Задачи к лекции 9

- **1.** Найдите все натуральные числа $n \in \{1, 2, ..., 10\}$, для которых существует конечное поле из n элементов.
- **2.** Составьте таблицы сложения и умножения в поле \mathbb{F}_4 .
- 3. Постройте явно поле из 9 элементов.
- **4.** Проверьте, что многочлены $x^3 + x^2 + 1$ и $x^3 + x + 1$ неприводимы над \mathbb{Z}_2 , и установите явно изоморфизм между полями $\mathbb{Z}_2[x]/(x^3 + x^2 + 1)$ и $\mathbb{Z}_2[x]/(x^3 + x + 1)$.
- **5.** Постройте граф включений подполей поля \mathbb{F}_{4096} .
- **6.** Чему равна сумма всех элементов поля \mathbb{F}_q ? Чему равно произведение всех ненулевых элементов поля \mathbb{F}_q ?
- 7. Пусть $q=p^n$. Докажите, что в поле \mathbb{F}_q каждый элемент имеет ровно один корень степени p.
- 8. Пусть K конечное поле. Постройте явно многочлен сколь угодно высокой степени с коэффициентами в K, у которого в поле K нет корней.
- **9.** Пусть $\psi \colon \mathbb{F}_q \to \mathbb{F}_q$ произвольное отображение. Докажите, что найдётся такой многочлен $f(x) \in \mathbb{F}_q[x]$ степени меньше q, что $f(a) = \psi(a)$ для каждого $a \in \mathbb{F}_q$.
- **10.** Докажите, что группа автоморфизмов конечного поля \mathbb{F}_q порождается автоморфизмом Фробениуса. Каков порядок этой группы?

Домашнее задание

- **1.** Постройте явно поле \mathbb{F}_8 и составьте для него таблицы сложения и умножения.
- **2.** Реализуем поле \mathbb{F}_9 в виде $\mathbb{Z}_3[x]/(x^2+1)$. Перечислите в этой реализации все элементы данного поля, являющиеся порождающими циклической группы \mathbb{F}_9^{\times} .
- **3.** Проверьте, что многочлены x^2+1 и y^2-y-1 неприводимы над \mathbb{Z}_3 , и установите явно изоморфизм между полями $\mathbb{Z}_3[x]/(x^2+1)$ и $\mathbb{Z}_3[y]/(y^2-y-1)$.
- **4.** Пусть p простое число, $q = p^n$ и $\alpha \in \mathbb{F}_q$. Докажите, что если многочлен $x^p x \alpha \in \mathbb{F}_q[x]$ имеет корень, то он разлагается на линейные множители.