SymPy generated orbital functions

$\phi_0 \to \phi_{0,0,0}$	
$\phi(\vec{r})$	1
$\vec{i} \cdot \nabla \phi(\vec{r})$	-2ax
$\vec{j} \cdot abla \phi(\vec{r})$	-2ay
$\vec{k} \cdot abla \phi(\vec{r})$	-2az
$\nabla^2 \phi(\vec{r})$	$2a\left(2ar^2-3\right)$

Table 1: Orbital expressions gaussians : 0, 0, 0. Factor e^{-ar^2} is omitted.

$\phi_1 \to \phi_{0,0,1}$	
$\phi(\vec{r})$	z
$\vec{i} \cdot \nabla \phi(\vec{r})$	-2axz
$\vec{j} \cdot abla \phi(\vec{r})$	-2ayz
$\vec{k} \cdot \nabla \phi(\vec{r})$	$-2az^2+1$
$\nabla^2 \phi(\vec{r})$	$2az\left(2ar^2-5\right)$

Table 2: Orbital expressions gaussians : 0, 0, 1. Factor e^{-ar^2} is omitted.

$\phi_2 \to \phi_{0,1,0}$	
$\phi(\vec{r})$	y
$\vec{i} \cdot \nabla \phi(\vec{r})$	-2axy
$\vec{j} \cdot \nabla \phi(\vec{r})$	$-2ay^2 + 1$
$\vec{k} \cdot abla \phi(\vec{r})$	-2ayz
$\nabla^2 \phi(\vec{r})$	$2ay\left(2ar^2-5\right)$

Table 3: Orbital expressions gaussians : 0, 1, 0. Factor e^{-ar^2} is omitted.

$\phi_3 \to \phi_{1,0,0}$	
$\phi(\vec{r})$	x
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2ax^2 + 1$
$\vec{j} \cdot \nabla \phi(\vec{r})$	-2axy
$\vec{k} \cdot \nabla \phi(\vec{r})$	-2axz
$ abla^2 \phi(\vec{r})$	$2ax\left(2ar^2-5\right)$

Table 4: Orbital expressions gaussians : 1, 0, 0. Factor e^{-ar^2} is omitted.

$\phi_4 \rightarrow \phi_{0,0,2}$	
$\overline{\phi(\vec{r})}$	z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axz^2$
$ec{j}\cdot abla\phi(ec{r})$	$-2ayz^2$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2z\left(-az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$z^2 \left(4a^2r^2 - 14a\right) + 2$

Table 5: Orbital expressions gaussians : 0, 0, 2. Factor e^{-ar^2} is omitted.

$\phi_5 \to \phi_{0,1,1}$	
$\phi(\vec{r})$	yz
$\vec{i} \cdot \nabla \phi(\vec{r})$	-2axyz
$ec{j}\cdot abla\phi(ec{r})$	$z\left(-2ay^2+1\right)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$y(-2az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2ayz\left(2ar^2-7\right)$

Table 6: Orbital expressions gaussians : 0, 1, 1. Factor e^{-ar^2} is omitted.

$\phi_6 \to \phi_{0,2,0}$	
$\phi(\vec{r})$	y^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^2$
$\vec{j}\cdot abla\phi(\vec{r})$	$2y\left(-ay^2+1\right)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$-2ay^2z$
$\nabla^2 \phi(\vec{r})$	$y^2 \left(4a^2r^2 - 14a\right) + 2$

Table 7: Orbital expressions gaussians : 0, 2, 0. Factor e^{-ar^2} is omitted.

$$\begin{array}{c|cc} \phi_7 \rightarrow \phi_{1,0,1} & & \\ \hline \phi(\vec{r}) & xz & \\ \hline \vec{i} \cdot \nabla \phi(\vec{r}) & z \left(-2ax^2 + 1\right) \\ \vec{j} \cdot \nabla \phi(\vec{r}) & -2axyz \\ \hline \vec{k} \cdot \nabla \phi(\vec{r}) & x \left(-2az^2 + 1\right) \\ \hline \nabla^2 \phi(\vec{r}) & 2axz \left(2ar^2 - 7\right) \end{array}$$

Table 8: Orbital expressions gaussians : 1, 0, 1. Factor e^{-ar^2} is omitted.

$\phi_8 \to \phi_{1,1,0}$	
$\phi(ec{r})$	xy
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y(-2ax^2+1)$
$ec{j}\cdot abla\phi(ec{r})$	$x(-2ay^2+1)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	-2axyz
$ abla^2 \phi(\vec{r})$	$2axy\left(2ar^2-7\right)$

Table 9: Orbital expressions gaussians : 1, 1, 0. Factor e^{-ar^2} is omitted.

$$\begin{array}{c|cccc} \phi_{9} \to \phi_{2,0,0} & & & & & \\ \hline \phi(\vec{r}) & x^{2} & & & \\ \hline \vec{i} \cdot \nabla \phi(\vec{r}) & 2x \left(-ax^{2}+1\right) & & \\ \vec{j} \cdot \nabla \phi(\vec{r}) & -2ax^{2}y & & \\ \hline \vec{k} \cdot \nabla \phi(\vec{r}) & -2ax^{2}z & & \\ \hline \nabla^{2}\phi(\vec{r}) & x^{2} \left(4a^{2}r^{2}-14a\right) + 2 & & \\ \hline \end{array}$$

Table 10: Orbital expressions gaussians : 2, 0, 0. Factor e^{-ar^2} is omitted.

$\phi_{10} \to \phi_{0,0,3}$	
$\phi(\vec{r})$	z^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axz^3$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2ayz^3$
$\vec{k}\cdot abla\phi(\vec{r})$	$z^2\left(-2az^2+3\right)$
$\nabla^2 \phi(\vec{r})$	$2z(z^2(2a^2r^2-9a)+3)$

Table 11: Orbital expressions gaussians : 0, 0, 3. Factor e^{-ar^2} is omitted.

$\phi_{11} \to \phi_{0,1,2}$	
$\phi(\vec{r})$	yz^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axyz^2$
$\vec{j} \cdot abla \phi(\vec{r})$	$z^{2}\left(-2ay^{2}+1\right)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2yz\left(-az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$2y(z^2(2a^2r^2-9a)+1)$

Table 12: Orbital expressions gaussians : 0, 1, 2. Factor e^{-ar^2} is omitted.

$\phi_{12} \to \phi_{0,2,1}$	
$\phi(ec{r})$	y^2z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^2z$
$\vec{j}\cdot abla\phi(\vec{r})$	$2yz\left(-ay^2+1\right)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$y^{2}(-2az^{2}+1)$
$ abla^2 \phi(\vec{r})$	$2z(y^2(2a^2r^2-9a)+1)$

Table 13: Orbital expressions gaussians : 0, 2, 1. Factor e^{-ar^2} is omitted.

$\phi_{13} \to \phi_{0,3,0}$	
$\phi(\vec{r})$	y^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^3$
$\vec{j}\cdot abla\phi(\vec{r})$	$y^2\left(-2ay^2+3\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ay^3z$
$\nabla^2 \phi(\vec{r})$	$2y\left(y^2\left(2a^2r^2-9a\right)+3\right)$

Table 14: Orbital expressions gaussians : 0, 3, 0. Factor e^{-ar^2} is omitted.

$$\begin{array}{c|cccc} \phi_{14} \to \phi_{1,0,2} & & & \\ \hline \phi(\vec{r}) & xz^2 & & \\ \hline \vec{i} \cdot \nabla \phi(\vec{r}) & z^2 \left(-2ax^2 + 1 \right) & \\ \vec{j} \cdot \nabla \phi(\vec{r}) & -2axyz^2 & \\ \hline \vec{k} \cdot \nabla \phi(\vec{r}) & 2xz \left(-az^2 + 1 \right) & \\ \hline \nabla^2 \phi(\vec{r}) & 2x \left(z^2 \left(2a^2r^2 - 9a \right) + 1 \right) & \end{array}$$

Table 15: Orbital expressions gaussians : 1, 0, 2. Factor e^{-ar^2} is omitted.

$\phi_{15} \to \phi_{1,1,1}$	
$\phi(ec{r})$	xyz
$\vec{i} \cdot \nabla \phi(\vec{r})$	$yz\left(-2ax^2+1\right)$
$\vec{j} \cdot abla \phi(\vec{r})$	$xz(-2ay^2+1)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$xy(-2az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2axyz\left(2ar^2-9\right)$

Table 16: Orbital expressions gaussians : 1, 1, 1. Factor e^{-ar^2} is omitted.

$\phi_{16} \to \phi_{1,2,0}$	
$\phi(\vec{r})$	xy^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^2\left(-2ax^2+1\right)$
$\vec{j}\cdot abla\phi(\vec{r})$	$2xy\left(-ay^2+1\right)$
$\vec{k} \cdot abla \phi(\vec{r})$	$-2axy^2z$
$\nabla^2 \phi(\vec{r})$	$2x\left(y^{2}\left(2a^{2}r^{2}-9a\right)+1\right)$

Table 17: Orbital expressions gaussians : 1, 2, 0. Factor e^{-ar^2} is omitted.

$\phi_{17} \to \phi_{2,0,1}$	
$\overline{\phi(\vec{r})}$	x^2z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xz\left(-ax^2+1\right)$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2ax^2yz$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$x^{2}\left(-2az^{2}+1\right)$
$\nabla^2 \phi(\vec{r})$	$2z(x^2(2a^2r^2-9a)+1)$

Table 18: Orbital expressions gaussians : 2, 0, 1. Factor e^{-ar^2} is omitted.

$\phi_{18} \to \phi_{2,1,0}$	
$\phi(\vec{r})$	x^2y
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xy\left(-ax^2+1\right)$
$\vec{j} \cdot abla \phi(\vec{r})$	$x^{2}(-2ay^{2}+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ax^2yz$
$ abla^2\phi(\vec{r})$	$2y\left(x^2\left(2a^2r^2-9a\right)+1\right)$

Table 19: Orbital expressions gaussians : 2, 1, 0. Factor e^{-ar^2} is omitted.

$\phi_{19} \to \phi_{3,0,0}$	
$\phi(ec{r})$	x^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^2\left(-2ax^2+3\right)$
$\vec{j}\cdot abla\phi(\vec{r})$	$-2ax^3y$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ax^3z$
$\nabla^2 \phi(\vec{r})$	$2x\left(x^{2}\left(2a^{2}r^{2}-9a\right)+3\right)$

Table 20: Orbital expressions gaussians : 3, 0, 0. Factor e^{-ar^2} is omitted.

$\phi_{20} \to \phi_{0,0,4}$	
$\phi(\vec{r})$	z^4
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axz^4$
$\vec{j}\cdot abla\phi(\vec{r})$	$-2ayz^4$
$\vec{k} \cdot abla \phi(\vec{r})$	$2z^3\left(-az^2+2\right)$
$\nabla^2 \phi(\vec{r})$	$2z^{2}\left(z^{2}\left(2a^{2}r^{2}-11a\right) +6\right)$

Table 21: Orbital expressions gaussians : 0, 0, 4. Factor e^{-ar^2} is omitted.

$\phi_{21} \to \phi_{0,1,3}$	
$\phi(\vec{r})$	yz^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axyz^3$
$ec{j} \cdot abla \phi(ec{r})$	$z^3\left(-2ay^2+1\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$yz^{2}\left(-2az^{2}+3\right)$
$ abla^2 \phi(\vec{r})$	$2yz\left(z^{2}\left(2a^{2}r^{2}-11a\right)+3\right)$

Table 22: Orbital expressions gaussians: 0, 1, 3. Factor e^{-ar^2} is omitted.

$\phi_{22} \to \phi_{0,2,2}$	
$\phi(ec{r})$	y^2z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^2z^2$
$\vec{j} \cdot abla \phi(\vec{r})$	$2yz^{2}(-ay^{2}+1)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2y^2z(-az^2+1)$
$ abla^2 \phi(\vec{r})$	$y^2 (4a^2r^2z^2 - 22az^2 + 2) + 2z^2$

Table 23: Orbital expressions gaussians : 0, 2, 2. Factor e^{-ar^2} is omitted.

$\phi_{23} \to \phi_{0,3,1}$	
$\phi(\vec{r})$	y^3z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^3z$
$\vec{j} \cdot abla \phi(\vec{r})$	$y^2z\left(-2ay^2+3\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$y^3(-2az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2yz(y^2(2a^2r^2-11a)+3)$

Table 24: Orbital expressions gaussians : 0, 3, 1. Factor e^{-ar^2} is omitted.

$\phi_{24} \to \phi_{0,4,0}$	
$\phi(ec{r})$	y^4
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^4$
$\vec{j}\cdot abla\phi(\vec{r})$	$2y^3\left(-ay^2+2\right)$
$\vec{k} \cdot abla \phi(\vec{r})$	$-2ay^4z$
$\nabla^2 \phi(\vec{r})$	$2y^2(y^2(2a^2r^2-11a)+6)$

Table 25: Orbital expressions gaussians : 0, 4, 0. Factor e^{-ar^2} is omitted.

$\phi_{25} \to \phi_{1,0,3}$	
$\phi(\vec{r})$	xz^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$z^3(-2ax^2+1)$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2axyz^3$
$\vec{k}\cdot abla\phi(\vec{r})$	$xz^2\left(-2az^2+3\right)$
$\nabla^2 \phi(\vec{r})$	$2xz\left(z^{2}\left(2a^{2}r^{2}-11a\right)+3\right)$

Table 26: Orbital expressions gaussians : 1, 0, 3. Factor e^{-ar^2} is omitted.

$\phi_{26} \to \phi_{1,1,2}$	
$\phi(\vec{r})$	xyz^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$yz^{2}\left(-2ax^{2}+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$xz^{2}(-2ay^{2}+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$2xyz\left(-az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$2xy\left(z^{2}\left(2a^{2}r^{2}-11a\right)+1\right)$

Table 27: Orbital expressions gaussians : 1, 1, 2. Factor e^{-ar^2} is omitted.

$\phi_{27} \to \phi_{1,2,1}$	
$\phi(\vec{r})$	xy^2z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^2z\left(-2ax^2+1\right)$
$\vec{j}\cdot abla\phi(\vec{r})$	$2xyz\left(-ay^2+1\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$xy^{2}(-2az^{2}+1)$
$\nabla^2 \phi(\vec{r})$	$2xz\left(y^{2}\left(2a^{2}r^{2}-11a\right)+1\right)$

Table 28: Orbital expressions gaussians : 1, 2, 1. Factor e^{-ar^2} is omitted.

$\phi_{28} \to \phi_{1,3,0}$	
$\phi(\vec{r})$	xy^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^{3}\left(-2ax^{2}+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$xy^{2}(-2ay^{2}+3)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2axy^3z$
$\nabla^2 \phi(\vec{r})$	$2xy\left(y^{2}\left(2a^{2}r^{2}-11a\right)+3\right)$

Table 29: Orbital expressions gaussians : 1, 3, 0. Factor e^{-ar^2} is omitted.

$\phi_{29} \to \phi_{2,0,2}$	
$\phi(\vec{r})$	x^2z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xz^2\left(-ax^2+1\right)$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2ax^2yz^2$
$\vec{k} \cdot abla \phi(\vec{r})$	$2x^2z\left(-az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$x^{2}(4a^{2}r^{2}z^{2}-22az^{2}+2)+2z^{2}$

Table 30: Orbital expressions gaussians : 2, 0, 2. Factor e^{-ar^2} is omitted.

$\phi_{30} \to \phi_{2,1,1}$	
$\phi(\vec{r})$	x^2yz
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xyz\left(-ax^2+1\right)$
$\vec{j}\cdot abla\phi(\vec{r})$	$x^{2}z(-2ay^{2}+1)$
$\vec{k} \cdot abla \phi(\vec{r})$	$x^2y(-2az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2yz\left(x^{2}\left(2a^{2}r^{2}-11a\right)+1\right)$

Table 31: Orbital expressions gaussians : 2, 1, 1. Factor e^{-ar^2} is omitted.

$\phi_{31} \rightarrow \phi_{2,2,0}$	
$\phi(\vec{r})$	x^2y^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xy^2\left(-ax^2+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$2x^{2}y(-ay^{2}+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ax^2y^2z$
$\nabla^2 \phi(\vec{r})$	$x^2 \left(4a^2r^2y^2 - 22ay^2 + 2\right) + 2y^2$

Table 32: Orbital expressions gaussians : 2, 2, 0. Factor e^{-ar^2} is omitted.

$\phi_{32} \to \phi_{3,0,1}$	
$\phi(\vec{r})$	x^3z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^2z\left(-2ax^2+3\right)$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2ax^3yz$
$\vec{k}\cdot abla\phi(\vec{r})$	$x^3\left(-2az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$2xz\left(x^{2}\left(2a^{2}r^{2}-11a\right)+3\right)$

Table 33: Orbital expressions gaussians : 3, 0, 1. Factor e^{-ar^2} is omitted.

$\phi_{33} \to \phi_{3,1,0}$	
$\phi(\vec{r})$	x^3y
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^2y(-2ax^2+3)$
$\vec{j} \cdot abla \phi(\vec{r})$	$x^{3}(-2ay^{2}+1)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$-2ax^3yz$
$\nabla^2 \phi(\vec{r})$	$2xy\left(x^{2}\left(2a^{2}r^{2}-11a\right)+3\right)$

Table 34: Orbital expressions gaussians: 3, 1, 0. Factor e^{-ar^2} is omitted.

$\phi_{34} \to \phi_{4,0,0}$	
$\phi(ec{r})$	x^4
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2x^{3}\left(-ax^{2}+2\right)$
$\vec{j}\cdot abla\phi(\vec{r})$	$-2ax^4y$
$\vec{k} \cdot abla \phi(\vec{r})$	$-2ax^4z$
$\nabla^2 \phi(\vec{r})$	$2x^{2}\left(x^{2}\left(2a^{2}r^{2}-11a\right) +6\right)$

Table 35: Orbital expressions gaussians : 4, 0, 0. Factor e^{-ar^2} is omitted.

$\phi_{35} \to \phi_{0,0,5}$	
$\phi(\vec{r})$	z^5
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axz^5$
$\vec{j}\cdot abla\phi(\vec{r})$	$-2ayz^5$
$\vec{k} \cdot abla \phi(\vec{r})$	$z^4 \left(-2az^2 + 5 \right)$
$\nabla^2 \phi(\vec{r})$	$2z^{3}(z^{2}(2a^{2}r^{2}-13a)+10)$

Table 36: Orbital expressions gaussians : 0, 0, 5. Factor e^{-ar^2} is omitted.

$\phi_{36} \to \phi_{0,1,4}$	
$\phi(\vec{r})$	yz^4
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axyz^4$
$ec{j} \cdot abla \phi(ec{r})$	$z^4 \left(-2ay^2 + 1\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$2yz^{3}\left(-az^{2}+2\right)$
$ abla^2 \phi(\vec{r})$	$2yz^{2}\left(z^{2}\left(2a^{2}r^{2}-13a\right)+6\right)$

Table 37: Orbital expressions gaussians: 0, 1, 4. Factor e^{-ar^2} is omitted.

$\phi_{37} \to \phi_{0,2,3}$	
$\phi(ec{r})$	y^2z^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^2z^3$
$ec{j}\cdot abla\phi(ec{r})$	$2yz^3\left(-ay^2+1\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$y^2z^2(-2az^2+3)$
$ abla^2 \phi(\vec{r})$	$2z\left(y^{2}\left(2a^{2}r^{2}z^{2}-13az^{2}+3\right)+z^{2}\right)$

Table 38: Orbital expressions gaussians : 0, 2, 3. Factor e^{-ar^2} is omitted.

$\phi_{38} \to \phi_{0,3,2}$	
$\phi(\vec{r})$	y^3z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^3z^2$
$ec{j} \cdot abla \phi(ec{r})$	$y^2z^2(-2ay^2+3)$
$\vec{k}\cdot abla\phi(\vec{r})$	$2y^3z(-az^2+1)$
$ abla^2 \phi(\vec{r})$	$2y\left(y^{2}\left(2a^{2}r^{2}z^{2}-13az^{2}+1\right)+3z^{2}\right)$

Table 39: Orbital expressions gaussians : 0, 3, 2. Factor e^{-ar^2} is omitted.

$\phi_{39} \to \phi_{0,4,1}$	
$\phi(ec{r})$	y^4z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^4z$
$ec{j}\cdot abla\phi(ec{r})$	$2y^3z\left(-ay^2+2\right)$
$\vec{k} \cdot abla \phi(\vec{r})$	$y^4(-2az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2y^2z\left(y^2\left(2a^2r^2-13a\right)+6\right)$

Table 40: Orbital expressions gaussians : 0, 4, 1. Factor e^{-ar^2} is omitted.

$\phi_{40} \to \phi_{0,5,0}$	
$\phi(\vec{r})$	y^5
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^5$
$ec{j}\cdot abla\phi(ec{r})$	$y^4\left(-2ay^2+5\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ay^5z$
$\nabla^2 \phi(\vec{r})$	$2y^3\left(y^2\left(2a^2r^2-13a\right)+10\right)$

Table 41: Orbital expressions gaussians : 0, 5, 0. Factor e^{-ar^2} is omitted.

$\phi_{41} \to \phi_{1,0,4}$	
$\phi(\vec{r})$	xz^4
$\vec{i} \cdot \nabla \phi(\vec{r})$	$z^4(-2ax^2+1)$
$ec{j}\cdot abla\phi(ec{r})$	$-2axyz^4$
$\vec{k}\cdot abla\phi(\vec{r})$	$2xz^3\left(-az^2+2\right)$
$\nabla^2 \phi(\vec{r})$	$2xz^{2}(z^{2}(2a^{2}r^{2}-13a)+6)$

Table 42: Orbital expressions gaussians : 1, 0, 4. Factor e^{-ar^2} is omitted.

$\phi_{42} \to \phi_{1,1,3}$	
$\phi(\vec{r})$	xyz^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$yz^3\left(-2ax^2+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$xz^{3}(-2ay^{2}+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$xyz^{2}(-2az^{2}+3)$
$\nabla^2 \phi(\vec{r})$	$2xyz\left(z^2\left(2a^2r^2-13a\right)+3\right)$

Table 43: Orbital expressions gaussians : 1, 1, 3. Factor e^{-ar^2} is omitted.

$\phi_{43} \to \phi_{1,2,2}$	
$\phi(\vec{r})$	xy^2z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^2z^2(-2ax^2+1)$
$ec{j}\cdot abla\phi(ec{r})$	$2xyz^2\left(-ay^2+1\right)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2xy^2z\left(-az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$2x \left(y^2 \left(2a^2r^2z^2 - 13az^2 + 1\right) + z^2\right)$

Table 44: Orbital expressions gaussians : 1, 2, 2. Factor e^{-ar^2} is omitted.

$\phi_{44} \to \phi_{1,3,1}$	
$\phi(ec{r})$	xy^3z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^3z\left(-2ax^2+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$xy^2z\left(-2ay^2+3\right)$
$ec{k}\cdot abla\phi(ec{r})$	$xy^{3}\left(-2az^{2}+1\right)$
$\nabla^2 \phi(\vec{r})$	$2xyz(y^2(2a^2r^2-13a)+3)$

Table 45: Orbital expressions gaussians : 1, 3, 1. Factor e^{-ar^2} is omitted.

$\phi_{45} \to \phi_{1,4,0}$	
$\phi(\vec{r})$	xy^4
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^4(-2ax^2+1)$
$\vec{j}\cdot abla\phi(\vec{r})$	$2xy^3\left(-ay^2+2\right)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$-2axy^4z$
$\nabla^2 \phi(\vec{r})$	$2xy^{2}\left(y^{2}\left(2a^{2}r^{2}-13a\right) +6\right)$

Table 46: Orbital expressions gaussians: 1, 4, 0. Factor e^{-ar^2} is omitted.

$\phi_{46} \to \phi_{2,0,3}$	
$\phi(\vec{r})$	x^2z^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xz^{3}(-ax^{2}+1)$
$\vec{j}\cdot abla\phi(\vec{r})$	$-2ax^2yz^3$
$\vec{k}\cdot abla\phi(\vec{r})$	$x^2z^2(-2az^2+3)$
$\nabla^2 \phi(\vec{r})$	$2z\left(x^{2}\left(2a^{2}r^{2}z^{2}-13az^{2}+3\right)+z^{2}\right)$

Table 47: Orbital expressions gaussians : 2, 0, 3. Factor e^{-ar^2} is omitted.

$\phi_{47} \to \phi_{2,1,2}$	
$\phi(\vec{r})$	x^2yz^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xyz^2\left(-ax^2+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$x^2z^2(-2ay^2+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$2x^2yz\left(-az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$2y\left(x^{2}\left(2a^{2}r^{2}z^{2}-13az^{2}+1\right)+z^{2}\right)$

Table 48: Orbital expressions gaussians : 2, 1, 2. Factor e^{-ar^2} is omitted.

$\phi_{48} \to \phi_{2,2,1}$	
$\phi(\vec{r})$	$\int x^2y^2z$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xy^2z\left(-ax^2+1\right)$
$\vec{j}\cdot abla\phi(\vec{r})$	$2x^2yz(-ay^2+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$x^2y^2(-2az^2+1)$
$ abla^2\phi(\vec{r})$	$2z\left(x^{2}\left(2a^{2}r^{2}y^{2}-13ay^{2}+1\right)+y^{2}\right)$

Table 49: Orbital expressions gaussians : 2, 2, 1. Factor e^{-ar^2} is omitted.

$\phi_{49} \rightarrow \phi_{2,3,0}$	
$\phi(ec{r})$	x^2y^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xy^{3}(-ax^{2}+1)$
$\vec{j}\cdot abla\phi(\vec{r})$	$x^2y^2(-2ay^2+3)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ax^2y^3z$
$\nabla^2 \phi(\vec{r})$	$2y\left(x^{2}\left(2a^{2}r^{2}y^{2}-13ay^{2}+3\right)+y^{2}\right)$

Table 50: Orbital expressions gaussians : 2, 3, 0. Factor e^{-ar^2} is omitted.

$\phi_{50} \rightarrow \phi_{3,0,2}$	
$\phi(ec{r})$	x^3z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^2z^2(-2ax^2+3)$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2ax^3yz^2$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2x^3z\left(-az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$2x\left(x^{2}\left(2a^{2}r^{2}z^{2}-13az^{2}+1\right)+3z^{2}\right)$

Table 51: Orbital expressions gaussians : 3, 0, 2. Factor e^{-ar^2} is omitted.

$\phi_{51} \to \phi_{3,1,1}$	
$\phi(\vec{r})$	x^3yz
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^2yz\left(-2ax^2+3\right)$
$ec{j}\cdot abla\phi(ec{r})$	$x^3z(-2ay^2+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$x^3y(-2az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2xyz\left(x^{2}\left(2a^{2}r^{2}-13a\right)+3\right)$

Table 52: Orbital expressions gaussians : 3, 1, 1. Factor e^{-ar^2} is omitted.

$\phi_{52} \to \phi_{3,2,0}$	
$\phi(\vec{r})$	$\int x^3y^2$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^2y^2(-2ax^2+3)$
$ec{j}\cdot abla\phi(ec{r})$	$2x^{3}y(-ay^{2}+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ax^3y^2z$
$\nabla^2 \phi(\vec{r})$	$2x\left(x^{2}\left(2a^{2}r^{2}y^{2}-13ay^{2}+1\right)+3y^{2}\right)$

Table 53: Orbital expressions gaussians : 3, 2, 0. Factor e^{-ar^2} is omitted.

$\phi_{53} \to \phi_{4,0,1}$	
$\phi(\vec{r})$	x^4z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2x^3z\left(-ax^2+2\right)$
$ec{j}\cdot abla\phi(ec{r})$	$-2ax^4yz$
$\vec{k}\cdot abla\phi(\vec{r})$	$x^4 \left(-2az^2 + 1\right)$
$ abla^2 \phi(\vec{r})$	$2x^{2}z\left(x^{2}\left(2a^{2}r^{2}-13a\right) +6\right)$

Table 54: Orbital expressions gaussians : 4, 0, 1. Factor e^{-ar^2} is omitted.

$$\begin{array}{c|cccc} \phi_{54} \to \phi_{4,1,0} & & & & \\ \hline \phi(\vec{r}) & x^4y & & & \\ \hline \vec{i} \cdot \nabla \phi(\vec{r}) & 2x^3y \left(-ax^2+2\right) & & \\ \vec{j} \cdot \nabla \phi(\vec{r}) & x^4 \left(-2ay^2+1\right) & & \\ \hline \vec{k} \cdot \nabla \phi(\vec{r}) & -2ax^4yz & & \\ \hline \nabla^2 \phi(\vec{r}) & 2x^2y \left(x^2 \left(2a^2r^2-13a\right)+6\right) & & \\ \hline \end{array}$$

Table 55: Orbital expressions gaussians : 4, 1, 0. Factor e^{-ar^2} is omitted.

$\phi_{55} \to \phi_{5,0,0}$	
$\phi(\vec{r})$	x^5
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^4 \left(-2ax^2 + 5 \right)$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2ax^5y$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ax^5z$
$\nabla^2 \phi(\vec{r})$	$2x^3\left(x^2\left(2a^2r^2-13a\right)+10\right)$

Table 56: Orbital expressions gaussians : 5, 0, 0. Factor e^{-ar^2} is omitted.

$\phi_{56} \to \phi_{0,0,6}$	
$\phi(\vec{r})$	z^6
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axz^6$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2ayz^6$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2z^{5}\left(-az^{2}+3\right)$
$\nabla^2 \phi(\vec{r})$	$2z^4 \left(z^2 \left(2a^2r^2 - 15a\right) + 15\right)$

Table 57: Orbital expressions gaussians : 0, 0, 6. Factor e^{-ar^2} is omitted.

$\phi_{57} \to \phi_{0,1,5}$	
$\phi(\vec{r})$	yz^5
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axyz^5$
$ec{j}\cdot abla\phi(ec{r})$	$z^5(-2ay^2+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$yz^4\left(-2az^2+5\right)$
$ abla^2 \phi(\vec{r})$	$2yz^{3}\left(z^{2}\left(2a^{2}r^{2}-15a\right) +10\right)$

Table 58: Orbital expressions gaussians : 0, 1, 5. Factor e^{-ar^2} is omitted.

$\phi_{58} \to \phi_{0,2,4}$	
$\phi(ec{r})$	y^2z^4
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^2z^4$
$ec{j}\cdot abla\phi(ec{r})$	$2yz^4\left(-ay^2+1\right)$
$\vec{k} \cdot abla \phi(\vec{r})$	$2y^2z^3(-az^2+2)$
$ abla^2 \phi(\vec{r})$	$2z^{2}\left(y^{2}\left(2a^{2}r^{2}z^{2}-15az^{2}+6\right)+z^{2}\right)$

Table 59: Orbital expressions gaussians : 0, 2, 4. Factor e^{-ar^2} is omitted.

$\phi_{59} \rightarrow \phi_{0,3,3}$	
$\phi(ec{r})$	y^3z^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^3z^3$
$\vec{j} \cdot \nabla \phi(\vec{r})$	$y^2z^3(-2ay^2+3)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$y^3z^2(-2az^2+3)$
$\nabla^2 \phi(\vec{r})$	$2yz\left(y^{2}\left(2a^{2}r^{2}z^{2}-15az^{2}+3\right)+3z^{2}\right)$

Table 60: Orbital expressions gaussians : 0, 3, 3. Factor e^{-ar^2} is omitted.

$\phi_{60} \rightarrow \phi_{0,4}$	2
$\phi(\vec{r})$	y^4z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^4z^2$
$\vec{j} \cdot \nabla \phi(\vec{r})$	
$\vec{k} \cdot \nabla \phi(\vec{r})$	
$\nabla^2 \phi(\vec{r})$	$2y^2(y^2(2a^2r^2z^2-15az^2+1)+6z^2)$

Table 61: Orbital expressions gaussians : 0, 4, 2. Factor e^{-ar^2} is omitted.

$\phi_{61} \rightarrow \phi_{0,5,1}$	
$\phi(ec{r})$	y^5z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^5z$
$ec{j}\cdot abla\phi(ec{r})$	$y^4z(-2ay^2+5)$
$\vec{k}\cdot abla\phi(\vec{r})$	$y^5(-2az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2y^3z\left(y^2\left(2a^2r^2-15a\right)+10\right)$

Table 62: Orbital expressions gaussians : 0, 5, 1. Factor e^{-ar^2} is omitted.

$\phi_{62} \to \phi_{0,6,0}$	
$\phi(ec{r})$	y^6
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^6$
$ec{j}\cdot abla\phi(ec{r})$	$2y^5(-ay^2+3)$
$\vec{k} \cdot abla \phi(\vec{r})$	$-2ay^6z$
$\nabla^2 \phi(\vec{r})$	$2y^4 \left(y^2 \left(2a^2r^2 - 15a\right) + 15\right)$

Table 63: Orbital expressions gaussians : 0, 6, 0. Factor e^{-ar^2} is omitted.

$\phi_{63} \rightarrow \phi_{1,0,5}$	
$\phi(\vec{r})$	xz^5
$\vec{i} \cdot \nabla \phi(\vec{r})$	$z^5 \left(-2ax^2+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$-2axyz^5$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$xz^4(-2az^2+5)$
$\nabla^2 \phi(\vec{r})$	$2xz^{3}\left(z^{2}\left(2a^{2}r^{2}-15a\right)+10\right)$

Table 64: Orbital expressions gaussians : 1, 0, 5. Factor e^{-ar^2} is omitted.

$\phi_{64} \rightarrow \phi_{1,1,4}$	
$\phi(\vec{r})$	xyz^4
$\vec{i} \cdot \nabla \phi(\vec{r})$	$yz^{4}(-2ax^{2}+1)$
$\vec{j}\cdot abla\phi(\vec{r})$	$xz^{4}(-2ay^{2}+1)$
$\vec{k} \cdot abla \phi(\vec{r})$	$2xyz^3\left(-az^2+2\right)$
$\nabla^2 \phi(\vec{r})$	$2xyz^{2}(z^{2}(2a^{2}r^{2}-15a)+6)$

Table 65: Orbital expressions gaussians: 1, 1, 4. Factor e^{-ar^2} is omitted.

$\phi_{65} \to \phi_{1,2,3}$	
$\phi(ec{r})$	xy^2z^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^2z^3(-2ax^2+1)$
$\vec{j} \cdot abla \phi(\vec{r})$	$2xyz^{3}(-ay^{2}+1)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$xy^2z^2(-2az^2+3)$
$\nabla^2 \phi(\vec{r})$	$2xz\left(y^{2}\left(2a^{2}r^{2}z^{2}-15az^{2}+3\right)+z^{2}\right)$

Table 66: Orbital expressions gaussians : 1, 2, 3. Factor e^{-ar^2} is omitted.

$\phi_{66} \rightarrow \phi_{1,3,2}$	
$\phi(\vec{r})$	xy^3z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^3z^2(-2ax^2+1)$
$ec{j}\cdot abla\phi(ec{r})$	$xy^2z^2(-2ay^2+3)$
$\vec{k}\cdot abla\phi(\vec{r})$	$2xy^3z(-az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2xy\left(y^{2}\left(2a^{2}r^{2}z^{2}-15az^{2}+1\right)+3z^{2}\right)$

Table 67: Orbital expressions gaussians : 1, 3, 2. Factor e^{-ar^2} is omitted.

$\phi_{67} \rightarrow \phi_{1,4,1}$	
$\phi(\vec{r})$	xy^4z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^4z\left(-2ax^2+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$2xy^3z(-ay^2+2)$
$\vec{k}\cdot abla\phi(\vec{r})$	$xy^{4}\left(-2az^{2}+1\right) $
$\nabla^2 \phi(\vec{r})$	$2xy^2z\left(y^2\left(2a^2r^2-15a\right)+6\right)$

Table 68: Orbital expressions gaussians : 1, 4, 1. Factor e^{-ar^2} is omitted.

$\phi_{68} \rightarrow \phi_{1,5,0}$	
$\phi(ec{r})$	$-xy^5$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^5 \left(-2ax^2 + 1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$xy^{4}(-2ay^{2}+5)$
$\vec{k} \cdot abla \phi(\vec{r})$	$-2axy^5z$
$ abla^2\phi(\vec{r})$	$2xy^{3}\left(y^{2}\left(2a^{2}r^{2}-15a\right) +10\right)$

Table 69: Orbital expressions gaussians : 1, 5, 0. Factor e^{-ar^2} is omitted.

$$\begin{array}{c|cccc} \phi_{69} \to \phi_{2,0,4} & & & & & \\ \hline \phi(\vec{r}) & x^2z^4 & & & & \\ \hline \vec{i} \cdot \nabla \phi(\vec{r}) & 2xz^4 \left(-ax^2+1\right) & & & \\ \vec{j} \cdot \nabla \phi(\vec{r}) & -2ax^2yz^4 & & & \\ \hline \vec{k} \cdot \nabla \phi(\vec{r}) & 2x^2z^3 \left(-az^2+2\right) & & & \\ \hline \nabla^2 \phi(\vec{r}) & 2z^2 \left(x^2 \left(2a^2r^2z^2-15az^2+6\right)+z^2\right) & & & \end{array}$$

Table 70: Orbital expressions gaussians : 2, 0, 4. Factor e^{-ar^2} is omitted.

$\phi_{70} \to \phi_{2,1,3}$	
$\phi(ec{r})$	x^2yz^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xyz^3\left(-ax^2+1\right)$
$\vec{j} \cdot abla \phi(\vec{r})$	$x^2z^3(-2ay^2+1)$
$\vec{k} \cdot abla \phi(\vec{r})$	$x^2yz^2(-2az^2+3)$
$\nabla^2 \phi(\vec{r})$	$2yz\left(x^{2}\left(2a^{2}r^{2}z^{2}-15az^{2}+3\right)+z^{2}\right)$

Table 71: Orbital expressions gaussians : 2, 1, 3. Factor e^{-ar^2} is omitted.

$\phi_{71} \to \phi_{2,2,2}$	
$\phi(\vec{r})$	$\int x^2y^2z^2$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xy^2z^2(-ax^2+1)$
$ec{j}\cdot abla\phi(ec{r})$	$2x^2yz^2(-ay^2+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$2x^2y^2z(-az^2+1)$
$\nabla^2 \phi(\vec{r})$	$x^{2} \left(4a^{2}r^{2}y^{2}z^{2} - 30ay^{2}z^{2} + 2y^{2} + 2z^{2}\right) + 2y^{2}z^{2}$

Table 72: Orbital expressions gaussians : 2, 2, 2. Factor e^{-ar^2} is omitted.

$\phi_{72} \to \phi_{2,3,1}$	
$\phi(\vec{r})$	$\int x^2 y^3 z$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xy^3z\left(-ax^2+1\right)$
$\vec{j}\cdot abla\phi(\vec{r})$	$x^2y^2z(-2ay^2+3)$
$\vec{k}\cdot abla\phi(\vec{r})$	$x^2y^3(-2az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2yz\left(x^{2}\left(2a^{2}r^{2}y^{2}-15ay^{2}+3\right)+y^{2}\right)$

Table 73: Orbital expressions gaussians : 2, 3, 1. Factor e^{-ar^2} is omitted.

$\phi_{73} \to \phi_{2,4,0}$	
$\phi(ec{r})$	x^2y^4
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xy^{4}(-ax^{2}+1)$
$\vec{j}\cdot abla\phi(\vec{r})$	$2x^2y^3(-ay^2+2)$
$\vec{k} \cdot abla \phi(\vec{r})$	$-2ax^2y^4z$
$\nabla^2 \phi(\vec{r})$	$2y^{2}\left(x^{2}\left(2a^{2}r^{2}y^{2}-15ay^{2}+6\right)+y^{2}\right)$

Table 74: Orbital expressions gaussians : 2, 4, 0. Factor e^{-ar^2} is omitted.

$\phi_{74} \to \phi_{3,0,3}$	
$\phi(ec{r})$	x^3z^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^2z^3(-2ax^2+3)$
$ec{j}\cdot abla\phi(ec{r})$	$-2ax^3yz^3$
$\vec{k}\cdot abla\phi(\vec{r})$	$x^3z^2(-2az^2+3)$
$\nabla^2 \phi(\vec{r})$	$2xz(x^2(2a^2r^2z^2-15az^2+3)+3z^2)$

Table 75: Orbital expressions gaussians : 3, 0, 3. Factor e^{-ar^2} is omitted.

$\phi_{75} \to \phi_{3,1,2}$	
$\phi(ec{r})$	$\int x^3yz^2$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^2yz^2(-2ax^2+3)$
$\vec{j}\cdot abla\phi(\vec{r})$	$x^3z^2(-2ay^2+1)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2x^3yz\left(-az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$2xy\left(x^{2}\left(2a^{2}r^{2}z^{2}-15az^{2}+1\right)+3z^{2}\right)$

Table 76: Orbital expressions gaussians : 3, 1, 2. Factor e^{-ar^2} is omitted.

$\phi_{76} \to \phi_{3,2,1}$	
$\phi(\vec{r})$	$\int x^3 y^2 z$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^2y^2z(-2ax^2+3)$
$ec{j}\cdot abla\phi(ec{r})$	$2x^{3}yz(-ay^{2}+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$x^3y^2(-2az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2xz\left(x^{2}\left(2a^{2}r^{2}y^{2}-15ay^{2}+1\right)+3y^{2}\right)$

Table 77: Orbital expressions gaussians : 3, 2, 1. Factor e^{-ar^2} is omitted.

$\phi_{77} \to \phi_{3,3,0}$	
$\phi(\vec{r})$	$\int x^3y^3$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^2y^3(-2ax^2+3)$
$ec{j}\cdot abla\phi(ec{r})$	$x^3y^2(-2ay^2+3)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ax^3y^3z$
$\nabla^2 \phi(\vec{r})$	$2xy\left(x^2\left(2a^2r^2y^2 - 15ay^2 + 3\right) + 3y^2\right)$

Table 78: Orbital expressions gaussians : 3, 3, 0. Factor e^{-ar^2} is omitted.

$\phi_{78} \to \phi_{4,0,2}$	
$\phi(\vec{r})$	x^4z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2x^3z^2(-ax^2+2)$
$\vec{j}\cdot abla\phi(\vec{r})$	$-2ax^4yz^2$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2x^4z\left(-az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$2x^{2}\left(x^{2}\left(2a^{2}r^{2}z^{2}-15az^{2}+1\right)+6z^{2}\right)$

Table 79: Orbital expressions gaussians : 4, 0, 2. Factor e^{-ar^2} is omitted.

$\phi_{79} \to \phi_{4,1,1}$	
$\phi(ec{r})$	x^4yz
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2x^3yz\left(-ax^2+2\right)$
$\vec{j} \cdot abla \phi(\vec{r})$	$x^4z(-2ay^2+1)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$x^4y(-2az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2x^2yz(x^2(2a^2r^2-15a)+6)$

Table 80: Orbital expressions gaussians : 4, 1, 1. Factor e^{-ar^2} is omitted.

$\phi_{80} \to \phi_{4,2,0}$	
$\phi(\vec{r})$	x^4y^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2x^3y^2(-ax^2+2)$
$\vec{j} \cdot abla \phi(\vec{r})$	$2x^4y(-ay^2+1)$
$\vec{k} \cdot abla \phi(\vec{r})$	$-2ax^4y^2z$
$\nabla^2 \phi(\vec{r})$	$2x^{2}\left(x^{2}\left(2a^{2}r^{2}y^{2}-15ay^{2}+1\right)+6y^{2}\right)$

Table 81: Orbital expressions gaussians : 4, 2, 0. Factor e^{-ar^2} is omitted.

$\phi_{81} \to \phi_{5,0,1}$	
$\phi(\vec{r})$	x^5z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^4z\left(-2ax^2+5\right)$
$ec{j}\cdot abla\phi(ec{r})$	$-2ax^5yz$
$\vec{k}\cdot abla\phi(\vec{r})$	$x^5\left(-2az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$2x^3z\left(x^2\left(2a^2r^2-15a\right)+10\right)$

Table 82: Orbital expressions gaussians : 5, 0, 1. Factor e^{-ar^2} is omitted.

$\phi_{82} \to \phi_{5,1,0}$	
$\phi(\vec{r})$	x^5y
$\vec{i} \cdot \nabla \phi(\vec{r})$	$x^4y\left(-2ax^2+5\right)$
$\vec{j} \cdot abla \phi(\vec{r})$	$x^{5}(-2ay^{2}+1)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$-2ax^5yz$
$\nabla^2 \phi(\vec{r})$	$2x^{3}y\left(x^{2}\left(2a^{2}r^{2}-15a\right)+10\right)$

Table 83: Orbital expressions gaussians : 5, 1, 0. Factor e^{-ar^2} is omitted.

$\phi_{83} \to \phi_{6,0,0}$	
$\phi(\vec{r})$	x^6
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2x^{5}(-ax^{2}+3)$
$ec{j}\cdot abla\phi(ec{r})$	$-2ax^6y$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ax^6z$
$ abla^2 \phi(\vec{r})$	$2x^4 \left(x^2 \left(2a^2 r^2 - 15a\right) + 15\right)$

Table 84: Orbital expressions gaussians : 6, 0, 0. Factor e^{-ar^2} is omitted.

$\phi_{84} \to \phi_{0,0,7}$	
$\phi(ec{r})$	z^7
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axz^7$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2ayz^7$
$\vec{k} \cdot abla \phi(\vec{r})$	$z^6(-2az^2+7)$
$ abla^2\phi(\vec{r})$	$2z^{5}\left(z^{2}\left(2a^{2}r^{2}-17a\right)+21\right)$

Table 85: Orbital expressions gaussians: 0, 0, 7. Factor e^{-ar^2} is omitted.

$\phi_{85} \to \phi_{0,1,6}$	
$\phi(ec{r})$	yz^6
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axyz^6$
$\vec{j} \cdot abla \phi(\vec{r})$	$z^{6}\left(-2ay^{2}+1\right)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2yz^{5}(-az^{2}+3)$
$\nabla^2 \phi(\vec{r})$	$2yz^{4}\left(z^{2}\left(2a^{2}r^{2}-17a\right) +15\right)$

Table 86: Orbital expressions gaussians : 0, 1, 6. Factor e^{-ar^2} is omitted.

$\phi_{86} \to \phi_{0,2,5}$	
$\phi(\vec{r})$	y^2z^5
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^2z^5$
$ec{j}\cdot abla\phi(ec{r})$	$2yz^5\left(-ay^2+1\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$y^2z^4(-2az^2+5)$
$\nabla^2 \phi(\vec{r})$	$2z^{3}\left(y^{2}\left(2a^{2}r^{2}z^{2}-17az^{2}+10\right)+z^{2}\right)$

Table 87: Orbital expressions gaussians : 0, 2, 5. Factor e^{-ar^2} is omitted.

$\phi_{87} \to \phi_{0,3,4}$	
$\phi(\vec{r})$	$y^{3}z^{4}$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^3z^4$
$\vec{j} \cdot abla \phi(\vec{r})$	$y^2z^4(-2ay^2+3)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2y^3z^3(-az^2+2)$
$\nabla^2 \phi(\vec{r})$	$2yz^{2} \left(y^{2} \left(2a^{2}r^{2}z^{2} - 17az^{2} + 6\right) + 3z^{2}\right)$

Table 88: Orbital expressions gaussians : 0, 3, 4. Factor e^{-ar^2} is omitted.

$\phi_{88} \to \phi_{0,4,3}$	
$\phi(ec{r})$	y^4z^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^4z^3$
$ec{j}\cdot abla\phi(ec{r})$	$2y^3z^3\left(-ay^2+2\right)$
$\vec{k} \cdot abla \phi(\vec{r})$	$y^4z^2(-2az^2+3)$
$ abla^2\phi(\vec{r})$	$2y^{2}z\left(y^{2}\left(2a^{2}r^{2}z^{2}-17az^{2}+3\right)+6z^{2}\right)$

Table 89: Orbital expressions gaussians : 0, 4, 3. Factor e^{-ar^2} is omitted.

$$\begin{array}{c|cccc} \phi_{89} \to \phi_{0,5,2} & & & & & \\ \hline \phi(\vec{r}) & y^5z^2 & & & \\ \hline \vec{i} \cdot \nabla \phi(\vec{r}) & -2axy^5z^2 & & & \\ \vec{j} \cdot \nabla \phi(\vec{r}) & y^4z^2 \left(-2ay^2 + 5\right) & & & \\ \vec{k} \cdot \nabla \phi(\vec{r}) & 2y^5z \left(-az^2 + 1\right) & & & \\ \hline \nabla^2 \phi(\vec{r}) & 2y^3 \left(y^2 \left(2a^2r^2z^2 - 17az^2 + 1\right) + 10z^2\right) & & & \\ \hline \end{array}$$

Table 90: Orbital expressions gaussians : 0, 5, 2. Factor e^{-ar^2} is omitted.

$\phi_{90} \to \phi_{0,6,1}$	
$\phi(ec{r})$	y^6z
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^6z$
$ec{j}\cdot abla\phi(ec{r})$	$2y^5z(-ay^2+3)$
$\vec{k}\cdot abla\phi(\vec{r})$	$y^{6}\left(-2az^{2}+1\right)$
$\nabla^2 \phi(\vec{r})$	$2y^4z\left(y^2\left(2a^2r^2-17a\right)+15\right)$

Table 91: Orbital expressions gaussians : 0, 6, 1. Factor e^{-ar^2} is omitted.

$\phi_{91} \to \phi_{0,7,0}$	
$\phi(\vec{r})$	y^7
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axy^7$
$ec{j}\cdot abla\phi(ec{r})$	$y^{6}\left(-2ay^{2}+7\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2ay^7z$
$\nabla^2 \phi(\vec{r})$	$2y^5 \left(y^2 \left(2a^2r^2 - 17a\right) + 21\right)$

Table 92: Orbital expressions gaussians : 0, 7, 0. Factor e^{-ar^2} is omitted.

$\phi_{92} \to \phi_{1,0,6}$	
$\phi(\vec{r})$	xz^6
$\vec{i} \cdot \nabla \phi(\vec{r})$	$z^{6}\left(-2ax^{2}+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$-2axyz^6$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2xz^5\left(-az^2+3\right)$
$\nabla^2 \phi(\vec{r})$	$2xz^{4}\left(z^{2}\left(2a^{2}r^{2}-17a\right) +15\right)$

Table 93: Orbital expressions gaussians : 1, 0, 6. Factor e^{-ar^2} is omitted.

$\phi_{93} \to \phi_{1,1,5}$	
$\phi(\vec{r})$	xyz^5
$\vec{i} \cdot \nabla \phi(\vec{r})$	$yz^{5}\left(-2ax^{2}+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$xz^{5}(-2ay^{2}+1)$
$\vec{k}\cdot abla\phi(\vec{r})$	$xyz^{4}(-2az^{2}+5)$
$\nabla^2 \phi(\vec{r})$	$2xyz^{3}\left(z^{2}\left(2a^{2}r^{2}-17a\right) +10\right)$

Table 94: Orbital expressions gaussians : 1, 1, 5. Factor e^{-ar^2} is omitted.

$\phi_{94} \to \phi_{1,2,4}$	
$\phi(ec{r})$	xy^2z^4
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^2z^4(-2ax^2+1)$
$\vec{j}\cdot abla\phi(\vec{r})$	$2xyz^4\left(-ay^2+1\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$2xy^2z^3(-az^2+2)$
$\nabla^2 \phi(\vec{r})$	$2xz^{2}\left(y^{2}\left(2a^{2}r^{2}z^{2}-17az^{2}+6\right)+z^{2}\right)$

Table 95: Orbital expressions gaussians : 1, 2, 4. Factor e^{-ar^2} is omitted.

$\phi_{95} \to \phi_{1,3,3}$	
$\phi(\vec{r})$	xy^3z^3
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^3z^3(-2ax^2+1)$
$\vec{j} \cdot abla \phi(\vec{r})$	$xy^2z^3(-2ay^2+3)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$xy^3z^2(-2az^2+3)$
$\nabla^2 \phi(\vec{r})$	$2xyz\left(y^{2}\left(2a^{2}r^{2}z^{2}-17az^{2}+3\right)+3z^{2}\right)$

Table 96: Orbital expressions gaussians : 1, 3, 3. Factor e^{-ar^2} is omitted.

$\phi_{96} \to \phi_{1,4,2}$	
$\phi(\vec{r})$	xy^4z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^4z^2(-2ax^2+1)$
$ec{j}\cdot abla\phi(ec{r})$	$2xy^3z^2(-ay^2+2)$
$\vec{k}\cdot abla\phi(\vec{r})$	$2xy^4z(-az^2+1)$
$\nabla^2 \phi(\vec{r})$	$2xy^{2}\left(y^{2}\left(2a^{2}r^{2}z^{2}-17az^{2}+1\right)+6z^{2}\right)$

Table 97: Orbital expressions gaussians : 1, 4, 2. Factor e^{-ar^2} is omitted.

xy^5z
$y^5z(-2ax^2+1)$
$xy^4z(-2ay^2+5)$
$xy^{5}(-2az^{2}+1)$
$2xy^3z\left(y^2\left(2a^2r^2-17a\right)+10\right)$

Table 98: Orbital expressions gaussians : 1, 5, 1. Factor e^{-ar^2} is omitted.

$\phi_{98} \to \phi_{1,6,0}$	
$\phi(\vec{r})$	xy^6
$\vec{i} \cdot \nabla \phi(\vec{r})$	$y^{6}\left(-2ax^{2}+1\right)$
$ec{j}\cdot abla\phi(ec{r})$	$2xy^5(-ay^2+3)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-2axy^6z$
$ abla^2 \phi(\vec{r})$	$2xy^{4}\left(y^{2}\left(2a^{2}r^{2}-17a\right) +15\right)$

Table 99: Orbital expressions gaussians : 1, 6, 0. Factor e^{-ar^2} is omitted.

$\phi_{99} \to \phi_{2,0,5}$	
$\phi(ec{r})$	x^2z^5
$\vec{i} \cdot \nabla \phi(\vec{r})$	$2xz^{5}(-ax^{2}+1)$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2ax^2yz^5$
$\vec{k} \cdot abla \phi(\vec{r})$	$x^2z^4(-2az^2+5)$
$\nabla^2 \phi(\vec{r})$	$2z^{3}(x^{2}(2a^{2}r^{2}z^{2}-17az^{2}+10)+z^{2})$

Table 100: Orbital expressions gaussians : 2, 0, 5. Factor e^{-ar^2} is omitted.