

A Project Report

On

EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINE LEARNING

Submitted in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

Under the Guidance of

Dr. S. SUJANTHI M.E., PH.D., Assistant Professor/CSE

Submitted by

TEAM ID: PNT2022TMID15499

927619BCS4078 - MONISHSURYA S M

927619BCS4021 - DEEPAKRAJ K

927619BCS4085 - NAVEEN KUMAR P

927619BCS4098 - RANJITH KUMAR P

NAALAIYA THIRAN – EXPERIENTIAL PROJECT BASED LEARNING INITIATIVE

18CSE040L - PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTERPRENURSHIP

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

M.KUMARASAMY COLLEGE OF ENGINEERING, KARUR (Autonomous)

Karur - 639 113

November, 2022

TABLE OF CONTENTS

CHAPTER NO.	TITLE	PAGE
1.	INTRODUCTION	1
	1.1 Project Overview	1
	1.2 Purpose	1
2.	LITERATURE SURVEY	2
	2.1 Existing Problem	2
	2.2 References	3
	2.3 Problem Statement Definition	3
3.	IDEATION AND PROPOSED	
	SOLUTION	4
	3.1 Empathy Map Canvas	4
	3.2 Ideation & Brainstorming	5
	3.3 Proposed Solution	8
	3.4 Problem Solution Fit	9
4.	REQUIREMNET ANALYSIS	10
	4.1 Functional Requirement	10
	4.2 Non-Functional Requirement	11
5.	PROJECT DESIGN	12
	5.1 Data Flow Diagrams	12
	5.2 Solution & Technical Architecture	13
	5.3 User Stories	14

CHAPTER NO.	TITLE	PAGE
6.	PROJECT PLANNING &	
	SCHEDULING	16
	6.1 Sprint Planning & Estimation	16
	6.2 Sprint Delivery Schedule	19
	6.3 Reports from Jira	20
7.	CODING AND SOLUTIONING	21
	7.1 Feature 1	21
	7.2 Feature 2	24
8.	TESTING	27
	8.1 Test Cases	27
	8.2 User Acceptance Testing	27
9.	RESULTS	31
	9.1 Performance Metrics	31
10.	ADVANTAGES & DISADVANTAGES	32
11.	CONCLUSION	33
12.	FUTURE SCOPE	33
13.	APPENDIX	34
	Source Code	34
	GitHub & Project Demo Link	49

ABSTRACT

Chronic Kidney Disease is a serious lifelong condition that induced by either kidney pathology or reduced kidney functions. Early prediction and proper treatments can possibly stop or slow the progression of this chronic disease to end-stage, where dialysis or kidney transplantation is the only way to save patient's life. In our project, we examine the ability of several machine-learning methods for early prediction of chronic kidney disease. This matter has been studied widely; however, we are supporting our methodology using predictive analytics, in which we examine the relationship in between data parameters as well as with the target class attribute. Predictive analytics enables us to introduce the optimal subset of parameters to feed machine learning to build a set of predictive models.

INTRODUCTION

1.1 Project Overview

Kidney diseases avert the normal function of the Kidney. Mainly due to the large amount of alcohol consumption kidney disease arises. Early prediction of kidney disease using classification algorithms is an efficacious task that can help the doctors to diagnose the disease within a short duration of time. Discovering the existence of kidney disease at an early stage is a complex task for the doctors. The main objective of this project is to analyze the parameters of various classification algorithms and compare their predictive accuracies to find out the best classifier for determining the kidney disease. This Project examines data from Kidney patients concentrating on relationships between a key list of Kidney enzymes, proteins, age and gender using them to try and predict the likeliness of kidney disease. Here we are building a model by applying various machine learning algorithms find the best accurate model. And integrate to flask-based web application. User can predict the disease by entering parameters in the web application.

1.2 PURPOSE

Current screening strategies for kidney disease focus on detection of subclinical advanced kidney fibrosis but cannot identify those at high future risk of severe kidney disease. Our aim was to develop and validate a risk prediction model for incident kidney disease in the general population based on widely available factors. Kidney disease often progresses silently without symptoms and thus the diagnosis is often delayed until severe complications occur and prognosis becomes poor. In order to identify individuals in the general population who have a high risk of developing severe liver disease in the future, we developed and validated a Liver Disease risk prediction score, based on age, sex, alcohol use, waist-hip ratio, diabetes, and smoking, with or without measurement of the liver enzyme gamma-glutamyltransferase. The Kidney Disease score can be used as part of health counselling, and for planning further kidney investigations and follow-up.

LITERATURE SURVEY

2.1 Existing Problem

Author	Year	Title	Algorithm used	Limitations
Andressa C.M. da Silveira	2022	Exploring Early Prediction of Chronic Kidney Disease Using Machine Learning Algorithms	Decision tree (DT), random forest, and multi- class Ad Boosted DTs	Leads to processing limitations, mainly for the ensemble models
Rayan Alazani	2022	Identification and Prediction of Chronic Diseases Using Machine Learning Approach	Convolutional neural network (CNN), K- nearest neighbor (KNN)	Identify and predict the patients with more common chronic illnesses
Reshma S	2020	Chronic Kidney Disease Using Machine Learning	Chronic kidney, SVM, Ant colony optimization	Slow disease progression, reduce complications of decreased Glomerular Filtration Rate (GFR)
Tauja K J	2019	Detection of Chronic Kidney Disease Using Machine Learning Techniques	CKD, Decision Tree, SVM, Random Forest, Naive Bayes	The strength of the data is not higher because of the size of the dataset
Deepika Bidri	2018	Early Prediction of Chronic Kidney Disease by using Machine Learning Techniques	Naive bayes; K- Nearest neighbor ; Machine learning	Leads to low accuracy

Table 2.1 - Existing Problem

2.2 References

- Andressa C.M. da Silveira, Exploring Early Prediction of Chronic Kidney Disease Using Machine Learning Algorithms, January 2022.
- 2. Rayan Alazani, Identification and Prediction of Chronic Diseases Using Machine Learning Approach, February 2022.
- 3. Reshma S, Chronic Kidney Disease Prediction using Machine Learning, July 2020.
- 4. Tauja K J. Detection of Chronic Kidney Disease Using Machine Learning Techniques, March 2019.
- 5. Deepika Badri. Early Prediction of Chronic Kidney Disease by using Machine Learning Techniques, September 2018.

2.3 Problem Statement Definition

Kidney diseases avert the normal function of the Kidney. Mainly due to the large amount of alcohol consumption kidney disease arises. Early prediction of kidney disease using classification algorithms is an efficacious task that can help the doctors to diagnose the disease with in a short duration of time. Discovering the existence of Kidney disease at an early stage is a complex task for the doctors. The main objective of this project is to analyze the parameters of various classification algorithms and compare their predictive accuracies so as to find out the best classifier for determining the kidney disease. This Project examines data from Kidney patients concentrating on relationships between a key list of Kidney enzymes, proteins, age and gender using them to try and predict the likeliness of kidney disease. Here we are building a model by applying various machine learning algorithms find the best accurate model. And integrate to flask based web application. User can predict the disease by entering parameters in the web application.

IDEATION AND PROPOSED SOLUTION

Ideation is the process where you generate ideas and solutions through sessions such as Sketching, Prototyping, Brainstorming, Brainwriting, Worst Possible Idea, and a wealth of other ideation techniques. Ideation is also the third stage in the Design Thinking process. In this project the ideation phase consists of,

3.1 Empathy Map and Canvas

Figure 3.1 - Empathy Map

3.2 Ideation and proposed solution

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Figure 3.2.1 - Brainstorm Techniques

Step-2: Brainstorm, Idea Listing and Grouping

Figure 3.2.2 - Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

Figure 3.2.3 - Idea Prioritization

3.3 Proposed Solution

S.NO.	PARAMETER	DESCRIPTION
1	Problem Statement (Problem to be solved)	Kidney diseases avert the normal function of the kidney. Early prediction of kidney disease using both classification and regression algorithms are an effective task that can help the doctors to diagnose the disease within a short duration of time.
2	Idea / Solution description	One of the easiest solutions to predict the kidney disease using Machine Learning techniques.
3	Novelty / Uniqueness	This project provides the best accuracy for predicting the kidney disease.
4	Social Impact / Customer Satisfaction	It helps to identify the kidney disease in effective way, reduce the cost and user friendly.
5	Scalability of the Solution	This project can be improved by giving medical suggestion for patients.

Table 3.3.1 - Proposed Solution

3.4 Problem Solution Fit

Figure 3.4.1 - Problem Solution Fit

REQUIREMENT ANALYSIS

4.1 Functional Requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Home Page	 Chronic Kidney disease description Information about Test Vitals required for prediction If new User, REGISTER If already exist, SIGN
FR-2	User Registration	Enters Mail ID and other personal details required for Registering
FR-3	User Login	Uses Mail ID and Password for login
FR-4	Test Vitals Form	Test Vitals should be entered for prediction
FR-5	Result	 If Positive – Test Result along with the Information about what is to be done next will be displayed. If Negative – Test result along with preventive measures to prevent themselves from getting chronic kidney disease will be displayed.

Table 4.1.1 - Functional Requirements

4.2 Non-Functional Requirements

Following are the non-functional requirements of the proposed solution

NFR No.	Non-Functional Requirement	Description
NFR-1	Usability	Even Illiterates and people with no understanding of computer/mobile should be able to use the product.
NFR-2	Security	Access permission for particular system information may be changed by systems data administration.
NFR-3	Reliability	The database update process must roll back all related updates when any updates fail.
NFR-4	Performance	The Home-page load time must be no more than 2 seconds for users that access the website using an LTE mobile connection.
NFR-5	Availability	New Model Deployment must not impact home page, test page and result page availability and must not take longer than 1 hour.
NFR-6	Scalability	The website Traffic limit must be scalable enough to support 2000,000 users at a time.

Table 4.2.1 - Non-Functional Requirements

CHAPTER 5 PROJECT DESIGN

5.1 Data flow diagrams

Fig 5.1.1 - Data Flow of Chronic Disease Prediction

- 1. Medical data of patients is collected from Kaggle.
- 2. Exploratory data analysis done on the input dataset.
- 3. Then removal of null values, duplicates and outliers.
- 4. Then the dependent and independent variable is defined.
- 5. Train test split is done.
- 6. Both classification and regression model are built.
- 7. For Classification, the model is trained with Random Forest Classifier and tested with
- 8. test dataset.
- 9. For Regression, the model is trained with Random Forest Regression and tested with test dataset.
- 10. Then the model is fitted with front end which is developed using HTML, CSS with the help of Python Flask Web Framework.
- 11. Finally, the output will be predicted for the user input data.

5.2 Solution and Technical Architecture

- The best solution to predict kidney disease using Machine Learning Techniques.
- Early prediction of kidney disease using classification and regression algorithms are an
 effective task that can help the doctors to diagnose the disease within short duration of
 time.
- It helps to identify the kidney disease in an effective way and can be improved by giving medical suggestion for patients.

Figure 5.2.1 - Solution Architecture

Figure 5.2.2 - Technical Architecture

By the help of this technical architecture we can able to implement the Early Detection of Chronic Kidney Disease.

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Web user)	Registration	USN- 1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
	Verification	USN- 2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
	Login	USN- 3	As a user, I can login to the application by entering email and password.	Check whether password and email is correct	High	Sprint-1
	Dashboard	USN- 4	If the email id and password is correct, the user can log in to the application otherwise it shows 'incorrect password or Id'.	View the dashboard of user who is log in	High	Sprint-1

Customer Care Executive	Help	USN- 5	If the user faces any issues, he/she can report it to our mail id.	Report option will be available in web app	High	Sprint-2
Administrator	Verification	USN- 6	Administrator or also has unique Id and password to login. He has additional users to organize the users of this web app	Check whether password and email are correct	High	Sprint-3

Table 5.3.1 - User Story

PROJECT PLANNING AND SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	User Registration	USN-1	As a user, I can register for the application by entering my name, mobile number, email, password, and confirming my password.	10	High	Monishsurya SM Ranjith Kumar P Deepakraj k Naveen Kumar P
Sprint-1		USN-2	As a user, I can register for the application through Gmail.	5	Medium	Monishsurya SM Ranjith Kumar P Deepakraj k Naveen Kumar P
Sprint-1	Login	USN-3	As a user, I will receive confirmation email once I have registered for the application.	10	High	Monishsurya SM Ranjith Kumar P Deepakraj k Naveen Kumar P
Sprint-2		USN-4	As a user, I will receive confirmation OTP to verify the identity.	5	Medium	Monishsurya SM Ranjith Kumar P Deepakraj k Naveen Kumar P
Sprint-2	Data Collection	USN-5	As a user, I will enter the input data for disease prediction in the form.	10	High	Monishsurya SM Ranjith Kumar P Deepakraj k Naveen Kumar P

Sprint-3	Provide output to the user	USN-6	As a user, I will get the result of disease prediction in the dashboard.	10	High	Monishsurya SM Ranjith Kumar P Deepakraj k Naveen Kumar P
Sprint-3	Data Analysis	USN-7	As the admin, I will develop modules to pre-process and store the data.	10	High	Monishsurya SM Ranjith Kumar P Deepakraj k Naveen Kumar P
Sprint-4	Prediction of disease	USN-8	As the admin, I will build a Machine Learning model to predict the disease.	10	High	Monishsurya SM Ranjith Kumar P Deepakraj k Naveen Kumar P
Sprint-4	Final Delivery	USN-9	Deploy the application in IBM cloud and make it available for use.	10	High	Monishsurya SM Ranjith Kumar P Deepakraj k Naveen Kumar P

Table 6.1.1 - Sprint Planning & Estimation

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24-10-2022	29-10-2022	20	29-10-2022
Sprint-2	20	6 Days	31-10-2022	05-11-2022	20	05-11-2022
Sprint-3	20	6 Days	07-11-2022	12-11-2022	20	12-11-2022
Sprint-4	20	6 Days	14-11-2022	19-11-2022	20	19-11-2022

Table 6.1.2 - Sprint Delivery Schedule

Velocity:

Imagine we have a 6-day sprint duration, and the velocity of the team is 20 (points per print). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = Sprint Duration / Velocity = 20/6 = 3.33$$

6.2 Project Delivery Schedule

TITLE	DESCRIPTION	DATE
Literature Survey & Information Gathering	Literature survey on the selected project & gathering information by referring the technical papers, research publications, journals etc.	08-Sep-2022
Prepare Empathy Map	Prepare Empathy Map Canvas to capture the user Pains & Gains, prepare list of problem Statements that are to be solved by this project.	08-Sep-2022
Ideation	List the ideas by organizing brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.	15-Sep-2022
Proposed Solution	Prepare the proposed solution document, which includes novelty, feasibility of idea, revenue model, social impact, scalability of solution, etc.	21-Sep-2022
Problem Solution Fit	Prepare problem - solution fit document.	30-Sep-2022
Solution Architecture	Prepare solution architecture document.	28-Sep-2022
Customer Journey	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).	06-Oct-2022
Functional Requirement	Prepare the functional requirement document.	11-Oct-2022
Data Flow Diagrams	Draw the data flow diagrams and submit for review.	13-Oct-2022

Technology Architecture	Prepare the technology architecture	14-Oct-2022
Prepare Milestone & Activity List	Prepare the milestones &activity list of the project.	19-Oct-2022
Project Development - Delivery of Sprint-1, 2, 3 &4	Develop & submit the developed code by testing it.	IN PROGRESS

Table 6.2.1 - Project Delivery Schedule

6.3 Reports from Jira

Burndown Chart

Figure 6.3.1 - Burndown Chart

CHAPTER 7 CODING AND SOLUTIONING

7.1 Feature 1

Different types of python libraries such as pandas, Sklearn, NumPy, matplotlib are used for processing the algorithms. Using exploration data analysis technique data was analyses in junketeer notebook.10-fold cross validation technique is used for spitting the data set into training and testing data. Then using random forest algorithm dataset was processed.

Collection of Dataset

For the proposed study dataset was taken from Kaggle site. Then it was downloaded in excel file using comma separated format. Data has processed by python programming using Jupiter notebook. The data set contains 401 sample instances. The dataset contains 26 clinical features.

Figure 7.1.1 - Collection of Dataset

Preprocessing - Data cleaning

Checking Null Entries

The most important step in EDA involving removing duplicate rows/columns, filling the void entries with values like mean/median of the data, dropping various values, removing null entries Here we have check for null values and drop the entries which contains null values as the percentage of null values in dataset is very less.

Figure 7.1.2 - Checking Null Entries

Checking Duplicates

In the dataset, there is no duplicate entries.

```
In [19]: 1 df.duplicated().value_counts()
Out[19]: False     400
     dtype: int64
```

Figure 7.1.3 - Checking Duplicates

Encoding:

All the categorical columns('htn','dm','cad','pe','ane', 'rbc','pc', 'pcc','ba', 'appet', classification') in dataset is converted into numerical.

Figure 7.1.4 - Cleaning and preprocessing the data

Split of dependent and Independent Variables:

```
In [63]:

1 from sklearn.model_selection import train_test_split
2 X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=222)

In [64]:

1 print("Training Data ::-")
2 print("The shape of X training data is :-" ,X_train.shape)
3 print("The shape of y training data is :-" ,y_train.shape)

Training Data ::-
The shape of X training data is :- (300, 22)
The shape of y training data is :- (300, 1)

In [65]:

1 print("Testing Data ::-")
2 print("The shape of X testing data is :-" ,X_test.shape)
3 print("The shape of y testing data is :-" ,y_test.shape)

Testing Data ::-
The shape of X testing data is :- (100, 22)
The shape of y testing data is :- (100, 1)
```

Figure 7.1.5 Split of dependent and Independent Variables

7.2 Feature 2

Both Classification and Regression models are built for this use case.

For classification:

Decision Tree is a supervised learning algorithm which is used for both classification and regression problems. Decision tree classifier is mostly used for the classification problems. From decision tree, get set of rules for classifying the problem.

Figure 7.2.1 Choosing Parameters

Figure 7.2.2 - Choosing Parameters

For Regression:

Logistic Regression is an supervised learning algorithm which is used for the solving classification problems.

Figure 7.2.3 Logistic Regression

Flask Connectivity

The Backend Machine Learning model code is connect with HTML code by using python Flask Web Framework.

```
ifrom flask import Flask, request, redirect, render_template
import numpy as np
import pickle
import pickle
import padas as pd
app = Flask(...name...)
loaded_class = pickle. load(open('randomclass_chronic', 'rb'))
loaded_class = pickle. load(open('randomclass_chronic', 'rb'))
loaded_reg = pickle. load(open('randomclass_chronic', 'rb'))
leaved_reg = pickle. load(open('randomclass_chronic', 'rb'))
leavel_reg = pickle. load(open('randomclass_chronic', 'r
```

Figure 7.2.4 - Flask connectivity

CHAPTER 8 TESTING

8.1 Test Cases

Figure 8.1.1 Test Case

8.2 User Acceptance Testing

Figure 8.1.2 – Web Page View

Figure 8.1.3 - Web Page View

Figure 8.1.4 - Entering value in the web page

Figure 8.1.5 - Entering value in the web page

Figure 8.1.6 - Result with person having CKD

Figure 8.1.7 - Entering value in the web page

Figure 8.1.8 - - Result with person not having CKD

CHAPTER 9 RESULTS

9.1 Performance Metrics

Figure 9.1.1 - Performance Metrics

One can use following execution measures for the request and figure of imperfection slanted module as shown by his/her own need.

Confusion Matrix: The confusion matrix is used to measure the introduction of two class issue for the given instructive record. The right corner to corner parts TP(True positive)andTN (True Negative) adequately describe instances similarly as FP (false positive) and FN (false negative) wrongly request instances. Confusion Matrix correctly classify instance TP+TN incorrectly classify instances.

- 1. True positive simply the positive liver tuples that were precisely named by the classifier,
- 2. True negatives are the negative liver tuples that were precisely set apart by the classifier.
- 3. False positives are the negative liver tuples that were erroneously set apart as positive tuples
- 4. False negatives are the positive liver tuples that were incorrectly stamped negative tuples.

ADVANTAGES AND DISADVANTAGES

10.1 Advantages

The early detection of CKD allows patients to receive timely treatment, slowing the disease's progression. Due to its rapid recognition performance and accuracy, machine learning models can effectively assist physicians in achieving this goal. Chronic kidney disease(CKD) is a type of kidney disease in which there is gradual loss of kidney function over a period of months to years, Initially, there are generally no symptoms; later, symptoms may include leg swelling, feeling tired, vomiting, loss of appetite, and confusion. Complications include an increased risk of heart disease, high blood pressure, bone disease, and anaemia. CKD is associated with a decrease in kidney function related to age and is accelerated in hypertension, diabetes, obesity, and primary kidney disorders. CKD is a global health problem with a high morbidity and mortality rate, and it induces other diseases. As there are no obvious symptoms during the early stages of CKD, patients often do not notice the disease, this being the main feature, eventually leading to a complete loss of kidney function. Early detection of CKD allows patients to receive timely treatment to improve the progression of this disease. As it has been proposed in the objectives of the work, the aim is to develop an automatic learning model for the prediction in the diagnosis of CKD and to contribute to the reduction of significant complications in the disease such as dialysis processes, kidney transplantation, or reaching death. The main criterion of success for this project, with the help of machine learning, is to identify the behaviours or behaviour patterns in the initial stages of CKD to improve the quality of life of patients.

10.2 Disadvantages

The idea for the approach of this project arises from the current situation regarding the increase in the confirmatory diagnosis of kidney, and lack of treatment or the user's ignorance of its pathologies leads to irreversible kidney failure in the final stages of disease, such as dialysis for life, financially affecting the health system, as it is a costly treatment that generates the most significant amount of absorption of the resources available for health. This could be reduced by using tools such as machine learning to classify from the initial stages. Although the application of machine learning in healthcare and other areas is favourable, the field of kidney disease has not yet exploited its full potential.

CHAPTER 11

CONCLUSION

Chronic Kidney Disease (CKD) or chronic renal disease has become a major issue with a steady growth rate. A person can only survive without kidneys for an average time of 18 days, which makes a huge demand for a kidney transplant and Dialysis. It is important to have effective methods for early prediction of CKD. Machine learning methods are effective in CKD prediction. This work proposes a workflow to predict CKD status based on clinical data, incorporating data prepossessing, a missing value handling method with collaborative filtering and attributes selection. Out of the 11 machine learning methods considered, the extra tree classifier and random forest classifier are shown to result in the highest accuracy and minimal bias to the attributes. The research also considers the practical aspects of data collection and highlights the importance of incorporating domain knowledge when using machine learning for CKD status prediction.

CHAPTER 12

FUTURE SCOPE

The increasing rate of CKD has placed a large negative impact on individuals' lives. Advanced ML technology has made the early detection of CKD easier and more accurate. Doctors and medical care professionals have used ML algorithms in the effective diagnosis of CKD. However, there is very little research on the detection of secondary infections of prolonged CKD such as albuminuria and toxin production through the ML algorithm. These secondary infections also place a negative impact, especially on diabetics and patients with high blood pressure. Therefore, Determination of the role of ML algorithms in detecting CKD-associated diseases can be an effective research. Further research on effective treatment prediction and nutritional chart prediction of CKD patients through ML algorithm needs to be done in the future. Advanced technologies such as CNN, ML, random forest, and different classifiers can be used for these aspects to increase the recovery rate in CKD. By following this way, researchers and medical care professionals can enhance their service quality in accurate CKD diagnosis and treatment. Effective detection of CKD through ML algorithm is rapid and cost-effective, and due to this reason, the method can gain large popularity in the future.

CHAPTER 13 APPENDIX

SOURCE CODE

Chronic disease Prediction.ipynb

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn as sk
import seaborn as sns
# Reading CSV file from Local Drive
df=pd.read_csv(r"C:\Users\monis\Downloads\kidney_disease.csv");
#Describe Data
df.shape
df.head()
df.tail()
df.describe(include="all")
df.info()
df.dtypes
#Data Preprocessing
# isnull function
df.isnull().sum()
df.corr()
plt.figure(figsize=(15,8));
plt.title("Correlation",color="green")
```

sns.heatmap(df.corr(),linewidth=1,annot=True);

```
#Checking No of Null Values Through Visualization
import missingno as msn
msn.bar(df,color="red");
df.isnull()
# duplicated function
df.duplicated().value counts()
# Finding Count Of CKD And Not CKD And Changing CKT/T Values To CKD
df['classification'].value counts()
df['classification'].unique()
df[df["classification"]=="ckd\t"]
df["classification"]=df["classification"].replace("ckd\t","ckd",regex=True)
plt.figure(figsize=(17,7))
sns.countplot(data=df, x="classification")
plt.title("\nChronic Kidney Disease Distribution\n", fontsize=25)
plt.show();
df["age"].isnull().sum()
df["age"]=df["age"].fillna(df["age"].mean())
df.info()
numerical=[]
for col in df.columns:
  if df[col].dtype=="float64":
    numerical.append(col)
print(numerical)
for col in df.columns:
  if col in numerical:
    df[col].fillna(df[col].median(), inplace=True)
  else:
```

df[col].fillna(df[col].mode()[0], inplace=True)

Label Encoder

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
object col = [col for col in df.columns if df[col].dtype == 'object']
for col in object col:
  df[col] = le.fit transform(df[col])
df.info()
df.head()
df.columns
# Data Visualization
fig, ax = plt.subplots(figsize=(6,7))
M=df[['bu']]
N=df[['classification']]
plt.title("Relation Between Blood Urea And Chronic Kidney Disease",color="red");
plt.xlabel("Blood Urea",color="green")
plt.ylabel("Chronic Kidney Disease(1=Yes,0=No)",color="green")
ax.scatter(M,N);
plt.show();
fig, ax = plt.subplots(figsize=(6,7))
M=df[['sc']]
N=df[['classification']]
plt.title("Relation Between Serum Creatine And Chronic Kidney Disease");
plt.xlabel("Serum Creatine")
plt.ylabel("Chronic Kidney Disease(1=Yes,0=No)")
ax.scatter(M,N);
plt.show();
fig, ax = plt.subplots(figsize=(6,7))
M=df[['htn']]
N=df[['classification']]
plt.title("Relation Between Hypertension: yes And Chronic Kidney Disease");
plt.xlabel("Hypertension: yes")
```

```
plt.ylabel("Chronic Kidney Disease(1=Yes,0=No)")
ax.scatter(M,N);
plt.show();
fig, ax = plt.subplots(figsize=(6,7))
M=df[['al']]
N=df[['classification']]
plt.title("Relation Between Albumin And Chronic Kidney Disease");
plt.xlabel("Albumin")
plt.ylabel("Chronic Kidney Disease(1=Yes,0=No)")
ax.scatter(M,N);
plt.show();
fig, ax = plt.subplots(figsize=(6,7))
M=df[['dm']]
N=df[['classification']]
plt.title("Relation Between Diabetes Mellitus: yes And Chronic Kidney
Disease",color="red");
plt.xlabel("Diabetes Mellitus: yes")
plt.ylabel("Chronic Kidney Disease(1=Yes,0=No)")
ax.scatter(M,N);
plt.show();
sns.boxplot(x=df['classification'], y=df['bu'])
plt.show();
sns.scatterplot(data=df,x="su",y="htn",hue='classification');
sns.catplot(x="htn",y="su",data=df,kind="box");
plt.xlabel("Sugar",color="red")
plt.ylabel("Classification",color="red")
plt.title("Boxplot of Hypertension and Sugar",color="green");
```

```
plt.figure(figsize=(20,10))
sns.boxplot(data=df, x="ane", y="hemo", palette='seismic')
plt.xlabel("Hemeoglobin",color="red")
plt.ylabel("Aneamia",color="red")
plt.show()
plt.figure(figsize=(20,10))
sns.boxplot(data=df, y='hemo', x="pcc", hue="ane")
plt.xlabel("Hameoglobin",color="red")
plt.ylabel("Pus Cell Clumps",color="red")
plt.show()
df.columns
# Get Unique Values(Class or Labels) in y variable
df['classification'].shape
df.groupby("classification").mean()
df.columns
# Defining Target or Dependent Variable (y) and Feature or Independent Variables (X)
X=df[[ 'age', 'bp', 'sg', 'al', 'su', 'rbc', 'pc', 'pcc', 'ba', 'bgr',
    'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad',
    'appet', 'pe', 'ane']]
y=df[['classification']]
from sklearn.model selection import train test split
X train,X test,y train,y test=train test split(X,y,test size=0.25,random state=222)
print("Training Data ::-")
print("The shape of X training data is :-" ,X train.shape)
print("The shape of y training data is :-" ,y train.shape)
```

```
print("Testing Data ::-")
print("The shape of X testing data is :-" ,X test.shape)
print("The shape of y testing data is :-" ,y test.shape)
#Checking the correlated variables using heatmap(Pearson Correlation)
import seaborn as sns
plt.figure(figsize=(20,10))
cor = X train.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.CMRmap)
plt.show();
def correlation(dataset, threshold):
  col corr = set() # Set of all the names of correlated columns
  corr matrix = dataset.corr()
  for i in range(len(corr matrix.columns)):
     for j in range(i):
       if abs(corr matrix.iloc[i, j]) > threshold: # we are interested in absolute coeff value
          colname = corr matrix.columns[i] # getting the name of column
          col corr.add(colname)
  return col corr
corr features = correlation(X train, 0.75)
len(set(corr features))
corr features
X train.drop(corr features,axis=1)
X test.drop(corr features,axis=1)
# Redefining the feature variables
X=df[['age', 'bp', 'sg', 'al', 'su', 'pcc', 'ba', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wc', 'rc', 'htn',
'dm', 'cad', 'appet', 'pe', 'ane']]
```

```
# Standarlization of X variables
from sklearn.preprocessing import StandardScaler
sss=StandardScaler()
X=sss.fit transform(X)
X.shape
# Train Test Split
from sklearn.model selection import train test split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=222)
print("Training Data ::-")
print("The shape of X training data is :-" ,X train.shape)
print("The shape of y training data is :-" ,y train.shape)
print("Testing Data ::-")
print("The shape of X testing data is :-" ,X test.shape)
print("The shape of y testing data is :-" ,y test.shape)
#Modeling
#1. Logistic Regression
from sklearn.linear model import LogisticRegression
model=LogisticRegression(max_iter=200,random_state=222)
model
model.fit(X train,y train)
# Prediction
y predic=model.predict(X test)
print(y_predic)
```

sns.countplot(y predic);

```
# Probability of Each Predicted Class
model.predict proba(X test)
#Model Evaluation
from sklearn.metrics import confusion matrix, classification report,accuracy score
print("Accuracy of the model is : %3f" % accuracy_score(y_test,y_predic))
print(confusion_matrix(y_test,y_predic))
print(classification report(y test, y predic))
#2. Decision Tree Classifier Algorithm
# Modeling
from sklearn.tree import DecisionTreeClassifier
model=DecisionTreeClassifier(random state=222)
model.fit(X_train,y_train)
# Prediction
y predict=model.predict(X test)
print(y_predict)
print(model.predict_proba(X_test))
# Model Evaluation
from sklearn.metrics import confusion matrix, classification report,accuracy score
print(confusion matrix(y test,y predict))
print(classification report(y test, y predict))
```

Plotting the Decision Tree

```
from sklearn.tree import plot_tree import matplotlib.pyplot as plt plt.figure(figsize=(10,25)) plot_tree(model,filled=True);
```

#3. K-Nearest Neighbors

Modeling

from sklearn.neighbors import KNeighborsClassifier model=KNeighborsClassifier()

```
model.fit(X_train,y_train)
```

#Prediction

```
y_predict=model.predict(X_test)
print(y_predict)
```

Probability of Each Predicted Class

```
print(model.predict proba(X test))
```

Model Evaluation

from sklearn.metrics import confusion_matrix, classification_report,accuracy_score

```
print(confusion_matrix(y_test,y_predict))
```

print(classification report(y test, y predict))

Flask web app.ipynb

```
<html>
      <head>
      <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
             <title>Flaskimio</title>
      <style>
      body {
      background: linear-gradient(
                  rgba(20,20,20,.75),
                  rgba(20,20,20,.75)),
                  url(
      'https://pharmanewsintel.com/images/site/article headers/ normal/Chronic Disease
      Manage.png');
      .container {
       border: 2px solid #ccc;
       padding: 10px;
       width: 20em;
      height:21em;
      background-color:white;
      .hello{
      opacity: 0.5;
      </style>
      </head>
      <body>
      <marquee bgcolor="white">IBM NALAIYA THIRAN</marquee>
      <center>Chronic Disease
      Prediction</center>
      <form action="/val" method="post"><center>
       <label for="age">Age:</label><br>
       <input type="number" id="age" name="age"><br><br><br><br</pre>
```

```
<label for="bp">Blood Pressure:</label><br/>br>
 <input type="number" id="bp" name="bp">
<br/>br>
<br>
<br>
<label for="sg">Urinary Specific Gravity:</label><br>>
<input type="number" id="sg" name="sg">
<br>
<br>
<br>
<label for="al">al:</label><br>
<input type="number" id="al" name="al">
<br>
<br/>br>
<br>
<label for="su">su:</label><br>
<input type="number" id="su" name="su">
<br>
<br>
<br>
<label for="rbc">rbc:</label><br>
<input type="text" id="rbc" name="rbc">
<br>
<br>
<br>
<label for="pc">pc:</label><br>
<input type="text" id="pc" name="pc">
<br>
<br>
<br>
<label for="pcc">pcc:</label><br>
<input type="text" id="pcc" name="pcc">
```

```
<br>
<br>
<br/>br>
 <label for="ba">ba:</label><br>
 <input type="text" id="ba" name="ba">
<br>
<br>
<br>
 <label for="bgr">bgr:</label><br>
 <input type="number" id="bgr" name="bgr">
<br>
<br>
<br/>br>
 <label for="bu">bu:</label><br>
 <input type="number" id="bu" name="bu">
<br>
<br>
<br>
 <label for="sc">sc:</label><br>
<input type="number" id="sc" name="sc">
<br>
<br>><br>>
 <label for="sod">sod:</label><br>
 <input type="number" id="sod" name="sod">
<br>
<br>
<br>
 <label for="pot">pot:</label><br>
 <input type="number" id="pot" name="pot">
<br>
<br>
<br>
 <label for="hemo">hemo:</label><br>
 <input type="number" id="hemo" name="hemo">
```

```
<br>
<br>
<br/>br>
<label for="pcv">pcv:</label><br>
<input type="text" id="pcv" name="pcv">
<br/>br>
<br/>br>
<br>
<label for="wc">wc:</label><br>
<input type="text" id="wc" name="wc">
<br>
<br>
<br>
<label for="rc">rc:</label><br>
<input type="text" id="rc" name="rc">
<br>
<br/>br>
<br>
<label for="htn">htn:</label><br>
<input type="text" id="htn" name="htn">
<br>
<br>
<br>
<label for="dm">dm:</label><br>
<input type="text" id="dm" name="dm">
<br>
<br>
<br>
<label for="cad">cad:</label><br>
<input type="text" id="cad" name="cad">
<br/>br>
<br>
<br/>br>
```

```
<label for="appet">appet:</label><br>
        <input type="text" id="appet" name="appet">
       <br/>br>
       <br>
       <br/>br>
        <label for="pe">pe:</label><br>
        <input type="text" id="pe" name="pe">
       <br/>br>
       <br>
       <br>
        <label for="ane">ane:</label><br>
        <input type="text" id="ane" name="ane">
       <br>
       <br/>br></center>
        <center><button type="submit">Check</button></center>
       </form>
       </body>
</html>
```

rename.html

rename2.html

```
<html>
      <head>
      <style>
      body {
       background-color: #E6E6FA;
      </style>
      </head>
      <body>
      <br>
      <br>
      <br>
      <center><h1>{{answer1}}</h1></center>
      <br>
      <center><h1>{{answer2}}</h1></center>
      <center><img alt="Qries" src="https://media.istockphoto.com/vectors/vector-kidney-</pre>
      cartoon-human-body-health-organ-smiling-mascot-on-vector-
      id1136533246?k=20&m=1136533246&s=612x612&w=0&h=eWjhtoVOfX31BF4fcs
      DD4ZLLzjeJ Ax4cgdgdUexG1Q="
           width=500" height="500"></center>
      </body>
</html>
```

GitHub and Project Video Demo Link

GitHub link	https://github.com/IBM-EPBL/IBM-Project- 21249-659775830
Project Video Demo	https://drive.google.com/file/d/1b7IJPOGS4Zym8-
Link	_F1O74sHPC7aTJoIh0/view?usp=share_link