Octal 3-State Non-Inverting Transparent Latch

High-Performance Silicon-Gate CMOS

The MC74HC373A is identical in pinout to the LS373. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

These latches appear transparent to data (i.e., the outputs change asynchronously) when Latch Enable is high. When Latch Enable goes low, data meeting the setup and hold time becomes latched.

The Output Enable input does not affect the state of the latches, but when Output Enable is high, all device outputs are forced to the high-impedance state. Thus, data may be latched even when the outputs are not enabled.

The HC373A is identical in function to the HC573A which has the data inputs on the opposite side of the package from the outputs to facilitate PC board layout.

The HC373A is the non-inverting version of the HC533A.

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 186 FETs or 46.5 Equivalent Gates

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC74HC373AN	PDIP-20	1440 / Box
MC74HC373ADW	SOIC-WIDE	38 / Rail
MC74HC373ADWR2	SOIC-WIDE	1000 / Reel
MC74HC373ADT	TSSOP-20	75 / Rail
MC74HC373ADTR2	TSSOP-20	2500 / Reel

Design Criteria	Value	Units
Internal Gate Count*	46.5	ea
Internal Gate Propagation Delay	1.5	ns
Internal Gate Power Dissipation	5.0	μW
Speed Power Product	0.0075	рJ

^{*}Equivalent to a two-input NAND gate.

PIN ASSIGNMENT

OUTPUT C	1•	20] v _{CC}
Q0 [2	19] Q7
D0 [3	18] D7
D1 [4	17] D6
Q1 [5	16] Q6
Q2 [6	15] Q5
D2 [7	14] D5
D3 [8	13] D4
Q3 [9	12] Q4
GND [10	11	LATCH ENABLE

FUNCTION TABLE

	Inputs	Output	
Output Enable	Latch Enable	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Х	No Change
Н	Χ	X	Z

X = Don't CareZ = High Impedance

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Current, per Pin	± 35	mA
Icc	DC Supply Current, V _{CC} and GND Pins	± 75	mA
PD	Power Dissipation in Still Air, Plastic DIP† SOIC Package† TSSOP Package†	750 500 450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC, SSOP or TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $\mbox{GND} \leq (V_{in} \mbox{ or } V_{out}) \leq V_{CC}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Functional operation should be restricted to the Recommended Operating Conditions.

SOIC Package: – 7 mW/°C from 65° to 125°C

TSSOP Package: - 6.1 mW/°C from 65° to 125°C

For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
VCC	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		0	Vcc	V
TA	Operating Temperature, All Package	e Types	- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1)	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0 0	1000 500 400	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
VIH	Minimum High-Level Input Voltage	$V_{\text{out}} = V_{\text{CC}} - 0.1 \text{ V}$ $ I_{\text{out}} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low–Level Input Voltage	$V_{Out} = 0.1 \text{ V}$ $ I_{Out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
VOH	Minimum High–Level Output Voltage	$V_{\text{in}} = V_{\text{IH}}$ $ I_{\text{out}} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$\begin{aligned} V_{\text{in}} = V_{\text{IH}} & I_{\text{out}} \leq 2.4 \text{ r} \\ I_{\text{out}} \leq 6.0 \text{ r} \\ I_{\text{out}} \leq 7.8 \text{ r} \end{aligned}$	nA 4.5	2.48 3.98 5.48	2.34 3.84 5.34	2.2 3.7 5.2	
VOL	Maximum Low–Level Output Voltage	$V_{\text{in}} = V_{\text{IL}}$ $ I_{\text{out}} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$\begin{aligned} V_{\text{in}} = V_{\text{IL}} & I_{\text{out}} \leq 2.4 \text{r} \\ I_{\text{out}} \leq 6.0 \text{r} \\ I_{\text{out}} \leq 7.8 \text{r} \end{aligned}$	nA 4.5	0.26 0.26 0.26	0.33 0.33 0.33	0.4 0.4 0.4	

 $^{^*\}mbox{Maximum}$ Ratings are those values beyond which damage to the device may occur.

[†]Derating — Plastic DIP: – 10 mW/°C from 65° to 125°C

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	v _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
lin	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	± 0.1	± 1.0	± 1.0	μΑ
loz	Maximum Three–State Leakage Current	Output in High-Impedance State $V_{in} = V_{IL} \text{ or } V_{IH}$ $V_{out} = V_{CC} \text{ or GND}$	6.0	± 0.5	± 5.0	± 10	μА
lcc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	4.0	40	160	μΑ

NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6.0 \text{ ns}$)

			Gu	aranteed Li	mit	
Symbol	Parameter	v _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
[†] PLH [†] PHL	Maximum Propagation Delay, Input D to Q (Figures 1 and 5)	2.0 3.0 4.5 6.0	125 80 25 21	155 110 31 26	190 130 38 32	ns
[†] PLH [†] PHL	Maximum Propagation Delay, Latch Enable to Q (Figures 2 and 5)	2.0 3.0 4.5 6.0	140 90 28 24	175 120 35 30	210 140 42 36	ns
^t PLZ ^t PHZ	Maximum Propagation Delay, Output Enable to Q (Figures 3 and 6)	2.0 3.0 4.5 6.0	150 100 30 26	190 125 38 33	225 150 45 38	ns
^t PZL ^t PZH	Maximum Propagation Delay, Output Enable to Q (Figures 3 and 6)	2.0 3.0 4.5 6.0	150 100 30 26	190 125 38 33	225 150 45 38	ns
^t TLH ^t THL	Maximum Output Transition Time, Any Output (Figures 1 and 5)	2.0 3.0 4.5 6.0	60 23 12 10	75 27 15 13	90 32 18 15	ns
C _{in}	Maximum Input Capacitance		10	10	10	pF
C _{out}	Maximum Three–State Output Capacitance (Output in High–Impedance State)		15	15	15	pF

NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Enabled Output)*	36	pF

^{*} Used to determine the no–load dynamic power consumption: P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}. For load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D).

TIMING REQUIREMENTS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6.0 \text{ ns}$)

				Guaranteed Limit						
			VCC	– 55 to	25°C	≤ 8	5°C	≤ 12	25°C	
Symbol	Parameter	Fig.	Volts	Min	Max	Min	Max	Min	Max	Unit
^t su	Minimum Setup Time, Input D to Latch Enable	4	2.0 3.0 4.5 6.0	25 20 5.0 5.0		30 25 6.0 6.0		40 30 8.0 7.0		ns
th	Minimum Hold Time, Latch Enable to Input D	4	2.0 3.0 4.5 6.0	5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0		ns
t _W	Minimum Pulse Width, Latch Enable	2	2.0 3.0 4.5 6.0	60 23 12 10		75 27 15 13		90 32 18 15		ns
t _r , t _f	Maximum Input Rise and Fall Times	1	2.0 3.0 4.5 6.0		1000 800 500 400		1000 800 500 400		1000 800 500 400	ns

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

TEST CIRCUITS

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

Figure 5.

Figure 6.

EXPANDED LOGIC DIAGRAM

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 1 14.3W, 1702.

 CONTROLLING DIMENSION: INCH.

 DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	1.010	1.070	25.66	27.17	
В	0.240	0.260	6.10	6.60	
С	0.150	0.180	3.81	4.57	
D	0.015	0.022	0.39	0.55	
Е	0.050	BSC	1.27 BSC		
F	0.050	0.070	1.27	1.77	
G	0.100	BSC	2.54 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.140	2.80	3.55	
L	0.300 BSC		7.62 BSC		
M	0 °	15°	0°	15°	
N	0.020	0.040	0.51	1.01	

SO-20 **DW SUFFIX** CASE 751D-05 ISSUE F

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.

- PER ASME 174-5M, 1994.

 DIMENSIONS D AND E DO NOT INCLUDE MOLD
 PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.35	2.65	
A1	0.10	0.25	
В	0.35	0.49	
С	0.23	0.32	
D	12.65	12.95	
Ε	7.40	7.60	
е	1.27	1.27 BSC	
Н	10.05	10.55	
h	0.25	0.75	
L	0.50	0.90	
θ	0 °	7 °	

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOI FRANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED
- 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 JUNEAU DAMBAR

 EXCED 0.25 (0.010) PER SIDE.
- PROTRUSION: ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	6.40	6.60	0.252	0.260
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC products could create a situation where personal injury or door the products of the science death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com

Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.