AdaGrad — Adaptive Gradient Descent

AdaGrad is an improvement over standard gradient descent. Instead of using a **fixed learning rate** (**n\eta**), it uses an **adaptive learning rate** that adjusts for each parameter individually based on the past squared gradients. This helps the algorithm converge faster and more effectively, especially when different parameters have different sensitivities.

Intuition

• In standard gradient descent:

$$w_t = w_{t-1} - \eta \cdot rac{\partial L}{\partial w}$$

• In AdaGrad (adaptive learning rate):

$$w_t = w_{t-1} - \eta_t' \cdot rac{\partial L}{\partial w}$$

Where:

• η_t' = adaptive learning rate at iteration t

▲ Adaptive Learning Rate Formula

$$\eta_t' = rac{\eta}{\sqrt{lpha_t + \epsilon}}$$

Where:

- η = initial learning rate
- α_t = accumulated sum of squared gradients
- ϵ = small constant (e.g., 10^{-8}) to avoid division by zero

\blacksquare Formula for α_t

$$lpha_t = \sum_{i=1}^t \left(rac{\partial L}{\partial w_i}
ight)^2$$

This means:

- $oldsymbol{lpha}_t$ keeps **increasing** with every iteration as it accumulates the squared gradients.
- As α_t increases, the adaptive learning rate η_t' decreases.

Behavior Over Time

- In the **early stages**, gradients are small $ightarrow lpha_t$ is small ightarrow higher learning rate
- As training progresses, α_t increases $\rightarrow \eta_t'$ decreases
- This leads to smaller and more stable updates, helping to fine-tune the weights

Limitation of AdaGrad

- In deep neural networks, as iterations increase, α_t may become very large
- This causes η'_t to become **extremely small**
- When learning rate becomes too small:

$$w_t pprox w_{t-1}$$

→ No effective weight updates, and the model stops learning

Summary Table

Concept	Description
Learning Rate	Adaptive (decreases over time)
Learning Rate Formula	$\eta_t' = rac{\eta}{\sqrt{lpha_t + \epsilon}}$
$lpha_t$ Formula	$lpha_t = \sum_{i=1}^t \left(rac{\partial L}{\partial w_i} ight)^2$
Purpose of ϵ	Avoids division by zero
Advantage	Fast convergence, especially on sparse features
Limitation	Learning rate may become too small over time