

planetmath.org

Math for the people, by the people.

Wirtinger's inequality

Canonical name WirtingersInequality
Date of creation 2013-03-22 14:02:38
Last modified on 2013-03-22 14:02:38
Owner rspuzio (6075)

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 9

Author rspuzio (6075) Entry type Theorem Classification msc 42B05

Synonym Wirtinger inequality

Theorem: Let $f: \mathbb{R} \to \mathbb{R}$ be a periodic function of period 2π , which is continuous and has a continuous derivative throughout \mathbb{R} , and such that

$$\int_0^{2\pi} f(x) = 0 \ . \tag{1}$$

Then

$$\int_0^{2\pi} f'^2(x)dx \ge \int_0^{2\pi} f^2(x)dx \tag{2}$$

with equality if and only if $f(x) = a \cos x + b \sin x$ for some a and b (or equivalently $f(x) = c \sin(x+d)$ for some c and d).

Proof: Since Dirichlet's conditions are met, we can write

$$f(x) = \frac{1}{2}a_0 + \sum_{n>1} (a_n \sin nx + b_n \cos nx)$$

and moreover $a_0 = 0$ by (??). By Parseval's identity,

$$\int_0^{2\pi} f^2(x)dx = \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

and

$$\int_0^{2\pi} f'^2(x)dx = \sum_{n=1}^{\infty} n^2(a_n^2 + b_n^2)$$

and since the summands are all ≥ 0 , we get (??), with equality if and only if $a_n = b_n = 0$ for all $n \geq 2$.

Hurwitz used Wirtinger's inequality in his tidy 1904 proof of the isoperimetric inequality.