L11: Normal subgroups

Def let H = G be a subgroup. Given $g \in G$ we call the set $gH := fgh \mid h \in H \mid a$ beff aset

Hg := fhs \left \left \in H \reft \left \left \left \tag{oset}.

We define $G/H = fgH \mid g \in G \mid A$

Notation ge G uc mite [g]:= gH & G/H

Lemma $xH = yH \iff x^{-1}y \in H \iff y^{-1}x \in H$)

Pf: "=1" $xH = yH \implies y \cdot e \in yH = xH \implies \exists h \in H \quad st. \quad y = x \cdot h$ = $x^{-1}y = h \in H$ "=": $xH = yH : yh = xx^{-1}y \cdot h \in xH$ EH

e same

Q When is G/H a group? (st. G - G/H is a group hom.)

Need $[x] \cdot [y] := [xy]$. Is the well-defined?

From above $[x] = [xh_1]$, $[y] = [yh_2]$ for any $h_1, h_2 \in H$,

thus we require $[xy] = [x] \cdot [y] = [xh_1] \cdot [yh_2] = [xh_1yh_2]$ $= (xy)^{-1} x h_1 y h_2 \in H$ $= (y^{-1}h_1 y h_2 \in H)$ $= (y^{-1}h_1 y h_2 \in H)$ $= (y^{-1}h_2 y h_2 \in H)$ $= (y^{-1}h_2 y h_2 \in H)$

Def A subgroup N = G is called normal, denoted N = G, if $g^{-1}hg \in H$ $\forall g \in G$, $h \in N$.

Thin Let Na G be a normal substoup. Then G/H carrier a group structure s.t. G -> G/N is a group homomorphism.

Pf Exercise

Example 5_3 : $H = ((12)) = \{e, (12)\}$ $N = ((12)) = \{e, (12)\}$ N

Ren NUG = G/H = HG

- The (univ. property) Let N
 eq G. Suppose we are given a group homomorphism $\Psi: G \rightarrow K$ st. $\Psi(N) = \{e\}$. Then these exists a unique group homomorphism $\Psi: G/N \rightarrow K$ st. $G \rightarrow K$ $G \rightarrow K$ G
- Pf 9 is nell-defined: \(((\infty) = ((\infty)) = ((\in
- The Let $\mathcal{C}: G \to H$ be a group homomorphism. Then K= ket \mathcal{C} is a normal subgroup. Moreover, the induced homomorphism $\mathcal{C}: G/K \to H$ defines a group isomorphism G/K in \mathcal{C} in \mathcal{C} .

Pf \cdot K is normal: Let $k \in K$ and $g \in G$, then $\varphi(gkg^{-1}) = \varphi(g)\varphi(k)\varphi(g^{-1}) = \varphi(g)\varphi(g^{-1}) = e$ Hence $gKg^{-1} \subseteq K$.

• \mathcal{G} injective: $\mathcal{G}[[\alpha]] = e$ $= \mathcal{G}[\alpha] - e = \mathcal{G}[\alpha]$ $= \mathcal{G}[\alpha] - e = \mathcal{G}[\alpha]$

Slegan "notinal subgroups at kernels"

Pf "=": "

"=," ker $(G \rightarrow G/N) = (x \in G \mid x) = c_{G} \mid x \in N$. $x \in N = N$

Ptop $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z}$ Et we define $Q: \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ by $Q(x) = \mathbb{Z}$. It is surjective

=' $\mathbb{Z}/kerQ \stackrel{Q}{=} \mathbb{Z}/n\mathbb{Z}$ It temains to determine $\ker Q = \{ k \in \mathbb{Z} \mid k = \delta \}$ = $n\mathbb{Z}$

0