УДК 004.42, 004.94

АUТОСАО ПРИЛОЖЕНИЕ ДЛЯ РАСЧЕТА МОЛНИЕЗАЩИТЫ И ЗАЗЕМЛЕНИЯ ОБЪЕКТОВ ЭЛЕКТРОЭНЕРГЕТИКИ

Д.С. Шишигин

Вологодский Государственный Университет Россия, 160000, Вологда, ул. Ленина, 15 E-mail: shishigind@yandex.ru

Ключевые слова: AutoCAD приложение, заземление, молниезащита, электрическая полстанция

Аннотация: Разработана компьютерная программа (приложение к AutoCAD) для расчета заземления и молниезащиты электрических подстанций. Программа состоит из вычислительного ядра и интерфейса, связанного с AutoCAD (СОМ-технологии). Результаты расчетов визуализируются 3D графиками, динамические процессы анимируются. Разработан оригинальный метод построения графиков в dxf кодах, отличающийся быстродействием. Приведен пример расчета молниезащиты электрической подстанции.

1. Введение

Удары молнии продолжают наносить огромный ущерб объектам электроэнергетики, нефтегазового комплекса, железнодорожного транспорта, военной инфраструктуры, несмотря на постоянное совершенствование защитных мероприятий. Для современных автоматизированных систем управления не менее опасны и вторичные проявления молнии в виде кондуктивных и электромагнитных помех, приводящие к отказу или ложному срабатыванию автоматики. Задача проектировщика - средствами компьютерного имитационного моделирования найти технические решения, исключающие аварии, и воплотить их в чертежах. Специфика разработки прикладных программ для автоматизированного проектирования заключается в требовании использовать AutoCAD (или аналогичные САПР) для ввода геометрической модели и визуализации результатов расчета. Это требование реализуемо. Объектная модель AutoCAD открывает доступ ко всем методам, свойствам и событиям с геометрическими примитивами. Мы можем считывать 3D геометрическую модель и строить 3D графики или создавать чертежи в AutoCAD по данным расчета из собственной программы. Таким образом, вместо программ с авторскими геометрическими редакторами, которые неконкурентоспособны и уходят в прошлое, разрабатываются AutoCAD-приложения. Эта тенденция прослеживается во всех современных программах для САПР во многих отраслях техники.

В докладе мы хотели бы поделиться опытом разработки AutoCAD приложений, показать архитектуру программы ZYM, средства научной графики в AutoCAD, способы борьбы со сложностью кода, повышения его быстродействия на основе Intel MKL, а также продемонстрировать применение программы для проектирования молниезащиты и заземления электрической подстанции.

2. Управление AutoCAD

2.1. Объектная модель AutoCAD

Это механизм доступа к свойствам, методам, событиям, интерфейсам объектов AutoCAD из прикладной программы. Все геометрические примитивы (линии, полилинии, точки) текущего документа (назовем его ADoc) находятся в коллекции ADoc.ModelSpace. Число примитивов дает свойство ADoc.ModelSpace. Count. Для чтения всех геометрических объектов чертежа из собственной программы достаточно организовать цикл. Найдем тип и координаты i-объекта Obj:=ADoc.ModelSpace.Items(i). Свойство Obj.EntityType содержит тип объекта. Пусть это линия (EntityType=19). Для реализации инструментов объектной модели предусмотрены компоненты называемые интерфейсами. Например, базовым интерфейсом всех графических примитивов является IAcadEntity. Он является родительским для интерфейса IAcadLine. С помощью этого интерфейса создаются объекты семейства AcDbLine, представителем которого является объект Line. Для приведения интерфейса объекта к интерфейсу линии используется оператор as: Line:=Obj as IAcadLine. Тогда в массивах Line.StartPoint[0:2], Line.EndPoint[0:2] содержатся координаты x,y,z узлов отрезка.

Аналогично происходит создание геометрических объектов из программы пользователя. Например, циклически применяя метод *Line:=ADoc.ModelSpace.AddLine(StartPoint, EndPoint)*, мы можем нарисовать геометрический объект, состоящих из сотен линий. Получаемый объект новой линии (*Line*) обеспечивает доступ к ее свойствам, что позволяет изменить цвет, слой и т.д. Таким образом, чтение и запись геометрических объектов AutoCAD производится из программы пользователя.

2.2. Разработка средств научной графики в AutoCAD

Визуализация результатов расчетов в виде 2D, 3D графиков, анимация динамических процессов – обязательный атрибут современной программы. Проблема в том, что в AutoCAD нет стандартного компонента 3D график, использование же сторонних процедур нежелательно. Компонент 3D-график придётся создать. График – это совокупность линий, а каждую линию можно нарисовать стандартным для AutoCAD методом AddLine. Но оказалось, что эта методика хорошо работает для графиков небольшой размерности (сотни линий), но становится медленной при построении графиков с тысячами линий, характерных для наших задач. При анимации число линий еще увеличивается пропорционально числу кадров. Графики с десятками тысяч линий строятся минутами на современном персональном компьютере. От стандартного способа построения графиков методом AddLine пришлось отказаться. Система AutoCAD, созданная для интерактивной работы с пользователем, оказалась не адаптированной для визуализации научной графики подобно Mathcad.

Тем не менее, когда график создан, управление им происходит быстро. Это заставило нас искать новые способы построения графиков большой размерности. В основу решения задачи положена оригинальная идея: большие массивы данных для построения и анимации 3D-графиков в AutoCAD следует сохранять в dxf-формате (data exchange format). Фактически график заранее рисуется в dxf-кодах, а для оцифровки графика численные значения узлов сохраняются в расширенных данных (XDATA), связанных с каждой линией. Размерность dxf-файла может превышать миллион строк, но он быстро пишется и загружается в AutoCAD командой *Import*. В динамическом режиме создается последовательность временных кадров, каждый из которых сохраняется в отдельном слое, один слой делается видимым. Переключение между слоями создает эффект анимации, аналогичный просмотру aviфайлов. Система навигации кадров в виде плеера, создает покадровый просмотр динамических режимов в ручном режиме и анимацию при автоматическом включении/ выключении кадров. Таким образом, мы создали средства научной графики в AutoCAD, включающие 2D, 3D графики и их анимацию, соответствующие требованиям решаемых задач.

3. Программа ZYM

3.1. Архитектура программы

Создание средств научной графики в AutoCAD устраняет последнее препятствие к разработке AutoCAD приложения. Программа ZYM включает (рис.1): вычислительное ядро и сервисную оболочку (интерфейс). Ядро представлено в виде набора dll. Для ускорения матричных операций используются процедуры пакета Intel MKL. Управление AutoCAD осуществляется через объектную модель (СОМ технологии). Графики предварительно строятся в dxf-формате и автоматически загружаются в AutoCAD. Для удобства пользователя основные команды AutoCAD продублированы в программе. Созданы сценарии, автоматизирующие типовые геометрические построения.

Рис. 1. Структура программы ZYM.

3.2. Вычислительное ядро

Это набор математических моделей и методов для решения заданного класса задач. В наших задачах моделируется удар молнии или короткое замыкание на электрической подстанции. Требуется рассчитать сопротивление заземления, токи, потенциалы всех проводников, а также напряженности электрического и магнитного поля. Подобные задачи по постановке, методам и требуемым результатам являются цепно-полевыми, а для их решения требуются две взаимосвязанные модели – полевая и цепная. Полевая модель позволяет рассчитать электромагнитные параметры элементов, которые далее используются в цепной модели для расчета токов элементов. По найденным стекающим токам стержней в полевой модели определяется распределение потенциала и напряженности электрического поля, по найденным продольным токам определяется напряженность магнитного поля. Подробная информация по используемым нами моделям и методам представлена в [1].

- **3.2.2. Простота кода.** По примеру математических пакетов ядро представлено в виде процедур dll с набором тестовых задач. Ядро разрабатывают специалисты, многие из них далеки от программирования. Мы убедились, что если отладить решение в Mathcad на тестовых задачах, используя матричные операции, то далее получаем простой, понятный код, способствующий длительному жизненному циклу программы.
- **3.2.3. Быстродействие кода.** Отдельное исследование выполнено по ускорению наиболее трудоемких матричных операций. Сравнивались возможности свободно распространяемого пакета *Alglib* с алгоритмической оптимизацией кода и коммерческой библиотеки *Intel Math Kernel Library* (далее *Intel MKL*) с низкоуровневой оптимизацией и многопоточностью. Результаты представлены в таблице 1.

Таблица 1. Сравнение пакетов Alglib и Intel MKL

Операция	AlgLib	Intel MKL	Сравнение
Умножение матриц [А] [А]	11.8 сек	0.6 сек	19 раз
Решение СЛАУ [А]:[Х]=[В]	3.9 сек	0.3 сек	13 раз
Обращение матрицы [А]	28.8 сек	1.1 сек	26 раз
Решение комплексной СЛАУ [C]·[X]=[B]	46 сек	0.9 сек	51 раз
Обращение комплексной матрицы [С]	125 сек	3.6 сек	34 раз
Размерность матриц – 2000. Ноутбук: Windows 7 64-bit, Intel Core i7 4x2.2 ГГЦ, ОЗУ 6 Гб.			

Таким образом, применение $Intel\ MKL$ существенно повышает быстродействие матричных вычислений по сравнению с пакетом Alglib и аналогичных. При разработке коммерческих программ с матричными операциями он, несомненно, стоит затраченных средств.

В настоящее время существует тенденция к переходу от вычислений на центральных процессорах (CPU) к вычислениям на графических процессорах (GPU). Использование NVIDIA CUDA с типичными характеристиками позволило ускорить произведения матриц еще в 2 раза по сравнению с *Intel MKL*. В целом нам удалось повысить быстродействие матричных операций в 100-300 раз по сравнению со «студенческими» алгоритмами [2].

3.3. Применение программы

Выберем молниезащиту и заземление электрической подстанции (рис. 2). Вначале анализируем режимы короткого замыкания, в частности находим распределение потенциала (рис. 3). Далее анализируем надежность внешней молниезащиты (рис. 4, 5). Установлено, что молниеотводы перехватывают удары молнии. Далее моделируем удар молнии поочередно в каждый молниеотвод и находим распределение потенциала и тока. Анимация позволяет рассмотреть процесс в динамике и детализировать для любого момента времени (кадра). По графику потенциала убеждаемся в отсутствие обратных перекрытий с молниеотводов на электрооборудование. В противном случае корректируем расположение молниеотводов. Максимум напряжения, приложенного к экрану контрольного кабеля не должен превышать допустимую величину. В противном случае, усиливаем экранирующий эффект кабельного канала. Напряженность магнитного поля в местах расположения микропроцессорной аппаратуры (с учетом объемного экранирования металлоконструкциями) не должна превышать допустимый уровень (рис.6). В противном случае корректируем расположение молниеотводов, усиливаем экранирующий эффект кабельных каналов и металлоконструкций зданий, используем аппаратуру с повышенным классом помехоустойчивости.

Рис. 2. Геометрическая модель электрической подстанции и внешние воздействия.

Рис. 3. Распределение потенциала на электрической подстанции при КЗ (два варианта изображения).

Рис. 4. Зона ориентировки молнии над электрической подстанцией.

Рис. 5. Зоны защиты электрической подстанции от удара молнии.

Рис. 6. Фрагмент геометрической модели электрической подстанции при ударе молнии и распределение напряженности магнитного поля в местах расположения микропроцессорных систем управления с учетом экранирования.

4. Заключение

Современные принципы разработки программ для технических расчетов, работающих в составе САПР, основаны на СОМ технологиях. Программа считывает геометрическую модель из AutoCAD, выполняет расчеты и изображает результаты в AutoCAD. Представленная программа ZYM отвечает современным требованиям к расчету заземления и молниезащиты объектов электроэнергетики и других отраслей промышленности.

Список литературы

- 1. Шишигин С.Л. Математические модели и методы расчета заземляющих устройств // Электричество. 2010. № 1. С. 16-23.
- 2. Шишигин Д.С. Разработка AutoCAD приложения для расчета заземления и молниезащиты электрических подстанций // Конференция «Разработка ПО 2013». [Электронный ресурс] Режим доступа: http://2013.secr.ru/2013/files/045 shishigin.pdf.