文字コード 2進コード

・ASCIIは、7桁の2進数で表すことのできる 整数の数値のそれぞれに、大小のラテン文字や 数字、英文でよく使われる約物などを割り当てた 文字コードである。

1963年6月17日に、 (ASA、後のANSI) によって 制定された。

· JISコード(ISO-2022-JP)

Asciiコードを8ビットに拡張子カタカナを扱えるように拡張され、漢字を使用するため16ビット(全角)に拡張されたISO-2022-JPがある。現在はJISコードはこちらを指す

負数の表現 (整数)

- ・2の補数: complement binary 負の数は0よりいくつ少ないかを考えれば 良いので限られたビット数整数では、 x を正の整数とした時y=0-x の結果として計算できる。 簡便的には、1の補数に1を加算する
- ·符号付2進数: signed binary
- ・オフセット2進数:offset binary

負数の表現 (整数)

・オフセット2進数:offset binary

ディジタル量を両極の符号の値として表現したもの。8ビットのディジタル量をオフセット・バイナリ・コードとして表現すると、 $(80)_{16}$ を0とした場合、負側は $(00)_{16}$ ~ $(7F)_{16}$ の128通り、正側を $(81)_{16}$ ~ $(FF)_{16}$ の127とおりである。

0をオフセット分ずらした2進数

文字コード

・**EBCDIC**:エビスディックコード Extended Binary Coded Decimal Interchange Code ASCII普及前の1963年に、BCDを拡張する形で 作られ、主にIBM系のメインフレームやオフィス コンピュータなどで使用されている

> American National Standards Institute American Standards Association

負数の表現 (整数)

・2の補数: complement binary 負の数は0よりいくつ少ないかを考えれば 良いので限られたビット数整数では、 xを正の整数とした時y=0-x の結果として計算できる。 簡便的には、1の補数に1を加算する

·符号付2進数: signed binary

符号付き2進数では、MSB(最上位ビット)が「1」の時にマイナスになる。例えば、4ビットの数「1111」は10進数では-1となる。また、「1000」は10進数では-8となる。

10 進 数	ストレート バイナリ	10 進 数	オフセット バイナリ	10 進 数	2 の補数 バイナリ
255	1111 (1111	127	1111 11111	127	0111 1111
254	1111 1110	126	1111 1110	126	0111 1110
:		;		;	
129	1000 0001	1	1000, 0001	1	0000 0001
128	1000 0000	0	1000 0000	0	0000 0000
127	0111 1111	-1	0111 1111	-1	1111 1111
:			1 1 1		
			1		
0	0000 0000	-128	0000 0000	-128	1000 0000

表 1.3種類のバイナリ表現の比較

組み合わせ回路の定番

Ei2 ハードウエア技術 R02-6-25

EXORの実装

NOR・AND・OR 複合ゲートで実現

EXORの実装

デコード回路

デコード回路 (出力許可EN入力あり)

デマルチプレクサ(分配回路)

マルチプレクサ (選択回路)

エンコーダ回路

コンパレータ(一致検出回路)

半加算器

全加算器

全加算器

主乗法標準で組んでみよう

主乗法標準で組んでみよう

С	Α	В	S	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

オフセットバイナリが活躍

SM6610シリーズSM6610BHというセイコーNPC(株)のセンサーは

- •Ta=25℃ 1.45V 温度係数-8.2[mv/℃]
- ·動作電圧4.0V~5.5V 精度±5.0℃

です。OVの時に約1.655Vが出力されます。

O°CのときOVは分かりやすい様ですが、氷点下のとき

負電源や、負電圧を入力できる様にするためハードウエアが複雑になります。

そのまま10ビットでA/D変換すると5V/1024 [V/ビット]で

0.6[°C/ビット] 20°Cの時マイコンでは、307が入力されます。

オフセットバイナリで問題

仮に以下のような温度センサならどうだろうか

- •Ta=25℃ 1.25V 温度係数10[mv/℃]
- ・OVの時に約1.5Vが出力されるとします。

そのまま10ビットでA/D変換する5.12V/1024 [V/ビット]で

約0. 5[℃/ビット] 0℃の時マイコンでは、300が入力されます。

問. 入力された値が240と380のときの温度を答えなさい。

また-30度の時、入力される値を2進数で答えなさい。

