Conceptual Multiple Choice Questions: Systems of Quadratic Equations (Exercise 4.9)

Class 11 Mathematics (Chapter 4)

Prepared by ExpertGuy

MCQs

- **1.** The solution set for $2x^2 = 6 + 3y^2$, $3x^2 5y^2 = 7$ is:
 - (a) $\{(3,2),(-3,2),(3,-2),(-3,-2)\}$
 - **(b)** $\{(2,3),(-2,3),(2,-3),(-2,-3)\}$
 - (c) $\{(3,1),(-3,1),(3,-1),(-3,-1)\}$
 - (d) $\{(1,2),(-1,2),(1,-2),(-1,-2)\}$
- **2.** The number of real solutions for $8x^2 = y^2$, $x^2 + 2y^2 = 19$ is:
 - (a) 4
 - **(b)** 2
 - (c) 1
 - **(d)** 0
- **3.** For $x^2 5xy + 6y^2 = 0$, $x^2 + y^2 = 45$, one solution is:
 - **(a)** (6, 3)
 - **(b)** (3, 6)
 - (c) (2,3)
 - **(d)** (3, 2)
- **4.** The solution set for $12x^2 25xy + 12y^2 = 0$, $4x^2 + 7y^2 = 148$ includes:
 - (a) (3,4)
 - **(b)** (4, 3)
 - (c) (3, -3)
 - (d) (4, -4)
- **5.** For $12x^2 11xy + 2y^2 = 0$, $2x^2 + 7xy = 60$, one solution is:
 - (a) $(\sqrt{2}, 4\sqrt{2})$
 - **(b)** (2,4)
 - (c) (1,2)
 - (d) $(4, \sqrt{2})$
- **6.** The solution set for $x^2 y^2 = 16$, xy = 15 includes:
 - (a) (5,3)

- **(b)** (3,5)
- (c) (5, -5)
- (d) (3, -3)
- **7.** The solution set for $x^2 + xy = 9$, $x^2 y^2 = 2$ is:
 - (a) $\left\{ \left(\frac{9}{4}, \frac{7}{4} \right), \left(-\frac{9}{4}, -\frac{7}{4} \right) \right\}$
 - **(b)** $\left\{ \left(\frac{7}{4}, \frac{9}{4} \right), \left(-\frac{7}{4}, -\frac{9}{4} \right) \right\}$
 - (c) $\left\{ \left(\frac{9}{4}, -\frac{7}{4} \right), \left(-\frac{9}{4}, \frac{7}{4} \right) \right\}$
 - (d) $\{(2,\frac{1}{2}),(-2,-\frac{1}{2})\}$
- **8.** The solution set for $y^2 2xy = 7$, $2x^2 + 3 = xy$ is:
 - (a) $\{(3,7),(-3,-7)\}$
 - **(b)** $\{(7,3),(-7,-3)\}$
 - (c) $\{(3,-7),(-3,7)\}$
 - (d) $\{(7,-3),(-7,3)\}$
- **9.** The solution set for $x^2 + y^2 = 5$, xy = 2 is:
 - (a) $\{(2,1),(-2,-1),(1,2),(-1,-2)\}$
 - **(b)** $\{(2,-1),(-2,1),(1,-2),(-1,2)\}$
 - (c) $\{(2,2),(-2,-2),(1,1),(-1,-1)\}$
 - (d) $\{(1,1),(-1,-1),(2,2),(-2,-2)\}$
- **10.** The equation obtained after eliminating y^2 in $2x^2 = 6 + 3y^2$, $3x^2 5y^2 = 7$ is:
 - (a) $x^2 = 9$
 - **(b)** $y^2 = 4$
 - (c) $x^2 = 4$
 - (d) $y^2 = 9$
- **11.** The homogeneous equation for $x^2 5xy + 6y^2 = 0$ factors as:
 - (a) (x-2y)(x-3y)=0
 - **(b)** (x-y)(x-6y) = 0
 - (c) (x-2y)(x-4y)=0
 - (d) (x-y)(x-5y)=0
- **12.** The quadratic equation for $x^2 + y^2 = 5$, xy = 2 after substitution is:
 - (a) $x^4 5x^2 + 4 = 0$
 - **(b)** $x^4 + 5x^2 4 = 0$
 - (c) $x^4 4x^2 + 5 = 0$
 - (d) $x^4 + 4x^2 5 = 0$

- **13.** The number of real solutions for $x^2 + xy = 9$, $x^2 y^2 = 2$ is:
 - (a) 2
 - **(b)** 4
 - **(c)** 1
 - **(d)** 0
- **14.** The homogeneous equation obtained from $y^2 2xy = 7$, $2x^2 + 3 = xy$ is:
 - (a) $14x^2 13xy + 3y^2 = 0$
 - **(b)** $14x^2 + 13xy 3y^2 = 0$
 - (c) $7x^2 13xy + 2y^2 = 0$
 - (d) $7x^2 + 13xy 2y^2 = 0$
- **15.** For $12x^2 25xy + 12y^2 = 0$, the linear factors are:
 - (a) (3x 4y)(4x 3y) = 0
 - **(b)** (3x y)(4x y) = 0
 - (c) (2x-3y)(6x-4y)=0
 - (d) (x-4y)(12x-3y)=0
- **16.** The value of y^2 when $x = \sqrt{2}$ in $12x^2 11xy + 2y^2 = 0$, $2x^2 + 7xy = 60$ is:
 - **(a)** 16
 - **(b)** 8
 - (c) 4
 - **(d)** 2
- **17.** The sum of the x-coordinates of the real solutions to $x^2 + y^2 = 5$, xy = 2 is:
 - **(a)** 0
 - **(b)** 2
 - (c) -2
 - (d) 4
- **18.** For $x^2 y^2 = 16$, xy = 15, the quadratic equation in x^2 is:
 - (a) $x^4 16x^2 225 = 0$
 - **(b)** $x^4 16x^2 + 225 = 0$
 - (c) $x^4 + 16x^2 225 = 0$
 - (d) $x^4 225x^2 + 16 = 0$
- **19.** For $2x^2 = 6 + 3y^2$, $3x^2 5y^2 = 7$, the discriminant of the quadratic in x^2 (if solved) is:
 - **(a)** 0

- **(b)** 16
- (c) 64
- (d) 36
- **20.** The product of the y-coordinates of the real solutions to $x^2 + y^2 = 5$, xy = 2 is:
 - (a) 4
 - (b) -4
 - **(c)** 2
 - (d) -2

Answers and Explanations

1. Answer: a

Explanation: Multiply first by 3, second by 2, subtract: $y^2 = 4 \implies y = \pm 2$. Substitute: $x^2 = 9 \implies x = \pm 3$. Solution set: $\{(3,2), (-3,2), (3,-2), (-3,-2)\}$. Option (a) is correct; others do not match.

2. Answer: a

Explanation: From $8x^2=y^2$, substitute into $x^2+2y^2=19$: $17x^2=19 \implies x=\pm\sqrt{\frac{19}{17}}$. Then, $y=\pm2\sqrt{\frac{38}{17}}$. Four solutions. Option (a) is correct; others are incorrect.

3. Answer: a

Explanation: Factorize: (x - 2y)(x - 3y) = 0. For x = 2y, substitute: $5y^2 = 45 \implies y = \pm 3 \implies (6,3)$. Option (a) is correct; others are not solutions.

4. Answer: a

Explanation: Factorize: (3x - 4y)(4x - 3y) = 0. For 4x - 3y = 0, substitute: $y = \pm 4 \implies x = \pm 3$. Includes (3,4). Option (a) is correct; others are not solutions.

5. Answer: a

Explanation: Factorize: (3x - 2y)(4x - y) = 0. For 4x - y = 0, substitute: $x = \pm \sqrt{2} \implies y = \pm 4\sqrt{2}$. Includes $(\sqrt{2}, 4\sqrt{2})$. Option (a) is correct; others are not solutions.

6. Answer: a

Explanation: Substitute $y = \frac{15}{x}$ into $x^2 - y^2 = 16$: $x^4 - 16x^2 - 225 = 0 \implies x = \pm 5$. Then, $y = \pm 3$. Includes (5,3). Option (a) is correct; others are not real solutions.

7. Answer: a

Explanation: Eliminate constants: (7x - 9y)(x + y) = 0. For 7x - 9y = 0, substitute: $y = \pm \frac{7}{4} \implies x = \pm \frac{9}{4}$. Solution set: $\left\{ \left(\frac{9}{4}, \frac{7}{4} \right), \left(-\frac{9}{4}, -\frac{7}{4} \right) \right\}$. Option (a) is correct; others are incorrect.

8. Answer: a

Explanation: Eliminate constants: (2x - y)(7x - 3y) = 0. For 7x - 3y = 0, substitute: $y = \pm 7 \implies x = \pm 3$. Solution set: $\{(3,7), (-3,-7)\}$. Option (a) is correct; others do not match.

9. Answer: a

Explanation: Substitute $y=\frac{2}{x}$ into $x^2+y^2=5$: $x^4-5x^2+4=0 \implies x=\pm 2,\pm 1$. Then, $y=\pm 1,\pm 2$. Solution set: $\{(2,1),(-2,-1),(1,2),(-1,-2)\}$. Option (a) is correct; others are incorrect.

10. Answer: b

Explanation: Multiply and subtract: $y^2 = 4$. Option (b) is correct; others are incorrect results of elimination.

11. Answer: a

Explanation: Factorize: $x^2 - 5xy + 6y^2 = (x - 2y)(x - 3y) = 0$. Option (a) is correct; others do not factor correctly.

12. Answer: a

Explanation: Substitute $y = \frac{2}{x}$: $x^4 - 5x^2 + 4 = 0$. Option (a) is correct; others are incorrect.

13. Answer: a

Explanation: For 7x - 9y = 0, two solutions. For x + y = 0, no solution. Two real solutions. Option (a) is correct; others do not match.

14. Answer: a

Explanation: Multiply first by 3, second by 7, add: $14x^2 - 13xy + 3y^2 = 0$. Option (a) is correct; others are incorrect.

15. Answer: a

Explanation: Factorize: (3x - 4y)(4x - 3y) = 0. Option (a) is correct; others do not factor correctly.

16. Answer: a

Explanation: For 4x - y = 0, y = 4x. Substitute $x = \sqrt{2}$: $y = 4\sqrt{2} \implies y^2 = 16$. Option (a) is correct; others are incorrect.

17. Answer: a

Explanation: Solutions: x = 2, -2, 1, -1. Sum: 2 + (-2) + 1 + (-1) = 0. Option (a) is correct; others are incorrect.

18. Answer: a

Explanation: Substitute $y = \frac{15}{x}$: $x^4 - 16x^2 - 225 = 0$. Option (a) is correct; others are incorrect.

19. Answer: a

Explanation: Eliminate x^2 : $y^2 = 4$. Discriminant of quadratic in x^2 is zero (perfect square). Option (a) is correct; others are incorrect.

20. Answer: a

Explanation: Solutions: y=1,-1,2,-2. Product: $1 \cdot (-1) \cdot 2 \cdot (-2) = 4$. Option (a) is correct; others are incorrect.