## 0.1 Transmissão Eletromagnética

A comunicação através do rádio está relacionada com a existência de uma onda eletromagnética interligando uma estação transmissora a uma ou mais estações receptoras, como mostra a figura 1.A estação transmissora é normalmente composta por um transmissor, que gera a energia de radiofreqüência, uma linha de transmissão, que serve para conduzir a energia de RF produzida pelo transmissor, e uma antena, que transforma essa energia em uma onda eletromagnética. A estação receptora é composta por uma antena, uma linha de transmissão e um receptor. A finalidade da natena receptora é extrair uma parte da energia da onda eletromagnética até o receptor, onde é devidamente processada.

Uma OEM(Onda Eletromagnética) é composta por um campo elétrico  $\overrightarrow{E}$  e um campo magnético  $\overrightarrow{H}$ 



Figura 1: Sistema de comunicação via rádio

perpendiculares entre si e ao sentido de propagação  $\overrightarrow{P}$ , como mostra a figura 2. A OEM propaga-se



Figura 2: Onda eletromagnética polarizada verticalmente

no vácuo à velocidade da luz. Duas cristas consecutivas do campo elétrico estarão separadas por uma distância igual ao seu comprimento de onda, dado por:

$$\lambda = \frac{c}{f} \tag{1}$$

onde:

 $\lambda \Longrightarrow =$ comprimento de onda, em m

 $c \Longrightarrow = \text{velocidade da luz, igual a } 3 \times 10^8 \text{ m/s}$ 

 $f \Longrightarrow$ frequência da OEM, em Hz

A direção do campo elétrico de uma OEM é paralela ao eixo longitudinal do elemento irradiante da antena e determina sua polarização, como mostra a figura 3.

No espaço, as OEM espalham-se uniformemente um todas as direções a partir do ponto de origem,



Figura 3: Polarização de uma onda eletromagnética

fazendo com que a densidade de potência seja inversamente proporcional ao quadrado da distância, como mostra a figura 4.

O enfraquecimento da OEM, nessas condições, é um fenômeno puramente geométrico e sua inten-



Figura 4: Frente de onda esféricas irradiadas por uma fonte isotrópica

sidade é dada por:

$$P = \frac{P_t}{4\pi r^2} \tag{2}$$

onde:

 $P \Longrightarrow$  a densidade de potência à distância r de uma fonte isotrópica, em  $W/m^2$ 

 $r \Longrightarrow \operatorname{dist}$ ância entre a origem e a frente de onda, em m;

 $P_t \Longrightarrow \text{potência transmitida, em W.}$ 

**Exemplo**: Calcular a densidade de potência a 10 km de uma fonte isotrópica de 10W. obs:Uma fonte isotrópica irradia a onda eletromagnética uniformemente em todas as direções. Quando uma OEM se propaga na superfície terrestre, ou seja, em condições diversas aquelas do espaço livre, percebe-se a ocorrência de reflexão, refração e difração, como mostra a figura 5, de forma semelhante ao que ocorre nas ondas de luz, descontadas as diferenças de comprimento de

onda.

Como no caso das ondas luminosas, a reflexão depende da existência de uma superfície condutora.



Figura 5: Reflexão, refração e difração de uma OEM

Também é importante que o vetor do campo elétrico da OEM seja perpendicular a essa superfície. A relação entre a intensidade da onda refletida e da onda incidente é chamada de coeficiente de reflexão, e varia de 0, para isolantes, até 1, para condutores perfeitos.

A reflexão mais comum são as que ocorrem em montanhas, solos e edifícios.

A refração ocorre da passagem da onda eletromagnética por regiões com índices de refrações diferentes, ocasionando o fenômeno da reflexão ionosférica, causada pela variação da densidade ionosférica e consequentemente do seu índice de refração, vemos um exemplo disto na figura 6



Figura 6: Reflexão na camada ionosférica

## 0.1.1 Propagação eletromagnética no espaço

Se as ondas de rádio se propagam, diferentemente, conforme suas frequência, podendo, ou não, atingir o destinatário, é importante conhecer este mecanismo de propagação. Suponhamos um transmissor potente, cuja antena irradie em todas as direções, ondas esféricas e concêntricas . As partes inferiores das ondas se arrastam sobre a superfície da Terra e se inclinam um pouco, deformando a forma esférica. As partes superiores se expandem livres para o espaço. A parte inferior perde energia para o terreno e, portanto, sofre mais atenuação que a superior, sendo denominada "onda terrestre".

A parte das ondas que se dirige para o espaço encontra a ionosfera, composta de 3 camadas sucessivas, que vão de 80Km a 300Km de altura, conforme mostra a figura 6. Dependendo da frequência, a onda

se refrata em uma altitude intermediária e volta para a Terra. Ao atingir a Terra, após a primeira zona de silêncio, diz-se que a onda deu o "primeiro pulo". Nesse ponto, por vezes a milhares de quilômetros do transmissor, a recepção fica boa novamente, podemos ver através da figura 7 o pulo realizado pelo onda eletromagnética, considerando o planeta terra.



Figura 7: Reflexão na camada ionosférica

As estações locais de radiodifusão, que apenas cobrem regiões próximas, operam em frequência mais baixas- ondas médias ou "medium waves" (535kHz - 1605kHz) e usam a onda terrestre. Os programas internacionais operam em frequência mais elevadas - ondas curtas ou "SHORT WAVES" (2MHz - 25MHz) utilizam as ondas celestes (ondas refletidas na ionosfera, este tipos de propagações podemos observar na figura 8.

E, se elevarmos mais a frequência do transmissor? Nesse caso, as ondas já começam a se comportar como ondas de luz: podem ser enfocadas, caminham em linha reta, etc. Esta gama de frequências entra na faixa denominada VHF(Very High Frequency), usada nas rádios FM e TV, e na faixa UHF(Ultra High Frequency), usada em TV e Telecomunicações. Frequências mais elevadas ainda entram na denominação genérica de microondas(comprimento de onda muito curto, da ordem de centímetros). Acontece que a ionosfera se torna mais "transparente" para frequências mais altas, podemos observar na figura 9 a onda eletromagnética ultrapassando a camada ionosférica e indo para o espaço. Nesta frequências que utilizamos as comunicações via satélite.

Nestas frequências podemos imaginar que a antena transmissora deve iluminar diretamente a receptora, não podendo haver obstáculos intermediários(morros,prédios, etc). Por este motivo, este tipo de propagação é denominada "visada direta". Na figura 10 temos uma OEM que não consegue chegar na antena de uma das residências devido a curvatura da terra, devido a isso, não se pode ver TV ou escutar FM de emissoras distantes. Para que isto aconteça é necessásrio se transmitir estes programas, via sistema de telecomunicações e irradiá-los nas cidades de interesse. Um exemplo pode ser visto na figura 11, onde o sinal a ser transmitido e repassado de repetidora a repetidora até chegar a seu destino.



Figura 8: Propagação da onda eletromagnética



Figura 9: Propagação da onda eletromagnética onda visada direta



Figura 10: Bloqueio da propagação devido a curvatura da terra



Figura 11: Utilização de repetidoras para a transmissão da onda visada direta

Quando as emissoras de radiodifusão começaram a surgir desordenadamente, principalmente nos EUA e seguido de perto pela Europa, um verdadeiro festival de interferências se instalou. Emissoras próximas usavam portadoras de frequências próximas e se interferiam. Emissoras longínguas também interferiam, pois o mecanismo de propagação em ondas terrestres e celestes não eram bem conhecidos. Logo surgiu a necessidade de posicionar frequências e autorizar estas emissões, de maneira disciplinada. Os governos tomaram a si, esta responsabilidade. Por acordo internacional, as frequências foram atribuídas a determinados serviços, como demostra a tabela da figura 12 e 13.

| ALOCAÇÃO DE FREQUENCIAS |            |                                  |                                                                                                       |  |
|-------------------------|------------|----------------------------------|-------------------------------------------------------------------------------------------------------|--|
| FAIXA                   | DESIGNAÇÃO | NOME POPULAR                     | UTILIZAÇAO                                                                                            |  |
| 300Hz - 3.000Hz         | ELF        | Ondas<br>extremamentes<br>longas | Comunicações para<br>submarinos,<br>escavações sem<br>minas, etc                                      |  |
| 3kHz -30kHz             | VLF        | Ondas muito longas               |                                                                                                       |  |
| 30kHz - 300kHz          | LF         | Ondas longas                     | Auxílio à<br>navegação aérea<br>serviços marítimos,<br>radiofusão local                               |  |
| 300kHz - 3000kHz        | MF         | Ondas médias                     |                                                                                                       |  |
| 3MHz - 30MHZ            | HF         | Ondas tropicais<br>Ondas curtas  | radiofusão local e<br>distante,<br>comunicações<br>marítimas                                          |  |
| 30MHz - 300MHz          | VHF        |                                  | TV-FM- Comunicações comerciais, particulares, segurança pública, faixa do cidadão, radioamadores, etc |  |
| 300MHz-3000MHz          | UHF        |                                  | Comunicação<br>pública em todos os                                                                    |  |
| 3GHz-30GHz              | SHF        | Microondas                       | sistemas. Sistemas<br>particulares,                                                                   |  |
| 30 GHz-300GHz           | EHF        |                                  | empresas,<br>governos,<br>etc                                                                         |  |

Figura 12: Atribuição das faixas de frequências



Figura 13: Atribuição das faixas de frequências

As siglas são definidas da seguinte forma:

| ELF | Extremely Low Frequency         |  |  |
|-----|---------------------------------|--|--|
|     | (Extremamente baixa frequência) |  |  |
| VLF | Very Low Frequency              |  |  |
|     | (Muito baixa frequência)        |  |  |
| LF  | Low Frequency                   |  |  |
|     | (Baixa frequência)              |  |  |
| MF  | Medium Frequency                |  |  |
|     | (Média frequência)              |  |  |
| HF  | High Frequency                  |  |  |
|     | (Alta frequência)               |  |  |
| VHF | Very High Frequency             |  |  |
|     | (Muita alta frequência)         |  |  |
| UHF | Ultra High Frequency            |  |  |
|     | (Extremamente alta frequência)  |  |  |
| SHF | Super High Frequency            |  |  |
|     | (Super alta frequência)         |  |  |
| EHF | Extremely High Frequency        |  |  |
|     | (Extremamente alta frequência)  |  |  |

## 0.2 Canais de comunicação

Uma característica importante nos Sistemas de Telecomunicações são os seus respectivos canais de comunicação, que representam as infovias nas quais se deseja transmitir/receber informação. Estes canais possuem particularidades dependendo de sua aplicação, vejam alguns exemplos:

| Sistema de Telecomunicações | Particularidade           | definição            |
|-----------------------------|---------------------------|----------------------|
|                             | Tipo de propagação        | visada direta        |
|                             | Faixa de operação         | VHF                  |
|                             | Faixa de frequência       | 88 à 108MHz          |
| FM comercial                | Banda do canal            | 200kHz               |
|                             | Quantidade de canais      | 100                  |
|                             | Freq. máxima mensagem     | 15khz                |
|                             | Portadora(ela             |                      |
|                             | dependerá da rádio em que |                      |
|                             | deseja transmitir, neste  | $104.1 \mathrm{MHz}$ |
|                             | exemplo, será utilizada a |                      |
|                             | rádio SOCIEDADE de Volta  |                      |
|                             | Redonda)                  |                      |
|                             | Tipo de propagação        | ondas terrestres     |
|                             | Faixa de operação         | MF                   |
|                             | Faixa de frequência       | 535kHz à 1650kHz     |
| AM comercial                | Banda do canal            | 10kHz                |
|                             | Quantidade de canais      | 107                  |
|                             | Freq. máxima mensagem     | 5khz                 |
|                             | Portadora(ela             |                      |
|                             | dependerá da rádio em que |                      |
|                             | deseja transmitir, neste  | $1220 \mathrm{kHz}$  |
|                             | exemplo, será utilizada a |                      |
|                             | rádio GLOBO do Rio        |                      |
|                             | de Janeiro)               |                      |

Exercício 0.1 Repita o que foi feito na tabela anterior para os Sistemas de TV comercial.

## 0.2.1 A voz e o ouvido humano

Um objetivo que se procura num canal de comunicação é reduzir ao máximo a sua banda, no intuito de se aumentar o número de canais para utilização, veja, por exemplo, um canal de FM comercial, hoje o número máximo de canais da faixa utilizada é de 100 canais, como pode ser visto na tabela anterior, contudo se fosse possível diminuir a sua banda para 100kHz o número de canais, para a faixa utilizada, iria para 200 canais. Portanto, a diminuição da banda de transmissão é importante. Muitos Sistemas de Telecomunicações visam a transmissão de canais de voz e estudos revelaram que:

- Ao se falar, uma gama bastante grande de frequências está presente na voz, que se comporta como um "som composto". A voz apresenta uma faixa de frequência que vai de aproximadamente de 20Hz a 12000Hz.
- 2. Testes audiométricos verificaram que o ouvido humano, que é receptor, é sensível a frequências que vão de 16Hz a 16000Hz, aproximadamente. Estas são, então, as faixas de frequências da voz e do ouvido humano.
- 3. Ao se falar frente a um bom microfone, este produz um sinal elétrico, que é a réplica do som que recebe. Ele é errático, cheio de picos e vales, conforme as nuances da voz. Assim, o sinal

elétrico de voz é, também composto por uma faixa de freqüências. Só que, agora, tratam-se de sinais elétricos.

4. Testes exaustivos mostraram que basta uma faixa de 0-4kHz para transmitir um sinal de voz, por telefonia. Com esta faixa se obtém boa inteligibilidade e pode-se até identificar a voz do interlocutor. Esta faixa ficou conhecida como "faixa de voz".

Estas informações mostram que um canal de voz pode ser transmitido com uma frequência máxima de 4kHz, e este valor é utilizado em diversos projetos de Sistemas de Telecomunicações, como por exemplo: Sistema de Telefonia.