Application of Information Theory, Lecture 7 Relative Entropy

Handout Mode

Iftach Haitner

Tel Aviv University.

December 1, 2015

Part I

Statistical Distance

Statistical distance

- ▶ Let $p = (p_1, ..., p_m)$ and $q = (q_1, ..., q_m)$ be distributions over [m]
- ▶ Their statistical distance (also known as, variation distance) is defined by

$$\mathsf{SD}(p,q) := \frac{1}{2} \sum_{i \in [m]} |p_i - q_i|$$

- ► This is simply the L₁ norm between the distribution vectors
- ▶ We will see other "distance" measures for distributions next lecture
- ▶ For $Z \sim p$ and $Y \sim q$, let SD(X, Y) = SD(p, q)
- ► Claim (HW): $SD(p, q) = \max_{S \subseteq [m]} (\sum_{i \in S} p_i \sum_{i \in S} q_i)$
- ► Hence, $SD(p, q) = \max_{D} (Pr_{X \sim p}[D(X) = 1] Pr_{X \sim q}[D(X) = 1])$
- Interpretation

Distance from the uniform distribution

- ► Let X be rv over [m]
- ► $H(X) \leq \log m$
- ▶ $H(X) = \log m \longleftrightarrow X$ is uniform over [m]

Theorem 1 (this lecture)

Let X rv over [m]. Assume $H(X) \ge \log m - \varepsilon$, then

$$SD(X, \sim [m]) \le \sqrt{\varepsilon \cdot \frac{\ln 2}{2}} = O(\sqrt{\varepsilon})$$

Part II

Relative entropy Distance

Definition and Basic Facts

Definition

► For $p = (p_1, ..., p_m)$ and $q = (q_1, ..., q_m)$, let

$$D(p||q) = \sum_{i=1}^{m} p_i \log \frac{p_i}{q_i}$$

$$0\log\tfrac{0}{0}=0,\,p\log\tfrac{p}{0}=\infty$$

- The relative entropy of pair of rv's, is the relative entropy of their distributions.
- Names: Entropy of p relative to q, relative entropy, information divergence, Kullback-Leibler (KL) divergence/distance
- Many different interpretations
- Main interpretation: the information we gained about X, if we originally thought $X \sim q$ and now we learned $X \sim p$

Numerical Example

$$D(p||q) = \sum_{i=1}^{m} p_i \log \frac{p_i}{q_i}$$

- ▶ $D(q||p) = \frac{1}{2} \log \frac{\frac{1}{2}}{\frac{1}{4}} + \frac{1}{4} \log \frac{\frac{1}{4}}{\frac{1}{2}} + \frac{1}{8} \log \frac{\frac{1}{8}}{\frac{1}{4}} + \frac{1}{8} \log \frac{\frac{1}{8}}{\frac{1}{6}} = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot (-1) + \frac{1}{8} \cdot (-1) + \infty = \infty$

Supporting the interpretation

- ► X rv over [m]
- \vdash H(X) measure for amount of information we do not have about X
- ▶ $\log m H(X)$ measure for information we do have about X (just by knowing its distribution)
- ► Example $X = (X_1, X_2) \sim (\frac{1}{2}, 0, 0, \frac{1}{2})$ over $\{00, 01, 10, 11\}$
- H(X) = 1, $\log m H(X) = 2 1 = 1$
- ▶ Indeed, we know $X_1 \oplus X_2$

$$H(\sim [m]) - H(p_1, ..., p_m) = \log m - H(p_1, ..., p_m)$$

$$= \log m + \sum_{i} p_i \log p_i = \sum_{i} p_i (\log p_i - \log \frac{1}{m})$$

$$= \sum_{i} p_i \log \frac{p_i}{\frac{1}{m}} = D(p||\sim [m])$$

▶ $D(X|| \sim [m])$ — measures the information we gained about X, if we originally thought it is $\sim [m]$ and now we learned it is $\sim p$

Supporting the interpretation, cont.

- (generally) $D(p||q) \neq H(p) H(q)$
- \vdash H(p) H(q) is not a good measure for information change
- Example: q = (0.01, 0.99) and p = (0.99, 0.01)
- ▶ We were almost sure that X = 1 but learned that X is almost surely 0
- ▶ But H(p) H(q) = 0
- ▶ Also, H(p) H(q) might be negative
- ▶ We understand D(p||q) as the information we gained about X, if we originally thought it is $\sim q$ and now we learned it is $\sim p$

Changing distribution

What does it mean: originally thought X ~ q and now we learned X ~ p?

How can a distribution change?

- Typically, this happens by learning additional information
- $ightharpoonup q_i = \Pr[X = i | E]$
- ► Example $X \sim (\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0)$; someone saw X and tells us that $X \leq 2$
- ▶ The distribution changes to $X \sim (\frac{2}{3}, \frac{1}{3}, 0, 0)$
- ► Another example

XY	1	2	3	4
0	1/4	1/4	0	0
1	1/4	0	1 4	0

- $Y \sim (\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0)$, but
- $Y \sim (\frac{1}{2}, \frac{1}{2}, 0, 0)$ conditioned on X = 0
- $Y \sim (\frac{1}{2}, 0, \frac{1}{2}, 0)$ conditioned on X = 1
- Generally, a distribution can change if we condition on event E

Additional properties

- ▶ $0 \log \frac{0}{0} = 0$, $p \log \frac{p}{0} = \infty$ for p > 0
- ▶ $\exists i$ s.t. $p_i > 0$ and $q_i = 0$, then $D(p||q) = \infty$
- If originally Pr[X = i] = 0, then it cannot be more than 0 after we learned something.
- Hence, it make sense to think of it as infinite amount of information learnt
- Alteratively, we can define D(p||q) only for distribution with $q_i = 0 \implies p_i = 0$ (recall that $\Pr[X = i] = 0 \implies \Pr[X = i|E] = 0$, for any event E
- ▶ If p_i is large and q_i is small, then D(p||q) is large
- ▶ $D(p||q) \ge 0$, with equality iff p = q (hw)

Example

- ▶ $q = (q_1, ..., q_m)$ with $\sum_{i=1}^n q_i = 2^{-k}$ (i.e., n < m)
- ▶ $p = (p_1, ..., p_m)$ the distribution of q conditioned on the event $i \in [n]$
- ► $D(p||q) = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i} = \sum_{i=1}^{n} p_i \log 2^k = \sum_{i=1}^{n} p_i k = k$
- ▶ We gained *k* bits of information
- Example: $\sum_{i=1}^{n} q_i = \frac{1}{2}$, and we were told that $i \le n$ or i > n, we got one bit of information

Axiomatic Derivation

Axiomatic derivation

Let $\tilde{\textbf{\textit{D}}}$ is a continuous and symmetric (wrt each distribution) function such that

- **1.** $\tilde{D}(p|| \sim [m]) = \log m H(p)$
- **2.** $\tilde{D}((p_1,\ldots,p_m)\|(q_1,\ldots,q_m)) = \tilde{D}((p_1,\ldots,p_{m-1},\alpha p_m,(1-\alpha)p_m)\|(q_1,\ldots,q_{m-1},\alpha q_m,(1-\alpha)q_m)),$ for any $\alpha \in [0,1]$

then $\tilde{D} = D$.

Interpretation

Proof: Let p and q be distributions over [m], and assume $q_i \in \mathbb{Q} \setminus \{0\}$.

- $\tilde{D}(p||q) = \tilde{D}((\alpha_{1,1}p_1, \dots, \alpha_{1,k_1}p_1, \dots, \alpha_{m,1}p_m, \dots, \alpha_{m,k_m}p_m)|| \\ (\alpha_{1,1}q_1, \dots, \alpha_{1,k_1}q_1, \dots, \alpha_{m,1}q_m, \dots, \alpha_{m,k_m}q_m)), \text{ for } \sum_j \alpha_{i,j} = 1 \text{ and } \alpha_{i,j \geq 0}$
- ► Taking α 's s.t. $\alpha_{i,1} = \alpha_{i,2} \dots, \alpha_{i,k_i} = \alpha_i$ and $\alpha_i q_i = \frac{1}{M}$, it follows that

$$\begin{split} \tilde{D}(p\|q) &= \log M - H((\alpha_{1,1}p_1, \dots, \alpha_{1,k_1}p_1, \dots, \alpha_{m,1}p_m, \dots, \alpha_{m,k_m}p_m)) \\ &= \sum p_i \log M + \sum_i p_i \log \alpha_i p_i = \sum_i p_i (\log M + \log \frac{p_i}{q_i M}) = \sum_i p_i \log \frac{p_i}{q_i}. \end{split}$$

Zeros and non-rational qi's are dealt by continuity

Relation to Mutual Information

Mutual information as expected relative entropy

Claim 2

$$\mathsf{E}_{y\leftarrow Y}\left[D(X|_{Y=y}\|X)\right]=I(X;Y).$$

Proof:

Let
$$X \sim (q_1, \dots, q_m)$$
 over $[m]$, and Y be rv over $\{0, 1\}$

►
$$(X|_{Y=j}) \sim p_j = (p_{j,1}, \dots, p_{j,m}),$$
 $p_{j,i} = \Pr[X = i | Y = j]$

$$\begin{split} & \underset{Y}{\mathsf{E}}\left[D(p_{Y}\|q)\right] = \Pr\left[Y = 0\right] \cdot D(p_{0,1}, \dots, p_{0,m}\|q_{1}, \dots, q_{m}) \\ & + \Pr\left[Y = 1\right] \cdot D(p_{1,1}, \dots, p_{1,m}\|q_{1}, \dots, q_{m}) \\ & = \Pr\left[Y = 0\right] \cdot \sum_{i} p_{0,i} \log \frac{p_{0,i}}{q_{i}} + \Pr\left[Y = 1\right] \cdot \sum_{i} p_{1,i} \log \frac{p_{1,i}}{q_{i}} \\ & = \Pr\left[Y = 0\right] \cdot \sum_{i} p_{0,i} \log p_{0,i} + \Pr\left[Y = 1\right] \cdot \sum_{i} p_{1,i} \log p_{1,i} \\ & - \Pr\left[Y = 0\right] \cdot \sum_{i} p_{0,i} \log q_{i} - \Pr\left[Y = 1\right] \cdot \sum_{i} p_{1,i} \log q_{i} \\ & = -H(X|Y) - \sum_{i} (\Pr\left[Y = 0\right] \cdot p_{0,i} + \Pr\left[Y = 1\right] \cdot p_{1,i}) \log q_{i} \\ & = -H(X|Y) + H(X) = I(X;Y). \Box \end{split}$$

Equivalent definition for mutual information

Claim 3

Let
$$(X, Y) \sim p$$
, then $I(X; Y) = D(p||p_Xp_Y)$.

► Proof:

$$D(p||p_{X}p_{Y}) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p_{X}(x)p_{Y}(y)}$$

$$= \sum_{x,y} p(x,y) \log \frac{p_{X|Y}(x|y)}{p_{X}(x)}$$

$$= -\sum_{x,y} p(x,y) \log p_{X}(x) + \sum_{x,y} p(x,y) \log p_{X|Y}(x|y)$$

$$= H(X) + \sum_{y} p_{Y}(y) \sum_{x} p_{X|Y}(x|y) \log p_{X|Y}(x|y)$$

$$= H(X) - H(X|Y) = I(X;Y).\Box$$

We will later relate the above two claims.

Relation to Data Compression

Wrong code

Theorem 4

Let p and q be distributions over [m], and let C be code with

$$\ell(i) = |C(i)| = \left\lceil \log \frac{1}{q_i} \right\rceil$$
. Then $H(p) + D(p||q) \le \mathsf{E}_{i \leftarrow p} \left[\ell(i) \right] \le H(p) + D(p||q) + 1$

- ▶ Recall that $H(q) \le \mathsf{E}_{i \leftarrow q} \left[\ell(i) \right] \le H(q) + 1$.
- Proof of upperbound (upperbound is proved similarly)

Can there be a (close) to optimal code for q that is better for p? HW

Conditional Relative Entropy

Conditional relative entropy

Definition 5

For two distributions p and q over $\mathcal{X} \times \mathcal{Y}$:

$$D(p_{\mathcal{Y}|\mathcal{X}} || q_{\mathcal{Y}|\mathcal{X}}) := \sum_{x \in \mathcal{X}} p_{\mathcal{X}}(x) \cdot \sum_{y \in \mathcal{Y}} p_{\mathcal{Y}|\mathcal{X}}(y|x) \log \frac{p_{\mathcal{Y}|\mathcal{X}}(y|x)}{q_{\mathcal{Y}|\mathcal{X}}(y|x)}$$
$$= \underset{(X,Y) \sim p(x,y)}{\mathsf{E}} \left[\log \frac{p_{\mathcal{Y}|\mathcal{X}}(Y|X)}{q_{\mathcal{Y}|\mathcal{X}}(Y|X)} \right]$$

- ▶ Let $(X_p, Y_p) \sim p$ and $(X_q, Y_q) \sim q$, then $D(p_{\mathcal{Y}|\mathcal{X}} || q_{\mathcal{Y}|\mathcal{X}}) = \mathsf{E}_{\mathsf{x} \leftarrow X_p} \left[D(Y_q || X_p = \mathsf{x}) || Y_q || X_q = \mathsf{x}) \right]$
- ► Example: $p = \begin{bmatrix} \frac{\lambda^{Y}}{\lambda} & 0 & 1 \\ 0 & \frac{1}{8} & \frac{1}{8} \\ 1 & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$

$$q = \begin{array}{|c|c|c|c|c|c|}\hline \chi^{Y} & 0 & 1 \\\hline 0 & \frac{1}{8} & \frac{1}{4} \\\hline 1 & \frac{1}{2} & \frac{1}{8} \\\hline \end{array}$$

$$D(p_{\mathcal{Y}|\mathcal{X}}||q_{\mathcal{Y}|\mathcal{X}}) = \frac{1}{4} \cdot D((\frac{1}{2}, \frac{1}{2})||(\frac{1}{3}, \frac{2}{3})) + \frac{3}{4} \cdot D((\frac{1}{3}, \frac{2}{3})||(\frac{4}{5}, \frac{1}{5}))$$

$$= \dots$$

Chain rule

Claim 6

For any two distributions p and q over $\mathcal{X} \times \mathcal{Y}$, it holds that

$$D(p||q) = D(p_{\mathcal{X}}||q_{\mathcal{X}}) + D(p_{\mathcal{Y}|\mathcal{X}}||q_{\mathcal{Y}|\mathcal{X}})$$

Proof:

$$D(p||q) = \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p(x,y) \log \frac{p(x,y)}{q(x,y)}$$

$$= \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p(x,y) \log \frac{p_{\mathcal{X}}(x)p_{\mathcal{Y}|\mathcal{X}}(y|x)}{q_{\mathcal{X}}(x)q_{\mathcal{Y}|\mathcal{X}}(y|x)}$$

$$= \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p(x,y) \log \frac{p_{\mathcal{X}}(x)}{q_{\mathcal{X}}(x)} + \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} p(x,y) \log \frac{p_{\mathcal{Y}|\mathcal{X}}(y|x)}{q_{\mathcal{Y}|\mathcal{X}}(y|x)}$$

$$= D(p_{\mathcal{X}}||q_{\mathcal{X}}) + D(p_{\mathcal{Y}|\mathcal{X}}||q_{\mathcal{Y}|\mathcal{X}}) \square$$

Hence, for $(X, Y) \sim p$:

$$I(X, Y) = D(p||p_X p_Y) = D(p_X ||p_X) + \mathop{\mathsf{E}}_{x \leftarrow X} [D(p_{Y|_{X=x}} ||p_Y)]$$
$$= \mathop{\mathsf{E}}_{x \leftarrow X} [D(p_{Y|_{X=x}}, p_Y)] \dots$$

Data-processing inequality

Data-processing inequality

Claim 7

For any rv's X and Y and function f, it holds that $D(f(X)||f(Y)) \le D(X||Y)$.

- ▶ Analogues to $H(X) \ge H(f(X))$
- ► Proof:
- ► D(X, f(X)||Y, f(Y)) = D(X||Y)
- ▶ $D(X, f(X)||Y, f(Y)) = D(f(X)||f(Y)) + E_{z \leftarrow f(X)} [D(X||f(X)=z||Y||f(X)=z))] \ge D(f(X)||f(Y))$
- ► Hence, $D(f(X)||f(Y)) \le D(X||Y)$.

Relation to Statistical Distance

Relation to statistical distance

- ▶ D(p||q) is used many time to measure the distance from p to q
- ▶ It is not a distance in the mathematical sense: $D(p||q) \neq D(q||p)$ and no triangle inequality
- However,

Theorem 8

$$\mathsf{SD}(p,q) \leq \sqrt{\frac{\ln 2}{2} \cdot D(p\|q)}$$

- ► Corollary: For rv X over [m] with $H(X) \ge \log m \varepsilon$, it holds that $SD(X, \sim [m]) \le \sqrt{\frac{\ln 2}{2} \cdot (\log m H(X))} = \sqrt{\frac{\ln 2}{2} \cdot \varepsilon}$
- ▶ Other direction is incorrect: SD(p, q) might be small but $D(p||q) = \infty$
- ▶ Does SD(p, \sim [m]) being small imply $D(p\|\sim [m]) = \log m H(p)$ is small?

HW

Proving Thm 8, boolean case

- ▶ Let $p = (\alpha, 1 \alpha)$ and $q = (\beta, 1 \beta)$ and assume $\alpha \ge \beta$
- ▶ $SD(p,q) = \alpha \beta$
- ▶ We will show that $D(p||q) = \alpha \log \frac{\alpha}{\beta} + (1 \alpha) \log \frac{1 \alpha}{1 \beta} \ge \frac{4}{2 \ln 2} (\alpha \beta)^2 = \frac{2}{\ln 2} SD(p, q)^2$
- ► Let $g(x,y) = x \log \frac{x}{y} + (1-x) \log \frac{1-x}{1-y} \frac{4}{2 \ln 2} (x-y)^2$

$$\frac{\partial g(x,y)}{\partial y} = -\frac{x}{y \ln 2} + \frac{1-x}{(1-y) \ln 2} - \frac{4}{2 \ln 2} 2(y-x)$$
$$= \frac{y-x}{y(1-y) \ln 2} - \frac{4}{\ln 2} (y-x)$$

- ► Since $y(1-y) \le \frac{1}{4}$, $\frac{\partial g(x,y)}{\partial y} \le 0$ for y < x.
- ► Since g(x, x) = 0, $g(x, y) \ge 0$ for y < x. \square

Proving Thm 8, general case

- ▶ Let $\mathcal{U} = \mathsf{Supp}(p) \cup \mathsf{Supp}(q)$
- ▶ Let $S = \{u \in \mathcal{U} : p(u) > q(u)\}$
- ► $SD(p, q) = Pr_p[S] Pr_q[S]$ (by homework)
- ▶ Let $P \sim p$, and let the indicator \hat{P} be 1 iff $P \in S$.
- ▶ Let $Q \sim q$, and let the indicator \hat{Q} be 1 iff $Q \in S$.
- ► $SD(\hat{P}, \hat{Q}) = Pr[P \in S] Pr[Q \in S] = SD(p, q)$

$$D(p\|q) \ge D(\hat{P}\|\hat{Q})$$
 (data-processing inequality)
 $\ge \frac{2}{\ln 2} \cdot \mathrm{SD}(\hat{P}, \hat{Q})^2$ (the Boolean case)
 $= \frac{2}{\ln 2} \cdot \mathrm{SD}(p, q)^2$. \square

Conditioned Distributions

Main theorem

Theorem 9

Let X_1, \ldots, X_k be iid over \mathcal{U} , and let $Y = (Y_1, \ldots, Y_k)$ be rv over \mathcal{U}^k . Then $\sum_{j=1}^k D(Y_j \| X_j) \leq D(Y \| (X_1, \ldots, X_k))$.

For rv
$$Z$$
, let $Z(z) = Pr[Z = z]$.

We prove for k = 2, general case follows similar lines. Let $X = (X_1, X_2)$

$$D(Y||X) = \sum_{\mathbf{y} \in \mathcal{U}^{2}} Y(\mathbf{y}) \log \frac{Y(\mathbf{y})}{X(\mathbf{y})} = \sum_{\mathbf{y} = (y_{1}, y_{2})} Y(\mathbf{y}) \log \frac{Y_{1}(y_{1})}{X_{1}(y_{1})} \frac{Y_{2}(y_{2})}{X_{2}(y_{2})} \frac{Y(\mathbf{y})}{Y_{1}(y_{1})Y_{2}(y_{2})}$$

$$= \sum_{\mathbf{y} = (y_{1}, y_{2})} Y(\mathbf{y}) \log \frac{Y_{1}(y_{1})}{X_{1}(y_{1})} + \sum_{\mathbf{y} = (y_{1}, y_{2})} Y(\mathbf{y}) \log \frac{Y_{2}(y_{2})}{X_{2}(y_{1})}$$

$$+ \sum_{\mathbf{y} = (y_{1}, y_{2})} Y(\mathbf{y}) \log \frac{Y(\mathbf{y})}{Y_{1}(y_{1})Y_{2}(y_{2})}$$

$$= D(Y_{1}||X_{1}) + D(Y_{2}||X_{2}) + I(Y_{1}; Y_{2}) \ge D(Y_{1}||X_{1}) + D(Y_{2}||X_{2})$$

Conditioning distributions, relative entropy case

Theorem 10

Let X_1, \ldots, X_k be iid over \mathcal{X} , let $X = (X_1, \ldots, X_k)$ and let W be an event (i.e., Boolean rv). Then $\sum_{j=1}^k D((X_j|_W)||X_j) \leq D((X|_W)||X) \leq \log \frac{1}{\Pr[W]}$.

$$\sum_{j=1}^{k} D((X_{j}|_{W})||X_{j}) \leq D((X|_{W})||X)$$

$$= \sum_{\mathbf{x} \in \mathcal{X}^{k}} (X|_{W})(\mathbf{x}) \log \frac{(X|_{W})(\mathbf{x})}{X(\mathbf{x})}$$

$$= \sum_{\mathbf{x} \in \mathcal{X}^{k}} (X|_{W})(\mathbf{x}) \log \frac{\Pr[W|X = \mathbf{x}]}{\Pr[W]}$$

$$= \log \frac{1}{\Pr[W]} + \sum_{\mathbf{x} \in \mathcal{X}^{k}} (X|_{W})(\mathbf{x}) \log \Pr[W|X = \mathbf{x}])$$

$$\leq \log \frac{1}{\Pr[W]}$$

$$\leq \log \frac{1}{\Pr[W]}$$
(Thm 9)

Conditioning distributions, statistical distance case

Theorem 11

Let X_1, \ldots, X_k be iid over \mathcal{X} and let W be an event. Then $\sum_{j=1}^k \mathsf{SD}((X_j|_W), X_j)^2 \leq \log \frac{1}{\mathsf{Pr}[W]}$.

Proof: follows by Thm 8, and Thm 9.□

Using $(\sum_{j=1}^k a_i)^2 \le k \cdot \sum_{j=1}^k a_i^2$, it follows that

Corollary 12

$$\sum_{j=1}^k \mathsf{SD}((X_j|_W), X_j) \leq \sqrt{k \log(rac{1}{\Pr[W]})}$$
, and

$$\mathsf{E}_{j \leftarrow k} \, \mathsf{SD}((X_j|_W), X_j) \leq \sqrt{\frac{1}{k} \, \mathsf{log}(\frac{1}{\mathsf{Pr}[W]})}$$

Extraction

Numerical example

- ▶ Let $X = (X_1, ..., X_k) \leftarrow \{0, 1\}^{40}$ and let $f: \{0, 1\}^{40} \mapsto 0$ be such that $\Pr[f(X) = 0] = 2^{-10}$.
- ► $\mathsf{E}_{j \leftarrow [40]} \, \mathsf{SD}((X_j|_{f(X)=0}), \sim \{0, 1\}) \le \sqrt{\frac{1}{40} \cdot 10} = \frac{1}{2}$
- Typical bits are not too biassed, even when conditioning on a very unlikely event.

Extension

Theorem 13

Let $X = (X_1, \dots, X_k)$, T and V be rv's over \mathcal{X}^k , \mathcal{T} and \mathcal{V} respectively. Let W be an event and assume that the X_i 's are iid conditioned on T. Then $\sum_{j=1}^k D((TVX_j)|_W \|(TV)|_W X_j'(T)) \leq \log \frac{1}{\Pr[W]} + \log |\operatorname{Supp}(V|_W)|,$ where $X_i'(t)$ is distributed according to $X_j|_{T=t}$.

Interpretation.

Proving Thm 13

Let $X = (X_1, \dots, X_k)$, T and V be rv's over \mathcal{X}^k , T and \mathcal{V} respectively, such that X_i 's are iid conditioned on T. Let W be an event and let $X_j'(t)$ be distributed according to the distribution of $X_j|_{T=t}$.

$$\begin{split} &\sum_{j=1}^{k} D((TVX_{j})|_{W}||(TV)|_{W}X_{j}'(T)) \\ &= \underset{(t,v) \leftarrow (TV)|_{W}}{\mathbb{E}} \Big[\sum_{j=1}^{k} D(X_{j}|_{W,V=v,T=t}||(X_{j}|_{T=t})] \\ &= \underset{(t,v) \leftarrow (TV)|_{W}}{\mathbb{E}} \Big[\sum_{j=1}^{k} D((X_{j}|_{W,V=v,T=t}||(X_{j}|_{T=t}))] \\ &\leq \underset{(t,v) \leftarrow (TV)|_{W}}{\mathbb{E}} \Big[\log \frac{1}{\Pr[W \wedge V = v|T = t]} \Big] \\ &\leq \log \underset{(t,v) \leftarrow (TV)|_{W}}{\mathbb{E}} \Big[\log \frac{1}{\Pr[W \wedge V = v|T = t]} \Big] \end{aligned} \tag{Thm 10}$$

$$&\leq \log \underset{(t,v) \leftarrow (TV)|_{W}}{\mathbb{E}} \frac{1}{\Pr[W \wedge V = v|T = t]}$$

$$&= \log \underset{(t,v) \in \text{Supp}((TV)|_{W})}{\mathbb{E}} \frac{\Pr[T = t]}{\Pr[W]} \leq \log \frac{||\text{Supp}(V|_{W})||}{\Pr[W]}.$$