2.7 Precise Definition of Limits

Definition. (Limit of a Function)

Assume f(x) is defined for all x in some open interval containing a, except possibly at a. We say the limit of f(x) as x approaches a is L, written

$$\lim_{x \to a} f(x) = L$$

if for any number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - a| < \delta$

If we know L and $\varepsilon > 0$ is given, we can draw horizontal lines $L - \varepsilon$ and $L + \varepsilon$. Using the intersections of the graph and the horizontal lines, we can solve for $\delta > 0$ such that for values of x in the interval $(a - \delta, a + \delta)$, $x \neq a$, we have $L - \varepsilon \leq f(x) \leq L + \varepsilon$.

Note: As ε becomes smaller, δ will become smaller as well.

Example. Use the graph of f below to find a number δ such that if $0 < |x - 2.25| < \delta$ then |f(x) - 2.159| < 1.

Example. Use the graph of $g(x) = \sqrt{x+1}$ to help find a number δ such that if $|x-4| < \delta$

then $\left| \left(\sqrt{x} + 1 \right) - 3 \right| < \frac{1}{2}$.

$$-\frac{1}{2} < (\sqrt{3}x + 1) - 3 < \frac{1}{2}$$

$$-\frac{1}{2} < \sqrt{3}x - 2 < \frac{1}{2}$$

$$\frac{3}{2} < \sqrt{3}x < \frac{3}{2}$$

$$2.25 = \frac{9}{4} < \times < \frac{25}{4} = 6.25$$

Example. Use the graph of the following linear function where $\lim_{x\to 3} h(x) = 5$ to find $\delta > 0$ such that |h(x) - 5| < 1 whenever $0 < |x - 3| < \delta$.

Steps for proving that $\lim_{x\to a} f(x) = L$

- 1. Find δ . Let ε be an arbitrary positive number. Use the inequality $|f(x) L| < \varepsilon$ to find a condition of the form $|x-a| < \delta$, where δ depends only on the value of ε .
- 2. Write a proof. For any $\varepsilon > 0$, assume $0 < |x a| < \delta$ and use the relationship between ε and δ found in Step 1 to prove that $|f(x) - L| < \varepsilon$.

(1) Find
$$\delta$$
:

Wast | $f(x) - L | \leq E$

| $(2x - 5) - 3 | \leq E$

| $2x - 8 | \leq E$

| $2x - 4 | \leq E$

| $x - 4 | \leq E/2$
 $\Rightarrow \delta = E/2$

Example. Use the
$$\varepsilon - \delta$$
 definition of a limit to prove $\lim_{x \to 4} (2x - 5) = 3$.

Find δ :

Want | $f(x) - L | \leq E$

| $(2x - 5) - 3 | \leq E$

| $(2x - 5) - 3 | \leq E$

| $(2x - 5) - 3 | \leq E$

| $(2x - 5) - 3 | \leq E$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

| $(2x - 5) - 3 | = |2x - 8|$

|

Example. Use the $\varepsilon - \delta$ definition of a limit to prove $\lim_{x \to 2} \frac{x}{5} = \frac{2}{5}$.

① Find S
Want
$$|F(x) - L| \le E$$

 $|\frac{x}{5} - \frac{2}{5}| < E$
 $|\frac{1}{5}|x - 2| < E$
 $|x - 2| < 5 = E$
 $|x - 2| < 5 = E$

then when
$$|x-2| < \delta$$
, we have
$$\left| \begin{pmatrix} x \\ 5 \end{pmatrix} - \frac{3}{5} \right|^{2} = \frac{1}{5} \left| x-2 \right|$$

$$< \frac{1}{5} \delta$$

$$= \frac{1}{6} (5E)^{2} = E$$

Example. Use the $\varepsilon - \delta$ definition of a limit to prove $\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = 5$.

(1) Find
$$\delta$$

Want $|f(x)-L| < \epsilon$

$$|\frac{x^2+x-6}{x-2}-5| < \epsilon$$

$$|\frac{(x+3)(x-2)}{x-2}-5| < \epsilon$$

$$|x+3-5| < \epsilon$$

$$|x-2| < \epsilon$$

$$|x-2| < \epsilon$$

Let
$$E > 0$$
 be given and let

 $S = E$, then when $1 \times -21 < \delta$,

we have
$$\left| \frac{\chi^2 + \chi - 6}{\chi - 2} - 5 \right| = \left| \frac{(\chi + 3)(\chi - 2)}{\chi - 2} - 5 \right|$$

$$= |\chi + 3 - 5|$$

$$= |\chi - 2|$$

$$< \delta$$

$$= E$$

Example. Use the $\varepsilon - \delta$ definition of a limit to prove $\lim_{x \to 3} \frac{x^2 + 2x - 15}{2x - 6} = 4$.

1) Find S
Want |
$$f(x) - L | < \mathcal{E}$$

 $\left| \frac{x^2 + 2x - 15}{2x - 6} - 4 \right| < \mathcal{E}$
 $\left| \frac{(x + 5)(x - 3)}{2(x - 3)} - 4 \right| < \mathcal{E}$
 $\left| \frac{x + 5}{2} - 4 \right| < \mathcal{E}$
 $\left| \frac{x}{2} - \frac{3}{2} \right| < \mathcal{E}$

Let
$$\xi \neq 0$$
 be given and let $\xi = 2\xi$,
then when $|x=3| < \xi$, we have
$$|x^2 + 2x - 15| = 4| = \left|\frac{(x+5)(x-2)}{2(x-2)} - 4\right|$$

$$= \left|\frac{x+5}{2} - 4\right|$$

$$= \frac{1}{2} \left|x-3\right|$$

$$< \frac{1}{2} \delta$$

$$= \frac{1}{2} \left(2\xi\right) = \xi$$

1 x-3 < E

1x-3/52 E

→ S=2E