The Bottom of a Graph

https://vjudge.net/problem/poj-2553

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product $V \times V$, its elements being called edges. Then G = (V, E) is called a directed graph.

Let n be a positive integer, and let $p=(e_1,...,e_n)$ be a sequence of length n of edges $e_i \in E$ such that $e_i=(v_i,v_{i+1})$ for a sequence of vertices $(v_1,...,v_{n+1})$. Then p is called a path from vertex v_1 to vertex v_{n+1} in G and we say that v_{n+1} is reachable from v_1 , writing $(v_1 \rightarrow v_{n+1})$.

Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., $bottom(G)=\{v\in V|\forall w\in V:(v\rightarrow w)\Rightarrow(w\rightarrow v)\}$. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set $V=\{1,...,v\}$. You may assume that 1 <= v <= 5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers $v_1, w_1, ..., v_e, w_e$ with the meaning that $(v_i, w_i) \in E$. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample

Input	Output
3 3 1 3 2 3 3 1	1 3
1 3 2 3 3 1	2
2 1	
1 2	
0	