

Winning Space Race with Data Science

Baby Yaw Lwi 2023-08-12

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of all methodologies
 - Data collection
 - Data wrangling
 - Exploratory data analysis (EDA)
 - Interactive visual analytics
 - Predictive analytics
- Summary of all results
 - Exploratory data analysis results
 - Interactive analytics results
 - Predictive analysis results

Introduction

- The target prediction of this project is the success or failure of the Falcon9 first stage landing.
- If we could correctly predict the outcome of the first stage, we could determine the cost of a launch, which is vital information to bid against SpaceX.

Methodology

Executive Summary

- Data collection methodology:
 - Launch data is collected from SpaceX API and web scraping
- Perform data wrangling
 - · Class label data is calculated using outcome column of launch data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Several classification models are tested and the best model is selected

Data Collection - SpaceX API

- Collect historical launch data via SpaceX API
- Transform the json response to pandas dataframe using json_normalize() function
- Extract data about booster, payload mass, orbit, launch site data, core data, types and outcomes of the flight from corresponding additional APIs using collected data columns
- Combine all 17 data columns: FlightNumber, Date, BoosterVersion, PayloadMass, Orbit, LaunchSite, Outcome, Flights, GridFins, Reused, Legs, LandingPad, Block, ReusedCount, Serial, Longitude, Latitude
- https://github.com/HpareBaby/Space-Race-Project-IBM/blob/master/capstone_W1_data_collection_n_api.ipynb

Data Collection - Scraping

- Get the static Falcon9 launch Wiki page using GET request
- Find all HTML table elements using BeautifulSoup object
- Get all column headers by iterating through
 elements using BeautifulSoup object
- Populate the dataframe by parsing each row and extracting data from the HTML table elements
- https://github.com/HpareBaby/Space-Race-Project-IBM/blob/master/capstone_W1_data_collection_web_ scraping.ipynb

Data Wrangling

- Calculate the occurrence counts and number of different outcomes for each orbit
- Get a list of different outcome categories in Outcome column
- Define a subset of outcome categories as bad outcomes where the second stage did not land successfully, which include:
 - 'False ASDS', 'False Ocean', 'False RTLS', 'None ASDS', 'None None'
- Create a landing outcome label column Class.
- Set Class = 0, if outcome is in bad outcomes.
 Set Class = 1, otherwise.
- https://github.com/HpareBaby/Space-Race-Project-IBM/blob/master/capstone_W1_data_wrangling .ipynb

EDA with Data Visualization

The following charts are plotted for exploratory data analysis:

- Scatterplot of Flight Number vs. Launch Site to determine how the relationship between flight number and launch site
 would affect the launch outcome
- Scatterplot of Payload Mass vs. Launch Site to determine how the relationship between payload and launch site would affect the launch outcome
- Bar chart of average success rate of each orbit type to determine how orbit type affect the success rate
- Scatterplot of Flight Number vs. Orbit type to determine how the relationship between flight number and orbit type would affect the launch outcome
- Scatterplot of Payload Mass vs. Orbit type to determine how the relationship between payload and orbit type would affect the launch outcome
- Line chart to observe the yearly trend of average success rate from 2010 to 2020

https://github.com/HpareBaby/Space-Race-Project-IBM/blob/master/capstone_W2_eda_dataviz.ipynb

EDA with SQL

We used SQL queries to:

- List the unique launch sites
- List 5 records where launch sites begin with 'CCA'
- Calculate total payload mass carried by boosters launched by NASA (CRS)
- Calculate average payload mass carried by booster version F9 v1.1
- Get the date when the first successful landing outcome in ground pad was achieved
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- Calculate the total number of successful and failure mission outcomes
- List the names of the booster versions which have carried the maximum payload mass
- List the month names, landing outcomes in drone ship, booster versions, launch site for the year 2015
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

https://github.com/HpareBaby/Space-Race-Project-IBM/blob/master/capstone_W2_eda_sql.ipynb

Build an Interactive Map with Folium

The following objects are added to the interactive map using Folium:

- Circle objects to mark the launch sites on the map
- Popup objects to display the launch site names when clicked
- MarkerCluster objects to display the successful and failed launches in each launch site with color-labeled markers
- MousePosition object to find out the coordinates of the location on mouse hover
- Polyline objects to draw a line between a launch site and selected landmarks in its proximity

https://github.com/HpareBaby/Space-Race-Project-IBM/blob/master/capstone_W3_launch_site_location.ipynb

Build a Dashboard with Plotly Dash

The following plots and interactions are added to the dashboard:

- Dropdown list to select launch sites
- Pie chart to show the number of successful and failed launches
- Range slider to specify the payload range
- Scatter plot to show the relationship between payload and success

https://github.com/HpareBaby/Space-Race-Project-IBM/blob/master/spacex dash app.py

Predictive Analysis (Classification)

- Standardize the predictor variables
- Split the data into training (80%) and testing datasets (20%)
- Train the logistic regression, SVM, decision tree and KNN models and tune the corresponding hyperparameters of each model using GridSearchCV
- Determine the accuracy performance of each model on test data
- Select the best performing classification model

https://github.com/HpareBaby/Space-Race-Project-IBM/blob/master/capstone_W4_SpaceX_Machine_Le arning Prediction.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- Scatterplot of Flight Number vs. Launch Site to determine how the relationship between flight number and launch site would affect the launch outcome
- There is no relationship between success and flight number for CCAFS SLC 40 orbit.
- Generally, higher flight numbers have higher success rate for launch sites VAFB SLC 4E and KSC LC 39A.

Payload vs. Launch Site

- Scatterplot of Payload Mass vs. Launch Site to determine how the relationship between payload and launch site would affect the launch outcome
- There are no rockets launched with heavy payload mass greater than 10,000 from the launch site VAFB SLC 4E.
- Heavier payloads, greater than 10,000, have higher success rate compared to lighter payloads for launch sites CCAFS SLC 40 and KSC LC 39A.

Success Rate vs. Orbit Type

- Bar chart of average success rate of each orbit type to determine how orbit type affect the success rate
- Orbit types ES-L1, GEO, HEO and SSO have the highest success rate of 1, whereas SO has the lowest success rate of 0.
- The orbit with the second highest success rate (0.857) is VLEO.
- Orbit types MEO and PO have the same success rate of 0.667.

Flight Number vs. Orbit Type

- Scatterplot of Flight Number vs. Orbit type to determine how the relationship between flight number and orbit type would affect the launch outcome
- The number of successful landing increases with increasing flight number for orbit type LEO.
- There is no distinct relationship between success and flight number for GTO orbit.
- There are alternating non-linear relationship between positive outcomes and flight number for orbits of type ISS, PO and VLEO.

Payload vs. Orbit Type

- Scatterplot of Payload Mass vs. Orbit type to determine how the relationship between payload and orbit type would affect the launch outcome
- There are more successful landings with heavy payloads compared to lighter payload masses for orbit types PO, LEO and ISS.
- Orbit type GTO has almost equal distribution of positive and negative landings across different payload mass.

Launch Success Yearly Trend

- Line chart to observe the yearly trend of average success rate from 2010 to 2020
- The lowest success rate was 0 and it continued with no change from 2010 to 2013
- The success rate is in an increasing trend since 2013, with a peak of 0.9 in 2019

All Launch Site Names

- Find the names of the unique launch sites
- SELECT DISTINCT Launch_Site FROM SPACEXTBL

```
* sqlite://my_datal.db
Done.
Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

None
```

Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with `CCA`
- SELECT * FROM SPACEXTBL WHERE Launch_Site LIKE 'CCA%' LIMIT 5

* sqlite:///my_data1.db Done.									
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing
06/04/2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	Success	Failure
12/08/2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0.0	LEO (ISS)	NASA (COTS) NRO	Success	Failure
22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525.0	LEO (ISS)	NASA (COTS)	Success	
10/08/2012	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500.0	LEO (ISS)	NASA (CRS)	Success	
03/01/2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677.0	LEO (ISS)	NASA (CRS)	Success	

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE Customer = 'NASA (CRS)'

```
%sql
SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE Customer = 'NASA (CRS)'

* sqlite://my_datal.db
Done.
SUM(PAYLOAD_MASS__KG_)
45596.0
```

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE Booster_Version = 'F9 v1.1'

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- SELECT MIN(Date) FROM SPACEXTBL WHERE Landing_Outcome = 'Success (ground pad)'

```
%sql
SELECT MIN(Date) FROM SPACEXTBL WHERE Landing_Outcome = 'Success (ground pad)'
* sqlite://my_datal.db
Done.
MIN(Date)
01/08/2018
```

Successful Drone Ship Landing with Payload between 4000 and 6000

- List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
- SELECT DISTINCT Booster_Version FROM SPACEXTBL WHERE Landing_Outcome = 'Success (drone ship)' AND PAYLOAD_MASS__KG_ > 4000 AND PAYLOAD_MASS__KG_ < 6000

```
SELECT DISTINCT Booster_Version FROM SPACEXTBL WHERE Landing_Outcome = 'Success (drone ship)'
AND PAYLOAD_MASS__KG_ > 4000 AND PAYLOAD_MASS__KG_ < 6000

* sqlite:///my_datal.db
Done.

Booster_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2
```

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- SELECT Mission_Outcome, COUNT(*) AS COUNT FROM SPACEXTBL GROUP BY Mission_Outcome

Boosters Carried Maximum Payload

- List the names of the booster which have carried the maximum payload mass
- SELECT DISTINCT Booster_Version FROM SPACEXTBL WHERE PAYLOAD_MASS__KG_ = (SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEXTBL)

2015 Launch Records

- List the failed landing_outcomes in drone ship, booster versions, and launch site names for in year 2015
- SELECT SUBSTR(Date, 4, 2) AS MONTH, Landing_Outcome, Booster_Version, Launch_Site
- FROM SPACEXTBL WHERE Landing_Outcome LIKE 'Failure%' AND substr(Date, 7, 4)= '2015'

```
SELECT
SUBSTR(Date, 4, 2) AS MONTH,
Landing_Outcome,
Booster_Version,
Launch_Site
FROM SPACEXTBL --
WHERE Landing_Outcome LIKE 'Failure%' AND
substr(Date, 7, 4)= '2015'

* sqlite://my_datal.db
Done.
MONTH Landing_Outcome Booster_Version Launch_Site

10 Failure (drone ship) F9 v1.1 B1012 CCAFS LC-40

04 Failure (drone ship) F9 v1.1 B1015 CCAFS LC-40
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order
- SELECT Landing_Outcome, COUNT(1) AS COUNT FROM SPACEXTBL WHERE Date >= '04/06/2010' AND Date <= '20/03/2017' GROUP BY Landing_Outcome ORDER BY COUNT DESC

Launch site locations

• There are 4 launch sites, with one on the west coast and 3 on the east coast.

Successes and failures in each launch site

- Launch site CCAFS LC-40 has the largest number of launches, 33, with the lowest success rate
 of 26.9%.
- Launch site KSC LC-39A has the highest success rate of 76.9%.

Launch site proximities

- Launch site (CCAFS SLC-40) is closest to highway with only about 0.59 KM distance.
- The second closest in distance is coastline with 0.87 KM away.
- The distance from the launch site to highway is about 0.99 KM.
- The launch site is farthest from the city with a distance of 51.16 KM.

Total success launches by site

• Launch site KSC LC-39A has the highest attribution of 41.7% of all successful landings, whereas CCAFS SLC-40 has the lowest attribution of 12.5%.

Launch site with highest success rate

• Launch site KSC LC-39A has the highest success rate of 76.9%.

Correlation between payload and success

• Booster version category BT has 100% success rate with only 1 launch. FT has the second highest success rate with 66.67% of total 24 launches.

Classification Accuracy

• Decision tree model has the highest training accuracy with 88.75%.

Confusion Matrix

- Confusion matrix shows the performance of the decision tree model on test data
- The model could predict all the actual positive outcomes correctly, with 100% recall rate
- However, there are 3 false positives predictions on the test data

Conclusions

- Orbit types ES-L1, GEO, HEO and SSO have the highest success rate of 1, whereas SO has the lowest success rate of 0.
- The success rate is in an increasing trend since 2013, with a peak of 90% in 2019.
- Launch site CCAFS LC-40 has the largest number of launches, 33, with the lowest success rate of 26.9%.
- Launch site KSC LC-39A has the highest success rate of 76.9%.
- Decision tree model has the highest model accuracy with 100% recall rate.

Appendix

Python code snippet for decision tree model training with GridSearchCV

```
parameters = {
    'criterion': ['gini', 'entropy'],
    'splitter': ['best', 'random'],
    'max_depth': [2*n for n in range(1,10)],
    'max_features': ['auto', 'sqrt'],
    'min_samples_leaf': [1, 2, 4],
    'min_samples_split': [2, 5, 10]
}
tree = DecisionTreeClassifier()
tree_cv = GridSearchCV(tree, parameters, cv=10)
tree_cv.fit(X_train, Y_train)
```

