Amendments to the Claims

1. (Currently Amended). A compound having a formula I,

$$Z \xrightarrow{A_3} Y \xrightarrow{R^1} A_2 \xrightarrow{(R^3)_r} E_1 \xrightarrow{E_2} A_1 \xrightarrow{Q}$$

$$E_3 \xrightarrow{E_4} E_5 \xrightarrow{R^4} R^5$$

$$I$$

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

A₁ is: a bond, CH₂, O or S, and wherein A₁ and R⁴ or A₁ and R⁵ together being a 3- to 6-membered carbocyclyl when A₄ is a carbon;

A₂ and A₃ are independently: CH₂, O or S;

 E_1 , E_2 , E_3 , E_4 and E_5 are each CH or substituted carbon bearing A_2 and R^3 ; or at least one of E_1 , E_2 , E_3 , E_4 and E_5 is nitrogen and each of others being CH or substituted carbon bearing A_2 and R^3 ;

Q is: $-C(O)OR^6$, or R^{6A} ;

Y is: a bond, or C_1 - C_6 alkyl-or C_3 - C_6 cycloalkyl;

- Z is: a) <u>phenyl-T-pyridinyl or naphthyl-T-pyridinyl each optionally substituted with one or more R</u>⁷; wherein T is a single bond, C or O; aryl;
 - a 5 to 10 membered heteroaryl wherein the heteroaryl containing at least one heteroatom selected from N, O or S,
 - e) bi aryl, wherein biaryl being defined as aryl substituted with another aryl or aryl substituted with heteroaryl, or
 - d) bi-heteroaryl, wherein bi-heteroaryl being defined as heteroaryl substituted with another heteroaryl, or heteroaryl substituted with aryl, and wherein aryl, heteroaryl, bi-aryl and bi-heteroaryl being optionally substituted with one or more groups independently selected from R²;

```
n is: 1, 2, 3, 4, 5 or 6
p is: 1 or 2;
r is: 1, 2, 3, or 4;
```

R¹ and R² are each independently:

hydrogen,
haloalkyl,

C₁-C₆ alkyl,

(CH₂)_nC₃-C₈ cycloalkyl, or

R⁴ and R² form a 4 to 8 membered nonaromatic carbocyclic ring; and

wherein at least one of R¹ and R² is alkyl or cycloalkyl, and;

R³ is: hydrogen,
nitro,
cyano,
hydroxyl,
halo,
haloalkyl,
haloalkyloxy,
aryloxy,
C1-C6 alkyl,
C1-C6 alkoxy, or
C3-C8 cycloalkyl;

R⁴ and R⁵ are each independently: hydrogen or C₁-C₆ alkyl;

R⁶ is: hydrogen, C₁-C₆ alkyl or aminoalkyl;

R^{6A}-is: carboxamide, sulfonamide, acylsulfonamide, tetrazole,

R⁷ is: hydrogen,

oxo,

nitro,

cyano,

hydroxyl,

halo,

haloalkyl,

haloalkyloxy,

aryloxy,

arylalkyl,

aminoalkyl,

C₁-C₆ alkyl,

C₁-C₆ alkoxy,

(CH₂)_nC₃-C₈ cycloalkyl,

 $C(O)R^9$,

 $C(O)OR^9$,

 $C(=NOR^8)R^9$,

 $CR^8(OH)R^9$,

 $C[=C(R^8)_2]R^9$,

OR⁹,

SR⁹ or

 $S(O)_pR^9$;

R⁸ is: hydrogen or C₁-C₆ alkyl; and

R⁹ is: hydrogen,

C₁-C₆ alkyl,

C₃-C₈ cycloalkyl,

aryl,

heteroaryl or

heterocyclyl,

wherein alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl being optionally substituted with one or more substituents selected from the group consisting of:

hydrogen, nitro, cyano, hydroxyl, halo, haloalkyl, haloalkyloxy, aryloxy, oxo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and C_3 - C_8 cycloalkyl.

2. (Currently Amended). The compound of Claim 1, wherein the compound is represented by a compound of formula II,

$$Z \xrightarrow{Q} Y \xrightarrow{R^1 \quad R^2} A_1 \xrightarrow{Q} A_1 \xrightarrow{Q} II$$

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

A₁ is: a bond, CH₂, O or S, and wherein A₁ and R⁴ or A₄ and R⁵ together being a 3- to 6membered carbocyclyl when A₄ is a carbon;

A₂ is: O or S or CH₂;

Q is: $-C(O)OR^6$, or R^{6A} ;

Y is: a bond or, C_1 - C_6 alkyl-or C_3 - C_6 eyeloalkyl;

Z is: <u>phenyl-T-pyridinyl or naphthyl-T-pyridinyl each optionally substituted with one or more</u>

R⁷; wherein T is a single bond, C or O;a) — aryl;

b) a 5 to 10 membered heteroaryl wherein the heteroaryl containing at least one heteroatom selected from N, O or S,

e) bi-aryl, wherein biaryl being defined as aryl substituted with another aryl or aryl substituted with heteroaryl, or _____

d) bi heteroaryl, wherein bi heteroaryl being defined as heteroaryl substituted with another heteroaryl, or heteroaryl substituted with aryl, and wherein aryl, heteroaryl, bi aryl and bi heteroaryl being optionally substituted with one or more groups independently selected from R²;

```
n is: 1, 2, 3, 4, 5 or 6
p is: 1 or 2;
```

r is: 1, 2, 3, or 4;

R¹ and R² are each independently:

hydrogen,

haloalkyl,

 C_1 - C_6 alkyl;

(CH₂)_nC₃-C₈-eyeloalkyl, or

R⁴ and R² form a 4– to 8–membered nonaromatic carbocyclic ring; and wherein at least one of R⁴ and R² is alkyl or cycloalkyl, and;

R³ is: hydrogen,

nitro,

cyano,

hydroxyl,

halo,

haloalkyl,

haloalkyloxy,

aryloxy,

C₁-C₆ alkyl,

C₁-C₆ alkoxy or

C₃-C₈ cycloalkyl;

R⁴ and R⁵ are each independently: hydrogen or C₁-C₆ alkyl;

R⁶ is: hydrogen, C₁-C₆ alkyl or aminoalkyl;

R^{6A}-is: carboxamide, sulfonamide, acylsulfonamide, tetrazole,

R⁷ is: hydrogen,

oxo,

nitro,

cyano,

hydroxyl,

halo,

haloalkyl,

haloalkyloxy,

aryloxy,

arylalkyl,

aminoalkyl,

C₁-C₆ alkyl,

C₁-C₆ alkoxy,

(CH₂)_nC₃-C₈ cycloalkyl,

 $C(O)R^9$,

 $C(O)OR^9$,

 $C(=NOR^8)R^9$,

 $CR^8(OH)R^9$,

 $C[=C(R^8)_2]R^9$,

OR⁹,

SR⁹ or

 $S(O)_pR^9$;

R⁸ is: hydrogen or C₁-C₆ alkyl; and

R⁹ is: hydrogen,

C₁-C₆ alkyl,

C₃-C₈ cycloalkyl,

aryl,

heteroaryl or

heterocyclyl,

wherein alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl being optionally substituted with one or more substituents selected from the group consisting of:

hydrogen, nitro, cyano, hydroxyl, halo, haloalkyl, haloalkyloxy, aryloxy, oxo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and C_3 - C_8 cycloalkyl.

3. (<u>Currently Amended</u>). The compound of Claim 2, wherein Z is <u>an</u> optionally substituted <u>phenyl or naphthyl, furanyl, imidazolyl, indolyl, oxazolyl, isoxazolyl, pyridyl, pyridyl, thiazolyl, thiazolyl, thiophenyl, benzofuranyl, benzothiophenyl, benzoisoxazolyl, quinolinyl, isoquinolinyl or a structural formula selected from following:</u>

wherein T is:

$$\begin{split} \text{a bond, } & (\text{CH}_2)_q\text{O., } \cdot \text{O}(\text{CH}_2)_q\text{., } \cdot \text{C}(\text{O})(\text{CH}_2)_q\text{., } \cdot (\text{CH}_2)_q\text{C}(\text{O})\text{., } \cdot (\text{CH}_2)_q\text{S., } \cdot \text{S}(\text{CH}_2)_q\text{., } \cdot \text{S}[\text{O}]_{p_q}, \\ & \cdot (\text{C}_1\text{-C}_3\text{-alkyl})\text{., } \cdot (\text{CH}_2)_q\text{C}(\text{=CH}_2)\text{., } \cdot \text{C}(\text{=CH}_2)(\text{CH}_2)_q\text{., } \cdot (\text{CH}_2)_q\text{C}(\text{=NOH})\text{., } \\ & \cdot (\text{C}_1\text{-C}_3\text{-alkyl})\text{., } \cdot (\text{CH}_2)_q\text{C}(\text{=NOCH}_3)\text{., } \cdot (\text{CH}_2)_q\text{., } \cdot (\text{CH}_2)_q\text{.. } \cdot (\text{CH}_$$

 $\frac{1}{9}$ is: 0, 1, 2 or 3; and

rings b to 1 rings g and h are each optionally substituted with one or more groups independently selected from the group consisting of:

hydrogen, oxo, nitro, cyano, hydroxyl, halo, haloalkyl, haloalkyloxy, aryloxy, arylalkyl, aminoalkyl, $S(O)_2R^9$, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and $(CH_2)_nC_3$ - C_8 cycloalkyl.

- 4. (Canceled)
- 5. (Withdrawn). The compound of Claim 2, wherein the compound is represented by structural formula IV,

$$R^1$$
 $COOR^6$
 $COOR^6$
 $COOR^6$
 $COOR^6$
 $COOR^6$
 $COOR^6$
 $COOR^6$

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

 A_1 and A_2 are respectively:

O and O,

CH₂ and O,

CH₂ and S,

O and S or

S and O;

m is: 1 or 2;

 R^1 is: C_1 - C_3 alkyl;

R³ is: hydrogen, halo or C₁-C₆ alkyl;

R⁶ and R⁹ are each independently: hydrogen or C₁-C₆ alkyl;

T is: a bond, -O-, -C(O)-, -S(O)- $-S(O)_2$ -, $-C(=CH_2)$ -, -C(=NOH)- or -CH(OH)-; and rings b and c are each optionally substituted with one or more groups independently selected from:

hydrogen, oxo, nitro, cyano, hydroxyl, halo, haloalkyl, haloalkyloxy, aryloxy, arylalkyl, aminoalkyl, S(O)₂R⁹, C₁-C₆ alkyl, C₁-C₆ alkoxy and (CH₂)_nC₃-C₈ cycloalkyl.

6. (Withdrawn). The compound of Claim 5, wherein the compound is represented by structural formula V,

$$R^{1}$$
 $COOH$
 $COOH$
 $COOH$
 $COOH$

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

T is: a bond, -O- or -C(O)-;

R¹ is: methyl, ethyl or cyclopropyl;

R³ is: methyl or ethyl; and

rings b and c are each optionally substituted with one or more substituent independently selected from the group consisting of: hydrogen, Cl, Br, CF₃, OCF₃, methyl, ethyl, isopropyl, $N(CH_3)_2$, $S(O)_2CH_3$, methoxy and cyclopropyl.

7. (Withdrawn). The compound of Claim 6, wherein the compound is represented by a structural formula VI,

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{O} \end{array} \begin{array}{c} \text{COOH} \\ \text{VI} \end{array}$$

or a pharmaceutically acceptable salt, solvate or hydrate thereof.

- 8. (Canceled)
- 9. (Canceled)

10. (Currently amended). The compound of Claim 2, wherein the compound is represented by structural formula VIII,

$$R^{1}$$
 $COOR^{6}$
 CH_{2}
 A_{1}
 $COOR^{6}$

VIII

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

O and O,

CH₂ and O,

 A_1 and A_2 are respectively:

CH₂ and S,

O and S or

S and O;

m is: 1 or 2;

R¹ is: C₁-C₃ alkyl; and

 R^3 is: hydrogen, halo or C_1 - C_6 alkyl;

R⁶ and R⁹ are each independently: hydrogen or C₁-C₆ alkyl;

T is: a <u>bond or bond</u>, O-, -C(O), -S(O) $-S(O)_2$, $-C(-CH_2)$, -C(-NOH) or -CH(OH); and ring b is optionally substituted with one or more groups independently selected from:

hydrogen, oxo, nitro, cyano, hydroxyl, halo, haloalkyl, haloalkyloxy, aryloxy, arylalkyl, aminoalkyl, $S(O)_2R^9$, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and $(CH_2)_nC_3$ - C_8 cycloalkyl.

11. (Previously Presented). The compound of Claim 10, wherein the compound is represented by structural formula IX,

$$R^3$$
COOH

IX

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

 R^1 is C_1 - C_3 alkyl;

R³ is: hydrogen, halo or C₁-C₄ alkyl;

ring b is optionally substituted with one or more groups independently selected from the group consisting of: hydrogen, halo, haloalkyl, haloalkyloxy and C₁-C₆ alkyl.

12. (Previously Presented). The compound of Claim 11, wherein the compound is represented by structural formula X,

$$CF_3$$
 CH_3
 CH_3
 $COOH$
 X

or a pharmaceutically acceptable salt, solvate or hydrate thereof.

13. (Previously Presented). The compound of Claim 11, wherein the compound is represented by structural formula XI,

$$H_3C$$

$$CH_3$$

$$CH_3$$

$$XI$$

14. (Withdrawn). The compound of Claim 2, wherein the compound is represented by structural formula XII,

$$\begin{array}{c|c}
 & R^3 \\
 & R^4 \\
 & R^5
\end{array}$$

XII

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

 A_1 and A_2 are respectively:

O and O,

CH₂ and O,

CH₂ and S,

O and S or

S and O;

m is: 1 or 2;

R¹ is: C₁-C₃ alkyl; and

R³ is: hydrogen, halo or C₁-C₆ alkyl;

R⁴, R⁵, R⁶ and R⁹ are each independently: hydrogen or C₁-C₆ alkyl;

rings k and l are each optionally substituted with one or more groups independently selected from:

hydrogen, oxo, nitro, cyano, hydroxyl, halo, haloalkyl, haloalkyloxy, aryloxy, arylalkyl, aminoalkyl, $S(O)_2R^9$, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and $(CH_2)_nC_3$ - C_8 cycloalkyl.

15. (Canceled)

16. (Previously Presented). The compound of Claim 2, wherein the compound is represented by structural formula XIII,

$$Z \underbrace{ \begin{array}{c} (R^3)_r \\ (CH_2)_m \end{array}}_{A_2} \underbrace{ \begin{array}{c} A_1 \\ R^4 \end{array} }_{R^5} \underbrace{ \begin{array}{c} COOR^6 \\ R^4 \end{array} }_{R^5}$$

XIII

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein m is 1, 2, 3, or 4.

17. (Canceled).

18. (Withdrawn). The compound of Claim 16, wherein the compound is represented by structural formula XV,

$$R^2$$
 $COOH$
 C

XV

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

T is: a bond, O or C(O);

R² is: methyl, ethyl or cyclopropyl;

R³ is: methyl or ethyl; and

rings b and c are each optionally substituted with one or more substituent independently selected from the group consisting of: hydrogen, Cl, Br, CF₃, OCF₃, N(CH₃)₂, S(O)₂CH₃, methyl, ethyl, isopropyl, methoxy and cyclopropyl.

19. (Currently Amended). The compound of Claim 2, wherein the compound is represented by structural formula XVI,

XVI

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein Y is a branched alkyl-or C₃-C₆-cycloalkyl.

- 20. (Canceled).
- 21. (Withdrawn). The compound of Claim 19, wherein the compound structural formula XVIII,

$$\begin{array}{c|c} R^3 \\ \hline \\ COOH \\ \hline \\ C \end{array}$$

XVIII

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

T is: a bond, O or C(O);

R³ is: methyl or ethyl;

R^{9a} and R^{9b} are each independently hydrogen, methyl or ethyl, wherein at least one of R^{9a} and R^{9b} being methyl or ethyl;

rings b and c are each optionally substituted with one or more substituent independently selected from the group consisting of: hydrogen, Cl, Br, CF₃, OCF₃, S(O)₂CH₃, N(CH₃)₂, methyl, ethyl, isopropyl, methoxy and cyclopropyl.

22. (Canceled).

23. (Withdrawn). The compound of Claim 1, wherein the compound is a compound of formula XX,

$$Z \xrightarrow{Q} Y \xrightarrow{R^1} A_2 \xrightarrow{(R^3)_r} A_1 \xrightarrow{Q} XX$$

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

A₁ is: a bond, CH₂, O or S, and wherein A₁ and R⁴ or A₁ and R⁵ together being a 3- to 6-membered carbocyclyl when A₁ is a carbon;

A₂ is: O or S or CH₂;

Q is: $-C(O)OR^6$, or R^{6A} ;

Y is: a bond, C₁-C₆ alkyl or C₃-C₆ cycloalkyl;

Z is: a) aryl;

- b) a 5- to 10-membered heteroaryl wherein the heteroaryl containing at least one heteroatom selected from N, O or S,
- c) bi-aryl, wherein biaryl being defined as aryl substituted with another aryl or aryl substituted with heteroaryl, or
- d) bi-heteroaryl, wherein bi-heteroaryl being defined as heteroaryl substituted with another heteroaryl, or heteroaryl substituted with aryl, and wherein aryl, heteroaryl, bi-aryl and bi-heteroaryl being optionally substituted with one or more groups independently selected from R⁷;

```
n is: 1, 2, 3, 4, 5 or 6
```

p is: 1 or 2;

r is: 1, 2, 3, or 4;

R¹ and R² are each independently:

hydrogen,

haloalkyl,

C₁-C₆ alkyl,

(CH₂)_nC₃-C₈ cycloalkyl, or

R¹ and R² form a 4- to 8-membered nonaromatic carbocyclic ring; and wherein at least one of R¹ and R² is alkyl or cycloalkyl, and;

R³ is: hydrogen,

nitro,

cyano,

hydroxyl,

halo,

haloalkyl,

haloalkyloxy,

aryloxy,

C₁-C₆ alkyl,

C₁-C₆ alkoxy or

C₃-C₈ cycloalkyl;

R⁴ and R⁵ are each independently: hydrogen or C₁-C₆ alkyl;

R⁶ is: hydrogen, C₁-C₆ alkyl or aminoalkyl;

R^{6A} is: carboxamide, sulfonamide, acylsulfonamide, tetrazole,

R⁷ is: hydrogen,

oxo,

nitro,

cyano,

hydroxyl,

halo,

haloalkyl,

haloalkyloxy,

aryloxy,

arylalkyl,

aminoalkyl,

C₁-C₆ alkyl,

C₁-C₆ alkoxy,

(CH₂)_nC₃-C₈ cycloalkyl,

 $C(O)R^9$,

 $C(O)OR^9$,

 $C(=NOR^8)R^9$,

 $CR^8(OH)R^9$,

 $C[=C(R^8)_2]R^9$,

OR⁹,

SR⁹ or

 $S(O)_pR^9$;

R⁸ is: hydrogen or C₁-C₆ alkyl; and

R⁹ is: hydrogen,

C₁-C₆ alkyl,

C₃-C₈ cycloalkyl,

aryl,

heteroaryl or

heterocyclyl,

wherein alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl being optionally substituted with one or more substituents selected from the group consisting of:

hydrogen, nitro, cyano, hydroxyl, halo, haloalkyl, haloalkyloxy, aryloxy, oxo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and C_3 - C_8 cycloalkyl.

- 24. (Canceled).
- 25. (Canceled).
- 26. (Withdrawn). The compound of Claim 23, wherein the compound is a compound of structural formula XXII,

$$\begin{array}{c|c} & R^3 \\ \hline b \\ O \end{array} \begin{array}{c} R^1 \\ \hline COOH \\ \hline XXIII \end{array}$$

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein:

T is: a bond, -O- or -C(O)-;

R¹ is: methyl, ethyl or cyclopropyl;

R³ is: methyl or ethyl; and

rings b and c are each optionally substituted with one or more substituent independently selected from the group consisting of: hydrogen, Cl, Br, CF₃, OCF₃, S(O)₂CH₃, N(CH₃)₂, methyl, ethyl, isopropyl, methoxy and cyclopropyl.

27. (Withdrawn). The compound of Claim 1, wherein the compound is a compound of structural formula XXIII,

$$R^{1}$$
 $COOR^{6}$
 $COOR^{6}$

or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein: A_1 and A_2 are respectively:

O and O,

CH₂ and O,

CH₂ and S,

O and S or

S and O;

m is: 1, 2, 3 or 4;

R¹ is: C₁-C₃ alkyl; and

R³ is: hydrogen, halo or C₁-C₆ alkyl;

R⁶ and R⁹ are each independently: hydrogen or C₁-C₆ alkyl;

T is: a bond, -O-, -C(O)-, -S(O) –S(O)₂-, -C(=CH₂)-, -C(=NOH)- or -CH(OH)-; and rings b and c are each optionally substituted with one or more groups independently selected from:

hydrogen, oxo, nitro, cyano, hydroxyl, halo, haloalkyl, haloalkyloxy, aryloxy, arylalkyl, aminoalkyl, $S(O)_2R^9$, C_1 - C_6 alkyl, C_1 - C_6 alkoxy and $(CH_2)_nC_3$ - C_8 cycloalkyl.

28. (Canceled).

29. (Currently Amended). A compound of Claim 1 selected from the group consisting of:

		1
	Structure	<u>Name</u>
1	H ₃ C OH OH	3-{4-[3-(2-Benzoyl-4-ethyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic
2	H ₃ C OH ₃	{4 [3 (2-Benzoyl-4-ethyl-phenoxy) butoxy] 2-methyl-phenoxy} acetic acid
3	H ₃ C OH ₃ OH	{4 [3 (2 Benzoyl 4 ethyl-phenoxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic acid

	Structure	<u>Name</u>
4	H ₃ C CH ₃ OH	{4-[3-(2-Benzoyl-4-ethyl-phenoxy) butoxy]-2-methyl-phenylsulfanyl}-acetic acid
5	H ₃ C CH ₃ OH	{4-[3-(2-Benzoyl-4-ethyl-phenoxy)-butylsulfanyl]-2-methyl-phenoxy}-acetic
6	H ₃ C S OH	3-{4-[3-(2-Benzoyl-4-ethyl-phenoxy)-butylsulfanyl]-2-methyl-phenyl}-propionic
7	H ₃ C CH ₃ OH H ₃ C CH ₃	2-{4-[3-(2-Benzoyl-4-ethyl-phenoxy)-butoxy]-2-methyl-phenoxy}-2-methyl-propionic acid
8	H ₃ C O O O O O O O O O O O O O O O O O O O	{4 [3 (2 Benzoyl 4 ethyl phenoxy) butoxy] phenoxy} acetic acid

	Structure	<u>Name</u>
9	H ₃ C CH ₃ OH	3-{4-[3-(2-Benzoyl-4-isopropyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
10	Chiral Chiral OH OH	3-{4-[3-(2-Benzoyl-4-eyelopropyl-phenoxy)-butoxy] 2-methyl-phenyl}-propionic acid
11	F CH ₃ OH	3-{4-[3-(2-Benzoyl-4-trifluoromethyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
12	CI—O—O—O—O—OH	3-{4-[3-(2-Benzoyl-4-ehloro-phenoxy)-butoxy]-2-methyl-phenyl}-propionic
13	CI—CH ₃	3-{4-[3-(2-Benzoyl-4-chloro-phenoxy)-butoxy]-2-methyl-phenyl}-propionic

	Structure	<u>Name</u>
14	Chiral H ₃ C-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O	3-{4-[3-(2-Benzoyl-4-methoxy-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
15	Chiral Chiral Chiral	3-{4-[3-(2-Benzoyl-4-fluoro-phenoxy)-butoxy]-2-methyl-phenyl}-propionie
16	Chiral H ₃ C CH ₃ OH	3-{4-{3-(2-Benzoyl-4-isopropyl-phenoxy)-butoxy}-2-methyl-phenyl}-propionic acid
17	CI CH ₃ OH	{4-[3-(2-Benzoyl-4-chloro-phenoxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic acid
18	H ₃ C CH ₃ OH	3 (4 {3 [4 Ethyl 2 (hydroxy phenyl methyl) phenoxy] butoxy} 2 methyl-phenyl) propionic acid

	Structure	<u>Name</u>
19	H ₃ C OH OH	3-(4-{3-[4-Ethyl-2- (hydroxyimino-phenyl- methyl)-phenoxy]-butoxy}- 2-methyl-phenyl)-propionic acid
20	H ₃ C CH ₃ CH ₃ OH	3-(4-{3-[4-Ethyl-2- (methoxyimino-phenyl- methyl)-phenoxy]-butoxy}- 2-methyl-phenyl)-propionic acid
21	H ₃ C Chiral CH ₃ Chiral OH	3-{4-[3-(4-Isopropyl-2-phenoxy-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
22	Chiral H ₃ C H ₃ C OH OH	{4 [3 (4 Isopropyl 2 phenoxy-phenoxy) butoxy] 2 methyl-phenylsulfanyl) acetic acid
23	H ₃ C CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	3-{4-[3-(4-Ethyl-2-isobutyryl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
24	H ₃ C CH ₃ OH	3 {4 [3 (2) Cyclopropanecarbonyl 4 ethyl phenoxy) butoxy] 2 methyl phenyl} propionic acid

	Structure	<u>Name</u>
25	H ₃ C CH ₃ OH	3-{4-[3-(2- Cyclopropanecarbonyl-4- ethyl-phenoxy)-butoxy]-2- methyl-phenyl}-propionic acid
26	H ₃ C CH ₃ OH	3-{4-[3-(2- Cyclopentanecarbonyl-4- ethyl-phenoxy)-butoxy]-2- methyl-phenyl}-propionic acid
27	H ₃ C CH ₃ O O O O O O O O O O O O O O O O O O O	2-{4-[3-(4-Ethyl-2-isobutyryl-phenoxy)-butoxy]-phenoxy}-2-methyl-propionic acid
28	H ₃ C CH ₃ OH	2-{4-[3-(2-Cyclopropanecarbonyl-4-ethyl-phenoxy)-butoxy] phenoxy}-2-methyl-propionic acid
29	H ₃ C CH ₃ OH	3-{4-[3-(3-Benzoyl-5-ethyl-pyridin-2-yloxy)-butoxy]-2-methyl-phenyl}-propionic acid
30	H ₃ C CH ₃	{4-[3-(3-Benzoyl-5-ethyl-pyridin-2-yloxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic acid

	Structure	<u>Name</u>
31	Chiral	3-{4-[3-(3-Benzoyl-5-
		chloro-pyridin-2-yloxy)-
	ÇH₃	butoxy]-2-methyl-phenyl}-
	CI—(N)—O	propionic acid
	ČH ₃	
22	OH Chiral	(4.52.62 D. 1.5.11
32	Cilial	{4-[3-(3-Benzoyl-5-chloro-
		pyridin-2-yloxy)-butoxy]-2-
	CI—CH ₃	methyl-phenylsulfanyl}-
	CH_3 CH_3 CO	acetic acid
	ОН	
33	Chiral	3-{4-[3-(3-Benzoyl-5-
		trifluoromethyl-pyridin-2-
	CH ₃	yloxy)-butoxy]-2-methyl-
		phenyl}-propionic acid
	F CH ₃ OH	
34	Chiral	{4-[3-(3-Benzoyl-5-
34		trifluoromethyl-pyridin-2-
		yloxy)-butoxy]-2-methyl-
	F, CH₃	phenylsulfanyl}-acetic acid
	F N O S O S	phenyisunanyi}-acetic acid
	H₃C € OH	
35	Chiral	3-{4-[3-(5-Chloro-3-
	<u></u>	phenoxy-pyridin-2-yloxy)-
	∕= CH₃	butoxy]-2-methyl-phenyl}-
		propionic acid
	CH ₃	
	ОН	

	Structure	<u>Name</u>
36	Chiral	3-{4-[3-(5-Chloro-3-
	>	phenoxy-pyridin-2-yloxy)-
	CH₃	butoxy]-2-ethyl-phenyl}-
	CI—	propionic acid
	CH ₃	
37	Chiral	{4-[3-(5-Chloro-3-
	<u></u>	phenoxy-pyridin-2-yloxy)-
	о́	butoxy]-2-methyl-
	CI—	phenylsulfanyl}-acetic acid
	N H₃c OH	
38	F CH ₃ Chiral	3-{2-Methyl-4-[3-(3-
	F F	phenoxy-5-trifluoromethyl-
	OH OH	pyridin-2-yloxy)-butoxy]-
		phenyl}-propionic acid
39	Chiral	3-{2-Ethyl-4-[3-(3-
		phenoxy-5-trifluoromethyl-
	CH ₃	pyridin-2-yloxy)-butoxy]-
		phenyl}-propionic acid
	H ₃ C OH	
40	Chiral	3-{2-Ethyl-4-[3-(3-
		phenoxy-5-trifluoromethyl-
	F. ✓— CH₃	pyridin-2-yloxy)-butoxy]-
	F S	phenyl}-propionic acid
	F —N H ₃ C OH	
41	F. 0	3-{2-Methyl-4-[3-(3-
'*	F OH	phenoxy-5-trifluoromethyl-
		pyridin-2-yloxy)-propoxy]-
	F CH ₃	phenyl}-propionic acid
	F N	(trifluoroacetic acid salt)
	ОН	,

	Structure	<u>Name</u>
42	F OH CI CH ₃	3-{4-[3-(5-Chloro-3-phenoxy-pyridin-2-yloxy)-propoxy]-2-methyl-phenyl}-propionic acid
43	CI—NOH	3-{4-[2-(5-Chloro-3-phenoxy-pyridin-2-ylamino)-ethoxy]-2-methyl-phenyl}-propionic acid
44	H ₃ C CH ₃	3-{4-[3-(3-Benzoyl-5-ethyl-pyridin-2-yloxy)-propoxy]-2-methyl-phenyl}-propionic acid
45	H ₃ C OH	3-{2-Methyl-4-[3-(6-methyl-2-phenoxy-pyridin-3-yloxy)-butoxy]-phenyl}-propionic acid
46	H ₃ C CH ₃ O OH	3-{4-[3-(5-Ethyl-biphenyl-2-yloxy) butoxy] 2-methyl-phenyl}-propionic acid

	Structure	<u>Name</u>
47	H ₃ C Chiral OH	3-{4-[3-(4-Ethyl-2-oxazol-2-yl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic
48	H ₃ C CH ₃ Chiral	3-{4-[3-(4-Ethyl-2-thiazol-4-yl-phenoxy) butoxy]-2-methyl-phenyl}-propionic
49	Chiral H ₃ C OH OH	3-{4-[3-(4-Ethyl-2-pyridin-2-yl-phenoxy)-butoxy]-2-methyl-phenyl}-propionicacid
50	Chiral CH ₃ C OH	{4-[3-(4-Ethyl-2-pyridin-2-yl-phenoxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic acid
51	CH ₃ Chiral OH	3-{2-Ethyl-4-[3-(4-ethyl-2-pyridin-2-yl-phenoxy)-butoxy]-phenyl}-propionic acid
52	CI————————————————————————————————————	3-{4-[3-(4-Chloro-2-pyridin-2-yl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid

	Structure	<u>Name</u>
53	F F CH ₃ OH	3-{2-Methyl-4-[3-(2-pyridin-2-yl-4-trifluoromethyl-phenoxy)-butoxy]-phenyl}-propionic acid
54	F H ₃ C Chiral OH	3-{2-Ethyl-4-[3-(2-pyridin-2-yl-4-trifluoromethyl-phenoxy)-butoxy]-phenyl}-propionic acid
55	Chiral CH ₃ C OH	3-{4-[3-(4-Ethyl-2-pyridin-3-yl-phenoxy)-butoxy]-2-methyl-phenyl}-propionicacid
56	CI—CH ₃ OH	3-{4-[3-(4-Chloro-2- pyridin-3-yl-phenoxy)- butoxy]-2-methyl-phenyl}- propionic acid
57	H ₃ C Chiral	3-{4-[3-(4-Ethyl-2-pyridin-4-yl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
58	F Chiral Chiral OH	3-{2-Methyl-4-[3-(2-pyridin-4-yl-4-trifluoromethyl-phenoxy)-butoxy]-phenyl}-propionic acid

	Structure	<u>Name</u>
59	F F OH	3-{2-Ethyl-4-[3-(2-pyridin-4-yl-4-trifluoromethyl-phenoxy)-butoxy]-phenyl}-propionic acid
60	CI CH ₃ Chiral OH CH ₃	3-{4-[3-(2-Benzo[d]isoxazol-3-yl-4-chloro-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
61	H ₃ C OH	3-{4-[3-(2-Benzoyl-4-ethyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic
62	H ₃ C OH ₃ OH	{4 [3 (2-Benzoyl-4-ethyl-phenoxy) butoxy] 2-methyl-phenoxy}-acetic
63	H ₃ C CH ₃ O CH ₃ O O CH ₃ O O O CH ₃ O O O O O O O O O O O O O O O O O O O	{4 [3 (2 Benzoyl 4 ethylphenoxy) butoxy] 2-methyl-phenylsulfanyl}-acetic acid
64	H ₃ C CH ₃ OCH OCH	{4-[3-(2-Benzoyl-4-ethyl-phenoxy) butoxy] 2-methyl-phenylsulfanyl}-acetic-acid

	Structure	<u>Name</u>
65	H ₃ C CH ₃ O OH	{4-[3-(2-Benzoyl-4-ethyl-phenoxy) butylsulfanyl] 2-methyl-phenoxy}-acetic
66	H ₃ C S OH	3 {4 [3 (2 Benzoyl 4 ethylphenoxy) butylsulfanyl] 2 methyl-phenyl} propionic acid
67	H ₃ C CH ₃ OH H ₃ C CH ₃	2-{4-[3-(2-Benzoyl-4-ethyl-phenoxy)-butoxy]-2-methyl-phenoxy}-2-methyl-propionic acid
68	H ₃ C O O O O O O O O O O O O O O O O O O O	{4 [3 (2 Benzoyl 4 ethylphenoxy) butoxy]- phenoxy} acetic acid
69	H ₃ C CH ₃ OH	3 {4 [3 (2 Benzoyl 4 isopropyl phenoxy) butoxy] 2 methyl phenyl} propionic acid

	Structure	<u>Name</u>
70	Chiral Chiral OH OH	3-{4-[3-(2-Benzoyl-4-eyelopropyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
71	F CH ₃ O OH	3-{4-[3-(2-Benzoyl-4-trifluoromethyl-phenoxy)-butoxy] 2 methyl phenyl} propionic acid
72	CI—CH ₃ OH	3 {4 [3 (2 Benzoyl 4 chloro phenoxy) butoxy] 2 methyl-phenyl}-propionic acid
73	CI—CH ₃	3-{4-[3-(2-Benzoyl-4-chloro-phenoxy)-butoxy]-2-methyl-phenyl}-propionic
74	Chiral Chiral Chiral CH ₃ OH	3 {4 [3 (2 Benzoyl 4 methoxy phenoxy) butoxy] 2 methyl phenyl} propionic acid

	Structure	Name
75	Chiral Chiral Chiral	3-{4-[3-(2-Benzoyl-4-fluoro-phenoxy)-butoxy]-2-methyl-phenyl}-propionic
76	Chiral H ₃ C H ₃ C CH ₃ OH	3-{4-[3-(2-Benzoyl-4-isopropyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
77	Chiral H ₃ C CH ₃ OH	{4 [3 (2 Benzoyl 4 isopropyl-phenoxy) butoxy] 2 methyl-phenylsulfanyl} acetic acid
78	CI—CH ₃ OH	{4-[3-(2-Benzoyl-4-chloro-phenoxy)-butoxy]-2-methyl-phenylsulfunyl}-acetic acid
79	H ₃ C CH ₃ OH	3 (4 {3 [4 Ethyl 2 (hydroxy phenyl-methyl) phenoxy] butoxy} 2 methyl-phenyl) propionic acid

	Structure	<u>Name</u>
80	H ₃ C OH OH	3-(4-{3-[4-Ethyl-2- (hydroxyimino-phenyl- methyl)-phenoxy]-butoxy}- 2-methyl-phenyl)-propionic acid
81	H ₃ C CH ₃ CH ₃ OH	3 (4 {3 [4 Ethyl 2 (methoxyimino phenyl methyl) phenoxy] butoxy} 2 methyl phenyl) propionic acid
82	H ₃ C Chiral Chiral OH	3-{4-[3-(4-Isopropyl-2-phenoxy-phenoxy)-butoxy] 2-methyl-phenyl}-propionic acid
83	Chiral H ₃ C H ₃ C OH OH	{4-[3-(4-Isopropyl-2-phenoxy-phenoxy) butoxy] 2-methyl-phenylsulfanyl} acetic acid
84	H ₃ C CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	3-{4-{3-(4-Ethyl-2-isobutyryl-phenoxy)-butoxy}-2-methyl-phenyl}-propionic acid
85	H ₃ C CH ₃ OH	3-{4-[3-(2- Cyclopropanecarbonyl-4- ethyl-phenoxy)-butoxy]-2- methyl-phenyl}-propionic acid

	Structure	<u>Name</u>
86	H ₃ C CH ₃	3-{4-[3-(2- Cyclopropanecarbonyl-4- ethyl-phenoxy)-butoxy]-2-
	CH ₃	methyl phenyl} propionic
87	H ₃ C CH ₃ OH	3-{4-[3-(2- Cyclopentanecarbonyl-4- ethyl-phenoxy)-butoxy]-2- methyl-phenyl}-propionic acid
88	H ₃ C CH ₃ O O O O O O O O O O O O O O O O O O O	2-{4-[3-(4-Ethyl-2-isobutyryl-phenoxy)-butoxy]-phenoxy}-2-methyl-propionic acid
89	H ₃ C CH ₃ OH	2 {4 [3 (2- Cyclopropanecarbonyl-4- ethyl-phenoxy)-butoxy]- phenoxy}-2-methyl- propionic acid
90	H ₃ C CH ₃ O OH	3-{4-[3-(3-Benzoyl-5-ethyl-pyridin-2-yloxy)-butoxy]-2-methyl-phenyl}-propionic acid
91	H ₃ C CH ₃ OCH ₃ OCH	{4-[3-(3-Benzoyl-5-ethyl-pyridin-2-yloxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic acid

	Structure	<u>Name</u>
92	CI—CH ₃ OH	3-{4-[3-(3-Benzoyl-5-chloro-pyridin-2-yloxy)-butoxy]-2-methyl-phenyl}-propionic acid
93	Chiral Chiral	{4-[3-(3-Benzoyl-5-chloro-pyridin-2-yloxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic acid
94	Chiral Chiral CH ₃ OH	3-{4-[3-(3-Benzoyl-5-trifluoromethyl-pyridin-2-yloxy)-butoxy]-2-methyl-phenyl}-propionic acid
95	Chiral Chiral Chiral	{4-[3-(3-Benzoyl-5-trifluoromethyl-pyridin-2-yloxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic acid
96	CI—CH ₃ OH	3-{4-[3-(5-Chloro-3-phenoxy-pyridin-2-yloxy)-butoxy]-2-methyl-phenyl}-propionic acid

	Structure	<u>Name</u>
97	Chiral	3-{4-[3-(5-Chloro-3-
	\	phenoxy-pyridin-2-yloxy)-
	,сн ₃	butoxy]-2-ethyl-phenyl}-
	cı————————————————————————————————————	propionic acid
	CH ₃	
98	Chiral	{4-[3-(5-Chloro-3-
	\\^_	phenoxy-pyridin-2-yloxy)-
	,сн _э	butoxy]-2-methyl-
	CI—S—S—	phenylsulfanyl}-acetic acid
	N H ₃ C OH	
99	F CH ₃ Chiral	3-{2-Methyl-4-[3-(3-
	F F O	phenoxy-5-trifluoromethyl-
	о сн _з	pyridin-2-yloxy)-butoxy]-
		phenyl}-propionic acid
100	Chiral	3-{2-Ethyl-4-[3-(3-
	<u> </u>	phenoxy-5-trifluoromethyl-
	F → CH₃	pyridin-2-yloxy)-butoxy]-
	F	phenyl}-propionic acid
	H ₃ C OH	
101	Chiral	3-{2-Ethyl-4-[3-(3-
		phenoxy-5-trifluoromethyl-
	F, CH ₃	pyridin-2-yloxy)-butoxy]-
		phenyl}-propionic acid
	OH OH	
102	F O	3-{2-Methyl-4-[3-(3-
	F OH	phenoxy-5-trifluoromethyl-
	F, CH ₃	pyridin-2-yloxy)-propoxy]-
	F N O O O	phenyl}-propionic acid
	ОН	(trifluoroacetic acid salt)

	Structure	<u>Name</u>
103	F J	3-{4-[3-(5-Chloro-3-
	F OH	phenoxy-pyridin-2-yloxy)-
		propoxy]-2-methyl-
	o´ ,cH₃	phenyl}-propionic acid
	CI—VNO	
	`он	
104		3-{4-[2-(5-Chloro-3-
		phenoxy-pyridin-2-
	ÇH ₃	ylamino)-ethoxy]-2-methyl-
	CI—N	phenyl}-propionic acid
10.7	ОН	2 (4 52 (2 5
105	H ₃ C CH ₃	3-{4-[3-(3-Benzoyl-5-ethyl-
		pyridin-2-yloxy)-propoxy]-
	ОН	2-methyl-phenyl}-propionic
		acid
106	Chiral	3-{2-Methyl-4-[3-(6-
		methyl-2-phenoxy-pyridin-
	N=CH ₃	3-yloxy)-butoxy]-phenyl}-
	H ₃ C O	propionic acid
	н,с*	
107		3 [4 [3 (5 Ethyl biphenyl
		2-yloxy) butoxy] 2-methyl
	H ₃ C CH ₃	phenyl}-propionic acid
	ĒН ₃	
108	Chiral	3-{4-[3-(4-Ethyl-2-oxazol-
	CH ₃	2-yl-phenoxy)-butoxy]-2-
	H ₃ C OH	methyl-phenyl)-propionic
	CH ₃	acid

	Structure	<u>Name</u>
109	H ₃ C CH ₃ Chiral	3-{4-[3-(4-Ethyl-2-thiazol-
		4-yl-phenoxy)-butoxy]-2-
	N CH ₃ OH	methyl-phenyl}-propionie
	Ś	acid
110	Chiral	3-{4-[3-(4-Ethyl-2-pyridin-
	N N	2-yl-phenoxy)-butoxy]-2-
	H ₃ C CH ₃	methyl-phenyl}-propionic
	H ₃ C OH	acid
111	Chiral	{4-[3-(4-Ethyl-2-pyridin-2-
	V CH₃ 0	yl-phenoxy)-butoxy]-2-
	H ₃ C OH	methyl-phenylsulfanyl}-
		acetic acid
	H₃Ĉ	
112	CH ₃ Chiral	3-{2-Ethyl-4-[3-(4-ethyl-2-
	ОН	pyridin-2-yl-phenoxy)-
		butoxy]-phenyl}-propionic
	CH ₃	acid
113	Chiral	3-{4-[3-(4-Chloro-2-
	>=n'	pyridin-2-yl-phenoxy)-
	CI—CH ₃	butoxy]-2-methyl-phenyl}-
	H ₃ C CO	propionic acid
	ОН	
114	F CH ₃ O Chiral	3-{2-Methyl-4-[3-(2-
	F OH	pyridin-2-yl-4-
		trifluoromethyl-phenoxy)-
	CH₃	butoxy]-phenyl}-propionic
		acid
115	H ₃ C Chiral	3-{2-Ethyl-4-[3-(2-pyridin-
	F	2-yl-4-trifluoromethyl-
		phenoxy)-butoxy]-phenyl}-
	CH ₃	propionic acid
		1

	Structure	Name
116	Chiral	3-{4-[3-(4-Ethyl-2-pyridin-
110		
	H ₃ C, CH ₃	3-yl-phenoxy)-butoxy]-2-
		methyl-phenyl}-propionic
	H ₃ C —0———0	acid
	ОН	
117	Chiral	3-{4-[3-(4-Chloro-2-
	CH ₃	pyridin-3-yl-phenoxy)-
	ci—Co—O—O—O—O	butoxy]-2-methyl-phenyl}-
	CH ₃	propionic acid
118	Chiral	3-{4-[3-(4-Ethyl-2-pyridin-
	(j	4-yl-phenoxy)-butoxy]-2-
	H ₃ C CH ₃	
		methyl-phenyl}-propionic
	H ₃ C O	acid
	ОН	
119	_ F N ÇH ₃ Q Chiral	3-{2-Methyl-4-[3-(2-
	F OH	pyridin-4-yl-4-
		trifluoromethyl-phenoxy)-
		butoxy]-phenyl}-propionic
	ĊH₃	acid
120	H ₃ C Chiral	3-{2-Ethyl-4-[3-(2-pyridin-
120		
	F OH	4-yl-4-trifluoromethyl-
		phenoxy)-butoxy]-phenyl}-
	$ holdsymbol{ ilde{C}H}_3$	propionic acid
121	N CH ₃ O Chiral	3 (4 [3 (2
	СІ	Benzo[d]isoxazol 3 yl 4
		chloro phenoxy) butoxy] 2
		methyl phenyl} propionic
	Ċн _з	acid
		ucit

	Structure	<u>Name</u>
122	Chiral O CH ₃ O CH ₃ O O O O O O O O O O O O O	(R) {4-[3-(4-ethyl-2-phenoxy-phenoxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic-acid
123	H ₃ C O CH ₃ O O O O O O O O O O O O O O O O O O O	(R) {4 [3 (2 benzoyl 4 methyl phenoxy) butoxy] 2 methyl phenylsulfanyl} acetic acid
124	F O CH ₃ F O CH ₃ O O O O O O O O O O O O O O O O O O O	(R)-{4-[3-(2-benzoyl-4-trifluoromethoxy-phenoxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic acid
125	H_3C O CH_3 O	{4-[3-(2-benzoyl-4-ethyl-phenoxy) hexyloxy]-2-methyl-phenylsulfanyl}-acetic-acid
126	H ₃ C O CH ₃ O OH	3-{4-[3-(2-benzoyl-4-ethyl-phenoxy)-hexyloxy]-2-methyl-phenyl}-propionic

	Structure	<u>Name</u>
127	Chiral O CH ₃ O CH ₃ O OH	(R) 3-{4-[3-(4-ethyl-2-phenoxy-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
128	Chiral Chiral CH ₃ CH ₃ OH	(R) 3 (4 {3 [4 ethyl-2 (1 phenyl-vinyl) phenoxy] butoxy} 2 methyl phenyl) propionic acid
129	CH ₃ CH ₃ CH ₃ OH OH	(R) 3 (4 {3 [4 ethyl 2 (1 methyl 1 phenyl ethyl) phenoxy] butoxy} 2 methyl phenyl) propionic acid
130	$\begin{array}{c} Chiral \\ \hline \\ H_3C \\ \hline \\ CH_3 \\ OH \\ \end{array}$	(R) 3-{4-[3-(2-benzoyl-4-methyl-phenoxy)-butoxy]- 2-methyl-phenyl}-propionic acid
140	CH ₃ CH ₃ OH	(R)-3-(4-{3-[4-ethyl-2-(1-phenyl-ethyl)-phenoxy]-butoxy}-2-methyl-phenyl)-propionic acid
141	H ₃ C CH ₃ OH	(R)-3-(4-{3-[4-ethyl-2- (pyridine-2-carbonyl)- phenoxy]-butoxy}-2- methyl-phenyl)-propionic acid

	Structure	<u>Name</u>
142	F O CH ₃ F O O O O O O O O O O O O O O O O O O	3 (2 methyl 4 (3 [2 (thiophene 2 carbonyl) 4 trifluoromethoxy phenoxy] butoxy} phenyl) propionic acid
143	S O CH ₃ O O O O O O O O O O O O	3 (4 {3-[4-ethyl-2- (thiophene 2-carbonyl)- phenoxy] butoxy} 2- methyl-phenyl) propionic acid
144	H ₃ C OCH ₃ OCH	3-(4-{3-[4-ethyl-2- (naphthalene-1-carbonyl)- phenoxy]-butoxy}-2- methyl-phenyl)-propionic acid
145	H ₃ C CH ₃ OH	3 (4 {3 [4 ethyl 2 (1 phenyl vinyl) phenoxy] butoxy}-2-methyl-phenyl)-propionic acid
146	CH ₃	3-{4-[3-(2-benzoyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic

	Structure	<u>Name</u>
147	H ₃ C — O — O O O O O O O O O O O O O O O O	3-{4-[3-(2-benzoyl-4-methyl-phenoxy)-butoxy]- 2-methyl-phenyl}-propionic acid
148	H ₃ C OH ₃ OH	3-{4-[3-(2-benzyl-4-ethyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic
149	Br—O—O—O—O—O—O—O—O—O—O—O—O—O—O—O—O—O—O—O	3-{4-[3-(2-benzoyl-4-bromo-phenoxy)-butoxy]- 2-methyl-phenyl}-propionic
150	H ₃ C CH ₃ OH	3 {4 [3 (2 benzoyl 4 butyl-phenoxy) butoxy] 2-methyl-phenyl}-propionic
151	H ₃ C O CH ₃ O OH	3-{4-[3-(2-benzoyl-4-propyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic
152	CH ₃ O OH	3-{4-[4-(2-benzoyl-4-ethyl-phenoxy)-1-methyl-butoxy]-2-methyl-phenyl}-propionic acid

	Structure	<u>Name</u>
153	H_3 C CH_3 O OH OH	3-{4-[4-(2-benzoyl-4-ethyl-phenoxy)-pentyloxy]-2-methyl-phenyl}-propionic
154	H ₃ C CH ₃ O OH	3-{4-[3-(2-benzoyl-4-ethyl-phenoxy)-2-methyl-propoxy]-2-methyl-phenyl}-propionic acid
155	H ₃ C OH	3-{4-[3-(2-benzoyl-4-ethyl-phenoxy) propoxy] 2-methyl-phenyl} propionic acid
156	H ₃ C O O O O O O O O O O O O O O O O O O O	3-(4-{3-[4-ethyl-2-(4-fluoro-benzoyl)-phenoxy]-propoxy}-2-methyl-phenyl)-propionic acid
157	F F F F CH ₃ O OH	3 (4 {3 [4 ethyl 2 (2 trifluoromethyl benzoyl)-phenoxy]-propoxy}-2-methyl phenyl) propionic acid

	Structure	<u>Name</u>
158	F F F H ₃ C O O O O O O O O	3 (4 {3 [4 ethyl-2 (3 trifluoromethyl benzoyl) phenoxy] propoxy} 2 methyl phenyl) propionic acid
159	S CH ₃ O OH	3 (4 {3 [4-ethyl-2- (thiophene 2-earbonyl)- phenoxy]-propoxy} 2 methyl-phenyl)-propionic acid
160	CH ₃ O O OH	3-{4-[3-(2-benzyl-4-ethyl-phenoxy) propoxy] 2-methyl-phenyl}-propionic
161	H ₃ C O O O O O O O O O O O O O O O O O O O	3-(4-{3-[4-ethyl-2- (naphthalene-1-carbonyl)- phenoxy] propoxy} 2- methyl-phenyl) propionic acid
162	H ₃ C CH ₂ CH ₃ O	3 (4 {3 [4 ethyl 2 (1 phenyl vinyl) phenoxy] propoxy} 2 methyl phenyl) propionic acid

	Structure	<u>Name</u>
163	H ₃ C O O O O O O O O O O O O O O O O O O O	2-{4-[3-(2-benzoyl-4-ethyl-phenoxy)-butoxy]-phenoxy}-2-methyl-propionic acid
164	H ₃ C O CH ₃ H ₃ C O O O O O O O O O O O O O O O O O O O	2 {4 [3 (2 benzoyl 4 ethyl- phenoxy) 2-methyl- propoxy] phenoxy} 2- methyl-propionic acid
165	$\begin{array}{c} H_3C \\ \hline \\ H_3C \\ \hline \\ H_3C \\ \hline \\ H_3C \\ \hline \\ HO \\ \end{array}$	2 {4 [3 (2 benzyl 4 ethyl- phenoxy)-butoxy]- phenoxy}-2-methyl- propionic acid
166	Br O O O H ₃ C O H ₃ C O HO	2 {4 [3 (2 benzoyl 4 brome phenoxy) butoxy] phenoxy} 2 methylpropionic acid

	Structure	Name
167	H_3C H_3C H_3C H_3C H_3C H_3C H_3C	2-{4-[3-(2-benzoyl-4-butyl-phenoxy)-butoxy]-phenoxy}-2-methyl-propionic acid
168	Chiral CH ₃ CH ₃ OH	(R) 3-{4-[3-(4-chloro-2-phenoxy-phenoxy)-butoxy] 2-methyl-phenyl}-propionic acid
169	Chiral O CH ₃ F CH ₃ O O O O O O O O O O O O O O O O O O	(R) 3 {2 methyl 4 [3 (2 phenoxy 4 trifluoromethyl phenoxy) butoxy] phenyl} propionic acid
170	F O CH ₃ F O O O O O O O O O O O O O O O O O O	(R) 3 {2 methyl 4 [3 (2 phenoxy 4 trifluoromethoxy phenoxy) butoxy] phenyl} propionic acid
171	Chiral O CH ₃ O CH ₃ O O O O O O O O O O O O O	(R)-3-{2-methyl-4-[3-(4-methyl-2-phenoxy-phenoxy-phenoxy) butoxy] phenyl}-propionic acid

	Structure	<u>Name</u>
172	Chiral CH ₃ CH ₃ OH	(R)-{4-[3-(4-chloro-2-phenoxy-phenoxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic-acid
173	CI—O OH	3-{4-[3-(4-chloro-2-phenoxy-phenoxy)-propoxy]-2-methyl-phenyl}-propionic acid
174	CI—CH ₃ OH	(R) 3-{4-[3-(2-benzo[b]thiophen-3-yl-4-ehloro-phenoxy)-butoxy]-2-methyl-phenyl}-propionic
175	$CI \xrightarrow{\text{Chiral}} O \xrightarrow$	(R)- 3-{4-[3-(4-chloro-2-pyridin-3-yl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
176	CI—OH3	(R) 3-{4-[3 (4-chloro 2-phenoxy-phenoxy)-butoxy]-phenyl}-2,2-difluoro-propionic acid
177	CI—OH3	%)(R) 3 {3 bromo 4 [3 (4 chloro 2 phenoxy phenoxy) butoxy] phenyl} propionie acid

	Structure	<u>Name</u>
178	CI—CH ₃ C OH	(R) 3-{4-[3-(4-chloro-2-phenoxy-phenoxy)-butoxy]-3-methyl-phenyl}-propionic acid
179	O Br CI—O HO	(R)-{3-bromo-4-[3-(4-chloro-2-phenoxy-phenoxy-phenoxy) butoxy} phenyl}-acetic acid
180	FF Chiral O CH ₃ O OH OH	(R)-3-{4-[3-(4-bromo-2-trifluoromethoxy-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
181	Chiral O H ₃ C CI O H ₃ C HO	(R) {4-[3-(4-chloro-2-phenoxy-phenoxy)-butoxy] 3-methyl-phenyl}- neetic noid
182	CI—OCH ₃	(R) [4-[3-(4-chloro-2-phenoxy-phenoxy)-butoxy] phenyl} acetic acid
183	CI CH ₃ F F O OH	(R)-3-{4-[3-(4-chloro-2-phenoxy-phenoxy)-butoxy]-2-trifluoromethyl-phenyl}-propionic acid

	Structure	Name
184	Chiral	(R) {4-[3-(4-chloro-2-
		phenoxy-phenoxy)
	O CH ₃	
		butylsulfanyl]-2-methyl-
		phenoxy} acetic acid
	CH ₃ OH	
185	Chiral	(R) 3 (4 [3 (4 chloro 2
		phenoxy phenoxy)
	O CH ₃	butylsulfanyl]-2-methyl-
		phenyl}-propionic acid
	CH ₃ OH	
186	CI O Chiral	(R)-3-{2-Chloro-4-[3-(4-
	CI OH	chloro 2 phonoxy
		phenoxy) butoxy] phenyl}
	0	propionic acid
		proprome som
187	F Q Chiral	(R) 3 {4 [3 (4 Chloro 2
	CI OH	phenoxy-phenoxy)-
		butoxy] 2-fluoro-phenyl}-
		propionic-acid
		proprome acra
188	O Chiral	(R) 3-{4-[3-(4-Chloro-2-
	CI OH	phenoxy-phenoxy)
		butoxy]-2-ethyl-phenyl}-
	ļ vo	propionic acid
189	ÇI Q Chiral	(R) 3 (4 [3 (2 Benzoyl 4
	OH	ethyl phenoxy) butoxy] 2
		ehloro-phenyl}-propionie
		acid
		1

	Structure	<u>Name</u>
190	F O Chiral OH	(R) 3 {4-[3-(2-Benzoyl-4-ethyl-phenoxy) butoxy] 2-fluoro-phenyl}-propionic
191	CI OH OH	(R) 3 {4 [3 (4 Chloro 2 phenoxy phenoxy) butoxy] phenyl} propionic acid
192	O Chiral OH	(R) 3-{4-[3-(2-Benzoyl-4-ethyl-phenoxy)-butoxy]-phenyl}-propionic-acid
193	CI O Chiral OH	(R) 3-{4-[3-(4-Chloro-2-phenoxy-phenoxy)-pentyloxy]-2-methyl-phenyl} propionic acid
194	O Chiral OH OH OH	(R) 3-{4-[3-(2-Benzoyl-4-ethyl-phenoxy)-pentyloxy]-2-methyl-phenyl}-propionic acid
195	Chiral	(R) {4-[3-(3-Benzoyl-naphthalen-2-yloxy)-butoxy]-2-methyl-phenylsulfanyl}-acetic acid

	Structure	<u>Name</u>
196	Chiral	(R) 3 {4-[3-(3-Benzoyl-naphthalen-2-yloxy)-butoxy] 2-methyl-phenyl}-propionic acid
197	O Chiral OH	(R) 3 {4 [3 (4 Ethyl 2 phenoxy-phenoxy) butylsulfanyl]-2-methyl-phenyl}-propionic acid
198	O Chiral OH	(R) 3 {4 [3 (4 Isopropyl 2 phenoxy-phenoxy) butylsulfanyl] 2 methyl-phenyl} propionic acid
199	CI OH	(R) 3 [4-[3-(4-Chloro-2-phenoxy-phenoxy)] butoxy] 2 propyl-phenyl} propionic acid
200	CI S OH	(R) {4-[3-(4-Chloro-2-phenoxy-phenoxy)-butoxy] 2-ethyl-phenylsulfanyl} acetic acid
201	CI O Chiral OH	(R) 3 [4-[3-(2-Benzoyl-4,5-dichloro-phenoxy) butoxy] 2 methyl-phenyl}-propionic acid

	Structure	Name
202	CF ₃ O Chiral OH	(R)-3-{2-Methyl-4-[3-(2-phenoxy-4-trifluoromethyl-phenoxy)-butylsulfanyl]-phenyl}-propionic acid
203	Chiral	(R) 3 {2 Ethyl 4 [3 (4 ethyl 2 phenoxy phenoxy) butoxy] phenyl} propionic acid
204	CF ₃ OH	(R)-3-{2-Ethyl-4-[3-(2-phenoxy-4-triffuoromethyl-phenoxy)-butoxy]-phenyl}-propionic acid
205	Chiral	(R) 3 {4 [3 (2 Benzoyl 4 ethyl phenoxy) butoxy] 2 ethyl phenyl} propionic acid
206	CF ₃ OH	(R) 3 {2 Ethyl 4 [1 methyl 3 (2 phenoxy 4 trifluoromethyl-phenoxy) propoxy] phenyl} propionic acid
207	F O Chiral OH	(R)-3-{2-Methyl-4-[1-methyl-3-(2-phenoxy-4-trifluoromethoxy-phenoxy)-propylsulfanyl]-phenyl}-propionic-acid

	Structure	<u>Name</u>
208	Cl	(S) 3 {4 [3 (4 Chloro 2 phenoxy phenoxy) butoxy] 2 ethyl-phenyl} propionic acid
209	СІ	3 {4 [3 (4 Chloro 2 phenoxy phenoxy) propoxy] 2 ethyl phenyl} propionic acid
210	Chiral	(R)-3-{4-[3-(2,4-Diphenoxy-phenoxy)-butoxy]-2-ethyl-phenyl}-propionic acid
211	Cl Chiral OH Chiral OH Clis - Isomer 2	2-{4-[4-(4-Chloro-2- phenoxy-phenyl)-3-methyl- butoxy]-2-methyl-phenyl}- cyclopropanecarboxylic acid
212	H ₃ C OH OH CH ₃	(R, S) 2 {4 [3 (4 Ethyl 2 phenylsulfanyl phenoxy) butoxy] phenoxy} 2 methyl propionic acid
213	H ₃ C CH ₃ CH ₃ OH CH ₃	2-{4-{3-(R,S-2-Benzenesulfinyl-4-ethyl-phenoxy)-butoxy}- 2-methyl-phenylsulfanyl}- 2-methyl-propionic acid (enamtiomer-pair-1)

	Structure	<u>Name</u>
214	F CH ₃ CH ₃ OH	(R, S)-2-{4-[3-(2-Cyclopropylmethyl-4-trifluoromethyl-phenoxy)-butoxy]-phenoxy}-2-methyl-propionic acid
215	CH ₃ CH ₃ OH CH ₃	(R, S) 2 Methyl 2 {4 [3 (2 methyl-3 phenyl-7 propylbenzofuran 6 yloxy) butoxy] phenoxy} propionic acid
216	CH ₃ CH ₃ CH ₃ CH ₃	(R, S) 2 Methyl 2 {4 [3 (4 methyl 3 phenyl 7 propylbenzofuran 6 yloxy) butoxy] phenoxy} propionic acid
217	F F CH ₃ H ₃ C OH CH ₃	(R, S) 2-{4-[3-(2-Cyclopropylmethyl-4-trifluoromethyl-phenoxy) butoxy] 2-methyl-phenoxy} 2-methyl-propionic acid
218	F F CH ₃ OH	(R, S)-3-{4-[3-(2- Cyclopropylmethyl-4- trifluoromethyl- phenoxy) butoxy]-2-

	Structure	<u>Name</u>
		methyl-phenyl}-propionic
219	H ₃ C CH ₃ OH	3-{R-4-[3-(R, S-2-Benzenesulfinyl-4-ethyl-phenoxy)-butoxy]- 2-methyl-phenyl}-propionic
220	H ₃ C CH ₃ OH	3-{4-[3-(4-Ethyl-2-phenylsulfanyl-phenoxy)-butoxy]- 2-methyl-phenyl}-propionic acid-isomer-2
221	H ₃ C CH ₃ OH CH ₃ OH	(R, S)-2-{4-{3-(4-Ethyl-2-phenylsulfanyl-phenoxy)-butoxy}-phenoxy}-2 methyl-propionic-acid
222	H ₃ C CH ₃ OH	(R, S)-3-{4-[3-(R, S-2-Benzenesulfinyl-4-ethyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid
223	H ₃ C CH ₃ OH CH ₃ OH	(R, S) 2 {4 [3 (R, S 2 Benzenesulfinyl 4 ethylphenoxy) butoxy] 2 methylphenoxy} 2 methyl

	Structure	<u>Name</u>
		propionic acid
224	H ₃ C CH ₃ OH	(R, S) 3-{4-[3-(2-Benzenesulfonyl-4-ethyl-phenoxy)-butoxy]-2-methyl-phenyl}-propionic
225	F F CH ₃ OH	3-{4-[3-(2-Benzoyl-4-trifluoromethoxy-phenoxy)-butoxy]-2-methyl-phenyl}-propionic acid

30. (Withdrawn). The compound of Claim 29, wherein the compound is

$$CI \longrightarrow CH_3$$
 $CI \longrightarrow CH_3$ $CI \longrightarrow CI$

or a pharmaceutically acceptable salt, solvate or hydrate thereof.

31. (Previously Presented). A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of Claim 1 or a pharmaceutically acceptable salt, solvate or hydrate thereof.

- 32. (Canceled).
- 33. (Canceled).
- 34. (Canceled).
- 35. (Canceled).
- 36. (Canceled).

- 37. (Canceled).
- 38. (Canceled).
- 39. (Canceled).
- 40. (Canceled).
- 41. (Canceled).
- 42. (Canceled).
- 43. (Previously Presented). A method for lowering blood-glucose in a mammal in need thereof comprising the step of administering an effective amount of a compound of Claim 1.
 - 44. (Canceled).
 - 45. (Canceled).
 - 46. (Canceled).
 - 47. (Canceled).
 - 48. (Canceled).
 - 49. (Canceled)