Basic of Rigid Body Kinematics

Review of some basic tools

Objective

- Learn or refresh some of the basic tools such as:
 - Translation
 - Rotation
 - Homogeneous transformation of multi-body systems
 - **—** ...
- Being able to later describe the motion and constraints of mobile platforms, such as wheeled or legged vehicles.

Agenda

- Some definitions and type of motion
- Vectors and coordinates transformation
- Vector differentiation
- Recapitulation

Introduction

motion = positions, velocities and accelerations

- Definition of kinematics
 - "Description of the motion of points, bodies, or systems of bodies"
 - ... without consideration of the causes of motion (=> dynamics)
 - Required for kinematic simulation and control
- Type of motion of single body
 - Translation : all the points of the body perform parallel trajectories
 - Rotation: one point is always fixed and other points rotate around it
 - Combined motion: instantaneous rotation around a single point with ICR moving over time. Ex: if Rolling=> ICR coincides always with the contact point

Vectors and coordinate transformation

To describe such motion:

- Reference frame
 - Coordinate system I (inertial, not moving)
 - Coordinate system **B** (body-fixed, moving)
- **Translation** The position of P expressed in the world coord. system:
 - Vector from *O* to *P*, expressed in **I**:

$$_{I}\mathbf{r}_{OP}\in\mathbb{R}^{3\mathrm{x}1}$$

- Rotation
 - Matrix from frame **B** to frame **I**:
- Homegeneous transformation
 - Combination of translation and rotation

describe in a certain frame can't add vect. expressed different frames: 1st have to rotate them into the appropriate coord. sys. $\mathbf{R}_{IB} \in \mathbb{R}^{3\mathrm{x}1}$

R_{IR} is the rot. matrix that rotates a vect expressed in frame B into target frame I

The transf from P in B to P in I is a trans & a rot We can write it in its matrix form called homogeneous transformation

$${}_{I}\mathbf{r}_{OP} = {}_{I}\mathbf{r}_{OB} + {}_{I}\mathbf{r}_{BP} = {}_{I}\mathbf{r}_{OB} + \mathbf{R}_{IB\ B}\mathbf{r}_{BP} \qquad \begin{pmatrix} {}_{I}\mathbf{r}_{OP} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R}_{IB} & {}_{I}\mathbf{r}_{OB} \\ 0 & 1 \end{bmatrix} \begin{pmatrix} {}_{B}\mathbf{r}_{BP} \\ 1 \end{pmatrix}$$
the same coordinate system in the different frames

Rotation

Reference frame **B** to **I** such that $_{I}\mathbf{r} = \mathbf{R}_{IB} _{R}\mathbf{r}$

- Inversion $_{I}\mathbf{r}=\mathbf{R}_{IB}\ _{B}\mathbf{r},\quad _{B}\mathbf{r}=\mathbf{R}_{BI}\ _{I}\mathbf{r},\ \mathbf{R}_{BI}=\mathbf{R}_{IR}^{T}$
- Composition of rotations

Composition of rotations
$${}_{C}\mathbf{r} = \mathbf{R}_{CI} {}_{I}\mathbf{r}, \quad \mathbf{R}_{CI} = \mathbf{R}_{CB} \mathbf{R}_{BI}$$
Consecutive rot. are the multiplication of corresponding matrices

Orientation in 3D

• Euler angles (z-x-z)

• Tait-Bryan/Cardan angles (z-y-x)

corresponding matrices

Vectors and coordinate transformation

To describe such motion:

- Reference frame
 - Coordinate system I (inertial, not moving)
 - Coordinate system **B** (body-fixed, moving)
- **Translation**
 - Vector from O to P, expressed in I:
- Rotation
 - Matrix from frame **B** to frame **I**:
- Homegeneous transformation
 - Combination of translation and rotation

r_{BP} $_{I}\mathbf{r}_{OP}\in\mathbb{R}^{3\mathrm{x}1}$ $\rightarrow_I \mathbf{V}_P = \stackrel{\bullet}{\mathbf{I}} \mathbf{r}_{OP} \in \mathbb{R}^{3\times 1}$ $_{I}\mathbf{v}_{P}$: velocity of point P (i.e. time

derivative of the position vector)

$$\mathbf{R}_{IB} \in \mathbb{R}^{3\times 1} \longrightarrow_{I} \mathbf{\omega}_{IB} \in \mathbb{R}^{3\times 1}$$

 $_{I}\omega_{IR}$: angular velocity of the body-fixed frame B with respect to I $_{I}\omega_{IR}$ is the same at any points of the body

As $_{I}\omega_{IR}$ is invariant, knowing the velocity and angular velocity at a single point => we know the full motion of the rigid body (i.e. determine the velocity at any point) using:

Rigid body kinematic formulation: ${}_{I}\mathbf{v}_{P} = {}_{I}\dot{\mathbf{r}}_{OP} = {}_{I}\dot{\mathbf{r}}_{OB} + {}_{I}\mathbf{\omega}_{IB} \times_{I}\mathbf{r}_{BP}$

It is possible to determine the velocity at any point using the rigid body kinematic formulation, which says that P has the velocity of another point on the same rigid body (B here), plus the cross product of the ang. vel. with the relative offset

Angular velocity

Angular velocity of frame B with respect to I expressed in I †

$${}_{I}\mathbf{\omega}_{IB} = \begin{pmatrix} 0 \\ 0 \\ \dot{\varphi} \end{pmatrix}$$

 $_{I}\omega_{IB}$ here is a an angular velocity in z direction of frame B with respect of the inertial frame.

- Relation to rotation matrix: skew-symmetric matrix $\hat{\mathbf{\omega}}$

$${}_{I}\hat{\boldsymbol{\omega}}_{IB} = \dot{\mathbf{R}}_{IB}\mathbf{R}_{IB}^{T}, \quad {}_{I}\hat{\boldsymbol{\omega}}_{IB} = \begin{bmatrix} 0 & -\omega_{IB}^{z} & \omega_{IB}^{y} \\ \omega_{IB}^{z} & 0 & -\omega_{IB}^{x} \\ -\omega_{IB}^{y} & \omega_{IB}^{x} & 0 \end{bmatrix}, \quad \hat{\boldsymbol{\omega}}_{IB} = \begin{bmatrix} \omega_{IB}^{x} \\ \omega_{IB}^{y} \\ \omega_{IB}^{y} \end{bmatrix}$$

The skew-symmetric matrix $_{I}\hat{\boldsymbol{\omega}}_{IB}$ is used to get the angular velocity around each axis from the rotation matrices

■ Transformation $_{I}\omega_{IB} = \mathbf{R}_{IB} \ _{B}\omega_{IB}$

 $_{I}\omega_{IB}$ can be rotated from one to another coordinate frame using rotation matrix

■ Consecutive rotations $_{I}\omega_{IC} = _{I}\omega_{IB} + _{I}\omega_{BC}$

Vector differentiation

Position and velocity in different frames

How to calculate velocities from position vectors

calculate velocities from position vectors

Inertial frame
$$_{I}\mathbf{r} \Rightarrow (\dot{\mathbf{r}}) = \frac{d_{I}\mathbf{r}}{dt}$$
, is a non moving coordinate system

■ Moving frame
$$_{B}\mathbf{r} \Rightarrow_{B} (\dot{\mathbf{r}}) = \frac{d_{B}\mathbf{r}}{dt} + _{B}\mathbf{\omega}_{IB} \times_{B}\mathbf{r}$$

in its local frame

Change of the vector Contribution of the relative rotation of the coordinate system itself

1st approach:

expressed in the inertial frame.

transform it from inertial frame to body-fixed frame B

This yields to:
$$\begin{bmatrix}
\cos(\varphi) & \sin(\varphi) & 0 \\
-\sin(\varphi) & \cos(\varphi) & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
l.\cos(\varphi)\dot{\varphi} \\
l.\sin(\varphi)\dot{\varphi} \\
0
\end{bmatrix} = \begin{bmatrix}
l\dot{\varphi} \\
0 \\
0
\end{bmatrix}$$

$$= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
\dot{\varphi}
\end{bmatrix} \times \begin{bmatrix}
0 \\
-l \\
0
\end{bmatrix} = \begin{bmatrix}
l\dot{\varphi} \\
0 \\
0
\end{bmatrix}$$

$${}_{B}\mathbf{r}_{OP} = \begin{pmatrix} 0 \\ -l \\ 0 \end{pmatrix} \begin{array}{c} \text{differentiation with a} \\ \text{moving frame:} \end{array}$$

$${}_{B}\mathbf{v}_{P} = \frac{d_{B}\mathbf{r}_{OP}}{dt} + {}_{B}\mathbf{\omega}_{IB} \times_{B}\mathbf{r}_{OP}$$
$$= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \dot{\varphi} \end{pmatrix} \times \begin{pmatrix} 0 \\ -l \\ 0 \end{pmatrix} = \begin{pmatrix} l\dot{\varphi} \\ 0 \\ 0 \end{pmatrix}$$

Recapitulation

- We learned the basics for describing the motion
 - Translation $_{I}\mathbf{r}_{OP} = _{I}\mathbf{r}_{OB} + _{I}\mathbf{r}_{BP}$
 - Rotations $_{B}\mathbf{r}_{OP}=\mathbf{R}_{BII}\mathbf{r}_{BP}$
 - Homogeneous transformation $\begin{pmatrix} {}_{I}\mathbf{r}_{OP} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R}_{IB} & {}_{I}\mathbf{r}_{OB} \\ 0 & 1 \end{bmatrix} \begin{pmatrix} {}_{B}\mathbf{r}_{BP} \\ 1 \end{pmatrix}$
 - Angular velocities ${}_{I}\mathbf{\omega}_{IC} = {}_{I}\mathbf{\omega}_{IB} + {}_{I}\mathbf{\omega}_{BC}$
 - Differentiation of (position) vectors $_{B}\mathbf{r} \Rightarrow_{B} (\dot{\mathbf{r}}) = \frac{d_{B}\mathbf{r}}{dt} +_{B} \mathbf{\omega}_{IB} \times_{B} \mathbf{r}$