Fisica I

Paolo Bettelini

Contents

1	Introduzione	1
2	Vettori spostamento	1
3	Sistemi di coordinate	2
4	Cinematica	4
5	Leggi orarie	4
6	Moto arbitrario	5
7	Relatività	6
8	Dinamica	10
9	Forze elastiche (Legge di Hooke)	11
10) Pendolo	11
11	Esercizi 11.1 17 ottobre	13 13 17 21
1	Introduzione	
2	Vettori spostamento	
	• vettore spostamento: direzione, verso, lunghezza;	
	• somma di vettori;	
	• moltiplicazione con scalare reale $\vec{a} + (-\vec{a}) = \vec{0}$;	
	• modulo di un vettore;	
	Proposition Proprietà distributiva del prodotto rispetto alla somma vettoriale	

 $\alpha(\vec{a} + \vec{b}) = \alpha \vec{a} + \alpha \vec{b}$

3 Sistemi di coordinate

Il punto di origine è il posto in cui viene posizionato l'osservatore. I sistemi di coordinate trattati sono esclusivamente cartesiani e con basi ortogonali. L'oservatore ha i versori delle direzioni.

Si possono quindi individuare le componenti di un vettore lungo le sue direzioni, ossia le proiezioni ortogonali del vettori lungo gli assi cartesiani. Di conseguenza, le coordinate di un vettore hanno senso solamente rispetto ad una base.

Definizione Prodotto scalare

Il prodotto scalare fra due vettori risulta in un numero reale (in uno spazio euclideo \mathbb{R}^n)

$$\vec{a} \cdot \vec{b} \in \mathbb{R}$$

Dato l'angolo θ fra \vec{a} e \vec{b} ,

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \theta$$

Chiaramente il prodotto scalare è commutativo.

Proposition Proprietà distributiva del prodotto scalare rispetto alla somma

$$\vec{c} \cdot (\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$$

Proposition Prodotto vettoriale con componenti

TODO....

Da qui possiamo notare che il prodotto scalare ha lo stesso ridultato per ogni basta ortonormata.

Definizione Prodotto vettoriale

Il prodotto scalare fra due vettori risulta in un vettore (in uno spazio euclideo \mathbb{R}^n)

$$\vec{a} \wedge \vec{b} \in \mathbb{R}$$

Dato l'angolo θ fra \vec{a} e \vec{b} , il risultato è un vettore con modulo

$$|\vec{a} \wedge \vec{b}| = |a||b|\sin\theta$$

e direzione normale al piano formato da \vec{a} e \vec{b} . Convenzionalmente, il verso del vettore normale è scelto secondo la regola della mano destra.

Proposition Proprietà del prodotto vettoriale

- 1. $\vec{a} \wedge \vec{b} = -\vec{b} \wedge \vec{a}$;
- 2. $(\gamma \vec{a}) \wedge \vec{b} = \gamma (\vec{a} \wedge \vec{b});$
- 3. $(\vec{a} + \vec{b}) \wedge \vec{c} = \vec{a} \wedge \vec{c} + \vec{b} \wedge \vec{c}$

Consideriamo \vec{a} e \vec{b} , allora

$$\vec{a} = a_x \hat{x} + a_y \hat{y} + a_y \hat{z}$$

$$\vec{b} = b_x \hat{x} + b_y \hat{y} + b_y \hat{z}$$

Sapendo che

$$\hat{x} \wedge \hat{y} = \hat{z}$$
$$\hat{x} \wedge \hat{z} = -\hat{y}$$
$$\hat{y} \wedge \hat{z} = \hat{x}$$

Possiamo eseguire il prodotto esplicitamente

$$\vec{a} \wedge \vec{b} = a_x b_y \hat{z} + a_x b_z (-\hat{y}) + a_y b_x (-\hat{z}) + a_y b_z \hat{x} + a_z b_x \hat{y} + a_z b_y (-\hat{x})$$
$$= [a_y b_z - a_z b_z] \hat{x} + [a_z b_x - a_x b_z] \hat{y} + [a_x b_y - a_y b_x] \hat{z}$$

4 Cinematica

La cinematica è la parte della meccanica che descrive il moto di un punto materiale. Per descrivere il moto di un oggetto è necessario procurarsi un sistema di riferimento. Sceglieremo quindi un'origine e una base ortonormata.

Definizione Posizione

La posizione di un punto è rappresentata unicamente da un vettore $\vec{r}(t)$, che mostra lo spostamento fra l'origine e la sua posizione P(t) in un determinato istante di tempo.

Se vogliamo considerare la posizione solo nella direzione x possiamo calcoalre

$$\hat{x}(t) = \vec{x}\vec{r}(t)$$

In generale

$$\vec{r}(t) = \hat{x}\vec{r}(t) + \hat{x}\vec{y}(t) + \hat{z}\vec{r}(t)$$

La relazione fra due osservatori diversi è data da $\vec{R} + \vec{r'}(t) = \vec{r}(t)$.

La velocità è quindi relativa a due posizioni P(t) e $P(t+\Delta t)$. Lo spostamento è $\vec{r}(t+\Delta t) = \vec{r}(t) + \vec{s}(t)$.

Definizione Velocità

La velocità di un punto rappresenta lo spostamento che il punto materiale percorre in un unità di tempo $\vec{v}(t)$. Allora la velocità è definita come

$$\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\vec{s}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t} = \frac{d\vec{r}(t)}{dt}$$

Il vettore della velocità si orienta verso la tangente della curva (cioè nella direzione in cui si sta spostando). Chiaramente la derivata può essere separata nelle componenti

$$\vec{v}(t) = v_x \hat{x} + v_y \hat{y} + v_z \hat{z}$$

dove possiamo anche dire che

$$v_x(t) = \frac{dx(t)}{dt}$$

Definizione Accelerazione

L'accelerazione di un punto rappresenta il cambiamento istantaneo della velocità

$$\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t}$$

5 Leggi orarie

Proposition Caduta da una altezza

Il tempo di caduta di un oggetto da un altezza h, soggetto a gravità costante g è cado da

$$t_{\rm caduta} = \sqrt{\frac{2h}{g}}$$

con velocità

$$-\sqrt{2gh}$$

6 Moto arbitrario

Consideriamo un moto arbitrario $\vec{r}(t)$. Questo vettore punta sempre alla posizione dell'oggetto. La sua velocità $\vec{v}(t)=\frac{d\vec{r}(t)}{dt}$ è un vettore sempre nella direzione della traiettoria. Definiamo allora il versore tangente

$$\hat{T}(t)v(t) = \vec{v}(t)$$

Abbiamo allora che

$$\vec{a}(t) = \frac{d}{dt} \left(v(t)\hat{T}(t) \right) = \frac{dv(t)}{dt} \hat{T}(t) + v(t) \frac{d\hat{T}(t)}{dt} = a_t(t)\hat{T}(t) + v(t) \frac{d\hat{T}(t)}{dt}$$

La prima componente, $\frac{dv(t)}{dt}\hat{T}$, è chiamamta accelerazione tangenziale mentre il secondo accelerazione centripeta (entrambi sono perpendicolari fra di loro).

Per studiare il significato di tale termine, cominciamo partendo dall'identità $\hat{T}(t) \cdot \hat{T}(t) = 1$. Allora,

$$\frac{d}{dt} \left(\hat{T}(t) \cdot \hat{T}(t) \right) = 0$$

$$\frac{d\hat{T}(t)}{dt} \cdot \hat{T}(t) + \hat{T}(t) \frac{d\hat{T}(t)}{dt} = 0$$

$$\hat{T}(t) \frac{d\hat{T}(t)}{dt} = 0$$

Dall'analisi differenziale troviamo che

$$\left|\frac{\hat{T}(t)}{dt}\right| = \lim_{\Delta t \to 0} \frac{dl}{\Delta t}$$

e l'arco di circonferenza

$$s = Rd\theta$$

dove R è la lunghezza della retta fino al punto di rotazione (raggio di curvatura, ossia il raggio del cerchio osculatore). Mettendo assieme queste due informazioni troviamo che

$$\left| \frac{d\hat{T}(t)}{dt} \right| = \lim_{\Delta t \to 0} \left[\frac{S}{\Delta t} \frac{1}{R} \right] = \frac{v}{R}$$

Adesso possiamo scrivere

$$\vec{a}(t) = \frac{dv}{dt}\hat{T} + v\frac{d\hat{T}}{dt} = \frac{dv}{dt}\hat{T} + \frac{v^2}{R}\hat{N}$$

e quindi $\frac{dv}{dt}$ è la componente tangenziale e $\frac{v^2}{R}$ quella centripeta. Notiamo che l'accelerazione centripeta è più piccola più il cerchio è grande, quindi nulla quando andiamo dritti.

Nel caso specifico del moto circolare,

$$\vec{a} = -\omega^2 \vec{r} = \frac{v^2}{R} \hat{N}$$

con $\omega = \frac{v}{R}$.

7 Relatività

Esercizio Moto di precessione

Consider $\vec{a}(t)$ and \vec{w} fixed with the condition that

$$\frac{d\vec{a}}{dt} = \vec{w} \wedge \vec{a}$$

We first note that $|\vec{a}(t)|$ is constant. We have that

$$\frac{d}{dt}|\vec{a}(t)|^2 = \frac{d}{dt}\vec{a}\cdot\vec{a} = \vec{a}\frac{d\vec{a}}{dt} + \frac{d\vec{a}}{dt}\vec{a} = 2\vec{a}\frac{d\vec{a}}{dt} = 2\vec{a}\cdot(\vec{w}\wedge\vec{a}) = 0$$

We define out cartesian system with the condition that \hat{z} has the direction direction and length as \vec{w} , thus $\vec{w} = w\hat{z}$. As a second fact we have that a_z is independent of time. Indeed,

$$\frac{da_z}{dt} = \frac{d\vec{a}\hat{z}}{dt} = \hat{z}\frac{d\vec{a}}{dt} = \hat{z} \cdot (\vec{\omega} \wedge \vec{a}) = 0$$

so it is constant. Geometrically, \vec{a} creates a cone. Now, $\vec{a}_{\perp}^2 = a^2 - a_z^2$ which is independent of t, and $a_x = a_T \cos \phi$ where ϕ is the angle between \hat{x} and the projection a_{\perp} (on the xy plane).

$$\begin{cases} a_x(t) = a_{\perp} \cos \phi(t) \\ a_y(t) = a_{\perp} \sin \phi(t) \\ a_t \end{cases}$$

We now have

$$\begin{aligned} \frac{da_x}{dt} &= (\vec{w} \wedge \vec{a})_x = -\omega a_y \\ \frac{da_x}{dt} &= (\vec{w} \wedge \vec{a})_y = \omega a_x \\ \frac{da_z}{dt} &= (\vec{w} \wedge \vec{a})_z = 0 \end{aligned}$$

We can substitute the parametrization

$$\frac{da_x}{dt} = -\omega a_y \implies a_{\perp}(-\sin(\phi(t))) \cdot \frac{d\phi}{dt} = -\omega a_{\perp} \sin \phi(t)$$

$$\frac{da_y}{dt} = -\omega a_x \implies a_{\perp} \cos(\phi(t)) \cdot \frac{d\phi}{dt} = \omega a_{\perp} \cos \phi(t)$$

$$\frac{da_z}{dt} = 0$$

We note that simplifying these equations yields the same equation

$$\frac{d\phi}{dt} = \omega$$
$$\frac{d\phi}{dt} = \omega$$

for $a_{\perp} \neq 0$, which is obvious given the relation that we had established. Thus, the final solution is $\phi(t) = \phi_0 + \omega t$. In conclusion,

$$\begin{cases} a_x = a_{\perp} \cos(\omega t + \phi_0) \\ a_y = a_{\perp} \sin(\omega t + \phi_0) \\ a_z = a_z \end{cases}$$

Vogliamo mettere in relazione la descrizione del moto di un punto materiale con le osservazioni fatte da due osservatori O e O'. Definiamo $\vec{r}(t)$ come l'osservazione di O e $\vec{r}'(t)$ come quella di O'. Definiamo anche $\vec{r}(t) = \vec{R}(t) + \vec{r}'(t)$.

$$O \xrightarrow{\vec{r}} P$$

$$O \xrightarrow{\vec{R}} O'$$

Definiamo gli assi \hat{x} , \hat{y} e \hat{z} per l'osservatore O e $\hat{u_1}$, $\hat{u_2}$ e $\hat{u_3}$ per O'. Chiaramente, questi versori sono dipendenti dal tempo per l'osservatore che non le usa (a meno che i due osservatori non coincidano). Dato questo sistema, abbiamo allora

$$\vec{r}'(t) = \sum_{i=1}^{3} x_i'(t)\hat{u}_i(t)$$

Abbiamo allora che

$$\frac{d\vec{r}'(t)}{dt} = \sum_{i=1}^{3} \frac{dx_{i}'(t)}{dt} \hat{u}_{i}(t) + \frac{d\hat{u}_{i}(t)}{dt} x_{i}'(t)$$
$$= \sum_{i=1}^{3} \frac{dx_{i}'(t)}{dt} \hat{u}_{i}(t) + \sum_{i=1}^{3} \frac{d\hat{u}_{i}(t)}{dt} x_{i}'(t)$$

The first term

$$\sum_{i=1}^{3} \frac{dx_i'(t)}{dt} = \vec{r}'(t)$$

is what O' perceives as the velocity, $\vec{v}'(t)$. Il termine dice di quanto cambiano le coordinate nel sistema di riferimento di O', ossia la sua velocità. Il secondo termine

$$\sum_{i=1}^{3} \frac{d\hat{u}_i(t)}{dt} x_i'(t)$$

compensa il primo. Abbimo quindi che

$$\vec{v} = \vec{V} + \vec{v}'(t) + \sum_{i=1}^{3} \frac{d\hat{u}_i(t)}{dt} x_i'(t)$$

Teorema

Esiste un vettore $\vec{\omega}(t)$ tale che

$$\frac{d\vec{u_i}}{dt} = \vec{w}(t) \wedge \vec{u_i}$$

Ciò vorrebbe dire che la terna di assi sta precedendo attorno alla direzione di $\vec{\omega}$. Tutte e 3 i versori stanno ruoando attorno allo stesso asse (infatti, non vi è l'indice i nel termine $\vec{\omega}$). Tuttavia, il vettore $\vec{\omega}$ stesso non è costante. Per dimostrare ciò, dobbiamo dare la forma di $\vec{\omega}$:

$$\vec{\omega}(t) = \frac{1}{2} \sum_{j=1}^{3} \hat{u_j} \wedge \frac{d\hat{u_j}}{dt}$$

Sostituendo otteniamo

$$\vec{v} = \vec{V} + \vec{v}'(t) + \sum_{i=1}^{3} x_i'(\vec{\omega} \wedge \hat{u}_i)$$

$$= \vec{V} + \vec{v}'(t) + \vec{\omega} \wedge \sum_{i=1}^{3} x_i'\hat{u}_i$$

$$= \vec{V} + \vec{v}'(t) + \vec{\omega} \wedge \vec{r}'(t)$$

Verifichiamo che la forma di $\vec{\omega}$ soddisfi la condizione data, quindi

$$\begin{split} (\vec{\omega} \wedge \hat{u_i})_x &= \omega_y u_i^z - \omega_z u_i^y \\ &= \frac{1}{2} \sum_{j=1}^3 \left\{ u_i^z \left[u_j^z \frac{du_j^x}{dt} - u_j^x \frac{du_j^z}{dt} \right] - u_i^y \left[u_j^x \frac{du_j^y}{dt} - u_j^y \frac{du_j^x}{dt} \right] \right\} \\ &= \frac{1}{2} \sum_{j=1}^3 \left\{ \frac{du_j^x}{dt} \left[u_i^z u_j^z + u_i^y u_j^y \right] - \frac{du_j^y}{dt} u_i^y u_j^x - \frac{du_j^z}{dt} u_i^z u_j^x \right\} \\ &= \frac{1}{2} \sum_{j=1}^3 \left\{ \frac{du_j^x}{dt} \left[\hat{u}_i \cdot \hat{u}_j - u_i^x u_j^x \right] - \frac{du_j^y}{dt} u_i^y u_j^x - \frac{du_j^z}{dt} u_i^z u_j^x \right\} \\ &= \frac{1}{2} \sum_{j=1}^3 \left\{ \frac{du_j^x}{dt} \left[\delta_{i,j} - u_i^x u_j^x \right] - \frac{du_j^y}{dt} u_i^y u_j^x - \frac{du_j^z}{dt} u_i^z u_j^x \right\} \\ &= \frac{1}{2} \sum_{j=1}^3 \left\{ \frac{du_j^x}{dt} \left[\delta_{i,j} - u_i^x u_j^x \right] - \frac{du_j^y}{dt} u_i^y u_j^x + \frac{du_j^z}{dt} u_i^z u_j^x \right\} \\ &= \frac{1}{2} \sum_{j=1}^3 \left\{ \frac{du_j^x}{dt} \delta_{i,j} - u_j^x \left[u_i^x \frac{du_j^x}{dt} + \frac{du_j^y}{dt} u_i^y + \frac{du_j^z}{dt} u_i^z \right] \right\} \\ &= \frac{1}{2} \frac{du_i^x}{dt} - \frac{1}{2} \sum_{j=1}^3 u_j^x \left[u_i^x \frac{du_j^x}{dt} + \frac{du_j^y}{dt} u_i^y + \frac{du_j^z}{dt} u_i^z \right] \\ &= \frac{1}{2} \frac{du_i^x}{dt} - \frac{1}{2} \sum_{j=1}^3 u_j^x \left[\hat{u}_i \cdot \frac{d\hat{u}_j}{dt} \right] \end{split}$$

Siccome

$$0 = \frac{\hat{u_i}}{dt} \cdot \hat{u_j} + \hat{u_i} \frac{\hat{u_j}}{dt}$$

Allora

$$\hat{u}_i \frac{\hat{u}_j}{dt} = -\frac{\hat{u}_i}{dt} \cdot \hat{u}_j$$

e quindi

$$(\vec{\omega} \wedge \hat{u_i})_x = \omega_y u_i^z - \omega_z u_i^y$$

$$= \frac{1}{2} \frac{du_i^x}{dt} + \frac{1}{2} \sum_{j=1}^3 u_j^x \left[\hat{u_j} \cdot \frac{d\hat{u_i}}{dt} \right]$$

$$= \frac{1}{2} \frac{du_i^x}{dt} + \frac{1}{2} \frac{du_i^x}{dt}$$

$$= \frac{du_i^x}{dt}$$

Abbiamo quindi che

$$(\vec{\omega} \wedge \hat{u_i})_x = \frac{du_i^x}{dt} \qquad (\vec{\omega} \wedge \hat{u_i})_y = \frac{du_i^y}{dt} \qquad (\vec{\omega} \wedge \hat{u_i})_z = \frac{du_i^z}{dt}$$

Tornando alla velocità,

$$\vec{v} = \vec{V} + \vec{v}' + \sum_{i=1}^{3} x_i' (\vec{\omega} \wedge \hat{u}_i)$$

$$= \vec{V} + \vec{v}' + \vec{\omega} \wedge \sum_{i=1}^{3} x_i' \hat{u}_i$$

$$= \vec{V} + \vec{v}' + \vec{\omega} \wedge \vec{r}'$$

Troviamo ora la medesima relazione per l'accelerazione. Siccome

$$\frac{d\vec{v}'}{dt} = \sum_{i=1}^{3} \left[\frac{d^2 x_i'}{dt^2} \hat{u}_i + \frac{dx_i'}{dt} \frac{d\hat{u}_i}{dt} \right]$$

$$= \vec{a}' + \sum_{i=1}^{3} \frac{dx_i'}{dt} \frac{d\hat{u}_i}{dt}$$

$$= \vec{a}' + \sum_{i=1}^{3} \frac{dx_i'}{dt} (\vec{\omega} \wedge \hat{u}_i)$$

$$= \vec{a}' + \vec{\omega} \wedge \sum_{i=1}^{3} \frac{dx_i'}{dt} \hat{u}_i$$

$$= \vec{a}' + \vec{\omega} \wedge \vec{v}'$$

Possiamo trovare la velocità

$$\vec{a} = \vec{A} + \frac{d\vec{v}'}{dt} + \frac{d\vec{\omega}}{dt} \wedge \vec{r}' + \vec{\omega} \wedge \frac{d\vec{r}'}{dt}$$
$$= \vec{A} + \vec{a}' + 2\vec{\omega} \wedge \vec{v}' + \frac{d\vec{\omega}}{dt} \wedge \vec{r}' + \vec{\omega} \wedge (\vec{\omega} \wedge \vec{r}')$$

L'ultimo termine $\vec{\omega} \wedge (\vec{\omega} \wedge \vec{r}')$ è l'accelerazione centrifuga. Il termine $2\vec{\omega} \wedge \vec{v}'$ è l'accelerazione di Coriolis.

8 Dinamica

Principio di relatività: Non esiste nessun esperimento in grado di decidere se noi siamo in quiete rispetto allo spazio assoluto o ci stiamo muovendo in un moto rettilineo uniforme. Alternativamente, tutte le leggi della fisica sono equivalenti indipendentemente dalla direzione dell'esperimento e dal sistema di riferimento (inerziali).

Il principio della relavitià risale a Galileo nel dialogo, 1632.

Leggi di Newton:

- 1. un corpo mantiene il prorpio stato di quiete o di moto rettilineo uniforme se non agiscono forze esterne;
- 2. $\vec{F} = m\vec{a}$;
- 3. se un corpo 1 esercita una forza $\vec{F_{1,2}}$ su un corpo 2, allora il corpo 2 esercita una forza $\vec{F_{2,1}} = -\vec{F_{1,2}}$ sul corpo 1.

La prima è in realtà un caso particolare della seconda.

L'espressione $\vec{F}=m\vec{a}$ è una relazione fra causa ed effetto. La forza è la causa, che determina direttamente le accelerazioni.

Tuttavia, è necessario prima definire il concetto di massa. Ciò può essere fatto con una serie di esperimenti e osservazioni. Consideriamo due palline attaccate ai capi di una molla:

- 1. $\vec{a_1} \neq 0 \implies \vec{a_2} \neq 0$;
- 2. $\vec{a_1}$ e $\vec{a_2}$ hanno verso opposto;
- 3. il rapporto

$$\frac{|\vec{a_1}|}{|\vec{a_2}|}$$

è indipendente dalla interazione, bensì solamente dalle caratteristiche delle particelle;

4. se i due corpi sono dello stesso materiale, ma di volumi diversi, allora

$$\frac{|\vec{a_1}|}{|\vec{a_2}|} = \frac{V_2}{V_1}$$

Allora, per ogni coppia di corpi, definiamo

$$\frac{m_2}{m_1} = \frac{|\vec{a_1}|}{|\vec{a_2}|}$$

Dobbiamo quindi scegliere una massa di base sulla quale basare le altre misure. Sperimentalmente, troviamo anche che $\vec{F_1} + \vec{F_2} = m(\vec{a_1} + \vec{a_2})$.

Conservazione della quantità di moto

$$\vec{Q} = m\vec{v}$$

 \mathbf{e}

$$\vec{Q} = \vec{Q_1} + \vec{Q_2} = m_1 \vec{v_1} + m_2 \vec{v_2}$$

La derivata della quantità di moto è data da

$$\frac{d\vec{Q}}{dt} = m_1 \frac{d\vec{v_1}}{dt} + m_2 \frac{d\vec{v_2}}{dt} = m_1 \vec{Q_1} + m_2 \vec{Q_2}$$

Il vettore della quantità di moto nel tempo, di due moti che interagiscono fra di loro, è sempre il medesimo, e quindi si conserva.

9 Forze elastiche (Legge di Hooke)

Teorema Legge di Hooke

La forza elastica è data da

$$\vec{F_e} = -k\vec{x}$$

dove \vec{x} è il vettore di elongazione e k è la costante elastica. Il segno negativo indica che la forza è una forza di richiamo.

In realtà questa è un'approssimazione lineare, e presume quindi che lo spostamento sia piccolo.

Spesso viene indicata la quantità di pulsazione

$$\omega^2 = \frac{k}{m}$$

Il significato deriva dalla soluzione dell'equazione differenziale $ma_x = F_x$,

$$\frac{d^2x}{dt^2} = -\omega^2 x$$

da cui deriva

$$x(t) = A\cos(\omega t + \varphi)$$

10 Pendolo

Chiaramente, $\vec{F} = -mg\hat{z}$. Il corpo è vincolato ad un percorso sul cerchio con centro il perno. La posizione del punto è univocamente determinata dal raggio e dal suo angolo θ rispetto al perno. Dal disegno notiamo che

$$F_N = T - mg\cos\theta$$

mentre

$$F_T = -mg\sin\theta$$

in quanto la tensione del filo non ha componenti tangenziali. Sappiamo che per un moto arbitrario, la sua accelerazione può sempre essere scritta in termini dell'accelerazione tangenziale e quella normale $\vec{a} = \vec{a_T} + \vec{a_N}$. Allora,

$$\begin{cases} m\frac{v^2}{R} = T - \cos\theta \\ m\frac{dv}{dt} = -mg\sin\theta \end{cases}$$

in questo caso il raggio di curvatura R è precisamente il raggio della circonferenza. La distanza percorsa dal punto è $s=l\Delta\theta$ e quindi

$$v = l \frac{d\theta}{dt}$$

Sostituendo, troviamo la tensione del filo in funzione di θ , dove θ viene data dalla seconda equazione

$$\begin{cases} T = ml\left(\frac{d\theta}{dt}\right)^2 + \cos\theta\\ \frac{d\theta^2}{dt^2} = -\frac{g}{l}\sin\theta \end{cases}$$

Possiamo notare che il primo termine della tensione si annulla ai due estremi. Il secondo termine diventa negativo quando la pallina si trova sopra la semicirconferenza. Infatti, in tale caso la tensione è negativa,

e il cavo esercita tensione opposta rispetto all'altro caso, in quanto deve contrastare il tentativo della pallina di accorciarlo. Se la velocità iniziale è sufficientemente alta, la tensione è comunque positiva se la pallina si trova nella parte superiore della circonferenza (come quando esegue un giro completo), in tal caso la pallina sta comunque cercando di allungare il cavo.

Troviamo quindi la funzione θ . Per farlo, notiamo che per piccoli angoli l'equazione è approssimativamente una funzione lineare. Quindi,

$$\theta = \theta_0 \cos(\omega t + \varphi), \quad \omega = \sqrt{\frac{g}{l}}$$

con $\varphi=0$ (siccome la velocità iniziale è zero, il vincolo annulla la costante). L'equazione senza l'approssimazione lineare non ha forma chiusa.

11 Esercizi

11.1 17 ottobre

Esercizio Un corpo viene lasciato cadere da una certa altezza con velocità iniziale nulla: quanto tempo t si deve attendere perché a parte da quell'istante il corpo percorra uno spazio di s=20m nel tempo $\tau=1s$

La funzione di caduta è data da $s = \frac{1}{2}at^2 + v_0t + s_0$. Abbiamo allora

$$20 = \int_{t}^{t+1} v_0 + ax \, dx$$

$$20 = \frac{1}{2}a(t+1)^2 - \frac{1}{2}at^2$$

$$40 = a(t+1)^2 - at^2$$

$$40 = a(t^2 + 2t + 1) - at^2$$

$$40 = at^2 + 2at + a - at^2$$

$$40 = 2at + a$$

$$40 - a = 2at$$

$$t = \frac{40 - a}{2a}$$

Esercizio II moto nel piano x, y di una particella è definito da

$$\begin{cases} x = \alpha t^2 + \beta t \\ y = \alpha t^2 - \beta t \end{cases}$$

Con $\alpha=0.1m/s^2$ e $\beta=1m/s$. Si calcolino i moduli della velocità e dell'accelerazione all'istante $\tau=10s$

Calcoliamo le velocità

$$\begin{cases} v_x = \frac{dx}{dt} = 2\alpha t + \beta \\ v_y = \frac{dy}{dt} = 2\alpha t - \beta \end{cases}$$

e le accelerazioni

$$\begin{cases} a_x = \frac{dv_x}{dt} = 2\alpha \\ a_y = \frac{dv_y}{dt} = 2\alpha \end{cases}$$

Il modulo della velocità è pari a

$$|v| = \sqrt{v_x^2 + v_y^2} = \sqrt{4\alpha^2 t^2 + 4\alpha\beta t + \beta^2 + 4\alpha^2 t^2 - 4\alpha\beta t + \beta^2}$$
$$= \sqrt{8\alpha^2 t^2 + 2\beta^2}$$

Il modulo della accelerazione è pari a

$$|a| = \sqrt{8}\alpha$$

Esercizio Un'automobile in moto con velocità di modulo v_0 comincia a frenare e, muovendosi di moto rettilineo, si arresta in uno spazio l. Si determini l'accelerazione scalare media di frenamento nei tre casi seguenti:

1. l'accelerazione scalare ha valore A costante nel tempo: Abbiamo che $v=v_0+At$ e s=

13

 $v_0t+\frac{1}{2}At^2$. Chiamiamo allora t^* il tempo per cui v=0. Allora $v_0+At^*=0 \implies t^*=-\frac{v_0}{A}$. Sostituiamo t^* nell'accelerazione media

$$a_m = \frac{v - v_0}{-t^*} = \frac{v_0}{-t^*} = A$$

2. l'accelerazione dipende dalla velocità scalare con la legge: $a = b(v + v_0)$. Dobbiamo trovare

$$\frac{dv}{dt} = b(v + v_0)$$

quindi

$$v = ce^{\xi t} + V$$
 $\frac{dv}{dt} = c\xi e^{\xi t} + V$

con $V = -v_0$, $\xi = b$ e c libera. Siccome $v(0) = v_0$ allora $c = 2v_0$ e quindi $v(t) = v_0(2e^{bt} - 1)$. Per calcolare la posizione integriamo nuovamente

$$\frac{ds}{dt} = v_0(2e^{bt} - 1)$$

e allora

$$s(t) = \frac{2v_0}{b}e^{bt} - v_0t + s_0$$

Siccome $s(0) = 0 = -\frac{2v_0}{b}$, troviamo

$$s(t) = \frac{2v_0}{b}(e^{bt} - 1) - v_0t$$

Per il tempo di arresto abbiamo che $v_0(2e^{bt}-1)=0$ e quindi $t^*=-\frac{\ln 2}{b}$. Quindi

$$l = s(t^*) = \frac{v_0}{b} (\ln 2 - 1)$$

$$b = \frac{v_0}{l} \left(\ln 2 - 1 \right)$$

Quindi l'accelerazione media è data da

$$a_m = \frac{-v_0}{t^*} = \frac{v_0^2}{t} \frac{\ln 2 - 1}{\ln 2}$$

3. l'accelerazione varia linearmente nel tempo $a = \gamma t$: Integrando dobbiamo troviamo

$$v(t) = v_0 + \frac{1}{2}\gamma t^2$$

$$s(t) = v_0 t + \frac{1}{6} \gamma t^3$$

siccome $s_0 = 0$. · · · Infine,

$$a_m = \frac{2v_0^2}{3l}$$

Esercizio Un corpo di piccole dimensioni viene lanciato verticalmente verso l'alto all'istante t=0. Nella fase di salita e in quella successiva di discesa, l'oggetto passa dalla quota h, rispetto alla posizione di lancio, agli istanti t_1 e t_2 , rispettivamente: si dimostri che vale la relazione $t_1t_2=2h/g$. Si trascuri l'effetto della resistanza dell'aria sul moto del corpo.

La legge oraria è data da $s(t)=v_0t+\frac{1}{2}at^2$. Dal testo abbiamo $s(t_1)=s(t_2)=h$ e $at^2-2v_0t+2h=1$

0. Le soluzioni sono

$$t_1 t_2 = \frac{v_0}{a} \pm \sqrt{\frac{v_0^2}{a^2} - \frac{2h}{g}}$$

e quindi

$$t_1 t_2 = \frac{2h}{q}$$

Esercizio Un corpo viene lanciato orizzontalmente da altezza h_0 rispetto al suolo, con velocità v_0 . Trascurando la resistenza dell'aria, si calcoli:

1. la componente tangenziale a_T e quella normale a_N dell'accelerazione del corpo rispetto alla traiettoria, in un generico punto di altezza h: abbiamo che $P_0 = (0, h_0)$ e $\vec{v_0} = (v_0, 0)$. Allora

$$\begin{cases} a_x = 0 \\ a_z = -g \end{cases}$$

е

$$\begin{cases} v_x = v_0 \\ v_y = -gt \end{cases}$$

e infine

$$\begin{cases} x = v_0 t \\ z = h_0 - \frac{1}{2}gt^2 \end{cases}$$

Il vettore tangente è il vettore della velocità. Vogliamo trovare la legge che lega il tempo all'asse z. Quindi $\vec{v} = v_0 \hat{x} - \sqrt{2g(h_0 - z)}\hat{z}$ e $|v| = \sqrt{v_0^2 + 2g(h_0 - z)}$. Se considiamo α come l'angolo fra il vettore di gravitazione (asse x) e il vettore normale,

$$\cos \alpha = \frac{\vec{v} \cdot \hat{x}}{|v|} = \frac{v_0}{\sqrt{v_0^2 + 2g(h_0 - z)}}$$

che dipende da z. Proiettiamo la gravità sulle sulle componenti, quindi $a_T = g \sin \alpha$ e $a_N = g \cos \alpha$, che si calcola facilmente con la relazione pitagorica del seno e coseno.

2. lo spazio s percorso dal corpo dall'istante di lancio t=0 a quello in cui tocca il suolo:

$$\int_{0}^{\text{gittata}} \sqrt{1 + \left(\frac{dz}{dx}\right)^2} \, dx$$

Esercizio Una persona sale delle scale a chiocchiola partendo dal piano terra all'istante t=0. La persona si mantiene a distanza costante r=2, dall'asse centrale delle scale e ogni secondo sale uno scalino alto h=20cm e profondo d=20cm. Per studiare il moto della persona si adoperi:

- 1. un sistema di coordinate cartesiane ortogonali;
- 2. un sistema di coordinate cilindriche.

Si ricavino nei due casi le equazioni della traiettoria, le legge orarie e le componenti della velocità in funzione del tempo.

- 1. XXX;
- 2. XXX.

Esercizio Un punto percorre una traiettoria ellittica con modulo V della velocità costante nel tempo.

Rispetto a un sistema di assi cartesiani ortogonali l'equazione dell'ellisse è

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

con a e b indicando i semiassi. Si calcolino le componenti x e y dell'accelerazione posseduta dal punto nella posizione $P \equiv (x,y)$.

XXX

Esercizio Si consideri un moto piano tale per cui la velocità istantanea del piunto materiale mantenga sempre lo stesso angolo $\alpha \in (0, \frac{\pi}{2})$ con la congiungente l'origine degli assi. Si ricavi la traiettoria.

XXX

11.2 24 ottobre

Esercizio Un osservatore lascia cadere un sasso in un pozzo al fine di rilevarne la profondità h. Se l'intervallo di tempo intercorrente tra l'istante iniziale e quello in cui si ode il rumore prodotto dalla collissione del sasso con il fondo del pozzo è Δt , quanto vale h? Si tenga conto della velocità del suono.

Abbiamo che il tempo di caduta più il tempo del suono è pari a

$$\sqrt{\frac{2h}{g}} + \frac{h}{v_{\rm suono}} = \Delta t$$

Risolvendo troviamo

$$\sqrt{\frac{2h}{g}} = \Delta t - \frac{h}{v_s}$$

$$\frac{2h}{g} = \left(\Delta t - \frac{h}{v_s}\right)^2$$

$$\Delta t^2 + \frac{h^2}{v_s^2} - \frac{2\Delta th}{s_v} = \frac{2h}{g}$$

$$0 = h^2 - 2\Delta t v_s h - \frac{2v_s^2 h}{g} + \Delta t^2 v_s^2$$

$$0 = h^2 - \left(2\Delta t v_s + \frac{2v_s^2}{g} + \Delta t^2 v_s^2\right)$$

$$h_{1,2} = \Delta t v_s + \frac{v_s^2}{g} \left(1 \pm \sqrt{1 + \frac{2\Delta tg}{v_s}}\right)$$

Di cui consideriamo quella delle due che soddisfa l'equazione iniziale

$$h = \Delta t v_s + \frac{v_s^2}{g} \left(1 + \sqrt{1 + \frac{2\Delta t g}{v_s}} \right)$$

Esercizio Un proiettile viene sparato contro un bersaglio inizialmente posto ad'altezza h e che viene fatto cadere contemporaneamente allo sparo. Si dimostri che la condizione affinché il proiettile colpisca il bersaglio è che esso sia inizialmente puntato contro il bersaglio stesso.

Se la distanza del proiettile è D allora dobbiamo dimostrare che

$$\tan \alpha = \frac{h}{d}$$

Le equazioni del moto del proiettile sono

$$\begin{cases} x_p = (v_0 \cos \alpha)t \\ y_p = (v_0 \cos \alpha)t - \frac{1}{2}gt^2 \end{cases}$$

Le equazioni del moto del proiettile sono

$$\begin{cases} x_b = D \\ y_b = h - \frac{1}{2}gt^2 \end{cases}$$

Dobbiamo imporre il fatto che i due oggetti si incontrino in un certo momento. Quindi $x_p = x_b$ e $y_p = y_b$. Troviamo allora

$$\begin{cases} (v_0 \cos \alpha)t = D\\ (v_0 \sin \alpha)t = h \end{cases}$$

Senza risolvere le equazioni, notiamo che la divisione porta alla nostra condizione

$$\frac{v_0 t \sin \alpha}{v_0 t \cos \alpha} = \frac{h}{D}$$

Esercizio Un punto materiale si muove lungo un arco di circonferenza di raggio R con la seguente legge oraria:

$$s = s_0 \cos \omega t$$

dove s è l'ascissa curvilinea ed s_0 e ω sono costanti assegnate. Trovare la velocità angolare e le componenti normale e tangenziale dell'accelerazione.

Abbiamo che $s = R\theta$. Allora

$$R\theta = R\theta_0 \cos(\omega t)$$
$$\theta = \theta_0 \cos(\omega t)$$

e quindi la velocità angolare è data da

$$\Omega = \frac{d\theta}{dt} = -w\theta_0 \sin(\omega t)$$

L'accelerazione è data dalla componente normale

$$a_N = \frac{v^2}{R}$$

e

$$a_T = \frac{dv}{dt}$$

Siccome $v = \Omega R$, abbiamo

$$v = -\omega R\theta_0 \sin(\omega t)$$

е

$$\begin{cases} a_N = \frac{\omega^2 R^2 \theta_0^2 \sin^2(\omega t)}{R} \\ a_T = -\omega^2 R \theta_0 \cos(\omega t) = -\omega^2 s \end{cases}$$

Esercizio Due aeroplani A e B hanno velocità opposte di modulo v e le loro traiettorie sono due rette parallele distanti d Sia t=0 l'istante in cui la retta AB sarebbe perpendicolare alle due traiettorie. L'asse del cannone montato su A forma un angolo α con l'asse dell'aereo e i proiettili vengono sparati con velocità di modulo v_r relativa ad A. A quale istante t^* l'aereo A deve sparare affinché l'aereo B venga colpito? Non si consideri l'Accelerazione di gravità.

La legge oraria per A per $t < t^*$ è data da

$$\begin{cases} x_A(t) = vt \\ y_A(t) = 0 \end{cases}$$

mentre per $t \geq t*$ consideriamo il moto del proiettile

$$\begin{cases} x_P(t) = vt^* + (v_r \cos \alpha + v)(t - t^*) \\ y_P(t) = (v_r \sin \alpha)(t - t^*) \end{cases}$$

La legge oraria di ${\cal B}$

$$\begin{cases} x_B(t) = -vt \\ y_B(t) = d \end{cases}$$

Allora dobbiamo eguagliare le leggi orarie

$$\begin{cases} x_P(t) = x_B(t) \\ y_P(t) = y_B(t) \end{cases}$$

quindi troviamo

$$\begin{cases} vt^* + (v + v_r \cos \alpha)(t - t^*) = -vt \\ (v_r \sin \alpha)(t - t^*) = d \end{cases}$$

Dalla seconda ricaviamo $t - t^* = \frac{d}{v_r \sin \alpha}$. Sostituiamo questo valore nella prima

$$vt^* + (v + v_r \cos \alpha) \frac{d}{v_r \sin \alpha} = -vt$$

$$= -v(t - t^*) - vt^*$$

$$= -v(t - t^*) - vt^*$$

$$-\frac{d(2v + v_r \cos \alpha)}{2vv_r \sin \alpha} = t^*$$

Esercizio Un'automobile parte da ferma con moto uniformemente accelerato con accelerazione a. Dopo un tempo τ si lancia un proietile che si può supporre in moto con velocità costante v_0 . Determinare la minima velocità v_0 necessaria a colpire l'automobile, in funzione di a e τ . Si pu?o considerare il moto puramente unidimensionale.

Le legge orarie sono

$$\begin{cases} x_A(t) = \frac{1}{2}at^2 \\ x_P(t) = v_0(t - \tau) \end{cases}$$

Abbiamo allora $x_A(t) = x_P(t)$

$$\frac{1}{2}at^{2} = v_{0}(t - \tau)$$

$$\frac{1}{2}at^{2} + v_{0}\tau = v_{0}t$$

e quindi

$$t_{1,2} = \frac{v_0}{a} \pm \sqrt{\frac{v_0^2}{a^2} - \frac{2v_0\tau}{a}}$$

e la condizione è data dal discriminante

$$\frac{v_0^2}{a^2} > \frac{2v_0\tau}{a} \implies v_0 > 2a\tau$$

Esercizio Un treno in moto rettilineo uniforme con una velocità di modulo v rallenta bruscamente con decelerazione costante di modulo A: come conseguenza, una valigia, posata in bilico sul portapacchi, cade e finisce sul pavimento del treno. Si determini la traiettoria della valigia come apapre a un osservatore O fermo a terra e a uno O' sul treno.

La legge oraria inerziale della valigia è data da

$$\begin{cases} x = v_0 t \\ y = h - \frac{1}{2}gt^2 \end{cases}$$

Per il riferimento non inerziale abbiamo $\vec{a}=\vec{a'}+\vec{\Delta}_{\rm trascinamento},$ quindi $\vec{a'}=\vec{g}-\vec{A}.$

$$\begin{cases} \frac{d^2 x'}{dt^2} = A\\ \frac{d^2 y'}{dt^2} = -g \end{cases}$$

Da queste due leggi ricaviamo le leggi orarie

$$\begin{cases} x' = \frac{1}{2}At^2 \\ y' = -\frac{1}{2}gt^2 + h \end{cases}$$

e da cui troviamo la traiettoria $y'=h-\frac{g}{A}x'$ che è una retta.

11.3 31 ottobre

Esercizio Un uomo di trova su un ascensore che sale a velocità costante V_0 . Egli lancia ua pallina verticalmente verso l'alto con velocità v_0 relativa all'ascensore:

- 1. determinare dopo quanto tmepo la pallina ritorna nella mano dell'uomo;
- 2. rispondere alla domanda precedente nel caso in cui l'ascensore abbia una accelerazione diretta verso l'alto pari a $A_{\rm asc}$.

Suggerimento: provare a risolvere il problema in due modi:

- 1. usando le leggi dei moti relativi;
- 2. usando le leggi del moto dei due corpi viste dal sistema di riferimento della terra ferma. Verificare che i risultati siano gli stessi.

XXX

Esercizio Una piattaforma ruota con velocità angolare ω intorno a un asse centrale verticale. All'istante t=0, una pallina viene lanciata orizzontalmente con velocità v_0 dal centro della piattaforma; l'attrito che la pallian incontra è trascurabile, cosiché essa si muova rispetto alla terra di moto rettilineo uniforme con velocità v_0 . Si determini l'accelerazione della pallina, a un generico istante, rispetto a un sistema di riferimento solidale alla piattaforma.

XXX

Esercizio Sia $\vec{g_0}$ l'accelerazione di gravità che si misurerebbe in corrispondenza di un punto P della superficie terrestre qualore la Terra non fosse in rotazione; si determini l'accelerazione di gravità efficace misurata da un osservatore solidale con la Terra. Si calcoli inoltre la deviazione subita da un corpo in caduta libera dovuta all'accelerazione di Coriolis, all'equatore.

XXX

Esercizio Su di un corpo di massa m agisce una forza funzione del tempo data da: $F=F_0-\alpha t$, con F_0 ed α costanti assegnate. All'istante iniziale il corpo transita per l'origine con velocità v_0 . Si trovino velocità e posizione in funzione del tempo.

XXX

Esercizio Una particella si muove sotto l'azione di una forza $\vec{F} = \vec{u} \times \vec{c}$, dove \vec{c} è un vettore costante. SI trovino traiettoria e legge oraria.

XXX

Esercizio Due rimorchiatori trainano un battello tramite cavi d'acciaio, fissati a prua del battello. L'angolo tra i cavi e l'orizzontale è 60° , e la tensione è pari a $2\times 10^5 N$ per ciascuno dei cavi. Si trovi la forza resistente dovuta all'acqua, se il battello si muove di moto uniforme.

XXX