Оглавление

	П	ред	цисловие	7
	В	зед	ение	8
$oldsymbol{\Gamma}$	Л	A	В А 1. ПОСЛЕДОВАТЕЛЬНОСТИ	
			······································	12
	§ :	1.		12
	§ 2	2.		15
	§ :	3.		19
	§ 4	4.	Свойства пределов последовательностей,	
			связанные с арифметическими действиями	23
	§ !	5 .		26
	§ (ვ.		27
	§ '	7.	F T T	28
	§ 8	3.	± 11	29
	§ 9	9.	1 1	34
	_		1	36
	§ :	11.	Счетные и несчетные множества	39
$oldsymbol{\Gamma}$	Л.	A	В А 2. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ	42
		1.		42
	§ 2	2.		44
	§ ;	3.		45
	§ ∠	4.	Предел по множеству	47
	§ §	5 .		49
	§ 6	ვ.		52
	§ '	7.	Непрерывность функции на множестве	55
	§ 8	3.		61
	§ 9	9.	Экспонента и логарифм	62
	§ :	10.	Тригонометрические функции	68
	§ :	11.	Тригонометрические формулы	75

		. Первый замечательный предел	81 82
	§ 13	. Сравнение функций	04
$oldsymbol{\Gamma}$	ЛА	В А 3. ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ	86
	§ 1.	Определение и геометрический смысл производной	
		и дифференциала	86
	§ 2.	Правила дифференцирования	89
	§ 3.	Производные и дифференциалы высших порядков	94
	§ 4.	Теоремы о среднем для дифференцируемых функций	97
	§ 5.	Формула Тейлора	102
	§ 6.	Разложение основных элементарных функций по формуле	
		Тейлора	107
	§ 7.	Правило Лопиталя	111
	§ 8.	Исследование функций с помощью производных	114
Γ	ЛА	В А 4. ПРОСТРАНСТВО \mathbb{R}^n И МЕТРИЧЕСКИ	E
		ПРОСТРАНСТВА	123
	§ 1.	Линейное пространство	123
	§ 2.	Евклидово пространство	124
	§ 3.	Нормированное пространство	125
	§ 4.	Метрическое пространство	128
	§ 5.	Предел и непрерывность в метрическом пространстве	129
	§ 6.	Открытые и замкнутые множества в метрическом	
		пространстве	131
	§ 7.	Полнота и компактность метрических пространств и мно-	
		жеств в \mathbb{R}^n	134
	§ 8.	Лемма Гейне-Бореля	138
	§ 9.	Равномерная непрерывность	141
	§ 10	. Свойства непрерывных функций в метрических	
		пространствах	144
Г	ЛА	В А 5. КРИВЫЕ	147
_	§ 1.	Предел и производная вектор-функции	147
	§ 2.	Кривые	150
	§ 3.	Длина кривой	152
	§ 4.	Первое приближение кривой (касательная)	157
	§ 5.	Второе приближение кривой	158
	•	Сопровождающий трехгранник кривой	162

ΓЛАΙ	В А 6. КОМПЛЕКСНЫЕ ЧИСЛА	
	и неопределенный интеграл	165
§ 1.	Комплексные числа	165
§ 2.	Разложение многочлена на множители	168
	Разложение правильной рациональной дроби в сумму	
	элементарных дробей	172
§ 4.	Первообразная и элементарные методы интегрирования	174
§ 5.	Интегрирование рациональных дробей	178
	Интегрирование иррациональных, тригонометрических	
	и гиперболических функций	180
ГЛАІ	в а 7. числовые ряды	183
§ 1.	Определение и некоторые свойства рядов	183
§ 2.	Ряды с неотрицательными членами	184
§ 3.	Ряды со знакопеременными членами	188
§ 4.	Перестановки слагаемых в рядах и перемножение рядов .	193
ГЛАІ	В А 8. МЕРА И ИНТЕГРАЛ ЛЕБЕГА	202
§ 1.	Kольцо и σ -кольцо	202
§ 2.	Клеточные множества и верхняя мера Лебега	203
§ 3.	Мера Лебега	208
	Измеримые функции	214
§ 5.	Интеграл Лебега для счетно-ступенчатых функций	216
§ 6.	Определение и элементарные свойства интеграла Лебега	219
	Связь интегрируемости функции с интегрируемостью	
-	ее модуля	224
§ 8.	Аддитивность интеграла по множествам	230
§ 9.	Интеграл с переменным верхним пределом	233
§ 10.	Геометрические приложения интеграла	237
	Интеграл Римана	243
	Предельный переход под знаком интеграла	249
ГЛАІ	В А 9. НЕСОБСТВЕННЫЙ ИНТЕГРАЛ	255
§ 1.	Определение и некоторые свойства несобственного	
	интеграла	255
	Исследование сходимости несобственных интегралов	
•	от знакопостоянных функций	261
	Исследование сходимости несобственных интегралов	
•	от знакопеременных функций	263
	± • • • • • • • • • • • • • • • • • • •	

ΓЛΑ	В А 10. ФУНКЦИОНАЛЬНЫЕ	
0.1	последовательности и ряды	27 0
§ 1.	1	270
e o	последовательностей Равномерная сходимость функциональных рядов	$\frac{270}{274}$
§ 2. § 3.		214
g 3 .	и рядов	282
ΓЛΑ	В А 11. СТЕПЕННЫЕ РЯДЫ	287
§ 1.	Обобщенный признак Коши сходимости числового ряда	287
§ 2.	Комплексные ряды	288
§ 3.		290
§ 4.	Ряд Тейлора	297
§ 5.	Ряды Тейлора для показательной, гиперболических	
	и тригонометрических функций	300
§ 6.	Остаточный член формулы Тейлора в интегральной форме.	
	Ряды Тейлора для степенной, логарифмической и других	
	функций	303
ΓЛΑ	В А 12. ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ	İ
	НЕСКОЛЬКИХ ПЕРЕМЕННЫХ	308
§ 1.		308
§ 2.		040
0.0	Геометрический смысл градиента и дифференциала	313
§ 3.	Необходимые условия дифференцируемости. Производные	0.15
e 4	по направлению и частные производные	315
§ 4.	Достаточные условия дифференцируемости	318
§ 5. § 6.	Дифференцирование сложной функции	320
g 0.	Частные производные и дифференциалы высших	323
§ 7.	порядков	$\frac{323}{326}$
8 1.	Формула Тейлора	020
Γ Л А	В А 13. ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ	329
§ 1.	Теорема о неявной функции для одного уравнения	329
§ 2.	Операторная норма матрицы. Теорема Лагранжа о среднем	330
§ 3.	Принцип Банаха сжимающих отображений	334
§ 4.	Теорема о неявной функции для системы уравнений	335
§ 5.	Теорема об обратном отображении	340
§ 6.	Теорема о расщеплении отображений	344
Пре	дметный указатель	347

Предисловие

Настоящее учебное пособие написано на основе лекций, читаемых автором студентам первого курса Московского физико-технического института (национального исследовательского университета) и является четвертым изданием, исправленным и дополненным.

Содержание материала соответствует программе кафедры высшей математики МФТИ.

Автор выражает искреннюю признательность коллегам и студентам, высказавшим ценные замечания и предложения, а также обнаружившим опечатки в лекциях.

Введение

Будем использовать следующие логические операции:

⇔ (равносильно),

которые применяются к условиям, т.е. выражениям, принимающим значения И (истина) или Л (ложь).

Значения условий, полученных в результате применения указанных операций к исходным условиям, определяются по следующим таблицам истинности в зависимости от значений исходных условий.

A	$\neg A$
И	Л
Л	И

J							
A	B	A и B	A или B	$A \Rightarrow B$	$A \Leftrightarrow B$		
И	И	И	И	И	И		
И	Л	Л	И	Л	Л		
Л	И	Л	И	И	Л		
Л	Л	Л	Л	И	И		

Будем также использовать кванторы

```
\forall (для любого),
```

∃ (существует)

и логические связки

$$\hookrightarrow$$
 (выполняется),

Запись $x \in X$ означает «x является элементом множества X».

Запись $X \subset Y$ означает «множество X является подмножеством множества Y». Последнюю запись можно определить следующим образом:

$$X \subset Y \quad \Leftrightarrow \quad \forall x \hookrightarrow (x \in X \Rightarrow x \in Y),$$

или в более короткой форме записи $\forall x: x \in X \hookrightarrow x \in Y$, или, еще короче, $\forall x \in X \hookrightarrow x \in Y$.

При определении новых множеств часто используют

метод перечисления: $X = \{x_1, x_2, ..., x_n, ...\}$ и

метод наложения условия:

$$X = \{x : \text{выполняется некоторое условие для } x\}.$$

Определим операции пересечения, объединения и дополнения множеств:

$$X \cap Y = \{x : x \in X \text{ и } x \in Y\};$$

 $X \cup Y = \{x : x \in X \text{ или } x \in Y\};$
 $X \setminus Y = \{x \in X : x \notin Y\}.$

Здесь и далее перечеркнутый символ означает отрицание к соответствующему условию, например, $x \notin Y \Leftrightarrow \neg (x \in Y)$.

При раскрытии отрицания к выражению, содержащему логические операции, полезно использовать следующие свойства:

Справедливость этих свойств легко проверить по таблицам истинности, рассмотрев все возможные случаи значений условий A и B.

При раскрытии отрицания к условию, содержащему квантор, следует поменять квантор, а знак отрицания поставить после этого квантора и переменной, к которой он относится. Пусть A(x) – некоторое условие, налагаемое на переменную x. Тогда

$$\neg(\forall x \in X \hookrightarrow A(x)) \iff \exists x \in X : \neg A(x); \\ \neg(\exists x \in X : A(x)) \iff \forall x \in X \hookrightarrow \neg A(x).$$

Например,

$$X\not\subset Y\quad\Longleftrightarrow\quad\neg(\forall x\in X\hookrightarrow\ x\in Y)\quad\Longleftrightarrow\quad(\exists x\in X:\ x\not\in Y).$$

Определение. Декартовым произведением множеств X и Y называется множество $X \times Y$, состоящее из всех (упорядоченных) пар (x,y) таких, что $x \in X$, $y \in Y$.

Например, если
$$X = \{0,1\}, Y = \{y_1, y_2, y_3\},$$
 то $X \times Y = \{(0, y_1), (1, y_1), (0, y_2), (1, y_2), (0, y_3), (1, y_3)\}.$

Определение. Будем говорить, что задано соответствие f между множествами X и Y, если задано множество $G_f \subset X \times Y$. При этом множество G_f называется графиком соответствия f. Элемент $y \in Y$ называется поставленным в соответствие элементу $x \in X$ при соответствии f, если $(x,y) \in G_f$. Множеством определения (или областью определения) соответствия f называется

$$D_f = \{ x \in X : (\exists y \in Y : (x, y) \in G_f) \}.$$

 M ножеством значений (или областью значений) соответствия f называется

$$E_f = \{ y \in Y : (\exists x \in X : (x, y) \in G_f) \}.$$

Соответствие f называется однозначным, если

$$\forall x \in X \ \forall y_1, y_2 \in Y : \ (x, y_1) \in G_f \ \text{if} \ (x, y_2) \in G_f \ \hookrightarrow \ y_1 = y_2,$$

т. е. каждому $x \in X$ поставлено в соответствие не более одного элемента $y \in Y$.

Определение. Соответствие f^{-1} между множествами Y и X называется *обратным* к соответствию f между множествами X и Y, если графики этих соответствий удовлетворяют условию

$$\forall x \in X \ \forall y \in Y \hookrightarrow (x,y) \in G_f \Leftrightarrow (y,x) \in G_{f^{-1}}.$$

Определение. Отображением (или функцией) $f: X \to Y$ называется однозначное соответствие такое, что $D_f = X$. При этом если $(x,y) \in G_f$, то пишут y = f(x).

Определение. Отображение $f: X \to Y$ называется

- а) ин $\emph{vermushum}$ или обратимым, если соответствие, обратное к f, является однозначным;
 - б) сюръективным, если $E_f = Y$;
- в) *биекцией* или *взаимно однозначным соответствием*, если оно инъективно и сюръективно.

Определение. Образом множества $A \subset X$ при отображении $f: X \to Y$ называется множество $f(A) = \{f(x): x \in A\}$.

Определение. Прообразом множества $B \subset Y$ при отображении $f: X \to Y$ называется множество $f^{-1}(B) = \{x \in X: f(x) \in B\}.$

Определение. Композицией (или суперпозицией) функций $f:X \to Y$ и $g:f(X) \to Z$ или сложной функцией называется функция $g\circ f:X \to Z$, заданная формулой $(g\circ f)(x)=g(f(x))$ $\forall x\in X$.

Определение. *Бинарным отношением* на множестве X называется соответствие из множества X в X.

Примером бинарного отношения является отношение неравенства \leq . Запись $x \leq y$ означает, что пара (x,y) принадлежит графику бинарного отношения \leq .

ГЛАВА1

ПОСЛЕДОВАТЕЛЬНОСТИ ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ

§ 1. Аксиомы действительных чисел

Определение. Будем говорить, что на множестве X определена операция сложения \langle умножения \rangle , если любым двум элементам $a,b\in X$ поставлен в соответствие единственный элемент $a+b\in X$ \langle $a\cdot b\in X$ \rangle . Иными словами, операции сложения и умножения на множестве X – это функции из $X\times X$ в X.

Определение. Множеством *действительных* (вещественных) чисел \mathbb{R} называется множество, на котором определены операции сложения и умножения и бинарное отношение \leq (которое будем называть *отношением порядка*), удовлетворяющие следующим 16 аксиомам.

Аксиомы сложения

- 1) $\forall a, b \in \mathbb{R} \hookrightarrow a + b = b + a$;
- 2) $\forall a, b, c \in \mathbb{R} \hookrightarrow (a+b) + c = a + (b+c);$
- 3) $\exists 0 \in \mathbb{R} : \forall a \in \mathbb{R} \hookrightarrow a + 0 = a;$
- 4) $\forall a \in \mathbb{R} \quad \exists -a \in \mathbb{R} : \quad a + (-a) = 0.$

Аксиомы умножения

- 5) $\forall a, b \in \mathbb{R} \hookrightarrow a \cdot b = b \cdot a$;
- 6) $\forall a, b, c \in \mathbb{R} \hookrightarrow (a \cdot b) \cdot c = a \cdot (b \cdot c);$
- 7) $\exists 1 \in \mathbb{R} \setminus \{0\} : \forall a \in \mathbb{R} \hookrightarrow a \cdot 1 = a;$
- 8) $\forall a \in \mathbb{R} \setminus \{0\} \quad \exists \frac{1}{a} \in \mathbb{R} : \quad a \cdot \frac{1}{a} = 1.$

Аксиома связи сложения и умножения

9) $\forall a, b, c \in \mathbb{R} \hookrightarrow a \cdot (b+c) = a \cdot b + a \cdot c$.

Пример 1. Доказать, что если $a, b \in \mathbb{R}$ и b + a = a, то b = 0.

Решение.
$$b \stackrel{(3)}{=} b + 0 \stackrel{(4)}{=} b + (a + (-a)) \stackrel{(2)}{=} (b + a) + (-a) \stackrel{\text{по условию}}{=} = a + (-a) \stackrel{(4)}{=} 0 \quad \Rightarrow \quad b = 0.$$

Пример 2. Доказать, что $\forall a \in \mathbb{R} \hookrightarrow a \cdot 0 = 0$.

Решение.
$$a \cdot 0 + a \stackrel{(7)}{=} a \cdot 0 + a \cdot 1 \stackrel{(9)}{=} a \cdot (0+1) \stackrel{(1)}{=} = a \cdot (1+0) \stackrel{(3)}{=} a \cdot 1 \stackrel{(7)}{=} a \stackrel{\Pi_{\text{Pимер }} 1.}{\Rightarrow} a \cdot 0 = 0.$$

Задача 1. Доказать, что $\forall a \in \mathbb{R} \hookrightarrow a \cdot (-1) = -a$.

Аксиомы отношения порядка

- 10) $\forall a \in \mathbb{R} \hookrightarrow a \leq a$;
- 11) $\forall a, b \in \mathbb{R} \hookrightarrow a \leq b$ или $b \leq a$;
- 12) $\forall a, b \in \mathbb{R} : (a \le b \quad \mathsf{и} \quad b \le a) \hookrightarrow a = b;$
- 13) $\forall a, b, c \in \mathbb{R} : (a \le b \quad \mathsf{и} \quad b \le c) \hookrightarrow a \le c.$

Связь отношения порядка и сложения

14) $\forall a, b, c \in \mathbb{R} : a < b \hookrightarrow a + c < b + c$.

Связь отношения порядка и умножения

15) $\forall a, b, c \in \mathbb{R} : (a \le b \quad \text{if} \quad 0 \le c) \hookrightarrow a \cdot c \le b \cdot c.$

Аксиомы 1–15 известны Вам из школы как свойства действительных чисел. С другой стороны, эти аксиомы определяют алгебраические структуры. В частности, аксиомы 1–4 означают, что $\mathbb R$ является абелевой (т. е. коммутативной или перестановочной) группой по сложению. Аксиомы 5–8 говорят, что $\mathbb R\setminus\{0\}$ является абелевой группой по умножению. Аксиомы 1–9 соответствуют определению поля, а аксиомы 1–15 – определению упорядоченного поля.

Аксиома непрерывности

16) Если $A,B\subset\mathbb{R}$ и множество A лежит слева от множества B (т. е. $\forall a\in A\ \forall b\in B\hookrightarrow\ a\leq b$), то $\exists c\in\mathbb{R}:\ \forall a\in A\ \ \forall b\in B\hookrightarrow\ a\leq c\leq b.$

Вопрос непротиворечивости приведенных аксиом решается, например, путем введения бесконечных десятичных дробей, определения для них операций сложения, умножения и отношения порядка \leq и проверки указанных выше аксиом.

Определим теперь отношения порядка $<, \ge, >$ и операции вычитания и деления на множестве действительных чисел:

$$\begin{array}{lll} a\neq b &\Leftrightarrow & \neg(a=b);\\ a< b &\Leftrightarrow & (\ a\leq b &\bowtie \ a\neq b\);\\ a\geq b &\Leftrightarrow & b\leq a;\\ a> b &\Leftrightarrow & b< a;\\ a-b=a+(-b);\\ \frac{a}{b}=a\cdot\frac{1}{b} & (b\neq 0). \end{array}$$

Определение. Множеством *натуральных* чисел \mathbb{N} называется множество действительных чисел вида $1, 1+1, \ldots, n=1+\ldots+1, \ldots$

Точнее, множество \mathbb{N} – это пересечение всех множеств $X \subset \mathbb{R}$, удовлетворяющих двум условиям:

- $(1) 1 \in X$ и
- $(2) \ \forall x \in X \hookrightarrow x + 1 \in X.$

Замечание. Из данного определения следует, что множество \mathbb{N} удовлетворяет условиям (1) и (2). Если множество $X \subset \mathbb{R}$ удовлетворяет условиям (1) и (2), то $\mathbb{N} \subset X$.

Определение. Множеством целых чисел называется

$$\mathbb{Z} = \{ m \in \mathbb{R} : m \in \mathbb{N} \text{ или } -m \in \mathbb{N}, \text{ или } m = 0 \}.$$

Множеством pauuoнanьных чисел \mathbb{Q} называется множество чисел вида $\frac{m}{n}$, где $m \in \mathbb{Z}$, $n \in \mathbb{N}$.

Задача 2. Доказать, что рациональные числа удовлетворяют всем аксиомам действительных чисел, кроме аксиомы непрерывности.

Задача 3. Показать, что аксиома непрерывности для множества рациональных чисел не выполняется, т. е. привести пример двух множеств $A, B \subset \mathbb{Q}$ таких, что

```
\forall a \in A \ \forall b \in B \hookrightarrow a \leq b, но не существует c \in \mathbb{Q}: \forall a \in A \ \forall b \in B \hookrightarrow a \leq c \leq b.
```

Множество действительных чисел \mathbb{R} будем также называть *числовой* npsmoй, а действительные числа – movkamu числовой npsmoй.

Наряду с числовой прямой определим расширенную числовую прямую: $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. При этом элементы $-\infty, +\infty$ не содержатся в \mathbb{R} , для них не определены операции +, -, *, /, определены лишь отношения порядка: $\forall x \in \mathbb{R} \hookrightarrow -\infty < x < +\infty$ и, следовательно, $\forall x \in \mathbb{R} \hookrightarrow -\infty \le x \le +\infty$.

Определение. Пусть заданы действительные числа a, b, a < b. *Чис- ловыми промежутками* называются следующие множества:

```
интервал (a,b) = \{x \in \mathbb{R} : a < x < b\}, отрезок [a,b] = \{x \in \mathbb{R} : a \le x \le b\}, полуинтервали: [a,b) = \{x \in \mathbb{R} : a \le x < b\}, (a,b] = \{x \in \mathbb{R} : a < x \le b\}, лучи: [a,+\infty) = \{x \in \mathbb{R} : a \le x\}, (a,+\infty) = \{x \in \mathbb{R} : a < x\}, (-\infty,a] = \{x \in \mathbb{R} : x \le a\}, (-\infty,a) = \{x \in \mathbb{R} : x < a\}, точка \{a\}, числовая прямая (-\infty,+\infty) = \mathbb{R}.
```

§ 2. Точные грани множеств

Определение. 1) Число $M \in \mathbb{R}$ называется верхней гранью множества $A \subset \mathbb{R}$, если число M лежит справа от множества A, т.е. $\forall a \in A \hookrightarrow a \leq M$.

- 2) Множество $A\subset\mathbb{R}$ называется ограниченным сверху, если существует (конечная) верхняя грань этого множества: $\exists M\in\mathbb{R}: \forall a\in A\hookrightarrow\hookrightarrow a\leq M.$
- 3) Число $m \in \mathbb{R}$ называется ниженей гранью множества $A \subset \mathbb{R}$, если число m лежит слева от множества A, т. е. $\forall a \in A \hookrightarrow a \geq m$.
- 4) Множество $A \subset \mathbb{R}$ называется *ограниченным снизу*, если существует (конечная) нижняя грань этого множества: $\exists m \in \mathbb{R}: \forall a \in A \hookrightarrow a \geq 2$ $\geq m$.

5) Множество A называется *ограниченным*, если A ограничено сверху и ограничено снизу.

Замечание. Кванторы \forall и \exists в общем случае нельзя менять местами. Например, если в определении ограниченного сверху множества переставить кванторы, то получится условие $\forall a \in A \ \exists M \in \mathbb{R}: \ a \leq M$, справедливое для любого, в том числе и для неограниченного сверху множества.

Определение. Модулем числа а называется число

$$|a| = \left\{ \begin{array}{ll} a, & \text{если } a \ge 0, \\ -a, & \text{если } a < 0. \end{array} \right.$$

Задача 1. Показать, что множество A ограничено тогда и только тогда, когда

$$\exists M \in \mathbb{R}: \ \forall a \in A \hookrightarrow \ |a| \leq M.$$

Определение. Число M называется максимальным элементом множества $A \subset \mathbb{R}$ (пишут $M = \max A$), если

- 1) $M \in A$ и
- $2) \ M$ является верхней гранью A.

Число m называется минимальным элементом множества $A \subset \mathbb{R}$ (пишут $m=\min A$), если

- $1) m \in A$ и
- 2) m является нижней гранью A.

Замечание. Если множество $A \subset \mathbb{R}$ неограничено сверху, то максимальный элемент этого множества не существует, т. к. не существует конечной верхней грани этого множества. Если множество $A \subset \mathbb{R}$ ограничено сверху, то максимальный элемент этого множества также может не существовать. Пусть, например, $A = (-\infty, 0)$. Пусть $a \in A$. Тогда a < 0 и, следовательно, $a < \frac{a}{2} < 0$. То есть для каждого $a \in A$ найдется элемент $\frac{a}{2} \in A$ такой, что $a < \frac{a}{2}$. Поэтому любой элемент $a \in A$ не является верхней гранью A, а значит, $\max A$ не существует.

Аналогичное замечание справедливо для минимального элемента.

Если максимальный (минимальный) элемент множества A не существует, то вместо него будем рассматривать супремум (инфимум) множества A. Как мы увидим далее, супремум (инфимум) существует для любого непустого множества. В случае существования максимального (минимального) элемента множества A супремум (инфимум) множества A совпадает с его максимальным (минимальным) элементом.

Определение. Число $M \in \mathbb{R}$ называется точной верхней гранью или супремумом множества $A \subset \mathbb{R}$ (пишут: $M = \sup A$), если M является минимальной верхней гранью множества A, т.е.

- 1) M является верхней гранью множества A и
- (2) $\forall M' \in \mathbb{R}: (M'$ является верхней гранью множества $A) \hookrightarrow M \leq M'$.

Замечание. Для любых условий P и Q условие $P \Rightarrow Q$ эквивалентно условию $\neg Q \Rightarrow \neg P$. Это проверяется по таблице истинности. На этом свойстве основан метод доказательства от противного.

Замечание. В силу предыдущего замечания условие (M' является верхней гранью множества A) $\Rightarrow M \leq M'$ эквивалентно условию $M' < < M \Rightarrow (M'$ не является верхней гранью множества A). Используя определение верхней грани и правило построения отрицания, имеем

$$\sup A = M \in \mathbb{R} \quad \Leftrightarrow \quad \left\{ \begin{array}{l} 1) \forall a \in A \hookrightarrow a \leq M & \text{if } \\ 2) \forall M' < M \ \exists a \in A : \ M' < a. \end{array} \right.$$

Теорема 1. Пусть множество $A \subset \mathbb{R}$ ограничено сверху. Тогда существует единственное число $M \in \mathbb{R}$, которое является точной верхней гранью множества A.

Доказательство. Рассмотрим B – множество всех (конечных) верхних граней A. Так как множество A ограничено сверху, то B не пусто. Поскольку множество A лежит слева от множества B, то по аксиоме непрерывности $\exists c \in \mathbb{R}: \ \forall a \in A \quad \forall b \in B \hookrightarrow a \leq c \leq b.$

Покажем, что c является точной верхней гранью A. Так как $\forall a \in A \hookrightarrow a \leq c$, то c является верхней гранью A, т. е. $c \in B$. Поскольку $\forall b \in B \hookrightarrow c \leq b$, то c – минимальный элемент B. Итак, c – точная верхняя грань A.

Предположим, что $M_1, M_2 \in \mathbb{R}$ – две различные точные верхние грани множества A. Тогда M_1, M_2 – два различных минимальных элемента множества B. Пусть для определенности $M_1 < M_2$. Тогда M_2 не является минимальным элементом множества B. Противоречие.

Определение. Точной верхней гранью неограниченного сверху множества считается $+\infty$.

Теорема 2. Пусть $A \subset \mathbb{R}$ – непустое множество.

- а) Существует единственная точная верхняя грань множества A: $\sup A \in \overline{\mathbb{R}}$.
- б) Если множество A ограничено сверху, то $\sup A \in \mathbb{R}$, иначе $\sup A = +\infty$.

в)
$$\sup A = M \in \overline{\mathbb{R}} \quad \Leftrightarrow \quad \left\{ \begin{array}{l} (1) \ \forall a \in A \hookrightarrow \ a \leq M, \\ (2) \ \forall M' < M \ \exists a \in A: \ M' < a. \end{array} \right.$$

Доказательство. В случае, когда множество A ограничено сверху, доказываемые утверждения следуют из теоремы 1 и замечания перед этой теоремой. Пусть теперь множество A неограничено сверху. Согласно определению не существует конечной верхней грани множества A. Поэтому никакое число не является точной верхней гранью A. В этом случае единственной точной верхней гранью A является $+\infty$.

Обоснуем пункт (в). \Rightarrow : Пусть $M = \sup A = +\infty$. Тогда пункт (1) следует из неравенства $a \le +\infty$ для любого $a \in \mathbb{R}$, а пункт (2) следует из того, что множество A неограничено сверху.

 \Leftarrow : Из пункта (1) и неограниченности сверху множества A следует, что $M=+\infty$. Поэтому $M=\sup A$.

Аналогично сформулируем определение точной нижней грани.

Определение. Число $m \in \mathbb{R}$ называется точной нижней гранью или $un\phi umy$ мом множества $A \subset \mathbb{R}$ (пишут: $m = \inf A$), если m является максимальной нижней гранью A. Точной нижней гранью неограниченного снизу множества считается $-\infty$.

Теорема 3. Пусть $A \subset \mathbb{R}$ – непустое множество.

- а) Существует единственная точная нижняя грань множества A: inf $A \in \overline{\mathbb{R}}$.
- б) Если множество A ограничено снизу, то $\inf A \in \mathbb{R}$, иначе $\inf A = -\infty$.

B)
$$\inf A = m \in \overline{\mathbb{R}} \quad \Leftrightarrow \quad \begin{cases} (1) \ \forall a \in A \hookrightarrow a \ge m, \\ (2) \ \forall m' > m \ \exists a \in A : m' > a. \end{cases}$$

Доказательство теоремы 3 аналогично доказательству теоремы 2.

Лемма 1. а) Если существует $\max A$, то $\sup A = \max A$.

6) $Ecnu\ cymecmsyem\ min\ A,\ mo\ inf\ A=min\ A.$

Доказательство. а) Пусть $M = \max A$. Тогда M – верхняя грань A. Пусть M' < M. Так как $M \in A$, то M' не является верхней гранью A. Поэтому M – минимальная верхняя грань A.

Пункт (б) доказывается аналогично.

Теорема 4. (Принцип Архимеда.) Для любого действительного числа x существует натуральное число n > x.

Доказательство. Предположим противное: $\exists x \in \mathbb{R} : \forall n \in \mathbb{N} \hookrightarrow n \leq \leq x$. Тогда множество \mathbb{N} ограничено сверху и по теореме 1 существует $\sup \mathbb{N} = M \in \mathbb{R}$. Применяя второй пункт определения супремума для M' = M - 1, получаем, что существует натуральное число n > M - 1. По определению натуральных чисел имеем, что $n_1 = n + 1 \in \mathbb{N}$. При этом $n_1 > M = \sup \mathbb{N}$, что противоречит первому пункту определения супремума.

Определение. *Целой частью числа* $x \in \mathbb{R}$ называется целое число [x], лежащее в полуинтервале (x-1,x].

Задача 2. Доказать, что для любого числа $x \in \mathbb{R}$ целая часть существует и единственна.

§ 3. Предел последовательности

Определение. Числовой последовательностью $\{a_n\}$ называется функция $a: \mathbb{N} \to \mathbb{R}$, где $a(n) = a_n$ для любого $n \in \mathbb{N}$. Элемент последовательности – это пара (n, a_n) , где n – номер элемента последовательности, а a_n – значение элемента последовательности.

Определение. Пусть заданы числа $a, \varepsilon \in \mathbb{R}, \varepsilon > 0$. Интервал $U_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon)$ называется ε -окрестностью числа a.

Определение. Число $a\in\mathbb{R}$ называется npedenom последовательности $\{a_n\}$ (пишут $a=\lim_{n\to\infty}a_n$ или $a_n\to a$ при $n\to\infty$), если

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n \ge N \hookrightarrow a_n \in U_{\varepsilon}(a),$$
 (1)

т. е.

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n \ge N \hookrightarrow |a_n - a| < \varepsilon$$
 (2)

(здесь и далее в аналогичных выражениях, если не оговорено противное, мы подразумеваем, что n, N – натуральные числа).

Заметим, что в формулах (1), (2) для каждого $\varepsilon > 0$ существует свое число N, то есть N зависит от ε . Чтобы подчеркнуть эту зависимость, перепишем формулу (2) в следующем виде:

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) : \quad \forall n \ge N \hookrightarrow |a_n - a| < \varepsilon.$$

Пример 1. Доказать, что $\lim_{n\to\infty}\frac{1}{n}=0$.

Решение. $\forall \varepsilon > 0 \ \exists N = \left[\frac{1}{\varepsilon}\right] + 1: \ \forall n \geq N \hookrightarrow \left|\frac{1}{n} - 0\right| < \varepsilon.$ Действительно, по определению целой части $N = \left[\frac{1}{\varepsilon}\right] + 1 > \frac{1}{\varepsilon}$. Поэтому $\left|\frac{1}{n} - 0\right| = \frac{1}{n} \leq \frac{1}{N} < \varepsilon$.

Пример 2. Доказать, что число a является пределом последовательности $\{a_n\}$ тогда и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n \ge N \hookrightarrow |a_n - a| < \frac{\varepsilon}{2}.$$
 (3)

Решение. 1) Пусть выполнено условие (3). Поскольку $\frac{\varepsilon}{2} < \varepsilon$, то

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n \ge N \hookrightarrow |a_n - a| < \varepsilon,$$
 (4)

T. e. $\lim_{n\to\infty} a_n = a$.

2) Пусть $\lim_{n\to\infty}a_n=a$, т.е. выполнено условие (4). Для каждого $\varepsilon>0$ через $N(\varepsilon)$ обозначим такое число, что $\forall n\geq N(\varepsilon)\hookrightarrow |a_n-a|<\varepsilon$. В силу условия (4) такое $N(\varepsilon)$ существует. Тогда

$$\forall \varepsilon > 0 \quad \exists \overline{N} = N\left(\frac{\varepsilon}{2}\right): \quad \forall n \ge \overline{N} \hookrightarrow |a_n - a| < \frac{\varepsilon}{2},$$

т. е. выполнено условие (3).

Задача 1. Пусть задана последовательность $\{a_n\}$ и число a. Как связано условие $a=\lim_{n\to\infty}a_n$ со следующими условиями:

- a) $\forall \varepsilon > 0 \ \exists N : \ \forall n \geq N \hookrightarrow \ |a_n a| \leq \varepsilon;$
- 6) $\forall \varepsilon > 0 \ \exists N : \ \forall n > N \hookrightarrow \ |a_n a| < \varepsilon;$
- B) $\exists N: \forall \varepsilon > 0 \ \forall n \geq N \hookrightarrow |a_n a| < \varepsilon;$
- $\Gamma) \ \forall \varepsilon > 0 \ \exists n : \ |a_n a| < \varepsilon;$
- д) $\forall \varepsilon > 0 \ \forall N \ \exists n \geq N : \ |a_n a| < \varepsilon$?

Определение. Пусть задано число $\varepsilon > 0$. ε -окрестностями бесконечностей называются соответственно множества

$$U_{\varepsilon}(-\infty) = \left(-\infty, -\frac{1}{\varepsilon}\right), \qquad U_{\varepsilon}(+\infty) = \left(\frac{1}{\varepsilon}, +\infty\right).$$

Дадим общее определение предела последовательности, справедливое как в случае конечного, так и в случае бесконечного предела.

Определение. Элемент $a \in \mathbb{R}$ называется *пределом* последовательности $\{a_n\}$, если

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n \ge N \hookrightarrow \quad a_n \in U_{\varepsilon}(a).$$

Лемма 1. Пусть $a,b \in \overline{\mathbb{R}}$ и a < b. Тогда существует число $\varepsilon > 0$ такое, что $\forall x \in U_{\varepsilon}(a) \ \forall y \in U_{\varepsilon}(b) \hookrightarrow x < y$, а значит, окрестности $U_{\varepsilon}(a)$ и $U_{\varepsilon}(b)$ не пересекаются.

Доказательство. Возможны четыре случая:

- (1) $-\infty < a < b < +\infty$;
- $(2) -\infty < a < b = +\infty;$
- $(3) -\infty = a < b < +\infty;$
- $(4) -\infty = a < b = +\infty.$

В случае (1) положим $\varepsilon=\frac{b-a}{2}$, в случае (2): $\varepsilon=\frac{1}{|a|+1}$, в случае (3): $\varepsilon=\frac{1}{|b|+1}$, в случае (4): $\varepsilon=1$.

Пусть $x \in U_{\varepsilon}(a), y \in U_{\varepsilon}(b)$. Покажем, что в каждом из четырех случаев x < y. Отсюда следует, что окрестности $U_{\varepsilon}(a)$ и $U_{\varepsilon}(b)$ не пересекаются.

- (1) $x < a + \varepsilon = a + \frac{b-a}{2} = \frac{a+b}{2} = b \varepsilon < y;$
- (2) $x < a + \varepsilon \le a + 1 \le |a| + 1 = \frac{1}{\varepsilon} < y$.

Случаи (3) и (4) рассмотреть самостоятельно.

Теорема 1. (Единственность предела.) *Числовая последователь-* ность не может иметь более одного предела из $\overline{\mathbb{R}}$.

Доказательство. Предположим противное: последовательность $\{a_n\}$ имеет пределы $a,b\in\overline{\mathbb{R}},\ a\neq b$. По лемме $1\ \exists \varepsilon>0:\ U_\varepsilon(a)\bigcap U_\varepsilon(b)=\emptyset$. По определению предела $\exists N_1:\forall n\geq N_1\hookrightarrow a_n\in U_\varepsilon(a),\quad \exists N_2:\forall n\geq 2\}$ $\geq N_2\hookrightarrow a_n\in U_\varepsilon(b)$. При $n\geq \max\{N_1,N_2\}$ получаем $a_n\in U_\varepsilon(a)\bigcap U_\varepsilon(b)$ противоречие.

Задача 2. Доказать, что последовательность $\{a_n\}$, где

$$a_n = \begin{cases} 0, & \text{если } n \text{ четно,} \\ 1, & \text{если } n \text{ нечетно,} \end{cases}$$

не имеет ни конечного, ни бесконечного предела.

Определение. Последовательность $\{a_n\}$ называется *ограниченной* (сверху, снизу), если ограничено (соответственно сверху, снизу) множество значений ее элементов.

В частности,

$$\{a_n\}$$
 — ограничена \iff $\exists M \in \mathbb{R}: \quad \forall a \in \{a_1, a_2, \ldots\} \hookrightarrow |a| \leq M \iff$ $\exists M \in \mathbb{R}: \quad \forall n \in \mathbb{N} \hookrightarrow |a_n| \leq M.$

Определение. Если последовательность имеет конечный предел, то она называется *сходящейся*. Если последовательность не имеет предела или имеет бесконечный предел, то она называется *расходящейся*.

Теорема 2. Сходящаяся последовательность ограничена.

Доказательство. Пусть $\lim_{n\to\infty}a_n=a\in\mathbb{R}$. Возьмем $\varepsilon=1$. По определению предела $\exists N: \ \forall n\geq N\hookrightarrow a_n\in(a-1,a+1)$. Следовательно, при $n\geq N$ справедливо неравенство

$$-|a| - 1 \le a - 1 < a_n < a + 1 \le |a| + 1,$$

а значит, $\forall n \geq N \hookrightarrow |a_n| < |a| + 1$.

Определим $M = \max\{|a_1|,...,|a_{N-1}|,|a|+1\}$ (максимум существует, так как множество конечно). Тогда при n < N по определению максимума $|a_n| \le M$. При $n \ge N$ имеем $|a_n| < |a|+1 \le M$. Итак, $\forall n \in \mathbb{N} \hookrightarrow |a_n| \le M$, т. е. последовательность $\{a_n\}$ ограничена.

Определение. Последовательность $\{a_n\}$ называется бесконечно большой, если $\lim_{n\to\infty}|a_n|=+\infty$, т. е.

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n \ge N \hookrightarrow |a_n| > \frac{1}{\varepsilon}, \text{ T. e.}$$

$$\forall M > 0 \quad \exists N : \quad \forall n \ge N \hookrightarrow |a_n| > M.$$

Задача 3. Как связаны следующие два условия?

- а) Последовательность $\{a_n\}$ бесконечно большая.
- б) Последовательность $\{a_n\}$ неограничена.

Задача 4. Пусть $\{a_n\}$ – бесконечно большая последовательность. Верно ли, что должно выполняться одно из условий: $\lim_{n\to\infty} a_n = +\infty$ или $\lim_{n\to\infty} a_n = -\infty$?

§ 4. Свойства пределов последовательностей, связанные с арифметическими действиями

Лемма 1. а) $\forall a, b \in \mathbb{R} \hookrightarrow |a+b| \leq |a|+|b|$ (неравенство треугольника). б) $\forall a, b \in \mathbb{R} \hookrightarrow ||a|-|b|| \leq |a-b|$.

Доказательство. a) Рассмотрим сначала случай, когда $a+b\geq 0$. Тогда по определению модуля |a+b|=a+b. Из определения модуля следует также, что $\forall x\in\mathbb{R} \hookrightarrow x\leq |x|$. Поэтому $a\leq |a|,\,b\leq |b|$, следовательно, $|a+b|\leq a+b\leq |a|+|b|$.

В случае a+b<0 имеем |a+b|=-a-b. Так как $-a\leq |a|, -b\leq |b|,$ то $|a+b|=-a-b\leq |a|+|b|.$ Поэтому $\forall a,b\in\mathbb{R}\hookrightarrow |a+b|\leq |a|+|b|.$

б) Используя неравенство треугольника, для любых $a,b \in \mathbb{R}$ получаем $|a|-|b|=|a-b+b|-|b|\leq |a-b|+|b|-|b|=|a-b|$, т. е. $|a|-|b|\leq |a-b|$. Аналогично, $|b|-|a|\leq |b-a|=|a-b|$. Поэтому $||a|-|b||\leq |a-b|$.

Определение. Последовательность $\{b_n\}$ называется бесконечно малой, если $\lim_{n\to\infty}b_n=0$, т. е.

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n \ge N \hookrightarrow |b_n| < \varepsilon.$$

В данном параграфе мы будем рассматривать лишь конечные пределы последовательностей.

Непосредственно из определения предела последовательности следует, что $\lim_{n\to\infty} a_n = a$ тогда и только тогда, когда последовательность $\{a_n-a\}$ является бесконечно малой. Используя это обстоятельство, из свойств бесконечно малых последовательностей мы получим свойства пределов последовательностей, связанные с арифметическими действиями.

Лемма 2. Если $\{a_n\}$, $\{b_n\}$ – бесконечно малые последовательности, то $\{a_n+b_n\}$ и $\{a_n-b_n\}$ – бесконечно малые последовательности.

Доказательство. Поскольку $\lim_{n\to\infty}a_n=0, \lim_{n\to\infty}b_n=0$, то

$$\forall \varepsilon > 0 \quad \exists N_1: \quad \forall n \ge N_1 \hookrightarrow |a_n| < \frac{\varepsilon}{2},$$

$$\forall \varepsilon > 0 \quad \exists N_2 : \quad \forall n \ge N_2 \hookrightarrow |b_n| < \frac{\varepsilon}{2}$$

(см. пример 2 § 3). Отсюда, используя неравенство треугольника $|a_n \pm b_n| \le |a_n| + |b_n|$, получаем, что

$$\forall \varepsilon > 0 \ \exists N = \max\{N_1, N_2\}: \ \forall n \ge N \hookrightarrow \ |a_n \pm b_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

T. e.
$$\lim_{n \to \infty} (a_n \pm b_n) = 0.$$

Теорема 1. Если $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, то $\exists \lim_{n\to\infty} (a_n + b_n) = a + b$ u $\exists \lim_{n\to\infty} (a_n - b_n) = a - b$.

Доказательство. 1) Так как последовательности $\{a_n-a\}$ и $\{b_n-b\}$ являются бесконечно малыми, то в силу леммы 2 последовательности $\{a_n+b_n-(a+b)\}=\{(a_n-a)+(b_n-b)\}$ и $\{a_n-b_n-(a-b)\}=\{(a_n-a)-(b_n-b)\}$ являются бесконечно малыми, т. е. $\lim_{n\to\infty}(a_n+b_n)=a+b,$ $\lim_{n\to\infty}(a_n-b_n)=a-b.$

Теорема 2. Если $\lim_{n\to\infty} a_n = a$, то $\exists \lim_{n\to\infty} |a_n| = |a|$.

Доказательство. В силу леммы 1(6) имеем $||a_n|-|a|| \leq |a_n-a|$. Отсюда и из условия $\lim_{n\to\infty} a_n = a$ в силу определения предела получаем, что $\lim_{n\to\infty} |a_n| = |a|$.

Лемма 3. Если $\{a_n\}$ – ограниченная последовательность, а $\{b_n\}$ – бесконечно малая последовательность, то $\{a_n b_n\}$ – бесконечно малая последовательность.

Доказательство. Поскольку последовательность $\{a_n\}$ ограничена, то

$$\exists M > 0: \forall n \in \mathbb{N} \hookrightarrow |a_n| \leq M.$$

Так как последовательность $\{b_n\}$ является бесконечно малой, то

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad \forall n \ge N(\varepsilon) \hookrightarrow |b_n| < \varepsilon.$$

Следовательно,

$$\forall \varepsilon > 0 \quad \exists \overline{N} = N\left(\frac{\varepsilon}{M}\right): \quad \forall n \ge \overline{N} \hookrightarrow |a_n b_n| < M \frac{\varepsilon}{M} = \varepsilon.$$

Поэтому последовательность $\{a_n \, b_n\}$ является бесконечно малой.

Теорема 3. Если $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, то $\lim_{n\to\infty} (a_n b_n) = ab$.

Доказательство. Требуется доказать, что последовательность $\{a_nb_n-ab\}$ является бесконечно малой. Заметим, что $a_nb_n-ab=a_n(b_n-b)+(a_n-a)b$. Так как последовательность $\{a_n\}$ сходится, то по теореме $2 \$ 3 она ограничена. В силу леммы 3 последовательности $\{a_n(b_n-b)\}$ и $\{(a_n-a)b\}$ – бесконечно малые, следовательно, по лемме 2 последовательность $\{a_nb_n-ab\}$ также является бесконечно малой.

Лемма 4. Если $\forall n \in \mathbb{N} \hookrightarrow a_n \neq 0$ $u \lim_{n \to \infty} a_n = a \neq 0$, $mo \lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a}$.

Доказательство. В силу теоремы 2 имеем $\lim_{n\to\infty} |a_n| = |a| > 0$. Отсюда, положив в определении предела последовательности $\varepsilon = \frac{|a|}{2}$, получаем, что $\exists N: \forall n \geq N \hookrightarrow |a_n| > |a| - \varepsilon = \frac{|a|}{2}$, т. е. $\forall n \geq N \hookrightarrow \left|\frac{1}{a_n}\right| < \frac{2}{|a|}$. Определим число $M = \max\left\{\frac{1}{|a_1|}, \ldots, \frac{1}{|a_{N-1}|}, \frac{2}{|a|}\right\}$. Тогда $\forall n \in \mathbb{N} \hookrightarrow \left|\frac{1}{a_n}\right| \leq M$, т. е. последовательность $\left\{\frac{1}{a_n}\right\}$ ограничена. Следовательно, последовательность $\left\{\frac{1}{a_n}a\right\}$ также ограничена. Отсюда и из леммы 3 следует, что последовательность $\left\{\frac{1}{a_n}-\frac{1}{a}\right\}=\left\{\frac{1}{a_na}\left(a-a_n\right)\right\}$ является бесконечно малой, т. е. $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{a}$.

Теорема 4. Если $\forall n \in \mathbb{N} \hookrightarrow a_n \neq 0$, $\lim_{n \to \infty} a_n = a \neq 0$ u $\lim_{n \to \infty} b_n = b$, mo $\lim_{n \to \infty} \frac{b_n}{a_n} = \frac{b}{a}$.

Доказательство. В силу леммы 4 имеем $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{a}$. Поэтому, согласно теореме 3, $\lim_{n\to\infty}\frac{b_n}{a_n}=\lim_{n\to\infty}b_n\,\frac{1}{a_n}=b\,\frac{1}{a}=\frac{b}{a}$.

Задача 1. Пусть последовательности $\{a_n+b_n\}$ и $\{a_nb_n\}$ сходятся. Верно ли, что последовательности $\{a_n\}$ и $\{b_n\}$ сходятся?

Задача 2. Пусть $\forall n \hookrightarrow b_n \neq 0, \lim_{n \to \infty} (a_n + b_n) = x, \lim_{n \to \infty} \frac{a_n}{b_n} = y \geq 0.$ Верно ли, что последовательности $\{a_n\}$ и $\{b_n\}$ сходятся?

§ 5. Переход к пределу в неравенствах

Напомним, что расширенной числовой прямой называется множество $\overline{\mathbb{R}}=\mathbb{R}\bigcup\{+\infty,-\infty\}.$

Теорема 1. Пусть $\lim_{n \to \infty} a_n = A$, $\lim_{n \to \infty} b_n = B$, где $A, B \in \overline{\mathbb{R}}$, A < B. Тогда $\exists N: \ \forall n \geq N \hookrightarrow \ a_n < b_n$.

Доказательство. По лемме 1 § 3 существует число $\varepsilon > 0$ такое, что $\forall x \in U_{\varepsilon}(A) \ \forall y \in U_{\varepsilon}(B) \hookrightarrow x < y$. По определению предела $\exists N_1 : \forall n \geq 0 \geq N_1 \hookrightarrow a_n \in U_{\varepsilon}(A), \ \exists N_2 : \ \forall n \geq N_2 \hookrightarrow b_n \in U_{\varepsilon}(B)$. Определив $N = \max\{N_1, N_2\}$, получаем требуемое утверждение.

Теорема 2. (О предельном переходе в неравенстве.) Если $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$, $A,B\in \mathbb{R}$ $u\;\exists N:\; \forall n\geq N \hookrightarrow a_n\leq b_n$, то $A\leq B$.

Доказательство. Предположим противное: A > B. По теореме $1 \exists N_1 : \forall n \geq N_1 \hookrightarrow b_n < a_n$. При $n \geq \max\{N, N_1\}$ получаем противоречие с условием $a_n \leq b_n$.

Следствие. Если $\exists N: \ \forall n \geq N \hookrightarrow \ a_n \leq B, \ \exists \lim_{n \to \infty} a_n = A, \ A, B \in \overline{\mathbb{R}},$ то $A \leq B$.

Доказательство. Если $B \in \mathbb{R}$, то определим $\{b_n\} = \{B\}$ и, применяя теорему 2, получаем неравенство $A \leq B$. Если $B = +\infty$, неравенство $A \leq B$ также выполнено. Случай $B = -\infty$ не реализуется, т. к. $\forall n \geq N \hookrightarrow a_n \leq B$.

Замечание . Из условий $\forall n \in \mathbb{N} \hookrightarrow a_n < b_n, \lim_{n \to \infty} a_n = A, \lim_{n \to \infty} b_n = B$ не следует, что A < B.

Например, $a_n = 0$, $b_n = \frac{1}{n}$, A = B = 0.

Теорема 3. (О трех последовательностях.) *Если* $\exists N: \forall n \geq N \hookrightarrow a_n \leq b_n \leq c_n, \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = A \in \mathbb{R}, mo \lim_{n \to \infty} b_n = A.$

Доказательство. По определению предела для любого $\varepsilon > 0$

$$\exists N_1: \ \forall n \geq N_1 \hookrightarrow \ a_n \in U_{\varepsilon}(A),$$

$$\exists N_2: \forall n > N_2 \hookrightarrow c_n \in U_{\varepsilon}(A).$$

Обозначим $\overline{N} = \max\{N, N_1, N_2\}$. Тогда при $n \geq \overline{N}$ имеем $A - \varepsilon < a_n \leq$ $\leq b_n \leq c_n < A + \varepsilon$, следовательно, $b_n \in U_{\varepsilon}(A)$. Итак,

$$\forall \varepsilon > 0 \ \exists \overline{N} : \ \forall n \ge \overline{N} \hookrightarrow b_n \in U_{\varepsilon}(A),$$

т. е.
$$\lim_{n \to \infty} b_n = A$$
.

Теорема 4. Пусть $\exists N: \ \forall n \geq N \hookrightarrow \ a_n \leq b_n$. Тогда

- 1) $ecnu \lim_{n\to\infty} a_n = +\infty$, $mo \lim_{n\to\infty} b_n = +\infty$; 2) $ecnu \lim_{n\to\infty} b_n = -\infty$, $mo \lim_{n\to\infty} a_n = -\infty$.

Доказательство. 1) По определению предела

$$\forall \varepsilon > 0 \ \exists N_1 : \ \forall n \ge N_1 \hookrightarrow \ a_n \in U_{\varepsilon}(+\infty) = \left(\frac{1}{\varepsilon}, +\infty\right)$$

(т. е. $a_n > \frac{1}{\varepsilon}$), но тогда $b_n \ge a_n > \frac{1}{\varepsilon}$ при $n \ge \max\{N, N_1\}$. Следовательно,

$$\forall \varepsilon > 0 \ \exists N_2 = \max\{N, N_1\}: \ \forall n \ge N_2 \hookrightarrow \ b_n \in U_{\varepsilon}(+\infty),$$

а значит, $\lim_{n\to\infty} b_n = +\infty$.

Доказательство пункта (2) аналогично.

§ 6. Монотонные последовательности

Определение. Последовательность $\{a_n\}$ называется нестрого возрастающей или неубывающей, если

$$\forall n \in \mathbb{N} \hookrightarrow a_n \leq a_{n+1};$$

 $\{a_n\}$ – нестрого убывающая или невозрастающая, если

$$\forall n \in \mathbb{N} \hookrightarrow a_n \geq a_{n+1};$$

если в этих определениях нестрогие неравенства заменить на строгие, то получим определения строго возрастающей и строго убывающей последовательностей;

 $\{a_n\}$ – монотонная, если она является нестрого возрастающей или нестрого убывающей.

Теорема 1. (Теорема Вейерштрасса о монотонной последовательности.) 1) если последовательность $\{a_n\}$ нестрого возрастает, то существует $\lim_{n\to\infty} a_n = \sup\{a_n\};$

2) если последовательность $\{a_n\}$ нестрого убывает, то существует $\lim_{n\to\infty}a_n=\inf\{a_n\}.$

Доказательство. Пусть последовательность $\{a_n\}$ нестрого возрастает. Рассмотрим сначала случай, когда эта последовательность ограничена сверху. В силу теоремы 1 § 2 существует $a = \sup\{a_n\} \in \mathbb{R}$. Покажем, что $\lim_{n\to\infty} a_n = a$. В силу второго пункта определения супремума $\forall \varepsilon > 0 \; \exists N: \; a_N > a - \varepsilon$. Отсюда в силу возрастания последовательности $\{a_n\}$ имеем $\forall \varepsilon > 0 \; \exists N: \; \forall n \geq N \hookrightarrow a_n \geq a_N > a - \varepsilon$. В силу первого пункта определения супремума $\forall n \in \mathbb{N} \hookrightarrow a_n \leq a$. Поэтому $\forall \varepsilon > 0 \; \exists N: \; \forall n \geq N \hookrightarrow a_n \in U_\varepsilon(a)$, т. е. $\lim_{n\to\infty} a_n = a$. Рассмотрим теперь случай, когда последовательность $\{a_n\}$ неограни-

Рассмотрим теперь случай, когда последовательность $\{a_n\}$ неограничена сверху. Тогда $\forall \varepsilon > 0 \; \exists N: \; a_N > \frac{1}{\varepsilon}$. Отсюда в силу возрастания последовательности $\{a_n\}$ имеем $\forall \varepsilon > 0 \; \exists N: \; \forall n \geq N \hookrightarrow \; a_n \geq a_N > \frac{1}{\varepsilon}$, т. е. $a_n \in U_{\varepsilon}(+\infty)$, а значит, $\lim_{n \to \infty} a_n = +\infty$.

Доказательство второго пункта аналогично.

Следствие. Любая монотонная последовательность имеет конечный или бесконечный предел. Если $\{a_n\}$ – нестрого возрастающая и ограниченная сверху последовательность или нестрого убывающая и ограниченная снизу последовательность, то предел $\{a_n\}$ конечен.

§ 7. Принцип вложенных отрезков

Определение. Последовательность отрезков $\{[a_n,b_n]\}$ называется последовательностью вложенных отрезков, если

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \quad \forall n \in \mathbb{N}.$$

$$\underbrace{\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad }_{a_n \quad a_{n+1} \qquad b_{n+1} \quad b_n}$$

$$(1)$$

Теорема 1. (Принцип Кантора.) Последовательность вложенных отрезков имеет общую точку.

Доказательство. Пусть $\{[a_n, b_n]\}$ – последовательность вложенных отрезков. Из включения (1) следует, что

$$\forall n \in \mathbb{N} \hookrightarrow a_n \le a_{n+1} < b_{n+1} \le b_n. \tag{2}$$

Рассмотрим множество левых концов отрезков $[a_n, b_n]$: $A = \{a_1, a_2, \ldots\}$ и множество правых концов этих отрезков: $B = \{b_1, b_2, \ldots\}$. Покажем, что

$$\forall a \in A \ \forall b \in B \hookrightarrow \ a \le b. \tag{3}$$

Пусть $a \in A$, $b \in B$. Тогда $\exists k \in \mathbb{N} : a = a_k$ и $\exists m \in \mathbb{N} : b = b_m$. Из (2) следует, что при $k \leq m$ справедливы неравенства $a_k \leq a_m < b_m$, а при k > m – неравенства $a_k < b_k \leq b_m$. В любом случае имеем $a_k \leq b_m$, т. е. справедливо соотношение (3). В силу аксиомы непрерывности действительных чисел $\exists c \in \mathbb{R} : \forall a \in A \ \forall b \in B \hookrightarrow a \leq c \leq b$. Следовательно, $\forall n \in \mathbb{N} \hookrightarrow c \in [a_n, b_n]$, т. е. c – общая точка отрезков $[a_n, b_n]$.

Задача 1. Доказать, что если аксиому непрерывности заменить системой двух аксиом: принципом Кантора и принципом Архимеда, то получится эквивалентное определение множества действительных чисел.

Определение. Последовательность вложенных отрезков $\{[a_n,b_n]\}$ называется *стягивающейся*, если $b_n-a_n\to 0$ при $n\to\infty$.

Теорема 2. Стягивающаяся последовательность вложенных отрезков имеет единственную общую точку.

Доказательство. По теореме 1 общая точка существует. Пусть x, y – общие точки стягивающейся последовательности вложенных отрезков $\{[a_n,b_n]\}$. Так как $|y-x| \leq b_n - a_n \to 0$ при $n \to \infty$, то по теореме о предельном переходе в неравенстве $|y-x| \leq 0$, т. е. |y-x| = 0, y = x.

§ 8. Частичный предел последовательности

Определение. Последовательность $\{b_k\}$ называется *подпоследова- тельностью* последовательности $\{a_n\}$, если существует строго возрастающая последовательность натуральных чисел $\{n_k\}$: $\forall k \in \mathbb{N} \hookrightarrow b_k = a_{n_k}$.

Пример 1. Пусть задана последовательность $\{a_n\}$. Последовательность $\{a_{2k}\}$, составленная из элементов $\{a_n\}$ с четными номерами, является подпоследовательностью последовательности $\{a_n\}$. Действительно, для любого $k \in \mathbb{N}$ определим $n_k = 2k$. Тогда $\{n_k\}$ – строго возрастающая последовательность натуральных чисел и $\forall k \in \mathbb{N} \hookrightarrow a_{2k} = a_{n_k}$.

Определение. Если последовательность $\{b_k\}$ является подпоследовательностью $\{a_n\}$ и $\exists \lim_{k \to \infty} b_k = A \in \overline{\mathbb{R}}$, то A называется *частичным пределом* последовательности $\{a_n\}$.

Пример 2. Рассмотрим последовательность $\{a_n\}$, где

$$a_n = \left\{ \begin{array}{ll} 1, & \text{если } n \text{ четно}, \\ -1, & \text{если } n \text{ нечетно}. \end{array} \right.$$

Последовательности $\{b_k\}=\{a_{2k}\}$ и $\{c_k\}=\{a_{2k-1}\}$ являются подпоследовательностями $\{a_n\}$. Так как $b_k=1$, $c_k=-1$ $\forall k\in\mathbb{N}$, то $\lim_{k\to\infty}b_k=1$, $\lim_{k\to\infty}c_k=-1$. Следовательно, числа 1 и -1 являются частичными пределами $\{a_n\}$.

Теорема 1. (Критерий частичного предела.) Для любой последовательности $\{a_n\}$ и любого $A \in \overline{\mathbb{R}}$ следующие условия эквивалентны:

- (1) A является частичным пределом последовательности $\{a_n\}$;
- (2) для любого $\varepsilon > 0$ в $U_{\varepsilon}(A)$ содержатся значения бесконечного набора элементов $\{a_n\}$;
 - (3) $\forall \varepsilon > 0 \ \forall N \ \exists n \ge N : \ a_n \in U_{\varepsilon}(A)$.

Доказательство. (1) \Rightarrow (2). Пусть A является частичным пределом последовательности $\{a_n\}$. Тогда существует подпоследовательность $\{a_{n_k}\}$ такая, что $A=\lim_{k\to\infty}a_{n_k}$, т. е.

$$\forall \varepsilon > 0 \ \exists K_{\varepsilon} : \forall k \ge K_{\varepsilon} \hookrightarrow a_{n_k} \in U_{\varepsilon}(A).$$

Поэтому для любого $\varepsilon > 0$ в $U_{\varepsilon}(A)$ содержатся значения бесконечного набора элементов $\{a_n\}$.

- $(2) \Rightarrow (3)$. Зафиксируем произвольные $\varepsilon > 0$, $N \in \mathbb{N}$. Так как выполнено условие (2), то в $U_{\varepsilon}(A)$ содержатся значения бесконечного набора элементов $\{a_n\}$, среди которых найдется элемент с номером $n \geq N$. Иначе в $U_{\varepsilon}(A)$ будут содержаться лишь элементы с номерами n < N, а таких элементов конечное число. Следовательно, выполнено условие (3).
 - $(3) \Rightarrow (1)$. Пусть выполнено условие (3):

$$\forall \varepsilon > 0 \ \forall N \ \exists n = n(\varepsilon, N) \ge N : \ a_n \in U_{\varepsilon}(A).$$

Построим строго возрастающую последовательность $\{n_k\}$ натуральных чисел такую, что $A = \lim_{k \to \infty} a_{n_k}$. Определим $n_1 = n(1,1)$. Пусть на некотором шаге $k-1 \in \mathbb{N}$ определено значение $n_{k-1} \in \mathbb{N}$. Определим

$$n_k = n\left(\frac{1}{k}, 1 + n_{k-1}\right),\,$$

т. е. $n_k = n(\varepsilon, N)$, где $\varepsilon = \frac{1}{k}$, $N = 1 + n_{k-1}$. Тогда $n_k \ge 1 + n_{k-1} > n_{k-1}$ и $a_{n_k} \in U_{1/k}(A)$. По индукции получаем, что определена последовательность $\{n_k\}$ натуральных чисел такая, что $\forall k \ge 2 \hookrightarrow n_k > n_{k-1}$ и $\forall k \in \mathbb{N} \hookrightarrow a_{n_k} \in U_{1/k}(A)$. Поэтому последовательность $\{n_k\}$ строго возрастает и $A = \lim_{k \to \infty} a_{n_k}$. Следовательно, выполнено условие (1).

Теорема 2. (Теорема Больцано-Вейерштрасса.) Ограниченная последовательность имеет хотя бы один конечный частичный предел.

Доказательство. Пусть последовательность $\{x_n\}$ ограничена, т. е. $\exists a_0, b_0 : \forall n \in \mathbb{N} \hookrightarrow x_n \in [a_0, b_0]$. Определим $c_0 = (a_0 + b_0)/2$. Если в отрезке $[a_0, c_0]$ содержатся значения бесконечного набора членов $\{x_n\}$, то определим $[a_1, b_1] = [a_0, c_0]$. В противном случае в отрезке $[c_0, b_0]$ содержатся значения бесконечного набора членов $\{x_n\}$, тогда определим $[a_1, b_1] = [c_0, b_0]$.

Пусть определен отрезок $[a_k,b_k]$, в котором содержатся значения бесконечного набора членов последовательности $\{x_n\}$. Обозначим $c_k=(a_k+b_k)/2$. Если в отрезке $[a_k,c_k]$ содержатся значения бесконечного набора членов $\{x_n\}$, то определим $[a_{k+1},b_{k+1}]=[a_k,c_k]$. В противном случае определим $[a_{k+1},b_{k+1}]=[c_k,b_k]$. Так как этот процесс не может оборваться, мы получаем последовательность вложенных отрезков, которая по теореме Кантора имеет общую точку $x\in\bigcap[a_k,b_k]$.

Заметим, что $b_k-a_k=\frac{b_0-a_0}{2^k}$, где $2^k=\underbrace{2\cdot\ldots\cdot 2}_{k\in\mathbb{N}}$. Индукцией по k по-

лучаем, что $2^k > k \quad \forall k \in \mathbb{N}$. Поэтому $b_k - a_k = \frac{b_0 - a_0}{2^k} \to 0$ при $k \to \infty$.

Следовательно, для любого $\varepsilon > 0$ найдется $k \in \mathbb{N}$: $b_k - a_k < \varepsilon$. Отсюда и из включения $x \in [a_k, b_k]$ получаем, что $[a_k, b_k] \subset U_{\varepsilon}(x)$. Итак, $\forall \varepsilon > 0 \exists k : [a_k, b_k] \subset U_{\varepsilon}(x)$. Таким образом, для любого $\varepsilon > 0$ в $U_{\varepsilon}(x)$ содержатся значения бесконечного набора элементов $\{x_n\}$. В силу теоремы 1 число x является частичным пределом $\{x_n\}$.

Лемма 1. Если $\{x_n\}$ неограничена снизу, то $-\infty$ является ее частичным пределом; если $\{x_n\}$ неограничена сверху, то $+\infty$ является ее частичным пределом (при этом могут быть и другие частичные пределы).

Доказательство. Пусть $\{x_n\}$ неограничена сверху. Тогда для любого $N \in \mathbb{N}$ множество $\{x_n : n \geq N\}$ неограничено сверху. Поэтому $\forall \varepsilon > 0 \ \forall N \ \exists n \geq N : x_n > \frac{1}{\varepsilon}$, т.е. $x_n \in U_{\varepsilon}(+\infty)$. Применяя теорему 1, получаем, что $+\infty$ является частичным пределом $\{x_n\}$. Случай, когда $\{x_n\}$ неограничена снизу, рассматривается аналогично.

Теорема 3. (Обобщенная теорема Больцано–Вейерштрасса.) *Любая* числовая последовательность имеет конечный или бесконечный частичный предел.

Доказательство состоит в применении теоремы 2 и леммы 1.

Теорема 4. Для любой последовательности $\{a_n\}$ и любого $A \in \mathbb{R}$ следующие условия эквивалентны:

- $(1) \lim_{n \to \infty} a_n = A;$
- (2) A является единственным частичным пределом $\{a_n\}$.

Доказательство. (1) \Rightarrow (2). Пусть $\{a_{n_k}\}$ – произвольная подпоследовательность $\{a_n\}$. Условие (1) означает, что

$$\forall \varepsilon > 0 \ \exists N : \ \forall n \ge N \hookrightarrow \ a_n \in U_{\varepsilon}(A).$$

Так как $\{n_k\}$ — строго возрастающая последовательность натуральных чисел, то по индукции получаем, что $\forall k \in \mathbb{N} \hookrightarrow n_k \geq k$. Следовательно, при $k \geq N$ справедливы неравенства $n_k \geq k \geq N$. Поэтому

$$\forall \varepsilon > 0 \ \exists N : \ \forall k \geq N \hookrightarrow \ a_{n_k} \in U_{\varepsilon}(A).$$

Итак, из условия (1) следует, что для любой подпоследовательности $\{a_{n_k}\}$ справедливо соотношение $A = \lim_{k \to \infty} a_{n_k}$. Поэтому A является единственным частичным пределом $\{a_n\}$.

 $(2) \Rightarrow (1)$. Предположим противное: условие (2) выполнено, а условие (1) не выполнено, т.е. существует $\varepsilon > 0$:

$$\forall N \ \exists n \ge N: \ a_n \notin U_{\varepsilon}(A). \tag{1}$$

Построим подпоследовательность $\{a_{n_k}\}$ такую, что

$$\forall k \hookrightarrow a_{n_k} \notin U_{\varepsilon}(A). \tag{2}$$

Из соотношения (1) следует существование числа $n_1 \in \mathbb{N}$ такого, что $a_{n_1} \not\in U_{\varepsilon}(A)$. Пусть на некотором шаге $k-1 \in \mathbb{N}$ определено значение $n_{k-1} \in \mathbb{N}$. Тогда в силу соотношения (1) существует натуральное число $n_k \geq 1 + n_{k-1}$ такое, что $a_{n_k} \not\in U_{\varepsilon}(A)$. Таким образом, построена подпоследовательность $\{a_{n_k}\}$, удовлетворяющая соотношению (2). В силу обобщенной теоремы Больцано—Вейерштрасса последовательность $\{a_{n_k}\}$ имеет частичный предел $B \in \mathbb{R}$. При этом в силу соотношения (2) $B \neq A$. Поскольку подпоследовательность последовательности $\{a_{n_k}\}$ является подпоследовательностью последовательности $\{a_n\}$, то B является частичным пределом $\{a_n\}$, отличным от A, что противоречит условию (2).

Определим точные грани подмножества расширенной числовой прямой $\overline{\mathbb{R}}.$

Определение. Пусть заданы множество $L \subset \overline{\mathbb{R}}$ и элементы $m \in \overline{\mathbb{R}},$ $M \in \overline{\mathbb{R}}.$ Тогда

$$m = \inf L \iff \begin{cases} \forall x \in L \hookrightarrow m \le x, \\ \forall m' \in \overline{\mathbb{R}} : m' > m \ \exists x \in L : m' > x. \end{cases}$$

$$M = \sup L \ \stackrel{\text{OIIP.}}{\Longleftrightarrow} \left\{ \begin{array}{l} \forall x \in L \hookrightarrow M \geq x, \\ \forall M' \in \overline{\mathbb{R}} : M' < M \ \exists x \in L : \ M' < x. \end{array} \right.$$

Определение. Пусть $L \subset \overline{\mathbb{R}}$ — множество всех конечных и бесконечных (со знаком) частичных пределов последовательности $\{x_n\}$. Тогда ниженим и верхним пределами последовательности $\{x_n\}$ называются соответственно

$$\underline{\lim}_{n \to \infty} x_n = \inf L, \qquad \overline{\lim}_{n \to \infty} x_n = \sup L.$$

Лемма 2. Верхний и нижний пределы последовательности являются ее частичными пределами.

Доказательство. Пусть $L\subset\overline{\mathbb{R}}$ – множество всех частичных пределов последовательности $\{x_n\}$. Обозначим $M=\varlimsup_{n\to\infty}x_n$. Зафиксируем

произвольное число $\varepsilon > 0$. По определению супремума существует $x \in L$, $x \in U_{\varepsilon}(M)$. Выберем число $\varepsilon' > 0$ так, что $U_{\varepsilon'}(x) \subset U_{\varepsilon}(M)$. В случае $M \in \mathbb{R}$ можно взять $\varepsilon' = \varepsilon - |M-x|$. В случае $M = +\infty$, $x \in \mathbb{R}$ можно взять $\varepsilon' = x - \frac{1}{\varepsilon}$. В случае $x = M = +\infty$ можно взять $\varepsilon' = \varepsilon$. Так как $x \in L$, то по критерию частичного предела $U_{\varepsilon'}(x)$ содержит значения бесконечного набора элементов $\{x_n\}$. Отсюда и из включения $U_{\varepsilon'}(x) \subset U_{\varepsilon}(M)$ получаем, что $U_{\varepsilon}(M)$ содержит значения бесконечного набора элементов $\{x_n\}$. Снова применяя критерий частичного предела, получаем, что M — частичный предел $\{x_n\}$. \square

Задача 1. Доказать, что если $\varliminf_{n\to\infty} x_n = \varlimsup_{n\to\infty} x_n = A \in \overline{\mathbb{R}}$, то $\exists \lim_{n\to\infty} x_n = A$.

§ 9. Критерий Коши

Определение. Будем говорить, что последовательность $\{x_n\}$ фундаментальна или удовлетворяет условию Коши, если

$$\forall \varepsilon > 0 \ \exists N : \ \forall n \ge N \ \forall m \ge N \hookrightarrow \ |x_n - x_m| < \varepsilon.$$

Лемма 1. Сходящаяся последовательность фундаментальна.

Доказательство. Пусть $\{x_n\}$ сходится к числу x. Тогда

$$\forall \varepsilon > 0 \ \exists N : \ \forall n \ge N \hookrightarrow |x_n - x| < \varepsilon/2$$

и, следовательно,

 $\forall \varepsilon > 0 \ \exists N : \ \forall n > N \ \forall m > N \hookrightarrow$

$$\Rightarrow |x_n - x_m| \le |x_n - x| + |x_m - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Лемма 2. Фундаментальная последовательность ограничена.

Доказательство. Пусть $\{x_n\}$ фундаментальна. Возьмем $\varepsilon=1$, тогда $\exists N: \forall n\geq N \ \forall m\geq N \hookrightarrow |x_n-x_m|<\varepsilon$, следовательно, $\forall n\geq N \hookrightarrow |x_N-x_n|<1$. Определим $M=\max\{|x_1|,...,|x_{N-1}|,|x_N|+1\}$. Тогда $\forall n\in\mathbb{N}\hookrightarrow |x_n|\leq M$.

Теорема 1. (Критерий Коши.) $\{x_n\}$ сходится \iff $\{x_n\}$ фундаментальна.

Доказательство. Если $\{x_n\}$ сходится, то по лемме 1 она фундаментальна. Пусть $\{x_n\}$ фундаментальна. По лемме 2 $\{x_n\}$ – ограничена, следовательно, по теореме Больцано–Вейерштрасса существует $x\in\mathbb{R}$ – частичный предел $\{x_n\}$. Докажем, что $\lim_{n\to\infty}x_n=x$.

Пусть задано любое $\varepsilon > 0$. Из фундаментальности $\{x_n\}$ следует существование номера N такого, что

$$\forall n > N \ \forall m > N \hookrightarrow |x_n - x_m| < \varepsilon/2.$$

В силу критерия частичного предела найдется номер $m \geq N$ такой, что $|x-x_m| < \varepsilon/2$. Следовательно,

$$\forall n \ge N \hookrightarrow |x_n - x| \le |x_n - x_m| + |x_m - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Итак,

$$\forall \varepsilon > 0 \ \exists N : \ \forall n \ge N \hookrightarrow \ |x_n - x| < \varepsilon.$$

Поэтому последовательность $\{x_n\}$ сходится к x.

Задача 1. Доказать, что если аксиому непрерывности заменить двумя аксиомами: критерием Коши и принципом Архимеда, то получится эквивалентное определение множества действительных чисел.

Пример 1. Как связаны два условия:

- (a) последовательность $\{x_n\}$ сходится;
- (6) $\forall \varepsilon > 0 \ \exists x \in \mathbb{R} \ \exists N : \ \forall n \ge N \hookrightarrow |x_n x| < \varepsilon$?

Решение. Распишем условие (а):

(a)
$$\Leftrightarrow \exists x \in \mathbb{R} : \lim_{n \to \infty} x_n = x \Leftrightarrow$$

$$\Leftrightarrow \exists x \in \mathbb{R} : \forall \varepsilon > 0 \ \exists N : \forall n \ge N \hookrightarrow |x_n - x| < \varepsilon.$$

Так как $\exists x \in \mathbb{R} : \forall \varepsilon > 0 \dots \Rightarrow \forall \varepsilon > 0 \exists x \in \mathbb{R} \dots$, то из условия (a) следует условие (б).

На первый взгляд кажется, что из условия (б) не следует условие (а). Однако с помощью критерия Коши можно показать, что (б) ⇒ (а).

Пусть выполнено условие (б). Тогда

$$\forall \varepsilon > 0 \ \exists x \in \mathbb{R} \ \exists N : \ \forall n \ge N \ \forall m \ge N \hookrightarrow$$

$$\Rightarrow |x_n - x_m| \le |x_n - x| + |x_m - x| < 2\varepsilon.$$

Поэтому последовательность $\{x_n\}$ фундаментальна. В силу критерия Коши $\{x_n\}$ сходится, т. е. выполняется условие (a).

§ 10. Открытые и замкнутые числовые множества

Определение. Пусть задано множество $X \subset \mathbb{R}$. Точка $x \in \mathbb{R}$ называется *внутренней точкой* множества X, если

$$\exists \varepsilon > 0 : U_{\varepsilon}(x) \subset X.$$

Bнутренностью множества X называется множество int X, состоящее из всех внутренних точек множества X.

Замечание. Так как $x \in U_{\varepsilon}(x)$ для любого $\varepsilon > 0$, то int $X \subset X$ для любого множества X.

Определение. Множество X называется *открытым*, если все его точки внутренние, т. е. $X \subset \operatorname{int} X$.

Пустое множество \emptyset по определению считается открытым.

Так как для любого множества X справедливо включение int $X\subset X$, то равенство $X=\mathrm{int}\,X$ выполняется тогда и только тогда, когда множество X открыто.

Лемма 1. Пусть заданы числа $a, b \in \mathbb{R}$, a < b. Множества (a, b), $(-\infty, b)$, $(a, +\infty)$, $(-\infty, +\infty)$ открыты, а множества [a, b], (a, b], [a, b), $(-\infty, b]$, $[a, +\infty)$ не являются открытыми.

Доказательство. Покажем, что интервал (a,b) является открытым множеством. Для этого требуется показать, что любая точка $x \in (a,b)$ – внутренняя, т.е. $\forall x \in (a,b) \ \exists \varepsilon > 0 : \ U_{\varepsilon}(x) \subset (a,b)$. Данное условие выполняется: можно взять, например, $\varepsilon = \min\{x - a, b - x\}$.

Открытость множеств $(-\infty,b),(a,+\infty),(-\infty,+\infty)$ доказать самостоятельно.

Покажем, что полуинтервал (a,b] не является открытым множеством. Это следует из того, что точка b содержится во множестве (a,b], но не является внутренней точкой этого множества, так как не существует числа $\varepsilon>0$ такого, что $U_{\varepsilon}(b)\subset (a,b]$.

Самостоятельно доказать, что множества $[a,b], [a,b), (-\infty,b], [a,+\infty)$ также не являются открытыми.

Задача 1. а) Доказать, что если $X \subset Y$, то int $X \subset \text{int } Y$.

б) Доказать, что пересечение конечного набора открытых множеств является открытым множеством.

36

г) Привести пример набора открытых множеств, пересечение которых не является открытым.

Определение. Пусть задано множество $X \subset \mathbb{R}$. Точка $x \in \mathbb{R}$ называется точкой прикосновения множества X, если

$$\forall \varepsilon > 0 \hookrightarrow U_{\varepsilon}(x) \bigcap X \neq \emptyset.$$

3амыканием множества X называется множество \overline{X} , состоящее из всех точек прикосновения множества X.

Так как $x\in U_{\varepsilon}(x)$ для любого $\varepsilon>0,$ то $X\subset \overline{X}$ для любого множества X.

Определение. Множество X называется *замкнутым*, если любая точка прикосновения X содержится в X, т. е. $\overline{X} \subset X$.

Замечание. Так как для любого множества X справедливо включение $X \subset \overline{X}$, то равенство $X = \overline{X}$ выполняется тогда и только тогда, когда множество X замкнуто.

Лемма 2. Пусть заданы числа $a, b \in \mathbb{R}$, a < b. Множества [a, b], $(-\infty, b]$, $[a, +\infty)$, $(-\infty, +\infty)$ замкнуты, а множества (a, b), (a, b], [a, b), $(-\infty, b)$, $(a, +\infty)$ не являются замкнутыми.

Доказательство. Покажем, что отрезок [a,b] является замкнутым множеством, т. е. $\overline{[a,b]} \subset [a,b]$. Предположим противное: существует точка $x \in \overline{[a,b]}$ такая, что $x \not\in [a,b]$. Так как $x \not\in [a,b]$, то либо x < a, либо x > b. В том и другом случаях $\exists \varepsilon > 0$: $U_{\varepsilon}(x) \cap X = \emptyset$, что противоречит условию $x \in \overline{[a,b]}$. Полученное противоречие доказывает замкнутость отрезка [a,b].

Замкнутость множеств $(-\infty,b],[a,+\infty),(-\infty,+\infty)$ доказать самостоятельно.

Покажем, что полуинтервал (a,b] не является замкнутым множеством. Это следует из того, что точка a не содержится во множестве (a,b], но содержится в замыкании этого множества, так как $\forall \varepsilon > 0 \hookrightarrow U_{\varepsilon}(a) \cap (a,b] \neq \emptyset$.

Самостоятельно доказать, что множества $(a,b), [a,b), (-\infty,b), (a,+\infty)$ также не являются замкнутыми.

Задача 2. а) Доказать, что если $X \subset Y$, то $\overline{X} \subset \overline{Y}$.

- б) Доказать, что объединение конечного набора замкнутых множеств является замкнутым множеством.
- в) Доказать, что пересечение любого набора замкнутых множеств замкнуто.
- г) Привести пример набора замкнутых множеств, объединение которых не является замкнутым.

Задача 3. Найти замыкания множеств:

- a) $\{\frac{1}{n} : n \in \mathbb{N}\},\$
- б) Q (множество рациональных чисел).

Задача 4. Доказать, что X открыто $\iff \mathbb{R}\backslash X$ замкнуто.

Теорема 1. (Критерий точки прикосновения.)

 $x \in \overline{X} \iff \exists \{x_n\}$ - последовательность элементов $X: x = \lim_{n \to \infty} x_n$.

Доказательство. 1. Если $x=\lim_{n\to\infty}x_n,\ x_n\in X,\ \text{то}\ \forall \varepsilon>0\quad \exists x_n\in U_\varepsilon(x).$ Поскольку $x_n\in X\bigcap U_\varepsilon(x),\ \text{то}\ X\bigcap U_\varepsilon(x)\neq\emptyset,$ следовательно, $x\in \overline{X}.$

2. Пусть $x \in \overline{X}$. Тогда $\forall \varepsilon > 0 \hookrightarrow X \cap U_{\varepsilon}(x) \neq \emptyset$. Положим $\varepsilon_n = \frac{1}{n}$. Получим $\forall n \in \mathbb{N} \hookrightarrow X \cap U_{\varepsilon_n}(x) \neq \emptyset$, т. е. $\exists x_n \in X \cap U_{\varepsilon_n}(x)$. Так как $0 \le |x_n - x| < \varepsilon_n \to 0$ при $n \to \infty$, то в силу теоремы о трех последовательностях $\lim_{n \to \infty} |x_n - x| = 0$, т. е. $x = \lim_{n \to \infty} x_n$.

Определение. Множество $X \subset \mathbb{R}$ называется *компактом*, если из любой последовательности $\{x_n\}$ элементов X можно выделить подпоследовательность, сходящуюся к некоторому $x \in X$.

Теорема 2. (Критерий компактности.) *Множество* $X \subset \mathbb{R}$ является компактом тогда и только тогда, когда X ограничено и замкнуто.

Доказательство. 1. Пусть множество X ограничено и замкнуто, $\{x_n\}$ — последовательность элементов X. Так как последовательность $\{x_n\}$ ограничена, то по теореме Больцано—Вейерштрасса существует подпоследовательность $x_{n_k} \to x \in \mathbb{R}$. Так как $x_{n_k} \in X$, то по теореме 1 имеем $x \in \overline{X} = X$. Следовательно, X — компакт.

- 2. Пусть X компакт. Методом от противного докажем, что множество X ограничено и замкнуто.
- а) Предположим, что множество X неограничено. Тогда либо X неограничено сверху, либо X неограничено снизу. Пусть для определенности X неограничено сверху. Тогда $\forall n \ \exists x_n \in X: \ x_n > n$, следовательно, $\lim_{n\to\infty} x_n = +\infty$. По теореме 4 § 8 любая подпоследовательность последовательности $\{x_n\}$ стремится $\mathbf{k} + \infty$. Следовательно, из последовательности $\{x_n\}$ нельзя выделить сходящуюся подпоследовательность, что противоречит компактности X. Полученное противоречие показывает, что множество X ограничено.
- б) Предположим, что множество X незамкнуто, т. е. $\exists y \in \overline{X}, y \notin X$. По теореме 1 существует $\{y_n\}$ последовательность элементов X: $\lim_{n\to\infty} y_n = y$. В силу теоремы $4 \S 8$ любая подпоследовательность последовательности $\{y_n\}$ сходится к $y \notin X$, т. е. из $\{y_n\}$ нельзя выделить подпоследовательность, сходящуюся к некоторому $x \in X$, что противоречит компактности X. Полученное противоречие показывает, что множество X замкнуто.

Задача 5. Доказать, что если множество $X\subset\mathbb{R}$ ограничено сверху, то $\sup X\in\overline{X}$.

Задача 6. Доказать, что если $X \subset \mathbb{R}$ – компакт, то существуют $\min X$ и $\max X$.

§ 11. Счетные и несчетные множества

Определение. Множества X и Y называются pавномощнымu, если \exists взаимно однозначное соответствие $f: X \longrightarrow Y$.

Определение. Множество, равномощное множеству \mathbb{N} , называется *счетным*.

Бесконечное множество, не являющееся счетным, называется necuem-num.

Теорема 1. *Множество рациональных чисел* \mathbb{Q} *является счетным.*

Доказательство. Поместим все рациональные числа $\frac{m}{n}$ в бесконечную таблицу, n-я строчка которой имеет вид

$$\frac{0}{n} \quad \frac{1}{n} \quad \frac{-1}{n} \quad \frac{2}{n} \quad \frac{-2}{n} \quad \cdots \frac{k}{n} \quad \frac{-k}{n} \quad \cdots$$

Из определения рационального числа следует, что в данной таблице присутствуют все рациональные числа.

n	0		1		-1		2	
1	$\frac{0}{1}$	\rightarrow	$\frac{1}{1}$		$\frac{-1}{1}$	\rightarrow	$\frac{2}{1}$	
			\downarrow		\uparrow		\downarrow	
2	$\frac{0}{2}$	\leftarrow	$\frac{1}{2}$		$\frac{-1}{2}$		$\frac{2}{2}$	
	 				\uparrow		\downarrow	
3	$\frac{0}{3}$	\rightarrow	$\frac{1}{3}$	\rightarrow	$\frac{-1}{3}$		$\frac{2}{3}$	
							\downarrow	
			• • •		• • •		• • •	• • •

Будем двигаться по таблице в направлении стрелок и последовательно нумеровать элементы таблицы, пропуская сократимые дроби. Сократимые дроби мы пропускаем для того, чтобы каждое рациональное число было занумеровано один раз.

эл. табл.
$$\begin{vmatrix} 0 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \begin{vmatrix} 0 \\ 2 \end{vmatrix} \begin{vmatrix} 0 \\ 3 \end{vmatrix} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \begin{vmatrix} -1 \\ 3 \end{vmatrix} \begin{vmatrix} -1 \\ 2 \end{vmatrix} \begin{vmatrix} -1 \\ 1 \end{vmatrix} \begin{vmatrix} 2 \\ 1 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix} \cdots$$
 номер $\begin{vmatrix} 1 \\ 2 \end{vmatrix} \begin{vmatrix} 2 \\ 3 \end{vmatrix} \begin{vmatrix} -1 \\ -1 \end{vmatrix} \begin{vmatrix} 2 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 5 \end{vmatrix} \begin{vmatrix} 3 \\ 6 \end{vmatrix} \begin{vmatrix} 3 \\ 7 \end{vmatrix} \begin{vmatrix} 3 \\ 8 \end{vmatrix} \begin{vmatrix} -1 \\ 6 \end{vmatrix} \cdots$

Тем самым мы установили взаимно однозначное соответствие между элементами таблицы (рациональными числами) и их номерами (натуральными числами), т.е. между множествами $\mathbb N$ и $\mathbb Q$. Следовательно, множество $\mathbb Q$ счетно.

Теорема 2. Пусть множество $X \subset \mathbb{R}$ содержит некоторый отрезок [a,b]. Тогда X несчетно.

Доказательство. Поскольку множество X содержит бесконечное подмножество $\{a+\frac{b-a}{n}: n\in \mathbb{N}\}$, то X бесконечно. Предположим, что X счетно. Тогда существует взаимно однозначное соответствие между множествами \mathbb{N} и X, следовательно, $\forall n\in \mathbb{N}\ \exists x_n\in X$ и

$$\forall x \in X \quad \exists n \in \mathbb{N} : \quad x = x_n. \tag{1}$$

Построим последовательность вложенных отрезков. Определим $[a_0,b_0]=[a,b]$. Если построен отрезок $[a_{n-1},b_{n-1}]$, то отрезок $[a_n,b_n]$

определим так, чтобы $[a_n,b_n]\subset [a_{n-1},b_{n-1}]$ и $x_n\not\in [a_n,b_n]$ (легко видеть, что такой отрезок существует). По теореме Кантора о вложенных отрезках существует общая точка x отрезков $[a_n,b_n]$. Поскольку $\forall n\in\mathbb{N}\hookrightarrow x_n\not\in [a_n,b_n]$ и $x\in [a_n,b_n]$, то $\forall n\in\mathbb{N}\hookrightarrow x\neq x_n$. Это противоречит условию (1).

Задача 1. Доказать, что

- а) для любых чисел $a,b \in \mathbb{R}$: a < b интервал (a,b) равномощен интервалу (0,1);
 - б) множества (0,1) и \mathbb{R} равномощны;
 - в) множества (0,1) и (0,1] равномощны.

ГЛАВА2

ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ

§ 1. Определение предела функции

Определение. Пусть задано число $\delta>0$. Проколотой δ -окрестностью элемента $x\in\overline{\mathbb{R}}$ называется множество $\overset{o}{U}_{\delta}(x)=U_{\delta}(x)\backslash\{x\}.$

В частности, $\overset{o}{U}_{\delta}(\pm\infty)=U_{\delta}(\pm\infty),$ и для любого $x_0\in\mathbb{R}$ справедливы равенства

$$\overset{o}{U}_{\delta}(x_0) = (x_0 - \delta, x_0) \bigcup (x_0, x_0 + \delta) = \{x \in \mathbb{R} : 0 < |x - x_0| < \delta\}.$$

Определение предела по Коши. Пусть задана функция $f:X \to \mathbb{R}$ и заданы $A \in \overline{\mathbb{R}}, \, x_0 \in \overline{\mathbb{R}}, \,$ причем $\exists \delta_0 > 0: \quad \stackrel{o}{U}_{\delta_0}(x_0) \subset X.$ Тогда пишут

$$A = \lim_{x \to x_0} f(x)$$
 или $f(x) o A$ при $x o x_0,$

если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \in (0, \delta_0] : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A). \tag{1}$$

Замечание. Условие $\delta \in (0, \delta_0]$ в формуле (1) обеспечивает то, что для любого $x \in \overset{o}{U}_{\delta}(x_0)$ значение f(x) определено. Если $D_f = \mathbb{R}$, то вместо $\delta \in (0, \delta_0]$ в формуле (1) можно писать $\delta > 0$.

Замечание. То, как определена (и определена ли вообще) функция f в точке x_0 , не влияет на $\lim_{x\to x_0} f(x)$.

В частности, если $A \in \mathbb{R}$, $x_0 \in \mathbb{R}$, а функция f определена на всей числовой прямой, то

1)
$$\lim_{x \to x_0} f(x) = A$$
 \iff

1)
$$\lim_{x \to x_0} f(x) = A \iff \forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x : \ (0 < |x - x_0| < \delta) \hookrightarrow \ (|f(x) - A| < \varepsilon);$$
2) $\lim_{x \to x_0} f(x) = +\infty \iff \Rightarrow$

2)
$$\lim_{x \to \infty} f(x) = +\infty$$
 \iff

$$\iff \forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x : \; (0 < |x - x_0| < \delta) \hookrightarrow \; (f(x) > \frac{1}{\varepsilon});$$

$$3) \lim_{x \to -\infty} f(x) = +\infty \iff (f(x) > \frac{1}{\varepsilon});$$

3)
$$\lim_{x \to \infty} f(x) = +\infty \iff$$

$$\iff \forall \varepsilon > 0 \; \exists \delta > 0: \; \forall x: \; (x < -\frac{1}{\delta}) \hookrightarrow \; (f(x) > \frac{1}{\varepsilon}).$$

Определение в других случаях расписать самостоятельно.

Определение. Последовательность $\{x_n\}$ называется последовательностью Гейне в точке $x_0 \in \overline{\mathbb{R}}$, если

- 1) $\lim_{n\to\infty} x_n = x_0$ и 2) $x_n \neq x_0 \quad \forall n \in \mathbb{N}.$

Определение предела по Гейне. Пусть задана функция $f:X o\mathbb{R}$ и заданы элементы $A\in\overline{\mathbb{R}},\,x_0\in\overline{\mathbb{R}},\,$ причем $\exists \delta_0>0:\,U_{\delta_0}(x_0)\subset X.$ Тогда пишут: $A=\lim_{x\to x_0}f(x),\,$ если для любой последовательности Гейне $\{x_n\}$ в точке x_0 предел последовательности $\{f(x_n)\}$ существует и равен A.

Теорема 1. Определения предела по Коши и по Гейне эквивалентны.

Доказательство. Пусть задана функция $f:X o\mathbb{R}$, пусть $x_0,A\in\overline{\mathbb{R}}$ и $U_{\delta_0}(x_0) \subset X$.

1. Покажем, что из определения предела по Коши следует определение предела по Гейне. Пусть $A = \lim_{x \to x_0} f(x)$ по Коши, т. е.

$$\forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0] : \ \forall x \in \overset{\circ}{U_{\delta}}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A). \tag{2}$$

Пусть $\{x_n\}$ – произвольная последовательность Гейне в точке x_0 . Тогда по определению предела и в силу условия $x_n \neq x_0$ имеем

$$\forall \delta > 0 \ \exists N : \forall n \ge N \hookrightarrow x_n \in \overset{\circ}{U}_{\delta}(x_0). \tag{3}$$

Применим (3) к δ из (2), тогда

$$\forall \varepsilon > 0 \ \exists N : \ \forall n \ge N \hookrightarrow f(x_n) \in U_{\varepsilon}(A),$$

т. е. $\lim_{n\to\infty} f(x_n) = A$. Значит, $A = \lim_{x\to x_0} f(x)$ по Гейне.

2. Методом от противного покажем, что из определения предела по Гейне следует определение предела по Коши. Предположим, что A = $=\lim f(x)$ по Гейне, но не по Коши. $x \rightarrow x_0$ Тогда

$$\exists \varepsilon > 0 : \ \forall \delta \in (0, \delta_0] \ \exists x \in \overset{\circ}{U_{\delta}}(x_0) : \ f(x) \notin U_{\varepsilon}(A).$$

Следовательно,

$$\exists \varepsilon > 0 : \ \forall n \in \mathbb{N} \ \exists x_n \in \overset{\circ}{U}_{\delta_0/n}(x_0) : \ f(x_n) \notin U_{\varepsilon}(A).$$

Из условия $\forall n\in\mathbb{N}\hookrightarrow x_n\in \overset{o}{U}_{\delta_0/n}(x_0)$ следует, что $\lim_{n\to\infty}x_n=x_0$ и $x_n\neq x_0\quad\forall n\in\mathbb{N}.$ Таким образом, мы получили последовательность Гейне $\{x_n\}$ в точке x_0 такую, что $f(x_n) \not\to A$ при $n \to \infty$ – противоречие.

§ 2. Свойства пределов функций

Теорема 1. Если
$$\lim_{x\to x_0} f(x) = A \in \mathbb{R}$$
, то $\exists \lim_{x\to x_0} |f(x)| = |A|$.

Доказательство. Пусть $\{x_n\}$ – последовательность Гейне в точке $x_0 \in \overline{\mathbb{R}}$, тогда $\lim_{n \to \infty} f(x_n) = A$. Согласно теореме 2 § 4 главы 1 имеем $\lim_{n\to\infty}|f(x_n)|=|A|$. Пользуясь определением Гейне, получаем требуемое утверждение.

Теорема 2. Если $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$, $\lim_{x \to x_0} g(x) = B \in \mathbb{R}$, то 1) $\exists \lim_{x \to x_0} (f(x) + g(x)) = A + B$, 2) $\exists \lim_{x \to x_0} (f(x) \cdot g(x)) = A \cdot B$,

- 3) если дополнительно $B \neq 0$, то функция f(x)/g(x) определена в некоторой $U_{\delta_0}^{\circ}(x_0)$ и $\exists \lim_{x \to x_0} (f(x)/g(x)) = A/B$.

Доказательство. Пункты 1, 2 следуют из теорем о пределе суммы последовательностей, пределе произведения последовательностей и определения предела функции по Гейне.

Докажем пункт 3. Так как $\lim_{x\to x_0}g(x)=B\neq 0$, то по теореме 1 имеем $\lim_{x\to x_0}|g(x)|=|B|>0$. Возьмем $\varepsilon=|B|$, тогда $\exists \delta_0>0: \ \forall x\in \overset{o}{U}_{\delta_0}(x_0)\hookrightarrow \hookrightarrow |g(x)|\in U_\varepsilon(|B|)=(0,2|B|)$. Следовательно, $\forall x\in \overset{o}{U}_{\delta_0}(x_0)\hookrightarrow g(x)\neq 0$ и функция f(x)/g(x) определена в $\overset{o}{U}_{\delta_0}(x_0)$. Пользуясь определением Гейне, из теоремы о пределе частного последовательностей получаем требуемое утверждение.

Теорема 3. (О предельном переходе в неравенствах.) Если $\lim_{x\to x_0}f(x)=A\in\overline{\mathbb{R}},\ \lim_{x\to x_0}g(x)=B\in\overline{\mathbb{R}}\ u\ \exists \delta>0:\ \forall x\in \overset{o}{U}_{\delta}(x_0)\hookrightarrow G(x)$ $\hookrightarrow f(x)\leq g(x),\ mo\ A\leq B.$

Доказательство следует непосредственно из теоремы о предельном переходе в неравенствах для последовательностей и определения предела функции по Γ ейне.

Теорема 4. (О трех функциях.)
$$Ecnu\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = A \in \mathbb{R}$$
 $u \; \exists \delta > 0: \; \forall x \in \overset{o}{U}_{\delta}(x_0) \hookrightarrow f(x) \leq g(x) \leq h(x), \; mo \; \exists \lim_{x\to x_0} g(x) = A.$

Доказательство следует непосредственно из теоремы о трех последовательностях и определения предела функции по Гейне.

Лемма 1. (О сохранении знака.) Пусть $\lim_{x\to x_0} f(x) = A \in \mathbb{R}$, $A \neq \emptyset$ 1. Тогда в некоторой проколотой окрестности точки x_0 значение f(x) имеет тот же знак, что и знак числа A.

Доказательство. Пусть для определенности A>0. Положим $\varepsilon=A$. По определению предела существует число $\delta>0$ такое, что для любого $x\in \overset{\circ}{U}_{\delta}(x_0)$ справедливо включение $f(x)\in U_{\varepsilon}(A)=(0,2A)$, а значит, f(x)>0 при $x\in \overset{\circ}{U}_{\delta}(x_0)$.

§ 3. Критерий Коши существования предела функции

Лемма 1. Пусть функция f определена в некоторой $\overset{o}{U}_{\delta_0}(x_0), \, x_0 \in \overline{\mathbb{R}},$ и пусть

$$\forall$$
 посл. Гейне $\{x_n\}$ в точке x_0 $\exists \lim_{n\to\infty} f(x_n) = A \in \mathbb{R}$.

Тогда этот предел не зависит от последовательности Гейне:

$$\exists A \in \mathbb{R}: \ \forall \ nocn. \ \Gamma$$
ейне $\{x_n\}$ в точке $x_0 \hookrightarrow A = \lim_{n \to \infty} f(x_n).$

Доказательство. Пусть имеются две произвольные последовательности Гейне в точке x_0 : $\{x_n\}$ и $\{y_n\}$, т. е. $\lim_{n\to\infty} x_n = x_0$, $\lim_{n\to\infty} y_n = x_0$ и $\forall n\in\mathbb{N} \hookrightarrow x_n\neq x_0$, $y_n\neq x_0$. Составим из них последовательность $\{z_k\}$:

$$z_k = \begin{cases} x_n, & k = 2n - 1, \\ y_n, & k = 2n. \end{cases}$$

Последовательность $\{z_k\}$ также является последовательностью Гейне, так как $\lim_{k\to\infty} z_k = x_0$, $\forall k\in\mathbb{N} \hookrightarrow z_k \neq x_0$. Поэтому, в силу условия леммы, $\exists \lim_{k\to\infty} f(z_k)$. Так как последовательности $\{f(x_n)\}$ и $\{f(y_n)\}$ являются подпоследовательностями сходящейся последовательности $\{f(z_k)\}$, то $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} f(y_n)$.

Определение. Пусть функция f определена в некоторой $\overset{o}{U}_{\delta_0}(x_0)$. Условие Коши существования предела функции в точке x_0 состоит в том, что

$$\forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0]: \ \forall x_1, x_2 \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow \ |f(x_1) - f(x_2)| < \varepsilon. \tag{1}$$

Теорема 1. (Критерий Коши.) $\exists \lim_{x \to x_0} f(x) \in \mathbb{R} \iff$ выполнено условие Коши существования предела функции f в точке x_0 .

Доказательство. 1. Пусть $\exists \lim_{x \to x_0} f(x) = A \in \mathbb{R}$, тогда

$$\forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0] : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow |f(x) - A| < \varepsilon/2.$$

Следовательно, $\forall \varepsilon > 0 \; \exists \delta \in (0, \delta_0] : \; \forall x_1, x_2 \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow \; |f(x_1) - f(x_2)| \leq |f(x_1) - A| + |f(x_2) - A| < \varepsilon/2 + \varepsilon/2 = \varepsilon$, т. е. выполнено условие Коши (1).

2. Пусть выполнено условие Коши (1). Возьмем произвольную последовательность Гейне в точке x_0 : $x_n \to x_0$, $x_n \neq x_0$, тогда

$$\forall \delta \in (0, \delta_0] \ \exists N : \ \forall n \ge N \hookrightarrow x_n \in \overset{o}{U}_{\delta}(x_0). \tag{2}$$

Используя условие (2) для δ из (1), получаем

$$\forall \varepsilon > 0 \ \exists N : \ \forall n \geq N \ \forall k \geq N \hookrightarrow \ |f(x_n) - f(x_k)| < \varepsilon,$$

т. е. выполнено условие Коши существования предела последовательности $\{f(x_n)\}$. В силу критерия Коши для последовательностей существует $f(x_n) = A \in \mathbb{R}$.

Итак, \forall последовательности Гейне $\{x_n\}$ в точке x_0 $\exists A=\lim_{n\to\infty}f(x_n)\in\mathbb{R},$ тогда по лемме 1

$$\exists A \in \mathbb{R} \colon \ \forall \ \text{посл.} \ \Gamma$$
ейне $\{x_n\}$ в точке $x_0 \hookrightarrow A = \lim_{n \to \infty} f(x_n)$.

Пользуясь определением предела функции по Гейне, получаем $\exists \lim_{x \to x_0} f(x) = A \in \mathbb{R}.$

Задача 1. Пусть

$$\forall \varepsilon > 0 \ \exists A \in \mathbb{R} \ \exists \delta > 0 : 0 < |x - x_0| < \delta \hookrightarrow |f(x) - A| < \varepsilon.$$

Верно ли, что $\exists \lim_{x \to x_0} f(x) \in \mathbb{R}$?

Задача 2. Пусть задана функция $f:(0,+\infty)\to\mathbb{R}$. Верно ли, что $\exists\lim_{x\to+\infty}f(x)\in\mathbb{R},$ если

- a) $\forall \varepsilon > 0 \ \forall d > 0 \ \exists x_0 > 0 : \ \forall x > x_0 \hookrightarrow \ |f(x+d) f(x)| < \varepsilon;$
- 6) $\forall \varepsilon > 0 \ \exists x_0 > 0 : \ \forall d > 0 \hookrightarrow \ |f(x_0 + d) f(x_0)| < \varepsilon$?

Рассмотреть данный вопрос отдельно для каждого из условий а) и б).

§ 4. Предел по множеству

Определение. Элемент $x_0 \in \mathbb{R}$ называется *предельной точкой* множества $X \subset \mathbb{R}$, если существует $\{x_n\}$ – последовательность элементов X, которая является последовательностью Гейне в точке x_0 .

Определение. Точка $x_0 \in \mathbb{R}$ называется изолированной точкой множества $X \subset \mathbb{R}$, если $x_0 \in X$ и $\exists \delta > 0: \stackrel{o}{U}_{\delta}(x_0) \cap X = \emptyset$.

Лемма 1. Для любого множества $X \subset \mathbb{R}$ и любой точки $x_0 \in \mathbb{R}$ следующие условия эквивалентны:

- $(1) x_0$ является предельной точкой множества X;
- $(2) \ x_0 \ является \ точкой \ прикосновения \ множества \ X, \ u \ x_0 \ не \ является \ изолированной \ точкой \ множества \ X.$

Доказательство. (1) \Rightarrow (2). Пусть x_0 – предельная точка множества X. Тогда существует $\{x_n\}$ – последовательность Гейне в точке $x_0, x_n \in X$. Так как $\lim_{n\to\infty} x_n = x_0$, то в силу критерия точки прикосновения справедливо включение $x_0 \in \overline{X}$, т. е. x_0 является точкой прикосновения множества X. Поскольку $\forall \delta > 0 \ \exists n: \ x_n \in \overset{o}{U}_{\delta}(x_0)$, то $\forall \delta > 0 \ \overset{o}{U}_{\delta}(x_0) \cap X \neq \emptyset$. Следовательно, x_0 не является изолированной точкой множества X.

 $(2) \Rightarrow (1)$. Пусть x_0 – точка прикосновения множества X и x_0 не является изолированной точкой множества X. Покажем, что x_0 – предельная точка множества X.

Рассмотрим случай, когда $x_0 \notin X$. Так как x_0 – точка прикосновения множества X, то в силу критерия точки прикосновения существует последовательность $\{x_n\}$ элементов X такая, что $\lim_{n\to\infty} x_n = x_0$. Так как $x_0 \notin X$ и $x_n \in X$, то $x_n \neq x_0 \ \forall n \in \mathbb{N}$. Поэтому $\{x_n\}$ – последовательность Гейне в точке x_0 и, следовательно, x_0 – предельная точка множества X.

Пусть теперь $x_0 \in X$. Так как x_0 не является изолированной точкой множества X, то $\forall \delta > 0 \hookrightarrow \overset{o}{U}_{\delta}(x_0) \cap X \neq \emptyset$. Следовательно, $\forall n \in \mathbb{N} \hookrightarrow \overset{o}{U}_{1/n}(x_0) \cap X \neq \emptyset$. Поэтому $\forall n \in \mathbb{N} \ \exists x_n \in \overset{o}{U}_{1/n}(x_0) \cap X$. Последовательность $\{x_n\}$ элементов X является последовательностью Гейне в точке x_0 . Поэтому x_0 – предельная точка множества X.

Определение. Пусть элемент $x_0\in\overline{\mathbb{R}}$ является предельной точкой множества $X\subset\mathbb{R}$. Будем говорить, что элемент $A\in\overline{\mathbb{R}}$ является npedenom функции $f:X\to\mathbb{R}$ по множесству X и писать $\lim_{\substack{x\to x_0\\x\in X}}f(x)=A$, если

(определение Коши):

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in X \cap \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A);$$
 (определение Гейне):

 $\forall \{x_n\}$ – последовательности элементов X, которая является последовательностью Гейне в точке x_0 , выполнено соотношение $\lim_{n\to\infty} f(x_n) = A$.

Эквивалентность определений Коши и Гейне доказывается так же, как и раньше (см. доказательство теоремы 1 § 1).

Задача 1. Пусть заданы множества $X_1, X_2 \subset \mathbb{R}$ и функция $f: X_1 \cup U$ $U X_2 \to \mathbb{R}$. Пусть $U X_0 = U$ предельная точка множеств $U X_1 = U$ доказать,

$$\lim_{\substack{x \to x_0 \\ x \in X_1 \cup X_2}} f(x) = A \quad \Leftrightarrow \quad \left(\lim_{\substack{x \to x_0 \\ x \in X_1}} f(x) = A \text{ if } \lim_{\substack{x \to x_0 \\ x \in X_2}} f(x) = A\right).$$

Пример 1. Рассмотрим функцию Дирихле:

$$f(x) = \left\{ \begin{array}{ll} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{array} \right.$$

Непосредственно из определений следует, что любая точка $x_0 \in \mathbb{R}$ является предельной точкой множеств \mathbb{Q} и $\mathbb{R} \setminus \mathbb{Q}$ и $\lim_{\substack{x \to x_0 \\ x \in \mathbb{Q}}} f(x) = 1$, $\lim_{\substack{x \to x_0 \\ x \in \mathbb{R} \setminus \mathbb{Q}}} f(x) = 0$. При этом для любой точки $x_0 \in \mathbb{R}$ предел $\lim_{x \to x_0} f(x)$ не существует.

Лемма 2. (Принцип локализации.) Пусть x_0 – предельная точка множесства $X \subset \mathbb{R}$, пусть $\exists \delta_0 > 0: \ \forall x \in \overset{\circ}{U}_{\delta_0}(x_0) \cap X \hookrightarrow f_1(x) = f_2(x).$ Тогда пределы $\lim_{\substack{x \to x_0 \\ x \in X}} f_1(x)$ и $\lim_{\substack{x \to x_0 \\ x \in X}} f_2(x)$ существуют или не существуют одновременно, а если существуют, то равны между собой.

Доказательство. Пусть существует $\lim_{\substack{x \to x_0 \\ x \in X}} f_1(x) = A \in \overline{\mathbb{R}}$. Покажем, что существует $\lim_{\substack{x \to x_0 \\ x \in X}} f_2(x) = A$. Зафиксируем произвольное число $\varepsilon > 0$. По определению предела по Коши $\exists \delta_1 > 0: \ \forall x \in \mathop{U}_{\delta_1}(x_0) \cap X \hookrightarrow f_1(x) \in \mathcal{U}_{\varepsilon}(A)$. Определим $\delta_2 = \min\{\delta_0, \delta_1\}$. Тогда $\forall x \in \mathop{U}_{\delta_2}(x_0) \cap X \hookrightarrow f_2(x) = f_1(x) \in U_{\varepsilon}(A)$. Следовательно, $\lim_{\substack{x \to x_0 \\ x \in X}} f_2(x) = A$.

Принцип локализации утверждает, что предел функции f в точке x_0 зависит лишь от поведения функции f в сколь угодно малой окрестности точки x_0 и не зависит от поведения f вдали от x_0 .

§ 5. Односторонние пределы

Определение. Пусть функция f определена на интервале (a,x_0) . Предел функции f в точке x_0 по множеству (a,x_0) называют *пределом* слева функции f в точке x_0 и обозначают $\lim_{x\to x_0-0} f(x)$ или $f(x_0-0)$.

Используя определение предела по множеству, получаем

$$f(x_0-0)=A\in\overline{\mathbb{R}}\qquad \stackrel{\text{опр. Коши}}{\Longleftrightarrow}$$

$$\forall \varepsilon>0\ \exists \delta\in(0,x_0-a):\ \forall x\in(x_0-\delta,x_0)\hookrightarrow\ f(x)\in U_\varepsilon(A).$$

$$f(x_0-0)=A\in\overline{\mathbb{R}}\qquad \stackrel{\text{опр. Гейне}}{\Longleftrightarrow}$$

$$\Longleftrightarrow \qquad \forall \{x_n\}:\ x_n\in(a,x_0):\ \left(\lim_{n\to\infty}x_n=x_0\right)\hookrightarrow\ \left(\lim_{n\to\infty}f(x_n)=A\right).$$

Определение. Пусть функция f определена на интервале (x_0, b) . Предел функции f в точке x_0 по множеству (x_0, b) называют *пределом* $cnpa \, ba$ функции f в точке x_0 и обозначают $\lim_{x \to x_0 + 0} f(x)$ или $f(x_0 + 0)$.

Лемма 1. Пусть функция f определена в некоторой $\overset{\circ}{U}_{\delta_0}(x_0),\,x_0\in\mathbb{R}.$ Тогда

$$\exists \lim_{x \to x_0} f(x) \in \overline{\mathbb{R}} \quad \Longleftrightarrow \quad \left(\exists f(x_0 \pm 0) \in \overline{\mathbb{R}} \quad u \quad f(x_0 + 0) = f(x_0 - 0) \right).$$

Доказательство. Запишем определение по Коши того, что $\exists f(x_0 + +0) = f(x_0 - 0) = A \in \overline{\mathbb{R}}$:

$$\forall \varepsilon > 0 \ \exists \delta_1 \in (0, \delta_0], \ \delta_2 \in (0, \delta_0] :$$

$$\forall x \in (x_0 - \delta_1, x_0) \bigcup (x_0, x_0 + \delta_2) \hookrightarrow f(x) \in U_{\varepsilon}(A).$$
 (1)

Это условие эквивалентно условию

$$\forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0] :$$

$$\forall x \in (x_0 - \delta, x_0) \ \bigcup (x_0, x_0 + \delta) \hookrightarrow f(x) \in U_{\varepsilon}(A).$$

$$\tag{2}$$

Действительно, из условия (1) следует условие (2), где $\delta = \min\{\delta_1, \delta_2\}$. Из условия (2) следует условие (1), где $\delta_1 = \delta_2 = \delta$. Так как $(x_0 - \delta, x_0) \bigcup (x_0, x_0 + \delta) = \overset{o}{U}_{\delta}(x_0)$, то условие (2) эквивалентно условию $A = \lim_{x \to x_0} f(x)$.

Определение. Минимумом (максимумом, инфимумом, супремумом) функции f на множестве X называется минимум (максимум, инфимум, супремум) множества f(X): $\min_{x \in X} f(x) = \min f(X)$, $\sup_{x \in X} f(x) = \sup f(X)$ и так далее.

Непосредственно из определений инфимума и супремума имеем

$$m = \inf_{x \in X} f(x) \iff \begin{cases} \forall x \in X \hookrightarrow m \le f(x), \\ \forall m' > m \ \exists x \in X : \ m' > f(x); \end{cases}$$

$$M = \sup_{x \in X} f(x) \iff \begin{cases} \forall x \in X \hookrightarrow M \ge f(x), \\ \forall M' < M \ \exists x \in X : \ M' < f(x). \end{cases}$$

Заметим, что это верно не только в случае конечных, но и в случае бесконечных верхних и нижних граней.

Определение. Функция f называется нестрого возрастающей на множестве $X \subset \mathbb{R}$, если

$$\forall x_1, x_2 \in X : x_1 < x_2 \hookrightarrow f(x_1) \le f(x_2).$$

Функция f называется necmporo убывающей на множестве $X\subset\mathbb{R},$ если

$$\forall x_1, x_2 \in X : x_1 < x_2 \hookrightarrow f(x_1) \ge f(x_2).$$

Если функция является нестрого возрастающей или нестрого убывающей, то она называется монотонной.

Функция f называется cmporo возрастающей на множестве $X\subset\mathbb{R},$ если

$$\forall x_1, x_2 \in X : x_1 < x_2 \hookrightarrow f(x_1) < f(x_2).$$

Функция f называется cmporo убывающей на множестве $X\subset\mathbb{R},$ если

$$\forall x_1, x_2 \in X : x_1 < x_2 \hookrightarrow f(x_1) > f(x_2).$$

Теорема 1. (Об одностороннем пределе монотонной функции.)

- $1.\ \mathit{Ecлu}\ \phi \mathit{ункция}\ f\ \mathit{нестрого}\ \mathit{возрастает}\ \mathit{на}\ (a,x_0),\ \mathit{mo}$
- $\exists f(x_0 0) = \sup_{x \in (a, x_0)} f(x).$
 - 2. Если функция f нестрого убывает на (a, x_0) , то
- $\exists f(x_0 0) = \inf_{x \in (a, x_0)} f(x).$
 - 3. Если функция f нестрого возрастает на $(x_0,b),\ mo$
- $\exists f(x_0 + 0) = \inf_{x \in (x_0, b)} f(x).$
- 4. Если функция f нестрого убывает на (x_0,b) , то

$$\exists f(x_0 + 0) = \sup_{x \in (x_0, b)} f(x).$$

Доказательство. 1. Пусть функция f нестрого возрастает на (a, x_0) . Так как конечный или бесконечный супремум любого множества существует, то существует $\sup_{x \in (a, x_0)} f(x) = M \in \mathbb{R} \bigcup \{+\infty\}$.

Из определения супремума следует, что $\forall x \in (a, x_0) \hookrightarrow f(x) \leq M$ и, кроме того, $\forall M_1 < M \ \exists x_1 \in (a, x_0) : M_1 < f(x_1)$. Отсюда и из возрастания функции f следует, что $\forall x \in (x_1, x_0) \hookrightarrow M_1 < f(x_1) \leq f(x)$.

Итак, $\forall M_1 < M \ \exists x_1 \in (a,x_0): \ \forall x \in (x_1,x_0) \hookrightarrow M_1 < f(x) \leq M$. Следовательно, $\forall \varepsilon > 0 \ \exists x_1 \in (a,x_0): \ \forall x \in (x_1,x_0) \hookrightarrow f(x) \in U_\varepsilon(M)$, т. е. $\forall \varepsilon > 0 \ \exists \delta = x_0 - x_1 > 0: \ \forall x \in (x_0 - \delta,x_0) \hookrightarrow f(x) \in U_\varepsilon(M)$, а значит, $M = f(x_0 - 0)$. Другие случаи рассмотреть самостоятельно.

§ 6. Непрерывность функции в точке

Определение. 1. Пусть функция f определена в некоторой δ -окрестности точки x_0 . Тогда f называется непрерывной в точке x_0 , если $\lim_{x\to x_0} f(x) = f(x_0)$.

2. Пусть функция f определена на $(a, x_0]$. Тогда f называется непрерывной слева в точке x_0 , если $f(x_0 - 0) = f(x_0)$.

Пусть функция f определена на $[x_0, b)$. Тогда f называется непрерывной справа в точке x_0 , если $f(x_0 + 0) = f(x_0)$.

- 3. Пусть f определена в $\overset{o}{U}_{\delta}(x_0)$. Тогда
- а) если $\exists \lim_{x \to x_0} f(x) \in \mathbb{R}$, но в точке x_0 функция f не определена либо $f(x_0) \neq \lim_{x \to x_0} f(x)$, то точка x_0 называется точкой устранимого разрыва;

б) если $\exists f(x_0\pm 0)\in \mathbb{R}$, но $f(x_0-0)\neq f(x_0+0)$, то x_0 – то ика разрыва первого рода;

в) если какой-либо из пределов $f(x_0-0)$, $f(x_0+0)$ не существует или бесконечен, то x_0 – точка разрыва второго рода.

Задача 1. Существует ли функция $f:[x_0,x_0+\delta_0)\to\mathbb{R}$, непрерывная справа в точке x_0 и такая, что

$$\forall \delta \in (0, \delta_0) \ \exists x_1, x_2 \in (x_0, x_0 + \delta) : \ f(x_1) > 0, \ f(x_2) < 0.$$

Задача 2. Существует ли функция $f: \mathbb{R} \to \mathbb{R}$, непрерывная справа в каждой точке $x_0 \in \mathbb{R}$ и такая, что

$$\forall a, b \in \mathbb{R} : a < b \ \exists x_1, x_2 \in (a, b) : f(x_1) > 0, f(x_2) < 0.$$

Лемма 1. Пусть f определена в $U_{\delta_0}(x_0)$. Следующие условия эквивалентны:

- (1) f непрерывна в x_0 ;
- (2) $\forall \varepsilon > 0 \; \exists \delta \in (0, \delta_0] : \; \forall x \in U_\delta(x_0) \hookrightarrow |f(x) f(x_0)| < \varepsilon;$ (3) $\forall \{x_n\} \subset U_{\delta_0}(x_0) : \lim_{n \to \infty} x_n = x_0 \hookrightarrow \lim_{n \to \infty} f(x_n) = f(x_0).$

(1) \Leftrightarrow (2) : следует из определения Доказательство. $\lim_{x \to x_0} f(x) = f(x_0)$ по Коши; в данном случае условие $x \neq x_0$ можно не писать, так как при $x=x_0$ выполняется: $|f(x)-f(x_0)|=0<arepsilon$.

(1) \Leftrightarrow (3) : следует из определения $\lim_{x \to x_0} f(x) = f(x_0)$ по Гейне; в данном случае условие $x_n \neq x_0$ можно не писать, так как при $x_n = x_0$ выполняется: $f(x_n) = f(x_0)$.

Задача 3. Пусть функция f определена в $U_{\delta_0}(x_0)$. Как связаны следующие условия с непрерывностью функции f в точке x_0 ?

- $) \forall \delta > 0 \exists \varepsilon \in (0, \delta_0] : \forall x \in U_{\varepsilon}(x_0) \hookrightarrow |f(x) f(x_0)| < \delta;$
- 2) $\forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0] : \ \forall x : \ |x x_0| \le \delta \hookrightarrow \ |f(x) f(x_0)| < \varepsilon;$
- 3) $\forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0] : \ \forall x : \ |x x_0| < \delta \hookrightarrow \ |f(x) f(x_0)| \le \varepsilon;$
- $\exists \lambda \ \forall \varepsilon > 0 \ \forall \delta \in (0, \delta_0] \ \exists x \in U_{\delta}(x_0) : \ |f(x) f(x_0)| < \varepsilon;$
- $\forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0], \ \exists A \in \mathbb{R} : \ \forall x \in U_\delta(x_0) \hookrightarrow |f(x) A| < \varepsilon;$
- 6) $\exists \varepsilon > 0 : \forall x \in U_{\delta_0}(x_0) \hookrightarrow |f(x) f(x_0)| < \varepsilon;$
- $7 \forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0]: \ \forall x_1, x_2 \in U_{\delta_0}(x_0): \ |x_1 x_2| < \delta \hookrightarrow \ |f(x_1) f(x_2)| < \varepsilon;$
- 8) (условие Липшица) $\exists L \in \mathbb{R}: \ \forall x_1, x_2 \in U_{\delta_0}(x_0) \hookrightarrow |f(x_1) f(x_2)| \le L|x_1 x_2|.$

Теорема 1. Пусть функции f и g определены g $U_{\delta}(x_0)$ и непрерывны g точке g0. Тогда функции g0 g0, g0, g1, g2, непрерывны g3 точке g3. Если дополнительно g1, то функция g3, непрерывна g4 точке g5.

Доказательство состоит в применении теоремы 2 § 2.

Пример 1. Пусть $x_0, y_0, A \in \mathbb{R}$, $\lim_{x \to x_0} y(x) = y_0$, $\lim_{y \to y_0} f(y) = A$. Верно ли, что предел сложной функции $f \circ y$ в точке x_0 существует и равен A: $\exists \lim_{x \to x_0} f(y(x)) = A$?

Решение. Неверно. Например,
$$y(x)=0 \ \forall x \in \mathbb{R}, \ f(y)=0 = \begin{cases} 0, & y \neq 0, \\ 1, & y=0. \end{cases}$$
 Тогда $A=0$, но $f(y(x))=1 \ \forall x \in \mathbb{R}$ и $\lim_{x \to x_0} f(y(x))=0 = 1 \neq A$.

Теорема 2. (О пределе сложной функции.) Пусть заданы функции $y: \overset{o}{U}_{\delta_0}(x_0) \to \mathbb{R} \ u \ f: \overset{o}{U}_{\beta_0}(y_0) \to \mathbb{R}, \ nycmb \lim_{x \to x_0} y(x) = y_0 \in \overline{\mathbb{R}}, \lim_{y \to y_0} f(y) = A \in \overline{\mathbb{R}} \ u \ nycmb$ выполнено хотя бы одно из следующих дополнительных условий:

- (a) $\exists \delta_0 > 0$: $\forall x \in \overset{\circ}{U}_{\delta_0}(x_0) \hookrightarrow y(x) \neq y_0 \ unu$
- (б) $f(y_0) = A$ (т. е. функция f непрерывна в точке y_0).

Тогда сложная функция $\varphi(x)=f(y(x))$ определена в некоторой $\overset{o}{U}_{\delta}(x_0)$ и $\exists\lim_{x\to x_0}f(y(x))=\lim_{y\to y_0}f(y)=A.$

Доказательство. Зафиксируем произвольное число $\varepsilon>0$. Так как $\lim_{y\to y_0}f(y)=A$, то

$$\exists \beta \in (0, \beta_0) : \forall y \in \overset{\circ}{U}_{\beta}(y_0) \hookrightarrow f(y) \in U_{\varepsilon}(A). \tag{1}$$

По определению предела $\lim_{x \to x_0} y(x) = y_0$

$$\exists \delta \in (0, \delta_0) : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow \ y(x) \in U_{\beta}(y_0). \tag{2}$$

Покажем, что сложная функция $\varphi(x)=f(y(x))$ определена в $\overset{o}{U}_{\delta}(x_0)$ и

$$\forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow f(y(x)) \in U_{\varepsilon}(A). \tag{3}$$

Зафиксируем произвольную точку $x \in \overset{\circ}{U_{\delta}}(x_0)$. В силу условия (2) получаем $y(x) \in U_{\beta}(y_0)$. В случае $y(x) \neq y_0$ имеем $y(x) \in \overset{\circ}{U_{\beta}}(y_0)$, и согласно (1) включение $f(y(x)) \in U_{\varepsilon}(A)$ выполнено. Рассмотрим случай $y(x) = y_0$. В этом случае дополнительное условие (а) реализоваться не может. Следовательно, реализуется дополнительное условие (б), а значит, $f(y(x)) = f(y_0) = A \in U_{\varepsilon}(A)$. Таким образом, доказано соотношение (3). Итак,

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow f(y(x)) \in U_{\varepsilon}(A).$$

Следовательно,
$$\lim_{x \to x_0} f(y(x)) = A$$
.

Теорема 3. (О непрерывности сложной функции в точке.) Пусть функция у определена в некоторой $U_{\delta_0}(x_0)$ и непрерывна в точке x_0 . Пусть функция f определена в некоторой $U_{\beta_0}(y_0)$ и непрерывна в точке $y_0 = y(x_0)$. Тогда сложная функция $\varphi(x) = f(y(x))$ определена в некоторой $U_{\delta_1}(x_0)$ и непрерывна в точке x_0 .

Доказательство состоит в применении пункта (б) теоремы 2 для случая $y_0 = y(x_0)$.

§ 7. Непрерывность функции на множестве

Определение . Функция $f:X\to\mathbb{R}$ называется непрерывной в точке $x_0\in X$ по множеству $X\subset\mathbb{R},$ если

(a) точка x_0 является предельной точкой множества X и $\lim_{\substack{x \to x_0 \\ x \in X}} f(x) = f(x_0)$ либо

(б) точка x_0 является изолированной точкой множества X.

Заметим, что согласно лемме 1 § 4 точка $x_0 \in X$ является либо предельной, либо изолированной точкой множества X. В случае, когда точка x_0 является изолированной точкой множества X, любая функция $f: X \to \mathbb{R}$ непрерывна в точке x_0 по множеству X.

Определение. Функция $f:X\to\mathbb{R}$ называется непрерывной на множестве $X\subset\mathbb{R},$ если f непрерывна в каждой точке $x_0\in X$ по множеству X.

Лемма 1. Для функции $f:X \to \mathbb{R}$ следующие условия эквивалентни:

- 1) f непрерывна на множестве X;
- 2) $\forall x_0 \in X \ \forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in U_\delta(x_0) \cap X \hookrightarrow \ |f(x) f(x_0)| < \varepsilon;$
- 3) $\forall x_0 \in X \ \forall \{x_n\}$ посл. элементов $X: \lim_{n \to \infty} x_n = x_0 \hookrightarrow$
- $\hookrightarrow \lim_{n\to\infty} f(x_n) = f(x_0).$

Доказательство аналогично доказательству леммы $1 \S 6$.

Задача 1. Пусть заданы множества $X,Y \subset \mathbb{R}$ и функции $y:X \to \mathbb{R}$, $f:Y \to \mathbb{R}, \ y(X) \subset Y$, пусть функция y непрерывна на множестве X, а функция f непрерывна на множестве Y. Доказать, что сложная функция $\varphi(x) = f(y(x))$ непрерывна на множестве X.

Задача 2. Пусть на интервале (a,b) задана функция f. Доказать, что функция f непрерывна на (a,b) тогда и только тогда, когда для любых чисел $m,M\in\mathbb{R}$ множества $\{x\in(a,b):f(x)< M\}$ и $\{x\in(a,b):f(x)>>m\}$ открыты.

Напомним, что множество $X \subset \mathbb{R}$ называется компактом, если из любой последовательности $\{x_n\}$ элементов X можно выделить подпоследовательность, сходящуюся к некоторому $x \in X$.

Теорема 1. Пусть f непрерывна на компакте X. Тогда f(X) – компакт. (Другими словами, непрерывная функция переводит компакт в компакт.)

Доказательство. Пусть задана произвольная последовательность $\{y_n\}$ элементов f(X). Требуется доказать, что из $\{y_n\}$ можно выделить подпоследовательность, сходящуюся к некоторому $y_0 \in f(X)$. Так как

 $y_n \in f(X)$, то $\exists x_n \in X$: $f(x_n) = y_n$. В силу компактности X существует сходящаяся подпоследовательность $\{x_{n_k}\}$: $\lim_{k \to \infty} x_{n_k} = x_0 \in X$. В силу непрерывности f имеем $\lim_{k \to \infty} f(x_{n_k}) = f(x_0)$, т.е. $\{y_{n_k}\}$ – подпоследовательность последовательности $\{y_n\}$, сходящаяся к $y_0 = f(x_0) \in f(X)$. \square

Задача 3. Верно ли, что непрерывная функция $f: \mathbb{R} \to \mathbb{R}$ переводит

- а) открытое множество в открытое;
- б) замкнутое множество в замкнутое;
- в) ограниченное множество в ограниченное;
- г) замкнутое и ограниченное множество в замкнутое и ограниченное?

Определение. Последовательность $\{x_n\}$ элементов X называется минимизирующей (соответственно максимизирующей) последовательностью функции f на множестве X, если $\lim_{n\to\infty} f(x_n) = \inf_{x\in X} f(x)$ (соответственно $\lim_{n\to\infty} f(x_n) = \sup_{x\in X} f(x)$).

Лемма 2. Для любого непустого множества X и любой функции $f: X \to \mathbb{R}$ существуют минимизирующая и максимизирующая последовательности функции f на множестве X.

Доказательство. По теореме о существовании инфимума существует $\inf_{x\in X} f(x) = m \in \overline{\mathbb{R}}$. По определению инфимума $\forall \varepsilon > 0 \; \exists x \in X: \; f(x) \in U_{\varepsilon}(m)$. Следовательно, $\forall n \in \mathbb{N} \; \exists x_n \in X: \; f(x_n) \in U_{1/n}(m)$. Таким образом, построена минимизирующая последовательность $\{x_n\}$. Аналогично строится максимизирующая последовательность.

Теорема 2. (Теорема Вейерштрасса.) Если функция f непрерывна на компакте $X \subset \mathbb{R}$, то существуют $\max_{x \in X} f(x)$ и $\min_{x \in X} f(x)$.

Доказательство. Обозначим $m = \inf_{x \in X} f(x)$. В силу леммы 2 существует минимизирующая последовательность $\{x_n\}$ элементов X: $\lim_{n \to \infty} f(x_n) = m$. Поскольку X – компакт, то из последовательности $\{x_n\}$ можно выделить подпоследовательность $\{x_{n_k}\}$, сходящуюся к некоторому $x_0 \in X$. Поскольку последовательность $\{f(x_{n_k})\}$ является подпоследовательностью последовательность $\{f(x_n)\}$, то $\lim_{k \to \infty} f(x_{n_k}) = m$. Отсюда и из непрерывности функции f следует, что $m = f(x_0)$. Поэтому в точке достигается $\min_{x \in X} f(x)$. Существование максимума доказывается аналогично.

Определение. Функция $f:X\to\mathbb{R}$ называется *ограниченной* на X, если множество ее значений f(X) ограничено.

Следствие 1. Если функция f непрерывна на компакте $X \subset \mathbb{R},$ то она ограничена на X.

Доказательство. По теореме Вейерштрасса существуют $\min_{x \in X} f(x) = m \in \mathbb{R}$ и $\max_{x \in X} f(x) = M \in \mathbb{R}$. По определению минимума и максимума функция f на множестве X ограничена снизу числом m и ограничена сверху числом M.

Любой отрезок [a,b] ограничен и замкнут, следовательно, в силу критерия компактности отрезок является компактом. Отсюда вытекают еще два следствия.

Следствие 2. Если функция f непрерывна на отрезке [a,b], то существуют $\max_{x \in [a,b]} f(x)$ и $\min_{x \in [a,b]} f(x)$.

Следствие 3. Если функция f непрерывна на отрезке [a,b], то она ограничена на [a,b].

Задача 4. Пусть функция f непрерывна на [a,b] и $\forall x \in [a,b] \hookrightarrow f(x) > 0$. Верно ли, что $\exists \varepsilon > 0 : \forall x \in [a,b] \hookrightarrow f(x) \geq \varepsilon$?

Задача 5. Пусть функция f непрерывна на (a,b) и $\forall x \in (a,b) \hookrightarrow f(x) > 0$. Верно ли, что $\exists \varepsilon > 0 : \forall x \in (a,b) \hookrightarrow f(x) \ge \varepsilon$?

Задача 6. Пусть функция f непрерывна на $[0, +\infty)$ и $\exists \lim_{x \to +\infty} f(x) \in \mathbb{R}$. Верно ли, что функция f ограничена на \mathbb{R} ?

Теорема 3. (Теорема Больцано-Коши о промежуточном значении.) Пусть заданы функция f, непрерывная на [a,b], и число y_0 такие, что либо $f(a) \leq y_0 \leq f(b)$, либо $f(b) \leq y_0 \leq f(a)$. Тогда существует точка $x_0 \in [a,b]$ такая, что $f(x_0) = y_0$.

Доказательство. Пусть, например, $f(a) \le y_0 \le f(b)$. Обозначим $[a_0,b_0]=[a,b]$. Пусть определен отрезок $[a_k,b_k]$, причем $f(a_k) \le y_0 \le f(b_k)$. Определим $c_k=\frac{a_k+b_k}{2}$,

$$[a_{k+1},b_{k+1}] = \begin{cases} [a_k,c_k], & \text{если} \quad y_0 \le f(c_k), \\ [c_k,b_k], & \text{если} \quad f(c_k) < y_0, \end{cases}$$

тогда $f(a_{k+1}) \le y_0 \le f(b_{k+1})$.

Получаем последовательность вложенных отрезков $\{[a_k,b_k]\}$ таких, что $\forall k \in \mathbb{N} \hookrightarrow f(a_k) \leq y_0 \leq f(b_k)$. По теореме Кантора существует общая точка $x_0 \in \bigcap [a_k,b_k]$.

Так как $b_k-a_k=\frac{b-a}{2^k}\to 0$, то $|x_0-a_k|\le |b_k-a_k|\to 0$, следовательно, $a_k\to x_0$, аналогично, $b_k\to x_0$.

В силу непрерывности f имеем $f(a_k) \to f(x_0)$, $f(b_k) \to f(x_0)$. Так как $f(a_k) \le y_0 \le f(b_k)$, то по теореме о предельном переходе в неравенствах $f(x_0) \le y_0 \le f(x_0)$, т. е. $y_0 = f(x_0)$.

Теорема 4. Если функция f непрерывна на отрезке [a,b], то f([a,b]) = [m,M], где $m = \min_{x \in [a,b]} f(x)$, $M = \max_{x \in [a,b]} f(x)$.

Доказательство. Если m=M, то отрезок [m,M] вырождается в одну точку, а функция f равна константе m=M на [a,b]. При этом утверждение теоремы тривиально выполняется. Поэтому будем предполагать, что m < M.

Из определений минимума и максимума следует, что $\forall x \in [a,b] \hookrightarrow \longrightarrow m \le f(x) \le M$, т.е. $f([a,b]) \subset [m,M]$. Покажем, что $[m,M] \subset \subset f([a,b])$. Из определений минимума и максимума также следует, что $m,M \in f([a,b])$, т.е. $\exists x_1,x_2 \in [a,b] \colon f(x_1) = m, \ f(x_2) = M$. По теореме Больцано-Коши о промежуточном значении для любого числа $y_0 \in \subset [m,M]$ существует точка x_0 , лежащая на отрезке с концами x_1, x_2 и такая, что $f(x_0) = y_0$. Поэтому $y_0 \in f([a,b])$. Следовательно, $[m,M] \subset \subset f([a,b])$.

Следствие . *Непрерывная функция переводит отрезок в отрезок или в точку*.

Напомним, что множество $X \subset \mathbb{R}$ называется числовым промежутком, если X является отрезком, точкой, интервалом, полуинтервалом, лучом (открытым и замкнутым) или всей числовой прямой.

Лемма 3. Для любого непустого множества $Y \subset \mathbb{R}$ следующие условия эквивалентны:

- (1) множество $Y \subset \mathbb{R}$ является числовым промежутком;
- (2) для любых $y_1, y_2 \in Y$ таких, что $y_1 < y_2$ справедливо включение $[y_1, y_2] \subset Y$;
 - (3) $(\inf Y, \sup Y) \subset Y$.

Доказательство. Рассматривая все типы числовых промежутков, получаем, что $(1) \Rightarrow (2)$.

Покажем, что $(2) \Rightarrow (3)$. Пусть выполнено условие (2). Пусть задано любое число $y_0 \in (\inf Y, \sup Y)$. Так как $\inf Y < y_0$, то по определению инфимума найдется $y_1 \in Y$: $y_1 < y_0$. Так как $y_0 < \sup Y$, то по определению супремума найдется $y_2 \in Y$: $y_0 < y_2$. Следовательно, $y_0 \in [y_1, y_2]$. Отсюда и из условия (2) получаем, что $y_0 \in Y$, т.е. выполнено условие (3).

Покажем, наконец, что (3) \Rightarrow (1). Пусть выполнено условие (3). Обозначим $m=\inf Y,\ M=\sup Y.$ Заметим, что $m\in\mathbb{R}\cup\{-\infty\},\ M\in\mathbb{R}\cup\{+\infty\}$. Возможны четыре случая:

	$m \not\in Y$	$m \in Y$
$M \not\in Y$	случай 1	случай 2
$M \in Y$	случай 3	случай 4

В случае 1 из определения инфимума и супремума следует, что $Y \subset (m,M)$. Отсюда и из включения $(\ref{eq:constraint}, M)$ следует, что Y=(m,M). В случаях 2,3 и 4 аналогично получаем Y=[m,M), Y=(m,M] и Y=[m,M] соответственно. В любом случае множество Y является числовым промежутком.

Теорема 5. (Обобщенная теорема о промежуточном значении.) Пусть функция f непрерывна на числовом промежутке X. Тогда f(X) – числовой промежуток (m. e. непрерывная функция переводит числовой промежуток в числовой промежуток).

Доказательство. Пусть заданы произвольные числа $y_1, y_2 \in f(X)$ такие, что $y_1 < y_2$. По определению множества f(X) найдутся точки $x_1, x_2 \in X$ такие, что $f(x_1) = y_1, f(x_2) = y_2$. При этом $x_1 \neq x_2$. Пусть для определенности $x_1 < x_2$. По теореме Больцано-Коши о промежуточном значении, примененной для $[x_1, x_2]$, имеем $[y_1, y_2] \subset f([x_1, x_2])$. Поскольку X — числовой промежуток, то $[x_1, x_2] \subset X$. Следовательно, $[y_1, y_2] \subset f([x_1, x_2]) \subset f(X)$. Итак, для любых $y_1, y_2 \in f(X)$ таких, что $y_1 < y_2$, справедливо включение $[y_1, y_2] \subset f(X)$. Применяя лемму 3, получаем требуемое утсверждение.

Задача 7. Верно ли, что непрерывная функция переводит

- а) интервал в интервал;
- б) числовую прямую в числовую прямую?

Задача 8. Может ли непрерывная функция перевести полуинтервал в интервал?

Задача 9. Пусть функция f непрерывна и неограничена на луче $[0,++\infty)$. Верно ли, что $\lim_{x\to +\infty}|f(x)|=+\infty$?

Задача 10. Пусть функция f непрерывна на луче $[0,+\infty)$ и $\lim_{x\to +\infty}|f(x)|=+\infty$. Верно ли, что выполнено одно из соотношений $\lim_{x\to +\infty}f(x)=+\infty$ или $\lim_{x\to +\infty}f(x)=-\infty$?

§ 8. Обратная функция

Пемма 1. Строго монотонная функция обратима. Обратная к строго возрастающей функции является строго возрастающей функциий; обратная к строго убывающей функции строго убывает.

Доказательство. Пусть для определенности функция $f: X \to \mathbb{R}$ строго возрастает. Из определений (см. введение) следует обратимость функции f, т.е. существование функции $f^{-1}: f(X) \to X$, обратной к f. Докажем, что функция f^{-1} строго возрастает. Пусть $y_1, y_2 \in f(X)$, $y_1 < y_2$. Обозначим $x_i = f^{-1}(y_i)$ (i = 1, 2). Равенство $x_1 = x_2$ не может выполняться, так как $f(x_1) = y_1 \neq y_2 = f(x_2)$. Неравенство $x_2 < x_1$ также не может выполняться, так как в силу строго возрастания f из условия $x_2 < x_1$ следует, что $y_2 = f(x_2) < f(x_1) = y_1$. Поэтому выполняется неравенство $x_1 < x_2$. Итак, $\forall y_1, y_2 \in f(X): y_1 < y_2 \hookrightarrow f^{-1}(y_1) < f^{-1}(y_2)$, т.е. функция f^{-1} строго возрастает.

Лемма 2. Пусть функция f монотонна на числовом промежутке X и множество значений f(X) – числовой промежуток. Тогда функция f непрерывна на X.

Доказательство. Пусть для определенности f нестрого возрастает на X. Пусть точка $x_0 \in X$ не является левым концом промежутка X. Покажем, что f непрерывна слева в точке x_0 . Разобъем множество X на два множества: $X_- = \{x \in X: x < x_0\}$ и $X_+ = \{x \in X: x \geq x_0\}$. По теореме об одностороннем пределе монотонной функции существует $f(x_0 - 0) = \sup_{x \in X_-} f(x)$. Поскольку $f(x) \leq f(x_0)$ для любого $x \in X_-$, то $f(x_0 - 0) \leq f(x_0)$. Предположим, что f не является непрерывной слева в точке x_0 , т. е. $f(x_0 - 0) \neq f(x_0)$. Тогда $f(x_0 - 0) < f(x_0)$ и, следовательно, существует число y^* такое, что $f(x_0 - 0) < y^* < f(x_0)$. Зафиксируем $x_1 \in X_-$. Тогда $f(x_1) \leq \sup_{x \in X_-} f(x) = f(x_0 - 0) < y^* < f(x_0)$. Так как

значения $f(x_1)$ и $f(x_0)$ лежат на числовом промежутке f(X), а число y^* лежит между ними, то $y^* \in f(X)$.

С другой стороны,

$$\forall x \in X_{-} \hookrightarrow f(x) \le \sup_{x \in X_{-}} f(x) = f(x_{0} - 0) < y^{*},$$
$$\forall x \in X_{+} \hookrightarrow f(x) \ge f(x_{0}) > y^{*}.$$

Поэтому $\forall x \in X \hookrightarrow f(x) \neq y^*$, что противоречит включению $y^* \in f(X)$. Полученное противоречие доказывает, что f непрерывна слева в любой точке x_0 , не являющейся левым концом промежутка X. Аналогично, f непрерывна справа в любой точке x_0 , не являющейся правым концом промежутка X. Таким образом, функция f непрерывна на X. \square

Теорема 1. (Об обратной функции.) Если функция f определена, строго монотонна и непрерывна на числовом промежутке X, то обратная функция определена, строго монотонна и непрерывна на числовом промежутке f(X).

Доказательство. В силу обобщенной теоремы о промежуточном значении множество f(X) является числовым промежутком. По лемме 1 обратная функция f^{-1} строго монотонна на f(X). Поскольку монотонная функция f^{-1} переводит числовой промежуток f(X) в числовой промежуток X, то по лемме 2 функция f^{-1} непрерывна на f(X).

§ 9. Экспонента и логарифм

Определение. Если $x\in\mathbb{R},\ n\in\mathbb{N},\ {
m to}\ x^n=\underbrace{x\cdot\ldots\cdot x}_{n\ {
m pa}3}$ называется

степенью числа x с натуральным показателем n. Будем полагать, что $x^0=1$ для любого $x\in\mathbb{R}$.

Лемма 1. $\forall x \geq -1, \ \forall n \in \mathbb{N}$ справедливо неравенство Бернулли: $(1 + x)^n > 1 + nx$.

Доказательство проведем по индукции. При n=1 неравенство Бернулли справедливо. Пусть оно справедливо при n=k. Тогда $(1+x)^{k+1}=(1+x)^k\cdot(1+x)\geq (1+kx)(1+x)=1+(k+1)x+kx^2\geq 1+(k+1)x$, т. е. неравенство Бернулли справедливо при n=k+1.

Лемма 2. Для любого фиксированного $x \in \mathbb{R}$ последовательность $a_n = \left(1 + \frac{x}{n}\right)^n$ ограничена, положительна, начиная с некоторого номера, и нестрого возрастает, начиная с некоторого номера.

Доказательство. Зафиксируем число $N\in\mathbb{N}$ такое, что $\frac{|x|}{N}<\frac{1}{2}.$ Тогда $a_n>0,$ и, используя неравенство Бернулли, при всех $n\geq N$ имеем

$$\frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{x}{n+1}\right)^{n+1}}{\left(1 + \frac{x}{n}\right)^n} = \left(\frac{1 + \frac{x}{n+1}}{1 + \frac{x}{n}}\right)^{n+1} \left(1 + \frac{x}{n}\right) =$$

$$= \left(1 - \frac{\frac{x}{n(n+1)}}{1 + \frac{x}{n}}\right)^{n+1} \left(1 + \frac{x}{n}\right) \ge \left(1 - \frac{\frac{x}{n}}{1 + \frac{x}{n}}\right) \left(1 + \frac{x}{n}\right) = 1.$$

Условие применимости неравенства Бернулли здесь выполнено, так как

$$\left| \frac{\frac{x}{n(n+1)}}{1 + \frac{x}{n}} \right| < \frac{1}{2} \left(1 + \frac{x}{n} \right)^{-1} < \frac{1}{2} \left(1 - \frac{1}{2} \right)^{-1} = \frac{1}{2} \cdot 2 = 1.$$

Поэтому $a_{n+1} \geq a_n > 0$ для любого $n \geq N$, то есть последовательность $\{a_n\}$ нестрого возрастает при $n \geq N$. Аналогично, последовательность $b_n = \left(1 - \frac{x}{n}\right)^n$ положительна и возрастает при $n \geq N$. Поскольку при $n \geq N$ имеем $a_n b_n = \left(1 + \frac{x}{n}\right)^n \left(1 - \frac{x}{n}\right)^n = \left(1 - \left(\frac{x}{n}\right)^2\right)^n \leq 1$, то при $n \geq N$ справедливы неравенства $0 < a_n \leq \frac{1}{b_n} \leq \frac{1}{b_N}$. Поэтому последовательность $\{a_n\}$ ограничена числом $M = \max\left\{|a_1|, \dots, |a_{N-1}|, \frac{1}{b_N}\right\}$.

Определение. Экспонентой числа $x \in \mathbb{R}$ называется

$$\exp x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n.$$

В силу леммы 2 и теоремы Вейерштрасса о пределе монотонной последовательности для любого $x \in \mathbb{R}$ этот предел существует и конечен.

Пемма 3. Если $\{x_n\}$ - бесконечно малая последовательность, то

$$\lim_{n \to \infty} \left(1 + \frac{x_n}{n} \right)^n = 1.$$

Доказательство. Так как последовательность $\{x_n\}$ бесконечно мала, то $\exists N: \forall n \geq N \hookrightarrow |x_n| < 1$. Поэтому в силу неравенства Бернулли

$$\left(1 \pm \frac{x_n}{n}\right)^n \ge 1 \pm x_n \quad \forall n \ge N.$$

С другой стороны, $\left(1+\frac{x_n}{n}\right)\left(1-\frac{x_n}{n}\right)=1-\left(\frac{x_n}{n}\right)^2\leq 1.$ Поэтому для любого $n\geq N$ справедливы неравенства

$$1 + x_n \le \left(1 + \frac{x_n}{n}\right)^n \le \frac{1}{\left(1 - \frac{x_n}{n}\right)^n} \le \frac{1}{1 - x_n}.$$

Поскольку $1+x_n\to 1$ и $\frac{1}{1-x_n}\to 1$, то по теореме о трех последовательностях получаем доказываемое соотношение.

Лемма 4. (a)
$$\exp(x+y) = \exp x \cdot \exp y \quad \forall x, y \in \mathbb{R};$$
 (б) $\exp(-x) \cdot \exp x = 1 \quad \forall x \in \mathbb{R}.$

Доказательство. (а) Используя теоремы о пределе произведения и пределе частного, получаем

$$\frac{\exp x \cdot \exp y}{\exp(x+y)} = \lim_{n \to \infty} \frac{\left(1 + \frac{x}{n}\right)^n \left(1 + \frac{y}{n}\right)^n}{\left(1 + \frac{x+y}{n}\right)^n} = \lim_{n \to \infty} \frac{\left(1 + \frac{x+y}{n} + \frac{xy}{n^2}\right)^n}{\left(1 + \frac{x+y}{n}\right)^n} = \lim_{n \to \infty} \left(1 + \frac{xy}{n}\right)^n$$

$$= \lim_{n \to \infty} \left(1 + \frac{xy}{n^2 \left(1 + \frac{x+y}{n}\right)}\right)^n = \lim_{n \to \infty} \left(1 + \frac{z_n}{n}\right)^n,$$

где $z_n = \frac{xy}{n\left(1 + \frac{x+y}{n}\right)} \to 0$. В силу леммы 3 имеем $\lim_{n \to \infty} \left(1 + \frac{z_n}{n}\right)^n = 1$, т. е. $\exp(x+y) = \exp x \cdot \exp y$.

(б) Из пункта (а) следует, что $\exp(-x) \cdot \exp x = \exp 0$. Поскольку $\left(1 + \frac{x}{n}\right)^n = 1$ при x = 0, то $\exp 0 = 1$.

Лемма 5. (a)
$$\exp x \ge 1 + x \quad \forall x \in \mathbb{R};$$
 (б) $\exp x \le \frac{1}{1-x} \quad \forall x < 1.$

Доказательство. (a) Зафиксируем $N \in \mathbb{N}$ такое, что $\frac{x}{N} > -1$. Тогда $\frac{x}{n} > -1$ при всех $n \geq N$. Поэтому согласно неравенству Бернулли $\left(1 + \frac{x}{n}\right)^n \geq 1 + x$. Переходя к пределу при $n \to \infty$, получаем неравенство (a).

(б) В силу неравенства (а) имеем $\exp(-x) \ge 1 - x$. Отсюда при x < 1 в силу леммы 4(б) получаем неравенство (б).

Лемма 6. Функция $\exp : \mathbb{R} \to (0, +\infty)$ строго возрастает.

Доказательство. Зафиксируем числа $x, y \in \mathbb{R}$ такие, что x < y. Докажем, что $\exp(x) < \exp(y)$. Используя лемму 4 и лемму 5(a), получаем

$$\exp y - \exp x = (\exp(y - x) - 1) \exp x \ge (y - x) \exp x > 0.$$

Теорема 1. Функция $\exp : \mathbb{R} \to (0, +\infty)$ непрерывна.

Доказательство. В силу леммы 5 имеем

$$1 + x \le \exp x \le \frac{1}{1 - x} \quad \forall x < 1.$$

Поэтому согласно теореме о трех функциях $\lim_{x\to 0} \exp x = 1$. Зафиксируем произвольное число $x_0 \in \mathbb{R}$. Тогда

$$\lim_{x \to x_0} \exp x = \lim_{t \to 0} \exp(x_0 + t) = \lim_{t \to 0} \exp x_0 \cdot \exp t = \exp x_0,$$

то есть экспонента непрерывна в произвольной точке $x_0 \in \mathbb{R}$.

Лемма 7. Экспонента переводит числовую прямую в луч $(0, +\infty)$: $\exp(\mathbb{R}) = (0, +\infty)$.

Доказательство. Из леммы 5(a) следует, что $\lim_{x\to +\infty} \exp x = +\infty$. Отсюда и из леммы 4(6) получаем $\lim_{x\to -\infty} \exp x = \lim_{x\to +\infty} \exp(-x) = \lim_{x\to +\infty} \frac{1}{e^x} = 0$. Отсюда и из положительности значений экспоненты следует, что $\inf_{x\in \mathbb{R}} \exp x = 0$, $\sup_{x\in \mathbb{R}} \exp x = +\infty$. Поэтому в силу обобщенной теоремы о промежуточном значении имеем $\exp(\mathbb{R}) = (0, +\infty)$.

Определение. *Натуральным логарифмом* называется функция $\ln : (0, +\infty) \to \mathbb{R}$, обратная к $\exp : \mathbb{R} \to (0, +\infty)$.

Замечание. По теореме об обратной функции и в силу лемм 6, 7 и теоремы 1 функция \ln определена, строго возрастает и непрерывна на луче $(0, +\infty)$.

Определение. Для любых a > 0 и $x \in \mathbb{R}$ определим a в степени x:

$$a^x = \exp(x \ln a)$$
.

Заметим, что при a>0 и $x=n\in\mathbb{N}\cup\{0\}$ данное здесь определение a^{x} совпадает с определением a^{n} , данным в начале этого параграфа.

Замечание. В силу непрерывности функций ехр и ln по теореме о непрерывности сложной функции получаем, что для любого a>0 функция $f(x) = a^x$ непрерывна на \mathbb{R} и для любого $\alpha \in \mathbb{R}$ функция $g(x) = x^\alpha$ непрерывна на $(0, +\infty)$.

Определение. Логарифмом числа $x \in (0, +\infty)$ по основанию $a \in$ $\in (0,1) \cup (1,+\infty)$ называется

$$\log_a x = \frac{\ln x}{\ln a}.$$

Замечание. Поскольку для любых $x \in (0, +\infty)$ и $a \in (0, 1) \cup (1, +\infty)$ справедливы равенства

$$a^{\log_a x} = \exp(\log_a x \cdot \ln a) = \exp(\ln x) = x,$$

то при любом $a \in (0,1) \cup (1,+\infty)$ функция $g(y) = \log_a y, g:(0,+\infty) \to \mathbb{R}$ является обратной к функции $f(x) = a^x$, $f: \mathbb{R} \to (0, +\infty)$.

Определение. Числом Эйлера называется

$$e = \exp 1 = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Задача 1. Докажите свойства

- (a) $\ln e = 1$;
- (6) $a^1 = a \quad \forall a > 0$;
- (B) $e^x = \exp x \quad \forall x \in \mathbb{R};$ (C) $a^{xy} = (a^x)^y \quad \forall a > 0 \quad \forall x, y \in \mathbb{R};$
- (д) $a^{x+y} = a^x \cdot a^y \quad \forall a > 0 \quad \forall x,y \in \mathbb{R};$ (e) $a^x < b^x \quad \forall a,b,x \in \mathbb{R}$: $(0 < a < b,\ x > 0)$ или (0 < b < a, x < 0);
 - (ж) $a^x < a^y \quad \forall a, x, y \in \mathbb{R} : (a > 1, \ x < y)$ или $(0 < a < 1, \ x > y);$
 - (3) $a^n = \underbrace{a \cdot \dots \cdot a}_{n \text{ pa3}} \quad \forall a > 0, \ n \in \mathbb{N}.$

Замечание. Свойство (з) показывает, что при $x=n\in\mathbb{N}$ и a>> 0 определение степени a^x с действительным показателем соответствует опеределению степени с натуральным показателем, данному в начале § 9.

Теорема 2. (Второй замечательный предел.)

- (a) $\lim_{x\to 0} \frac{e^x 1}{x} = 1;$ (b) $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1;$ (e) $\lim_{x\to 0} (1+x)^{1/x} = e.$

Доказательство. (a) В силу леммы 5 для любого x < 1 справедливы неравенства

$$x \le e^x - 1 \le \frac{1}{1-x} - 1 = \frac{x}{1-x}.$$

Поэтому

$$1 \le \frac{e^x - 1}{x} \le \frac{1}{1 - x} \quad \forall x \in (0, 1),$$
$$\frac{1}{1 - x} \le \frac{e^x - 1}{x} \le 1 \quad \forall x < 0.$$

Отсюда по теореме о трех функциях получаем соотношение (а).

(б) Рассмотрим строго возрастающую на $(-1, +\infty)$ функцию t(x) = $= \ln(1+x)$. В силу непрерывности натурального логарифма $\lim_{x \to 0} t(x) = 1$ $x \to 0$ $x \to$ $=\frac{t(x)}{e^{t(x)}-1},$ то по теореме о пределе сложной функции

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{t(x)}{e^{t(x)} - 1} = \lim_{t \to 0} \frac{t}{e^t - 1} = 1,$$

где последнее равенство следует из соотношения (а) и теоремы о пределе частного.

(в) Так как $(1+x)^{1/x} = \exp\left(\frac{\ln(1+x)}{x}\right)$, то в силу непрерывности экспоненты соотношение (в) следует из соотношения (б).

Определение. (Гиперболические функции.)

Косинус гиперболический : $\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$, синус гиперболический : $\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$, тангенс гиперболический: $\operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x}$, котангенс гиперболический: $\operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x}$

Пример 1. Доказать, что

$$\lim_{x\to 0}\frac{\operatorname{sh} x}{x}=1, \qquad \qquad \lim_{x\to 0}\frac{\operatorname{th} x}{x}=1.$$

Решение. В силу теоремы 2 $\lim_{x\to 0}\frac{\sinh x}{x}=\lim_{x\to 0}\frac{e^x-1}{2x}+\lim_{x\to 0}\frac{1-e^{-x}}{2x}=\frac{1}{2}+\frac{1}{2}=1.$

Так как
$$\lim_{x\to 0} \operatorname{ch} x = \operatorname{ch} 0 = 1$$
, то $\lim_{x\to 0} \frac{\operatorname{th} x}{x} = \lim_{x\to 0} \frac{\operatorname{sh} x}{x} = 1$.

§ 10. Тригонометрические функции

Определение. Евклидовой плоскостью называется множество $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, состоящее из пар действительных чисел $(x,y) \in \mathbb{R}^2$. Элементы \mathbb{R}^2 называются точками евклидовой плоскости. Сложение, вычитание и умножение на число $t \in \mathbb{R}$ точек $A_1 = (x_1, y_1)$ и $A_2 = (x_2, y_2)$ определяется покомпонентно:

$$A_1 + A_2 = (x_1 + x_2, y_1 + y_2), \quad A_1 - A_2 = (x_1 - x_2, y_1 - y_2), \quad tA_1 = (tx_1, ty_1).$$

Paccmoяние между точками $A_1=(x_1,y_1)$ и $A_2=(x_2,y_2)$ определяется формулой

$$\varrho(A_1, A_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

Здесь и далее используется обозначение $\sqrt{t} = t^{1/2}$ при t > 0, $\sqrt{0} = 0$.

Замечание. Для любых трех точек $A_1, A_2, A_3 \in \mathbb{R}^2$ справедливо неравенство треугольника:

$$\varrho(A_1, A_3) \le \varrho(A_1, A_2) + \varrho(A_2, A_3).$$

Докажите это в качестве упражнения.

Определение. Для любых двух точек $A,B \in \mathbb{R}^2$ отрезком [A,B] называется множество

$${A + t(B - A) : t \in [0, 1]} \subset \mathbb{R}^2.$$

 \mathcal{L} линой ompeзкa [A,B] называется расстояние между точками A и B.

Определение. Множество точек

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

называется единичной окружностью.

Если $(x,y)\in \mathbb{S},$ то $x^2\leq 1$ и, следовательно, $x\in [-1,1].$ Для любого $x \in [-1,1]$ уравнение единичной окружности $x^2 + y^2 = 1$ относительно yимеет два решения: $y = \pm \sqrt{1 - x^2}$ (при $x = \pm 1$ эти решения совпадают). Поэтому единичная окруж-

ность состоит из двух ча-

стей: верхней полуокружности

$$\mathbb{S}^+ = \left\{ \left(x, \sqrt{1 - x^2} \right) : \ x \in [-1, 1] \right\}$$

и нижней полуокружности

$$A_{x}$$

$$0$$

$$1$$

$$x$$

и нижней полуокружности
$$\mathbb{S}^- = \left\{ \left(x, -\sqrt{1-x^2} \right): \ x \in [-1,1] \right\}.$$

Для любого $x \in [-1,1]$ рассмотрим точку $A_x = (x, \sqrt{1-x^2})$, лежащую на верхней полуокружности \mathbb{S}^+ . Поскольку для любой точки $A\in\mathbb{S}^+$ найдется единственное число $x \in [-1,1]$ такое, что $A = A_x$, то отображение, которое каждому $x \in [-1, 1]$ ставит в соответствие точку A_x , является взаимно однозначным отображением отрезка [-1,1] на верхнюю полуокружность \mathbb{S}^+ .

Определение. Пусть на верхней полуокружности \mathbb{S}^+ заданы две точки A и B. Тогда найдутся числа $a,b \in [-1,1]$ такие, что $A=A_a,B=$ A_b . Если $a \leq b$, то дугой \widehat{AB} называется множество

$$\widehat{AB} = \left\{ \left(x, \sqrt{1 - x^2} \right) : \ x \in [a, b] \right\}.$$

Если $b \leq a$, то $\widehat{AB} = \left\{\left(x, \sqrt{1-x^2}\right): \ x \in [b,a]\right\}$. При a=b дуга \widehat{AB} вырождается в точку A=B.

Определение. Pазбиением отрезка $[a,b] \subset \mathbb{R}$ называется конечный набор чисел $\{x_i\}_{i=0}^I$ такой, что

$$x_0$$
 x_{i-1} x_i x_I

$$a = x_0 < x_1 < \ldots < x_I = b.$$

Определение. Пусть $A, B \in \mathbb{S}^+$, $A = A_a$, $B = A_b$, где $-1 \le a < b \le 1$ и пусть $\{x_i\}_{i=0}^I$ — разбиение отрезка [a,b]. Ломаной P, вписанной в дугу \widehat{AB} и порожденной разбиением $\{x_i\}_{i=0}^I$, называется набор отрезков $\{[A_{x_{i-1}},A_{x_i}]\}_{i=1}^I$, упорядоченный по возрастанию индекса i. Точки A_{x_i} называются вершинами ломаной P, а отрезки $[A_{x_{i-1}},A_{x_i}]$ называются звеньями этой ломаной.

$$\ell(P) = \sum_{i=1}^{I} \varrho\left(A_{x_{i-1}}, A_{x_i}\right).$$

Длиной дуги \widehat{AB} называется супремум длин ломаных, вписанных в дугу \widehat{AB} :

$$\ell(\widehat{AB}) = \sup\{\ell(P) : \text{ломаная } P \text{ вписана в } \widehat{AB}\}.$$

Длину дуги, вырождающейся в точку, положим равной нулю: $\ell(\widehat{AA}) = 0$.

Лемма 1. Пусть $0 \le a < b \le 1$. Тогда

$$\sqrt{1-a^2} - \sqrt{1-b^2} \le \ell(\widehat{A_a A_b}) \le \sqrt{1-a^2} - \sqrt{1-b^2} + b - a.$$

Доказательство. Пусть P – произвольная ломаная, вписанная в дугу $\widehat{A_a A_b}$ и порожденная некоторым разбиением $\{x_i\}_{i=0}^I$ отрезка [a,b]. Обозначим $y_i = \sqrt{1-x_i^2}$ при $i \in \overline{0,I} := \{0,\dots,I\}$. Тогда

$$\varrho(A_{x_{i-1}}, A_{x_i}) = \sqrt{(x_{i-1} - x_i)^2 + (y_{i-1} - y_i)^2} \le$$

$$\leq |x_i - x_{i-1}| + |y_i - y_{i-1}| = x_i - x_{i-1} + y_{i-1} - y_i.$$

Следовательно,

$$\ell(P) = \sum_{i=1}^{I} \varrho(A_{x_{i-1}}, A_{x_i}) \le$$

$$\leq \sum_{i=1}^{I} (x_i - x_{i-1} + y_{i-1} - y_i) = x_I - x_0 + y_0 - y_I = b - a + \sqrt{1 - a^2} - \sqrt{1 - b^2}.$$

Переходя к супремуму по всем ломаным, вписанным в $\widehat{A_a A_b}$, получаем неравенство

$$\ell(\widehat{A_a A_b}) \le \sqrt{1 - a^2} - \sqrt{1 - b^2} + b - a.$$

С другой стороны, поскольку отрезок $[A_a,A_b]$ является частным случаем ломаной, вписанной в дугу $\widehat{A_aA_b}$, то

$$\ell(\widehat{A_a A_b}) \ge \varrho(A_a, A_b) = \sqrt{(x_I - x_0)^2 + (y_I - y_0)^2} \ge 2$$

$$\ge y_0 - y_I = \sqrt{1 - a^2} - \sqrt{1 - b^2}.$$

Лемма 2. Пусть $-1 \le a < b \le 1$. Тогда

$$\ell(\widehat{A_{-b}A_{-a}}) = \ell(\widehat{A_aA_b}).$$

Доказательство. Пусть ломаная P вписана в дугу $\widehat{A_aA_b}$ и порождена некоторым разбиением $\{x_0,x_1,\ldots,x_I\}$ отрезка [a,b]. Тогда ломаная \widetilde{P} , вписанная в дугу $\widehat{A_{-b}A_{-a}}$ и порожденная разбиением $\{-x_I,\ldots,-x_1,-x_0\}$ отрезка [-b,-a], имеет такую же длину: $\ell(\widetilde{P})=\ell(P)$. Следовательно, $\ell(P)=\ell(\widetilde{P})\leq \ell(\widehat{A_{-b}A_{-a}})$. Поэтому число $\ell(\widehat{A_{-b}A_{-a}})$ является верхней гранью множества чисел $\ell(P)$, где P – ломаная, вписанная в дугу $\widehat{A_aA_b}$. Поэтому $\ell(\widehat{A_{-b}A_{-a}})\leq \ell(\widehat{A_aA_b})$. Обратное неравенство доказывается аналогично.

Лемма 3. (Аддитивность длины дуги окружности.) Пусть $A,C\in \mathbb{S}^+,\ B\in \widehat{AC}$. Тогда

$$\ell(\widehat{AC}) = \ell(\widehat{AB}) + \ell(\widehat{BC}).$$

Доказательство. Так как $A, C \in \mathbb{S}^+$, то найдутся числа $a, c \in [-1, 1]$ такие, что $A = A_a$ и $C = A_c$. Если a = c (т. е. A = B = C), то утверждение леммы тривиально выполнено. Пусть для определенности a < c. Так как $B \in \widehat{AC}$, то $B = A_b$, где $b \in [a, c]$. В случаях b = a или b = c утверждение леммы опять тривиально выполнено. Рассмотрим случай $-1 \le a < b < a$

 $< c \le 1$. Пусть $P_{\widehat{AB}}$ и $P_{\widehat{BC}}$ – ломаные, вписанные соответственно в дуги \widehat{AB} и \widehat{BC} . Тогда ломаная P, составленная из звеньев ломаных $P_{\widehat{AB}}$ и $P_{\widehat{BC}}$, будет вписанной в дугу $P_{\widehat{AC}}$. Следовательно,

$$\ell(P_{\widehat{AB}}) + \ell(P_{\widehat{BC}}) = \ell(P) \le \ell(\widehat{AC}).$$

Переходя к супремуму по всем ломаным $P_{\widehat{AB}}$, вписанным в дугу \widehat{AB} , и ломаным $P_{\widehat{BC}}$, вписанным в дугу \widehat{AC} , получаем неравенство

$$\ell(\widehat{AB}) + \ell(\widehat{BC}) \le \ell(\widehat{AC}). \tag{1}$$

Пусть P — произвольная ломаная, вписаная в дугу \widehat{AC} . Ломаная P порождена некоторым разбиением $\{x_i\}_{i=0}^I$ отрезка [a,c]. Так как $b\in [a,c)=\bigcup_{i=1}^I [x_{i-1},x_i)$, то найдется номер $j\in \overline{1,I}$ такой, что $b\in [x_{j-1},x_j)$. Пусть $P_{\widehat{AB}}$ — ломаная, вписанная в дугу \widehat{AB} и порожденная разбиением $\{x_0,\ldots,x_{j-1},b\}$ отрезка [a,b], а

 $P_{\widehat{BC}}$ — ломаная, вписанная в дугу \widehat{BC} и порожденная разбиением $\{b,x_j\dots,x_I\}$ отрезка [b,c]. В случае $b=x_{j-1}$ ломаная $P_{\widehat{AB}}$ порождена разбиением $\{x_0,\dots,x_{j-2},b\}$ отрезка [a,b].

Тогда в любом случае

$$\ell(P_{\widehat{AB}}) + \ell(P_{\widehat{BC}}) - \ell(P) = \varrho(A_{x_{j-1}}, B) + \varrho(B, A_{x_j}) - \varrho(A_{x_{j-1}}, A_{x_j}) \ge 0,$$

где последнее неравенство следует из неравенства треугольника. Поэтому

$$\ell(P) \leq \ell(P_{\widehat{AB}}) + \ell(P_{\widehat{BC}}) \leq \ell(\widehat{AB}) + \ell(\widehat{BC}).$$

Переходя к супремуму по всем ломаным P, вписанным в дугу \widehat{AC} , получаем неравенство

 $\ell(\widehat{AC}) \le \ell(\widehat{AB}) + \ell(\widehat{BC}),$

которое вместе с неравенством (1) завершает доказательство леммы.

Замечание. Из леммы 1 следует, что $\ell(\widehat{A_0}, \widehat{A_1}) \leq 2$. Отсюда и из леммы 2 получаем $\ell(\widehat{A_{-1}}, \widehat{A_0}) = \ell(\widehat{A_0}, \widehat{A_1}) \leq 2$. Поэтому в силу аддитивности длины дуги имеем $\ell(\mathbb{S}^+) = \ell(\widehat{A_{-1}}, \widehat{A_1}) = \ell(\widehat{A_{-1}}, \widehat{A_0}) + \ell(\widehat{A_0}, \widehat{A_1}) \leq 4$. Еще раз используя аддитивность длины дуги и неотрицательность длины дуги, для любой дуги $\widehat{AB} \subset \mathbb{S}^+$ получаем неравенства $\ell(\widehat{AB}) \leq \ell(\mathbb{S}^+) \leq 4$. Поэтому любая дуга $\widehat{AB} \subset \mathbb{S}^+$ имеет конечную длину.

Определение. Функцию $\operatorname{arccos}:[-1,1]\to\mathbb{R}$ определим формулой

$$\arccos x = \ell(\widehat{A_x A_1}), \qquad x \in [-1, 1].$$

Определение . Числом π называется длина верхней полуокружности \mathbb{S}^+ :

$$\pi = \ell(\mathbb{S}^+) = \ell(\widehat{A_{-1}A_1}) = \arccos(-1).$$

Из приведенного выше замечания следует, что $\pi \leq 4$.

Лемма 4. Для любого $x \in [0,1]$ справедливо равенство

$$\arccos(-x) + \arccos x = \pi.$$

Доказательство. Используя лемму 2, получаем

$$\arccos(-x) + \arccos x = \ell(\widehat{A_{-x}A_{1}}) + \ell(\widehat{A_{x}A_{1}}) = \ell(\widehat{A_{-1}A_{x}}) + \ell(\widehat{A_{x}A_{1}}).$$

Поэтому в силу аддитивности длины дуги имеем $\arccos(-x) + \arccos x = \ell(\widehat{A}_{-1}\widehat{A}_{1}) = \pi$.

Теорема 1. Функция $\arccos \ cmporo \ y \delta$ ывает $u \ непрерывна \ на [-1,1].$

Доказательство. Докажем сначала, что функция arccos строго убывает и непрерывна на [0,1]. Пусть $0 \le a < b \le 1$. В силу аддитивности длины дуги $\ell(\widehat{A_a}\widehat{A_1}) = \ell(\widehat{A_a}\widehat{A_b}) + \ell(\widehat{A_b}\widehat{A_1})$, т. е.

$$\arccos a - \arccos b = \ell(\widehat{A_a A_b}).$$

Отсюда и из леммы 1 получаем

$$0 < \arccos a - \arccos b \le s(b) - s(a),$$

где $s(x) = x - \sqrt{1 - x^2}$ – непрерывная на [0, 1] функция. Поэтому функция агссов строго убывает и непрерывна на [0, 1].

Отсюда и из леммы 4 следует, что функция arccos строго убывает и непрерывна на [-1,0], а значит, на $[-1,0] \cup [0,1] = [-1,1]$.

Замечание. В силу теоремы $4 \S 7$ функция агссов переводит отрезок [-1,1] в отрезок $[0,\pi]$.

Определение. Функцию $\cos:[0,\pi]\to[-1,1]$ определим как обратную функцию к $\arccos:[-1,1]\to[0,\pi]$.

Функцию $\sin:[0,\pi] \to [0,1]$ зададим формулой

$$\sin x = \sqrt{1 - \cos^2 x}, \quad x \in [0, \pi].$$

Из теоремы об обратной функции следует, что функция $\cos:[0,\pi] \to [-1,1]$ непрерывна. Поэтому функция $\sin:[0,\pi] \to [0,1]$ непрерывна как суперпозиция непрерывных функций.

Если число φ пробегает отрезок $[0,\pi]$, то точка $(\cos\varphi,\sin\varphi)$ пробегает верхнюю полуокружность \mathbb{S}^+ . Продолжим функции \cos и \sin на всю числовую прямую так, чтобы продолженные функции были непрерывны, 2π -периодичны и точка $(\cos\varphi,\sin\varphi)$ пробегала единичную окружность \mathbb{S} , если число φ пробегает отрезок $[0,2\pi]$.

Заметим, что

$$\cos \pi = -1 = -\cos 0, \quad \sin \pi = 0 = -\sin 0.$$

Поэтому формулы

$$\cos(\varphi + \pi k) = (-1)^k \cos \varphi, \qquad \varphi \in [0, \pi], \quad k \in \mathbb{Z},$$
 (2)

$$\sin(\varphi + \pi k) = (-1)^k \sin \varphi, \qquad \varphi \in [0, \pi], \quad k \in \mathbb{Z}$$
 (3)

непрерывно продолжают функции \cos и \sin с отрезка $[0,\pi]$ на всю числовую прямую.

Заметим, что $\sin x = 0 \Leftrightarrow x = \pi k, \ k \in \mathbb{Z},$ $\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}.$

Определение. Функции tg и ctg определим формулами

$$\operatorname{tg} x = \frac{\sin x}{\cos x}, \quad x \in \mathbb{R}, \ x \neq \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z},$$
$$\operatorname{ctg} x = \frac{\cos x}{\sin x}, \quad x \in \mathbb{R}, \ x \neq \pi k, \ k \in \mathbb{Z}.$$

Из непрерывности sin и cos следует непрерывность функций tg и ctg на своих областях определения.

Определение. Функция $\arcsin: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ определяется как обратная к функции $\sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1,1]$.

обратная к функции $\sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1].$ Функция $\operatorname{arctg}: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ определяется как обратная к функции $\operatorname{tg}: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}.$

Функция $\operatorname{arcctg}: \mathbb{R} \to (0,\pi)$ определяется как обратная к функции $\operatorname{ctg}: (0,\pi) \to \mathbb{R}$.

По теореме об обратной функции эти функции непрерывны.

§ 11. Тригонометрические формулы

Лемма 1. Функция $\cos: \mathbb{R} \to [-1,1]$ четная, а функция $\sin: \mathbb{R} \to [-1,1]$ – нечетная, т. е.

$$\cos(-t) = \cos t$$
, $\sin(-t) = -\sin t \quad \forall t \in \mathbb{R}$.

Доказательство. Зафиксируем произвольное число $\varphi \in \left[0, \frac{\pi}{2}\right]$. Обозначим $x = \cos \varphi$. В силу леммы 4 § 10 имеем $\arccos(-x) + \arccos x = \pi$. Следовательно, $-\cos \varphi = -x = \cos(\pi - \varphi)$. Итак,

$$\cos(\pi - \varphi) = -\cos\varphi \quad \forall \varphi \in \left[0, \frac{\pi}{2}\right].$$

Пусть $\varphi_1 \in \left[\frac{\pi}{2}, \pi\right]$. Тогда $\varphi := \pi - \varphi_1 \in \left[0, \frac{\pi}{2}\right]$ и, следовательно, $\cos(\pi - \varphi) = -\cos\varphi$, т. е. $\cos\varphi_1 = -\cos(\pi - \varphi_1)$. Таким образом,

$$\cos(\pi - \varphi) = -\cos\varphi \quad \forall \varphi \in [0, \pi].$$

Отсюда по определению синуса для любого $\varphi \in [0,\pi]$ получаем

$$\sin(\pi - \varphi) = \sqrt{1 - \cos^2(\pi - \varphi)} = \sqrt{1 - \cos^2\varphi} = \sin\varphi.$$

Используя равенства (2), (3) § 10, для любого $\varphi \in [0,\pi]$ получаем равенства

$$\cos(-\varphi) = -\cos(\pi - \varphi) = \cos(\varphi), \quad \sin(-\varphi) = -\sin(\pi - \varphi) = -\sin(\varphi).$$

Поскольку для любого $t \in \mathbb{R}$ найдутся $k \in \mathbb{Z}$ и $\varphi \in [0, \pi]$ такие, что $t = \varphi + \pi k$, то в силу равенства (2) § 10 имеем

$$\cos(-t) = \cos(-\varphi - \pi k) = (-1)^{-k} \cos(-\varphi) =$$
$$= (-1)^k \cos \varphi = \cos(\varphi + \pi k) = \cos t.$$

Аналогично, $\sin(-t) = -\sin t$.

Лемма 2. Для любого числа $\varphi \in \mathbb{R}$ справедливы равенства

$$\cos\left(\varphi + \frac{\pi}{2}\right) = -\sin\varphi, \qquad \sin\left(\varphi + \frac{\pi}{2}\right) = \cos\varphi.$$
 (1)

Доказательство. Рассмотрим отображение $\xi: \mathbb{R}^2 \to \mathbb{R}^2$, которое каждую точку $(x,y) \in \mathbb{R}^2$ отображает в точку (y,x). Для любого $x \in [0,1]$ точку $A_x = \left(x,\sqrt{1-x^2}\right)$ отображение ξ переводит в точку $A_{\sqrt{1-x^2}} = \left(\sqrt{1-x^2},x\right)$. Зафиксируем произвольное число $a \in [0,1]$. Дугу $\widehat{A_aA_1} = \{A_x: x \in [a,1]\}$ отображение ξ переводит в дугу

$$\xi(\widehat{A_aA_1}) = \left\{ A_{\sqrt{1-x^2}}: \ x \in [a,1] \right\} = \left\{ A_t: \ t \in [0,b] \right\} = \widehat{A_0A_b},$$

где $b=b(a)=\sqrt{1-a^2}$. Так как ξ любой отрезок переводит в отрезок той же длины и функция b(a) строго монотонна, то ломаную P, вписанную в дугу $\widehat{A_aA_1}$, отображение ξ переводит в ломаную $\widetilde{P}=\xi(P)$ той же длины, вписанную в дугу $\xi(\widehat{A_aA_1})=\widehat{A_0A_b}$. Поэтому $\ell(P)=\ell(\widetilde{P})\leq \ell(\widehat{A_0A_b})$. Переходя к супремуму по всем ломаным, вписанным в дугу $\widehat{A_aA_1}$, получаем неравенство $\ell(\widehat{A_aA_1})\leq \ell(\widehat{A_0A_b})$. Поскольку $\xi(\widehat{A_0A_b})=\widehat{A_aA_1}$, то $\ell(\widehat{A_0A_b})\leq \ell(\widehat{A_aA_1})$. Итак, $\ell(\widehat{A_0A_b})=\ell(\widehat{A_aA_1})$. С другой стороны, в силу аддитивности длины дуги

$$\ell\left(\widehat{A_0A_b}\right) + \ell\left(\widehat{A_bA_1}\right) = \ell\left(\widehat{A_0A_1}\right) = \frac{\pi}{2}.$$

Поэтому $\ell\left(\widehat{A_aA_1}\right) + \ell\left(\widehat{A_bA_1}\right) = \frac{\pi}{2}$, т. е.

$$\arccos a + \arccos \sqrt{1 - a^2} = \frac{\pi}{2} \quad \forall a \in [0, 1].$$

Зафиксируем произвольное число $\varphi \in \left[0, \frac{\pi}{2}\right]$. Используя предыдущее равенство для $a = \cos \varphi$, получаем $\varphi + \arccos(\sin \varphi) = \frac{\pi}{2}$, и, следовательно, для любого $\varphi \in \left[0, \frac{\pi}{2}\right]$ справедливо равенство

$$\cos\left(\frac{\pi}{2} - \varphi\right) = \sin\varphi. \tag{2}$$

Пусть теперь $\varphi \in \left[\frac{\pi}{2}, \pi\right]$. Тогда $\varphi_1 := \pi - \varphi \in \left[0, \frac{\pi}{2}\right]$, а значит, $\cos\left(\frac{\pi}{2} - \varphi_1\right) = \sin\varphi_1$. Поэтому, используя четность \cos и нечетность \sin , получаем

$$\cos\left(\frac{\pi}{2} - \varphi\right) = \cos\left(\varphi_1 - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - \varphi_1\right) =$$
$$= \sin\varphi_1 = \sin(\pi - \varphi) = -\sin(-\varphi) = \sin\varphi.$$

Таким образом, равенство (2) справедливо для любых $\varphi \in [0,\pi]$. Отсюда и из равенств (2), (3) § 10 получаем, что равенство (2) справедливо для любых $\varphi \in \mathbb{R}$. Используя равенство (2) § 10 и четность функции соѕ, для любого $\varphi \in \mathbb{R}$ имеем

$$\cos\left(\varphi + \frac{\pi}{2}\right) = -\cos\left(\varphi - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - \varphi\right) = -\sin\varphi.$$

Тем самым первое из равенств (1) доказано. Второе из равенств (1) доказывается аналогично.

Определение. Поворотом на угол $\varphi \in \mathbb{R}$ называется преобразование R_{φ} плоскости \mathbb{R}^2 , переводящее точку A=(x,y) в точку

$$R_{\varphi}(A) = (x\cos\varphi - y\sin\varphi, x\sin\varphi + y\cos\varphi).$$

Лемма 3. При повороте на угол φ любой отрезок $[A_1, A_2] \subset \mathbb{R}^2$ переходит в отрезок $[R_{\varphi}(A_1), R_{\varphi}(A_2)]$ той же длины.

Доказательство. Заметим, что поворот R_{φ} сохраняет линейные операции в \mathbb{R}^2 : для любых точек $A_1=(x_1,y_1)$ и $A_2=(x_2,y_2)$ и любого числа $t\in\mathbb{R}$:

$$R_{\varphi}(A_1 + A_2) =$$

$$= ((x_1 + x_2)\cos\varphi - (y_1 + y_2)\sin\varphi, (x_1 + x_2)\sin\varphi + (y_1 + y_2)\cos\varphi) =$$

$$= R_{\varphi}(A_1) + R_{\varphi}(A_2),$$

$$R_{\varphi}(tA_1) = (tx_1 \cos \varphi - ty_1 \sin \varphi, tx_1 \sin \varphi + ty_1 \cos \varphi) = tR_{\varphi}(A_1).$$

Поэтому для любого $t\in[0,1]$ точка $A=A_1+t(A_2-A_1)$ отрезка $[A_1,A_2]$ при повороте R_{φ} переходит в точку $R_{\varphi}(A)=R_{\varphi}(A_1)+t\Big(R_{\varphi}(A_2)-R_{\varphi}(A_1)\Big)$ отрезка $[R_{\varphi}(A_1),R_{\varphi}(A_2)]$. Следовательно, отрезок $[A_1,A_2]$ при повороте R_{φ} переходит в отрезок $[R_{\varphi}(A_1),R_{\varphi}(A_2)]$.

Рассмотрим произвольную точку $A=(x,y)\in\mathbb{R}^2$ и ее образ $R_{\varphi}(A)==(x\cos\varphi-y\sin\varphi,x\sin\varphi+y\cos\varphi).$ Тогда

$$\varrho\left(R_{\varphi}(A),0\right) = \sqrt{(x\cos\varphi - y\sin\varphi)^2 + (x\sin\varphi + y\cos\varphi)^2} =$$
$$= \sqrt{x^2 + y^2} = \varrho(A,0).$$

Поэтому для любых точек $A_1, A_2 \in \mathbb{R}^2$:

$$\varrho(R_{\varphi}(A_1), R_{\varphi}(A_2)) = \varrho(R_{\varphi}(A_1) - R_{\varphi}(A_2), 0) =$$

$$= \varrho(R_{\varphi}(A_1 - A_2), 0) = \varrho(A_1 - A_2, 0) = \varrho(A_1, A_2).$$

Следовательно, при повороте R_{φ} отрезок $[A_1,A_2]$ переходит в отрезок той же длины.

Лемма 4. Пусть $0 \le a \le b \le 1$, $\varphi \in [0, \frac{\pi}{2}]$. Тогда поворот R_{φ} переводит дугу $\widehat{A_a A_b}$ в дугу $\widehat{R_{\varphi}(A_a)}R_{\varphi}(A_b) \subset \mathbb{S}^+$, причем длина дуги при повороте не меняется.

Доказательство. Зафиксируем $x\in[0,1]$. Точка $A_x=\left(x,\sqrt{1-x^2}\right)$ при повороте R_{φ} переходит в точку $R_{\varphi}(A_x)=(\widetilde{x},\widetilde{y})$, где $\widetilde{x}=x\cos\varphi-\sqrt{1-x^2}\sin\varphi, \widetilde{y}=x\sin\varphi+\sqrt{1-x^2}\cos\varphi$. Поскольку $\varphi\in\left[0,\frac{\pi}{2}\right]$, то $\cos\varphi\geq 0$ и $\sin\varphi\geq 0$. Поэтому $\widetilde{y}\geq 0$. Отсюда и из равенства $\widetilde{x}^2+\widetilde{y}^2=1$ следует, что $\widetilde{y}=\sqrt{1-\widetilde{x}^2}$, а значит, $R_{\varphi}(A_x)=A_{\widetilde{x}}$, где $\widetilde{x}=f(x):=x\cos\varphi-\sqrt{1-x^2}\sin\varphi$. Таким образом,

$$R_{\varphi}\left(\widehat{A_a A_b}\right) = \left\{R_{\varphi}(A_x) : x \in [a, b]\right\} =$$

$$= \left\{A_{f(x)} : x \in [a, b]\right\} = \left\{A_{\widetilde{x}} : \widetilde{x} \in f([a, b])\right\}.$$

Так как $\cos \varphi \ge 0$, $\sin \varphi \ge 0$ и $\cos^2 \varphi + \sin^2 \varphi = 1$, то функция $f(x) = x \cos \varphi - \sqrt{1 - x^2} \sin \varphi$ строго возрастает. Кроме того, эта функция

непрерывна. Поэтому f([a,b]) = [f(a), f(b)]. Итак,

$$R_{\varphi}\left(\widehat{A_aA_b}\right) = \left\{A_{\widetilde{x}}: \ \widetilde{x} \in [f(a),f(b)]\right\} = \widehat{A_{f(a)}A_{f(b)}} = \widehat{R_{\varphi}(A_a)R_{\varphi}(A_b)} \subset \mathbb{S}^+.$$

Покажем, что при повороте R_{φ} длина дуги не меняется. Пусть P – произвольная ломаная, вписанная в дугу $\widehat{A_aA_b}$ и порожденная некоторым разбиением $\{x_i\}_{i=0}^I$ отрезка [a,b]. Как показано выше, вершины A_{x_i} ломаной P перейдут в точки $A_{f(x_i)}$. В силу леммы 3 отрезок $[A_{x_{i-1}},A_{x_i}]$ при повороте R_{φ} перейдет в отрезок $[R_{\varphi}(A_{x_{i-1}}),R_{\varphi}(A_{x_i})]=$ $[A_{f(x_{i-1})},A_{f(x_i)}]$. Поскольку функция f строго возрастает, то набор $\{f(x_i)\}_{i=0}^I$ является разбиением отрезка [f(a),f(b)]. Поэтому ломаная $R_{\varphi}(P)=\{[A_{f(x_{i-1})},A_{f(x_i)}]\}_{i=0}^I$ вписана в дугу $\widehat{A_{f(a)}A_{f(b)}}$. Так как согласно лемме 3 длина отрезка при повороте не меняется, то длина ломаной также не меняется. Таким образом,

$$\ell(P) = \ell\left(R_{\varphi}(P)\right) \le \ell\left(\widehat{A_{f(a)}A_{f(b)}}\right) = \ell\left(R_{\varphi}\left(\widehat{A_aA_b}\right)\right).$$

Переходя к супремуму по всем ломаным P, вписанным в дугу $\widehat{A_a A_b}$, получаем неравенство

$$\ell\left(\widehat{A_a A_b}\right) \le \ell\left(R_{\varphi}\left(\widehat{A_a A_b}\right)\right).$$
 (3)

Докажем обратное неравенство.

Поскольку функция $f:[a,b] \to [f(a),f(b)]$ строго возрастает и непрерывна, то обратная функция $f^{-1}:[f(a),f(b)] \to [a,b]$ также строго возрастает и определена на всем отрезке [f(a),f(b)]. Пусть \widetilde{P} – произвольная ломаная, вписанная в дугу $R_{\varphi}\left(\widehat{A_aA_b}\right) = \widehat{A_{f(a)}A_{f(b)}}$ и порожденная некоторым разбиением $\{\widetilde{x}_i\}_{i=0}^I$ отрезка [f(a),f(b)]. Тогда $\widetilde{x}_i=f(x_i)$, где $x_i=f^{-1}(\widetilde{x}_i)$ и $R_{\varphi}(A_{x_i})=A_{\widetilde{x}_i}$ для любого $i\in\overline{0,I}$. В силу рассуждений, приведенных выше, ломаная \widetilde{P} является образом при повороте R_{φ} ломаной P, вписанной в дугу $\widehat{A_aA_b}$ и порожденной разбиением $\{x_i\}_{i=0}^I$ отрезка [a,b], причем $\ell(\widetilde{P})=\ell(P)$. Поэтому $\ell(\widetilde{P})\leq\ell(\widehat{A_aA_b})$. Переходя к супремуму по всем ломаным \widetilde{P} , вписанным в дугу $R_{\varphi}\left(\widehat{A_aA_b}\right)$, получаем неравенство $\ell\left(R_{\varphi}\left(\widehat{A_aA_b}\right)\right)\leq\ell\left(\widehat{A_aA_b}\right)$, которое с учетом неравенства (3) дает равенство

$$\ell\left(\widehat{A_a A_b}\right) = \ell\left(R_{\varphi}\left(\widehat{A_a A_b}\right)\right).$$

Теорема 1. Для любых $\varphi, \psi \in \mathbb{R}$ справедливы равенства

$$\cos(\varphi + \psi) = \cos\varphi\cos\psi - \sin\varphi\sin\psi,\tag{4}$$

$$\sin(\varphi + \psi) = \cos\varphi \sin\psi + \sin\varphi \cos\psi. \tag{5}$$

Доказательство. Сначала зафиксируем $\varphi, \psi \in [0, \frac{\pi}{2}]$. Так как $\cos \psi \in [0, 1]$, то в силу леммы 4 дуга $\widehat{A}_{\cos \psi} \widehat{A_1}$ при повороте R_{φ} переходит в дугу $\widehat{R_{\varphi}(A_{\cos \psi})} R_{\varphi}(\widehat{A_1})$, причем

$$\ell\left(\widehat{R_{\varphi}(A_{\cos\psi})R_{\varphi}(A_1)}\right) = \ell\left(\widehat{A_{\cos\psi}A_1}\right).$$

По определению арккосинуса имеем $\ell\left(\widehat{A_{\cos\psi}A_1}\right)=\arccos(\cos\psi)=\psi$. Замечая, что $R_{\varphi}(A_1)=(\cos\varphi,\sin\varphi)=A_{\cos\varphi}$, получаем

$$\ell\left(\widehat{R_{\varphi}(A_{\cos\psi})A_{\cos\varphi}}\right) = \psi. \tag{6}$$

Так как $R_{\varphi}(A_{\cos\psi}) = A_{\widetilde{x}} \in \mathbb{S}^+$, где $\widetilde{x} = \cos\varphi\cos\psi - \sin\varphi\sin\psi \leq \cos\varphi$, то $A_{\cos\varphi} \in \widehat{R_{\varphi}(A_{\cos\psi})A_1}$. В силу аддитивности длины дуги

$$\ell\left(\widehat{R_{\varphi}(A_{\cos\psi})A_{1}}\right) = \ell\left(\widehat{R_{\varphi}(A_{\cos\psi})A_{\cos\varphi}}\right) + \ell\left(\widehat{A_{\cos\varphi}A_{1}}\right).$$

Используя равенство (6) и равенства $\ell\left(\widehat{A_{\cos\varphi}A_1}\right)=\arccos(\cos\varphi)=\varphi,$ получаем равенство

$$\ell\left(\widehat{R_{\varphi}(A_{\cos\psi})A_1}\right) = \varphi + \psi.$$

C другой стороны, $R_{\varphi}(A_{\cos\psi}) = A_{\widetilde{x}}$, а значит,

$$\arccos \widetilde{x} = \ell(\widehat{A_{\widetilde{x}}A_1}) = \ell\left(\widehat{R_{\varphi}(A_{\cos\psi})A_1}\right) = \varphi + \psi.$$

Поэтому $\cos(\varphi + \psi) = \widetilde{x}$. Итак,

$$R_{\varphi}(A_{\cos\psi}) = A_{\widetilde{x}} = A_{\cos(\varphi+\psi)}.$$

Используя определение поворота R_{φ} , получаем равенства (4), (5).

Таким образом, равенства (4), (5) справедливы для любых $\varphi, \psi \in [0, \frac{\pi}{2}].$

Пусть теперь $\varphi \in \left[\frac{\pi}{2}, \pi\right], \ \psi \in \left[0, \frac{\pi}{2}\right]$. Обозначим $\varphi_1 = \varphi - \frac{\pi}{2}$. Тогда $\varphi_1 \in \left[0, \frac{\pi}{2}\right]$, и, следовательно, справедливы равенства (4), (5), в которых

вместо φ стоит φ_1 . Поэтому, используя леммы 1, 2, имеем

$$\cos(\varphi + \psi) = \cos\left(\varphi_1 + \psi + \frac{\pi}{2}\right) = -\sin(\varphi_1 + \psi) =$$

$$= -\cos\varphi_1\sin\psi - \sin\varphi_1\cos\psi = -\cos\left(\varphi - \frac{\pi}{2}\right)\sin\psi - \sin\left(\varphi - \frac{\pi}{2}\right)\cos\psi =$$

$$= \cos\varphi\cos\psi - \sin\varphi\sin\psi.$$

Таким образом, доказано равенство (4) для любых $\varphi \in [0, \pi], \psi \in [0, \frac{\pi}{2}]$. Повторяя аналогичные рассуждения, получаем равенства (4), (5) для всех $\varphi, \psi \in [0, \pi]$. Отсюда в силу равенств (2), (3) § 10 получаем равенства (4), (5) для всех $\varphi, \psi \in \mathbb{R}$.

§ 12. Первый замечательный предел

Теорема 1. (Первый замечательный предел.)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Доказательство. Применяя лемму 1 \S 10 для b=1, получаем

$$\sqrt{1-a^2} \le \ell(\widehat{A_a A_1}) = \arccos a \le \sqrt{1-a^2} + 1 - a \quad \forall a \in [0,1).$$

Используя это неравенство для $a = \cos x$, имеем

$$\sin x \le x \le \sin x + 1 - \cos x \qquad \forall x \in \left(0, \frac{\pi}{2}\right).$$

Деля каждую часть этой цепочки неравенств на $\sin x$, получаем

$$1 \le \frac{x}{\sin x} \le 1 + \frac{1 - \cos x}{\sin x} = 1 + \frac{\sin x}{1 + \cos x} \qquad \forall x \in \left(0, \frac{\pi}{2}\right).$$

Так как функции sin и сов непрерывны, то $\lim_{x \to +0} \frac{\sin x}{1+\cos x} = \frac{\sin 0}{1+\cos 0} = 0$. Отсюда по теореме о трех функциях следует, что $\lim_{x \to +0} \frac{x}{\sin x} = 1$. Поэтому $\lim_{x \to +0} \frac{\sin x}{x} = 1$. Поскольку функция $\sin x$ нечетная, то функция $\frac{\sin x}{x}$ четная, а значит, $\lim_{x \to -0} \frac{\sin x}{x} = \lim_{x \to +0} \frac{\sin x}{x} = 1$. Применяя лемму о связи предела и односторонних пределов, получаем доказываемое соотношение.

Пример 1. $\lim_{x\to 0} \frac{\lg x}{x} = 1.$

Решение. Из теоремы 1 и непрерывности косинуса следует: $\frac{\operatorname{tg} x}{x} = \frac{\sin x}{x} \frac{1}{\cos x} \to 1$ при $x \to 0$.

Пример 2. a) $\lim_{x\to 0} \frac{\operatorname{arctg} x}{x} = 1$, б) $\lim_{x\to 0} \frac{\arcsin x}{x} = 1$.

Решение. Докажем утверждение (а). Определим функцию

$$f(y) = \begin{cases} \frac{y}{\operatorname{tg} y}, & y \neq 0, \\ 1, & y = 0. \end{cases}$$

Из предыдущего примера следует, что функция f(y) непрерывна на интервале $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. По теореме о непрерывности сложной функции функции $g(x)=f(\arctan x)$ непрерывна. Так как $g(x)=\left\{\begin{array}{ll} \frac{\arctan x}{x}, & x\neq 0,\\ 1, & x=0, \end{array}\right.$ то

$$\lim_{x \to 0} \frac{\arctan x}{x} = \lim_{x \to 0} g(x) = g(0) = 1.$$

Утверждение (б) доказывается аналогично.

§ 13. Сравнение функций

Определение . Пусть функции f и g определены и не обращаются в 0 в некоторой $\overset{o}{U}_{\delta}(x_0)$. Функции f и g называются эквивалентными (пишут: $f(x) \sim g(x))$ при $x \to x_0$, если $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$.

Лемма 1. 1. Если $f(x)\sim g(x),\ g(x)\sim h(x)$ при $x\to x_0,\ mo\ f(x)\sim h(x)$ при $x\to x_0.$

2. Ecau $f(x) \sim g(x)$ npu $x \to x_0$, mo $g(x) \sim f(x)$ npu $x \to x_0$.

Доказательство следует из теорем о пределе произведения и пределе частного.

Из теорем и примеров § 9 и § 12 следует, что при $x \to 0$

 $x \sim \sin x \sim \operatorname{tg} x \sim \operatorname{arctg} x \sim \arcsin x \sim e^x - 1 \sim \ln(1+x) \sim \operatorname{sh} x \sim \operatorname{th} x.$ (1)

Лемма 2. Пусть функции $f_1(x)$, $f_2(x)$, $g_1(x)$, $g_2(x)$ определены и не обращаются в 0 в некоторой $\overset{o}{U}_{\delta}(x_0)$ и пусть $f_1(x) \sim f_2(x)$, $g_1(x) \sim g_2(x)$ при $x \to x_0$. Тогда $f_1(x)g_1(x) \sim f_2(x)g_2(x)$, $\frac{f_1(x)}{g_1(x)} \sim \frac{f_2(x)}{g_2(x)}$ при $x \to x_0$.

Доказательство следует из теорем о пределе произведения и пределе частного.

Замечание. Из условий $f_1(x) \sim f_2(x), \ g_1(x) \sim g_2(x)$ при $x \to x_0$ не следует $f_1(x) + g_1(x) \sim f_2(x) + g_2(x)$ при $x \to x_0$. Например, $-x \sim -x, x + x^2 \sim x + x^3$ при $x \to 0$, но $-x + x + x^2 \not\sim -x + x + x^3$ при $x \to 0$.

Лемма 3. Если $f(x) \sim g(x)$ при $x \to x_0$, то $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x)$, а если один из пределов не существует, то не существует и другой.

Доказательство. Если $\exists \lim_{x \to x_0} g(x) \in \mathbb{R}$, то по теореме о пределе произведения $\exists \lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{f(x)}{g(x)} g(x) = \lim_{x \to x_0} g(x)$. Аналогично, если $\exists \lim_{x \to x_0} f(x) \in \mathbb{R}$, то $\exists \lim_{x \to x_0} g(x) = \lim_{x \to x_0} f(x)$.

Следствие. При вычислении пределов произведений и частных функций эти функции можно заменять на эквивалентные.

Лемма 4. Пусть $f(y) \sim g(y)$ при $y \to y_0$, и пусть $y(x) \to y_0$ при $x \to x_0$ и $y(x) \neq y_0$ при $x \in U_\delta(x_0)$. Тогда $f(y(x)) \sim g(y(x))$ при $x \to x_0$.

Доказательство. По теореме о пределе сложной функции имеем $\lim_{x \to x_0} \frac{f(y(x))}{g(y(x))} = \lim_{y \to y_0} \frac{f(y)}{g(y)} = 1.$

Пример 1. Найти $\lim_{x\to 0} \frac{(e^x-1)\arcsin x^2}{\operatorname{th} x \ln^2(1+x)}$

Решение. Так как $\arcsin x^2 \sim x^2, \ e^x - 1 \sim x, \ \text{th} \ x \sim x, \ \ln(1+x) \sim x$ при $x \to 0$, то $\frac{(e^x - 1) \arcsin x^2}{\text{th} \ x \ \ln^2(1+x)} \sim \frac{x^2 \cdot x}{x \cdot x^2} = 1$ при $x \to 0$, следовательно, предел равен 1.

Определение. Пусть функции f и g определены в $\overset{o}{U}_{\delta}(x_0)$ и функция g(x) не обращается в 0. Говорят, что функция f является бесконечно малой относительно функции g при $x \to x_0$ и пишут f(x) = o(g(x)) при $x \to x_0$, если $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$.

Замечание. o(g(x)) — это класс функций. Запись f(x) = o(g(x)) означает, что функция f(x) принадлежит классу функций o(g(x)). Поэтому равенство в записи f(x) = o(g(x)) необратимо, т.е. нельзя писать o(g(x)) = f(x). Например, $x^3 = o(x)$, $x^2 = o(x)$ при $x \to 0$, но $x^3 \neq x^2$.

Теорема 1. $f(x) \sim g(x)$ $npu \ x \to x_0 \iff f(x) - g(x) = o(g(x))$ $npu \ x \to x_0$.

Доказательство.
$$f(x) \sim g(x)$$
 при $x \to x_0 \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \iff \lim_{x \to x_0} \frac{f(x) - g(x)}{g(x)} = 0 \iff f(x) - g(x) = o(g(x))$ при $x \to x_0$.

Из теоремы 1 следует, что эквивалентности (1) можно переписать в виде

$$\sin x = x + o(x),$$
 $tg x = x + o(x),$ $\arcsin x = x + o(x),$ $\arctan x = x + o(x),$ $n

Определение. Пусть функции f и g определены в $\overset{o}{U}_{\delta}(x_0)$. Говорят, что функция f ограничена относительно функции g, и пишут f(x) = O(g(x)) при $x \to x_0$, если

$$\exists C \in \mathbb{R} : \forall x \in \overset{o}{U}_{\delta}(x_0) \hookrightarrow |f(x)| \le C|g(x)|.$$

Теорема 2. (Свойство *о*-малого и *О*-большого.)

Для функций, не обращающихся в 0 в некоторой $\overset{o}{U}_{\delta}(x_0)$ при $x\to x_0,$ справедливы равенства:

- 1) $o(f) \pm o(f) = o(f);$ 6) O(O(f)) = O(f);
- 2) $O(f) \pm O(f) = O(f)$; 7) $o(f) \cdot O(g) = o(fg)$;
- 3) o(f) = O(f); 8) $O(f) \cdot O(g) = O(fg);$
- 4) o(O(f)) = o(f); 9) $(o(f))^{\alpha} = o(f^{\alpha}) \quad \forall \alpha > 0;$
- 5) O(o(f)) = o(f); 10) $(O(f))^{\alpha} = O(f^{\alpha}) \quad \forall \alpha > 0.$

Докажем, например, первое утверждение. Требуется доказать, что если $g_1(x) = o(f(x)), g_2(x) = o(f(x))$ при $x \to x_0$, то $g_1(x) \pm g_2(x) = o(f(x))$ при $x \to x_0$. Действительно, из условий $\lim_{x \to x_0} \frac{g_1(x)}{f(x)} = 0, \lim_{x \to x_0} \frac{g_2(x)}{f(x)} = 0$ следует $\lim_{x \to x_0} \frac{g_1(x) \pm g_2(x)}{f(x)} = 0$, т. е. $g_1(x) \pm g_2(x) = o(f(x))$ при $x \to x_0$. Остальные утверждения проверяются аналогично.

ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ

§ 1. Определение и геометрический смысл производной и дифференциала

Определение. Пусть функция f определена в $U_{\delta}(x_0)$. Производной функции f в точке x_0 называется

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \in \overline{\mathbb{R}}$$

и обозначается $f'(x_0)$. Если указанный предел не существует, то производная $f'(x_0)$ не существует.

Выясним геометрический смысл производной.

Напишем уравнение секущей, проходящей через точки графика $(x_0,f(x_0))$ и $(x_0+\Delta x,f(x_0+\Delta x))$: $y_{\mathbf{CEK}}(x,\Delta x)=kx+b$, где числа k и b определяются из системы уравнений

$$\begin{cases} f(x_0) = y_{\mathbf{CEK}}(x_0, \Delta x), \\ f(x_0 + \Delta x) = y_{\mathbf{CEK}}(x_0 + \Delta x, \Delta x), \end{cases}$$

т. е.

$$\begin{cases} f(x_0) = kx_0 + b, \\ f(x_0 + \Delta x) = k(x_0 + \Delta x) + b. \end{cases}$$

Решая систему $b=f(x_0)-kx_0, \quad k=\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x},$ получаем уравнение секущей:

$$y_{CEK}(x, \Delta x) = f(x_0) + \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}(x - x_0).$$
 (1)

Определение. *Невертикальной касательной* к графику функции f в точке x_0 называется невертикальная прямая, которая является предельным положением секущей:

$$\forall x \in \mathbb{R} \hookrightarrow y_{\mathbf{KAC}}(x) = \lim_{\Delta x \to 0} y_{\mathbf{CEK}}(x, \Delta x).$$

Непосредственно из определений и формулы (1) следует

Теорема 1. (Геометрический смысл производной.) Существование невертикальной касательной к графику функции f в точке x_0 эквивалентно существованию конечной производной функции f в точке x_0 . Уравнение касательной имеет вид

$$y_{\text{KAC}}(x) = f(x_0) + k_{\text{KAC}} \cdot (x - x_0), \quad e \partial e \quad k_{\text{KAC}} = f'(x_0).$$

Определение. Пусть функция f определена в $U_{\delta}(x_0)$. Функция f называется $\partial u \phi \phi$ еренцируемой в точке x_0 , если существует число A такое, что приращение функции $\Delta f = f(x_0 + \Delta x) - f(x_0)$ имеет вид $\Delta f = A\Delta x + o(\Delta x)$ при $\Delta x \to 0$ (число A не зависит от Δx , но зависит от x_0).

Теорема 2. (Связь дифференцируемости и существования производной.) Функция f дифференцируема в точке x_0 тогда и только тогда, когда существует конечная производная $f'(x_0)$. Число A в определении дифференцируемой функции совпадает c $f'(x_0)$, т. е. $\Delta f = f'(x_0) \Delta x + o(\Delta x)$ при $\Delta x \to 0$.

Доказательство

$$\Delta f = A \Delta x + o(\Delta x) \quad \text{при} \quad \Delta x \to 0 \quad \Leftrightarrow$$

$$\stackrel{\text{по опр. } o\text{-малого}}{\Longleftrightarrow} \qquad \lim_{\Delta x \to 0} \frac{\Delta f - A \Delta x}{\Delta x} = 0 \quad \Leftrightarrow$$

$$\Leftrightarrow \quad \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = A \in \mathbb{R} \quad \Leftrightarrow \quad \exists f'(x_0) = A \in \mathbb{R}.$$

Определение. Пусть функция f дифференцируема в точке x_0 . \mathcal{L} \mathcal{L}

$$df(x_0)[\Delta x] = f'(x_0) \, \Delta x.$$

В записи $df(x_0)[\Delta x]$ аргумент Δx линейной функции $df(x_0)$ записан в квадратных скобках для того, чтобы не путать его с точкой x_0 , в которой рассматривается дифференциал функции f. Аргумент Δx линейной функции $df(x_0)$ часто вообще не пишут (но подразумевают): $df(x_0) = f'(x_0) \Delta x$.

Определение. $\mathcal{A}u\phi\phi$ еренциалом независимой переменной называется ее приращение: $dx = \Delta x = x - x_0$.

Итак, в случае дифференцируемости функции f в точке x_0 справедливы формулы

$$df(x_0)[dx]=df(x_0)=f'(x_0)\,dx,$$

$$\Delta f=f(x_0+\Delta x)-f(x_0)=df(x_0)[\Delta x]+o(\Delta x)\quad\text{при}\quad\Delta x\to 0.$$

Заметим, что дифференциал, будучи линейной функцией, определен для всех Δx , а приращение функции Δf определено только для тех Δx , для которых $x_0 + \Delta x$ лежит во множестве определения функции f.

Из теорем 1, 2 следует

Теорема 3. (Геометрический смысл дифференциала.) Существование дифференциала эквивалентно существованию невертикальной касательной. В случае существования дифференциал равен приращению ординаты касательной: $y_{\mathbf{KAC}}(x) - y_{\mathbf{KAC}}(x_0) = df(x_0)$.

Определение. (Односторонние производные.)

1. Если функция определена на $(x_0 - \delta, x_0]$, то *левой производной* в точке x_0 называется левый предел

$$f'_{-}(x_0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}.$$

2. Если функция определена на $[x_0, x_0 + \delta)$, то правой производной в точке x_0 называется правый предел

$$f'_{+}(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Лемма 1. (Об односторонних производных.) $\exists f'_{-}(x_0) = f'_{+}(x_0).$ \iff

Доказательство состоит в применении деммы об односторонних пределах.

Теорема 4. (Связь непрерывности и дифференцируемости.) $\Phi y n \kappa$ иия, дифференцируемая в точке x_0 , является непрерывной в этой точке. Обратное неверно.

Доказательство. 1. Пусть функция f дифференцируема в точке x_0 . Тогда $\Delta f = A\Delta x + o(\Delta x)$ при $\Delta x \to 0$. Следовательно, $f(x_0 + \Delta x) - o(\Delta x)$ $-f(x_0) \to 0 \ (\Delta x \to 0)$, а значит, f непрерывна в точке x_0 .

2. Например, функция f(x) = |x| непрерывна в точке 0, но не является дифференцируемой в этой точке.

Задача 1. Пусть функция $f: \mathbb{R} \to \mathbb{R}$ дифференцируема в точке x_0 . Верно ли, что существует окрестность точки x_0 , в которой f непрерывна?

§ 2. Правила дифференцирования

Теорема 1. Если функции f и g дифференцируемы в точке x_0 , то

- 1) \exists $(f+g)'(x_0) = f'(x_0) + g'(x_0)$;
- 2) \exists $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0);$

3) если дополнительно
$$g(x) \neq 0$$
, то $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$.

Доказательство. Обозначим $\Delta f = f(x_0 + \Delta x) - f(x_0), \quad \Delta g = g(x_0 + \Delta x)$ $+\Delta x)-g(x_0)$. Заметим, что при $\Delta x \to 0$ справедливы соотношения: $\Delta f \to 0, \quad \Delta g \to 0, \quad \frac{\Delta f}{\Delta x} \to f'(x_0), \quad \frac{\Delta g}{\Delta x} \to g'(x_0).$ 1) $\frac{\Delta (f+g)}{\Delta x} = \frac{\Delta f}{\Delta x} + \frac{\Delta g}{\Delta x} \to f'(x_0) + g'(x_0)$ при $\Delta x \to 0$;

1)
$$\frac{\Delta (f+g)}{\Delta x} = \frac{\Delta f}{\Delta x} + \frac{\Delta g}{\Delta x} \to f'(x_0) + g'(x_0)$$
 при $\Delta x \to 0$

2) $\Delta(fg) = f(x_0 + \Delta x) \, g(x_0 + \Delta x) - f(x_0) \, g(x_0) = (f(x_0) + \Delta f) \times$ $\times (g(x_0) + \Delta g) - f(x_0) \, g(x_0) = f(x_0) \Delta g + g(x_0) \Delta f + \Delta f \, \Delta g,$ следовательно, $\frac{\Delta(fg)}{\Delta x} = f(x_0) \frac{\Delta g}{\Delta x} + g(x_0) \frac{\Delta f}{\Delta x} + \Delta g \frac{\Delta f}{\Delta x} \to f(x_0) g'(x_0) + g(x_0) f'(x_0)$ при $\Delta x \to 0$;

при
$$\Delta x \to 0$$
;
 $3) \frac{\Delta(f/g)}{\Delta x} = \frac{(f(x_0) + \Delta f)/(g(x_0) + \Delta g) - f(x_0)/g(x_0)}{\Delta x} =$
 $= \frac{g(x_0)\Delta f - f(x_0)\Delta g}{g(x_0)(g(x_0) + \Delta g)\Delta x} \to \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x)}$ при $\Delta x \to 0$.

Теорема 2. (Производная сложной функции.) Пусть функция y(x) дифференцируема в точке x_0 , а функция z(y) дифференцируема в точке $y_0 = y(x_0)$. Тогда сложная функция z = f(x) = z(y(x)) дифференцируема в точке x_0 и $f'(x_0) = z'(y_0)y'(x_0)$, что записывают также в форме $z'_x = z'_y y'_x$.

Доказательство. Определим функцию

$$g(y) = \begin{cases} \frac{z(y) - z(y_0)}{y - y_0}, & y \neq y_0, \\ z'(y_0), & y = y_0. \end{cases}$$

Так как по определению производной $\lim_{y\to y_0} g(y) = \lim_{y\to y_0} \frac{z(y)-z(y_0)}{y-y_0} = z'(y_0) = g(y_0)$, то функция g непрерывна в точке y_0 .

В силу теоремы о непрерывности дифференцируемой функции функция y(x) непрерывна в точке x_0 . Следовательно, сложная функция g(y(x)) непрерывна в точке x_0 , т.е. $\lim_{x\to x_0}g(y(x))=g(y(x_0))=g(y_0)==z'(y_0)$.

Из определения функции g следует равенство $z(y)-z(y_0)=g(y)$ ($y-y_0$), которое справедливо не только в некоторой проколотой окрестности точки y_0 , но и при $y=y_0$. Поэтому в некоторой окрестности точки x_0 справедливо равенство $f(x)-f(x_0)=z(y(x))-z(y_0)=g(y(x))$ ($y(x)-y_0$). Отсюда по теореме о пределе произведения следует, что существует предел

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} g(y(x)) \quad \lim_{x \to x_0} \frac{y(x) - y(x_0)}{x - x_0} = z'(y_0) y'(x_0),$$
T. e. $\exists f'(x_0) = z'(y_0) y'(x_0).$

Следствие. (Инвариантность формы первого дифференциала.) Пусть выполнены условия теоремы 2. Тогда дифференциалы простой функции z(y) и сложной функции z=f(x)=z(y(x)) могут быть записаны в одной и той же (инвариантной) форме: $dz=z'(y_0)\,dy$. Хотя в первом случае dy- приращение независимой переменной y, а во втором случае $dy=dy(x_0)[dx]-$ дифференциал функции.

Доказательство. В случае простой функции формула dz = $=dz(y_0)[dy]=z'(y_0)\,dy$ следует из определения дифференциала.

В случае сложной функции по определению дифференциала получаем $dz = df(x_0)[dx] = f'(x_0) dx$. В силу теоремы 2 $f'(x_0) = z'(y_0)y'(x_0)$, следовательно, $dz = z'(y_0)y'(x_0) dx = z'(y_0)dy(x_0)[dx] = z'(y_0)dy$.

Теорема 3. (Производная обратной функции.) Пусть функция y(x) определена, строго монотонна и непрерывна в некоторой $U_{\delta}(x_0)$. Пусть $\exists y'(x_0) \in \mathbb{R}, \ y'(x_0) \neq 0.$ Тогда обратная функция x(y) дифференцируема в точке $y_0 = y(x_0)$ и $x'(y_0) = \frac{1}{y'(x_0)} = \frac{1}{y'(x(y_0))}$.

Доказательство. Существование обратной функции следует из строгой монотонности y(x). По теореме об обратной функции функция x(y) непрерывна в точке y_0 , т. е. $\lim_{y \to y_0} x(y) = x_0$.

Для любого $x\in \overset{o}{U_{\delta}}(x_0)$ определим $f(x)=\frac{y(x)-y_0}{x-x_0}$. По определению производной $\exists\lim_{x\to x_0}f(x)=y'(x_0)$. В силу обратимости функции x(y)при $y \neq y_0$ справедливо неравенство $x(y) \neq x_0$, следовательно, f(x(y)) = $=rac{\hat{y}-\hat{y}_0}{x(y)-x_0}$ при $y
eq y_0$. Пользуясь теоремой о пределе сложной функции,

$$\lim_{y \to y_0} \frac{y - y_0}{x(y) - x_0} = \lim_{y \to y_0} f(x(y)) = \lim_{x \to x_0} f(x) = y'(x_0).$$

Следовательно, $\exists x'(y_0) = \lim_{y \to y_0} \frac{x(y) - x_0}{y - y_0} = \frac{1}{y'(x_0)}$.

Теорема 4. (Производные элементарных функций.)

- 1) C' = 0 (C = const);
- 2) $(a^x)' = a^x \ln a, \ a > 0, \ x \in \mathbb{R};$
- 3) $(\log_a x)' = \frac{1}{x \ln a}, \ a > 0, \ a \neq 1, \ x > 0;$ 4) $(x^{\alpha})' = \alpha x^{\alpha 1}, \ \alpha \in \mathbb{R}, \ x > 0;$ $(x^n)' = n x^{n 1}, \ n \in \mathbb{N}, \ x \in \mathbb{R};$

- $(x') = hx', \ h \in \mathbb{N}, \ x \in \mathbb{R},$ $5) (\sin x)' = \cos x, \qquad (\cos x)' = -\sin x;$ $6) (\operatorname{tg} x)' = \frac{1}{\cos^2 x}, \qquad (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x};$ $7) (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \qquad (\operatorname{arccos} x)' = -\frac{1}{\sqrt{1-x^2}};$ $8) (\operatorname{arctg} x)' = \frac{1}{1+x^2}, \qquad (\operatorname{arcctg} x)' = -\frac{1}{1+x^2};$ $9) (\operatorname{sh} x)' = \operatorname{ch} x, \qquad (\operatorname{ch} x)' = \operatorname{sh} x;$ $10) (\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}, \qquad (\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}.$

Доказательство. 1) f(x) = C \Rightarrow $\Delta f = 0$ \Rightarrow f' = 0.

- 2) В силу теоремы о втором замечательном пределе $\lim_{x\to 0}\frac{e^x-1}{x}=1$, следовательно, $(e^x)'=\lim_{\Delta x\to 0}\frac{e^{x+\Delta x}-e^x}{\Delta x}=e^x\lim_{\Delta x\to 0}\frac{e^{\Delta x}-1}{\Delta x}=e^x$, поэтому по теореме о производной сложной функции $(a^x)'=(e^{\ln a\,x})'=e^{\ln a\,x}$ ($\ln a\,x$)' = $= a^x \ln a$. Здесь использовано равенство x' = 1, которое следует непосредственно из определения производной.
- 3) По теореме о производной обратной функции $(\log_a x)' = \frac{1}{(a^y)'} =$ $=rac{1}{a^y\ln a}$, где $y=\log_a x$, т. е. $(\log_a x)'=rac{1}{x\ln a}$. 4) При x>0: $(x^lpha)'=(e^{\ln x\,lpha})'=e^{\ln x\,lpha}\,(\ln x\,lpha)'=lpha\,x^lpha/x=lpha x^{lpha-1}$. Формула $(x^n)'=nx^{n-1}$ при $n\in\mathbb{N},\,x\in\mathbb{R}$ доказывается индукцией

по n.

5) В силу теоремы 1 § 11 имеем $\sin(x+\Delta x) = \cos x \sin \Delta x + \sin x \cos \Delta x$. Поэтому

$$\frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \cos x \, \frac{\sin \Delta x}{\Delta x} + \sin x \, \frac{\cos \Delta x - 1}{\Delta x},$$

$$\frac{\cos \Delta x - 1}{\Delta x} = \frac{\cos^2 \Delta x - 1}{\Delta x (\cos \Delta x + 1)} = \left(\frac{\sin \Delta x}{\Delta x}\right)^2 \frac{\Delta x}{\cos \Delta x + 1}.$$

В силу непрерывности косинуса получаем $\cos \Delta x \to \cos 0 = 1$ при $\Delta x \to \cos 0 = 1$ → 0, следовательно, используя первый замечательный предел, имеем $\frac{\cos \Delta x - 1}{\Delta x} \to 0$ при $\Delta x \to 0$ и

$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \cos x.$$

Пользуясь формулой для производной сложной функции, получаем

$$(\cos x)' = (\sin(\pi/2 - x))' = -\cos(\pi/2 - x) = -\sin x.$$
6) $(\operatorname{tg} x)' = (\frac{\sin x}{\cos x})' = \frac{(\sin x)' \cos x - (\cos x)' \sin x}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$
 $(\operatorname{ctg} x)' = (\operatorname{tg} (\pi/2 - x))' = -\frac{1}{\cos^2 (\pi/2 - x)} = -\frac{1}{\sin^2 x}.$
7) $(\operatorname{arcsin} x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y}$, где $y = \operatorname{arcsin} x$, т. е. $(\operatorname{arcsin} x)' = \frac{1}{1}$

7)
$$(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y}$$
, где $y = \arcsin x$, т. е. $(\arcsin x)' = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1-x^2}}$.

Так как $\arccos x = \frac{\pi}{2} - \arcsin x$, то $(\arccos x)' = -(\arcsin x)' = -\frac{1}{\sqrt{1-x^2}}$.

8)
$$(\operatorname{arctg} x)' = \frac{1}{(\operatorname{tg} y)'} = \cos^2 y$$
, где $y = \operatorname{arctg} x$, т. е. $(\operatorname{arctg} x)' = \cos^2(\operatorname{arctg} x) = \frac{1}{1 + \operatorname{tg}^2(\operatorname{arctg} x)} = \frac{1}{1 + x^2}$.

Так как $\operatorname{arcctg} x = \frac{\pi}{2} - \operatorname{arctg} x$, то $(\operatorname{arcctg} x)' = -(\operatorname{arctg} x)' = -\frac{1}{1 + x^2}$.

9)
$$(\operatorname{sh} x)' = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x + e^{-x}}{2} = \operatorname{ch} x;$$

$$(\operatorname{ch} x)' = \left(\frac{e^x + e^{-x}}{2}\right)' = \frac{e^x - e^{-x}}{2} = \operatorname{sh} x.$$

10)
$$(\operatorname{th} x)' = \left(\frac{\operatorname{sh} x}{\operatorname{ch} x}\right)' = \frac{(\operatorname{sh} x)'\operatorname{ch} x - (\operatorname{ch} x)'\operatorname{sh} x}{\operatorname{ch}^2 x} = \frac{\operatorname{ch}^2 x - \operatorname{sh}^2 x}{\operatorname{ch}^2 x} = \frac{1}{\operatorname{ch}^2 x};$$

$$(\operatorname{cth} x)' = \left(\frac{1}{\operatorname{th} x}\right)' = -\frac{(\operatorname{th} x)'}{\operatorname{th}^2 x} = -\frac{\operatorname{ch}^2 x}{\operatorname{sh}^2 x} \frac{1}{\operatorname{ch}^2 x} = -\frac{1}{\operatorname{sh}^2 x}.$$

Производная неявной функции

Определение. Функция $f: X \to \mathbb{R}$ называется *неявной* функцией, заданной уравнением F(x,y) = 0, если $\forall x \in X \hookrightarrow F(x,f(x)) = 0$.

Например, уравнение $x^2+y^2=1$ задает следующие непрерывные неявные функции: $y=f_1(x)=\sqrt{1-x^2}$ и $y=f_2(x)=-\sqrt{1-x^2}$.

Пусть неявная функция y = f(x) задана уравнением F(x,y) = 0. Тогда производную неявной функции f(x) (если она существует) можно найти из условия равенства нулю производной сложной функции $\varphi(x) = F(x, f(x)) = 0$: $\varphi'(x) = 0$.

Пример 1. Найти производную в точке x=0 функции y(x), заданной уравнением $\sin x + x - y - y^3 = 0$.

Решение. Так как $\varphi(x) = \sin x + x - y(x) - y^3(x) = 0$, то $0 = \varphi'(x) = \cos x + 1 - y'(x) - 3y^2(x)y'(x)$, следовательно, $y'(x) = \frac{\cos x + 1}{1 + 3y^2(x)}$. При x = 0 имеем $0 = y^3 + y = y(y^2 + 1)$, следовательно, y(0) = 0, $y'(0) = \frac{1+1}{1+0} = 2$.

Производная параметрически заданной функции

Определение. Пусть заданы функции x(t) и y(t). Пусть функция x(t) обратима, т.е. существует обратная функция t(x). Тогда функция $y = \varphi(x) = y(t(x))$ называется napamempuчески заданной функцией.

Если выполнены условия теоремы о производной обратной функции, то $\exists t'(x) = \frac{1}{x'(t)}$, где t = t(x).

Если выполнены условия теоремы о производной сложной функции, то $\exists y_x'(x) = \varphi'(x) = y_t'(t(x)) \, t'(x) = \frac{y_t'(t)}{x_t'(t)}$, где t = t(x). Итак, при выполнении условий этих теорем справедлива формула

$$y_x' = \frac{y_t'}{x_t'}. (1)$$

Теорема 5. (Правила вычисления дифференциала.) Пусть функции f(x) и q(x) дифференцируемы в точке x_0 . Тогда

- 1) $\exists d(f+g)(x_0) = df(x_0) + dg(x_0),$
- 2) $\exists d(fg)(x_0) = g(x_0) df(x_0) + f(x_0) dg(x_0),$ 3) $ecnu \ g(x_0) \neq 0, \ mo \ \exists \ d\left(\frac{f}{g}\right)(x_0) = \frac{g(x_0) df(x_0) f(x_0) dg(x_0)}{g^2(x_0)}.$

Доказательство. 1. Так как функции f(x) и g(x) дифференцируемы в точке x_0 , то по теореме $1 \exists (f+g)'(x_0) = f'(x_0) + g'(x_0)$. В силу определения дифференциала получаем $\exists d(f+g)(x_0) = (f+g)'(x_0) dx =$ $= f'(x_0) dx + g'(x_0) dx = df(x_0) + dg(x_0).$

Пункты 2) и 3) доказываются аналогично.

§ 3. Производные и дифференциалы высших порядков

Производная $f^{(n)}(x)$ порядка n определяется индукцией по порядку.

Определение. Производная нулевого порядка – это сама функция: $f^{(0)}(x) = f(x)$. Производная первого порядка $f^{(1)}(x) = f'(x)$ была определена ранее. Если функция $f^{(n)}$ определена в $U_{\delta}(x)$, то $f^{(n+1)}(x) =$ $= (f^{(n)})'(x).$

Определение. Φ акториалом числа $n \in \mathbb{N}$ называется число n! = $= n \cdot (n-1) \cdot \dots \cdot 1.$

Строгое определение факториала числа $n \in \mathbb{N} \cup \{0\}$ дается по индукции: 0! = 1, 1! = 1, $n! = n \cdot (n-1)!$.

Определение. Пусть $n, k \in \mathbb{N} \bigcup \{0\}, k \le n$. Определим биномиальный коэффициент:

$$C_n^k = \frac{n!}{(n-k)! \, k!} = \frac{n(n-1)...(n-k+1)}{k!}.$$

Лемма 1. (Свойства биномиальных коэффициентов.)

- 1) $C_n^0 = 1$, $C_n^n = 1$ $\forall n \in \mathbb{N} \bigcup \{0\}$; 2) $C_n^k + C_n^{k-1} = C_{n+1}^k$ $\forall n, k \in \mathbb{N} : k \le n$.

Доказательство. 1)
$$C_n^0 = \frac{n!}{n! \, 0!} = 1$$
, аналогично $C_n^n = 1$.
2) $C_n^k + C_n^{k-1} = \frac{n!}{(n-k)! \, k!} + \frac{n!}{(n-k+1)! \, (k-1)!} = \frac{n!}{(n-k+1)! \, k!} (n-k+1+k) = \frac{(n+1)!}{(n-k+1)! \, k!} = C_{n+1}^k$.

Теорема 1. (Формула Лейбница.) Пусть существуют производные функций u(x), v(x) в точке x порядка n. Тогда

$$\exists \quad (u(x)v(x))^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)}(x) v^{(n-k)}(x) =$$

$$= C_n^0 u^{(0)}(x) v^{(n)}(x) + C_n^1 u^{(1)}(x) v^{(n-1)}(x) + \dots + C_n^n u^{(n)}(x) v^{(0)}(x).$$

Доказательство. При n=1 $(uv)'=u'v+uv'=\sum\limits_{k=0}^{1}C_{1}^{k}\,u^{(k)}\,v^{(1-k)}$ теорема справедлива.

Пусть формула Лейбница справедлива при n=s, тогда $(uv)^{(s)}=\sum_{k=0}^s C_s^k \, u^{(k)} \, v^{(s-k)}$. Покажем, что формула Лейбница справедлива при n=s+1.

$$(uv)^{(s+1)} = ((uv)^{(s)})' = \sum_{k=0}^{s} C_s^k (u^{(k)} v^{(s-k)})' =$$

$$= \sum_{k=0}^{s} C_s^k u^{(k+1)} v^{(s-k)} + \sum_{k=0}^{s} C_s^k u^{(k)} v^{(s+1-k)} \stackrel{j=k+1}{=}$$

$$= \sum_{j=1}^{s+1} C_s^{j-1} u^{(j)} v^{(s+1-j)} + \sum_{k=0}^{s} C_s^k u^{(k)} v^{(s+1-k)} \stackrel{k=j}{=}$$

$$= \sum_{k=1}^{s} C_s^{k-1} u^{(k)} v^{(s+1-k)} + C_s^s u^{(s+1)} v^{(0)} +$$

$$+ C_s^0 u^{(0)} v^{(s+1)} + \sum_{k=1}^{s} C_s^k u^{(k)} v^{(s+1-k)} \stackrel{\text{CBOЙСТВО 1}}{=}$$

$$= u^{(0)} v^{(s+1)} + \sum_{k=1}^{s} (C_s^{k-1} + C_s^k) u^{(k)} v^{(s+1-k)} + u^{(s+1)} v^{(0)} \stackrel{\text{CBOЙСТВА 1, 2}}{=}$$

$$= C_{s+1}^0 u^{(0)} v^{(s+1)} + \sum_{k=1}^{s} C_{s+1}^k u^{(k)} v^{(s+1-k)} + C_{s+1}^{s+1} u^{(s+1)} v^{(0)} =$$

$$= \sum_{k=0}^{s+1} C_{s+1}^k u^{(k)} v^{(s+1-k)},$$

т. е. формула Лейбница верна при n=s+1. По индукции получаем, что формула Лейбница справедлива для любого $n\in\mathbb{N}$.

Аналогично доказательству теоремы 1 проводится доказательство $\mathit{6u-}$ нома $\mathit{Hbomona}$:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k} \qquad \forall a, b \in \mathbb{R}, \ n \in \mathbb{N}.$$
 (1)

Этой формуле коэффициенты C_n^k и обязаны своим названием.

Определение. Дифференциал первого порядка $d^1f(x)[dx] = df(x)[dx]$ был определен ранее. Пусть при $x \in U_\delta(x_0)$ существует дифференциал n-го порядка функции f: $d^nf(x)[dx]$. Дифференциалом порядка n+1 называется дифференциал первого порядка от дифференциала порядка n:

$$d^{n+1}f(x_0)[dx] = d\Big(d^n f(x)[dx]\Big)[dx]_{|_{x=x_0}}.$$

При вычислении дифференциала выражения $d^n f(x)[dx]$ аргумент dx фиксируется, это выражение рассматривается как функция от x. Запись $d\Big(d^n f(x)[dx]\Big)[dx]_{|x=x_0}$ означает дифференциал выражения $d^n f(x)[dx]$ в точке $x=x_0$.

Как и в случае дифференциала первого порядка, аргумент dx часто не пишут, но подразумевают, т. е. вместо $d^n f(x_0)[dx]$ часто пишут $d^n f(x_0)$.

Функция f называется n pas $\partial u \phi \phi e penuupye mo \ddot{u}$ в точке x_0 , если $\exists d^n f(x_0)$.

Теорема 2. 1)
$$\exists d^n f(x_0) \iff \exists f^{(n)}(x_0) \in \mathbb{R};$$
 2) $ecnu \exists f^{(n)}(x_0) \in \mathbb{R}, mo \ d^n f(x_0)[dx] = f^{(n)}(x_0) (dx)^n.$

Доказательство. При n=1 утверждение теоремы следует из определения дифференциала первого порядка.

Пусть утверждение теоремы справедливо при n=k (предположение индукции).

Если ни в какой окрестности точки x_0 не существует $f^{(k)}(x) \in \mathbb{R}$, то в силу предположения индукции не существует $d^k f(x)$. Тогда не существует $f^{(k+1)}(x_0)$ и не существует $d^{k+1}f(x_0)$, и при n=k+1 утверждение теоремы тривиально выполнено.

Пусть теперь в некоторой $U_{\delta}(x_0) \quad \exists \quad f^{(k)}(x) \in \mathbb{R}$. Тогда в силу предположения индукции при $x \in U_{\delta}(x_0) \quad \exists \quad d^k f(x)[dx] = f^{(k)}(x) (dx)^k$. По определению дифференциала порядка k+1 имеем

$$d^{k+1}f(x_0)[dx] = d\Big(d^kf(x)[dx]\Big)[dx]_{\big|_{x=x_0}} = d(f^{(k)}(x)(dx)^k)[dx]\Big|_{x=x_0} =$$

$$= (dx)^k \ d(f^{(k)}(x))[dx] \Big|_{x=x_0} = (dx)^k \ f^{(k+1)}(x_0) \ dx = f^{(k+1)}(x_0) \ (dx)^{k+1}.$$

Поэтому существование $d^{k+1}f(x_0)$ эквивалентно существованию $f^{(k+1)}(x_0) \in \mathbb{R}$ и в случае существования $f^{(k+1)}(x_0) \in \mathbb{R}$ справедлива формула $d^{k+1}f(x_0)[dx] = f^{(k+1)}(x_0)(dx)^{k+1}$. Следовательно, утверждение теоремы справедливо при n = k+1. По индукции получаем, что теорема справедлива при любом $n \in \mathbb{N}$.

Замечание. (Неинвариантность формы дифференциалов выше 1-го порядка.)

Пусть заданы дважды дифференцируемые функции y(x) и z(y). Найдем второй дифференциал сложной функции $z=\varphi(x)=z(y(x))$.

В силу инвариантности формы первого дифференциала $d\varphi(x) = z'(y(x)) dy(x)$.

По правилу вычисления дифференциала произведения $d^2\varphi(x) = d(z'(y(x))) \cdot dy(x) + z'(y(x)) \cdot d(dy(x)) = z''(y(x)) (dy(x))^2 + z'(y(x)) d^2y(x)$.

Итак, для сложной функции z = z(y(x)): $d^2z = z''(y)(dy)^2 + z'(y)d^2y$, в то время как для простой функции z = z(y): $d^2z = z''(y)(dy)^2$. Таким образом, формулы для вторых дифференциалов простой и сложной функций не совпадают. То же относится к дифференциалам порядков n > 2.

§ 4. Теоремы о среднем для дифференцируемых функций

Определение. Пусть задана функция $f: X \to \mathbb{R}$.

1. Точка $x_0 \in X$ называется точкой локального минимума функции f по множеству X, если

$$\exists \delta > 0: \ \forall x \in U_{\delta}(x_0) \bigcap X \hookrightarrow f(x_0) \le f(x).$$

2. Точка $x_0 \in X$ называется точкой локального максимума функции f по множеству X, если

$$\exists \delta > 0: \ \forall x \in U_{\delta}(x_0) \bigcap X \hookrightarrow \ f(x_0) \ge f(x).$$

3. Точка $x_0 \in X$ называется точкой локального экстремума функции f, если x_0 является точкой локального минимума или максимума f.

Точки локального экстремума, которые мы сейчас определили, называются также точками *нестрогого* локального экстремума. Определим точки строгого локального экстремума.

4. Точка $x_0 \in X$ называется точкой строгого локального минимума функции f по множеству X, если

$$\exists \delta > 0: \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \bigcap X \hookrightarrow f(x_0) < f(x). \tag{1}$$

5. Точка $x_0 \in X$ называется точкой строгого локального максимума функции f по множеству X, если

$$\exists \delta > 0: \ \forall x \in \overset{o}{U}_{\delta}(x_0) \bigcap X \hookrightarrow f(x_0) > f(x).$$

6. Точки строгого локального минимума и строгого локального максимума называются точками строгого локального экстремума.

Замечание. Непосредственно из определения следует, что точка строгого локального экстремума является точкой нестрогого локального экстремума. Обратное неверно. Например, для функции, равной константе, все точки множества определения являются точками нестрогого экстремума, а строгих экстремумов нет.

Замечание. Если $x_0 \in \operatorname{int} X$, то в определении локального экстремума можно не указывать множество X и вместо $x \in \overset{o}{U_{\delta}}(x_0) \cap X$ писать $x \in \overset{o}{U_{\delta}}(x_0)$. В этом случае получится эквивалентное определение. Действительно. Если $x_0 \in \operatorname{int} X$, то существует число $\delta_0 > 0$ такое, что $U_{\delta_0}(x_0) \subset X$. Если, например, x_0 является точкой строго локального минимума функции f по множеству X, то выполнено соотношение (1). Определим $\delta_1 = \min\{\delta, \delta_0\}$. Тогда

$$\forall x \in \overset{o}{U}_{\delta_1}(x_0) \hookrightarrow f(x_0) < f(x). \tag{2}$$

Обратно, если выполнено соотношение (2), то $\forall x \in \overset{o}{U}_{\delta_1}(x_0) \cap X \hookrightarrow f(x_0) < f(x)$ и, следовательно, справедливо соотношение (1).

Теорема 1. (Теорема Ферма.) Пусть функция f определена на (a,b) и $x_0 \in (a,b)$ – точка (нестрогого) локального экстремума функции f. Тогда если f дифференцируема g точке g0, то g1.

Доказательство. Пусть для определенности x_0 – точка локального минимума f. Определим $\delta_0 = \min\{b-x_0, x_0-a\}$. Тогда $\exists \delta \in (0, \delta_0]: \forall x \in U_\delta(x_0) \hookrightarrow f(x_0) \leq f(x)$. Поэтому при $x \in (x_0, x_0+\delta)$ выполняется неравенство $\frac{f(x)-f(x_0)}{x-x_0} \geq 0$, следовательно, по теореме о предельном переходе в неравенствах правая производная неотрицательна: $f'_+(x_0) = \lim_{x\to x_0+0} \frac{f(x)-f(x_0)}{x-x_0} \geq 0$. Аналогично, $f'_-(x_0) \leq 0$. Если $\exists f'(x_0)$, то $f'(x_0) = f'_+(x_0) = f'_-(x_0)$ и, следовательно, $f'(x_0) = 0$.

Замечание. В точке локального экстремума производная может

- а) не существовать, как, например, для f(x) = |x| не существует f'(0) или
 - б) быть бесконечной, как, например, для $f(x) = \sqrt{|x|}$ $f'(0) = \infty$.

Замечание. Если функция $f: X \to \mathbb{R}$ достигает экстремума в точке $x_0 \in X$, которая не является внутренней точкой множества X, то в точке x_0 может существовать конечная (односторонняя), не равная нулю, производная функции f. Например, функция $f: [0,1] \to \mathbb{R}$, заданная формулой f(x) = x, достигает минимума в точке $x_0 = 0$, но $f'_+(x_0) = 1 \neq 0$.

Теорема 2. (Теорема Ролля.) Пусть функция f непрерывна на [a,b] и дифференцируема на (a,b) и пусть f(a)=f(b). Тогда $\exists \xi \in (a,b): f'(\xi)=0.$

Доказательство. По теореме Вейерштрасса $\exists m = \min_{x \in [a,b]} f(x)$ и $\exists M = \max_{x \in [a,b]} f(x).$

Если m = M, то f(x) = const на [a, b]. Взяв произвольную точку $\xi \in (a, b)$, получаем требуемое утверждение.

Если $m \neq M$, то либо m < f(a), либо f(a) < M. Рассмотрим, например, случай m < f(a). По определению минимума $\exists \xi \in [a,b]: f(\xi) = m < f(a) = f(b)$. Следовательно, $\xi \in (a,b)$ и по теореме Ферма $f'(\xi) = 0$.

Теорема 3. (Теорема Коши о среднем.) Пусть функции f и g непрерывны на [a,b] и дифференцируемы на (a,b). Пусть $\forall x \in (a,b) \hookrightarrow g'(x) \neq 0$. Тогда

$$\exists \xi \in (a,b): \qquad \frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Доказательство. Из теоремы Ролля и условия $\forall x \in (a,b) \hookrightarrow g'(x) \neq 0$ следует, что $g(b) \neq g(a)$. Рассмотрим функцию $\varphi(x) = f(x) - kg(x)$, где коэффициент k определим из условия $\varphi(a) = \varphi(b)$: f(b) - kg(b) = f(a) - kg(a), т. е. $k = \frac{f(b) - f(a)}{g(b) - g(a)}$.

-kg(b)=f(a)-kg(a), т.е. $k=\frac{f(b)-f(a)}{g(b)-g(a)}$. По теореме Ролля $\exists \xi \in (a,b): \varphi'(\xi)=0$, т.е. $f'(\xi)-kg'(\xi)=0$, следовательно, $\frac{f'(\xi)}{g'(\xi)}=k=\frac{f(b)-f(a)}{g(b)-g(a)}$.

Геометрическая интерпретация. Пусть функции $f:[a,b]\to\mathbb{R}$ и $g:[a,b]\to\mathbb{R}$ удовлетворяют условиям теоремы Коши о среднем. Постро-им график параметрически заданной функции $x=g(t),y=f(t),t\in[a,b]$. Проведем отрезок (хорду), соединяющий точки (g(a),f(a)) и (g(b),f(b)). Тангенс угла наклона этой хорды равен $k=\frac{f(b)-f(a)}{g(b)-g(a)}$. Согласно теореме Коши найдется точка $\xi\in(a,b)$ такая, что $\frac{f'(\xi)}{g'(\xi)}=k$. Используя формулу (1) § 2 для вычисления производной функции, заданной параметрически, получаем, что в точке $t=\xi$ справедливы равенства $y'_x=\frac{y'_t}{x'_t}=\frac{f'_t}{g'_t}=k$. Следовательно, в точке $(g(\xi),f(\xi))$ тангенс угла наклона касательной к графику функции y(x) равен тангенсу угла наклона хорды. Таким образом, теорема Коши утверждает, что на графике функции, заданной параметрически, найдется точка, в которой касательная параллельна хорде.

Теорема 4. (Теорема Лагранжа о среднем.) Пусть функция f непрерывна на [a,b] и дифференцируема на (a,b). Тогда существует точка $\xi \in (a,b)$, для которой справедлива формула конечных приращений Лагранжа: $f(b) - f(a) = f'(\xi)(b-a)$.

Доказательство состоит в применении теоремы Коши о среднем для функций f(x) и g(x) = x.

Геометрическая интерпретация теоремы Лагранжа состоит в том, что для функции $f:[a,b] \to \mathbb{R}$, удовлетворяющей условиям этой теоремы, найдется точка $\xi \in (a,b)$, в которой касательная к графику f параллельна хорде.

Задача 1. Существует ли функция $f:\mathbb{R}\to\mathbb{R}$ с непрерывной производной такая, что

$$\forall \delta > 0 \ \exists x_1, x_2 \in (0, \delta) : \quad f(x_1) \ge x_1, \quad f(x_2) \le -x_2?$$

Задача 2. Пусть функция f дифференцируема на интервале (a,b) и $\forall x \in (a,b) \hookrightarrow f'(x) \neq 0$. Обязана ли функция f' сохранять знак на (a,b)?

Следствие из теоремы Лагранжа о среднем.

- (1) Пусть функция f непрерывна на отрезке $[x_0, x_0 + \delta]$ и дифференцируема на интервале $(x_0, x_0 + \delta)$. Пусть существует односторонний предел производной $f'(x_0+0)$. Тогда существует односторонняя производная $f'_+(x_0)$ и $f'_+(x_0) = f'(x_0 + 0)$.
- (2) Пусть функция f непрерывна на отрезке $[x_0 \delta, x_0]$ и дифференцируема на интервале $(x_0 \delta, x_0)$. Пусть существует односторонний предел производной $f'(x_0 0)$. Тогда существует односторонняя производная $f'_-(x_0)$ и $f'_-(x_0) = f'(x_0 0)$.

(3) Пусть функция f непрерывна в $U_{\delta}(x_0)$ и дифференцируема в $\overset{o}{U}_{\delta}(x_0)$. Пусть существует предел производной $\lim_{x \to x_0} f'(x)$. Тогда существует производная $f'(x_0)$ и $f'(x_0) = \lim_{x \to x_0} f'(x)$.

Доказательство. Докажем пункт (1). По теореме Лагранжа о среднем для любой точки $x \in (x_0; x_0 + \delta)$ существует точка $\xi(x) \in (x_0; x)$ такая, что $\frac{f(x)-f(x_0)}{x-x_0}=f'(\xi(x))$. По теореме о трех функциях имеем $\lim_{x\to x_0+0}\xi(x)=x_0$. Используя теорему о пределе сложной функции для одностороннего предела, аналогичную теореме 2(a) § 6 главы 2, получаем $\lim_{x\to x_0+0} f'(\xi(x)) = \lim_{\xi\to x_0+0} f'(\xi) = f'(x_0+0)$. Следовательно, существует

$$f'_{+}(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 + 0} f'(\xi(x)) = f'(x_0 + 0).$$

Доказательство пункта (2) аналогично. Пункт (3) следует из пунктов (1), (2).

Задача 3. Пусть функция f дифференцируема на интервале (a,b). Может ли f' на (a,b) иметь

- а) разрыв первого рода;
- б) разрыв второго рода?

§ 5. Формула Тейлора

Определение. Пусть $\exists f^{(n)}(x_0) \in \mathbb{R}$. Тогда

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k =$$

$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

называется *многочленом Тейлора* функции f в точке x_0 ;

 $r_n(x) = f(x) - P_n(x)$ называется остаточным членом в формуле Тейлора:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(x).$$

Лемма 1. Пусть
$$k \in \mathbb{N}$$
, $\varphi_k(x) = (x - x_0)^k$. Тогда (1) $\varphi_k^{(s)}(x) = \begin{cases} \frac{k!}{(k-s)!} (x - x_0)^{k-s} & npu \quad s \in \{0, ..., k\}, \\ 0 & npu \quad s > k; \end{cases}$

(2)
$$\varphi_k^{(s)}(x_0) = \begin{cases} 0 & npu \quad s \neq k, \\ k! & npu \quad s = k. \end{cases}$$

Доказательство. (1) $\varphi_k'(x) = k(x-x_0)^{k-1}$, $\varphi_k''(x) = k(k-1)(x-x_0)^{k-2}$ и так далее, при $s \leq k$: $\varphi_k^{(s)}(x) = k(k-1)...(k-(s-1))(x-x_0)^{k-s} = \frac{k!}{(k-s)!}(x-x_0)^{k-s}$. Следовательно, $\varphi_k^{(k)}(x) = k!$ и $\varphi_k^{(s)}(x) = 0$ при s > k.

Пункт (2) следует из пункта (1).

Лемма 2. Пусть $\exists f^{(n)}(x_0) \in \mathbb{R}$. Тогда $\forall s \in \{0,...,n\} \hookrightarrow r_n^{(s)}(x_0) = 0$.

Доказательство. Заметим, что

$$P_n^{(s)}(x) = \left(\sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \varphi_k(x)\right)^{(s)} = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \varphi_k^{(s)}(x).$$

Из леммы 1(2) следует, что при $s \leq n$:

$$P_n^{(s)}(x_0) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \varphi_k^{(s)}(x_0) = f^{(s)}(x_0),$$

а значит, $r_n^{(s)}(x_0) = f^{(s)}(x_0) - P_n^{(s)}(x_0) = 0.$

Определение. Будем говорить, что число ξ лежит строго между числами x_0 и x, если $x < \xi < x_0$ или $x_0 < \xi < x$.

Теорема 1. (Формула Тейлора с остаточным членом в форме Пеано.) $\Pi ycmb \ \exists f^{(n)}(x_0) \in \mathbb{R}, \ mor\partial a$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n) \quad npu \quad x \to x_0.$$

Доказательство. Требуется доказать, что $r_n(x) = o((x-x_0)^n)$ при $x \to x_0$, то есть

$$\lim_{x \to x_0} \frac{r_n(x)}{\varphi_n(x)} = 0,\tag{1}$$

где $\varphi_n(x) = (x - x_0)^n$. Поскольку $\exists f^{(n)}(x_0) \in \mathbb{R}$, то существует окрестность $U_\delta(x_0)$, в которой определена $f^{(n-1)}$, а значит, и $f^{(k)}$ при всех $k \in \{0,\ldots,n-1\}$. Так как $r_n(x_0) = 0$, $\varphi_n(x_0) = 0$, то по теореме Коши о

среднем $\forall x \in \overset{o}{U}_{\delta}(x_0)$ существует число ξ_1 , лежащее строго между x и x_0 , такое, что

$$\frac{r_n(x)}{\varphi_n(x)} = \frac{r_n(x) - r_n(x_0)}{\varphi_n(x) - \varphi_n(x_0)} = \frac{r'_n(\xi_1)}{\varphi'_n(\xi_1)}.$$

Согласно леммам 1, 2 имеем $r_n'(x_0) = r_n^{(n-1)}(x_0) = 0$, $\varphi_n'(x_0) = \varphi_n^{(n-1)}(x_0) = 0$. Поэтому по теореме Коши о среднем найдется число ξ_2 , лежащее строго между ξ_1 и x_0 (а значит, лежащее строго между x и x_0), такое, что

$$\frac{r_n(x)}{\varphi_n(x)} = \frac{r'_n(\xi_1)}{\varphi'_n(\xi_1)} = \frac{r'_n(\xi_1) - r'_n(x_0)}{\varphi'_n(\xi_1) - \varphi'_n(x_0)} = \frac{r''_n(\xi_2)}{\varphi''_n(\xi_2)}.$$

Продолжая эти рассуждения, для любого $x\in \overset{o}{U}_{\delta}(x_0)$ получаем $\xi_{n-1}==\xi_{n-1}(x)$, лежащее строго между x и x_0 , такое, что

$$\frac{r_n(x)}{\varphi_n(x)} = \frac{r_n^{(n-1)}(\xi_{n-1})}{\varphi_n^{(n-1)}(\xi_{n-1})}.$$

Так как $r_n^{(n-1)}(x_0)=0,\, \varphi_n^{(n-1)}(x)=n!\;(x-x_0),$ то

$$\frac{r_n(x)}{\varphi_n(x)} = \frac{r_n^{(n-1)}(\xi_{n-1}) - r_n^{(n-1)}(x_0)}{n! (\xi_{n-1} - x_0)}.$$

Поскольку $\lim_{x\to x_0}\xi_{n-1}(x)=x_0$ и $\forall x\in \overset{\circ}{U}_{\delta}(x_0)\hookrightarrow \xi_{n-1}(x)\neq x_0$, то по теореме о пределе сложной функции имеем

$$\lim_{x \to x_0} \frac{r_n(x)}{\varphi_n(x)} = \frac{1}{n!} \lim_{x \to x_0} \frac{r_n^{(n-1)}(\xi_{n-1}(x)) - r_n^{(n-1)}(x_0)}{\xi_{n-1}(x) - x_0} =$$

$$= \frac{1}{n!} \lim_{\xi \to x_0} \frac{r_n^{(n-1)}(\xi) - r_n^{(n-1)}(x_0)}{\xi - x_0}.$$

Отсюда по определению производной получаем

$$\lim_{x \to x_0} \frac{r_n(x)}{\varphi_n(x)} = \frac{1}{n!} \ r_n^{(n)}(x_0). \tag{2}$$

Поскольку согласно лемме 2 справедливо равенство $r_n^{(n)}(x_0) = 0$, то из равенства (2) следует равенство (1).

Теорема 2. (Формула Тейлора с остаточным членом в форме Лагранжа.) Пусть в некоторой $U_{\delta}(x_0)$ существует $f^{(n+1)}(x)$. Тогда $\forall x \in \stackrel{o}{\in} U_{\delta}(x_0)$ $\exists \xi$, лежащее строго между x и x_0 , такое, что

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Доказательство. Пусть $\varphi_{n+1}(x)=(x-x_0)^{n+1}$. Применяя n+1 раз теорему Коши о среднем и используя леммы 1, 2, для любого $x\in \overset{o}{U}_{\delta}(x_0)$ получаем существование чисел ξ_1,\ldots,ξ_{n+1} , лежащих строго между x и x_0 и таких, что

$$\frac{r_n(x)}{\varphi_{n+1}(x)} = \frac{r'_n(\xi_1)}{\varphi'_{n+1}(\xi_1)} = \dots = \frac{r_n^{(n+1)}(\xi_{n+1})}{\varphi_{n+1}^{(n+1)}(\xi_{n+1})}.$$

Поскольку $P_n(x)$ – многочлен степени n, то $\forall x \in \mathbb{R} \hookrightarrow P_n^{(n+1)}(x) = 0$. Следовательно, $\forall x \in \mathbb{R} \hookrightarrow f^{(n+1)}(x) = r_n^{(n+1)}(x)$. Поэтому, используя соотношение $\forall x \in \mathbb{R} \hookrightarrow \varphi_{n+1}^{(n+1)}(x) = (n+1)!$ и обозначая $\xi = \xi_{n+1}$, получаем

$$\frac{r_n(x)}{\varphi_{n+1}(x)} = \frac{f^{(n+1)}(\xi)}{(n+1)!}.$$

Итак,

$$f(x) - P_n(x) = r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \varphi_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Теорема 3. (Единственность разложения по формуле Тейлора.) $\Pi y cmb \ \exists f^{(n)}(x_0) \in \mathbb{R} \ u \ ny cmb \ npu \ x \to x_0$

$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n) =$$

$$= a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + o((x - x_0)^n).$$

 $Torda \ \forall k \in \{0, ..., n\} \quad a_k = \frac{f^{(k)}(x_0)}{k!}.$

Доказательство. В силу теоремы 1 справедлива формула Тейлора с остаточным членом в форме Пеано, следовательно,

$$a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + o((x - x_0)^n) =$$

$$= f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n).$$

Переходя к пределу при $x \to x_0$, получаем $a_0 = f(x_0)$. Отбросив в левой и правой частях одинаковые слагаемые a_0 и $f(x_0)$ и разделив обе части полученного равенства на $x - x_0$, получаем

$$a_1 + a_2(x - x_0) + \dots + a_n(x - x_0)^{n-1} + o((x - x_0)^{n-1}) =$$

$$= f'(x_0) + \frac{f''(x_0)}{2}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^{n-1} + o((x - x_0)^{n-1}).$$

Переходя в этом равенстве к пределу при $x \to x_0$, находим $a_1 = f'(x_0)$. Продолжая эти рассуждения по индукции, получаем утверждение теоремы.

Задача 1. Пусть $f(x) = f(x_0) + a_1(x-x_0) + a_2(x-x_0)^2 + o((x-x_0)^2),$ $x \to x_0$. Верно ли, что

- a) $\exists f'(x_0);$
- б) $\exists f''(x_0)$?

Теорема 4. (О почленном дифференцировании формулы Тейлора.) Пусть $\exists f^{(n)}(x_0) \in \mathbb{R} \ u \ nycmb$

$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n) \ npu \ x \to x_0. \ Torda$$
$$f'(x) = \sum_{k=1}^{n} a_k k (x - x_0)^{k-1} + o((x - x_0)^{n-1}) \ npu \ x \to x_0.$$

Доказательство. По теореме о единственности разложения Тейлора $\forall k \in \{0,...,n\} \hookrightarrow a_k = \frac{f^{(k)}(x_0)}{k!}$. В силу теоремы 1, примененной к функции g(x) = f'(x),

$$f'(x) = \sum_{k=0}^{n-1} \frac{g^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^{n-1}) =$$

$$= \sum_{k=0}^{n-1} \frac{f^{(k+1)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^{n-1}) =$$

$$= \sum_{k=0}^{n-1} a_{k+1}(k+1)(x-x_0)^k + o((x-x_0)^{n-1}) \stackrel{k=s-1}{=}$$

$$= \sum_{s=1}^n a_s s(x-x_0)^{s-1} + o((x-x_0)^{n-1}) \stackrel{s=k}{=}$$

$$= \sum_{k=1}^n a_k k(x-x_0)^{k-1} + o((x-x_0)^{n-1}).$$

Теорема 5. (О почленном интегрировании формулы Тейлора.) $\Pi ycmb \ \exists f^{(n+1)}(x_0) \ u \ nycmb$

$$f'(x) = \sum_{k=0}^{n} b_k (x - x_0)^k + o((x - x_0)^n) \quad npu \ x \to x_0. \quad Torda$$
$$f(x) = f(x_0) + \sum_{k=0}^{n} \frac{b_k}{k+1} (x - x_0)^{k+1} + o((x - x_0)^{n+1}) \quad npu \ x \to x_0.$$

Доказательство аналогично доказательству теоремы 4.

§ 6. Разложение основных элементарных функций по формуле Тейлора

Из теоремы о разложении Тейлора с остаточным членом в форме Пеано при $x_0=0$ следует

Теорема 1. (Формула Маклорена.) Если $\exists f^{(n)}(0) \in \mathbb{R}, mo$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + o(x^n)$$
 npu $x \to 0$.

Пемма 1. Пусть f – дифференцируемая функция. Тогда

- 1) если f четная, то f' нечетная функция;
- 2) если f нечетная, то f' четная функция.

Доказательство. 1) Пусть
$$f$$
 — четная функция, т. е. $f(-x) = f(x)$. Так как $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$, то $f'(-x) = \lim_{\Delta x \to 0} \frac{f(-x + \Delta x) - f(-x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x - \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x - \Delta x) - f(x)}{\Delta x}$ $t = -\Delta x = \lim_{t \to 0} \frac{f(x + t) - f(x)}{-t} = -f'(x)$. Итак, $\forall x \hookrightarrow f'(-x) = -f'(x)$, т. е. f' — нечетная функция.

Доказательство пункта 2 – аналогично.

Лемма 2. 1. Пусть функция f четная u пусть $\exists f^{(2n+1)}(0)$. Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(2k)}(0)}{(2k)!} x^{2k} + o(x^{2n+1}), \quad x \to 0.$$

2. Пусть функция f нечетная и пусть $\exists f^{(2n+2)}(0)$. Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(2k+1)}(0)}{(2k+1)!} x^{2k+1} + o(x^{2n+2}), \quad x \to 0.$$

Доказательство. 1. Так как f(x) – четная функция, то f'(x) – нечетная, следовательно, f''(x) – четная и так далее: $\forall k \in \mathbb{N} \hookrightarrow f^{(2k)}(x)$ – четная, $f^{(2k-1)}(x)$ – нечетная. Так как $f^{(2k-1)}(x)$ – нечетные, то $f^{(2k-1)}(0) = -f^{(2k-1)}(0)$, т. е. $f^{(2k-1)}(0) = 0$. По теореме 1 имеем $f(x) = P_{2n+1}(x) + o(x^{2n+1})$ при $x \to 0$, где

$$P_{2n+1}(x) = \sum_{s=0}^{2n+1} \frac{f^{(s)}(0)}{s!} x^{s} =$$

$$= \sum_{s=0,2,4,\dots,2n} \frac{f^{(s)}(0)}{s!} x^{s} + \sum_{s=1,3,5,\dots,2n+1} \frac{f^{(s)}(0)}{s!} x^{s} =$$

$$= \sum_{s=0,2,4,\dots,2n} \frac{f^{(s)}(0)}{s!} x^{s} \stackrel{s=2k}{=} \sum_{k=0}^{n} \frac{f^{(2k)}(0)}{(2k)!} x^{2k}.$$

2. Доказательство второго пункта аналогично.

Экспонента. Если $f(x) = e^x$, то $\forall n \in \mathbb{N} \bigcup \{0\} \hookrightarrow f^{(n)}(0) = e^0 = 1$, следовательно,

$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n), \quad x \to 0.$$

Гиперболические функции. Если $f(x) = \operatorname{sh} x$, то $f^{(2k)}(x) = \operatorname{sh} x$, $f^{(2k+1)}(x) = \operatorname{ch} x$, следовательно, $f^{(2k)}(0) = 0$, $f^{(2k+1)}(0) = 1$,

$$\operatorname{sh} x = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) =$$

$$= x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}), \quad x \to 0.$$

Аналогично,

$$\operatorname{ch} x = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) =$$

$$= 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1}), \quad x \to 0.$$

Тригонометрические функции. Если $f(x) = \sin x$, то $f^{(s)}(x) = \sin \left(x + \frac{\pi}{2}s\right)$, $f^{(2k)}(0) = \sin(\pi k) = 0$, $f^{(2k+1)}(0) = \sin\left(\frac{\pi}{2} + \pi k\right) = (-1)^k$, следовательно,

$$\sin x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) =$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}), \quad x \to 0.$$

Аналогично,

$$\cos x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) =$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}), \quad x \to 0.$$

Степенная функция. Если $f(x)=(1+x)^{\alpha}$, то $f^{(k)}(x)=\alpha(\alpha-1)...(\alpha-(k-1))(1+x)^{\alpha-k}$, следовательно, $f^{(k)}(0)=\alpha(\alpha-1)...(\alpha-(k-1))$. Обозначим

$$C_{\alpha}^{0} = 1$$
, $C_{\alpha}^{k} = \frac{\alpha(\alpha - 1)...(\alpha - (k - 1))}{k!}$, $k \in \mathbb{N}$.

Тогда

$$(1+x)^{\alpha} = \sum_{k=0}^{n} C_{\alpha}^{k} x^{k} + o(x^{n}), \quad x \to 0.$$

Отметим важный частный случай последней формулы:

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n), \quad x \to 0.$$

Логарифм. Если $f(x) = \ln(1+x)$, то $f'(x) = \frac{1}{1+x} = \sum_{k=0}^{n-1} (-1)^k x^k + o(x^n)$, $x \to 0$, следовательно, по теореме о почленном интегровании

формулы Тейлора, с учетом ln(1) = 0, получаем

$$f(x) = \sum_{k=0}^{n-1} (-1)^k \frac{x^{k+1}}{k+1} + o(x^n) = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} + o(x^n) =$$
$$= x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n), \quad x \to 0.$$

Арктангенс. Если $f(x)=\arctan x$, то $f'(x)=\frac{1}{1+x^2}=\sum_{k=0}^n (-1)^k x^{2k}+o(x^{2n+1}), \quad x\to 0$, следовательно, по теореме о почленном интегровании формулы Тейлора, с учетом $\arctan 0=0$, получаем

$$\operatorname{arctg} x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{2k+1} + o(x^{2n+2}) =$$

$$= x - \frac{x^3}{3} + \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + o(x^{2n+2}), \quad x \to 0.$$

Замечание. Если требуется разложить функцию f(x) в окрестности точки $x_0 \neq 0$, то прежде всего нужно сделать замену переменной: $t = x - x_0$, затем разложить функцию $\varphi(t) = f(x_0 + t)$ по формуле Маклорена в окрестности точки t = 0, после чего вернуться к исходным переменным, подставив $t = x - x_0$.

Пример 1. Разложить $\ln x$ по формуле Тейлора в окрестности точки $x_0, x_0 > 0$.

Решение.
$$\ln x \stackrel{t=x-x_0}{=} \ln(x_0+t) = \ln(x_0(1+t/x_0)) = \ln x_0 + \ln(1+t/x_0)$$
. Так как $\ln(1+x) = \sum_{k=1}^n (-1)^{k+1} \frac{x^k}{k} + o(x^n), \quad x \to 0$, то $\ln x = \ln x_0 + \sum_{k=1}^n \frac{(-1)^{k+1} t^k}{x_0^k k} + o(t^n) = \ln x_0 + \sum_{k=1}^n \frac{(-1)^{k+1} (x-x_0)^k}{x_0^k k} + o((x-x_0)^n), \quad x \to x_0.$

Заметим, что разложение $\ln x = \ln(1+(x-1)) = \sum_{k=1}^n \frac{(-1)^{k+1}(x-1)^k}{k} + o((x-1)^n)$ при $x_0 \neq 1$ не является решением данной задачи, так как $x-1 \not\to 0$ при $x \to x_0$.

Пример 2. Разложить по формуле Маклорена до $o(x^4)$ функцию $\operatorname{tg} x$.

Решение. $\lg x = \frac{\sin x}{\cos x}$. При $x \to 0$: $\sin x = x - \frac{1}{3!}x^3 + o(x^4)$; $\frac{1}{\cos x} = \frac{1}{1-x^2/2+o(x^3)} = \frac{1}{1+y(x)}$, где $y(x) = -x^2/2+o(x^3)$. Так как $y(x) \to 0$ при $x \to 0$, то $\frac{1}{1+y(x)} = -y(x) + y^2(x) + o(y^2(x))$ при $x \to 0$. Следовательно, $\frac{1}{\cos x} = 1 - (-x^2/2+o(x^3)) + (-x^2/2+o(x^3))^2 + o((-x^2/2+o(x^3))^2) = 1 + x^2/2 + o(x^3)$, поэтому $\lg x = (x - \frac{1}{3!}x^3 + o(x^4))(1 + \frac{1}{2}x^2 + o(x^3)) = x - \frac{1}{6}x^3 + \frac{1}{2}x^3 + o(x^4) = x + \frac{1}{3}x^3 + o(x^4)$.

Пример 3. Найти $\lim_{x\to 0} \frac{\operatorname{tg} x - x}{\sin x - \sin x}$.

Решение. Так как при $x \to 0$: $\operatorname{tg} x = x + x^3/3 + o(x^4)$, $\sin x = x - x^3/6 + o(x^4)$, $\operatorname{sh} x = x + x^3/6 + o(x^4)$, то $\frac{\operatorname{tg} x - x}{\sin x - \operatorname{sh} x} = \frac{x^3/3 + o(x^4)}{-x^3/3 + o(x^4)} = \frac{1 + o(x)}{-1 + o(x)} = -1 + o(1)$, следовательно, $\lim_{x \to 0} \frac{\operatorname{tg} x - x}{\sin x - \operatorname{sh} x} = -1$.

§ 7. Правило Лопиталя

Теорема 1. (Неопределенность вида $\frac{0}{0}$.) Пусть функции f(x) и g(x) дифференцируемы на интервале (a,b),

$$\lim_{x \to a+0} f(x) = 0, \quad \lim_{x \to a+0} g(x) = 0 \quad u \quad \forall x \in (a,b) \hookrightarrow g'(x) \neq 0.$$

Пусть

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = C \in \overline{\mathbb{R}}.$$

Тогда существует

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)}.$$

Доказательство. Доопределим функции f(x) и g(x) в точке a, полагая f(a) = g(a) = 0. Тогда функции f и g будут непрерывны на [a,b). По теореме Коши о среднем

$$\forall x \in (a,b) \ \exists \xi = \xi(x) \in (a,x): \quad \frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Так как $\lim_{x \to a+0} \xi(x) = a$ и $\xi(x) \neq a$, то по теореме о пределе сложной функции $\lim_{x \to a+0} \frac{f'(\xi(x))}{g'(\xi(x))} = \lim_{\xi \to a+0} \frac{f'(\xi)}{g'(\xi)} = C$, следовательно, $\lim_{x \to a+0} \frac{f(x)}{g(x)} = C$.

Следствие 1. Пусть функции f(x) и g(x) дифференцируемы на луче $(A, +\infty)$,

$$\lim_{x\to +\infty} f(x)=0, \quad \lim_{x\to +\infty} g(x)=0 \quad \mathbf{u}$$

$$\forall x\in (A,+\infty) \hookrightarrow \ g'(x)\neq 0.$$

Пусть

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = C \in \overline{\mathbb{R}}.$$

Тогда существует

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Доказательство. Введем переменную $t=\frac{1}{x}$ и рассмотрим функции $f_1(t)=f(1/t),\ g_1(t)=g(1/t).$ Определим $A_1=\max\{A,1\}.$ Тогда функции f_1 и g_1 дифференцируемы на интервале $\left(0,\frac{1}{A_1}\right)$. Заметим, что $\lim_{t \to +0} f_1(t) = \lim_{x \to +\infty} f(x) = 0, \quad \lim_{t \to +0} g_1(t) = 0,$

$$\forall t \in \left(0, \frac{1}{A_1}\right) \hookrightarrow f_1'(t) = -\frac{f'(1/t)}{t^2}, \quad g_1'(t) = -\frac{g'(1/t)}{t^2} \neq 0,$$

$$\lim_{t \to +0} \frac{f_1'(t)}{g_1'(t)} = \lim_{t \to +0} \frac{f'(1/t)}{g'(1/t)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = C.$$

Поэтому по теореме 1 существует $\lim_{t\to+0}\frac{f_1(t)}{g_1(t)}=C$, т.е. существует $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = C.$ Аналогично можно сформулировать теорему для раскрытия неопре-

деленности вида $\frac{0}{0}$ при $x \to b - 0$, $x \to x_0$ и при $x \to -\infty$.

Теорема 2. (Неопределенность вида $\frac{\infty}{\infty}$.) Пусть функции f(x) и g(x) дифференцируемы на интервале (a,b),

$$\lim_{x \to a+0} |f(x)| = +\infty, \quad \lim_{x \to a+0} |g(x)| = +\infty \quad u$$

$$\forall x \in (a, b) \hookrightarrow g'(x) \neq 0.$$

 $\Pi ycmb$

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = C \in \mathbb{R}.$$

Тогда существует

$$\lim_{x\to a+0}\frac{f(x)}{g(x)}=\lim_{x\to a+0}\frac{f'(x)}{g'(x)}.$$

Доказательство. Зафиксируем произвольное $\varepsilon>0$. Так как $\lim_{x\to a+0} \frac{f'(x)}{g'(x)}=C$, то

$$\exists a_{\varepsilon} \in (a,b): \ \forall \xi \in (a,a_{\varepsilon}) \hookrightarrow \left| \frac{f'(\xi)}{g'(\xi)} - C \right| < \frac{\varepsilon}{2}. \tag{1}$$

В силу теоремы Коши о среднем для любого $x \in (a, a_{\varepsilon})$ существует число $\xi \in (x, a_{\varepsilon})$ такое, что $\frac{f(x) - f(a_{\varepsilon})}{g(x) - g(a_{\varepsilon})} = \frac{f'(\xi)}{g'(\xi)}$. Для любого $x \in (a, a_{\varepsilon})$ обозначим

$$H(x) = \frac{f(x) - f(a_{\varepsilon})}{g(x) - g(a_{\varepsilon})}.$$

Тогда в силу соотношения (1) имеем

$$\forall x \in (a, a_{\varepsilon}) \hookrightarrow |H(x) - C| < \frac{\varepsilon}{2}.$$
 (2)

Покажем, что

$$\lim_{x \to a+0} \left(H(x) - \frac{f(x)}{g(x)} \right) = 0. \tag{3}$$

Действительно,

$$H(x) - \frac{f(x)}{g(x)} = H(x) \left(1 - \frac{g(x) - g(a_{\varepsilon})}{f(x) - f(a_{\varepsilon})} \frac{f(x)}{g(x)} \right) = H(x) \left(1 - \frac{1 - \frac{g(a_{\varepsilon})}{g(x)}}{1 - \frac{f(a_{\varepsilon})}{f(x)}} \right).$$

Из соотношения (2) следует, что функция H(x) ограничена. Поскольку $\lim_{x\to a+0}|f(x)|=+\infty$ и $\lim_{x\to a+0}|g(x)|=+\infty$, то $\lim_{x\to a+0}\frac{f(a_\varepsilon)}{f(x)}=0$ и $\lim_{x\to a+0}\frac{g(a_\varepsilon)}{g(x)}=0$. Следовательно, $\lim_{x\to a+0}\left(1-\frac{1-g(a_\varepsilon)/g(x)}{1-f(a_\varepsilon)/f(x)}\right)=0$. Поэтому функция $H(x)-\frac{f(x)}{g(x)}$ при $x\to a+0$ является бесконечно малой как произведение ограниченной функции на бесконечно малую. Таким образом, соотношение (3) справедливо. Из соотношения (3) следует существование числа $\tilde{a}_\varepsilon\in(a,a_\varepsilon)$ такого, что

$$\forall x \in (a, \tilde{a}_{\varepsilon}) \hookrightarrow \left| H(x) - \frac{f(x)}{g(x)} \right| < \frac{\varepsilon}{2}.$$

Отсюда и из соотношения (2) получаем

$$\forall x \in (a, \tilde{a}_{\varepsilon}) \hookrightarrow \left| \frac{f(x)}{g(x)} - C \right| < \varepsilon.$$

Поэтому существует $\lim_{x\to a+0} \frac{f(x)}{g(x)} = C$.

Следствие 2. Пусть функции f(x) и g(x) дифференцируемы на луче $(A, +\infty),$

$$\lim_{x\to +\infty} f(x) = \infty, \quad \lim_{x\to +\infty} g(x) = \infty \quad \mathsf{u}$$

$$\forall x \in (A, +\infty) \hookrightarrow g'(x) \neq 0.$$

Пусть

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = C \in \mathbb{R}.$$

Тогда существует

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Доказательство следствия 2 аналогично доказательству следствия 1.

Аналогично можно сформулировать теорему для раскрытия неопределенности вида $\frac{\infty}{\infty}$ при $x \to b - 0$, $x \to x_0$ и при $x \to -\infty$.

Теорема 3. (a)
$$\forall \alpha > 0 \hookrightarrow \ln x = o(x^{\alpha}) \ npu \ x \to +\infty;$$
 (б) $\forall \alpha > 0 \hookrightarrow x^{\alpha} = o(e^{x}) \ npu \ x \to +\infty.$

Доказательство. (a) В силу следствия 2 имеем $\lim_{x\to +\infty} \frac{\ln x}{x^{\alpha}} =$

 $= \lim_{x \to +\infty} \frac{1/x}{\alpha x^{\alpha - 1}} = \lim_{x \to +\infty} \frac{1}{\alpha x^{\alpha}} = 0.$ (б) Определим $y(x) = e^x$, $\beta = 1/\alpha$, тогда в силу пункта (а) $\lim_{y \to +\infty} \frac{(\ln y)}{y^{\beta}} = 0$ и, следовательно, $\lim_{x \to +\infty} \frac{x^{\alpha}}{e^x} = \lim_{x \to +\infty} \frac{(\ln y(x))^{\alpha}}{y(x)} = 0$ $= \lim_{\substack{y \to +\infty \\ -}} \left(\frac{\ln y}{y^{\beta}}\right)^{\alpha} = 0.$

Теорема 3 показывает, что при $x \to +\infty$ степенная функция растет быстрее логарифмической, а экспонента растет быстрее степенной.

§ 8. Исследование функций с помощью производных

Теорема 1. Пусть функция f непрерывна на [a,b] и дифференцируема на (a,b). Тогда

- 1) $\forall x \in (a,b) \hookrightarrow f'(x) \geq 0 \Leftrightarrow f \text{ нестрого возрастает на } [a,b];$
- 2) $\forall x \in (a,b) \hookrightarrow f'(x) \leq 0 \quad \Leftrightarrow \quad f$ нестрого убывает на [a,b];
- 3) если $\forall x \in (a,b) \hookrightarrow f'(x) > 0$, то f строго возрастает на [a,b];
- 4) если $\forall x \in (a,b) \hookrightarrow f'(x) < 0$, то f строго убывает на [a,b].

Доказательство. 1) а) Пусть $\forall x \in (a,b) \hookrightarrow f'(x) \geq 0$. Покажем, что функция f нестрого возрастает на [a,b]. Пусть заданы произвольные $x_1, x_2 \in [a,b]$: $x_1 < x_2$. Требуется доказать, что $f(x_2) \geq f(x_1)$. По теореме Лагранжа о среднем $\exists \xi \in (x_1, x_2)$: $f(x_2) - f(x_1) = (x_2 - x_1)f'(\xi)$. Так как $f'(\xi) \geq 0$, то $f(x_2) \geq f(x_1)$.

б) Пусть функция f нестрого возрастает на [a,b]. Зафиксируем произвольную точку $x_0 \in (a,b)$ и покажем, что $f'(x_0) \geq 0$. Так как f нестрого возрастает на [a,b], то для любой точки $x \in [a,b]$ такой, что $x \neq x_0$, справедливо неравенство $\frac{f(x)-f(x_0)}{x-x_0} \geq 0$. В силу теоремы о предельном переходе в неравенствах получаем $f'(x_0) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} \geq 0$.

Пункт 2) доказывается аналогично. Доказательство пунктов 3), 4) аналогично доказательству пункта 1) а). \Box

Замечание. Из строгого возрастания дифференцируемой функции f не следует неравенство f'(x) > 0. Например, функция $f(x) = x^3$ строго возрастает, но f'(0) = 0.

Теорема 2. (Достаточное условие экстремума в терминах первой производной.) Пусть функция f непрерывна в некоторой $U_{\delta}(x_0)$ и дифференцируема в $U_{\delta}(x_0)$. Тогда

- 1) если $\forall x \in (x_0 \delta, x_0) \hookrightarrow f'(x) > 0$ и $\forall x \in (x_0, x_0 + \delta) \hookrightarrow f'(x) < 0$ (т. е. производная меняет знак с плюса на минус), то x_0 точка строгого локального максимума f;
- 2) если $\forall x \in (x_0 \delta, x_0) \hookrightarrow f'(x) < 0$ и $\forall x \in (x_0, x_0 + \delta) \hookrightarrow f'(x) > 0$ (т. е. производная меняет знак с минуса на плюс), то x_0 точка строгого локального минимума f.

Доказательство. Если выполнено условие пунка 1), то по теореме 1 функция f строго убывает на $[x_0 - \delta/2, x_0]$ и строго возрастает на $[x_0, x_0 + \delta/2]$. Следовательно, x_0 – точка строгого локального минимума f. Доказательство пункта 2) аналогично.

Аналогично можно сформулировать достаточные условия нестрогого экстремума.

Теорема 3. (Достаточное условие экстремума в терминах производных высших порядков.) Пусть в некоторой окрестности точки x_0 определена функция f такая, что $\exists f^{(n)}(x_0) \in \mathbb{R}$, пусть $\forall k \in \overline{1, n-1} \hookrightarrow f^{(k)}(x_0) = 0$ и $f^{(n)}(x_0) \neq 0$. Тогда

- 1) если n четно, то $npu\ f^{(n)}(x_0) > 0$ x_0 является точкой строгого локального минимума функции f, $npu\ f^{(n)}(x_0) < 0$ x_0 является точкой строгого локального максимума функции f;
- 2) если n нечетно, то x_0 не является точкой (нестрогого) локального экстремума функции f.

Доказательство. В силу формулы Тейлора с остаточным членом в форме Пеано имеем $f(x) = f(x_0) + \frac{1}{n!} f^{(n)}(x_0) (x - x_0)^n + o((x - x_0)^n)$ при $x \to x_0$. Следовательно, $\frac{f(x) - f(x_0)}{(x - x_0)^n} = \frac{1}{n!} f^{(n)}(x_0) + o(1)$ при $x \to x_0$, т. е. $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{(x - x_0)^n} = \frac{1}{n!} f^{(n)}(x_0)$. По лемме о сохранении знака существует число $\delta > 0$ такое, что при $x \in \overset{o}{U}_{\delta}(x_0)$ величина $\frac{f(x) - f(x_0)}{(x - x_0)^n}$ имеет тот же знак, что и знак числа $f^{(n)}(x_0)$. Пусть, например, $f^{(n)}(x_0) > 0$. Тогда

$$\forall x \in \overset{o}{U}_{\delta}(x_0) \hookrightarrow \frac{f(x) - f(x_0)}{(x - x_0)^n} > 0.$$

Поэтому в случае четного n $\forall x \in \overset{o}{U}_{\delta}(x_0) \hookrightarrow f(x) - f(x_0) > 0$, следовательно, x_0 — точка строгого локального минимума. В случае нечетного n: $\forall x \in (x_0 - \delta, x_0) \hookrightarrow f(x) - f(x_0) < 0$ и $\forall x \in (x_0, x_0 + \delta) \hookrightarrow f(x) - f(x_0) > 0$, следовательно, x_0 не является точкой нестрогого экстремума. Случай $f^{(n)}(x_0) < 0$ рассматривается аналогично.

Рассмотрим необходимые условия экстремума. Необходимым условием экстремума в терминах первой производной является теорема Ферма.

Теорема 4. (Необходимое условие экстремума в терминах второй производной.) Пусть функция f определена в некоторой $U_{\delta}(x_0)$ и $\exists f''(x_0)$. Тогда

- 1) если x_0 точка (нестрогого) локального минимума функции f, то $f'(x_0)=0,\ f''(x_0)\geq 0;$
- 2) если x_0 точка (нестрогого) локального максимума функции f, то $f'(x_0) = 0$, $f''(x_0) \le 0$.

Доказательство. Пусть x_0 — точка локального минимума. В силу теоремы Ферма $f'(x_0) = 0$. Если $f''(x_0) < 0$, то по теореме 3 x_0 является точкой строгого локального максимума и, следовательно, не может являться точкой (нестрогого) локального минимума. Полученное противоречие показывает, что $f''(x_0) \ge 0$. Доказательство пункта 2) аналогично.

Замечание. Из условия существования $f''(x_0)$ и того, что x_0 – точка строгого локального минимума не следует неравенство $f''(x_0) > 0$. Например, $x_0 = 0$ является точкой строгого минимума функции $f(x) = x^4$, но f''(0) = 0.

Определение. Функция $f:(a,b)\to\mathbb{R}$ называется выпуклой вниз, если каждая точка любой хорды к графику функции f лежит не ниже графика f. Функция $f:(a,b)\to\mathbb{R}$ называется выпуклой вверх, если каждая точка любой хорды к графику функции f лежит не выше графика f.

На рисунке изображен график выпуклой вниз функции.

Каждая точка хорды, соединяющей точки $(x_1,f(x_1))$ и $(x_2,f(x_2))$, может быть записана в виде $\Big(tx_1+(1-t)x_2,tf(x_1)+(1-t)f(x_2)\Big)$, где $t\in [0,1]$. Поэтому условие выпуклости вниз функции f на (a,b) можно записать в виде

$$\forall x_1, x_2 \in [a, b] \ \forall t \in [0, 1] \hookrightarrow f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2),$$

а условие выпуклости вверх функции f на (a,b) – в виде

$$\forall x_1, x_2 \in [a, b] \ \forall t \in [0, 1] \hookrightarrow \ f(tx_1 + (1 - t)x_2) \ge tf(x_1) + (1 - t)f(x_2).$$

Замечание. Если в последних двух формулах нестрогие неравенства заменить строгими, то получатся определения строгой выпуклости вниз и вверх.

Замечание. Нередко в литературе используется немного иная терминология: выпуклую вниз функцию называют выпуклой, а выпуклую вверх — вогнутой.

Задача 1. Пусть функция $f:(a,b)\to\mathbb{R}$ выпукла вниз. Доказать, что f непрерывна на (a,b).

17. Stopht

Задача 2. Пусть функция $f:(a,b)\to\mathbb{R}$ выпукла вниз и дифференцируема в точке x_0 . Доказать, что $\forall x\in(a,b)\hookrightarrow f(x)\geq y_{\mathbf{KAC}}(x)$, где $y_{\mathbf{KAC}}(x)=f(x_0)+f'(x_0)(x-x_0)$.

Теорема 5. Пусть функция f дважды дифференцируема на (a,b). Тогда

- 1) функция f выпукла вниз на $(a,b) \Leftrightarrow \forall x \in (a,b) \hookrightarrow f''(x) \geq 0$;
- 2) функция f выпукла вверх на $(a,b) \Leftrightarrow \forall x \in (a,b) \hookrightarrow f''(x) \leq 0$.

Доказательство. 1. а) Пусть функция f выпукла вниз на (a,b). Зафиксируем произвольное $x_0 \in (a,b)$ и покажем, что $f''(x_0) \geq 0$. Определим $\delta = \min\{x_0 - a, b - x_0\}$. Тогда $\forall u \in (-\delta, \delta)$ справедливы условия $x_0 \pm u \in (a,b)$. Применяя условие выпуклости вниз для $x_1 = x_0 - u$, $x_2 = x_0 + u$, $t = \frac{1}{2}$ и замечая, что $tx_1 + (1-t)x_2 = x_0$, получаем

$$f(x_0) \le \frac{1}{2}f(x_0 - u) + \frac{1}{2}f(x_0 + u) \quad \forall u \in (-\delta, \delta).$$
 (1)

Раскладывая по формуле Тейлора, имеем

 $f(x_0\pm u)=f(x_0)\pm \hat{f'}(x_0)\,u+\frac{1}{2}f''(x_0)\,u^2+o(u^2)$ при $u\to 0$, следовательно,

$$\frac{1}{2}f(x_0 - u) + \frac{1}{2}f(x_0 + u) = f(x_0) + \frac{1}{2}f''(x_0)u^2 + o(u^2).$$

Отсюда и из формулы (1) имеем

$$\frac{1}{2}f''(x_0)u^2 + o(u^2) = \frac{1}{2}f(x_0 - u) + \frac{1}{2}f(x_0 + u) - f(x_0) \ge 0.$$

Деля это неравенство на u^2 , получаем $\frac{1}{2}f''(x_0) + o(1) \ge 0$, где o(1) – это такая функция $\varphi(u)$, что $\lim_{u\to 0} \varphi(u) = 0$. Переходя к пределу при $u\to 0$, получаем $\frac{1}{2}f''(x_0) \ge 0$, т.е. $f''(x_0) \ge 0$.

б) Пусть $\forall x \in (a,b) \hookrightarrow f''(x) \geq 0$. Покажем, что функция f выпукла вниз на (a,b). Зафиксируем произвольные числа $t \in [0,1]$ и x_1,x_2 такие, что $a < x_1 < x_2 < b$. Обозначим $x_0 = tx_1 + (1-t)x_2$. Требуется доказать, что

$$f(x_0) \le t f(x_1) + (1 - t) f(x_2). \tag{2}$$

Если t=0 или t=1, то неравенство (2) тривиально выполняется (выполняется равенство). Поэтому будем предполагать, что $t \in (0,1)$.

В силу формулы Тейлора с остаточным членом в форме Лагранжа

$$\exists \xi_1 \in (x_1, x_0): \quad f(x_1) = f(x_0) + f'(x_0) (x_1 - x_0) + \frac{1}{2} f''(\xi_1) (x_1 - x_0)^2$$
 и $\exists \xi_2 \in (x_0, x_2): \quad f(x_2) = f(x_0) + f'(x_0) (x_2 - x_0) + \frac{1}{2} f''(\xi_2) (x_2 - x_0)^2$.

Поскольку $f''(\xi_1) \ge 0$ и $f''(\xi_2) \ge 0$, то $f(x_1) \ge f(x_0) + f'(x_0) (x_1 - x_0)$ и $f(x_2) \ge f(x_0) + f'(x_0) (x_2 - x_0)$, следовательно,

$$tf(x_1) + (1-t)f(x_2) \ge$$

$$\ge tf(x_0) + (1-t)f(x_0) + f'(x_0) \left(t(x_1 - x_0) + (1-t)(x_2 - x_0) \right) =$$

$$= f(x_0) + f'(x_0) \left(tx_1 + (1-t)x_2 - x_0 \right) \stackrel{\text{no ourp. } x_0}{=} f(x_0).$$

Поэтому справедливо неравенство (2).

Второе утверждение теоремы доказывается аналогично.

Определение. Точка x_0 называется точкой перегиба функции f, если

- 1) функция f определена и непрерывна в некоторой окрестности точки x_0 ,
- 2) существует $f'(x_0) \in \overline{\mathbb{R}}$, т.е. в точке x_0 существует касательная к графику функции f и
- 3) в точке x_0 меняется направление выпуклости функции f, т.е. существует число $\delta > 0$ такое, что на одном из интервалов $(x_0 \delta, x_0)$, $(x_0, x_0 + \delta)$ функция выпукла вниз, а на другом выпукла вверх.

 x_1, x_2 – точки перегиба f

Теорема 6. (Необходимые и достаточные условия точки перегиба.) Пусть функция f непрерывна в $U_{\delta_0}(x_0)$ и дважды дифференцируема в $\overset{o}{U}_{\delta_0}(x_0)$, пусть $\exists f'(x_0) \in \overline{\mathbb{R}}$. Тогда x_0 является точкой перегиба функции f в том и только в том случае, когда существует $\delta \in (0, \delta_0]$: либо $\forall x \in (x_0 - \delta, x_0) \hookrightarrow f''(x) \geq 0$ и $\forall x \in (x_0, x_0 + \delta) \hookrightarrow f''(x) \leq 0$, либо $\forall x \in (x_0 - \delta, x_0) \hookrightarrow f''(x) \leq 0$ и $\forall x \in (x_0, x_0 + \delta) \hookrightarrow f''(x) \geq 0$, т. е. вторая производная меняет знак в точке x_0 .

Доказательство следует непосредственно из теоремы 5 и определения точки перегиба.

Теорема 7. Пусть функция f дважды дифференцируема в некоторой $U_{\delta_0}(x_0)$. Пусть x_0 – точка перегиба функции f, $y_{\textbf{KAC}}(x) = f(x_0) + f'(x_0)(x-x_0)$ – уравнение касательной. Тогда

$$\exists \delta > 0: \begin{bmatrix} \text{$\it Aubo$} & \forall x \in (x_0 - \delta, x_0) \hookrightarrow \ y_{\text{KAC}}(x) \leq f(x) \ u \\ \forall x \in (x_0, x_0 + \delta) \hookrightarrow \ y_{\text{KAC}}(x) \geq f(x), \\ \forall x \in (x_0 - \delta, x_0) \hookrightarrow \ y_{\text{KAC}}(x) \geq f(x) \ u \\ \forall x \in (x_0, x_0 + \delta) \hookrightarrow \ y_{\text{KAC}}(x) \leq f(x), \end{bmatrix}$$

т. е. график функции переходит с одной стороны касательной на другую.

Доказательство. В силу теоремы 6 f''(x) меняет в точке x_0 знак. Для определенности будем предполагать, что f''(x) меняет знак с плюса на минус, т. е.

$$\exists \delta \in (0, \delta_0] : \begin{cases} \forall x \in (x_0 - \delta, x_0) \hookrightarrow f''(x) \ge 0 & \text{if} \\ \forall x \in (x_0, x_0 + \delta) \hookrightarrow f''(x) \le 0. \end{cases}$$
 (3)

Пользуясь формулой Тейлора с остаточным членом в форме Лагранжа, получаем, что для любого $x\in \overset{o}{U}_{\delta}(x_0)$ существует точка ξ , лежащая строго между x и x_0 и такая, что

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2.$$

Отсюда в силу условия (3) имеем

$$\forall x \in (x_0 - \delta, x_0) \hookrightarrow f(x) \geq f(x_0) + f'(x_0) (x - x_0) = y_{\mathbf{KAC}}(x)$$
 и $\forall x \in (x_0, x_0 + \delta) \hookrightarrow f(x) \leq f(x_0) + f'(x_0) (x - x_0) = y_{\mathbf{KAC}}(x)$. А значит, график функции переходит с одной строны касательной на другую. \square

Замечание. Из того, что график функции f в точке x_0 переходит с одной стороны касательной на другую, не следует, что x_0 является точкой перегиба функции f. Например, график функции

$$f(x) = \begin{cases} (2 + \sin\frac{1}{x})x^3, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

переходит в точке $x_0=0$ с одной стороны касательной y=0 на другую, но точка x_0 не является точкой перегиба функции f, так как не существует левой и правой полуокрестностей точки x_0 , в которых сохраняется направление выпуклости функции f.

Асимптоты

Определение. Говорят, что график функции y=f(x) имеет вертикальную асимптоту $x=x_0$, если хотя бы один из пределов $\lim_{x\to x_0-0}f(x)$ или $\lim_{x\to x_0+0}f(x)$ бесконечен.

Например, график функции $y=e^{1/x}$ имеет вертикальную асимптоту x=0, так как $\lim_{x\to +0}e^{1/x}=+\infty.$

Определение. Прямая y=kx+b называется невертикальной асимптотой графика функции y=f(x) при $x\to +\infty,$ если $\lim_{x\to +\infty}(f(x)-kx-b)=0.$

Если $k \neq 0$, то асимптота y = kx + b называется наклонной. Если k = 0, то асимптота y = kx + b = b называется горизонтальной.

Аналогично вводится понятие асимптоты при $x \to -\infty$.

Следующая теорема показывает метод нахождения невертикальной асимптоты.

Теорема 8. Прямая y = kx + b является асимптотой графика функции y = f(x) при $x \to +\infty$ тогда и только тогда, когда

$$\exists \lim_{x \to +\infty} \frac{f(x)}{x} = k \quad u \quad \exists \lim_{x \to +\infty} (f(x) - kx) = b.$$

Доказательство. 1) Если y=kx+b – асимптота при $x\to +\infty$, то $\lim_{x\to +\infty}(f(x)-kx-b)=0$, поэтому $\lim_{x\to +\infty}\frac{f(x)-kx-b}{x}=0$ и, следовательно, $\lim_{x\to +\infty}\frac{f(x)}{x}=\lim_{x\to +\infty}\frac{kx+b}{x}=k$. Из равенства $\lim_{x\to +\infty}(f(x)-kx-b)=0$, следует также, что $\lim_{x\to +\infty}(f(x)-kx)=b$.

2) Пусть
$$\lim_{x \to +\infty} \frac{f(x)}{x} = k$$
 и $\lim_{x \to +\infty} (f(x) - kx) = b$. Тогда $\lim_{x \to +\infty} (f(x) - kx - b) = 0$ и, следовательно, прямая $y = kx + b$ – асимптота.

Задача 3. Пусть функция f выпукла вниз на луче $(x_0, +\infty)$ и прямая y=kx+b является асимптотой графика f при $x\to +\infty$. Доказать, что $\forall x>x_0 \hookrightarrow f(x)>kx+b$.

Π лан построения графика функции f

- 1. Найти множество определения функции. Выяснить, является ли функция четной, нечетной или периодической. Найти точки пересечения графика функции f с осями координат.
 - 2. Вычислить f'(x) и f''(x).
- 3. Составить таблицу знаков f' и f''. Указать промежутки монотонности и выпуклости f.
- 4. Найти точки экстремумов и перегиба, а также точки недифференцируемости f. Вычислить (если возможно) в этих точках значения f(x) и f'(x).
 - 5. Исследовать асимптоты графика.
 - 6. Нарисовать график функции.

ГЛАВА4

ПРОСТРАНСТВО \mathbb{R}^n И МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

§ 1. Линейное пространство

Определение. Говорят, что во множестве X определена операция сложения, если любым двум элементам $x,y\in X$ поставлен в соответствие единственный элемент $x+y\in X$.

Во множестве X определена операция умножения на вещественное uucno, если любому элементу $x \in X$ и любому вещественному числу $\alpha \in \mathbb{R}$ поставлен в соответствие единственный элемент $\alpha x \in X$.

Определение. Множество X называется вещественным линейным (векторным) пространством, если в X определены операции сложения и умножения на вещественное число, удовлетворяющие следующим аксиомам:

- 1) $\forall x, y \in X \hookrightarrow x + y = y + x$;
- 2) $\forall x, y, z \in X \hookrightarrow (x+y) + z = x + (y+z);$
- 3) $\exists \overline{0} \in X : \forall x \in X \hookrightarrow x + \overline{0} = x;$
- 4) $\forall x \in X \; \exists -x \in X : \; x + (-x) = \overline{0};$
- 5) $\forall x \in X \ \forall \alpha, \beta \in \mathbb{R} \hookrightarrow \ \alpha(\beta x) = (\alpha \beta) x$;
- 6) $\forall x \in X \ \forall \alpha, \beta \in \mathbb{R} \hookrightarrow (\alpha + \beta) x = \alpha x + \beta x$;
- 7) $\forall x, y \in X \ \forall \alpha \in \mathbb{R} \hookrightarrow \ \alpha (x+y) = \alpha x + \alpha y;$
- 8) $\forall x \in X \hookrightarrow 1 x = x$, где $1 \in \mathbb{R}$.

Пример 1. Вывести из аксиом линейного пространства:

- 1) $\overline{0}$ единствен;
- 2) $\forall x \in X \hookrightarrow -x$ единствен;
- 3) $\forall x \in X \hookrightarrow 0 \ x = \overline{0}$.

Решение. 1) Пусть $\overline{0}_1, \overline{0}_2 \in X$ и $\forall x \in X \hookrightarrow x + \overline{0}_1 = x, x + \overline{0}_2 = x$. Тогда $\overline{0}_1 = \overline{0}_1 + \overline{0}_2 = \overline{0}_2 + \overline{0}_1 = \overline{0}_2$, т. е. $\overline{0}_1 = \overline{0}_2$.

2) Пусть
$$x+(-x)_1=\overline{0},\ x+(-x)_2=\overline{0}.$$
 Тогда $(-x)_1=(-x)_1+\overline{0}=(-x)_1+(x+(-x)_2)=((-x)_1+x)+(-x)_2=(-x)_2+(x+(-x)_1)=(-x)_2+\overline{0}=(-x)_2.$

3)
$$0x = 0x + \overline{0} = 0x + (x + (-x)) = (0x + x) + (-x) = (0x + 1x) + (-x) = (0 + 1)x + (-x) = 1x + (-x) = x + (-x) = \overline{0}$$
.

Определение. Арифметическим n-мерным пространством \mathbb{R}^n называется множество упорядоченных наборов из n чисел: $x = (x_1,...,x_n) \in \mathbb{R}^n$, где $x_i \in \mathbb{R}$, $i \in \overline{1,n}$.

Определим в \mathbb{R}^n операции сложения и умножения на число: если $x = (x_1, ..., x_n) \in \mathbb{R}^n$, $y = (y_1, ..., y_n) \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$, то $x+y = (x_1+y_1, ..., x_n+y_n)$, $\alpha x = (\alpha x_1, ..., \alpha x_n)$.

Лемма 1. Пространство \mathbb{R}^n является вещественным линейным пространством.

Доказательство состоит в проверке аксиом, которые, очевидно, выполняются. В частности, $\overline{0} = (0, ..., 0), -x = (-x_1, ..., -x_n)$.

Определение. Элементы линейного пространства называются век-торами.

Заметим, что векторы на плоскости или векторы трехмерного геометрического пространства со стандартными операциями сложения векторов и умножения вектора на число удовлетворяют аксиомам линейного пространства и, следовательно, являются векторами в смысле данного определения. Поскольку \mathbb{R}^n является линейным пространством, то его элементы $\overline{a} = (a_1, \ldots, a_n) \in \mathbb{R}^n$ также являются векторами.

Пусть на плоскости задана система координат. Множество координат (x_1, x_2) точек на плоскости образует двумерное арифметическое пространство \mathbb{R}^2 . При этом операции суммы и умножения на число в \mathbb{R}^2 соответствуют операциям суммы и умножения на число радиус-векторов точек на плоскости. Поскольку соответствие между точками на плоскости и их координатами является взаимно однозначным и сохраняет операции суммы и умножения на число, то при фиксированной системе координат плоскость можно отождествить с \mathbb{R}^2 . Аналогично, трехмерное геометрическое пространство можно отождествить с \mathbb{R}^3 .

§ 2. Евклидово пространство

Определение. Линейное вещественное пространство X называется ebknudobum, если в нем определено скалярное произведение, т. е. любым элементам $x, y \in X$ поставлено в соответствие единственное число $(x, y) \in \mathbb{R}$, причем выполняются аксиомы

- 1) $\forall x \in X \hookrightarrow (x, x) \geq 0$;
- 2) $\forall x \in X : (x,x) = 0 \hookrightarrow x = \overline{0};$

- 3) $\forall x, y, z \in X \ \forall \alpha, \beta \in \mathbb{R} \hookrightarrow \ (\alpha x + \beta y, z) = \alpha (x, z) + \beta (y, z);$
- 4) $\forall x, y \in X \hookrightarrow (x, y) = (y, x)$.

Лемма 1. Линейное пространство \mathbb{R}^n со скалярным произведением $(x,y)=x_1y_1+...+x_ny_n$, где $x=(x_1,...,x_n),\ y=(y_1,...,y_n)$, является евклидовым.

Доказательство состоит в проверке аксиом, которые, очевидно, выполняются. \Box

Замечание. Определенное выше скалярное произведение в \mathbb{R}^n соответствует скалярному произведению векторов на плоскости и в трехмерном геометрическом пространстве, данному в аналитической геометрии в случае ортонормированного базиса.

Теорема 1. (Неравенство Коши–Буняковского.) *Пусть X – евклидово пространство. Тогда*

$$\forall x, y \in X \hookrightarrow (x, y)^2 \le (x, x) \cdot (y, y).$$

Доказательство. В силу аксиом скалярного произведения $\forall t \in \mathbb{R} \hookrightarrow (tx+y, tx+y) \geq 0$. Следовательно, дискриминант квадратного трехчлена $(x, x)t^2 + 2(x, y)t + (y, y)$ меньше либо равен 0:

$$D = 4(x, y)^{2} - 4(x, x) \cdot (y, y) \le 0,$$

T. e.
$$(x,y)^2 \le (x,x) \cdot (y,y)$$
.

Применяя неравенство Коши–Буняковского в пространстве \mathbb{R}^n , получаем:

Следствие. Для любых чисел $x_1, \dots, x_n, y_1, \dots, y_n \in \mathbb{R}$ справедливо неравенство

$$\sum_{k=1}^{n} x_k y_k \le \sqrt{\sum_{k=1}^{n} x_k^2} \sqrt{\sum_{k=1}^{n} y_k^2}.$$

§ 3. Нормированное пространство

Определение. Линейное пространство X называется *пормированным*, если в пространстве X определена *порма*, т.е. каждому элементу

 $x \in X$ поставлено в соответствие единственное число ||x|| (норма элемента x), причем выполняются аксиомы

- 1) $\forall x \in X \hookrightarrow ||x|| \ge 0$;
- 2) $\forall x \in X : ||x|| = 0 \hookrightarrow x = \overline{0};$
- 3) $\forall \alpha \in \mathbb{R} \ \forall x \in X \hookrightarrow \|\alpha x\| = |\alpha| \cdot \|x\|$;
- 4) $\forall x, y \in X \hookrightarrow ||x + y|| \le ||x|| + ||y||$ (неравенство треугольника).

Следствие из неравенства треугольника. Если X – нормированное пространство, то

$$\forall x, y \in X \hookrightarrow \left| \|x\| - \|y\| \right| \le \|x - y\|.$$

Доказательство. В силу неравенства треугольника $\|x\| = \|x - y + y\| \le \|x - y\| + \|y\|$, следовательно, $\|x\| - \|y\| \le \|x - y\|$. Аналогично, $\|y\| - \|x\| \le \|y - x\| = \|x - y\|$. Поэтому $\|x\| - \|y\| \le \|x - y\|$.

Лемма 1. Любое евклидово пространство X является нормированным пространством c евклидовой нормой $||x|| = \sqrt{(x,x)}$.

Доказательство. Выполнение аксиом 1), 2), 3) нормы следует из аксиом 1), 2), 3) скалярного произведения. Докажем неравенство треугольника. $\|x+y\|^2=(x+y,x+y)=(x,x)+2(x,y)+(y,y)=\|x\|^2+2(x,y)+\|y\|^2$. В силу неравенства Коши–Буняковского $(x,y)\leq \sqrt{(x,x)}\sqrt{(y,y)}=\|x\|\cdot\|y\|$ получаем $\|x+y\|^2\leq \|x\|^2+2\|x\|\cdot\|y\|+\|y\|^2=(\|x\|+\|y\|)^2$. Следовательно, $\|x+y\|\leq \|x\|+\|y\|$.

Из леммы 1 § 2 и леммы 1 § 3 получаем следующую лемму.

Лемма 2. Пространство \mathbb{R}^n является нормированным пространством с нормой $||x|| = \sqrt{x_1^2 + ... + x_n^2}$, где $x = (x_1, ..., x_n)$.

Определение. Евклидову норму $\sqrt{x_1^2 + ... + x_n^2}$ вектора $x = (x_1, ..., x_n) \in \mathbb{R}^n$ также называют длиной или модулем вектора x и обозначают через |x|:

$$|x| = \sqrt{x_1^2 + \dots + x_n^2}.$$

Лемма 3. Если X – евклидово пространство, $||x|| = \sqrt{(x,x)}$ – евклидова норма, то для любых $x,y \in X$ справедливо равенство параллелограмма:

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$
 (1)

Доказательство

$$||x + y||^2 + ||x - y||^2 = (x + y, x + y) + (x - y, x - y) =$$

$$= (x, x) + 2(x, y) + (y, y) + (x, x) - 2(x, y) + (y, y) =$$

$$= 2(x, x) + 2(y, y) = 2||x||^2 + 2||y||^2.$$

Пример 1. В линейном пространстве \mathbb{R}^n можно рассматривать неевклидовы нормы, например,

$$||x||_{\max} = \max_{k \in \overline{1,n}} |x_k| \quad \forall x = (x_1, \dots, x_n) \in \mathbb{R}^n$$

удовлетворяет всем аксиомам нормы. При $n \geq 2$ для векторов $x = (1,0,0,\ldots,0)$ и $y = (0,1,0,\ldots,0)$ имеем $\|x\|_{\max} = 1$, $\|y\|_{\max} = 1$, $\|x \pm y\|_{\max} = 1$. Поэтому равенство (1) не выполнено. Следовательно, нельзя так ввести скалярное произведение в линейном пространстве \mathbb{R}^n , чтобы $\|x\|_{\max} = \sqrt{(x,x)}$.

Задача 1. Пусть [a,b] – некоторый отрезок. Пространством C[a,b] называется линейное нормированное пространство, элементами которого являются все непрерывные на [a,b] функции $f:[a,b] \to \mathbb{R}$. Линейные операции в C[a,b] определяются естественным образом:

$$(f+g)(x) = f(x) + g(x) \quad \forall f, g \in C[a, b] \quad \forall x \in [a, b],$$
$$(\alpha f)(x) = \alpha f(x) \quad \forall f \in C[a, b] \quad \forall \alpha \in \mathbb{R} \quad \forall x \in [a, b].$$

Показать, что норма

$$||f||_C = \max_{x \in [a,b]} |f(x)|, \quad f \in C[a,b]$$

удовлетворяет всем аксиомам нормы. Показать, что в C[a,b] нельзя ввести скалярное произведение так, чтобы $\|f\|_C = \sqrt{(f,f)}$ для всех $f \in C[a,b]$, т.е. чтобы $\|f\|_C$ была бы евклидовой нормой.

Yказание: воспользоваться леммой 3 (показать, что равенство параллелограмма для нормы $||f||_C$ может быть не выполнено).

§ 4. Метрическое пространство

Определение. Метрическим пространством называется множество X с введенной на нем метрикой ϱ , т.е. функцией $\varrho: X \times X \to \mathbb{R}$, которая каждой паре (x,y), где $x \in X$ и $y \in X$, ставит в соответствие единственное число $\varrho(x,y)$, называемое расстоянием между элементами x и y, причем выполнены аксиомы

- 1) $\forall x, y \in X \hookrightarrow \varrho(x, y) \geq 0$;
- 2) $\forall x, y \in X \hookrightarrow \varrho(x, y) = 0 \Leftrightarrow x = y;$
- 3) $\forall x, y \in X \hookrightarrow \varrho(y, x) = \varrho(x, y)$;
- 4) $\forall x,y,z\in X\hookrightarrow \varrho(x,z)\leq \varrho(x,y)+\varrho(y,z)$ (неравенство треугольника).

Лемма 1. Любое множество в нормированном пространстве (u, в частности, все пространство) является метрическим пространством с метрикой $\varrho(x,y) = ||x-y||$.

Доказательство. Проверим аксиомы метрики для $\varrho(x,y) = \|x-y\|$.

- 1. Из первой аксиомы нормированного пространства следует, что $\varrho(x,y) = \|x-y\| \ge 0$.
- 2. Если $\varrho(x,y)=0$, то $\|x-y\|=0$ и в силу второй аксиомы нормы имеем $x-y=\overline{0}$. Следовательно, x=y. Обратно, пусть x=y. Тогда $\varrho(x,y)=\|x-y\|=\|x-x\|=\|\overline{0}\|=\|0\cdot\overline{0}\|=0\cdot\|\overline{0}\|=0$.
- 3. Используя третью аксиому нормы, имеем $\varrho(y,x)=\|y-x\|=\|(-1)(x-y)\|=\|x-y\|=\varrho(x,y).$
- 4. В силу неравенства треугольника для нормы получаем $\varrho(x,z) = \|x-z\| = \|(x-y)+(y-z)\| \le \|x-y\|+\|y-z\| = \varrho(x,y)+\varrho(y,z)$. Пз леммы 2 § 3 и леммы 1 § 4 получаем следующую лемму.

Лемма 2. Любое множество $X \subset \mathbb{R}^n$ является метрическим пространством с евклидовой метрикой

$$\varrho(x,y) = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2} \quad \forall x = (x_1, \ldots, x_n) \in X, \\ \forall y = (y_1, \ldots, y_n) \in X.$$

На рисунке схематично показана вложенность рассматриваемых типов пространств.

§ 5. Предел и непрерывность в метрическом пространстве

Определение. Пусть X – метрическое пространство с метрикой ϱ , пусть $\varepsilon > 0$. Тогда ε -окрестностью точки $x_0 \in X$ называется множество

$$U_{\varepsilon}(x_0) = \{ x \in X : \varrho(x, x_0) < \varepsilon \}.$$

Определение. Пусть в метрическом пространстве X заданы последовательность $\{x_n\}$ и элемент $x_0 \in X$. Будем писать $\lim_{n \to \infty} x_n = x_0$ или $x_n \to x_0$ при $n \to \infty$ и говорить, что последовательность $\{x_n\}$ сходится κ x_0 , если

$$\forall \varepsilon > 0 \ \exists N : \ \forall n \ge N \hookrightarrow x_n \in U_{\varepsilon}(x_0),$$

т. е.
$$\lim_{n\to\infty} \varrho(x_n,x_0) = 0.$$

Определение. Точка $x_0 \in X$ называется предельной точкой множества $A \subset X$, если существует $\{x_n\}$ – последовательность элементов A, которая является последовательностью Гейне в точке x_0 , т. е. $\lim_{n\to\infty} x_n = x_0$ и $x_n \neq x_0$ при всех $n \in \mathbb{N}$.

Определение. Пусть X – метрическое пространство с метрикой ϱ_X , Y – метрическое пространство с метрикой ϱ_Y . Пусть заданы функция $f: X \to Y$, точка $x_0 \in X$, которая является предельной точкой X и точка $y_0 \in Y$. Будем писать $\lim_{x \to x_0} f(x) = y_0$ или $f(x) \to y_0$ при $x \to x_0$ и говорить, что y_0 является npedenom функции f в точке x_0 , если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in \overset{o}{U}_{\delta}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(y_0),$$

где

$$\overset{o}{U}_{\delta}(x_0) = \{ x \in X : 0 < \varrho_X(x, x_0) < \delta \},$$
$$U_{\varepsilon}(y_0) = \{ y \in Y : \varrho_Y(y, y_0) < \varepsilon \}.$$

Так же, как и для функции одной переменной, доказывается, что это определение предела функции по Коши эквивалентно следующему определению предела функции по Гейне: $\lim_{x\to x_0} f(x) = y_0$ по Гейне, если для любой последовательности $\{x_n\}$ элементов X, которая является последовательностью Гейне в точке $x_0\in X$, справедливо соотношение $\lim_{n\to\infty} f(x_n) = y_0$.

Определение. Пусть X и Y – метрические пространства. Функция $f: X \to Y$ называется непрерывной в точке $x_0 \in X$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ f(U_{\delta}(x_0)) \subset U_{\varepsilon}(f(x_0)).$$

Функция $f: X \to Y$ называется непрерывной на множестве X, если она непрерывна в каждой точке $x_0 \in X$.

Определение . Точка $x_0\in X$ называется изолированной точкой множества $A\subset X$, если $x_0\in A$ и $\exists \delta>0:\ \overset{o}{U}_{\delta}(x_0)\cap A=\emptyset.$

Задача 1. Докажите, что если X и Y – метрические пространства, то функция $f: X \to Y$ непрерывна в точке $x_0 \in X$ тогда и только тогда, когда выполнено хотя бы одно из условий:

- 1) x_0 изолированная точка X или
- 2) x_0 предельная точка X и $\lim_{x \to x_0} f(x) = f(x_0)$.

§ 6. Открытые и замкнутые множества в метрическом пространстве

В этом параграфе X – метрическое пространство с метрикой ϱ . Например, X может быть множеством в \mathbb{R}^n или всем \mathbb{R}^n , а ϱ – евклидовой метрикой в \mathbb{R}^n .

Определение. Точка $x_0 \in X$ называется *внутренней точкой* множества $A \subset X$, если

$$\exists \varepsilon > 0 : U_{\varepsilon}(x_0) \subset A.$$

Внутреннистью множества $A\subset X$ называется $\inf A$ — множество всех внутренних точек A. Множество A называется $om\kappa pumum$, если все точки A являются внутренними, т. е. $A\subset \inf A$. Пустое множество \emptyset по определению считается открытым.

Определение . Точка $x_0 \in X$ называется точкой прикосновения множества $A \subset X$, если

$$\forall \varepsilon > 0 \hookrightarrow U_{\varepsilon}(x_0) \bigcap A \neq \emptyset.$$

Замыканием множества $A\subset X$ называется \overline{A} – множество всех точек прикосновения A. Множество A называется замкнутым, если все точки прикосновения лежат в A, т.е. $\overline{A}\subset A$. Пустое множество \emptyset по определению считается замкнутым.

Лемма 1.
$$\forall A \subset X \hookrightarrow \text{ int } A \subset A \subset \overline{A}$$
.

Доказательство. 1. Если $x_0 \in \operatorname{int} A$, то $\exists \varepsilon > 0 \colon U_{\varepsilon}(x_0) \subset A$, следовательно, $x_0 \in A$.

2. Если $x_0 \in A$, то $\forall \varepsilon > 0 \hookrightarrow x_0 \in U_{\varepsilon}(x_0) \cap A$, следовательно, $\forall \varepsilon > 0 \hookrightarrow U_{\varepsilon}(x_0) \cap A \neq \emptyset$, а значит, $x_0 \in \overline{A}$.

Следствие. 1. Множество $A \subset X$ открыто \Leftrightarrow $A = \operatorname{int} A$. 2. Множество A замкнуто \Leftrightarrow $A = \overline{A}$.

y

Лемма 2. Если $A \subset B \subset X$, mo int $A \subset \operatorname{int} B$, $\overline{A} \subset \overline{B}$.

Доказательство следует непосредственно из определений.

Следующая лемма дает достаточные условия открытости и замкнутости множеств.

Лемма 3. Пусть функция $f: X \to \mathbb{R}$ непрерывна. Тогда для любого числа $C \in \mathbb{R}$ множество $\{x \in X: f(x) < C\}$ открыто, а множество $\{x \in X: f(x) \le C\}$ замкнуто.

Доказательство. Докажем открытость множества $A = \{x \in X : f(x) < C\}$. Пусть $x_0 \in A$. Тогда $f(x_0) < C$. Применяя определение непрерывности функции f в точке x_0 для $\varepsilon = C - f(x_0) > 0$, получаем существование числа $\delta > 0$ такого, что $f(x) \in U_{\varepsilon}(f(x_0))$ для любого $x \in U_{\delta}(x_0)$. Следовательно, для любого $x \in U_{\delta}(x_0)$ имеем $f(x) < f(x_0) + \varepsilon = C$, т. е. $U_{\delta}(x_0) \subset A$. Это доказывает открытость множества A. Замкнутость множества $\{x \in X : f(x) \le C\}$ докажите самостоятельно.

Лемма 4. Для любой точки $x_0 \in X$ функция расстояния $\varrho(x_0, x)$ непрерывна на X, m. e.

$$\lim_{x \to x_1} \varrho(x_0, x) = \varrho(x_0, x_1) \qquad \forall x_0, x_1 \in X.$$

Доказательство. В силу неравенства треугольника для любых $x_0, x_1 \in X$ имеем

$$|\varrho(x_0,x)-\varrho(x_0,x_1)| \leq \varrho(x,x_1) \to 0$$
 при $x \to x_1$.
Из лемм 3, 4 получаем следующее утверждение.

Лемма 5. $\forall \varepsilon > 0 \ \forall x_0 \in X \hookrightarrow$ множество $U_{\varepsilon}(x_0)$ открыто.

Теорема 1. $\forall A \subset X$ выполняется:

- 1) int A является открытым множеством;
- 2) А является замкнутым множеством.

Доказательство. 1. Обозначим $B=\operatorname{int} A$. Пусть $x_0\in B$. Требуется доказать, что $x_0\in \operatorname{int} B$. Так как $x_0\in B=\operatorname{int} A$, то $\exists \varepsilon>0: U_\varepsilon(x_0)\subset\subset A$. По лемме 2 $\operatorname{int} U_\varepsilon(x_0)\subset\operatorname{int} A$. В силу леммы 5 $\operatorname{int} U_\varepsilon(x_0)=U_\varepsilon(x_0)$, следовательно, $U_\varepsilon(x_0)\subset\operatorname{int} A=B$. Поэтому $x_0\in\operatorname{int} B$.

2. Обозначим $B=\overline{A}$. Пусть $x_0\in\overline{B}$. Требуется доказать, что $x_0\in B$. Так как $x_0\in\overline{B}$, то $\forall \varepsilon>0 \hookrightarrow U_{\varepsilon/2}(x_0)\cap B\neq\emptyset$, т. е. $\forall \varepsilon>0 \quad \exists x_1(\varepsilon)\in U_{\varepsilon/2}(x_0)\cap B$. Так как $x_1(\varepsilon)\in B=\overline{A}$, то $\exists x_2(\varepsilon)\in U_{\varepsilon/2}(x_1(\varepsilon))\cap A$. В силу неравенства треугольника $\varrho(x_2(\varepsilon),x_0)\leq \varrho(x_2(\varepsilon),x_1(\varepsilon))+\varrho(x_1(\varepsilon),x_0)<<<\varepsilon/2+\varepsilon/2=\varepsilon$. Итак, $\forall \varepsilon>0\quad \exists x_2(\varepsilon)\in A\cap U_\varepsilon(x_0)$, т. е. $\forall \varepsilon>0\hookrightarrow A\cap U_\varepsilon(x_0)\neq\emptyset$, а значит, $x_0\in\overline{A}=B$.

Лемма 6. Пусть $A \subset X$. Тогда

- 1) $X \setminus \operatorname{int} A = \overline{X \setminus A}$;
- 2) $X \setminus \overline{A} = \text{int } (X \setminus A)$.

Доказательство. 1. $x_0 \in X \setminus \operatorname{int} A \Leftrightarrow \neg (x_0 \in \operatorname{int} A) \Leftrightarrow$

$$\Leftrightarrow \neg (\exists \varepsilon > 0 : U_\varepsilon(x_0) \subset A) \ \Leftrightarrow \ \forall \varepsilon > 0 \hookrightarrow \ U_\varepsilon(x_0) \not\subset A \ \Leftrightarrow$$

$$\Leftrightarrow \ \forall \varepsilon > 0 \hookrightarrow \ U_{\varepsilon}(x_0) \bigcap (X \setminus A) \neq \emptyset \ \Leftrightarrow \ x_0 \in \overline{X \setminus A}.$$

Второй пункт доказать самостоятельно.

Теорема 2. A – замкнуто \iff $X \setminus A$ – открыто.

Доказательство.
$$A$$
 — замкнуто \Leftrightarrow $A = \overline{A} \Leftrightarrow$ $X \setminus A = X \setminus \overline{A}$ $\stackrel{\Pi. 6}{\Longrightarrow} X \setminus A = \operatorname{int}(X \setminus A) \Leftrightarrow X \setminus A$ — открыто.

Определение. Границей множества $A\subset X$ называется множество $\partial A=\overline{A}\setminus \inf A$. Точки множества ∂A называются граничными точками множества A.

Лемма 7.
$$x_0 \in \partial A \iff \forall \varepsilon > 0 \ \exists x_1 \in U_{\varepsilon}(x_0) \cap A, \ \exists x_2 \in U_{\varepsilon}(x_0) \setminus A.$$

Доказательство. По определению замыкания имеем $x_0 \in \overline{A} \Leftrightarrow \forall \varepsilon > 0 \ \exists x_1 \in U_{\varepsilon}(x_0) \cap A.$

По определению внутренности имеем $x_0 \not\in \text{int } A \Leftrightarrow \neg(\exists \varepsilon > 0 : U_{\varepsilon}(x_0) \subset A) \Leftrightarrow \forall \varepsilon > 0 \hookrightarrow U_{\varepsilon}(x_0) \not\subset A \Leftrightarrow \forall \varepsilon > 0 \exists x_2 \in U_{\varepsilon}(x_0) \setminus A.$

Поэтому $x_0 \in \overline{A} \setminus \text{int } A \iff \forall \varepsilon > 0 \quad \exists x_1, x_2 \in U_{\varepsilon}(x_0) : x_1 \in A, x_2 \notin A.$

Задача 1. Доказать, что для любого множества $A\subset \mathbb{R}^n$ справедливы равенства int $A=A\setminus \partial A,\ \overline{A}=A\cup \partial A.$

Задача 2. Найти int A, \overline{A} , ∂A . Выяснить, является ли множество Aоткрытым или замкнутым.

- а) полуплоскость $A = \{(x,y) \in \mathbb{R}^2 : x > 0, y \in \mathbb{R}\};$ б) интервал $A = \{(x,y) \in \mathbb{R}^2 : x = 0, y \in (-1,1)\}.$

Задача 3. Верно ли, что для любых множеств $A_1, A_2 \subset \mathbb{R}^n$ справедливы включения:

- 1) int $(A_1 \cup A_2) \subset \operatorname{int} A_1 \cup \operatorname{int} A_2$;
- 2) int $(A_1 \cup A_2) \supset \operatorname{int} A_1 \cup \operatorname{int} A_2$;
- $3) \ \overline{A_1} \overline{\cup A_2} \subset \overline{A_1} \cup \overline{A_2};$
- 4) $\overline{A_1 \cup A_2} \supset \overline{A_1} \cup \overline{A_2}$;
- 5) $\partial(A_1 \cup A_2) \subset \partial A_1 \cup \partial A_2$;
- 6) $\partial(A_1 \cup A_2) \supset \partial A_1 \cup \partial A_2$?

Задача 4. 1) Доказать, что объединение любого набора открытых множеств является открытым множеством.

- 2) Доказать, что пересечение конечного набора открытых множеств является открытым множеством.
- 3) Привести пример набора открытых множеств, пересечение которых не является открытым множеством.

Теорема 3. (Критерий точки прикосновения.) Для множества A в метрическом пространстве

$$a\in\overline{A}\iff\exists\{a_k\}$$
 – последовательность элементов $A:\lim_{k o\infty}a_k=a.$

Доказательство. 1. Пусть существует $\{a_k\}$ – последовательность элементов A такая, что $\lim_{k\to\infty} a_k=a$. По определению предела имеем $\forall \varepsilon>0$ $\exists N: \ \forall k\geq N \hookrightarrow a_k\in U_\varepsilon(a)$. Поскольку $a_k\in A$, то $\forall \varepsilon>0\hookrightarrow$ $\hookrightarrow U_{\varepsilon}(a) \cap A \neq \emptyset$, T. e. $a \in \overline{A}$.

2. Пусть $a \in A$. Тогда по определению замыкания имеем $\forall \varepsilon > 0 \hookrightarrow A \cap U_{\varepsilon}(a) \neq \emptyset$, следовательно, $\forall k \in \mathbb{N} \exists a_k \in A \cap U_{1/k}(a)$. Так как $\varrho(a_k,a)<1/k\to 0$ при $k\to\infty$, то $\lim_{k\to\infty}a_k=a$.

§ 7. Полнота и компактность метрических пространств и множеств в \mathbb{R}^n

Следующая лемма показывает, что предел последовательности векторов в \mathbb{R}^n сводится к пределам последовательностей компонент этих векторов.

Лемма 1. Пусть заданы последовательность n-мерных векторов $\{x_k\},\ x_k=(x_k^1,x_k^2,...,x_k^n)$ и точка $x_0=(x_0^1,x_0^2,...,x_0^n)\in\mathbb{R}^n$. Тогда

$$\lim_{k \to \infty} x_k = x_0 \quad \Longleftrightarrow \quad \forall i \in \overline{1, n} \hookrightarrow \lim_{k \to \infty} x_k^i = x_0^i.$$

Доказательство. Докажем «⇒». Пусть $\lim_{k\to\infty}x_k=x_0$. Тогда $\forall i\in \overline{1,n}\hookrightarrow (x_k^i-x_0^i)^2\leq \varrho(x_k,x_0)^2\to 0$ при $k\to\infty$, следовательно, $x_k^i\to x_0^i$ при $k\to\infty$.

Докажем « \Leftarrow ». Пусть $\forall i \in \overline{1,n} \hookrightarrow \lim_{k \to \infty} x_k^i = x_0^i$. Тогда по теореме о пределе суммы $\varrho(x_k,x_0)^2 = (x_k^1-x_0^1)^2 + ... + (x_k^n-x_0^n)^2 \to 0$ при $k \to \infty$, следовательно, $\lim_{k \to \infty} x_k = x_0$.

Определение. Последовательность $\{x_k\}$ элементов метрического пространства X называется $\phi y n \partial a m e n m a n b n o \ddot{u}$, если

$$\forall \varepsilon > 0 \ \exists N : \ \forall k \geq N \ \forall m \geq N \hookrightarrow \ \varrho(x_k, x_m) < \varepsilon,$$

где ρ – метрика в X.

Замечание. Из неравенства треугольника следует, что любая сходящаяся последовательность в метрическом пространстве фундаментальна.

Определение. Метрическое пространство называется *полным*, если любая фундаментальная последовательность сходится в этом пространстве.

Теорема 1. Пространство \mathbb{R}^n с евклидовой метрикой является полным метрическим пространством.

Доказательство. Пусть последовательность векторов $x_k = (x_k^1, x_k^2, ..., x_k^n)$ фундаментальна. Зафиксируем произвольный индекс $i \in \overline{1,n}$. Поскольку $|x_k^i - x_m^i| \le \varrho(x_k, x_m)$, то числовая последовательность $\{x_k^i\}_{k=1}^\infty$ фундаментальна. Согласно критерию Коши она сходится к некоторому числу x_0^i . В силу леммы 1 последовательность $\{x_k\}$ сходится к вектору $x_0 = (x_0^1, x_0^2, ..., x_0^n) \in \mathbb{R}^n$.

Замечание. Из критерия точки прикосновения следует, что замкнутое подмножество полного метрического пространства является полным метрическим пространством. Отсюда и из теоремы 1 получаем, что замкнутое подмножество пространства \mathbb{R}^n с евклидовой метрикой является полным метрическим пространством.

Определение. Метрическое пространство X называется (секвенциально) компактным, если из любой последовательности $\{x_k\}$ элементов X можно выделить подпоследовательность, сходящуюся к некоторому элементу X. Множество A в метрическом пространстве X с метрикой ϱ называется компактом или компактным множеством, если метрическое пространство A с метрикой ϱ компактно.

Лемма 2. Если метрическое пространство X компактно, то оно полно.

Доказательство. Пусть $\{x_k\}$ – произвольная фундаментальная последовательность элементов X. В силу компактности X существует подпоследовательность $\{x_{k_m}\}$, сходящаяся к некоторому $x_0 \in X$, т.е. $\lim_{m \to \infty} \varrho(x_{k_m}, x_0) = 0$, где ϱ – метрика в X. В силу фундаментальности $\{x_k\}$ имеем $\lim_{m \to \infty} \varrho(x_m, x_{k_m}) = 0$. Поэтому согласно неравенству треугольника

$$\varrho(x_m, x_0) \le \varrho(x_m, x_{k_m}) + \varrho(x_{k_m}, x_0) \to 0$$
 при $m \to \infty$.

Поэтому фундаментальная последовательность $\{x_k\}$ сходится к $x_0 \in X$.

Определение. Множество A в метрическом пространстве X с метрикой ϱ называется *ограниченным*, если

$$\exists x_0 \in X : \sup_{a \in A} \varrho(x_0, a) < +\infty.$$

Заметим, что для любой точки $x_1 \in X$ в силу неравенства треугольника $\varrho(x_1,a) \leq \varrho(x_1,x_0) + \varrho(x_0,a)$. Поэтому если множество A ограничено, то неравенство $\sup_{a \in A} \varrho(x_1,a) < +\infty$ будет выполняться для любой точки $x_1 \in X$.

Теорема 2. Пусть A – компакт в метрическом пространстве X. Тогда множество A ограничено и замкнуто в X. Из ограниченности и замкнутости множества A в метрическом пространстве не следует компактность A.

Доказательство. Зафиксируем произвольную точку $x_0 \in X$. Предположим, что компакт A – неограниченное множество, т. е. $\sup_{a \in A} \varrho(x_0, a) = +\infty$. Тогда найдется $\{a_k\}$ – последовательность элементов A такая,

что $\varrho(x_0,a_k)\to +\infty$ при $k\to\infty$. В силу компактности A найдется подпоследовательность $\{a_{k_j}\}$, сходящаяся к некоторому элементу $a_0\in A$. По лемме 4 § 6 имеем $\varrho(x_0,a_{k_j})\to\varrho(x_0,a_0)$ при $j\to\infty$, что противоречит условию $\varrho(x_0,a_k)\to +\infty$ при $k\to\infty$.

Предположим теперь, что компакт A – незамкнутое множество, т. е. существует $a_0 \in \overline{A}, \ a_0 \not\in A$. В силу критерия точки прикосновения найдется последовательность $\{a_k\}$ элементов A, сходящаяся к a_0 . Тогда для любой подпоследовательности $\{a_{k_j}\}$ имеем $a_{k_j} \to a_0 \not\in A$ при $j \to \infty$, что противоречит компактности A.

Покажем, что в общем случае из ограниченности и замкнутости множества в метрическом пространстве не следует компактность этого множества. Рассмотрим в качестве метрического пространства X полуинтервал (0,1] с обычной метрикой $\varrho(x,y)=|x-y|,\,x,y\in(0,1].$ Тогда множество A=X ограничено и замкнуто в X, но не является компактом, т. к., например, из последовательности $x_k=\frac{1}{k}\in A$ нельзя выделить подпоследовательность, сходящуюся к элементу A.

Замечание. Согласно лемме 2 причина некомпактности метрического пространства A=X=(0,1], рассмотренного в доказательстве теоремы 2 состоит в неполноте этого пространства. Однако можно привести пример ограниченного и замкнутого, но некомпактного множества в полном метрическом пространстве. Далее мы покажем, что ограниченное и замкнутое множество в \mathbb{R}^n компактно.

Теорема 3. (Теорема Больцано–Вейерштрасса в \mathbb{R}^n .) Из любой ограниченной последовательности $\{x_k\}$ элементов \mathbb{R}^n можно выделить сходящуюся подпоследовательность.

Доказательство проведем индукцией по размерности пространства \mathbb{R}^n . При n=1 доказываемая теорема следует из теоремы Больцано-Вейерштрасса для числовых последовательностей. Пусть доказываемая теорема справедлива при $n=n_0$. Докажем тогда, что данная теорема справедлива при $n=n_0+1$. Пусть последовательность $\{x_k\}_{k=1}^\infty$ ограничена, $x_k=(x_k^1,x_k^2,...,x_k^{n_0},x_k^{n_0+1})\in\mathbb{R}^{n_0+1}$. Рассмотрим последовательность $\{y_k\}_{k=1}^\infty$, где $y_k=(x_k^1,x_k^2,...,x_k^{n_0})\in\mathbb{R}^{n_0}$. Поскольку $|y_k|\leq |x_k|$, то последовательность $\{y_k\}$ также ограничена. По предположению индукции из последовательности $\{y_k\}_{k=1}^\infty$ можно выделить сходящуюся подпоследовательность $\{y_k\}_{m=1}^\infty$. Рассмотрим подпоследовательность $\{x_{k_m}\}_{m=1}^\infty$ последовательности $\{x_k\}_{k=1}^\infty$. Так как $\{y_{k_m}\}_{m=1}^\infty$ сходится, то первые n_0 координат последовательности $\{x_{k_m}\}_{m=1}^\infty$ сходятся.

Рассмотрим числовую последовательность $\{x_{k_m}^{n_0+1}\}_{m=1}^{\infty}$, составленную из (n_0+1) -й координаты последовательности $\{x_{k_m}\}_{m=1}^{\infty}$. Пользуясь теоремой Больцано—Вейерштрасса для ограниченной числовой последовательности $\{x_{k_m}^{n_0+1}\}_{m=1}^{\infty}$, выделим из нее сходящуюся подпоследовательность $\{x_{k_{m_j}}^{n_0+1}\}_{j=1}^{\infty}$. Тогда все координаты подпоследовательности $\{x_{k_{m_j}}\}_{j=1}^{\infty}$ сходятся, и по лемме 1 подпоследовательность $\{x_{k_{m_j}}\}_{j=1}^{\infty}$ сходится. Итак, доказано, что из произвольной ограниченной последовательности $\{x_k\}$ элементов \mathbb{R}^{n_0+1} можно выделить сходящуюся подпоследовательность $\{x_{k_{m_j}}\}_{j=1}^{\infty}$, т. е. данная теорема справедлива при $n=n_0+1$, что по индукции доказывает теорему при любом $n\in\mathbb{N}$.

Теорема 4. (Критерий компактности множества.) *Множество* $X \subset \mathbb{R}^n$ является компактом тогда и только тогда, когда X ограничено и замкнуто.

Доказательство. Пусть $X\subset\mathbb{R}^n$ – ограниченное замкнутое множество. Покажем, что X – компакт. Пусть $\{x_k\}$ – произвольная последовательность элементов множества X. Так как последовательность $\{x_k\}$ ограничена, то по теореме Больцано-Вейерштрасса можно выделить подпоследовательность $\{x_{k_j}\}$, сходящуюся к некоторому $x_0\in\mathbb{R}^n$. Поскольку $x_{k_j}\in X$ и $x_0=\lim_{j\to\infty}x_{k_j}$, то по критерию точки прикосновения $x_0\in\overline{X}$. В силу замкнутости X получаем $x_0\in X$.

Итак, показано, что из произвольной последовательности $\{x_k\}$ элементов \mathbb{R}^n можно выделить подпоследовательность $\{x_{k_j}\}$, сходящуюся к некоторому элементу x_0 множества X, т. е. X – компакт.

Обратное утверждение доказано в теореме 2.

§ 8. Лемма Гейне-Бореля

Определение. Открытым покрытием множества X называется семейство открытых множеств $\{V_{\alpha}\}_{\alpha\in A}$ таких, что $X\subset\bigcup_{\alpha\in A}V_{\alpha}$. Если множество A' содержится во множестве индексов A (т.е. $A'\subset A$) и $X\subset\subset\bigcup_{\alpha\in A'}V_{\alpha}$, то $\{V_{\alpha}\}_{\alpha\in A'}$ называется подпокрытием множества X. Если множество A' конечно, то это подпокрытие называется конечным подпокрытием.

Лемма 1. (Лемма Гейне-Бореля.) Из любого открытого покрытия отрезка можно выделить конечное подпокрытие этого отрезка.

Доказательство. Предположим противное: $\{V_{\alpha}\}_{\alpha\in A}$ – открытое покрытие отрезка [a,b], из которого нельзя выделить конечное подпокрытие. Построим последовательность вложенных отрезков $[a_k,b_k]\subset [a,b]$, удовлетворяющих условию

$$\mathcal{P}[a_k,b_k]: \ \left\{ egin{array}{ll} \mbox{из покрытия } \{V_{lpha}\}_{lpha \in A} \mbox{ нельзя выде-} \ \mbox{лить конечное подпокрытие отрезка} \ [a_k,b_k]. \end{array}
ight.$$

Положим $[a_1,b_1]=[a,b]$. Тогда условие $\mathcal{P}[a_1,b_1]$ выполнено. Пусть задан отрезок $[a_k,b_k]\subset [a,b]$, обладающий свойством $\mathcal{P}[a_k,b_k]$. Разделим отрезок $[a_k,b_k]$ пополам точкой $c_k=\frac{a_k+b_k}{2}$. Заметим, что хотя бы одно из условий $\mathcal{P}[a_k,c_k]$ или $\mathcal{P}[c_k,b_k]$ выполнено. Иначе из покрытия $\{V_\alpha\}_{\alpha\in A}$ можно выделить конечное подпокрытие отрезка $[a_k,c_k]$ и отрезка $[c_k,b_k]$, объединение которых является конечным покрытием отрезка $[a_k,b_k]$, что противоречит условию $\mathcal{P}[a_k,b_k]$.

Определим

$$[a_{k+1},b_{k+1}] = \left\{ egin{array}{ll} [a_k,c_k], & ext{условие } \mathcal{P}[a_k,c_k] & ext{выполнено}, \ [c_k,b_k], & ext{условие } \mathcal{P}[a_k,c_k] & ext{не выполнено}. \end{array}
ight.$$

Так как одно из условий $\mathcal{P}[a_k, c_k]$ или $\mathcal{P}[c_k, b_k]$ выполнено, то выполнено условие $\mathcal{P}[a_{k+1}, b_{k+1}]$. Поэтому данный процесс можно продолжать бесконенчно. В результате получаем стягивающуюся последовательность вложенных отрезков $[a_k, b_k]$, каждый из которых удовлетворяет условию $\mathcal{P}[a_k, b_k]$.

По теореме Кантора существует общая точка $x \in \bigcap_{k \in \mathbb{N}} [a_k, b_k]$. Поскольку $x \in [a,b] \subset \bigcup_{\alpha \in A} V_{\alpha}$, то найдется индекс $\alpha_0 \in A$ такой, что $x \in V_{\alpha_0}$. Так как множество V_{α_0} открыто, то найдется число $\varepsilon > 0$ такое, что $U_{\varepsilon}(x) \subset V_{\alpha_0}$. Поскольку $b_k - a_k \to 0$, то найдется индекс k_0 такой, что $b_{k_0} - a_{k_0} < \varepsilon$. Тогда в силу условия $x \in [a_{k_0}, b_{k_0}]$ получаем, что $[a_{k_0}, b_{k_0}] \subset U_{\varepsilon}(x) \subset V_{\alpha_0}$. Таким образом, из покрытия $\{V_{\alpha}\}_{\alpha \in A}$ можно выделить конечное подпокрытие отрезка $[a_{k_0}, b_{k_0}]$, состоящее из одного множества V_{α_0} , что противоречит условию $\mathcal{P}[a_{k_0}, b_{k_0}]$.

Замечание. Существует открытое покрытие интервала, из которого нельзя выделить конечное подпокрытие. Например, таким покрытием интервала (0,1) является семейство интервалов $\left\{\left(\frac{1}{k},1\right)\right\}_{k>2}$.

Рассмотрим $\kappa y \delta u$ в \mathbb{R}^n вида

$$Q = [a_1, a_1 + d] \times [a_2, a_2 + d] \times \ldots \times [a_n, a_n + d],$$

где d>0 – ∂ лина pebpa куба Q, а a_i – некоторые числа. Отрезки $[a_i,a_i+d]$ будем называть pebpaми куба Q.

Лемма 2. Из любого открытого покрытия куба $Q \subset \mathbb{R}^n$ можно выделить конечное подпокрытие этого куба.

Доказательство. Предположим противное: существует куб $Q \subset \mathbb{R}^n$ и открытое покрытие $\{V_{\alpha}\}_{{\alpha}\in A}$ этого куба, для которого справедливо условие

 $\mathcal{P}(Q): \quad \left\{ egin{array}{ll} \mbox{из покрытия } \{V_{lpha}\}_{lpha \in A} \mbox{ нельзя выде-} \mbox{ дить конечное подпокрытие куба } Q. \end{array}
ight.$

Построим последовательность вложенных кубов Q_k , удовлетворяющих условию $\mathcal{P}(Q_k)$. Положим $Q_1=Q$. Пусть задан куб Q_k . Разобьем пополам каждое ребро куба Q_k . Получим разбиение куба Q_k на 2^n кубов одинаковых размеров. Среди них найдется куб Q_{k+1} , удовлетворяющий условию $\mathcal{P}(Q_{k+1})$. Продолжая этот процесс бесконечно, получим последовательность вложенных кубов Q_k . Эта последовательность имеет общую точку $x \in \mathbb{R}^n$. Для доказательства последнего достаточно применить теорему Кантора о вложенных отрезках к проекциям кубов Q_k на i-ю координатную ось. Эти проекции имеют общую для всех k точку x_i , а точка $x=(x_1,...,x_n)$ является общей точкой кубов Q_k . Далее аналогично лемме 1 найдется $\alpha_0 \in A$ и $\varepsilon > 0$ такие, что $U_{\varepsilon}(x) \subset V_{\alpha_0}$, и найдется куб $Q_{k_0} \subset U_{\varepsilon}(x) \subset V_{\alpha_0}$. Это противоречит условию $\mathcal{P}(Q_{k_0})$.

Теорема 1. (Критерий компактности Гейне-Бореля.) Множество $X \subset \mathbb{R}^n$ является компактом тогда и только тогда, когда множество X удовлетворяет условию Гейне-Бореля: из любого открытого покрытия X можно выделить конечное подпокрытие X.

Доказательство. Пусть $X \subset \mathbb{R}^n$ – компакт и пусть $\mathcal{V} = \{V_\alpha\}_{\alpha \in A}$ – открытое покрытие множества X. Так как компакт X является ограниченным множеством, то найдется куб $Q \subset \mathbb{R}^n$ такой, что $X \subset Q$. Поскольку компакт X является замкнутым множеством, то его дополнение $V^0 = \mathbb{R}^n \setminus X$ – открытое множество. Поэтому $\mathcal{V}' = \mathcal{V} \cup \{V^0\}$ – открытое покрытие \mathbb{R}^n , а значит, – открытое покрытие куба Q. В силу леммы 2 из покрытия \mathcal{V}' можно выделить конечное подпокрытие $\mathcal{V}'_{\mathrm{KOH}}$ куба Q. Так как $X \subset Q$, то $\mathcal{V}'_{\mathrm{KOH}}$ является покрытием множества X.

Поскольку $X \cap V^0 = \emptyset$, то $\mathcal{V}_{\text{кон}} := \mathcal{V}'_{\text{кон}} \setminus \{V^0\}$ также является покрытием множества X. Итак, из покрытия \mathcal{V} мы выделили конечное подпокрытие множества X. Поэтому множество X удовлетворяет условию Гейне–Бореля.

Докажем обратное утверждение. Пусть множество X удовлетворяет условию Гейне-Бореля. Рассмотрим покрытие множества X открытыми шарами $\{x \in \mathbb{R}^n : |x| < k\}, \ k \in \mathbb{N}$. Так как из этого покрытия можно выделить конечное подпокрытие множества X, то X ограничено. Предположим, что множество X не замкнуто, т. е. существует точка $x_0 \in \overline{X}$, $x_0 \notin X$. Тогда семейство открытых множеств $V_k = \{x \in \mathbb{R}^n : |x - x_0| > > \frac{1}{k}\}$ является покрытием множества X. Согласно условию Гейне-Бореля из этого подпокрытия можно выделить конечное подсемейство, являющееся покрытием множества X. Пусть k_{\max} – максимальный из номеров множеств этого конечного подсемейства. В силу вложенности множеств V_k все множества этого подсемейства содержатся в $V_{k_{\max}}$. Следовательно, $X \subset V_{k_{\max}}$, т. е. $|x - x_0| > \frac{1}{k_{\max}}$ для любого $x \in X$, что противоречит условию $x_0 \in \overline{X}$.

Задача 1. Докажите справедливость теоремы 1 в любом метрическом пространстве.

Заметим, что понятие предела определяется через понятие окрестности, которое можно ввести не только в метрических, но и в более общих топологических пространствах. В теории топологических пространств возможность выделить конечное подпокрытие из любого покрытия множества X называется компактностью X, а возможность выделить из любой последовательности элементов X подпоследовательность, сходящуюся к элементу X, называется секвенциальной компактностью X. В случае общего топологического пространства эти понятия не эквиваленты, а в случае метрического пространства — эквивалентны.

§ 9. Равномерная непрерывность

В этом параграфе X – метрическое пространство с метрикой ϱ_X, Y – метрическое пространство с метрикой $\varrho_Y.$

Определение. Функция $f: X \to Y$ называется равномерно непрерывной (на множестве X), если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x, x' \in X : \ \varrho_X(x, x') < \delta \hookrightarrow \ \varrho_Y(f(x), f(x')) < \varepsilon. \tag{1}$$

Лемма 1. Если функция $f: X \to Y$ равномерно непрерывна, то она непрерывна на множестве X. Обратное неверно.

Доказательство. Условие непрерывности функции на множестве X можно записать в виде

$$\forall x \in X \ \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x' \in X: \ \varrho_X(x, x') < \delta \hookrightarrow \ \varrho_Y(f(x), f(x')) < \varepsilon. \tag{2}$$

Формально условия (1) и (2) отличаются порядком кванторов; фактическое отличие этих условий состоит в том, что в условии (1) число δ единое для всех x, т.е. не зависит от x, а в условии (2) число δ свое для каждого x. Поэтому из условия (1) следует условие (2).

Покажем, что из условия (2) не следует условие (1). Рассмотрим функцию $f(x)=x^2$, определенную на множестве $X=\mathbb{R}$. Как обычно, расстояние между точками $x,x'\in\mathbb{R}$ определяется как |x-x'|, а расстояние между f(x) и f(x') – как |f(x)-f(x')|. Поскольку $f(x)=x^2$ – непрерывная функция, то условие (2) выполняется. Покажем, что для этой функции условие (1) не выполняется, т.е.

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x, x' \in X : \ |x - x'| < \delta \quad \text{if} \quad |f(x) - f(x')| \ge \varepsilon.$$

Действительно, возьмем $\varepsilon=1$, тогда $\forall \delta>0$ $\exists x=\frac{1}{\delta},\ x'=\frac{1}{\delta}+\frac{\delta}{2}:$ $|x-x'|=\delta/2<\delta$ и $|f(x)-f(x')|=\left|\left(\frac{1}{\delta}+\frac{\delta}{2}\right)^2-\frac{1}{\delta^2}\right|=1+\frac{\delta^2}{4}>\varepsilon$. Следовательно, функция $f(x)=x^2$ не является равномерно непрерывной на \mathbb{R} .

Теорема 1. (Теорема Кантора.) Если функция $f: X \to Y$ непрерывна на компакте $X \subset \mathbb{R}^n$, то она равномерно непрерывна на этом компакте.

Доказательство. Зафиксируем произвольное число $\varepsilon > 0$. Так как функция f непрерывна на множестве X, то для любого $x \in X$ найдется число $\delta(x) > 0$ такое, что

$$\forall x' \in X : \ \rho_X(x, x') < \delta(x) \hookrightarrow \ \rho_Y(f(x), f(x')) < \varepsilon. \tag{3}$$

Поскольку X – компакт, то в силу критерия компактности Гейне–Бореля из открытого покрытия $\{U_{\delta(x)/2}(x)\}_{x\in X}$ множества X можно выделить

конечное подпокрытие, т. е. найдется конечный набор x_1, \ldots, x_N элементов множества X такой, что

$$X \subset \bigcup_{k \in \overline{1.N}} U_{\delta(x_k)/2}(x_k). \tag{4}$$

Обозначим $\delta = \min_{k \in \overline{1,N}} \frac{\delta(x_k)}{2}$. Тогда $\delta > 0$. Пусть $x, x' \in X$, $\varrho_X(x,x') < < \delta$. В силу включения (4) найдется индекс $k \in \overline{1,N}$ такой, что $x \in U_{\delta(x_k)/2}(x_k)$. Так как $\varrho_X(x,x') < \delta \leq \frac{\delta(x_k)}{2}$, то $x' \in U_{\delta(x_k)}(x_k)$. Следовательно, согласно соотношению (3) имеем $\varrho_Y(f(x'),f(x_k)) < \varepsilon$ и $\varrho_Y(f(x),f(x_k)) < \varepsilon$. Используя неравенство треугольника, получаем $\varrho_Y(f(x),f(x')) < 2\varepsilon$. Итак,

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x, x' \in X : \ \rho_X(x, x') < \delta \hookrightarrow \ \rho_Y(f(x), f(x')) < 2\varepsilon.$$

Это означает равномерную непрерывность функции f.

Определение. Функция $\omega(\delta)=\sup_{\substack{x,x'\in X\\e_X(x,x')\leq \delta}}\varrho_Y(f(x),f(x'))$ называется модулем непрерывности функции f:X o Y.

Лемма 2. Функция $f: X \to Y$ равномерно непрерывна тогда и только тогда, когда $\lim_{\delta \to +0} \omega(\delta) = 0$.

Доказательство. а) Пусть функция f равномерно непререрывна, т. е.

$$\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : \forall x, x' \in X : \ \varrho_X(x, x') < \delta_{\varepsilon} \hookrightarrow \ \varrho_Y(f(x), f(x')) < \varepsilon.$$
 (5)

Тогда при $\delta \in (0, \delta_{\varepsilon}), x, x' \in X, \varrho_X(x, x') \leq \delta$ выполняется неравенство $\varrho_Y(f(x), f(x')) < \varepsilon$. Следовательно, $\omega(\delta) \leq \varepsilon$ при $\delta \in (0, \delta_{\varepsilon})$. Итак,

$$\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : \ \forall \delta \in (0, \delta_{\varepsilon}) \hookrightarrow \ \omega(\delta) < \varepsilon.$$

Отсюда и из неравенства $\omega(\delta) \geq 0$ следует, что $\lim_{\delta \to +0} \omega(\delta) = 0$.

б) Пусть $\lim_{\delta \to +0} \omega(\delta) = 0$. Тогда по определению предела

$$\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : \ \forall \delta \in (0, \delta_{\varepsilon}] \hookrightarrow \ \omega(\delta) < \varepsilon.$$

Поэтому для любых $x, x' \in X$ таких, что $\varrho_X(x, x') < \delta_{\varepsilon}$, имеем $\varrho_Y(f(x), f(x')) \leq \omega(\delta_{\varepsilon}) < \varepsilon$. Следовательно, выполняется условие (5), т. е. функция f равномерно непрерывна на множестве X.

Задача 1. Найти модуль непрерывности функции $f:[0,+\infty)\to \mathbb{R}$, заданной формулой $f(x)=\sqrt{x}$. Является ли функция f равномерно непрерывной на множестве X?

Задача 2. Пусть функция $f:(a,b)\to\mathbb{R}$ дифференцируема на интервале (a,b). Как связаны условия

- а) функция f равномерно непрерывна на (a,b);
- б) производная функции f ограничена на (a, b)?

Задача 3. Пусть функция $f:[a,b)\to\mathbb{R}$ непрерывна на полуинтервале [a,b). Как связаны условия

- а) функция f равномерно непрерывна;
- б) существует конечный предел $\lim_{x \to b-0} f(x)$?

§ 10. Свойства непрерывных функций в метрических пространствах

Теорема 1. (О непрерывности сложной функции.) Пусть X, Y, Z - метрические пространства, пусть функция $f: X \to Y$ непрерывна в точке $x_0 \in X$, а функция $g: Y \to Z$ непрерывна в точке $y_0 = f(x_0)$ тогда сложная функция $\varphi(x) = g(f(x))$ непрерывна в точке x_0 .

Доказательство. Зафиксируем произвольное число $\varepsilon > 0$. Обозначим $z_0 = g(y_0)$. В силу непрерывности g в точке y_0 найдется $\beta > 0$ такое, что $g(U_\beta(y_0)) \subset U_\varepsilon(z_0)$. Из непрерывности f в точке x_0 следует существование $\delta > 0$ такого, что $f(U_\delta(x_0)) \subset U_\beta(f(x_0)) = U_\beta(y_0)$. Поэтому $\varphi(U_\delta(x_0)) = g\left(f(U_\delta(x_0))\right) \subset g(U_\beta(y_0)) \subset U_\varepsilon(z_0) = U_\varepsilon(\varphi(x_0))$. Итак, для любого $\varepsilon > 0$ найдется число $\delta > 0$ такое, что $\varphi(U_\delta(x_0)) \subset U_\varepsilon(\varphi(x_0))$. Это означает непрерывность φ в точке x_0 .

Теорема 2. Пусть Y – метрическое пространство, функция $f: X \to Y$ непрерывна на компактном метрическом пространстве X. Тогда f(X) – компакт.

Доказательство повторяет доказательство теоремы 1 § 7 главы 2.

Следствие. Пусть Y – метрическое пространство, функция $f: X \to Y$ непрерывна на компактном метрическом пространстве X. Тогда функция f ограничена на X (m. e. множество f(X) ограничено).

Теорема 3. (Теорема Вейерштрасса.) Пусть скалярная функция $f: X \to \mathbb{R}$ непрерывна на компактном метрическом пространстве X. Тогда

$$\exists \min_{x \in X} f(x) \in \mathbb{R}, \qquad \exists \max_{x \in X} f(x) \in \mathbb{R}.$$

Доказательство повторяет доказательство теоремы Вейерштрасса для функции одной переменной. □

Определение. Метрическое пространство X называется линейно-свя́зным, если для любых двух точек $x_1, x_2 \in X$ существует функция $x:[t_1,t_2]\to X$, непрерывная на некотором отрезке $[t_1,t_2]$ и такая, что $x(t_1)=x_1$ и $x(t_2)=x_2$. Множество A в метрическом пространстве X с метрикой ϱ называется линейно-связным, если метрическое пространство A с метрикой ϱ линейно-связно.

Геометрически линейная связность X означает, что любые две точки множества X можно соединить «непрерывной кривой», лежащей в X.

Теорема 4. Пусть Y – метрическое пространство, функция $f: X \to Y$ непрерывна на линейно-связном метрическом пространстве X. Тогда множество f(X) линейно-связно в метрическом пространстве Y.

Доказательство. Фиксируем произвольные точки $y_1, y_2 \in f(X)$. Тогда существуют $x_1, x_2 \in X$ такие, что $f(x_i) = y_i$ при i = 1, 2. Поскольку метрическое пространство X линейно-связно, то найдется непрерывная на некотором отрезке $[t_1, t_2]$ функция $x : [t_1, t_2] \to X$ такая, что $x(t_i) = x_i$ при i = 1, 2. По теореме о непрерывности сложной функции функция y(t) = f(x(t)) непрерывна на отрезке $[t_1, t_2]$. При этом $y(t_i) = f(x(t_i)) = f(x_i) = y_i$. Поэтому множество f(X) линейно-связно.

Лемма 1. Пусть множество $Y \subset \mathbb{R}$ линейно-связно. Пусть $y_1, y_2 \in Y$. Тогда любое число y_0 , лежащее между y_1 и y_2 , также содержится в Y.

Доказательство. Так как множество Y линейно-связно, то существует непрерывная функция $y:[t_1,t_2]\to Y$ такая, что $y(t_i)=y_i$ при i=1,2. Пусть число y_0 лежит между y_1 и y_2 . По теореме Больцано–Коши о промежуточном значении для функции одной переменной найдется число $t_0\in[t_1,t_2]$ такое, что $y(t_0)=y_0$. Следовательно, $y_0\in Y$.

Теорема 5. (О промежуточном значении.) Пусть скалярная функция $f: X \to \mathbb{R}$ непрерывна на линейно-связном метрическом пространстве X и принимает на X значения y_1 и y_2 . Тогда f(x) принимает на X все значения, лежащие между y_1 и y_2 .

Доказательство. По теореме 4 множество f(X) линейно-связно в \mathbb{R} . Пусть f принимает на X значения y_1 и y_2 , т. е. $y_1,y_2\in f(X)$. Тогда в силу леммы 1 все числа, лежащие между y_1 и y_2 , содержатся в f(X). \square

Определение . Открытое линейно-связное множество в метрическом пространстве X называется *областью*.

Заметим, что область определения функции может не являться областью.

Задача 1. Являются ли областями в \mathbb{R}^n следующие множества:

- а) $U_{\varepsilon}(x_0)$, где $\varepsilon > 0$, $x_0 \in \mathbb{R}^n$;
- б) $\{x \in \mathbb{R}^n : |x x_0| > \varepsilon\}$, где $\varepsilon > 0, x_0 \in \mathbb{R}^n$;
- в) $U_{\varepsilon_1}(a)\bigcup U_{\varepsilon_2}(b)$, где $\varepsilon_1,\varepsilon_2>0,\,a,b\in\mathbb{R}^n,\,|b-a|>\varepsilon_1+\varepsilon_2?$

Указания: для доказательства отсутствия линейно-связности множества (в) применить теорему о промежуточном значении для непрерывной функции f(x) = |x - a|.

КРИВЫЕ

§ 1. Предел и производная вектор-функции

Функция $f:T \to \mathbb{R}$ называется скалярной функцией, а $f:T \to \mathbb{R}^n$ – вектор-функцией.

Лемма 1. Пусть на метрическом пространстве Т задана п-мерная вектор-функция $\overline{a}: T \to \mathbb{R}^n$, $\overline{a}(t) = (a_1(t), \dots, a_n(t))$, $t \in T$. Пусть также заданы вектор $\overline{a}^0=(a_1^0,\ldots,a_n^0)\in\mathbb{R}^n$ и t_0 - предельная точка T.Следующие условия эквивалентны:

- a)
- $\lim_{t \to t_0} \overline{a}(t) = \overline{a}^0;$ $\forall i \in \overline{1, n} \hookrightarrow \lim_{t \to t_0} a_i(t) = a_i^0.$

Доказательство состоит в применении определения предела функции по Гейне и леммы 1 § 7 главы 4, согласно которой предел последовательности векторов в \mathbb{R}^n сводится к пределам последовательностей компонент этих векторов.

Далее в этом параграфе будем рассматривать вектор-функции одной переменной $t \in \mathbb{R}$.

Определение. Пусть вектор-функция $\overline{a}(t)$ определена на числовом промежутке $T\subset\mathbb{R}$. Производной вектор-функции $\overline{a}(t)$ в точке $t_0\in T$ называется

$$\overline{a}'(t_0) = \lim_{\Delta t \to 0} \frac{\overline{a}(t_0 + \Delta t) - \overline{a}(t_0)}{\Delta t}.$$

В случае, когда t_0 – конец числового промежутка T, в качестве предела рассматривается односторонний предел (предел по множеству T).

Пемма 2. Существование производной вектор-функции $\overline{a}(t) =$ $=(a_1(t),\ldots,a_n(t))$ эквивалентно существованию конечных производных всех ее компонент $a_i(t)$, причем $\overline{a}'(t) = (a_1'(t), \ldots, a_n'(t)).$

Доказательство состоит в применении леммы 1.

Производные высших порядков вектор-функции $\overline{a}(t)$ определяются по индукции: $\overline{a}^{(0)}(t) = \overline{a}(t)$, $\overline{a}^{(1)}(t) = \overline{a}'(t)$, $\overline{a}^{(n+1)}(t) = (\overline{a}^{(n)}(t))'$.

Определение. Пусть на числовом промежутке T заданы векторфункция $\overline{a}: T \to \mathbb{R}^n$ и скалярная функция $\varphi: T \to \mathbb{R}$, причем $\forall t \in U_{\delta}(t_0) \hookrightarrow \varphi(t) \neq 0$. Тогда функция \overline{a} называется бесконечно малой относительно функции φ :

$$\overline{a}(t) = \overline{o}(\varphi(t))$$
 при $t \to t_0$, если $\lim_{t \to t_0} \frac{\overline{a}(t)}{\varphi(t)} = \overline{0}$.

Лемма 3. Пусть на числовом промежутке T заданы векторфункция $\overline{a}(t)=(a_1(t),\dots,a_n(t))$ и скалярная функция $\varphi(t)$. Тогда при $t\to t_0$:

$$\overline{a}(t) = \overline{o}(\varphi(t)) \quad \Leftrightarrow \quad (a_1(t) = o(\varphi(t)), \dots, a_n(t) = o(\varphi(t))).$$

Доказательство следует из леммы 1.

Определение. Вектор-функция $\overline{a}(t)$, определенная в некоторой $U_{\delta}(t_0)$, называется $\partial u \phi \phi$ еренцируемой в точке t_0 , если $\exists \overline{A} \in \mathbb{R}^n$:

$$\Delta \overline{a} = \overline{a}(t_0 + \Delta t) - \overline{a}(t_0) = \overline{A} \Delta t + \overline{o}(\Delta t)$$
 при $\Delta t \to 0$.

При этом линейная вектор-функция $\overline{A} \Delta t$ называется $\partial u \phi \phi$ еренциалом вектор-функции $\overline{a}(t)$ в точке t_0 :

$$d\overline{a}(t_0)[dt] = \overline{A} \, \Delta t = \overline{A} \, dt, \quad \Delta \overline{a} = d\overline{a}(t_0) + \overline{o}(\Delta t)$$
 при $\Delta t \to 0$.

Аналогично доказательству теоремы о связи производной и дифференциала для скалярных функций легко доказать, что

Лемма 4. Вектор-функция $\overline{a}(t)$ дифференцируема в точке $t_0 \iff \exists \overline{a}'(t_0)$.

Лемма 5. (Правила дифференцирования.) Пусть T – числовой промежуток, вектор-функции $\overline{a}: T \to \mathbb{R}^n$, $\overline{b}: T \to \mathbb{R}^n$ и скалярная функция $\varphi: T \to \mathbb{R}$ дифференцируемы в точке $t_0 \in T$. Тогда функции $\overline{a} + \overline{b}$, $\varphi \overline{a}$, $(\overline{a}, \overline{b})$ дифференцируемы в точке t_0 и

$$(\overline{a} + \overline{b})' = \overline{a}' + \overline{b}', \quad (\varphi \overline{a})' = \varphi' \overline{a} + \varphi \overline{a}', \quad (\overline{a}, \overline{b})' = (\overline{a}', \overline{b}) + (\overline{a}, \overline{b}').$$

Докажем, например, дифференцируемость $(\overline{a}, \overline{b})$ и последнее равенство. Пусть $\overline{a}(t) = (a_1(t), \dots, a_n(t)), \, \overline{b}(t) = (b_1(t), \dots, b_n(t)).$ Тогда в точке t_0

$$(\overline{a}, \overline{b})' = \left(\sum_{i=1}^n a_i b_i\right)' = \sum_{i=1}^n (a_i' b_i + a_i b_i') = (\overline{a}', \overline{b}) + (\overline{a}, \overline{b}'). \quad \Box$$

Лемма 6. (Производная сложной функции.) Пусть T и S – чиловые промежутки. Пусть скалярная функция $t:S\to T$ дифференцируема в точке $s_0\in S$, а вектор-функция $\overline{a}:T\to \mathbb{R}^n$ дифференцируема в точке $t_0=t(s_0)$. Тогда сложная функция $\overline{b}(s)=\overline{a}(t(s))$ дифференцируема в точке s_0 и $\overline{b}'(s_0)=\overline{a}'(t_0)\cdot t'(s_0)$.

Доказательство состоит в применении леммы 2 и теоремы о производной сложной функции для скалярных функций.

Замечание. Теорема Лагранжа о среднем для скалярных функций непосредственно не обобщается на вектор-функции. Например, для вектор-функции $\overline{a}(t)=(\cos t,\sin t)$ не существует $\xi\in(0,2\pi)$: $\overline{a}(2\pi)-\overline{a}(0)=\overline{a}'(\xi)\cdot 2\pi$. Действительно, $\overline{a}(2\pi)-\overline{a}(0)=(1,0)-(1,0)=(0,0)$, но $\overline{a}'(\xi)=(-\sin\xi,\cos\xi)$ и $\forall \xi\in(0,2\pi)\hookrightarrow |\overline{a}'(\xi)|=\sqrt{\sin^2\xi+\cos^2\xi}=1\neq 0$, следовательно, $\overline{a}(2\pi)-\overline{a}(0)=(0,0)\neq \overline{a}'(\xi)\cdot 2\pi$.

Теорема 1. (Теорема Лагранжа о среднем для вектор-функции.) Пусть вектор-функция $\overline{a}:[t_0,t_1]\to\mathbb{R}^n$ непрерывна на $[t_0,t_1]$ и диф-ференцируема на (t_0,t_1) . Тогда

$$\exists \xi \in (t_0, t_1) : |\overline{a}(t_1) - \overline{a}(t_0)| \le |\overline{a}'(\xi)|(t_1 - t_0).$$

Доказательство. Определим скалярную функцию $\varphi(t) = (\overline{a}(t), \overline{a}(t_1) - \overline{a}(t_0))$. По теореме Лагранжа о среднем для скалярной функции $\varphi(t)$ $\exists \xi \in (t_0, t_1) : \varphi(t_1) - \varphi(t_0) = \varphi'(\xi)(t_1 - t_0)$, т. е.

$$(\overline{a}(t_1), \overline{a}(t_1) - \overline{a}(t_0)) - (\overline{a}(t_0), \overline{a}(t_1) - \overline{a}(t_0)) = (\overline{a}'(\xi), \overline{a}(t_1) - \overline{a}(t_0)) (t_1 - t_0),$$
 следовательно,

$$|\overline{a}(t_1) - \overline{a}(t_0)|^2 \le |\overline{a}'(\xi)| |\overline{a}(t_1) - \overline{a}(t_0)| (t_1 - t_0).$$

Если $\overline{a}(t_1) = \overline{a}(t_0)$, то доказываемое неравенство выполняется автоматически $\forall \xi \in (t_0, t_1)$. Если $\overline{a}(t_1) \neq \overline{a}(t_0)$, то, сокращая последнее неравенство на $|\overline{a}(t_1) - \overline{a}(t_0)|$, получаем требуемое утверждение.

Теорема 2. (Формула Тейлора с остаточным членом в форме Пеано.) Пусть вектор-функция $\overline{a}: T \to \mathbb{R}^n$ определена на числовом промежутке T и $\exists \overline{a}^{(n)}(t_0)$. Тогда

$$\overline{a}(t) = \sum_{k=0}^{n} \frac{\overline{a}^{(k)}(t_0)}{k!} (t - t_0)^k + \overline{o}((t - t_0)^n) \quad npu \quad t \to t_0.$$

Доказательство. Воспользуемся формулой Тейлора с остаточным членом в форме Пеано для каждой компоненты вектор-функции $\overline{a}(t)$. Поскольку остаточные члены для каждой компоненты являются $o((t-t_0)^n)$, то в силу леммы 3 составленный из них вектор является $\overline{o}((t-t_0)^n)$. \square

§ 2. Кривые

Определение. Годографом вектор-функции $\overline{r}: T \to \mathbb{R}^n$ называется множество точек $\overline{r}(t)$, где параметр t пробегает множество T.

Определение. $\mathit{Kpusoй}\ \Gamma$ называется годограф непрерывной векторфункции $\overline{r}:[a,b]\to\mathbb{R}^n$:

$$\Gamma = \{ \overline{r}(t) : t \in [a, b] \}.$$

Точка $\overline{r}(a)$ называется *началом*, а точка $\overline{r}(b)$ – концом этой кривой.

Определение. Если начало и конец кривой $\Gamma = \{\overline{r}(t) : t \in [a,b]\}$ совпадают, т.е. $\overline{r}(a) = \overline{r}(b)$, то кривая Γ называется замкнутой.

Определение. Точка \overline{r}_0 называется точкой самопересечения кривой $\Gamma = \{\overline{r}(t) : t \in [a,b]\},$ если $\exists t_1, t_2 \in [a,b] \colon t_1 \neq t_2$ и $\overline{r}_0 = \overline{r}(t_1) = \overline{r}(t_2)$.

Определение. Кривая $\Gamma = \{\overline{r}(t) : t \in [a,b]\}$ называется npocmoй, если она не имеет самопересечений, т. е. функция $\overline{r} : [a,b] \to \mathbb{R}^n$ инъективна. Кривая Γ называется npocmoй замкнутой, если из того, что $a \le t_1 < < t_2 \le b$ и $\overline{r}(t_1) = \overline{r}(t_2)$ следует $t_1 = a, t_2 = b$ (иначе говоря, Γ не имеет других точек самопересечения, кроме совпадающих начала и конца).

Определение. (Ориентация простой незамкнутой кривой.) Пусть задана простая незамкнутая кривая $\Gamma = \{\overline{r}(t) : t \in [a,b]\}$. Будем говорить, что точка $\overline{r}_2 \in \Gamma$ следует за точкой $\overline{r}_1 \in \Gamma$ или точка \overline{r}_1 предшествует точке \overline{r}_2 , если $\overline{r}_1 = \overline{r}(t_1)$, $\overline{r}_2 = \overline{r}(t_2)$, $t_1 < t_2$. При этом кривую Γ называют ориентированной по возрастанию параметра t. На рисунке направление движения вдоль Γ , соответствующее ориентации Γ , принято обозначать стрелочкой.

Напомним, что разбиением отрезка [a,b] называется конечный набор точек $\{t_0,t_1,...,t_I\}$ таких, что $a=t_0 < t_1 < ... < t_I = b$.

Определение. Пусть задана кривая $\Gamma = \{\overline{r}(t) : t \in [a,b]\}$ и разбиение $\{t_0,t_1,...,t_I\}$ отрезка [a,b]. Тогда будем говорить, что кривая Γ разбита на кривие $\Gamma_i = \{\overline{r}(t) : t \in [t_{i-1},t_i]\}, i=1,\ldots,I$.

Определение. (Ориентация кривой, состоящей из конечного числа простых незамкнутых кривых.) Пусть кривая Γ разбита на простые незамкнутые кривые Γ_i , ориентированые по возрастанию параметра t. Тогда упорядоченная по возрастанию параметра t совокупность $\Gamma_1, \Gamma_2, ..., \Gamma_I$ называется ориентированной кривой Γ : $\Gamma = \Gamma_1 \Gamma_2 ... \Gamma_I$.

Далее мы рассматриваем только ориентированные кривые. Для краткости будем говорить «кривая», но всегда подразумевать ориентированную кривую.

Замечание. Разные вектор-функции могут задавать одну и ту же кривую. Например, кривая $\Gamma = \{(\cos\varphi,\sin\varphi): \varphi\in[-\pi,0]\}$, задаваемая вектор-функцией $\overline{r}(\varphi) = (\cos\varphi,\sin\varphi), \ \varphi\in[-\pi,0]$, может быть задана другой вектор-функцией $\overline{\varrho}(x) = (x,-\sqrt{1-x^2}), \ x\in[-1,1]$: $\Gamma = \{(x,-\sqrt{1-x^2}): x\in[-1,1]\}$.

Определение. Вектор-функция $\overline{\varrho}(s)$, $s \in [s_1, s_2]$ называется допустимой параметризацией кривой $\Gamma = \{\overline{r}(t) : t \in [t_1, t_2]\}$, если существует непрерывная строго возрастающая функция t(s) такая, что $t(s_1) = t_1$, $t(s_2) = t_2$ и $\forall s \in [s_1, s_2] \hookrightarrow \overline{\varrho}(s) = \overline{r}(t(s))$.

При этом считается, что вектор функции $\overline{r}(t)$ и $\overline{\varrho}(s)$ параметризуют (задают) одну и ту же кривую Γ .

Замечание. Так как при допустимой замене параметра старый параметр является строго возрастающей функцией нового параметра, то ориентация кривой не меняется. Задача 1. Пусть две простые кривые $\Gamma_1 = \{\bar{r}_1(t): t \in [t_1, t_2]\}$ и $\Gamma_2 = \{\bar{r}_2(s): s \in [s_1, s_2]\}$ имеют общее начало и общий конец, причем множества Γ_1 и Γ_2 совпадают. Доказать, что кривые Γ_1 и Γ_2 совпадают в том смысле, что вектор-функция $\bar{r}_2(s), s \in [s_1, s_2]$ является допустимой параметризацией кривой Γ_1 , а вектор-функция $\bar{r}_1(t), t \in [t_1, t_2]$ является допустимой параметризацией кривой Γ_2 .

§ 3. Длина кривой

Определение. *Отрезком* $[\overline{r}_1, \overline{r}_2]$ в \mathbb{R}^n называется множество точек $\{\overline{r}_1 + t(\overline{r}_2 - \overline{r}_1) : t \in [0, 1]\}.$

Определение. Ломаной P, вписанной в кривую $\Gamma = \{\overline{r}(t) : t \in [a,b]\}$ и порожденной разбиением $\{t_0,t_1,...,t_I\}$ отрезка [a,b], называется упорядоченный по возрастанию параметра t набор отрезков $[\overline{r}(t_{i-1}),\overline{r}(t_i)]$:

$$P = ([\overline{r}(t_0), \overline{r}(t_1)], [\overline{r}(t_1), \overline{r}(t_2)], ..., [\overline{r}(t_{I-1}), \overline{r}(t_I)]).$$

Отрезки $[\overline{r}(t_{i-1}),\overline{r}(t_i)]$ называются звеньями ломаной P. Длиной ломаной P называется сумма длин ее звеньев:

$$\ell(P) = \sum_{i=1}^{I} |\overline{r}(t_i) - \overline{r}(t_{i-1})|.$$

Определение. Длиной кривой Γ называется точная верхняя грань длин ломаных, вписанных в Γ :

$$\ell(\Gamma) = \sup_{P} \ell(P) = \sup_{\{t_0, t_1, \dots, t_I\}} \sum_{i=1}^{I} |\overline{r}(t_i) - \overline{r}(t_{i-1})|.$$

Если $\ell(\Gamma) < +\infty$, то кривая Γ называется спрямляемой.

Лемма 1. Если спрямляемая кривая Γ разбита на кривые Γ_1 и Γ_2 , то кривые Γ_1 и Γ_2 спрямляемы, причем $\ell(\Gamma) = \ell(\Gamma_1) + \ell(\Gamma_2)$.

Доказательство. 1. Покажем, что кривые Γ_1 и Γ_2 спрямляемы и $\ell(\Gamma_1) + \ell(\Gamma_2) \leq \ell(\Gamma)$.

Пусть P_1 – ломаная, вписанная в Γ_1 , P_2 – ломаная, вписанная в Γ_2 , тогда $P=P_1P_2$ – ломаная, вписанная в Γ . Так как $\ell(P_1)+\ell(P_2)=\ell(P)\leq \leq \ell(\Gamma)$, то $\sup_{P_1}\ell(P_1)<+\infty$, $\sup_{P_2}\ell(P_2)<+\infty$ и $\ell(\Gamma_1)+\ell(\Gamma_2)=\sup_{P_1}\ell(P_1)+\sup_{P_2}\ell(P_2)\leq \ell(\Gamma)$.

2. Покажем, что $\ell(\Gamma) \leq \ell(\Gamma_1) + \ell(\Gamma_2)$. Пусть кривая Γ параметризована вектор-функцией $\overline{r}(t)$: $\Gamma = \{\overline{r}(t) : t \in [a,b]\}$. Пусть точка $c \in (a,b)$ разбивает Γ на Γ_1 и Γ_2 : $\Gamma_1 = \{\overline{r}(t) : t \in [a,c]\}$, $\Gamma_2 = \{\overline{r}(t) : t \in [c,b]\}$.

Пусть P — произвольная ломаная, вписанная в кривую Γ , $\{t_0,t_1,...,t_I\}$ — разбиение отрезка [a,b], порождающее ломаную P. Определим j из условия $t_{j-1} < c \le t_j$. Ломаную, вписанную в кривую Γ_1 и порожденную разбиением $\{t_0,t_1,...,t_{j-1},c\}$, обозначим через P_1 . Ломаную, вписанную в кривую Γ_2 и порожденную разбиением $\{c,t_j,t_{j+1},...,t_I\}$, обозначим через P_2 (если $c=t_j$, то разбиением $\{t_j,t_{j+1},...,t_I\}$). Тогда

$$\ell(P) - \ell(P_1) - \ell(P_2) = |\overline{r}(t_i) - \overline{r}(t_{i-1})| - |\overline{r}(c) - \overline{r}(t_{i-1})| - |\overline{r}(t_i) - \overline{r}(c)| \le 0,$$

где последнее неравенство следует из неравенства треугольника. Поэтому

$$\ell(P) \le \ell(P_1) + \ell(P_2) \le \ell(\Gamma_1) + \ell(\Gamma_2).$$

Итак,
$$\ell(\Gamma) = \sup_{P} \ell(P) \le \ell(P_1) + \ell(P_2)$$
.

Определение. Функция $f:[a,b]\to\mathbb{R}^n$ называется непрерывно диф-ференцируемой на [a,b], если

- $1)\ \forall t\in [a,b]\quad \exists f'(t),$ где при t=a под f'(t) понимается правая, а при t=b левая производная, и
 - 2) функция f'(t) непрерывна на [a, b].

Теорема 1. (Достаточное условие спрямляемости кривой.) *Пусть* вектор-функция $\overline{r}:[a,b]\to\mathbb{R}^n$ непрерывно дифференцируема. Тогда кривая \overline{r} спрямляема u

$$\ell(\Gamma) \le (b-a) \max_{t \in [a,b]} |\overline{r}'(t)|.$$

Доказательство. Так как скалярная функция $|\vec{r}'(t)|$ непрерывна на [a,b], то по теореме Вейерштрасса для скалярных функций $\exists \max_{t \in [a,b]} |\vec{r}'(t)| = M$.

Пусть P – ломаная, вписанная в кривую Γ , порожденная некоторым разбиением $\{t_0, t_1, ..., t_I\}$ отрезка [a, b]. По теореме Лагранжа для векторфункций $\forall i \in \{1, 2, ..., I\}$ $\exists \xi_i \in (t_{i-1}, t_i)$:

$$|\overline{r}(t_i) - \overline{r}(t_{i-1})| \le |\overline{r}'(\xi_i)| (t_i - t_{i-1}) \le M (t_i - t_{i-1}),$$

следовательно,

$$\ell(P) = \sum_{i=1}^{I} |\overline{r}(t_i) - \overline{r}(t_{i-1})| \le M \sum_{i=1}^{I} (t_i - t_{i-1}) = M (b - a).$$

Поэтому
$$\ell(\Gamma) = \sup_{P} \ell(P) \le \max_{t \in [a,b]} |\overline{r}'(t)| (b-a).$$

Определение. Пусть кривая $\Gamma = \{\overline{r}(t) : t \in [a,b]\}$ спрямляема. Определим переменную дугу $\Gamma_t = \{\overline{r}(u) : u \in [a,t]\}$. Функцию $s(t) = \ell(\Gamma_t)$ называют nepemenhoù длиной дуги кривой Γ .

Теорема 2. (О производной переменной длины дуги.) Пусть вектор-функция $\overline{r}:[a,b]\to\mathbb{R}^n$, параметризующая кривую $\Gamma=\{\overline{r}(t):t\in [a,b]\}$, непрерывно дифференцируема. Тогда переменная длина дуги s(t) непрерывно дифференцируема на [a,b] и

$$s'(t_0) = |\overline{r}'(t_0)| \quad \forall t_0 \in [a, b]$$

 $(здесь при t_0 = a \ u \ npu \ t_0 = b \ u$ меются в виду односторонние производные).

Доказательство. Пусть $t_0 \in [a,b), \Delta t \in (0,b-t_0)$. Обозначим $\Delta s = s(t_0 + \Delta t) - s(t_0), \Delta \overline{r} = \overline{r}(t_0 + \Delta t) - \overline{r}(t_0)$.

В силу леммы 1 длина кривой $\Delta\Gamma=\{\overline{r}(t):t\in[t_0,t_0+\Delta t]\}$ равна $\ell(\Delta\Gamma)=\Delta s$. Так как длина отрезка $[\overline{r}(t_0),\overline{r}(t_0+\Delta t)]$ не превосходит длины дуги $\Delta\Gamma$, то

$$|\Delta \overline{r}| < \ell(\Delta \Gamma). \tag{1}$$

По теореме 1 имеем $\ell(\Delta\Gamma) \leq \max_{t \in [t_0,t_0+\Delta t]} |\overline{r}'(t)| \, |\Delta t|$. По определению максимума $\exists \xi \in [t_0,t_0+\Delta t]: \max_{t \in [t_0,t_0+\Delta t]} |\overline{r}'(t)| = |\overline{r}'(\xi)|$, следовательно, $\ell(\Delta\Gamma) \leq |\overline{r}'(\xi)| \, |\Delta t|$, откуда в силу (1) получаем $\frac{|\Delta \overline{r}|}{|\Delta t|} \leq \frac{\ell(\Delta\Gamma)}{|\Delta t|} \leq |\overline{r}'(\xi)|$. Поэтому

$$\left| \frac{\Delta \overline{r}}{\Delta t} \right| \le \frac{\Delta s}{\Delta t} \le |\overline{r}'(\xi)|. \tag{2}$$

Так как $|t_0 - \xi| \leq |\Delta t|$, то при $\Delta t \to +0$ выполняется $\xi \to t_0 + 0$, и в силу непрерывности функции $\overline{r}'(t)$ $\exists \lim_{\Delta t \to +0} |\overline{r}'(\xi)| = |\overline{r}'(t_0)|$. Кроме того, по определению производной $\exists \lim_{\Delta t \to +0} \frac{\Delta \overline{r}}{\Delta t} = \overline{r}'(t_0)$, следовательно, $\exists \lim_{\Delta t \to +0} \left| \frac{\Delta \overline{r}}{\Delta t} \right| = |\overline{r}'(t_0)|$. Поэтому из (2) по теореме о трех функциях следует, что $\exists \lim_{\Delta t \to +0} \frac{\Delta s}{\Delta t} = |\overline{r}'(t_0)|$, т. е. $\exists s'_+(t_0) = |\overline{r}'(t_0)|$. Аналогично $\forall t_0 \in (a,b] \exists s'_-(t_0) = |\overline{r}'(t_0)|$.

Определение. Точка $t_0 \in [a,b]$ называется особой точкой параметризации $\overline{r}(t)$ кривой $\Gamma = \{\overline{r}(t): t \in [a,b]\}$, если $\overline{r}'(t_0) = \overline{0}$.

Определение. Параметризация $\overline{r}(t)$ кривой $\Gamma = \{\overline{r}(t) : t \in [a,b]\}$ называется гладкой параметризацией, если вектор-функция $\overline{r}(t)$ непрерывно дифференцируема и не имеет особых точек. Кривая Γ называется гладкой кривой, если она допускает гладкую параметризацию.

Определение. Будем говорить, что вектор-функция $\overline{\varrho}$: $[0,\ell(\Gamma)] \to \mathbb{R}^n$ является натуральной параметризацией кривой $\Gamma = \{\overline{\varrho}(t): t \in [0,\ell(\Gamma)]\}$, если параметр t является переменной длиной дуги, т. е. $\forall t \in [0,\ell(\Gamma)] \to s(t) = t$.

Если кривая Γ не спрямляема, то для нее не существует натуральной параметризации.

Теорема 3. (О натуральной параметризации.)

- 1. Гладкая кривая Γ допускает натуральную параметризацию.
- 2. Пусть $\overline{r}:[a,b]\to\mathbb{R}^n$ гладкая параметризация кривой $\Gamma,\ a\ \overline{\varrho}:[0,\ell(\Gamma)]\to\mathbb{R}^n$ натуральная параметризация этой кривой. Тогда

$$\overline{\varrho}'(s(t)) = \frac{\overline{r}'(t)}{|\overline{r}'(t)|} \qquad \forall t \in [a, b], \tag{3}$$

где s(t) – переменная длина дуги кривой Γ .

3. Натуральная параметризация гладкой кривой является непрерывно дифференцируемой функцией.

Доказательство. Поскольку кривая Γ гладкая, то существует ее гладкая параметризация: $\Gamma = \{\overline{r}(t): t \in [a,b]\}$, т.е. вектор-функция $\overline{r}: [a,b] \to \mathbb{R}^n$ непрерывно дифференцируема и не имеет особых точек. По теореме о производной переменной длины дуги $\forall t \in [a,b] \; \exists s'(t) = |\overline{r}'(t)|$. Так как параметризация \overline{r} не имеет особых точек, то $\overline{r}'(t) \neq \overline{0}$,

а значит, s'(t) > 0. Следовательно, переменная длина дуги s(t) является строго возрастающей непрерывной функцией. Поэтому существует обратная к ней функция t(s), которая также строго возрастает и непрерывна. По определению допустимой параметризации получаем, что параметризация $\overline{\varrho}(s) = \overline{r}(t(s))$, где $s \in [0, \ell(\Gamma)]$, является допустимой.

Так как $\exists s'(t) = |\overline{r}'(t)| \neq 0$, то по теореме о производной обратной функции $\exists t'(s) = \frac{1}{s'(t)} = \frac{1}{|\overline{r}'(t)|}$. Согласно теореме о производной сложной функции $\exists \overline{\varrho}'(s) = \overline{r}'(t) \, t'(s) = \frac{\overline{r}'(t)}{|\overline{r}'(t)|}$. Следовательно, справедлива формула (3).

Так как вектор-функция $\overline{r}(t)$ непрерывно дифференцируема и $\overline{r}'(t) \neq \overline{0}$, то вектор-функция $\overline{\varrho}'(s) = \frac{\overline{r}'(t(s))}{|\overline{r}'(t(s))|}$ непрерывна, следовательно, вектор-функция $\overline{\varrho}$ непрерывно дифференцируема.

Замечание. Условие отсутствия особых точек параметризации существенно для гладкости кривой. Рассмотрим кривую Γ , параметризованную вектор-функцией $\overline{r}:[-1,1]\to\mathbb{R}^2,\ \overline{r}(t)=(t^3,|t|^3)$. Векторфункция \overline{r} непрерывно дифференцируема, т. к. ее производная $\overline{r}'(t)=(3t^2,3t^2\,\mathrm{sign}\,t)$ непрерывна. Однако кривая Γ не является гладкой, так как натуральная параметризация кривой Γ задается вектор-функцией $\overline{\varrho}(s)=(\frac{s}{\sqrt{2}}-1,|\frac{s}{\sqrt{2}}-1|),\ s\in[0,2\sqrt{2}],$ не являющейся дифференцируемой в точке $s=\sqrt{2}$.

Лемма 2. Пусть $\overline{r}_1:[a,b]\to\mathbb{R}^n$ и $\overline{r}_2:[c,d]\to\mathbb{R}^n$ – две гладкие параметризации кривой Γ . Тогда замена параметра t параметризации $\overline{r}_1(t)$ на параметр φ параметризации $\overline{r}_2(\varphi)$ является непрерывно дифференцируемой функцией со строго положительной производной.

Доказательство. Обозначим через $s_1(t)$ и $s_2(\varphi)$ переменные длины дуг кривой Γ в параметризациях $\overline{r}_1(t)$ и $\overline{r}_2(\varphi)$ соответственно. В силу теоремы о производной переменной длины дуги функции $s_1(t)$ и $s_2(\varphi)$ непрерывно дифференцируемы, $s_1'(t) = |\overline{r}_1'(t)|, \ s_2'(\varphi) = |\overline{r}_2'(\varphi)|$. Так как параметризации \overline{r}_1 и \overline{r}_2 не имеют особых точек, то $s_1'(t) > 0, \ s_2'(\varphi) > 0$. Поэтому, в частности, обратная функция $\varphi = s_2^{-1}(s)$ также непрерывно дифференцируема. Функция $s = s_1(t)$ осуществляет переход от

параметра t к натуральному параметру s, а функция $\varphi=s_2^{-1}(s)$ – переход от натурального параметра s к параметру φ . Функция $\varphi(t)=s_2^{-1}(s_1(t))$, осуществляющая переход от параметра t параметризации $\overline{r}_1(t)$ к параметру φ параметризации $\overline{r}_2(\varphi)$, непрерывно дифференцируема как суперпозиция непрерывно дифференцируемых функций. При этом $\varphi'(t)=\left(s_2^{-1}\right)'(s_1(t))\cdot s_1'(t)>0$.

§ 4. Первое приближение кривой (касательная)

Определение. Пусть $\overline{r}:[a,b]\to\mathbb{R}^n$ – гладкая параметризация простой кривой $\Gamma=\{\overline{r}(t):\ t\in[a,b]\}$. Вектор

$$\overline{\tau}(t) = \frac{\overline{r}'(t)}{|\overline{r}'(t)|}$$

называется единичным вектором касательной к кривой Γ в точке $\overline{r}(t)$ кривой Γ , где $t \in [a,b]$.

Прямая, заданная векторным параметрическим уравнением

$$\overline{r} = \overline{r}_{KAC}(u) = \overline{r}(t_0) + \overline{\tau}(t_0)u, \quad u \in \mathbb{R},$$

называется касательной к кривой Γ в точке $\overline{r}(t_0)$.

Следующая лемма утверждает корректность этого определения, т. е. независимость от параметризации вектора касательной к кривой Γ в заданной точке.

Лемма 1. Пусть $\overline{r}_1:[a,b]\to\mathbb{R}^n$ и $\overline{r}_2:[c,d]\to\mathbb{R}^n$ – две гладкие параметризации простой кривой Γ . Пусть $\overline{r}_1(t_0)=\overline{r}_2(\varphi_0),\ t_0\in[a,b],$ $\varphi_0\in[c,d]$. Тогда

$$\frac{\overline{r}_1'(t_0)}{|\overline{r}_1'(t_0)|} = \frac{\overline{r}_2'(\varphi_0)}{|\overline{r}_2'(\varphi_0)|}.$$

Доказательство. По определению допустимой параметризации существует непрерывная строго возрастающая функция $\varphi:[a,b]\to[c,d]$ такая, что $\overline{r}_2(\varphi(t))=\overline{r}_1(t)$ для любого $t\in[a,b]$. Поскольку точка $\overline{r}_2(\varphi_0)=\overline{r}_1(t_0)=\overline{r}_2(\varphi(t_0))$ не является точкой самопересечения Γ , то $\varphi_0=\varphi(t_0)$. В силу леммы 2 предыдущего параграфа функция $\varphi(t)$ непрерывно дифференцируема и $\varphi'(t)>0$. Поэтому $\overline{r}_1'(t_0)=\overline{r}_2'(\varphi_0)\cdot\varphi'(t_0)$ и

$$\frac{\overline{r}_1'(t_0)}{|\overline{r}_1'(t_0)|} = \frac{\overline{r}_2'(\varphi_0) \cdot \varphi'(t_0)}{|\overline{r}_2'(\varphi_0)| \cdot |\varphi'(t_0)|} = \frac{\overline{r}_2'(\varphi_0)}{|\overline{r}_2'(\varphi_0)|}.$$

Замечание. Если $\overline{\varrho}:[0,\ell(\Gamma)]\to\mathbb{R}^n$ – натуральная параметризация простой гладкой кривой Γ и $s_0 \in [0, \ell(\Gamma)]$, то единичный вектор касательной к кривой Γ в точке $\overline{\varrho}(s_0)$ равен

$$\overline{\tau}(s_0) = \overline{\varrho}'(s_0).$$

Это следует из определения касательного вектора и формулы (3) предыдущего параграфа (см. теорему о натуральной параметризации).

Лемма 2. Пусть $\overline{\varrho}:[0,\ell(\Gamma)]\to\mathbb{R}^n$ – натуральная параметризация простой гладкой кривой Γ . Пусть $\overline{\tau}_0 = \overline{\tau}(s_0)$ – единичный вектор касательной к кривой Γ в точке $\overline{\varrho}_0 = \overline{\varrho}(s_0), s_0 \in [0, \ell(\Gamma)]$. Тогда в окрестности точки $\overline{\varrho}_0$ кривой Γ в первом приближении совпадает со своей касаmельной $\overline{r} = \overline{r}_{KAC}(u) = \overline{\varrho}_0 + \overline{\tau}_0 u, m. e.$

$$\overline{\varrho}(s) = \overline{r}_{KAC}(s - s_0) + \overline{o}(s - s_0) \quad npu \quad s \to s_0.$$

Доказательство. Разложим вектор-функцию $\overline{\varrho}(s)$ по формуле Тейлора:

$$\overline{\varrho}(s) = \overline{\varrho}(s_0) + \overline{\varrho}'(s_0) \, (s-s_0) + \overline{\varrho}(s-s_0)$$
 при $s \to s_0$

и воспользуемся равенствами $\overline{\varrho}_0 = \overline{\varrho}(s_0), \, \overline{\tau}_0 = \overline{\tau}(s_0) = \overline{\varrho}'(s_0).$

§ 5. Второе приближение кривой

Определение . Пусть натуральная параметризация $\overline{\varrho}:[0,\ell(\Gamma)] o \mathbb{R}^n$ кривой Г является дважды дифференцируемой вектор-функцией. Пусть $\overline{ au}(s)=rac{d\overline{arrho}(s)}{ds}$ — единичный вектор касательной. Тогда число $k=k(s_0)=$ $=\left|\frac{d\overline{ au}}{ds}(s_0)\right|$ называется $\kappa pueuзной$ кривой Γ в точке $\overline{\varrho}_0=\overline{\varrho}(s_0)$.

- Если в точке $\overline{\varrho}_0$ кривизна $k(s_0) \neq 0$, то 1) число $R=R(s_0)=\frac{1}{k(s_0)}$ называется paduycom кривизны,
- (2) единичный вектор $\overline{\overline{
 u}}=\overline{\overline{
 u}}(s_0)=rac{1}{k(s_0)}rac{d\overline{\overline{
 u}}}{ds}(s_0)$ вектором главной нормали,
- 3) прямая с направляющим вектором $\overline{\nu}$, проходящая через точку $\overline{\varrho}_0$, - главной нормалью,
- 4) плоскость, проходящая через касательную и главную нормаль, соприкасающейся плоскостью,
 - 5) точка $\overline{r}_c=\overline{r}_c(s_0)=\overline{\varrho}_0+R(s_0)\,\overline{
 u}(s_0)$ центром кривизны,
- 6) окружность с центром в точке \overline{r}_c , радиусом R, лежащая в соприкасающейся плоскости, называется соприкасающейся окружностью кривой Γ в точке $\overline{\varrho}_0$.

Лемма 1. Если в некоторой точке кривой Γ определены вектор касательной $\overline{\tau}$ и вектор главной нормали $\overline{\nu}$, то $\overline{\tau} \perp \overline{\nu}$.

Доказательство. Так как $(\overline{\tau}(s), \overline{\tau}(s)) = |\overline{\tau}(s)|^2 = 1 \quad \forall s \in [0, \ell(\Gamma)],$ то $(\overline{\tau}(s), \overline{\tau}(s))' = 0$, следовательно, $(\overline{\tau}'(s), \overline{\tau}(s)) = 0$, т. е. $(\overline{\nu}(s), \overline{\tau}(s)) = 0$.

Напишем векторное уравнение соприкасающейся окружности кривой Γ в точке $\overline{\varrho}_0$.

Пусть сначала в плоскости xy задана прямоугольная система координат с единичными базисными векторами \bar{i}, \bar{j} . Окружность радиуса R с центром в $\bar{0}$, лежащая в плоскости векторов \bar{i}, \bar{j} , может быть задана формулами

$$x = -R\cos\varphi, \quad y = R\sin\varphi, \qquad \varphi \in [0, 2\pi],$$

или в векторной форме: $\overline{r}=x\,\overline{i}+y\,\overline{j}=-R\cos\varphi\,\overline{i}+R\sin\varphi\,\overline{j}$. Если в \mathbb{R}^n заданы два ортогональных единичных вектора $\overline{\tau}$ и $\overline{\nu}$ и точка \overline{r}_c , то уравнение окружности радиуса R, лежащей в плоскости векторов $\overline{\tau}$, $\overline{\nu}$ и с центром в точке \overline{r}_c , имеет вид $\overline{r}=\overline{r}_{\rm OKP}(\varphi)=\overline{r}_c-R\cos\varphi\,\overline{\nu}+R\sin\varphi\,\overline{\tau}$. Следовательно, с учетом определения центра кривизны $\overline{r}_c=\overline{\varrho}_0+R(s_0)\,\overline{\nu}(s_0)$, соприкасающаяся окружность кривой Γ в точке $\overline{\varrho}_0=\overline{r}(s_0)$ задается уравнением

$$\overline{r} = \overline{r}_{\text{OKP}}(\varphi) = \overline{\varrho}_0 + R\sin\varphi\,\overline{\tau} + R\left(1 - \cos\varphi\right)\overline{\nu}.\tag{1}$$

Теорема 1. Пусть натуральная параметризация $\overline{\varrho}: [0, \ell(\Gamma)] \to \mathbb{R}^n$ кривой Γ является дважды дифференцируемой вектор-функцией. Тогда 1) если $\overline{\varrho}''(s_0) \neq \overline{0}$, то в окрестности точки $\overline{\varrho}_0 = \overline{\varrho}(s_0)$ кривая Γ во втором приближении совпадает с соприкасающейся окружностью:

$$\overline{\varrho}(s) = \overline{r}_{o\kappa p} \left(\frac{s - s_0}{R} \right) + \overline{o}((s - s_0)^2) \quad npu \quad s \to s_0;$$

2) если $\overline{\varrho}''(s_0) = \overline{0}$, то в окрестности точки $\overline{\varrho}_0$ кривая Γ во втором приближении совпадает с касательной:

$$\overline{\rho}(s) = \overline{r}_{KAC}(s-s_0) + \overline{\rho}((s-s_0)^2) \quad npu \quad s \to s_0.$$

Доказательство. 1. Пользуясь разложениями $\cos \varphi = 1 - \frac{1}{2} \varphi^2 + o(\varphi^2)$, $\sin \varphi = \varphi + o(\varphi^2)$ при $\varphi \to 0$, из формулы (1) получаем при $s \to s_0$:

$$\overline{r}_{\text{OKP}}\left(\frac{s-s_0}{R}\right) = \overline{r}(s_0) + \overline{\tau}\left(s-s_0\right) + \frac{\overline{\nu}}{2R}\left(s-s_0\right)^2 + \overline{o}((s-s_0)^2).$$

Так как $\overline{\tau} = \overline{\varrho}'(s_0), \quad \frac{\overline{\nu}}{R} = k \, \overline{\nu} = \overline{\varrho}''(s_0), \text{ то при } s \to s_0$:

$$\overline{r}_{\text{OKP}}\left(\frac{s-s_0}{R}\right) = \overline{\varrho}(s_0) + \overline{\varrho}'(s_0)\left(s-s_0\right) + \frac{\overline{\varrho}''(s_0)}{2}\left(s-s_0\right)^2 + \overline{\varrho}((s-s_0)^2).$$

С другой стороны, в силу формулы Тейлора при $s \to s_0$

$$\overline{\varrho}(s) = \overline{\varrho}(s_0) + \overline{\varrho}'(s_0)(s - s_0) + \frac{\overline{\varrho}''(s_0)}{2}(s - s_0)^2 + \overline{\varrho}((s - s_0)^2).$$

Сравнивая разложения $\overline{\varrho}(s)$ и $\overline{r}_{\text{окр}}\left(\frac{s-s_0}{R}\right)$, получаем утверждение пункта (1).

Доказательство второго пункта аналогично доказательству леммы 2 \S 4.

Определение. Векторным произведением векторов $\overline{a}=(a_1,a_2,a_3)$ и $\overline{b}=(b_1,b_2,b_3)$ называется вектор

$$[\overline{a}, \overline{b}] = \left(\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \right) =$$

$$= (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1).$$

Заметим, что данное определение векторного произведения соответствует определению векторного произведения в случае правого ортонормированного базиса, данному в аналитической геометрии.

Теорема 2. Пусть параметризация $\bar{r}:[a,b]\to\mathbb{R}^3$ кривой Γ дважды дифференцируема и не имеет особых точек $(m. e. \overline{r}'(t) \neq \overline{0})$ на [a,b]. Тогда 1) $[\overline{\tau}, \frac{d\overline{\tau}}{ds}] = \frac{[\overline{r}'(t).\overline{r}''(t)]}{|\overline{r}'(t)|^3};$ 2) кривизна кривой Γ в каждой точке $\overline{r}(t)$ кривой Γ существует u

- выражается формулой

$$k = \frac{|[\overline{r}'(t), \overline{r}''(t)]|}{|\overline{r}'(t)|^3}.$$

Доказательство. 1. По определению касательного вектора имеем $\overline{\tau}=\frac{\overline{r}'(t)}{|\overline{r}'(t)|}.$ Так как $\overline{r}(t)$ дважды дифференцируема, то $\exists \frac{d\overline{\tau}}{dt}=\frac{\overline{r}''(t)}{|\overline{r}'(t)|}+$ $+ \overline{r}'(t) \left(\frac{1}{|\overline{r}'(t)|} \right)'$

Так как по теореме о производной переменной длины дуги справедливо равенство $\frac{ds}{dt} = |\overline{r}'(t)|$, то

$$\exists \quad \frac{d\overline{\tau}}{ds} = \frac{d\overline{\tau}}{dt} \frac{dt}{ds} = \frac{1}{|\overline{r}'(t)|} \frac{d\overline{\tau}}{dt} = \frac{\overline{r}''(t)}{|\overline{r}'(t)|^2} + \frac{\overline{r}'(t)}{|\overline{r}'(t)|} \left(\frac{1}{|\overline{r}'(t)|}\right)'.$$

Еще раз используя равенство $\overline{\tau}=rac{\overline{r}'(t)}{|\overline{r}'(t)|},$ а также равенство нулю векторного произведения коллинеарных векторов, получаем

$$\left[\overline{\tau}, \frac{d\overline{\tau}}{ds}\right] = \frac{1}{|\overline{r}'(t)|} \left[\overline{r}'(t), \frac{d\overline{\tau}}{ds}\right] = \frac{[\overline{r}'(t), \overline{r}''(t)]}{|\overline{r}'(t)|^3}.$$

2. Из существования $\frac{d\overline{\tau}}{ds}$ следует существование кривизны $k=\left|\frac{d\overline{\tau}}{ds}\right|$. В силу леммы 1, векторы $\overline{\tau}$ и $\frac{d\overline{\tau}}{ds}$ взаимно перпендикулярны, кроме того, $|\overline{\tau}|=1$, следовательно,

$$k = \left| \left[\overline{\tau}, \frac{d\overline{\tau}}{ds} \right] \right| = \frac{\left| \left[\overline{r}'(t), \overline{r}''(t) \right] \right|}{\left| \overline{r}'(t) \right|^3}.$$

Следствия

1. Формула для вычисления кривизны, записанная через координаты вектор-функции $\overline{r}(t) = (x(t), y(t), z(t)), принимает вид$

$$k = \frac{\sqrt{(y'z'' - y''z')^2 + (z'x'' - z''x')^2 + (x'y'' - x''y')^2}}{((x')^2 + (y')^2 + (z')^2)^{3/2}}.$$

2. Если Γ – плоская кривая, т. е. z(t) = 0, то

$$k = \frac{|x'y'' - x''y'|}{((x')^2 + (y')^2)^{3/2}}.$$

3. Если плоская кривая Γ задана как график функции y = f(x), то x' = 1, x'' = 0, y' = f', y'' = f'' и, следовательно,

$$k = \frac{|f''|}{(1 + (f')^2)^{3/2}}.$$

§ 6. Сопровождающий трехгранник кривой

В данном параграфе всегда будем предполагать, что кривая Г

- 1) параметризована дважды дифференцируемой вектор-функцией \overline{r} : $[a,b] \to \mathbb{R}^3$,
 - 2) не имеет особых точек (т.е. $\forall t \in [a,b] \hookrightarrow \overline{r}'(t) \neq \overline{0}$) и
- 3) кривизна не обращается в 0 (т.е. согласно теореме 2 § 5 $\forall t \in [a,b] \hookrightarrow [\overline{r}'(t),\overline{r}''(t)] \neq \overline{0}$).

Определение. Пусть $\overline{\tau}$ – единичный вектор касательной, $\overline{\nu}$ – единичный вектор главной нормали кривой Γ в точке \overline{r}_0 . Тогда вектор $\overline{\beta}$ = $[\overline{\tau},\overline{\nu}]$ называется вектором бинормали в точке \overline{r}_0 . Прямая с направляющим вектором $\overline{\beta}$, проходящая через точку \overline{r}_0 , называется бинормалью кривой Γ в точке \overline{r}_0 .

Замечание. Поскольку векторы $\overline{\tau}$ и $\overline{\nu}$ – единичные и взаимно перпендикулярны, то в силу определения векторного произведения тройка векторов $\overline{\tau}$, $\overline{\nu}$, $\overline{\beta}$ образует правый ортонормированный базис, а касательная, главная нормаль и бинормаль в данной точке – это три взаимно перпендикулярные прямые.

Определение. Отложим векторы $\overline{\tau}$, $\overline{\nu}$ и $\overline{\beta}$, вычисленные для точки \overline{r}_0 кривой Γ , от точки \overline{r}_0 . Образовавшийся трехгранник называется сопровождающим трехгранником Френе кривой Γ .

Трехгранник Френе в точке \overline{r}_0 задает следующие три взаимно перпендикулярные плоскости, проходящие через точку \overline{r}_0 :

плоскость, перпендикулярная касательной, называется нормальной плоскостью,

плоскость, перпендикулярная бинормали, называется *conpuкасающейся плоскостью*,

плоскость, перпендикулярная главной нормали, называется cnpsmns- bullet bulle

Замечание. (Геометрический смысл соприкасающейся и спрямляющей плоскостей.)

Как следует из теоремы 1 § 5, кривая Γ с точностью до $\overline{o}((s-s_0)^2)$ совпадает с соприкасающейся окружностью:

$$\overline{r} = \overline{r}_{OKD}(\varphi) = \overline{r}_0 + R\sin\varphi\,\overline{\tau} + R\left(1 - \cos\varphi\right)\overline{\nu}.$$

Так как соприкасающаяся окружность лежит в соприкасающейся плоскости, то кривая Γ с точностью до $\overline{o}((s-s_0)^2)$ при $s \to s_0$ лежит в соприкасающейся плоскости. Так как проекция соприкасающейся окружности на спрямляющую плоскость принадлежит касательной к кривой Γ , то с точностью до $\overline{o}((s-s_0)^2)$ при $s \to s_0$ проекция кривой Γ на спрямляющую плоскость является прямой. Этим объясняются названия соприкасающейся и спрямляющей плоскостей.

Напишем уравнения нормальной, соприкасающейся и спрямляющей плоскостей в точке $\overline{r}_0 = \overline{r}(t_0)$. Согласно определениям эти уравнения можно записать в следующем виде.

Нормальная плоскость: $(\overline{r} - \overline{r}_0, \overline{\tau}) = 0.$

Спрямляющая плоскость: $(\overline{r} - \overline{r}_0, \overline{\nu}) = 0.$

Соприкасающаяся плоскость: $(\overline{r} - \overline{r}_0, \overline{\beta}) = 0.$

Напишем более явные уравнения этих плоскостей.

Так как $\overline{\tau} = \frac{\overline{r}'(t)}{|\overline{r}'(t)|}$, то нормальная плоскость задается уравнением

$$(\overline{r}-\overline{r}_0,\,\overline{r}'(t_0))=0.$$

Поскольку $\overline{\nu}=\frac{1}{k}\frac{d\overline{\tau}}{ds}=\frac{1}{k}\frac{d^2\overline{\tau}}{ds^2},$ то спрямляющая плоскость задается уравнением

$$\left(\overline{r} - \overline{r}_0, \frac{d^2\overline{r}}{ds^2}(t_0)\right) = 0.$$

Используя равенство $\overline{\beta}=[\overline{\tau},\overline{\nu}]$, запишем уравнение соприкасающейся плоскости через смешанное произведение: $(\overline{r}-\overline{r}_0,\overline{\tau},\overline{\nu})=0$. В силу пункта 1) теоремы 2 § 5 и определения вектора главной нормали $\overline{\nu}=\frac{1}{k}\frac{d\overline{\tau}}{ds}$ получаем $[\overline{\tau},\overline{\nu}]=\frac{[\overline{r}'(t),\overline{r}''(t)]}{k\,|\overline{r}'(t)|^3}$. Поэтому соприкасающаяся плоскость в точке \overline{r}_0 задается уравнением

$$(\overline{r}-\overline{r}_0,\,\overline{r}'(t_0),\,\overline{r}''(t_0))=0.$$

КОМПЛЕКСНЫЕ ЧИСЛА И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

§ 1. Комплексные числа

Определение. Множеством С комплексных чисел называется множество (упорядоченных) пар действительных чисел $(x,y) \in \mathbb{R}^2$ (которые принято записывать как z = x + iy) с операциями сложения и умножения элементов (см. ниже). При этом x = Re z называется вещественной чаcmью, а y = Im z – мнимой частью комплексного числа z. Комплексное число $x+i\,0$ отождествляется с вещественным числом $x\in\mathbb{R}$, т. е. $\mathbb{R}\subset\mathbb{C}$.

Пусть
$$z_1=x_1+iy_1,\,z_2=x_2+iy_2,$$
 где $x_1,x_2,y_1,y_2\in\mathbb{R}.$ Тогда 1) $z_1=z_2\iff \Big(x_1=x_2,\quad y_1=y_2\Big);$

1)
$$z_1 = z_2 \iff (x_1 = x_2, y_1 = y_2)$$

- 2) $z_1 + z_2 = x_1 + x_2 + i(y_1 + y_2), \quad z_1 z_2 = x_1 x_2 + i(y_1 y_2), \text{ T. e.}$ сумма и разность комплексных чисел определяется как сумма и разность векторов в \mathbb{R}^2 ;
- $3) z_1 z_2 = x_1 x_2 y_1 y_2 + i(x_1 y_2 + x_2 y_1)$, т. е. при вычислении произведения $(x_1 + iy_1)(x_2 + iy_2)$ нужно раскрыть скобки и воспользоваться тем, что $i^2 = -1$.

Свойства операций комплексных чисел

a)
$$z_1 + z_2 = z_2 + z_1$$
, $z_1 z_2 = z_2 z_1$,

6)
$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3), (z_1 z_2) z_3 = z_1 (z_2 z_3),$$

B)
$$z_1(z_2+z_3)=z_1z_2+z_1z_3$$

доказать самостоятельно.

Геометрическая интерпретация комплексных чисел

Комплексное число z = x + iy будем изображать как точку с координатами (x, y) на комплексной плоскости, т.е. на координатной плоскости с осями $\operatorname{Re} z$, $\operatorname{Im} z$.

Операция сложения комплексных чисел соответствует сложению радиусвекторов точек комплексной плоскости.

Определение. Если $x=r\cos\varphi,$ $y=r\sin\varphi,$ $r\geq 0,$ $\varphi\in\mathbb{R},$ то r называется модулем, а φ – аргументом комплексного числа z=x+iy:

$$y = x + iy$$

$$\varphi = x + iy$$

$$Re z$$

$$r = |z|, \quad \varphi = \arg z.$$

Покажем, что для любого комплексного числа существуют его модуль и аргумент. Пусть $z=x+iy,\,x,y\in\mathbb{R}$. Обозначим $r=\sqrt{x^2+y^2}$. В случае z=0 имеем r=0, и любое $\varphi\in\mathbb{R}$ является аргументом z. Пусть $z\neq 0$. Так как точка $\frac{1}{r}z$ лежит на единичной окружности, то найдется вещественное число $\varphi\in[0,2\pi)$ такое, что точка $\frac{1}{r}z$ имеет координаты $(\cos\varphi,\sin\varphi)$, т. е. $\frac{1}{r}z=\cos\varphi+i\sin\varphi$. Следовательно, $r=|z|,\,\varphi=\arg z$. Таким образом, любое комплексное число z может быть представлено в mpuzoнomempuveckoù форме:

$$z = r(\cos\varphi + i\sin\varphi).$$

Из основного тригонометрического тождества следует, что модуль комплексного числа определен однозначно: $|z|=\sqrt{x^2+y^2}$. Если φ – аргумент числа z, то любое число вида $\varphi+2\pi k$, где k – целое, также является аргументом числа z. Поэтому аргумент комплексного числа $z\neq 0$ определен с точностью до слагаемого $2\pi k$, $k\in\mathbb{Z}$.

Определение. Экспонентой комплексного числа z = x + iy $(x, y \in \mathbb{R})$ называется комплексное число $e^z = e^x(\cos y + i\sin y)$.

Из определения экспоненты комплексного числа следует формула Эй-лера: $e^{i\varphi}=\cos\varphi+i\sin\varphi\quad\forall \varphi\in\mathbb{R}.$

Из формулы Эйлера и определений модуля и аргумента комплексного числа следует, что любое комплексное число z может быть представлено в экспоненциальной форме:

$$z = re^{i\varphi}$$
, где $r = |z|$, $\varphi = \arg z$.

Лемма 1. (Свойство экспоненты.)

$$\forall z_1, z_2 \in \mathbb{C} \hookrightarrow e^{z_1} e^{z_2} = e^{z_1 + z_2}.$$

Доказательство. Пусть $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$ $(x_i, y_i \in \mathbb{R})$. Тогда $e^{z_1} e^{z_2} = e^{x_1 + iy_1} e^{x_2 + iy_2} = e^{x_1} (\cos y_1 + i \sin y_1) e^{x_2} (\cos y_2 + i \sin y_2) =$ $= e^{x_1 + x_2} (\cos y_1 \cos y_2 - \sin y_1 \sin y_2 + i (\cos y_1 \sin y_2 + \sin y_1 \cos y_2)) =$ $= e^{x_1 + x_2} (\cos(y_1 + y_2) + i \sin(y_1 + y_2)) = e^{(x_1 + x_2) + i (y_1 + y_2)} = e^{z_1 + z_2}.$

Мы воспользовались тригонометрическими формулами, доказанными в теореме 1 § 11 главы 2.

Следствие 1. Для любых $z_1, z_2 \in \mathbb{C}$

- 1) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$;
- 2) $\arg(z_1 \cdot z_2) = \arg z_1 + \arg z_2$.

Доказательство. Пусть $r_1=|z_1|,\ \varphi_1=\arg z_1,\ r_2=|z_2|,\ \varphi_2=\arg z_2.$ Тогда $z_1z_2=r_1\,e^{i\varphi_1}\,r_2\,e^{i\varphi_2}=r_1r_2\,e^{i(\varphi_1+\varphi_2)}.$ Следовательно, $|z_1z_2|=r_1r_2,\,\arg(z_1z_2)=\varphi_1+\varphi_2.$

Определение. Пусть $z_1 \in \mathbb{C}, z_2 \in \mathbb{C} \setminus \{0\}$. Частным $\frac{z_1}{z_2}$ называется такое комплексное число z, что $z_1 = zz_2$.

Следствие 2. Пусть $z_1 \in \mathbb{C}$, $z_2 \in \mathbb{C} \setminus \{0\}$. Тогда частное $\frac{z_1}{z_2}$ существует и единственно, причем

- 1) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},$
- 2) arg $\left(\frac{z_1}{z_2}\right)$ = arg z_1 arg z_2 .

Доказательство. Пусть $z \in \mathbb{C}$. Обозначим через r, r_1, r_2 модули, а через $\varphi, \varphi_1, \varphi_2$ аргументы чисел z, z_1, z_2 . Тогда $z = \frac{z_1}{z_2}$ \Longrightarrow \Leftrightarrow $z_1 = zz_2$ \longleftrightarrow $\left(r_1 = rr_2, \varphi_1 = \varphi + \varphi_2\right)$ \Longleftrightarrow $\left(r = \frac{r_1}{r_2}, \varphi = \varphi_1 - \varphi_2\right)$.

Определение. Сопряженным к комплексному числу z = x + iy $(x, y \in \mathbb{R})$ называется комплексное число $\overline{z} = x - iy$.

Свойства операции сопряжения комплексных чисел

- 1) $\overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2$, $\overline{(z_1 \cdot z_2)} = \overline{z}_1 \cdot \overline{z}_2$, $\overline{(z_1/z_2)} = \overline{z}_1/\overline{z}_2$,
- $\overline{z} = z$,
- 3) $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2i \operatorname{Im} z$, $z \cdot \overline{z} = |z|^2$,
- 4) $|\overline{z}| = |z|$, $\arg \overline{z} = -\arg z$

доказать самостоятельно.

Замечание. Частное комплексных чисел удобно вычислять по формуле $\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2}$.

Определение. Если
$$z\in\mathbb{C},\,n\in\mathbb{N},\,$$
 то $z^n=\underbrace{z\cdot\ldots\cdot z}_{n}$ раз

Пусть $r=|z|,\; \varphi={
m arg}\; z.$ Из леммы 1 следует, что $z^n=\left(re^{i\varphi}\right)^n=$ $=r^n e^{in\varphi}$. Поэтому $|z^n|=|z|^n$, arg $z^n=n$ arg z и справедлива формула Myaepa:

$$z^n = r^n(\cos n\varphi + i\sin n\varphi).$$

Пример 1. Решить уравнение $z^n = a$, где $n \in \mathbb{N}$, $a \in \mathbb{C}$, $a \neq 0$.

Решение. Представим числа a и z в экспонециальной форме: a = $=|a|e^{i\varphi}, z=|z|e^{i\psi},$ где $\varphi,\psi\in[0,2\pi).$ Тогда уравнение $z^n=a$ примет вид $|z|^n e^{in\psi}=|a|e^{i\varphi}$, т.е. $|z|=|a|^{1/n},\ n\psi=\varphi+2\pi k,\ k\in\mathbb{Z}.$ Так как полуинтервал $[0,2\pi)$ содержит n чисел вида $\frac{\varphi+2\pi k}{n},\ k\in\mathbb{Z},$ то уравнение $z^n = a$ имеет n решений:

$$z = |a|^{\frac{1}{n}} e^{\frac{i(\varphi + 2\pi k)}{n}}.$$

§ 2. Разложение многочлена на множители

Определение. *Многочленом* степени *п* называется функция

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0,$$

где $a_j \in \mathbb{C}, \, a_n \neq 0, \, z \in \mathbb{C}$. Степень многочлена P будем обозначать через

Лемма 1. Для любых чисел $a_0, \ldots, a_n, b_0, \ldots, b_n \in \mathbb{C}$ следующие условия эквивалентны:

$$(1) \ \forall z \in \mathbb{C} \hookrightarrow \sum_{k=0}^{n} a_k z^k = \sum_{k=0}^{n} b_k z^k;$$

$$(2) \ \forall x \in \mathbb{R} \hookrightarrow \sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} b_k x^k;$$

$$(3) \ \forall k \in \mathbb{N} \cup \{0\} \hookrightarrow a_k = b_k.$$

(2)
$$\forall x \in \mathbb{R} \hookrightarrow \sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} b_k x^k;$$

$$(3) \ \forall k \in \mathbb{N} \cup \{0\} \hookrightarrow \ a_k = b_k.$$

Доказательство $(2) \Rightarrow (3)$ проводится аналогично доказательству теоремы о единственности разложения по формуле Тейлора. Доказательство $(3) \Rightarrow (1) \Rightarrow (2)$ очевидно. **Теорема 1.** (Основная теорема алгебры.) Для любого многочлена P(z) ствени deg $P \ge 1$ существует корень, т. е. $\exists z_0 \in \mathbb{C} : P(z_0) = 0$.

Доказательство. Пусть $P(z)=a_n\,z^n+a_{n-1}\,z^{n-1}+...+a_0,\,a_n\neq 0.$ Так как

$$rac{P(z)}{a_n\,z^n} = 1 + rac{a_{n-1}}{a_nz} + \ldots + rac{a_0}{a_nz^n} o 1$$
 при $|z| o +\infty,$

то $\frac{|P(z)|}{|a_n z^n|} \to 1$ при $|z| \to +\infty$. Отсюда и из соотношения $|a_n z^n| = |a_n| \cdot |z|^n \to +\infty$ при $|z| \to +\infty$ следует, что $|P(z)| \to +\infty$ при $|z| \to +\infty$. Поэтому существует число R > 0 такое, что

$$|P(z)| > |P(0)| \quad \forall z \in \mathbb{C} : |z| > R. \tag{1}$$

Поскольку множество $\{z\in\mathbb{C}:|z|\leq R\}$ компактно, а функция |P(z)| непрерывна (как функция двух переменных $(x,y),\ z=x+iy)$, то $\min_{z\in\mathbb{C}:\ |z|\leq R}|P(z)|$ достигается в некоторой точке $z_0\in\mathbb{C}$. Отсюда и из (1) получаем, что $\min_{z\in\mathbb{C}}|P(z)|$ достигается в точке z_0 . Следовательно, минимум многочлена $Q(z)=P(z_0+z)$ по всем $z\in\mathbb{C}$ достигается при z=0.

Рассмотрим многочлен $Q(z)=c_0+c_1z+...+c_nz^n$. Заметим, что $c_n=a_n\neq 0$. Для завершения доказательства теоремы достаточно доказать, что $c_0=0$. Тогда $P(z_0)=Q(0)=0$. Предположим противное: $c_0\neq 0$. Пусть c_k – первый ненулевой коэффициент среди коэффициентов c_1,\ldots,c_n , т.е. $Q(z)=c_0+c_kz^k+...+c_nz^n,\ c_k\neq 0$. Как было показано в примере из предыдущего параграфа, существует $w\in\mathbb{C}$ – решение уравнения $w^k=-\frac{c_0}{c_k}$. Тогда, подставляя $z=tw,t\in\mathbb{R}$, получаем $Q(tw)=c_0+c_kt^kw^k+o(t^k)=c_0(1-t^k+o(t^k))$ при $t\to +0$. Следовательно,

$$|Q(tw)| = |c_0|(1 - t^k + o(t^k)) < |c_0|\left(1 - \frac{t^k}{2}\right) < |c_0| = |Q(0)|$$

при достаточно малых t>0. Это противоречит тому, что $\min_{z\in\mathbb{C}}|Q(z)|$ достигается при z=0.

Деление многочленов можно производить «в столбик». Например, разделим $P(x) = x^2$ на Q(x) = x - 1:

$$\begin{array}{c|c} x^2 & & \begin{vmatrix} x-1 \\ x^2-x & \\ \hline x & \\ \hline & x-1 \\ \hline & 1 \end{array},$$

следовательно, $\frac{x^2}{x-1} = x + 1 + \frac{1}{x-1}$.

Лемма 2. Пусть заданы многочлены P(z) и Q(z), $\deg P \geq \deg Q$. Тогда существуют и единственны многочлены D(z) и R(z) такие, что $\deg R < \deg Q$ и

 $\frac{P(z)}{Q(z)} = D(z) + \frac{R(z)}{Q(z)}. (2)$

Многочлен R(z) называется остатком от деления P(z) на Q(z).

Доказательство. Пусть $\deg P = n$, $P(z) = a_n z^n + ... + a_0$, $\deg Q = m$, $Q(z) = b_m z^m + ... + b_0$. Приводя уравнение (2) к общему знаменателю, получаем

$$P(z) = D(z) Q(z) + R(z).$$
(3)

Так как $\deg R < \deg P$, то $\deg (P-R) = n$ и $\deg D = n-m$. Определим коэффициенты многочлена $D(z) = d_{n-m} \, z^{n-m} + ... + d_0$, начиная с коэффициента при старшей степени. Уравнение (3) принимает вид $a_n \, z^n + ... = d_{n-m} \, z^{n-m} \, b_m \, z^m + ...$. Приравнивая коэффициенты при z^n , согласно лемме 1 получаем $d_{n-m} = \frac{a_n}{b_m}$. При известном коэффициенте d_{n-m} задача деления многочлена P(z) на Q(z) сводится к задаче деления $\widetilde{P}(z)$ на Q(z), где $\widetilde{P}(z) = P(z) - d_{n-m} \, z^{n-m} \, Q(z)$ – многочлен степени $\leq n - 1$: $\frac{P(z)}{Q(z)} = d_{n-m} \, z^{n-m} + \frac{\widetilde{P}(z)}{Q(z)}$. Применяя те же рассуждения к дроби $\frac{\widetilde{P}(z)}{Q(z)}$ и так далее, получаем разложение (2). Так как коэффициент d_{n-m} определяется однозначно, то многочлен $\widetilde{P}(z)$ определяется однозначно. По индукции получаем, что все коэффициенты многочленов D(z) и R(z) определяются однозначно.

Заметим, что доказательство леммы 2 является формальным описанием алгоритма Евклида деления многочленов «в столбик».

Определение. Пусть P(x) и Q(x) – многочлены. Функция вида $\frac{P(x)}{Q(x)}$ называется *правильной рациональной дробью*, если $\deg P < \deg Q$ и многочлены P(x), Q(x) не имеют общих корней.

Согласно лемме $\frac{1}{Q(x)}$, если она не является правильной, можно представить в виде суммы многочлена и правильной дроби.

Теорема 2. (Теорема Безу.) Пусть задано число $z_0 \in \mathbb{C}$. Многочлен P(z) делится на $z - z_0$ без остатка $\iff P(z_0) = 0$.

Доказательство. Разделив P(z) на $Q(z)=z-z_0$, согласно лемме 2 получаем $P(z)=D(z)\,(z-z_0)+R(z)$, где $\deg R<1$, т.е. $R(z)=c_0$ –

константа. Итак, $P(z) = D(z)(z-z_0) + c_0$. Поэтому P(z) делится на $z-z_0$ без остатка $\iff c_0 = 0 \iff P(z_0) = 0$.

Теорема 3. Любой многочлен P(z) степени $\deg P = n$ можно представить в виде

$$P(z) = a(z - z_1) \dots (z - z_n),$$

еде $a \in \mathbb{C}$, $a \neq 0, z_1, ..., z_n$ – корни многочлена P(z), среди которых могут быть равные.

Доказательство. В силу основной теоремы алгебры $\exists z_1 \in \mathbb{C}: P(z_1) = 0$. По теореме Безу P(z) делится на $z - z_1$ без остатка, т. е. $P(z) = (z - z_1) P_1(z)$. Аналогично, применяя основную теорему алгебры и теорему Безу к многочлену $P_1(z)$, получаем $P_1(z) = (z - z_2) P_2(z)$. И так далее по индукции получаем требуемое разложение.

Определение. Число $z_0 \in \mathbb{C}$ называется *корнем кратности* k многочлена P(z), если P(z) делится без остатка на $(z-z_0)^k$ и не делится без остатка на $(z-z_0)^{k+1}$.

Лемма 3. Пусть z_0 – корень кратности k многочлена P(z), все коэффициенты которого вещественны. Тогда комплексно-сопряженное число \overline{z}_0 – также корень кратности k многочлена P(z).

Доказательство. По условию леммы

$$\forall z \in \mathbb{C} \hookrightarrow P(z) = D(z) (z - z_0)^k, \tag{4}$$

причем $D(z_0) \neq 0$. Возьмем комплексное сопряжение от левой и правой частей равенства (4). Так как коэффициенты многочлена P(z) вещественны, то $\overline{P(z)} = \overline{a_n} \, \overline{z^n} + ... + \overline{a_0} = a_n \, \overline{z^n} + ... + a_0 = P(\overline{z})$, следовательно,

$$\forall z \in \mathbb{C} \hookrightarrow P(\overline{z}) = \overline{D(z)} (\overline{z} - \overline{z}_0)^k.$$

Поэтому

$$\forall z \in \mathbb{C} \hookrightarrow P(z) = D_1(z)(z - \overline{z}_0)^k,$$

где $D_1(z)=\overline{D(\overline{z})}$. Следовательно, $D_1(\overline{z}_0)=\overline{D(z_0)}\neq 0$. Поэтому \overline{z}_0 — также корень кратности k многочлена P(z).

Из теоремы 3 и леммы 3 следует

Теорема 4. (О разложении многочлена на элементарные множители.) Пусть P(x) – многочлен, все коэффициенты которого вещественны. Пусть $x_1, ..., x_s$ – вещественные корни многочлена P(x) кратностей $k_1, ..., k_s$, а $(z_1, \overline{z}_1), ..., (z_t, \overline{z}_t)$ – пары комплексно-сопряженных корней многочлена P(x) кратностей $\ell_1, ..., \ell_t$. Тогда

$$\begin{split} P(x) &= a\,(x-x_1)^{k_1} \dots (x-x_s)^{k_s}\,(x-z_1)^{\ell_1}\,(x-\overline{z}_1)^{\ell_1} \dots (x-z_t)^{\ell_t}\,(x-\overline{z}_t)^{\ell_t} = \\ &= a\,(x-x_1)^{k_1} \dots (x-x_s)^{k_s}\,(x^2+p_1x+q_1)^{\ell_1} \dots (x^2+p_tx+q_t)^{\ell_t}, \\ \textit{где } p_j &= -(z_j+\overline{z}_j) = -2\mathrm{Re}\,z_j \in \mathbb{R}, \quad q_j = z_j\,\overline{z}_j = |z_j|^2 \in \mathbb{R}, \quad \textit{причем дискриминанты трехчленов отрицательны: } D_j = p_j^2 - 4q_j = (z_j-\overline{z}_j)^2 = \\ &= (2i\,\mathrm{Im}\,z_j)^2 = -4(\mathrm{Im}\,z_j)^2 < 0. \end{split}$$

§ 3. Разложение правильной рациональной дроби в сумму элементарных дробей

В этом параграфе все коэффициенты рассматриваемых многочленов вещественные.

Лемма 1. Пусть $\frac{P(x)}{Q(x)}$ – правильная рациональная дробь. Пусть x_1 – вещественный корень кратности k знаменателя (т. е. $Q(x)=(x-x_1)^k \widetilde{Q}(x)$, и x_1 не является корнем многочлена $\widetilde{Q}(x)$). Тогда существуют и единственны число $A \in \mathbb{R}$ и многочлен F(x) такие, что

$$\frac{P(x)}{Q(x)} = \frac{A}{(x - x_1)^k} + \frac{F(x)}{(x - x_1)^{k-1} \widetilde{Q}(x)}.$$
 (1)

 Πpu этом $\frac{F(x)}{(x-x_1)^{k-1}\widetilde{Q}(x)}$ – правильная рациональная дробь.

Доказательство. Приводя формулу (1) к общему знаменателю, получаем $P(x) = A \, \widetilde{Q}(x) + F(x) \, (x-x_1)$. Поэтому требуется доказать, что существуют число $A \in \mathbb{R}$ и многочлен F(x) такие, что

$$P(x) - A \widetilde{Q}(x) = F(x) (x - x_1).$$
 (2)

Таким образом, требуется доказать, что существует число $A \in \mathbb{R}$ такое, что многочлен $\varphi(x) = P(x) - A \, \widetilde{Q}(x)$ делится на $x - x_1$ без остатка. По теореме Безу это эквивалентно условию $\varphi(x_1) = 0$, т. е. $P(x_1) - A \, \widetilde{Q}(x_1) = 0$. Так как $\widetilde{Q}(x_1) \neq 0$, то такое $A \in \mathbb{R}$ существует и единственно: $A = \frac{P(x_1)}{\widetilde{Q}(x_1)}$. При найденном A многочлен F(x) определяется формулой (2) однозначно: $F(x) = \frac{P(x) - A \, \widetilde{Q}(x)}{x - x_1}$.

Так как $\frac{P(x)}{Q(x)}$ — правильная дробь, то $\deg P < \deg Q$. Отсюда и из соотношений $\deg \widetilde{Q} = \deg Q - k < \deg Q$ следует, что $\deg (P - A \widetilde{Q}) < \deg Q$. Поэтому в силу равенства (2) имеем

$$\deg F = \deg (P - A\widetilde{Q}) - 1 < \deg Q - 1 = \deg \widetilde{Q} + k - 1.$$

Следовательно, дробь $\frac{F(x)}{(x-x_1)^{k-1}\widetilde{Q}(x)}$ является правильной. \square

Лемма 2. Пусть $\frac{P(x)}{Q(x)}$ – правильная рациональная дробь. Пусть z_1 – невещественный корень кратности ℓ знаменателя (т. е. согласно лемме $3 \S 2$ имеем $Q(x) = (x^2 + px + q)^\ell \widetilde{Q}(x)$, где $x^2 + px + q = (x - z_1)(x - \overline{z}_1)$, z_1 не является корнем многочлена $\widetilde{Q}(x)$). Тогда существуют и единственны числа $B, C \in \mathbb{R}$ и многочлен F(x) такие, что

$$\frac{P(x)}{Q(x)} = \frac{Bx + C}{(x^2 + px + q)^{\ell}} + \frac{F(x)}{(x^2 + px + q)^{\ell - 1}\widetilde{Q}(x)}.$$
 (3)

 Πpu этом $\frac{F(x)}{(x^2+px+q)^{\ell-1}\widetilde{Q}(x)}$ – правильная рациональная дробь.

Доказательство. Приводя формулу (3) к общему знаменателю, получаем $P(x) = (Bx + C)\widetilde{Q}(x) + F(x)(x^2 + px + q)$. Поэтому требуется доказать, что существуют числа $B, C \in \mathbb{R}$ и многочлен F(x) такие, что

$$P(x) - (Bx + C)\widetilde{Q}(x) = F(x)(x - z_1)(x - \overline{z}_1). \tag{4}$$

Таким образом, требуется доказать, что существуют числа $B,C\in\mathbb{R}$ такие, что многочлен $\varphi(x)=P(x)-(Bx+C)\widetilde{Q}(x)$ делится на $x-z_1$ и $x-\overline{z}_1$ без остатка. По теореме Безу и лемме 3 § 2 это эквивалентно условию $\varphi(z_1)=0$, т. е. $P(z_1)-(Bz_1+C)\widetilde{Q}(z_1)=0$. Так как $\widetilde{Q}(z_1)\neq 0$, то последнее равенство эквивалентно равенству

$$Bz_1 + C = \frac{P(z_1)}{\tilde{Q}(z_1)}. (5)$$

Покажем, что существуют и единственны числа $B,C\in\mathbb{R}$, удовлетворяющие равенству (5). Обозначим $x_1=\operatorname{Re} z_1,\ y_1=\operatorname{Im} z_1,\ x_0=\operatorname{Re} \frac{P(z_1)}{\widetilde{Q}(z_1)},$ $y_0=\operatorname{Im} \frac{P(z_1)}{\widetilde{Q}(z_1)}.$ Тогда равенство (5) можно записать в виде $Bx_1+iBy_1+C=x_0+iy_0.$ Следовательно, равенство (5) эквивалентно системе

$$\begin{cases}
By_1 = y_0, \\
C = x_0 - Bx_1.
\end{cases}$$
(6)

Так как $z_1 \notin \mathbb{R}$, то $y_1 = \text{Im } z_1 \neq 0$. Поэтому система (6) имеет единственное решение $B, C \in \mathbb{R}$. Следовательно, существуют и единственны числа $B, C \in \mathbb{R}$ такие, что многочлен $\varphi(x)$ делится на $x - z_1$ и $x - \overline{z}_1$ без остатка. При найденных B и C многочлен F(x) определяется формулой (4) однозначно: $F(x) = \frac{P(x) - (Bx + C)\tilde{Q}(x)}{x^2 + nx + a}$.

однозначно: $F(x) = \frac{P(x) - (Bx + C)\widetilde{Q}(x)}{x^2 + px + q}$. Доказательство того, что дробь $\frac{F(x)}{(x^2 + px + q)^{\ell - 1}\widetilde{Q}(x)}$ является правильной, проводится аналогично доказательству леммы 1.

Теорема 1. Пусть $\frac{P(x)}{Q(x)}$ – правильная рациональная дробь с вещественными коэффициентами. Пусть

$$Q(x) = a(x - x_1)^{k_1} \dots (x - x_s)^{k_s} (x^2 + p_1 x + q_1)^{\ell_1} \dots (x^2 + p_t x + q_t)^{\ell_t},$$

где $x_1,...,x_s$ – различные вещественные корни многочлена Q(x), а $(x^2+p_1x+q_1),...,(x^2+p_tx+q_t)$ – различные квадратные трехчлены с отричательными дискриминантами. Тогда дробь $\frac{P(x)}{Q(x)}$ можно представить как сумму элементарных дробей:

$$\frac{P(x)}{Q(x)} = \Sigma_1^{\text{вещ}} + \Sigma_2^{\text{вещ}} + \ldots + \Sigma_s^{\text{вещ}} + \Sigma_1^{\text{компл}} + \ldots + \Sigma_t^{\text{компл}},$$

где вещественному корню x_i кратности k_i coomветствует сумма

$$\Sigma_{j}^{\text{Beill}} = \sum_{k=1}^{k_{j}} \frac{A_{jk}}{(x - x_{j})^{k}}, \quad j \in \{1, ..., s\},$$

а множителю $(x^2+p_jx+q_j)^{\ell_j}$ в разложении знаменателя соответствует сумма

$$\Sigma_{j}^{\text{komij}} = \sum_{\ell=1}^{\ell_{j}} \frac{B_{j\ell}x + C_{j\ell}}{(x^{2} + p_{j}x + q_{j})^{\ell}}, \quad j \in \{1, ..., t\},$$

причем все коэффициенты являются действительными числами и определены однозначно.

Доказательство состоит в многократном применении лемм 1 и 2.

§ 4. Первообразная и элементарные методы интегрирования

Определение. Пусть на числовом промежутке ω заданы функции $f:\omega\to\mathbb{R}$ и $F:\omega\to\mathbb{R}$. Функция F называется nepsoofpashoù функции f

на ω , если

$$\forall x \in \omega \hookrightarrow F'(x) = f(x),$$

где под F'(x) понимается $F'_+(x) = \lim_{t \to x+0} \frac{F(t) - F(x)}{t-x}$ в случае, если x – левый конец промежутка ω , а в случае, если x – правый конец промежутка ω , понимается $F'_-(x) = \lim_{t \to x-0} \frac{F(t) - F(x)}{t-x}$.

Лемма 1. Пусть на числовом промежутке ω задана функция φ : $\omega \to \mathbb{R}$ и $\varphi'(x) = 0$ для любого $x \in \omega$ (где в концах промежутка под $\varphi'(x)$ понимается соответствующая односторонняя производная). Тогда $\exists C \in \mathbb{R} : \forall x \in \omega \hookrightarrow \varphi(x) = C$.

Доказательство. Зафиксируем произвольную точку $x_0 \in \omega$ и обозначим $C = \varphi(x_0)$. По теореме Лагранжа о среднем $\forall x \in \omega : x \neq x_0 \; \exists \xi$, лежащее строго между x и x_0 : $\frac{\varphi(x) - \varphi(x_0)}{x - x_0} = \varphi'(\xi)$. Так как $\varphi'(\xi) = 0$, то $\varphi(x) = \varphi(x_0) = C$.

Теорема 1. (О структуре множества первообразных.) Пусть функция $F: \omega \to \mathbb{R}$ является первообразной функции $f: \omega \to \mathbb{R}$ на числовом промежутке ω . Тогда функция $F_1: \omega \to \mathbb{R}$ является первообразной функции f на ω в том и только в том случае, если $\exists C \in \mathbb{R}: \forall x \in \omega \hookrightarrow F_1(x) = F(x) + C$.

Доказательство. 1. Если $F_1(x) = F(x) + C$, то $F'_1(x) = F'(x) = f(x)$ и, следовательно, функция F_1 является первообразной функции f.

2. Если F_1 – первообразная функции f, то $\forall x \in \omega$ имеем $F_1'(x) = f(x) = F'(x)$ и $F_1'(x) - F'(x) = 0$. По лемме 1, примененной к функции $\varphi(x) = F_1(x) - F(x)$, $\exists C \in \mathbb{R} : \forall x \in \omega \hookrightarrow F_1(x) - F(x) = C$.

Определение. *Неопределенным интегралом* $\int f(x) dx$ называется множество всех первообразных функции f(x).

Из теоремы 1 следует

Теорема 2. Пусть функция F(x) является первообразной функции f(x). Тогда неопределенный интеграл функции f(x) – это множество функций вида F(x)+C, где $C\in\mathbb{R}$ – произвольная константа: $\int f(x)\,dx = \{F(x)+C:C\in\mathbb{R}\},\ \text{что для краткости записывают в виде}$

$$\int f(x) \, dx = F(x) + C.$$

Замечание. Нужно понимать, что неопределенный интеграл — это не одна функция, а множество функций. Иначе говоря, константа C, стоящая в правой части последней формулы, — не фиксированная константа, а параметр, пробегающий множество всех действительных чисел. Непонимание этого факта может привести к недоразумениям. Например, из формул $\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C, \qquad \int \frac{dx}{\sqrt{1-x^2}} = -\arccos x + C \quad \text{не следует, что } \arcsin x = -\arccos x. \text{ (На самом деле справедливо равенство } \arcsin x = \frac{\pi}{2} -\arccos x.)$

Лемма 2. Операция взятия дифференциала d и операция взятия неопределенного интеграла \int являются взаимно обратными:

а) если функция f(x) на числовом промежутке ω имеет первообразную, то на ω

$$d \int f(x) \, dx = f(x) \, dx;$$

б) если функция F(x) дифференцируема на числовом промежутке $\omega,$ то на ω

$$\int d(F(x) + C) = F(x) + C.$$

Доказательство. а) Пусть F — первообразная функции f, тогда по теореме 2 имеем $\int f(x)\,dx = F(x) + C$, следовательно, $d\int f(x)\,dx = dF(x) = F'(x)\,dx = f(x)\,dx$.

б) Обозначим
$$f = F'$$
. Тогда $\int d(F(x) + C) = \int f(x) \, dx = F(x) + C$. \square

Лемма 3. (Свойство линейности неопределенного интеграла.) *Если* функции $f_1(x)$ и $f_2(x)$ имеют первообразные на числовом промежутке ω , $\alpha_1 \in \mathbb{R}$, $\alpha_2 \in \mathbb{R}$, $\alpha_1^2 + \alpha_2^2 \neq 0$, то на ω

$$\int (\alpha_1 f_1(x) + \alpha_2 f_2(x)) \, dx = \alpha_1 \int f_1(x) \, dx + \alpha_2 \int f_2(x) \, dx.$$

Доказательство. Пусть $F_1(x)$ — первообразная функции $f_1(x)$, $F_2(x)$ — первообразная функции $f_2(x)$. Тогда $F_1'(x) = f_1(x)$, $F_2'(x) = f_2(x)$ и $(\alpha_1 F_1(x) + \alpha_2 F_2(x))' = \alpha_1 f_1(x) + \alpha_2 f_2(x)$, следовательно, $\int (\alpha_1 f_1(x) + \alpha_2 f_2(x)) \, dx = \alpha_1 F_1(x) + \alpha_2 F_2(x) + C \stackrel{\alpha_1^2 + \alpha_2^2 \neq 0}{=} = \alpha_1 (F_1(x) + C_1) + \alpha_2 (F_2(x) + C_2) = \alpha_1 \int f_1(x) \, dx + \alpha_2 \int f_2(x) \, dx.$

Теорема 3. (Замена переменной или метод интегрирования подстановкой.)

 Π усть на числовом промежутке ω

$$\int f(x) \, dx = F(x) + C,$$

а функция $x:\tilde{\omega}\to\omega$ дифференцируема на числовом промежутке $\tilde{\omega}.$ Тогда на $\tilde{\omega}$

$$\int f(x(t)) dx(t) = F(x(t)) + C.$$

Доказательство. Так как $\int f(x) \, dx = F(x) + C$, то F'(x) = f(x). В силу инвариантности формы первого дифференциала $dF(x(t)) = F'(x(t)) \, dx(t) = f(x(t)) \, dx(t)$. По лемме 2(б) получаем $\int f(x(t)) \, dx(t) = \int dF(x(t)) = F(x(t)) + C$.

Теорема 4. (Метод интегрирования по частям.) *Пусть на числовом* промежутке ω заданы дифференцируемые функции u(x) и v(x). Тогда на ω

$$\int u(x) dv(x) = u(x)v(x) - \int v(x) du(x).$$

Доказательство. Так как $d(u(x)v(x)) = u(x)\,dv(x) + v(x)\,du(x)$, то по свойству линейности $\int u(x)\,dv(x) = \int d(u(x)v(x)) - \int v(x)\,du(x) \stackrel{\Pi.2(6)}{=} u(x)v(x) + C - \int v(x)\,du(x) = u(x)v(x) - \int v(x)\,du(x)$. Последнее равенство объясняется тем, что произвольная константа C уже присутствует в $\int v(x)\,du(x)$.

Используя доказанные ранее формулы для производных элементарных функций, получаем следующую таблицу интегралов.

Таблица интегралов

1)
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \quad \alpha \neq -1, \ x > 0.$$

2)
$$\int \frac{dx}{x+a} = \ln|x+a| + C, \ x \neq -a.$$

3)
$$\int a^x \, dx = \frac{a^x}{\ln a} + C, \quad a > 0, \ a \neq 1.$$

4)
$$\int \sin x \, dx = -\cos x + C, \qquad \int \cos x \, dx = \sin x + C.$$

5)
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C, \ x \neq \frac{\pi}{2} + \pi k, \qquad \int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C, \ x \neq \pi k.$$

6)
$$\int \operatorname{sh} x \, dx = \operatorname{ch} x + C, \qquad \int \operatorname{ch} x \, dx = \operatorname{sh} x + C.$$

7)
$$\int \frac{dx}{\cosh^2 x} = \tanh x + C, \qquad \int \frac{dx}{\sinh^2 x} = -\coth x + C, \quad x \neq 0.$$

8)
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C, \quad a > 0.$$

9)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, \quad |x| < a.$$

10)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, \quad x \neq \pm a.$$

11)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln|x + \sqrt{x^2 + a}| + C, \quad a \neq 0, \ x^2 > -a.$$

§ 5. Интегрирование рациональных дробей

Пусть многочлены P(x) и Q(x) не имеют общих корней. Алгоритм интегрирования рациональной дроби $\frac{P(x)}{Q(x)}$ состоит из следующих шагов:

- 1) если $\deg P \geq \deg Q$, то методом деления многочленов «в столбик» представить дробь в виде $\frac{P(x)}{Q(x)} = D(x) + \frac{R(x)}{Q(x)}$, где D(x) многочлен, $\frac{R(x)}{Q(x)}$ правильная рациональная дробь;
- 2) найти корни знаменателя и разложить знаменатель Q(x) на элементарные множители;
- 3) методом неопределенных коэффициентов разложить правильную рациональную дробь $\frac{R(x)}{Q(x)}$ (или $\frac{P(x)}{Q(x)}$ при $\deg P < \deg Q$) в сумму элементарных дробей. В силу теоремы 1 § 3 разложение в сумму элементарных дробей существует и единственно;
- 4) проинтегрировать элементарные дроби и многочлен D(x) при $\deg P \geq \deg Q$.

Интегрирование элементарных дробей

1. Интегралы вида $\int \frac{A dx}{(x-x_1)^k}, k \in \mathbb{N}$ являются табличными.

2. Интеграл
$$\int \frac{Bx+C}{(x^2+px+q)^k} dx$$
 сводится к интегралу $\int \frac{dx}{(x^2+px+q)^k}$:

$$\begin{split} \int & \frac{Bx+C}{(x^2+px+q)^k} dx = \frac{B}{2} \int \frac{d(x^2+px+q)}{(x^2+px+q)^k} + \left(C - \frac{Bp}{2}\right) \int \frac{dx}{(x^2+px+q)^k}, \\ & \int \frac{d(x^2+px+q)}{(x^2+px+q)^k} = \left\{ \begin{array}{ll} \ln|x^2+px+q| & \text{при} & k=1, \\ -\frac{1}{(k-1)(x^2+px+q)^{k-1}} & \text{при} & k>1. \end{array} \right. \end{split}$$

3. Вычислим интеграл $\int \frac{dx}{(x^2+px+q)^k}$, где знаменатель не имеет вещественных корней. Выделим полный квадрат в знаменателе: $x^2+px+q=\left(x+\frac{p}{2}\right)^2+q-\frac{p^2}{4}$. Поскольку знаменатель не имеет вещественных корней, то $q-\frac{p^2}{4}>0$. Обозначим $a=\sqrt{q-p^2/4}$ и выполним замену переменной интегрирования: t=x+p/2. Тогда $\int \frac{dx}{(x^2+px+q)^k}=\int \frac{dt}{(t^2+a^2)^k}=I_k(t)$.

При
$$k=1$$
 имеем $I_1(t)=\int \frac{dt}{t^2+a^2}=\frac{1}{a}\mathrm{arctg}\,\frac{t}{a}+C.$

Выведем рекуррентную формулу для вычисления $I_k(t)$ при k > 1. Интегрируя по частям, получаем

$$I_k(t) = \int \frac{dt}{(t^2 + a^2)^k} = \frac{t}{(t^2 + a^2)^k} + 2k \int \frac{t^2 dt}{(t^2 + a^2)^{k+1}} =$$

$$= \frac{t}{(t^2 + a^2)^k} + 2k \int \frac{(t^2 + a^2) dt}{(t^2 + a^2)^{k+1}} - 2ka^2 \int \frac{dt}{(t^2 + a^2)^{k+1}} =$$

$$= \frac{t}{(t^2 + a^2)^k} + 2k I_k(t) - 2a^2 k I_{k+1}(t),$$

следовательно,

$$I_{k+1}(t) = \frac{1}{2a^2k} \left((2k-1) I_k(t) + \frac{t}{(t^2+a^2)^k} \right).$$

Поскольку интеграл каждой элементарной дроби выражается через элементарные функции, то интеграл произвольной рациональной дроби выражается через элементарные функции.

§ 6. Интегрирование иррациональных, тригонометрических и гиперболических функций

Определение. Функция n переменных $x_1, ..., x_n$ вида

$$f(x_1,...,x_n) = a x_1^{k_1} ... x_n^{k_n},$$

где $a \in \mathbb{R}$, $k_i \in \mathbb{N} \bigcup \{0\}$, называется *одночленом*. Сумма конечного числа одночленов называется *многочленом*. Если $P(x_1,...,x_n)$, $Q(x_1,...,x_n)$ – многочлены от n переменных, то функция вида $R(x_1,...,x_n) = \frac{P(x_1,...,x_n)}{Q(x_1,...,x_n)}$ называется *рациональной функцией*.

1. Интеграл вида

$$\int R(x^{1/n}) \, dx,\tag{1}$$

где $n \in \mathbb{N}$, а R(t) — рациональная функция, сводится к интегралу от рациональной дроби с помощью подстановки $t=x^{1/n}$. Действительно, $\int R(x^{1/n})\,dx = n \int R(t)\,t^{n-1}\,dt.$

2. Интеграл

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{n}}\right) dx,\tag{2}$$

где $n \in \mathbb{N}$, а R(u,v) – рациональная функция, сводится к интегралу вида (1), если воспользоваться дробно-линейной подстановкой $y=\frac{ax+b}{cx+d}$.

Следовательно, подстановка $t=y^{1/n}=\left(\frac{ax+b}{cx+d}\right)^{\frac{1}{n}}$ приводит данный интеграл к интегралу от рациональной дроби.

3. Подстановки Эйлера.

Пусть требуется вычислить интеграл

$$\int R(x, \sqrt{ax^2 + bx + c}) \, dx,\tag{3}$$

где R(u,v) – рациональная функция.

а) Если квадратный трехчлен ax^2+bx+c имеет вещественные корни x_1,x_2 , то $\sqrt{ax^2+bx+c}=\sqrt{a(x-x_1)(x-x_2)}=|x-x_2|\sqrt{a\frac{x-x_1}{x-x_2}}$. Поэтому в данном случае интеграл (3) является частным случаем интеграла вида (2) и сводится к интегралу от рациональной дроби при помощи подстановки $t=\sqrt{\frac{x-x_1}{x-x_2}}$.

- б) Пусть квадратный трехчлен $ax^2 + bx + c$ не имеет вещественных корней. Тогда при a < 0 выражение $\sqrt{ax^2 + bx + c}$ не определено, так как $ax^2 + bx + c < 0$ $\forall x \in \mathbb{R}$. При a > 0 подстановки Эйлера $\sqrt{ax^2 + bx + c} = \pm x\sqrt{a} + t$ сводят интеграл (3) к интегралу от рациональной дроби.
 - 4. Интеграл от дифференциального бинома

$$\int x^m (ax^n+b)^p dx$$
, где m,n,p — рациональные числа, (4)

в следующих трех случаях сводится к интегралу от рациональной дроби. Случай 1. p – целое.

В этом случае $x^m(ax^n+b)^p=R(x^m,x^n)$ – рациональная функция переменных x^m, x^n . Поэтому в данном случае интеграл (4) является частным случаем интеграла (1) и подстановка $t=x^{1/q}$, где q – общий знаменатель дробей m и n, приводит интеграл (4) к интегралу от рациональной дроби.

Случай 2. $\frac{m+1}{n}$ – целое.

Тогда путем подстановки $t=(ax^n+b)^{1/s}$, где s – знаменатель дроби p, интеграл (4) сводится к интегралу от рациональной дроби.

Случай 3. $\frac{m+1}{n} + p$ – целое.

В этом случае подстановка $t=\left(\frac{ax^n+b}{x^n}\right)^{1/s}$, где s – знаменатель дроби p, сводит интеграл (4) к интегралу от рациональной дроби.

Теорема Чебышева. Если не реализуется ни один из трех выше перечисленных случаев, то интеграл от дифференциального бинома (6) не выражается через элементарные функции.

5. Тригонометрические подстановки.

Универсальная тригонометрическая подстановка $t=\operatorname{tg}\left(x/2\right)$ сводит интеграл

$$\int R(\sin x, \cos x) \, dx,\tag{5}$$

где R(u,v) – рациональная функция, к интегралу от рациональной дроби.

Универсальная тригонометрическая подстановка часто приводит к громоздким вычислениям. Укажем частные случаи, в которых интеграл (5) следует вычислять с помощью других подстановок.

а) Если функция $R(\sin x, \cos x)$ периодична с периодом π , то следует использовать подстановку $t = \operatorname{tg} x$.

- б) Если интеграл (5) можно представить в виде $\int R_1(\cos x) \, d\cos x$, где $R_1(u)$ рациональная функция, то следует использовать подстановку $t=\cos x$.
- в) Аналогично, если интеграл (5) можно представить в виде $\int R_2(\sin x) \, d \sin x$, где $R_2(u)$ рациональная функция, следует использовать подстановку $t = \sin x$.
- 6. Универсальная гиперболическая подстановка t = h(x/2) сводит интеграл

$$\int R(\sin x, \cot x) \, dx \tag{6}$$

к интегралу от рациональной дроби.

- 7. Некоторые интегралы от иррациональных функций удобно вычислять с помощью гиперболических или тригонометрических подстановок.
 - а) Интеграл вида

$$\int R(x, \sqrt{x^2 + a^2}) dx,$$

где $a>0,\ R(u,v)$ – рациональная функция, сводится к интегралу вида (6) подстановкой $x=a \sinh t.$

б) Интеграл вида

$$\int R(x, \sqrt{x^2 - a^2}) dx,$$

где a > 0, R(u, v) — рациональная функция, сводится к интегралу вида (6) подстановкой $x = a \operatorname{ch} t$.

в) Интеграл вида

$$\int R(x, \sqrt{a^2 - x^2}) dx,$$

где $a>0,\ R(u,v)$ — рациональная функция, сводится к интегралу вида (5) подстановкой $x=a\cos t.$

ГЛАВА7

ЧИСЛОВЫЕ РЯДЫ

§ 1. Определение и некоторые свойства рядов

Определение. Пусть задана числовая последовательность $\{a_k\}_{k=1}^{\infty}$. Число $S_n = \sum\limits_{k=1}^n a_k$ называется n-й частичной суммой $p n da \sum\limits_{k=1}^{\infty} a_k$. Элементы последовательности $\{a_k\}$ называются членами этого p n da. Суммой $p n da \sum\limits_{k=1}^{\infty} a_k$ называется предел частичных сумм:

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k.$$

Ряд $\sum_{k=1}^{\infty} a_k$ называется cxodsumumcs, если существует конечный предел частичных сумм этого ряда, в противном случае ряд называется pacxodsumumcs.

Теорема 1. (Необходимое условие сходимости ряда.) Если ряд $\sum\limits_{k=1}^{\infty}a_k$ сходится, то $\lim\limits_{k\to\infty}a_k=0$.

Доказательство. Поскольку ряд сходится, то существует $\lim_{n\to\infty} S_n = S \in \mathbb{R}$. Следовательно, $\lim_{n\to\infty} S_{n-1} = S$ и $\lim_{n\to\infty} (S_n - S_{n-1}) = S - S = 0$. Поскольку $a_n = S_n - S_{n-1}$, то $\lim_{n\to\infty} a_n = 0$.

Пример 1. При каких q сходится ряд из геометрической прогрессии $\sum\limits_{k=1}^{\infty}q^k$?

Решение. При $|q| \ge 1$ имеем $q^k \not\to 0$ $(k \to \infty)$, т.е. не выполняется необходимое условие сходимости ряда, и, следовательно, ряд расходится.

Пусть |q| < 1. Воспользовавшись формулой для суммы геометрической прогрессии (которую легко доказать по индукции), получаем $S_n = \sum_{k=1}^n q^k = q \frac{1-q^n}{1-q} \stackrel{n \to \infty}{\longrightarrow} \frac{q}{1-q}$. Следовательно, при |q| < 1 ряд $\sum_{k=1}^{\infty} q^k$ сходится.

 Π емма 1. (Принцип локализации.) Для любого $k_0 \in \mathbb{N}$ ряды $\sum\limits_{k=1}^\infty a_k$ и $\sum\limits_{k=k_0}^\infty a_k$ сходятся или расходятся одновременно.

Доказательство. Для любого натурального $n>k_0$ справедливо равенство

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{k_0 - 1} a_k + \sum_{k=k_0}^{n} a_k.$$

Переходя к пределу при $n \to \infty$, получаем требуемое утверждение. \square

Лемма 1 утверждает, что сходимость ряда $\sum_{k=1}^{\infty} a_k$ зависит лишь от поведения a_k при достаточно больших k, т.е. при $k \in U_{\varepsilon}(+\infty)$ при сколь угодно малом $\varepsilon > 0$. Поэтому лемма 1 называется принципом локализации.

Лемма 2. (Свойство линейности.) Если ряды $\sum_{k=1}^{\infty} a_k \ u \sum_{k=1}^{\infty} b_k \ cxoдятся,$ то для любых чисел α и β ряд $\sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) \ cxoдится.$

Доказать самостоятельно.

Следствие. Если ряд $\sum\limits_{k=1}^{\infty}a_k$ сходится, а ряд $\sum\limits_{k=1}^{\infty}b_k$ расходится, то ряд $\sum\limits_{k=1}^{\infty}(a_k+b_k)$ расходится.

§ 2. Ряды с неотрицательными членами

Теорема 1. (О существовании суммы ряда с неотрицательными членами.) Пусть $a_k \geq 0$ при всех $k \in \mathbb{N}$. Тогда существует сумма ряда $\sum_{k=1}^{\infty} a_k$, которая является неотрицательным числом или $+\infty$. При этом ряд $\sum_{k=1}^{\infty} a_k$ сходится тогда и только тогда, когда $\sum_{k=1}^{\infty} a_k < +\infty$.

Доказательство. Так как $a_k \geq 0$, то последовательность частичных сумм $S_n = \sum\limits_{k=1}^n a_k$ нестрого возрастает. Следовательно, существует $\lim\limits_{n \to \infty} S_n \in \mathbb{R} \cup \{+\infty\}$.

Из теоремы 1 получаем следующий признак сходимости ряда.

Теорема 2. (Признак сравнения.) *Если* $0 \le a_k \le b_k \ \forall k \in \mathbb{N}, \ mo$

- а) из сходимости ряда $\sum\limits_{k=1}^{\infty}b_k$ следует сходимость ряда $\sum\limits_{k=1}^{\infty}a_k;$
- б) из расходимости ряда $\sum\limits_{k=1}^{\infty}a_k$ следует расходимость ряда $\sum\limits_{k=1}^{\infty}b_k$.

Определение. Будем говорить, что последовательности неотрицательных чисел $\{a_k\}$ и $\{b_k\}$ эквивалентны в смысле сходимости рядов и писать $a_k \overset{\text{cx.}}{\sim} b_k$, если существуют числа $m>0, \ M>0$ и $k_0\in\mathbb{N}$ такие, что

$$m b_k \le a_k \le M b_k \qquad \forall k \ge k_0.$$

Теорема 3. Пусть $\exists k_0 : \forall k \geq k_0 \hookrightarrow a_k \geq 0, b_k \geq 0 \ u \ a_k \overset{cx.}{\sim} b_k$. Тогда ряды $\sum_{k=1}^{\infty} a_k \ u \sum_{k=1}^{\infty} b_k \ cxodятся или расходятся одновременно.$

Доказательство состоит в применении признака сравнения и принципа локализации.

Теорема 4. (Интегральный признак.) Пусть функция $f:[1,+\infty) \to \mathbb{R}$ монотонна и имеет первообразную F. Тогда ряд $\sum\limits_{k=1}^{\infty} f(k)$ сходится тогда и только тогда, когда первообразная F ограничена на луче $[1,+\infty)$.

Доказательство. Для определенности будем предполагать, что f нестрого убывает. По теореме Лагранжа о среднем для любого $k \in \mathbb{N}$ существует число $\xi_k \in (k,k+1)$ такое, что

$$F(k+1) - F(k) = F'(\xi_k) = f(\xi_k).$$

Так как f нестрого убывает, то $f(k+1) \le f(\xi_k) \le f(k)$, а значит,

$$f(k+1) \le F(k+1) - F(k) \le f(k) \quad \forall k \in \mathbb{N}.$$

Поэтому для любого натурального $n \geq 2$

$$\sum_{k=1}^{n-1} f(k+1) \le \sum_{k=1}^{n-1} (F(k+1) - F(k)) \le \sum_{k=1}^{n-1} f(k).$$

Обозначая $S_n = \sum_{k=1}^n f(k)$, получаем

$$S_n - S_1 \le F(n) - F(1) \le S_{n-1} \quad \forall n \ge 2.$$
 (1)

Из монотонности f следует существование предела

$$A = \lim_{x \to +\infty} f(x).$$

Если A>0, то $\lim_{n\to\infty}S_n=+\infty$, и в силу (1) имеем $\lim_{n\to\infty}F(n)=+\infty$. Если A<0, то $\lim_{n\to\infty}S_n=-\infty$, и в силу (1) имеем $\lim_{n\to\infty}F(n)=-\infty$. Поэтому при $A\neq 0$ ряд $\sum_{k=1}^\infty f(k)$ расходится и первообразная F неограничена, а значит, утверждение теоремы справедливо.

Пусть теперь A=0. Поскольку f нестрого убывает, то $f(x)\geq 0$ для любого $x\in [1,+\infty)$. Если ряд $\sum\limits_{k=1}^{\infty}f(k)$ расходится, то по теореме о существовании суммы ряда с неотрицательными членами последовательность $\{S_n\}$ неограничена сверху, и в силу (1) первообразная F неограничена сверху, а значит, утверждение теоремы справедливо.

Пусть, наконец, ряд $\sum_{k=1}^{\infty} f(k)$ сходится. Тогда в силу (1) последовательность $\{F(n)\}$ ограничена. Так как $F'(x)=f(x)\geq 0$ для любого $x\in [1,+\infty)$, то функция F нестрого возрастает на $[1,+\infty)$, а значит, $F(n)\leq F(x)\leq F(n+1)$ при $x\in [n,n+1]$. Отсюда и из ограниченности последовательности $\{F(n)\}$ следует ограниченность функции $F:[1,+\infty)\to\mathbb{R}$.

Пример 1. При каких α сходится ряд $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$?

Решение. Функция $f(x) = \frac{1}{x^{\alpha}}$ монотонна и имеет на $[1, +\infty)$ первообразную

$$F(x) = \begin{cases} \frac{1}{(1-\alpha)x^{\alpha-1}}, & \alpha \neq 1, \\ \ln x, & \alpha = 1. \end{cases}$$

На луче $[1,+\infty)$ функция F ограничена при $\alpha>1$ и неограничена при $\alpha\le 1$. Поэтому ряд $\sum\limits_{k=1}^\infty \frac{1}{k^\alpha}$ сходится при $\alpha>1$ и расходится при $\alpha\le 1$. В частности, $\mathit{гармонический}$ $\mathit{pяд}$ $\sum\limits_{k=1}^\infty \frac{1}{k}$ расходится.

Задача 1. Пусть функция $f:[1,+\infty)\to\mathbb{R}$ имеет первообразную F. Верно ли, что из сходимости ряда $\sum\limits_{k=1}^\infty f(k)$ следует ограниченность F на $[1,+\infty)$? Верно ли обратное?

Теорема 5. (Признак Даламбера.) Пусть $a_k > 0 \ \forall k \in \mathbb{N}$. Тогда а) если существуют $k_0 \in \mathbb{N}$ и $q \in (0,1)$ такие, что $\frac{a_{k+1}}{a_k} \leq q \ \forall k \geq 2$ $\geq k_0$, то ряд $\sum_{k=1}^{\infty} a_k$ сходится;

б) если $\exists k_0 : \forall k \geq k_0 \hookrightarrow \frac{a_{k+1}}{a_k} \geq 1$, то ряд $\sum_{k=1}^{\infty} a_k$ расходится.

Доказательство. а) По индукции легко показать, что $a_k \leq a_{k_0} \, q^{k-k_0}$ $\forall k \geq k_0$. Поскольку, как показано в примере из § 1, ряд $\sum\limits_{k=1}^{\infty} q^k$ сходится при $q \in (0,1)$, то ряд $\sum\limits_{k=k_0}^{\infty} a_{k_0} \, q^{k-k_0}$ также сходится и по признаку сравнения сходится ряд $\sum\limits_{k=k_0}^{\infty} a_k$. А значит, в силу принципа локализации сходится ряд $\sum\limits_{k=k_0}^{\infty} a_k$.

6) Если $\frac{a_{k+1}}{a_k} \ge 1$ при $k \ge k_0$, то $a_k \ge a_{k_0}$ при $k \ge k_0$. Следовательно, $a_k \ne 0 \ (k \to \infty)$, т.е. не выполняется необходимое условие сходимости ряда, и, следовательно, ряд $\sum_{k=1}^{\infty} a_k$ расходится.

Следствие. (Признак Даламбера в предельной форме.) *Пусть a_k > 0 \ \forall k \in \mathbb{N} \ u \lim_{k \to \infty} \frac{a_{k+1}}{a_k} = q, \ mor\partial a*

- а) при q < 1 ряд $\sum_{k=1}^{\infty} a_k$ сходится;
- б) $npu \ q > 1 \ pяд \sum_{k=1}^{\infty} a_k \ pacxodumcs;$
- в) при q=1 ряд $\sum\limits_{k=1}^{\infty}a_k$ может сходиться, а может и расходиться.

Доказательство. а) Определим $q'=\frac{q+1}{2}$. Поскольку q<1, то q<< q'<1. По определению предела $\exists k_0: \forall k\geq k_0 \hookrightarrow \frac{a_{k+1}}{a_k}\leq q'$. Следовательно, в силу теоремы 5(a) ряд $\sum\limits_{k=1}^{\infty}a_k$ сходится.

- б) По определению предела $\exists k_0 : \forall k \geq k_0 \hookrightarrow \frac{a_{k+1}}{a_k} \geq 1$. В силу теоремы 5(б) ряд $\sum_{k=1}^{\infty} a_k$ расходится.
- в) Пусть $a_k = \frac{1}{k^{\alpha}}$. Тогда $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \left(\frac{k}{k+1}\right)^{\alpha} = 1 \quad \forall \alpha \in \mathbb{R}$. Одна-ко, как показано ранее, при $\alpha > 1$ данный ряд сходится, а при $\alpha \le 1$ расходится.

Теорема 6. (Признак Коши.) Пусть $a_k > 0 \ \forall k \in \mathbb{N}$. Тогда

- а) если существуют $k_0 \in \mathbb{N}$ и $q \in (0,1)$ такие, что $\sqrt[k]{a_k} \leq q \quad \forall k \geq k_0$, то ряд $\sum_{k=1}^{\infty} a_k$ сходится;
 - б) если $\exists k_0: \forall k \geq k_0 \hookrightarrow \sqrt[k]{a_k} \geq 1$, то ряд $\sum_{k=1}^{\infty} a_k$ расходится.

Доказательство. а) Если $\sqrt[k]{a_k} \le q \quad \forall k \ge k_0$, то $a_k \le q^k \quad \forall k \ge k_0$. В силу признака сравнения и принципа локализации из сходимости ряда $\sum\limits_{k=1}^{\infty} q^k$ следует сходимость ряда $\sum\limits_{k=1}^{\infty} a_k$. б) Если $\sqrt[k]{a_k} \ge 1$ при $k \ge k_0$, то $a_k \ge 1$ при $k \ge k_0$, а значит, не

б) Если $\sqrt[k]{a_k} \ge 1$ при $k \ge k_0$, то $a_k \ge 1$ при $k \ge k_0$, а значит, не выполняется необходимое условие сходимости ряда, и, следовательно, ряд $\sum_{k=1}^{\infty} a_k$ расходится.

Следствие. (Признак Коши в предельной форме.) Пусть $a_k>0$ $\forall k\in\mathbb{N}\ u\lim_{k\to\infty}\sqrt[k]{a_k}=q,\ mor\partial a$

- а) $npu \ q < 1 \ psd \sum_{k=1}^{\infty} a_k \ cxodumcs;$
- б) $npu \ q > 1 \ pяд \sum_{k=1}^{\infty} a_k \ pacxodumcs.$
- в) при q=1 ряд $\sum\limits_{k=1}^{\infty}a_{k}$ может сходиться, а может и расходиться.

Доказательство аналогично доказательству признака Даламбера в предельной форме.

§ 3. Ряды со знакопеременными членами

Теорема 1. (Критерий Коши.) Pяд $\sum_{k=1}^{\infty} a_k$ сходится тогда и только тогда, когда выполняется условие Коши:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \geq N \ \forall p \in \mathbb{N} \hookrightarrow \left| \sum_{k=n+1}^{n+p} a_k \right| \leq \varepsilon.$$

Доказательство. По определению ряд $\sum\limits_{k=1}^{\infty}a_k$ сходится, если сходится последовательность частичных сумм $S_n=\sum\limits_{k=1}^na_k$. В силу критерия

Коши для последовательностей сходимость последовательности $\{S_n\}$ эквивалентна ее фундаментальности: $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \geq N \ \forall p \in \mathbb{N} \hookrightarrow$ $\hookrightarrow |S_{n+p} - S_n| \leq \varepsilon$. Отсюда и из равенства $S_{n+p} - S_n = \sum_{k=n+1}^{n+p} a_k$ следует требуемое утверждение.

Определение. Ряд $\sum_{k=1}^{\infty} a_k$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{k=1}^{\infty} |a_k|$. Ряд $\sum_{k=1}^{\infty} a_k$ называется *условно сходящимся*, если этот ряд сходится, но не является абсолютно сходящимся.

Теорема 2. Если ряд абсолютно сходится, то он сходится.

Доказательство. Пусть ряд $\sum_{k=1}^{\infty} a_k$ сходится абсолютно. Тогда выполняется условие Коши сходимости ряда $\sum_{k=1}^{\infty} |a_k|$:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \ge N \ \forall p \in \mathbb{N} \hookrightarrow \left| \sum_{k=n+1}^{n+p} |a_k| \right| \le \varepsilon,$$

следовательно,

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n \geq N \; \forall p \in \mathbb{N} \hookrightarrow \left| \sum_{k=n+1}^{n+p} a_k \right| \leq \varepsilon,$$

т. е. выполняется условие Коши сходимости ряда $\sum\limits_{k=1}^{\infty}a_k$, а значит, этот ряд сходится.

Лемма 1. Если ряды $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ абсолютно сходятся, то для любых чисел α и β ряд $\sum_{k=1}^{\infty} (\alpha a_k + \beta b_k)$ абсолютно сходится.

Доказательство. В силу свойства линейности из сходимости рядов $\sum\limits_{k=1}^{\infty}|a_k|, \sum\limits_{k=1}^{\infty}|b_k|$ следует сходимость ряда $\sum\limits_{k=1}^{\infty}(|\alpha|\,|a_k|+|\beta|\,|b_k|).$ Поскольку $|\alpha a_k+\beta b_k|\leq |\alpha|\,|a_k|+|\beta|\,|b_k|,$ то в силу признака сравнения ряд $\sum\limits_{k=1}^{\infty}|\alpha a_k+\beta b_k|$ сходится.

Теорема 3. (Признак Дирихле.) Пусть последовательность частичных сумм ряда $\sum_{k=1}^{\infty} a_k$ ограничена:

$$\exists C \in \mathbb{R} : \forall n \in \mathbb{N} \hookrightarrow \left| \sum_{k=1}^{n} a_k \right| \le C,$$

а последовательность $\{b_k\}$ монотонно стремится κ нулю. Тогда ряд $\sum\limits_{k=1}^{\infty}a_k\,b_k$ сходится.

Доказательство. Для определенности будем предполагать, что последовательность $\{b_k\}$ нестрого убывает: $b_{k+1} \leq b_k \quad \forall k \in \mathbb{N}$. Обозначим $A_n = \sum_{k=1}^n a_k \ (n \in \mathbb{N}), \ A_0 = 0$. Выполним *преобразование Абеля*:

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} (A_k - A_{k-1}) b_k = \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n} A_{k-1} b_k =$$

$$= \sum_{k=1}^{n} A_k b_k - \sum_{k=0}^{n-1} A_k b_{k+1} \qquad \text{T. K. } \underbrace{A_0}_{=} = 0 \qquad \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n-1} A_k b_{k+1}.$$

Следовательно,

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}).$$
 (1)

Заметим, что

$$\sum_{k=1}^{n} (b_k - b_{k+1}) = b_1 - b_{n+1} \xrightarrow{n \to \infty} b_1,$$

т. е. ряд $\sum\limits_{k=1}^{\infty} (b_k-b_{k+1})$ сходится, следовательно, сходится ряд $\sum\limits_{k=1}^{\infty} C\left(b_k-b_{k+1}\right)$. Поскольку $b_k-b_{k+1}\geq 0$ и $|A_k|\leq C$, то $|A_k\left(b_k-b_{k+1}\right)|\leq C|b_k-b_{k+1}|=C\left(b_k-b_{k+1}\right)$. Отсюда в силу признака сравнения получаем абсолютную сходимость ряда $\sum\limits_{k=1}^{\infty} A_k\left(b_k-b_{k+1}\right)$. Поэтому в силу теоремы 2 ряд $\sum\limits_{k=1}^{\infty} A_k\left(b_k-b_{k+1}\right)$ сходится.

Поскольку $\{A_n\}$ — ограниченная последовательность, а $\{b_n\}$ — бесконечно малая последовательность, то $\lim_{n\to\infty}A_n\,b_n=0$. Отсюда из сходимости ряда $\sum\limits_{k=1}^\infty A_k\,(b_k-b_{k+1})$ и из формулы (1) следует существование конечного предела

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k b_k = \lim_{n \to \infty} A_n b_n + \lim_{n \to \infty} \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}) = \sum_{k=1}^{\infty} A_k (b_k - b_{k+1}),$$

т. е. сходимость ряда
$$\sum\limits_{k=1}^{\infty}a_k\,b_k.$$

Теорема 4. (Признак Лейбница.) Если последовательность $\{b_k\}$ монотонно стремится к нулю, то ряд Лейбница $\sum_{k=1}^{\infty} (-1)^k b_k$ сходится.

Доказательство. Заметим, что последовательность частичных сумм ряда $\sum_{k=1}^{\infty} (-1)^k$ ограничена: $\sum_{k=1}^{2m} (-1)^k = 0$, $\sum_{k=1}^{2m+1} (-1)^k = -1$ $\forall m \in \mathbb{N}$, следовательно, $\left|\sum_{k=1}^{n} (-1)^k\right| \leq 1$ $\forall n \in \mathbb{N}$. В силу признака Дирихле ряд $\sum_{k=1}^{\infty} (-1)^k b_k$ сходится.

Замечание. Из того, что ряд $\sum\limits_{k=1}^\infty a_k$ сходится и $\lim\limits_{k\to\infty} \frac{b_k}{a_k}=1$ не следует, что ряд $\sum\limits_{k=1}^\infty b_k$ сходится.

Пусть, например, $a_k = \frac{(-1)^k}{\sqrt{k}}$, $b_k = \frac{(-1)^k}{\sqrt{k}} + \frac{1}{k}$. Тогда $\frac{b_k}{a_k} = 1 + \frac{(-1)^k}{\sqrt{k}} \to 1$ при $k \to \infty$. При этом ряд $\sum\limits_{k=1}^\infty a_k$ сходится по признаку Лейбница, а ряд $\sum\limits_{k=1}^\infty b_k$ расходится, т. к. $b_k = a_k + c_k$, где $c_k = \frac{1}{k}$ и, как было показано ранее, гармонический ряд $\sum\limits_{k=1}^\infty \frac{1}{k}$ расходится.

Теорема 5. (Признак Абеля.) Пусть ряд $\sum_{k=1}^{\infty} a_k$ сходится, последовательность $\{b_k\}$ монотонна и ограничена. Тогда ряд $\sum_{k=1}^{\infty} a_k \, b_k$ сходится. Доказательство. Так как последовательность $\{b_k\}$ монотонна и ограничена, то существует $\lim_{k\to\infty}b_k=b_0\in\mathbb{R}$. Поэтому последовательность $\{b_k-b_0\}$ монотонно стремится к нулю. Из сходимости ряда $\sum_{k=1}^{\infty}a_k$ следует ограниченность последовательности частичных сумм этого ряда. Поэтому согласно признаку Дирихле ряд $\sum_{k=1}^{\infty}a_k(b_k-b_0)$ сходится. Отсюда и из сходимости ряда $\sum_{k=1}^{\infty}a_k$ вытекает сходимость ряда $\sum_{k=1}^{\infty}a_kb_k$.

Следствие из признака Абеля. Пусть последовательность $\{b_k\}$ монотонна и $\lim_{k\to\infty}b_k=b\in(0,+\infty)$. Тогда ряды $\sum_{k=1}^\infty a_k$ и $\sum_{k=1}^\infty a_kb_k$ сходятся или расходятся одновременно.

Доказательство. Если ряд $\sum\limits_{k=1}^{\infty}a_{k}$ сходится, то ряд $\sum\limits_{k=1}^{\infty}a_{k}b_{k}$ сходится по признаку Абеля.

Докажем обратное. Так как $\lim_{k\to\infty}b_k=b\in(0,+\infty)$, то $\exists k_0: \ \forall k\geq k_0\hookrightarrow b_k>0$ и $\lim_{k\to\infty}\frac{1}{b_k}=\frac{1}{b}$. Так как $b_k>0$ и последовательность $\{b_k\}$ монотонна, то последовательность $\left\{\frac{1}{b_k}\right\}$ определена и монотонна при $k\geq k_0$. Из сходимости этой последовательности следует ее ограниченность. Поэтому в силу признака Абеля из сходимости ряда $\sum_{k=1}^\infty a_k b_k$ следует сходи-

мость ряда
$$\sum_{k=k_0}^{\infty} a_k = \sum_{k=k_0}^{\infty} \frac{1}{b_k} a_k b_k$$
, а значит, сходимость ряда $\sum_{k=1}^{\infty} a_k$.

Замечание. Следствие из признака Абеля утверждает, что характер сходимости ряда $\sum\limits_{k=1}^{\infty}a_k$ не изменится, если последовательность $\{a_k\}$ заменить на эквивалентную последовательность $\{c_k\}$ при условии, что последовательность $\left\{\frac{c_k}{a_k}\right\}$ монотонна. При этом для рядов со знакопеременными членами нельзя использовать запись $a_k \stackrel{\text{сх.}}{\sim} c_k$, которая подразумевает знакопостоянство членов ряда.

§ 4. Перестановки слагаемых в рядах и перемножение рядов

Определение. Будем говорить, что последовательность натуральных чисел $\{k_j\}_{j=1}^{\infty}$ задает взаимно однозначное преобразование множества натуральных чисел, если для любого $k \in \mathbb{N}$ существует единственный номер $j \in \mathbb{N}$ такой, что $k = k_j$.

Лемма 1. Пусть последовательность $\{k_j\}$ задает взаимно однозначное преобразование множества $\mathbb N$ и пусть

$$M_n = \max_{j \le n} k_j, \qquad m_n = \min_{j > n} k_j.$$

Тогда
$$\lim_{j \to \infty} k_j = +\infty$$
, $\lim_{n \to \infty} m_n = +\infty$, $\lim_{n \to \infty} M_n = +\infty$.

Доказательство. Поскольку последовательность $\{k_j\}$ задает взаимно однозначное преобразование $\mathbb{N} \to \mathbb{N}$, то существует последовательность $\{j_k\}_{k=1}^{\infty}$, задающая обратное преобразование $\mathbb{N} \to \mathbb{N}$, т. е.

$$\forall k \in \mathbb{N} \ \forall j \in \mathbb{N} \hookrightarrow k_j = k \iff j_k = j.$$

Для любого $m \in \mathbb{N}$ определим $J_m = \max\{j_1,\ldots,j_m\}$. Тогда при $j > J_m$ получаем, что $j \neq j_k \ \forall k \in \overline{1,m}$, следовательно, $k_j \not\in \overline{1,m}$, т.е. $k_j > m$. Итак,

$$\forall m \in \mathbb{N} \ \exists J_m \in \mathbb{N} : \forall j > J_m \hookrightarrow k_j > m. \tag{1}$$

Это означает, что $\lim_{j\to\infty}k_j=+\infty$. Кроме того, из (1) следует, что

$$\forall m \in \mathbb{N} \ \exists J_m \in \mathbb{N} : \forall n > J_m \hookrightarrow m_n = \min_{j > n} k_j > m.$$

Следовательно, $\lim_{n\to\infty}m_n=+\infty$. Поскольку $M_n\geq k_n\to+\infty$, то $M_n\to+\infty$ при $n\to\infty$.

Определение. Будем говорить, что ряд $\sum\limits_{j=1}^{\infty}\widetilde{a}_{j}$ получен перестанов-

кой членов ряда $\sum\limits_{k=1}^{\infty}a_k$, если существует последовательность натуральных чисел $\{k_j\}_{j=1}^{\infty}$, задающая взаимно однозначное преобразование множества \mathbb{N} , и такая, что $\forall j \in \mathbb{N} \hookrightarrow \widetilde{a}_j = a_{k_j}$.

Теорема 1. Если ряд $\sum\limits_{j=1}^{\infty} \widetilde{a}_{j}$ получен перестановкой членов абсолютно сходящегося ряда $\sum\limits_{k=1}^{\infty} a_{k}$, то ряд $\sum\limits_{j=1}^{\infty} \widetilde{a}_{j}$ абсолютно сходится и его сумма рявна сумме ряда $\sum\limits_{k=1}^{\infty} a_{k}$.

Доказательство. а) Пусть последовательность $\{k_j\}$ задает перестановку $\sum\limits_{j=1}^{\infty}\widetilde{a}_j$ ряда $\sum\limits_{k=1}^{\infty}a_k$, т. е.

$$\forall j \in \mathbb{N} \hookrightarrow \widetilde{a}_j = a_{k_i}$$
 и

 $\forall k \in \mathbb{N}$ существует единственный $j \in \mathbb{N} : k_j = k$.

Поскольку $\sum\limits_{j=1}^n |\widetilde{a}_j| = \sum\limits_{j=1}^n |a_{k_j}| \leq \sum\limits_{k=1}^{M_n} |a_k|$, где $M_n = \max_{j \leq n} k_j$, то из сходимости ряда $\sum\limits_{k=1}^\infty |a_k|$ следует, что $\sup_{n \in \mathbb{N}} \sum\limits_{j=1}^n |\widetilde{a}_j| \leq \sup_{M \in \mathbb{N}} \sum\limits_{k=1}^M |a_k| < +\infty$. Следовательно, в силу теоремы о существовании суммы ряда с неотрицательными членами ряд $\sum\limits_{j=1}^\infty |\widetilde{a}_j|$ сходится, т.е. ряд $\sum\limits_{j=1}^\infty \widetilde{a}_j$ сходится абсолютно.

б) Обозначим $\widetilde{S}_n = \sum_{j=1}^n \widetilde{a}_j$, $S_m = \sum_{k=1}^m a_k$, $\sigma_m = \sum_{k=1}^m |a_k|$, $\widetilde{S} = \lim_{n \to \infty} \widetilde{S}_n$, $S = \lim_{m \to \infty} S_m$, $\sigma = \lim_{m \to \infty} \sigma_m$ (из условий теоремы и доказанной сходимости ряда $\sum_{j=1}^\infty \widetilde{a}_j$ следует, что данные пределы существуют и конечны). Требуется доказать, что $\widetilde{S} = S$.

Заметим, что
$$S_{M_n} - \widetilde{S}_n = \sum_{k=1}^{M_n} a_k - \sum_{j=1}^n \widetilde{a}_j = \sum_{k=1}^{M_n} a_k - \sum_{j=1}^n a_{k_j}$$
.

По определению числа $M_n = \max_{j \le n} k_j$ в сумме $\sum_{k=1}^{M_n} a_k$ содержатся все слагаемые суммы $\sum_{j=1}^n a_{k_j}$, поэтому

$$|S_{M_n} - \widetilde{S}_n| = \begin{vmatrix} \sum_{k \in \overline{1, M_n} \\ k \notin \{k_1, \dots, k_n\} \end{vmatrix} a_k \begin{vmatrix} \leq \sum_{k \in \overline{1, M_n} \\ k \notin \{k_1, \dots, k_n\} \end{vmatrix} |a_k|.$$

Из условия $k \not\in \{k_1,\dots,k_n\}$ следует, что $k=k_j$, где j>n, а значит, $k\geq \min_{j>n}k_j=m_n$. Поэтому

$$|S_{M_n} - \widetilde{S}_n| \le \sum_{k=m_n}^{M_n} |a_k| = \sigma_{M_n} - \sigma_{m_n-1}.$$

Согласно лемме $1,\ m_n\to +\infty,\ M_n\to +\infty$ при $n\to\infty,\$ следовательно, $\lim_{n\to\infty}(\sigma_{M_n}-\sigma_{m_n-1})=\sigma-\sigma=0,\$ а значит, $\lim_{n\to\infty}|S_{M_n}-\widetilde{S}_n|=0.$ Отсюда и из условия $\lim_{n\to\infty}S_{M_n}=S$ получаем, что $\lim_{n\to\infty}\widetilde{S}_n=\lim_{n\to\infty}S_{M_n}=S,\$ т. е. сумма ряда $\sum_{j=1}^\infty\widetilde{a}_j$ совпадает с суммой ряда $\sum_{k=1}^\infty a_k.$

Заметим, что при перестановке членов условно сходящегося ряда сумма ряда, вообще говоря, меняется. Более того, справедлива следующая теорема.

Теорема 2. (Теорема Римана.) Если ряд $\sum_{k=1}^{\infty} a_k$ сходится условно, то для любого $x \in \overline{\mathbb{R}}$ можно так переставить члены ряда $\sum_{k=1}^{\infty} a_k$, что полученный ряд $\sum_{j=1}^{\infty} \widetilde{a}_j$ будет иметь сумму, равную x.

Доказательство

Рассмотрим случай $x \in \mathbb{R}$.

Шаг 1. Составим ряд $\sum_{k=1}^{\infty} b_k$, членами которого являются все неотрицательные члены ряда $\sum_{k=1}^{\infty} a_k$, взятые с сохранением порядка (если неотрицательных членов ряда $\sum_{k=1}^{\infty} a_k$ конечное число, то вместо ряда $\sum_{k=1}^{\infty} b_k$ получится конечная сумма). Составим ряд (или конечную сумму) $\sum_{k=1}^{\infty} c_k$, членами которого являются все отрицательные члены ряда $\sum_{k=1}^{\infty} a_k$, взятые с сохранением порядка.

Заметим, что

$$\sum_{k=1}^{n} |a_k| = \sum_{k=1}^{n_1} b_k + \sum_{k=1}^{n_2} (-c_k);$$
 (2)

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n_1} b_k + \sum_{k=1}^{n_2} c_k.$$
 (3)

Покажем, что ряды $\sum\limits_{k=1}^{\infty}b_k$ и $\sum\limits_{k=1}^{\infty}c_k$ расходятся и, следовательно, не могут являться конечными суммами. Это доказательство проведем методом от противного. Предположим, что один из этих рядов сходится.

Случай (а). Ряды $\sum_{k=1}^{\infty} b_k$ и $\sum_{k=1}^{\infty} c_k$ сходятся. Тогда их частичные суммы ограничены, и из формулы (2) следует, что частичные суммы ряда $\sum_{k=1}^{\infty} |a_k|$ ограничены, а значит, в силу теоремы о существовании суммы ряда с неотрицательными членами этот ряд сходится. Следовательно, ряд $\sum_{k=1}^{\infty} a_k$ сходится абсолютно, что противоречит условию теоремы.

Случай (б). Ряд $\sum_{k=1}^{\infty} b_k$ расходится, а ряд $\sum_{k=1}^{\infty} c_k$ сходится. Тогда частичные суммы ряда $\sum_{k=1}^{\infty} b_k$ стремятся к $+\infty$, а частичные суммы ряда $\sum_{k=1}^{\infty} c_k$ ограничены. Отсюда и из формулы (3) следует, что $\sum_{k=1}^{n} a_k \stackrel{n \to \infty}{\longrightarrow} +\infty$, что противоречит сходимости ряда $\sum_{k=1}^{\infty} a_k$.

Аналогично, cлучай (в), когда ряд $\sum\limits_{k=1}^{\infty}b_k$ сходится, а ряд $\sum\limits_{k=1}^{\infty}c_k$ расходится, также противоречит сходимости ряда $\sum\limits_{k=1}^{\infty}a_k$.

Таким образом, ряды $\sum\limits_{k=1}^{\infty}b_k$ и $\sum\limits_{k=1}^{\infty}c_k$ расходятся, так как другие случаи противоречат условиям теоремы.

Шаг 2. Определим ряд
$$\sum_{j=1}^{\infty} \widetilde{a}_j$$
.

Определим
$$\widetilde{a}_1 = \begin{cases} b_1, & \text{если} \quad x \geq 0, \\ c_1, & \text{если} \quad x < 0. \end{cases}$$

Пусть определены первые n членов ряда $\sum\limits_{j=1}^\infty \widetilde{a}_j$: $\widetilde{a}_1,\ldots,\widetilde{a}_n$, которые состоят из первых p=p(n) членов ряда $\sum\limits_{k=1}^\infty b_k$ и первых q(n) членов ряда $\sum\limits_{k=1}^\infty c_k$, где $p(n),q(n)\in\mathbb{N}\cup\{0\}$ и p(n)+q(n)=n. Пусть $\widetilde{S}_n=\sum\limits_{j=1}^n \widetilde{a}_j$.

Определим
$$\widetilde{a}_{n+1}=\left\{egin{array}{ll} b_{p(n)+1}, & \mbox{если} & x\geq \widetilde{S}_n, \\ c_{q(n)+1}, & \mbox{если} & x<\widetilde{S}_n. \end{array}
ight.$$
 Отсюда следует, что

$$p(n+1) = \left\{ \begin{array}{ll} p(n)+1, & x \geq \widetilde{S}_n, \\ p(n), & x < \widetilde{S}_n, \end{array} \right. \qquad q(n+1) = \left\{ \begin{array}{ll} q(n), & x \geq \widetilde{S}_n, \\ q(n)+1, & x < \widetilde{S}_n. \end{array} \right.$$

Шаг 3. Покажем, что

$$p(n) \stackrel{n \to \infty}{\longrightarrow} +\infty. \tag{4}$$

Предположим противное: $p(n) \not\to +\infty$ при $n \to \infty$. Тогда поскольку последовательность $\{p(n)\}_{n=1}^{\infty}$ нестрого возрастает, то она ограничена сверху, т. е. $\exists p_0: \forall n \in \mathbb{N} \hookrightarrow p(n) \leq p_0$. Следовательно, в ряде $\sum_{j=1}^{\infty} \widetilde{a}_j$ присутствует лишь конечное число членов ряда $\sum_{k=1}^{\infty} b_k$, т. е. существует j_1 такое, что

$$\forall j > j_1 \hookrightarrow \widetilde{a}_j \in \{c_k\}_{k=1}^{\infty}. \tag{5}$$

Поскольку частичные суммы ряда $\sum\limits_{k=1}^{\infty}c_k$ стремятся к $-\infty$, то $\lim\limits_{n\to\infty}\widetilde{S}_n=-\infty$, и, следовательно, $\exists j_2\geq j_1: \forall j>j_2\hookrightarrow \widetilde{S}_j< x$. Согласно построению ряда $\sum\limits_{j=1}^{\infty}\widetilde{a}_j$ получаем $\widetilde{a}_{j_2+1}\in\{b_k\}_{k=1}^{\infty}$, что противоречит условию (5). Полученное противоречие доказывает, что $p(n)\stackrel{n\to\infty}{\longrightarrow} +\infty$. Аналогично,

$$q(n) \xrightarrow{n \to \infty} +\infty.$$
 (6)

Следовательно, любой член ряда $\sum\limits_{k=1}^\infty b_k$ и ряда $\sum\limits_{k=1}^\infty c_k$ будет присутствовать в ряде $\sum\limits_{j=1}^\infty \widetilde{a}_j$. Поэтому ряд $\sum\limits_{j=1}^\infty \widetilde{a}_j$ является перестановкой членов ряда $\sum\limits_{k=1}^\infty a_k$.

Шаг 4. Покажем, что $\lim_{n\to\infty} \sum_{j=1}^n \widetilde{a}_j = x$.

Заметим, что при достаточно больших n, а именно, при таких, что p(n) > 0 и q(n) > 0, справедлива формула

$$|\widetilde{S}_n - x| \le \max\{b_{p(n)}, -c_{q(n)}\}.$$
 (7)

Действительно, зафиксируем номер n_1 такой, что $p(n_1) > 0$ и $q(n_1) >$ > 0. В силу соотношений (4), (6) такой номер существует. Пусть для определенности $x < S_{n_1}$. Обозначим

$$n_0 = \max\{n \le n_1 : x \ge \widetilde{S}_{n-1}\}.$$

Такой номер n_0 существует, т. к. $p(n_1) > 0$.

Тогда $x \geq \widetilde{S}_{n_0-1}$ и $x < \widetilde{S}_n \ \forall n \in \overline{n_0, n_1}$. Следовательно,

$$p(n_0 - 1) + 1 = p(n_0) = p(n_0 + 1) = \dots = p(n_1),$$

$$\widetilde{a}_{n_0} = b_{p(n_0-1)+1} = b_{p(n_1)}, \quad \widetilde{a}_{n_0+1} < 0, \dots, \ \widetilde{a}_{n_1} < 0.$$

Таким образом,

$$|\widetilde{S}_{n_1} - x| = \widetilde{S}_{n_1} - x = \widetilde{S}_{n_0 - 1} + \widetilde{a}_{n_0} + \widetilde{a}_{n_0 + 1} + \dots + \widetilde{a}_{n_1} - x \le \widetilde{S}_{n_0 - 1} + \widetilde{a}_{n_0} - x \le \widetilde{a}_{n_0} = b_{p(n_1)}.$$

Поэтому в случае $x < \widetilde{S}_{n_1}$ справедливо неравенство $|\widetilde{S}_{n_1} - x| \leq b_{p(n_1)}$. Аналогично, в случае $x \geq \widetilde{S}_{n_1}$ имеем $|\widetilde{S}_{n_1} - x| \leq -c_{q(n_1)}$. Таким образом, в любом случае $|\widetilde{S}_{n_1} - x| \leq \max\{b_{p(n_1)}, -c_{q(n_1)}\}$, что доказывает неравенство (7).

Поскольку ряд $\sum_{k=1}^{\infty} a_k$ сходится, то $a_k \stackrel{k \to \infty}{\longrightarrow} 0$, следовательно, $b_k \stackrel{k \to \infty}{\longrightarrow} 0$ и $c_k \stackrel{k\to\infty}{\longrightarrow} 0$. Отсюда и из соотношений (4), (6) следует, что $b_{p(n)}\to 0$, $c_{q(n)}\to 0$ при $n\to\infty$. Используя неравенство (7), получаем соотношение $|\widetilde{S}_n-x| o 0$ при $n o \infty$, т. е. $\lim_{n o \infty} \ \sum_{j=1}^n \widetilde{a}_j = x$. Таким образом, $\sum_{i=1}^\infty \widetilde{a}_j = x$.

Рассмотрим случай $x=+\infty$. Составим ряды $\sum\limits_{k=1}^{\infty}b_k$ и $\sum\limits_{k=1}^{\infty}c_k$ как в предыдущем случае.

Пусть определены первые n членов ряда $\sum\limits_{j=1}^{\infty}\widetilde{a}_{j}$: $\widetilde{a}_{1},\ldots,\widetilde{a}_{n}$, которые состоят из первых p=p(n) членов ряда $\sum\limits_{k=1}^{\infty}b_{k}$ и первых q(n) членов ряда $\sum\limits_{k=1}^{\infty}c_{k}$, где $p(n),q(n)\in\mathbb{N}\cup\{0\}$ и p(n)+q(n)=n. Пусть $\widetilde{S}_{n}=\sum\limits_{j=1}^{n}\widetilde{a}_{j}$.

Определим
$$\widetilde{a}_{n+1} = \left\{ \begin{array}{ll} b_{p(n)+1}, & \text{если} & \widetilde{S}_n \leq q(n), \\ c_{q(n)+1}, & \text{если} & \widetilde{S}_n > q(n). \end{array} \right.$$

Аналогично случаю конечного x доказываются соотношения (4), (6) и

$$\widetilde{S}_n \ge q(n) - 1 + c_{q(n)} \quad \forall n \in \mathbb{N} : \ q(n) > 0.$$

Отсюда следует, что $\widetilde{S}_n \to +\infty$ при $n \to \infty$.

Случай $x=-\infty$ рассматривается аналогично.

Определение. Через \mathbb{N}^2 будем обозначать множество всевозможных пар натуральных чисел. Будем говорить, что последовательность пар натуральных чисел $\{(m_j,n_j)\}_{j=1}^{\infty}$ задает взаимно однозначное отображение $\mathbb{N} \to \mathbb{N}^2$, если для любой пары натуральных чисел (m,n) существует единственный номер $j \in \mathbb{N}$ такой, что $(m_j,n_j)=(m,n)$.

Теорема 3. (О перемножении рядов.) Пусть ряды $\sum_{k=1}^{\infty} a_k \ u \sum_{k=1}^{\infty} b_k$ абсолютно сходятся, а последовательность $\{(m_j, n_j)\}_{j=1}^{\infty}$ задает взаимно однозначное отображение $\mathbb{N} \to \mathbb{N}^2$. Тогда ряд $\sum_{j=1}^{\infty} a_{m_j} b_{n_j}$ абсолютно сходится, а его сумма равна произведению сумм рядов $\sum_{k=1}^{\infty} a_k \ u \sum_{k=1}^{\infty} b_k$.

Доказательство. а) Для произвольного натурального числа J определим $M_J = \max\{m_1, \dots, m_J\}, \quad N_J = \max\{n_1, \dots, n_J\}.$ Тогда

$$\sum_{j=1}^{J} |a_{m_j} b_{n_j}| \le \left(\sum_{m=1}^{M_J} |a_m|\right) \left(\sum_{n=1}^{N_J} |b_n|\right).$$

Отсюда в силу абсолютной сходимости рядов $\sum\limits_{k=1}^{\infty}a_k$ и $\sum\limits_{k=1}^{\infty}b_k$ получаем

$$\sup_{J\in\mathbb{N}} \sum_{j=1}^{J} |a_{m_j} b_{n_j}| \le \left(\sup_{M\in\mathbb{N}} \sum_{m=1}^{M} |a_m|\right) \left(\sup_{N\in\mathbb{N}} \sum_{n=1}^{N} |b_n|\right) < +\infty.$$

Следовательно, в силу теоремы о существовании суммы ряда с неотрицательными членами ряд $\sum\limits_{j=1}^{\infty}|a_{m_j}\,b_{n_j}|$ сходится, т. е. ряд $\sum\limits_{j=1}^{\infty}a_{m_j}\,b_{n_j}$ сходится абсолютно.

б) Покажем теперь, что S = AB, где

$$S = \sum_{j=1}^{\infty} a_{m_j} b_{n_j}, \qquad A = \sum_{k=1}^{\infty} a_k, \qquad B = \sum_{k=1}^{\infty} b_k.$$

В силу теоремы 1 сумма абсолютно сходящегося ряда $\sum_{j=1}^{\infty} a_{m_j} \, b_{n_j}$ не изменится при перестановке членов ряда. Поэтому вместо последовательности $\{(m_j,n_j)\}$ можно взять специально выбранную последовательность $\{(m_j^*,n_j^*)\}$, задающую взаимно однозначное отображение $\mathbb{N} \to \mathbb{N}^2$.

Занумеруем все пары натуральных чисел $(m,n) \in \mathbb{N}^2$ по «методу квадратов», т.е. в соответствии со следующей таблицей:

n_j^*	1	2	3	4	
1	$j=1$ a_1b_1	$j=2$ a_2b_1	$j=5 \\ a_3b_1$	$j=10$ a_4b_1	
2	$j=4$ a_1b_2	$j=3 \\ a_2b_2$	$j=6 \\ a_3b_2$	$j=11 \\ a_4b_2$	
3	$j=9 \\ a_1b_3$	$j=8$ a_2b_3	$j=7$ a_3b_3	$j=12$ a_4b_3	
4	$j=16 \\ a_1b_4$	$j=15 \\ a_2b_4$	$j=14$ a_3b_4	$j=13$ a_4b_4	
:	:	:	:	:	:

Данная таблица задает алгоритм, по которому каждому номеру j ставится в соответствие пара натуральных чисел $(m,n)=(m_j^*,n_j^*)$, причем последовательность $\{(m_j^*,n_j^*)\}_{j=1}^\infty$ задает взаимно однозначное отображение $\mathbb{N} \to \mathbb{N}^2$. В результате получаем ряд

$$\sum_{j=1}^{\infty} a_{m_j^*} b_{n_j^*} = a_1 b_1 + (a_2 b_1 + a_2 b_2 + a_1 b_2) +$$

$$+(a_3b_1+a_3b_2+a_3b_3+a_2b_3+a_1b_3)+\dots$$

Поскольку ряд $\sum\limits_{j=1}^{\infty}a_{m_j^*}\,b_{n_j^*}$ получен перестановкой членов ряда $\sum\limits_{j=1}^{\infty}a_{m_j}\,b_{n_j},$ то по теореме 1: $\sum\limits_{j=1}^{\infty}a_{m_j^*}\,b_{n_j^*}=\sum\limits_{j=1}^{\infty}a_{m_j}\,b_{n_j}=S.$

Пусть
$$S_n = \sum_{j=1}^n a_{m_j^*} b_{n_j^*}, \quad A_n = \sum_{k=1}^n a_k, \quad B_n = \sum_{k=1}^n b_k.$$
 Тогда частич-

ная сумма элементов ряда $\sum_{j=1}^{\infty} a_{m_j^*} \, b_{n_j^*}$, соответствующая квадрату со стороной N, лежащему в левом верхнем углу таблицы, равна

$$S_{N^2} = \sum_{\substack{m=1,\dots,N\\n=1,\dots,N}} a_m b_n = \left(\sum_{m=1}^N a_m\right) \left(\sum_{n=1}^N b_n\right) = A_N B_N.$$

Так как $A_N \to A$, $B_N \to B$ при $N \to \infty$, то $S_{N^2} \to AB$ при $N \to \infty$. С другой стороны, поскольку $\{S_{N^2}\}$ – подпоследовательность последовательности $\{S_n\}$, имеющей предел S, то $S = \lim_{N \to \infty} S_{N^2} = AB$.

Γ Π A B A 8

МЕРА И ИНТЕГРАЛ ЛЕБЕГА

\S 1. Кольцо и σ -кольцо

Определение. Семейство (множество) \mathcal{R} , состоящее из множеств $A \subset \mathbb{R}^n$, называется *кольцом*, если для любых $A, B \in \mathcal{R}$ множества $A \cup B$ и $A \setminus B$ являются элементами \mathcal{R} .

Лемма 1. Если \mathcal{R} – кольцо, то для любых $A,B\in\mathcal{R}$ имеем $A\cap B\in\mathcal{R}$.

Доказательство. Достаточно заметить, что $A \cap B = A \setminus (A \setminus B)$. \square

Определение. Кольцо $\mathcal R$ называется σ -кольцом, если для любого счетного набора множеств $A_k \in \mathcal R$ множество $\bigcup_{k=1}^\infty A_k$ является элементом $\mathcal R$.

Лемма 2. Если $\mathcal R$ является σ -кольцом, то для любого счетного набора множеств $A_k \in \mathcal R$ множество $A = \bigcap_{k=1}^\infty A_k$ является элементом $\mathcal R$.

Доказательство. Так как $A_1\setminus A=\bigcup\limits_{k=1}^{\infty}(A_1\setminus A_k),$ то $A_1\setminus A\in\mathcal{R}.$ Поскольку $A=A_1\setminus (A_1\setminus A),$ то $A\in\mathcal{R}.$

§ 2. Клеточные множества и верхняя мера Лебега

Определение . *Клеткой* Π в пространстве \mathbb{R}^n будем называть декартово произведение ограниченных числовых промежутков:

$$\Pi = \omega_1 \times \omega_2 \times \ldots \times \omega_n,$$

 ω_k – это интервал (a_k,b_k) , полуинтервал (a_k,b_k) или $[a_k,b_k)$, отрезок $[a_k,b_k]$ или точка $[a_k,a_k]=\{a_k\}$. Мерой $m(\Pi)$ клетки Π называется произведение длин числовых промежутков ω_k :

$$m(\Pi) = |\omega_1| \cdots |\omega_n|, \quad |\omega_k| = b_k - a_k.$$

Пустое множество по определению будем считать клеткой, а меру пустого множества - равной нулю.

Определение. Пусть заданы числа $A_1, \ldots, A_n, C \in \mathbb{R}$ такие, что $A_1^2 +$ $+\ldots+A_n^2\neq 0$. Тогда множество

$$\{x = (x_1, \dots, x_n) \in \mathbb{R}^n : A_1 x_1 + \dots + A_n x_n = C\}$$

называется zunepnлоскостью в \mathbb{R}^n .

В частности, множество $\{x=(x_1,\ldots,x_n)\in\mathbb{R}^n:\ x_i=c\}$ является гиперплоскостью в \mathbb{R}^n , которую для краткости будем записывать в виде $x_i = c$.

Определение. Будем говорить, что гиперплоскость $x_i = c \; paspesaem$ множество $X \subset \mathbb{R}^n$ на множества X_1 и X_2 , если

$$X_1 = \{x = (x_1, \dots, x_n) \in X : x_i > c\}$$
 и $X_2 = \{x = (x_1, \dots, x_n) \in X : x_i \le c\}$

$$X_1 = \{x = (x_1, \dots, x_n) \in X : x_i \ge c\} \text{ if } X_2 = \{x = (x_1, \dots, x_n) \in X : x_i < c\}.$$

Определение. Будем говорить, что множество X является $\partial us z$ юнктным объединением семейства множеств $\{X_{\alpha}\}_{\alpha\in A}$ и писать X= $= \bigsqcup_{\alpha \in A} X_{\alpha}, \text{ если}$ $1) \ X = \bigcup_{\alpha \in A} X_{\alpha},$ $2) \ X_{\alpha} \cap X_{\beta} = \emptyset \quad \forall \alpha, \beta \in A: \ \alpha \neq \beta.$

1)
$$X = \bigcup X_{\alpha}$$

2)
$$X_{\alpha} \cap X_{\beta} = \emptyset \quad \forall \alpha, \beta \in A : \alpha \neq \beta$$

Лемма 1. Пусть клетка Π является дизтонктным объединением конечного числа клеток $\Pi_i,\ i=\overline{1,I}$. Тогда

$$m(\Pi) = \sum_{i=1}^{I} m(\Pi_i).$$

Доказательство. Пусть сначала клетка $\Pi = \omega_1 \times \omega_2 \times \ldots \times \omega_n$ разрезана на две клетки Π' и Π'' гиперплоскостью $x_i = c$. Пусть ω_i – числовой промежуток с концами a_i, b_i . Если $c \notin (a_i, b_i)$, то одна из клеток Π' , Π'' имеет нулевую меру, а другая – меру, равную $m(\Pi)$. В этом случае равенство $m(\Pi) = m(\Pi') + m(\Pi'')$ тривиально выполнено. Пусть $c \in (a_i, b_i)$. Тогда клетки Π' и Π'' получаются из определения клетки Π заменой числового промежутка ω_i на ω_i' и ω_i'' , где $|\omega_i'| + |\omega_i''| = |\omega_i|$. Поэтому $m(\Pi) = m(\Pi') + m(\Pi'')$.

Применяя эти рассуждения несколько раз, получим доказываемое равенство в случае, когда клетки Π_i получены путем разрезания клетки Π гиперплоскостями вида $x_{j_k}=c_k,\,k=\overline{1,k_0}.$

Рассмотрим общий случай. Разрежем клетки Π и Π_i гиперплоскостями вида $x_{j_k}=c_k$, где c_k – концы числовых промежутков ω_{j_k} , определяющих клетки Π_i . Получим, что каждая клетка Π_i является дизъюнктным объединением клеток Π_{ij} , полученных в результате такого разрезания. Как было показано выше, $m(\Pi_i)=\sum_j m(\Pi_{ij})$ и $m(\Pi)=\sum_{ij} m(\Pi_{ij})$. Поэтому

$$\sum_{i=1}^{I} m(\Pi_i) = \sum_{i=1}^{I} \sum_{j} m(\Pi_{ij}) = m(\Pi).$$

Определение. Множество $A \subset \mathbb{R}^n$ называется *клеточным мно*жееством, если оно представимо в виде дизъюнктного объединения конечного набора клеток $\Pi_i \subset \mathbb{R}^n$, $i=1,\ldots,I$:

$$A = \bigsqcup_{i=1}^{I} \Pi_i.$$

Мерой клеточного множества A называется сумма мер составляющих его клеток: $m(A) = \sum_{i=1}^{I} m(\Pi_i)$.

Корректность определения меры клеточного множества вытекает из следующей леммы.

Лемма 2. Мера клеточного множества не зависит от способа разбиения этого множества на клетки.

Доказательство. Пусть клеточное множество A представлено как дизъюнктное объединение клеток $\Pi_i, i \in \overline{1, I}$ и как дизъюнктное объединение клеток $\widetilde{\Pi}_j, j \in \overline{1, J}$:

$$\Pi = \bigsqcup_{i=1}^{I} \Pi_i = \bigsqcup_{j=1}^{J} \widetilde{\Pi}_j.$$

Требуется доказать равенство $\sum_{i=1}^{I} m(\Pi_i) = \sum_{j=1}^{J} m(\widetilde{\Pi}_j).$

Рассмотрим клетки $\Pi_{ij}=\Pi_i\cap\widetilde\Pi_j$. В силу леммы 1 для любых i,j

$$m(\Pi_i) = \sum_{j=1}^{J} m(\Pi_{ij}), \qquad m(\widetilde{\Pi}_j) = \sum_{i=1}^{I} m(\Pi_{ij}).$$

Поэтому

$$\sum_{i=1}^{I} m(\Pi_i) = \sum_{i=1}^{I} \sum_{j=1}^{J} m(\Pi_{ij}) = \sum_{j=1}^{J} m(\widetilde{\Pi}_j).$$

Свойство 1. Семейство всех клеточных подмножеств \mathbb{R}^n является кольцом, т.е. если A, B – клеточные множества, то множества $A \bigcup B$, $A \cap B$, $A \setminus B$ являются клеточными.

Доказательство. Непосредственно из определения клеточного множества следует, что дизъюнктное объединение конечного набора клеточных множеств является клеточным множеством.

Пусть A, B – клеточные множества. Покажем, что $A \setminus B$ – клеточное множество. Рассмотрим сначала случай, когда A и B – клетки. Разрежем клетку A гиперплоскостями вида $x_i = c$, где c – концы числовых промежутков ω_i , определяющих клетку B. Тогда $A \cap B$ будет одной из клеток, полученных в результате такого разрезания. Объединение остальных клеток, полученных разрезанием клетки A, будет совпадать с $A \setminus B$. Поэтому $A \setminus B$ – клеточное множество.

Пусть теперь B – клетка, A – клеточное множество, являющееся дизъюнктным объединением клеток $\Pi_i, i \in \overline{1,I}$. Тогда $A \setminus B = \left(\bigsqcup_{i=1}^I \Pi_i\right) \setminus B = \bigsqcup_{i=1}^I (\Pi_i \setminus B)$ является клеточным как дизъюнктное объединение конечного набора клеточных множеств $\Pi_i \setminus B$.

Пусть теперь A, B – клеточные множества, причем $B = \coprod_{i=1}^{I} \Pi_i$ – дизъюнктное объединение клеток Π_i . Применяя I раз доказанное выше утверждение о том, что дополнение клетки до клеточного множества является клеточным, получаем, что $A \setminus B = A \setminus \Pi_1 \setminus \Pi_2 \ldots \setminus \Pi_I$ является клеточным множеством.

Множество $A \bigcup B$ является клеточным как дизъюнктным объединением клеточных множеств $A \setminus B$ и B. Поэтому семейство клеточных подмножеств \mathbb{R}^n является кольцом.

Свойство 2. (Аддитивность.) Если A, B – клеточные множества, то

$$m(A \bigcup B) = m(A) + m(B) - m(A \cap B). \tag{1}$$

Доказательство. Пусть сначала $A \cap B = \emptyset$. Пусть клеточные множества A и B представлены в виде дизъюнктного объединения клеток: $A = \bigsqcup_{i=1}^{I} A_i, \ B = \bigsqcup_{j=1}^{J} B_j$. Тогда $A \bigcup B = A \bigcup B$ является дизъюнктным объединением клеток $A_1, \ldots, A_I, B_1, \ldots, B_J$. Следовательно,

$$m(A \bigcup B) = \sum_{i=1}^{I} m(A_i) + \sum_{i=1}^{J} m(B_j) = m(A) + m(B).$$
 (2)

В общем случае множество A является дизъюнктным объединением множеств $A \setminus B$ и $A \cap B$, а множество $A \cup B$ – дизъюнктным объединением множеств $A \setminus B$ и B. Поэтому в силу равенства (2) имеем

$$m(A) = m(A \setminus B) + m(A \cap B), \quad m(A \setminus B) = m(A \setminus B) + m(B).$$

Отсюда следует доказываемое равенство.

Свойство 3. (Монотонность.) Если A, B – клеточные множества и $A \subset B$, то $m(A) \le m(B)$.

Доказательство. Из свойства 2 следует, что $m(B) = m(A) + m(B \setminus A) \geq m(A)$.

Определение. Верхней мерой (Лебега) множества $X \subset \mathbb{R}^n$ называется инфимум сумм мер клеток по всем счетным наборам клеток $\{\Pi_i\}_{i=1}^{\infty}$, покрывающим X:

$$\mu^*(X) = \inf_{\substack{\{\Pi_i\} \ - \text{ счет. Набор} \\ \text{клеток: } X \subset igcup_{i=1}^{\infty} \Pi_i}$$

$$\sum_{i=1}^{\infty} m(\Pi_i).$$

Замечание. Из этого определения следует монотонность верхних мер: если $A \subset B \subset \mathbb{R}^n$, то $\mu^*(A) \leq \mu^*(B)$.

Замечание. Если множество $X \subset \mathbb{R}^n$ клеточное, то

$$\mu^*(X) = m(X).$$

Теорема 1. (Счетная полуаддитивность верхней меры.) Пусть множество $X \subset \mathbb{R}^n$ покрыто конечным или счетным набором множеств X_k :

$$X \subset \bigcup_k X_k$$
.

Тогда для верхней меры справедливо неравенство

$$\mu^*(X) \le \sum_k \mu^*(X_k).$$

Доказательство. Если $\mu^*(X_k) = +\infty$ при некотором k, то доказываемое неравенство тривиально выполнено. Будем предполагать, что $\mu^*(X_k) < +\infty$ при всех k. Фиксируем произвольное число $\varepsilon > 0$. По определению верхней меры для каждого X_k найдется счетный набор клеток $\{\Pi_i^k\}_{i=1}^\infty$ такой, что

$$X_k \subset \bigcup_i \Pi_i^k, \qquad \sum_i m(\Pi_i^k) \leq \mu^*(X_k) + \frac{\varepsilon}{2^k}.$$

Следовательно, $X\subset\bigcup_k\bigcup_i\Pi_i^k$ и

$$\mu^*(X) \le \sum_k \sum_i m(\Pi_i^k) \le \sum_k \left(\mu^*(X_k) + \frac{\varepsilon}{2^k} \right) = \sum_k \mu^*(X_k) + \varepsilon.$$

В силу произвольности числа $\varepsilon>0$ получаем доказываемое неравенство.

§ 3. Мера Лебега

Определение. Симметрической разностью множеств A и B называется множество

$$A\Delta B = (A \setminus B) \bigcup (B \setminus A).$$

Замечание. Для любых множеств $X_1, X_2, Y_1, Y_2, Z \subset \mathbb{R}^n$ симметрическая разность обладает следующими свойствами:

$$\begin{pmatrix}
(X_1 \cup Y_1)\Delta(X_2 \cup Y_2) \\
(X_1 \cap Y_1)\Delta(X_2 \cap Y_2) \\
(X_1 \setminus Y_1)\Delta(X_2 \setminus Y_2)
\end{pmatrix} \subset (X_1\Delta X_2) \cup (Y_1\Delta Y_2), \tag{1}$$

$$X_1 \Delta X_2 \subset (X_1 \Delta Z) \cup (Z \Delta X_2).$$
 (2)

Лемма 1. Если $X_1, X_2 \subset \mathbb{R}^n$ и $\mu^*(X_1) < +\infty$, то

$$|\mu^*(X_2) - \mu^*(X_1)| \le \mu^*(X_1 \Delta X_2).$$

Доказательство. Так как $X_2 \subset X_1 \cup (X_1 \Delta X_2)$ и $X_1 \subset X_2 \cup (X_1 \Delta X_2)$, то в силу полуаддитивности верхней меры получаем $\mu^*(X_2) \leq \mu^*(X_1) + \mu^*(X_1 \Delta X_2)$ и $\mu^*(X_1) \leq \mu^*(X_2) + \mu^*(X_1 \Delta X_2)$, откуда следует доказываемое неравенство.

Определение. Будем говорить, что последовательность множеств $X_k \subset \mathbb{R}^n$ сходится по мере к множеству $X \subset \mathbb{R}^n$, и писать $X_k \stackrel{\mu}{\to} X$, если $\mu^*(X_k \Delta X) \to 0$ при $k \to \infty$.

Лемма 2. Пусть в \mathbb{R}^n заданы множества X,Y и последовательности множеств X_k,Y_k такие, что $X_k\stackrel{\mu}{\to} X$ и $Y_k\stackrel{\mu}{\to} Y$. Тогда

$$X_k \cup Y_k \xrightarrow{\mu} X \cup Y, \quad X_k \cap Y_k \xrightarrow{\mu} X \cap Y, \quad X_k \setminus Y_k \xrightarrow{\mu} X \setminus Y,$$

$$\mu^*(X_k) \to \mu^*(X).$$

Доказательство. В силу включения (1) имеем $(X_k \cup Y_k)\Delta(X \cup Y) \subset (X_k\Delta X) \cup (Y_k\Delta Y)$. Отсюда в силу полуаддитивности верхней меры получаем $\mu^*\Big((X_k \cup Y_k)\Delta(X \cup Y)\Big) \leq \mu^*(X_k\Delta X) + \mu^*(Y_k\Delta Y) \to 0$ при $k \to \infty$. Поэтому $X_k \cup Y_k \stackrel{\mu}{\to} X \cup Y$. Аналогично, $X_k \cap Y_k \stackrel{\mu}{\to} X \cap Y$, $X_k \setminus Y_k \stackrel{\mu}{\to} X \setminus Y$. Из леммы 1 следует, что $\mu^*(X_k) \to \mu^*(X)$.

Определение. Множество $X \subset \mathbb{R}^n$ называется конечно измеримым, если существует последовательность клеточных множеств $X_k \subset \mathbb{R}^n$ такая, что $X_k \stackrel{\mu}{\to} X$.

Множество $X \subset \mathbb{R}^n$ называется *измеримым* (по Лебегу), если оно является объединением счетного набора конечно измеримых множеств.

 $\mathit{Mepoй}\ \mathit{Лебегa}\ \mu$ измеримого множества $X\subset\mathbb{R}^n$ называется его верхняя мера:

$$\mu(X) = \mu^*(X).$$

Сдвигом множества $X\subset\mathbb{R}^n$ на вектор $d\in\mathbb{R}^n$ называется множество $X+d=\{x+d:\ x\in X\}.$

Замечание. Если множество $X \subset \mathbb{R}^n$ измеримо, то для любого $d \in \mathbb{R}^n$ сдвиг X+d является измеримым множеством и $\mu(X+d)=\mu(X)$. Это следует из того, что мера клетки не меняется при сдвиге, а значит, при сдвиге не меняется мера клеточного множества и верхняя мера Лебега произвольного множества.

Лемма 3. Пусть множества $X,Y \subset \mathbb{R}^n$ конечно измеримы. Тогда множества $X \cup Y, X \cap Y, X \setminus Y$ конечно измеримы и

$$\mu(X \cup Y) + \mu(X \cap Y) = \mu(X) + \mu(Y).$$

Доказательство. По определению конечной измеримости найдутся такие последовательности клеточных множеств $X_k, Y_k \subset \mathbb{R}^n$, что $X_k \stackrel{\mu}{\to} X$ и $Y_k \stackrel{\mu}{\to} Y$. Так как множества $X_k \cup Y_k, X_k \cap Y_k, X_k \setminus Y_k$ – клеточные, то в силу леммы 2 множества $X \cup Y, X \cap Y, X \setminus Y$ конечно измеримы. Поскольку в силу свойства аддитивности меры клеточных множеств $\mu(X_k \cup V_k) + \mu(X_k \cap Y_k) = \mu(X_k) + \mu(Y_k)$ для любого $k \in \mathbb{N}$, то, переходя в этом равенстве к пределу и используя лемму 2, получаем доказываемое равенство.

Из леммы 3 следует, что семейство всех конечно измеримых множеств в \mathbb{R}^n является кольцом.

Лемма 4. Если множество $X \subset \mathbb{R}^n$ измеримо, то его можно представить в виде дизънктного объединения счетного набора конечно измеримых множеств.

Доказательство. Так как X измеримо, то существует $\{X_k\}_{k=1}^\infty$ – такой счетный набор конечно измеримых множеств, что $X=\bigcup_{k=1}^\infty X_k$. Обозначим $X_1'=X_1,\ X_k'=X_k\setminus (X_1\cup X_2\cup\ldots\cup X_{k-1})$ при $k\geq 2$. Тогда

 $X = \coprod_{k=1}^{\infty} X_k'$ – дизъюнктное объединение и согласно лемме 3 множества X_k' конечно измеримы.

Теорема 1. (Счетная аддитивность меры Лебега.) Пусть множество $X \subset \mathbb{R}^n$ является дизъюнктным объединением счетного набора измеримых множеств: $X = \bigsqcup_{k=1}^{\infty} X_k$. Тогда X измеримо и

$$\mu(X) = \sum_{k=1}^{\infty} \mu(X_k). \tag{3}$$

Доказательство

Шаг 1. Сначала докажем теорему для случая, когда все множества X_k конечно измеримы. Тогда множество X измеримо по определению.

В силу счетной полуаддитивности верхней меры

$$\mu(X) = \mu^*(X) \le \sum_{k=1}^{\infty} \mu^*(X_k) = \sum_{k=1}^{\infty} \mu(X_k).$$
 (4)

С другой стороны, для любого числа $K\in\mathbb{N}$ справедливо включение $\bigsqcup_{k=1}^K X_k\subset X$ и в силу леммы 3

$$\sum_{k=1}^{K} \mu(X_k) = \mu\left(\bigsqcup_{k=1}^{K} X_k\right) \le \mu(X).$$

Переходя к пределу при $K \to \infty$, получаем неравенство

$$\sum_{k=1}^{\infty} \mu(X_k) \le \mu(X),$$

которое вместе с неравенством (4) дает равенство (3) в случае конечно измеримых множеств X_k .

Шаг 2. Рассмотрим общий случай. В силу леммы 4 каждое измеримое множество X_k можно представить в виде дизъюнктного объединения счетного набора конечно измеримых множеств: $X_k = \bigsqcup_{i=1}^{\infty} X_k^i$. Как доказано выше,

$$\mu(X_k) = \sum_{i=1}^{\infty} \mu(X_k^i) \quad \forall k \in \mathbb{N},$$

$$\mu(X) = \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \mu(X_k^i).$$

Отсюда следует равенство (3).

Теорема 2. (Непрерывность меры Лебега.) Пусть $\{X_k\}_{k=1}^{\infty}$ – счетный набор вложенных измеримых множеств в \mathbb{R}^n , т. е. $X_k \subset X_{k+1}$ для любого $k \in \mathbb{N}$. Пусть $X = \bigcup_{k \in \mathbb{N}} X_k$. Тогда

$$\mu(X) = \lim_{k \to \infty} \mu(X_k).$$

Доказательство. Определим измеримые множества $A_1=X_1,\,A_k=$ $=X_k\setminus X_{k-1}$ для любого натурального $k\geq 2.$ Тогда $X_k=\bigcup_{i=1}^k A_i,\,X=$ $=\bigcup_{i=1}^\infty A_i$ в силу счетной аддитивности меры имеем

$$\mu(X) = \sum_{i=1}^{\infty} \mu(A_i) = \lim_{k \to \infty} \sum_{i=1}^{k} \mu(A_i) = \lim_{k \to \infty} \mu(X_k).$$

Лемма 5. Множество $X \subset \mathbb{R}^n$ конечно измеримо тогда и только тогда, когда X измеримо и $\mu(X) < +\infty$.

Доказательство. 1) Пусть множество X конечно измеримо. Тогда найдется последовательность клеточных множеств $X_k \subset \mathbb{R}^n$ такая, что $X_k \stackrel{\mu}{\to} X$. Согласно лемме 1 имеем $|\mu^*(X) - \mu^*(X_k)| \le \mu^*(X_k \Delta X) < +\infty$ при достаточно большом k. Отсюда и из конечности меры клеточного множества следует, что $\mu(X) = \mu^*(X) < +\infty$.

2) Пусть множество X измеримо и $\mu(X) < +\infty$. Согласно лемме 4 множество X представимо в виде дизъюнктного объединения счетного набора конечно измеримых множеств: $X = \bigsqcup_{k=1}^{\infty} X_k$. В силу счетной аддитивности меры Лебега

$$\sum_{k=1}^{\infty} \mu(X_k) = \mu(X) < +\infty.$$

Поэтому

$$\sum_{i=k+1}^{\infty} \mu(X_i) \to 0 \quad \text{при} \quad k \to \infty.$$

Для любого $k \in \mathbb{N}$ определим $\widehat{X}_k = \bigcup_{i=1}^k X_i$. В силу леммы 3 множества \widehat{X}_k конечно измеримы. Так как $\widehat{X}_k \Delta X = X \setminus \widehat{X}_k \subset \bigcup_{i=k+1}^\infty X_i$, то

$$\mu^*\left(\widehat{X}_k\Delta X\right) \leq \sum_{i=k+1}^\infty \mu(X_i) \to 0$$
 при $k \to \infty$.

Поскольку множество \widehat{X}_k конечно измеримо, то найдется клеточное множество A_k такое, что $\mu^*(A_k\Delta\widehat{X}_k)<\frac{1}{k}$. Используя включение (2), получаем

$$\mu^*(A_k \Delta X) \le \mu^*(A_k \Delta \widehat{X}_k) + \mu^*(\widehat{X}_k \Delta X) \to 0, \quad k \to \infty.$$

Поэтому $A_k \stackrel{\mu}{\to} X$, а значит, множество X конечно измеримо. \square

Лемма 6. Пусть $\{X_k\}_{k=1}^{\infty}$ – счетный набор конечно измеримых множеств в \mathbb{R}^n . Тогда пересечение $X = \bigcap_{k=1}^{\infty} X_k$ является конечно измеримым множеством.

Доказательство. Согласно лемме 3 множества $X_1 \setminus X_k$ конечно измеримы. Поэтому множество $X_1 \setminus X = \bigcup_{k=2}^{\infty} (X_1 \setminus X_k)$ измеримо как счетное объединение конечно измеримых. Так как $\mu(X_1 \setminus X) \leq \mu(X_1) < +\infty$, то в силу леммы 5 множество $X_1 \setminus X$ конечно измеримо. Еще раз применяя лемму 3, получаем, что множество $X = X_1 \setminus (X_1 \setminus X)$ конечно измеримо.

Лемма 7. Семейство всех измеримых множеств в \mathbb{R}^n является кольцом.

Доказательство. Пусть множества $X,Y \subset \mathbb{R}^n$ измеримы. Тогда множества X,Y представимы в виде объединений счетных наборов конечно измеримых множеств: $X = \bigcup_{k=1}^{\infty} X_k, Y = \bigcup_{i=1}^{\infty} Y_i$. При этом множество $X \cup Y$ представимо в виде объединения счетного набора конечно измеримых множеств и, следовательно, измеримо.

Для любого $k\in\mathbb{N}$ множество $X_k\setminus Y=\bigcap_{i=1}^\infty (X_k\setminus Y_i)$ конечно измеримо по лемме 6. Поэтому множество $X\setminus Y=\bigcup_{k=1}^\infty (X_k\setminus Y)$ измеримо как счетное объединение конечно измеримых множеств.

Задача 1. Доказать, что множество $X \subset \mathbb{R}^n$ измеримо тогда и только тогда, когда для любой клетки $\Pi \subset \mathbb{R}^n$ множество $X \cap \Pi$ конечно измеримо.

Теорема 3. Множество измеримых множеств в \mathbb{R}^n является σ -кольцом.

Доказательство. Пусть $\{X_k\}_{k=1}^{\infty}$ — счетный набор измеримых множеств в \mathbb{R}^n . По определению каждое множество X_k можно представить в виде счетного объединения конечно измеримых множеств. Поэтому множество $X=\bigcup_{k=1}^{\infty}X_k$ можно представить в виде счетного объединения конечно измеримых множеств, а значит, X измеримо. Отсюда и из леммы 7 получаем доказываемое утверждение.

Лемма 8. Если множество $X \subset \mathbb{R}^n$ открыто или замкнуто, то оно измеримо.

Доказательство. Пусть множество X открыто. Тогда для любого $x \in X$ существует число $\delta(x) > 0$ такое, что $U_{\delta(x)}(x) \subset X$. Для каждого $x \in X$ выберем замкнутую клетку $\Pi(x) = \omega_1(x) \times \ldots \times \omega_n(x)$ такую, что $x \in \underline{\Pi}(x) \subset U_{\delta(x)}(x)$ и $\omega_k(x) = [a_k(x), b_k(x)], \ a_k(x), b_k(x) \in \mathbb{Q}$ для любого $k \in \overline{1, n}$. Тогда

$$X = \bigcup_{x \in X} \Pi(x).$$

Поскольку $a_k(x), b_k(x) \in \mathbb{Q}$, то набор различных клеток $\Pi(x)$ не более чем счетный. Таким образом, открытое множество X является объединением счетного набора измеримых множеств. В силу теоремы 3 множество X измеримо.

Поскольку замкнутое множество является дополнением открытого множества, то в силу теоремы 3 замкнутое множество также измеримо.

Задача 2. Приведите пример замкнутого подмножества отрезка [0,1], состоящего только из иррациональных чисел и имеющего меру Лебега не менее 0.99.

Задача 3. Докажите измеримость множества X, состоящего из всех чисел отрезка [0,1], десятичная запись которых не содержит цифру 2. Найдите лебегову меру X.

Задача 4. Докажите, что у любого множества $X \subset \mathbb{R}^n$ его граница ∂X является измеримым по Лебегу множеством. Приведите пример замкнутого и ограниченного множества $X \subset \mathbb{R}$, граница которого имеет положительную меру Лебега.

Задача 5. Пусть множество $A \subset \mathbb{R}$ имеет Лебегову меру нуль, функция $f: \mathbb{R} \to \mathbb{R}$ непрерывно дифференцируема. Доказать, что f(A) тоже имеет Лебегову меру нуль.

Задача 6. Докажите, что утверждение предыдущей задачи будет неверно, если заменить непрерывную дифференцируемость f на непрерывность.

Задача 7. Пусть $\{X_k\}_{k=1}^{\infty}$ – счетный набор измеримых вложенных множеств, $X_{k+1} \subset X_k \subset \mathbb{R}^n \ \forall k \in \mathbb{N}, \ X = \bigcap_{k=1}^{\infty} X_k$. Верно ли, что $\mu(X) = \lim_{k \to \infty} \mu(X_k)$?

Задача 8. Докажите, что если множество $X \subset \mathbb{R}$ конечно измеримо, то мера $\mu(X\setminus (X+t))$ стремится к нулю при $t\to 0$. Здесь X+t- это сдвиг множества X на t.

§ 4. Измеримые функции

В этом и следующих параграфах данной главы X – измеримое по Лебегу множество в \mathbb{R}^n .

Определение. Функция $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ называется измеримой (по Лебегу), если для любого числа $C \in \mathbb{R}$ лебегово множество

$$L_{<}(f,C) = \{x \in X : f(x) < C\}$$

измеримо по Лебегу.

Лемма 1. Пусть функция $f:X \to \overline{\mathbb{R}}$ измерима. Тогда для любого $C \in \mathbb{R}$ лебеговы множества

$$L_{\leq}(f,C) = \{x \in X : f(x) \leq C\},\$$

 $L_{\geq}(f,C) = \{x \in X : f(x) \geq C\},\$

 $L_{>}(f,C) = \{x \in X : f(x) > C\}$

измеримы по Лебегу.

Доказательство. Фиксируем произвольное число $C \in \mathbb{R}$. Так как множество измеримых множеств является σ -кольцом, то множество

$$L_{\leq}(f,C) = \bigcap_{k \in \mathbb{N}} L_{<}\left(f, C + \frac{1}{k}\right)$$

измеримо по Лебегу. Отсюда и из измеримости X следует измеримость множеств

$$L_{\geq}(f,C) = X \setminus L_{<}(f,C), \qquad L_{>}(f,C) = X \setminus L_{\leq}(f,C).$$

Замечание. Если функция $f: \mathbb{R}^n \to \mathbb{R}$ непрерывна, то она измерима, т. к. для любого $C \in \mathbb{R}$ лебегово множество $L_{<}(f,C)$ открыто, а значит, измеримо по Лебегу.

Лемма 2. Пусть функции $f, g: X \to \mathbb{R}$ измеримы. Тогда функция f(x) + g(x) измерима.

Доказательство. Покажем, что для любого числа $C \in \mathbb{R}$ справедливо равенство

$$L_{<}(f+g,C) = \bigcup_{t \in \mathbb{Q}} \Big(L_{<}(f,t) \bigcap L_{<}(g,C-t) \Big). \tag{1}$$

Действительно, если $x \in L_{<}(f+g,C)$, то f(x)+g(x) < C. Поэтому существует $t \in \mathbb{Q}$ такое, что f(x) < t < C-g(x). Следовательно, $x \in L_{<}(f,t) \cap L_{<}(g,C-t)$. Обратно, если при некотором t справедливо включение $x \in L_{<}(f,t) \cap L_{<}(g,C-t)$, то f(x) < t < C-g(x), а значит, $x \in L_{<}(f+g,C)$. Таким образом, равенство (1) доказано. Из равенства (1) для любого $C \in \mathbb{R}$ получаем измеримость множества $L_{<}(f+g,C)$ как счетного объединения измеримых множеств. Поэтому функция f+g измерима.

Следствие. Если функции $f,g:X\to\mathbb{R}$ измеримы, то любая линейная комбинация этих функций является измеримой функцией. Это следует из того, что операция сложения сохраняет измеримость функций согласно лемме 2, а операция умножения на число сохраняет измеримость согласно определению измеримой функции.

Лемма 3. Пусть функции $f_k: X \to \overline{\mathbb{R}}$ измеримы при всех $k \in \mathbb{N}$, и для любого $x \in X$ существует $\lim_{k \to \infty} f_k(x) = f(x) \in \overline{\mathbb{R}}$. Тогда функция $f: X \to \overline{\mathbb{R}}$ измерима.

Доказательство. По определению предела для любых $x \in X, C \in \mathbb{R}$ неравенство f(x) < C эквивалентно существованию рационального числа C' < C и номера $N \in \mathbb{N}$ таких, что $f_k(x) < C'$ для любого $k \geq N$. Следовательно, включение $x \in L_{<}(f,C)$ эквивалентно существованию рационального числа C' < C и номера $N \in \mathbb{N}$ таких, что $x \in \bigcap_{k > N} L_{<}(f_k,C')$.

Поэтому

$$L_{<}(f,C) = \bigcup_{C' < C, C' \in \mathbb{Q}} \bigcup_{N \in \mathbb{N}} \bigcap_{k > N} L_{<}(f_k,C').$$

Так как множество измеримых множеств является σ -кольцом, то из измеримости функций f_k следует измеримость функции f.

Задача 1. Пусть функции $f_k: X \to \overline{\mathbb{R}}$ измеримы при всех $k \in \mathbb{N}$. Докажите измеримость функции $f(x) = \sup_{k \in \mathbb{N}} f_k(x)$.

Задача 2. Пусть функция $f: \mathbb{R} \to \mathbb{R}$ дифференцируема. Докажите, что ее производная f' является измеримой функцией.

§ 5. Интеграл Лебега для счетно-ступенчатых функций

Определение. Функция $f: X \to Y$ называется счетно-ступенчатой, если множество ее значений f(X) счетно или конечно. Если это множество конечно, то функция f называется конечно-ступенчатой.

Определение. Счетный набор множеств $\{X_i\}_{i=1}^{\infty}$ называется счетным разбиением множества X, если $X = \bigsqcup_{i=1}^{\infty} X_i$. Аналогично определяется конечное разбиение $\{X_i\}_{i=1}^{I}$ множества X.

Счетное или конечное разбиение $\{X_i\}$ множества X называется измеримым разбиением, если все множества X_i измеримы по Лебегу.

Замечание. Функция $f: X \to \mathbb{R}$ является счетно-ступенчатой тогда и только тогда, когда существуют счетное разбиение $\{X_i\}_{i=1}^{\infty}$ множества X и соответствующий набор чисел $\{f_i\}_{i=1}^{\infty}$ такие, что

$$f(x) = f_i \quad \forall x \in X_i \quad \forall i \in \mathbb{N}.$$
 (1)

Замечание. Если все множества X_i измеримы, то функция (1) измерима. Обратное верно, если все числа f_i попарно различны.

Определение. (Интеграл Лебега для счетно-ступенчатой функции.) Пусть измеримая счетно-ступенчатая функция $f: X \to \mathbb{R}$ имеет вид (1), где $\{X_i\}_{i=1}^{\infty}$ — измеримое разбиение множества X. Интегралом Лебега функции f называется

$$\int_{Y} f(x) dx := \sum_{i=1}^{\infty} f_i \mu(X_i). \tag{2}$$

Если $f_i = 0$, $\mu(X_i) = +\infty$, то полагаем $f_i \mu(X_i) = 0$.

Если в сумме (2) содержатся одновременно слагаемые $+\infty$ и $-\infty$ или ряд (2) не имеет ни конечной ни бесконечной суммы, то интеграл Лебега $\int\limits_X f(x)\,dx$ не существует.

Измеримая счетно-ступенчатая функция f называется интегрируе-мой по Лебегу, если ряд $\sum_{i=1}^{\infty} f_i \mu(X_i)$ сходится абсолютно.

Корректность определения интеграла Лебега для счетно-ступенчатой функции вытекает из следующей леммы.

Лемма 1. Интеграл Лебега интегрируемой счетно-ступенчатой функции $f: X \to \mathbb{R}$ не зависит от измеримого разбиения множества X.

Доказательство. Пусть даны два счетных измеримых разбиения $\{X_i\}_{i=1}^{\infty}$ и $\{\tilde{X}_j\}_{j=1}^{\infty}$ множества X такие, что

$$f(x) = f_i \quad \forall x \in X_i \quad \forall i \in \mathbb{N},$$

 $f(x) = \tilde{f}_j \quad \forall x \in \tilde{X}_j \quad \forall j \in \mathbb{N}.$

Тогда

$$\sum_{i=1}^{\infty} f_i \mu(X_i) = \sum_{i=1}^{\infty} f_i \sum_{j=1}^{\infty} \mu(X_i \cap \tilde{X}_j) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} f_i \mu(X_i \cap \tilde{X}_j) =$$

$$= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \tilde{f}_j \mu(X_i \cap \tilde{X}_j) = \sum_{j=1}^{\infty} \tilde{f}_j \mu(\tilde{X}_j).$$

Здесь использованы счетная аддитивность меры Лебега и независимость суммы абсолютно сходящегося ряда от порядка слагаемых. Кроме того, использован тот факт, что если $\mu(X_i \cap \tilde{X}_j) \neq 0$, то существует $x \in X_i \cap \tilde{X}_j$, а значит, $f_i = f(x) = \tilde{f}_j$.

Замечание. Если $f:X\to [0,+\infty)$ — интегрируемая счетноступенчатая функция, то $\int\limits_X f(x)\,dx$ равен мере в \mathbb{R}^{n+1} множества

$$G = \{(x,y): \ x \in X, \ 0 \le y \le f(x)\}.$$

В этом состоит геометрический смысл интеграла от счетно-ступенчатой функции.

Лемма 2. (Линейность интеграла Лебега для счетно-ступенчатых функций.) Пусть счетно-ступенчатые функции $f: X \to \mathbb{R}$ и $g: X \to \mathbb{R}$ интегрируемы по Лебегу. Тогда для любых чисел $\alpha, \beta \in \mathbb{R}$ функция $\alpha f(x) + \beta g(x)$ интегрируема по Лебегу и

$$\int\limits_X (\alpha f(x) + \beta g(x)) \, dx = \alpha \int\limits_X f(x) \, dx + \beta \int\limits_X g(x) \, dx.$$

Доказательство. Так как функции f и g измеримы и счетноступенчатые, то существуют измеримые разбиения $\{X_i\}_{i=1}^\infty$ и $\{\tilde{X}_j\}_{j=1}^\infty$ множества X такие, что

$$f(x) = f_i \quad \forall x \in X_i \quad \forall i \in \mathbb{N},$$

 $g(x) = g_j \quad \forall x \in \tilde{X}_j \quad \forall j \in \mathbb{N}.$

Тогда $\left\{X_i\cap \tilde{X}_j\right\}_{i\in\mathbb{N},\ j\in\mathbb{N}}$ — счетное измеримое разбиение множества X и

$$\alpha f(x) + \beta g(x) = \alpha f_i + \beta g_j \qquad \forall x \in X_i \cap \tilde{X}_j \quad \forall i, j \in \mathbb{N}.$$

Следовательно,

$$\int_{X} (\alpha f(x) + \beta g(x)) dx = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\alpha f_i + \beta g_j) \mu(X_i \cap \tilde{X}_j) =$$

$$= \alpha \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_i \mu(X_i \cap \tilde{X}_j) + \beta \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} g_j \mu(X_i \cap \tilde{X}_j) =$$

$$= \alpha \sum_{i=1}^{\infty} f_i \mu(X_i) + \beta \sum_{j=1}^{\infty} g_j \mu(\tilde{X}_j) = \alpha \int_{X} f(x) dx + \beta \int_{X} g(x) dx.$$

При этом ряд $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\alpha f_i + \beta g_j) \mu(X_i \cap \tilde{X}_j)$ сходится абсолютно, поскольку ряды $\sum_{i=1}^{\infty} f_i \mu(X_i)$ и $\sum_{j=1}^{\infty} g_j \mu(\tilde{X}_j)$ сходятся абсолютно. Следовательно, функция $\alpha f(x) + \beta g(x)$ интегрируема.

Лемма 3. (Счетная аддитивность интеграла для счетно-ступенчатых функций.) Пусть $\{A_k\}_{k=1}^{\infty}$ – измеримое разбиение множества X. Пусть задана счетно-ступенчатая функция $f: X \to \mathbb{R}$. Если функция f интегрируема на X, то f интегрируема на всех A_k и

$$\int_{X} f(x) dx = \sum_{k=1}^{\infty} \int_{A_k} f(x) dx.$$

Доказательство. Так как функция f измерима и счетноступенчатая, то существует измеримое разбиение $\{X_i\}_{i=1}^{\infty}$ множества X и соответствующий набор чисел $\{f_i\}_{i=1}^{\infty}$ такие, что $f(x) = f_i$ для любых $x \in X_i, i \in \mathbb{N}$. Рассмотрим измеримые множества $X_{ik} = X_i \cap A_k$. Тогда по определению интеграла от счетно-ступенчатой функции $\int_{A_i}^{A_i} f(x) \, dx = \int_{A_i}^{A_i} f(x) \, dx$

$$= \sum_{i=1}^{\infty} f_i \mu(X_{ik}),$$

$$\int_{X} f(x) \, dx = \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} f_{i} \mu(X_{ik}) = \sum_{k=1}^{\infty} \int_{A_{k}} f(x) \, dx.$$

§ 6. Определение и элементарные свойства интеграла Лебега

Определение. Будем говорить, что условие P(x) выполняется для почти всех $x \in X$ или почти всюду на X, если множество точек $x \in X$, для которых условие P(x) не выполнено, имеет нулевую меру Лебега.

Определение . *Нижним интегралом Лебега* измеримой функции $f:X \to \overline{\mathbb{R}}$ называется

$$I_*(f, X) = \sup_g \int_X g(x) \, dx,$$

где супремум берется по всем интегрируемым счетно-ступенчатым функциям $g: X \to \mathbb{R}$ таким, что $g(x) \le f(x)$ для почти всех $x \in X$. Если таких функций не существует, то полагаем $I_*(f,X) = -\infty$.

Bерхним uнтегралом Лебега измеримой функции $f:X \to \overline{\mathbb{R}}$ называется

$$I^*(f, X) = \inf_{h} \int_{X} h(x) dx,$$

где инфимум берется по всем интегрируемым счетно-ступенчатым функциям $h: X \to \mathbb{R}$ таким, что $f(x) \le h(x)$ для почти всех $x \in X$. Если таких функций не существует, то полагаем $I^*(f,X) = +\infty$.

Если $I_*(f,X) = I^*(f,X) \in \overline{\mathbb{R}}$, то значение $I_*(f,X) = I^*(f,X)$ называется интегралом Лебега функции f и обозначается $\int\limits_X f(x)\,dx$. Функция $f:X \to \overline{\mathbb{R}}$ называется интегрируемой по Лебегу (на множестве X), если она измерима и существует конечный интеграл Лебега $\int\limits_X f(x)\,dx$.

Таким образом, $\int\limits_X f(x)\,dx$ определяется через интегралы счетноступенчатых интегрируемых функций g и h таких, что для почти всех $x\in X$

$$g(x) \le f(x) \le h(x). \tag{1}$$

Здесь возникает неформальный вопрос, чем мотивирован то требование, что неравенство (1) должно выполняться не для всех, а для почти всех $x \in X$.

Это требование мотивированно тем, что интеграл не должен «чувствовать» изменение подынтегральной функции на множестве нулевой меры. Сначала покажем неформально, как это свойство вытекает из геометрического смысла интеграла и тем самым мотивируем указанное выше требование.

Пусть на множестве $A\subset\mathbb{R}^n$ нулевой меры задана произвольная функция $f:A\to\overline{\mathbb{R}}$. Разобъем множество A на подмножества $A_+:=\{x\in A: f(x)\geq 0\}$ и $A_-:=\{x\in A: f(x)< 0\}$. Рассмотрим «криволинейную трапецию» $G:=\{(x,y): x\in A_+,\ 0\leq y\leq f(x)\}$. Так как $G\subset G_\infty:=A_+\times[0,+\infty)=\bigcup_{k\in\mathbb{N}}A_+\times[k-1,k)$ и мера в \mathbb{R}^{n+1} множеств $A_+\times[k-1,k)$ равна $\mu(A)=0$. То мера G в \mathbb{R}^{n+1} равна G0. Отсюда и из геометрического

равна $\mu(A)=0$, то мера G в \mathbb{R}^{n+1} равна 0. Отсюда и из геометрического смысла интеграла вытекает, что $\int\limits_{A_+} f(x)\,dx=0$. Аналогично, $\int\limits_{A_-} f(x)\,dx=$

= 0. Поэтому из геометрического смысла интеграла неформально вытекает, что для любого множества A нулевой меры и для любой функции $f:A \to \overline{\mathbb{R}}$ справедливо равенство $\int\limits_A f(x)\,dx=0$. Следовательно, говоря

неформально, интеграл не должен чувствовать изменение подынтегральной функции на множестве нулевой меры. После этой мотивировки определения сформулируем и строго докажем указанное свойство, исходя из данного определения.

Лемма 1. Пусть значения функций $f,g:X\to \overline{\mathbb{R}}$ совпадают для почти всех $x\in X$. Тогда

$$\int\limits_X f(x) \, dx = \int\limits_X g(x) \, dx,$$

 $m.\,e.\,$ эти интегралы существуют или не существуют одновременно, а если существуют, то совпадают.

Доказательство. Достаточно заметить, что непосредственно из определений следуют равенства $I_*(f,X) = I_*(g,X), I^*(f,X) = I^*(g,X).$

Замечание. Для счетно-ступенчатой функции $f: X \to \mathbb{R}$ общее определение интеграла Лебега и интегрируемости по Лебегу эквивалентно соответствующим определениям, данным в предыдущем параграфе.

Замечание. Для любой измеримой функции $f: X \to \overline{\mathbb{R}}$ справедливо неравенство $I_*(f,X) \le I^*(f,X)$. Это неравенство следует из того, что если функции $g,h: X \to \mathbb{R}$ интегрируемы, счетно-ступенчатые и $g(x) \le f(x) \le h(x)$ при почти всех $x \in X$, то $\int\limits_X g(x) \, dx \le \int\limits_X h(x) \, dx$.

Лемма 2. Если функция $f:X\to \overline{\mathbb{R}}$ интегрируема, то для почти всех $x\in X$ значение f(x) конечно.

Доказательство. Так как функция f интегрируема, то существуют интегрируемые счетно-ступенчатые функции $g,h:X\to\mathbb{R}$ такие, что $g(x)\leq f(x)\leq h(x)$ для почти всех $x\in X$. Следовательно, значение f(x) конечно для почти всех $x\in X$.

Теорема 1. (Об интегрировании неравенств.) Если для измеримых функций $f_1, f_2: X \to \overline{\mathbb{R}}$ существуют конечные или бесконечные интегралы $\int\limits_X f_i(x) \, dx, \ i = 1, 2 \ u \ f_1(x) \le f_2(x)$ для почти всех $x \in X$, то $\int\limits_X f_1(x) \, dx \le \int\limits_X f_2(x) \, dx$.

Доказательство. Если $g: X \to \mathbb{R}$ — интегрируемая по Лебегу счетно-ступенчатая функция и $g(x) \le f_1(x)$ для почти всех $x \in X$, то $g(x) \le f_2(x)$ для почти всех $x \in X$. Поэтому $I_*(f_1, X) \le I_*(f_2, X)$. Отсода и из существования интегралов $\int\limits_X f_i(x)\,dx$ следует доказываемое неравенство.

Лемма 3. Если функция $f:X\to \overline{\mathbb{R}}$ интегрируема по Лебегу, то функция -f интегрируема по Лебегу на X и

$$\int\limits_X (-f(x)) \, dx = -\int\limits_X f(x) \, dx.$$

Доказательство. Поскольку неравенство $g(x) \le f(x)$ эквивалентно неравенству $-f(x) \le -g(x)$, то

$$I^*(-f,X) = \inf_{\stackrel{-f(x) \leq -g(x)}{g - \text{ inft., cq.-cty ii.}}} \int_X (-g(x)) \, dx =$$

$$= - \sup_{\substack{g(x) \leq f(x) \text{ для II.B. } x \in X \\ g \text{ - ИНТ., CЧ.-СТУП.}}} \int_X g(x) \, dx = -I_*(f, X).$$

Аналогично, $I_*(-f,X) = -I^*(f,X)$. Поэтому $I_*(-f,X) = I^*(-f,X) = -\int\limits_X f(x)\,dx \in \mathbb{R}$, а значит, функция -f интегрируема на X и $\int\limits_X (-f(x))\,dx = -\int\limits_X f(x)\,dx.$

Теорема 2. (Линейность интеграла Лебега.) Пусть функции $f_1, f_2: X \to \mathbb{R}$ интегрируемы по Лебегу. Тогда для любых чисел $\alpha_1, \alpha_2 \in \mathbb{R}$ функция $\alpha_1 f_1(x) + \alpha_2 f_2(x)$ интегрируема по Лебегу на X и

$$\int_X \left(\alpha_1 f_1(x) + \alpha_2 f_2(x)\right) dx = \alpha_1 \int_X f_1(x) dx + \alpha_2 \int_X f_2(x) dx.$$

Заметим, что согласно лемме 2 § 6 значения $f_1(x)$ и $f_2(x)$ конечны при почти всех $x \in X$. Поэтому выражение $\alpha f_1(x) + \beta f_2(x)$ определено при почти всех $x \in X$. В точках $x \in X$, где это выражение не определено (например, представляет собой неопределенность $(+\infty) + (-\infty)$), его можно доопределить произвольно, и в силу леммы 1 § 6 интеграл не зависит от способа этого доопределения.

Доказательство. В силу леммы 3 достаточно рассмотреть случай, когда $\alpha_1 \geq 0$ и $\alpha_2 \geq 0$. Пусть $\alpha_1 \geq 0$ и $\alpha_2 \geq 0$. Фиксируем произвольное число $\varepsilon > 0$. Так как $I_*(f_i, X) \in \mathbb{R}$ при i = 1, 2, то найдутся интегрируемые по Лебегу счетно-ступенчатые функции $g_1, g_2 : X \to \mathbb{R}$ такие, что при i = 1, 2

$$g_i(x) \le f_i(x)$$
 для п.в. $x \in X$,
$$\int\limits_X g_i(x) \, dx \ge I_*(f_i, X) - \varepsilon. \tag{2}$$

Поскольку $\alpha_1 g_1(x) + \alpha_2 g_2(x) \le \alpha_1 f_1(x) + \alpha_2 f_2(x)$ для почти всех $x \in X$, а функция $\alpha_1 g_1(x) + \alpha_2 g_2(x)$ является счетно-ступенчатой, то

$$I_*(\alpha_1 f_1 + \alpha_2 f_2, X) \ge \int_X (\alpha_1 g_1(x) + \alpha_2 g_2(x)) dx =$$

$$= \alpha_1 \int_X g_1(x) \, dx + \alpha_2 \int_X g_2(x) \, dx \ge \alpha_1 I_*(f_1, X) + \alpha_2 I_*(f_2, X) - (\alpha_1 + \alpha_2) \varepsilon,$$

где равенство следует из линейности интеграла для счетно-ступенчатых фукнций, а последнее неравенство – из неравенства (2). В силу произвольности числа $\varepsilon > 0$ получаем неравенство $I_*(\alpha_1 f_1 + \alpha_2 f_2, X) \ge \alpha_1 I_*(f_1, X) + \alpha_2 I_*(f_2, X)$. Аналогично, $I^*(\alpha_1 f_1 + \alpha_2 f_2, X) \le \alpha_1 I^*(f_1, X) + \alpha_2 I^*(f_2, X)$. Отсюда и из интегрируемости по Лебегу функций f_1 и f_2 получаем доказываемое утверждение.

Задача 1. Пусть функция f интегрируема по Лебегу на множестве X положительной меры Лебега, и f(x)>0 для любого $x\in X$. Докажите что $\int\limits_{Y}f(x)\,dx>0$.

Задача 2. Пусть функция $f:X\to\mathbb{R}$ интегрируема. Докажите, что для любого числа $\varepsilon>0$ найдется конечно-ступенчатая интегрируемая функция $f_{\varepsilon}:X\to\mathbb{R}$, приближающая функцию f в среднем с точностью ε , т. е. такая, что $\int\limits_X |f_{\varepsilon}(x)-f(x)|\,dx\leq \varepsilon$.

Задача 3. Пусть функция $f: \mathbb{R} \to \mathbb{R}$ интегрируема. Докажите, что

$$\lim_{t \to 0} \int_{-\infty}^{+\infty} |f(x+t) - f(x)| \, dx = 0.$$

Задача 4. Докажите, что если $f: \mathbb{R} \to \mathbb{R}$ интегрируема по Лебегу, то

$$\int_{-\infty}^{+\infty} f(x)e^{i\omega x} dx \to 0$$

при $\omega \to \infty$.

§ 7. Связь интегрируемости функции с интегрируемостью ее модуля

Лемма 1. Пусть функция $f: X \to [0, +\infty]$ измерима. Тогда для любого числа $\varepsilon > 0$ существуют измеримая счетно-ступенчатая функция $g: X \to [0, +\infty]$ и интегрируемая счетно-ступенчатая функция $\varphi: X \to [0, +\infty)$ такие, что

$$g(x) \le f(x) \le g(x) + \varphi(x) \quad \forall x \in X,$$
 (1)

$$\int_{Y} \varphi(x) \, dx < \varepsilon. \tag{2}$$

Доказательство. Фиксируем произвольное число $\varepsilon>0$. Пусть сначала $\mu(X)<+\infty$. Выберем натуральное число N так, что $\frac{\mu(X)}{N}<\varepsilon$. Определим функции

$$\varphi(x) = \frac{1}{N}, \qquad g(x) = \left\{ \begin{array}{ll} \frac{k}{N}, & f(x) \in \left[\frac{k}{N}, \frac{k+1}{N}\right), \ k \in \mathbb{N} \cup \{0\}, \\ +\infty, & f(x) = +\infty. \end{array} \right.$$

Тогда g – измеримая, счетно-ступенчатая функция, φ – постоянная функция и выполнены неравенства (1), (2).

Пусть теперь $\mu(X) = +\infty$. В силу леммы 4 § 3 множество X можно представить в виде дизъюнктного объединения счетного набора конечно измеримых множеств A_k .

Из доказанного в первой части, следует, что для любого $k \in \mathbb{N}$ существуют измеримая счетно-ступенчатая функция $g_k : A_k \to [0, +\infty]$ и постоянная функция $\varphi_k(x) = \varphi_k \in [0, +\infty), x \in A_k$ такие, что

$$g_k(x) \le f(x) \le g_k(x) + \varphi_k(x) \quad \forall x \in A_k,$$

$$\int_{A_k} \varphi_k(x) \, dx = \varphi_k \mu(A_k) < \frac{\varepsilon}{2^k}.$$

Соберем из этих функций счетно-ступенчатые функции $g, \varphi : X \to \mathbb{R}$:

$$g(x) = g_k(x), \quad \varphi(x) = \varphi_k \quad \forall x \in A_k \ \forall k \in \mathbb{N}.$$

Тогда будет выполнено неравенство (1). По определению интеграла Лебега для счетно-ступенчатых функций имеем

$$\int\limits_{Y} \varphi(x) \, dx = \sum_{k=1}^{\infty} \varphi_k \mu(A_k) < \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon.$$

При этом все члены ряда $\sum_{k=1}^{\infty} \varphi_k \mu(A_k)$ неотрицательны, а значит, этот ряд сходится абсолютно и, следовательно, функция φ интегрируема на X. \square

Замечание. В условиях леммы 1 может не существовать интегрируемой по Лебегу функции g, удовлетворяющией неравенствам (1), (2). Например, так происходит для функции f(x) = x и множества $X = [0, +\infty)$.

Задача 1. Докажите, что если $f: \mathbb{R} \to \mathbb{R}$ измерима по Лебегу, то ее график имеет меру Лебега нуль на плоскости.

Теорема 1. (О существовании интеграла от неотрицательной измеримой функции.) Пусть неотрицательная функция $f: X \to [0, +\infty]$ измерима. Тогда существует конечный или бесконечный интеграл Лебега $\int\limits_X f(x)\,dx \in [0, +\infty].$

Доказательство. Если $I_*(f,X) = +\infty$, то в силу неравенства $I_*(f,X) \leq I^*(f,X)$ получаем равенство $I_*(f,X) = +\infty$. Следовательно, в этом случае $\int\limits_X f(x) \, dx = +\infty$.

Пусть теперь $I_*(f,X) < +\infty$. Фиксируем произвольное число $\varepsilon > 0$. В силу леммы 1 существуют измеримая счетно-ступенчатая функция $g: X \to [0,+\infty]$ и интегрируемая счетно-ступенчатая функция $\varphi: X \to [0,+\infty)$ такие, что

$$g(x) \le f(x) \le g(x) + \varphi(x) \quad \forall x \in X,$$
 (3)

$$\int_{Y} \varphi(x) \, dx < \varepsilon. \tag{4}$$

Поскольку функция g измеримая и счетно-ступенчатая, то существуют такое измеримое разбиение $\{X_k\}_{k=1}^\infty$ множества X и соответствующий набор $g_k \in [0,+\infty]$, что $g(x) = g_k$ при $x \in X_k$. Поскольку измеримое множество можно представить в виде счетного дизъюнктного объединения конечно-измеримых множеств, то будем считать, что множества X_k конечно-измеримы.

Покажем, что функция g интегрируема на X. Предположим противное. Тогда $\sum\limits_{k=1}^{\infty}g_k\mu(X_k)=+\infty.$

Рассмотрим случай, когда $g_k\mu(X_k)<+\infty$ для любого $k\in\mathbb{N}$. Тогда для любого числа C>0 найдется индекс $k_0\in\mathbb{N}$ такой, что $\sum\limits_{k=1}^{k_0}g_k\mu(X_k)>>C$. Определим функцию

$$\widehat{g}(x) = \begin{cases} g_k, & x \in X_k, \ k \in \overline{1, k_0}, \\ 0, & \text{иначе} \end{cases}$$

Тогда функция $\widehat{g}: X \to [0, +\infty)$ – интегрируемая, счетно-ступенчатая и

$$0 \le \widehat{g}(x) \le g(x) \le f(x) \qquad \forall x \in X, \qquad \int_{X} \widehat{g}(x) \, dx > C.$$
 (5)

В другом случае найдется индекс $k_1\in\mathbb{N}$ такой, что $g_{k_1}\mu(X_{k_1})=+\infty$. Поскольку $\mu(X_{k_1})<+\infty$, то $g_{k_1}=+\infty$. Выберем число \widehat{g}_{k_1} так, что $\widehat{g}_{k_1}\mu(X_{k_1})>C$ и определим

$$\widehat{g}(x) = \begin{cases} \widehat{g}_{k_1}, & x \in X_{k_1}, \\ 0, & \text{иначе} \end{cases}$$

Тогда снова $\widehat{g}: X \to [0, +\infty)$ – интегрируемая, счетно-ступенчатая функция, удовлетворяющая соотношениям (5).

Поэтому в любом случае $I_*(f,X) \geq \int\limits_X \widehat{g}(x)\,dx > C$, где C – произвольное положительное число. Это противоречит неравенству $I_*(f,X) < +\infty$. Полученное противоречие показывает, что функция g интегрируема на X.

Поскольку функция φ интегрируема на X, то в силу линейности интеграла Лебега функция $g+\varphi$ также интегрируема на X. По определению верхнего и нижнего интегралов Лебега

$$-\infty < \int\limits_X g(x) \, dx \le I_*(f, X) \le I^*(f, X) \le \int\limits_X \Big(g(x) + \varphi(x)\Big) dx < +\infty.$$

Поэтому значения $I^*(f,X)$, $I_*(f,X)$ конечны и, используя неравенство (4), получаем

$$0 \le I^*(f, X) - I_*(f, X) \le \int_Y \varphi(x) \, dx < \varepsilon.$$

В силу произвольности числа $\varepsilon > 0$ имеем $I^*(f,X) = I_*(f,X) \in \mathbb{R}$. Поэтому функция f интегрируема по Лебегу на X.

Определение. Положительной и отрицательной составляющими функции $f: X \to \overline{\mathbb{R}}$ называются соответственно функции

$$f_{+}(x) = \max\{f(x), 0\}, \qquad f_{-}(x) = \max\{-f(x), 0\}.$$

Заметим, что функции f_+ и f_- неотрицательны и $f(x) = f_+(x) - f_-(x)$ для любого $x \in X$.

Лемма 2. Функция $f: X \to \overline{\mathbb{R}}$ интегрируема по Лебегу тогда и только тогда, когда ее положительная и отрицательная составляющие интегрируемы по Лебегу на X.

Доказательство. Если функции f_+ и f_- интегрируемы по Лебегу на X, то в силу линейности интеграла из равенства $f(x) = f_+(x) - f_-(x)$ следует интегрируемость по Лебегу функции f на X.

Пусть теперь функция $f: X \to \mathbb{R}$ интегрируема по Лебегу. Так как для любого C > 0 лебегово множество $L_{<}(f,C)$ совпадает с множеством $L_{<}(f,C)$, которое измеримо по Лебегу, а при $C \le 0$ лебегово множество $L_{<}(f_{+},C)$ пусто, то функция f_{+} измерима на X.

Покажем, что функция f_+ интегрируема на X.

Так как функция f интегрируема, то существует интегрируемая счетно-ступенчатая функция $h: X \to \mathbb{R}$ такая, что $f(x) \le h(x)$ почти всюду на X.

В тех точках $x \in X$, в которых выполняется неравенство $f(x) \le h(x)$ будет выполняться неравенство $f_+(x) \le h_+(x)$. Поэтому

$$f_{+}(x) \le h_{+}(x)$$
 для п.в. $x \in X$. (6)

Покажем, что счетно-ступенчатая функция h_+ интегрируема на X. Поскольку функция $h:X\to\mathbb{R}$ измеримая и счетно-ступенчатая, то существует $\{X_k\}$ – измеримое разбиение множества X такое, что $h(x)=h_k$ для любого $x\in X_k$. При этом $h_+(x)=(h_k)_+$ при $x\in X_k$, где $(h_k)_+=\max\{0,h_k\}$. Так как функция h интегрируема на X, то ряд $\sum\limits_{k=1}^{\infty}h_k\mu(X_k)$ сходится абсолютно. Отсюда и из неравенства $|(h_k)_+|\leq |h_k|$ следует абсолютная сходимость ряда $\sum\limits_{k=1}^{\infty}(h_k)_+\mu(X_k)$, то есть интегрируемость функции h_+ на X.

Согласно теореме о существовании интеграла от неотрицательной измеримой функции существует $\int\limits_X f_+(x)\,dx\in[0,+\infty]$. По теореме об интегрировании неравенств из неравенства (6) следует, что $\int\limits_X f_+(x)\,dx\leq \int\limits_X h_+(x)\,dx<+\infty$.

Таким образом, $\int\limits_X f_+(x)\,dx\in\mathbb{R}$, т.е. функция f_+ интегрируема на X. Аналогично, функция f_- интегрируема на X.

Теорема 2. (Признак сравнения.) Пусть функция $f: X \to \overline{\mathbb{R}}$ измерима и существует интегрируемая по Лебегу функция $\varphi: X \to \mathbb{R}$ такая, что $|f(x)| \le \varphi(x)$ для почти всех $x \in X$. Тогда функция f интегрируема по Лебегу.

Доказательство. Как показано в доказательстве леммы 2, из измеримости функции f следует измеримость ее положительной составляющей f_+ . В силу теоремы 1 существует $\int\limits_X f_+(x)\,dx\in[0,+\infty]$. Так как $f_+(x)\leq \varphi(x)$ для почти всех $x\in X$, то по теореме об интегрировании неравенств

 $\int\limits_X f_+(x)\,dx \le \int\limits_X \varphi(x)\,dx < +\infty.$

Следовательно, функция f_+ интегрируема по Лебегу на X. Аналогично функция f_- интегрируема по Лебегу на X. В силу равенства $f(x) = f_+(x) - f_-(x)$ и линейности интеграла функция f интегрируема по Лебегу на X.

Теорема 3. Функция $f: X \to \overline{\mathbb{R}}$ интегрируема по Лебегу тогда и только тогда, когда функция f измерима и функция |f(x)| интегрируема по Лебегу на X.

Доказательство. Пусть функция f интегрируема по Лебегу на X. Тогда по определению интегрируемости функция f измерима. В силу леммы 2 ее положительная составляющая f_+ и отрицательная составляющая f_- интегрируемы по Лебегу на X. Отсюда в силу линейности интеграла получаем интегрируемость по Лебегу функции $|f(x)| = f_+(x) + f_-(x)$ на X.

Если функция $f:X\to\mathbb{R}$ измерима, а функция |f(x)| интегрируема по Лебегу на X, то согласно признаку сравнения функция f интегрируема по Лебегу на X.

Теорема 4. (Достаточное условие интегрируемости.) Если функция $f: X \to \mathbb{R}$ непрерывна на компакте $X \subset \mathbb{R}^n$, то f интегрируема на X.

Доказательство. Так как для любого числа $C \in \mathbb{R}$ лебегово множество $L_{\leq}(f,C)$ замкнуто (а значит, измеримо), то функция f измерима на X. В силу теоремы Вейерштрасса функция f ограничена на X некоторой

константой $C_f \in \mathbb{R}$. Так как константа $\varphi(x) = C$ интегрируема на компакте X, то по признаку сравнения функция f интегрируема на X. \square

Задача 2. Пусть функция $f: X \to \mathbb{R}$ измерима.

- а) Могут ли нижний и верхний интегралы Лебега $I_*(f,X)$, $I^*(f,X)$ быть конечными и различными?
 - б) Могут ли $I_*(f, X)$, $I^*(f, X)$ быть бесконечными и различными?

Теорема 5. (Интегральная теорема о среднем.) Пусть X – линейно-связный компакт в \mathbb{R}^n , функция $f: X \to \mathbb{R}$ непрерывна, а функция $g: X \to \mathbb{R}$ интегрируема и сохраняет знак, т. е. $g(x) \ge 0$ при всех $x \in X$ или $g(x) \le 0$ при всех $x \in X$ или $g(x) \le 0$ при всех $x \in X$. Тогда существует точка $\xi \in X$ такая, что

$$\int_{Y} f(x) g(x) dx = f(\xi) \int_{Y} g(x) dx.$$

Доказательство. Без потери общности будем предполагать, что $g(x) \geq 0$ при всех $x \in X$. В силу теоремы Вейерштрасса существуют $m = \min_{x \in X} f(x)$ и $M = \max_{x \in X} f(x)$. Тогда

$$mg(x) \le f(x)g(x) \le Mg(x) \quad \forall x \in X.$$

В силу признака сравнения функция f(x)g(x) интегрируема на X. Согласно теореме об интегрировании неравенств и свойству линейности интеграла имеем

$$m \int_{X} g(x) dx \le \int_{X} f(x) g(x) dx \le M \int_{X} g(x) dx.$$

Если $\int\limits_X g(x)\,dx=0$, то $\int\limits_X f(x)\,g(x)\,dx=0$ и утверждение теоремы справедливо для любого $\xi\in X$. Пусть $\int\limits_X g(x)\,dx\neq 0$. Тогда согласно теореме об интегрировании неравенств имеем $\int\limits_X g(x)\,dx>0$ и, следовательно,

$$\frac{\int\limits_X f(x)\,g(x)\,dx}{\int\limits_X g(x)\,dx} = C \in [m,M].$$

По теореме о промежуточном значении найдется точка $\xi \in X$ такая, что $f(\xi) = C$.

Задача 3. Приведите пример, показывающий, что условие сохранения знака функции f существенно в теореме 5.

§ 8. Аддитивность интеграла по множествам

Лемма 1. (Об интегрируемости на подмножестве.) Пусть функция $f: X \to \overline{\mathbb{R}}$ интегрируема, а множество $X' \subset X$ измеримо. Тогда функция f интегрируема на X'.

Доказательство. По теореме 3 § 7 функция |f(x)| интегрируема на X. Следовательно, $I^*(|f|,X)<+\infty$, а значит, существует интегрируемая счетно-ступенчатая функция $h:X\to\mathbb{R}$ такая, что $|f(x)|\le h(x)$ для почти всех $x\in X$. По определению интеграла от счетно-ступенчатой функции функция h интегрируема на X'. Согласно теореме 2 функция f интегрируема на X'.

Лемма 2. (Конечная аддитивность интеграла Лебега по множествам.) Пусть измеримые по Лебегу множества $X_1 \subset \mathbb{R}^n$ и $X_2 \subset \mathbb{R}^n$ не пересекаются, $X = X_1 \cup X_2$. Пусть функция $f: X \to \overline{\mathbb{R}}$ интегрируема по Лебегу на X_1 и на X_2 . Тогда f интегрируема по Лебегу на X и

$$\int\limits_X f(x) \, dx = \int\limits_{X_1} f(x) \, dx + \int\limits_{X_2} f(x) \, dx.$$

Доказательство. По определению верхнего интеграла Лебега

$$I_*(f, X_1) + I_*(f, X_2) = \inf_{h_1} \int_{X_1} h_1(x) \, dx + \inf_{h_2} \int_{X_2} h_2(x) \, dx =$$

$$= \inf_{h} \left(\int_{X_1} h(x) \, dx + \int_{X_2} h(x) \, dx \right),$$

где $h_i: X_i \to \mathbb{R}$ — интегрируемые счетно-ступенчатые функции такие, что $f(x) \le h_i(x)$ для почти всех $x \in X_i, \ h: X \to \mathbb{R}$ — интегрируемая счетно-ступенчатая функция такая, что $f(x) \le h(x)$ для почти всех $x \in X$. В силу леммы 3 § 5 справедливо равенство $\int\limits_{X_1} h(x) \, dx + \int\limits_{X_2} h(x) \, dx$ — $\int\limits_{X} h(x) \, dx$. Следовательно, $I_*(f, X_1) + I_*(f, X_2) = \inf\limits_{h} \int\limits_{X} h(x) \, dx = I_*(f, X)$. Аналогично, $I_*(f, X_1) + I_*(f, X_2) = I_*(f, X)$. Отсюда в силу определения интеграла Лебега получаем доказываемое утверждение.

Теорема 1. (Непрерывность интеграла по множествам.) *Пусть* $\{X_k\}_{k=1}^{\infty}$ счетный набор измеримых по Лебегу вложенных множеств:

 $X_1\subset X_2\subset\dots$ Пусть $X=igcup_{k=1}^\infty X_k$ и функция $f:X o\overline{\mathbb{R}}$ интегрируема по Лебегу. Тогда

$$\int_{X} f(x) dx = \lim_{k \to \infty} \int_{X_k} f(x) dx.$$
 (1)

Доказательство. Шаг 1. Пусть сначала функция $f: X \to \mathbb{R}$ – счетно-ступенчатая. Рассмотрим измеримое разбиение $\{A_k\}_{k=1}^\infty$ множества $X\colon A_1=X_1,\ A_2=X_2\setminus X_1,\ ...,\ A_k=X_k\setminus X_{k-1}.$ В силу счетной аддитивности интеграла от счетно-ступенчатой функции имеем

$$\int\limits_X f(x) \, dx = \sum_{k=1}^{\infty} \int\limits_{A_k} f(x) \, dx =$$

$$= \lim_{N \to \infty} \sum_{k=1}^{N} \int_{A_k} f(x) dx = \lim_{N \to \infty} \int_{X_N} f(x) dx,$$

где последнее равенство следует из конечной аддитивности интеграла Лебега.

Шаг 2. Рассмотрим теперь общий случай интегрируемой по Лебегу функции $f:X \to \overline{\mathbb{R}}$. В силу конечной аддитивности интеграла Лебега справедливо равенство $\int\limits_X f(x)\,dx = \int\limits_{X_k} f(x)\,dx + \int\limits_{X\backslash X_k} f(x)\,dx$. Поэтому требуется доказать, что

$$\lim_{k \to \infty} \int_{X \setminus X_k} f(x) \, dx = 0. \tag{2}$$

По определению интеграла Лебега существуют интегрируемые счетно-ступенчатые функции $g,h:X\to\mathbb{R}$ такие, что

$$g(x) \le f(x) \le h(x)$$
 для п.в. $x \in X$,

В силу теоремы об интегрировании неравенств

$$\int_{X\backslash X_k} g(x) dx \le \int_{X\backslash X_k} f(x) dx \le \int_{X\backslash X_k} h(x) dx.$$
 (3)

Как показано на шаге 1,

$$\lim_{k \to \infty} \int\limits_{X_k} g(x) \, dx = \int\limits_{X} g(x) \, dx, \qquad \lim_{k \to \infty} \int\limits_{X_k} h(x) \, dx = \int\limits_{X} h(x) \, dx,$$

то есть, $\lim_{k\to\infty}\int\limits_{X\backslash X_k}g(x)\,dx=\lim_{k\to\infty}\int\limits_{X\backslash X_k}h(x)\,dx=0.$ Отсюда и из неравенств

(3) по теореме о трех последовательностях следует соотношение (2). \Box

Теорема 2. (Счетная аддитивность интеграла Лебега.) *Пусть* $\{X_k\}_{k=1}^{\infty}$ – измеримое разбиение множества X. Пусть функция $f: X \to \mathbb{R}$ интегрируема по Лебегу. Тогда

$$\int\limits_X f(x) \, dx = \sum_{k=1}^{\infty} \int\limits_{X_k} f(x) \, dx.$$

Доказательство. Для каждого $N \in \mathbb{N}$ обозначим $A_N = \bigcup_{k=1}^N X_k$. Используя непрерывность и конечную аддитивность интеграла по множествам, получаем

$$\int\limits_X f(x)\,dx = \lim_{N\to\infty} \int\limits_{A_N} f(x)\,dx = \lim_{N\to\infty} \ \sum_{k=1}^N \int\limits_{X_k} f(x)\,dx = \sum_{k=1}^\infty \int\limits_{X_k} f(x)\,dx.$$

Определение. Пусть $-\infty \le a < b \le +\infty$ и функция $f:(a,b) \to \mathbb{R}$ интегрируема. Тогда будем использовать обозначения

$$\int_{a}^{b} f(x) dx := \int_{(a,b)} f(x) dx, \qquad \int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx.$$

Для любой функции f будем полагать $\int\limits_a^a f(x)\,dx:=0.$

Лемма 3. Если функция f интегрируема на отрезке, содержащем точки $a,\ b\ u\ c,\ mo\ npu\ любом\ расположении этих точек справедливо равенство$

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx.$$

Доказательство. Рассмотрим случай a < c < b. Из леммы об интегрируемости на подмножестве следует интегрируемость функции f на отрезках [a,c] и [c,b]. Поэтому в силу конечной аддитивности интеграла по множествам получаем

$$\int_{a}^{c} f(x) \, dx = \int_{a}^{b} f(x) \, dx - \int_{c}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx.$$

Другие случаи рассматриваются аналогично.

§ 9. Интеграл с переменным верхним пределом

Далее нам понадобится следующее достаточное условие существования одностороннего предела функции.

Лемма 1. Пусть заданы $A \in \mathbb{R}$ и функция $f:(a,b) \to \mathbb{R}$, где $-\infty \le \le a < b \le +\infty$. Пусть для любой строго возрастающей последовательности точек $x_k \in (a,b)$ такой, что $\lim_{k\to\infty} x_k = b$ справедливо соотношение $\lim_{k\to\infty} f(x_k) = A$. Тогда односторонний предел f(b-0) существует и равен A.

Доказательство. Зафиксируем строго возрастающую последовательность точек $b_k \in (a,b)$ такую, что $\lim_{k \to \infty} b_k = b$. Предположим, что доказываемое соотношение не выполнено, т. е. существует число $\varepsilon_0 > 0$ такое, что

$$\forall b' \in (a,b) \ \exists x \in (b',b): \ f(x) \not\in U_{\varepsilon_0}(A). \tag{1}$$

Из условия (1) следует существование строго возрастающей последовательности точек $x_k \in (a,b)$ такой, что $\lim_{k \to \infty} x_k = b$ и

$$f(x_k) \not\in U_{\varepsilon_0}(A) \quad \forall k \in \mathbb{N}.$$
 (2)

Действительно, такую последовательность $\{x_k\}$ можно построить рекуррентно. В силу (1) существует точка $x_1 \in (a,b)$ такая, что $f(x_1) \not\in U_{\varepsilon_0}(A)$. Если задана точка $x_k \in (a,b)$, то обозначим $x_k' = \max\{x_k,b_k\}$. В силу условия (1) найдется точка $x_{k+1} \in (x_k',b)$ такая, что $f(x_{k+1}) \not\in U_{\varepsilon_0}(A)$. Таким образом, существует строго возрастающая последовательность точек $x_k \in (a,b)$ такая, что $\lim_{k\to\infty} x_k = b$ и вполнено соотношение (2). Это противоречит условию доказываемой леммы.

Теорема 1. (Непрерывность интеграла как функции верхнего предела.) Пусть $-\infty \le a < b \le +\infty$, функция $f:(a,b) \to \mathbb{R}$ интегрируема. Тогда функция $F(x) = \int\limits_a^x f(t)\,dt$ непрерывна на (a,b), F(a+0) = F(a) = 0, F(b-0) = F(b).

Доказательство. Зафиксируем произвольные точку $x_0 \in (a,b]$ и строго возрастающую последовательность $\{x_k\}$ такую, что $x_k \in (a,x_0)$ и $\lim_{k\to\infty} x_k = x_0$. В силу непрерывности интеграла по множествам

$$F(x_0) = \int_{0}^{x_0} f(x) dx = \lim_{k \to \infty} \int_{0}^{x_k} f(x) dx = \lim_{k \to \infty} F(x_k).$$

В силу леммы 1 имеем $F(x_0-0)=F(x_0)$ для любой точки $x_0\in(a,b]$.

Фиксируем теперь произвольные точку $x_0 \in [a,b)$ и строго убывающую последовательность точек $x_k \in (x_0,b)$ такую, что $\lim_{k \to \infty} x_k = x_0$. В силу непрерывности интеграла по множествам

$$\lim_{k \to \infty} \int_{x_k}^b f(x) \, dx = \int_{x_0}^b f(x) \, dx.$$

Поэтому

$$F(x_0) = \int_a^b f(x) dx - \int_{x_0}^b f(x) dx =$$

$$= \lim_{k \to \infty} \left(\int_a^b f(x) dx - \int_{x_k}^b f(x) dx \right) = \lim_{k \to \infty} F(x_k).$$

Используя результат, аналогичный лемме 1 для предела справа, получаем $F(x_0+0)=F(x_0)$ для любой точки $x_0\in(a,b]$.

Теорема 2. Пусть функция $f:[a,b]\to\mathbb{R}$ интегрируема на [a,b] и непрерывна в точке $x_0\in[a,b]$ по множеству [a,b]. Тогда для функции $F(x)=\int\limits_a^x f(t)\,dt$ существует производная $F'(x_0)=f(x_0)$, где под $F'(x_0)$ при $x_0=a$ понимается $F'_+(x_0)$, а при $x_0=b$ понимается $F'_-(x_0)$.

Доказательство. Пусть сначала $x_0 \in [a,b)$. Покажем, что существует $F'_+(x_0) = f(x_0)$. Фиксируем произвольное число $\varepsilon > 0$. В силу непрерывности справа функции f в точке x_0 существует число $\delta \in (0,b-x_0)$ такое, что

$$|f(x) - f(x_0)| < \varepsilon \quad \forall x \in (x_0, x_0 + \delta).$$

При $x\in (x_0,b)$ в силу аддитивности интеграла имеем $F(x)-F(x_0)=\int\limits_{x_0}^x f(t)\,dt$. Поэтому $F(x)-F(x_0)-(x-x_0)f(x_0)=\int\limits_{x_0}^x (f(t)-f(x_0)\,dt.$ Следовательно, для любого $x\in (x_0,x_0+\delta)$

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| \le \frac{1}{|x - x_0|} \int_{x_0}^x |f(t) - f(x_0)| \, dt \le \varepsilon.$$

Таким образом, в случае $x_0 \in [a,b)$ существует $F'_{+}(x_0) = f(x_0)$. Аналогично, в случае $x_0 \in (a,b]$ существует $F'_{-}(x_0) = f(x_0)$. Поэтому при $x_0 \in (a,b)$ существует $F'(x_0) = f(x_0)$.

Следствие 1. Если функция f непрерывна на [a,b], то функция $F(x) = \int\limits_{a}^{x} f(t) \, dt$ является первообразной функции f(x) на [a,b].

Из следствия 1 и теоремы о структуре множества первообразных получаем

Следствие 2. Любая первообразная непрерывной на [a,b] функции f имеет вид

$$F(x) = \int_{-\infty}^{x} f(t) dt + C,$$

где $C \in \mathbb{R}$ – произвольная константа.

Теорема 3. (Формула Ньютона–Лейбница.) *Если F – первообразная* непрерывной на [a,b] функции f, то

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} \quad \text{no onped.} \quad F(b) - F(a).$$

Доказательство. Воспользуемся следствием 2 и заметим, что $F(a) = \int\limits_a^a f(t) \, dt + C = C, \quad F(b) = \int\limits_a^b f(t) \, dt + C = \int\limits_a^b f(t) \, dt + F(a).$ Следовательно, $\int\limits_a^b f(x) \, dx = F(b) - F(a).$

Замечание. Формулу Ньютона—Лейбница называют основной формулой интегрального исчисления, т. к. она связывает интеграл с производной и дает удобный способ вычисления интегралов.

Теорема 4. (Замена переменной.) Пусть функция $x = \varphi(t)$ имеет непрерывную производную на отрезке [a,b], а функция f непрерывна на отрезке $\varphi([a,b])$. Тогда

$$\int_{a}^{b} f(\varphi(t)) d\varphi(t) = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Доказательство. Поскольку функция f непрерывна на $\varphi([a,b]),$ то по теореме 2 существует первообразная F для функции f: $\forall x \in \varphi([a,b]) \hookrightarrow F'(x) = f(x)$. По формуле Ньютона–Лейбница $\int\limits_{\varphi(a)}^{\varphi(b)} f(x) \, dx = F(\varphi(b)) - F(\varphi(a)).$

=F(arphi(b))-F(arphi(a)). Поскольку $rac{d}{dt}F(arphi(t))=F'(arphi(t))\,arphi'(t)=f(arphi(t))\,arphi'(t),$ то функция F(arphi(t)) является первообразной функции $f(arphi(t))\,arphi'(t).$ Следовательно, по формуле Ньютона—Лейбница

$$\int_{a}^{b} f(\varphi(t)) d\varphi(t) = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt =$$

$$= \int_{a}^{b} dF(\varphi(t)) = F(\varphi(b)) - F(\varphi(a)) = \int_{\varphi(a)}^{\varphi(b)} f(x) dx. \qquad \Box$$

Теорема 5. (Интегрирование по частям.) Если функции u(x) и v(x) непрерывно дифференцируемы на [a,b], то

$$\int_{a}^{b} u(x) \, dv(x) = u(x)v(x) \Big|_{a}^{b} - \int_{a}^{b} v(x) \, du(x).$$

Доказательство. Пользуясь линейностью интеграла и формулой Ньютона—Лейбница, получаем

$$\int_{a}^{b} u(x) \, dv(x) + \int_{a}^{b} v(x) \, du(x) = \int_{a}^{b} \left(u(x) \, v'(x) + v(x) \, u'(x) \right) dx =$$

$$= \int_{a}^{b} (u(x)v(x))' dx = u(x)v(x) \Big|_{a}^{b}.$$

Задача 1. Приведите пример непрерывной и непостоянной на отрезке функции, у которой производная почти всюду существует и равна нулю.

§ 10. Геометрические приложения интеграла

Теорема 1. Пусть множества $X \subset \mathbb{R}^n_x$ и $Y \subset \mathbb{R}^m_y$ конечно измеримы. Тогда декартово произведение $X \times Y$ конечно измеримо в $\mathbb{R}^n_x \times \mathbb{R}^m_y = \mathbb{R}^{n+m}$ и его мера в \mathbb{R}^{n+m} равна

$$\mu(X \times Y) = \mu_x(X) \cdot \mu_y(Y), \tag{1}$$

где $\mu_x(X)$ и $\mu_y(Y)$ – меры множеств X и Y соответственно в \mathbb{R}^n_x и \mathbb{R}^m_y .

Доказательство

Шаг 1. Если X и Y – клетки, то равенство (1) следует из определения меры клетки. Рассмотрим случай, когда конечно измеримые множества X и Y представимы в виде счетного дизъюнктного объединения клеток: $X = \bigsqcup_{i=1}^{\infty} \Pi_i, \ Y = \bigsqcup_{j=1}^{\infty} \widetilde{\Pi}_j$. Тогда $X \times Y = \bigsqcup_{(i,j) \in \mathbb{N}^2} \Pi_i \times \widetilde{\Pi}_j$ – дизъюнктное объединение клеток. Следовательно,

$$\mu(X \times Y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu(\Pi_i \times \widetilde{\Pi}_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu_x(\Pi_i) \cdot \mu_y(\widetilde{\Pi}_j) =$$
$$= \left(\sum_{i=1}^{\infty} \mu_x(\Pi_i)\right) \left(\sum_{j=1}^{\infty} \mu_y(\widetilde{\Pi}_j)\right) = \mu_x(X) \cdot \mu_y(Y).$$

Шаг 2. Покажем, что для любых множеств $A \subset \mathbb{R}^n_x$ и $B \subset \mathbb{R}^n_y$ таких, что $\mu_x^*(A) < +\infty$ и $\mu_y^*(B) < +\infty$, справедливо неравенство

$$\mu^*(A \times B) \le \mu_x^*(A) \cdot \mu_y^*(B). \tag{2}$$

Зафиксируем произвольное $\varepsilon > 0$. По определению верхней меры найдутся счетные наборы клеток $\{\Pi_i\}$ в \mathbb{R}^n_x и $\{\widetilde{\Pi}_j\}$ в \mathbb{R}^m_u такие, что

$$A \subset \bigcup_{i=1}^{\infty} \Pi_i, \quad B \subset \bigcup_{j=1}^{\infty} \widetilde{\Pi}_j,$$

$$\sum_{i=1}^{\infty} \mu_x(\Pi_i) \le \mu_x^*(A) + \varepsilon, \quad \sum_{j=1}^{\infty} \mu_y(\widetilde{\Pi}_j) \le \mu_y^*(B) + \varepsilon.$$

Поскольку $A \times B \subset \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} \Pi_i \times \widetilde{\Pi}_j$, то

$$\mu^*(A \times B) \le \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu(\Pi_i \times \widetilde{\Pi}_j) = \left(\sum_{i=1}^{\infty} \mu_x(\Pi_i)\right) \left(\sum_{j=1}^{\infty} \mu_y(\widetilde{\Pi}_j)\right) \le \left(\mu_x^*(A) + \varepsilon\right) \cdot \left(\mu_y^*(B) + \varepsilon\right).$$

Переходя к пределу при $\varepsilon \to +0$, получаем неравенство (2).

Шаг 3. Покажем, что если $A_k \stackrel{\mu}{\to} A$ и $B_k \stackrel{\mu}{\to} B$, где $A, A_k \subset \mathbb{R}^n_x$, $B, B_k \subset \mathbb{R}^n_y$ и $\mu^*_x(A) < +\infty$, $\mu^*_y(B) < +\infty$, то

$$A_k \times B_k \xrightarrow{\mu} A \times B.$$
 (3)

Поскольку

$$(A_k \times B_k)\Delta(A \times B) \subset (A \times B_k)\Delta(A \times B) \bigcup (A_k \times B_k)\Delta(A \times B_k) =$$

$$= A \times (B_k \Delta B) \bigcup (A_k \Delta A) \times B_k,$$

то в силу неравенства (2) имеем

$$\mu^* \left((A_k \times B_k) \Delta(A \times B) \right) \le \mu_x^*(A) \cdot \mu_y^*(B_k \Delta B) + \mu_x^*(A_k \Delta A) \cdot \mu_y^*(B_k) \to 0,$$

что доказывает соотношение (3).

Шаг 4. Рассмотрим общий случай. По определению конечно измеримого множества найдутся последовательности клеточных множеств $A_k \subset \mathbb{R}^n_x$ и $B_k \subset \mathbb{R}^m_y$ такие, что $A_k \stackrel{\mu}{\to} X$ и $B_k \stackrel{\mu}{\to} Y$. Как показано на шаге 3, последовательность клеточных множеств $A_k \times B_k$ сходится по мере к $X \times Y$. Поэтому множество $X \times Y$ измеримо и $\mu(A_k \times B_k) \to \mu(X \times Y)$. В силу доказанного на шаге 1 имеем $\mu(A_k \times B_k) = \mu_x(A_k) \times \mu_y(B_k)$. Переходя в этом равенстве к пределу, получаем равенство (1).

Лемма 1. Если $X \subset \mathbb{R}^n_x$ – множество меры $0, Y \subset \mathbb{R}^m_y$ – произвольное множество, то $X \times Y$ – множество меры 0 в \mathbb{R}^{n+m} .

Доказательство. Представим пространство \mathbb{R}_y^m в виде счетного дизъюнктного объединения кубов Q_k . По теореме 1 имеем $\mu(X \times Q_k) = \mu_x(X) \cdot \mu_y(Q_k) = 0$. Поэтому в силу счетной аддитивности меры

$$\mu(X \times \mathbb{R}_y^m) = \mu\left(\bigsqcup_k X \times Q_k\right) = \sum_k \mu(X \times Q_k) = 0.$$

Поскольку $X\times Y\subset X\times \mathbb{R}^m_y$, то $\mu^*(X\times Y)\leq \mu^*(X\times \mathbb{R}^m_y)=0$, а значит, $\mu(X\times Y)=0$.

Лемма 2. Пусть задано множество $X \subset \mathbb{R}^n$ и пусть существуют последовательности конечно измеримых множеств $A_k, B_k \subset \mathbb{R}^n$ такие, что $A_k \subset X \subset B_k$ для любого $k \in \mathbb{N}$ и $\lim_{k \to \infty} \mu(A_k) = \lim_{k \to \infty} \mu(B_k) = \mu_0 \in \mathbb{R}$. Тогда множество X измеримо и $\mu(X) = \mu_0$.

Доказательство. Так как множество A_k конечно измеримо, то найдется клеточное множество C_k такое, что $\mu(A_k\Delta C_k)<\frac{1}{k}$. Поскольку $X\Delta A_k=X\setminus A_k\subset B_k\setminus A_k$, то $\mu^*(X\Delta A_k)\leq \mu(B_k\setminus A_k)=\mu(B_k)-\mu(A_k)$. Следовательно,

$$\mu^*(X\Delta C_k) \le \mu^*(X\Delta A_k) + \mu(A_k\Delta C_k) < \mu(B_k) - \mu(A_k) + \frac{1}{k} \to 0$$
 при $k \to \infty$.

Таким образом, $C_k \stackrel{\mu}{\to} X$, а значит, множество X конечно измеримо. Поскольку $0 \le \mu(X) - \mu(A_k) \le \mu(B_k) - \mu(A_k) \to 0$, то $\mu(X) = \lim_{k \to \infty} \mu(A_k) = \mu_0$.

Теорема 2. (О геометрическом смысле интеграла.) Пусть множество $X \subset \mathbb{R}^n$ измеримо и функция $f: X \to [0, +\infty]$ интегрируема. Тогда множество $F = \{(x,y) \in \mathbb{R}^{n+1}: x \in X, \ 0 \le y \le f(x)\}$ конечно измеримо в \mathbb{R}^{n+1} и его мера равна

$$\mu(F) = \int_X f(x) \, dx.$$

Доказательство. Шаг 1. Пусть $f: X \to [0, +\infty]$ – счетно ступенчатая функция, т. е. существуют такое измеримое разбиение $\{X_i\}_{i=1}^\infty$ множества X и соответствующий набор чисел $\{f_i\}_{i=1}^\infty$, что $f(x) = f_i \ \forall x \in X_i$. Тогда $F = \bigsqcup_{i=1}^\infty F_i$ – дизъюнктное объединение множеств $F_i = X_i \times [0, f_i]$. Согласно теореме 1 и лемме 1 имеем $\mu(F_i) = f_i \mu(X_i)$. Поэтому в силу

счетной аддитивности меры Лебега

$$\mu(F) = \sum_{i=1}^{\infty} \mu(F_i) = \sum_{i=1}^{\infty} f_i \mu(X_i) = \int_{Y} f(x) dx < +\infty.$$

Шаг 2. Рассмотрим общий случай. Обозначим $J = \int\limits_X f(x)\,dx$. Фиксируем произвольное число $\varepsilon>0$. По определению интеграла Лебега найдутся счетно-ступенчатые интегрируемые функция $g_\varepsilon,h_\varepsilon:X\to\mathbb{R}$ такие, что

$$g_{\varepsilon}(x) \le f(x) \le h_{\varepsilon}(x)$$
 для п.в. $x \in X$, (4)

$$\int_{X} g_{\varepsilon}(x) dx > J - \varepsilon, \qquad \int_{X} h_{\varepsilon}(x) dx < J + \varepsilon.$$
 (5)

Соотношение (4) означает, что существует множество $X_0\subset X$ такое, что $\mu(X_0)=0$ и

$$g_{\varepsilon}(x) \le f(x) \le h_{\varepsilon}(x) \quad \forall x \in X \setminus X_0.$$

Переопределим на множестве X_0 функции g и h, положив g(x)=0 и $h(x)=+\infty$ при $x\in X_0$. Тогда интегралы $\int\limits_X g(x)\,dx$ и $\int\limits_X h(x)\,dx$ не изменятся и будет выполняться соотношение

$$g_{\varepsilon}(x) \le f(x) \le h_{\varepsilon}(x) \quad \forall x \in X.$$
 (6)

Как показано на шаге 1, множества

$$G_{\varepsilon} = \{(x,y) \in \mathbb{R}^{n+1} : x \in X, \ 0 \le y \le g_{\varepsilon}(x)\},$$

$$H_{\varepsilon} = \{(x, y) \in \mathbb{R}^{n+1} : x \in X, \ 0 \le y \le h_{\varepsilon}(x)\}$$

конечно измеримы в \mathbb{R}^{n+1} и $\mu(G_{\varepsilon})=\int\limits_X g_{\varepsilon}(x)\,dx,$ $\mu(H_{\varepsilon})=\int\limits_X h_{\varepsilon}(x)\,dx.$ Тогда неравенства (5) примут вид

$$\mu(G_{\varepsilon}) > J - \varepsilon, \qquad \mu(H_{\varepsilon}) < J + \varepsilon.$$
 (7)

Из неравенств (6) следует, что

$$G_{\varepsilon} \subset F \subset H_{\varepsilon}.$$
 (8)

Отсюда и из неравенств (7) следует, что $\lim_{\varepsilon \to +0} \mu(G_{\varepsilon}) = \lim_{\varepsilon \to +0} \mu(H_{\varepsilon}) = J$. Применяя лемму 2 получаем, что множество F измеримо и $\mu(F) = J$. \square

Лемма 3. Круг $C_r = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le r^2\}$ измерим и имеет меру (площадь) πr^2 .

Доказательство. По теореме 2 полукруг

$$C^{+} = \{(x, y) \in \mathbb{R}^{2} : x^{2} + y^{2} \le r^{2}, y \ge 0\} =$$
$$= \{(x, y) \in \mathbb{R}^{2} : x \in [-r, r], 0 \le y \le \sqrt{r^{2} - x^{2}}\}$$

измерим и $\mu(C^+)=\int_{-r}^r \sqrt{r^2-x^2}\,dx$. Производя замену $x=r\sin\varphi$, получаем $\mu(C^+)=r^2\int_{-\pi/2}^{\pi/2}\cos^2\varphi\,d\varphi=\frac{\pi r^2}{2}$. В силу симметрии нижний полукруг $C^-=\{(x,y)\in\mathbb{R}^2:\ x^2+y^2\leq r^2,\ y\leq 0\}$ имеет ту же меру: $\mu(C^-)=\frac{\pi r^2}{2}$. Поскольку $\mu(C^-\cap C^+)=0$, то

$$\mu(C_r) = \mu(C^- \bigcup C^+) = \mu(C^-) + \mu(C^+) - \mu(C^- \bigcap C^+) = \pi r^2.$$

Объем тела вращения

Пусть на отрезке [a,b] задана неотрицательная функция f(x). Множество

$$\Omega_f := \left\{ (x, y, z) \in \mathbb{R}^3 : x \in [a, b], \sqrt{y^2 + z^2} \le f(x) \right\}$$
(9)

называется mелом вращения вокруг оси Ox.

Теорема 3. Пусть неотрицательная функция $f:[a,b] \to [0,+\infty)$ измерима и ограничена. Тогда тело вращения (9) измеримо и

$$\mu(\Omega_f) = \pi \int_a^b f^2(x) \, dx.$$

Доказательство. Поскольку функция f ограничена, то $\sup_{x \in [a,b]} f(x) = M < +\infty$. Зафиксируем натуральное число N и определим множества

$$X_k = \left\{ x \in [a, b] : f(x) \in \left[\frac{kM}{N}, \frac{(k+1)M}{N} \right] \right\}, \quad k \in \overline{0, N},$$

и измеримые конечно-ступенчатые функции

$$g_N(x) = \frac{kM}{N}, \quad h_N(x) = \frac{(k+1)M}{N} \quad \forall x \in X_k, \ k \in \overline{0, N}.$$

Тогда
$$[a,b] = \bigsqcup_{k=0}^{N} X_k$$
,

$$g_N(x) \le f(x) \le h_N(x) \quad \forall x \in [a, b].$$
 (10)

Следовательно,

$$\int_{a}^{b} g_{N}^{2}(x) dx \leq \int_{a}^{b} f^{2}(x) dx \leq \int_{a}^{b} h_{N}^{2}(x) dx.$$

Поскольку

$$\int_{a}^{b} h_{N}^{2}(x)^{2} dx - \int_{a}^{b} g_{N}^{2}(x) dx = \int_{a}^{b} \left(\frac{2Mg_{N}(x)}{N} + \frac{M^{2}}{N^{2}}\right) dx \le$$

$$\le (b - a) \left(\frac{2M^{2}}{N} + \frac{M^{2}}{N^{2}}\right) \to 0 \quad \text{при} \quad N \to \infty, \tag{11}$$

ТО

$$\lim_{N \to \infty} \int_{a}^{b} g_{N}^{2}(x) dx = \lim_{N \to \infty} \int_{a}^{b} h_{N}^{2}(x) dx = \int_{a}^{b} f^{2}(x) dx.$$
 (12)

Пусть $C(r)=\{(y,z): \sqrt{y^2+z^2}\leq r\}$ – круг радиуса $r\geq 0$ с центром в начале координат. Обозначим $r_k=\frac{kM}{N}$. Пусть множества Ω_{g_N} и Ω_{h_N} определены формулой (9) по функциям g_N и h_N . Тогда

$$\Omega_{g_N} = \bigsqcup_{k=0}^N X_k \times C(r_k), \qquad \Omega_{h_N} = \bigsqcup_{k=0}^N X_k \times C(r_{k+1}).$$

В силу леммы 3 имеем $\mu(C(r_k))=\pi r_k^2$. Отсюда и из теоремы 1 получаем $\mu(X_k\times C(r_k))=\pi r_k^2\mu(X_k)$. Следовательно,

$$\mu(\Omega_{g_N}) = \sum_{k=0}^{N} \mu(X_k \times C(r_k)) = \sum_{k=0}^{N} \pi r_k^2 \cdot \mu(X_k) = \pi \int_a^b g_N^2(x) \, dx.$$

Аналогично, $\mu(\Omega_{h_N})=\pi\int_a^b h_N^2(x)\,dx$. Отсюда и из (11), (12) следует, что

$$\lim_{N \to \infty} \mu(\Omega_{g_N}) = \lim_{N \to \infty} \mu(\Omega_{h_N}) = \pi \int_a^b f^2(x) \, dx.$$

Из неравенств (10) получаем $\Omega_{g_N} \subset \Omega_f \subset \Omega_{h_N}$. Применяя лемму 2, получаем доказываемое утверждение.

Теорема 4. (Вычисление длины кривой.) Пусть кривая Γ параметризованная непрерывно дифференцируемой вектор-функцией $\overline{r}:[a,b] \to \mathbb{R}^n$. Тогда ее длина выражается формулой

$$\ell(\Gamma) = \int_{a}^{b} |\overline{r}'(t)| dt.$$

Доказательство. Рассмотрим переменную длину дуги s(t). Согласно теореме о производной переменной длины дуги $s'(t) = |\overline{r}'(t)| \quad \forall t \in [a,b]$. Следовательно, по формуле Ньютона–Лейбница $\ell(\Gamma) = s(b) = s(b) - s(a) = \int\limits_a^b s'(t) \, dt = \int\limits_a^b |\overline{r}'(t)| \, dt$.

§ 11. Интеграл Римана

Напомним, что разбиением отрезка [a,b] называется конечный набор точек $\mathbf{T}=\{x_i\}_{i=0}^I$, таких, что $a=x_0< x_1< \ldots < x_I=b$. Отрезки $[x_{i-1},x_i]$ называются *отрезками разбиения* \mathbf{T} .

Определение. Пусть задано разбиение $\mathbf{T} = \{x_i\}_{i=0}^I$ отрезка [a,b]. Выборкой, соответствующей разбиению \mathbf{T} , называется набор точек $\boldsymbol{\xi}_{\mathbf{T}} = \{\xi_i\}_{i=1}^I$ таких, что $\xi_i \in [x_{i-1},x_i]$. Интегральной суммой (Римана) для функции $f:[a,b] \to \mathbb{R}$, разбиения \mathbf{T} и выборки $\boldsymbol{\xi}_{\mathbf{T}}$ называется

$$\sigma(f, T, \xi_T) = \sum_{i=1}^{I} (x_i - x_{i-1}) f(\xi_i).$$

Определение . *Мелкостью разбиения* $\mathbf{T} = \{x_i\}_{i=0}^I$ называется число

$$\ell(T) = \max_{i=1,...,I} (x_i - x_{i-1}).$$

Определение. Число J называется *интегралом Римана* функции $f:[a,b] \to \mathbb{R}$ на [a,b] и обозначается $J=(R)\int\limits_a^b f(x)\,dx$, если

$$J = \lim_{\ell(T) \to 0} \sigma(f, T, \xi_T), \tag{1}$$

то есть

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall T : \ \ell(T) \le \delta \ \forall \xi_T \hookrightarrow \ |\sigma(f, T, \xi_T) - J| < \varepsilon.$$

Функция f называется *интегрируемой по Риману* на [a,b], если существует интеграл Римана функции f на [a,b].

Теорема 1. Пусть функция $f:[a,b]\to\mathbb{R}$ непрерывна. Тогда интеграл Римана $(R)\int\limits_a^b f(x)\,dx$ существует и совпадает с интегралом Лебега: $(R)\int\limits_a^b f(x)\,dx=\int\limits_a^b f(x)\,dx.$

Доказательство. Так как функция f непрерывна на компакте [a,b], то по теореме Кантора f равномерно непрерывна на [a,b]. Поэтому в силу

леммы $2 \S 9$ модуль непрерывности функции f

$$\omega(\delta) = \sup_{\substack{x, x' \in [a,b] \\ |x-x'| \le \delta}} |f(x) - f(x')|$$

удовлетворяет соотношению $\lim_{\delta \to +0} \omega(\delta) = 0.$

Рассмотрим произвольное разбение $\mathbf{T} = \{x_i\}_{i=0}^I$ отрезка [a,b] и соответствующую выборку $\xi_{\mathbf{T}} = \{\xi_i\}_{i=1}^I$. Определим конечно-ступенчатую (а значит, счетно-ступенчатую) функцию $\varphi: [a,b] \to \mathbb{R}$:

$$\varphi(x) = f(\xi_i) \quad \forall x \in (x_{i-1}, x_i), \qquad \varphi(x_i) = f(x_i), \qquad i \in \overline{1, I}.$$

По определению интеграла для счетно-ступенчатой функции

$$\int_{a}^{b} \varphi(x) \, dx = \sum_{i=1}^{I} (x_i - x_{i-1}) f(\xi_i) = \sigma(f, T, \xi_T).$$

Из определения модуля непрерывности и мелкости разбиения следует, что

$$|\varphi(x) - f(x)| \le \omega(\ell(T)) \quad \forall x \in [a, b].$$

Поскольку согласно достаточному условию интегрируемости непрерывная на компакте [a,b] функция f интегрируема по Лебегу, то существует интеграл Лебега $J_L = \int\limits_a^b f(x)\,dx$. Поэтому функция $f(x) - \varphi(x)$ интегрируема по Лебегу на [a,b] и

$$\left| \int_{a}^{b} \varphi(x) dx - \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |\varphi(x) - f(x)| dx \le (b - a)\omega(\ell(T)).$$

Таким образом,

$$|\sigma(f, T, \xi_T) - J_L| \le (b-a)\omega(\ell(T)) \to 0$$
 при $\ell(T) \to 0$.

По определению интеграла Римана получаем, что интеграл Римана $(R)\int\limits_a^b f(x)\,dx$ существует и совпадает с интегралом Лебега J_L .

Теорема 2. Если функция $f : [a, b] \to \mathbb{R}$ интегрируема по Риману, то она интегрируема по Лебегу и интегралы Римана и Лебега совпадают:

$$(R)\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx.$$

Доказательство. Обозначим $J_R = (R) \int_a^b f(x) dx$. Фиксируем произвольное число $\varepsilon > 0$. По определению интеграла Римана существует (можно брать любое достаточно мелкое) разбиение $\mathbf{T} = \{x_i\}_{i=0}^I$ отрезка [a,b] такое, что для любой выборки $\xi_{\mathbf{T}} = \{\xi_i\}_{i=1}^I$, соответствующей разбиению \mathbf{T} , справедливо неравенство

$$|\sigma(f, T, \xi_T) - J_R| < \varepsilon.$$

Следовательно,

$$\left| \inf_{\xi_{\mathrm{T}}} \sigma(f, \mathrm{T}, \xi_{\mathrm{T}}) - J_R \right| \le \varepsilon,$$

где inf берется по всем выборкам ξ_{T} , соответствующим разбиению Т. Заметим, что

$$\inf_{\xi_{\mathrm{T}}} \sigma(f, \mathrm{T}, \xi_{\mathrm{T}}) = \inf_{\xi_{\mathrm{T}}} \sum_{i=1}^{I} (x_i - x_{i-1}) f(\xi_i) = \sum_{i=1}^{I} (x_i - x_{i-1}) \inf_{\xi_i \in [x_{i-1}, x_i]} f(\xi_i).$$

Обозначим $m_i = \inf_{\xi_i \in [x_{i-1},x_i]} f(\xi_i)$ и определим конечно-ступенчатую функцию $g:[a,b] \to \mathbb{R}$:

$$g(x)=m_i$$
 при $x\in (x_{i-1},x_i),\ i\in \overline{1,I}, \qquad g(x_i)=f(x_i)$ при $i\in \overline{0,I}.$

Тогда $g(x) \leq f(x)$ для любого $x \in [a,b]$ и

$$\int_{a}^{b} g(x) dx = \sum_{i=1}^{I} (x_i - x_{i-1}) m_i = \inf_{\xi_{\mathrm{T}}} \sigma(f, \mathrm{T}, \xi_{\mathrm{T}}).$$

Следовательно, $\left|\int\limits_a^b g(x)\,dx-J_R\right|\leq \varepsilon$. Поэтому $I_*(f,[a,b])\geq \int\limits_a^b g(x)\,dx\geq 2$ $\geq J_R-\varepsilon$. В силу произвольности $\varepsilon>0$ получаем неравенство $I_*(f,[a,b])\geq 2$ $\geq J_R$. Аналогично, рассматривая $\sup\limits_{\xi_{\mathrm{T}}}\sigma(f,\mathrm{T},\xi_{\mathrm{T}})$, получаем неравенство $I^*(f,[a,b])\leq J_R$. Таким образом,

$$J_R \le I_*(f, [a, b]) \le I^*(f, [a, b]) \le J_R,$$

а значит, существует интеграл Лебега $\int\limits_a^b f(x)\,dx=J_R\in\mathbb{R}.$

Замечание. Приближенное вычисление интеграла функции, интегрируемой по Риману, легко реализовать с помощью компьютера, вычисляя сумму Римана для достаточно мелкого разбиения.

Лемма 1. Если функция $f:[a,b] \to \mathbb{R}$ интегрируема по Риману, то она ограничена.

Доказательство. Пусть J – интеграл Римана функции f на [a,b]. По определению интеграла Римана существует разбиение $\mathbf{T}=\{x_i\}_{i=0}^I$ отрезка [a,b] такое, что

$$|\sigma(f, T, \xi_T) - J| < 1 \tag{2}$$

для любой выборки $\xi_{\mathrm{T}} = \{\xi_i\}_{i=1}^I$, соответствующей разбиению Т. Предположим, что функция f неограничена на [a,b]. Тогда найдется отрезок $[x_{j-1},x_j],\ j\in\overline{1,I}$, на котором функция f неограничена. Зафиксируем точки $\xi_i\in[x_{i-1},x_i]$ при всех $i\neq j$ и выберем точку $\xi_j\in[x_{j-1},x_j]$ так, чтобы

$$\left| \sum_{i=1}^{I} (x_i - x_{i-1}) f(\xi_i) - J \right| > 1.$$

Так можно сделать, поскольку $x_j - x_{j-1} > 0$ и функция f неограничена на $[x_{j-1}, x_j]$. Получили противоречие с неравенством (2).

Замечание. Функция, интегрируемая по Лебегу, может не быть интегрируемой по Риману.

В примере 1 ?? будет показано, что, например, функция $f(x) = \frac{1}{\sqrt{x}}$ при $x \in (0,1]$ и f(0) = 0 интегрируема по Лебегу на [0,1]. Так как функция f неограничена на [0,1], то в силу леммы 1 она не интегрируема по Риману на [0,1].

Функция Дирихле

$$D(x) = \begin{cases} 0, & x \in \mathbb{R} \setminus \mathbb{Q}, \\ 1, & x \in \mathbb{Q} \end{cases}$$

является примером ограниченной функции, интегрируемой по Лебегу на [0,1], но не интегрируемой по Риману на [0,1]. Действительно, пусть $X_1=$ $=[0,1]\cap\mathbb{Q},\ X_2=[0,1]\setminus\mathbb{Q}$. Так как множество X_1 является счетным объединением точек, имеющих нулевую меру, то в силу счетной аддитивности меры Лебега $\mu(X_1)=0$. Тогда $\mu(X_2)=\mu([0,1])-\mu(X_1)=1$.

По определению интеграла для счетно-ступенчатой функции $\int_0^1 D(x) dx = 1 \cdot \mu(X_1) + 0 \cdot \mu(X_2) = 0$, т.е. функция D интегрируема по Лебегу на [0,1].

Покажем, что D не интегрируема по Риману на [0,1]. Рассмотрим произвольное разбиение $\mathbf{T}=\{x_i\}_{i=0}^I$ отрезка [0,1]. Так как на любом отрезке $[x_{i-1},x_i]$ найдется рациональное и иррациональное числа, то существуют выборка $\xi_{\mathbf{T}}$, состоящая только из рациональных точек, и выборка $\widetilde{\xi}_{\mathbf{T}}$, состоящая только из иррациональных точек, которые обе соответствуют разбиению \mathbf{T} . При этом $\sigma(D,\mathbf{T},\xi_{\mathbf{T}})=1$, $\sigma(D,\mathbf{T},\widetilde{\xi}_{\mathbf{T}})=0$. Поэтому не существует $\lim_{\ell(\mathbf{T})\to 0}\sigma(D,\mathbf{T},\xi_{\mathbf{T}})$, а значит, функция D не интегрируема по Риману на [0,1].

В заключение параграфа проведем неформальное сравнение интегралов Римана и Лебега. Пусть X – конечно измеримое множество в \mathbb{R}^n , функция $f: X \to \mathbb{R}$ измерима по Лебегу и ограничена. Тогда f интегрируема по Лебегу на X, но может не быть интегрируемой по Риману даже в случае X = [a,b]. Зафиксируем число $C > \sup_{x \in X} |f(x)|$ и натуральное число L. Рассмотрим достаточно медкое разбиение $T_{xy} = \{u_i\}_{i=0}^{T}$ отрезка

число I. Рассмотрим достаточно мелкое разбиение $\mathbf{T}_y = \{y_i\}_{i=0}^I$ отрезка [-C,C] на отрезки $[y_{i-1},y_i]$, где $-C=y_0 < y_1 < ... < y_I = C$. Определим множества $X_i = \{x \in X: \ f(x) \in [y_{i-1},y_i)\}$ и конечно-ступенчатую функцию $f_I: X \to \mathbb{R}, \quad f_I(x) = y_i$ при $x \in X_i$. Тогда $f_I(x) - \ell(\mathbf{T}_y) \leq f(x) \leq f_I(x)$ для любого $x \in X$. Поэтому для интеграла Лебега справедливы соотношения

$$\int_X f_I(x) dx - \ell(T_y)\mu(X) \le \int_X f(x) dx \le \int_X f_I(x) dx = \sum_{i=1}^I y_i \mu(X_i).$$

Следовательно, интеграл Лебега в этом случае можно определить формулой

$$\int_{Y} f(x) dx = \lim_{\ell(T_y) \to 0} \sum_{i=1}^{I} y_i \mu(X_i),$$

напоминающей определение интеграла Римана (1).

Основное различие интегралов Римана и Лебега состоит в том, что интеграл Римана определяется путем разбиения на мелкие части множества определения функции, а интеграл Лебега – путем разбиения на мелкие части множества значений этой функции.

Для осознания этого различия полезно рассмотреть два способа подсчета суммы денег, представленных монетами различного достоинства (номинала). Первый способ состоит в том, чтобы по очереди прибавлять номинал очередной монеты к посчитанной сумме. Второй способ состоит в предварительной сортировке монет по номиналам, вычислении величины суммарного достоинства монет каждого номинала (как произведение количества монет этого номинала на значение номинала), а затем суммировании этих величин. Первый способ подсчета соответствует интегрированию по Риману, а второй – интегрированию по Лебегу.

§ 12. Предельный переход под знаком интеграла

Теорема 1. (Теорема Б. Леви о монотонной сходимости.) *Пусть по*следовательность измеримых функций $f_k: X \to [0, +\infty]$ монотонна, $m. e. \ 0 \le f_k(x) \le f_{k+1}(x)$ для любого $x \in X$. Пусть $f(x) = \lim_{k \to \infty} f_k(x) \in$ $\in [0,+\infty] \ orall x \in X$. Тогда функция $f:X o \mathbb{R}$ измерима и

$$\int\limits_X f(x) \, dx = \lim_{k \to \infty} \int\limits_X f_k(x) \, dx.$$

Доказательство. Измеримость функции f следует из леммы 3 § 4. В силу теоремы о существовании интеграла от неотрицательной измеримой функции существует $\int\limits_X f(x)\,dx\in [0,+\infty].$ Шаг 1. Рассмотрим сначала случай, когда $\int\limits_X f(x)\,dx<+\infty$, т.е.

функция f интегрируема на X. Обозначим $X' = \{x \in X : f(x) < +\infty\}$. В силу леммы 2 § 6 имеем $\mu(X \setminus X') = 0$.

Фиксируем произвольное число $\varepsilon > 0$. Рассмотрим измеримые множества

$$X_k = \{x \in X' : f_k(x) \ge (1 - \varepsilon)f(x)\}, \quad k \in \mathbb{N}.$$

Заметим, что $X' = \bigcup_{k=1}^{\infty} X_k$. Из равенства $\mu(X \setminus X') = 0$ и в силу непрерывности интеграла по множествам

$$\int\limits_X f(x)\,dx = \int\limits_{X'} f(x)\,dx = \lim_{k \to \infty} \int\limits_{X_k} f(x)\,dx.$$

Следовательно, существует число $N \in \mathbb{N}$ такое, что

$$\int_{X_k} f(x) \, dx \ge (1 - \varepsilon) \int_X f(x) \, dx \qquad \forall k \ge N.$$

Поскольку $(1-\varepsilon)\int\limits_{X_k}f(x)\,dx\leq\int\limits_{X_k}f_k(x)\,dx$ согласно определению множества X_k , то для любого $k\geq N$

$$(1-\varepsilon)^2 \int\limits_X f(x) \, dx \le (1-\varepsilon) \int\limits_{X_b} f(x) \, dx \le$$

$$\leq \int\limits_{X_k} f_k(x) \, dx \leq \int\limits_{X} f_k(x) \, dx \leq \int\limits_{X} f(x) \, dx.$$

Отсюда в силу произвольности $\varepsilon>0$ получаем доказываемое соотношение в случае $\int f(x)\,dx<+\infty$.

Шаг 2. Пусть теперь $\int\limits_X f(x)\,dx = +\infty$. Фиксируем произвольное число C>0. По определению нижнего интеграла Лебега найдется интегрируемая счетно-ступенчатая функция $g:X\to\mathbb{R}$ такая, что $g(x)\le f(x)$ при почти всех $x\in X$ и $\int\limits_X g(x)\,dx>C$. Обозначим $X'=\{x\in X:\ g(x)\le\le f(x)\}$. Тогда $\mu(X\setminus X')=0$.

Рассмотрим измеримые функции

$$g_k(x) = \min\{f_k(x), g(x)\}, \quad x \in X.$$

Покажем, что

$$\lim_{k \to \infty} g_k(x) = g(x) \quad \forall x \in X'. \tag{1}$$

Действительно, фиксируем точку $x \in X'$. Если $g(x) < f(x) = \lim_{k \to \infty} f_k(x)$, то $\exists k_0 : \forall k \geq k_0 \hookrightarrow g(x) < f_k(x)$. Тогда $g_k(x) = g(x)$ при $k \geq k_0$ и соотношение (1) выполнено. Если g(x) = f(x), то $g_k(x) = f_k(x)$, поскольку $f_k(x) \leq f(x)$ при всех $k \in \mathbb{N}$. В этом случае соотношение (1) следует из соотношения $f(x) = \lim_{k \to \infty} f_k(x)$.

Как показано на шаге 1.

$$\lim_{k \to \infty} \int_{X'} g_k(x) dx = \int_{X'} g(x) dx = \int_X g(x) dx > C.$$

Поэтому для любого C>0 существует номер k_0 такой, что при $k\geq k_0$ имеем $\int\limits_{X'}g_k(x)\,dx>C,$ а значит,

$$\int\limits_X f_k(x) \, dx \ge \int\limits_X g_k(x) \, dx = \int\limits_{X'} g_k(x) \, dx > C.$$

Следовательно,
$$\lim_{k\to\infty} \int_X f_k(x) dx = +\infty = \int_X f(x) dx$$
.

Теорема 2. (Об интегрировании функционального ряда с неотрицательными членами.) Пусть неотрицательные функции $u_k: X \to [0, ++\infty)$ измеримы при всех $k \in \mathbb{N}$. Тогда

$$\int_{X} \left(\sum_{k=1}^{\infty} u_k(x) \right) dx = \sum_{k=1}^{\infty} \int_{X} u_k(x) dx.$$

При этом ряд $\sum_{k=1}^{\infty} \int_{X} u_k(x) dx$ сходится тогда и только тогда, когда функция $f(x) = \sum_{k=1}^{\infty} u_k(x)$ интегрируема на X.

Доказательство. Применяя теорему Б. Леви к последовательности $f_m(x) = \sum_{k=1}^m u_k(x)$, получаем

$$\int_{X} \left(\sum_{k=1}^{\infty} u_k(x) \right) dx = \int_{X} f(x) dx = \lim_{m \to \infty} \int_{X} f_m(x) dx \stackrel{*}{=}$$

$$\stackrel{*}{=} \lim_{m \to \infty} \sum_{k=1}^{m} \int_{X} u_k(x) dx = \sum_{k=1}^{\infty} \int_{X} u_k(x) dx,$$

где равенство * следует из линейности интеграла.

Теорема 3. (Теорема Лебега об ограниченной сходимости.) Пусть функции $f_k: X \to \overline{\mathbb{R}}$ интегрируемы при всех $k \in \mathbb{N}$ и существует интегрируемая функция $\varphi: X \to [0, +\infty]$ такая, что

$$|f_k(x)| \le \varphi(x) \quad \forall k \in \mathbb{N} \quad \partial_{n} s \ n.s. \quad x \in X.$$
 (2)

Пусть для почти всех $x\in X$ существует $\lim_{k\to\infty}f_k(x)=f(x)\in\overline{\mathbb{R}}$. Тогда функция $f:X\to\overline{\mathbb{R}}$ интегрируема и

$$\int_{X} f(x) dx = \lim_{k \to \infty} \int_{X} f_k(x) dx.$$
 (3)

Доказательство. Измеримость функции f следует из леммы $3 \S 4$. Переходя к пределу в неравенстве (2), получаем неравенство $|f(x)| \le \le \varphi(x)$ для почти всех $x \in X$. В силу признака сравнения функция f интегрируема на X.

В силу условий теоремы существует множество $X_0 \subset X$ такое, что $\mu(X_0)=0$, и для множества $X'=X\setminus X_0$ справедливы соотношения

$$|f_k(x)| \le \varphi(x) \quad \forall k \in \mathbb{N} \quad \forall x \in X',$$

$$\lim_{k \to \infty} f_k(x) = f(x) \quad \forall x \in X'.$$
(4)

Фиксируем произвольное число $\varepsilon>0$. Для каждого $k\in\mathbb{N}$ определим множество

$$X_k = \{x \in X' : |f_j(x) - f(x)| \le \varepsilon \varphi(x) \quad \forall j \ge k\}.$$

Покажем, что

$$X' = \bigcup_{k=1}^{\infty} X_k. \tag{5}$$

Так как $X_k\subset X'$ при всех $k\in\mathbb{N}$, то $\bigcup_{k=1}^\infty X_k\subset X'$. Докажем обратное включение. Фиксируем $x\in X'$. Если $\varphi(x)=0$, то из неравенства (4) следует, что $f_j(x)=0=f(x)$. Поэтому $x\in\bigcup_{k=1}^\infty X_k$. Пусть теперь $\varphi(x)>0$. Тогда по определению предела найдется номер $k\in\mathbb{N}$ такой, что $|f_j(x)-f(x)|\leq \varepsilon \varphi(x)$ при всех $j\geq k$. Поэтому снова $x\in\bigcup_{k=1}^\infty X_k$. Таким образом, равенство (5) доказано.

Заметим, что $X_k \subset X_{k+1}$ для любого $k \in \mathbb{N}$. В силу непрерывности интеграла по множествам

$$\lim_{k \to \infty} \int_{X_k} \varphi(x) \, dx = \int_{X'} \varphi(x) \, dx.$$

Отсюда и из равенства $\int\limits_{X'} \varphi(x)\,dx = \int\limits_{X_k} \varphi(x)\,dx + \int\limits_{X'\backslash X_k} \varphi(x)\,dx$ следует, что

$$\lim_{k \to \infty} \int_{X' \setminus X_k} \varphi(x) \, dx = 0,$$

а значит, найдется число $k\in\mathbb{N}$ такое, что $\int\limits_{X'\setminus X_k}\varphi(x)\,dx<\varepsilon.$ Поэтому при $j\geq k$ имеем

$$\left| \int_{X} f(x) \, dx - \int_{X} f_{j}(x) \, dx \right| = \left| \int_{X'} f(x) \, dx - \int_{X'} f_{j}(x) \, dx \right| \le$$

$$\le \int_{X'} |f(x) - f_{j}(x)| \, dx = \int_{X_{k}} |f(x) - f_{j}(x)| \, dx + \int_{X' \setminus X_{k}} |f(x) - f_{j}(x)| \, dx \le$$

$$\le \varepsilon \int_{X_{k}} \varphi(x) \, dx + \int_{X' \setminus X_{k}} |f(x)| \, dx + \int_{X \setminus X_{k}} |f_{j}(x)| \, dx \le$$

$$\le \varepsilon \int_{X} \varphi(x) \, dx + 2 \int_{X' \setminus X_{k}} \varphi(x) \, dx \le \varepsilon \left(\int_{X} \varphi(x) \, dx + 2 \right),$$

что в силу произвольности $\varepsilon > 0$ доказывает равенство (3).

Замечание. Из того, что $f(x)=\lim_{k\to\infty}f_k(x)$ для любого $x\in X$ и функции f и f_k интегрируемы на X, не следует равенство

$$\int_{X} f(x) dx = \lim_{k \to \infty} \int_{X} f_k(x) dx.$$
 (6)

Пусть, например,
$$X = [0, 1]$$

$$f_k(x) = \begin{cases} k^2 x, & x \in \left[0, \frac{1}{k}\right], \\ 2k - k^2 x, & x \in \left[\frac{1}{k}, \frac{2}{k}\right], \\ 0, & x \in \left[\frac{2}{k}, 1\right]. \end{cases}$$
Тогда $\lim_{k \to \infty} f_k(x) = f(x) = 0$ при $x \in [0, 1]$, но $\int_0^1 f_k(x) \, dx = 1 \not\to 0$ при $x \to \infty$.

Однако если дополнительно потребовать монотонность последовательности $\{f_k(x)\}$ или мажорируемость этой последовательности интегрируемой функцией, то соотношение (6) будет справедливо, что следует из теорем Б. Леви и Лебега соответственно.

Задача 1. Пусть функция $f:[a,b] \to \mathbb{R}$ непрерывна и на (a,b) имеет ограниченную производную f'(x). Доказать, что

$$\int_{a}^{b} f'(x) dx = f(b) - f(a).$$

ГЛАВА9

НЕСОБСТВЕННЫЙ ИНТЕГРАЛ

§ 1. Определение и некоторые свойства несобственного интеграла

В этом и следующем параграфах считаем, что (a,b) – конечный или бесконечный интервал, т.е. $-\infty \le a < b \le +\infty$.

Определение. Пусть функция $f:(a,b)\to\mathbb{R}$ интегрируема (по Лебегу) на любом $(a,b'),\,b'\in(a,b).$ Тогда

$$\int_{a}^{b} f(x) dx = \lim_{b' \to b-0} \int_{a}^{b'} f(x) dx \tag{1}$$

называется несобственным интегралом с особенностью в точке b.

Если существует конечный предел (1), то говорят, что несобственный интеграл $\int\limits_a^{\to b} f(x)\,dx\, cxo\partial umcs$, иначе — pacxodumcs.

Аналогично определяется несобственный интеграл с особенностью в левом конце промежутка интегрирования:

$$\int_{-a}^{b} f(x) dx = \lim_{a' \to a+0} \int_{a'}^{b} f(x) dx.$$

Интеграл Лебега, который мы изучали до сих пор, будем называть *собственным интегралом*.

Если из контекста понятно о несобственном интеграле, с какой особенностью идет речь, то вместо $\int\limits_{-a}^{b}f(x)\,dx$ или $\int\limits_{a}^{-b}f(x)\,dx$ в литературе

часто пишут $\int_{a}^{b} f(x) dx$.

В дальнейшем мы будем рассматривать интегралы с особенностью (особой точкой) на правом конце промежутка интегрирования. Интегралы с особенностью на левом конце промежутка интегрирования рассматриваются аналогично.

Определение. Несобственный интеграл $\int_{a}^{\to b} f(x) dx$ называется абсолютно сходящимся, если $\int_{a}^{\to b} |f(x)| dx$ сходится. Если несобственный интеграл $\int_{a}^{\to b} f(x) dx$ сходится, но не является абсолютно сходящимся, он называется условно сходящимся.

Теорема 1. Пусть функция $f:(a,b)\to\mathbb{R}$ интегрируема по Лебегу на (a,b') для любого $b'\in(a,b)$. Тогда следующие условия эквивалентны:

- (1) функция f интегрируема по Лебегу на (a,b);
- (2) интеграл $\int\limits_a^{\to b} f(x) \, dx$ сходится абсолютно.

Доказательство. (1) \Rightarrow (2). Пусть функция f интегрируема по Лебегу на (a,b). Тогда согласно лемме об интегрируемости на подмножестве функция f интегрируема по Лебегу на (a,b') для любого $b' \in (a,b)$. В силу теоремы 3 § 7 функция |f(x)| интегрируема по Лебегу на (a,b). Из аддитивности интеграла по множествам следует, что функция $F(b') = \int_{-b'}^{b'} |f(x)| \, dx$ нестрого возрастает. Поэтому существует предел

$$\lim_{b' \to b-0} \int_{a}^{b'} |f(x)| \, dx \le \int_{a}^{b} |f(x)| \, dx < +\infty,$$

т.е. интеграл $\int\limits_{a}^{\rightarrow b}f(x)\,dx$ сходится абсолютно.

 $(2)\Rightarrow (1).$ Зафиксируем возрастающую последовательность $\{b_k\}$ такую, что $b_k\in (a,b)$ для любого $k\in\mathbb{N}$ и $b_k\to b.$

Для любого $k \in \mathbb{N}$ определим функцию $f_k : (a,b) \to \mathbb{R}$:

$$f_k(x) = \begin{cases} f(x), & x \in (a, b_k], \\ 0, & x \in (b_k, b). \end{cases}$$

Тогда $f(x)=\lim_{k\to\infty}f_k(x)$ для любого $x\in X$ и, следовательно, функция f измерима на (a,b).

Обозначим $g_k(x) = |f_k(x)|$. Тогда $g_k(x) \le g_{k+1}(x)$ и $|f(x)| = \lim_{k \to \infty} g_k(x)$ для любого $x \in X$. По теореме Б. Леви и в силу условия (2)

$$\int_{a}^{b} |f(x)| dx = \lim_{k \to \infty} \int_{a}^{b} g_k(x) dx = \lim_{k \to \infty} \int_{a}^{b_k} |f(x)| dx < +\infty.$$

Поэтому функция |f(x)| интегрируема на (a,b). Отсюда и из измеримости f согласно теореме 3 § 7 получаем интегрируемость f на (a,b).

Пример 1. При каких значениях параметра $\alpha \in \mathbb{R}$ функция $f(x) = \frac{1}{x^{\alpha}}$

- а) интегрируема на $(1, +\infty)$?
- б) интегрируема на (0,1)?

Решение. Согласно формуле Ньютона–Лейбница для любого $t\in (0,+\infty)$

$$\int_{1}^{t} \frac{dx}{x^{\alpha}} = \begin{cases} \frac{1}{(1-\alpha)} \left(\frac{1}{t^{\alpha-1}} - 1\right), & \alpha \neq 1, \\ \ln t, & \alpha = 1, \end{cases}$$

$$\int_{t}^{1} \frac{dx}{x^{\alpha}} = \begin{cases} \frac{1}{(1-\alpha)} \left(1 - \frac{1}{t^{\alpha-1}}\right), & \alpha \neq 1, \\ -\ln t, & \alpha = 1. \end{cases}$$

Используя теорему 1, получаем, что функция $f(x) = \frac{1}{x^{\alpha}}$

- а) на $(1, +\infty)$ интегрируема при $\alpha > 1$ и не интегрируема при $\alpha \le 1$;
- б) на (0,1) интегрируема при $\alpha < 1$ и не интегрируема при $\alpha \ge 1$.

Замечание. Аналогично предыдущему примеру легко доказать, что функция $f(x) = e^{\alpha x}$ интегрируема по Лебегу на $[0, +\infty)$ при $\alpha < 0$ и не интегрируема при $\alpha \geq 0$.

Задача 1. Пусть функция $f:[1,+\infty)\to (0,+\infty)$ нестрого убывает. Как связано условие интегрируемости функции f на $(1,+\infty)$ с условием $f(x)=o\left(\frac{1}{x}\right)$ при $x\to +\infty$, т. е. $\lim_{x\to +\infty}x\,f(x)=0$?

Теорема 2. Пусть функция $f:(a,b)\to \mathbb{R}$ интегрируема (в собственном смысле). Тогда несобственный интеграл $\int\limits_a^{\to b} f(x)\,dx$ сходится и его значение равно интегралу Лебега $\int\limits_a^b f(x)\,dx$.

Доказательство состоит в применении теоремы о непрерывности интеграла как функции верхнего предела.

Замечание. Если несобственный интеграл $\int_{a}^{b} f(x) dx$ сходится абсолютно, то он сходится. Это следует из теорем 1 и 2.

Лемма 1. (Принцип локализации.) Пусть $a_1 \in (a,b)$. Пусть функция $f:(a,b) \to \mathbb{R}$ интегрируема на (a,b') для любого $b' \in (a,b)$. Тогда несобственные интегралы $\int\limits_a^{\to b} f(x)\,dx$ и $\int\limits_{a_1}^{\to b} f(x)\,dx$ сходятся или расходятся одновременно, а если они сходятся, то

$$\int_{a}^{b} f(x) dx = \int_{a}^{a_1} f(x) dx + \int_{a_1}^{b} f(x) dx.$$

Доказательство. В силу аддитивности интеграла по множествам для любого числа $b' \in (a,b)$ справедливо равенство

$$\int_{a}^{b'} f(x) \, dx = \int_{a}^{a_1} f(x) \, dx + \int_{a_1}^{b'} f(x) \, dx.$$

Переходя к пределу при $b' \to b-0$, получаем доказываемое утверждение.

Замечание. Принцип локализации означает, что сходимость несобственного интеграла определяется поведением подынтегральной функции лишь в окрестности особой точки.

Определение. Пусть функция $f:(a,b) \to \mathbb{R}$ интегрируема на (a',b') для любых a',b': a < a' < b' < b. Определим несобственный интеграл с двумя особенностями:

$$\int_{-c}^{c} f(x) dx = \int_{c}^{c} f(x) dx + \int_{c}^{c} f(x) dx,$$

где $c \in (a,b)$ – произвольная точка. Несобственный интеграл с двумя особенностями $\int\limits_{\to a}^{\to b} f(x)\,dx$ называется сходящимся, если сходятся оба несобственных интеграла $\int\limits_{\to a}^{c} f(x)\,dx$ и $\int\limits_{c}^{\to b} f(x)\,dx$.

Замечание. Из принципа локализации следует, что сходимость и значение несобственного интеграла $\int\limits_{\to a}^{\to b} f(x)\,dx$ не зависят от выбора точки $c\in (a,b).$

Лемма 2. (Линейность несобственного интеграла.) Если несобственные интеграла $\int\limits_a^{\to b} f(x)\,dx\,\,u\,\int\limits_a^{\to b} g(x)\,dx\,\,cxodsmcs$, то для любых чисел α,β несобственный интеграл $\int\limits_a^{\to b} \Big(\alpha f(x) + \beta g(x)\Big)dx\,\,cxodumcs$.

Доказательство состоит в применении свойств линейности интеграла Лебега и линейности предела.

Следствие. Если интеграл $\int\limits_a^{\to b} f(x)\,dx$ расходится, а интеграл $\int\limits_a^{\to b} g(x)\,dx$ сходится, то интеграл $\int\limits_a^{\to b} (f(x)+g(x))\,dx$ расходится.

Замечание. Если интегралы $\int\limits_a^{\to b} f(x)\,dx$ и $\int\limits_a^{\to b} g(x)\,dx$ расходятся, то интеграл $\int\limits_a^{\to b} (f(x)+g(x))\,dx$ может быть как сходящимся, так и расходящимся.

Лемма 3. (Замена переменной.) Пусть непрерывно дифференцируемая, строго возрастающая функция x(t) переводит промежуток $[t_0, \beta)$ в промежуток $[x_0, b)$. Пусть функция f(x) непрерывна на промежутке $[x_0, b)$. Тогда справедлива формула

$$\int_{x_0}^{b} f(x) dx = \int_{t_0}^{b} f(x(t)) x'(t) dt,$$
 (2)

означающая, что если хотя бы один из указанных интегралов сходится, то другой интеграл сходится и их значения равны.

Доказательство. По теореме об одностороннем пределе возрастающей функции

$$\lim_{t \to \beta - 0} x(t) = \sup_{t \in (t_0, \beta)} x(t) = \sup [x_0, b) = b.$$

Поскольку функция x(t) непрерывна и строго возрастает, то существует обратная к ней непрерывная строго возрастающая функция t(x), причем

$$\lim_{x \to b-0} t(x) = \sup_{x \in (x_0, b)} t(x) = \sup [t_0, \beta) = \beta.$$

В силу теоремы о замене переменной в собственном интеграле

$$\int_{x_0}^{b'} f(x) dx = \int_{t_0}^{\beta'} f(x(t)) x'(t) dt,$$

где $b'=x(\beta')\in (x_0,b), \quad \beta'=t(b')\in (t_0,\beta).$ Если интеграл $\int\limits_{x_0}^{\to b}f(x)\,dx$ сходится, то

$$\lim_{\beta' \to \beta - 0} \int_{t_0}^{\beta'} f(x(t)) x'(t) dt = \lim_{\beta' \to \beta - 0} \int_{x_0}^{x(\beta')} f(x) dx =$$

$$= \lim_{b' \to b-0} \int_{x_0}^{b'} f(x) \, dx = \int_{x_0}^{\to b} f(x) \, dx,$$

т.е. несобственный интеграл $\int\limits_{t}^{\to eta} f(x(t))\,x'(t)\,dt$ сходится и выполняется формула (2). Аналогично если несобственный интеграл $\int_{1}^{+\beta} f(x(t)) \, x'(t) \, dt$ сходится, то сходится несобственный интеграл $\int\limits_{x_0}^{\to b} f(x) \, dx$ и справедлива формула (2).

Пример 2. Найти все значения α , при которых интеграл $\int_{-\pi}^{+\infty} \frac{dx}{x \ln^{\alpha} x}$ сходится.

Решение. Выполнив замену перменной $x=e^t$, имеем $=\int\limits_{-\infty}^{+\infty} \frac{dt}{t^{lpha}}$. Пользуясь результатами примера 1 ?? главы 8, получаем, что исходный интеграл сходится при $\alpha>1$ и расходится при $\alpha\leq1$.

§ 2. Исследование сходимости несобственных интегралов от знакопостоянных функций

Теорема 1. (Первый признак сравнения.) Пусть функции f, g: $(a,b) o \mathbb{R}$ интегрируемы на (a,b') для любого $b' \in (a,b)$. Пусть $0 \le a$ $\leq f(x) \leq g(x)$ для любого $x \in (a,b)$. Тогда

- 1) из сходимости $\int_{a}^{\to b} g(x) dx$ следует сходимость $\int_{a}^{\to b} f(x) dx$;
 2) из расходимости $\int_{a}^{\to b} f(x) dx$ следует расходимость $\int_{a}^{\to b} g(x) dx$.

Доказательство. Пусть $\int\limits_{-\infty}^{\infty} g(x)\,dx$ сходится. По теореме 1 § 1 функция g интегрируема на (a,b). Так как функция f интегрируема на (a,b')для любого $b' \in (a, b)$, то f измерима на (a, b). В силу признака сравнения для интеграла Лебега получаем, что функция f интегрируема на (a,b). Поэтому $\int_{0}^{\infty} f(x) dx$ сходится. Второй пункт следует из первого.

Определение. Будем говорить, что неотрицательные функции f, g: $(a,b) \to [0,+\infty)$ эквивалентны в смысле сходимости интегралов при x o b - 0 и писать $f(x) \stackrel{\mathrm{cx.}}{\sim} g(x)$ при x o b - 0, если существуют числа $m>0,\ M>0,\ b_1< b$ такие, что для любого $x\in (b_1,b)$ справедливы неравенства

$$m g(x) \le f(x) \le M g(x)$$
.

Теорема 2. (Второй признак сравнения.) Пусть неотрицательные функции $f,g:(a,b) o [0,+\infty)$ интегрируемы по Лебегу на (a,b') для любого $b' \in (a,b)$. Пусть $f(x) \overset{cx.}{\sim} g(x)$ при $x \to b-0$. Тогда интегралы $\int\limits_{-\infty}^{\infty} f(x)\,dx$ и $\int\limits_{-\infty}^{\infty} g(x)\,dx$ сходятся или расходятся одновременно (т. е. функции f и g на (a,b) интегрируемы или неинтегрируемы одновремен-

Доказательство. Поскольку $f(x) \overset{\mathrm{cx.}}{\sim} g(x)$ при $x \to b-0$, то $\exists m, M > 0, \ \exists b_1 \in [a, b) : \forall x \in (b_1, b) \hookrightarrow m g(x) \le f(x) \le M g(x).$ Пусть для определенности $\int\limits_a^{\to b} g(x)\,dx$ сходится. Тогда в силу принципа локализации $\int\limits_{b_1}^{\to b} g(x)\,dx$ сходится. Поэтому согласно первому признаку сравнения $\int\limits_{b_1}^{\to b} f(x)\,dx$ сходится. Еще раз применяя принцип локазизации, получаем сходимость $\int\limits_a^{\to b} f(x)\,dx$.

Лемма 1. Пусть функции $f_i, g_i: (a,b) \to [0,+\infty), \ i=1,2,3, \ y$ довлетворяют условиям $\forall x \in (a,b) \hookrightarrow f_3(x) > 0, g_3(x) > 0,$

$$f_i(x) \overset{cx}{\sim} g_i(x)$$
 npu $x \to b-0$, $i = 1, 2, 3$.

Tог ∂a

$$\frac{f_1(x) f_2(x)}{f_3(x)} \stackrel{cx.}{\sim} \frac{g_1(x) g_2(x)}{g_3(x)} \quad npu \quad x \to b - 0.$$

Доказательство. По определению эквивалентных функций в смысле интегрируемости для любого i=1,2,3

$$\exists b_i \in (a, b), \ m_i > 0, M_i > 0 : \forall x \in (b_i, b) \hookrightarrow m_i f_i(x) \leq g_i(x) \leq M_i f_i(x).$$

Следовательно, существует число $b' = \max\{b_1, b_2, b_3\}$ такое, что для любого $x \in (b', b)$ выполняются неравенства

$$\frac{m_1 m_2}{M_3} \frac{f_1(x) f_2(x)}{f_3(x)} \le \frac{g_1(x) g_2(x)}{g_3(x)} \le \frac{M_1 M_2}{m_3} \frac{f_1(x) f_2(x)}{f_3(x)}.$$

Пример 1. Исследовать на сходимость $\int\limits_{1}^{+\infty} \frac{\arctan\left(\frac{2+\cos x}{x^2}\right)}{(e^x+1)^{\alpha}} \, dx.$

Решение. Так как функция $f(x) = \frac{\arctan x \sin\left(\frac{2+\cos x}{x^2}\right)}{(e^x+1)^{\alpha}}$ непрерывна на $(0,+\infty)$, то она интегрируема на (1,b) для любого числа b>1. Заметим, что f(x)>0 при $x\in(1,+\infty)$, и при $x\to+\infty$ имеют место следующие эквивалентности в смысле сходимости интегралов:

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2} \qquad \Rightarrow \qquad \arctan x \overset{\text{cx.}}{\sim} 1;$$

$$\sin t \overset{\text{cx.}}{\sim} t \quad \text{при} \quad t = \frac{2 + \cos x}{x^2} \to 0 \quad \Rightarrow \quad \sin\left(\frac{2 + \cos x}{x^2}\right) \overset{\text{cx.}}{\sim} \frac{2 + \cos x}{x^2};$$

$$1 \le 2 + \cos x \le 3 \quad \Rightarrow \quad \sin\left(\frac{2 + \cos x}{x^2}\right) \overset{\text{cx.}}{\sim} \frac{2 + \cos x}{x^2} \overset{\text{cx.}}{\sim} \frac{1}{x^2};$$

$$\lim_{x \to +\infty} \frac{(e^x + 1)^\alpha}{e^{\alpha x}} = 1 \quad \Rightarrow \quad (e^x + 1)^\alpha \overset{\text{cx.}}{\sim} e^{\alpha x}.$$

Отсюда и из леммы 1 получаем

$$f(x) \stackrel{\text{сх.}}{\sim} \frac{1}{x^2 e^{\alpha x}}$$
 при $x \to +\infty$.

При $\alpha \geq 0$ имеем $\frac{1}{x^2\,e^{\alpha x}} \leq \frac{1}{x^2} \ \forall x \geq 1$. Поскольку согласно результатам примера 1 ?? главы 8 интеграл $\int\limits_{1}^{+\infty} \frac{1}{x^2}\,dx$ сходится, то при $\alpha \geq 0$ интеграл $\int\limits_{1}^{+\infty} \frac{1}{x^2\,e^{\alpha x}}\,dx$ сходится в силу первого признака сравнения.

При $\alpha < 0$ имеем $\frac{1}{x^2 e^{\alpha x}} \to +\infty$ $(x \to +\infty)$. Следовательно, $\exists x_0 \ge 1 : \forall x \ge x_0 \hookrightarrow \frac{1}{x^2 e^{\alpha x}} \ge 1$. Поскольку $\int\limits_1^{+\infty} dx$ расходится, то в силу первого признака сравнения $\int\limits_1^{+\infty} \frac{1}{x^2 e^{\alpha x}} dx$ при $\alpha < 0$ расходится.

Поэтому в силу второго признака сравнения $\int\limits_1^{+\infty}f(x)\,dx$ сходится при $\alpha\geq 0$ и расходится при $\alpha<0$.

§ 3. Исследование сходимости несобственных интегралов от знакопеременных функций

Теорема 1. (Критерий Коши.) $\Pi y cm b - \infty \leq a < b \leq + \infty$ и функция $f:(a,b) \to \mathbb{R}$ интегрируема по Лебегу на (a,b') для любого $b' \in (a,b)$. Несобственный интеграл $\int\limits_a^b f(x) \, dx$ сходится тогда и только тогда, когда выполняется условие Kоши:

$$\forall \varepsilon > 0 \; \exists \xi \in (a,b) : \forall b_1, b_2 \in (\xi,b) \hookrightarrow \left| \int_{b_1}^{b_2} f(x) \, dx \right| < \varepsilon.$$

Доказательство. Определим функцию $F(t) = \int_{a}^{t} f(x) dx$. По определению несобственный интеграл $\int\limits_{-\infty}^{\infty} f(x)\,dx$ сходится, если существует конечный предел $\lim_{t \to b-0} F(t)$. Из критерия Коши существования предела функции следует, что существование конечного предела $\lim_{t \to b-0} F(t)$ эквивалентно тому, что для любого $\varepsilon > 0$ существует левая полуокрестность (ξ,b) точки b такая, что $\forall b_1,b_2 \in (\xi,b) \hookrightarrow |F(b_2)-F(b_1)| < \varepsilon$. Используя равенство $F(b_2) - F(b_1) = \int\limits_{b_1}^{b_2} f(x) \, dx$, получаем требуемое утверждение.

Замечание. Критерий Коши чаще всего используется для доказательства расходимости несобственных интегралов от знакопеременных функций. Согласно критерию Коши, для доказательства расходимости интеграла $\int_{0}^{\infty} f(x) \, dx$ достаточно доказать, что выполняется отрицание к условию Коши сходимости этого интеграла, т.е.

$$\exists \varepsilon > 0 : \forall \xi \in (a, b) \ \exists b_1, b_2 \in (\xi, b) : \quad \left| \int_{b_1}^{b_2} f(x) \, dx \right| \ge \varepsilon.$$

Теорема 2. (Признак Дирихле.) Пусть функция f(x) непрерывна, а функция g(x) непрерывно дифференцируема на промежутке $[a,b), b \in$ $\in \mathbb{R} \cup \{+\infty\}$. Пусть выполнены условия

- 1) первообразная функции f ограничена на [a,b);
- 1) первозеразии (2) $\lim_{x\to b-0}g(x)=0;$ (3) функция g нестрого убывает на $[a,b),\ m.\ e.\ g'(x)\leq 0\ \forall x\in [a,b).$ Тогда несобственный интеграл $\int\limits_a^{\to b}f(x)\,g(x)\,dx$ сходится.

Доказательство. По условию первообразная F(x) функции f(x)ограничена, т. е.

$$\exists C \in \mathbb{R} : \forall x \in [a, b) \hookrightarrow |F(x)| \le C. \tag{1}$$

Для произвольного $b' \in (a,b)$ воспользуемся формулой интегрирования по частям:

$$\int_{a}^{b'} f(x) g(x) dx = \int_{a}^{b'} g(x) dF(x) = g(x) F(x) \Big|_{a}^{b'} - \int_{a}^{b'} F(x) g'(x) dx.$$
 (2)

Заметим, что в силу формулы Ньютона—Лейбница $\lim_{b'\to b-0}\int_a^{b'}g'(x)\,dx=$ $=\lim_{b'\to b-0}g(b')-g(a)=-g(a)$. Поскольку |g'(x)|=-g'(x), то $\int_a^{\to b}g'(x)\,dx$ сходится абсолютно, т.е. функция g' интегрируема по Лебегу на (a,b). Учитывая условие (1), в силу признака сравнения получаем интегрируемость по Лебегу функции $F(x)\,g'(x)$ на (a,b), а значит, $\int_a^{\to b}F(x)\,g'(x)\,dx$ сходится. Иными словами,

$$\exists \lim_{b' \to b-0} \int_{a}^{b'} F(x) g'(x) dx \in \mathbb{R}.$$
 (3)

Поскольку функция F(x) ограничена и $\lim_{x \to b-0} g(x) = 0$, то $\lim_{x \to b-0} g(x) F(x) = 0$, поэтому существует конечный предел $\lim_{b' \to b-0} g(x) F(x) \Big|_a^b = -g(a) F(a)$. Отсюда и из условий (2), (3) получаем существование конечного предела $\lim_{b' \to b-0} \int_a^{b'} f(x) g(x) \, dx$, т. е. сходимость интеграла $\int_a^{\to b} f(x) g(x) \, dx$.

Замечание. Исследование на сходимость и абсолютную сходимость несобственных интералов состоит из четырех этапов (обоснование сходимости, расходимости, абсолютной сходимости и отсутствия абсолютной сходимости при различных значениях параметра).

Пример 1. Исследовать на сходимость и абсолютную сходимость интеграл $\int\limits_{1}^{+\infty} \frac{\sin x\,dx}{x^{\alpha}}.$

Решение. Поскольку функция $\frac{\sin x}{x^{\alpha}}$ непрерывна на $[1,+\infty)$, то интеграл $\int\limits_{1}^{+\infty} \frac{\sin x \, dx}{x^{\alpha}}$ будем понимать как несобственный интеграл $\int\limits_{1}^{\to +\infty} \frac{\sin x \, dx}{x^{\alpha}}$.

- 1. Покажем, что при $\alpha > 0$ данный интеграл сходится по признаку Дирихле. Действительно, функция $\sin x$ имеет ограниченную первообразную $-\cos x$, а функция $\frac{1}{x^{\alpha}}$ при $\alpha>0$ убывает на $[1,+\infty)$ и стремится к нулю при $x \to +\infty$. Кроме того, функции $\sin x$ и $\frac{1}{x^{\alpha}}$ непрерывно дифференцируемы на $[1, +\infty)$. Следовательно, при $\alpha > 0$ все условия признака Дирихле выполнены и данный интеграл сходится.
- 2. Покажем, что при $\alpha \leq 0$ данный интеграл расходится в силу кри-

2. Покажем, что при
$$\alpha \leq 0$$
 данный интеграл расходится в силу критерия Коши. Действительно, при $\alpha \leq 0$, $n \in \mathbb{N}$ имеем
$$\int\limits_{2\pi n}^{2\pi n + \pi} \frac{\sin x \, dx}{x^{\alpha}} \geq \int\limits_{2\pi n}^{2\pi n + \pi} \frac{\sin x \, dx}{(2\pi n)^{\alpha}} = \frac{1}{(2\pi n)^{\alpha}} \int\limits_{2\pi n}^{2\pi n + \pi} \sin x \, dx = \frac{2}{(2\pi n)^{\alpha}} \geq 2$$
. Следовательно,

$$\exists \varepsilon_0 = 1 : \forall \xi \ \exists b_1 = 2\pi n > \xi, \ b_2 = 2\pi n + \pi > \xi : \left| \int_{b_1}^{b_2} \frac{\sin x \, dx}{x^{\alpha}} \right| > \varepsilon_0,$$

т.е. выполняется отрицание условия Коши сходимости исходного интеграла.

- 3. Покажем, что при lpha > 1 данный интеграл сходится абсолютно, т. е. функция $\frac{\sin x}{x^{\alpha}}$ интегрируема по Лебегу на $[1,+\infty)$. Поскольку $\left|\frac{\sin x}{x^{\alpha}}\right| \leq \frac{1}{x^{\alpha}}$, а функция $\frac{1}{x^{\alpha}}$ интегрируема по Лебегу на $[1,+\infty)$ при $\alpha>1$, то при этих α исходный интеграл сходится в силу первого признака сравнения.
- 4. Покажем, что при $\alpha \in (0,1]$ данный интеграл не является абсолютно сходящимся. Поскольку $0 \le |\sin x| \le 1$, то $|\sin x| \ge \sin^2 x = \frac{1-\cos 2x}{2}$. При $\alpha \in (0,1]$ интеграл $\int_1^{+\infty} \frac{dx}{x^{\alpha}}$ расходится, а интеграл $\int_1^{+\infty} \frac{\cos 2x \, dx}{x^{\alpha}}$ сходится по признаку Дирихле (так как функция $\cos 2x$ имеет ограниченную первообразную, а функция $\frac{1}{x^{\alpha}}$ монотонно стремится к нулю). Отсюда в силу следствия из свойства линейности несобственного интеграла получаем расходимость интеграла $\int\limits_{1}^{+\infty} \frac{1-\cos 2x}{2\,x^{\alpha}}\,dx$, т. е. интеграла $\int\limits_{1}^{+\infty} \frac{\sin^2 x}{x^{\alpha}}\,dx$.

Отсюда и из первого признака сравнения следует расходимость интеграла $\int\limits_{1}^{+\infty}\left|\frac{\sin x}{x^{\alpha}}\right|dx$ при $\alpha\in(0,1].$ Поскольку, как показано на первом этапе, при $\alpha>0$ исходный интеграл сходится, то при $\alpha\in(0,1]$ этот интеграл сходится условно.

Ответ: при $\alpha > 1$ данный интеграл сходится абсолютно, при $\alpha \in (0,1]$ сходится условно, при $\alpha \le 0$ – расходится.

Исследовать на сходимость интеграл $\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x}} \left(1 + \frac{\sin x}{\sqrt{x}} \right) dx.$

Решение. Преобразуем подынтегральное выражение: $\frac{\sin x}{\sqrt{x}} \left(1 + \frac{\sin x}{\sqrt{x}} \right) = \frac{\sin x}{\sqrt{x}} + \frac{\sin^2 x}{x} = \frac{\sin x}{\sqrt{x}} + \frac{1}{2x} - \frac{\cos 2x}{2x}.$ Поскольку интегралы $\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x}} \, dx, \quad \int_{1}^{+\infty} \frac{\cos 2x}{2x} \, dx$ сходятся по признаку Дирихле, а интеграл $\int_{1}^{+\infty} \frac{1}{x} \, dx$ расходится, то исходный интеграл расходится.

Последний пример показывает, что для знакопеременных функций при замене функции на эквивалентную сходимость интеграла может измениться. Действительно, $1 + \frac{\sin x}{\sqrt{x}} \overset{\text{CX.}}{\sim} 1$ при $x \to +\infty$, однако интеграл $\int\limits_{1}^{+\infty} \frac{\sin x}{\sqrt{x}} \, dx$ сходится, а интеграл $\int\limits_{1}^{+\infty} \frac{\sin x}{\sqrt{x}} \left(1 + \frac{\sin x}{\sqrt{x}}\right) dx$ расходится.

Теорема 3. (Признак Абеля.) Пусть функция f(x) непрерывна, а функция g(x) непрерывно дифференцируема на промежутке $[a,b), b \in \mathbb{R} \cup \{+\infty\}$. Пусть выполнены условия

- 1) интеграл $\int_{a}^{b} f(x) dx$ сходится;
- 2) функция g ограничена на [a,b);
- 3) функция g нестрого убывает на $[a,b),\ m.\ e.\ g'(x) \leq 0\ \forall x \in [a,b).$ Тогда несобственный интеграл $\int\limits_a^{\to b} f(x)\,g(x)\,dx$ сходится.

Доказательство. Так как функция g нестрого убывает и ограничена на [a,b), то существует $\lim_{x\to b-0}g(x)=g_0\in\mathbb{R}$. Заметим, что функция $\tilde{g}(x)=g(x)-g_0$ нестрого убывает на [a,b) и $\lim_{x\to b-0}\tilde{g}(x)=0$. Поэтому в силу признака Дирихле интеграл $\int\limits_a^b f(x)\,\tilde{g}(x)\,dx$ сходится. Поскольку $f(x)\,g(x)=f(x)\,\tilde{g}(x)+f(x)\,g_0$, причем интеграл $\int\limits_a^{\to b}f(x)\,dx$ сходится по условию теоремы, то по свойству линейности интеграл $\int\limits_a^{\to b}f(x)\,g(x)\,dx$ сходится.

Следствие. Пусть функция f(x) непрерывна, а функция g(x) непрерывно дифференцируема на промежутке $[a,b), b \in \mathbb{R} \cup \{+\infty\}$. Пусть

функция g монотонна на [a,b) и $\lim_{x\to b-0}g(x)=g_0\in\mathbb{R},\ g_0\neq 0$. Тогда интеграл $\int\limits_a^{\to b}f(x)\,g(x)\,dx$ имеет тот же тип сходимости и абсолютной сходимости, что и интеграл $\int\limits_a^{\to b}f(x)\,dx$.

Доказательство. Интегралы $\int_{a}^{\to b} |f(x)g(x)| dx$ и $\int_{a}^{\to b} |f(x)| dx$ сходятся или расходятся одновременно, так как $|f(x)g(x)| \stackrel{\text{сх.}}{\sim} |f(x)|$ при $x \to +\infty$. Докажем теперь, что интегралы $\int_{a}^{\to b} f(x)g(x) dx$ и $\int_{a}^{\to b} f(x) dx$ сходятся или расходятся одновременно. Если интеграл $\int_{a}^{\to b} f(x) dx$ сходится, то интеграл $\int_{a}^{\to b} f(x) g(x) dx$ сходится по признаку Абеля. Покажем, что из сходимости интеграла $\int_{a}^{\to b} f(x) g(x) dx$ следует сходимость интеграла $\int_{a}^{\to b} f(x) dx$. Так как $\lim_{x \to b \to 0} g(x) = g_0 \neq 0$, то существует число $a_1 \in [a,b)$ такое, что на промежутке $[a_1,b)$ функция g(x) не обращается в нуль. Поэтому функция $g_1(x) = \frac{1}{g(x)}$ непрерывно дифференцируема и монотонна на $[a_1,b)$. Поскольку $f(x) = f(x) g(x) g_1(x)$, то в силу признака Абеля из сходимости интеграла $\int_{a_1}^{\to b} f(x) dx$. Применяя принцип локализации, получаем требуемое утверждение.

Пример 3. Исследовать на сходимость и абсолютную сходимость интеграл $\int_{1}^{+\infty} x^{\alpha} \ln \left(1 + \frac{1}{x}\right) \sin x^{2} \, dx$.

Решение. Заметим, что $\ln\left(1+\frac{1}{x}\right)\sim\frac{1}{x}$ при $x\to+\infty$. Следовательно, для функции $g(x)=x\,\ln\left(1+\frac{1}{x}\right)$ справедливо равенство $\lim_{x\to+\infty}g(x)=1$. Кроме того,

$$g'(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x} = \frac{1}{x} - \frac{1}{2x^2} - \frac{1}{x}\left(1 - \frac{1}{x}\right) + o\left(\frac{1}{x^2}\right) =$$
$$= \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right) = \frac{1}{2x^2}(1 + o(1)), \quad x \to +\infty.$$

Поэтому существует число $x_0 > 1$ такое, что g'(x) > 0 для любого $x > x_0$. Поэтому согласно следствию из признака Абеля и принципу локализации исходный интеграл имеет тот же тип сходимости и абсолютной сходимости, что и интеграл

$$\int_{1}^{+\infty} x^{\alpha - 1} \sin x^{2} dx = \left/ \begin{array}{c} t = x^{2}, \\ x = \sqrt{t}, \\ dx = \frac{dt}{2\sqrt{t}} \end{array} \right/ = \frac{1}{2} \int_{1}^{+\infty} \frac{1}{t^{1 - \alpha/2}} \sin t \, dt.$$

Используя пример 1, получаем, что исходный интеграл сходится абсолютно при $1-\frac{\alpha}{2}>1$, т. е. при $\alpha<0$; сходится условно при $1-\frac{\alpha}{2}\in(0,1]$, т. е. при $\alpha\in[0;2)$ и расходится при $1-\frac{\alpha}{2}\leq0$ т. е. при $\alpha\geq2$.

Задача 1. Пусть функции f и g непрерывны на луче $[1,+\infty)$, интеграл $\int\limits_1^{+\infty} f(x)\,dx$ сходится абсолютно, а интеграл $\int\limits_1^{+\infty} g(x)\,dx$ сходятся условно. Может ли интеграл $\int\limits_1^{+\infty} f(x)\,g(x)\,dx$

- а) сходиться условно,
- б) расходиться?

ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ

§ 1. Равномерная сходимость функциональных последовательностей

Определение. Пусть на множестве X заданы функции $f_n(x)$, $(n=1,2,\ldots)$. Будем говорить, что функциональная последовательность $\{f_n(x)\}_{n=1}^\infty$ поточечно сходится к функции f(x) на множестве X и писать $f_n(x) \xrightarrow{X} f(x)$, если $\forall x \in X \hookrightarrow \lim_{n \to \infty} f_n(x) = f(x)$, т. е.

$$\forall x \in X \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \ge N \hookrightarrow |f_n(x) - f(x)| \le \varepsilon. \tag{1}$$

Определение. Будем говорить, что последовательность функций $\{f_n(x)\}_{n=1}^\infty$ равномерно сходится к функции f(x) на множестве X и писать $f_n(x) \Longrightarrow_X f(x)$, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \ge N \ \forall x \in X \hookrightarrow |f_n(x) - f(x)| \le \varepsilon. \tag{2}$$

Отличие условий (1) и (2) состоит в том, что в условии (1) число N свое для каждого x, а в условии (2) число N не зависит от x. Поэтому из равномерной сходимости следует поточечная сходимость.

Заметим, что если $f_n(x) \xrightarrow{X} f(x)$ и $f_n(x) \xrightarrow{\Longrightarrow} f(x)$, то последовательность $\{f_n(x)\}$ не может сходиться равномерно и ни к какой другой функции g(x), так как из условия $f_n(x) \xrightarrow{\Longrightarrow} g(x)$ следовало бы, что $g(x) = \lim_{n \to \infty} f_n(x) = f(x)$. В этом случае говорят, что последовательность $\{f_n(x)\}$ сходится к функции f(x) неравномерно на множестве X.

Теорема 1. (Критерий равномерной сходимости.)

$$f_n(x) \implies f(x) \iff \sup_{x \in X} |f_n(x) - f(x)| \to 0.$$

Доказательство. Поскольку условие $\forall x \in X \hookrightarrow |f_n(x) - f(x)| \le \varepsilon$ эквивалентно условию $\sup_{x \in X} |f_n(x) - f(x)| \le \varepsilon$, то условие (2) эквивалентно условию

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \ge N \hookrightarrow \sup_{x \in X} |f_n(x) - f(x)| \le \varepsilon,$$

T. e.
$$\sup_{x \in X} |f_n(x) - f(x)| \to 0.$$

Следствие 1. Последовательность $\{f_n(x)\}$ сходится к функции f(x) равномерно на множестве X тогда и только тогда, когда существует числовая последовательность $\{a_n\}$:

$$\forall x \in X \ \forall n \in \mathbb{N} \hookrightarrow |f_n(x) - f(x)| \le a_n \qquad u \qquad \lim_{n \to \infty} a_n = 0.$$
 (3)

Доказательство. 1. Пусть выполнено условие (3). Тогда $\forall n \in \mathbb{N} \hookrightarrow 0 \le \sup_{x \in X} |f_n(x) - f(x)| \le a_n$. Отсюда и из условия $\lim_{n \to \infty} a_n = 0$ по теореме о трех последовательностях получаем $\sup_{x \in X} |f_n(x) - f(x)| \to 0$, что в силу критерия равномерной сходимости означает $f_n(x) \Longrightarrow f(x)$.

2. Пусть $f_n(x) \Longrightarrow_X f(x)$. Определив $a_n = \sup_{x \in X} |f_n(x) - f(x)|$, из критерия равномерной сходимости получаем условие (3).

Следствие 2. $f_n(x) \underset{X}{\Longrightarrow} f(x)$ тогда и только тогда, когда

 $\exists \{x_n\}$ – последовательность элементов $X: f_n(x_n) - f(x_n) \not\to 0.$ (4)

Доказательство. 1. Пусть выполняется условие (4). Тогда $\sup_{x \in X} |f_n(x) - f(x)| \geq |f_n(x_n) - f(x_n)| \not\to 0$, следовательно, $\sup_{x \in X} |f_n(x) - f(x)| \not\to 0$, и по критерию равномерной сходимости $f_n(x) \ensuremath{\Longrightarrow} f(x)$.

2. Пусть $f_n(x) \xrightarrow{X} f(x)$. Для каждого $n \in \mathbb{N}$ обозначим $M_n = \sup_{x \in X} |f_n(x) - f(x)|$. По определению супремума $\forall n \in \mathbb{N} \ \exists x_n \in X$:

$$|f_n(x_n) - f(x_n)| > \begin{cases} M_n - \frac{1}{n}, & M_n \in \mathbb{R}, \\ 1, & M_n = +\infty. \end{cases}$$
 (5)

Предположим, что $f_n(x_n) - f(x_n) \to 0$. Тогда найдется номер N такой, что $\forall n \geq N \hookrightarrow |f_n(x_n) - f(x_n)| < 1$. Следовательно, согласно неравенству (5) имеем $\forall n \geq N \hookrightarrow M_n \in \mathbb{R}$. Отсюда и из неравенства (5) получаем,

что $M_n \overset{n \geq N}{\leq} |f_n(x_n) - f(x_n)| + \frac{1}{n} \to 0$ при $n \to \infty$. Последнее соотношение в силу критерия равномерной сходимости противоречит условию $f_n(x) \underset{X}{\Longrightarrow} f(x)$. Поэтому предположение $f_n(x_n) - f(x_n) \to 0$ неверно, а значит, выполнено условие (4).

Следствие 1 удобно для доказательства равномерной сходимости, а следствие 2 — для доказательства отсутствия равномерной сходимости конкретных функциональных последовательностей.

Определение. Функциональная последовательность $\{f_n(x)\}$ называется равномерно ограниченной на множестве X, если

$$\exists C \in \mathbb{R} : \forall n \in \mathbb{N} \ \forall x \in X \hookrightarrow \ |f_n(x)| \le C.$$

Лемма 1. Если последовательность $\{f_n(x)\}$ равномерно ограничена на множестве X и $g_n(x) \Longrightarrow 0$, то $f_n(x) g_n(x) \Longrightarrow 0$.

Доказательство. Так как последовательность $\{f_n(x)\}$ равномерно ограничена, то

$$\exists C \in \mathbb{R} : \forall n \in \mathbb{N} \hookrightarrow \sup_{x \in X} |f_n(x)| \le C.$$

Поскольку $g_n(x) \stackrel{}{\Longrightarrow} 0$ при $n \to \infty$, то $\sup_{x \in X} |g_n(x)| \to 0$. Следовательно,

$$\sup_{x \in X} |f_n(x) g_n(x)| \le C \cdot \sup_{x \in X} |g_n(x)| \to 0,$$

T. e.
$$f_n(x) g_n(x) \Longrightarrow X$$
 0.

Замечание. В условии леммы 1 равномерную ограниченность последовательности $\{f_n(x)\}$ нельзя заменить на ограниченность этой последовательности при любом фиксированном x.

Пусть, например, $X=(0,1), \ f_n(x)=f(x)=\frac{1}{x}, \ g_n(x)=\frac{\sin(nx)}{n}.$ Поскольку $|g_n(x)|\leq \frac{1}{n}\to 0$ при $n\to\infty$, то в силу следствия 1 имеем $g_n(x) \underset{(0,1)}{\Longrightarrow} 0$. Однако $f(x)\,g_n(x)=\frac{\sin(nx)}{nx} \underset{(0,1)}{\Longrightarrow} 0$, что следует из след-

ствия 2, поскольку для последовательности точек $x_n = \frac{1}{n} \in (0,1)$ имеет место соотношение $f(x_n) g_n(x_n) = \sin 1 \not\to 0$.

место соотношение $f(x_n) g_n(x_n) = \sin 1 \not\to 0$. Заметим, что $\forall x \in (0,1) \hookrightarrow \left| \frac{\sin(nx)}{nx} \right| \leq \frac{1}{nx} \to 0$ при $n \to \infty$, поэтому последовательность $\{f(x) g_n(x)\} = \{\frac{\sin(nx)}{nx}\}$ сходится к 0 на интервале (0,1), но неравномерно. **Замечание** . Из условий $f_n(x) \implies f(x)$ и $\lim_{n \to \infty} \frac{g_n(x)}{f_n(x)} = 1 \quad \forall x \in X$ не следует, что $g_n(x) \implies f(x)$.

Пусть, например, $X=(0,1), \quad f_n(x)=\frac{1}{n}, \quad g_n(x)=\frac{1}{n}+\frac{1}{n^2x}.$ Тогда $\forall x\in (0,1)\hookrightarrow \lim_{n\to\infty}\frac{g_n(x)}{f_n(x)}=\lim_{n\to\infty}\left(1+\frac{1}{nx}\right)=1, \quad f_n(x)\Longrightarrow 0$, но $g_n(x)\Longrightarrow 0$, так как $g_n\left(\frac{1}{n^2}\right)=\frac{1}{n}+1\not\to 0$.

Теорема 2. (Критерий Коши.) Последовательность $\{f_n(x)\}$ сходится κ функции f(x) равномерно на множестве X тогда и только тогда, когда выполняется условие Коши равномерной сходимости последовательности:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \ge N \ \forall p \in \mathbb{N} \ \forall x \in X \hookrightarrow |f_n(x) - f_{n+p}(x)| \le \varepsilon.$$
 (6)

Доказательство. 1. Пусть $f_n(x) \Longrightarrow f(x)$, тогда $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \geq N \ \forall x \in X \hookrightarrow |f_n(x) - f(x)| \leq \frac{\varepsilon}{2}$. Поскольку $\forall p \in \mathbb{N} \hookrightarrow n + p > n \geq N$, то $\forall x \in X \hookrightarrow |f_{n+p}(x) - f(x)| \leq \frac{\varepsilon}{2}$. Следовательно, $\forall x \in X \hookrightarrow |f_n(x) - f_n(x)| \leq |f_n(x) - f_n(x)| + |f_{n+p}(x) - f_n(x)| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \leq \varepsilon$, т. е. выполняется условие (6).

2. Пусть выполняется условие (6). Следовательно,

$$\forall x \in X \quad \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \ge N \ \forall p \in \mathbb{N} \hookrightarrow |f_n(x) - f_{n+p}(x)| \le \varepsilon,$$

т. е. для любого фиксированного $x \in X$ выполняется условие Коши сходимости числовой последовательности $\{f_n(x)\}$. В силу критерия Коши для числовых последовательностей $\forall x \in X$ последовательность $\{f_n(x)\}$ сходится. Обозначим $f(x) = \lim_{n \to \infty} f_n(x)$.

Перепишем условие (6) в виде

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \geq N \ \forall x \in X \quad \forall p \in \mathbb{N} \hookrightarrow |f_n(x) - f_{n+p}(x)| \leq \varepsilon$$

и рассмотрим отдельно условие $\forall p \in \mathbb{N} \hookrightarrow |f_n(x) - f_{n+p}(x)| \leq \varepsilon$. Поскольку $\lim_{p \to \infty} |f_n(x) - f_{n+p}(x)| = |f_n(x) - f(x)|$, то по теореме о предельном переходе в неравенствах $|f_n(x) - f(x)| \leq \varepsilon$. Итак, из условия (6) следует, что $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n \geq N \; \forall x \in X \hookrightarrow |f_n(x) - f(x)| \leq \varepsilon$, т. е. $f_n(x) \Longrightarrow f(x)$.

§ 2. Равномерная сходимость функциональных рядов

Определение. Пусть на множестве X задана функциональная последовательность $\{u_k(x)\}_{k=1}^\infty$. Функциональный ряд $\sum\limits_{k=1}^\infty u_k(x)$ называется равномерно сходящимся на множестве X, если последовательность его частичных сумм $S_n(x) = \sum\limits_{k=1}^n u_k(x)$ сходится равномерно на множестве X к сумме S(x) этого ряда. Аналогично определяется поточечная сходимость ряда.

Поскольку из равномерной сходимости последовательности следует поточечная сходимость последовательности, то из равномерной сходимости ряда следует поточечная сходимость этого ряда.

Определение. *Остатком* поточечно сходящегося ряда $\sum\limits_{k=1}^{\infty}u_k(x)$ называется

$$r_n(x) = S(x) - S_n(x) = \sum_{k=n+1}^{\infty} u_k(x).$$

Непосредственно из определения равномерной сходимости ряда и критерия равномерной сходимости функциональной последовательности следует

Теорема 1. (Критерий равномерной сходимости ряда.) Поточечно сходящийся функциональный ряд $\sum\limits_{k=1}^{\infty}u_k(x)$ сходится равномерно на множестве X тогда и только тогда, когда

$$r_n(x) \implies 0, \qquad m. \ e. \qquad \sup_{x \in X} |r_n(x)| \to 0.$$

Теорема 2. (Критерий Коши.) $Pяд \sum_{k=1}^{\infty} u_k(x)$ сходится равномерно на множестве X тогда и только тогда, когда выполняется условие Коши равномерной сходимости ряда:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \ge N \ \forall p \in \mathbb{N} \ \forall x \in X \hookrightarrow \left| \sum_{k=n+1}^{n+p} u_k(x) \right| \le \varepsilon.$$
 (1)

Доказательство состоит в применении критерия Коши равномерной сходимости последовательности к последовательности частичных сумм ряда. \Box

Следствие. (Необходимое условие равномерной сходимости ряда.) Если ряд $\sum_{k=1}^{\infty} u_k(x)$ сходится равномерно на множестве X, то $u_n(x) \implies 0$.

Доказательство. В силу критерия Коши из равномерной сходимости ряда следует условие Коши равномерной сходимости ряда (1). Полагая в условии (1) p=1, получаем

$$\forall \varepsilon>0 \ \exists N\in \mathbb{N}: \forall n\geq N \ \forall x\in X \hookrightarrow \ |u_{n+1}(x)|\leq \varepsilon,$$
 t. e. $u_n(x) \underset{X}{\Longrightarrow} 0.$

Замечание. Из необходимого условия равномерной сходимости ряда и следствия 2 § 1 вытекает, что если $\exists \{x_k\}$ – последовательность элементов $X: u_k(x_k) \not\to 0$ при $k \to \infty$, то ряд $\sum_{k=1}^\infty u_k(x)$ не является равномерно сходящимся на множестве X.

Замечание. Существование последовательности $\{x_k\}_{k=1}^{\infty} \subset X$ такой, что числовой ряд $\sum\limits_{k=1}^{\infty} u_k(x_k)$ расходится, <u>не доказывает</u> отсутствие равномерной сходимости ряда $\sum\limits_{k=1}^{\infty} u_k(x)$ на множестве X.

Действительно, пусть, например, $X = [-1, 1], u_k(x) = \frac{(-1)^k}{k} x$. Тогда

$$\sup_{x \in X} |r_n(x)| = \sup_{x \in [-1,1]} \left| \sum_{k=n+1}^{\infty} \frac{(-1)^k}{k} x \right| = \left| \sum_{k=n+1}^{\infty} \frac{(-1)^k}{k} \right| \to 0 \quad \text{при} \quad n \to \infty,$$

так как числовой ряд $\sum\limits_{k=1}^{\infty} \frac{(-1)^k}{k}$ сходится по признаку Лейбница. Поэтому функциональный ряд $\sum\limits_{k=1}^{\infty} u_k(x)$ сходится равномерно на множестве X. Однако при $x_k=(-1)^k\in X$ ряд $\sum\limits_{k=1}^{\infty} u_k(x_k)$ расходится.

Теорема 3. (Обобщенный признак сравнения.) Пусть $\forall k \in \mathbb{N} \ \forall x \in X \hookrightarrow |u_k(x)| \leq v_k(x) \ u \ pяд \sum_{k=1}^{\infty} v_k(x) \ cxoдится равномерно на множестве <math>X$. Тогда ряд $\sum_{k=1}^{\infty} u_k(x) \ cxoдится равномерно на множестве <math>X$.

Доказательство. В силу критерия Коши

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n \ge N \; \forall p \in \mathbb{N} \; \forall x \in X \hookrightarrow \left| \sum_{k=n+1}^{n+p} v_k(x) \right| \le \varepsilon.$$

Используя неравенство
$$\left|\sum_{k=n+1}^{n+p}u_k(x)\right| \leq \left|\sum_{k=n+1}^{n+p}v_k(x)\right|$$
, имеем

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n \ge N \; \forall p \in \mathbb{N} \; \forall x \in X \hookrightarrow \left| \sum_{k=n+1}^{n+p} u_k(x) \right| \le \varepsilon.$$

Еще раз применяя критерий Коши, получаем доказываемое утверждение.

Следствие. Если ряд $\sum_{k=1}^{\infty} |u_k(x)|$ сходится равномерно на множе $cmse\ X,\ mo\ \sum\limits_{k=1}^{\infty}u_{k}(x)\ cxoдumc$ я равномерно на множес $mse\ X.$

Теорема 4. (Признак Вейерштрасса.) $Ecnu \ \forall k \in \mathbb{N} \ \forall x \in X \hookrightarrow$ $\hookrightarrow |u_k(x)| \le a_k$ и числовой ряд $\sum\limits_{k=1}^\infty a_k$ сходится, то ряд $\sum\limits_{k=1}^\infty u_k(x)$ схо- $\partial umcя$ равномерно на множестве X

Доказательство состоит в применении обобщенного признака сравнения для $v_k(x) = a_k$.

Теорема 5. (Признак Дирихле.) Пусть на множестве X заданы две функциональные последовательности $\{a_k(x)\}_{k=1}^{\infty}$ и $\{b_k(x)\}_{k=1}^{\infty}$, удовлетворяющие условиям:

1) последовательность частичных сумм $A_n(x) = \sum_{i=1}^n a_k(x)$ ряда $\sum\limits_{i=1}^{\infty}a_{k}(x)$ равномерно ограничена, т. е. существует число C, не завися-

$$\forall n \in \mathbb{N} \quad \forall x \in X \hookrightarrow |A_n(x)| < C;$$

- 2) $b_k(x) \Longrightarrow_X 0 \ npu \ k \to \infty;$ 3) $\forall x \in X \ \forall k \in \mathbb{N} \hookrightarrow b_{k+1}(x) \le b_k(x).$

Тогда ряд $\sum_{k=1}^{\infty} a_k(x) b_k(x)$ равномерно сходится на множестве X.

Доказательство. Выполним преобразование Абеля:

$$\sum_{k=1}^{n} a_k(x) b_k(x) = \sum_{k=1}^{n} (A_k(x) - A_{k-1}(x)) b_k(x) =$$

$$= \sum_{k=1}^{n} A_k(x) b_k(x) - \sum_{k=0}^{n-1} A_k(x) b_{k+1}(x) \stackrel{A_0(x)=0}{=}$$

$$= A_n(x) b_n(x) + \sum_{k=1}^{n-1} A_k(x) (b_k(x) - b_{k+1}(x)). \tag{2}$$

Заметим, что $\sum_{k=1}^{n} (b_k(x) - b_{k+1}(x)) = b_1(x) - b_{n+1}(x) \implies b_1(x)$ при $n \to \infty$ $\to \infty$, т. е. ряд $\sum_{k=1}^{\infty} (b_k(x) - b_{k+1}(x))$ равномерно сходится, следовательно, равномерно сходится ряд $\sum_{k=1}^{\infty} C(b_k(x) - b_{k+1}(x))$. Поскольку $|A_k(x)| \leq C$, $b_k(x) - b_{k+1}(x) \ge 0$, то $|A_k(x)(b_k(x) - b_{k+1}(x))| \le C(b_k(x) - b_{k+1}(x))$, и в силу обобщенного признака сравнения получаем равномерную сходимость ряда $\sum_{k=1}^{\infty} A_k(x) (b_k(x) - b_{k+1}(x))$, т. е. существует функция S(x):

$$\sum_{k=1}^{n-1} A_k(x) \left(b_k(x) - b_{k+1}(x) \right) \implies S(x) \quad \text{при} \quad n \to \infty.$$
 (3)

В силу леммы 1 § 1 из равномерной сходимости последовательности $\{b_n(x)\}$ к 0 и равномерной ограниченности последовательности $\{A_n(x)\}$ следует, что $A_n(x)\,b_n(x) \ \Longrightarrow \ 0$ при $n \to \infty$. Отсюда и из соотношений (2), (3) следует, что

$$\sum_{k=1}^{n} a_k(x) b_k(x) \implies S(x) \quad \text{при} \quad n \to \infty,$$

т. е. ряд $\sum_{k=0}^{\infty} a_k(x) b_k(x)$ равномерно сходится на множестве X.

Задача 1. Останется ли справедливым признак Дирихле, если в нем условие 3) заменить

- а) условием $\forall x \in X \; \exists N: \; \forall k \geq N \hookrightarrow \; b_{k+1}(x) \leq b_k(x);$ б) условием $\exists N: \; \forall x \in X \; \forall k \geq N \hookrightarrow \; b_{k+1}(x) \leq b_k(x)$?

Теорема 6. (Признак Лейбница.) Пусть $\forall k \in \mathbb{N} \ \forall x \in X \hookrightarrow b_{k+1}(x) \leq b_k(x)$ и $b_k(x) \xrightarrow{\longrightarrow} 0$ при $k \to \infty$. Тогда ряд Лейбница $\sum_{k=1}^{\infty} (-1)^k b_k(x)$ равномерно сходится.

Доказательство. Обозначим
$$a_k(x)=(-1)^k$$
. Тогда $\left|\sum_{k=1}^n a_k(x)\right|=\left|\sum_{k=1}^n (-1)^k\right|\leq 1$. В силу признака Дирихле ряд Лейбница сходится. \square

Теорема 7. (Признак Абеля.) Пусть на множестве X заданы две функциональные последовательности $\{a_k(x)\}_{k=1}^{\infty}$ и $\{b_k(x)\}_{k=1}^{\infty}$, удовлетворяющие условиям:

- 1) ряд $\sum_{k=1}^{\infty} a_k(x)$ равномерно сходится на множестве X;
- (2) последовательность $\{b_k(x)\}$ равномерно ограничена, т. е.

$$\exists C \in \mathbb{R} : \ \forall k \in \mathbb{N} \ \forall x \in X \hookrightarrow \ |b_k(x)| \le C; \tag{4}$$

3) $\forall x \in X \quad \forall k \in \mathbb{N} \hookrightarrow b_{k+1}(x) \leq b_k(x)$. Тогда ряд $\sum_{k=1}^{\infty} a_k(x) b_k(x)$ равномерно сходится на множестве X.

Доказательство

Для любых $n\in\mathbb{N},\ x\in X$ определим $R_n(x)=\sum_{k=n+1}^\infty a_k(x).$ Так как $R_{n-1}(x)-R_n(x)=a_n(x),$ то

$$\sum_{k=n+1}^{n+p} a_k(x)b_k(x) = \sum_{k=n+1}^{n+p} (R_{k-1}(x) - R_k(x))b_k(x) =$$

$$= \sum_{k=n+1}^{n+p} R_{k-1}(x)b_k(x) - \sum_{k=n+1}^{n+p} R_k(x)b_k(x) =$$

$$= \sum_{k=n}^{n+p-1} R_k(x)b_{k+1}(x) - \sum_{k=n+1}^{n+p} R_k(x)b_k(x) =$$

$$= R_n(x)b_{n+1}(x) - R_{n+p}(x)b_{n+p+1}(x) +$$

$$+ \sum_{k=n+1}^{n+p} R_k(x)(b_{k+1}(x) - b_k(x)). \tag{6}$$

Для любого $n \in \mathbb{N}$ обозначим $M_n = \sup_{k \geq n} \sup_{x \in X} |R_k(x)|$. Так как ряд $\sum_{k=1}^{\infty} a_k(x)$ равномерно сходится на можестве X, то $\sup_{x \in X} |R_k(x)| \to 0$ при $k \to \infty$. Следовательно, $M_n \to 0$ при $n \to \infty$.

Поскольку для любого $p \in \mathbb{N}$ справедливы соотношения

$$\left| \sum_{k=n+1}^{n+p} R_k(x) (b_k(x) - b_{k+1}(x)) \right| \le M_n \sum_{k=n+1}^{n+p} |b_k(x) - b_{k+1}(x)| =$$

$$= M_n \sum_{k=n+1}^{n+p} (b_k(x) - b_{k+1}(x)) = M_n(b_{n+1}(x) - b_{n+p+1}(x)) \stackrel{(4)}{\leq} 2CM_n,$$

то из равенства (6) для любых $n \in \mathbb{N}, x \in X$ имеем

$$\left| \sum_{k=n+1}^{\infty} a_k(x) b_k(x) \right| \le 4CM_n.$$

Так как $M_n \to 0$ при $n \to \infty$, то $\forall \varepsilon > 0 \; \exists N: \; \forall n \geq N \hookrightarrow \; 4CM_n \leq \varepsilon$. Поэтому

$$\forall \varepsilon \ \exists N : \ \forall n \ge N \ \forall p \in \mathbb{N} \forall x \in X \hookrightarrow \left| \sum_{k=n+1}^{\infty} a_k(x) b_k(x) \right| \le \varepsilon.$$

Применяя критерий Коши, получаем равномерную сходимость ряда $\sum\limits_{k=1}^{\infty}a_k(x)\,b_k(x)$ на множестве X.

Непосредственно из признака Абеля вытекает следующее утверждение, позволяющее в некоторых случаях упрощать функциональный ряд при исследовании его равномерной сходимости.

Следствие. Пусть на множестве X заданы две функциональные последовательности $\{a_k(x)\}_{k=1}^{\infty}$ и $\{b_k(x)\}_{k=1}^{\infty}$, причем

$$\exists m > 0 \ \exists M > 0 : \ \forall k \in \mathbb{N} \ \forall x \in X \hookrightarrow \ m \le b_k(x) \le M$$

 $u\ \forall x\in X\ \forall k\in\mathbb{N}\hookrightarrow b_{k+1}(x)\leq b_k(x).$ Тогда на множестве X равномерная сходимость ряда $\sum\limits_{k=1}^\infty a_k(x)\,b_k(x)$ эквивалентна равномерной сходимости ряда $\sum\limits_{k=1}^\infty a_k(x).$

Исследование ряда $\sum_{k=1}^{\infty} u_k(x)$ на равномерную сходимость на множестве X можно проводить по следующему плану:

- 1. Если существует такое $x_0 \in X$, что числовой ряд $\sum_{k=1}^{\infty} u_k(x_0)$ расходится, то функциональный ряд $\sum_{k=1}^{\infty} u_k(x)$ не является поточечно (а значит, и равномерно) сходящимся на X.
- 2. Если существует последовательность точек $\{x_k\}_{k=1}^{\infty} \subset X$ такая, что $u_k(x_k) \not\to 0$ при $k \to \infty$, то не выполняется необходимое условие равномерной сходимости ряда, и, следовательно, ряд не сходится равномерно.
- 3. Если выполняются условия признака Вейерштрасса, то ряд сходится равномерно.
- 4. Если выполняются условия признака Лейбница, то ряд сходится равномерно.
- 5. Если с помощью следствия из признака Абеля возможно свести исследование исходного ряда к исследованию более простого ряда, сделать это.
- 6. Если выполняются условия признака Дирихле, то ряд сходится равномерно.
- 7. Если выполняется отрицание к условию Коши равномерной сходимости ряда

$$\exists \varepsilon > 0 : \forall N \in \mathbb{N} \ \exists n \geq N \ \exists p \in \mathbb{N} \ \exists x \in X : \quad \left| \sum_{k=n+1}^{n+p} u_k(x) \right| > \varepsilon,$$

то ряд не сходится равномерно. (Важно, что в отрицании условия Коши равномерной сходимости ряда точка x может зависеть от N, но не должна зависеть от индекса суммирования k.)

При решении конкретной задачи нужно найти тот из пунктов 1)–7), условия которого выполняются, затем это нужно обосновать и тем самым завершить исследование равномерной сходимости ряда.

Пример 1. Исследовать на сходимость и равномерную сходимость ряд $\sum\limits_{k=1}^{\infty} \frac{\sin(kx)}{k^{\alpha}}$ на отрезках $[0,\pi]$ и $[\delta,\pi]$, где $\delta \in (0,\pi)$.

Решение. 1. При $\alpha \leq 0$ члены ряда $\frac{\sin(kx)}{k^{\alpha}}$ не стремятся к нулю при $k \to \infty$ (т. к., например, при $x = \frac{\pi}{2}, \ k = 1 + 4n, \ n \in \mathbb{N}$ имеем $\frac{\sin(kx)}{k^{\alpha}} = \frac{1}{k^{\alpha}} \not\to 0$ при $k \to \infty$). Следовательно, при $\alpha \leq 0$ данный ряд не является поточечно сходящимся на отрезках $[0,\pi]$ и $[\delta,\pi]$.

- 2. При $\alpha>1$ ряд $\sum\limits_{k=1}^{\infty}\frac{\sin(kx)}{k^{\alpha}}$ сходится равномерно на отрезке $[0,\pi]$ (а значит, и на отрезке $[\delta,\pi]$). Это следует из признака Вейерштрасса, поскольку $\left|\frac{\sin(kx)}{k^{\alpha}}\right| \leq \frac{1}{k^{\alpha}}$, и числовой ряд $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ сходится при $\alpha>1$. 3. Покажем, что при $\alpha>0$ данный ряд сходится поточечно на отрезке
- $[0,\pi].$

Пусть $x \in (0,\pi]$. Покажем, что частичные суммы ряда $\sum_{k=1}^{\infty} \sin(kx)$ ограничены. Действительно,

$$\sum_{k=1}^{n} \sin(kx) = \frac{1}{\sin(x/2)} \sum_{k=1}^{n} \sin(kx) \sin(x/2) =$$

$$= -\frac{1}{2\sin(x/2)} \sum_{k=1}^{n} \left(\cos\left((k + \frac{1}{2})x\right) - \cos\left((k - \frac{1}{2})x\right) \right) =$$

$$= -\frac{1}{2\sin(x/2)} \left(\cos\left((n + \frac{1}{2})x\right) - \cos\left(\frac{x}{2}\right) \right),$$

следовательно.

$$\left| \sum_{k=1}^{n} \sin(kx) \right| \le \frac{1}{\sin(x/2)} \qquad \forall x \in (0, \pi] \quad \forall n \in \mathbb{N}.$$
 (5)

Так как при $\alpha>0$ последовательность $\left\{\frac{1}{k^{\alpha}}\right\}$ монотонно стремится к нулю, то в силу признака Дирихле для числовых рядов $\forall x \in (0,\pi]$ ряд $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k^{\alpha}}$ сходится. Поскольку в точке x=0: $\frac{\sin(kx)}{k^{\alpha}}=0$, данный ряд сходится и в точке x=0. Таким образом, при $\alpha>0$ ряд $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k^{\alpha}}$ сходится поточечно на отрезке $[0,\pi]$ (следовательно, и на отрезке $[\delta,\pi]$)

4. Покажем, что при $\alpha > 0$ данный ряд сходится равномерно на $[\delta, \pi]$. Из (5) следует, что

$$\left| \sum_{k=1}^{n} \sin(kx) \right| \le \frac{1}{\sin(\delta/2)} \qquad \forall x \in [\delta, \pi] \quad \forall n \in \mathbb{N}.$$

Следовательно, частичные суммы ряда $\sum_{k=1}^{\infty} \sin(kx)$ равномерно ограничены на $[\delta,\pi]$. Так как при $\alpha>0$ последовательность $\{\frac{1}{k^{\alpha}}\}$ монотонно стремится к нулю, то в силу признака Дирихле для функциональных рядов данный ряд сходится равномерно на $[\delta, \pi]$ при $\alpha > 0$.

5. Покажем, что при $\alpha \leq 1$ ряд $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k^{\alpha}}$ не является равномерно сходящимся на $[0,\pi]$, так как выполняется отрицание условия Коши равномерной сходимости этого ряда:

$$\exists \varepsilon > 0 : \forall N \in \mathbb{N} \ \exists n \geq N \ \exists p \in \mathbb{N} \ \exists x \in [0,\pi] : \quad \left| \sum_{k=n+1}^{n+p} \frac{\sin(kx)}{k^{\alpha}} \right| \geq \varepsilon.$$

Положим $p=n=N, \ x=\frac{\pi}{4N},$ тогда для любого $k\in\{n+1,n+2,\dots,n+p\}=\{N+1,\dots,2N\}$ выполняется $kx\in\left[\frac{\pi}{4},\frac{\pi}{2}\right]$ и, следовательно, $\sin(kx)\geq\sin(\pi/4)=\frac{1}{\sqrt{2}}.$ Поэтому

$$\sum_{k=n+1}^{n+p} \frac{\sin(kx)}{k^{\alpha}} = \sum_{k=N+1}^{2N} \frac{\sin(kx)}{k^{\alpha}} \ge \frac{1}{\sqrt{2}} \sum_{k=N+1}^{2N} \frac{1}{k^{\alpha}} \ge \frac{1}{\sqrt{2}} \sum_{k=N+1}^{2N} \frac{1}{k} \ge \frac{1}{\sqrt{2}} \frac{1}{2N} N = \frac{1}{2\sqrt{2}}.$$

Итак,

$$\exists \varepsilon = \frac{1}{2\sqrt{2}} : \forall N \in \mathbb{N} \ \exists n = N \ \exists p = N \ \exists x = \frac{\pi}{4N} : \ \left| \sum_{k=n+1}^{n+p} \frac{\sin(kx)}{k^{\alpha}} \right| \geq \varepsilon.$$

Следовательно, в силу критерия Коши ряд $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k^{\alpha}}$ не является равномерно сходящимся на $[0,\pi]$ при $\alpha \leq 1$. Отсюда и из пункта (3) следует, что при $\alpha \in (0,1]$ данный ряд сходится неравномерно на $[0,\pi]$.

Ответ. Данный ряд на отрезке $[0,\pi]$: расходится при $\alpha \leq 0$, сходится неравномерно при $\alpha \in (0,1]$, сходится равномерно при $\alpha > 1$; на отрезке $[\delta,\pi]$: расходится при $\alpha \leq 0$, сходится равномерно при $\alpha > 0$.

§ 3. Свойства равномерно сходящихся последовательностей и рядов

Теорема 1. (О непрерывности предельной функции.) Если последовательность $\{f_n(x)\}_{n=1}^{\infty}$ непрерывных на множестве X функций сходится к функции f(x) равномерно на множестве X, то функция f(x) непрерывна на множестве X.

Доказательство. Зафиксируем произвольные $x_0 \in X$ и $\varepsilon > 0$. Требуется доказать существование числа $\delta > 0$ такого, что

$$\forall x \in X \cap U_{\delta}(x_0) \hookrightarrow |f(x) - f(x_0)| < \varepsilon. \tag{1}$$

По определению равномерной сходимости существует число $N \in \mathbb{N}$, удовлетворяющее условию $\forall n \geq N \ \forall x \in X \hookrightarrow |f_n(x) - f(x)| \leq \frac{\varepsilon}{4}$. В частности:

$$\forall x \in X \hookrightarrow |f_N(x) - f(x)| \le \frac{\varepsilon}{4}.$$
 (2)

Поскольку функция $f_N(x)$ непрерывна на множестве X, то существует число $\delta > 0$ такое, что

$$\forall x \in X \cap U_{\delta}(x_0) \hookrightarrow |f_N(x) - f_N(x_0)| < \frac{\varepsilon}{2}. \tag{3}$$

Из соотношений (2) и (3) получаем

$$\forall x \in X \cap U_{\delta}(x_0) \hookrightarrow |f(x) - f(x_0)| \le |f(x) - f_N(x)| +$$

$$+ |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| < \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon.$$

Следовательно, справедливо соотношение (1).

Замечание. Из поточечной сходимости последовательности непрерывных функций $\{f_n(x)\}_{n=1}^{\infty}$ к функции f(x) не следует непрерывность функции f(x).

Например, последовательность непрерывных функций $f_n(x) = x^n$ сходится на отрезке [0,1] к разрывной функции $f(x) = \begin{cases} 0, & \text{если} \quad x \in [0,1), \\ 1, & \text{если} \quad x = 1. \end{cases}$

Теорема 2. (О непрерывности суммы ряда.) Если функциональный ряд $\sum_{k=1}^{\infty} u_k(x)$ сходится равномерно на множестве X и все функции $u_k(x)$ непрерывны на множестве X, то сумма ряда является непрерывной функцией.

Доказательство состоит в применении теоремы 1 к последовательности частичных сумм ряда $\sum_{k=1}^{\infty} u_k(x)$.

Теорема 3. (Об интегрировании предельной функции.) Пусть $X \subset \mathbb{R}^n$ – конечно измеримое множество. Пусть последовательность $\{f_n(x)\}_{n=1}^{\infty}$ интегрируемых на X функций сходится равномерно на X к функции f, интегрируемой на X. Тогда

$$\int_{Y} f(x) dx = \lim_{n \to \infty} \int_{Y} f_n(x) dx.$$
 (4)

Доказательство. По определению равномерной сходимости $\exists N: \forall n \geq N \ \forall x \in X \hookrightarrow |f_n(x) - f(x)| < \varepsilon$. Так как функция |f(x)| + 1 интегрируема на множестве X, то, применяя теорему Лебега к последовательности $\{f_n(x)\}_{n=N}^{\infty}$, получаем доказываемое утверждение.

Следствие. Если последовательность непрерывных на компакте $X \subset \mathbb{R}^n$ функций f_n сходится равномерно к функции f, то справедливо равенство (4).

Доказательство. По теореме 1 функция $f: X \to \mathbb{R}$ непрерывна. В силу достаточного условия интегрируемости из непрерывности функций f_n и f на компакте X следует их интегрируемость на X, что позволяет применить теорему 3.

Теорема 4. (О почленном интегрировании ряда.) Пусть функциональный ряд $\sum_{k=1}^{\infty} u_k(x)$ сходится равномерно на компакте $X \subset \mathbb{R}^n$ и все функции u_k непрерывны на X. Тогда

$$\sum_{k=1}^{\infty} \int_{X} u_k(x) dx = \int_{X} \left(\sum_{k=1}^{\infty} u_k(x) \right) dx.$$

Доказательство. Применяя следствие из теоремы 3 к последовательности $S_n(x) = \sum_{k=1}^n u_k(x)$, получаем

$$\sum_{k=1}^{\infty} \int\limits_X u_k(x) \, dx = \lim_{n \to \infty} \sum_{k=1}^n \int\limits_X u_k(x) \, dx = \lim_{n \to \infty} \int\limits_X S_n(x) \, dx =$$

$$= \int\limits_X \left(\lim_{n \to \infty} S_n(x) \right) dx = \int\limits_X \left(\sum_{k=1}^\infty u_k(x) \right) dx.$$

Теорема 5. (О дифференцировании предельной функции.) Пусть последовательность $\{f_n(x)\}_{n=1}^{\infty}$ непрерывно дифференцируемых на отрезке [a,b] функций сходится хотя бы в одной точке $x_0 \in [a,b]$, а последовательность производных $\{f'_n(x)\}_{n=1}^{\infty}$ сходится равномерно на [a,b]. Тогда последовательность $\{f_n(x)\}_{n=1}^{\infty}$ сходится равномерно на [a,b] к некоторой непрерывно дифференцируемой функции f(x), причем

$$\left(\lim_{n\to\infty} f_n(x)\right)' = \lim_{n\to\infty} f'_n(x) \qquad \forall x \in [a,b]. \tag{5}$$

Доказательство. По условию существует функция $\varphi(x)$: $f_n'(x) \underset{[a,b]}{\Longrightarrow} \varphi(x)$ при $n \to \infty$. Поскольку функции $f_n'(x)$ непрерывны, то в силу теоремы 1 функция $\varphi(x)$ непрерывна. Из условия теоремы следует также, что существует $\lim_{n\to\infty} f_n(x_0) = A \in \mathbb{R}$. Определим функцию $f(x) = A + \int\limits_{x_0}^x \varphi(t) \, dt$. Заметим, что $f_n(x) = f_n(x_0) + \int\limits_{x_0}^x f_n'(t) \, dt$, следовательно, $|f_n(x) - f(x)| \le |f_n(x_0) - A| + \int\limits_{x_0}^x |f_n'(t) - \varphi(t)| \, dt$. Поэтому $\sup_{x \in [a,b]} |f_n(x) - f(x)| \le |f_n(x_0) - A| + (b-a) \sup_{t \in [a,b]} |f_n'(t) - \varphi(t)|$.

Поскольку $f_n'(x) \underset{[a,b]}{\Longrightarrow} \varphi(x)$ при $n \to \infty$, то $\sup_{t \in [a,b]} |f_n'(t) - \varphi(t)| \to 0$ при $n \to \infty$. Следовательно,

$$\sup_{x \in [a,b]} |f_n(x) - f(x)| \le$$

$$\leq |f_n(x_0) - A| + (b - a) \sup_{t \in [a,b]} |f'_n(t) - \varphi(t)| \stackrel{n \to \infty}{\longrightarrow} 0,$$

т. е. $f_n(x) \Longrightarrow_{[a,b]} f(x)$ при $n \to \infty$. Из определения функции f(x) следует, что $f'(x) = \varphi(x) = \lim_{n \to \infty} f'_n(x)$.

Замечание. Из того, что последовательность $\{f_n(x)\}_{n=1}^{\infty}$ непрерывно дифференцируемых на отрезке [a,b] функций равномерно сходится к функции f(x), не следует соотношение (5).

Например, последовательность функций $f_n(x) = \frac{\arctan x}{n}$ сходится к функции f(x) = 0 равномерно на отрезке [0,1], однако в точке x = 0 имеем $\left(\lim_{n \to \infty} f_n(x)\right)' = f'(x) = 0 \neq 1 = \lim_{n \to \infty} f'_n(x)$.

Теорема 6. (О почленном дифференцировании ряда.) Пусть функциональный ряд $\sum_{k=1}^{\infty} u_k(x)$ сходится хотя бы в одной точке $x_0 \in [a,b]$, все функции $u_k(x)$ непрерывно дифференцируемы на [a,b], и ряд $\sum_{k=1}^{\infty} u_k'(x)$ сходится равномерно на [a,b]. Тогда ряд $\sum_{k=1}^{\infty} u_k(x)$ сходится равномерно на [a,b] и справедлива формула почленного дифференцирования ряда

$$\left(\sum_{k=1}^{\infty} u_k(x)\right)' = \sum_{k=1}^{\infty} u'_k(x) \qquad \forall x \in [a, b].$$

Доказательство. Примененяя теорему 5 к последовательности частичных сумм $S_n(x) = \sum_{k=1}^n u_k(x)$, получаем, что эта последовательность равномерно сходится на [a,b], и для любого $x \in [a,b]$ справедливы равенства

$$\left(\sum_{k=1}^{\infty} u_k(x)\right)' = \left(\lim_{n \to \infty} S_n(x)\right)' = \lim_{n \to \infty} S_n'(x) = \sum_{k=1}^{\infty} u_k'(x). \quad \Box$$

ГЛАВА11

СТЕПЕННЫЕ РЯДЫ

§ 1. Обобщенный признак Коши сходимости числового ряда

Напомним, что верхним пределом числовой последовательности $\{x_k\}_{k=1}^{\infty}$ называется точная верхняя грань множества всех (конечных и бесконечных) частичных пределов последовательности $\{x_k\}$:

$$\overline{\lim_{k \to \infty}} x_k =$$

$$=\supigg\{A\in\overline{\mathbb{R}}:\exists$$
 подпослед. $\{x_{k_j}\}_{j=1}^\infty\ :\ A=\lim_{j o\infty}x_{k_j}igg\}.$

Лемма 1. Если $A > \overline{\lim}_{k \to \infty} x_k$, то

$$\exists k_0 \in \mathbb{N} : \forall k \ge k_0 \hookrightarrow x_k \le A.$$

Доказательство. Предположим противное: $\forall k_0 \in \mathbb{N} \ \exists k \geq k_0: x_k > A$. Тогда существует подпоследовательность $\{x_{k_j}\}_{j=1}^\infty$ последовательности $\{x_k\}_{k=1}^\infty$ такая, что

$$\forall j \in \mathbb{N} \hookrightarrow x_{k_j} > A. \tag{1}$$

В силу теоремы Больцано–Вейерштрасса любая числовая последовательность имеет конечный или бесконечный частичный предел. Пусть $B \in \mathbb{R}$ — некоторый частичный предел последовательности $\{x_{k_j}\}_{j=1}^\infty$. Из условия (1) в силу теоремы о предельном переходе в неравенствах следует, что $B \geq A$. Поскольку B является частичным пределом последовательности $\{x_k\}_{k=1}^\infty$, то по определению супремума $\overline{\lim_{k\to\infty}} x_k \geq B \geq A$, что противоречит условию леммы.

Теорема 1. (Обобщенный признак Коши сходимости числового ряда.) Пусть все члены числового ряда $\sum\limits_{k=0}^{\infty}a_k$ неотрицательны и пусть $q=\overline{\lim_{k\to\infty}}\sqrt[k]{a_k}$. Тогда

а) если
$$q<1$$
, то ряд $\sum\limits_{k=0}^{\infty}a_{k}$ сходится;

- б) если q > 1, то $a_k \not\to 0$ при $k \to \infty$, и ряд $\sum_{k=0}^{\infty} a_k$ расходится;
- в) если q=1, то ряд $\sum_{k=0}^{\infty}a_k$ может сходиться, а может и расходиться.

Доказательство. а) Пусть q < 1. Определим некоторое q' из условия q < q' < 1. Поскольку $q' > q = \overline{\lim_{k \to \infty}} \sqrt[k]{a_k}$, то в силу леммы 1 имеем $\exists k_0 \in \mathbb{N} : \forall k > k_0 \hookrightarrow \sqrt[k]{a_k} \le q'$. Отсюда в силу признака Коши в допредельной форме следует сходимость ряда $\sum_{k=0}^{\infty} a_k$.

б) Пусть q > 1. Поскольку $q = \overline{\lim_{k \to \infty}} \sqrt[k]{a_k}$ является супремумом множе-

- б) Пусть q>1. Поскольку $q=\lim_{k\to\infty}\sqrt[k]{a_k}$ является супремумом множества частичных пределов последовательности $\left\{\sqrt[k]{a_k}\right\}$, то в силу определения супремума из неравенства q>1 следует, что существует q'>1 частичный предел последовательности $\left\{\sqrt[k]{a_k}\right\}$. Это означает существование подпоследовательности $\left\{\sqrt[k]{a_{k_j}}\right\}$ такой, что $\lim_{j\to\infty}\sqrt[k]{a_{k_j}}=q'>1$. Отсюда по определению предела получаем $\exists j_0\in\mathbb{N}:\forall j>j_0\hookrightarrow\sqrt[k]{a_{k_j}}\geq 1$ и, следовательно, $\forall j>j_0\hookrightarrow a_{k_j}\geq 1$. Поэтому $a_{k_j}\not\to 0$ при $j\to\infty$, а значит, $a_k\not\to 0$ при $k\to\infty$ и ряд $\sum_{k=0}^\infty a_k$ расходится.
- в) Для ряда $\sum\limits_{k=0}^{\infty} \frac{1}{k^{\alpha}}$ имеем $q=\overline{\lim_{k\to\infty}}\sqrt[k]{a_k}=\lim_{k\to\infty}\left(\frac{1}{\sqrt[k]{k}}\right)^{\alpha}=1$, а как показано ранее, при $\alpha>1$ этот ряд сходится, а при $\alpha\leq 1$ расходится.

§ 2. Комплексные ряды

Напомним, что модулем комплексного числа z=x+iy (где $x={\rm Re}\,z,$ $y={\rm Im}\,z)$ называется вещественное число $|z|=\sqrt{x^2+y^2}.$

Определение. Комплексное число S называется npedenom последовательности комплексных чисел $\{S_n\}_{n=1}^{\infty}$ $\left(S=\lim_{n\to\infty}S_n\right)$, если $\lim_{n\to\infty}|S-S_n|=0$.

Заметим, что

$$S = \lim_{n \to \infty} S_n \quad \Leftrightarrow \quad \left(\operatorname{Re} S = \lim_{n \to \infty} \operatorname{Re} S_n \quad \text{и} \quad \operatorname{Im} S = \lim_{n \to \infty} \operatorname{Im} S_n \right).$$
 (1)

Определение. Пусть задана последовательность комплексных чисел $\{c_k\}_{k=0}^\infty$. Ряд $\sum_{k=0}^\infty c_k$ называется cxodsumumcs, если существует конечный предел последовательности частичных сумм этого ряда. Комплексный ряд $\sum_{k=0}^\infty c_k$ называется $abconomno\ cxodsumumcs$, если сходится вещественный ряд $\sum_{k=0}^\infty |c_k|$.

Из условия (1) следует, что сходимость комплексного ряда $\sum_{k=0}^{\infty} c_k$ эквивалентна сходимости двух вещественных рядов $\sum_{k=0}^{\infty} \operatorname{Re} c_k$ и $\sum_{k=0}^{\infty} \operatorname{Im} c_k$.

Лемма 1. Если комплексный ряд $\sum\limits_{k=0}^{\infty} c_k$ сходится абсолютно, то он сходится.

Доказательство. Обозначим $a_k = \operatorname{Re} c_k$, $b_k = \operatorname{Im} c_k$. Поскольку $|a_k| \leq \sqrt{a_k^2 + b_k^2} = |c_k|$, то в силу признака сравнения из сходимости ряда $\sum_{k=0}^{\infty} |c_k|$ следует абсолютная сходимость вещественного числового ряда $\sum_{k=0}^{\infty} a_k$, а значит, и его сходимость. Аналогично получаем сходимость вещественного числового ряда $\sum_{k=0}^{\infty} b_k$. Следовательно, комплексный ряд $\sum_{k=0}^{\infty} c_k = \sum_{k=0}^{\infty} (a_k + ib_k)$ сходится.

Определение. Пусть на некотором множестве Z задана последовательность комплекснозначных функций $\{S_n(z)\}_{n=1}^{\infty}$. Будем говорить, что последовательность комплекснозначных функций $\{S_n(z)\}_{n=1}^{\infty}$ сходится к функции S(z) равномерно на множестве Z, если последовательность вещественнозначных функций $\{|S_n(z)-S(z)|\}_{n=1}^{\infty}$ сходится к 0 равномерно на множестве Z.

Определение. Будем говорить, что комплексный функциональный ряд $\sum\limits_{k=0}^{\infty}u_k(z)$ сходится равномерно на множестве Z, если последовательность частичных сумм $S_n(z)=\sum\limits_{k=0}^nu_k(z)$ этого ряда сходится равномерно к сумме S(x) этого ряда, т.е. $|S_n(x)-S(x)| \Longrightarrow 0$ при $n \to \infty$.

Теорема 1. (Признак Вейерштрасса равномерной сходимости комплексного ряда.) Пусть на множестве $Z \subset \mathbb{C}$ задан комплексный функциональный ряд $\sum\limits_{k=0}^{\infty}u_k(z)$. Пусть $\forall k \in \mathbb{N} \ \forall z \in Z \hookrightarrow \ |u_k(z)| \leq a_k \ u \ nycmb$ вещественный числовой ряд $\sum\limits_{k=0}^{\infty}a_k$ сходится. Тогда ряд $\sum\limits_{k=0}^{\infty}u_k(z)$ сходится равномерно на множестве Z.

Доказательство. В силу признака сравнения вещественный числовой ряд $\sum\limits_{k=0}^{\infty}|u_k(z)|$ сходится для любого $z\in Z$. Отсюда в силу леммы 1 получаем поточечную сходимость функционального ряда $\sum\limits_{k=0}^{\infty}u_k(z)$ на множестве Z, т. е. $\forall z\in Z$ $\exists\lim_{n\to\infty}S_n(z)=S(z)\in\mathbb{C}$, где $S_n(z)=\sum\limits_{k=0}^nu_k(z)$. Заметим, что

$$|S_n(z) - S(z)| = \left| \sum_{k=n+1}^{\infty} u_k(z) \right| \le \sum_{k=n+1}^{\infty} a_k \xrightarrow{n \to \infty} 0,$$

следовательно,
$$\sup_{z\in Z}|S_n(z)-S(z)|\to 0$$
 при $n\to\infty$, т.е. $|S_n(z)-S(z)|$ \Longrightarrow_Z 0 при $n\to\infty$.

§ 3. Степенные ряды

Определение. Пусть задана последовательность комплексных чисел $\{c_k\}_{k=0}^{\infty}$ и комплексное число w_0 . Комплексный функциональный ряд $\sum_{k=0}^{\infty} c_k (w-w_0)^k$ с комплексной переменной w называется cmenenhum ps-dom.

Введение комплексной переменной $z=w-w_0$ сводит ряд $\sum\limits_{k=0}^{\infty}c_k(w-w_0)^k$ к ряду $\sum\limits_{k=0}^{\infty}c_kz^k$. Имея в виду эту замену переменной, в дальнейшем будем рассматривать степенные ряды вида $\sum\limits_{k=0}^{\infty}c_kz^k$.

Определение . *Радиусом сходимости* степенного ряда $\sum\limits_{k=0}^{\infty} c_k z^k$ называется $R_{\rm cx} \in [0,+\infty) \bigcup \{+\infty\}$, определяемое по формуле Коши-Адамара:

$$\frac{1}{R_{\rm cx}} = \overline{\lim}_{k \to \infty} \sqrt[k]{|c_k|} \tag{1}$$

(при этом будем полагать, что $\frac{1}{0} = +\infty$, $\frac{1}{+\infty} = 0$).

Круг на комплексной плоскости с центром в нуле и радусом $R_{\rm cx}$ называется *кругом сходимости* степенного ряда $\sum\limits_{k=0}^{\infty} c_k z^k$. Если $R_{\rm cx} = +\infty$, то кругом сходимости считается вся комплексная плоскость $\mathbb C$.

Теорема 1. (О круге сходимости степенного ряда.)

Cтепенной ряд $\sum\limits_{k=0}^{\infty}c_kz^k$

- 1) абсолютно сходится внутри круга сходимости (т. е. на множестве $\{z \in \mathbb{C} : |z| < R_{\rm cx}\}$),
- 2) расходится вне круга сходимости (т. е. на множестве $\{z\in\mathbb{C}:|z|>R_{\mathrm{cx}}\}$),
- 3) на границе круга сходимости (т. е. на множестве $\{z \in \mathbb{C} : |z| = R_{\rm cx}\}$) может сходиться, а может и расходиться.

 $(3 decb\ R_{cx}$ - $paduyc\ cxodumocmu\ cmenenhoro\ pяda.)$

Доказательство. Зафиксируем произвольное комплексное число $z \neq 0$ и исследуем сходимость ряда $\sum\limits_{k=0}^{\infty}|c_kz^k|$ с помощью обобщенного признака Коши. Определим

$$q = \overline{\lim}_{k \to \infty} \sqrt[k]{|c_k z^k|} = |z| \ \overline{\lim}_{k \to \infty} \sqrt[k]{|c_k|} = \frac{|z|}{R_{\rm cx}}$$

(где при $R_{\rm cx} = 0, \, |z| > 0$ следует положить $q = +\infty$).

1. При z=0 ряд $\sum\limits_{k=0}^{\infty}|c_kz^k|$ состоит из нулей, а значит, сходится. Если $0<|z|< R_{\rm cx},$ то q<1, и в силу обобщенного признака Коши ряд $\sum\limits_{k=0}^{\infty}|c_kz^k|$ сходится, т. е. ряд $\sum\limits_{k=0}^{\infty}c_kz^k$ сходится абсолютно.

- 2. Если $|z|>R_{\rm cx}$, то q>1, и в силу обобщенного признака Коши члены ряда $\sum\limits_{k=0}^{\infty}|c_kz^k|$ не стремятся к нулю, следовательно, не стремятся к нулю и члены ряда $\sum\limits_{k=0}^{\infty}c_kz^k$, а значит, ряд $\sum\limits_{k=0}^{\infty}c_kz^k$ расходится. (Заметим, что из расходимости ряда $\sum\limits_{k=0}^{\infty}|c_kz^k|$ не следует расходимость ряда $\sum\limits_{k=0}^{\infty}c_kz^k$, и поэтому важно, что ряд $\sum\limits_{k=0}^{\infty}|c_kz^k|$ не только расходится, но и его члены не стремятся к нулю.)
- 3. Рассмотрим, например, ряд $\sum\limits_{k=0}^{\infty}\frac{z^k}{k+1}$. По формуле Коши–Адамара для радиуса сходимости $R_{\rm cx}$ имеем $\frac{1}{R_{\rm cx}}=\overline{\lim_{k\to\infty}\frac{1}{\sqrt[k]{k+1}}}=\lim_{k\to\infty}\frac{1}{\sqrt[k]{k+1}}=\lim_{k\to\infty}e^{-\ln(k+1)/k}=e^0=1.$

При z=1 исходный ряд имеет вид $\sum\limits_{k=0}^{\infty}\frac{1}{k+1}=\sum\limits_{k=1}^{\infty}\frac{1}{k}$ и, как показано в примере 1 § 2 главы 7, расходится. При z=-1 исходный ряд имеет вид $\sum\limits_{k=0}^{\infty}\frac{(-1)^k}{k+1}$. Этот ряд сходится в силу признака Лейбница.

Теорема 2. (Первая теорема Абеля.) Пусть степенной ряд $\sum_{k=0}^{\infty} c_k z^k$ сходится в точке $z=z_0$. Тогда в любой точке $z=z_1$ такой, что $|z_1|<<|z_0|$ этот ряд сходится абсолютно.

Доказательство. Так как степенной ряд сходится в точке $z=z_0$, то в силу пункта 2) теоремы о круге сходимости радиус сходимости этого ряда удовлетворяет неравенству $R_{\rm cx} \geq |z_0|$. Следовательно, $|z_1| < |z_0| \leq R_{\rm cx}$, и согласно пункту 1) теоремы о круге сходимости в точке $z=z_1$ степенной ряд сходится абсолютно.

Следующая лемма дает альтернативный по отношению к формуле Коши-Адамара способ определения радиуса сходимости степенного ряда. Этот способ удобен в тех случаях, когда коэффициенты степенного ряда выражаются через факториал.

Лемма 1. Пусть $m, n \in \mathbb{N}$ и для последовательности чисел $c_k \in \mathbb{C} \setminus \{0\}$ существует конечный или бесконечный $\lim_{k \to \infty} \frac{|c_{k+1}|}{|c_k|}$. Тогда для радиуса сходимости $R_{\text{сх}}$ степенного ряда $\sum_{k=0}^{\infty} c_k z^{mk+n}$ справедлива формула

$$\frac{1}{R_{\rm cx}} = \sqrt[m]{\lim_{k \to \infty} \frac{|c_{k+1}|}{|c_k|}}.$$

Доказательство. Определим $R_1 \in [0,+\infty) \bigcup \{+\infty\}$ из условия $\frac{1}{R_1} = \int_{k\to\infty}^{\infty} \frac{|c_{k+1}|}{|c_k|}$ и исследуем сходимость числового ряда $\sum_{k=0}^{\infty} |c_k z^{mk+n}|$ с помощью признака Даламбера в предельной форме. Определим

$$q = \lim_{k \to \infty} \frac{|c_{k+1} z^{m(k+1)+n}|}{|c_k z^{mk+n}|} = \frac{|z|^m}{R_1^m}.$$

Согласно признаку Даламбера ряд $\sum\limits_{k=0}^{\infty}|c_kz^{mk+n}|$ сходится при q<1, т. е. при $|z|< R_1,$ и расходится при q>1, т. е. при $|z|>R_1.$

Пусть $R_{\rm cx}$ – радиус сходимости степенного ряда $\sum\limits_{k=0}^{\infty} c_k z^{mk+n}$. В силу теоремы о круге сходимости ряд $\sum\limits_{k=0}^{\infty} |c_k z^{mk+n}|$ сходится при $|z| < R_{\rm cx}$ и расходится при $|z| > R_{\rm cx}$.

Следовательно,
$$R_1 = R_{\rm cx}$$
 и $\frac{1}{R_{\rm cx}} = \frac{1}{R_1} = \sqrt[m]{\lim_{k \to \infty} \frac{|c_{k+1}|}{|c_k|}}$.

Замечание. Из леммы 1 следует, что если существует конечный или бесконечный $\lim_{k\to\infty} \frac{|c_{k+1}|}{|c_k|}$, то радиусы сходимости рядов $\sum\limits_{k=0}^\infty c_k z^{2k}$ и $\sum\limits_{k=0}^\infty c_k z^{2k+1}$ могут быть определены формулой $\frac{1}{R_{\rm cx}} = \sqrt{\lim_{k\to\infty} \frac{|c_{k+1}|}{|c_k|}}$.

Теорема 3. (О равномерной сходимости степенного ряда.)

Пусть $R_{\rm cx}>0$ – радиус сходимости степенного ряда $\sum\limits_{k=0}^{\infty}c_kz^k$. Тогда для любого числа $r\in(0,R_{\rm cx})$ ряд $\sum\limits_{k=0}^{\infty}c_kz^k$ сходится равномерно в круге $Z=\{z\in\mathbb{C}:|z|\leq r\}.$

Доказательство. Заметим, что $\forall z \in Z \ \forall k \in \mathbb{N} \hookrightarrow |c_k z^k| \leq |c_k| \, r^k$. Поскольку $|r| = r < R_{\mathrm{cx}}$, то в силу теоремы о круге сходимости числовой

ряд $\sum\limits_{k=0}^{\infty}|c_kr^k|$ сходится. Отсюда и из признака Вейерштрасса равномерной сходимости комплексного ряда следует равномерная сходимость ряда $\sum\limits_{k=0}^{\infty}c_kz^k$ на множестве Z.

Замечание. В самом круге сходимости, т. е. на множестве $Z = \{z \in \mathbb{C} : |z| < R_{\rm cx}\}$, степенной ряд может сходиться неравномерно. Например, ряд $\sum\limits_{k=0}^{\infty} z^k$ имеет радус сходимости $R_{\rm cx} = 1$, но на множестве $Z = \{z \in \mathbb{C} : |z| < 1\}$ этот ряд сходится неравномерно, так как не выполнено необходимое условие равномерной сходимости ряда. Действительно, $\sup_{z \in Z} |z^k| = 1 \not\to 0$ при $k \to \infty$, следовательно, $z^k \Longrightarrow 0$ при $k \to \infty$.

Теорема 4. (Вторая теорема Абеля.) Пусть степенной ряд $\sum_{k=0}^{\infty} c_k z^k$ сходится в точке $z_1 \in \mathbb{C}$. Тогда этот ряд сходится равномерно на отрезке $[0, z_1] = \{tz_1 : t \in [0, 1]\}$.

Доказательство. При $z=tz_1$ имеем $c_kz^k=c_kz_1^kt^k=a_k(t)b_k(t)$, где $a_k(t)=a_k=c_kz_1^k$, $b_k(t)=t^k$. По условию числовой ряд $\sum\limits_{k=0}^{\infty}a_k=\sum\limits_{k=0}^{\infty}c_kz_1^k$ сходится, а значит, функциональный ряд $\sum\limits_{k=0}^{\infty}a_k(t)$ сходится равномерно на любом множестве. Функциональная последовательность $\{b_k(t)\}$ равномерно ограничена на отрезке [0,1] и монотонна по k $(0\leq k_{k+1}(t)\leq b_k(t)\leq 1 \quad \forall k\in\mathbb{N},\;\forall t\in[0,1])$. В силу признака Абеля ряды $\sum\limits_{k=0}^{\infty}(\operatorname{Re}a_k(t))b_k(t)$ и $\sum\limits_{k=0}^{\infty}(\operatorname{Im}a_k(t))b_k(t)$ сходятся равномерно на [0,1]. Поэтому ряд $\sum\limits_{k=0}^{\infty}a_k(t)b_k(t)$ сходится равномерно на [0,1], а значит, ряд $\sum\limits_{k=0}^{\infty}c_kz^k$ сходится равномерно на отрезке $[0,z_1]$.

Теорема 5. Радиусы сходимости степенных рядов $\sum\limits_{k=1}^{\infty} c_k \, k \, z^{k-1} \, u$ $\sum\limits_{k=0}^{\infty} \frac{c_k}{k+1} z^{k+1}$, полученных формальным почленным дифференцированием u интегрированием степенного ряда $\sum\limits_{k=0}^{\infty} c_k \, z^k$, совпадают c радиусом сходимости исходного ряда $\sum\limits_{k=0}^{\infty} c_k \, z^k$.

Доказательство. Покажем сначала, что радиус сходимости R_1 ряда $\sum_{k=0}^{\infty} c_k \, k \, z^k$ равен радиусу сходимости R исходного ряда $\sum_{k=0}^{\infty} c_k \, z^k$. В силу формулы Коши–Адамара имеем

$$\frac{1}{R_1} = \overline{\lim}_{k \to \infty} \sqrt[k]{|c_k|} \ k = \overline{\lim}_{k \to \infty} \sqrt[k]{|c_k|} \ \lim_{k \to \infty} \sqrt[k]{k} = \overline{\lim}_{k \to \infty} \sqrt[k]{|c_k|} = \frac{1}{R}.$$

(Здесь мы воспользовались тем, что $\lim_{k\to\infty} \sqrt[k]{k} = \lim_{k\to\infty} e^{\ln k/k} = e^0 = 1.)$ Следовательно, $R_1 = R$.

Покажем теперь, что ряд $\sum\limits_{k=0}^{\infty}c_k\,k\,z^k=\sum\limits_{k=1}^{\infty}c_k\,k\,z^k$ и ряд $\sum\limits_{k=1}^{\infty}c_k\,k\,z^{k-1}$ сходятся или расходятся одновременно. При z=0 эти ряды, очевидно, сходятся. Пусть $z\neq 0$. Обозначим $S_n=\sum\limits_{k=1}^nc_k\,k\,z^k,\,\widetilde{S}_n=\sum\limits_{k=1}^nc_k\,k\,z^{k-1}$. Если существует $\lim\limits_{n\to\infty}S_n=S\in\mathbb{C}$, то существует $\lim\limits_{n\to\infty}\widetilde{S}_n=\lim\limits_{n\to\infty}\frac{S_n}{z}=\frac{S}{z}\in\mathbb{C}$. Обратно, если существует $\lim\limits_{n\to\infty}\widetilde{S}_n=\widetilde{S}\in\mathbb{C}$, то существует $\lim\limits_{n\to\infty}S_n=z\,\widetilde{S}$.

Следовательно, радиус сходимости R_1 ряда $\sum_{k=1}^{\infty} c_k \, k \, z^k$ равен радиусу сходимости R_2 ряда $\sum_{k=1}^{\infty} c_k \, k \, z^{k-1}$. Итак, $R_2 = R_1 = R$, т. е. при почленном дифференцировании степенного ряда его радиус сходимости не изменяется.

Поскольку ряд $\sum_{k=0}^{\infty} c_k \, z^k$ получается при почленном дифференцировании ряда $\sum_{k=0}^{\infty} \frac{c_k}{k+1} z^{k+1}$, то радиусы сходимости этих рядов также совпадают.

Далее мы будем рассматривать вещественные степенные ряды вида $\sum\limits_{k=0}^{\infty}a_k\,(x-x_0)^k$, где $a_k,x,x_0\in\mathbb{R}$. Поскольку вещественный степенной ряд можно рассматривать как комплексный степенной ряд, то радиус сходимости $R_{\rm cx}$ ряда $\sum\limits_{k=0}^{\infty}a_k\,(x-x_0)^k$ можно определять из формулы Коши-Адамара или из леммы 1, в которых следует положить $c_k=a_k$. Интервал $(x_0-R_{\rm cx},x_0+R_{\rm cx})$ называется интервалом сходимости ряда $\sum\limits_{k=0}^{\infty}a_k\,(x-x_0)^k$.

Теорема 6. (Об интегрировании и дифференцировании степенного ряда.) Пусть вещественный степенной ряд $\sum_{k=0}^{\infty} a_k (x-x_0)^k = f(x)$ имеет радиус сходимости $R_{\rm cx} > 0$. Тогда

1) для любого $x \in (x_0 - R_{cx}, x_0 + R_{cx})$ справедлива формула почленного интегрирования степенного ряда:

$$\int_{x_0}^{x} f(t) dt = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x - x_0)^{k+1};$$

2) в интервале сходимости $(x_0 - R_{\rm cx}, x_0 + R_{\rm cx})$ функция f имеет производные любого порядка, получаемые почленным дифференцированием ряда $\sum_{k=0}^{\infty} a_k (x-x_0)^k$:

$$f^{(n)}(x) = \sum_{k=0}^{\infty} a_k \left((x - x_0)^k \right)^{(n)} \quad \forall x \in (x_0 - R_{\text{cx}}, x_0 + R_{\text{cx}}); \tag{2}$$

3) коэффициенты степенного ряда $\sum_{k=0}^{\infty} a_k (x-x_0)^k = f(x)$ однозначно определяются по функции f(x) с помощью формулы $a_k = \frac{f^{(k)}(x_0)}{k!}$.

Доказательство. 1. Для любого $x \in (x_0 - R_{\rm cx}, x_0 + R_{\rm cx})$ определим число $r \in (0, R_{\rm cx})$ из условия $x \in [x_0 - r, x_0 + r]$. В силу теоремы о равномерной сходимости степенного ряда ряд $\sum_{k=0}^{\infty} a_k \, (t-x_0)^k$ равномерно сходится на отрезке $[x_0 - r, x_0 + r]$. Отсюда по теореме о почленном интегрировании равномерно сходящегося функционального ряда (теорема 4 §3 главы 10) следует, что

$$\int_{x_0}^x f(t) dt = \sum_{k=0}^\infty a_k \int_{x_0}^x (t - x_0)^k dt = \sum_{k=0}^\infty \frac{a_k}{k+1} (x - x_0)^{k+1}.$$

2. Покажем, что для любого $x \in (x_0 - R_{\rm cx}, x_0 + R_{\rm cx})$ существует конечная производная f'(x), причем $f'(x) = \sum_{k=1}^{\infty} a_k \, k \, (x-x_0)^{k-1}$. Зафиксируем произвольное $x \in (x_0 - R_{\rm cx}, x_0 + R_{\rm cx})$ и определим число $r \in (0, R_{\rm cx})$ из условия $x \in (x_0 - r, x_0 + r)$.

В силу теоремы 5 радиус сходимости ряда $\sum_{k=1}^{\infty} a_k \, k \, (t-x_0)^{k-1}$, полученного почленным дифференцированием ряда $\sum_{k=0}^{\infty} a_k \, (t-x_0)^k$, равен $R_{\rm cx}$. Следовательно, в силу неравенства $r < R_{\rm cx}$ и теоремы о равномерной сходимости степенного ряда этот ряд сходится равномерно на отрезке $[x_0-r,x_0+r]$. Поэтому согласно теореме о почленном дифференцировании функционального ряда ряд $\sum_{k=0}^{\infty} a_k \, (t-x_0)^k$ можно дифференцировать почленно на отрезке $[x_0-r,x_0+r]$. В частности, существует $f'(x)=\sum_{k=1}^{\infty} a_k \, k \, (x-x_0)^{k-1}$. Следовательно, при n=1 справедлива формула (2).

Проводя те же рассуждения для ряда $\sum_{k=1}^{\infty} a_k k (x-x_0)^{k-1} = f'(x)$, получаем формулу (2) при n=2 и так далее. По индукции формула (2) справедлива для любого $n \in \mathbb{N}$, что доказывает второе утверждение теоремы.

3. Заметим, что

$$((x-x_0)^k)^{(n)} = \begin{cases} k(k-1)\cdots(k-n+1)(x-x_0)^{k-n}, & k \ge n, \\ 0, & k < n, \end{cases}$$

следовательно, $((x-x_0)^k)^{(n)}|_{x=x_0} = \begin{cases} n!, & k=n, \\ 0, & k \neq n. \end{cases}$

Отсюда и из формулы (2) следует, что $f^{(n)}(x_0) = a_n n!$, что доказывает утверждение третьего пункта теоремы.

§ 4. Ряд Тейлора

Определение. Функция f(x) называется бесконечно дифференцируемой в точке x_0 , если в этой точке существуют производные любого порядка функции f.

Определение. Пусть функция f(x) бесконечно дифференцируема в точке x_0 . Тогда ряд

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

называется рядом Тейлора функции f(x) в точке x_0 .

Определение. Функция f(x) называется *регулярной* или *аналитической* в точке x_0 , если она бесконечно дифференцируема в этой точке и

ряд Тейлора функции f(x) в точке x_0 сходится к функции f(x) в некоторой окрестности точки x_0 :

$$\exists \delta > 0 : \forall x \in U_{\delta}(x_0) \hookrightarrow f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Замечание. Из пункта (3) теоремы об интегрировании и дифференцировании степенного ряда следует, что если функция f(x) может быть представлена как сумма степенного ряда $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ с радиусом сходимости $R_{\rm cx}>0$, то этот ряд является рядом Тейлора функции f(x) в точке x_0 . В этом случае функция f является регулярной в точке x_0 .

Замечание. Ряд Тейлора в точке x_0 бесконечно дифференцируемой функции f(x) может сходиться не к функции f(x), а к некоторой другой функции, не совпадающей с f(x) в сколь угодно малой окрестности точки x_0 . В этом случае функция f(x) не является регулярной в точке x_0 .

Пусть

$$f(x) = \begin{cases} e^{-1/x^2}, & \text{если } x \neq 0, \\ 0, & \text{если } x = 0. \end{cases}$$
 (1)

Заметим, что $\forall k \in \mathbb{N} \hookrightarrow \lim_{x \to 0} \frac{1}{x^k} e^{-1/x^2} = \lim_{t \to +\infty} t^{k/2} e^{-t} = 0.$

Отсюда следует, что

$$f'(x) = \begin{cases} \frac{2}{x^3} e^{-1/x^2}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

$$f''(x) = \begin{cases} \left(\frac{4}{x^6} - \frac{6}{x^4}\right) e^{-1/x^2}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

По индукции легко показать, что

$$f^{(n)}(x) = \begin{cases} P_{3n}(1/x) e^{-1/x^2}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

где $P_{3n}(t)$ – многочлен степени 3n от t.

Следовательно, все коэффициенты ряда Тейлора функции f(x) в точке $x_0=0$ равны нулю. Поэтому сумма ряда Тейлора функции f(x) в точке x_0 равна нулю и не совпадает с функцией f(x) в сколь угодно малой окрестности точки x_0 . Таким образом, хотя функция (1) бесконечно дифференцируема, она не является регулярной в точке $x_0=0$.

Напомним, что остаточным членом формулы Тейлора n раз дифференцируемой функции f(x) в точке x_0 называется

$$r_n(x) = f(x) - S_n(x),$$
 где $S_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$

Замечание. Остаточный член фомулы Тейлора не всегда совпадает с остатком ряда Тейлора. Например, для функции (1) $S_n(x) = 0 \quad \forall n \in$ $\in \mathbb{N} \ \forall x \in \mathbb{R}$, поэтому остаток ряда Тейлора тождественно равен нулю, а остаточный член формулы Тейлора $r_n(x) = f(x) \neq 0 \quad \forall x \neq 0.$

Непосредственно из определений следует, что функция f(x) является регулярной в точке x_0 тогда и только тогда, когда

$$\exists \delta > 0 : \forall x \in U_{\delta}(x_0) \hookrightarrow \lim_{n \to \infty} r_n(x) = 0.$$
 (2)

Как показывает пример функции (1), для доказательства регулярности функции недостаточно показать, что радиус сходимости ряда Тейлора этой функции $R_{\rm cx} > 0$. Нужно проверить условие (2).

Теорема 1. (Достаточное условие регулярности.) Пусть существует число $\delta > 0$ такое, что функция f бесконечно дифференцируема в $U_{\delta}(x_0)$

$$\exists M > 0: \ \forall n \in \mathbb{N} \ \forall x \in U_{\delta}(x_0) \hookrightarrow |f^{(n)}(x)| \leq M.$$

Tогда функция f регулярна в точке x_0 и

$$\forall x \in U_{\delta}(x_0) \hookrightarrow f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$
 (3)

Доказательство. В силу формулы Тейлора с остаточным членом в форме Лагранжа для любого $x \in U_{\delta}(x_0)$ существует число ξ , лежащее между x и x_0 (а значит, $\xi \in U_\delta(x_0)$), такое, что $r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$. Следовательно,

$$\forall x \in U_{\delta}(x_0) \hookrightarrow |r_n(x)| \le M \frac{\delta^{n+1}}{(n+1)!}.$$
 (4)

Покажем, что $\forall a>0\hookrightarrow\lim_{n\to\infty}\frac{a^n}{n!}=0.$ Определим $n_0\in\mathbb{N}$ из условия $n_0>2a$, тогда при $n>n_0$ имеем

$$\frac{a^n}{n!} = \frac{a^{n_0}}{n_0!} \frac{a^{n-n_0}}{n(n-1)\cdots(n_0+1)} < \frac{a^{n_0}}{n_0!} \frac{a^{n-n_0}}{n_0^{n-n_0}} < \frac{a^{n_0}}{n_0!} \left(\frac{1}{2}\right)^{n-n_0} \stackrel{n\to\infty}{\longrightarrow} 0.$$

Отсюда и из соотношения (4) получаем

$$\forall x \in U_{\delta}(x_0) \hookrightarrow \lim_{n \to \infty} r_n(x) = 0.$$

Поэтому функция f регулярна в точке x_0 и выполнено соотношение (3).

§ 5. Ряды Тейлора для показательной, гиперболических и тригонометрических функций

Определение. Ряд Тейлора функции f(x) в точке $x_0 = 0$ называется рядом Маклорена этой функции.

Теорема 1. Ряды Маклорена функций e^x , $\operatorname{ch} x$, $\operatorname{sh} x$, $\operatorname{cos} x$, $\operatorname{sin} x$ сходятся к этим функциям на всей числовой прямой: для любого $x \in \mathbb{R}$ справедливы равенства

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!},\tag{1}$$

$$\operatorname{ch} x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}, \qquad \operatorname{sh} x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \tag{2}$$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}, \qquad \sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}. \tag{3}$$

Доказательство. Так как для любого числа $\delta > 0$ при $x \in U_{\delta}(0) = (-\delta, \delta)$ справедливы соотношения $|(e^x)^{(n)}| = e^x < e^{\delta}$, то выполнено достаточное условие регулярности функции $f(x) = e^x$ в точке $x_0 = 0$ и по теореме 1 § 4 для любого числа $\delta > 0$ справедливо соотношение (3) из § 4. Поэтому для любого $x \in \mathbb{R}$ справедливо равенство (1). Аналогично, используя ограниченность последовательности всех производных функций $\operatorname{ch} x$, $\operatorname{sh} x$, $\operatorname{cos} x$, $\operatorname{sin} x$ на любом интервале $(-\delta, \delta)$ и применяя теорему 1 § 4, получаем равенства (2), (3).

Теорема 2. Для любого $z \in \mathbb{C}$ справедливо равенство

$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}.$$

Доказательство. В силу теоремы 1 радиус сходимости степенного ряда $\sum_{k=0}^{\infty} \frac{z^k}{k!}$ равен $+\infty$. Поэтому согласно теореме о круге сходимости этот

ряд сходится абсолютно для любого $z \in \mathbb{C}$. Обозначим

$$f(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!} \qquad \forall z \in \mathbb{C}.$$
 (4)

Зафиксируем произвольное комплексное число z = x + iy, где $x, y \in \mathbb{R}$. Требуется доказать равенство $f(z) = e^z$. Согласно определению экспоненты комплексного числа требуется доказать равенство

$$f(z) = e^x(\cos y + i\sin y). \tag{5}$$

Покажем сначала, что

$$f(z_1 + z_2) = f(z_1)f(z_2) \qquad \forall z_1, z_2 \in \mathbb{C}.$$
 (6)

По теореме о перемножении абсолютно сходящихся рядов, которая для комплексных рядов доказывается точно так же, как и для вещественных, согласно равенству (4) имеем

$$f(z_1)f(z_2) = \left(\sum_{k=0}^{\infty} \frac{z_1^k}{k!}\right) \left(\sum_{n=0}^{\infty} \frac{z_2^n}{n!}\right) = \sum_{j=1}^{\infty} \frac{z_1^{k_j}}{k_j!} \frac{z_2^{n_j}}{n_j!},$$

где $\{(k_j,n_j)\}_{j\in\mathbb{N}}$ — произвольная последовательность пар элементов множества $\mathbb{N}_0=\mathbb{N}\cup\{0\}$, задающая взаимно однозначное отображение $\mathbb{N}_0\to \mathbb{N}_0^2$. Выберем эту последовательность методом «диагоналей», т.е. так, что ее первый член — это пара (0,0), сумма элементов которой равна 0, следующие два элемента последовательности $\{(k_j,n_j)\}$ — это пары с суммой элементов 1, затем 2 и т.д. Таким образом,

$$\sum_{i=1}^{\infty} \frac{z_1^{k_j}}{k_j!} \frac{z_2^{n_j}}{n_j!} = \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{z_1^k z_2^{m-k}}{k! (m-k)!}.$$

Следовательно,

$$f(z_1)f(z_2) = \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{k=0}^{m} \frac{m!}{k! (m-k)!} z_1^k z_2^{m-k}.$$

Используя формулу бинома Ньютона и равенство (4), получаем

$$f(z_1)f(z_2) = \sum_{m=0}^{\infty} \frac{1}{m!} (z_1 + z_2)^m = f(z_1 + z_2).$$

Тем самым доказано соотношение (6).

Из равенства (4) следует, что

$$f(iy) = \sum_{k=0}^{\infty} \frac{(iy)^k}{k!} = \sum_{k-\text{Четн.}} \frac{(iy)^k}{k!} + \sum_{k-\text{Heч.}} \frac{(iy)^k}{k!} =$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n y^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} \frac{(-1)^n y^{2n+1}}{(2n+1)!}.$$

Поэтому согласно теореме 1 имеем $f(iy) = \cos y + i \sin y$. Из той же теоремы 1 и формулы (4) следует, что $f(x) = e^x$ при $x \in \mathbb{R}$. Поэтому, используя равенство (6), получаем равенство (5).

Определим гиперболические и тригонометрические функции комплексного переменного по формулам

$$\operatorname{ch} z = \sum_{k=0}^{\infty} \frac{z^{2k}}{(2k)!}, \qquad \operatorname{sh} z = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!},$$
$$\operatorname{cos} z = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}, \qquad \operatorname{sin} z = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}.$$

Из теоремы 1 следует, что данные ряды сходятся при любом вещественном z. Отсюда и из теоремы о круге сходимости степенного ряда следует, что радиусы сходимости этих степенных рядов равны $+\infty$, т. е. эти ряды сходятся при любом $z \in \mathbb{C}$. Из теоремы 1 следует также, что при вещественном z определенные здесь функции совпадают с известными ранее гиперболическими и тригонометрическими функциями.

Лемма 1. Для любого комплексного числа z справедливы формулы Эйлера:

$$e^{iz} = \cos z + i \sin z,$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

Доказательство

$$\begin{split} e^{iz} &= \sum_{k=0}^{\infty} \frac{(iz)^k}{k!} = \sum_{n=0}^{\infty} \frac{(iz)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(iz)^{2n+1}}{(2n+1)!} = \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = \cos z + i \sin z. \end{split}$$

Остальные формулы Эйлера следуют из первой.

§ 6. Остаточный член формулы Тейлора в интегральной форме. Ряды Тейлора для степенной, логарифмической и других функций

Для того чтобы доказать регулярность степенной и некоторых других функций, нам потребуется представление остаточного члена формулы Тейлора в интегральной форме.

Теорема 1. (Формула Тейлора с остаточным членом в интегральной форме.) Если функция f(x) на интервале $(x_0 - \delta, x_0 + \delta)$ имеет непрерывные производные до (n+1)-го порядка включительно, то для остаточного члена формулы Тейлора $r_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ справедливо представление в интегральной форме:

$$r_n(x) = \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt \qquad \forall x \in (x_0 - \delta, x_0 + \delta).$$

Доказательство. Поскольку $r_0(x)=f(x)-f(x_0)=\int\limits_{x_0}^x f'(t)\,dt=$ $=\frac{1}{0!}\int\limits_{x_0}^x (x-t)^0 f'(t)\,dt,$ то при n=0 теорема справедлива. Предположим, что теорема справедлива для n=s-1, т. е.

$$r_{s-1}(x) = \frac{1}{(s-1)!} \int_{x_0}^{x} (x-t)^{s-1} f^{(s)}(t) dt.$$

Интегрируя по частям, получаем

$$r_{s-1}(x) = \frac{1}{(s-1)!} \int_{x_0}^x f^{(s)}(t) \left(-\frac{1}{s} \right) d((x-t)^s) =$$

$$= -\frac{1}{s!} f^{(s)}(t) (x-t)^s \Big|_{x_0}^x + \frac{1}{s!} \int_{x_0}^x (x-t)^s f^{(s+1)}(t) dt =$$

$$= \frac{1}{s!} f^{(s)}(x_0) (x-x_0)^s + \frac{1}{s!} \int_{x_0}^x (x-t)^s f^{(s+1)}(t) dt.$$

Отсюда получаем формулу для остаточного члена порядка s:

$$r_s(x) = f(x) - \sum_{k=0}^{s} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k =$$

$$= r_{s-1}(x) - \frac{1}{s!} f^{(s)}(x_0) (x - x_0)^s = \frac{1}{s!} \int_{x_0}^x (x - t)^s f^{(s+1)}(t) dt.$$

Следовательно, теорема справедлива для n = s. По индукции получаем справедливость теоремы для любого натурального n.

Теорема 2. Ряд Маклорена степенной функции $f(x) = (1+x)^{\alpha}$ сходится к этой функции при $x \in (-1,1)$:

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} C_{\alpha}^{k} x^{k} \qquad \forall x \in (-1,1),$$

$$\text{∂e} \quad C_{\alpha}^0=1, \quad C_{\alpha}^k=\frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}, \quad k\in\mathbb{N}, \quad \alpha\in\mathbb{R}.$$

Доказательство. Зафиксируем $x \in (-1,1)$. Записывая остаточный член формулы Маклорена функции $f(x) = (1+x)^{\alpha}$ в интегральной форме и учитывая, что $f^{(k)}(x) = \alpha(\alpha-1)\cdots(\alpha-k+1)(1+x)^{\alpha-k}$, получаем

$$r_n(x) = \frac{1}{n!} \int_0^x (x - t)^n f^{(n+1)}(t) dt =$$

$$= \frac{\alpha(\alpha - 1) \cdots (\alpha - n)}{n!} \int_0^x (x - t)^n (1 + t)^{\alpha - n - 1} dt \quad \stackrel{t = \tau x}{=}$$

$$\stackrel{t = \tau x}{=} \frac{\alpha(\alpha - 1) \cdots (\alpha - n)}{n!} \int_0^1 x^n (1 - \tau)^n (1 + \tau x)^{\alpha - n - 1} x d\tau =$$

$$= \lambda_n \int_0^1 \left(\frac{1 - \tau}{1 + \tau x}\right)^n (1 + \tau x)^{\alpha - 1} d\tau,$$

304

где введено обозначение

$$\lambda_n = \frac{\alpha(\alpha - 1)\cdots(\alpha - n)}{n!} x^{n+1}.$$
 (1)

Поскольку $\forall x \in (-1,1) \ \forall \tau \in [0,1] \hookrightarrow 1 + \tau x \ge 1 - \tau$, то $\left(\frac{1-\tau}{1+\tau x}\right)^n \le 1$. Следовательно,

$$|r_n(x)| \le |\lambda_n| \int_0^1 (1+\tau x)^{\alpha-1} d\tau = |\lambda_n| C, \tag{2}$$

где величина $C=\int\limits_0^1 (1+\tau x)^{\alpha-1}\,d au$ не зависит от n. Покажем, что

$$\lim_{n \to \infty} \lambda_n = 0. \tag{3}$$

Если x=0, то согласно равенству (1) имеем $\lambda_n=0$ при всех $n\in\mathbb{N}$. Если $\alpha=m\in\mathbb{N}\cup\{0\}$, то из (1) следует равенство $\lambda_n=0$ при n>m. Поэтому в случаях x=0 и $\alpha\in\mathbb{N}\cup\{0\}$ соотношение (3) справедливо. Пусть $x\neq 0$ и $\alpha\not\in\mathbb{N}\cup\{0\}$. Тогда

$$\frac{\lambda_{n+1}}{\lambda_n} = \frac{\alpha(\alpha - 1)\cdots(\alpha - n - 1) \ x^{n+2}}{(n+1)!} \frac{n!}{\alpha(\alpha - 1)\cdots(\alpha - n) \ x^{n+1}} =$$
$$= \frac{\alpha - n - 1}{n+1} x \xrightarrow{n \to \infty} -x \in (-1, 1).$$

Выберем число $q \in (|x|, 1)$. Тогда по определению предела существует номер n_0 такой, что $\frac{|\lambda_{n+1}|}{|\lambda_n|} < q$ для любого $n \ge n_0$. Поэтому при $n \ge n_0$ имеем $|\lambda_n| \le |\lambda_{n_0}| q^{n-n_0} \to 0$ при $n \to \infty$. Отсюда вытекает соотношение (3), которое вместе с неравенством (2) дает равенство $\lim_{n \to \infty} r_n(x) = 0$ при любом $x \in (-1, 1)$.

Заметим, что при $\alpha=n\in\mathbb{N}\cup\{0\}$ для любого $k\geq n+1$ имеет место $C_{\alpha}^k=0,$ и, следовательно, ряд Маклорена функции $(1+x)^{\alpha}$ совпадает с конечной суммой:

$$(1+x)^n = \sum_{k=0}^{\infty} C_n^k x^k = \sum_{k=0}^n C_n^k x^k.$$

В случае $\alpha \notin \mathbb{N} \cup \{0\}$, используя лемму 1 § 3, вычислим радиус сходимости ряда $\sum_{k=0}^{\infty} C_{\alpha}^k x^k$:

$$\frac{1}{R_{\text{cx}}} = \lim_{k \to \infty} \frac{|C_{\alpha}^{k+1}|}{|C_{\alpha}^{k}|} = \lim_{k \to \infty} \frac{|\alpha - k|}{k+1} = 1.$$

Следовательно, $R_{\rm cx} = 1$.

Полагая в теореме 2 $\alpha=-1$ и замечая, что $C_{-1}^k=\frac{(-1)(-2)\cdots(-k)}{k!}=$ $=(-1)^k$, получаем разложение

$$\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k \qquad \forall x \in (-1,1).$$
 (4)

Заметим, что последнее разложение можно получить предельным переходом в формуле суммы геометрической прогрессии:

$$\sum_{k=0}^{n} (-1)^k x^k = \frac{1 - (-x)^{n+1}}{1+x} \quad \xrightarrow{n \to \infty} \quad \frac{1}{1+x} \qquad \forall x \in (-1,1).$$

Из формулы (4) и теоремы о почленном интегрировании степенного ряда при |x|<1 получаем

$$\ln(1+x) = \int_{0}^{x} \frac{dt}{1+t} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{k+1}}{k+1}.$$

Производя замену индекса суммирования n = k + 1, получаем

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \qquad \forall x \in (-1,1).$$
 (5)

Покажем, что равенство (5) справедливо и при x=1. Действительно, ряд $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ сходится при x=1 по признаку Лейбница. Следовательно, в силу второй теоремы Абеля этот ряд сходится равномерно на отрезке [0,1]. Согласно теореме о непрерывности суммы равномерно сходящегося функционального ряда функция

$$S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

непрерывна на отрезке [0,1]. Поскольку согласно равенству (5) имеем $S(x) = \ln(1+x)$ для любого $x \in (-1,1)$, то $S(1) = \lim_{x \to 1-0} S(x) = \lim_{x \to 1-0} \ln(1+x) = \ln 2$. Таким образом, равенство (5) справедливо и при x=1.

Применяя разложение (4) для $x = t^2$, имеем

$$\frac{1}{1+t^2} = \sum_{k=0}^{\infty} (-1)^k t^{2k} \qquad \forall t \in (-1,1).$$

Интегрируя этот ряд внутри круга сходимости, получаем

$$\operatorname{arctg} x = \int_{0}^{x} \frac{dt}{1+t^2} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} \qquad \forall x \in (-1,1).$$

Для любого нечетного числа n обозначим $n!!=n\cdot (n-2)\cdots 3\cdot 1$. Кроме того, будем полагать (-1)!!=1. Тогда для любого $k\in\mathbb{N}\bigcup\{0\}$

$$C_{-1/2}^k = \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\cdots\left(-\frac{1}{2}-k+1\right)}{k!} = \frac{(-1)^k\left(2k-1\right)!!}{2^k\,k!}.$$

Применяя теорему 2 для $\alpha = -\frac{1}{2}$, получаем разложение

$$\frac{1}{\sqrt{1+x}} = \sum_{k=0}^{\infty} \frac{(-1)^k (2k-1)!!}{2^k k!} x^k \qquad \forall x \in (-1,1).$$

Подставляя $x = -t^2$ и интегрируя степенной ряд, получаем

$$\arcsin x = \int_{0}^{x} \frac{dt}{\sqrt{1 - t^2}} = \sum_{k=0}^{\infty} \frac{(2k - 1)!!}{2^k k!} \left(\int_{0}^{x} t^{2k} dt \right).$$

Итак,

$$\arcsin x = \sum_{k=0}^{\infty} \frac{(2k-1)!!}{2^k k!} \frac{x^{2k+1}}{2k+1} \qquad \forall x \in (-1,1).$$

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

§ 1. Предел функции нескольких переменных

Определение. Пусть на множестве $X \subset \mathbb{R}^n$ задана функция f: $X \to \mathbb{R}$, пусть $x_0 \in \mathbb{R}^n$ – предельная точка множества X. Говорят, что элемент $A \in \mathbb{R}$ является npedenom функции f в точке x_0 (по cosokynhocmunepeменныx) и пишут $\lim_{x\to x_0\atop x\in X}f(x)=A,$ если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \overset{o}{U}_{\delta}(x_0) \cap X \hookrightarrow f(x) \in U_{\varepsilon}(A),$$

где
$$\overset{o}{U}_{\delta}(x_0) = \{x \in \mathbb{R}^n : 0 < |x - x_0| < \delta\}.$$

Замечание. Если $x_0 \in \operatorname{int} X$, то при достаточно малых $\delta > 0$ справедливо включение $\overset{o}{U}_{\delta}(x_0)\subset X.$ Тогда множество X в определении предела можно не указывать и вместо $\lim_{\substack{x \to x_0 \\ x \in X}} f(x)$ будем писать $\lim_{x \to x_0} f(x)$.

Определение. *Направлением* в пространстве \mathbb{R}^n называется любой вектор $\ell \in \mathbb{R}^n$ единичной длины ($|\ell| = 1$).

Определение. Элемент $A \in \overline{\mathbb{R}}$ называется *пределом* функции f: $X \to \mathbb{R}$ в точке $x_0 \in \operatorname{int} X \subset \mathbb{R}^n$ по направлению $\ell \in \mathbb{R}^n$ ($|\ell| = 1$), если $\lim_{t \to +0} f(x_0 + t\ell) = A, \text{ T. e.}$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall t \in (0, \delta) \hookrightarrow f(x_0 + t\ell) \in U_{\varepsilon}(A). \tag{1}$$

Теорема 1. 1. Если $A = \lim_{x \to x_0} f(x)$, то по любому направлению предел функции $f: X \to \mathbb{R}$ в точке $x_0 \in \operatorname{int} X$ существует и равен A.

2. Обратное неверно.

Доказательство. 1. Пусть $A = \lim_{x \to x_0} f(x)$, тогда

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \overset{o}{U}_{\delta}(x_0) \hookrightarrow f(x) \in U_{\varepsilon}(A). \tag{2}$$

Зафиксируем произвольное направление $\ell \in \mathbb{R}^n$, $|\ell| = 1$. Тогда $\forall t \in (0, \delta)$ при $x = x_0 + t\ell$ выполнены соотношения $|x - x_0| = t|\ell| = t < \delta$, т.е. $x \in U_\delta(x_0)$. Отсюда, учитывая (2), получаем (1), т.е. $\lim_{t \to +0} f(x_0 + t\ell) = A$.

2. Пусть $\mathbb{R}^n = \mathbb{R}^2$, x = (u,v), $f(u,v) = \frac{u\,v^2}{u^2+v^4}$. Покажем, что в точке $x_0 = (0,0)$ предел функции f по любому направлению $\ell = (\cos\varphi,\sin\varphi)$, где $\varphi \in [0,2\pi)$, существует и равен 0, однако предела по совокупности переменных $\lim_{(u,v)\to(0,0)} f(u,v)$ не существует.

а) Поскольку $f(x_0+t\ell)=f(t\cos\varphi,t\sin\varphi)=\frac{t^3\cos\varphi\sin^2\varphi}{t^2\cos^2\varphi+t^4\sin^4\varphi}=$ $=\frac{t\cos\varphi\sin^2\varphi}{\cos^2\varphi+t^2\sin^4\varphi},$ то при $\cos\varphi\neq 0$ имеет место неравенство $|f(t\cos\varphi,t\sin\varphi)|\leq \left|\frac{t\cos\varphi\sin^2\varphi}{\cos^2\varphi}\right|\to 0$ $(t\to+0),$ а при $\cos\varphi=0$ имеем $\sin\varphi\neq 0,$ и выполняется равенство $f(t\cos\varphi,t\sin\varphi)=0.$

Следовательно, $\forall \ell \in \mathbb{R}^2 : |\ell| = 1 \quad \exists \lim_{t \to +0} f(x_0 + t\ell) = 0.$

б) Заметим, что при $u=v^2\neq 0$ справедливо равенство $f(u,v)=\frac{v^4}{2v^4}==\frac{1}{2},$ а при $u=0,\,v\neq 0$ – равенство f(u,v)=0. Рассмотрим две последовательности: $\{(u_k,v_k)\}=\{(\frac{1}{k^2},\frac{1}{k})\}$ и $\{(\tilde{u}_k,\tilde{v}_k)\}=\{(0,\frac{1}{k})\}.$ Эти две последовательности являются последовательностями Гейне, сходящимися

к точке (0,0). Так как $\lim_{k\to\infty}f(u_k,v_k)=\frac{1}{2}\neq 0=\lim_{k\to\infty}f(\tilde{u}_k,\tilde{v}_k)$, то предела функции f в точке (0,0) по совокупности переменных не существует. \square

Метод исследования предела функции нескольких переменных

Рассмотрим метод исследования предела функции двух переменных, основанный на введении полярных координат (для функции трех и более переменных можно использовать подобный метод, основанный на введении сферических или обобщенных сферических координат). Пусть требуется исследовать

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y). \tag{3}$$

Введем полярные координаты с центром в точке (x_0, y_0) :

$$x = x_0 + \varrho \cos \varphi,$$

$$y = y_0 + \varrho \sin \varphi.$$

Шаг 1. Для любого $\varphi \in [0, 2\pi]$ рассмотрим предел по направлению $\ell = (\cos \varphi, \sin \varphi)$:

$$\lim_{\rho \to +0} f(x_0 + \rho \cos \varphi, \ y_0 + \rho \sin \varphi) = A(\varphi). \tag{4}$$

Если при некотором $\varphi \in [0, 2\pi]$ предел (4) не существует или этот предел $A(\varphi)$ зависит от φ , т.е. от направления, то согласно пункту (1) теоремы 1 предел по совокупности переменных (3) не существует и исследование закончено.

Будем предполагать теперь, что для любого $\varphi \in [0, 2\pi]$ предел (4) существует и не зависит от φ : $A(\varphi) = A_0$. Согласно пункту (1) теоремы 1 если предел (3) существует, то он равен A_0 .

Шаг 2. Поскольку включение $(x_0 + \varrho \cos \varphi, y_0 + \varrho \sin \varphi) \in \overset{o}{U}_{\delta}(x_0, y_0)$ эквивалентно цепочке неравенств $0 < \varrho < \delta$, то соотношение

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A_0 \tag{5}$$

эквивалентно равномерной сходимости

$$f(x_0 + \varrho \cos \varphi, y_0 + \varrho \sin \varphi) \underset{\varphi \in [0,2\pi]}{\Longrightarrow} A_0$$
 при $\varrho \to +0$, (6)

то есть

$$\sup_{\varphi \in [0,2\pi]} \Bigl| f(x_0 + \varrho \cos \varphi, \ y_0 + \varrho \sin \varphi) - A_0 \Bigr| \longrightarrow 0 \quad \text{при} \quad \varrho \to +0.$$

Если справедлива равномерная оценка

$$\left| f(x_0 + \varrho \cos \varphi, \ y_0 + \varrho \sin \varphi) - A_0 \right| \le g(\varrho) \quad \forall \varrho \in (0, \varrho_0) \quad \forall \varphi \in [0, 2\pi]$$

такая, что $g(\varrho) \to 0$ при $\varrho \to +0$, то имеет место равномерная сходимость (6), а значит, справедливо соотношение (5). Иначе можно подобрать последовательность $\{(x_k, y_k)\}$ такую, что

$$(x_k, y_k) \to (x_0, y_0), \quad f(x_k, y_k) \not\to A_0 \quad \text{при} \quad k \to \infty.$$

В этом случае соотношение (5) не выполняется и предел по совокупности переменнных не существует.

Пример 1. Исследовать пределы

a)
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{\sinh(xy)}{x^2 + y^2}$$
; 6) $\lim_{\substack{x \to 0 \ y \to 0}} \frac{\sinh(x^2y)}{x^2 + y^2}$.

Решение. Введем полярные координаты $x = \varrho \cos \varphi$, $y = \varrho \sin \varphi$.

а) Для функции $f_1(x,y) = \frac{\sinh(xy)}{x^2+y^2}$ рассмотрим предел по направлению:

$$\lim_{\varrho \to +0} f_1(\varrho \cos \varphi, \varrho \sin \varphi) = \lim_{\varrho \to +0} \frac{\operatorname{sh}(\varrho^2 \cos \varphi \sin \varphi)}{\varrho^2} = \cos \varphi \sin \varphi.$$

Поскольку предел по направлению зависит от направления, предела по совокупности переменных не существует.

б) Для функции $f_2(x,y) = \frac{\sinh{(x^2y)}}{x^2+y^2}$ рассмотрим предел по направлению:

$$\lim_{\varrho \to +0} f_2(\varrho \cos \varphi, \varrho \sin \varphi) = \lim_{\varrho \to +0} \frac{\operatorname{sh}(\varrho^3 \cos^2 \varphi \sin \varphi)}{\varrho^2} = 0.$$

Проведем равномерную оценку:

$$|f_2(\varrho\cos\varphi,\varrho\sin\varphi)| \leq \frac{\sin(\varrho^3)}{\varrho^2} \to 0$$
 при $\varrho \to +0$.

Здесь важно, что величина $\frac{\sinh{(\varrho^3)}}{\varrho^2}$ не зависит от φ , т. е. оценка равномерная по φ . Таким образом, предел функции f_2 в точке (0,0) по совокупности переменных равен 0.

Повторный предел

Определение. Пусть задана функция двух переменных f(x,y) и точка $(x_0,y_0)\in\mathbb{R}^2$. Для любого фиксированного числа y предел функции одной переменной $\lim_{x\to x_0}f(x,y)$ (если он существует) обозначим через $\varphi(y)$. Тогда

$$\lim_{y \to y_0} \varphi(y) = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$

называется повторным пределом функции f в точке (x_0, y_0) . Предел $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$ также называется повторным пределом функции f в точке (x_0, y_0) . Аналогично можно определить повторные пределы функции n переменных.

Замечание 1. Из существования повторного предела не следует существование предела по совокупности переменных. Например, для функции $f(u,v)=\frac{u\,v^2}{u^2+v^4}$ повторные пределы в точке (0,0) равны нулю, а предел по совокупности не существует.

Замечание 2. Из существования предела по совокупности переменных не следует существование повторного предела. Например, для функции

$$f(u,v) = \begin{cases} (u+v)\sin\frac{1}{u}\sin\frac{1}{v}, & uv \neq 0, \\ 0, & uv = 0 \end{cases}$$

предел по совокупности переменных в точке (0,0) равен 0, а повторные пределы не существуют.

Непрерывность функции нескольких переменных

В соответствии с определением непрерывности функции, заданной в метрическом пространстве, функция $f: X \to \mathbb{R}$ называется непрерывной в точке $x_0 \in X \subset \mathbb{R}^n$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in U_{\delta}(x_0) \cap X \hookrightarrow f(x) \in U_{\varepsilon}(f(x_0)).$$

Определение. Функция $f(x)=f(x^1,...,x^n)$ называется непрерывной в точке $x_0=(x_0^1,...,x_0^n)$ по переменной x^i , если функция $\varphi(x^i)=f(x_0^1,...,x_0^{i-1},x^i,x_0^{i+1},...,x_0^n)$ непрерывна в точке x_0^i .

Замечание. Если функция $f(x^1,...,x^n)$ непрерывна по совокупности переменных в точке x_0 , то она непрерывна по каждой переменной в отдельности. Обратное неверно. Например, функция

$$f(u,v) = \begin{cases} \frac{uv^2}{u^2 + v^4}, & u^2 + v^2 \neq 0, \\ 0, & u^2 + v^2 = 0 \end{cases}$$

непрерывна в каждой точке по каждой переменной в отдельности, но не является непрерывной в точке (0,0) по совокупности переменных.

§ 2. Дифференцируемость функции нескольких переменных. Геометрический смысл градиента и дифференциала

Определение. Пусть функция $f(x) = f(x^1, ..., x^n)$ определена в $U_{\delta}(x_0) \subset \mathbb{R}^n$. Функция f(x) называется $\partial u \phi \phi$ еренцируемой в точке $x_0 = (x_0^1, ..., x_0^n)$, если существует линейная функция (линейная форма) $df(x_0) : \mathbb{R}^n \to \mathbb{R}$ такая, что

$$f(x) - f(x_0) = df(x_0)[x - x_0] + o(|x - x_0|)$$
 при $x \to x_0$. (1)

Здесь $o(|x-x_0|)$ – это такая функция $\varphi(x)$, что $\lim_{x\to x_0} \frac{\varphi(x)}{|x-x_0|} = 0$. Линейная форма $df(x_0)$ называется $\partial u \phi \phi$ еренциалом функции f в точке x_0 . Вектор коэффициентов линейной формы $df(x_0)$ называется paduenmom функции f в точке x_0 и обозначается через grad $f(x_0)$.

Заметим, что при замене базиса в \mathbb{R}^n компоненты вектора grad $f(x_0)$ меняются по закону изменения коэффициентов линейной формы.

Записывая линейную форму $df(x_0)$ как скалярное произведение, получаем $df(x_0)[x-x_0]=(\operatorname{grad} f(x_0),x-x_0)$. Обозначая через $A_1,...,A_n$ компоненты вектора $\operatorname{grad} f(x_0)$, имеем $df(x_0)[x-x_0]=\sum_{i=1}^n A_i(x^i-x_0^i)$.

Поэтому формулу (1) можно записать в виде

$$f(x) - f(x_0) = (\operatorname{grad} f(x_0), x - x_0) + o(|x - x_0|) =$$

$$= \sum_{i=1}^n A_i(x^i - x_0^i) + o(|x - x_0|) \qquad \text{при} \quad x \to x_0.$$
(2)

Выясним геометрический смысл градиента и дифференциала. Для простоты будем рассматривать функцию двух переменных f(x,y), заданную на множестве $G \subset \mathbb{R}^2$.

Зафиксируем точку $(x_0,y_0)\in \operatorname{int} G$. Через точку графика $(x_0,y_0,f(x_0,y_0))$ проведем плоскость α с нормальным вектором $n=(n_x,n_y,n_z)$. Уравнение этой плоскости имеет вид

$$n_x(x-x_0) + n_y(y-y_0) + n_z(z-f(x_0,y_0)) = 0.$$

Будем предполагать, что плоскость α невертикальна, т.е. $n_z \neq 0$. При этом уравнение плоскости α можно переписать в виде $z = f(x_0, y_0) - \frac{n_x}{n_z}(x - x_0) - \frac{n_y}{n_z}(y - y_0)$. Обозначив $N_x = -\frac{n_x}{n_z}$, $N_y = -\frac{n_y}{n_z}$, получаем уравнение плоскости α в следующем виде:

$$z = z_{\alpha}(x, y) = f(x_0, y_0) + N_x(x - x_0) + N_y(y - y_0).$$
(3)

Вектор $(N_x, N_y, -1)$ является нормальным вектором плоскости α .

Определение. Плоскость вида (3) будем называть *касательной плоскостью* к графику функции f(x,y) в точке $(x_0,y_0,f(x_0,y_0))$, если она приближает график функции с точностью до $o(\varrho)$ при $(x,y) \to (x_0,y_0)$, где $\varrho = \sqrt{(x-x_0)^2 + (y-y_0)^2}$, т. е.

$$f(x,y) - z_{\alpha}(x,y) = o(\varrho)$$
 при $(x,y) \to (x_0, y_0)$. (4)

Теорема 1. (О геометрическом смысле градиента и дифференциала.) Пусть функция f(x,y) определена в окрестности точки (x_0,y_0) . Касательная плоскость к графику функции f в точке $(x_0,y_0,f(x_0,y_0))$ существует тогда и только тогда, когда функция f дифференцируема в точке (x_0,y_0) . Для дифференцируемой функции f нормальный вектор касательной плоскости имеет вид $(N_x,N_y,-1)$, где $(N_x,N_y)=\operatorname{grad} f(x_0,y_0)$, а дифференциал функции равен приращению аппликаты касательной плоскости:

Доказательство. Из формул (3), (4) следует, что касательная плоскость α существует в том и только в том случае, когда существуют числа

 N_x , N_y такие, что

$$f(x,y) - f(x_0,y_0) - N_x(x-x_0) - N_y(y-y_0) = o(\varrho)$$
 при $(x,y) \to (x_0,y_0)$.

Сравнивая это условие с формулой (2), видим, что это условие эквивалентно дифференцируемости функции f в точке (x_0, y_0) , причем в случае дифференцируемости $\operatorname{grad} f(x_0, y_0) = (N_x, N_y)$. Нормальный вектор касательной плоскости α можно записать в виде $(N_x, N_y, -1)$.

Из условия grad $f(x_0, y_0) = (N_x, N_y)$ и формулы (3) получаем

$$df(x_0, y_0)[x - x_0, y - y_0] = N_x(x - x_0) + N_y(y - y_0) = z_\alpha(x, y) - z_\alpha(x_0, y_0).$$

§ 3. Необходимые условия дифференцируемости. Производные по направлению и частные производные

Теорема 1. Если функция f(x) определена в окрестности точки x_0 и дифференцируема в этой точке, то функция f(x) непрерывна в точке x_0 .

Доказательство. Из условия дифференцируемости функции f в точке x_0

$$f(x) - f(x_0) = (\operatorname{grad} f(x_0), x - x_0) + o(|x - x_0|)$$
 при $x \to x_0$

следует, что $\lim_{x\to x_0}(f(x)-f(x_0))=0$, т. е. функция f непрерывна в точке x_0 .

Определение . Производной функции f в точке x_0 по вектору $\ell \in \mathbb{R}^n$ называется

$$\frac{\partial f}{\partial \ell}(x_0) = \lim_{t \to +0} \frac{f(x_0 + t\ell) - f(x_0)}{t}.$$

В частности, если ℓ – единичный вектор (т. е. является направлением), то $\frac{\partial f}{\partial \ell}(x_0)$ называется производной по направлению.

Теорема 2. Если функция f дифференцируема в точке $x_0 \in \mathbb{R}^n$, то производная по любому вектору $\ell \in \mathbb{R}^n$ существует и равна скалярному произведению градиента на вектор ℓ :

$$\frac{\partial f}{\partial \ell}(x_0) = (\operatorname{grad} f(x_0), \ell) = df(x_0)[\ell].$$

Доказательство. Пусть функция f дифференцируема в точке $x_0 \in \mathbb{R}^n$, т. е.

$$f(x) - f(x_0) = (\operatorname{grad} f(x_0), x - x_0) + o(|x - x_0|)$$
 при $x \to x_0$.

Зафиксировав произвольный вектор $\ell \in \mathbb{R}^n$ и подставив $x=x_0+t\ell$ в предыдущую формулу, получаем

$$f(x_0 + t\ell) - f(x_0) = (\text{grad } f(x_0), t\ell) + o(t)$$
 при $t \to +0$,

следовательно,

$$\frac{\partial f}{\partial \ell}(x_0) = (\operatorname{grad} f(x_0), \ell) + \lim_{t \to +0} \frac{o(t)}{t} = (\operatorname{grad} f(x_0), \ell) = df(x_0)[\ell]. \quad \Box$$

Лемма 1. (О геометрическом смысле градиента.) Если функция f(x) дифференцируема в точке x_0 и grad $f(x_0) \neq \overline{0}$, то направление grad $f(x_0)$ является направлением наиболее быстрого возрастания функции f в точке x_0 , а направление $-\operatorname{grad} f(x_0)$ является направлением наиболее быстрого убывания функции f в точке x_0 . Иными словами,

- 1) $\max_{\ell \in \mathbb{R}^n: \ |\ell|=1} \frac{\partial f}{\partial \ell}(x_0)$ достигается на векторе $\ell_{\max} = \frac{\operatorname{grad} f(x_0)}{|\operatorname{grad} f(x_0)|};$
- $(2) \min_{\ell \in \mathbb{R}^n: \ |\ell|=1} \frac{\partial f}{\partial \ell}(x_0) \ \partial ocmusaemc$ я на векторе $\ell_{\min} = -\frac{\operatorname{grad} f(x_0)}{|\operatorname{grad} f(x_0)|}$

Доказательство. 1) Из теоремы 2 следует, что $\forall \ell \in \mathbb{R}^n \colon |\ell| = 1$ выполняются соотношения $\frac{\partial f}{\partial \ell}(x_0) = (\operatorname{grad} f(x_0), \ell) \leq |\operatorname{grad} f(x_0)| = (\operatorname{grad} f(x_0), \ell_{\max}) = \frac{\partial f}{\partial \ell_{\max}}(x_0)$. Следовательно, $\max_{\ell \colon |\ell| = 1} \frac{\partial f}{\partial \ell}(x_0)$ достигается на векторе ℓ_{\max} .

Замечание 1. Из существования производных по всем направлениям (и по всем векторам) функции f в точке x_0 не следует дифференцируемость функции f в точке x_0 .

Действительно, рассмотрим функцию

$$f(x,y) = \begin{cases} 1, & \text{если} \quad x = y^2 \neq 0, \\ 0, & \text{если} \quad x \neq y^2 \quad \text{или} \quad (x,y) = (0,0). \end{cases}$$
 (1)

Поскольку для любого вектора $\ell=(\ell_x,\ell_y)\in\mathbb{R}^2\ \exists \delta>0: \ \forall t\in(0,\delta)\hookrightarrow f(t\ell_x,t\ell_y)=0,$ то производная $\frac{\partial f}{\partial \ell}(0,0)$ по любому вектору $\ell\in\mathbb{R}^2$ существует и равна 0, однако функция f не является дифференцируемой и даже непрерывной в точке (0,0).

Определение . *Частной производной* функции $f(x) = f(x^1,...,x^n)$ по переменной x^i в точке $x_0 = (x_0^1,...,x_0^n)$ называется производная функции одной переменной $\varphi(x^i) = f(x_0^1,...,x_0^{i-1},x^i,x_0^{i+1},...,x_0^n)$ в точке x_0^i :

$$\frac{\partial f}{\partial x^i}(x_0) = f'_{x^i}(x_0) = \varphi'(x_0^i) =$$

$$= \lim_{x^i \to x_0^i} \frac{f(x_0^1, \dots, x_0^{i-1}, x^i, x_0^{i+1}, \dots, x_0^n) - f(x_0^1, \dots, x_0^n)}{x^i - x_0^i}.$$

Иными словами, для того, чтобы вычислить частную производную функции f по переменной x^i , нужно зафиксировать все остальные переменные (при этом получится функция одной переменной x^i), а затем – вычислить производную полученной функции одной переменной.

Лемма 2. (О связи частных производных и производных по направлению.) Частная производная $\frac{\partial f}{\partial x^i}(x_0)$ существует тогда и только тогда, когда для направлений $\ell_i^+ = (0,...,0,+1,0,...,0)$ и $\ell_i^- = (0,...,0,-1,0,...,0)$ (где ± 1 стоит на i-м месте) производные по направлению $\frac{\partial f}{\partial \ell_i^+}(x_0)$ и $\frac{\partial f}{\partial \ell_i^-}(x_0)$ существуют и $\frac{\partial f}{\partial \ell_i^+}(x_0) = -\frac{\partial f}{\partial \ell_i^-}(x_0)$. При этом $\frac{\partial f}{\partial x^i}(x_0) = \frac{\partial f}{\partial \ell_i^+}(x_0) = -\frac{\partial f}{\partial \ell_i^-}(x_0)$.

Доказательство. Рассмотрим функцию одной переменной $\varphi(t)==f(x_0^1,...,x_0^{i-1},x_0^i+t,x_0^{i+1},...,x_0^n)=f(x_0+t\ell_i^+)$. Из определений частной производной и производной по направлению следует, что

$$\frac{\partial f}{\partial x^{i}}(x_{0}) = \varphi'(0), \qquad \frac{\partial f}{\partial \ell_{i}^{+}}(x_{0}) = \lim_{t \to +0} \frac{\varphi(t) - \varphi(0)}{t} = \varphi'_{+}(0),$$

$$\frac{\partial f}{\partial \ell_{i}^{-}}(x_{0}) = \lim_{t \to +0} \frac{\varphi(-t) - \varphi(0)}{t} = -\lim_{t \to -0} \frac{\varphi(t) - \varphi(0)}{t} = -\varphi'_{-}(0).$$
(2)

По лемме об односторонних производных производная функции одной переменной $\varphi'(0)$ существует тогда и только тогда, когда правая и левая производные $\varphi'_{+}(0)$ и $\varphi'_{-}(0)$ существуют и равны между собой и при этом $\varphi'(0) = \varphi'_{+}(0) = \varphi'_{-}(0)$. Отсюда и из формул (2) получаем утверждение леммы.

Теорема 3. (О связи градиента и частных производных.) Если функция f дифференцируема в точке $x_0 \in \mathbb{R}^n$, то в этой точке все частные производные $\frac{\partial f}{\partial x^i}(x_0)$ существуют и совпадают с соответствующими координатами вектора градиента:

grad
$$f(x_0) = \left(\frac{\partial f}{\partial x^1}(x_0), ..., \frac{\partial f}{\partial x^n}(x_0)\right).$$

Доказательство. По теореме 2 производные по направлениям координатных осей $\ell_i^+ = (0,...,0,1,0,...,0)$ (где 1 стоит на i-м месте) существуют и $\frac{\partial f}{\partial \ell_i^+}(x_0) = (\operatorname{grad} f(x_0),\ell_i^+)$, т.е. равны соответствующим координатам вектора градиента. Аналогично производные по противоположным направлениям $\frac{\partial f}{\partial \ell_i^-}(x_0)$ (где $\ell_i^- = -\ell_i^+$) существуют и равны соответствующим координатам вектора градиента с обратным знаком. Отсюда и из леммы 2 получаем, что частные производные $\frac{\partial f}{\partial x^i}(x_0)$ существуют и равны соответствующим координатам вектора градиента.

Замечание 2. Из существования частных производных по всем переменным не следует дифференцируемость, а значит, не следует существование градиента функции. Например, все частные производные функции (1) в точке (0,0) существуют и равны нулю, однако эта функция недифференцируема в точке (0,0).

Теорема 4. (О связи частных производных и дифференциала функции.) Если функция $f(x) = f(x^1,...,x^n)$ дифференцируема в точке $x_0 = (x_0^1,...,x_0^n)$, то для дифференциала функции f в точке x_0 справедлива формула

$$df(x_0)[x - x_0] = \sum_{i=1}^n \frac{\partial f}{\partial x^i}(x_0) dx^i, \quad i \partial e \quad dx^i = x^i - x_0^i.$$

Доказательство. По определению дифференциала $df(x_0)[x-x_0] = (\operatorname{grad} f(x_0), x-x_0)$. Следовательно, по теореме 3 имеем $df(x_0)[x-x_0] = \sum_{i=1}^n \frac{\partial f}{\partial x^i}(x_0) (x^i-x_0^i)$.

§ 4. Достаточные условия дифференцируемости

Теорема 1. Если все частные производные $\frac{\partial f}{\partial x^i}$, i = 1, ..., n определены в окрестности точки $x_0 \in \mathbb{R}^n$ и непрерывны в точке x_0 , то функция f(x) дифференцируема в точке x_0 .

Доказательство проведем для функции двух переменных f(x,y), где $x,y\in\mathbb{R}$. Пусть частные производные $\frac{\partial f}{\partial x}(x,y)$ и $\frac{\partial f}{\partial y}(x,y)$ непрерывны в точке (x_0,y_0) .

Представим приращение функции f как сумму приращений по каждой переменной:

$$f(x,y) - f(x_0, y_0) = f(x,y) - f(x_0, y) + f(x_0, y) - f(x_0, y_0).$$
(1)

Зафиксировав y и применив теорему Лагранжа о среднем к функции одной переменной $\varphi(x) = f(x,y)$, получаем, что существует число ξ , лежащее между x и x_0 , такое, что $\varphi(x) - \varphi(x_0) = \varphi'(\xi) \cdot (x - x_0)$. Иными словами, существует число $\theta \in (0,1)$, зависящее от x и y, такое, что

$$\varphi(x) - \varphi(x_0) = \varphi'(x_0 + \theta(x - x_0)) \cdot (x - x_0),$$

то есть

$$f(x,y) - f(x_0,y) = \frac{\partial f}{\partial x}(x_0 + \theta(x - x_0), y) \cdot (x - x_0).$$

Определим функцию $\varepsilon(x,y) = \frac{\partial f}{\partial x}(x_0 + \theta(x-x_0),y) - \frac{\partial f}{\partial x}(x_0,y_0)$. Тогда

$$f(x,y) - f(x_0,y) = \frac{\partial f}{\partial x}(x_0,y_0) \cdot (x - x_0) + \varepsilon(x,y) \cdot (x - x_0). \tag{2}$$

Так как частная производная $\frac{\partial f}{\partial x}(x,y)$ непрерывна в точке (x_0,y_0) и $\theta \in (0,1)$, то $\lim_{\substack{x \to x_0 \ y \to y_0}} \frac{\partial f}{\partial x}(x_0 + \theta(x-x_0),y) = \frac{\partial f}{\partial x}(x_0,y_0)$, и, следовательно,

 $\lim_{\substack{x \to x_0 \\ y \to y_0}} \varepsilon(x,y) = 0$. Обозначая $\varrho = \sqrt{(x-x_0)^2 + (y-y_0)^2}$, получаем

$$\frac{|\varepsilon(x,y)\cdot(x-x_0)|}{\rho} \le |\varepsilon(x,y)| \xrightarrow{(x,y)\to(x_0,y_0)} 0,$$

т. е. $\varepsilon(x,y)\cdot(x-x_0)=o(\varrho)$ при $(x,y)\to(x_0,y_0)$. Отсюда и из (2) получаем при $(x,y)\to(x_0,y_0)$

$$f(x,y) - f(x_0,y) = \frac{\partial f}{\partial x}(x_0,y_0) \cdot (x - x_0) + o(\varrho).$$

Аналогично при $(x, y) \to (x_0, y_0)$

$$f(x_0, y) - f(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0) + o(\varrho).$$

Следовательно, учитывая (1), получаем при $(x, y) \to (x_0, y_0)$

$$f(x,y) - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0) + o(\varrho),$$

что доказывает дифференцируемость функции f(x,y) в точке (x_0,y_0) . Случай функции n переменных $(n \ge 3)$ рассматривается аналогично. \square

§ 5. Дифференцирование сложной функции

Определение. Пусть вектор-функция $f(x) = (f^1(x), ..., f^m(x))$ определена в некоторой окрестности точки $x_0 \in \mathbb{R}^n$. Будем говорить, что вектор-функция f дифференцируема в точке x_0 , если существует линейное отображение $df(x_0) : \mathbb{R}^n \to \mathbb{R}^m$ такое, что

$$f(x) - f(x_0) = df(x_0)[x - x_0] + \overline{o}(|x - x_0|)$$
 при $x \to x_0$. (1)

При этом отображение $df(x_0)$ называется $\partial u \phi \phi$ еренциалом функции f в точке x_0 .

Определение. Матрицей Якоби $\mathcal{D} f(x_0)$ вектор-функции f в точке x_0 называется матрица линейного отображения $df(x_0): \mathbb{R}^n \to \mathbb{R}^m$.

Будем записывать элементы \mathbb{R}^n в виде столбцов высоты n. Это позволяет использовать операции умножения матриц. В частности, в результате умножения $m \times n$ матрицы на столбец высоты n получится столбец высоты m.

- **Лемма 1.** 1. Вектор-функция $f(x) = (f^1(x), ..., f^m(x))$ дифференцируема в точке $x_0 \in \mathbb{R}^n$ тогда и только тогда, когда каждая ее компонента $f^k(x)$ дифференцируема в точке x_0 .
- 2. Если вектор-функция $f(x) = (f^1(x), ..., f^m(x))$ дифференцируема в точке $x_0 \in \mathbb{R}^n$, то матрица Якоби $\mathcal{D} f(x_0)$ следующим образом выражается через частные производные компонент вектор-функции f:

$$\mathcal{D}f(x_0) = \begin{pmatrix} \frac{\partial f^1}{\partial x^1}(x_0) & \dots & \frac{\partial f^1}{\partial x^n}(x_0) \\ \dots & \dots & \dots \\ \frac{\partial f^m}{\partial x^1}(x_0) & \dots & \frac{\partial f^m}{\partial x^n}(x_0) \end{pmatrix}. \tag{2}$$

Доказательство. Предположим сначала, что вектор-функция f дифференцируема в точке x_0 . Из свойств линейных отображений следует, что образ вектора $x-x_0$ при линейном отображении $df(x_0)$ равен произведению матрицы этого отображения на столбец $(x-x_0)$: $df(x_0)[x-x_0] = \mathcal{D}\,f(x_0)\cdot(x-x_0)$. Обозначим через a_i^k элементы матрицы Якоби $\mathcal{D}\,f(x_0)$, т. е.

$$\mathcal{D}f(x_0) = \begin{pmatrix} a_1^1 & \dots & a_n^1 \\ \dots & \dots & \dots \\ a_1^m & \dots & a_n^m \end{pmatrix}. \tag{3}$$

Тогда k-я компонента столбца $df(x_0)[x-x_0]$ равна $\sum_{i=1}^n a_i^k(x^i-x_0^i)$. Поэтому векторное равенство (1) эквивалентно системе равенств

$$f^k(x) - f^k(x_0) = \sum_{i=1}^n a_i^k(x^i - x_0^i) + o(|x - x_0|)$$
 при $x \to x_0$, (4)

где $k \in \overline{1,m}$. Равенство (4) означает, что k-я компонента вектор-функции f дифференцируема в точке x_0 и вектор grad $f_k(x_0)$ имеет компоненты $a_1^k,...,a_n^k$. Тогда по теореме о связи градиента и частных производных получаем, что $a_i^k = \frac{\partial f^k}{\partial x^i}(x_0)$. Следовательно, матрица Якоби $\mathcal{D} f(x_0)$ имеет вид (2).

Обратно. Пусть все компоненты вектор-функции f дифференцируемы в точке x_0 . Тогда по определению дифференцируемости скалярной функции для любого $k \in \overline{1,m}$ существуют числа $a_1^k,...,a_n^k$ такие, что справедливо соотношение (4). Система равенств (4) эквивалентна векторному равенству (1), где матрица линейного отображения $df(x_0)$ имеет вид (3). Поэтому дифференцируемость вектор-функции f в точке x_0 эквивалентна дифференцируемости всех ее компонент в этой точке.

Теорема 1. (О дифференцировании сложной функции.) Пусть заданы множества $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ и вектор-функции $f: X \to Y$ и $g: Y \to \mathbb{R}^p$. Пусть вектор-функция f дифференцирума в точке $x_0 \in \operatorname{int} X$, а вектор-функция g дифференцируема в точке $y_0 = f(x_0) \in \operatorname{int} Y$. Тогда сложная функция $\varphi = g \circ f$ (т. е. $\varphi(x) = g(f(x))$) дифференцируема в точке x_0 , дифференциал суперпозиции $g \circ f$ равен суперпозиции дифференциалов

$$d(g \circ f)(x_0) = dg(y_0) \circ df(x_0), \tag{5}$$

а матрица Якоби функции $g \circ f$ равна произведению матриц Якоби функций g и f:

$$\mathcal{D}(g \circ f)(x_0) = \mathcal{D}g(y_0) \cdot \mathcal{D}f(x_0), \tag{6}$$

или в координатной форме:

$$\frac{\partial \varphi^i}{\partial x^j}(x_0) = \sum_{k=1}^m \frac{\partial g^i}{\partial y^k}(y_0) \quad \frac{\partial f_k}{\partial x^j}(x_0)$$

$$(i = 1, ..., p, j = 1, ..., n).$$

Доказательство. По определению дифференцируемости векторфункций имеем

$$f(x) - f(x_0) = df(x_0)[x - x_0] + \overline{o}(|x - x_0|)$$
 при $x \to x_0$,

$$g(y) - g(y_0) = dg(y_0)[y - y_0] + \overline{o}(|y - y_0|)$$
 при $y \to y_0$.

Подставляя в последнюю формулу $y = f(x), y_0 = f(x_0),$ получаем

$$(g \circ f)(x) - (g \circ f)(x_0) = g(f(x)) - g(f(x_0)) =$$

$$= dg(y_0) \left[df(x_0)[x - x_0] + \overline{o}(|x - x_0|] + \overline{o}(|f(x) - f(x_0)|) \right]$$

при $x \to x_0$. Поскольку

$$\begin{split} dg(y_0) \Big[df(x_0)[x-x_0] + \overline{o}(|x-x_0|] = \\ &= dg(y_0) \Big[df(x_0)[x-x_0] \Big] + dg(y_0) \Big[\overline{o}(|x-x_0|] = \\ &= dg(y_0) \Big[df(x_0)[x-x_0] \Big] + \overline{o}(|x-x_0|), \\ \\ \overline{o}(|f(x)-f(x_0)|) = \overline{o}(|x-x_0|) \quad \text{при} \quad x \to x_0, \end{split}$$

то при $x \to x_0$

$$(g \circ f)(x) - (g \circ f)(x_0) = (dg(y_0) \circ df(x_0))[x - x_0] + \overline{o}(|x - x_0|),$$

где отображение $dg(y_0) \circ df(x_0)$ является линейным отображением как суперпозиция двух линейных отображений. Поэтому сложная функция $g \circ f$ дифференцируема в точке x_0 и справедливо равенство (5).

Поскольку матрица отображения, являющегося суперпозицией двух линейных отображений, равна произведению матриц этих отображений, то из формулы (5) следует равенство (6).

В частности, применяя теорему 1 для n=p=1, m=2, y=(u,v), f(x)=(u(x),v(x)), получаем следующее утверждение.

Следствие. Пусть скалярные функции одной переменной u(x), v(x) дифференцируемы в точке x, а скалярная функция двух переменных g(u,v) дифференцируема в точке (u(x),v(x)). Тогда сложная функция $\varphi(x)=g(u(x),v(x))$ дифференцируема в точке x u

$$\varphi'(x) = \frac{d}{dx}g(u(x), v(x)) = g'_u \cdot u'(x) + g'_v \cdot v'(x),$$

где
$$g'_u = g'_u(u(x), v(x)), g'_v = g'_v(u(x), v(x)).$$

§ 6. Частные производные и дифференциалы высших порядков

Определение. Пусть в окрестности точки $x_0 \in \mathbb{R}^n$ существует частная производная $\frac{\partial f}{\partial x^i}(x)$ функции $f(x) = f(x^1,...,x^n)$. Частная производная функции $\frac{\partial f}{\partial x^i}(x)$ по переменной x^j в точке x_0 называется частной производной второго порядка функции f(x) и обозначается через $\frac{\partial^2 f}{\partial x^j \partial x^i}(x_0)$ или $f''_{x^i x^j}(x_0)$. Частная производная порядка k определяется индукцией по k:

$$\frac{\partial^k f}{\partial x^{i_1} \cdots \partial x^{i_k}} = \frac{\partial}{\partial x^{i_1}} \left(\frac{\partial^{k-1} f}{\partial x^{i_2} \cdots \partial x^{i_k}} \right).$$

Например, для функции двух переменных f(x,y) можно рассматривать четыре производные второго порядка: $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$. Производные $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ называются *смешанными*.

Замечание. Смешанные производные могут зависеть от порядка дифференцирования. Например, для функции

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 > 0, \\ 0, & x = y = 0 \end{cases}$$

имеет место неравенство $f''_{xy}(0,0) \neq f''_{yx}(0,0)$.

Теорема 1. Пусть обе смешанные производные $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ и $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ определены в окрестности точки (x_0,y_0) и непрерывны в этой точке. Тогда $\frac{\partial^2 f}{\partial x \partial y}(x_0,y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0,y_0)$.

Доказательство. Поскольку смешанные производные определены в окрестности точки (x_0, y_0) , то $\exists \delta > 0$ такое, что смешанные производные определены в квадрате

$$\{(x,y): |x-x_0| < \delta, |y-y_0| < \delta\}.$$

При $t \in (-\delta, \delta)$ определим функцию

$$w(t) = f(x_0 + t, y_0 + t) - f(x_0 + t, y_0) - f(x_0, y_0 + t) + f(x_0, y_0).$$

Зафиксируем произвольное $t\in (-\delta,\delta)$ и применим теорему Лагранжа о среднем для функции

$$\varphi(x) := f(x, y_0 + t) - f(x, y_0).$$

Получим, что существует число $\theta_1 \in (0,1)$, зависящее от t и такое, что $\varphi(x_0+t)-\varphi(x_0)=\varphi'(x_0+\theta_1t)t$, т. е. поскольку

$$w(t) = \varphi(x_0 + t) - \varphi(x_0), \quad \varphi'(x) = \frac{\partial f}{\partial x}(x, y_0 + t) - \frac{\partial f}{\partial x}(x, y_0),$$

то

$$w(t) = \left(\frac{\partial f}{\partial x}(x_0 + \theta_1 t, y_0 + t) - \frac{\partial f}{\partial x}(x_0 + \theta_1 t, y_0)\right) t.$$

Применяя теорему Лагранжа о среднем для функции

$$\psi(y) := \frac{\partial f}{\partial x}(x_0 + \theta_1 t, y),$$

получаем, что существует число $\theta_2 \in (0,1)$, зависящее от t и такое, что $\psi(y_0+t)-\psi(y_0)=\psi'(y_0+\theta_2t)\,t$, т. е.

$$w(t) = \frac{\partial^2 f}{\partial y \partial x} (x_0 + \theta_1 t, y_0 + \theta_2 t) t^2.$$
 (1)

В силу непрерывности частной производной $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ в точке (x_0,y_0) и условий $\theta_1 \in (0,1), \, \theta_2 \in (0,1), \,$ получаем

$$\lim_{t \to 0} \frac{\partial^2 f}{\partial y \partial x}(x_0 + \theta_1 t, y_0 + \theta_2 t) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0),$$

откуда и из (1) следует, что

$$\lim_{t \to 0} \frac{w(t)}{t^2} = \frac{\partial^2 f}{\partial u \partial x}(x_0, y_0).$$

Поскольку при замене переменных x на y, а y на x и замене функции f(x,y) на функцию f(y,x) функция w(t) не изменится, но поменяется порядок дифференцирования в смешанной производной $\frac{\partial^2 f}{\partial u \partial x}$, то

$$\lim_{t \to 0} \frac{w(t)}{t^2} = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0).$$

Следовательно, $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$.

Замечание. По аналогии с теоремой 1 можно доказать, что если частные производные k-го порядка функции $f(x^1,...,x^n)$ определены в окрестности точки $x_0 \in \mathbb{R}^n$ и непрерывны в точке x_0 , то в этой точке частные производные k-го порядка не зависят от порядка дифференцирования.

Определение. Функция $f(x) = f(x^1, ..., x^n)$ называется k раз $\partial u\phi$ -ференцируемой в точке $x_0 \in \mathbb{R}^n$, если все частные производные порядка (k-1) функции f определены в окрестности точки x_0 и дифференцируемы в точке x_0 . Дифференциал k-го порядка определяется по индукции:

$$d^k f(x_0)[dx] = d\Big(d^{k-1} f(x)[dx]\Big)_{|x=x_0}[dx].$$

При вычислении дифференциала выражения $d^{k-1}f(x)[dx]$ аргумент dx фиксируется, это выражение рассматривается как функция от x.

Лемма 1. Пусть функция $f(x) = f(x^1,...,x^n)$ является k раз диф-ференцируемой в точке $x_0 \in \mathbb{R}^n$. Тогда

$$d^k f(x_0)[dx] = \sum_{i_1=1}^n \cdots \sum_{i_k=1}^n \frac{\partial^k f}{\partial x^{i_k} \cdots \partial x^{i_1}}(x_0) dx^{i_k} \cdots dx^{i_1}.$$

Доказательство. В силу теоремы о связи частных производных и дифференциала имеем

$$d^2 f(x_0)[dx] = d \left(\sum_{i=1}^n \frac{\partial f}{\partial x^i}(x) dx^i \right) \bigg|_{x=x_0} [dx] = \sum_{i=1}^n d \left(\frac{\partial f}{\partial x^i} \right) (x_0)[dx] dx^i.$$

Используя равенства

$$d\left(\frac{\partial f}{\partial x^i}\right)(x_0)[dx] = \sum_{j=1}^n \frac{\partial}{\partial x^j} \left(\frac{\partial f}{\partial x^i}\right)(x_0) dx^j = \sum_{j=1}^n \frac{\partial^2 f}{\partial x^j \partial x^i}(x_0) dx^j,$$

приходим к соотношениям

$$d^{2}f(x_{0})[dx] = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}f}{\partial x^{j} \partial x^{i}}(x_{0}) dx^{j} dx^{i} =$$

$$= \sum_{i_1=1}^n \sum_{i_2=1}^n \frac{\partial^2 f}{\partial x^{i_2} \partial x^{i_1}} (x_0) dx^{i_2} dx^{i_1}.$$

Рассуждая аналогично, индукцией по k получаем доказываемую формулу. \square

§ 7. Формула Тейлора

Теорема 1. Пусть функция $f(x) = f(x^1, ..., x^n)$ является (m+1) раз дифференцируемой в некоторой δ -окрестности точки $x_0 = (x_0^1, ..., x_0^n)$. Тогда для любой точки $x \in U_\delta(x_0)$ справедлива формула Тейлора с остаточным членом в форме Лагранжа:

$$f(x) = f(x_0) + \sum_{k=1}^{m} \frac{1}{k!} d^k f(x_0) [\Delta x] + \frac{1}{(m+1)!} d^{m+1} f(x_0 + \theta \Delta x) [\Delta x],$$

 $\partial \theta \theta = \theta(x) \in (0,1), \ \Delta x = dx = x - x_0.$

Доказательство. Зафиксируем произвольную точку $x \in U_{\delta}(x_0)$. Рассмотрим функцию $\varphi(t) = f(x_0 + t\Delta x)$. По теореме о дифференцировании сложной функции для любого $t \in [0,1]$ имеем

$$\varphi'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} (x_{0} + t\Delta x) \Delta x^{i},$$

$$\varphi''(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} (x_{0} + t\Delta x) \Delta x^{j} \Delta x^{i}$$

и так далее. Получаем

$$\varphi^{(k)}(t) = \sum_{i_1=1}^n \cdots \sum_{i_k=1}^n \frac{\partial^k f}{\partial x^{i_k} \cdots \partial x^{i_1}} (x_0 + t\Delta x) \ \Delta x^{i_k} \cdots \Delta x^{i_1}$$

для любого $k \in \overline{1, m+1}$ и любого $t \in [0,1]$. Здесь мы учитывали, что функция f является (m+1) раз дифференцируемой в точке $x_0 + t\Delta x \in U_{\delta}(x_0)$.

Сравнивая с выражением для дифференциала k-го порядка (см. лемму 1 § 6), приходим к равенствам

$$\varphi^{(k)}(t) = d^k f(x_0 + t\Delta x)[\Delta x] \qquad \forall k \in \overline{1, m+1} \quad \forall t \in [0, 1]. \tag{1}$$

Применяя формулу Тейлора с остаточным членом в форме Лагранжа для функции одной переменной $\varphi(t)$, получаем, что существует число $\theta \in (0,1)$ такое, что

$$\varphi(1) = \varphi(0) + \sum_{k=1}^{m} \frac{1}{k!} \varphi^{(k)}(0) + \frac{1}{(m+1)!} \varphi^{(m+1)}(\theta).$$

Используя равенства (1), $\varphi(1) = f(x)$, $\varphi(0) = f(x_0)$, получаем доказываемое равенство.

Определение. Многочлен

$$P_m(dx) = P_m(dx^1, \dots, dx^n) = f(x_0) + \sum_{k=1}^m \frac{1}{k!} d^k f(x_0)[dx]$$

называется многочленом Тейлора порядка m функции f в точке x_0 .

Многочлен Тейлора $P_m(dx^1,...,dx^n)$ является многочленом степени не выше m относительно переменных $dx^1,...,dx^n$.

Теорема 2. Пусть все частные производные функции f до порядка m включительно существуют и непрерывны в некоторой окрестности точки $x_0 \in \mathbb{R}^n$. Тогда справедлива формула Тейлора с остаточным членом в форме Пеано:

$$f(x) = P_m(\Delta x) + o(|\Delta x|^m) \quad npu \quad \Delta x = x - x_0 \to 0.$$
 (2)

Доказательство. Поскольку функция f является m раз дифференцируемой в некоторой окрестности точки x_0 , то согласно теореме 1 в этой окрестности справедлива формула Тейлора с остаточным членом в форме Лагранжа:

$$f(x) = f(x_0) + \sum_{k=1}^{m-1} \frac{1}{k!} d^k f(x_0) [\Delta x] + \frac{1}{m!} d^m f(x_0 + \theta \Delta x) [\Delta x],$$
 (3)

где $\theta = \theta(x) \in (0,1)$. Покажем, что при $x \to x_0$

$$d^{m} f(x_0 + \theta \Delta x) [\Delta x] - d^{m} f(x_0) [\Delta x] = o(|\Delta x|^{m}). \tag{4}$$

Согласно лемме 1 \S 6 в достаточно малой окрестности точки x_0

$$d^m f = \sum_{i_1=1}^n \cdots \sum_{i_m=1}^n \frac{\partial^m f}{\partial x^{i_m} \cdots \partial x^{i_1}} dx^{i_m} \cdots dx^{i_1}.$$

Так как $|dx^i| = |\Delta x^i| \le \sqrt{|\Delta x^1|^2 + \ldots + |\Delta x^n|^2} = |\Delta x|$, то

$$\frac{|d^m f(\widetilde{x})[\Delta x] - d^m f(x_0)[\Delta x]|}{|\Delta x|^m} \le$$

$$\leq \sum_{i_1=1}^n \cdots \sum_{i_m=1}^n \left| \frac{\partial^m f}{\partial x^{i_m} \cdots \partial x^{i_1}} (\widetilde{x}) - \frac{\partial^m f}{\partial x^{i_m} \cdots \partial x^{i_1}} (x_0) \right| \leq$$

$$\leq n^m \max_{i_1, \dots, i_m \in \overline{1, n}} \left| \frac{\partial^m f}{\partial x^{i_m} \cdots \partial x^{i_1}} (\widetilde{x}) - \frac{\partial^m f}{\partial x^{i_m} \cdots \partial x^{i_1}} (x_0) \right|.$$

Поскольку производные порядка m непрерывны и $\theta \in (0,1)$, то для любых $i_1,\ldots,i_m \in \overline{1,n}$ при $x \to x_0$

$$\left|\frac{\partial^m f}{\partial x^{i_m}\cdots\partial x^{i_1}}(x_0+\theta\Delta x)-\frac{\partial^m f}{\partial x^{i_m}\cdots\partial x^{i_1}}(x_0)\right|\to 0\quad\text{при}\quad x\to x_0.$$

Следовательно,

$$\frac{|d^m f(x_0 + \theta \Delta x)[\Delta x] - d^m f(x_0)[\Delta x]|}{|\Delta x|^m} \to 0 \quad \text{при} \quad x \to x_0.$$

Отсюда следует формула (4), которая вместе с формулой (3) дает (2). \square

Замечание. Так же, как и для функции одной переменной, доказывается единственность разложения (2). А именно, если все частные производные функции f до порядка m включительно непрерывны в точке x_0 и справедливо разложение (2), где $P_m(\Delta x)$ – некоторый многочлен степени не выше m относительно переменных $\Delta x = (\Delta x^1, \ldots, \Delta x^n)$, то $P_m(\Delta x)$ – многочлен Тейлора функции f в точке x_0 .

Γ Λ A B A 13

ТЕОРЕМА О НЕЯВНОЙ ФУНКЦИИ

§ 1. Теорема о неявной функции для одного уравнения

Пусть $x_0 \in \mathbb{R}^n$, $y_0 \in \mathbb{R}^1$ и в окрестности точки $(x_0, y_0) \in \mathbb{R}^{n+1}$ задана скалярная функция F(x, y). Нас будет интересовать решение y = y(x) уравнения F(x, y) = 0. При этом в явном виде найти функцию y(x) зачастую не удается. В связи с этим функция y(x) называется *неявной*.

Теорема 1. Пусть $x_0 \in \mathbb{R}^n$, $y_0 \in \mathbb{R}^1$ и пусть скалярная функция F(x,y) удовлетворяет условиям:

- (1) $F(x_0, y_0) = 0$,
- (2) функция F непрерывна в $U_{\varepsilon}(x_0, y_0)$,
- (3) частная производная $F_y'(x,y)$ существует в $U_{\varepsilon}(x_0,y_0)$ и непрерывна в точке (x_0,y_0) ,
 - (4) $F'_{u}(x_0, y_0) \neq 0$.

Тогда существуют числа $\gamma > 0$, $\delta > 0$ и непрерывная в точке x_0 функция $\varphi: U_{\gamma}(x_0) \to U_{\delta}(y_0)$ такая, что для любого $x^* \in U_{\gamma}(x_0)$ уравнение $F(x^*,y)=0$ на множестве $U_{\delta}(y_0)$ имеет единственное решение $y^*=\varphi(x^*)$.

Доказательство. Для определенности будем предполагать, что $F_y'(x_0, y_0) > 0$. Тогда в силу непрерывности функции $F_y'(x, y)$ в точке (x_0, y_0) существует число $\varepsilon_1 \in (0, \varepsilon)$ такое, что

$$F_{\eta}'(x,y) > 0 \qquad \forall (x,y) \in U_{\varepsilon_1}(x_0, y_0). \tag{1}$$

Зафиксируем произвольное число $\delta \in \left(0, \frac{1}{\sqrt{2}}\varepsilon_1\right]$. Тогда для любых $x \in U_\delta(x_0), y \in U_\delta(y_0)$ выполняются соотношения

$$|(x,y) - (x_0,y_0)| = \sqrt{|x - x_0|^2 + |y - y_0|^2} < \sqrt{\delta^2 + \delta^2} \le \varepsilon_1,$$

т.е. $(x,y) \in U_{\varepsilon_1}(x_0,y_0)$. Поэтому согласно соотношению (1) для любого $x \in U_{\delta}(x_0)$ функция F(x,y) строго возрастает по y на отрезке $[y_0 - \delta, y_0 + \delta]$.

Отсюда и из равенства $F(x_0, y_0) = 0$ следуют неравенства

$$F(x_0, y_0 - \delta) < 0, \qquad F(x_0, y_0 + \delta) > 0.$$

Поэтому в силу непрерывности функции F в $U_{\varepsilon}(x_0, y_0)$ существует число $\gamma \in (0, \delta]$ такое, что

$$\forall x \in U_{\gamma}(x_0) \hookrightarrow F(x, y_0 - \delta) < 0, \quad F(x, y_0 + \delta) > 0.$$

Применяя теорему о промежуточном значении для функции f(y) = F(x,y), непрерывной на отрезке $[y_0 - \delta, y_0 + \delta]$, получаем, что для любого $x \in U_{\gamma}(x_0)$ существует число $\varphi(x) \in (y_0 - \delta, y_0 + \delta)$ такое, что $F(x,\varphi(x)) = 0$. Тем самым определена функция $\varphi: U_{\gamma}(x_0) \to U_{\delta}(y_0)$. Из строгого возрастания функции F(x,y) по y в $U_{\delta}(y_0)$ следует, что для любого $x \in U_{\gamma}(x_0)$ число $y = \varphi(x)$ является единственным в $U_{\delta}(y_0)$ решением уравнения F(x,y) = 0.

Поскольку число δ было выбрано как произвольное число из интервала $\left(0, \frac{1}{\sqrt{2}} \varepsilon_1\right)$, то эти же рассуждения можно провести для произвольного числа $\delta_1 \in (0, \delta]$. В результате получим, что

$$\forall \delta_1 \in (0, \delta] \ \exists \gamma_1 \in (0, \gamma]: \ \forall x \in U_{\gamma_1}(x_0) \hookrightarrow \ \varphi(x) \in U_{\delta_1}(y_0).$$

Тем самым доказана непрерывность функции φ в точке x_0 .

§ 2. Операторная норма матрицы. Теорема Лагранжа о среднем

Определение . Через $\mathbb{R}^{m \times n}$ будем обозначать множество всех матриц размера $m \times n$ с вещественными элементами.

Легко видеть, что множество $\mathbb{R}^{m \times n}$ является вещественным линейным пространством: в нем определены операции сложения элементов и умножения элемента на вещественное число, удовлетворяющие аксиомам линейного пространства. Можно рассматривать различные нормы в пространстве $\mathbb{R}^{m \times n}$. Определим операторную норму в этом пространстве.

Определение . *Операторной нормой матрицы* $A \in \mathbb{R}^{m \times n}$ называется число

$$||A|| = \max_{\substack{x \in \mathbb{R}^n \\ |x|=1}} |Ax|,$$

где |Ax| – длина вектора $Ax \in \mathbb{R}^m$.

Поскольку функция f(x)=Ax непрерывна, а множество $\{x\in\mathbb{R}^n:|x|=1\}$ является компактом, то в определении нормы максимум существует.

Заметим, что введенная норма матрицы удовлетворяет аксиомам нормы:

 $(1) ||A|| \geq 0;$

(2) если
$$\|A\|=0$$
, то $A=\left(egin{array}{ccc} 0 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & 0 \end{array} \right)$ — нулевая матрица;

- (3) для любого числа λ справедливо равенство $\|\lambda A\| = |\lambda| \|A\|$;
- $(4) \|A_1 + A_2\| \le \|A_1\| + \|A_2\|$ (неравенство треугольника).

Свойства (1) – (3) очевидны. Докажем неравенство треугольника.

$$||A_1 + A_2|| = \max_{\substack{x \in \mathbb{R}^n \\ |x| = 1}} |A_1 x + A_2 x| \le \max_{\substack{x \in \mathbb{R}^n \\ |x| = 1}} (|A_1 x| + |A_2 x|) \le$$

$$\le \max_{\substack{x \in \mathbb{R}^n \\ |x| = 1}} |A_1 x| + \max_{\substack{x \in \mathbb{R}^n \\ |x| = 1}} |A_2 x| = ||A_1|| + ||A_2||.$$

Задача 1. Доказать, что операторная норма матрицы A совпадает с корнем квадратным из максимального собственного числа матрицы A^TA (число λ называется собственным числом матрицы B размера $n \times n$, если $\exists x \in \mathbb{R}^n \setminus \{\overline{0}\}: Bx = \lambda x$).

Лемма 1. а) Если $A-(m\times n)$ -матрица и $x\in\mathbb{R}^n$, то $|Ax|\leq \|A\|\,|x|$. 6) Если $A-(m\times n)$ -матрица, а $B-(n\times k)$ -матрица, то $\|AB\|\leq \|A\|\,\|B\|$.

Доказательство. а) Если $x=\overline{0}$, то $Ax=\overline{0}$ и неравенство $|Ax|\leq \leq \|A\|\,|x|$ выполнено. Пусть $x\neq \overline{0}$. Обозначим $x_1=\frac{x}{|x|}$. Поскольку $|x_1|=1$, то $\|A\|\geq |Ax_1|=\frac{1}{|x|}\,|Ax|$, следовательно, $|Ax|\leq \|A\|\,|x|$.

б) Поскольку в силу пункта (а)

$$|ABx| \le ||A|| \, |Bx| \le ||A|| \, ||B|| \, |x| \qquad \forall x \in \mathbb{R}^k,$$

то
$$\|AB\|=\max_{\substack{x\in\mathbb{R}^k\\|x|=1}}|ABx|\leq \|A\|\,\|B\|.$$

Теорема 1. (Теорема Лагранжа о среднем.) Пусть в δ -окрестности точки $y_0 \in \mathbb{R}^k$ задана дифференцируемая вектор-функция $g: U_{\delta}(y_0) \to \mathbb{R}^m$. Тогда для любых $y, y' \in U_{\delta}(y_0)$ существует число $\theta \in (0; 1)$ такое, что

$$|g(y') - g(y)| \le ||\mathcal{D}g(y + \theta(y' - y))|| |y' - y|.$$
 (1)

Доказательство. Зафиксируем произвольные $y, y' \in U_{\delta}(y_0)$ и рассмотрим вектор-функцию скалярного переменного f(t) = g(y + t(y' - y)). Поскольку для любого $t \in [0,1]$ имеем $y + t(y' - y) \in [y,y'] \subset U_{\delta}(y_0)$, то по теореме о дифференцировании сложной функции для любого $t \in [0,1]$ существует $f'(t) = \mathcal{D} g(y + t(y' - y)) (y' - y)$. Следовательно, согласно теореме Лагранжа о среднем для вектор-функции скалярного переменного существует число $\theta \in (0,1)$ такое, что $|f(1) - f(0)| \leq |f'(\theta)|$. Поэтому

$$|g(y') - g(y)| = |f(1) - f(0)| \le |f'(\theta)| = |\mathcal{D}g(y + \theta(y' - y)) (y' - y)| \le$$

$$\stackrel{\text{JI. 1(a)}}{\le} \|\mathcal{D}g(y + \theta(y' - y))\| |y' - y|. \qquad \Box$$

Лемма 2. Пусть
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$
. Тогда
$$\max_{\substack{i \in \overline{1,m} \\ j \in \overline{1,n}}} |a_{ij}| \le ||A|| \le \sqrt{mn} \max_{\substack{i \in \overline{1,m} \\ j \in \overline{1,n}}} |a_{ij}|. \tag{2}$$

Доказательство. Обозначим

$$M = \max_{\substack{i \in \overline{1,m} \\ j \in \overline{1,n}}} |a_{ij}|.$$

Пусть этот максимум достигается на индексах $i_0 \in \overline{1,m}, j_0 \in \overline{1,n}$: $M=|a_{i_0j_0}|$. Рассмотрим вектор $x=\begin{pmatrix}x_1\\\dots\\x_n\end{pmatrix}$, где $x_j=\begin{cases}1, & j=j_0,\\0, & j\neq j_0.\end{cases}$ Заметим, что |x|=1. Пусть y=Ax. Тогда $y=\begin{pmatrix}y_1\\\dots\\y_m\end{pmatrix}$, где $y_i=\sum_{j=1}^n a_{ij}x_j=$

 $=a_{ij_0}$ при всех $i\in\overline{1,m}$. Поэтому $|y|=\sqrt{y_1^2+\ldots+y_m^2}\geq |y_{i_0}|=|a_{i_0j_0}|=M$. Следовательно, $\|A\|\geq |Ax|=|y|\geq M$. Таким образом, первое из цепочки неравенств (2) доказано.

Докажем второе неравенство этой цепочки. Фиксируем произвольный вектор $x=\begin{pmatrix}x_1\\\dots\\x_n\end{pmatrix}$ такой, что |x|=1. Обозначим y=Ax. То-

гда $y=\left(\begin{array}{c}y_1\\\dots\\y_m\end{array}\right)$, где $y_i=\sum\limits_{j=1}^na_{ij}x_j$ при всех $i\in\overline{1,m}$. Следовательно,

 $|y_i| \le M \sum_{j=1}^n |x_j|$. В силу неравенства Коши-Буняковского, примененного

для векторов
$$a=\begin{pmatrix} |x_1|\\ \dots\\ |x_n| \end{pmatrix}$$
 и $b=\begin{pmatrix} 1\\ \dots\\ 1 \end{pmatrix}$, получаем $\sum\limits_{j=1}^n |x_j|=\sum\limits_{j=1}^n a_jb_j\leq 1$

 $\leq |a|\cdot|b| = \sqrt{x_1^2+\ldots+x_n^2}\cdot\sqrt{n} = \sqrt{n}$. Поэтому $|y_i|\leq M\sqrt{n}$. Следовательно, $|y|=\sqrt{y_1^2+\ldots+y_m^2}\leq M\sqrt{mn}$, т. е. второе неравенство цепочки (2) доказано.

Замечание. Пусть на метрическом пространстве T задана матричнозначная функция $A: T \to \mathbb{R}^{m \times n}, \quad A(t) = \begin{pmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ \dots & \dots & \dots \\ a_{m1}(t) & \dots & a_{mn}(t) \end{pmatrix}.$

Пусть $t_0 \in T$ и $A^0 = \begin{pmatrix} a_{11}^0 & \dots & a_{1n}^0 \\ \dots & \dots & \dots \\ a_{m1}^0 & \dots & a_{mn}^0 \end{pmatrix}$. Тогда из леммы 2 следует, что

$$\lim_{t \to t_0} ||A(t) - A^0|| = 0 \quad \Leftrightarrow \quad \lim_{t \to t_0} a_{ij}(t) = a_{ij}^0 \quad \forall i \in \overline{1, m}, \ j \in \overline{1, n}.$$

Таким образом, предел матрично-значной функции можно вычислять покомпонентно. Поэтому непрерывность матрично-значной функции также можно исследовать покомпонентно.

§ 3. Принцип Банаха сжимающих отображений

Определение. Пусть Y – метрическое пространство с метрикой ϱ . Отображение $g: Y \to Y$ называется сжимающим отображением с коэффициентом сжатия $\mu \in (0,1)$, если

$$\varrho(g(y), g(y')) \le \mu \varrho(y, y') \quad \forall y, y' \in Y.$$

Теорема 1. Пусть Y – полное метрическое пространство, $g: Y \to Y$ – сжимающее отображение. Тогда уравненение y = g(y) имеет единственное решение $y^* \in Y$, которое может быть найдено как предел последовательности $\{y_k\}_{k=0}^{\infty}$, определяемой рекуррентной формулой

$$y_{k+1} = g(y_k), \quad k = 0, 1, 2, \dots,$$

где y_0 – произвольный элемент пространства Y.

Доказательство. Пусть $\mu \in (0,1)$ – коэффициент сжатия отображения $g: Y \to Y$. Так как для любого $k \in \mathbb{N}$ справедливы неравенства $\varrho(y_{k+1}, y_k) = \varrho(g(y_k), g(y_{k-1}) \le \mu \varrho(y_k, y_{k-1})$, то

$$\varrho(y_{k+1}, y_k) \le \mu^k \varrho(y_1, y_0) \quad \forall k \in \mathbb{N}.$$

Используя неравенство треугольника, для любых $k \in \mathbb{N} \cup \{0\}$, n > k имеем

$$\varrho(y_n, y_k) \le \varrho(y_n, y_{n-1}) + \dots + \varrho(y_{k+1}, y_k) \le$$

$$\leq (\mu^{n-1} + \dots + \mu^k)\varrho(y_1, y_0) = \frac{(\mu^k - \mu^n)\varrho(y_1, y_0)}{1 - \mu} \leq \frac{\mu^k\varrho(y_1, y_0)}{1 - \mu}.$$

Поэтому для любого $\varepsilon > 0$ существует натуральное число N, определяемое из условия $\frac{\mu^N \varrho(y_1,y_0)}{1-\mu} < \varepsilon$, такое, что для любых $k \geq N, n > k$ справедливо неравенство $\varrho(y_n,y_k) < \varepsilon$. Это означает фундаментальность последовательности $\{y_k\}$, следовательно, в силу полноты пространства Y последовательность $\{y_k\}$ сходится к некоторому элементу $y^* \in Y$. Из сжимаемости отображения g следует его непрерывность. Переходя к пределу в формуле $y_{k+1} = g(y_k)$ при $k \to \infty$, получаем $y^* = g(y^*)$, т. е. элемент y^* является решением системы уравнений y = g(y).

Покажем единственность решения уравнения y=g(y). Предположим противное: существует $y'\in Y$ – решения этого уравнения, $y'\neq y^*$. Тогда в силу свойства сжимаемости имеем $\varrho(y^*,y')=\varrho(g(y^*),g(y'))\leq \mu\varrho(y^*,y')<<\varrho(y^*,y')$. Противоречие.

§ 4. Теорема о неявной функции для системы уравнений

Пусть $x_0 \in \mathbb{R}^n_x$, $y_0 \in \mathbb{R}^m_y$ и в окрестности точки $(x_0, y_0) \in \mathbb{R}^{n+m}$ задана m-мерная вектор-функция

$$F(x,y) = \begin{pmatrix} F^1(x,y) \\ \cdots \\ F^m(x,y) \end{pmatrix} = \begin{pmatrix} F^1(x^1,\dots,x^n,y^1,\dots,y^m) \\ \cdots \\ F^m(x^1,\dots,x^n,y^1,\dots,y^m) \end{pmatrix}.$$

Нас будет интересовать решение y=y(x) системы $F(x,y)=\overline{0}$ из m скалярных уравнений. Компоненты вектора y называются neusecmhumu в том смысле, что их нужно выразить через вектор параметров x, исходя из системы уравнений $F(x,y)=\overline{0}$. Предполагается, что число уравнений системы и число неизвестных совпадают и равны m.

Рассмотрим сначала частный случай, в котором вектор-функция F линейна по вектору неизвестных: F(x,y)=A(x)y-b(x). В этом случае, применяя правило Крамера, известное из линейной алгебры, получаем, что система $F(x,y)=\overline{0}$ имеет единственное решение тогда и только тогда, когда $\det A(x)\neq 0$. Следующая теорема формулирует достаточные условия существования и единственности решения нелинейного уравнения. Предполагается известным некоторое решение $(x_0,y_0)\in\mathbb{R}^{n+m}$ векторного уравнения $F(x,y)=\overline{0}$. Поскольку дифференцируемая векторфункция F(x,y) в малой окрестности точки (x_0,y_0) «близка» к линейной по y функции $F(x,y_0)+\mathcal{D}_y\,F(x,y_0)(y-y_0)$, то вполне естественно, что для существования и единственности решения уравнения $F(x,y)=\overline{0}$ следует потребовать выполнение условия $\det \mathcal{D}_y\,F(x_0,y_0)\neq 0$.

Здесь
$$\mathcal{D}_y F(x_0, y_0) = \begin{pmatrix} \frac{\partial F^1}{\partial y^1}(x_0, y_0) & \cdots & \frac{\partial F^1}{\partial y^m}(x_0, y_0) \\ \cdots & \cdots & \cdots \\ \frac{\partial F^m}{\partial y^1}(x_0, y_0) & \cdots & \frac{\partial F^m}{\partial y^m}(x_0, y_0) \end{pmatrix}$$
 — матрица

Якоби функции F(x,y) в точке (x_0,y_0) по переменным $y=(y^1,\ldots,y^m)$. В отличие от линейного уравнения, существование и единственность решения нелинейного уравнения гарантируются лишь в малой окрестности точки (x_0,y_0) .

Теорема 1. Пусть $x_0 \in \mathbb{R}^n_x$, $y_0 \in \mathbb{R}^m_y$ и пусть т-мерная вектор-функция F(x,y) удовлетворяет условиям:

- (1) $F(x_0, y_0) = \overline{0}$,
- (2) функция F непрерывно дифференцируема в $U_{\varepsilon}(x_0, y_0)$,
- (3) $\det \mathcal{D}_y F(x_0, y_0) \neq 0$.

Тогда существуют числа $\gamma > 0$, $\delta > 0$ и непрерывно дифференцируемая вектор-функция $\varphi : U_{\gamma}(x_0) \to U_{\delta}(y_0)$ такая, что для любого $x^* \in$ $\in U_{\gamma}(x_0)$ система уравнений $F(x^*,y) = \overline{0}$ на множестве $U_{\delta}(y_0)$ имеет единственное решение $y^* = \varphi(x^*)$.

Доказательство

Шаг 1. Доказательство существования и единственности решения.

Поскольку матрица Якоби $\mathcal{D}_y F(x,y)$ непрерывна в точке (x_0,y_0) , то ее определитель является скалярной функцией, непрерывной в этой точке. Отсюда и из условия $\det \mathcal{D}_y F(x_0,y_0) \neq 0$ следует существование числа $\varepsilon_1 \in (0,\varepsilon]$ такого, что

$$\forall (x,y) \in U_{\varepsilon_1}(x_0,y_0) \hookrightarrow \det \mathcal{D}_y F(x,y) \neq 0. \tag{1}$$

Рассмотрим вектор-функцию

$$h(x,y) = y - (\mathcal{D}_y F(x_0, y_0))^{-1} F(x,y).$$

По теореме о дифференцировании сложной функции

$$\mathcal{D}_y h(x, y) = E - (\mathcal{D}_y F(x_0, y_0))^{-1} \mathcal{D}_y F(x, y) =$$

$$= (\mathcal{D}_y F(x_0, y_0))^{-1} (\mathcal{D}_y F(x_0, y_0) - \mathcal{D}_y F(x, y)),$$

где E — единичная матрица размера $m \times m$. Из непрерывности матрицы Якоби $\mathcal{D}_y F(x,y)$ следует, что $\mathcal{D}_y F(x,y) \to \mathcal{D}_y F(x_0,y_0)$ при $(x,y) \to (x_0,y_0)$. Поэтому $\|\mathcal{D}_y h(x,y)\| \to 0$ при $(x,y) \to (x_0,y_0)$. Следовательно, существует $\varepsilon_2 \in (0,\varepsilon_1]$:

$$\forall (x,y) \in U_{\varepsilon_2}(x_0,y_0) \hookrightarrow \|\mathcal{D}_y h(x,y)\| \le \frac{1}{2}.$$

Зафиксируем произвольное число $\delta \in \left(0, \frac{1}{\sqrt{2}} \varepsilon_2\right]$. Тогда для любых $x \in U_\delta(x_0), y \in \overline{U_\delta(y_0)} = \{y \in \mathbb{R}_y^m: |y-y_0| \leq \delta\}$ выполняются соотношения

$$|(x,y) - (x_0,y_0)| = \sqrt{|x - x_0|^2 + |y - y_0|^2} < \sqrt{\delta^2 + \delta^2} \le \varepsilon_2,$$

т. е. $(x,y) \in U_{\varepsilon_2}(x_0,y_0)$. Поэтому

$$\forall x \in U_{\delta}(x_0) \quad \forall y \in \overline{U_{\delta}(y_0)} \hookrightarrow \|\mathcal{D}_y h(x,y)\| \leq \frac{1}{2}.$$

Фиксируя произвольный $x \in U_{\delta}(x_0)$ и применяя теорему Лагранжа о среднем к вектор-функции g(y) = h(x,y), получаем, что для любых $y,y' \in \overline{U_{\delta}(y_0)}$ существует число $\theta \in (0,1)$:

$$|h(x,y') - h(x,y)| \le ||\mathcal{D}_y h(x,y + \theta (y'-y))|| |y'-y| \le \frac{1}{2} |y'-y|.$$

Итак,

$$\forall x \in U_{\delta}(x_0) \quad \forall y, y' \in U_{\delta}(y_0) \hookrightarrow |h(x, y') - h(x, y)| \le \frac{1}{2}|y' - y|. \tag{2}$$

Это означает, что для любого фиксированного $x^* \in U_{\delta}(x_0)$ отображение $g(y) = h(x^*, y)$ в $\overline{U_{\delta}(y_0)}$ является сжимающим с коэффициентом $\mu = \frac{1}{2}$. Замкнутое множество $\overline{U_{\delta}(y_0)}$ с евклидовой метрикой пространства \mathbb{R}^m_y является полным метрическим пространством. Мы хотим с помощью принципа сжимающих отображений доказать существование единственного решения уравнения g(y) = y при $y \in \overline{U_{\delta}(y_0)}$. Для применения этого принципа требуется проверить, что отображение g действует из $\overline{U_{\delta}(y_0)}$ в $\overline{U_{\delta}(y_0)}$. Покажем, что это так при x^* достаточно близких к x_0 .

Заметим, что $h(x,y_0)-y_0=-(\mathcal{D}_y\,F(x_0,y_0))^{-1}\,F(x,y_0)$. В силу непрерывности функции $F(x,y_0)$ в точке x_0 имеем $h(x,y_0)-y_0\to -(\mathcal{D}_y\,F(x_0,y_0))^{-1}\,F(x_0,y_0)=\overline{0}$ при $x\to x_0$. Поэтому существует число $\gamma\in(0,\delta]$ такое, что

$$\forall x \in U_{\gamma}(x_0) \hookrightarrow |h(x, y_0) - y_0| < \frac{\delta}{2}. \tag{3}$$

Зафиксируем произвольную точку $x^* \in U_{\gamma}(x_0)$. Из условий (2) и (3) следует, что при $y \in \overline{U_{\delta}(y_0)}$

$$|h(x^*, y) - y_0| < |h(x^*, y) - h(x^*, y_0)| + \frac{\delta}{2} \le \frac{|y - y_0|}{2} + \frac{\delta}{2} \le \delta.$$

Поэтому отображение $g(y)=h(x^*,y)$ действует из $\overline{U_\delta(y_0)}$ в $\overline{U_\delta(y_0)}$. В силу принципа сжимающих отображений для любого $x^*\in U_\gamma(x_0)$ система уравнений y=g(y) на множестве $U_\delta(y_0)$ имеет единственное решение y^* . Обозначим это решение через $\varphi(x^*)$. Поскольку $g(y)=h(x^*,y)=y-(\mathcal{D}_y\,F(x_0,y_0))^{-1}\,F(x^*,y)$, то система уравнений y=g(y) эквивалентна системе $F(x^*,y)=\overline{0}$. Таким образом, мы получили, что для любого $x^*\in U_\gamma(x_0)$ система уравнений $F(x^*,y)=\overline{0}$ на множестве $U_\delta(y_0)$ имеет единственное решение $y^*=\varphi(x^*)$.

Шаг 2. Доказательство непрерывности решения в точке x_0 .

Заметим, что число δ было выбрано как произвольное число из получинтервала $\left(0, \frac{1}{\sqrt{2}} \varepsilon_2\right]$. Поэтому, повторяя те же рассуждения для произвольного числа $\delta_1 \in (0, \delta]$, найдем число $\gamma_1 \in (0, \gamma]$ и функцию

 $\varphi_1: U_{\gamma_1}(x_0) \to U_{\delta_1}(y_0)$ такую, что для любого $x^* \in U_{\gamma_1}(x_0)$ уравнение $F(x^*,y) = \overline{0}$ имеет единственное решение $y = \varphi_1(x^*)$. Следовательно, $\forall x \in U_{\gamma_1}(x_0) \hookrightarrow \varphi_1(x) = \varphi(x)$ и

$$\forall \delta_1 \in (0, \delta] \ \exists \gamma_1 \in (0, \gamma]: \ \forall x \in U_{\gamma_1}(x_0) \hookrightarrow \ \varphi(x) \in U_{\delta_1}(y_0).$$

Тем самым доказана непрерывность функции φ в точке x_0 .

Шаг 3. Доказательство дифференцируемости решения в точке x_0 .

В силу дифференцируемости функции F в точке (x_0,y_0) из леммы 1 \S 5 главы 12 следует, что

$$F(x,y) - F(x_0,y_0) = \mathcal{D} F(x_0,y_0) \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} + \overline{o}(|(x,y) - (x_0,y_0)|) =$$

$$= \mathcal{D}_x F(x_0, y_0)(x - x_0) + \mathcal{D}_y F(x_0, y_0)(y - y_0) + \overline{o}(\sqrt{|x - x_0|^2 + |y - y_0|^2})$$

при $x \to x_0, y \to y_0$. Подставим в полученную формулу $y = \varphi(x), y_0 = \varphi(x_0)$. Воспользуемся равенствами $F(x, \varphi(x)) = \overline{0}, F(x_0, \varphi(x_0)) = \overline{0}$. В силу непрерывности неявной функции φ в точке x_0 получаем, что $\varphi(x) \to \varphi(x_0)$ при $x \to x_0$. Поэтому

$$\overline{0} = \mathcal{D}_x F(x_0, y_0) (x - x_0) + \mathcal{D}_y F(x_0, y_0) (\varphi(x) - \varphi(x_0)) +$$

$$+ \overline{o}(\sqrt{|x - x_0|^2 + |\varphi(x) - \varphi(x_0)|^2}) \quad \text{при} \quad x \to x_0.$$

Из условия $\det \mathcal{D}_y F(x_0, y_0) \neq 0$ следует существование обратной матрицы к матрице $\mathcal{D}_y F(x_0, y_0)$. Поэтому

$$\varphi(x) - \varphi(x_0) = -\left(\mathcal{D}_y F(x_0, y_0)\right)^{-1} \left(\mathcal{D}_x F(x_0, y_0) (x - x_0) + \overline{o}(\sqrt{|x - x_0|^2 + |\varphi(x) - \varphi(x_0)|^2})\right) \quad \text{при} \quad x \to x_0.$$

Определив матрицу $M = -(\mathcal{D}_y F(x_0, y_0))^{-1} \mathcal{D}_x F(x_0, y_0)$, получаем

$$\varphi(x) - \varphi(x_0) = M(x - x_0) + \overline{o}(\sqrt{|x - x_0|^2 + |\varphi(x) - \varphi(x_0)|^2}), \quad x \to x_0.$$
 (4)

Покажем, что в формуле (4) слагаемое $\overline{o}(\sqrt{|x-x_0|^2+|\varphi(x)-\varphi(x_0)|^2})$ можно заменить на $\overline{o}(|x-x_0|)$. Это и будет означать дифференцируемость функции φ в точке x_0 .

Согласно определению o-малого из формулы (4) получаем

$$\varphi(x) - \varphi(x_0) = M(x - x_0) + \varepsilon(x)\sqrt{|x - x_0|^2 + |\varphi(x) - \varphi(x_0)|^2}, \quad (5)$$

где $\lim_{x\to x_0} \varepsilon(x)=\overline{0}$. Поэтому существует число $\beta>0$ такое, что $|\varepsilon(x)|<\frac{1}{2}$ $\forall x\in U_\beta(x_0)$.

Обозначим $\Delta \varphi = |\varphi(x) - \varphi(x_0)|$. Так как $\sqrt{|x - x_0|^2 + |\Delta \varphi|^2} \le |x - x_0| + |\Delta \varphi|$, то из (5) следует, что для любого $x \in U_\beta(x_0)$

 $\Delta \varphi \leq \|M\| |x - x_0| + |\varepsilon(x)| (|x - x_0| + \Delta \varphi) \leq \|M\| |x - x_0| + \frac{|x - x_0| + \Delta \varphi}{2},$ а значит,

$$\Delta \varphi \le (2||M||+1)|x-x_0| \qquad \forall x \in U_\beta(x_0).$$

Следовательно, при $x \in U_{\beta}(x_0)$ справедливо неравенство

$$\sqrt{|x - x_0|^2 + |\Delta \varphi|^2} \le \sqrt{1 + (2||M|| + 1)^2} |x - x_0|.$$

Отсюда и из равенства (4) следует, что

$$\varphi(x) - \varphi(x_0) = M(x - x_0) + \overline{o}(|x - x_0|), \quad x \to x_0.$$

В силу леммы 1 § 5 главы 12 это означает, что функция φ дифференцируема в точке x_0 и ее матрица Якоби равна

$$\mathcal{D}\varphi(x_0) = M = -\left(\mathcal{D}_y F(x_0, y_0)\right)^{-1} \mathcal{D}_x F(x_0, y_0).$$

Шаг 4. Доказательство непрерывной дифференцируемости решения в окрестности точки x_0 .

Так как для любого $x \in U_{\gamma}(x_0)$ имеем $\varphi(x) \in U_{\delta}(y_0), \, \gamma \leq \delta \leq \frac{1}{\sqrt{2}} \varepsilon_2 \leq \frac{1}{\sqrt{2}} \varepsilon_1$, то в силу соотношения (1)

$$\det \mathcal{D}_y F(x, \varphi(x)) \neq 0 \qquad \forall x \in U_\gamma(x_0). \tag{6}$$

Кроме того, для любого $x \in U_{\gamma}(x_0)$ справедливо равенство $F(x,\varphi(x)) = \overline{0}$, и найдется окрестность точки $(x,\varphi(x))$, лежащая в $U_{\varepsilon}(x_0,y_0)$, поэтому функция F непрерывно дифференцируема в некоторой окрестности точки $(x,\varphi(x))$. Следовательно, доказанное на предыдущем шаге утверждение останется справедливым, если в нем точку (x_0,y_0) заменить точкой $(x,\varphi(x))$, где $x\in U_{\gamma}(x_0)$. А именно, функция φ дифференцируема в любой точке $x\in U_{\gamma}(x_0)$ и

$$\mathcal{D}\varphi(x) = -\left(\mathcal{D}_y F(x, \varphi(x))\right)^{-1} \mathcal{D}_x F(x, \varphi(x)) \qquad \forall x \in U_\gamma(x_0). \tag{7}$$

Следовательно, функция φ непрерывна в $U_{\gamma}(x_0)$ и, используя непрерывную дифференцируемость функции F в $U_{\varepsilon}(x_0,y_0)$, получаем непрерывность в $U_{\gamma}(x_0)$ правой части равенства (7). Поэтому матрица Якоби $\mathcal{D}\,\varphi(x)$ непрерывна в $U_{\gamma}(x_0)$, т. е. функция φ непрерывно дифференцируема в $U_{\gamma}(x_0)$.

§ 5. Теорема об обратном отображении

Лемма 1. Пусть функция $g: Y \to \mathbb{R}^m_x$ непрерывна на открытом множестве $Y \subset \mathbb{R}^n_y$. Тогда для любого открытого множества $G \subset \mathbb{R}^m_x$ его прообраз $Y_0 = \{y \in Y : g(y) \in G\}$ является открытым множеством.

Доказательство. Пусть y_0 – произвольная точка множества Y_0 . Требуется доказать, что существует число $\delta>0$ такое, что $U_\delta(y_0)\subset Y_0$. Из определения множества Y_0 следует, что $g(y_0)\in G$. Поскольку множество G открыто, то $\exists \varepsilon>0: U_\varepsilon(g(y_0))\subset G$. Из непрерывности функции g(y) в точке y_0 открытого множества Y следует, что существует число $\delta>0$ такое, что $U_\delta(y_0)\subset Y$ и для любого вектора $y\in U_\delta(y_0)$ выполняется включение $g(y)\in U_\varepsilon(g(y_0))$. Следовательно, $\forall y\in U_\delta(y_0)\hookrightarrow g(y)\in G$, что по определению множества Y_0 означает $U_\delta(y_0)\subset Y_0$.

Определение. Пусть $k \in \mathbb{N}, X$ – открытое множество в $\mathbb{R}^n_x, Y \subset \mathbb{R}^m$. Через $C^k(X,Y)$ будем обозначать класс (множество) всех k раз непрерывно дифференцируемых отображений $\varphi: X \to Y$. Отображение $\varphi: X \to Y$ называется k раз непрерывно дифференцируемым, если все компоненты вектор-функции φ являются k раз непрерывно дифференцируемыми функциями. Определим $C^\infty(X,Y):=\bigcap_{k\in\mathbb{N}} C^k(X,Y)$ – класс бесконечно дифференцируемых отображений. Отображение $\varphi\in C^\infty(X,Y)$ будем называть $\operatorname{гладким}$ отображением, а отображение $\varphi\in C^k(X,Y)$ – C^k - $\operatorname{гладким}$ отображением.

Определение. Пусть заданы открытые множества $X \subset \mathbb{R}^n_x, Y \subset \mathbb{R}^m_y$ и натуральное число k. Отображение $\varphi: X \to Y$ называется C^k -гладким диффеоморфизмом из X в Y, если это отображение взаимно однозначно, причем φ и обратное отображение $\varphi^{-1}: Y \to X$ являются C^k -гладкими отображениями. Диффеоморфизм $\varphi: X \to Y$ называется гладким, если он является C^k -гладким для любого $k \in \mathbb{N}$.

Лемма 2. Пусть отображение $\varphi: X \to Y$ является C^1 -гладким диффеоморфизмом из открытого множества $X \subset \mathbb{R}^n_x$ в открытое множество $Y \subset \mathbb{R}^m_y$. Тогда m=n и для любого $x \in X$ матрица Якоби $\mathcal{D}\,\varphi(x)$ невырождена.

Доказательство. Дифференцируя тождество

$$\varphi^{-1}(\varphi(x)) = x \quad \forall x \in X$$

и используя теорему о дифференцировании сложной функции, получаем для всех $x \in X$

$$\mathcal{D}(\varphi^{-1})(y) \cdot \mathcal{D}\varphi(x) = E_n, \qquad y = \varphi(x), \tag{1}$$

где E_n – единичная матрица размера $n \times n$. Поскольку ранг $m \times n$ -матрицы $\mathcal{D} \varphi(x)$ не превосходит m, а ранг произведения матриц не превосходит ранга каждого сомножителя, то

$$n = \operatorname{rg} E_n \le \operatorname{rg} \mathcal{D} \varphi(x) \le m \quad \forall x \in X. \tag{2}$$

Применяя эти рассуждения для обратного отображения, получаем неравенство $m \leq n$. Поэтому m = n и для любого $x \in X$ в силу (2) имеем $\operatorname{rg} \mathcal{D} \varphi(x) = n$, а значит, $\det \mathcal{D} \varphi(x) \neq 0$.

Определение. Пусть для вектор-функции $\varphi(x)$ размерности векторов x и $\varphi(x)$ совпадают. Определитель матрицы Якоби \mathcal{D} $\varphi(x)$ называется якобианом отображения g.

Замечание. Из равенства (1) следует, что матрица Якоби обратного отображения равна обратной матрице к матрице Якоби исходного отображения, а значит, якобиан обратного отображения равен обратной величине к якобиану исходного отображения.

Определение. Сужением (или ограничением) отображения $f:X \to Y$ на множество $A \subset X$ называется отображение $f_{|_A}:A \to Y$, определяемое формулой $\forall x \in A \hookrightarrow f_{|_A}(x) = f(x)$.

Определение. Окрестностью U(x) точки x в метрическом пространстве называется произвольное открытое множество, содержащее точку x.

Теорема 1. (Об обратном отображении.) Пусть заданы открытое множество $Y \subset \mathbb{R}^n_y$ и C^1 -гладкое отображение $g: Y \to \mathbb{R}^n_x$ с неравным нулю якобианом:

$$\forall y \in Y \hookrightarrow \det \mathcal{D} g(y) \neq 0.$$

Тогда отображение $g:Y\to\mathbb{R}^n_x$ локально обратимо, т. е. для любой точки $y_0\in Y$ существуют ее окрестность $U(y_0)\subset Y$ и открытое множество $X\subset\mathbb{R}^n_x$ такие, что сужение отображения $g_{|_{U(y_0)}}:U(y_0)\to X$ является C^1 -гладким диффеоморфизмом из $U(y_0)$ в X.

Доказательство. Обозначим $x_0 = g(y_0)$ и применим теорему о неявной функции к функции F(x,y) = g(y) - x. Из непрерывной дифференцируемости функции g(y) следует непрерывная дифференцируемость функции F(x,y). Кроме того, $F(x_0,y_0) = g(y_0) - x_0 = \overline{0}$ и $\det \mathcal{D}_y F(x_0,y_0) = \det \mathcal{D} g(y_0) \neq 0$. Таким образом, все условия теоремы о неявной функции выполнены, и, согласно этой теореме, существуют числа $\gamma>0,\ \delta>0$ и непрерывно дифференцируемая функция $\varphi:U_\gamma(x_0)\to U_\delta(y_0)$ такая, что для любого вектора $x\in U_\gamma(x_0)$ система уравнений $F(x,y)=\overline{0}$ (эквивалентная системе уравнений g(y)=x) на множестве $U_\delta(y_0)$ имеет единственное решение $y=\varphi(x)$.

Определим множества $X=U_{\gamma}(x_0)$ и $U(y_0)=\{y\in U_{\delta}(y_0):g(y)\in X\}$. Поскольку $\forall y\in U(y_0)\hookrightarrow g(y)\in X$, то отображение g переводит элементы множества $U(y_0)$ в элементы множества X. Отображение $g_{|_{U(y_0)}}:U(y_0)\to X$ является взаимно однозначным, поскольку для любого вектора $x\in X$ существует единственный вектор $y\in U(y_0)$ такой, что g(y)=x. Этот вектор $y=\varphi(x)$ является единственным решением системы уравнений $F(x,y)=\overline{0}$ относительно y. Отсюда следует также, что отображение $\varphi:X\to U(y_0)$ является обратным к отображению $g_{|_{U(y_0)}}:U(y_0)\to X$, т. е. $\varphi=\left(g_{|_{U(y_0)}}\right)^{-1}$.

Поскольку множество $U(y_0)$ является прообразом открытого множества $X=U_{\gamma}(x_0)$ при непрерывном отображении g, то в силу леммы 1 множество $U(y_0)$ открыто. Отсюда и из включения $y_0\in U(y_0)$ следует, что $U(y_0)$ – окрестность точки y_0 .

В силу теоремы о неявной функции функция $\left(g_{|_{U(y_0)}}\right)^{-1}(x)=\varphi(x)$ непрерывно дифференцируема. \Box

Замечание. В условиях теоремы 1 отображение g может не быть глобально обратимым, т. е. оно может переводить различные точки множества Y в одну и ту же точку. Пусть, например,

$$Y = \{(r, \varphi) : r \in (1, 3), \varphi \in (-\pi, 3\pi)\}, \qquad g(r, \varphi) = \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \end{pmatrix}.$$

Отображение $g:Y\to\mathbb{R}^2$ непрерывно дифференцируемо; матрица Якоби этого отбражения равна $\mathcal{D}\,g(r,\varphi)=\left(\begin{array}{c}\cos\varphi&-r\sin\varphi\\\sin\varphi&r\cos\varphi\end{array}\right)$, а якобиан: $\det\mathcal{D}\,g(r,\varphi)=r\neq0$ $\forall (r,\varphi)\in Y.$ Однако отображение $g:Y\to\mathbb{R}^2$ не является обратимым, так как $g(2,0)=g(2,2\pi)=\binom{2}{0}$.

Теорема 2. Пусть X – открытое множество в \mathbb{R}^n_x , Y – открытое множество в \mathbb{R}^n_y . Пусть $f: X \to Y$ – взаимно однозначное C^k -гладкое отображение с неравным нулю якобианом, $k \ge 1$. Тогда f является C^k -гладким диффеоморфизмом.

Доказательство. По теореме об обратном отображении обратное отображение $g = f^{-1}$ принадлежит классу $C^1(Y, X)$. В случае k = 1 теорема доказана. Пусть $k \geq 2$. Согласно равенству (1) имеем

$$\mathcal{D}g(y) = \left((\mathcal{D}f)(g(y)) \right)^{-1} \quad \forall y \in Y.$$
 (3)

Поскольку отображение $f: X \to Y$ является C^k -гладким, то каждый элемент его матрицы Якоби $\mathcal{D}\,f(x)$ является C^{k-1} -гладкой функцией. Из линейной алгебры известно, что каждый элемент обратной матрицы выражается как многочлен относительно элементов исходной матрицы, деленный на определитель этой матрицы. Используя невырожденность матрицы $\mathcal{D}\,f(x)$, получаем, что все элементы матрицы $(\mathcal{D}\,f(x))^{-1}$ являются C^{k-1} -гладкими функциями от x. Если функция g является C^m -гладкой при $m \leq k-1$, то в силу равенства (3) получаем, что все элементы матрицы $\mathcal{D}\,g(y)$ являются C^m -гладкими функциями, т. е. функция g является C^{m+1} -гладкой. Проводя это рассуждение для $m=1,\ldots,k-1$, получаем, что функция g является C^k -гладкой.

Из теоремы 2 следует, что если в условиях этой теоремы $f \in C^{\infty}(X,Y)$, то f является C^{∞} -гладким диффеоморфизмом из X в Y.

Теорема 3. Образ открытого множества $Y \subset \mathbb{R}^n$ при непрерывно дифференцируемом отображении $g: Y \to \mathbb{R}^n$ с неравным нулю якобианом является открытым множеством.

Доказательство. Через G обозначим образ множества Y при отображении g:

$$G=g(Y)=\{g(y):y\in Y\}.$$

Покажем, что множество G открыто. Пусть $g_0 \in G$. Требуется доказать, что

$$\exists \delta > 0 : U_{\delta}(q_0) \subset G.$$

По определению множества G из условия $g_0 \in G$ следует, что существует вектор $y_0 \in Y$ такой, что $g(y_0) = g_0$. В силу теоремы 1 существуют окрестность $U(y_0) \subset Y$ точки y_0 и открытое множество X такие, что $g(U(y_0)) = X$. Так как $y_0 \in U(y_0) \subset Y$, то $g_0 = g(y_0) \in X = g(U(y_0)) \subset G$ G(Y) = G. В силу открытости G(Y) = G в силу открытости G(Y) = G в значит, G(Y) = G в силу открытости G(Y) = G в значит, G(Y) = G в силу открытости G(Y) = G в значит, G(Y) = G в силу открытости G(Y) = G в значит, G(Y) = G в силу открытости G(Y) = G в значит, G(Y) = G в силу открытости G(Y) = G с

Замечание. Условие отличия от нуля якобиана отображения в теореме 3 существенно. Например, непрерывно дифференцируемое отображение $g(y)=\overline{0}$ переводит любое открытое множество G в множество, состоящее из одной точки $\overline{0}$, которое не является открытым.

Напомним, что областью в метрическом пространстве называется открытое линейно-связное множество. Согласно теореме 4 § 10 главы 4 непрерывное отображение переводит линейно-связное множество в линейно-связное множество. Отсюда и из теоремы 3 получаем

Следствие. (Принцип сохранения области.) Образ области $Y \subset \mathbb{R}^n$ при непрерывно дифференцируемом отображении $g: Y \to \mathbb{R}^n$ с неравным нулю якобианом является областью.

§ 6. Теорема о расщеплении отображений

Определение. Для отображений

$$f(x^{1},...,x^{n}) = \begin{pmatrix} f^{1}(x^{1},...,x^{n}) \\ ... \\ f^{i-1}(x^{1},...,x^{n}) \\ x^{i} \\ f^{i+1}(x^{1},...,x^{n}) \\ ... \\ f^{n}(x^{1},...,x^{n}) \end{pmatrix}, \quad g(x^{1},...,x^{n}) = \begin{pmatrix} x^{1} \\ ... \\ x^{i-1} \\ g^{i}(x^{1},...,x^{n}) \\ x^{i+1} \\ ... \\ x^{n} \end{pmatrix}$$

будем говорить, что отображение f не менлет i-ю координату, а отображение g менлет только i-ю координату.

Теорема 1. (О расщеплении отображений.) Пусть отображение

$$\Phi(x) = \begin{pmatrix} \phi^1(x) \\ \cdots \\ \phi^n(x) \end{pmatrix}$$

является C^k -гладким в окрестности точки $x_0 \in \mathbb{R}^n$ и $\det \mathcal{D} \Phi(x_0) \neq 0$. Tогда в некоторой окрестности точки x_0 отображение Φ представимо в виде суперпозиции C^k -гладких диффеоморфизмов $g_1,...,g_n$, каждый из которых меняет только одну координату, и линейного диффеоморфизма $\alpha:\mathbb{R}^n\to\mathbb{R}^n$, меняющего только порядок координат.

Доказательство. Так как $\det \mathcal{D} \Phi(x_0) \neq 0$, то в первом столбце матрицы Якоби $\mathcal{D}\,\Phi(x_0)$ найдется отличный от нуля элемент: $\exists k \in$ $\in \overline{1,n}: \frac{\partial \phi^k}{\partial x^1}(x_0) \neq 0$. Обозначим $y^k = \phi^k(x), y_0^k = \phi^k(x_0)$. Рассмотрим отображение g_1 , которое точку $(x^1, x^2, ..., x^n)$ переводит в

точку $(y^k, x^2, ..., x^n)$ и меняет только первую координату:

$$g_1(x^1, x^2, ..., x^n) = \begin{pmatrix} \phi^k(x^1, x^2, ..., x^n) \\ x^2 \\ ... \\ x^n \end{pmatrix}.$$

Матрица Якоби этого отображения имеет вид

$$\mathcal{D}g_1 = \begin{pmatrix} \frac{\partial \phi^k}{\partial x^1} & \dots & \dots & \frac{\partial \phi^k}{\partial x^n} \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

Определитель этой матрицы в точке x_0 не равен 0: $=rac{\partial\phi^k}{\partial x^1}(x_0)
eq 0$. Поэтому в силу теоремы об обратном отображении в некотрой окрестности точки x_0 отображение g_1 является диффеоморфизмом. Согласно теореме 2 \S 5 отображение g_1 является C^k -гладким диффеоморфизмом.

Рассмотрим отображение

$$h_1(x) = \begin{pmatrix} \phi^k(x) \\ \phi^2(x) \\ \dots \\ \phi^{k-1}(x) \\ \phi^1(x) \\ \phi^{k+1}(x) \\ \dots \\ \phi^n(x) \end{pmatrix},$$

которое точку $x=(x^1,x^2,...,x^n)$ переводит в точку $(y^k,y^2,...,y^{k-1},y^1,y^{k+1},...,y^n)$. Тогда отображение Φ является суперпозицией $\alpha_1\circ h_1$, где α_1 меняет местами первую и k-ю компоненты (или является тождественным отображением в случае k=1). Таким образом,

$$\Phi = \alpha_1 \circ h_1 = \alpha_1 \circ h_1 \circ g_1^{-1} \circ g_1 = \alpha_1 \circ f_1 \circ g_1,$$

где $f_1 = h_1 \circ g_1^{-1}$. Отображение f_1 переводит точку $(y^k, x^2, ..., x^n)$ в точку $(y^k, y^2, ..., y^{k-1}, y^1, y^{k+1}, ..., y^n)$, а значит, не меняет первую координату. Все отображения α_1, f_1, g_1 являются C^k -гладкими диффеоморфизмами.

Применяя аналогичные рассуждения к диффеоморфизму f_1 , где вместо первого столбца матрицы Якоби $\mathcal{D}\Phi$ в точке x_0 будем рассматривать второй столбец матрицы Якоби $\mathcal{D}f_1$ в точке $(y_0^k, x_0^2, \dots, x_0^n)$, получим представление $f_1 = \alpha_2 \circ f_2 \circ g_2$ в виде суперпозиции отображения α_2 , которое может лишь менять местами координаты, диффеоморфизма f_2 , который не меняет две координаты, и диффеоморфизма g_2 , который меняет лишь одну координату. Таким образом,

$$\Phi = \alpha_1 \circ f_1 \circ g_1 = \alpha_1 \circ \alpha_2 \circ f_2 \circ g_2 \circ g_1.$$

Продолжая этот процесс, получаем

$$\Phi = \alpha_1 \circ \alpha_2 \circ \ldots \circ \alpha_{n-1} \circ g_n \circ \ldots \circ g_1 = \alpha \circ g_n \circ \ldots \circ g_1,$$

где $g_1,...,g_n-C^k$ -гладкие диффеоморфизмы, меняющие только одну координату; $\alpha=\alpha_1\circ\alpha_2\circ\ldots\circ\alpha_{n-1}$ – линейный диффеоморфизм, меняющий только порядок координат.

Из теоремы 1 следует, что если в условиях этой теоремы отображение Φ является C^{∞} -гладким диффеоморфизмом, то его можно расщепить в суперпозицию C^{∞} -гладких диффеоморфизмов g_i , меняющих только одну координату, и линейного диффеоморфизма α , меняющего только порядок координат. Этот результат будет использован далее при доказательстве теоремы о замене переменных в кратном интеграле.

Предметный указатель

Арккосинус 73	Дифференциал
Арксинус 75	первого порядка 87, 148, 313,
Асимптота 121	320
Бесконечно	высших порядков $96,325$
большая последовательность	Длина кривой $70,152$
22	переменная 154
малая последовательность <mark>23</mark>	Замыкание множества 37, 131
малая функция 84, 148	Интеграл
Бесконечность 15	неопределенный 175
Бином Ньютона 96	несобственный $255, 258$
Биномиальный коэффициент 94	Π ебега 220
Бинормаль 162	нижний, верхний 219
Биекция 10	для счетно-ступенчатой
Бинарное отношение 11	функции 217
Векторное произведение 160	Римана 244
Взаимно однозначное соответ-	Инфимум
ствие 10	Φ ункции 50
Внутренность множества 36, 131	числового множества 18
Гиперплоскость 203	Касательная
Годограф 150	плоскость 314
Градиент 313	прямая
Граница множества 133	к кривой 157
Грань множества	невертикальная 87
верхняя, нижняя 15	Клетка 203
точная	Кольцо множеств 202
верхняя 17	Компакт 38, 136
нижняя 18	Композиция 11
График соответствия 10	Корень многочлена 171
Декартово произведение 9	Косинус 74
Дизъюнктное объединение 203	Кривая 150
Диффеоморфизм 340	гладкая 155

замкнутая 150	Минимум
ориентированная 151	Φ ункции 50
простая 150	числового множества 16
спрямляемая 152	Многочлен 168, 168
Кривизна 158	Тейлора 102, 327
Критерий	Множество
компактности 38, 138	замкнутное 37, 131
Коши	значений соответствия,
для функционального ряда	функции 10
274	измеримое 209
для функциональной по-	клеточное 204
следовательности 273	компактное $38, 136$
для числовой последова-	линейно-связное 145
тельности 34	несчетное 39
существования предела	ограниченное 16, 136
функции 46	определения соответствия,
сходимости несобственного	функции 1 0
интеграла 263	открытое $36, 131$
сходимости ряда 188	равномощное 39
равномерной сходимости	счетное 39
функционального ряда	\mathbb{C} 165
274	Q 14
равномерной сходимости	N 14
функциональной после-	\mathbb{R} 12
довательности 270	\mathbb{Z} 14
сходимости ряда с неотрица-	Модуль 16, 126
тельными членами 184	непрерывности 143
точки прикосновения 38, 134	Направление 308
частичного предела 30	Непрерывность функции
Круг сходимости <mark>291</mark>	в точке $52, 55, 130$
Логарифм 65, 66	на множестве 56
Ломаная 70, 152	равномерная 141
Максимум	Неравенство
функции 50	Бернулли <mark>63</mark>
числового множества 16	Коши–Буняковского 125
Матрица Якоби <mark>32</mark> 0	треугольника 23, 126
Мелкость разбиения 244	Норма <u>125</u>
Мера Лебега <mark>2</mark> 09	евклидова <mark>126</mark>
верхняя 207	

операторная для матрицы	бесконечно большая 22
331	бесконечно малая 23
Нормаль к кривой 158	вложенных отрезков 28
Область 146	стягивающаяся <mark>29</mark>
Область значений соответствия,	возрастающая 27
функции 10	Гейне 43
Область определения соответ-	максимизирующая, миними-
ствия, функции 10	зирующая 57
Образ 10	монотонная 27
Ограниченность	невозрастающая 27
множества 16	неубывающая 27
последовательности 22	ограниченная 22
равномерная 272	расходящаяся <mark>22</mark>
функции 58	сходящаяся <mark>22</mark>
Окрестность	в метрическом простран-
бесконечности $20, 341$	стве 129
в метрическом пространстве	убывающая <mark>27</mark>
129	фундаментальная 34, 135
проколотая 42	функциональная $270,289$
числа 19	числовая 19
Окружность 69	эквивалентная в смысле схо-
Отображение 10	димости рядов 185
гладкое 340	Почти всюду <mark>21</mark> 9
инъективное 10	Правило Лопиталя 111, 112
сжимающее 334	Π редел
сюръективное 10	последовательности веще-
биективное 10	ственных чисел 19, 21
Отрезок 15, 68, 152	верхний, нижний 33
Параметризация кривой 151	частичный 30
натуральная <mark>155</mark>	последовательности ком-
Первообразная 174	плексных чисел 288
Плоскость	последовательности в метри-
евклидова <u>68</u>	ческом пространстве 129
нормальная <mark>162</mark>	функции
соприкасающаяся 158	в метрическом простран-
спрямляющая 162	стве 130
Подпоследовательность 29	односторонний 49
Покрытие 138	повторный 312
Последовательность	по Γ ейне 43

по Коши $42,308$	нормированное 125
по множеству 48	\mathbb{R}^n 124
по направлению 308	Радиус
слева 49	кривизны 158
справа 50	сходимости 291
Признак	Равномерная
Абеля 191, 267, 278	непрерывность 141
Вейерштрасса 276, 290	сходимость $270, 274, 289$
Даламбера 187	Разбиение
Дирихле 264, 276	отрезка 70
интегральный 185	множества 216
Коши 188	Ряд
обобщенный 287	Маклорена 300
Лейбница $191,278$	степенной 290
сравнения	Тейлора <mark>297</mark>
для интеграла Лебега 228	функциональный $274,289$
для числовых рядов 185	числовой 183
обобщенный для функцио-	комплексный 289
нальных рядов 275	Симметрическая разность мно-
Принцип	жеств 208
Архимеда 1 9	Синус 74
вложенных отрезков 28	Соприкасающаяся
локализации $258,\ 184$	окружность 1 <u>5</u> 8
Π роизводная 86	плоскость 158
вектор-функции 147	Соответствие 10
высших порядков $94, 323$	взаимно однозначное 10
односторонняя 88	обратное 10
по вектору 315	Степень числа $62, 65$
по направлению 315	Сужение отображения 341
смешанная 323	Сумма
частная $317, 323$	Римана 243
Π рообраз 11	ряда 183
Π ространство	Суперпозиция функций 11
евклидово 124	Супремум
линейное 123	функции 50
метрическое <u>128</u>	числового множества 17
линейно-связное 145	Сходимость
компактное 136	вещественного числового ря-
полное 135	да 183

абсолютная, условная 189	Лагранжа о среднем 101
комплексного ряда 289	для вектор-функции 149
несобственного интеграла	Лебега об ограниченной схо-
255	димости 251
абсолютная, условная <mark>256</mark>	Б. Леви о монотонной сходи-
последовательности веще-	мости 249
ственных чисел <mark>22</mark>	Ролля <mark>99</mark>
последовательности в метри-	Римана 195
ческом пространстве 129	Ферма 98
последовательности ком-	Чебышева 181
плексных чисел 288	Точка
последовательности мно-	внутренняя $36, 131$
жеств по мере 208	граничная 133
функционального ряда 274,	изолированная $47, 130$
289	максимума 97
функциональной последова-	минимума 97
тельности	особая на кривой 155
неравномерная 270	перегиба 119
поточечная 270	предельная $47,\ 129$
равномерная $270, 289$	прикосновения 37, 131
Георема	разрыва
${ m A}$ беля первая 292	второго рода 52
${ m A}$ беля вторая 294	первого рода 52
Больцано-Вейерштрасса о	самопересечения кривой 150
частичном пределе 31,	устранимого 52
137	экстремума 97
Больцано-Коши о промежу-	Тангенс 75
точном значении 58	Трехгранник Френе 162
Вейерштрасса	Φ акториал 94
о монотонной последова-	Формула
тельности 28	конечных приращений
о существовании миниму-	Лагранжа 101
ма и максимума непре-	Коши-Адамара 291
рывной функции $57,145$	${\it Л}$ ейбница 95
Кантора	Маклорена 107
о вложенных отрезках 28	Ньютона–Лейбница 235
о равномерной непрерыв-	Тейлора 102
ности 142	с остаточным членом в ин-
Коши о среднем 100	тегральной форме 303

с остаточным членом в	эквивалентная 82
форме Лагранжа 105,	в смысле сходимости инте-
326	гралов 261
с остаточным членом в	Целая часть числа 19
форме Пеано 103, 149,	Центр кривизны 158
327	Число
Эйлера 166	e 66
Функция 10	π 73
аналитическая <mark>297</mark>	вещественное 12
бесконечно малая относи-	действительное 12
тельно 84	комплексное 165
бесконечно дифференцируе-	натуральное 14
мая 297	рациональное 14
возрастающая 51	целое 14
выпуклая <mark>117</mark>	Числовой промежуток 15
гиперболическая 67	Экспонента 63, 166
Дирихле 49	Экстремум функции 97
дифференцируемая 87, 148,	Якобиан 341
313,320	
n раз $96,325$	
измеримая <mark>214</mark>	
интегрируемая 244	
монотонная 51	
непрерывная	
равномерно 141	
в точке $52, 55, 130$	
на множестве 56	
непрерывно дифференцируе-	
мая 153	
неявная 93	
обратимая 10	
ограниченная 58	
относительно 84	
параметрически заданная 93	
рациональная 170, 180	
регулярная 297	
сложная 11	
счетно-ступенчатая <mark>216</mark>	
убывающая 51	