kd education academy (9582701166)

Total Marks : 241 Time: 6 Hour

SID II Mauis	TOLAT IV
kd 90+ ch- 11 3-D geometry	

		Ka 30: cli 113 E	geometry	
*	Choose the right answ	ver from the given opti	ons. [1 Marks Each]	[103]
1.	The ratio in which the the points (-1, 1, 3), (2	e plane 2x + 3y - 2z + 7 , 3, 5) is:	= 0 divides the line se	gment joining
	(A) 3:5	(B) 7:5	(C) 9:11	(D) 1:5 externally
2.	If A = (2, -3, 1), B = (3,	-4, 6) and C is a point c	of trisection of AB, then	C _y =
	(A) $\frac{11}{3}$	(B) −11	(C) $\frac{10}{3}$	(D) $\frac{-11}{3}$
3.	The plane XOZ divides	the join of (1, -1, 5) an	d (2, 3, 4) in the ratio λ	$\lambda:1$ then λ is:
	(A) -3	(B) $\frac{-1}{3}$	(C) 3	(D) $\frac{1}{3}$
4.	vectors) divides the li	on vector $rac{3a+4b-5c}{3}$ (where $\frac{3a+4b-5c}{3}$ (where $\frac{3a+4b-5c}{3}$) is the position vector of	nere a, b and c are r the ratio 2 : 1. If the p	
	(A) 2a + 3b - 4c	(B) 2a - 3b + 4c	(C) 2a + 3b + 4c	(D) a + 3b - 4c
5.	The plane. ax + by + centroid of the triangle	cz + (-3) = 0 meet tl e is:	he co-ordinate axes in	A, B, C. The
	(A) $(3a, 3b, 3c)$	(B) $\left(\frac{3}{a}, \frac{3}{b}, \frac{3}{c}\right)$	(C) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$	(D) $\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)$
6.		, F(0, 1, 0) are mid ie the centroid of $\Delta { m AB}$		C, CA, AB of
	(A) $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	(B) $\left(\frac{4}{3}, \frac{2}{3}, 0\right)$	(C) $\left(-\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$	(D) $\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$
7.	The plane XOZ divides	the join of (1, -1, 5) an	d (2, 3, 4) in the ratio λ	$\lambda:1$ then λ is:
	(A) -3	(B) $\frac{1}{4}$	(C) 3	(D) $\frac{1}{3}$
8.	The image of the poin	t P(1, 3, 4) in the plane	2x - y + z = 0 is:	
	(A) (-3, 5, 2)	(B) (3, 5, 2)	(C) (3, -5, 2)	(D) (3, 5, -2)
9.	Which octant do the p	oint (-5, 4, 3) lie:		
	(A) Octant I	(B) Octant II	(C) Octant III	(D) Octant IV
10.	The points (5, 2, 4), (6	, -1, 2) and (8, -7, k) are	collinear, if k is equal	to:
	(A) -2	(B) 2	(C) 3	(D) -1
11.		join of (2, 3, 1) and (6,		
	(A) 3:7	(B) 2:7	(C) -3:7	(D) -2:7

12. Choose the correct answer.

Page 1

	(3, 6, 8) parallel to the parallelopiped is:	ne coordinate planes,	then the length of dia	agonal of the
	(A) $2\sqrt{3}$	(B) $3\sqrt{2}$	(C) $\sqrt{2}$	(D) $\sqrt{3}$
13.	If the zx-plane divide ratio p : 1 then p + 1 =		ining (1, -1, 5) and (2	., 3, 4) in the
	(A) $\frac{1}{3}$	(B) 1:3	(C) $\frac{3}{4}$	(D) $\frac{4}{3}$
14.	L is the foot of the per The coordinates of po		m a point P(3, 4, 5) or	the xy-plane.
	(A) (3, 0, 0)	(B) (0, 4, 5)	(C) (3, 0, 5)	(D) None of these
15.	The coordinates of po	erpendicular drawn fro int L are:	m a point P(3, 4, 5) or	
	(A) (3, 0, 0).	(B) (0, 4, 5).	(C) (3, 0, 5).	(D) None of these.
16.	Find the ratio in whic -3) and (1, -5, 7):	h 2x + 3y + 5z = 1 divi	des the line joining th	e points (1, 0,
	(A) 1:2	(B) 2:1	(C) 3:2	(D) 2:3
17.	Three vertices of a partial find the fourth vertex		A(1, 2, 3), B(-1, -2, -1)	and C(2, 3, 2).
	(A) (-4, -7, -6)	(B) (4, 7, 6)	(C) (4, 7, -6)	(D) None of these
18.	If G is centroid of $\triangle A$	BC then:		
	(A) $ec{G}=ec{a}+ec{b}+ec{c}$	(B) $ec{G}=rac{ec{a}+ec{b}+ec{c}}{2}$	(C) $3\vec{G}=\vec{a}+\vec{b}+\vec{c}$	(D) $3ec{G}=rac{ec{a}+ec{b}+ec{c}}{2}$
19.	What is the distance b	etween the points (2, -	-1, 3) and (-2, 1, 3):	
	(A) $2\sqrt{5}$ units	(B) 25 units	(C) $4\sqrt{5}$ units	(D) $\sqrt{5}$ units
20.	The distance of the po	oint P(a, b, c) from the	x-axis is:	
	(A) $\sqrt{(\mathrm{a}^2+\mathrm{c}^2)}$	(B) $\sqrt{(\mathrm{a}^2+\mathrm{b}^2)}$	(C) $\sqrt{(b^2+c^2)}$	(D) None of these
21.		es made by a half ray axis and, Z-axis, then ${ m si}$	of a line respectively $\sin^2 lpha + \sin^2 eta + \sin^2 eta = 0$	with positive
	(A) 1	(B) 0	(C) -1	(D) None of these
22.	Find the image of (-2,	3, 4) in the y z plane:		
	(A) (-2, 3, 4)	(B) (2, 3, 4)	(C) (-2, -3, 4)	(D) (-2, -3, -4)
23.	What is the length of axis:	foot of perpendicular (drawn from the point F	P(3, 4, 5) on y-
	(A) $\sqrt{41}$	(B) $\sqrt{34}$	(C) 5	(D) None of these

If a parallelopiped is formed by planes drawn through the points (5, 8, 10) and

24.	. The coordinates of a point which divides the line joining the points P(2, 3, 1) and Q(5, 0, 4) in the ratio 1 : 2 are:				
	(A) $\left(\frac{7}{3},1,\frac{5}{3}\right)$	(B) (4, 1, 3)	(C) (3, 2, 2)	(D) (1, -1, 1)	
25.	Point A is a + 2b, and	a divides AB in the ratio	o 2 : 3. The position vec	ctor of B is:	
	(A) 2a - b	(B) b - 2a	(C) a - 3b	(D) b	
26.	(-1, 1, -4) D=	_	and D is the mid poir		
	(A) $\left(\frac{1}{2},1,\frac{-5}{2}\right)$	(B) (5, 1, 2)	(C) (-5, -1, -2)	(D) (2, 1, -1)	
27.	ΔABC is:		axes in A, B, C then th		
	(A) (143, 91, 77)	(B) (143, 77, 91)	(C) (91, 143, 77)	(D) (143, 66, 91)	
28.	Graph $x^2 + y^2 = 4$ in 30) looks like:			
	(A) Circle	(B) Cylinder	(C) Hemisphere	(D) Sphere	
29.	Find the distance betv	veen (12, 3, 4) and (4, 5	5, 2):		
	(A) $\sqrt{72}$	(B) $\sqrt{62}$	(C) $\sqrt{64}$	(D) None of these	
30.	The ratio in which yz-ր	olane divides the line se	egment joining (-3, 4, 2), (2, 1, 3) is:	
	(A) -4:1	(B) 3:2	(C) -2:3	(D) 1: 4	
31.	The perpendicular dis	tance of the point P(3,	3, 4) from the x-axis is		
	(A) $3\sqrt{2}$	(B) 5	(C) 3	(D) 4	
32.	The vector equation o	f a sphere having cent	re at origin and radius	5 is:	
	(A) $ \mathbf{r} = 5$	(B) $ \mathrm{r} = 25$	(C) $ \mathbf{r} = \sqrt{5}$	(D) None of these	
33.	If A = (1, 2, 3), B = (2, =	3, 4) and AB is produce	ed upto C such that 2A	B = BC then C	
	(A) (5, 4, 6)	(B) (6, 2, 4)	(C) (4, 5, 6)	(D) (6, 4, 5)	
34.	If the distance between a is:	en the points (a, 0, 1) a	and (0, 1, 2) is $\sqrt{27}$ the	n the value of	
	(A) 5	(B) ± 5	(C) -5	(D) None of these	
35.	The ratio in which the the xy-plane is:	e line joining the points	s (1, 2, 3) and (-3, 4, -5) is divided by	
	(A) 2:5	(B) 3:5	(C) 5:2	(D) 5:3	
36.	A = (1, 1, 4) and $B = (5)such that AP = PQ = Q$		If the points P, Q are	on the line AB	
	(A) $2\sqrt{2}$	(B) 4	(C) $\sqrt{\frac{32}{9}}$	(D) $\sqrt{2}$	

38.	In a three dimensiona	l space the equation x	² - 5x + 6 = 0 represents	S
	(A) Points.		(B) Planes.	
	(C) Curves.		(D) Pair of straight line	es.
39.	The cartesian equatio are:	n of the line is 3x + 1 =	= 6y - 2 = 1 - z then its	direction ratio
	(A) $\frac{1}{3}, \frac{1}{6}, 1$	(B) $\frac{-1}{3}, \frac{1}{6}, 1$	(C) $\frac{1}{3}, \frac{-1}{6}, 1$	(D) $\frac{1}{3}, \frac{1}{6}, -1$
40.	-	etrahedron OABC, the	A, B, C. If $O = (0, 0, 0)$ an the sum of the recip	
	(A) 12	(B) $\frac{4}{3}$	(C) 1	(D) $\frac{3}{4}$
41.	Find the distance be	etween the points wh	nose position vectors	are given as
	follows: $4\hat{ ext{i}} + 3\hat{ ext{j}} - 6\hat{ ext{k}}, -$	$2\hat{ ext{i}}+\hat{ ext{j}}-\hat{ ext{k}}$		
	(A) $\sqrt{65}$	(B) $\sqrt{69}$	(C) 1	(D) None of these
42.	If the line joining A(1, 3, then B is:	3, 4) and B is divided	by the point (-2, 3, 5) i	n the ratio 1 :
	(A) (-11, 3, 8)	(B) (-11, 3, -8)	(C) (-8, 12, 20)	(D) (13, 6, -13)
43.	A = (1, -1, 2) and $B = (3, -1, 2)$ are spectively then P		If P, O divide AB in the	ratios 2 : 3, -2
	(A) $\frac{-38}{5}$	(B) $\frac{38}{5}$	(C) $\frac{-2}{5}$	(D) $\frac{-47}{6}$
44.	If the extremities of the length of the side is	he diagonal of a squar	re are (1, -2, 3 and (2, -	3, 5), then the
	(A) $\sqrt{6}$	(B) $\sqrt{3}$	(C) $\sqrt{5}$	(D) $\sqrt{7}$
45.	In three dimensions, system are:	the coordinate axes o	f a rectangular cartesi	an coordinate
	(A) Three mutually parallel lines			
	(B) Three mutually pe	rpendicular lines		
	(C) Two mutually perp	pendicular lines and an	y two parallel	
	(D) None of these			
46.	An equation of sphere	e with centre at origin	and radius r can be rep	presented as:
	(A) $x^2 + y^2 + z^2 = r$		(B) $x^2 + y^2 + z^2 = r^2$	
	(C) $x^2 + y^2 + z^2 = 2r^2$		(D) None of the above	

37. The points (-5, 12), (-2, -3), (9, -10), (6, 5) taken in order, form:

(C) Rhombus

(D) Square

(A) Parallelogram (B) Rectangle

	0), (0, 0, 2), (0, 4, 0) and (6, 0, 0) respectively. Find the coordinates of cenroid:				
	(A) $\left(2,\frac{4}{3},\frac{2}{3}\right)$	(B) $\left(\frac{6}{4},1,\frac{2}{4}\right)$	(C) (0, 0, 0)	(D) None of these	
48.	The perpendicular dis	tance of the point P(6,	7, 8) from xy-plane is		
	(A) 8	(B) 7	(C) 6	(D) 10	
49.	Area of quadrilateral v	whose vertices are (2,	3), (3, 4), (4, 5) and (5, 6	6), is equal to:	
	(A) 0	(B) 4	(C) 6	(D) None of these	
50.	The point A(1, -1, 3), B	8(2, -4, 5) and C(5, -13,	11) are:		
	(A) Collinear		(B) Non-collinear		
	(C) Do not say anythin	ng	(D) None of these		
51.	, , ,		hose projection in the ${f x}$ and the positive ${f x}$ -axis		
			e ϕ , where O is the or		
	distance of P from the	e x-axis is :			
	(A) $\gamma\sqrt{1-\sin^2\phi\cos^2 heta}$		(B) $\gamma\sqrt{1+\cos^2\theta\sin^2\phi}$		
	(C) $\gamma\sqrt{1-\sin^2\theta\cos^2\phi}$	2	(D) $\gamma\sqrt{1+\cos^2\phi\sin^2\theta}$		
52.		stem are known to be	an angle $135^o.$ If the co $+(4,-3)$, then the coord		
	(A) $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$	(B) $\left(\frac{1}{\sqrt{2}}, \frac{-7}{\sqrt{2}}\right)$	(C) $\left(\frac{-1}{\sqrt{2}}, \frac{-7}{\sqrt{2}}\right)$	(D) $\left(\frac{-1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$	
53.	Two fixed points are C of triangle ABC will		$\angle A - \angle B = \theta$, then the	locus of point	
	(A) $x^2 + y^2 + 2xy \tan \theta =$	$=a^2$	(B) $x^2-y^2+2xy\tan\theta=$	$=a^2$	
	(C) $x^2+y^2+2xy\cot\theta=$	$=a^2$	(D) $x^2-y^2+2xy\cot\theta=$	$=a^2$	
54.			te axes, origin is transf	Ferred to (h,k) ,	
			e equation x^2+y^2-4x		
	eliminated. Then the p	point (h,k) is			
	(A) (3,2)	(B) $(-3,2)$	(C) $(2,-3)$	(D) None of these	
55.	The mid points of the this triangle will be (in		e are $(1,2)$; $(-1,1)$ and	(0,3). Area of	
	(A) 2	(B) 3	(C) 4	(D) 6	
56			pints given by $(\lambda+1,1)$		
50.	$(2\lambda+2,2\lambda)$ are collinea		Since given by $(N+1,1)$	1), (2/1 + 1,0)	
	(A) 0	(B) 1	(C) 2	(D) 4	

47. The position vectors of the four angular point of a tetrahedron OABC are (0, 0, 0)

57.	Area of the triangle fo	ermed by points $(102,-4)$	(4), (105, -2) and $(103, -3)$	3) -
	(A) 1	(B) 2	(C) 0.5	(D) 0.25
58.	If the vertices of a tria	ingle be $(0,0)$, $(6,0)$ and	${\sf d}\ (6,8)$ then its incentre	will be
	(A) (2,1)	(B) (1,2)	(C) $(4,2)$	(D) $(2,4)$
59.	Coordinates of the or $3x + 4y = 6$ is	thocentre of the trian	gle whose sides are $\it x$	=3,y=4 and
	(A) (0,0)	(B) (3,0)	(C) (0,4)	(D) (3,4)
60.	The incentre of triang	le formed by the lines	x=0,y=0 and $3x+4y$	=12 is
	(A) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(B) (1,1)	(C) $(1, \frac{1}{2})$	(D) $(\frac{11}{2}, 1)$
61.	The orthocentre of th	e triangle formed by (0	(0,0), (8,0), (46) is	
	(A) $(4, \frac{8}{3})$	(B) (3,4)	(C) (4,3)	(D) $(-3,4)$
62.	The circumcentre of $x+y+2=0$ is	a triangle formed b	by the line $xy+2x+2$	y+4=0 and
	(A) $(-1,-1)$	(B) $(0,-1)$	(C) $(1,1)$	(D) $(-1,0)$
63.	Orthocentre of the tri	angle whose vertices a	re $(0,0)(3,0)$ and $(0,4)$	is
	(A) (0,0)	(B) (1,1)	(C) (2,2)	(D) $(3,3)$
64.	The incentre of a triar	ngle with vertices $(7,1)($	$(-1,5)$ and $(3+2\sqrt{3},3+$	$4\sqrt{3})$ is
	(A) $\left(3 + \frac{2}{\sqrt{3}}, 3 + \frac{4}{\sqrt{3}}\right)$		(B) $\left(1 + \frac{2}{3\sqrt{3}}, 1 + \frac{4}{3\sqrt{3}}\right)$	
	(C) (7,1)		(D) None of these	
65.	If the points $(x+1, 2)$,	$(1,x+2),\; \left(rac{1}{x+1},rac{2}{x+1} ight)\;\;a$	re collinear, then x is	
	(A) 4	(B) 0	(C) −4	(D) (b) and (c) both
66.		are the vertices of tr		
	(A) 6	(B) 4	(C) 8	(D) 12
67.		e sides of a triangle ordinates of the circum		y+1=0 and
	(A) (2,1)	(B) (1,2)	(C) $(2,-2)$	(D) $(1,-2)$
68.	The incentre of the tri	angle formed by $(0,0)$,	(5,12), $(16,12)$ is	
	(A) (7,9)	(B) (9,7)	(C) $(-9,7)$	(D) $(-7,9)$
69.	Circumcenter of the ti	riangle formed by the l	ine $y=x, \ \ y=2x$ and y	=3x+4 is
	(A) (6,8)	(B) $(6,-8)$	(C) $(3,4)$	(D) $(-3, -4)$
70.		(x,y) are three points the $\Delta RPQ=5$, then th		_

	20 20	9 0. 22		
	(A) 12	(B) 10	(C) $5\sqrt{3}$	(D) $5\sqrt{5}$
73.	Let ABC be an equilar radii of the circumcirc function of a , the ratio	cle and the incircle of	-	
	(A) strictly increases	•		
	(B) strictly decreases		100	
	(C) remains constant			
	(D) strictly increases f	for $a < 1$ and strictly $lpha$	decrease for $a>1$	L
74.	If coordinates of the μ is such that $A-M-E$			
	(A) $(\frac{8}{3}, \frac{10}{3})$	(B) $(\frac{10}{3}, \frac{14}{4})$	(C) $\left(\frac{10}{3}, \frac{6}{3}\right)$	(D) $(\frac{13}{4}, \frac{10}{4})$
75.	What is the equation distance from the x -ax			
	(A) $x^2 + y^2 - 4y = 0$	(B) $x^2 + y^2 - 4 y = 0$	(C) $x^2 + y^2 - 4x$	$x = 0$ (D) $x^2 + y^2 - 4 x $
76.	If the equation of the (a_2,b_2) is $(a_1-a_2)x+(b_1)$	(())		he points (a_1,b_1) and
	(A) $a_1^2 - a_2^2 + b_1^2 - b_2^2$		(B) $\sqrt{a_1^2+b_1^2-a_1^2}$	$\overline{a_2^2-b_2^2}$
	(C) $\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$		(D) $rac{1}{2}(a_2^2+b_2^2-a_2^2)$	$a_1^2 - b_1^2)$
77.	The locus of the movi $(4,-3)$, is	ng point P , such that	t $2PA=3PB$ whe	ere A is $(0,0)$ and B is
	(A) $5x^2 - 5y^2 - 72x + 54$	4y+225=0	(B) $5x^2 - 5y^2 + 6y^2$	72x + 54y + 225 = 0
	(C) $5x^2 + 5y^2 + 72x + 54$	4y+225=0	(D) $5x^2+5y^2-$	72x + 54y + 225 = 0
78.	The equation of the k x -axis, is	ocus of all points eq	uidistant from th	ie point $(4,2)$ and the
	(A) $x^2 + 8x + 4y - 20 =$	0	(B) $x^2 - 8x - 4y$	+20=0
	(C) $y^2 - 4y - 8x + 20 = 0$	0	(D) None of the	ese
				Pag

(A) 0

(A) $\frac{17}{2}$

(B) 1

(B) $\frac{15}{2}$

BC=25 . Then the length of EF is

BC=2,CD=1 and $BD=rac{3}{\sqrt{2}}.$ The perimeter of the $\triangle ABC$ is

(C) 2

(C) $\frac{17}{4}$

71. In a $\triangle ABC$, the angle bisector BD of $\angle B$ intersects AC in D. Suppose

72. In a triangle $ABC, \angle BAC = 90^{\circ}; AD$ is the altitude from A on to BC. Draw DE

perpendicular to AC and DF perpendicular to AB. Suppose AB=15 and

(D) 4

(D) $\frac{15}{4}$

= 0

79.	points $A(2,0)$ and $B(-2,0)$ is always equal to the square of the distance between A and B . The locus of the point is				
	(A) $x^2 + y^2 - 2 = 0$	(B) $x^2 + y^2 + 2 = 0$	(C) $x^2 + y^2 + 4 = 0$	(D) $x^2 + y^2 - 4 = 0$	
80.	If the coordinates of then the locus of the		ne equation $x=a(1-\cos t)$	$(\cos heta),y=a\sin heta$,	
	(A) A straight line	(B) A circle	(C) A parabola	(D) An ellipse	
81.	O is the origin, has slo	ope $\sqrt{3}$ is	n a way that the segme	ent <i>OP</i> , where	
	(A) $x-\sqrt{3}y=0$	(B) $x + \sqrt{3}y = 0$	(C) $\sqrt{3}x+y=0$	(D) $\sqrt{3}x-y=0$	
82.		$(c^2 heta),(\mathrm{cosec}^2 heta,0)$ are coll $(B)\; heta eq rac{n\pi}{2}$		(D) None of these	
83.	If $A(at^2,2at),\;B(a/t^2,-$	-2a/t) and $C(a,0)$, then	2a is equal to		
	(A) $A.M.$ of CA and C	CB	(B) $G.M.$ of CA and C	$^{\prime}B$	
	(C) $H.M.$ of CA and CA	CB	(D) None of these		
84.		diagonals. If the side	uare is at origin and $oldsymbol{a}$ is of length $oldsymbol{a}$, then on		
	(A) $(a\sqrt{2},0)$	(B) $\left(0, \frac{a}{\sqrt{2}}\right)$	(C) $\left(\frac{a}{\sqrt{2}},0\right)$	(D) $\left(-\frac{a}{\sqrt{2}},0\right)$	
85.	35. Two vertices of a triangle are $(4,-3)$ and $(-2,5)$. If the orthocentre of the triangle is at $(1,2)$, then the third vertex is				
	(A) $(-33, -26)$	(B) (33,26)	(C) $(26,33)$	(D) None of these	
86.			(x_1,y_1) , (x_2,y_2) , (x_3,y_3) line DC in the ratio m :		
	(A) $\left(rac{kx_1+lx_2+mx_3}{k+l+m}, rac{ky_1+ly_2+my_3}{k+l+m} ight)$	$(B) \left(\frac{\frac{lx_1+mx_2+kx_3}{l+m+k}}{\frac{ly_1+my_2+ky_3}{l+m+k}}, \frac{ly_1+my_2+ky_3}{l+m+k}\right)$	(C) $\left(rac{mx_1+kx_2+lx_3}{m+k+l}, rac{my_1+ky_2+ly_3}{m+k+l} ight)$	(D) None of these	
87.	Let $A(h,k)$, $B(1,1)$ and	${\cal C}(2,1)$ be the vertices	of a right angled trian	gle with AC as	
			1 square unit, then the	e set of values	
	which $'k'$ can take is g	•	(6) 1.0	(D) 0.0	
	(A) $-1,3$	(B) $-3, -2$	(C) 1,3	(D) $0,2$	

88. Let A(2,-3) and B(-2,1) be vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x+3y=1, then the locus of the vertex C is the line

	(A) $3x - 2y = 3$	(B) $2x - 3y = 7$	(C) $3x + 2y = 5$	(D) $2x + 3y = 9$
89.	Locus of centroid of	the triangle whose ver	rtices are $(a\cos t, a\sin t)$	$(b\sin t, -b\cos t)$
	and $(1,0)$, where t is a	a parameter; is		
	(A) $(3x-1)^2 + (3y)^2 =$	a^2-b^2	(B) $(3x-1)^2 + (3y)^2 =$	$=a^2+b^2$
	(C) $(3x+1)^2 + (3y)^2 =$	a^2+b^2	(D) $(3x+1)^2 + (3y)^2 =$	$=a^2-b^2$
90.	The locus of the mid-	point of the distance	between the axes of	the variable line
	$x\coslpha+y\sinlpha=p,$ wh	here $\it p$ is constant, is		
	(A) $x^2+y^2=4p^2$ To remove xy	(B) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$	(C) $x^2 + y^2 = \frac{4}{p^2}$	(D) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$
91.	To remove <i>xy</i>	term from tl	he second degr	ee equation
	$5x^2 + 8xy + 5y^2 + 3x + 5$	2y+5=0 , the coord	inates axes are rota	ted through an

angle θ , then θ equals:-

(A)
$$\pi/2$$
 (B) $\pi/4$ (C) $3\pi/8$

92. If the axes be rotated through an angle $\frac{\pi}{3}$ in the clockwise direction with respect to (0,0) the point (4,2) in the new system was formally-

(A)
$$(2+\sqrt{3},-2\sqrt{3}-1)$$
 (B) $(-2\sqrt{3}+1,2+\sqrt{3})$ (C) $(2+\sqrt{3},-2\sqrt{3}+1)$ (D) $(2-\sqrt{3},-2\sqrt{3}-1)$

93. A point moves in the x-y plane such that the sum of its distances from two perpendicular lines is always equal to 3. The area enclosed by the locus of the point is- unit²

(A) 18 (B)
$$4.5$$
 (C) 9 (D) None of these

94. Let A(2,3) and B(-4,5) are two fixed points. A point P moves in such a way that $\Delta PAB = 12 \, sq. \, units$, then its locus is :-

(A)
$$x^2 + 6xy + 9y^2 + 22x + 66y - 23 = 0$$

(B)
$$x^2 + 6xy + 9y^2 + 22x + 66y + 23 = 0$$

(C)
$$x^2 + 6xy + 9y^2 - 22x - 66y - 23 = 0$$

(D) none of these

95. Area of the triangle formed by the lines $y^2 - 9xy + 18x^2 = 0$ and y = 9, is sq. unit

96. The area enclosed by the graphs of |x+y|=2 and |x|=1 is

97. If α, β, γ are the real roots of the equation $x^3 - 3px^2 + 3qx - 1 = 0$, then the centroid of the triangle whose vertices are $(\alpha,\frac{1}{\alpha}),(\beta,\frac{1}{\beta})$ and $(\gamma,\frac{1}{\gamma})$

(A)
$$p,-q$$
 (B) $(-p,q)$ (C) (p,q)

	(A) (5,10)	(B) (15,30)	(C) (10,15)	(D) $(50, -5)$	
100.). If Δ_1 is the area of the triangle formed by the centroid and two vertices of a triangle, Δ_2 is the area of the triangle formed by the mid-points of the sides of the same triangle, then $\Delta_1:\Delta_2=$				
	(A) 3:4	(B) 4:1	(C) 4:3	(D) 2:1	
101.	Number of straight lin area $24sq$. units with the		from (2,5) which make	e a triangle of	
	(A) 1	(B) 2	(C) 3	(D) 4	
102.	If the line $y=\sqrt{3}x$ cuts D , then value of $OA.C$		$bxy+cx+dy+6=0$ at \mathcal{O} is origin)	A , B , C and	
	(A) $a + b + c$	(B) $2c^2d$	(C) 96	(D) 6	
103.	towards west direct	ion and covers a dis overed a distance of	a point $A(3,2)$. Now it stance of $4units$ and $3units$ and reaches at	then it turns	
	(A) $\left(6\sqrt{2}, \frac{\pi}{4}\right)$	(B) $\left(\sqrt{2}, \frac{3\pi}{4}\right)$	(C) $\left(\sqrt{2}, \frac{-3\pi}{4}\right)$	(D) None of these	
*	Answer the following	questions in one sente	ence. [1 Marks Each]	[12]	
104.	Name the octants in w (1, 2, 3), (4, -2, 3), (4, -2, 3)		nts lie: 5), (-4, 2, 5), (-3, -1, 6), (-	2, -4, -7)	
105.	5. Find the distance between (-1, 3, -4) and (1, -3, 4) pairs of points.				
106.	Find the distance between (2, -1, 3) and (-2, 1, 3) pairs of points.				
107.	. Find the octant in which the points (–3, 1, 2) and (–3, 1, – 2) lie.				
108.	3. Find the coordinates of the point which divides the line segment joining the points (1, –2, 3) and (3, 4, –5) in the ratio 2 : 3 internally.				
109.	Find the coordinates of B(0, b, 0) and C(0, 0, c)	·	from the origin and po	ints A(a, 0, 0),	
110.	Find the image of: (- 2, 3, 4) in the yz-plar	ne.			

98. The orthocentre of a $\triangle ABC$ is 'B' and circumcentre is S(a,b). If A is origin then

99. The coordinates of the foot of the perpendiculars from the vertices of a triangle

on the opposite sides are (20,25),(8,16) and (8,9). The orthocentre of the

(B) $\left(\frac{a}{2}, \frac{b}{2}\right)$

(C) $(\sqrt{a^2+b^2},0)$

(D) None of these

coordinate of C is-

triangle lies at the point-

(A) (2a, 2b)

- 111. If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(-2, b -5) and C(4, 7, c) find the values of a, b, c.
- 112. Determine the point on yz-plane which is equidistant from points A(2, 0, 3), B(0, 3, 2) and C(0, 0, 1).
- 113. Find the image of: (-5, 4, -3) in the xz-plane.
- 114. Find the ratio in which the line segment joining the points (2, 4, 5) and (3, -5, 4) is divided by the yz-plane.
- 115. Write the coordinates of third vertex of a triangle having centroid at the origin and two vertices at (3, -5, 7) and (3, 0, 1).
 - * Given section consists of questions of 2 marks each.

[22]

- 116. Show that the points (-2, 3, 5), (1, 2, 3) and (7, 0, -1) are collinear.
- 117. Find the equation of the set of points which are equidistance from the points (1, 2, 3) and (3, 2, -1).
- 118. If the origin is the centriod of the triangle PQR with vertices P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c), then find the values of a, b and c.
- 119. Find the coordinates of a point on y-axis which are at a distance of $5\sqrt{2}$ from the point P(3, -2, 5).
- 120. A point R with x-coordinate 4 lies on the line segment joining the points P(2, -3, 4) and Q (8, 0, 10). Find the coordinates of the point R. [Hint Suppose R divides PQ in the ratio k : 1. The coordinates of the point R are given by $\left(\frac{8k+2}{k+1}, \frac{-3}{k+1}, \frac{10k+4}{k+1}\right)$].
- 121. In Fig, if P is (2,4,5), find the coordinates of F.

- 122. The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of A and B are (3, -5, 7) and (-1, 7, -6), respectively, find the coordinates of the point C.
- 123. The coordinates of a point are (3, -2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.

- 124. Given that P(3, 2, -4), Q(5, 4, -6) and R(9, 8, -10) are collinear. Find the ratio in which Q divides PR.
- 125. Find the third vertex of triangle whose centroid is origin and two vertices are (2, 4, 6) and (0, -2, -5).
- 126. Show that if $x^2+y^2=1$, then the point $\left(x,y,\sqrt{1-x^2-y^2}\right)$ is at a distance 1 unit from the origin.

* Given section consists of questions of 3 marks each.

[69]

- 127. If A and B be the points (3, 4, 5) and (-1, 3, -7), respectively, find the equation of the set of points P such that $PA^2 + PB^2 = k^2$, where k is a constant.
- 128. Are the points A(3, 6, 9), B(10, 20, 30) and C(25, -41, 5), the vertices of a right-angled triangle?
- 129. Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, -8) is divided by the YZ-plane.
- 130. The mid-points of the sides of a triangle ABC are given by (-2, 3, 5), (4, -1, 7) and (6, 5, 3). Find the coordinates of A, B and C.
- 131. The vertices of the triangle are A(5, 4, 6), B(1, -1, 3) and C(4, 3, 2). The intenal bisector of angle A meets BC at D. Find the coordinates of D and the length AD.
- 132. Find the ratio in which the line joining (2, 4, 5) and (3, 5, 4) is divided by the yzplane.
- 133. Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, -4).
- 134. A cube of side 5 has one vertex at the point(1, 0, -1) and the three edge from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.
- 135. If the points A(3, 2, -4), B(9, 8, -10) and C(5, 4, -6) are collinear, find the ratio in which C divides AB.
- 136. Find the distances of the point P(-4, 3, 5) from the coordinate axes.
- 137. A point C with z-coordinate 8 lies on the line segment joining the points A(2, -3, 4) and B(8, 0, 10). Find its coordinates.
- 138. Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.
- 139. Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
- 140. Find the centroid of a triangle, mid-points of whose sides are (1, 2, -3), (3, 0, 1) and (-1, 1, -4).

- 141. Show that the three points A(2, 3, 4), B(-1, 2, -3) and C(-4, 1, -10) are collinear and find the ratio in which C divides AB.
- 142. Find the points on z-axis which are at a distance $\sqrt{21}$ from the point (1, 2, 3).
- 143. The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of A and B are (3, -5, 7) and (-1, 7, -6) respectively, find the coordinates of the point C.
- 144. A(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle $\angle BAC$ meets BC.
- ^{145.} Find the ratio in which the sphere $x^2 + y^2 + z^2 = 504$ divides the line joining the points (12, -4, 8) and (21, -9, 18).
- 146. Planes are drawn parallel to the coordinate planes through the points (3, 0, -1) and (-2, 5, 4).

 Find the lengths of the edges of the parallelopiped so formed.
- 147. Find the ratio in which the line Segment joining the points (2, -1, 3) and (-1, 2, 1) is divided by the plane x + y + z = 5.
- 148. Let A(2, 2, -3), B(5, 6, 9) and C(2, 7, 9) be the vertices of a triangle. The internal bisector of the angle A meets BC at the point D. Find the coordinates of D.
- 149. Prove that the points (0, -1, -7), (2, 1, -9) and (6, 5, -13) are collinear. Find the ratio in which the first point divides the join of the other two.
 - * Given section consists of questions of 5 marks each.

[35]

- 150. Determine the points zx-plane equidistant from the points A(1, -1, 0), B(2, 1, 2) and C(3, 2, -1).
- 151. Determine the points yz-plane equidistant from the points A(1, -1, 0), B(2, 1, 2) and C(3, 2, -1).
- 152. If A(-2, 2, 3) and B(13, -3, 13) are two points. Find the locus of a point P which moves in such a way that 3PA = 2PB.
- 153. Prove that the point A(1, 3, 0), B(-5, 5, 2), C(-9, -1, 2) and D(-3, -3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
- 154. Using distance formula prove that the following points are collinear: P(0, 7, -7), Q(1, 4, -5) and R(-1, 10, -9)
- 155. Show that the points (0, 7, 10), (-1, 6, 6) and (-4, 9, 6) are the vertices of an isosceles right-angled triangle.
- 156. Using distance formula prove that the following points are collinear: A(3, -5, 1), B(-1, 0, 8) and C(7, -10, -6)
 - ---- हर कोशिश में शायद सफलता नहीं मिल पाती,लेकिन हर सफलता का कारण कोशिश ही होती है | -----