

FCC TEST REPORT

Product Name: Mobile Phone

Trade Mark: MI

Model No.: MDE5

Report Number: 170726002RFC-5

Test Standards: FCC 47 CFR Part 15 Subpart E

FCC ID: 2AFZZ-XMSD5

Test Result: PASS

Date of Issue: September 4, 2017

Prepared for:

Xiaomi Communications Co., Ltd.
The Rainbow City of China Resources, NO.68,Qinghe Middle Street,
Haidian District, Beijing, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:	h	Reviewed by:	Jim long
	Keyin Liang		Jim Long
	Senior Engineer		Senior Supervisor
Approved by:	0	Date:	September 4, 2017
	Billy Li		
	Technical Director		

Version

Version No.	Date	Description
V1.0	September 4, 2017	Original

CONTENTS

1.	GEN	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT Information	
		1.2.1 GENERAL DESCRIPTION OF EUT	
		1.2.2 DESCRIPTION OF ACCESSORIES	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	
	1.8 1.9	DEVIATION FROM STANDARDS	
	1.9 1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	1.10	MEASUREMENT UNCERTAINTY	
2.		SUMMARY	
3.		IPMENT LIST	
4.	TEST	CONFIGURATION	
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	12
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	12
		4.1.2 RECORD OF NORMAL ENVIRONMENT	12
	4.2	TEST CHANNELS	
	4.3	EUT TEST STATUS	
	4.4	PRE-SCAN	
		4.4.1 PRE-SCAN UNDER ALL RATES	
		4.4.2 WORST-CASE DATA RATES	
	4.5	TEST SETUP	
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.3 FOR CONDUCTED RF TEST SETUP	
	4.6	SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	
_			
5.	RAD	IO TECHNICAL REQUIREMENTS SPECIFICATION	
	5.1	REFERENCE DOCUMENTS FOR TESTING	22
	5.2	ANTENNA REQUIREMENT	22
	5.3	26 dB Bandwidth	
	5.4	6 dB Bandwidth	35
	5.5	MAXIMUM CONDUCTED OUTPUT POWER	
	5.6	PEAK POWER SPECTRAL DENSITY	
	5.7	FREQUENCY STABILITY	
	5.8	RADIATED EMISSIONS AND BAND EDGE MEASUREMENT	
	5.9	DYNAMIC FREQUENCY SELECTION	
		AC POWER LINE CONDUCTED EMISSION	
ΑP	PEND	IX 1 PHOTOS OF TEST SETUP	109
ΑP	PEND	IX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	109

Page 4 of 109 Report No.: 170726002RFC-5

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant: Xiaomi Communications Co., Ltd.	
Address of Applicant: The Rainbow City of China Resources, NO.68,Qinghe Middle Street District, Beijing, China	
Manufacturer:	Xiaomi Communications Co., Ltd.
Address of Manufacturer:	The Rainbow City of China Resources, NO.68,Qinghe Middle Street, Haidian District, Beijing, China

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Mobile Phone		
Model No.:	MDE5		
Add. Model No.:	N/A		
Trade Mark:	MI		
DUT Stage:	Identical Prototype		
	GSM Bands:	GSM 850/ PCS 1900	
	UTRA Bands:	Band II/ Band IV/ Band V	
	CDMA Band:	BC0/ BC1/ BC10	
	E-UTRA Bands:	FDD Band 2/ Band 4/ Band 5/ Band 7/ Band 12/ Band 13/ Band 17/ Band 25/ Band 26/ Band 30	
		TDD Band 38/ Band 41	
	2.4 GHz ISM Band:	IEEE 802.11b/g/n	
EUT Supports Function:		Bluetooth V3.0+EDR/ Bli V5.0 LE	uetooth V4.1 LE/ Bluetooth
	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz	IEEE 802.11a/n/ac
		5 250 MHz to 5 350 MHz	IEEE 802.11a/n/ac
		5 470 MHz to 5 725 MHz	IEEE 802.11a/n/ac
		5 725 MHz to 5 850 MHz	IEEE 802.11a/n/ac
	RNSS Bands:	1559 MHz to 1610 MHz	GPS/GLONASS/Galileo
	NFC:	13.553 MHz to 13.567 MHz	
Software Version:	MIUI 8		
Hardware Version:	P2.0		
IMEI Code:	865736030026044, 865736030026051		
Sample Received Date:	July 27, 2017		
Sample Tested Date:	July 27, 2017 to August 14, 2017		

Page 5 of 109

Report No.: 170726002RFC-5

1.2.2 Description of Accessories

Adapter		
Trade Mark:	XIAOMI	
Model No.:	MDY-08-EY	
Input:	100-240V~50/60 Hz 0.5A	
Output:	5V == 3A/9V == 2A/12V == 1.5A	
AC Cable:	N/A	
DC Cable:	N/A	

Battery		
Trade Mark:	MI	
Model No.:	BM3B	
Battery Type:	Lithium-ion Polymer Rechargeable Battery	
Rated Voltage:	3.85 Vdc	
Limited Charge Voltage:	4.4 Vdc	
Rated Capacity:	3300 mAh	

Cable(1)		
Trade Mark:	MI	
Model No.:	L6BU2018-CS-H	
Description:	USB Type-C Plug Cable	
Cable Type:	Shielded without ferrite	
Length:	1.0 Meter	

Cable(2)		
Trade Mark:	MI	
Model No.:	KLC-2588-1	
Description:	USB Type-C Plug Cable	
Cable Type:	Shielded without ferrite	
Length:	1.0 Meter	

Cable(3)		
Trade Mark:	MI	
Model No.:	KLC-2469	
Description:	USB Type-C to 3.5 mm Headphone Jack Adapter	
Cable Type:	Unshielded without ferrite	

Cable(4)		
Trade Mark:	MI	
Model No.:	0QT000XI0007	
Description:	USB Type-C to 3.5 mm Headphone Jack Adapter	
Cable Type:	Unshielded without ferrite	

Page 6 of 109 Report No.: 170726002RFC-5

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

		SECTIVE TO THIS STANDARD	
	5150 MHz to 5250 MHz		
Frequency Range:	5250 MHz to 5350 MHz		
l requestoy runger	5470 MHz to 5725 MHz		
	5725 MHz to 5850 MHz		
Support Standards:	IEEE 802.11a/n/ac		
TPC Function:	Not Support		
DFS Operational mode:	Slave without radar	Interference detection function	
	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)		
Type of Modulation:	IEEE 802.11n: OFDM(64QAM, 16QAM, QPSK, BPSK)		
		DM(256QAM, 64QAM, 16QAM, QPSK, BPSK)	
		20/ac-VHT20: 20 MHz	
Channel Spacing:		0/ac-VHT40: 40 MHz	
	IEEE 802.11ac-VH ⁻ IEEE 802.11a: Up to		
	IEEE 802.11a. 0p to	·	
	IEEE 802.11n-HT40	·	
Data Rate:	IEEE 802.11n-H140	·	
	IEEE 802.11ac-VH		
	IEEE 802.11ac-VH	· · · · · · · · · · · · · · · · · · ·	
		•	
	5150 MHz to 5250 MHz:		
	4 for IEEE 802.11a/n-HT20/ac-VHT20 2 for IEEE 802.11n-HT40)/ac-VHT40		
	1 for IEEE 802.11acVHT80		
	5250 MHz to 5350 MHz:		
	4 for IEEE 802.11a/n-HT20/ac-VHT20		
	2 for IEEE 802.11n-HT40)/ac-VHT40		
Number of Channels:	1 for IEEE 802.11acVHT80		
	5470 MHz to 5725 MHz: 11 for IEEE 802.11a/n-HT20/ac-VHT20		
	5 for IEEE 802.11a/n-HT20/ac-VHT20		
	2 for IEEE 802.11ac-VHT80		
	5725 MHz to 5850 MHz:		
	5 for IEEE 802.11a/n-HT20/ac-VHT20		
	2 for IEEE 802.11n-HT40/ac-VHT40		
	1 for IEEE 802.11ac-VHT80		
Antenna Type:	Chain 0	PIFA Antenna	
	Chain 1	PIFA Antenna	
		5150 MHz to 5250 MHz: 1.01 dBi	
	Chain 0	5250 MHz to 5350 MHz:1.46 dBi	
		5470 MHz to 5725 MHz: 0.11 dBi	
Antenna Gain:		5725 MHz to 5850 MHz: -2.9 dBi	
	Chain 1	5150 MHz to 5250 MHz: 1.00 dBi	
		5250 MHz to 5350 MHz: 0.17 dBi	
		5470 MHz to 5725 MHz:-3.26dBi	
		5725 MHz to 5850 MHz: -3.79 dBi	

Page 7 of 109 Report No.: 170726002RFC-5

	SISO_Chain 0	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
	IEEE 802.11a:	14.66	14.84	14.71	12.95	
	IEEE 802.11n-HT20:	13.41	13.40	13.56	12.90	
	IEEE 802.11n-HT40:	11.82	11.79	11.97	12.19	
	IEEE 802.11ac-VHT20:	13.97	14.27	14.16	12.00	
	IEEE 802.11ac-VHT40:	11.79	11.82	11.81	12.16	
	IEEE 802.11ac-VHT80:	11.80	11.60	11.58	12.01	
	SISO_Chain 1	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
	IEEE 802.11a:	15.61	15.28	15.61	13.77	
	IEEE 802.11n-HT20:	14.47	14.15	14.33	13.78	
Maximum Conducted	IEEE 802.11n-HT40:	12.92	12.92	12.82	12.90	
Output Power (dBm):	IEEE 802.11ac-VHT20:	15.02	14.69	14.94	13.46	
	IEEE 802.11ac-VHT40:	12.87	12.49	12.76	13.10	
	IEEE 802.11ac-VHT80:	12.68	12.12	12.33	12.52	
	CDD_Chain 0+1	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
	IEEE 802.11a:	18.13	17.96	18.17	16.39	
	MIMO_Chain 0+1	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
	IEEE 802.11n-HT20:	16.97	16.76	16.97	16.37	
	IEEE 802.11n-HT40:	15.42	15.40	15.43	15.57	
	IEEE 802.11ac-VHT20:	17.51	17.30	17.58	15.80	
	IEEE 802.11ac-VHT40:	15.33	15.18	15.32	15.67	
	IEEE 802.11ac-VHT80:	15.27	14.88	14.98	15.28	
Normal Test Voltage:	3.85 Vdc					
Extreme Test Voltage:	3.7 to 4.4 Vdc					
Extreme Test Temperature:	-30 °C to +50 °C					

1.4 OTHER INFORMATION

Operation Frequency Each of Channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
F	For IEEE 802.11a/n-HT20/ac-VHT20 operation in the 5150 MHz to 5350 MHz band								
36	5180 MHz	44	5220 MHz	52	5260 MHz	60	5300 MHz		
40	5200 MHz	48	5240 MHz	56	5280 MHz	64	5320 MHz		
F	or IEEE 802.1	11a/n-HT20/a	c-VHT20 oper	ation in the 5	5470 MHz to 5	725 MHz ban	d		
100	5500 MHz	112	5560 MHz	124	5620 MHz	136	5680 MHz		
104	5520 MHz	116	5580 MHz	128	5640 MHz	140	5700 MHz		
108	5540 MHz	120	5600 MHz	132	5660 MHz				
F	or IEEE 802.1	11a/n-HT20/a	c-VHT20 oper	ation in the 5	725 MHz to 5	850 MHz ban	d		
149	5745 MHz	153	5765 MHz	157	5785 MHz	161	5805 MHz		
165	5825 MHz								
	For IEEE 802	.11n-HT40/ac	-VHT40 opera	tion in the 5	150 MHz to 53	350 MHz band	I		
38	5190 MHz	46	5230 MHz	54	5270 MHz	62	5310 MHz		
	For IEEE 802	.11n-HT40/ac	-VHT40 opera	tion in the 54	470 MHz to 57	25 MHz band	I		
102	5510 MHz	110	5550 MHz	118	5590 MHz	126	5630 MHz		
134	5670 MHz								
	For IEEE 802	.11n-HT40/ac	-VHT40 opera	tion in the 5	725 MHz to 58	350 MHz band	l		
151	5755 MHz	159	5795 MHz						

Page 8 of 109 Report No.: 170726002RFC-5

	For IEEE 802.11ac-VHT80 operation in the 5150 MHz to 5350 MHz band								
42	5210 MHz	58	5290 MHz						
	For IEEE 802.11ac-VHT80 operation in the 5470 MHz to 5725 MHz band								
106	5530 MHz	122	5610 MHz						
	For IEEE 802.11ac-VHT80 operation in the 5725 MHz to 5850 MHz band								
155	5775 MHz								

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	FCC ID	Supplied by	
Notebook	Lenovo	E450	N/A	UnionTrust	
Wireless AP	Alcatel-Lucent	G-240W-B	2ADZRG240WB	<u>UnionTrust</u>	

2) Support Cable

Cable No.		Description	Connector	Length	Supplied by
	1	Antenna Cable	SMA	0.30 Meter	UnionTrust
	2	Antenna Cable	SMA	0.30 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Page 9 of 109 Report No.: 170726002RFC-5

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart E Test Cases						
Test Item	Test Requirement	Test Method	Result			
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203 FCC 47 CFR Part 15 Subpart C Section 15.407(a)(1) (2)	ANSI C63.10-2013	PASS			
26 dB emission bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5)	KDB 789033 D02 v01r04 Section C.1	PASS			
6 dB bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (e)	KDB 789033 D02 v01r04 Section C.2	PASS			
Maximum conducted output power	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)					
Peak Power Spectral Density	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)	KDB 789033 D02 v01r04 Section F	PASS			
Frequency stability	FCC 47 CFR Part 15 Subpart E Section 15.407 (g)	ANSI C63.10-2013	PASS			
Radiated Emissions and Band Edge Measurement	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6) FCC 47 CFR Part 15 Subpart C Section 15.209/205	KDB 789033 D02 v01r04 Section G.3, G.4, G.5, and G.6	PASS			
Dynamic Frequency Selection	FCC 47 CFR Part 15 Subpart E Section 15.407 (h)	KDB 905462 D03 Client Without DFS New Rules v01r02	PASS			
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(6) FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS			

Note:

For Dynamic Frequency Selection

Test Case	Result
Channel Availability Check Time	N/A ¹
U-NII Detection Bandwidth	N/A ¹
Channel Closing Transmission Time	PASS
Channel Move Time	PASS
DFS Detection Threshold	N/A ¹
Non- Occupancy Period	N/A ¹
Noto:	

Note:

1) The EUT is slave, NA In this whole report not application.

¹⁾ N/A: In this whole report not application.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
•	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018		
~	Receiver	R&S	ESIB26	100114	Dec. 22, 2016	Dec. 22, 2017		
•	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017		
V	Loop Antenna	ETS-LINDGREN	6502	00202525	Jun. 24, 2015	Jun. 23, 2018		
>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Jul. 24, 2015	Jul. 23, 2018		
~	Preamplifier	HP	8447F	2805A02960	Dec. 22, 2016	Dec. 22, 2017		
	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	Dec. 30, 2016	Dec. 30, 2017		
	Horn Antenna	ETS-LINDGREN	3117	00164202	Jul. 24, 2015	Jul. 23, 2018		
V	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	Dec. 30, 2016	Dec. 30, 2017		
	Horn Antenna	ETS-LINDGREN	3116C	00200180	Jul. 28, 2015	Jul. 27, 2018		
•	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Jul. 29, 2015	Jul. 28, 2018		
~	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A		
	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	Jun. 21, 2017	Jun. 20, 2018		
>	Band Rejection Filter (5150MHz~5880MHz)	Micro-Tronics	BRM50716	G1868	Jun. 15, 2017	Jun. 14, 2018		
>	Test Software	Audix	e3	Sof	tware Version: 9.16	0323		

	Conducted RF test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
V	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017		
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017		
V	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Dec. 22, 2016	Dec. 22, 2017		
•	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Dec. 22, 2016	Dec. 22, 2017		
	EXG-B RF Analog Signal Generator	KEYSIGHT	N5171B	MY53051777	Jan. 09, 2016	Jan. 08, 2018		
>	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	Jan. 08, 2016	Jan. 07, 2018		
>	DC Source	KIKUSUI	PWR400L	LK003024	Sep. 21, 2016	Sep. 20, 2017		
V	Temp & Humidity chamber	Votisch	VT4002	58566133290 020	Jun. 19, 2017	Jun. 18, 2018		

	Conducted Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
~	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017		
>	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Dec. 22, 2016	Dec. 22, 2017		
>	LISN	R&S	ESH2-Z5	860014/024	Dec. 22, 2016	Dec. 22, 2017		
>	Test Software	Audix	e3	Software Version: 9.160323				

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Test Environment	Selected Values During Tests					
Toot Condition	Ambient					
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)			
TN/VN	+15 to +35	3.85	20 to 75			
TL/VL	-30	3.7	20 to 75			
TH/VL	+50	3.7	20 to 75			
TL/VH	-30	4.4	20 to 75			
TH/VH	+50	4.4	20 to 75			

Remark:

- 1) The EUT just work in such extreme temperature of -30 °C to +50 °C and the extreme voltage of 3.7 V to 4.4 V, so here the EUT is tested in the temperature of -30 °C to +50 °C and the voltage of 3.7 V to 4.4 V.
- 2) VN: Normal Voltage; TN: Normal Temperature;
 - TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;
 - VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.

4.1.2 Record of Normal Environment

Ξ.	The Treatment and Treatment and Treatment								
	Test Item	Temperature Relative Humidi (°C) (%)		Pressure (Kpa)	Tested by				
	AC Power Line Conducted Emission	26.2	49	100.0	Bessy Xu				
	26 dB emission bandwidth	25.3	48	99.90	Tiny You				
	Maximum conducted output power	25.3	48	99.90	Tiny You				
	Peak Power Spectral Density	25.3	48	99.90	Tiny You				
	6 dB bandwidth	25.3	48	99.90	Tiny You				
	Frequency stability	25.3	48	99.90	Tiny You				
	Dynamic Frequency Selection	25.3	48	99.90	Tiny You				
	Radiated Emissions and Band Edge Measurement	25.6	45	99.05	Terence Chen				

4.2TEST CHANNELS

Mode	Ty/Dy Eraguanay	Test RF Channel Lists				
Wode	Tx/Rx Frequency	Lowest(L)	Middle(M)	Highest(H)		
	5150 MHz to 5250 MHz	Channel 36	Channel 44	Channel 48		
	3 130 IVITZ 10 3230 IVITZ	5180 MHz	5220 MHz	5240 MHz		
	5250 MHz to 5350 MHz	Channel 52	Channel 60	Channel 64		
IEEE 802.11a IEEE 802.11n-HT20	3230 MHZ 10 3330 MHZ	5260 MHz	5300 MHz	5320 MHz		
IEEE 802.111ac-VHT20	5470 MHz to 5725 MHz	Channel 100	Channel 120	Channel 140		
	3470 IVII IZ 10 3723 IVII IZ	5500 MHz	5600 MHz	5700 MHz		
	5725 MHz to 5850 MHz	Channel 149	Channel 157	Channel 165		
	3723 WITZ 10 3630 WITZ	5745 MHz	5785 MHz	5825 MHz		
	5150 MHz to 5250 MHz	Channel 38		Channel 46		
	3 130 MHZ 10 3230 MHZ	5190 MHz		5230 MHz		
	5250 MHz to 5350 MHz	Channel 54		Channel 62		
IEEE 802.11n-HT40	3230 MHZ 10 3330 MHZ	5270 MHz		5310 MHz		
IEEE 802.11ac-VHT40	5470 MHz to 5725 MHz	Channel 102	Channel 118	Channel 134		
	3470 MINZ 10 3723 MINZ	5510 MHz	5590 MHz	5670 MHz		
	5725 MHz to 5850 MHz	Channel 151		Channel 159		
	3723 WITZ 10 3030 WITZ	5755 MHz		5795 MHz		
	5150 MHz to 5250 MHz		Channel 42			
	3 130 WITZ 10 3230 WITZ		5210 MHz			
	5250 MHz to 5350 MHz		Channel 58			
IEEE 802.11ac-VHT80	3230 MHZ 10 3330 MHZ		5290 MHz			
IEEE 002.1180-VA180	5470 MHz to 5725 MHz	Channel 106		Channel 122		
	3470 WITZ 10 3723 WITZ	5530 MHz		5610 MHz		
	5725 MHz to 5950 MHz		Channel 155			
	5725 MHz to 5850 MHz	/	5775 MHz			

4.3 EUT TEST STATUS

Mode	Tx/Rx Function	Description				
IEEE 802.11a/n/ac	1Tx/1Rx or 2Tx/2Rx	1. Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

4.4 PRE-SCAN

4.4.1 Pre-scan under all rates

Mode and Frequency	Ma	aximum Co	onducted A	Average Po	ower (dBm)	for Data F	Rates (Mbp	os)
IEEE 802.11a	6	9	12	18	24	36	48	54
5180 MHz	18.13	17.99	17.85	18.02	18.01	18.02	17.16	17.02
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11n-HT20	16.94	16.31	15.78	15.35	14.93	14.71	14.47	14.41
5180 MHz	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
	16.97	16.35	15.81	15.48	15.04	14.77	14.51	14.40
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11n-HT40	15.33	14.68	14.17	13.84	13.40	13.13	12.87	12.76
5190 MHz	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
	15.38	14.71	14.14	13.70	13.22	12.89	12.68	12.52
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11ac-	17.51	16.88	16.34	15.01	15.56	15.31	15.07	14.94
VHT20 5180 MHz	MCS8							
0.00	14.53							
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11ac-	15.32	14.70	14.27	13.74	13.31	13.08	12.86	12.54
VHT40 5190 MHz	MCS8	MCS9						
0.100 1111.12	12.23	11.89						
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11ac-	15.27	14.63	14.08	13.73	13.34	13.01	12.76	12.40
VHT80 5210 MHz	MCS8	MCS9						
02 10 WH 12	12.14	11.56						

4.4.2 Worst-case data rates

Mode	Worst-case data rates			
IEEE 802.11a	6 Mbps			
IEEE 802.11n-HT20	MCS8			
IEEE 802.11n-HT40	MCS8			
IEEE 802.11ac-VHT20	MCS0			
IEEE 802.11ac-VHT40	MCS0			
IEEE 802.11ac-VHT80	MCS0			

4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup

4.5.2 For Conducted Emissions test setup

For Conducted RF test setup 4.5.3 Spectrum Analyzer EUT Non-Conducted Table Normal Environment **Shielding Chamber** Spectrum Analyzer Decoupling filter (for battery operated devices) Non-Conducted Table Power supply

Extreme Environment

Page 17 of 109 Report No.: 170726002RFC-5

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.85Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning
	1TX	Chain 0	Y axis
Above 1GHz	1TX	Chain 1	Y axis
	2TX	Chain 0+1	Y axis

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11a	6	2.060	2.180	0.94	94.50	0.25	0.49	-0.49
IEEE 802.11n-HT20	MCS8	0.985	1.100	0.90	89.55	0.48	1.02	-0.96
IEEE 802.11n-HT40	MCS8	0.495	0.615	0.80	80.49	0.94	2.02	-1.89
IEEE 802.11ac-VHT20	MCS0	0.995	1.110	0.90	89.64	0.47	1.01	-0.95
IEEE 802.11ac-VHT40	MCS0	0.498	0.618	0.81	80.58	0.94	2.01	-1.88
IEEE 802.11ac-VHT80	MCS0	0.464	0.568	0.82	81.69	0.88	2.16	-1.76

Report No.: 170726002RFC-5

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

Page 22 of 109 Report No.: 170726002RFC-5

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title			
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations			
2	FCC 47 CFR Part 15	Radio Frequency Devices			
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices			
4	KDB 789033 D02 General UNII Test Procedures New Rules v01r04	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15 subpart E			
5	905462 D06 802.11 Channel Plans New Rules v02	Operation in U-NII bands -802.11 channel PLAN(§15.407)			
6	KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02	Compliance measurement procedures for Unlicensed –National Information Infrastructure devices operates in the frequency bands 5250 MHz to 5350 MHz and 5470 MHz to 5725 MHz bands incorporating dynamic frequency selection			
7	KDB 905462 D03 Client Without DFS New Rules v01r02	U-NII client devices without radar detection capability			
8	KDB 662911 D01 Multiple Transmitter Output v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band			

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Both antenna in the interior of the equipment and no consideration of replacement. The transmit signals are correlated with each other and the antenna gain of both chains is not the same, the best case directional gain of the antenna is 4.02 dBi (See section 5.5).

Page 23 of 109 Report No.: 170726002RFC-5

5.326 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a) (2)(5)

Test Method: KDB 789033 D02 v01r04 Section C.1 **Limit:** None; for reporting purposes only.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.

Spectrum analyzer according to the following Settings:

- a) Set RBW = approximately 1 % of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Page 24 of 109

Mada	Chammal	26 dB Band	width (MHz)	99% Bandv	99% Bandwidth (MHz)		
Mode	Channel	Chain 0	Chain 1	Chain 0	Chain 1		
	36 (5180)	23.72	21.61	16.705	16.593		
	44 (5220)	23.46	20.54	16.666	16.522		
	48 (5240)	22.99	21.36	16.664	16.566		
	52 (5260)	24.65	21.61	16.634	16.590		
IEEE 802.11a	60 (5300)	23.00	21.88	16.690	16.596		
	64 (5320)	22.05	22.13	16.643	16.586		
	100 (5500)	22.23	22.00	16.612	16.618		
	120 (5600)	22.88	21.99	16.686	16.584		
	140 (5700)	22.53	22.23	16.597	16.575		
	36 (5180)	23.79	23.28	17.860	17.768		
	44 (5220)	23.40	22.81	17.763	17.769		
	48 (5240)	23.42	22.47	17.840	17.740		
	52 (5260)	22.63	22.72	17.761	17.768		
IEEE 802.11n-HT20	60 (5300)	23.70	22.42	17.821	17.735		
	64 (5320)	23.26	23.33	17.791	17.788		
	100 (5500)	23.59	23.03	17.788	17.724		
	120 (5600)	21.79	23.10	17.796	17.790		
	140 (5700)	24.02	22.76	17.785	17.824		
	38 (5190)	40.91	39.60	36.156	36.099		
	46 (5230)	41.23	40.93	36.174	36.158		
	54 (5270)	40.62	40.82	36.201	36.250		
IEEE 802.11n-HT40	62 (5310)	40.66	41.49	36.143	36.234		
	102 (5510)	40.42	40.68	36.155	36.174		
	118 (5590)	40.70	40.82	36.121	36.146		
	134 (5670)	40.88	41.08	36.173	36.121		
	42 (5210)	91.90	82.12	76.477	75.832		
IEEE 000 44 co \/UT00	58 (5290)	90.55	82.85	76.421	75.805		
IEEE 802.11ac-VHT80	106 (5530)	83.71	82.05	76.263	75.745		
	122 (5610)	93.51	82.14	76.667	75.600		

The test plot as follows: **IEEE 802.11a** Chain 0 Chain 1 **Channel 36** Averag #VBW 910 kHz 23.5 dBm 16.705 MHz 16.593 MHz 28.843 kHz **OBW Power** 99.00 % Transmit Freq Error 15.460 kHz **OBW Power** 99.00 % x dB 23.72 MHz -26.00 dB x dB Bandwidth 21.61 MHz -26.00 dB **Channel 44** Radio Device: BTS Ref 20.00 dBr Max Hole #VBW 910 kHz #VBW 910 kHz 23.2 dBm 18.8 dBm 16.666 MHz 16.522 MHz 31.142 kHz 39.148 kHz **OBW Power** 99.00 % Transmit Freq Error OBW Power 99.00 % Transmit Freq Error **Channel 48** ter Freg 5.240000000 GHz Center Free 5.240000000 GH: CF Step 3.400000 Mil #VBW 910 kHz 16.664 MHz 16.566 MHz 57,495 kHz **OBW Power** 99.00 % Transmit Freq Error 21.691 kHz OBW Powe 99.00 % 22.99 MHz x dB -26,00 dB x dB Bandwidth 21.36 MHz x dB -26.00 dB

Page 35 of 109 Report No.: 170726002RFC-5

5.46 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.407 (e)

Test Method: KDB 789033 D02 v01r04Section C.2

Limit: Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall

be at least 500 kHz.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) ≥ 3 * RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Mode	Channel/ Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limit	Pass / Fail
The worst case test da	ta: Chain 1				
	149 (5745)	16.07	16.483	> 500 kHz	Pass
IEEE 802.11a	157 (5785)	16.29	16.474	> 500 kHz	Pass
	165 (5825)	16.02	16.436	> 500 kHz	Pass
	149 (5745)	17.58	17.611	> 500 kHz	Pass
IEEE 802.11n-HT20	157 (5785)	17.36	17.658	> 500 kHz	Pass
	165 (5825)	16.05	17.659	> 500 kHz	Pass
IEEE 802.11n-HT40	151 (5755)	35.13	36.121	> 500 kHz	Pass
IEEE 002.1111-1140	159 (5795)	35.14	36.047	> 500 kHz	Pass
IEEE 802.11ac-VHT80	155 (5775)	75.85	75.811	> 500 kHz	Pass

Page 38 of 109 Report No.: 170726002RFC-5

5.5 MAXIMUM CONDUCTED OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) **Test Method:** KDB 789033 D02 v01r04 Section E.3.a(Method PM)

Limits:

- For the band 5.15-5.25 GHz.
 - (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
 - (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
 - (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Page 39 of 109 Report No.: 170726002RFC-5

Test Procedure:

1. Connected the EUT's antenna port to measure device by 10dB attenuator.

2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

For U-NII-2A, U-NII-2C Band:

For IEEE 802.11 a/n/ac, the minimum 26 dB emission bandwidth is 21.79 MHz 11 dBm + $10\log_{10}(21.79) = 24.38$ dBm > 24 dBm (200mW) So the 24 dB limit applicable

Directional gain and the maximum output power limit.

Frequency Band	Frequency Band Chain 0 Antenna Gain (dBi)		Correlated chains directional gain (dBi)	Peak Power Limits (dBm)	
U-NII-1	1.01	1.00	4.02	24.00	
U-NII-2A	1.46	0.17	3.85	24.00	
U-NII-2C	0.11	-3.26	1.60	24.00	
U-NII-3	-2.90	-3.79	-0.32	30.00	

Unequal antenna gains, with equal transmit powers. Directional gain is to be computed as follows:

If transmit signals are correlated, then

Directional gain = 10 log[(10^G1 /20 + 10^G2 /20 + ... + 10^GN /20)^2 /NANT] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

			Maxir	num Cond	ut Power ((dBm)			
	Channel/		SIS	SO		Total			
Mode	Frequency	Cha	in 0	Chain 1		Power	Limits	Pass /	
	(MHz)	Meas Power	Corr'd Power	Meas Power	Corr'd Power	MIMO_ Chain 0+1	(dBm)	Fail	
	36 (5180)	14.31	14.56	15.36	15.61	18.13	24	Pass	
	44 (5220)	14.37	14.62	15.25	15.50	18.09	24	Pass	
	48 (5240)	14.41	14.66	15.25	15.50	18.11	24	Pass	
	52 (5260)	14.34	14.59	15.03	15.28	17.96	24	Pass	
	60 (5300)	14.59	14.84	14.69	14.94	17.90	24	Pass	
IEEE 802.11a	64 (5320)	14.52	14.77	14.56	14.81	17.80	24	Pass	
ILLE 002.11a	100 (5500)	14.40	14.65	15.36	15.61	18.17	24	Pass	
	120 (5600)	14.09	14.34	13.95	14.20	17.28	24	Pass	
	140 (5700)	14.46	14.71	14.27	14.52	17.63	24	Pass	
	149 (5745)	12.64	12.89	13.12	13.37	16.15	30	Pass	
	157 (5785)	12.70	12.95	13.52	13.77	16.39	30	Pass	
	165 (5825)	12.26	12.51	12.48	12.73	15.63	30	Pass	

			Max	cimum Cond	ducted Outp	ut Power (d	Bm)	
	Channel/		SI	SO		Total		
Mode	Frequency	Cha	in 0	Cha	in 1	Power	Limits	Pass / Fail
	(MHz)	Meas	Corr'd	Meas	Corr'd	MIMO_	(dBm)	rass/raii
		Power	Power	Power	Power	Chain 0+1		
	36 (5180)	12.89	13.37	13.99	14.47	16.97	24	Pass
	44 (5220)	12.93	13.41	13.89	14.37	16.93	24	Pass
	48 (5240)	12.91	13.39	13.90	14.38	16.92	24	Pass
	52 (5260)	12.83	13.31	13.67	14.15	16.76	24	Pass
	60 (5300)	12.90	13.38	13.34	13.82	16.62	24	Pass
IEEE 802.11n-HT20	64 (5320)	12.92	13.40	13.20	13.68	16.55	24	Pass
ILLL 002.1111-11120	100 (5500)	13.08	13.56	13.85	14.33	16.97	24	Pass
	120 (5600)	12.63	13.11	12.77	13.25	16.19	24	Pass
	140 (5700)	12.99	13.47	12.84	13.32	16.41	24	Pass
	149 (5745)	12.36	12.84	13.21	13.69	16.30	30	Pass
	157 (5785)	12.42	12.90	13.30	13.78	16.37	30	Pass
	165 (5825)	12.17	12.65	12.93	13.41	16.06	30	Pass
			Max	imum Cond	ducted Outp	ut Power (d	Bm)	
	Channel/			SO			,	
Mode	Frequency	Cha	in 0	Cha		Total Power	Limits	
WIOGE	(MHz)					MIMO_	(dBm)	Pass / Fail
	(Meas Power	Corr'd Power	Meas Power	Corr'd	Chain 0+1	(abiii)	
					Power			_
	38 (5190)	10.79	11.74	11.97	12.92	15.38	24	Pass
	46 (5230)	10.87	11.82	11.97	12.92	15.42	24	Pass
	54 (5270)	10.84	11.79	11.97	12.92	15.40	24	Pass
	62 (5310)	10.84	11.79	11.26	12.21	15.02	24	Pass
IEEE 802.11n-HT40	102 (5510)	11.02	11.97	11.87	12.82	15.43	24	Pass
	118 (5590)	10.47	11.42	10.75	11.7	14.57	24	Pass
	134 (5670)	10.81	11.76	10.93	11.88	14.83	24	Pass
	151 (5755)	11.07	12.02	11.44	12.39	15.22	30	Pass
	159 (5795)	11.24	12.19	11.95	12.9	15.57	30	Pass
			Max	cimum Cond	ducted Outp	ut Power (d	Bm)	_
	Channel/		SI	SO		Total		
Mode	Frequency	Cha	in 0	Cha	in 1	Power	Limits	D (E
	(MHz)	Meas	Corr'd	Meas	Corr'd	MIMO_	(dBm)	Pass / Fail
		Power	Power	Power	Power	Chain 0+1		
	36 (5180)	13.43	13.90	14.55	15.02	17.51	24	Pass
	44 (5220)	13.50	13.97	14.48	14.95	17.50	24	Pass
	48 (5240)	13.44	13.91	14.45	14.92	17.45	24	Pass
	52 (5260)	13.37	13.84	14.22	14.69	17.30	24	Pass
	60 (5300)	13.55	14.02	14.02	14.49	17.27	24	Pass
IEEE 802.11ac-	64 (5320)	13.80	14.27	13.53	14.00	17.15	24	Pass
VHT20	100 (5500)	13.69	14.16	14.47	14.94	17.10	24	Pass
VIII20	120 (5600)	13.17	13.64	13.36	13.83	16.75	24	Pass
	140 (5700)	13.17	14.05	13.40	13.87	16.73	24	Pass
	149 (5745)	11.20	11.67	11.87	12.34	15.03	30.00	Pass
	157 (5785)	11.53	12.00	12.99	13.46	15.80	30.00	Pass
	` ′			12.99	12.47			
	165 (5825)	11.06	11.53	12.00	12.4/	15.04	30.00	Pass

Page 41 of 109 Report No.: 170726002RFC-5

			Max	ut Power (d	r (dBm)			
Mode	Channel/		SI	so		Total		
	Frequency	Cha	in 0	Cha	in 1	Power	Limits (dBm)	
	(MHz)	Meas Power	Corr'd Power	Meas Power	Corr'd Power	MIMO_ Chain 0+1		Pass / Fail
	38 (5190)	10.73	11.67	11.93	12.87	15.32	24.00	Pass
	46 (5230)	10.85	11.79	11.86	12.80	15.33	24.00	Pass
	54 (5270)	10.88	11.82	11.55	12.49	15.18	24.00	Pass
IEEE 802.11ac-	62 (5310)	10.85	11.79	11.28	12.22	15.02	24.00	Pass
VHT40	102 (5510)	10.87	11.81	11.82	12.76	15.32	24.00	Pass
V11140	118 (5590)	10.53	11.47	10.61	11.55	14.52	24.00	Pass
	134 (5670)	10.85	11.79	10.47	11.41	14.61	24.00	Pass
	151 (5755)	11.18	12.12	11.67	12.61	15.38	30.00	Pass
	159 (5795)	11.22	12.16	12.16	13.10	15.67	30.00	Pass

			Maximum Conducted Output Power (dBm)								
	Channel/		SI	SO		Total					
Mode	Frequency	Cha	in 0	Chain 1		Power	Limits	Deer / Feil			
	(MHz)	Meas Power	Corr'd Power	Meas Power	Corr'd Power	MIMO_ Chain 0+1	(dBm)	Pass / Fail			
	42 (5230)	10.92	11.80	11.80	12.68	15.27	24	Pass			
IEEE 802.11ac-	58 (5290)	10.72	11.60	11.24	12.12	14.88	24	Pass			
VHT80	106 (5530)	10.70	11.58	11.45	12.33	14.98	24	Pass			
V11100	122 (5610)	10.49	11.37	10.28	11.16	14.28	24	Pass			
	155 (5775)	11.13	12.01	11.64	12.52	15.28	30	Pass			

Remark:

- 1. Corr'd Power = Meas Power + Duty Cycle Factor 2. Total (Chain 0+1) = 10*log[(10^{Chain 0/10})+(10^{Chain 1/10})]

Page 42 of 109 Report No.: 170726002RFC-5

5.6 PEAK POWER SPECTRAL DENSITY

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)

Test Method: KDB 789033 D02 v01r04 Section F

Limits:

1. For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum

Page 43 of 109 Report No.: 170726002RFC-5

Analyzer.

Spectrum analyzer according to the following Settings:

1. For U-NII-1, U-NII-2A, U-NII-2C band:

Using method SA-2

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Sweep time = auto, trigger set to "free run".
- d) Trace average at least 100 traces in power averaging mode.
- e) Record the max value and add 10 log (1/duty cycle)

2. For U-NII-3 band:

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.
- d) Sweep time = auto, trigger set to "free run".
- e) Trace average at least 100 traces in power averaging mode.
- f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Directional gain and the maximum output power limit.

Frequency Band	Chain 0 Antenna Gain (dBi)	Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	PSD Limits (dBm/MHz or dBm/500kHz)
U-NII-1	1.01	1.00	4.02	11.00
U-NII-2A	1.46	0.17	3.85	11.00
U-NII-2C	0.11	-3.26	1.60	11.00
U-NII-3	-2.90	-3.79	-0.32	30.00

Unequal antenna gains, with equal transmit powers. Directional gain is to be computed as follows:

If transmit signals are correlated, then

Directional gain = 10 log[(10^G1 /20 + 10^G2 /20 + ... + 10^GN /20)^2 /NANT] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

For U-NII-1, U-NII-2A, U-NII-2C band

TOT O-IVII-1, O-IVII-			Maxi	mum Power	Spectral D	ensity (dBm/	MHz)	
	Channel/		SI	so		Total PSD		
Mode	Frequency	Cha	in 0	Cha	in 1	MIMO	Limits	Pass / Fail
	(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1		1 4357 1 411
	36 (5180)	5.504	5.754	5.808	6.058	8.92	11	Pass
	44 (5220)	5.610	5.860	5.976	6.226	9.06	11	Pass
	48 (5240)	4.764	5.014	5.664	5.914	8.50	11	Pass
	52 (5260)	5.120	5.370	6.120	6.370	8.91	11	Pass
IEEE 802.11a	60 (5300)	5.727	5.977	6.395	6.645	9.33	11	Pass
	64 (5320)	5.225	5.475	6.511	6.761	9.18	11	Pass
	100 (5500)	6.407	6.657	5.670	5.920	9.31	11	Pass
	120 (5600)	6.477	6.727	5.333	5.583	9.20	11	Pass
	140 (5700)	7.228	7.478	5.683	5.933	9.78	11	Pass

Page 44 of 109 Report No.: 170726002RFC-5

			Maxi	mum Power	Spectral D	ensity (dBm/	MHz)	
Mode	Channel/		SI	so	Total PSD			
	Frequency	Cha	in 0	Cha	in 1	MIMO	Limits	Pass / Fail
	(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1		1 435/1 411
	36 (5180)	3.780	4.260	2.160	2.640	6.54	11	Pass
	44 (5220)	4.106	4.586	2.330	2.810	6.80	11	Pass
	48 (5240)	3.585	4.065	4.592	5.072	7.61	11	Pass
	52 (5260)	3.862	4.342	4.785	5.265	7.84	11	Pass
IEEE 802.11n-HT20	60 (5300)	4.208	4.688	3.783	4.263	7.49	11	Pass
	64 (5320)	4.659	5.139	4.232	4.712	7.94	11	Pass
	100 (5500)	4.866	5.346	3.790	4.270	7.85	11	Pass
	120 (5600)	4.202	4.682	4.279	4.759	7.73	11	Pass
	140 (5700)	4.765	5.245	4.476	4.956	8.11	11	Pass

		Maximum Power Spectral Density (dBm/MHz)								
	Channel/		SI	so		Total PSD	Limits			
Mode	Frequency	Cha	in 0	Cha	in 1	MIMO		Pass / Fail		
	(MHz)	Meas PSD	Corr'd	Meas PSD	Corr'd	Chain 0+1				
			PSD		PSD					
	38 (5190)	2.242	3.192	2.161	3.111	6.16	11	Pass		
	46 (5230)	2.490	3.440	2.372	3.322	6.39	11	Pass		
	54 (5270)	2.122	3.072	2.980	3.930	6.53	11	Pass		
IEEE 802.11n-HT40	62 (5310)	2.239	3.189	2.076	3.026	6.12	11	Pass		
	102 (5510)	1.622	2.572	1.044	1.994	5.30	11	Pass		
	118 (5590)	2.050	3.000	2.422	3.372	6.20	11	Pass		
	134 (5670)	3.136	4.086	2.549	3.499	6.81	11	Pass		

			Maximum Power Spectral Density (dBm/MHz)								
		Channel/		SI	so		Total PSD	Limits			
	Mode	Frequency	Cha	in 0	Cha	in 1	MIMO_		Pass / Fail		
	(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1					
		42 (5230)	-2.961	-2.081	-2.542	-1.662	1.14	11	Pass		
	IEEE 802.11ac-	58 (5290)	-2.746	-1.866	-2.820	-1.940	1.11	11	Pass		
	VHT80	106 (5530)	-3.351	-2.471	-3.866	-2.986	0.29	11	Pass		
		122 (5610)	-3.028	-2.148	-3.078	-2.198	0.84	11	Pass		

For U-NII-3 band

Mode		Maximum Power Spectral Density (dBm/500kHz)								
	Channel/		SI	so		Total PSD				
	Frequency	Chai	in 0	Cha	in 1	MIMO		Pass / Fail		
	(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1		. 23577 411		
	149 (5745)	4.562	4.812	3.934	4.184	7.52	30	Pass		
IEEE 802.11a	157 (5785)	4.585	4.835	2.810	3.060	7.05	30	Pass		
	165 (5825)	3.778	4.028	2.614	2.864	6.50	30	Pass		

Page 45 of 109 Report No.: 170726002RFC-5

		Maximum Power Spectral Density (dBm/500kHz)								
	Channel/		SI	SO		Total PSD				
Mode	Frequency	Cha	in 0	Cha	in 1	MIMO	Limit	Pass / Fail		
	(MHz)	Meas PSD	Corr'd PSD	Meas PSD	Corr'd PSD	Chain 0+1		1 433 / 1 411		
	149 (5745)	2.771	3.251	1.621	2.101	5.72	30	Pass		
IEEE 802.11n-HT20	157 (5785)	2.431	2.911	0.857	1.337	5.21	30	Pass		
	165 (5825)	2.148	2.628	1.103	1.583	5.15	30	Pass		
IEEE 802.11n-HT40	151 (5755)	1.164	2.114	0.148	1.098	4.65	30	Pass		
	159 (5795)	1.091	2.041	0.401	1.351	4.72	30	Pass		

	Channel/	Maximum Power Spectral Density (dBm/500kHz)								
		SISO				Total PSD				
Mode	Frequency	Chain 0		Chain 1		MIMO	Limit	Pass / Fail		
	(MHz)	Meas PSD	Corr'd	Meas PSD	Corr'd	Chain 0+1				
		Wicasi OD	PSD	Mcas i Ob	PSD					
IEEE 802.11ac- VHT80	155 (5775)	-4.219	-3.339	-4.836	-3.956	-0.63	30	Pass		

- 1. Corr'd PSD = Meas PSD + Duty Cycle Factor 2. Total (Chain 0+1) = 10*log[(10^{Chain 0/10})+(10^{Chain 1/10})]