

Aprendizagem Automática 2022

Exame - 9 de Janeiro 2022

1. Considere o seguinte conjunto de dados, com flores de duas espécies, onde cada exemplo é caracterizado por 3 atributos A1, A2, e A3, e o valor que se pretende prever é a espécie (A ou B). Se o conjunto for fornecido ao algoritmo de classificação KNN K-vizinhos mais próximos, com K=3 e usando a distância taxicab, ou Manhattan (equivalente à norma de Minkowski com p=1) como métrica de distância, qual o valor previsto para a espécie para o exemplo A1=1.0, A2=3.0, A3=0.2? Justifique a resposta apresentando os cálculos realizados(em caso de empate dê prioridade aos atributos pela seguinte ordem: A1;A2;A3)

A1;A2;A3)							
ID	A1	A2	А3	Υ			
1	0.6	3.2	0.4	A			
2	1.3	3.7	0.5	Α			
3	1.0	3.3	0.4	А			
4	2.2	2.9	2.3	В			
5	1.1	2.5	2.0	А			
6	1.7	2.8	1.1	В			
7	2.3	2.5	2.0	В			
8	2.5	3.0	2.2	В			
9	2.2	3.4	3.4	В			
				A			

- 2. Sobre o algoritmo KNN de regressão explique de que modo o parâmetro K influencia os resultados do modelo, e como decidir o valor de K mais adequado.
- 3. Considere o seguinte conjunto de dados, onde cada exemplo é caracterizado por 3 atributos e pertence a uma de 2 classes. O conjunto de dados reflete decisões de um jogador de ténis quanto a ir ou não jogar sabendo se treinou na semana anterior, como se prevê que o tempo esteja, e se tem ou não uma lesão. Se o conjunto for fornecido ao algoritmo na we de Bayes, com estimador de laplace (N_Casos_positivos + 1) / (N_total + k)),

ID	Treino	Tempo	Lesão	Jogar		
1	S	Sol	S	Sim		
2	N	Sol	S	Não		
3	S	Sol	N	Sim		
4	N	Sol	N	Sim		
5	S	Nuvens	N	Sim		
6	N	Nuvens	N	Sim		
7	N	Chuva N		Não		
8	S	Chuva	S	Não		
9	N	Chuva	S	Não		

- 3.a) determine as expressões que permitem calcular a que classe pertence o exemplo {N, Nuvens, S }?
- 3.b) Indique como decidiria a classe em função do resultado das expressões calculadas.
- Justifique as respostas apresentando os cálculos realizados, ou as expressões matemáticas.
- 4. Indique como se justifica a vantagem de usar o classificador suavizado de Laplace em vez do valor do rácio = casos_considerados/num_casos_totais
- 5. Considere o conjunto de dados da pergunta 3. Qual o atributo escolhido para a raíz da árvore de decisão quando é apresentado o conjunto anterior e a função de impureza é o erro de classificação? Justifique apresentando os cálculos, e/ou as expressões matemáticas.
- 6. Na definição duma árvore de decisão podem ser usados vários indices de impureza.
 - 6a. Indique justificando em que situações o índice Gini é mínimo.
 - 6b. Indique justificando em que situações o índice da entropia é máximo.
- 7. Calcule a média ponderada da precisão, para a seguinte matriz de confusão:

		True/Actual				
		Cat (🐯)	Fish (①)	Hen (4)		
Cat	t (🐷)	4	6	3		
Fis	h (①)	. 1	2	0		
B He	n (⑤)	1	2	6		

- 8. O gradiente descendente estocástico é um método iterativo para otimizar uma função objetivo com propriedades de suavidade, que é usado frequentemente na otimização de redes neuronais. Pode ser considerado como uma aproximação estocástica da otimização gradiente descendente, uma vez que substitui o gradiente real por uma estimativa do mesmo. Explique a diferença entre gradiente estocástico, e gradiente descendente, e considere com e sem *batches*.
- 9. O algoritmo de backpropagation permite otimizar os pesos de uma rede neuronal iterativamente. Imagine que se treina uma rede várias vezes com os mesmos critérios de terminação com pesos inicializados aleatoriamente. O modelo gerado é sempre o mesmo? Justifique a resposta.

- 10. Num algoritmo de comité existem alguns pressupostos sobre cada modelo individualmente. Indique os principais pressupostos que eventualmente permitem que o conjunto dos modelos tenha um desempenho superior a cada modelo individual.
- 11. O algoritmo *Random Forest* introduz aleatoriedade (daí o nome) no processo de construção das árvores que constituem o comité. Indique como é introduzida essa aleatoriedade.
- 12. O seguinte *heatmap* apresenta o desempenho do algoritmo Random Forest sobre um conjunto de dados para diferentes valores de dois parâmetros: profundidade das árvores (*max_depth*), e número de árvores(*n_estimators*). Considera que o intervalo de valores testado é adequado? (se responder afirmativamente justifique a sua resposta, se responder negativamente proponha gamas de valores alternativas para realizar a pesquisa)

	等 基础的									- 1.00
Ŋ	0.808607	0.837902	0.861523	0.921470		0.978373	0.989159	0.994451	0.997606	
\$	0.806645	0.667618	0.916584	0.545.25652	0.966845	0.984641	0.995109	0.998087	0.999150	- 0.96
28	0.828487	0.887585	0 93 1 5 8 5	0.961427	0.982749	0.997092	0.998713	0.999969	0 999986	
100	0.834832	0.886548	2934430	0.963893	0.985633	0.995132	0.999573	0.999852	0.99995	- 0.92
200	0.823358	0.890303	0.934600	0.964121	0.987030	0.996977	0.999500	0.999945	0.999998	- 0.88
400	0.834354	0.886751	0.933898	0.958300	0.987000	0.997207	0.999489	0.999961	0.999997	
009	0.832097	0 887749	0.934420	0.966476	0.988229	0 996490	0.999532	0.999951	0.99998	- 0.84
800	0.832852	0.888749	0,934790	0.967784	0.988738	0 996593	0.999613	0.999952	0.999999	
	2	4	6	8	10	12	14	16	18	