CS 4650/7650, Lecture 13: Parsing 1

Jacob Eisenstein

September 26, 2013

So far we've explored finite-state models, which correspond to regular languages.

- representations: (weighted) finite state automata
- probabilistic models: HMMs (as a special case), CRFs
- algorithms: viterbi, forward-backward, $\mathcal{O}(NK^2)$ time complexity.
- linguistic phenomena:
 - morphology
 - language models
 - part-of-speech disambiguation
 - named entity recognition (chunking)

Is finite state enough?

1 Is English a regular language?

Regular languages are closed under intersection:

- $K \cap L$ is the set of strings in both K and L
- $K \cap L$ is regular iff K and L are regular

How to prove English is not regular:

- \bullet Let K be the set of grammatical English sentences
- \bullet Let L be some regular language
- Show that the intersection is not regular

We're going to prove this using center embedding:

1. The cat is fat.

- 2. The cat that the dog chased is fat.
- 3. *The cat that the dog is fat.
- 4. The cat that the dog that the monkey kissed chased is fat.
- 5. *The cat that the dog that the monkey chased is fat.

Proof sketch:

- *K* is the set of grammatical english sentences. It excludes sentences (3) and (5).
- L is the regular language the cat $(that N)_t^+ V_t^+$ is fat.
- The language $L \cap K$ is the cat $(that N)_t^n V_t^n$ is fat.

Note that the issue here is not just infinite repetition or productivity; FSAs can handle productive phenomena like the big red smelly plastic figurine.

Anyway, what do you think of this argument?

1.1 Is deep center embedding really part of English?

Karlsson (2007) searched for multiple (phrasal) center embeddings in corpora from 7 languages:

- Very few examples of double embedding
- Only 13 examples of triple embedding (none in speech)
- Zero examples of quadruple embeddings

Note that we can build an FSA to accept center-embedding up to any finite depth.

Chomsky and many linguists distinguish between

- Competence: the fundamental abilities of the (idealized) human language processing system
- **Performance**: real utterances produced by speakers, subject to non-linguistic factors such as cognitive limitations

Even if English as performed is regular, the underlying generative grammar may be context-free... **or beyond**. There is a similar proof that at least some languages are not context-free! I'll post slides with this proof idea.

1.2 How much expressiveness do we need?

• Shieber (1985) makes a similar argument with Swiss-German syntax. In response to the objection that all attested constructions are finite, Shieber writes:

Down this path lies tyranny. Acceptance of this argument opens the way to proofs of natural languages as regular, nay, **finite**.

 In practice, many real constructions are much simpler to handle in contextfree rather than finite-state representations:

The processor has 10 million times fewer transistors on it than todays typical microprocessors, runs much more slowly, and operates at five times the voltage...

- The easy way:

S
$$\rightarrow$$
 NN VP
$$VP \rightarrow VP3S \mid VPN3S \mid \dots$$

$$VP3S \rightarrow VP3S, \ VP3S, \ and \ VP3S \mid VBZ \mid VBZ \ NP \mid \dots$$

- The hard way: build an FST that basically replicates all of English grammar for VPs with 3S and non-3S subjects.
- Mainstream parsing focuses on CFGs, but there is some work on "mildly" context-sensitive grammars.

2 Context-Free Languages

In the Chomsky hierarchy, context-free languages (CFLs) are a strict generalization of regular languages.

regular	context-free
regular expressions	context-free grammars (CFGs)
finite-state machines	pushdown automata
paths	derivations

Context-free grammars define CFLs. They are sets of permissible *productions* which allow you to **derive** strings composed of surface symbols.

$$S
ightarrow NP \ VP_1$$
 $NP
ightarrow the \ N \ |NP \ {
m RelClause}$ RelClause $ightarrow that \ NP \ V_t$ $V_t
ightarrow ate|chased|befriended|\dots$ $N
ightarrow cat|dog|monkey|\dots$ $VP_1
ightarrow is \ fat$

An important feature of CFGs is *recursion*, in which a nonterminal can be derived from itself.

More formally , a CFG is a tuple $\langle N, \Sigma, R, S \rangle$:

- N a set of non-terminals
- Σ a set of terminals (distinct from N)
- R a set of productions, each of the form $A \to \beta$, where $A \in N$ and $\beta \in (\Sigma \cup N)^*$
- S a designated start symbol
- Context free grammars provide rules for generating strings.
- A surface string can be **parsed** into a series of productions (a **derivation**).
- Parses can be viewed as trees or as bracketings:

 $(_{S(NP(PRP\ She)(VP(VBZ\ eats)}\\ (_{NP(NP(NN\ sushi))(PP\ with(NP(NNS\ chopsticks))))))}$

$$(_{S(NP(PRP\ She)(VP(VBZ\ eats)} \\ (_{NP(NN\ sushi)}) \\ (_{PP\ with(NP(NNS\ chopsticks))))))$$

Semantics Ideally, each derivation will have a distinct semantic interpretation, and all possible interpretations will be represented in some derivation.

$$(_{NP}(_{NP} \ Ban (_{PP} \ on (_{NP} \ nude \ dancing)))$$

 $(_{PP} \ on (_{NP} \ Governor's \ desk)))$

```
(_{NP} \ Ban \ (_{PP} \ on \ (_{NP}(_{NP} \ nude \ dancing \ )
(_{PP} \ on \ (_{NP} \ Governor's \ desk \ )))))
```

Sadly, this is not always the case.

```
(_{NP}(_{JJ} \ nice) \ (_{JJ} \ little) \ (_{NN} \ car \ ))
(_{NP}(_{JJ} \ nice) \ (_{NP}(_{JJ} \ little) \ (_{NN} \ car \ )))
(_{NP}(_{JJ} \ nice) \ (_{NP}(_{JJ} \ little) \ (_{NP}(_{NN} \ car \ ))))
```

3 Constituency

- In natural language grammars, the non-terminals should reflect syntactic categories.
- Bracketed substrings (e.g., sushi with chopsticks) are called **constituents**.
- There are several tests for constituency, including:
 - substitution
 - coordination
 - movement

Substitution Constituents generated by the same non-terminal should be substitutable in many contexts:

- (NP The ban) is on the desk.
- (NP The Governor's desk) is on the desk.
- (NP) The ban on dancing on the desk) is on the desk.
- $*(PP \ On \ the \ desk)$ is on the desk.

A more precise test for whether a set of substrings constitute a single category is whether they can be replaced by the same pronouns.

• $(NP \ It)$ is on the desk.

What about verbs?

- I(V gave) it to Anne.
- I(V taught) it to Anne.
- I(V gave) Anne a fish
- $*I(_V taught) Anne a fish$

This suggests we need nonterminals which distinguish verbs based on the arguments they can take. The technical name for this is *subcategorization*.

Coordination Constituents generated by the same non-terminal can usually be *coordinated* using words like and and or:

- We fought (PP) on the hills (PP) and (PP) in the hedges (PP).
- We fought (ADVP as well as we could).
- *We fought ($_{ADVP}$ as well as we could) and ($_{PP}$ in the hedges).

This too doesn't always work:

- She $(VP \ went)$ $(PP \ to \ the \ store)$.
- She $(VP \ came)$ $(PP \ from \ the \ store)$.
- She (went to) and (came from) the store.

Movement Valid constituents can be moved as a unit, preserving grammaticality.

- Passivization
 - (The governor) banned (nude dancing on his desk)
 - (Nude dancing on his desk) was banned by (the governor)
- Wh- movement
 - (Nude dancing was banned) on (the desk).
 - (The desk) is where (nude dancing was banned)
- Topicalization
 - (He banned nude dancing) to appeal to conservatives.
 - To appeal to conservatives, (he banned nude dancing).

4 A simple grammar of English

4.1 Noun phrases

Let's start with noun phrases:

- She sleeps (Pronoun)
- Arlo sleeps (Proper noun)
- Fish sleep (Mass noun)
- The fish sleeps (determiner + noun)
- The blue fish sleeps (DT + JJ + NN)

- The girl from Omaha sleeps (NP + PP)
- The student who ate 15 donuts sleeps (NP + RelClause)

So overall, we can summarize this fragment as

$$NP \rightarrow PRP \mid NNP \mid DT NOM$$

 $NOM \rightarrow ADJP NOM \mid NN$
 $NP \rightarrow NP PP \mid NP RELCLAUSE$

We're leaving out some detail, like pluralization and possessives, but you get the idea.

4.2 Adjectival and prepositional phrases

- Very funny
- The large, blue fish
- The man from la mancha

$$ADJP \rightarrow JJ \mid RB \ ADJP \mid JJ \ ADJP$$

 $PP \rightarrow IN \ NP \mid TO \ NP$

4.3 Verb phrases

- She sleeps
- She sleeps restlessly
- She sleeps at home
- She eats sushi¹
- She gives John sushi

$$VP \rightarrow V \mid VP RB \mid VP PP \mid V NP \mid V NP NP \mid V NP RB$$

But what about *She sleeps sushi or *She speaks John Japanese?

- Classes of verbs can take different numbers of arguments.
- This is called **subcategorization**

$$VP \rightarrow V$$
-INTRANS | V-TRANS NP | V-DITRANS NP NP $VP \rightarrow VP$ RB| VP PP

We would also need to handle modal and auxiliary verbs that allow us to create complex tenses, like *She will have eaten sushi* but not *She will have eats sushi.

 $^{^1{\}rm Sushi}$ examples from Julia Hockenmaier

4.4 Sentences

• She eats sushi

$$S \rightarrow NP VP$$

• Sometimes, she eats sushi

$$S \to ADVP S$$

• In Japan, she eats sushi

$$S \to PP S$$

• What about *I eats sushi, *She eat sushi??

$$S \rightarrow NP.3S VP.3S | NP.N3S VP.N3S$$

In general, we need **features** to capture this kind of agreement.

4.5 Conjunctions

• She eats sushi and candy

$$NP \rightarrow NP$$
 and NP

• She eats sushi and drinks soda

$$VP \rightarrow VP$$
 and VP

• She eats sushi and he drinks soda

$$S \rightarrow S$$
 and S

• fresh and tasty sushi

$$Adg P \rightarrow JJ$$
 and JJ

We'd need a little more cleverness to properly cover groups larger than two.

4.6 Odds and ends

• I gave sushi to the girl who eats sushi. This is a relative clause,

RelClause
$$\rightarrow$$
 who VP | that VP

 I took sushi from the man offering sushi. This is a gerundive postmodifier.

$$\label{eq:Nom} \begin{array}{l} {\rm Nom} \to \!\! {\rm Nom} \ {\rm GerundVP} \\ {\rm GerundVP} \to \!\! {\rm VBZ} \mid {\rm VBZ} \ {\rm NP} \mid {\rm VBZ} \ {\rm PP} \mid \dots \end{array}$$

• Can she eat sushi? (notice it's not eats)

$$S \rightarrow Aux NP VP$$

• ... and many more

5 Grammar design

Our goal is a grammar that avoids

- Overgeneration: deriving strings that are not grammatical.
- Undergeneration: failing to derive strings that are grammatical.

To avoid undergeneration, we would need thousands of productions.

Typically, grammars are defined in conjunction with large-scale **treebank** annotation projects.

- An annotation guideline specifies the non-terminals and how they go together.
- The annotators then apply these guidelines to data.
- The grammar rules can then be read off the data.

The Penn Treebank contains one million parsed words of Wall Street Journal text from the 1990s.

6 Grammar equivalence and normal form

- Grammars are weakly equivalent if they generate the same strings.
- Grammars are strongly equivalent if they generate the same strings **and** assign the same phrase structure to each sentence.
- In Chomsky Normal Form (CNF), all productions are either:

$$\begin{array}{c} A \to BC \\ A \to a \end{array}$$

- All CFGs can be converted into a weakly equivalent grammar in CNF
- This is very handy for parsing algorithms.

- Binarization is easy: group right children into new non-terminals.
- Un-binarization is important! people with claws is not a constituent in the original parse.
- Unary productions are best handled by modifying the algorithm.

7 Parsing

Parsing is the process of determining whether a sentence is in a context-free language, by searching for a legal derivation. Some possibilities:

- Top-down: start with the start symbol, and see if we can derive the sentence.
- **Bottom-up**: combine the observed symbols using whatever productions we can, until we reach the start symbol
- Left-to-right: move through the input, incrementally building a parse tree

Before we get into these different possibilities, let's see whether exhaustive search is possible. Suppose we only have one non-terminal, X, and it has binary productions

$$\begin{array}{l} X \rightarrow \!\! X \ X \\ X \rightarrow \!\! the \ girl \mid ate \ sushi \mid \dots \end{array}$$

How many different ways could we parse a sentence? This is just equal to the number of binary bracketings of the words in the sentence, which is a Catalan number. Catalan numbers grow super-exponentially in the length of the sentence, $C_n = \frac{(2n)!}{(n+1)!n!}$.

8 CKY parsing

CKY is a bottom-up parsing allows us to test whether a sentence is in a contextfree language, without considering all possible parses. First we form small constituents, then try to merge them into larger constituents.

Let's start with an example grammar:

$$\begin{array}{c} S \rightarrow \!\! VP \ NP \\ NP \rightarrow \!\! NP \ PP \mid we \mid sushi \mid chopsticks \\ PP \rightarrow \!\! P \ NP \\ P \rightarrow \!\! with \\ VP \rightarrow \!\! VP \ NP \mid VP \ PP \mid eat \end{array}$$

Suppose we encounter the sentence We eat sushi with chopsticks.

- The first thing that we notice is that we can apply unary productions to obtain NP VP NP P NP
- Next, we can apply a binary production to merge the first NP VP into an S.
- Or we could merge VP NP into VP
- \bullet ... and so on

Let's systematize this. Here is the CKY algorithm:

```
\begin{array}{l} \mathbf{for} \ \mathbf{j} : \ [1, \mathbf{N}] \ \mathbf{do} \\ t[j, j-1] \leftarrow \{A|A \to x_j \in R\} \\ \mathbf{for} \ \mathbf{i} : \ [\mathbf{j}\text{-}2, \ 0] \ \mathbf{do} \\ \mathbf{for} \ \mathbf{k} : \ [\mathbf{i}\text{+}1, \ \mathbf{j}\text{-}1] \ \mathbf{do} \\ t[i, j] \leftarrow t[i, j] \cup \{A|A \to BC \in R, B \in t[i, k], C \in t[k, j]\} \\ \mathbf{end} \ \mathbf{for} \\ \end{array}
```

To hand unary transitions, we compute the *unary closure* of each non-terminal.

- e.g., if $S \to VP, \, VP \to V$, then add $S \to V$
- At each table entry t[i, j]
 - For each non-terminal $A \in t[i, j]$

* Add all elements of the reflexive unary closure for A

Complexity What is the complexity of CKY?

• Space compexity: $\mathcal{O}(L^2|N|)$

• Time complexity: $\mathcal{O}(N^3|R|)$

• L is length of sentence, |N| is the number of non-terminals, |R| is the number of production rules

• But in practice...

It's worse than worst-case! (figure from Dan Klein)

• Longer sentences "unlock" more of the grammar.

9 Ambiguity in parsing

Syntactic ambiguity is endemic to natural language:²
[i+-i,]

 $^{^2\}mathrm{Examples}$ borrowed from Dan Klein

- Attachment ambiguity: we eat sushi with chopsticks,
 I shot an elephant in my pajamas.
- Modifier scope: southern food store
- Particle versus preposition: The puppy tore up the staircase.
- Complement structure: The tourists objected to the guide that they couldn't hear.
- Coordination scope: "I see," said the blind man, as he picked up the hammer and saw.
- Multiple gap constructions: The chicken is ready to eat
- In morphology, we didn't just want to know which derivational forms are *legal*, we wanted to know which were likely.
- Syntactic parsing is all about choosing among the many, many legal parses for a given sentence.

Here's another example, which we've seen before:

- A minimal grammar permits 36 parses!
- Real-size broad coverage grammars permit millions of parses.

Classical parsers faced a tradeoff:

- broad coverage with tons of ambiguity...
- or limited coverage in exchange for constraints on ambiguity

Consequently, deterministic parsers produced no analysis for many sentences.

9.1 Local solutions

Some ambiguity can be resolved locally:

- [imposed [a ban [on asbestos]]]
- [imposed [a ban][on asbestos]]

• Hindle and Rooth (1990) proposed a likelihood ratio test:

$$LR(v, n, p) = \frac{P(p|v)}{P(p|n)} = \frac{P(\textit{on}|\textit{imposed})}{P(\textit{on}|\textit{ban})}$$

where we select VERB attachment if LR(v, n, p) > 1.

- But the likelihood-ratio approach ignores important information, like the phrase being attached.
 - ...[it [would end [its venture [with Maserati]]]]
 - ...[it [would end [its venture][with Maserati]]]
- The likelihood ratio gets this wrong
 - $-P(with|end) = \frac{607}{5156} = 0.118$
 - $-P(with|venture) = \frac{155}{1442} = 0.107$

Other features (e.g., *Maserati*) argue for noun attachment. How can we add them?

Machine learning solutions Ratnaparkhi et al (1994) propose a maximum-entropy (logistic regression) approach:

$$P(N|would\ end\ its\ venture\ with\ Maserati) = \\ \frac{e^{\boldsymbol{w}^{\mathsf{T}}\boldsymbol{f}(would\ end\ its\ venture\ with\ Maserati)}}{1 + e^{\boldsymbol{w}^{\mathsf{T}}\boldsymbol{f}(would\ end\ its\ venture\ with\ Maserati)}}$$

Features include n-grams and word classes from hierarchical word clustering; accuracy is roughly 80%.

Collins and Brooks (1995) argued that attachment depends on four heads:

- the preposition (with)
- the VP attachment site (end)
- the NP attachment site (venture)
- the NP to be attached (Maserati)

They propose a backoff-based approach:

- First, look for counts of the tuple (with, Maserati, end, venture)
- If none, try $\langle with, Maserati, end \rangle + \langle with, end, venture \rangle + \langle with, Maserati, venture \rangle$
- If none, try $\langle with, Maserati \rangle + \langle with, end \rangle + \langle with, venture \rangle$
- If none, try \(\psi with \rangle \)

Accuracy is roughly 84%. This approach of combining relative frequency estimation, smoothing, and backoff was very characteristic of late 1990s statistical NLP.

9.2 Beyond local solutions

Framing the problem as attachment ambiguity is limiting:

- assumes the parse is mostly done, leaving just a few attachment ambiguities to solve
- But realistic sentences have more than a few syntactic interpretations.
- Attachment decisions are interdependent:
 - Cats scratch people with claws with knives.
 - We may want to attach with claws to scratch.
 - But then we have nowhere to put with knives.

The task of statistical parsing is to produce a single analysis that resolves all syntactic ambiguities.

10 PCFGs

We want the parse τ that maximizes $P(\tau|S)$.

$$\begin{split} \arg\max_{\tau} P(\tau|S) = & \arg\max_{\tau} \frac{P(\tau,S)}{P(S)} \\ = & \arg\max_{\tau} P(\tau,S) \\ = & \arg\max_{\tau} P(S|\tau)P(\tau) \\ = & \arg\max_{\tau:S=\mathrm{yield}(\tau)} P(\tau) \end{split}$$

- The **yield** of a tree is the string of terminal symbols that can be read off the leaf nodes.
- The set $\{\tau: S = \text{yield}(\tau)\}$ is exactly the set of all derivations of S in a CFG G.

PCFGs extend the CFG by adding probability to each production:

\mathbf{S}	$\rightarrow NP \ VP$	0.9
\mathbf{S}	$\rightarrow S \ conj \ S$	0.1
NP	$\rightarrow N$	0.2
NP	$\rightarrow DT N$	0.3
NP	$\rightarrow N NP$	0.2
NP	$\rightarrow JJ\ NP$	0.2
NP	$\to NP\ PP$	0.1
VP	$\rightarrow V$	0.4
VP	$\rightarrow V NP$	0.3
VP	$\rightarrow V NP NP$	0.1
VP	$\rightarrow VP\ PP$	0.2
PP	$\rightarrow P NP$	1.0

The probabilities for all productions involving a single LHS must sum to 1:

$$\sum_{\alpha} P(X \to \alpha | X) = 1$$

The probability $P(\tau)$ is just the product of all the productions:

10.1 Estimation

- As in supervised HMMs, estimation is easy (for now!).
- PCFG probabilities can be estimated directly from a treebank:

$$P(VP \to VP\ PP) = \frac{c(VP \to VP\ PP)}{c(VP)}$$

10.2 Three basic problems for PCFGs

Let $\tau \in T$ be a derivation, S be a sentence, and λ a PCFG.

- **Decoding**: Find $\hat{\tau} = \arg \max_{\tau} P(\tau, S; \lambda)$
- Likelihood: Find $P(w; \lambda) = \sum_{\tau} P(\tau, S; \lambda)$
- (Unsupervised) Estimation: Find $\arg \max_{\lambda} P(S_{1...N}|\lambda)$