1 "Solução" de alguns exercícios de algoritmos e estrutura de dados

1. É verdade que $4n^2 = O(n^2)$

Solução: Sim. Temos que $4n^2 \le 4n^2$, então basta definir: $C = 4, n_0 = 1$.

2. É verdade que $2^{0.694} = O(2^n)$

Solução: Sim, pois $2^{0.694} \le 1.2^n \ \forall n > 1$. C = 0, $n_0 = 1$.

3. É verdade que $10n^2 + 5n + 3 = O(n^2)$?

Solução: Sim, de fato temos: $10n^2 + 5n + 3 \le 10n^2 + 5n^2 + 3n^2 = (10 + 5 + 3).n^2 = 18n^2 = O(n^2)$, com C = 18 e $n_0 = 1$.

4. É verdade que $7n^2 = O(n)$?

Solução: Não. Suponha que existam c, n_0 tal que $7n^2 \le c.n, \forall n > n_0$. Então dividindo ambos os lados da desigualdade por n temos $7n \le c, \forall n > n_0$. O que é absurdo pois c é constante e 7n tende a infinito.

5. É verdade que $\frac{1}{2}n^2 + 3n = O(n)$?

Solução: Não.

6. É verdade que $\frac{1}{2}n^2 + 3n = O(n^3)$?

Solução: Sim.

7. É verdade que $n^k = O(n^{k-1})$?

Solução: Não. Suponha que existam c, n_0 tal que $n^k \le c.n^{k-1}$. Então temos $\frac{n^k}{n^{k-1}} \le c$ e daí que $n \le c$, para todo $n > n_0$. Absurdo.

8. É verdade que $a_k n^k + \cdots + a_1 n + a_0 = O(n^k)$?

Solução: Sim, pois $a_k n^k + \dots + a_1 n + a_0 \le a_k n^k + \dots + a_1 n^k + n^k = (a_n + a_{n-1} \dots a_0) n^k = O(n^k)$.

9. É verdade que $100n + \log n = \Theta(n + \log^2 n)$?

Solução: Sim, $100n + \log n \le 100n + 100\log^2 n = 100(n + \log^2 n)$, temos c = 100 e $n_0 = 1$.

10. $\log 2n = \Theta(\log 3n)$?

Solução: Provemos primeiro que é $O(\log 3n)$:

 $\log 2n = \log 2 + \log n$ e $\log 3n = \log 3 + \log n$. Como $\log 3 > \log 2$ podemos concluir que $\log 2n \le \log 3n$ que implica em $\log 2n \le 1$. $\log 3n \ \forall n > 1$. Logo, c = 1 e $n_0 = 1$.

Agora, veremos que também é Ω . Temos $\log 2n < \log 3n$ queremos achar c tal que $\log 2n \geq c$. $\log 3n$ seja verdade, então se tomarmos $c = \frac{\log 2n}{\log 3n}$ ou menor temos: $\log 2 \geq \log 3n. \frac{\log 2n}{\log 3n} \ \forall n > 1$.

11. É verdade que $\log_a n = \Theta(\log_b n)$ com $a \in b$ inteiros positivos?

Solução: Sim, é verdade. Sem perca de generalidade suponhamos $\log_a n < \log_b n$ e daí: Primeiro queremos achar c tal que

$$\log_a n \le \log_b n$$

para isso tomemos $c = \frac{log_a n}{log_b n}$ ou menos e temos garantidamente:

$$\log_a b \le \log_b n \cdot \frac{\log_a n}{\log_b n}$$

Analogamente, se $c = \frac{\log_b n}{\log_a n}$ ou maior temos:

$$\log_a n \ge \log_b n \cdot \frac{\log_b n}{\log_a n}$$

12. É verdade que $(n+a)^b = \Theta(n^b)$ com $a \in b$ inteiros positivos?

Solução: acho que dá para fazer por indução em b.

13. É verdade que $4 \log n + 3\sqrt{n} + 5n^2 = \Theta(n^2)$?

Solução: É verdade.

14. É verdade que $2^{5n} = O(2^n)$?

Solução: Sim, $2^{5n} = (2^5)^n > c \cdot 2^n$, pois c é uma constante.