Universal Conditional Machine

Oleg Ivanov

Variational Autoencoder

 $p_{\theta}(\mathbf{x})$

Transform prior into distribution over objects:

Model Log-Likelihood

$$p_{\theta}(\mathbf{x}) = \mathbf{E}_{\mathbf{z} \sim p(\mathbf{z})} p_{\theta}(\mathbf{x}|\mathbf{z})$$

$$L(\theta) = \mathbf{E}_{\mathbf{x} \sim p_d(\mathbf{x})} \log p_{\theta}(\mathbf{x})$$

Variational Lower Bound

$$L(\theta) \geqslant L(\phi, \theta) =$$

$$= \underset{x \sim p_d(x)}{\mathbf{E}} \left[\underset{z \sim q_{\phi}(z|x)}{\mathbf{E}} \log p_{\theta}(x|z) - KL(q_{\phi}(z|x)||p(z)) \right]$$

Reconstruction term Regularization term

$$L(\phi,\theta) \rightarrow \max_{\phi,\theta}$$

Variational Autoencoder

Latent space visualizations

Variational Autoencoder

- Probabilistic generative model
 - Learns distribution $p_d(\mathbf{x})$
 - Works with both categorical and real features
 - No assumptions on the data distribution
- Semantic latent space
- Fast inference and generation

Conditional Variational Autoencoder

$$p_{\psi,\theta}(\mathbf{y}|\mathbf{x})$$

Model Log-Likelihood

$$p_{\theta}(\mathbf{y}) = \mathbf{E}_{\mathbf{z} \sim p(\mathbf{z})} p_{\theta}(\mathbf{x}|\mathbf{z})$$

$$L(\theta) = \mathbf{E}_{\mathbf{y} \sim \mathbf{p}_{d}(\mathbf{y})} \log \mathbf{p}_{\theta}(\mathbf{y})$$

Model Log-Likelihood

$$p_{\boldsymbol{\psi},\theta}(\boldsymbol{y}|\boldsymbol{x}) = \mathbf{E}_{\boldsymbol{z} \sim \boldsymbol{p}_{\boldsymbol{y}}(\boldsymbol{z}|\boldsymbol{x})} p_{\theta}(\boldsymbol{y}|\boldsymbol{z},\boldsymbol{x})$$

$$L(\boldsymbol{\psi}, \theta) = \mathbf{E}_{\boldsymbol{x}, \boldsymbol{y} \sim \boldsymbol{p}_d(\boldsymbol{x}, \boldsymbol{y})} \log \boldsymbol{p}_{\theta}(\boldsymbol{y} | \boldsymbol{x})$$

Variational Lower Bound

$$L(\theta) \geqslant L(\phi,\theta) = \\ = \underset{y \sim p_d(y)}{\mathbf{E}} \left[\underset{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}{\mathbf{E}} \log p_{\theta}(\mathbf{y}|\mathbf{z}) - \\ -KL(q_{\phi}(\mathbf{z}|\mathbf{y})||p(\mathbf{z})) \right] \\ L(\phi,\theta) \Rightarrow \max_{\phi,\theta} \\ \text{Regularization}$$

Regularization term

Variational Lower Bound

$$L(\boldsymbol{\psi},\boldsymbol{\theta}) \geqslant L(\boldsymbol{\phi},\boldsymbol{\psi},\boldsymbol{\theta}) = \\ = \underset{\boldsymbol{x},\boldsymbol{y} \sim p_d(\boldsymbol{x},\boldsymbol{y})}{\mathbf{E}} \begin{bmatrix} \mathbf{E} \\ \mathbf{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}) & ||p_{\boldsymbol{\psi}}(\boldsymbol{z}|\boldsymbol{x})| \end{bmatrix} \\ -KL(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}) ||p_{\boldsymbol{\psi}}(\boldsymbol{z}|\boldsymbol{x})) \end{bmatrix}$$

$$L(\boldsymbol{\phi},\boldsymbol{\psi},\boldsymbol{\theta}) \Rightarrow \max_{\boldsymbol{\theta},\boldsymbol{\psi},\boldsymbol{\theta}}$$
Regularization term

Conditional Variational Autoencoder

Gaussian Stochastic Neural Network

Motivation:

- 1. Train/test procedure inconsistency
- 2. Gaps in latent space
- 3. Better Monte-Carlo log-likelihood estimations

$$q_{\phi}(\mathbf{z}|\mathbf{x},\mathbf{y}) = p_{\psi}(\mathbf{z}|\mathbf{x}_{1-\mathbf{b}},\mathbf{b})$$

$$L_{GSNN}(\phi, \psi, \theta) = \mathbf{E}_{x, y \sim p_d(x, y)} \mathbf{E}_{z \sim p_{\phi}(z|x)} \log p_{\theta}(y|z, x)$$

$$L_{\textit{hybrid}} \!=\! \alpha \, L_{\textit{CVAE}} \!+\! (1 \!-\! \alpha) L_{\textit{GSNN}}$$

Gaussian Stochastic Neural Network

Gaussian Stochastic Layer

Some motivation pictures

Samples

Conditional Variational Autoencoder

- Learns conditional distribution $p_d(\mathbf{y}|\mathbf{x})$
 - Essential when $p_d(\mathbf{y}|\mathbf{x})$ has several local maximums
- Obtains by conditioning Variational Autoencoder
 - Inherits the majority of its properties
- Has prior network to model prior latent distribution
- Modifications: GSNN, hybrid model

Universal Conditional Machine

$$p_{\psi,\theta}(\mathbf{x}_{I}|\mathbf{x}_{U\setminus I})$$

Problem statement

Test set

Missing features mask

$$b \in \{0,1\}^D$$

 $(0,0,0,0,0)$
 $(0,0,0,1,0)$
 $(0,1,0,0,0)$
 $(0,0,0,0,0)$
 $(0,0,1,1,0)$
 $(0,1,1,0,0)$

Indexation example

$$b = (0, 0, 1, 1, 0)$$

$$x_b = (x_{3}, x_4)$$

$$x_{1-b} = (x_{1}, x_{2}, x_5)$$

Why distributions?

Single imputation causes information loss

Why distributions?

Distribution samples

Mask distribution and model likelihood

•
$$p_{\psi,\theta}(\mathbf{x}_b|\mathbf{x}_{1-b},\mathbf{b}) = \mathbf{E}_{\mathbf{z} \sim p_{\psi}(\mathbf{z}|\mathbf{x}_{1-b},\mathbf{b})} p_{\theta}(\mathbf{x}_b|\mathbf{z},\mathbf{x}_{1-b},\mathbf{b})$$

- User-defined mask distribution $p_b(m{b})$
- "Train set":

$$(\boldsymbol{x}_i, \boldsymbol{b}_i)_{i=1}^N : \boldsymbol{x} \sim p_d(\boldsymbol{x}), \boldsymbol{b} \sim p_b(\boldsymbol{b})$$

Model log-likelihood

$$L(\psi,\theta) = \underset{\substack{\mathbf{x} \sim p_d(\mathbf{x}) \\ \mathbf{b} \sim p_b(\mathbf{b})}}{\mathbf{E}} \log p_{\psi,\theta}(\mathbf{x}_b | \mathbf{x}_{1-b}, \mathbf{b})$$

Variational Lower Bound

$$L(\psi,\theta) \geqslant L(\phi,\psi,\theta) =$$

$$= \underset{\substack{\mathbf{z} \sim p_d(\mathbf{x}) \\ \mathbf{b} \sim p_b(\mathbf{b})}}{\mathbf{E}} \left[\underset{\substack{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x}, \mathbf{b})}}{\mathbf{E}} \log p_{\theta}(\mathbf{x}_b|\mathbf{z}, \mathbf{x}_{1-b}, \mathbf{b}) - \right]$$

$$-KL(q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{b})||p_{\psi}(\boldsymbol{z}|\boldsymbol{x}_{1-\boldsymbol{b}},\boldsymbol{b}))$$

Universal Conditional Machine

Universal Conditional Machine

Gaussian Stochastic Neural Network

Gaussian Stochastic Layer

$$L_{\textit{hybrid}} \!=\! \alpha \, L_{\textit{UCM}} \!+\! (1 \!-\! \alpha) L_{\textit{GSNN}}$$

Missing features in train set

- Missing feature $x_i = \omega$
- Conditioned mask distribution $p_b(\boldsymbol{b}|\boldsymbol{x})$
- $x_i = \omega \Rightarrow p_b(b_i|\mathbf{x}) = 1$
- Missing features marginalization: $x_i = \omega \Rightarrow$

$$\log p_{\theta}(x_i|\mathbf{z},\mathbf{x_{1-b}},\mathbf{b}) = \log \int p_{\theta}(\hat{x}_i|\mathbf{z},\mathbf{x_{1-b}},\mathbf{b}) d\hat{x}_i = \log 1 = 0$$

KL coefficient

Found necessary only for syntetic data

Experiment 1

Missing feature multiple imputation for supervised learning. 50% features of dataset are missed. 10 imputations for UCM, GSNN, MG.

DATASET	Average	XGBoost	UMC	GSNN	MG
Boston	0.505 ± 0.061	0.502 ± 0.056	0.577 ± 0.069	0.563 ± 0.069	0.564 ± 0.055
CONCRETE	0.452 ± 0.042	0.458 ± 0.040	0.494 ± 0.032	0.453 ± 0.030	0.484 ± 0.030
CASP	0.840 ± 0.002	0.842 ± 0.002	0.856 ± 0.002	0.856 ± 0.002	0.850 ± 0.003
WINE	0.230 ± 0.012	0.236 ± 0.008	0.232 ± 0.016	0.243 ± 0.014	0.238 ± 0.011
YEAST	0.423 ± 0.025	0.426 ± 0.026	0.436 ± 0.019	0.419 ± 0.025	0.430 ± 0.019

MG – Multivariate Gaussian

Experiment 2: image inpainting, MNIST

Experiment 2: image inpainting, Omniglot

Experiment 2: image inpainting, CelebA

Experiment 2: image inpainting, CelebA

Experiment 2: image inpainting, CelebA

Universal Conditional Machine

- Learns all conditional distributions $p_d(\mathbf{x_b}|\mathbf{x_{1-b}})$
 - The importance of the conditioning is given by $p_b(\mathbf{b})$
- Further extension of VAE and CVAE
 - Same conditioning technique as in CVAE
 - Lots of slight modifications
- It works!
 - As preprocessing (multiple imputation) for datasets with missing data
 - For image inpainting
 - TBD: image colourization

Saga of hybrid model

$$lpha\,L_{ extit{CVAE}}$$
 + $(1-lpha)L_{ extit{GSNN}}$

GSNN – good or evil?

$$L_{\textit{hybrid}} \!=\! \alpha \, L_{\textit{UCM}} \!+\! (1 \!-\! \alpha) L_{\textit{GSNN}}$$

Motivation:

- 1. Train/test procedure inconsistency
- 2. Gaps in latent space
- 3. Better Monte-Carlo log-likelihood estimations

Log-likelihood estimations

$$\log p_{\psi,\theta}(\mathbf{x}_{b}|\mathbf{x}_{1-b},\mathbf{b}) = \log \mathbf{E}_{\mathbf{z} \sim p_{\psi}(\mathbf{z}|\mathbf{x}_{1-b},\mathbf{b})} p_{\theta}(\mathbf{x}_{b}|\mathbf{z},\mathbf{x}_{1-b},\mathbf{b})$$

Monte-Carlo

$$\approx \log \frac{1}{S} \sum_{i=1}^{S} p_{\theta}(\mathbf{x_b} | \mathbf{z_i}, \mathbf{x_{1-b}}, \mathbf{b})$$

$$\mathbf{z_i} \sim p_{\psi}(\mathbf{z}|\mathbf{x_{1-b}}, \mathbf{b})$$

Importance Sampling

$$\approx \log \frac{1}{S} \sum_{i=1}^{S} \frac{p_{\theta}(\mathbf{x_b}|\mathbf{z_i}, \mathbf{x_{1-b}}, \mathbf{b}) p_{\psi}(\mathbf{z_i}|\mathbf{x_{1-b}}, \mathbf{b})}{q_{\phi}(\mathbf{z}|\mathbf{x}, \mathbf{b})}$$

$$\mathbf{z_i} \sim q_{\phi}(\mathbf{z}|\mathbf{x}, \mathbf{b})$$

Log-likelihood estimations

Метнор	MNIST	Omniglot	CELEBA
UMC IS-10 ²	83 ± 2	275 ± 17	34035 ± 1609
UMC MC- 10^4	98 ± 4	1452 ± 109	41513 ± 2163
$UMC\ MC-10^2$	135 ± 6	2203 ± 150	53904 ± 3121
GSNN MC-10 ⁴	139 ± 3	1199 ± 62	53427 ± 2208
GSNN MC- 10^2	139 ± 3	1200 ± 62	53486 ± 2210
NAIVE BAYES	205	2490	269480

Gaps & overlapping in latent space: XOR

Why don't use Monte-Carlo?

Why don't use Monte-Carlo?

GSNN – good or evil?

True distribution

Saga of hybrid model

- Gaps and overlapping are problems for Gaussian latent space
 - Might be with normalizing flows, etc
- GSNN Monte-Carlo estimations with a few samples are better
 - Monte-Carlo estimator is not precise
 - Needs too many samples to find the region in latent space suitable for the given object
- GSNN can't learn multimodal distribution
 - GSNN might work better with big S at the training stage
- True log-likelihood is better for UCM without any GSNN

Universal Marginalizer

Improved version

$$p_{\theta}(\mathbf{x_i}|\mathbf{x_{U\setminus I}})$$

Mask distribution and model likelihood

- User-defined mask distribution $p_b(\boldsymbol{b})$
- "Train set":

$$(x_i, b_i)_{i=1}^N : x \sim p_d(x), b \sim p_b(b)$$

Model log-likelihood

$$L(\theta) = \mathbf{E}_{\substack{\mathbf{x} \sim \mathbf{p}_d(\mathbf{x}) \\ \mathbf{b} \sim \mathbf{p}_b(\mathbf{b})}} \sum_{i=1}^{D} b_i \log p_{\theta}(\mathbf{x}_i | \mathbf{x}_{1-\mathbf{b}}, \mathbf{b})$$

Universal Marginalizer

$$p_{\theta}(x_i|x_{1-b},b)$$

Joint distribution: chain rule

- Choose $i \in \boldsymbol{b}$
- Sample $x_i \sim p_{\theta}(x_i|x_{1-b}, b)$
- Update $b \leftarrow b e_i$
- Repeat while $b \neq 0$
- Log-likelihood: don't sample X_i , but compute the product of conditional probabilities instead

Here ends the original paper

Joint distribution

- Choose $i \in \boldsymbol{b}$
 - Sequential left to right:

$$\mathbf{e}_{1..i} = (0,0,...,0,1,1,...,1)
p_{\theta}(\mathbf{x}_{b}|\mathbf{x}_{1-b},\mathbf{b}) = \prod_{i \in \mathbf{b}} p_{\theta}(\mathbf{x}_{i}|\mathbf{x}_{1-b \wedge \mathbf{e}_{1..i}},\mathbf{b} \wedge \mathbf{e}_{1..i})$$

Joint distribution

- Choose $i \in \boldsymbol{b}$
 - Sequential left to right
 - At random uni-probable

Joint distribution

- Choose $i \in \boldsymbol{b}$
 - Sequential left to right
 - At random uni-probable
- The distribution over ${m b}$ at test stage is not $p_b({m b})$
- This inconsistency ruins everything
- Need generative process for induced $\hat{p}_b(oldsymbol{b})$

Consistent mask generative process

Generative process for $\hat{p}_b(\boldsymbol{b})$

Choose $i \in \boldsymbol{b}$

Sequential left to right

- $\boldsymbol{b} \sim p_b(\boldsymbol{b})$
- $u \sim U_D[0, 1, ..., \sum b]$
- *j*: uth 1 in **b**
- $\hat{\boldsymbol{b}} = \boldsymbol{b} \wedge \boldsymbol{e}_{1...j}$

At random uni-probable

- $\boldsymbol{b} \sim p_b(\boldsymbol{b})$
- $u \sim U[0,1]$
- $b_0 \sim Bernoulli(u)$
- $\hat{b} = b_0 \circ b$

MNIST inpaintings

Universal Marginalizer

- Needs fast generative process for induced $\hat{p_b}(m{b})$ for given $p_b(m{b})$
 - Allows to keep the training speed for one epoch
- Needs O(D) time to generate sample or estimate likelihood
- Takes into account local dependencies
- The relation to UCM is similar to the relation between VAE and PixelCNN