Лабораторная работа №2

Цель лабораторной работы

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении.

Известно, что скорость катера в n раз больше скорости браконьерской лодки. Необходимо определить, по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

Задание к лабораторной работе

- 1. Провести необходимые рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в n раз.
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Определить по графику точку пересечения катера и лодки.

Процесс выполнения лабораторной работы

Принимаем за $t_0 = 0$, $X_0 = 0$ - место нахождения лодки браконьеров в момент обнаружения, $X_0 = k$ - местонахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки. Введем полярные координаты. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер x - k (или x + k). Время, за которое они пройдут это расстояние, вычисляется как x/v или (x+k)/v (для второго случая (x-k)/v). Тогда неизвестное расстояние можно найти из следующего уравнения: x/v = (x+k)/v - в первом случае, x/v = (x-k)/v во втором случае.

Отсюда мы найдем два значения х₁ и х₂, задачу будем решать для двух случаев:

$$x_1 = k/(n+1)$$
, при $\theta = 0$

$$x_2 = k/(n-1)$$
, при $\theta = -\pi$

Найдем тангенциальную скорость для нашей задачи $v_t = r \frac{d\theta}{dt}$. Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость $v_t = \sqrt{n^2 v_r^2 - v^2}$. Поскольку радиальная скорость равна v, то тангенциальную скорость находим из уравнения $v_t = \sqrt{n^2 v^2 - v^2}$. Следовательно, $v_\tau = v \sqrt{n^2 - 1}$

Тогда получаем
$$r\frac{d\theta}{dt} = v\sqrt{n^2 - 1}$$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = v\sqrt{n^2 - 1} \end{cases}$$

с начальными условиями

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{k}{n+1} \end{cases}$$

$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{k}{n-1} \end{cases}$$

Условие задачи

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 9.4 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 3.7 раза больше скорости браконьерской лодки.

- 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки

Траектория первого случая

Точка пересечения катера и лодки:

Траектория второго случая

Точка пересечения катера и лодки:

Выводы по проделанной работе

Вывод

Рассмотрели задачу о погоне. Провели анализ и вывод дифференциальных уравнений. Смоделировали ситуацию.

Наблюдаем, что при погоне по часовой стрелке для достижения цели потребуется пройти значительно меньшее расстояние.