FORMULAS FOR REFERENCE

SPHERE	Surface area	$= 4\pi r^2$
	Volume	$= \frac{4}{3}\pi r^3$
CYLINDER	Area of curved surface	$= 2\pi rh$
	Volume	$= \pi r^2 h$
CONE	Area of curved surface	$= \pi r l$
	Volume	$= \frac{1}{3}\pi r^2 h$
PRISM	Volume	= base area × height
PYRAMID	Volume	$= \frac{1}{3} \times \text{base area} \times \text{height}$

There are 54 questions in this paper. The diagrams in this paper are not necessarily drawn to scale.

- 1. Express π^2 as a decimal correct to 3 significant figures.
 - A. 9.86
 - B. 9.87
 - C. 9.88
 - D. 9.860
 - E. 9.870
- 2. If $2^x \cdot 8^x = 64$, then x =
 - A. $\frac{3}{2}$
 - $\mathbf{B}. \qquad \frac{3}{4}$
 - C. $\frac{6}{5}$
 - D. 2
 - E. 4.

3. If
$$\frac{a+x}{b+x} = \frac{c}{d}$$
 $(c \neq d)$, then $x =$

A.
$$\frac{c}{d} - \frac{a}{b}$$
.

$$B. \qquad \frac{a-b}{c-d} \ .$$

$$C. \qquad \frac{b-a}{c-d} \ .$$

$$D. \qquad \frac{ad-bc}{c-d}$$

$$E. \qquad \frac{bc-ad}{c-d} \ .$$

4.
$$9-a^2-b^2+2ab=$$

A.
$$(3-a-b)(3-a+b)$$
.

B.
$$(3-a-b)(3+a-b)$$
.

C.
$$(3-a-b)(3+a+b)$$
.

D.
$$(3-a+b)(3+a-b)$$
.

E.
$$(3-a+b)(3+a+b)$$
.

5. If
$$\log(x+a) = 2$$
, then $x =$

A.
$$2-a$$
.

B.
$$100 - a$$
.

C.
$$\frac{100}{a}$$
.

$$\mathbf{D}. \qquad \mathbf{2} - \log a .$$

E.
$$100 - \log a$$
.

If
$$2x^2 + x + m$$
 is divisible by $x - 2$, then it is also divisible by

A.
$$x+3$$
.

B.
$$2x-3$$
.

C.
$$2x+3$$
.

D.
$$2x-5$$
.

E.
$$2x+5$$
.

7. Which of the following is/are an identity/identities?

I.
$$x^2 = 4$$

II.
$$(2x+3)^2 = 4x^2 + 12x + 9$$

III.
$$(x+1)^2 = x^2 + 1$$

- A. I only
- B. II only
- C. III only
- D. I and II only
- E. II and III only
- 8. Solve $\begin{cases} \frac{3}{x} y = 1 \\ 2y \frac{1}{2x} = 1 \end{cases}$
 - A. $x = \frac{5}{4}, y = \frac{7}{4}$
 - B. $x = \frac{11}{4}, y = \frac{1}{11}$
 - C. $x = \frac{11}{4}, y = \frac{13}{22}$
 - D. $x = \frac{11}{6}, y = \frac{7}{11}$
 - E. $x = \frac{6}{11}$, $y = \frac{7}{11}$

9. Which of the following systems of inequalities has its solution represented by the shaded region in the figure?

$$\mathbf{A.} \qquad \begin{cases} x + y \ge \\ x \ge y \\ x \le 6 \end{cases}$$

$$C. \qquad \begin{cases} x + y \ge 6 \\ x \le y \\ x \le 6 \end{cases}$$

$$\mathbf{D}. \qquad \begin{cases} x + y \ge 6 \\ x \le y \\ y \le 6 \end{cases}$$

E.
$$\begin{cases} x + y \le 6 \\ x \ge y \\ x \le 6 \end{cases}$$

- 10. There are 1 200 students in a school, of which 640 are boys and 560 are girls. If 55% of the boys and 40% of the girls wear glasses, what percentage of students in the school wear glasses?
 - A. 47%
 - B. 47.5%
 - C. 48%
 - D. 52%
 - E. 53%

- 11. In a map of scale 1:500, the length and breadth of a rectangular field are 2 cm and 3 cm respectively. Find the actual area of this field.
 - $A. \qquad 30 \text{ m}^2$
 - B. 150 m²
 - C. 1500 m^2
 - D. 3000 m^2
 - E. 15 000 m²
- 12. In the figure, $\sin \theta + \tan \theta =$
 - A. $\frac{a}{c} + \frac{a}{b}$
 - B. $\frac{a}{c} + \frac{b}{a}$
 - C. $\frac{b}{c} + \frac{a}{b}$
 - D. $\frac{b}{c} + \frac{b}{a}$
 - E. $\frac{c}{a} + \frac{a}{b}$

A 700

In the figure, find θ correct to the nearest degree.

- A. 78
- B. 91°
- C. 102°
- D. 114°
- E. 125°

- 14. In the figure, the square sandwich ABCD is cut into two equal halves along EF so that AE:ED=2:1. Find θ correct to the nearest degree.
 - A. 56°
 - B. 63°
 - C. 64°
 - D. 71°
 - E. 72°

- 15. In the figure, the area of $\triangle ABC$ is 18. Find $\angle ABC$ correct to the nearest degree.
 - **A**. 30°
 - B. 44°
 - C. 46°
 - **D**. 60°
 - E. 69°

- In the figure, BEA is a semicircle. ABCD is a rectangle and DC touches the semicircle at E. Find the area of the shaded region.
 - A. 9π
 - B. 18π
 - C. 36π
 - D. $36 - 9\pi$
 - E. $36 + 9\pi$

- In the figure, find x. 17.
 - 52°
 - B. 58°
 - C. 61°
 - D. 70°
 - E. 81°

- In the figure, BCA is a semicircle. If AC = 6 and CB = 4, find the area of the semicircle.

 - B.
 - C. 10π
 - D. 13π
 - E. 26π

- C.

 - E. 28

In the figure, EC is the tangent to the circle at C. Find $\angle CBD$.

In the figure, ABCDE is a regular pentagon and ABF is an equilateral

A.

triangle. Find θ .

B.

C.

D.

E.

90°

96°

108°

- B. 50°
- C. 65°
- D. 70°
- E. 75°

- In the figure, find the area of $\triangle ABC$.
 - A.
 - 7.5 B.
 - 14
 - 17.5 D.

- Which of the following lines is perpendicular to the line $\frac{x}{2} + \frac{y}{3} = 1$?
 - 3x + 2y = 1A.
 - B. 3x - 2y = 1
 - C. 2x + 3y = 1
 - 2x 3y = 1D.
 - $E. \qquad \frac{x}{2} \frac{y}{3} = 1$
- In the pie chart, if x: y: z = 75: 106: 119, find x.
 - 25 A.

 - В. 45
 - C. 75
 - D. 90
 - E. 120

- The histogram below shows the distribution of the weights of 30 students. Find the mean weight of these students.
 - 36.5 kg A.
 - B. 38.5 kg
 - C. 39 kg
 - D. 39.5 kg
 - E. 41.5 kg

- Two fair dice are thrown. Find the probability that the sum of the two numbers shown is 8.

 - B.
 - C.
 - D..
 - E.
- In a test, there are 3 questions. For each question, the probability that John correctly answers it is $\frac{2}{5}$. Find the probability that he gets exactly 2 questions correct.
 - A.
 - $\frac{4}{25}$ B.
 - C.
 - $\frac{12}{125}$ D.
 - E.

- 27. If $f(x) = 3x^2 + bx + 1$ and f(x) = f(-x), then f(-3) =
 - A. -26.
 - B. 0.
 - C. 3
 - D. 25.
 - E. 28.
- 28. Simplify $\frac{4}{x^2-4} \frac{3}{x^2-x-2}$.
 - $A. \qquad \frac{1}{(x+1)(x+2)}$
 - $B. \qquad \frac{1}{(x+1)(x-2)}$
 - $C. \qquad \frac{1}{(x-1)(x-2)}$
 - D. $\frac{x+10}{(x+1)(x-2)(x+2)}$
 - E. $\frac{x-10}{(x-1)(x-2)(x+2)}$

- 13 -

- $29. \qquad \frac{1}{\sqrt{2}-1} \frac{1}{\sqrt{3}-\sqrt{2}} =$
 - A. $-1+\sqrt{3}$.
 - B. $1-\sqrt{3}$.
 - C. $-1+2\sqrt{2}-\sqrt{3}$.
 - D. $1-2\sqrt{2}+\sqrt{3}$.
 - E. $1+2\sqrt{2}-\sqrt{3}$
- 30. The difference of the roots of the equation $2x^2 5x + k = 0$ is $\frac{7}{2}$. Find k.
 - **A**. –6
 - B. -3
 - C. $-\frac{3}{2}$
 - **D**. 3
 - E. $\frac{51}{16}$

31. In the figure, find the coordinates of the mid-point of AB.

B.
$$\left(-\frac{5}{2}, \frac{25}{4}\right)$$

C.
$$\left(-\frac{5}{2}, \frac{37}{2}\right)$$

D.
$$(\frac{5}{2}, \frac{13}{2})$$

E.
$$(\frac{7}{2}, \frac{35}{2})$$

 $y = x^{2}$ y = -5x + 6

32. Find the values of x which satisfy both -2x < 3 and (x+3)(x-2) < 0.

A.
$$x < -3$$

B.
$$x > 2$$

C.
$$-3 < x < -\frac{3}{2}$$

$$D. \qquad -\frac{3}{2} < x < 2$$

97-CE-MATHS II-16

E.
$$x < -3$$
 or $x > -\frac{3}{2}$

33. If a < b < 0, then which of the following must be true?

$$I. \quad a^2 < b^2$$

II.
$$ab < a^2$$

III.
$$\frac{1}{a} < \frac{1}{b}$$

34. The figure shows the graph of a quadratic function f(x). If the vertex of the graph is (1, 3), then f(x) =

A.
$$-3(x-1)^2+3$$
.

B.
$$-3(x+1)^2+3$$
.

C.
$$-(x-1)^2+3$$
.

D.
$$-(x+1)^2+3$$
.

E.
$$3(x-1)^2-3$$
.

- 35. The *n*-th term of an arithmetic sequence is 3 + 2n. Find the sum of the first 50 terms of the sequence.
 - A. 103
 - B. 2575
 - C. 2700
 - D. 2750
 - E. 5400
- 36. The first term of a geometric sequence is a. If the sum to infinity of the sequence is $\frac{3}{4}a$, then its common ratio is
 - A. $-\frac{1}{3}$
 - B. $-\frac{1}{4}$
 - C. $\frac{1}{4}$
 - D. $\frac{1}{3}$
 - $E. \qquad \frac{3}{4}.$

- 37. a, b, c, d are 4 consecutive terms of a geometric sequence. Which of the following must be true?
 - $I. b^2 = ac$
 - II. $\frac{b}{a} = \frac{d}{c}$
 - III. $\frac{d}{a} = \left(\frac{c}{b}\right)^2$
 - A. II only
 - B. I and II only
 - C. I and III only
 - D. II and III only
 - E. I, II and III
- 38. Find the interest on \$10000 at 16% per annum for 2 years, compounded half-yearly. Give the answer correct to the nearest dollar.
 - A. \$1664
 - B. \$3456
 - C. \$3605
 - D. \$7424
 - E. \$8106

39. Suppose x varies directly as y and inversely as z. When y = 2 and z = 3, x = 7. When y = 6 and z = 7, x = 3

- 19 -

- A. 1.
- B. $\frac{49}{9}$
- C. 9
- D. $\frac{49}{4}$
- E. 49
- 40. $\frac{\cos(90^{\circ}-A)\sin(180^{\circ}-A)}{\tan(360^{\circ}-A)} =$
 - A. $-\sin A \cos A$.
 - B. $\sin A \cos A$.
 - C. $-\cos^2 A$.
 - D. $\cos^2 A$.
 - E. $\sin^2 A$.

- 41. In the figure, ABCD is a rectangle inclined at an angle of 45° to the horizontal plane BCEF. Find the inclination of AC to the horizontal plane correct to the nearest degree.
 - A. 27°
 - B. 30°
 - C. 35°
 - D. 45°
 - E. 55°

- 42. In the figure, CD =
 - A. $\frac{r\sin\beta}{\sin\alpha\sin\gamma}$
 - B. $\frac{r\sin\beta}{\cos\alpha\sin\gamma}$
 - C. $\frac{r\sin\alpha\sin\beta}{\sin\gamma}$
 - $D. \frac{r\cos\alpha\sin\beta}{\sin\gamma}$
 - E. $\frac{r\sin\beta}{\sin\alpha}$

- 43. For $0 \le \theta \le 2\pi$, how many roots does the equation $\tan \theta (\tan \theta 2) = 0$ have?
 - **A**. 1
 - B. 2
 - C. 3
 - **D**. 4
 - E. 5
- 44. In the figure, f(x) =

- A. $\sin \frac{x}{2} + \frac{1}{2}$
- B. $\sin 2x + \frac{1}{2}$.
- $C. \qquad \frac{1}{2}\sin\frac{x}{2} + \frac{1}{2} \ .$
- $D. \qquad \frac{1}{2}\sin x + \frac{1}{2} \ .$
- $E. \qquad \frac{1}{2}\sin 2x + \frac{1}{2} \ .$

- 45. The equation of a circle is given by $x^2 + y^2 4x + 6y 3 = 0$. Which of the following statements is/are true?
 - I. The centre of the circle is (-2, 3).
 - II. The radius of the circle is 4.
 - III. The origin is inside the circle.
 - A. I only
 - B. I and II only
 - C. I and III only
 - D. II and III only
 - E. I, II and III
- 46. A circle has (a, 0) and (0, b) as the end points of a diameter. Which of the following points lie(s) on this circle?
 - I. (-a, -b)
 - II. (0, 0)
 - III. (a, b)
 - A. II only
 - B. III only
 - C. I and II only
 - D. II and III only
 - E. I, II and III

47. In the figure, AEB and ADC are straight lines. ED //BC and ED: BC = 2:3. If the coordinates of A and B are (4,7) and (0,1)respectively, find the coordinates of E.

B.
$$(\frac{8}{3}, 5)$$

C.
$$(\frac{8}{5}, \frac{5}{17})$$

D.
$$(\frac{12}{5}, \frac{23}{5})$$

- In the figure, OXY is a sector with centre O. If Z is the mid-point of YO, find area of $\triangle OXZ$: area of sector OXY.

B.
$$2:\sqrt{3}\pi$$

C.
$$2:3\pi$$

D.
$$3:2\pi$$

E.
$$3\sqrt{3} : 2\pi$$

In the figure, the rocket model consists of three parts. Parts I and III can be joined together to form a right circular cone. Part II is a right cylinder. Find the volume of the rocket model.

A.
$$260\pi \text{ cm}^3$$

C.
$$620\pi \text{ cm}^3$$

D.
$$720\pi \text{ cm}^3$$

E.
$$900\pi \, \text{cm}^3$$

In the figure, AC is the angle bisector of $\angle BAD$. Which of the following statements must be true?

I.
$$\triangle BCE \sim \triangle ADE$$

II.
$$\triangle ABC \sim \triangle AED$$

III.
$$\triangle ABC \sim \triangle BDA$$

- 51. In the figure, $\widehat{AB} = 2$, $\widehat{BC} = 3$, $\widehat{CD} = 4$ and $\widehat{DA} = 6$. Find $\angle BCD$.
 - A. 72°
 - B. 84°
 - C. 90°
 - D. 96°
 - E. 144°

52. In the figure, ABCD is a parallelogram. PDC, PQRS and ABS are straight lines. If AQ = 4, QD = 2 and BR = RC = 3, then PQ : QR : RS =

- 25 -

- A. 1:1:1.
- B. 1:2:6.
- C. 2:1:3.
- D. 2:3:4.
- E. 8:12:9.

- 53. In the figure, ABCD is a rectangle. CDE is a straight line and AE //BD. If the area of ABCD is 24 and F is a point on BC such that BF: FC = 3:1, find the area of ΔDEF .
 - A. 2
 - **B**. 3
 - C. 4
 - D. 6
 - E. 8

- 54. In the figure, AB //DC. If the areas of $\triangle ABE$ and $\triangle CDE$ are 4 and 9 respectively, find the area of $\triangle BCE$.
 - A. 4
 - B. 5
 - **C**. 6
 - D. 6.5
 - E. 9

END OF PAPER