# Microprocesseurs (MIC)

Chap. 1: Fonctionnement d'un microprocesseur

#### Sommaire

- 1 Les processeurs
- 2 Les cycles du processeur
- Interruptions

### Microprocesseur



#### Intel 80386

- Processeur Intel pour PC ('80s '90s)
- Registres de 32 bits
- Adresses de 32 bits
  - → mémoire jusque 4Gb
- Bus de 32 bits (sauf série SX)
- $\sim$ 4×10<sup>6</sup> instructions par seconde
- i386 : série de CPU compatibles avec 80386
  - 80486, Pentium (586), Pentium Pro (686), Pentium 4 (786), . . .
- Processeur de base dans ce cours



## Intel 80386 : schéma général



# Intel 80386 : dans ce chapitre



## Intel 80386 : registres



## Intel 80386 : registres généraux et EIP



#### Sommaire

- 1 Les processeurs
- 2 Les cycles du processeur
- Interruptions

### Modèle simplifié



- EIP : pointeur d'instruction
- RI : registre d'instruction
- Registres généraux
- Bus
- UAL : unité arithmético-logique
- Horloge
- Incrémenteur

#### Le cycle du processeur



# Unités fonctionnelles du CPU (80386)



Code ASM

boucle: add bl, 10

jmp boucle

Code machine

0x80 0xC3 0x0A

0xEB 0xFB























#### Sommaire

- 1 Les processeurs
- 2 Les cycles du processeur
- 3 Interruptions

### Interruptions - définition

- Interruption automatique du programme en cours
- Exécution d'une « routine de traitement d'interruption » (interrupt handler)
- Retour automatique au programme interrompu

## Types d'interruptions

- Interruptions externes
  - Provoquées par un matériel extérieur
- Interruptions internes (« exceptions »)
  - Provoquées par un programme

#### Interruptions externes

- Exemples :
  - Frappe sur le clavier
  - Arrivée d'un paquet sur le réseau
  - Click sur la souris
  - Fin de lecture sur disque
  - ...

# Interruptions internes

- Exemples :
  - Division par 0
  - Instruction INT
  - •

#### La broche INTR



 Signale au processeur l'arrivée d'une interruption externe

#### La broche INTR



 Signale au processeur l'arrivée d'une interruption externe

#### La broche INTR



 Signale au processeur l'arrivée d'une interruption externe



 La broche INTR est unique



- La broche INTR est unique
- Or plusieurs sources potentielles d'interruptions



- La broche INTR est unique
- Or plusieurs sources potentielles d'interruptions
- ⇒ Il faut sérialiser les interruptions



- La broche INTR est unique
- Or plusieurs sources potentielles d'interruptions
- ⇒ Il faut sérialiser les interruptions
- Rôle du Contrôleur d'interruptions (=PIC : Programmable Interrupt Controller)



- La broche INTR est unique
- Or plusieurs sources potentielles d'interruptions
- ⇒ Il faut sérialiser les interruptions
- Rôle du Contrôleur d'interruptions (=PIC : Programmable Interrupt Controller)
- Exemple: Intel 8259

| -CS   | 1  |               | 28 | □ vcc  |
|-------|----|---------------|----|--------|
| -WR 🗌 | 2  |               | 27 | ☐ A0   |
| -RD 🗌 | 3  |               | 26 | INTA   |
| D7 🗌  | 4  | Intel<br>8259 | 25 | □ IR7  |
| D6 🗆  | 5  |               | 24 | ☐ IR6  |
| D5 🗆  | 6  |               | 23 | ☐ IR5  |
| D4 🗆  | 7  |               | 22 | □ IR4  |
| D3 🗆  | 8  |               | 21 | ☐ IR3  |
| D2 🗌  | 9  |               | 20 | ☐ IR2  |
| D1 🗌  | 10 |               | 19 | ☐ IR1  |
| D0 🗆  | 11 |               | 18 | □ IR0  |
| CAS 0 | 12 |               | 17 | ☐ INT  |
| CAS 1 | 13 |               | 16 | SP/-EN |
| GND 🗌 | 14 |               | 15 | CAS 2  |

Exemple: Intel 8259

 Relié aux périphériques via bornes IR(Q)

| -CS 🗌           | 1  |               | 28 | □ vcc  |
|-----------------|----|---------------|----|--------|
| -WR             | 2  |               | 27 | ☐ A0   |
| -RD 🗌           | 3  |               | 26 | INTA   |
| D7 🗌            | 4  |               | 25 | □ IR7  |
| D6 🗌            | 5  | Intel<br>8259 | 24 | ☐ IR6  |
| D5 🗆            | 6  |               | 23 | 🗌 IR5  |
| D4 🗌            | 7  |               | 22 | □ IR4  |
| D3 🗌            | 8  |               | 21 | ☐ IR3  |
| D2 🗌            | 9  |               | 20 | ☐ IR2  |
| D1 🗌            | 10 |               | 19 | ☐ IR1  |
| D0 🗆            | 11 |               | 18 | ☐ IR0  |
| CAS 0           | 12 |               | 17 | ☐ INT  |
| CAS 1 $\square$ | 13 |               | 16 | SP/-EN |
| GND 🗌           | 14 |               | 15 | CAS 2  |

- Relié aux périphériques via bornes IR(Q)
- Envoie les demandes d'interruptions une par une au CPU (borne INT)

| -CS   | 1  |               | 28 | □ vcc  |
|-------|----|---------------|----|--------|
| -WR   | 2  |               | 27 | ☐ A0   |
| -RD 🗌 | 3  |               | 26 | -INTA  |
| D7 🗌  | 4  |               | 25 | □ IR7  |
| D6 🗌  | 5  | Intel<br>8259 | 24 | ☐ IR6  |
| D5 🗆  | 6  |               | 23 | 🗌 IR5  |
| D4 🗌  | 7  |               | 22 | □ IR4  |
| D3 🗌  | 8  |               | 21 | ☐ IR3  |
| D2 🗌  | 9  |               | 20 | ☐ IR2  |
| D1 _  | 10 |               | 19 | 🗌 IR1  |
| D0 🗆  | 11 |               | 18 | □ IR0  |
| CAS 0 | 12 |               | 17 | ☐ INT  |
| CAS 1 | 13 |               | 16 | SP/-EN |
| GND 🗌 | 14 |               | 15 | CAS 2  |

- Relié aux périphériques via bornes IR(Q)
- Envoie les demandes d'interruptions une par une au CPU (borne INT)
- Programmable pour donner des priorités différentes à chaque périphérique

| -CS   | 1  |       | 28 | □ vcc  |
|-------|----|-------|----|--------|
| -WR □ | 2  |       | 27 | ☐ A0   |
| -RD 🗌 | 3  |       | 26 | -INTA  |
| D7 🗌  | 4  | Intel | 25 | □ IR7  |
| D6 🗌  | 5  |       | 24 | ☐ IR6  |
| D5 🗆  | 6  |       | 23 | 🗌 IR5  |
| D4 🗌  | 7  |       | 22 | □ IR4  |
| D3 🗌  | 8  | 8259  | 21 | ☐ IR3  |
| D2 🗌  | 9  |       | 20 | ☐ IR2  |
| D1 🗌  | 10 |       | 19 | ☐ IR1  |
| D0 🗆  | 11 |       | 18 | ☐ IR0  |
| CAS 0 | 12 |       | 17 | ☐ INT  |
| CAS 1 | 13 |       | 16 | SP/-EN |
| GND 🗆 | 14 |       | 15 | CAS 2  |
|       |    |       |    |        |

- Relié aux périphériques via bornes IR(Q)
- Envoie les demandes d'interruptions une par une au CPU (borne INT)
- Programmable pour donner des priorités différentes à chaque périphérique
- PIC= Programmable Interrupt Controller

#### Les IRQ



- IRQ0 timer programmable
- IRQ1 clavier
- IRQ2 mise en cascade d'un 2<sup>e</sup> PIC
- IRQ3 port série
- IRQ4 port série
- IRQ5 port parallèle
- IRQ6 disque floppy
- IRQ7 port parallèle



#### Deux PIC en cascade



 Permet d'augmenter le nombre d'IRQ

# Le flag IF

- Si IF=0, le CPU est non-interruptible
- SI IF=1, le CPU est interruptible
- CLI: instruction pour mettre IF à 0
- STI: instruction pour mettre IF à 1
- CLI/STI : utilisés par l'OS



#### L'instruction IRET

- Exécutée en fin de handler d'interruption
- Permet de revenir au programme interrompu
  - Restaure l'ancien EIP
  - Restaure les anciens registres
  - ...

# Numéros d'interruptions (80386)

- Chaque type d'interruption a un numéro (« vecteur »)
- 256 types différents
- 0-31 : réservés pour des exceptions
  - 0 : division par 0
  - 6 : opcode non-défini
  - ...
- 32-255 :
  - Définis par l'OS
  - Programmés dans le PIC (interruptions externes)

# Cycle du processeur avec interruptions



# Le polling (scrutation)



- Exemple : traitement de texte
- Comment détecter une frappe au clavier sans interruptions?
- Seule solution : le polling
- Problème : attente active



 Arrivée de l'interruption sur INTR



 Arrivée de l'interruption sur INTR



 Arrivée de l'interruption sur INTR



- Arrivée de l'interruption sur INTR
- Accusé de réception sur INTA





- Arrivée de l'interruption sur INTR
- Accusé de réception sur INTA
- Envoi du n° d'interruption sur bus de données

# Table d'interruptions

- Contient les adresses des handlers d'interruptions
- Indexée par le numéro d'interruption
- Dans la RAM
- Gérée par l'OS
- Détails : leçon ultérieure et cours de Systèmes

# Table d'interruptions : schéma général

