Problématique

FIGURE 1: Émission, transmission et réception d'un son

Question: Comment faire pour qu'un étudiant écoute sur son portable à Bordeaux, une musique jouée sur un instrument dans un studio radio à Paris?

Lycée M. Montaigne – MP2I 2

- 1 Signal
- 1.1 Qu'est-ce qu'un signal?
- > Exemple
- > <u>Définition</u>: Signal

1.2 Nature physique des signaux

> Exemples de signaux

Nature des signaux	Grandeurs physiques associées		
Mécaniques	Position, vitesse, accélération		
Acoustiques	Surpression, déformation, vitesse		
Électromagnétiques	Champ électrique, champ magnétique		
Électriques	Courant électrique, tension électrique		
Optiques	Intensité lumineuse		
Thermodynamiques	Température, pression		

FIGURE 2 : Nature des signaux et grandeurs physiques associées

- 1 Signal
- 1.2 Nature physique des signaux

> Retour à la problématique

FIGURE 1 : Émission, transmission et réception d'un son

Conclusion

Nature signal modifiée, ms information conservée

2.1 Observations expérimentales

> Onde sonore dans l'air

FIGURE 3: Propagation d'une onde sonore dans l'air:

signaux fournis par deux micros, situés côte à côte (à gauche) ou distants (à droite)

Lycée M. Montaigne – MP2I 6

- 2 Phénomène de propagation
- 2.1 Observations expérimentales

> Onde élastique le long d'une corde

t2 - t1 est le retard de M2 sur M1.

FIGURE 4 : Propagation d'une onde le long de la corde

- 2 Phénomène de propagation
- 2.1 Observations expérimentales

> Onde mécanique à la surface de l'eau

FIGURE 5 : Propagation d'une onde à la surface de l'eau

- 2.2 Qu'est-ce qu'une onde?
- > <u>Définition</u>: onde

perturbation locale se déplaçant ds l'espace signal physique, transporté par l'onde

= grandeur vibrante

2 Phénomène de propagation

2.2 Qu'est-ce qu'une onde?

> Conséquence

FIGURE 6 : Propagation d'une onde unidimensionnelle modélisée par une fonction de deux variables : abscisse et temps

- 2 Phénomène de propagation
- 2.2 Qu'est-ce qu'une onde?

- > Propriété
 - Propaga° onde: transmission info à distance
 - = propaga° d'énergie sans transport de matière
- > Exemples de perturbations
 - Onde sonore
 - perturbation = surpression
 - Onde le long d'une corde
 - perturbation = déformation verticale de la corde
 - Onde à la surface de l'eau
 - perturbation = déformation verticale de la surf. de l'eau

2.3 Nature d'une onde

Animation 1 : Physique et simulations numériques / Mécanique /

Propagations / Propagation des ondes

http://subaru.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/meca/ondetran.html

Onde longitudinale

Définition:

Exemple

Direction du déplacement des tranches d'air

FIGURE 7: Onde sonore longitudinale

2.3 Nature d'une onde

> Onde transversale

Définition:

Exemple

FIGURE 8 : Onde mécanique sur la corde : onde transversale

2.4 Milieu de propagation

Type d'onde	Milieu de propagation	Perturbation	Nature de l'onde
Onde sonore (acoustique)	Milieu matériel	Surpression (fluide) Vibration (solide)	Longitudinale
Onde élastique	Solide	Déplacement local réversible	Longitudinale Transversale
Onde électromagnétique	Vide ou air ou milieu matériel	Champ électromagnétique	Transversale

FIGURE 9 : Exemples d'ondes et milieux de propagation associés

- > Éq. de propagation unique : éq de d'Alembert
- > Retour à la problématique

3 Onde progressive

- 3.1 Vitesse de propagation ou célérité
- > Définition :
- Modèle de l'onde progressive unidimensionnelle non dispersive
 - s (x,t) représente la valeur du signal, mesurée à l'abscisse x à l'instant t.

- > Conditions de validité du modèle
 - Milieu de propagation transparent
 - Milieu illimité
 - Milieu non dispersif

3 Onde progressive

3.2 Expressions d'une onde progressive en fonction du retard temporel

> Onde se propageant dans le sens des x croissants

FIGURE 10 : Onde se propageant dans le sens positif de l'axe (Ox) en deux abscisses différentes

$$s(x,t) = f\left(t - \frac{x}{c}\right)$$

2 variables ⇒ 1 variable

- 3 Onde progressive
- 3.2 Expressions d'une onde progressive en fonction du retard temporel
- Onde se propageant dans le sens des x décroissants

Propriété:

$$s(x,t) = g\left(t + \frac{x}{c}\right)$$

Exercice d'application 1

Un haut-parleur, placé à l'abscisse x=0, émet une onde acoustique. Un auditeur se trouve à l'abscisse x, et un mur à l'abscisse L, avec L>x. L'onde se réfléchit sur le mur. Elle se propage à la vitesse c. Deux ondes arrivent sur l'auditeur. Déterminer les deux retards temporels.

3.3 Expressions d'une onde progressive en fonction du décalage spatial

> Onde se propageant dans le sens des x croissants

FIGURE 11 : Onde se propageant dans le sens positif de l'axe (Ox) en deux instants différents

<u>Propriété</u>

$$s(x,t) = F(x-ct)$$

2 variables ⇒ 1 variable

- 3 Onde progressive
- 3.3 Expressions d'une onde progressive en fonction du décalage spatial
- Onde se propageant dans le sens des x décroissants

Propriété:

$$s(x,t) = G(x+ct)$$

4 Onde progressive sinusoïdale (harmonique) (OPH)

Cas d'1 onde prog. sinus. se propageant dans le sens positif de l'axe (Ox), sans atténuation ni déformation

4.1 Qu'est-ce qu'une OPH?

> Expression de la grandeur vibratoire

Définition
$$s(x,t) = A_0 \cos(\omega t - kx + \varphi_0)$$

 A_0 : amplitude, ω : pulsation, φ_0 : phase à l'origine

$$k = \frac{\omega}{c}$$

 $k = \frac{\omega}{2}$ Vecteur d'onde (rad/m)

$$c = \frac{\omega}{k}$$

 $c = \frac{1}{k}$ | Vitesse de propaga° = vitesse de phase (m/s)

4 Onde progressive sinusoïdale (harmonique) (OPH)

4.2 Double-périodicité

> Phase de l'onde

$$\phi = \omega t - kx + \varphi_0$$

Double périodicité : temporelle et spatiale

ightharpoonup Périodicité temporelle $\omega = 2\pi f = \frac{2\pi}{T}$

$$\omega = 2\pi f = rac{2\pi}{T}$$

ightharpoonup Périodicité spatiale $k = 2\pi\sigma = \frac{2\pi}{2}$

$$k = 2\pi\sigma = \frac{2\pi}{\lambda}$$

Animation 2 : Physique et simulations numériques / Mécanique / Propagations / Onde progressive transversale

http://subaru.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/meca/ondeprog.html

4 Onde progressive sinusoïdale (harmonique) (OPH)

4.2 Double-périodicité

FIGURE 12 : Double périodicité de l'onde progressive harmonique

Définition

$$s(x,t) = A_0 \cos\left(2\pi\left(\frac{t}{T} - \frac{x}{\lambda}\right) + \varphi_0\right)$$

T: période temporelle et λ : longueur d'onde

4 Onde progressive sinusoïdale (harmonique) (OPH)

4.3 Vitesse de phase

Vibration en phase

$$t_1 - t_0 = \frac{k}{\omega} (x_1 - x_0)$$

$$\Delta t = \frac{1}{c} \Delta x$$

$$\Delta t = \frac{1}{c} \Delta x$$

phase de l'OPH se propage à la célérité $c = \frac{c}{k}$

$$c = \frac{\omega}{k}$$

⇒ vitesse de phase

> Relation entre les périodes spatiale et temporelle

$$\Delta t = \frac{\lambda}{c} = T$$

$$\lambda = cT = \frac{c}{f}$$

4 Onde progressive sinusoïdale (harmonique) (OPH)

4.4 Déphasage entre les vibrations en deux points

- > Expression du déphasage

 - En fonction du retard temporel
- > Vibration en phase

• En fonction du décalage spatial
$$\varphi(x_1) - \varphi(x_0) = -\frac{2\pi}{\lambda}(x_1 - x_0)$$

$$\varphi(t_1) - \varphi(t_0) = -\frac{2\pi}{T}(t_1 - t_0)$$

$$x_0 - x_1 = p\lambda$$
 et $t_0 - t_1 = pT$ (p entier relatif)

Propriété

$$x_0 - x_1 = \left(p + \frac{1}{2}\right)\lambda$$
 et $t_0 - t_1 = \left(p + \frac{1}{2}\right)T$ (p entier relatif)

Propriété

4 Onde progressive sinusoïdale (harmonique) (OPH)

4.5 Ordres de grandeur des fréquences

> Signaux acoustiques

Signaux 20 kHz audibles

Ultrasons

Infrasons 20 Hz

0 Hz

Tour approfondir... Actualités scientifiques...

[1] Les infrasons traquent les explosions, Les défis du CEA, n°220, p. 20, Septembre 2017

4 Onde progressive sinusoïdale (harmonique) (OPH)

4.5 Ordres de grandeur des fréquences

Signaux mécaniques [2] B. Romanowicz, Imagerie globale de la 1e Reflets de la Physique, n°56, p 4-9, Janvier 2018

[2] B. Romanowicz, Imagerie globale de la Terre par les ondes sismiques,

FIGURE 13 : Exemples de fréquences d'ondes mécaniques

> Signaux électromagnétiques

FIGURE 14 : Exemples de fréquences d'ondes électromagnétiques

[3] E. Lemaitre et al., L'Univers en technicolor, Les défis du CEA, n°237, Encart, Mai 2019

4.6 Caractéristiques d'une onde sonore

Exercice d'application 2 : étude de l'onde sonore expérimentale

On considère les tensions délivrées par deux microphones, un fixe au point O et l'autre mobile au point M, captant une onde progressive sinusoïdale émise par un haut-parleur.

Lorsque les deux microphones sont placés en O, on observe la figure ci-contre.

Les deux figures ci-dessous représentent les tensions $\frac{1}{\text{CH1 500mV}}$ $\frac{1}{\text{CH2 500mV}}$ $\frac{1}{\text{200,0}\mu_2}$ délivrées par le premier microphone en O (CH1) et le second microphone (CH2), situé en deux points d'abscisses différentes : abscisse x_1 inconnue pour la figure de gauche et $x_2 = 21$ cm

pour la figure de droite.

- 1. Quelle est la fréquence f de l'onde ?
- 2. Déterminer à partir des oscillogrammes la longueur d'onde λ de l'onde sonore et en déduire sa vitesse de propagation c.
- 3. Déterminer l'abscisse x_1 .

4 Onde progressive sinusoïdale (harmonique) (OPH)

4.7 Détermination de l'expression d'une OPH

> Méthode

Exercice d'application 3

Soit un axe (Ox) sur lequel sont placés un point B, d'abscisse $x_B = d > 0$ et un point M d'abscisse 0 < x < d. Pour chacun des quatre cas, exprimer le signal s(x,t) pour un signal émis quelconque, puis lorsqu'il s'écrit $f(t) = A\cos(\omega t)$.

- a) Onde connue en O se propageant dans le sens des x croissants
- b) Onde connue en O se propageant dans le sens des x décroissants
- c) Onde connue en B se propageant dans le sens des x croissants
- d) Onde connue en B se propageant dans le sens des x décroissants