Pick any nonzero vector $v \in C^*(u)$, which means that $(\varphi_i')_u(v) \leq 0$ for all $i \in I(u)$, and let $\delta > 0$ be any positive real number such that $v + \delta w \neq 0$. For any sequence $(\epsilon_k)_{k\geq 0}$ of reals $\epsilon_k > 0$ such that $\lim_{k \to \infty} \epsilon_k = 0$, let $(u_k)_{k\geq 0}$ be the sequence of vectors in V given by

$$u_k = u + \epsilon_k(v + \delta w).$$

We have $u_k - u = \epsilon_k(v + \delta w) \neq 0$ for all $k \geq 0$ and $\lim_{k \to \infty} u_k = u$. Furthermore, since the functions φ_i are continuous for all $i \notin I(u)$, we have

$$0 > \varphi_i(u) = \lim_{k \to \infty} \varphi_i(u_k) \quad \text{for all } i \notin I(u). \tag{*_1}$$

Equation $(*_0)$ of the previous case shows that for all $i \in I(u)$ such that φ_i is affine, since $(\varphi_i')_u(v) \leq 0$, $(\varphi_i')_u(w) \leq 0$, and $\epsilon_k, \delta > 0$, we have

$$\varphi_i(u_k) = \epsilon_k((\varphi_i')_u(v) + \delta(\varphi_i')_u(w)) \le 0 \quad \text{for all } i \in I(u) \text{ and } \varphi_i \text{ affine.}$$
 (*2)

Furthermore, since φ_i is differentiable and $\varphi_i(u) = 0$ for all $i \in I(u)$, if φ_i is not affine we have

$$\varphi_i(u_k) = \epsilon_k((\varphi_i')_u(v) + \delta(\varphi_i')_u(w)) + \epsilon_k \|u_k - u\| \eta_k(u_k - u)$$

with $\lim_{\|u_k-u\|\to 0} \eta_k(u_k-u)=0$, so if we write $\alpha_k=\|u_k-u\|\eta_k(u_k-u)$, we have

$$\varphi_i(u_k) = \epsilon_k((\varphi_i')_u(v) + \delta(\varphi_i')_u(w) + \alpha_k)$$

with $\lim_{k\to\infty} \alpha_k = 0$, and since $(\varphi_i')_u(v) \leq 0$, we obtain

$$\varphi_i(u_k) \le \epsilon_k(\delta(\varphi_i')_u(w) + \alpha_k)$$
 for all $i \in I(u)$ and φ_i not affine. $(*_3)$

Equations $(*_1), (*_2), (*_3)$ show that $u_k \in U$ for k sufficiently large, where in $(*_3)$, since $(\varphi'_i)_u(w) < 0$ and $\delta > 0$, even if $\alpha_k > 0$, when $\lim_{k \to \infty} \alpha_k = 0$, we will have $\delta(\varphi'_i)_u(w) + \alpha_k < 0$ for k large enough, and thus $\epsilon_k(\delta(\varphi'_i)_u(w) + \alpha_k) < 0$ for k large enough.

Since

$$\frac{u_k - u}{\|u_k - u\|} = \frac{v + \delta w}{\|v + \delta w\|}$$

for all $k \geq 0$, we conclude that $v + \delta w \in C(u)$ for $\delta > 0$ small enough. But now the sequence $(v_n)_{n\geq 0}$ given by

$$v_n = v + \epsilon_n w$$

converges to v, and for n large enough, $v_n \in C(u)$. Since by Proposition 50.1(1), the cone C(u) is closed, we conclude that $v \in C(u)$. See Figure 50.10.

In all cases, we proved that $C^*(u) \subseteq C(u)$, as claimed.

In the case of m affine constraints $a_i x \leq b_i$, for some linear forms a_i and some $b_i \in \mathbb{R}$, for any point $u \in \mathbb{R}^n$ such that $a_i u = b_i$ for all $i \in I(u)$, the cone C(u) consists of all $v \in \mathbb{R}^n$ such that $a_i v \leq 0$, so u + C(u) consists of all points u + v such that

$$a_i(u+v) \le b_i$$
 for all $i \in I(u)$,

which is the cone cut out by the hyperplanes determining some face of the polyhedron defined by the m constraints $a_i x \leq b_i$.

We are now ready to prove one of the most important results of nonlinear optimization.