Contents

1	Intr	roduction	3
2	Inte	erpolation	3
3	Sub-triangulation		3
	3.1	Definition	3
	3.2	Constant, increasing or decreasing under sub-triangulation	4
4	Volu	ume	4
	4.1	Volume of an element	4
	4.2	Explanation	4
	4.3	Volume of a mesh	5
	4.4	Positive and negative volumes of an element	6
	4.5	Absolute and quadratic volumes of an element, of a mesh	8
5	Con	mparison between two meshes	10
	5.1	Comparison between two identical meshes	10
		5.1.1 Mean signed deviation	11
		5.1.2 Mean absolute deviation	11
		5.1.3 Root mean square deviation	11
		5.1.4 Element-wise signed deviation, deviation distribution	12

Index

```
Basic definitions, 3
    Element, 3
    Mesh, 3
    Point, 3
     Valuation, Value of a point, 3
Comparison between two meshes, 10
    Deviation distribution function, 12
    Element-wise signed deviation, 12
    Identical meshes, 10
    Mean absolute deviation, 11
    Mean signed deviation, 11
    Reference mesh, 10
    Root mean square deviation, 11
Interpolation, 3
    Barycentric coordinates, 3
    Interpolated value of a point, 3
Sub-triangulation
    Constant under sub-triangulation, 4
    Increasing, decreasing under sub-triangulation, 4
    Sub-triangulation, 3
Volume, 4
    Absolute volume of a mesh, 8
     Absolute volume of an element, 8
    Base triangle, Upper triangle, 4
    Positive and negative volumes of an element, 6
    Projected points, Valuated points, 4
     Quadratic volume of a mesh, 9
     Quadratic volume of an element, 9
     Truncated right triangular prism, 4
     Volume of a mesh, 5
     Volume of an element, 4
```

1 Introduction

We call informally a **2D mesh** \mathcal{M} , or simple **mesh**, a finite network where

- an **element** \mathcal{T} is a triangle in \mathbb{R}^2 ; we write $\mathcal{T} \in \mathcal{M}$; its vertices $P_{1,2,3}$ are called **points** of the mesh:
- a **connection** is an common edge (two common vertices) between two elements; such that
 - every two elements can either intersect at one common vertex, intersect at one common edge (two common vertices), or have empty intersection;
 - every element has at least one common edge with another element (the mesh is **connected**).

Furthermore, for some integer t between 0 and T_{max} , a mesh can have a valuation \mathcal{V}_t at time t, which assigns to each point of the mesh a real number, called the value of the point.

Other useful notations include

- area (\mathcal{T}) is the area of the triangle \mathcal{T} ;
- area $(\mathcal{M}) = \sum_{\mathcal{T} \in \mathcal{M}} \operatorname{area}(\mathcal{T})$ is the total area of elements in the mesh \mathcal{M} ;
- $\operatorname{size}(\mathcal{M})$ is the number of elements in the mesh \mathcal{M} .

2 Interpolation

Definition 1. Let \mathcal{T} be a triangle in \mathbb{R}^2 of vertices $P_{1,2,3}$, for a point $Q \in \mathcal{T}$ (in the interior or on the boundary), the **barycentric coordinates** of Q is equal to

$$\lambda_1 = \frac{\operatorname{area}(\mathcal{T}_1)}{\operatorname{area}(\mathcal{T})}, \quad \lambda_2 = \frac{\operatorname{area}(\mathcal{T}_2)}{\operatorname{area}(\mathcal{T})}, \quad \lambda_3 = \frac{\operatorname{area}(\mathcal{T}_3)}{\operatorname{area}(\mathcal{T})}$$

where \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 are triangles in \mathbb{R}^2 defined by the vertices $P_2 P_3 Q$, $P_1 P_3 Q$ and $P_1 P_2 Q$ (when Q is on the boundary of \mathcal{T} , one or two of the triangles \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 are considered to be empty triangle).

Definition 2. Given a mesh \mathcal{M} valuated at \mathcal{V}_t and an element $\mathcal{T} \in \mathcal{M}$ of vertices $P_{1,2,3}$, the **interpolated** value of a point $Q \in \mathcal{T}$ is equal to the dot product of the barycentric coordinates of Q and the values of $P_{1,2,3}$:

$$\lambda_1 \mathcal{V}_t(P_1) + \lambda_2 \mathcal{V}_t(P_2) + \lambda_3 \mathcal{V}_t(P_3)$$

3 Sub-triangulation

3.1 Definition

Definition 3. A sub-triangulation $(\mathcal{M}^*, \mathcal{V}_t^*)$ of a mesh \mathcal{M} valuated at \mathcal{V}_t is the result of the operation that, for every element $\mathcal{T} \in \mathcal{M}$ of vertices $P_{1,2,3}$,

- adds a point Q in the interior of \mathcal{T} and splits \mathcal{T} into three elements \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 of vertices $P_2 P_3 Q$, $P_1 P_3 Q$ and $P_1 P_2 Q$, called the splits of \mathcal{T} at Q;
- extends \mathcal{V}_t to Q and assigns to Q the interpolated value at Q.

We note $ST(\mathcal{M}, \mathcal{V}_t)$ the set of all sub-triangulations of \mathcal{M} valuated at \mathcal{V}_t .

3.2 Constant, increasing or decreasing under sub-triangulation

Definition 4. Given a mesh \mathcal{M} valuated at \mathcal{V}_t , a function f of $(\mathcal{M}, \mathcal{V}_t)$ is **constant under subtriangulation** if the values of f on the set of all sub-triangulations of \mathcal{M} valuated at \mathcal{V}_t are equal to its value on $(\mathcal{M}, \mathcal{V}_t)$:

$$\forall (\mathcal{M}^*, \mathcal{V}_t^*) \in \mathrm{ST}(\mathcal{M}, \mathcal{V}_t), \quad f(\mathcal{M}^*, \mathcal{V}_t^*) = f(\mathcal{M}, \mathcal{V}_t).$$

Definition 5. Given a mesh \mathcal{M} valuated at \mathcal{V}_t , a function f of $(\mathcal{M}, \mathcal{V}_t)$ is **increasing (resp. decreasing)** under sub-triangulation if the values of f on the set of all sub-triangulations of \mathcal{M} valuated at \mathcal{V}_t are greater than (resp. less than) or equal to its value on $(\mathcal{M}, \mathcal{V}_t)$:

$$\forall (\mathcal{M}^*, \mathcal{V}_t^*) \in \mathrm{ST}(\mathcal{M}, \mathcal{V}_t), \quad f(\mathcal{M}^*, \mathcal{V}_t^*) \geqslant f(\mathcal{M}, \mathcal{V}_t)$$

$$(\mathrm{resp.} \ \forall (\mathcal{M}^*, \mathcal{V}_t^*) \in \mathrm{ST}(\mathcal{M}, \mathcal{V}_t), \quad f(\mathcal{M}^*, \mathcal{V}_t^*) \leqslant f(\mathcal{M}, \mathcal{V}_t) \).$$

4 Volume

4.1 Volume of an element

Definition 6. Given a mesh \mathcal{M} valuated at \mathcal{V}_t , the **volume** volume $_t(\mathcal{T}, \mathcal{V}_t)$ **of an element** $\mathcal{T} \in \mathcal{M}$ (also called **net volume**) of vertices $P_{1,2,3}$ is the product of the area of \mathcal{T} by one third the sum of the values of its three vertices:

volume_t(
$$\mathcal{T}, \mathcal{V}_t$$
) = $\frac{\operatorname{area}(\mathcal{T})}{3} \sum_{P_i} \mathcal{V}_t(P_i)$.

4.2 Explanation

The definition of the volume of an element \mathcal{T} valuated at \mathcal{V}_t can be easily understood by picturing the **truncated right triangular prism** $\overline{\mathcal{T}}_t$ in \mathbb{R}^3 naturally induced by the valuation \mathcal{V}_t .

If we note (x_1, y_1) , (x_2, y_2) , (x_3, y_3) the coordinates of the three vertices $P_{1,2,3}$ of \mathcal{T} in a Cartesian coordinate system, then the prism $\overline{\mathcal{T}}_t$ is defined by the following six vertices (figure 1):

- the **projected points** $\overline{P}_{1,2,3}$ of coordinates $(x_1, y_1, 0), (x_2, y_2, 0), (x_3, y_3, 0)$ which form the **base** triangle of the prism,
- the valuated points $\overline{P}_{1,2,3}^{\mathcal{V}_t}$ of coordinates $(x_1, y_1, \mathcal{V}_t(P_1)), (x_2, y_2, \mathcal{V}_t(P_2)), (x_3, y_3, \mathcal{V}_t(P_3))$ which form the **upper triangle** of the prism.

This prism is truncated because the upper triangle is not necessarily parallel to the base triangle; it is also a right prism because the three lateral edges is always perpendicular to the base triangle.

It is known from the classical geometry that the volume of a truncated right triangular prism is equal to the product of its base by one third the sum of its lateral edges. The volume of an element \mathcal{T} valuated at \mathcal{V}_t in definition 6 corresponds thus to the volume of its induced prism.

FIGURE 1 – The induced prism $\overline{\mathcal{T}}_t$ of an element \mathcal{T} valuated at \mathcal{V}_t

Since the valuation \mathcal{V}_t can take positive and negative values, the upper triangle does not always lie on the half-space z > 0 or z < 0. When the upper triangle intersects the base triangle, the induced prism $\overline{\mathcal{T}}_t$ is not a polyhedron, but the volume defined above is still valid.

4.3 Volume of a mesh

Definition 7. The **volume** volume $_t^{abs}(\mathcal{M}, \mathcal{V}_t)$ **of a mesh** \mathcal{M} valuated at \mathcal{V}_t is the sum of the volumes of its elements:

$$\mathrm{volume}_{t}(\mathcal{M},\,\mathcal{V}_{t}) = \sum_{\mathcal{T} \in \mathcal{M}} \mathrm{volume}_{t}(\mathcal{T},\,\mathcal{V}_{t}).$$

Proposition 1. The volume of a mesh \mathcal{M} valuated at \mathcal{V}_t defined in definition 7 is invariant under subtriangulation.

Proof. Let \mathcal{M} be a mesh valuated at \mathcal{V}_t and $(\mathcal{M}^*, \mathcal{V}_t^*) \in ST(\mathcal{M}, \mathcal{V}_t)$. Let \mathcal{T} be any element of \mathcal{M} and

 $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ its splits in \mathcal{M}^* at the point Q. First we write down the total volume of the three splits:

$$\sum_{k=1}^{3} \text{volume}_{t}(\mathcal{T}_{k}, \mathcal{V}_{t}^{*})
= \frac{\text{area}(\mathcal{T}_{1})}{3} (\mathcal{V}_{t}^{*}(P_{2}) + \mathcal{V}_{t}^{*}(P_{3}) + \mathcal{V}_{t}^{*}(Q)) + \frac{\text{area}(\mathcal{T}_{2})}{3} (\mathcal{V}_{t}^{*}(P_{1}) + \mathcal{V}_{t}^{*}(P_{3}) + \mathcal{V}_{t}^{*}(Q))
+ \frac{\text{area}(\mathcal{T}_{3})}{3} (\mathcal{V}_{t}^{*}(P_{1}) + \mathcal{V}_{t}^{*}(P_{2}) + \mathcal{V}_{t}^{*}(Q))
= \frac{1}{3} \sum_{k=1}^{3} \left(\mathcal{V}_{t}^{*}(P_{k}) \sum_{\substack{j=1,2,3\\j\neq k}} \text{area}(\mathcal{T}_{j}) \right) + \frac{1}{3} \mathcal{V}_{t}^{*}(Q) \text{area}(\mathcal{T}).$$

By the definition of sub-triangulation, the values $\mathcal{V}_t^*(P_k) = \mathcal{V}_t(P_k)$ and the value of Q is equal to

$$\mathcal{V}_{t}^{*}(Q) = \sum_{k=1}^{3} \lambda_{k} \, \mathcal{V}_{t}(P_{k}) = \frac{1}{\operatorname{area}(\mathcal{T})} \sum_{k=1}^{3} \operatorname{area}(\mathcal{T}_{k}) \, \mathcal{V}_{t}(P_{k}),$$

thus,

$$\sum_{k=1}^{3} \text{volume}_{t}(\mathcal{T}_{k}, \mathcal{V}_{t}^{*}) = \frac{1}{3} \sum_{k=1}^{3} \left(\mathcal{V}_{t}(P_{k}) \sum_{\substack{j=1,2,3 \ j \neq k}} \text{area}(\mathcal{T}_{j}) \right) + \frac{1}{3} \sum_{k=1}^{3} \text{area}(\mathcal{T}_{k}) \mathcal{V}_{t}(P_{k})$$

$$= \frac{1}{3} \sum_{k=1}^{3} \left(\mathcal{V}_{t}(P_{k}) \sum_{j=1}^{3} \text{area}(\mathcal{T}_{j}) \right) = \frac{\text{area}(\mathcal{T})}{3} \sum_{k=1}^{3} \mathcal{V}_{t}(P_{i})$$

$$= \text{volume}_{t}(\mathcal{T}, \mathcal{V}_{t}).$$

Therefore,

$$\operatorname{volume}_{t}(\mathcal{M}^{*}, \mathcal{V}_{t}^{*}) = \sum_{\mathcal{T} \in \mathcal{M}} \left(\sum_{\substack{\mathcal{T}_{k} \\ \operatorname{splits of } \mathcal{T}}} \operatorname{volume}_{t}(\mathcal{T}_{k}, \mathcal{V}_{t}^{*}) \right) = \sum_{\mathcal{T} \in \mathcal{M}} \operatorname{volume}_{t}(\mathcal{T}, \mathcal{V}_{t}) = \operatorname{volume}_{t}(\mathcal{M}, \mathcal{V}_{t}),$$

which proves the proposition.

4.4 Positive and negative volumes of an element

Definition 8. Given a mesh \mathcal{M} valuated at \mathcal{V}_t , the **positive volume** volume $_t^+(\mathcal{T}, \mathcal{V}_t)$ of an element $\mathcal{T} \in \mathcal{M}$ of vertices $P_{1,2,3}$, is equal to

- 0, if $\mathcal{V}_t(P_i) \leq 0$ for i = 1, 2, 3 (the upper triangle lies in the half-space $z \leq 0$);
- its net volume volume $_t(\mathcal{T}, \mathcal{V}_t)$, if $\mathcal{V}_t(P_i) \ge 0$ for i = 1, 2, 3 (the upper triangle lies in the half-space $z \ge 0$);
- otherwise, the upper triangle intersect the plane z = 0 at a segment $Q_1 Q_2$ (figure 2). There are two cases:

- if \mathcal{T} has only one vertex, w.l.o.g. P_1 , such that $\mathcal{V}_t(P_1) > 0$, the positive volume is equal to the volume of the tetrahedron defined by Q_1 , Q_2 , the projected point \overline{P}_1 and the valuated point $\overline{P}_1^{\mathcal{V}_t}$ of P_1 ;
- otherwise, \mathcal{T} has only one vertex, w.l.o.g. P_1 , such that $\mathcal{V}_t(P_1) < 0$. The positive volume is equal to the difference between the net volume volume $t(\mathcal{T}, \mathcal{V}_t)$ and the volume of the tetrahedron defined by Q_1 , Q_2 , the projected point \overline{P}_1 and the valuated point $\overline{P}_1^{\mathcal{V}_t}$ of P_1 .

Figure 2 – When the upper triangle intersects the base triangle at a segment $Q_1 Q_2$

Remark 1. In the third case, let \mathcal{T}^+ be the triangle defined by $\overline{P_1}$, Q_1 and Q_2 , then

$$\operatorname{area}(\mathcal{T}^+) = \frac{\mathcal{V}_t(P_1)^2}{|\mathcal{V}_t(P_1) - \mathcal{V}_t(P_2)| \, |\mathcal{V}_t(P_1) - \mathcal{V}_t(P_3)|} \operatorname{area}(\mathcal{T}).$$

This can be easily showed by noting that

$$\overrightarrow{\overline{P_1}Q_1} = \frac{|\mathcal{V}_t(P_1)|}{|\mathcal{V}_t(P_1) - \mathcal{V}_t(P_2)|} \overrightarrow{\overline{P_1}P_2}, \quad \overrightarrow{\overline{P_1}Q_2} = \frac{|\mathcal{V}_t(P_1)|}{|\mathcal{V}_t(P_1) - \mathcal{V}_t(P_3)|} \overrightarrow{\overline{P_1}P_3}.$$

Since the volume of the tetrahedron is equal to the product of its base by one third its height, the positive volume of \mathcal{T} in this case is equal to

$$\operatorname{volume}^+(\mathcal{T},\,\mathcal{V}_t) = \frac{|\mathcal{V}_t(P_1)|^3}{3\,|\mathcal{V}_t(P_1) - \mathcal{V}_t(P_2)|\,|\mathcal{V}_t(P_1) - \mathcal{V}_t(P_3)|} \operatorname{area}(\mathcal{T}).$$

Definition 9. Given a mesh \mathcal{M} valuated at \mathcal{V}_t , the **negative volume** volume $_t^-(\mathcal{T}, \mathcal{V}_t)$ of an element $\mathcal{T} \in \mathcal{M}$ is equal to the difference between its net volume and its positive volume:

$$\operatorname{volume}_{t}^{-}(\mathcal{T}, \mathcal{V}_{t}) = \operatorname{volume}_{t}(\mathcal{T}, \mathcal{V}_{t}) - \operatorname{volume}_{t}^{+}(\mathcal{T}, \mathcal{V}_{t}).$$

4.5 Absolute and quadratic volumes of an element, of a mesh

Definition 10. Given a mesh \mathcal{M} valuated at \mathcal{V}_t , the **absolute volume** volume $_t^{abs}(\mathcal{T}, \mathcal{V}_t)$ of an element $\mathcal{T} \in \mathcal{M}$ of vertices $P_{1,2,3}$ is the product of the area of \mathcal{T} by one third the sum of the absolute values of its three vertices:

volume
$$_{t}^{\mathrm{abs}}(\mathcal{T},\,\mathcal{V}_{t}) = \frac{\mathrm{area}(\mathcal{T})}{3} \sum_{k=1}^{3} |\mathcal{V}_{t}(P_{i})|.$$

Definition 11. The absolute volume volume $_t^{abs}(\mathcal{M}, \mathcal{V}_t)$ of a mesh \mathcal{M} valuated at \mathcal{V}_t is the sum of the absolute volumes of its elements:

$$volume_t^{abs}(\mathcal{M}, \mathcal{V}_t) = \sum_{\mathcal{T} \in \mathcal{M}} volume_t^{abs}(\mathcal{T}, \mathcal{V}_t).$$

Proposition 2. The absolute volume of a mesh \mathcal{M} valuated at \mathcal{V}_t defined in definition 11 is decreasing under sub-triangulation. When \mathcal{V}_t has the same sign for all points in \mathcal{M} , the absolute volume is constant under sub-triangulation.

Proof. Let \mathcal{M} be a mesh valuated at \mathcal{V}_t and $(\mathcal{M}^*, \mathcal{V}_t^*) \in ST(\mathcal{M}, \mathcal{V}_t)$. Let \mathcal{T} be any element of \mathcal{M} and $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ its splits in \mathcal{M}^* at the point Q. The total absolute volume of the three splits is equal to (see the proof of proposition 1):

$$\sum_{k=1}^{3} \text{volume}_{t}^{\text{abs}}(\mathcal{T}_{k}, \mathcal{V}_{t}^{*}) = \frac{1}{3} \sum_{k=1}^{3} \left(|\mathcal{V}_{t}^{*}(P_{k})| \sum_{\substack{j=1,2,3\\j\neq k}} \operatorname{area}(\mathcal{T}_{j}) \right) + \frac{1}{3} |\mathcal{V}_{t}^{*}(Q)| \operatorname{area}(\mathcal{T}).$$

By the definition of sub-triangulation, the values $|\mathcal{V}_t^*(P_k)| = |\mathcal{V}_t(P_k)|$ and the value of Q is equal to

$$\mathcal{V}_t^*(Q) = \sum_{k=1}^3 \lambda_k \, \mathcal{V}_t(P_k) = \frac{1}{\operatorname{area}(\mathcal{T})} \sum_{k=1}^3 \operatorname{area}(\mathcal{T}_k) \, \mathcal{V}_t(P_k),$$

and by applying the inequality between the absolute value of sum and the sum of absolute values:

$$|\mathcal{V}_t^*(Q)| \leqslant \frac{\sum_{k=1}^3 \operatorname{area}(\mathcal{T}_k) |\mathcal{V}_t(P_k)|}{\operatorname{area}(\mathcal{T})},$$

with equality when all three $\mathcal{V}_t(P_k)$ have the same sign. Thus,

$$\sum_{k=1}^{3} \text{volume}_{t}^{\text{abs}}(\mathcal{T}_{k}, \mathcal{V}_{t}^{*}) \leqslant \frac{1}{3} \sum_{k=1}^{3} \left(|\mathcal{V}_{t}(P_{k})| \sum_{\substack{j=1,2,3\\j \neq k}} \operatorname{area}(\mathcal{T}_{j}) \right) + \frac{1}{3} \sum_{k=1}^{3} \operatorname{area}(\mathcal{T}_{k}) |\mathcal{V}_{t}(P_{k})|$$

$$\leqslant \frac{1}{3} \sum_{k=1}^{3} \left(|\mathcal{V}_{t}(P_{k})| \sum_{j=1}^{3} \operatorname{area}(\mathcal{T}_{j}) \right)$$

$$\leqslant \frac{\operatorname{area}(\mathcal{T})}{3} \sum_{k=1}^{3} |\mathcal{V}_{t}(P_{i})| = \operatorname{volume}_{t}^{\text{abs}}(\mathcal{T}, \mathcal{V}_{t}).$$

Therefore,

$$\text{volume}_{t}^{\text{abs}}(\mathcal{M}^{*}, \mathcal{V}_{t}^{*}) = \sum_{\mathcal{T} \in \mathcal{M}} \left(\sum_{\substack{\mathcal{T}_{k} \\ \text{splits of } \mathcal{T}}} \text{volume}_{t}^{\text{abs}}(\mathcal{T}_{k}, \mathcal{V}_{t}^{*}) \right) \leqslant \sum_{\mathcal{T} \in \mathcal{M}} \text{volume}_{t}^{\text{abs}}(\mathcal{T}, \mathcal{V}_{t}) = \text{volume}_{t}^{\text{abs}}(\mathcal{M}, \mathcal{V}_{t}),$$

which proves that the absolute volume is decreasing under sub-triangulation. When \mathcal{V}_t has the same sign for all points in \mathcal{M} , the inequality becomes an equality and the absolute volume is constant under sub-triangulation.

Definition 12. Given a mesh \mathcal{M} valuated at \mathcal{V}_t , the quadratic volume volume $_t^{\text{quad}}(\mathcal{T}, \mathcal{V}_t)$ of an element $\mathcal{T} \in \mathcal{M}$ is the product of the area of \mathcal{T} by one third the squared values of its three vertices:

volume_t quad
$$(\mathcal{T}, \mathcal{V}_t) = \frac{\operatorname{area}(\mathcal{T})}{3} \sum_{k=1}^{3} \mathcal{V}_t(P_i)^2.$$

Definition 13. The quadratic volume volume $_t^{abs}(\mathcal{M}, \mathcal{V}_t)$ of a mesh \mathcal{M} valuated at \mathcal{V}_t is the sum of the quadratic volumes of its elements:

$$volume_t^{quad}(\mathcal{M}, \mathcal{V}_t) = \sum_{\mathcal{T} \in \mathcal{M}} volume_t^{quad}(\mathcal{T}, \mathcal{V}_t).$$

Proposition 3. The quadratic volume of a mesh \mathcal{M} valuated at \mathcal{V}_t defined in definition 13 is decreasing under sub-triangulation. When \mathcal{V}_t is constant on all points in \mathcal{M} , the quadratic volume is constant under sub-triangulation.

Proof. Let \mathcal{M} be a mesh valuated at \mathcal{V}_t and $(\mathcal{M}^*, \mathcal{V}_t^*) \in ST(\mathcal{M}, \mathcal{V}_t)$. Let \mathcal{T} be any element of \mathcal{M} and $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ its splits in \mathcal{M}^* at the point Q. The total quadratic volume of the three splits is equal to (see the proof of proposition 1):

$$\sum_{k=1}^{3} \text{volume}_{t}^{\text{quad}}(\mathcal{T}_{k}, \mathcal{V}_{t}^{*}) = \frac{1}{3} \sum_{k=1}^{3} \left(\mathcal{V}_{t}^{*}(P_{k})^{2} \sum_{\substack{j=1,2,3\\j \neq k}} \text{area}(\mathcal{T}_{j}) \right) + \frac{1}{3} \mathcal{V}_{t}^{*}(Q)^{2} \operatorname{area}(\mathcal{T}).$$

By the definition of sub-triangulation, the values $\mathcal{V}_t^*(P_k)^2 = \mathcal{V}_t(P_k)^2$ and the value of Q is equal to

$$\mathcal{V}_t^*(Q) = \sum_{k=1}^3 \lambda_k \, \mathcal{V}_t(P_k) = \frac{1}{\operatorname{area}(\mathcal{T})} \sum_{k=1}^3 \operatorname{area}(\mathcal{T}_k) \, \mathcal{V}_t(P_k),$$

so the squared value of Q is equal to

$$\mathcal{V}_t^*(Q)^2 = \frac{1}{\operatorname{area}(\mathcal{T})^2} \left(\sum_{k=1}^3 \operatorname{area}(\mathcal{T}_k) \, \mathcal{V}_t(P_k) \right)^2.$$

Applying the following form of the Cauchy-Schwarz inequality:

$$(ax + by + cz)^2 \le (a^2 + b^2 + c^2)(x^2 + y^2 + z^2), \quad \forall a, b, c, x, y, z \in \mathbb{R}$$

on the real numbers

$$a = \sqrt{\operatorname{area}(\mathcal{T}_1)} \qquad b = \sqrt{\operatorname{area}(\mathcal{T}_2)} \qquad c = \sqrt{\operatorname{area}(\mathcal{T}_3)}$$

$$x = \mathcal{V}_t(P_1)\sqrt{\operatorname{area}(\mathcal{T}_1)} \qquad y = \mathcal{V}_t(P_2)\sqrt{\operatorname{area}(\mathcal{T}_2)} \qquad z = \mathcal{V}_t(P_3)\sqrt{\operatorname{area}(\mathcal{T}_3)},$$

one obtains

$$\left(\sum_{k=1}^{3} \operatorname{area}(\mathcal{T}_k) \, \mathcal{V}_t(P_k)\right)^2 \leqslant \operatorname{area}(\mathcal{T}) \, \sum_{k=1}^{3} \operatorname{area}(\mathcal{T}_k) \, \mathcal{V}_t(P_k)^2$$

with equality when all three $V_t(P_k)$ are equal.

So the second term in the total quadratic volume of the three splits is bounded by:

$$\frac{1}{3} \mathcal{V}_t^*(Q)^2 \operatorname{area}(\mathcal{T}) = \frac{1}{3 \operatorname{area}(\mathcal{T})} \left(\sum_{k=1}^3 \operatorname{area}(\mathcal{T}_k) \mathcal{V}_t(P_k) \right)^2 \leqslant \sum_{k=1}^3 \operatorname{area}(\mathcal{T}_k) \mathcal{V}_t(P_k)^2.$$

Thus,

$$\sum_{k=1}^{3} \operatorname{volume}_{t}^{\operatorname{quad}}(\mathcal{T}_{k}, \, \mathcal{V}_{t}^{*}) \leqslant \frac{1}{3} \sum_{k=1}^{3} \left(\mathcal{V}_{t}(P_{k})^{2} \sum_{\substack{j=1,2,3 \ j \neq k}} \operatorname{area}(\mathcal{T}_{j}) \right) + \frac{1}{3} \sum_{k=1}^{3} \operatorname{area}(\mathcal{T}_{k}) \, \mathcal{V}_{t}(P_{k})^{2}$$

$$\leqslant \frac{1}{3} \sum_{k=1}^{3} \left(\mathcal{V}_{t}(P_{k})^{2} \sum_{j=1}^{3} \operatorname{area}(\mathcal{T}_{j}) \right)$$

$$\leqslant \frac{\operatorname{area}(\mathcal{T})}{3} \sum_{k=1}^{3} \mathcal{V}_{t}(P_{i})^{2} = \operatorname{volume}_{t}^{\operatorname{quad}}(\mathcal{T}, \, \mathcal{V}_{t}).$$

Therefore,

$$\begin{aligned} \text{volume}_{t}^{\text{quad}}(\mathcal{M}^{*}, \, \mathcal{V}_{t}^{*}) &= \sum_{\mathcal{T} \in \mathcal{M}} \left(\sum_{\substack{\mathcal{T}_{k} \\ \text{splits of } \mathcal{T}}} \text{volume}_{t}^{\text{quad}}(\mathcal{T}_{k}, \, \mathcal{V}_{t}^{*}) \right) \\ &\leq \sum_{\mathcal{T} \in \mathcal{M}} \text{volume}_{t}^{\text{quad}}(\mathcal{T}, \, \mathcal{V}_{t}) = \text{volume}_{t}^{\text{quad}}(\mathcal{M}, \, \mathcal{V}_{t}), \end{aligned}$$

which proves that the quadratic volume is decreasing under sub-triangulation. When \mathcal{V}_t is constant on all points in \mathcal{M} , the inequality becomes an equality and the quadratic volume is constant under sub-triangulation.

5 Comparison between two meshes

5.1 Comparison between two identical meshes

Definition 14. Two meshes \mathcal{M}_1 and \mathcal{M}_2 are identical if the sets of their elements are equal:

$$\{\mathcal{T} \in \mathcal{M}_1\} = \{\mathcal{T} \in \mathcal{M}_2\}$$

Definition 15. A reference mesh is a mesh \mathcal{M}_0 with a constant valuation $\mathcal{V}_t = \mathcal{V}_0$ for all time t.

5.1.1 Mean signed deviation

Definition 16. Let \mathcal{M}_0 be a reference mesh with valuation \mathcal{V}_0 . For any mesh valuated at \mathcal{V}_t and identical to \mathcal{M}_0 , the **mean signed deviation (MSD)** with respect to \mathcal{M}_0 is the function $MSD_{\mathcal{M}_0,\mathcal{V}_0}$ in \mathbb{R}_+ that maps $(\mathcal{M}_0,\mathcal{V}_t)$ to the volume of \mathcal{M}_0 valuated at $\mathcal{V}_t - \mathcal{V}_0$, divided by the total area of \mathcal{M}_0 :

$$\mathrm{MSD}_{\mathcal{M}_0,\mathcal{V}_0}(\mathcal{M}_0,\,\mathcal{V}_t) = \frac{\mathrm{volume}_t(\mathcal{M}_0,\mathcal{V}_t - \mathcal{V}_0)}{\mathrm{area}(\mathcal{M}_0)}.$$

Proposition 4. The mean signed deviation is invariant under sub-triangulation.

Proof. It is clear that a sub-triangulation does not change the total area of the mesh. By proposition 1, the volume of \mathcal{M}_0 valuated at $\mathcal{V}_t - \mathcal{V}_0$ is invariant under sub-triangulation. Therefore the mean signed deviation is also invariant under sub-triangulation.

5.1.2 Mean absolute deviation

Definition 17. Let \mathcal{M}_0 be a reference mesh with valuation \mathcal{V}_0 . For any mesh valuated at \mathcal{V}_t and identical to \mathcal{M}_0 , the **mean absolute error (MAD)** with respect to \mathcal{M}_0 is the function $\text{MAD}_{\mathcal{M}_0,\mathcal{V}_0}$ in \mathbb{R}_+ that maps $(\mathcal{M}_0,\mathcal{V}_t)$ to the absolute volume of \mathcal{M}_0 valuated at $\mathcal{V}_t - \mathcal{V}_0$, divided by the total area of \mathcal{M}_0 :

$$MAD_{\mathcal{M}_0, \mathcal{V}_0}(\mathcal{M}_0, \mathcal{V}_t) = \frac{\text{volume}_t^{\text{abs}}(\mathcal{M}_0, \mathcal{V}_t - \mathcal{V}_0)}{\text{area}(\mathcal{M}_0)}.$$

Proposition 5. The mean absolute deviation is decreasing under sub-triangulation. When $\mathcal{V}_t - \mathcal{V}_0$ has the same sign for all points in \mathcal{M}_0 , the absolute volume is constant under sub-triangulation.

Proof. It is clear that a sub-triangulation does not change the total area of the mesh. The result is directly deduced from proposition 2.

5.1.3 Root mean square deviation

Definition 18. Let \mathcal{M}_0 be a reference mesh with valuation \mathcal{V}_0 . For any mesh valuated at \mathcal{V}_t and identical to \mathcal{M}_0 , the **root mean square deviation (RMSD)** with respect to \mathcal{M}_0 is the function RMSD $_{\mathcal{M}_0,\mathcal{V}_0}$ in \mathbb{R}_+ that maps $(\mathcal{M}_0,\mathcal{V}_t)$ to the square root of the quadratic volume of \mathcal{M}_0 valuated at $\mathcal{V}_t - \mathcal{V}_0$ divided by the total area of \mathcal{M}_0 :

$$\mathrm{RMSD}_{\mathcal{M}_0,\mathcal{V}_0}(\mathcal{M}_0,\,\mathcal{V}_t) = \sqrt{\frac{\sum_{\mathcal{T} \in \mathcal{M}_0} \mathrm{volume}_t^{\mathrm{quad}}(\mathcal{T},\mathcal{V}_t - \mathcal{V}_0)}{\mathrm{area}(\mathcal{M}_0)}}.$$

Proposition 6. The root mean absolute deviation is decreasing under sub-triangulation. When $V_t - V_0$ is constant on all points in \mathcal{M}_0 , the quadratic volume is constant under sub-triangulation.

Proof. It is clear that a sub-triangulation does not change the total area of the mesh. The result is directly deduced from proposition 3.

5.1.4 Element-wise signed deviation, deviation distribution

Let \mathcal{M}_0 be a reference mesh with valuation \mathcal{V}_0 . For any mesh valuated at \mathcal{V}_t and identical to \mathcal{M}_0 , the **deviation distribution function** F_X is the empirical distribution function of the variable

$$X = \frac{\operatorname{size}(\mathcal{M}_0)\operatorname{volume}_t(\mathcal{T}, \mathcal{V}_t - \mathcal{V}_0)}{\operatorname{area}(\mathcal{M}_0)},$$

called the **element-wise signed deviation (EWSD)**, measured from the set of all elements $\mathcal{T} \in \mathcal{M}_0$:

$$F_X(x) = \frac{1}{\operatorname{size}(\mathcal{M}_0)}\operatorname{card}\left\{\mathcal{T} \in \mathcal{M}_0 \mid \frac{\operatorname{size}(\mathcal{M}_0)\operatorname{volume}_t(\mathcal{T}, \mathcal{V}_t - \mathcal{V}_0)}{\operatorname{area}(\mathcal{M}_0)} \leqslant x\right\}, \quad x \in \mathbb{R}.$$

Remark 2. The empirical mean of the element-wise signed deviation is equal to the mean signed deviation defined in 16:

$$\mathbb{E}(X) = \frac{1}{\operatorname{size}(\mathcal{M}_0)} \sum_{\mathcal{T} \in \mathcal{M}_0} \left(\frac{\operatorname{size}(\mathcal{M}_0) \operatorname{volume}_t(\mathcal{T}, \mathcal{V}_t - \mathcal{V}_0)}{\operatorname{area}(\mathcal{M}_0)} \right)$$

$$= \sum_{\mathcal{T} \in \mathcal{M}_0} \left(\frac{\operatorname{volume}_t(\mathcal{T}, \mathcal{V}_t - \mathcal{V}_0)}{\operatorname{area}(\mathcal{M}_0)} \right)$$

$$= \frac{\operatorname{volume}_t(\mathcal{M}_0, \mathcal{V}_t - \mathcal{V}_0)}{\operatorname{area}(\mathcal{M}_0)}$$

$$= \operatorname{MSD}_{\mathcal{M}_0, \mathcal{V}_0}(\mathcal{M}_0, \mathcal{V}_t),$$

and is invariant under sub-triangulation by proposition 4.