'G' the escribed

square. From B let fall a \perp BD on AC, and produce it to meet FG in E.

Now AC: FG:: AB: BF (iv.); but AB: BF:: BD: BE (iv.); ... AC: FG:: BD: BE; that is, putting s' for the side of the square, b:s'::p:s'-p. Hence bs'-bp=s'p; ... bp=s'(b-p).

11. From P let fall a \perp PC on the chord AB, and from A, B let fall \perp ^s AD, BE on DE, the tangent at P. It is required to prove that $CP^2 = AD$. BE.

Dem.—Join AP, BP. Now in the \triangle ^s APD, BPC, the \angle APD = BPC (III. xxxII.), and the \angle ADP = BCP, \therefore the \triangle ^s are equiangular; hence (iv.) AP : AD :: BP : PC; alternation, AP : BP :: AD : PC. In like manner for the \triangle ^s APC, BPE,

we have AP: BP:: PC: BE, ... AD: PC:: PC: BE. Hence CP² = AD . BE.

12. Dem.—In the △s AOD, BOC, the ∠ AOD = BOC, and the ∠ OAD = OBC (III. xxi.); hence (iv.) AD: AO:: BC: BO; alternation, AD: BC:: AO: BO. Multiplying each by AB, we get AD. AB: AB. BC:: AO: BO. Similarly AB. BC: BC. CD:: BO: CO, &c. Hence the four rectangles are proportional to the four lines.

14. Dem.—Draw the diagonals AC, BD. Make the ABO

= DBC, and BAO = BDC. Join OC.

Now the \triangle^s ABO, DBC are equiangular, \therefore AB: AO:: BD: DC, \therefore AB. CD=AO. BD. Again, since AB: BO:: BD: BC; alternation, AB: BD:: BO: BC; and since the \angle ABO=DBC, the \angle ABD=OBC; hence (iv.) the \triangle^s ABD, OBC are equiangular; \therefore (iv.) AD: BD:: OC: BC; hence AD. BC=BD. OC. Now we have proved AB. CD=AO. BD, AD. BC=OC. BD, and AC. BD=AC. BD; hence the three rectangles are proportional to the sides AO, OC, AC of the \triangle AOC; and since the \triangle^s AOB, CDB have been shown to be equiangular, the \angle AOB=BCD; and because the \triangle^s BOC, ABD are equiangular, the \angle COB=BAD. Hence the \angle AOC is equal to the sum of the \angle^s BAD, BCD.

15. Let ABCD be a cyclic quadrilateral; AC, BD its diagonals. At P, any point in the circumference of the circumscribed \odot , draw a tangent to the \odot , and let fall \bot * PE, PF, PG, PL on AB, BD, AC, CD. It is required to prove that PF . PG = PE . PL.

Dem.—From A, B, C, D let fall \perp ⁸ AH, BI, CJ, DK on the tangent at P. Now PF² = BI . DK (Ex. 11), and PG² = AH . CJ; ... PF² . PG² = BI . DK . AH . CJ. In like manner PE² . PL² = BI . AH . DK . CJ; ... PF² . PG² = PE² . PL². Hence PF . PG = PE . PL.

16. **Dem.**—The \angle APB is right (III. xxxx.); ... DPE is right, and equal to ECB, and PED = CEB, ... PDE = CBE. Now since PDE = CBE, and ACD = ECB, the \triangle ⁸ ADC, EBC

are equiangular; hence AC : CD :: CE : CB (iv.), ... AC ... CB = CD ... CE; but $AC ... CB = CF^2$ (xvii.); ... $CD ... CE = CF^2$. Hence CF is a mean proportional between CD and CE.

PROPOSITION XIX.

- 1. Let ABC, DEF be the two \triangle^8 . Now AB = $\frac{3}{2}$ DE (hyp.), \therefore AB: DE:: 3:2; \therefore AB²: DE²:: 9:4; but ABC: DEF:: AB²: DE² (xix.) Hence the \triangle ABC: DEF:: 9:4.
- 2. Let AB be a side of the inscribed polygon, O the centre of the \odot . Join OA, OB, and bisect the \angle AOB by OP', meeting AB in P. Through P' draw a tangent to the \odot , and produce OA, OB to meet it; then evidently A'B' is a side of the circumscribed polygon.

Now, if each of the polygons have n sides, and we denote their areas by π and π' , we have the \triangle AOB = $\frac{\pi}{n}$, and A'OB' = $\frac{\pi'}{n}$; hence AOB: A'OB':: π : π' ; but (xix.) AOB: A'OB':: AO²

: A'O²; that is, :: OP²: OP'² (IV.), or:: OP²: OA²; hence π : π' :: OP²: OA²; ... $\pi' - \pi$: π :: AP²: OA²; that is, as 4 AP²: 4 OA²; that is, as AB² is to the square of the diameter; but π is less than the square of the diameter (IV., Ex. 37). Hence $\pi' - \pi$ is less than AB².

PROPOSITION XX.

4. Dem.—Let AB, BC, CA be three given lines in the form of a \triangle . Inscribe in ABC a \triangle A'B'C' similar to the \triangle FDE. About the \triangle s A'BC', A'B'C describe \bigcirc s intersecting in \bigcirc ; then

the \bigcirc about AB'C' will pass through O (III., Ex. 28). Join OA', OB, OC, OB', OC', AA'. Now (III. xxi.) the \angle BOA' = BC'A', and COA' = CB'A'; ... the \angle BOC is equal to the sum of the \angle BC'A', CB'A'; but BC'A' = BAA' + AA'C', and CB'A' = CAA' + AA'B'; ... the \angle BOC = C'AB' + C'A'B'; but C'A'B' = FDE; hence BOC = C'AB' + FDE; but the \angle FDE is given, and C'AB' is given; ... the \angle BOC is given, and the base BC is given;

hence the \odot described about the \triangle BOC is given in position. Similarly, the \odot ⁸ about the \triangle ⁸ AOB, AOC are given in position; hence O is a given point. Hence, if we inscribe another \triangle A"B"C" similar to FDE in ABC, the \odot ⁸ described about the \triangle ⁸ A"BC", B"CA", C"AB" will co-intersect in O, and if we join the angular points to O, the \angle ⁸ OC"A", OA"C" will be equal to the \angle ⁸ OBA', OBC'; that is, equal to the \angle ⁸ OC'A', OA'C; hence the \triangle ⁸ OC'A', OC"A" are equiangular, and therefore (Ex. 2) O is the centre of similitude of the \triangle ⁸ A'B'C', A"B"C".

5. Let ABCDE, A'B'C'D'E' be two similar figures, having the sides AB, BC parallel to the sides A'B', B'C'. It is required to prove that the other homologous sides are parallel.

Dem.—Join AA', BB', and produce them to meet in F. Now the \angle BAF = B'A'F (I. xxix.); but since the figures are similar, the \angle BAE = B'A'E'; hence the \angle FAE = FA'E', and therefore

the line AE is parallel to A'E'. Similarly, it can be shown that the other homologous sides are parallel.

6. Let ABC, DEF be the homothetic figures. Join BE, AD,

and produce them to meet in G. Join CF. It is required to prove that CF produced will pass through G.

Dem.—If not, let it pass through H. Produce AG to H.

Now the \angle GED = GBA (I. xxix.), and the \angle GDE.= GAB; hence (iv.) AG: AB:: DG: DE; but AB: AC:: DE: DF; \therefore AG: AC:: DG: DF; alternation, AG: DG:: AC: DF.

Again, since the △^s HAC, HDF are equiangular, we have AH: AC:: DH: DF; alternation, AH: DH:: AC: DF; ∴ AH: DH:: AG: DG; hence (V. xvII.) AD: DH:: AD: DG; and therefore DH = DG, which is absurd. Hence CF produced must pass through G.

7. Dem.—Let ABC, DEF be the two similar figures; O their centre of similitude. Join OA, OB, OC, OD, OE, OF. From OA, OB, OC cut off OD', OE', OF' equal respectively to OD, OE, OF, and join D'E', D'F', E'F'. Now since OD' = OD, OE' = OE, and the \(\alpha \) D'OE' = DOE (hyp.), \(\cdots \) DE = D'E',

and the \angle OED = OE'D'; but OED = OBA (hyp.); ... OE'D' = OBA; ... D'E' and AB are parallel. Similarly, D'F is \parallel to AC and equal to DF, and E'F is equal to EF and \parallel to BC; hence the figure DEF may be turned round O so as to take up the position D'E'F'. In like manner the figure may be turned round in the opposite direction, as in the second diagram.

10. Dem.—Let O, O' be the centres of the ⊙⁸, and A one of their centres of similitude. Join OO', and from A draw AB, AC, AD, AE tangents to the ⊙⁸. Join OA, OB, O'A, O'D.

Now since A is a centre of similitude, the \angle BAC = DAE; therefore their halves are equal; that is, the \angle BAO = DAO',

and the right \angle * ABO, ADO' are equal; ... the \triangle * ABO, ADO' are equiangular; hence AO: OB:: AO': O'D; alternation, AO: AO':: OB: O'D; but the ratio OB: O'D is given, since

OB and O'D are given lines; hence the ratio AO : A'O is given. Now in the \triangle OAO' we have the base OO' given, and the ratio of the sides. Therefore (III., Ex. 6) the locus of A is a circle.

PROPOSITION XXI.

1. Dem.—Let AA', BB', CC' be corresponding sides of the similar rectilineal figures; then since the figures are homothetic,

these sides are parallel. Join BA, B'A', and produce to meet in γ ; then because AA', BB' are corresponding sides of the

homothetic figures, γ will be their centre of similitude. In like manner, if we join BC, B'C', and produce to meet in α ; AC, A'C' to meet in β ; α and β will be centres of similitude.

Now (IV.) $\frac{B\gamma}{\gamma A} = \frac{BB'}{AA'}$. Similarly, $\frac{C\alpha}{\alpha B} = \frac{CC'}{BB'}$, and $\frac{A\beta}{\beta C} = \frac{AA'}{CC'}$; but the product of $\frac{BB'}{AA'}$, $\frac{CC'}{BB'}$, $\frac{AA'}{CC'}$ is unity; ... the product of $\frac{B\gamma}{\gamma A}$, $\frac{C\alpha}{\alpha B'}$, $\frac{A\beta}{\beta C}$ is unity. And hence ("Sequel," Book VI., Prop. IV., Cor. 1, p. 69), the points α , β , γ are collinear.

PROPOSITION XXIII.

- 1. **Dem**.—Let ABC, DEF be the △* having the ∠ ABC = DEF. Complete the parallelograms ABCG, DEFH. Now the △ ABC: DEF:: ABCG: DEFH; but ABCG: DEFH:: AB.BC: DE.EF(xx111.). Hence ABC: DEF:: AB.BC: DE.EF.
- 2. Let ABCD, EFGH be two quadrilaterals whose diagonals AC, BD; EG, FH intersect in I, J, making the ∠CIB = GJF. It is required to prove that ABCD: EFGH:: AC.BD: EG.FH.

Dem.—The area of ABCD is equal to the area of a \triangle having two sides equal to AC, BD, and the contained \angle equal to CIB (I. xxxiv., Ex. 7); and EFGH is equal to a \triangle having two sides equal to EG, FH, and the contained \angle equal to GJF; but (Ex. 1) those \triangle ^s are to one another as AC.BD: EG.FH. Hence ABCD: EFGH: AC.BD: EG.FH.

PROPOSITION XXX.

1. Let ABC be a right-angled \triangle whose sides are in continued proportion; that is, having AB: BC:: BC: CA. From C let fall a \bot CD on AB. It is required to prove that AB is divided in extreme and mean ratio in D.

Dem.—Because AB: BC:: BC: CA, AB.AC = BC². Again (I. XLVII., Ex. 1), AB.BD = BC²; ... AC = BD, and AB.AD = AC²; ... AB.AD = BD². Hence AB is divided in extreme and mean ratio in D.

- 2. See Demonstration of last Exercise.
- 3. Join FD, and describe a \odot about the \triangle FHD. Let 0 be its centre. Join DO, and produce it to meet the circumference in I. It is required to prove that DI² = 6 FD².

Dem.—Join IF. Produce FH, and let fall a \perp DJ on it.

Now since AG is a square, AF = AH; ... the \angle AHF = AFH, and FAH is a right \angle ; ... AHF is half a right \angle ; ... BHL is half a right \angle , and HBL is a right \angle ; ... HLB is half a right \angle , and BH = BL, and the \angle DLJ = BHL; ... DLJ is half a right \angle , and DJL is a right \angle ; ... JDL is half a right \angle ; and JL = JD; ... JL² = JD², and DL² = 2DJ².

Again, since AB = DB, and BH = BL, ... DL = AH; but AB is divided in extreme and mean ratio in H, ... BD is divided in extreme and mean ratio in L; and hence (II. x1., Ex. 4) $BD^2 + BL^2 = 3DL^2 = 6DJ^2$; hence $BD^2 + BH^2$; that is, $DH^2 = 6DJ^2$. Again (III. xx11.), the L^6 FHD, FID are together equal to two right L^8 , and the L^8 FHD, DHJ are equal to two right L^8 ; ... the L^8 FHD, and the right L^8 IFD = HJD; ... the L^8 IFD, DHJ are equiangular; ... ID : DF :: DH: DJ; ... L^8 ID : L^8 ID : L

PROPOSITION XXXI.

1. Dem.—Let ABC be the semicircle, of which AB, CB are supplemental chords. On AB, CB describe semicircles ADB, BEC. Now (xxxi.) the semicircle ABC is equal to the sum of

the semicircles ADB, BEC. Take away the common segments AFB, BGC, and we have the \triangle ABC equal to the sum of the crescents ADBF, BECG.

Exercises on Book VI.

1. Let ACB be a fixed \triangle , DE a parallel to AB. Draw the diagonals AE, BD, intersecting in O. Join CO, and produce it to meet AB in H. It is required to prove that CH bisects AB.

Dem.—Through O draw FG parallel to AB. Now (II.) AE: EO::BD: DO; but, by similar \triangle ⁵, AE: EO::AB: OG, and BD: DO:: AB: OF; hence AB: OG:: AB: OF, and therefore OG = OF. Now ACB is a \triangle ; and FG, a parallel to the base, is bisected by CO. Hence AB is bisected by CO.

2. Let O be the centre of the O, and P the given point.

From P draw PA to any point A in the \odot . Divide AP at B in a given ratio. It is required to find the locus of B.

Sol.—Join OP, OA, and draw BC || to AO.

Now PB: BA:: PC: CO (n.); but the ratio PB: BA is given; \therefore PC: CO is given, and therefore C is a given point. Again, by similar \triangle , we have PA: AO:: PB: BC; alternation, PA: PB:: AO: BC; but the ratio PA: PB is given, \therefore AO: BC is given; but AO is given; \therefore BC is given, and the point C is given. Hence the locus of B is a \bigcirc , having C as centre and BC as radius.

3. Dem.—Through B, C draw BE, CD | to XY.

Now, by similar \triangle s, AC: AD:: CB: CE; alternation, AC: CB:: AD: CE, ... AD: CE:: m:n; but AD = AA' - A'D = AA' - CC', and CE = CC' - C'E = CC' - BB; hence AA' - CC': CC' - BB':: m:n; ... n AA' - n CC' = m CC' - m BB'; and hence m BB' + n AA' = (m+n) CC'.

- 4. See "Sequel," Book VI., Prop. II., Section 1.
- 5. See "Sequel," Book VI., Prop. iv., Section 1.
- 6. Dem.—Let the rectangle AB . AC = k^2 . Produce AB to

meet the circumference in D. Now, if t denote the tangent drawn rom A to the \odot (III. xxxvi.), AB. AD = t^2 ; ... AB. AD: AB. AC:: $t^2: k^2$; that is, AD: AC:: $t^2: k^2$; but the ratio $t^2: k^2$ is given, ... AD: AC in a given ratio, and hence (Ex. 2) he locus of C is a circle.

7. Dem.—Join O, the centre of the inscribed \odot , to the points F, G, H, where the sides AB, AC, BC touch the \odot . Join OC.

Now since AF = AG, BF = BH, and CG = CH, $\therefore AB - AC$ = BF - CG = BH - CH = 2 DH. Again, $AB^2 - AC^2 = BE^2$ $- EC^2$ (I. xlvii.); that is (AB + AC) (AB - AC) = (BE + EC) (BE - EC); $\therefore (AB + AC)$ $2 DH = BC \cdot 2 DE$; hence (AB + AC) : BC :: DE : DH. Again (III.) AB : AC :: BL : LC; $\therefore (AB + AC) : AC :: BC :: LC$; $\therefore (AB + AC) : BC :: AC :: LC$. Again, AC : LC :: AO : OL (III.); but AO : OL :: HE :: HL(II.), $\therefore AC :: LC :: HE :: HL$; hence (AB + AC) :: BC :: HE :: HL; that is, DE :: DH :: HE :: HL; and hence DE :: HL:: HE :: HD.

- 8. Dem.—Let O' be the centre of the escribed \odot , touching BC produced in K. Now (AB + AC): BC:: AC: LC (Ex. 7); that is, as AO: OL, ... (AB + AC + BC): BC:: AL:OL:: LE: LH; ... 2 BK: 2 BD:: LE: LH; hence LH. BK = BD. LE.
 - 9. See Book VI., Prop. xvII., Exs. 3, 4.
- 10. Dem.—From Ex. 9 we have $d^2 = R^2 2 Rr$; $d^2 = R^2 + 2 Rr'$; $d''^2 = R^2 + 2 Rr''$, and $d'''^2 = R^2 + 2 Rr'''$; $\therefore d^2 + d'^2 + d''^2 + d'''^2 = 4 R^2 + 2 R (r' + r'' + r''' r)$; but (Book III., Ex. 19) (r' + r'' + r''' r) = 4 R. Hence $d^2 + d'^2 + d''^2 + d'''^2 = 4 R^2 + 2 R \cdot 4 R = 12 R^2$.
 - 11. (1) Dem.—Let the sides of the \triangle be denoted by a, b, c.

Now (IV. iv., Ex. 9) $rs = \Delta$; $s = \frac{\Delta}{r}$. Again, $ap' = 2\Delta$

(II. 1., Cor. 1);
$$\therefore a = \frac{2\Delta}{p'}$$
. Similarly, $b = \frac{2\Delta}{p''}$, and $c = \frac{2\Delta}{p'''}$;

$$\therefore (a+b+c), \text{ or } 2s = \frac{2\Delta}{p'} + \frac{2\Delta}{p''} + \frac{2\Delta}{p'''}, \ \therefore s = \frac{\Delta}{p'} + \frac{\Delta}{p''} + \frac{\Delta}{p''};$$

$$\therefore \frac{\Delta}{r} = \frac{\Delta}{p'} + \frac{\Delta}{p''} + \frac{\Delta}{p'''}; \text{ and hence}$$

$$\frac{1}{r} = \frac{1}{p'} + \frac{1}{p'''} + \frac{1}{p''''}.$$

(2)
$$(s-a) \ r' = \Delta \ (IV. \ Iv., \ Ex. \ 10); \ \dots (s-a) = \frac{\Delta}{r'}.$$
 Again, from (1) we have $(b+c-a) = \frac{2\Delta}{p''} + \frac{2\Delta}{p'''} - \frac{2\Delta}{p'};$ but $(b+c-a)$

$$= 2 (s-a); \quad \therefore (s-a) = \frac{\Delta}{p''} + \frac{\Delta}{p'''} - \frac{\Delta}{p'}; \text{ that is, } \frac{\Delta}{r'} = \frac{\Delta}{p''} + \frac{\Delta}{p'''} - \frac{\Delta}{p'}.$$

$$-\frac{\Delta}{p'}. \quad \text{Hence } \frac{1}{r'} = \frac{1}{p''} + \frac{1}{p'''} - \frac{1}{p'}.$$

- (3) Subtract (2) from (1), and we get $\frac{2}{p'} = \frac{1}{r} \frac{1}{r'}$.
- (4) Interchange in (2), and we have $\frac{1}{p'''} + \frac{1}{p'} \frac{1}{p''} = \frac{1}{r''}$; inter-

ehange again, and $\frac{1}{p'} + \frac{1}{p''} - \frac{1}{p'''} = \frac{1}{r'''}$. Add, and we get $\frac{2}{p'} = \frac{1}{r''} + \frac{1}{r'''}$.

12. Let ABC be a given \triangle , and P a given point in one of the sides. It is required to inscribe in ABC a \triangle equiangular to DEF, and having one of its angular points at P.

Sol.—From P let fall a \perp PG on AB. Make the \angle PGH = EDF, and GPH = DEF. Erect HI \perp to PH, meeting BC in I; join PI, and make the \angle JPI = GPH, and join IJ. JPI is the \triangle required.

Dem. - Because the \angle GPH = JPI, ... GPJ = HPI, and the right

 \angle PGJ = PHI; hence the \triangle ^s PGJ, PHI are equiangular; ... GP: PJ:: HP: PI; alternation, GP: HP:: PJ: PI, and the \angle GPH = JPI; hence (vi.) the \triangle ^s GPH, JPI are equiangular; but GPH, DEF are equiangular. Hence JPI is equiangular to DEF, and it has one of its angles at the given point P.

13. Let ABC be a given \triangle , and D, E, F three fixed points in its sides. It is required to prove that the locus of any point O in its plane is a circle.

Dem.—Join OB, OC, DF, DE. Describe ⊙ about the ⊥ DBF, DCE, cutting OB, OC in G, H. Join GH. Now since

the points D, F are given, the line DF is given, and the \angle DBF is given (hyp.); hence the \bigcirc about DBF is given, and the \angle DBO is given by the given conditions; hence the arc DG is given, and therefore G is a given point. In like manner H is a given point; ... the line GH is given, and the \angle GOH is given. Hence the locus of O is a circle.

14. (1) Dem.—Let the point B move along DE. From A let fall a \perp AD on DE. Draw AF, making the \angle DAF = CAB.

From C draw CF \perp to AC, and let fall a \perp CG on AB. Now because the \angle CAG is given, and the \angle AGC is a right \angle , the \triangle ACG is given in species; therefore the ratio AC: CG is given;

hence the ratio AC.AB: CG.AB is given; but CG.AB is given, therefore AC.AB is given.

Again, since the \angle DAF = BAC, \therefore DAB = CAF, and the right \angle ADB = ACF; therefore the \triangle DAB, CAF are equiangular; hence AD: AB:: AC: AF, \therefore AB.AC = AD.AF; but AB.AC is given, \therefore AD.AF is given, and AD is given, \therefore AF is given; and since the \angle DAF is given, \therefore AF is given in position, and the \angle ACF is right. Hence the locus of C is a circle.

(2) Let the point B move along a \odot . Produce AB to meet the circumference in D. Let O be the centre. Join OA, OD. Make the \angle EAO = CAB, and ACE = ADO

Now (1) the rectangle AB.AC is given, and AB.AD is given (III. xxxvi.); therefore the ratio AB.AC: AB.AD is given; ... the ratio AC: AD is given. Again, since the Δ * ACE, ADO are equiangular; ... AC: AE:: AD: AO; alternation, AC: AD:: AE: AO; but the ratio AC: AD is given,

... the ratio AE : AO is given; and AO is given, since it is drawn from a fixed point to the centre of a fixed \odot ; ... AE is given in magnitude, and it is given in position, because it is drawn making a given \angle with a given line; hence the point E is given. And because the \triangle AOD, AEC are equiangular, AO : OD : AE : EC; but the ratio AO : OD is given; ... the ratio AE : EC is given, and AE is given; ... EC is given, and the point E has been shown to be given. Hence the locus of C is a \bigcirc , having E as centre and EC as radius.

15. (1) Let the vertex A remain fixed. Let the locus of B be a right line DB. It is required to find the locus of C.

Sol.—From A let fall a \perp AD on DB. Make the \angle DAG = CAB. Let fall CG \perp on AG, and join DG.

Now because the \angle CAB = DAG, the \angle CAG = DAB, and the right \angle CGA = BDA; hence the \triangle ^s CAG, DAB are equiangular; \therefore AC: AG: AB: AD; alternation, AC: AB:: AG: AD; but the ratio AC: AB is given, since the \triangle ABC is given in species; \therefore the ratio AG: AD is given, and AD is given in magnitude, because it is a \bot from a given point on a given line; \therefore AG is given in magnitude, and it is also given in position, since the \angle DAG is equal to a given \angle CAB; \therefore G is a fixed point, and CG is at right \angle ^s to a given line at a given point. Hence the locus of C is the line CG.

- (2) Let the point B move along a \odot ; let 0 be its centre. Join AO, BO, and draw AD, making the \angle DAO = CAB. Draw CD, making the \angle ACD = ABO. Now the \triangle ACD, ABO are equiangular; \therefore AC: AD: AB: AO; alternation, AO: AB: AD: AO; but the ratio AC: AB is given; \therefore the ratio AD: AO is given, and AO is given; \therefore AD is given. And since it makes the \angle DAO = CAB with a given line AO, \therefore AD is given in position; hence the point D is given. Again, in the \triangle AOB, ADC we have AO: OB: AD: DC; but the ratio AO: OB is given; \therefore the ratio AD: DC is given, and AD is given; \therefore DC is given, and the point D is given. Hence the locus of C is a \odot , having D as centre and DC as radius.
- 16. (1) Dem.—Bisect the sides BC, CA, AB in D, E, F. Join AD, BE, CF; let them intersect in O. Produce AD to G, so that DG = OD. Join BG. Draw EH \parallel to AG, and produce BG to meet it in H.

Now since BD = CD, the \triangle BDO = CDO, and the \triangle BDA = CDA; ... the \triangle BOA = COA. In like manner, COA = COB, ... the \triangle AOB, AOC, BOC are equal; ... AOB = $\frac{1}{3}$ ABC. And because OG = OA, the \triangle BOG = AOB; hence BOG = $\frac{1}{3}$ ABC. And since the \triangle ⁸ BOG, BEH are similar, BOG: BEH:: OB²: BE² (xix.); ... BOG: BEH:: 4:9; that is, $\frac{1}{3}$ ABC: BEH:: 4:9; hence 4 BEH = 3 ABC, ... ABC = $\frac{4}{3}$ BEH. Again, it is evident that the sides of the \triangle BEH are equal to the medians of ABC; hence, denoting the medians by α , β , γ , and their half sum by σ , we have (IV. iv., Ex. 12) the \triangle BEH

$$=\sqrt{\sigma\cdot\sigma-\alpha\cdot\sigma-\beta\cdot\sigma-\gamma}.$$

Hence the ABC is equal to

$$\frac{4}{3}\sqrt{\sigma \cdot \sigma - \alpha \cdot \sigma - \beta \cdot \sigma - \gamma}$$

(2) Dem.—Let Δ denote the area of the triangle; then (IV. IV., Ex. 4) $\Delta^2 = s \cdot s - a \cdot s - b \cdot s - c$; \therefore 16 $\Delta^2 = (a + b + c) (b + c - a) (c + a - b) (a + b - c).$

Again, denoting the \perp^a by p', p'', p''', we have $ap' = 2 \Delta$, $bp'' = 2 \Delta$, and $cp''' = 2 \Delta$; ... $(a + b + c) = \frac{2 \Delta}{p'} + \frac{2 \Delta}{p''} + \frac{2 \Delta}{p'''} + \frac{2 \Delta}{p'''} + \frac{2 \Delta}{p'''} + \frac{1}{p'''} + \frac{1}{p'''}$; and, substituting, we get $16 \Delta^2 = 2 \Delta \left\{ \frac{1}{p'} + \frac{1}{p''} + \frac{1}{p'''} + \frac{1}{p'''} \right\} 2 \Delta \left\{ \frac{1}{p''} + \frac{1}{p'''} - \frac{1}{p'} \right\}$

$$16 \Delta^{2} = 2 \Delta \left\{ \frac{1}{p'} + \frac{1}{p'''} + \frac{1}{p'''} \right\}^{2} \Delta \left\{ \frac{1}{p'} + \frac{1}{p'''} - \frac{1}{p''} \right\}$$

$$2 \Delta \left\{ \frac{1}{p'''} + \frac{1}{p'} - \frac{1}{p''} \right\} 2 \Delta \left\{ \frac{1}{p'} - \frac{1}{p'''} - \frac{1}{p'''} \right\};$$

hence

$$\begin{split} \frac{1}{\Delta^2} &= \left(\frac{1}{p'} + \frac{1}{p''} + \frac{1}{p'''}\right) \left(\frac{1}{p''} + \frac{1}{p'''} - \frac{1}{p'}\right) \\ &\left(\frac{1}{p'''} + \frac{1}{p'} - \frac{1}{p''}\right) \left(\frac{1}{p'} + \frac{1}{p''} - \frac{1}{p'''}\right) \;; \end{split}$$

and hence

$$\Delta = \frac{1}{\sqrt{\left(\frac{1}{p'} + \frac{1}{p'''} + \frac{1}{p'''}\right)\left(\frac{1}{p''} + \frac{1}{p'''} - \frac{1}{p'}\right)\left(\frac{1}{p'''} + \frac{1}{p'} - \frac{1}{p''}\right)\left(\frac{1}{p'} + \frac{1}{p''} - \frac{1}{p'''}\right)}}$$

17. Let the ⊙• ABC, DBE touch at B. Draw a common tangent AD. Join, AB, DB, and produce them to meet the ⊙• in E, C. Join DE, AC. DE, AC are the diameters of the ⊙• (III. xIII., Ex. 4).

Now the ∠ADC = AED (III. xxxII.), and the right ∠CAD = ADE; therefore the △•CAD, ADE are equiangular. Hence CA: AD:: AD: DE; that is, AD is a mean proportional between AC and DE.

18. Let CL, OM, FN be the three parallel lines. Take any point O in OM. Join AO, BO, and produce them to meet FN, CL in D, E. Join AB, cutting the ||* in L, M, N. Join CF, and produce it to meet AB produced in G. It is required to show that G is a given point.

Now in the \triangle AOB the line CFG cuts the three sides in C, F, G; hence ("Sequel," Book VI., Prop. iv., Sect. i.), $\frac{AC}{CO} \cdot \frac{OF}{FB} \cdot \frac{BG}{GA} = 1$; but $\frac{AC}{CO} = \frac{AL}{LM}$ (II.), and the ratio $\frac{AL}{LM}$ is

given; $\frac{AC}{CO}$ is given. In like manner, $\frac{OF}{FB}$ is given; $\frac{BG}{GA}$ is given. Hence the line AB is divided externally in G in a

given ratio; ... G is a given point. Hence CF passes through a fixed point. Similarly, DE passes through a fixed point.

19. Let a system of ⊙^s pass through two fixed points A, B. From A draw any two secants, cutting the ⊙^s in C, D, E; C', D', E'. It is required to prove that CD: DE:: C'D': D'E'.

Dem.—Join BC, BD, BE; BC', BD', BE'.

Now the \angle ACB = AC'B (III. xxi.); ... DCB = D'C'B, and CDB = C'D'B; ... the $\triangle \cdot$ CDB, C'D'B are equiangular; hence

CD: DB:: C'D': D'B. In like manner, the \triangle * DEB, D'E'B are equiangular, and BD: DE:: BD': D'E'. Hence ex aequali CD: DE:: C'D': D'E'.

20. Let ABC be a \triangle , the sides being denoted by a, b, c. It is required to find a point O in ABC, such that the diameters of the

 \bigcirc * about the \triangle ^s OAB, OBC, OCA may be in the ratios of three given lines l, m, n.

Sol.—Construct a \triangle EDF whose sides EF, DF, DE shall be in the ratios $\frac{a}{l}$, $\frac{b}{m}$, $\frac{c}{n}$. Produce ED to I, J. On CB describe a segment of a \bigcirc containing an $\angle = \text{IDF}$, and on AC a segment containing an $\angle = \text{JEF}$. O, where these segments intersect, is the required point.

Dem.—Join OA, OB, OC. Produce AO, and draw BG || to OC. From O let fall a \perp OH on BG. Draw CR, CT, the diameters of the \odot . Join BR, AT.

Now the sum of the \angle * AOC, GOC is two right \angle *, and the sum of FEJ, FED is two right \angle *; hence GOC = FED; but GOC = OGB (I.xxix.); ... OGB = FED. Again, the \angle * COB, GBO equal two right \angle *, and IDF, EDF equal two right \angle *; ... GBO = EDF. Hence the \triangle * OBG, DEF are equiangular.

Because the \angle s CTA, COA = two right \angle s (III. xxII.), and COA, COG equal two right \angle s, the \angle COG = CTA; \therefore OGH = CTA, and OHG = CAT, each being right; \therefore the \triangle s CAT, OGH are equiangular; \therefore $\frac{CT}{CA} = \frac{OG}{OH}$. Again, the

 \angle^s COB, OBG equal two right \angle^s , and COB, CRB equal two right \angle^s ; ... OBH = CRB, and the right \angle CBR = OHB; ... the \triangle^s CBR, OHB are equiangular; ... $\frac{CR}{CB} = \frac{OB}{OH}$ Hence $\frac{CT}{b} : \frac{CR}{a} :: OG : OB;$ but $OG : OB :: \frac{a}{l} : \frac{b}{m}$; ... $\frac{CT}{b} : \frac{CR}{a} :: \frac{a}{l} : \frac{b}{m}$; ... $\frac{CT}{b} : \frac{CR}{a}$... Hence CR : CT :: l : m. In like manner it can be shown that CT is to the diameter of the \bigcirc about OAB as m to n.

21. Sol.—Describe a ① about ABCD. Join CB, CD, BD. Divide BD at E in a given ratio, and join CE, AC.

Now the points A, C are given, \therefore AC is given in position, and AD is given in position; hence the \angle DAC is given; but (III. xxi.) DAC = DBC; \therefore DBC is a given \angle . In like manner, the \angle BDC is given, \therefore the \angle DCB is given; hence the \triangle DBC is given in species; \therefore DB: BC is given, and DB: BE is given (hyp.); \therefore BC: BE is given, and the \angle CBE is given. Hence the \triangle EBC is given in species. Now EBC is a \triangle of given form. One of its vertices, C, is fixed; another, B, moves along a line AB. Hence (Ex. 15) the locus of E is a straight line.

22. Dem.—Draw DF || to EB. Produce CF, AD to meet in H.

Now, because DF is \parallel to BG, we have DF : BG :: CF : CB; but DF = BF; \therefore BF : BG :: CF : CB.

Again, since the lines AC, BE, FD are parallel, we have (11., Ex. 1) BF: DE:: CF: AD; and, by similar \triangle *, DE: EG:: AD: AC; hence, ex aequali, BF: EG:: CF: AC; but AC

= CB; ... BF : EG :: CF : CB. But it has been proved that BF : BG :: CF : CB, therefore BG = EG.

Lemma.—Take any point O within a \triangle ABC. Join OA, OB, OC, and produce AO to meet BC in A'. It is required to prove that the \triangle OBC: ABC:: OA': AA'.

Dem.—From A, O let fall 1s AD, OE on BC.

Now the \triangle ABC = $\frac{1}{2}$ BC.AD, and the \triangle OBC = $\frac{1}{2}$ BC.OE; hence ABC : OBC :: AD : OE; but AD : OE :: AA' : OA; \triangle ABC : OBC :: AA' : OA'.

23. Dem.—The \triangle s OBC + OCA + OAB = ABC. Divide by ABC, and we have

$$\frac{OBC}{ABC} + \frac{OCA}{ABC} + \frac{OAB}{ABC} = 1$$
; but $\frac{OBC}{ABC} = \frac{OA'}{AA'}$ (Lemma);

and similarly for the others. Hence

$$\frac{OA'}{AA'} + \frac{OB'}{BB'} + \frac{OC'}{CC} = 1.$$

24. Dem.—AB : BC :: △ AOB : BOC (I.), and A'B' : B'C' :: △ A'OB : △ B'OC'; ∴ (Book V., Ex. 5)

$$\frac{AB}{A'B'}: \frac{BC}{B'C'}:: \frac{AOB}{A'OB'}: \frac{BOC}{B'OC'};$$

but (xxIII., Ex. 1),

$$\frac{\mathbf{AOB}}{\mathbf{A'OB'}}:\frac{\mathbf{BOC}}{\mathbf{B'OC'}}::\frac{\mathbf{AO.OB}}{\mathbf{A'O.OB'}}:\frac{\mathbf{OB.OC}}{\mathbf{OB'.OC'}};\; \cdot \cdot \cdot \frac{\mathbf{AB}}{\mathbf{A'B'}}:\frac{\mathbf{BC}}{\mathbf{B'C'}}$$

$$:: \frac{AO.OB}{A'O.OB'} : \frac{OB.OC}{OB'.OC'}; \cdot \cdot \cdot \frac{AB}{A'B'} : \frac{BC}{B'C'} :: \frac{AO}{A'O} : \frac{OC}{OC'}.$$

Hence

$$\frac{AB}{A'B'}.\frac{OC}{OC'} = \frac{BC}{B'C'}.\frac{OA}{OA}.$$

And similarly,

$$\frac{BC}{B'C'} \cdot \frac{OA'}{OA} = \frac{CA}{C'A'} \cdot \frac{OB}{OB'}.$$

25. (1) Dem.—Draw the diagonals AC, BD. Bisect them in \mathbf{F} , \mathbf{E} . Join FE, and produce both ways to meet AD, BC, and DC produced in H, G, I. Now, in the \triangle BDC, the line EI

cuts the three sides in E, G, I. Hence ("Sequel," Book VI. Prop. IV., Sect. i.)

$$\frac{\mathbf{BE}}{\mathbf{ED}} \cdot \frac{\mathbf{DI}}{\mathbf{IC}} \cdot \frac{\mathbf{CG}}{\mathbf{GB}} = 1;$$

but

$$\frac{BE}{ED} = 1, \ \cdots \ \frac{DI}{IC} \cdot \frac{CG}{GB} = 1; \ \cdots \ \frac{DI}{IC} = \frac{GB}{CG}.$$

In like manner, from the \triangle ADC, we get

$$\frac{\overline{DI}}{\overline{IC}} = \frac{\overline{HD}}{\overline{AH}}.$$

$$\frac{\overline{GB}}{\overline{CG}} = \frac{\overline{HD}}{\overline{AH}}.$$

Hence

(2) Dem.—Join O, the centre, to A, B, C, D. Join O to J, K,

where AD, BC touch the \odot . Now, since OK = OJ, we have (1.) the $\triangle \cdot OBC : OAD :: BC : AD$. Let fall $\bot \cdot BL$, DM on OG, OH; then (I. xxvi.) the $\triangle \cdot BEL$, DEM are equal; $\cdot \cdot \cdot BL$ = DM, and $\cdot \cdot \cdot$ the $\triangle \cdot OBG : OHD :: OG : OH$. In like manner OCG : OHA :: OG : OH. Adding, we have OBC : OAD :: OG : OH; but it was shown that OBC : OAD :: BC : AD. Hence BC : AD :: OG : OH.

(3) Dem.—Consider the \triangle ECI. It is intersected by AB; hence ("Sequel," Book VI., Prop. iv., Sect. i.)

$$\frac{EG}{GI} \cdot \frac{IB}{BC} \cdot \frac{CA}{AE} = 1; \text{ but } \frac{CA}{AE} = 2; \cdot \cdot \cdot \cdot \frac{EG}{GI} \cdot \frac{IB}{BC} = \frac{1}{2}.$$

Again, consider the AEK; it is intersected by CD;

$$\cdot \cdot \cdot \frac{EH}{HK} \cdot \frac{KD}{DA} \cdot \frac{AC}{CE} = 1;$$

and, as before,

$$\frac{EH}{HK} \cdot \frac{KD}{DA} = \frac{1}{2}; \cdot \cdot \cdot \frac{EG}{GI} \cdot \frac{IB}{BC} = \frac{EH}{HK} \cdot \frac{KD}{DA}.$$

Now AD, BC are opposite sides, and they are cut by EF in K, I; hence (1) they are cut proportionally;

$$\therefore \frac{CB}{IB} = \frac{AD}{DK}$$
, and $\therefore \frac{EG}{GI} = \frac{EH}{HK}$;

that is, EG: GI:: EH: HK; and the first is to the sum of the first and second as the third is to the sum of the third and fourth. Hence EG: EI:: EH: EK.

26. It is required to prove that AD . DB : AC . CB :: AD² : AC².

Dem.—AD. DB, AC. CB, are rectangular figures; and since AD: DB:: AC: CB (III.), these figures are similar; hence (xix.) AD. DB: AC. CB:: AD²: AC². In like manner AC. CB: AD².

(1) Dem.—If AD. DB, AC. CB, and AD'. D'B, are in A. P., the difference between AD. DB and AC. CB is equal to the difference between AC. CB and AD'. D'B; but AC. CB-AD. DB = CD² (xvii., Ex. 1), and AD'. D'B - AC. CB = CD'²; ... CD² = CD'², ... CD = CD', ... the ∠ CDD' = CD'D; but the ∠ DCD' is right; ... each of the ∠ CDD', CD'D is half a right ∠; hence the ∠ CDA is a right ∠ and a-half. Now the ∠ CDA = CBD + BCD, and CDB = CAD + ACD; hence CDA - CDB ≐ CBD - CAD! but the difference between CDA and CDB is a right ∠. Hence the difference between CBD and CAD is a right ∠.

- (2) Dem.—If the three rectangles be in G. P., the squares of the lines DB, BC, BD' are in G. P.; ∴ DB, BC, BD' are in G. P., ∴ BC is a mean proportional between DB and BD'; but the ⊥ is a mean proportional between the segments of the hypotenuse (VIII., Cor. 1). Hence BC is a ⊥, and hence the ∠ ABC is right.
- (3) Dem.—If the rectangles AD.DB, AC.CB, AD'.D'B are in H. P., the 1st: 3rd:: difference between 1st and 2nd: difference between 2nd and 3rd; but difference between 1st and 2nd = CD² (xvii., Ex. 1) and difference between 2nd and 3rd = CD'², ∴ AD.DB: AD'.D'B:: CD²: CD'²; but, by similar figures, AD.DB: AD'.D'B:: DB²: D'B²; hence CD²: CD'²:: DB²: D'B²; ∴ CD: CD':: DB: D'B, and ∴ (iii.) the ∠ DCD' is bisected, ∴ the ∠ DCB is half a right ∠; but the ∠ ACD = DCB; ∴ the ∠ ACB is right. Hence the sum of the ∠ CAB, CBA is a right ∠.
- 28. **Dem.**—Denote the radii of the $\bigcirc \bullet$ by ρ , ρ' ; then (VI. IV.) DC: D'C:: ρ : ρ , and A'C: BC:: ρ : ρ' , \cdots DC: D'C:: A'C: BC; \cdots DD': D'C:: A'B: BC. (V. xvII.) In like manner DD': D'C:: AB': B'C, \cdots DD'²: D'C²:: A'B. AB': BC. B'C; but D'C² = BC. B'C (III. xxxvI.). Hence DD'² = A'B. AB'.
- 29. **Dem.**—Because A'O is || to BO'', AO'': OO'':: AB: A'B (II.); that is, R: $(R \rho)$:: AB: A'B. Similarly, R: $(R \rho')$:: AB: AB'; ... R^2 : $(R \rho)$ $(R \rho')$:: AB²: A'B. AB'; but A'B. AB' = DD'² (III. xxxvi.). Hence R^2 : $(R \rho)$ $(R \rho')$:: AB²: DD'².
- 30. **Dem.**—Let A, B, C, D be the points in which the four \bigcirc touch the fifth. Join AB, BC, CD, DA, AC, BD, and denote the radii of the four \bigcirc by ρ_1 , ρ_2 , ρ_3 , ρ_4 , and the radius of the fifth by R; then putting $\overline{12^2}$ for DD'2, we have, from Ex. 29, $AB^2: \overline{12^2}:: R^2: (R-\rho_1)$ ($R-\rho_2$); hence

$$AB^2 = \frac{\overline{12}^2 \cdot R^2}{(R - \rho_1) (R - \rho_2)}; \cdot AB = \frac{\overline{12} \cdot R}{\sqrt{(R - \rho_1) (R - \rho_2)}}$$

Similarly,

$$CD = \frac{\overline{34} \cdot R}{\sqrt{(R - \rho_3) \ (R - \rho_4)}}, AD = \frac{\overline{14} \cdot R}{\sqrt{(R - \rho_1) \ (R - \rho_4)}},$$

and

$$BC = \frac{\overline{23} \cdot R}{\sqrt{(R - \rho_2)(R - \rho_3)}}.$$

Now, by Ptolemy's theorem (xvII., Ex. 13) AB.CD + BC.AD = AC.BD. Therefore

$$\begin{split} & \frac{\overline{12} \cdot \overline{34} \cdot R^2}{\sqrt{(R-\rho_1)(R-\rho_2)(R-\rho_3)(R-\rho_4)}} + \frac{\overline{23} \cdot \overline{14} \cdot R^2}{\sqrt{(R-\rho_2)(R-\rho_3)(R-\rho_1)(R-\rho_4)}} \\ & = \frac{\overline{13} \cdot \overline{24} \cdot R^2}{\sqrt{(R-\rho_1)(R-\rho_3)(R-\rho_2)(R-\rho_4)}} \, ; \end{split}$$

and hence

$$\overline{12}$$
. $\overline{34}$ + $\overline{23}$. $\overline{14}$ = $\overline{13}$. $\overline{24}$.

31. Dem.—Bisect the sides of the \triangle ABC in the points D, E, F. Inscribe a \bigcirc in ABC, touching the sides in G, H, I. Let the sides opposite the angular points be denoted by a, b, c.

Now if we consider the points D, E, F as infinitely small \bigcirc ⁵, DE, EF, FG are common tangents to the \bigcirc ⁵ 1, 2; 2, 3; 3, 1; hence we have $\overline{12} = DE = \frac{1}{2}AB = \frac{1}{2}c$. Similarly, $\overline{23} = \frac{1}{2}a$, $\overline{31} = \frac{1}{2}b$.

Let the inscribed \odot be denoted by 4. Now BD = $\frac{1}{2}$ BC = $\frac{1}{2}a$, and BG = (s-b) (IV. iv., Ex. 2); \therefore DG = $\frac{1}{2}a - (s-b)$ = $\frac{1}{2}(b-c)$; that is, $\overline{14} = \frac{1}{2}(b-c)$. In like manner, $\overline{24} = \frac{1}{2}(c-a)$, and $\overline{34} = \frac{1}{2}(a-b)$. Now if we substitute these values in the conditions of the last question, we find that it is fulfilled. Hence the

 \odot through the middle points of the sides of the \triangle touches the inscribed circle. Similarly, it touches the escribed circle.

32. Let A, B, C, D be the four points; join them, and join AC, BD. Bisect BC, BD, CD in E, F, G. Bisect AB, AD in H, I. Describe a \odot through the points E, F, G, and another \odot through H, I, F; let them intersect in J. It is required to prove that the \odot ^s through the middle points of the Δ ^s ABC, ADC will also pass through J.

Dem.—Bisect AC in K. Join KE, KH, EH, GE, EJ, JF, H, HI, IF, JK.

Now because CB, CD are bisected in E, G, EG is || to BD. Similarly, GF is || to BC; hence BEGF is a parallelogram; ... the \(\alpha\) FGE = FBE; but FGE = FJE (III. xxi.), ... FJE = FBE. Again, as before, HIFB is a parallelogram, ... the \(\alpha\) HIF = HBF; but HIF = HJF (III. xxi.);

... HJF = HBF; ... the whole \angle HJE = HBE; but HBE = HKE, since HKEB is evidently a parallelogram; ... HJE = HKE; hence the four points H, K, J, E are concyclic, and the \bigcirc through H, K, E will pass through J. Similarly, the \bigcirc through K, I, G will pass through J. Hence the four nine-points \bigcirc have a common point.

33. Dem.—From A let fall ⊥*AE, AF, AG on CD, DB, CB. Now because the ∠* AED, AFD are right, AEDF is a cyclic quadrilateral, and AD is the diameter of its circumcircle. Draw another diameter EH. Join EF, FH. About the △ BDC describe a ⊙. Draw its diameter BI, and join IC. Now (III. xxII.) the sum of the ∠* EHF, EDF is two right ∠*,

and the sum of EDB, CDB is two right $\angle \bullet$; hence the \angle EHF = CDB; but (III. xxi.) CDB = CIB; hence EHF = CIB, and the right \angle EFH = ICB; ... the $\triangle \circ$ EFH, ICB are equiangular; hence EH: EF:: IB: BC; ... EH. BC = EF. IB; that is, ac = EF. IB. Similarly, bd = FG.IB, and DD' = EG.IB. Hence EF, FG, EG are proportional to ac, bd, DD'.

34. OEDF is a four-sided figure; OD, EF its diagonals. If OF.DE + OE.DF = OD.EF, it is required to prove that OEDF is a cyclic quadrilateral.

Dem.—Produce OD, OE, OF to B, C, A until each of the rectangles OD.OB, OE.OC, OF.OA is equal to the square of a given line, say R². Join AB, BC, AC.

Now OD . OB = OE . OC; ... OB : OC : : OE : OD, and the \angle BOC is common to the two \triangle ⁸ OBC, OED; hence (vi.) they are equiangular, and BC: OB : : ED : OE; alternation, BC : ED :

OB: OE; ... BC: ED:: OB. OD: OE. OD; that is, BC: ED::

R²: OE. OD; hence $\frac{ED}{OE. OD} = \frac{BC}{R^2}$. In like manner, $\frac{DF}{OF. OD} = \frac{AB}{R^2}$, and $\frac{EF}{OE. OF} = \frac{AC}{R^2}$. Now (hyp.) ED. OF + DF. OE = OD.

EF; ... $\frac{ED}{OE. OD} + \frac{DF}{OD. OF} = \frac{EF}{OE. OF}$; that is, $\frac{BC}{R^2} + \frac{AB}{R^2} = \frac{AC}{R^2}$; ... BC + AB = AC; but this could not be true unless AB

and BC are in one straight line; ... ABC is a straight line; ... the sum of the $\angle \cdot$ ABO, CBO is two right $\angle \cdot$; but ABO = DFO, and CBO = DEO; ... DFO + DEO = to two right $\angle \cdot$. And hence OEDF is a cyclic quadrilateral.

Lemma.—If C be the external centre of similitude of two O^{*}; CH any line passing through C, and cutting both O^{*} in the points E, F; G, H; it is required to prove that CG. FC = AC. BC. Dem—Join AG, DE.

Now AC: DC:: GC: EC; ... AC. BC: BC. DC:: GC. FC: FC. FC; but BC. DC = EC. FC. Hence AC. BC = GC. FC.

35. (1) Let O, O' be the centres of the given O, and P the point.

Sol.—Join OO', and produce. Let C be the external centre of similitude. Join PC, and find the point Q, so that PC.QC = AC.BC. Describe a O passing through P, Q, and touching th O whose centre is O in G (III. xxxvII., Ex. 1). This is the required circle.

Dem.—Join GC, cutting the circle whose centre is O' in F. Now (const.) PC. QC = AC. BC, and (Lemma) AC. BC = GC. FC; ... PC. QC = GC. FC. Hence the \odot through the points P, Q, G passes through F, and touches the \odot whose centre is O'.

(2) Sol.—Let O, O', O" be the centres of the given ⊙s. Draw any two radii OA, O'B. Cut off AC, BD, each equal to the radius of O". With O as centre and OC as radius, describe a ⊙. With O' as centre and O'D as radius, describe a ⊙. Now (1) describe

a O touching those two in E, F, and passing through the point O". I.et O" be its centre. Join O"O, O"O', O"O", and produce them to meet the circumference of the given Os in the points G, H, I. The O through G, H, I will be the required circle.

Dem.—Because OG = OA and OE = OC, EG = AC; but AC = O''I; ... EG = O''I, and O'''E = O'''O''; hence O'''G = O'''I. In like maner, O'''H = O'''I. Hence the \bigcirc described with O''' as centre, and O'''G as radius, will pass through H, I, and touch the given \bigcirc s in the points G, H, I.

36. Let O, O' be the centres of the fixed ⊙⁸, and C their centre of similitude; and let any variable ⊙ O" touch O, O' in G, F. From C draw CD a tangent to O". It is required to prove that CD is of constant length. (See Diagram to Ex. 35 (1)).

Dem.—Join GF, and produce it to pass through C.

Now $CD^2 = GC.CF$ (III. xxxvi.), and GC.CF = AC.CB (*Lemma* to 35); hence $CD^2 = AC.CB$; but AC.CB is constant, since A, C, B are fixed points. Hence CD is constant.

37. Dem.—Draw DD' a common tangent to the two fixed ⊙³. Join AD, BD', and produce them; they must meet on the circumference of O". For, if not, let AD meet the circumference of O" in P, and BD' meet it in Q. Join O"O, O"O', and produce them; O"O, O"O' must pass through A, B (III. xi.). Join OD, O'D', O"P, O"Q. Now the ∠ O"AP = O"PA, and OAD = ODA; ∴ ODA = O"PA; hence OD is parallel to O"P. Now the ∠ ODD' is right (III. xviii.); hence O"P is ⊥ to DD'. Similarly, O"Q is ⊥ to DD', which is impossible, unless Q coincide with P. Hence BD' must pass through P.

38. Join A'B'. Take a fixed point C in AC, and in BD find a point D, so that as AA': AC:: BB': BD. Join AB, and divide it in E in a given ratio. Join CD, and divide it in F in the same ratio. Join EF, cutting A'B' in O. It is required to prove that A'O: OB':: AE: EB.

Dem.—Through F draw GH parallel to AB, and draw AG, BH, each parallel to EF. Join CG, DH. Draw A'I parallel to AG, and B'J parallel to BH. Join IF, JF.

Now, by construction, AA': AC:: BB': BD; ... AC: A'C:: BD: B'D. And hence, by similar triangles, GC: IC:: DH: DJ; but GC: CF:: DH: DF. Hence IC: CF:: DJ: DF, and the contained angles ICF, JDF are equal, ... the triangles ICF, JDF are equiangular, ... the \(\notin \) IFC = JFD; ... IF, FJ are in the same straight line.

Again, from similar \triangle ⁸, AG: A'I:: AC: A'C, and BH: B'J:: DB': DB; hence AG: A'I:: BH: B'J; but AG = BH; ... A'I = B'J; hence IJ is parallel to A'B'; ... AO': OB':: IF: FJ; that is, :: CF: FD, or :: AE: EB. Hence the locus of the point in which A'B' is divided in the ratio of AE: EB is the right line EF.

39. Dem.—It was proved in the last Exercise that A'O: OB:: AE: EB. In like manner, EO: OF:: AA': A'C. Now putting G, H for A', B', we have GO: OH:: AE: EB, and EO: OF:: AG: GC.

Lemma.—If a given line AC be divided in B, so that AB. BC⁴ is a maximum; it is required to prove that BC = 4 AB.

Dem.—Divide BC into four equal parts in E, F, G; then each of the parts BE, EF, FG, GC is equal to $\frac{BC}{4}$; hence BE.EF.FG.GC = $\frac{BC^4}{256}$. Multiply each by AB, and we get

A B E F G C

AB. BE. EF. FG. GC = $\frac{AB. BC^4}{256}$; but (hyp.) AB. BC⁴ is a maximum; ... AB. BE. EF. FG. GC is a maximum; ... AB, BE, EF, FG, GC are all equal ("Sequel," Book II., Prop. xII., Cor.). Hence BC = 4 AB.

Similarly, if it be required to divide AC in B, so that AB. BCⁿ may be a maximum, BC = nAB.

40. Analysis.—Let ABC be the required △. Bisect the vertical ∠ ABC by BH. From A, C let fall ⊥s AD, CF on BH, and from B let fall a ⊥ BE on AC. Join DE, EF. Draw HI, the diameter. Join BI. Draw BK || to AC, and let fall a ⊥ EG on HB.

Now the \angle ADB = AEB, each being right; hence the four points A, D, E, B are concyclic; ... the \angle EDF = BAC. Again, because each of the \angle ⁸ BEC, BFC is right, BFEC is a cyclic quadrilateral; ... the sum of the \angle ⁸ BFE, BCE is two right \angle ⁹, and the sum of BFE, DFE is two right \angle ⁹; ... the \angle DFE = BCA; ... the \triangle ⁸ ABC, DEF are equiangular. And since

their \bot^s are BE, EG, ABC: DEF:: BE²: EG²; but BE²: EG²:: HI²: IB², or HI.IK; ... BE²: EG²:: HI: IK; ... ABC: DEF:: HI: IK; ... ABC.IK = DEF. HI. Now DEF is a maximum (hyp.), and HI is a given line, because it is the diameter of the \odot ; ... ABC.IK is a maximum. Now ABC = $\frac{1}{2}$ base. perpendicular = AL.BE, or AL.KI.; ... AL.KL.IK is a maximum. Now whatever AL is, the rectangle KL.IK is a maximum when IL is bisected in K, and then KL.KI = $\frac{1}{4}$ IL²; ... AL. $\frac{IL^2}{4}$ is a maximum; ... AL.IL² is a maximum; ... AL.IL² is a maximum; ... AL². IL⁴ is a maximum; but AL² = HL.LI; ... HL.IL⁵ is a maximum. And ... (Lemma) IL = 5 HL. Hence the method of construction is evident.

41. Let AC, BD, the diagonals of the inscribed quadrilateral, intersect in O. At the points A, B, C, D draw tangents to the O. Let them meet in E, F, G, H; then EFGH is a circumscribed quadrilateral. It is required to prove that its diagonals EG, FH must pass through O.

Dem.—If possible let EG not pass through 0; but cut AC, BD in I, K. Produce AE, CF to meet in J (not represented in the diagram). Through E draw EL || to GJ, and EM || to GD.

Produce DB to meet EM. Now because JA = JC being tangents, the $\angle JCA = JAC$; but ELA = JCA (I. xxix.); ... EAL = ELA; and ... EA = EL. In like manner EB = EM; but EA = EB;

... EL = EM. Now since the Δ^s GCI, ELI are equiangular, GC: GI:: EL: EI; alternation, GC: EL:: GI: EI; but GC = GD, and EL = EM; ... GD: EM:: GI: EI; and because the Δ^s GKD, MKE are equiangular, GD: EM:: GK: EK; ... GI: EI:: GK: EK, which is impossible unless the points I, K coincide. Hence GE must pass through O. In like manner FH must pass through O.

42. (1) Sol.—Let A, B be the given points, W the given O,

and X the given line. Through A, B describe any \odot cutting W in C, D. Join AB, CD, and produce them to meet in E. Through E draw EFG parallel to X, and cutting W in F, G. The \odot through A, B, F, G is the one required.

Dem.—AE.EB=CE. ED, and CE.ED=GE. EF; .. AE. EB = GE. EF. Hence the four points A, B, F, G are concyclic, and the common chord FG is || to X.

- (2) Sol.—Let O be the given point. Make the same construction as before; and instead of drawing EFG || to X, join EO, and produce it to cut W in F, G. Then, as in (1), EFG is a common chord, and it passes through O, the given point.
- 43. Sol.—Let O be the centre of the ⊙, ABC the ∠, and DE the given line. Produce AB, CB to meet DE in E, G. Bisect GE in F. Join FB. From O let fall a ⊥ OD on DE, and meeting FB produced in H. Through H draw IJ || to DE,

meeting AB, CB in I, J. Join OI, OJ. Now because the lines GJ, FH, EI pass through B, and are cut by the $\parallel \cdot$ GE, IJ, GF: FE: IH: HJ; but GF = FE; \therefore IH = HJ; and since IJ is \parallel to DE, and OD meets them, the \angle OHJ = ODE; \therefore OHJ is a right \angle ; \therefore OHI is right, and \therefore (I. iv.) OJ = OI; and the \bigcirc , with O as centre, and OJ as radius, will pass through I, and its chord IJ is parallel to the given line DE.

44. Let ABCDE be a polygon of an odd number of sides. Take any point O within it. Join AO, BO, CO, DO, EO, and produce them to meet the opposite sides in A', B', C', D', E'. It is required to prove that the product of AD', BE', CA', DB', EC' is equal to the product of A'D, B'E, C'A, D'B, E'C.

Dem.—Join AC, AD. Now the \triangle AOD: A'OD:: AO: A'O (1.), and AOC: A'OC:: AO: A'O; ... AOD: A'OD:: AOC

: A'OC; alternation, AOD : AOC : : A'OD : A'OC; but A'OD : A'OC :: A'D : A'C. Hence

$$\frac{\mathbf{A'D}}{\mathbf{A'C}} = \frac{\mathbf{AOD}}{\mathbf{AOC}}.$$

In like manner, by joining BE, BD; CE, CA; DB, DA; EC, EB, we get

$$\frac{EB'}{BD} = \frac{EOB}{BOD}; \quad \frac{AC'}{C'E} = \frac{AOC}{EOC}; \quad \frac{BD'}{D'A} = \frac{BOD}{DOA}; \quad \frac{CE'}{E'B} = \frac{COE}{BOE}.$$

Now, multiplying these together, we find that the numerators of the second terms are equal to the denominators. Hence the product of the numerators of the first terms is equal to the product of the denominators; that is, A'D.B'E.C'A.D'B.E'C=A'C.B'D.C'E.D'A.E'B.

45. Let ABC be the \triangle , and let the sides touch the \bigcirc in the points A', B', C'.

Dem.—Join AA', BB', CC'. Now AB' = AC', BA' = BC', CA' = CB'. Hence AC'. CB'. BA' = A'C. C'B. B'A; and hence (Ex. 4) the lines AA', BB', CC' are concurrent.

46. From A, B, C draw tangents AA', BB', CC'; and produce

the sides BC, AC, AB to meet them in A', B', C'. It is required to show that the points A', B', C' are collinear.

Dem.—The \angle B'BC = BAB' (III. xxxII.), and the \angle BB'C is common, ... the \angle * AB'B, BB'C are equiangular, ... AB': AB: BB': BB': BC; alternation, AB': BB': AB: BC, ... AB'': BB''2: AB': BC'; but BB''2 = AB'. B'C (III. xxxvI.), ... AB''2: AB. B'C: AB': BC', ... AB': B'C: AB': BC'. Hence, denoting the sides of the \triangle ABC by a, b, c, we have AB': B'C:: c^2 : a^2 . Interchange, and we get BC': C'A:: a^2 : 2, and CA': A'B:: b^2 : c^2 . Multiply these together, and we have AB'. BC'. CA': B'C. C'A. A'B:: c^2 a^2 b^2 : a^2 b^2 c^2 ; ... AB'. BC'. CA' = B'C. C'A. A'B; and hence (Ex. 5) the points A', B', C' are collinear.

47. Dem.—Produce the sides, and draw AA', BB', CC', bisecting the external \(\alpha^*\). Now (III., Ex. 1 AB': B'C:: AB: BC. Interchange, and we have BC': C'A:: BC: CA. Interchange again, and CA': A'B:: CA: AB. Now, multiply together, and AB'. BC'. CA': B'C. C'A. A'B:: AB. BC. CA: BC. CA. AB; but the third term is equal to the fourth, ... the first is equal to the second; that is, AB'. BC'. CA' = B'C. C'A. A'B; and hence (Ex. 5) the points A', B', C' are collinear.

Lemma.—Let two Os, whose centres are O, O', cut in P. Join

OP, O'P. Produce O'P to E. Draw CP, DP tangents to the ⊙s. It is required to show that the ∠ EPO = CPD.

Dem.—Produce CP, DP to F and G. Now the \angle O'PF is right (III. xvIII.); hence (I. xv.) CPE is right, and OPD is right; ... CPE = OPD. Reject OPC, and EPO = CPD.

48. Let AB be a given line, P a given point, O the centre of the given \odot , and X a given \angle . It is required to describe a \odot , touching AB in P, and cutting O at an \angle equal to X.

Sol.—Erect PC \perp to AB. Draw DP, making the \angle CPD = X. Produce DP to E, cut off EP equal to the radius of O. Join EO.

Bisect it in F. Erect FC \perp to EO, meeting PC in C. With C as centre, and CP as radius, describe a \odot , cutting O in G. This is the required circle.

Dem.—Join EC, CO, CG, OG. Now because EF = OF, and FC common, and the \angle EFC = OFC; \therefore (I. iv.) EC = OC, and CP = CG, being radii, and EP = OG (const.), \therefore the \angle EPC = OGC; but DPC and EPC are supplements; and HGC, OGC are supplements, \therefore HGC = DPC; but DPC = X, and HGC is equal to the \angle between the \bigcirc s (Lemma). Hence the \angle between the \bigcirc s is equal to the given \angle , and the \bigcirc PG touches AB in P.

- 49. See "Sequel," Book IV. Prop. III., Cor. 2.
- 50. See "Sequel," Book I. Prop. xvII.
- 51. See "Sequel," Book II. Prop. x.
- 52. Let O be the centre of mean position of the feet of \bot * from it on the sides. From O let fall \bot * OA', OB', OC' on the sides. Take any other point P within the \triangle , and let fall \bot * PA'', PB'', PC'' It is required to show that $OA'^2 + OB'^2 + OC'^2$ is less than $PA''^2 + PB''^2 + PC''^2$.

Dem.—Join OP, PA', PB', PC'. Now, because O is the centre of mean position of A', B', C', we have (Ex. 51) A'P² + B'P²

 $+ C'P^2 = OA'^2 + OB'^2 + OC'^2 + 3OP^2;$ but $A'P^2 = A'A''^2 + A''P^2$, $B'P^2 = B'B''^2 + B''P^2$, and $C'P^2 = C'C''^2 + C''P^2;$... $A'A''^2 + B'B''^2 + C'C''^2 + A''P^2 + B''P^2 + C''P^2 = OA'^2 + OB'^2 + OC'^2 + 3OP^2.$

From P let fall a \(\perp \) PD on OC', then OP2 is greater than PD2:

that is, greater than $C'C''^2$. In like manner it is greater than $A'A''^2$, and greater than $B'B''^2$, \therefore 3 OP² is greater than $A'A''^2 + B'B''^2 + C'C''^2$; and hence $A''P^2 + B''P^2 + C''P^2$ is greater than $OA'^2 + OB'^2 + OC'^2$.

53. (1) Let A, B be the opposite \angle s; m, n the diagonals, and C the angle between the diagonals.

Sol.—Construct a parallelogram DEFG, having two adjacent

sides DE, DG respectively equal to m and n, and their included

∠ = to C. On DE describe a segment of a ⊙ containing an
∠ equal to A; and on FG describe a segment containing an
∠ equal to B; let them intersect in H. Join HD, HE, HF,
HG. Through H draw HK || and = to EF. Join DK, EK.
DHEK is the required quadrilateral.

Dem.—The \(\text{DHE} = A, \) and \(\text{EF} = HK \) (I. xxxiv.); but \(\text{EF} = GD; \) \(\text{...} \) HK = GD, and it is \(\text{to it}; \) \(\text{...} \) HKDG is a parallelogram; \(\text{...} \) HG is \(\text{to DK}, \) and \(\text{HF} \) is \(\text{to EK}; \) hence the \(\text{CHF} = DKE; \) but \(\text{GHF} = B, \) \(\text{...} \) DKE \(= B; \) and \((I. xxix.) \) the \(\text{LME} = GDE; \) but \(\text{GDE} = C, \) \(\text{...} \) HME = C.

54. Let a ⊙, who se centre is O', roll inside another ⊙, O, whose diameter is twice that of O'. Take a fixed point P in the circumference of O'. It is required to find its locus.

Sol.—Let R be the point of contact. Join OP, OR, O'P, and

produce OP to meet the circumference in Q, and bisect the \(\mathbb{L} \) RO'P by O'S.

Now the \angle RO'P = 2 ROP (III. xx.); ... the \angle RO'S = ROQ, and the arc RS: RQ:: O'R: OR; but OR = 20'R, ... RQ = 2RS, ... RP = RQ. Now, since the arc RP = RQ, the point P must have coincided with Q. Hence the line OQ is the locus of P.

55. Sol.—Take any point G in the arc CD. Join CG, DG. From the centre O let fall a \perp OE on CD, and on OE describe a segment OFE containing an \angle equal to CGD. Join OC. Bisect it in H. Through H draw HF || to AB, cutting the segment OFE in F. Join OF, and through C draw CP || to OF. P is the required point.

Dem.—Let CP intersect AB in K. Join PD, cutting AB in J. Produce FH to meet CP in I. Join EF, and produce it to

meet CP in L. Join CF, FJ. The points C, F, J are collinear; if not, let CF, FM be in a straight line. Now (III. xxII.) the \angle * CGD, CPD equal two right \angle *; ... OFE, CPD equal two right \angle *, and OFE, OFL equal two right \angle *, ... OFL = CPD; that is, CLE = CPD; hence EL is \parallel to PD. Again, in the \triangle COM, since CD is bisected in H, CM is bisected in (I. xL., Ex. 3); and similarly, in the \triangle CDN, CN is bisected in F; ... FN = FM, which is absurd; hence CF produced must pass through J, and CF = FJ. Now, in the \triangle CJK, CJ is bisected in F, and OF is parallel to CP, ... KJ is bisected in O; that is, OK = OJ.

56. Let ABCD be a polygon of four sides. Produce AB, CD to L, N, and draw a transversal LMON, cutting the four sides. From A, B, C, D let fall \perp ⁸ p', p'', p''', p'''', p'''' on LMON.

Now, since the \triangle s Ap'L, Bp"L are equiangular,

$$\frac{AL}{BL} = \frac{p'}{p''} \text{ (iv.)}.$$

For the same reason,

$$\frac{\mathrm{BM}}{\mathrm{CM}} = \frac{p^{\prime\prime}}{p^{\prime\prime\prime}}, \frac{\mathrm{CN}}{\mathrm{DN}} = \frac{p^{\prime\prime\prime\prime}}{p^{\prime\prime}}, \text{ and } \frac{\mathrm{DO}}{\mathrm{AO}} = \frac{p^{\prime\prime\prime\prime\prime}}{p^{\prime\prime}}.$$

Multiplying together, we get

$$\frac{\text{AL.BM.CN.DO}}{\text{BL.CM.DM.AO}} = \frac{p'p''p'''p''''}{p'p'''p''''}.$$

Hence AL. BM.CN.DO = BL.CM.DN.AO. And similarly for a figure of any number of sides.

57. Let the transversal LMN cut the sides of the \triangle ABC in the points L, M, N. Bisect LN, NM, ML in O, P, Q. Join AP, OB, CQ, and produce them to meet the sides of the \triangle ABC in A', B', C', respectively. It is required to prove that the points A', B', C' are collinear.

Dem.—The sides of the \triangle AMN are cut by OB; therefore

$$\frac{AB'}{B'M} \cdot \frac{MO}{ON} \cdot \frac{NB}{BA} = -1 \text{ (Ex. 5)}.$$

And since the \triangle CLM is cut by OB', $\frac{MB'}{B'C} \cdot \frac{CB}{BL} \cdot \frac{LO}{OM} = -1$.

Multiplying together, we have $\frac{AB'}{B'C} \cdot \frac{CB}{BA} \cdot \frac{NB}{BL} = 1$; interchange,

and
$$\frac{BC'}{C'A} \cdot \frac{AC}{CB} \cdot \frac{LC}{CM} = 1$$
; interchange again, and $\frac{CA'}{A'B} \cdot \frac{BA}{AC} \cdot \frac{MA}{AN} = 1$.

Multiply these results together, and we get

$$\frac{AB'}{B'C} \cdot \frac{BC'}{C'A} \cdot \frac{CA'}{A'B} \cdot \frac{NB}{BL} \cdot \frac{LC}{CM} \cdot \frac{MA}{AN} = 1 \; ;$$

but
$$\frac{NB}{BL} \cdot \frac{LC}{CM} \cdot \frac{MA}{AN} = -1$$
 (Ex. 5); $\therefore \frac{AB'}{B'C} \cdot \frac{BC'}{C'A} \cdot \frac{CA'}{A'B} = -1$.

And hence the points A', B', C' are collinear.

58. Let ABC be the \triangle . Join PA, PB, PC, and erect at P \perp ^{*} A'E B'H, C'G to PA, PB, PC, intersecting the sides BC, CA, AB, respectively in A', B', C'. It is required to show that the points A', B', C' are collinear.

Dem.—From A, B, C let fall \perp AG, AI on CG, B'H; BD, BF on A'E, C'G; CE, CH on A'E, B'H.

Now, because each of the $\angle \cdot$ APA', BPB' is right, the \angle API = BPD, and AIP = BDP; hence the $\triangle \cdot$ AIP, BDP are equiangular. In like manner, the $\triangle \cdot$ AGP, CEP are equiangular, and CPH, BPF are equiangular.

Again, since the \triangle ^s CA'E, BA'D are equiangular, $\frac{CA'}{A'B} = \frac{CE}{BD}$

Similarly,
$$\frac{AB'}{B'C} = \frac{AI}{CH}$$
, and $\frac{BC'}{C'A} = \frac{BF}{AG}$;

therefore $\frac{CA'.AB'.BC'}{A'B.B'C.C'A} = \frac{CE.AI.BF}{BD.CH.AG};$

hence

$$\frac{CA'.AB'.BC'}{A'B.B'C.C'A} = \frac{CE.AI.BF.PB.PC.PA}{BD.CH.AG.PB.PC.PA};$$

but AI. BP = BD. AP, since the \triangle s AIP, BDP are equiangular, and PA. CE = AG. PC; and PC. BF = PB. CH; ... CA'. AB'. BC' = A'B. B'C. C'A. And hence (Ex. 4) the points A', B', C' are collinear.

59. Let ACB be a given semicircle. It is required to divide it into two parts by a ⊥ on the diameter AB, so that the radii of the ⊙ inscribed in them may have a given ratio DE: EF.

Sol.—On DF describe a segment containing an \angle equal to half a right \angle . Erect EG \bot to DF. Join DG, FG. At the point F in FG draw FH, making the \angle HFG = HGF. In the semicircle

draw BC, making the \angle ABC = EFH. Let fall the \bot CI on AB. GI is the required line.

Dem.—In the figures CIBM, CIAN describe O, touching IB, IA, IC, and the arcs BC, AC in the points J, K, L, M, N. Let O, O' be their centres. Join OJ, CJ, OL, O'L, AL, LM. The points A, L, M are collinear (III., Ex. 51). Join BM, AC, CK. Now the & LIB is right, and LMB is right (III. xxxI.); ... ILMB is a cyclic quadrilateral; ... BA . AI = MA.AL; but BA.AI = AC^2 (I. xLvII., Ex. 1), and MA.AL = AJ^2 (III. xxxvi.); $AC^2 = AJ^2$; AC = AJ; AC = AJ; = AJC; ... ACJ = JBC + JCB; but ACI = IBC (viii.); ... ICJ = BCJ. In like manner, the \angle ICK = ACK; hence the \angle KCJ is half a right \angle . Now in the \triangle ^s EHF, ICB the \angle BIC = FEH, and IBC = EFH (const.); ... ICB = EHF; but ICB = 2 ICJ, and EHF = 2 EGF; $\therefore ICJ = EGF$, and CIJ = GEF; $\therefore CJI$ = GFE; hence the Δ * CIJ, GEF are equiangular. And because the \(\text{DGF} = \text{KCJ, and GFD} = \text{CJK} \); \(\cdots \). \(\text{GDF} = \text{CKJ} \); \(\text{hence} \) the A * CJK, GFD are equiangular; ... KI: IJ:: DE: EF; but KI: IJ:: O'L: OL. Hence O'L: OL:: DE: EF.

Lemma.—If A, B, C be fixed points, and P a variable point, find the locus of P, if $mAP^2 + nBP^2 + pCP^2$ is given.

Sol.—Join AP, BP, CP, AB, BC. Divide AB in D, so that mAD = nDB. Join DP. Now $mAP^2 + nBP^2 = mAD^2 + nDB^2 + (m+n)$ DP² (Book II., Ex. 12). Join DC, and divide it in E, so that (m+n) DE = pEC. Join EP; then (m+n) DP² + $pPC^2 = (m+n)$ DE² + $pEC^2 + (m+n+p)$ EP²; add, and $mAP^2 + nBP^2$

+ $pPC^2 = mAD^2 + nDB^2 + (m+n)DE^2 + pEC^2 + (m+n+p)EP^2$; but $mAP^2 + nBP^2 + pPC^2$ is given (hyp.); ... $mAD^2 + nDB^2 + &c.$, is given; but $mAD^2 + nDB^2$ is given, and $(m+n)DE^2$, and pEC^2 is given; ... $(m+n+p)EP^2$, and (m+n+p) is given; ... EP^2 is given, ... EP is given, and E is a given point. Hence the locus of P is a circle, having E for centre and EP for radius.

60. Dem.—Let P be the point. From P let fall \bot s PD, PE, PF on the sides of the \triangle . Join DE, EF, FD, AP, BP, CP. Now because the \angle s AEP, AFP are right, AEPF is a cyclic quadrilateral; then AP is the diameter of the circumscribed \bigcirc . Draw FG, another diameter. Join GE. Now the \angle FGE = FAE (III. xxi.); but FAE is a given \angle , \therefore FGE is a given \angle , and

the \angle FEG is given, being right; ... the \triangle FGE is given in species; hence $\frac{EF}{FG}$ is given; but FG = AP; ... $\frac{EF}{AP}$ is given;

... $\frac{EF^2}{AP^2}$ is given; let it be equal to m, then $EF^2 = mAP^2$. In like manner, $FD^2 = nBP^2$, and $DE^2 = pCP^2$; but $EF^2 + FD^2 + DE^2$ is given (hyp.); ... $mAP^2 + nBP^2 + pCP^2$ is given. And hence (*Lemma*) the locus of P is a circle.

61. Let the ⊙ W make given intercepts DD', EE' on two fixed lines PX, PY. It is required to prove that the rectangle CG. CH contained by the ⊥s from the centre C on the bisectors of the ∠s formed by the lines PX, PY is given.

Dem.—From C let fall ⊥s CA, CB on DD', EE'. Join CD, CE. Now AC² + AD² = CD², and BC² + BE² = CE²; ∴ AC² + AD² = BC² + BE²; ∴ AD² - BE² = BC² - AC²; but AD, BE are the halves of DD', EE' (III. III.), and are given (hyp.); ∴ BC² - AC² is given. Now since the ∠s CAP, CBP are right, CAPB is a cyclic quadrilateral. Describe a ⊙ about it. Join AB; the line bisecting AB perpendicularly will be the diameter. Let it be GH. Join GP, HP; these are the internal and external bisectors of the ∠EPD (III. xxx., Ex. 2). Join CP, CH,

and let fall \perp^s CF, CI on AB, GH. Now BC² = BF² + FC², and AC² = AF² + FC²; ... BC² - AC² = BF² - FA²; but BC² - AC² is given; ... BF² - FA² is given; that is (BF + FA) (BF - FA) is given; but BF + FA = AB, and BF - FA = 2 OF; ... AB. OF is given; that is, AB. CI is given. And because the \angle APB is given, the ratio of AB to the diameter is given.

(Dem. of Ex. 60); that is, AB: GH is given; ... the ratio AB.CI: GH.CI is given; but AB.CI is given; ... GH.CI is given. And since the Δ^s GCH, ICH are equiangular, GH.CI = GC.CH. Hence GC.CH is given.

62. Let ABC be a \triangle , whose base and the difference of whose base \angle ^s is given. Draw CE, CF, the internal and external bisectors of the vertical \angle . Bisect AB in D, and let fall \bot • DE, DF on CE, CF. It is required to prove that the rectangle DE. DF is given.

Dem.—Draw BG, BH || to CF, DF. Produce CB to meet DE produced in I. Draw IJ || to CE, and let fall a \(\perp \) AK on ID produced.

Now the \angle NCB = ACN, and LCJ = ICJ; ... the \angle NCJ is right, and DFC is right; ... DF is || to CN; ... FCMG is a parallelogram. Now the \angle ANC = NCB + CBN, and BNC = NCA + CAN; ... (ANC - BNC) = (NCB + CBN) - (NCA + CAN); but NCB = NCA; ... (ANC - BNC) = (CBN - CAN); but (CBN - CAN) is given (hyp.), ... (ANC - BNC) is given, and their sum is given; hence each is given; but DNE = BNC; ... DNE is given, and DEN is right; ... EDN is given; hence

the line IK is given in position; $\cdot \cdot \cdot \cdot PB \perp to JK$ is given in position. And because the $\angle QCE = ICE$, and CEQ = CEI, and CEC = CEI, and CEC = CEI, and CEC = CEI, and CEC = CEI.

= AQK; ... EIC or BIP = AQK, and AKQ = BPI, each being right, and the side AK = BP; ... KQ = IP. To each add QP, and we have KP = QI; hence (Ax. 7) KD = QE; ... KQ = DE; ... DE = IP; hence the figure GC = BJ; but BJ = BE (I. xlii.); ... GC = BE; hence the rectangle DC = BD; that is, the rectangle DE . DF = BD; but BD is a given rectangle. Hence DE . DF is given.

63. Let ABC be the △. Bisect the ∠ ACB by CD. From A, B let fall ⊥s AG, BF on CD. Produce AC, and bisect the

∠ BCJ by CE, meeting AB produced in E. Bisect AB in O, and let fall a ⊥ OH on CD. It is required to prove that AG. FB = OH. CE.

Dem.—Now AD: DB:: AE: EB (III., Ex. 3); hence (Book V., Ex. 9) OD: OB:: OB: OE; that is, OD. OE = OB²; but (II. III.) OD. OE = OD² + OD. DE, and (II. v.)

- $OB^2 = AD \cdot DB + OD^2$; hence $OD \cdot DE = AD \cdot DB$; ... AD : OD :: DE : DB; but AD : OD :: AG : OH, and DE : DB :: CE : FB; ... AG : OH :: CE : FB. And hence $AG \cdot FB = OH \cdot CE$.
- 64. The rectangle contained by the perpendiculars from the extremities of the base on the external bisector of the vertical angle, is equal to the rectangle contained by the internal bisector and the perpendicular from the middle of the base on the external bisector.

Let ACB be the \triangle . Produce AC to J, and bisect the \angle BCJ by ECG, meeting AB produced in E. From A, B let fall \bot ^s AG, BF on EG. Bisect the \angle ACB by CD. Bisect AB in O, and let fall a \bot OH on EG. It is required to prove that AG. BF = OH. CD.

- **Dem.**—AE. EB + OB² = OE² (II. vi.); but OE² = OD. OE + DE. OE (II. ii.); hence AE. EB + OB² = OD. OE + DE. OE; hence AE. EB = DE. OE (see Ex. 63); ... AE: DE:: OE: EB. Hence, by similar triangles, AG: CD:: OH: BF; ... AG. BF = OH. CD.
- 65. **Dem.**—From C let fall a \perp CD on AB. Now the \triangle ACD, BCD, ABC are similar (viii.); then, if R, R', ρ , are the radii of the \bigcirc s inscribed in these \triangle s, AC, BC, AB are proportional to R, R', ρ ; but AC² + BC² = AB²; \therefore R² + R'² = ρ ², and ρ ² = $(s-c)^2$ (IV. iv., Ex. 14); that is, R² + R'² = $(s-c)^2$.
- 66. Sol.—Through A, C draw two parallel lines AF, CE; and through B, D draw two parallel lines BF, DE, meeting the # through A, C in F, E. Join EF, and produce it to meet AD in O.
- **Dem.**—Because BF is \parallel to DE, the \triangle ^s ODE, OBF are equiangular; hence OD: OB::OE:OF; and since the \triangle ^s OCE, OAF, are equiangular, OE:OF::OC:OA, ... OD:OB::OC:OA. Hence OA.OD = OB.OC.
- 67. Sol.—Let a, b, c, d be the four sides. Find a fourth proportional to (2ab + 2cd), $\{(c^2 + d^2) (a^2 + b^2)\}$, and b. Let it be BE. Produce EB to A, so that AB = a. Erect EC \perp to AE. With B as centre, and a radius equal to b, describe a \odot , cutting EC in C. Join BC, AC; and on AC describe a \triangle ACD, having its sides CD, AD equal to c and d. ABCD is the required quadrilateral.

Dem.—From A let fall a \perp AF on CD. Now because BE is a fourth proportional to (2 ab + 2 cd), $\{(c^2 + d^2) - (a^2 + b^2)\}$, and b, we have (2 ab + 2 cd) BE = $\{(c^2 + d^2) - (a^2 + b^2)\}$ b. Now AC² = AB² + BC² + 2 AB . BE (II. xII.); that is, AC² = $a^2 + b^2$

+ 2 a. BE; and $AC^2 = c^2 + d^2 - 2c$. DF (II. xIII.); $c^2 + d^2 - 2c$. DF = $a^2 + b^2 + 2a$. BE; $c^2 + d^2 - (a^2 + b^2) = 2a$. BE + 2 c. DF; hence (2ab + 2cd) BE = $(2a \cdot BE + 2c \cdot DF)b$; $c^2 + d^2 - 2cd$. BE = $2bc \cdot DF$; $c^2 + d^2 - 2cd$. BE = $2bc \cdot DF$; $c^2 + d^2 - 2cd$. BE = $2bc \cdot DF$; $c^2 + d^2 - 2cd$. BE = $2bc \cdot DF$; $c^2 + d^2 - 2cd$. BE = $2bc \cdot DF$; $c^2 + d^2 - 2cd$. BE = $2bc \cdot DF$; $c^2 + d^2 - 2cd$. BE = $2bc \cdot DF$; $c^2 + d^2 - 2cd$. BE = $2bc \cdot DF$; $c^2 + d^2 - 2cd$. BE = $2bc \cdot DF$; $c^2 + d^2 - 2cd$. BE = $2ac \cdot DF$; $c^2 + d^2 -$

68. Let A, B be the centres of the \odot ^s. From a point C tangents CF, CE are drawn to the \odot ^s, so that CF: CE:: a:b. It is required to find the locus of C.

Sol.—Join AF, BE, AC, BC, and let the radii be denoted by R, R'. Now since CF: CE:: a:b, CF²: CE²:: $a^2:b^2$; that

is, $AC^2 - R^2 : BC^2 - R'^2 : : a^2 : b^2 ; ... b^2 AC^2 - b^2 R^2 = a^3 BC^2 - a^2 R'^2 ; ... b^2 AC^2 - a^2 BC^2 = b^2 R^2 - a^2 R'^2$. Join AB, and produce it to D, and make AD : BD : : $a^2 : b^2$; then $b^2 AD = a^2 BD$. Now, joining CD, and putting b^2 for m, and a^2 for n, we have

(Book II., Ex. 13) $b^2 AC^2 - a^2 BC^2 = b^2 AD^2 - a^2 DB^2 + (b^2 - a^2)$ CD^2 , and \therefore (Ax. 1) $b^2 AD^2 - a^2 DB^2 + (b^2 - a^2) CD^2 = b^2 R^2 - a^2 R'^2$; and transposing, we get $(a^2 - b^2) CD^2 = b^2 (AD^2 - R^2) - a^2 (DB^2 - R'^2)$; \therefore $(b^2 - a^2) CD^2$ is given; \therefore CD is given, and the point D is given. Hence the locus of C is a circle.

69. Sol.—Describe ⊙s about the △s APD, BPC. Draw OP a tangent to the ⊙ APD, meeting DA produced in O. Now

the \angle OPA = PDA (III. xxxII.), and the \angle APB=CPD (hyp.); \therefore the \angle OPB = ADP + CPD = ACP; hence OP touches the \bigcirc BPC. Now (III. xxxVI.) OA.OD=OP², and OB.OC=OP², \therefore OA.OD = OP.OC; \therefore O is a given point (Ex. 66), and A, D are given points; \therefore OA.OD is given; \therefore OP² is given; \therefore OP is given. Hence the locus of P is a \bigcirc , having O as centre and OP as radius.

70. If a \odot ACB be circumscribed to a \triangle , and a \odot GBH be inscribed, touching the sides AC, BC in D, F, and the circumscribed \odot in H. It is required to prove that CD is a fourth proportional to the semi-perimeter of the \triangle ABC, and the sides CA, CB.

Dem.—Join CH, and draw HJ a tangent to the \odot ABC; at G draw a tangent A'J to the \odot DFH. Join AH.

Because JG = JH, the $\angle JHG = JGH$; but JGH = GBC

+ B'CG, ... JHG=GB'C+B'CG, and AHJ=GCB' (III. xxxII.); ... GHA=GB'C. To each add GB'A, and we have GB'C+GB'A = GB'A + GHA, ... GB'A+GHA equal two right \angle ⁸; hence GB'AH is a cyclic quadrilateral, and therefore HC.CG=AC.CB'; but HC.CG=CD² (III. xxxvI.); ... AC.CB'=CD². Again, the \angle CHA=A'B'C; but CHA=CBA (III. xxI.), ... CBA = CB'A', and the \angle A'CB is common, ... the \triangle ⁸ ABC, A'B'C are equiangular; and, denoting their semiperimeters by s, s', we have (xx., Cor. 1) s: s':: BC: B'C, ... s: s': CA:: BC: B'C.CA; that is, s: s': CA:: BC: CD²; but CD²=s'² (IV. IV., Ex. 4); ... s: s': CA:: BC: s'². Hence s: CA:: BC: s'; or, s: CA:: CB: CD.

71. It is an obvious modification of 70.

73. Let the sides AC, BC of the △ ABC, circumscribed to a given ⊙, be given in position, but the third side AB variable. About ABC describe a ⊙. It is required to prove that the ⊙ about ABC touches a fixed circle.

Dem.—Describe a ⊙, touching the sides AC, BC in D, H, and the ⊙ about ABC in L. Let O be its centre. Join OD, OH. Let fall a ⊥ AF on BC. Draw DE || to AF, and let fall a ⊥ OG on DE.

Now s: CB :: CA : CD (Ex. 70); but CA : CD :: AF : DE; therefore s: CB :: AF : DE, ... s. DE = CB . AF = t wice the area

of the \triangle ABC = 2 rs (IV. iv., Ex. 9), ... DE = 2 r; but 2 r is given, ... DE is given; and because the \angle ECD is given (hyp.), and the \angle E is right, the \triangle ECD is given in species, ... the ratio ED: DC is given; but ED is given, ... DC is given; ... D is a given point.

Again, because the \angle ODC is right, and \therefore = ECD + CDE, \therefore ODG = ECD. Hence ODG is given, and OGD is right, \therefore the \triangle OGD is given in species, \therefore the ratio OD: DG is given; but OD = OH = GE, \therefore the ratio EG: GD is given; but ED is given; \therefore EG, that is OD, is given, and the point D has been shown to be given. Hence the \bigcirc , with O as centre, and OD as radius, is a fixed \bigcirc , and the \bigcirc about ABC touches it in L.

74. Let AC, BC be the two sides given in position.

Sol.—Bisect the \angle ACB by FF'. In CF find a point F, such that $CF^2 = CA \cdot CB$. F is one of the required points.

Dem.-Join AF, BF, and let fall a \(\perp \) BE on AC. Now

because the area of the \triangle ACB is given, CA. EB is given; and since the \angle BCE is given, and the \angle BEC is right, the \triangle BCE is given in species, ... the ratio CB: BE is given, ... the ratio CB.CA: BE.CA is given; but CB.CA = CF² (const.), and BE.CA is given; ... CF² is given, ... CF is given, and ... F is a given point. Again, because CA.CB = CF², CA: CF:: CF: CB, and the \angle ACF = BCF, ... (vi.) the \angle CFA = CBF. To each add the sum of the \angle ⁸ CFB, BCF, and we have the sum of the \angle ⁸ of the \triangle CBF equal to the \angle ⁸ AFB and BCF, ... AFB and BCF are equal to two right \angle ⁸; but the \angle BCF is given, ... AFB is given. Hence the base AB subtends a constant \angle at a given point F. In like manner it can be shown that it subtends a constant \angle at F', constructed by making CF' = FC.

75. Let ABCD be the cyclic quadrilateral. (See Diagram, Ex. 67.)

Dem.—Draw the diagonal AC. Produce AB, and let fall the Ls AF, CE on AB, CD.

BOOK VI.

Now, since the sides AB, BC, CD, DA are denoted by a, b, c, d, we have (II. xII.) $AC^2 = a^2 + b^2 + 2a$. BE, and (II. XIII.) $\mathbf{AC^2} = c^2 + d^2 - 2c$. DF; $\therefore c^2 + d^2 - 2c$. DF = $a^2 + b^2 + 2a$. BE; $\mathbf{c} \cdot \mathbf{c}^2 + d^2 - (a^2 + b^2) = 2a \cdot \mathbf{BE} + 2c \cdot \mathbf{DF}$; and because the Δ^* BCE, ADF are equiangular, BC : BE :: AD : DF; that is, $b : BE :: d : DF, ... b . DF = d . BE, ... DF = \frac{d}{h} . BE;$ and

hence we have $c^2 + d^2 - (a^2 + b^2) = 2a \cdot BE + \frac{2cd}{L}$. BE

$$= \frac{2 (ab + cd)}{b} \cdot BE; : BE = \frac{b \{ (c^2 + d^2) - (a^2 + b^2) \}}{2 (ab + cd)}.$$

Again, $CE^2 = BC^2 - BE^2 = b^2 - \frac{b^2 \{(c^2 + d^2) - (a^2 + b^2)\}^2}{4 \{(ab + cd)^2\}}$

$$=b^{2}\left\{1-\frac{\left\{(c^{2}+d^{2})-(a^{2}+b^{2})\right\}^{2}}{4(ab+cd)^{2}}\right\}$$

$$= b^2 \frac{\left\{4 (ab + cd)^2 - \left\{(c^2 + d^2) - (a^2 + b^2)\right\}^2\right\}}{4 (ab + cd)^2}$$

$$=b^{2}\frac{\left\{(c+d)^{2}-(a-b)^{2}\right\}\left\{(a+b)^{2}-(c-d)^{2}\right\}}{4\left(ab+cd\right)^{2}}$$

$$=b^{2}\frac{\{(c+d+a-b)(c+d-a+b)(a+b+c-d)(a+b-c+d)\}}{4(ab+cd)^{2}}.$$

Hence, putting (a+b+c+d)=2s, and substituting, we get]

$$CE^{2} = \frac{16 b^{2} \cdot (s-a) (s-b) (s-c) (s-d)}{4 (ab+cd)^{2}};$$

$$\therefore \mathbf{CE} = \frac{2b\sqrt{(s-a)(s-b)(s-c)(s-d)}}{ab+cd}.$$

Now AB = a, and $AB \cdot CE = 2 \triangle ABC$.

$$2ABC = \frac{2ab\sqrt{(s-a)(s-b)(s-c)(s-d)}}{(ab+cd)};$$

$$\therefore ABC = \frac{ab\sqrt{(s-a)(s-b)(s-c)(s-d)}}{ab+cd}.$$

Similarly, ACD =
$$\frac{cd\sqrt{(s-a)(s-b)(s-c)(s-d)}}{(ab+cd)}$$
.

Hence the quadrilateral ABCD

$$=\frac{(ab+cd)\sqrt{(s-a)(s-b)(s-c)(s-d)}}{(ab+cd)}$$
$$=\sqrt{(s-a)(s-b)(s-c)(s-d)}.$$

76. **Dem.**—Produce BC, C'B' to meet in A". Let fall 1. A'O', BO on A"C'.

Now AB'. BC'. CA' = A'B. B'C. C'A (Ex. 4), and AB'.BC'.CA" = A''B. B'C. C'A (Ex. 5). Divide, and we get $\frac{CA'}{CA''} = \frac{A'B}{A''B}$; ... A''B. A'C = A''C. A'B, ... A''B. A'C + A''C. A'B = 2 A''B. A'C; that is ("Sequel," Book II., Prop. vII.), A''A'. CB = 2 A''B. A'C.

Now the \triangle ABC: ABB':: AC: AB' (I.), and ABB': BC'B': AB: BC', and BC'B': A'B'C':: BO: A'O':: BA": A'A"; that is, since A"A'. CB = 2 A"B. A'C:: BC: 2 A'C; \triangle ABC: A'B'C':: AB. BC. CA: 2 AB'. BC'. CA'.

77. Dem.—Draw the diameter AE. Join BE, and let fall a ⊥ AD on BC. Now (xvII., Ex. 5) AE. AD = AB. AC; ∴ AE. AD. BC = AB. BC. CA; but AD. BC = twice the Δ ABC; ∴ 2 AE. ABC = AB. BC. CA; hence (Ex. 76) ABC: A'B'C':: 2AE. ABC: 2AB'. BC'. CA', ∴ 1: A'B'C':: AE: AB'. BC'. CA'; ∴ AE. A'B'C' = AB'. BC'. CA'; and hence

$$\mathbf{AE} = \frac{\mathbf{AB'} \cdot \mathbf{BC'} \cdot \mathbf{CA'}}{\mathbf{A'B'C'}},$$

78. **Dem.**—Let the sides of the quadrilateral be denoted by a, b, c, d. Now (III. xvii., Ex. 3) (a + c) = (b + d); $\therefore 2 (a + c) = (a + b + c + d)$. Hence, putting (a + b + c + d) = 2s, we have

2 (a+c)=2s, (a+c)=s; a=(s-c). Similarly, b=(s-d), c=(s-a), d=(s-b); and (Ex. 74), we have area of quadrilateral $a=\sqrt{(s-a)(s-b)(s-c)(s-d)}$; $a=a=\sqrt{abcd}$. Hence the square of the area a=abcd.

79. Dem.—Join BF, CF, BE. Let the ratio BD : AD bedenoted by m, n. Now the \triangle ABC : ABE :: AC : AE(1.) :: AB: BD (hyp.); that is, as (m+n) : m, and ABE : BDE :: (m+n) m,

and BDE: BDF:: (m+n): m. Multiplying together, we have

ABC: BDF::
$$(m+n)^3$$
: m^3 ; hence BDF = $\frac{ABC \cdot m^3}{(m+n)}$. In like

manner ECF = $\frac{ABC \cdot n^3}{(m+n)^3}$. Again (xxIII., Ex. 1), ABC : ADE

$$: (m+n)^2 : mn ; : ADE = \frac{ABC \cdot mn}{(m+n)^2}.$$

Now the \triangle BFC = ABC - BDF - CEF - ADE = ABC

$$\left\{1 - \frac{m^3}{(m+n)^3} - \frac{n^3}{(m+n)^2} - \frac{mn}{(m+n)^2}\right\} = ABC \frac{2mn}{(m+n)^2}.$$

Hence the \triangle BFC = twice the \triangle ADE.

80. Let ABCD be a quadrilateral. Join AC, BD, and bisect them in E, F. Through E, F draw EG, FG parallel respectively to BD, AC. Bisect AD, CD in H, I. Join GH, GI. It is required to prove GIDH = $\frac{1}{4}$ ABCD.

Dem.—Join HF, IF, IH. Now, because AD, BD are bisected in H, F, HF is || to AB, and the \triangle DHF = $\frac{1}{4}$ ADB (I. xl., Ex. 2). In like manner, DFI = $\frac{1}{4}$ DBC; \therefore DHFI = $\frac{1}{4}$ ABCD. Again, HI is = to AC, and FG is || to AC; \therefore HI is || to FG;

- ... (I. xxxvII.) the \triangle HFI = HGI. To each add HDI, and HDIF = HGID; ... HGID = $\frac{1}{4}$ ABCD. In like manner, if we bisect BC in J, and join GJ, GICJ = $\frac{1}{4}$ ABCD, &c.
- 81. Dem.—Let O, O' be the centres. Join OO', and produce it to meet AB in G; O'G is evidently perpendicular to AB. Complete the circle on AB, and produce EC, FD to meet it again in H, I.

Now AC. $DB = OG^2$ (xIII., Ex. 5), and AD. $CB = O'G^2$ (xIII., Ex. 7); hence AC. CB. AD. $DB = OG^2$. $O'G^2$; but AC. $CB = CE^2$, and AD. $DB = DF^2$; therefore CE^2 . $DF^2 = OG^2$. O'G². And hence CE. DF = OG. O'G.

82. Let ABCDE be the inscribed regular polygon. Take any point P in the circumference. Join PA, PB, PC, PD, PE, and let those lines be denoted by ρ_1 , ρ_2 , ρ_3 , ρ_4 , ρ_5 . It is required to prove that $\rho_1 + \rho_3 + \rho_5 = \rho_2 + \rho_4$.

Dem.—Join BD. Let the sides of the polygon be denoted by s, and the diagonals by d. Now, considering the polygon ABDP formed by ρ_1 , ρ_2 , ρ_4 , we have (xvii., Ex. 13) $\rho_1d + \rho_4s = \rho_2d$. Similarly, we have $\rho_1d = \rho_2s + \rho_4s$, and $\rho_5d + \rho_2s = \rho_4d$. Adding, we get $(\rho_1 + \rho_3 + \rho_5)d = (\rho_2 + \rho_4)d$. Hence $\rho_1 + \rho_3 + \rho_5 = \rho_2 + \rho_4$.

83. Let O be the centre of the given ⊙; P the given point; AB any chord passing through P; PD, PE perpendiculars on the

tangents AT, BT. It is required to prove that the sum of the reciprocals of PD, PE is constant.

Dem.—Join OP, produce it, and from T let fall the \perp TC on OP produced. Produce AB to meet CT in H, and let fall the \perp AF, BG.

Now ("Sequel," Book III., Prop. xxvIII.) CT is the polar of P, and AT is the polar of A. Hence ("Sequel," Book III., Prop. xxvII.), since PD and AF are perpendiculars on the polars,

OA: OP: AF: DP;
$$\therefore \frac{1}{DP} = \frac{OA}{OP} \cdot \frac{1}{AF}$$
.

$$\frac{1}{PE} = \frac{OB}{OP} \cdot \frac{1}{BG}.$$

Hence, denoting the radius of the circle by r, and the distance OP by d, we have

$$\frac{1}{\text{PD}} + \frac{1}{\text{PE}} = \frac{r}{d} \cdot \left(\frac{1}{\text{AF}} + \frac{1}{\text{BG}} \right)$$

Again, since P is the pole of the line GH, the line HB is cut harmonically; ... HP is a harmonic mean between HA and HB; but AF, PC, BG are proportional to HA, HP, HB; hence PC is a harmonic mean between AF and BG;

$$\therefore \frac{2}{PC} = \frac{1}{AF} + \frac{1}{BG}; \therefore \frac{1}{PD} + \frac{1}{PE} = \frac{r}{d} \cdot \frac{2}{PC}.$$

Hence the proposition is proved.

84. Let ABC be a cyclic quadrilateral, whose sides AB, CD, AD pass through three collinear points E, F, G. Join BC, and

produce it to meet EG in H. It is required to prove that H is a fixed point.

Dem.—Through B draw BK || to EG. Join DK, and produce it to meet EG.

Now the ∠^s ADK, ABK equal two right ∠^s (hyp.); but ABK = AEG (I. xxix.), ... AEI and ADI are equal to two right ∠^s; hence AEID is a cyclic quadrilateral; ... EG. GI = DG. GA; but DG. GA is given; ... EG. GI is given, and EG is given, ... GI

is given; ... I is a given point. Again, the \angle IDF = KBC(III. xxI.); but KBC = CHF; ... IDF = CHF, and ... the points D, C, I, H are concyclic; hence DF. FC = FI.FH; but DF.FC is given; ... FI. FH is given, and FI is given; ... FH is given. And hence H is a given point.

85. (1) Suppose the polygon to be a \triangle . Let BCD be a \triangle ,

whose sides are parallel to three given lines EF, GH, IJ; and

let the loci of its angular points B, C, be right lines AB, AC. It is required to prove that the locus of D is a right line.

Dem.-Join AD. Produce CA to meet EF in F.

Now the \angle BCA = FEA; ... BCA is a given \angle , and the \angle BAC is given, since the lines AB, AC are given in position; hence the \triangle ACB is given in species; ... the ratio AC: CB is given.

Similarly, the ratio BC:CD is given; ... the ratio AC:CD is given, and the \angle ACD is given; hence the \triangle ACD is given in species; ... the \angle CAD is given, and the line AC is given in position; therefore the line AD is given in position. Hence the line AD is the locus of D.

(2) Let the polygon be the quadrilateral ABCD, having its sides parallel to four given lines, and the loci of the ∠s A, B, D right lines.

Dem.—Let the loci of A, B meet in E. Produce DA, CB to meet in F. Join EF.

Now AFB is a \triangle , whose three sides are parallel to three given lines, and the loci of A, B are right lines. Hence (1) the locus of **F** is the line EF, which is therefore given in position.

Again, DFC is a \triangle , having its sides parallel to three given lines, and having straight lines for the loci of D and F. Hence—(1) the locus of C is a right line. In like manner it can be proved for a figure of any number of sides.

86. Let BAC be a \triangle whose vertical \angle BAC, and its bisector AD, are given. It is required to prove that $\frac{1}{AC} + \frac{1}{AB}$ is given.

Dem.—Describe a \odot about ABC. Produce AD to meet the circumference in E. Join EC, and let fall a \bot EF on AB.

Now $AF = \frac{1}{2} (AB + AC)$ (III. xxx., Ex. 4). And since the \angle BAC is bisected by AE, FAE is a given \angle , and the \angle AFE is right; ... the \triangle AFE is given in species; ... $\frac{AF}{AE}$ is given; $\frac{AB + AC}{AE}$ is given, and AD is given (hyp.); ... $\frac{AB + AC}{AD \cdot AE}$ is given. Again, the \angle ABC = AEC (III. xxi.), and BAD = CAE; ... the \triangle s BAD, CAE are equiangular; ... AB: AD:: AE: AC; hence AB. AC = AD. AE; ... $\frac{AB + AC}{AB \cdot AC}$ is given; that is, $\frac{AB}{AB \cdot AC} + \frac{AC}{AB \cdot AC}$ is given. Hence $\frac{1}{AC} + \frac{1}{AB}$ is given.

87. (1) Let the polygons be the Δ^s A'B'C', ABC. Bisect the arcs A'B', B'C', C'A' in the points D, E, F. Join A'D, DB', B'E, EC', C'F, FA'. This hexagon is the corresponding polygon of double the number of sides. It is required to prove that the hexagon is a geometric mean between the Δ^s ABC, A'B'C'.

Dem.—Join AO, A'O, BO, B'O, CO, C'O. Let OC intersect A'B' in N.

Now we have the \triangle OB'C: OB'D:: OC: OD (1.), and OB'D: OB'N:: OD: ON; but OC: OD:: OD: ON; hence OB'C: OB'D:: OB'D: OB'N; that is, the \triangle OB'D is a geometric mean between the \triangle ⁸ OB'C, OB'N; but the hexagon is six times OB'D, ABC six times OB'C, and A'B'C' six times OB'N. Hence, denoting the areas by P, P', π , we see that π is a geometric mean between P and P'.

(2) At the points D, E, F draw tangents to the ⊙; the figure,

whose sides are those tangents, and the parts cut off by them from the sides AC, CB, BA, is a circumscribed polygon of double the number of sides.

Dem.—Join OK. Now, since A'C' is parallel to OK, AO: OA': AK: KC; but OA' = OE, ... AO: EO:: AK: KC'. Again (1.), the \triangle AOC': EOC':: AO: EO, and AKE: EKC':: AK: KC'; ... AOC': EOC':: AKE: EKC'. Now consider the figures AOC', OEKC', and OEC'. AOC' is the first, OEC' the third, and OEKC' the second; and we have shown AOC': EOC':: AKE: EKC'; that is, the 1st: 3rd:: (1st - 2nd): (2nd - 3rd); ... OEKC' is a harmonic mean between OEC' and AOC'; but OEKC' is $\frac{1}{6}$ of π ', OEC' is $\frac{1}{6}$ of π , and AOC' $\frac{1}{6}$ of P'. Hence π ' is a harmonic mean between π and P'. In the same manner the proposition may be proved for a polygon of any number of sides.

88. Lemma.—If upon the base BC of a \triangle ABC two equilateral \triangle ⁸ BCE, BCE' be described on opposite sides, and their vertices E, E' joined to A, then (1) if S denote the area of ABC, \triangle AE'2— \triangle = 4 S $\sqrt{3}$; (2) \triangle = \triangle AB'2 + \triangle CA'2.

- (1) Dem.—Join EE', intersecting BC in O. Join AO, and draw AM, AN perpendicular to BC, EE'. Now AE² AE'² = EN² NE'² = 4EO . ON = $4\sqrt{3}$. OC . ON; but OC . ON = area of the \triangle ABC = S; ... AE² AE'² = $4\sqrt{3}$. S.
- (2) AE^{2} + AE'^{2} = 2 AO^{2} + 2 AE^{2} = 2 AO^{2} + 6 OC^{2} . Again, AB^{2} + AC^{2} = 2 AO^{2} + 2 OC^{2} , and BC^{2} = 4 OC^{2} ; ... AB^{2} + BC^{2} + CA^{2} = 2 AO^{2} + 6 OC^{2} . Hence AE^{2} + AE'^{2} = AB^{2} + BC^{2} + CA^{2} .

Let ABC be the Δ; G, H, J the circumcentres of the equis 2 lateral Δ^s constructed outwards on its sides. Join AG, AJ; BG, BH; CJ, CH; and GH, HJ, JG.

Now the L EBH = ABG, because each is half an L of an

equilateral \triangle ; to each add HBA, and we have the \angle EBA = HBG.

Again, $EB^2 = 3 BH^2$, and $AB^2 = 3 BG^2$; ... EB : BA :: BH :: HG. Hence the \triangle ⁵ EBA, HBG are equiangular; ... $EB^2 : EA^2 :: BH^2 : HG^2$; but $EB^2 = 3 BH^2$; ... $EA^2 = 3 GH^2$.

In like manner it may be proved, if G', H', J' be the circumcentres of the equilateral Δ^s constructed inwards on the sides of ABC, that $AE'^2 = 3$ G'H'². Hence $AE^2 - AE'^2 = 3$ (GH² - G'H'²).

Again, denoting the areas of the equilateral \triangle GHJ, G'H'J'

by
$$\Sigma$$
, Σ' , we have $\Sigma = \frac{GH^2\sqrt{3}}{4}$, $\Sigma' = \frac{G'H'^2\sqrt{3}}{4}$; $\therefore 4\sqrt{3} (\Sigma - \Sigma')$

= 3 (GH² - G'H'²); but
$$4\sqrt{3}$$
 S = AE² - AE'² (Lemma);
 $\therefore \Sigma - \Sigma' = S$.

- 89. From last demonstration we have $AE^2 + AE'^2 = 3(GH^2 + G'H'^2)$; but $AE^2 + AE'^2 = AB^2 + BC^2 + CA^2$ (Lemma); $\therefore 3(GH^2 + G'H'^2) = AB^2 + BC^2 + CA^2$, or the sum of the squares of the sides of the two equilateral \triangle ⁵ GHJ, G'H'J' is equal to the sum of the squares of the sides of the \triangle ABC.
- 90. (1) Let ABC be a regular polygon of three sides, the radii of whose circumscribed and inscribed \odot ^s are denoted by R, r; A'B'C'D'E'F' a regular polygon of the same area, and double the number of sides, the radii of whose circumscribed and inscribed \odot ^s are R', r'. It is required to prove that $R' = \sqrt{Rr}$.

Dem.—Join OA (R), O'A' (R'), and let fall a \perp OI (r) on AB. Produce OI to meet the \odot in D. Join AD, B'D, O'B'. Now (1.) the \triangle OAD : OAI :: OD : OI ; that is, as R : r; but OAI

= 0'A'B'; ... OAD: O'A'B':: R:r; but (xix.) OAD: O'A'B':: OA²: O'A'²; that is, as R²: R'²; hence R:r:: R²: R'²; ... RR'² = R²r; ... R'² = Rr. And hence R' = \sqrt{Rr} .

(2) It is required to prove that
$$r' = \frac{\sqrt{r(R+r)}}{2}$$
.

Dem.—Join OA. Let fall a ⊥ OI on AB, and produce it to meet the ⊙ in D. Through D draw a tangent MK, and produce OA to meet it. Through A, B draw tangents LS, MN. Bisect the arcs AC, BC, and at the points of bisection and at C draw tangents SR, NQ, RQ. Join OL.

Now OA: OI:: OK: OD; but OK: OD:: KL: LD; ... OA: OI:: KL: LD; that is, R: r:: KL: LD; ... (R+r): r:: KD: LD; and KD: LD:: \triangle OKD: OLD; ... (R+r): r:: OKD: OLD; ... (R+r) r: $2r^2$:: OKD: 2 OLD, or OALD. Again (xix.), r^2 : R^2 :: OAI: OKD. Hence, multiplying these proportions, we get (R+r) r: 2 R^2 :: OAI: OALD; but OAI: OALD:: ABC: LMNQRS; that is, OAI: OALD:: A'B'C'D'E'F': LMNQRS; that is, as r'^2 : R^2 ; ... (R+r) r: 2 R^2 :: r'^2 : R^2 ;

$$\therefore (\mathbf{R}+r) r = 2 r'^2. \quad \text{Hence } r' = \sqrt{\frac{(\mathbf{R}+r) r}{2}}.$$

In the same way the proposition may be proved for a polygon of any number of sides.

91. Dem.—Let fall a ⊥ CE on AB; then CE = AB (hyp.). Describe a ⊙ about ABC, and produce CE to meet it in G. Let •O be the orthocentre. Cut off BF = OE. Bisect AB in D. Join

OD. Now since BF = OE, and AB = CE, \therefore AF = CO. Now AF. FB + DF² = DB² (II. v.); that is, CO. OE + DF² = DB². Again, AE. EB + DE² = DB²; \therefore CE. EG + DE² = DB²; \therefore CE. EO + DE² = DB²; \therefore CO + OE) EO + DE² = DB²;

... CO . EO + EO² + DE² = DB²; ... CO . EO + OD² = DB²; ... OD² = DF²; ... OD = DF, and OE = FB (const.) Hence OD + OE = DF + FB = DB.

92. Let ABC be any \triangle . Describe a \bigcirc about ABC. Draw the diameter EF \bot to AB. Join CE, CF; these are the internal and external bisectors of the \angle ACB. Produce FC, AB to meet in G. Let fall a \bot CH on AB; it is evident that the \bigcirc on DG as diameter will be the locus of C when the base and ratio of the sides are given. Let O, O' be the centres. Join OC, O'C. It is required to prove that $AC^2 - CB^2 : 4$ times area :: OC: O'C.

Dem.—Through O draw OI || to AB.

Now the \(\alpha \) FOC = 2 FEC (III. xx.); but FOC = OCI :

... GCI = 2 FEC, and CO'D = 2 CGD. Now the \angle KDE = CDG. and DKE = DCG, ... KED = CGD, ... OCI = CO'H, and the right \angle OIC = CHO'; ... the \triangle ° OCI, O'CH are equiangular;

.. OC: O'C:: OI: CH; that is, OC: O'C:: KH: CH. Again, $AC^2 - CB^2 = AH^2 - BH^2 = (AH + HB) (AH - HB) = 2AK \cdot 2KH = 4AK \cdot KH$; but area of $ABC = AK \cdot CH$, ... four times area = $4AK \cdot CH$; hence $AC^2 - CB^2 : 4$ times area :: KH : CH; but KH : CH :: OC : O'C. Hence $AC^2 - CB : 4$ times area :: OC : O'C.

Lemma.—To construct a parallelogram, being given the diagonals and one of the angles.

Sol.—Let AB, CD be the diagonals, and E one of the angles.

On CD describe a segment CFD containing an \angle equal to E. Bisect CD in G. With G as centre, and a radius equal to $\frac{1}{2}$ AB, describe a \bigcirc , cutting CFD in F. Join FG, and produce it to H. Cut off GH = GF. Join CF, DF, CH, DH. CFDH is the required parallelogram; for it has the \angle CFD = E, and its diagonal FH = AB.

93. Let BAC be one of the \angle s, and AB the difference between its diagonals.

Sol.—Erect BC \perp to AB; to AC apply a parallelogram ACED equal to four times the given area, and having BAC one of its angles. Bisect BD in F. Construct a \square AHIG, having one of its diagonals, AI = AF, and the other, HG = FD, and the \angle BAC for one of its angles (*Lemma*). AHIG is the required parallelogram.

Dem.—Through I draw IJ \parallel to HG, and let fall a \perp IK on AD.

Now AI² = AG² + GI² + 2AG . GK (II. xII.), and (II. xIII.) IJ² = JG² + GI² - 2JG . GK = AG² + GI² - 2AG . GK : ... AI² - IJ² = 4AG . GK. Again, AB = AF - FD, and AD = AF + FD, .. AB . AD = AF² - FD²; but AF = AI, and FD = IJ, .. AF² - FD² = AI² - IJ²; .. AB . AD = 4AG . GK . Again, since the \triangle ⁸ ABC, GKI are equiangular, we have AB : BC

:: GK: KI, ... AB. AD: BC. AD:: 4AG. GK: 4AG. KI; hence BC. AD = 4AG. KI. Now BC. AD = \square AE, and 4AG. KI = 4 times \square AI, ... \square AE = 4 times \square AI; but AE = 4 times the given area (const.). Hence AI is equal to the given area.

94. Let A, B be the centres of two equal ⊙, C the centre of a variable ⊙, which is touched externally by A in D, and

internally by B in E. Let O be the point of intersection of two transverse tangents PQ, RS. From C let fall \perp s CK, CK' on PQ, RS. It is required to prove that OK. OK' is constant.

Dem.—Join CB, and produce it to E. Join CA. Describe a \odot passing through the points C, A, B. Draw the diameter FG, passing through O, \bot to AB. Let fall a \bot CH on FG.

Produce CK, and draw HM | to PQ. Let fall a \(\pm \) HL on PQ. Join BN, and let the sides BN, ON, OB of the \triangle ONB be denoted by a, b, c.

Now AC = AD + DC, and BC = CE - BE, $\therefore AC - BC = 2AD$, ... AD = $\frac{1}{2}$ (AC - BC); that is, $a = \frac{1}{2}$ (AC - BC); hence (IV. Ex. 16) $a^2 = OF \cdot GH$; and since AB is bisected in O, AO = OB, and AO.OB=OF.OG, ... OB²; that is, e^2 =OF.OG, and ... ON²; that is, $b^2 = OF \cdot OH$. Now since the \triangle ^s ONB, HMC are equiangular, and that HM = LK, we have c : b :: HC : LK;

...
$$LK = \frac{b \cdot HC}{c}$$
. In like manner $OL = \frac{a \cdot OH}{c}$;
... $OK = \frac{b \cdot HC}{c} + \frac{a \cdot OH}{c}$.
 $OK' = \frac{\cdot HC}{c} - \frac{a \cdot OH}{c}$;

Similarly,

$$\therefore \text{ OK . OK'} = \frac{b^2 \cdot \text{HC}^2}{c} - \frac{a^2 \cdot \text{OH}^2}{c^2} = \frac{\text{OF . OH . FH . HG} - a^2 \cdot \text{OH}^2}{c^2}$$

$$= \frac{a^2 \cdot \text{OH . FH} - a^2 \cdot \text{OH}^2}{c^2} = \frac{a^2 \cdot \text{OH (FH} - \text{OH})}{c^2} = \frac{a^2 \cdot b^2}{c^2};$$

but a^2 is constant, since a is the radius of the circle, and c^2 is constant, because c is half the base of the \triangle ACB; $\therefore \frac{a^2b^2}{c^2}$ is Hence OK . OK' is constant. constant.

95. Analysis.—Let ABC be a A whose base AB is given in magnitude and position, and vertical \(\text{C} \) is given in magnitude, and P the given point in AB, whose distance CP from the vertex

Describe a \odot about the \triangle ACB. is equal to $\frac{1}{2}$ (AC + CB). Bisect the \(\text{ACB by CD.} \) Let fall a \(\pm \text{DE on AB} \); then, because AB and the \(\alpha \) ACB are given, the \(\O \) is given; and since the \angle ACB is bisected by CD, the arc AB is bisected in D; hence D is a given point. Again, because the \angle ACB is given, its half, the \angle DCE, is given, and the \angle DEC is right; hence the \triangle DCE is given in species, ... the ratio of DC: CE is given; but CE = CP, because each is equal to $\frac{1}{2}$ (AC + CB); hence the ratio of DC: CP is given, and the points D, P are given. Hence the locus of the point C is a circle; and therefore the point C, where this locus cuts the \bigcirc ACB, is given.

96. Let O be the middle point of the base. F, H the points of contact of AB, AC with the O. Join OF, OH. Produce FO to

meet the \odot in G. Join CG; then, since OC = OB, and OG = OF, and the \angle COG = BOF, CG is equal to BF, and the \angle OGC = OFB, and is therefore a right \angle ; hence CG is a tangent. Again, because the \angle AOC is right, and OH is \bot to AC, AH . HC = OH²; but AH = AF, and HC = CG; hence AF. CG = OH². In like manner, if I be the point of contact of DE with the circle, DF. JG = OI²; but OH² = OI², ... AF. CG = DF. JG; hence AF: DF:: JG: CG, ... AD: DF:: JC: CG; ... AD: JC:: DF: CG or FB; but, by similar \triangle ⁸, AD: JC:: AE: EC, ... AE: EC:: DF: FB; hence, componendo, AC: CE:: DB: FB; hence AC. BF = BD. CE; but AC and BF are each given; ... the rectangle BD. CE is given.

97. Let AB equal half the sum of the opposite sides, and the area equal the rectangle ABCD.

Sol.—Join BD, and in the ⊙ place EF = BD. At the point F in EF make the ∠ EFG = ABD. Join EG, and draw EH || to FG. EHFG is the required trapezium.

Dem.—From the centre O let fall a \perp OI on FG, and produce it to meet EH in J. Let fall a \perp EK on FG. Produce EH, and draw FL parallel to EK. Because EF = BD, and the \angle EFK.

= DBA, and the right \angle EKF = DAB, \therefore FK = AB, \therefore 2AB = 2 IF + 2 IK; that is = FG + EH. Again, the \angle ⁸ EGF and EHF equal two right \angle ⁸, and EHF, LHF equal two right \angle ⁸; \therefore EGK = LHF, and the right \angle EKG = HLF, and the side EK = FL; \therefore the \triangle ⁸ EGK, FLH are equal. To each add the figure EHFK, and EHFG = ELFK. Hence EHFG = ABCD.

98. Analysis.—Let the polygon be the \triangle ABC, whose sidespass through the points D, E, F. Join EF, and produce it.

Through B draw BH || to EF. Join AH, and produce it to meet EF in G. Now the \angle GAC = HBC (III. xxI.), and HBC = GEC (I. xxIX.), ... GEC = GAC; ... GAEC is a cyclic quadrilateral,

.. EF.FG = AF.FC; but AF.FC is given; .. EF.FG is given, and EF is given; hence G is a given point Join GD, and produce it. Through H draw HJ || to GD. Join JB. Now the \angle AHJ = ABJ, and AHJ = AGI, .. ABJ = AGI, .. AGBI is a cyclic quadrilateral; hence GD.DI = AD.DB, and is therefore given; but GD is given, .. DI is given, and I is a given point; and since JH, BH are respectively parallel to IG, EG, the \angle JHB = IGE; but IGE is given, since the lines IG, EG are given in position, .. the \angle JHB is given, .. the arc JB is given, .. the chord JB is given, and we have shown that I is a given point. Hence the question reduces to III. xv., Ex. 2. Similarly for a polygon of any number of sides.

99. Let the $\bigcirc^{\mathfrak{g}} X$, Y be so related that the rectangle contained by the diameter of X, and the radius of Y, is equal to the rectangle contained by the segments of any chord of X passing

through the centre of Y; then, if from any point in the circumference of X we draw tangents CA, CB to Y, and join AB, it is required to prove that AB touches Y.

Dem.—Let O be the centre of Y. Join CO, and produce it to meet X in E. Through E draw EF the diameter of X. Join BE, BF, BO. Join O to G, the point of contact, and let fall a \bot OH on AB. Now the \angle EFB = ECB (III. xxi.), and the right \angle EBF = OGC, \therefore the \triangle ⁵ EFB, OCG are equiangular; \therefore EF: EB: OC: OG, \therefore EF. OG = EB. OC; but (hyp.) EF. OG = OC. OE, \therefore EB = OE, \therefore the \angle EOB = EBO, \therefore EBO = OCB + OBC; that is, EBA + ABO = OCB + OBC; that is, ACE + ABO = OCB + OBC; but ACE = OCB; \therefore ABO = OBC, and the right \angle OHB = OGB, and the side OB common, \therefore OH

= OG; but OG is the radius, ... OH is the radius; and hence AB touches Y. Similarly, wherever we take the point in the circumference of X, and draw tangents to Y, the base will touch Y.

Lemma.—If any point A is taken in the circumference of a \odot , and A joined to O, the centre of another \odot ; and if we divide AO in C, so that OA . OC = r^2 , r being the radius of O. It is required to prove that the locus of C is a \odot .

Dem.—Suppose one © inside the other. Let O' be the centre of the larger ©. Produce AO to meet O' in D. Join DO', OO', and produce OO' to meet O' in E, F. Through C draw CG || to DO'.

Now OA.OC = r^2 , and OA.OD = OE.OF, ... OD : OC :: OE.OF: r^2 ; but the ratio OE.OF: r^2 is given, since r is the

radius of a given \odot , and OE.OF is a given rectangle, ... the ratio OD:OC is given; and because the \triangle s ODO', OCG are equiangular, OD:OC::OO':OG, ... the ratio OO':OG is given; but OO' is given, ... OG is given; hence G is a given point. Again, OD:OC::O'D:GC, ... the ratio O'D:GC is given; but O'D is given, since it is the radius of a given \odot ; ... GC is given, and we have shown that G is a given point. Hence the locus of C is a circle.

Def.—The point C is called the *inverse* of the point A, and the \odot through C the *inverse* of the \odot through A with respect to the \odot through B.

100. Let G, H, J be the points where Y touches the sides of the \triangle ABC. Join HG, GJ, JH. It is required to prove that the \bigcirc inscribed in the \triangle GHJ touches a given circle.

Dem.—Join OA, OB, OC, cutting JH, HG, GJ in L, M, N. Then since L, M, N are the middle points of the sides of the \triangle GHJ, the \bigcirc through these points will be the nine-points \bigcirc of GHJ, and will (Ex. 31) touch its inscribed \bigcirc . Again, the \bigcirc through LMN will evidently be the inverse of X with respect to Y (*Lemma*), and will be a given \bigcirc . Hence the inscribed \bigcirc of the \triangle GHJ touches a given circle.

101. See "Sequel," Book VI., Prop. xII., Sect. iv., Cor. 2.

102. Sol.—Let A, B, C be the given points; join them, and on AB, AC describe segments of \odot ^s containing \angle ^s equal to onethird of four right \angle ^s. Let them intersect in D. D is the point required.

Dem.—Join AD, BD, CD; and through D draw EF \perp to CD. Now the \angle ADC = BDC, and EDC = FDC; \therefore ADE = BDF; hence ("Sequel," Book I., Prop. xxi., Cor. 1) the sum of AD

and DB is a minimum; and CD, being a \perp , is less than any other line from C to EF. Hence the sum of the lines AD, BD, CD is a minimum.

103. Let AB, AC be the tangents, and O the centre. Join BC. Join AO, cutting BC in F. Through A draw AD, cutting the O in E, D, and BC in H. It is required to prove that AD is divided harmonically.

Dem.—Join OC, OD, OE, OF. Join DF, and produce it.
Now (I. xlvii., Ex. 1) AO. OF = OC² = OD²; ... AO: OD
:: OD: OF, and the ∠ AOD common; hence (vi.) the ∠ ADO

= OFD; but because OD = OE, the \angle ODE = OED; ... OFD = OED; ... OFED is a cyclic quadrilateral; ... the \angle ^s EDO and EFO equal two right \angle ^s; but the \angle ^s EFO, EFA equal two right \angle ^s; ... EFA = EDO, and EDO = OFD; ... EFA = OFD, and AFB = OFB; ... DFH = AFH; hence the \angle EFD is bisected internally, and the \angle OFD = AFG, and OFD = EFA; ... EFA = AFG. Hence EFD is bisected externally, and therefore ED (111., Ex. 3) is divided harmonically in the points H, A.

104. Let A, B, C, D be the four points, and EFGH the given quadrilateral. It is required to construct a quadrilateral similar to EFGH whose sides shall pass through the points A, B, C, D.

Sol.—Join AB, and on it describe a segment AIB, containing an angle equal to FEH. Join CD, and on it describe a segment

CJD, containing an angle equal to FGH. Join EG. At the point A in AB?make the \(\text{BAL} = FEG; \) and at the point

D in DC make the \angle CDK = EGF. Join KL, and produce it to meet the \bigcirc ⁸ in I, J. Join IA, IB, and produce. Join JC, JD, and produce. INJM is the required quadrilateral.

Dem.—For the \angle BIL = BAL = FEG, and the \angle CJK = CDK = EGF; ... the \triangle ⁸ INJ, EFG are similar. And because the \angle BIA = FEH, ... MIJ = HEG. Similarly, MJI = HGE, ... the \triangle ⁸ MIJ, HEJ are similar. Hence the quadrilaterals are similar.

105. Let ABCD be the given quadrilateral, and EF, FG, GH, HE the given lines.

Sol.—Construct the quadrilateral E'F'G'H' similar to EFGH, whose sides pass through the points A, B, C, D (103). Divide EF in A', so that EA': A'F:: E'A: AF'; and divide EH in B',

so that EB': B'H:: E'B: BH'; and similarly for the other sides. Join A'B', B'C', C'D', D'A'. It is evident that A'B'C'D' is similar to ABCD.

106. Let AB be the base, and DCE the difference of the base angles.

Sol.—Bisect AB in F. Draw BG, making the \angle FBG = DCE, and the rectangle FB. BG equal to the rectangle under the sides. Join FG. Bisect the \angle BFG by FH, and make FH a mean proportional between FG and FB. Join AH, BH. ABH is the required triangle.

Dem.—Produce HF to I, so that IF = FH. Through G draw $GJ \parallel$ to HI, and produce BA to meet it. Join IJ, IB, GH. Now (I. xxix.) the \angle HFB = GJF, and GFH = FGJ; but HFB = GFH (const.), ... GJF = FGJ, and ... FG = FJ. Now the \angle GHI = JIH. To each add HGJ, and we have GHI + HGJ = JIH + HGJ; ... JIH + HGJ are equal to two right \angle ⁸; hence HIJG is a

eyclic quadrilateral. And since $FG \cdot FB = FH^2$ (const.), and FG = FJ, and $FH^2 = FH \cdot FI$, ... $FJ \cdot FB = FM \cdot FI$; ... JIBH

is a cyclic quadrilateral. Hence the five points F, I, B, H, G are in a circle. Now the ∠ HBG = IBJ; but IBJ = BAH; ∴ HBG = BAH; ∴ FBG, that is DCE, is the difference between HAB and HBA. Again, the △^S IBF, GBH are equiangular; ∴ IB: BF:: GB:BH; ∴ IB.BH = BF.BG; that is, AH.BH = BF.BG. This construction is due to HAMILTON.

107. Let the line EF produced meet AB produced in G; cut off GH = EG. Join EH, and let fall the \bot EN. Now since (hyp.) the \angle AEF = EAB, the \triangle AEG is isosceles; \therefore AG = EG,

and EG = GH; hence the \angle AEH is right, \therefore AN . NH = EN²; but EN = 2 AN; since CD is bisected, \therefore NH = 2 EN = 2 AB, \therefore AH = $\frac{5 \text{ AB}}{2}$; hence AG = $\frac{5 \text{ AB}}{4}$; \therefore BG = $\frac{\text{AB}}{4}$. Hence EC = 2 BG; \therefore CF = 2 FB.

108. Let C be a fixed point in the diameter AB; DE a chord passing through C. Join AD, AE. At B draw FG a tangent to the \odot , and produce AD, AE to meet it in F and G. It is required to prove that BF. BG is constant.

Dem.—Through C draw HI \parallel to BG, meeting AF, AG in I, H. Join BE, BH. Now the \angle BCH is right, and BEH is right, ... CBEH is a cyclic quadrilateral, ... the \angle BEC = BHC; but BEC = BAD (III. xxi.), ... BHC = BAD, ... the four points B, H, A, I are concyclic; hence IC.CH = AC.CB; and because the \triangle ⁸ ACI, ABF are equiangular, AC:AB::IC:BF; and since the \triangle ⁸ ACH, ABG are equiangular, we have AC:AB::CH:BG, ... AC²:AB²::IC.CH:BF.BG;

that is, $AC^2:AB^2::AC.CB:BF.BG$; but the first three terms of this proportion are constant. Hence the fourth, BF.BG, is constant.

109. Let O, O' be the centres of the ⊙s, and C the point of contact.

Dem.-Join 00', and produce it; 00' must pass through C.

Let E, D be the other points in which it meets the \bigcirc ⁸. Join AD, BD, AE, BE, and let AE, BE meet B'D, A'D in F, G. Now each of the \angle ⁸ CBE, CB'D is right (III. xxxi.); ... BG is || to B'D, and BB' = GD. In like manner AA' = GE, ... AA'² + BB'² = GE² + GD² = DE²; but DE² is constant, since it is equal to the square of the difference of the diameters. Hence $AA'^2 + BB'^2$ is constant.

110. Let d be the point of intersection.

Dem.—Join aa', $b\bar{b}'$; those lines must pass respectively through

the centres o', o (hyp.). Now the sides of the \triangle bdb' are cut by ec' in the points c, o, c'; hence (vi., Ex. 5),

$$\frac{dc}{cb} \cdot \frac{bo}{ob'} \cdot \frac{b'c'}{c'd} = 1 \; ; \; \text{ but } bo = ob'; \; \cdot \cdot \cdot \frac{dc}{cb} \cdot \frac{b'c'}{c'd} = 1 \; ; \; \cdot \cdot \cdot \frac{dc}{cb} = \frac{c'd}{b'c'}.$$

In like manner, from the \triangle ada', we get

$$\frac{dc}{ca} = \frac{dc'}{a'c'}, \cdot \cdot \cdot \frac{ca}{cb} = \frac{a'c'}{b'c'};$$

that is, ac:cb::a'c':b'c'. Hence ab:cb::a'b':b'c'.

111. "Sequel," Diagram, p. 32. By "Sequel," Prop. VIII., Cor. 3, p. 32, we have AB. QR = EP². Similarly AB, multiplied by the diameter of the © touching EP, the semicircle ACB, and the semicircle on AP as diameter, is equal to EP². Hence the ©³ are equal.

112. Let P be the given point, AB the chord, and CA, CB the tangents.

Dem.—Let O be the centre. Join OA, OB, OP, OC, PE. Bisect OP in D. Join DE.

Now because OA = OB, OC common, and the base CA = CB, the $\angle AOC = BOC$; and since AO = BO, OE common, and

the \angle AOE = BOE, the base AE = BE. Now AO² = AE² + EO²; but (I. xII., Ex. 2) the lines AE, EB, EP are equal, \therefore AO² = OE² + EP² = 2OD² + 2DE² (II. x., Ex. 2);

but AO^2 is given, $\therefore 2 OD^2 + 2 DE^2$ is given, and $2 OD^2$ is given, since OP is given, \therefore DE is given, and D is a fixed point. Hence the locus of E is a \bigcirc , having D as centre, and DE as radius. Now (I. XLVII., Ex. 1) CO . OE = $OA^2 = R^2$; \therefore C, E are inverse points with respect to the \bigcirc ABF, and it has been shown that the locus of E is a \bigcirc . Hence the locus of C is a circle.

113. Let ABC be a △, O the centre of the inscribed ⊙, and

D the point in which the O touches AB. Join CO, and produce

it. CO is the bisector of the \angle ACB. From A let fall a \bot AE on CF, and produce it to meet CB in H, and from B let fall a \bot BF on CF. It is required to prove that AD . DB = AE . BF.

Dem.—Join OD. Bisect AB in G. Join EG, and produce it to meet BF in I. Join FG. Let the sides of the \triangle ABC be denoted by a, b, c, and we have (IV. iv., Ex. 2) BD = (s-b), AD = (s-a), \therefore BD - AD; that is, 2 GD = (a-b). Now since the \angle ECH = ECA, and the right \angle CEH = CEA, and the side EC common, \therefore CH = CA, \therefore CB - CA = BH; that is (a-b) or 2 GD = BH = 2 GE; \therefore GD = GE. In like manner GD = GF, and GD = GI; hence the lines GE, GD, GF, GI are equal, and the \bigcirc , with G as centre, and GD as radius, will pass through E, F, I. Let it cut BD in K. Now (III. xxxvi.) BD. BK = BF. BI. But since AG = GB, and DG = GK, AD = KB. Also BI = HE = AE. Hence BD. AD = BF. AB.

114. See "Sequel," Book VI., Prop. x., Sect. i., Cor. 1.

115, See "Sequel," Book VI., Prop. x., Sect. i., Cor. 2.

116. Analysis.—Let P be the required point. Join AP, BP, CP, DP. Now (hyp.) the \angle APC is bisected, \therefore AB: BC: AP: CP (III.); but the ratio AB: BC is given, \therefore AP: CP

is given, and the base AC is given; hence (III., Ex. 6) the locus of P is a circle. Similarly for the \triangle BPD, the locus of P is another \bigcirc . Hence the point in which these \bigcirc s intersect is the point required.

117. Let \triangle BC be a \triangle whose sides are denoted by a, b, c. Bisect the \angle ACB by CD, and let CD be denoted by \triangle . Now (III.) we have a:b::BD:DA; \therefore (a+b):b::BA:AD; that is (a+b):b::c:AD; \therefore AD = $\frac{bc}{a+b}$ Similarly, BD = $\frac{ac}{a+b}$. \therefore BD . DA = $\frac{abc^2}{(a+b^2)}$; but ab=BD. DA + CD² (xVII., Ex, 1);

In like manner, denoting the bisectors of the angles A, B by α . β respectively, we have

$$a^2 = \frac{4 \ bc \cdot s \cdot s - a}{(b+c)^2}$$
, and $\beta^2 = \frac{4 \ ca \cdot s \cdot s - b}{(c+a)^2}$;

hence

$$-a^2\beta^2\gamma^2 = \frac{64 \ a^2b^2c^2 \cdot s^2 \ (s \cdot s - a \cdot s - b \cdot s - c)}{(a+b)^2 \ (b+c)^2 \ (c+a)^2} = \frac{64 \ a^2b^2c^2 \cdot s^2 \cdot (area)^2}{(a+b)^2 (b+c)^2 (c+a)^2}$$

Hence,
$$\alpha\beta\gamma = \frac{8 abc \cdot s \cdot \text{area}}{(a+b) (b+c) (c+a)}.$$

118. Let Aa', Bb', Cc' be the bisectors of the $\angle \cdot \cdot$; then (III.) we have c:a::Ab':b'C; $\therefore c:c+a::Ab':b$; $\therefore Ab'=\frac{bc}{c+a}$.

In like manner, $Bc' = \frac{ca}{a+b}$, and $Ca' = \frac{ab}{b+c}$; ... Ab'. Bc'. Ca'

$$= \frac{a^2b^2c^2}{(a+b)\ (b+c)\ (c+a)}.$$

119. Let ABC be a Δ . Draw any three lines Aa, Bb, Cc.

intersecting in D. Describe a O, passing through the points

a, b, c, and cutting the sides of the \triangle ABC in A', B', C'. It is required to prove that the lines AA', BB', CC' are concurrent.

Dem.—Now we have Ab cdot AB' = Ac cdot AC', Bc cdot BC' = Ba cdot BA', and Ca cdot CA' = Cb cdot CB'; ... (Ab cdot Bc cdot Ca) cdot (AB' cdot BC' cdot CA') = (aB cdot bC cdot cA) cdot (A'B cdot B'C cdot C'A); but Ab cdot Bc cdot Ca = aB cdot bC cdot cA (Ex cdot 4); ... AB' cdot BC' cdot CA' = A'B cdot B'C cdot C'A. And hence the lines AA', BB', CC' are concurrent.

120. Dem.—Describe a ⊙ about ABC. Let O be the centre. Join CO, and produce it to meet the circumference in D. Join DA, DB, and from A' let fall a ⊥ A'E on AB.

Now if we denote the sides by a, b, c, and the parts A'B, B'C, C'A, by x, y, z, we have (a-x) (b-y) (c-z) = AB'. BC'. CA', and xyz = A'B. B'C. C'A; $\therefore abc - (abz + bcx + cay) + ayz + bzx + cxy = AB'$. BC'. CA' + A'B. B'C. C'A. Again, since the Δ^s

BA'E, ACD are equiangular, we have BA': A'E:: CD: CA; that is (denoting CD by δ), $x: A'E:: \delta: b$; ... $bx = \delta . A'E$; ... $bx . BC' = \delta . A'E . BC' = \delta . 2 A'BC'$; that is, $bx (c - z) = \delta . 2 A'BC'$; $... (bcx - bxz) = \delta . 2 A'BC'$. In like manner $(cay - cyx) = \delta . 2 B'CA'$, and $(abz - axy) = \delta . 2 C'AB'$, and "Sequel," Book VI., Prop. v., Sect. i.) $abc = \delta . 2 ABC$; ... $abc - (bcx + cay + abz) + (ayz + bzx + cxy) = \delta . 2 A'B'C'$. Hence AB'. BC'. CA' + A'B. B'C. C'A = $\delta . 2 A'B'C'$.

121. Let A, B, C be the fixed points, and the given ratio that of 2:1.

Sol.—Take any point O. Join OA, and produce it to D, so that OA = 2 AD. Join DB, and produce to E until DB = 2 BE. Join

EC, and produce it to F, so that EC = 2 CF. Join OF, and divide it in G, so that OG = 8 FG. Join GA, and produce it; and through D draw DH \parallel to OG. Join HB, and produce it; and

through E draw EJ \parallel to DH. Join JC, GC. GHJ is the required \triangle .

Dem.—The \triangle^s OAG, DAH are equiangular; \therefore OA: AD: OG: DH; \therefore OG=2DH; but OG=8GF; \therefore DH=4GF. Similarly, from the \triangle^s BDH, BEJ we get DH=2JE; \therefore JE=2GF, and EC=2CF (const.), and the \angle JEC=GFC; hence (vi.) th \angle JCE=GCF, and therefore JC and GC are in the same straight line; and evidently the sides are divided in the points A, B, C in the given ratio. Similarly for any polygon of an odd number of sides, and for any given ratio.

122. Let ABCD be a cyclic quadrilateral whose third diagonal EF is a chord of another given \odot . Bisect EF in G. It is required to prove that the locus of G is a circle.

Dem.—Let O, O' be the centres. Join OG, O'G, O'E. From E, F draw tangents EH, FK to O. Join OH, OK, EO, FO, OO'.

Now $4 EG^2 + 4 GO'^2 = 4 EO'^2$; that is, $EF^2 + 4 GO'^2 = 4 EO'^2$; but $EF^2 = EH^2 + FK^2$ (III., Ex. 19), and $OH^2 + OK^2 = 2 OH^2$. Adding, we get $EO^2 + OF^2 + 4 GO'^2 = 4 EO^2 + 2 OH^2$; that is (II. x., Ex. 2), $2 EG^2 + 2 GO^2 + 4 GO'^2 = 4 EO'^2 + 2 OH^2$, and $2 EG^2 + 2 GO'^2 = 2 EO'^2$. Subtracting, we have $2 GO^2 + 2 GO'^2 = 2 EO'^2 + 2 OH^2$; ... $GO^2 + GO'^2 = EO'^2 + OH^2$; but EO'^2 and OH^2 are given; ... $GO^2 + GO'^2$ is given. Therefore OGO' is a Δ whose base is given, and the sum of the

squares of its sides. Hence (II. x., Ex. 3) the locus of G is a circle.

123. Let X, Y be the ⊙^s, and let AB, a chord of X, touch Y in C. Bisect the arc AB in D. Join DC. It is required to prove that DC passes through a given point.

Dem.—Join OO', and produce OO', DC to meet in E. E is the given point. Join OA, OB. Now OA = OB, OF common,

and the \angle AOF = BOF; hence the \angle AFO = BFO; ... the \angle AFO is right, and FCO' is right; ... OD is \parallel to O'C; hence

(11.) the \triangle s DOE, CO'E are equiangular; ... DO: CO':: OE: O'E; hence the ratio OE: O'E is given, ... the ratio OO': O'E is given; but OO' is given, ... O'E is given, and O' is a given point; ... E' is a given point.

124. Let ABC be a given triangle. From a point P, within it, let fall \bot * PD, PE, PF on the sides BC, CA, AB. Join DE, EF, FD, and let the area of DEF be given. It is required to prove that the locus of P is a circle.

Dem.—Join AP, BP, CP. Because each of the 2 AEP, AFP is right, AFPE is a cyclic quadrilateral. in G. G is the centre of the O. Similarly, BDPF, CDPE are cyclic quadrilaterals; and H, J, the middle points of BP, Cl', are the centres of their circumscribed Os. Join DH, HF, FG, GE, EJ, JD. Produce FG, and let fall a \(\pext{L EK on it.}\) Because AG = GP, the \triangle AGF = PGF; \therefore AFP = 2 PGF. In like manner, AEP = 2 EGP; hence the quadrilateral AFEP = 2 EGFP. Similarly, BFPD = 2 FHDP, and CDPE = 2 PDJE; hence the area of the figure EGFHDJ is given; but the area of FDE is given (hyp.); hence the sums of the areas EGF, FHD, DJE is given. Again, the \angle FGE = 2 FAE (III. xx), \therefore the ∠ FGE is given; ... the ∠ KGE is given, and the ∠ GKE is right; hence the A EGK is given in species; ... the ratio EG: EK is given; ... the ratio EG. FG: EK. FG is given; but EK. FG = 2 \triangle EGF, and EG. FG = FG²; ... the \triangle EGF has a given ratio to FG^2 , and FG^2 has a given ratio to AP^2 , since AP = 2 FG;

 $\therefore \frac{EGF}{AP^2}$ is given. Suppose it equal to l; hence $EGF = l \cdot AP^2$.

In like manner, FHD = $m \cdot BP^2$, and DJE = $n \cdot CP^2$; but we have shown that the sum of EGF, FHD, DJE is given; hence $l \cdot AP^2 + m \cdot BP^2 + n \cdot CP^2$ is given. And hence (*Lemma* to Ex. 60) the locus of P is a circle. Similarly, the proposition may be proved for a figure of any number of sides.

THE FIRST SIX BOOKS

OF THE

ELEMENTS OF EUCLID,

With Copious Annotations and Numerous Exercises.

BY

JOHN CASEY, LL.D., F.R.S.,

Fellow of the Royal University of Ireland; Vice-President, Royal Irish Academy; &c. &c.

Dublin: Hodges, Figgis, & Co. London: Longmans, Green, & Co.

OPINIONS OF THE WORK.

The following are a few of the Opinions received by Dr. Casey on this Work:—

- "Teachers no longer need be at a loss when asked which of the numerous 'Euclids' they recommend to learners. Dr. Casey's will, we presume, supersede all others."—The Dublin Evening Mail.
- "Dr. Casey's work is one of the best and most complete treatises on Elementary Geometry we have seen. The annotations on the several propositions are specially valuable to students."—The Northern Whig.
- "His long and successful experience as a teacher has eminently qualified Dr. Casey for the task which he has undertaken. . . . We can unhesitatingly say that this is the best edition of Euclid that has been yet offered to the public."—The Freeman's Journal.

From the Rev. R. Townsend, F.T.C.D., &c.

"I have no doubt whatever of the general adoption of your work through all the schools of Ireland immediately, and of England also before very long."

From George Francis Fitz Gerald, Esq., F.T.C.D.

"Your work on Euclid seems admirable, and is a great improvement in most ways on its predecessors. It is a great thing to call the attention of students to the innumerable variations in statement and simple deductions from propositions. . . . I should have preferred some modification of Euclid to a reproduction, but I suppose people cannot be got to agree to any."

From H. J. COOKE, Esq., The Academy, Banbridge.

"In the clearness, neatness, and variety of demonstrations, it is far superior to any text-book yet published, whilst the exercises are all that could be desired."

From James A. Poole, M.A., 29, Harcourt-street, Dublin.

"This work proves that Irish Scholars can produce Class-books which even the Head Masters of English Schools will feel it a duty to introduce into their establishments."

From Professor Leebody, Magee College, Londonderry.

"So far as I have had time to examine it, it seems to me a very valuable addition to our text-books of Elementary Geometry, and a most suitable introduction to the 'Sequel to Euclid,' which I have found an admirable book for class teaching."

From Mrs. Bryant, F.C.P., Principal of the North London Collegiate School for Girls.

"I am heartily glad to welcome this work as a substitute for the much less elegant text-books in vogue here. I have begun to use it already with some of my classes, and find that the arrangement of exercises after each proposition works admirably."

From the Rev. J. E. REFFE, French College, Blackrock.

"I am sure you will soon be obliged to prepare a Second Edition. I have ordered fifty copies more of the Euclid (this makes 250 copies for the French College). They all like the book here."

From the Nottingham Guardian.

"The edition of the First Six Books of Euclid by Dr. John Casey is a particularly useful and able work. . . . The illustrative exercises and problems are exceedingly numerous, and have been selected with great care. Dr. Casey has done an undoubted service to teachers in preparing an edition of Euclid adapted to the development of the Geometry of the present day."

From the LEEDS MERCURY.

"There is a simplicity and neatness of style in the solution of the problems which will be of great assistance to the students in mastering them. . . . At the end of each proposition there is an examination paper upon it, with deductions and other propositions, by means of which the student is at once enabled to test himself whether he has fully grasped the principles involved.... Dr. Casey brings at once the student face to face with the difficulties to be encountered, and trains him, stage by stage, to solve them."

From the Practical Teacher.

"The preface states that this book 'is intended to supply a want much felt by Teachers at the present day—the production of a work which, while giving the unrivalled original in all its integrity, would also contain the modern conceptions and developments of the portion of Geometry over which the elements extend.'

"The book is all, and more than all, it professes to be... The propositions suggested are such as will be found to have most important applications, and the methods of proof are both simple and elegant. We know no book which, within so moderate a compass, puts the student in possession of such valuable results.

"The exercises left for solution are such as will repay patient study, and those whose solution are given in the book itself will suggest the methods by which the others are to be demonstrated. We recommend everyone who wants good exercises in Geometry to get the book, and study it for themselves."

From the Educational Times.

"The editor has been very happy in some of the changes he has made. The combination of the general and particular enun ciations of each proposition into one is good; and the shortening of the proofs, by omitting the repetitions so common in Euclid, is another improvement. The use of the contra-positive of a proved theorem is introduced with advantage, in place of the reductio ad absurdum; while the alternative (or, in some cases, substituted) proofs are numerous, many of them being not only elegant but eminently suggestive. The notes at the end of the book are of great interest, and much of the matter is not easily accessible. The collection of exercises, 'of which there are nearly eight hundred,' is another feature which will commend the book to teachers. To sum up, we think that this work ought to be read by every teacher of Geometry; and we make bold to say that no one can study it without gaining valuable information, and still more valuable suggestions.'

From the Journal of Education, Sept. 1, 1883.

"In the text of the propositions, the author has adhered, in all but a few instances, to the substance of Euclid's demonstrations, without, however, giving way to a slavish following of his occasional verbiage and redundance. The use of letters in brackets in the enunciations eludes the necessity of giving a second or particular enunciation, and can do no harm. Hints of other proofs are often given in small type at the end of a proposition, and, where necessary, short explanations. The definitions are also carefully annotated. The theory of proportion, Book V., is This book has always appeared to given in an algebraical form. us an exquisitely subtle example of Greek mathematical logic, but the subject can be made infinitely simpler and shorter by a little algebra, and naturally the more difficult method has yielded place to the less. It is not studied in schools, it is not asked for even in the Cambridge Tripos; a few years ago, it still survived in one of the College Examinations at St. John's, but whether the reforming spirit which is dominant there has left it, we do The book contains a very large body of riders and not know. independent geometrical problems. The simpler of these are given in immediate connexion with the propositions to which they naturally attach; the more difficult are given in collections at the end of each book. Some of these are solved in the book, and these include many well-known theorems, properties of orthocentre, of nine-point circle, &c. In every way this edition of Euclid is deserving of commendation. We would also express a hope that everyone who uses this book will afterwards read the same author's 'Sequel to Euclid,' where he will find an excellent account of more modern Geometry."

A SEQUEL

TO THE

FIRST SIX BOOKS OF THE ELEMENTS OF EUCLID.

BY

JOHN CASEY, LL.D., F.R.S.,

Fellow of the Royal University of Ireland; Vice-President, Royal Irish Academy; &c. &c.

Dublin: Hodges, Figgis, & Co. London: Longmans, Green, & Co

EXTRACTS FROM CRITICAL NOTICES.

"NATURE," April 17, 1884.

"We have noticed ('Nature,' vol. xxiv., p. 52; vol. xxvi., p. 219) two previous editions of this book, and are glad to find that our favourable opinion of it has been so convincingly indorsed by teachers and students in general. The novelty of this edition is a Supplement of Additional Propositions and Exercises. This contains an elegant mode of obtaining the circle tangential to three given circles by the methods of false positions, constructions for a quadrilateral, and a full account—for the first time in a text-book-of the Brocard, triplicate ratio, and (what the author proposes to call) the cosine circles. Dr. Casey has collected together very many properties of these circles, and, as usual with him, has added several beautiful results of his own. done excellent service in introducing the circles to the notice of English students. . . . We only need say we hope that this edition may meet with as much acceptance as its predecessors, it deserves greater acceptance."

THE "MATHEMATICAL MAGAZINE," ERIE, PENNSYLVANIA.

"Dr. Casey, an eminent Professor of the Higher Mathematics and Mathematical Physics in the Catholic University of Ireland, has just brought out a second edition of his unique 'Sequel to the First Six Books of Euclid,' in which he has contrived to arrange and to pack more geometrical gems than have appeared in any single text-book since the days of the self-taught Thomas Simpson. 'The principles of Modern Geometry contained in the work are, in the present state of Science, indispensable in Pure and Applied Mathematics, and in Mathematical Physics; and it is important that the student should become early acquainted with them.'

"Eleven of the sixteen sections into which the work is divided exhibit most excellent specimens of geometrical reasoning and research. These will be found to furnish very neat models for systematic methods of study. The other five sections contain 261 choice problems for solution. Here the earnest student will find all that he needs to bring himself abreast with the amazing developments that are being made almost daily in the vast regions of Pure and Applied Geometry. On pp. 152 and 153 there is an elegant solution of the celebrated Malfatti's Problem.

"As our space is limited, we earnestly advise every lover of the 'Bright Seraphic Truth' and every friend of the 'Mathematical Magazine' to procure this invaluable book without delay."

THE "SCHOOLMASTER."

"This book contains a large number of elementary geometrical propositions not given in Euclid, which are required by every student of Mathematics. Here are such propositiosns as that the three bisectors of the sides of a triangle are concurrent, needed in determining the position of the centre of gravity of a triangle; propositions in the circle needed in Practical Geometry and Mechanics; properties of the centres of similitudes, and the theories

of inversion and reciprocations so useful in cerain electrical questions. The proofs are always neat, and in many cases exceedingly elegant."

THE "EDUCATIONAL TIMES."

"We have certainly seen nowhere so good an introduction to Modern Geometry, or so copious a collection of those elementary propositions not given by Euclid, but which are absolutely indispensable for every student who intends to proceed to the study of the Higher Mathematics. The style and general get up of the book are, in every way, worthy of the 'Dublin University Press Series,' to which it belongs."

THE SCHOOL GUARDIAN."

"This book is a well-devised and useful work. It consists of propositions supplementary to those of the first six books of Euclid, and a series of carefully arranged exercises which follow each section. More than half the book is devoted to the Sixth Book of Euclid, the chapters on the 'Theory of Inversion' and on the 'Poles and Polars' being especially good. Its method skilfully combines the methods of old and modern Geometry; and a student well acquainted with its subject-matter would be fairly equipped with the geometrical knowledge he would require for the study of any branch of physical science."

THE "PRACTICAL TEACHER."

"Professor Casey's aim has been to collect within reasonable compass all those propositions of Modern Geometry to which reference is often made, but which are as yet embodied nowhere... We can unreservedly give the highest praise to the matter of the book. In most cases the proofs are extraordinarily neat.... The notes to the Sixth Book are the most satisfactory. Feuerbach's Theorem (the nine-points circle touches inscribed and escribed circles) is favoured with two or three proofs, all of which are elegant. Dr. Hart's extension of it is extremely well

proved. . . . We shall have given sufficient commendation to the book when we say, that the proofs of these (Malfatti's Problem, and Miquel's Theorem), and equally complex problems, which we used to shudder to attack, even by the powerful weapons of analysis, are easily and triumphantly accomplished by Pure Geometry.

"After showing what great results this book has accomplished in the minimum of space, it is almost superfluous to say more. Our author is almost alone in the field, and for the present need scarcely fear rivals."

THE "ACADEMY."

"Dr. Casey is an accomplished geometer, and this little book is worthy of his reputation. It is well adapted for use in the higher forms of our schools. It is a good introduction to the larger works of Chasles, Salmon, and Townsend. It contains both a text and numerous examples."

"JOURNAL OF EDUCATION."

"Dr. Casey's 'Sequel to Euclid' will be found a most valuable work to any student who has thoroughly mastered Euclid, and imbibed a real taste for geometrical reasoning. . . . The higher methods of pure geometrical demonstration, which form by far the larger and more important portion, are admirable; the propositions are for the most part extremely well given, and will amply repay a careful perusal to advanced students."

A TREATISE

ON THE

ANALYTICAL GEOMETRY OF THE POINT, LINE, CIRCLE, AND CONIC SECTIONS.

CONTAINING

An Account of its most Recent Extensions.

WITH NUMEROUS EXAMPLES.

BY

JOHN CASEY, LL.D., F.R.S.,

Fellow of the Royal University of Ireland; Vice-President, Royal Irish Academy; &c. &c.

Dublin: Hodges, Figgis, & Co. London: Longmans, Green, & Co.

OPINIONS OF THE WORK.

From George Gabriel Stokes, President of the Royal Society.

"I write to thank you for your kindness in sending me your book on the 'Analytical Geometry of the Point, Line, Circle, and the Conic Sections.'

"I have as yet only dipped into it, being for the moment very much occupied. Of course from the nature of the book there is much that is elementary in it; still I see there is much which I should do well to study."

From Professor Cayley, Cambridge.

"I have to thank you very much for the copy you kindly sent me of your treatise on 'Analytical Geometry.' I am glad to see united together so many of your elegant investigations in this subject."

From M. H. BROCARD, Capetaine du Genie à Montpellier.

"J'ai en hier l'agréable surprise sur laquelle je me complais d'ailleurs depuis un certain temps de recevoir votre nouveau Traite de Geométrie Analytique."

"Je me suis emerveillé du soin que vous avez apporté à la redaction de cet ouvrage, et je forme dès aujourd'hui les vœux les plus sincères pour que de nombreuses editions de ce livre se répandent rapidement dans le public mathematique et parmi la jeunesse studieuse de nos universités."

From R. A. ROBERTS, M.A., T.C.D.

"I am much obliged for the copy of your book on 'Conics.' I have been much interested in the many new examples it contains. I hope you will republish some time your memoir on 'Bicircular Quartics,' with Additions.'

From Edward J. Routh, M.A., F.R.S., &c., Cambridge.

"It seems to me that so excellent a treatise will soon make its way to the front, even against the severe competition which all books on Conics now meet with. I fancy that many of the theorems cannot be elsewhere found so conveniently explained."

From M. Emile Lemoine, Paris.

"Je m'empresse de vous remercier de votre amiable envoi, et de vous exprimer combien je suis flatté d'être cité par un maître dans un ouvrage classique."

From M. MAURICE D'OCAGNE, Paris.

"Je m'empresse de vous faire parvenir mes remerciments pour l'honneur que vous me faites en me citant dans votre remarquable ouvrage."

From the Freeman's Journal.

"This treatise exhibits in a marked degree the qualities which distinguish the author's other works. It is at once compact and comprehensive. . . Dr. Casey's treatise, indeed, may well accomplish for this generation what Dr. Salmon's did for their fathers, namely, to introduce the young mathematician to the latest developments in the highest departments of the Science. Scarcely any important step is there in the work which he has not simplified, giving one, and sometimes several, original . . . The method of projection is treated of in an entirely original manner, not requiring the consideration of space of three dimensions, the projection being performed in one plane, and the equation of the curve obtained by a simple transformation. The properties of the M'Cay, Neuberg, and Brocard Circles are considered at some length: indeed the latter has now a literature of its own, to which Dr. Casey has largely contributed. There are considerably over a thousand examples, graduated from easy applications of the formulæ to exercises of the highest class of difficulty. Many of these are original, and many are historically interesting."

From the Dublin Evening Mail.

"This work will give a new impulse to the study of Analytic Geometry, introduce the student to new and more powerful methods, and greatly enlarge his mathematical horizon. It has been known for some time that Dr. Casey was engaged on a 'Conic Sections,' and people expected that notwithstanding the many works in the field, Dr. Casey's would present a good many valuable novelties; but the work has, we venture to think, ex-

celled all anticipation. . Dr. Casey makes a large use of determinants. He introduces them in the very first chapter, and employs them to the end. In the first chapter we find a section devoted to complex variables, and Gauss's geometrical representation of them; and from Clebsch he takes the comparison of 'point' and 'line' co-ordinates. He gives a great development to trilinear co-ordinates and tangential equations, discusses the new circles (Tucker's, Brocard's, Neuberg's, M'Cay's), applies Aronhold's notation to the discussion of the general equation of the second degree, and reproduces from his own Papers in the Transactions of learned societies many important theorems and problems relating to inscribed and circumscribed figures, orthogonal conics, and the tact-invariant of two-conics. . . . work is a noble monument to Dr. Casey's genius, and his mastering of all the resources of Modern Analytic Geometry."

From NATURE.

"Dr. Casey, by the publication of this third treatise, has quite fulfilled the expectations we had formed when we stated some months since that he was engaged upon its compilation. It is a worthy companion of those which have preceded it. possesses many points of novelty, i.e. for the English mathe-He has from the first introduction of certain recent continental discoveries in geometry taken a warm interest in them, and in the purely geometrical treatment of them, has himself given several beautiful proofs, and has added discoveries of his own. We may here note that this work has met with a very warm welcome in France and Belgium. The author himself has added so much in years now long past to several branches of the subject treated of in the volume under notice—the equation of the circle (and of the conic) touching three circles (three conics), and other properties—that he is specially fitted, by his intimate acquaintance with it, and by his long tuitional experience, to write a book on analytical geometry.

"The divisions are into eight chapters, the first of which, in four sections, treats of the point, three sections being taken up with Cartesian and polar co-ordinates, and the transformation of co-ordinates; the fourth section gives a brief account of complex variables introduced by Cauchy in 1825. 'The introduction of these variables is one of the greatest strides ever made in mathematics.' The second chapter on the Right Line treats it (§ 1) by Cartesian, then (§ 2) by trilinear, and (§ 3) by point and line coordinates; this last comparison is taken from Clebsch's 'Vorlesungen über Geometrie.' In Chapter III. four sections are devoted to the circle, § 2 being devoted to a system of tangential circles; § 3 to the 'trilinear' forms of equations to the old circles and to all the recent circles; δ 4 is devoted to tangential equations. Chapters IV., V., VII. treat of, respectively, the general equation of the second degree, the parabola, ellipse, and hyperbola; Chapter viii. (Miscellaneous investigations) discusses many matters of novelty and interest; § 1 is on contact of conic sections; § 2, similar figures, gives a good résume of results connected with Brocard's points and circles, Neuberg's circles, M'Cay's circles, and Kiepert's hyperbola; in § 3 on the general equation interlinear co-ordinates. Aronhold's notation is 'now published for the first time in an English treatise on Conic Sections.' The remaining six sections are occupied respectively with Envelopes, Projections, Sections of a Cone, Homographic Divisions, Reciprocal Polars, and Invariants and Covariants. An idea has now, we trust, been conveyed to the reader of the ground covered by Dr. Casey; a good deal of it is, of course, well-worn ground, but even this has been adorned by his touch, and much relating to the new circles has never before been introduced into our books: these circles must soon become as familiar to our junior students as the nine-points circle, whose properties are by this time nearly exhausted.

"The examples are exceedingly numerous, and a good feature is that most of the results obtained in them are numbered consecutively with the important results of the text. This enables

the author to refer to them with facility."

From the Educational Times, May, 1886.

"The eminence and experience of the author are a sufficent guarantee for careful work and original research, and in this volume of moderate size there is a great deal that will be fresh to English readers . . .

"There can be no doubt that this treatise ought to be studied as a whole by everyone to acquaint himself with the most recent

developments of Algebraical Geometry."

From the Educational Times, September, 1886.

"In this book the author has added to those propositions usually met with in Treatises on Analytical Geometry many which we have seen in no other books on the subject; notably extending the equations of circles inscribed in and circumscribed about triangles to polygons of any number of sides, and extending to Conics the properties of circles cutting orthogonally. demonstrations are concise and neat. In many cases the author has substituted original methods of proof advantageously, and in some has also added the old methods. We would specially note his treatment of the General Equation of the Second Degree, which is more satisfactory than many we have seen. Throughout the book there are numerous exercises on the subject matter, and at the end of each section a collection of problems bearing on that part of the subject. These problems have been obtained from Examination Papers and other sources. They have been selected with much care and judgment. The name of the proposer has in many cases been added, and will cause more interest to be taken in the solution."