Robot Motion Planning Classic Path Planning Algorithms

A. Narayanan¹

¹Department of Informatics

Outline

Overview of Classic Path Planning Approaches

Roadmaps

Visibility Maps Generalized Voronoi Diagrams

Cell Decomposition

Trapeziodal decomposition Boustrophedon Decomposition

Potential Field

- Roadmap Represent the connectivity of the free space by 1-D Curves
- Cell Decomposition Decompose the free space into simple cells and represent the connectivity of the free space by adjacency graph of these cells
- Potential Field Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function

Roadmaps

- construct a map once and then use that map to plan subsequent paths more quickly
- ► Topological maps aim at representing environments with graphlike structures
- Roadmaps are a type of topological map embedded in free space where each node corresponds to a specific location and an edge corresponds to a path between neighboring locations

find path from q_{start} to roadmap o traverse roadmap to vicinity of goal o find path from roadmap to the q_{goal}

Definition

A union of one-dimensional curves is a roadmap RM if for all q_{start} and q_{goal} in \mathcal{Q}_{free} that can be connected by a path, the following properties hold:

- 1. Accessibility: there exists a path from $q_{start} \in Q_{free}$ to some $q'_{start} \in RM$,
- 2. **Departability**: there exists a path from some $q'_{goal} \in RM$ to $q_{goal} \in \mathcal{Q}_{free}$, and
- 3. Connectivity: there exists a path in RM between q_{start}' and q_{goal}' .

Advantages

- 1. Efficient method of path planning in the configuration space. It moves a large part of processing to offline.
- 2. Just need to connect q_{init} , q_{goal} to roadmap online.
- 3. Finding a path is like searching in a roadmap.

Visibility Graph

Assume a polygonal configuration space with obstacles approximated as polygons, with the nodes v_i of the graph consisting of q_{start} , q_{goal} and all obstacle vertices

Figure: A polygonal config space with start and goal

Visibility Graph

The graph edges e_{ij} are straight-line segments that connect two line-of-sight nodes v_i and v_j

Complexity: $O(n^2)$

Figure: The Visibility graph

Reduced Visibility Graph

the visibility graph has many needless edges. The use of supporting and separating lines can reduce the number of edges.

Figure: Supporting and Separating Line Segments

Figure: Reduced Visibility graph

Rotational Plane Sweep Algorithm

Generalized Voronoi Diagrams

The Generalized Voronoi Diagram (GVD) is the set of points where the distance to the two closest obstacles is the same.

Figure: Voronoi Diagram

Complexity: $O(n \log(n))$

Construction of the GVD

Figure: The Brushfire algorithm uses a grid to approximate distance

Cell Decompositions

The main idea is to decompose the free space into simple cells and represent the connectivity of the free space F by the adjacency of these cells. It is called an exact cell decomposition if the union of all cells is exactly F, meaning there is no overlap between cells.

Trapeziodal Decomposition

- ► The free space is bounded by polygons and C-Space obstacles are poygon shaped
- decompose the space into trapezoidal triangle cells
- connect every neighboring centered point in every neighboring cells that dont intersect with obstacles (Adjacency graph)

Problems: there are a lot of useless small cells that could be aggregated to avoid long and less efficient paths

Boustrophedon Decomposition

- ► Consider the vertices at which a vertical line can be extended both up and down in free space i.e. the critical points
- set boundary lines at critical points
- ► Then, an exhaustive walk through the critical points is performed in order to obtain a connectivity graph

Potential Field Method

- ► The C-space is turned into a potential field, where the obstacles are surrounded by a repulsive field
- ► The goal location by an attractive field. To navigate, the robot applies a force proportional to the negative gradient of the field - this is called gradient descent.
- ► Advantage: potential field methods are easy to compute.
- Disadvantage: They can suffer from local minima (where robot gets stuck), and they don't consider dynamic constraints in their initial form (forces can be too high).

The Attractive Potential

- we could use Conic Potential When numerically implementing this method, gradient descent may have "chattering" problems since there is a discontinuity in the attractive gradient at the origin.
- ▶ or we could use Quadratic Potential grows without bound as q moves away from q_{goal} . If q_{start} is far from q_{goal} , this may produce a desired velocity that is too large
- Solution conic potential attracts the robot when it is very distant from q_{goal} and the quadratic potential attracts the robot when it is near q_{goal} .

$$U_{att}(q) = \begin{cases} \frac{1}{2}\zeta d^2(q, q_{goal}) & d(q, q_{goal}) \le d_{goal}^* \\ d_{goal}^*\zeta d(q, q_{goal}) - \frac{1}{2}\zeta (d_{goal}^*)^2 & d(q, q_{goal}) > d_{goal}^* \end{cases}$$

$$(1)$$

The Repulsive Potential

➤ The strength of the repulsive force depends upon the robot's proximity to the an obstacle. The closer the robot is to an obstacle, the stronger the repulsive force should be.

$$U_{rep}(q) = \begin{cases} \frac{1}{2} \eta (\frac{1}{D(q)} - \frac{1}{Q^*})^2 & d(Q) \le Q^* \\ 0 & d(Q) > Q^* \end{cases}$$
 (2)

The repulsive potential function is redefined in terms of distances to individual obstacles where $d_i(q)$ is the distance to obstacle QO_i

$$d_i(q) = \min_{c \in QO_i} d(q, c) \tag{3}$$