Лабораторная работа по твердотельной электронике

№ 10: Горячие электроны в полупроводниках

Яромир Водзяновский Б04-852

Цель работы: Изучить влияние сильного электрического поля на элктропроводность полупроводников и эффекты, связанные с возникновением отрицательной дифференциальной провдимости при разогреве электронов. Определить частоту СВЧ-волны, генерируемой диодом Ганна.

1 Экспериментальаня установка

Рис. 1: Изображение установки

На рис.1 изображена установка, диод Ганна питается от источника постоянного напряжения, к которому подключены амепрметр и вольтметр. Диод подключен к волноводу, по которому бежит СВЧ-волна.

2 Выполнение работы

1. Вращая миллиметровую ручку будет менять положение детектора в волноводе, будем «ловить» пучности и записывать значение координаты и номер пучности в таблицу 1.

№ пучности	1	2	3	4	5	6	7
Координата, мм	3.20	7.65	12.10	16.55	21.00	25.15	30.00

Таблица 1

2. Сделаем линейную аппроксимацию рис. 2, коэффициенты занесем в таблицу 2

Таблица 2: Коэффициенты аппроксимации

coeffs	coeffs_values	standard error	relative se, $\%$
a_0	$^{4.461E+00}_{-1.279E+00}$	3.571E-02	8.006E-01
a_1		7.143E-01	5.587E+01

Рис. 2: Зависимость координаты от номера пучности

3. Посчитаем дллину волны и частоту.

$$\lambda = 2 \cdot a_0 = 8.92 \pm 0.07 \text{(mm)}$$

$$\nu = \frac{c}{\lambda} = 33.63 \pm 0.27$$
(ΓΓII)

Вывод: В ходе работы определили, что диод Ганна генерирует СВЧ излучение с частотой 33.63 ГГц.