

Figure 5.12: Original drawing by Durer.

disappeared! We leave it as a fun exercise to modify the algorithms involving averaging and differencing to perform k rounds of averaging/differencing. The reconstruction algorithm is a little tricky.

A nice and easily accessible account of wavelets and their uses in image processing and computer graphics can be found in Stollnitz, Derose and Salesin [168]. A very detailed account is given in Strang and and Nguyen [172], but this book assumes a fair amount of background in signal processing.

We can find easily a basis of $2^n \times 2^n = 2^{2n}$ vectors w_{ij} ($2^n \times 2^n$ matrices) for the linear map that reconstructs an image from its Haar coefficients, in the sense that for any $2^n \times 2^n$ matrix C of Haar coefficients, the image matrix A is given by

$$A = \sum_{i=1}^{2^n} \sum_{j=1}^{2^n} c_{ij} w_{ij}.$$

Indeed, the matrix w_{ij} is given by the so-called outer product

$$w_{ij} = w_i(w_j)^{\top}.$$