(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 September 2003 (25.09.2003)

PCT

(10) International Publication Number WO 03/078459 A2

- (51) International Patent Classification⁷: C07K 14/47, C12N 15/11, 5/10, A61K 38/17, 39/00, 48/00, G01N 33/68, C12Q 1/68, A01K 67/027
- (21) International Application Number: PCT/JP03/03140
- (22) International Filing Date: 17 March 2003 (17.03.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/364,585 18 I

18 March 2002 (18.03.2002) US

- (71) Applicant (for all designated States except US): MAT-SUSHITA ELECTRIC INDUSTRIAL CO., LTD. [JP/JP]; 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8501 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): NG, Chan Wah [SG/SG]; Apt Block 9A, Ghim Moh Road, #09-140, 271009 Singapore (SG). TAN, Pek Yew [MY/SG]; Block 128, Yishun Street 11, #05-305, 760128 Singapore (SG).

- (74) Agents: AOYAMA, Tamotsu et al.; AOYAMA & PART-NERS, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).
- (81) Designated States (nàtional): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR CONFIGURING AND CONTROLLING NETWORK RESOURCES IN CONTENT DELIVERY WITH DISTRIBUTED RULES

Rule Injection Module (104) (57) Abstract: An intermediate network element deployed in a content delivery network is disclosed. The content delivery network cooperates its content delivery effort with other intermediate network element with similar capabilities. Distributing rules that govern the operations of the intermediate network element(s) are presented. These include the framework of the intermediate network element(s), the format of indicating part or whole of a rule specification to be distributed, the format of signatures for intermediate network elements to discover each other, the format of signaling other intermediate network elements that a rule is distributed to, and the method of determining the intermediate network element to distribute a rule to. In addition, authoring rules that are specific to real time streaming of contents are disclosed. A set of rule evaluation conditions are revealed that can be triggered based on different criteria during the streaming of real time contents. A set of parameters from which rules can be based on is disclosed.

DESCRIPTION

Method and Apparatus for Configuring and Controlling Network Resources in Content Delivery with Distributed Rules

5

Technical Field

The invention relates to the field of content delivery in a data communications network. More particularly, this invention pertains to the distributed control of data packets stream flowing through an intermediate network element, and the distributed control and configuration of network resources at a hierarchy of the intermediaries. The main intended use of this invention is to act as a proxy for content streaming, and providing content adaptation services in a distributed manner.

15

20

25

10

Background Art

Over the past decade, the Internet, or more specifically, the Internet Protocol (IP) based network, has seen a tremendous growth. The proliferation of the Internet and the increasing number of Internet users has resulted in extension and scaling problems for applications. This is especially true for applications designed for end-users, such as the World Wide Web (WWW), and audio-visual streaming. The increased in network bandwidth and processing power can hardly catch up with the demands of the increasing number of Internet users.

10

15

20

25

This has resulted in longer load time for WWW page request, and lost of quality in real-time audio-visual playback across the Internet. The effort to reduce such undesirable effects has led to a wide deployment of intelligent network elements at the network edge (i.e. nearer to the end-users).

The most common use of such intermediate network elements are to function as caching proxies, such as hyper text transfer protocol (HTTP) proxies and/or caches as described in an article "Hypertext Transfer Protocol -- HTTP/1.1", IETF RFC 2616, June 1999, by Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee. These have been successful in reducing the network load at the WWW server and accelerating WWW contents delivery to the endusers. However, as the number of end-users increases, the variety of web-browser configurations and platforms widens. Similarly, the range of web contents is also broadening. Simply replicating static web contents cannot hope to sustain the everincreasing demands from the end-users.

In addition, there has also been a noted increase in the deployment of multimedia streaming over the Internet. These usually employ the real-time streaming protocol (RTSP) as session protocol to set up and tear down communications channel, and real-time transport protocol and real-time control protocol (RTP/RTCP) for the actual transmission of content data. The RTSP is disclosed for example, in "Real Time"

10

15

20

25

Streaming Protocol (RTSP)", IETF RFC 2326, April 1998, by Schulzrinne, H., Rao, A., and Lanphier, R. The RTP/RTCP is disclosed for example, in "RTP: A Transport Protocol for Real-Time Applications", IETF RFC 1889, January 1996, Schulzrinne, H., Casner, S., Frederick, R., and Jabcobson, V. Because of the versatile nature of Internet traffic, adaptation of the multimedia stream to the fluctuating traffic conditions is necessary to ensure a smooth presentation to the end-user. Though RTCP provides a means for end-users to report their communication status back to the sender, measures taken up by the sender based on receiver report can hardly be effective because the distance (network-sense) between the receiver and sender is often large. As most end-users connects to the Internet via an intermediary of some sort, for instance, firewall gateways, Network Address Translator (NAT), or proxies, the intermediary present a good choice to perform adaptation services on behalf of the content originator.

Furthermore, as the Internet grows, so does the range of devices that are used to access contents from the Web. This diversification of browser types has been accelerated with recent advancements in wireless Internet technology, whereby tiny handheld devices such as digital personal assistants (PDA) and mobile phones have micro-browsers built in that browse the web, or playback audio/visual streams. No longer can content authors develop contents with the assumption that the created

10

15

20

25

content will only be viewed by users using traditional desktop computers. Device independence is now a critical consideration, as disclosed in "Device Independence Principles", W3C Working Draft, http://www.w3.org/TR/di-princ/, September 2001, by Gimson, R., et. al.,.

A number of international standardization organisations have recognized the need to provide services originally available only at the network core (where the servers are located) to the network edge (where the end-users are located). For instance, the Internet Engineering Task Force (IETF) has recently set up a few working groups focusing on providing services at the network edges. The Open Pluggable Extensible Services (OPES) working group is one such effort. The OPES working group focuses on extending the current HTTP proxies from performing simple caching task to a whole suite of adaptation services. The framework of OPES is specified in "A Model for Open Pluggable Edge Services", IETF Internet Draft, Progress, http://www.ietf.org/internet-drafts/draft-In Work tomlinson-opes-model-01, November 2001, by Tomlison, G., There is also a Content Chen, R., and Hofmann, M. group working (CDI) Internetworking Distribution concentrates on the collaborations between different content Such collaboration efforts are distribution networks (CDN). believed to be able to further accelerate the delivery of contents to the end user.

10

15

20

25

The current use of intermediaries in content delivery is mostly restricted to providing simple functionality such as HTTP caching, HTTP proxy, or RTSP proxy. This cannot hope to maintain the service level demanded by the users of today's Internet, as the number of end-users increases exponentially. Moreover, with the range of hardware devices and software agents employed to retrieve contents by different users are also broadening, content providers are finding it difficult to present to the users a coherent set of contents are that suited to the user's device and preferences.

Though various international bodies have recognized the above problems, and have acted to provide resolutions, their work could still be improved on. The OPES framework described in focused on the operations of a single intermediary, ignoring the current trend of collaborations between content delivery networks. In addition, though the idea of the OPES framework is to perform content adaptation so as to enhance the user experience in content retrieval, it focused only on parameters of the HTTP. This is not only inadequate for device independence, it also does not cater to the growing number of audiovisual streaming applications.

Disclosure of Invention

To solve the problem listed in section 3.3, the present invention allows content providers, access providers, and/or

10

15

20

25

end-users to specify rules governing the delivery of content via intermediate network elements. These rules can be distributed to other intermediaries along the content flow path, to achieve the maximum efficiency and easier control of network resources. It is suitable for deployment by different content delivery networks, and can cooperate among one another. In addition, the current invention allows rules to be specified that are specially catered for real time content streaming. The present invention also defines a mechanism to extend rules to be construct based on user preferences, and device capabilities. Such a provision allows the rule author to construct rules that can better adapt contents to achieve device independence.

This invention involves the operations of one or more intermediate network elements performing content delivery and adaptation between end-users and the content providers. The intermediate network element (also known as intermediary) will parse each data packets transferred between the end-user and the contents provider. When the data packets matches certain criteria as specified by a set of rules registered with the intermediary, actions specified in the rules are carried out, usually results in the modification of the data packets. Rules in an intermediary can be distributed to other intermediaries which are more suited to evaluate the rule and/or perform the adaptations. In addition, rules can also cater specially to real time streaming protocol, or be constructed with delivery context

10

15

20

25

parameters to achieve device independence.

Brief Description of Drawings

Fig. 1 is a framework of an Intermediate Network Element, showing the functional architecture of the intermediate network element as used in the invention.

Fig. 2 shows nodes along the Content Path, and illustrates a typical content flow path from the content server to the content user, traversing a single or plural number of intermediaries.

Fig. 3 shows example of ContentPath Structure, particularly showing the values stored in a ContentPath structure of the intermediary foo4.bar.com as marked by literal 204 in Fig. 2.

Fig. 4 shows a method of Extracting Intermediaries Information from Embedded Signature in Data Packets, particularly showing the flow diagram of the method to extract intermediaries' signatures in the data packets to construct/update the ContentPath structure.

Fig. 5 shows a method of Determining the Remote Intermediary to Distribute Rule, particularly showing the algorithm used to determine the remote intermediary to distribute a rule to, given the distribution indication.

Fig. 6 shows a method of Parsing Rule with Distributed Rule Support, particularly showing the algorithm used to parse

a rule with the focus on supporting distributed rules. The actually method of parsing the rule to check for syntactical validity and evaluation of the rule is outside the scope of this document.

Fig. 7 shows a method of Determining the Remote Intermediary to Distribute Rule in a Server-Client Model, particularly showing the algorithm used to determine the remote intermediary to distribute a rule to, given the distribution indication, in a server-client model.

10

15

20

25

5

Best Mode for Carrying Out the Invention

An apparatus and methods for distributed network resource management is disclosed. To facilitate understanding of the invention, the following definitions are used:

A "packet" is a self-contained unit of data of any possible format that could be delivered on a data network.

An "intermediary" and an "intermediate network element" are equivalent, and are used interchangeably, unless otherwise specified, to refer to a gateway, a router or an intelligent network hub for which this invention applies to.

The term "current intermediary" or "current intermediate network element" refers to an intermediate network element that is processing a data packet, or a rule specification, depending on the context the term is used in.

The terms "content server" and "content user" are used

10

15

20

25

with respect to a sever-client model of information exchange. The content user, which is the client, will send a single or plural number of data packets to the content server containing a request. Such data packets are known as request packets. The content server upon processing the request would reply with a single or plural number of data packets containing the response. Such data packets are referred to as response packets.

In distribution of rules, the term "target intermediary" or "target intermediate network element" refers to the intermediate network element of the current invention receiving the distributed rule. The term "distributing intermediary" or "distributing intermediate network element" refers to the intermediate network element of the current invention distributing the rules to other intermediaries.

In the following description, for purpose of explanation, specific numbers, times, structures, and other parameters are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to anyone skilled in the art that the present invention may be practiced without these specific details.

The intermediate network element for which the current invention applies to, consists of the functional architecture as depicted in Fig. 1. The intermediary consists of a gateway module (101), a rule engine (102), a single or plural number of

10

15

20

25

special packages (103), and the rule injection module (104).

The gateway module (101) is the collection of functional blocks that implement gateway or proxy functionalities. These can include, but not limited to, HTTP proxies and/or caches, RTSP proxies, RTP/RTCP mixers and/or translators, and application level gateways (ALG). For instance, we consider an intermediary performing the role of a HTTP proxy. The gateway module (101) would thus implements the functional component to handle HTTP connections from the client side, the functional components to establish a HTTP connection to the server, or another HTTP proxy, based on the client side request, and the functional component to relay responses from the server back to the client side. Effectively, the gateway module (101) is the functional component that implements the protocols (eg HTTP, RTSP) for which the intermediary is an active party of.

The rule engine module (102) parses through all or part of the data packets that passes through the intermediate network element and matches these data packets to a set of criteria specified by a singular or plurality of rules. This is known as evaluation of rules. These rules are specified in a logical unit known as a Rule Specification. A Rule Specification can contain a singular or plural number of rules. When a match is found, the corresponding action(s) specified in the rules is(are) triggered. This is known as the "firing of a rule". The action performed can include, but not limited to, inserting contents to

10

15

20

25

the data packets, removing part or all of the contents from the data packets, and modifying contents in the data packets. These insertion, removal, and modification of packets contents can be carried out on the intermediary, or some other remote machines dedicated to perform packets transformations.

Examples of rules that are parsed by the Rule Engine (102) include rule which determines the bandwidth to be allocated to the data stream that the client is requesting. For instance, a rule may be specified in the following high-level form:

"If network channel of client <=1 Mbps, then allocate 10 kbits for data stream". (Rule 1)

The rule engine module (102) implements the functionality to parse such rules and determines if a match (i.e. if the enduser's network channel has a capacity is less than or equals to 1 Mbps) occurs. The above example also shows how the rules control the network resource allocation decisions.

Another example of rules being parsed by the rule engine module (102) will be to determine the next intermediary or server to contact in response to a client's request received from the gateway module (101). Here, base on the parameters of the request, the request may be routed to a different server/intermediary. For instance, consider the following high-level rules:

"If requested data is audio only, route request to foo3.bar.com"

10

15

20

25

(Rule 2a)

"If requested data is audio and video, route request to foo4.bar.com" (Rule 2b)

The rule engine module (102) is responsible in parsing and interpreting such rules, and determining if one of condition is met. When one is met, the rule engine module (102) will inform the gateway module (101) which next intermediary/server is selected, and the gateway module (101), which implements the actual functionality to communicate with others using the specific protocol, would proceed to route the request to the selected next intermediary/server.

The intermediary in the current invention can have zero, single or plural number of special packages (103). These special packages (103) are modules designed to enhance the specialized module (102)by providing engine For example, a Quality-of-Service (QoS) functionalities. special package can be employed to assist the rule engine module (102) in understanding and evaluating rules that involves QoS parameters and conditions. The rule engine module (102) on its own can only parse rules and try to find a match on the conditions spelt out by the rule specifications. Using the example of (Rule 1a) above, the rule engine module (102) will need help to determine the actual capacity of the network channel of the client. A special package (103) for evaluating QoS parameters can be installed in the intermediary

10

15

20

25

to evaluate such expression. The rule engine module (102) would query the QoS special package (103) when it parses a rule specification that specifies a QoS parameter (such as The QoS special package (103) bandwidth, delay, etc). evaluates the value of the parameter in question and passed it back to the rule engine module (102). From there, the rule engine module (102) can then proceed to check if a match has occurred in the condition specified by the rule specification. In this way, a modular design of the intermediary can be achieved. The rule engine module (102) performs the job of parsing rule specifications. It utilizes different special packages (103) to evaluate the value of a parameter that is specified in a rule specification, and from the values, determines if a condition is In the current invention, a special package for evaluating rules based on delivery context is set forth.

The rule injection module (104) is a module that dynamically loads and unloads rules to and from the rule engine module (102). It also provides the interface for remote parties to dynamically register, activate or de-activate rules. This module is indispensable in supporting distribution of rules through various intermediaries.

Initially, when the intermediary starts up, the rule injection module (104) will load an initial set of rule specifications, based on a configuration file or otherwise, from the storage of the intermediary. The rules specifications will

10

15

20

25

be loaded to the rule engine module (102). When a client request (or server response data) arrives, the gateway module will processing the clients request (or server response data), and pass it to the rule engine module (102) for rule parsing. The rule engine module (103) will parse the rule specifications and try to seek for a match in the conditions specified against the request (or response). While parsing these rules, the rule engine module (102) may require assistant from special packages (103) to evaluate the value of parameters.

The rule injection module (104) also allows rules to be dynamically loaded to the intermediary. For example, an administrator may remotely transfer a new set of rule specifications to be installed on the intermediary. Alternatively, administrator may want to remotely remove a rule specification from the intermediary. The rule injection module In addition, these (104) handles such remote operations. operations need not be limited to human administrators. Indeed, the first portion of the current invention details the mechanism that allows rule specifications to be loaded and unloaded dynamically between intermediaries. The rule injection module (104) plays the role here of accepting connections from other intermediaries and handle requests to load or unload a rule specification to/from the rule engine module (102).

Distribution of rules implies that rule specification(s) that is(are) loaded on one intermediary can be passed to another

10

15

20

intermediary to be evaluated. Whole or part of the rule specification may be indicated to be distributed. These indications also suggested to which intermediary along the data flow path to distribute to. Fig. 2 shows a typical content flow path. Note that there may be other network elements performing relaying task along the content path that are not shown in Fig. 2. Along the path from the content server (201) to the content user (207), there may be a single or plural number of intermediaries (202 – 206) with the current invention employed.

Authors of the rule specification can indicate which intermediary along the content flow path to distribute the rule specification partially or wholly. Since it is unreasonable for authors to know how intermediaries are deployed in an actual real world situation, authors specify the preferred intermediary where the rule is distributed to by indicating the direction of the distribution, i.e. towards the source node or towards the destination node. The term "source" and "destination" are used with respect to the data packets. The source node is the node that generates the data packet, and the destination node is the node that consumes the data packet. In a server-client model, the directions may be specified as "towards server" or "towards client".

For example, using the deployment scenario as illustrated in Fig. 2, a rule specification is submitted to the intermediate

10

15

20

25

network element foo4.bar.com (204). A part of the rule is indicated to be distributed towards the "destination". When processing a request packet, i.e. packet sent from the content user (207) to the content server (201), this portion of the rule intermediary to the be distributed can specification foo2.bar.com (202) or the intermediary foo3.bar.com (203). Conversely, when processing a response packet, the same portion of the rule specification can be distributed to the intermediate network element foo6.bar.com (206) or the network element foo5.bar.com (205). Similarly, when a part of the rule is indicated to be distributed towards the "server", it can be distributed to the intermediary foo2.bar.com (202) or the intermediary foo3.bar.com (203). Conversely, when a portion of the rule specification is indicated to be distributed towards the "client", that portion of the rule specification can be distributed to the intermediate network element foo6.bar.com (206) or the network element foo5.bar.com (205).

One objective of the current invention is to allow rule authors to be able to specify a rule hierarchy where the topmost level of the rule specification resides on one intermediary and the lower level portions of the rule specification reside on other intermediaries. This allows efficient control of the intermediary operations. Thus, in addition to specifying the direction at which distributed rules should flow (i.e. forward, backward, towards content server or

10

15

20

25

towards content user), the current invention also allows rule authors to specify the approximate location in that direction where the rule should be distributed.

Using the above example, a rule author may specify the distributed portion of the rule specification to be distributed to the intermediary as near to the content user as possible. In Fig. intermediary foo6.bar.com (206).implies the this 2. Alternatively, a portion of the rule might be specified to be distributed to the intermediary one hop away from the element In Fig. 2, this implies the nearest to the content user. intermediate network element foo5.bar.com (205). Similarly, it is possible for the rule author to specify that a portion of the rule to be distributed to the next intermediary towards the Using the previous example where the rule content server. specification is submitted to foo4.bar.com (204), this means the rule author wanted the portion of the rule to be distributed to the network element foo3.bar.com (203).

The current invention covers all the afore-mentioned means of marking the rule specification for distribution. As an illustration, the following character-based indication methods are presented. It should be apparent to anyone skilled in the art that other forms of indications can be used to achieve equal effect, such as using numeric or alphanumeric codes. In the character-based indications, each indications is of the form <target direction>-<approximate location from target>

10

15

20

25

or of the form

<approximate location towards target>-<target direction>
where <target-direction> is the term source, destination, server
or client, and <approximate location from target> and
<approximate location towards target> are numerical values
indicating the number of intermediaries away from the specified
target.

For instance, to indicate the portion of rule to be distributed to the intermediary nearest to the content server, the rule author may use an indication of server-1 to show that the rule should be distributed to the intermediary that is 1 hop away from the content server. When the indication of 2-server is used, the rule author expressed the desire to distribute the rule to an intermediary that is 2 hops away from the intermediary where the rule is loaded, towards the direction of the content server. Similarly, the indication client-2 indicates the rule should be distributed to the intermediate network element that is 2 hops away from the content user, and the indication 1-client indicates that the rule should be distributed to the next intermediary in the direction of the content user.

In order for intermediaries to distribute rule specifications among themselves, the intermediaries must have a way to first discover the existence of other intermediaries on a given content flow path. Each intermediary may also be connected to multiple content servers, content users and other intermediaries,

10

15

20

25

thus discovery may not be feasible to be performed statically using configuration files, nor one-shot at system starts up.

The present invention requires that intermediary to embed an indication of their presence in the content as data packets flows from the content user to the content server and vice versa. Such an indication is known as the signature of the These signatures should contain information of intermediary. the intermediary, such as the resolvable hostname and the of Capability intermediary. of the capabilities intermediaries should clearly indicate that the intermediary support distributed rules, and should also include information such as the special packages installed in the intermediary.

For example, in the HTTP and RTSP protocols, intermediaries can append their signature to the "Via" general header found in the request and response headers. An intermediary of hostname foo4.bar.com with installed QoS special package can insert the following "Via" header field as its signature:

Via: 1.1 foo4.bar.com (OPES=standard,qos,distributed)

For other protocols which do not have built-in mechanism for intermediaries to embed their signature, other means could be sought for. For instance, protocols usually provide the functionality for machines to embed optional information into the data packets (normally using optional extension headers). This can be used to carry signatures of the intermediary. In

10

15

20

25

addition, the above example used character strings as the signature for ease of understanding. It should be apparent to anyone skilled in the art that other forms of signature can be used to achieve equal effect, such as using numeric or alphanumeric codes, so long as an external entity can extract the hostname and capabilities of the intermediary from the signature.

In both cases where the protocol built-in mechanism is used, or optional extension is used, multiple signatures should be allowed so that signature of each subsequent intermediary can be appended. In other words, when a data packet reach any given intermediate network element in the content flow path, the intermediate network element knows the other intermediaries the data packet has previously traversed. This also enables the intermediary to know the order of the intermediaries the packet traversed.

In a typical operation, there will be request flowing from the content server, and the response flowing from the content server to the content user. Intermediaries will thus know all other intermediaries along the content flow path once a pair of request and response data packets passed through them. For instance, using the scenario shown in Fig. 2, the intermediary foo4.bar.com (204) will know the existence of the intermediaries foo6.bar.com (206) and foo5.bar.com (205) when the request from the content user

10

15

20

25

(207) reaches it. When the content response from the content server reaches foo4.bar.com (204), the intermediary will discover the existence of the intermediate network elements foo2.bar.com (202) and foo3.bar.com (203). Thus, the intermediary foo4.bar.com (204) will be able to detect the presence of other intermediate network elements in the entire content flow path.

cache o f known will maintain а Intermediaries intermediaries network along any given content flow path. The reason for doing so is explained below. When an intermediary received a request, it may be necessary for it to distribute a rule to another intermediate network element towards the content server. If the intermediary relies only on the embedded signature to discover other intermediate network elements, it cannot know in advance other intermediaries in the forward path towards the content server, until it receives the content Should such a situation arise, the rule engine module (102) should check if it could retrieve information of intermediaries from its cache. If it can, then the rule can be distributed to a forward intermediary; else, the rule should be evaluated locally.

To maintain the cache, the data formats as shown in Data Format 1 and Data Format 2 below can be used. Data Format 1 is used to record the host identification (stored in the field hostname) and capabilities (stored in the field capabilities) of

10

the intermediary. Data Format 2 is used to record the list of known intermediaries along a given content flow path. content flow path is uniquely specified by the source (stored in the field source), destination (stored in the field destination), and protocol (stored in the field protocol) triplet, expressed as {source, destination, protocol}. The num_nodes field store the number of intermediate network element that a data packet from the source node must traverse before reaching the destination node starting from (but excluding) the current intermediary, and the nodes array store the information of each of such Fig. 3 illustrates a pair of intermediate network element. intermediary the in stored formats data ContentPath foo4.bar.com (204) in the scenario depicted Fig. 2.

15 struct IntermediaryEntry {

NodelD hostname;

char capabilities[];

}

Data Format 1: Intermediary Entry

struct ContentPath {

NodelD

source;

NodelD

destination;

25

20

ProtocolType

protocol;

int

num_nodes;

struct IntermediaryEntry

nodes[];

}

5

10

15

20

25

Data Format 2: Data Flow Path Information

Fig. 4 depicts the method devised to extract the intermediaries' signatures embedded in the data packets and construct/update the ContentPath structure. When a data packet arrives, the intermediary first check if there is any signature embedded, as shown in the step marked with literal 401. If there is one, a ContentPath structure is searched from the cache that matches the {destination, source, protocol} triplet, as shown in step marked with literal 402. Note that the packet is for against checked data source of the ContentPath.destination, and vice versa. The reason for this is because the ContentPath structure is used to give the list of intermediaries towards the destination node, whereas when extracting signatures from the data packets, the intermediarles are given from the source node. Thus, there is a need to swap the destination and source nodes when searching for a match.

If none can be found, a new ContentPath structure is allocated, as shown in step marked with literal 403. When a

10

15

20

25

nodes fields will be purged, as shown in the step marked with literal 404. A last-in-first-out stack to store the signatures temporarily is then initialised to be empty and the counter n is set to zero in the step marked with literal 405. In the step marked with literal 406, each embedded signature is extracted and pushed to the stack. In addition, the counter n is incremented to record the number of signatures extracted. When all signatures are extracted, the counter n will contain the number of intermediaries before the current network element in the content flow path. This is stored to the num_nodes field. Signatures in the stack are then popped out to update the nodes array, as shown in the step marked with literal 406.

Previous description has presented the method for intermediaries to discover other intermediaries along the content flow path. When a rule engine module parses a rule specification and found that a portion of the rule specification is marked to be distributed, it can then check the appropriate ContentPath structure (by using the content server, content user, and protocol triplet) and determine which remote intermediaries to distribute the rule to.

Fig. 5 shows the algorithm used to determine the remote intermediary to distribute the rule to, given the indication of distribution in the form of

10

15

20

25

<target direction>-<approximate location from target>

<approximate location towards target>-<target direction>
as previously described. The term target is used to denote the numerical value of <approximate location towards target> or <approximate location from target>. The term directive contains the value "from" if the first form is used, and the value "to" if the second form is used. The term direction is the value "source" or the value "destination". The term src, dst and protocol refers to the source, destination and protocol extracted from the data packet respectively.

The algorithm first searches for the ContentPath data format as shown in the steps marked with 501 through 504. If the direction of distribution is towards the destination, the triplet {src, dst protocol} is used to locate the ContentPath, as shown in the step marked with literal 502. Else, the triplet {dst, src, protocol} is used instead, as shown in the step marked with literal 503. If no ContentPath can be found, the algorithm returns NULL, as shown in the step marked with literal 512. In the steps marked with 505 and 506, target in checked to prevent it from exceeding the number of remote intermediaries in the direction of distribution. In the step marked with literal 507, the distribution indication is checked to see if it is in the form

<target direction>-<approximate location from target>

or

5

10

15

20

25

<approximate location towards target>-<target direction>

For the first form, the numerical value indicates the number of intermediary from the end host (content server or content user). However, the intermediaries are listed in nodes array in the order of the direction towards the end node. Thus, in the step marked with literal 508, a temporary variable x is set to the number of intermediaries minus the numerical value target. Conversely, if the indication is in the second form, then the temporary variable x is set to the numerical value target minus 1, as shown in the step marked with literal 509. reason to subtract one is because the first element in the nodes array is assumed to be nodes[0]. Anyone skilled in the art can easily modify the above formulae to suit other kinds of array arrangement. In the step marked with literal 510, the variable x is checked to see if falls out of range. If it does, the algorithm returns NULL to indicate no suitable remote intermediary can be found, as shown in the steps marked with literal 512. Else, the function returns the remote intermediary given in nodes[x], as shown in the step marked with literal 511.

Fig. 6 shows the method of parsing a rule specification with the consideration of distributing rules. The rule specification is first parsed to check for syntactical validity, and invalid rules are rejected, as shown in the steps marked with 601, 602, and 603. The rule is next checked to see if the

10

15

20

25

it is marked to be distributed, as shown in step marked with literal 604. If it is not marked, the rule is evaluated locally (605). Else, the algorithm depicted in Fig. 4 is used to identify the remote intermediary to distribute the rule to, as shown in the step marked with literal 606. If the algorithm returns NULL, that means no suitable remote intermediary can be found, then the rule is evaluated locally, as shown in steps marked with 607 and 605. When a remote intermediary is found, it is checked to see if it supports the special package required by the rule, as shown in step marked with literal 608. If it does not, the rule is evaluated locally (605). If it does, the rule is then distributed (609). The whole process is repeated for the next rule to be parsed (610).

If a server-client model is used, where the target direction can be specified by towards "server" or towards "client" instead, then the method of locating the target intermediary given in Fig. 5 can no longer be used. Fig. 7 shows the method for a server-client model. The only difference between the algorithm in Fig. 7 and the one in Fig. 5 is in the steps marked with literals 701 through 703, and the steps marked with literals 501 through 503. In the step marked with literal 701, the target direction is first checked if it is towards server or client. If the target direction is server, the ContentPath is searched using the { node identification of client, node identification of server, protocol } triplet, as shown in the step marked with literal 702. If the

10

15

20

25

target direction is client, the ContentPath is searched using the { node identification of server, node identification of client, protocol } triplet, as shown in the step marked with literal 703. The remaining steps marked with literals 704 through 712 are identical to the steps marked with literal 504 through 512.

In order to distribute the rule, the intermediary needs to signal the receiving intermediary. For ease of explanation, the scenario that is illustrated in Fig. 2 is used. For the following discussion, the intermediary foo4.bar.com (204) is the network element that loads the rule, and it has determined that the rule needs to be distributed to the intermediary foo6.bar.com (206) for evaluation.

To signal foo6.bar.com (206), foo4.bar.com (204) can embed a signal into the data packet. The present invention requires that the embedded signal contain the identifier of the intermediary that is distributing the rule, the identifier of the intended intermediary receiving the rule, and the rule identifier that uniquely identifies the rule to be distributed. The rule identifier must uniquely identify the portion of the rule specification on a given intermediary that is to be distributed, and the identifier should not vary with time.

For example, in the HTTP and RTSP protocols, intermediaries can append tokens to the "Pragma" general header in the request and response headers. Thus, the current invention can make use of this to embed the required signals.

10

15

20

25

For example, foo4.bar.com can append the following token OPES-distributed="foo6.bar.com:XYZABC@foo4.bar.com"; to the "Pragma" general header of the response. The token used is of the form

OPES-distributed="<target>:<rule identifier>@<distributor>"
where <target> refers the hostname of the intermediary to
receive the distributed rule, <rule identifier> refers to the
unique identifier to identify the distributed rule, and
<distributor> refers to the intermediary that is distributing the
rule.

For other protocols which do not have built-in mechanism for intermediaries to embed signals, other means could be sought for. For instance, protocols usually provide the functionality for machines to embed optional information into the data packets (normally using optional extension headers). This can be used to carry signals for intermediary. In addition, the above example used character strings as the signature for ease of understanding. It should be apparent to anyone skilled in the art that other forms of signature can be used to achieve equal effect, such as using numeric or alphanumeric codes, so long as an external entity can extract the hostname of the distributing intermediaries, hostname of the target intermediary and the rule identifier from the signal.

In both cases where the protocol built-in mechanism is used, or optional extension is used, multiple signals should be

10

15

20

25

allowed so that two or more sets of rules can be distributed at a single passing of a data packet. Every intermediary must inspect the data packets to detect such signals, and check if the signal is intended for it. Once it determined the signal is intended for it, the intermediary can optionally remove the signal from the data packet.

The rule identifier is used to retrieve the actual rule from the distributing intermediary using a separate communications The rule injection module (104) is responsible for channel. channel communications such а establishing retrieving/passing any distributed rule. The current invention does not specify the format of such a communications channel. Because the rule identifier is unique given a specified retrieved should cache the intermediaries intermediary, distributed rule using the rule identifier and the hostname of the distributing intermediary as a cache key. This eliminates the need to retrieve the same distributed rule should a subsequent distribution occur again.

The above mechanisms can be deployed for contents distribution where there is a plurality of sending and receiving nodes. Such situation is decomposed into multiple data flow paths, each containing one sending node and one receiving node. Note that this decomposition is only used for the construction of the ContentPath structure as described previously. When an actual data that arrives at an intermediary

10

15

20

25

that is sent to plurality of receiving nodes, the intermediary can then decide on the rule distribution based on each ContentPath structure for each corresponding sending node (i.e. source) and receiving node (i.e. destination) pair. If the targeted intermediary to distribute a rule to happens to be the same, then a single signal can be embedded onto the content. If more than one target intermediary is identified (because the content path split somewhere along the line), one separate signal for each targeted intermediary can be embedded into the content.

In the previous descriptions, the intermediate network for This document will, in the distribution of rule is revealed. following discussions, turn to the next portion of the current invention, which narrows the deployment of the current invention to real time content streaming situation. In this situation, the content user sends a request to the content of plural number single ОГ via server. intermediary(intermediaries) which is(are) the object(s) of the current invention, to set up a real time session. When the content server accepts the request with an appropriate response, a communications channel is set up between the through user content server and the content This communications channel intermediary(intermediaries). between the content server and content user is hereafter referred to as the content session. The content server starts transmitting data packets through the content session to the

10

15

20

25

content user without any active request from the content user, until the content user sends a request, via the intermediary, to tear down the content session. Such data packets sent spontaneously by the content server are henceforth referred to as content packets. During the course of the transmission of content packets by the content server, the content user may or may not transmit information about the transmission statistics back to the content server. Such statistics are hereafter referred to as feedback packets.

One existing protocol that fits the above description is the Real Time Streaming Protocol (RTSP). However, the current invention can be applied to other protocols that exhibit the same behaviour previously described, as should be apparent to anyone skilled in the art.

For all known prior arts, rules are evaluated for each request and/or response packets that passes through the intermediary. The current invention extends this by providing the capability for rule authors to specify rules that are evaluated whenever a content packet passes through the intermediary, rules that are evaluated whenever a specifies multiple of content packets passes through the intermediary, rules that are evaluated when a feedback packet passes through the intermediary, and rules that are evaluated at a specified regular interval throughout the duration when the content session is established. To attain such provision, rule

authors are allowed to tag each rule with a special attribute. For purpose of explanation, the attribute is referred to as the "evaluateOn" attribute. Table 1 below listed the possible values of the "evaluateOn" attributes. Anyone skilled in the art should recognized that the current invention can be deployed using other names.

10

"evaluateOn" Attribute	Description
"request"	the rule is to be evaluated upon the reception by the intermediary of a request packet from the content user to the content server
"response"	the content user to the evaluated upon the reception by the intermediary of a response packet from the content server to the content user
"content"	the rule is to be evaluated upon the reception by the intermediary of a content packet from
"feedback"	the rule is to be evaluated upon the reception by the intermediary of a feedback packet from the content user to the content server
"x-contents"	the rule is to be evaluated upon the reception by the intermediary of x multiple number of content packets from the content server to the content user, where x is a specified numerical value
"t-seconds"	the rule is to be evaluated when a content packet is received upon elapsed of every t seconds interval for as long as the content session is established, where t is a specified numerical value

Table 1: "evaluateOn" Attributes

The last part of the current invention concerns the employment of special packages (103). As described earlier, special packages (103) are modules that enable the rule engine module (102) to evaluate rules involving different set of parameters (such as Quality of Service). The current invention defines a new special package, known as the "Delivery Context" special package. This package will allow the rule engine module (102) to interpret rules that are constructed based on delivery context. Four major classes of delivery context are

10

15

These are User defined, as shown in Table 2 below. Preferences, Agent Capabilities, Device Capabilities, and Natural Environment. User Preferences refers to information about the human user, including browsing preference, language preferences, display preferences, QoS preferences, age group Agent Capabilities provide information on the and gender. software agent, such as the agent type, supported formats, supported languages, and supported transport protocols. Device Capabilities refers to the information about the hardware device, which include the device type, processor speed and type, memory capacity, screen resolution and depth, provide Environment Natural systems. operating information about the natural environment surrounding the end user, including whether the end user is indoor or outdoor, the end user's velocity, location of the end user, and illumination properties.

User Preferences					
Parameters	Values				
	descriptive text about the user's browsing				
"browsing-	WSIIIg- Gescriptive text are an				
preference" preferences, such as text only, image sizes handicaps accessibilities options, searching					
and filtering preferences					
"language- descriptive text about user's order of langua					
preference"	preferences				
"display- descriptive text about user's color preferences,					
preference"	full screen or window				
"age-group"	descriptive text about the user's age group				
"gondor" descriptive text about the user's gender					
"employment"	descriptive text about the user's job nature				
	Agent Capabilities				
Parameters	Values				
"agent-type"	descriptive text about the software agent				
"supported-	descriptive text about the content formats				
supported and content encoding supports					
"supported- descriptive text about the language supported					
languages" by the software agent					
"supported-	descriptive text about the transmission				
protocois"	protocols supported by the software agent, and				
whether it has multicasting, producesting					
	capabilities				
	Device Capabilities				
Parameters	Values				
"device-type"	descriptive text about the device type				
"processor"	descriptive text about processor speed and				
	family				
"memory- ~	descriptive text about memory capacity of the				
capacity"	physical and secondary memory				
"screen"	descriptive text about resolution and depth				
"operating-	descriptive text about the operating system				
system"	system" type				
	Natural Environment				
Parameters	Values				
"location"	descriptive text about the user's location, such				
	as indoor or outdoor, and the locale				
"mobility"	descriptive text about the user's mobility,				
}	whether fixed or moving, and the velocity if				
	moving descriptive text about illuminations surrounding				
"illuminations"	descriptive text about mummations surrounding				
	the end user				

Table 2: Delivery Context Parameters

10

15

20

25

The Delivery Context special package interprets rules that are constructed using parameters that are from delivery context. There are various methods where the delivery context special package can obtain the actual values of the parameters. One method is to establish a communications channel with an external entity that provides knowledge of such parameters, for example the content user. For parameters such as the Device Capabilities, it might be necessary to obtain it from the content user directly. An alternative method is to obtain it from another module that resides on the intermediary. This module may gather the values locally, load the values from a storage device or request the values from an external entity. For parameters such as the Natural Environment, the intermediary may be able to deduce the information on its own, especially when the intermediary is located near the content user. For parameters such as the User Preferences, the human user may have registered a set of profiles to be stored at the intermediary.

The invention allows intermediate network elements along a content flow path to actively collaborate their content delivery efforts to enhance user experience in content retrieval. With more and more content delivery networks (CDN) deployed in the Internet, the invention disclosed in this document allows intermediaries of such CDNs to orchestrate their efforts by the provision of distributed rules. Rules loaded on one network element can be distributed to other intermediaries in real time,

10

so that adaptation of data contents and contents request can be performed at a more suitable node. It also allows better control over the operations of content delivery.

In addition, the disclosed invention contains methods and means which are specific to the real-time delivery of Audio Visual content in a packet switch network. This allows rule authors to create rules that can react to fluctuations in the network conditions of the content streaming more speedily. Authors can also create rules that are based on the device capabilities and user preferences of the content consumers. When such rules are authored carefully with suitable adaptation services, the overall user experience in content retrieval will be significantly enhanced.

10

15

20

25

CLAIMS

- 1. A network control framework apparatus for controlling resources at an intermediate network element connecting two or more communications networks comprising of the following entities:
 - i. the gateway module providing gateway functionality,
 - ii. the rule engine module to perform network resource control decision based on specified rules, wherein the rules are specified in a rule specification format hereafter known as a Rule Specification,
 - iii.a single or plural number of special package add on to the rule engine module where a said special package offers specialized functionality to the rule engine module, and
 - iv. the rule injection module to inject or remove Rule Specification to or from the rule engine module.
- 2. A means for distribution of Rule Specification as recited in claim 1 to a single or plural number of intermediate network elements as recited in claim 1, comprises of
 - the indications in the Rule Specification to indicates part or whole of the Rule Specification is to be distributed,
 - ii. the signature embedded into data packets to announce the capabilities of the intermediate network elements the data packet traversed,

10

20

- iii.the method of parsing the Rule Specification to determine if part or whole of the specified Rule Specification is distributed,
- iv the method of identifying the target network element to distribute part or whole of a Rule Specification,
- v. the signaling embedded into data packets to inform target network element of the distribution of part or whole of Rule Specification,
- vi the retrieval of the part or whole of Rule Specification

 distributed to the target network element from the

 intermediate network element that distributes the part

 or whole of Rule Specification.
- 3. A format of indications of part or whole of Rule

 15 Specification for distribution as recited in claim 2 to a single or plural number of intermediate network element as recited in claim 1, comprises of
 - i. the specification of the direction of distribution by specifying the endpoint of the specified direction.
 - ii. the specification of the number of intermediate network elements towards the specified endpoint,
 - iii.the specification of the number of intermediate network elements from the specified endpoint, and/or
 - iv.the specific content distributed at the intermediate network elements.

10

- 4. A format of signature embedded into single or plural number of data packets as recited in claim 2 to announce the capabilities of the intermediate network elements as recited in claim 1 the data packets traversed, comprises of
 - the identification of the intermediate network element the signature belongs to,
 - ii. the special packages as recited in claim 1 that are installed on the intermediate network element the signature belongs to, and
 - iii.the capability of accepting or generating part or whole of a Rule Specifications for distribution.
- 5. A means for intermediate network elements as recited in claim 1 to store the signatures embedded in single or plural number of data packets as recited in claim 2 or 4 wherein the signatures of the intermediate network elements that the data packets traversed are stored with the starting and ending points between which the data packets traversed in the order of which the data packets traversed and the transmission protocol the data packets belongs to.
 - 6. The data format used to store the signature of intermediate network element as recited in claim 1, 2, 4 or 5, containing the identification of the intermediate network

15

20

25

element and the installed special packages as recited in claim 1 at the intermediate network element.

- 7. The data format used to store the signatures of the intermediate network elements as recited in claim 1, 2, 4, or 5 that a single or plural number of data packets flowing from one endpoint to another traverses, containing
 - the identification of the ending point that the data packets flow to,
- 10 ii. the identification of the starting point that the data packets flow from,
 - iii.the transmission protocol the data packets belongs to,
 - iv. the array of signatures of the intermediate network elements in the order of the data packets traverse from the intermediate network element where the data format is stored to the ending point, and
 - v. the number of signatures of the intermediate network elements in the order of the data packets traverse from the intermediate network element where the data format is stored to the ending point.
 - 8. A method of extracting the signature of intermediate network elements embedded in single or plural number of data packets as recited in claim 1, 2, 4 or 5, to be stored in the data format as recited in claim7, comprises the steps of

- checking if there are embedded signatures in the data packets,
- ii. checking if there exist a data format as recited in claim 7 that is previously stored having the same starting and ending points and transmission protocol,
- iii.allocating a new data format when there is no data format that is previously stored having the same starting and ending points and transmission protocol,
- iv.purging data stored in the data format that previously

 existed having the same starting point, ending point

 and transmission protocol,
 - v. preparing an empty last-in-first-out data structure,
 - vi.extracting each embedded signature in the data packet and pushing it to the last-in-first-out data structure,
- 15 vii. removing each element in the last-in-first-out data structure and recording it to the data format as recited in claim 7, and
 - viii. recording the number of embedded signature extracted in the data format recited in claim 7.
- 9. A method of parsing the Rule Specification as recited in claim 2 to determine if part or whole of the Rule Specification
 - is to be distributed comprises the steps of

 i. checking each rule in the Rule Specification for syntactical validity,

10

- ii. rejecting the rule if there is syntactical errors,
- iii.checking the rule for the distribution indication as recited in claim 3,
- iv.evaluating the rule locally if there exist no distribution indication,
- v. determining the remote intermediate network element to distribute the rule to,
- vi.evaluating the rule locally if no suitable remote intermediate network element to distribute the rule to can be found,
- vii. checking if the remote intermediate network element contains the special package or special packages required in the rule,
- viii. evaluating the rule locally if the remote intermediate network element do not have the required special package or special packages, and
- ix. distributing the rule to the remote intermediate network element.
- 20 10. A method of determining the remote intermediate network element that a rule is to be distributed to as recited in claim 9, given the distribution indication as recited in claim 3, comprises the steps of
- i. the method of locating the data format as recited in claim
 7 with the matching starting point, ending point and

10

15

20

25

transmission protocol,

- ii. declaring no suitable remote intermediate network element if no data format as recited in claim 7 can be located,
- iii.setting the a temporary variable to the specified number of the intermediaries towards or from the specified endpoint in the given distribution indication,
- of intermediaries as given in the located data format as recited in claim 7 if the specified number of the intermediaries towards or from the specified endpoint in the given distribution indication is greater than the number of intermediaries towards or from the specified endpoint in the given distribution indication,
- v. whereas the specified distribution indication as recited in claim 3 consists of the specification of the ending point and the specification of the number of intermediate network elements towards the specified ending point, set the temporary variable to a value equals the number of intermediaries given in the located data format as recited in claim 1 minus the original value in the temporary variable,
 - vi.whereas the specified distribution indication as recited in claim 3 consists of the specification of the ending point and the specification of the number of intermediate network elements from the specified ending point, set

the temporary variable to a value equals the original value in the temporary variable minus 1,

- vii. declaring the remote intermediate network element to be the network element specified in a signature stored I the located data format as recited in claim 7 where the signature has an index in the array of signatures in the located data format as recited in claim 7 equals to the value stored in the temporary variable should such an index exits, and
- of viii. declaring no suitable remote intermediate network element should the index equal to the value stored in the temporary variable does not exist in the array of signatures in the located data format as recited in claim 7.

15

5

11. A format of signalling to signal the intermediate network element as recited in claim 1 to express the desire to distribute collection of a single or plural number of rules in a Rule Specification to the intermediate network element consisting of

20

- the identification of the intermediate network element where the collection of single or plural number of rules in a Rule Specification is distributed to,
- ii. the identification of the intermediate network element where the collection of single or plural number of rules in a Rule Specification is distributed from, and

10

15

20

25

iii.the identification of the collection of single or plural number of rules in a Rule Specification.

- 12. A means of retrieving the collection of single or plural number of rules in a Rule Specification from the intermediate network element as recited in claim 1 that distributes the collection of rules by the intermediate network element where the collection of rules is distributed to, comprises of
- i. the establishment of a communication channel between the intermediate network element where the collection of rules is distributed to and the intermediate network element where the collection of rules is distributed from,
 - ii. the provision of the identification of the collection of rules
 that is distributed as recited in claim 11 via the
 communications channel by the intermediate network
 element where the collection of rules is distributed to,
 and
 - iii.the transmission of the collection of rules that is distributed via the communications channel by the intermediate network element where the collection of rules is distributed from.
 - 13. A network control framework apparatus for controlling resources at an intermediate network element connecting two or more communications networks, wherein an endpoint node

10

15

20

25

hereafter known as a client node sends a request to the other endpoint node hereafter known as a server node, via a single or plural number of the intermediaries, and the server node accepts the request with an appropriate response, and a communications channel is set up between the server content server and the client node through the intermediaries, and the server node starts transmitting data packets through the communications channel to the client node until the client node sends a request, via the intermediaries, to tear down the communications channel, and the client node may transmit information about the transmission statistics back to the server node, comprises of the following entities:

- i. the gateway module providing gateway functionality,
- ii. the rule engine module to perform network resource control decision based on specified rules, wherein the rules are specified in a rule specification format hereafter known as a Rule Specification,
- iii.a single or plural number of special package add on to the rule engine module where a said special package offers specialized functionality to the rule engine module, and iv. the rule injection module to inject or remove Rule
 - Specification to or from the rule engine module.
- 14. A means of providing the author of Rule Specification as recited in claim 13 to trigger a singular or plurality of rules at a

10

15

20

intermediate network element as recited in claim 13 based on the following control methods

- the rule to be evaluated when the intermediate network element received a request packet from the client node to the server node,
- ii. the rule to be evaluated when the intermediate network element received a response packet from the server node to the client node,
- iii.the rule to be evaluated when the intermediate network element received a data packet containing contents sent by the server node to the client node through the communications channel established between the server node and the client node,
 - iv.the rule to be evaluated when the intermediate network element received a data packet containing the transmission statistics from the client node to the server node,
 - v. the rule to be evaluated when the intermediate network element received a specified number of data packet containing contents sent by the server node to the client node through the communications channel established between the server node and the client node, and
- vi the rule to be evaluated when the intermediate network
 25 element received a data packet containing contents

sent by the server node to the client node through the communications channel established between the server node and the client node after the elapse of a recurrent timer of a specified timer value.

5

15. A set of parameters used in the Rule Specification as recited in claim 1 to control a single or plural number of content or content delivery sessions to achieve device independence in the delivery of said content, consisting of

10

 the set of User Preference parameters consisting of the preferences of the human user consuming the content

ii. the set of Agent Capabilities parameters consisting of the capabilities of the software agent employed by the human user to retrieve the content,

15

the capabilities of the hardware employed by the human user to retrieve the content, and

20

25

iv. the set Natural Environment parameters consisting of the information about the environment in which the human user retrieves the content.

- 16. The set of User Preference parameters as recited in claim
 15 consisting of
- the human user's preferences on the method of retrieving the content,

- ii. the human user's preferences on the language used in the retrieved contents,
- iii.the human user's preferences on the presentation of the retrieved content,
- 5 iv. the age group of the human user retrieving the content,
 - v. the gender of the human user retrieving the content, and
 - vi.the employment status of the human user retrieving the content.
- 10 17. The set of Agent Capabilities parameters as recited in claim 15 consisting of
 - i. the type of software agent employed by the human user to retrieve the content,
 - ii. the content formats supported by the software agent employed by the human user to retrieve the content,
 - iii.the content languages supported by the software agent employed by the human user to retrieve the content,
- iv the transmission protocols supported by the software

 agent employed by the human user to retrieve the content.
 - 18. The set of Device capabilities parameters as recited in claim 15 consisting of
- 25 i. the type of hardware employed by the human user to

10

15

retrieve the content,

- ii. the processor speed and processor family of the hardware employed by the human user to retrieve the content,
- iii.the memory capacity of the physical and secondary storage of the hardware employed by the human user to retrieve the content,
- iv. the display depth and resolution of the hardware employed by the human user to retrieve the content, and
- v. the operating system running on the hardware employed by the human user to retrieve the content.
- 19. The set of Natural Environment parameters as recited in claim 15 consisting of
 - i. the information of the location where the human user is retrieving the content,
 - ii. the information of the mobility of the human user retrieving the content, and
 - iii.the information of the illuminations conditions in which the human user is retrieving the content.
- 20. The special packages installed to the intermediate network element as recited in claim 1 capable of interpreting and evaluating Rule Specification that are constructed using the sets of parameters as recited in claim 15, 16, 17, or 18.

Fig.1

Fig.3

```
ContentPath = {
      source = "foo.user.com"
      destination = "foo.server.com"
      protocol = ...
      num_nodes = 2
      nodes[0] = {
            hostname = "foo3.bar.com"
            capabilities = ...
 nodes[1] = {
            hostname = "foo2.bar.com"
            capabilities = ...
      }
}
ContentPath = {
      source = "foo.server.com"
       destination = "foo.user.com"
       protocol = ...
       num_nodes = 2
       nodes[0] = {
             hostname = "foo5.bar.com"
             capabilities = ...
       nodes[1] = {
             hostname = "foo6.bar.com"
       capabilities = ...
 }
```

Fig.4

Fig.5

Fig.6

(19) World Intellectual Property Organization

International Bureau

1 CONT CHINDON IN CONTRACTOR CONTRACTOR HAVE NO THE CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT

(43) International Publication Date 25 September 2003 (25.09.2003)

PCT

(10) International Publication Number WO 2003/078459 A3

(51) International Patent Classification7:

H04L 29/08

(21) International Application Number:

PCT/JP2003/003140

(22) International Filing Date: 17 March 2003 (17.03.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/364,585

18 March 2002 (18.03.2002) US

(71) Applicant (for all designated States except US): MAT-SUSHITA ELECTRIC INDUSTRIAL CO., LTD. [JP/JP]; 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8501 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NG, Chan Wah [SG/SG]; Apt Block 9A, Ghim Moh Road, #09-140, 271009 Singapore (SG). TAN, Pek Yew [MY/SG]; Block 128, Yishun Street 11, #05-305, 760128 Singapore (SG).

- (74) Agents: AOYAMA, Tamotsu et al.; AOYAMA & PART-NERS, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 15 April 2004

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR CONFIGURING AND CONTROLLING NETWORK RESOURCES IN CON-TENT DELIVERY WITH DISTRIBUTED RULES

(57) Abstract: An intermediate network element deployed in a content delivery network is disclosed (202-206). The content delivery network cooperates its content delivery effort with other intermediate network element with similar capabilities. Distributing rules that govern the operations of the intermediate network element(s) are presented. These include the framework of the intermediate network element(s), the format of indicating part or whole of a rule specification to be distributed, the format of signatures for intermediate network elements to discover each other, the format of signaling other intermediate network elements that a rule is distributed to, and the method of determining the intermediate network element to distribute a rule to. In addition, authoring rules that are specific to real time streaming of contents are disclosed. A set of rule evaluation conditions are revealed that can be triggered based on different criteria during the streaming of real time contents. A set of parameters from which rules can be based on is disclosed.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Internation No **B140** PCT/JP Q

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04L29/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

alegory °	ENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
X	SRISURESH P ET AL: "Middlebox communicatin architecture and framework;" INTERNET ENGINEERING TASK FORCE, XX, XX, 28 February 2002 (2002-02-28), pages 1-35, XP002211545 abstract figure 1 Section 1., 2.6, 2.8, 2.9, 2.12, 2.14, 2.15, 4., 5.	1,2,13,
A	-/	9,10,12

Fuither documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filing date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
10 October 2003	2 4. 10. u3
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Gabriel, C

PCT/JP (23140

		PC1/JP (3140
Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
ategory °	Citation of document, with indication, where appropriate, of the relevant passages		Helevant to Claim 140.
	BECK A, HOFMANN M: "IRML: A Rule Specification Language for Intermediate Services; Version 02" IETF INTERNET DRAFT, 'Online! 21 November 2001 (2001-11-21), pages 1-27, XP002256751		1,2,13, 20
	Retrieved from the Internet: <url:www.globecom.net ietf=""> 'retrieved on 2003-09-30! abstract</url:www.globecom.net>		
, \	'002.!, '03.1!, '3.5.1!, '3.6.1!, '004.!		14 9,10,12
(NG C W, TAN P Y, CHENG H: "Quality of Service Extension to IRML" IETF INTERNET DRAFT, 'Online! July 2001 (2001-07), pages 1-13, XP002256752 Retrieved from the Internet: <url:www.globecom.net ietf=""> 'retrieved on 2003-10-06! abstract</url:www.globecom.net>		20
Y A	paragraph '04.2!		14 1,13
X	WO 01 77841 A (NETWORK APPLIANCE INC) 18 October 2001 (2001-10-18) abstract figures 1,3,4A page 7, line 26 -page 9, line 11		1,2,12, 13,20
Α	page 24, line 15 -page 25, line 32		9,10
X	BARBIR A. ET AL: "Requirements for an OPES Service Personalization Callout		1,13,20
:	Server" IETF INTERNET DRAFT, 'Online! 7 March 2002 (2002-03-07), pages 1-25, XP002247308 Retrieved from the Internet: <url:www.globecom.net ietf=""> 'retrieved on 2003-07-09! Section 1., 2., 3., 3.3, 4.</url:www.globecom.net>		
A	figure 1		2,9,10, 12,14
	-/		

PCT/JP (3140

1,9,10, 12,13,20	
1,9,10, 12,13,20	
1,9,10, 12,13,20	
12,13,20	
12,13,20	
5	
8	
1,13,14,	
2,9,10,	2
	na min

PCT/JP (2003)140

		PC1/JP C	3140	\dashv
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.	\dashv
Category °	Citation of document, with indication, where appropriate, of the relevant passages			4
P,A	NG, C.W; TAN, P. Y.: "QoS and Delivery Context in Rule-Based Edge Services" 7TH INTERNATIONAL WORKSHOP ON WEB CONTENT CACHING AND DISTRIBUTION (WCW), 'Online! 14 August 2002 (2002-08-14), XP002256668 Boulder, Colorado, USA Retrieved from the Internet: <url:2002.iwcw.org> 'retrieved on 2003-09-30!</url:2002.iwcw.org>		1,2,5, 8-10, 12-14,20	į
	abstract see a figure 3 paragraphs '03.1!,'03.2!			
	~		, T	

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sneet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 3,4,6,7,11,15-19 because they relate to subject matter not required to be searched by this Authority, namely:
	see FURTHER INFORMATION sheet PCT/ISA/210
*2: *	Claims Nos.: ***:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Int	ernational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1. X	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
r 3: r	-As only some of the required additional search fees were timely paid by the applicant; this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remai	The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Claims Nos.: 3,4,6,7,11,15-19

Independent claims 3, 4, 6, 7, 11, and 15-19 do not meet the requirements of Rule 39 PCT and are therefore not searched. The reasons are the following:

The "data format" of claims 6 and 7, and the "parameters" of claims 15-19 are a mere representation of information, defined solely by the content of the information, without any technical effect, and therefore do not meet the requirements of Rule 39 (v) PCT.

The "format of indications" as defined in claim 3, the "format of signature", as defined in claim 4, and the "format of signalling" in claim 11, are defined only by the structure of their fields (items "i" - "iv" in claim 3; items "i"-"iii" in claim 4; and items "i"-"iii" in claim 11) and do not comprise any technical features of the system in which they occur. The subject-matter of these claims is therefore considered to be a mere representation of information, defined solely by the content of the information and without a technical effect of its own, and therefore does not meet the requirements of Rule 39 (v) PCT either.

mation on patent family members

International Application No.
PCT/JP 03140

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0177841	A	18-10-2001	AU EP WO	5147001 A 1305924 A2 0177841 A2	23-10-2001 02-05-2003 18-10-2001
US 5781534	A	14-07-1998	NONE		