An automated computational framework for hyperelasticity

Harish Narayanan

Center for Biomedical Computing Simula Research Laboratory

May 20th, 2010

This talk will examine the motivation, design and use of our general framework for hyperelasticity

A review of relevant topics from continuum mechanics

```
def SecondFiolaKirchhoffStress(self, u):
self._construct_local_kinematics(u)
par = self._settim_energy(MarcilaMcdel._parameters_as_fu
if self.kinematic_neasure == "infinitesimalStrain";
spailon = self.epsilon)
elf self.kinematic_neasure == "RightCauchyGreen";
elf self.kinematic_neasure == "GreenlagrangeStrain";
g = self.E
g = self.E
g = diff(psi, E)
```

A brief look at numerical and computational aspects

Examples demonstrating the use of the framework

Recall, from elementary continuum mechanics . . .

The body idealised as a continuous medium

Reference and current configurations, body forces and tractions

... that the motion of solid bodies can be described using different strain measures

- Infinitesimal strain: $\epsilon = \frac{1}{2} \left(\operatorname{Grad}(\boldsymbol{u}) + \operatorname{Grad}(\boldsymbol{u})^{\mathrm{T}} \right)$
- ullet Deformation gradient: $oldsymbol{F} = \mathbf{1} + \operatorname{Grad}(oldsymbol{u})$
- ullet Right Cauchy-Green: $oldsymbol{C} = oldsymbol{F}^{\mathrm{T}} oldsymbol{F}$
- ullet Green-Lagrange: $oldsymbol{E}=rac{1}{2}\left(oldsymbol{C}-oldsymbol{1}
 ight)$
- ullet Left Cauchy-Green: $oldsymbol{b} = oldsymbol{F} oldsymbol{F}^{\mathrm{T}}$
- Euler-Almansi: $e = \frac{1}{2} (\mathbf{1} \boldsymbol{b}^{-1})$
- Volumetric and isochoric splits: e.g. $J = \text{Det}(F), \quad \bar{C} = J^{-\frac{2}{3}}C$
- ullet Invariants of the tensors: I_1 , I_2 , I_3
- Principal stretches and directions: λ_1 , λ_2 , λ_3 ; $\hat{N}_1, \hat{N}_2, \hat{N}_3$

And the UFL syntax for defining these measures is almost identical to the mathematical notation

```
# Infinitesimal strain tensor
                                                       # Left Cauchy-Green tensor
def InfinitesimalStrain(u):
                                                       def LeftCauchyGreen(u):
    return variable(0.5*(Grad(u) + Grad(u).T))
                                                           F = DeformationGradient(u)
                                                           return variable(F*F.T)
# Second order identity tensor
def SecondOrderIdentity(u):
                                                       # Euler-Almansi strain tensor
   return variable(Identity(u.cell().d))
                                                       def EulerAlmansiStrain(u):
                                                           I = SecondOrderIdentitv(u)
# Deformation gradient
                                                           b = LeftCauchyGreen(u)
def DeformationGradient(u):
                                                           return variable(0.5*(I - inv(b)))
    I = SecondOrderIdentity(u)
   return variable(I + Grad(u))
                                                       # Invariants of an arbitrary tensor, A
                                                       def Invariants(A):
# Determinant of the deformation gradient
                                                           T1 = tr(A)
def Jacobian(u):
                                                           T2 = 0.5*(tr(A)**2 - tr(A*A))
    F = DeformationGradient(u)
                                                           T3 = det(A)
    return variable(det(F))
                                                           return [I1, I2, I3]
# Right Cauchy-Green tensor
                                                       # Invariants of the (right/left) Cauchy-Green tensor
def RightCauchvGreen(u):
                                                       def CauchyGreenInvariants(u):
    F = DeformationGradient(u)
                                                           C = RightCauchyGreen(u)
    return variable(F.T*F)
                                                           [I1, I2, I3] = Invariants(C)
                                                           return [variable(I1), variable(I2), variable(I3)]
# Green-Lagrange strain tensor
def GreenLagrangeStrain(u):
                                                       # Isochoric part of the deformation gradient
    I = SecondOrderIdentity(u)
                                                       def IsochoricDeformationGradient(u):
   C = RightCauchvGreen(u)
                                                           F = DeformationGradient(u)
    return variable(0.5*(C - I))
                                                           J = Jacobian(u)
                                                           return variable(J**(-1.0/3.0)*F)
```

Stress responses of hyperelastic materials are specified using constitutive relationships involving strain energy functions

- ullet Strain energy functions: $\Psi({m F}), \Psi({m C}), \Psi({m E}), \dots$
- ullet First Piola Kirchhoff: $m{P}=rac{\partial \Psi(m{F})}{\partial m{F}}=2m{F}rac{\partial \Psi(m{C})}{\partial m{C}}=\dots$
- Second Piola Kirchhoff: $S = 2\frac{\partial \Psi(C)}{\partial C} = \frac{\partial \Psi(E)}{\partial E} = 2\left[\left(\frac{\partial \Psi}{\partial I_1} + I_1\frac{\partial \Psi}{\partial I_2}\right)\mathbf{1} \frac{\partial \Psi}{\partial I_2}C + I_3\frac{\partial \Psi}{\partial I_3}C^{-1}\right] = \sum_{a=1}^{3} \frac{1}{\lambda_a}\frac{\partial \Psi}{\partial \lambda_a}\hat{N}_a \otimes \hat{N}_a = \dots$
- e.g.
 $$\begin{split} \Psi_{\text{St.Venant-Kirchhoff}} &= \frac{\lambda}{2} \text{tr}(\boldsymbol{E})^2 + \mu \text{tr}(\boldsymbol{E}^2) \\ \Psi_{\text{Ogden}} &= \sum_{p=1}^N \frac{\mu_p}{\alpha_p} \left(\lambda_1^{\alpha_p} + \lambda_2^{\alpha_p} + \lambda_3^{\alpha_p} 3 \right) \\ \Psi_{\text{Mooney-Rivlin}} &= c_1 (I_1 3) + c_2 (I_2 3) \\ \Psi_{\text{Arruda-Boyce}} &= \mu \left[\frac{1}{2} (I_1 3) + \frac{1}{20n} (I_1^2 9) + \frac{11}{1050n^2} (I_1^3 27) + \ldots \right] \\ \Psi_{\text{Yeoh}}, \Psi_{\text{Gent-Thomas}}, \Psi_{\text{neo-Hookean}}, \Psi_{\text{Ishihara}}, \Psi_{\text{Blatz-Ko}}, \ldots \end{split}$$

Again, the UFL syntax for defining different materials is almost identical to the mathematical notation

```
class StVenantKirchhoff(MaterialModel):
    """Defines the strain energy function for a St. Venant-Kirchhoff
    material"""
    def model info(self):
        self.num parameters = 2
        self.kinematic_measure = "GreenLagrangeStrain"
    def strain_energy(self, parameters):
        E = self.E
        [mu, lmbda] = parameters
        return lmbda/2*(tr(E)**2) + mu*tr(E*E)
class MoonevRivlin(MaterialModel):
    """Defines the strain energy function for a (two term)
    Mooney-Rivlin material"""
    def model info(self):
        self.num_parameters = 2
        self.kinematic_measure = "CauchyGreenInvariants"
    def strain energy(self, parameters):
       I1 = self.I1
        T2 = self T2
        [C1, C2] = parameters
        return C1*(I1 - 3) + C2*(I2 - 3)
```

Again, the UFL syntax for defining different materials is almost identical to the mathematical notation

```
def SecondPiolaKirchhoffStress(self, u):
    self. construct local kinematics(u)
    psi = self.strain energy(MaterialModel, parameters as functions(self, u))
    if self.kinematic measure == "InfinitesimalStrain":
        epsilon = self.epsilon
        S = diff(psi, epsilon)
    elif self.kinematic_measure == "RightCauchyGreen":
        C = self C
        S = 2*diff(psi, C)
    elif self.kinematic_measure == "GreenLagrangeStrain":
        E = self.E
        S = diff(psi, E)
    elif self.kinematic_measure == "CauchyGreenInvariants":
        I = self.I: C = self.C
        I1 = self.I1: I2 = self.I2: I3 = self.I3
        gamma1 = diff(psi, I1) + I1*diff(psi, I2)
        gamma2 = -diff(psi, I2)
        gamma3 = I3*diff(psi, I3)
        S = 2*(gamma1*I + gamma2*C + gamma3*inv(C))
    elif self.kinematic_measure == "IsochoricCauchyGreenInvariants":
        I = self.I: Cbar = self.Cbar
        I1bar = self.I1bar; I2bar = self.I2bar; J = self.J
        gamma1bar = diff(psibar, I1bar) + I1bar*diff(psibar, I2bar)
        gamma2bar = -diff(psibar, I2bar)
        Sbar = 2*(gamma1bar*I + gamma2bar*C bar)
```

The equations that need to be solved are the balance laws in the reference configuration

- $\circ~$ Balance of mass: $\frac{\partial \rho_0}{\partial t} = 0$
- Balance of linear momentum: $\rho_0 \frac{\partial^2 \boldsymbol{u}}{\partial t^2} = \mathrm{Div}(\boldsymbol{P}) + \boldsymbol{B}$
- \circ Balance of angular momentum: $oldsymbol{P}oldsymbol{F}^{\mathrm{T}} = oldsymbol{F}oldsymbol{P}^{\mathrm{T}}$

The weak form thus reads: Find $u \in V$, such that $\forall v \in \hat{V}$:

$$\int_{\Omega_0} \rho_0 \frac{\partial^2 \boldsymbol{u}}{\partial t^2} \cdot \boldsymbol{v} \, dx + \int_{\Omega_0} \boldsymbol{P} : \operatorname{Grad}(\boldsymbol{v}) \, dx = \int_{\Omega_0} \boldsymbol{B} \cdot \boldsymbol{v} \, dx + \int_{\Gamma_N} \boldsymbol{P} \boldsymbol{N} \cdot \boldsymbol{v} \, dx$$

with suitable initial conditions, and Dirichlet and Neumann boundary conditions.

UFL's automatic differentiation capabilities allows for easy specification of such a problem

```
# Get the problem mesh
mesh = problem.mesh()
# Define the function space
vector = VectorFunctionSpace(mesh, "CG", 1)
# Test and trial functions
v = TestFunction(vector)
u = Function(vector)
du = TrialFunction(vector)
# Get forces and boundary conditions
B = problem.body force()
PN = problem.surface_traction()
bcu = problem.boundary_conditions()
# First Piola-Kirchhoff stress tensor based on the material
# model
P = problem.first pk stress(u)
# The variational form corresponding to static hyperelasticity
L = inner(P, Grad(v))*dx - inner(B, v)*dx - inner(PN, v)*ds
a = derivative(L, u, du)
# Setup and solve problem
equation = VariationalProblem(a, L, bcu, nonlinear = True)
equation.solve(u)
```

UFL's automatic differentiation capabilities allows for easy specification of such a problem

```
    Spatial derivatives:

   df_i = Dx(f, i)
• With respect to user-defined variables:
   g = variable(cos(cell.x[0]))
   f = \exp(g**2)
   h = diff(f, g)
• Forms with respect to coefficients of a discrete function:
   a = derivative(L, w, u)
• Computing expressions and automatic differentiation:
   for i = 1, \ldots, m:
          y_i = t_i = \text{terminal expression}
          \frac{dy_i}{dx} = \frac{dt_i}{dx} = \text{terminal differentiation rule}
   for i = m + 1, ..., n:
          y_i = f_i(\langle y_j \rangle_{j \in \mathcal{J}_i})
\frac{dy_i}{dv} = \sum_{k \in \mathcal{J}_i} \frac{\partial f_i}{\partial y_k} \frac{dy_k}{dv}
   z = y_n
\frac{dz}{dv} = \frac{dy_n}{dv}
```

A simple static calculation involving a twisted block

```
class Twist(StaticHyperelasticity):
    def mesh(self):
        n = 8
        return UnitCube(n, n, n)
    def dirichlet conditions(self):
        clamp = Expression(("0.0", "0.0", "0.0"))
        twist = Expression(("0.0",
                             v_0 + (x[1] - v_0) * cos(theta) - (x[2] - z_0) * sin(theta) - x[1]
                             "z0 + (x[1] - v0) * sin(theta) + (x[2] - z0) * cos(theta) - x[2]"))
        twist.y0 = 0.5
        twist.z0 = 0.5
        twist.theta = pi/3
        return [clamp, twist]
    def dirichlet boundaries(self):
        return ["x[0] == 0.0", "x[0] == 1.0"]
    def material model(self):
        # Material parameters can either be numbers or spatially
        # varying fields. For example,
                = 3.8461
        mıı
        lmbda = Expression("x[0]*5.8 + (1 - x[0])*5.7")
        C10 = 0.171; C01 = 4.89e-3; C20 = -2.4e-4; C30 = 5.e-4
        #material = MooneuRivlin(\( \int mu/2 \), mu/21)
        material = StVenantKirchhoff([mu.lmbda])
        #material = Isihara([C10, C01, C20])
        \#material = Biderman(\Gamma C10, C01, C20, C301)
        return material
# Setup and solve the problem
twist = Twist()
```

u = twist.solve()

A simple static calculation involving a twisted block

A solid block twisted by 60 degrees

Iteration	Res. Norm
1	2.397e+00
2	6.306e-01
3	1.495e-01
4	4.122e-02
5	4.587e-03
6	8.198e-05
7	4.081e-08
8	1.579e-14

Newton scheme convergence

The dynamic release of the twisted block

```
class Release(Hyperelasticity):
    def end time(self):
        return 10.0
    def time_step(self):
        return 2.e-3
    def reference density(self):
        return 1.0
    def initial conditions(self):
        """Return initial conditions for displacement field, u0, and
        velocity field, v0"""
        u0 = "twisty.txt"
        v0 = Expression(("0.0", "0.0", "0.0"))
        return u0, v0
    def dirichlet conditions(self):
        clamp = Expression(("0.0", "0.0", "0.0"))
        return [clamp]
    def dirichlet boundaries(self):
        return \lceil ||x| \lceil 0 \rceil| == 0.0 || 1
    def material model(self):
        material = StVenantKirchhoff([3.8461, 5.76])
        return material
# Setup and solve the problem
release = Release()
u = release.solve()
```

The dynamic release of the twisted block

The relaxation of the released block

A silly hyperelastic fish being forced by a "flow"

```
class FishyFlow(Hyperelasticity):
    def mesh(self):
        mesh = Mesh("dolphin.xml.gz")
        return mesh
    def end_time(self):
       return 10.0
    def time_step(self):
       return 0.1
    def neumann conditions(self):
        flow_push = Expression(("force", "0.0"))
        flow push.force = 0.05
        return [flow_push]
    def neumann_boundaries(self):
        everywhere = "on_boundary"
        return [everywhere]
    def material model(self):
        material = MooneyRivlin([6.169, 10.15])
        return material
# Setup and solve the problem
fishv = FishvFlow()
u = fishv.solve()
```

A silly hyperelastic fish being forced by a "flow"

Concluding remarks, and where you can obtain the code

- We have a general framework for isotropic, dynamic hyperelasticity
- The following extensions are being worked on:
 - Implementing other specific material models
 - Allow for multiple materials and anisotropy
 - Goal-oriented adaptivity
 - Introducing coupling with other physics (including FSI)
- FEniCS Project: http://fenics.org/
- FEniCS Project Installer: https://launchpad.net/dorsal/ bzr get lp:dorsal
- cbc.solve: https://launchpad.net/cbc.solve/ bzr get lp:cbc.solve