12. Ясли Паллады

Рассеянное звёздное скопление Ясли (М 44) известно людям с глубокой древности. Вам дана таблица (страница 2) с параметрами 40 звёзд постоянной светимости (не переменных), оказавшихся на одном из изображений этого скопления.

- а. Какие звезды в таблице не принадлежат скоплению?
- b. Каковы полная пространственная скорость и собственное движение скопления?
- с. Определите расстояние до центра скопления в парсеках.
- d. Какие из звёзд являются двойными? Считайте, что все звёзды в таблице лежат на главной последовательности.
- е. Найдите отношения масс компонентов этих двойных систем.

13. Любовь и война в свете Луны

На отдельном листе приведён негатив изображения «тройного» соединения Луны, Венеры и Марса 20 февраля 2015 года. Во время съёмки эклиптические широты светил составляли соответственно $\beta_{\rm B}=-62'$, $\beta_{\rm M}=-35'$ и $\beta_{\rm \Pi}=+43'$, эклиптическая долгота Луны — $\lambda_{\rm \Pi}\approx0^\circ$. В тот день Луна находилась вблизи перигея, фаза Венеры оказалась равной 88 %.

- а. Определите величину фазы Луны.
- b. Проведите на изображении линию эклиптики, сделав необходимые построения.
- с. Вычислите попарные пространственные расстояния между Луной, Венерой, Марсом и Землёй в момент съёмки.

Q22S3D Страница 2 из 4

Nο	α , $^{\circ}$	δ $^{\circ}$	p, mas	μ_{α} , $\frac{\text{mas}}{\text{год}}$	μ_δ , $\frac{\text{mas}}{\text{год}}$	8	b-r	v_r , $\frac{\mathrm{KM}}{\mathrm{c}}$
1	130.08628	19.68668	5.42	-35.69	-12.85	7.67	0.24	56.56
2	130.09760	19.83491	5.06	-34.48	-14.13	7.98	0.24	35.42
3	129.65758	19.98969	5.45	-36.97	-13.64	8.11	0.27	35.75
4	129.76478	19.99969	5.24	-34.32	-13.03	8.28	0.29	34.46
5	130.30722	19.92194	5.42	-36.76	-13.13	8.29	0.28	34.56
6	129.39073	20.01361	5.22	-34.75	-13.13	8.63	0.41	38.67
7	130.06379	19.99425	5.38	-35.43	-12.41	8.76	0.42	35.94
8	129.36731	19.16228	5.74	-36.07	-14.09	9.36	0.56	37.10
9	130.42606	19.66048	5.53	-36.55	-14.72	9.48	0.58	50.62
10	130.42606	19.66048	5.53	-36.55	-14.72	9.48	0.58	50.62
11	130.02596	19.45400	5.50	-39.73	-23.10	10.11	0.72	56.76
12	129.79728	18.93480	9.41	-78.72	-34.20	11.16	1.02	63.55
13	130.44890	19.41216	3.57	-28.62	-8.00	11.30	0.69	40.18
14	130.29278	19.81855	5.41	-35.83	-13.33	11.31	0.90	45.69
15	129.28534	20.16520	3.84	-11.16	-17.52	11.43	0.76	18.49
16	129.48654	19.55006	3.54	-47.25	10.62	11.64	0.78	44.00
17	130.28857	19.90726	3.79	-22.22	12.88	11.72	0.76	41.52
18	131.02026	19.31376	4.95	-33.84	-30.97	12.05	0.97	77.75
19	129.18047	19.85892	4.91	42.70	-28.30	12.51	0.99	125.02
20	129.72291	19.57132	5.45	-35.92	-13.27	13.64	1.62	38.98
21	131.07143	19.86532	5.38	-36.90	-12.37	13.93	1.72	35.09
22	130.27063	19.11526	5.89	41.47	38.74	14.02	1.65	71.34
23	130.15769	20.33824	5.37	-35.80	-13.12	14.37	1.89	37.40
24	129.90172	19.48546	5.41	-35.54	-13.66	14.43	1.91	21.02
25	129.90462	19.81604	5.46	-35.52	-14.00	14.48	1.95	33.03
26	129.04744	19.87780	5.42	-35.76	-13.43	14.78	2.02	35.66
27	129.79092	19.78298	5.44	-34.40	-14.63	14.95	2.48	40.25
28	129.35066	19.41695	5.39	-35.03		14.95	2.35	40.44
29	130.11747	18.93576	5.41	-35.99		14.96	2.13	44.34
30	129.75651	20.15809	3.72		-55.11	15.15	1.84	52.39
31	129.63027	20.03630	9.76	19.58		15.20	2.78	44.58
32	129.63027	20.03630	9.76		-91.50	15.20	2.78	44.58
33	129.84765	18.66642	5.28	-35.46	-11.61	15.22	2.23	60.88
34	130.06677	19.74007	3.91	-7.06	-3.29	15.38	1.96	40.01
35	130.78237	20.33190	4.71	-20.07		15.41	2.13	40.85
36	129.25211	19.75177	5.54		-61.99	15.44	2.48	68.91
37	129.38411	18.88393	5.32	-34.20		15.45	2.33	46.09
38	130.29694	19.52958	5.46	-35.61	-12.68	15.46	2.51	40.17
39	129.81980	19.79512	5.42	-36.02		15.51	2.33	45.21
40	130.45593	20.07665	5.28	-37.15	-14.56	15.74	2.72	44.61

14. А теперь вы покажите, откуда готовилось нападение!

Бо Джайден на пенсии увлёкся астрономией и решил вывести наблюдательный тур на совершенно новый уровень. Чтобы создать лишнюю звезду, он передал организаторам олимпиады ненужную ракету, которую они запустили и взорвали высоко в небе. При взрыве ракеты кратковременно в оптическом диапазоне выделилась световая энергия, эквивалентная 1 кт тротила.

К счастью, мы смогли перехватить телеметрию ракеты до взрыва: в таблице представлены показания альтиметра, а также мощность принимаемого сигнала. Разумеется, после взрыва передача прекратилась.

Штаб требует установить:

- а. расстояние от приёмника до точки старта ракеты;
- b. высоту подрыва ракеты;
- с. звёздную величину лишней звезды (оценочно).

Для тех, кто в танке. 1 грамм тринитротолуола выделяет 4184 джоулей.

t, c	I, MBT	h, KM	t,	C	Ι, μВτ	h, KM
5	4.75	0.3	7	0	30	-1
10	4.50	1.2	7	5	20	-1
15	3.64	2.8	8	0	18	-1
20	2.42	4.8	8	5	15	-1
25	1.42	7.4	9	0	12	-1
30	0.84	10.6	9	5	11	-1
35	0.50	14.2	10	0	9	-1
40	0.30	18.2	10	5	8	-1
45	0.20	22.8	11	0	8	-1
50	0.12	27.7	11	5	7	-1
55	0.08	32.9	12	0	6	-1
60	0.06	38.4	12	5	_	_
65	0.04	-1	13	0	_	_

15. Интересно, откуда она взялась?

Рентгеновская двойная затменная система в созвездии Козлобарана расположена вблизи галактического экватора и состоит из звезды с температурой 3000 К и компактного объекта, который периодически проходит на фоне звезды, увеличивая её яркость. В спектре звезды линия К (3933.68 Å) смещается с полуамплитудой 27.65 Å.

Будем считать, что прохождения центральные, а орбиты компонентов системы круговые.

- а. Определите тип, массу $\mathfrak M$ и характерный радиус R компактного объекта.
- b. Найдите радиус R_{\star} звезды-компаньона, полагая $R_{\star} \gg \sqrt{R \cdot d}$, где d большая полуось орбиты звезды-компаньона.
- с. Оцените массу № звезды-компаньона.
- d. Определите расстояние до этой системы.

