P8130: Biostatistical Methods I

Lecture 13: Simple Linear Regression

Cody Chiuzan, PhD
Department of Biostatistics
Mailman School of Public Health (MSPH)

Outline

- Lecture 12 introduced (simple) liner regression (SLR)
- Least squares estimators (LS)
- Today we will discuss:
 - Properties of LS estimators
 - Maximum likelihood estimators (MLEs) and properties
 - Matrix notation for linear regression

LS Estimation

- Given the linear model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
 - Minimize criterion $Q = \sum_{i=1}^{n} (Y_i \beta_0 \beta_1 X_i)^2$ to obtain the LS estimates:

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$\hat{\beta}_{1} = \frac{S_{XY}}{S_{XX}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

Residual Variance Estimation

• Sum of square errors: $SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 = \sum_{i=1}^{n} e_i^2$

MSE (mean square error): $s^2 = MSE = \frac{SSE}{n-2} = \frac{\sum_{i=1}^n e_i^2}{n-2}$

Example of a 3D-plot of SSE for different parameter values.

The red dot is the pair of LS estimates representing the local and absolute minimum: $(\widehat{\beta}_0, \widehat{\beta}_1)$.

Properties of LS Estimators

- Simply mathematical, but closely identified with the Gaussian error model ML estimators
- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased for β_0 and β_1 , respectively (show in class)

$$E(\hat{\beta}_0) = \beta_0$$

$$E(\hat{\beta}_1) = \beta_1$$

• Note that *MSE* is also an unbiased estimator of the error variance:

$$E(MSE) = E\left(\frac{SSE}{n-2}\right) = E\left(\frac{\sum_{i=1}^{n} e_i^2}{n-2}\right) = \sigma^2$$

Add 'Probability' to our model

- So far we only assumed that $E(\varepsilon_i)=0$ and $\sigma^2(\varepsilon_i)=\sigma^2$
- Residuals are *i.i.d.*, independent and identically distributed (following a normal distribution):

$$\varepsilon_i \sim N(0, \sigma^2)$$

• This new assumption allows us to make *inferences* about the model parameters and obtain prediction intervals for a new Y_{n+1}

Add 'Probability' to our model

• Succinctly, the model is:

$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2), i = 1, 2, ..., n$$

Recall the likelihood of a normal distribution:

$$L(\mu, \sigma^2 \mid x) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x_i - \mu)^2}{2\sigma^2})$$

• Given that $E(e_i) = \mu = 0$, the likelihood of the linear model becomes:

$$L(\mu, \sigma^2 \mid x) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(Y_i - \beta_0 - \beta_1 X_i)^2}{2\sigma^2})$$

Maximizing the likelihood of the SLR

Maximize the log-likelihood (score function):

$$\ln L(\mu, \sigma^2 \mid x) = \log \left[\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(Y_i - \beta_0 - \beta_1 X_i)^2}{2\sigma^2}) \right]$$

...

$$\ln L(\mu, \sigma^2 \mid x) = -\frac{n}{2} \log(2\pi) - n \log(\sigma) - \sum_{i=1}^{n} \frac{(Y_i - \beta_0 - \beta_1 X_i)^2}{2\sigma^2}$$

- Take the derivatives with respect to each of the two parameters, equal to 0 and solve the system of equations.
- Surprise!
 - The maximum likelihood estimators (MLE) for parameters are the same as via LS estimation.

ML vs LS Estimation

 For linear regression, the two methods of estimation give similar results.

However, for other regressions, e.g., Logistic, Poisson, the estimates differ

- Remember, LS requires no error distribution assumption, but ML does
- For inferences (and to avoid confusion), from this point forward we will assume/use normal residuals regression model

Properties of ML Estimators

As LS, the ML estimators are (asymptotically) unbiased:

$$E(\hat{\beta}_0) = \beta_0$$
, at least as $n \to \infty$
 $E(\hat{\beta}_1) = \beta_1$

- But the variance estimator $\hat{\sigma}_{MLE}^2 = \sum_{i=1}^n \hat{\varepsilon}_i^2$ is only unbiased as $n \to \infty$.
- What about software results?
 - Beta(s) are the same for LS ad MLE
 - Variance estimator? lm() function in R provides the unbiased estimator (residual standard error)

Inferences about parameters

- To make inferences we need to understand the sampling distribution
- Remember that $\hat{\beta}_0$, $\hat{\beta}_1$ are linear combinations of Y's, which are normal random variables

• Thus,
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)$$

• It follows that
$$\frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2}}} \sim N(0,1) \rightarrow \frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\frac{MSE}{\sum_{i=1}^n (X_i - \overline{X})^2}}} \sim t_{n-2}$$

Inferences about parameters

• Same idea for β_0 .

• If
$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)\right)$$
 then it follows that:

$$\frac{\beta_{0} - \beta_{0}}{\sqrt{MSE\left(\frac{1}{n} + \frac{\bar{X}^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}\right)}} \sim t_{n-2}$$

Linear Models: Matrix Notation

• The general form of a linear model is given by:

$$\tilde{Y} = \mathbf{X}\tilde{\beta} + \tilde{\varepsilon}$$

- Where \tilde{Y} is the $N \times 1$ vector of observed responses \mathbf{X} is the $N \times p$ design matrix of fixed constants $\tilde{\beta}$ is the $p \times 1$ vector of fixed, but unknown parameters $\tilde{\varepsilon}$ is the $N \times 1$ vector of (unobserved) errors
- Class practice: use matrix formulation to write the SLR model.

LS Estimation (Matrix)

- Goal is to estimate: $E(\tilde{Y}) = X\tilde{\beta}$
- An estimate $\hat{\beta}$ is the LS estimate of β if and only if: $(Y \mathbf{X}\hat{\beta})'(Y \mathbf{X}\hat{\beta}) = \min(Y \mathbf{X}\beta)'(Y \mathbf{X}\beta)$

• Keep in mind that β , $\hat{\beta}$ and Y are vectors and X is the design matrix!

LS Estimation (Matrix)

• If X'X is non-singular, then the *unique* least squares estimates are:

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = (\hat{\beta}_0, \hat{\beta}_1)'$$

- If $(X'X)^{-1}$ exists then:
 - (1) The LS estimate is unbiased: $E(\hat{\beta}) = \beta$.
 - (2) The variance-covariance matrix of LS estimates is given by:

$$\operatorname{cov}(\hat{\beta}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}$$

• In-class derivation: show (1) and (2).