

Internally Compensated, High Performance Dual Operational Amplifiers

The MC1458, C was designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short Circuit Protection
- Wide Common Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch–Up

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+18 -18	Vdc
Input Differential Voltage	V _{ID}	±30	V
Input Common Mode Voltage (Note 1)	VICM	±15	V
Output Short Circuit Duration (Note 2)	tsc	Continuous	
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C
Junction Temperature	TJ	150	°C

NOTES: 1. For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.

^{2.} Supply voltage equal to or less than 15 V.

MC1458, C

DUAL OPERATIONAL AMPLIFIERS

(DUAL MC1741)

SEMICONDUCTOR TECHNICAL DATA

P1 SUFFIX PLASTIC PACKAGE CASE 626

D SUFFIXPLASTIC PACKAGE
CASE 751
(SO-8)

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC1458CD, D	T. 00 to 1700C	SO-8
MC1458CP1, P1	$T_A = 0^\circ \text{ to } +70^\circ \text{C}$	Plastic DIP

MC1458, C

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted. (Note 3))

		MC1458		MC1458C				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k)	VIO	-	2.0	6.0	-	2.0	1.0	mV
Input Offset Current	ΙΙΟ	-	20	200	_	20	300	nA
Input Bias Current	l _{IB}	-	80	500	_	80	700	nA
Input Resistance	rį	0.3	2.0		_	2.0	_	ΜΩ
Input Capacitance	Ci	-	1.4		_	1.4	_	pF
Offset Voltage Adjustment Range	VIOR	-	±15	-	_	±15	_	mV
Common Mode Input Voltage Range	VICR	±12	±13	-	±11	±13	_	V
Large Signal Voltage Gain $(V_O = \pm 10 \text{ V}, R_L = 2.0 \text{ k})$ $(V_O = \pm 10 \text{ V}, R_L = 10 \text{ k})$	AVOL	20 -	200 -	_ _	- 20	_ 200	_ _	V/mV
Output Resistance	r _O	-	75	-	-	75	_	Ω
Common Mode Rejection (R _S ≤ 10 k)	CMR	70	90	-	60	90	_	dB
Supply Voltage Rejection (R _S ≤ 10 k)	PSR	-	30	150	_	30	_	μV/V
Output Voltage Swing (Rs \leq 10 k) (Rs \leq 2.0 k)	VO	±12 ±10	±14 ±13	_ _	±11 ±9.0	±14 ±13	_ _	V
Output Short Circuit Current	Isc	-	20	-	_	20	_	mA
Supply Currents (Both Amplifiers)	ΙD	-	2.3	5.6	-	2.3	8.0	mA
Power Consumption	PC	-	70	170	-	70	240	mW
Transient Response (Unity Gain) $ (V_I = 20 \text{ mV}, \ R_L \geq 2.0 \text{ k}\Omega, \ C_L \leq 100 \text{ pF}) \ \text{Rise Time} $ $ (V_I = 20 \text{ mV}, \ R_L \geq 2.0 \text{ k}\Omega, \ C_L \leq 100 \text{ pF}) \ \text{Overshoot} $ $ (V_I = 10 \text{ V}, \ R_L \geq 2.0 \text{ k}\Omega, \ C_L \leq 100 \text{ pF}) \ \text{Slew Rate} $	[†] TLH os SR	- - -	0.3 15 0.5	- - -	I I	0.3 15 0.5	- - -	μs % V/μs

ELECTRICAL CHARACTERISTICS $(V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = T_{high} \text{ to } T_{low}, \text{ unless otherwise noted.}$ (Note 3))*

		MC1458		MC1458C				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S \leq 10 k Ω)	VIO	_	_	7.5	ı	_	12	mV
Input Offset Current (T _A = 0° to +70°C)	ΙΙΟ	_	_	300	_	_	400	nA
Input Bias Current (T _A = 0° to +70°C)	I _{IB}	_	_	800	_	_	1000	nA
Output Voltage Swing $ (R_S \le 10 \text{ k}) $ $ (R_S \le 2 \text{ k}) $	Vo	±12 ±10	±14 ±13	_ _	- ±9.0	- ±13	_ _	V
Large Signal Voltage Gain $(V_O = \pm 10 \text{ V}, R_L = 2 \text{ k})$ $(V_O = \pm 10 \text{ V}, R_L = 10 \text{ k})$	AVOL	15 -	-	-	- 15	-	-	V/mV

 $^{^*}T_{low}$ = 0°C for MC1458, C T_{high} = +70°C for MC1458, C

 $\textbf{NOTE:} \quad 3. \text{ Input pins of an unused amplifier must be grounded for split supply operation or biased at least } 3.0 \text{ V above V}_{\text{EE}} \text{ for single supply operation.}$

Figure 1. Burst Noise versus Source Resistance

Figure 2. RMS Noise versus Source Resistance

Figure 3. Output Noise versus Source Resistance

Figure 4. Spectral Noise Density

Figure 5. Burst Noise Test Circuit

Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 sec and the 20 μV peak limit refers to the operational amplifier input thus eliminating errors in the closed loop gain factor of the operational amplifier .

Figure 6. Power Bandwidth (Large Signal Swing versus Frequency)

Figure 7. Open Loop Frequency Response

Figure 8. Positive Output Voltage Swing versus Load Resistance

Figure 9. Negative Output Voltage Swing versus Load Resistance

Figure 10. Output Voltage Swing versus Load Resistance (Single Supply Operation)

Figure 11. Single Supply Inverting Amplifier

Figure 12. Noninverting Pulse Response

Figure 13. Transient Response Test Circuit

To Scope (Input)

To Scope (Output)

Figure 14. Unused OpAmp

Figure 15. Open Loop Voltage Gain versus Supply Voltage

MC1458, C

OUTLINE DIMENSIONS

NOTES:

- DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
- 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	9.40	10.16	0.370	0.400		
В	6.10	6.60	0.240	0.260		
С	3.94	4.45	0.155	0.175		
D	0.38	0.51	0.015	0.020		
F	1.02	1.78	0.040	0.070		
G	2.54	BSC	0.100 BSC			
Н	0.76	1.27	0.030	0.050		
J	0.20	0.30	0.008	0.012		
K	2.92	3.43	0.115	0.135		
L	7.62	BSC	0.300 BSC			
М		10°		10°		
N	0.76	1.01	0.030	0.040		

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights or others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 **INTERNET**: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MC 1430/D

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.