**Chapter 9** 

Relational
Database Design
by ER- and
EER-to-Relational
Mapping



Addison-Wesley is an imprint of



# Chapter 9

Relational Database
Design by ER- and
EER-to-Relational
Mapping





# Chapter 9 Outline

- Schema Mapping (Logical Database Design) step of Database Design
- ER-to-Relational Mapping Algorithm
  - Step 1: Mapping of Regular Entity Types
  - Step 2: Mapping of Weak Entity Types
  - Step 3: Mapping of Binary 1:1 Relation Types
  - Step 4: Mapping of Binary 1:N Relationship Types.
  - Step 5: Mapping of Binary M:N Relationship Types.
  - Step 6: Mapping of Multivalued attributes.
  - Step 7: Mapping of N-ary Relationship Types.
- Mapping EER Model Constructs
  - Step 8: Options for Mapping Specialization or Generalization.
  - Step 9: Mapping of Union Types (Categories).



# Data Model Mapping Phase of Relational DB Design

- DB designers use ER/EER or other conceptual data model to produce a conceptual schema design (independent from any specific DBMS) during the Conceptual Database Design phase
- In Logical Database Design Phase (see Figure 7.1, next slide) conceptual schema design is converted (Mapped) to the data model of the DBMS
  - Typically relational model (see Chapters 3-6), or object/objectrelational models (see Chapter 11)
  - Data model mapping is usually automated or semi-automated in many database design tools
- In this chapter, we study the various options for mapping ER/EER model constructs to relational model constructs
  - Object and object-relational mapping discussed in Chapter 11





**Addison-Wesley** is an imprint of

PEARSON

# Overview of ER-to-Relational Mapping Algorithm

- We present the concepts of a general mapping algorithm
- Algorithm has 7 steps:
  - Step 1: Mapping of regular (strong) entity types
  - Step 2: Mapping of weak (dependent) entity types
  - Steps 3, 4, 5: Mapping of binary relationship types of different cardinality ratios (1:1, 1:N, M:N)
  - Step 6: Mapping of multi-valued attributes
  - Step 7: Mapping of n-ary relationship types, n > 2
- Example: We use the COMPANY ER schema diagram (Figure 9.1, next slide) to illustrate the mapping steps
- Additional steps (Steps 8, 9) for mapping EER model constructs (specialization/generalization, UNION types) presented later





Addison-Wesley is an imprint of

## ER-to-Relational Mapping Algorithm

### Step 1: Mapping of Regular Entity Types

- For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes (or simple components of composite attributes) of E.
- Choose one of the key attributes of E as primary key for R.
- If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.
- Example: We create the relations EMPLOYEE, DEPARTMENT, and PROJECT in the relational schema corresponding to the regular entity types in Figure 9.1
  - SSN, DNUMBER, and PNUMBER are chosen as primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT (Figure 9.3(a), next slide).
  - Note: Additional attributes will be added to these tables in later mapping steps



#### Figure 9.3

Illustration of some mapping steps.

- a. *Entity* relations after step 1.
- b. Additional *weak entity* relation after step 2.
- c. *Relationship* relation after step 5.
- d. Relation representing multivalued attribute after step 6.

#### (a) EMPLOYEE

| Fname | Minit | Lname | <u>Ssn</u> | Bdate | Address | Sex | Salary |
|-------|-------|-------|------------|-------|---------|-----|--------|
|-------|-------|-------|------------|-------|---------|-----|--------|

#### **DEPARTMENT**

| Dname | <u>Dnumber</u> |
|-------|----------------|
|       |                |

#### **PROJECT**

| Pname | <u>Pnumber</u> | Plocation |
|-------|----------------|-----------|
|-------|----------------|-----------|

#### (b) DEPENDENT

| Essn | Dependent_name | Sex | Bdate | Relationship |
|------|----------------|-----|-------|--------------|
|------|----------------|-----|-------|--------------|

#### (c) WORKS\_ON

#### (d) DEPT\_LOCATIONS

| <u>Dnumber</u> | Dlocation |
|----------------|-----------|

### Step 2: Mapping of Weak Entity Types

- For each weak entity type W with owner entity type E, create a relation R that includes all simple attributes (or simple components of composite attributes) of W as attributes of R.
- Include as foreign key attribute(s) in R the primary key attribute(s) of the relation(s) that corresponds to the owner entity type(s).
- The primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.
- Example: Create the relation DEPENDENT in this step to correspond to the weak entity type DEPENDENT.
  - see Figure 9.3(b)
  - Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of DEPENDENT (renamed to ESSN in Fig.).
  - The primary key of DEPENDENT is the combination {ESSN, DEPENDENT\_NAME} because DEPENDENT\_NAME is the partial key of DEPENDENT.



- Step 3: Mapping of Binary 1:1 Relationship Types
  - For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R.
- Three possible approaches:
  - Foreign Key approach: Choose one of the relations (say S) and include as foreign key in S the primary key of T (it is better to choose an entity type with total participation in R in the role of S).
    - Example (see Figure 9.2): 1:1 relationship MANAGES (Fig. 9.1) is mapped by choosing DEPARTMENT to serve in the role of S (because its participation in the MANAGES relationship type is total)
    - Mgr\_SSN of DEPARTMENT is foreign key referencing EMPLOYEE
    - Attributes of MANAGES become attributes of DEPARTMENT
  - Merged relation option: Merge the two entity types and the relationship into a single relation (possible when both participations are total).
- Cross-reference or relationship relation option: Set up a third relation R for cross-referencing the primary keys of the two relations S and T representing the entity types.







- Step 4: Mapping of Binary 1:N Relationship Types
  - For each regular binary 1:N relationship type R, identify the relation S that represent the participating entity type at the N-side of the relationship type.
  - Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R.
  - Include any simple attributes of the 1:N relation type as attributes of S.
- Examples (Figures 9.1, 9.2): 1:N relationship types are WORKS\_FOR, CONTROLS, and SUPERVISION.
  - For WORKS\_FOR we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it DNO
  - (cont. on next slide)



- Examples (cont.):
  - For CONTROLS, we include the primary key DNUMBER of DEPARTMENT as foreign key in PROJECT and call it DNUM.
  - For SUPERVISION, we include the primary key SSN of EMPLOYEE as foreign key in EMPLOYEE itself and call it SuperSSN (this is a recursive relationship)
- All three 1:N relationship examples (Figures 9.1, WORKS\_FOR, CONTROLS, and SUPERVISION) are mapped using the foreign key option in Figure 9.2
  - Can also use the cross-reference option (create a separate relation that has the primary keys of both relations as foreign keys).



- Step 5: Mapping of Binary M:N Relationship Types
  - For each regular binary M:N relationship type R, create a new relation S to represent R.
  - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S.
  - Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S.
- Example: The M:N relationship type WORKS\_ON (Figure 9.1) is mapped by creating a relation WORKS\_ON in the relational database schema (Figure 9.3(c), Figure 9.2).
  - The primary keys of PROJECT and EMPLOYEE are foreign keys in WORKS\_ON and renamed PNO and ESSN, respectively.
  - Attribute HOURS in WORKS\_ON represents the HOURS attribute of the relation type.
  - The primary key of WORKS\_ON is the combination {ESSN, PNO}.



- Discussion of Mapping of Binary Relationship Types (steps 3, 4, and 5):
  - Foreign key option is preferred for 1:1 and 1:N relationships, but cannot be used for M:N relationships.
  - Relationship relation option can be used for any cardinality ratio, but the *primary key* will be different:
    - Combination of both foreign keys for M:N
    - Either foreign key for 1:1
    - Foreign key in the N-side relation for 1:N
  - Attributes of relationship type are included in the relationship relation (for cross-referencing option), or in the relation that includes the foreign key (for foreign key option).



- Step 6: Mapping of Multivalued attributes.
  - For each multivalued attribute A, create a new relation R.
  - This relation R will include an attribute corresponding to A, plus the primary key attribute K (as a foreign key in R) of the relation that represents the entity type that has A as an attribute.
  - The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.
- Example (Figure 9.3(d)): The relation DEPT\_LOCATIONS is created.
  - The attribute DLOCATION represents the multivalued attribute Locations of DEPARTMENT (Figure 9.1), while DNUMBER is foreign key to the DEPARTMENT relation (Figure 9.2).
  - The primary key of DEPT\_LOCATIONS is the combination of {DNUMBER, DLOCATION}.



- Step 7: Mapping of N-ary Relationship Types.
  - For each n-ary relationship type R, where n>2, create a new relationship relation S to represent R.
  - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
  - Also include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S.
- Example: The relationship type SUPPLY (Figure 7.17(a), next slide)
  - This can be mapped to the relation SUPPLY (Figure 9.4, following slide), whose primary key is the combination of the three foreign keys {SNAME, PARTNO, PROJNAME}





Addison-Wesley

is an imprint of

### Figure 9.4

Mapping the *n*-ary relationship type SUPPLY from Figure 7.17(a).





**PEARSON** 

| ER MODEL    | RELATIONAL MODEL |
|-------------|------------------|
| Entity type | Entity relation  |

1:1 or 1:N relationship type Foreign key (or *relationship* relation)

M:N relationship type Relationship relation and two foreign keys

*n*-ary relationship type *Relationship* relation and *n* foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key



# Mapping EER Model Constructs to Relations

- We add two steps 8 and 9 to map EER model constructs
  - Step 8 is for mapping specialization/generalization and subclasses
  - Several options exist in step 8
  - Step 9 is for mapping categories (UNION types)
  - Step 9 can involve creating surrogate (artificial) key attributes for the relation representing the UNION type



# Mapping EER Model Constructs to Relations (cont.)

- Step8: Options for Mapping Specialization (or Generalization)
  - Convert each specialization with m subclasses {S1, S2,...,Sm} and generalized superclass C, where the attributes of C are {k,a1,...an} and k is the (primary) key, into relational schemas using one of the four following options:
    - Option 8A: Multiple relations-Superclass and subclasses
    - Option 8B: Multiple relations-Subclass relations only
    - Option 8C: Single relation with one type attribute
    - Option 8D: Single relation with multiple type (or mapping) attributes



# Mapping EER Model Constructs to Relations (cont.)

- Option 8A: Multiple relations-Superclass and subclasses (see Figure 9.5(a), next slide)
  - Create a relation L for superclass C with attributes Attrs(L) = {k,a1,...an} and PK(L) = k. Create a relation Li for each subclass Si, 1 ≤ i ≤ m, with the attributes Attrs(Li) = {k} U {attributes of Si} and PK(Li)=k. This option works for any specialization (total or partial, disjoint of over-lapping).
- Option 8B: Multiple relations-Subclass relations only (see Figure 9.5(b), next slide)
  - Create a relation Li for each subclass Si, 1 ≤ i ≤ m, with the attributes Attr(Li) = {attributes of Si} U {k,a1...,an} and PK(Li) = k. This option only works for a specialization whose subclasses are total (every entity in the superclass must belong to (at least) one of the subclasses)
- Works best if subclasses are also disjoint



is an imprint of





(d) PART





#### Figure 8.4

EER diagram notation for an attribute-defined specialization on Job\_type.



<sup>&</sup>lt;sup>6</sup>Such an attribute is called a *discriminator* in UML terminology.







**Figure 8.3**Generalization. (a) Two entity types, CAR and TRUCK. (b)
Generalizing CAR and TRUCK into the superclass VEHICLE.



# Mapping EER Model Constructs to Relations (cont.)

### Option 8C: Single relation with one type attribute

- Create a single relation L with attributes Attrs(L) = {k,a<sub>1</sub>,...a<sub>n</sub>} U {attributes of S<sub>1</sub>} U...U {attributes of S<sub>m</sub>} U {t} and PK(L) = k.
   The attribute t is called a type (or **discriminating**) attribute that indicates the subclass to which each tuple belongs
- Works for disjoint subclasses (see Figure 9.5(c))

### Option 8D: Single relation with multiple type attributes

- Create a single relation schema L with attributes Attrs(L) =  $\{k, a_1, ..., a_n\}$  U  $\{attributes of S_1\}$  U...U  $\{attributes of S_m\}$  U  $\{t_1, t_2, ..., t_m\}$  and PK(L) = k. Each  $t_i$ ,  $1 \le I \le m$ , is a Boolean type attribute indicating whether or not a tuple belongs to the subclass  $S_i$ .
- Works for overlapping subclasses (see Figure 9.5(d))





<sup>7</sup>The notation of using single or double lines is similar to that for partial or total participation of an entity type in a relationship type, as described in Chapter 7.





# Mapping EER Model Constructs to Relations (cont.)

- Mapping of Shared Subclasses (Multiple Inheritance)
  - A shared subclass, such as STUDENT\_ASSISTANT, is a subclass of several classes, indicating multiple inheritance.
  - These classes must all have the same key attribute;
     otherwise, the shared subclass would be a category.
  - We can apply any of the options discussed in Step 8 to a shared subclass, subject to the restriction discussed in Step 8 of the mapping algorithm.
  - In Figure 9.6 (next slide), option 8D is used for the shared subclass STUDENT\_ASSISTANT (from Figure 8.7).





**Figure 9.6**Mapping the EER specialization lattice in Figure 8.8 using multiple options.



Addison-Wesley is an imprint of



# Mapping EER Model Constructs to Relations (cont.)

## Step 9: Mapping of Union Types (Categories).

- For mapping a category whose defining superclasses have different keys, it is customary to specify a new (artificial) key attribute, called a surrogate key, when creating a relation to correspond to the category.
- In Figure 9.7 (next slide), the relation OWNER corresponds to the OWNER category (from Figure 8.8). The primary key of the OWNER relation is the surrogate key, which we called Ownerld.
- Unique values of Ownerld can be created by the system (similar to ObjectId in Object databases, see Chapter 11)
- Useful to add an attribute OwnerType to OWNER relation to indicate if a record represents a BANK, COMPANY, or PERSON (not shown in Figure 9.7)



#### Figure 9.7

Mapping the EER categories (union types) in Figure 8.8 to relations.









Figure 8.8

Two categories (union types): OWNER and REGISTERED\_VEHICLE.

Addison-Wesley is an imprint of



# **Chapter Summary**

### ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.

### Mapping EER Model Constructs to Relations

- Step 8: Options for Mapping Specialization or Generalization.
- Step 9: Mapping of Union Types (Categories).



## Possible In-Class Exercises

- Apply the ER-to-Relational Mapping Algorithm to the SHIP\_TRACKING ER Schema in Figure 9.8 (next slide)
- Apply the ER and EER Mapping Algorithm to the UNIVERSITY EER database schema in Figure 8. (following slide)





