PW/TP 1-2: Ordinary Differential Equations (CH2)

Solutions

Exercise 1. (2.60 e) Solve $(1 - x^2)y' = 4y$; y(0) = 1.

```
clear

syms y(x) x

eqn = (1-x^2)*diff(y,x) == 4*y;

S = dsolve(eqn)
```

```
s = C_1 e^{4 \operatorname{atanh}(x)}
```

For real values x in the domain -1 < x < 1, the inverse hyperbolic tangent satisfies $\tanh^{-1}(x) = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right)$.

```
S = simplify(S)
S = \frac{C_1 (x+1)^2}{(x-1)^2}
cond = y(0) == 1;
S = dsolve(eqn, cond);
S = simplify(S)
S = \frac{(x+1)^2}{(x-1)^2}
```

We get the final solution $y = \frac{(1+x)^2}{(x-1)^2}$.

Exercise 2. (2.62 c) Solve $(2y \sin x + 3y^4 \sin x \cos x) dx - (4y^3 \cos^2 x + \cos x) dy = 0$.

```
clear
syms x y
M = 2*y*sin(x) + 3*y^4*sin(x)*cos(x);
N = -(4*y^3*cos(x)^2+cos(x));
```

We can check if it is an exact equation:

```
My = diff(M,y);
Nx = diff(N,x);
isequal(My,Nx)

ans = logical
0
```

Since it is not, we search an integrating factor:

```
f(x) = (My - Nx)/N;
```

```
f(x) = simplify(f(x));

mu(x) = exp(int(f(x),x))
```

```
mu(x) = cos(x)
```

We find an integrating factor, only depending on x, so we can multiply M en N with this integrating factor to find an exact equation:

```
M = simplify(mu(x)*M); My = simplify(diff(M,y));
N = simplify(mu(x)*N); Nx = simplify(diff(N,x));
isequal(My,Nx)
```

```
ans = logical
1
```

Now we can solve the exact equation:

```
U = simplify(int(M,x))
```

```
U = -y \cos(x)^2 (\cos(x) y^3 + 1)
```

```
syms F(y)
eq = diff(U+F(y),y) == N
```

$$\frac{\partial}{\partial y} F(y) - 3 y^3 \cos(x)^3 - \cos(x)^2 (\cos(x) y^3 + 1) = -\cos(x)^2 (4 \cos(x) y^3 + 1)$$

```
syms dF dF = -\cos(x)^2 (4*\cos(x)*y^3+1) + 3*y^3*\cos(x)^3 + \cos(x)^2*(\cos(x)*y^3+1); simplify(dF)
```

```
ans = 0
```

```
syms c1
F(y) = c1;
U = U + F(y)
```

$$U = c_1 - y \cos(x)^2 (\cos(x) y^3 + 1)$$

$$U(x, y) = c_1 - y \cdot cos^2(x) \cdot (\cos(x) \cdot y^3 + 1)$$

Thus $M(x, y)dx + N(x, y)dy = dU(x, y) = 0 = d(c_1 - y \cdot cos^2(x) \cdot (cos(x) \cdot y^3 + 1)) = 0$ from which we must have

$$c = y \cdot cos^2(x) \cdot (\cos(x) \cdot y^3 + 1)$$

Exercise 3. (2.67 a) Solve $x \frac{dy}{dx} + y = x^3 y^2$.

We see that it takes the form of a Bernouilli's equation: $\frac{dy}{dx} + \frac{1}{x}y = x^2y^2$, with n = 2.

We let $v = y^{1-2} = y^{-1}$ and using $\frac{dv}{dx} = -y^{-2}\frac{dy}{dx}$ we get:

 $-y^2 \frac{\mathrm{d}v}{\mathrm{d}x} + \frac{1}{x}y = x^2y^2 \Rightarrow \frac{\mathrm{d}v}{\mathrm{d}x} + \frac{1}{x}v = -x^2$ giving us an linear equation.

```
syms x v(x)
eq = diff(v,x)-v/x == -x^2;
dsolve(eq)
```

ans =

$$C_1 x - \frac{x^3}{2}$$

```
syms c1
eq = 1/y == c1*x - x^3/2;
simplify(eq)
```

ans =
$$y x^3 + 2 = 2 c_1 x y$$

Giving us the final solution: $2 = cxy - yx^3$.

Exercise 4. (2.66 b) Solve $x^2 \frac{dy}{dx} = x^2 + 3xy + y^2$.

Moving x^2 to the other side, gives us an homogeneous equation: $\frac{dy}{dx} = 1 + 3\frac{y}{x} + \left(\frac{y}{x}\right)^2$.

Let $v = \frac{y}{x}$ or y = vx, giving us $\frac{dy}{dx} = v + x \frac{dv}{dx}$. So the equation will be $v + x \frac{dv}{dx} = 1 + 3v + v^2$, which is a separable equation $\frac{1}{1 + 2v + v^2} dv = \frac{1}{x} dx$.

eq =

$$-\log(x) - \frac{1}{v+1} = c_1$$

Giving us $-\frac{1}{v+1} = c + \ln x$

```
eq = \exp(-1/(v+1)) == \exp(c1 + \log(x));
eq = \sup(eq, v, y/x);
simplify(eq)
```

ans =

$$x e^{c_1} = e^{-\frac{x}{x+y}}$$

Giving us the final solution: $cx = e^{-\frac{x}{x+y}}$.

Exercise 5. (2.71 c) Solve $(xp - y)^2 = p^2 - 1$ with p = y'.

We can write this as $y = xp - \sqrt{p^2 - 1}$ which is a clairaut's equation. Differentiate both sides of the equation with respect to x.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p = p + x \frac{\mathrm{d}p}{\mathrm{d}x} - \frac{2p}{2\sqrt{p^2 - 1}} \frac{\mathrm{d}p}{\mathrm{d}x} \text{ from which } \frac{\mathrm{d}p}{\mathrm{d}x} \left(x - \frac{p}{\sqrt{p^2 - 1}} \right) = 0.$$

Case 1, $\frac{\mathrm{d}p}{\mathrm{d}x} = 0$. In this case p = c and so the general solution is $y = cx - \sqrt{c^2 - 1}$.

Case 2,
$$x - \frac{p}{\sqrt{p^2 - 1}} = 0$$
. In this case $x = \frac{p}{\sqrt{p^2 - 1}}$, and $y = \frac{p^2}{\sqrt{p^2 - 1}} - \sqrt{p^2 - 1} = \frac{1}{\sqrt{p^2 - 1}}$.

We find $x^2 - y^2 = 1$ which is a solution of the differential equation, as van be checked.

However, it cannot be obtained from the general solution by any choice of c. Thus $x^2 - y^2 = 1$ is a singular solution.

Exercise 6. (2.57) Find the differential equation for (a) the family of straight lines which intersect at the point (2,1) and (b) the family of circles tangent to the x axis and having unit radius.

(a) We take the general equation for a straight line: y = ax + b. Since they intersect at the point (2, 1), we have 1 = 2a + b.

We have $\frac{dy}{dx} = a$. Substituting all the constants, gives us the required differential equation of the family:

$$y = y'x + (1 - 2y') \Rightarrow \frac{dy}{dx} = \frac{y - 1}{x - 2}.$$

(b) We take the general equation for a circle with unit radius: $(x-a)^2 + (y-b)^2 = 1$. Since they have to be tangent to the x axis, the point $(a,0) \in C \Rightarrow b = \pm 1$.

We have 2(x-a) + 2(y-b)y' = 0. Substituting the constant b, gives us $2(x-a) + 2(y\pm 1)y' = 0 \Rightarrow a = (y\pm 1)y' + x$.

Substituting all the constants, gives us the required differential equation of the family:

$$((y\pm 1)y')^2 + (y\pm 1)^2 = 1 \Rightarrow (y\pm 1)^2(y'^2+1) = 1.$$

Exercise 7. (2.56) Find differential equations for the following families of curves: (a) $x^2 + cy^2 = 1$, (b) $y^2 = ax + b$.

See Exercises_01_Solutions.pdf

Exercise 8. Solve the following differential equations:

1. (2.59 b)
$$x^3y''' = 1 + x^4$$
; $y(1) = y'(1) = y''(1) = 0$

2. (2.64 b)
$$(x^2 + x - y^2)dx - ydy = 0$$

3. (2.67 b)
$$2x^2y' = xy + y^3$$

4. (2.72 a)
$$xy'' - 3y' = x^2$$

5. (2.61 b)
$$\frac{dy}{dx} = \frac{3 - 4xy^2}{4x^2y + 6y^2}$$
; $y(1) = -1$

6. (2.70 a)
$$y'^2 + (y-1)y' - y = 0$$

7. (2.65 b)
$$xy' - 4y = x$$

8. (2.63 a)
$$(3y - 2xy^3)dx + (4x - 3x^2y^2)dy = 0$$

9. (2.71 a)
$$y = px + 2p^2$$
, with $p = y'$

10. (2.62 d)
$$(2y\sin x + 3y^4\sin x\cos x)dx - (4y^3\cos^2 x + \cos x)dy = 0$$

11. (2.66 a)
$$\frac{dy}{dx} = \frac{2y}{x} - \frac{y^2}{x^2}$$

12. (2.66 d)
$$(x - y)y' + 3y - 5x = 0$$

13. (2.72 c)
$$y'' + 4y = 0$$

14. (2.69)
$$\frac{dy}{dx} = x^2 + 2xy + y^2 + 2x + 2y$$
; $y(0) = 0$

15. (2.71 d)
$$x^2y = x^3p - yp^2$$
, with $p = y'$

16. (2.65 d)
$$\frac{dy}{dx} + 2y \cot x = \csc x$$

17. (2.60 d)
$$\frac{dy}{dx} = \frac{x\sqrt{1-y^2}}{y\sqrt{1-x^2}}$$

18. (2.61 c)
$$(ye^x - e^{-y})dx + (xe^{-y} + e^x)dy = 0$$

See Exercises_01_Solutions.pdf