- 1. Which of the following sets with the corresponding binary operation (denoted by *) forms a Group? If it is not a group, which Group axiom does it violate? If it is a group, is the group abelian?
 - (a) Let $G = \{z \in \mathbb{C} \mid |z| = 1\}$, with the binary operation * denoting the usual complex number multiplication.
 - (b) Let $G = \{A \in \mathbb{R}^{n \times n} \mid A^T = A, A \text{ is invertible}\}$ with the binary operation * denoting usual matrix multiplication.
 - (c) $G = \mathbb{R}$, with $\forall a, b \in G$, $a * b := \exp(a) \cdot \exp(b)$, where \cdot denotes usual real number multiplication.
 - (d) $G = \{0, 1, 2, 3\}$ with the binary operation * denoting multiplication modulo-4.
 - (e) $G = \{1, 2, 3, 4\}$ with the binary operation * denoting multiplication modulo-5.
- 2. For the given sets V, fields \mathbb{F} , and the binary operations +, \cdot , find out whether $(V, +, \cdot)$ forms a vector space over \mathbb{F} or not.
 - (a) Let $V = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$, and $\mathbb{F} = \mathbb{R}$. The binary operations are: + is the same as the addition of vectors in \mathbb{R}^3 , and scalar multiplication \cdot is the same as that of \mathbb{R} with \mathbb{R}^3 .
 - (b) Let $V = \mathcal{C}[a,b]$ be the set of real-valued continuous functions defined on the interval $[a,b] \subset \mathbb{R}$, $\mathbb{F} = \mathbb{R}$, with the following binary operations: $\forall f,g \in V$, (f+g)(x) := f(x) + g(x), $\forall x \in [a,b]$, and $\forall a \in \mathbb{R}$, $\forall f \in V$, $(a \cdot f)(x) := a \times f(x)$, $\forall x \in [a,b]$.
 - (c) Let $V = \mathbb{R}$, $\mathbb{F} = (\mathbb{Z}_2, \oplus, \times)$, where \oplus denotes addition modulo-2, and \times is the usual multiplication. The binary operations are: Addition is the usual real number addition, scalar multiplication is also the usual real number multiplication.
 - (d) Let $V = (0, \infty) \subset \mathbb{R}$, $\mathbb{F} = \mathbb{R}$. The binary operations are as follows: $\forall p, q \in V, p + q := p \times q$, where \times is the usual real number multiplication, and $\forall a \in \mathbb{R}$, $\forall p \in V, a \cdot p = p^a$.
 - (e) $V = \mathbb{C}$, $\mathbb{F} = \mathbb{R}$ with usual complex number addition and multiplication between real and complex numbers defining the two binary operations.