Einfürung in die Algebra Hausaufgaben Blatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 16, 2023)

Problem 1. Seien $n \in \mathbb{N}^*$, T die Menge der positiven Teiler von n und G eine Gruppe der Ordnung n. Für $t \in T$ definieren wir die Mengen

$$M_t := \{ g \in G | \operatorname{ord}(g) = t \} \subseteq G.$$

- (a) Zeigen Sie, dass jedes $g \in G$ in genau einer der Mengen M_t mit $t \in T$ liegt.
- (b) Sei nun zudem G zyklisch. Zeigen Sie, dass dann $|M_t| = \varphi(t)$ für alle $t \in T$ gilt.
- (c) Folgern Sie: Für jedes $n \in \mathbb{N}^*$ gilt $n = \sum_{t|n,t>0} \varphi(t)$.
- *Proof.* (a) Sei $g \in G$ beliebig und $H = \langle g \rangle$. H ist eine Untergruppe von G. Es gilt auch, dass $|H| = \operatorname{ord}(g)$. Wir wissen, dass |H| teilt |G|. Daraus folgt, dass $\operatorname{ord}(g)$ teilt |G|, und g liegt in genau einer der Mengen M_t mit $t \in T$.
 - (b) Weil G zyklisch ist, gibt es für jede Teiler t|n eine Untergruppe der Ordnung t.

Diese Untergruppe hat genau $\varphi(t)$ Erzeuger. Für alle Erzeuger pgilt ord $(t) = |\langle t \rangle| = t$. Es gilt daher, für jedes $t \in T$, $|M_t| \ge \varphi(t)$.

Außerdem ist die Untergruppe der Ordnung t eindeutig. Deswegen ist genau $|M_t| = \varphi(t)$. Wir nehmen an, dass es $p \in G$ gibt, sodass $\operatorname{ord}(p) = t$, also $|\langle p \rangle| = t$. Weil die zyklische Untergruppe der Ordnung t eindeutig ist, ist die erzeugte Gruppe genau die Gruppe, die wir vorher diskutiert haben, also p ist einer der vorherigen $\varphi(t)$ Erzeuger.

Daraus folgt, dass $|M_t| = \varphi(t)$ für alle $t \in T$.

(c) Es gibt für jedes n eine zyklische Gruppe der Ordnung n, z.B. $\mathbb{Z}/n\mathbb{Z}$.

Alle Element sind in einer der Mengen M_t . Die Zahl der Elemente ist einfach $\sum_{t \in T} |M_t| = \varphi(t) = n$

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Problem 2. Zeigen Sie, dass für eine Gruppe G der Ordnung $n \in \mathbb{N}^*$ äquivalent sind:

- (a) *G* ist zyklisch.
- (b) G besitzt zu jedem positiven Teiler t von n genau eine Untergruppe der Ordnung t.

Proof. (a) \Longrightarrow (b) ist schon in der Vorlesung bewiesen. (Satz 2.18). Es bleibt (b) \Longrightarrow (a) zu zeigen. Wir betrachten dann ein Element $a \in G$ und die erzeugte zyklische Gruppe $\langle a \rangle$. Falls $\langle a \rangle = G$ sind wir fertig. Also nehmen wir an, $\langle a \rangle \neq G$. Sei ord(a) = k, und $\langle a \rangle = k$. Diese Gruppe besitzt genau $\varphi(k)$ Erzeuger.

Dann wählen wir ein anderes b Element aus, das kein Erzeuger von $\langle a \rangle$ ist. Wir betrachten $\langle b \rangle$. Es muss gelten, dass $\operatorname{ord}(b) = |\langle b \rangle| \neq k$. Sonst wäre $\langle b \rangle = \langle a \rangle$, weil es nur *eine* Untergruppe der Ordnung k gibt.

Ähnlich fahren wir fort. Wir wählen ein Element aus, das kein Erzeuger von der voherigen betrachten zyklischen Gruppen sind. Weil es für jeder Teiler von n nur eine Untergruppe der Ordnung gibt, gilt $|M_t| = \varphi(t)$.

Sei *T* die Menge der positiven Teiler von *n*. Wir berechnen

$$\sum_{n \neq t \in T} \varphi(t) < n,$$

also wir haben Elemente, für die gilt, deren Ordnung kein positiver Teiler von n, das weniger als n ist. Weil die Ordnung ein Teiler von n sein muss, muss die Ordnung n sein, also solche Elemente sind Erzeuger der Gruppe G, und G ist zyklisch.

- **Problem 3.** (a) Bestimmen Sie die Ordnungen der Elemente für jede der Diedergruppen D_n mit $n \ge 3$.
 - (b) Zeigen Sie, dass Satz 2.23 für nicht-abelsche Gruppen im Allgemeinen falsch ist.

(Satz 2.23) Sei
n die größte Elementordnung in einer abelschen Gruppe G. Dann gilt
 $g^n=e$ für alle $g\in G$.

Proof. (a) Wir betracten zuerst Elemente mit dem Form $r^ks^0=r^k$. Wir haben per die letzte Übungsblatt

Zeigen Sie, dass für $k \in \mathbb{N}$ genau dann $r^k = e$ gilt, wenn n|k ist.

also wir brauchen die kleinste Zahl ord (r^k) , sodass $(r^k)^{\operatorname{ord}(r^k)} = r^{k\operatorname{ord}(r^k)} = r^{pn}$, $p \in \mathbb{N}$. Per Definition des kleinsten gemeinsamen Vielfaches ist

$$\operatorname{ord}(r^k) = \frac{\operatorname{kgV}(k, n)}{k} = \frac{n}{\operatorname{ggT}(k, n)}.$$

Wir wissen auch, dass $s^2 = e$, also ord(s) = 2.

Jetzt betrachten wir alle Elemente mit dem Form $r^k s$. Es gilt

$$r^k s r^k s = r^k r^{-k} s s = ee = e$$

also alle Elemente mit dem Form $r^k s$ haben Ordnung 2.

(b) Wir betrachten D_3 . Die größte Elementordnung ist 3, weil ggT(3,2)=1, und $\frac{3}{ggT(3,2)}=3$, also r^2 hat Ordnung 3.

Keine größere Elementordnung ist möglich, weil $\frac{n}{\operatorname{ggT}(n,k)} \le n = 3$, und $2 \le 3$.

Es gilt aber

$$s^3 = (s^2)s = es = s,$$

also $s^3 \neq e$, ein Widerspruch.

Problem 4. Sei $n \geq 3$.

- (a) Zeigen Sie, dass die Menge $R:=\left\{r^0,r^1,\ldots,r^{n-1}\right\}$ ein Normalteiler von D_n ist.
- (b) Zeigen Sie, dass die Gruppe $\langle x \rangle$ für kein $x \in D_n \backslash R$ ein Normalteiler von D_n ist.

Proof. (a) Wir betrachten $x^{-1}Rx$:

(i) $x = r^p$:

Es gilt $x^{-1} = r^{-p}$. und

$$r^{-p}r^kr^p=r^k,$$

für alle $k \in \mathbb{Z}$, also $r^{-p}Rr^p = R$, insbesondere $r^{-p}Rr^p \subseteq R$.

(ii) x = s:

Es gilt $s^{-1} = s$, und

$$sr^k s = r^{-k} ss = r^{-k} \in S$$

(Die Behauptung, dass $r^{-k} \in S$, war im letzten Übungsblatt bewiesen).

(iii) $x = r^p s$:

Wir haben schon bewiesen, dass $x^{-1} = r^p s$. Es gilt

$$r^{p}sr^{k}r^{p}s = r^{p}sr^{k+p}s = r^{p}r^{-(k+p)}ss = r^{-k} \in R.$$

Insgesamt gilt $x^{-1}Rx \subseteq R$ für alle $x \in D_n$, also R ist ein Normalteiler.

- (b) Noch einmal betrachten wir die unterschiedlichen Fälle
 - (i) x = s, also $\langle x \rangle = \{e, s\}$:

Es gilt

$$r^{-1}sr = r^{-1}r^{-1}s = r^{-2}s \neq s.$$

(Es gilt $r^{-2} \neq r^0 = e$ wenn $n \geq 3$).

(ii) $x = r^p s$, also $\langle x \rangle = \{e, r^p s\}$.

Es gilt

$$r^{-k}r^psr^k = r^{-k}r^pr^{-k}s = r^{p-2k}s.$$

was nur ein Element von $\langle x \rangle$ ist, wenn $p - 2k \equiv p \pmod{n}$. Sei zum Beispiel k = 1. Weil $n \geq 3$, gilt die Gleichung nie.

Lemma 1. $F\ddot{u}r \ n \geq 3 \ kann$

$$p-2 \equiv p \pmod{n}$$

nicht gelten, für alle $p \in \mathbb{Z}$

Proof. Die Gleichung $p-2 \equiv p \pmod n$ genau dann, wenn es $k \in \mathbb{Z}$ existiert, sodass

$$p-p-2=kn,$$

aber das impliziert

$$2 = kn$$
,

was unmöglich ist, weil $n \ge 3 > 2$.

Also $r^{-1} \langle x \rangle r \not\subseteq \langle x \rangle$

Die Gruppe $\langle x \rangle$ ist dann keine Gruppe für $x \in D_n \backslash R$.