

Power-law nonlinearity with maximally uniform distribution criterion for improved neural network training in automatic speech recognition

Chanwoo Kim, Mehul Kumar, Kwangyoun Kim, and Dhananjaya Gowda

Samsung Research, Seoul, South Korea

{chanw.com, mehul3.kumar, ky85.kim, d.gowda}@samsung.com

Summary about Maximum Uniformity of Distribution (MUD)

- We developed a novel approach for obtaining the nonlinearity function in a datadriven way.
- This approach is based on the assumption that neural-network training would be easier and the converged parameters would show better performance when feature distribution is not too much skewed or too much concentrated in an extremely narrow interval.
- The criterion is to maximize the Uniformity of Distribution.
- We develop two different types of MUD.
- Power Function-Based MUD
- Histogram-Based MUD
- Power function-based MUD shows better results than the histogram-based MUD.
- We achieved 4.02 % WER on test-clean and 13.34 % WER on test-other without using any Language Models (LMs).
- This approach may be extended to other domains as well.

Maximization of Distribution Uniformity

• The MUD nonlinearity is applied to mel-filterbank energy for each channel.

Power-function based maximization of distribution uniformity

• The transformation based on the power function:

$$\mathbf{Y} = \sigma_p(\mathbf{X}) = (X - x_{\min})^{\alpha}. \tag{1}$$

• We expect Y to follow the following uniform distribution:

$$\mathbf{Y} \sim \mathcal{U}(0, (x_{\text{max}} - x_{\text{min}})^{\alpha}). \tag{2}$$

 \bullet The log likelihood of the data X assuming the PDF in (2) is given by (Refer to the paper for mathematical details):

$$\mathcal{L}(\alpha; X) = \sum_{i=0}^{N-1} \ln p_{\mathbf{X}}(x_i)$$

$$= \sum_{i=0}^{N-1} \ln \left[\frac{\alpha (x_i - x_{\min})^{\alpha - 1}}{(x_{\max} - x_{\min})^{\alpha}} \right]$$

$$= N \ln(\alpha) + (\alpha - 1) \sum_{i=0}^{N-1} \ln (x_i - x_{\min}) - N\alpha \ln (x_{\max} - x_{\min}). \tag{3}$$

• The following $\hat{\alpha}$ maximizes the log-likelihood of $\mathcal{L}(\alpha; X)$ (Refer to the paper for mathematical details).

$$\hat{\alpha} = \frac{1}{\ln(\max\{x_i - x_{\min}, \delta\}) - \frac{1}{N} \sum_{i=0}^{N-1} \ln(x_i - x_{\min})}.$$
 (4)

Figure 1: The estimated power coefficients for each mel filterbank channels using (4).

Histogram-based maximization of distribution uniformity

• The distribution is uniformized using the empirical CDF (Refer to the paper for mathematical details):

$$\mathbf{Y} = \sigma_{np}(\mathbf{X}) = F_u^{-1} \left(\hat{F}_x(\mathbf{X}) \right) = \hat{F}_x(\mathbf{X}).$$
 (5)

Figure 2: The Probability Density Functions for the third filterbank channel of (a): the mel filterbank energy p[m,l], l=3 , (b): the power-function based MUD output of this mel filterbank energy in (1), (c) the histogram based-MUD in (5).

Figure 3: The structure of the entire end-to-end speech recognition system.

End-to-End Speech recognition

We used the RETURNN speech recognition system [1] with various modifications:

- MoCha[2] and the modified beam search decoder.
- Gradient clipping, modified learning-late warm-up, and so on.

Experimental Results

• LibriSpeech experiments (960-hr training and evaluation on LibriSpeech test-clean and test-other)

Table 1: Word Error Rates (WERs) obtained with MFCC, Power Mel filterbank coefficients, power function-based MUD processing, and histogram-based MUD Processing on the LibriSpeech corpus [3].

Neural Network Structure		MFCC	$\left(\bullet\right)\frac{1}{15}$	Power Function-	Histogram-
				Based MUD	Based MUD
1024 cell	test-clean	7.09 %	7.04 %	7.10 %	7.13 %
ULSTM	test-other	20.60 %	19.76 %	19.64 %	20.03 %
MoCha	average	13.85 %	13.40 %	13.37 %	13.58 %
1536 cell	test-clean	4.06 %	3.94 %	4.02 %	4.11 %
BLSTM	test-other	13.97 %	13.56 %	13.34 %	14.10 %
Full-Attention	average	9.02 %	8.75 %	8.68 %	9.11 %

- The Power-Function Based MUD shows slightly better result than the power-law nonlinearity with the power coefficient of $\frac{1}{15}$ [4].
- We hypothesize that the reason why histogram-based MUD does slightly worse than the power- function based MUD is that it somewhat obscured the energy boundary between speech vs non-speech.

References

- [1] A. Zeyer, K. Irie, R. Schlüter, and H. Ney, "Improved training of end-to-end attention models for speech recognition," in *INTERSPEECH-2018*, 2018, pp. 7–11. [Online]. Available: http://dx.doi.org/10.21437/Interspeech.2018-1616
- [2] K. Kim, K. Lee, D. Gowda, J. Park, S. Kim, S. Jin, Y.-Y. Lee, J. Yeo, D. Kim, S. Jung, J. Lee, M. Han, and C. Kim, "attention based on-device streaming speech recognition with large speech corpus," in 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Dec. 2019 (accepted).
- [3] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, "Librispeech: An asr corpus based on public domain audio books," in IEEE Int. Conf. Acoust., Speech, and Signal Processing, April 2015, pp. 5206–5210.
- [4] C. Kim and R. M. Stern, "Power-Normalized Cepstral Coefficients (PNCC) for Robust Speech Recognition," IEEE/ACM Trans. Audio, Speech, Lang. Process., pp. 1315–1329, July 2016.