DAA - ASSIGNMENT-1

91 Asymptotic Notation - These are the methods used to define the complexity/ running time of an algorithm based on input size.

Types of Asymptotic Notations-

i) Big-O-It is used for worst case or ceiling of growth for a given function i.e. function's complexely will not was the growth of asymptotic notation in any case

1(n) = O(g(n)) 'eff f(n) = cg(n) + n≥no and c>o

Here g(n) is right upper bound of f(n).

 $g: (n^2 + 2n) = O(n^3)$, n + log n = O(n)

2) Big-Omiga (1)- It is used for best case or floor growth rate of a given function. It provides us with asymptotic lower bound for growth state of an algorithm

[f(n)=12(g(n)) iff f(n) = cg(n) + n>0 & c>0]

 $g: \frac{1}{n^2 + n} = \Omega(n)$, $n + \log n = \Omega(\log n)$

3) Theta (0) - It denotes the asymptotic tight bound of growth rate of suntime of an algorithm.

|f(n)=O(g(n))| if $c_1g(n) \leq f(n) \leq c_2g(n) + n \geq \max(n_1,n_1), c_1c_2 > 0$

 $\xi: 2n^{2} + n = O(n^{2})$, $n + \log n = O(n)$

4) Small-Oh (0) - It is used to denote upper bound (not asymptotically tight) on growth rate of runtime of algorithm.

f(n)=0(g(n)) 'If f(n) < c.g(n) + n>no and c>0

5) Small-omega (w) - It denotes the lower bound (not asymptotically tight) on growth reate of runtime of an algorithm.

f(n)=w(g(n)) iff f(n)>c.g(n) + n>no,c>0]

 $\xi: \partial n^2 + n = \omega(n)$, $n + \log n = \omega(\log n)$

```
O2 for (i=1 to n)
      8 a=i*2 3
 Time Complexity = O(logn)
03 I(m) = 23 I(m-1)
                              , n20
                             , n < 0
   T(n) = 3 T(n-1)
   T(1) = 3(0) = 3
   T(a) = 3T(1) = 3.3 = 3^{2}
                                        .: T(n) =0(3")
   T(3) = 3T(1) = 3.3^{2} = 3^{3}
  T(n-1) = 3n-1
  T(n) = 3 T(n-1) = 3 \cdot 3^{n-1} = 3^n
04 T(n) = 52T(n-1)-1, n>0
                          , n to
  T(n) = 2T(n-1)-1 -0
  T(n-1) = 2 T(n-2)-1
 (D ⇒ T(n) = 22 T(n-2)-2-1 - (B)
  T(n-2) = 2 T(n-3)-1
 @ => T(n) = 23 T(n-3)-22-2-1
                                                    n-k = 0
   T(n) = 2^{k}T(n-k) - 2^{k-1} - \dots - 2^{2} - 2^{l} - 1
                                                     n=k
        = 2^n T(0) - 2^{n-1} - \dots - 2^2 - 2^1 - 1
         = 3_{n-1} - 3_{n-1} - \dots - 3_{n-1} - 3_{n-1}
                                                  [... T(n) = O(1)]
        = 2n- [2x-1+2n-2 ... + 2+2+1]
        = 5_n - 1 \cdot \overline{(5_n - 1)} = 5_n - 5_n + 1
05 int i=1, s=1;
                             I(n)= 1+3+6+10+15+
     while (s <= n)
                              i=1,2,3,4,5,..., k
                             s=1,3,6,10,15,..., n
     { i++;
        S=S+1;
                            > 1+2+3+...+ k = n
        printy ("#");
                                      R(R+1) = n
                                    > R=-1= NI+8n > T.C. = O(In)
```

```
void function (int n) of int i, count = 0;
                                                          1 = Vn
                                    T.C = O(Vn)
      for (i = 1; ixi <=n; i++)
      count ++;
   void function (int n)
      int i, j,k, count=0;
                                     T.C =0 ((/2+1) (logan) (logan))
      for (i=n/2;i<=n;i++)
                                          (n (logan)2)
         for (j=1;j<=n;j=j*2)
           for ( R = 1 ; k < = h ; k = k + 2)
               count ++;
08 function (int n)
                                 T(n) = n^2 + T(n-3)
                                 T(1)=0(1)
    if (n==1)
                                 T(n-3)= (n-3)+T(n-6)
        return;
      for (i=1 ton)
                                 T(n) = n+ (n-3)+ T(n-6)
        por (j=1 ton)
                                 T(n-6) = (n-6)^2 + T(n-9)
          prints (" * ");
                                T(n) = h^2 + (n-3)^2 + (n-6)^2 + T(n-9)
     function (n-3);
                               T(n)=n2+(n-3)2+(n-6)+ ...+(n-k)2+ T(n-k-3).
    T(n) = n^2 + (n-3)^2 + (n-6)^2 + \cdots + 4^2 + T(1)
          = n^{2} + (n-3)^{2} + (n-6)^{2} + +7^{2} + 4^{2} + 1 = \frac{(n+3)/3}{2} (3k-2)^{2} = 29k^{2} + 4 - 12k
     void function (int n)
         for (i=1 ton)
                                        j=1,0,3,\ldots,n
         J=1/2/21...12
                                    .. T(n)=1+++++++++++++++
       z
                                         = 1 [ + 1 + 1 + 1 + ... + ]
                                   n logn
      T. C. = O(nlegn)
```

$$a^{n} + n^{k} \le ca^{n}$$

$$a^{n} + n^{k} \le ca^{n}$$

$$a^{n} + n^{k} \le a^{n}(c-1)$$

$$\frac{a^{n} + n^{k}}{a^{n}} \le (c-1)$$

$$c > \frac{1 + n^{k}}{a^{n}} + 1$$

$$c > 2 + \frac{n^{k}}{a^{n}}$$

$$C \geqslant 2 + \frac{n_0}{1.5}$$

$$C \geqslant 2 + \frac{1}{1.5}$$

$$C \geqslant 3 + 1$$

$$C \geqslant 4$$

Recursive Fibonnaci Series. return fib (ma) + fib (m-2) void fib (int n, int a, int b) "4 (n==0) saturn; int c=a+b; Cout & C «" "; fib (n-1, b, c); T(n) = T(n-1) +1 T(1) = T(0) + 1 = 1 + 1 = 2T(n) = O(n)T(2) = T(1) + 1 = 2 + 1 = 3T(n) = 1 n+1 bez it uses n-1 calls in stack. (3) space comp. = 0 (n) T(n)= 0 (n log n) 013 for (int i=0; i<n; i++) for (int j=0; j< n; j=j*2)

cout <<! * "); $T(n) = n^3$ for (int i=0; i<n; i++)
for (int j=0; i<n; j++) for (ent k=0; k<n; k++) cout<<ii>i</i></i></i>

$$\forall (n) = log(logn)$$

for (int i=0; i < log(n); i=i \ 2)

cout << i << "",

OIY
$$T(n) = T(n/4) + T(n/2) + c \cdot n^2$$

 $T(n/2) = T(n/8) + T(n/4) + c \cdot (n/2)^2$
 $T(n) = T(n/4) + T(n/8) + T(n/4) + c \cdot n^2 = 2T(n/4) + T(n/8) + c \cdot n^2 + c \cdot n^2$
 $T(n/4) = T(n/6) + T(n/8) + C(n/4)^2$
 $T(n) = 2T(n/6) + 2C(n/4) + C(n/6) + C(n/2)^2 + C(n/4)^2$
 $= 2T(n/4) + 3T(n/4) + 2C(n/4) + C(n/4) + C(n/4)^2 + C(n/4)^2$
 $= 2T(n/4) + 3T(n/4) + 2C(n/4) + C(n/4) + C(n/4)^2 + C(n/4)^2$

$$T(n) = ch^2 + \frac{5n^2}{16} + \frac{25n^2}{256} + \dots$$

This is aP with ratio 5/16

:.
$$T(n) = \frac{h^2}{1 - \frac{5}{16}}$$
 $\Rightarrow [T \cdot c \cdot = o(h^2)]$

015 int fun (int n)

for (int
$$i=1$$
; $i < n$; $i + t$)

for (int $j=1$; $j < n$; $j + = i$)

 $O(i)$

$$\begin{array}{ll}
\text{fun}(mn) \\
\text{for}(int \ i=1; i <=h; i+t) \\
\text{for}(int \ j=1; j < h; j+=i) \\
\text{o(i)} \\
\text{: T. C.} = n + n + n + n + n \\
\text{o(i)} \\
\text{: T. C.} = n \cdot \log n \\
\text{T. C.} = o(n \cdot \log n)
\end{array}$$

```
O16 for (int i=2; i <= n; i = paw(i, k))
   i= 2, 2k, 2k2, 2k3 .... 2k2 ie. (x+1)terms
      2 km @= n
      Rx = logan
       x = \log_R(\log_2 n)
   T.C = O (loge logan)
 017 T(n) = T(99n ) + T(n) + En
                                        T(n) = O(nlogn)
(18 a) 100 < log(logn) < logn < n < n < log(n!) < n logn < n² < 2n < 4n < n! < 2n < 4n < n!
b) 1< log(logn) < Nogn < logn < log2n < logn < n < 2n < 4n < log(n!) <
c) 96 < \log_8 n < \log_1 n < 5n < \log(n!) < n \log_6 n < n \log_n n < 8n^2 < 7n^3 < n! < 8^n
         int linear Search (int reason, int n, int key)
 019
         { int i;
            for (i=0 ; i <n; i++)
                                               T.C = O(n)
S.C = O(1)
              if (arr [i] == Rey)
                rolum i,
              ell if (arrill ky)
                 return 1;
```

Reconstrue Insertion Sort

void insertion Sort (int *a, int n)

§ 'y (n<2)
xuturn;
insertion Sort (a,n-1)'
int last = a [n-1]

int j=n-2

ushile (j >=0 && a [j] > last)

a [j+1] = a [j]

j = j-1

a [j+1] = Jast

Online sorting is one that will work if elements to be sorted are forwarded I at a time with understanding that sulgo must keep sequence sorted as more elements are added. Insertion Sout is online.

Algo	Best	Avg	Worst	worst Space	Implace	Stable	orline
Bubble	O(n2)	0(n2)	0(n2)	0(1)	,		×
Selection	O(n2)		O(n)	0(1)	V	×	×
Insertion		$\mathcal{L}o(n^2)$	0(h2)	0(1)			
Merge	O(nlgn)	O(nlgn)		0m)	×		×
Quick		O(nlogn)		O(n)	×	×	X
Heap	1 1		O(nloy n)	011)	/	×	\times

0 23 Iterature Binary Search cinary Seach (int *a, intl, int si, int key)

x←m-1.

laturn - 1

024

Binary Recursion Search T(n)=T(n/2)+1

Birary Starch T.c. = O(log n) 0 (1)

Aug, worst Best

S.c. = 0(1)