Please include your name (with your last name underlined) and your netid at the top of the first page. No credit will be given without supporting work.

- 1. Let $X_1, X_2, ..., X_n$ be a random sample from the Poisson distribution with mean θ .
 - a. Find the MLE $\hat{\theta}$ for θ .
 - b. Find the asymptotic distribution of $\sqrt{n}(\hat{\theta} \theta)$.
- 2. Using the results in Problem 1, find an approximate 95% confidence interval for θ given a sample of size n. Using the large sample approximation theorems in the notes, explain why your confidence interval has approximate coverage equal to 95%.
- 3. Under the assumptions of Problem 1. Show that $Y = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .
- 4. Let $X_1, ..., X_n$ be a random sample from $N(0, \theta), 0 < \theta < \infty$.
 - a. Show that $Y = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ is an unbiased estimator of θ .
 - b. Show that the variance of Y is $2\theta^2/n$.
- 5. Let $X \sim N(0, \theta)$, $0 < \theta < \infty$.
 - a. Find the Fisher information $I(\theta)$.
 - b. If $X_1, ..., X_n$ is a random sample from this distribution, show that the mle of θ is an efficient estimator of θ .
 - c. What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} \theta)$?
- 6. Let $X_1, ..., X_n$ be a random sample from the distribution with pdf

$$f_X(x;\theta) = (\theta + 1)(1 - x)^{\theta}, \quad 0 < x < 1, \quad \theta > -1$$

- a. Find a sufficient statistic $Y = u(X_1, ..., X_n)$ for θ .
- b. Determine the Fisher information $I(\theta)$.
- 7. If $X_1, ..., X_n$ is a random sample from a distribution with pdf,

$$f_X(x;\theta) = \frac{3\theta^3}{(x+\theta)^4}, \qquad 0 < x < \infty, \qquad 0 < \theta < \infty$$

Show that $Y = 2\overline{X}$ is an unbiased estimator of θ and determine its efficiency.

- 8. Let $X_1, ..., X_n$ be a random sample from a distribution with pmf $p(x; \theta) = \theta^x (1 \theta)^{1-x}, x = 0$, 1 where $0 < \theta < 1$. We wish to test H_0 : $\theta = \frac{1}{3}$ versus H_a : $\theta \neq \frac{1}{3}$. Find expressions for the likelihood ratio Λ and $-2 \ln \Lambda$ in simplified forms.
- 9. Consider again the pmf in Problem 8.
 - a. Determine the form of the Wald-type test statistic for H_0 versus H_a .
 - b. Determine the form of Rao's score statistic for testing H_0 versus H_a .
- 10. Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with the following pdf:

$$f(x; \theta) = \theta x^{\theta-1}$$
, $0 < x < 1$, zero elsewhere,

where θ is an unknown fixed parameter in the range $0 < \theta < \infty$. Notice that $\theta = 1$ corresponds to the uniform distribution on the interval (0, 1). Therefore we can test for uniformity by testing H_0 : $\theta = 1$ versus H_a : $\theta \neq 1$. Find simplified expressions for the likelihood ratio Λ and $-2 \ln \Lambda$ for this testing problem.

Graduate Students

- 11. Let \bar{X}_n be the mean of a random sample of size n from a $N(\theta, \sigma^2)$ distribution, $-\infty < \theta < \infty$, $\sigma^2 > 0$. Assume that σ^2 is known. Show that $n \bar{X}_n^2 \sigma^2/n$ is an unbiased estimator of θ^2 and find its efficiency.
- 12. Consider the two pdfs

$$f_1(x) = \begin{cases} \sin(x), & 0 < x < \frac{\pi}{2} \\ 0, & \text{otherwise} \end{cases}$$

$$f_2(x) = \begin{cases} \cos(x), & 0 < x < \frac{\pi}{2} \\ 0, & \text{otherwise} \end{cases}$$

You will have just a single observation of *X* on which to base your choice between the hypotheses

$$H_0$$
: X has pdf $f_1(x)$ vs. H_1 : X has pdf $f_2(x)$.

Use the likelihood ratio to find the best rejection region with the significance level $\alpha = 0.10$, and find the power of the test.