Matemática 1

Repaso segundo parcial

Comisión 1A - 2do. cuatrimestre 2018

Ejercicio 1. Sea n un número natural y consideremos la proposición: P(n): "2n-1 es múltiplo de 2". Probar que:

- 1. P(n) implies P(n+1).
- 2. P(n) es falsa para todo $n \in \mathbb{N}$.

Contradice esto el principio de Inducción? Justificar.

Ejercicio 2. Probar utilizando el principio inducción completa que:

$$\sum_{j=1}^{n} (3j-1) = \frac{n(3n+1)}{2}, \quad \forall n \in \mathbb{N}, \ n \ge 1.$$

Decir cuánto vale la siguiente suma:

$$\sum_{j=17}^{125} 4(3j-1).$$

Ejercicio 3. Probar utilizando el principio inducción completa que:

$$\sum_{j=0}^{n} 6^j = \frac{6^{n+1} - 1}{5}, \quad \forall n \in \mathbb{N}.$$

Decir cuánto vale la siguiente suma:

$$\sum_{j=2}^{21} 6^{j+1} \, .$$

Ejercicio 4. ¿Cuántos anagramas de la palabra FACULTAD pueden formarse? ¿Cuántos de ellos empiezan con la letra A? ¿Cuántos terminan con una vocal?

Ejercicio 5. En un estante de una biblioteca se encuentran 5 libros de Matemática, 3 de Física y 7 de Biología. ¿De cuántas maneras distintas pueden acomodarse? ¿Y si quiero que los del mismo área queden juntos?

Ejercicio 6. Si un exámen tiene 20 preguntas y tengo que elegir sólo 15 para responder. ¿De cuántas maneras puedo hacer la selección?

Ejercicio 7. Un grupo de 13 compañeros de trabajo se reúnen una vez a la semana a jugar al futbol cinco y sólo dos de ellos pueden jugar de arquero. ¿De cuántas maneras pueden armarse los dos equipos?

Ejercicio 8. Dados los conjuntos $A = \{a, b, c\}$ y $B = \{1, 2, 3, 4\}$ ¿Cuántas funciones inyectivas pueden definirse de A en B?

Ejercicio 9. Determinar si alguna de las siguientes matrices es inversible y en caso de que lo sea, hallar su inversa.

Matemática 1 Hoja 1 de 3

1.
$$A = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$$

2.
$$B = \begin{pmatrix} a & 1 & 0 \\ 1 & 0 & a \\ 1 & 1 & 1 \end{pmatrix}$$
 para a un número real cualquiera fijo.

Ejercicio 10. Determinar si existe algún valor de k para que las siguientes matrices sean inversibles:

$$A = \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 2 & k & 3 \\ 1 & 1 & 2k \\ 0 & -2 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 0 & 1 \\ 1 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Ejercicio 11. Considerar las matrices del ejercicio anterior y decir si existe algún valor de k para que los sistemas homogéneos asociados a las mismas, tengan solución única.

Ejercicio 12. Sin calcular justificar por qué las siguientes matrices tienen determinante nulo:

1.
$$A = \begin{pmatrix} 2 & 15 & 1 \\ \frac{1}{5} & 9 & 0 \\ 2 & 15 & 1 \end{pmatrix}$$

2.
$$B = \begin{pmatrix} a & 1 & 1 \\ 1 & 0 & 1 \\ a + \frac{1}{2} & 1 & 1 + \frac{1}{2} \end{pmatrix}$$
 para a un número real cualquiera fijo.

Ejercicio 13. Sean A y B dos matrices de 3×3 , decir si los siguientes enunciados son verdaderos o falsos. JUSTIFICAR!

1.
$$(A+I) \cdot (A-I) = A^2 - I$$
.

2.
$$(A+B)^2 = A^2 + 2AB + B^2$$
.

3.
$$AB = AC \Rightarrow B = C$$
.

4.
$$AB = 0 \Rightarrow A = 0 \text{ o } B = 0.$$

Ejercicio 14. Hallar, en caso de existir, la matriz X que verifique;

1.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot X + \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
.

$$2. \begin{pmatrix} 1 & 9 \\ 0 & 3 \end{pmatrix} \cdot X + \begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix} = X.$$

Ejercicio 15. Resolver los siguientes sistemas de ecuaciones utilizando operaciones elementales por filas.

1.
$$\begin{cases} x + z + 3w = 1 \\ y + 2z + w = 4 \\ 2x + 2y + 6z + 8w = 3 \end{cases}$$

2.
$$\begin{cases} x + 2y + z + 4w = 0 \\ y - 3w = 0 \\ 4x + 7y + 4z + 19w = 0 \end{cases}$$

3.
$$\begin{cases} x + 3z = 4 \\ y - z = 1 \\ x + y + 3z = 5 \end{cases}$$

3.
$$\begin{cases} x + 3z = 4 \\ y - z = 1 \\ x + y + 3z = 5 \end{cases}$$
4.
$$\begin{cases} x + 3y + w = 5 \\ 6x + 13y + 2z + 4w = 0 \\ 2x + y + z = 2 \end{cases}$$

Hoja 3 de 3Matemática 1