Darcy-forchheimer Equation 的块中心差分方法 (二维)

李奥

October 31, 2018

目录

1	符号	2
2	模型	2
3	差分离散	2
	3.1 均匀剖分	5
	3.1.1 求解 p 的显式格式	5
	3.1.2 求解 p 的隐格式	9
	$3.1.3$ 利用 $ abla p$ 的隐格式 \dots	11
	3.2 非均匀剖分	12
	3.2.1 u,p 组装成大矩阵	12

1 符号

符号说明				
符号	意义			
Ω	$(0,1) \times (0,1)$ (二维区域)			
p	压强 (压力)			
u	流体速度			
μ	黏性系数			
K	渗透张量			
k	正数且 K = kI(I 是单位矩阵)			
β	非线性项系数			
ρ	流体密度			
f	$oldsymbol{f} \in (L(\Omega)^2)^2$, a vector function			
$g(\boldsymbol{x})$	$g(oldsymbol{x})\in L^2(\Omega)$, a scalar function			
nx	x 方向剖分的段数			
ny	y 方向剖分的段数			
h_x	x 方向剖分的步长			
h_y	y 方向剖分的步长			
NC	单元个数			
NE	边的个数			

2 模型

$$\begin{cases} (\frac{\mu}{k} + \beta \rho |\boldsymbol{u}|)\boldsymbol{u} + \nabla p = \boldsymbol{f} & in \ \Omega = (0,1) \times (0,1) \\ & \nabla \cdot \boldsymbol{u} = g \quad in \ \Omega \\ & \boldsymbol{u} = 0 \quad on \ \partial \Omega \end{cases}$$

记
$$\boldsymbol{u} = \begin{pmatrix} u \\ v \end{pmatrix}$$
, 那么有

$$\begin{cases} (\frac{\mu}{k} + \beta \rho |\mathbf{u}|)u + \nabla_x p = f_1 & (i) \\ (\frac{\mu}{k} + \beta \rho |\mathbf{u}|)v + \nabla_y p = f_2 & (ii) \\ \partial_x u + \partial_y v = g & (iii) \end{cases}$$

3 差分离散

利用一阶向前差分把方程变成差分方程,现在从 cell 和 edge 的角度考虑模型。 对于 (i), 从内部纵向 edge 的角度考虑: 我们需要找到内部纵向 edge 所对应的左手边的 cell 和右手边的 cell. 左右两边的 cell 所对应的 p 分别记为 p_l 、 p_r .u 为 edge 的 y 方向的 m 条边中点,记为 u_m 。按照 mesh 里的编号规则排序。

则每条内部边上所对应的差分方程为:

(3.1)
$$(\frac{\mu}{k} + \beta \rho |\mathbf{u}|) \cdot u_m + \frac{p_r - p_l}{h_{i+1/2}^x} = 0$$

图 1: edgey

对于 (ii), 从内部横向 edge 的角度考虑: 我们需要找到内部横向 edge 所对应的左手边的 cell 和右手边的 cell. cell 所对应的 p 与 (i) 中的相同。v 为 edge 的 x 方向的 m 个中点,记为 v_m 。

则每条内部边上所对应的差分方程为:

(3.2)
$$(\frac{\mu}{k} + \beta \rho |\mathbf{u}|) \cdot v_m + \frac{p_l - p_r}{h_{j+1/2}^y} = 0$$

图 2: $edge_x$

对于 (iii), 从 cell 的角度考虑: 由于单元是四边形单元, 我们记单元所对应边的局部编号为 [0,1,2,3] (StructureQuadMesh.py 里的网格),第 i 个单元所对应的边记为 $e_{i,0},e_{i,1},e_{i,2},e_{i,3}$ 。

则 (iii) 式第 i 个单元所对应的差分方程为:

(3.3)
$$\frac{u_{e_{i,1}} - u_{e_{i,3}}}{h_i^x} + \frac{v_{e_{i,2}} - v_{e_{i,0}}}{h_i^y} = f_i$$

图 3: cell

现在我们先求解p, 再求解u.

对于 (3.1) 我们有

(3.4)
$$u_m = \frac{f_{1,m} - \frac{p_r - p_l}{h_{i+1/2}^x}}{(\mu/k + \beta \rho \, |\mathbf{u}|)_m}$$

对于 (3.2) 我们有

(3.5)
$$v_m = \frac{f_{2,m} - \frac{p_a - p_d}{h_{j+1/2}^W}}{(\mu/k + \beta \rho \, |\boldsymbol{u}|)_m}$$

注: 记 $\mu/k+\beta\rho|\mathbf{u}|=C$, $p_{l,1}$ 、 $p_{r,3}$ 、 $p_{a,0}$ 和 $p_{d,2}$ 是同一个点处的 p, 记为 p_i .

且有

$$\frac{f_{1,1} - \frac{p_{r,1} - p_{l,1}}{h_i^x}}{C_{i,1}} = \mathcal{W}_{i,1}$$

$$\frac{f_{1,3} - \frac{p_{r,3} - p_{l,3}}{h_i^x}}{C_{i,3}} = \mathcal{W}_{i,3}$$

$$\frac{f_{2,2} - \frac{p_{a,2} - p_{d,2}}{h_i^y}}{C_{i,2}} = \mathcal{W}_{i,2}$$

$$\frac{f_{2,0} - \frac{p_{a,0} - p_{d,0}}{h_i^y}}{C_{i,0}} = \mathcal{W}_{i,0}$$

	$p_{a,2}$	
$p_{l,3}$	p_i	$p_{r,1}$
	$p_{d,0}$	

3.1 均匀剖分

由于这里的方法是均匀剖分,所以离散形式中的x,y方向的步长可以用 h_x,h_y 统一表示。

3.1.1 求解 p 的显式格式

要求解 p, 我们把 (3.4) 和 (3.5) 代入到 (3.3) 即可。但是, 我们现在需要分情况讨论:

1). 当 $u_{i,3}$ 与 $v_{i,0}$ 是边界边上中点的值时 (左下角的边界函数),有

$$\frac{\mathcal{W}_{i,1} - u_{i,3}}{h_x} + \frac{\mathcal{W}_{i,2} - v_{i,0}}{h_y} = g_i$$

整理后得到:

$$\left(\frac{1}{h_x^2 C_{i,1}} + \frac{1}{h_y^2 C_{i,2}}\right) p_i = g_i - \frac{h_x f_{1,1}}{h_x^2 C_{i,1}} - \frac{h_y f_{1,2}}{h_y^2 C_{i,2}} + \frac{p_{r,1}}{h_x^2 C_{i,1}} + \frac{p_{a,2}}{h_y^2 C_{i,2}} + \frac{u_{i,3}}{h_x} + \frac{v_{i,0}}{h_y}$$

2). 当 $u_{e_{i,3}}$ 与 $v_{e_{i,2}}$ 是边界边上中点的值时 (左上角的边界单元),有

$$\frac{\mathcal{W}_{e_{i,1}} - u_{e_{i,3}}}{h_x} + \frac{v_{e_{i,2}} - \mathcal{W}_{e_{i,0}}}{h_y} = g_i$$

整理后得到:

$$\left(\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_y^2C_{i,0}}\right)p_i = g_i - \frac{h_x f_{1,1}}{h_x^2C_{i,1}} + \frac{h_y f_{1,0}}{h_y^2C_{i,0}} + \frac{p_{r,1}}{h_x^2C_{i,1}} + \frac{p_{d,0}}{h_y^2C_{i,0}} + \frac{u_{i,3}}{h_x} - \frac{v_{i,2}}{h_y}$$

3). 当 $u_{i,1}$ 与 $v_{i,0}$ 是边界边上中点的值时 (右下角的边界单元),有

$$\frac{u_{i,1} - \mathcal{W}_{i,3}}{h_x} + \frac{\mathcal{W}_{i,2} - v_{i,0}}{h_y} = g_i$$

整理后得到:

$$(\frac{1}{h_x^2C_{i,3}} + \frac{1}{h_y^2C_{i,2}})p_i = g_i + \frac{h_xf_{1,3}}{h_x^2C_{i,3}} - \frac{h_yf_{1,2}}{h_y^2C_{i,2}} + \frac{p_{l,3}}{h_x^2C_{i,3}} + \frac{p_{a,2}}{h_y^2C_{i,2}} - \frac{u_{i,1}}{h_x} + \frac{v_{i,0}}{h_y}$$

4). 当 $u_{i,1}$ 与 $v_{i,2}$ 是边界边上中点的值时 (右上角的边界单元),有

$$\frac{u_{i,1} - \mathcal{W}_{i,3}}{h_x} + \frac{v_{i,2} - \mathcal{W}_{i,0}}{h_y} = g_i$$

整理后得到:

$$(\frac{1}{h_x^2C_{i,3}} + \frac{1}{h_v^2C_{i,0}})p_i = g_i + \frac{h_xf_{1,3}}{h_x^2C_{i,3}} + \frac{h_yf_{1,0}}{h_v^2C_{i,0}} + \frac{p_{l,3}}{h_x^2C_{i,3}} + \frac{p_{d,0}}{h_v^2C_{i,0}} - \frac{u_{i,1}}{h_x} - \frac{v_{i,2}}{h_y}$$

5). 当 $u_{i,3}$ 是边界边上的中点的值时 (左边的边界单元),有

$$\frac{W_{i,1} - u_{i,3}}{h_x} + \frac{W_{i,2} - W_{i,0}}{h_y} = g_i$$

整理后得到:

$$\begin{split} (\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_y^2C_{i,0}} + \frac{1}{h_y^2C_{i,2}})p_i = & g_i - \frac{h_xf_{1,1}}{h_x^2C_{i,1}} - \frac{h_yf_{1,2}}{h_y^2C_{i,2}} + \frac{h_yf_{1,0}}{h_y^2C_{i,0}} \\ & + \frac{p_{r,1}}{h_x^2C_{i,1}} + \frac{p_{d,0}}{h_y^2C_{i,0}} + \frac{p_{a,2}}{h_y^2C_{i,2}} + \frac{u_{i,3}}{h_x} \end{split}$$

6). 当 $u_{i,1}$ 是边界边上中点的值时 (右边的边界单元),有

$$\frac{u_{i,1} - \mathcal{W}_{i,3}}{h_x} + \frac{\mathcal{W}_{i,2} - \mathcal{W}_{i,0}}{h_y} = g_i$$

整理后得到:

$$\begin{split} (\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_y^2C_{i,0}} + \frac{1}{h_y^2C_{i,2}})p_i = & g_i + \frac{h_xf_{1,3}}{h_x^2C_{i,3}} - \frac{h_yf_{1,2}}{h_y^2C_{i,2}} + \frac{h_yf_{1,0}}{h_y^2C_{i,0}} \\ & + \frac{p_{l,3}}{h_x^2C_{i,1}} + \frac{p_{d,0}}{h_y^2C_{i,0}} + \frac{p_{a,2}}{h_y^2C_{i,2}} - \frac{u_{i,1}}{h_x} \end{split}$$

7). 当 $v_{i,0}$ 是边界边上中点的值时 (下边的边界单元),有

$$\frac{W_{i,1} - W_{i,3}}{h_x} + \frac{W_{i,2} - v_{i,0}}{h_y} = g_i$$

整理后得到:

$$\begin{split} (\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_x^2C_{i,3}} + \frac{1}{h_y^2C_{i,2}})p_i = & g_i - \frac{h_x f_{1,1}}{h_x^2C_{i,1}} + \frac{h_x f_{1,3}}{h_x^2C_{i,3}} - \frac{h_y f_{1,2}}{h_y^2C_{i,2}} \\ & + \frac{p_{r,1}}{h_x^2C_{i,1}} + \frac{p_{l,3}}{h_x^2C_{i,3}} + \frac{p_{a,2}}{h_y^2C_{i,2}} + \frac{v_{i,0}}{h_y} \end{split}$$

8). 当 $v_{i,2}$ 是边界边上中点的值时 (上边的边界单元),有

$$\frac{\mathcal{W}_{i,1} - \mathcal{W}_{i,3}}{h_x} + \frac{v_{i,2} - \mathcal{W}_{i,0}}{h_y} = g_i$$

整理后得到:

$$\begin{split} (\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_x^2C_{i,3}} + \frac{1}{h_y^2C_{i,0}})p_i = &g_i - \frac{h_xf_{1,1}}{h_x^2C_{i,1}} + \frac{h_xf_{1,3}}{h_x^2C_{i,3}} + \frac{h_yf_{1,0}}{h_y^2C_{i,0}} \\ &+ \frac{p_{r,1}}{h_x^2C_{i,1}} + \frac{p_{l,3}}{h_x^2C_{i,3}} + \frac{p_{d,0}}{h_y^2C_{i,0}} - \frac{v_{i,2}}{h_y} \end{split}$$

9). 全部为内部边的中点的值时 (内部单元),有

$$\frac{\mathcal{W}_{i,1} - \mathcal{W}_{i,3}}{h_x} + \frac{\mathcal{W}_{i,2} - \mathcal{W}_{i,0}}{h_y} = g_i$$

整理后得到:

$$(\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_x^2C_{i,3}} + \frac{1}{h_y^2C_{i,0}} + \frac{1}{h_y^2C_{i,2}})p_i = g_i - \frac{h_xf_{1,1}}{h_x^2C_{i,1}} + \frac{h_xf_{1,3}}{h_x^2C_{i,3}} - \frac{h_yf_{1,2}}{h_y^2C_{i,2}} + \frac{h_yf_{1,0}}{h_y^2C_{i,0}} + \frac{p_{r,1}}{h_x^2C_{i,1}} + \frac{p_{l,3}}{h_x^2C_{i,3}} + \frac{p_{d,0}}{h_y^2C_{i,0}} + \frac{p_{a,2}}{h_y^2C_{i,2}}$$

对于边界单元的 p, 需要做下特殊处理:

1) u 的左边的单元与u 本身相等时

$$\begin{split} C_{\frac{1}{2}}u_{\frac{1}{2}} + \nabla p &= f_{1,\frac{1}{2}} \\ \Rightarrow \frac{p_l - p_r}{h_x} &= f_{1,\frac{1}{2}} - C_{\frac{1}{2}}u_{\frac{1}{2}} \\ \Rightarrow p_r &= -h_x f_{1,\frac{1}{\alpha}} + h_x C_{\frac{1}{\alpha}}u_{\frac{1}{\alpha}} + p_l \end{split}$$

2) u 的右边的单元与 u 本身相等时

$$\begin{split} C_{Nx+\frac{1}{2}}u_{Nx+\frac{1}{2}} + \nabla p &= f_{1,Nx+\frac{1}{2}} \\ \Rightarrow \frac{p_r - p_l}{h_x} &= f_{1,Nx+\frac{1}{2}} - C_{Nx+\frac{1}{2}}u_{Nx+\frac{1}{2}} \\ \Rightarrow p_r &= h_x f_{1,\frac{1}{2}} - h_x C_{\frac{1}{2}}u_{\frac{1}{2}} + p_l \end{split}$$

3) v 的下边的单元与v 本身相等时

$$\begin{split} C_{\frac{1}{2}}v_{\frac{1}{2}} + \nabla p &= f_{2,\frac{1}{2}} \\ \Rightarrow \frac{p_l - p_r}{h_y} &= f_{2,\frac{1}{2}} - C_{\frac{1}{2}}v_{\frac{1}{2}} \\ \Rightarrow p_r &= -h_y f_{2,\frac{1}{2}} + h_y C_{\frac{1}{2}}v_{\frac{1}{2}} + p_l \end{split}$$

4)v的上边的单元与v本身相等时

$$\begin{split} C_{Ny+\frac{1}{2}}v_{Ny+\frac{1}{2}} + \nabla p &= f_{2,Ny+\frac{1}{2}} \\ \Rightarrow \frac{p_r - p_l}{h_y} &= f_{2,Ny+\frac{1}{2}} - C_{Ny+\frac{1}{2}}v_{Ny+\frac{1}{2}} \\ \Rightarrow p_r &= h_y f_{2,Ny+\frac{1}{2}} - h_y C_{Ny+\frac{1}{2}}v_{Ny+\frac{1}{2}} + p_l \end{split}$$

图 4: mesh

再求解u:

$$u_{m} = (f_{1,m} - \frac{p_{r} - p_{l}}{h_{x}})/C_{m}$$
$$v_{m} = (f_{2,m} - \frac{p_{l} - p_{r}}{h_{y}})/C_{m}$$

3.1.2 求解 p 的隐格式

与上面一部分一样, 我们先求解 p, 再求解 u. 我们考虑 C 的求解方法, 在边界的时候, 记 $f = f_b$, 边界处的 u, v 统一记为 U, 则有

$$f_b = CU$$

要求解 p, 我们把 (3.4) 和 (3.5) 代入到 (3.3) 即可。但是, 我们现在需要分情况讨论:

1). 当 $u_{i,3}$ 与 $v_{i,0}$ 是边界边上中点的值时 (左下角的边界函数),有

$$\frac{\mathcal{W}_{i,1} - u_{i,3}}{h_x} + \frac{\mathcal{W}_{i,2} - v_{i,0}}{h_y} = g_i$$

整理后得到:

$$(\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_y^2C_{i,2}})p_i - \frac{p_{r,1}}{h_x^2C_{i,1}} - \frac{p_{a,2}}{h_y^2C_{i,2}} = g_i - \frac{h_xf_{1,1}}{h_x^2C_{i,1}} - \frac{h_yf_{1,2}}{h_y^2C_{i,2}} + \frac{u_{i,3}}{h_x} + \frac{v_{i,0}}{h_y}$$

2). 当 $u_{e_{i,3}}$ 与 $v_{e_{i,2}}$ 是边界边上中点的值时 (左上角的边界单元),有

$$\frac{\mathcal{W}_{e_{i,1}} - u_{e_{i,3}}}{h_x} + \frac{v_{e_{i,2}} - \mathcal{W}_{e_{i,0}}}{h_y} = g_i$$

整理后得到:

$$\left(\frac{1}{h_x^2 C_{i,1}} + \frac{1}{h_y^2 C_{i,0}}\right) p_i - \frac{p_{r,1}}{h_x^2 C_{i,1}} - \frac{p_{d,0}}{h_y^2 C_{i,0}} = g_i - \frac{h_x f_{1,1}}{h_x^2 C_{i,1}} + \frac{h_y f_{1,0}}{h_y^2 C_{i,0}} + \frac{u_{i,3}}{h_x} - \frac{v_{i,2}}{h_y}$$

3). 当 $u_{i,1}$ 与 $v_{i,0}$ 是边界边上中点的值时 (右下角的边界单元),有

$$\frac{u_{i,1} - \mathcal{W}_{i,3}}{h_x} + \frac{\mathcal{W}_{i,2} - v_{i,0}}{h_y} = g_i$$

整理后得到:

$$\left(\frac{1}{h_x^2C_{i,3}} + \frac{1}{h_y^2C_{i,2}}\right)p_i - \frac{p_{l,3}}{h_x^2C_{i,3}} - \frac{p_{a,2}}{h_y^2C_{i,2}} = g_i + \frac{h_xf_{1,3}}{h_x^2C_{i,3}} - \frac{h_yf_{1,2}}{h_y^2C_{i,2}} - \frac{u_{i,1}}{h_x} + \frac{v_{i,0}}{h_y}$$

4). 当 $u_{i,1}$ 与 $v_{i,2}$ 是边界边上中点的值时 (右上角的边界单元),有

$$\frac{u_{i,1} - \mathcal{W}_{i,3}}{h_x} + \frac{v_{i,2} - \mathcal{W}_{i,0}}{h_y} = g_i$$

整理后得到:

$$\left(\frac{1}{h_x^2 C_{i,3}} + \frac{1}{h_y^2 C_{i,0}}\right) p_i - \frac{p_{l,3}}{h_x^2 C_{i,3}} - \frac{p_{d,0}}{h_y^2 C_{i,0}} = g_i + \frac{h_x f_{1,3}}{h_x^2 C_{i,3}} + \frac{h_y f_{1,0}}{h_y^2 C_{i,0}} - \frac{u_{i,1}}{h_x} - \frac{v_{i,2}}{h_y}$$

5). 当 $u_{i,3}$ 是边界边上的中点的值时 (左边的边界单元),有

$$\frac{\mathcal{W}_{i,1} - u_{i,3}}{h_x} + \frac{\mathcal{W}_{i,2} - \mathcal{W}_{i,0}}{h_y} = g_i$$

整理后得到:

$$\begin{split} (\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_y^2C_{i,0}} + \frac{1}{h_y^2C_{i,2}})p_i - \frac{p_{r,1}}{h_x^2C_{i,1}} - \frac{p_{d,0}}{h_y^2C_{i,0}} - \frac{p_{a,2}}{h_y^2C_{i,2}} \\ = g_i - \frac{h_xf_{1,1}}{h_x^2C_{i,1}} - \frac{h_yf_{1,2}}{h_y^2C_{i,2}} + \frac{h_yf_{1,0}}{h_y^2C_{i,0}} + \frac{u_{i,3}}{h_x} \end{split}$$

6). 当 $u_{i,1}$ 是边界边上中点的值时 (右边的边界单元),有

$$\frac{u_{i,1} - \mathcal{W}_{i,3}}{h_x} + \frac{\mathcal{W}_{i,2} - \mathcal{W}_{i,0}}{h_y} = g_i$$

整理后得到:

$$\begin{split} (\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_y^2C_{i,0}} + \frac{1}{h_y^2C_{i,2}})p_i - \frac{p_{l,3}}{h_x^2C_{i,1}} - \frac{p_{d,0}}{h_y^2C_{i,0}} - \frac{p_{a,2}}{h_y^2C_{i,2}} \\ = g_i + \frac{h_xf_{1,3}}{h_x^2C_{i,3}} - \frac{h_yf_{1,2}}{h_y^2C_{i,2}} + \frac{h_yf_{1,0}}{h_y^2C_{i,0}} - \frac{u_{i,1}}{h_x} \end{split}$$

7). 当 $v_{i,0}$ 是边界边上中点的值时 (下边的边界单元),有

$$\frac{W_{i,1} - W_{i,3}}{h_x} + \frac{W_{i,2} - v_{i,0}}{h_y} = g_i$$

整理后得到:

$$\begin{split} (\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_x^2C_{i,3}} + \frac{1}{h_y^2C_{i,2}})p_i - \frac{p_{r,1}}{h_x^2C_{i,1}} - \frac{p_{l,3}}{h_x^2C_{i,3}} - \frac{p_{a,2}}{h_y^2C_{i,2}} \\ = g_i - \frac{h_xf_{1,1}}{h_x^2C_{i,1}} + \frac{h_xf_{1,3}}{h_x^2C_{i,3}} - \frac{h_yf_{1,2}}{h_y^2C_{i,2}} + \frac{v_{i,0}}{h_y} \end{split}$$

8). 当 $v_{i,2}$ 是边界边上中点的值时 (上边的边界单元),有

$$\frac{\mathcal{W}_{i,1} - \mathcal{W}_{i,3}}{h_x} + \frac{v_{i,2} - \mathcal{W}_{i,0}}{h_y} = g_i$$

整理后得到:

$$(\frac{1}{h_x^2 C_{i,1}} + \frac{1}{h_x^2 C_{i,3}} + \frac{1}{h_y^2 C_{i,0}}) p_i - \frac{p_{r,1}}{h_x^2 C_{i,1}} - \frac{p_{l,3}}{h_x^2 C_{i,3}} - \frac{p_{d,0}}{h_y^2 C_{i,0}}$$

$$= g_i - \frac{h_x f_{1,1}}{h_x^2 C_{i,1}} + \frac{h_x f_{1,3}}{h_x^2 C_{i,3}} + \frac{h_y f_{1,0}}{h_y^2 C_{i,0}} - \frac{v_{i,2}}{h_y}$$

9). 全部为内部边的中点的值时 (内部单元),有

$$\frac{\mathcal{W}_{i,1} - \mathcal{W}_{i,3}}{h_x} + \frac{\mathcal{W}_{i,2} - \mathcal{W}_{i,0}}{h_y} = g_i$$

整理后得到:

$$\begin{split} (\frac{1}{h_x^2C_{i,1}} + \frac{1}{h_x^2C_{i,3}} + \frac{1}{h_y^2C_{i,0}} + \frac{1}{h_y^2C_{i,2}})p_i - \frac{p_{r,1}}{h_x^2C_{i,1}} - \frac{p_{l,3}}{h_x^2C_{i,3}} - \frac{p_{d,0}}{h_y^2C_{i,0}} - \frac{p_{a,2}}{h_y^2C_{i,2}} \\ &= g_i - \frac{h_xf_{1,1}}{h_x^2C_{i,1}} + \frac{h_xf_{1,3}}{h_x^2C_{i,3}} - \frac{h_yf_{1,2}}{h_y^2C_{i,2}} + \frac{h_yf_{1,0}}{h_y^2C_{i,0}} \end{split}$$

再求解u:

$$u_{m} = (f_{1,m} - \frac{p_{r} - p_{l}}{h_{x}})/C_{m}$$
$$v_{m} = (f_{2,m} - \frac{p_{l} - p_{r}}{h_{y}})/C_{m}$$

3.1.3 利用 ∇p 的隐格式

由模型中的第一个式子

(3.6)
$$(\frac{\mu}{k} + \beta \rho | \boldsymbol{u} |) \boldsymbol{u} + \nabla p = \boldsymbol{f}$$

可以得到

(3.7)
$$u = \frac{f - \nabla p}{\frac{\mu}{k} + \beta \rho |u|}$$

对第一个式子求模,有

(3.8)
$$\frac{\mu}{k}|\boldsymbol{u}| + \beta\rho|\boldsymbol{u}|^2 = |f - \nabla p|$$

得

(3.9)
$$|\mathbf{u}| = \frac{-\frac{\mu}{k} + \sqrt{\frac{\mu^2}{k^2} + 4\beta\rho|f - \nabla p|}}{2\beta\rho}$$

把 (9) 代入 (7) 中得

(3.10)
$$\mathbf{u} = \frac{f - \nabla p}{\frac{\mu}{k} + \beta \rho \frac{-\frac{\mu}{k} + \sqrt{\frac{\mu^2}{k^2} + 4\beta \rho |f - \nabla p|}}{2\beta \rho}}$$
$$= \frac{f - \nabla p}{\frac{\mu}{2k} + \sqrt{\frac{\mu^2}{4k^2} + \beta \rho |f - \nabla p|}}$$

把 (10) 代入 $\nabla \cdot \boldsymbol{u} = g$ 中得

3.2 非均匀剖分

3.2.1 **u,p** 组装成大矩阵

得到离散的形式之后, 我们根据 (3.1), (3.1), (3.3) 组装出左端的矩阵 A 和右端的向量 b, 进而使得模型的问题转化成

$$AU = b$$

其中

$$oldsymbol{A} = egin{pmatrix} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{A}_{21} & oldsymbol{0} \end{pmatrix}_{(NE+NC) imes(NE+NC)}, oldsymbol{U} = egin{pmatrix} oldsymbol{u} \ oldsymbol{p} \end{pmatrix}_{(NE+NC) imes1}, oldsymbol{b} = egin{pmatrix} oldsymbol{f} \ oldsymbol{g} \end{pmatrix}_{(NE+NC) imes1}$$

注: NE 是所有边的个数, NC 是单元的个数。

 A_{11} 是一个对角矩阵, 我们记

$$\boldsymbol{C} = \frac{\mu}{k} + \beta \rho \, |\boldsymbol{u}|$$

有

$$m{A}_{11} = egin{bmatrix} m{C}_1 & 0 & \cdots & 0 & 0 \ 0 & m{C}_2 & \cdots & 0 & 0 \ dots & dots & \ddots & dots & dots \ 0 & 0 & \cdots & m{C}_{NE-1} & 0 \ 0 & 0 & \cdots & 0 & m{C}_{NE} \end{bmatrix}$$

参考文献