

Minimali e Massimali, Minoranti e Maggioranti, Minimo e Massimo

Definito una struttura $< S, \le >$ (insieme di definizione e relazione parziale) è possibili individuare alcuni elementi dell'inisieme o del sotto insieme dafinito dalla relazione "particolari":

Minimali e Massimali

data una $s \in S$

$$s$$
 è **minimale** di S se $existsim s' < s$ s è **massimale** di S se $existsim s' < s'$ $s < s'$

Minimali e massimali appartengono all'insieme ${\cal S}$

Minoranti e Maggioranti

Dato un sottoinsieme X di S: $X\subseteq S$ ed un elemento s che non deve per forza appartenere ad X

$$s$$
 è **minorante** di X se $s \in S, s \leq x \in X$

$$s$$
 è maggiorante di X se $s \in S, s \geq x \in X$

Minimo maggiorante e Massimo minorante

s è **minimo maggiorante** di X se è il più piccolo dei suoi maggioranti

orall s'maggioranti $s \leq s'
ightarrow \sqcup X$

s è massimo minorante di X se è il più grande dei suoi minoranri

orall s'minoranti $s \geq s'
ightarrow \sqcap X$

Minimo e Massimo

Definiti Minimo maggiorante e Massimo maggiorante se questi appartengono all'insieme X sono detti Minimi e Massimi dell'insieme.

Il **minimo** è utile per definire un sistema **ben fondato**, in quanto un ordinamento è detto tale solo se ogni suo sottoinsieme possiede un minimo.

es. l'insieme dei numeri Reali non è Ben Fondato.