Dérivation.

Dérivabilité d'une fonction en un point.

1.1 Nombre dérivé.

Définition

Soit une fonction f définie sur un intervalle ouvert I et a un point de I.

- On appelle taux d'accroissement (ou taux de variation) de la fonction f entre a et a+h, le nombre t défini par : $t = \frac{f(a+h)-f(a)}{t}$.
- La fonction f admet un nombre dérivé, noté f'(a), en a, si et seulement si, le taux d'accroissement de la fonction f en a admet une limite, c'est à dire : $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a)$ ou $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = f'(a)$.

Exemples

Étudier la dérivabilité de la fonction f en a dans les cas suivants :

a)
$$f(x) = x^2$$
 et $a = 2$.

b)
$$f(x) = \sqrt{x} \text{ et } a = 0.$$

c)
$$f(x) = \cos(x)$$
 et $a = \frac{\pi}{2}$.

d)
$$f(x) = \frac{x}{x+1}$$
 et $a = 1$.

b)
$$f(x) = \sqrt{x}$$
 et $a = 0$.
c) $f(x) = \cos(x)$ et $a = \frac{\pi}{2}$.
e) $f(x) = 3x^2 - 2x + 5$ et $a = 0$.

Interprétation géométrique du nombre dérivé-Tangente à la courbe d'une fonction en 1.2un point.

Définition

Soit f une fonction dérivable en un point a et \mathcal{C}_f sa courbe représentative dans un repère orthonormé $(O, \overline{i}; \overline{j})$. La droite (T) qui passe par A(a; f(a)) et qui a pour coefficient directeur f'(a) est appelée la tangente à la courbe (\mathcal{C}_f) au point A. Une équation de la tangente (T) est y = f'(a)(x-a) + f(a).

Soient A(a, f(a)) et M(a + h, f(a + h)) deux points de (C_f) et $h \neq 0$. Le nombre $\frac{f(a + h) - f(a)}{h}$ est le coefficient directeur de la droite (AM). Lorsque h tend vers 0, le point M se rapproche du point A et la droite (AM) se rapproche de la tangente (T) à la courbe en x = a.

Exemples

Déterminer une équation de la tangente à la courbe \mathcal{C}_f de la fonction f au point A d'abscisse a ,dans chacun des cas

a)
$$f(x) = 2x^2 + x - 1$$
 et $a = 1$.

b)
$$f(x) = 3x^2 + 2$$
 et $a = -1$.

a)
$$f(x) = 2x^2 + x - 1$$
 et $a = 1$. b) $f(x) = 3x^2 + 2$ et $a = -1$. c) $f(x) = \frac{x+1}{x+2}$ et $a = 1$.

d)
$$f(x) = \cos(2x)$$
 et $a = \frac{\pi}{3}$.

e)
$$f(x) = 2\tan(x)$$
 et $a = \frac{\pi}{4}$.

Approximation d'une fonction dérivable en un point par une fonction affine. 1.3

Définition

Soit f une fonction dérivable en un point a.

- La fonction $x \mapsto f'(a)(x-a) + f(a)$ (ou encore la fonction $h \mapsto f'(a)h + f(a)$) est appelée la fonction affine tangente à la fonction f au point a.
- Le nombre f'(a)h + f(a) est l'approximation affine du réel f(a+h) au voisinage de zéro. On écrit $f(a+h) \simeq$ f(a) + f'(a)h.

Application

- 1. Déterminer une approximation affine au voisinage de 0 de chacune des fonctions suivantes $:h\mapsto (2+h)^2$; $h \mapsto (1+h)^3$; $h \mapsto \frac{1}{h+1}$ et $h \mapsto \sqrt{1+h}$.
- 2. Déduire des valeurs approchées de $(2,00003)^2$; $(1,002)^3$; $\sqrt{1,0008}$ et $\frac{1}{1,000}$.

2 Dérivabilité à droite-Dérivabilité à gauche.

2.1 Définition et propriété

Définition

Soit f une fonction définie sur un intervalle I et $a \in I$. On dit que f est dérivable à droite (resp. à gauche) en a si le taux d'accroissement de f admet une limite finie à droite (resp. à gauche) en a .

Cette limite est appelée nombre dérivé à droite (resp.à gauche) et on note :

$$\lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a} = f'_d(a) \text{ ou} \lim_{\substack{h \to 0 \\ h > 0}} \frac{f(a+h) - f(a)}{h} = f'_d(a).$$
(resp. $\lim_{\substack{x \to a \\ h > 0}} f(x) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \lim_{\substack{x \to a \\ h > 0}} f(a+h) - f(a) = f'(a) \text{ ou} \text{$

(resp.
$$\lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = f'_g(a) \text{ ou} \lim_{\substack{h \to 0 \\ h < 0}} \frac{f(a + h) - f(a)}{h} = f'_g(a)$$
).

Propriété

f est dérivable en a si et seulement si f est dérivable à droite en a, f est dérivable à gauche en a et $f'_d(a) = f'_q(a) = f'(a)$.

Interpretation géométrique- Demi-tangente en point d'une courbe

Soit f une fonction définie sur un intervalle I et $a \in I$. C_f sa courbe représentative dans un repère orthonormé $(O, \vec{i}; \vec{j})$.

- Si f est dérivable à droite en a alors, la courbe \mathcal{C}_f admet une demi-tangente au point A(a; f(a)) de coefficient directeur $f'_d(a)$ d'équation : $y = f'_d(a)(x - a) + f(a)$ avec $x \ge a$.
- Si f est dérivable à gauche en a alors, la courbe \mathcal{C}_f admet une demi-tangente au point A(a; f(a)) de coefficient directeur $f'_g(a)$ d'équation : $y = f'_g(a)(x - a) + f(a)$ avec $x \le a$.

Application

- 1. Montrer que la fonction $f: x \mapsto |x|$ n'est pas dérivable en 0 et donner une interprétation géométrique du
- 2. Étudier la dérivabilité de la fonction $g: x \mapsto |x| x^2$ en -1 et donner une interprétation géométrique du résultat.

Fonction dérivée d'une fonction. 3

3.1 Dérivabilité sur un intervalle-Fonction dérivée

Définition

Soit une fonction f définie sur un intervalle I. Si la fonction f admet un nombre dérivé en tout point de I, on dit que la fonction f est dérivable sur I. La fonction, notée f', définie sur I qui a tout x associe son nombre dérivé est appelée fonction dérivée de $f(f': x \mapsto f'(x))$.

3.2 Fonctions dérivées des fonctions usuelles

Propriété			
f(x)	D_f	f'(x)	$D_{f'}$
a	\mathbb{R}	0	\mathbb{R}
x	\mathbb{R}	1	\mathbb{R}
$x^n \ (n \ge 1)$	\mathbb{R}	nx^{n-1}	\mathbb{R}
$\frac{1}{x}$	\mathbb{R}^*	$-\frac{1}{x^2}$	\mathbb{R}^*
\sqrt{x}	\mathbb{R}^+	$\frac{1}{2\sqrt{x}}$	\mathbb{R}^{+*}
$\sin(x)$	\mathbb{R}	$\cos(x)$	\mathbb{R}
$\cos(x)$	\mathbb{R}	$-\sin(x)$	\mathbb{R}

Exemples

$$(-3)' = \dots$$

$$(x)' = \dots$$

$$(x^4)' = \dots$$

$$\left(\frac{1}{x}\right)' = \dots$$

$$\left(\frac{11}{5}\right)' = \dots \qquad (x^2)' = \dots \left(\sqrt{7}\right)' = \dots \qquad (x^3)' = \dots$$

$$(x^2)' = \dots$$

$$(x^{57})' = \dots$$

$$(\sqrt{7})' = \dots$$

$$(x^3)' = \dots$$

$$\left(x^{2016}\right)' = \dots$$

$$(\cos(x))' = \dots$$

3.3 Opérations sur les fonctions dérivables

Propriété 1							
	Soient u et v deux fonctions dérivables sur un intervalle I .						
	fonction	dérivable sur l'intervalle	Fonction dérivée				
	u + v	I	(u+v)' = u' + v'				
	$ku \ (k \in \mathbb{R})$	I	(ku)' = ku'				

Exemples

Déterminer le domaine de définition de f' la fonction dérivée de f et calculer f'(x) dans chacun des cas suivants :

a)
$$f(x) = x^2 + \frac{1}{x}$$

b)
$$f(x) = \sqrt{x} - \sin(x)$$

c)
$$f(x) = 3x - 5$$

d)
$$f(x) = -x^2 + 4x - 5$$

e)
$$f(x) = \frac{1}{2}x + \frac{2}{3}$$

f)
$$f(x) = \frac{3}{4}x^4 - \frac{2}{4}x^3 + 5x - 2$$

Propriété 2

Soient u et v deux fonctions dérivables sur un intervalle I

Fonction $\frac{u}{d}$ et v deux fonctions derivables sur un intervalle 1 . Fonction $\frac{u}{d}$ dérivable sur l'intervalle		Fonction dérivée
uv	I	(uv)' = u'v + uv'
$u^n \ (n \in \mathbb{N}^*)$	I	$(u^n)' = nu^{n-1}u'$

Exemples

Déterminer le domaine de définition de f' la fonction dérivée de f et calculer f'(x) dans chacun des cas suivants :

a)
$$f(x) = (2x - 3)(4 - x)$$

b)
$$f(x) = 2x\cos(x)$$

c)
$$f(x) = \sin^5(x)$$

d)
$$f(x) = (x^3 - 4x - 5)^{11}$$

e)
$$f(x) = (x-3)^5(x+4)^3$$

Propriété 3

Soient u et v deux fonctions dérivables sur un intervalle I telles que $v(x) \neq 0$ sur I.

Fonction	Dérivable sur l'intervalle	Fonction dérivée
$\frac{1}{v}$	I	$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$
$\frac{u}{v}$	I	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
$v^n \ (n \in \mathbb{Z}^*)$		$(v^n)' = nv^{n-1}v'$

Exemples

Déterminer le domaine de définition de f' la fonction dérivée de f et calculer f'(x) dans chacun des cas suivants :

a)
$$f(x) = \frac{1}{x\sqrt{x}}$$

b)
$$f(x) = \frac{x^2 - 3x + 7}{x - 1}$$

c)
$$f(x) = \tan(x)$$

d)
$$f(x) = \frac{2x-1}{4x-3}$$

e)
$$f(x) = (2x^3 - 16)^{-2}$$

Propriété 4

Soit u une fonction dérivable sur I telle que $: \forall x \in I : u(x) > 0$.

Fonction	Dérivable sur l'intervalle	Fonction dérivée
\sqrt{u}	I	$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$

Exemples

Déterminer le domaine de définition de f' la fonction dérivée de f et calculer f'(x) dans chacun des cas suivants :

a)
$$f(x) = \sqrt{3x - 4}$$

b)
$$f(x) = \sqrt{\frac{x-3}{x+1}}$$

c)
$$f(x) = 2\sqrt{1 - \cos(x)}$$

Propriété 5

Soit u une fonction dérivable sur I telle que $\forall x \in I : ax + b \in I$.

Fonction	Dérivable sur l'intervalle	Fonction dérivée	
$x \mapsto u(ax+b)$	I	$(u(ax+b))' = a \times u'(ax+b)$	

Exemples

Déterminer le domaine de définition de f' la fonction dérivée de f et calculer f'(x) dans chacun des cas suivants :

a)
$$f(x) = \sin(2x + 7)$$

b)
$$f(x) = \cos(\frac{x}{3})$$

c)
$$f(x) = \tan\left(\frac{x}{2}\right)$$

Remarque

- Toute fonction polynôme est dérivable sur \mathbb{R} .
- Toute fonction rationnelle est dérivable sur tout intervalle inclus dans son ensemble de définition.

3.4 Fonction dérivée seconde-Dérivées successives

Définition

Soit f une fonction dérivable sur un intervalle I.

- Si la fonction dérivée f' est dérivable sur I, alors sa fonction dérivée est appelée la dérivée seconde de la fonction f et on la note f''.
- Si la fonction dérivée f'' est dérivable sur I, alors sa fonction dérivée est appelée la dérivée troisième de la fonction f et on la note f''' ou $f^{(3)}$. (et ainsi de suite).
- La fonction dérivée d'ordre n de la fonction f où $n \ge 1$ est notée $f^{(n)}$ et on a $f^{(n+1)} = (f^{(n)})'$.

Exemple

Calculer la dérivée troisième de la fonction $f: x \mapsto x^3 - \cos(2x)$.

4 Applications de la dérivation.

4.1 Monotonie d'une fonction et signe de sa fonction dérivée

Propriété

Soit f une fonction dérivable sur I.

- f est croissante $\iff \forall x \in I : f'(x) \geq 0$.
- Si f' est strictement positive sur I , sauf peut-être en des points isolés de I où f' s'annule, alors f est strictement croissante sur I
- f est décroissante $\iff \forall x \in I : f'(x) \leq 0$.
- Si f' est strictement négative sur I , sauf peut-être en des points isolés de I où f' s'annule, alors f est strictement décroissante sur I
- f est constante $\iff \forall x \in I : f'(x) = 0$

Exemples

Étudier la monotonie de chacune des fonctions suivantes sur le domaine de définition et dresser le tableau de variation.

a)
$$x \mapsto -x^2 + 4x - 2$$

b)
$$x \mapsto x^3 - 3x + 1$$

b)
$$x \mapsto x^3 - 3x + 1$$
 c) $x \mapsto \frac{x-2}{x+1}$

d)
$$x \mapsto \sqrt{x-4}$$

4.2 Calcul des limites en utilisant la notion de la dérivée

Exemples

Calculer les limites suivantes :

a)
$$\lim_{x\to 0} \frac{\sin(x)}{x}$$

b)
$$\lim_{x \to 0} \frac{\tan(x)}{x}$$

c)
$$\lim_{x \to \frac{\pi}{6}} \frac{2\sin(x) - 1}{x - \frac{\pi}{6}}$$

$$d) \lim_{x \to 0} \frac{\sqrt{x+1}-1}{x}$$

Extremums d'une fonction dérivable

Propriété

Soit f une fonction dérivable sur I et a un élément de I.

- Si f admet un extremum local au point a, alors f'(a) = 0.
- Si f' s'annule en a en changeant de signe ,alors f(a) est un extremum local de la fonction f sur I.

x	a
f'(x)	- 0 +

$$f(a)$$
 est une valeur maximale

J	<i>x</i>) CDC	and	varcar	mamma	
x			a		
f'(x)		+	0	_	

Exemple

Déterminer les extremums de la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 4x^2 - 11x + 3$.

Equation différentielle : $y'' + \omega^2 y = 0$.

Définition

Soit ω un nombre réel.

- Toute équation de la forme $y'' + \omega^2 y = 0$ où l'inconnue est une fonction y telle que y'' est sa dérivée seconde est appelée équation différentielle.
- Toute fonction f deux fois dérivable sur \mathbb{R} et vérifie l'égalité $f''(x) + \omega^2 f(x) = 0$ pour tout réel x, est appelée solution de l'équation différentielle $y'' + \omega^2 y = 0$.

Propriété

Soit ω un réel .On considère une équation différentielle (E): $y'' + \omega^2 y = 0$.

- Si $\omega=0$, alors les solutions de l'équation (E) sont les fonctions définies sur $\mathbb R$ par $:y:x\mapsto ax+b$ où a et bdeux réels.
- Si $\omega \neq 0$, alors les solutions de l'équation (E) sont les fonctions définies sur \mathbb{R} par :

$$y: x \mapsto a\cos(\omega x) + b\sin(\omega x)$$

où a et b deux réels.

Applications

1. Résoudre les équations différentielles suivantes :

$$y'' + y = 0;$$
 $y'' + 3y = 0;$ $4y'' + y = 0;$ $-2y'' = y$