Corrigé série 3-Exercice1: Cheminement dans les graphes

1^{ère} Génie Info 2020-2021

1

Exercice 1

1. Donner la matrice d'adjacence du graphe suivant.

M	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0
2	0	0	0	1	1	1	0
3	0	1	0	0	1	1	0
4	0	0	0	0	0	0	1
5	0	0	0	0	0	0	1
6	0	0	0	1	1	0	0
7	0	0	0	0	0	0	0

2

Th. Graphes, B. Fayech

ENSIT, 2020-2021

2. Calculer sa matrice des fermetures réflexo-transitives.

M

M	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0
2	0	0	0	1	1	1	0
3	0	1	0	0	1	1	0
4	0	0	0	0	0	0	1
5	0	0	0	0	0	0	1
6	0	0	0	1	1	0	0
7	0	0	0	0	0	0	0

M'

	1	2	3	4	5	6	7
1	1	1	1	0	0	0	0
2	0	1	0	1	1	1	0
3	0	1	1	0	1	1	0
4	0	0	0	1	0	0	1
5	0	0	0	0	1	0	1
6	0	0	0	1	1	1	0
7	0	0	0	0	0	0	1

Th. Graphes, B. Fayech

Calculer les puissances paires de M' pour trouver $\overline{\mathbf{M}}$.

M	[92

	1	2	3	4	5	6	7
1	1	1	1	1	1	1	0
2	0	1	0	1	1	1	1
3	0	1	1	1	1	1	1
4	0	0	0	1	0	0	1
5	0	0	0	0	1	0	1
6	0	0	0	1	1	1	1
7	0	0	0	0	0	0	1

$M^{4} = M^{6} = \overline{M}$

$\overline{\mathbf{M}}$	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	0	1	0	1	1	1	1
3	0	1	1	1	1	1	1
4	0	0	0	1	0	0	1
5	0	0	0	0	1	0	1
6	0	0	0	1	1	1	1
7	0	0	0	0	0	0	1

3. Justifier, à l'aide de cette dernière matrice, l'existence de chemins reliant le sommet 1 à tous les autres sommets du graphe.

Les sommets 2 et 3 peuvent-ils être dans la même composante fortement connexe? Non, puisque de 3 on peut atteindre 2

mais à partir de 2 on ne peut pas atteindre 3.

5

4. Quel(s) algorithme(s) de plus court chemin pourrait-on appliquer sur ce graphe ?

Ford-Bellman

Dijsktra

Alg. Pour GSC 🗹

Dijkstra ne peut pas être appliqué dans le cas de longueurs négatives.

Ce graphe est sans circuits ($M^n \neq 0$) donc on peut appliquer l'alg pour GSC.

Algorithme Bellman ou GSC

6 Th. Graphes, B. Fayech **5**. Appliquer un algorithme de votre choix pour trouver les longueurs des plus courts chemins en partant de 1.

5.1. Ford Bellman:

Initialement, tous les $\lambda_i = +\infty$ sauf $\lambda_1 = 0$

a	rc		1,2	1,3	2,4	2,5	2,6	3,2	3,5	3,6	4,7	5,7	6,4	6,5
it	1	$\lambda_{_{i}}$	λ ₂ =7	$\lambda_3=1$	λ ₄ =11	λ ₅ =9	λ ₆ =4	λ ₂ =6	$\lambda_5=3$	-	λ ₇ =15	λ ₇ =13	λ ₄ =9	-
		p_{i}	p ₂ =1	$p_3 = 1$	p ₄ =2	p ₅ =2	p ₆ =2	$p_2 = 3$	p ₅ =3	-	P ₇ =4	p ₇ =5	P ₄ =6	-
it	2	$\lambda_{_{i}}$	-	-	-	-	$\lambda_6=3$	-	-	-	-	-	λ ₄ =8	-
		p_{i}	-	-	-	-	p ₆ =2	-	-	-	-	-	p ₄ =6	-
it	3	$\lambda_{_{i}}$	-	-	-	-	-	-	-	-	λ ₇ =12	-	-	-
		p_{i}	-	-	-	-	-	-	-	-	p ₇ =4	-	-	-
it Th		$\lambda_{ m i}$ phes,	- B.Fayech	-	-	-	-	-	-	-	-	-	- ENS	- SIT, 202

Résultat:

	1	2	3	4	5	6	7
$\lambda_{\rm i}$	0	6	1	8	3	3	12
Pi	-	3	1	6	3	2	4

6. Plus court chemin de 1 à 5?

Plus court chemin de 1 à 7?

5.2. GSC:

Décomposition du graphe en niveaux

 $r = 0 : \{1\}$

 $r=1: \{3\}$

 $r = 2 : \{2\}$

 $r = 3 : \{6\}$

 $r = 4 : \{4,5\}$

 $r = 5 : \{7\}$

Tri des sommets:

{1,3,2,6,4,5,7}

- Sommets triés : {1,3,2,6,4,5,7}
- Initialement, tous les $\lambda_i = +\infty$ sauf $\lambda_1 = 0$
- $\bullet \lambda_1 = 0$
- $\lambda_3 = \min\{0+1\} = 1$; $p_3 = 1$
- $\lambda_2 = \min{\{\lambda_1 + 7, \lambda_3 + 5\}} = 6$; $p_2 = 3$
- $\lambda_6 = \min\{\lambda_2 3, \lambda_3 + 7\} = 3$; $p_6 = 2$
- $\lambda_4 = \min\{\lambda_2 + 4, \lambda_6 + 5\} = 8$; $p_4 = 6$
- $\lambda_5 = \min{\{\lambda_2 + 2, \lambda_3 + 2, \lambda_6 + 3\} = 3; p_5 = 3\}$
- $\lambda_7 = \min{\{\lambda_4 + 4, \lambda_5 + 10\} = 12 ; p_7 = 4\}$

	1	2	3	4	5	6	7
λ _j	0	6	1	8	3	3	12
p _j	-	3	1	6	3	2	4