Туннелирование миллиметровых радиоволн (4.6.2)

Стеценко Георгий, Б02-312

1 Аннотация

Цель работы: Экспериментальное исследование эффекта проникновения электромагнитных волн — туннелирования — через воздушный зазор между диэлектрическими призмами при полном внутреннем отражении на границе диэлектрик-воздух, а также моделирование интерферометра Майкельсона с использованием этого эффекта и измерение длины волны излучения и показателя преломления фторопласта для радиоволн миллиметрового диапазона.

Оборудование и материалы: генератор СВЧ-колебаний с рупорной антенной; приемная рупорная антенна и волновод; детектор; микроамперметр; металлические зеркала; две призмы и плоскопараллельная пластина из фторопласта; микрометрические винты.

2 Теоретические сведения

Плоские ЭМ-волны, являющиеся решением волнового уравнения, обычно записывают в виде:

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)} \tag{1}$$

где ${\bf k}$ – волновой вектор с вещественными компонентами. Тем не менее, волновое уравнение допускает комплекснозначные компоненты k_x, k_y, k_z . Рассмотрим следующую волну:

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 e^{\pm \kappa z} e^{i(x \cdot k_x + y \cdot k_y - \omega t + \phi)}$$
(2)

Данное уравнение описывает бегущую вдоль ОХҮ волну, экспоненциально убывающую (нарастающую) вдоль z. Волны, в которых волновой вектор комплекснозначный, называются **неоднородными**.

Мы знаем, что при попадании на границу раздела сред с показателями преломления n_1, n_2 амплитуды падающей, преломленной и отраженной волн подчиняются формулам Френеля. Ясно, что формулы работают при $\sin \theta_1 \leq n_1/n_2$, где θ_1 – угол падения. В противном случае происходит так называемое полное внутреннее отражение.

Пусть на границу раздела z=0 из более плотной среды (z<0) падает плоская волна и испытывает полное внутреннее отражение. Пусть волны в области z<0 однородны, тогда для выполнения граничных условий необходимо ввести неоднородную волну в области z>0. Тогда:

$$k_2 = k_1 \cdot \frac{n_2}{n_1}, \quad k_{2x} = k_{1x} = k_1 \cdot \sin \theta_1, \quad k_{2y} = k_{1y} = 0$$

$$k_{2x}^2 + k_{2y}^2 + k_{2z}^2 = k_2^2 \implies k_{2z} = \pm i\sqrt{k_{2x}^2 - k_2^2} = \pm ik_1\sqrt{\sin\theta_1 - \frac{n_1}{n_2}}$$

Введём тогда $\varkappa:=k_1\sqrt{\sin\theta_1-\frac{n_1}{n_2}}$. Выбирая знак «-» (иначе бы волна неограниченно возрастала по амплитуде), получаем частный случай (2) – уравнения неоднородной волны. Введём обозначение $\Lambda=\frac{1}{2\varkappa}$, тогда с учётом $I\propto E^2$, где I - интенсивность волны, получим:

$$I \propto \exp(-2\varkappa z) = \exp(-z/\Lambda) \tag{3}$$

где Л приобритает смысл характерной длины затухания.

При достижении неоднородной волной на расстоянии h от первого раздела сред второго раздела с таким же диэлектриком, волна распространяется внутрь как плоская однородная с интесивностью, равной $I_t = I_0 \exp(-h/\Lambda)$, где I_0 — изначальная интенсивность падающей волны. Таким образом, наблюдается эффект **туннелирования** через воздушный зазор. Отметим, что согласно закону сохранения энергии:

$$I_t + I_r = I = 0 \implies R + T = 1 \tag{4}$$

где R, T – коэффициенты отражения и прозрачности соответственно.

3 Экспериментальная установка

Схема установки по изучению туннелирования радиоволн приведена на рис. 1. Источником радиоволн является высокочастотный генератор Γ 4-115, излучающий их с помощью рупорной антенны A_1 в пространство. Электрический вектор волны, бегущей вдоль волновода и излучаемый антенной, перпендику- лярен широкой стенке волновода. На пути радиоволн устанавливаются две одинаковые прямые призмы Π_1 и Π_2 с почти прямоугольным равнобедренным треугольником в основании. Уменьшение угла при вершине треугольника на 16° сделано для устранения обратных отражений. Призмы изготовлены из фторопласта. Узкие грани призм ограничивают воздушную прослойку, ширина которой может изменяться с помощью микрометрических винтов M_1 и M_2 .

Рис. 1: Схема установки

Вторая рупорная антенна A_2 служит приёмником радиоволн. Попадая в антенну A_2 , электромагнитная волна распространяется далее по волноводу, аналогичному волноводу генератора. Детектор D, расположенный в волноводе, подсоединяется к микроамперметру. Ток детектора пропорционален интенсивности принимаемого антенной электромагнитного излучения:

$$\mathcal{J} \propto I$$

Аттенюатор Ат позволяет ослаблять сигнал. В положении I антенна A2 принимает сигнал, прошедший воздушный промежуток, в положении II— сигнал, отражённый от воздушного промежутка.

Небольшая реконструкция схемы позволяет смоделировать интерферометр Майкельсона (рис. 2). Воздушный зазор между призмами здесь используется в качестве делителя волны; зеркало 3_1 установлено неподвижно, зеркало 3_2 может перемещаться с помощью микрометрического винта M.

Рис. 2: Схема интерферометра Майкельсона

4 Методика измерений и результаты

4.1 Часть 1. Коэффициенты прозрачности и отражения.

Настроим генератор на максимальную выходную мощность. Настройка выполнена на частоту f = 36.00 GHZ. Юстировкой установки добьёмся максимального отклика амперметра на сигнал.

При выполнении работы были замечены три особенности установки. Во-первых, имеется существенный люфт при повороте правого микрометрического винта. Мы будем его компенсировать монотонностью изменения ширины воздушного промежутка между призмами.

Во-вторых, плоскости призм не остаются строго параллельными. Это видно на начальном этапе работы, когда воздушный промежуток лишь начинает появляться — призмы некоторое время продолжаюют соприкасаться соответсвующими углами. Кроме того, это вызывает некоторый рост тока микроамперметра, поэтому регулировка аттенюатора происходила в момент, когда ток максимален. При этом выставлено значение $\mathcal{J}_{\text{max}} = 10.0~\mu\text{A}$. Рост тока из-за непараллельности при этом составил $\Delta \mathcal{J} = 0.4~\mu\text{A}$.

В-третьих, генерация происходит с непостоянной мощностью – при наблюдении показаний без изменения параметров установки были зафиксированы колебания до $\Delta \mathcal{J}_{osc} = 0.3~\mu A$

Таким образом, примем оценку погрешности измерения тока за $\sigma(\mathcal{J}) = \sqrt{0.4^2 + 0.3^2} \ \mu A \approx 0.5 \ \mu A$. Снимем по отдельности (по одинаковым точкам) зависимость тока приёмника при тунеллировании и отражении, результаты представлены в ma6nuqe. 1.

Таблина 1: Экспе	риментальные	ланные:	зависимость	тока L	. и 1	OT CN	лешения А	x
Taominga I. Okene	primonitament	дашию.	Japhenmoeld	IONG I	, KI T	r or on	лощонии 🗕	

$I_t, \mu A$	$I_t, \mu A$	x, mm	Δx , mm
10.0	0.1	6.45	0.00
9.3	0.8	6.90	0.45
8.7	1.3	7.08	0.63
7.8	2.1	7.41	0.96
7.3	2.6	7.54	1.09
6.8	3.1	7.74	1.29
6.3	3.5	7.86	1.41
5.6	3.9	8.04	1.59
4.9	4.3	8.22	1.77
4.3	4.9	8.41	1.96
3.9	5.3	8.55	2.10
3.4	5.8	8.76	2.31
2.9	6.2	8.97	2.52
2.4	6.7	9.25	2.80
1.9	7.1	9.53	3.08
1.5	7.9	10.14	3.69
1.0	9.0	11.34	4.89

По полученным данным построим графики зависимостей, а так же их предполагаемую линеаризацию (согласно (3)). Результаты представлены на puc.~3~u~4.

Видно, что сумма R+T несущественно выходит за 1σ -границу 100% ($\sqrt{5^2+5^2}\%\approx 7.1\%$), что означает что условие R+T=1 можно считать выполненным. Пересечение зависимостей происходит при $R=T\approx 0.5$, при этом $\Lambda_{\rm intersect}=(1.87\pm 0.17)$ mm.

На втором графике видно, что в случае интенсивности в отраженном излучении, линеаризация плохо справляется с задачей. Удовлетворительные результаты получаются в пропущенном излучении – угол наклона при этом соответсвует $\Lambda_{\rm descent} = (2.14 \pm 0.14)~\rm mm$.

Тогда примем значение Λ за (2.00 ± 0.22) mm (усреднение среднего, сложение квадратов отклонений).

Рис. 3: График зависимости коэффициентов прозрачности и отражения от величины зазора

Рис. 4: Предполагаемая линеаризация зависимости

Модифицируем определния \varkappa,Λ из теоретической части:

$$\Lambda = \frac{\lambda_{\text{возд}}}{4\pi\sqrt{n^2\sin^2\varphi_1 - 1}}$$

Несмотря на большую погрешность Λ , близость $n\sin\varphi$ к единице позволяет достаточно точно оценить $n\sin\varphi$:

$$n\sin\varphi = \sqrt{\left(\frac{\lambda_{\text{возд}}}{4\pi\Lambda}\right)^2 + 1} \approx 1.053, \quad \varepsilon(n\sin\varphi) \approx 1.2\%$$

В таком случае куда больший вклад в погрешность n даст неточность определения угла. Оценим $\sigma \varphi = 5^{\circ}$. Тогда $n = (1.48 \pm 0.12)$.

4.2 Интерферометр Майкельсона

Настроим установку согласно puc. 2, кроме того так, чтобы $R=T\approx 0.5$. Снимем зависимость интенсивности в отражённом излучении от сдвига подвижного зеркала. Результат – на puc. 5.

Рис. 5: Зависимость измеренной интенсивности от сдвига зеркала

Синусоидальная зависимость здесь, конечно, не выполнена, но очевиден повторяющийся профиль функции. Попробуем провести анализ следующим образом: разделить данные на 3 «периода» и найти такой сдвиг данных, при которых площадь под максимальной разницей интерполированных по точкам функций была бы минимальна. Оптимальное решение составляет $\Delta x_{opt} = (4.20 \pm 0.09)$ mm. Погрешность оценим по изменению оптимизируемой велиичны так, как будто вся область расширена на одну стандартную ошибку. Иллюстрация – на puc. 6.

Рис. 6: Оптимизация и нахождение периода

То есть длина волны в воздухе составляет $\lambda = 2 \cdot \Delta x_{opt} = (8.40 \pm 0.18)$ mm, при этом от генератора ожидается $\lambda_{gen} = 8.33$ mm – отличное совпадение.

Зная приблизительное значение показателя преломления $n \sim 1.5$ и толщины пластины $h = (6.2 \pm 0.1)$ mm, понимаем, что изменения порядка интерференции не происходит: $(h(n-1)) < \lambda/2$.

Тогда трижды будем ставить и убирать неподвижное зеркало и смотреть, на какое расстояние нужно сдвинуть подвижное, чтобы вернуться к максимуму интенсивности. Результаты – в *таблице* 2.

Таблица 2: Результаты интерферометрии

$l_1, \text{ mm}$	l_2 , mm	Δl , mm
1.76	3.17	1.41
10.30	11.64	1.34
6.00	7.30	1.30

Таким образом, $\Delta l = (1.35 \pm 0.5)$ mm. Получим тогда $n = \Delta l \cdot 2/h + 1 \approx (1.435 \pm 0.15)$.

5 Обсуждение результатов и выводы

В ходе работы были выполнены две части. Во-первых, были получены зависимости коэффициента пропускания и отражения при тунеллировании излучения при ПВО, проверено утверждение R+T=1. Тем не менее, одна из зависимостей неудовлетворительно описывается теорией. Причиной тому может быть дифракция на толстых металлических креплениях призм. Из имеющихся данных была найдена длина затухания неоднородной волны в зазоре, и, соответсвенно, коэффициент преломления $n=(1.48\pm0.12)$.

Во-вторых, с помощью тунеллирования была проведена интерферометрия Майкельсона. Хорошо совпала совпадение длина волны, полученная интерферометрией, и полученная с показаний генератора. Также было получено значение коэффициента преломления $n=(1.42\pm0.02)$.

В ГОСТ 10007-80 указано, что дилектрическая проницаемость фторопласта-4 не зависит от частоты и составляет (2.0 ± 0.1) , что соответсвует $n=(1.41\pm0.4)$. Таким образом, полученные результаты согласуются со справочными данными.