第六章图(三)

最短路径

- 在网络(带权图)中,求两个不同顶点之间的所有路径中,<u>边的权值之和最小</u>的那一条路径
 - □这条路径就是两点之间的最短路径(Shortest Path)
- 最短路径问题: 从图中某一顶点出发,求其到所有其他顶点的最短路径
 - □ 最短路径与最小生成树问题主要有三点不同:
 - I. 最短路径的操作对象主要是有向图(网),而最小生成树的操作对象是无向图;
 - II.最短路径有一个始点,最小生成树没有;
 - III.最短路径关心的是始点到每个顶点的路径最短,而最小生成树关心的是整个树的代价最小

- 最短路径问题可以采用Dijkstra算法求解
 - Dijkstra提出按路径长度的递增次序,逐步产生最短路径的贪心算法

源点S	中间结点	终点	路径长度
1		2	1 0
1		4	3 0
1	4	3	5 0
1	4 3	5	6 0

- Dijkstra算法
 - □ 在Dijkstra算法中,引进了一个辅助向量 D;
 - □每个分量D[i]表示当前所找到的从始点 v_0 到每个终点 v_i 的最短路径长度;
 - □初值为始点 v_0 到各个终点 v_i 的直接距离,即若从始点到某终点有(出)弧,则为弧上的权值,否则为∞。

- 如果1是始点 v_0 ,则D[i]的初值为: $D[i]=\{10, \infty, 30, 100\}$
- 显然, $D[i]=\min\{D[i]|v_i \in V\}$ 是始点出发的长度最短的一条最短路径

- Dijkstra算法 (cont.)
 - □设S为最短路径已经确定的顶点集合;
 - □下一条最短路径(设其终点为v_i)为以下之一:
 - ① 中间只经过S中的顶点 v_j 而后到达顶点 v_i 的路径
 - ② 弧 $< v_0, v_i >$

• Dijkstra算法示例

循环	S	D [2]	D [3]	D [4]	D [5]	P[2]	P[3]	P[4]	P[5]
初态	{1}	10	00	30	100	1	1	1	1
1	{1,2}	10	60	30	100	1	2	1	1
2	{1,2,4}	10	50	3 0	90	1	4	1	4
3	{1,2,4,3}	10	50	30	60	1	4	1	3
4	{1,2,4,3,5}	10	50	30	60	1	4	1	SEN WAY

注: P[i]表示始点到顶点 v_i 的当前最短路径上,最后经过的顶点

有向无环图

•有向无环图(Directed Acycline Graph, DAG)是不存在 环路的有向图

注意: 无环路的有向图对应的无向图可能存在环路。

DFS: 1, 2, 3, 5, 4

- •有向图中,可以用深度优先搜索(DFS),找出是否存在环:从某个顶点v出发,进行DFS,如果存在一条从顶点u到v的回边,则有向图中存在环
 - □下图DFS: 1, 2, 3, 5, 4

•有向无环图可以用于表达式的共享

□ 表达式 ((a+b)*(b*(c+d))+(c+d)*e)*((c+d)*e), 用二 叉树表示

- •有向无环图可以用于表达式的共享
 - □ 表达式 ((a+b)*(b*(c+d))+(c+d)*e)*((c+d)*e), 用 DAG表示
 - 可以节省存储空间

公共子式

- b
- (c+d)
- (c+d)*e

- •有向无环是一类具有代表性的图,主要用于研究工程项目的工序问题、工程时间进度问题等
- ■一个工程(project)都可分为若干个称为活动(active)的子工程(或工序),各个子工程受到一定的条件约束:某个子工程必须开始于另一个子工程完成之后;整个工程有一个开始点(起点)和一个终点
- •一个工程活动可以用有向无环图来描述

拓扑排序

- ▶偏序关系
- •若集合X上的关系R是:
 - □ 自反的: *x R x*
 - □ 反对称的: x R y and $y R x \Rightarrow x = y$
 - □传递的: xRy & yRz ⇒ xRz

则称R是集合X上的偏序关系,例如小于等于关系

- 全序关系
- 设关系R是集合X上的偏序,如果对每个 $x,y \in X$,必有xRy或者yRx,则称R是集合X上的全序关系
- 全序指集合中全体成员之间均可比较
- 偏序指集合中仅有部分成员之间可比较
- □右图是一个偏序关系,因为 1,3 没有先后 关系
- □如果人为地增加 1,3 先后关系,如 1 先于 3,则右图变为全序,称为拓扑有序
- □从图来说,全序表示任意两点之间至少存 在一条路径

- 从偏序得到的全序称为拓扑有序
- 由偏序得到拓扑有序的操作称为拓扑排序
- 拓扑排序算法:
 - ① 在有向图中选一个没有前驱的顶点且输出之
 - ② 从图中删除该顶点和所有以它为尾的弧
 - ③ 重复(1)(2)两步,直到所有顶点输出为止
- •关系:通过拓扑排序操作得到的线性序列为拓扑有序序列

[例]拓扑排序举例

◆ 最后输出拓扑排序结果: 0, 1, 3, 2, 4

[例] 课程及课程间的先修关系是偏序关系、(1

课程代号	课程名称	先修课代号		
1	计算机原理	8		
2	编译原理	4, 5		
3	操作系统	4, 5		
4	程序设计	无		
5	数据结构	4,6		
6	离散数学	9		
7	形式语言	6		
8	电路基础	9		
9	高等数学	无		
10	计算机网络	1		

