Optimointi 1 Harjoitustyö no. 1043

Tehtävän muotoilu

Tehtävänä on suunnitella mahdollisimman vähäkustanteinen autonvuokrausagenttien koulutusohjelma. Tammitoukokuussa voidaan kuukausittain ottaa tietty määrä oppilaita kurssille. Jokaista 15 oppilasta kohti pitää kyseisenä kuukautena olla yksi koulutuksen aiemmin käynyt opettaja varattuna opetustehtäviin. Kurssia eivät läpäise kaikki, ja joka kuukausi koulutetuista agenteista poistuu tietty prosenttiosuus. Tiedetään etukäteen tarvittavien agenttien määrä vuokraustoimintaan sekä eri henkilöille maksettavat palkat.

Taulukko 1 - Agenttien kysynnät

Muuttuja	Kuukausi	Agenttien kysyntä
d_1	Tammikuu	135
d_2	Helmikuu	125
d_3	Maaliskuu	150
d_4	Huhtikuu	170
d_5	Toukokuu	160
d_6	Kesäkuu	180

Taulukko 2 - Työtehtävien palkat

Muuttuja	Työtehtävä	Palkka
p_1	Oppilas	350
p_2	Agentti töissä	600
p_3	Agentti vapaalla	500

Valitaan päätösmuuttujiksi x_i = koulutettavien määrä kuukaudessa i. Lisäksi valitaan seuraavat parametrit

Taulukko 3 - Tehtävän parametrit

Parametri	Merkitys	Arvo
М	Agenttien määrä alussa	145
v	Agenttien valmistumisosuus	$\frac{4}{5}$
p	Seuraavana kuukautena jatkavien agenttien osuus	0,92
T	Tarvittavien opettajien määrä oppilasta kohti	$\frac{1}{15}$

Valmiiden agenttien määrät saadaan seuraavilla lausekkeilla

Taulukko 4 - Valmiiden agenttien määrät

Kuukausi	Valmiiden agenttien määrä
Tammikuu	M
Helmikuu	$Mp + x_1v$
Maaliskuu	$Mp^2 + x_1vp + x_2v$
Huhtikuu	$Mp^3 + x_1vp^2 + x_2vp + x_3v$

Toukokuu	$Mp^4 + x_1vp^3 + x_2vp^2 + x_3vp + x_4v$
Kesäkuu	$Mp^5 + x_1vp^4 + x_2vp^3 + x_3vp^2 + x_4vp + x_5v$

Kun edellisistä tuloksista vähennetään opettajina toimivien agenttien määrät, saadaan seuraavat vaatimukset:

Taulukko 5 – Vaatimukset

Kuukausi	Vaatimus
Tammikuu	$M - x_1 T \ge d_1$
Helmikuu	$Mp + x_1 v - x_2 T \ge d_2$
Maaliskuu	$Mp^2 + x_1 vp + x_2 v - x_3 T \ge d_3$
Huhtikuu	$Mp^3 + x_1vp^2 + x_2vp + x_3v - x_4T \ge d_4$
Toukokuu	$Mp^4 + x_1vp^3 + x_2vp^2 + x_3vp + x_4v - x_5T \ge d_5$
Kesäkuu	$Mp^5 + x_1vp^4 + x_2vp^3 + x_3vp^2 + x_4vp + x_5v \ge d_6$

Eri työtehtäville saadaan kokonaiskustannukset kyseistä tehtävää suorittavien henkilöiden määrien ja kyseisen tehtävän palkan avulla.

Taulukko 6 - Eri työtehtävien kokonaiskustannukset

Työtehtävä	Kokonaiskustannus
Oppilas	$\sum_{i=1}^{5} x_i p_i$
Työtä tekevä (opettaja tai myyjä)	$\sum_{i=1}^{6} (d_i + x_i T)$
Vapaalla	$\sum_{i=1}^{6} [Mp^{i-1} + \sum_{j=1}^{i-1} (x_j v p^{i-j-1}) - x_i T - d_i] p_3$
	$(M - x_{1}T - d_{1} + Mp + x_{1}v - x_{2}T - d_{2} + Mp^{2} + x_{1}vp + x_{2}v - x_{3}T - d_{3} + Mp^{3} + x_{1}vp^{2} + x_{2}vp + x_{3}v - x_{4}T - d_{4} + Mp^{4} + x_{1}vp^{3} + x_{2}vp^{2} + x_{3}vp + x_{4}v - x_{5}T - d_{5} + Mp^{5} + x_{1}vp^{4} + x_{2}vp^{3} + x_{3}vp^{2} + x_{4}vp + x_{5}v - d_{6}) p_{3}$

Saadaan optimointitehtävä

$$\min \sum_{i=1}^{6} x_i p_1 + \sum_{i=1}^{6} (d_i + x_i T) p_2 + \sum_{i=1}^{6} [M p^{i-1} + \sum_{j=1}^{i-1} (x_j v p^{i-j-1}) - x_i T - d_i] p_3$$

s.t.

$$\begin{aligned} M-x_1 T &\geq d_1 \\ Mp+x_1 v-x_2 T &\geq d_2 \\ Mp^2+x_1 vp+x_2 v-x_3 T &\geq d_3 \\ Mp^3+x_1 vp^2+x_2 vp+x_3 v-x_4 T &\geq d_4 \\ Mp^4+x_1 vp^3+x_2 vp^2+x_3 vp+x_4 v-x_5 T &\geq d_5 \\ Mp^5+x_1 vp^4+x_2 vp^3+x_3 vp^2+x_4 vp+x_5 v &\geq d_6 \end{aligned}$$

Linearisointi

Saatu optimointitehtävä on kuitenkin epälineaarinen. Tehtävää voidaan linearisoida ottamalla käyttöön käsitteet agentin peruspalkka ja lisäpalkka, joka maksetaan työtä tekeville agenteille.

Taulukko 7 - Palkat kustannuslisäajattelulla

Muuttuja	Työtehtävä	Palkka
p_1	Oppilas	350
p_2	Agentti töissä -lisä	100
p_3	Agentti palkkalistalla	500

Tehtävä voidaan ajatella siten, että lasketaan kuukaudessa i otetun oppilaan kustannuksia. Tällöin huomioidaan suorat kustannukset oppilaan palkka ja opettajan työlisä sekä epäsuora valmistuneiden agenttien palkkakustannus kaikilta tulevilta kuukausilta. Koulutettujen agenttien määrä voidaan laskea geometrisen summan avulla. Vuokraustyötä tekevien agenttien määrä ei riipu uusien oppilaiden määrästä vaan niitä on täsmälleen kysynnän verran.

Taulukko 8 - Kokonaiskustannukset kustannuslisäajattelulla

Kustannuslaji	Kokonaiskustannus
Oppilaan palkka	$p_1 \sum_{i=1}^{5} x_i$
Opettajan lisäpalkka	$p_2 T \sum_{i=1}^5 x_i$
Koulutettavien agenttien peruspalkka tulevilta kuukausilta	$v\sum_{i=1}^{5} \frac{1 - p^{6-i}}{1 - p} x_i$
Vuokraustyön lisäkustannus	$p_2 \sum_{i=1}^6 d_i$
Alussa olevien agenttien peruspalkka tulevilta kuukausilta	$p_3 M \frac{1 - p^6}{1 - p}$

Päätösmuuttujista riippuvat lausekkeet voidaan helposti yhdistää. Kaksi viimeisintä ovat parametrien arvoista riippuvia vakioita. Parametrit M ja d_i voidaan kuitenkin lisätä muuttujiksi, jolloin niiden muutoksia voidaan tarkastella paremmin herkkyysanalyysissä. Tuloksena saadaan lineaarinen optimointimalli, kun muut parametrit ovat vakioita.

$$\min \sum_{i=1}^{5} (p_1 + p_2T + p_3v \frac{1 - p^{6-i}}{1 - p}) x_i + p_3 \frac{1 - p^6}{1 - p} M + p_2 \sum_{i=1}^{6} d_i$$
s.t.
$$M - x_1T \ge d_1$$

$$Mp + x_1v - x_2T \ge d_2$$

$$Mp^2 + x_1vp + x_2v - x_3T \ge d_3$$

$$Mp^3 + x_1vp^2 + x_2vp + x_3v - x_4T \ge d_4$$

$$Mp^4 + x_1vp^3 + x_2vp^2 + x_3vp + x_4v - x_5T \ge d_5$$

$$Mp^5 + x_1vp^4 + x_2vp^3 + x_3vp^2 + x_4vp + x_5v \ge d_6$$

Kun parametrit p_1 , p_2 , p_3 , T, v ja p kiinnitetään, voidaan päätösmuuttujille laskea vakiokertoimiset kustannukset.

Taulukko 9 - Kustannusfunktion vakiokertoimet

Päätösmuuttuja	Kerroin
x_1	$p_1 + p_2 T + p_3 v \frac{1 - p^{6-1}}{1 - p} = 350 + 100 \times \frac{1}{15} + 500 \times \frac{4}{5} \times \frac{1 - 0.92^5}{1 - 0.92} \approx 2061$
x_2	1775
x_3	1463
x_4	1125
x_5	757
M	$p_3 \frac{1 - p^6}{1 - p} = 500 \times \frac{1 - 0.92^6}{1 - 0.92} = 2460$
d_i	$p_2 = 100$

Vastaavasti rajoitteet voidaan kirjoittaa vakiokertoimisina. M voidaan jättää muuttujaksi lisäämällä rajoite M =145, vastaavasti d_i.

Taulukko 10 - Parametrikertoimien lukuarvot

Kerroin	Lukuarvo
T	$\frac{1}{15} \approx 0,06667$
ν	$\frac{4}{5} = 0.8$
vp	$0.8 \times 0.92 = 0.736$
vp^2	0,6771

vp^3	0,6230
vp^4	0,5731
p	0,92
p^2	0,8464
p^3	0,7787
p^4	0,7164
p^5	0,6591

$$\min \ 2061 \, x_1 + 1775 \, x_2 + 1463 \, x_3 + 1125 \, x_4 + 757 \, x_5 + \ 2460 \, M + 100 \, \sum_{i=1}^6 d_i$$

s.t.

$$\begin{array}{l} \mathit{M} - 0,0667 \ x_1 - d_1 \geq 0 \\ 0,92 \ \mathit{M} + 0,8 \ x_1 - 0,0667 \ x_2 - d_2 \geq 0 \\ 0,8464 \ \mathit{M} + 0,736 \ x_1 + \ 0,8 \ x_2 - \ 0,0667 \ x_3 - d_3 \geq 0 \\ 0,7787 \ \mathit{M} + 0,6771 \ x_1 + 0,736 \ x_2 + 0,8 \ x_3 - 0,0667 \ x_4 - d_4 \geq 0 \\ 0,7164 \ \mathit{M} + 0,6230 \ x_1 + \ 0,6771 \ x_2 + 0,736 \ x_3 + 0,8 \ x_4 - 0,0667 \ x_5 - d_5 \geq 0 \\ 0,6591 \ \mathit{M} + 0,5731 \ x_1 + 0,6230 \ x_2 + 0,6771 \ x_3 + 0,736 \ x_4 + 0,8 \ x_5 - d_6 \geq 0 \\ \mathit{M} = 145 \\ d_1 = 135 \\ d_2 = 125 \\ d_3 = 150 \\ d_4 = 170 \\ d_5 = 160 \\ d_6 = 180 \\ x_i \geq 0, \qquad i \in \{1, \dots, 5\} \end{array}$$

Saatu optimointitehtävä on lineaarinen ja se voidaan syöttää esimerkiksi CPLEX-ohjelmistoon:

```
Bounds

m = 145

d1 = 135

d2 = 125

d3 = 150

d4 = 170

d5 = 160

d6 = 180

Generals

x1 x2 x3 x4 x5

End
```

Tulokset

Optimoinnin tulokseksi saadaan kokonaiskustannus 608408,06200 \$ muuttujien arvoilla:

Taulukko 11 - Optimoinnin tulos

Muuttuja	Arvo			
x_1	0			
x_2	38			
x_3	38			
x_4	7			
<i>x</i> ₅	38			
М	145			
d_1	135			
d_2	125			
d_3	150			
d_4	170			
d_5	160			
d_6	180			

Tuloksen oikeellisuus voidaan vielä varmistaa simuloimalla.

Taulukko 12 - Optimointituloksen simulointi Excelillä

Kuukausi	Oppilaat (xi)	Opettajat	Agentteja	Käytettävissä	Kysyntä (di)	Ylimäärä	Kustannus
January	0	0	145	145	135	10	86000
February	38	3	133	130	125	5	92600
March	38	3	153	150	150	0	105100
April	7	1	171	170	170	0	105050
May	38	3	163	160	160	0	111100
June		0	180	180	180	0	108000
						Yhteensä	607850

Kokonaiskustannus poikkeaa hieman CPLEX-versiosta pyöristyserojen takia. Simuloinnissa opettajat esimerkiksi pyöristetään ylöspäin, koska alle 15 oppilaalle kuitenkin tarvitaan opettaja.

Herkkyysanalyysi ja tulosten arviointi

Herkkyysanalyysiä varten muokataan hieman CPLEX-syötettä: laatikkorajoitteet muutetaan normaaleiksi ja kaikki muuttujat ovat liukulukuja. Herkkyysanalyysi ajetaan komennolla display sensitivity rhs *:

Constraint **Dual Price** Down Current Up Name 0 0 10 jan $-\infty$ feb 0 $-\infty$ 0 5,9177 0 35,2991 mar 497,4555 -32,0694 536,049 -34,965 0 6,6721 apr -6,6089 0 35,6484 may 539,0133 990,7538 147,2035 0 153303,5873 jun m 582.6648 139.0257 145 180.191 d1 100 0 135 145 d2 100 0 125 130,9177 d3 597,4555 117,9306 150 185,2991 d4 636,049 135,035 170 176,6721 195,6484 d5 639,0133 153,3911 160 d6 100 180 ∞

Taulukko 13 - Rajoitteiden herkkyysanalyysi CPLEX-ohjelmistosta

Herkkyysanalyysistä nähdään, että tammikuun ja helmikuun vaatimusrajoitteen duaalin hinta on 0, joten rajoite ei ole aktiivinen. Vastaavien kysyntärajoitteiden duaalin hinta on silloin 100, joka on lisäkustannus sille, että agentti on töissä. Muulloin kysynnän kasvaminen yhdellä agentilla lisäisi kustannuksia 597...639 \$. Alussa olevien agenttien määrä (m) voi pienimmillään olla 140, muulloin ei löydetä sallittua ratkaisua. Kysyntä voi vaihdella melko pienissä rajoissa, jonka jälkeen duaalin hinta muuttuu. Lisäksi on huomattava, että ratkaisu muuttuu, kun minkä tahansa kuukauden, paitsi tammi- tai helmikuun, kysyntä muuttuu. Malli on siis erittäin altis markkinatilanteen muuttumiselle, eikä siten soveltuisi päätöksentekijäksi todellisessa tilanteessa.

Kustannusten (lue palkkojen) muuttuminen ei muuta päätösmuuttujien arvoja, koska rajoitteet sitovat ne tarkasti. Eli vaikka kouluttaminen maksaisi kuinka paljon tahansa, se tehtäisiin. Autonvuokraus liiketoimintana ei kuitenkaan ole niin kriittistä, että sitä pitäisi pyörittää tappiollisuudesta huolimatta. Tämän ongelmakohdan voisi kiertää menetetyn tuoton avulla. Samalla kysynnät pitäisi muuttaa satunnaismuuttujiksi. Tuloksena olisi paljon monimutkaisempi stokastinen, todennäköisesti epälineaarinen optimointitehtävä.