

Endeffektoren und Greifplanung

Prof. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Inhalt

- Motivation
- Grundlagen
- Griffhierarchie
- Klassifikation von Greifplanungssystemen
- Planung von Umgreifoperationen
- Szenenstabilität

Greifer/Endeffektoren

- Manipulation ist Ergebnis der Wechselwirkung zwischen Endeffektor und Handhabungsobjekt
 - Bei Industrieroboter im Wesentlichen Transportaufgaben
- Änderung der Lage eines Objekts durch Aufbringen von Kräften und Momenten
- Greifsysteme für Industrieroboter
 - Mechanischer Greifer
 - Greifer mit Saugeinheit
 - Magnetischer Greifer

Greifer: Charakterisierung techn. Endeffektoren

- Mechanik und Wirkprinzipien
- Anzahl der Finger
- Anzahl der Fingergelenke
- Art des Kraft- und Formschlusses
- Bewegungsmöglichkeiten
- Antriebsart
- Greifkraft
- Sensoren
- Abmessungen und Gewicht

Greifer: Steuerungsparam. von Greifsystemen

- Stellung der Fingergelenke
- Greifkraft
- Greifweg
- Greifgeschwindigkeit
- Lage des Objekts zwischen den Greifbacken
- Angreifende Kräfte und Momente

Greifer: Greifkraft- und Greifwegbestimmung

- Werkstückmasse
- Schwerpunkt
- Geometrie und Lage des Werkstücks
- Greifpunkte
- Anrückpunkte

Greifer: Mechanischer Greifer

Translatorisch

Rotatorisch (Kniehebel)

Rotatorisch (Schere)

Greifer: Vergrößerung der Wirkflächen

 Zweifingergreifsystem: Rutschgefahr, Wirkflächenvergrößerung notwendig

Dreifingersystem: Höhere Stabilität, optimaler Formschluß

Greifer: Scherengreifer

Greifer: Zangengreifer

Greifer: Sauggreifer

- a) Scheibensauggreifer mit Kugelgelenk
- b) GefederterScheibensauggreifer
- c) Sauger für empfindliche Obj.
- d) Haftsauggreifer mit Ventil zum Belüften beim Lösen
- e) Sauggreifer für Betonplatten
- S = Sauger
- K = Kugelgelenk
- SG = Schwammgummi
- Q = Luftstrom

Greifer: Magnetgreifer

- Einfacher Aufbau, keine Verschleißteile
- Keine Antriebselemente, Kontaktfläche ausreichend
- Ferromagnetische Werkstoffe
- Bei dünnen Werkstoffen können mehrere erfasst werden
- Elektromagnetische Greifer ohne Kraft bei Stromausfall
- Greifkraft $F_G = \frac{B^2 A}{2\mu_o}$
 - Feldgröße B
 - Fläche A
 - Induktionskonstante μ

Greifer: Flexibilität von Greifsystemen

- Ziel: objektbezogene Adaption bzgl. Kraft- und Formschluss
- Mögliche Lösungen
 - Verstellbare Backenprofile
 - Verstellbare Arbeitspunkte des Greifers
 - Auswechselbare Greifer
 - Mehrgelenkige Finger
 Sensorgeführte flexible Backenprofile
 Roboterarın mit automatischer Verschlußeinrichtung

Greifer: Verbesserung des Formschlusses

1. Ausgangszustand

3. Abgetastete Werkstückkontur

2. Abtasten und Fixieren

4. Greifen mit Form - und Kraftschluß

Greifer: Verbesserung des Formschlusses

Greifer: Die Menschliche Hand

- Universeller Greifer mit 16 Gelenken
- 22 Freiheitsgrade
- Oft verwendete Modellierung
 - Kinematisches Modell
 - Flächenbasiertes Geometriemodell

Grifftaxanomie nach Cutkosky

FZK-Hand (Forschungszentrum Karlsruhe)

Greifoperationen: Beispielsequenz

- Instruktion: "Montiere Teile A, B gemäß Montageplan P"
- Mögliche Sequenz (Aktionen)
 - 1. Bewege Roboterhand in Anrückposition von Teil A
 - 2. Fahre in die Greifposition von Teil A
 - 3. Schließe Greiferfinger
 - 4. Fahre mit gegriffenem Teil A in Abrückposition von Teil A
 - 5. Bewege Hand mit Teil A in Anrückposition von Teil B
 - 6. Bewege Hand mit Teil A in Montageposition von A und B
 - 7. Verbinde Teile A, B gemäß Spezifikation von P
 - 8. Öffne Greiferfinger
 - 9. Fahre in die Abrückposition von Teil B

Greifoperationen: Bewegungstypen

- Objekt greifen/loslassen mit montiertem Greifer
 - Auswahl eines sicheren Griffes, d.h. Bestimmung einer geeigneten geometrischen Relation der Greiffinger zum gegriffenen Objekt
 - Kollisionsvermeidung zwischen Greifer, zu greifendem Objekt und Objekten der Umgebung (Aktionen 3,8)
- An-/Abrückbewegung des Greifers
 - Planung der Bewegung (Position und Orientierung)
 - Kollisionsvermeidung zwischen Greifer, zu greifendem Objekt, Roboterarm und Objekten der Umgebung (Aktionen 2,9).

Greifoperationen: Bewegungstypen

- An-/Abrückbewegung des Greifers mit gegriffenem Objekt
 - Bewegungsplanung des Greifers mit gegriffenem Objekt
 - Kollisionsvermeidung zwischen Greifer, gegriffenem Objekt, Roboterarm und Objekten der Umgebung (Aktionen 4,6)
- Verbinden des gegriffenen Objektes mit anderen Objekten
 - Sensorüberwachte und/oder sensorgeführte Bewegungen (Aktion 7)
- Transferbewegung des Greifers ohne/mit gegriffenem Objekt
 - Höhere Ausführgeschwindigkeiten und geringere Genauigkeitsanforderungen im Vergleich zu obigen Bewegungstypen (Aktionen 1,5)

Greifoperationen: Pick-and-Place

- (a) Aufnahmekonfiguration
- (b) Ablagekonfiguration
- (c) Transferbewegung des Greifers
- (d) Anrückbewegung des Greifers
- (e) Erreichen der Aufnahmekonfiguration
- (f) Greifen des Objektes

Greifoperationen: Pick-and-Place

- (g) Abrückbewegung des Greifers mit gegriffenem Objekt
- (h) Transferbewegung des Greifers mit gegriffenem Objekt
- (i) Anrückbewegung des Greifers mit gegriffenem Objekt
- (j) Erreichen der Ablagekonfiguration
- (k) Loslassen des Objektes
- (I) Abrückbewegung des Greifers

Greifoperationen: Interne Nebenbedingungen

- I1 Gültigkeit eines Griffes
 - Überlappung zwischen Greifmerkmalen des zu greifenden Objektes und der Greiferfinger
- I2 Kollisionsfreiheit eines Griffes
 - Keine Kollisionen zwischen Greifer und gegriffenem Objekt.
- I3 Zugänglichkeit eines Griffes
 - Griff ist für Greifer kollisionsfrei erreichbar

Greifoperationen: Externe Nebenbedingungen

- E1 Kollisionsfreie Anrückbewegung des Greifers
 - Keine Kollisionen zwischen Roboterarm, Greifer, benachbarten Objekten und der Arbeitsebene
- E2 Kollisionsfreie Abrückbewegung des Greifers mit gegriffenem Objekt
 - Siehe *E*1
- E3 Berücksichtigung der Roboterkinematik
 - Selektierte Griff liegt im Arbeitsraum des Roboters
 - Korrespondierenden Trajektorien der An-/Abrückbewegung können vom Roboter abgefahren werden

Greifoperationen: Externe Nebenbedingungen

- E4 Stabilität eines Griffes
 - Relative Lage und Orientierung des zu greifenden bzw. gegriffenen Objekts zum Greifer ändert sich nicht (während Greif- und Transferbewegung)
- E5 Stabilität der Szene
 - Keine Beeinflussung der Szenenstabilität während Abrückbewegung des Greifers mit gegriffenem Objekt
- E6 Aufgabenabhängigkeit eines Griffes
 - Auswahl eines geeigneten Griffs bei Pick-and-Place-Operationen bzgl. Aufnahme- und Ablagekonfiguration

Greifoperationen: Planungskonsequenzen

- Kann kein Griff bestimmt werden (unter Berücksichtigung der Nebenbedingungen für Aufnahme- und Ablagekonfiguration) → Bestimmung geeigneter Umgreifsequenz
- Ausübung eines Griffs mit speziellen Kräften und Momenten auf das gegriffene Objekt → Bestimmung von Greifposition, erforderliche Kräfte und -momente

Greifoperationen: Planungsschritte

Planungsschritte zur Generierung von Greifoperationen

Fingerspitzenkontakte: Griffmodell

- Vereinfachung der Synthese möglicher Objektgriffe durch Bestimmung geeigneter Kontaktpunkte auf der Oberfläche des zu greifenden Objektes (Nebenbedingung 11)
- Nachteil: Nichtbeachtung fundamentaler Nebenbedingungen des Greifvorgangs, wie z.B. Kollisionsfreiheit und Zugänglichkeit eines Griffes (Nebenbedingungen 12 und 13)

Fingerspitzenkontakte: Annahmen

- Punktkontakt ohne Reibung
 - Kraft: Punktkontakt an Objektfläche ohne Reibung
 - Wirkung: Normal zur Fläche
- Starrer Punktkontakt mit Reibung
 - Kraft: Starrer Punktkontakt an Objektfläche mit Reibung
 - Wirkung: Normal und tangential zur Fläche
 - Beide Kräfte über Coulombsche Reibungsgesetz verknüpft

Fingerspitzenkontakte: Annahmen

- Nicht starrer Punktkontakt mit Reibung
 - Kraft: Nicht starrer Kontakt an Objektfläche mit Reibung
 - Wirkung: Normal und tangential zur Fläche
 - Beide Kräfte über Coulombsche Reibungsgesetz verknüpft

Griffhierarchie: Wrenchvektor \vec{w}

- Zusammenfassung von in Kontaktpunkt \vec{p} wirkende Kräfte f_i und Momente τ_i mit $i \in [x, y, z]$
 - Planarer Griff: $\vec{w} = (f_x, f_y, \tau_z)^T \in \mathbb{R}^3$
 - Räumlicher Griff: $\vec{w} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6$
- In Abhängigkeit vom Typ des i-ten Kontaktpunktes folgen Wrenchvektoren, welche die am Kontaktpunkt wirkenden normalen n und tangentialen Kräfte t sowie die am Kontaktpunkt wirkenden axialen Momente θ beschreiben
 - Bezeichner: ${}^{i}\vec{w}_{n}$, ${}^{i}\vec{w}_{t}$, ${}^{i}\vec{w}_{\theta}$
 - Korrespondierende Skalare: ${}^{i}c_{n}$, ${}^{i}c_{t}$, ${}^{i}c_{\theta}$

Griffhierarchie: Greifmatrix

- Repräsentiert geometrische und physikalische Eigenschaften eines Fingerspitzengriffes
- Wrenchvektoren können für einen räumlichen Griff als Spaltenvektoren einer $6 \times 3m$ Matrix G dargestellt werden

$$G = \begin{bmatrix} 1 \overrightarrow{w}_n, & 1 \overrightarrow{w}_t, & 1 \overrightarrow{w}_{\theta}, \cdots & m \overrightarrow{w}_n, & m \overrightarrow{w}_t, & m \overrightarrow{w}_{\theta} \end{bmatrix}$$

Für die Skalare erhält man den Vektor

$$\vec{c} = \begin{pmatrix} {}^{1}c_{n}, {}^{1}c_{t}, {}^{1}c_{\theta}, \cdots {}^{m}c_{n}, {}^{m}c_{t}, {}^{m}c_{\theta} \end{pmatrix}^{T} \in \mathbb{R}^{3m}$$

Gleichgewichtsgriff

Ein durch Greifmatrix G spezifizierter Griff, auf den eine externe Kraft und ein ext. Moment $\vec{e} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6$ ausgeübt wird, falls

$$\forall i \in [1, m]: \ ^{i}c_{n} \geq 0, \ ^{i}\mu_{t} \cdot \ ^{i}c_{n} \geq \left| \ ^{i}c_{t} \right|, \ ^{i}\mu_{\theta} \cdot \ ^{i}c_{n} \geq \left| \ ^{i}c_{\theta} \right|$$

$$\exists \vec{c} \in \mathbb{R}^{3m}, \vec{c} \neq \vec{0}: \ G \cdot \vec{c} + \vec{e} = \vec{0}$$

- ${}^i\mu_t, {}^i\mu_\theta \in \mathbb{R}$ Coulombschen Reibungskoeffizienten an Kontaktpunkt i
- Größenbegrenzung der wirkenden Tangentialkräfte t bzw. axialen Momente θ in Abhängigkeit vom Betrag der wirkenden korrespondierenden Normalkräfte n

Gleichgewichtsgriff

- Summe aller Kräfte f_i und Momente τ_i , die auf das gegriffene Objekt wirken, gleich Null
- Gleichgewichtsgriff eines Objektes basierend auf zwei starren Punktkontakten ohne Reibung
 - Auf Objekt wirkt am Objektschwerpunkt angreifende externe Kraft \vec{f}

Kraftgeschlossene Griffe

- Bei Transferbewegung und Montageoperation greifen an ein Objekt verschiedene, vorher unbekannte externe Kräfte und Momente an
- Lösung
 - Stabilität eines Griffes durch Kräftegleichgewicht
 - Durch Greiferfinger auf Objekte ausgeübte Kräfte und Momente müssen externe Kräfte und Momente kompensieren
- Durch Greifmatrix G spezifizierter Griff, auf den beliebige externe Kräfte und Momente $\vec{e} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6$ ausgeübt werden, falls

$$\forall \vec{e} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6 \ \exists \vec{c} \in \mathbb{R}^{3m}$$
$$\vec{c} \neq \vec{0} \colon G \cdot \vec{c} + \vec{e} = \vec{0}$$

Kraftgeschlossene Griffe: Kontaktpunkte

- Kraftgeschlossenheit mit Punktkontakten ohne Reibung
 - Zu greifendes Objekt ohne Rotationssymmetrie: Planarer kraftgeschlossener Griff mit mindestens 4 Kontaktpunkten
 - Beliebiges 3D-Objekt: Max. 12 Kontaktpunkte benötigt
 - Einschränkung auf Polyeder: Obergrenze von 7 Punkten
- Kraftgeschlossenheit mit Punktkontakten und Reibung
 - Planare Objekte: Fingerspitzengriff mit 3 Kontaktpunkten
 - Räumlicher Fall: Untergrenze von 4 Kontaktpunkten

Kraftgeschlossene Griffe

Planarer kraftgeschlossener Griff eines Objektes basierend auf drei nicht starren Punktkontakten mit Reibung

Formgeschlossene Griffe

- Berücksichtigen für jeden Kontaktpunkt ausschließlich die Nichtdurchdringungseigenschaften kolinear zum korrespondierenden externen Oberflächennormalenvektor
- Ausschließlich abhängig von Position der Kontaktpunkte und den korrespondierenden externen
 Oberflächennormalenvektoren
- Keine Berücksichtigung von Normal- oder Tangentialkräften und Drehmomenten, die u.a. aufgrund von Reibung auftreten

Formgeschlossene Griffe

- Zu den Kontaktpunkten korrespondierenden externen Oberflächennormalenvektoren spezifizieren die Kontaktgeometrie des Fingerspitzengriffs
- Greifmatrix $G' = \begin{bmatrix} 1 \overrightarrow{w}_n, & 2 \overrightarrow{w}_n, \cdots & m \overrightarrow{w}_n \end{bmatrix} \in \mathbb{R}^{6xm}$
- Kontaktpunkte bei formgeschlossenen Fingerspitzengriff
 - Planarer Griff: Min. 4 Kontaktpunkte
 - Bel. 3D-Objekt: Min. 7 Kontaktpunkte
- Durch modifizierte Greifmatrix G' spezifizierter Griff, auf den beliebige externe Kräfte und Momente $\vec{e} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6$ ausgeübt werden, falls $\forall \vec{e} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6 \ \exists \vec{c} \in \mathbb{R}^6 \colon G' \cdot \vec{c} + \vec{e} = \vec{0}$

Formgeschlossene Griffe

Formgeschlossener Griff eines Objekts

Stabile Griffe

- Bisherige Voraussetzung: starre Greiferfinger
- Verbesserung: Modellierung von Fingerkräften, die durch Nachgiebigkeit kleine Änderungen der Nominallage des gegriffenen Objektes kompensieren
- Beschreibung mit einer Potentialfunktion $V: \mathbb{R}^6 \to \mathbb{R}$
- V spezifiziert im Griff gespeicherte potentielle Energie in Abhängigkeit von Lage und Orientierung des gegriffenen Objektes

Stabile Griffe: Definition

 Wird die in einem Gleichgewichtsgriff eines Objektes gespeicherte potentielle Energie über eine Potentialfunktion V spezifiziert und beschreiben

$$\delta\vec{q} = \left(\delta_x, \delta_y, \delta_z, \delta_{\varphi x}, \delta_{\varphi y}, \delta_{\varphi z}\right)^T \in \mathbb{R}^6 \neq \vec{0}$$

eine infinitesimale Lageänderung des gegriffenen Objektes und die daraus resultierende Veränderung der potentiellen Energie, so ist der Griff stabil, falls

$$\forall \delta \vec{q} \in \mathbb{R}^6 : \delta \vec{V} > \vec{0}$$

tabil, wenn Lageänderung existiert, für welche die daraus esultierende Veränderung der potentiellen Energie kleiner als

Stabile Griffe

Stabiler und kraftgeschlossener Griff eines Polygons basierend auf 4 nicht starren Punktkontakten mit Reibung

Stabiler Dreiecksgriff eines Polygons;
Nicht kraftgeschlossen

Nächste Vorlesung ...

Planungssysteme

- Planungsarten
- Planen als Suche
- Cranfield-Montage-Benchmark