# Lecture 6 Simplex Algorithm

Can Li

ChE 597: Computational Optimization Purdue University

# History





Developed by George Dantzig in 1947.

Intuition: iterate over the extreme points of a polyhedron until an optimality condition is satisfied.

# Important results from Polyhedron theory

When P is nonempty and the optimal objective value is not  $-\infty$ , the optimal solution can always be obtained at an extreme point. extreme point  $\Leftrightarrow$  basic feasible solution

**Basic feasible solution** Consider a polyhedron P defined by linear equality and inequality constraints, and let  $x^*$  be an element of  $\Re^n$ .

- 1. The vector  $x^*$  is a **basic solution** if:
  - All equality constraints are active;
  - Out of the constraints that are active at x\*, there are n of them that are linearly independent.
- 2. If  $x^*$  is a basic solution that satisfies all of the constraints, we say that it is a **basic feasible solution**.

# Basic solution for standard form polyhedron

**Theorem** Consider the constraints Ax = b and  $x \ge 0$  and assume that the  $m \times n$  matrix A has linearly independent rows. A vector  $x \in \Re^n$  is a basic solution if and only if we have Ax = b, and there exist indices  $B(1), \ldots, B(m)$  such that:

- (a) The columns  $A_{B(1)}, \ldots, A_{B(m)}$  are linearly independent;
- (b) If  $i \neq B(1), ..., B(m)$ , then  $x_i = 0$ .

Proof sketch: **Sufficiency** If (a) and (b) are satisfied, there are n linearly independent active constraints that uniquely defines a solution and thus is a basic solution.

**Necessity** For a basic solution, there must exist at least n-m active constraints  $x_i=0$ , together with Ax=b forming n linearly independent constraints. Consider the active constraints forming the matrix (under permutation)  $\begin{bmatrix} B & N \\ 0 & I \end{bmatrix}$  being full rank, where

 $A = [B \ N]$ , I correspond to the indices of the  $x_i = 0$ . B must be full rank for the matrix to be full rank.

#### Basic variables

**Definition** If x is a basic solution, the variables  $x_{B(1)}, \ldots, x_{B(m)}$  are called **basic variables**; the remaining variables are called **nonbasic**. The columns  $A_{B(1)}, \ldots, A_{B(m)}$  are called the **basic column** and, since they are linearly independent, they form a basis of  $\mathbb{R}^m$ 

#### Basis matrix

**basis matrix**  $B \in \mathbb{R}^{m \times m}$  the matrix formed by arranging he m basic columns next to each other.

**basic variables** a vector  $x_B$  with the values of the basic variables **nonbasic variables**  $x_N$ 

$$B = \begin{bmatrix} & | & & | & & | \\ A_{B(1)} & A_{B(2)} & \cdots & A_{B(m)} \\ & | & & | & \end{bmatrix}, \qquad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix}.$$

 $x = [x_B; x_N], A = [B \ N]$ 

The basic variables are determined by solving the equation  $Bx_B = b$  whose unique solution is given by

$$x_B=B^{-1}b.$$

If  $x_B \ge 0$ , then it is a basic feasible solution

Recall that for LP with finite optimum, there exists an optimal basic feasible solution. Next, we will derive the conditions under which a basic feasible solution is optimal.

**Feasible direction** Let x be an element of a polyhedron P. A vector  $d \in \mathbb{R}^n$  is said to be a feasible direction at x, if there exists a positive scalar  $\theta$  for which  $x + \theta d \in P$ .

**Basic direction** Let  $x_B = B^{-1}b$ . be a BFS. We consider the possibility of moving away from x, to a new vector  $x + \theta d$ , by selecting a nonbasic variable  $x_j$ . Algebraically,  $d_j = 1$ , and  $d_i = 0$  for every nonbasic index i other than j. We require  $A(x + \theta d) = b$ , and since x is feasible, we also have Ax = b. Thus, we need Ad = 0. Recall now that  $d_j = 1$ , and that  $d_i = 0$  for all other nonbasic indices i. Then,

$$0 = Ad = \sum_{i=1}^{n} A_i d_i = \sum_{i=1}^{m} A_{B(i)} d_{B(i)} + A_j = Bd_B + A_j.$$

 $d_B = -B^{-1}A_i, d_i = 1, d_i = 0 \ \forall i \in N, i \neq j$  (jth basic direction)

### When is a basic direction a feasible direction?

Since  $d_j = 1$ ,  $d_i = 0 \ \forall i \in N$ , the nonbasic variables will remain feasible. We only need to make sure that the basic variables are still nonnegative.

(a) x is a nondegenerate basic feasible solution. Then,  $x_B > 0$ , from which it follows that  $x_B + \theta d_B \ge 0$ , and feasibility is maintained, when  $\theta$  is sufficiently small. d is a feasible direction. (b) x is degenerate. Then, d is not always a feasible direction. Indeed, it is possible that a basic variable  $x_{B(i)}$  is zero, while the corresponding component  $d_{B(i)}$  of  $d_B = -B^{-1}A_j$  is negative. In that case, if we follow the j th basic direction, the nonnegativity constraint for  $x_{B(i)}$  is immediately violated, and we are led to infeasible solutions;

#### Reduced cost

Q: What will be the effect on the cost (objective) function if we move along the *j*th basic direction?

$$d_B = -B^{-1}A_j, d_j = 1, d_i = 0 \ \forall i \in N, i \neq j \ (\text{jth basic direction})$$

$$\bar{c}_j = c^T d^j = c_j - c_B^T B^{-1} A_j$$

where  $d^j$  is the *j*th basic direction,  $c_B$  the vector of costs of the basic variables.  $\bar{c}_j$  is the **reduced cost** of the variable  $x_j$ 

# Optimality condition

**Theorem** Consider a basic feasible solution x associated with a basis matrix B, and let  $\overline{c}$  be the corresponding vector of reduced costs.

- (a) If  $\overline{c} \geq 0$ , then x is optimal.
- (b) If x is optimal and nondegenerate, then  $\overline{c} \geq 0$ .

### Optimality condition

Proof. (a) We assume that  $\overline{c} \geq 0$ , we let y be an arbitrary feasible solution, and we define d=y-x. Feasibility implies that Ax=Ay=b and, therefore, Ad=0. The latter equality can be rewritten in the form

$$Bd_B + \sum_{i \in N} A_i d_i = 0$$

where N is the set of indices corresponding to the nonbasic variables under the given basis. Since B is invertible, we obtain

$$d_B = -\sum_{i \in N} B^{-1} A_i d_i$$

and

$$c^T d = c_B^T d_B + \sum_{i \in N} c_i d_i = \sum_{i \in N} \left( c_i - c_B^T B^{-1} A_i \right) d_i = \sum_{i \in N} \bar{c}_i d_i$$

For any nonbasic index  $i \in N$ , we must have  $x_i = 0$  and, since y is feasible,  $y_i \ge 0$ . Thus,  $d_i \ge 0$  and  $\bar{c}_i d_i \ge 0$ , for all  $i \in N$ . We conclude that  $c^T(y-x) = c^T d \ge 0$ , and since y was an arbitrary feasible solution, x is optimal.

# Optimality condition

(b) Suppose that x is a nondegenerate basic feasible solution and that  $\bar{c}_j < 0$  for some j. Since the reduced cost of a basic variable is always zero,  $x_j$  must be a nonbasic variable and  $\bar{c}_j$  is the rate of cost change along the j th basic direction. Since x is nondegenerate, the j th basic direction is a feasible direction of cost decrease, as discussed earlier. By moving in that direction, we obtain feasible solutions whose cost is less than that of x, and x is not optimal.

### Optimal basis

A basis matrix B is said to be optimal if:

(a) 
$$B^{-1}b \ge 0$$
, and

(b) 
$$\overline{c}^T = c^T - c_B^T B^{-1} A \ge 0$$

### Simplex Algorithm

We assume all the basic feasible solutions are nondegenerate. Under this assumption, the reduced costs being nonnegative are both necessary and sufficient for a BFS to be optimal. If a reduced cost  $\bar{c}_j$  of a nonbasic variable  $x_j$  is negative, we can move toward the jth feasible direction  $d^j$  to further decrease the cost. It is desirable to move as far as possible:

$$\theta^* = \max\{\theta \ge 0 \mid x + \theta d \in P\}$$

The resulting cost change is  $\theta^*c^Td$ , which is the same as  $\theta^*\bar{c}_j$ . Given that Ad=0, we have  $A(x+\theta d)=Ax=b$  for all  $\theta$ , and the equality constraints will never be violated. Thus,  $x+\theta d$  can become infeasible only if one of its components becomes negative.

# Simplex Algorithm

Two cases can occur when we move along direction d:

- (a) If  $d \ge 0$ , then  $x + \theta d \ge 0$  for all  $\theta \ge 0$ , the vector  $x + \theta d$  never becomes infeasible, and we let  $\theta^* = \infty$ .
- (b) If  $d_i < 0$  for some i, the constraint  $x_i + \theta d_i \geq 0$  becomes  $\theta \leq -x_i/d_i$ . This constraint on  $\theta$  must be satisfied for every i with  $d_i < 0$ . Thus, the largest possible value of  $\theta$  is

$$\theta^* = \min_{\{i \mid d_i < 0\}} \left( -\frac{x_i}{d_i} \right).$$

Recall that if  $x_i$  is a nonbasic variable, then either  $x_i$  is the entering variable and  $d_i = 1$ , or else  $d_i = 0$ . In either case,  $d_i$  is nonnegative. Thus, we only need to consider the basic variables and we have the equivalent formula

$$\theta^* = \min_{\{i=1,...,m|d_{B(i)}<0\}} \left(-\frac{x_{B(i)}}{d_{B(i)}}\right).$$

Note that  $\theta^* > 0$ , because  $x_{B(i)} > 0$  for all i, as a consequence of nondegeneracy.

# Simplex Algorithm

Once  $\theta^*$  is chosen, and assuming it is finite, we move to the new feasible solution  $y=x+\theta^*d$ . Since  $x_j=0$  and  $d_j=1$ , we have  $y_j=\theta^*>0$ . Let  $\ell$  be a minimizing index of

$$-\frac{x_{B(\ell)}}{d_{B(\ell)}} = \min_{\{i=1,\dots,m|d_{B(i)}<0\}} \left(-\frac{x_{B(i)}}{d_{B(i)}}\right) = \theta^*;$$

$$x_{B(\ell)} + \theta^* d_{B(\ell)} = 0.$$

We observe that the basic variable  $x_{B(\ell)}$  has become zero, whereas the nonbasic variable  $x_j$  has now become positive, which suggests that  $x_j$  should replace  $x_{B(\ell)}$  in the basis. The new basis matrix is

$$\bar{B}(i) = \begin{cases} B(i), & i \neq \ell \\ j, & i = \ell \end{cases}$$

In other words,  $\ell$  leaves the basis, j enters the basis.

# One simplex iteration (pivot) summary

- 1. In a typical iteration, we start with a basis consisting of the basic columns  $A_{B(1)}, \ldots, A_{B(m)}$ , and an associated basic feasible solution x.
- 2. Compute the reduced costs  $\bar{c}_j = c_j c_B^T B^{-1} A_j$  for all nonbasic indices j. If they are all nonnegative, the current basic feasible solution is optimal, and the algorithm terminates; else, choose some j for which  $\bar{c}_i < 0$ .
- 3. Compute  $u = -d_B = B^{-1}A_j$ . If no component of u is positive, we have  $\theta^* = \infty$ , the optimal cost is  $-\infty$ , and the algorithm terminates.
- 4. If some component of u is positive, let

$$\theta^* = \min_{\{i=1,\dots,m|u_i>0\}} \frac{x_{B(i)}}{u_i}$$

5. Let  $\ell$  be such that  $\theta^* = x_{B(\ell)}/u_{\ell}$ . Form a new basis by replacing  $A_{B(\ell)}$  with  $A_j$ . If y is the new basic feasible solution, the values of the new basic variables are  $y_j = \theta^*$  and  $y_{B(i)} = x_{B(i)} - \theta^* u_i$ ,  $i \neq \ell$ .

# Compute matrix inverse faster

**Motivation**: Taking matrix inverse  $(B^{-1})$  at each iteration is expensive  $(O(m^3))$ . We would like a more efficient implementation. **Observation**: The new basis  $\overline{B}$  and the old basis B only differ at the  $\ell$ th column

$$B = \left[A_{B(1)} \cdots A_{B(m)}\right]$$

$$\overline{B} = \begin{bmatrix} A_{B(1)} \cdots A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \cdots A_{B(m)} \end{bmatrix}$$

**Idea:** Exploit the information of  $B^{-1}$  to compute  $\overline{B}^{-1}$ 

# Row operations

where  $u = B^{-1}A_i$ .

Let us apply a sequence of elementary row operations that will change the above matrix to the identity matrix.

- (a) For each  $i \neq \ell$ , we add the  $\ell$  th row times  $-u_i/u_\ell$  to the i th row. (Recall that  $u_\ell > 0$ .) This replaces  $u_i$  by zero.
- (b) We divide the  $\ell$  th row by  $u_{\ell}$ . This replaces  $u_{\ell}$  by one. Let these row operations be matrix Q.  $QB^{-1}\overline{B}=I$ , which yields  $QB^{-1}=\overline{B}^{-1}$ . This shows that if we apply the same sequence of row operations to the matrix  $B^{-1}$ , we obtain  $\overline{B}^{-1}$ .

# Full tableau implementation

$$B^{-1}[b \mid A]$$

with columns  $B^{-1}b$  and  $B^{-1}A_1, \ldots, B^{-1}A_n$ .

- This matrix is called the **simplex tableau**.
- $B^{-1}b$  is called the zeroth column
- The column  $u = B^{-1}A_j$  corresponding to the variable that enters the basis is called the **pivot column**.
- If the \( \ell \) th basic variable exits the basis, the \( \ell \) th row of the tableau is called the **pivot row**.

At the end of each iteration, we need to update the tableau  $B^{-1}[b\mid A]$  and compute  $\overline{B}^{-1}[b\mid A]$ . This can be accomplished by left-multiplying the simplex tableau with a matrix Q satisfying  $QB^{-1}=\overline{B}^{-1}$ 

# Full tableau implementation

It is customary to add the objective and the reduced cost as a zeroth row.

| $-c_B^T B^{-1} b$ | $c^T - c_B^T B^{-1} A$ |
|-------------------|------------------------|
| $B^{-1}b$         | $B^{-1}A$              |

We've already shown how to update the rows of  $B^{-1}$  to pivot to  $\overline{B}^{-1}$ .

It can be shown that the rule for updating the zeroth row turns out to be identical to the rule used for the other rows of the tableau: add a multiple of the pivot row to the zeroth row to set the reduced cost of the entering variable to zero.

# An iteration of the full tableau implementation

- 1. A typical iteration starts with the tableau associated with a basis matrix B and the corresponding basic feasible solution x.
- 2. Examine the reduced costs in the zeroth row of the tableau. If they are all nonnegative, the current basic feasible solution is optimal, and the algorithm terminates; else, choose some j for which  $\bar{c}_i < 0$ .
- 3. Consider the vector  $u = B^{-1}A_j$ , which is the j th column (the pivot column) of the tableau. If no component of u is positive, the optimal cost is  $-\infty$ , and the algorithm terminates.
- 4. For each i for which  $u_i$  is positive, compute the ratio  $x_{B(i)}/u_i$ . Let  $\ell$  be the index of a row that corresponds to the smallest ratio. The column  $A_{B(\ell)}$  exits the basis and the column  $A_j$  enters the basis.
- 5. Add to each row of the tableau a constant multiple of the  $\ell$  th row (the pivot row) so that  $u_{\ell}$  (the pivot element) becomes one and all other entries of the pivot column become zero.

minimize 
$$-10x_1 - 12x_2 - 12x_3$$
  
subject to  $x_1 + 2x_2 + 2x_3 \le 20$   
 $2x_1 + x_2 + 2x_3 \le 20$   
 $2x_1 + 2x_2 + x_3 \le 20$   
 $x_1, x_2, x_3 \ge 0$ .

Add slack variables to transform to the standard form.

minimize 
$$-10x_1 - 12x_2 - 12x_3$$
 subject to 
$$x_1 + 2x_2 + 2x_3 + x_4 = 20$$
 
$$2x_1 + x_2 + 2x_3 + x_5 = 20$$
 
$$2x_1 + 2x_2 + x_3 + x_6 = 20$$
 
$$x_1, \dots, x_6 \ge 0.$$

Note that x = (0, 0, 0, 20, 20, 20) is a basic feasible solution and can be used to start the algorithm. Let accordingly, B(1) = 4, B(2) = 5, and B(3) = 6.

|         |    | <i>x</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> 3 | <i>X</i> 4 | <i>X</i> 5 | <i>x</i> <sub>6</sub> |
|---------|----|-----------------------|-----------------------|------------|------------|------------|-----------------------|
|         | 0  | -10                   | -12                   | -12        | 0          | 0          | 0                     |
| $x_4 =$ | 20 | 1                     | 2                     | 2          | 1          | 0          | 0                     |
| $x_5 =$ | 20 | 2*                    | 1                     | 2          | 0          | 1          | 0                     |
| $x_6 =$ | 20 | 2                     | 2                     | 1          | 0          | 0          | 1                     |

 $\overline{c}_1 < 0$ . choose  $x_1$  to enter the basis

$$\frac{x_{B(1)}}{u_1} = \frac{x_4}{u_1} = \frac{20}{1} = 20$$

$$\frac{x_{B(2)}}{u_2} = \frac{x_5}{u_2} = \frac{20}{2} = 10$$

$$\frac{x_{B(3)}}{u_3} = \frac{x_6}{u_3} = \frac{20}{2} = 10$$

$$\frac{x_{B(3)}}{u_3} = \frac{x_6}{u_3} = \frac{20}{2} = 10$$

The second row can be selected as the pivot row.

#### Row operations:

Add 5 times the second row to the zeroth row.

Add  $-\frac{1}{2}$  times the second row to the first row.

Add -1 times the second row to the third row.

Divide the second row by 2.

|         |     | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>X</i> 3 | <i>X</i> 4 | <i>X</i> 5 | <i>x</i> <sub>6</sub> |
|---------|-----|-----------------------|-----------------------|------------|------------|------------|-----------------------|
|         | 100 | 0                     | -7                    | -2         | 0          | 5          | 0                     |
| $x_4 =$ | 10  | 0                     | 1.5                   | 1*         | 1          | -0.5       | 0                     |
| $x_1 =$ | 10  | 1                     | 0.5                   | 1          | 0          | 0.5        | 0                     |
| $x_6 =$ | 0   | 0                     | 1                     | -1         | 0          | -1         | 1                     |

choose  $x_3$  to enter the basis.

$$\frac{x_{B(1)}}{u_1} = \frac{x_4}{u_1} = \frac{10}{1} = 10$$

$$\frac{x_{B(2)}}{u_2} = \frac{x_1}{u_2} = \frac{10}{1} = 10$$

 $u_3$  is negative.

Choose the first row to be the pivot row.

Add 2 times the first row to the zeroth row.

Add -1 times the first row to the second row.

Add 1 times the first row to the third row.

Divide the first row by 1.

|         |     | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | <i>X</i> 5 | <i>x</i> <sub>6</sub> |
|---------|-----|-----------------------|-----------------------|-----------------------|-----------------------|------------|-----------------------|
|         | 120 | 0                     | -4                    | 0                     | 2                     | 4          | 0                     |
| $x_3 =$ | 10  | 0                     | 1.5                   | 1                     | 1                     | -0.5       | 0                     |
| $x_1 =$ | 0   | 1                     | -1                    | 0                     | -1                    | 1          | 0                     |
| $x_6 =$ | 10  | 0                     | 2.5*                  | 0                     | 1                     | -1.5       | 1                     |

 $x_2$  has negative reduced cost and enters the basis.

$$\frac{x_{B(1)}}{u_1} = \frac{x_3}{u_1} = \frac{10}{1.5}$$

 $u_2$  is negative.

$$\frac{x_{B(3)}}{u_3} = \frac{x_6}{u_3} = \frac{10}{2.5}$$

Choose the third row to be the pivot row.

Add  $\frac{4}{2.5}$  times the third row to the zeroth row.

Add  $-\frac{1.5}{2.5}$  times the third row to the first row.

Add  $\frac{1}{2.5}$  times the third row to the second row.

Divide the third row by 2.5.

|         |     | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>X</i> 3 | <i>X</i> 4 | <i>X</i> 5 | <i>x</i> <sub>6</sub> |
|---------|-----|-----------------------|-----------------------|------------|------------|------------|-----------------------|
|         | 136 | 0                     | 0                     | 0          | 3.6        | 1.6        | 1.6                   |
| $x_3 =$ | 4   | 0                     | 0                     | 1          | 0.4        | 0.4        | -0.6                  |
| $x_1 =$ | 4   | 1                     | 0                     | 0          | -0.6       | 0.4        | 0.4                   |
| $x_2 =$ | 4   | 0                     | 1                     | 0          | 0.4        | -0.6       | 0.4                   |

Optimal solution found. Optimal objective is -136.

$$x^* = (4, 4, 4, 0, 0, 0)$$

### Reference

 Chapter 3. Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization (Vol. 6, pp. 479-530). Belmont, MA: Athena scientific.