Least-Square-Problem

Dr. Biswambhar Rakshit

6-4 Orthogonal Projections Viewed as Approximations

• If *P* is a point in 3-dimensional space and *W* is a plane through the origin, then the point *Q* in *W* closest to *P* is obtained by dropping a perpendicular from *P* to *W*.

- If we let $\mathbf{u} = OP$, the distance between P and W is given by $||\mathbf{u} \operatorname{proj}_{W} \mathbf{u}||$.
- In other words, among all vectors w in W the vector w = proj_Wu
 minimize the distance || u w ||.

6-4 Best Approximation

Remark

- Suppose u is a vector that we would like to approximate by a vector in W.
- Any approximation w will result in an "error vector" u w which, unless u is in W, cannot be made equal to 0.
- However, by choosing $\mathbf{w} = \operatorname{proj}_{W} \mathbf{u}$ we can make the length of the error vector $||\mathbf{u} \mathbf{w}|| = ||\mathbf{u} \operatorname{proj}_{W} \mathbf{u}||$ as small as possible.
- Thus, we can describe $proj_W \mathbf{u}$ as the "best approximation" to \mathbf{u} by the vectors in W.

Theorem 6.4.1 (Best Approximation Theorem)

- If W is a finite-dimensional subspace of an inner product space V, and
 if u is a vector in V,
 - then proj_wu is the best approximation to u form W in the sense that

$$||\mathbf{u} - \mathsf{proj}_{\mathcal{W}}\mathbf{u}|| < ||\mathbf{u} - \mathbf{w}||$$

for every vector \mathbf{w} in W that is different from $\text{proj}_{W}\mathbf{u}$.

6-4 Least Square Problem

- Given a linear system Ax = b of mequations in *n* unknowns
 - find a vector **x**, if possible, that minimize ||Ax - b|| with respect to the Euclidean inner product on
 - Such a vector is called a least squares solution of Ax = b.

solution x produces the

One way to find a least squares solution of Ax = b is to calculate the orthogonal projection $proj_W b$ on the column space W of A and then solve the equation

$$A\mathbf{x} = \operatorname{proj}_{\mathbf{W}} \mathbf{b} \tag{2}$$

However, we can avoid calculating the projection by rewriting (2) as

$$\mathbf{b} - A\mathbf{x} = \mathbf{b} - \operatorname{proj}_{\mathbf{W}} \mathbf{b}$$

and then multiplying both sides of this equation by A^T to obtain

$$A^{T}(\mathbf{b} - A\mathbf{x}) = A^{T}(\mathbf{b} - \operatorname{proj}_{W} \mathbf{b})$$
(3)

Since $\mathbf{b} - \operatorname{proj}_W \mathbf{b}$ is the component of \mathbf{b} that is orthogonal to the column space of A, it follows from Theorem 4.8.7(b) that this vector lies in the null space of A^T , and hence that

$$A^{T}(\mathbf{b} - \operatorname{proj}_{W} \mathbf{b}) = 0$$

Thus, (3) simplifies to

$$A^T(\mathbf{b} - A\mathbf{x}) = 0$$

which we can rewrite as

$$A^T A \mathbf{x} = A^T \mathbf{b} \tag{4}$$

This is called the *normal equation* or the *normal system* associated with Ax = b. When viewed as a linear system, the individual equations are called the *normal equations* associated with Ax = b.

Theorem 6.4.2

• For any linear system Ax = b, the associated normal system

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

is *consistent*, and <u>all solutions of the normal system are least squares</u> solutions of $A\mathbf{x} = \mathbf{b}$.

Moreover, if W is the column space of A, and x is any least squares solution of Ax = b, then the orthogonal projection of b on W is

$$proj_{W}\mathbf{b} = A\mathbf{x}$$

(or you can treat it as $Ax - proj_W b = 0$)

Theorem 6.4.3

- If A is an $m \times n$ matrix, then the following are equivalent.
 - A has linearly independent column vectors.
 - A^TA is invertible.

Theorem 6.4.4

- If A is an $m \times n$ matrix with linearly independent column vectors,
 - then for every $m \times 1$ matrix **b**, the linear system $A\mathbf{x} = \mathbf{b}$ has a unique least squares solution.
 - This solution is given by

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$$

 Moreover, if W is the column space of A, then the orthogonal projection of b on W is

$$\operatorname{proj}_{\boldsymbol{W}}\mathbf{b} = A\mathbf{x} = A(A^TA)^{-1}A^T\mathbf{b}$$

6-4 Example 1 (Least Squares Solution)

• Find the least squares solution of the linear system Ax = b given by

$$x_1 - x_2 = 4$$

 $3x_1 + 2x_2 = 1$
 $-2x_1 + 4x_2 = 3$

and find the orthogonal projection of **b** on the column space of A.

• Solution:

$$A = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$

• Observe that A has linearly independent column vectors, so we know in advance that there is a unique least squares solution.

Example 1

We have

$$A^{T} A = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{vmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{vmatrix} = \begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix}$$

$$A^T \mathbf{b} = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$$

so the normal system $A^{T}A\mathbf{x} = A^{T}\mathbf{b}$ in this case is $\begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$

$$\begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$$

Solving this system yields the least squares solution

$$x_1 = 17/95$$
, $x_2 = 143/285$

• The orthogonal projection of **b** on the column space of A is

$$A\mathbf{x} = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 17/95 \\ 143/285 \end{bmatrix} = \begin{bmatrix} -92/285 \\ 439/285 \\ 94/57 \end{bmatrix}$$

Example 2 (Orthogonal Projection on a Subspace)

• Find the orthogonal projection of the vector $\mathbf{u} = (-3, -3, 8, 9)$ on the subspace of \mathbb{R}^4 spanned by the vectors

$$\mathbf{u}_1 = (3,1,0,1), \ \mathbf{u}_2 = (1,2,1,1), \ \mathbf{u}_3 = (-1,0,2,-1)$$

- Solution:
 - The subspace spanned by \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 , is the column space of

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$

- If \mathbf{u} is expressed as a column vector, we can find the orthogonal projection of \mathbf{u} on W by finding a least squares solution of the system $A\mathbf{x} = \mathbf{u}$.
- $proj_{W}\mathbf{u} = A\mathbf{x}$ from the least square solution.

6-4 Example 2

• From Theorem 6.4.4, the least squares solution is given by

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{u}$$

That is,

$$\mathbf{x} = \begin{bmatrix} 3 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ -1 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 3 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ -1 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} -3 \\ -3 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

• Thus, $proj_{\mathbf{W}}\mathbf{u} = A\mathbf{x} = [-2\ 3\ 4\ 0]^T$

Assignement-1

In Exercises 3–6, find the least squares solution of the equation Ax = b.

3.
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}$$
; $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}$

4.
$$A = \begin{bmatrix} 2 & -2 \\ 1 & 1 \\ 3 & 1 \end{bmatrix}; \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}; \mathbf{b} = \begin{bmatrix} 6 \\ 0 \\ 9 \\ 3 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & -2 & 2 \\ 2 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}; \mathbf{b} = \begin{bmatrix} 0 \\ 6 \\ 0 \\ 6 \end{bmatrix}$$

17. Find the orthogonal projection of u on the subspace of R³ spanned by the vectors v₁ and v₂.

$$\mathbf{u} = (1, -6, 1); \ \mathbf{v}_1 = (-1, 2, 1), \ \mathbf{v}_2 = (2, 2, 4)$$

18. Find the orthogonal projection of u on the subspace of R⁴ spanned by the vectors v₁, v₂, and v₃.

$$\mathbf{u} = (6, 3, 9, 6); \ \mathbf{v}_1 = (2, 1, 1, 1), \ \mathbf{v}_2 = (1, 0, 1, 1), \ \mathbf{v}_3 = (-2, -1, 0, -1)$$