U.S.T.H.B. 2021/22

L1, MI8, Analyse 1

Séries d'exercices n°2 : Suites numériques réelles

Exercice 1

Ecrire les 3 premiers termes de la suite (u_n) dans chacun des cas suivants.

1.
$$u_n = \frac{1}{n!}$$
; (devoir) 2. $u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n+1}$; (devoir) 3. $u_n = 1 + \sum_{i=1}^n \frac{\prod_{j=1}^i 2^j}{\prod_{k=1}^i (2k+1)}$

Exercice 2 (devoir)

Pour tout entier n non nul, montrer les inégalités suivantes.

1.
$$2^{n-1} \le n! \le n^{n-1}$$
; 2. $\frac{C_n^k}{n^k} \le \frac{1}{2^{k-1}}$, $k \in \{1, ..., n\}$; 3. $Ln(n+1) \le \sum_{k=1}^{k=n} \frac{1}{k} \le 1 + Ln n$

Exercice 3

Etudier la monotonie de la suite (u_n) dans chacun des cas suivants.

1.
$$u_n = \frac{2 \times 4 \times ... \times 2n}{1 \times 3 \times ... \times (2n+1)}$$
; 2. $u_n = (-1)^n$; 3. $u_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n+1}$; 4. $u_n = \frac{2^n}{n!}$ (devoir).

Exercice 4

Dire si la suite (u_n) est majorée ou minorée dans chacun des cas suivants.

1.
$$u_n = n(1 + (-1)^n)$$
; 2. $u_n = \sum_{k=n}^{k=2n} \frac{1}{k}$; 3. $u_n = \prod_{k=1}^{k=n} \frac{2k}{2k+1}$;

Exercicer 5

Montrer à l'aide de la définition que la suite (u_n) converge ou diverge vers l.

1.
$$u_n = \frac{n}{n+1}$$
, $l = 1$; 2. $u_n = \frac{\sin n}{\cos n + \sqrt{n}}$, $l = 0$; 3. $u_n = -n^2 + n + 1$, $l = -\infty$;

4.
$$u_n = \frac{1}{n!}$$
, $l = 0$.

Exercice 6

Déterminer le nombre de termes de la suite (u_n) de terme général $u_n = \frac{n+3}{n+2}$ n'appartenant pas à l'intervalle]0,99 , 1,01[.

L1, MI8, Analyse 1

Séries d'exercices n°2 : Suites numériques réelles

Exercice 7 (devoir)

Montrer que (cosn) n'a pas de limite. (indication: résonner par l'absurde).

Exercicer 8

Etudier la nature de la suite (u_n) puis calculer sa limite dans chacun des cas suivants.

1.
$$u_n = \frac{(-1)^n cosn + n}{n^2 + 2n + 1}$$
;

2.
$$u_n = \sqrt{n+1} - \sqrt{n}$$
;

3.
$$u_n = \frac{1}{\sqrt[3]{n+1} - \sqrt[3]{n}}$$
;

4.
$$u_n = \frac{n}{n!+1} \sin \frac{n!}{n+1}$$
;

5.
$$u_n=rac{a^n-b^n}{a^n+b^n}$$
, a et b sont deux réels strictement positifs ;

6.
$$u_n = \frac{(-1)^n + 1}{(-2)^n - 3^n}$$
;

7.
$$u_n = \frac{\lfloor \sqrt{n} \rfloor}{\sqrt{n}}$$
;

8.
$$u_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{k^2}\right) \dots \left(1 - \frac{1}{n^2}\right)$$
; (devoir) (indication: $\neq 0$: $1 - \frac{1}{k^2} = \frac{k^2 - 1}{k^2}$)

9.
$$u_n = \frac{2^n}{n!}$$
;

10.
$$u_n = \sum_{k=0}^{k=n} \frac{(-1)^k}{(\sqrt{2})^k}$$
; (indication: u_n est la somme des termes d'une suite géométrique)

11.
$$u_n = \frac{\sum_{k=1}^{k=n} k}{n^6}$$
; (devoir) (indication: $\sum_{k=1}^{k=n} k = \frac{n(n+1)}{2}$)

12. $u_n = \sum_{k=0}^{k=n} (a_k - a_{k+1})$, où (a_n) est une suite de nombres réels ; une telle suite est dite suite télescopique. (cours)

13.
$$u_n = \sum_{k=1}^{k=n} \frac{1}{k(k+1)}$$
; (indication: (u_n) est télescopique : $\forall k \neq 0$: $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$)

U.S.T.H.B. 2021/22

L1, MI8, Analyse 1

Séries d'exercices n°2 : Suites numériques réelles

14.
$$u_n = \sum_{k=n}^{k=2n} \frac{1}{k^2}$$
; 15. $u_n = \sum_{k=1}^{k=n} \frac{n}{n^2+k}$; (devoir) 16. $u_n = \sum_{k=1}^{k=n} \frac{3n+1}{3n^2+k}$; (devoir)

17.
$$u_n = a^n$$
, $a \in \mathbb{R}^*$

Exercicer 9

Déterminer la nature de la suite réelle (u_n) dans chacun des cas suivants

1.
$$u_n = \sum_{k=n}^{k=2n} \frac{1}{k}$$
; 2. $u_n = \frac{1 \times 3 \times ... \times (2n-1) \times (2n+1)}{3 \times 6 \times ... \times 3n \times (3n+3)}$; 3. $u_n = \frac{1 \times 2 \times ... \times (2n)}{1 \times 3 \times ... \times (2n+1)}$ (devoir)

4.
$$u_n = (1+a)(1+a^2)...(1+a^n)$$
 où $a \in]0,1[$ (devoir) (indication: $\forall x \in \mathbb{R}, 1+x \le e^x$)

Exercice 10 (devoir)

Soit la suite numérique réelle définie par $u_n = \left(\frac{(-1)^n}{n} + \frac{\sin(n^2)}{2}\right)^n$

- 1. Montrer que pour tout $n \ge 5$, $\left| \frac{(-1)^n}{n} + \frac{\sin(n^2)}{2} \right| < \frac{3}{4}$
- 2. En déduire à l'aide du théorème de l'encadrement que la suite est convergente vers zéro.

Exercice 11

Soit (u_n) la suite de nombres réels définie par

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{4u_n - 2}{u_n + 1}, \forall n \ge 0 \end{cases}$$

Pour $x \neq -1$, on pose la fonction $f(x) = \frac{4x-2}{x+1}$.

- 1. Etudier les variations de f sur $[1, +\infty[$ puis vérifier que $[1, +\infty[$ est stable par f.
- 2. Calculer f(1) puis montrer par récurrence que (u_n) est minoré par 1.
- 3. Donner la nature de la suite. Si elle est convergente déterminer sa limite.
- 4. En déduire que l'ensemble $A = \{u_n, n \ge 0\}$ est borné puis déterminer ses bornes supérieure et inférieure puis s'ils existent son maximum, son minimum.

L1, MI8, Analyse 1

Séries d'exercices n°2 : Suites numériques réelles

Exercice 12 (devoir)

Considérons la suite réelle (u_n) définie par $u_0 \in]0, +\infty[$ et $0 < u_{n+1} \le 2 - \frac{1}{u_n}, \forall n \ge 0$

Montrer que (u_n) est décroissante et minorée. En déduire qu'elle converge puis déterminer sa limite.

Exercice 13 (devoir)

En utilisant la théorème de la limite monotone, étuider la nature des suites suivantes.

1. La suite numérique
$$\ (u_n)$$
 définie par $\ u_0=\sqrt{2}$ $u_{n+1}=\sqrt{2+u_n}$, $\forall n\geq 0$

2. La suite numérique
$$\ (u_n)$$
 définie par $u_0=3$
$$u_{n+1}=\frac{2}{3}u_n+\frac{8}{3}\frac{1}{(u_n)^2}$$
, $\forall n\geq 0$

3. La suite numérique
$$\ (u_n)$$
 définie par $egin{cases} u_0 \in \]0,1] \\ u_{n+1} = rac{u_n}{2} + rac{(u_n)^2}{2}, orall n \geq 0 \end{cases}$

Exercice 14 (devoir)

Soient u_0 et v_0 deux réels strictement positifs tels que $u_0 < v_0$.

On définit deux suites (u_n) et (v_n) par $u_{n+1}=\frac{u_n+v_n}{2}$ et $v_{n+1}=\sqrt{u_nv_n}$, $\forall n\geq 0$

- 1. Montrer que $v_n \leq u_n$ quel que soit $n \in \mathbb{N}$.
- 2. Montrer que (u_n) est une suite décroissante et que (v_n) est une suite croissante
- 4. En déduire que les suites (u_n) et (v_n) sont convergentes et qu'elles ont même limite.

Exercice 15 (devoir)

- 1. Montrer que, pour tout entier n non nul, on a $\sqrt{n+1} \sqrt{n} \le \frac{1}{2\sqrt{n}}$
- 2. En déduire la nature de la suite (u_n) définie par $u_n=1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}$

U.S.T.H.B. 2021/22

L1, MI8, Analyse 1

Séries d'exercices n°2 : Suites numériques réelles

Exercice 16

- 1. Montrer que (u_{2n}) et (u_{2n+1}) convergent vers une même limite l si, et seulemnt si (u_n) converge vers l. (cours)
- 2. Soit (u_n) la suite réelle de terme général $u_n = \sum_{k=1}^{k=n} \frac{(-1)^k}{k}$

Montrer que les suites (u_{2n}) et (u_{2n+1}) sont adjacentes puis en déduire la nature de (u_n) .

Exercicer 17 (devoir)

1. Montrer que les suites (u_n) et (v_n) définies par

$$u_n = \sum_{k=0}^{k=n} \frac{1}{n!}$$
 et $v_n = u_n + \frac{1}{n!}$

sont convergentes et ont même limite.

2. Montrer que cette limite est un nombre irrationnel.

indication: supposer par l'absurde que la limite est un nombre rationnel

Exercice 18 (devoir)

Soit (u_n) une suite positive telle que $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=l$

- 1. Montrer que si l < 1, la suite (u_n) converge vers 0 et si l > 1, elle diverge vers $+\infty$
- 2. En considérant la suite (u_n) définie par $u_n=\frac{1}{n}$ et la suite (v_n) définie par $v_n=n$, montrer que dans le cas l=1 on ne peut rien dire quant à la nature de (u_n) .

Exercice 19

Montrer que la suite (u_n) définie par $u_n = \sum_{k=1}^{k=n} \frac{1}{k^2}$ est de Cauchy puis donner sa nature.

Exercice 20 (devoir)

Montrer que la suite (u_n) définie par $u_n = \sum_{k=1}^{k=n} \frac{1}{k^3}$ est de Cauchy puis donner sa nature.

U.S.T.H.B. 2021/22

L1, MI8, Analyse 1

Séries d'exercices n°2 : Suites numériques réelles

Exercicer 21

Montrer que la suite (u_n) définie par $u_n = \sum_{k=1}^{k=n} \frac{1}{\sqrt{k}}$ n'est pas de Cauchy. Donner sa nature.

Exercicer 22 (devoir)

Montrer que la suite (u_n) définie par $u_n = \sum_{k=1}^{k=n} \frac{1}{k}$ n'est pas de Cauchy. Donner sa nature.

Exercice 23 (devoir)

Montrer que toute suite (u_n) vérifiant pour tout entier $n \ge 1$,

$$|u_{n+1} - u_n| \le k|u_n - u_{n-1}|$$
 où $0 < k < 1$.

est une suite convergente. Indication: montrer qu'une telle suite est de Cauchy

Exercicer 24 (devoir)

Soit (u_n) la suite réelle définie par u_0 , u_1 et la relation de récurrence,

$$\forall n \in \mathbb{N}, 2u_{n+2} - 5u_{n+1} + 2u_n = 0$$

Soient (v_n) et (w_n) deux suites définies pour tout $n \in \mathbb{N}$, par

$$v_n = 3u_n - \frac{3}{2}u_{n+1}$$
 et $w_n = -\frac{3}{4}u_n + \frac{3}{2}u_{n+1}$

- 1. Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$. En déduire une expression de v_n en fonction de n, u_0 et u_1 .
- 2. Montrer que (w_n) est une suite géométrique de raison 2. En déduire une expression de w_n en fonction de n, u_0 et u_1 .
- 3. Calculer v_n+w_n de deux façons différentes. En déduire une expression de u_n en fonction de n, de u_0 et u_1 .
- 4. Selon les valeurs de u_0 et u_1 , déterminer si la suite (v_n) converge, et le cas échéant déterminer sa limite.