In [45]: # Project Name - Insights from Failed Orders

Task 2 - Ploting the distribution of failed orders by hours.

Task 5 - Ploting the h3 & folium packages.

order_datetime - time of the order

origin_longitude - longitude of the order
origin_latitude - latitude of the order
m_order_eta - time before order arrival

Finding biggest Failed Hours & it's explaination

Colouring them by the number of fails on the map.

4 - cancelled by client,

for calculations

import pandas as pd # for manipulating the data

import matplotlib as mpl # for visual representation

Task 4 - Ploting the distribution of average ETA by hours & explaination.

Tasks Accomplished

Data Description

order_gk - order number

In [1]: # importing all the required libraries

Cancellations = df.pivot_table(

aggfunc = "count")

print() #just for some space

data_set2 = Cancellations[(9)]

index = np.arange(len(categories))
fig, ax = plt.subplots(figsize=(5,5))

Plotting the first set of columns

Adding labels to the bars using bar_label

ax.set_xlabel('Driver', fontsize = "10")

ax.set_xticks(np.arange(0,2,1))

4496

ax.set_ylabel('Cancellations', fontsize = "10")

plt.grid(axis="y", linestyle='--', alpha=0.7)

4496 3406

Cancellation Distribution

2811

3406

 $bar_width = 0.35$

Customizing the chart

to display the chart

is_driver_assigned_key

plt.legend()

plt.show()

4000

3000

2000

1000

Cancellations

order_status_key

Setting up positions for the clustered columns

Plotting the second set of columns next to the first one

ax.bar_label(bars1, fontsize=12, label_type='edge', color='black')
ax.bar_label(bars2, fontsize=12, label_type='edge', color='black')

ax.set_title('Cancellation Distribution', fontsize = "15", pad="30")

index = "is_driver_assigned_key",
columns = "order_status_key",

import numpy as np

In [42]: # Task 1

print()

Gett, previously known as GetTaxi, is an Israeli-developed technology platform solely focused on corporate Ground Transportation Management (GTM)

At the moment, when client clicks the Order button in the application, matching system searches for the most relevant drivers & offers them the application, matching system searches for the most relevant drivers & offers them the application, matching system searches for the most relevant drivers & offers them the application, matching system searches for the most relevant drivers & offers them the application, matching system searches for the most relevant drivers & offers them the application, matching system searches for the most relevant drivers & offers them the application, matching system searches for the most relevant drivers & offers them the application, matching system searches for the most relevant drivers & offers them the application for the searches for the most relevant drivers & offers them the application for the searches for the most relevant drivers & offers them the application for the searches for the most relevant drivers & offers them the application for the search for t

Task 1 - Building-up distribution of orders according to reasons for failure: cancellations before and after driver assignment, & reasons for ord

df["Hours"] = df["order_datetime"].str.split(":").str[0].astype(int) # deriving the hour column from the order_datetime column as it would be re

print(Cancellations) # displaying the pivot Table, 4 = customer_cancel, 9 = system_cancel, 0 - driver_unassigned, 1 - assigned

Cancellations = Cancellations.reset_index() # this is done to ease the plotting the data in the graph using column names

They have an application where clients can order taxis, and drivers can accept their rides (offers).

Analysing the resulting plot. Which category has the highest number of orders?

Task 3 - Ploting the average time to cancellation with and without driver, by the hour.
Finding the outliers in the data. Drawing conclusions from the plot.

Table Name - Data_orders. The data_orders data set contains the following columns:

order_status_key - status, an enumeration consisting of the following mapping:

9 - cancelled by system, i.e., a reject
is_driver_assigned_key - whether a driver has been assigned if yes then 1 else 0

import matplotlib.pyplot as plt # (for conviniently using the short-form - plt)

finding the distribution of order cancellations using the pivot table function

values = "order_datetime", # this is only chosen to perform the counting

categories = ['Assigned', 'Unassigned'] # these are the categories of our graph's x-axis
data_set1 = Cancellations[(4)] # this dataset would be our y-axis 1st set of columns

bars1 = ax.bar(index - bar_width/2, data_set1, bar_width, label='Customer_Cancellations')

bars2 = ax.bar(index + bar_width/2, data_set2, bar_width, label='System_Cancellations')

Customer_CancellationsSystem_Cancellations

2811

this would be our 2nd set of columns

Building Clustered columns Bar graph for visualizing the pivot table

df = pd.read_csv("D:\\Business Analyst Projects\Gett Taxi dataset\data_orders.csv") # importing the data

cancellation_time_in_seconds - how many seconds passed before cancellation

If there's a trend that certain hours have an abnormally high proportion of one category or another.

Calculating how many sizes 8 hexes contain 80% of all orders from the original data sets and visualise the hexes.