Random graphical modelling of cross-country cultural heterogeneity

Veronica Vinciotti

University of Trento

Perugia, 23 February 2024

Joint work with Ernst Wit and Luca De Benedictis

Culture and the social sciences

Culture (now) recognised as important beyond the Humanities

- **Economics**: "cultural variables ... affect the <u>speed of development</u> and the <u>wealth of nations</u>" (Alesina and Giuliano, 2015)
- Politics: Political actions depend on culture (Lane and Ersson, 2016)
- Sociology: Culture shapes individual identity (Schwartz, 2008)
- Management: Organizations and local culture (Yeganeh and Su, 2006)
- Anthropology: <u>Humans evolve</u> slowly through culture (Ruck et al., 2020)
- Psychology: Personality traits and culture (Kashima et al., 2019)
- International Business is about cultural differences (Taras et al., 2009)

Culture: Definition and Measurement

Defining culture

- From Taylor (1871) to UNESCO (2001), defining culture is problematic
- \bullet Up to $\underline{160}$ possible definitions of culture (Kroeber and Kluckhohn, 1952)
- Some conclude that the very notion of <u>cultural diversity</u> implies that there cannot be any generally agreed definition of culture (Jahoda, 2012)

One (operationalisable) definition

- Culture is the/a set of local norms, customs, attitudes and values (Alesina and Giuliano, 2015)
- Implication: Latent dimensions of culture

Culture: Definition and Measurement

- Unit of analysis: cultural traits
- Traditionally, cultural traits are summarised by their means on survey data (Hofstede, 1980; Schwartz, 1994; Inglehart and Welzel, 2005)
- We use **European and World Values Survey data** (Wave 7, 2017-21)

→ 84 countries and 10 cultural traits

European and World Values Survey data: Cultural traits

Culture as a network of cultural traits

(a) USA Cultural Network

(b) Philippines Cultural Network

Jeffreys' Divergence (Marginals) = 5.59, JD Network = 0.87

H: 0.10, T: 1.07, R: 0.24, V: 2.37, G: 0.66, O: 0.14, A: 0.61, P: 0.30, M: 0.07, B: 0.05

Cultural network heterogeneity

A cross-country comparative cultural approach to discover:

- Extent of cultural network heterogeneity
- Structural similarities between national cultures
- Drivers of cross-country cultural heterogeneity

... by modelling the process that generates the networks!

Random graphical model

$$\mathbf{Y}^{(k)} = (Y_1^{(k)}, \dots, Y_p^{(k)})$$
 levels of p cultural traits in country k

Random graph model

Graphs $G = \left\{G^{(k)}\right\}_k$ distributed according to a joint random graph model

$$G \sim P(\mathbf{\Theta})$$

for some vector of parameters $\boldsymbol{\Theta}$

Graphical Model

 $\mathbf{Y}^{(k)}$ distributed according to some graphical model (GM)

$$\mathbf{Y}^{(k)}|G^{(k)}\sim GM(G^{(k)};\Omega^{(k)})$$

relative to a C.I. graph $G^{(k)}$ with associated parameters $\Omega^{(k)}$

random graph model + graphical model = random graphical model

Random graphical model for cultural networks

Random graphical model for cultural networks

Graph generative model: latent network (probit) model

Joint modelling $\{G^{(k)}\}_k$ to discover the extent of structural similarities between the different countries:

$$P(G_{j_1j_2}^{(k)} = 1 | G^{(-k)}) = \Phi\left(\alpha_k + \underbrace{\beta^t \mathbf{w}}_{\text{covariates}} + \underbrace{\mathbf{c}_k^t \sum_{k' \neq k} \mathbf{c}_{k'} (1_{\{G_{j_1,j_2}^{(k')} = 1\}} - 1_{\{G_{j_1,j_2}^{(k')} = 0\}})}_{\text{latent space environments}}\right)$$

where

- $G_{ij}^{(k)} = 1$: edge between node Y_i and node Y_j in condition k
- $oldsymbol{w} \in \mathbb{R}^d$: edge-specific and/or country-specific covariates
- $\mathbf{c}_1, \dots, \mathbf{c}_K \in \mathbb{R}^2$: latent space variables for each environment
- α_k : sparsity level of graph $G^{(k)}$

Given $\Theta = (\alpha, \beta, \mathbf{c})$ and $G^{(-k)}$, edges in $G^{(k)}$ become independent

Random graphical model for cultural networks

Gaussian copula graphical model

$$\mathbf{Y}^{(k)} = (Y_1^{(k)}, \dots, Y_p^{(k)})^{\top}$$
 in condition k have a joint distribution:

$$F(Y_1^{(k)} \leq y_1, \dots, Y_p^{(k)} \leq y_p) = C(F_1^{(k)}(y_1), \dots, F_p^{(k)}(y_p)),$$

with marginal distributions $F_j^{(k)}$ and copula C

Gaussian copula

$$C(F_1(y_1), \dots, F_p(y_p) \mid \mathbf{K}) = \Phi_p(\Phi^{-1}(F_1(y_1)), \dots, \Phi^{-1}(F_p(y_p)))$$

with Φ_p the CDF of $\mathcal{N}_p(0,\mathbf{K})$ with correlation \mathbf{K} and Φ the N(0,1) CDF

Conditional independence graph $G^{(k)}$ associated to $\Omega^{(k)} = (\mathbf{K}^{(k)})^{-1}$

Marginals: just a nuisance?

- Marginals are typically estimated non-parametrically
- But covariates are often available (e.g., age and gender of the respondent) and may have an effect on the response to a cultural trait
- ullet The dependence structure (Ω) may not depend on ${\it x}$, but ignoring ${\it x}$ may distort the estimation of Ω
- ullet Sample configurations may be different between countries, so ignoring $oldsymbol{x}$ may distort cross-country comparisons

Covariates → parametric models at the level of marginals

Ordinal data → ordinal regression

Marginal covariate adjustment matters!

 $Y_j^{(k)}$ for cultural trait j in country k is modelled by

$$F_j^{(k)}(c|\mathbf{X}=\mathbf{x}) = \eta_{jc}^{(k)} + \gamma_j^{(k)}\mathbf{x}, \quad \mathbf{x} = (\text{age, gender})$$

Age and gender significant across most countries/traits

Sample configuration varies across countries

From discrete data to latent Gaussian intervals

 Y_j discrete $\rightsquigarrow F_j$ not injective \rightsquigarrow projection to the latent Gaussian space $z_j = \Phi^{-1}(F_j(y_j))$ of the copula not unique

Each observation (y_i, \mathbf{x}) associated to an interval in the latent space

$$\mathcal{I}_{F_i}(y_i|\mathbf{x}) = (\Phi^{-1}(F_i(y_i-1|\mathbf{x})), \Phi^{-1}(F_i(y_i|\mathbf{x}))]$$

Bayesian inference: $G^{(k)}$, $\Omega^{(k)}$, Θ

Following Hoff(2007), the likelihood function (for condition k) is:

$$P(\boldsymbol{Z} \in \mathcal{I}_F(\boldsymbol{y}) \mid \Omega, G, \Theta) = \int_{\mathcal{I}_F(\boldsymbol{y})} P(\boldsymbol{Z} | \Omega, G) \ dZ$$

with $P(\mathbf{Z}|\Omega, G, \Theta)$ the profile likelihood in the Gaussian latent space:

$$P(oldsymbol{Z}|\Omega,G,oldsymbol{\Theta}) \propto |\Omega|^{n/2} \expiggl\{-rac{1}{2}\mathsf{Trace}(\Omega oldsymbol{\mathsf{U}})iggr\}$$

with $\boldsymbol{U} = \boldsymbol{Z}^t \boldsymbol{Z}$ the sample moment

Likelihood is combined to priors to lead to the posterior:

$$P(\Omega, G, \Theta \mid \mathbf{Z} \in \mathcal{I}_{F}(\mathbf{y})) \propto \underbrace{P(\mathbf{Z} \in \mathcal{I}_{F}(\mathbf{y}) \mid \Omega)}_{\substack{\mathsf{Truncated} \\ \mathsf{Normal}}} \underbrace{P(\Omega | G)}_{\substack{\mathsf{G-Wishart}}} \underbrace{P(G | \Theta)}_{\substack{\mathsf{Ber}(\pi) \\ \mathsf{on each link}}} \underbrace{P(\Theta)}_{\substack{\mathsf{Normal} \\ \mathsf{on each link}}}$$

Bayesian inference: MCMC scheme

- Gibbs sampling (probit regression with offset)
 - $ightharpoonup \alpha | \beta, \mathbf{c}, \{G^{(k)}\}_k, \mathbf{w}$
 - $\triangleright \beta | \alpha, \mathbf{c}, \{G^{(k)}\}_k, \mathbf{w}$
 - $ightharpoonup c_k | \alpha, \beta, c_{-k}, \{G^{(k)}\}_k, \mathbf{w}$
- ② Gibbs sampling $z_{ij}^{(k)} \mid \Omega^{(k)}, \mathbf{z}_{i,-j}^{(k)}, \mathbf{y}_i^{(k)}$, truncated on $\mathcal{I}_{\hat{F}_i}(y_{ij}|\mathbf{x}_i)$
- **3** Gibbs sampling $\Omega^{(k)} \mid G^{(k)}, \mathbf{z}^{(k)}$ (G-Wishart)
- Ontinuous time birth-death MCMC for

$$\left(G^{(k)}
ight)^{\pm e} \mid \Omega^{(k)}, \mathsf{z}^{(k)}, G^{(k)}, \Theta, \mathsf{w}$$

 \rightarrow Posterior distributions of $G^{(k)}$, $\Omega^{(k)}$, Θ

Bayesian structural learning: graph uncertainty

From the graphs posterior, posterior edge inclusion probabilities:

$$\pi_e^{(k)} = P(e \in E \mid \mathbf{Y}, k) = \frac{\sum_{t=1}^{N} 1(e \in G_t^{(k)}) W(\Omega_t^{(k)}, \boldsymbol{\Theta})}{\sum_{t=1}^{N} W(\Omega_t^{(k)}, \boldsymbol{\Theta})},$$

with E: set of edges, N: MCMC iterations and $W(\Omega_t^{(k)}, \Theta)$ waiting time for graph $G_t^{(k)}$ with precision matrix $\Omega_t^{(k)}$

EWVS study: graph uncertainty

Heatmap of posterior edge probabilities for each country:

- High sparsity across countries (\rightsquigarrow low α_k values)
- High structural similarity with heterogeneity

EWVS study: random graph model (latent space)

$$P(G_{j_1j_2}^{(k)} = 1|G^{(-k)}) = \Phi\left(\alpha_k + \mathbf{c}_k^t \sum_{k' \neq k} \mathbf{c}_{k'} (1_{\{G_{j_1,j_2}^{(k')} = 1\}} - 1_{\{G_{j_1,j_2}^{(k')} = 0\}})\right)$$

Some heterogeneity but also some noise ...

EWVS study: random graph model (latent space)

$$P(G_{j_1j_2}^{(k)} = 1|G^{(-k)}) = \Phi\left(\alpha_k + \mathbf{c}_k^t \sum_{k' \neq k} \mathbf{c}_{k'} (1_{\{G_{j_1,j_2}^{(k')} = 1\}} - 1_{\{G_{j_1,j_2}^{(k')} = 0\}})\right)$$

Latent Space of Countries

Some heterogeneity but also possible drivers ...

EWVS study: random graph model (latent space)

$$P(G_{j_1j_2}^{(k)} = 1|G^{(-k)}) = \Phi\left(\alpha_k + \mathbf{c}_k^t \sum_{k' \neq k} \mathbf{c}_{k'} (1_{\{G_{j_1,j_2}^{(k')} = 1\}} - 1_{\{G_{j_1,j_2}^{(k')} = 0\}})\right)$$

Latent Space of Countries

Some heterogeneity but also possible drivers ...

What are the drivers of cultural heterogeneity?

$$\begin{split} P(G_{j_1j_2}^{(k)} = 1|G^{(-k)}) &= \Phi\Big(\alpha_k + \beta^t \sum_{\substack{k' \neq k \text{ similarity between country } k \text{ and } k'}} \Big(1_{\{G_{j_1j_2}^{(k')} = 1\}} - 1_{\{G_{j_1j_2}^{(k')} = 0\}}\Big) \\ &+ \mathbf{c}_k^t \sum_{\substack{k' \neq k }} \mathbf{c}_{k'} \Big(1_{\{G_{j_1,j_2}^{(k')} = 1\}} - 1_{\{G_{j_1,j_2}^{(k')} = 0\}}\Big)\Big) \end{split}$$

Structural similarities driven by geographical and historical factors

Latent space less important ...

Latent space statistically not needed

Deviance Information Criterion comparison:

random graph model	parameters	DIC
country-specific intercepts	α_{k}	3,116,506
country-specific intercepts $+$ latent space	$\alpha_{\pmb{k}}$, $\mathbf{c}_{\pmb{k}}$	3,115,201
country-specific intercepts + proximity measures	α_{k} , β	3,095,245
country-specific intercepts + proximity measures + latent space	α_k , β , \mathbf{c}_k	3,100,461

Best model:

$$P(G_{j_1j_2}^{(k)} = 1|G^{(-k)}) = \Phi\left(\alpha_k + \beta^t \sum_{k' \neq k} \mathsf{sim}_{k,k'} \left(1_{\{G_{j_1j_2}^{(k')} = 1\}} - 1_{\{G_{j_1j_2}^{(k')} = 0\}}\right)\right)$$

References I

- Alesina, A. and P. Giuliano (2015). Culture and Institutions. *Journal of Economic Literature* 53(4), 898–944.
- Hofstede, G. (1980). *Culture's consequences: International differences in work-related values.* Sage.
- Inglehart, R. and C. Welzel (2005). *Modernization, cultural change, and democracy: The human development sequence.* Cambridge University Press.
- Jahoda, G. (2012). Critical reflections on some recent definitions of "culture". *Culture & Psychology 18*(3), 289–303.
- Kashima, Y., P. G. Bain, and A. Perfors (2019). The psychology of cultural dynamics: What is it, what do we know, and what is yet to be known? *Annual Review of Psychology 70*, 499–529.
- Kroeber, A. L. and C. Kluckhohn (1952). Culture: A critical review of concepts and definitions. *Papers. Peabody Museum of Archaeology & Ethnology, Harvard University*.

References II

- Lane, J.-E. and S. Ersson (2016). *Culture and politics: A comparative approach*. Routledge.
- Ruck, D. J., R. A. Bentley, and D. J. Lawson (2020). Cultural prerequisites of socioeconomic development. *Royal Society Open Science* 7(2), 190725.
- Schwartz, S. H. (1994). Beyond individualism/collectivism: New cultural dimensions of values. *SAGE publications, Inc.*
- Schwartz, S. H. (2008). Cultural value orientations: Nature and implications of national differences. *Moscow: Publishing house of SU HSE*.
- Taras, V., J. Rowney, and P. Steel (2009). Half a century of measuring culture: Review of approaches, challenges, and limitations based on the analysis of 121 instruments for quantifying culture. *Journal of International Management* 15(4), 357–373.

References III

- Taylor, E. B. (1871). Primitive culture: Researches into the development of mythology, philosophy, religion, language, art and custom. *NY, US: Henry Holt and Company. xii*.
- UNESCO (2001). Universal declaration on cultural diversity. Adopted by the 31st Session of the General Conference of UNESCO, Paris, 2 November.
- Yeganeh, H. and Z. Su (2006). Conceptual foundations of cultural management research. *International Journal of Cross Cultural Management* 6(3), 361–376.