variable-renewable-energy-process

Collection of tools to process and interact with variable renewable energy data

Photovoltaic

1. Solar energy output

$$E = A * r * GHI * \mu$$

where,

E = Energy (Wh)

A = Total solar panel area (m2)

r =Solar panel efficiency (default value = 0.159) [1]

GHI = Global Horizontal Irradiation (Wh / m2)

 $\mu = \text{Coefficient for losses (range between 0.5 and 0.9, default value = 0.9)}$

2. Solar power output

$$P = E/\Delta t$$

where,

P = Solar panel power output (W)

E = Energy (Wh)

 $\Delta t = \text{Time step (hour)}$

3. Solar per unit output

$$\begin{split} cf &= P/\bar{P} \\ &= \frac{A*r*GHI*\mu}{\Delta t*\bar{P}} \end{split}$$

where,

cf = Capacity factor (p.u.)

P =Solar panel power output (W)

 $\bar{P} = \text{Maximum power output of the installed solar panel (Wp)}$

A = Total solar panel area (m2)

r =Solar panel efficiency (default value = 0.159) [1]

GHI = Global Horizontal Irradiation (Wh / m2)

 $\mu=$ Coefficient for losses (range between 0.5 and 0.9, default value = 0.9) $\Delta t=$ Time step (hour)

Typical Value

Symbol	Value	Unit	Note	
\overline{A}	1.63350	m2	[1]	
r	0.159	-	[1]	
$\mu_{\!_{-}}$	0.90	-	-	
\bar{P}	260	\mathbf{W}	[1]	