

ASSAM SCIENCE AND TECHNOLOGY UNIVERSITY Guwahati

Course Structure and Syllabus

COMPUTER SCIENCE AND ENGINEERING (CSE)

Semester IV / CSE / B.TECH

Sl. Subjec		Subject	Hrs/week			
No.	Subject Code		L	T	P	C
	Theory	_	_	_	_	_
1	MA131401	Numerical Methods and Computation	3	2	0	4
2	CS131402	Basic Graph theory	3	0	0	3
3	CS131403	Operating Systems	3	0	0	3
4	CS131404	Computer Organization and Architecture	3	2	0	4
5	CS131405	Principles of Programming Language	3	2	0	4
6	HS131406	Economics and Accountancy	4	0	0	4
	Practical					
7	MA131411	Numerical Methods and Computation Lab	0	0	2	1
0	GG121412		0	0		1
8	CS131413	Operating Systems Lab	0	0	2 2	1
9	CS131415	Principles of Programming Language Lab	0	U	2	1
TOTAL 19 6 6 25					25	
Total Contact Hours: 31						
Total Credits : 25						

Course Title: NUMERICAL METHODS AND COMPUTATION

Course Code: MA131401 L-T:: C 3-2 =4

ClassHours/week	4
Expected weeks	12
Total hrs. of	36+12
classes	=48

MODULE	TOPIC	COURSE CONTENT	HOURS
1	Approximation in numerical computation	Truncation and rounding errors, fixed and floating point arithmetic, Propagation of errors.	4
2	Interpolation	Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation	12
3	Numerical Integration	Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule. Expression for corresponding error terms.	8
4	Numerical solution of linear equations	Gauss elimination method, matrix inversion, LU factorization method, Gauss-Seidel iterative method.	7
5	Numerical solution of Algebraic and transcendental equation	Bisection method, Regula-Falsi method, Newton-Raphson method.	7
6	Numerical solution of Ordinary differential equation	Euler's method, Runge-Kutta methods, Predictor-Corrector methods and Finite Difference method.	10
TOTAL			48

REFERENCE BOOKS:

- 1. Numerical Methods, SukhenduDey, Shishir Gupta, McGraw Hill Education (India) private Limited
- 2. Numerical Algorithms. E. V. Krishnamurthy, S. K. Sen. Affilated East-West Press
- 3. Computer Programming & Numerical Analysis by N Dutta, University Press.
- 4. Numerical Methods. E. Balagurusamy, Tata McGraw Hill Education (1999)
- 5. Numerical & Statistical Methods With Programming in c by SujathaSinha
- 6. Numerical Methods In Eng. & Science, Dr. B. S. Grewal, Khpub publication
- 7. Numerical Methods for Scientific and Engineering Computation by R. K. Iyengar, New Age International
- 8. Numerical Mathematical Analysis by J. B. Scarborough, Oxford

Course Title: BASIC GRAPH THEORY

Course Code: CS131402 L-T:: C 3-0 =3

Class Hours/wools	2
ClassHours/week	3
Expected weeks	12
Total hrs. of	36
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1	Graph incidence and	(a) Definition of Graph, Application of	2
	degree	Graphs Finite and Infinite graphs	
		(b) Incidence and degree of a graph,	
		Isolated Vertex, Pendent Vertex, Null	
		Graph.	
2	Paths and circuits	cuits (a) Isomorphism; Sub graphs and Union	
		of Graphs, walks, Paths and Circuits,	
		(b) Connected Graphs, disconnected	
	graphs and components,		
		(c) Eulerian graph, Chinese postman	
		problem, Konigsberg Bridge Problem,	
		(d) Operations on Graphs, Arbitrarily	
		traceable graphs, Fleury's algorithms,	
		(e) Hamilton graph-necessary and	
		sufficient conditions, Complete	
		Graph, Traveling salesman, bipartite	
		graph.	
3	Tree	(a) Definition of tree, Properties of tree,	5
		Pedant vertices in a tree; Center of a	
		tree	
		(b) Rooted binary trees, On counting	
		trees, Fundamental circuits;	
		(c) Spanning trees, Spanning algorithms	
		Spanning trees of a weighted graph,	
1	Cut-sets and cut-	algorithms for shortest Spanning tree.	1
4	vertices	(a) Cut-sets and cut-vertices; Some properties of Cut-Set, Fundamental	4
	vertices	Circuits and cut-sets	
		(b) Connectivity and separativity and	
		different theorems;	
		(c) Network flow, max-flow min-cut	
		theorem, 1-isomorphism and 2-	
		isomorphism.	
5	Planner graph	(a) Combinatorial and geometric graphs,	4
	g-u r	planar graphs, Geometric and	
		Combinatorial dual;	
		(b) Kuratowski graph; detection of	
		planarity; Thickness and crossings.	
6	Matrix representation	Incidence; Adjacency; Circuit, Cut-	
	of graph	Set, Path matrices and their properties.	
7	Coloring, covering and		
	partitioning	Partitioning, Chromatic polynomial,	
		Coverings, minimization of Switching	

		Functions.	
		(b) Four Color theorem, five color	
		theorems	
8	Directed graph	(a) Digraphs, different types of digraphs,	4
		Binary relations,	
		(b) Directed graphs and connectedness,	
		Euler Digraph,	
		(c) Tree with directed graph,	
		Arborescence an Polish method	
9	Enumeration of	(a) Types of Enumerations, Counting	4
	graphs	labeled an Unlabelled trees	
		(b) Counting Methods, Polay Counting	
		Theory.	
TOTAL			36

TEXT/ REFERENCE BOOKS:

- 1. Narasingh Deo: "Graph Theory with applications to Engineering and Computer Science", Phi Publications.
- 2. Franck Harary: "Graph Theory", Phi (EEE).

Course Title: OPERATING SYSTEMS

Course Code: CS131403 L-T:: C 3-0 =3

ClassHours/week	3
Expected weeks	12
Total hrs. of	36
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1	Introduction to OS	Operating system functions, evaluation of	3
1	ina oduction to OS	O.S., Different types of O.S.: batch,	3
		multi-programmed, time-sharing, real-	
		time, distributed, parallel. Operating	
		system structure (simple, layered, virtual	
		machine), O/S services, system calls.	
2	Processes & Threads	Concept of processes, process scheduling,	3
		operations on processes, co-operating	
		processes, inter-process communication.	
		Overview of threads, benefits of threads,	
		user and kernel threads.	
3	CPU scheduling	Scheduling criteria, preemptive & non-	4
		preemptive scheduling, scheduling	
		algorithms (FCFS, SJF, RR, and priority),	
		algorithm evaluation, multi-level queue	
		scheduling and multilevel feedback queue	
		scheduling.	
4	Process	Data Access and control synchronization,	4
	Synchronization	critical section problem, critical region,	
		Race conditions in process	
		synchronization, classical problems of	
		synchronization, semaphores, Interprocess	
		communication through message passing	
		mechanism.	
5	Deadlocks	System model, deadlock characterization,	3
		methods for handling deadlocks, deadlock	
		prevention, deadlock avoidance, deadlock	
	36 36	detection, recovery from deadlock.	2
6	Memory Management	Background, logical vs. physical address	3
		space, swapping, contiguous memory	
		allocation, paging, segmentation,	
7	Vintual Manager	segmentation with paging	2
7	Virtual Memory	Background, demand paging,	3
		performance, page replacement, page	
		replacement algorithms (FCFS, LRU), allocation of frames, thrashing.	
8	File Systems	File concept, access methods, directory	4
0	File Systems	structure, file system structure, allocation	+
	Management	methods (contiguous, linked, indexed),	
		free-space management (bit vector, linked	
		list, grouping), directory implementation	
		(linear list, hash table), efficiency &	
		performance.	
		performance.	

9	I/O Management	I/O hardware, polling, interrupts, DMA, application I/O interface (block and character devices, network devices, clocks and timers, blocking and nonblocking I/O), kernel I/O subsystem (scheduling, buffering, caching, spooling	3
10		and device reservation, error handling), performance.	
10	Disk Management	Disk structure, disk scheduling (FCFS, SSTF, SCAN, C-SCAN), disk reliability, disk formatting, boot block, bad blocks.	3
11	Protection & Security	Goals of protection, domain of protection, security problem, authentication, one time password, program threats, system threats, threat monitoring, encryption.	3
TOTAL			

TEXT/ REFERENCE BOOKS:

- 1. Milenkovie M., "Operating System: Concept & Design", McGraw Hill.
- 2. Tanenbaum A.S., "Operating System Design & Implementation", Practice Hall NJ.
- 3. Silbersehatz A. and Peterson J. L., "Operating System Concepts", Wiley.
- 4. Dhamdhere: Operating System TMH
- 5. Stalling, William, "Operating Systems", Maxwell McMillan International Editions, 1992.
- 6. Dietel H. N., "An Introduction to Operating Systems", Addison Wesley.
- 7. M. J. Bach The Design of the UNIX Operating System, Prentice Hall of India, 1994.

Course Title: COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code: CS131404 L-T:: C 3-2 =4

ClassHours/week	4
Expected weeks	12
Total hrs. of	36+12
classes	=48

MODULE	TOPIC	COURSE CONTENT	HOURS
1	Basic organization of	Block level description of the functional	7
	computers	units as related to the execution of a	
		program; Fetch, decode and execute	
		cycle.	
2	Machine instructions	Instruction set architectures, Assembly	9
		language programming, addressing	
		modes, instruction cycles, registers and	
		storage, addressing modes; discussions	
		about RISC versus CISC architectures;	
3	Information	Inside a CPU.	10
3	Information representation	Floating point representation (IEEE 754), computer arithmetic and their	10
	representation	implementation; Fixed-Point Arithmetic:	
		Addition, Subtraction, Multiplication and	
		Division, Arithmetic Logic Units control	
		and data path, data path components,	
		design of ALU and data path, controller	
		design; Hardwired and Microprogrammed	
		Control.	
4	Memory Technology	Static and dynamic memory, Random	8
		Access and Serial Access Memories,	
		Cache memory and Memory Hierarchy,	
		Address Mapping, Cache updation	
		schemes, Virtual memory and memory	
	710	management unit.	0
5	I/O subsystems	Input-Output devices such as Disk, CD-	8
		ROM, Printer etc.; Interfacing with IO	
		devices, keyboard and display interfaces;	
		Basic concepts Bus Control, Read Write operations, Programmed IO, Concept of	
		handshaking, Polled and Interrupt-driven	
		I/O, DMA data transfer.	
6	Pipeline Processing	Instruction and Arithmetic Pipeline,	6
	- Pomie I i occomi	Pipeline hazards and their resolution,	
		Parallel Processing.	
		Č	
		TOTAL	48

TEXT/ REFERENCE BOOKS:

- 1. John P Hayes Computer Architecture & Organization, Mc Graw Hill Book Company.
- 2. M. Mano Computer System Architecture, Prentice-Hall of India.

Course Title: PRINCIPLES OF PROGRAMMING LANGUAGE

Course Code: CS131405 L-T:: C 3-2 =4

ClassHours/week	4
Expected weeks	12
Total hrs. of	36+12
classes	=48

MODULE	TOPIC	COURSE CONTENT	HOURS
1	Introduction	Introduction to various programming paradigms and their implementation issues. Characteristics of programming Languages, Factors influencing the evolution of programming language, Development in programming methodologies, desirable features and design issues. Introduction to mathematical foundations and semantics of programming languages.	8
2	Programming language processors	Structure and operations of translators, software simulated computer, syntax, semantics, structure, virtual computers, binding and binding time.	6
3	Data types and abstraction	Properties of types and objects – elementary data types – structured data types, Abstract data types – encapsulation by subprograms – type definition – storage management.	6
4	Sequence control	Implicit and explicit sequence control – sequencing with arithmetic and non-arithmetic expressions – sequence control between statements, Subprogram sequence control – attributes of data control – shared data in.	6
5	Imperative programming	Block structure, scoping rules, parameter passing etc. in languages like C, PASCAL and FORTRAN.	4
6	Object oriented programming	Abstraction, hiding, objects, classes, inheritance etc. in languages like C++ and Modular JAVA.	6
7	Functional programming	Functions, Recursion, types, polymorphism, storage allocation in languages like LISP, ML Scheme.	4
8	Logic programming	Horn clauses, SLD resolution etc. in languages like PROLOG.	4

9	Concurrent	Expressing parallelism, communication,	4
	programming	synchronization etc. in languages like Ada,	
		CSP and Linda.	
		TOTAL	48

TEXT BOOKS:

1. Terrance W. Pratt, And Marvin V. Zelkowitz, "**Programming Languages, Design And Implementation**", Prentice-Hall Of India.

REFERENCES:

- Ravi Sethi, "Programming Languages Concepts And Constructs", Addison-Wesley.
- 2. Allen B. Tucker, Robert Noonan, "**Programming Languages: Principles And Paradigms**", Tata Mcgraw-Hill.
- 3. E. Horowitz, "Fundamentals Of Programming Languages", Galgotia Publishers.
- 4. A.B. Tucker, Robert, Noonan, "**Programming Languages**", Mcgraw-Hill. Robert W. Sebesta, "**Concepts Of Programming Languages**", Addison Wesley.

Course Title: ECONOMICS AND ACCOUNTANCY

Course Code: HS131406 L-T :: C 4-0 = 4

ClassHours/week	4
Expected weeks	12
Total hrs. of	48
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1	Introduction to Economics	i) Nature and Scope of Economicsii) Concepts of micro and macro economics, economic good and free good.	4
2	Demand and Supply Analysis	 i) Law of Demand and determinants of demand. ii) Categories and Types of Elasticity of Demand- price elasticity, income elasticity, cross elasticity. iii) The determinants of elasticity, Demand elasticity and Revenue. iv) Law of Supply and Elasticity of Supply. 	8
3	The Theory of Production and Cost	 i) Iso-quant and Iso-cost line. ii) Law of Return to Scale and Law of Variable Proportion. iii) Types of Cost – total, average and marginal cost, fixed cost & variable cost, long run and short run cost, private & social cost, economist's cost & accountant's cost, opportunity cost. 	8
4	Market	i) Features of perfect competition and monopoly.ii)Price-Output determination underperfect competition, simple problems of perfect competition.	5
5	Concepts of Accountancy	Various concepts like Journal, ledger and preparation of trial balance.	8

6	Preparation of Final	Trading Account, Profit and Loss	
	Account	account, Balance Sheet.	0
			8
7	Depreciation	Depreciation Policy, Causes of	4
		Depreciation, straight line method.	
8	Cash Book	Single, Double and Triple Column.	
			3
		TOTAL	48

REFERENCE BOOKS:

- 1. Managerial Economics by Yogesh Maheswary, PHI Learning.
- 2. Mankiw Gregory N.(2002), Principles of Economics, Thompson Asia.
- 3. Misra, S.K. and Puri (2009), *Indian Economy*, Himalaya.
- 4. Engineering Economics by Dr. Afajuddin Ahmed, G Begum, Chandra Prakash.
- 5. Book Keeping and Accountancy, K.R. Das, Lawyer's Books Stall.

PRACTICALS

NUMERICAL METHODS AND COMPUTATION LAB

SUBJECT	NUMERICAL METHODS AND COMPUTATION LAB
CODE	MA131411
L-T-P-C	0-0-2-1
CLASS HOUR	3hrs/week
TOTAL NO. OF CLASS	5 (APPROX)
EXPECTED NO. OF	5 (APPROX)
WEEKS	

EXPERIMENT NO.	TITLE OF THE EXPERIMENT	HOURS
1	Write a C program to solve algebraic equations by using Method of Bisection.	3
2	Write a C program to solve algebraic equations by using Method of False position.	3
3	Write a C program to solve algebraic equations by using Newton Raphson Method.	3
4	Write a C program to solve linear system of equations by using Gauss Jordan Method.	3
5	Write a C program to solve linear system of equations by using Gauss Seidal Method.	3
	TOTAL	15

Course Title: OPERATING SYSTEMS LAB

Course Code: CS131413 L-T-P:: C 0-0-2:: 1

EXPERIMENT NO.	TITLE OF THE EXPERIMENT	HOURS
1	Shell programming: creating a script, making a script executable, shell syntax (variables, conditions, control structures, functions, commands).	3
2	Process: starting new process, replacing a process image, duplicating a process image, waiting for a process, zombie process.	3
3	Signal: signal handling, sending signals, signal interface, signal sets.	3
4	Semaphore : programming with semaphores (use functions semctl, semget, semop, set_semvalue, del_semvalue, semaphore_p, semaphore_v).	3
5	POSIX Threads : programming with pthread functions(viz. pthread_create, pthread_join, pthread_exit, pthread_attr_init, pthread_cancel)	3
6	Inter-process communication: pipes (use functions pipe, popen, pclose), named pipes(FIFOs, accessing FIFO)	3
	TOTAL	18

Course Title: PRINCIPLES OF PROGRAMMING LANGUAGE LAB

Course Code: CS131415 L-T-P:: C 0-0-2:: 1

EXPERIMENT NO.	TITLE OF THE EXPERIMENT	HOURS
1	Write a C program to read and integer array and display the maximum element.	1
2	Write a C program to reverse the content of an array data structure.	1
3	Write a C program to swap two elements using function	1
4	Write a C program to add two matrices using function	1
5	Write a C program to illustrate the <i>type conversion</i> function.	1
6	Write a C program to demonstrate the use of <i>structure</i> data type.	1
7	Write a C++ program to illustrate the use of function overloading	1
8	Write a C++ program to illustrate the use of operator Overloading	1
9	Write a C++ program to illustrate the use inline function	1
10	Write a C++ program to illustrate the use of virtual base class.	1
11	Write a C++ program to illustrate the use of single inheritance (Public/Private)	1
12	Write a C++ program to illustrate the use of file open() and close() operation	1
13	Write a Java Program to add two numbers and display the result	1
14	Write a Java program to reverse a number.	1
15	Write a Java program to find out whether a number is Fibonacci or not.	1
16	Write a Java program to find out the factorial of a number.	1

17	Write a program to display a list using functional programming (LISP/ML)	1
18	Write a program to calculate the factorial of a given number using functional programming	1
19	Write a program to print "hello world" using functional programming.	1
20	Write a program to add two numbers and display the sum and average using functional programming.	1
21	Write a program to illustrate the use of <i>make date()</i> data structure using PROLOG	1
22	Write a program to illustrate the use of <i>list()</i> data structure using PROLOG	1
23	Write a program to illustrate the use of PROLOG logical statement.	1
	TOTAL	23
