# TPs: Nombres et calculs en général

#### Van Oudenhove Didier

#### 11 novembre 2023

# Première partie

# **Exercices divers**

# 1 Faire la somme des nombres compris dans un intervalle donné:

Dans le cadre du cours, nous avons réalisé l'exercice qui consistait à faire la somme des nombres entiers de 0 à n soit:

$$s = \sum_{i=0}^{n} i$$

Nous l'avions réalisé de 2 façons différentes:

- 1. la première façon consistait à utiliser une boucle pour  $: s \leftarrow 1 \ pour \ i : 2 \rightarrow n \ faire \ s \leftarrow s + i$
- 2. la deuxième façon était plus intéressante puisque la performance de dépendait pas de n:

$$s = \frac{n^2 - n}{2} + n = \frac{n \cdot (n+1)}{2}$$

Algorithme 1 Version1 de la somme de 1 à n



<u>Hyp</u>: n est un nombre entier >=1

Fonction: long calculSomme(n)

- **☞** IN: n le nombre
- OUT: la somme des entiers de 1 à n

Variables:

- S: un entier; la somme des nombres
- i: un entier; pour aller de 1 à n

#### 1.1 Réalisez une fonction qui calcule la somme des nombres de n à m

Dans cet exercice, on vous demande de réaliser un programme similaire à celui vu au cours mais pour une somme de n à m:

$$s = \sum_{i=n}^{m} i$$

Hypothèses:  $n, m \in \mathbb{Z} \mid n \le m$ 

<u>Fonction</u>: long calculSomme(int n,int m)

In n et m les deux entiers où  $n \le m$ 

Out un grand entier qui contiendra la somme

Algorithme: vous pouvez envisager les 2 versions:

- ▼ version qui utilise une boucle « pour » mais pensez à optimiser!!!
- version à partir d'une formule mathématique

#### 1.1.1 Implémentation

Après avoir écrit les pseudo-codes, implémentez les dans les 2 langages:

Java: Réalisez la fonction en Java dans votre classe « MyMath » et testez la avec un test unitaire dans « TestMyMath ».

Python Réalisez la fonction en Python dans le module « mymath » et le test unitaire dans le module « test mymath ».

## 2 Calculs liés à la suite de Fibonacci

### 2.1 Calculez le $n^{\grave{e}me}$ nombre de Fibonacci

La suite de Fibonacci doit certainement vous dire quelque chose: 0, 1, 1, 2, 3, 5, 8,... le nombre suivant est calculé à partir de la somme des 2 nombres précédents:

$$F_n = \begin{cases} 0 & , n = 0 \\ 1 & , n = 1 \\ F_{n-2} + F_{n-1} & , n \ge 2 \end{cases}$$

Hypothèses:  $n \in \mathbb{N} \mid n \geq 0$ 

Fonction: int fibo(int n)

In n un entier où n>=0

Out le  $n^{\grave{e}me}$ nombre de Fibonacci

#### Implémentation

Après avoir écrit les pseudo-codes, implémentez les dans les 2 langages:

Java: Réalisez la fonction en Java dans votre classe « MyMath » et testez la avec un test unitaire dans « TestMyMath ».

Python Réalisez la fonction en Python dans le module « mymath » et le test unitaire dans le module « test\_mymath ».

#### 2.2 Calculez le nombre d'or à partir de la suite de fibonacci

Le nombre d'or appelé aussi le nombre Phi où  $\varphi = \frac{1+\sqrt{5}}{2}$ . Il est également possible d'obtenir le nombre d'or à partir de la suite de Finonacci avec

$$\varphi = \lim_{1 \to \infty} \frac{F_{n+1}}{F_n}$$

ISFCE 2 Van Oudenhove Didier ©

| Itérations | n | $F_{n+1}$ | $F_n$ | $\frac{F_{n+1}}{F_n}$ |
|------------|---|-----------|-------|-----------------------|
| 1          | 2 | 1         | 1     | 1                     |
| 2          | 3 | 2         | 1     | 2                     |
| 3          | 4 | 3         | 2     | 1.5                   |
| 4          | 5 | 5         | 3     | 1.6666                |
| 5          | 6 | 8         | 5     | 1.6                   |
|            |   |           |       |                       |

#### 2.2.1 Réalisez une fonction qui donnera le nombre d'or après la $n^{eme}$ itération

Fonction: double nombreOr(int n)

In n un entier où  $n \ge 1$ 

Out un réel, qui représentera le nombre d'or obtenu après le  $n^{\grave{e}me}$ itération

#### Implémentation

Implémentez votre pseudo-code dans les 2 langages ainsi que le test unitaire associé

# 2.2.2 Réalisez une fonction qui donnera le nombre d'itération nécessaires pour obtenir le nombre d'or avec une précision donnée

Fonction: int nombreOr(double epsilon)

In n une réel qui indique une précision

Out un entier qui indiquera le nombre d'itérations nécessaires pour obtenir le nombre d'or avec une précision epsilon

#### Algorithme:

Votre algorithme devra d'abord calculer le nombre d'or à partir de la formule :  $\varphi = \frac{1+\sqrt{5}}{2}$ , ensuite il devra appliquer l'approximation  $\frac{F_{n+1}}{F_n}$  et s'arrêter dès que le résultat sera proche de  $\varphi$  d'une précision epsilon:

$$minimum \ de \ n \mid \left| \frac{1 + \sqrt{5}}{2} - \frac{F_{n+1}}{F_n} \right| <= epsilon$$

Exemple: si epsilon= 0.001 votre fonction devra renvoyé 9 car c'est la première itération où

$$|\varphi - \frac{F_{10}}{F_9}| < 0.001$$

#### Implémentation

Implémentez votre pseudo-code dans les 2 langages ainsi que le test unitaire associé

# 3 Nombres premiers

Un nombre premier est un nombre entier supérieur à 1 qui n'est divisible que par lui-même et par un.

## 3.1 Écrivez une fonction qui vérifie si un nombre est premier

Fonction: booleéan estPremier(int n)

In n un entier où n>=2

Out un booléen qui sera à vrai si le nombre est un nombre premier

#### Algorithme:

Pour savoir si un nombre est premier, vous devez tester qu'il n'est pas divisible par plusieurs diviseurs. Le nombre de diviseurs à tester, peut être fortement réduit en sachant que si A divise N alors il existe un « B » tel que A\*B=N. Donc, en supposant que A<=B, le plus grand diviseur à tester sera A tel que  $A^2=N$ 

#### Implémentation

Implémentez votre pseudo-code dans les 2 langages ainsi que le test unitaire associé

ISFCE 4 Van Oudenhove Didier ©