Chapter 8 Exercises Gallian's Book on Abstract Algebra

Spencer T. Parkin February 20, 2014

Understanding Theorem 8.3

We want to show that $U(st) \approx U(s) \oplus U(t)$. Let $\phi(x) = (x \mod s, x \mod t)$. For $x, y \in U(st)$, if $\phi(x) = \phi(y)$, then $x \equiv y \pmod s$ and $x \equiv y \pmod t$. Then, since $\gcd(s,t)=1$, it is clear that $x \equiv y \pmod s$. (See Problem 15 of Chapter 0.) So ϕ is one-to-one. It is also onto since ϕ is onto-to-one and maps a finite set to another of the same cardinality. That ϕ is operation preserving is a matter of showing that for any $x, y \in U(st)$, we have

$$(xy \bmod st) \bmod m = (x \bmod m)(y \bmod m) \bmod st$$

= $(xy \bmod m) \bmod st$,

where m is s or t. With enough thought, this is intuitive enough to warrent justification by virtue of being clear.

Problem 1

Prove that the external direct product of any finite number of groups is a group.

There is clearly an identity element. Closure is clear. Inverses are clear. Associativity is clear. I think that's it.