Формулы тригонометрии

Основное тригонометрическое тождество

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} \quad \tan^2 \alpha + 1 = \frac{1}{\cos^2 \alpha} \quad \cot \alpha = \frac{\cos \alpha}{\sin \alpha} \quad 1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$$

$$\cot \alpha \cdot \tan \alpha = 1$$

$\cos \alpha \cdot \sin \alpha = 1$	
Двойные углы	Синус суммы, косинус разности
$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$	$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \sin\beta\cos\alpha$
$\cos 2\alpha = \sin^2 \alpha - \cos^2 \alpha$	$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \sin\beta\cos\alpha$
$\cos 2\alpha = 2\cos^2 \alpha - 1$	$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\beta\sin\alpha$
$\cos 2\alpha = 1 - 2\sin^2 \alpha$	$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\beta\sin\alpha$
$\tan 2\alpha = 2\frac{\tan \alpha}{1 - \tan^2 \alpha}$	$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \cdot \tan\beta}$
Сумма синусов, разность косинусов	Преобразование произведения в сумму
$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$	$2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$
$\sin \alpha - \sin \beta = 2\sin \frac{\alpha - \beta}{2}\cos \frac{\alpha + \beta}{2}$	$2\sin\alpha\sin\beta = \cos(\alpha - \beta) + \cos(\alpha - \beta)$
$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$	$2\sin\alpha\cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$
$\cos \alpha - \cos \beta = -2\sin \frac{\alpha - \beta}{2}\sin \frac{\alpha + \beta}{2}$	
Универсальная тригонометрическая замена	Формулы понижения степени
Пусть $t = \tan \frac{\alpha}{2}$. Тогда	
$\sin \alpha = \frac{2t}{1+t^2} \cos \alpha = \frac{1-t^2}{1+t^2}$	$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2} \sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$
$\tan \alpha = \frac{2t}{1 - t^2}$	

Тройные углы

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha \quad \cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$$