

PROBLEM STATEMENT

The data is related with direct marketing campaigns of a banking institution. The marketing campaigns were based on phone calls

The objective is to predict if the client will subscribe (yes/no) to a term deposit, by building classification model using Machine Learning algorithms.

Parameter	Description					
age	Age of the clients (numeric)					
job	The job type of the clients (categorical)					
marital	Marital status of clients (categorical)					
education	Education level of clients (categorical)					
default has credit in default? (Categorical: "yes", "no")						
balance average yearly balance, in euros (numeric)						
housing	has housing loan? (Categorical: "yes", "no")					
loan has personal loan? (Categorical: "yes", "no")						
contact communication type (categorical: "unknown", "telephone", "						
day last contact day of the month (numeric)						
month	last contact month of year (categorical: "jan", "feb", "mar",, "nov", "dec")					
duration	last contact duration, in seconds (numeric)					
campaign	number of contacts performed during this campaign and for this client (numeric includes last contact)					
pdays	number of days that passed by after the client was last contacted from a previou campaign (numeric, -1 means client was not previously contacted)					
previous	number of contacts performed before this campaign and for this client (numeric					
poutcome	outcome of the previous marketing campaign (categorical: "unknown", "other" "failure", "success")					
deposit	has the client subscribed a term deposit? (Categorical: "yes", "no")					

VARIABLE DESCRIPTION

- The bank marketing dataset consists of 5581 rows and 17 attributes.
- Out of these 17, 10 attributes are of categorical datatype.

	age	job	marital	education	default	balance	housing	Ioan	contact	day	month	duration	campaign	pdays	previous	poutcome	deposit
0	41	services	married	unknown	no	88	yes	no	cellular	11	may	105	1	336	2	failure	no
1	56	technician	married	secondary	no	1938	no	yes	cellular	26	feb	229	1	192	4	success	yes
2	30	services	single	secondary	no	245	no	yes	cellular	8	jul	187	2	-1	0	unknown	no
3	34	management	single	tertiary	no	1396	yes	no	cellular	17	jul	630	1	-1	0	unknown	no
4	29	technician	single	secondary	no	-13	yes	no	cellular	14	may	512	3	-1	0	unknown	no

SAMPLE DATA

- The required libraries are imported.
 - OS: To change the working directory
 - Numpy: To perform numerical operations
 - Pandas: To work with dataframes
- The dataset is imported.
- The dataset consists of 17 attributes out of which 10 attributes are of the categorical type.
- There are no null values in the dataset.
- Duplicate values are not present.

UNDERSTANDING THE DATA -DATA TYPES OF THE ATTRIBUTES-

DATA TYPES OF THE ATTRIBUTES
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5581 entries, 0 to 5580
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	age	5581 non-null	int64
1	job	5581 non-null	object
2	marital	5581 non-null	object
3	education	5581 non-null	object
4	default	5581 non-null	object
5	balance	5581 non-null	int64
6	housing	5581 non-null	object
7	loan	5581 non-null	object
8	contact	5581 non-null	object
9	day	5581 non-null	int64
10	month	5581 non-null	object
11	duration	5581 non-null	int64
12	campaign	5581 non-null	int64
13	pdays	5581 non-null	int64
14	previous	5581 non-null	int64
15	poutcome	5581 non-null	object
16	deposit	5581 non-null	object
dtyp	es: int64(7), object(10)	
memo	ry usage: 7	84.8+ KB	

There are 7 attributes of int 64 type and 10 attributes of the object type.

UNDERSTANDING THE DATA-SUMMARY OF NUMERICAL DATA-

	age	balance	day	duration	campaign	pdays	previous
count	5581.000000	5581.000000	5581.000000	5581.000000	5581.000000	5581.000000	5581.000000
mean	41.169683	1514.736786	15.693603	368.175954	2.507436	52.534313	0.849669
std	11.926044	3266.534626	8.461086	344.131053	2,770717	110.754995	2.311684
min	18.000000	-3058.000000	1.000000	3.000000	1.000000	-1.000000	0.000000
25%	32.000000	110.000000	8.000000	137.000000	1.000000	-1.000000	0.000000
50%	39.000000	542.000000	15.000000	254.000000	2.000000	-1.000000	0.000000
75%	49.000000	1747.000000	22.000000	485.000000	3.000000	57.000000	1.000000
max	93.000000	81204.000000	31.000000	3284.000000	63.000000	842.000000	41.000000

- 75% of the clients are of 49 years of age.
- The yearly balance of 75% of the clients is €1747
- The last day when 75% of the clients were contacted was the 31st of every month.
- 50% of the clients were contacted for the first time and 75% of the clients were contacted after 842 days.

UNDERSTANDING THE DATA-SUMMARY OF CATEGORICAL DATA-

	job	marital	education	default	housing	loan	contact	month	poutcome	deposit
count	5581	5581	5581	5581	5581	5581	5581	5581	5581	5581
unique	12	3	4	2	2	2	3	12	4	2
top	management	married	secondary	no	no	no	cellular	may	unknown	no
freq	1318	3134	2719	5497	2928	4863	4044	1407	4133	2959

- Around 1318 clients have a job in Management.
- 3134 clients are married.
- 2719 clients have secondary education.
- The number of clients who do not have credit in default is 5497.
- 2928 clients have taken housing loan.
 - 4863 clients have taken a personal loan.
 - Around 4044 clients can be contacted through cellular mode of communication.
 - During the month of May, 1407 clients were contacted.
 - The outcome of the previous campaign for 4133 clients seems to be unknown.
 - 2959 clients have not subscribed to a term deposit

UNDERSTANDING THE DATA -CATEGORICAL DATA: UNIQUE VALUES-

Job	
management	1318
blue-collar	975
technician	887
admin.	661
services	452
retired	397
self-employed	206
student	182
unemployed	170
entrepreneur	160
housemaid	143
unknown	30
Name: job, dtype	e: int64
Marital Status	
married 3134	
single 1816	
divorced 631	
Name: marital, o	ltype: int64
Education	
secondary 271	19
tertiary 187	
primary 74	
unknown 24	45
Name: education,	

```
Default
no
      5497
yes 84
Name: default, dtype: int64
Housing
      2928
no
yes 2653
Name: housing, dtype: int64
Loan
      4863
no
yes 718
Name: loan, dtype: int64
Contact
cellular 4044
unknown 1155
telephone 382
Name: contact, dtype: int64
```

```
Month
      1407
may
      757
aug
jul
      752
jun
      627
       478
nov
       450
apr
feb
      383
       190
oct
jan
       180
       168
sep
       129
mar
dec
      60
Name: month, dtype: int64
P Outcome
unknown 4133
failure 632
success 539
other
           277
Name: poutcome, dtype: int64
Deposit
      2959
      2622
ves
Name: deposit, dtype: int64
```


DISTRIBUTIONS

The distribution is slightly right skewed. (median<mean)

The distribution is right skewed. (median<mean)

DISTRIBUTIONS

The distribution is normally distributed. (mean=median)

The distribution is right skewed. (median<mean)

DISTRIBUTIONS

The distribution is right skewed for both "previous" and "campaign" (median<mean)

TARGET VARIALBE: DEPOSIT

- We can see that there is only a difference of 337 between the categories in the target variable.
- Hence the **data is balanced**

Job and Deposit

Customers who have a job in management have a higher rate of subscribing to term deposit, but they are also the highest when it comes to not subscribing.

Marital and Deposit

Majority of the customers are married followed by single and divorced.

Default and Deposit

There is a uniform distribution among customers who do not have credit in default and so this feature contributes less in predicting if a customer will subscribe to a term deposit or not.

Housing and Deposit

Customers who have housing loan has lower rate of subscribing to term deposit.

Personal Loan and Deposit

People who have not taken loan are more in number. Therefore people who have not taken loan are more likely to subscribe to term deposit.

CORRELATION

- Dummy encoding is done on the categorical variables.
- The correlation is found for the target variable and predictor variables.

CORRELATION

CORRELATION

- The variables job, campaign, housing are weakly and inversely correlated with the target variable Deposit.
- -The variables pdays and previous are weakly correlated with the target variable Deposit.
- -Duration has a strong correlation with Deposit

SIGNIFICANCE OF HOUSING ON THE TARGET VARIABLE

From the above plot we can see that, the housing (housing loan) of a customer can be useful for predicting the target variable Deposit since there is a difference in the medians i.e the medians do not overlap in the boxplot.

SIGNIFICANCE OF PDAYS ON THE TARGET VARIABLE

Pdays can be useful for predicting the target variable Deposit since there is a difference in the medians i.e the medians do not overlap in the boxplot.

SIGNIFICANCE OF DURATION ON THE TARGET VARIABLE

From the above plot we can see that, duaration can be useful for predicting the target variable Deposit since there is a difference in the medians i.e the medians do not overlap in the boxplot

MODEL BUILDING-PRE REQUISITES

- The **sklearn** library is being imported to perform **standardization**, **splitting of data** and to find the **confusion matrix** and check the **accuracy score**
- We also import tree, RandomForestClassifier, LogisticRegression, KNNClassifier to build the models
- Even though there is a weak correlation, based on the boxplot, we are considering the attributes 'Housing', 'Duration', 'Campaign', 'Pdays' and 'Previous' for building the model.

LOGISTIC REGRESSION

Testing Accuracy: 0.7643266475644699

Misclassified samples: 329

CONFUSION MATRIX

K NEAREST NEIGHBOURS

Testing Accuracy: 0.7535816618911175

Misclassified samples: 344

CONFUSION MATRIX

RANDOM FOREST

Testing Accuracy: 0.75 Misclassified samples: 349

CONFUSION MATRIX

MODEL	ACCURACY SCORE	MISCLASSIFIED SAMPLES
Logistic Regression	0.7643266475644699	329
K Nearest Neighbours	0.7535816618911175	344
Random Forest	0.75	349

- Logistic Regression has the best accuracy score and also has the least number of misclassified samples.
- The Logistic Regression model will be deployed using HTML and Flask server

Deploying a machine learning model

- Deployment is the method by which you integrate a machine learning model into an existing production environment to make practical business decisions based on data.
- It is one of the last stages in the machine learning life cycle and can be one of the most complex.

What is a Flask Server?

- Flask is a small and lightweight Python web framework that provides useful tools and features that make creating web applications in Python easier.
- It gives developers flexibility and is a more accessible framework for new developers since you can build a web application quickly using only a single Python file

- A pickle file of the Logistic Regression model is created.
- We use PyCharm to deploy the model using Flask server.
- HTML and CSS are used to create a form through which input data is given and prediction is being done

HTML PAGE

PREDICTING SUBSCRIPTION TO TERM DEPOSIT

Housing(Yes-1/No-0)

Duration

Campaign

Pdays

Previous

Predict

In the Jupyter notebook, while giving the values ([[1,105,1,336,2]])) for prediction we get the predicted value as o i.e

Client does not subscribe to a term deposit.

While giving the input in the HTML page, we are getting the same prediction

	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome	deposit
0	41	services	married	unknown	no	88	yes	no	cellular	11	may	105	1	336	2	failure	no

In the Jupyter notebook, while giving the values ([[0,229,1,192,4]])) for prediction we get the predicted value as 1 i.e Client subscribes to a term deposit. While giving the input in the HTML page, we are getting the same prediction

New data is given as input and we get a prediction with 76% accuracy

PREDICTING SUBSCI	RIPTION TO T	ERM DEPOSIT	
1			
200			The client does not subscribe to a term deposit
2			Main Page
-1			
4			
	Predict		

