Algebra II - Quiz 1 - 30 Marks One Hour Date:

- 1. Let $V = \mathbb{R}^3$, $v_1 = (1, 1, 0)$, $v_2 = (0, 1, 1)$, $w_1 = (1, 0, 1)$ and $w_2 = (0, 0, 1)$. Prove or disprove: There exists a linear transformation $T: V \to V$ such that $\ker T = \langle v_1, v_2 \rangle$ and $\operatorname{Im} T = \langle w_1, w_2 \rangle$. (5 marks)
- 2. Prove or disprove: If λ is an eigen value of an $n \times n$ matrix A, then λ^2 is an eigen value of A^2 . (5 marks)
- 3. Let m_1, \ldots, m_n be n positive real numbers. Let $A = (a_{ij})_{1 \le i,j \le n}$ be an $n \times n$ matrix where $a_{ij} = m_i/m_j$. Find the rank of A.
- 4. Let $A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix} B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. Let $W = \{ \mathbf{x} \in \mathbb{R}^3 : A\mathbf{x} = B\mathbf{x} \}$. Find a basis for W, (5 marks)
- 5. Suppose F is a field and $|F| = \infty$. Let V be a vector space over F. Show that V cannot be written as a union of finitely many proper subspaces. Does the same statement hold true if |F| is finite.

