Universidad de Concepción

Facultad de Ciencias Físicas y Matemáticas

Departamento de Matemática

GAJ/EBC/CF/CMR/ARP

Cálculo III (521227) Práctica 9

Integrales en Coordenadas Esféricas.

- 1. Calcular $\iiint_E (x^2+y^2)dV$ donde E es la región acotada por las esferas $x^2+y^2+z^2=4$ y $x^2+y^2+z^2=4$.
- 2. Calcular $\iiint_E (x^2+y^2)dV$ donde E es la región solida dada por $x^2+y^2+z^2\leq 9$ y $y\geq 0$.
- 3. Calcular $\iiint_E \sqrt{x^2 + y^2 + z^2} dV$ donde E es la región acotada por las esferas $x^2 + y^2 + z^2 = 1$ y $x^2 + y^2 + z^2 = 4$ y dentro del cono $z = \sqrt{x^2 + y^2}$.
- 4. Encontrar el volumen del solido dentro de la esfera $x^2 + y^2 + z^2 = 4$, arriba del plano x, y y debajo del cono $z = \sqrt{x^2 + y^2}$.

Integrales con Cambios de Variables Generales.

- 5. Sea E el triángulo con vertices en (0,0), (1,0) y (0,1), y $f(x,y)=e^{x-y/x+y}$. Calcular $\iint_E f(x,y)dA$, haciendo el cambio de variable x-y=u y x+y=v.
- 6. Sea $E \subset \mathbb{R}^2$ la región acotada por y=0,2x+y=1,2x+y=5,-x+3y=1. Calcular $\iint_E \frac{x-3y}{2x+y} dA$.
- 7. Sea E la región en el primer cuadrante acotada por y=0,y=x,xy=1 y $x^2-y^2=1$. Calcular $\iint_E x^2+y^2dA$.
- 8. Sea E la región con $x \ge 0$ y acotada por $y+x^2=0, x-y=2$ y $x^2-2x+4y=0$. Calcular $\iint_E \frac{1}{(x-y+1)^2} dA$.

Aplicaciones Físicas.

Si $\delta(x,y,z)$ representa la densidad del solido E el punto (x,y,z), entonces la masa m esta dada por

$$m = \iiint_E \delta(x, y, z) dV$$

y los momentos con respecto a los planos coordenados estan dados por

$$M_{y,z} = \iiint_E x\delta(x,y,z)dV, M_{x,z} = \iiint_E y\delta(x,y,z)dV, M_{x,y} = \iiint_E z\delta(x,y,z)dV$$

El centro de masa del solido E se encuentra en el punto $(\bar{x}, \bar{y}, \bar{z})$ donde

$$\overline{x} = \frac{My,z}{m}, \overline{y} = \frac{Mx,z}{m}, \overline{z} = \frac{Mx,y}{m}.$$

Los momentos de inercia alrededor de los ejes coordenados estan dados por

$$I_x = \iiint_E (y^2 + z^2) \delta(x, y, z) dV, I_y = \iiint_E (x^2 + z^2) \delta(x, y, z) dV, I_z = \iiint_E (x^2 + y^2) \delta(x, y, z) dV$$

- 9. Encontrar el centro de masa del solido $E=\{(x,y,z)\colon x^2+y^2+z^2\leq 1, z\geq 0\}$ con densidad uniforme $\delta(x,y,z)=k$.
- 10. Encontrar el centro de masa del tetraedro acotado por los planos coordenados y el plano $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ con densidad uniforme $\delta(x, y, z) = k$.
- 11. Sea E el solido acotado arriba por $x^2 + y^2 + z^2 = 4$ y abajo por $z\sqrt{3} = \sqrt{x^2 + y^2}$. Encontrar el momento de inercia de E alrededor del eje z con $\delta(x, y, z) = 1$.