Lecture14 2025

March 2, 2025

0.1 Lecture 14 EEP118

```
[1]: #install packaged and load the data
     # Load the 'pacman' package
     install.packages("pacman")
     library(pacman)
     *packages to use load them now using the pacman "manager"
     p_load(dplyr, haven, readr)
     #Another great feature of p\_load(): if you try to load a package that is not_{\sqcup}
      ⇒installed on your machine, p_load()
     #installs the package for you rather than throwing an error. For instance,
      →let's install and load one final package named ggplot2.
     p_load(ggplot2)
     pacman::p_load(lfe, lmtest, haven, sandwich, tidyverse)
     # lfe for running fixed effects regression
     # lmtest for displaying robust SE in output table
     # haven for loading in dta files
     # sandwich for producing robust Var-Cov matrix
     # tidyverse for manipulating data and producing plots
     #set scientific display off, thank you Roy
     options(scipen=999)
     #read in a Stata dataset
     my_data <- read_dta("Lecture14hprice1.dta")</pre>
    head(my_data)
```

Installing package into '/srv/r'
(as 'lib' is unspecified)

_	price <dbl></dbl>	assess <dbl></dbl>	bdrms <dbl></dbl>	lotsize	sqrft	colonial	lprice	lassess	llotsize	ls
		<dbl $>$	/dbl>	. 11 1.						
				<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<
A tibble 6 v 10	300.000	349.1	4	6126	2438	1	5.703783	5.855359	8.720297	7
A tibble: 6×10	370.000	351.5	3	9903	2076	1	5.913503	5.862210	9.200593	7
	191.000	217.7	3	5200	1374	0	5.252274	5.383118	8.556414	7
	195.000	231.8	3	4600	1448	1	5.273000	5.445875	8.433811	7
	373.000	319.1	4	6095	2514	1	5.921578	5.765504	8.715224	7
	466.275	414.5	5	8566	2754	1	6.144775	6.027073	9.055556	7
: #regression										
reg14 <- lm(pr		ms+lotsi	ze+sqrft	t, my_da	ta)					
<pre>summary(reg14)</pre>										
Call:										
lm(formula = pr	rice ~ b	drms + I	lotsize	+ sarft.	data =	mv data)				
				1,		/ /				
Residuals:										
Min	1Q Me	dian	3Q	Max						
-120.026 -38.5	•		-	209.376						
Coefficients:										
	Estimat	e Std	Error t	value		Pr(> t)			
(Intercept) -21				-0.739		0.4622				
-	3.852521			1.537		0.1279				
	0.002021			3.220		0.0018				
	0.122778		132374		000000	0.0016				
sqiit (J.122110	2 0.0.	132314	9.215 0	.000000	,00000010	0 ***			
Signif. codes:	O (atastasta	, 0 001	(, , , , , , , , , , , , , , , , , , ,	01 (4.) 0	OF ()	0 1 ()	4			
Signii. codes:	0 ***	, 0.001	*** 0.	01 .*, 0	.05	0.1 '	1			
D ' 1	,	F0 01	0.4	1	c c	,				
Residual standa				-			0.77			
Multiple R-squa				•	-	ed: 0.66				
F-statistic: 57	7.46 on	3 and 84	1 DF, p	-value:	< 0.0000	00000000	00022			
: #add an intera	ration is	nto tho	mada1							
		iiio iiie	mouet							
#gen interacti										
#gen bdrms_sqr	•									
#reg price bdr										
my_data\$bdrms_	sqrft<-r	my_data\$	bdrms*my	y_data\$s	qrft					
reg14int <- lm	(price~l	odrms+lc	tsize+so	qrft+bdr	ms_sqrft	, my_data	a)			
	m+)									
summary(reg14i	111,7									

lm(formula = price ~ bdrms + lotsize + sqrft + bdrms_sqrft, data = my_data)

```
Residuals:
    Min
                   Median
                                3Q
                                        Max
              1Q
-127.099 -30.781
                   -6.305
                            24.895 200.602
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 165.4264973 87.7301516
                                     1.886 0.06284 .
           -33.7153369 22.8229135 -1.477 0.14339
lotsize
             0.0019927
                       0.0006279
                                    3.174 0.00211 **
sqrft
             0.0337926
                         0.0414616
                                     0.815 0.41739
             0.0218268 0.0096631
                                     2.259 0.02652 *
bdrms_sqrft
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Residual standard error: 58.42 on 83 degrees of freedom
Multiple R-squared: 0.6913,
                                   Adjusted R-squared:
F-statistic: 46.48 on 4 and 83 DF, p-value: < 0.000000000000000022
```

0.1.1 How to obtain an estimate of the Prediction for the average value of all houses with bdrms=3, sqrft=2000, and lotsize=9000, that is get a prediction for the value of a house on average with certain characteristics?

The trick is to transform the data and run a regression with the transformed data so that then the estimate of the constant is the average prediction you want and you also gets its standard error

```
Call:
lm(formula = price ~ bdrms0 + lotsize0 + sqrft0, data = my_data)
```

Residuals:

```
Min 1Q Median 3Q Max -120.026 -38.530 -6.555 32.323 209.376
```

Coefficients:

```
Estimate Std. Error t value
                                                         Pr(>|t|)
(Intercept) 283.9529869
                          8.1210704 34.965 < 0.0000000000000000 ***
bdrms0
             13.8525217
                          9.0101454
                                      1.537
                                                          0.12795
lotsize0
              0.0020677
                          0.0006421
                                      3.220
                                                          0.00182 **
              0.1227782
                          0.0132374
                                      9.275
                                              0.000000000000166 ***
sqrft0
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 59.83 on 84 degrees of freedom Multiple R-squared: 0.6724, Adjusted R-squared:

From the output we can get a confidence interval

t table got 5% critical from the t 88-4=84 degrees of freedom,, tc14

95% conf interval for predicted average prices of a 3 bd rooom house 2000 sqrt, 9000lot

2.840e+02-tc14*8.121e+00; 2.840e+02+tc14*8.121e+00

The critical value for the 95% confidence interval is 2 (between 1.987 and 2.000 to be exact). The CI for average price E is thus

 $283.95 \pm 2 (8.12) \quad 267.7, 300.2$.

We predict the mean price to be between \$267,700 and \$300,200. This was the CI for the average house E (of the above characteristics). The CI for the average house E is not the same as the CI for p, the price of a particular house of the above characteristics!!!

0.2 What about a prediction for a house?

For a house

There are two cources randomness

First, the variance of the average prediction Var(Eprediction) = 8.121*8.121, like from above se was 8.12 for an average house

Second the variance of the unobservable disturbance = 59.83*59.83

So, the std error for a predicted house price= square root (varEprice+varU)== se_pp

95% conf interval for predicted prices of a 3 bd rooom house 2000 sqrt, 9000lot

is

$$2.840e + 02 - \text{ tc14 * sqrt} \{ 8.121e + 00^{2 + 59.83}2 \} ; 2.840e + 02 + \text{ tc14 * sqrt} \{ 8.121^{2 + 59.83}2 \}$$

since tc=2

and se of predicted price= $sqrt\{8.121^{2+59.83}2\}=60.38$

which is equal to the interval then of 283.95 $\pm 2~(60.38)~163.187$, 404.713 .