defined by the formal sum

$$\alpha \star_{\tau} \beta = \alpha \cup \beta + \sum_{\substack{d \in \mathsf{Eff}_{\neq 0}, \\ 0 \le \ell \le N-1}} \langle \alpha, \beta, \phi^{\ell} \rangle_{0,3,d} \ \phi_{\ell} \ e^{\langle \tau, d \rangle} \tag{\diamond}$$

where $\mathsf{Eff} \subseteq H_2(X,\mathbb{Z})$ is the set of effective curve classes.

The quantum product reduces to the classical cup product when $\langle \tau, d \rangle \to -\infty$ for non-zero effective class $d \in \mathsf{Eff}_{\neq 0}$. When X is Fano, the degree axiom of Gromov-Witten invariants [12] implies that $\langle \alpha, \beta, \gamma \rangle_{0,3,d} = 0$ when $\deg \alpha + \deg \beta + \deg \gamma \neq \langle c_1, d \rangle$. Therefore, the sum on the right-hand side of (\diamond) is finite.

All the genus-0 Gromov-Witten invariants can be encoded within a connection, known as the Dubrovin connection.

Definition 2.3 (Quantum Differential Equations [2, Chapter 10]). Let X be a Fano manifold. Let B be the trivial vector bundle with fibre $H^*(X)$ over $H^2(X) \times \mathbb{C}^{\times}$. Set the coordinate $(\tau, z) = (\sum_{j=1}^{b^2(X)} t_j \phi_j, z) \in H^2(X) \times \mathbb{C}^{\times}$. The **Dubrovin connection** on B can be defined by:

$$\nabla_{\partial_{t_j}} \varphi = \frac{1}{z} \phi_j \star_{\tau} \varphi,$$

$$\nabla_{z \partial_z} \varphi = -\frac{1}{z} c_1(X) \star_{\tau} \varphi + \mu(\varphi),$$

where $\mu: H^*(X) \to H^*(X)$; the Hodge grading operator, is a linear map defined by

$$\mu(\phi_{\ell}) = \frac{1}{2} (\deg \phi_{\ell} - \dim X) \phi_{\ell},$$

and $\varphi \in H^*(X)$ is regarded as a constant section of the trivial bundle.

The Dubrovin connection is a flat connection. Its fundamental solution along the τ -direction, i.e., sections satisfying $\nabla_{\partial_{t_j}}(L(\tau,z)\alpha) = 0$ for all $j = 1, \ldots, b^2(X)$, can be given by

$$L(\tau,z)\alpha := e^{-\tau/z}\alpha - \sum_{\substack{d \in \mathsf{Eff}_{\neq 0} \\ 0 \leq \ell \leq \dim H^*(X) - 1}} \left\langle \phi^{\ell}, \frac{e^{-\tau/z}\alpha}{z + \psi} \right\rangle_{0,2,d} e^{\langle \tau, d \rangle} \phi_{\ell},$$

where the second argument of the coefficients is expanded as

$$\frac{1}{z+\psi} = \sum_{k=0}^{\infty} (-1)^k z^{-(k+1)} \psi^k.$$

By the linearilty of the Gromov-Witten invariants, the coefficients are a sum of the Gromov-Witten invariants with gravitational descendants.