Reminder (Exercise 7):

Let I be an interval in R having non-zero length, let t. \in I, and Let U, A: I - R" with U diffuble & U' = UA. Then

- (1) U(t) is orthogonal YteI
- (2) U(t.) is orthogonal & A(t) is 6kew-symmetric V + & I.

Recall the divension of {A & R" : A is skew-symmetric } = skew(n, R) $1 + 2 + \cdots + (n-1) = \frac{n(n-1)}{2}$

If t > Ult) is a diffable curve in O(n, IR) with U(0) = I then U'(0) € Skew (n/R).

Conversely , if A ∈ Skew (n,R), 3 U: R→O(n,R) 1.t. (0) = I and (eAt will do)

thus Skaw (n,R) is fungent to O(n,R) at I. (Note A exists in U' = UA since U' exists so A = U'U')

The Fundamental Theorem of Curves

Let I be an Interval in R with Nonzero Length, let K: I -> (0,00) be continuously differentiable, and let $\tau: I \longrightarrow \mathbb{R}$ be continuously

differentiable. Then \exists a C^3 unit speed write $\chi: I \to R^3$, which is unique up to its position in space, whose currenture is K and whose torsion is τ .

Pf $f(X \mid S \in I)$ to simplify notation, suppose S = 0.

If β is a C^3 unit-speed curve in R^3 with $K_p = K$ and $Y_p = T$, and if M is the proper orthogonal numeric whose columns are $T_{\beta}(0)$, $N_{\beta}(0)$, $B_{\beta}(0)$, and if $M : I \to R^3$ is defined by $A(S) = M^{-1}(\beta(S) - X_0)$, then $A(S) = C^3$ unit-speed curve $A(S) = M^{-1}(\beta(S) - X_0)$, then A(S) = C unit-speed curve $A(S) = M^{-1}(\beta(S))|_{S=0} = M^{-1}T_{\beta}(0) = C_1$ $A(S) = C_2$, and $A(S) = C_3$.

and also conversely.

It suffices to show that $\exists h$ unique C^3 unit-speed curve $\alpha: I \longrightarrow R^3$ satisfying (X).

Consider the initual value problem

$$\begin{cases} \alpha' = u, & u' = K u_2, & u'_2 = -K u_1 + \tau u_3, & u'_3 = -\tau u_2, \\ \alpha(0) = 0, & u_1(0) = e_1, & u_2(0) = e_2, & u_3(0) = e_3. \end{cases}$$

By Picard's theorem on differential equations, the IVP (†) has a unique solution (a, u., u2, u3).

Now if a is a C^3 unit-speed conve in \mathbb{R}^3 satisfying (X) then (α, T_a, N_a, B_a) satisfies (t) so it is the solution of (t). This proves uniqueness for (X).

to prove existence, define a to be a, and cet us show that a is a C^3 unit-speed curve in \mathbb{R}^3 with $T_\alpha = u_1$, $N_\alpha = u_2$, $B_\alpha = u_3$, $K_\alpha = K$, $T_\alpha = \tau$.

Define $U: I \longrightarrow \mathbb{R}^{3\times 3}$ by $A(5) = \begin{pmatrix} u_{\cdot}(s), & u_{2}(s), & u_{3}(s) \end{pmatrix}$. $A: I \longrightarrow \mathbb{R}^{3\times 3}$ by $A(5) = \begin{pmatrix} 0 & -K(5) & 0 \\ K(5) & 0 & -7(5) \\ 0 & 7(5) & 0 \end{pmatrix}$.

Note that A (a) is skew symmetric $\forall s$, and U' = UA by (1), and $U(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ is arthogonal. Thus U(s) is orthogonal $\forall s \in I$.

det (U(S)) = ±1 ~w det(U(0)) = | So det(U(6)) = | by IVT.

Thus \forall SEI, $U_{s}(s)$, $U_{z}(s)$, $U_{z}(s)$ is a positively sciented ONB for \mathbb{R}^{3} , so $U_{s}(s) \times U_{z}(s) = U_{s}(s)$. Now $|\mathbf{k}| = |\mathbf{u}| = 1$ so $|\mathbf{u}| = 1$

Next, $\alpha'' = T_{\alpha}' = U_1' = KU_2$, so $K_{\alpha} = |T_{\alpha}'| = K|u_2| = K$.

And $N_{\alpha} = \frac{T_{\alpha}'}{K} = U_2$. And $B_{\alpha} = T_{\alpha} \times N_{\alpha} = U_1 \times U_2 = U_3$.

Also $B'_{\alpha} = U_3' = -TU_2 = -TN_{\alpha}$ so $T_{\alpha} = T$.

d" = (Kuz) = K'uz + Kuz' which exists.

so d is C^3 , and the existence is proved.

Review: Picard's Theorem:

Let I be an interval in R with non-zero length. Let $t_o \in I$. Let $f: I \times R^n \to R^n$ be continuous and satisfy $|f(t, X) - f(t, y)| \le K(t) |X - y|$ for all $t \in I$ where $K: I \to [0, \infty)$ such that $\forall a, b \in I$ with acb, $f(t) \in I$ with $I \in I$ where $I \in I$ with $I \in I$ wi

Proof Summary: Let $y: I \to \mathbb{R}^n$ be cts. Then y is differentiable

And satisfies (*) iff $\forall t \in I$, $y(t) = y_0 + \int_{\mathbb{R}^n} f(s, y(s)) ds$.

Let $y_0: I \to \mathbb{R}^n$ which is continuous If $y_0: (**)$ have already

been defined, let $y_{k+1}(t) = y_0 + \int_{\mathbb{R}^n} f(s, y_2(s)) ds$ $(**y_{k+1}: I \to \mathbb{R}^n)$.

Then (Y_k) converges uniformly on each compact subinterval of I. Thus its limit y is continuous f satisfies f(f).

So f satisfies f(f).