

Source: Images donated by Roberto Esquivel Sánchez family, CC BY-SA 4.0,

People die in earthquakes!

A system proposal to anticipate earthquake disasters in Mexico

Arturo Bravo

Introduction

Mexico is a country that is prone to have many earthquakes every year.

- Averages 3.4 events / year (last 40 years)
- Located in a subduction zone
- Mexico has 5 tectonic plates (left image)
- The Cocos plate is the most active
- History repeated 32 years later
- More than 10,000 deaths and ~40,000 injured

Earthquakes of magnitude M4 or higher in Mexico for the period 1970-2021

Arturo Bravo

Source: SSN

Earthquake predictions in Mexico

Problem

Mexico has recurring earthquakes and does not have a way to anticipate these disasters.

Economical and human losses

Goal

The goal is to implement a model that can accurately predict the probability of an event of M6.0 or higher occurring within a time span.

Is it possible to predict the time until the next big earthquake?

Arturo Bravo

Data

All registered earthquakes in mexican territory from 1970 to 2021

Data source: SSN (National Seismic Service at UNAM university)

Observations: 39948 rows

Features: 11 columns

Features include:

Date

Time

Magnitude

Latitude

Longitude

Depth

• State

Arturo Bravo

Data Wrangling

Dataset was clean but needed data type transformation

- Missing or not corresponding values
- Duplicated information: 11 rows
- Data types: 4 numerical, 7 object (4 actual date time)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39948 entries, 0 to 39947
Data columns (total 11 columns):
    Column
                       Non-Null Count Dtype
    Date
                       39948 non-null object
    Time
                       39948 non-null object
    Magnitude
                       39948 non-null float64
    Latitude
                       39948 non-null float64
    Longitude
                       39948 non-null float64
    Depth
                       39948 non-null float64
    Location reference 39948 non-null object
    Date UTC
                       39948 non-null object
    Time UTC
                       39948 non-null object
    Status
                       39948 non-null object
10 State
                       39948 non-null object
dtypes: float64(4), object(7)
memory usage: 3.4+ MB
```

Arturo Bravo

Data Wrangling

Date and time duplicated and Status no value

<class 'pandas.core.frame.DataFrame'>

- Date and time as Date time type
- Year, Month, Day added as int type
- Final Dataset: 39937 rows, 10 features

```
Int64Index: 39937 entries, 0 to 39947
Data columns (total 10 columns):
    Column
                        Non-Null Count Dtype
    Date_Time
                        39937 non-null datetime64[ns]
    Year
                        39937 non-null int64
    Month
                        39937 non-null int64
                        39937 non-null int64
    Day
    Magnitude
                        39937 non-null float64
    Latitude
                        39937 non-null float64
    Longitude
                        39937 non-null float64
    Depth
                        39937 non-null float64
    Location reference 39937 non-null object
                        39937 non-null object
dtypes: datetime64[ns](1), float64(4), int64(3), object(2)
memory usage: 3.4+ MB
```

Arturo Bravo

Exploratory Data Analysis

Review of the history and distribution of events

- 2017: The year with most events
- Increasing tendency

South states in the pacific are most active

Exploratory Data Analysis

- Depth and longitude
- Magnitude and year
- Latitude and longitude

Exploratory Data Analysis

Finding patterns

- Repetitive pattern in different years
- Last few months importance

The modeling approach

Survival analysis: Estimate the survival probability within a time span

- Two columns for the 'y' label: 'Status' ('0' or '1') and 'Time to event'
- Define 'Status' values:
 - Status = 0 → earthquakes < 6.0 in magnitude
 - Status = 1 → earthquakes >= 6.0 in magnitude
- Define classes for time to event calculation:
 - Class = 0 → 'Status' = 0 and share same 'State'
 - Class = 1 → 'Status' = 1 and share same 'State'
- ightharpoonup Concatenate same class for time calculation (i.e. A and F same class \rightarrow end of A = start of F)

https://www.indianpediatrics.net/sep2010/sep-743-748.htm

Arturo Bravo

Feature engineering and Preprocessing

Revise the need for additional features, standardize and encode

- Add 'y' label columns
- Add 'Plate' feature

	Date_Time	Year	Month	Day	Magnitude	Latitude	Longitude	Depth	State	Plate	Status	Time_to_event
0	1970-02-03 23:08:50	1970	2	3	6.6	15.524	-99.493	21.0	GRO	cocos	1	0.0
1	1970-04-29 08:01:34	1970	4	29	7.3	14.463	-92.683	44.0	CHIS	cocos	1	7289564.0
3	1971-09-30 02:18:00	1971	9	30	6.5	26.880	-110.800	14.0	SON	north_america	1	52110550.0
4	1972-10-20 02:17:46	1972	10	20	6.6	18.700	-106.756	10.0	JAL	rivera	1	85460936.0
5	1972-11-12 22:43:45	1972	11	12	6.5	15.541	-95.040	14.0	OAX	cocos	1	87521695.0

- Rows dropped in Time to event (Less than one day → Aftershocks)
- Separate in 'X' and 'y'

Arturo Bravo

Feature engineering and Preprocessing

Standardize numerical columns

	Magnitude	Latitude	Longitude	Depth
count	16424.000000	16424.000000	16424.000000	16424.000000
mean	4.296432	17.870507	-99.101216	41.153172
std	0.403712	3.991145	6.099805	45.275427
min	4.000000	10.271000	-120.595000	1.000000
25%	4.000000	15.665600	-102.010000	10.000000
50%	4.200000	16.882100	-98.260000	20.000000
75%	4.400000	18.230000	-94.390000	57.100000
max	8.200000	33.127700	-85.546700	338.000000

Encode categorical columns ('Month' and 'Day' → nominal categorical)

	Month=10	Month=11	Month=12	Month=2	Month=3	Month=4	Month=5	Month=6	Month=7	Month=8	 State=SON	State=TAB	State=TAMS	State=TL/
0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	С
1	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	С
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	0.0	С
4	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	С
5	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	С

Final Dataset \rightarrow 'X' = 16424 rows, 78 columns, 'y' = 16424 rows, 2 columns

Arturo Bravo

Modeling

3 metrics used to evaluate 5 models

- Models:
 - Cox's Proportional Hazard (CPH)
 - Out-of-the-box Random Survival Forest (RSF) and optimized model (RSF_best)
 - Out-of-the-box Gradient Boosting Survival (GBS) and optimized model (GBS_best)
- Metrics:
 - Cumulative dynamic AUC (AUC)
 - Concordance index for right-censored data (CI_IPCW)
 - Integrated brier score (IBS)

Cumulative Dynamic AUC results

Arturo Bravo

Modeling

Evaluation of 5 models

Model	CI_IPCW	AUC	IBS
СРН	0.766	0.562	-
OOB RSF	0.845	0.893	0.106
Optimized RSF	0.829	0.839	0.108
OOB GBS	0.811	0.710	-
Optimized GBS	0.819	0.795	0.120

The best model is out-of-the-box Random Survival Forest

Arturo Bravo

Conclusions

- Challenging project for a different approach: Survival analysis
- Used 78 features to model
- More information on the type of soil and use of it could help
- In general, the Random Survival Forest model performed the best
- Try other approach (i.e. Neural networks)

Complement the data and share with proper institutions would help to make the model more robust and accurate.

Arturo Bravo