#### Northeastern University, Department of Mathematics

### MATH G5110: Applied Linear Algebra and Matrix Analysis.

• Instructor: He Wang Email: he.wang@northeastern.edu

#### §8 Jordan Canonical Form

Contents

$$T=C \cap R$$
 $AP=PB$ 

1. Block diagonal  $AP=R$ 

An  $n \times n$  matrix B is a block diagonal matrix if

$$B = \begin{bmatrix} B_1 & 0 & \cdots & 0 \\ 0 & B_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_m \end{bmatrix}$$
Pende  $V_i := Spen \{P_i\}$ 

**Theorem 1.** An  $n \times n$  matrix A is <u>similar</u> to a block diagonal matrix B if and only if there exists a decomposition of

$$\mathbb{F}^n = V_1 \oplus V_2 \oplus \cdots \oplus V_m$$

such that  $V_i$  is invariant under  $T_A$ .

The following non-diagonalizable matrices are called **Jordan blocks** of size 1, 2, 3, 4, ...

$$J_{\lambda,1} = \begin{bmatrix} \lambda \end{bmatrix}, \quad J_{\lambda,2} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \quad J_{\lambda,3} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}, \quad J_{\lambda,4} = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}, \dots$$

**Definition 2.** An  $n \times n$  **Jordan normal matrix (Jordan normal form)** is a block diagonal matrix

$$J = egin{bmatrix} J_{n_1}(\lambda_1) & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & J_{n_2}(\lambda_2) & \cdots & \mathbf{0} \\ dots & dots & \ddots & dots \\ \mathbf{0} & \mathbf{0} & \cdots & J_{n_m}(\lambda_m) \end{bmatrix}$$

such that all diagonal matrices  $J_{n_i}(\lambda_i)$  are of the form





Theorem 3. Every  $n \times n$  matrix A with n eigenvalues in a field  $\mathbb{F}$  is similar to a matrix J in Jordan normal matrix, that is  $A = PJP^{-1}$ .

To be proved.

2. Nilpotent matrix 
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
  $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 

**Definition 4.** An  $n \times n$  matrix A is called **nilpotent of degree** m if

$$A^{m}=0$$
 and  $A^{m+}\neq 0$  for some  $m>0$ .

**Proposition 5.** If A is nilpotent, then zero is the only eigenvalue of A.

$$\Delta \vec{v} = \lambda \vec{v} \qquad \vec{v} + \vec{v}$$

$$\vec{v} = \lambda^{m} \vec{v} = \lambda^{m} \vec{v} \qquad \Rightarrow \lambda^$$



$$J_{0,k}\vec{x} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{k-1} \\ x_k \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ \vdots \\ x_k \\ 0 \end{bmatrix}$$

- $(J_{0,k})$  is nilpotent of degree k. Lemma 6.
  - Suppose a Jordan matrix  $J = J_n(\lambda)$  with the same entry  $\lambda$  on diagonal, then there exist a number in such that  $(J - \lambda I_n)^m = \mathbf{0}$ .

the size of the layest Jorda block in July

$$\underbrace{J_{\lambda,k} - \lambda I} = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 & \cdots & 0 \\ 0 & \lambda & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & \lambda \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} = \underbrace{J_{0,k}}$$

Suppose A is similar to a Jordan block  $J_{\lambda,n}$ .  $\triangle = \bigcap_{\lambda,n} \bigcap_{\lambda,n$ 

$$\int A\vec{3} = \lambda \vec{5}'$$

$$A\vec{5}_{1} = \vec{5}_{1} + \lambda \vec{5}_{2}$$

$$\vdots$$

$$A\vec{5}_{n} = \vec{5}_{n} + \lambda \vec{5}_{n}$$

$$\leftrightarrow$$

$$(A-\lambda I) \int_{a}^{b} = (b_{n})^{2}$$

$$(A-\lambda I) \int_{a}^{b} = (b_{n})^{2}$$

$$\begin{cases}
A\overline{h} = \lambda \overline{h} \\
A\overline{h} = \overline{h} + \lambda \overline{h}
\end{cases}$$

$$A\overline{h} = \overline{h} + \lambda \overline{h}$$

$$A\overline{h} = \overline{h} + \lambda \overline{h}$$

$$A\overline{h} = \overline{h} + \lambda \overline{h}$$

$$A-\lambda \overline{h} = \overline{h} = \overline{h} + \lambda \overline{h}$$

Page 4



**Definition 7.** A non-zero vector  $\vec{v}$  is called a **generalized eigenvector** of A if  $(A - \lambda I)^k \vec{v} = \vec{0}$ 

for some  $k \geq 1$ .

#### Remark:

- (1) Any eigenvector is a generalized vector.
- (2) A generalized vector can exist only for the regular eigenvalue  $\lambda$ .



- (3) Let  $V_{\lambda}$  be the set of all generalized eigenvectors together with  $\vec{0}$ . Then  $V_{\lambda}$  is a subspace of  $\mathbb{F}^n$ .
- (4) A Jordan chain is independent if and only if  $\overline{b_n} \neq \overline{b_n}$

A is similar to a Jordan block  $J_{\lambda,n}$  if and only if

We need to find the structure of a nilpotent matrix. We want to show that any nilpotent matrix is similar to  $J_n(0)$ . For example,



**Proposition 8.** There is a one-to-one corresponding between  $J_n(0)$  and partition of n,  $(n_1, n_2, \ldots, n_k)$  such that

$$n=n_1+n_2+\cdots+n_k$$
 and  $n_1\geq n_2\geq \cdots \geq n_k\geq 1$ 

In the above examples, the partition of 6 are (3,2,1), or (2,2,1,1), or (4,2)...

We can use the **Young diagram** to describe the partitions.



For another example, the Jordan matrix corresponds to partition  $(n_1, n_2, n_3) = (3, 2, 2, 1)$ is

Page 6



**Lemma 9.** Let N be an  $n \times n$  nilpotent of degree r. Then we have strict inclusions  $\ker N \subset \ker N^2 \subset \cdots \subset \ker N^n = \mathbb{P}^n$ 



P= lerr

Gos/ (N=PJn0)p-1

**Theorem 10.** Let N be an  $n \times n$  nilpotent matrix of degree r. Then there exist vectors  $\vec{v}_1, \ldots, \vec{v}_s$  and integers  $n_1, \ldots, n_s$  with  $1 \le n_s \le \cdots \le n_1 = r$  such that  $N^{n_i-1}\vec{v}_i \ne \vec{0}$  and  $N^{n_i}\vec{v}_i = \vec{0}$  for all  $i = 1, 2, \ldots, s$  and vectors

 $N^{n_1-1}\vec{v}_1, \dots, \dots, N\vec{v}_1, \vec{v}_1, \vec{v}_1, \dots, N\vec{v}_2, \vec{v}_2, \dots, N\vec{v}_2, \vec{v}_2, \dots$   $\vdots$   $N^{n_s-1}\vec{v}_s, \dots, N\vec{v}_s, \vec{v}_s$ 

form a basis for  $\mathbb{F}^n$ .



dual of (s, s, s)

Went: (n, m, n, n,) = (3, 2, 2, 1)

*Proof.* By Lemma ??, there are strict inclusions

$$\ker N \subset \ker N^2 \subset \cdots \subset \ker N^r = \mathbb{F}^n$$

Hence, there exist direct decompositions

$$\ker N^i = \ker N^{i-1} \oplus W_i$$

Hence

$$\mathbb{F}^n = W_r \oplus W_{r-1} \oplus \cdots \oplus W_2 \oplus W_1$$

where  $W_1 = \ker N$ .

Denote the dimension of each null space as  $m_i = \dim \ker N^i$  for i = 1, 2, ..., r.

Then denote dim  $W_i = s_i$  where  $s_1 = m_1$ ,  $s_2 = m_2 - m_1$ ,  $s_3 = m_3 - m_2$ ,...,  $s_r = m_r - m_{r-1}$ .

Choose a basis  $\{\vec{w}_{r,1},..,\vec{w}_{r,s_r}\}$  for  $W_r$ .

Extend  $\{N\vec{w}_{r,1},..,N\vec{w}_{r,s_r}\}$  to be a basis for  $W_{r-1}$  by adding  $\{\vec{w}_{r-1,1},..,\vec{w}_{r-1,s_{r-1}-s_r}\}$ . Keep extending until to  $W_1$ , we extended

$$\{N^{r-1}\vec{w}_{r,1},..,N^{r-1}\vec{w}_{r,s_r},N^{r-2}\vec{w}_{r,1},..,N^{r-2}\vec{w}_{r-2,s_r},...\}$$

to be a basis for  $W_1$  by adding  $\{\vec{w}_{1,1}, ..., \vec{w}_{1,s_1-s_2}\}$ 

Claim, the set

$$\begin{array}{lllll} N^{r-1}\vec{w}_{r1} & & & N\vec{w}_{r,1}, & & \vec{w}_{r,1}, \\ \vdots & & & & & \\ N^{r-1}\vec{w}_{r,s_r} & & & N\vec{w}_{r,s_r} & & \vec{w}_{r,s_r} \\ N^{r-2}\vec{w}_{r-1,1}, & & & & \vec{w}_{r-1,1}, \\ \vdots & & & & \\ N^{r-2}\vec{w}_{r-1,,s_{r-1}-s_r} & & & \vec{w}_{r-1,s_{r-1}-s_r} \\ & & \vdots & & \\ \vec{w}_{1,1}, & & & \\ \vdots & & & & \\ \vec{w}_{1,s_1-s_2} & & & \end{array}$$

is a basis for  $\mathbb{F}^n$ .



**Theorem 14.** Let A be an  $n \times n$  matrix with an eigenvalue  $\lambda$ . Denote the set of all generalized eigenvectors of A corresponding to  $\lambda$ , together with  $\{\vec{0}\}$  by  $V_{\lambda}$ . Then, there exists m such that

$$V_{\lambda} = \ker(A - \lambda I)^m$$

and

$$\mathbb{F}^n = \ker(A - \lambda I)^m \oplus \operatorname{im}(A - \lambda I)^m.$$

Both  $\ker(A - \lambda I)^m$  and  $\operatorname{im}(A - \lambda I)^m$  are invariant under  $T_A$ .

**Theorem 15.** Let A be an  $n \times n$  matrix with n eigenvalues. The distinct eigenvalues are  $\lambda_1, \ldots, \lambda_k$ . Then, there exist numbers  $m_1, m_2, \ldots, m_k$  such that

$$\mathbb{F}^n = \ker(A - \lambda_1 I)^{m_1} \oplus \cdots \oplus \ker(A - \lambda_k I)^{m_k}$$

and each  $\ker(A - \lambda_i I)^{m_i}$  is invariant under  $T_A$ .

**Theorem 16** (Block Diagonalization). Every  $n \times n$  matrix A with n eigenvalues in a field  $\mathbb{F}$  is similar to a block diagonal matrix, where each block has a single eigenvalue.

More precisely, suppose  $\lambda_1, \lambda_2, \dots, \lambda_k$  are the distinct eigenvalues of A. Then there is an invertible matrix  $P \in \mathbb{F}^{n \times n}$  such that

$$P^{-1}AP = \begin{bmatrix} B_1 & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & B_2 & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & B_k \end{bmatrix}$$

where the matrix  $B_i - \lambda_i I$  is nilpotent for i = 1, 2, ..., k.

**Theorem 17.** Every  $n \times n$  matrix A with n eigenvalues in a field  $\mathbb{F}$  is similar to a matrix J in Jordan normal matrix, that is  $A = PJP^{-1}$ .

# Algorithm and example

Let A be an  $n \times n$  matrix with distinct real eigenvalues  $\lambda_1, \ldots, \lambda_p$  such that

$$f_A(\lambda) = \det(A - \lambda I) = (\lambda_1 - \lambda)^{k_1} (\lambda_2 - \lambda)^{k_2} \cdots (\lambda_p - \lambda)^{k_p}.$$

Suppose  $k_1 + k_2 + \cdots + k_p = n$ . (This is always true if  $\mathbb{F}$  is algebraic closed, e.g., when  $\mathbb{F} = \mathbb{C}$ ).

## Algorithm of computing Jordan Normal form of a matrix:

- Step 1. Find all eigenvalues  $\lambda_i$  and their algebraic multiplicity  $am(\lambda_i) = k_i$ .
- Step 2. For each eigenvalue  $\lambda_i$ , calculate  $m_j = \dim \ker(A \lambda_i I)^j$  for j = 1, 2, ... until  $\dim \ker(A \lambda_i I)^s = k_i$ .
- Step 3. From  $m_1, ..., m_s$  we can calculate  $s_j = m_j m_{j-1}$ , then use Young diagram calculate  $n_1, ..., n_t$ . Now we have determined the Jordan normal form J.
- Step 4. To calculate the matrix P such that  $A = PJP^{-1}$ , we calculate  $\mathbf{rref}(A \lambda I)^j$  for each  $\lambda = \lambda_i$ .
- Step 5. Find vectors  $\{\vec{w}_{r,1},...\vec{w}_{r,s_r}\},..., \{\vec{w}_{1,1},...\vec{w}_{1,s_1-s_2}\}$  such that

Example 18.

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & -1 & -1 \\ 0 & -8 & 4 & -3 & 1 & -3 \\ -3 & 13 & -8 & 6 & 2 & 9 \\ -2 & 14 & -7 & 4 & 2 & 10 \\ 1 & -18 & 11 & -11 & 2 & -6 \\ -1 & 19 & -11 & 10 & -2 & 7 \end{bmatrix}$$

(1) Find the Jordan normal form J of A.

Step 1, calculate all eigenvalues of A, which are  $\lambda = 2$  with algebraic multiplicity 1 and  $\lambda = -1$  with algebraic multiplicity 5. We know that the Jordan form looks like:

$$J = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & * & 0 & 0 & 0 \\ 0 & 0 & -1 & * & 0 & 0 \\ 0 & 0 & 0 & -1 & * & 0 \\ 0 & 0 & 0 & 0 & -1 & * \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Step 2, Calculate  $m_i = \dim \ker((A+I)^i)$  we have  $m_1 = 2, m_2 = 4, m_3 = 5$  which is the algebraic multiplicity am(-1).

So,  $s_1 = 2$ ,  $s_2 = 2$ ,  $s_3 = 1$  and by Young diagram

$$\begin{array}{c|c}
B^2 \vec{v_1} B \vec{v_1} \vec{v_1} \\
B \vec{v_2} \vec{v_2}
\end{array}.$$

$$n_1 = 3, n_2 = 2.$$

So, 
$$J = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

(2) Find matrix matrix P such that  $A = PJP^{-1}$ .

Step 1.

 $\vec{v}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}^T$  is the vector in  $\ker(A+I)^3$  but not in  $\ker(A+I)^2$ 

Calculate  $(A+I)\vec{v}_1 = \begin{bmatrix} 1 & 0 & -3 & -2 & 1 & -1 \end{bmatrix}^T$  and  $(A+I)^2\vec{v}_1 = \begin{bmatrix} 1 & -2 & -1 & 1 & -1 & 2 \end{bmatrix}^T$ 

 $\vec{v}_2 = \begin{bmatrix} 0 & 1 & -2 & -2 & 3 & -3 \end{bmatrix}^T$  is the vector in  $\ker(A+I)^2$  but not in  $\ker(A+I)$  and not dependent on  $\vec{v}_1$ ,  $(A+I)\vec{v}_1$  and  $(A+I)^2\vec{v}_1$ 

# Step 2.

$$\mathbf{rref}(A+2I) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 1 & 0 & 0 & -\frac{2}{3} \\ 0 & 0 & 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 A basis for  $\ker(A+2I)$  is  $\begin{bmatrix} 0 & 1 & -2 & -2 & 3 & -3 \end{bmatrix}^T$ 

## Step 3.

Hence matrix 
$$P$$
 is  $P = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & -2 & 0 & 0 & 1 & 1 \\ -2 & -1 & -3 & 0 & -4 & 2 \\ -2 & 1 & -2 & 0 & -2 & 0 \\ 3 & -1 & 1 & 0 & 5 & 0 \\ -3 & 2 & -1 & 0 & -4 & 0 \end{bmatrix}$ 

Using Matlab directly A=sym(A) and [P, J] = jordan(A) will give us the result

$$J = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix} P = \begin{bmatrix} 0 & -\frac{9}{2} & -7 & -7 & \frac{3}{2} & \frac{5}{2} \\ -1 & 9 & 3 & 1 & 0 & 0 \\ 2 & \frac{9}{2} & 18 & \frac{5}{2} & -\frac{9}{2} & -\frac{3}{2} \\ 2 & -\frac{9}{2} & \frac{17}{2} & 2 & -\frac{3}{2} & -1 \\ -3 & \frac{9}{2} & -6 & \frac{3}{2} & \frac{9}{2} & \frac{3}{2} \\ 3 & -9 & \frac{7}{2} & -\frac{3}{2} & -3 & -\frac{1}{2} \end{bmatrix}$$

## 4. Cayley-Hamilton Theorem

**Definition 19.** An annihilating polynomial for a square matrix A is a non-zero polynomial p(t) such that p(A) = 0.

**Theorem 20.** Then there exists an annihilating polynomial for any  $n \times n$  matrix A.

The degree of the annihilating polynomial is  $n^2$ . In fact, the degree can be smaller.

**Theorem 21** (Cayley-Hamilton Theorem). If f(t) is the characteristic polynomial of A, then  $f(A) = \mathbf{0}$ .

*Proof.* Suppose  $f_A(t) = \det(A - tI) = (\lambda_1 - t)^{k_1} (\lambda_2 - t)^{k_2} \cdots (\lambda_p - t)^{k_p}$ . If A is diagonalizable, (i.e.,  $A = PDP^{-1}$ ), the proof is easy. Since f is a polynomial,

If A is diagonalizable, (i.e., 
$$A = PDP^{-1}$$
), the proof is easy. Since  $f$  is a jet  $f(A) = Pf(D)P^{-1} = P\begin{bmatrix} f(\lambda_1) & 0 & \cdots & 0 \\ 0 & f(\lambda_1) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(\lambda_p) \end{bmatrix} P^{-1} = P\mathbf{0}P^{-1} = \mathbf{0}.$ 

In general, we use Jordan normal forms decomposition  $A = PJP^{-1}$ . We only need to show that  $f(J) = \mathbf{0}$ .

$$f(J) = \begin{bmatrix} f(J_{\lambda_1}(k_1)) & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & f(J_{\lambda_2}(k_2)) & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & f(J_{\lambda_m}(k_p)) \end{bmatrix}$$

Each matrix  $f(J_{\lambda_i}(k_i)) = (\lambda_1 I - J_{\lambda_i}(k_i))^{k_1} \cdots (\lambda_i I - J_{\lambda_i}(k_i))^{k_i} \cdots (\lambda_p I - J_{\lambda_i}(k_i))^{k_p} = \mathbf{0}$ , since  $(\lambda_i I - J_{\lambda_i}(k_i))^{k_i} = \mathbf{0}$  by Lemma ??

Wrong proof:  $f(t) = \det(A - tI)$ . So,  $f(A) = \det(A - AI) = \det(0) = 0$ . (Why?)

### 5. Minimal polynomial

By Cayley-Hamilton Theorem, we know that we can find annihilating polynomial of A with degree  $\leq n$ .

**Definition 22.** The smallest degree annihilating polynomial of A is called the **minimal polynomial** of A.

**Theorem 23** (Minimal Polynomial Theorem). Consider  $\mathbb{F} = \mathbb{C}$ . The eigenvalues of A are the roots of the minimal polynomial f(t) of A.

Corollary 24. The minimal polynomial f(t) of A has the form

$$f(t) = (t - \lambda_1)^{p_1} (t - \lambda_2)^{p_2} \cdots (t - \lambda_m)^{p_m}$$

where  $\lambda_1, \lambda_2, \ldots, \lambda_m$  be the distinct eigenvalues of A and the exponents  $p_k$  is the largest block size for each eigenvalue.