

ANÁLISIS TOPOLÓGICO DE LAS MATRICES DE OCURRENCIA EN LA RED DE BITCOIN

DEPARTAMENTO DE MATEMÁTICA APLICADA I

- METODOLOGÍA
- PRESUPUESTO Y COSTES
- BLOCKCHAIN: A GRAPH PRIMER
- FORECASTING BITCOIN PRICE WITH GRAPH CHAINLETS
- HERRAMIENTAS DE TOPOLOGÍA UTILIZADAS
- HERRAMIENTAS DE PROGRAMACIÓN
- IMPLEMENTACIÓN
- RESULTADOS NOVEDOSOS OBTENIDOS
- CONCLUSIONES

METODOLOGÍA

Investigación exhaustiva sobre Bitcoin y Blockchain así como de su funcionamiento (Forecasting Bitcoin Price with Graph Chainlet y Blockchain: A Graph Primer)

Investigación sobre las herramientas de programación y de topología a utilizar

Bitcoin y Blockchain Investigación sobre la extracción de los datos

Investigación sobre herramientas a utilizar

Implementación

Investigación sobre la extracción de datos de Bitcoin para poder trabajar con ellos

Realización de los experimentos

PRESUPUESTO Y COSTES

																											D 					• • •	•		• •		•	. 3	0	0	Н		€
																											• • • • • • • • • • • • • • • • • • • •	• •	• •	• •	• •		• •	• •	•	• • 1 3	. 2	2 O 3 2	€ 2 €	/ N	М E М	E S	S
- C	U	R	S	0	S	0	В	R	E	A	N	Á	L	I S	5 1 .	S	Т	0	P	0	L	Ó (GΙ	C	O	D I	E [) <i>A</i>	T	0	S	: .	•	• • (• •	• •	•	• •	• •	. 5	0	0 +	(-)
. н	0	R	A	S	R	E	A	L I	E S		ΕI	M	P L	. E	A	D	A	S	(E	N							E L E S														·		
																			•										1	5	, 4	1 * F	3	0 0)	=	4	8	3	8 ,	. 7	4	€

BLOCKCHAIN: A GRAPH PRIMER - BLOCKCHAIN

N-1

HASH(N-2): 00000034BF3...

Transacción 1

Transacción 2

Transacción 3

_ _

23

HASH(N-1): 0000005669F...

N

HASH(N-1): 000005669F...

Transacción 1

Transacción 2

Transacción 3

•••

42

HASH(N): 0000003BCFF...

N+1

HASH(N): 0000003BCFF...

Transacción 1

Transacción 2

Transacción 3

• • •

108

HASH(N+1): 000000778LA...

BLOCKCHAIN: A GRAPH PRIMER - BITCOIN

RED DESCENTRALIZADA

BLOCKCHAIN: A GRAPH PRIMER - BLOQUES DE BITCOIN

DIRECCIONES

Cadena única de 26 a 35 caracteres.

Dos tipos de direcciones: PubkeyHash y ScriptHash

TRANSACCIONES

Transferencia de activos entre direcciones.

Necesario:

- ID de las transacciones anteriores
- Índice de la transacción previa
- Cantidad a transferir

VERIFICACIÓN Y CONFIRMACIÓN

Firma de la transacción por parte del emisor(es).

Verificación de saldo de la dirección emisora.

Se mina el bloque y este pertenece a la cadena principal.

GRAFO DE TRANSACCIONES

CHAINLETS

MATRIZ DE OCURRENCIA

FORECASTING BITCOIN PRICE WITH GRAPH CHAINLETS

Cuneyt G. Akcora, Asim Kumer Dey, Yulia R. Gel, and Murat Kantarcioglu.

GRAFO DE TRANSACCIONES

CHAINLETS

HERRAMIENTAS DE TOPOLOGÍA UTILIZADAS

HOMOLOGÍA PERSISTENTE

DIAGRAMA DE PERSISTENCIA Y BARCODE

ENTROPÍA PERSISTENTE

Vietoris-Rips

• Lower-Star

• Upper-Star

HERRAMIENTAS DE PROGRAMACIÓN

IMPLEMENTACIÓN

RESULTADOS NOVEDOSOS OBTENIDOS

PRIMER RESULTADO

Proposición: Consideremos una matriz de tamaño $n \times n$ normalizada con valores todos nulos y supongamos que le aplicamos la filtración <u>Vietoris-Rips</u>. Entonces, su entropía persistente es $ln(n \times n)$.

RESULTADOS NOVEDOSOS OBTENIDOS

SEGUNDO RESULTADO

Proposición: Si aplicamos la filtración <u>Lower-Star</u> o <u>Upper-Star</u> a una matriz de tamaño n × n habiendo normalizado los valores de dicha matriz entre 0 y 1 y multiplicando por una constante, obtendremos exactamente los mismos resultados que si no normalizamos.

CONCLUSIONES

- Complejidad del proyecto
 - Algunos términos o mecanismos difíciles de comprender
 - Dificultad a la hora de tratar los datos
 - Términos de Topología
- Conclusiones obtenidas a partir del estudio realizado
 - Normalización con Vietoris Rips
 - Normalización con Lower-Star o Upper Star
- Trabajos futuros
 - Realizar este mismo análisis con las matrices de cantidad
 - Formar el grafo de transacciones

GRACIAS POR SU ATENCIÓN

ANÁLISIS TOPOLÓGICO DE LAS MATRICES DE OCURRENCIA EN LA RED DE BITCOIN