Netflix: which type of shows to produce and how to grow the business

In [1]:

```
1
2 import numpy as np
3 import pandas as pd
4 import regex as re
5 import seaborn as sns
6 import matplotlib.pyplot as plt
```

In [2]:

```
1
 netflix_data = pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/
```

Understanding the Data

Checking for Nulls, Duplicates

Data Type and Non - Null Counts

Non-Null Counts, Data Type

- There are a lot of nulls in Director, cast and country columns but only few in date_added, rating and duration columns
- · The data type of date added is not datetime

```
In [3]:
```

```
1
2 netflix_data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 8807 entries, 0 to 8806 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	show_id	8807 non-null	object
1	type	8807 non-null	object
2	title	8807 non-null	object
3	director	6173 non-null	object
4	cast	7982 non-null	object
5	country	7976 non-null	object
6	date_added	8797 non-null	object
7	release_year	8807 non-null	int64
8	rating	8803 non-null	object
9	duration	8804 non-null	object
10	listed_in	8807 non-null	object
11	description	8807 non-null	object

dtypes: int64(1), object(11) memory usage: 825.8+ KB

Null value counts

In [4]:

```
1
2 netflix_data.isna().sum()
```

Out[4]:

show_id	0
type	0
title	0
director	2634
cast	825
country	831
date_added	10
release_year	0
rating	4
duration	3
listed_in	0
description	0
dtype: int64	

Null value percentage per column

```
In [5]:
```

```
1
   netflix_data.isna().apply(lambda x: round((x.sum()/x.size)*100, 2))
 2
Out[5]:
show_id
                 0.00
                 0.00
type
title
                 0.00
director
                29.91
cast
                 9.37
                 9.44
country
date_added
                 0.11
                 0.00
release_year
                 0.05
rating
duration
                 0.03
listed_in
                 0.00
```

dtype: float64

description

Duplicates

- · There are no duplicated rows
- · There are no duplicates in the Title of the show

0.00

```
In [6]:
```

```
1
2 netflix_data.loc[netflix_data.duplicated()]
```

Out[6]:

```
show_id type title director cast country date_added release_year rating duration listed
```

```
In [7]:
```

```
1
2 netflix_data.loc[netflix_data[["title"]].duplicated(), "title"]
```

Out[7]:

```
Series([], Name: title, dtype: object)
```

Null Value Check

In [8]:

```
2 isna_full = netflix_data.isna()
3 isna_rows = isna_full.any(axis= 1)
4 null_rows = isna_rows[isna_rows > 0].index
5 isna_cols = isna_full.any(axis= 0)
  null_cols = isna_cols[isna_cols > 0].index
8 | null_rows, null_cols
```

Out[8]:

```
(Int64Index([ 0,
                    1,
                          2,
                                3, 4, 5, 6, 10, 11, 13,
            8775, 8780, 8783, 8784, 8785, 8795, 8796, 8797, 8800, 8803],
           dtype='int64', length=3475),
Index(['director', 'cast', 'country', 'date_added', 'rating', 'duration'],
dtype='object'))
```

The nuils in rating, duration

The Nulls in duration are due to the values being recorded in the rating column

In [9]:

2 netflix_data.loc[isna_full[["rating", "duration"]].any(axis= 1), :]

Out[9]:

	show_id	type	title	director	cast	country	date_added	release_year
5541	s5542	Movie	Louis C.K. 2017	Louis C.K.	Louis C.K.	United States	April 4, 2017	2017
5794	s5795	Movie	Louis C.K.: Hilarious	Louis C.K.	Louis C.K.	United States	September 16, 2016	2010
5813	s5814	Movie	Louis C.K.: Live at the Comedy Store	Louis C.K.	Louis C.K.	United States	August 15, 2016	2015
5989	s5990	Movie	13TH: A Conversation with Oprah Winfrey & Ava	NaN	Oprah Winfrey, Ava DuVernay	NaN	January 26, 2017	2017
6827	s6828	TV Show	Gargantia on the Verdurous Planet	NaN	Kaito Ishikawa, Hisako Kanemoto, Ai Kayano, Ka	Japan	December 1, 2016	2013
7312	s7313	TV Show	Little Lunch	NaN	Flynn Curry, Olivia Deeble, Madison Lu, Oisín	Australia	February 1, 2018	2015
7537	s7538	Movie	My Honor Was Loyalty	Alessandro Pepe	Leone Frisa, Paolo Vaccarino, Francesco Miglio	Italy	March 1, 2017	2015
4								>

In [10]:

```
duration_nulls = netflix_data.loc[isna_full[["duration"]].any(axis= 1), :]
2
 duration_nulls
```

Out[10]:

	show_id	type	title	director	cast	country	date_added	release_year	rating	dura
5541	s5542	Movie	Louis C.K. 2017	Louis C.K.	Louis C.K.	United States	April 4, 2017	2017	74 min	
5794	s5795	Movie	Louis C.K.: Hilarious	Louis C.K.	Louis C.K.	United States	September 16, 2016	2010	84 min	
5813	s5814	Movie	Louis C.K.: Live at the Comedy Store	Louis C.K.	Louis C.K.	United States	August 15, 2016	2015	66 min	
4										•

The nulls in date_added

• There seems to be no appearent reason behing the Nulls in date_added

```
In [11]:
```

```
2 netflix_data.loc[isna_full[["date_added"]].any(axis= 1), :].head()
```

Out[11]:

	show_id	type	title	director	cast	country	date_added	release_year	ratir
6066	s6067	TV Show	A Young Doctor's Notebook and Other Stories	NaN	Daniel Radcliffe, Jon Hamm, Adam Godley, Chris	United Kingdom	NaN	2013	T' N
6174	s6175	TV Show	Anthony Bourdain: Parts Unknown	NaN	Anthony Bourdain	United States	NaN	2018	T' P
6795	s6796	TV Show	Frasier	NaN	Kelsey Grammer, Jane Leeves, David Hyde Pierce	United States	NaN	2003	T' P
6806	s6807	TV Show	Friends	NaN	Jennifer Aniston, Courteney Cox, Lisa Kudrow,	United States	NaN	2003	TV-1
6901	s6902	TV Show	Gunslinger Girl	NaN	Yuuka Nanri, Kanako Mitsuhashi, Eri Sendai, Am	Japan	NaN	2008	TV-1

The nulls in director, cast and country

· There seems to be no immediately apparent reason behind the Nulls in director, cast, country

In [12]:

2 netflix_data.loc[isna_full[["director", "cast", "country"]].any(axis= 1), :].head()

Out[12]:

	show_id	type	title	director	cast	country	date_added	release_year	rating
0	s 1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	September 25, 2021	2020	PG- 13
1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2021	TV- MA
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	September 24, 2021	2021	TV- MA
3	s4	TV Show	Jailbirds New Orleans	NaN	NaN	NaN	September 24, 2021	2021	TV- MA
4	s 5	TV Show	Kota Factory	NaN	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	September 24, 2021	2021	TV- MA

```
In [13]:
```

```
1
2 netflix_data.loc[isna_full[["director", "cast", "country"]].all(axis= 1), :].head()
```

Out[13]:

show_id	type	title	director	cast	country	date_added	release_year	rating	dura
s4	TV Show	Jailbirds New Orleans	NaN	NaN	NaN	September 24, 2021	2021	TV- MA	Sea
s11	TV Show	Vendetta: Truth, Lies and The Mafia	NaN	NaN	NaN	September 24, 2021	2021	TV- MA	Sea
s15	TV Show	Crime Stories: India Detectives	NaN	NaN	NaN	September 22, 2021	2021	TV- MA	Sea
s75	TV Show	The World's Most Amazing Vacation Rentals	NaN	NaN	NaN	September 14, 2021	2021	TV- PG	Seas
s124	TV Show	Luv Kushh	NaN	NaN	NaN	September 2, 2021	2012	TV-Y7	Sea
	s4 s11 s15	s4 TV Show s11 TV Show s15 TV Show	s4 TV Show Drieans Vendetta: Truth, Lies and The Mafia TV Show India Detectives The World's Amazing Vacation Rentals TV Live Kuebb	s4 TV New Orleans Vendetta: TV Truth, Lies and The Mafia TV Stories: India Detectives The World's Show Amazing Vacation Rentals TV Lux Kuchb NaN	s4 TV Show New Orleans Vendetta: s11 TV Truth, Lies and The Mafia S15 TV Stories: India Detectives The World's Show Amazing Vacation Rentals TV Livy Kuahb NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	s4 TV Show Orleans NaN NaN NaN NaN NaN NaN Orleans Vendetta: TV Truth, Lies NaN	s4 TV New Orleans NaN NaN NaN September 24, 2021 Vendetta: s11 TV Truth, Lies Show and The Mafia NaN NaN NaN September 24, 2021 Crime S15 TV Stories: India Detectives The World's Show Amazing Vacation Rentals TV Lux Kushb NaN NaN NaN September 14, 2021	s4 TV Show New Orleans NaN NaN NaN September 24, 2021 2021 TV Truth, Lies and The Mafia TV Show India Detectives The World's Show Amazing Vacation Rentals NaN NaN NaN NaN September 24, 2021 2021 NaN NaN NaN NaN September 22, 2021 2021 September 22, 2021 2021 TV Most Amazing Vacation Rentals	s4 TV New Orleans NaN NaN NaN September 24, 2021 TV-MA Vendetta: s11 TV Truth, Lies and The Mafia NaN NaN NaN September 24, 2021 TV-MA TV Stories: Show India Detectives The World's Show Amazing Vacation Rentals NaN NaN NaN September 2021 TV-MA NaN September 2021 TV-MA September 2021 TV-MA September 2021 TV-MA TV-MOST NaN NaN NaN September 2021 TV-MA September 2021 TV-MA

Null Value and Datatype correction

Null value correction in duration

- · The null values in duration are replaced with their corresponding values from rating
- · Now there are more nulls in rating

In [14]:

```
netflix_data.loc[isna_full[["duration"]].any(axis= 1), "duration"] = duration_nulls["ra
netflix_data.loc[isna_full[["duration"]].any(axis= 1), "rating"] = duration_nulls["duration"]
netflix_data.loc[isna_full[["duration"]].any(axis= 1), :]
```

Out[14]:

	show_id	type	title	director	cast	country	date_added	release_year	rating	dura
5541	s5542	Movie	Louis C.K. 2017	Louis C.K.	Louis C.K.	United States	April 4, 2017	2017	NaN	74
5794	s5795	Movie	Louis C.K.: Hilarious	Louis C.K.	Louis C.K.	United States	September 16, 2016	2010	NaN	84
5813	s5814	Movie	Louis C.K.: Live at the Comedy Store	Louis C.K.	Louis C.K.	United States	August 15, 2016	2015	NaN	6€
4										•

Recheck of Null value counts

In [15]:

#

Column

```
1
2 netflix_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8807 entries, 0 to 8806
Data columns (total 12 columns):

- - ---------------0 show id 8807 non-null object 1 8807 non-null type object 2 title 8807 non-null object 3 director 6173 non-null object

Non-Null Count Dtype

4 cast 7982 non-null object 5 country 7976 non-null object 6 date_added 8797 non-null object 7 release_year 8807 non-null int64

8 rating 8800 non-null object 9 duration 8807 non-null object 10 listed_in 8807 non-null object

10 listed_in 8807 non-null object 11 description 8807 non-null object

dtypes: int64(1), object(11)
memory usage: 825.8+ KB

```
In [16]:
```

```
1
2 netflix_data.isna().sum()
```

Out[16]:

```
show_id
                   0
                   0
type
title
                   0
director
                2634
cast
                 825
country
                 831
date_added
                  10
                   0
release_year
                   7
rating
duration
                   0
listed_in
                   0
description
dtype: int64
```

In [17]:

```
1
2 netflix_data.isna().apply(lambda x: round((x.sum()/x.size)*100, 2))
```

Out[17]:

```
show_id
                 0.00
type
                 0.00
title
                 0.00
director
                29.91
cast
                 9.37
country
                 9.44
                 0.11
date_added
                 0.00
release_year
rating
                 0.08
duration
                 0.00
listed_in
                 0.00
description
                 0.00
dtype: float64
```

Datatype correction in date_added

The values in date_added are changed to datetime datatype

In [18]:

```
netflix_data["date_added"] = pd.to_datetime(netflix_data["date_added"], infer_datetime
2
4 netflix_data.head()
```

Out[18]:

	show_id	type	title	director	cast	country	date_added	release_year	rating
0	s 1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	2021-09-25	2020	PG- 13
1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021	TV- MA
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	2021-09-24	2021	TV- MA
3	s4	TV Show	Jailbirds New Orleans	NaN	NaN	NaN	2021-09-24	2021	TV- MA
4	s5	TV Show	Kota Factory	NaN	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	2021-09-24	2021	TV- MA
4									•

```
In [19]:
```

```
1
 2 netflix_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8807 entries, 0 to 8806
Data columns (total 12 columns):
    Column
                 Non-Null Count Dtype
#
---
    ____
                  -----
                                ----
0
    show_id
                 8807 non-null
                                 object
1
    type
                 8807 non-null
                                 object
2
    title
                 8807 non-null
                                 object
3
    director
                 6173 non-null
                                 object
4
    cast
                 7982 non-null
                                 object
5
    country
                 7976 non-null
                                 object
    date_added 8797 non-null
6
                                 datetime64[ns]
    release_year 8807 non-null
7
                                 int64
8
    rating
                 8800 non-null
                                 object
9
    duration
                 8807 non-null
                                 object
10 listed in
                 8807 non-null
                                 object
11 description 8807 non-null
                                 object
dtypes: datetime64[ns](1), int64(1), object(10)
memory usage: 825.8+ KB
```

Null value correction in date_added

In [20]:

```
1
2 isna_full = netflix_data.isna()
3 isna_rows = isna_full.any(axis= 1)
4 | null_rows = isna_rows[isna_rows > 0].index
  isna_cols = isna_full.any(axis= 0)
  null_cols = isna_cols[isna_cols > 0].index
8 null rows, null cols
```

Out[20]:

```
(Int64Index([
                      1,
                            2,
                                  3,
                                         4,
                                               5,
                                                     6,
                                                          10,
                                                                      13,
                0,
                                                                11,
             8775, 8780, 8783, 8784, 8785, 8795, 8796, 8797, 8800, 8803],
            dtype='int64', length=3475),
 Index(['director', 'cast', 'country', 'date_added', 'rating'], dtype='objec
t'))
```

In [21]:

2 netflix_data.loc[isna_full["date_added"], :].head()

Out[21]:

	show_id	type	title	director	cast	country	date_added	release_year	ratir
6066	s6067	TV Show	A Young Doctor's Notebook and Other Stories	NaN	Daniel Radcliffe, Jon Hamm, Adam Godley, Chris	United Kingdom	NaT	2013	T' N
6174	s6175	TV Show	Anthony Bourdain: Parts Unknown	NaN	Anthony Bourdain	United States	NaT	2018	T' P
6795	s6796	TV Show	Frasier	NaN	Kelsey Grammer, Jane Leeves, David Hyde Pierce	United States	NaT	2003	T' P
6806	s6807	TV Show	Friends	NaN	Jennifer Aniston, Courteney Cox, Lisa Kudrow,	United States	NaT	2003	TV-1
6901	s6902	TV Show	Gunslinger Girl	NaN	Yuuka Nanri, Kanako Mitsuhashi, Eri Sendai, Am	Japan	NaT	2008	TV-1
4									•

distribution of day, month added

- Most of the movies and TV Shows are released on start of the month
- · Mosat of the movies or shows are released on the start or end of the year

```
In [22]:
 1
    netflix_data.dropna().date_added.dt.day.value_counts().head(5)
 2
Out[22]:
      1519
1
       408
15
2
       208
16
       188
31
       165
Name: date_added, dtype: int64
In [23]:
 1
    netflix_data.dropna().date_added.dt.month.value_counts().head(5)
Out[23]:
10
      491
12
      490
1
      489
4
      471
3
      469
Name: date_added, dtype: int64
```

Strategy for imputation

The nulls in date added are imputed to be on the strart date of the release year

Note: As we move forward we will find that most movies are added tonetflix on the year they're released

```
In [24]:
```

```
1 2 import datetime as dt
```

```
In [25]:
```

```
1 | 2 | pd.to_datetime([dt.date(2022, 1, 1)], infer_datetime_format=True)
```

Out[25]:

DatetimeIndex(['2022-01-01'], dtype='datetime64[ns]', freq=None)

In [26]:

```
2
  temp = netflix_data.loc[isna_full["date_added"], "release_year"].apply(lambda x: dt.dat
  temp = pd.to_datetime(temp, infer_datetime_format= True)
4
5
6
  netflix_data.loc[isna_full["date_added"], "date_added"] = temp
7
8
9
  netflix_data.loc[isna_full["date_added"], "date_added"]
```

Out[26]:

```
6066
       2013-01-01
       2018-01-01
6174
       2003-01-01
6795
6806
       2003-01-01
6901
       2008-01-01
7196
       2010-01-01
7254
       2012-01-01
       2016-01-01
7406
7847
       2015-01-01
8182
       2015-01-01
Name: date_added, dtype: datetime64[ns]
```

In [27]:

```
2
  netflix_data["date_added"] = pd.to_datetime(netflix_data["date_added"], infer_datetime]
3
  netflix_data.head()
```

Out[27]:

	show_id	type	title	director	cast	country	date_added	release_year	rating
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	2021-09-25	2020	PG- 13
1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021	TV- MA
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	2021-09-24	2021	TV- MA
3	s4	TV Show	Jailbirds New Orleans	NaN	NaN	NaN	2021-09-24	2021	TV- MA
4	s5	TV Show	Kota Factory	NaN	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	2021-09-24	2021	TV- MA

Dropping description column

• Since the analysis of show description is not currently interesting, it has been dropped

In [28]:

```
1
2 netflix_data.drop(["description"], axis= 1, inplace= True)
```

In [29]:

```
2 netflix_data.columns
```

Out[29]:

```
Index(['show_id', 'type', 'title', 'director', 'cast', 'country', 'date_adde
       'release_year', 'rating', 'duration', 'listed_in'],
      dtype='object')
```

null values correction in rating

- · based on the below image, the rating for the null values can be put as
 - NR for movies
 - TV-MA for TV Shows

Local Rating Values	Kids (All)	Older Kids (7+)	Teens (13+)	Young Adults (16+)	Adults <i>(18+)</i>	
					NC-17	
МРАА	G	PG	PG-13		NR	
(Movies)					(18+) NC-17	
					R	
	TV-G	TV-Y7				
TVPG (TV)		TV-Y7-FV		TV-14	TV-MA	
	TV-Y	TV-PG				

In [30]:

```
netflix_data.loc[(isna_full.rating) & (netflix_data.type == "Movie"), "rating"] = "NR"
2
  netflix_data.loc[(isna_full.rating) & (netflix_data.type == "TV Show"), "rating"] = "TV
```

In [31]:

2 netflix_data.loc[isna_full.rating]

Out[31]:

	show_id	type	title	director	cast	country	date_added	release_year
5541	s5542	Movie	Louis C.K. 2017	Louis C.K.	Louis C.K.	United States	2017-04-04	2017
5794	s5795	Movie	Louis C.K.: Hilarious	Louis C.K.	Louis C.K.	United States	2016-09-16	2010
5813	s5814	Movie	Louis C.K.: Live at the Comedy Store	Louis C.K.	Louis C.K.	United States	2016-08-15	2015
5989	s5990	Movie	13TH: A Conversation with Oprah Winfrey & Ava	NaN	Oprah Winfrey, Ava DuVernay	NaN	2017-01-26	2017
6827	s6828	TV Show	Gargantia on the Verdurous Planet	NaN	Kaito Ishikawa, Hisako Kanemoto, Ai Kayano, Ka	Japan	2016-12-01	2013
7312	s7313	TV Show	Little Lunch	NaN	Flynn Curry, Olivia Deeble, Madison Lu, Oisín	Australia	2018-02-01	2015
7537	s7538	Movie	My Honor Was Loyalty	Alessandro Pepe	Leone Frisa, Paolo Vaccarino, Francesco Miglio	Italy	2017-03-01	2015
4								>

Null Value Re-check

In [32]:

2 netflix_data.head()

Out[32]:

	show_id	type	title	director	cast	country	date_added	release_year	rating
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	2021-09-25	2020	PG- 13
1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021	TV- MA
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	2021-09-24	2021	TV- MA
3	s4	TV Show	Jailbirds New Orleans	NaN	NaN	NaN	2021-09-24	2021	TV- MA
4	s5	TV Show	Kota Factory	NaN	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	2021-09-24	2021	TV- MA

```
In [33]:
```

```
1
2 netflix_data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 8807 entries, 0 to 8806 Data columns (total 11 columns):

```
Column
               Non-Null Count Dtype
---
    ----
                 -----
                               ----
                               object
0
    show_id
                8807 non-null
1
    type
                8807 non-null
                               object
2
    title
               8807 non-null
                               object
3
                6173 non-null
                               object
    director
4
    cast
                7982 non-null
                               object
5
                               object
    country
               7976 non-null
    date_added 8807 non-null
6
                               datetime64[ns]
7
    release_year 8807 non-null
                               int64
              8807 non-null
8
                               object
    rating
9
    duration
                8807 non-null
                               object
               8807 non-null
10 listed in
                               object
dtypes: datetime64[ns](1), int64(1), object(9)
memory usage: 757.0+ KB
```

In [34]:

```
1
2 netflix_data.isna().sum()
```

Out[34]:

show_id	0
type	0
title	0
director	2634
cast	825
country	831
date_added	0
release_year	0
rating	0
duration	0
listed_in	0
dtype: int64	

```
In [35]:
```

```
1
 2 netflix_data.isna().apply(lambda x: round((x.sum()/x.size)*100, 2))
Out[35]:
show_id
                 0.00
                 0.00
type
title
                 0.00
                29.91
director
                9.37
cast
                9.44
country
date_added
                 0.00
                 0.00
release_year
rating
                 0.00
duration
                 0.00
listed_in
                 0.00
dtype: float64
```

In [36]:

```
1
2 isna_full = netflix_data.isna()
3 isna_rows = isna_full.any(axis= 1)
4 | null_rows = isna_rows[isna_rows > 0].index
5 isna_cols = isna_full.any(axis= 0)
  null_cols = isna_cols[isna_cols > 0].index
7
8 null_rows, null_cols
```

Out[36]:

```
(Int64Index([ 0,
                     1,
                           2,
                                3,
                                    4, 5, 6,
                                                       10,
                                                            11,
                                                                  13,
            8775, 8780, 8783, 8784, 8785, 8795, 8796, 8797, 8800, 8803],
           dtype='int64', length=3471),
Index(['director', 'cast', 'country'], dtype='object'))
```

In [37]:

```
2 netflix_data.loc[isna_rows, isna_cols]
```

Out[37]:

	director	cast	country
0	Kirsten Johnson	NaN	United States
1	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa
2	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN
3	NaN	NaN	NaN
4	NaN	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India
8795	NaN	Mike Liscio, Emily Bauer, Billy Bob Thompson,	Japan, Canada
8796	NaN	Gökhan Atalay, Payidar Tüfekçioglu, Baran Akbu	Turkey
8797	NaN	Michael Johnston, Jessica Gee-George, Christin	United States, France, South Korea, Indonesia
8800	NaN	Sanam Saeed, Fawad Khan, Ayesha Omer, Mehreen	Pakistan
8803	NaN	NaN	NaN

3471 rows × 3 columns

Distribution of null vs non-null columns

· ignoring the null values in rating

In [38]:

```
2 netflix_data.loc[isna_rows].show_id.nunique()
```

Out[38]:

3471

nulls vs show type

· Most of the nulls are for TV Shows

```
In [39]:
```

```
1
2 netflix_data.loc[isna_rows].type.value_counts()
```

Out[39]:

TV Show 2529 942 Movie

Name: type, dtype: int64

In [40]:

```
1
2 netflix_data.loc[isna_rows].type.value_counts() / 3475 * 100
```

Out[40]:

72.776978 TV Show 27.107914 Movie

Name: type, dtype: float64

nulls vs listed genre

· Most of the nulls are for International TV Shows, Documentaries, Kid's TV

In [41]:

```
1
2 netflix_data.loc[isna_rows].listed_in.value_counts().head(10)
```

Out[41]:

Kids' TV	216				
Documentaries	203				
Documentaries, International Movies					
International TV Shows, TV Dramas	115				
Reality TV	94				
Kids' TV, TV Comedies	94				
Crime TV Shows, International TV Shows, TV Dramas	93				
International TV Shows, Romantic TV Shows, TV Dramas	89				
International TV Shows, Romantic TV Shows, TV Comedies	88				
Anime Series, International TV Shows	83				
Name: listed_in, dtype: int64					

```
In [42]:
```

```
2 netflix_data.loc[isna_rows].listed_in.str.split(", ").explode().value_counts().head(10)
```

Out[42]:

International TV Shows	1264
TV Dramas	711
TV Comedies	551
Documentaries	478
Kids' TV	438
Crime TV Shows	432
International Movies	383
Docuseries	381
Romantic TV Shows	349
Reality TV	252
<pre>Name: listed_in, dtype:</pre>	int64

nulls vs rating

• Most of the nulls are for TV-MA (50 %)

In [43]:

```
2 netflix_data.loc[isna_rows].rating.value_counts().head(10)
```

Out[43]:

TV-MA	1387
TV-14	946
TV-PG	432
TV-Y7	258
TV-Y	231
TV-G	136
NR	23
R	21
PG-13	20
PG	12

Name: rating, dtype: int64

```
In [44]:
```

```
1
2 netflix_data.loc[isna_rows].rating.value_counts() / 3475 * 100
```

Out[44]:

```
TV-MA
            39.913669
TV-14
            27.223022
TV-PG
            12.431655
TV-Y7
             7.424460
TV-Y
             6.647482
             3.913669
TV-G
NR
             0.661871
             0.604317
R
PG-13
             0.575540
PG
             0.345324
TV-Y7-FV
             0.086331
G
             0.028777
NC-17
             0.028777
```

Name: rating, dtype: float64

nulls vs release_year

Most of the nulls are for the recent years (2018- 2021)

In [45]:

```
1
 netflix_data.loc[isna_rows].release_year.value_counts().head(10)
```

Out[45]:

```
2019
        511
2020
        511
2018
        499
2021
        431
2017
        374
2016
        325
        209
2015
2014
        110
2013
         91
2012
         74
```

Name: release_year, dtype: int64

director nulls vs genre

Most of the nulls are for International TV, Dramas, Comedies, Kid's TV

In [46]:

```
1
2 isna_full.director.sum()
```

Out[46]:

2634

```
In [47]:
```

```
2 netflix_data.loc[isna_full.director].listed_in.str.split(", ").explode().value_counts()
```

Out[47]:

International TV Shows	1223
TV Dramas	702
TV Comedies	539
Kids' TV	433
Crime TV Shows	401
Romantic TV Shows	341
Docuseries	335
Reality TV	249
British TV Shows	228
Anime Series	165
<pre>Name: listed_in, dtype:</pre>	int64

director nulls vs rating

· Most of the nulls are for TV-MA

In [48]:

```
2 netflix_data.loc[isna_full.director].rating.value_counts().head(10)
```

Out[48]:

TV-MA	1092
TV-14	703
TV-PG	325
TV-Y7	202
TV-Y	195
TV-G	102
NR	6
R	4
TV-Y7-FV	2
PG-13	1

Name: rating, dtype: int64

director nulls vs release year

• Most of the nulls are for recent years (2017 - 2021)

```
In [49]:
 1
 2 netflix_data.loc[isna_full.director].release_year.value_counts().head(10)
Out[49]:
2020
        405
2019
        401
2018
        387
2021
       295
2017
       259
       249
2016
2015
       160
2014
       85
2013
         63
2012
         62
Name: release_year, dtype: int64
```

cast nulls vs genre

• Most of the nulls are for Documentaries, International, Reality, Crime, Kid's TV, Science & nature

```
In [50]:
```

```
2 isna_full.cast.sum()
```

Out[50]:

In [51]:

```
1
 netflix_data.loc[isna_full.cast].listed_in.value_counts().head(10)
```

Out[51]:

Documentaries	183
Documentaries, International Movies	117
Docuseries	47
Crime TV Shows, Docuseries	36
Reality TV	31
Documentaries, Sports Movies	30
Crime TV Shows, Docuseries, International TV Shows	24
Kids' TV	23
Documentaries, International Movies, Sports Movies	21
Documentaries, Music & Musicals	20
Name: listed_in, dtype: int64	

```
In [52]:
```

```
1
 netflix_data.loc[isna_full.cast].listed_in.str.split(", ").explode().value_counts().hea
2
```

Out[52]:

Documentaries 424 Docuseries 207 International Movies 178 International TV Shows 109 Reality TV 92 Crime TV Shows 75 Sports Movies 54 British TV Shows 45 Kids' TV 42 Science & Nature TV 35 Name: listed_in, dtype: int64

cast nulls vs rating

· Most of the nulls are for TV-MA, TV-14, TV-PG

In [53]:

```
1
 netflix_data.loc[isna_full.cast].rating.value_counts().head(10)
```

Out[53]:

TV-MA 326 TV-14 205 TV-PG 144 TV-Y 39 TV-G 37 TV-Y7 24 NR 17 PG-13 13 R 9 PG 8

Name: rating, dtype: int64

cast nulls vs release year

• Most of the nulls are for recently released movies (2017 - 2021)

```
In [54]:
 1
   netflix_data.loc[isna_full.cast].release_year.value_counts().head(10)
 2
Out[54]:
```

2020 126 2018 121 2017 120 2019 113 2021 98 2016 98 46 2015 24 2014 2013 20 2012 12

Name: release_year, dtype: int64

country nulls vs genre

Most of the nulls are for International, Dramas, Children & Families, Kid's TV

```
In [55]:
```

```
1
 isna_full.country.sum()
2
```

Out[55]:

831

In [56]:

```
2 netflix_data.loc[isna_full.country].listed_in.value_counts().head(10)
```

Out[56]:

```
Children & Family Movies
                                                           70
Kids' TV
                                                            44
International TV Shows, TV Dramas
                                                            36
Stand-Up Comedy
                                                            31
International TV Shows, Romantic TV Shows, TV Comedies
                                                           28
International TV Shows, Romantic TV Shows, TV Dramas
                                                            27
Dramas, International Movies
                                                            25
                                                            23
Movies
Documentaries, International Movies
                                                           21
Comedies, International Movies
                                                            21
Name: listed_in, dtype: int64
```

```
In [57]:
```

Kids' TV

TV Comedies

```
netflix_data.loc[isna_full.country].listed_in.str.split(", ").explode().value_counts().
 2
Out[57]:
International TV Shows
                             223
International Movies
                             209
Dramas
                             110
Children & Family Movies
                             106
TV Dramas
                             100
Comedies
                              94
```

75 Documentaries Romantic TV Shows 71 Name: listed_in, dtype: int64

country nulls vs rating

· Most of the nulls are for TV-MA, TV-14

81

80

In [58]:

```
1
 netflix_data.loc[isna_full.country].rating.value_counts().head(10)
```

Out[58]:

TV-MA	276	
TV-14	230	
TV-Y7	98	
TV-PG	90	
TV-Y	80	
TV-G	30	
R	11	
PG-13	8	
PG	6	
TV-Y7-FV	1	

Name: rating, dtype: int64

country nulls vs release year

· Most of the nulls are for recently released Shows

```
In [59]:
 1
   netflix_data.loc[isna_full.country].release_year.value_counts().head(10)
 2
Out[59]:
2021
        209
2019
        117
2018
        109
2020
        101
2017
         66
         64
2016
2015
         44
2014
         19
2013
         18
2010
         16
```

nulls vs genres

Name: release_year, dtype: int64

Nearly half the null values are from the genres that are generic and may involve, anonymous people

```
In [60]:
```

```
1
 2 netflix_data.loc[isna_full[["director", "cast", "country"]].any(axis= 1), :].show_id.nu
Out[60]:
3471
```

In [61]:

```
temp = netflix_data.loc[isna_full[["director", "cast", "country"]].any(axis= 1), :]["li"]
2
3
4
  temp_nulls = netflix_data.loc[isna_full[["director", "cast", "country"]].any(axis= 1),
5
7
  temp_nulls.show_id.nunique()
```

Out[61]:

```
In [62]:
```

```
1
 temp_nulls.listed_in.str.split(", ").explode().value_counts().head(10)
2
```

Out[62]:

Documentaries 478 Kids' TV 438 Docuseries 381 Reality TV 252 International TV Shows 220 International Movies 181 TV Comedies 161 British TV Shows 151 Crime TV Shows 107 Science & Nature TV 91 Name: listed_in, dtype: int64

Null value correction in cast, director

- Based on the null value analysis above we may conclude that the null values in cast, director are so because they people involved were mostly general public/animals/animation or anonymous
- hence, we may replace all the null values as "anonymous" in cast and director

In [63]:

```
2
  netflix_data.loc[isna_full.director, "director"] = "Anonymous"
  netflix_data.loc[isna_full.cast, "cast"] = "Anonymous"
  netflix_data.loc[isna_full[["director", "cast"]].any(axis= 1)].head()
```

Out[63]:

	show_id	type	title	director	cast	country	date_added	release_year	ratir
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Anonymous	United States	2021-09-25	2020	P(
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021	T' N
3	s4	TV Show	Jailbirds New Orleans	Anonymous	Anonymous	NaN	2021-09-24	2021	T' N
4	s5	TV Show	Kota Factory	Anonymous	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	2021-09-24	2021	T' N
10	s11	TV Show	Vendetta: Truth, Lies and The Mafia	Anonymous	Anonymous	NaN	2021-09-24	2021	T' M

Null value correction in country

• The nulls in the country may be replaced with the most popular country

In [64]:

```
2 netflix_data.loc[~isna_full.country].country.value_counts().head(5)
```

Out[64]:

United States 2818 972 India United Kingdom 419 Japan 245 South Korea 199 Name: country, dtype: int64

In [65]:

```
1
  netflix_data.loc[isna_full.country, "country"] = "United States"
2
 netflix_data.loc[isna_full[["director", "cast", "country"]].any(axis= 1)].head()
```

Out[65]:

0s1MovieJohnson Is DeadKirsten Johnson Is DeadAnonymousUnited States2021-09-252020Property of States1s2TV ShowBlood & WaterAnonymousAnonymous Anonymous Ngema, Gail Mabalane, ThabanSouth Africa Gail Mabalane, Thaban2021-09-242021Tohnson Thaban2s3TV ShowGanglandsJulien LeclercqSami Bouajila, Tracy Gotoas, SamuelUnited States2021-09-242021Tohnson Thaban
1 s2 TV Blood & Anonymous Ngema, Gail Mabalane, Thaban Sami Bouajila, Tracy Show Ganglands Leclercy Gotoas, States 2021-09-24 2021 T
Bouajila, Tracy United 2021-09-24 2021 M Show Ganglands Leclercy Gotoas, States 2021-09-24 2021 M
Jouy, Nabi
3 s4 TV Show New Anonymous Anonymous United States 2021-09-24 2021 T N
Mayur More, Jitendra Kumar, Ranjan Raj, Alam K
→

Column transformation for Analysis

Transforming duration to numeric

- · For movies: we can get rid of mins
- For TV Shows: we can get rid of Season/s

In [66]:

```
2 netflix_data.head()
```

Out[66]:

	show_id	type	title	director	cast	country	date_added	release_year	ratir
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Anonymous	United States	2021-09-25	2020	P(
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021	T N
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	United States	2021-09-24	2021	T N
3	s4	TV Show	Jailbirds New Orleans	Anonymous	Anonymous	United States	2021-09-24	2021	T N
4	s5	TV Show	Kota Factory	Anonymous	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	2021-09-24	2021	T N
4									•

In [67]:

```
1
  netflix_data["duration"].apply(lambda x: x.split(" ")[0]).value_counts(dropna= False).i
2
3
4
```

Out[67]:

0

In [68]:

```
1
 netflix_data["duration"] = pd.to_numeric(netflix_data["duration"].apply(lambda x: x.sp]
```

In [69]:

2 netflix_data

Out[69]:

	show_id	type	title	director	cast	country	date_added	release_year
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Anonymous	United States	2021-09-25	2020
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	United States	2021-09-24	2021
3	s4	TV Show	Jailbirds New Orleans	Anonymous	Anonymous	United States	2021-09-24	2021
4	s5	TV Show	Kota Factory	Anonymous	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	2021-09-24	2021
8802	s8803	Movie	Zodiac	David Fincher	Mark Ruffalo, Jake Gyllenhaal, Robert Downey J	United States	2019-11-20	2007
8803	s8804	TV Show	Zombie Dumb	Anonymous	Anonymous	United States	2019-07-01	2018
8804	s8805	Movie	Zombieland	Ruben Fleischer	Jesse Eisenberg, Woody Harrelson, Emma Stone,	United States	2019-11-01	2009
8805	s8806	Movie	Zoom	Peter Hewitt	Tim Allen, Courteney Cox, Chevy Chase, Kate Ma	United States	2020-01-11	2006
8806	s8807	Movie	Zubaan	Mozez Singh	Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanan	India	2019-03-02	2015

Adding min_age column

• For a more insightfull analysis, the min_age for a rating can be derived based on the below image

Local Rating Values	Kids (All)	Older Kids (7+)	Teens (13+)	Young Adults (16+)	Adults <i>(18+)</i>
					NC-17
МРАА	G	PG	PG-13		NR
(Movies)					Unrated
					R
	TV-G	TV-Y7			
TVPG (TV)		TV-Y7-FV		TV-14	TV-MA
	TV-Y	TV-PG			

In [70]:

```
1
 2
   def min_age_rating(rating):
        if (rating == "G") | (rating == "TV-G") | (rating == "TV-Y"):
 3
 4
            return 0
        if (rating == "PG") | (rating == "TV-Y7") | (rating == "TV-Y7-FV") | (rating == "TV-Y7-FV") |
 5
 6
            return 7
 7
        if (rating == "PG-13"):
 8
            return 13
 9
        if (rating == "TV-14"):
10
            return 16
        if (rating == "NC-17") | (rating == "NR") | (rating == "UR") | (rating == "R") | (r
11
12
            return 18
13
   netflix_data["min_age"] = netflix_data["rating"].apply(min_age_rating)
14
15
16 netflix_data.head()
```

Out[70]:

	show_id	type	title	director	cast	country	date_added	release_year	ratir
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Anonymous	United States	2021-09-25	2020	P(
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021	T N
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	United States	2021-09-24	2021	T N
3	s4	TV Show	Jailbirds New Orleans	Anonymous	Anonymous	United States	2021-09-24	2021	T N
4	s5	TV Show	Kota Factory	Anonymous	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	2021-09-24	2021	T N

Recheck of Null value counts

· All nulls have been imputed

```
In [71]:
```

```
2 netflix_data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 8807 entries, 0 to 8806 Data columns (total 12 columns):

	()		
#	Column	Non-Null Count	Dtype
0	show_id	8807 non-null	object
1	type	8807 non-null	object
2	title	8807 non-null	object
3	director	8807 non-null	object
4	cast	8807 non-null	object
5	country	8807 non-null	object
6	date_added	8807 non-null	<pre>datetime64[ns]</pre>
7	release_year	8807 non-null	int64
8	rating	8807 non-null	object
9	duration	8807 non-null	int64
10	listed_in	8807 non-null	object
11	min_age	8807 non-null	int64
dtype	es: datetime64	[ns](1), int64(3), object(8)

memory usage: 825.8+ KB

In [72]:

```
1
2 netflix_data.isna().sum()
```

Out[72]:

```
show_id
                0
type
                0
title
                0
director
                0
cast
country
                0
date_added
                0
release_year
                0
rating
duration
                0
                0
listed_in
min_age
dtype: int64
```

```
In [73]:
```

```
2 netflix_data.isna().apply(lambda x: round((x.sum()/x.size)*100, 2))
```

Out[73]:

show_id	0.0
type	0.0
title	0.0
director	0.0
cast	0.0
country	0.0
date_added	0.0
release_year	0.0
rating	0.0
duration	0.0
listed_in	0.0
min_age	0.0
dtype: float64	

Unnesting of nested columns

• We are going to unnest the columns: cast, director, country, listed_in

In [74]:

```
2
   netflix_data_listed = netflix_data.copy()
   netflix_data_listed["director"] = netflix_data_listed["director"].str.split(", ")
4
   netflix_data_listed["cast"] = netflix_data_listed["cast"].str.split(", ")
7
   netflix_data_listed["country"] = netflix_data_listed["country"].str.split(", ")
8
9
   netflix_data_listed["listed_in"] = netflix_data_listed["listed_in"].str.split(", ")
10
11
   netflix_data_listed.head()
```

Out[74]:

	show_id	type	title	director	cast	country	date_added	release_year	rŧ
0	s1	Movie	Dick Johnson Is Dead	[Kirsten Johnson]	[Anonymous]	[United States]	2021-09-25	2020	
1	s2	TV Show	Blood & Water	[Anonymous]	[Ama Qamata, Khosi Ngema, Gail Mabalane, Thaba	[South Africa]	2021-09-24	2021	
2	s3	TV Show	Ganglands	[Julien Leclercq]	[Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nab	[United States]	2021-09-24	2021	
3	s4	TV Show	Jailbirds New Orleans	[Anonymous]	[Anonymous]	[United States]	2021-09-24	2021	
4	s 5	TV Show	Kota Factory	[Anonymous]	[Mayur More, Jitendra Kumar, Ranjan Raj, Alam	[India]	2021-09-24	2021	

In [75]:

```
1
 2
    netflix_data_full = netflix_data_listed.explode(
                                                       "director",
 3
 4
                                                       ignore_index= True
 5
                                                       ).explode(
 6
                                                                "cast",
 7
                                                               ignore_index= True
 8
                                                               ).explode(
 9
                                                                        "country",
10
                                                                        ignore_index= True
                                                                        ).explode(
11
                                                                                "listed_in",
12
                                                                                ignore_index= 1
13
```

In [76]:

```
1
 netflix_data_full.head()
```

Out[76]:

	show_id	type	title	director	cast	country	date_added	release_year	rating
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Anonymous	United States	2021-09-25	2020	PG- 13
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	TV- MA
2	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	TV- MA
3	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	TV- MA
4	s2	TV Show	Blood & Water	Anonymous	Khosi Ngema	South Africa	2021-09-24	2021	TV- MA
4									•

Recheck of null value counts

```
In [77]:
```

```
1
 2
   netflix_data_full.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 201991 entries, 0 to 201990
Data columns (total 12 columns):
#
    Column
               Non-Null Count
                                 Dtype
---
    ____
                 -----
                 201991 non-null object
0
    show_id
1
                 201991 non-null object
    type
    title
2
                201991 non-null object
3
                 201991 non-null object
    director
4
                 201991 non-null object
    cast
5
    country
                201991 non-null object
    date_added 201991 non-null datetime64[ns]
6
7
    release_year 201991 non-null int64
               201991 non-null object
8
    rating
9
    duration
                 201991 non-null int64
10 listed in
                 201991 non-null object
11 min age
                 201991 non-null int64
dtypes: datetime64[ns](1), int64(3), object(8)
memory usage: 18.5+ MB
```

In [78]:

```
1
 netflix_data_full.isna().sum()
```

Out[78]:

```
show_id
                 0
type
                 0
title
                 0
director
                0
cast
country
date_added
release_year
rating
                 0
                 0
duration
listed_in
                 0
min age
dtype: int64
```

Analysing the Data

Full data value count by type

```
In [79]:
```

```
2
  df = netflix_data_full
4 df.head()
```

Out[79]:

	show_id	type	title	director	cast	country	date_added	release_year	rating
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Anonymous	United States	2021-09-25	2020	PG- 13
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	TV- MA
2	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	TV- MA
3	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	TV- MA
4	s2	TV Show	Blood & Water	Anonymous	Khosi Ngema	South Africa	2021-09-24	2021	TV- MA
4									•

In [80]:

```
1
2 df.show_id.nunique()
```

Out[80]:

8807

In [81]:

```
1
2 df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 201991 entries, 0 to 201990 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype						
0	show_id	201991 non-null	object						
1	type	201991 non-null	object						
2	title	201991 non-null	object						
3	director	201991 non-null	object						
4	cast	201991 non-null	object						
5	country	201991 non-null	object						
6	date_added	201991 non-null	<pre>datetime64[ns]</pre>						
7	release_year	201991 non-null	int64						
8	rating	201991 non-null	object						
9	duration	201991 non-null	int64						
10	listed_in	201991 non-null	object						
11	min_age	201991 non-null	int64						
dtyp	<pre>dtypes: datetime64[ns](1), int64(3), object(8)</pre>								
memo	memory usage: 18.5+ MB								

```
In [82]:
```

```
1
```

2 df.describe()

Out[82]:

	release_year	duration	min_age
count	201991.000000	201991.000000	201991.000000
mean	2013.452891	77.688749	14.696838
std	9.003933	51.488067	4.906162
min	1925.000000	1.000000	0.000000
25%	2012.000000	4.000000	13.000000
50%	2016.000000	95.000000	18.000000
75%	2019.000000	112.000000	18.000000
max	2021.000000	312.000000	18.000000

In [83]:

```
1
```

2 df.describe(include= "object", exclude= "int")

Out[83]:

	show_id	type	title	director	cast	country	rating	listed_in
count	201991	201991	201991	201991	201991	201991	201991	201991
unique	8807	2	8807	4994	36440	127	14	42
top	s7165	Movie	Kahlil Gibran's The Prophet	Anonymous	Anonymous	United States	TV-MA	Dramas
freq	700	145843	700	50643	2146	71246	73925	29775

In [84]:

```
1
```

2 df.type.unique()

Out[84]:

```
array(['Movie', 'TV Show'], dtype=object)
```

In [85]:

```
1
```

2 netflix_data.type.value_counts()

Out[85]:

Movie 6131 TV Show 2676

Name: type, dtype: int64

```
In [86]:
  2
    df.groupby(["type"]).nunique()
Out[86]:
                title director
                               cast country date_added release_year rating duration list
  type
 Movie
          6131 6131
                        4778
                              25952
                                        122
                                                   1533
                                                                 73
                                                                        14
                                                                               205
   ΤV
          2676 2676
                         300 14864
                                                   1018
                                                                 46
                                                                        9
                                                                                15
                                         66
 Show
In [87]:
 1
  2 (6131/8807) * 100
Out[87]:
69.61507891449983
In [88]:
 1
    df[df.type == "TV Show"].show_id.nunique()
Out[88]:
2676
```

Movie Data Analysis - Unnested

The following is the analysis of movies data only for unnested columns

• "show_id", "type", "title", "date_added", "release_year", "rating", "duration", "min_age"

In [89]:

Out[89]:

	show_id	type	title	date_added	release_year	rating	duration	min_age
0	s1	Movie	Dick Johnson Is Dead	2021-09-25	2020	PG- 13	90	13
6	s7	Movie	My Little Pony: A New Generation	2021-09-24	2021	PG	91	7
7	s8	Movie	Sankofa	2021-09-24	1993	TV- MA	125	18
9	s10	Movie	The Starling	2021-09-24	2021	PG- 13	104	13
12	s13	Movie	Je Suis Karl	2021-09-23	2021	TV- MA	127	18

In [90]:

```
1
2 df = netflix_data_listed_movies_nonest.copy()
```

Univariate Analysis:

What is the distribution of:

- Ratings
- duration
- · release year
- · added month, year, day of month, day of year, day of week
- · difference between released and added year

In [91]:

```
1
2 df["rating"].unique()
Out[91]:
```

```
array(['PG-13', 'PG', 'TV-MA', 'TV-PG', 'TV-14', 'TV-Y', 'R', 'TV-G', 'TV-Y7', 'G', 'NC-17', 'NR', 'TV-Y7-FV', 'UR'], dtype=object)
```

No of movies by rating

Observations:

• The graph below shows that most no of movies belong to 1. TV-MA, 2. TV-14, 3. R ratings

In [92]:

```
1
2 sns.countplot(data= df, y= "rating")
```

Out[92]:

<AxesSubplot:xlabel='count', ylabel='rating'>

No of movies by min_age

Observations:

• Most of the movies are for people of age 1. 18+, 2. 16+, 3. 7+

In [93]:

```
1
2 sns.countplot(data= df, y= "min_age")
```

Out[93]:

<AxesSubplot:xlabel='count', ylabel='min_age'>

No of movies by duration

Observation:

• most of the movies are of 90 - 120 mins duration i.e. 1 1/2 to 2 hr duration

In [94]:

```
1
2 sns.histplot(data= df, x= "duration")
```

Out[94]:

<AxesSubplot:xlabel='duration', ylabel='Count'>

No of movies by duration

Observation:

• most of the movies are of 90 - 120 mins duration i.e. 1 1/2 to 2 hr duration

In [95]:

```
1
2 sns.kdeplot(data= df, x= "duration")
```

Out[95]:

<AxesSubplot:xlabel='duration', ylabel='Density'>

No of movies by release year

Observation:

· most of the movies on netflix are released in recent years i.e. very few old movies

In [96]:

```
1
  sns.countplot(data= df, x= "release_year")
2
```

<AxesSubplot:xlabel='release_year', ylabel='count'>

No of movies by release year

Observation:

· most of the movies on netflix are released in recent years i.e. there are very few old movies

```
In [97]:
```

```
1
2 sns.histplot(data= df, x= "release_year")
```

Out[97]:

```
<AxesSubplot:xlabel='release_year', ylabel='Count'>
```


No of movies by release year

Observation:

· most of the movies on netflix are released in recent years i.e. there are very few old movies

In [98]:

```
1
2 sns.kdeplot(data= df, x= "release_year")
```

Out[98]:

<AxesSubplot:xlabel='release_year', ylabel='Density'>

No of movies by release year

• The no of recently released movies are lesser than the the movies released 2 to 3 years ago on Netflix

In [99]:

```
plt.figure(figsize=(17,8))
plt.xticks(rotation=45)
sns.countplot(data= df, x= "release_year")
```

Out[99]:

<AxesSubplot:xlabel='release_year', ylabel='count'>

No of movies by added date

Observation:

• The no. of movies added increaed rapidly from 2014 to 2016 and then recently stabilized

In [100]:

```
1
2 sns.histplot(data= df, x= "date_added")
```

Out[100]:

<AxesSubplot:xlabel='date_added', ylabel='Count'>

No of movies by added date

Observation:

• The no. of movies added increaed rapidly from 2014 to 2016 and then recently stabilized

In [101]:

```
1
2 sns.kdeplot(data= df, x= "date_added")
```

Out[101]:

<AxesSubplot:xlabel='date_added', ylabel='Density'>

In [102]:

```
2
   df["day_of_year_added"] = df["date_added"].dt.dayofyear
   df["day_of_month_added"] = df["date_added"].dt.day
   df["day_of_week_added"] = df["date_added"].dt.dayofweek
   df["month_added"] = df["date_added"].dt.month
   df["quarter_added"] = df["date_added"].dt.quarter
   df["year_added"] = df["date_added"].dt.year
   df["released_decade"] = df["release_year"].apply(lambda x: x - (x%10))
10 df.head()
```

Out[102]:

	show_id	type	title	date_added	release_year	rating	duration	min_age	day_of_ye
0	s1	Movie	Dick Johnson Is Dead	2021-09-25	2020	PG- 13	90	13	
6	s7	Movie	My Little Pony: A New Generation	2021-09-24	2021	PG	91	7	
7	s8	Movie	Sankofa	2021-09-24	1993	TV- MA	125	18	
9	s10	Movie	The Starling	2021-09-24	2021	PG- 13	104	13	
12	s13	Movie	Je Suis Karl	2021-09-23	2021	TV- MA	127	18	
4									•

No of movies by added date

- · Most movies are added on the start of the month or the middle of the month
- no. of movis added pn the rest of the days of the month is similar

In [103]:

```
1 | 2 | sns.countplot(data= df, y= "day_of_month_added")
```

Out[103]:

<AxesSubplot:xlabel='count', ylabel='day_of_month_added'>

No of movies by added day of week

Observation:

• Most movies are added on the 5th day of the week (Friday) or the 4th day of the week (Thurday) i.e. just before weekend

In [104]:

```
1
2 sns.countplot(data= df, y= "day_of_week_added")
```

Out[104]:

<AxesSubplot:xlabel='count', ylabel='day_of_week_added'>

No of movies by added month of the year

- · The no. of movies added is very low in february/ may
- the no. of movies added on other months are similar

In [105]:

```
1
2 sns.countplot(data= df, x= "month_added")
```

Out[105]:

<AxesSubplot:xlabel='month_added', ylabel='count'>

In [106]:

```
plt.figure(figsize= (17, 8))
sns.countplot(data= df, x= "month_added", hue= "year_added", edgecolor= "white")
```

Out[106]:

<AxesSubplot:xlabel='month_added', ylabel='count'>

No of movies by added quarter of the year

- The no. of movies added is moderately high in the 4th quarter
- the no. of movies added on other quarters are similar

In [107]:

```
plt.figure(figsize= (17, 8))
sns.countplot(data= df, x= "month_added", hue= "year_added", edgecolor= "white")
```

Out[107]:

<AxesSubplot:xlabel='month_added', ylabel='count'>

In [108]:

```
1
2 sns.countplot(data= df, x= "quarter_added")
```

Out[108]:

<AxesSubplot:xlabel='quarter_added', ylabel='count'>

In [109]:

```
2
  plt.figure(figsize= (17, 8))
  sns.countplot(data= df, x= "quarter_added", hue= "year_added", edgecolor= "white")
```

Out[109]:

<AxesSubplot:xlabel='quarter_added', ylabel='count'>

distribution of duration of movies

- · most movies are around 100 min long
- There are only a few very short and very long movies

In [110]:

```
1
2 sns.boxplot(data= df, y= "duration")
```

Out[110]:

<AxesSubplot:ylabel='duration'>

In [111]:

```
1
2 sns.violinplot(data= df, y= "duration")
```

Out[111]:

<AxesSubplot:ylabel='duration'>

distribution of release year of movies

- most movies are released during 2010 2020
- There are only a few old movies

In [112]:

```
1
2 sns.boxplot(data= df, y= "release_year")
```

Out[112]:

<AxesSubplot:ylabel='release_year'>

In [113]:

```
1
2 sns.violinplot(data= df, y= "release_year")
```

Out[113]:

<AxesSubplot:ylabel='release_year'>

distribution of day of year added of movies

Observation:

nothing

In [114]:

```
2
  sns.boxplot(data= df, y= "day_of_year_added")
```

Out[114]:

<AxesSubplot:ylabel='day_of_year_added'>

distribution of day of month added of movies

Observation:

· most movies are added during the first half of th month

In [115]:

```
1
  sns.boxplot(data= df, y= "day_of_month_added")
```

Out[115]:

<AxesSubplot:ylabel='day_of_month_added'>

In [116]:

```
1
2 sns.violinplot(data= df, y= "day_of_month_added")
```

Out[116]:

<AxesSubplot:ylabel='day_of_month_added'>

distribution of added year of movies

Observation:

- most movies are added during the last couple years (after 2018)
- the no. of movies on netflix before 2015 were very low

In [117]:

```
1
2 sns.boxplot(data= df, y= "year_added")
```

Out[117]:

<AxesSubplot:ylabel='year_added'>

In [118]:

```
1
2 sns.violinplot(data= df, y= "year_added")
```

Out[118]:

<AxesSubplot:ylabel='year_added'>

distribution of added day of week for movies

Observation:

· most movies are added in the middle of the week

In [119]:

```
1
2 sns.boxplot(data= df, y= "day_of_week_added")
```

Out[119]:

<AxesSubplot:ylabel='day_of_week_added'>

distribution of added quarter of month for movies

most movies are added during the last 2 quarters (maybe)

In [120]:

```
1
2 sns.boxplot(data= df, y= "quarter_added")
```

Out[120]:

<AxesSubplot:ylabel='quarter_added'>

no. of movies by year added

Observation:

- most movies are added in the last couple years (after 2018)
- the no of movies aded per yaer is decreasing over the last years
- the no of movies added was increasing from 2014 2019

In [121]:

```
1
2 sns.countplot(data= df, y= "year_added")
```

Out[121]:

<AxesSubplot:xlabel='count', ylabel='year_added'>

In [122]:

```
1
2 sns.histplot(data= df, x= "year_added")
```

Out[122]:

<AxesSubplot:xlabel='year_added', ylabel='Count'>

In [123]:

```
1
2 sns.countplot(data= df, x= "year_added", hue= "year_added")
```

Out[123]:

<AxesSubplot:xlabel='year_added', ylabel='count'>

no. of movies by year added and month of year

- · the no of movies added each month is decreasing for the months in 1st half of the yaer, each year
- · increasing for the month in 2nd half of the year each year in recent years

In [124]:

```
plt.figure(figsize= (17, 8))
sns.countplot(data= df, x= "month_added", hue= "year_added", edgecolor= "white")
```

Out[124]:

<AxesSubplot:xlabel='month_added', ylabel='count'>

no. of movies by release decade

Observation:

· Most movies on netflix are from the 2010's

In [125]:

```
1
2 sns.countplot(data= df, x= "released_decade")
```

Out[125]:

<AxesSubplot:xlabel='released_decade', ylabel='count'>

In [126]:

```
1
2 sns.boxplot(data= df, y= "released_decade")
```

Out[126]:

<AxesSubplot:ylabel='released_decade'>

Bivariate Analysis

duration of movies by release_year

Observation:

- The few movies (on Netflix) that released during the 60's were longer
- Rest of the movies were around 100 min long irrespective their release yaer

In [127]:

```
1
2 sns.lineplot(data= df, x= "release_year", y= "duration")
```

Out[127]:

<AxesSubplot:xlabel='release_year', ylabel='duration'>

In [128]:

```
2
  plt.figure(figsize=(17,8))
  plt.xticks(rotation=45)
 sns.barplot(data= df, x= "release_year", y= "duration", estimator= np.mean)
```

Out[128]:

<AxesSubplot:xlabel='release_year', ylabel='duration'>

In [129]:

```
1
2
  plt.figure(figsize=(17,8))
  plt.xticks(rotation=45)
  sns.barplot(data= df, x= "release_year", y= "duration", estimator= np.median)
```

Out[129]:

<AxesSubplot:xlabel='release_year', ylabel='duration'>

duration of movies by release_decade

Observation:

• the few movies (on Netflix) that released during the 40's were much shorter in duration

In [130]:

```
1
2 sns.barplot(data= df, x= "released_decade", y= "duration", estimator= np.median)
```

Out[130]:

<AxesSubplot:xlabel='released_decade', ylabel='duration'>

In [131]:

```
1
2 sns.boxplot(data= df, x= "released_decade", y= "duration")
```

Out[131]:

<AxesSubplot:xlabel='released_decade', ylabel='duration'>

In [132]:

```
1
2 sns.barplot(data= df[df.released_decade == 1940], y= "title", x= "duration")
```

Out[132]:

<AxesSubplot:xlabel='duration', ylabel='title'>

duration of movies by rating

Observation:

• the movies of rating TV-Y are of shorter duration (for kids maybe)

In [133]:

```
plt.xticks(rotation = 45)
sns.barplot(data= df, x= "rating", y= "duration", estimator= np.median)
```

Out[133]:

<AxesSubplot:xlabel='rating', ylabel='duration'>

In [134]:

```
1
2 sns.barplot(data= df, y= "rating", x= "duration", estimator= np.median,
3 order = df.groupby(["rating"]).median().sort_values(["duration"], ascending
```

Out[134]:

<AxesSubplot:xlabel='duration', ylabel='rating'>

year added by release yaer

- most movies are added in last few years (after 2018)
- · most of the movies that are added released in 2000's and 2010's

In [135]:

```
1
2 sns.scatterplot(data= df, x= "release_year", y= "year_added")
```

Out[135]:

<AxesSubplot:xlabel='release_year', ylabel='year_added'>

total duration of content added by added day of week

Observation:

· the total amount of duration of movies added is more on wek days than weekends

In [136]:

```
1
2 sns.barplot(data= df, x= "day_of_week_added", y= "duration", estimator= np.sum)
```

Out[136]:

<AxesSubplot:xlabel='day_of_week_added', ylabel='duration'>

total duration of content added by added day of week and year

 the total amount of duration of movies added on weekdays had seen a peak in 2018 and then a sudden dop followed by increase

In [137]:

<AxesSubplot:xlabel='day_of_week_added', ylabel='duration'>

no. of movies less than 50 min long vs release_decade

Observation:

• The no. of moview that are less than 50 min are also belong to the 2010's

In [138]:

```
1
2 sns.countplot(data= df[df.duration <= 50], x= "released_decade")</pre>
```

Out[138]:

<AxesSubplot:xlabel='released_decade', ylabel='count'>

total duration vs added day of month

Observation:

• The total duration of content that was added on start of a given month is significantly higher than that ofany day of month

In [139]:

```
1 | 2 | sns.barplot(data= df, x= "day_of_month_added", y= "duration", estimator= np.sum)
```

Out[139]:

<AxesSubplot:xlabel='day_of_month_added', ylabel='duration'>

release_year vs rating

Observation:

· The relese_year is independent of the rationg of the movie

In [140]:

```
plt.xticks(rotation= 45)
sns.boxplot(data= df, x= "rating", y= "release_year")
4
```

Out[140]:

<AxesSubplot:xlabel='rating', ylabel='release_year'>

In [141]:

```
1
2 sns.scatterplot(data= df, y= "rating", x= "release_year")
```

Out[141]:

<AxesSubplot:xlabel='release_year', ylabel='rating'>

added day of month/ week vs rating

• the added day of week or month is independent of the rating of the movie

In [142]:

```
plt.xticks(rotation= 45)
sns.boxplot(data= df, x= "rating", y= "day_of_week_added")
```

Out[142]:

<AxesSubplot:xlabel='rating', ylabel='day_of_week_added'>

In [143]:

```
plt.xticks(rotation= 45)
sns.boxplot(data= df, x= "rating", y= "day_of_month_added")
```

Out[143]:

<AxesSubplot:xlabel='rating', ylabel='day_of_month_added'>

distribution of duration vs min_age

- the mean duration of the movies for 16+, 13+, 18+ is longer than for other age groups
- the duration for the genreic age group (0+) is lower than for any other age group
- the total duration of content is the highest for 18+, 16+ and 7+ age groups

In [144]:

```
1
2 sns.barplot(data= df, x= "min_age", y= "duration", estimator= np.mean)
```

Out[144]:

<AxesSubplot:xlabel='min_age', ylabel='duration'>

In [145]:

```
1
2 sns.boxplot(data= df, x= "min_age", y= "duration", showmeans= True)
```

Out[145]:

<AxesSubplot:xlabel='min_age', ylabel='duration'>

In [146]:

```
2
 sns.violinplot(data= df, x= "min_age", y= "duration", showmeans= True)
```

Out[146]:

<AxesSubplot:xlabel='min_age', ylabel='duration'>

In [147]:

```
1
 sns.barplot(data= df, x= "min_age", y= "duration", estimator= np.sum)
2
```

Out[147]:

<AxesSubplot:xlabel='min_age', ylabel='duration'>

distribution of release_year/ added year/ day of week/ month vs min_age

- The release year/ added year are independent of min_age
- The day of week added id independent for age groups 0+, 7+, 13+ but tends to be on Thur, Friday for 16+ and 18+ age groups

In [148]:

```
1
2 sns.boxplot(data= df, x= "min_age", y= "release_year")
```

Out[148]:

<AxesSubplot:xlabel='min_age', ylabel='release_year'>

In [149]:

```
1
2 sns.boxplot(data= df, x= "min_age", y= "year_added")
```

Out[149]:

<AxesSubplot:xlabel='min_age', ylabel='year_added'>

In [150]:

```
2
 sns.boxplot(data= df, x= "min_age", y= "day_of_week_added")
```

Out[150]:

<AxesSubplot:xlabel='min_age', ylabel='day_of_week_added'>

In [151]:

```
1
 sns.violinplot(data= df, x= "min_age", y= "day_of_week_added")
2
```

Out[151]:

<AxesSubplot:xlabel='min_age', ylabel='day_of_week_added'>

In [152]:

```
2
  sns.countplot(data= df, x= "min_age", hue= "day_of_week_added")
```

Out[152]:

<AxesSubplot:xlabel='min_age', ylabel='count'>

In [153]:

```
1
 sns.violinplot(data= df, x= "min_age", y= "day_of_month_added")
2
```

Out[153]:

<AxesSubplot:xlabel='min_age', ylabel='day_of_month_added'>

Movie Data Analysis: nested included

• The following analysis includes the columns "cast", "director", "country", "listed_in"

In [154]:

```
1
  netflix_data_full_movies = netflix_data_full[netflix_data_full.type == "Movie"].copy()
2
3
4 netflix_data_full_movies.head()
```

Out[154]:

	show_id	type	title	director	cast	country	date_added	release_year	ratin
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Anonymous	United States	2021-09-25	2020	PC 1
159	s7	Movie	My Little Pony: A New Generation	Robert Cullen	Vanessa Hudgens	United States	2021-09-24	2021	P
160	s7	Movie	My Little Pony: A New Generation	Robert Cullen	Kimiko Glenn	United States	2021-09-24	2021	P
161	s7	Movie	My Little Pony: A New Generation	Robert Cullen	James Marsden	United States	2021-09-24	2021	P
162	s7	Movie	My Little Pony: A New Generation	Robert Cullen	Sofia Carson	United States	2021-09-24	2021	P
4									•

In [155]:

```
2 df = netflix_data_full_movies.copy()
```

In [156]:

```
2
  df["release_decade"] = df["release_year"].apply(lambda x: x - (x%10))
4 df.head()
```

Out[156]:

	show_id	type	title	director	cast	country	date_added	release_year	ratin
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Anonymous	United States	2021-09-25	2020	P(1
159	s7	Movie	My Little Pony: A New Generation	Robert Cullen	Vanessa Hudgens	United States	2021-09-24	2021	P
160	s7	Movie	My Little Pony: A New Generation	Robert Cullen	Kimiko Glenn	United States	2021-09-24	2021	P
161	s7	Movie	My Little Pony: A New Generation	Robert Cullen	James Marsden	United States	2021-09-24	2021	P
162	s7	Movie	My Little Pony: A New Generation	Robert Cullen	Sofia Carson	United States	2021-09-24	2021	P

In [157]:

```
1
  df.columns = ['show_id', 'type', 'title', 'directors', 'actors', 'country', 'date_added
2
                 'release_year', 'rating', 'duration', 'genres', 'min_age', 'release_deca
3
4
5 df.columns
```

Out[157]:

```
Index(['show_id', 'type', 'title', 'directors', 'actors', 'country',
       'date_added', 'release_year', 'rating', 'duration', 'genres', 'min_ag
e',
       'release_decade'],
      dtype='object')
```

Univariate analysis

In [158]:

```
2
   test_df = df.copy(); test_df["count"] = 1
  test_df.groupby("count").nunique()[["show_id", "title", "directors", "actors", "country "release_year", "genres", "release_decade"]]
5
```

Out[158]:

	show_id	title	directors	actors	country	release_year	genres	release_decade
count								
1	6131	6131	4778	25952	122	73	20	9

Bivariate Analysis

no. of movies vs directors

Observation:

• There are only a handful of directors (among 4167) who have done more than 10 movies

In [159]:

```
2
  plt_df = df.loc[df.directors != "Anonymous"].groupby(["directors"]).nunique().reset_inc
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "directors", x= "show_id")
6
7
8
  ax.xaxis.tick_top()
```


no. of movies per actor

Observation:

• There are only a handful of actors (among 24000) who have done more than 20 movies

In [160]:

```
plt_df = df.loc[df.actors != "Anonymous"].groupby(["actors"]).nunique().reset_index().s

plt.figure(figsize= (8, 10))

ax = sns.barplot(data= plt_df, y= "actors", x= "show_id")

ax.xaxis.tick_top()
```


In [161]:

```
2
  plt_df = df.loc[df.actors != "Anonymous"].groupby(["actors"]).nunique().reset_index().s
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "actors", x= "show_id")
7
 ax.xaxis.tick_top()
8
```


no. of movies per country

- · Most movies are availabe only for US, India, UK
- Ethiopia, Latvia, Jamaica and few other countries have only one movie streaming

In [162]:

```
plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["show_id"], ascer

plt.figure(figsize= (8, 10))

ax = sns.barplot(data= plt_df, y= "country", x= "show_id")

ax.xaxis.tick_top()
```


In [163]:

```
plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["show_id"], ascer

plt.figure(figsize= (8, 10))

ax = sns.barplot(data= plt_df, y= "country", x= "show_id")

ax.xaxis.tick_top()
```


no. of movies per genre

- · Most movies belong to the genre of International, Dramas, Comedies
- · Very few movies belong to the genre of Classic, Cult and Anime

In [164]:

```
plt_df = df.groupby(["genres"]).nunique().reset_index().sort_values(["show_id"], ascend
plt.figure(figsize= (8, 10))
ax = sns.barplot(data= plt_df, y= "genres", x= "show_id")
ax.xaxis.tick_top()
```



```
In [165]:
```

```
2
 df.genres.unique()
```

Out[165]:

```
'Horror Movies', 'Sci-Fi & Fantasy', 'Action & Adventure', 'Classic Movies', 'Anime Features', 'Sports Movies', 'Cult Movies',
       'Faith & Spirituality', 'LGBTQ Movies', 'Stand-Up Comedy',
       'Movies'], dtype=object)
```

no. of actors worked with per director

Observation:

• Around 20-30 directors (among 4000) worked with more than 60 actors (among 24000)

In [166]:

```
2
  plt_df = df.loc[df.directors != "Anonymous"].groupby(["directors"]).nunique().reset_ing
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "directors", x= "actors")
6
7
  ax.xaxis.tick_top()
8
```


In [167]:

```
2
  plt_df = df.loc[df.directors != "Anonymous"].groupby(["directors"]).nunique().reset_ing
3
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "directors", x= "actors")
6
7
  ax.xaxis.tick_top()
8
```


Observation:

Around 20-30 actors (among 24000) worked with more than 20 directors (among 4000)

In [168]:

no. of countries streaming per actor

Observation:

Around 20-30 actors (among 24000) are streaming (popular) in pore than 10 countries

directors

In [169]:

```
plt_df = df.loc[df.actors != "Anonymous"].groupby(["actors"]).nunique().reset_index().s

plt.figure(figsize= (8, 10))

ax = sns.barplot(data= plt_df, y= "actors", x= "country")

ax.xaxis.tick_top()
```


no. of genres per actor

Observation:

• Around 20-30 actors (among 24000) are genres (versatile) in more than 10 genres

In [170]:

```
plt_df = df.loc[df.actors != "Anonymous"].groupby(["actors"]).nunique().reset_index().s

plt.figure(figsize= (8, 12))

ax = sns.barplot(data= plt_df, y= "actors", x= "genres")

ax.xaxis.tick_top()
```


Observation:

- Most actors/directors are streaming on US, India, UK, France, Canada, Germany
- The countries such as Panama, Iraq, Afghanistan, Vatican, Sri Lanka have only 1 actor/director streaming

In [171]:

```
1
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["actors"], ascended)
2
3
  plt.figure(figsize= (8, 12))
4
5
  ax = sns.barplot(data= plt_df, y= "country", x= "actors")
6
7
8
  ax.xaxis.tick_top()
```


In [172]:

```
1
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["actors"], ascended)
2
  plt.figure(figsize= (8, 12))
4
5
  ax = sns.barplot(data= plt_df, y= "country", x= "actors")
6
7
8
  ax.xaxis.tick_top()
```


In [173]:

```
2
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["directors"], asc
4
  plt.figure(figsize= (8, 12))
5
  ax = sns.barplot(data= plt_df, y= "country", x= "directors")
7
8
  ax.xaxis.tick_top()
```


In [174]:

```
2
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["directors"], asc
4
  plt.figure(figsize= (8, 12))
5
  ax = sns.barplot(data= plt_df, y= "country", x= "directors")
6
7
8
  ax.xaxis.tick_top()
```


no. of actors/directors per genre

- · Most actors/directors are working on Dramas, Comedies, Independent Movies
- · Very few directors on netflix are working on Classics, Cult, Anime Movies

In [175]:

```
1
  plt_df = df.groupby(["genres"]).nunique().reset_index().sort_values(["directors"], asce
2
3
  plt.figure(figsize= (8, 12))
4
5
  ax = sns.barplot(data= plt_df, y= "genres", x= "directors")
6
7
8
  ax.xaxis.tick_top()
```


In [176]:

```
2
  plt_df = df.groupby(["genres"]).nunique().reset_index().sort_values(["actors"], ascendi
4
  plt.figure(figsize= (8, 12))
  ax = sns.barplot(data= plt_df, y= "genres", x= "actors")
7
8
 ax.xaxis.tick_top()
```


no. of countries per genre

Observation:

- · Dramas, Comedies, Action, Thrillers are more popular among countries
- Classics, Cult and Anime Movies are least popular among countries

In [177]:

```
1
  plt_df = df.groupby(["genres"]).nunique().reset_index().sort_values(["country"], ascended)
2
3
  plt.figure(figsize= (8, 12))
4
5
  ax = sns.barplot(data= plt_df, y= "genres", x= "country")
6
7
8
  ax.xaxis.tick_top()
```


no. of genres per country

Observation:

• Only 10-20 countries (of 113) are streaming more than 12 (of 20) genres

In [178]:

```
1
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["genres"], ascend
2
3
  plt.figure(figsize= (8, 12))
4
5
6
  ax = sns.barplot(data= plt_df, y= "country", x= "genres")
7
8
  ax.xaxis.tick_top()
```


In [179]:

```
2
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["genres"], ascended)
4
  plt.figure(figsize= (8, 12))
5
  ax = sns.barplot(data= plt_df, y= "country", x= "genres")
6
7
8
  ax.xaxis.tick_top()
```


no. of movies/ directors/ actors vs added year

- The no. of movies/ directors/ actor peaked in 2019
- The no. of movies/ directors/ actors started growing since 2014

In [180]:

```
1
  plt_df = df.groupby(df.date_added.dt.year).nunique().rename_axis("year_added").reset_ir
2
3
4
  plt.xticks(rotation= 45)
  sns.barplot(data= plt_df, y= "show_id", x= "year_added")
```

Out[180]:

<AxesSubplot:xlabel='year_added', ylabel='show_id'>

In [181]:

```
1
2
  plt_df = df.groupby(df.date_added.dt.year).nunique().rename_axis("year_added").reset_ir
3
  plt.xticks(rotation= 45)
5
  sns.barplot(data= plt_df, y= "directors", x= "year_added")
```

Out[181]:

<AxesSubplot:xlabel='year_added', ylabel='directors'>

In [182]:

```
1
2
  plt_df = df.groupby(df.date_added.dt.year).nunique().rename_axis("year_added").reset_ir
3
4
  plt.xticks(rotation= 45)
  sns.barplot(data= plt_df, y= "actors", x= "year_added")
```

Out[182]:

<AxesSubplot:xlabel='year_added', ylabel='actors'>

no. of countries/ genres streaming per aded year

Observation:

• The no. of countries/ genresstreaming grew b/w years 2014 - 17 and then stabilized around 110

In [183]:

```
2
  plt_df = df.groupby(df.date_added.dt.year).nunique().rename_axis("year_added").reset_ir
3
4
  plt.xticks(rotation= 45)
5
  sns.barplot(data= plt_df, y= "country", x= "year_added")
```

Out[183]:

<AxesSubplot:xlabel='year_added', ylabel='country'>

In [184]:

```
1
  plt_df = df.groupby(df.date_added.dt.year).nunique().rename_axis("year_added").reset_ir
2
3
4
  plt.xticks(rotation= 45)
5
  sns.barplot(data= plt_df, y= "genres", x= "year_added")
```

Out[184]:

<AxesSubplot:xlabel='year_added', ylabel='genres'>

In [185]:

```
1
2
  def new_nunique(x, df, col):
3
       year = x.date_added.dt.year.unique()[0]
4
       prev_col_vals = df.loc[df.date_added.dt.year < year][col].unique()</pre>
5
       result = pd.Series({ col: x.loc[~x[col].isin(prev_col_vals)].nunique()[col]})
6
7
8
       return result
```

no. of new directors/ actors added vs added year

Observation:

- The no. of new directors/ actor peaked in 2019
- The no. of new movies/ directors/ actors started growing since 2014

In [186]:

```
1
  plt_df = df.groupby(df.date_added.dt.year).apply(lambda x: new_nunique(x, df, "director")
4
  plt.xticks(rotation= 45)
  sns.barplot(x= plt_df.index, y= plt_df.directors)
```

Out[186]:

<AxesSubplot:xlabel='date_added', ylabel='directors'>

In [187]:

```
2
  plt_df = df.groupby(df.date_added.dt.year).apply(lambda x: new_nunique(x, df, "actors")
  plt.xticks(rotation= 45)
4
  sns.barplot(x= plt_df.index, y= plt_df.actors)
```

Out[187]:

<AxesSubplot:xlabel='date_added', ylabel='actors'>

no. of new genres added vs added year

Observation:

New genres were added during the initial years and then kept at 20 since 2016

In [188]:

```
2
  plt_df = df.groupby(df.date_added.dt.year).apply(lambda x: new_nunique(x, df, "genres")
4
  plt.xticks(rotation= 45)
5
  sns.barplot(x= plt_df.index, y= plt_df.genres)
```

Out[188]:

<AxesSubplot:xlabel='date_added', ylabel='genres'>

no. of new countries added vs added year

- · No. of new countries added started growing from 2014 and peaked in 2017
- After 2017 the no. of new countries added slowed down to reach 113

In [189]:

```
2
  plt_df = df.groupby(df.date_added.dt.year).apply(lambda x: new_nunique(x, df, "country")
4
  plt.xticks(rotation= 45)
5
  sns.barplot(x= plt_df.index, y= plt_df.country)
```

Out[189]:

<AxesSubplot:xlabel='date_added', ylabel='country'>

no. of new movies/ directors/ actors added per release year

- The new directors/ actors in movies released every year that are added to netflix in peaked in 2017-18
- Post 2017-18 the directors/ actors in newly released movies strted to get repetative

In [190]:

```
2
  plt_df = df.groupby(df.release_year).apply(lambda x: new_nunique(x, df, "show_id")).res
  plt_df = plt_df.loc[plt_df.release_year >= 1990]
5
  plt.figure(figsize= (17, 6))
  plt.xticks(rotation= 45)
7
  sns.barplot(x= plt_df.release_year, y= plt_df.show_id)
```

Out[190]:

<AxesSubplot:xlabel='release_year', ylabel='show_id'>

In [191]:

```
2
  plt_df = df.groupby(df.release_year).apply(lambda x: new_nunique(x, df, "actors")).rese
  plt_df = plt_df.loc[plt_df.release_year >= 1990]
5
  plt.figure(figsize= (17, 6))
  plt.xticks(rotation= 45)
7
  sns.barplot(x= plt_df.release_year, y= plt_df.actors)
```

Out[191]:

<AxesSubplot:xlabel='release_year', ylabel='actors'>

In [192]:

```
1
2
  plt_df = df.groupby(df.release_year).apply(lambda x: new_nunique(x, df, "directors")).r
3
  plt_df = plt_df.loc[plt_df.release_year >= 1990]
5
  plt.figure(figsize= (17, 6))
6
  plt.xticks(rotation= 45)
7
  sns.barplot(x= plt_df.release_year, y= plt_df.directors)
```

Out[192]:

<AxesSubplot:xlabel='release_year', ylabel='directors'>

no. of new countries added per release year

The expansion to more countries happend through the movies released in 2014 and thn stated to stabilize

In [193]:

```
1
  plt_df = df.groupby(df.release_year).apply(lambda x: new_nunique(x, df, "country")).res
  plt_df = plt_df.loc[plt_df.release_year >= 1990]
  plt.figure(figsize= (17, 6))
  plt.xticks(rotation= 45)
6
8
 sns.barplot(x= plt_df.release_year, y= plt_df.country)
```

Out[193]:

<AxesSubplot:xlabel='release_year', ylabel='country'>

no. of new gernes added per release year

Observation:

The movie for the latest genre on netflix had released in 2000

In [194]:

```
plt_df = df.groupby(df.release_year).apply(lambda x: new_nunique(x, df, "genres")).rese
2
  # plt_df = plt_df.loc[plt_df.release_year >= 1990]
5
  plt.figure(figsize= (17, 6))
  plt.xticks(rotation= 45)
7
  sns.barplot(x= plt_df.release_year, y= plt_df.genres)
```

Out[194]:

<AxesSubplot:xlabel='release_year', ylabel='genres'>

trend of movies added per release year and year added

- Among the movies released in a given year the highest no. of movies are added to netflix in that year since 2017
- For the movies released before 2017, the highes no. of movies released in that year are added in 2017

In [195]:

```
2
  plt_df = df.groupby([df.release_year, df.date_added.dt.year]).nunique().rename_axis(
3
4
                                                                                    ).reset
5
  plt_df = plt_df[plt_df.release_year >= 2010]
  plt.figure(figsize= (17, 20))
7
  plt.xticks(rotation= 45)
8
  sns.barplot(y= plt_df.release_year, x= plt_df.show_id, hue= plt_df.year_added, orient=
```

Out[195]:

<AxesSubplot:xlabel='show_id', ylabel='release_year'>

8/16/22, 11:05 PM	Netflix- which type of shows to produce and how to grow the business (1) - Jupyter Notebook
trend of movies added per r	elease year and year added
Observation:	
Every year te highes t no.	of movies added in that year belong to the movies released in that year

In [196]:

```
2
  plt_df = df.groupby([df.release_year, df.date_added.dt.year]).nunique().rename_axis(
3
4
                                                                                    ).reset
5
  plt_df = plt_df[plt_df.release_year >= 2010]
  plt.figure(figsize= (17, 20))
7
  plt.xticks(rotation= 45)
8
  sns.barplot(y= plt_df.year_added, x= plt_df.show_id, hue= plt_df.release_year, orient=
```

Out[196]:

<AxesSubplot:xlabel='show_id', ylabel='year_added'>

In [197]:

```
1
 2
   def new_nunique(x, df, col):
 3
        year = x.date_added.dt.year.unique()[0]
 4
 5
        temp = df.loc[(df.date_added.dt.year >= year-4) & (df.date_added.dt.year <= year)].</pre>
 6
 7
        result = temp.groupby(temp.date_added.dt.year).nunique()
 8
         print("-"*50 + "\n", dict(zip(result.index.values, year - result.index.values)),
9
10
11
        new_index = dict(zip(result.index.values, year - result.index.values))
12
13
        result = result.rename(index= new_index)[col]
14
15
        return result
```

In [198]:

```
plt_df = df.groupby(df.date_added.dt.year).apply(lambda x: new_nunique(x, df, "show_id")
plt_df = plt_df.rename_axis(["year_added", "last_n_year_added"]).reset_index()
```

trend of movies added per release year and year added

- Till 2019, most of the movies on netflix in a given year belong to the movies released that year
- Since 2019, most of the movies on Netflix by th eend of that year belong to th emovies released in 2019

In [199]:

```
1
2
  plt.figure(figsize= (17, 8))
3
  plt.xticks(rotation= 45)
4
5
  sns.barplot(x= plt_df.year_added, y= plt_df.show_id, hue= plt_df.last_n_year_added,
6
               hue_order = [4, 3, 2, 1, 0],
7
               orient= 'v', edgecolor='white', linewidth=2)
```

Out[199]:

<AxesSubplot:xlabel='year_added', ylabel='show_id'>

no. of movies per possible pair

· pairs between actors, directors, genres

In [200]:

```
2
   plt_df = df.loc[(df.directors != "Anonymous") & (df.actors != "Anonymous")].groupby(
 3
                                                                                  ["directors
 4
                                                                                  ).nunique()
 5
 6
 7
   plt.figure(figsize= (8, 17))
8
9
   plt_df["director_actor"] = plt_df.apply(lambda x: x["directors"] + " | " + x["actors"],
10
   ax = sns.barplot(y= plt_df.director_actor, x= plt_df.show_id)
11
12
13
   ax.xaxis.tick_top()
```


In [201]:

```
2
   plt_df = df.loc[(df.directors != "Anonymous")].groupby(
 3
                                                    ["directors", "genres"]
                                                    ).nunique().sort_values("show_id",
 4
 5
                                                                             ascending= Fals
 6
   plt.figure(figsize= (8, 17))
 7
8
9
   plt_df["director_genre"] = plt_df.apply(lambda x: x["directors"] + " | " + x["genres"],
10
   ax = sns.barplot(y= plt_df.director_genre, x= plt_df.show_id)
11
12
13 ax.xaxis.tick_top()
```


In [202]:

```
2
   plt_df = df.loc[(df.actors != "Anonymous")].groupby(["actors", "genres"]).nunique().sor
 5
   plt.figure(figsize= (8, 17))
   plt_df["actor_genre"] = plt_df.apply(lambda x: x["actors"] + " | " + x["genres"], axis=
7
8
9
   ax = sns.barplot(y= plt_df.actor_genre, x= plt_df.show_id)
10
11 ax.xaxis.tick_top()
```


In [203]:

```
2
   plt_df = df.groupby(["country", "genres"]).nunique().sort_values("show_id",
                                                                       ascending= False)["s
 5
   plt.figure(figsize= (8, 17))
   plt_df["country_genre"] = plt_df.apply(lambda x: x["country"] + " | " + x["genres"], ax
7
9
   ax = sns.barplot(y= plt_df.country_genre, x= plt_df.show_id)
10
   ax.xaxis.tick_top()
11
```


no. of values per min_age

· values: directors, actors, country, genre

In [204]:

```
2
 df.directors.nunique()
```

Out[204]:

4778

In [205]:

```
1
   plt_df = df.loc[(df.directors != "Anonymous")].groupby(["directors", "min_age"]).nuniqu
 2
 3
                                                                                          [ " :
 4
                                                                                          asc
 5
   plt_df = plt_df.groupby("directors").head(1).sort_values("show_id", ascending= False)
 7
   plt_df["director_min_age"] = plt_df.apply(lambda x: x["directors"] + " | " + str(x["min
8
9
10
   sns.barplot(data= plt_df.head(20), y= "director_min_age", x= "show_id", orient= 'h')
```

Out[205]:

<AxesSubplot:xlabel='show_id', ylabel='director_min_age'>

In [206]:

```
2
   plt_df = df.loc[(df.directors != "Anonymous")].groupby(["directors", "min_age"]).nuniqu
 3
                                                                                           [ " :
4
                                                                                           asc
 5
   plt_df = plt_df.groupby("min_age").head(1).sort_values("show_id", ascending= False)
 6
7
   plt_df["director_min_age"] = plt_df.apply(lambda x: x["directors"] + " | " + str(x["min"))
8
9
   sns.barplot(data= plt_df.head(20), y= "director_min_age", x= "show_id", orient= 'h')
10
```

Out[206]:

<AxesSubplot:xlabel='show_id', ylabel='director_min_age'>

In [207]:

```
1
2
  plt_df = df.groupby("min_age").nunique()["directors"].reset_index()
3
  sns.barplot(y= plt_df.min_age, x= plt_df.directors, orient= 'h')
```

Out[207]:

<AxesSubplot:xlabel='directors', ylabel='min_age'>

TV Show Data Analysis: Unnested

The following is the analysis of movies data only for unnested columns

• "show_id", "type", "title", "date_added", "release_year", "rating", "duration", "min_age"

In [208]:

```
1
2
  netflix_data_listed_tv = netflix_data_listed[netflix_data_listed.type == "TV Show"].cor
3
4
  netflix_data_listed_tv_nonest = netflix_data_listed_tv[
5
                                   ["show_id", "type", "title", "date_added", "release_yea
6
7
  netflix_data_listed_tv_nonest.head()
```

Out[208]:

	show_id	type	title	date_added	release_year	rating	duration	min_age
1	s2	TV Show	Blood & Water	2021-09-24	2021	TV- MA	2	18
2	s3	TV Show	Ganglands	2021-09-24	2021	TV- MA	1	18
3	s4	TV Show	Jailbirds New Orleans	2021-09-24	2021	TV- MA	1	18
4	s5	TV Show	Kota Factory	2021-09-24	2021	TV- MA	2	18
5	s6	TV Show	Midnight Mass	2021-09-24	2021	TV- MA	1	18

Univariate Analysis

In [209]:

```
1
 df = netflix data listed tv nonest
```

No of TV shows by rating

Observations:

• The graph below shows that most no of TV Shows belong to 1. TV-MA, 2. TV-14, 3. TV-PG

In [210]:

```
2
 sns.countplot(data= df, y= "rating")
```

Out[210]:

<AxesSubplot:xlabel='count', ylabel='rating'>

No of TV Shows by min_age

- Most of the TV Shows are for people of age 1. 18+, 2. 16+, 3. 7+
- The least no of shows are for 0+ (Generic)

In [211]:

```
2 sns.countplot(data= df, y= "min_age")
```

Out[211]:

<AxesSubplot:xlabel='count', ylabel='min_age'>

No of TV Shows by duration

Observation:

· most of the TV Shows are of 1 season duration

In [212]:

```
2
 sns.histplot(data= df, x= "duration")
```

Out[212]:

<AxesSubplot:xlabel='duration', ylabel='Count'>

In [213]:

```
1
 sns.kdeplot(data= df, x= "duration")
```

Out[213]:

<AxesSubplot:xlabel='duration', ylabel='Density'>

No of TV Shows by release year

Observation:

• most of the TV Shows on netflix are released in recent years i.e. very few old TV Shows

In [214]:

```
2
 sns.countplot(data= df, x= "release_year")
```

Out[214]:

<AxesSubplot:xlabel='release_year', ylabel='count'>

In [215]:

```
1
 sns.histplot(data= df, x= "release_year")
```

Out[215]:

<AxesSubplot:xlabel='release_year', ylabel='Count'>

In [216]:

```
2
 sns.kdeplot(data= df, x= "release_year")
```

Out[216]:

<AxesSubplot:xlabel='release_year', ylabel='Density'>

No of TV Shows by release year

Observation:

• The no of recently released TV Shows are lesser than the TV Shows released 2 to 3 years ago on Netflix

In [217]:

```
1
2
  plt.figure(figsize=(17,8))
  plt.xticks(rotation=45)
  sns.countplot(data= df, x= "release_year")
```

Out[217]:

<AxesSubplot:xlabel='release_year', ylabel='count'>

No of TV Shows by added date

Observation:

The no. of TV Shows added increaed rapidly from 2014 to 2019 and then recently stabilized

In [218]:

```
1
  sns.histplot(data= df, x= "date_added")
```

Out[218]:

<AxesSubplot:xlabel='date_added', ylabel='Count'>

No of movies by added date

Observation:

• The no. of movies added increaed rapidly from 2014 to 2016 and then recently stabilized

In [219]:

```
1
  sns.kdeplot(data= df, x= "date_added")
```

Out[219]:

<AxesSubplot:xlabel='date_added', ylabel='Density'>

In [220]:

```
df["day_of_year_added"] = df["date_added"].dt.dayofyear
 2
   df["day_of_month_added"] = df["date_added"].dt.day
4 df["day_of_week_added"] = df["date_added"].dt.dayofweek
   df["month_added"] = df["date_added"].dt.month
   df["quarter_added"] = df["date_added"].dt.quarter
   df["year_added"] = df["date_added"].dt.year
   df["released_decade"] = df["release_year"].apply(lambda x: x - (x%10))
10 df.head()
```

Out[220]:

	show_id	type	title	date_added	release_year	rating	duration	min_age	day_of_yea
1	s2	TV Show	Blood & Water	2021-09-24	2021	TV- MA	2	18	
2	s3	TV Show	Ganglands	2021-09-24	2021	TV- MA	1	18	
3	s4	TV Show	Jailbirds New Orleans	2021-09-24	2021	TV- MA	1	18	
4	s5	TV Show	Kota Factory	2021-09-24	2021	TV- MA	2	18	
5	s6	TV Show	Midnight Mass	2021-09-24	2021	TV- MA	1	18	
4									+

No of TV Shows by added date

- · Most TV Shows are added on the start of the month or the middle of the month
- . no. of TV Shows added on the rest of the days of the month is similar

In [221]:

```
1
2
  sns.countplot(data= df, y= "day_of_month_added")
```

Out[221]:

<AxesSubplot:xlabel='count', ylabel='day_of_month_added'>

No of TV Shows by added day of week

Observation:

· Most TV Shows are added on the 5th day of the week (Friday) just before weekend

In [222]:

```
1
  sns.countplot(data= df, y= "day_of_week_added")
```

Out[222]:

<AxesSubplot:xlabel='count', ylabel='day_of_week_added'>

No of TV Shows by added month of the year

• the no. of shows added in the middle of th eyaer and end of the year tends to be higher and increasingly so every year

In [223]:

```
1
  sns.countplot(data= df, x= "month_added")
2
```

Out[223]:

<AxesSubplot:xlabel='month_added', ylabel='count'>

In [224]:

```
1
  plt.figure(figsize= (17, 8))
2
3
  sns.countplot(data= df, x= "month_added", hue= "year_added", edgecolor= "white")
```

Out[224]:

<AxesSubplot:xlabel='month_added', ylabel='count'>

Bivariate Analysis

No of movies by added quarter of the year

Observation:

- The no. of movies added is moderately high in the 4th quarter
- · the no. of movies added on other quarters are similar

In [225]:

```
1
2
  plt.figure(figsize= (17, 8))
3
  sns.countplot(data= df, x= "month_added", hue= "year_added", edgecolor= "white")
```

Out[225]:

<AxesSubplot:xlabel='month_added', ylabel='count'>

In [226]:

```
1
  sns.countplot(data= df, x= "quarter_added")
```

Out[226]:

<AxesSubplot:xlabel='quarter_added', ylabel='count'>

In [227]:

```
2
  plt.figure(figsize= (17, 8))
  sns.countplot(data= df, x= "quarter_added", hue= "year_added", edgecolor= "white")
```

Out[227]:

<AxesSubplot:xlabel='quarter_added', ylabel='count'>

distribution of duration of movies

Observation:

- · most movies are around 1 season long
- · There are only a few TV Shows that have more than 3 seasons

In [228]:

```
1
 sns.boxplot(data= df, y= "duration")
```

Out[228]:

<AxesSubplot:ylabel='duration'>

In [229]:

```
1
  sns.violinplot(data= df, y= "duration")
2
```

Out[229]:

<AxesSubplot:ylabel='duration'>

distribution of release year of TV Shows

Observation:

- most TV Shows are released during 2010 2020
- · There are only a few old TV Shows

In [230]:

```
1
  sns.boxplot(data= df, y= "release_year")
```

Out[230]:

<AxesSubplot:ylabel='release_year'>

In [231]:

```
2
 sns.violinplot(data= df, y= "release_year")
```

Out[231]:

<AxesSubplot:ylabel='release_year'>

distribution of day of month added of TV Shows

Observation:

• most TV Sohws are added during the first half of th month

In [232]:

```
2 sns.boxplot(data= df, y= "day_of_month_added")
```

Out[232]:

<AxesSubplot:ylabel='day_of_month_added'>

In [233]:

```
sns.violinplot(data= df, y= "day_of_month_added")
2
```

Out[233]:

<AxesSubplot:ylabel='day_of_month_added'>

distribution of added year of TV Shows

Observation:

- most TV Shows are added during the last couple years (after 2018)
- the no. of TV Shows on netflix before 2015 were very low

In [234]:

```
1
2 | sns.boxplot(data= df, y= "year_added")
```

Out[234]:

<AxesSubplot:ylabel='year_added'>

In [235]:

```
2
  sns.violinplot(data= df, y= "year_added")
```

Out[235]:

<AxesSubplot:ylabel='year_added'>

distribution of added day of week for TV Shows

Observation:

· most TV Shows are added in the middle of the week

In [236]:

```
1
 sns.boxplot(data= df, y= "day_of_week_added")
```

Out[236]:

<AxesSubplot:ylabel='day_of_week_added'>

no. of TV Shows by year added

Observation:

- most TV Shows are added in the last couple years (after 2018)
- the no of TV Shows aded per yaer is decreasing over the last few years (since 2020)
- the no of TV Shows added was increasing from 2014 2019

In [237]:

```
1
2
  sns.countplot(data= df, y= "year_added")
```

Out[237]:

<AxesSubplot:xlabel='count', ylabel='year_added'>

In [238]:

```
1
  sns.histplot(data= df, x= "year_added")
```

Out[238]:

<AxesSubplot:xlabel='year_added', ylabel='Count'>

no. of TV Shows by year added and month of year

Observation:

· the no of TV Shows added each month is increasing every year

In [239]:

```
1
  plt.figure(figsize= (17, 8))
2
3
  sns.countplot(data= df, x= "month_added", hue= "year_added", edgecolor= "white")
4
```

Out[239]:

<AxesSubplot:xlabel='month_added', ylabel='count'>

no. of TV Shows by release decade

Observation:

Most TV Shows on netflix are from the 2010's

In [240]:

```
1
  sns.countplot(data= df, x= "released_decade")
```

Out[240]:

<AxesSubplot:xlabel='released_decade', ylabel='count'>

In [241]:

```
1
2
  sns.boxplot(data= df, y= "released_decade")
```

Out[241]:

<AxesSubplot:ylabel='released_decade'>

duration of TV Shows by release_year

Observation:

- The few TV Shows (on Netflix) that released during the 90's and 2000's were longer in season duration
- Rest of the TV Shows were around 1 season long irrespective their release yaer

In [242]:

```
1
  sns.lineplot(data= df, x= "release_year", y= "duration")
```

Out[242]:

<AxesSubplot:xlabel='release_year', ylabel='duration'>

In [243]:

```
2
  plt.figure(figsize=(17,8))
  plt.xticks(rotation=45)
 sns.barplot(data= df, x= "release_year", y= "duration", estimator= np.mean)
```

Out[243]:

<AxesSubplot:xlabel='release_year', ylabel='duration'>

In [244]:

```
1
2
  plt.figure(figsize=(17,8))
  plt.xticks(rotation=45)
  sns.barplot(data= df, x= "release_year", y= "duration", estimator= np.median)
```

Out[244]:

<AxesSubplot:xlabel='release_year', ylabel='duration'>

duration of TV Shows by release_decade

Observation:

• the few TV Shows (on Netflix) that released before 2000 were longer in duration

In [245]:

```
1
  sns.barplot(data= df, x= "released_decade", y= "duration", estimator= np.median)
```

Out[245]:

<AxesSubplot:xlabel='released_decade', ylabel='duration'>

In [246]:

```
1
  sns.boxplot(data= df, x= "released_decade", y= "duration")
```

Out[246]:

<AxesSubplot:xlabel='released_decade', ylabel='duration'>

In [247]:

```
2
 sns.barplot(data= df[df.released_decade == 1990], y= "title", x= "duration")
```

Out[247]:

<AxesSubplot:xlabel='duration', ylabel='title'>

duration of movies by rating

Observation:

• the movies of rating TV-Y, TV-Y7, TV-Y7-FY are of longer season duration (for kids maybe)

In [248]:

```
2
  plt.xticks(rotation = 45)
  sns.barplot(data= df, x= "rating", y= "duration", estimator= np.median)
```

Out[248]:

<AxesSubplot:xlabel='rating', ylabel='duration'>

In [249]:

```
1
  sns.barplot(data= df, y= "rating", x= "duration", estimator= np.median,
2
3
              order = df.groupby(["rating"]).median().sort_values(["duration"], ascending
```

Out[249]:

<AxesSubplot:xlabel='duration', ylabel='rating'>

In [250]:

```
2
    plt.figure(figsize= (8, 15))
 3
    ax = sns.barplot(data= df[df.rating == "TV-Y"], y= "title", x= "duration", estimator= r
 4
                  order = df[df.rating == "TV-Y"].groupby(["title"]).median().sort_values(["d
 5
    ax.xaxis.tick_top()
               Myanega Monserfelag
             Chico Bon Bon: Monkey within
       Hatchimals | Adventures
title
```

year added by release yaer

Observation:

- most TV Shows are added in last few years (after 2018)
- most of the TV Shows that are added released in 2000's and 2010's

In [251]:

```
1
2
  sns.scatterplot(data= df, x= "release_year", y= "year_added")
```

Out[251]:

<AxesSubplot:xlabel='release_year', ylabel='year_added'>

total duration of content added by added day of week

Observation:

· the total amount of seasons of TV Shows added is more on Fridays

In [252]:

```
1
  sns.barplot(data= df, x= "day_of_week_added", y= "duration", estimator= np.sum)
```

Out[252]:

<AxesSubplot:xlabel='day_of_week_added', ylabel='duration'>

total duration of content added by added day of week and year

Observation:

- · the total amount of seasons of TV Shows added on weekdays had been increasing every year
- The total amount of seasons of TV shows added on weekend has been around the same for last few years

In [253]:

Out[253]:

```
1
  plt.figure(figsize= (17, 8))
2
3
  sns.barplot(data= df, x= "day_of_week_added", y= "duration", hue= "year_added", estimat
4
```

<AxesSubplot:xlabel='day_of_week_added', ylabel='duration'>

no. of TV shows greater than 4 seasons long vs release_decade

Observation:

• The no. of TV Shows that are greater than 4 seasons are also belong to the 2010's

In [254]:

```
1
2
  sns.countplot(data= df[df.duration > 4], x= "released_decade")
```

Out[254]:

<AxesSubplot:xlabel='released_decade', ylabel='count'>

total seasons vs added day of month

Observation:

• The total seasons of content that was added on start/middle of a given month is significantly higher than that of any day of month

In [255]:

```
1
 sns.barplot(data= df, x= "day_of_month_added", y= "duration", estimator= np.sum)
```

Out[255]:

<AxesSubplot:xlabel='day_of_month_added', ylabel='duration'>

release_year vs rating

Observation:

The relese_year is independent of the rating of the TV Show

In [256]:

```
1
  plt.xticks(rotation= 45)
2
  sns.boxplot(data= df, x= "rating", y= "release_year")
```

Out[256]:

<AxesSubplot:xlabel='rating', ylabel='release_year'>

In [257]:

```
1
  sns.scatterplot(data= df, y= "rating", x= "release_year")
2
```

Out[257]:

<AxesSubplot:xlabel='release_year', ylabel='rating'>

added day of month/ week vs rating

Observation:

the added day of week or month is independent of the rating of the TV Show

In [258]:

```
1
  plt.xticks(rotation= 45)
  sns.boxplot(data= df, x= "rating", y= "day_of_week_added")
```

Out[258]:

<AxesSubplot:xlabel='rating', ylabel='day_of_week_added'>

In [259]:

```
2
  plt.xticks(rotation= 45)
  sns.boxplot(data= df, x= "rating", y= "day_of_month_added")
```

Out[259]:

<AxesSubplot:xlabel='rating', ylabel='day_of_month_added'>

distribution of duration vs min_age

Observation:

- the mean duration of the movies for 16+, 13+, 18+ is longer than for other age groups
- the duration for the genreic age group (0+) is lower than for any other age group
- the total duration of content is the highest for 18+, 16+ and 7+ age groups

In [260]:

```
1
 sns.barplot(data= df, x= "min_age", y= "duration", estimator= np.mean)
```

Out[260]:

<AxesSubplot:xlabel='min_age', ylabel='duration'>

In [261]:

```
1
 sns.boxplot(data= df, x= "min_age", y= "duration", showmeans= True)
2
```

Out[261]:

<AxesSubplot:xlabel='min_age', ylabel='duration'>

In [262]:

```
2
 sns.violinplot(data= df, x= "min_age", y= "duration", showmeans= True)
```

Out[262]:

<AxesSubplot:xlabel='min_age', ylabel='duration'>

In [263]:

```
1
 sns.barplot(data= df, x= "min_age", y= "duration", estimator= np.sum)
2
```

Out[263]:

<AxesSubplot:xlabel='min_age', ylabel='duration'>

distribution of release_year/ added year/ day of week/ month vs min_age

Observation:

- The release year/ added year are independent of min age
- The day of week added tends to be on Thur, Friday for all age groups

In [264]:

```
1
  sns.boxplot(data= df, x= "min_age", y= "release_year")
2
```

Out[264]:

<AxesSubplot:xlabel='min_age', ylabel='release_year'>

In [265]:

```
1
 sns.boxplot(data= df, x= "min_age", y= "year_added")
```

Out[265]:

<AxesSubplot:xlabel='min_age', ylabel='year_added'>

In [266]:

```
2
 sns.boxplot(data= df, x= "min_age", y= "day_of_week_added")
```

Out[266]:

<AxesSubplot:xlabel='min_age', ylabel='day_of_week_added'>

In [267]:

```
1
 sns.violinplot(data= df, x= "min_age", y= "day_of_week_added")
```

Out[267]:

<AxesSubplot:xlabel='min_age', ylabel='day_of_week_added'>

In [268]:

```
2
  sns.countplot(data= df, x= "min_age", hue= "day_of_week_added")
```

Out[268]:

<AxesSubplot:xlabel='min_age', ylabel='count'>

In [269]:

```
1
 sns.violinplot(data= df, x= "min_age", y= "day_of_month_added")
```

Out[269]:

<AxesSubplot:xlabel='min_age', ylabel='day_of_month_added'>

TV Show Data Analysis: nested included

In [270]:

```
netflix_data_full_tv = netflix_data_full[netflix_data_full.type == "TV Show"].copy()
2
4 netflix_data_full_tv.head()
```

Out[270]:

	show_id	type	title	director	cast	country	date_added	release_year	rating	dura
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	TV- MA	
2	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	2021-09-24 2021		TV- MA		
3	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	TV- MA	
4	s2	TV Show	Blood & Water	Anonymous	Khosi Ngema	South Africa	2021-09-24	2021	TV- MA	
5	s2	TV Show	Blood & Water	Anonymous	Khosi Ngema	South Africa	2021-09-24	2021	TV- MA	
4										•

In [271]:

```
2 df = netflix_data_full_tv.copy()
```

In [272]:

```
2
  df["release_decade"] = df["release_year"].apply(lambda x: x - (x%10))
4 df.head()
```

Out[272]:

	show_id	type	title	director	cast	country	date_added	release_year	rating	dura
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	TV- MA	
2	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South 2021-09-24 2021		TV- MA		
3	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	2021-09-24 20		2021	TV- MA	
4	s2	TV Show	Blood & Water	Anonymous	Khosi Ngema	South Africa	2021-09-24	2021	TV- MA	
5	s2	TV Show	Blood & Water	Anonymous	Khosi Ngema	South Africa	2021-09-24	2021	TV- MA	
4										•

In [273]:

```
1
  df.columns = ['show_id', 'type', 'title', 'directors', 'actors', 'country', 'date_added
                 'release_year', 'rating', 'duration', 'genres', 'min_age', 'release_decade
3
4
5 df.columns
```

Out[273]:

```
Index(['show_id', 'type', 'title', 'directors', 'actors', 'country',
       'date_added', 'release_year', 'rating', 'duration', 'genres', 'min_ag
e',
       'release_decade'],
      dtype='object')
```

Univariate analysis

In [274]:

```
2
test_df = df.copy(); test_df["count"] = 1
5
```

Out[274]:

	show_id	title	directors	actors	country	release_year	genres	release_decade
count								
1	2676	2676	300	14864	66	46	22	9

Bivariate analysis

no. of TV Shows vs directors

Observation:

• There are only a handful of directors (among 789) who have done more than 10 TV Shows

In [275]:

```
2
  plt_df = df.loc[(df.directors != "Anonymous")].groupby(["directors"]).nunique().reset_i
3
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "directors", x= "show_id")
7
8
  ax.xaxis.tick_top()
```


no. of TV Shows per actor

Observation:

• There are only a handful of actors (among 11472) who have done more than 10 TV Shows

In [276]:

```
2
  plt_df = df.loc[(df.actors != "Anonymous")].groupby(["actors"]).nunique().reset_index()
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "actors", x= "show_id")
6
7
 ax.xaxis.tick_top()
8
```


In [277]:

```
2
  plt_df = df.loc[(df.actors != "Anonymous")].groupby(["actors"]).nunique().reset_index()
3
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "actors", x= "show_id")
6
7
  ax.xaxis.tick_top()
8
```


no. of TV Shows per country

Observation:

· Most TV Shows are availabe only for US, Japan, UK, Canada

• UAE, Ukraine, Austri and few other countries have only one TV Show streaming

In [278]:

```
1
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["show_id"], ascer
2
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "country", x= "show_id")
6
7
8
  ax.xaxis.tick_top()
```


In [279]:

```
2
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["show_id"], ascer
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "country", x= "show_id")
6
7
8
  ax.xaxis.tick_top()
```


Observation:

- Most TV Shows belong to the genre of International, Dramas, Comedies
- · Very few TV Shows belong to the genre of Classic, Cult, Reality, Thriller, Teen, Science & Nature

In [280]:

```
1
  plt_df = df.groupby(["genres"]).nunique().reset_index().sort_values(["show_id"], ascended)
2
3
  plt.figure(figsize= (8, 10))
4
5
  ax = sns.barplot(data= plt_df, y= "genres", x= "show_id")
6
7
8
  ax.xaxis.tick_top()
```



```
In [281]:
 2 df.genres.unique()
Out[281]:
array(['International TV Shows', 'TV Dramas', 'TV Mysteries',
       'Crime TV Shows', 'TV Action & Adventure', 'Docuseries',
       'Reality TV', 'Romantic TV Shows', 'TV Comedies', 'TV Horror',
       'British TV Shows', 'Spanish-Language TV Shows', 'TV Thrillers',
       "Kids' TV", 'TV Sci-Fi & Fantasy', 'Anime Series',
       'Korean TV Shows', 'Science & Nature TV', 'Teen TV Shows',
```

no. of actors worked with per director

dtype=object)

Observation:

• Around 10-20 directors (among 790) worked with more than 100 actors (among 12000)

'TV Shows', 'Stand-Up Comedy & Talk Shows', 'Classic & Cult TV'],

In [282]:

```
2
  plt_df = df.loc[(df.directors != "Anonymous")].groupby(["directors"]).nunique().reset_i
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "directors", x= "actors")
6
7
  ax.xaxis.tick_top()
8
```


In [283]:

```
2
  plt_df = df.loc[(df.directors != "Anonymous")].groupby(["directors"]).nunique().reset_i
3
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "directors", x= "actors")
7
  ax.xaxis.tick_top()
8
```


no. of directors worked with per actor

Observation:

Around 20-30 actors (among 12000) worked with more than 10 directors (among 790)

In [284]:

no. of countries streaming per actor

Observation:

• Around 10 actors (among 12000) are streaming (popular) in more than 6 countries

In [285]:

```
1
  plt_df = df.loc[(df.actors != "Anonymous")].groupby(["actors"]).nunique().reset_index()
2
3
4
  plt.figure(figsize= (8, 10))
5
  ax = sns.barplot(data= plt_df, y= "actors", x= "country")
6
7
  ax.xaxis.tick_top()
8
```


no. of genres per actor

Observation:

· Around 30 actors (among 12000) are (versatile) in more than 6 genres

In [286]:

```
2
  plt_df = df.loc[(df.actors != "Anonymous")].groupby(["actors"]).nunique().reset_index()
3
4
  plt.figure(figsize= (8, 12))
5
  ax = sns.barplot(data= plt_df, y= "actors", x= "genres")
6
7
8
  ax.xaxis.tick_top()
```


no. of actors/directors per country

Observation:

- · Most actors/directors are streaming on US, UK, Japan, Canada, South Korea
- The countries such as Greece, Malta, Cuba, Austria and few more have only 1 actor/director streaming

In [287]:

```
1
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["actors"], ascended)
2
3
  plt.figure(figsize= (8, 12))
4
5
  ax = sns.barplot(data= plt_df, y= "country", x= "actors")
6
7
8
  ax.xaxis.tick_top()
```


In [288]:

```
2
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["actors"], ascended)
4
  plt.figure(figsize= (8, 12))
5
  ax = sns.barplot(data= plt_df, y= "country", x= "actors")
7
8
  ax.xaxis.tick_top()
```


In [289]:

```
2
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["directors"], asc
4
  plt.figure(figsize= (8, 12))
5
  ax = sns.barplot(data= plt_df, y= "country", x= "directors")
6
7
8
  ax.xaxis.tick_top()
```


In [290]:

```
2
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["directors"], asc
4
  plt.figure(figsize= (8, 12))
5
  ax = sns.barplot(data= plt_df, y= "country", x= "directors")
7
  ax.xaxis.tick_top()
8
```


no. of actors/directors per genre

Observation:

- · Most actors/directors are working on Dramas, Comedies, Crime TV Shows
- · Very few directors on netflix are working on Classics, Cult, Science, Nature, Reality and Talk Shows

In [291]:

```
1
  plt_df = df.groupby(["genres"]).nunique().reset_index().sort_values(["directors"], asce
2
3
  plt.figure(figsize= (8, 12))
4
5
  ax = sns.barplot(data= plt_df, y= "genres", x= "directors")
6
7
8
  ax.xaxis.tick_top()
```


In [292]:

```
2
  plt_df = df.groupby(["genres"]).nunique().reset_index().sort_values(["actors"], ascendi
4
  plt.figure(figsize= (8, 12))
5
  ax = sns.barplot(data= plt_df, y= "genres", x= "actors")
7
8
 ax.xaxis.tick_top()
```


no. of countries per genre

Observation:

- Dramas, Comedies, Crime, Romantic are more popular among countries
- · Classic, Science, Nature, Korean, Anime are least popular among countries

In [293]:

```
1
  plt_df = df.groupby(["genres"]).nunique().reset_index().sort_values(["country"], ascend
2
3
  plt.figure(figsize= (8, 12))
4
5
  ax = sns.barplot(data= plt_df, y= "genres", x= "country")
6
7
8
  ax.xaxis.tick_top()
```


no. of genres per country

Observation:

• Only 10-20 countries (of 113) are streaming more than 10 (of 22) genres

In [294]:

```
plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["genres"], ascended)
2
3
4
  plt.figure(figsize= (8, 12))
5
  ax = sns.barplot(data= plt_df, y= "country", x= "genres")
6
7
8
  ax.xaxis.tick_top()
```


In [295]:

```
2
  plt_df = df.groupby(["country"]).nunique().reset_index().sort_values(["genres"], ascended)
4
  plt.figure(figsize= (8, 12))
5
  ax = sns.barplot(data= plt_df, y= "country", x= "genres")
7
8
  ax.xaxis.tick_top()
```


no. of Shows/ directors/ actors vs added year

Observation:

- The no. of Shows/ directors/ actor peaked in 2020
- The no. of Shows/ directors/ actors started growing since 2015

In [296]:

```
1
2
  plt_df = df.groupby(df.date_added.dt.year).nunique().rename_axis("year_added").reset_ir
3
  plt.xticks(rotation= 45)
  sns.barplot(data= plt_df, y= "show_id", x= "year_added")
```

Out[296]:

<AxesSubplot:xlabel='year_added', ylabel='show_id'>

In [297]:

```
2
  plt_df = df.groupby(df.date_added.dt.year).nunique().rename_axis("year_added").reset_ir
3
4
  plt.xticks(rotation= 45)
  sns.barplot(data= plt_df, y= "directors", x= "year_added")
```

Out[297]:

<AxesSubplot:xlabel='year_added', ylabel='directors'>

In [298]:

```
1
2
  plt_df = df.groupby(df.date_added.dt.year).nunique().rename_axis("year_added").reset_ir
3
4
  plt.xticks(rotation= 45)
  sns.barplot(data= plt_df, y= "actors", x= "year_added")
```

Out[298]:

<AxesSubplot:xlabel='year_added', ylabel='actors'>

no. of countries/ genres streaming per aded year

Observation:

The no. of countries/ genresstreaming grew b/w years 2015 - 18 and then stabilized around 110

In [299]:

```
1
  plt_df = df.groupby(df.date_added.dt.year).nunique().rename_axis("year_added").reset_ir
2
4
  plt.xticks(rotation= 45)
  sns.barplot(data= plt_df, y= "country", x= "year_added")
```

Out[299]:

```
<AxesSubplot:xlabel='year_added', ylabel='country'>
```


In [300]:

```
1
  plt_df = df.groupby(df.date_added.dt.year).nunique().rename_axis("year_added").reset_ir
2
3
4
  plt.xticks(rotation= 45)
  sns.barplot(data= plt_df, y= "genres", x= "year_added")
```

Out[300]:

<AxesSubplot:xlabel='year_added', ylabel='genres'>

In [301]:

```
1
2
  def new_nunique(x, df, col):
3
       year = x.date_added.dt.year.unique()[0]
4
       prev_col_vals = df.loc[df.date_added.dt.year < year][col].unique()</pre>
5
       result = pd.Series({ col: x.loc[~x[col].isin(prev_col_vals)].nunique()[col]})
6
7
8
       return result
```

no. of new directors/ actors added vs added year

Observation:

- The no. of new directors/ actor peaked in 2019-20
- The no. of new Shows/ directors/ actors started growing since 2015

In [302]:

```
1
2
  plt_df = df.groupby(df.date_added.dt.year).apply(lambda x: new_nunique(x, df, "director")
4
  plt.xticks(rotation= 45)
5
  sns.barplot(x= plt_df.index, y= plt_df.directors)
```

Out[302]:

<AxesSubplot:xlabel='date_added', ylabel='directors'>

In [303]:

```
2
  plt_df = df.groupby(df.date_added.dt.year).apply(lambda x: new_nunique(x, df, "actors")
4
  plt.xticks(rotation= 45)
5
  sns.barplot(x= plt_df.index, y= plt_df.actors)
```

Out[303]:

<AxesSubplot:xlabel='date_added', ylabel='actors'>

no. of new genres added vs added year

Observation:

· New genres were added during the initial years and then kept at 20 since 2016

In [304]:

```
2
  plt_df = df.groupby(df.date_added.dt.year).apply(lambda x: new_nunique(x, df, "genres")
4
  plt.xticks(rotation= 45)
5
  sns.barplot(x= plt_df.index, y= plt_df.genres)
```

Out[304]:

<AxesSubplot:xlabel='date_added', ylabel='genres'>

no. of new countries added vs added year

Observation:

- · No. of new countries added started growing from 2014 and peaked in 2017
- After 2017 the no. of new countries added slowed down to reach 113

In [305]:

```
plt_df = df.groupby(df.date_added.dt.year).apply(lambda x: new_nunique(x, df, "country'
    plt.xticks(rotation= 45)
    sns.barplot(x= plt_df.index, y= plt_df.country)
```

Out[305]:

<AxesSubplot:xlabel='date_added', ylabel='country'>

In [306]:

```
def new_nunique(x, df, col):
    year = x.release_year.unique()[0]
    prev_col_vals = df.loc[df.release_year < year][col].unique()
    result = pd.Series({ col: x.loc[~x[col].isin(prev_col_vals)].nunique()[col]})
    return result</pre>
```

no. of new TV Shows/ directors/ actors added per release year

Observation:

- The new directors/ actors in TV Shows released every year that are added to netflix in peaked in 2019-20
- Post 2019-20 the directors/ actors in newly released TV Shows strted to get repetative

In [307]:

```
1
2
  plt_df = df.groupby(df.release_year).apply(lambda x: new_nunique(x, df, "show_id")).res
3
  plt_df = plt_df.loc[plt_df.release_year >= 1990]
5
  plt.figure(figsize= (17, 6))
  plt.xticks(rotation= 45)
7
  sns.barplot(x= plt_df.release_year, y= plt_df.show_id)
```

Out[307]:

<AxesSubplot:xlabel='release_year', ylabel='show_id'>

In [308]:

```
1
2
  plt_df = df.groupby(df.release_year).apply(lambda x: new_nunique(x, df, "actors")).rese
3
  plt_df = plt_df.loc[plt_df.release_year >= 1990]
5
  plt.figure(figsize= (17, 6))
  plt.xticks(rotation= 45)
  sns.barplot(x= plt_df.release_year, y= plt_df.actors)
```

Out[308]:

<AxesSubplot:xlabel='release year', ylabel='actors'>

In [309]:

```
2
  plt_df = df.groupby(df.release_year).apply(lambda x: new_nunique(x, df, "directors")).r
  plt_df = plt_df.loc[plt_df.release_year >= 1990]
5
  plt.figure(figsize= (17, 6))
  plt.xticks(rotation= 45)
7
  sns.barplot(x= plt_df.release_year, y= plt_df.directors)
```

Out[309]:

<AxesSubplot:xlabel='release_year', ylabel='directors'>

no. of new countries added per release year

Observation:

• The expansion to most countries happend through the TV Sohws released in 2013, 2015, 2017 and then stated to stabilize

In [310]:

```
2
  plt_df = df.groupby(df.release_year).apply(lambda x: new_nunique(x, df, "country")).res
  plt_df = plt_df.loc[plt_df.release_year >= 1990]
5
  plt.figure(figsize= (17, 6))
  plt.xticks(rotation= 45)
7
  sns.barplot(x= plt_df.release_year, y= plt_df.country)
```

Out[310]:

<AxesSubplot:xlabel='release_year', ylabel='country'>

no. of new gernes added per release year

Observation:

The TV Show for the latest genre on netflix had released in 2014

In [311]:

```
plt_df = df.groupby(df.release_year).apply(lambda x: new_nunique(x, df, "genres")).rese
2
  # plt_df = plt_df.loc[plt_df.release_year >= 1990]
5
  plt.figure(figsize= (17, 6))
  plt.xticks(rotation= 45)
7
8
  sns.barplot(x= plt_df.release_year, y= plt_df.genres)
```

Out[311]:

<AxesSubplot:xlabel='release_year', ylabel='genres'>

trend of TV Shows added per release year and year added

Observation:

- · Among the TV Shows released in a given year the highest no. of TV Shows are added to netflix in that year since 2016
- For the TV Shows released before 2017, the highest no. of TV Shows released in that year are added in 2016-17

In [312]:

```
2
  plt_df = df.groupby([df.release_year, df.date_added.dt.year]).nunique().rename_axis(
3
                                                                                     ["relea
4
                                                                                     ).reset
5
  plt_df = plt_df[plt_df.release_year >= 2010]
  plt.figure(figsize= (17, 20))
7
  plt.xticks(rotation= 45)
8
  sns.barplot(y= plt_df.release_year, x= plt_df.show_id, hue= plt_df.year_added, orient=
```

Out[312]:

<AxesSubplot:xlabel='show_id', ylabel='release_year'>

In [313]:

```
2
  plt_df = df.groupby([df.release_year, df.date_added.dt.year]).nunique().rename_axis(
3
4
                                                                                    ).reset
5
  plt_df = plt_df[plt_df.release_year >= 2010]
  plt.figure(figsize= (17, 20))
7
  plt.xticks(rotation= 45)
8
  sns.barplot(y= plt_df.year_added, x= plt_df.show_id, hue= plt_df.release_year, orient=
```

Out[313]:

<AxesSubplot:xlabel='show_id', ylabel='year_added'>

In [314]:

```
1
 2
   def new_nunique(x, df, col):
 3
        year = x.date_added.dt.year.unique()[0]
 4
 5
        temp = df.loc[(df.date_added.dt.year >= year-4) & (df.date_added.dt.year <= year)].</pre>
 6
 7
        result = temp.groupby(temp.date_added.dt.year).nunique()
 8
          print("-"*50 + "\n", dict(zip(result.index.values, year - result.index.values)),
 9
10
        new_index = dict(zip(result.index.values, year - result.index.values))
11
12
13
        result = result.rename(index= new_index)[col]
14
15
        return result
```

In [315]:

trend of TV Shows added per release year and year added

Observation:

- Till 2020, most of the TV Shows on netflix in a given year belong to the TV Shows released that year
- Since 2020, most of the movies on Netflix by the end of that year belong to the movies released in previous year

In [316]:

```
1
2
  plt.figure(figsize= (17, 8))
3
  plt.xticks(rotation= 45)
  sns.barplot(x= plt_df.year_added, y= plt_df.show_id, hue= plt_df.last_n_year_added,
5
6
               hue_order = [4, 3, 2, 1, 0],
7
               orient= 'v', edgecolor='white', linewidth=2)
```

Out[316]:

<AxesSubplot:xlabel='year_added', ylabel='show_id'>

no. of TV Shows per possible pair

· pairs between actors, directors, genres

In [317]:

```
1
 2
     plt_df = df.loc[(df.directors != "Anonymous") & (df.actors != "Anonymous")].groupby(
 3
                                                                                                                           ["directors
 4
                                                                                                                           ).nunique()
 5
 6
 7
     plt.figure(figsize= (8, 17))
 8
 9
     plt_df["director_actor"] = plt_df.apply(lambda x: x["directors"] + " | " + x["actors"]]
10
     ax = sns.barplot(y= plt_df.director_actor, x= plt_df.show_id)
11
12
13
     ax.xaxis.tick_top()
                                           0.0
                                                      0.5
                                                                 1.0
                                                                            1.5
                                                                                       2.0
                                                                                                  2.5
                                                                                                             3.0
             Alastair Fothergill | David Attenborough
             Gautham Vasudev Menon | Prakash Raj
                    Stan Lathan | Dave Chappelle
                      Shin Won-ho | Sung Dong-il
                        Shin Won-ho | Lee II-hwa
                 Gautham Vasudev Menon I Aniali
  Gautham Vasudev Menon | Gautham Vasudev Menon
                 Onur Ünlü | Ahmet Mümtaz Taylan
                            Onur Ünlü | Ali Atay
                      Onur Ünlü | Cengiz Bozkurt
                        Onur Ünlü | Ege Tanman
                        Onur Ünlü | Melis Birkan
                        Onur Ünlü | Köksal Engür
                       Onur Ünlü | Osman Sonant
                       Onur Ünlü | Serkan Keskin
                      Onur Ünlü | İştar Gökseven
                   Oriol Paulo | Alexandra Jiménez
                       Oriol Paulo | Ana Wagener
                       Oriol Paulo | Anna Alarcón
                       Oriol Paulo | Aura Garrido
                 Olivier Jean-Marie | Tony Sampson
         Abhishek Chaubey | Akansha Ranjan Kapoor
                       Oriol Paulo | José Coronado
                   Olivier Jean-Marie | Tara Strong
                Obi Emelonye | Chinonye Chidolue
                 Obi Emelonye | Emmanuel Emelu
                  Obi Emelonye | Enyinna Nwigwe
                       Obi Emelonye | King Bawa
                 Obi Emelonye | Lorenzo Menakaya
```

show id

Obi Emelonye | Obi Okolie

In [318]:

```
plt_df = df.loc[(df.directors != "Anonymous") & (df.actors != "Anonymous")].groupby(["
 2
 3
                                                                                                            ascending= False)["s
 4
 5
     plt.figure(figsize= (8, 17))
 6
     plt_df["director_genre"] = plt_df.apply(lambda x: x["directors"] + " | " + x["genres"]]
 7
 8
 9
     ax = sns.barplot(y= plt_df.director_genre, x= plt_df.show_id)
10
11
     ax.xaxis.tick_top()
                                       0.0
                                                  0.5
                                                              1.0
                                                                         1.5
                                                                                     2.0
                                                                                                2.5
                                                                                                            3.0
          Alastair Fothergill | British TV Shows
    Alastair Fothergill | International TV Shows
              Alastair Fothergill | Docuseries
  Stan Lathan | Stand-Up Comedy & Talk Shows
   Jung-ah Im | Stand-Up Comedy & Talk Shows
                     Iginio Straffi | Kids' TV
            Hsu Fu-chun | Romantic TV Shows
         Hsu Fu-chun | International TV Shows
        Shin Won-ho | International TV Shows
             Shin Won-ho | Korean TV Shows
           Shin Won-ho | Romantic TV Shows
          Jung-ah Im | International TV Shows
               Jung-ah Im | Korean TV Shows
                 Stan Lathan | TV Comedies
              Noam Murro | British TV Shows
                     Nizar Shafi | TV Shows
          Oriol Paulo | International TV Shows
               Oriol Paulo | Crime TV Shows
             Mohamed al Salman | TV Shows
                   Onur Ünlü | TV Comedies
             Onur Ünlü | Romantic TV Shows
           Onur Ünlü | International TV Shows
         Nag Ashwin | International TV Shows
                   Nag Ashwin | TV Dramas
            Olivier Jean-Marie | TV Comedies
                Olivier Jean-Marie | Kids' TV
                  Oliver Stone | Docuseries
                 Obi Emelonye | TV Dramas
        Obi Emelonye | International TV Shows
                Norm Hiscock | TV Comedies
```

show id

In [319]:

```
plt_df = df.loc[(df.actors != "Anonymous")].groupby(["actors", "genres"]).nunique().sor
 2
 3
                                                                         ascending= False)["s
 4
 5
   plt.figure(figsize= (8, 17))
 6
   plt_df["actor_genre"] = plt_df.apply(lambda x: x["actors"] + " | " + x["genres"], axis=
7
8
9
   ax = sns.barplot(y= plt_df.actor_genre, x= plt_df.show_id)
10
11
   ax.xaxis.tick_top()
```


In [320]:

```
plt_df = df.groupby(["country", "genres"]).nunique().sort_values("show_id",
 2
 3
                                                                         ascending= False)["s
 4
 5
   plt.figure(figsize= (8, 17))
 6
   plt_df["country_genre"] = plt_df.apply(lambda x: x["country"] + " | " + x["genres"], ax
7
8
9
   ax = sns.barplot(y= plt_df.country_genre, x= plt_df.show_id)
10
11
   ax.xaxis.tick_top()
```


no. of values per min_age

· values: directors, actors, country, genre

```
In [321]:
```

```
2 df.directors.nunique()
```

Out[321]:

300

In [322]:

```
2
   plt_df = df.loc[(df.directors != "Anonymous")].groupby(["directors", "min_age"]).nuniqu
 3
                                                                                          [ " :
 4
                                                                                          asc
 5
   plt_df = plt_df.groupby("directors").head(1).sort_values("show_id", ascending= False)
 6
 7
   plt_df["director_min_age"] = plt_df.apply(lambda x: x["directors"] + " | " + str(x["mir
8
 9
   sns.barplot(data= plt_df.head(20), y= "director_min_age", x= "show_id", orient= 'h')
10
```

Out[322]:

<AxesSubplot:xlabel='show_id', ylabel='director_min_age'>

In [323]:

```
2
   plt_df = df.loc[(df.directors != "Anonymous")].groupby(["directors", "min_age"]).nuniqu
 3
                                                                                           [ " :
4
                                                                                           asc
 5
   plt_df = plt_df.groupby("min_age").head(1).sort_values("show_id", ascending= False)
 6
7
   plt_df["director_min_age"] = plt_df.apply(lambda x: x["directors"] + " | " + str(x["min"))
8
9
   sns.barplot(data= plt_df.head(20), y= "director_min_age", x= "show_id", orient= 'h')
10
```

Out[323]:

<AxesSubplot:xlabel='show_id', ylabel='director_min_age'>

In [324]:

```
1
2
  plt_df = df.groupby("min_age").nunique()["directors"].reset_index()
3
  sns.barplot(y= plt_df.min_age, x= plt_df.directors, orient= 'h')
```

Out[324]:

<AxesSubplot:xlabel='directors', ylabel='min_age'>

Correlation Analysis

Movies Data Correlation

Observation:

- Ther isn't much correlation between any numerical data:
 - duration, min_age, release_year

In [325]:

```
1
 df = netflix_data_listed.loc[netflix_data_listed.type == "Movie"].copy()
2
```

In [326]:

```
1
2 sns.heatmap(df.corr())
```

Out[326]:

<AxesSubplot:>

In [327]:

2 sns.pairplot(df)

Out[327]:

<seaborn.axisgrid.PairGrid at 0x1ddb4a43948>

TV Show Data Correlation

Observation:

- Ther isn't much correlation between any numerical data:
 - duration, min_age, release_year

In [328]:

```
1
 df = netflix_data_listed.loc[netflix_data_listed.type == "TV Show"].copy()
```

In [329]:

```
1
2
  sns.heatmap(df.corr())
```

Out[329]:

<AxesSubplot:>

In [330]:

2 sns.pairplot(df)

Out[330]:

<seaborn.axisgrid.PairGrid at 0x1ddbee5f0c8>

Business Insights:

- There are very few Movies and TV Shows on Netflix that were released before 2000
- There are very few Movies that are shorter than an hour in duration and there are very very few short films
- There are very few TV Shows that are more than 4 Seasons and there are very very few long-form shows
- Most Movies/ TV Shows are added on Friday or Thursday, very few are added on Weekends
- Most of the Movies/ TV Shows are streaming for very few countries (10)
- · There are very few Classic, Cult, Anime, Sci-Fi Movies on Netflix
- There are very few Classic, Cult, Reality, Thriller, Teen, Science & Nature TV Shows on Netflix
- There are very few Movies/ TV Shows that are targeted toward Generic Age Group (0+)
- Among the new Movies/ TV Shows, up and coming Actors/ Directors are very few
- . Most Movies/ TV Shows are released at the start of the month and few TV Shows and Movies in the middle of the month

Recommendations:

- Limited Period Streaming of Old Movies/ TV Shows and permanently adding the successful ones
- Introducing Short Films or Movies with a shorter duration
- Introducing recurring Live Streams or TV Shows of longer duration
- In-app Movie/ TV Shows release Events to keep every day/ week/ month interesting, such as Horror Day/ Thriller Week, and Sci-Fi month.
- Expanding the streaming availability to more countries
- Producing or Adding more Movies/ TV Shows with up-and-coming Artists
- Adding more movies for the generic (0+) age group
- Adding more Movies/ TV Shows of niche genres such as Sci-FI, Thrillers, Anime, Science & nature etc

In []:					
1					