Turing machines

Sipser 3.1 (pages 137-144)

Chomsky hierarchy

Introducing... Turing machines

Infinite tape

Bi-directional read/write head

Recognizing $\{a^nb^nc^n|n\geq 0\}$

Infinite tape

Formally...

- A Turing machine is a 7-tuple
 - $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where -Q is a finite set called the states

 - Σ is a finite set not containing the blank symbol ∠ called the input alphabet
 - Γ is a finite set called the tape alphabet with $|\cdot| \in \Gamma$ and $\Sigma \subseteq \Gamma$
 - $-\delta:Q\times\Gamma\to Q\times\Gamma\times\{L,R\}$
 - $-q_0 = Q$ is the start state

 - $-q_{accept} \in Q$ is the accept state $-q_{reject} \in Q$ is the reject state

Configurations

- A configuration is
 - Current state
 - Current tape contents
 - Current head location
- u q v means
 - Current state is q
 - Current tape contents is uv
 - Current head points at first symbol of v
- Example
 - âaq₁bbcc
 - In state q_1
 - Tape contents are âabbcc
 - Tape head is on first b

Yields

- A configuration C_1 yields configuration C_2 if the Turing machine can legally go from C_1 to C_2 in a single step
- $\hat{a}aq_1bbcc$ yields $\hat{a}a\hat{b}q_2bcc$
- Written $\hat{a}aq_1bbcc \vdash \hat{a}a\hat{b}q_2bcc$

Turing-recognizable languages

- A Turing machine accepts input w if a sequence of configurations $C_l, C_2, ..., C_k$ exists where
 - 1. C_1 is the start configuration of M on input w
 - 2. Each C_i yields C_{i+1}
 - 3. C_k is an accepting configuration
- Defn 3.5: A language is Turing-recognizable if it is accepted by some Turing machine.

$\{a^nb^nc^n|\ n\geq 0\}$ is Turing-recognizable

Recognizing
$$\{0^{2^n}|n\geq 0\}$$
.

Describing Turing machines

Describing Turing machines

Formal:

- Implementation:
 - -M = "On input string w.
 - 1. Sweep across tape, crossing off every other 0.
 - 2. If tape contained one 0, accept.
 - 3. Else, if number of 0's is odd, reject.
 - 4. Return head to left-hand end of tape.
 - 5. Go to step 1.**"**
- High-level:

```
repeat until n=1
exit if n \mod 2 != 0
set n = n/2
```