

Partie 1/4 La fibre optique

Emilie Camisard

Plan

- Principe de la transmission optique
- Classification des fibres
- Atténuation et dispersion des signaux
- Standards ITU-T

Description et principe

- Une onde lumineuse traversant une frontière entre 2 milieux de densité différente est déviée = phénomène de réflexion totale
- La lumière est réfléchie dans le coeur de la fibre car n_{coeur} > n_{gaine}

Avantages

- Faible atténuation du signal
- Transmissions à haut débit
- Insensible aux perturbations électromagnétiques
- Multiplexage spectral
- Avantages de mise en oeuvre

Les modes

- Un mode est un angle de réflexion de la lumière dans une fibre
- Fibre multimode:

• Fibre monomode:

Indices de coeur

• Fibre à saut d'indice

• Fibre à gradient d'indice

Fenêtres de transmission "historiques"

Renater Interfaces RENATER

850 nm	1310 nm		1550 nm
MMF	MMF	SMF	SMF
Switches GE en Ile de France	Interfaces routeur - switches	Interfaces 2.5G Long Reach pour liaisons louées WDM de RENATER-4	Interfaces 10G DWDM de RENATER-4

Renater Fenêtres de transmission

Atténuations

- L'absorption des photons est due à la nature de la silice et des ions OH⁻.
- Des pertes peuvent également être causées par des courbures du câble, des connecteurs mal positionnés ou sales, des inhomogénéités dans le verre de la fibre.

Dispersion modale

 La distance parcourue par la lumière dans une fibre dépend du mode utilisé.

- Phénomène prépondérant dans les transmissions multimodes.
- En 1 km, étalement des signaux sur 75 ns entre deux modes extrêmes.

Dispersion chromatique

 La vitesse d'un photon injecté dans une fibre dépend de sa longueur d'onde.

- Conséquence : élargissement des canaux lumineux. 17 ps/nm/km sur de la fibre monomode classique.
- Phénomène à considérer lors de transmissions monomodes.

PMD

- Dispersion de mode de polarisation :
 - Modification de la polarisation du signal optique, provoquée par les propriétés physiques de la fibre: température, âge, contraintes mécaniques, défauts de concentricité...
 - Phénomène aléatoire, difficile à prévoir, qu'il faut étudier lors de transmissions haut débit (> ou égal à 10 Gbit/s).
 - A vérifier lors de la livraison des FON, régulièrement durant la vie du réseau, à chaque planification d'augmentation de la bande passante.

Standards ITU-T

- G.651: fibres multimodes
- G.652: NDSF (Non-Dispersion Shifted Fiber), appelée aussi SMF (Single Mode Fiber)
 - Dispersion nulle à 1310nm
 - Affaiblissement le moins important à 1550 nm
 - · Fibres les plus couramment installées dans le monde
- G.653: DSF (Dispersion Shifted Fiber)
 - Coïncidence de la dispersion nulle et d'une faible atténuation autour de 1550 nm
 - Transmissions très longue distance
 - Très peu utilisée, remplacée par la G.655
- G.654: Cut off shifted fiber
 - Cœur très large, en silice pure
 - Très faible atténuation, mais forte dispersion chromatique
 - Transmissions très longue distance, liaisons sous-marines

Standards ITU-T

- G.655: NZ-DSF (Non Zero Dispersion Shifted Fiber)
 - Adaptée à 1550 nm, débits de 40G ou Nx10G
 - Atténuation faible mais non-nulle, effets non-linéaires moins importants
 - G.655.A: espacement inter-canal de 200 GHz minimum
 - G.655.B: 100 GHz minimum, distance de 400 km
 - G.655.C: idem mais distance >400 km
- G.656: non-zero dispersion for wideband optical transport
 - WDM possible de 1460 à 1625 nm

Comparatif...

