Топология. База

Топология T

Множество подмножеств из из множества X

Критерии:

- 1. $\emptyset, X \in T$
- 2. $V_1 \cup V_2 \cup \ldots \cup V_k \in T \quad (V_i \in T)$
- 3. $U_1 \cap U_2 \in T \quad (U_i \in T)$

Открытое множество

Открыто на топологии

Замкнутое множество

Дополнение к открытому (\emptyset, X)

Покрытие X

Набор C подмножеств $X \iff \bigcup_{U \in C} U = X$

База топологии

Такое $B=\{V_i|i\in I\}$, из объединения которых можно составить T_X

Предбаза топологии

Такое $W = \{W_i | i \in J\}$, пересечение которых даст базу.

Критерии базы

- 1. Σ база, T топология на X
- $\iff orall U \in T \quad orall x \in U \quad \exists V_x \in \Sigma: \quad x \in V_x \subseteq U$
- $\Sigma = \{B_i | i \in I\}$
- 2. Σ является базой некоторой топологии на $X \Longleftrightarrow$
- 1. X представляется в виде объединения элементов Σ
- 2. $\forall U, V \in \Sigma \quad U \cap V = \bigcup_{i \in I} B$
- 1. Пересечение элементов базы = объединение элементов базы

Метрики и границы

Толщина / грубость

- $\supset X$ множество.
- T_1,T_2 топологии на X
- T_1 тоньше T_2
- T_2 грубее T_1
- $\iff T_2 \subseteq T_1$

Метрика

- d: X imes X o R метрика, если
- 1. d(x, y) = d(y, x)
- 2. $d(x, y) + d(y, z) \ge d(x, z)$
- 3. $d(x, y) \ge 0$
- $d(x,y) = 0 \iff x = y$

(X,d) - метрическое пространство

Метрическая топология (порождённая метрика)

 $\sqsupset (X,
ho)$ - метрическое пространство

Множество всех $B(x,\epsilon)$, т. е. $\Sigma=\{B(x,\epsilon)|x\in X,\epsilon>0\in\mathbb{R}\}$

является базой некоторой канонической для \mathbb{R}^n топологии

Метризуемое топологическое пространство

- $\sqsupset (X,T)$ топологическое пространство, если $\exists \rho: X imes X o \mathbb{R}$ метрика,
- такое, что $T_{
 ho}=T$ $(T_{
 ho}$ топологическое, порождённое ho)

Подпространство + индуцированная топология

 $\supset (X,T)$ - топологическое пространство.

 $A \subseteq X$ - произвольное подмножество.

Через T_A обозначим совокупность $\{A\cap U|U\in T\}$

и (A,T_A) называют подпространством топологического пространства (X,T)

и T_A называют **индуцированной топологией** (на A из (X,T))

Каноническая топология

$$U^2\in T^2 \iff egin{cases} U^2=\emptyset \ orall (x,y)\in U^2 & \exists V^2:V^2=\left\{(x,y)|(x-x_0)^2+(y-y_0)^2<\epsilon
ight\}: & V^2\in U^2 \end{cases}$$

Окрестность x

 $x \in U_x$

Внутренняя для A

 $\exists U_x:\ U_x\subseteq A$

Граничная для A

 $\forall U_x:\ U_x\cap A\neq\emptyset,\ U_x\cap (X\backslash A)\neq\emptyset$

Точка прикосновения для A

 $\forall U_x:\ U_x\cap A\neq\emptyset$

Предельная точка для A

 $\forall U_x:\ U_x\cap (Aackslash\{x\})
eq\emptyset$

Внутренность Int(A)

Множество всех внутренних точек. Наибольшее открытое множество в A

Замыкание Cl(A)

Множество всех точек прикосновения. Наименьшее замкнутое множество, содержащее A

Плотность, и Отображения

Плотность

Пусть $A, B \subseteq X$, (X, T)

1. A плотно в $B \iff Cl(A) \subseteq B$

2. A всюду плотно $\iff Cl(A) = X$

Определение не плотности

 $A\subseteq (X,T)$, если $Int\left(X,A\right)$ (внешность) всюду плотна

T . e. $Cl\left(Int(X \backslash A)\right) = X$

Тождественное отображение

 $id_x:\ X o X,\quad id(x)=x$

Отображение вложения

Если $A\subseteq X$, то $\exists in_A:\ A o X,\quad in_A(a)=a$

Обратное отображение

 $g:\,Y o X$ называется обратным к $f:\,X o Y\iff fog=id_Y,\;gof=id_X$

Непрерывное отображение

 $\sqsupset X,Y$ - топологическое пространство

 $orall V \in T_Y \ f^{-1}(V) \in T_X$

Гомеоморфизм

Отображение $f:\ X o Y$, если

- 1. *f* биекция
- 2. *f* непрерывно
- $3. f^{-1}$ непрерывно

В этом случае X,Y называются гомеоморфными и обозначаются \simeq