Numerical Mathematics for Engineering II Assignment 4

Theoretical exercises: submit to exercise class on November 22th or 23th, 2017. Programming exercises: upload to ISIS until Friday 18:00, November 24th, 2017.

1. Excercise: On matrix norms

5 points

Let $\|\cdot\| \colon \mathbb{R}^N \to \mathbb{R}$ be a norm on the \mathbb{R} -vector space \mathbb{R}^N . We consider the matrix norm $\|\|\cdot\| \colon \mathbb{R}^{N\times N} \to \mathbb{R}$ induced by $\|\cdot\|$ which is given by

$$||A|| := \sup_{v \in \mathbb{R}^N : ||v|| = 1} ||Av||$$

for every $A \in \mathbb{R}^{N \times N}$.

- a) Show that $\|\cdot\|$ is a norm on the vector space $\mathbb{R}^{N\times N}$ of all $N\times N$ matrices.
- **b)** Show that $0 \le |||A||| < \infty$ for every $A \in \mathbb{R}^{N \times N}$.
- c) Show that for all $A, B \in \mathbb{R}^{N \times N}$ and $v \in \mathbb{R}^N$ it holds

$$||Av|| \le ||A|| ||v|| \qquad \text{(compatibility with } ||\cdot||),$$

$$|||A \cdot B||| \le ||A|| ||B|| \qquad \text{(sub-multiplicativity)}.$$

- d) Show that the induced matrix norm of the identity matrix I_N is equal to one, that is $||I_N|| = 1$.
- e) Consider the Frobenius norm $\|\cdot\|_F \colon \mathbb{R}^{N \times N} \to \mathbb{R}$, which is given by

$$||A||_F = \left(\sum_{i,j=1}^N |A_{i,j}|^2\right)^{\frac{1}{2}},$$

for every $A = [A_{i,j}]_{i,j=1}^N \in \mathbb{R}^{N \times N}$. Compute $||I_N||_F$. Does there exists a vector norm $||\cdot|| : \mathbb{R}^N \to \mathbb{R}$ such that $||A|| = ||A||_F$ for every $A \in \mathbb{R}^{N \times N}$?

2. Exercise: The five point difference stencil

6 points

Consider the Laplace equation

$$\begin{cases}
-\Delta u = 0, & \text{in } \Omega = (0, 1) \times (0, 1), \\
u = g, & \text{on } \partial\Omega,
\end{cases}$$
(1)

where $g(x_1, x_2) = 16x_1$ for all $(x_1, x_2) \in \partial \Omega$.

- a) Explicitly determine and write out in full detail the matrix $L_h \in \mathbb{R}^{N^2 \times N^2}$ and the vector $f_h \in \mathbb{R}^{N^2}$ for the linear system $L_h u_h = f_h$ of the five point difference stencil approximation of (1) with N=3 and $h=\frac{1}{N+1}$. Use the lexicographical ordering from the lecture.
- **b)** Compute the discrete solution $u_h \in \mathbb{R}^9$ for the system in part a). Hint: You may use the solver in Python, for example.
- c) What is the exact solution u? Compare u_h with u at x = (0.5, 0.5).

3. Programming exercise: Two-point boundary value problem (BVP) 6 points

Implement a finite difference scheme for the problem

$$-au''(x) + bu'(x) + cu(x) = f(x), \quad x \in (0,1)$$

$$u(0) = \alpha, \quad u(1) = \beta,$$
 (2)

for a given (probably non-uniform) mesh $\mathtt{xh} = \bar{\Omega}_h$, with constants a, b, c, α, β .

a) Consider the reduced linear system Lh*uh=fh with $L_h \in \mathbb{R}^{N \times N}$ and $N = |\bar{\Omega}_h| - 2$ to problem (2). The matrix L_h is written in compact form as

$$L_h = -a\left(\frac{2}{h_i(h_i + h_{i+1})}, -\frac{2}{h_i h_{i+1}}, \frac{2}{h_{i+1}(h_i + h_{i+1})}\right) + b\left(\frac{-1}{h_i + h_{i+1}}, 0, \frac{1}{h_i + h_{i+1}}\right) + c(0, 1, 0),$$

for $i \in \{1, ..., N\}$, where the same notation as in Assignment 3, Exercise 3 is used. Determine the right hand side $f_h \in \mathbb{R}^N$. How does L_h look like if we use the forward or backward differences D^+ , D^- instead of D^0 for the approximation of the first order derivative?

b) Write a function [Lh,fh] = a04e03getPDE(xh,f,consts,flag) which sets up the matrix Lh and the right hand side fh for the reduced linear system. The model parameters are contained in consts = [a, b, c, alpha, beta] and the character flag selects the approximation for u' with '-', '+', '0' for D^- , D^+ , D^0 respectively.

4. Programming excercise: 2D Poisson FDM

6 points

Consider for $i \in \{1, 2\}$ the boundary value problems:

$$\begin{cases}
-\Delta u_i = f_i, & \text{in } \Omega = (0, 1)^2 \subset \mathbb{R}^2, \\
u_i = 0, & \text{on } \partial\Omega,
\end{cases}$$

having the solutions

$$u_1(x,y) = (xy + x^3y^3 - x^3y - xy^3),$$

 $u_2(x,y) = \sin(3\pi x)\sin(\pi y).$

- a) Determine some f_1, f_2 such that u_1, u_2 are the solutions to the BVP.
- b) Write a function [Lh,fh] = a04e04getPDE(p,i) that sets up the sparse matrix Lh and the right hand side fh of the linear system Lh*uh=fh for the refinement level p on the domain $(0,1) \times (0,1)$. Here we mean that $N=2^p-1$ and $h=\frac{1}{N+1}$. Use the standard five point stencil on a uniform mesh with lexicographical order.
- c) Write a function errors = a04e04solve(i) that solves the discretized problem for f_1 if i = 1 and for f_2 if i = 2, where f_1, f_2 were found in (a), for $p \in \{1, \ldots, 9\}$. Determine for each p the error between the computed approximation and the restricted exact solution in the maximum norm and store it in errors(p). For each value of i plot the errors in a loglog plot with the corresponding step size h on the x-axis. Determine also the experimental order of convergence (EOC), which is given by

$$EOC_p = \frac{\log(error_p) - \log(error_{p-1})}{\log(h_n) - \log(h_{n-1})}, \quad p \in \{2, \dots, 9\},$$

and present the values in a nicely formatted table.

total sum: 23 points