PGSR

PGSR:

一、核心见解与创新点:

Image Plane Distance

Depth

图 6: Unbiased Depth.

中心点渲染深度带来的偏差

使用法向量校正偏差

多视角一致性

创新点:

■ 无偏深度估计:使用渲染的法向量校正光心到交点距离

■ 多视角几何一致性: 重投影误差+NCC相关性

■ 曝光校正: 对数拉伸

PGSR

PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction arxiv6月10日 浙大CAD&CG

二、无偏深度渲染Unbiased Depth:

(1) 薄片状高斯如何求交点:

■ -> GaussianSurfel使用仿射变换近似高斯中心点到交点的距

利用法向量投影到射线 方向(仿射变换是z轴)

■ ->2DGS 三平面法求交点

$$\mathbf{h}_{x} = (-1, 0, 0, x).$$
 $\mathbf{h}_{y} = (0, -1, 0, y)$ $\mathbf{h}_{u} = (\mathbf{W}\mathbf{H})^{\mathsf{T}}\mathbf{h}_{x}$ $\mathbf{h}_{v} = (\mathbf{W}\mathbf{H})^{\mathsf{T}}\mathbf{h}_{y}$

$$u(\mathbf{x}) = \frac{\mathbf{h}_u^2 \mathbf{h}_v^4 - \mathbf{h}_u^4 \mathbf{h}_v^2}{\mathbf{h}_u^1 \mathbf{h}_v^2 - \mathbf{h}_u^2 \mathbf{h}_v^1} \qquad v(\mathbf{x}) = \frac{\mathbf{h}_u^4 \mathbf{h}_v^1 - \mathbf{h}_u^1 \mathbf{h}_v^4}{\mathbf{h}_u^1 \mathbf{h}_v^2 - \mathbf{h}_u^2 \mathbf{h}_v^1}$$

二、无偏深度渲染Unbiased Depth:

- (2) PGSR如何求交点:
- ① 渲染射线方向上的法向量N

$$N = \sum_{i \in N} \mathbf{R}_c^T \mathbf{n}_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j),$$

② 计算光心到中心点距离,投影到点到平面距离OA, 渲染

$$d_i = (oldsymbol{R}_c^T(oldsymbol{\mu}_i - oldsymbol{T}_c))oldsymbol{R}_c^Toldsymbol{n}_i^T \qquad oldsymbol{\mathcal{D}} = \sum_{i \in N} d_i lpha_i \prod_{j=1}^{i-1} (1-lpha_j),$$
Re 是从相机到全局世界的旋转。

③ 计算光心到交点的距离OB

$$D(p) = \frac{\mathcal{D}}{N(p)K^{-1}\tilde{p}}.$$
 (4)

 $p = [u, v]^T$ 表示图像平面上的二维位置。 \hat{p} 表示p的齐次 坐标,K是相机的内参。

推导: 1、OP是单位1; 2、n·OP是投影,即cosθ; 3、OB=OA/cosθ

三、多视角一致性:

① 多视角几何一致性: 重投影误差

$$\boldsymbol{L}_{mvgeom} = \frac{1}{V} \sum_{\boldsymbol{p}_r \in V} \phi(\boldsymbol{p}_r) \quad \phi(\boldsymbol{p}_r) = \parallel \boldsymbol{p}_r - \boldsymbol{H}_{nr} \boldsymbol{H}_{rn} \boldsymbol{p}_r \parallel$$

② 多视角光度一致性: NCC相关性

$$\boldsymbol{L}_{mvrgb} = \frac{1}{V} \sum_{\boldsymbol{p}_r \in V} (1 - NCC(\boldsymbol{I}_r(\boldsymbol{p}_r), \boldsymbol{I}_n(\boldsymbol{H}_{rn}\boldsymbol{p}_r))),$$

③ 单视角邻域一致性: 梯度加权的邻域深度图-法线一致损失

$$N_d(\mathbf{p}) = \frac{(P_1 - P_0) \times (P_3 - P_2)}{|(P_1 - P_0) \times (P_3 - P_2)|}, \quad \mathbf{L}_{svgeo} = \frac{1}{W} \sum_{\mathbf{p} \in W} \left| \overline{\nabla \mathbf{I}} \right|^5 \parallel \mathbf{N}_d(\mathbf{p}) - \mathbf{N}(\mathbf{p}) \parallel_1$$

四、曝光校正:

对数拉伸:

$$I_i^a = exp(a_i)I_i^r + b_i,$$

$$L_{rgb} = (1 - \lambda)L_1(\tilde{I} - I_i) + \lambda L_{SSIM}(I_i^r - I_i). \quad 0.2$$

$$\tilde{I} = \begin{cases} I_i^a, & \text{if } L_{SSIM}(I_i^r - I_i) < 0.5 \\ I_i^r, & \text{if } L_{SSIM}(I_i^r - I_i) >= 0.5 \end{cases}$$

损失函数:

$$m{L} = m{L}_{rgb} + \lambda_1 m{L}_s + m{L}_{geo}. \qquad m{L}_{geo} = \lambda_2 m{L}_{svgeo} + \lambda_3 m{L}_{mvrgb} + \lambda_4 m{L}_{mvgeom}.$$
 100 0.01 0.2 0.05

五、结果和总结:

Model setting	F1-Score↑	PSNR↑		
w/o Single-view	0.26	27.46		
w/o Multi-view	0.15	28.14		
w/o Our unbiased depth	0.20	26.80		
Full model	0.29	27.30		

	24	37	40	55	63	65	69	83	97	105	106	110	114	118	122	Mean	Time
VolSDF [60]	1.14	1.26	0.81	0.49	1.25	0.70	0.72	1.29	1.18	0.70	0.66	1.08	0.42	0.61	0.55	0.86	> 12h
NeuS [56]	1.00	1.37	0.93	0.43	1.10	0.65	0.57	1.48	1.09	0.83	0.52	1.20	0.35	0.49	0.54	0.84	> 12h
Neuralangelo [33]	0.37	0.72	0.35	0.35	0.87	0.54	0.53	1.29	0.97	0.73	0.47	0.74	0.32	0.41	0.43	0.61	> 128h
SuGaR [19]	1.47	1.33	1.13	0.61	2.25	1.71	1.15	1.63	1.62	1.07	0.79	2.45	0.98	0.88	0.79	1.33	1h
2DGS [21]	0.48	0.91	0.39	0.39	1.01	0.83	0.81	1.36	1.27	0.76	0.70	1.40	0.40	0.76	0.52	0.80	0.32h
GOF [69]	0.50	0.82	0.37	0.37	1.12	0.74	0.73	1.18	1.29	0.68	0.77	0.90	0.42	0.66	0.49	0.74	2h
PGSR(DS)	0.34	0.58	0.29	0.29	0.78	0.58	0.54	1.01	0.73	0.51	0.49	0.69	0.31	0.37	0.38	0.53	0.6h
PGSR	0.31	0.52	0.27	0.27	0.76	0.54	0.49	0.98	0.69	0.49	0.46	0.56	0.28	0.35	0.36	0.49	1.0h
																	-

- 首个多视角一致性损失
- 结合MVS
- 重建sota 渲染没掉很多
- -先渲染法向量避免数值不稳定
- -多视角一致性降低渲染能力 相邻视角不一定合适
- -深度无偏吗???
- -边缘渲染会更差

			Indoor scenes			Outdoor scene	s	Average on all scenes			
		PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
NeRF-based	NeRF [41]	26.84	0.790	0.370	21.46	0.458	0.515	24.15	0.624	0.443	
	Deep Blending [20]	26.40	0.844	0.261	21.54	0.524	0.364	23.97	0.684	0.313	
	INGP [44]	29.15	0.880	0.216	22.90	0.566	0.371	26.03	0.723	0.294	
	M-NeRF360 [2]	31.72	0.917	0.180	24.47	0.691	0.283	28.10	0.804	0.232	
	Neus [56]	25.10	0.789	0.319	21.93	0.629	0.600	23.74	0.720	0.439	
GS-based	3DGS [27]	30.99	0.926	0.199	24.24	0.705	0.283	27.24	0.803	0.246	
	SuGaR [19]	29.44	0.911	0.216	22.76	0.631	0.349	26.10	0.771	0.283	
	2DGS [21]	30.39	0.923	0.183	24.33	0.709	0.284	27.03	0.804	0.239	
	GOF [69]	30.80	0.928	0.167	24.76	0.742	0.225	27.78	0.835	0.196	
	PGSR	30.41	0.930	0.161	24.45	0.730	0.224	27.43	0.830	0.193	