STA2202 - Time Series Analysis - Assignment 2 - THEORY

Luis Correia - Student No. 1006508566

May 27th 2020

Submission instructions: Submit *three separate files* to A2 on Quercus - the deadline is 11:59PM on Tuesday, June 2.

- A PDF file with your Theory part answers.
- A PDF file with your Practice part report.
- A CSV file with your Practice part forecasts.

Theory

Question 1

1. Consider two discrete random variables X, Y with joint probabilities given by the contingency table:

$\overline{P(X,Y)}$	Y = -1	Y = 0	Y = 1
$\overline{X = -1}$.05	.10	.15
X = 0	.15	.15	.10
X = +1	.15	.00	.15

- (a) [2 marks] Find the *Minimum Mean Square Error* (MMSE) predictor of Y given X, i.e. the conditional expectation $g(X) = \mathbb{E}[Y|X]$, and the MSE it achieves, i.e. $\mathbb{E}[(Y-g(X))^2]$.
- (b) [2 marks] Find the Best Linear Predictor (BLP) of Y given X, i.e. Y = a + bX, for the BLP coefficients a, b, and the MSE it achieves.

(Note: This is an example where the MMSE predictor and the BLP are different.)

 $\{Solution.\}$

item (a)

In this question we will calculate the MMSE Predictor g(X) = E[Y|X] for all combinations of variables. Calculating the Marginals we have the following table:

P(X,Y)	Y = -1	Y = 0	Y = 1	P(X)
X = -1	.05	.10	.15	.30
X = 0	.15	.15	.10	.40
X = +1	.15	.00	.15	.30
P(Y)	.35	.25	.40	1.00

Now calculating the MMSE Predictor for each value of X

• For X=-1 we have $g(X)=E\big[Y\big|X=-1\big]=\sum_{y=-1}^1 y P(Y=y|X=-1)$

$$g(X) = (-1)\frac{0.05}{0.30} + (1)\frac{0.15}{0.30} = \frac{0.10}{0.30} = \frac{1}{3}$$

• For X = 0 we have $g(X) = E[Y|X = 0] = \sum_{y=-1}^{1} y P(Y = y|X = 0)$

$$g(X) = (-1)\frac{0.15}{0.40} + (1)\frac{0.10}{0.40} = \frac{-0.05}{0.40} = -\frac{1}{8}$$

• For X=1 we have $g(X)=E\big[Y\big|X=1\big]=\sum_{y=-1}^1 y P(Y=y|X=1)$

$$g(X) = (-1)\frac{0.15}{0.30} + (1)\frac{0.15}{0.30} = \frac{0}{0.30} = 0$$

For each combination of Y/g(X) we will calculate $MSE = E[(Y - g(X))^2]$, then we have:

\overline{MSE}	g(X) = 1/3	g(X) = -1/8	g(X) = 0
Y = -1	1.7777	0.1111	0.4444
Y = 0	0.7656	0.0156	1.2656
Y = +1	1.0000	0.0000	1.0000

Then multiplying each column/row for its respective probability in contingency table and summing up each term we obtain the expected Mean Square Error for g(X), which is:

$$\implies MSE = 0.71042 \tag{1}$$

item (b)

In order to calculate the BLP of Y, lets first state the *Moment Generating Function* of Y, $m_Y(t)$, which will be useful when calculating the 1st and 2nd moments of Y to derive the estimates of parameters a and b of g(X) and its MSE.

From the contingency table, we have that the $m_Y(t)$ is given by:

$$m_Y(t) = 0.25 + 0.35e^{-t} + 0.4e^t (2)$$

Calculating the 1st and 2nd moments we have that:

$$\implies E(Y) = m_Y'(0) = 0.05$$
 (3)

and

$$\implies E(Y^2) = m_Y''(0) = 0.75$$
 (4)

Now, calculating the BLP, for each value of X we have 03 different BLPs, as follows:

• For
$$X = -1$$
 we have $g(X) = a + b \times (-1) = a - b$

- For X = 0 we have $g(X) = a + b \times (0) = a$
- For X = 1 we have $g(X) = a + b \times (1) = a + b$

We know from lecture that the prediction errors for BLP must be *uncorrelated* with the variables used in the prediction, i.e., we must have

$$E[(Y - g(X))X] = 0, \forall X \in \{-1, 0, 1\}$$
(5)

Using the 1st moment of Y given by (3) and applying the result (5) for all possible values of X we have a system of equations that will permit estimate the values of a and b, as follows:

For X = -1

$$E[(Y - (a - b))(-1)] = 0$$

$$E[((a - b) - Y)] = 0$$

$$(a - b) - E(Y) = 0$$

$$(a - b) = 0.05$$

and for X = 1

$$E[(Y - (a+b))(1)] = 0$$

$$E[(Y - (a+b))] = 0$$

$$E(Y) - (a+b) = 0$$

$$(a+b) = 0.05$$

$$\Rightarrow a = 0.05 \text{ and } b = 0$$
(6)

Then we have that (6) implies g(X) = 0.05.

Now, calculating the MSE of g(X) and using the results (3), (4) and (6) we have that:

$$MSE = E[(Y - g(X))^{2}]$$

$$= E[(Y^{2} - 2 \times (0.05)Y + (0.05)^{2})]$$

$$= E(Y^{2}) - 2 \times (0.05)E(Y) + 0.0025$$

$$= 0.75 - 0.10 \times (0.05) + 0.0025$$

$$= 0.7475$$

This concludes Question 1.

Question 2

- 2. Consider the AR(1) model $X_t = \phi X_{t-1} + W_t$, $W_t \sim WN(0, \sigma_w^2)$.
- (a) [3 marks] Find the covariance between the 1- & 2-step-ahead BLP errors, i.e. find

$$Cov [(X_{n+1} - X_{n+1}^n)(X_{n+2} - X_{n+2}^n)]$$

as a function of (ϕ, σ_w^2) .

(Note: this should be non-zero; generally the different-step-ahead forecasts will be correlated.)

(b) [3 marks] Find the covariance between the subsequent 1-step-ahead BLP errors, i.e. find $\operatorname{Cov}\left[(X_n-X_n^{n-1})(X_{n+1}-X_{n+1}^n)\right]$ as a function of (ϕ,σ_w^2) . (Note: These are similar to the model residuals given perfect knowledge of the parameters.)

 $\{Solution.\}$

item (a)

We know that, for AR(1) given by $X_t = \phi X_{t-1} + W_t$, with $W_t \sim WN(0, \sigma_W^2)$, the 1-Step-Ahead BLP estimator is given by

$$X_{n+1}^n = \phi X_n, \ n \ge 1 \tag{7}$$

and the 2-Step-Ahead BLP estimator is given by

$$X_{n+2}^n = \phi^2 X_n, \ n \ge 1$$
 (8)

Additionally, the ACVF is given by

$$\gamma(h) = \frac{\sigma_W^2 \phi^h}{1 - \phi^2}, \ |\phi| < 1 \tag{9}$$

Applying (7) and (8) to the Covariance of both 1&2-Step-Ahead BLP Errors, we have:

$$Cov[(X_{n+1} - X_{n+1}^n), (X_{n+2} - X_{n+2}^n)]$$

$$= Cov[(X_{n+1} - \phi X_n), (X_{n+2} - \phi^2 X_n)]$$

$$= Cov(X_{n+1}, X_{n+2}) - \phi^2 Cov(X_{n+1}, X_n) - \phi Cov(X_n, X_{n+2}) + \phi^3 Cov(X_n, X_n)$$

$$= \gamma(1) - \phi^2 \gamma(1) - \phi \gamma(2) + \phi^3 \gamma(0)$$

Using (9) in this result we obtain then:

$$Cov[(X_{n+1} - X_{n+1}^n), (X_{n+2} - X_{n+2}^n)]$$

$$= \frac{\sigma_W^2 \phi}{1 - \phi^2} - \phi^2 \frac{\sigma_W^2 \phi}{1 - \phi^2} - \phi \frac{\sigma_W^2 \phi^2}{1 - \phi^2} + \phi^3 \frac{\sigma_W^2}{1 - \phi^2}$$

$$= \frac{\sigma_W^2 \phi}{1 - \phi^2} (1 - \phi^2)$$

$$= \sigma_W^2 \phi$$

Therefore, the Covariance between 1&2-Step-Ahead BLP Errors is given by

$$Cov[(X_{n+1} - X_{n+1}^n), (X_{n+2} - X_{n+2}^n)] = \sigma_W^2 \phi$$
 (10)

item (b)

Proceeding the same way in the previous item and adapting the results from (7) to the present case, we have that

$$Cov[(X_{n} - X_{n}^{n-1}), (X_{n+1} - X_{n+1}^{n})]$$

$$= Cov[(X_{n} - \phi X_{n-1}), (X_{n+1} - \phi X_{n})]]$$

$$= Cov(X_{n}, X_{n+1}) - \phi Cov(X_{n}, X_{n}) - \phi Cov(X_{n-1}, X_{n+1}) + \phi^{2} Cov(X_{n-1}, X_{n})$$

$$= \gamma(1) - \phi\gamma(0) - \phi\gamma(2) + \phi^{2}\gamma(1)$$

Using (9) we obtain then:

$$Cov [(X_n - X_n^{n-1}), (X_{n+1} - X_{n+1}^n)]$$

$$= \frac{\sigma_W^2 \phi}{1 - \phi^2} - \phi \frac{\sigma_W^2}{1 - \phi^2} - \phi \frac{\sigma_W^2 \phi^2}{1 - \phi^2} + \phi^2 \frac{\sigma_W^2 \phi}{1 - \phi^2}$$

$$= 0$$

Therefore, the Covariance between the subsequent 1-Step-Ahead BLP Errors is given by

$$Cov[(X_n - X_n^{n-1}), (X_{n+1} - X_{n+1}^n)] = 0$$
 (11)

This concludes Question 2.

Question 3

- 3. [5 marks; STA2202 (grad) students ONLY] Forecasting with estimated parameters: Let x_1, x_2, \ldots, x_n be a sample of size n from a causal AR(1) process, $x_t = \phi x_{t-1} + w_t$. Let $\hat{\phi}$ be the Yule–Walker estimator of ϕ .
- (a) Show $\hat{\phi} \phi = O_p(n^{-1/2})$. See Appendix A for the definition of $O_p(.)$.
- (b) Let x_{n+1}^n be the one-step-ahead forecast of x_{n+1} given the data x_1, \ldots, x_n , based on the known parameter, ϕ , and let \hat{x}_{n+1}^n be the one-step-ahead forecast when the parameter is replaced by $\hat{\phi}$. Show $x_{n+1}^n \hat{x}_{n+1}^n = O_p(n^{-1/2})$.

(Note: the *estimated BLPs* \hat{X}_{n+m}^n based on the fitted parameters $(\hat{\phi}, \hat{\theta}, \hat{\sigma}_w^2)$ are less accurate than the *theoretical BLPs* based on the true parameters. This questions shows that for AR(1) 1-step-ahead predictions, their difference is bounded in probability at the usual rate of $1/\sqrt{n}$.)

 $\{Solution.\}$

item (a)

As we saw in Lecture 6, that Yule-Walker estimate $\hat{\phi}_{YW}$ is a consistent estimator of the real parameter ϕ i.e., $E(\hat{\phi}_{YW}) = \phi$.

By Tchebycheff's inequality we also have that:

$$P\{|\hat{\phi}_{YW} - \phi| > \epsilon\} \le \frac{E[(\hat{\phi}_{YW} - \phi)^2]}{\epsilon^2}$$
(12)

We also saw in class that the distribution of the M.S.E in the right side of (12) converges to a Normal distribution with variance equals to $\sigma_w^2 \Gamma_n^{-1}/n$.

$$\implies P\{|\hat{\phi}_{YW} - \phi| > \epsilon\} \le \frac{\sigma_w^2 \Gamma_n^{-1}}{n\epsilon^2} \to 0, \text{ as } n \to \infty$$
 (13)

Then we have that $\hat{\phi}_{YW} \stackrel{P}{\longrightarrow} \phi$.

From this point, in order to find the rate of convergence, it follows from Tchebycheff's inequality that:

$$P\{\sqrt{n}|\hat{\phi}_{YW} - \phi| > \delta(\epsilon)\} \le \frac{\sigma_w^2 \Gamma_n^{-1}/n}{\delta^2(\epsilon)/n} = \frac{\sigma_w^2 \Gamma_n^{-1}}{\delta^2(\epsilon)}$$
(14)

By doing $\epsilon = \sigma_w^2 \Gamma_n^{-1}/\delta^2(\epsilon)$ it follows that $\delta^2(\epsilon) = \sigma_w \Gamma_n^{-1/2}/\sqrt{\epsilon}$

$$\implies \hat{\phi}_{YW} - \phi = O(n^{1/2}) \tag{15}$$

item (b)

Now let's consider X_{n+1}^n be the 1-Step-Ahead forecast for X_{n+1} and \hat{X}_{n+1}^n as the 1-Step-Ahead forecast when the parameter is replaced by $\hat{\phi}$.

Using the same approach adopted in previous item, the result from (7) we have:

$$\left| X_{n+1} - \hat{X}_{n+1}^n \right| = \left| X_{n+1} - \phi X_n \right| \tag{16}$$

Using similar approach used in (12) and (13), we have that:

$$P\{|\hat{X}_{n+1}^n - X_{n+1}| > \epsilon\} \le \frac{E[(X_{n+1} - \hat{X}_{n+1}^n)^2]}{\epsilon^2} = \frac{MSE}{\epsilon^2}$$
(17)

Now, calculating the MSE for 1-Step-Ahead and using the result in (9) we have that:

$$E[(X_{n+1} - \hat{X}_{n+1}^{n})^{2}] = E[(X_{n+1} - \phi X_{n})^{2}]$$

$$= E(X_{n+1}^{2} - 2\phi X_{n+1} X_{n} + \phi^{2} X_{n}^{2})$$

$$= E(X_{n+1}^{2}) - 2\phi E(X_{n+1} X_{n}) + \phi^{2} E(X_{n}^{2})$$

$$= Var(X_{n+1}) - 2\phi Cov(X_{n+1}, X_{n}) + \phi^{2} Var(X_{n})$$

$$= \gamma(0) - 2\phi \gamma(1) + \phi^{2} \gamma(0)$$

$$= \frac{\sigma_{W}^{2}}{1 - \phi^{2}} - 2\phi \frac{\sigma_{W}^{2} \phi}{1 - \phi^{2}} + \phi^{2} \frac{\sigma_{W}^{2}}{1 - \phi^{2}}$$

$$= \frac{(1 - \phi^{2})\sigma_{W}^{2}}{1 - \phi^{2}}$$

$$= \sigma_{W}^{2}$$

$$\Rightarrow E[(X_{n+1} - \hat{X}_{n+1}^{n})^{2}] = \sigma_{W}^{2}$$
(18)

Substituting (18) in (17), we have that

$$P\{\left|X_{n+1} - \hat{X}_{n+1}^n\right| > \epsilon\} \le \frac{\sigma_W^2}{\epsilon^2} \tag{19}$$

Using the same approach of convergence as in previous item, it follows from Tchebycheff's inequality that:

$$P\{\sqrt{n}|X_{n+1} - \hat{X}_{n+1}^n| > \delta(\epsilon)\} \le \frac{\sigma_w^2/n}{\delta^2(\epsilon)/n} = \frac{\sigma_w^2}{\delta^2(\epsilon)}$$
(20)

By doing $\epsilon = \sigma_w^2/\delta^2(\epsilon)$ it follows that $\delta^2(\epsilon) = \sigma_w/\sqrt{\epsilon}$. Then we have:

$$\implies X_{n+1} - \hat{X}_{n+1}^n = O(n^{1/2})$$
 (21)

This concludes Question 3.