- 3. On dispose des données d'apprentissage suivantes :
- classe ω_1 : 0.1, 0.2, 0.6, 0.7;
- classe ω_2 : 0.5, 0.57, 1.5
- 3a. Estimer numériquement la probabilité d'erreur de Bayes ϵ^* , en utilisant la formule de la question 2 (on a $\phi(0.4) \approx 0.7$ et $\phi(0.9) \approx 0.8$).

On	estine	TI, por TI, = 1 = 3/7 / de nême pour 1/2 = 3/7
On	estime	N1 par N1 = 0,4 de même pour N2 20,86
Oa	estine	s por 3 = 1,26.
On	estine	E* por €*=0,41 C

3b. Estimer la probabilité d'erreur de la règle du plus proche voisin, par la méthode "leave-one-out".

laemple	sca	202	263	x	26	26	207	
Valew	0,1	0,2	0,5	0,57	0,6	0,7	1.5	
erreur lossque l'exemple constitue l'ensemble de test = ai	0	0	0	1/	1	0	1	
L'estimation	Certination $\hat{\mathcal{E}}$ de \mathcal{E} est donné par $\hat{\mathcal{E}} = \frac{1}{3} \sum_{i=0}^{n} a_i$ $\hat{\mathcal{E}} = \frac{3}{3} \sum_{i=0}^{n} a_i$							
	6-3-0,43							

3c. Soit $\hat{\delta}$ la règle de décision obtenue en remplaçant dans l'expression de la règle de Bayes μ_1 et μ_2 par leurs estimations $\hat{\mu}_1$ et $\hat{\mu}_2$ et en supposant $\pi_1 = \pi_2$. Estimer la probabilité d'erreur de $\hat{\delta}$ par la méthode "leave-one-out". (On présentera les calculs intermédiaires dans un tableau).

		1				1			
exemple	DC1	22	×3	DC4	/xs	pe6	207		
Classe	WA	W	W ₂	WZ	/ WI	Wi	Wz		
Valeu-	0,1	0/2	0,5	0,57	0/6	0,7	1,5		
L'exemple of ensemble	0,5	0,47	0, 8	0,4	0,34	0,3	0,4		
d'apprentissage					Constitution and Constitution Constitution of the Constitution Constit				
ν_2	0,86	0,86	404	1	0,86	9,86	0,54		
S	0,68	0/67	0,72	0,7	0,6	958	0,47		
mal classe?	0	0	1	1	0	1	6		
on a clone: $\mathcal{E} = \frac{3}{7} = 0,43$									

Partie II: exercice

Faites d'abord les calculs au brouillon et ne reportez que les grandes lignes du raisonnement et les principaux résultats intermédiaires.

On considère un problème de discrimination à deux classes $\Omega = \{\omega_1, \omega_2\}$ et une variable $X \in \mathbb{R}$. On suppose que la variable X suit dans une chaque classe une loi normale avec les espérances μ_1 et μ_2 , avec $\mu_2 > \mu_1$, et une variance égale à 1. Les probabilités a priori sont notées π_1 et π_2 .

1. Montrer que la règle de Bayes avec coûts 0-1 revient à comparer x à un seuil s que l'on précisera.

$$\frac{1}{\sqrt{2\pi i}} \exp\left(-\frac{1}{2}(x-\mu_{1})^{2}\right) = \exp\left(-\frac{1}{2}(x-\mu_{1})^{2}\right) + \frac{1}{2}(x-\mu_{1})^{2}$$

$$\frac{1}{\sqrt{2\pi i}} \exp\left(-\frac{1}{2}(x-\mu_{2})^{2}\right) = \exp\left(-\frac{1}{2}(x-\mu_{1})^{2}\right) + \frac{1}{2}(x-\mu_{1})^{2}$$

$$\frac{1}{\sqrt{2\pi i}} \exp\left(-\frac{1}{2}(x-\mu_{2})^{2}\right) = \exp\left(x(\mu_{1}-\mu_{2}) + \frac{1}{2}(\mu_{2}^{2}-\mu_{1}^{2})\right)$$

$$\frac{1}{\sqrt{2\pi i}} \exp\left(-\frac{1}{2}(x-\mu_{2})^{2}\right) = \exp\left(x(\mu_{1}-\mu_{2}) + \frac{1}{2}(\mu_{2}^{2}-\mu_{1}^{2})\right)$$

$$\frac{1}{\sqrt{2\pi i}} \exp\left(-\frac{1}{2}(x-\mu_{2})^{2}\right) = \exp\left(x(\mu_{1}-\mu_{2}) + \frac{1}{2}(\mu_{2}^{2}-\mu_{1}^{2})\right)$$

$$\frac{1}{\sqrt{2\pi i}} \exp\left(-\frac{1}{2}(x-\mu_{2})^{2}\right)$$

$$\frac{1}{\sqrt{2\pi i}} \exp\left(-\frac{1}{2}(x-\mu_{2})^{2}\right)$$

$$= \exp\left(x(\mu_{1}-\mu_{2}) + \frac{1}{2}(\mu_{2}^{2}-\mu_{1}^{2})\right)$$

$$= \exp\left(x(\mu_{1}-\mu_{1}) + \frac{1}{2}(\mu_{2}^{2}-\mu_{1}^{2})$$

$$= \exp\left(x(\mu_{1}-\mu_{2}) + \frac{1}{2}(\mu_{2}^{2}-\mu_$$

2. Donner l'expression littérale de la probabilité d'erreur de Bayes ϵ^* (on notera ϕ la fonction de répartition de la loi normale centrée-réduite).

L'erreur de Bayes
$$\mathcal{E}^*$$
 s'évrit : $\mathcal{E}^* = \alpha \pi_1 + \beta \pi_2$
 $= \mathcal{P}(\alpha_1 | \omega_2) \pi_2 + \mathcal{P}(\alpha_2 | \omega_1) \pi_1$
or $\mathcal{P}(\alpha_1 | \omega_2) = \mathcal{P}(x \leq s | \omega_2)$
 $= x \sim N(N_2, 1)$
d'où $\mathcal{P}(\alpha_1 | \omega_2) = \phi(\frac{s - N_2}{4})$
cle nême pour $\mathcal{P}(\alpha_2 | \omega_1) = 1 - \phi(\frac{s - N_1}{4})$
Ainsi $\mathcal{E}^* = \pi_2 \phi(s - N_2) + (1 - \phi(s - N_1)) \pi_1$