NEURONALE NETZE

Handschriftliche Zahlen erkennen

Jasper Gude

Modellierung des Problems 2.1

Modellierung des Problems 2.2

2.3 Modellierung des Problems

3.1 Überführung auf eine Netzstruktur

28px × 28px

3.2 Überführung auf eine Netzstruktur

3.3 Überführung auf eine Netzstruktur

3.4 Überführung auf eine Netzstruktur

3.5 Überführung auf eine Netzstruktur

4.1 Gewichtungen setzen

Linearkombination

$$x_0w_0+x_1w_1+x_2w_2+\ldots+x_nw_n$$

Gewichtungen setzen 4.2

Linearkombination

$$x_0w_0+x_1w_1+x_2w_2+\ldots+x_nw_n$$

Modellierung

Künstliche Neuronen

Training

Gewichtungen setzen

Linearkombination

$$x_0w_0+x_1w_1+x_2w_2+\ldots+x_nw_n$$

 \Diamond

Modellierung

Κü

Künstliche Neuronen

> Training

Topolog

 \Diamond

4 Gewichtungen setzen

Linearkombination

$$x_0w_0 + x_1w_1 + x_2w_2 + \ldots + x_nw_n - 10$$

Modellierung

Künstliche Neuronen

Training

Topolog

♦ Modellierung

Künstliche Neuronen

Training

Topologi

6 Aufbau eines Perzeptrons

Inputvektor \vec{x}

7 Übertragungsfunktion

Linearkombination

$$net = x_0w_0 + x_1w_1 + x_2w_2 + \ldots + x_nw_n$$
 oder

$$net = \sum_{i=0}^{n} x_i w_i$$

Inputvektor \vec{x}

8 Fehlerfunktion

Dataset

$$X = \left\{ (\vec{x_0}, y_0); (\vec{x_1}, y_1); (\vec{x_2}, y_2); (\dots, \dots); (\vec{x_n}, y_n) \right\}$$

Mean Squared Error

$$E = \frac{1}{2} \sum_{i=0}^{n} (y_i - o_i)^2$$

9 Dataset

$$X = \left\{ (\vec{x_0}, y_0); (\vec{x_1}, y_1); (\vec{x_2}, y_2); (\dots, \dots); (\vec{x_n}, y_n) \right\}$$

10 Ableitung der Aktivierungsfunktion

Ableitung der Sigmoidfunktion

$$\varphi'(x) = \frac{1}{1+e^{-x}} \cdot (1 + \frac{1}{1+e^{-x}})$$
 oder

$$\varphi'(x) = \varphi(x) \cdot (1 + \varphi(x))$$

11 Einschichtiges feedforward-Netz

Ausgabeschicht

12 Mehrschichtiges feedforward-Netz

13 Rekurrentes Netz

Ausgabeschicht

Jasper Gude

Hockenheim, 27. November 2023