

### Guía de Ejercicios Nº 3

<u>Consigna:</u> Leer los capítulos del Libro "Ingeniería de Control Moderna" del autor Katsuhiko Ogata, para poder responder la introducción teórica de la presente Guía de Ejercicios Nº 3.

#### 1. DEFINICIÓN Y ENUNCIADOS

- 1.1. Enunciar y explicar, con sus respectivas fórmulas, los pasos para trazar el Lugar Geométrico de las Raíces.
- 1.2. Responder las siguientes preguntas:
  - a) ¿Qué son los Polos de Lazo Cerrado?
  - b) ¿Qué es la ganancia de la Función de Transferencia en Lazo Abierto?
  - c) ¿Qué es el Lugar Geométrico de las Raíces para un sistema?
  - d) ¿Con respecto a qué eje son simétricos los lugares geométricos de las raíces? ¿Por qué?
  - e) ¿Qué condiciones debe cumplir un punto en el plano **s** para pertenecer al Lugar Geométrico de la Raíces?
  - f) ¿Cuál es el parámetro principal y qué representa?
  - g) ¿Qué son las singularidades?
  - h) ¿Qué dice la **regla práctica** para determinar si un punto pertenece al Lugar Geométrico de las Raíces?
  - i) ¿Cómo se averigua la cantidad de asíntotas distintas?

#### 2. RESOLUCIÓN MANUAL

2.1. Obtener y graficar el Lugar Geométrico de las Raíces de las **ecuaciones características** de los siguientes ejercicios, detallando los pasos vistos en Teoría.

| Ejercicio N° 1:                                 | Ejercicio N° 2:                                     | Ejercicio N° 3:                                 |
|-------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| $1 + \frac{K}{s^3 + 5s^2 + 4s} = 0$             | $1 + \frac{K(s^2 + 4s + 53)}{s^3 + 3s^2 - 18s} = 0$ | $1 + \frac{K}{s(s^2 + 4s + 8)} = 0$             |
| Ejercicio N° 4:                                 | Ejercicio N° 5:                                     | Ejercicio N° 6:                                 |
| $1 + \frac{K(s-7)}{s^3 + s^2 + 80s - 82} = 0$   | $1 + \frac{K(s^2 - 2s + 10)}{s^2 + 4s - 5} = 0$     | $1 + \frac{K(s^2 + 4)}{s^2 + 6s} = 0$           |
| Ejercicio N° 7:                                 | Ejercicio N° 8:                                     | Ejercicio N° 9:                                 |
| $1 + \frac{K(s-6)}{s^3 + 12s^2 + 9s + 292} = 0$ | $1 + \frac{K}{s(s^2 + 6s + 25)} = 0$                | $1 + \frac{K(s-6)}{s^3 + 12s^2 + 9s + 292} = 0$ |

- 2.2. Dado los siguientes **polos** y **ceros** de lazo abierto:
  - a) Obtener la ecuación característica.
  - b) Hallar los ángulos de las asíntotas. En el caso de que no existan deberá justificar la respuesta analíticamente.
  - c) Calcular el punto donde nacen las asíntotas. En el caso de que no exista deberá justificar la respuesta analíticamente.
  - d) Calcular los ángulos de salida (o llegada) desde los polos (o ceros) complejos. En el caso de que no se puedan calcular deberá justificar la respuesta.
  - e) Hallar los puntos de ruptura, en el caso de que existan, y especificar cuáles son justificando la respuesta.
  - f) Hallar ω crítico.
  - g) Hallar K crítico.
  - h) Teniendo en cuenta los valores calculados en los ítems f) y g) ¿A qué conclusión se puede llegar respecto a los polos de lazo cerrado?
  - Graficar el Lugar Geométrico de las Raíces completo indicando en el mismo TODOS los valores calculados en los ítems anteriores.



| Ejercicio N° 1: Ceros: no existen Polos: 0; -3; -6 | Ejercicio N° 2:<br>Ceros: -3<br>Polos: -4; -4-2j; -4+2j | Ejercicio N° 3:<br>Ceros: -1<br>Polos: 0; -2; -3 |
|----------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|
| Ejercicio N° 4:                                    | Ejercicio N° 5:                                         | Ejercicio N° 6:                                  |
| Ceros: no existen                                  | Ceros: j; -j                                            | Ceros: -1                                        |
| Polos: -1; -2-2j; -2+2j                            | Polos: 0; -2                                            | Polos: 0; -3-3j; -3+3j                           |
| Ejercicio N° 7:                                    | Ejercicio N° 8:                                         | Ejercicio N° 9:                                  |
| Ceros: -3+8j; -3-8j                                | Ceros: -2                                               | Ceros: -2; -3                                    |
| Polos: 0; -6; 3                                    | Polos: 0; -2-j; -2+j                                    | Polos: 0; -1                                     |

- 2.3. Dado los siguientes gráficos del Lugar Geométrico de las Raíces:
  - a) Obtener la ecuación característica.
  - b) Calcular e **indicar** en el gráfico:
    - i. Las asíntotas. En el caso de que no existan deberá justificar la respuesta analíticamente.
    - ii. El punto donde nacen las asíntotas. En el caso de que no exista deberá justificar la respuesta analíticamente.
    - iii. Los puntos de ruptura, en el caso de que existan, y especificar cuáles son justificando la respuesta.
    - iv. El valor correcto de  $\omega$  crítico. En el caso de que no exista deberá justificar la respuesta analíticamente.
    - v. El valor correcto de K crítico. En el caso de que no exista deberá justificar la respuesta analíticamente.
    - vi. Teniendo en cuenta los valores calculados en los ítems **iv)** y **v)** ¿A qué conclusión se puede llegar respecto a los polos de lazo cerrado?

### **Ejercicio N° 1:**









## Ejercicio N° 3:



# Ejercicio N° 4:









## Ejercicio N° 6:



# Ejercicio N° 7:







### Ejercicio N° 9:



### 3. RESOLUCIÓN POR SOFTWARE

3.1. Obtener y graficar el Lugar Geométrico de las Raíces de las **ecuaciones características** de los siguientes ejercicios, detallando los pasos vistos en Teoría y utilizando el software **MatLab** o **SciLab**. En cada caso deberá especificar el software elegido para la resolución.

# Ejercicio N° 1:

$$1 + \frac{K(s^4 + 10s^3 + 76s^2 + 344s - 1088)}{s^5 + 22s^4 + 184s^3 + 696s^2 + 263s - 5166} = 0$$

### Ejercicio N° 3:

$$1 + \frac{K(s^4 - 5s^3 - 63s^2 + 153s + 810)}{s^5 + 16s^4 + 105s^3 + 206s^2 - 976s} = 0$$

### Ejercicio N° 5:

$$1 + \frac{K(s^3 + 15s^2 + 206,8s - 222,8)}{s^5 - 35s^3 + 110s^2 - 276s - 2520} = 0$$

## Ejercicio N° 2:

$$1 + \frac{K(s^4 - s^3 - 13s^2 + 41s + 52)}{s^5 + 20s^4 + 151s^3 + 500s^2 + 600s} = 0$$

# Ejercicio N° 4:

$$1 + \frac{K(s^3 + 11s^2 + 57s + 203)}{s^5 + 10s^4 - 100s^3 - 1000s^2 - 576s + 5760} = 0$$

### Ejercicio N° 6:

$$1 + \frac{K(s^4 + 12s^3 + 30s^2 - 36s - 160)}{s^5 + 26s^4 + 196s^3 + 216s^2 - 1440s} = 0$$



3.2. Obtener y graficar el Lugar Geométrico de las Raíces partiendo de los **polos** y **ceros** de lazo abierto dados en los siguientes ejercicios, detallando los pasos vistos en Teoría y utilizando el software **MatLab** o **SciLab**. En cada caso deberá especificar el software elegido para la resolución.

| Ejercicio N° 1:                | Ejercicio N° 2:                          | Ejercicio N° 3:                        |
|--------------------------------|------------------------------------------|----------------------------------------|
| Ceros: -1+3j; -1-3j; -6        | <b>Ceros</b> : -1+6j; -1-6j; 3           | Ceros: 0; 2                            |
| Polos: 6; 2; -5; -7; -10       | <b>Polos</b> : -2+3j; -2-3j; 2; -3,5; -7 | Polos: -1; -2,5+3j; -2,5-3j            |
| Ejercicio N° 4:                | Ejercicio N° 5:                          | Ejercicio N° 6:                        |
| Ceros: -4-7j; -4+7j; -7        | <b>Ceros</b> : -5+8j; -5-8j; 0; 6        | <b>Ceros</b> : -5+7j; -5-7j; 6; -5     |
| Polos: 1-2j; 1+2j; 0; -3; -6   | <b>Polos</b> : 0; -2; 3; -5; 7           | <b>Polos</b> : -8-3j; -8+3j; 2; -2; -6 |
| Ejercicio N° 7:                | Ejercicio N° 8:                          | Ejercicio N° 9:                        |
| Ceros: -2; 3; 7; -8            | Ceros: -7+2j; -7-2j; 6                   | Ceros: -1; -4; 6                       |
| Polos: -2-8j; -2+8j; -1; 5; -8 | Polos: -1; -3; -2,5; 2,5; 4              | Polos: -6-j; -6+j; -2; 5; -6           |