14MA1301

UNIT-IV

8. a. Evaluate $\int_0^6 \frac{1}{1+x} dx$, using Simpson's 1/3 and 3/8 rules. **8M**

Compute y(0.1) and y(0.2) given that $\frac{dy}{dx} = x + y$ with y(0) = 1, by using Runge-Kutta fourth order method.

(or)

9. a. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ from the following table

Х	, 1	1.2	1.4	1.6	1.8	2	2.2
у	2.72	3.32	4.06	4.96	6.05	7.39	9.02

b. Compute y(2) given that $\frac{dy}{dx} = 3x^2 + 1$ with y(1) = 2, using Euler's method by taking the step size h = 0.5.

* * *

VR14

Reg. No:

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE

(AUTONOMOUS)

II/IV B. Tech. DEGREE EXAMINATION, NOVEMBER, 2017
Third Semester

14MA1301 COMPLEX ANALYSIS AND NUMERICAL METHODS

Time: 3 hours

8M

Max. Marks: 70

Part-A is compulsory

Answer One Question from each Unit of Part - B

Answer to any single question or its part shall be written at one place only

PART-A

 $10 \times 1 = 10 M$

- 1. a. Define harmonic function.
 - b. Write real and imaginary parts of $f(z) = z^3$.
 - c. Show that $f(z) = \overline{z}$ is nowhere analytic.
 - d. Find all poles of $f(z) = \frac{1}{\sin z}$.
 - e. Evaluate $\oint \frac{1}{z-3} dz$, over the circle $|z| = \frac{3}{2}$.
 - f. Write Newton-Raphson formula to find the cube root of N.
 - g. Write the formula of Trapezoidal rule.
 - h. Prove that symbolic relation between E and μ .
 - i. Define boundary value problem.
 - j. Write Newton's forward difference interpolation formula.

UNIT-I

2. a. Show that $f(z) = \begin{cases} \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$ is continuous and

satisfies C-R equations at origin but not analytic at origin. 8M

b. If f(z) is an analytic function of z, then prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2.$$
 7M

(or)

- 3. a. Evaluate $\oint \frac{z+4}{z^2+2z+5} dz$ where C:|z+1-i|=2 using Cauchy's integral formula.
 - b. Evaluate $\oint \frac{\cos \pi z^2 + \sin \pi z^2}{(z+1)(z+2)} dz$, where C is a circle |z| = 3. 7M

UNIT-II

- 4. a. Find the Taylor's series expansion of $f(z) = \frac{1}{z^2 + z 6}$ about z = -1.
 - b. Show that $\int_0^\infty \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{2(a+b)}$, (a > 0, b > 0).8M

VR14

14MA1301

(or)

- 5. a. Find the Laurent's series expansion of $f(z) = \frac{7z^2 + 9z 18}{z^3 9z}$ about z = 3.
 - Discuss about the transformation $f(z) = \frac{1}{z}$. 7M

UNIT-III

- 6. a. Using Newton-Raphson method, find the real root of $x \tan x + 1 = 0$.
 - b. Applying Gauss forward interpolation formula, obtain f(x) at x = 3.5 from the following table:

x:	2	3	4	5
y:	2.626	3.454	4.784	6.986

(or)

7. a. Solve the following system of equations by using Gauss elimination method 7M

$$2x_1 + x_2 + 2x_3 + x_4 = 6$$
 ; $6x_1 - 6x_2 + 6x_3 + 12x_4 = 36$
 $4x_1 + 3x_2 + 3x_3 - 3x_4 = -1$; $2x_1 + 2x_2 - x_3 + x_4 = 10$

b. Using Lagrange's formula, find f(x) from the following data: 8M

X	0	1	2	4	5	6
f(x)	1	14	15	5	6	19