Breast Cancer: Wisconsin

Jose Tamez

2023-05-13

Contents

1 Showcasing RRPlots	1
1.1 Exploring Raw Features with RRPlot	2
1.2 Reporting the Metrics	17
1.3 Modeling	20
1.4 Cox Model Performance	21
1 Showcasing RRPlots	
1.0.1 Libraries	
library(survival)	
library(FRESA.CAD)	
## Loading required package: Rcpp	
## Loading required package: stringr	
## Loading required package: miscTools	
## Loading required package: Hmisc	
##	
## Attaching package: 'Hmisc'	
<pre>## The following objects are masked from 'package:base': ##</pre>	
## format.pval, units	
## Loading required package: pROC	
<pre>## Type 'citation("pROC")' for a citation.</pre>	
##	
## Attaching package: 'pROC'	
<pre>## The following objects are masked from 'package:stats': ##</pre>	
## cov, smooth, var	
#source("~/GitHub/FRESA.CAD/R/RRPlot.R") #source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R")	
<pre>op <- par(no.readonly = TRUE)</pre>	
<pre>pander::panderOptions('digits', 3)</pre>	
<pre>#pander::panderOptions('table.split.table', 400)</pre>	

```
pander::panderOptions('keep.trailing.zeros',TRUE)
layout(matrix(1:1, nrow=1))
```

1.0.2 Wisconsin Data Set

```
dataBreast <- read.csv("~/GitHub/RISKPLOTS/DATA/wpbc.data", header=FALSE)</pre>
table(dataBreast$V2)
##
##
        R
   N
## 151 47
rownames(dataBreast) <- dataBreast$V1</pre>
dataBreast$V1 <- NULL</pre>
dataBreast$status <- 1*(dataBreast$V2=="R")</pre>
dataBreast$V2 <- NULL
dataBreast$time <- dataBreast$V3</pre>
dataBreast$V3 <- NULL
dataBreast <- sapply(dataBreast,as.numeric)</pre>
## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion
dataBreast <- as.data.frame(dataBreast[complete.cases(dataBreast),])</pre>
table(dataBreast$status)
##
     0
## 148 46
```

1.1 Exploring Raw Features with RRPlot

```
convar <- colnames(dataBreast)[lapply(apply(dataBreast,2,unique),length) > 10]
convar <- convar[convar != "time"]
topvar <- univariate_BinEnsemble(dataBreast[,c("status",convar)],"status")
pander::pander(topvar)</pre>
```

V35	V24	V34	V7	V16	V14	V17
0.0261	0.0261	0.0261	0.0623	0.126	0.126	0.126

```
idx <- idx + 1 }
```


Kaplan-Meier: V35

Kaplan-Meier: V24

Number at risk

Low Risk < 23.910	148	104	69	41	19	1
23.910 <= Risk < 25.487	20	11	8	1	1	0
High Risk >= 25.487	26	12	9	2	0	Ó

Kaplan-Meier: V34

Survival probability

Kaplan-Meier: V16

Number at risk

Low Risk < 5.360	148	102	74	39	19	1
5.360 <= Risk < 7.295	26	15	6	3	1	0
High Risk >= 7.295	20	10	6	2	0	Ŏ

names(RRanalysis) <- topFive</pre>

Survival probability

1.2 Reporting the Metrics

pander::pander(RRanalysis[[1]]\$keyPoints,caption=topFive[1])

Table 2: V35

	Thr	RR	RR_LCI	RR_UCI	SEN	SPE	BACC
@:0.9	1.00e+01	1.57	0.8370	2.93	0.174	0.8986	0.536
@:0.8	3.00e+00	2.32	1.4235	3.77	0.478	0.7770	0.628
@MAX_BACC	4.00e+00	2.64	1.6323	4.27	0.478	0.8108	0.645
$@MAX_RR$	6.59 e-09	2.68	1.3264	5.42	0.826	0.4189	0.623
@SPE100	-8.34e-09	4.79	0.0113	2024.86	1.000	0.0135	0.507

pander::pander(RRanalysis[[2]]\$keyPoints,caption=topFive[2])

Table 3: V24

	Thr	RR	RR_LCI	RR_UCI	SEN	SPE	BACC
@:0.9	25.4	1.94	1.1306	3.34	0.239	0.8919	0.566
@:0.8	23.9	1.67	1.0015	2.78	0.348	0.7905	0.569
@MAX_BACC	20.3	2.45	1.3530	4.44	0.739	0.5270	0.633

	Thr	RR	RR_LCI	RR_UCI	SEN	SPE	BACC
@MAX_RR	16.6	3.87	0.9914	15.08	0.957	0.1824	0.569
@SPE100	15.5	33.04	0.0685	15945.00	1.000	0.0878	0.544

RRanalysis[[2]] \$keyPoints["@MAX_BACC",c("BACC","RR")]

BACC RR

@MAX_BACC $0.6330787 \ 2.451923$

```
ROCAUC <- NULL
CstatCI <- NULL
LogRangp <- NULL
Sensitivity <- NULL
Specificity <- NULL
MAXBACC <- NULL
RREst <- NULL
for (topf in topFive)
  CstatCI <- rbind(CstatCI,RRanalysis[[topf]]$c.index$cstatCI)</pre>
  LogRangp <- rbind(LogRangp,RRanalysis[[topf]]$surdif$pvalue)</pre>
  Sensitivity <- rbind(Sensitivity,RRanalysis[[topf]]$ROCAnalysis$sensitivity)</pre>
  Specificity <- rbind(Specificity,RRanalysis[[topf]]$ROCAnalysis$specificity)</pre>
  ROCAUC <- rbind(ROCAUC,RRanalysis[[topf]]$ROCAnalysis$aucs)</pre>
  MAXBACC <- rbind(MAXBACC,RRanalysis[[topf]]$keyPoints["@MAX_BACC",c("BACC")])</pre>
  RREst <- rbind(RREst,RRanalysis[[topf]]$keyPoints[1,c("RR")])</pre>
rownames(CstatCI) <- topFive</pre>
rownames(LogRangp) <- topFive</pre>
rownames(Sensitivity) <- topFive</pre>
rownames(Specificity) <- topFive</pre>
rownames(ROCAUC) <- topFive</pre>
rownames(MAXBACC) <- topFive
rownames(RREst) <- topFive</pre>
pander::pander(ROCAUC)
```

	est	lower	upper
V35	0.652	0.560	0.745
V24	0.634	0.542	0.725
V34	0.658	0.571	0.744
V7	0.610	0.515	0.705
V16	0.598	0.504	0.692

pander::pander(CstatCI)

	mean.C Index	median	lower	upper
V35	0.629	0.631	0.538	0.720
V24	0.677	0.680	0.594	0.762
V34	0.656	0.655	0.579	0.729

	mean.C Index	median	lower	upper
V7	0.667	0.667	0.584	0.749
V16	0.614	0.615	0.525	0.700

pander::pander(LogRangp)

V35	0.00104
V24	0.00938
V34	0.00282
V7	0.07332
V16	0.02135

pander::pander(Sensitivity)

	est	lower	upper
V35	0.152	0.0634	0.289
V24	0.239	0.1259	0.388
V34	0.152	0.0634	0.289
V7	0.152	0.0634	0.289
V16	0.109	0.0362	0.236

pander::pander(Specificity)

	est	lower	upper
V35	0.899	0.838	0.942
V24	0.899	0.838	0.942
V34	0.892	0.830	0.937
V7	0.899	0.838	0.942
V16	0.899	0.838	0.942

pander::pander(MAXBACC)

V35	0.645
V24	0.633
V34	0.637
V7	0.621
V16	0.614

pander::pander(RREst)

V35	1.57
V24	1.94
V34	1.33
V7	1.33
V16	1.00

meanMatrix <- cbind(ROCAUC[,1],CstatCI[,1],RREst,Sensitivity[,1],Specificity[,1],MAXBACC)
colnames(meanMatrix) <- c("ROCAUC","C-Stat","RR","Sen","Spe","MAX_BACC")
pander::pander(meanMatrix)</pre>

	ROCAUC	C-Stat	RR	Sen	Spe	MAX_BACC
V35	0.652	0.629	1.57	0.152	0.899	0.645
V24	0.634	0.677	1.94	0.239	0.899	0.633
V34	0.658	0.656	1.33	0.152	0.892	0.637
V7	0.610	0.667	1.33	0.152	0.899	0.621
V16	0.598	0.614	1.00	0.109	0.899	0.614

1.3 Modeling

ml <- BSWiMS.model(Surv(time, status)~1, data=dataBreast, NumberofRepeats = 10)</pre>

sm <- summary(ml)</pre>

pander::pander(sm\$coefficients)

Table 12: Table continues below

	Estimate	lower	HR	upper	u.Accuracy	r.Accuracy
V24	5.28e-02	1.02	1.05	1.09	0.598	0.241
V26	5.05e-03	1.00	1.01	1.01	0.593	0.271
V27	2.04e-04	1.00	1.00	1.00	0.608	0.293
V34	1.13e-02	1.00	1.01	1.02	0.634	0.324
V7	6.44 e - 08	1.00	1.00	1.00	0.588	0.272
V35	2.14e-03	1.00	1.00	1.00	0.727	0.602
V6	1.07e-07	1.00	1.00	1.00	0.577	0.237

Table 13: Table continues below

	full.Accuracy	u.AUC	r.AUC	full.AUC	IDI	NRI	z.IDI
V24	0.598	0.609	0.501	0.609	0.0618	0.435	2.86
V26	0.594	0.598	0.510	0.600	0.0624	0.394	2.76
V27	0.609	0.608	0.516	0.607	0.0561	0.434	2.75
V34	0.628	0.618	0.525	0.615	0.0302	0.460	2.36
V7	0.589	0.595	0.510	0.596	0.0483	0.380	2.28
V35	0.616	0.641	0.604	0.604	0.0283	0.551	2.26
V6	0.577	0.588	0.500	0.588	0.0459	0.353	2.19

	z.NRI	Delta.AUC	Frequency
V24	2.66	0.10788	1.0
V26	2.39	0.08956	1.0
V27	2.63	0.09082	1.0
V34	2.78	0.08993	1.0
V7	2.30	0.08552	0.9

	z.NRI	Delta.AUC	Frequency
V35	3.41	-0.00042	1.0
V6	2.13	0.08813	0.1

1.4 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.4.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

```
index <- predict(ml,dataBreast)
timeinterval <- 2*mean(subset(dataBreast,status==1)$time)

h0 <- sum(dataBreast$status & dataBreast$time <= timeinterval)
h0 <- h0/sum((dataBreast$time > timeinterval) | (dataBreast$status==1))
pander::pander(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
```

Table 15: Initial Parameters

h0	timeinterval
0.323	51.1

Cumulative vs. Observed: Raw Train: Breast Cancer

Decision Curve Analysis: Raw Train: Breast Cancer

Relative Risk: Raw Train: Breast Cancer

ROC: Raw Train: Breast Cancer

Time vs. Events: Raw Train: Breast Cancer

Kaplan-Meier: Raw Train: Breast Cancer

1.4.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$keyPoints), caption="Threshold values")

Table 16: Threshold values

	@:0.9	@:0.8	@MAX_BAC	C @MAX_RR	@SPE100	p(0.5)
Thr	0.42310	0.363649	0.2627	0.1618	1.59e-01	0.504013
RR	2.18301	1.833456	2.2857	4.0449	2.50e + 01	2.307692
RR_LCI	1.30105	1.111407	1.3037	0.5963	5.22e-02	1.275480
RR_UCI	3.66282	3.024598	4.0074	27.4389	1.20e + 04	4.175246
\mathbf{SEN}	0.26087	0.369565	0.6957	0.9783	1.00e+00	0.152174
\mathbf{SPE}	0.89865	0.797297	0.5608	0.1014	6.76 e-02	0.952703
\mathbf{BACC}	0.57976	0.583431	0.6282	0.5398	5.34 e- 01	0.552438
NetBenefit	0.00516	-0.000727	0.0456	0.0997	1.03e-01	-0.000577

pander::pander(t(rrAnalysisTrain\$OERatio\$estimate),caption="0/E Test")

Table 17: O/E Test

O/E	Low	Upper	p.value
0.842	0.617	1.12	0.278

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 18: O/E Mean

mean	50%	2.5%	97.5%
1.02	1.02	0.97	1.07

pander::pander(t(rrAnalysisTrain\$OARatio\$estimate),caption="0/Acum Test")

Table 19: O/Acum Test

O/A	Low	Upper	p.value
0.809	0.592	1.08	0.163

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Mean")

Table 20: O/Acum Mean

mean	50%	2.5%	97.5%
0.79	0.79	0.784	0.796

pander::pander(t(rrAnalysisTrain\$c.index\$cstatCI), caption="C. Index")

Table 21: C. Index

mean.C Index	median	lower	upper
0.682	0.683	0.605	0.761

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 22: ROC AUC

est	lower	upper
0.64	0.549	0.732

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 23: Sensitivity

est	lower	upper
0.261	0.143	0.411

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 24: Specificity

est	lower	upper
0.899	0.838	0.942

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 25: Probability Thresholds

90%	80%
0.422	0.363

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 26: Logrank test Chisq = 12.346960 on 2 degrees of freedom, p = 0.002084

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	147	29	36.99	1.725	8.974
class=1	20	5	4.11	0.193	0.216
class=2	27	12	4.90	10.269	11.609