Occupancy counter

Course: Industrial Engineering, B.Sc

Name: Rudy Marvyn

Surname: Kalisetty-Appadu

Student ID: 27615

Course: Mechatronic Systems Engineering, B.Sc

Name: Loukik-Sachin

Surname: Divase

Student ID: 29413

Project idea

- That the system will use a microcontroller and 2 IR sensors to detect directional movement through a door and updates an on-screen counter accordingly.
- The counter, displayed on an LCD display will provide a real-time count on occupancy making it easy to check room usage.
- It will provide, knowing the occupancy would help in managing the space efficiently.

Description of the project

Room management: Provides real-time data on room occupancy for efficient usage.

Status LEDs:

- Red LED: Lights up when no spots are available.
- Green LED (optional): Lights up when one spot is available.
- Yellow LED: Lights up when the room reaches full capacity.

Safety: Ensures compliance with occupancy limits in small or regulated spaces.

Energy efficient: Tracks room usage to enable automated lighting, reducing energy waste.

Battery: Operates on a 9V lithium battery for extended usage.

<u>IR proximity sensor</u>: Detects entries/exits using two sensors for reliable directional movement tracking.

LCD display: Shows real-time occupancy for user convenience.

Buzzer: Alerts when the room is full and entry is restricted.

Cost effective: Built using readily available components.

Bill of material

Components	Price
Atmega328P	€2,51
Oscillator – 16MHz	€0,43
16 x 2 LCD - HD44780	€4,65
Battery – 6V	€2,00
3 pin Switch	€1,35
Buzzer	€1,40
LEDs	€0,36
28-pin socket	€0,21
Push buttons	€0,40
Voltage regulator – 5V	€0,13

Bill of material - continued

Components	Price
Inductor - 10	€0,47
2 pin connector	€0,06
Dual comparator - LM393	€0,21
Potentiometer – 10k	€0,84
Infra red LED	€0,30
Photodiode	€0,70
Transistor - BC547	€0,36
Resistors (220 Ω and 10k Ω)	€3,99
Capacitors (100nF and 22pF)	€0,34
Headers	€1,00

Total: €21,71

PCB schematic

Prototyping and testing

Coding - snippets

```
//Reset lock for sensor 1 when signal goes HIGH
   if (sensor1_state && sensor1_locked) {
       sensor1_locked = 0; //Reset lock
}

//Reset lock for sensor 2 when signal goes HIGH
   if (sensor2_state && sensor2_locked) {
       sensor2_locked = 0; // Reset lock
}
```


PCB design – top

PCB design - bottom

PCB UV masking - top

PCB UV masking - bottom

PCB etching - 200mL water, 2g of NaOH

PCB etching – Diluting 2g of NaOH in 200mL H2O and preparing the PCB for UV light

PCB etching – PCB dipped in NaOH

PCB etching – etching process in

HOCHSCHULE RHEIN-WAAL

Rhine-Waal University of Applied Sciences

Methodology

Total power consumption: 1.29W, where V = 6V and I = 0.22A

Actual useful power consumption: $\frac{1 \text{W}}{1 \text{W}}$, where V = 4.85 V and I = 0.21 A.

What exactly happened?

As we all know from demonstration, the person has to pass both sensors in order to register the count, since our product is a directional one.

Conclusion

As aspiring engineers, we think that this project came to a success. However, there might be some unsolved challenges that we did not come across and we would be more than happy to solve them in the future.

