Mathématiques pour l'informatique 1

Cours 5 - Injections, surjections et ensembles dénombrables

Émilie Charlier

Université de Liège

Injection, surjection, bijection

Définition

Soit f une fonction de A dans B.

1. On dit que la fonction f est injective lorsque

pour tous
$$a, a' \in A$$
, $a \neq a' \Rightarrow f(a) \neq f(a')$.

Dans ce cas, on dit que f est une injection de A dans B.

2. On dit que la fonction f est surjective lorsque

pour tous
$$b \in B$$
, il existe $a \in A$ tel que $b = f(a)$.

Dans ce cas, on dit que f est une surjection de A dans B.

3. On dit que la fonction f est bijective lorsqu'elle est à la fois injective et surjective. Dans ce cas, on dit que f est une bijection de A dans B.

Exemples

- ▶ La fonction $f: \mathbb{Z} \to \mathbb{Z}$, $n \mapsto 2n$ est injective, mais pas surjective.
- ▶ La fonction $f: \mathbb{Z} \to 2\mathbb{Z}, n \mapsto 2n$ est bijective.
- ▶ La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ n'est ni injective ni surjective.
- ▶ La fonction $f: \mathbb{R} \to [0, +\infty[, x \mapsto x^2 \text{ est surjective, mais pas injective.}]$
- ▶ La fonction $f: [0, +\infty[\to \mathbb{R}, \ x \mapsto x^2 \text{ est injective, mais pas surjective.}]$
- ▶ La fonction $f: [0, +\infty[\to [0, +\infty[, x \mapsto x^2 \text{ est bijective.}]$
- ▶ La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$ est bijective.

Fonction réciproque

Définition

Si $f: A \to B$ est une bijection, alors pour tout $b \in B$, il existe un unique $a \in A$ tel que f(a) = b. Notons $f^{-1}(b)$ cet unique élément a. On définit alors la fonction réciproque de f la fonction

$$f^{-1}$$
: $B \to A$, $b \mapsto f^{-1}(b)$.

Proposition

La fonction réciproque d'une bijection est aussi une bijection.

Démonstration

Soit $f: A \rightarrow B$ une bijection.

La fonction $f^{-1}: B \to A$ est injective puisque si $b, b' \in B$ sont tels que $f^{-1}(b) = f^{-1}(b')$, alors $b = f(f^{-1}(b)) = f(f^{-1}(b')) = b'$.

Elle est surjective puisque pour tout $a \in A$, l'élément $f(a) \in B$ est tel que $f^{-1}(f(a)) = a$.

Ensembles en bijection

Au vu de la proposition précédente, on dira que des ensembles A et B sont en bijection dès qu'il existe une bijection de l'un vers l'autre.

Fonction composée

Définition

Soient $f: A \to B_1$ et $g: B_2 \to C$ avec $B_1 \subseteq B_2$.

La fonction composée de f et g est la fonction

$$g \circ f : A \to C, a \mapsto g(f(a)).$$

Exemple

Soient $f: \mathbb{Z} \to 2\mathbb{Z} + 1$, $n \mapsto 2n + 1$ et $g: \mathbb{Z} \to \mathbb{Q}$, $n \mapsto \frac{3n}{2}$.

Pour tout
$$n \in \mathbb{Z}$$
, on a $g(f(n)) = g(2n+1) = \frac{3(2n+1)}{2} = 3n + \frac{3}{2}$.

La composée $g \circ f$ est la fonction $g \circ f : \mathbb{Z} \to \mathbb{Q}, \ n \mapsto 3n + \frac{3}{2}$.

Remarquons que la composée $f\circ g$ n'existe pas car les domaines ne sont pas compatibles.

Soient des fonctions $f: A \to B_1$ et $g: B_2 \to C$ avec $B_1 \subseteq B_2$. Si f et g sont des injections, alors $g \circ f: A \to C$ est une injection.

Démonstration

Supposons que f et g sont des injections.

Soient $a, a' \in A$ tels que $a \neq a'$.

On doit montrer que $g \circ f(a) \neq g \circ f(a')$.

Puisque f est une injection, on a $f(a) \neq f(a')$.

Comme g est aussi une injection, on obtient bien que

$$g \circ f(a) = g(f(a)) \neq g(f(a')) = g \circ f(a').$$

D'où $g \circ f$ est une injection.

Soient des fonctions $f: A \rightarrow B$ et $g: B \rightarrow C$.

- **1.** Si f et g sont des surjections, alors $g \circ f : A \to C$ est une surjection.
- **2.** Si f et g sont des bijections, alors $g \circ f : A \to C$ est une bijection.

Démonstration

1. Supposons que f et g sont des surjections.

Soit $c \in C$.

Puisque g est une surjection, il existe $b \in B$ tel que g(b) = c.

Puisque f est une surjection, il existe $a \in A$ tel que f(a) = b.

On obtient que $g \circ f(a) = g(f(a)) = g(b) = c$.

D'où $g \circ f$ est une surjection.

2. Supposons que f et g sont des bijections.

Alors $g \circ f$ est une injection par la proposition précédente et une surjection par le point 1, donc une bijection.

Ensembles dénombrables

En informatique et en mathématiques discrètes, on travaille le plus souvent avec des ensembles dénombrables (voire finis), avec pour paradigme l'ensemble des naturels \mathbb{N} .

Définition

Un ensemble A est dénombrable s'il existe une injection de A dans \mathbb{N} .

Exemple

Les ensembles \mathbb{N} , $2\mathbb{N}$ et $2\mathbb{N}+1$ sont dénombrables.

Il suffit de vérifier que les fonctions suivantes sont injectives :

$$i: \mathbb{N} \to \mathbb{N}, \ n \mapsto n$$

$$f: 2\mathbb{N} \to \mathbb{N}, \ n \mapsto \frac{n}{2}$$

$$g: 2\mathbb{N} + 1 \to \mathbb{N}, \ n \mapsto \frac{n-1}{2}$$

La proposition précédente est en fait un cas particulier du résultat suivant.

Proposition

Toute partie d'un ensemble dénombrable est dénombrable.

Démonstration

Soit A un ensemble dénombrable et soit $B \subseteq A$.

Par définition, il existe une injection $f: A \to \mathbb{N}$.

La fonction $i: B \to A, x \mapsto x$ étant injective, on obtient que la fonction $f \circ i: B \to \mathbb{N}$ est une injection de B dans \mathbb{N} .

L'ensemble \mathbb{Z} est dénombrable.

Démonstration

Il suffit de vérifier que la fonction

$$f: \mathbb{Z} \to \mathbb{N}, \ z \mapsto \begin{cases} 2z - 1 & \text{si } z > 0 \\ -2z & \text{si } z \leq 0 \end{cases}$$

est une injection.

Si A est un ensemble dénombrable infini, alors il existe une bijection de A dans \mathbb{N} .

Démonstration

Soit A un ensemble dénombrable infini. Il existe donc une injection $f: A \to \mathbb{N}$.

Puisque A est infini et que f est une injection, l'ensemble image $\{f(a)\colon a\in A\}$ est une partie infinie de \mathbb{N} . Notons les éléments de cet ensemble par n_0,n_1,n_2,\ldots en supposant que $n_0< n_1< n_2<\cdots$.

On définit une fonction $g: A \to \mathbb{N}$ en posant que pour tout $a \in A$, l'image g(a) est le naturel k tel que $f(a) = n_k$. On vérifie ensuite que la fonction g ainsi définie est une bijection.

Elle est injective car si $a, b \in A$ et $k \in \mathbb{N}$ sont tels que g(a) = g(b) = k, alors $f(a) = f(b) = n_k$ et donc a = b par injectivité de f.

Elle est surjective car pour tout $k \in \mathbb{N}$, il existe $a \in A$ tel que $f(a) = n_k$, et donc tel que g(a) = k.

Théorème

L'ensemble $\mathbb{N}\times\mathbb{N}$ est dénombrable. Plus précisément, la fonction

$$\pi\colon\thinspace \mathbb{N} imes\mathbb{N} o\mathbb{N},\, (m,n)\mapsto rac{(m+n)(m+n+1)}{2}+n$$

est une bijection.

Une autre façon d'obtenir que $\mathbb{N}\times\mathbb{N}$ est dénombrable est donnée par le résultat suivant.

Théorème

La fonction

$$\rho \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (m, n) \mapsto 2^m (2n + 1) - 1$$

est une bijection.

Démonstration (faite en classe - voir aussi les notes de cours)

Si A et B sont dénombrables, alors $A \times B$ est dénombrable.

Démonstration

Supposons que A et B soient dénombrables. Par hypothèse, il existe des injections $f: A \to \mathbb{N}$ et $g: B \to \mathbb{N}$.

Montrons que la fonction $h: A \times B \to \mathbb{N} \times \mathbb{N}, (a, b) \mapsto (f(a), g(b))$ est injective.

Soient (a, b) et (a', b') des éléments de $A \times B$ tels que h(a, b) = h(a', b').

Par définition de h, on a f(a) = f(a') et g(b) = g(b').

Comme f et g sont des injections, on obtient que a=a' et b=b', et donc (a,b)=(a',b'), montrant que la fonction h est bien injective.

Les fonctions $h \colon A \times B \to \mathbb{N} \times \mathbb{N}$ et $\rho \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ étant toutes deux injectives, la fonction composée $\rho \circ h \colon A \times B \to \mathbb{N}$ est injective.

Ainsi, $A \times B$ est dénombrable.

Autres exemples

- L'ensemble Q est dénombrable.
- L'ensemble des suites infinies de 0 et de 1 est non dénombrable.
- ightharpoonup L'ensemble $\mathbb R$ est non dénombrable.
- L'ensemble $\mathcal{P}(\mathbb{N})$ des parties de \mathbb{N} est non dénombrable.

Argument de la diagonale ou de Cantor

Théorème

L'ensemble $A=\left\{(a_n)_{n\in\mathbb{N}}: \forall n\in\mathbb{N},\ a_n\in\{0,1\}\right\}$ est non dénombrable.

Démonstration

Procédons par l'absurde et supposons que l'ensemble A soit dénombrable.

Comme A est infini, il existe une bijection $f: \mathbb{N} \to A$.

Pour tout $k \in \mathbb{N}$, notons $f(k) = (a_{k,n})_{n \in \mathbb{N}}$.

Considérons la suite particulière $(c_n)_{n\in\mathbb{N}}$ de A définie par

$$c_n=1-a_{n,n}$$
.

Considérons à présent $j \in \mathbb{N}$ tel que $f(j) = (c_n)_{n \in \mathbb{N}}$.

On obtient que $a_{j,j} = c_j = 1 - a_{j,j}$, une contradiction.