1. False.

	1 2		
W1	M2	M1	
W2	M1	M2	
	1 2		
M1	W1	W2	
M2	W2	W1	

- 2. True. The man will propose to her first, and she will reject any other man in favor of him.
- 4. The algorithm is:

while there is a hospital h with an empty slot:

for each student s in h's preference list:

if s has no hospital assigned, accept

if s has a hospital h', and that student prefers h to h', accept (and remove

(h', s) from the matching)

otherwise, reject

By contradiction: Assume this is not a stable matching. Then there exists a (h, s) and (h',s') such that h' prefers s and s prefers h'. Then h' would have proposed to s and s would have rejected h' in favor of h. This cannot happen, so this algorithm must produce a stable matching.

7. For each output o not matched to an input:

pick the highest ranked active junction j.

if j is on a matched input i, remove the previous match, mark the old junction inactive and add (i, o) to the matching

if j is on an unmatched input i, add (i, o) to the matching and mark all later junctions on i inactive.

8.

TRUE	1	2	3
W1	M1	МЗ	M2
W2	M1	M2	M3
W3	M2	M1	МЗ
	1	2	3
M1	1 W3	2 W2	3 W1
M1 M2			

FALSE	1	2	3
W1	M1	МЗ	M2
W2	M1	M2	МЗ
W3	M2	M1	M3

Truthful: {(M1, W3), (M2, W2), (M3, W1)}

(M1, W2), (M2, W3), (M3, W1) Lying: {(M1, W3), (M2, W2), (M3, W1)}