

CHIMIE NIVEAU MOYEN ÉPREUVE 1

Mardi 16 mai 2000 (après-midi)

45 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.

220-215 13 pages

Tableau Périodique

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)	
	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	
	8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98	
	6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19	
	5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59	
			29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
			28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt
			26 Fe 55,85	44 Ru 101,07	76 Os 190,21	108 Hs
			25 Mn 54,94	43 Tc 98,91	75 Re 186,21	107 Bh (262)
Numéro Atomique	Masse Atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85	106 Sg (263)
Nur	Masse A		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (262)
			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	104 Rf (261)
			21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

	_	
7.1	174,97	103 Lr (260)
70	173,04	102 No (259)
69 Tm	168,93	101 Md (258)
68 F.r	167,26	100 Fm (257)
67 H o	164,93	99 Es (254)
99	162,50	98 Cf (251)
65 Th	158,92	97 Bk (247)
64 Gd	157,25	96 Cm (247)
63 F.n	_	95 Am (243)
62 S	150,35	94 Pu (242)
61 Pm	146,92	93 Np (237)
09	144,24	92 U 238,03
59 Pr	140,91	91 Pa 231,04
58 Ce	140,12	90 Th 232,04

- 1. Combien y a-t-il de molécules dans 180 g d'H₂O?
 - A. $6,0 \times 10^{22}$
 - B. $6,0 \times 10^{23}$
 - C. $6,0 \times 10^{24}$
 - D. $6,0 \times 10^{25}$
- **2.** Parmi les composés dont la formule brute est donnée ci-dessous, quel est celui qui possède la masse molaire moléculaire la plus élevée ?
 - A. C_6H_6
 - B. C_4H_{10}
 - C. C_3H_6
 - D. C_2H_6
- 3. Lorsqu'il est chauffé, $CaCO_3$ ($M_r = 100$) se décompose selon l'équation :

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Lorsqu'on chauffe 20 g de CaCO₃ impur, on obtient 0,15 moles de CO₂. Quel est le pourcentage de pureté du CaCO₃ ? (On suppose qu'aucune des impuretés ne produit du CO₂ par chauffage.)

- A. 15
- B. 25
- C. 55
- D. 75

4. Le chloroéthène peut brûler en présence d'oxygène, selon l'équation :

$$vC_2H_3Cl(g) + wO_2(g) \rightarrow xCO_2(g) + yH_2O(g) + zHCl(g)$$

- Quelle est la valeur de w lorsque v = 2?
- A. 2
- B. 3
- C. 4
- D. 5
- 5. Quel volume (en cm³) d'une solution de NaOH 0,200 mol dm⁻³ est nécessaire pour neutraliser 20,0 cm³ d'une solution de H₂SO₄ 0,100 mol dm⁻³ ?
 - A. 5,0
 - B. 10,0
 - C. 20,0
 - D. 40,0
- **6.** Des particules suivantes, quelle est celle qui renferme plus d'électrons que de **neutrons** ?
 - I. ${}^{1}_{1}H$
 - II. 35₁₇Cl
 - III. 39 K+
 - A. uniquement la particule I
 - B. uniquement la particule II
 - C. uniquement les particules I et II
 - D. uniquement les particules II et III

- **7.** Quelle information le spectre d'émission de l'hydrogène fournit-il à propos de la structure de l'atome d'hydrogène ?
 - A. La plus grande partie de la masse de l'atome est concentrée dans son noyau.
 - B. L'atome d'hydrogène contient un proton et un électron.
 - C. Dans l'atome d'hydrogène, l'électron est maintenu près du noyau.
 - D. L'électron peut occuper plusieurs niveaux d'énergie.
- **8.** Un élément possède la configuration électronique 2, 8, 6. Quel est cet élément ?
 - A. C
 - B. Si
 - C. S
 - D. Ne
- 9. Parmi les grandeurs suivantes, quelle est celle dont la valeur augmente lorsqu'on passe de Li à Cs?
 - A. Le rayon atomique
 - B. L'électronégativité
 - C. L'énergie d'ionisation
 - D. La température de fusion
- 10. Quel couple de réactifs devrait donner lieu à la réaction la plus violente ?
 - A. $Na(s) + Cl_2(g)$
 - B. $Na(s) + Br_2(g)$
 - C. $K(s) + Cl_2(g)$
 - D. $K(s) + Br_2(g)$

11.	Un élément X appartenant au groupe I se lie à un élément Y du groupe VII.	Quelle est la formule la plus
	probable du composé formé et le type de liaison présent dans sa molécule ?	

- A. X_2Y ionique
- B. XY ionique
- C. XY covalent
- D. XY_2 covalent

12. Parmi les molécules suivantes, quelle(s) est (sont) celle(s) qui présente(nt) au moins une double liaison ?

- I. O₂
- II. CO₂
- III. C_2H_4
- A. uniquement I
- B. uniquement III
- C. uniquement II et III
- D. I, II et III

13. Selon la théorie VSEPR (*Répulsion des Paires Électroniques de Valence*), quelle molécule devrait présenter l'angle de liaison le plus **petit** ?

- A. H₂O
- B. H₂CO
- C. CH₄
- D. NH₃

14.	Parmi 1	les	composés	suivants,	quel	est	celui	qui	est	susceptible	de	former	des	liaisons	par	pont
	hydrogène?															

- I. CH₄
- II. CH₃COOH
- III. CH₃OCH₃
- A. uniquement II
- B. uniquement I et III
- C. uniquement II et III
- D. I, II et III
- **15.** Parmi les propositions suivantes, quelle est celle qui constitue la justification la plus plausible du fait que les gaz sont facilement compressibles ?
 - A. Les forces d'attraction entre molécules de gaz sont négligeables.
 - B. Le volume occupé par un gaz est beaucoup plus grand que le volume occupé par ses molécules.
 - C. L'énergie moyenne des molécules d'un gaz est proportionnelle à la température absolue du gaz.
 - D. Les collisions entre molécules de gaz sont élastiques.

Voir au dos

16.

Le graphique ci-dessus représente la courbe de chauffage de $10~\rm g$ d'une substance. Quelle quantité d'énergie faudrait-il fournir pour opérer la fusion complète de $20~\rm g$ de cette substance initialement à la température de $10~\rm ^{\circ}C$?

- A. 2400 J
- B. 1200 J
- C. 800 J
- D. 400 J
- 17. Les enthalpies de liaison de H_2 , Br_2 et HBr valent respectivement 436, 192 et 366 kJ mol⁻¹. À l'aide de ces valeurs, calculer ΔH , en kJ, accompagnant la réaction

$$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$$

- A. +262
- B. -104
- C. -208
- D. -262

18. On donne:

$$\begin{array}{ll} N_2(g) + O_2(g) \rightarrow 2 \text{NO}(g) & \Delta H = 180, 4 \text{ kJ} \\ N_2(g) + 2 O_2(g) \rightarrow 2 \text{NO}_2(g) & \Delta H = 66, 4 \text{ kJ} \end{array}$$

À l'aide des valeurs des enthalpies fournies ci-dessus, calculer ΔH de la réaction

$$NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$$

- A. −57 kJ
- B. -114 kJ
- C. 57 kJ
- D. 114 kJ

19. Des quatre graphiques proposés ci-dessous, quel est celui qui traduit le mieux l'évolution de la concentration des produits en fonction du temps pour une réaction complète ?

Temps

20. Certaines collisions entre molécules de réactifs ne conduisent pas à la formation des produits. La raison la plus probable est que :

- A. les molécules n'entrent pas en collision dans la proportion adéquate.
- B. les molécules ne possèdent pas une énergie suffisante.
- C. la concentration est trop faible.
- D. la réaction a atteint un état d'équilibre.

- 21. Quelle proposition s'applique aux réactions chimiques à l'équilibre ?
 - A. Les réactions directe et inverse se produisent à la même vitesse
 - B. Les réactions directe et inverse se sont arrêtées
 - C. Les concentrations des réactifs et des produits sont égales
 - D. La réaction directe est exothermique
- **22.** Soit la réaction

$$2H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

La constante d'équilibre de la réaction vaut $1,0\times10^{-14}$ à 25 °C et $2,1\times10^{-14}$ à 35 °C. Que peut-on conclure de cette information ?

- A. [H₃O⁺] diminue lorsque la température augmente
- B. $[H_3O^+]$ est supérieure à $[OH^-]$ à 35 °C
- C. L'eau est un électrolyte plus fort à 25 °C
- D. L'ionisation de l'eau est endothermique
- 23. Des deux propositions suivantes, quelle(s) est (sont) celle(s) qui s'applique(nt) aux solutions aqueuses de la plupart des acides faibles ?
 - I. Elles réagissent avec les carbonates pour produire du dioxyde de carbone
 - II. Elles sont meilleures conductrices du courant que les solutions d'acides forts
 - A. uniquement I
 - B. uniquement II
 - C. I et II
 - D. ni I, ni II

- **24.** On mélange 10 cm³ d'une solution de HCl dont le pH vaut 2 et 90 cm³ d'eau. Quel est le pH de la nouvelle solution ainsi obtenue ?
 - A. 1
 - B. 3
 - C. 5
 - D. 7
- **25.** Soit la réaction

$$\mathrm{MnO_2} + 4\mathrm{HCl} \rightarrow \mathrm{Mn^{2+}} + 2\mathrm{Cl^-} + \mathrm{Cl_2} + 2\mathrm{H_2O}$$

Dans l'équation de la réaction, quel est le produit obtenu par une oxydation ?

- A. Mn^{2+}
- B. Cl
- C. Cl,
- D. H₂O
- **26.** Lors de l'électrolyse du chlorure de sodium fondu, l'ion sodium migre vers
 - A. l'électrode positive où il subit une oxydation.
 - B. l'électrode négative où il subit une oxydation.
 - C. l'électrode positive où il subit une réduction.
 - D. l'électrode négative où il subit une réduction.
- 27. Parmi les formules suivantes, quelle est celle qui correspond à une amide ?
 - A. CH₃CH₂NH₂
 - B. $CH_3CH_2N(CH_3)_2$
 - C. H₂NCH₂CO₂H
 - D. CH₃CONH₂

28. Soit la séquence de réactions suivante :

$$\begin{matrix} I & II & III \\ C_2H_5Cl \xrightarrow{} C_2H_5OH \xrightarrow{} CH_3COOH \xrightarrow{} CH_3COOCH_3 \end{matrix}$$

Quel est l'ordre correct des types de réaction ?

I Π

- substitution estérification A. oxydation
- B. addition substitution substitution
- C. oxydation substitution addition
- D. substitution oxydation substitution

Quels sont les noms corrects des isomères suivants de C_6H_{14} ? 29.

I.
$$CH_3$$
— CH — CH_2 — CH_3 — CH_3 —2-méthylpentane

III

II.
$$CH_3$$
 CH_3
 CH_3
 CH_2
 CH_3

2-éthyl-2-méthylpropane

III.
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3

2,3-diméthylbutane

- A. uniquement I
- B. uniquement I et II
- C. uniquement I et III
- D. I, II et III

- **30.** Quel composé carboné résulte le plus probablement de la réaction entre $\mathrm{C_2H_4}$ et $\mathrm{Br_2}$?
 - $A. \quad C_2H_5Br$
 - B. $C_2H_4Br_2$
 - C. C_2H_3Br
 - D. $C_2H_2Br_2$