Sensitivity Analysis

Based on

Chapter 6.1 - 6.3 of *Operations Research: Application and Algorithms*, 4^{th} Edition.

Introduction

- Sensitivity Analysis (SA) and Duality are related and are two of most important topics in LP.
- SA is concerned with how changes in an LP's parameters affect the LP's optimal solution.
- In many applications, the values of an LP's parameters may change, for example, prices may change, demand is uncertain.
- The knowledge of SA often enables the analyst to determine from the original solution how changes in an LP's parameters change the optimal solution.

A Graphical Illustration of SA

Giapetto Example

		Nº 1
Selling Price (\$)	27	21
Raw materials cost (\$)	10	9
Variable labor and overhead cost (\$)	14	10
Finishing labor (hours)	2	1
Carpentry labor (hours)	1	1

Available finishing hours: 100

Available carpentry hours: 80

Max demand for soldiers: 40

 x_1 = Number of soldiers produced each week x_2 = Number of trains produced each week

$$\max z = 3x_{1} + 2x_{2}$$
s.t.
$$2x_{1} + x_{2} \le 100$$

$$x_{1} + x_{2} \le 80$$

$$x_{1} \le 40$$

$$x_{1}, x_{2} \ge 0$$

Standard Form

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 + s_1 = 100$
 $x_1 + x_2 + s_2 = 80$
 $x_1 + x_2 + s_3 = 40$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Optimal Solution:
$$z=180$$
, $x_1=20$, $x_2=60$
 $BV = \{x_1, x_2, s_3\}$, $NBV = \{s_1, s_2\}$

1. How would changes in the problem's objective function coefficients change this optimal solution?

Giapetto Example

$$\max z = 3x_1 + 2x_2$$
 (1)

s.t.
$$2x_1 + x_2 \le 100$$
 (2)

$$x_1 + x_2 \le 80 \tag{3}$$

$$\chi_1 \leq 40 \qquad (4)$$

$$\chi_1 \geq 0$$
 (5)

$$x_2 \ge 0 \tag{6}$$

Optimal Point B:

$$\begin{vmatrix} 2x_1 + x_2 = 100 \\ x_1 + x_2 = 80 \end{vmatrix} \Rightarrow \begin{cases} x_1 = 20 \\ x_2 = 60 \end{cases}$$

If we write the objective function as Max $z=c_1x_1+2x_2$, the slope of the isoprofit line is $-\frac{c_1}{2}$.

- Point A (0,80) is optimal if the isoprofit line is flatter than the carpentry constraint;
 - i.e. $-c_1/2 \ge -1$ ($c_1 \le 2$) because the carpentry constraint slope is -1.
- Point C (40,20) is optimal if the isoprofit line is steeper than the finishing constraint;
 - i.e. $-c_1/2 \le -2$ ($c_1 \ge 4$) because the finishing constraint slope is -2.
- Point B (20,60) remains optimal if isoprofit line is steeper than carpentry constraint but flatter than finishing constraint; i.e. $-2 \le -c_1/2 \le -1$ ($2 \le c_1 \le 4$) because between the slopes of the carpentry and finishing constraints.

Note that even the current basis (point B) remains optimal, but the optimal objective value changes as the c_1 changes. For example, if c_1 =4, then total profit = 4(20) + 2(60) = \$200 instead of \$180.

For example, $c_1=1 < 2$

$$\max z = 1x + 2x_2 \qquad (1)$$
s.t.

$$2x_1 + x_2 \le 100$$
 (2)

$$x_1 + x_2 \le 80$$
 (3)

$$x_1 \leq 40 \quad (4)$$

$$x_1 \ge 0$$
 (5)

$$x_2 \ge 0$$
 (6)

Point A: $\begin{vmatrix} x_1 + x_2 = 80 \\ x_1 \end{vmatrix} \Rightarrow \begin{cases} x_1 = 0 \\ x_1 = 0 \end{cases}$

For example, $c_1 = 6 > 4$

$$\max z = 6x_1 + 2x_2 \qquad (1)$$

s.t.

$$2x_1 + x_2 \le 100$$
 (2)

$$x_1 + x_2 \le 80$$
 (3)

$$x_1 \leq 40 \quad (4)$$

$$x_1 \ge 0$$
 (5)

$$x_2 \ge 0$$
 (6)

Point *C* :

$$\begin{vmatrix} 2x_1 + x_2 &= 100 \\ x_1 &= 40 \end{vmatrix} \Rightarrow \begin{cases} x_1 &= 40 \\ x_2 &= 20 \end{cases}$$

2. Will a change in the rhs of a constraint make the current basis no longer optimal?

max
$$z=3x_1+2x_2$$
 (1) s.t.

$$2x_1 + x_2 \not \in b_1$$
 (2)

$$x_1 + x_2 \le 80$$
 (3)

$$x_1 \le 40$$
 (4)

$$x_1 \ge 0$$
 (5)

$$x_2 \ge 0$$
 (6)

(1). Binding constraint: finishing constraint (b_1)

- A change in b_1 shifts the finishing constraint parallel to its current position.
- The current optimal solution (Point B) is where the carpentry and finishing constraints are binding.
- If we change the value of b_1 , then as long as the point where the finishing and carpentry constraints are binding remains feasible, the optimal solution will still occur where these constraints intersect.
- If $b_1>120$, x_1 will be greater than 40 and will violate demand constraint.
- If $b_1 < 80$, x_1 will be less than 0 and will violate sign restriction.
- Therefore, if $80 \le b_1 \le 120$, the current basis remains optimal.
- But the decision variable values and z-value will change.

(2) nonbinding constraint: soldiers demand constraint $x_1 \le b_3$.

If we change b_3 from 40 to $40 + \Delta$, it can be shown that current basis remains optimal for $\Delta \ge -20$. Note that as b_3 changes (as long as $\Delta \ge -20$), the optimal solution is still the point where the finishing and carpentry constraints are binding. We can find the new values of the decision variables by solving

$$2x_1 + x_2 = 100$$
 and $x_1 + x_2 = 80$.

This yields $x_1 = 20$ and $x_2 = 60$.

▶In a constraint with positive slack (or excess) in an LP's optimal solution (in this instance s_3 =20), i.e., the nonbinding constraint, if we change the rhs of the constraint to a value in the range where the current basis remains optimal, the optimal solution is unchanged.

Shadow Prices

It is important to determine how a constraint's rhs (available resources) changes the optimal z-value. Define

The **shadow price** *for the ith constraint* of an LP to be the amount by which the optimal *z*-value is improved (improvement means increase in a max problem and decrease in a min problem) if the rhs of the *i*th constraint is increased by 1.

This definition applied only if the change in the rhs of the *i*th constraint leaves the current basis optimal (i.e., binding constraints).

For example, if 110 finishing hours are available, then $\Delta b_i = 10$, and the new z-value = 180 + 10(1) = 190.

Whenever the slack or excess variable for a constraint is positive in an LP's optimal solution (in this instance s_3 =20) (i.e., the constraint is nonbinding), the shadow price of the constraint = 0.

Sensitivity Analysis based on the derived formulas

Our discussion focuses on max problems. The modifications for min problems are straightforward.

Summary of a Simplex Algorithm

$$z = \mathbf{c}_{BV} (\mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_{NBV}) + \mathbf{c}_{NBV} \mathbf{x}_{NBV}$$
$$= \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{b} - (\mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_{NBV}) \mathbf{x}_{NBV}$$
$$\mathbf{x}_{BV} + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_{NBV} = \mathbf{B}^{-1} \mathbf{b}$$

- $\Box x_j$ column in constraints= $\mathbf{B}^{-1}\mathbf{a}_j$
- \Box rhs of constraints= $\mathbf{B}^{-1}\mathbf{b}$
- \square reduced cost for x_j (- coefficient of x_j in rof) $\overline{c}_j = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_j c_j$ (definition)
- \square rhs of rof = $\mathbf{c}_{RV}\mathbf{B}^{-1}\mathbf{b}$

Important Observation

The mechanisms of SA hinge on the following important observation:

A simplex algorithm (for a max problem) for a set of basic variables BV is **optimal** iff each constraint has a nonnegative rhs and each variable has a nonpositive coefficient in rof.

Mathematically, we have two conditions:

"Feasibility condition":
$$\mathbf{B}^{-1}\mathbf{b} \ge 0$$
 (Note $\mathbf{x}_{BV} = \mathbf{B}^{-1}\mathbf{b}, \mathbf{x}_{BV} \ge 0$)
"Optimality condition": $\overline{c}_j = \mathbf{c}_{BV}\mathbf{B}^{-1}\mathbf{a}_j - c_j \ge 0, \forall j \in NBV$

Sensitivity Analysis

Six types of changes in an LP's parameters :

- 1: Changing the objective function coefficient of a nonbasic variable
- 2: Changing the objective function coefficient of a basic variable
- 3: Changing the rhs of a constraint
- 4: Changing the column of a nonbasic variable
- 5: Adding a new variable or activity

Example

max
$$z = 60x_1 + 30x_2 + 20x_3 + 0s_1 + 0s_2 + 0s_3$$
 (Total revenue)
s.t. $8x_1 + 6x_2 + x_3 + s_1 = 48$ (Lumber constraint)
 $4x_1 + 2x_2 + 1.5x_3 + s_2 = 20$ (Finishing constraint)
 $2x_1 + 1.5x_2 + 0.5x_3 + s_3 = 8$ (Carpentry constraint)
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

 x_1 =number of desks manufactured

 x_2 =number of tables manufactured

 x_3 =number of chairs manufactured

Optimal solution

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{bmatrix} \quad \mathbf{B}^{-1} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \quad \mathbf{x}_{BV} = \begin{pmatrix} s_1 \\ x_3 \\ x_1 \end{pmatrix} = \begin{pmatrix} 24 \\ 8 \\ 2 \end{pmatrix}$$

$$z^* = 280 - 10s_2 - 10s_3 - 5x_2$$

1. Changing the objective function coefficient of a nonbasic variable

- □ Since **B** and **b** are unchanged, $\mathbf{B}^{-1}\mathbf{b} \ge 0$ (Note $\mathbf{x}_{BV} = \mathbf{B}^{-1}\mathbf{b} \ge 0$) feasibility is not affected;
- \Box \mathbf{c}_{BV} is unchanged but c_j is changed (hence \overline{c}_j may change), optimality is affected in this case.
- ☐ When is BV still optimal?

If the objective function coefficient of a nonbasic variable x_j is changed, the current basis remains optimal if $\overline{c}_j \ge 0$.

If $\overline{c}_j < 0$, then the current basis is no longer optimal, and x_j will be a basic variable in the new optimal solution.

1. Changing the Objective Function Coefficient of a Nonbasic Variable

Example (cont'd)

- Consider nonbasic variable x_2 . Currently $c_2=30$
- For what values of c_2 would BV= $\{s_1,x_3,x_1\}$ remain optimal?

Let
$$\Delta$$
 denote the amount by which we have changed c_2 .
Then $c_2 = 30 + \Delta$.

$$BV = \{s_1, x_3, x_1\}, \mathbf{B} = \begin{bmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{bmatrix}, \mathbf{B}^{-1} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix}$$

$$\mathbf{c}_{BV}\mathbf{B}^{-1} = \begin{bmatrix} 0 & 20 & 60 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \qquad \begin{vmatrix} 55 & (36 + 24) \\ = 5 - \Delta. \\ \text{Thus } \overline{c}_2 \ge 0 \text{ holds, and BV remains optimal if } 5 - \Delta \ge 0 \text{ or } \Delta \le 5.$$

Let
$$\Delta$$
 denote the amount by which we have changed c_2 .
Then $c_2 = 30 + \Delta$.
$$BV = \{s_1, x_3, x_1\}, \mathbf{B} = \begin{bmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{bmatrix}, \mathbf{B}^{-1} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix}$$

$$= 35 - (30 + \Delta)$$

$$= 5 - \Delta.$$

optimal if $5 - \Delta \ge 0$ or $\Delta \le 5$.

Thus, if the price of tables is decreased or increased by \$5 or less, BV remains optimal. Thus for $c_2 \le 30+5=35$, BV remains optimal. Also the zvalue remains the same (\$280).

1. Changing the Objective Function Coefficient of a Nonbasic Variable

Example (cont'd)

• If c_2 =30, then z=280-10 s_2 -10 s_3 -5 x_2 .

This tells us that each table that Dakota manufactures will decrease revenue by \$5 (in other words, the reduced cost for table is 5), and so x_2 =0. If we increase the price of tables by more than \$5, each table would now increase Dakota's revenue. Thus, as before, for Δ >5, the current basis is no longer optimal.

Conclusion: The reduced cost for a nonbasic variable (in a max problem) is the maximum amount by which the variable's objective function coefficient can be increased before the current basis is no longer optimal.

1. Changing the Objective Function Coefficient of a Nonbasic Variable

Example (cont'd)

- Consider the case when $c_2 > 30$, e.g. $c_2 = 40$.
- We know that BV will now be suboptimal.

Then
$$\overline{c}_2 = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_2 - c_2 = 35 - 40 = -5$$

Thus, $\overline{c}_2 < 0$ and x_2 can now enter the basis!

Perform an iteration of the simplex method.

- When c_2 =40, the optimal solution to the LP changes to z=288, x_1 =0, x_2 =1.6, x_3 =11.2, and x_1 =27.2, x_2 =0, x_3 =0.
- The increase in the price of tables causes the company to manufacture tables instead of desks

2. Changing the objective function coefficient of a basic variable

- □ Since **B** (hence **B**⁻¹) and **b** are unchanged, feasibility is not affected;
- \Box **c**_{BV} is changed, hence \overline{c}_j may change, optimality is affected in this case.
- ☐ When is BV still optimal?

If the objective function coefficient of a basic variable x_j is changed, the current basis remains optimal if $\overline{c_i} \ge 0, \forall x_i \in NBV$.

If $\overline{c}_i < 0$ for any variable x_i , then the current basis is no longer optimal.

Note: If the current basis remains optimal, then the values of the decision variables do not change because $\mathbf{x}_{BV} = \mathbf{B}^{-1}\mathbf{b}$ remains unchanged.

However, the optimal z-value ($z=\mathbf{c}_{BV}\mathbf{B}^{-1}\mathbf{b}$) does change.

2. Changing the Objective Function Coefficient of a Basic Variable (cont'd)

Example (cont'd)

- Consider changing c_1 from its current value of c_1 =60.
- For what values of c_1 would BV= $\{s_1,x_3,x_1\}$ remain optimal?

Let Δ denote the amount by which we have changed c_1 . Then $c_1 = 60 + \Delta$.

$$BV = \{s_1, x_3, x_1\}, \mathbf{B} = \begin{bmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{bmatrix}, \mathbf{B}^{-1} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix}$$

$$\begin{vmatrix} \mathbf{c}_{BV} \mathbf{B}^{-1} = \begin{bmatrix} 0 & 20 & 60 + \Delta \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} = \begin{bmatrix} 0 & 10 - 0.5\Delta & 10 + 1.5\Delta \end{bmatrix}$$

We can now compute the new rof. Since s_1 , x_3 , and x_1 are basic variables, their coefficients in rof must still be zero.

2. Changing the Objective Function Coefficient of a Basic Variable (cont'd)

Example (cont'd)

For nonbasic variables x_2 , s_2 , and s_3 , we have:

$$x_2: \overline{c}_2 = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_2 - c_2$$

$$= \begin{bmatrix} 0 & 10 - 0.5\Delta & 10 + 1.5\Delta \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix} - 30 = 5 + 1.25\Delta$$

$$\begin{vmatrix} \overline{c}_5 \ge 0 \Rightarrow 10 - 0.5\Delta \ge 0 \Rightarrow \Delta \le 20 \\ \overline{c}_6 \ge 0 \Rightarrow 10 + 1.5\Delta \ge 0 \Rightarrow \Delta \ge -20/3 \\ \therefore BV \text{ remains optimal iff } -4 \le \Delta \le 20,$$

$$s_2: \overline{c}_5 = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_5 - c_5$$

$$= \begin{bmatrix} 0 & 10 - 0.5\Delta & 10 + 1.5\Delta \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 0 = 10 - 0.5\Delta$$

$$s_3: \overline{c}_6 = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_6 - c_6$$

$$= \begin{bmatrix} 0 & 10 - 0.5\Delta & 10 + 1.5\Delta \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 0 = 10 + 1.5\Delta$$

BV remains optimal iff the following hold

$$|\overline{c}_2| \ge 0 \Longrightarrow 5 + 1.25\Delta \ge 0 \Longrightarrow \Delta \ge -4$$

$$|\overline{c}_5| \ge 0 \Rightarrow 10 - 0.5\Delta \ge 0 \Rightarrow \Delta \le 20$$

$$|\overline{c}_6| \ge 0 \Longrightarrow 10 + 1.5\Delta \ge 0 \Longrightarrow \Delta \ge -20/3$$

| i.e.,
$$56 \le c_1 \le 80$$
.

If BV remains optimal, the values of the basic variables are unchanged.

However, the optimal z-value may change:

e.g.
$$c_1 = 70 \Rightarrow z = 70x_1 + 30x_2 + 20x_3$$

= 300

2. Changing the Objective Function Coefficient of a Basic Variable (cont'd)

Example (cont'd)

• When the current BV is no longer optimal.

Consider $c_1 = 100$, that is $\Delta = 40$. Compute the reduced cost (in rof): $x_1 : \overline{c_1} = 0$ (basic variable) $x_2 : \overline{c_2} = 5 + 1.25\Delta = 55$ $x_3 : \overline{c_3} = 0$ (basic variable) $s_1 : \overline{c_4} = 0$ (basic variable) $s_2 : \overline{c_5} = 10 - 0.5\Delta = -10$ $s_3 : \overline{c_6} = 10 + 1.5\Delta = 70$

$$\mathbf{c}_{BV}\mathbf{B}^{-1} = \begin{bmatrix} 0 & 10 - 0.5\Delta & 10 + 1.5\Delta \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -10 & 70 \end{bmatrix}$$
constant in rof = $\mathbf{c}_{BV}\mathbf{B}^{-1}\mathbf{b}$

$$= \begin{bmatrix} 0 & -10 & 70 \end{bmatrix} \begin{bmatrix} 48 \\ 20 \\ 8 \end{bmatrix} = 360$$
If $c_1 = 100$, $BV = \{s_1, x_3, x_1\}$ is now suboptimal.
Enter s_2 into the basis to get new optimal solution.

- Thus, if c_1 =100, the optimal solution to the LP changes to z=400, x_1 =4, x_2 =0, x_3 =0, and s_1 =16, s_2 =4, s_3 =0.
- The increase in the price of desks causes the company to manufacture desks only.

3. Changing the rhs of a constraint

- ☐ Since **b** does not appear in the optimality condition, changing the rhs of a constraint does not affect optimality but affects feasibility;
- \Box Feasibility requires $\mathbf{x}_{BV} = \mathbf{B}^{-1}\mathbf{b} \ge 0$.
- ☐ When is BV still optimal?

If the rhs of a constraint is changed, then the current basis remains optimal if the rhs of each constraint remains nonnegative.

If the rhs of any constraint becomes negative, then the current basis is infeasible, and a new optimal solutoin must be found (Use the Dual Simplex Method).

Note: Changing **b** will change the values of basic variables and the optimal *z*-value.

3. Changing the RHS of a Constraint

Example (cont'd)

- Consider changing b_2 from its current value $b_2 = 20$
- For what values of b_2 would BV= $\{s_1,x_3,x_1\}$ remain optimal?

Let Δ denote the amount by which we have changed b_2 .

Then $b_2 = 20 + \Delta$.

$$BV = \{s_1, x_3, x_1\}, \mathbf{B}^{-1} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix}$$

$$\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \begin{bmatrix} 48 \\ 20 + \Delta \\ 8 \end{bmatrix} = \begin{bmatrix} 24 + 2\Delta \\ 8 + 2\Delta \\ 2 - 0.5\Delta \end{bmatrix}$$

For BVto remain optimal, $\mathbf{B}^{-1}\mathbf{b} \ge 0$

$$24 + 2\Delta \ge 0 \Longrightarrow \Delta \ge -12$$

$$8 + 2\Delta \ge 0 \Longrightarrow \Delta \ge -4$$

$$2 - 0.5\Delta \ge 0 \Rightarrow \Delta \le 4$$

$$\Rightarrow$$
 $-4 \le \Delta \le 4$

$$\Rightarrow -4 \le \Delta \le 4$$
$$\Rightarrow 16 \le b_2 \le 24$$

Even if BV remains optimal, the values of

$$|\mathbf{x}_{BV}| = \mathbf{B}^{-1} (\text{new } \mathbf{b})$$

$$\mathbf{x}_{BV} = \mathbf{B}^{-1} (\text{new } \mathbf{b})$$

$$e.g. \ b_2 = 22, \mathbf{x}_{BV} = \mathbf{B}^{-1} \begin{bmatrix} 48 \\ 22 \\ 8 \end{bmatrix} = \begin{bmatrix} 28 \\ 12 \\ 1 \end{bmatrix}$$

$$z = \mathbf{c}_{BV} \mathbf{B}^{-1} (\text{new } \mathbf{b}) = \mathbf{c}_{BV} \mathbf{x}_{BV} = 300$$

3. Changing the RHS of a Constraint

Example (cont'd)

• What if BV is no longer optimal?

Let
$$b_2 = 30 > 24$$
.
$$\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \begin{bmatrix} 48 \\ 30 \\ 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 28 \\ -3 \end{bmatrix}$$

constant in rof =
$$\mathbf{c}_{BV}\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 44 \\ 28 \\ -3 \end{bmatrix} = 380.$$

Since we have no available bfs, use Dual Simplex Algorithm to get the new optimal solution.

4. Changing the column of a nonbasic variable

- \square Does not affect feasibility ($\mathbf{x}_{BV} = \mathbf{B}^{-1}\mathbf{b} \ge 0$) but affects optimalily.
- ☐ When is BV still optimal?

If the column of a nonbasic variable x_j is changed, the current basis remains optimal if $\overline{c}_j \ge 0$. If $\overline{c}_j < 0$, then the current basis is no longer optimal and x_j will be a basic variable in the new optimal tableau.

Note: If the column of a basic variable is changed, then it is usually difficult to determine whether the current basis is optimal (**B** and \mathbf{c}_{BV} are changed and both optimality and feasibility conditions are affected). As always, the current basis would remain optimal if the optimality and the feasibility conditions are both satisfied.

4. Changing the Column of a Nonbasic Variable

Example (cont'd)

- Suppose the price of tables increases from \$30 to \$43 and that due to changes in technology the table now requires 5 board ft of lumber, 2 finishing hours, and 2 carpentry hours.
- Would this change the optimal solution to the LP?

$$c_2 = 43, \mathbf{a}_2 = \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix}. \text{ Before } c_2 = 30, \mathbf{a}_2 = \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix}$$

Simply use $\overline{c}_2 = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_2 - c_2$ to calculate the reduced cost of x_2 in rof:

$$\overline{c}_2 = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_2 - c_2 = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} - 43 = -3 < 0$$

Since $\overline{c}_2 < 0$, $BV = \{s_1, x_3, x_1\}$ is no longer optimal.

Apply the simplex algorithm with $BV = \{s_1, x_3, x_1\}$

5. Adding a new activity (addition of a new variable)

- ☐ In many practical situations, opportunities arise to undertake new activities.
- ☐ Does not affect feasibility but affects opimality.
- \Box To determine whether a new activity x_j will cause the current to be no longer optimal, calculate $\overline{c}_i = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_i c_j$.

If a new column (corresponding to a new variable x_j) is added to an LP, then the current basis remains optimal if $\overline{c}_j \ge 0$. If $\overline{c}_j < 0$, then the current basis is no longer optimal and x_j will become a basic variable.

5. Adding a New Activity

Example (cont'd)

- Suppose the company decides to start making stools. The price of a stool is \$15 and requires 1 board ft of lumber, 1 finishing hour, and 1 carpentry hour.
- Should the company manufacture stools?

Let
$$x_4 = \#$$
 of stools manufactured. Then $c_4 = 15$, $\mathbf{a}_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ (added column).

Then
$$\overline{c}_4 = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_4 - c_4 = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 15 = 5.$$

Since $\overline{c}_4 \ge 0$, $BV = \{s_1, x_3, x_1\}$ is still optimal. The reduced cost is \$5.

This means that each stool would decrease revenue by \$5. Therefore, the company should not manufacture stools.

3

Duality

In this lecture you will learn:

Finding the dual of an LP

Some basic duality theory, (describing the relation between LP and its dual)

Shadow price and dual variables

Based on Chapter 6.5 - 6.8 of *Operations Research: Applications and Algorithms*, 4^{th} Edition.

Primal and Dual

Associate with any LP is another LP, called the *dual*. The relation between an LP and its dual gives us interesting economic and sensitivity analysis insights.

When taking the dual of an LP, the given LP is referred to as the *primal*.

If the primal is a max problem, then the dual will be a min problem and vice versa.

Let us define (arbitrarily) the variables for a max problem to be $z, x_1, x_2, ..., x_n$,

and the variables for a min problem to be $w, y_1, y_2, ..., y_m$.

Finding the dual of an arbitrary LP

$$\max z = 2x_1 + x_2$$

$$x_1 + x_2 = 2$$

$$2x_1 - x_2 \ge 3$$

$$x_1 - x_2 \le 1$$

$$x_1 \ge 0, x_2 \text{ urs}$$

$$x_1 \ge 0, x_2 \text{ urs}$$

primal (dual)		dua	dual (primal)		
Objective	MAX	MIN	Objective		
Variables	≥0	$\geq c_{\mathrm{i}}$	Constraints		
	≤0	$\leq c_{\rm i}$			
	urs	$=c_{\mathrm{i}}$			
Constraints	$\leq b_{\mathrm{i}}$	≥0	Variables		
	$\geq b_{ m i}$	≤0			
	$=b_{i}$	urs			

min problem (dual)

min
$$w = 2y_1 + 3y_2 + y_3$$

st $y_1 + 2y_2 + y_3 \ge 2$
 $y_1 - y_2 - y_3 = 1$
 $y_1 \text{ urs}, y_2 \le 0, y_3 \ge 0$

The i^{th} dual constraint

corresponds to the i^{th} primal

variable x_i .

Similarly, dual variable y_i is

Similarly, dual variable y_i is associated with the ith primal constraint.

Dual Theorems

Relations between the primal and dual problems.

The dual of a dual is the primal itself.

To simplify the exposition, we assume that the primal is a normal max problem and then its dual is a normal min problem.

Primal

$$max z = cx$$
s.t.
$$Ax \le b$$

$$x \ge 0$$

Dual

min
$$w = \mathbf{b}^T \mathbf{y}$$

s.t. $\mathbf{A}^T \mathbf{y} \ge \mathbf{c}^T$
 $\mathbf{y} \ge \mathbf{0}$

Weak Duality

Theorem 8.1 (Weak Duality): If x is a feasible solution to the primal (max) problem and y is a feasible solution to the dual problem, then

 $\mathbf{c}\mathbf{x} \leq \mathbf{b}^{\mathrm{T}}\mathbf{y}$ (i.e., z-value for $\mathbf{x} \leq w$ -value for \mathbf{y})

Corollary 8.1: Let \mathbf{x} ' and \mathbf{y} ' be feasible solutions to the primal and the dual, respectively, and suppose that $\mathbf{cx'} = \mathbf{b^Ty'}$, Then \mathbf{x} ' and \mathbf{y} ' are the optimal solutions to the primal and the dual, respectively.

Corollary 8.2:

- (a) If the primal is unbounded, then the dual is infeasible.
- (b) If the dual is unbounded, then the primal is infeasible.

The Dual Theorem or Strong Duality

Theorem 8.2: Suppose BV is an optimal basis for the primal. Then $\mathbf{c}_{BV}B^{-1}$ is an optimal solution to the dual. Also the respective optimal objective function values are equal.

Remark:

- (a) Optimal solution to the dual is $\mathbf{c}_{BV}B^{-1}$, (thus, could be directly calculated).
- (b) Optimal objective value of dual = optimal objective value of primal = $\mathbf{c}_{BV}\mathbf{B}^{-1}\mathbf{b}$
- (c) The optimal solution to dual can be found in the optimal rof and revised constraints for the primal.

Shadow prices and Dual variables

- The <u>shadow price</u> for the i^{th} constraint of an LP (sensitivity analysis) is defined to be the amount by which the <u>optimal</u> z-value is <u>improved</u> if the rhs of the i^{th} constraint is increased by 1. This definition applied only if the change in the rhs of the ith constraint leaves the current basis optimal.
- The main result is
 the shadow price of the ith constraint of a max problem is
 the optimal value of the ith dual variable.

The shadow price of the i^{th} constraint of a *min* problem is – (the optimal value of the i^{th} dual variable).

- When the slack or excess variable for a constraint is positive in an LP's optimal solution
 - the constraint is nonbinding
 - the shadow price of the constraint = 0
 the optimal dual variable = 0
 the reduced cost of the slack or excess variable = 0
- When the slack or excess variable for a constraint is zero in an LP's optimal solution,
 - the constraint is binding
 - the shadow price and optimal dual variable can be found from the reduced cost of the slack or excess variable as shown in the tables

Read the optimal dual solution from the optimal rof — if primal is a max LP

• The Dual Theorem: the optimal value of the *i*th dual variable (y_i^*) is the *i*th element of $\mathbf{c}_{BV}\mathbf{B}^{-1}$.

Constraints in primal			=	
Dual variable y _i	≥ 0	≤ 0	urs	
Associated variable in primal	slack variable s_i	excess variable e_i	artificial variable a_i	
Optimal value of dual variable y_i reduced cost of s_i in optimal rof		- (reduced cost of e_i in optimal rof)	(reduced cost of a_i in optimal rof) – M	
Reasons: $\bar{c}_j = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_j - c_j$	reduced cost of s_i = $\mathbf{c}_{BV}\mathbf{B}^{-1}(0,,1,0)'$ – $0 = i^{\text{th}}$ element of $\mathbf{c}_{BV}\mathbf{B}^{-1}$	reduced cost of e_i = $\mathbf{c}_{BV}\mathbf{B}^{-1}(0,,-1,0)'-0$ = $-(i^{\text{th}} \text{ element of } \mathbf{c}_{BV}\mathbf{B}^{-1})$	reduced cost of a_i = $\mathbf{c}_{BV}\mathbf{B}^{-1}(0,,1,0)' - (-M)$ = i^{th} element of $\mathbf{c}_{BV}\mathbf{B}^{-1}$ + M	
Shadow price	≥ 0	≤ 0	urs	
Value of shadow price	reduced cost of s_i in optimal rof	- (reduced cost of e_i in optimal rof)	(reduced cost of a_i in optimal rof) – M	

The shadow price of the i^{th} constraint = the optimal value of the i^{th} dual variable (y_i^*) .

Read the optimal dual solution from the optimal rof — if primal is a min LP

Constraints in primal	<u> </u>	2	=	
Dual variable y _i	ariable y_i ≤ 0 ≥ 0		urs	
Associated slack variable s_i		excess variable e_i	artificial variable a_i	
Optimal value of dual variable y_i reduced cost of s_i in optimal rof		- (reduced cost of e_i in optimal rof)	(reduced cost of a_i in optimal rof) + M	
Reasons: $\bar{c}_j = \mathbf{c}_{BV} \mathbf{B}^{-1} \mathbf{a}_j - c_j$	reduced cost of s_i = $\mathbf{c}_{BV}\mathbf{B}^{-1}(0,,1,0)'$ – $0 = i^{\text{th}}$ element of $\mathbf{c}_{BV}\mathbf{B}^{-1}$	reduced cost of e_i = $\mathbf{c}_{BV}\mathbf{B}^{-1}(0,,-1,0)'-0$ = $-(i^{\text{th}} \text{ element of } \mathbf{c}_{BV}\mathbf{B}^{-1})$	reduced cost of a_i = $\mathbf{c}_{BV}\mathbf{B}^{-1}(0,,1,0)' - (M)$ = i^{th} element of $\mathbf{c}_{BV}\mathbf{B}^{-1} - M$	
Shadow price	≥ 0	≤ 0	urs	
`		reduced cost of e_i in optimal rof	- (reduced cost of a_i in optimal rof) – M	

The shadow price of the i^{th} constraint = – (the optimal value of the i^{th} dual variable) = - y_i^* .

Example (cont'd)

Primal

max
$$z = 60x_1 + 30x_2 + 20x_3$$

s.t. $8x_1 + 6x_2 + x_3 \le 48$ (Lumber constraint)
 $4x_1 + 2x_2 + 1.5x_3 \le 20$ (Finishing constraint)
 $2x_1 + 1.5x_2 + 0.5x_3 \le 8$ (Carpentry constraint)
 $x_2 \le 5$ (table demand constraint)
 $x_1, x_2, x_3 \ge 0$

The optimal dual objective function value and dual solution is w=280, $y_1=0$, $y_2=10$, $y_3=10$, $y_4=0$.

Dual

min
$$w = 48y_1 + 20y_2 + 8y_3 + 5y_4$$

s.t. $8y_1 + 4y_2 + 2y_3 \ge 60$ (Desk constraint)
 $6y_1 + 2y_2 + 1.5y_3 + y_4 \ge 30$ (Table constraint)
 $y_1 + 1.5y_2 + 0.5y_3 \ge 20$ (Chair constraint)
 $y_1, y_2, y_3, y_4 \ge 0$

Optimal rof and revised constraints for the primal LP

$$\begin{vmatrix} z = 280 - 5x_2 - 10s_2 - 10s_3 \\ \begin{pmatrix} s_1 \\ x_3 \\ x_1 \\ s_4 \end{pmatrix} + \begin{pmatrix} -2 \\ -2 \\ 1.25 \\ 1 \end{pmatrix} x_2 + \begin{pmatrix} 2 \\ 2 \\ -0.5 \\ 0 \end{pmatrix} s_2 + \begin{pmatrix} -8 \\ -4 \\ 1.5 \\ 0 \end{pmatrix} s_3 = \begin{pmatrix} 24 \\ 8 \\ 2 \\ 5 \end{pmatrix}. \text{ Thus, } \begin{pmatrix} s_1^* \\ x_3^* \\ x_1^* \\ s_4^* \end{pmatrix} = \begin{pmatrix} 24 \\ 8 \\ 2 \\ 5 \end{pmatrix}$$

LINDO – output

CURRENT

COEF

VARIABLE

OBJ	COEFFICIENT	RANGES		
	ALLOWABLE		ALLOWABLE	
	INCREASE		DECREASE	C '4' '4 1 '
	20.000000		4.000000	Sensitivity analysis

X1 X2	60.000000 30.000000	20.000000 5.000000	4.000000 INFINITY
Х3	20.000000	2.500000	5.000000
		RIGHTHAND SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	48.000000	INFINITY	24.000000
3	20.000000	4.000000	4.000000
4	8.000000	2.000000	1.333333
5	5.000000	INFINITY	5.000000