Lista Entrega 5

Davi Wentrick Feijó - 200016806

2023-06-05

Questao 1 (9.1)

A questa
o nos dá a matriz de covariancia ρ e a matriz de erro
s Ψ

A matriz ρ

1.00	0.63	0.45
0.63	1.00	0.35
0.45	0.35	1.00

A matriz Ψ

0.19	0.00	0.00
0.00	0.51	0.00
0.00	0.00	0.75

Sabemos que na analise fatorial temos a seguinte relacao:

$$\Sigma = LL^T + \Psi$$

$$LL^T = \Sigma - \Psi$$

Calculando LL^{T}

0.81	0.63	0.45
0.63	0.49	0.35
0.45	0.35	0.25

Podemos encontrar a comunalidade na diagonal da matriz LL^T já que subtraimos o Ψ

Com essas informacoes podemos escrever nossa matriz Σ como:

$$\Sigma = LL^T + \Psi$$

 $p_construido = LLT + psi$

1.00	0.63	0.45
0.63	1.00	0.35
0.45	0.35	1.00

Questao 2 (9.2)

A) As comunalidades sao:

comu

[1] 0.81 0.49 0.25

Podemos perceber que F1 detem a maior comunalidade logo é o fator que mais explica a variancia dos dados

B) Sabemos que:

$$Cor(X,Y) = \frac{Cov(X,Y)}{S_x S_y}$$
$$Cov(X,F) = L$$

Logo

$$Cor(X_i, F_i) = \frac{Cov(X_i, F_i)}{S_i S_f} = \frac{L_i}{S_x S_f}$$

cor_xf = Lestimado[1]/(1*comu[1])

[1] -1.141896

Questao 3 (9.3)

A) Para realizar por meio de componentes principais primeiro precisamos encontrar os autovalores e autovetores da matriz de correlacao aplicando a decompisicao espectral em ρ dada na questao 9.1

$$\rho = CDC^T$$

```
eigen_p = eigen(p)
autoval <- eigen_p$values
autovet <- eigen_p$vectors

D <- matrix(0, nrow = 3, ncol = 3)
diag(D) <- sqrt(autoval)</pre>
```

autoval

[1] 1.9632830 0.6794930 0.3572239

autovet

```
## [,1] [,2] [,3]
## [1,] -0.6250027 0.2186276 0.7493822
## [2,] -0.5931510 0.4910833 -0.6379726
## [3,] -0.5074875 -0.8432314 -0.1772492
```

Em seguida podemos encontrar nossa matriz L

$$L = CD^{1/2}$$

Aqui temos nossa matriz dos loadings

Lestimado

Para calcular a matriz Ψ temos que seguir a equacao:

$$\Psi = \Sigma - LL^T$$

Na diagonal obteremos nosso Ψ

psiestimado

[1] 0.2330860 0.3092618 0.4943692

Para comparar com os resultados anteriores podemos aproximar a matrix Σ de correlacoes por meio da formula:

$$\Sigma = LL^T + \Psi$$

```
## [,1] [,2] [,3]
## [1,] 0.9569140 0.7278302 0.6227161
## [2,] 0.7278302 1.2007382 0.5909810
## [3,] 0.6227161 0.5909810 1.2556308
```

B) A variancia explicada é:

Podemos notar que a primeira componente exxplica 65% da variancia dos dados

Questao 4 (9.19)

	x1	x2	x3	x4	x5	x6	x7
x1	1.0000000	0.9260758	0.8840023	0.5720363	0.7080738	0.6744073	0.9273116
x2	0.9260758	1.0000000	0.8425232	0.5415080	0.7459097	0.4653880	0.9442960
x3	0.8840023	0.8425232	1.0000000	0.7003630	0.6374712	0.6410886	0.8525682
x4	0.5720363	0.5415080	0.7003630	1.0000000	0.5907360	0.1469074	0.4126395
x5	0.7080738	0.7459097	0.6374712	0.5907360	1.0000000	0.3859502	0.5745533
x6	0.6744073	0.4653880	0.6410886	0.1469074	0.3859502	1.0000000	0.5663721
x7	0.9273116	0.9442960	0.8525682	0.4126395	0.5745533	0.5663721	1.0000000

```
AF2
```

A)

```
## Principal Components Analysis
## Call: principal(r = cor_data, nfactors = 2, rotate = "none", n.obs = 50,
       covar = F)
## Standardized loadings (pattern matrix) based upon correlation matrix
       PC1
           PC2
                 h2
                         u2 com
## x1 0.97 -0.11 0.96 0.041 1.0
## x2 0.94 0.03 0.89 0.110 1.0
## x3 0.94 0.01 0.89 0.107 1.0
## x4 0.66 0.65 0.85 0.147 2.0
## x5 0.78 0.28 0.69 0.305 1.3
## x6 0.65 -0.62 0.81 0.194 2.0
## x7 0.91 -0.19 0.87 0.127 1.1
##
##
                          PC1 PC2
## SS loadings
                         5.03 0.93
## Proportion Var
                         0.72 0.13
## Cumulative Var
                         0.72 0.85
## Proportion Explained 0.84 0.16
## Cumulative Proportion 0.84 1.00
## Mean item complexity = 1.3
## Test of the hypothesis that 2 components are sufficient.
\mbox{\tt \#\#} The root mean square of the residuals (RMSR) is \mbox{\tt 0.08}
## with the empirical chi square 11.93 with prob < 0.15
## Fit based upon off diagonal values = 0.99
```

```
## Principal Components Analysis
## Call: principal(r = cor_data, nfactors = 3, rotate = "none", n.obs = 50,
      covar = F)
## Standardized loadings (pattern matrix) based upon correlation matrix
            PC2
                  PC3
                       h2
                              u2 com
## x1 0.97 -0.11 -0.05 0.96 0.039 1.0
## x2 0.94 0.03 -0.31 0.99 0.013 1.2
## x3 0.94 0.01 0.14 0.91 0.087 1.0
## x4 0.66 0.65 0.32 0.95 0.045 2.4
## x5 0.78 0.28 0.00 0.69 0.305 1.3
## x6 0.65 -0.62 0.43 0.99 0.012 2.7
## x7 0.91 -0.19 -0.31 0.97 0.033 1.3
##
##
                         PC1 PC2 PC3
## SS loadings
                        5.03 0.93 0.50
## Proportion Var
                        0.72 0.13 0.07
## Cumulative Var
                        0.72 0.85 0.92
## Proportion Explained 0.78 0.14 0.08
## Cumulative Proportion 0.78 0.92 1.00
## Mean item complexity = 1.6
## Test of the hypothesis that 3 components are sufficient.
## The root mean square of the residuals (RMSR) is 0.04
## with the empirical chi square 3.95 with prob < 0.27
## Fit based upon off diagonal values = 1
```

B)

```
#c)

AF2_comu = AF2$loadings^2
AF2_psi = diag(AF2$uniquenesses)
AF2_LLT = AF2$loadings %*% t(AF2$loadings)
resAF2 <- round(cor(data) - AF2_LLT - AF2_psi,3)</pre>
AF3_comu = AF3$loadings^3
```

```
AF3_psi = diag(AF3$uniquenesses)
AF3_LLT = AF3$loadings %*% t(AF3$loadings)
resAF3 <- round(cor(data) - AF3_LLT - AF3_psi,3)</pre>
C)
#d)
#m=2
dim(AF2$loadings)
D)
## [1] 7 2
n = dim(data)[1]
p = dim(AF2$loadings)[1]
m = dim(AF2$loadings)[2]
AF2_teste_stat = AF2$chi
AF2_pvalue = AF2$PVAL
#m=3
dim(AF3$loadings)
## [1] 7 3
n = dim(data)[1]
p = dim(AF3$loadings)[1]
m = dim(AF3$loadings)[2]
```

AF2_teste_stat = AF3\$chi AF2_pvalue = AF3\$PVAL