MATH6222 week 3 lecture 9

Rui Qiu

2017-03-10

Yesterday, L_n be arrangement of $3n^2$ tiles obtained by removing the top right quadrant from a $2^n \times 2^n$ square.

Let P(n) be it is possible to L-tile L_n .

We prove this statement by induction on n.

It suffices to prove that:

- 1. P(1), P(2) are both true.
- 2. $P(n-2) \implies P(n)$ for all $n \in \mathbb{N}$.

P(1) is trivial, P(2) is not hard as well. Base step checked.

Just need to check $P(n-2) \implies P(n)$

Observe that L_n is obtained from L_{n-2} by adding a band of width 2 as illustrated below...

By induction hypothesis, we may assume that L_{n-2} admits an L-tiling. So it suffices to prove (for any $n \geq 3$) that this width 2 band admits an l-tiling.

We consider three cases when n divisible by 3, n-1 divisible by 3, n-2 divisible by 3.

Since every integer n satisfies one of these three conditions, this is sufficient to solve our problem.

We make one preliminary observation:

If we let R_n denote a $2 \times n$ rectangle of squares, then R_n admits an L-tiling whenever n is divisible by 3.

Case 1: Note n divisible by 3 so that 2n - 6 divisible by 3. So we may tile the band as follows...

Case 2: Note n-1 divisible by 3 so that n-4 divisible by 3, 2n-8 divisible by 3. The band could be tiled as follows:...

Case 3: Note n-2 divisible by 3 so that 2n-4 divisible by 3

Principles of Strong Induction: We want to prove $\{P(k): k \in \mathbb{N}\}$. It suffices to prove:

- 1. P(1)
- 2. If P(i) is true for all i < n, then P(n) is true.

Proof:

Suppose not all P(k) are true. $P(1), P(2), P(3), \ldots$, Look at the minimal k such that P(k) is false. Note by 1. that $k \neq 1$.

By our choice of k we know $P(1), P(2), \dots, P(k-1)$ true.

By 2. knowing that $P(1) \wedge P(2) \wedge P(3) \wedge \cdots \wedge P(k-1)$ implies P(k). Contradiction!

Game of Nim:

Each player takes a turn by removing some positive number of coins from some piles. The person who takes the last coin wins.

Let P(n) be the statement that player 2 has a winning strategy for this game, when the starting configuration consists of 2 piles of equal size n.

P(1) player 1 remove 1 pile, then player 2 win by taking the second pile. Assume $P(1), \ldots, P(n-1)$ true, must prove P(n).

Player 1 must start by taking m coins from one pile $(m \le n)$. Player 2 can respond by taking m coins from other pile. (If $m \le n$, player 2 wins.)

Now player 1 and player 2 face the same game with a starting size of n-m. But buy induction hypothesis, P(n-m) is true, so player 2 can win.

Let $f: A \to B$ be a function. We say f is **injective** for each $b \in B$ there is at most one $a \in A$ such that f(a) = b. For all $a_1, a_2 \in A$. $(a_1 \neq a_2), f(a_1) \neq f(a_2)$.

We say f is **surjective** if for each $b \in B$, there is at least one $a \in A$ usch that f(a) = b.

We say f is **bijective** if it is both injective and surjective (also say f is a one-to-one correspondence).

If f is bijective, we may define $f^{-1}: B \to A$ by setting $f^{-1}(b)$ to be the unique $a \in A$ such that f(a) = b.

Let's consider $f(x) = x^2$ as a function from $\mathbb{R} \to \mathbb{R}$. Is it injective? f(1) = f(-1) = 1. Not injective. Is it surjective? $\not\exists x \in \mathbb{R}$, such that f(x) = -1. Not surjective. $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} : x \geq 0\}$ Now consider $f(x) = x^2$ as a function from $\mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$. Now injective and surjective.

Just need to say for any $y \in \mathbb{R}_{\geq 0}, \sqrt{y}$ is the unique positive real number such that