

## 2021년 고림고 수학2 2학기 기말

| DATE  |  |
|-------|--|
| NAME  |  |
| GRADE |  |

- $\textbf{1.} \ \, 등식 \ \, \int f(x)dx = 4x^5 5x^2 + C \, \left( \, C \mbox{는 적분상수} \right) \mbox{를 만족하는 함수}$ f(x)는? [4.1점]
- $\bigcirc 5x^4 2x$
- ②  $5x^4 10x$
- $3 20x^4 2x$
- $\bigcirc 20x^4 10x$
- $\bigcirc 20x^4 10x + 5$

- **2.**  $\int_{1}^{3} (2x^3 + 3x^2 2x) dx$ 의 값은? [4.1점]
- ① 34 ② 42 ③ 48 ④ 50

- **⑤** 58

- **3.** 함수  $f(x) = \frac{1}{3}x^3 + x^2 3x 5$ 의 극댓값은? [4.3점]
- $\bigcirc 1 2$   $\bigcirc 2 0$   $\bigcirc 3 2$   $\bigcirc 4 4$

- **⑤** 6

- **4.** 수직선 위를 움직이는 점 P의 시각  $t(t \ge 0)$ 에서의 위치 x가  $x = -t^3 + 2t^2 + 4t + k$  (k는 상수)이다. 점 P가 출발한 후 운동방향을 바꿀 때 점 P의 위치는 20이다. k의 값은? [4.3점]
- ① 12 ② 15 ③ 18 ④ 20

- **5.** 수직선 위를 움직이는 점 P의 시각  $t(t \ge 0)$ 에서의 속도 v(t)가  $v(t) = 2t - t^2$ 일 대, 시각 t = 0에서 t = 3까지 점 P가 움직인 거리는? [4.5점]

- ①  $\frac{4}{3}$  ② 2 ③  $\frac{8}{3}$  ④  $\frac{10}{3}$  ⑤ 4

- **6.** 함수  $f(x) = -x^3 + ax^2 2ax$ 의 역함수가 존재하도록 하는 정수 a의 개수는? [4.5점]

- ① 5 ② 6 ③ 7 ④ 8 ⑤ 9

- **7.** 연속함수 f(x)가 모든 실수 x에 대하여 f(-x) = f(x)이고,  $\int_{-2}^{2} f(x)dx = 6$ ,  $\int_{0}^{-3} f(x)dx = -4$ 일 때,  $\int_{-3}^{2} f(x)dx$ 의 값은?

- $\bigcirc 1 -1$   $\bigcirc 2$   $\bigcirc 2$   $\bigcirc 3$   $\bigcirc 5$   $\bigcirc 4$   $\bigcirc 7$   $\bigcirc 5$   $\bigcirc 10$

- **8.** 연속함수 f(x)가 모든 실수 x에 대하여  $f(x) = 6x^2 \int_{-1}^1 f(t)dt$ 를 만족시킬 때, f(1)의 값은? [4.6점]
- ① -3 ②  $-\frac{5}{3}$  ③  $\frac{2}{3}$  ④  $\frac{10}{3}$  ⑤  $\frac{14}{3}$

- **9.** 함수  $f(x) = 2x^2 3$ 에 대하여  $\lim_{x \to 3} \frac{\int_3^x f(t)dt}{x^2 9}$ 의 값은? [4.7점]

- ①  $\frac{5}{2}$  ② 3 ③  $\frac{7}{2}$  ④ 4 ⑤  $\frac{9}{2}$

- **10.** 함수  $f(x) = \frac{1}{4}x^4 x^3 + 4x 2$ 의 그래프에 대한 설명으로 옳지 않은 것은? [4.7점]
- ① 구간  $(-\infty, -1]$ 에서 감소한다.
- ② f(x)가 극값을 갖는 x의 값은 1개다.
- ③ 방정식 f(x) = 0은 서로 다른 두 실근을 갖는다.
- ④ 닫힌구간 [-1,2]에서 함수 f(x)의 최댓값은 2이다.
- ⑤ 모든 실수 x에 대하여  $f(x) \le k$ 를 만족하는 실수 k가 존재한다.

- **11.** 함수  $f(x) = x^2 (x \ge 0)$ 의 역함수를 g(x)라고 할 때, 두 곡선 y = f(x), y = g(x)로 둘러싸인 부분의 넓이는? [4.8점]

- ①  $\frac{1}{6}$  ②  $\frac{1}{3}$  ③  $\frac{2}{5}$  ④  $\frac{1}{2}$  ⑤  $\frac{2}{3}$

**12.** 두 점 A(-3,0), B(3,0)에서 x축과 만나는 곡선  $y=9-x^2$ 이 있다. 그림과 같이 이 곡선과 x축으로 둘러싸인 부분에 내접하는 사다리꼴 ABCD의 넓이의 최댓값은? [4.8점]



- ① 24 ② 25

- ③ 28 ④ 30 ⑤ 32

- **13.** 모든 실수 x에 대하여 부등식  $x^4 6x^2 8x a^2 + 10a + 8 \ge 0$ 이 항상 성립하도록 하는 정수 a의 최댓값을 M, 최솟값을 m이라고 할 때, M-m의 값은? [4.9점]
- ① 5 ② 6 ③ 7 ④ 8 ⑤ 9

- **14.** 실수 전체에서 연속인 함수 f'(x)가  $f'(x) = \begin{cases} 3x^2 + a & (x \le 0) \\ 2x 3 & (x > 0) \end{cases}$ 이고, f(x)의 극댓값이 5이다. f(x)의 극솟값을 m이라 할 때, 40m의 값은? (단, a는 상수) [4.9점]
- $\bigcirc 1 -90$   $\bigcirc 2 -60$   $\bigcirc 3 -30$   $\bigcirc 4 30$   $\bigcirc 5 60$

- **15.** 닫힌구간 [-1,2]에서 함수  $f(x) = \int_{x-1}^{x+1} (t-1)^2 dt$ 의 최솟값은? [5.1점]
- ①  $\frac{2}{3}$  ② 1 ③  $\frac{4}{3}$  ④  $\frac{5}{3}$  ⑤ 2

- **16.** 함수 f(x)가 모든 실수 x에 대하여 f(x+4)=f(x)를 만족시키고  $f(x)=-x^2+4$   $(-2 \le x \le 2)$ 이다.  $3\int_{-a}^a f(x)dx=86$ 일 때, 상수 a의 값은? [5.1점]
- ① 3 ② 4 ③ 5 ④ 6 ⑤ 7

- **17.** 원점에서 곡선  $y=x^3-3x^2+2x+k$ 에 서로 다른 2개의 접선을 그을 수 있을 때, 0이 아닌 실수 k의 값은? [5.1점]

| 18. | 함수 $f(x)=2x^3+3x^2-12x+a$ 에 대하여 함수 $g(x)=\int_0^x f(t)dt$ 가 |
|-----|-------------------------------------------------------------|
|     | 극댓값과 극솟값을 모두 가질 때, 정수 $a$ 의 최솟값은? [5 2점]                    |

- $\bigcirc$  -20
- $\bigcirc$  -19
- 3 -18 4 -17
- $\bigcirc$  -16

**19.** 함수  $f(x) = -x^3 + 3x + 4$ 와 실수 k에 대하여  $x \le k$ 에서 f(x)의 최솟값을 m(k)라 할 때,  $\langle 보기 \rangle$ 에서 옳은 것만을 있는 대로 고른 것은? [5.2점]

----- 〈보기〉 **-**

- ㄱ. m'(-1) = 0이다.
- $\lfloor (m(k) f(k)) \rfloor$ 의 최댓값은 4이다.
- $\mathsf{c}_{\,\cdot\,}$  함수 m(k)가  $k\!=\!a$ 에서만 미분가능하지 않을 때,  $\int_0^a m(k)dk = 40 |\Box|.$

- (1) L (2) ¬, L (3) ¬, E (4) L, E

- **20.** 최고차항의 계수가 1인 삼차함수 f(x)가 다음 조건을 만족시킬 때, f(0)의 값은? [5.2점]
- $\circ$   $f'(-1) \times f'(1) < 00$   $\boxed{2}$ , f'(0) = -40  $\boxed{4}$ .
- $\circ$  함수 |f(x)|는 x=2에서 극댓값 3을 갖는다.
- $\circ$  함수 |f(x)|는 서로 다른 세 점에서 미분가능하지 않다.
- $\bigcirc 1 -1 \qquad \bigcirc 2 \qquad \bigcirc 2 \qquad \bigcirc 3 \quad 5 \qquad \bigcirc 4 \quad 6 \qquad \bigcirc 5 \quad 8$

 $\mathbf{21}$ . 최고차항의 계수가 -1인 사차함수 f(x)가 모든 실수 x에 대하여 f(1-x)=f(1+x)를 만족한다. 구간 [t-1,t]에서 f(x)의 최댓값을 g(t)라고 할 때,  $4 \le t \le 5$ 에서 g(t)는 상수함수이다. 이때,  $\lim_{h\to 0} \frac{1}{h} \int_{3+h}^{3} g'(t) dt$ 의 값은? [5.3점]

1) ④

2) ⑤

3) ④

4) ①

5) ③

6) ③

7) ④

8) ⑤

9) ①

10) ⑤

11) ②

12) ⑤

13) ② 14) ④

15) ①

16) ③

17) ③

18) ②

19) ④

20) ③

21) ①