

Politecnico di Milano Fisica Sperimentale I

a.a. 2013-2014 – Scuola di Ingegneria Industriale e Informatica

II Appello - 03/09/2014

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

- Un cannone di massa M = 10 kg, inizialmente fermo su un piano orizzontale liscio, inclinato di θ = 45° rispetto all'orizzontale, spara un proiettile di massa m = 100 g, percorrendo poi un tratto sul piano liscio di lunghezza d = 1 m ed entra in una regione con coefficiente di attrito dinamico pari a μ_d =0.3. Sapendo che il proiettile viene espulso con velocità v_p = 300 m/s, si calcoli:
 - a. l'energia liberata durante l'esplosione;
 - b. il tratto percorso dal cannone prima di fermarsi.

Si consideri ora che il cannone sia inizialmente appoggiato su un piano scabro caratterizzato da un coefficiente d'attrito statico μ_s . Assumendo che la durata

il valore minimo di attrito statico affinché il cannone rimanga fermo.

[E = 4.5 kJ; d = 1.76 m; F = 30 kN]

- Un disco omogeneo di raggio R = 0.5 m e massa M = 1.5 kg è posto inizialmente fermo su un piano inclinato scabro con coefficiente di attrito statico pari μ_s = 0.5. Si determinino:
 - i valori dell'angolo di inclinazione del piano θ per i quali il disco rotola senza strisciare;
 - la velocità angolare con cui raggiunge l'estremità del piano inclinato nel caso in cui parta da fermo con il baricentro posizionato ad un'altezza h = 3 m rispetto al suolo.

nel caso in cui i due corpi vengano lasciati liberi di muoversi, partendo da fermi e dalla medesima altezza h, quale dei due raggiunge prima l'estremità del piano inclinato? Perché?

 $\theta = 56.3^{\circ}$: $\omega = 7.23 \text{ rad/s}$

Nel condotto orizzontale in figura di diametro $d_1 = 50$ cm in cui scorre acqua viene inserita una strozzatura di diametro $d_2 = 20$ cm. Due colonnine di mercurio ($\rho_{H_p} = 13$ 600 Kg/m³) vengono poste verticalmente sotto il condotto e sotto la strozzatura per misurare la pressione statica e la differenza in altezza tra le due colonnine risulta pari a h = 18 cm. Calcolare:

- la portata del condotto, in volume e massa;
- la differenza di quota h raggiunta dall'acqua nelle due colonnine nel caso in cui si utilizzi un tubo di Pitot per misurare la velocità di scorrimento del fluido nel condotto di diametro d_1 .

 $[v_1 = 1.08 \text{ m/s}; v_2 = 6.75 \text{ m/s}; Q = 0.212 \text{ m3/s}; Q^* = 212 \text{ Kg/s}; h = 60 \text{ mm}]$

Μ

- Un recipiente a pareti rigide contiene un litro di acqua alla temperatura $T_1 = 25$ °C. In esso viene inserito un cubetto di ghiaccio di massa $m_2 = 100$ g alla temperatura $T_2 = -20$ °C. Si determinino:
 - la temperatura finale dell'acqua, trascurando gli scambi di calore con l'ambiente esterno e la capacità termica del recipiente [calore specifico e calore latente di fusione del ghiaccio rispettivamente pari a $c_g = 0.5$ kcal/kg °C e $\lambda_g = 80$ cal/g];
 - i calori scambiati durante la trasformazione termodinamica;
 - la variazione di entropia dell'universo termodinamico $\Delta S_{\rm u}$.

 $[T_f = 14.5 \text{ °C}; Q_1 = -43.9 \text{ kJ}; Q_f = 33.3 \text{ kJ}; Q_{g1} = 0.42 \text{ kJ}; Q_{g2} = 6.06 \text{ kJ}; \Delta S_u = 9.4 \text{ kJ}]$