Le grandezze fisiche e gli errori - Eserciziario

Chiara Spagnoli

Notazione: Data una misura x, indicheremo con \overline{x} il valore più attendibile, con $\Delta(x)$ l'errore assoluto della misurazione, con ε_x l'errore relativo e con E_x l'errore percentuale.

1 Notazione scientifica e ordine di grandezza

Esercizio 1.1 Arrotonda i seguenti numeri alla seconda cifra decimale (senza scrivere il risultato in notazione scientifica):

$$\frac{2}{3}$$
; $\sqrt{2}$; $\frac{1}{5}$; $\sqrt{3}$; $\frac{6}{13}$; $\frac{\sqrt{5}}{2}$; $\frac{\pi}{2}$; $0, \overline{37}$; $\frac{1}{2}$; π ; $0, \overline{3}$; $\frac{\pi}{\sqrt{3}}$.

Esercizio 1.2 Scrivi i seguenti numeri in notazione scientifica e valuta per ogni numero l'ordine di grandezza:

$$\frac{7}{3}; \quad 10\sqrt{2}; \quad \frac{111}{5}; \quad \sqrt{3340}; \quad \frac{6}{13}\sqrt{47}; \quad \frac{\sqrt{555}}{2}; \quad \frac{33\pi}{2}; \quad 0, \overline{37}; \quad \frac{1}{200}; \quad \pi; \quad 10, \overline{3}; \quad \frac{30\pi}{\sqrt{3}}.$$

Esercizio 1.3 Dati i seguenti valori,

$$a = 5, 0 \cdot 10^{-3}, b = 2, 2 \cdot 10^{-1}, c = -9, 5 \cdot 10^{5}$$

esegui le operazioni richieste esprimendo il risultato in notazione scientifica arrotondando alla seconda cifra decimale. Per ogni risultato valuta l'ordine di grandezza:

$$3a; \qquad -5c; \qquad a+b; \qquad a \cdot b;$$

$$c \cdot (a+b); \qquad \frac{a}{c}; \qquad \frac{a}{b} \cdot c; \qquad a^{-1};$$

$$10 \cdot a - 10^{-2} \cdot b; \qquad c \cdot b - a^{-1}; \qquad 2 \cdot 10^{-1} \cdot b; \qquad (a \cdot 10^{2} + b) \cdot 10^{-2};$$

$$\frac{c}{b+10a}; \qquad \frac{1}{a} \cdot \frac{1}{b} \cdot \frac{1}{c}; \qquad \frac{1}{a} + \frac{100}{b}; \qquad a^{-10};$$

2 Unità di misura e conversioni

Esercizio 2.1 Converti le seguenti misure nell'unità di misura indicata a fianco. Esprimi ogni risultato in notazione scientifica, approssimando se necessario alla seconda cifra decimale.

$$10 \ cm = \underline{\qquad} \ m; \qquad 5, 3 \cdot 10^4 \ mg = \underline{\qquad} \ kg; \qquad 8.53 \cdot 10^{-3} \ \mu l = \underline{\qquad} \ l;$$

$$\frac{1}{3} \ Mm = \underline{\qquad} cm; \qquad \sqrt{2} \cdot 10^{-3} \ kg = \underline{\qquad} mg; \qquad 3,04 \cdot 10^5 \ ml = \underline{\qquad} kl;$$

2000
$$m =$$
_____ $nm;$ $0, \overline{5} \cdot 10^{10} \ mg =$ _____ $hg;$ $\frac{1}{5} \cdot 10^{-5} \ dal =$ ____ $dl;$

Esercizio 2.2 Converti le seguenti misure nell'unità di misura indicata a fianco. Esprimi ogni risultato in notazione scientifica, approssimando se necessario alla seconda cifra decimale.

$$0,1 \ cm^2 = \underline{\hspace{1cm}} m^2; \qquad 5, 3 \cdot 10^4 \ mm^3 = \underline{\hspace{1cm}} km^3; \qquad 8.53 \cdot 10^{-3} \ \mu km^3 = \underline{\hspace{1cm}} pm^3;$$

$$\frac{1}{3} Mm^2 = \underline{\qquad} cm^2; \qquad \sqrt{2} \cdot 10^{-3} \ km^2 = \underline{\qquad} mm^2; \qquad 3,04 \cdot 10^5 \ mm^3 = \underline{\qquad} dm^3;$$

$$2000 \ m^2 = \underline{\hspace{1cm}} nm^2; \hspace{0.5cm} 0, \overline{5} \cdot 10^{10} \ mm^2 = \underline{\hspace{1cm}} hm^2; \hspace{0.5cm} \frac{1}{5} \cdot 10^{-5} \ dam^3 = \underline{\hspace{1cm}} dm^3;$$

Esercizio 2.3 Converti le seguenti misure nell'unità di misura indicata a fianco. Esprimi ogni risultato in notazione scientifica, approssimando se necessario alla seconda cifra decimale.

$$30 \text{ } cm^3 = \underline{} l; \qquad 5, 3 \cdot 10^4 \text{ } mm^3 = \underline{} dl; \qquad 8.53 \cdot 10^{-3} \text{ } \mu l = \underline{} m^3;$$

$$\frac{1}{3} \ Mm^3 = \underline{\qquad} \ Ml; \quad \sqrt{2} \cdot 10^{-3} \ km^3 = \underline{\qquad} \ cl; \quad 3,04 \cdot 10^5 \ ml = \underline{\qquad} \ dm^3;$$

3 Errore assoluto, relativo e percentuale

Esercizio 3.1 Date le seguenti misure, calcola errore relativo ed errore percentuale:

$$x_1 = (5, 2 \pm 0, 3) \cdot 10^{-3} \ m;$$
 $x_2 = (0, 02 \pm 0, 01) \ cm;$ $x_3 = (10, 3 \pm 0, 2) \ dm;$ $x_4 = (0, 100 \pm 0, 005) \cdot 10^{-3} \ g;$ $x_5 = (5, 0 \pm 0, 5) \ kg;$ $x_6 = (0, 3 \pm 0, 1) \cdot 10^6 \ hg;$ $x_7 = (8, 004 \pm 0, 003) \ l;$ $x_8 = (10, 02 \pm 0, 02) \cdot 10^3 \ ml;$ $x_9 = (230 \pm 4) \cdot 10^4 \ kl;$

Esercizio 3.2 Dati i valori più attendibili e gli errori relativi ε_i o percentuali E_i , scrivi la misura nella forma $(\overline{x} \pm \Delta x)$ prestando attenzione alle approssimazioni:

$$\overline{x}_1 = 5 \ cm; \ \varepsilon_1 = 0, 4;$$
 $\overline{x}_2 = 10, 4 \ m; \ E_2 = 1\%;$ $\overline{x}_3 = \frac{1}{3} \ dm; \ \varepsilon_3 = 0, 02;$ $\overline{x}_4 = 11, 4 \ dg; \ \varepsilon_4 = 0, 05;$ $\overline{x}_5 = 0, 004 \ Mm; \ E_5 = 0, 2\%;$ $\overline{x}_6 = \frac{4}{7} \ l; \ E_6 = 4\%;$ $\overline{x}_7 = \sqrt{2} \ dam^2; \ E_7 = 0, 2\%;$ $\overline{x}_8 = 4 \cdot 10^4 \ kg; \ E_8 = 1, 23\%;$ $\overline{x}_9 = 4, \overline{4} \ \mu m; \ \varepsilon_9 = 0, 31;$

4 La propagazione dell'errore

Esercizio 4.1 Sulla base delle misure presenti nell'esercizio 3.1, esegui i seguenti calcoli esprimendo i risultati con la giusta approssimazione:

$$x_1 + x_2;$$
 $3 \cdot x_5;$ $10x_9;$ $x_1 - x_4;$ $2x_6 - 5x_5;$ $x_4 \cdot x_6;$ $x_9 \cdot (x_8 - x_7);$ $x_3 + 2 \cdot x_4;$ $x_6 : x_8;$ $x_1 \cdot (0, 2x_3 + x_1);$ $x_4 : x_2;$ $x_9 + x_1.$

Esercizio 4.2 Sulla base delle misure presenti nell'esercizio 3.2, esegui i seguenti calcoli esprimendo i risultati con la giusta approssimazione:

$$x_1 + x_2;$$
 $3 \cdot x_5;$ $10x_9;$ $x_1 - x_4;$ $2x_6 - 5x_5;$ $x_4 \cdot x_6;$ $x_9 \cdot (x_8 - x_7);$ $x_3 + 2 \cdot x_4;$ $x_6 : x_8;$ $x_1 \cdot (0, 2x_3 + x_1);$ $x_4 : x_2;$ $x_9 + x_1.$

5 Esercizi a crocette

Esercizio 5.1 Convertendo 114 cm in Mm si ottiene:

- [A] $1,14 \cdot 10^{-6} Mm;$
- [B] $1,14 \cdot 10^{-10} Mm;$
- [C] $1,14 \cdot 10^{-8} Mm;$
- [D] $1,14 \cdot 10^{10} \ Mm$.

Esercizio 5.2 Convertendo $0,4m^2$ in μm^2 si ottiene:

- [A] $4, 0 \cdot 10^6 \ \mu m^2$;
- [B] $4, 0 \cdot 10^5 \ \mu m^2$;
- [C] $4, 0 \cdot 10^{11} \ \mu m^2$;
- [D] $4, 0 \cdot 10^{12} \ \mu m^2$.

Esercizio 5.3 Quanti litri sono $23 cm^3$ di acqua?

- [A] $2, 3 \cdot 10^{-2} l;$
- [B] $2, 3 \cdot 10^3 \ l;$
- [C] $2, 3 \cdot 10^{-3} l;$
- [D] $2, 3 \cdot 10^{-4} l$.

Esercizio 5.4 Convertendo $0,02\ kg$ in mg si ottiene:

- [A] 0,02 mg;
- [B] $2 \cdot 10^{-8} \ mg$;
- [C] $2, 0 \cdot 10^{-6} mg$;
- [D] $0.02 \cdot 10^6 \ mg$.

Esercizio 5.5 Convertendo $0,04dm^3$ in hm^3 si ottiene:

- [A] $4, 0 \cdot 10^6 \ hm^3$;
- [B] $4, 0 \cdot 10^7 \ hm^3$;
- [C] $4, 0 \cdot 10^{-11} \ hm^3$;
- [D] $4, 0 \cdot 10^9 \ hm^3$.

Esercizio 5.6 Quanti dam^3 sono $2, 3 \cdot 10^4$ litri di acqua?

[A]
$$2, 3 \cdot 10^{-2} \ dam^3$$
;

[B]
$$2, 3 \cdot 10^{-6} \ dam^3$$
;

[C]
$$2, 3 \cdot 10^2 \ dam^3$$
;

[D]
$$2, 3 \cdot 10^{+4} \ dam^3$$
.

Esercizio 5.7 Date le seguenti misurazioni, $x=(110\pm3)\ m,\ y=(20\pm1)\ m$ calcola l'errore relativo della somma x+y:

[A]
$$\varepsilon_{x+y} = 4$$
;

[B]
$$\varepsilon_{x+y} = 0.03;$$

[C]
$$\varepsilon_{x+y} = 3$$
;

[D]
$$\varepsilon_{x+y} = 0,02.$$

Esercizio 5.8 Date le seguenti misurazioni, $x=(110\pm3)\ m,\ y=(20\pm1)\ m$ calcola l'errore relativo della differenza x-y:

[A]
$$\varepsilon_{x-y} = 0,04;$$

[B]
$$\varepsilon_{x-y} = 0,02;$$

[C]
$$\varepsilon_{x-y} = 4$$
;

[D]
$$\varepsilon_{x-y} = 3$$
.

Esercizio 5.9 Date le seguenti misurazioni, $x=(110\pm3)\ m,\ y=(20\pm1)\ m$ calcola l'errore assoluto della differenza x-y:

[A]
$$\Delta(x - y) = 0.04;$$

[B]
$$\Delta(x-y) = 0,02;$$

[C]
$$\Delta(x-y) = 4$$
;

[D]
$$\Delta(x-y) = 3$$
.

Esercizio 5.10 Date le seguenti misurazioni, $x=(110\pm3)\ m,\ y=(20\pm1)\ m$ calcola l'errore assoluto del prodotto $x\cdot y$:

[A]
$$\Delta(x \cdot y) = 170;$$

[B]
$$\Delta(x \cdot y) = 0.08;$$

[C]
$$\Delta(x \cdot y) = 8;$$

[D]
$$\Delta(x \cdot y) = 100$$
.

Esercizio 5.11 Data la seguente misurazione, $x = (110 \pm 3) m$, calcola l'errore percentuale di 3x:

- [A] $E_{3x} = 0.027\%$;
- [B] $E_{3x} = 2,7\%;$
- [C] $E_{3x} = 8,2\%$;
- [D] $E_{3x} = 0.08\%$.

Esercizio 5.12 Dati i seguenti valori $x=10^4, y=3, 0\cdot 10^{-5}, z=0, 2\cdot 10^{-1}$ calcola il valore $\frac{x\cdot z}{y}$:

- [A] $6, 0 \cdot 10^{+6}$;
- [B] $0.06 \cdot 10^{+6}$;
- [C] $6 \cdot 10^{-4}$;
- [D] $0.06 \cdot 10^{-3}$.

Esercizio 5.13 Dati i seguenti valori $x=10^4,\,y=3,0\cdot 10^{-5},\,z=0,2\cdot 10^{-1}$ calcola il valore $x\cdot y\cdot z$:

- [A] $6 \cdot 10^{-3}$;
- [B] $0.6 \cdot 10^{-3}$;
- [C] $6 \cdot 10^{-4}$;
- [D] $0.06 \cdot 10^{-4}$.

Esercizio 5.14 Quale delle seguenti affermazioni è sbagliata?

- [A] L'errore assoluto della somma di due misurazioni è pari all'errore assoluto della loro differenza.
- [B] L'errore relativo della moltiplicazione di due misurazioni è pari all'errore relativo del loro quoziente.
- [C] L'errore relativo di una misurazione è sempre minore o uguale a 1.
- [D] L'errore assoluto di una misurazione è sempre maggiore dell'errore relativo della stessa.

Esercizio 5.15 Quale delle seguenti affermazioni è corretta?

- [A] L'errore relativo della somma di due misurazioni è pari all'errore assoluto della loro differenza.
- [B] L'errore percentuale della moltiplicazione di due misurazioni è pari all'errore percentuale del loro quoziente.
- $[C] \quad \textit{L'errore percentuale di una misurazione è sempre minore o uguale a 1.}$
- [D] L'errore assoluto di una misurazione è sempre minore dell'errore relativo della stessa.

Le grandezze fisiche e gli errori - Soluzioni

Chiara Spagnoli

1 Notazione scientifica e ordine di grandezza

Esercizio 1.1

$$\frac{2}{3} = 0,67; \quad \sqrt{2} = 1,41; \quad \frac{1}{5} = 0,2; \quad \sqrt{3} = 1,73; \quad \frac{6}{13} = 0,46; \quad \frac{\sqrt{5}}{2} = 1,12;$$

$$\frac{\pi}{2} = 1,57; \quad 0,\overline{37} = 0,37; \quad \frac{1}{2} = 0,5; \quad \pi = 3,14; \quad 0,\overline{3} = 0,33; \quad \frac{\pi}{\sqrt{3}} = 1,81.$$

Esercizio 1.2

$$\frac{7}{3} = 2,33 \cdot 10^{0}. \text{ ordine di grandezza: } 10^{0} \; ; \qquad 10\sqrt{2} = 1,41 \cdot 10^{1}. \text{ ordine di grandezza: } 10^{1} \; ; \\ \frac{111}{5} = 2,22 \cdot 10^{1}. \text{ ordine di grandezza: } 10^{1} \; ; \qquad \sqrt{3340} = 5,78 \cdot 10^{1}. \text{ ordine di grandezza: } 10^{2} \; ; \\ \frac{6}{13}\sqrt{47} = 3,16 \cdot 10^{0}. \text{ ordine di grandezza: } 10^{0} \; ; \qquad \frac{\sqrt{555}}{2} = 1,78 \cdot 10^{1}. \text{ ordine di grandezza: } 10^{1} \; ; \\ \frac{33\pi}{2} = 5,18 \cdot 10^{1}. \text{ ordine di grandezza: } 10^{2} \; ; \qquad 0,\overline{37} = 3,74 \cdot 10^{-1}. \text{ ordine di grandezza: } 10^{-1} \; ; \\ \frac{1}{200} = 5,00 \cdot 10^{-3}. \text{ ordine di grandezza: } 10^{-2} \; ; \qquad \pi = 3,14 \cdot 10^{0}. \text{ ordine di grandezza: } 10^{0} \; ; \\ 10,\overline{3} = 1,03 \cdot 10^{1}. \text{ ordine di grandezza: } 10^{1} \; ; \qquad \frac{30\pi}{\sqrt{3}} = 5,44 \cdot 10^{1}. \text{ ordine di grandezza: } 10^{2} \; ; \\ \end{cases}$$

Esercizio 1.3

- $3a = 1, 5 \cdot 10^{-2}$. ordine di grandezza: 10^{-2} ;
- $-5c = 2,85 \cdot 10^6$. ordine di grandezza: 10^6 ;
- $a+b=2,25\cdot 10^{-1}$. ordine di grandezza: 10^{-1} ;
- $a \cdot b = 1, 1 \cdot 10^{-3}$. ordine di grandezza: 10^{-3} ;
- $c \cdot (a+b) = -2,14 \cdot 10^5$. ordine di grandezza: 10^5 ;
- $\frac{a}{c} = -5,26 \cdot 10^{-9}$. ordine di grandezza: 10^{-8} ;
- $\frac{a}{b} \cdot c = -2, 16 \cdot 10^4$. ordine di grandezza: 10^4 ;
- $a^{-1} = 2, 0 \cdot 10^2$. ordine di grandezza: 10^2 ;
- $10 \cdot a 10^{-2} \cdot b = 4{,}78 \cdot 10^{-2}$. ordine di grandezza: 10^{-2} ;
- $c \cdot b a^{-1} = -2,09 \cdot 10^5$. ordine di grandezza: 10^5 ;
- $2 \cdot 10^{-1} \cdot b = 4, 4 \cdot 10^{-2}$. ordine di grandezza: 10^{-2} ;
- $(a \cdot 10^2 + b) \cdot 10^{-2} = 7, 2 \cdot 10^{-3}$. ordine di grandezza: 10^{-2} ;
- $\frac{c}{b+10a} = -3.52 \cdot 10^6$. ordine di grandezza: 10^6 ;
- $\frac{1}{a} \cdot \frac{1}{b} \cdot \frac{1}{c} = -9,57 \cdot 10^{-4}$. ordine di grandezza: 10^{-3} ;
- $\frac{1}{a} + \frac{100}{b} = 6,54 \cdot 10^2$. ordine di grandezza: 10^3 ;
- $a^{-10} = 1,024 \cdot 10^{23}$. ordine di grandezza: 10^{23} ;

2 Unità di misura e conversioni

Esercizio 2.1

$$10 \ cm = 1 \cdot 10^{-1} \ m; \qquad \quad 5, 3 \cdot 10^4 \ mg = 5, 3 \cdot 10^{-2} \ kg; \qquad 8.53 \cdot 10^{-3} \ \mu l = 8, 53 \cdot 10^{-9} \ l;$$

$$\frac{1}{3} Mm = 3,33 \cdot 10^7 cm;$$
 $\sqrt{2} \cdot 10^{-3} kg = 1,41 \cdot 10^3 mg;$ $3,04 \cdot 10^5 ml = 3,04 \cdot 10^{-1} kl;$

2000
$$m = 2 \cdot 10^{12} \ nm;$$
 $0, \overline{5} \cdot 10^{10} \ mg = 5, 56 \cdot 10^4 \ hg;$ $\frac{1}{5} \cdot 10^{-5} \ dal = 2 \cdot 10^{-4} \ dl;$

Esercizio 2.2

$$0, 1 \ cm^2 = 1 \cdot 10^{-5} \ m^2; \qquad 5, 3 \cdot 10^4 \ mm^3 = 5, 3 \cdot 10^{-14} km^3; \qquad 8.53 \cdot 10^{-3} \ \mu km^3 = 8, 53 \cdot 10^{15} \ pm^3;$$

$$\frac{1}{3} \ Mm^2 = 3, 33 \cdot 10^{15} \ cm^2; \qquad \sqrt{2} \cdot 10^{-3} \ km^2 = 1, 41 \cdot 10^9 \ mm^2; \qquad 3, 04 \cdot 10^5 \ mm^3 = 3, 04 \cdot 10^{-1} \ dm^3;$$

$$2000 \ m^2 = 2, 0 \cdot 10^{21} nm^2; \qquad 0, \overline{5} \cdot 10^{10} \ mm^2 = 5.55 \cdot 10^{-1} \ hm^2; \qquad \qquad \frac{1}{5} \cdot 10^{-5} \ dam^3 = 2dm^3;$$

Esercizio 2.3

$$30 \ cm^3 = 3 \cdot 10^{-2} \ l; \qquad 5, 3 \cdot 10^4 \ mm^3 = 5, 3 \cdot 10^{-1} \ dl; \qquad 8.53 \cdot 10^{-3} \ \mu l = 8, 53 \cdot 10? -12 \ m^3;$$

$$\tfrac{1}{3}\ Mm^3 = 3,33 \cdot 10^{14} Ml; \qquad \sqrt{2} \cdot 10^{-3}\ km^3 = 1,41 \cdot 10^{11}\ cl; \qquad \ 3,04 \cdot 10^5\ ml = 3,04 \cdot 10^2\ dm^3;$$

3 Errore assoluto, relativo e percentuale

Esercizio 3.1.

$$\varepsilon_{x_1} = 0,0577, E_{x_1} = 5,77\%, \qquad \varepsilon_{x_2} = 0,5, E_{x_2} = 50\%;$$

$$\varepsilon_{x_3} = 0,0194, E_{x_3} = 1,94\%; \qquad \varepsilon_{x_4} = 0,05, E_{x_4} = 5\%;$$

$$\varepsilon_{x_5} = 0,1, E_{x_5} = 10\%; \qquad \varepsilon_{x_6} = 0,333, E_{x_6} = 33,3\%;$$

$$\varepsilon_{x_7} = 0,000375, E_{x_7} = 0,0375\%; \qquad \varepsilon_{x_8} = 0,0020, E_{x_8} = 0,20\%;$$

$$\varepsilon_{x_9} = 0,0174, E_{x_9} = 1,74\%$$

Esercizio 3.2.

$$x_1 = (5 \pm 2) \ cm;$$
 $x_2 = (10, 4 \pm 0, 1)m;$ $x_3 = (0, 333 \pm 0, 007) \ dm;$ $x_4 = (11, 4 \pm 0, 6) \ dg;$ $x_5 = (0, 004000 \pm 0, 000008) \ Mm;$ $x_6 = (0, 571 \pm 0, 023) \ l;$ $x_7 = (1, 4121 \pm 0.0028) \ dam^2;$ $x_8 = (4, 000 \pm 0, 049) \cdot 10^4 \ kg;$ $x_9 = (4, 4 \pm 1, 4) \ \mu m;$

4 La propagazione dell'errore

Esercizio 4.1.

- $x_1 + x_2 = (2, 52 \pm 1, 03) \cdot 10^{-2}$
- $3 \cdot x_5 = (15, 0 \pm 1, 5)$
- $10x_9 = (230 \pm 4) \cdot 10^5$
- $x_1 x_4 = (5, 1 \pm 0, 3) \cdot 10^{-3}$
- $2x_6 5x_5 = (6 \pm 2) \cdot 10^5$
- $x_4 \cdot x_6 = (30 \pm 11)$
- $x_9 \cdot (x_8 x_7) = (2, 30 \pm 0.04) \cdot 10^{10}$
- $x_3 + 2 \cdot x_4 = (10, 3 \pm 0, 2)$
- x_6 : $x_8 = (29, 9 \pm 10)$
- $x_1 \cdot (0, 2x_3 + x_1) = (1, 08 \pm 0, 09) \cdot 10^{-2}$
- $x_4: x_2 = (5 \pm 3) \cdot 10^{-3}$
- $x_9 + x_1 = (230 \pm 4) \cdot 10^4$

Esercizio 4.2 .

•
$$x_1 + x_2 = (15, 4 \pm 2, 1)$$

•
$$3 \cdot x_5 = (0,012000 \pm 0,000024)$$

•
$$10x_9 = (44 \pm 14)$$

•
$$x_1 - x_4 = -(6, 4 \pm 2, 6)$$

•
$$2x_6 - 5x_5 = (1, 122 \pm 0, 046)$$

•
$$x_4 \cdot x_6 = (6, 5 \pm 0.6)$$

•
$$x_9 \cdot (x_8 - x_7) = (11.4 \pm 3.9)$$

•
$$x_3 + 2 \cdot x_4 = (32, 1 \pm 1, 2)$$

•
$$x_6$$
: $x_8 = (0.143 \pm 0,007) \cdot 10^{-4}$

•
$$x_1 \cdot (0, 2x_3 + x_1) = (25 \pm 10)$$

•
$$x_4: x_2 = (1, 10 \pm 0.07)$$

•
$$x_9 + x_1 = (9, 4 \pm 3, 4)$$

5 Esercizi a crocette

Esercizio 5.1 Convertendo 114 cm in Mm si ottiene:

[A]
$$1,14 \cdot 10^{-6} Mm$$

Esercizio 5.2 Convertendo $0, 4m^2$ in μm^2 si ottiene:

[C]
$$4, 0 \cdot 10^{11} \ \mu m^2$$

Esercizio 5.3 Quanti litri sono $23 cm^3$ di acqua?

[A]
$$2, 3 \cdot 10^{-2} l$$

Esercizio 5.4 Convertendo $0,02\ kg$ in mg si ottiene:

[D]
$$0.02 \cdot 10^6 \ mg$$

Esercizio 5.5 Convertendo $0,04dm^3$ in hm^3 si ottiene:

[C]
$$4.0 \cdot 10^{-11} \ hm^3$$

Esercizio 5.6 Quanti dam^3 sono $2, 3 \cdot 10^4$ litri di acqua?

[A]
$$2, 3 \cdot 10^{-2} \ dam^3$$

Esercizio 5.7 Date le seguenti misurazioni, $x=(110\pm3)\ m,\ y=(20\pm1)\ m$ calcola l'errore relativo della somma x+y:

[B]
$$\varepsilon_{x+y} = 0.03$$

Esercizio 5.8 Date le seguenti misurazioni, $x=(110\pm3)\ m,\ y=(20\pm1)\ m$ calcola l'errore relativo della differenza x-y:

[A]
$$\varepsilon_{x-y} = 0.04$$

Esercizio 5.9 Date le seguenti misurazioni, $x=(110\pm3)\ m,\ y=(20\pm1)\ m$ calcola l'errore assoluto della differenza x-y:

[C]
$$\Delta(x-y) = 4$$

Esercizio 5.10 Date le seguenti misurazioni, $x=(110\pm3)\ m,\ y=(20\pm1)\ m$ calcola l'errore assoluto del prodotto $x\cdot y$:

[A]
$$\Delta(x \cdot y) = 170$$

Esercizio 5.11 Data la seguente misurazione, $x = (110 \pm 3) m$, calcola l'errore percentuale di 3x:

[B]
$$E_{3x} = 2,7\%$$

Esercizio 5.12 Dati i seguenti valori $x=10^4,\ y=3,0\cdot 10^{-5},\ z=0,2\cdot 10^{-1}$ calcola il valore $\frac{x\cdot z}{y}$:

[A]
$$6.0 \cdot 10^{+6}$$

Esercizio 5.13 Dati i seguenti valori $x=10^4,\,y=3,0\cdot 10^{-5},\,z=0,2\cdot 10^{-1}$ calcola il valore $x\cdot y\cdot z$: [A] $6\cdot 10^{-3}$

Esercizio 5.14 Quale delle seguenti affermazioni è sbagliata?

[D] L'errore assoluto di una misurazione è sempre maggiore dell'errore relativo della stessa.

Esercizio 5.15 Quale delle seguenti affermazioni è corretta?

 $[B] \begin{tabular}{ll} $L'errore\ percentuale\ della\ moltiplicazione\ di\ due\ misurazioni\ \`e\ pari\ all'errore\ percentuale\ della\ loro\ quoziente. \end{tabular}$