Directed by : Hugo Bantignies

Supervised by: Benjamin Lecouteux, Didier Schwab

Laboratoire d'Informatique de Grenoble (LIG), Team GETALP

M2 MOSIG Research Internship Defense, 28th June 2022

Introduction

Introduction

0000

Pictogram Grid Communication System (PGCS)

Purpose: Build sequences of pictograms to communicate.

Figure 1: Example of a pictogram grid page.

- Used in AAC (aided system).
- Pictogram grids diversity (size, usage, complexity, etc.)

Introduction

PGCS: Organization and Displays

- Semantic based
 - Taxonomic display
 - Activity/Contextual display

Figure 2: Taxonomic display example.

Syntactic based

Figure 3: Semantic-Syntactic display example.

Problem Statement

- Manually conceived by Speech-Pathologists.
- Grid Efficiency definition.
- Dependencies: Displays, User, Way of Use.

Optimized Pictogram Grid : Efficient and Satisfy Properties.

Problem:

How to generate an optimized pictogram grid automatically?

Related Work

Preliminary Works

Grid Efficiency Evaluation (Chasseur *et Al.*, 2020)

- Syntactic information only (distance).
- Build an edge graph for each grid.

Automatic pictogram grid generation with a Genetic Algorithm (Vargas *et Al.*, 2021)

- No mutations.
- Crossover: Blow-up and modify the grid structure.

000

Related Work

- Inspired from Darwin's Evolution Theory.
- Purpose : Solving optimization problems.
- Promising results on Pictogram Grid.

Figure 4: Genetic Algorithm Workflow.

Grid Structure

- Three elements : Grid, Page, Pictogram
- Page-Tree Structure

Figure 5: Grid hierarchy and structure.

Hybrid Grid Efficiency Cost

Pictogram Distances

Page Coherence

Figure 6: Scheme illustrating the Distance Cost and the Coherence Cost.

Cost of a Grid

$$Cost(G) = log(Cohe(G)) * \alpha + log(Dist(G, C)) * (1 - \alpha)$$
 (1)

Hugo Bantignies

Laboratoire d'Informatique de Grenoble, GETALP

Optimized Pictogram Grid Generation Pipeline

Figure 7: Pictogram Grid Optimization Pipeline.

Idea: Transmit X and Y pictogram position information to X'.

Figure 8: Crossover based on pictogram position.

■ Crossover Information Rate : CRI

Genetic Operators: Mutations

Figure 9: Scheme of the pictogram-based mutations.

- Mutation probabilities : P_{mi}
- Avoid vocabulary loss!

Figure 10: Preprocessing pipeline for raw corpora.

Experiments and Results

Experiments and Results

Grid Optimization Experiments

■ Two different sized corpora :

Corpus	Vocabulary Size	Lines
AnimalTexts (AT)	99	49
TCOF Philosophy (Tcof)	2 402	9 635

- Three optimized grid generation :
 - Distance (semantic-syntactic display)
 - Coherence (taxonomic display)
 - Hybrid (contextual display)

Fitness Convergences

0000000

- (a) Fitness of AT_{Dist}
- (b) Fitness of AT_{Cohe}
- (c) Fitness of AT_{Hybrid}

Figure 11: Evolution of the fitness for the AnimalTexts corpus.

- (a) Fitness of Tcof_{Dist}
- (b) Fitness of Tcof_{Cohe} (c) Fitness of Tcof_{Hybrid}

Figure 12: Evolution of the fitness for the TCOF corpus.

Distance Optimization

(a) Page "default0" from AT_{Dist}

(b) Heatmap of word occurences from TcofDiet

Figure 13: Results of the optimization with distance experiment.

Coherence Optimization

(a) Similarity heatmap of the page "accueil" from AT Cohe

(b) Similarity heatmap of the page "default92" from Tcof Cohe

Figure 14: Results of the optimization with coherence experiment.

Hybrid Optimization (1)

(a) Similarity heatmap of the page "accueil" from AT Hybrid

(b) Similarity heatmap of the page "default69" from Tcof Hybrid

Figure 15: Results of the optimization with hybrid experiment.

Hybrid Optimization (2)

(a) Global heatmap of similarities from Tcof_{Hvbrid}

(b) Heatmap of word occurences from Tcof_{Hvbrid}

Figure 16: Results of the optimization with hybrid experiment.

- Approximative comparison with a French PODD 15.
 - \hookrightarrow Transformation into a page-tree.

Corpus	Dist(G)	Cohe(G)	Cost(G)
AnimalTexts	AT _{Dist}	AT _{Cohe}	AT _{Hybrid}
TCOF Philosophy	PODD	PODD	Tcof _{Hybrid}

Mismatches due to the dataset quality and complexity.

Conclusion

Conclusion

- Small-scale and Large-scale optimizations.
- Not far from approximate standards.
- Complex problem :

Requires a user evaluation on the field.

Improvements

- Grid Structure : from Tree to Graph
- Genetic Algorithm :
 - Parallelization.
 - Parameters and Adaptive methods.
- Handle Multilingual resources.
- Starting from Speech (audio signal).
- Alternative : Predictive model.

Aknowledgments

Supervisors: Didier Schwab, Benjamin Lecouteux.

Team GETALP: Gilles Sérasset. Cécile Macaire.

LIG: Renaud Blanch.

References

References

- [1] Lucie Chasseur et Al. : Evaluation of the acceptability and usability of AAC. , 2020.
- [2] Carlos Vargas et Al. : Automatic generation of communication grids., 2021.
- [3] Bojanowski et Al. : fastText : Enriching Word Vectors with Subword Information, 2016.
- [4] Qi et Al : Stanza: A Python Natural Language Processing Toolkit for Many Human Languages, 2020.
- [5] Pereira et Al: *PictoBERT: Transformers for next pictogram prediction*, 2022.
- [6] AugCom platform : https://lig-augcom.imag.fr/stable//keyboard.

Appendix

3/12

Multiprocessed Genetic Algorithm for PGCS

- Pictogram Grid as an Individual.
- Cost(G), fitness to minimize.

Figure 17: Multiprocessed Genetic Algorithm (GA) for Pictogram Grid.

4/12

Language Models

- Similarity Computation → fastText (french) :
 - Vectors of dimension 300.
 - Based on n-grams representation : "mangeais" → "mange" + "ais>"

■ Lemmatization → Stanza (French GSD) :

Automatic and Optimized Communication Grid Generation from Artificial Intelligence Techniques

- Tokenization : Segment the text into tokens (one token per word).
- Lemmatization : Lemma for each token: "ate" \rightarrow "eat"

TCOF Dataset

Traitement de Corpus Oraux en Français (TCOF)

Figure 18: Details about the TCOF Dataset and the different parts.

Genetic Algorithm Execution Times

Grids	s/gen	Nb. Generations	Total Time
AT_{Dist}	0.21	3 000	≈13min
AT_{Cohe}	0.13	3 000	≈8min
AT _{Hybrid}	0.19	3 000	≈12min
$Tcof_{Dist}$	27.29	16 000	≈128h
Tcof _{Cohe}	3.68	16 000	≈20h
Tcof _{Hybrid}	27.56	16 000	≈133h

Figure 19: Execution times from the different experiments.

Results from the Evaluation with the PODD 15

					Costs		
Grids		Picto/Pages	Dist(G)	$\%\Delta_{Dist}$	Cohe(G) _{Avg}	Cost(G)	$\%\Delta_{Cost}$
AT	AT _{Random}	104/5	6.31	-48.14	-0.32	1.301	-24.31
	ATDist	111/5	5.89	-66.24	-0.31	1.210	-38.62
	AT_{Hybrid}	104/5	5.92	-64.96	-0.36	1.208	-38.90
	AT_{Cohe}	104/5	6.19	-54.43	-0.44	1.246	-33.31
	French_PODD	1 398 / 114	6.97	Ø	-0.42	1.422	Ø

Figure 20: Evaluation results between PODD and AT grids.

					Costs		
Grids Picto/Pages		Dist(G)	$\%\Delta_{Dist}$	Cohe(G) _{Avg}	Cost(G)	$\%\Delta_{Cost}$	
TCOF	Tcof _{Random}	2 482 / 100	12.34	-2.22	-0.28	2.620	+6.17
	Tcof _{Dist}	2 500 / 100	11.80	-43.43	-0.27	2.504	-18.72
	Tcof _{Hybrid}	2 500 / 100	11.80	-43.73	-0.33	2.489	-21.48
	$Tcof_{Cohe}$	2 483 / 100	12.47	+10.19	-0.39	2.625	+7.39
	French_PODD	1 398 / 114	12.37	Ø	-0.42	2.594	Ø

Figure 21: Evaluation results between PODD and TCOF grids.

Page examples from Tcof_{Hybrid}

(a) Page "default68" from Tcof_{Hybrid}

(b) Page "default39" from Tcof_{Hybrid}

Figure 22: Example of coherence contrast between two pages.

PictoBERT in a Nutshell

Figure 23: Workflow of PictoBERT.

Visualization Tool PictoGriz

Figure 24: Screenshot of PictoGriz.

Genetic Algortihm (2)

Problem : Maximizing the number of chromosome colors of each individual.

Figure 25: Elemental example of a genetic algorithm step