Process Mining: Data Science in Action

Petri Nets (1/2)

prof.dr.ir. Wil van der Aalst www.processmining.org

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

A very simple process ...

Traffic light Petri net

- Network is static and composed of places and transitions.
- Places hold tokens.
- Transitions produce and/or consume tokens.

Markings

Markings

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

Enabling and firing

- Transition t1 is enabled if each input place contains a token.
- An enabled transition can fire by consuming a token from each input place and producing a token for each output place

What if there are more tokens?

What if a place is both input and output?

How many times can t1 fire and what is the final marking?

3 times

t1 is not enabled, so t2 fires

all three transitions are enabled and can fire in any order or even concurrently

2x2x2 = 8 reachable states

In this course we assume interleaving semantics (no real limitation).

State explosion

6 tokens

7⁶ = 117649 reachable states

both are enabled but only one can fire

Give all possible final markings

Give all possible final markings

Give all possible final markings

How to model two traffic lights?

2**X**

Two traffic lights

Problem

How to make them safe?

Safe traffic lights (non-deterministic)

How to make them alternate?

Part I: Introduction

Chapter 1 Data Science in Action

Chapter 2 Process Mining: The Missing Link

Part II: Preliminaries

Chapter 3

Process Modeling and Analysis

Chapter 4 Data Mining

Part III: From Event Logs to Process Models

Chapter 5 Getting the Data

Chapter 6 Process Discovery: An Introduction

: Adva

Chapter 7

Advanced Process
Discovery Techniques

Part IV: Beyond

Chapter 8
Conformance
Checking

ss Discovery

ter 9
Mining Additional
Perspectives

Chapter 10 Operational Support

Part V: Putting Process Mining to Work

Chapter 11

Process Mining Software

Chapter 12

Process Mining in the Large

Chapter 13

Analyzing "Lasagna Processes"

Part VI: Reflection

Chapter 15

Cartography and Navigation

Chapter 16

Epilogue

Chapter 14 Analyzing "Spaghe

Analyzing "Spaghetti Processes"

Process

Mining

Wil van der Aalst

