Электротехника и электроника

Введение.

Электрические цепи постоянного тока

Название дисциплины

«Электротехника и электроника»

Преподаватель

Томчук Максим Николаевич к.т.н., доцент кафедры ЭВМ

Предмет и цель дисциплины

Учебная дисциплина «Электротехника и электроника» относится к профессиональному циклу.

Предметом изучения курса «Электротехника и электроника» являются основные законы электротехники, элементная база современных электротехнических и электронных устройств, электронные схемы усилителей, импульсных устройств и источников питания электронной аппаратуры.

Целью дисциплины «Электротехника и электроника» является изучение основных законов электротехники, а также элементной базы и основных принципов функционирования современных электротехнических и электронных устройств.

Задачи дисциплины

Задачами дисциплины «Электротехника и электроника» являются:

- ознакомление с основными законами электротехники;
- изучение теоретических основ, принципов построения и функционирования электротехнических и электронных устройств;
- изучение основных направлений развития элементной базы современных электротехнических и электронных устройств;
- изучение методов обеспечения надёжности работы электротехнических и электронных устройств.

В результате изучения курса студент должен знать:

- основные направления научно-технического развития электротехнических и электронных устройств
- принципы организации и функционирования электротехнических и электронных устройств
- методы, технологии и инструментальные средства, применяемые на всех этапах разработки электротехнических и электронных устройств
- методы расчета и конструирования основных подсистем, входящих в состав современных электротехнических и электронных устройств
- приёмы, применяемые при наладке электротехнических и электронных устройств

В результате изучения курса студент должен уметь:

- •оценивать характеристики и выбирать оптимальные варианты структур электротехнических и электронных устройств
- использовать программно-аппаратные средства вычислительных и информационных систем для моделирования работы электротехнических и электронных устройств
- использовать современные средства проектирования электротехнических и электронных устройств
- ставить и решать схемотехнические задачи, связанные с выбором системы элементов при заданных требованиях к параметрам (временным, мощностным, габаритным, надежностным)
- выбирать, разрабатывать и использовать средства защиты электротехнических и электронных устройств

В результате изучения курса студент должен владеть:

- навыками обоснования правильности принимаемых технических решений
- навыками работы с программными средствами моделирования электрических схем
- методами проектирования, тестирования, отладки и испытания электротехнических и электронных устройств

Связанные дисциплины

Для успешного освоения курса дисциплины, студенты должны владеть материалами предшествующих дисциплин:

- •«Физика»
- «Алгебра и геометрия»
- «Математический анализ»

Распределение часов

Вид занятий	Семестр 3	
Всего аудиторных часов	108 ч.	
Лекции	54 ч.	
Лабораторные работы	54 ч.	
Всего самостоятельной работы вне аудитории	72 ч.	
Лекции	25 ч.	
Лабораторные работы	38 ч.	
Текущая аттестация	9 ч.	
ИТОГО	180 ч. 5 ЗЕТ	

Тематический план (час.)

Содержание раздела	Лекции	Лаб. раб.	Сам. раб.
1. Электрические цепи постоянного тока	4	4	6
2. Электрические цепи переменного тока	6	8	10
3. Переходные процессы в линейных электрических цепях	4	4	6
4. Магнитные цепи	4	4	6
5. Полупроводниковые приборы	10	12	13
6. Усилители электрических сигналов	10	9	11
7. Избирательные схемы	4	4	6
8. Вторичные источники питания	4	9	9
9. Импульсные устройства и генераторы	8		5
Итого в 3 семестре:	54	54	72

Литература

- Бессонов, Л.А. Теоретические основы электротехники: Электрические цепи.
- Демирчан, К.С. Теоретические основы электротехники
- Треугольник Ома. http://treugoma.ru/

Определения

Электрический ток – направленное движение носителей электрических зарядов.

Электрическая цепь – совокупность устройств, обеспечивающих генерирование, передачу и использование электрической энергии.

Параметры элементов электрических цепей

- сопротивление R
- индуктивность L
- взаимная индуктивность М
- ёмкость С

Электродвижущая сила

ЭДС равна работе сторонних сил, совершаемой при перемещении единичного положительного заряда внутри источника от зажима с отрицательным потенциалом к зажиму с положительным потенциалом

$$E = A/q$$

$$E = \varphi_1 - \varphi_2 = U_{12}.$$

Вольт-амперная характеристика

Простейшая схема

$$U_{ab}=U=\varphi_a-\varphi_b=Ir$$

Электрический ток

Электрический ток оценивается количеством носителей зарядов, проходящих в единицу времени через поперечное сечение проводника

$$I = dq / dt$$
$$I = q / t$$

Закон Ома

Закон Ома для участка цепи

$$I = U / R$$
 $U = IR$ $R = U / I$

Закон Ома для полной цепи

$$I = E / (R + r)$$

Потребляемая мощность. Закон Джоудя - Ленца

Потребляемая мощность

$$P = UI = U^2 / R = I^2R$$

Тепловое действие электрического тока

$$Q = Pt = Uit = U^2t / R = I^2Rt$$

Резистор

Параметры резистора

- Сопротивление (мОм, Ом, кОм, МОм)
- Точность (погрешность) (%)
- Максимальная выделяемая мощность (Вт)
- Температурный коэффициент сопротивления

Обозначение мощности резистора

Маркировка резистора

- Буквы/цифры3R0 1К5 4М7 1К33
- Цветовая маркировка
- SMD101 333 1002

Последовательное соединение сопротивлений

$$R = R1 + R2$$

Параллельное соединение сопротивлений

$$1/R = 1/R1 + 1/R2$$

$$R = R1R2 / (R1 + R2)$$

Смешанное соединение сопротивлений **R12**

R123=R12R3/(R12+R3)=(R1+R2)R3/(R1+R2+R3) R1234=R123+R4=(R1+R2)R3/(R1+R2+R3)+R4 R12345=R1234R5/(R1234+R5)= ((R1+R2)R3/(R1+R2+R3)+R4)R5/ ((R1+R2)R3/(R1+R2+R3)+R4+R5)

Общее обозначение (керамический конденсатор)

Злектролитический полярный (американский символ)

Злектролитический полярный (европейский символ)

Переменный конденсатор

Подстроечный конденсатор

Параметры конденсатора

- о Ёмкость (пФ, нФ, мкФ, мФ)
- Точность (погрешность) (%)
- Максимальное напряжение (В)
- Полярность (полярный/неполярный)
- Температурный коэффициент емкости

Энергия, запасенная в конденсаторе

Заряд: Q = CU

 \circ Энергия: **E** = **CU**² / **2**

Параллельное соединение емкостей

$$C = C1 + C2$$

Последовательное соединение емкостей

$$1/C = 1/C1 + 1/C2$$

$$C = C1C2 / (C1 + C2)$$

Катушка индуктивности

Параметры катушки индуктивности

- Индуктивность (мкГн, мГн, Гн)
- Точность (погрешность) (%)
- Максимальная индукция (Тл)
- Сопротивление (Ом)
- \circ Добротность $Q = X_L/R$

Энергия, запасенная в катушке индуктивности

$$E = LI^2 / 2$$

Последовательное соединение сопротивлений

$$L = L1 + L2$$

Параллельное соединение сопротивлений

$$1/L = 1/L1 + 1/L2$$

$$L = L1L2 / (L1 + L2)$$

Идеальный источник ЭДС

Идеальный источник тока

Реальный источник тока

Первый закон Кирхгофа

$$I1+I2+I3+I4+I5 = 0$$

 $|I1|+|I2|+|I3| = |I4| + |I5|$

Сумма токов, подходящих к узлу, равна сумме токов, отходящих от узла

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма падений напряжений на элементах, входящих в контур, равна алгебраической сумме ЭДС

Баланс мощностей

Алгебраическая сумма мощностей всех источников равна арифметической сумме мощностей всех приемников энергии

$$E_1I_1-E_2I_2=$$
= $I_1^2R_1+I_2^2R_2+$
+ $I_3^2R_3I_1^2R_4$

