Indox No.
Index Number: Programme:
UNIVERSITY OF ENERGY AND NATURAL RESOURCES, SUNYANI
SCHOOL OF ENGINEERING
DEPARTMENT OF COMPUTER AND ELECTRICAL ENGINEERING
LEVEL 200, END OF SECOND SEMESTER EXAMINATION, 2017/2018
Bachelor of Science (Computer Engineering and Electrical and Electronics Engineering)
ELNG 208 ELECTROMAGNETIC FIELD THEORY
May, 2018
Instructions: The paper consists 6.
Instructions: The paper consists of two sections (A and B). Answer all questions in SECTION A and THREE (3) in SECTION B. Formula sheet attached.
SECTION A – Shade correctly the letter corresponding to the correct option from A to E on the Shading sheet provided. I mark per any correct answer. Correct to be a correct option from A to E on the
The state wer. Correct shade is: 01 () A Op Op
1. Electric charges of the same sign A. Also have the same magnitude
B. Attract each other
C. Exert no forces on each other
D. Repel each other
E. None of these is correct
2. A positive charge of 63.0 nC is 15.0 cm from a negative charge of 45.0 nC. The force on one of
the charges due to the other is approximately A. 1.13×10 ⁻³ N
B. 1.13×10 ⁻⁷ N
C. 1.02×10 ⁷ N
D. 1.25×10 ⁻¹³ N
E. $1.02 \times 10^{-6} \text{ N}$
small splicies, each with mass $m=3.0$ g and charge a
are suspended from a point by threads of length $I = 0.22$
what is the charge on each sphere if the threads make
all angle $\theta - 15^{\circ}$ with the vertical? (Figure 1)
Α. 0.79 μC
B. 75 mC
C. 6.3 μC
D. 2.9 μC E. 0.11 μC
0.11 MC
The phenomenon of magnetism is best understood in terms of
chistence of magnetic notes
B. The magnetic fields associated with the movement of charged particles Gravitational forces between nuclei and orbital electrons
Executival fluids
E. None of these is correct

[ndex	Numb	er:Programme:						
	¢	ositive charges (+8.0 mC and +2.0 mC) are separated by 300 m	. A third charge is					
5.	I wo po	at distance r from the +8.0 mC charge in such a way that the re-	esultant electric					
	force o	force on the third charge due to the other two charges is zero. The distance r is						
	A.	0.25 km						
	B.	0.20 km						
		0.15 km						
		0.13 km	1 00 1					
	E	0.10 km	20 nm->- O O					
6.	Three c	charges, each of $Q = 3.2 \times 10^{-19}$ C, are arranged at three of the	TÕ Õ					
	comers	comers of a 20-nm square as shown. The magnitude of the electric						
	field at	t D, the fourth comer of the square, is approximately (Figure 2)	10 0					
	A.	1.4×10 ⁷ N/C	Q D					
	В.	1.0×10 ¹¹ N/C	Figure 2					
		3.6×10 ¹⁰ N/C						
		1.8×10 ⁷ N/C						
	E.	30 N/C						
7.	In Fig.	ure 3, the direction of the electric field at a point equidistant	E					
	from 2	2 equally charged bodies A and B is indicated by a vector.						
	The di	irection of the vector indicates that						
*	A.	Both A and B are positive	B					
	B.		Figure 3					
	C.	A is positive and B is negative	Tigure 5					
	D.							
	E.	B is negative and A is neutral $\vec{E} = (400)\hat{a} \text{ N/C fo}$	r r < 0 A cylinder of					
8.	An ele	ectric field is $\vec{E} = (400)\hat{a}_n$ N/C for $x > 0$ and $\vec{E} = (-400)\hat{a}_n$ N/C for	1 x < 0.21 of made of					
	length	a 30 cm and radius 10 cm has its centre at the origin and its axis alon	ng the x axis such that					
	one er	and is at $x = +15$ cm and the other is at $x = -15$ cm. What is the net	C & C					
	the en	ntire cylindrical surface?	1 = 10.60					
	A.	0.50 kNm ² /C	had been a second					
	В.	0.25 MNm ² /C						
	C.	2.5 kNm ² /C						
	D.	25 Nm ² /C						
0	E.	Zero sitively charged particle is moving northward in a magnetic field. The	e magnetic force on the					
9.	particle is toward the northeast. What is the direction of the magnetic field?							
	A.	Up						
	В.	West						
	C.	South						
	D.							
	E.	This situation cannot exist						
10.		ab of the following statements is false?	المسلم المسلم المسلم					
	A.	Electric field lines due to an electric dipole and magnetic field line	s due a magnetic dipole					
		have similar configuration.						
	В.	Electric field starts from a positive charge and ends at a negative	charge.					

ndex	Numbe	er:Programme:						
	C	Magnetic field starts at the north pole and ends at the south pole.						
	D.	Magnetic poles always occur in pairs.						
	(表)	Magnetic fields result from the flow of charges.						
1	A Joon	rest in the x-y plane. The z axis is normal to the plane and positive upward. The direction						
1.	A 100p	of the changing flux is indicated by the arrow on Flux Flux Flux Flux Flux						
	of the G	xis. The diagram that correctly shows the						
	direction of the resultant induced current in the							
	loop is (Figure 4)							
	A.							
	B.							
	Б. С.	m (2) (4) (5)						
	D.	Figure 4						
	E	5						
12.	117h: 4h	low does the following statement express? "In all cases of electromagnetic induction, the						
12.	induce	d voltages have a direction such that the currents they produce oppose the effect the						
	produc	es them." Maxwell's law						
		Maxwell's law						
	В.	Maxwell's law Gauss's law						
		Fleming's rule						
	D.	Ampere's law						
	F.	Lenz's law						
13.	A cha	A charged metal ball is lowered into an insulated metal can and						
	permit	ted to touch the inside of the can. If the ball is withdrawn and						
	hung o	on a stand, an uncharged ball will be attracted to (Figure 5)						
	A.	The outside of the can						
	B.	The inside of the can						
	C.	The outside and the inside of the can						
	D.	The metal ball and the inside of the can						
	E.	The metal ball, the inside of the can, and the outside of the can						
14.	Dielec	Dielectric breakdown occurs in the air at an electric field strength of $E_{\text{max}} = 3 \times 10^6$ V/m. If the						
	maximum charge that can be placed on a spherical conductor is 2×10^{-3} C before breakdown,							
	calcul	ate the diameter of the sphere.						
	A.							
	В.	4.9 m						
		1.2 m						
	D.	2.5 m						
	F	3.0 m						
15.	The r	The potential on the surface of a solid conducting sphere of radius $r = 20$ cm is 100 V. The						
		tial at a = 10 am ig						
	A.	that at $r = 10 \text{ cm is}$ 100 V 50 V 25 V 0 V						
ş	-	50 V						
	C.	25 V 456 5						
	D.	0 V						
	E.	Cannot be determined						

AIIU	CA I VUIII	inci.	_ rrogramme:				
16.	Two	Two charges $Q_1 = +6 \mu C$ and $Q_2 = -2 \mu C$ are brought from infinity to positions on the x-axis of					
	x = -4 cm and $x = +4$ cm, respectively. How much work was done in bringing the charges						
	together?						
	ST. ST.	-1.80×10 ⁶ J	in it				
		-1.35 J	/				
	C.	-16.9 J	XX X				
	D.	-9.00×10 ⁵ J •	M				
		None of the above					
17.	Inside	a hollow conducting sphere					
		Electric field is zeros					
	В.						
		Electric field changes with magnitud					
	D.	8	rom the centre				
10	Е.	None of these					
18.		Given $\mathbf{B} = -9.3\mathbf{a}_x - 6\mathbf{a}_y + 2\mathbf{a}_z$, Find the projection of A along \mathbf{a}_y .					
		-12					
	· B.						
		18 2					
	E.						
19.							
17.	If $\mathbf{R} = x\hat{a}_x + y\hat{a}_y + z\hat{a}_z$, the position vector of point (x, y, z) and $R = \mathbf{R} $, which of the following						
		orrect? $\nabla \cdot \mathbf{R} = 1$					
		$\nabla R = \mathbf{R}/R$		46			
		$\nabla \times \mathbf{R} = 0$	20-16	11-12			
			200	.533			
		$\nabla^2 \left(\mathbf{R} \bullet \mathbf{R} \right) = 6$		11-246			
20	E.	None of the above					
20.		ot product of a vector with itself gives The square of the vector					
	В.	*					
		The angle between the vector and ground					
	D.	Reverse the unit vector of the multiplican	nd				
21.	E.	None of these	gravitational and alactro	static forces between them			
21.		Two particles are held in equilibrium by the gravitational and electrostatic forces between them. Particle A has mass m_A , and charge q_A . Particle B has mass m_B and charge q_A . The distance					
	between the charges is d. Which of the following changes will cause the charges to accelerate towards one another?						
	A.	m_A is doubled and m_B is halved					
			f-amn				
ž	B.	m_A is doubled and m_B is doubled	£ - 4 - 2				
	C.	q_A is doubled and q_B is halved					
	D.	q_A is halved and m_A is halved					
	E.	Cannot be determined					

Section B - Answer ALL questions in PART I and ONE in PART II

Part I - Answer ALL questions

Question One

[15 Marks]

- On line 0 < x < 5 m if $\rho_L = 12x^3$, C/m.
- On the cylinder $\rho = 3$, 0 < z < 4 m if $\rho_s = \rho z^2$ nC/m².
- Within the sphere r = 6 m if $\rho_V = \frac{10}{r \sin \theta}$ C/m³. iii.
- b) A current I, is uniformly distributed over a wire of circular cross section, with radius a (Fig. 1).
 - Find the volume current density J.
 - Suppose the current density in the wire is proportional to the distance from the axis, J = kr (k is some constant), find the total current in the wire.
- c) i. Find the magnetic field at the centre of a square loop, which carries a steady current I. Let R be the distance from centre to side.
 - ii. Find the field at the centre of a regular n-sided polygon, carrying a steady current I. Again, let R be the distance from the centre to
 - iii. Check that your formula reduces to the field at the centre of a circular loop, in the limit $n \to \infty$. 1 - 799 gs

1 = ne

Fig. 1

[15 Marks]

Question Two

- a) A 650 mm length of coaxial cable with an inner radius of 1.5 cm and an outer radius of 5 cm. The space between the conductors is assumed to be filled with air. When connected to a charge source, the total charge on the inner conductor is 35 nC. Determine:
 - the charge density on each conductor.
 - the \vec{E} and \vec{D} fields.
- b) i. Given the magnetic field $\vec{H} = \rho^2 \hat{a}_{\phi}$, A/m, determine the total current I passing through the circular surface $0 \le \rho \le 1$, $0 \le \phi \le 2\pi$, z = 0 in the \hat{a}_z direction.
 - ii. Explain how electric energy is produced from a time varying magnetic field.
 - iii. State Ampere's circuital law.
 - iv. State three conditions defining a Gaussian surface.

- c) A closed surface is defined by $\rho = 3$, $\rho = 5$, $\phi = 100^{\circ}$, $\phi = 130^{\circ}$, z = 3, and z = 4.5. Find:
 - The enclosed volume,
 - The total area of the enclosing surface 11.
 - The length of the longest straight line that lies entirely within the volume. iii.

Part II - Answer only ONE question in this part.

Question Three

[10 Marks]

- a) Given the points M(0.1, -0.2, -0.1), N(-0.2, 0.1, 0.3), and P(0.4, 0, 0.1), find:
 - i. The vector \mathbf{R}_{MN}
 - ii. The Dot product $R_{MN} \cdot R_{MP}$
 - iii. The Scalar projection of R_{MN} on R_{MP}
 - iv. The angle between \mathbf{R}_{MN} and \mathbf{R}_{MP}
- b) Given the magnetic vector potential $A = -\frac{\rho^2}{4}a_z$ Wb/m, calculate the total magnetic flux crossing the surface $\phi = \frac{\pi}{2}$, $1 \le \rho \le 2$ m, $0 \le z \le 5$ m.

Question Four

[10 Marks]

- a) The electric potential is given as $V(x, y, z) = 0.5(x^2 + y^2 + z^2)V$.
 - i. Find the E field vector as a function of position
 - ii. Find the volume charge density ρ_{ν} as a function of position.
- b) A magnetic vector potential A is given by

$$\vec{A} = 50 \rho^2 \hat{a}_z$$
, Wb/m

- i. Find the magnetic field vectors B and H if the medium is vacuum
- ii. Find the current density J