- **1.** Read traverse size (n)
- 2. Read travers angles {a[i], i=0..n-1}
 - a) For every angle {a[i], i=0..n-1}
 - b) Read the angle (a[i])
- **3.** Calculate the actual sum of the angles (sum)
 - a) Initialize sum to zero (sum = 0)
 - b) For every angle {a[i], i=0..n-1}
 - c) Update the sum (sum = sum + a[i])
- **4.** Calculate the correction
 - a) The theoritical sum (tsum = 180 * (n 2))
 - b) The error (error = sum tsum)
 - c) The correction (correction = error / n)
- **5.** Correct the angles
 - a) For every angle {a[i], i=0..n-1}
 - b) Correct the angle (a[i] = a[i] correction)
- **6.** Print the corrected angles
 - a) For every angle {a[i], i=0..n-1}
 - b) Print the angle (a[i])

Write a program that reads traverse angles a_1, a_2, \ldots, a_n , performs *Traverse Angle Balancing*, and prints the corrected angles $\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_n$.

$$e = \left(\sum_{i=1}^{n} a_i\right) - 180(n-2)$$

$$c = e/n$$

$$\hat{a}_i = a_i - c \forall i \in [1, n]$$