Access Methods I: Tree-based indexes

"If you don't find it in the index, look very carefully through the entire catalogue."

-- Sears, Roebuck, and Co., Consumer's Guide, 1897

Example

Relation R

name	age	weight
Moe	10	55
Curly	10	65
Larry	12	70
Bob	15	60
Alice	17	48
Lucy	17	45
John	17	59
Charlie	20	69
Marcie	22	50
Linus	23	60
Sally	23	48
Tom	25	56

Example

Relation R

name	age	weight
Moe	10	55
Curly	10	65
Larry	12	70
Bob	15	60
Alice	17	48
Lucy	17	45
John	17	59
Charlie	20	69
Marcie	22	50
Linus	23	60
Sally	23	48
Tom	25	56

SELECT * FROM R WHERE weight BETWEEN 50 AND 55

Example

Relation R

name	age	weight
Moe	10	55
Curly	10	65
Larry	12	70
Bob	15	60
Alice	17	48
Lucy	17	45
John	17	59
Charlie	20	69
Marcie	22	50
Linus	23	60
Sally	23	48
Tom	25	56

Scan the entire relation

SELECT * FROM R WHERE weight BETWEEN 50 AND 55

Single Record and Range Searches

- Single record retrievals
 - ``Find student name whose matric# = 921000Y13"
- Range queries
 - ``Find all students with 2.0 < cap < 2.5"
- Sequentially scanning the file is costly
- If data is sorted in the search condition
 - Can stop once you find the desired record(s)

Indexes

- An index is a data structure on a file to speed up retrieval/selections based on some search key
 - Any subset of the fields of a relation can be the search key for an index on the relation
 - Search key is NOT the same as key (minimal set of fields that uniquely identify a record in a relation)
 - e.g., consider Student(<u>matric#</u>, name, addr, cap), the key is matric#, but the search key can be matric#, name, addr, cap or any combination of them (e.g., (name, address))
 - For each search key, you can build an index, i.e., there can be multiple indexes on a single relation that provides different access paths
- An index is a unique index if its search key is a candidate key;
 otherwise, it is a non-unique index
- An index is stored as a file
 - Records in an index file are referred to as data entries

Simple Index File: Unsorted Data File

(50, ●) is the data entry for the data record (Marcie, 22, 50)

SELECT * FROM R WHERE weight BETWEEN 50 AND 55

SELECT * FROM R WHERE weight BETWEEN 65 AND 69

SELECT * FROM R WHERE weight BETWEEN 65 AND 69

SELECT * FROM R WHERE weight BETWEEN 65 AND 69

What if data file is sorted (on search key)?

What if you want to insert a new record, say (Judy, 24, 47) for (un)sorted data file?

Index Types

- Two main types of indexes
 - Tree-based index
 - Based on sorting of search key values
 - Examples: ISAM, B⁺-tree
 - Hash-based index
 - Data entries are accessed using hashing function
 - Examples: static hashing, extensible hashing, linear hashing
- Things to consider when choosing an index
 - Search performance
 - Equality search: k = v
 - Range search: $v_1 \le k \le v_2$
 - Storage overhead
 - Update performance

Tree-Structured Indexing

 Tree-structured indexing techniques support both range searches and equality searches

Employee

name	dept#	* * *
Alice	5	7,77
Bob	16	
Charlie	19	
Curly	39	***
Dave	38	
Eve	14	***
Fred	33	***
Harry	2	
John	34	***
Kate	8	7070
Larry	27	
Linus	24	
Lucy	3	***
Marcie	22	2.22
Moe	29	
Sally	20	***
Tom	7	***

B+ Tree: The Most Widely Used Index

- Leaf nodes stored sorted data entries
 - k* denote a data entry of the form (k, RID)
 - k = search key value of corresponding data record
 - RID = RID of corresponding record
 - Lead nodes are either singly or doubly linked
 - Each data record has an entry in the leaf node (dense index)
 - Efficient for range search

B+-tree index on Employee.dept#

(each node can hold 4 entries (order = 2))

Employee

name	dept#	
Alice	5	7,77
Bob	16	
Charlie	19	
Curly	39	****
Dave	38	
Eve	14	***
Fred	33	***
Harry	2	
John	34	
Kate	8	7070
Larry	27	
Linus	24	
Lucy	3	***
Marcie	22	***
Moe	29	***
Sally	20	***
Tom	7	

- Internal nodes store index entries of the form (p₀, k₁, p₁, k₂, p₂, · · · , p_n)
 - $k_1 < k_2 < ... < k_n$
 - p_i = disk page address (root node of an index subtree T_i)
 - For each data entry k^* in T_0 , $k < k_1$
 - For each data entry k^* in T_i ($i \in [1,n)$), $k \in [k_i, k_{i+1})$
 - For each data entry k^* in T_n , $k \ge k_n$
- Key values for index entries (internal nodes) are separators (not necessarily correspond to any key values)
 - e.g., 13, 30. How did this happen???

B+-tree index on Employee.dept#

Node structure

- A node essentially corresponds to a page (each node access costs an I/O)
- Non-leaf node

index entry

Leaf node

How to determine the Order?

- A node essentially corresponds to a page
- Assume 4 KB page, 8-byte key, 4-byte pointer, we have
 - m = 2*d- $(2d+1)*4 + 2d*8 \le 4096$ - $d \sim 170$
- m = 340 (though we can actually store 341 entries)

Properties of B⁺ Tree

- Height-balanced (search and update efficient)
 - Insert/delete at log F N cost (F = fanout, N = # leaf pages)
- Grow and shrink dynamically (update efficient)
- Minimum 50% occupancy (except for root) (storage efficient)
 - Each non-leaf node contains $\mathbf{d} \le m \le 2\mathbf{d}$ entries. The parameter \mathbf{d} is called the *order* of the tree
 - Order (d) concept replaced by physical space criterion in practice ('at least half-full')
- next-leaf-pointer to chain up the leaf nodes (efficient range search)
- Data entries at leaf are sorted

Searching in B+ Tree

- Search begins at root, and key comparisons direct it to a leaf
 - At each internal node N, find the largest key k_i in N s.t. k ≥ k_i
 - If k_i exists, then search subtree at p_i
 - Otherwise, search subtree at p₀
- Search for 5

Searching in B+ Tree

- Search begins at root, and key comparisons direct it to a leaf
 - At each internal node N, find the largest key k_i in N s.t. k ≥ k_i
 - If k_i exists, then search subtree at p_i
 - Otherwise, search subtree at p₀

Root

Search for 15

Based on the search for 15*, we <u>know</u> no such records in the database!

How can we be certain?

Searching in B+ Tree

- Search begins at root, and key comparisons direct it to a leaf
 - At each internal node N, find the largest key k_i in N s.t. k ≥ k_i
 - If k_i exists, then search subtree at p_i
 - Otherwise, search subtree at p₀
- Search for all data entries between 22 and 27

B+ Trees in Practice

- Typical order: 100. Typical fill-factor: 67%
 - average fanout = 133
- Typical capacities:
 - Level 4: $133 \times 133^3 = 133 \times 2,352,637$ pointers
 - Level 5: $133 \times 133^4 = 41,615,795,893$ pointers!
- Can often hold top levels in buffer pool:
 - Level 1 = 1 page = 8 Kbytes
 - Level 2 = 133 pages = 1 Mbyte
 - Level 3 = 17,689 pages = 133 MBytes

Formats of Data Entries

- So far, our examples assume k* is of the form (k, rid), where rid is the record identifier of a data record with search key value k
 - This is referred to as Format 2 (Default unless otherwise stated)
- Two other different formats for data entries:
 - Format 1: k* is the (actual) data record (with search key value k)
 - Format 3: k* is of the form (k, rid-list), where rid-list is a list of record identifiers of data records with search key value k

Formats of Data Entries: Example

B⁺-tree index on R.age (Format 1)

name	age	weight	height	
Moe	10	55	180	
Curly	10	65	171	15 18 23
Larry	12	70	175	
Bob	15	60	178	
Alice	17	48	175	(10, •) (15, •) (18, •) (23, •)
Lucy	17	45	170	(10, •) ←> (17, •) ←> (20, •) ←> (24, •)
John	18	59	182	(12, •) (17, •) (22, •) (25, •)
Charlie	20	69	173	
Marcie	22	50	165	
Linus	23	60	166	D+ + ! ! ! D (F+ 0)
Sally	24	48	169	B ⁺ -tree index on R.age (Format 2)
Tom	25	56	176	

CS3223 - Tree-based indexes

Formats of Data Entries: Example

Index on R.age (format 3)

Relation R

name	age	weight	height	
Moe	10	55	180	
Curly	10	65	171	
Larry	12	70	175	
Bob	15	60	178	
Alice	17	48	175	
Lucy	17	45	170	
John	18	59	182	
Charlie	20	69	173	
Marcie	22	50	165	
Linus	23	60	166	
Sally	24	48	169	
Tom	25	56	176	

Index on R.age (format 2)

Inserting 7 into Example B+ Tree

Find the leaf node to insert

Inserting 7 into Example B+ Tree

What if we insert 8 now?

Inserting 8 into Example B+ Tree

Inserting 8 into Example B+ Tree

Insertion Algorithm

- Find correct leaf L
- Put data entry into L
 - If L has enough space, done!
 - Else, must <u>split</u> L (into L and a new node L2)
 - Redistribute entries evenly, copy up middle key
 - Insert index entry pointing to L2 into parent of L
- This can happen recursively (index node can be full!)
 - To split index node, redistribute entries evenly, but push up middle key (Contrast with leaf splits)
- Splits "grow" tree; root split increases height
 - Tree growth: gets <u>wider</u> or <u>one level taller at top</u>

Inserting 8 into Example B+ Tree (Internal node is full)

Inserting 8 into Example B+ Tree

Insertion (Cont)

- Note difference between copy-up (for leaf nodes) and push-up (for internal nodes); be sure you understand the reasons for this
- Observe how minimum occupancy is guaranteed in both leaf and index page splits

(Note that 17 is pushed up and only appears once in the index. Contrast this with a leaf split.)

Example B+ Tree After Inserting 8

- Notice that root was split, leading to increase in height
- Tree gets wider and one level taller

Delete 19 from the example tree

Delete 19 from the example tree

- Deleting 19 is easy
- Delete 20 next?

Example Tree After Deleting 20 ...

- Deleting 20 is done with re-distribution
- Notice how middle key is copied up

Deleting a Data Entry from a B+ Tree

- Start at root, find leaf L where entry belongs
- Remove the entry
 - If L is at least half-full, done!
 - If L has only d-1 entries,
 - Try to re-distribute, borrowing from sibling (adjacent node with same parent as L)
 - If re-distribution fails, merge L and sibling
- If merge occurs, must delete entry (pointing to L or sibling) from parent of L
- Merge could propagate to root, decreasing height

Example Tree

Example Tree After Deleting 24 ...

... And Then Deleting 24

Observe `toss' of index entry, and `pull down' of index entry

Example of Non-leaf Re-distribution (Delete 24)

Example of Non-leaf Re-distribution (Delete 24)

 In contrast to previous example, can re-distribute entry from left child of root to right child.

After Re-distribution

Intuitively, entries are re-distributed by `pushing through' the splitting entry in the parent node

Clustered vs Unclustered Index

 An index is a clustered index if the order of its data entries is the same as or "close to" the order of the data records; otherwise, it is an unclustered index

Dense vs. Sparse

Dense index

- There is at least one data entry per search key value (in some data record)
- B+-tree is a dense index

Sparse index

- Every sparse index is clustered
- Sparse indexes are smaller
- Sparse index cannot support "exists" search

Multi-attribute Indexes

- Composite Search Keys: Search on a combination of fields
 - Equality query: Every field value is equal to a constant value. E.g. wrt <age,sal> index:
 - age=22 & sal =75
 - Range query: Some field value is not a constant. E.g.:
 - age=22 & sal > 10 (use <age, sal>)
 - age < 22 & sal = 10 (use <age,sal> may fetch more records than desired)
- There are also multi-attribute indexing structures (e.g., Rtrees, Grid-file)

Examples of composite key indexes

Summary

- B+-tree index can facilitate fast search for both single record and range search
 - Storage-friendly (works well on any kind of storage)
 - good performance
 - universal applicability