Online Learning Other topics

Yevgeny Seldin

Evaluation of Bandit Algorithms

Evaluation of bandit algorithms in practice

• Challenge: previously unobserved actions or (state, action) pairs

- Deployment
 - Risky and time-consuming
- Environment simulation
 - Requires a good simulator
 - This may be very hard or even impossible to produce
 - If we have a good simulator, we probably already have a solution to the problem

Evaluation of bandit algorithms in practice

- Offline evaluation for i.i.d. problems
 - 1. Use full information data where possible and relevant
 - 2. "Importance-weighting" of logged limited feedback data
 - Requires randomized sampling in the logging policy with non-zero probability for taking all the (potentially relevant) actions
 - Requires logging the sampling distribution (to do importance-weighting)
 - Variance of the estimates scales with $\frac{1}{p_{\text{logging}}(a)}$
- Evaluation in the adversarial regime
 - Generally impossible
 - Sparring

Alternative algorithms for bandits

Alternative algorithms for i.i.d. bandits

- UCB-style algorithms
 - kl-UCB (based on kl inequality)
 - UCB-V (based on Empirical Bernstein or Unexpected Bernstein inequality)
- Thompson sampling (Bayesian approach)

Subsampling

Best-of-both-worlds algorithms

Variations of EXP3 – high probability regret bound

EXP3

•
$$p_t(a) = \frac{e^{-\eta_t L_{t-1}(a)}}{\sum_{a'} e^{-\eta_t L_{t-1}(a')}}$$

•
$$\tilde{\ell}_{t,a} = \frac{\ell_{t,a} \mathbb{I}(A_t = a)}{p_t(a)}$$

•
$$\mathbb{E}[R_T] = O(\sqrt{KT \ln K})$$

EXP3-IX: high-probability regret guarantee

•
$$\tilde{\ell}_{t,a} = \frac{\ell_{t,a} \mathbb{I}(A_t = a)}{p_t(a) + \frac{\eta_t}{2}}$$

•
$$\mathbb{P}\left(R_T \ge O\left(\sqrt{KT\ln K}\ln\frac{1}{\delta}\right)\right) \le \delta$$

Variations of EXP3 — best-of-both-worlds

EXP3

•
$$p_t(a) = \frac{e^{-\eta_t L_{t-1}(a)}}{\sum_{a'} e^{-\eta_t L_{t-1}(a')}}$$

•
$$\tilde{\ell}_{t,a} = \frac{\ell_{t,a} \mathbb{I}(A_t = a)}{p_t(a)}$$

•
$$\mathbb{E}[R_T] = O(\sqrt{KT \ln K})$$

• EXP3++: best-of-both-worlds

•
$$\tilde{p}_t(a) = (1 - \sum_a \varepsilon_t(a)) p_t(a) + \varepsilon_t(a)$$

•
$$\tilde{p}_t(a) = (1 - \sum_a \varepsilon_t(a)) p_t(a) + \varepsilon_t(a)$$

• $\varepsilon_t(a) = \theta\left(\frac{\ln t}{t \, \widehat{\Delta}_t(a)^2}\right)$, where $\widehat{\Delta}_t(a)$ is a lower confidence bound on the gap

•
$$\mathbb{E}[R_T] = O(\sqrt{KT \ln K})$$

•
$$\bar{R}_T = O\left(\sum_{a:\Delta(a)>0} \frac{(\ln T)^2}{\Delta(a)}\right)$$

Adversarial bandits: alternative regularization

EXP3

•
$$p_t = \frac{e^{-\eta_t L_{t-1}(a)}}{\sum_{a'} e^{-\eta_t L_{t-1}(a')}} = \arg\min_{p} \langle p, L_{t-1} \rangle + \frac{1}{\eta_t} \sum_{a} p_a \ln p_a$$
Regularization
Negative entropy

- Tsallis-INF the ultimate algorithm: Best-of-both-worlds and minimax optimal
 - $p_t = \arg\min_{p} \langle p, L_{t-1} \rangle \frac{1}{\eta_t} \sum_{a} \sqrt{p_a}$ Regularization Tsallis entropy

 - Adversarial: $\mathbb{E}[R_T] = O(\sqrt{KT})$ I.I.D.: $\bar{R}_T = O\left(\sum_{a:\Delta(a)>0} \frac{\ln T}{\Delta(a)}\right)$

Structure forms: (Generalized) Linear Bandits

Linear Bandits:

- $r_t = \langle \bar{A}_t, \bar{\theta}_* \rangle + \xi_t$
- $\bar{A}_t \in \mathcal{D}_t$
- Special cases:
 - $\mathcal{D} = \{(1,0,...,0),...,(0,...,0,1)\}$ multiarmed bandits
 - $\mathcal{D}_t = \{\phi(c_t, a) : a \in \{1, ..., K\}\}$ contextual bandits
 - Combinatorial (semi-)bandits:
 - Cascading bandits

Generalized Linear Bandits:

•
$$r_t = f(\langle \bar{A}_t, \bar{\theta}_* \rangle) + \xi_t$$

Feedback forms

• From full to limited: paid observations, decoupled exploration, graph feedback, ...

- Dueling Bandits
 - Relative comparison of pairs arms, but not their true value
 - Would you like fish or chicken?
 - Very useful for implicit information collection from user feedback
- Ranking
 - Selection from a ranked list
- Partial Monitoring
 - Separation between observations and losses
 - Example: dynamic pricing

Environment forms

- Contaminated stochastic
- Stochastically constrained adversarial

Bandit variations

- Bandits with switching costs
- Recharging/recovering bandits
- Rotting bandits
- Bandits with knapsacks
- •

Delayed feedback

Alternative objectives

- We have studied regret minimization
 - Cumulative loss of actions along the way

- Pure Exploration / Best arm identification / Experiment design
 - Find the best action as fast as possible
 - Losses along the way are not counted

Summary

• An infinite world of exciting problem formulations