Generalized additive models for electricity demand forecasting: thinking <u>in</u>side the box

Matteo Fasiolo

Joint work with:

Simon N. Wood (University of Bristol, UK)
Yannig Goude (EDF R&D)
Margaux Zaffran (ENSTA Paris)
Raphaël Nedellec (Talend, formerly EDF R&D)

matteo fasiolo@bristol ac uk

Talk structure

GAMs for electricity load forecasting

Probabilistic forecasting with GAMLSS and quantile GAMs

3 Current work: multi-resolution GAMs

We consider Generalized Additive Models (GAMs, Hastie and Tibshirani (1990)), which are used by Électricité de France to forecast demand.

GAM model structure:

$$\mathsf{Load}_i | \mathbf{x}_i \sim \mathsf{Distr}\{\mathsf{Load}_i | \theta_1 = \mu(\mathbf{x}_i), \theta_2, \dots, \theta_p\},\$$

where

$$\mathbb{E}(\mathsf{Load}_i|\mathbf{x}_i) = \mu(\mathbf{x}_i) = g^{-1}\Big\{\sum_{j=1}^m f_j(\mathbf{x}_i)\Big\},\,$$

and g is the link function.

 f_j 's can be fixed (parametric) or smooth effects.

 $\theta_2, \dots, \theta_p$ control scale and shape of distribution.

Smooth effects built using spline bases

$$f(x) = \sum_{k=1}^{r} \beta_k b_k(x)$$

where

- β_k unknown coeff
- $b_k(x)$ known spline basis functions
- smoothness of f(x) controlled by smoothing prior $p(\beta|\lambda)$.

Example: a Gaussian GAM for expected load is

$$\mathbb{E}(\mathsf{Load}_i) = \sum_{j=1}^7 \beta_j w_{d(i)}^j \quad \cdot \mathsf{Day\text{-}of\text{-}week factor} \\ + \quad \beta_8 \mathsf{Load}_{i-1} \quad \cdot \mathsf{Lagged load} \\ + \quad \beta_9 \mathsf{h}_i \quad \cdot \mathsf{Holiday binary} \\ + \quad f_1(t_i) \quad \cdot \mathsf{Long\text{-}term trend} \\ + \quad f_2(T_i) \quad \cdot \mathsf{Temperature} \\ + \quad f_3(T_i^s) \quad \cdot \mathsf{Smoothed temperature (for thermal inertia)} \\ + \quad f_4(\mathsf{toy}_i), \quad \cdot \mathsf{Time\text{-}of\text{-}year}$$

where $T_i^s = \alpha T_i + (1 - \alpha) T_{i-1}^s$, with $\alpha = 0.05$.

Using mgcv R package (Wood, 2001):

Limitation: parametric assumption on $Distr(y|\mathbf{x})$.

Talk structure

GAMs for electricity load forecasting

Probabilistic forecasting with GAMLSS and quantile GAMs

3 Current work: multi-resolution GAMs

From GAMs to GAMLSS

Generalized Additive Models for Location Scale and Shape (GAMLSS, Rigby and Stasinopoulos (2005)) let scale and shape change with \mathbf{x} .

GAMLSS model structure:

$$\mathsf{Load}|\mathbf{x} \sim \mathsf{Distr}\{\mathsf{Load}|\theta_1 = \mu_1(\mathbf{x}), \theta_2 = \mu_2(\mathbf{x}), \dots, \theta_p = \mu_p(\mathbf{x})\},$$

where

$$\mu_1(\mathbf{x}) = g_1^{-1} \Big\{ \sum_{j=1}^{m_1} f_j^1(\mathbf{x}) \Big\},$$

 $\mu_p(\mathbf{x}) = g_p^{-1} \Big\{ \sum_{i=1}^{m_p} f_j^p(\mathbf{x}) \Big\},$

and g_1, \ldots, g_p are link function.

From GAMs to GAMLSS

Example: Gaussian model for location and scale (see ?mgcv::gaulss)

$$\mathsf{Load}|\mathbf{x} \sim \mathsf{N}\{\mathsf{Load}|\mu(\mathbf{x}), \sigma(\mathbf{x})\}$$

where

$$\mu(\mathbf{x}) = \sum_{j=1}^m f_j^1(\mathbf{x}), \quad \sigma(\mathbf{x}) = \exp\Big\{\sum_{j=1}^m f_j^2(\mathbf{x})\Big\}$$

and $g_2 = \log$ to guarantee $\sigma > 0$.

Matteo Fasiolo GAMs demand forecasting

From GAMs to GAMLSS

```
fit <- gam(list(load ~ s(time) + ..., # location
 ~ s(temp) + ..., # scale
 ~ s(toy) + ..., # skewness
 ~ s(instant) + ... # kurtosis)
```

Still parametric assumption on Distr(load|x).

Quantile regression estimates quantiles $\mu_{\tau}(\mathbf{x})$ for $\tau \in (0,1)$ directly.

Matteo Fasiolo GAMs demand forecasting 11 / 22

From GAMLSS to QGAM

Example: a QGAM for daily electricity load is

$$\mu_{\tau}(\mathbf{x}_i) = \sum_{j=1}^{7} \beta_j w_{d(i)}^j$$
 · Day-of-week factor
 $+ \beta_8 \text{Load}_{i-1}$ · Holiday binary
 $+ \beta_1(t_i)$ · Long-term trend
 $+ \cdots$

Implemented by qgam R package (Fasiolo et al., 2018):

From GAMLSS to QGAM

Fit on aggregate UK demand data:

Plots produced using mgcViz visualization package (Fasiolo et al., 2018).

From GAMLSS to QGAM

Matteo Fasiolo GAMs demand forecasting

Talk structure

GAMs for electricity load forecasting

Probabilistic forecasting with GAMLSS and quantile GAMs

3 Current work: multi-resolution GAMs

Consider modelling max demand over time horizon.

We have n days and 30min electricity demand $L_{1:48n}$.

We want to predict y_i , the maximal demand on the i-th day.

We need to deal with data at different resolutions.

Modelling approach:

- distribution for day max y_i is Generalized Extreme Value (GEV)
- capture information at 30min resolution using functional effects

Integrating high-resolution data:

- naive approach $\mathbb{E}(y_i) = f_1(\mathsf{Temp}_1^i) + \cdots + f_{48}(\mathsf{Temp}_{48}^i) + \cdots$
- functional $\mathbb{E}(y_i) = \sum_{k=1}^{48} \operatorname{te}(\operatorname{Temp}_k^i, k) + \cdots$

Final model for daily max on UK data is $y_i \sim \text{GEV}(\mu, \sigma, \xi)$ where

$$\begin{split} \mu_i &= \sum_{k=1}^7 \beta_k \mathbb{I}(\mathsf{wd}_i = k) + s_1(\mathsf{toy}_i) + s_2(\mathsf{t}_i) \\ &+ \sum_{k=1}^{48} \mathsf{te}_1(\mathsf{temp}_k^i, k) + \sum_{k=1}^{48} \mathsf{te}_2(\mathsf{L}_k^{i-1}, k). \end{split}$$

RMSE on test set (UK data):

• Multi-resolution: 773 (best)

• Big model by-instant: 965

• 48 models by-instant: 930

Note y_i does not need to be daily max:

- total demand in a day $(y_i \sim Normal?)$
- position of daily max $(y_i \in \{1, ..., 48\}, y_i \sim OCAT?)$

and functional structure stays the same.

We can be multi-resolution across space:

$$\mathbb{E}(\mathsf{Load}_i) = \int f\{\mathsf{lon}, \mathsf{lat}, \mathsf{temp}(\mathsf{lon}, \mathsf{lat})\} \ d\mathsf{lon} \ d\mathsf{lat} + \cdots$$

$$\approx \sum_k \mathsf{te}(\mathsf{lon}_k, \mathsf{lat}_k, \mathsf{temp}_k^i) + \cdots$$

Basic functional effects are in mgcv (see ?linear.functional.terms), for more methods see refund package (Crainiceanu et al., 2012).

Conclusion

The additive structure of GAMs offers:

- interpretability (see mgcViz visualization R package)
- scalability to Big Data (see Wood et al. (2017) and mgcv::bam())
- modularity

Modularity facilitates addition of new:

- response distributions (e.g. GEV)
- smooth effect types (e.g. functional terms)
- model classes (e.g. GAMLSS and quantile GAMs)

These properties, and the availability of **reliable open-source** software, should assure the competitiveness of additive models in the context of modelling future energy systems.

References I

- Crainiceanu, C., P. Reiss, J. Goldsmith, L. Huang, L. Huo, F. Scheipl, S. Greven, J. Harezlak, M. Kundu, and Y. Zhao (2012). refund: Regression with functional data. *R package version 0.1-6*.
- Fasiolo, M., Y. Goude, R. Nedellec, and S. N. Wood (2018). Fast calibrated additive quantile regression. *arXiv preprint arXiv:1707.03307*.
- Fasiolo, M., R. Nedellec, Y. Goude, and S. N. Wood (2018). Scalable visualisation methods for modern generalized additive models. *arXiv preprint arXiv:1809.10632*.
- Hastie, T. and R. Tibshirani (1990). *Generalized Additive Models*, Volume 43. CRC Press.
- Hothorn, T., P. Bühlmann, T. Kneib, M. Schmid, and B. Hofner (2010). Model-based boosting 2.0. *The Journal of Machine Learning Research* 11, 2109–2113.
- Koenker, R. (2005). Quantile regression. Number 38. Cambridge university press.
- McLean, M. W., G. Hooker, A.-M. Staicu, F. Scheipl, and D. Ruppert (2014). Functional generalized additive models. *Journal of Computational and Graphical Statistics* 23(1), 249–269.

References II

- Rigby, R. A. and D. M. Stasinopoulos (2005). Generalized additive models for location, scale and shape. *Journal of the Royal Statistical Society: Series C (Applied Statistics)* 54(3), 507–554.
- Wood, S. N. (2001). mgcv: Gams and generalized ridge regression for r. R news 1(2), 20-25.
- Wood, S. N., Z. Li, G. Shaddick, and N. H. Augustin (2017). Generalized additive models for gigadata: modeling the uk black smoke network daily data. *Journal of the American Statistical Association* 112(519), 1199–1210.