TÉCNICAS DE INTEGRAÇÃO POR PARTES

Nessa semana, estudaremos outra importante técnica de integração:

- 1. Método de Integração por Partes
- 2. Uma estratégia para integrar por partes
- 3. Integração por partes para integrais definidas

1. Método de Integração por Partes

O método da integração por partes é aplicado na resolução de uma integral que envolve o produto de duas funções, e é uma consequência da regra do produto para a derivação.

Fórmula da integração por partes: Sejam u(x) e v(x) funções deriváveis em um intervalo I. Então, para cada x em I temos:

$$[u(x)\cdot v(x)]'=u'(x)\cdot v(x)+u(x)\cdot v'(x)$$

Integrando ambos lados desta equação:

$$\int [u(x) \cdot v(x)]' dx = \int u'(x) \cdot v(x) + u(x) \cdot v'(x) dx$$
$$\int u(x) \cdot v'(x) dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x) dx$$

sendo du=u'(x)dx e dv=v'(x)dx podemos escrever a fórmula da integração por partes:

$$\int u\,dv=u\cdot v-\int v\,du.$$

Para aplicar esta fórmula na resolução de uma determinada integral, devemos separar o integrando em duas partes u e dv (daí o nome do método), considerando dois princípios:

- 1. A primitiva $v = \int dv$ deve ser fácil de determinar.
- 2. A nova integral $\int v \, du$ deve ser mais fácil de calcular que a integral original.

Exemplo: Calcule $\int \ln(x) dx$.

Solução: Fazendo $u = \ln(x)$ e dv = dx, teremos $du = \frac{dx}{x}$ e v = x.

Substituindo esses resultados na fórmula de integração por partes, temos:

$$\int \ln(x) \ dx = x \cdot \ln(x) - \int \frac{x}{x} \ dx = x \cdot \ln(x) - x + c.$$

Exemplo: Calcule $\int x e^x dx$

Solução: Fazendo u = x e $dv = e^x dx$, teremos du = dx e $v = \int e^x dx = e^x$. Substituindo estes resultados na fórmula de integração por partes, segue

$$\int x e^x dx = x e^x - \int e^x dx = x e^x - e^x + c.$$

Observe que se tivéssemos escolhido $u=e^x$ e dv=x dx, teríamos $du=e^x$ dx e $v=\int x\ dx=\frac{x^2}{2}$. Nesse caso, aplicando a fórmula de integração por partes transformaríamos a integral original em outra mais difícil de ser calculada, como segue

$$\int x \, e^x \, dx = \frac{x^2 \, e^x}{2} - \int \frac{x^2 \, e^x}{2} \, dx$$

Portanto, esta segunda escolha é inadequada para resolver a integral proposta.

Para nos auxiliar nesse processo de escolha para a aplicação do método, vejamos a estratégia a seguir.

2. Uma estratégia para integrar por partes

Ao integrar $\int u(x) \cdot v(x) \, dx$ devemos sempre escolher, dentre as funções da expressão $u(x) \cdot v(x) \, dx$, uma delas como sendo o fator u e a outra como sendo o dv. Como mencionado, esta escolha deve ser feita de modo que ao passarmos da integral $\int u \, dv$ para a integral $\int v \, du$, passemos para uma integral mais simples de ser calculada.

Uma sugestão que funciona bem **na maioria das vezes** é escolher as funções u e dv segundo o critério abaixo:

L	I	A	T	E
Logarítmicas	Inversas de trigonométricas	Algébricas elementares	Trigonométricas	exponenciais

- \succ Você deve escolher como u o tipo de função que estiver mais à esquerda do anagrama, mais próximo de L;
- ightharpoonup Você deve escolher como dv o tipo de função que estiver mais à direita do anagrama, mais próxima de E.

Exemplo: Calcule $\int x \cdot \text{sen}(x) dx$.

Solução: Nessa integral temos uma função Algébrica (x) e outra Trigonométrica (sen(x)).

De acordo com a estratégia apresentada, tomamos u = x e dv = sen(x) dx.

Então, du = dx e $v = \int sen(x) dx = -cos(x)$.

Assim,

$$\int x \cdot \operatorname{sen}(x) \ dx = -x \cdot \cos(x) - \int -\cos(x) \ dx = -x \cdot \cos(x) + \operatorname{sen}(x) + c.$$

Exemplo: Calcule $\int x^2 \cdot e^{5x} dx$.

Solução: Nessa integral temos uma função Algébrica (x^2) e outra Exponencial (e^{5x}) .

De acordo com a estratégia apresentada, tomamos $u = x^2$ e $dv = e^{5x}dx$.

Então,
$$du = 2x \, dx \, e \, v = \int e^{5x} \, dx = \frac{1}{5} e^{5x}$$
.

Assim,

$$\int x^2 \cdot e^{5x} \ dx = \frac{x^2 \cdot e^{5x}}{5} - \int \frac{2x \cdot e^{5x}}{5} \ dx = \frac{x^2 \cdot e^{5x}}{5} - \frac{2}{5} \int x \cdot e^{5x} \ dx$$

A integral obtida $\int x \cdot e^{5x} \ dx$ não é imediata, mas pode ser resolvida aplicando novamente a fórmula de integração por partes. Fazendo u=x e $dv=e^{5x}dx$, obtemos du=dx e $v=\int e^{5x} \ dx=\frac{1}{5}e^{5x}$, e então

$$\int x \cdot e^{5x} \ dx = \frac{x \cdot e^{5x}}{5} - \int \frac{e^{5x}}{5} \ dx = \frac{x \cdot e^{5x}}{5} - \frac{e^{5x}}{25}$$

Voltando à integral inicial temos:

$$\int x^2 \cdot e^{5x} \, dx = \frac{x^2 \cdot e^{5x}}{5} - \frac{2}{5} \int x \cdot e^{5x} \, dx$$
$$= \frac{x^2 \cdot e^{5x}}{5} - \frac{2}{5} \left(\frac{x \cdot e^{5x}}{5} - \frac{e^{5x}}{25} \right)$$
$$= e^{5x} \left(\frac{x^2}{5} - \frac{2x}{5} + \frac{1}{125} \right) + c.$$

Como mostrado no exemplo anterior, por vezes é necessário aplicar a fórmula de integração por partes mais de uma vez para resolver a integral original.

Outro caso possível ocorre quando aplicamos o método da integração por partes e retornamos à integral original, como veremos no exemplo a seguir.

Exemplo: Calcule $\int e^x \cdot \operatorname{sen}(x) dx$.

Solução: Nessa integral temos uma função Exponencial (e^x) e outra Trigonométrica (sen(x)).

De acordo com a estratégia LIATE, tomamos u = sen(x) e $dv = e^x dx$.

Então, $du = \cos(x) dx$ e $v = \int e^x dx = e^x$, assim

$$\int e^x \cdot \operatorname{sen}(x) \ dx = e^x \cdot \operatorname{sen}(x) - \int e^x \cdot \cos(x) \ dx$$

Aplicando novamente a fórmula de integração por partes na integral $\int e^x \cdot \cos(x) dx$, temos:

$$u = \cos(x)$$
 e $dv = e^x dx$, então, $du = -\sin(x) dx$ e $v = \int e^x dx = e^x$

$$\int e^x \cdot \cos(x) dx = e^x \cdot \cos(x) - \int -e^x \cdot \sin(x) dx$$

Note que essa última integral é igual à integral original, então temos

$$\int e^x \cdot \operatorname{sen}(x) \, dx = e^x \cdot \operatorname{sen}(x) - \int e^x \cdot \cos(x) \, dx$$

$$= e^x \cdot \operatorname{sen}(x) - \left[e^x \cdot \cos(x) - \int -e^x \cdot \operatorname{sen}(x) \, dx \right]$$

$$= e^x \cdot \operatorname{sen}(x) - e^x \cdot \cos(x) - \int e^x \cdot \operatorname{sen}(x) \, dx$$

Portanto

$$\int e^x \cdot \operatorname{sen}(x) \, dx + \int e^x \cdot \operatorname{sen}(x) \, dx = e^x \cdot \operatorname{sen}(x) - e^x \cdot \cos(x)$$
$$2 \int e^x \cdot \operatorname{sen}(x) \, dx = e^x \cdot \operatorname{sen}(x) - e^x \cdot \cos(x)$$
$$\int e^x \cdot \operatorname{sen}(x) \, dx = \frac{e^x \cdot \operatorname{sen}(x) - e^x \cdot \cos(x)}{2} + C.$$

3. Integração por partes para integrais definidas

No caso de integrais definidas a fórmula de integração por partes é equivalente a

$$\int_a^b u \, dv = \left(u(x) \cdot v(x)\right)_a^b - \int_a^b v \, du$$

ou seja, calculamos a integral e depois aplicamos os limites de integração ao resultado, como proposto no Teorema Fundamental do Cálculo.

Exemplo: Calcule $\int_1^2 t^2 \cdot \ln(t) dt$.

Solução: Nessa integral temos uma função Algébrica (t^2) e outra Logarítmica $(\ln(t))$.

De acordo com a estratégia LIATE, tomamos $u = \ln(t)$ e $dv = t^2 dt$.

Então,
$$du = \frac{1}{t} dt$$
 e $v = \int t^2 dt = \frac{t^3}{3}$, assim

$$\int_{1}^{2} t^{2} \cdot \ln(t) \, dt = \left(\frac{t^{3} \ln(t)}{3}\right)_{1}^{2} - \int_{1}^{2} \frac{t^{3}}{3} \cdot \frac{1}{t} \, dt = \left(\frac{t^{3} \ln(t)}{3}\right)_{1}^{2} - \frac{1}{3} \int_{1}^{2} t^{2} \, dt$$

$$= \left(\frac{t^{3} \ln(t)}{3}\right)_{1}^{2} - \left(\frac{t^{3}}{9}\right)_{1}^{2} = \left(\frac{2^{3} \ln(2)}{3}\right) - \left(\frac{1^{3} \ln(1)}{3}\right) - \left(\frac{2^{3}}{9}\right) + \left(\frac{1^{3}}{9}\right)$$

$$= \frac{8 \ln(2)}{3} - 0 - \frac{8}{9} + \frac{1}{9} = \frac{8 \ln(2)}{3} - \frac{7}{9}.$$

REFERÊNCIAS:

BALBO, A. R. Notas de aula: Integral Indefinida. UNESP, Bauru. Disponível em: http://wwwp.fc.unesp.br/~arbalbo/arquivos/integralindefinida.pdf. Acesso em: 30/09/2020.

THOMAS, G. B. Cálculo. Vol. 1. 10 ed. São Paulo: Pearson, 2002.

FLEMMING, D. M.; GONÇALVES, M. B. Cálculo A. 6. ed. São Paulo: Pearson, 2012.

MOGNO, A. Notas de aula: Cálculo Diferencial e Integral I. UTFPR-CM, 2013.