Algoritmos e Estruturas de Dados II – SCC-203

Grafos: Aplicações de Busca em Profundidade

Teste para Verificar se Grafo é Acíclico

- A busca em profundidade pode ser usada para verificar se um grafo é acíclico ou contém um ou mais ciclos.
- Se uma aresta de retorno é encontrada durante a busca em profundidade em G, então o grafo tem ciclo.

2

Teste para Verificar se Grafo é Acíclico

- Um grafo direcionado ou não G é acíclico se e somente se a busca em profundidade em G não apresentar arestas de retorno.
- ◆ O algoritmo de busca em profundidade pode ser modificado para detectar ciclos em grafos orientados simplesmente verificando se um vértice w adjacente a v possui cor cinza na primeira vez que a aresta (v, w) é percorrida.

Acíclico

3-2-0

6-3-4

Teste para Verificar se Grafo é

Teste para Verificar se Grafo é Acíclico

- A complexidade do algoritmo para verificar se um grafo direcionado é acíclico é a mesma da busca em profundidade. Ou seja:
 - O(/V/+/V/²) para matrizes de adjacência e;
 - O(/V/+/A/) para listas de adjacência.

10

Componentes Conexos

- Componente conexo de um grafo é um conjunto maximal de vértices tal que existe um caminho entre todos os pares de vértices.
- Existe problemas aparentemente complexos, como testar se 15-puzzle ou cubo mágico podem ser solucionados a partir de qualquer posição, que se resumem a um teste de conectividade.
- Um teste simples para indicar se um grafo é um componente conexo é utilizar uma busca em profundidade ou largura e verificar se todos os vértices podem ser alcançados.

Componentes Conexos

- Um segundo problema é encontrar um componente conexo dado um grafo.
- Componentes conexos podem ser facilmente encontrados a partir de uma busca em largura ou profundidade.
- Basta iniciar a busca e verificar se existem vértices não descobertos. Reiniciar a busca a partir de um vértice não descoberto até que todos sejam descobertos.

```
Componentes Conexos

void componentes_conexo(tgrafo *grafo) {
   tvertice v;
   int cor[MAXNUMVERTICES], c;

   c = 1;
   for (v = 0; v < grafo->num_vertices; v++)
        cor[v] = BRANCO;
   for (v = 0; v < grafo->num_vertices; v++)
        if (cor[v] == BRANCO) {
            printf("Componente conexo: %d", c++);
            visita_dfs(v, cor, grafo);
        }
   }
}
```

componentes Conexos void visita_dfs(tvertice v, int cor[], tgrafo *grafo) { tvertice w; tapontador p; tpeso peso; printf("%d ", v); cor[v] = CINZA; p = primeiro_adj(v, grafo); while (p != NULO) { recupera_adj(v, p, &w, &peso, grafo); if (cor[w] == BRANCO) visita_dfs(w, cor, grafo); p = proximo_adj(v, p, grafo); } cor[v] = PRETO; }

Componentes Fortemente Conexos

- Termo utilizado em grafos direcionados.
- Um teste de conexão forte é realizar uma busca em largura ou profundidade múltiplas vezes, verificando se a partir de cada vértice tomado como origem todos os demais vértices são alcançáveis ou não.
- Complexidade:
 - O(|V|(|V|+|V|²)) para matrizes de adjacências;
 - O(|V|(|V| + |A|)) para listas de adjacências.

Componentes Fortemente Conexos

- ◆ Teste de Conexão Forte Eficiente: Basta que exista um único vértice de um dígrafo G que alcance qualquer outro e que seja alcançável por qualquer outro para que todos os vértices de G possuam essa mesma propriedade através dele ⇒ G fortemente conexo.
 - Note que um vértice s alcança qualquer outro v e é alcançável por v se e somente se s alcança v em ambos os dígrafos G e G^T (transposto), pois o ciclo direcionado entre s e v se mantém (invertido) em G^T.
 - Logo, basta tomar qualquer vértice e executar DFS ou BFS duas vezes, uma sobre o dígrafo original G e a outra sobre G^T : O(|V| + |A|) em listas de adjacências.

Componentes Fortemente Conexos

- Componentes Fortemente Conexos: Podemos utilizar a propriedade anterior também para calcular os componentes fortemente conexos de G:
 - Toma-se um vértice ν e calcula-se o componente fortemente conexo que inclui ν como todos aqueles vértices (e as respectivas arestas) que são alcançados por ν em ambos os dígrafos $G \in G^T$.
 - Faz-se isso sucessivas vezes, sempre a partir de um vértice não presente no componente fortemente conexo anterior.

Exercício

Mostre os componentes fortemente conexos do seguinte grafo:

Fechamento Transitivo

- ◆ Fechamento Transitivo: é simples calcular o fechamento transitivo de um dígrafo G via busca em profundidade ou largura executando o caminhamento a partir de cada vértice s de G e inserindo uma aresta direcionada adicional ligando a origem s a cada vértice alcançável a partir de s (se esta aresta já não existir).
 - Tempo = |V| caminhamentos \Rightarrow O(|V|(|V|+|A|)) para listas de adjacências.
 - $\,\blacksquare\,$ Superior a algoritmo de Floyd-Warshall ($\mathcal{O}(|V|^3)$) se G não for denso.

Ordenação Topológica Um grafo direcionado acíclico é também chamado de dag (directed acyclic graph). Um dag é diferente de uma árvore, uma vez que as árvores são não direcionadas. Dags podem ser utilizados, por exemplo, para indicar precedências entre eventos.

Ordenação Topológica

- A ordenação topológica de um dag pode ser obtida utilizando-se uma busca em profundidade.
- Para isso deve-se fazer o seguinte algoritmo:
 - 1. Faça uma busca em profundidade;
 - Quando um vértice é pintado de preto, insira-o na cabeça de uma lista de vértices;
 - 3. Retorne a lista de vértices.

Ordenação Topológica ♣ A complexidade do algoritmo de ordenação topológica em um dag é a mesma da busca em profundidade, ou seja: ■ O(|V|+|V|²) para matrizes de adjacência, e; ■ O(|V|+|A|) para listas de adjacência. ♣ Inserir um elemento na cabeça da lista é O(1).

