1 Week 1 Reading

2 Week 1 Meeting Notes

Proposition 2.0.1. Any such A/S is commutative.

Proof. Step -1 reduce to the case S is locally noetherian by spreading out.

2.1 Duality

Given some abelian scheme A/S there is a dual A^{\vee}/S of the same dimension. If $S = \text{Spec}(\mathcal{C})$ then $H^1(A, \Omega_A)/H^1(A, \mathbb{Z})$ gives a dual which we think of as Line bundles with trivial Chern class (degree zero). This gives a complex manifold and it turns out to be algebraic. We can make sense of this using the exponential sequence,

$$0 \longrightarrow 2\pi \mathbb{Z} \longrightarrow \mathcal{O}_A \xrightarrow{\exp} \mathcal{O}_A^{\times} \longrightarrow 0$$

giving the map $H^1(A,\mathbb{Z}) \to H^1(A,\mathcal{O}_A)$. We could also use,

$$H^0(X,\Omega_A)^{\vee}/H_1(A,\mathbb{Z})$$

with the map given by integrating along a homology cycle. We can geometrise the moduli space of line bundles with Picard Schemes.

Apparently if A is a complex torus and A and A^{\vee} are isogenous then A is algebraic.

2.2 Defining Pic

We consider the functor,

$$(T \to S) \mapsto \operatorname{Pic}(X_T)/\operatorname{Pic}(T)$$

this defines the set of maps,

$$T \to \operatorname{Pic}(X/S)$$

Remark. Pic $(T) \to \text{Pic}(X_T)$ is injective for X = A because there is a section but also because $\pi_* \mathcal{O}_X = \mathcal{O}_T$.

Theorem 2.2.1 (Grothendieck). If A is zariski locally projective then Pic(A/S) is representable by a scheme locally of finite type.

Remark. According to Sean even if $A \to S$ is not locally projective Pic(A/S) is represented by an algebraic space but a theorem of Raynaud tells you that if an algebraic space is an abelian space then it is actually a scheme.

Proposition 2.2.2. If $S = \operatorname{Spec}(k)$ then $T_e \operatorname{Pic}(A/S) = H^1(A, \mathcal{O}_A) = \operatorname{Ext}^1_{\mathcal{O}_A}(\mathcal{O}_A, \mathcal{O}_A)$.

Remark. It should be true that $e^*\Omega^1_{\operatorname{Pic}(A)/S} = (R^1\pi_*\mathcal{O}_A)^{\vee}$.

Proposition 2.2.3. Pic (A/S) is smooth.

Proof. Use formal smoothness and deformation theory. Have to use the group structure. Let B be an Artin local ring over $\mathcal{O}_{S,s}$ and an extension $B \hookrightarrow B'$ with square-zero kernel I (probably actually want $\mathfrak{m}I = 0$). Given a line bundle \mathcal{L} on A_B we must show it lifts to $A_{B'}$. There is an obstruction element,

$$H^2(A_s, \mathcal{O}_{A_S}) \otimes_k I$$

3 April 15

Let A/k be an abelian variety over a field k. Let \mathcal{L} be a line bundle on A. Define,

$$\Lambda(\mathcal{L}) = \mu^* \mathcal{L} \otimes p_1^* \mathcal{L}^{\otimes -1} \otimes p_2^* \mathcal{L}^{\otimes -1}$$

is a line bundle on $A \times A$ and therefore defines $\Phi_{\mathcal{L}} : A \to \operatorname{Pic}(A)$. We need to check that $0 \mapsto 0$ then by rigidity it is automatically a group map.

$$\begin{array}{ccc}
A & \longrightarrow & A \times A & \longrightarrow & \operatorname{Pic}(A) \times A \\
\downarrow & & \downarrow^{\pi_1} & \downarrow \\
e & \longrightarrow & A & \longrightarrow & \operatorname{Pic}(A)
\end{array}$$

then a direct calculation shows that $P \mapsto \Lambda(\mathcal{L}) \mapsto \mathcal{O}_A$ so it sends e to the trivial bundle in Pic (A).

Theorem 3.0.1. If \mathcal{L} is ample then $\Phi_{\mathcal{L}}$ is finite flat (hence surjective) so an isogeny.

Proof. Suffices to prove that $K_{\mathcal{L}} = \ker \Phi_{\mathcal{L}}$ is quasi-finite (miracle flatness and dimension theory). Let $B = (K_{\mathcal{L}}^{\text{red}})^{\circ}$ observe that $M = \mathcal{L} \otimes [-1]^* \mathcal{L}$ is ample and $M|_B$ is trivial therefore B is finite. \square

Remark. Group surjective maps of smooth groups are flat. Either use generic flatness and translate or use miracle flatness since all fibers isomorphic to kernel so constant dimension.

Definition 3.0.2. Let A/S be an abelian scheme, then a polarization is a group map $\lambda : A \to A^{\vee}$ such that for all geometric points $\bar{s} \to S$ we have $\lambda_{\bar{s}} = \Phi_{\mathcal{L}}$ for some ample $\mathcal{L}_{\bar{s}} \in \operatorname{Pic}(A_{\bar{S}})$.

Remark. Even over a field k we can have polarizations which do not arise from λ because the Λ might live over some field extension. I think étale locally every polarization comes from Λ .

Remark. Fibral flatness implies that φ is finite flat and rigidity says that λ is a group map and hence $A^{\vee} \cong A/\ker \lambda$.

Remark. Let P be the universal bundle on $A \times A^{\vee}$ then we get $M = \lambda^* P \in \text{Pic}(A \times A)$. Then $\Delta^* M$ defines a line bundle. Now $\Delta^* \Phi_{\Lambda}^* P = \mathcal{L}^{\otimes -1}$.

Remark. Polarization is the same as a section of the section of the Neron-Severi scheme which is étale. Then the map $\operatorname{Pic}(A) \to \operatorname{NS}_A$ étale-locally admits sections so we étale-locally do indeed get a line bundle étale-locally.

Definition 3.0.3. The stack $\mathcal{A}_{q,1}/\operatorname{Spec}(\mathbb{Z})$ is the category fivered in groupoids of,

$$(S, \mathcal{A}/S, \lambda : \mathcal{A} \xrightarrow{\sim} \mathcal{A}^{\vee})$$

where $\lambda: \mathcal{A} \xrightarrow{\sim} \mathcal{A}^{\vee}$ is a principal polarization (it is an isomorphism) whose morphisms are Cartesian diagram,

$$\begin{array}{ccc}
\mathcal{A}_S & \longrightarrow & \mathcal{A}'_{S'} \\
\downarrow & & \downarrow \\
S & \longrightarrow & S'
\end{array}$$

therefore,

$$\mathcal{A}_{g,1}(S) = \{(\mathcal{A}, S, \lambda)\}$$

with morphisms $f: A' \to A$ such that,

$$A' \xrightarrow{f} A$$

$$\downarrow^{\lambda'} \qquad \downarrow^{\lambda}$$

$$A'^{\vee} \xleftarrow{f} A^{\vee}$$

commutes. Then we can also define $\mathcal{A}_{g,d,n}/\mathrm{Spec}\left(\mathbb{Z}[1/n]\right)$ whose objects have degree \sqrt{d} -polarizations and $\eta:(\mathbb{Z}/n\mathbb{Z})^{\oplus 2g} \xrightarrow{\sim} A[n]$ which is compatible with the Weil pairing up to a scale.

3.1 Deformation Theory

Need to show that $\operatorname{Def}(A, m, e, i)$ is formally smooth. Then $\operatorname{Def}(A, m, e, i) \subset \operatorname{Def}(A)$ is actually an equality then the latter is formally smooth by a trick.

Now we need to deform $m: A \times A \to A$ this is the same as deforming $\Gamma_m \subset A \times A \times A$. Deforming Γ_m has a tangent obstruction theory,

$$H^{i-1}(\Gamma_m, N_{\Gamma_m})$$

Upshot: given (A_0, m_0, e_0, ι_0) over R_0 and given a fixed (A, e) over R we can lift m and i uniquely to get a group structure of R so the deformation theory is formally smooth. Given (A, e) and (A, e') then $(A, e', m', i') \cong (A, e, m, i)$ by rigidity. Thus the defomational theory is formally smooth and $Def(A_0)$ and the tangent space is $H^1(A, T_A) \otimes I$.

Problem $S \to \{A/S\}$ does not have effective deformation rings meaning we can lift all the way to a formal scheme but cannot algebrize it. What about $Def(A, \lambda)$. Consider $I \to R \to R_0$ and (A_0, λ_0) over R_0 . We can lift A to R and ask does λ_0 lift,

$$\begin{array}{ccc}
A & \xrightarrow{\lambda_0} & A^{\vee} \\
\downarrow & & \downarrow \\
A_0 & \xrightarrow{\lambda_0} & A_0^{\vee}
\end{array}$$

If a lift exists, then by rigidity it is unique. Therefore $Def(A_0, \lambda_0) \subset Def(A_0)$ but this is a strict containment. There is an obstruction,

$$H^1(\mathcal{A},T)\otimes I\to H^2(\mathcal{A},\mathcal{O}_A)\otimes I$$

it turns out this is linear and there is a diagram,

$$H^{1}(A, T_{A}) \otimes I \longrightarrow H^{2}(A, \mathcal{O}_{A}) \otimes I$$

$$\downarrow^{(1 c(\mathcal{L}))} \uparrow$$

$$H^{1}(A, T_{A}) \otimes H^{1}(A, \Omega^{1}) \otimes I \stackrel{\smile}{\longrightarrow} H^{2}(A, T \otimes \Omega^{1}) \otimes I$$

where c is the Chern class. This gives dim = g(g+1)/2 and formal deformations are effective so $\mathcal{A}_{g,1}$ is a smooth algebraic stack over Spec (\mathbb{Z}) of relative dimension g(g+1)/2. There is a universal family $B \to \mathcal{A}_{g,1}$. Over \mathbb{Z} we have B[n] is proper and flat (only étale over $\mathbb{Z}[1/n]$) so its dimension can be checked over \mathbb{C}

Remark.

$$Isom((A, \lambda), (B, \mu))$$

is finite étale over k. It is étale because of rigidity so there is unique lifting of maps. Then we show for $n \geq 3$,

$$\operatorname{Isom}((A,\lambda),(B,\mu)) \hookrightarrow \operatorname{Isom}(A[n],B[n])$$

which is finite because these are finite group schemes.

Remark. Is there a way to do level structure over all of \mathbb{Z} ? de Jong defined $\mathcal{A}_{g,\Gamma_0(p)}$ over Spec (\mathbb{Z}) where we fix a flag in A[p] isotropic for the Weil pairing. But this has complicated geometry.

4 April 28

Let
$$\mathscr{F} = \varprojlim \mathscr{F}_n$$
 then,

$$\Omega_{\mathscr{F}/S} = \varprojlim \Omega_{\mathscr{F}_n/S}$$

but the maps,

$$\begin{array}{cccc} \mathscr{F}_{n+m} & \longrightarrow & \mathscr{F}_{n} \\ & \downarrow^{p^{m}} & & \downarrow \\ \mathscr{F}_{n+m} & = = & \mathscr{F}_{n+m} \end{array}$$

4.1 Calculating Extensions

Let E be a supersingular elliptic curve and $H \subset E \times E \times \mathbb{P}^1$ where H is $\alpha_p \times \mathbb{P}^1$ embedded via,

$$\alpha_p \times \mathbb{P}^1 \hookrightarrow E \times E \times \mathbb{P}^1$$
 via $(x, [a:b]) \mapsto (\frac{a}{b}x, x, [a:b])$

There is a unique $\alpha_p \subset E$ kernel of Frobenius. The claim,

$$\dim_k \operatorname{Hom} (\alpha_p, (E \times E)/(a, b)\alpha_p) = \begin{cases} 2 & \frac{a}{b} \in \mathbb{F}_{p^2} \\ 1 & \text{else} \end{cases}$$

Therefore, ker $F_{(E\times E)/H}$ is $\alpha_p \times \alpha_p$ if $\frac{a}{b} \in \mathbb{F}_{p^2}$ and W_2 otherwise. Consider the exact sequences,

$$0 \longrightarrow \alpha_{p} \stackrel{a}{\longrightarrow} E \stackrel{F}{\longrightarrow} E \longrightarrow 0$$

$$\downarrow^{\frac{a}{b}} \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \alpha_{p} \stackrel{b}{\longrightarrow} E \stackrel{F}{\longrightarrow} E \longrightarrow 0$$

Applying Hom $(\alpha_p, -)$ gives a diagram of exact sequences,

$$\operatorname{Hom}(\alpha_{p}, E) \xrightarrow{\delta} \operatorname{Ext}^{1}(\alpha_{p}, \alpha_{p}) \longrightarrow \operatorname{Ext}^{1}(\alpha_{p}, E) \longrightarrow \operatorname{Ext}^{1}(\alpha_{p}, E)$$

$$\parallel \qquad \qquad \downarrow^{\frac{a}{b}} \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\operatorname{Hom}(\alpha_{p}, E) \xrightarrow{\partial} \operatorname{Ext}^{1}(\alpha_{p}, \alpha_{p}) \longrightarrow \operatorname{Ext}^{1}(\alpha_{p}, E) \longrightarrow \operatorname{Ext}^{1}(\alpha_{p}, E)$$

Note that Hom $(\alpha_p, \alpha_p) = k$ and thus we get a k-structure on $\operatorname{Ext}^1(\alpha_p, \alpha_p)$ but in two different ways the first factor gives the right structure and the second the left structure. What is $\operatorname{Ext}^1(\alpha_p, \alpha_p)$. There are 4-isomorphism classes of groups in the extension (NOT isomorphism classes of extension) these are,

- (a) $\alpha_p \times \alpha_p$
- (b) α_{p^2}
- (c) W_2
- (d) E[p]

Can argue that the second two span with extensions,

$$0 \longrightarrow \alpha_p \stackrel{i}{\longrightarrow} \alpha_{p^2} \stackrel{F}{\longrightarrow} \alpha_p \longrightarrow 0$$

and likewise,

$$0 \longrightarrow \alpha_p \stackrel{p}{\longrightarrow} W_2 \stackrel{\alpha_p}{\longrightarrow} 0$$

Acting on the right by a^p and on the left by a amounts to,

these are not isomorphisms of extensions. But I claim the outside two extensions are isomorphic by,

$$0 \longrightarrow \alpha_{p} \xrightarrow{i} \alpha_{p^{2}} \xrightarrow{Fa^{-1}} \alpha_{p} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Therefore,

$$a \cdot [\alpha_{p^2}] = [\alpha_{p^2}] \cdot a^p$$
$$a^p \cdot [W_2] = [W_2] \cdot a$$

Then write in terms of the basis,

$$\delta(f) = \beta \cdot [\alpha_{p^2}] + \gamma \cdot [W_2]$$

and thus by commutativity and moving the left $\frac{a}{b}$ - action to the right action,

$$\partial(f) = \beta \cdot [\alpha_{p^2}] \cdot \left(\frac{a}{b}\right)^p + \gamma \cdot [W_2] \cdot \left(\frac{a}{b}\right)^{\frac{1}{p}}$$

Therefore,

$$\operatorname{im}\delta\cap\operatorname{im}\partial=\{0\}\iff\frac{a}{b}\notin\mathbb{F}_{p^2}$$

Now consider,

$$0 \longrightarrow \alpha_p \xrightarrow{ab} E \times E \longrightarrow (E \times E)/H \longrightarrow 0$$

Then applying Hom $(\alpha_p, -)$ we get,

$$0 \longrightarrow \operatorname{Hom}(\alpha_p, \alpha_p) \longrightarrow \operatorname{Hom}(\alpha_p, E \times E) \longrightarrow \operatorname{Hom}(\alpha_p, (E \times E)/H) \longrightarrow \operatorname{Ext}^1(\alpha_p, \alpha_p) \longrightarrow \operatorname{Ext}^1(\alpha_p, E \times E)$$

However, the map,

$$\operatorname{Ext}^{1}(\alpha_{p}, \alpha_{p}) \to \operatorname{Ext}^{1}(\alpha_{p}, E \times E)$$

is the pair of maps after δ and ∂ thus is injective if and only if $\operatorname{im} \delta \cap \operatorname{im} \partial = \{0\}$ so we see in this case that,

$$\dim \operatorname{Hom} (\alpha, (E \times E)/H) = \dim \operatorname{Hom} (\alpha_p, E \times E) - \dim \operatorname{Hom} (\alpha_p, \alpha_p) = 2 - 1 = 1$$

and otherwise the map to $\operatorname{Ext}^1(\alpha_p,\alpha_p)$ is surjective (since it is nonzero and the target is 1-dimensional) so we get,

$$\dim \operatorname{Hom} (\alpha, (E \times E)/H) = 2$$

4.2 Goal

Generalize this somehow menaing describe all positive dimensional families of PPAVs with constant isogeny class. Huristically,

isogeny classes in $A_{g,1} \iff$ families of p-div groups

We have constructed,

$$\mathbb{P}^1 o \mathcal{A}_{g,1}$$

giving by sending $[a, b] \mapsto (E \times E)/H$ which is constant $\overline{\mathbb{F}}_p$ -isogeny class of PPAV (by construction) but with nonconstant p-divisible group.

$$\{BTX \text{ with } \rho: X \dashrightarrow X_0\} \to \{BT\}$$

4.3 TB Groups

Let Aff_S be the category of affine schemes over a qcqs scheme S.

Definition 4.3.1. A *Tate-Barsotti* group is a sheaf of abelian groups on Aff_S in the fpqc topology such that,

- (a) $[p]: \mathscr{F} \to \mathscr{F}$ is a closed immersion
- (b) $\mathscr{F}_n = \mathscr{F}/[p]^n\mathscr{F}$ is a finite flat group scheme over S (taking the fppf quotient)
- (c) $\mathscr{F} \xrightarrow{\sim} \lim \mathscr{F}/[p]^n \mathscr{F}$

Proposition 4.3.2. \mathscr{F} is representable because it is the inverse limit of affine morphisms.

Example 4.3.3. Some TB groups,

(a) $\underline{\mathbb{Z}_{p,S}} = \varprojlim_n \underline{\mathbb{Z}/p^n \mathbb{Z}_S}$ which represents continuous maps to \mathbb{Z}_p with the p-adic topology

- (b) $T_p \mu_{p^{\infty},S} = \varprojlim_n \mu_{p^n}$
- (c) If A/S is an abelian scheme then,

$$T_p A = \underline{\lim} A[p^n]$$

Remark. Notice that,

$$A[p^{n+m}]$$

$$\downarrow^{p^m}$$

$$A[p^{n+m}] \longrightarrow A[p^n]$$

Proposition 4.3.4. Show there is a short exact sequence,

$$0 \longrightarrow \mathscr{F}_m \longrightarrow \mathscr{F}_{n+m} \longrightarrow \mathscr{F}_n \longrightarrow 0$$

Proof. Notice,

$$\mathscr{F}_{n+m} = \mathscr{F}/p^{n+m}\mathscr{F}$$

Then,

$$\mathscr{F}_{n+m}[p^n] = \frac{p^m \mathscr{F}}{p^{n+m} \mathscr{F}}$$

Corollary 4.3.5. We have rank $\mathscr{F}_1 = p^h$ then rank $\mathscr{F}_n = p^{hn}$.

Remark. Over $k = \bar{k}$ of characteristic p,

Theorem 4.3.6 (Raynaud).
$$\mathscr{F}_n^{\circ} = \operatorname{Spec}\left(k[x_1,\ldots,x_n]/(x_1^{p^{i_1}},\ldots,x_n^{p^{i_n}})\right)$$

Remark. We asked if the i_r are locally constant. The degeneration of an ordinary elliptic curve to a supersingular elliptic curve and taking p-torsion gives a counterexample. A better counterexample is the universal extension of α_p by α_p which has fibers α_{p^2} degenerating to α_p^2 .

4.4 BT groups

Let \mathscr{F} over S as above. Then,

$$\mathscr{F}[\frac{1}{p}] = \operatorname{colim}_{[p]} \mathscr{F} = \operatorname{colim}_n \frac{1}{p^n} \mathscr{F}$$

this is a sheaf (and ind-scheme) but only on quasi-compact test objects. Recall,

$$\mathscr{F}(R) = \varprojlim \mathscr{F}_n(R)$$

is a p-adically complete \mathbb{Z}_p -module and hence $\mathscr{F}(R)[\frac{1}{p}]$ is a \mathbb{Q}_p -Banach space.

5 May 6

Recall: a TB group over S an fpqc sheaf on Aff_S such that,

- (a) $[p]: \mathscr{F} \to \mathscr{F}$ is a closed immersion
- (b) $\mathscr{F}/p\mathscr{F}$ is finite flat
- (c) $\mathscr{F} = \underline{\lim} \mathscr{F}/p^n \mathscr{F}$.

Consider,

$$\frac{\mathscr{F}\left[\frac{1}{p}\right]}{\mathscr{F}} = X_{\mathscr{F}}$$

We showed that $[p]: X_{\mathscr{F}} \to X_{\mathscr{F}}$ is surjective with finite cokernel. Then,

$$X_{\mathscr{F}} = \varinjlim_{n} X_{\mathscr{F}}[p^{n}]$$

$$0 \longrightarrow \mathscr{F}/p^n\mathscr{F} \longrightarrow \mathscr{F}/p^{n+m}\mathscr{F} \longrightarrow \mathscr{F}/p^m\mathscr{F} \longrightarrow 0$$

If $p^n = 0$ on S then $X_{\mathscr{F}}$ is formally smooth. The Lie algebra has rank d (locally constant on S). Then (h is the height, locally constant on S).

Proposition 5.0.1. Show that TB / S and BT / S via,

$$\mathscr{F} \mapsto X_{\mathscr{F}}$$

and

$$X \mapsto T_p X = \operatorname{Hom}\left(\mathbb{Q}_p/\mathbb{Z}_p, X\right)$$

Proposition 5.0.2. If $S = \operatorname{Spec}(k)$ and \mathscr{F}, \mathscr{G} are TB groups over S then,

$$\mathrm{Hom}\,(\mathscr{F},\mathscr{G})$$

is also a TB group.

Proof. Section 4.1 of Caraiani-Schotze.

Example 5.0.3. Hom $(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^{\infty}}) =$

Definition 5.0.4. An \mathbb{F}_p -algebra R is perfect if $r \mapsto r^p$ is a bijection on R.

Example 5.0.5. The following are perfect,

- (a) \mathbb{F}_{p^n} and $\overline{\mathbb{F}}_p$
- (b) $\bigcup_n \mathbb{F}_p[x^{\frac{1}{p^n}}].$

Definition 5.0.6. A strict p-ring is a ring A that is p-adically complete, p-torsion free with A/p perfect.

Example 5.0.7. The following are strict p-rings,

(a)
$$\mathbb{Z}_{n^n}$$
, $\overline{\mathbb{Z}}_n$

(b)
$$\left(\bigcup_n \mathbb{Z}_p[x^{\frac{1}{p^n}}]\right)_n^{\wedge}$$
.

Theorem 5.0.8. The reduction mod p functor gives an equivalence,

$$\{\text{strict p-rings}\} \to \{\text{perfect } \mathbb{F}_p\text{-algebras}\}$$

given by,

$$A \mapsto A/pA$$

Proof. We construct a multiplicative section of $A \to A/pA$. Indeed, let y_n be a lift of $x^{\frac{1}{p^n}}$ then,

$$[x] = \varinjlim y_n^{p^n}$$

gives a well-defined unique lift. Then,

$$A = \left\{ \sum [a_n] p^n \right\}$$

Remark. The preimage of a perfect \mathbb{F}_p -algebra R is W(R) and $W_n(R) = W(R)/p^nW(R)$.

Remark. Hom $(\operatorname{Spec}(B), \operatorname{Spf}(W(R))) = \operatorname{Hom}(\operatorname{Spec}(B/p), R)$.

Remark. Claim that (W(R), (p)) is Henselian pair and thus gives étale lifting (LOOK UP IN STACKS PROJECT).

Definition 5.0.9. A Dieudonne-module over a perfect ring R is a pair (M, φ_M) where M is a projective W(R)-module and an isomorphism

$$\varphi_M: \varphi^*M[1/p] \xrightarrow{\sim} M[1/p]$$

such that,

$$pM \subset \varphi_M(\varphi^*M) \subset M$$

where $\varphi:W(R)\to W(R)$ is the lift of Frobenius on R.

Example 5.0.10. Let $R = \mathbb{F}_p$ then $W(R) = \mathbb{Z}_p$ and $M = \mathbb{Z}_p$ and $\varphi_M = p$ or $\varphi_M = 1$. Furthermore, we can define,

$$M = \bigoplus_{i=1}^{r} e_i \mathbb{Z}_p$$

such that,

$$\varphi_M(e_i) = \begin{cases} e_{i+1} & i \le r - s \\ pe_{i+1} & r - s < i < r \\ pe_1 & i = r \end{cases}$$

Definition 5.0.11. An isocrystal over R is a projective W(R)[1/p]-module N with the data,

$$\varphi_N:\varphi^*N\xrightarrow{\sim}N$$

We say that N is of *height* rank N.

Remark. Isocrystals of height n are classified by $GL_n(W(R)[1/p])/Ad_{\varphi}GL_n(W(R)[1/p])$.

Example 5.0.12. For $\lambda = \frac{s}{r} \in \mathbb{Q}$ with r positive and reduced form,

$$N_{\lambda} = \mathbb{Q}_p[X]/(X^r - p^s)$$

with $\varphi_{N_{\lambda}} = X \cdot -$.

Proposition 5.0.13. If $0 \le \lambda \le 1$ then,

$$N_{\lambda} \cong M_{\lambda}[1/p]$$

as F-isocrystals.

Proposition 5.0.14. $N_{\lambda} \otimes N_{\lambda'} = N_{\lambda + \lambda'}^{\gcd(r,r')}$.

Theorem 5.0.15 (Dieudonne-Manin). The category of F-isocrystals over \bar{k} is a \mathbb{Q}_p -linear semisimple abelian tensor category with duals. In particular every N decomposes as,

$$N = \bigoplus_{\lambda} N_{\lambda}^{c_{\lambda}}$$

Definition 5.0.16. Fix height h then decompose,

$$N = \bigoplus_{\lambda} N_{\lambda}^{c_{\lambda}}$$

Define a sequence $(\mu_1 \leq \cdots \mu_h)$ of $\mu_i \in \mathbb{Q}$. Say that,

$$(\mu_1 \le \dots \le \mu_n) \le (\mu'_1 \le \dots \le \mu'_n) \iff \forall j : \sum_{i=1}^j \mu_i \le \sum_{i=1}^j \mu'_i$$

Remark. Think Bruhat order on $X_*(T)_{\mathbb{Q}}$.

Definition 5.0.17. Given an isocrystal N over $S = \operatorname{Spec}(R)$ then for each geometric point \bar{s} : $\operatorname{Spec}(\bar{k}) \to S$ get a sequence,

$$N_{\bar{k},\bar{s}} \iff (\mu_{1,\bar{s}} \leq \cdots \leq \mu_{h,\bar{s}})$$

Theorem 5.0.18 (Grothendieck). The above function is constructible. In fact, for fixed $\mu_1 \leq \cdots \leq \mu_n$ consider,

$$\{s \in S \mid (\mu_{1,s} \leq \cdots \leq \mu_{h,s}) \leq (\mu_1 \leq \cdots \leq \mu_h)\}$$

is closed and furthermore,

$$\sum_{i=1}^{h} \mu_{i,\bar{s}} \text{ is closed}$$

and the denominators are bounded by h!.

6 May 13

6.1 Erratum

An isocrystal N over $W(R)[\frac{1}{n}]$ should have a W(R) lattice $M \subset N$ such that $\exists n, m \in \mathbb{Z}$ so that,

$$p^n M \subset \varphi_M(\varphi^* M) \subset p^m M$$

Therefore, N is étale locally in R free over $W(R)[\frac{1}{p}]$.

Remark. Let M be a projective W(R)-module such that M/pM is free. Write,

$$M/pM \cong \bigoplus_{i=0}^{n} e_i W(R)$$

Then consider $W(R)^{\oplus n} \to M$ sending $j_i \mapsto \widetilde{e}_i$. Then by Nakayama this is surjective and injective by p-adic completeness checking on M/p^nM for all n.

Exercise 6.1.1. Any rank 1 isocrystal is pro-étale locally on R, isomorphic to an isomorphic such that $\varphi = p^k$ for some k.

Wlog let $M = W(R)_{e_1}$ then,

$$\varphi(e_1) = \alpha e_1$$
 with $\alpha \in W(R)^{\times}[\frac{1}{n}]$

By fudging with denominators we wlog $\alpha \in W(R)^{\times}$. Then we want to pick a basis such that (λe_1) s.t.

$$\varphi(\lambda e_1) = \sigma(\lambda)\alpha e_1$$

Theorem 6.1.2 (Gabber). Let R be a perfect ring, then there is an equivalence of categories,

$$\{TB/Spec(R)\} \rightarrow \{Dieudonne-modules over W(R)\}$$

which we write $\mathscr{F} \mapsto \mathbb{D}(\mathscr{F})$

- (a) rank $\mathscr{F} = \mathbf{ht}(\mathscr{F})$
- (b) $\operatorname{Lie}(\mathscr{F}/p\mathscr{F}) \cong \frac{\mathbb{D}(\mathscr{F})}{\sigma(\mathbb{D}(\mathscr{F}))}$

Given an abelian scheme $\mathcal{A} \to S$ with S of characteristic p and \mathcal{A}/S is an abelian scheme. Let,

$$S^{\mathrm{perf}} = \varprojlim_{\varphi} S \to S$$

be the terminal perfect scheme mapping to S. Then height 2g Dieudonne modules over S^{perf} and thus get isocrystals. Then,

$$S^{\mathrm{perf}} = \bigcup_b S^{\mathrm{perf},b}$$

where b runs over height 2g and dim = g Newton polygons. Apply this to $S = \mathcal{A}_g$, we get,

$$\mathcal{A}_g = igcup_b \mathcal{A}_{g,b}$$

with $\mathcal{A}_{g,ss}$ is closed and $\mathcal{A}_{g,ord}$ is open.

Remark. The Newton stratification is not functorial it is just a topological stratification which then inherts the reduced induced structures.

6.2 Goal: understand strata

Remark. Gabber tells us that,

$$\overline{\mathcal{A}_{g,b}}\subsetigcup_{b'\leq b}\mathcal{A}_{g,b}$$

Theorem 6.2.1 (de Jong, Ort). This inclusion is an equality this gives the dimensions of $\mathcal{A}_{q,b}$.

Theorem 6.2.2 (de Jong-Oort). With Honda-Tate theory $\overline{\mathcal{A}_{g,b}} \setminus \mathcal{A}_{g,b}$ has codimension at most one in $\overline{\mathcal{A}_{g,b}}$.

Theorem 6.2.3 (Li-Oort). Compute dim $\mathcal{A}_{q,ss}$.

6.3 Ingredients

Given $\mathcal{A}/\overline{\mathbb{F}}_p$ then,

$$\operatorname{Def}(A) \xrightarrow{\sim} \operatorname{Def}(\mathscr{F}_A)$$

Serre-Tate: bijection + deformations of TB groups are effective. We are going to study A_g or $A_{g,b}$ via the map,

$$\mathcal{A}_g \to \mathcal{TB}_{2g,g,\mathrm{sym}} = \{ \text{stack of height } 2g \text{ dim } g \text{ polarized TB groups} \}$$

and we can fix the Newton polygon on both sides,

$$\widehat{\mathcal{A}_{g,b}} o \mathcal{TB}_{2g,g,b}$$

We need to take the formal completion to rectify this fact that $\mathcal{A}_{g,b}$ does not have a functorial description. Serre-Tate: this map is formally étale.

Remark. Over the category of perfect schemes these stalks are pro-artin stacks.

Definition 6.3.1. Fix \mathscr{F}/\mathbb{F}_p a TB group. Define $X_{\mathscr{F}}(R)$ as the groupoid,

{TB groups over Spec
$$(R)$$
 with $\alpha: G[\frac{1}{p}] \to \mathscr{F}_R[\frac{1}{p}]$ }

The morphisms are,

$$G \xrightarrow{\widetilde{}} G$$

$$\downarrow^{\alpha} \qquad \downarrow^{\alpha'}$$

$$\mathscr{F}_{R}[\frac{1}{p}] = \mathscr{F}_{R}[\frac{1}{p}]$$

so we see there are no nontrivial automorphisms since,

$$\operatorname{Hom}\left(G,G'\right)\hookrightarrow\operatorname{Hom}\left(G,G'\right)\left[\frac{1}{p}\right]$$

meaning there is no p-torsion. Furthermore, there is an action of the group functor,

$$R \mapsto \operatorname{Aut}\left(\mathscr{F}_R\left[\frac{1}{p}\right]\right)$$

Caraiani-Scholze prove that this group is a formal algebraic space (but a terrible one!).