Análise

_____ folha de exercícios 4 ______ 2017/2018 _____

Soluções

• Extremos de funções

1. (a) $f(x,y) = 3x^2 + y^2$

$$\begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \iff \begin{cases} 6x = 0 \\ 2y = 0 \end{cases} \iff \begin{cases} x = 0 \\ y = 0 \end{cases}$$

• Discriminante

Temos $f_{xx}(x,y) = 6$, $f_{yy}(x,y) = 2$ e $f_{xy}(x,y) = 0$. Assim,

$$\Delta_f(x,y) = f_{xx}(x,y).f_{yy}(x,y) - [f_{xy}(x,y)]^2 = 12$$

• Classificação dos pontos críticos Como $\Delta_f(0,0)=12>0$ e $f_{xx}(0,0)=2>0$, o ponto (0,0) é um minimizante e o mínimo local é f(0,0)=0.

(b)
$$f(x,y) = x^2 - 4y^2 + 3$$

Pontos críticos

$$\left\{ \begin{array}{ll} f_x &= 0 \\ f_y &= 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{ll} 2x &= 0 \\ -8y &= 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{ll} x &= 0 \\ y &= 0 \end{array} \right.$$

• Discriminante

Temos $f_{xx}(x,y) = 2$, $f_{yy}(x,y) = -8$ e $f_{xy}(x,y) = 0$. Assim,

$$\Delta_f(x,y) = f_{xx}(x,y).f_{yy}(x,y) - [f_{xy}(x,y)]^2 = -16$$

• Classificação dos pontos críticos

Como $\Delta_f(0,0)=-16<0$, o ponto (0,0) é um ponto de sela.

(c) Para f(x,y) = xy, o ponto (0,0) é o único ponto crítico e é um ponto de sela.

(d)
$$f(x,y) = 5 - x^2 - y^2$$

Pontos críticos

$$\begin{cases} f_x &= 0 \\ f_y &= 0 \end{cases} \iff \begin{cases} -2x &= 0 \\ -2y &= 0 \end{cases} \iff \begin{cases} x &= 0 \\ y &= 0 \end{cases}$$

• Discriminante

Temos $f_{xx}(x,y) = -2$, $f_{yy}(x,y) = -2$ e $f_{xy}(x,y) = 0$. Assim,

$$\Delta_f(x,y) = f_{xx}(x,y).f_{yy}(x,y) - [f_{xy}(x,y)]^2 = 4$$

• Classificação dos pontos críticos

Como $\Delta_f(0,0)=4>0$ e $f_{xx}(0,0)=-2<0$, o ponto (0,0) é um maximizante e o máximo local é f(0,0)=5.

(e)
$$f(x,y) = x^2 - 4xy + y^3 + 4y$$

• Pontos críticos

$$\begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \iff \begin{cases} 2x - 4y = 0 \\ -4x + 3y^2 + 4 = 0 \end{cases} \iff \begin{cases} x = 4 \\ y = 2 \end{cases} \lor \begin{cases} x = 4/3 \\ y = 2/3 \end{cases}$$

Discriminante

Temos $f_{xx}(x,y) = 2$, $f_{yy}(x,y) = 6y$ e $f_{xy}(x,y) = -4$. Assim,

$$\Delta_f(x,y) = f_{xx}(x,y).f_{yy}(x,y) - [f_{xy}(x,y)]^2 = 12y - 16$$

• Classificação dos pontos críticos

Como $\Delta_f(4,2)=8>0$ e $f_{xx}(4,2)=2>0$, o ponto (4,2) é um minimizante e o mínimo local é f(4,2)=0.

Como $\Delta_f(4/3,2/3) = -8 < 0$, (4/3,2/3) é um ponto de sela.

- (f) $f(x,y) = x^3 y^3 + 6xy$
 - Pontos críticos

$$\begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \iff \begin{cases} 3x^2 + 6y = 0 \\ -3y^2 + 6x = 0 \end{cases} \iff \begin{cases} x = 0 \\ y = 0 \end{cases} \lor \begin{cases} x = 2 \\ y = -2 \end{cases}$$

Discriminante

Temos $f_{xx}(x,y) = 6x$, $f_{yy}(x,y) = -6y$ e $f_{xy}(x,y) = 6$. Assim,

$$\Delta_f(x,y) = f_{xx}(x,y).f_{yy}(x,y) - [f_{xy}(x,y)]^2 = -36xy - 36$$

• Classificação dos pontos críticos

Como $\Delta_f(0,0) = -36 < 0$, (0,0) é um ponto de sela.

Como $\Delta_f(2,-2) = 108 > 0$ e $f_{xx}(2,-2) = 12 > 0$, o ponto (2,-2) é um minimizante e o mínimo local é f(2,-2) = -8.

- **2.** (a) $f(x,y) = (x-4) \ln y$
 - Pontos críticos

$$\begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \iff \begin{cases} \ln y = 0 \\ \frac{x - 4}{y} = 0 \end{cases} \iff \begin{cases} x = 4 \\ y = 1 \end{cases}$$

Discriminante

Temos $f_{xx}(x,y) = 0$, $f_{yy}(x,y) = -\frac{x-4}{y^2}$ e $f_{xy}(x,y) = \frac{1}{y}$. Assim,

$$\Delta_f(x,y) = f_{xx}(x,y).f_{yy}(x,y) - [f_{xy}(x,y)]^2 = -\frac{1}{v^2}$$

Classificação dos pontos críticos

Como $\Delta_f(4,1) = -1 < 0$, o ponto (4,1) é um ponto de sela.

- (b) Ponto (0,-1) é um ponto de sela.
- (c) $f(x,y) = 2x^3 y^3 24x + 75y + 7$
 - Pontos críticos

$$\begin{cases} f_x &= 0 \\ f_y &= 0 \end{cases} \iff \begin{cases} 6x^2 - 24 &= 0 \\ -3y^2 + 75 &= 0 \end{cases} \iff \begin{cases} x &= 2 \\ y &= 5 \end{cases} \lor \begin{cases} x &= -2 \\ y &= -5 \end{cases} \lor \begin{cases} x &= -2 \\ y &= -5 \end{cases} \lor \begin{cases} x &= -2 \\ y &= -5 \end{cases}$$

Discriminante

Temos $f_{xx}(x,y) = 12x$, $f_{yy}(x,y) = -6y$ e $f_{xy}(x,y) = 0$. Assim,

$$\Delta_f(x,y) = f_{xx}(x,y).f_{yy}(x,y) - [f_{xy}(x,y)]^2 = -72xy$$

• Classificação dos pontos críticos

Como $\Delta_f(2,5) = <0$ e $\Delta_f(-2,-5) < 0$, os pontos (2,5) e (-2,-5) são pontos de sela. Temos $\Delta_f(-2,5) > 0$ e $f_{xx}(-2,5) < 0$. Logo, (-2,5) é maximizante e f(-2,5) é máximo local.

Como $\Delta_f(2,-5)>0$ e $f_{xx}(2,5)>0$, (2,-5) é minimizante e f(2,5) é mínimo local.

- (d) Em (-6,3) existe um máximo local.
 - Em (6,3) temos um ponto de sela.
- (e) Em (0,0) temos um ponto de sela.

Em (16,64) existe um mínimo relativo.

(f) (-2,3) e em (4,-5) são pontos de sela. Máximo local em (-2,-5) e mínimo local em (4,3).

2

- 3. $f(x,y) = 8x + 10y 0.001(x^2 + xy + y^2) 10000$
 - Pontos críticos

$$\begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \iff \begin{cases} 8 - 0.001(2x + y) = 0 \\ 10 - 0.001(x + 2y) = 0 \end{cases} \iff \begin{cases} x = 2000 \\ y = 4000 \end{cases}$$

Discriminante

Temos $f_{xx}(x,y) = -0.002$, $f_{yy}(x,y) = -0.002$ e $f_{xy}(x,y) = -0.001$. Assim,

$$\Delta_f(x,y) = f_{xx}(x,y).f_{yy}(x,y) - [f_{xy}(x,y)]^2 = 0.000003$$

- Classificação dos pontos críticos Como $\Delta_f(2000, 4000) > 0$ e $f_{xx}(2000, 4000) = -0.002 < 0$, as quantidades x = 2000 e y = 4000 conduzem a um lucro máximo.
- **4.** Se x e y representarem as dimensões do terreno retangular (largura e comprimento) pretende-se resolver o problema

Minimizar
$$f(x,y) = 2x + y$$
 sujeita a $xy = 1250$

Podemos transformar este problema num problema de otimização de uma função de uma única variável. Basta fazer, por exemplo,

$$y = \frac{1250}{x}$$

e substituir em f(x, y). Obtemos

$$f(x,y) = 2x + y = 2x + \frac{1250}{x}$$
.

Definindo $g(x) = 2x + \frac{1250}{x}$, calculemos os zeros de g'.

$$g'(x) = 0 \iff 2 - \frac{1250}{x^2} = 0 \iff x = 25 \lor x = -25.$$

Apenas interessa x=25. Como $g''(25)=\left.\frac{2500}{x^3}\right|_{x=25}>0$, a função g atinge um mínimo em x=25. Logo, as dimensões do terreno com área $1250m^2$ que minimizam a vedação como indicado são

$$x = 25m \text{ e } y = 50m.$$

5. Sejam x, y e z as dimensões da caixa (comprimento, largura e altura). Pretende-se resolver o problema

Minimizar
$$f(x, y, z) = 1.(2xz + 2yz) + 3.xy + 5.xy = 2xz + 2yz + 8xy$$
 sujeita a $xyz = 32$

Este problema pode ser transformado num problema sem restrições com duas variáveis. Fazendo, por exemplo,

$$z = \frac{32}{xy},$$

vem

$$f(x, y, z) = 2x\frac{32}{xy} + 2y\frac{32}{xy} + 8xy = \frac{64}{y} + \frac{64}{x} + 8xy.$$

Definindo $g(x,y) = \frac{64}{y} + \frac{64}{x} + 8xy$, verifica-se que (2,2) é o único ponto crítico (Note que se deve ter $x \neq 0$ e $y \neq 0$) onde g atinge um mínimo local. Assim, as dimensões da caixa devem ser x = 2, y = 2 e z = 32/4 = 8.

3

6. Função objectivo: f(x,y) = xy

Restrição: g(x,y) = 8 em que $g(x,y) = x^2 + y^2$.

Pontos críticos

$$\begin{cases} f_x(x,y) &= \lambda g_x(x,y) \\ f_y(x,y) &= \lambda g_y(x,y) \\ g(x,y) &= 8 \end{cases} \iff \begin{cases} y &= \lambda 2x \\ x &= \lambda 2y \\ x^2 + y^2 &= 8 \end{cases}$$

Como nem x nem y podem ser zero (verificar), da primeira e segunda equações podemos tirar

$$2\lambda = \frac{y}{x}$$
 e $2\lambda = \frac{x}{y}$

o que implica que

$$\frac{y}{x} = \frac{x}{y} \qquad \text{ou} \qquad x^2 = y^2.$$

Agora, substituindo $x^2=y^2$ na terceira equação obtemos

$$2x^2 = 8 \iff x = \pm 2.$$

De $x^2=y^2$, para x=2 vem $y=\pm 2$ e para x=-2 vem também $y=\pm 2$. Temos então os pontos

$$(2,2), (2,-2), (-2,2) \in (-2,-2).$$

• Valor de f nos pontos críticos

Como

$$f(2,2) = f(-2,-2) = 4$$
 e $f(-2,2) = f(2,-2) = -4$

temos que quando $x^2+y^2=8$ o máximo valor de f é 4, em (2,2) e (-2,-2), e o mínimo é -4, em (2,-2) e (-2,2).

7. (a) Função objectivo: f(x,y) = xy

Restrição: g(x,y) = 1 em que g(x,y) = x + y.

Pontos críticos

$$\begin{cases} f_x(x,y) &= \lambda g_x(x,y) \\ f_y(x,y) &= \lambda g_y(x,y) \\ g(x,y) &= 1 \end{cases} \iff \begin{cases} y &= \lambda.1 \\ x &= \lambda.1 \\ x+y &= 1 \end{cases} \iff \begin{cases} - \\ x &= \frac{1}{2} \\ x+y &= 1 \end{cases}$$

ullet Valor de f nos pontos críticos

Admitindo que f tem um máximo quando x+y=1, esse máximo ocorre em $\left(\frac{1}{2},\frac{1}{2}\right)$ e é igual a $f\left(\frac{1}{2},\frac{1}{2}\right)=\frac{1}{d}$.

Este problema poderia ser resolvido sem recorrer ao método dos multiplicadores de Lagrange. Como de x + y = 1, podemos escrever y = 1 - x e trata-se de determinar os extremos da função de uma variável

$$h(x) = f(x, 1 - x) = x(1 - x) = x - x^{2}.$$

A derivada h'(x)=1-2x tem um zero em $x=\frac{1}{2}$ e é positiva para $x\in]-\infty,\frac{1}{2}[$ e negativa para $x\in]2,+\infty[$, o que significa que $x=\frac{1}{2}$ é um ponto onde ocorre um máximo: $h(\frac{1}{2})=\frac{1}{4}$. Assim, para $x=\frac{1}{2}$ e $y=1-x=1-\frac{1}{2}=\frac{1}{2}$ a função f tem um máximo igual a $\frac{1}{4}$.

(b) Função objectivo: $f(x,y) = x^2 + y^2$

Restrição: g(x,y) = 1 em que g(x,y) = xy

• Pontos críticos

$$\begin{cases} f_x(x,y) &= \lambda g_x(x,y) \\ f_y(x,y) &= \lambda g_y(x,y) \\ g(x,y) &= 1 \end{cases} \iff \begin{cases} 2x &= \lambda y \\ 2y &= \lambda x \implies \begin{cases} -x^2 &= y^2 \\ xy &= 1 \end{cases} \end{cases}$$

Note que nem x nem y podem ser nulos. Da segunda equação vem $x=\pm\sqrt{y^2}=\pm|y|$. Se y>0, temos $x=\pm y$ e se y<0 temos $x=\mp y$. Em qualquer dos casos, vem

$$x = \pm y$$
.

Se x = y, da última equação vem

$$x^2 = 1 \iff x = \pm 1$$

e obtemos os pontos (1,1) e (-1,-1).

Se x = -y, a última equação fica $x^2 = -1$ que é impossível.

 Valor de f nos pontos críticos Temos

$$f(1,1) = 1$$
 e $f(-1,-1) = 1$.

Nos pontos (1,1) e (-1,-1) a função f assume um mínimo sujeita à restrição xy=1.

- (c) Função objectivo: $f(x,y) = x^2 y^2$ Restrição: g(x,y) = 4 em que $g(x,y) = x^2 + y^2$.
 - Pontos críticos

$$\begin{cases} f_x(x,y) &= \lambda g_x(x,y) \\ f_y(x,y) &= \lambda g_y(x,y) \\ g(x,y) &= 4 \end{cases} \iff \begin{cases} 2x &= \lambda 2x \\ -2y &= \lambda 2y \\ x^2 + y^2 &= 4 \end{cases}$$

Se $x \neq 0$, da primeira equação podemos tirar que $\lambda = 1$ e segue-se, da segunda equação, que y = 0. Da terceira equação tiramos os pontos (2,0) e (-2,0).

Se x = 0, obtemos os pontos (0, 2)e(0, -2).

• Valor de f nos pontos críticos Temos

$$f(2,0) = f(-2,0) = 4$$
 e $f(0,2) = f(0,-2) = -4$.

Nos pontos (0,2) e (0,-2) a função f assume um mínimo sujeita à restrição $x^2+y^2=4$.

8. (b) Função objectivo: $f(x,y) = e^{xy}$

Restrição: g(x,y) = 4 em que $g(x,y) = x^2 + y^2$.

Pontos críticos

$$\begin{cases} f_x(x,y) &= \lambda g_x(x,y) \\ f_y(x,y) &= \lambda g_y(x,y) \\ g(x,y) &= 4 \end{cases} \iff \begin{cases} y \operatorname{e}^{xy} &= \lambda 2x \\ x \operatorname{e}^{xy} &= \lambda 2y \\ x^2 + y^2 &= 4 \end{cases} \iff \begin{cases} y/x &= 2\lambda/\operatorname{e}^{xy} \\ x/y &= 2\lambda/\operatorname{e}^{xy} \\ x^2 + y^2 &= 4 \end{cases}$$

Da duas primeiras equações obtemos que $x^2=y^2$ e juntamente com a terceira equação chegamos aos pontos

$$(2,2),(2,-2),(-2,2)$$
 e $(-2,-2)$.

• Valor de f nos pontos críticos

Temos que

$$f(2,2) = f(-2,-2) = e^4$$

é um máximo de f sujeita à condição $x^2+y^2={\bf 4}$ e

$$f(-2,2) = f(2,-2) = e^{-4}$$

é um mínimo.

9. Trata-se de calcular o ponto onde a função que nos dá a distância de um ponto (x, y, z) ao ponto (1, 2, 3),

$$d(x, y, z) = \sqrt{(x-1)^2 + (y-2)^2 + (z-3)^2},$$

atinge um mínimo quando sujeita à restrição x+y+2z=1. Equivalentemente, podemos antes minimizar o quadrado da distância, isto é, considerar o problema

Minimizar
$$f(x, y, z) = (x - 1)^2 + (y - 2)^2 + (z - 3)^2$$
 sujeita a $x + y + 2z = 1$.

Função objectivo: $f(x, y, z) = (x - 1)^2 + (y - 2)^2 + (z - 3)^2$

Restrição: g(x, y, z) = 1 em que g(x, y, z) = x + y + 2z.

Pontos críticos

$$\begin{cases} f_x(x,y,z) &= \lambda g_x(x,y,z) \\ f_y(x,y,z) &= \lambda g_y(x,y,z) \\ f_z(x,y,z) &= \lambda g_z(x,y,z) \\ g(x,y,z) &= 1 \end{cases} \iff \begin{cases} 2(x-1) &= \lambda \\ 2(y-2) &= \lambda \\ 2(z-3) &= 2\lambda \\ x+y+2z &= 1 \end{cases}$$

Da duas primeiras equações obtemos

$$x - 1 = y - 2 \Longleftrightarrow y = x + 1$$

e da primeira e últimas equações vem

$$z - 3 = 2(x - 1) \iff z = 2x + 1.$$

Substituindo na última equação temos

$$x + (x + 1) + 2(2x + 1) = 1$$
,

donde se obtém $x=-\frac{1}{3}$. Finalmente, encontra-se o ponto

$$(x,y,z) = \left(-\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right)$$

que é o ponto do plano x+y+2z=1 que se encontra à distância mínima de M=(1,2,3).

10. Trata-se de encontrar o mínimo de $f(x,y) = 8 \times 2x + 8 \times y + 24 \times y = 16x + 32y$ sujeita à restrição xy = 800, usando o método dos multiplicadores de Lagrange ou transformando o problema num problema de otimização de uma função de uma única variável.