THE BUILDING EVACUATION PROBLEM WITH SHARED INFORMATION

Masterseminar Optimierung im WS 2012/13 27.11.2012

vorgetragen von:

Manuel Schwarz

INHALT

- Motivation
- Modellierung als MIP
- Exaktes Lösungsverfahren nach Bender
- Beispiel anhand eines 4-stöckigen Hauses
- Ergebnisse
- Fazit

MOTIVATION

- Bestimmen von Evakuierungsrouten aus z.B. brennenden Gebäuden
- · Ziel: Minimierung der Gesamt-Evakuierungszeit
- Bisherige Ansätze:
 - statische Pläne
 - beliebiges Splitten von Gruppen
- Dieser Ansatz:
 - stärkere Berücksichtigung von Gruppendynamik
 - · Einbeziehung von "Shared Information"

SHARED INFORMATION

- Evakuierungswege können situationsbedingt aktualisiert werden
- · neue Informationen werde live weitergegeben
- Personen werden gleichzeitig mit neuen Informationen versorgt
- · via veränderlichen Hinweisschildern, Sprachsystem

MODELLIERUNG ALS MIP

Definitionen und Problemformulierung

DEFINITIONEN (I)

Netzwerk:
$$\Im = (G, u, \tau)$$
 mit $G = (N, A, \{0, \dots, T\})$
 $N = \{1, \dots, n\}$ Menge der Knoten
 $A = \{(i, j) | i, j \in N\}$ Menge der ger. Kanten
 T Zeitraum diskretisiert in $\{0, \dots, T\}$
 $u_{ij}(t)$ Kapazität der Kante (i, j)
 $\tau_{ij}(t)$ Kosten (Zeit) der Kante (i, j)
 $(i, i), \ \forall i \in N$ Pufferzonen / Wartekanten
 M Anzahl der Quellknoten
 $K = \{k_1, k_2, \dots, k_M\}$ Menge der Quellknoten
 l Senkeknoten (Exit)

DEFINITIONEN (2)

 $b_{k_m}(t)$ Supply bei Quellknoten $k_m \in K$ zur Zeit t

Bei t=T entspricht der Supply im Knoten l dem Gesamtsupply B

$$B = \sum_{k_i \in K} \sum_{t=1}^{T} b_{k_i}(t)$$
 , sodass $b_l(T) = -B$

MODELLIERUNG ALS MIP (I)

 $x_{i,j}(t)$

Fluss von Knoten i zum Zeitpunkt t entlang der Kante (i,j)

 $\lambda_{i,j}(t)$

legt die zu wählenden Kanten fest

 $\Gamma^-(i) = \{j | (j,i) \in A\}$ Menge der eingehenden Kanten

 $\Gamma^+(i) = \{j | (i,j) \in A\}$ Menge der ausgehenden Kanten

Der Fluss $x_{i,j}(t)$ trifft zur Zeit $t + \tau_{i,j}(t)$ beim Knoten j ein.

MODELLIERUNG ALS MIP (2)

Zielfunktion

$$P: \min \sum_{(i,j)\in A} \sum_{t\in\{0,\ldots,T\}} \tau_{ij}(t)x_{ij}(t)$$

subject to:

Flusserhaltung

$$\sum_{j \in \Gamma^{+}(i)} x_{ij}(t) - \sum_{j \in \Gamma^{-}(i)} \sum_{\{\overline{t} | \overline{t} + \tau_{ji}(\overline{t}) = t\}} x_{ji}(\overline{t}) = b_{i}(t),$$

$$\forall i \in N, t \in \{0, \dots, T\}$$

MODELLIERUNG ALS MIP (3)

Kapazitätsbeschränkung

$$\lambda_{ij}(t) \le x_{ij}(t) \le \lambda_{ij}(t)u_{ij}(t), \ \forall (i,j) \in A, t \in \{0,\dots,T\}$$

Shared Information

$$\sum_{j \in \Gamma^+(i), j \neq i} \lambda_{ij}(t) \le 1, \quad \forall i \in N \setminus l, t \in \{0, \dots, T\}$$

nicht-negativität Bedingung

$$x_{ij}(t) \ge 0, \ \lambda_{ij}(t)binary, \ \forall (i,j) \in A, t \in \{0, \dots T\}$$

BENDERS DECOMPOSITION

allgemeines Konzept und Algorithmus

BENDERS DECOMPOSITION

- schnelle Lösung von Optimierungsproblemen mit sehr vielen Variablen
- Idee
 - LP dualisieren (in Binärproblem umformen)
 - Untere Schranke für Zielfunktionswert bestimmen (Benders Cut)
 - Untere Schranke dem Masterproblem hinzufügen

LP ZU DUAL

Allgemeines LP-Problem

$$\min z = cx$$

s.t.
$$Ax \geq b$$

$$x \ge a$$

formuliert als Dual-Problem

$$\max w = ub$$

s.t.
$$uA \leq c$$

$$u \ge a$$

ALLGEMEINE DUALITÄT

max
$$\beta$$
s.t. $Ax \ge b \xrightarrow{D} cx \ge \beta$

$$D = \{x | x \ge a\}$$

 $Ax \ge b$ impliziert $cx \ge \beta$ unter Beachtung von D

Ziel: Ableiten einer unteren Schranke.

BEISPIEL DUALITÄT

Problem

$$\min z = 4x$$
s.t. $x \ge 5$

$$x \le 10$$

$$x \ge 0$$

$$\max \beta$$

$$\text{s.t. } x \in S \xrightarrow{D} 4x \ge \beta$$

$$D = \{x | x \ge 0\}$$

$$S = \{x | x \ge 5 \land x \le 10\}$$

Lösung:
$$x=5$$
 mit $\beta=20$

BD METHODIK (I)

- Fixieren bestimmter Variablen
 - · hängt vom Problem und dem Wissen darüber ab
 - Kernstück von Benders Decomposition
 - resultierendes Subproblem ist einfach zu lösen

BD METHODIK (2)

Aufteilen der Variablen in 2 Gruppen

$$\min z = cx + f(y)$$
 s.t. $Ax + g(y) \ge b$
$$x, y \in D$$

Fixierung der Variablen y mit den Testwerten \overline{y}

resultierendes Subproblem:

$$\min z = cx + f(\overline{y})$$

s.t. $Ax \ge b - g(\overline{y})$
$$x \in D$$

BD METHODIK (3)

BD allg. Dualität

$$\max \beta$$

s.t.
$$Ax \ge b - g(\overline{y}) \xrightarrow{x,\overline{y} \in D} cx + f(\overline{y}) \ge \beta$$

(lineares) duales Sub-Problem
$$\max w = u(b - g(\overline{y})) + f(\overline{y})$$
 s.t. $uA \le c$
$$u \in D$$

Die Lösung des Sub-Problems liefert eine untere Schranke β^* für den Zielfunktionswert, angenommen $y=\overline{y}$.

BD METHODIK (4)

Ziel: eine Funktion $\beta_{\overline{y}}(y)$ bestimmen, die eine gültige untere Schranke für jedes y liefert.

$$\beta_{\overline{y}}(\overline{y}) = \beta^*$$

generalisierte Schranke (Benders Cut)

$$z \ge u(b - g(y)) + f(\overline{y}) = \beta_{\overline{y}}(y)$$

Masterproblem

 $\min z$

s.t.
$$z \ge \beta_{y^k}(y)$$
, $k = 1, \dots, K$
 $y \in D_y$

BD ALGORITHMUS

Algorithm 1 Benders Decomposition()

- 1: Choose \bar{y} in original problem
- 2: $\bar{z} \leftarrow -\infty$
- $3: k \leftarrow 0$
- 4: **while** (sub-problem dual has feasible solution $\beta \geq \bar{z}$) **do**
- 5: Derive lower bound function $\beta_{\bar{y}}(y)$ with $\beta_{\bar{y}}(\bar{y}) = \beta$
- 6: $k \leftarrow k+1$
- 7: $y^k \leftarrow \bar{y}$
- 8: Add $z \ge \beta_{\bar{y}}(y)$ to master problem
- 9: **if** (master problem is infeasible) **then**
- 10: Stop. The original problem is infeasible.
- 11: **else**
- 12: Let (\bar{z}, \bar{y}) be the optimal value and solution to the master problem.
- 13: **return** (\bar{z}, \bar{y})

BENDERS DECOMPOSITION

konkret am Beispiel BEPSI

BENDERS SUBPROBLEM (1)

- Subproblem bestimmt den Fluss entlang der Kanten
- Fixieren der Werte von λ ($\tilde{\lambda} \in \Lambda$)
- aufteilen der Kantenmenge A in drei disjunkte Teilmengen (zur Laufzeitoptimierung)

$$I_1(A) = \{(i,j)|i,j \in N \text{ and } \Gamma^+(i) \ge 2\}$$

 $I_2(A) = \{(i,j)|i,j \in N \text{ and } \Gamma^+(i) = 1\}$
 $I_3(A) = \{(i,i)|i \in N\}$

BENDERS SUBPROBLEM (2)

Subproblem

$$RS_{p}(\tilde{\lambda}) : \min \sum_{(i,j)\in A} \sum_{t\in\{0,\dots,T\}} \tau_{ij}(t)x_{ij}(t)$$

subject to:

Flusserhaltung

$$\sum_{j \in \Gamma^+(i)} x_{ij}(t) - \sum_{j \in \Gamma^-(i)} \sum_{\{\overline{t} | \overline{t} + \tau_{ji}(\overline{t}) = t\}} x_{ji}(\overline{t}) = b_i(t),$$

$$\forall i \in N, t \in \{0, \dots, T\}$$

BENDERS SUBPROBLEM (3)

Kapazitätsbeschränkung

$$x_{ij}(t) \leq \tilde{\lambda}_{ij}(t)u_{ij}(t), \quad \forall (i,j) \in I_1, t \in \{0,\ldots,T\}$$

$$x_{ij}(t) \le u_{ij}(t), \quad \forall (i,j) \in I_2, t \in \{0,\dots,T\}$$

nicht-negativ Bedingung

$$x_{ij}(t) \ge 0, \ \lambda_{ij}(t)binary, \ \forall (i,j) \in A, t \in \{0, \dots T\}$$

BENDERS DUAL SUBPROBLEM

$$DRS_{p}(\tilde{\lambda}) : \max \sum_{t \in \{0,\dots,T\}} \left(\sum_{i \in N} \pi_{i}(t)b_{i}(t) + \sum_{i \in N} \pi_{i}(t)b_{i}(t) + \sum_{(i,j) \in I_{2}(A)} \tilde{\lambda}_{ij}(t)m_{ij}(t) + \sum_{(i,j) \in I_{1}(A)} \tilde{\lambda}_{ij}(t)u_{ij}(t)m_{ij}(t) \right)$$

 $(i,j)\in I_2(A)$

BENDERS DUAL SUBPROBLEM

subject to:

Flusserhaltung

$$\pi_i(t) - \pi_j(t + \tau_{ij}(t)) + m_{ij}(t) \le \tau_{ij}(t),$$

$$\forall (i,j) \in A \setminus I_3(A), t \in \{0, \dots, T\}$$

Kapazitätsbeschränkung

$$m_{ij}(t) \leq 0, \quad \forall (i,j) \in A \setminus I_3(A), t \in \{0,\ldots,T\}$$

BENDERS MASTERPROBLEM

 $(\overline{P}): \min Z$

subject to:

Optimalitäts-Cuts

$$Z - \sum_{t \in \{0, \dots, T\}} \sum_{(i,j) \in I_1(A)} u_{ij}(t) m_{ij}(t) \lambda_{ij}(t) \ge \sum_{t \in \{0, \dots, T\}} \left(\sum_{i \in N} \pi_i(t) b_i(t) + \sum_{(i,j) \in I_2(A)} u_{ij}(t) m_{ij}(t) \right),$$

$$(\pi, m) \in P_D$$

BENDERS MASTERPROBLEM

Gültigkeits-Cuts

$$\sum_{t \in \{0, \dots, T\}} \sum_{(i,j) \in I_1(A)} u_{ij}(t) m_{ij}(t) \lambda_{ij}(t) \le$$

$$- \sum_{t \in \{0, \dots, T\}} \left(\sum_{i \in N} \pi_i(t) b_i(t) + \sum_{(i,j) \in I_2(A)} u_{ij}(t) m_{ij}(t) \right),$$

$$(\pi, m) \in R_D$$

BENDERS MASTERPROBLEM

Kantenwahl

$$\sum_{j \in \Gamma^+(i), j \neq i} \lambda_{ij}(t) \le 1, \quad \forall i \in N \setminus l, t \in \{0, \dots, T\}$$

$$\lambda_{ij}(t)$$
 binary, $\forall (i,j) \in A, t \in \{0,\ldots,T\}$

BD ALGORITHMUS

- Lösung für das Masterproblem => Kantenauswahl (Input für das Subproblem)
- Subproblem lösen
 - Ist der neue Zielfunktionswert kleiner als der alte und alle Constraints sind erfüllt => fertig. (insb. Splitting)
 - sonst: Lösungsraum einschränken (Cuts, neue Constraints)
- · wiederholen, bis eine Lösung gefunden wurde

BEISPIEL

anhand eines 4-stöckigen Gebäudes

EXPERIMENT (I)

- A.V. Williams Gebäude
 - 4 identische Stockwerke
 - 612 Knoten
 - 1.480 Kanten
 - 5 Exit-Knoten

Figure 4. The A. V. Williams building second floor layout.

EXPERIMENT (2)

Table 2.	Crowd movement parameters for various facilities.a						
Facility	Density (person/ft ²)	Speed (ft/min)	Flow (person/min/ft)				
Doorway	0.22	120	26				
Pathway	0.20	120	24				
Stairwell	0.19	95	18				
^a Ref. [7]							

Table 3. Characteristics of test scenarios.							
Scenario	Capacities	Travel times	Supply level	Severity of conditions			
1	1	1	1	Ideal conditions			
2	1	1	3	Ideal conditions			
3	0.98	1.02	1	Slightly impacted			
4	0.98	1.02	2	Slightly impacted			
5	0.96	1.04	3	Impacted			
6	0.95	1.06	3	Severely impacted, some links disabled			

ERGEBNISSE

			Computational time (CPU seconds)		
			BD		
Scenario	$\Delta(Z_{ ext{BEPSI}} - Z_{ ext{TDQFP}})$	Number of cuts	To 95% optimality	To optimality	Branch-and-cut
1	0	4	_	3.0	4.6
2	0	4	1.6	3.3	21.7
3	0	12	1.9	30.8	80.0
4	32	36	6.0	31.2	178.7
5	0	32	19.6	58.5	221.3
6	224	44	17.7	94.8	> 0.5 h

Microsoft Visual Studio C++ 6.0 Pentium 4, 3.2 GHz und 2 GB Ram

FAZIT (I)

- BEPSI wurde als MIP formuliert
- · Ein exakter Algorithmus zur Lösung wurde präsentiert
- · Beispiel anhand eines realen 4-stöckigen Gebäudes
- stärkere Berücksichtigung von Gruppendynamik (kein Splitten)
- Vermeiden von möglichen Gefahrensituationen (ständige live-Updates)

FAZIT (2)

- Einbeziehung von sich verschlechterden Bedingungen
- Verbesserung: Abhängigkeit der Kantenkosten (Reisezeit) von Personen pro Kante
- Übertragung auf andere Einsatzgebiete
- Heuristische Verfahren testen und verbessern

VIELEN DANK

für die Aufmerksamkeit.