

## Álgebra y Geometría Analítica

T.M.

10-12-2019

## Recuperatorio del Segundo Parcial Apellido y Nombres:

TEMA 1

La condición para aprobar este parcial es tener bien resueltos tres ejercicios. La condición para promocionar este parcial es tener bien resueltos cuatro ejercicios.

| 1 |  | 2 | 3 | 4 | 5 | Calificación Final |
|---|--|---|---|---|---|--------------------|
|   |  |   |   |   |   |                    |

IMPORTANTE: Se debe presentar en las hojas de entrega el desarrollo de los ejercicios para justificar las respuestas. NO USAR LÁPIZ.

- 1. Sean  $B = \{(1,1,2), (0,0,1), (0,-1,0)\}$  una base de  $\mathbb{R}^3$  y  $B' = \{(0,1), (1,2)\}$  una base de  $\mathbb{R}^2$ . Sea  $T : \mathbb{R}^3 \to \mathbb{R}^2$  la transformación lineal tal que  $M_{BB'}(T) = \begin{pmatrix} -7 & -2 & -1 \\ 3 & 1 & k \end{pmatrix}$ .
  - (a) Hallar  $k \in \mathbb{R}$ , si existe, para que T sea un epimorfismo.
  - (b) Si k = 0, calcular T(2, 4, 2).
- 2. Definir, si existe, una transformación lineal  $F: \mathbb{R}^{2\times 2} \to \mathbb{P}_2$  tal que  $Nu(F) = \{A \in \mathbb{R}^{2\times 2}/A \text{ es diagonal}\}$  y  $Im(F) = gen\{x^2 2, x 3, x^2 + x 5\}$ .
- 3. Sea  $A=\begin{pmatrix}a&1&1\\0&b&0\\2&1&0\end{pmatrix}\in\mathbb{R}^{3\times 3}$ . Hallar  $a,b\in\mathbb{R}$  para que (2,2,2) sea un autovector de A y la misma resulte diagonalizable.
- 4. Sea la superficie de ecuación

$$(x-1)^2 + Ay^2 + B(z-3)^2 = 4.$$

- (a) Hallar  $A, B \in \mathbb{R}$  para que la traza de la misma con el plano y = 0 sea una circunferencia, y la traza con el plano x = 1 sea la curva  $(x, y, z) = (1, \cos(\theta), 2 \sin(\theta) + 3)$  con  $0 \le \theta < 2\pi$ .
- (b) Identificar y graficar la superficie para A = 1 y B = 0.
- 5. Representar en el plano complejo todos los puntos z que satisfacen

$$\begin{cases} |z-3|^2 - 2Re(iz) \le 0, \\ Re(z) \ge 3. \end{cases}$$