Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\begin{array}{c c} 0 & -\frac{i\sqrt{2}}{\sqrt{2}} \end{array}$	0	0	
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$	
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$	
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\tau_1^{\#1} + \alpha \beta \frac{i \sqrt{2} k}{t_1 + k^2 t_1}$	0	0	0	0	
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_1^{#2} + \alpha \beta$	β	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + \alpha$	

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

_	$\omega_{0^+}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}\dagger$	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	-t ₁

Quadratic (free) action
±°S
$\iiint (\frac{1}{6} \left(-6t_1\; \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$\partial' \omega_{\lambda}^{\ \alpha} - 4 r_1 \partial^{\beta} \omega^{\theta \alpha}_{\ \kappa} \partial_{\theta} \omega_{\alpha\beta}^{\ \kappa} - 4 r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} + 4 r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} -$
$6 r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial_\kappa \omega^{\theta \kappa \lambda} + 6 r_5 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda}_{\ \ \alpha} - 6 r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial_\kappa \omega^{\kappa \lambda \theta}_{\ \ \lambda} +$
$12r_5\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 3t_1\partial^\alpha f_{\beta}\partial^\kappa f_{\alpha}^{\theta} - 3t_1\partial^\alpha f_{\beta}\partial^\kappa f_{\theta}^{\theta} - 3t_1\partial^\alpha f^\lambda_{\lambda}\partial^\kappa f_{\lambda}^{\lambda} +$
$6t_1\;\omega_{\kappa\alpha}^{}\partial^\kappa f^{\prime}_{\prime}+6t_1\;\omega_{\kappa\lambda}^{\lambda}\partial^\kappa f^{\prime}_{\prime}+12t_1\partial^\alpha f_{}\partial^\kappa f^{\prime}_{\prime}-6t_1\partial_\kappa f^{\lambda}_{\lambda}\partial^\kappa f^{\prime}_{\prime}+$
$12t_1\ \omega_{_{I}\kappa\theta}\ \partial^\kappa f^{_{I}\theta} - 6t_1\ \omega_{_{I}\alpha}^{\alpha}\ \partial^\kappa f^{_{I}}_{\kappa} - 6t_1\ \omega_{_{I}\lambda}^{\lambda}\ \partial^\kappa f^{_{I}\kappa} + 3t_1\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\lambda\alpha} +$
$3t_1\partial_\kappa f_{\theta}^{\lambda}\partial^\kappa f_{\theta}^{\lambda} + 3t_1\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\theta}^{\theta} - 6t_1\partial^\alpha f^{\lambda}_{\alpha}\partial^\kappa f_{\lambda\kappa} + 4r_1\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta}^{\theta} -$
$4r_1\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta} + 4r_1\partial^\beta\omega_{,}{}^{\alpha\lambda}\partial_\lambda\omega_{\alpha\beta}{}^{\prime} - 16r_1\partial^\beta\omega_{,}{}^{\lambda\alpha}\partial_\lambda\omega_{\alpha\beta}{}^{\prime} +$
$6 r_5 \partial_{lpha} \omega_{\lambda}^{ a}_{ \theta} \partial^{\lambda} \omega^{\theta \kappa}_{ \kappa} - 6 r_5 \partial_{ heta} \omega_{\lambda}^{ a}_{ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{ \kappa}) [t, x, y, z] dz dy dx dt$

$f_2^{\#1}$	$-\frac{\vec{l} \cdot k \cdot \vec{l}}{}$	$k^2 t$	0	
$\omega_2^{\#1}_{+ lpha eta} f_2^{\#1}_{+}$	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0	
	$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{#1} + ^{\alpha \beta}$	$\omega_{2}^{#1} +^{\alpha \beta \chi}$	
$ au_0^{\#2}$ $\sigma_0^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_{0}^{\#2}$	0	0	0	0
${\tau_0^{\#1}}$	$\frac{i\sqrt{2}k}{1+2k^2)^2t_1}$	$\frac{2k^2}{1+2k^2)^2t_1}$		

 $\sigma_{0}^{\#1} + \Gamma_{0}^{\#1} + \Gamma_{0}^{\#1} + \Gamma_{0}^{\#2} + \Gamma_{0}^{\#1} + \Gamma_{$

uge generators	Multiplicities	1	1	3	3	3	5	16
Source constraints/gauge generators	SO(3) irreps	$t_0^{\#2} == 0$	$t_0^{\#_1} - 2 \bar{l} k \sigma_0^{\#_1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta} + i k \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 \mid 5$	Total constraints:

		$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{#1}$ †	αβ	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}$ †	αβ	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
f ₁ ^{#1} †	αβ	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}$	t ^α	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	Īkt ₁
$\omega_1^{\#2}$	t ^α	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_1^{#1}$	t ^α	0	0	0	0	0	0	0
$f_1^{#2}$	t^{α}	0	0	0	$-ikt_1$	0	0	0

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$