Back to Naive Set Theory Relations

Product of multiple sets

Direct product (Kartesisches Produkt)

$$A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$$

ordered pairs

$$(A \times B) \times C \neq A \times (B \times C)$$

Therefore, we define

$$A \times B \times C =$$
 if $A_i = A$ for all i,
then the product is
denoted A^n

and $y \in B$ and $z \in C$

In general, for ets A_1 , A_2 , ..., A_n with $n \ge 1$,

sequence of length n

$$A_1 \times A_2 \times ... \times A_n = \prod_{1 \le i \le n} A_i = \{(x_1, x_2, ..., x_n) \mid x_i \in A_i \text{ for } 1 \le i \le n\}$$

Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$

is a (binary) relation between A and B

similarly, unary relation (subset), n-ary relation...

Def. R is a relation on A if $R \subseteq A \times A$

some relations are special

Special relations

A relation $R \subseteq A \times A$ is:

```
reflexive
                   iff
                         for all a \in A, (a,a) \in R
                         for all a,b \in A, if (a,b) \in R, then (b,a) \in R
                  iff
symmetric
                   iff
                         for all a,b,c \in A, if (a,b) \in R and (b,c) \in R,
transitive
                                             then (a,c) \in R
irreflexive
                   iff
                         for all a \in A, (a,a) \notin R
antisymmetric iff
                         for all a,b \in A, if (a,b) \in R and (b,a) \in R
                                           then a = b
                   iff
                         for all a,b \in A, if (a,b) \in R, then (b,a) \notin R
asymmetric
                   iff
                         for all a,b \in A, (a,b) \in R or (b,a) \in R
total
```

(infix) notation aRb for $(a,b) \in R$

Special relations

A relation R on A, i.e., $R \subseteq A \times A$ is:

```
equivalence iff R is reflexive, symmetric, and transitive

partial order iff R is reflexive, antisymmetric, and transitive

strict order iff R is irreflexive and transitive

preorder iff R is reflexive and transitive
```

total (linear)
order iff R is a total partial order

Obvious properties

- I. Every partial order is a preorder.
- 2. Every total order is a partial order.
- 3. Every total order is a preorder.
- 4. If $R \subseteq A \times A$ is a relation such that there are $a, b \in A$ with $a \neq b, (a,b) \in R$ and $(b,a) \in R$, then R is not a partial order, nor a total order, nor a strict order.