PHYS 3038 Optics L7 More on Geometrical Optics Reading Material: Ch6.1-6.2

OB

Shengwang Du

2015, the Year of Light

6.1 Thick Lenses

Lens Systems

CB

Principal Planes

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Imageing $x_o x_i = f^2$

$$x_o x_i = f^2$$

plane

plane

Primary principal plane First focal point $V_1 = H_1$ \tilde{H}_2 f.f.l. Second focal point $V_1 = H_1 + H_2$ b.f.1.-Secondary principal plane

Figure 6.1 A thick lens.

Thick Lens

$$\frac{1}{f} = (n_l - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n_l - 1)d_l}{n_l R_1 R_2} \right]$$

Lens Bending

CS

6.2 Analytical Ray Tracing

Computer ray tracing. (Photo courtesy of Optical Research Associates, Pasadena, California.)

Description of a Ray

- Rosition (height): y
- α Direction: α (we use $n\alpha$ to represent it, where n is the refractive index.)

y

V

$$\vec{r}_i = \begin{bmatrix} n_i \alpha_i \\ y_i \end{bmatrix}$$

Paraxial condition: $\alpha \approx \sin \alpha \approx \tan \alpha$

Free Space

Paraxial condition:

$$\alpha \approx \sin \alpha \approx \tan \alpha$$

$$\vec{r}_2 = T(d/n)\vec{r}_1$$
 $T(d/n) = \begin{bmatrix} 1 & 0 \\ d/n & 1 \end{bmatrix}$

Refraction on a vertical surface

$$\vec{r}_2 = I\vec{r}_1 = \vec{r}_1$$

$$T(d, n) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Propagation from n1to n2

$$\vec{r}_2 = T(\frac{d_2}{n_2})T(\frac{d_1}{n_1})\vec{r}_1 = T(\frac{d_1}{n_1} + \frac{d_2}{n_2})\vec{r}_1$$

Spherical Surface

Refraction Matrix

$$R = \begin{bmatrix} 1 & -D \\ 0 & 1 \end{bmatrix}$$

$$D = \frac{n_t - n_i}{R}$$

03

Refaction + Propagation

$$f_t = \frac{n_t}{n_t - n_i} R$$

Thin Lens

$$D = \frac{n_t - n_i}{R}$$

$$L = R_2 R_1 = \begin{bmatrix} 1 & -(D_1 + D_2) \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1/f \\ 0 & 1 \end{bmatrix}$$

$$\frac{1}{f} = D_1 + D_2 = \frac{n_l - 1}{R_1} + \frac{1 - n_l}{R_2} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Thick Lens

Image Geometry

$$\vec{r}_i = T(\frac{d_{I2}}{n_I})L_tT(\frac{d_{10}}{n_O})\vec{r}_1$$

Image condition: y_i is independent of α_o

Lens Combination

Mirror

f = -2/R.

Figure 6.11 The geometry for reflection from a mirror. The ray angles α_i and α_r are measured from the direction of the optical axis.

$$\mathcal{M}_{o} = \begin{vmatrix} -1 & -2n/R \\ 0 & 1 \end{vmatrix}$$