Unit 1: Logic and Predicates

In this unit we will discuss

- Logical expressions and Operators,
- Predicates
- Rules of quantifiers,
- Rules of Inference for predicates and propositions.

Application

- Discrete mathematics is the study of mathematics confined to the set of integers
- Cryptography
- Relational Databases
- Logistics
- Computer Algorithms
- Software development
- Programming languages
- Designing password criteria
- An analog clock
- Bankruptcy proceedings

Statement: A sentence is called statement if it can be true or false not both

Examples:

- 1. **P: 2** is an odd no.
- 2. **Q:** 3 is less than 5
- 3. R: today weather is sunny
- 4. S: x + 10 = 0

Ans: Here sentence P, Q and R are statement but S in not a statement .All possible value of statement are called truth value its denoted by T AND F

Negation: Let P be the statement then negation of P is denoted by $\sim p$ or $\neg p$. It is defined as p: 2 is an even number

~ p : 2 is not even number

p	~ p
T	F
F	T

Conjunction: The conjunction of the two statement p and q is denoted by $p \land q$ (read as p and q). It is defined as p: 2 is an even number. q: Rajkot is capital of Gujarat.

Then $p \land q : 2$ is an even number and Rajkot is capital of Gujarat

p	q	p∧q
T	T	T
T	F	F
F	T	F
F	F	F

Dis junction: The Disjunction of the two statement p and q is denoted by $p \lor q$ (read as p or q). It is defined as p: 2 is an even number. q: Rajkot is capital of Gujarat . Then $p \lor q: 2$ is an even number or Rajkot is capital of Gujarat

p	\mathbf{q}	p ∨ q
T	T	T
T	F	T
F	T	T
F	F	F

EXAMPLE: Derive truth table:

P	q	~ p	~q	~ p ∨ ~q
T	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

$2] \sim (p \land q) \lor q$

$3](\sim p \vee q) \wedge r$

	-		

$4](p \lor r) \land (q \land r)$

 $5](q \ V \ r) \land \sim p$

	_		
	-		

 $6](p \vee q) \wedge (\sim r \wedge q)$

Conditional statement:

Let p and q be the given two statements then conditional statement is denoted by $p\to q^-$ read as p then q

Example: p: the weather is sunny. q: I will take you to the beach

 $p \rightarrow q$: (I promise that)If the weather is sunny then I will take you to the beach

p	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$
T	T	T
T	F	F
F	T	T
F	F	T

Note

- 1) the statement $q \rightarrow p$ is called converse of $p \rightarrow q$
- 2) the statement $\sim q \rightarrow \sim p$ is called contrapositive of $p \rightarrow q$
- 3) the statement $\sim p \rightarrow \sim q$ is called inverse of $p \rightarrow q$

Biconditional statement:

Let p and q be the given two statements then biconditional statement is denoted by $p \leftrightarrow q$ read as p if and only if q

Example: P: the weather is sunny. q: I will take you to the beach

p⇔q: the weather is sunny if and only if I will take you to the beach

p	q	$\mathbf{p} \leftrightarrow \mathbf{q}$
T	T	T
T	F	F
F	T	F
F	F	T

Tautology: A compound statement is always true no matter what the true value of given statements involve in it is called tautology. The compound statement

 $p \lor \sim p$ is tautology

p	~p	p ∨ ~ p
T	F	Т
F	Т	Т

Contradiction:

A compound statement is always false no matter what the true value of given statements involve in it is called contradiction. The compound statement $p \land \neg p$ is contradiction

p	~p	p ∧ ~ p
T	F	F
F	T	F

Contingency:

A compound statement which is neither tautology nor contradiction is called contingency. The compound statement pVq is contingency.

р	q	p∨q
T	T	T
T	F	T
F	T	T
F	F	F

Exercise

Check the following compound statement are tautology or not.

 $(p \lor q) \to (p \land q)$

p	q	(p ∨ q)	(p ∧q)	$(\mathbf{p} \lor \mathbf{q}) \to (\mathbf{p} \land \mathbf{q})$
T	T	T	T	T
T	F	T	F	F
F	T	T	F	F
F	F	F	F	T

Ans it is not tautology

2) $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$

 $3)\left(\sim q \land (p \rightarrow q) \right) \rightarrow \sim q$

4) $(p \lor q) \leftrightarrow (\sim p \lor \sim q)$

5] $(\sim p \land q) \rightarrow r$

6] (p V (q
$$\wedge$$
 r) \leftrightarrow (p \vee q) \wedge (p \vee r)

			_	

Logical equivalent: Let p and q be the two statements then both are logical equivalent if $p \leftrightarrow q$ is tautology

It is denoted by $p \equiv q$ (p logical equivalent to q)

DE 'Morgan's law: Let p and q be two statements then

$$(1) \sim (p \vee q) \equiv \sim p \wedge \sim q$$

$$(2) \sim (p \wedge q) \equiv \sim p \vee \sim q$$

Proof: (1) $\sim (p \lor q) \equiv \sim p \land \sim q$

p	q	$p \lor q$	$\sim (p \lor q)$	~p	~q	~p \ ~q	A≣B
T	T	Т	F	F	F	F	T
T	F	T	F	F	T	F	T
F	T	Т	F	Т	F	F	Т
F	F	F	Т	Т	Т	Т	T

$$(2) \sim (p \land q) \equiv \sim p \lor \sim q$$

p	q	$p \wedge q$	$\sim (p \land q)$	~p	~q	~ <i>p</i> ∨ ~ <i>q</i>	A≣B
T	T	Т	F	F	F	F	T
T	F	F	Т	F	T	T	T
F	T	F	Т	T	F	T	T
F	F	F	Т	T	T	T	T

Associative law: Let p, q and r be three statements then

(1)
$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$

(2)
$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

Proof: (1) $p \lor (q \lor r) \equiv (p \lor q) \lor r$

р	q	R	<i>q</i> ∨ r	$p \lor (q \lor \mathbf{r})$	$p \lor q$	$(p \lor q) \lor \mathbf{r}$	A ≡ B
Т	T	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т	Т
T	F	F	F	Т	Т	T	T
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т	T
F	F	Т	Т	Т	F	Т	Т
f	F	F	f	f	F	f	Т

(2) $p \land (q \land r) \equiv (p \land q) \land r$

р	q	R	q ∧r	$p \wedge (q \wedge \mathbf{r})$	$p \wedge q$	$(p \wedge q) \wedge \mathbf{r}$	A ≡ B
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	F	Т
Т	F	Т	F	F	F	F	T
Т	F	F	F	F	F	F	T
F	Т	Т	Т	F	F	F	Т
F	T	F	F	F	F	F	T
F	F	Т	F	F	F	F	T
f	F	F	f	F	F	F	T

Absorption law: Let p and q be two statements then

$$(1) p \land (p \lor q) \equiv p$$

(2)
$$p \lor (p \land q) \equiv p$$

Proof:

• (1)
$$p \land (p \lor q) \equiv p$$

р	Q	p∨q	<i>p</i> ∧ (p ∨ c	$p \land (p \lor q) \equiv p$
Т	Т	T	Т	T
Т	F	Т	Т	Т
F	Т	Т	F	Т
F	f	f	F	Т

(2)
$$p \lor (p \land q) \equiv p$$

р	Q	p ∧ q	<i>p</i> ∨ (p ∧ q)	$p \lor (p \land \mathbf{q}) \equiv p$
T	Т	Т	Т	T
T	F	F	T	Т
F	Т	F	F	Т
F	F	F	F	T

Examples:

3) Show that following statement formula A is logically equivalent to formula В

1. A:
$$(p \rightarrow q) \rightarrow r$$

B:
$$(p \land q) \rightarrow r$$

2. A:
$$(p \rightarrow q) \lor (p \rightarrow r)$$
 B: $p \rightarrow (q \lor r)$

$$B: p \rightarrow (q \vee r)$$

3. A:
$$p \leftrightarrow q$$

3. A:
$$p \leftrightarrow q$$
 B: $(p \rightarrow q) \lor (q \rightarrow p)$

Validity of Argument:

A finite sequence of statements A1, A2, A3 ,,,,An-1 ,An is called arguments and An is called conclusion .Then A1, A2, A3 ,,,,An-1 ,An is called logically validate statements. if (A1 \wedge A2 \wedge A3 \wedge ,,,, \wedge An-1) \rightarrow An is tautology .

We write arguments are as forms

A1

A2

•

•

An-1

∴ An

Some well-known arguments

Method of affirming:

A1 $p \rightarrow q$

A2 p

A3 ∴ q is valid arguments

Ans : For checking validity

We prove that $((p \rightarrow q) \land p) \rightarrow q$ is tautology

p	q	p →q	$((\mathbf{p} \rightarrow \mathbf{q}) \wedge \mathbf{p}$	$((\mathbf{p} \to \mathbf{q}) \land \mathbf{p}) \to \mathbf{q}$
T	T	T	Т	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Method of denying

A1 $p \rightarrow q$

A2 ~q

A3 ∴ ~p is valid arguments

Ans: For checking validity

We prove that $((p \rightarrow q) \land \sim q) \rightarrow \sim p$ is tautology

P	Q	~p	~ q	$\mathbf{p} \rightarrow \mathbf{q}$	$((\mathbf{p} \to \mathbf{q}) \land \sim \mathbf{q})$	$A \rightarrow B$
T	T	F	F	T	F	T
T	F	F	T	F	F	T
F	Т	T	F	T	F	T
F	F	T	T	T	T	T

3] Dilemma

A1 pVq

A2 $p \rightarrow r$

A3 $q \rightarrow r$

A4 ∴ r is valid arguments

Ans: For checking validity

We prove that $(pVq) \land (p \rightarrow r) \land (q \rightarrow r) \rightarrow r$ is tautology

p	q	r	p∨q	p→ <i>r</i>	q → <i>r</i>	$x \wedge y \wedge z$	A→B
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	T	T	T	T	T
T	F	F	T	F	T	F	T
F	T	T	T	T	T	T	T
F	T	F	T	T	F	F	T
F	F	T	F	T	T	F	T
F	F	F	F	T	Т	F	Т

4] Hypothetical syllogism

A1 $p \rightarrow q$

A2 $q \rightarrow r$

 \therefore p $\rightarrow r$ is valid arguments A3

Ans: For checking validity

We prove that $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$ is tautology

p	q	r	$\mathbf{p} \rightarrow \mathbf{q}$	$q \rightarrow r$	p → <i>r</i>	x∧y	A→B
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	F	T	T	F	T
T	F	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	F	F	F	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

Disjunction syllogisms:

~p

 \therefore q is valid arguments \therefore p is valid arguments

Addition

- premises: p
- conclusion: $p \vee q$

Simplification

- premises: $p \wedge q$
- conclusion: p

- 7. Conjunction
 - premises: p, q
 - conclusion: $p \wedge q$
- 8. Resolution
 - premises: $p \lor q$, $\neg p \lor r$
 - conclusion: $q \vee r$

Ex1: Prove that the following argument is	s in	ıvalid
---	------	--------

$$p \rightarrow q$$

q

$$\therefore p$$

Ans: we will check

 $((p \rightarrow q) \land q) \rightarrow p$ is tautology

Ex 2 Check following arguments valid or not

$$r \rightarrow (\sim q)$$

$$\therefore p \to (\sim r)$$

Ans: we will check

 $(\sim p \lor q) \land (r \rightarrow (\sim q)) \rightarrow (p \rightarrow (\sim r))$ is tautology

Predicates: A predicates is a declarative sentence whose true false value depends on one or more variables .A predicates with one variable is denoted p(x). A predicates with two variables is denoted by p(x, y) And so on

- 1) p(x): x is divisible by 7 here x is variable and x is divisible by 7 is known as predicates .Predicates p(x) is also known as propositional function of x
- 2) P(x): x is a prime number

Answer: P(3): 3 is a prime number. p(3) is true

P(14): 14 is a prime number . p(14) is false

3) P(x,y): 2x + y is divisible by y^2

Answer: P(1,-1):1 is divisible by 1 . its true thus P(1,-1) is true

P(2,3):7 is divisible by 9. It is false: P(2,3) is false

Quantifiers:

1] Universal Quantifier: The universal quantification of p(x) is the statement "p(x) of all $x \in D$ " where D is called the domain (domain of discourse). It is denoted by $\forall x p(x)$

 $\forall x p(x)$ is true if p(x) is true for every x in domain

 $\forall x p(x)$ is false if p(x) is false for at least on value of x in domain

Note: The 'x' for which $\forall x p(x)$ is false is called counter example of $\forall x p(x)$

If domain D = \emptyset then $\forall x p(x)$ is by default true as there are no counter example

Example:

1] If $p(x) : x^2 > 10$ then what is true /false value of $\forall x p(x)$ if

- 1. D = R
- 2. $D = \{1,2,3,4\}$
- 3. D = [11,20]

2] If P(x): x is an even no. then 2x+1 is always an odd no. D = N, then find the truth value of $\forall x p(x)$

2] Existential Quantifier: The existential quantification of p(x) is the statement "there exist $x \in D$ such that p(x)" where D is called the domain

(domain of discourse) .It is denoted by $\exists x p(x)$

 $\exists x p(x)$ is true if p(x) is true for one or more $x \in D$

 $\exists x p(x)$ is false if p(x) is false for every $x \in D$.

Note: The 'x' for which $\exists x p(x)$ is true is called 'witness' of $\exists x p(x)$

If domain D = \emptyset then $\exists x p(x)$ is by default it false as there are no witness

Examples

If $p(x) : x^2 > 10$ then what is true /false value of $\exists x p(x)$ if

- 1. D = R
- 2. $D = \{1,2,3,4\}$
- 3. D = [1,3]

 $P(x): x \ge x^2$ D = {5,6,9,-9,0} what is true /false value of $\exists x p(x)$

Example: Let x+1 > 2x and domain of discourse be the set of all integers then find the truth value of following:

- 1. p(0)
- 2. p(-1)
- 3. $\exists x p(x)$
- 4. $\forall x p(x)$
- 5. $\sim \exists x p(x)$
- 6. $\sim \forall x p(x)$
- 7. $\exists x \ p(x) \to (p(0) \lor p(-1))$
- 8. $\sim \exists x \, p(x) \leftrightarrow p(2)$

Solution:

Derive the truth value of $\forall x p(x)$

(1)
$$p(x) : x > x + 1$$
 , $D = Z$

Derive the truth value of $\exists x \, p(x)$

(1)
$$p(x) : x+1 \ge 2x$$
 , $D = N$

What is the truth value of $\exists x \, p(x)$ consider D = R

- P(x) : x+1 = 1
- $P(x): x^2 + 1 < x$
- $P(x): x^{1/2} = 1$