- U ist ein Untervektor von V, wenn:
 - U⊆V \neq {}: (V, +, *) ein K-VR
 - U erbt +,* von V
 - U abgeschlossen bezüglich +,*
 - * kann Teilmenge U mit +,* nicht verlassen
 - $* a + b \in U$
 - * λu∈U
- Ist U ein Unter-K-VR von (V,+,*) ==> (U,+,*) ist ein K-VR
- \bullet Geraden in \mathbb{R}^n durch den Ursprung sind lineare Teilräume von \mathbb{R}^n

$$- \ \mathrm{U} {:} \{ (a_1, a_2) \in \mathbb{R}^2 : 3a_1 - 4a_2 = 0 \} {\subseteq} \mathbb{R}^2$$

- Ebene:
 - U: $\{(a_1,a_2,a_3)\in\mathbb{R}^3: 2a_1-2a_2+a_3=0\}\subseteq\mathbb{R}^3$

Kriterien

- 1. Teilraumkriterium
 - $(U,+,*) \subseteq V$ und abg. bzgl. +,* ==> (U,+,*) ist K-VR
- 2. Abgeschlossenheit
 - kann zu $\lambda a + \mu b \in U$ zusammengefasst werden
- 3. $U = \{ \vec{0} \}$ ist Unter-VR jedes VR

Durchschnitt/Vereinigung/Summe von Teilräumen

- Der Durchschnitt zweier Teilräume von V ist Teilraum von V
- Die Vereinigung zweier Teilräume von V kann Teilraum von V sein
- Die Summe zweier Teilräume von V ist Teilraum von V

[[Allgemeine Vektorräume]]