Probabilités et statistiques Épreuve du 18 mai 2022

Durée 1h30 — Calculatrices et documents interdits Attention : toutes les réponses doivent être justifiées.

Exercice 1. Les diagonales d'un polygone régulier sont les segments qui relient deux sommets non consécutifs. Par exemple, un carré possède deux diagonales, et un pentagone régulier possède cinq diagonales.

- 1. Combien de diagonales un polygone régulier à 6 côtés possède-t-il?
- 2. On fixe $N \ge 4$. Combien de diagonales un polygone régulier à N côtés possède-t-il? (Vérifiez votre résultat avec les calculs précédents!)
 - 1. On compte les diagonales et on en trouve neuf.
 - 2. Il y a $\binom{N}{2}$ façons de choisir deux sommets du polygone et de les relier. Parmi ces segments, il y en a N qui sont les N côtés du polygone. Le polygone possède donc $\binom{N}{2} N = \frac{N(N-1)}{2} N = \frac{N(N-3)}{2}$ diagonales.

Exercice 2. On jette deux dés à six faces équilibrés.

- 1. Quelle est la probabilité d'avoir obtenu au moins un cinq, sachant que la somme des deux dés est égale à dix?
- 2. Quelle est la probabilité d'avoir obtenu au moins un cinq, sachant que les résultats des deux dés sont différents?
 - 1. Notons A l'évènement « avoir obtenu au moins un cinq » et B l'évènement « la somme des deux dés vaut 10 ». Alors $\mathbb{P}(A \cap B) = \frac{1}{36}$ et $\mathbb{P}(B) = \frac{3}{36}$. Donc $P(A|B) = \frac{1}{3}$.
 - 2. Notons C l'évènement « avoir obtenu deux résultats différents ». On a $\mathbb{P}(A \cap C) = \frac{10}{36}$ et $\mathbb{P}(C) = \frac{30}{36}$, donc $\mathbb{P}(A|C) = \frac{10}{30} = \frac{1}{3}$.

Exercice 3. On considère une pièce de monnaie truquée, qui a une probabilité 1/3 de retomber sur pile, et une probabilité 2/3 de retomber sur face. On joue au jeu suivant. Le joueur paye 5 euros pour avoir le droit de jouer. Dans ce cas, il lance trois fois la pièce et gagne 6 euros à chaque fois qu'il obtient pile. On appellera *X* la variable aléatoire représentant le nombre de pile.

- 1. Quelles valeurs peut prendre *X*? Donner la loi de *X*.
- 2. Calculer l'espérance de *X*.
- 3. Est-il rentable de jouer?
 - 1. *X* peut prendre les valeurs 0, 1, 2 et 3. La loi de *X* est :

$$\mathbb{P}(X=0) = \left(\frac{2}{3}\right)^3 = \frac{8}{27}; \quad \mathbb{P}(X=1) = 3 \times \frac{1}{3} \times \left(\frac{2}{3}\right)^2 = \frac{4}{9}; \quad \mathbb{P}(X=2) = 3 \times \frac{2}{3} \times \left(\frac{1}{3}\right)^2 = \frac{2}{9}; \quad \mathbb{P}(X=3) = \left(\frac{1}{3}\right)^3 = \frac{1}{27}.$$

(On vérifie bien sûr que la somme de ces probabilités vaut bien $1: \frac{8}{27} + \frac{12}{27} + \frac{6}{27} + \frac{1}{27} = 1$.)

- 2. L'espérance de X est $\mathbb{E}(X) = 0 \times \frac{8}{27} + 1 \times \frac{12}{27} + 2 \times \frac{6}{27} + 3 \times \frac{1}{27} = \frac{27}{27} = 1$. (On pouvait aussi reconnaître une loi binomiale de paramètres n = 3 et $p = \frac{1}{3}$, l'espérance est donc np = 1.)
- 3. Le gain total du joueur est Y = -5 + 6X (on paye 5 euros pour jouer, et on gagne X fois six euros). On en déduit que l'espérance de gain est $\mathbb{E}(Y) = \mathbb{E}(-5 + 6X) = -5 + 6\mathbb{E}(X) = 1$. Il est donc rentable de jouer à ce jeu.

Exercice 4. Une compagnie d'assurances a classé ses assurés en trois catégories suivant le risque : faible, moyen, et haut. Les statistiques montrent que la probabilité d'avoir un accident sur une période d'un an sont de 5%, 15% et 30% dans ces trois catégories. D'autre part on observe que 20% des assurés sont dans la catégorie à bas risque, 50% à risque moyen, et 30% à haut risque.

- 1. Quelle est la probabilité d'avoir un accident (sur la période d'un an)?
- 2. Un certain assuré n'a pas d'accident sur la période d'un an. Quelle est la probabilité qu'il appartienne à la catégorie de risque faible?

Notons F, M et H les évènements correspondants aux catégories de risque faible, moyen et haut. Notons également A l'évènement correspondant à un accident. L'énoncé donne les informations suivantes :

$$\mathbb{P}(A|F) = \frac{5}{100} = \frac{1}{20}, \ \mathbb{P}(A|M) = \frac{15}{100} = \frac{3}{20}, \ \mathbb{P}(A|H) = \frac{30}{100} = \frac{3}{10},$$
$$\mathbb{P}(F) = \frac{20}{100} = \frac{1}{5}, \ \mathbb{P}(M) = \frac{50}{100} = \frac{1}{2}, \ \mathbb{P}(H) = \frac{30}{100} = \frac{3}{10}.$$

Le système des différents risques est un système complet d'évènements (les assuré sont dans une des trois catégories et une seule).

1. On écrit

$$\mathbb{P}(A) = \mathbb{P}(A|F)\mathbb{P}(F) + \mathbb{P}(A|M)\mathbb{P}(M) + \mathbb{P}(A|H)\mathbb{P}(H) = \frac{1}{20} \times \frac{1}{5} + \frac{3}{20} \times \frac{1}{2} + \frac{3}{10} \times \frac{3}{10}$$

$$= \frac{1}{100} + \frac{3}{40} + \frac{9}{100}$$

$$= \frac{2+15+18}{200} = \frac{35}{200} = \boxed{\frac{7}{40}} \quad (=0,175)$$

2. On veut calculer $\mathbb{P}(F|\bar{A})$. On utilise la méthode habituelle, sachant que $\mathbb{P}(\bar{A})$ se déduit de la question précédente :

$$\mathbb{P}(F|\bar{A}) = \frac{\mathbb{P}(F \cap \bar{A})}{\mathbb{P}(\bar{A})} = \frac{\mathbb{P}(\bar{A}|F)\mathbb{P}(F)}{\mathbb{P}(\bar{A})} = \frac{\mathbb{P}(\bar{A}|F)\mathbb{P}(F)}{1 - \mathbb{P}(A)} = \frac{\frac{19}{20} \times \frac{1}{5}}{\frac{33}{40}} = \frac{19}{20} \times \frac{1}{5} \times \frac{40}{33} = \boxed{\frac{38}{165}} \quad (\sim 0, 23)$$

Exercice 5. Trois chasseurs tirent simultanément sur 3 canards. On suppose que chaque chasseur , indépendamment des autres, choisit un canard au hasard et le tue. On appelle N la variable aléatoire égale au nombre de canards tués.

- 1. Calculer la loi de N.
- 2. Calculer l'espérance $\mathbb{E}(N)$.
 - 1. On a $\mathbb{P}(N=1)=3\times\frac{1}{27}=\frac{1}{9}$, $\mathbb{P}(N=3)=\frac{6}{27}$ ((il y a six permutations possibles pour les trois chasseurs), et donc, puisque la somme des probabilités doit valoir un, on a $\mathbb{P}(N=2)=\frac{18}{27}$. (Alternativement on peut compter les cas et ensuite vérifier que la somme des probabilités est bien égale à 1.)
 - 2. Première méthode : calcul de l'espérance avec la formule du cours. On a

$$\mathbb{E}(N) = \frac{1}{9} + 2 \times \frac{18}{27} + 3 \times \frac{6}{27} = \frac{3 + 36 + 18}{27} = \frac{57}{27} = \boxed{\frac{19}{9}}$$

Deuxième méthode, sans utiliser la première question :

Notons C_1 la variables aléatoire qui vaut 1 si le premier canard est touché et 0 sinon, et de même pour C_2 et C_3 . La probabilité que le premier canard survive vaut $\mathbb{P}(C_1 = 0) = (2/3)^3$, donc on a $\mathbb{E}(C_1) = 1 - (2/3)^3 = \frac{19}{27}$. Les variables C_2 et C_3 ont la même loi et la même espérance puisque la situation est la même pour tous les canards. D'autre part, on a $N = C_1 + C_2 + C_3$ et donc par

linéarité de l'espérance,
$$\mathbb{E}(N) = \mathbb{E}(C_1) + \mathbb{E}(C_2) + \mathbb{E}(C_3) = 3\mathbb{E}(C_1) = 3 \times \frac{19}{27} = \boxed{\frac{19}{9}}$$

Exercice 6. On définit une fonction $g : \mathbb{R} \to \mathbb{R}$ de la façon suivante : si t < -1 ou t > 1, alors g(t) = 0. Par contre, si $t \in [-1, 1]$, alors $g(t) = (1 - t^2)^2$.

- 1. Que vaut $\int_{-\infty}^{+\infty} g(t)dt$?
- 2. Soit C la constante telle que $\int_{-\infty}^{+\infty} Cg(t) dt = 1$. Dans la suite, on définit la fonction f par f(t) = Cg(t) pour tout t. Montrer que f est une densité de variable aléatoire réelle continue, que l'on note X.
- 3. Calculer l'espérance de *X*.
- 4. Calculer la variance de *X*.
 - 1. On a

$$\int_{-\infty}^{+\infty} g(t)dt = \int_{-\infty}^{-1} g(t)dt + \int_{-1}^{1} g(t)dt + \int_{1}^{+\infty} g(t)dt = 0 + \int_{-1}^{1} g(t)dt + 0 = \int_{-1}^{1} (1 - t^{2})^{2} dt$$
$$= \int_{-1}^{1} (t^{4} - 2t^{2} + 1)dt = \left[\frac{t^{5}}{5} - \frac{2t^{3}}{3} + t \right]_{-1}^{1} = \boxed{\frac{16}{15}}$$

- 2. D'après la question précédente, on a $C = \frac{15}{16}$. On vérifie les trois points du « cahier des charges » des densités de probabilités : la fonction f est positive, continue par morceaux, et son intégrale sur \mathbb{R} vaut 1.
- 3. L'espérance de la variable aléatoire *X* vaut d'après le cours

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} t f(t) dt = \int_{-1}^{1} (t^5 - 2t^3 + t) dt = 0,$$

puisque l'on intègre une fonction impaire entre -1 et 1. Le résultat est cohérent avec le fait que la densité de probabilité est paire, c'est-à-dire symétrique par rapport à l'abscisse x = 0.

4. Par définition, la variance de X vaut

$$V(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \mathbb{E}(X^2) = \int_{-\infty}^{+\infty} t^2 f(t) dt = \int_{-1}^{1} (t^6 - 2t^4 + t^2) dt$$
$$= \left[\frac{t^7}{7} - \frac{2t^5}{5} + \frac{t^3}{3} \right]_{-1}^{1} = 2\left(\frac{1}{7} - \frac{2}{5} + \frac{1}{3} \right) = 2\left(\frac{15 - 42 + 35}{105} \right) = \boxed{\frac{16}{105}}$$