

Death to FHRP: EVPN in the Wild

Jason R. Rokeach

Hello! I am Jason R. Rokeach

Solutions Architect @ Juniper

incutio#0179 (Jason)

<u>@JasonRokeach</u>

https://github.com/jrokeach

<u>jasonrokeach</u>

Typical Considerations of EVPN

EVPN-VXLAN

datacenter

Near-ubiquitous technology stack for building a new the purpose of Whis discustomer locations

Eliminates STP problems, MC-LAG limitations, VLAN quantity limitations

EVPN-MPLS

Enables [active-active] dual-homing of Layer 2

[More] scalable approach to building L2VPNs with reduced operator overhead

EVPN offers tools that we can use in other ways

ESI (VES)

- Enables multihoming active/active or active/passive
- Marks two interfaces as belonging to the same Ethernet Segment (stops loops!)

<u>Distributed Anycast</u> <u>Gateway</u>

- Enables multiple L3
 gateways without FHRP
 (VRRP/HSRP/GLBP)
- Enables the same L3
 gateway in multiple
 locations, independent
 of topology.

Scenario 1: Internet Gateway
Redundancy

Traditional Model:

- 2 Gateway Routers (GRs) as1 router cluster
- 2 Agg PEs as 1 router cluster
- GR cluster connected to Agg
 PE cluster via LAG w/ 802.1Q
- MPLS PW from Acc PE to Agg PE

Traditional Model Drawbacks:

- Vendors deprioritizing clustering
- Can be complex
- Requires shared location or additional complexity
- 3 single points of failure
 - Yes, your shared control and management planes are SPOFs.

EVPN Enabled Model:

- No more clusters
- L2VPN/VFI on Acc PE w/ PWs to both Agg PEs
- Both Agg PEs have 802.1Q trunk to respective GW.
- Add BGP w/ EVPN
 Signalling between GW1
 and GW2
- Distributed Anycast
 Gateway on GW1 and
 GW2

EVPN Enabled Benefits:

- Vendor support
- No more gateway SPOF
- No full-scale EVPN-MPLS deployment in Internet network required.
- No EVPN requirement in MPLS network

EVPN Enabled Drawbacks:

- Shaping/Policing becomes problematic in active/active case.
 - Mitigate this with single-active ESIs.

2

Scenario 2: Stateless Access Ring Redundancy

Traditional Old Model:

- GWs may use FHRP, be a single router, or use EVPN DAG such as in Scenario 1.
- No L2 loop prevention on switches
- Switch ring dual linked to SPOF access PE
- Access PE runs single-node STP which causes blocking on a port when it sees its own BPDU

Traditional Old Model Drawbacks:

- Access Router SPOF
- Limits geographical range of rings - all must begin and end at the same physical location

EVPN-Enabled Model:

- GWs and Switches unchanged
- Switch ring linked to separate Access PEs
- No need for STP on Access PEs
- Access PEs have L2VPN PWs to both Agg PEs. (Or each to one, if VPLS not supported.)
- Agg PEs use VES in single-active mode for each pseudowire

EVPN-Enabled Benefits:

- GWs and Switches unchanged
- No Access PE or switch SPOF for multiple access devices
- Ends of rings can be in separate locations
- No requirement to manage
 PW failovers and failbacks

EVPN doesn't just open new L2VPN possibilities, but can and should be used inside your network to enhance other services and simplify operations.

Thank you! Any questions?

You can find me at:

incutio#0179 (Jason)

@JasonRokeach

https://github.com/jrokeach

<u>jasonrokeach</u>