Лабораторная работа № 3

Моделирование источников сообщений в вычислительных системах

Цель работы. Моделирование потока сообщений (заявок) в ВС. Изучение видов и характеристик потоков заявок.

Теоретическая часть

Моделируемые характеристики сообщений (заявок).

- 1. Тип сообщения характеристика, указывающая важность сообщения, т.е. его приоритет.
- 2. Длина сообщения характеристика, определяющая размер сообщения.
- 3. Время возникновения сообщения характеристика, устанавливающая время возникновения сообщения в процессе функционирования системы.
- 4. Место сообщения характеристика, указывающая адрес устройства, для которого оно предназначено.

Задачи моделирования источников сообщений

<u>Задача 1.</u> Генерация сообщений различного типа с заданными вероятностями появления.

Для сообщений N типов на основе функции распределения вероятностей возникновения в системе сообщения i-го типа p(i) сгенерировать 100 случайных чисел, определяющих тип каждого сообщения моделируемого потока заявок.

Задача 2. Адресация сообщений.

Пусть сообщения поступают в m различных абонентских аппаратов. Причем каждое из них предназначено для передачи лишь в один из аппаратов. Вероятности того, что сообщение i — го типа предназначено для передачи j — му абоненту задаются таблицей распределения вероятностей P(i,j). Сгенерировать 100 случайных чисел. соответствующих номерам абонентов для моделируемого потока сообщений.

<u>Задача 3.</u> Моделирование потока сообщений с заданным законом распределения вероятностей длин.

Для сообщений заданных N типов по заданной средней длине сообщения каждого типа определить вероятности поступления сообщения длины К и вероятность того, что сообщение типа і имеет длину, не более К. Сгенерировать 100 случайных чисел, задающих длину каждого сообщения соответствующего типа для моделируемого потока сообщений.

Задача 4. Моделирование времени поступления сообщений в систему.

Для сообщений заданных N типов по заданным законам распределения промежутка времени между поступлениями в систему

сообщений i — го типа сгенерировать 100 случайных чисел, определяющих моменты возникновения каждого моделируемого сообщения в системе.

ЗАДАНИЕ

Выполнить моделирование источников сообщений N типов. Необходимые данные определяются вариантом задания. Получить поток из 100 сообщений и оценить его характеристики.

Порядок выполнение работы:

- 1. Изучить теоретическую часть и ответить на контрольные вопросы.
- 2. Выполнить моделирование, самостоятельно запрограммировав решение задач 1-4 или вручную.
- 3. Оформить отчет.

Содержание отчета

1. Результаты (и тексты программ) моделирования.

Результаты моделирования представляются в виде таблиц, отображающих как заданные, так и расчетные характеристики моделируемого потока сообщений:

а) поток сообщений, упорядоченный по времени возникновения сообщений в ВС, представляется по схеме:

тип	адрес	длина	время поступления
сообщения	абонента	сообщения	сообщения

- б) сравнение характеристик потока сообщений (заданного/или идеального/и полученного) по соответствующим схемам:
 - 1) тип сообщения: количество сообщений данного типа, вероятность появления сообщений данного типа;
 - 2) тип сообщения: средняя длина сообщения данного типа, предельная длина сообщения данного типа;
 - 3) тип сообщения: средняя частота поступления сообщения данного типа;
 - 4) тип сообщения: вероятности поступления сообщения данного типа к каждому абоненту, число поступивших сообщений к каждому абоненту M_{j} , средняя частота поступления сообщений абоненту, где T_{max} время моделирования.
- в) расчетные характеристики потока сообщений: математическое ожидание, дисперсия и среднеквадратичное отклонение, интенсивность
 - 2. Выводы.

Контрольные вопросы

- 1. Изложить постановку задач моделирования источников сообщений.
- 2. Чем характеризуются сообщения?

- 3. Является ли полученный поток простейшим? И почему?
- 4. Объяснить различие между вычисленной и заданной вероятностями?
- 5. Какие методы получения случайных величин с заданным законом распределения Вы использовали? Почему?

Варианты для лаб. работы 3 (к задачам 1 и 2)

Номер варианта	3-н распредования заявой з		ления 3-н распредо			ределения заявок				
	Тип	P(i)	1	2	3	4	5			
1	1	0.26	0,04	0,62	0,01	0,1	0,23			
	2	0.28	0,12	0,57	0,19	0,03	0,09			
	3	0.46	0,19	0,13	0,5	0,17	0,01			
2	1	0.09	0,52	0,27	0,09	0,07	0,05			
	2	0.68	0,34	0,44	0,07	0,12	0,03			
	2 3	0.04	0,63	0,11	0,08	0,17	0,01			
	4	0.19	0,51	0,02	0,23	0,12	0,12			
3	1	0.69	0,66	0,11	0,1	0,01	0,12			
	2	0.06	0,22	0,35	0,26	0,08	0,09			
	3	0.1	0,58	0,06	0,24	0,02	0,1			
	4	0.15	0,42	0,29	0,16	0,1	0,03			
4	1	0.56	0,79	0,04	0,01	0,11	0,05			
	2	0.13	0,75	0,01	0,07	0,11	0,06			
	3	0.31	0,67	0,16	0,01	0,14	0,02			
5	1	0.86	0,7	0,04	0,05	0,17	0,04			
	2	0.02	0,15	0,51	0,14	0	0,2			
	3	0.12	0,68	0	0,15	0	0,17			
6	1	0.8	0,78	0,06	0,01	0,1	0,05			
	2	0.09	0,43	0,12	0	0,21	0,24			
	3	0.11	0,22	0,2	0,41	0,04	0,13			
7	1	0.05	0,22	0,26	0,29	0,03	0,2			
	2	0.17	0,21	0,47	0,05	0,13	0,14			
	3	0.78	0,62	0,13	0,02	0,19	0,04			
8	1	0.83	0,62	0	0,27	0,09	0,02			
	2	0	0,1	0,66	0,07	0	0,17			
	3	0	0,77	0,02	0	0,18	0,03			
	4	0.17	0,59	0,16	0,06	0,08	0,11			
9	1	0.64	0,56	0,25	0,07	0,07	0,05			
	2	0.16	0,32	0,34	0,07	0,01	0,26			
	3	0.2	0,25	0,23	0,02	0,07	0,43			
10	1	0.16	0,18	0,22	0,14	0,01	0,45			
	2	0.37	0,43	0,39	0,04	0,07	0,07			
	3	0.16	0,55	0,12	0,09	0,15	0,09			
	4	0.31	0,06	0,06	0,75	0,07	0,06			
11	1	0,51	0,49	0,05	0,22	0,06	0,18			
	2	0,02	0,62	0,2	0,01	0,11	0,06			
	3	0,47	0,56	0,27	0,02	0,14	0,01			
12	1	0,22	0,29	0,41	0	0,15	0,15			
		0,43	0,7	0,01	0,08	0,01	0,2			
	2 3	0,15	0,23	0,36	0,26	0,08	0,07			
	4	0,2	0,67	0,1	0,11	0,06	0,06			
13	1	0,71	0,05	0,41	0,24	0,16	0,14			
	2	0,15	0,13	0,19	0,53	0,04	0,11			
	3	0,02	0,43	0,23	0,05	0,24	0,05			
	4	0,12	0,2	0,56	0,08	0	0,16			
14	1	0,01	0,74	0,02	0,03	0,2	0,01			

	2	0.71	0.2	0.07	0.4	0.26	0.07
	2 3	0,71 0,28	0,2 0,68	0,07 0,1	0,4	0,26 0,15	$0.07 \\ 0.07$
15	1	0,12	0,55	0,18	0,08	0,1	0,09
		0,48	0,49	0,04	0,36	0,09	0,02
	2 3	0	0,63	0,01	0,03	0,22	0,11
	4	0,4	0,52	0,1	0,19	0,1	0,09
16	1	0,87	0,27	0	0,07	0,09	0,57
		0,02	0,5	0,04	0,26	0,18	0,02
	2 3	0	0,29	0,19	0,23	0,14	0,15
	4	0,11	0,56	0,04	0,08	0,25	0,07
17	1	0,1	0,78	0,05	0,03	0,12	0,02
	2	0,65	0,17	0,6	0,11	0	0,12
	2 3	0,25	0,77	0	0,06	0,09	0,08
18	1	0,82	0,08	0,04	0,33	0,11	0,44
	2 3	0,01	0,27	0,33	0,19	0,09	0,12
	3	0,05	0,69	0	0,02	0,11	0,18
	4	0,12	0,17	0,45	0,16	0,21	0,01
19	1	0,53	0,48	0,28	0,09	0	0,15
	2 3	0,09	0,07	0,22	0,41	0,17	0,13
		0,02	0,12	0,27	0,07	0,39	0,15
	4	0,36	0,02	0,72	0,01	0,07	0,18
20	1	0,3	0,77	0,01	0	0,13	0,09
	2	0,07	0,53	0,31	0,05	0,06	0,05
	3	0,63	0,77	0,03	0,08	0,09	0,03
21	1	0,77	0,72	0,09	0	0,08	0,11
	2	0,06	0,74	0,09	0,01	0,09	0,07
	3	0,17	0,27	0,04	0,38	0,29	0,02
22	1	0,87	0,49	0,14	0,02	0,29	0,06
	2 3	0,01	0,18	0,36	0,02	0,07	0,37
		0,01	0,06	0,04	0,53	0,23	0,14
	4	0,11	0,43	0,01	0,2	0,08	0,28
23	1	0,52	0,07	0,66	0,08	0	0,19
	2	0,07	0,61	0,02	0,02	0,26	0,09
	3	0,41	0,27	0,28	0,18	0,1	0,17
24	1	0,1	0,37	0,31	0,16	0,15	0,01
	2 3	0,44	0,52	0,02	0,25	0,02	0,19
2.5		0,46	0,73	0,08	0,01	0,04	0,14
25	1	0,18	0,6	0	0,12	0,12	0,1
	2 3	0,07	0,04	0,15	0,14	0,54	0,13
		0,12	0,03	0,64	0,14	0,04	0,15
	4	0,63	0,31	0,11	0,21	0,16	0,21

Варианты заданий для лаб. раб. 3 (к задаче 3)

Для нечётных типов заявок закон распределения из задания 2 б), для чётных - равномерное по таблице

Номер	Характеристики					
варианта	A	В				
1	11	41				
2	22	254				
3	11	235				

4	9	220
5	25	216
6	4	39
7	14	244
8	7	159
9	11	100
10	3	108
11	4	122
12	27	98
13	30	209
14	21	194
15	29	78
16	6	253
17	19	62
18	9	53
19	21	237
20	22	141
21	1	116
22	20	60
23	26	224
24	10	214
25	3	51

Варианты заданий для лаб. раб. 3 (к задаче 4)

Для нечётных типов заявок закон распределения из задания 2 б), для чётных равномерное по таблице

Виды законов распределения:

- з-н Эрланга 1.
- 2.
- Нормальное распределение Логонормальное распределение 3.
- Распределение Вейбула 4.
- Распределение Коши 5.

Номер	Вид закона	Характеристики						
варианта	распределения	Средний промежуток времени	Коэффициент Зорланга	Дисперсия	a	b	m	1
1	1	0,4	8					
2	2	0,4		4,2				
3	3	0,4		4,2				
4	4				1	0,4		
5	5						0,4	4
6	1	6	2					
7	2	6		4,7				
8	3	6		4,7				
9	4				3	6		
10	5						6	8
11	1	1,9	1					

12	2	1,9		1,4				
13	3	1,9		1,4				
14	4				2	1,9		
15	5						1,9	5
16	1	0,9	2					
17	2	0,9		1,6				
18	3	0,9		1,6				
19	4				3	0,9		
20	5						0,9	4
21	1	8,1	1					
22	2	8,1		3,4				
23	3	8,1		3,4				
24	4				1	8,1		
25	5						8,1	13