Part 1 — Roots and corresponding phase angles of a polynomial

clear

Given the polynomial

$$P(s) = (s^2 + 10s + 24)(s^4 + 26s^3 + 231s^2 + 766s + 560),$$

 $P = 1 \times 7$

1

36

515

3700

13764

23984 • • •

1. we find the roots of the resulting polynomial

P_roots = roots(P)

 $P_{roots} = 6 \times 1$

-10.0000

-8.0000

-7.0000

-6.0000

-4.0000

-1.0000

2. and their corresponding phase angles

P_root_angles_in_deg = rad2deg(angle(P_roots));
tab_P_root_angles = table(P_roots, P_root_angles_in_deg)

tab_P_root_angles = 6×2 table

	P_roots	P_root_angles_in_deg
1	-10	180
2	-8	180
3	-7	180
4	-6	180
5	-4	180
6	-1	180