ENME 441 Mechatronics and the Internet of Things

Raspberry Pi Zero 2 W Introduction & Setup

Raspberry Pi

- The Raspberry Pi (*RPi* or just *Pi*) is a *single-board* computer (*SBC*):
 - USB, MicroSD, HDMI, camera ports
 - Various models: A, B, B+, 2B, 3B, 4B, Zero, Pico
 - B models have ethernet ports
 - 3 & 4 have WiFi + Bluetooth
 - Zero is the smallest SBC in the Pi family
 - Pico is a microcontroller, not SBC
 - Digital-only I/O ports (GPIO)
 - No analog I/O available
 - Many OS options (beyond Raspberry Pi OS)

Pi Zero 2 W

- RP3A0 system-in-package:
 - quad-core 64-bit ARM Cortex-A53 processor @ 1GHz
 - 512MB of SDRAM
- Wireless connectivity:
 - Wireless LAN (2.4GHz 802.11 b/g/n)
 - Bluetooth 4.2 + Bluetooth Low Energy (BLE)
- Video output:
 - Mini-HDMI video port
 - Composite video via solder test pads
- 28 digital general-purpose input/output (GPIO) pins
- MicroSD card slot
- 2 microUSB ports (data/power + power only)
- Camera connector

Announcements:

- No quiz today
- Wed lecture via Zoom
- Lab 3 (assigned today) due next Monday
- Pi header & ADC soldering session TBA
- Misc parts will be handed out next Monday
- Bring all supplies (incl. breadboard & jumper wires) to class starting next Monday for in-class labs
- See updated Pi setup pdf with troubleshooting guide
- TODAY: start up your Pi, and periodically test SSH connectivity throughout lecture

Shutting Down Your Pi

- Try to avoid shutting the Pi down by turning off the power as this can corrupt the file system
- Proper shutdown from the terminal via SSH:

```
sudo shutdown -h now
```

- Don't turn the Pi off immediately:
 - Green light will blink and then turn off after a few seconds
 - Switch off the Pi only after the green light stays off!

Pi Setup

- Follow instructions in "Setting up the Pi Zero":
 - Install Raspberry Pi OS on an SD card
 - Log in via SSH via cell phone hot spot
 - Update all Python libraries
 - Set up VNC access (RealVNC)
 - Set up the IDE (Thonny)

Remote Login via Secure Shell (ssh)

With your laptop connected to your cell phone hotspot, log in to your Pi via secure shell:

 Mac / Linux (open a terminal window) or Windows 10+ (open a Powershell or Command Prompt window):

```
ssh your_pi_username@your.pi.ip.address
    or
ssh your_pi_username@your_pi_hostname.local
```

Windows (pre-10): use the SmarTTY Client

- Open a new session with your Pi's IP address
- If a shell window does not open, you may need to change your firewall settings to allow access by SmarTTY and Xming (an Xwindows implementation required by SmarTTY)

Virtual Network Computing (optional)

https://www.raspberrypi.org/documentation/remote-access/vnc/

- VNC can be used to display a virtual desktop from the Pi on a computer running VNC client software
- Activate VNC From a Pi terminal window type:

```
sudo raspi-config
```

- Select "5 Interfacing Options" → "P3 VNC" and say "Yes" to turn on VNC
- VNC Connect pre-installed in Pi OS
 - VNC Viewer: need to install on your local computer via https://www.realvnc.com/en/connect/download/viewer/

Secure File Transfer Protocol (SFTP) (optional)

Python code and other files can be transferred between your Pi and laptop using SFTP, a secure file transfer protocol that runs over an SSH session

- Mac & Windows: Install Cyberduck (http://cyberduck.io)
 - Click "Open Connection"
 - Select SFTP from the drop-down menu
 - Enter the Pi's IP address for the Server name, your username/password combination, and hit "Connect"
 - Once the session starts, from the application menu bar select
 "Bookmark" → "New Bookmark", change the Nickname to "Pi" or
 similar, and save the bookmark for later use

PYTHONPATH environment variable

 PYTHONPATH is a system environment variable that augments the search path for Python modules

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH

 To permanently add a path to your Pi, edit the bash shell init file (~/.bashrc) and add the following line at the end:

```
export PYTHONPATH=${PYTHONPATH}:${HOME}/path
```

where path is the path to the module directory (relative to your home directory)

Running Python Code on the Pi

Option 1: Run from a shell:

Option 2: Run as executable:

Define which Python version to use on 1st line of code:

Option 3: Run in an IDE

Thonny IDE

https://www.raspberrypi.org/magpi/thonny/

- IDE = Integrated Development Environment
- Why use an IDE?
 - Variable value monitoring (global + local)
 - Breakpoints
 - Navigating via step over / step into / step out
 - Object inspection (view variable type & other attributes)
- The Thonny IDE is a pre-installed with Pi OS, but we will run the IDE on a laptop connected to the Pi Zero via SSH

Thonny – recursion example

```
n = 3
def count(n):
  if n > 0:
    print(n)
    count (n-1)
    print(n)
  else:
    print("zero!")
count(n)
```

Navigating from breakpoints:

- Step over: Execute current line (including any function calls), and move to next line
- Step into: Execute current line stepby-step, including stepping into any function calls
- Step out: Execute the remainder of current line/method/function

Bash Shell Basics

- The Pi terminal runs a <u>bash shell</u> as the command-line interpreter
- Shell command functions:
 - Tab = command line completion (commands & files)
 - Up/Down arrows = scroll through previous commands
 - File name expansion = * (multi-character) or ? (single character)
 - Ctrl-C = cancel a shell command
- Bash shell configuration
 - When opening a new Bash shell, the .profile script is executed, which in turn executes .bashrc script
 - The default .bashrc file then executes .bash_aliases (a good place to add aliases for commonly-used commands)

Networking Utilities

ifconfig display status of the network interface

hostname -I display current IP address

ping send packets to a selected address to check

connection and speed

traceroute view route to a given IP address

sudo

sudo = "superuser do" or "switch user do": execute commands
requiring root-level access

Useful Command Line Utilities

sudo do command as super-user

man show manual entry for a given utility

shutdown shutdown the Pi (*shutdown -h now* for immediate

shutdown)

reboot reboot the Pi (same as *shutdown -r now*)

list files, -1 (long) and -a (all) options

cd change present working directory

pwd display present working directory

which show location/version of a utility

passwd change user password

chfn change user account info

printenv display all shell environment variables

echo write a string or argument to stdout

history view command history

More Command Line Utilities

startx start X-Windows GUI

raspi-config run Pi configuration utility

python Python 2.7 interpreter

python3 Python 3.x interpreter

apt-get Advanced Package Tool utility

File Viewing / Editing / Searching

cat concatenate standard input (stdin) to standard

output (stdout)

head send the first 10 lines of stdin to stdout, use -n

option to select n lines

tail send the last 10 lines of stdin to stdout, use -n

option to select n lines

more display stdin one screen at a time

less better version of more (can scan backward)

nano / pico simple text editor (pico = update of nano)

vi / vim text editor (vim = "vi improved")

touch create a new empty file

grep search stdin for a regular expression

File/Directory Manipulation

mv move a file or directory between locations

rm remove a file or directory permanently

cp copy a file or directory to a new location

mkdir make a new directory

cd change present working directory

pwd display the present working directory

BE VERY CAREFUL when manipulating files – you can easily delete or otherwise lose important data, especially if running as su (via sudo or otherwise). **There is no undo to fix a mistake!**

Navigating the File System

 Unix uses the forward slash (/) to separate directories in the file system

The highest level directory (root directory) is /

- Reference a file location in one of 4 ways:
 - Relative to the root directory:
 - Relative to the present working directory: .
 - Relative to pwd but one level up (toward root): . .
 - Relative to current user's home directory:

File Manipulation Examples

 Move the file to a new directory called newdir in the user's home directory:

```
cd ~
mkdir newdir
mv pythonfiles/thefile.py newdir/
```

 Copy the entire currentdir directory to /tmp, and rename it junk:

```
cp ~/otherdir/currentdir /tmp/junk
```

Delete all files in /tmp/junk that start with "xy":
 rm /tmp/junk/xy*

Pipes and Redirection

A pipe (|) connects stdout of one command with stdin of another:
 grep Buffer /var/log/messages | more

Output redirection (> or >>) changes stdout from the screen to a file:

- Input redirection (<) changes stdin from the keyboard to a file:
 wc -1 < myfile
- "Here document" (<<) redirects input to a script, utility, or program by reading input until a line containing a specified delimiter is found. This is typically only used as part of a script, and will not be covered in ENME 441.