II - Fonction racine carrée

a) Découverte de la fonction racine carrée

Rappel : Pour tout nombre réel a positif ou nul, on définit la racine carrée de a comme l'unique nombre réel positif dont le carré vaut a.

- La fonction racine carrée est définie sur $\mathbb{R}^+ = [0; +\infty[$ par $f(x) = \sqrt{x}$.
- Pour tout réel x, $\sqrt{x} \ge 0$. La courbe représentative est alors située au-dessus de l'axe des abscisses.

- Pour tout réel $x \ge 0$, $(\sqrt{x})^2 = x$. ATTENTION : l'égalité $\sqrt{x^2} = x$ n'est valable **que pour les réels** x **positifs**.
- La fonction racine carrée est strictement croissante sur $[0; +\infty[$.

Conséquence des variations de la fonction racine carrée :

La fonction racine carrée étant strictement croissante sur $[0; +\infty[$, pour tous réels a et b positifs, si a < b alors $\sqrt{a} < \sqrt{b}$ (l'application de la fonction **conserve** l'ordre).

Exemples:

- 1. Comparer les nombres suivants sans utiliser la calculatrice : $\sqrt{5}$ et $\sqrt{\frac{7}{3}}$
- 2. Donner un encadrement de \sqrt{x} sachant que $2 \leqslant x < 144$.

Solution:

1. La fonction racine carrée étant strictement croissante sur $[0; +\infty[$, l'inégalité $5 > \frac{7}{3}$ implique que $\sqrt{5} > \sqrt{\frac{7}{3}}$ (le sens de l'inégalité est conservé).

Remarque : Cela revient finalement à comparer les carrés de ces deux nombres, ce qu'on ferait pour comparer par exemple $\sqrt{5}$ et 2; comme 5 > 4, on conclut que $\sqrt{5} > \sqrt{4} \iff \sqrt{5} > 2$.

2. De nouveau, la fonction racine carrée étant strictement croissante sur $[0\,;\,+\infty[$, l'encadrement $2\leqslant x<144$ implique $\sqrt{2}\leqslant \sqrt{x}<\sqrt{144}$ (le sens des inégalités a été conservé). On conclut en simplifiant ce qui peut l'être : $\sqrt{2}\leqslant \sqrt{x}<12$.

b) Propriétés algébriques

Propriété : Soient a et b deux réels positifs :

- $\bullet \ \sqrt{ab} = \sqrt{a} \times \sqrt{b};$
- si de plus b est non nul, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

<u>Démonstration</u>: Dans les deux cas, les nombres sont positifs, donc on montre l'égalité en vérifiant que les carrés sont égaux.

• $\left(\sqrt{ab}\right)^2 = ab$ par définition. De plus $\left(\sqrt{a} \times \sqrt{b}\right)^2 = (\sqrt{a})^2 \times \left(\sqrt{b}\right)^2$ d'après les propriétés sur les puissances. Ainsi $\left(\sqrt{a} \times \sqrt{b}\right)^2 = a \times b$ et on conclut que $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$.

•
$$\left(\sqrt{\frac{a}{b}}\right)^2 = \frac{a}{b}$$
 par définition. De plus $\left(\frac{\sqrt{a}}{\sqrt{b}}\right)^2 = \frac{(\sqrt{a})^2}{\left(\sqrt{b}\right)^2}$ d'après les propriétés sur les puissances. Ainsi $\left(\frac{\sqrt{a}}{\sqrt{b}}\right)^2 = \frac{a}{b}$ et on conclut que $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

Remarque : et pour les sommes ? C'est une faute habituelle qu'il ne faut surtout pas commettre!

En effet $\left(\sqrt{a} + \sqrt{b}\right)^2 = \left(\sqrt{a}\right)^2 + 2\sqrt{a}\sqrt{b} + \left(\sqrt{b}\right)^2$ d'après la première identité remarquable.

Ainsi
$$\left(\sqrt{a} + \sqrt{b}\right)^2 = a + 2\sqrt{ab} + b$$
.

Donc, en général (dès que a et b sont strictement positifs), $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$.

Application: simplification de radicaux

Simplifier des radicaux revient à les écrire sous la forme d'un entier ou sous la forme $a\sqrt{b}$ avec b nombre entier positif le plus petit possible.

Par exemple, concernant $\sqrt{45}$, dans la décomposition de 45 sous la forme d'un produit, on identifie **le carré d'un entier** : $45 = 9 \times 5$

Ainsi
$$\sqrt{45} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5}$$
.

On peut aussi simplifier une somme ou une différence : $\sqrt{125} - \sqrt{48}$

Il faut tout d'abord simplifier chaque radical, la différence ne pouvant au final n'être faite, que si on retrouve le même nombre sous les radicaux

Ici,
$$125 = 25 \times 3$$
 d'où $\sqrt{125} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$,

de plus
$$48 = 16 \times 3$$
 d'où $\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$.

Ainsi
$$\sqrt{125} - \sqrt{48} = 5\sqrt{3} - 4\sqrt{3} = \sqrt{3}$$
.

c) Compléments sur la racine carrée

Exemple : Résoudre l'équation $5\sqrt{x} - 11 = 0$

• Cette équation se résout sur \mathbb{R}^+ .

On isole \sqrt{x} (comme pour des équations de degré 1) :

$$5\sqrt{x} - 11 = 0 \iff 5\sqrt{x} = 11 \iff \sqrt{x} = \frac{11}{5}$$

• Il ne reste plus qu'à appliquer la fonction carrée et on obtient $x = \left(\frac{11}{5}\right)^2 = \frac{121}{25}$.

Propriété : Position relative de courbes sur \mathbb{R}^+ .

- 1. Soit x un réel positif ou nul.
 - si 0 < x < 1, alors $\sqrt{x} > x$;
 - si x > 1, alors $\sqrt{x} < x$;
 - si x = 0 ou x = 1, alors $\sqrt{x} = x$.

Cela se vérifie sur les courbes ci-contre :

2. Les courbes d'équations $y=x^2$ et $y=\sqrt{x}$ sont symétriques par rapport à la droite d'équation y=x.

Cela traduit le fait que pour tout réel $x \geqslant 0$,

$$\sqrt{x^2} = x$$
 et $(\sqrt{x})^2 = x$.

On parle de fonctions réciproques.

