Production-Function Approach to Portfolio Evaluation

Version 1.5 Draft

19 September 2020

Summary

Our production-function approach to R&D portfolio evaluation is mathematically formulated as a stochastic multi-objective decision-optimization problem and is implemented in the Python programming language. The framework abstracts the technology-independent aspects of the problem into a generic computational schema and enables the modeler to specify the technology-dependent aspects in a set of data tables and Python functions. This approach not only minimizes the labor needed to add new technologies, but it also enforces uniformity of financial, mass-balance, and other assumptions in the analysis.

The framework is scalable, supporting rapid computation on laptops computer and largeensemble studies on high-performance computers (HPC). The use of vectorized operations for the stochastic calculations and of response-surface fits for the portfolio evaluations minimizes the computational resources needed for complex multi-objective optimizations. The software handles parameterized studies such as tornado plots, Monte-Carlo sensitivity analyses, and a generalization of epsilon-constraint optimization.

All values in the data tables may be probability distributions, specified by Python expressions using a large library of standard distributions, or the values may be simple numbers. Expert opinion is encoded through these distributions. The opinions may be combined prior to simulator or subsequent to it.

Four example technologies have been implemented as examples illustrating framework's use: biorefineries, electrolysis, residential photovoltaics (PV), and utility-scale PV. A desktop user interface allows exploration of the cost-benefit trade-offs in portfolio decision problems.

Below we detail the mathematical formulation and its implementation as a Python module with user-specified data tables and technology functions. We also provide a sample analysis that exercises the framework's main features.

Mathematical formulation

We separate the financial and conversion-efficiency aspects of a production process, which are generic across all technologies, from the physical and technical aspects, which are necessarily specific to the particular process. The motivation for this is that the financial

and waste computations can be done uniformly for any technology (even for disparate ones such as PV cells and biofuels) and that different experts may be required to assess the cost, waste, and techno-physical aspects of technological progress. Table 1 defines the indices that are used for the variables that are defined in Table 2.

Table 1: Definitions for set indices used for variable subscripts.

Set	Description	Examples
$c \in \mathcal{C}$	capital	equipment
$f \in \mathcal{F}$	fixed cost	rent, insurance
$i\in\mathcal{I}$	input	feedstock, labor
$o \in \mathcal{O}$	output	product, co-product, waste
$m\in \mathcal{M}$	metric	cost, jobs, carbon footprint, efficiency, lifetime
$p \in \mathcal{P}$	technical parameter	temperature, pressure
$\nu \in N$	technology type	electrolysis, PV cell
$\theta \in \Theta$	scenario	the result of a particular investment
$\chi \in X$	investment category	investment alternatives
$\phi\in \varPhi_\chi$	investment	a particular investment
$\omega \in \Omega$	portfolio	a basket of investments
Table 2. I	Onfinitions for wariables	

Table 2: Definitions for variables.

Variable	Type	Description	Units
K	calculated	unit cost	USD/unit
C_c	function	capital cost	USD
$ au_c$	cost	lifetime of capital	year
S	cost	scale of operation	unit/year
F_f	function	fixed cost	USD/year
I_i	input	input quantity	input/unit
I_i^*	calculated	ideal input quantity	input/unit
η_i	waste	input efficiency	input/input
p_i	cost	input price	USD/input
O_o	calculated	output quantity	output/unit
O_o^*	calculated	ideal output quantity	output/unit
η_o'	waste	output efficiency	output/output
p_o'	cost	output price (+/-)	USD/output
μ_m	calculated	metric	metric/unit
P_o	function	production function	output/unit
M_m	function	metric function	metric/unit
$lpha_p$	parameter	technical parameter	(mixed)

$\xi_{ heta}$	variable	scenario inputs	(mixed)
$\zeta_{ heta}$	variable	scenario outputs	(mixed)
ψ	function	scenario evaluation	(mixed)
$\sigma_{m{\phi}}$	function	scenario probability	1
$q_{oldsymbol{\phi}}$	variable	investment cost	USD
$oldsymbol{\zeta}_{oldsymbol{\phi}}$	random variable	investment outcome	(mixed)
$\mathbf{Z}(\omega)$	random variable	portfolio outcome	(mixed)
$Q(\omega)$	calculated	portfolio cost	USD
Q^{\min}	parameter	minimum portfolio cost	USD
Q^{\max}	parameter	maximum portfolio cost	USD
$q_{m{\phi}}^{ ext{min}}$	parameter	minimum category cost	USD
$q_{m{\phi}}^{ ext{max}}$	parameter	maximum category cost	USD
Z^{\min}	parameter	minimum output/metric	(mixed)
Z^{\max}	parameter	maximum output/metric	(mixed)
F, G	operator	evaluate probabilities	(mixed)

Cost

The cost characterizations (capital and fixed costs) are represented as functions of the scale of operations and of the technical parameters in the design:

• Capital cost: $C_c(S, \alpha_p)$.

• Fixed cost: $F_f(S, \alpha_p)$.

The per-unit cost is computed using a simple levelization formula:

$$K = \left(\sum_{c} C_{c} / \tau_{c} + \sum_{f} F_{f}\right) / S + \sum_{i} p_{i} \cdot I_{i} - \sum_{o} p'_{o} \cdot O_{o}$$

Waste

The waste relative to the idealized production process is captured by the η parameters. Expert elicitation might estimate how the η s would change in response to R&D investment.

• Waste of input: $I_i^* = \eta_i I_i$.

• Waste of output: $O_o = \eta'_o O_o^*$.

Production

The production function idealizes production by ignoring waste, but accounting for physical and technical processes (e.g., stoichiometry). This requires a technical model or a tabulation/fit of the results of technical modeling.

$$O_o^* = P_o(S, C_c, \tau_c, F_f, I_i^*, \alpha_p)$$

Metrics

Metrics such as efficiency, lifetime, or carbon footprint are also compute based on the physical and technical characteristics of the process. This requires a technical model or a tabulation/fit of the results of technical modeling. We use the convention that higher values are worse and lower values are better.

$$\mu_m = M_m(S, C_c, \tau_c, F_f, I_i, I_i^*, O_o^*, O_o, K, \alpha_p)$$

Scenarios

A *scenario* represents a state of affairs for a technology ν . If we denote the scenario as θ , we have the tuple of input variables

$$\xi_{\theta} = \left(S, C_c, \tau_c, F_f, I_i, \eta_i, \eta'_o, \alpha_p, p_i, p'_o \right) \Big|_{\theta}$$

and the tuple of output variables

$$\zeta_{\theta} = (K, I_i^*, O_o^*, O_o, \mu_m)|_{\theta}$$

and their relationship

$$\zeta_{\theta} = \psi_{\nu}(\xi_{\theta})|_{\nu = \nu(\theta)}$$

given the tuple of functions

$$\psi_{\nu}=(P_o,M_m)|_{\nu}$$

for the technology of the scenario.

Investments

An *investment* ϕ assigns a probability distribution to scenarios:

$$\sigma_{\phi}(\theta) = P(\theta|\phi).$$

such that

$$\int d\theta \, \sigma_{\phi}(\theta) = 1 \text{ or } \sum_{\theta} \sigma_{\phi}(\theta) = 1$$
,

depending upon whether one is performing the computations discretely or continuously. Expectations and other measures on probability distributions can be computed from the

 $\sigma_{\phi}(\theta)$. We treat the outcome ζ_{ϕ} as a random variable for the outcomes ζ_{θ} according to the distribution $\sigma_{\phi}(\theta)$.

Because investment options may be mutually exclusive, as is the case for investing in the same R&D at different funding levels, we say Φ_χ is the set of mutually exclusive investments (i.e., only one can occur simultaneously) in investment category χ : investments in different categories χ can be combined arbitrarily, but just one investment from each Φ_χ may be chosen.

Thus the universe of all portfolios is $\Omega = \prod_{\chi} \Phi_{\chi}$, so a particular portfolio $\omega \in \Omega$ has components $\phi = \omega_{\chi} \in \Phi_{\chi}$. The overall outcome of a portfolio is a random variable:

$$\mathbf{Z}(\omega) = \sum_{\chi} \mathbf{\zeta}_{\phi} \mid_{\phi = \omega_{\chi}}$$

The cost of an investment in one of the constituents ϕ is q_{ϕ} , so the cost of a portfolio is:

$$Q(\omega) = \sum_{\chi} q_{\phi} \mid_{\phi = \omega_{\chi}}$$

Decision problem

The multi-objective decision problem is

 $\min_{\omega \in \Omega} \mathbb{F} \mathbf{Z}(\omega)$

such that

$$Q^{\min} \leq Q(\omega) \leq Q^{\max}$$
,

$$q_{\phi}^{\min} \leq q_{\phi=\omega_{\chi}} \leq q_{\phi}^{\max}$$
 ,

$$Z^{\min} \leq \mathbb{G} \mathbf{Z}(\omega) \leq Z^{\max}$$
,

where \mathbb{F} and \mathbb{G} are the expectation operator \mathbb{E} , the value-at-risk, or another operator on probability spaces. Recall that \mathbf{Z} is a vector with components for cost K and each metric μ_m , so this is a multi-objective problem.

The two-stage decision problem is a special case of the general problem outlined here: Each scenario θ can be considers as a composite of one or more stages.

Experts

Each expert elicitation takes the form of an assessment of the probability and range (e.g., 10th to 90th percentile) of change in the cost or waste parameters or the production or metric functions. In essence, the expert elicitation defines $\sigma_{\phi}(\theta)$ for each potential scenario θ of each investment ϕ .

Example: Idealized electrolysis of water

Here is a very simple model for electrolysis of water. We just have water, electricity, a catalyst, and some lab space. We choose the fundamental unit of operation to be moles of H₂:

$$H_2O \rightarrow H_2 + \frac{1}{2} O_2$$

Experts could assess how much R&D to increase the various efficiencies η would cost. They could also suggest different catalysts, adding alkali, or replacing the process with PEM.

Tracked quantities.

 $C = \{catalyst\}$

 $\mathcal{F} = \{\text{rent}\}$

 $\mathcal{I} = \{ \text{water, electricity} \}$

 $\mathcal{O} = \{\text{oxygen, hydrogen}\}\$

 $\mathcal{M} = \{\text{jobs}\}\$

Current design.

 $I_{\text{water}} = 19.04 \text{ g/mole}$

 $\eta_{\text{water}} = 0.95$ (due to mass transport loss on input)

 $I_{\text{electricity}} = 279 \text{ kJ/mole}$

 $\eta_{electricity} = 0.85$ (due to ohmic losses on input)

 $\eta_{\rm oxygen} = 0.90$ (due to mass transport loss on output)

 $\eta_{\mathrm{hydrogen}} = 0.90$ (due to mass transport loss on output)

Current costs.

$$C_{\text{catalyst}} = (0.63 \text{ USD}) \cdot \frac{S}{6650 \text{ mole/yr}} (\text{cost of Al-Ni catalyst})$$

 $\tau_{catalyst} = 3 \text{ yr (effective lifetime of Al-Ni catalyst)}$

$$F_{\rm rent} = (1000 \text{ USD/yr}) \cdot \frac{S}{6650 \text{ mole/yr}}$$

S = 6650 mole/yr (rough estimate for a 50W setup)

Current prices.

$$p_{\mathrm{water}} = 4.8 \cdot 10^{-3} \; \mathrm{USD/mole}$$

$$p_{\mathrm{electricity}} = 3.33 \cdot 10^{-5} \, \mathrm{USD/kJ}$$

$$p_{\text{oxygen}} = 3.0 \cdot 10^{-3} \text{ USD/g}$$

$$p_{\rm hydrogen} = 1.0 \cdot 10^{-2} \, \rm USD/g$$

Production function (à la Leontief)

$$P_{\text{oxygen}} = (16.00 \text{ g}) \cdot \min \left\{ \frac{I_{\text{water}}^*}{18.08 \text{ g}}, \frac{I_{\text{electricity}}^*}{237 \text{ kJ}} \right\}$$

$$P_{\text{hydrogen}} = (2.00 \text{ g}) \cdot \min \left\{ \frac{I_{\text{water}}^*}{18.08 \text{ g}}, \frac{I_{\text{electricity}}^*}{237 \text{ kJ}} \right\}$$

Metric function.

$$M_{\rm cost} = K/O_{\rm hydrogen}$$

$$M_{\rm GHG} = \left((0.00108 \text{ gCO2e/gH20}) I_{\rm water} + (0.138 \text{ gCO2e/kJ}) I_{\rm electricity} \right) / O_{\rm hydrogen}$$

$$M_{\rm jobs} = (0.00015 \text{ job/mole})/O_{\rm hydrogen}$$

Performance of current design.

K = 0.18 USD/mole (i.e., not profitable since it is positive)

$$O_{\text{oxygen}} = 14 \text{ g/mole}$$

$$O_{\text{hydrogen}} = 1.8 \text{ g/mole}$$

$$\mu_{\rm cost} = 0.102 \, \rm USD/gH2$$

$$\mu_{\mathrm{GHG}} = 21.4 \ \mathrm{gCO2e/gH2}$$

$$\mu_{\rm jobs} = 0.000083 \text{ job/gH2}$$

Implementation

Database tables (one per set) hold all of the variables and the expert assessments. These tables are augmented by concise code with mathematical representations of the production and metric functions.

The Monte-Carlo computations are amenable to fast tensor-based implementation in Python.

See https://github.com/NREL/portfolio/tree/master/production-function/framework/code/tyche/ for the tyche package that computes cost, production, and metrics from a technology design.

Database tables

Each analysis case is represented by a Technology and a Scenario within that technology. In the specifications for the individual tables, we use the simple electrolysis example to populate the table.

Metadata about indices

The indices table (see Table 3) simply describes the various indices available for the variables. The Offset column specifies the memory location in the argument for the production and metric functions.

Table 3: Example of the indices table.

Technology	Type	Index	Offset	Description	Notes
Simple electrolysis	Capital	Catalyst	0	Catalyst	
Simple electrolysis	Fixed	Rent	0	Rent	
Simple electrolysis	Input	Water	0	Water	
Simple electrolysis	Input	Electricity	1	Electricity	
Simple electrolysis	Output	Oxygen	0	Oxygen	
Simple electrolysis	Output	Hydrogen	1	Hydrogen	
Simple electrolysis	Metric	Cost	0	Cost	
Simple electrolysis	Metric	Jobs	1	Jobs	
Simple electrolysis	Metric	GHG	2	GHGs	

Design variables

The design table (see Table 4) specifies the values of all of the variables in the mathematical formulation of the design. Note that the Value column can either contain numeric literals or Python expressions specifying probability distribution functions. For example, a normal distribution with mean of five and standard deviation of two would be written st.norm(5, 2). All of the Scipy probability distribution functions are available for use, as are two special functions, constant and mixture. The constant distribution is just a single constant value; the mixture distribution is the mixture of a list of distributions, with specified relative weights. The mixture function is particularly important because it allows one to specify a first distribution in the case of an R&D breakthrough, but a second distribution if no breakthrough occurs.

Table 4: Example of the designs table.

Technology Scenario Variable Index Value Units Notes	
--	--

Simple electrolysis	Base	Input	Water	19.04	g/mole	$I_{ m water}$
Simple electrolysis	Base	Input Efficiency	Water	0.95	1	$\eta_{ m water}$
Simple electrolysis	Base	Input	Electricity	279	kJ/mole	$I_{ m electricity}$
Simple electrolysis	Base	Input Efficiency	Electricity	0.85	1	$\eta_{ m electricity}$
Simple electrolysis	Base	Output Efficiency	Oxygen	0.90	1	$\eta_{ m oxygen}$
Simple electrolysis	Base	Output Efficiency	Hydrogen	0.90	1	$\eta_{ ext{hydrogen}}$
Simple electrolysis	Base	Lifetime	Catalyst	3	yr	$ au_{ m catalyst}$
Simple electrolysis	Base	Scale		6650	mole/yr	S
Simple electrolysis	Base	Input price	Water	4.8e-3	USD/mole	$p_{ m water}$
Simple electrolysis	Base	Input price	Electricity	3.33e- 5	USD/kJ	$p_{ m electricity}$
Simple electrolysis	Base	Output price	Oxygen	3.0e-3	USD/g	$p_{ m oxygen}$
Simple electrolysis	Base	Output price	Hydrogen	1.0e-2	USD/g	$p_{ m hydrogen}$

Metadata for functions

The functions table (see Table 5) simply documents which Python module and functions to use for the technology and scenario. Currently only the numpy style of function is supported, but later plain Python functions and tensorflow functions will be allowed.

Table 5: Example of the functions table.

Technolog					Productio	Metric	Note
У	Style	Module	Capital	Fixed	n	S	S
Simple	nump	simple_electrolys	capital_co	fixed_co	productio	metric	
electrolysi	у	is	st	st	n	S	
S							

Parameters for functions

The parameters table (see Table 6) contains ad-hoc parameters specific to the particular production and metrics functions. The Offset column specifies the memory location in the argument for the production and metric functions.

 $Table\ 6: Example\ of\ the\ parameters\ table.$

Technology	Scenario	Parameter	Offset	Value	Units	Notes
Simple electrolysis	Base	Oxygen production	0	16.00	g	
Simple electrolysis	Base	Hydrogen production	1	2.00	g	
Simple electrolysis	Base	Water consumption	2	18.08	g	
Simple electrolysis	Base	Electricity consumption	3	237	kJ	
Simple electrolysis	Base	Jobs	4	1.5e-4	job/mole	
Simple electrolysis	Base	Reference scale	5	6650	mole/yr	
Simple electrolysis	Base	Reference capital cost for catalyst	6	0.63	USD	
Simple electrolysis	Base	Reference fixed cost for rent	7	1000	USD/yr	
Simple electrolysis	Base	GHG factor for water	8	0.00108	gCO2e/g	based on 244,956 gallons = 1 Mg CO2e
Simple electrolysis	Base	GHG factor for electricity	9	0.138	gCO2e/kJ	based on 1 kWh = 0.5 kg CO2e

Units for results

The results table (see Table 7) simply specifies the units for the results.

 $\it Table~7: Example~of~the~results~table.$

Technology	Variable	Index	Units	Notes
Simple electrolysis	Cost	Cost	USD/mole	
Simple electrolysis	Output	Oxygen	g/mole	
Simple electrolysis	Output	Hydrogen	g/mole	
Simple electrolysis	Metric	Cost	job/gH2	
Simple electrolysis	Metric	Jobs	job/gH2	
Simple electrolysis	Metric	GHG	gCO2e/gH2	

Tranches of investments.

In the tranches table (see Table 8), each *category* of investment contains a set of mutually exclusive *tranches* that may be associated with one or more *scenarios* defined in the designs table. Typically, a category is associated with a technology area and each tranche corresponds to an investment strategy within that category.

Table 8: Example of the tranches table.

Category	Tranche	Scenario	Amount	Notes
Electrolysis R&D	No Electrolysis R&D	Base Electrolysis	0	
Electrolysis R&D	Low Electrolysis R&D	Slow Progress on Electrolysis	1000000	
Electrolysis R&D	Medium Electrolysis R&D	Moderate Progress on Electrolysis	2500000	
Electrolysis R&D	High Electrolysis R&D	Fast Progress on Electrolysis	5000000	

Investments

In the investments table (see Table 9), each *investment* is associated with a single *tranche* in one or more *categories*. An investment typically combines tranches from several different investment categories.

Table 9: Example of the investments table.

Investment	Category	Tranche	Notes
No R&D Spending	Electrolysis R&D	No Electrolysis R&D	
Low R&D Spending	Electrolysis R&D	Low Electrolysis R&D	
Medium R&D Spending	Electrolysis R&D	Medium Electrolysis R&D	
High R&D Spending	Electrolysis R&D	High Electrolysis R&D	

Python module and functions for a technology

Each technology design requires a Python module with a capital cost, a fixed cost, a production, and a metrics function. Listing 1 shows these functions for the simple electrolysis example.

Listing 1: Capital-cost, fixed-cost, production, and metrics functions for the simple electrolysis example.

Simple electrolysis.

```
# All of the computations must be vectorized, so use `numpy`.
import numpy as np
# Capital-cost function.
def capital cost(scale, parameter):
  # Scale the reference values.
  return np.stack([np.multiply(parameter[6], np.divide(scale,
parameter[5]))])
# Fixed-cost function.
def fixed_cost(scale, parameter):
  # Scale the reference values.
  return np.stack([np.multiply(parameter[7], np.divide(scale,
parameter[5]))])
# Production function.
def production(capital, fixed, input, parameter):
  # Moles of input.
  water = np.divide(input[0], parameter[2])
  electricity = np.divide(input[1], parameter[3])
  # Moles of output.
  output = np.minimum(water, electricity)
  # Grams of output.
  oxygen = np.multiply(output, parameter[0])
  hydrogen = np.multiply(output, parameter[1])
  # Package results.
  return np.stack([oxygen, hydrogen])
# Metrics function.
def metrics(capital, fixed, input_raw, input, img/output_raw, output, cost,
parameter):
  # Hydrogen output.
  hydrogen = output[1]
  # Cost of hydrogen.
  cost1 = np.divide(cost, hydrogen)
```

```
# Jobs normalized to hydrogen.
jobs = np.divide(parameter[4], hydrogen)

# GHGs associated with water and electricity.
water = np.multiply(input_raw[0], parameter[8])
electricity = np.multiply(input_raw[1], parameter[9])
co2e = np.divide(np.add(water, electricity), hydrogen)

# Package results.
return np.stack([cost1, jobs, co2e])
```

Python API for module tyche

The tyche module is a Python package for R&D pathways analysis and evaluation. It contains five Python classes for R&D pathway decision support.

- Designs for specifying and evaluating technology decisions in the presence of uncertainty.
- Investments for specifying and evaluating R&D portfolios consisting of multiple technology-investment options.
- Evaluator for rapidly evaluating the costs and benefits for sets of portfolios.
- EpsilonConstraints for multi-objective optimization using a generalization of the epsilon-constraint technique.
- DecisionGUI for interactively exploring the costs and benefits of R&D portfolios.

DecisionWindow Objects

```
class DecisionWindow()
```

Class for displaying an interactive interface to explore cost-benefit tradeoffs for a technology.

```
__<mark>init__</mark>
| __init__(evaluator)
```

Parameters

evaluator: Evaluator

The evaluation object for the technology.

reevaluate

```
reevaluate(next=lambda: None, delay=200)
```

Recalculate the results after a delay.

Parameters

next: function

The operation to perform after completing the recalculation.

delay: int

The number of milliseconds to delay before the recalculation.

```
reevaluate_immediate
```

```
| reevaluate_immediate(next=lambda: None)
```

Recalculate the results immediately.

Parameters

next: function

The operation to perform after completing the recalculation.

refresh

```
| refresh()
```

Refresh the graphics after a delay.

refresh_immediate

```
| refresh_immediate()
```

Refresh the graphics immediately.

mainloop

```
| mainloop()
```

Run the interactive interface.

Designs Objects

class Designs()

Designs for a technology.

Attributes

indices: DataFrame

The *indices* table.

functions: DataFrame

The *functions* table.

designs : DataFrame

The *designs* table.

parameters: DataFrame

The *parameters* table.

results: DataFrame

The results table.

```
__init__
init _(path=None, indices="indices.tsv", functions="functions.tsv",
designs="designs.tsv", parameters="parameters.tsv", results="results.tsv")
Parameters
path: str
Location of the data files.
indices: str
Filename for the indices table.
functions: str
Filename for the functions table.
designs: str
Filename for the designs table.
parameters: str
Filename for the parameters table.
results: str
Filename for the results table.
vectorize technologies
vectorize_technologies()
Make an array of technologies.
vectorize scenarios
 vectorize_scenarios(technology)
Make an array of scenarios.
vectorize indices
 vectorize_indices(technology)
Make an array of indices.
vectorize designs
 vectorize_designs(technology, scenario_count, sample_count=1)
Make an array of designs.
vectorize parameters
 vectorize_parameters(technology, scenario_count, sample_count=1)
Make an array of parameters.
compile
 | compile()
```

Compile the production and metrics functions.

```
evaluate
```

```
| evaluate(technology, sample_count=1)
```

Evaluate the performance of a technology.

Parameters

technology: str

The name of the technology.

sample_count: int

The number of random samples.

```
evaluate scenarios
```

```
| evaluate_scenarios(sample_count=1)
```

Evaluate scenarios.

Parameters

sample_count: int

The number of random samples.

EpsilonConstraintOptimizer Objects

```
class EpsilonConstraintOptimizer()
```

An epsilon-constration multi-objective optimizer.

Attributes

evaluator : tyche.Evaluator

The technology evaluator.

scale: float

The scaling factor for output.

Parameters

evaluator: tyche.Evaluator

The technology evaluator.

scale: float

The scaling factor for output.

maximize

```
| maximize(metric, max_amount=None, total_amount=None, min_metric=None, statistic=np.mean, initial=None, tol=1e-8, maxiter=50, verbose=0)
```

Maximize the objective function.

Parameters

metric: str

The metric to maximize.

max_amount : DataFrame

The maximum amounts that can be invested in each category.

total_amount: float

The maximum amount that can be invested *in toto*.

min_metric : DataFrame

The minimum constraint for each metric.

statistic: function

The statistic used on the sample evaluations.

initial: array of float

The initial value for the search.

tol: float

The search tolerance.

maxiter: int

The maximum iterations for the search.

verbose : int Verbosity level.

max metrics

```
| max_metrics(max_amount=None, total_amount=None, statistic=np.mean, tol=1e-8, maxiter=50, verbose=0)
```

Maximum value of metrics.

Parameters

max_amount : DataFrame

The maximum amounts that can be invested in each category.

total_amount : float

The maximum amount that can be invested in toto.

min_metric : DataFrame

The minimum constraint for each metric.

statistic: function

The statistic used on the sample evaluations.

initial: array of float

The initial value for the search.

tol: float

The search tolerance.

maxiter: int

The maximum iterations for the search.

verbose : int Verbosity level.

Evaluator Objects

class Evaluator()

Evalutate technology investments using a response surface.

Attributes

amounts: DataFrame

Cost of tranches.

categories : DataFrame

Categories of investment.

metrics: DataFrame

Metrics for technologies.

units: DataFrame

Units of measure for metrics.

interpolators: DataFrame

Interpolation functions for technology metrics.

```
__init__
| __init__(tranches, summary)
```

Parameters

tranches: DataFrame

The tranches of investment.

summary: DataFrame

The summary of evaluating the tranches.

evaluate

```
| evaluate(amounts)
```

Sample the distribution for an investment.

Parameters

```
amounts: DataFrame
```

The investment levels.

```
evaluate_statistic
```

```
| evaluate_statistic(amounts, statistic=np.mean)
```

Evaluate a statistic for an investment.

Parameters

amounts: DataFrame

The investment levels.

statistics: DataFrame

The statistic to evaluate.

Investments Objects

class Investments()

Investments in a technology.

Attributes

tranches: DataFrame

The *tranches* table.

investments: DataFrame

The *investments* table.

Parameters

tranches: str

Filename for the *tranches* table.

investments: str

Filename for the *investments* table.

evaluate tranches

```
| evaluate_tranches(designs, sample_count=1)
```

Evaluate the tranches of investment for a design.

Parameters

designs: tyche.Designs

The designs.

```
sample_count : int
```

The number of random samples.

```
evaluate investments
```

```
| evaluate_investments(designs, sample_count=1)
```

Evaluate the investments for a design.

Parameters

designs: tyche.Designs

The designs.

sample_count: int

The number of random samples.

Extended example

Set up.

Import packages.

```
import numpy as np
import matplotlib.pyplot as pl
import pandas as pd
import seaborn as sb
import tyche as ty
```

```
from copy import deepcopy from IPython.display import Image
```

Load data.

The data are stored in a set of tab-separated value files in a folder.

```
designs = ty.Designs("data/residential_pv_multiobjective")
investments = ty.Investments("data/residential_pv_multiobjective")
```

Compile the production and metric functions for each technology in the dataset.

```
designs.compile()
```

Examine the data.

The functions table specifies where the Python code for each technology resides.

```
designs.functions
```

Technolo					Producti	Metri	Not	
gy	Style	Module	Capital	Fixed	on	CS	es	

Residenti num residential_pv_multiobj capital_c fixed_c producti metri al PV py ective ost ost on cs

The indices table defines the subscripts for variables.

designs.indices

Technology	Type	Index	Offset	Description	Notes
Residential PV	Capital	BoS	2	balance of system	
Residential PV	Capital	Inverter	1	system inverters	
Residential PV	Capital	Module	0	system module	
Residential PV	Fixed	System	0	whole system	
Residential PV	Input	nan	0	no inputs	
Residential PV	Metric	GHG	2	reduction in GHGs	
Residential PV	Metric	LCOE	0	reduction in levelized cost of energy	
Residential PV	Metric	Labor	1	increase in spending on wages	
Residential PV	Output	Electricity	0	electricity generated	

The designs table contains the cost, input, efficiency, and price data for a scenario. designs.designs

Technology	Scenario	Variable	Index	Value	Units	Notes
Residential PV	2015 Actual	Input	nan	0	1	no inputs
Residential PV	2015 Actual	Input efficiency	nan	1	1	no inputs
Residential PV	2015 Actual	Input price	nan	0	1	no inputs
Residential PV	2015 Actual	Lifetime	BoS	1	system- lifetime	per-lifetime computations
Residential PV	2015 Actual	Lifetime	Inverter	1	system- lifetime	per-lifetime computations
Residential PV	2015 Actual	Lifetime	Module	1	system- lifetime	per-lifetime computations
Residential PV	2015 Actual	Output efficiency	Electricity	1	W/W	see parameter table for individual efficiencies

Residential PV	2015 Actual	Output price	Electricity	0	\$/kWh	not tracking electricity price
Residential PV	2015 Actual	Scale	nan	1	system/system	no scaling
Residential PV	Module Slow Progress	Input	nan	0	1	no inputs
Residential PV	Module Slow Progress	Input efficiency	nan	1	1	no inputs
Residential PV	Module Slow Progress	Input price	nan	0	1	no inputs
Residential PV	Module Slow Progress	Lifetime	BoS	1	system- lifetime	per-lifetime computations
Residential PV	Module Slow Progress	Lifetime	Inverter	1	system- lifetime	per-lifetime computations
Residential PV	Module Slow Progress	Lifetime	Module	1	system- lifetime	per-lifetime computations
Residential PV	Module Slow Progress	Output efficiency	Electricity	1	W/W	see parameter table for individual efficiencies
Residential PV	Module Slow Progress	Output price	Electricity	0	\$/kWh	not tracking electricity price
Residential PV	Module Slow Progress	Scale	nan	1	system/system	no scaling

The parameters table contains additional techno-economic parameters for each technology.

designs.parameters

Technology	Scenario	Parameter	Offset	Value	Units	Notes
Residential PV	2015 Actual	Customer Acquisition	19	st.triang(0.5, loc=2000, scale=0.2)	\$/system	BCA

Residential PV	2015 Actual	DC-to-AC Ratio	15	st.triang(0.5, loc=1.4, scale=0.00014)	1	IDC
Residential PV	2015 Actual	Direct Labor	17	st.triang(0.5, loc=2000, scale=0.2)	\$/system	BLR
Residential PV	2015 Actual	Discount Rate	0	0.07	1/year	DR
Residential PV	2015 Actual	Hardware Capital	16	st.triang(0.5, loc=80, scale=0.008)	\$/m^2	BCC
Residential PV	2015 Actual	Insolation	1	1000	W/m^2	INS
Residential PV	2015 Actual	Installer Overhead & Profit	20	st.triang(0.5, loc=0.35, scale=3.5e-5)	1	ВОН
Residential PV	2015 Actual	Inverter Capital	11	st.triang(0.5, loc=0.3, scale=3e-5)	\$/W	ICC
Residential PV	2015 Actual	Inverter Efficiency	14	st.triang(0.5, loc=0.9, scale=9e-5)	1	IEF
Residential PV	2015 Actual	Inverter Lifetime	12	st.triang(0.5, loc=16, scale=0.0016)	yr	ILT
Residential PV	2015 Actual	Inverter Replacement	13	st.triang(0.5, loc=0.5, scale=5e-5)	1	IRC
Residential PV	2015 Actual	Location Capacity Factor	9	st.triang(0.5, loc=0.2, scale=2e-5)	1	MCF
Residential PV	2015 Actual	Module Aperture	6	st.triang(0.5, loc=0.9, scale=9e-5)	1	MAP
Residential PV	2015 Actual	Module Capital	3	st.triang(0.5, loc=110, scale=0.11)	\$/m^2	MCC
Residential PV	2015 Actual	Module Degradation	8	st.triang(0.5, loc=0.0075, scale=7.5e-7)	1/yr	MDR
Residential PV	2015 Actual	Module Efficiency	5	st.triang(0.5, loc=0.16, scale=1.6e-5)	1	MEF
Residential PV	2015 Actual	Module Lifetime	4	st.triang(0.5, loc=25, scale=0.0025)	yr	MLT

Residential PV	2015 Actual	Module O&M Fixed	7	st.triang(0.5, loc=20, scale=0.002)	\$/kWyr	MOM
Residential PV	2015 Actual	Module Soiling Loss	10	st.triang(0.5, loc=0.05, scale=5e- 6)	1	MSL
Residential PV	2015 Actual	Permitting	18	st.triang(0.5, loc=600, scale=0.06)	\$/system	BPR
Residential PV	2015 Actual	System Size	2	36	m^2	SSZ

The results table specifies the units of measure for results of computations.

designs.results

Technology	Variable	Index	Units	Notes
Residential PV	Cost	Cost	\$/system	
Residential PV	Metric	GHG	$\Delta gCO2e/system$	
Residential PV	Metric	LCOE	Δ\$/kWh	
Residential PV	Metric	Labor	Δ\$/system	
Residential PV	Output	Electricity	kWh	

The tranches table specifies multually exclusive possibilities for investments: only one Tranch may be selected for each Category.

investments.tranches

Category	Tranche	Scenario	Amount	Notes
BoS R&D	BoS High R&D	BoS Fast Progress	900000	
BoS R&D	BoS Low R&D	BoS Slow Progress	300000	
BoS R&D	BoS Medium R&D	BoS Moderate Progress	600000	
Inverter R&D	Inverter High R&D	Inverter Fast Progress	3e+06	
Inverter R&D	Inverter Low R&D	Inverter Slow Progress	1e+06	
Inverter R&D	Inverter Medium R&D	Inverter Moderate Progress	2e+06	
Module R&D	Module High R&D	Module Fast Progress	4.5e+06	

Module R&DModule Slow Progress1.5e+06Module R&DModule Medium R&DModule Moderate Progress3e+06

The investments table bundles a consistent set of tranches (one per category) into an overall investment.

investments.investments

Investment	Category	Tranche	Notes
High R&D	BoS R&D	BoS High R&D	
High R&D	Inverter R&D	Inverter High R&D	
High R&D	Module R&D	Module High R&D	
Low R&D	BoS R&D	BoS Low R&D	
Low R&D	Inverter R&D	Inverter Low R&D	
Low R&D	Module R&D	Module Low R&D	
Medium R&D	BoS R&D	BoS Medium R&D	
Medium R&D	Inverter R&D	Inverter Medium R&D	
Medium R&D	Module R&D	Module Medium R&D	

Evaluate the scenarios in the dataset.

scenario_results = designs.evaluate_scenarios(sample_count=50)
scenario_results.xs(1, level="Sample", drop_level=False)

Technology	Scenario	Sample	Variable	Index	Value	Units
Residential PV	2015 Actual	1	Cost	Cost	19541.3	\$/system
Residential PV	2015 Actual	1	Metric	GHG	0.00371397	ΔgCO2e/system
Residential PV	2015 Actual	1	Metric	LCOE	-1.85062e- 05	Δ\$/kWh
Residential PV	2015 Actual	1	Metric	Labor	0.00191143	Δ\$/system
Residential PV	2015 Actual	1	Output	Electricity	184103	kWh
Residential PV	Module Slow	1	Cost	Cost	19680.6	\$/system

```
Progress
Residential
            Module
                              1 Metric
                                          GHG
                                                         15.2892 \Delta gCO2e/system
PV
            Slow
            Progress
Residential
            Module
                              1 Metric
                                          LCOE
                                                       0.0159126 Δ$/kWh
PV
            Slow
            Progress
            Module
Residential
                              1 Metric
                                          Labor
                                                      0.00873305 \Delta$/system
PV
            Slow
            Progress
            Module
Residential
                              1 Output
                                          Electricity
                                                         218158 kWh
PV
            Slow
            Progress
Plot GHG metric.
g = sb.boxplot(
    x="Scenario",
    y="Value",
    data=scenario_results.xs(
        ["Metric", "GHG"],
        level=["Variable", "Index"]
    ).reset_index()[["Scenario", "Value"]],
    order=[
        "2015 Actual"
        "Module Slow Progress"
        "Module Moderate Progress"
        "Module Fast Progress"
        "Inverter Slow Progress"
        "Inverter Moderate Progress",
        "Inverter Fast Progress"
        "BoS Slow Progress"
        "BoS Moderate Progress"
        "BoS Fast Progress"
    ]
)
g.set(ylabel="GHG Reduction [gCO2e / system]")
g.set xticklabels(g.get xticklabels(), rotation=90);
```


Figure 1: GHG metrics for scenarios.

Plot LCOE metric.

```
g = sb.boxplot(
    x="Scenario",
    y="Value",
    data=scenario_results.xs(
        ["Metric", "LCOE"],
        level=["Variable", "Index"]
    ).reset_index()[["Scenario", "Value"]],
    order=[
        "2015 Actual"
        "Module Slow Progress"
        "Module Moderate Progress"
        "Module Fast Progress"
        "Inverter Slow Progress"
        "Inverter Moderate Progress",
        "Inverter Fast Progress"
        "Inverter Fast Progress"
```

```
"BoS Slow Progress"
    "BoS Moderate Progress"
    "BoS Fast Progress"
]
)
g.set(ylabel="LCOE Reduction [USD / kWh]")
g.set_xticklabels(g.get_xticklabels(), rotation=90);
```


Figure 2: LCOE metrics for scenarios.

Plot labor metric.

```
g = sb.boxplot(
    x="Scenario",
    y="Value",
    data=scenario_results.xs(
        ["Metric", "Labor"],
        level=["Variable", "Index"]
    ).reset_index()[["Scenario", "Value"]],
```

```
order=[
            "2015 Actual"
            "Module Slow Progress"
            "Module Moderate Progress"
            "Module Fast Progress"
            "Inverter Slow Progress"
            "Inverter Moderate Progress
            "Inverter Fast Progress"
            "BoS Slow Progress"
            "BoS Moderate Progress"
            "BoS Fast Progress"
      ]
g.set(ylabel="Labor Increase [USD / system]")
g.set_xticklabels(g.get_xticklabels(), rotation=90);
           0
 _abor Increase [USD / system]
      -100
      -200
      -300
      -400
      -500
      -600
                                                                                                 BoS Fast Progress
                                                     Inverter Slow Progress
                 2015 Actual
                                                    Inverter Slow Progress
                          Module Slow Progress
                                  Module Moderate Progress
                                           Module Fast Progress
                                                                      Inverter Fast Progress
                                                                               BoS Slow Progress
                                                                                        BoS Moderate Progress
```

Figure 3: Labor metrics for scenarios.

Evaluate the investments in the dataset.

investment_results = investments.evaluate_investments(designs,
sample_count=50)
investment_results.amounts

Investment	Amount
High R&D	8.4e+06
Low R&D	2.8e+06
Medium R&D	5.6e+06

Benefits of investments.

investment_results.metrics.xs(1, level="Sample", drop_level=False)

Investme nt	Catego ry	Tranc he	Scenari o	Samp le	Technolo gy	Inde x	Value	Units
High R&D	BoS R&D	BoS High R&D	BoS Fast Progres s	1	Residenti al PV	GHG	0.006121 91	ΔgCO2e/syst em
High R&D	BoS R&D	BoS High R&D	BoS Fast Progres s	1	Residenti al PV	LCO E	0.009987 9	Δ\$/kWh
High R&D	BoS R&D	BoS High R&D	BoS Fast Progres s	1	Residenti al PV	Lab or	-473.404	Δ\$/system
Medium R&D	BoS R&D	BoS Mediu m R&D	BoS Modera te Progres s	1	Residenti al PV	GHG	0.006722 76	ΔgCO2e/syst em
Medium R&D	BoS R&D	BoS Mediu m R&D	BoS Modera te Progres s	1	Residenti al PV	LCO E	0.009151 9	Δ\$/kWh
Medium R&D	BoS R&D	BoS Mediu m R&D	BoS Modera te Progres s	1	Residenti al PV	Lab or	-342.64	Δ\$/system
Low	BoS	BoS	BoS	1	Residenti	GHG	-	$\Delta gCO2e/syst$

R&D	R&D	Low R&D	Slow Progres s		al PV		0.002464 48	em
Low R&D	BoS R&D	BoS Low R&D	BoS Slow Progres s	1	Residenti al PV	LCO E	0.002574 84	Δ\$/kWh
Low R&D	BoS R&D	BoS Low R&D	BoS Slow Progres s	1	Residenti al PV	Lab or	-125.705	Δ\$/system
High R&D	Inverte r R&D	Invert er High R&D	Inverte r Fast Progres s	1	Residenti al PV	GHG	1.96063	$\Delta gCO2e/syst$ em
High R&D	Inverte r R&D	Invert er High R&D	Inverte r Fast Progres s	1	Residenti al PV	LCO E	0.011786 8	Δ\$/kWh
High R&D	Inverte r R&D	Invert er High R&D	Inverte r Fast Progres s	1	Residenti al PV	Lab or	0.020826	Δ\$/system
Medium R&D	Inverte r R&D	Invert er Mediu m R&D	Inverte r Modera te Progres s	1	Residenti al PV	GHG	1.95647	ΔgCO2e/syst em
Medium R&D	Inverte r R&D	Invert er Mediu m R&D	Inverte r Modera te Progres s	1	Residenti al PV	LCO E	0.007494 56	Δ\$/kWh
Medium R&D	Inverte r R&D	Invert er Mediu m R&D	Inverte r Modera te Progres s	1	Residenti al PV	Lab or	0.032127 5	Δ\$/system
Low R&D	Inverte r R&D	Invert er	Inverte r Slow	1	Residenti al PV	GHG	2.28385	$\Delta gCO2e/syst$ em

		Low R&D	Progres s					
Low R&D	Inverte r R&D	Invert er Low R&D	Inverte r Slow Progres s	1	Residenti al PV	LCO E	0.004254 53	Δ\$/kWh
Low R&D	Inverte r R&D	Invert er Low R&D	Inverte r Slow Progres s	1	Residenti al PV	Lab or	0.046281	Δ\$/system
High R&D	Modul e R&D	Modul e High R&D	Module Fast Progres s	1	Residenti al PV	GHG	46.1992	ΔgCO2e/syst em
High R&D	Modul e R&D	Modul e High R&D	Module Fast Progres s	1	Residenti al PV	LCO E	0.040478	Δ\$/kWh
High R&D	Modul e R&D	Modul e High R&D	Module Fast Progres s	1	Residenti al PV	Lab or	0.039853	Δ\$/system
Medium R&D	Modul e R&D	Modul e Mediu m R&D	Module Modera te Progres s	1	Residenti al PV	GHG	47.5765	ΔgCO2e/syst em
Medium R&D	Modul e R&D	Modul e Mediu m R&D	Module Modera te Progres s	1	Residenti al PV	LCO E	0.039964 7	Δ\$/kWh
Medium R&D	Modul e R&D	Modul e Mediu m R&D	Module Modera te Progres s	1	Residenti al PV	Lab or	0.024476	Δ\$/system
Low R&D	Modul e R&D	Modul e Low R&D	Module Slow Progres s	1	Residenti al PV	GHG	12.9021	ΔgCO2e/syst em
Low R&D	Modul e R&D	Modul e Low	Module Slow	1	Residenti al PV	LCO E	0.014497 4	Δ\$/kWh

```
R&D
                          Progres
          Modul
                  Modul
                         Module
                                                          0.031712 \Delta$/system
Low
                                       1 Residenti Lab
R&D
          e R&D
                          Slow
                                          al PV
                  e Low
                                                    or
                                                                 3
                  R&D
                          Progres
                          S
investment_results.summary.xs(1, level="Sample", drop_level=False)
Investment
             Sample Index
                                 Value Units
High R&D
                  1 GHG
                               48.1537 \DeltagCO2e/system
High R&D
                  1 LCOE
                            0.0622528 \Delta$/kWh
High R&D
                  1 Labor
                              -473.423 \Delta$/system
Medium R&D
                  1 GHG
                               49.5263 \DeltagCO2e/system
Medium R&D
                  1 LCOE 0.0566111 \Delta $/kWh
Medium R&D
                  1 Labor
                              -342.583 \Delta$/system
                  1 GHG
                               15.1835 \DeltagCO2e/system
Low R&D
Low R&D
                  1 LCOE 0.0213268 Δ$/kWh
Low R&D
                  1 Labor
                              -125.719 \Delta$/system
Plot GHG metric.
g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "GHG",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=[
        "Low R&D"
        "Medium R&D",
        "High R&D"
    ]
)
g.set(ylabel="GHG Reduction [gCO2e / system]")
g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Figure 4: GHG metrics for investments.

Plot LCOE metric.

```
g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "LCOE",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=[
        "Low R&D"
        "Medium R&D",
        "High R&D"
    ]
)
g.set(ylabel="LCOE Reduction [USD / kWh]")
g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Figure 5: LCOE metrics for investments.

Plot labor metric.

```
g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "Labor",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=[
        "Low R&D"
        "Medium R&D",
        "High R&D"
    ]
)
g.set(ylabel="Labor Increase [USD / system]")
g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Figure 6: Labor metrics for investment

Multi-objective decision analysis.

Compute costs and metrics for tranches. Tranches are atomic units for building investment portfolios. Evaluate all of the tranches, so we can assemble them into investments (portfolios).

tranche_results = investments.evaluate_tranches(designs, sample_count=50)
tranche_results.amounts

Category	Tranche	Amount
BoS R&D	BoS High R&D	900000
BoS R&D	BoS Low R&D	300000
BoS R&D	BoS Medium R&D	600000
Inverter R&D	Inverter High R&D	3e+06
Inverter R&D	Inverter Low R&D	1e+06
Inverter R&D	Inverter Medium R&D	2e+06
Module R&D	Module High R&D	4.5e+06
Module R&D	Module Low R&D	1.5e+06
Module R&D	Module Medium R&D	3e+06

Display the metrics for each tranche.

summary.xs(1, level="Sample", drop_level=False)

Category	Tranche	Sample	Index	Value	Units
BoS R&D	BoS High R&D	1	GHG	-0.00509628	$\Delta gCO2e/system$
BoS R&D	BoS High R&D	1	LCOE	0.0101198	Δ\$/kWh
BoS R&D	BoS High R&D	1	Labor	-512.124	Δ\$/system
BoS R&D	BoS Medium R&D	1	GHG	-0.00347462	$\Delta gCO2e/system$
BoS R&D	BoS Medium R&D	1	LCOE	0.00871829	Δ\$/kWh
BoS R&D	BoS Medium R&D	1	Labor	-326.32	Δ\$/system
BoS R&D	BoS Low R&D	1	GHG	-0.00207459	$\Delta gCO2e/system$
BoS R&D	BoS Low R&D	1	LCOE	0.00236172	Δ\$/kWh
BoS R&D	BoS Low R&D	1	Labor	-106.82	Δ\$/system
Inverter R&D	Inverter High R&D	1	GHG	2.23156	$\Delta gCO2e/system$
Inverter R&D	Inverter High R&D	1	LCOE	0.0114439	Δ\$/kWh
Inverter R&D	Inverter High R&D	1	Labor	-0.0363715	Δ\$/system
Inverter R&D	Inverter Medium R&D	1	GHG	2.32106	$\Delta gCO2e/system$
Inverter R&D	Inverter Medium R&D	1	LCOE	0.00755465	Δ\$/kWh
Inverter R&D	Inverter Medium R&D	1	Labor	0.0521195	Δ\$/system
Inverter R&D	Inverter Low R&D	1	GHG	2.40101	$\Delta gCO2e/system$
Inverter R&D	Inverter Low R&D	1	LCOE	0.00445806	Δ\$/kWh
Inverter R&D	Inverter Low R&D	1	Labor	0.0482813	Δ\$/system
Module R&D	Module High R&D	1	GHG	46.2551	$\Delta gCO2e/system$
Module R&D	Module High R&D	1	LCOE	0.0410125	Δ\$/kWh
Module R&D	Module High R&D	1	Labor	-0.016474	Δ\$/system
Module R&D	Module Medium R&D	1	GHG	44.0851	$\Delta gCO2e/system$
Module R&D	Module Medium R&D	1	LCOE	0.0388401	Δ\$/kWh
Module R&D	Module Medium R&D	1	Labor	0.0607401	Δ\$/system
Module R&D	Module Low R&D	1	GHG	15.8667	$\Delta gCO2e/system$
Module R&D	Module Low R&D	1	LCOE	0.017083	Δ\$/kWh
Module R&D	Module Low R&D	1	Labor	0.00647508	Δ\$/system

Response surface.

Fit a response surface to the results. The response surface interpolates between the discrete set of cases provided in the expert elicitation. This allows us to study funding levels intermediate between those scenarios.

evaluator = ty.Evaluator(investments.tranches, tranche_results.summary)

Here are the categories of investment and the maximum amount that could be invested in each:

evaluator.max_amount

Category	Amount
BoS R&D	900000
Inverter R&D	3e+06
Module R&D	4.5e+06

Here are the metrics and their units of measure:

evaluator.units

Index	Units
GHG	$\Delta gCO2e/system$
LCOE	Δ\$/kWh
Labor	Δ\$/system

Example interpolation.

Let's evaluate the case where each category is invested in at half of its maximum amount.

```
example_investments = evaluator.max_amount / 2
example_investments
```

Category	Amount		
BoS R&D	450000		
Inverter R&D	1.5e+06		
Module R&D	2.25e+06		
	•	<pre>mple_investments).xs(1,</pre>	<pre>level="Sample",</pre>
drop_level=F	alse)		

Category	Index	Sample	Value
BoS R&D	GHG	1	-0.00277461
BoS R&D	LCOE	1	0.00554001
BoS R&D	Labor	1	-216.57
Inverter R&D	GHG	1	2.36104
Inverter R&D	LCOE	1	0.00600635
Inverter R&D	Labor	1	0.0502004
Module R&D	GHG	1	29.9759
Module R&D	LCOE	1	0.0279616
Module R&D	Labor	1	0.0336076

Let's evaluate the mean instead of outputing the whole distribution.

```
evaluator.evaluate_statistic(example_investments, np.mean)
```

```
Index
```

GHG 30.229573 LCOE 0.038244 Labor -248.531825

Name: Value, dtype: float64

Here is the standard deviation:

evaluator.evaluate_statistic(example_investments, np.std)

Index

GHG 1.626180 LCOE 0.000927 Labor 12.830230

Name: Value, dtype: float64

A risk-averse decision maker might be interested in the 10% percentile:

```
evaluator.evaluate_statistic(example_investments, lambda x: np.quantile(x,
0.1))
```

Index

GHG 28.254546 LCOE 0.037052 Labor -259.124007

Name: Value, dtype: float64

ε-Constraint multiobjective optimization

```
optimizer = ty.EpsilonConstraintOptimizer(evaluator)
```

In order to meaningfully map the decision space, we need to know the maximum values for each of the metrics.

```
metric_max = optimizer.max_metrics()
metric_max
```

GHG 49.671071 LCOE 0.062720 Labor 0.045590

Name: Value, dtype: float64

Example optimization.

Limit spending to \$3M.

```
investment max = 3e6
```

Require that the GHG reduction be at least 40 gCO2e/system and that the Labor wages not decrease.

```
metric_min = pd.Series([40, 0], name = "Value", index = ["GHG", "Labor"])
metric min
         40
GHG
Labor
          0
Name: Value, dtype: int64
Compute the \varepsilon-constrained maximum for the LCOE.
optimum = optimizer.maximize(
    "LCOE"
    total amount = investment max,
    min_metric = metric_min
    statistic = np.mean
optimum.exit message
'Optimization terminated successfully.'
Here are the optimal spending levels:
np.round(optimum.amounts)
Category
BoS R&D
                       0.0
Inverter R&D
                       0.0
Module R&D
                3000000.0
Name: Amount, dtype: float64
Here are the three metrics at that optimum:
optimum.metrics
Index
GHG
         42.079306
LCOE
          0.037732
Labor
          0.023559
Name: Value, dtype: float64
```

Thus, by putting all of the investment into Module R&D, we can expected to achieve a mean $3.75 \, \text{¢/kWh}$ reduction in LCOE under the GHG and Labor constraints.

It turns out that there is no solution for these constraints if we evaluate the 10th percentile of the metrics, for a risk-averse decision maker.

```
optimum = optimizer.maximize(
   "LCOE"
   total_amount = investment_max,
   min_metric = metric_min ,
   statistic = lambda x: np.quantile(x, 0.1),
```

```
optimum.exit message
'Positive directional derivative for linesearch'
Let's try again, but with a less stringent set of constraints, only constraining GHG somewhat
but not Labor at all.
optimum = optimizer.maximize(
    "LCOE"
    total amount = investment max
    min_metric = pd.Series([30], name = "Value", index = ["GHG"]),
    statistic = lambda x: np.quantile(x, 0.1)
)
optimum.exit_message
'Optimization terminated successfully.'
np.round(optimum.amounts)
Category
BoS R&D
                      0.0
Inverter R&D
                      0.0
Module R&D
                3000000.0
Name: Amount, dtype: float64
optimum.metrics
Index
GHG
         38.525518
LCOE
          0.036185
         -0.022495
Name: Value, dtype: float64
Pareto surfaces.
Metrics constrained by total investment.
pareto amounts = None
for investment max in np.arange(1e6, 9e6, 0.5e6):
    metrics = optimizer.max_metrics(total_amount = investment_max)
    pareto_amounts = pd.DataFrame(
        [metrics.values]
        columns = metrics.index.values
                = pd.Index([investment max / 1e6], name = "Investment [M$]"),
    ).append(pareto_amounts)
sb.relplot(
              = "Investment [M$]",
    Х
             = "Value"
    У
    col
             = "Metric"
             = "line"
    kind
    facet kws = {'sharey': False},
```

```
= pareto amounts.reset index().melt(id vars = "Investment
[M$]", var name = "Metric", value name = "Value")
                                                      Metric = LCOE
 50
                                                                            0.0500
                                       0.06
 45
                                                                            0.0475
 40
                                       0.05
  35
                                       0.04
                                                                            0.0425
Value
30
 25
                                                                            0.0400
                                       0.03
 20
                                                                            0.0375
                                       0.02
 15
                                                      4 5
Investment [M$]
                                                                                            4 5 (Investment [M$]
```

Figure 7: Pareto surface.

We see that the LCOE metric saturates more slowly than the GHG and Labor ones.

GHG vs LCOE, constrained by total investment.

```
investment max = 3
pareto_ghg_lcoe = None
for lcoe_min in 0.95 * np.arange(0.5, 0.9, 0.05) *
pareto amounts.loc[investment max, "LCOE"]:
    optimum = optimizer.maximize(
        "GHG",
                    = pd.Series([0.9e6, 3.0e6, 1.0e6], name = "Amount",
        max amount
index = ["BoS R&D", "Inverter R&D", "Module R&D"]),
        total amount = investment max * 1e6
        min metric = pd.Series([lcoe min], name = "Value", index =
["LCOE"]),
    pareto_ghg_lcoe = pd.DataFrame(
        [[investment_max, lcoe_min, optimum.metrics["LCOE"],
optimum.metrics["GHG"], optimum.exit_message]],
        columns = ["Investment [M$]", "LCOE (min)", "LCOE", "GHG", "Result"]
    ).append(pareto_ghg_lcoe)
pareto_ghg_lcoe = pareto_ghg_lcoe.set_index(["Investment [M$]", "LCOE
(min)"])
sb.relplot(
    x = "LCOE",
    y = "GHG",
    kind = "scatter",
    data = pareto ghg lcoe#[pareto ghg lcoe.Result == "Optimization"]
terminated successfully."]
)
```


Figure 8: GHG vs LCOE.

The three types of investment are too decoupled to make an interesting pareto frontier, and we also need a better solver if we want to push to lower right.

Run the interactive explorer for the decision space.

w = ty.DecisionWindow(evaluator)
w.mainloop()

Figure 9: Interactive explorer for R&D portfolios.