Programme de la semaine 16 (du 29/01 au 04/02).

Ensembles et applications

Reprise.

Limites de fonctions, continuité

- Notion de voisinage d'un point. Définitions d'une limite (finie/ $+\infty$ / $-\infty$) en un point a de l'intervalle I ou une extrémité de I (a fini/ $+\infty$ / $-\infty$). Limite à gauche, limite à droite, extension de la définition de la limite lorsque f est définie sur I privé de a.
- Unicité de la limite; si f a une limite finie en a alors f est bornée au voisinage de a; si $f(x) \underset{x \to a}{\longrightarrow} \ell$ et si $u_n \underset{n \to +\infty}{\longrightarrow} a$ $((u_n)$ à valeurs dans I) alors $f(u_n) \underset{n \to +\infty}{\longrightarrow} \ell$, utilisation pour montrer qu'une fonction n'a pas de limite. Opérations usuelles sur les limites.
- Passage à la limite dans une inégalité. Théorème d'encadrement, de minoration, de majoration.
- Théorèmes sur les fonctions monotones (existence d'une limite finie ou infinie selon la situation).
- Définition de la continuité en un point, sur un intervalle. Continuité à gauche et à droite. Prolongement par continuité en un point. Opérations.
- Théorème des valeurs intermédiaires, principe de dichotomie. Théorème de la bijection. Théorème des bornes atteintes (une fonction continue sur un segment est bornée et atteint ses bornes).

Dérivation (début) - questions de cours uniquement, pas d'exercices

- Dérivabilité en un point. Caractérisation par l'existence d'un DL1. La dérivabilité entraîne la continuité. Dérivabilité à gauche et à droite en un point. Dérivabilité sur un intervalle.
- Opérations : somme, multiplication par un scalaire, produit, quotient, composition, réciproque.
- Dérivées d'ordre supérieur à 1. Classe \mathcal{C}^n et \mathcal{C}^{∞} . Opérations : somme, multiplication par un scalaire, produit, quotient, composition, réciproque, dérivées nièmes de f + g, $\lambda . f$, fg.
- Définition d'un extremum local ou global. Théorème : si f est dérivable en a intérieur à l'intervalle de définition et que f admet un extremum en a, alors f'(a) = 0.

Questions de cours

Demander:

- une définition ou un énoncé du cours;
- et l'une des démonstrations suivantes :
 - Soit $f: E \to F$. S'il existe $g: F \to E$ telle que $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$, alors f est bijective (démontrer uniquement la bijectivité).
 - Si f et g (à introduire) sont injectives alors $g \circ f$ est injective; si f et g sont surjectives alors $g \circ f$ est surjective.
 - Si $f(x) \xrightarrow[x \to a]{} b$ et si $g(y) \xrightarrow[y \to b]{} \ell$ alors $g \circ f(x) \xrightarrow[x \to a]{} \ell$: preuve dans le cas où a, b, ℓ sont finis.
 - Le théorème sur les extrema.

Semaine suivante : Continuité, dérivation.