Sterowanie adaptacyjne i estymacja

Maciej Cebula Kajetan Piertusa Daniel Rubak

Kraków, 2017

Spis treści

1	Wstęp	4
	1.1 Cel zajęć	4
	1.2 Model obiektu	2
	1.3 Regulatory	4
2	Implementacja	4
3	Optymalizacja	7
	3.1 Optymalizacja nastaw regulatora	7
	3.1 Optymalizacja nastaw regulatora	7
	3.1.2 Optymalizacja nastaw regulatorów	

Wstęp

1.1 Cel zajęć

Celem niniejszej pracy była analiza oraz dobór parametrów systemu adaptacyjnego w zależności od występujących w systemie zakłóceń oraz transmitancji obiektu, którym sterowano. Przyjęty model przedstawiono na rysunku 1.1.

Rys. 1.1: Model układu sterowania

1.2 Model obiektu

Obiektem sterowania był model Strejca, opisany transmitancją:

$$G(s) = \frac{K_0}{(T_0 \cdot s + 1)^n} \cdot e^{-\tau \cdot s}$$
 (1.1)

Na potrzeby niniejszej pracy ograniczono się do obserwacji zachowania modeli rzędu pierwszego, drugiego oraz trzeciego.

1.3 Regulatory

Poszczególne regulatory znajdujące się na schemacie 1.1 opisano następującymi wzorami:

$$PD_1 = \alpha_1 + \beta_1 \cdot s \tag{1.2}$$

$$PD_2 = \alpha_2 + \beta_2 \cdot s \tag{1.3}$$

$$PI = \gamma + \frac{\delta}{s} \tag{1.4}$$

Element wykonawczy jest opisany za pomocą zależności:

$$\frac{K_{w2}}{T_w s + T} \tag{1.5}$$

Wartości parametrów K_{w1} , K_{w2} , T_w , K_0 potraktowano jako zadane. Przyjęto, iż testy zostaną przeprowadzone dla wartości zadanej r dla pięciu różnych poziomów zmieniających się w zakresie $5-70^{\circ}C$. Zakłóceniem z_1 był niemierzalny skok 1(t), natomiast z_2 było mierzalnym skokiem 1(t).

W ramach projektu należało przeprowadzić optymalizację poszczególnych parametrów podanych powyżej regulatorów, tj. α_1 , β_1 , α_2 , β_2 , γ , δ . Wskaźnikiem jakości, na mocy którego optymalizowano działanie całego układu, była całka z modułu uchybu:

$$J = \int |e(t)|dt \tag{1.6}$$

gdzie:

e(t) = r(t) - y(t) - uchyb regulacji.

Ponadto przyjęto, iż oczekiwanym efektem optymalizacji będzie takie zachowanie układu, by bez względu na wartości zakłóceń z_1 i z_2 , efekt stabilizacji był jak najlepszy.

Implementacja

Do dobrania nastaw regulatorów wykorzystano funkcje optymalizującą fmincon, dostępną w środowisku Matlab/Simulink. Funkcja ta bazując na modelu obiektu (rys. 1.1), minimalizowała zadany wskaźnik jakości, który w tym przypadku był podany wzorem 1.6.

Na listingu 2.1 zaprezentowano kod funkcji wywoływanej przez procedurę optymalizującą. Aby umożliwić poprawne działanie procedury fmincon należało do funkcji wywołującej model Simulika dodać linijkę

```
opt = simset('SrcWorkspace', 'Current').
```

Dzięki wywołaniu tej instrukcji optymalizacja korzystała ze zmiennych lokalnego workspacea, co umożliwiło uruchamianie modelu dla kolejnych zbiorów parametrów.

Listing 2.1: Funkcja wywoływana przez procedurę optymalizującą.

```
function wsk = cel( par )

global Kr Kw1 Tw2 Kw2 To Ko z1 z2 r tau limit1 limit2 limit3
P1 = par(1);
D1 = par(2);
P2 = par(3);
D2 = par(4);
P3 = par(5);
I3 = par(6);
Kr = par(7);

opt = simset('SrcWorkspace', 'Current');
sim('model',50,opt)

wsk = J;
end
```

Kod procedury odpowiedzialnej za przeprowadzenie całego procesu optymalizacji znajduje się na listingu $2.2\,$

Listing 2.2: Procedura optymalizacji

```
clear all
close all
global Kr Kw1 Tw2 Kw2 To Ko z1 z2 r tau limit1 limit2 limit3
% Wartosci poczatkowe parametrow regulatorow
P1 = 0.01;
D1 = 0.5;
P2 = 1;
D2 = 0.5;
P3 = 1;
I3 = 0.01;
P4 = 1;
Kr = 1.3;
% Parametry obiektu
Kw1 = 10;
Tw2 = .1;
Kw2 = 5;
To = 1;
Ko = 10;
tau = 1;
limit1 = 20;
limit3 = 40;
limit 2 = 40;
% Wartosci zadane
zad = [5 \ 10 \ 20 \ 50 \ 70];
X0 = [P1 D1 P2 D2 P3 I3 Kr];
A = -eye(7);
B = zeros(7,1);
LB = [0 \ 0 \ 0 \ 0 \ 0 \ 0];
```

Optymalizacja

3.1 Optymalizacja nastaw regulatora

Do optymalizacji nastaw regulatorów wykorzystano skrypty zawarte w rozdziale 2. Badania przeprowadzone zostały dla zestawu parametrów obiektu zaprezentowanego w tabeli 3.1. Rząd obiektu jak i wartość zadana były były zmiennymi parametrami i odpowiednio wartości:

```
n \in \{1,2,3\}- rząd obiektu, z \in \{5,10,20,50,70\}- wartość zadana
```

3.1.1 Zestawy parametrów

W tabeli 3.1 zamieszczono przyjęte wartości parametrów opisujących obiekt regulacji.

3.1.2 Optymalizacja nastaw regulatorów

Dla kolejnych zestawów parametrów opisujących system przeprowadzano procedurę optymalizacji nastaw regulatorów minimalizując wskaźnik jakości opisany zależnością 1.6. Proces optymalizacji przeprowadzany był dla różnych wartości zadanych w obecności znanego zakłócenia z_2 (zakłócenie skokowo zmieniające swoją wartość) oraz nieznanego zakłócenia z_1 . Przebiegi owych zakłóceń przedstawiono na rysunku 3.1.

Dla przedstawionych powyżej przebiegów zakłóceń przeprowadzono optymalizację a otrzymane nastawy dla poszczególnych obiektów zamieszczono w tabelach 3.2 - 3.4.

Tabela 3.1: Zestawy parametrów dla których przeprowadzano optymalizację nastaw regulatorów.

Parametr	Wartość
K_{w1}	10
K_{w2}	5
T_{w2}	0.1
T_0	1
K_0	10
τ	1

Rys. 3.1: Zakłócenia.

Tabela 3.2: Parametry regulatorów dla obiektu pierwszego rzędu.

Parametr regulatora\	<i>P</i> 1	<i>D</i> 1	P2	D2	P3	<i>I</i> 3	Kr
Wart. zadana	<i>F</i> 1	D_1	F Z	D_{2}	F 3	13	K/
5	0,1583	0,0000	0,3902	503,9885	0,0565	0,0393	1,3697
10	0,0875	0,0245	0,2230	0,3092	0,0454	0,0000	0,5617
20	0,1037	45,9950	0,4478	310,6393	0,0336	0,0000	0,5367
50	0,0800	12,6157	0,0000	4,8505	0,0326	0,0164	0,5671
70	0,0571	3,3536	0,0000	213,3236	0,0496	0,0331	0,5549

Tabela 3.3: Parametry regulatorów dla obiektu drugiego rzędu.

Parametr regulatora\ Wart. zadana	<i>P</i> 1	<i>D</i> 1	P2	D2	Р3	<i>I</i> 3	Kr
5	0,1036	0,3042	0,5315	73,9744	0,0442	0,0000	0,5367
10	0,1037	0,7795	0,5391	1,5989	0,0353	0,0000	0,5367
20	0,1031	17,033	0,5250	0,2906	0,0238	0,0000	0,5390
50	0,0800	0,1205	0,3564	37,7697	0,0509	0,0112	0,5420
70	0,0571	728,1221	0,2330	18,4368	0,0475	0,0222	0,5378

W tabeli 3.5 przedstawiono wartości wskaźnika jakości dla wszystkich przeprowadzonych symulacji.

Na rysunkach 3.2 - 3.5 przedstawiono przykładowe przebiegi zawierające odpowiedzi obiektów dla różnych wartości zadanych.

Rys. 3.2: Odpowiedź obiektu drugiego rzędu, r=20

Rys. 3.3: Odpowiedź obiektu drugiego rzędu, r=70

Rys. 3.4: Odpowiedź obiektu trzeciego rzędu, r=20

Rys. 3.5: Odpowiedź obiektu trzeciego rzędu, r=70

Tabela 3.4: Parametry regulatorów dla obiektu trzeciego rzędu.

Parametr regulatora\	<i>P</i> 1	D1	P2	72	P3	12	Kr
Wart. zadana	<i>P</i> 1	D1	PZ	D2	P 3	<i>I</i> 3	Λr
5	0,1800	0,1319	1106,0058	0,4266	0,0143	0,0000	1,2768
10	0,1017	0,9193	0,4593	0,1072	0,0345	0,0000	0,5416
20	0,1026	3,2520	0,4596	123,9292	0,0283	0,0000	0,5438
50	0,0800	7164,0578	0,3120	6756,3846	0,0303	0,0084	0,5445
70	0,0571	29629,2945	0,1710	400,4956	0,0414	0,0153	0,5448

Tabela 3.5: Wartości wskaźnika jakości dla różnych wartości zadanych i różnych zestawów parametrów opisujących system.

·			
Nr zestawu\ Wart. zadana	1	2	3
5	33,0087	43,1130	54,9063
10	38,7111	52,7556	70,6049
20	64,0122	71,5313	100,7350
50	94,3375	158,9382	195,2509
70	131,8947	198,0144	272,9748

Bibliografia

[1] Witold Byrski, Obserwacja i sterowanie w systemach dynamicznych. Wydawnictwa AGH, Kraków, 2007.