清华大学本科生考试试题

Ē	考试课程 Ca	alculus (A2)	2022年6月	(B卷)
系	班	学号	姓名	
				e of your submission
1. Fill in the	following bla	nks (每空4分,	共40分)	
(1) If $f(x,y)$	$=x^2-y$, the	en the gradient	vector field ∇f	=
(2) Suppose t	the line C is:	$x = t, \ y = t^2,$	$z=t^3,\ 0\leq t\leq$	1, then the line integra
$\int_C xy e^{yz} dy =$		_		
(3) Evaluate	the iterated i	ntegral $\int_0^4 \int_0^{\sqrt{y}}$	$\int xy^2 dx dy = $	
(4) Let A den	note the area	of the surface	: the part of the	e plane 3x + 2y + z = 0
that lies in the	ne first octant	$x (x \ge 0, \ y \ge 0)$	0, $z \ge 0$), then A	l =
		$+zx, x = r \cos \theta$	$s \theta, y = r \sin \theta, z$	$z = r\theta$,
(6) Let $(D_{\mathbf{u}})$	$f)_P$ denote the	he directional	derivative of th	e function $f(x, y, z) =$
$x^2yz - xyz^3 \ a$	at the given p	point $P(2, -1,$	1) in the direction	on of vector
$\mathbf{u} = <0, 4/5,$	-3/5 >, then	$(D_{\mathbf{u}}f)_P = \underline{\hspace{1cm}}$		
(7) Suppose t	the directiona	l derivative (L	$(\mathbf{p}_{\mathbf{u}}f)_P$ gives the n	naximum rate of change
of $f(x,y) = s$	in(xy) at the	given point P	(1,0) in the unit	vector direction \mathbf{u} , then
$(D_{\mathbf{u}}f)_P = \underline{\hspace{1cm}}$		u =		
(8) If $f(x,y)$	$= 16 - 4x^2 -$	$-y^2$, then $f_x(1,$	(2) =	<u></u>
				$y = 3y^2 - 2x^2 + x$ at the
specified poin	at $(2, -1, -3)$, give an equa	tion of the plane	S:
			(,	continued at part page

- 2. Answer the following questions in detail (共60分)
- (10) (12%) Find all the local maxima, local minima, and saddle points of the function $f(x,y) = 4 + x^3 + y^3 3xy$, and use the Second Derivative Test to confirm your answer.
- (11) (12分) Use Lagrange multipliers to find the maximum and minimum values of the function f(x, y, z) = 2x + 2y + z, subject to the given constraint $x^2 + y^2 + z^2 = 9$.
- (12) (5分) Evaluate $\iiint_E z dV$, where E is bounded by the paraboloid $z = 4x^2 + 4y^2$ and the plane z = 4.
- (13) (10分) Suppose C is the 'counterclockwise' circle $x^2 + y^2 = 4$, evaluate the line integral $\oint_C (x y)dx + (x + y)dy$, by two methods: (a) directly with the parametric equation of C; (b) using Green's Theorem.
- (14) (5分) Evaluate the surface integral $\iint_S (x^2z + y^2z)d\sigma$, where S is the hemisphere $x^2 + y^2 + z^2 = 4, z \ge 0$.
- (15) (10 $\dot{\sigma}$) Suppose the vector field $\mathbf{F}(x, y, z) = x\mathbf{i} z\mathbf{j} + y\mathbf{k}$, the surface S is the part of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant $(x \ge 0, y \ge 0, z \ge 0)$, and \mathbf{n} is the unit normal vector of S toward the origin, evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} d\sigma$.
- (16) (6分) Suppose **f** is a vector-valued function $\mathbf{f}(\mathbf{X}) = (f_1(\mathbf{X}), f_2(\mathbf{X})) \in \mathbb{R}^2$ where $\mathbf{X} = (x_1, x_2) \in \mathbb{R}^2$, and there is a number $q \in (0, 1)$ such that $\forall \mathbf{X}, \mathbf{Y} \in \mathbb{R}^2$,

$$|\mathbf{f}(\mathbf{X}) - \mathbf{f}(\mathbf{Y})| \le q|\mathbf{X} - \mathbf{Y}|.$$

Prove that there exists a unique $\mathbf{A} \in \mathbb{R}^2$ such that $\mathbf{f}(\mathbf{A}) = \mathbf{A}$.