COST ANALYSIS

Per Node Hardware Cost (Sensors + Controller + Power)

Component	Model / Type		Approx. Price (₹)	Total (₹)
ESP32 Dev Board	DOIT ESP32 / NodeMCU- 32S		800	800
LoRa Module	SX1278 / RFM95	1	900	900
Soil Moisture Sensor	Capacitive v1.2	1	700	700
Soil Temp Sensor	DS18B20 Waterproof	1	300	300
Air Temp & Humidity	DHT22 1		500	500
pH Sensor Kit	Gravity pH (DFRobot)		1,800	1,800
EC Sensor Kit	Gravity EC (DFRobot)	1	2,000	2,000
Water Level Sensor	Ultrasonic / Pressure		600	600
Flow Sensor	YF-S201	1	800	800
Light + Rain Sensor	BH1750 + Rain Module		600	600
Solar Panel + Battery + Charge Ctrl.	10W panel + 3.7V Li-ion		3,000	3,000
Enclosure, PCB, wiring	Waterproof IP65 box		1,000	1,000

2) Per Node Hardware Cost (Sensors + Controller + Power)

Component	Qty	Price (₹)	Total (₹)
Solenoid Valve (12V DC, 1")	1	1,500	1,500
DC Pump (12V/AC small farm pump)	1	4,000	4,000

Component	Qty	Price (₹)	Total (₹)
Relay / MOSFET Driver Circuit	1	700	700
Pipes & Fittings (HDPE/Drip lines)	set	2,000	2,000

3) LoRa Gateway (Village / Cluster Level)

Component	Qty	Price (₹)	Total (₹)
LoRa Gateway Board (RAK / Dragino / DIY RPi)	1	8,000	8,000
4G Dongle / Wi-Fi Backhaul	1	2,000	2,000
Solar + Battery for Gateway	1 set	3,000	3,000
Antenna + Mounting Kit	1	1,000	1,000

4) Pilot Budget (Example: 5 Farms Cluster)

Item	Cost / Saving (₹)
Annualized Hardware (Node + Actuator)	~7,000
Annual O&M (Battery, Sensor Calib, SMS, Cloud)	~4,000
Total Annual Cost	~11,000
Annual Benefits (Water + Yield + Input Savings)	~20,000
Net Annual Gain per Farmer	~9,000
Payback Period	~2.4 years

This tabular breakdown shows **Indian market pricing** (based on Amazon India, Robu.in, DFRobot India distributors, and typical agri IoT BOM costs). At scale (100+ units, bulk purchase), costs can drop by **20–25**%.

POWER CONSUMPTION ANALYSIS

1. Node Energy Consumption

Component	Current	Duration	Cycles/day	Energy/day (Wh)	Notes
ESP32 Active	80 mA	10 s	144	0.27	Processing
LoRa TX	120 mA	5 s	144	0.20	Data TX
Sensors	20 mA	10 s	144	0.07	Moisture, Temp, etc.
Deep Sleep		rest of day		0.27	Very low
Total Electronics	_	_		0.9 Wh/day	From 12 V battery

2. Pump Energy Consumption (Example Pump)

Pump Spec	Current	Voltage	Runtime	Energy/day
Small DC Pump	3 A	12 V	0.5 h/day	18 Wh/day

3. Total Energy Per Farm

Load	Daily Energy (Wh)
Node electronics	0.9
Pump	18

Load	Daily Energy (Wh)
Total	18.9 Wh/day

4. Battery Sizing (per farm)

Requirement	Value
Energy needed (2 days autonomy)	37.8 Wh
At 12 V → Ah required	3.15 Ah
With 80% DoD (LiFePO₄)	3.9 Ah
Practical Choice	12 V, 7–12 Ah battery

5. Solar Panel Sizing (per node)

Parameter	Value
Daily Wh load	18.9 Wh
Peak Sun Hours	4 h/day
System Efficiency	70%
Panel size needed	6.75 W
Practical Choice	10–20 W panel per node

6. Gateway Power Requirement

Load	Avg Power (W)	Daily Energy (Wh)
Raspberry Pi (MCU)	2	48
LoRa concentrator	1	24

Load	Avg Power (W)	Daily Energy (Wh)
4G Dongle	2	48
Total	5 W	120 Wh/day

7. Gateway Battery Sizing

Requirement	Value
Energy for 2 days	240 Wh
At 12 V → Ah required	20 Ah
With 80% DoD	25 Ah
Practical Choice	12 V, 25–40 Ah battery

8. Gateway Solar Panel

Requirement	Value
Daily Energy	120 Wh
Peak Sun Hours	4 h/day
Efficiency	70%
Panel size needed	43 W
Practical Choice	50 W panel

9. Cost Additions (Indian Market, 2025)

Item	Components	Approx. Cost (₹)
IINode Power Kit	10–20 W solar panel + 7 Ah SLA/LiFePO₄ + charge controller + wiring	2,500–4,000

Item	Components	Approx. Cost (₹)
Gateway Power	50 W panel + 25–40 Ah battery + MPPT controller +	15,000–
Kit	mounting	21,000

10. Updated Pilot Cost (5 Farms)

Item	Qty	Cost (₹)
Full Node (with power kit)	5 × 16,000	80,000
Actuator Systems	5 × 8,200	41,000
Gateway (with power kit)	1 × 30,000	30,000
Cloud Hosting + SMS (1 yr)		8,000
Training & Installation		10,000
Contingency (10%)		16,400
Total Pilot (5 farms)		₹1,85,400 ≈ 1.85 Lakh

SUMMARY

Power & Energy Summary

- Node electronics (ESP32 + LoRa + sensors): only ~0.9 Wh/day (negligible).
- **Pump load dominates:** ~18 Wh/day for a small 12 V, 3 A pump running 30 min/day.
- Total farm energy need: ~18.9 Wh/day.
- Battery sizing (per farm): 12 V, 7–12 Ah → gives 2 days autonomy.

- Solar panel sizing (per node): 10–20 W → ensures recharge even in cloudy weather.
- Gateway needs more power: ~5 W continuous → ~120 Wh/day.
- **Gateway battery:** 12 V, 25–40 Ah with 2 days autonomy.
- Gateway solar panel: 50 W recommended.

Cost Additions

- Node power kit (solar + battery + controller): ₹2,500–4,000 each.
- Gateway power kit (solar + battery + MPPT): ₹15,000–21,000.

Pilot Cost (5 Farms Cluster)

- Full Nodes (with power kits): ₹80,000.
- Actuator systems (valve + pump + fittings): ₹41,000.
- Gateway (with power kit): ₹30,000.
- Cloud + SMS (1 year): ₹8,000.
- Training & installation: ₹10,000.
- **Contingency (10%):** ₹16,400.
- Total Pilot Cost: ~₹1.85 Lakh.

Key Insights

- Pump is the **biggest energy consumer** → optimizing irrigation schedules saves both power & water.
- Using **solar + battery kits** makes system **independent of unreliable grid power** in hilly Sikkim.
- Cost per farm (~₹37,000 capex incl. power) pays back in **≈3 years** via higher yields & water savings.
- Gateway reliability is critical → must be oversized with robust solar/battery.