Analysis of Higgs production in the VBF-VH channel at the LHC

A talk for Snowmass EF04 February 3, 2022

Collaboration of . . .

Prof. Daniel Stolarski ~ Carleton University, Canada

Dr. Yongcheng Wu ~ Oklahoma State University, USA

Chaitanya Paranjape ~ IIT (ISM) Dhanbad, India

Introduction

• Propose to probe the Higgs couplings to vector bosons

• We only measure rates of the tree level processes $h \to ZZ^*, h \to WW^*$ without interference effects, which are proportional to square of couplings

$$|\mathcal{M}_{hZZ}|^2 \sim \kappa_Z^2$$

$$|\mathcal{M}_{hWW}|^2 \sim \kappa_W^2$$

Introduction

• Thus, measuring λ_{WZ} with these couplings will have almost no discriminating power

between positive and negative values of λ_{WZ} .

$$\lambda_{WZ} = \frac{\kappa_W}{\kappa_Z}$$

$$\lambda_{WZ}^2 = \frac{\kappa_W^2}{\kappa_Z^2} \sim \frac{|\mathcal{M}_{hWW}|^2}{|\mathcal{M}_{hZZ}|^2}$$

- \Longrightarrow Gives rise to the need of analysing processes with Interference effects
- ullet \Longrightarrow VBF-VH channel

ATLAS + CMS, arXiv:1606.02266.

D.Stolarski and Y. Wu, arXiv: 2006.09374.

Signal Process

• First we need to fix the 'signal' process suiting the VBF-VH channel

signal:
$$p p > z h j j QCD=0$$
, $h > b b\sim$, $z > 1-1+$

• \Longrightarrow Quantum Interference between different diagrams, thus sensitive to both couplings $\kappa_W \& \kappa_Z$

All processes

```
signal: p p > z h j j QCD=0, h > b b \sim, z > l-l+
                                                                                  0.9104 \, \text{fb}
  bcg1: pp > zh j j, h > b b\sim, z > 1-1+
                                                                                  1.916 fb
                                                                                  5313.0 fb
  bcg2 : pp > t t\sim , (t > w+ b , w+ > e+ vl ) ,( t\sim > w- b\sim , w- > e- vl\sim)
    && pp > t t\sim, (t > w+ b, w+ > mu+ vl), (t\sim > w- b\sim, w- > mu- vl\sim)
  bcg3 : pp > zzjjQCD=0, z > b b\sim , z > 1-1+
                                                                                  1.214 fb
  bcg4: pp>zzjj,z>bb\sim,z>l-l+
                                                                                  8.737 fb
  bcg5 : p p > z b b \sim j j , z > 1-1+
                                                                                  1113.0 fb
```

*Some event generation conditions are imposed

Variation with κ_W, κ_Z

Raw signal (Blue) VS Raw bcg1 (Red)

Raw signal (Blue) VS Raw bcg1 (Red)

• Cross-sections for the raw signal (C_1) and raw bcg1 (C_2) can be modeled as:

$$C_1 \sim (17.41 \text{ fb}) \cdot \kappa_W^2 - (14.755 \text{ fb}) \cdot \kappa_W \kappa_Z + (12.41 \text{ fb}) \cdot \kappa_Z^2$$
 $C_2 \sim (114.2 \text{ fb}) \cdot \kappa_Z^2$

Initial cuts

- Atleast one forward-backward jet pair must exist
- Number of MasterJets ≥ 4
- Number of Delphes B-tagged Jets ≥ 2
- Number of VBF-B-Jets == 0
- Invariant mass of the detected OSSF Lepton pair⁸ \in (81GeV, 101GeV)

- *VBF-Tagging Jet pair: a forward-backward jet pair with highest invariant mass of all such pairs
- *MasterJet: A jet satisfying $p_T \ge 20 \text{ GeV}$ AND $|\eta| \le 5$

DeltaEta $|\eta_{VBF}|$: Absolute pseudo-rapidity difference between the two VBF-Tagging jets

DiJetMass

DiBJetMass: Invariant mass of the two Delphes B-Tagged jets

$\Delta R_{b\bar{b}} = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}.$ DRBB

Semi-final cuts

Initial cuts +

- ullet DeltaEta ≥ 4 : ($|\eta_{ ext{VBF}}| \geq 4$)
- \bullet DiJetMass $\geq 1000~{
 m GeV}$
- DiBJetMass $\in (110 \text{ GeV}, 130 \text{ GeV})$
- DRBB ≤ 2 : $(\Delta R_{b\bar{b}} \leq 2)$
- \bullet missingET $< 50~{
 m GeV}$
- PT-Jet1¹¹ $\geq 100 \text{ GeV}$
- \bullet PT-Jet2 $\geq 70~{
 m GeV}$
- PT-Jet3 $\geq 50 \text{ GeV}$
- PT-B-Jet1¹² $\geq 55 \text{ GeV}$
- \bullet PT-B-Jet2 $\geq 55~{
 m GeV}$

Boosted-Higgs search

- We employ the *BDRS algorithm for boosted Higgs search
- Use FastJet analysis framework for this purpose, with (E, \vec{p}) data of detected particles from Delphes

FastJet analysis

- Events selected with semi-final cuts are reconstructed again in FastJet with Anti-kt algorithm and R=0.5 to remove the VBF-Jet constitutents and isolated leptons.
- On the remaining particles, apply jet reconstruction with Cambridge-Aachen Algorithm with R=2.0.
- Obtain the leading jet in p_T and apply Mass drop tagger with $\mu = 0.667 \& y_{cut} = 0.09$
- Invariant mass of the two tagged pieces is the reconstructed Higgs mass: Hmass
- Hmass $\in (110 \text{ GeV}, 130 \text{ GeV})$

Final cuts

- Atleast one forward-backward jet pair must exist
- Number of MasterJets ≥ 4
- Number of Delphes B-tagged Jets ≥ 2
- Number of VBF-B-Jets ==0
- Invariant mass of the detected OSSF Lepton pair ∈ (81GeV, 101GeV)
- ullet DeltaEta ≥ 4 : ($|\eta_{ ext{VBF}}| \geq 4$)
- \bullet DiJetMass $> 1000~{
 m GeV}$
- DRBB ≤ 2 : $(\Delta R_{b\bar{b}} \leq 2)$

- ullet missingET $< 50~{
 m GeV}$
- PT-Jet1 $\geq 100 \text{ GeV}$
- PT-Jet2 $\geq 70 \text{ GeV}$
- PT-Jet3 $\geq 50 \text{ GeV}$
- \bullet PT-B-Jet1 $\geq 55~{
 m GeV}$
- \bullet PT-B-Jet2 $\geq 55~{
 m GeV}$
- DiBJetMass $\in (110 \text{ GeV}, 130 \text{ GeV})$
- Hmass $\in (110 \text{ GeV}, 130 \text{ GeV})$

Event yields

The event yield (Y) for any process is given by,

$$\mathcal{L} = 3000 \ fb^{-1}$$

$$Y = \mathcal{L} \cdot C_X \cdot \frac{\text{Number of Events selected}}{\text{Total number of Events Simulated}}$$

$$Yield-error = \sqrt{\frac{Y^2}{\text{Number of Events selected}}}$$

Process	Event selection	Yield
Signal (S)	503 / 100k	6.23 ± 0.28
$Bcg1(b_1)$	12 /100k	0.32 ± 0.09
$Bcg2(b_2)$	3 /5M	9.56 ± 5.52
$Bcg3 (b_3)$	23 /100k	0.84 ± 0.17
$Bcg4 (b_4)$	1 /100k	0.26 ± 0.26
$Bcg5 (b_5)$	9 /700k	42.93 ± 14.31

Table 2: Event yields for all processes, final analysis.

Significance

• Significance compared with only Delphes analysis

Significance (σ)	Final analysis	Only Delphes analysis
$\frac{S}{\sqrt{B}}$	0.85	0.64
$\frac{S}{B}$	0.12	0.05
$\frac{S}{\sqrt{B+(\beta\cdot B)^2}}$	0.68	0.38

Table 4: Significance comparison between final analysis and only Delphes analysis.

we take $\beta = 0.1(10\%)$

Contour plots over (κ_W, κ_Z) plane

- We fix the analysis in the SM ($\kappa_W = \kappa_Z = 1$) with final cuts described as before.
- Proceed to run the analysis over multiple set of (κ_W, κ_Z) points and produce the contour plots for the deviation from the expected SM behaviour.

$$\sigma = \frac{|A(\kappa_W, \kappa_Z) - A_{SM}|}{\sqrt{A_{SM} + (\beta \cdot A_{SM})^2}}$$

Where A = S + B is the total yield at the corresponding point.

Contour plots over (κ_W, κ_Z) plane

Concluding remarks

- Possible to exclude the $(\kappa_W, \kappa_Z) = \pm (1, -1)$ point with more than 95% (2 σ) CL limit at the HL-LHC.
- ⇒ Provides a direction to measure the sensitivity of the relative sign between the Higgs couplings to vector bosons at the HL-LHC.

Future directions

Additional cuts to further improve the analysis:

- VETO events with an 'Extra' jet with $p_T \ge 30 \text{ GeV}$ AND $|\eta| \le 2.5$
- Put limiting constraints on the p_T of **Z** boson.

 \implies This was the analysis for VBF-ZH process.

Similarly, conduct an analysis of VBF-WH process for further insights.

Thank you for listening!

Questions?

Extra slides

Event generation

(This list is for all the processes except the bcg2)

```
set ptb 20.0  # minimum pt for the b set drbb 0.4  # min distance between b's set mmjj 100.0  # min invariant mass of a jet pair set xetamin 0.5  # minimum rapidity for two jets in the WBF case set deltaeta 1.0  # minimum rapidity difference for two jets in the WBF case set ebeam1 6500  # Energy of beamline-1 set ebeam2 6500  # Energy of beamline-2 set kW 1.0  # \kappa_W value set kZ 1.0  # \kappa_Z value
```

Event generation

Whereas, for the bcg2,

```
set missetmax 70.0 # maximum missing Et (sum of neutrino's momenta)
set mmll 70.0 # min invariant mass of l+l- (OSSF) lepton pair
set mmllmax 110.0 # max invariant mass of l+l- (OSSF) lepton pair
set ptb 20.0
set drbb 0.4
set mmjj 100.0
set xetamin 0.5
set deltaeta 1.0
set ebeam1 6500
set ebeam2 6500
set kW 1.0
set kZ 1.0
```

Process	Event selection	Yield
Signal (S)	698 / 100k	8.65 ± 0.33
$\operatorname{Bcg1}(b_1)$	30 /100k	0.79 ± 0.14
$\operatorname{Bcg2}(b_2)$	4 /5M	12.75 ± 9.01
$\operatorname{Beg3}(b_3)$	47 /100k	1.71 ± 0.25
$\operatorname{Bcg4}(b_4)$	2 /100k	0.52 ± 0.37
$\operatorname{Bcg5}(b_5)$	35 /700k	166.95 ± 28.22

Table 3: Event yields for all processes, if only Delphes had been employed.

Process	Event selection	Yield
Signal (S)	503 / 100k	6.23 ± 0.28
$Bcg1(b_1)$	12 /100k	0.32 ± 0.09
$\operatorname{Beg2}(b_2)$	3 /5M	9.56 ± 5.52
$Bcg3 (b_3)$	23 /100k	0.84 ± 0.17
$\operatorname{Bcg4}(b_4)$	1 /100k	0.26 ± 0.26
$Bcg5 (b_5)$	9 /700k	42.93 ± 14.31

Table 2: Event yields for all processes, final analysis.

Figure 18: FastJet-Delphes characteristics for signal and bcg5 process: After all but the Hmass-DiBJetMass cuts

