Análise Comparativa de Modelos Para Dados Longitudinais no Estudo da Contagem do Número de Bactérias Presentes no Leite de Vaca

Alexandre Diaz Simone Matsubara Willian Meira

Disciplina Análise de Dados Longitudinais Professor José Padilha Departmento de Estatística - UFPR

20 de Novembro de 2019

Autores

- Idemauro Antonio Rodrigues de Lara
 - Universidade de São Paulo USP, Escola Superior de Agricultura Luiz de Queiroz - ESALQ, Departamento de Ciências Exatas
- Maria Helena Constantino Spyrides
 - Universidade Federal do Rio Grande do Norte UFRN, Departamento de Estatistica
- Mirela Gurgel
 - Unidade Acadêmica Especializada em Ciências Agrárias
- Adriano Henrique do Nascimento Rangel
 - Unidade Acadêmica Especializada em Ciências Agrárias

Estudo Longitudinal

- Motivação
- Introdução
- Metodologia
- Resultados e Discussão
- Considerações Finais

- Motivação
- Introdução
- Metodologia
- Resultados e Discussão
- Considerações Finais

Motivação

Identificar covariáveis ou fatores que mais contribuem para o aumento da Contagem Bacteriana Total (CBT) no leite de vaca a fim de avaliar os impactos dos procedimentos de manejo, na ordenha, limpeza de equipamentos e do tanque de resfriamento sob essa variável durante o processo de produção do leite para ações corretivas.

- Motivação
- Introdução
- Metodologia
- Resultados e Discussão
- Considerações Finais

Introdução

- A contagem bacteriana total (CBT) no leite cru análise de qualidade
- Condições inadequadas favorecem a proliferação de bactérias
- Órgão regulador: Ministério da Agricultura, Pecuária e Abastecimento (MAPA)
- Instrução Normativa nº 51/2002
 - Limite de 750.000 ufc/mL
 - A partir de 2012: 100.000 ufc/mL
 - 50% das amostras coletadas ficaram acima do limite estabelecido

- Motivação
- Introdução
- Metodologia
- Resultados e Discussão
- Considerações Finais

Metodologia

- Estudo conduzido em 8 propriedades localizadas no RN
- Foram coletadas 4 medidas repetidas mensalmente em cada propriedade
- Realizado entre jan/2010 a jul/2011 e dividido em 3 períodos:
 - Diagnóstico: de janeiro a abril de 2010
 - Capacitação: de maio a dezembro de 2010
 - Acompanhamento: de janeiro a julho de 2011

Metodologia - Fatores avaliados

Foram levados em consideração diversos fatores importantes no manejo da ordenha. Estes fatores foram divididos em 3 categorias

- 1) Ordenha: teste da caneca, pré-dipping e secagem com papel toalha
- 2) Limpeza 1 (ordenha): sanitização, limpeza alcalina e ácida
- 3) Limpeza 2 (tanque): resfriamento, sanitização, limpeza

Metodologia - Modelos Ajustados

Modelo Marginal Poisson

$$\eta_{it} = ln(\mu_{it}) = \beta_0 + \beta_{1i}per_i + \beta_2ord + \beta_3limp1 + \beta_4limp2$$

Modelo Misto (efeito aleatório)

$$\eta_{it} = (\beta_0 + b_{i0}) + (\beta_{1j} + b_{i1j})per_j + \beta_2 ord + \beta_3 limp1 + \beta_4 limp2$$

- Motivação
- Introdução
- Metodologia
- Resultados e Discussão
- Considerações Finais

Estatísticas descritivas - Contagem bacteriana total

Tabela 1 - Estatísticas descritivas da contagem bacteriana total (em ufc/mL) em amostras de leite produzido no agreste do estado do Rio Grande do Norte nos anos de 2010 e 2011, por período

Período	Amostras	Média	Erro-padrão	Coeficiente de Variação (%)
Diagnóstico	59	2.049	425,45	159, 5
Capacitação	179	440	113,08	343, 8
Acompanhamento	203	416	25,75	88, 4

Estatísticas descritivas - Adequação das propriedades à IN51

Tabela 2 - Adequação das propriedades à IN51 quanto à contagem bacteriana total, nos três períodos, no agreste do Estado do Rio Grande do Norte, 2010 a 2011

	≥ 750.000	m ufc/mL	< 750.000	ufc/mL
Período	Amostras	%	Amostras	%
Diagnóstico	28	47,5	31	52, 5
Capacitação	21	11,7	158	88, 3
Acompanhamento	21	10,3	182	89, 6

Perfis individuais de CBT

Estrutura de correlação

Estruturas de correlação testadas: Simetria Composta, m-Dependente, Não-Estruturada e Auto-Regressiva (AR).

Tabela 3 - Estimativas dos parâmetros do modelo marginal referente à contagem bacteriana total com estrutura de correlação AR-1

Parâmetro	Estimativa	Erro-padrão	Estatística de Wald	Nível descritivo
intercepto	6,98	0,52	181,46	< 0,001
período 1	-0.37	0,48	0,59	0,441
período 2	-0,06	0,47	0,02	0,886
ordenha	0,53	0,21	6,35	0,012
limpeza 1	-0,26	0,05	24,77	< 0,001
limpeza 2	-0,06	0,07	0,66	0,417

Estrutura de correlação - Interpretação

- Efeitos referente à ordenha e limpeza 1 são significativos a 5%.
- Quanto maior o número de procedimentos realizados nas covariáveis de limpeza, menores são os niveis médios de contaminação
- O efeito de periodo não foi significativo
- A fase de acompanhanento foi tomada como categoria de referência

Modelo Ajustado

$$\eta_{it} = (\beta_0 + b_{i0}) + (\beta_{1j} + b_{i1j})per_j + \beta_2 ord + \beta_3 limp1 + \beta_4 limp2$$

Tabela 4 - Estimativas dos efeitos fixos do modelo misto referente à contagem bacteriana total, com efeitos aleatórios em fazenda e período

Parâmetro	Estimativa	Erro-padrão	Estatística t	Nível descritivo
intercepto	9,10	0,49	18,57	< 0,001
período 1	0,02	0,35	0,07	0,946
período 2	0,66	0,34	1,90	0,058
ordenha	-0.25	0,14	-1,72	0,085
limpeza 1	-0.17	0,04	-4,00	< 0,001
limpeza 2	-0,24	0,07	-3,39	< 0,001

Modelo Ajustado - Interpretação

- Efeito de limpeza foram estatisticamente significativo
- O efeito de periodo 2 foi siginificativo
- Dado a presença do efeito aleatório em fazenda, pode-se pensar em niveis de contaminação individuais

Modelo Marginal - Regressão Logística

- Explicar probabilidade da fazenda estar com CBT dentro dos limites aceitáveis
- Selecionado a estrutura de correlação AR-1

Tabela 5 - Estimativas para os parâmetros do modelo marginal de regressão logística com estrutura de correlação AR-1

Parâmetro	Estimativa	Erro-padrão	Estatística de Wald	Nível descritivo
Intercepto	-4,29	1,29	11,04	< 0,001
Período 1	-1,40	0,51	7,50	0,006
Período 2	-1,07	1,06	1,02	0,312
Ordenha	1,75	$0,\!56$	9,84	0,001
Limpeza 1	-0,05	0,03	2,18	0,139
Limpeza 2	0,38	0,13	8,45	0,003

Modelo Misto - Regressão Logística

$$\eta_{it} = ln(\frac{\pi_{it}}{1-\pi_{it}}) = (\beta_0 + b_{i0}) + \beta_1 limp1 + \beta_2 limp2$$

Tabela 6 - Estimativas dos efeitos fixos do modelo misto de regressão logística considerando efeito aleatório em fazenda

Parâmetro	Estimativa	Erro-padrão	Estatística t	Nível descritivo
Intercepto	-7,70	$2,\!51$	-3,06	0,002
Ordenha	1,09	$0,\!37$	2,94	0,003
Limpeza 1	0,30	$0,\!36$	0,81	0,418
Limpeza 2	0,78	0,20	3,82	< 0,001

Regressão Logística

- Não considera o efeito de período
- Resultado similar ao modelos anteriores
- Estima mais um parâmetro de variância do efeito aleatório na fazenda
- Capta a heterogeneidade entre as fazendas

- Motivação
- Introdução
- Metodologia
- Resultados e Discussão
- Considerações Finais

Considerações Finais

- As duas abordagens destacam a importância da adequação dos procedimentos
- Constata-se que que as propriedades precisam de melhorias nos processos de manejo.
- Variável reposta com distribuição Poisson
 - Pode ocorrer superdisperção
 - Heterogeneidade entre as propriedades
- Modelo marginal:
 - Inferir sobre o BTC médio
 - Período não relevante
 - Limpeza 1 e ordenha altamente relevante
- Modelo misto:
 - Hipóteses envolvendo parâmetros individuais

Obrigado pela atenção!!