

练习一 质点运动学

	1. 某质点作直线运动	动的运动学方程为 <i>x</i>	$=2t^3-3t+2$	(SI) ,则该质点	作		
(A)	匀加速直线运动,加	刀加速直线运动,加速度沿 x 轴正方向;					
(B)	匀加速直线运动,加:	速度沿 x 轴负方向;					
(C)	变加速直线运动,加	速直线运动,加速度沿 x 轴正方向;					
(D)	变加速直线运动,加	速度沿 x 轴负方向。					
					[]		
	2. 沿直线运动的某物	勿体,其速度大小与	时间成反比,	则其加速度的大	7.小与速度大小的		
关系	《是:						
(A)	与速度大小成正比;	(B)	与速度大小平	方成正比;			
(C)	与速度大小成反比;	(D)	与速度大小平	方成反比。			
					[]		
	3. 质点作半径为 R 的	的变速圆周运动时的	加速度大小为	J(ν表示任一时	対 刻质点的速率):		
			2				
(A)	dv/dt;	(B	$(\frac{v^2}{R};$				
			1				
(C)	$\frac{dv}{dt} + \frac{v^2}{R}$;	(D	$0)\left[\left(\frac{dv}{dt}\right)^2 + \frac{v^4}{R^2}\right]$	·] ^{1/2} 。			
	dt R		$dt R^2$				
	4. 一质点沿直线运动	h 甘运动类专籍与	$x = At + t^2(S)$	D. 回去↓由 O.	至 2。 的时间问题		
	质点的位移大小为_	,	田 0 至 3s	的时间间隔内,	<u> </u>		
八_	0	-	<u> </u>				
	5. 在 <i>xy</i> 平面内,一						
置久	b,则这质点任意时刻	的加速度为		,位矢为			
(月	月矢量表示)						
	6. 一质点沿 <i>x</i> 轴运动	d,其加速度 a 与位	置坐标的关系	为 $a=1+12x^2$	(SI), 如果质点		
在原	原点处的速度为零,则	其在任意位置处的透	速度大小为		0		
	7. 已知质点的运动	动学方程为 $\vec{r}=4t^2$	$\overrightarrow{i} + (2t+3)\overrightarrow{j}$	(SI) , 则该质。	点的轨道方程为		
		, <i>t</i> = 2s 时速度	为		, $t=2s$ 时加速		
	J						

8. 质点沿x轴作直线运动,加速度a=6t-8 (SI),已知t=0时, $x_0=1$ m, $v_0 = 10 \text{ m} \cdot \text{s}^{-1}$, 求: 此质点的速度及运动方程。

9. 路灯距地面高度为H,行人身高为h,若人在灯下水平路面上O点开始,以匀速 v_0 背向路灯向前行走,如图所示,求(1)人的头顶在地面上的影子 x 与 t 的函数关系;(2) 头顶影子移动的速率。

- 10. 质点沿半径为 0.1m 的圆周运动,其角位置可用下式表示 $\theta = 2 + 4t^3$ (rad),
- 求(1)t = 2s时质点运动的切向加速度和法向加速度的大小;
- (2) θ 等于多少时,质点的总加速度和半径成45°角?

练习二 牛顿力学

1. 有体重相等的甲乙两人,分别抓住一跨过无摩擦的定滑轮的轻柔绳的两端,开始时 处于同一高度并相对于地面静止,现令他们同时开始往上爬,且知甲相对于绳子的速率是乙 相对于绳子速率的两倍,则

- (A) 甲先到达顶部;
- (B) 乙先到达顶部;
- (C) 同时到达顶部;
- (D) 不能确定谁先到达顶部。

]

2. 如图,一个圆锥摆的锥角为 2θ ,以匀角速度旋转,已知摆长为l,则摆动的角速度 为?

- (A) $(g/l\cos\theta)^{1/2}$;
- (B) $(g \tan \theta/l)^{1/2}$;
- (C) $(l\cos\theta/g)^{1/2}$;
- (D) $(l/g \tan \theta)^{1/2}$.

]

Г

3. 水平地面上放一物体 A,它与地面间的滑动摩擦系数为 μ ,现加一恒力 $\overset{
ightarrow}{F}$ 如图所示。

欲使物体 A 有最大加速度,则恒力 \overrightarrow{F} 与水平方向夹角 θ 应满足

- (A) $\sin \theta = \mu$;
- (B) $\cos \theta = \mu$;
- (C) $\tan \theta = \mu$;
- (D) $\cot \theta = \mu$
-]

4. 两个质量相等的小球,由一轻弹簧相连接,再用细线悬挂于天花板上,处于静止状 态,如图所示。将细线剪断的瞬间,球1和球2的加速度分别为

- (A) $a_1 = g$, $a_2 = g$,
- (B) $a_1 = 0$, $a_2 = g$,;
- (C) $a_1 = g$, $a_2 = 0$,
- (D) $a_1 = 2g, a_2 = 0.$

5. 如图,在光滑水平桌面上,有两个物体 A 和 B 紧靠在一起,它们的质量分别为

如用同样大小的水平力从右边推 A,则 A 推 B 的力等于______

- 6. 如图,质量为 m 的摆球 A 悬挂在车架上。求在下述各种情况下,摆线与竖直方向的 夹角 α 和线中的张力T。
 - (1) 小车沿水平方向作匀速运动;
 - (2) 小车沿水平方向作加速度为 a 的运动。

- 7. 如图,设质量m=0.50kg的小球挂在倾角 $\theta=30$ °的光滑斜面上,求
- (1) 当斜面以加速度 $a = 2.0 \text{m·s}^{-2}$ 向右运动时,绳中的张力及小球对斜面的正压力;
- (2) 当斜面的加速度至少为多大时,小球将脱离斜面?

- 8. 一质量为1kg 的物体沿 X 轴无摩擦地运动,设t=0时, $x_0=0$, $v_0=0$,求:
- (1) 物体在力F = 0.3 + 0.4t (N) 的作用下运动了3秒钟,它的速度和加速度增为多大?
- (2) 物体在力F = 0.3 + 0.4x (N)的作用下运动了3米,它的速度和加速度增为多大?

9. 一物体自地面以速率 v_0 竖直上抛。假定空气对物体阻力的大小为 $f = kmv^2$,其中m为物体的质量, k 为常量。试求该物体所能达到的最大高度。

练习三 动量守恒和能量守恒

1. A、B 两木块质量分别为 m_A 和 m_B ,且 $m_B = 3m_A$,两者用一轻弹簧连接后静止于光 滑水平桌面上,如图所示。若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后 两木块运动动能之比为 E_{KA}/E_{KB}

(A) 1/3;

班级

- (B) $\sqrt{3}/3$;
- (C) $\sqrt{3}$;
- (D) 3°

¬ D

Γ

]

- 2. 如图,质量分别为 m_1 和 m_2 的物体 A 和 B,置于光滑水平桌面上,A 和 B 之间连有
- 一轻弹簧,另有质量为 m_1 和 m_2 的物体 C 和 D 分别置于物体 A 和 B 之上,且物体 A 和 C、
- B 和 D 之间的摩擦系数均不为零。首先用外力沿水平方向相向推压 A 和 B,使弹簧被压缩,然后撤去外力,则在 A 和 B 弹开的过程中,对 A、B、C、D 和弹簧组成的系统
- (A) 动量守恒, 机械能守恒;
- (B) 动量不守恒, 机械能守恒;
- (C) 动量不守恒, 机械能不守恒;
- (D) 动量守恒, 机械能不一定守恒。

- 3. 对机械能守恒和动量守恒的条件,正确的是:
- (A) 对系统来说,外力作功为零,则动量和机械能必定同时守恒。
- (B) 对系统来说,外力作功为零,且内力都是保守力,则动量和机械能必定同时守恒;
- (C) 系统不受外力作用,则动量和机械能必定同时守恒;
- (D) 系统不受外力作用,且内力都是保守力,则动量和机械能必定同时守恒。

- 4. 质量 m=1kg 的物体,在坐标原点处从静止出发在水平面内沿 x 轴运动,其所受合力方向与运动方向相同,合力大小为 F=3+4x (SI) ,那么,物体在开始运动的 3m 内,合力所作的功 W= ;且 x=3m 时,其速率 v= 。
 - 5. 一劲度系数为k 的轻弹簧,上端固定,下端悬挂一质量为m 的重物。若使重物自弹

班级	学号		成绩	
簧原长处极其	缓慢地下放,达到平	衡时弹簧的伸长量为 长量为	;若	
		方向不变的力 F=10+20t		的 2s 内,此
		; 若物体的初速度大小		$\overset{ ightarrow}{F}$ 的方向相
7. 一质量	量为 m 的质点,在水 $^{\circ}$	于 平面上以速率ν作半径为 力的冲量大小为	r的匀速圆周运动。	求质点转过
8. 一颗-	子弹在枪筒里前进时角	所受的合力大小为 $F=80$	$00 - \frac{8 \times 10^5}{3} t \text{ (SI)},$	子弹从枪口
射出时的速率	5为 $v = 300m/s$,假证	设子弹离开枪口时合力 网	则好为零,则(1)子	弹走完枪筒
全长所用的时	间 t=	;(2)子弹在枪筒中所	受力的冲量 <i>I</i> =	;
(3) 子弹的原	质量 m=	o		
9. 某弹领	賽不遵守胡克定律, 其	以中的 F 与伸长 x 的关系	为 $F = -20x - 30x^2$	(SI),求
(1) 将弹簧点	从伸长 $x_1 = 0.10$ m 拉伯	伸到伸长 $x_2 = 0.20$ m 时,	外力所需做的功;	
(2) 将弹簧机	黄放在水平光滑桌面上	上,一端固定,另一端系	一个质量为2.0kg的	物体,将弹
簧拉伸到伸长	$x_2 = 0.20$ m,再将物]体由静止释放,求当弹	賽回到 $x_1 = 0.10$ m 时	,物体的速
率。				

为 k, 砂袋与船的作用时间极短, 试求:

- (1) 砂袋抛到船上后,船和砂袋一起开始运动时的速率;
- (2) 砂袋与木船从开始一起运动直到静止所走过的距离。

11. 在半径为 *R* 的光滑球面的顶点处,一质点沿球面开始下滑,取初速度接近于零,试问质点滑到顶点以下高度差为多少时,质点将要脱离球面?

- 12. 一条长为l的细绳,一端 O 固定,另一端系一小球,将小球拉到水平位置后自由释放,当绳子在铅直平面内转过 θ 角时,求:
- (1) 小球的速率; (2) 小球的法向加速度; (3) 绳子对小球的拉力 T的大小。

13. 静止在光滑水平面上的一质量为 M 的车上悬挂一质量为 m 的小球,悬绳长为 l 。 开始时,摆线水平,摆球静止于 A,突然放手,求当摆球运动到摆线呈铅直位置的瞬间,摆球相对于地面的速度大小。

14. 如图所示,用一劲度系数为k的弹簧把质量为 m_1 和 m_2 的两木块 A 和 B 连起来,放置在光滑水平面上,使 A 紧靠墙壁。用力推木块 B 使弹簧压缩 x_0 ,然后释放,已知 $m_1=m$, $m_2=3m$ 。 求

- (1) 释放后, 木块 B 回到弹簧原长处时的速度的大小;
- (2)释放后,A、B两木块速度相等时瞬时速度的大小;
- (3)释放后,弹簧的最大伸长量。

- 15. 质量为m = 5.6g 的子弹 A,以 $v_0 = 501$ m·s⁻¹的速率水平射入一静止在水平面上的质量为M = 2kg 的木块 B 内,A 射入 B 后,B 向前移动了S = 50cm 后停止,求
- (1) B 与水平面间的摩擦系数;
- (2) 子弹射入木块时,木块对子弹所做的功 W_{l} ;
- (3) 子弹对木块所做的功 W_2 ; W_1 与 W_2 大小是否相等? 为什么?

班级

练习四 刚体力学

- 1. 均匀细棒 OA 可绕通过其一端 O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?
- (A) 角速度从小到大, 角加速度从大到小;

学号

- (B) 角速度从小到大, 角加速度从小到大;
- (C) 角速度从大到小, 角加速度从大到小;
- (D) 角速度从大到小, 角加速度从小到大。

- 2. 如图所示,一轻柔绳跨过一定滑轮,两端分别挂质量为 m_1 和 m_2 的重物,且 $m_1 < m_2$,定滑轮是个均质圆盘,质量为M,半径为r,细绳与滑轮无相对滑动,当滑轮沿逆时针方向转动时,绳中的张力:
- (A) 处处相等;

(B) 左边大于右边;

(C)右边大于左边;

(D) 无法判断。

- 3. 假设地球环绕太阳作椭圆运动,则在运动过程中,地球对太阳的:
- (A) 角动量守恒, 机械能守恒;
- (B) 角动量守恒, 机械能不守恒;
- (C) 角动量不守恒, 机械能守恒;
- (D) 角动量不守恒, 机械能不守恒。

4. 如图所示,滑块 A、重物 B 和滑轮 C 的质量分别为 m_A , m_B 和 m_C ,滑轮的半径为 R,滑轮对轴的转动惯量 $J=\frac{1}{2}m_CR^2$,滑块 A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动。滑块 A 的加速度 a=

5. 质量为M、半径为R的转台,可绕通过中心的竖直轴无摩擦地转动。如图所示,质量为m的人,站在转台边缘,开始时人和转盘静止,如果人沿转台边缘走动一周,则人相

班级	学号	姓名	成绩
)=-/\	<u> </u>	_/= 口	J-94-21

- 6. 一飞轮以角速度 ω_0 绕光滑固定轴旋转,飞轮对轴的转动惯量为 J_1 ;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为 $J_2=3J_1$ 。啮合后整个系统的角速度 $\omega=$ ______。
- 7. 如图所示,一轮子半径 $R = 0.5 \,\mathrm{m}$,质量为 $M = 30 \,\mathrm{kg}$,能绕其水平光滑轴转动,细绳一端绕在轮上,另一端悬挂一质量 $m = 10 \,\mathrm{kg}$ 的重物,试求(1)轮子的角加速度;
- (2) 重物的加速度; (3) 细绳的张力;

8. 如图所示,两重物的质量分别为 m_1 和 m_2 ,且 $m_1 > m_2$,均质圆盘定滑轮的半径为r,质量M,轻绳与滑轮间无滑动,滑轮轴上摩擦不计。设开始时系统静止,试求: (1)绳中的张力; (2)滑轮的角加速度; (3)t时刻 m_1 下降的高度。

- 9. 一质量m=6.00kg、长l=1.00m的匀质棒,放在水平桌面上,可绕通过其中心的竖直固定轴转动,对轴的转动惯量 $J=ml^2/12$. t=0时棒的角速度 $\omega_0=10.0rad/s$ 。由于受到恒定的阻力矩的作用,t=20s时,棒停止运动。求
 - (1) 棒的角加速度的大小;
 - (2) 棒所受阻力矩的大小。

- 10. 如图所示,长为l,质量为M 的均匀细杆,可绕水平轴 O 在竖直平面内转动,开始时,细杆自然竖直地悬垂。现有质量为m 的子弹以速度 v_0 射入杆的中点后,以速度 $\frac{2}{3}v_0$ 穿出。求
- (1) 细杆开始运动时的角速度;
- (2) 细杆受打击后能转动的最大角度 θ 。

