# Algoritmos: definição e representação

Bruno A. N. Travençolo – FACOM-UFU

## Algoritmos

- Objetivo do computador é realizar tarefas que envolvam processamento de informações.
- Livra os seres humanos de esforços repetitivos, tediosos e sujeito a erros.
- Obtenção de resultados confiáveis em tempos hábil, mesmo sendo uma imensa quantidade de dados.
- Computador não tem senso próprio
  - Deve receber instruções explícitas (algoritmos)



#### Algoritmos

- Algoritmo é uma sequência finita e bem definida de passos que, quando executados, realizam uma tarefa específica ou resolvem um problema.
- **Ex**: Receitas de culinária, manual de instruções, coreografia, etc.
- Propriedades do algoritmo:
  - Composto por ações simples e bem definidas (não pode haver ambigüidade, ou seja, cada instrução representa uma ação que deve ser entendida e realizada).
  - Sequência ordenada de ações
  - Conjunto finito de passos
- Pergunta: Como saber se já temos detalhes suficientes para o algoritmo ser entendido e realizado?



R: Depende da relação de instruções reconhecidas pelo **AGENTE EXECUTOR** do algoritmo.

**Ex:** receita de bolo  $\Rightarrow$  **Ser Humano** 

algoritmo computacional ⇒ **Computador** 



Algoritmo para trocar o pneu de um carro



O nível de detalhe da instrução "Trocar Pneu" é suficiente para vc?





Pegar o macaco e a chave de no porta malas

Afrouxar com a chave os parafusos da roda

Levantar o carro com o macaco

Retirar todos os parafusos da roda

Retirar pneu furado e guardá-lo

Posicionar o estepe

Colocar e apertar ligeiramente os parafusos

Baixar o carro

Apertar fortemente os parafusos

Fim

Estrutura sequencial

## Algoritmo

#### Início

Pegar o macaco e a chave de no porta malas Afrouxar com a chave os parafusos da roda Levantar o carro com o macaco Retirar todos os parafusos da roda Retirar pneu furado e guardá-lo Posicionar o estepe Colocar e apertar ligeiramente os parafusos Baixar o carro Apertar fortemente os parafusos

#### Fim





Pegar o macaco e a chave de no porta malas

Afrouxar com a chave os parafusos da roda

Levantar o carro com o macaco

Retirar todos os parafusos da roda

Retirar pneu furado e guardá-lo

Posicionar o estepe

Colocar e apertar ligeiramente os parafusos

Baixar o carro

Apertar fortemente os parafusos

Fim

 Podemos detalhar algumas etapas, ou seja, um passo pode ser refinado em passos menores Inicio

## Exemplo

Pegar o macaco e a chave de no porta malas

Afrouxar com a chave os parafusos da roda

Levantar o carro com o macaco

Retirar todos os parafusos da roda

Retirar pneu furado e guardá-lo

Posicionar o estepe

Colocar e apertar ligeiramente os parafusos

Baixar o carro

Apertar fortemente os parafusos

Fim

Afrouxar parafuso I

Afrouxar parafuso 2

Afrouxar parafuso 3

Afrouxar parafuso 4

Retirar parafuso I

Retirar parafuso 2

Retirar parafuso 3

Retirar parafuso 4

Colocar parafuso I

Colocar parafuso 2

Colocar parafuso 3

Colocar parafuso 4

Apertar parafuso I

Apertar parafuso 2

Apertar parafuso 3

Apertar parafuso 4

Inicio

## Exemplo

Pegar o macaco e a chave de no porta malas

Afrouxar com a chave os parafusos da roda

Levantar o carro com o macaco

Retirar todos os parafusos da roda

Retirar pneu furado e guardá-lo

Posicionar o estepe

Colocar e apertar ligeiramente os parafusos

Baixar o carro

Apertar fortemente os parafusos

Fim

Afrouxar parafuso I Afrouxar parafuso 2 Afrouxar parafuso 3

Retirar parafuso I

Afrouxar parafuso 4

Retirar parafuso 2

Retirar parafuso 3

Retirar parafuso 4

Estrutura de subrotinas

Colocar parafuso I

Colocar parafuso 2

Colocar parafuso 3

Colocar parafuso 4

Apertar parafuso I

Apertar parafuso 2

Apertar parafuso 3

Apertar parafuso 4



Inicio

Pegar o macaco e a chave de no porta malas

Afrouxar com a chave os parafusos da roda

Levantar o carro com o macaco

Retirar todos os parafusos da roda

Retirar pneu furado e guardá-lo

Posicionar o estepe

Colocar e apertar ligeiramente os parafusos

Baixar o carro

Apertar fortemente os parafusos

Fim

#### **Problemas**

- E se não for possível realizar todos os passos?
- E se algum imprevisto ocorrer?
- E se existir mais de uma alternativa





## Algoritmo

```
Início
  SE (estepe está vazio)
        Chamar borracheiro
  SENÃO
        Pegar o macaco e a chave de no porta malas
        Afrouxar com a chave os parafusos da roda
        Levantar o carro com o macaco
        Retirar todos os parafusos da roda
        Retirar pneu furado e guardá-lo
        Posicionar o estepe
        Colocar e apertar ligeiramente os parafusos
        Baixar o carro
        Apertar fortemente os parafusos
  FIM SE
Fim
```







Pegar o macaco e a chave de no porta malas

Afrouxar com a chave os parafusos da roda

Levantar o carro com o macaco

Retirar todos os parafusos da roda

Retirar pneu furado e guardá-lo

Posicionar o estepe

Colocar e apertar ligeiramente os parafusos

Baixar o carro

Apertar fortemente os parafusos

Fim

#### **Outras possibilidades**

Em um pit stop devemos trocar os quatro pneus... Como fazer isso?

#### **Outras possibilidades**

Em um pit stop devemos trocar os quatro pneus... Como fazer isso?







#### **Outras possibilidades**

Em um pit stop devemos trocar os quatro pneus... Como fazer isso?







Em uma estrutura sequencial, os passos são tomados em uma sequencia pré-definida



Estrutura sequencial



Em uma estrutura de sub-rotina, a execução é desviada para uma seqüência de comandos que executam uma tarefa, voltando ao fluxo normal.





 Uma estrutura condicional permite a escolha do grupo de ações a ser executado quando determinada condição é ou não satisfeita



Uma estrutura de repetição permite que uma seqüência de comandos seja executada repetidamente até que uma determinada condição de interrupção seja satisfeita.





#### Exercícios

Escreva um algoritmo para a troca de uma lâmpada queimada

 Construa um algoritmo para solução do problema da Torres de Hanói



Construindo um Algoritmo (Problema das Torres de Hanói):

**Regra**: Mover os discos da haste A para a haste C sem que o disco maior fique sobre o disco menor.





#### Solução:

#### Início

```
Move o disco 1 para a haste C
Move o disco 2 para a haste B
Move o disco 1 para a haste B
Move o disco 3 para a haste C
Move o disco 1 para a haste A
Move o disco 2 para a haste C
Move o disco 1 para a haste C
Fim
```





#### Exercícios de Lógica:

- I. Temos 3 recipientes de tamanhos distintos (8, 5 e 3 litros), sendo que o recipiente de 8 litros está totalmente cheio. Considerando que os recipientes não sejam graduados, deseja-se colocar 4 litros em dois recipientes.
- 2. Um comerciante está transportando um lobo, um coelho e 500 kg de cenouras. Durante a viagem, ele se depara com um rio e um pequeno barco, no qual só é possível transportar um elemento por vez. Descreva quais serão as ações tomadas pelo comerciante para atravessar o rio, de modo que ele nunca deixe o lobo e o coelho ou o coelho e as cenouras sozinhos em uma das margens.

Solução problema I

800

3 5 0

3 2 3

620

602

I 5 2

143

440

Solução problema 2

Leva o coelho

Deixa coelho

Volta vazio

Leva lobo

Deixa Iobo

Volta com coelho

Deixa coelho

Leva cenoura

Deixa cenoura

Volta vazio

Leva coelho



#### Mais exercícios

- Exercícios de lógica em:
- http://www.plastelina.net/



#### Formas de Representação de Algoritmos

A descrição de um algoritmo de **forma clara e fácil de ser seguida** ajuda no seu desenvolvimento, depuração (localização e correção de erros) e futura migração para uma linguagem de programação.

Para facilitar este trabalho, são utilizadas ferramentas específicas de representação da lógica de programação (seqüência de ações a serem realizadas).



## Linguagens de Programação

- Linguagem de programação é um conjunto de termos (vocabulário) e de regras (sintaxe) que permitem a formulação de instruções a um computador
  - Linguagem de máquina: nível mais baixo, elementar. Utiliza-se apenas 0 e l



## Linguagens de Programação

Linguagem simbólica (assembly): utiliza códigos mnemônicos (abreviações para as instruções ao invés de números). Esses códigos são traduzidos para instruções de máquina executáveis

pelo computador

Exemplo





# Linguagem Assembly p/ ling. de Máquina

| Endereço | Rótulo   | Instruction (AT&T syntax) | Código objeto (linguagem de máquina) |
|----------|----------|---------------------------|--------------------------------------|
|          |          | .begin                    |                                      |
|          |          | .org 2048                 |                                      |
|          | a_start  | .equ 3000                 |                                      |
| 2048     |          | ld length,%               |                                      |
| 2064     |          | be done                   | 00000010 10000000 00000000 00000110  |
| 2068     |          | addcc %rl,-4,%rl          | 10000010 10000000 01111111 11111100  |
| 2072     |          | addcc %r1,%r2,%r4         | 10001000 10000000 01000000 00000010  |
| 2076     |          | ld %r4,%r5                | 11001010 00000001 00000000 00000000  |
| 2080     |          | ba loop                   | 0001000010111111111111111111111111   |
| 2084     |          | addcc %r3,%r5,%r3         | 10000110 100000000 11000000 00000101 |
| 2088     | done:    | jmpl %r15+4,%r0           | 10000001 11000011 11100000 00000100  |
| 2092     | length:  | 20                        | 00000000 00000000 00010100           |
| 2096     | address: | a_start                   | 00000000 00000000 00001011 10111000  |
|          |          | .org a_start              |                                      |
| 3000     | a:       |                           |                                      |

## Linguagens de Programação

- Linguagens de alto nível: Uma linguagem de programação procedural, orientada a problemas, mais próxima a linguagem humana e longe do código de máquina.
  - Ex: C; C++; Java; PASCAL; Fortran; etc

else

```
Programa em C:
                               void torre(int n, char source, char dest,char aux);
                               main()
                                     int n;
                                     char source = 'A';
                                     char dest = 'C';
                                     char aux = 'B';
                                    printf("entre com o numero de discos: ");
                                    scanf("%d",&n);
                                    torre(n, source,dest,aux)
                                     qetchar();
                                    qetchar();
                               }
                               void torre(int n, char source, char dest, char aux)
                               {
                                    static int step = 0;
                                    printf("torre(%d, %c, %c, %c)\n",n, source, dest,aux);
                                    if (n==1)
                                      printf("\t\t\tstep %3d: mova de %c para %c\n",++step, source, dest;
```

# C para Assembly

```
00401190 50
#include<stdio.h>
                                                                                      push eax
void torre(int n, char source, char dest, char aux);
                                                         00401191 68C7204000
                                                                                      push $004020c7
                                                         00401196 E8AB020000
                                                                                      call $00401446
main()
                                                         0040119B 83C408
                                                                                      add esp,$08
                                                         Unit1.c.12: torre(n, source, dest, aux);
     int n;
     char source = 'A';
                                                         0040119E 8A55F9
                                                                                      mov dl, [ebp-$07]
     char dest = 'C':
                                                         004011A1 52
                                                                                      push edx
     char aux = 'B';
                                                         004011A2 8A4DFA
                                                                                      mov cl, [ebp-$06]
     printf("entre com o numero de discos: ");
                                                         004011A5 51
                                                                                      push ecx
     scanf("%d",&n);
     torre(n, source,dest,aux)
                                                         004011A6 8A45FB
                                                                                      mov al, [ebp-$05]
     getchar();
                                                         004011A9 50
                                                                                      push eax
     getchar();
                                                         004011AA FF75FC
                                                                                      push dword ptr [ebp-$04]
}
                                                                                      call torre(int, signed char, signed
                                                         004011AD E848000000
void torre(int n, char source, char dest, char aux)
                                                         004011B2 83C410
                                                                                      add esp.$10
                                                         Unit1.c.13: getchar();
    static int step = 0;
                                                         004011B5 8B151C514000
                                                                                      mov edx, [$0040511c]
                                                         004011BB FF4A08
                                                                                      dec dword ptr [edx+$08]
    printf("torre(%d, %c, %c, %c)\n",n, source, dest,aux);
    if (n==1)
                                                         004011BE 780A
                                                                                      js $004011ca
      printf("\t\tstep %3d: mova de %c para %c\n",++step, so 004011C0 8B0D1C514000
                                                                                      mov ecx, [$0040511c]
    else
                                                    40 00 004011C6 FF01
                                                                                      inc dword ptr [ecx]
                                                         004011C8 EB0C
                                                                                      jmp $004011d6
                                                         004011CA FF351C514000
                                                                                      push dword ptr [$0040511c]
                                                         004011D0 E82F020000
                                                                                      call $00401404
                                                         004011D5 59
                                                                                      pop ecx
```

## Compilador

 Conjunto de programas que transforma uma linguagem de alto nível em linguagem de máquina executável por computador

```
#include<stdio.h>
void torre(int n, char source, char dest, char aux);
main()
     int n;
     char source = 'A';
     char dest = 'C';
                                                                   00010000100011100010111001
     char aux = 'B';
                                                                   101010010100101001011111
     printf("entre com o numero de discos: ");
     scanf("%d",&n);
                                                                   01010101001010101
     torre(n, source, dest, aux)
     qetchar();
     qetchar();
}
void torre(int n, char source, char dest, char aux)
    static int step = 0;
    printf("torre(%d, %c, %c, %c)\n",n, source, dest,aux);
    if (n==1)
      printf("\t\tstep %3d: mova de %c para %c\n",++step, source, dest)
    else
                                                       40 00
```

#### (voltando...) Formas de Representação de Algoritmos

A descrição de um algoritmo de **forma clara e fácil de ser seguida** ajuda no seu desenvolvimento, depuração (localização e correção de erros) e futura migração para uma linguagem de programação.

Para facilitar este trabalho, são utilizadas ferramentas específicas de representação da lógica de programação (seqüência de ações a serem realizadas).



#### Descrição Narrativa

Especificação verbal dos passos em linguagem natural.

#### Desvantagens:

A linguagem natural é imprecisa (possibilita ambigüidades).

Proporciona maior trabalho na codificação.

Sugere-se sua utilização apenas para <u>comentar</u> algoritmos e/ou programas, esclarecendo ou realçando pontos específicos.



#### •Fluxograma

Uso de ilustrações gráficas para representar as instruções.

Apresenta a lógica de um algoritmo, enfatizando passos individuais (objetos gráficos) e o fluxo de execução (setas)

#### **Desvantagens:**

Fluxogramas detalhados podem obscurecer a estrutura do programa.

Permite transferências arbitrárias de controle







### Pseudolinguagem

Linguagem especial para desenvolvimento de algoritmos, que **utiliza expressões pré-definidas** para representar ações e fluxos de controle.

Funciona como uma linguagem simplificada de programação, logo, **facilita a codificação** futura.

É uma descrição textual, estruturada e regida por regras; que descrevem os passos executados no algoritmo.



Possui características similares às linguagens de programação:

- Utiliza palavras-chaves (ex: escreva, se-então, etc.);
- Indentação (alinhamento dos blocos de comandos);
- •Possui um comando por linha;



## VisuAlg



# Formato básico do pseudo-código da linguagem do VisualAlg

```
algoritmo "semnome"
// Função :
// Autor :
// Data :
// Seção de Declarações
inicio
// Seção de Comandos
fimalgoritmo
```



### Hello World em VisuALG



### Comandos de Entrada

- É o comando que faz com que o sistema receba os dados de entrada do programa e os armazena em variáveis
- Os dados de entrada são fornecidos ao sistema por meio de um dispositivo de entrada, como um teclado
- Na execução de um comando de Entrada, o processamento é interrompido até que sejam fornecidos, por uma unidade de entrada, valores para os dados



## Comando de Saída

- É o comando pelo qual o sistema fornece, numa unidade de saída, resultados do processamento e mensagens
- Resultados do processamento
  - Conteúdo de variáveis
  - Valores de constantes
  - Resultados de operações aritméticas e lógicas
- Mensagens: são utilizadas para que o programa dê informações a respeito de sua execução
  - Conteúdo de variáveis
  - Constantes do tipo String (sequencia de caracteres)
  - Mensagens informativas



## Alguns comandos da pseudo-linguagem do VisualAlg

- ▶ Leia (x) le um valor do teclado e atribui à variavel x
- Escreva ("texto", lista de variaveis) escreve o valor das variáveis que foram especificadas no comando
- Escreval("texto", lista de variaveis) escreve o valor das variáveis que foram especificadas no comando e pula uma linha



## Comandos de Entrada X Saída

- Leia(x) é um comando de ENTRADA
- Escreva("") é um comando de SAÍDA



## Tipos de Dados

O que a seguinte informação que está na memória RAM representa?

#### 1100001

- ▶ O número 97?
- ▶ A letra "a"? (vide tabela ASCII)
- ▶ É necessário definir durante a programação



## Referências

Slides adaptados da Web - WIKI ICMC
 http://wiki.icmc.usp.br/index.php/SSC-501 (Prof.
 Fernando Osório) e aulas da Prof. Denise Guliato –
 FACOM-UFU

