Optimization methods. Seminar 5. Optimality conditions, vol. 1

Alexandr Katrutsa

Moscow Institute of Physics and Technology

Unconstrained minimization problem

Problem: $f(x) \to \min_{x \in \mathbb{R}^n}$.

Theorem

If f(x) is convex and differentiable, then x^* is a solution of the problem iff $\nabla f(x^*) = 0$.

Sufficient condition for non-convex functions

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable and x^* such that $\nabla f(x^*) = 0$. If $\nabla^2 f(x^*) \succ 0$, then x^* is a strict local minimizer.

Examples

- $x_1e^{x_1} (1+e^{x_1})\cos x_2 \to \min$
- Rosenbrock function:

$$(1-x_1)^2 + \alpha \sum_{i=2}^{\infty} (x_i - x_{i-1}^2)^2 \to \min, \ \alpha > 0$$

- $x_1^2 + x_2^2 x_1 x_2 + e^{x_1 + x_2} \to \min$
- $\blacktriangleright \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
- $\| \min_{\mathbf{x}} \| \mathbf{x} \|_1 + \lambda \| \mathbf{x} \mathbf{y} \|_2^2$

Recap

- Optimality conditions for unconstrained minimization problem
- ► Transformation of non-smooth problem to smooth one