Finite Fields: Part III

Cunsheng Ding

HKUST, Hong Kong

November 21, 2015

1 / 18

Contents

- $lacktriangledown GF(q^n)$ as an *n*-Dimensional Vector Space over GF(q)
- 2 Normal Bases of $GF(q^n)$ over GF(q)
- \bigcirc Trace Function $\mathrm{Tr}_{\mathbb{F}/\mathbb{K}}(x)$
- 4 Norm Function $N_{\mathbb{F}/\mathbb{K}}(x)$
- 5 Applications of Finite Fields

Our Objectives

- Treat $GF(q^n)$ as a vector space over GF(q).
- Introduce normal bases of $GF(q^n)$ over GF(q).
- Study the trace and norm functions on finite fields.
- Introduce some applications of finite fields.

Vector Spaces V over a Fielf \mathbb{F}

Definition 1

A vector space V over \mathbb{F} has a binary operation "+" on V and a scalar multiplication on $\mathbb{F} \times V$ such that

- (V,+) is an abelian group with identity 0;
- 2 $av \in V$ for all $a \in \mathbb{F}$ and all $v \in V$;
- **③** a(bv) = (ab)v for all $a, b \in \mathbb{F}$ and all $v \in V$;
- (a+b)v = av + bv for all $a, b \in \mathbb{F}$ and all $v \in V$;
- $1v = v \text{ for all } v \in V.$

Vector Spaces V over a Fielf \mathbb{F}

Definition 2

Let V be a vector space over a field \mathbb{F} . A set $\{v_1, v_2, \cdots, v_n\}$ of elements in V is called a <u>basis</u> of V over \mathbb{F} if

- v_1, v_2, \dots, v_n are linearly independent over \mathbb{F} , i.e., $\sum_{i=1}^n a_i v_i = 0$, where all $a_i \in \mathbb{F}$, if and only if all $a_i = 0$; and
- every element $v \in V$ can be expressed as $v = \sum_{i=1}^{n} a_i v_i$, where all $a_i \in \mathbb{F}$. In this case, we say that V has dimension n or V is an n-dimensional vector space over \mathbb{F} .

Example 3

 $\mathbb{Q}^n = \mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}$ is an *n*-dimensional vector space over the field \mathbb{Q} of rational numbers.

$GF(q^n)$ as an *n*-Dimensional Vector Space over GF(q)

Theorem 4

 $GF(q^n)$ is an n-dimensional vector space over GF(q) with respect to the addition and multiplication of the finite field $GF(q^n)$.

Proof.

 $GF(q^n)$ is a vector space over GF(q) due to the following:

- \bigcirc (GF(q^n),+) is an abelian group with identity 0;
- ② $av \in GF(q^n)$ for all $a \in GF(q)$ and all $v \in GF(q^n)$;
- (a+b)v = av + bv for all $a, b \in GF(q)$ and all $v \in GF(q^n)$;

$GF(q^n)$ as an *n*-Dimensional Vector Space over GF(q)

Proof of the dimension of $GF(q^n)$ over GF(q).

Let α be a generator of $\mathrm{GF}(q^n)^*$. It was demonstrated in the previous lecture that the minimal polynomial $P_\alpha(x)$ over $\mathrm{GF}(q)$ of α has degree n. We now claim that $\{1,\alpha,\alpha^2,\cdots,\alpha^{n-1}\}$ is a basis of $\mathrm{GF}(q^n)$ over $\mathrm{GF}(q)$. First of all, $1,\alpha,\alpha^2,\cdots,\alpha^{n-1}$ are linearly independent over $\mathrm{GF}(q)$, otherwise, the minimal polynomial of α over $\mathrm{GF}(q)$ would have degree less than n. Second, the set $\{\sum_{i=0}^{n-1}a_i\alpha^i\mid a_i\in\mathrm{GF}(q)\}$ has cardinality q^n , as $1,\alpha,\alpha^2,\cdots,\alpha^{n-1}$ are linearly independent over $\mathrm{GF}(q)$. Hence $\{1,\alpha,\alpha^2,\cdots,\alpha^{n-1}\}$ is a basis of $\mathrm{GF}(q^n)$ over $\mathrm{GF}(q)$, and is referred to as a polynomial basis.

The Dimension of $\mathbb F$ as a Vector Space over $\mathbb K$

Definition 5

Let \mathbb{K} be a subfield of \mathbb{F} . We use $[\mathbb{F} : \mathbb{K}]$ to denote the dimension of \mathbb{F} when \mathbb{F} is viewed as a vector space over \mathbb{K} .

Example 6

$$[\mathrm{GF}(q^n):\mathrm{GF}(q)]=n.$$

Normal Bases of $GF(q^n)$ over GF(q)

Definition 7

A basis of $GF(q^n)$ over GF(q) of the form $\{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$ is called a <u>normal basis</u> of $GF(q^n)$ over GF(q), where $\alpha \in GF(q^n)$.

Example 8

Let α be a generator of $GF(2^3)^*$ with minimal polynomial x^3+x^2+1 over GF(2). Then $\{\alpha,\alpha^2,\alpha^4\}$ is a normal basis of $GF(2^3)$ over GF(2). Note that $\alpha^4=1+\alpha+\alpha^2$.

Normal Bases of $GF(q^n)$ over GF(q)

The existence of a normal basis is guaranteed by the following theorem whose proof can be found in p. 60 of Lidl and Niederreiter.

Theorem 9 (Normal Basis Theorem)

For any finite field $\mathbb K$ and any finite extension $\mathbb F$ of $\mathbb K$, there exists a normal basis of $\mathbb F$ over $\mathbb K$.

Remark

Normal bases are sometimes more convenient to use than polynomial bases.

Definition 10

For $a \in \mathbb{F} = \mathrm{GF}(q^n)$ and $\mathbb{K} = \mathrm{GF}(q)$, the <u>trace</u> $\mathrm{Tr}_{\mathbb{F}/\mathbb{K}}(a)$ of a over \mathbb{K} is defined by

$$\operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(a) = a + a^q + \cdots + a^{q^{n-1}}.$$

If \mathbb{K} is the prime subfield of \mathbb{F} , then $\mathrm{Tr}_{\mathbb{F}/\mathbb{K}}(a)$ is called the <u>absolute trace</u> of a and simply denoted by $\mathrm{Tr}_{\mathbb{F}}(a)$.

Remarks

The trace function $\mathrm{Tr}_{\mathbb{F}/\mathbb{K}}(x)$ from \mathbb{F} to \mathbb{K} is a **linear** function, and has many applications in engineering areas.

The following theorem describes important properties of the trace function $\mathrm{Tr}_{\mathbb{F}/\mathbb{K}}(x)$ from \mathbb{F} to \mathbb{K} .

Theorem 11

Let $\mathbb{F} = \mathrm{GF}(q^n)$ and $\mathbb{K} = \mathrm{GF}(q)$. Then the trace function $\mathrm{Tr}_{\mathbb{F}/\mathbb{K}}(x)$ from \mathbb{F} to \mathbb{K} has the following properties:

- $\textbf{2} \ \, \mathrm{Tr}_{\mathbb{F}/\mathbb{K}}(\mathit{ca}) = \mathit{c} \mathrm{Tr}_{\mathbb{F}/\mathbb{K}}(\mathit{a}) \text{ for all } \mathit{a} \in \mathbb{F} \text{ and } \mathit{c} \in \mathbb{K}.$
- $ightharpoonup \operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(c) = m\operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(c) \text{ for all } c \in \mathbb{K}.$

Proof.

The proof of these conclusions is trivial and left as an exercise.

Another important property of the trace function is its transitivity, which is depicted in the following.

Theorem 12

Let $\mathbb K$ be a finite field, let $\mathbb F$ be a finite extension of $\mathbb K$, and $\mathbb E$ a finite extension of $\mathbb F$. Then

$$\operatorname{Tr}_{\mathbb{E}/\mathbb{K}}(a) = \operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(\operatorname{Tr}_{\mathbb{E}/\mathbb{F}}(a))$$

for all $a \in \mathbb{E}$.

Proof of Theorem 12.

Let $\mathbb{K}=\mathrm{GF}(q)$, let $[\mathbb{F}:\mathbb{K}]=\ell$ and $[\mathbb{E}:\mathbb{F}]=n$. Then $[\mathbb{E}:\mathbb{K}]=n\ell$ and

$$|\mathbb{F}| = q^{\ell}, \ |\mathbb{E}| = q^{\ell n}.$$

Then for any $a \in \mathbb{E}$ we have

$$egin{array}{lll} \operatorname{Tr}_{\mathbb{F}/\mathbb{K}}(\operatorname{Tr}_{\mathbb{E}/\mathbb{F}}(a)) &=& \displaystyle\sum_{i=0}^{\ell-1} \operatorname{Tr}_{\mathbb{E}/\mathbb{F}}(a)^{q^i} = \displaystyle\sum_{i=0}^{\ell-1} \left(\sum_{j=0}^{n-1} a^{q^{\ell j}}
ight)^q \ &=& \displaystyle\sum_{i=0}^{\ell-1} \sum_{j=0}^{n-1} a^{q^{\ell j+i}} = \displaystyle\sum_{k=0}^{n\ell-1} a^{q^k} \ &=& \operatorname{Tr}_{\mathbb{E}/\mathbb{K}}(a). \end{array}$$

Another interesting function from $\mathbb F$ to its subfield $\mathbb K$ is the norm function defined below.

Definition 13

For $a\in \mathbb{F}=\mathrm{GF}(q^n)$ and $\mathbb{K}=\mathrm{GF}(q)$, the <u>norm</u> $\mathrm{N}_{\mathbb{F}/\mathbb{K}}(a)$ of a over \mathbb{K} is defined by

$$N_{\mathbb{F}/\mathbb{K}}(a) = a \cdot a^q \cdot \cdots \cdot a^{q^{n-1}} = a^{\frac{q^n-1}{q-1}}.$$

Remark

Note that $N_{\mathbb{F}/\mathbb{K}}(a)^q=N_{\mathbb{F}/\mathbb{K}}(a)$ for all $a\in\mathbb{F}$. we have $N_{\mathbb{F}/\mathbb{K}}(a)\in\mathbb{K}$ for all $a\in\mathbb{F}$.

The following theorem describes basic properties of the norm function whose proofs are straightforward and left as exercises.

Theorem 14

Let $\mathbb{K} = \mathrm{GF}(q)$ and $\mathbb{F} = \mathrm{GF}(q^n)$. Then the norm function $N_{\mathbb{F}/\mathbb{K}}(x)$ has the following properties:

- $\mathbf{O} \quad \mathrm{N}_{\mathbb{F}/\mathbb{K}}(a^q) = \mathrm{N}_{\mathbb{F}/\mathbb{K}}(a) \text{ for all } a \in \mathbb{F}.$

Norm Function $N_{\mathbb{F}/\mathbb{K}}(x)$

The norm function has also the following transitivity.

Theorem 15

Let $\mathbb K$ be a finite field, let $\mathbb F$ be a finite extension of $\mathbb K$, and $\mathbb E$ a finite extension of $\mathbb F$. Then

$$N_{\mathbb{E}/\mathbb{K}}(a) = N_{\mathbb{F}/\mathbb{K}}(N_{\mathbb{E}/\mathbb{F}}(a))$$

for all $a \in \mathbb{E}$.

Proof.

It is straightforward and left as an exercise.

Applications of Finite Fields

Finite fields have a lot of applications in science and engineering. Below is a list of some applications.

- Mathematics (finite geometry, combinatorial designs, algebraic geometry, number theory).
- Computer science (cryptography and coding theory, computer algorithms, data storage systems, simulation, software testing).
- Electrical engineering (CDMA communications, error detection and correction, signal processing, signal designs).