Conjuntos Enumeráveis e Conjuntos Não Enumeráveis

A definição de Dedekind, de conjunto infinito, é usada ma discussão de propriedades de conjuntos infinitos e de conjuntos finitos. É demonstrado, dentre outras coisas, que conjuntos enumeráveis são os menores, em tamanho, dentre os conjuntos infinitos. Propriedades e exemplos, de conjuntos enumeráveis e de conjuntos não enumeráveis, são dadas.

4.1 Conjuntos finitos e infinitos

Na Seção 2.1, Capítulo 1, mencionamos informalmente que um *conjunto finito* é um conjunto que contém apenas uma quantidade finita de elementos; embora este conceito possa ser transformado em uma definição matemática mais precisa, daremos preferência a uma definição alternativa (Definição 4.1), formulada por Dedekind.

Foi enfatizado, na Seção 2.1, do Capítulo 2, que o conjunto \mathbb{N} , dos números naturais, é um conjunto infinito. Seja $\mathbb{N}_p = \{2,4,6,\dots\}$ o conjunto de todos os números naturais pares. Como foi mostrado ao leitor, no Problema 8, Exercícios 3.6.1, existe uma correspondência um-a-um entre o conjunto \mathbb{N} e seu subconjunto próprio \mathbb{N}_p .

Em outras palavras,

Uma parte é tão numerosa quanto o todo.¹

Esta propriedade estranha (de um conjunto infinito) incomodou muitos matemáticos, inclusive Georg Cantor. Foi Richard Dedekind (1831–1916)² que tornou esta

 $^{^{1}}$ Uma diferença notável em relação ao axioma de Euclides: "O todo é maior que qualquer de suas partes." (325 a.C.).

²Richard Dedekind, um dos maiores matemáticos, nasceu em 6 de outubro de 1831, em Brunswick, Alemanha. De início, os interesses de Dedekind estavam na Física e na Química; ele considerava a Matemática meramente como uma serva das ciências. Mas isto não durou muito; aos dezessete anos,

propriedade a característica definidora de um conjunto infinito. A seguinte definição foi dada por Dedekind em 1888.

Definição 4.1 Um conjunto X é infinito quando possui um subconjunto próprio Y, tal que existe uma correspondência um-a-um entre X e Y. Um conjunto é finito se não for infinito.

Em outras palavras, um conjunto X é infinito se e somente se existe uma injeção $f\colon X\to X$ tal que f(X) é um subconjunto próprio de X. Logo, o conjunto $\mathbb N$ de numeros naturais é um conjunto infinito.

Exemplo 4.1 O conjunto Ø e os conjuntos unitários³ são finitos.

Solução. (a) Como o conjunto vazio não possui nenhum subconjunto próprio, o conjunto vazio é finito. (b) Seja $\{a\}$ um conjunto unitário qualquer. Como o único subconjunto próprio de $\{a\}$ é o conjunto vazio, e não há nenhuma correspondência biunívoca entre $\{a\}$ e \emptyset , $\{a\}$ é necessariamente finito.

Teorema 4.1

- (a) Todo superconjunto, de um conjunto infinito, é infinito.
- (b) Todo subconjunto, de um conjunto finito, é finito.

Demonstração.

(a) Seja X um conjunto infinito é e seja Y um superconjunto de X, i.e., $X \subset Y$. Então, pela Definição 4.1, existe uma injeção $f \colon X \to X$ tal que $f(X) \neq X$.

Defina uma função $g: Y \to Y$ por

$$g(y) = \left\{ \begin{array}{ll} f(y) & \text{se } y \in X \\ y & \text{se } y \in Y - X \end{array} \right.$$

Deixamos ao leitor verificar que a função $g\colon Y\to Y$ é injetora e que $g(Y)\neq Y$. Segue então, pela Definição 4.1, que Y é infinito.

(b) Seja Y um conjunto finito e seja X um subconjunto de Y, i.e., $X \subset Y$. Para demonstrar que X é finito, supomos o contrário, que X é infinito. Então, por (a), o conjunto Y deve ser infinito. Isto é uma contradição. Portanto, o conjunto X é finito.

ele havia se mudado, da Física e da Química, para a Matemática, cuja lógica achava mais satisfatória. Aos dezenove anos, matriculou-se na Universidade de Göttingen para estudar Matemática, e recebeu seu grau de doutor três anos depois, sob a orientação de Gauss. Sua contribuição fundamental à Matemática inclui o famoso "corte de Dedekind", um conceito importante no estudo de números irracionais, que o leitor poderá ter a oportunidade de estudar em um curso de análise real.

³Um *conjunto unitário* é um conjunto que consiste de um único elemento.

Teorema 4.2 Seja $g: X \to Y$ uma correspondência um-a-um. Se o conjunto X é infinito, então Y é infinito.

Demonstração. Como X é infinito, pela Definição 4.1, existe uma injeção $f\colon X\to X$ tal que $f(X)\neq X$. Como $g\colon X\to Y$ é uma correspondência um-a-um, também o é $g^{-1}\colon Y\to X$ (Teorema 3.14, Capítulo 3). Temos agora o seguinte diagrama de injeções:

$$\begin{array}{ccc}
Y & Y \\
g^{-1} \downarrow & \uparrow g \\
X & \xrightarrow{f} & X
\end{array}$$

Consequentemente, a composição $h=g\circ f\circ g^{-1}\colon Y\to Y$ de injeções é uma injeção [Problema 7, Exercícios 3.7.1]. Finalmente, temos

$$h(Y) = (g \circ f \circ g^{-1})(Y) = (g \circ f)(g^{-1}(Y))$$

= $(g \circ f)(X) = g(f(X))$

e $g(f(X)) \neq Y$, porque $f(X) \neq X$.

Logo, h(Y) é um subconjunto próprio de Y, e portanto Y é infinito.

Corolário 4.1 Seja $g: X \to Y$ uma correspondência um-a-um. Se o conjunto X é finito, então Y é finito.

Demonstração. Exercício.

Teorema 4.3 Seja X um conjunto infinito e seja $x_0 \in X$. Então $X - \{x_0\}$ é infinito.

Demonstração. Pela Definição 4.1, existe uma injeção $f\colon X\to X$ tal que $f(X)\varsubsetneq X$. Há dois casos a serem considerados: (1) $x_0\in f(X)$, ou (2) $x_0\in X-f(X)$. Em cada caso, devemos construir uma injeção $gX-\{x_0\}\colon \to X-\{x_0\}$, tal que $g(X-\{x_0\})\not=X-\{x_0\}$.

Caso 1. $x_0 \in f(X)$.

Existe um elemento x_1 em X tal que $f(x_1) = x_0$. Uma função

$$g: X - \{x_0\} \to X - \{x_0\}$$

pode agora ser definida por

$$g(x) = \begin{cases} f(x) & \text{se } x \neq x_1 \\ x_2 & \text{se } x = x_1 \in X - \{x_0\} \end{cases}$$

em que x_2 é um elemento do conjunto não vazio X-f(X), arbitrariamente fixado. Segue que $gX-\{x_0\}\colon \to X-\{x_0\}$ é injetora e que $g(X-\{x_0\})=f(X-\{x_0,x_1\})\cup\{x_2\}\neq X-\{x_0\}$. Portanto, $X-\{x_0\}$ é infinito neste caso.

Caso 2.
$$x_0 \in X - f(X)$$
.

Defina uma função $g\colon X-\{x_0\}\to X-\{x_0\}$ por g(x)=f(x) para todo $x\in X-\{x_0\}$. Como $f\colon X\to X$ é injetora, também o é $g\colon X-\{x_0\}\to X-\{x_0\}$. Finalmente,

$$g(X - \{x_0\}) = f(X) - \{f(x_0)\} \neq X - \{x_0\}$$

Portanto, em qualquer caso, $X - \{x_0\}$ é infinito.

No que segue, denotaremos por \mathbb{N}_k , $k \in \mathbb{N}$, o conjunto de todos os números naturais de 1 até k; isto é, $\mathbb{N}_k = \{1, 2, \dots, k\}$. Como uma aplicação do Teorema 4.3, mostramos no seguinte exemplo que cada \mathbb{N}_k é finito.

Exemplo 4.2 Para cada $k \in \mathbb{N}$, o conjunto \mathbb{N}_k é finito.

Demonstração. Demonstraremos isto pelo princípio de indução matemática. Pelo Exemplo 4.1, a afirmação é verdadeira para k=1. Agora, suponha que o conjunto \mathbb{N}_k é finito para algum número natural k. Considere o conjunto $N_{k+1}=\mathbb{N}_k\cup\{k+1\}$. Se N_{k+1} for infinito, então, pelo Teorema 4.3, $N_{k+1}-\{k+1\}=\mathbb{N}_k$ será um conjunto infinito, o que contradiz a hipótese de indução. Logo, se N_k é finito, então N_{k+1} é finito. Portanto, pelo princípio de indução matemática, o conjunto N_k é finito para cada $k\in\mathbb{N}$.

Na verdade, existe uma conexão íntima entre um conjunto finito não vazio e um conjunto N_k .

Teorema 4.4 Um conjunto X é finito se e somente se $X = \emptyset$ ou X está em correspondência um-a-um com algum N_k .

Demonstração. Se X é vazio ou está em correspondência um-a-um com algum \mathbb{N}_k , então, pelo Corolário do Teorema 4.2, e Exemplos 4.1 e 4.2, o conjunto X é finito.

Para mostrar a recíproca, mostramos, equivalentemente, sua contrapositiva: Se $X \neq \emptyset$ e X não está em correspondência um-a-um com nenhum \mathbb{N}_k , então X é infinito.

Podemos tomar um elemento x_1 de X, e ter novamente $X-\{x_1\}$ não vazio; pois, caso contrário, teríamos $X=\{x_1\}$ em correspondência com \mathbb{N}_1 , uma contradição com a hipótese sobre X.

Continuando desta maneira, suponhamos que escolhemos elementos x_1, x_2, \ldots, x_k de X. Então $X - \{x_1, x_2, \ldots, x_k\}$ é não vazio; caso contrário, teremos $X = \{x_1, x_2, \ldots, x_k\}$ em correspondência um-a-um com \mathbb{N}_k , uma contradição com nossa hipótese sobre X. Logo, podemos sempre escolher um elemento x_{k+1} de $X - \{x_1, x_2, \ldots, x_k\}$. Então, por indução matemática, para todo número natural n, existe um subconjunto

próprio $\{x_1, x_2, \ldots, x_n\}$ de X. Denotemos o conjunto dos x_n 's escolhidos por Y.⁴ Então a função $f \colon Y \to Y - \{x_1\}$, definida por $f(x_k) = x_{k+1}$ para todo $k \in \mathbb{N}$, estabelece uma correspondência um-a-um entre Y e seu subconjunto próprio $Y - \{x_1\}$. Portanto, pela Definição 4.1, Y é infinito e portanto, pelo Teorema 4.1, X é infinito.

Mencionaremos aqui que o Teorema 4.4 sugere uma definição alternativa de conjuntos finitos e infinitos. Podemos definir um conjunto como sendo finito se e somente se ele é vazio ou está em correspondência um-a-um com algum \mathbb{N}_k , e sendo infinito se e somente se não é finito. Desta definição alternativa, nossa Definição 4.1 pode ser demonstrada como um teorema. Entretanto, isto requeriria mais ou menos o mesmo montante de trabalho requerido pela nossa presente abordagem.

4.1.1 Exercícios

- 1. Complete a demonstração do Teorema 1.
- 2. Seja $g \colon X \to Y$ uma correspondência um-a-um. Demonstre que se X é finito, então Y é finito
- 3. Demonstre que os conjuntos \mathbb{Z} , \mathbb{Q} e \mathbb{R} são infinitos.
- 4. Demonstre que se A é um conjunto infinito, então $A \times A$ também o é.
- 5. Demonstre que se A e B são conjuntos infinitos, então $A \cup B$ é um conjunto infinito.
- 6. Demonstre que a reunião de um número finito de conjuntos finitos é um conjunto finito.
- 7. Sejam A e B dois conjuntos tais que $A \cup B$ é infinito. Demonstre que ao menos um dos dois conjuntos A e B é infinito.
- 8. Demonstre a seguinte generalização do Teorema 4.3: Se Y é um subconjunto finito de um conjunto infinito X, então X-Y é infinito.

4.2 Equipotência de conjuntos

Dois conjuntos finitos X tem o mesmo número de elementos se e somente se existe uma correspondência um-a-um $f\colon X\to Y$. Embora a frase "mesmo número de elementos" não se aplique aqui se X e Y são infinitos, parece natural pensar que dois conjunto infinitos, que estejam em correspondência um-a-um, tem o mesmo tamanho. Formalizaremos esta intuição como segue:

Definição 4.2 Dois conjuntos X e Y dizem-se equipotentes, fato denotado por $X \sim Y$, quando existe uma correspondência um-a-um $f: X \to Y$.

 $^{^4}$ Aqui os autores usaram implicitamente o "axioma da escolha", um axioma importante a ser discutido no Capítulo 6. Uma forma do axioma da escolha pode ser enunciada como: "Seja $\mathcal P$ um conjunto não vazio, de subconjuntos não vazios de um conjunto dado X. Então existe um conjunto $R \subset X$ tal que para todo $C \in \mathcal P$, $C \cap R$ é um conjunto unitário". Este axioma será usado em todas as partes deste livro, sem ser explicitamente mencionado.

Obviamente, todo conjunto é equipotente a si mesmo. Como a inversa de uma correspondência um-a-um é uma correspondência um-a-um (Teorema 3.14), $X \sim Y$ se e somente se $Y \sim X$. Convencionaremos que o símbolo $f\colon X \sim Y$ significará " $f\colon X \to Y$ é uma correspondência um-a-um e portanto $X \sim Y$ ". Usando esta notação conveniente, a primeira metade do Problema 9, Exercícios 3.7.1 pode ser re-enunciado como: Se $f\colon X \sim Y$ e $g\colon Y \sim Z$, então $g\circ f\colon X \sim Z$. Acabamos de demonstrar então o seguinte teorema.

Teorema 4.5 Seja $\mathfrak I$ um conjunto de conjuntos e seja $\mathfrak R$ uma relação em $\mathfrak I$ dada por: $X \, \mathcal R \, Y$ se e somente se X e Y são membros de $\mathfrak I$ e $X \sim Y$. Então $\mathfrak R$ é uma relação de equivalência em $\mathfrak I$.

No seguinte exemplo, os símbolos]0,1[e]-1,1[denotam intervalos de números reais.

Exemplo 4.3

```
(a) ]0,1[\sim]-1,1[.
(b) ]-1,1[\sim\mathbb{R},\ e\ \mathbb{R}\sim]0,1[.
```

Solução. (a) A função $f\colon]0,1[\to]-1,1[$, dada por f(x)=2x-1, é uma correspondência um-a-um. Portanto, $]0,1[\sim]-1,1[$.

- (b) A função trigonométrica $g\colon]-1,1[\to\mathbb{R},$ dada por $g(x)=\operatorname{tg}(\pi x/2)$, é uma correspondência um-a-um; portanto $]-1,1[\sim\mathbb{R}.$ O leitor deveria verificar esta asserção esboçando um gráfico de $g(x)=\operatorname{tg}(\pi x/2)$. Uma demonstração rigorosa pode ser obtida verificando-se as seguintes duas observações:
- (1) $g:]-1, 1[\to \mathbb{R}$ é contínua, e ilimitada, tanto superiormente como inferiormente. (2) $g'(x) = (\pi/2) \sec^2(\pi x/2) > 0$, $\forall x, \Rightarrow g$ é estritamente crescente.

Como a "relação" de equipotência é transitiva, 5 $]0,1[\sim]-1,1[$ e $]-1,1[\sim\mathbb{R}$ implicam $]0,1[\sim\mathbb{R}.$

Teorema 4.6 Sejam X, Y, Z e W conjuntos com $X \cap Z = \emptyset = Y \cap W$, e sejam $f \colon X \sim Y$ e $g \colon Z \sim W$. Então $f \cup g \colon (X \cup Z) \sim (Y \cup W)$.

Demonstração. Como $f\colon X\to Y$ e $g\colon Z\to W$ são funções com $X\cap Z=\emptyset$, pelo Teorema 3.8, do Capítulo 3, $f\cup g\colon X\cup Z\to Y\cup W$ é uma função. Deixaremos ao leitor a demonstração de que esta última função é uma correspondência um-a-um.

 $^{^5}$ Falando estritamente, " \sim " não é uma relação de equivalência, porque seu domínio não é um conjunto (veja Teorema 2.10 do Capítulo 2). Mas podemos chamá-la uma relação se considerarmo-la definida em qualquer conjunto de conjuntos \Im (Teorema 4.5).

Teorema 4.7 Sejam X, Y, Z e W conjuntos tais que $X \sim Y$ e $Z \sim W$. Então $X \times Z \sim Y \times W$.

Demonstração. Sejam $f\colon X\sim Y$ e $g\colon Z\sim W$. Definamos a função $f\times g\colon X\times Z\to Y\times W$, por $(f\times g)(x,z)=(f(x),g(z))$ para todo $(x,z)\in X\times Z$. Pedimos ao leitor demonstrar que esta última função é uma correspondência um-a-um.

Examinando os vários conjuntos finitos $\mathbb{N}_k = \{1, 2, 3, \dots, k\}$, conforme k cresce, e notando que os conjuntos infinitos \mathbb{Z} , \mathbb{Q} , e \mathbb{R} (veja Problema 3, Exercícios 4.1.1) são superconjuntos de \mathbb{N} , parece que o "menor" conjunto infinito é o conjunto \mathbb{N} de todos os números naturais, ou qualquer conjunto que seja equipotente a \mathbb{N} . Aprenderemos em breve, na Seção 4.4, que nem todos os conjuntos infinitos são equipotentes a \mathbb{N} .

Definição 4.3 *Um conjunto* X *é dito ser* enumerável *quando* $X \sim \mathbb{N}$. *Um conjunto* contável *é um conjunto finito ou enumerável*.

Seja X um conjunto enumerável. Então existe uma correspondência biunívoca $f\colon X\sim \mathbb{N}.$ Se denotamos

$$f(1) = x_1, f(2) = x_2, f(3) = x_3, \dots, f(k) = x_k, \dots$$

então X pode ser denotado alternativamente por $\{x_1,x_2,x_3,\ldots,x_k,\ldots\}$; as reticências (\ldots) são usadas para indicar que os elementos são etiquetados em uma ordem definida, conforme indicado pelos índices. Uma explicação para o termo "contável" está agora em pauta. Para um conjunto finito, é teoricamente possível contar seus elementos e o termo é adequado. Muito embora a contagem de fato de todos os elementos de um conjunto enumerável $X=\{x_1,x_2,x_3,\ldots,\}$ seja impossível, o conjunto X está em correspondência biunívoca com os números de contagem, os números naturais.

Teorema 4.8 Todo subconjunto infinito, de um conjunto enumerável, é enumerável.

Demonstração. Seja Y um subconjunto infinito de um conjunto enumerável $X=\{x_1,x_2,x_3,\dots\}$. Seja n_1 o menor índice para o qual $x_{n_1}\in Y$, e seja n_2 o menor índice para o qual $x_{n_2}\in Y-x_{n_1}$. Tendo definido $x_{n_{k-1}}$, seja n_k o menor índice tal que $x_{n_k}\in Y-\{x_{n_1},x_{n_2},\dots,x_{n_{k-1}}\}$. Um tal n_k sempre existe pois Y é infinito, o que garante que $Y-\{x_{n_1},x_{n_2},\dots,x_{n_{k-1}}\}\neq\emptyset$ para cada $k\in\mathbb{N}$. Deste modo, construímos uma correspondência um-a-um $f\colon Y\sim\mathbb{N}$, sendo $f(k)=x_{n_k}$ para cada $k\in\mathbb{N}$. Portanto, Y é enumerável.

Uma demonstração mais curta, porém menos intuitiva, do Teorema 4.8, é indicada no Problema 10 ao final desta seção. O seguinte corolário é uma conseqüência imediata da Definição 4.3 e do Teorema 4.8.

Corolário 4.2 Todo subconjunto de um conjunto contável é contável.

Mais exemplos e propriedades de conjuntos enumeráveis são dados na próxima seção.

4.2.1 Exercícios

- 1. Complete a demonstração do Teorema 6.
- 2. Complete a demonstração do Teorema 7.
- 3. Demonstre que se X e Y são dois conjuntos, então $X \times Y \sim Y \times X$.
- 4. Demonstre que se $(X Y) \sim (Y X)$ então $X \sim Y$.
- 5. Demonstre a seguinte generalização do Teorema 4.6: Seja $\{X_\gamma \mid \gamma \in \Gamma\}$ e $\{Y_\gamma \mid \gamma \in \Gamma\}$ duas famílias de conjuntos disjuntos, tal que $X_\gamma \sim Y_\gamma$ para cada $\gamma \in \Gamma$. Então $\bigcup_{\gamma \in \Gamma} X_\gamma \sim \bigcup_{\gamma \in \Gamma} Y_\gamma$.
- 6. Demonstre que se X é um conjunto enumerável e Y é um subconjunto finito de X, então X-Y é enumerável. [Compare com o Problema 8, Exercícios 4.1.1.]
- 7. Demonstre que se X é um conjunto enumerável e Y é um conjunto finito, então $X \cup Y$ é enumerável.
- 8. Demonstre que o conjunto \mathbb{N}_p , de todos os números naturais pares, e o conjunto \mathbb{N}_i , de todos os números naturais ímpares, são enumeráveis.
- 9. Seja A um conjunto não vazio, e seja 2^A o conjunto das funções de A no conjunto $\{0,1\}$. Demonstre que $\wp(A) \sim 2^A$.
- 10. Sejam X um conjunto enumerável e Y um subconjunto infinito de X. Seja $g\colon X\sim\mathbb{N}$, e seja $h\colon Y\to\mathbb{N}$ a função definida por

$$h(y) = \text{ número de elementos em } \{1, 2, 3, \dots, g(y)\} \cap g(Y)$$

Demonstre que h é uma correspondência um-a-um e que portanto Y é enumerável.

4.3 Exemplos e propriedades de conjuntos enumeráveis

O conjunto \mathbb{N}_p de todos os números naturais pares e o conjunto \mathbb{N}_i de todos os números naturais ímpares são enumeráveis (Problema 8, Exercícios 4.2.1). Como a reunião $\mathbb{N}_p \cup \mathbb{N}_i (=\mathbb{N})$ destes dois conjuntos enumeráveis é enumerável, o próximo teorema deveria ser previsível.

Teorema 4.9 A união de dois conjuntos enumeráveis é enumerável.

Demonstração. Sejam A e B dois conjuntos enumeráveis. Mostraremos que $A \cup B$ é enumerável nos dois casos seguintes:

Caso 1. $A \cap B = \emptyset$.

Como $A \sim \mathbb{N}$ e $\mathbb{N} \sim \mathbb{N}_p$, temos $A \sim \mathbb{N}_p$. De modo semelhante, temos $B \sim \mathbb{N}_i$.

Consequentemente, pelo Teorema 4.6, temos $(A \cup B) \sim (\mathbb{N}_p \cup \mathbb{N}_i) = \mathbb{N}$, o que demonstra que $A \cup B$ é enumerável.

Caso 2. $A \cap B \neq \emptyset$.

Seja C=B-A. Então $A\cup C=A\cup B$ e $A\cap C=\emptyset$; o conjunto $C\subset B$ é ou finito ou enumerável [Corolário 4.2 do Teorema 4.8]. Se C é finito, pelo Problema 7 dos Exercícios 4.2.1, $A\cup C$ é enumerável, e se C é enumerável, então $A\cup C$ é enumerável, pelo caso 1 acima.

Portanto, o conjunto $A \cup B$ é enumerável.

Corolário 4.3 Sejam A_1, A_2, \ldots, A_n conjuntos enumeráveis. Então $\bigcup_{k=1}^n A_k$ é enumerável.

Demonstração. A demonstração é deixada ao leitor, como um exercício.

Pedimos ao leitor verificar o próximo exemplo.

Exemplo 4.4 O conjunto Z de todos os inteiros é enumerável.

Teorema 4.10 *O conjunto* $\mathbb{N} \times \mathbb{N}$ *é enumerável.*

Demonstração. Considere a função $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ dada por

$$f(j,k) = 2^j 3^k$$

para todo $(j,k)\in\mathbb{N}\times\mathbb{N}$. Esta função é injetora, de modo que

$$\mathbb{N} \times \mathbb{N} \sim f(\mathbb{N} \times \mathbb{N}) \subset \mathbb{N}$$
.

Como $\mathbb{N} \times \mathbb{N}$ é infinito, $f(\mathbb{N} \times \mathbb{N})$ também o é. Pelo Teorema 4.8, $f(\mathbb{N} \times \mathbb{N})$ é enumerável e portanto $\mathbb{N} \times \mathbb{N}$ é enumerável.

Corolário 4.4 Para cada $k \in \mathbb{N}$, seja A_k um conjunto enumerável satisfazendo $A_j \cap A_k = \emptyset$ para todo $j \neq k$. Então $\bigcup_{k \in \mathbb{N}} A_k$ é enumerável.⁶

Demonstração. Para cada $k \in \mathbb{N}$, seja $f_k \colon \mathbb{N} \to \mathbb{N} \times \{k\}$ uma função dada por $f_k(j) = (j,k)$ para todo $j \in \mathbb{N}$. Claramente, cada $f_k \colon \mathbb{N} \to \mathbb{N} \times \{k\}$ é uma correspondência um-a-um. Ou seja, $\mathbb{N} \sim \mathbb{N} \times \{k\}$. Como $A_k \sim \mathbb{N}$ e $\mathbb{N} \sim \mathbb{N} \times \{k\}$ para cada $k \in \mathbb{N}$, temos $A_k \sim \mathbb{N} \times \{k\}$ para cada $k \in \mathbb{N}$. Segue então, do Problema 5 dos Exercícios 4.2.1, que $\bigcup_{k \in \mathbb{N}} A_k \sim \bigcup_{k \in \mathbb{N}} \mathbb{N} \times \{k\}$. Mas o conjunto $\bigcup_{k \in \mathbb{N}} \mathbb{N} \times \{k\}$ é igual ao conjunto enumerável $\mathbb{N} \times \mathbb{N}$. Portanto, $\bigcup_{k \in \mathbb{N}} A_k$ é enumerável.

⁶Este resultado é verdadeiro sem a hipótese " $A_k \cap A_j = \emptyset$ para todo $j \neq k$." Veja Problema 7.

Exemplo 4.5 O conjunto \mathbb{Q} de todos os números racionais é enumerável.

Demonstração. Representaremos cada número racional de maneira única como p/q, sendo $p \in \mathbb{Z}$, $q \in \mathbb{N}$ e o máximo divisor comum de p e q igual a 1. Seja \mathbb{Q}_+ o conjunto de tais elementos com p/q > 0, e seja $\mathbb{Q}_- = \{-p/q \mid p/q \in \mathbb{Q}_+\}$. Então $\mathbb{Q} = \mathbb{Q}_+ \cup \{0\} \cup \mathbb{Q}_-$. É evidente que $\mathbb{Q}_+ \sim \mathbb{Q}_-$. Portanto, para mostrar que \mathbb{Q} é enumerável, é suficiente mostrar que \mathbb{Q}_+ é enumerável. Para este propósito, consideramos a função $f: \mathbb{Q}_+ \to \mathbb{N} \times \mathbb{N}$, dada por f(p/q) = (p,q). Como esta função é injetora, temos $\mathbb{Q}_+ \sim f(\mathbb{Q}_+) \subset \mathbb{N} \times \mathbb{N}$. Como \mathbb{Q}_+ , como um superconjunto de \mathbb{N} , é infinito, $f(\mathbb{Q}_+)$ é um subconjunto infinito do conjunto enumerável $\mathbb{N} \times \mathbb{N}$. Portanto, $f(\mathbb{Q}_+)$ é enumerável e conseqüentemente \mathbb{Q}_+ é enumerável. A demonstração está agora completa.

O próximo teorema indica que os conjunto enumeráveis são, em um certo sentido, os menores em "tamanho" dentre os conjuntos infinitos.

Teorema 4.11 Todo conjunto infinito contém um subconjunto enumerável.

Demonstração. Seja X um conjunto infinito qualquer. Então $X \neq \emptyset$, de modo que podemos escolher um elemento, digamos x_1 , no conjunto X. A seguir, seja x_2 um elemento em $X - \{x_1\}$. De modo semelhante, escolha um elemento x_3 do conjunto não vazio $X - \{x_1, x_2\}$. Tendo assim definido x_{k-1} , escolhemos um elemento x_k no conjunto $X - \{x_1, x_2, \ldots, x_{k-1}\}$. Tal x_k existe para cada $k \in \mathbb{N}$, porque X é infinito, o que garante que $X - \{x_1, x_2, \ldots, x_{k-1}\} \neq \emptyset$ para todo $k \in \mathbb{N}$. O conjunto $\{x_k \mid k \in \mathbb{N}\}$ é um subconjunto enumerável de X, e a demonstração está completa.

4.3.1 Exercícios

- 1. Demonstre a asserção do Exemplo 4.3: O conjunto \mathbb{Z} de todos os inteiros é enumerável.
- 2. Demonstre o Corolário 4.3 do Teorema 4.9.
- 3. Demonstre que a união de um número finito de conjuntos contáveis é contável.
- 4. Demonstre que se A e B são conjuntos enumeráveis, então também o é $A \times B$. Em particular, $\mathbb{Z} \times \mathbb{N}$, $\mathbb{Z} \times \mathbb{Z}$, e $\mathbb{Q} \times \mathbb{Q}$ são enumeráveis.
- 5. Encontre uma função injetora $f:\mathbb{Q}\to\mathbb{Z}\times\mathbb{N}$ e dê uma demonstração alternativa para o Exemplo 4.5.
- 6. Demonstre que o conjunto dos círculos no plano cartesiano, tendo raios racionais e centros em pontos com ambas as coordenadas racionais, é enumerável.
- 7. Demonstre que se para cada $k \in \mathbb{N}$, B_k é um conjunto enumerável, então $\bigcup_{k \in \mathbb{N}} B_k$ é enumerável.

4.4 Conjuntos não enumeráveis

Todos os conjuntos infinitos que vimos até o momento são enumeráveis. Isto pode levar o leitor a indagar se todos os conjuntos infinitos são enumeráveis. É comumente

pensado que Georg Cantor tentou demonstrar que todo conjunto infinito é enumerável, quando iniciou seu desenvolvimento da teoria dos conjuntos. Entretanto, êle surprendeuse demonstrando que existem conjuntos não enumeráveis.

Teorema 4.12 O intervalo aberto]0,1[de números reais é um conjunto não enumerável.

Demonstração. Expressemos primeiramente cada número $x,\ x<0<1$, como uma expansão decimal na forma $0,x_1x_2x_3\ldots$, com $x_n\in\{0,1,2,\ldots,9\}$ para cada n. Por exemplo, $1/3=0,333\ldots$, $\sqrt{2}/2=0,707106\ldots$ De modo a ter uma única expressão, para aqueles números com uma expansão decimal finita, tais como 1/4=0,25, concordaremos em subtrair 1 do último dígito e acrescentar 9's, de modo que $1/4=0,24999\ldots$, e não $0,25000\ldots$ Sob este acordo, dois números no intervalo]0,1[são iguais se e somente se os dígitos correspondentes, de suas expansões decimais, são idênticos. Assim, se dois tais números, $x=0,x_1x_2x_3\ldots$ e $y=0,y_1y_2y_3\ldots$ tem uma casa decimal, digamos a k-ésima casa decimal, tal que $x_k\neq y_k$, então $x\neq y$. Este é um ponto crucial sobre o qual nossa demonstração se apoia.

Agora, suponha que o conjunto]0,1[é enumerável. Então existe uma correspondência um-a-um $f\colon \mathbb{N} \sim]0,1[$. Então podemos listar todos os elementos de]0,1[como segue:

$$f(1) = 0, a_{11}a_{12}a_{13} \dots$$

$$f(2) = 0, a_{21}a_{22}a_{23} \dots$$

$$f(3) = 0, a_{31}a_{32}a_{33} \dots$$

$$\vdots$$

$$f(k) = 0, a_{k1}a_{k2}a_{k3} \dots$$

$$\vdots$$

em que cada $a_{jk} \in \{0, 1, 2, \dots, 9\}.$

Construiremos um número $z\in]0,1[$, que não pode ser encontrado na lista acima de f(k)'s. Esta contradição implicará que nossa suposição prévia de que]0,1[é enumerável estava errada, e que portanto]0,1[é não enumerável. Seja $z=0,z_1z_2z_3\ldots$ definido por $z_k=5$, se $a_{kk}\neq 5$, e $z_k=1$ se $a_{kk}=5$, para cada $k\in \mathbb{N}$. O número $z=0,z_1z_2z_3\ldots$ claramente satisfaz 0< z<1; mas $z\neq f(1)$ pois $z_1\neq a_{11},\,z\neq f(2)$ pois $z_2\neq a_{22},\ldots$, e de modo geral $z\neq f(k)$ pois $z_k\neq a_{kk}$, para todo $k\in \mathbb{N}$. Portanto, $z\not\in f(\mathbb{N})=]0,1[$. Temos então a contradição prometida, e a demonstração está completa.

Corolário 4.5 O conjunto \mathbb{R} dos números reais não é enumerável.

Demonstração. Fizemos a demonstração, no Exemplo 4.3(b), de que $\mathbb{R} \sim]0,1[$. Agora,]0,1[é não enumerável; portanto seu conjunto equipotente \mathbb{R} também é não enumerável (veja Problema 1).

Exemplo 4.6 O conjunto de todos os números irracionais é não enumerável.

Demonstração. Demonstramos, no Exemplo 4.5, que o conjunto $\mathbb Q$ dos números racionais é enumerável. O conjunto dos números irracionais é, por definição, o conjunto $\mathbb R-\mathbb Q$. É fácil ver que $\mathbb R-\mathbb Q$ é um conjunto infinito. Para mostrar que $\mathbb R-\mathbb Q$ é não enumerável, supomos o contrário, que $\mathbb R-\mathbb Q$ é enumerável. Segue então que a união $(\mathbb R-\mathbb Q)\cup\mathbb Q=\mathbb R$ é enumerável (Teorema 4.9). Isto contradiz o corolário do Teorema 12. Portanto o conjunto $\mathbb R-\mathbb Q$ dos números irracionais é não enumerável.

- Notas. (1) O método de demonstração usado no Teorema 4.12 é chamado método diagonal de Cantor, porque foi criado por Cantor e a construção do número chave $z=0,z_1z_2z_3\ldots$, na demonstração, é baseada nos dígitos $a_{11},a_{22},a_{33},\ldots$ na diagonal principal da tabela (*) de dígitos. Esta demonstração, embora possa não ser apreciada pelo iniciante, revela a engenhosidade de Cantor.
- (2) A existência de conjuntos não enumeráveis mostra que existem classes de conjunto infinitos. Na verdade, como o leitor verá no próximo capítulo, existe uma abundância de "classes de equipotência" de conjunto infinitos.

4.4.1 Exercícios

- 1. Sejam A e B dois conjuntos equipotentes. Demonstre que se A é não enumerável, então B é não enumerável.
- 2. Demonstre que todo superconjunto de um conjunto não enumerável é não enumerável.
- 3. Usando o resultado do Problema 2, acima, dê uma demonstração alternativa do corolário do Teorema 4.12.
- 4. Demonstre que o conjunto dos números irracionais entre 0 e 1 é não enumerável.