Number Sense Exam 097, 2/21/2020

(1) $2468 \div 9$ has a remainder of _____

(2) $321 \times 9 - 1 =$

(3) $1216 \div 4 =$

(4) $\frac{19}{400} =$ _____ (decimal)

(5) $2016 \div 3 =$

(6) DCXX = _____ (Arabic Numeral)

(7) $12 + 4 \div 8 \times 6 =$

(8) 317 - 713 =

(9) $4133 \div 5 =$ _____ (decimal)

*(10) $94 \times 85 - 76 =$

(11) $8\frac{2}{3} - 4\frac{5}{6} =$ (mixed number)

 $(12) \ 2+4+6+8+10+\ldots+22 = \underline{\hspace{1cm}}$

(13) $13 \times 2121 =$

(14) The sum of the first 4 odd prime numbers is _____

(15) CMIX - CDIV = (Arabic Numeral)

(16) Which is larger: $\frac{7}{9}$ or 0.8?

 $(17) 48 \times 28 + 27 \times 28 =$

(18) $108 \times 109 =$

(19) 280 plus 30% of 320 is _____

*(20) 8 × 15 × 1947 = _____

 $(21) 12^3 =$

(22) $3\frac{1}{6} - 6\frac{1}{3} =$ (mixed number)

(23) If the area of a square is 72 sq. in., then the length of its diagonal is ______ in.

(24) 45 is $2\frac{1}{2}\%$ of _____

(25) If $f(x) = 2x^3 - 6x^2 + 6x - 2$, then f(4) =

(26) $21 \times 336.7 =$ _____ (decimal)

(27) How many positive integral divisors does
40 have?

(28) $91 \times 55 =$ _____

(29) Find the units digit of 4^9 .

 $*(30) \ 36089 \div 239 =$

 $(31) \ 33 \times 91 =$

(32) $112 \times 102 =$

 $(33) \ 109 \times 107 =$

(34) Given: $2, 7, 9, 16, 25, 41, k, 107, 173, \ldots, k =$

(35) $666\frac{2}{3}\%$ of $333\frac{1}{3}$ is _____

(36) A regular hexagon with side length of 4" has a perimeter of ______ inches

 $(37) 15^2 + 45^2 = \underline{\hspace{1cm}}$

(38) A square with a side length of $8\sqrt{5}$ has an area of _____

(39) If $f(x) = 4x^2 - 12x + 9$ then f(9) =

*(40) $31.25\% \times 481 \div \frac{1}{16} =$

 $(41) \ \frac{4}{25} - \frac{11}{76} = \underline{\hspace{1cm}}$

(43) The slope of the line x + 2y = 4 is _____

(44) The sum of the roots minus the product of the roots of $15x^2 - 13x + 10 = 0$ is _____

- (45) The sides of a right triangle are integers. If one leg is 7 in., then the other leg is _____ in.
- (47) The arithmetic mean of 22, 43, and 52 is _____
- (48) The number of distinct diagonals in a regular octagon is _____
- (49) If $7^2 + b^2 = 25^2$, then |b| =
- *(50) $12 \times 24 \times 36 \times 48 =$
- (51) The number of distinct diagonals of a regular nonagon is _____
- (52) Find the 25th term of $3, 8, 13, 18, 23, \dots$
- (53) $(3i-2) \div (3i+2) = a + bi. b =$
- $(54) \ 32_6 \div 5_6 \times 4_6 = \underline{\hspace{1cm}}_6$
- (55) The largest number of regions created by five intersecting lines is _____
- $(56) 1^2 + 2^2 + 3^2 + \ldots + 7^2 = \underline{\hspace{1cm}}$
- (57) If $\log 2 = .3$ and $\log 3 = .48$, then $\log 6 =$
- (58) The sum of the coefficients of the expansion $(4x 2y)^3$ is ______
- (59) $(3-2i)^2 = a + bi$ and a =_____
- *(60) 87493 \div 12497 \times 625 = ______
- (61) If f(x) = 2x 5 and g(x) = 4x + 3, then f(g(-1)) =
- (62) If $9^{(2x-1)} = 3^{(x+2)}$, then x =
- (63) $\frac{\pi}{5}$ radians = ______ degrees

- (64) $\sqrt{5329} =$
- $(65) \ 6+2+\frac{2}{3}+\ldots=$
- (66) 4 coins are tossed. What is that probability of getting all four tails?
- (67) $12^6 \div 5$ has a remainder of _____
- (68) $(x^3 + 2x^2 + x + 4) \div (x + 1)$ has a remainder of
- (69) Find the sum of the squares of the roots of the equation $x^2 + 5x + 6 = 0$.
- *(70) The surface area of a right cylinder with a radius of 3" and a height of 4" is _______ sq. in.
- (71) The phase shift of $5\cos 4(x+3) 2$ is _____
- (72) Let $f(x) = 2x^3 + 3x^2 + 2x + 3$. Find f''(-2).
- $(73) \ \frac{1}{18} + \frac{1}{36} + \frac{1}{60} = \underline{\hspace{1cm}}$
- $(74) \ \ 2(1!) + 3(2!) + 4(3!) + 5(4!) + 6(5!) = \underline{\hspace{1cm}}$
- $(75) 111 \times 27 =$
- (76) Find x, if det $\begin{bmatrix} 1 & -2 \\ x & 4 \end{bmatrix} = 5$.
- (77) $\frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} =$
- (78) The vertical displacement of $y = 5\cos 4(x+3) 2$ is
- $(79) 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 = \underline{\hspace{1cm}}$
- *(80) 223121 \div $(101 \times 11) =$