Game Tree Searching by Min / Max Approximation

Artem Larionov 2/19/2017

Goals of the research

The paper suggests a method for reducing the computational expenses of exploring a game tree, which will always expand the node that is expected to have the largest effect on the value.

Min/Max Approximation

Min/Max approximation method attempts to focus the computer's attention on the important lines of play. The key idea is to approximate the "min" and "max" operators with generalized mean-value operators. These are good approximations to the min/max operators, but have continuous derivatives with respect to all arguments.

Results

The game of Connect-Four was chosen as a basis the experiments because it is commercially available and well known, yet simple to describe and implement.

Experimental results

Resource bound per turn	MM wins	AB wins	Ties
1 second	41	46	11
2 second	40	42	16
3 seconds	36	44	18
4 seconds	39	52	7
5 seconds	30	55	13
Total	186	239	65
1000 moves	47	35	16
2000 moves	50	35	13
3000 moves	42	47	9
4000 moves	49	42	7
5000 moves	61	31	6
Total	249	190	51

Conclusion

Based on time usage alone, alpha-beta seems to be superior to the implementation of the min/max approximation approach. However, if comparison was based on move-based resource limits, the story is reversed: min/max approximation is definitely superior.