

$\sigma_{0}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_0^{\#_+^2}$	0	0	0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

Source constraints			
SO(3) irreps	#		
$\tau_{0+}^{\#2} == 0$	1		
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3		
$\tau_{1}^{\#1\alpha} == 0$	3		
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3		
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5		
Total #:	16		

$\omega_{0}^{\#1}$	0	0	0	<i>-t</i> ₁
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-i \sqrt{2} k t_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	£3	$i\sqrt{2}kt_3$	0	0
,	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{\#2} \uparrow$	$\omega_{0^-}^{\#1} \dagger$

$\omega_{2^{-}}^{\#1}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}f_{2}^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
· ·	$\omega_2^{#1} + ^{\alpha\beta}$	$f_2^{#1} + \alpha^{\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

$f_{1}^{\#2}$	0	0	0	$\frac{1}{3}$ \vec{i} k $(t_1 - 2t_3)$	$\frac{1}{3}$ \bar{l} $\sqrt{2}$ $k(t_1 + t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6} (6 k^2 (r_1 + r_5) + t_1 + 4 t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$
$f_1^{\#1}{}_{\!$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$ f	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#1} + \alpha \beta \left[k^2 \left(2 r_1 + r_5 \right) - \frac{t_1}{2} \right]$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} \dagger^{\alpha\beta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

_	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\sharp 1}{}_{lphaeta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

Massive particle				
Pole residue:	$-\frac{3(-2t_1t_3(t_1+t_3)+r_1(t_1^2+2t_3^2)+r_5(t_1^2+2t_3^2))}{2(r_1+r_5)(t_1+t_3)(-3t_1t_3+r_1(t_1+t_3)+r_5(t_1+t_3))} > 0$			
Polarisations:	3			
Square mass:	$-\frac{3t_1t_3}{2(r_1+r_5)(t_1+t_3)} > 0$			
Spin:	1			
Parity:	Odd			

	Massive particle			
	Pole residue:	$-\frac{1}{r_1} > 0$		
9	Polarisations:	5		
- :	Square mass:	$-\frac{t_1}{2r_1} > 0$		
	Spin:	2		
	Parity:	Odd		

(No massless particles)