Regnedag med prøveeksamen Mat 1100 lørdag 5. desember 2015

Hjelpemidler: *På eksamen er kun formelsamling (2 sider) og godkjent kalkulator tillatt. I dag kan du selvsagt velge om du vil bruke andre hjelpemidler, og om du vil jobbe alene eller samarbeide.*

Tid: Kl. 10-15, med innlagt lunchpause kl. 12-13.

Løsningsforslag: Legges ut på semestersiden for Mat 1100 ettermiddag/kveld 5. desember.

Lykke til! Hilsen Arne.

DEL 1

Oppgave 1. (3 poeng) Det komplekse skalarproduktet $(1, 2i, 4+i, 9) \cdot (2, -i, 4+i, 1)$ er:

- A) 18
- B) 21
- C) 20 6i
- D) 26
- E) 60 + 6i

Oppgave 2. (3 poeng) Den retningsderiverte $f'(\mathbf{a}; \mathbf{r})$ til funksjonen $f(x, y, z) = x + y^2 + \arctan(xyz)$ i punktet $\mathbf{a} = (1, 1, 1)$ langs vektoren $\mathbf{r} = (1, -1, 2)$ er:

- A)0
- B) 1
- C) 2
- D) 3
- E) 4

Oppgave 3. (3 poeng) Hvilken av funksjonene under oppfyller $\frac{\partial f}{\partial x} = -2xy\sin(x^2y)e^{\cos(x^2y)}$:

- A) $f(x, y) = x^2 y e^{\cos(x^2 y)}$
- B) $f(x, y) = e^{\cos(x^2 y)}$
- C) $f(x, y) = \cos(x^2 y)e^{\cos(x^2 y)}$
- D) $f(x, y) = x^2 y \cos(x^2 y) e^{\cos(x^2 y)}$
- E) $f(x, y) = -x^2 y \cos(x^2 y) e^{\cos(x^2 y)}$

Oppgave 4. (3 poeng) Volumet av pyramiden utspent av vektorene (1, 0, 0), (0, 1, 0) og (17, 19, 18) er:

- A) 1
- B) 3
- C) 6
- D) 17
- E) 18

Oppgave 5. (3 poeng) La n > 0 være et helt tall. Integralet $\int_0^{\pi/2} \cos^n x \cdot \sin x \ dx$ er:

- A) 1
- B) 1/n
- C) 1/(n+1)
- D) $1/\pi$
- E) 2π

Oppgave 6. (3 poeng) Funksjonen $f:(0,\infty)\to \mathbf{R}$ gitt ved $f(x)=x\cdot 7^{1/x}$ har:

- A) skråasymptoten y = 7x
- B) skråasymptoten y = x + 7
- C) skråasymptoten $y = x + \ln 7$
- D) skråasymptoten $y = x \ln 7$
- E) ingen skråasymptote

Oppgave 7. (3 poeng) Hvis $M = \begin{pmatrix} 2 & 1 \\ 5 & 1 \end{pmatrix}$, så er determinanten til matrisen $3M + M^3$ lik:

- A) 183
- B) -185
- C) 187
- D) -189
- E) 191

Oppgave 8. (3 poeng) En sylinderformet boks uten lokk med radius r = 20 cm fylles med vann. Akkurat når vanndybden i boksen er 20 cm, strømmer det vann ned i boksen med hastighet 0, 8 liter per sekund. Hvor fort øker vanndybden akkurat da, målt i cm per sekund?

- A) $1/\pi$
- B) $2/\pi$
- C) $3/\pi$
- D) $4/\pi$
- E) $5/\pi$

Oppgave 9. (3 poeng) Volumet av omdreiningslegemet som fås når området mellom grafene til $f(x) = e^x$ og $g(x) = (e^x)^2$ på intervallet [0, 1] dreies om x-aksen, er:

- A) $\frac{\pi}{4}(e^2-1)^2$
- B) $\frac{\pi}{4}(e^2+1)^2$
- C) $\frac{\pi}{2}(e^2-1)^2$
- D) $\frac{\pi}{2}(e^2+1)^2$
- E) $\frac{\pi}{3}e^{4}$

Oppgave 10. (3 poeng) La $f : \mathbf{R} \to \mathbf{R}$ være funksjonen definert for alle x ved

$$f(x) = \int_0^x \sqrt{1 + t^4} \, dt.$$

Da er grensen $\lim_{x \to \infty} \frac{f(x)}{x^3}$:

- A) 0
- B) 1/3
- C) 1
- D) 7/5
- E) $+\infty$

DEL 2

HUSK AT I DENNE DELEN MÅ DU BEGRUNNE ALLE SVARENE DINE

Oppgave 11. (10 poeng) Finn de tre tredjerøttene til det komplekse tallet z=-1. Skriv røttene på formen $re^{i\theta}$.

Oppgave 12. La funksjonen $f : \mathbf{R} \to \mathbf{R}$ være definert ved $f(x) = x \ln |x|$ for $x \neq 0$ og f(0) = 0.

- a) (10 poeng) Avgjør om f er kontinuerlig i x = 0.
- b) (10 poeng) Avgjør om f er deriverbar i x = 0.

Oppgave 13. (10 poeng) Vis at det uegentlige integralet

$$\int_{1}^{\infty} \frac{1}{1 + x^2 + \ln(1 + x^2)} dx$$

konvergerer.

Oppgave 14.

a) (10 poeng) Finn integralet

$$\int \frac{1}{x^2 - x + 1} \ dx.$$

b) (10 poeng) Finn integralet

$$\int \frac{x-2}{x^2-x+1} \ dx.$$

c) (10 poeng) Finn integralet

$$\int \frac{1}{1+x^3} \ dx.$$

SLUTT