## 2014-2015年度第二学期《天体力学基础》

## 期末考试 (A卷)

| 院系_    |           | 年:                                    | 级           | 学号    |                      |                                 |               |  |
|--------|-----------|---------------------------------------|-------------|-------|----------------------|---------------------------------|---------------|--|
|        |           |                                       |             |       | 考试方式: [              |                                 | 分: <u>100</u> |  |
| 题号     | _         | =                                     | ٤           | 四     | 五                    | 六                               | 总分            |  |
| 得分     |           |                                       |             |       |                      |                                 |               |  |
| 假定在地   | 面的一个高塔    | <b>分,每小题 5</b><br>注上水平抛出一<br>J曲线? 抛出点 | 个物体,不       |       | ,<br>引力之外的其他<br>远地点? | 2力的作用, 3                        | 这个物体          |  |
| 称为Plut | inos. 现考虑 |                                       | 、Plutino 这样 |       | 道周期约为海王。<br>型,精确到偏心率 |                                 |               |  |
|        |           | ·摄二体问题中<br>i时间变化,为                    |             | 尼的方向始 | 终与质点运动速              | B度相反,问·                         | 该质点运          |  |
|        |           |                                       |             |       | 星公转角速度大,<br>较行星公转慢呢  |                                 | 间的潮汐          |  |
| 在卫星自2  | 转因潮汐耗散    | 逐渐减慢的过                                | 程中,它的       | 自转和公转 | :频率之比经历了             | <sup>*</sup> 由大到小的 <sup>3</sup> | 变化。简          |  |

要解释为什么太阳系内大多数轨旋共振的卫星都处于1:1(而非2:1、3:1等)的共振状态?水星

2、

3、

4、

5、

为什么可以处于 3:2 轨旋共振?

- 二、 (15 分) 一质点在势场  $U = -(x^2 + y^2 + 2x^2y)$  下运动,**问:** 
  - 1. 列出其运动方程;
  - 2. 求其平衡解;
  - 3. 讨论平衡解的线性稳定性.

提示: 可写出哈密顿函数, 再写出正则运动方程; 也可直接写出运动方程.

三、(15 分)为模拟行星的轨道迁移(半长径随时间变化),可以将一个虚拟的力作用在行星上,一种常见的作用力具有形式:  $\mathbf{F} = \frac{\alpha}{\tau} \exp\left(-\frac{t}{\tau}\right)\hat{\mathbf{v}}$ ,其中 $\hat{\mathbf{v}}$ 是大行星的速度方向向量, $\alpha$ , $\tau$ 是非零常

数, $\tau$ 为远远大于行星运动轨道周期的时标. 问:

- 1. 在与行星轨道速度方向相同的虚拟力的作用下,行星半长径变大还是变小?
- 2. 近圆轨道上的行星在虚拟力 $\mathbf{F}$ 作用之下,其半长径如何变化?设初始半长径为 $a_0$ ,写出a随时间变化的近似表达式.
- 四、 (15 分) 受摄二体问题中摄动函数  $R = \sqrt{\mu a \left(1 e^2\right)} \left(2 + \cos i\right)$ . 问: 采用正则轨道根数,列出受摄哈密顿函数、受摄运动方程并解出该方程。
- 五、(15 分)太阳辐射在行星际粒子上一方面可产生辐射压,另一方面可产生 Poynting- Robertson 效应,粒子因辐射受到的力可表示为  $\mathbf{F} = \frac{L_{\odot}Q_{\mathrm{pr}}A}{4\pi cr^2}\hat{\mathbf{r}} \frac{L_{\odot}Q_{\mathrm{pr}}A}{4\pi cr^2}\left(\frac{2v_r}{c}\hat{\mathbf{r}} + \frac{v_{\theta}}{c}\hat{\mathbf{\theta}}\right)$ ,其中第一项表示辐射

压,第二项代表 PR 效应. 各符号意义如下: $L_{\odot}$  太阳光度, $Q_{\rm pr}$  辐射压系数,A 粒子截面积,c 光速,r 粒子日心距离, $\hat{\mathbf{r}}$  、 $\hat{\mathbf{\theta}}$  径向、横向单位矢量, $v_{\rm r}$  、 $v_{\rm \theta}$  径向、横向速度分量. 问:

- 1. 请定性地给出受太阳辐射时,不同大小尺度、处于不同轨道的粒子的运动轨迹如何(说明其半长径、偏心率的变化趋势),并说明原因.
- 2. 在合理近似下估计1天文单位处厘米大小的粒子的轨道寿命.

注意:辐射压系数指粒子吸收太阳辐射的比例,它与粒子大小有关.

- 六、(15 分)平面圆型限制性三体模型下,二阶平运动共振的"第二基本模型"的哈密顿函数有形式:  $H = \delta I + I^2 + I \cos 2\varphi$ ,其中  $I \propto e^2$ , $\varphi = \left[ j\lambda' + (2-j)\lambda 2\varpi \right]/2$ ,符号含义同课程习惯. 问: 1. 试举两个二阶平运动共振的例子,写出相应的共振角;
  - 2. 利用生成函数  $S = \frac{1}{2}x^2 \tan 2\varphi$  构造正则变换 $(I,\varphi) \rightarrow (x,y)$ , 并写出新的哈密顿函数;
  - 3. 在新变量(x,y)下该哈密顿系统的相图如下(左右两幅对应不同的参数 $\delta$ 值),在图上直接标出发生共振的位置,并简要说明偏心率的变化情形.





## 试卷中可能用到的参数值及公式:

Gauss型 (摄动力 $\mathbf{F} = V \hat{\mathbf{v}} + W \hat{\mathbf{w}} + N \hat{\mathbf{n}}$ ) Gauss型(摄动力 $\mathbf{F} = \bar{R}\hat{\mathbf{r}} + \bar{T}\hat{\mathbf{\theta}} + \bar{N}\hat{\mathbf{z}}$ ) Lagrange型(摄动函数R):  $\frac{\mathrm{d}a}{\mathrm{d}t} = \frac{2}{n\Gamma}V, \qquad \frac{\mathrm{d}a}{\mathrm{d}t} = \frac{2}{n\beta}\left[\bar{R}e\sin f + \bar{T}\left(1 + e\cos f\right)\right], \qquad \frac{\mathrm{d}a}{\mathrm{d}t} = \frac{2}{na}\frac{\partial R}{\partial \lambda},$   $\frac{\mathrm{d}e}{\mathrm{d}t} = \frac{\Gamma}{na}\left[2V\left(e + \cos f\right) - W\beta\sin E\right], \quad \frac{\mathrm{d}e}{\mathrm{d}t} = \frac{\beta}{na}\left[\bar{R}\sin f + \bar{T}\left(\cos f + \cos E\right)\right], \quad \frac{\mathrm{d}e}{\mathrm{d}t} = -\frac{\beta}{na^2e}\left[\left(1 - \beta\right)\frac{\partial R}{\partial \lambda} + \frac{\partial R}{\partial \omega}\right],$   $\frac{\mathrm{d}i}{\mathrm{d}t} = N\frac{\beta}{na}\frac{\cos(\omega + f)}{1 + e\cos f}, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \frac{\beta}{na}\frac{\bar{N}\cos(\omega + f)}{1 + e\cos f}. \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = -\frac{1}{na^2\beta}\left[\left(\frac{\partial R}{\partial \lambda} + \frac{\partial R}{\partial \omega}\right)\tan\frac{i}{2} + \frac{\partial R}{\partial \Omega}\csc i\right].$ 其中:  $\beta = \sqrt{1 - e^2}$ ,  $\Gamma = \frac{\sqrt{1 - e^2}}{\sqrt{1 + 2e \cos f + e^2}}$ .

其中: 
$$\beta = \sqrt{1 - e^2}$$
,  $\Gamma = \frac{\sqrt{1 - e^2}}{\sqrt{1 + 2e\cos f + e^2}}$ 

常数:

$$\begin{pmatrix} G \colon & 6.673 \times 10^{-11} \, \mathrm{m}^3 \cdot \mathrm{kg}^{-1} \cdot \mathrm{kg}$$

Delaunay正则变量: 
$$l = M$$
  $L = \sqrt{\mu a}$ ,  $g = \omega$   $H = \sqrt{\mu a(1-e^2)}\cos i$ ,  $h = \Omega$ 

帝 级:
$$\begin{pmatrix} G: & 6.673 \times 10^{-11} \, \mathrm{m}^3 \cdot \mathrm{kg}^{-1} \cdot \mathrm{s}^{-2} \\ \mathrm{AU}: & 1.496 \times 10^{11} \, \mathrm{m} \\ M_{\odot}: & 1.989 \times 10^{30} \, \mathrm{kg} \\ L_{\odot}: & 3.845 \times 10^{26} \, \mathrm{W} \\ c: & 2.998 \times 10^8 \, \mathrm{m} \cdot \mathrm{s}^{-1} \end{pmatrix} \begin{pmatrix} \mathrm{Delaunay} \, \mathrm{E} \, \mathrm{U} \, \mathrm{e} \, \mathrm{E} \\ L = \sqrt{\mu a}, \\ G = \sqrt{\mu a \left(1 - e^2\right)}, & g = \omega \\ H = \sqrt{\mu a \left(1 - e^2\right)} \cos i, & h = \Omega \end{pmatrix} \begin{pmatrix} \mathrm{Poincare} \, \mathrm{E} \, \mathrm{U} \, \mathrm{e} \, \mathrm{E} \\ L' = \sqrt{\mu a}, & l' = M + \omega + \Omega \\ G' = \sqrt{\mu a} \left(1 - \sqrt{1 - e^2}\right), & g' = -(\omega + \Omega) = -\varpi \\ H' = \sqrt{\mu a \left(1 - e^2\right)} \left(1 - \cos i\right), & h' = -\Omega \end{pmatrix}$$

## 请由此处开始答题

| 0014 0015 左安然一类期 | // 工   上 上 出   土 力   1 | #ロナ サハト ( A 光 ) |  |
|------------------|------------------------|-----------------|--|
| 2014-2015 年度第二学期 | 《大华刀字基础》               | 期木考试(A を)       |  |

姓名:\_\_\_\_\_