Feuille de TD Mat201: Chapitre 3

1 Entraînement

Exercice 1.1 Parmi les familles suivantes de vecteurs de \mathbb{R}^3 , lesquelles sont génératrices, lesquelles ne le sont pas, et pourquoi ?

- 1. ((1,1,0),(0,1,1))
- 2. ((0,0,1),(0,1,1),(1,1,1))
- 3. ((0,1,-1),(1,0,-1),(1,-1,0))
- 4. ((1,2,3),(4,5,6),(7,8,9))
- 5. ((0,0,1),(0,1,1),(1,1,1),(1,2,1))

Exercice 1.2 Parmi les familles suivantes de vecteurs de \mathbb{R}^3 , lesquelles sont libres, lesquelles ne le sont pas, et pourquoi ?

- 1. ((1,1,0),(0,1,1))
- 2. ((1,1,0),(-1,-1,0))
- 3. ((0,0,1),(0,1,1),(1,1,1))
- 4. ((0,1,-1),(1,0,-1),(1,-1,0))
- 5. ((0,0,1),(0,1,1),(1,1,1),(1,2,1))

Exercice 1.3 Parmi les familles suivantes de vecteurs de \mathbb{R}^4 , lesquelles sont libres, lesquelles ne le sont pas, et pourquoi ?

- 1. ((0,1,-2,1),(1,-1,0,3),(-2,7,-10,-1))
- 2. ((0,1,-2,1),(1,-1,0,3),(-1,4,-6,0))
- 3. ((0,0,0,1),(0,0,1,1),(0,1,1,1),(1,1,1,1))
- 4. ((0,1,-1,0),(1,0,-1,0),(1,-1,0,0),(0,0,0,1))
- 5. ((1,1,1,2),(1,1,2,1),(1,2,1,1),(2,1,1,1))

Exercice 1.4 Donner une condition nécessaire et suffisante portant sur les paramètres réels a et b pour que les familles suivantes soient des bases de \mathbb{R}^3 .

- 1. ((1,1,1),(0,a,1),(0,0,b))
- 4. ((a, a, b), (a, b, a), (b, a, a))
- 2. ((1,0,1),(a,b,1),(b,a,1))
- 5. ((0, a, b), (a, 0, b), (a, b, 0))
- 3. ((1,a,b),(a,1,a),(b,b,1))
- **Exercice 1.5** Dans un espace vectoriel E montrer que :
 - 1. La famille vide est libre,
 - 2. La famille (x) à un élément est libre ssi $x \neq 0$,
 - 3. Toute famille contenue dans une famille libre est libre,
 - 4. Toute famille contenant une famille liée est liée,
 - 5. En particulier toute famille contenant le vecteur nul est liée.

Exercice 1.6 Les familles suivantes de $\mathbb{R}^{\mathbb{R}}$ sont elles libres?

- 1. $(f_1: x \mapsto \cos x, \quad f_2: x \mapsto \sin x, \quad f_3: x \mapsto 1)$
- 2. $(f_1: x \mapsto \cos^2 x, \quad f_2: x \mapsto \cos 2x, \quad f_3: x \mapsto 1)$
- 3. $(f_1: x \mapsto |x-1|, f_2: x \mapsto |x|, f_3: x \mapsto |x+1|)$

Exercice 1.7 Montrer par récurrence que les familles suivantes de $\mathbb{R}^{\mathbb{R}}$ sont libres. On pourra utiliser la dérivation.

- 1. $(f_k: x \mapsto \sin kx)_{k \in \{1, ..., n\}}$
- 2. $(f_k: x \mapsto e^{\lambda_k x})_{k \in \{1,\dots,n\}}$, où les $(\lambda_k)_{k \in \{1,\dots,n\}}$ sont des réels deux à deux distincts.

Exercice 1.8 Dans chacun des cas suivants, montrer que la famille \mathcal{B} est une base de \mathbb{R}^3 et donner les coordonnées du vecteur u dans cette base.

- 1. $\mathcal{B} = ((1,0,-1),(0,1,1),(0,0,1)), u = (1,2,3)$
- 2. $\mathcal{B} = ((1,0,0),(0,1,0),(1,1,1)), u = (1,2,3)$

Exercice 1.9 Soient E un espace vectoriel de dimension 3 et $\mathcal{B}_0 = (e_1, e_2, e_3)$ une base de E. Montrer que la famille $\mathcal{B} = (e_1 + e_2, e_1 + e_3, e_2 + e_3)$ est une base de E. Donner les coordonnées des vecteurs e_1 , e_2 et e_3 dans la base \mathcal{B} .

Exercice 1.10 Déterminer la dimension et donner une base de chacun des espaces vectoriels suivants:

- 1. $E = \{(x, y) \in \mathbb{R}^2, x + y = 0\}$ 3. $G = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$
- 2. $F = \{(x, y) \in \mathbb{R}^2, x = y\}$
- 4. $H = \{(x, y, z) \in \mathbb{R}^3, x = y = z\}$

Exercice 1.11 Compléter les familles libres suivantes de vecteurs de \mathbb{R}^3 en une base de \mathbb{R}^3 .

1. ((1,1,1))

4. ((1,1,0),(1,-1,0))

2. ((1,1,0))

5. ((1,1,0),(1,1,1))

3. ((1,1,1),(1,-1,-1))

6. ((1,1,0),(1,-1,1))

Exercice 1.12 Pour chacune des familles de vecteurs suivantes, déterminer son rang et donner une base de l'espace vectoriel qu'elle engendre.

- 1. ((1,0,1),(-1,0,-1),(2,0,2))
- 2. ((1,0,1),(-1,0,-1),(2,0,2),(0,1,0),(1,1,1),(1,-2,1))
- 3. ((1,0,1),(-1,0,-1),(2,0,2),(0,1,0),(1,1,1),(1,-2,-1))
- 4. ((1,0,1,0),(-1,0,-1,0),(1,1,1,1),(0,1,0,1),(1,2,1,2))
- 5. ((1,0,1,0),(-1,0,-1,0),(1,1,1,1),(0,1,0,1),(1,2,1,0))
- 6. ((1,0,1,0),(-1,0,-1,0),(1,1,1,0),(0,1,0,1),(1,2,1,0))

Exercice 1.13 On considère les sous-espaces vectoriels suivants de \mathbb{R}^3 :

$$F = \text{vect}((1, 0, -1), (1, 1, 0)), G = \text{vect}((1, -1, 0), (-1, 1, -1)), (1, -1, -1)).$$

Déterminer dim F, dim G et dim $(F \cap G)$. Donner une base de $F \cap G$.

Exercice 1.14 On considère l'espace vectoriel $\mathbb{K}[X]$ avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

- 1. Montrer que la famille $(1, X, X^2, ..., X^n)$ est une base du sous-espace vectoriel $\mathbb{K}_n[X]$ (polynômes de degré inférieur ou égal à n).
- 2. Montrer que toute famille finie de polynômes de degrés tous distincts est libre dans $\mathbb{K}[X]$.

Exercice 1.15 Déterminer une base du noyau et de l'image des applications \mathbb{R} -linéaires suivantes.

- 1. $f: \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \mapsto (y z, z x, x y).$
- 2. $f: \mathbb{R}^4 \to \mathbb{R}^3, (x, y, z, t) \mapsto (2x + y + z, x + y + t, x + z t)$
- 3. $f: \mathbb{C} \to \mathbb{C}, \ z \mapsto z + i\overline{z}$ (\mathbb{C} est ici vu comme un \mathbb{R} -espace vectoriel).

Exercice 1.16 Soient E et F deux espaces vectoriels de dimension finie, et f une application linéaire de E dans F. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi ?

- 1. L'image par f du vecteur nul de E est le vecteur nul de F.
- 2. L'image par f d'une famille libre dans E est toujours une famille libre dans F.
- 3. L'image par f d'une famille liée dans E est toujours une famille liée dans F.
- 4. L'image par f d'une famille génératrice dans E est toujours une famille génératrice dans F.
- 5. Si $\dim(E) > \dim(F)$ alors $\operatorname{Ker}(f) \neq \{0\}$.
- 6. Si $\dim(E) > \dim(F)$ alors f est surjective.
- 7. Si $\dim(E) < \dim(F)$ alors f est injective.
- 8. Si f est bijective, alors $\dim(E) = \dim(F)$

2 Exercices théoriques

Exercice 2.1 Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$. On appelle hyperplan de E tout sous-espace vectoriel H de E tel que $\dim(H) = \dim(E) - 1$.

- 1. Soit H un hyperplan de E et soit $x_0 \in E \setminus H$. Montrer que $E = H \oplus \mathbb{K}x_0$.
- 2. Soit F un sous-espace de E. Montrer que

$$\dim(F \cap H) = \left\{ \begin{array}{ll} \dim(F) & \text{ si } \quad F \subset H \\ \dim(F) - 1 & \text{ si } \quad F \not\subset H. \end{array} \right.$$

Indication. Si $F \not\subset H$, soit $x_0 \in F \setminus H$. Montrer que $F = (F \cap H) \oplus \mathbb{K}x_0$.

3. Soient H_1, H_2 deux hyperplans de E distincts (ce qui entraı̂ne dim $(E) \geq 2$). Montrer que dim $(H_1 \cap H_2) = \dim(E) - 2$.

Exercice 2.2 Soit E un \mathbb{R} -espace vectoriel de dimension finie n, muni d'une base $\mathcal{B} = (b_1, \ldots, b_n)$. Pour tout $i = 1, \ldots, n$, on définit la i-ième application coordonnée L_i comme l'application de E dans \mathbb{R} qui à $v \in E$ associe le réel x_i qui est la i-ième coordonnée de v sur la base \mathcal{B} . Autrement dit, si $x = x_1b_1 + \cdots + x_nb_n$ avec $(x_1, \ldots, x_n) \in \mathbb{R}^n$, alors $L_i(x) = x_i$.

- 1. Montrer que les L_i sont des applications linéaires.
- 2. Montrer que le noyau de L_i est un sous-espace vectoriel de dimension n-1 de E (hyperplan).
- 3. On prend $E = \mathbb{R}^3$ et $b_1 = (1, 0, -1)$, $b_2 = (0, 2, 3)$, $b_3 = (0, 0, 1)$. Montrer que (b_1, b_2, b_3) est une base de E. Pour i = 1, 2, 3, déterminer l'image par L_i d'un vecteur v = (x, y, z) quelconque de \mathbb{R}^3 .

Exercice 2.3 Soient E un espace vectoriel de dimension n et f un endomorphisme de E.

- 1. On suppose que $f \circ f$ est l'application nulle. Montrer que $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$.
- 2. On suppose que Ker(f) = Im(f). Montrer que n est nécessairement pair.
- 3. On suppose que f n'est pas l'application nulle et qu'il existe un entier k tel que $f^{\circ k}$ (composée de f avec elle-même k fois) est l'application nulle (on dit que f est nilpotente). Soit m le plus petit entier tel que f^m est l'application nulle. Montrer qu'il existe un vecteur $v \in E$ tel que $f^{\circ m}(v) \neq 0$. Pour un tel vecteur v, montrer que la famille de vecteurs $(v, f(v), \ldots, f^{\circ (m-1)})$ est libre.
- 4. En déduire que si f est nilpotente, alors $f^{\circ n}$ est l'application nulle.

Exercice 2.4 Soient E un $\mathbb{K}-$ espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer que les assertions suivantes sont équivalentes :

- 1. Im f et Ker f sont supplémentaires dans E
- 3. $\operatorname{Im} f^2 = \operatorname{Im} f$

2. E = Imf + Kerf

4. $\operatorname{Ker} f^2 = \operatorname{Ker} f$.

Exercice 2.5 Soient E, F, G, H quatre \mathbb{K} - espaces vectoriels de dimension finie, $f \in \mathcal{L}(E, F)$, $g \in \mathcal{L}(F, G), h \in \mathcal{L}(G, H)$.

- 1. Montrer que $rg(g \circ f) = rg(f) \dim(Im f \cap Ker g)$ (appliquer le théorème du rang à la restriction de g à Im f).
- 2. En déduire que $\operatorname{rg}(f) + \operatorname{rg}(g) \dim F \le \operatorname{rg}(g \circ f) \le \min(\operatorname{rg}(f), \operatorname{rg}(g))$.
- 3. Montrer que $\operatorname{rg}(g \circ f) + \operatorname{rg}(h \circ g) \leq \operatorname{rg}(g) + \operatorname{rg}(h \circ g \circ f)$ (réutiliser le résultat de la question 1.).