Factorisation des grands nombres

Decker Benjamin - Le Boulc'h Erin Double Licence Mathématiques Informatique - Semestre 6

Sommaire

1	Introduction	3
2	Factorisation naïve par divisions successives	4
3	Méthode de Fermat	5

1 Introduction

Déterminer si un nombre est premier est plus simple que de trouver les facteurs premiers de sa décomposition. On peut être convaincu moralement qu'un nombre est premier/ ou qu'il est décomposable en facteurs premiers non triviaux sans les connaître.

Objectif: Explorer les méthodes de factorisation, notamment pour de grands nombres

2 Factorisation naïve par divisions successives

Principe : trouver le plus petit diviseur de n (diviser n par tous les nombres premiers plus petits que lui et voir si un d'eux le divise), puis itérer la méthode sur le quotient.

3 Méthode de Fermat

Cette méthode repose sur le principe selon lequel un entier peut s'exprimer comme la différence entre deux carrés.

Lemmes nécessaires

- Tous les nombres premiers (sauf 2) sont impairs.
- Un entier se décompose comme 2^kN avec $k \in \mathbb{N}$, N un entier impair. Si pair est premier, on a donc la décomposition en facteurs premiers, sinon, N s'exprime comme une différence de carrés.
- Une somme ou une différence de nombres impairs est paire.
- Soit p, q $\in \mathbb{N}$, $pq = \frac{(p+q)}{2} \frac{(p-q)}{2}$

Méthode On sait qu'un entier est décomposable comme 2^kN , avec N un entier impair. Si N est premier, on a déjà la décomposition en facteurs premiers qui nous intéresse. Sinon, nous allons décomposer N en produit de deux facteurs impairs (auxquels on appliquera la même procédure s'ils ne sont pas premiers).

On veut trouver S et R tel que N = R² - S² = (S+R)(S-R). Pour cela, on commence avec c = $\lfloor \sqrt{(N)} \rfloor$ et on va y ajouter k $\in \mathbb{N}^*$ jusqu'à trouver un S² convenable. En effet, on pose R = c + k (R est forcément plus grand que N) pour avoir $S^2 = N - R^2 = N - (c+k)^2$. Un S² convenable est donc tel que S est un entier. Une fois S et R trouvés, on pourra donc écrire N = (S+R)(S-R)

```
Exemple Factorisons 15 par la méthode de Fermat. (On sait déjà que 15=3\times 5) 15 étant impair, 15=2^0\mathrm{N} et \mathrm{N}=15 c = \lfloor \sqrt(15) \rfloor = 3 Si on prend \mathrm{R}=\mathrm{c}+1=4,\,\mathrm{R}^2=16 et \mathrm{S}^2=\mathrm{N} - \mathrm{R}^2=16 - 15=1. On a donc \mathrm{S}=1 qui est \sqrt(1) On retrouve bien \mathrm{N}=(\mathrm{R}+\mathrm{S})(\mathrm{R}-\mathrm{S})=(4+1)\times(4-1)=5\times 3
```