Конспект лекции 17.11.16

Фомина Александра

Мотивация. σ -алгебра - это способ описать наделенность информации: есть рациональный агент и список событий, про которые агент *точно* знает, произошли они или нет.

Упражнение 1. Подбрасывают кубик два раза. Случайная величина X_1 - сколько выпало в первый раз, случайная величина X_2 - сколько выпало во второй раз. Винни Пух знает результаты обоих подбрасываний. Джеймс Бонд знает результат только второго подбрасывания. Если \mathcal{F}_W и \mathcal{F}_J - это списки событий, которые точно различают Винни Пух и Джеймс Бонд соответственно, то

- 1. $\mathcal{F}_J \subset \mathcal{F}_W$;
- 2. Примеры события $A, A \in \mathcal{F}_W, A \notin \mathcal{F}_J$: $A = \{X_1 = 4\} \in \mathcal{F}_W, A = \{X_1 = 4\} \notin \mathcal{F}_J$; Примеры события $B, B \in \mathcal{F}_W, B \in \mathcal{F}_J$: $B = \{X_2 > 4\} \in \mathcal{F}_W, B = \{X_2 > 4\} \in \mathcal{F}_J$.

Упражнение 2. Тот же эксперимент, что и в Упражнении 1, те же \mathcal{F}_W и \mathcal{F}_J . Какова мощность множества (cardinality) \mathcal{F}_W и \mathcal{F}_J ?

Пусть Ω - множество исходов. Тогда $\Omega=36$, т.к. всего 36 элементарных события, которые нельзя разбить на более мелкие события.

$X_1 \setminus X_2$	1	2	
1	(1,1)	(1,2)	
2	(2,1)	(2,2)	•••
:	:	:	٠

Большие события получаются путем объединения маленьких событий. Например:

$${X = 4} = {X_1 = 4, X_2 = 1} \cup {X_1 = 4, X_2 = 2} \cup {X_1 = 4, X_2 = 3} \cup \dots$$

$X_1 \setminus X_2$	1	2	3	4	5	6
1	-	-	-	-	-	-
2	-	-	-	-	-	-
3	-	-	-	-	-	-
4	+	+	+	+	+	+
5	-	-	-	-	-	-
6	-	_	_	_	_	_

Так как всего в таблице 36 клеток, в каждой из который может стоять либо "+" либо "-", то всего может быть 2^{36} вариантов. Следовательно, card $\mathcal{F}_W=2^{36}$.

Для Джеймса Бонда $\{X_2=4\}$ не разбивается на более элементарные события \Rightarrow у него 6 элементарных события, то есть card $\mathcal{F}_J=2^6$.

- Если агент знает, что $A \in \mathcal{F}$ и $B \in \mathcal{F}$, то он знает, что $A^c \in \mathcal{F}$, $A \cap B \in \mathcal{F}$, $A \cup B \in \mathcal{F}$.
- \varnothing не происходит никогда, Ω происходит всегда $\Rightarrow \varnothing \in \mathcal{F}, \Omega \in \mathcal{F}.$

Определение. \mathcal{F} – σ -алгебра, если

- 1. $\varnothing, \Omega \in \mathcal{F}$;
- 2. если взять счётное (countable) количество событий из \mathcal{F} и выполнить любые операции $(\cdot \cup \cdot, \cdot \cap \cdot, \cdot \setminus \cdot, \cdot^c)$, то в результате получится событие из списка \mathcal{F} .

Альтернативное определение. \mathcal{F} – σ -алгебра, если

1. $\Omega \in \mathcal{F}$;

- 2. если $A \in \mathcal{F}$, то и $A^c \in \mathcal{F}$;
- 3. если $A_1, A_2, A_3, \dots \in \mathcal{F}$, то $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Определение. $\sigma(B,C)$ – минимальная σ -алгебра, содержащая события B и C.

Упражнение 3. $\Omega = \Re$, A = [-10; -5], B = [-7, 0). Найти: $\sigma(A)$, $\sigma(A, B)$.

$$\sigma(A) = \{\emptyset, \Re, [-10; -5], (-\infty; -10) \cup (-5; +\infty)\}$$

$$\begin{split} \sigma(A,B) &= \{\varnothing, \Re, [-10;-5], [-7;0), [-10;0), (-\infty;-10) \cup (-5;+\infty), (-\infty;-7) \cup [0;+\infty), (-\infty;-10) \cup [0;+\infty), \\ &[-7;-5], (-\infty,-7) \cup (-5;+\infty), [-10;-7], (-\infty;-10) \cup (-7,+\infty), [-5,0), (-\infty;-5) \cup [0,+\infty), \\ &(-\infty;-10) \cup (-7;-5) \cup [0;+\infty), (-10,-7) \cup (-5;0] \} \end{split}$$

Так как -10, -7, -5 и 0 делят числовую прямую на 4 "куска", то в $\sigma(A, B)$ всего 2^4 элементов.

Случайные величины

Определение (интуитивное). Случайная величина X называется измеримой относительно σ -алгебры \mathcal{F} , если информации в \mathcal{F} достаточно, чтобы определить, чему равно X.

Определение (формальное). Случайная величина X называется измеримой относительно σ -алгебры $\mathcal{F},$ если $\forall t$ событие $\{X \leq t \in \mathcal{F}\}.$

Упражнение 4.

Ω	a	b	c	d
X	1	1	2	2
Y	1	3	3	1

$$\mathcal{F} = \{\varnothing, \Omega, \{a, c\}, \{b, d\}\}$$
$$\mathcal{H} = \{\varnothing, \Omega, \{a, d\}, \{b, c\}\}$$

- а) Является ли X измеримой случайно величиной относительно \mathcal{F} ? Нет, так как, если произошло а, мы не можем отличить а от с, потому что у них разные значения. Значит, мы не знаем, чему равна X.
 - b) Является ли Y измеримой случайно величиной относительно \mathcal{F} ? Нет.
 - с) Является ли X измеримой случайно величиной относительно \mathcal{H} ? Нет.
 - d) Является ли Y измеримой случайно величиной относительно \mathcal{F} ? Да.

<u>Обозначение.</u> $X,\ Y$ – случайные величины. Тогда $\sigma(X,Y)$ – минимальная σ -алгебра, содержащая все события вида $\{X\leq t\}$ и $\{Y\leq t\}$.

Упражнение 5.

Ω	a	b	c	d
X	1	1	2	2
Y	1	3	3	1
W	7	1	2	2

а) Найти явно $\sigma(X)$.

$$\sigma(X) = \{\varnothing, \Omega, \{a, b\}, \{c, d\}\}\$$

b) Определить, сколько событий входит в $\sigma(X,Y)$.

Если мы знаем X и Y, мы знаем, что произошло: a, b, c или d. Следовательно, card $\sigma(X,Y)=2^4$.

c) Найти явно $\sigma(W)$.

$$\sigma(W) = \{\varnothing, \Omega, \{a\}, \{b\}, \{c, d\}, \{a, b\}, \{a, c, d\}\}\$$

Определение (интуитивное). Условное матожидание:

- 1. $E(Y|\mathcal{F})$ случайная величина;
- 2. $E(Y|\mathcal{F})$ наилучший (с т. з. минимизации ожидаемого квадрата ошибки) прогноз Y, сделанный агентом, различающим события из \mathcal{F} .

Обозначение. $E(Y|X) = E(Y|\sigma(X))$

Упражнение 6. Кубик подбрасывается два раза. X_i - результат i-го подбрасывания. $\mathcal{F}_J = \sigma(X_2)$.

- а) Найти $E(X_2|\mathcal{F}_J)$. $E(X_2|\mathcal{F}_J) = X_2$;
- b) Найти $E(X_2^2|\mathcal{F}_J)$. $E(X_2^2|\mathcal{F}_J) = X_2^2$;
- с) Найти $E(X_1|X_2)$. Так как X_1 и X_2 независимы, то знание про X_2 бесполезно. Следовательно, $E(X_1|X_2)=E(X_1)=3,5;$
 - d) Найти $E(X_1+X_2|X_2)$. $E(X_1+X_2|X_2)=E(X_1|X_2)+E(X_2|X_2)=3,5+X_2.$

Свойства матожидания

Если X и Y – случайные величины, E(X) и E(Y) существуют, а и b – константы, $\mathcal{F},\ \mathcal{H}$ – σ -алгебры, $\mathcal{F}<\mathcal{H}$:

- 1. $E(aX + bY|\mathcal{F}) = aE(X|\mathcal{F}) + bE(Y|\mathcal{F}).$
- 2. Если X и \mathcal{F} независимы, то $E(X|\mathcal{F}) = E(X)$.
- 3. Если X измерима относительно $\mathcal F$ и $g(\)$ кусочно-непрерывная функция, то $E(g(X)|\mathcal F) = g(X).$
- 4. Если $\mathcal{F} = \{\varnothing, \Omega\}$, то $E(X|\mathcal{F}) = E(X)$.
- 5. $E(E(X|\mathcal{F})) = E(X)$.
- 6. Если $\mathcal{F} < \mathcal{H}$, то $E(E(X|\mathcal{H}) = E(X|\mathcal{F})$ и $E(E(X|\mathcal{H}) = E(X|\mathcal{F})$.
- 7. Неравенство Йенсен: если f выпуклая, то $E(f(X)|\mathcal{F}) \geq f(E(X|\mathcal{F}))$.

Дополнительные понятия:

Определение.
$$A$$
 – событие, $\mathbb{1}_A = \begin{cases} 1, & \text{если } A \text{ произошло} \\ 0, & \text{если } A \text{ не произошло} \end{cases}$ – индикатор $A, E(\mathbb{1}_A) = P(A)$. Тогда $P(A|\mathcal{F}) = E(\mathbb{1}_A|\mathcal{F})$.

Определение. Условная дисперсия: $Var(X|\mathcal{F}) = E(X^2|\mathcal{F}) - (E(X|\mathcal{F}))^2$.

Свойства условной дисперсии:

- 8. Если g кусочно-непрерывная функция и X измерима относительно \mathcal{F} , то $Var(g(X)|\mathcal{F})=0$.
- 9. Теорема Пифагора: $Var(X) = Var(E(X|\mathcal{F})) + E(Var(X|\mathcal{F})).$

Геометрический взгляд:

9 класс 1 курс магистратуры
$$cos(a,b) = \frac{\langle a,b\rangle}{|a|\cdot|b|} \quad \longrightarrow \quad \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = corr(X,Y)$$

$$\begin{array}{l} \langle a,b\rangle & \longleftrightarrow Cov(X,Y) \\ |a|^2 = \langle a,a\rangle & \longleftrightarrow Cov(X,Y) = Var(X) \\ |a| & \longleftrightarrow \sigma_X \end{array}$$

Если $X\perp Y$ (Cov(X,Y)=0), то Var(X)+Var(Y)=Var(X+Y) (т. Пифагора).

все \mathcal{F} измеримые случайные величины

$$Var(X) = Var(E(X|\mathcal{F})) + Var(X - E(X|\mathcal{F}))$$

Определение (формальное). Если E(X) существует, то $E(X|\mathcal{F})$ – это случайная величина, которая

- 1. \mathcal{F} измерима;
- 2. $E(X) = E(E(X|\mathcal{F}));$
- 3. $X-E(X|\mathcal{F})$ \perp любой \mathcal{F} измеримой случайной величине, т.е. $Cov(X-E(X|\mathcal{F}),Z)=0$ для любой случайной величины Z, являющейся \mathcal{F} измеримой.

Определение. Случайная величина W называется условным матожиданием $E(X|\mathcal{F})$ если

- 1. W является $\mathcal F$ измеримой;
- 2. E(X) = E(W);
- 3. Cov(X-W,Z)=0 для любой ${\mathcal F}$ измеримой Z.

Упражнение 7.

Ω	a	b	c	d
X	1	1	2	2
Y	1	3	3	1
Вероятность	0,1	0,2	0,3	0,4

Найти $Var(X|\sigma(Y))$.

$$Var(X|\sigma(Y)) = E(X^2|Y) - (E(X|Y))^2 = \begin{cases} \frac{17}{5} - \left(\frac{9}{5}\right)^2, & \text{если } Y = 1 \\ \frac{14}{5} - \left(\frac{8}{5}\right)^2, & \text{если } Y = 3 \end{cases} = \left(\frac{17}{5} - \left(\frac{9}{5}\right)^2\right) \cdot \mathbb{1}_{Y=1} + \left(\frac{14}{5} - \left(\frac{8}{5}\right)^2\right) \cdot \mathbb{1}_{Y=3}$$

$$E(X|Y=1) = 1 \cdot \frac{0,1}{0,1+0,4} + 2 \cdot \frac{0,4}{0,1+0,4} = \frac{9}{5}$$

$$E(X|Y=3) = \frac{8}{5}$$

$$E(X^2|Y=1) = \frac{17}{5}$$

$$E(X^2|Y=3) = \frac{14}{5}$$