- Recall, our orbit is fully specified with knowledge of $\vec{\mathbf{r}}$ and $\vec{\mathbf{v}}$ at ay given time, t
- Orbital maneuvers are used to move a spacecraft from one orbit to another
 - e.g., coplanar maneuvers, plane-change maneuvers, orbit phasing, rendezvous, gravity assists

- Impulsive maneuvers change an orbit using one or more short duration bursts, these impulsive thrusts are treated as
 instantaneous changes to the velocity vector
 - Examples include: single-impulse transfer, Hohmann transfer, bi-elliptic transfer
- Low-thrust maneuvers change an orbit by providing a small amount of thrust over long intervals, often using continual and/or constant throughout the maneuver

The most general type of orbital maneuvers rely on solving **Lambert's Problem**, which allows you to determine an orbit from two position vectors and the time taken to travel between them

We'll focus on impulsive maneuvers in this section

Single Impulse Maneuvers

- Simplest type of maneuver, requires only one thrust impulse
- Two orbits (initial and desired) must share at least one point of intersection, where the thrust will be applied
- Instantaneous change in the velocity vector, $\Delta \vec{v}$, is applied via an impulsive thrust to change \vec{v}_1 to \vec{v}_2
- The change in velocity is given by: $\Delta \vec{\mathbf{v}} = \vec{\mathbf{v}}_2 \vec{\mathbf{v}}_1$
- The magnitude of the velocity change, "delta-v" is given by:

$$\Delta v = \|\Delta \vec{\mathbf{v}}\|$$

Two important maneuver considerations:

- Delta-v (Δv): a measure of fuel consumption, minimum fuel maneuvers require minimum Δv
- Time of Flight (TOF): time required to complete a maneuver

Usually, a compromise is required between Δv and TOF

Desired orbit

Coplanar Maneuvers

- In coplanar maneuvers, the only orbital elements that change are: α , e, and ω (size, shape, and orientation of orbit in plane)
- We will consider all tangential thrusts when \vec{r} and \vec{v} are perpendicular (change of magnitude, not direction)

Consider: Circular to Elliptical, Elliptical to Circular, and Hohmann Transfers

Lecture 6

vis-viva equation

("living force")

$$v = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a}\right)}$$

Circular Orbit:

$$e = 0$$

$$v_{circ} = \sqrt{\frac{\mu}{r}}$$

Circular to Elliptical Transfer

Transfer from orbit 1 (circular) to orbit 2 (elliptical)

Orbital speed (orbit 1)

$$v_1 = \sqrt{\mu \left(\frac{2}{r_1} - \frac{1}{a}\right)} = \sqrt{\frac{\mu}{r_1}}$$

Orbital speed (orbit 2)

$$v_2 = \sqrt{\mu \left(\frac{2}{r_1} - \frac{1}{a}\right)}$$

 $\sqrt{r_1}$ a

Clarkson

If $a > r_1$, then $v_2 > v_1$

$$\Delta v = v_2 - v_1$$

$$\Delta v = \sqrt{\mu \left(\frac{2}{r_1} - \frac{1}{a}\right)} - \sqrt{\frac{\mu}{r_1}}$$

If $a < r_1$, then $v_1 > v_2$

$$\Delta v = v_1 - v_2$$

$$\Delta v = \sqrt{\frac{\mu}{r_1}} - \sqrt{\mu \left(\frac{2}{r_1} - \frac{1}{a}\right)}$$

Coplanar Maneuvers

- In coplanar maneuvers, the only orbital elements that change are: a, e, and ω (size, shape, and orientation of orbit in plane)
- We will consider all tangential thrusts when \vec{r} and \vec{v} are perpendicular (change of magnitude, not direction)

Consider: Circular to Elliptical, Elliptical to Circular, and Hohmann Transfers

Lecture 6

vis-viva equation

("living force")

$$v = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a}\right)}$$

Circular Orbit:

$$e = 0$$

$$v_{circ} = \sqrt{\frac{\mu}{r}}$$

Elliptical to Circular Transfer

Transfer from orbit 1 (elliptical) to orbit 2 (circular)

Orbital speed (orbit 1)

If
$$a > r_2$$
, then $v_1 > v_2$

$$v_1 = \sqrt{\mu \left(\frac{2}{r_2} - \frac{1}{a}\right)}$$

Orbital speed (orbit 2)

$$v_2 = \sqrt{\mu \left(\frac{2}{r_2} - \frac{1}{a}\right)} = \sqrt{\frac{\mu}{r_2}}$$
 If $a < r_2$, then $v_2 > v_1$

$$\Delta v = v_1 - v_2$$

$$\Delta v = \sqrt{\mu \left(\frac{2}{r_2} - \frac{1}{a}\right)} - \sqrt{\frac{\mu}{r_2}}$$

$$\Delta v = v_2 - v_1$$

$$\Delta v = \sqrt{\frac{\mu}{r_2}} - \sqrt{\mu \left(\frac{2}{r_2} - \frac{1}{a}\right)}$$

Example

A satellite is in a circular orbit about the Earth at an altitude of 429 km and needs to be placed into an elliptical orbit with an apogee distance 7500 km. Find: (a) the Δv required for the maneuver, and (b) the time of flight for transfer.

You are given: $R_{\oplus} = 6371 \text{ km}$ and $\mu_{\oplus} = 398 600 \text{ km}^3/\text{s}^2$.

(a) Circular to Elliptical Transfer

Transfer from orbit 1 (circular) to orbit 2 (elliptical)

$$r_1 = R_{\oplus} + h_1 = 6371 \text{ km} + 429 \text{ km}$$

 $r_1 = 6800 \text{ km}$

 $r_{2a} = 7500 \text{ km}$

$$r_{2p} = r_1 = 6800 \text{ km}$$

$$2a = r_{2a} + r_{2p} = 14\,300 \,\mathrm{km}$$

a = 7150 km

If
$$a > r_1$$
, then $v_2 > v_1$

$$\Delta v = \sqrt{\mu \left(\frac{2}{r_1} - \frac{1}{a}\right)} - \sqrt{\frac{\mu}{r_1}}$$

(a) Circular to Elliptical Transfer

Transfer from orbit 1 (circular) to orbit 2 (elliptical)

$$r_1 = R_{\oplus} + h_1 = 6371 \,\mathrm{km} + 429 \,\mathrm{km}$$

 $r_1 = 6800 \text{ km}$

 $r_{2a} = 7500 \text{ km}$

 $r_{2p} = r_1 = 6800 \text{ km}$

 $2a = r_{2a} + r_{2p} = 14\,300 \text{ km}$

a = 7150 km

$$\Delta v = \sqrt{\left(398\,600\,\frac{\text{km}^3}{\text{s}^2}\right)\left(\frac{2}{6800\,\text{km}} - \frac{1}{7150\,\text{km}}\right)} - \sqrt{\frac{398\,600\,\frac{\text{km}^3}{\text{s}^2}}{6800\,\text{km}}}$$

$$\Delta v = 7.841 \text{ km/s} - 7.656 \text{ km/s}$$

$$\Delta v = 0.185 \text{ km/s}$$

(b) Single-impulse maneuver, so: TOF = 0

Hohmann Transfer

- Transfer between two concentric circular orbits of radius r_1 and r_2
- Both orbits have the same direction of motion i.e., both *prograde* or both *retrograde*
- There is no point in common, so single impulse transfer not possible

Consists of two tangential maneuvers in sequence:

- 1. Circular to elliptical transfer
- 2. Elliptical to circular transfer

First impulse \rightarrow changes orbit to an elliptic transfer orbit that is tangent to the circular orbit at its <u>periapsis</u> (or apoapsis, if $r_1 > r_2$)

Second impulse \rightarrow applied at <u>apoapsis</u> (or periapsis, if $r_1 > r_2$), and circularizes the elliptic transfer orbit

Direction Δv 's are applied depends on the relative size of the two circular orbits

Hohmann Transfer

We can see that the semimajor axis of the transfer orbit is given by:

$$a_t = \frac{r_1 + r_2}{2}$$

In the case shown, $r_2 > r_1$ (i.e., first impulse at periapsis, $\Delta v_{\rm p}$, second impulse at apoapsis, $\Delta v_{\rm a}$) Orbital speeds at transfer points:

Orbit 1:
$$v_1 = \sqrt{\frac{\mu}{r_1}}$$

Transfer Orbit
$$v_{tp} = \sqrt{\mu \left(\frac{2}{r_1} - \frac{1}{a_t}\right)}$$
 at Periapsis:

Transfer Orbit at Apoapsis:
$$v_{ta} = \sqrt{\mu \left(\frac{2}{r_2} - \frac{1}{a_t}\right)}$$

Orbit 2:
$$v_2 = \sqrt{\frac{\mu}{r_2}}$$

Circular to Elliptical Transfer:

$$a_t > r_1$$
, so $v_{tp} > v_1$

$$\Delta v_p = v_{tp} - v_1 = \sqrt{\mu \left(\frac{2}{r_1} - \frac{1}{a_t}\right)} - \sqrt{\frac{\mu}{r_1}}$$

Elliptical to Circular Transfer:

$$a_t < r_2$$
, so $v_2 > v_{ta}$

$$\Delta v_a = v_2 - v_{ta} = \sqrt{\frac{\mu}{r_2}} - \sqrt{\mu \left(\frac{2}{r_2} - \frac{1}{a_t}\right)}$$

Total velocity change for the maneuver:

$$\Delta v = \left| \Delta v_p \right| + \left| \Delta v_a \right|$$

$$\Delta v_a = v_2 - v_{ta} = \sqrt{\frac{\mu}{r_2}} - \sqrt{\mu \left(\frac{2}{r_2} - \frac{1}{a_t}\right)} \qquad \Delta v = \left| \sqrt{\mu \left(\frac{2}{r_1} - \frac{1}{a_t}\right)} - \sqrt{\frac{\mu}{r_1}} \right| + \left| \sqrt{\frac{\mu}{r_2}} - \sqrt{\mu \left(\frac{2}{r_2} - \frac{1}{a_t}\right)} \right|$$

Hohmann Transfer

With the transfer orbit, Time of Flight is no longer zero:

Recall, period for an ellipse:

$$T = 2\pi \sqrt{\frac{a^3}{\mu}}$$

<u>Time of Flight</u>: half of the period of the transfer ellipse:

 $\Delta v_{\rm a}$

 $2a_t$

Transfer Orbit

 r_2

Orbit 2

 $\Delta v_{
m p}$

Orbit 1

Hohmann Transfer's are also possible between co-planar elliptical orbits, provided they have the same apse line

