Zusammenfassung Geometrie

Notation. Sei im Folgenden I ein Intervall, d. h. eine zusammenhängende Teilmenge von \mathbb{R} .

Definition. Eine Abbildung $c: I \to \mathbb{R}^n$ heißt **reguläre Kurve**, wenn c beliebig oft differenzierbar ist und $c'(t) \neq 0$ für alle $t \in I$ gilt. Der affine Unterraum $\tau_{c,t} := c(t) + \mathbb{R}(c'(t))$ heißt **Tangente** an c im Punkt c(t) bzw. Tangente an c zum Zeitpunkt t.

Definition. Die Bogenlänge (BL) einer regulären Kurve $c:[a,b] \to \mathbb{R}^n$ ist

$$L(c) := \int_{a}^{b} ||c'(t)|| dt.$$

Satz. Die Bogenlänge ist invariant unter Umparametrisierung, d. h. sei $c: [a_2,b_2] \to \mathbb{R}^n$ eine reguläre Kurve und $\phi: [a_1,b_1] \to [a_2,b_2]$ ein Diffeomorphismus, dann gilt $L(c) = L(c \circ \phi)$.

Definition. Eine reguläre Kurve $c: I \to \mathbb{R}^n$ heißt nach **Bogenlänge parametrisiert**, wenn ||c'(t)|| = 1 für alle $t \in I$.

Satz. Jede reguläre Kurve $c:I\to\mathbb{R}$ lässt sich nach BL parametrisieren, d. h. es existiert ein Intervall J und ein Diffeomorphismus $\phi:J\to I$, welcher sogar orientierungserhaltend ist, sodass $\tilde{c}:=c\circ\phi$ nach BL parametrisiert ist.

Definition. Zwei Vektoren $a, b \in \mathbb{R}^n$ heißen gleichgerichtet, falls $a = \lambda b$ für ein $\lambda > 0$.

Satz. Sei $v:[a,b]\to\mathbb{R}^n$ stetig, dann gilt

$$\|\int_{a}^{b} v(t) dt\| \le \int_{a}^{b} \|v(t)\| dt,$$

wobei Gleichheit genau dann gilt, falls alle v(t) gleichgerichtet sind.

Satz. Sei $c:[a,b] \to \mathbb{R}^n$ eine reguläre Kurve und x:=c(a), y:=c(b). Dann gilt $L(c) \geq d(x,y)$. Wenn L(c)=d(x,y), dann gibt es einen Diffeomorphismus $\phi:[a,b] \to [0,1]$, sodass

$$c = c_{xy} \circ \phi$$
,

wobei $c_{xy}:[0,1]\to\mathbb{R}^n,\ t\mapsto x+t(y-x).$

Definition. Sei $c:[a,b] \to \mathbb{R}^n$ eine stetige Kurve und $a=t_0 < t_1 < \ldots < t_k = b$ eine Zerteilung von [a,b]. Dann ist die Länge des **Polygonzugs** durch die Punkte $c(t_i)$ gegeben durch

$$\hat{L}_c(t_0, ..., t_k) = \sum_{j=1}^k ||c(t_j) - c(t_{j-1})||.$$

Definition. Eine stetige Kurve c heißt **rektifizierbar** von Länge \hat{L}_c , wenn gilt: Für alle $\epsilon > 0$ gibt es ein $\delta > 0$, sodass für alle Unterteilungen $a = t_0 < t1 < \ldots < t_k = b$ der Feinheit mindestens δ gilt:

$$\|\hat{L}_{c} - \hat{L}_{c}(t_{0}, t_{1}, ..., t_{k})\| < \epsilon.$$

Definition. Sei $c: I \to \mathbb{R}^n$ regulär und nach BL parametrisiert. Dann heißt der Vektor c''(t) **Krümmungsvektor** von c in $t \in I$ und die Abbildung $\kappa: I \to \mathbb{R}, \quad t \mapsto \|c''(t)\|$ heißt **Krümmung** der nach BL parametrisierten Kurve.

Definition. Eine Kurve $c: I \to \mathbb{R}^2$ wird **ebene Kurve** genannt.

Definition. Sei c eine reguläre, nach BL parametrisierte, ebene Kurve. Dann heißt

$$n = n_c : I \to \mathbb{R}^2, \quad t \mapsto J \cdot c'(t) \text{ mit } J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

das Normalenfeld von c.

Bemerkung. Für alle $t \in I$ bildet $(c'(t), n_c(t))$ eine positiv orientierte Orthonormalbasis des \mathbb{R}^2 . Es gilt außerdem $c''(t) \perp c'(t)$, also $c''(t) = \kappa(t) \cdot n_c(t)$, d. h. die Krümmung ist im \mathbb{R}^2 vorzeichenbehaftet.

Satz (Frenet-Gleichungen ebener Kurven). Sei $c: I \to \mathbb{R}^2$ regulär, nach BL parametrisiert und v = c', dann gilt

$$c'' = \kappa \cdot n$$
 und $n' = -\kappa \cdot v$.

Beispiel. Die nach BL parametriesierte gegen den UZS durchlaufene Kreislinie mit Mittelpunkt $m\in\mathbb{R}^2$ und Radius r>0

$$c: \mathbb{R} \to \mathbb{R}^2, \quad t \mapsto m + r \begin{pmatrix} \cos(t/r) \\ \sin(t/r) \end{pmatrix}$$

hat konstante Krümmung $\kappa(t) = \frac{1}{r}$.

Satz. Sei $c: I \to \mathbb{R}^2$ glatte, nach BL parametrisiert mit konstanter Krümmung $\kappa(t) = R \neq 0$. Dann ist c Teil eines Kreisbogens mit Radius $\frac{1}{|R|}$.

Definition. Für $c: I \to \mathbb{R}^2$ regulär, nicht notwendigerweiße nach BL parametrisiert, ist die Krümmung zur Zeit t definiert als

$$\frac{\det(c'(t), c''(t))}{\|c'(t)\|^3}$$

Bemerkung. Obige Definition ist invariant unter orientierungserhaltenden Umparametrisierungen, und stimmt für nach BL parametrisierte Kurven mit der vorhergehenden Definition überein.

Satz (Hauptsatz der lokalen ebenen Kurventheorie). Sei $\kappa: I \to \mathbb{R}$ eine stetige Funktion und $t_0 \in I$ und $x_0, v_0 \in \mathbb{R}^2$ mit $||v_0|| = 1$. Dann gibt es ganu eine nach BL parametrisierte zweimal stetig differenzierbare Kurve $c: I \to \mathbb{R}^2$ mit Krümmung κ , $c(t_0) = x_0$ und $c'(t_0) = v(t_0) = v_0$.

Definition. Eine reguläre Kurve $c:[a,b]\to\mathbb{R}^n$ heißt geschlossen, wenn gilt

- c(a) = c(b) und
- c'(a) = c'(b).

Eine reguläre geschlossene Kurve c heißt einfach geschlossen, wenn $c|_{[a,b[}$ injektiv ist.

Definition. Für eine geschlossene reguläre ebene Kurve $c: [a, b] \to \mathbb{R}^2$ heißt die Zahl

$$\overline{\kappa}(c) := \int_a^b \kappa(t) \|c'(t)\| \, \mathrm{d}t$$

Totalkrümmung von c.

Bemerkung. Ist c nach BL parametrisiert, so ist $\overline{\kappa}(c) = \int_{a}^{b} \kappa(t) dt$.

Satz. Die Totalkrümmung ist invariant unter orientierungserhaltenden Umparametrisierungen, d. h. ist $c: [a_2,b_2] \to \mathbb{R}^2$ eine reguläre Kurve und $\phi: [a_1,b_1] \to [a_2,b_2]$ eine Diffeomorphismus mit $\phi' > 0$, dann gilt $\overline{\kappa}(c) = \overline{\kappa}(c \circ \phi)$.

Satz (Polarwinkelfunktion). Sei $\gamma = \binom{\gamma_1}{\gamma_2} : [a,b] \to S^1$ stetig (glatt) und $\omega_a \in \mathbb{R}$, sodass $\gamma(a) = e^{i\omega_a}$. Dann gibt es eine eindeutige stetige (glatte) Abbildung $\omega : [a,b] \to \mathbb{R}$, genannt Polarwinkelfunktion von γ mit $\omega(a) = \omega_a$ und $\gamma(t) = e^{i\omega(t)} = \binom{\cos(\omega(t))}{\sin(\omega(t))}$ für alle $t \in [a,b]$.

Satz. Seien ω und $\tilde{\omega}$ zwei stetige Polarwinkelfunktionen zu einer stetigen Abbildung $\gamma: [a,b] \to S^1$. Dann gibt es ein $k \in \mathbb{Z}$, sodass $\omega(t) - \tilde{\omega}(t) = 2\pi k$ für alle $t \in [a,b]$.

 $\mathbf{Satz}.$ Sei $c:[a,b]\to\mathbb{R}^2$ eine ebene reguläre geschlossene Kurve, dann heißt die ganze Zahl

$$U_c := \frac{1}{2\pi} \overline{\kappa}(c) = \frac{1}{2\pi} \int_a^b \kappa(t) \|c'(t)\| dt$$

Tangentendrehzahl oder Umlaufzahl von c.

 ${\bf Satz}$ (Umlaufsatz von Hopf). Die Tangentendrehzahl einer einfach geschlossenen regulären Kurve ist $\pm 1.$

Satz. Für die Absolutkrümmung einer einfach geschlossenen regulären Kurve $c: [a,b] \to \mathbb{R}^2$ gilt $\kappa_{\rm abs} \geq 2\pi$, wobei Gleichheit genau dann gilt, wenn κ_c das Vorzeichen nicht wechselt.

Satz (Whitney-Graustein). Für zwei glatte reguläre geschlossene ebene Kurven $c, d: [0, 1] \to \mathbb{R}^2$ sind folgende Aussagen äquivalent:

- (i) c ist zu d regulär homotop
- (ii) $U_c = U_d$

Definition. Eine glatte reguläre Kurve $c: I \to \mathbb{R}^n \ (n \geq 3)$ heißt **Frenet-Kurve**, wenn für alle $t \in I$ die Ableitungen $c'(t), c''(t), ..., c^{(n-1)}(t)$ linear unabhängig sind.

Definition. Sei $c: I \to \mathbb{R}^n$ eine Frenet-Kurve und $t \in I$. Wende das Gram-Schmidtsche Orthogonalisierungsverfahren auf $\{c'(t), c''(t), ..., c^{(n-1)}(t)\}$ an und ergänze das resultierende Orthonormalsystem $(b_1(t), ..., b_{n-1}(t))$ mit einem passenden Vektor $b_n(t)$ zu einer Orthonormalbasis, die positiv orientiert ist. Die so definierten Funktionen $b_1, ..., b_n: I \to \mathbb{R}^n$ sind stetig und werden zusammen das **Frenet**-n-**Bein** von c genannt.

Definition. Sei $(b_1, ..., b_n)$ das Frenet-n-Bein einer Frenet-Kurve c. Dann gilt:

$$A := (\langle b'_j, b_k \rangle)_{jk} = \begin{pmatrix} 0 & \kappa_1 & & & 0 \\ -\kappa_1 & 0 & \kappa_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & -\kappa_{n-2} & 0 & \kappa_{n-1} \\ 0 & & & -\kappa_{n-1} & 0 \end{pmatrix}$$

Die Funktion $\kappa_i: I \to \mathbb{R}, t \mapsto \langle b'_i(t), b_{i+1}(t) \rangle, j = 1, ..., n-1$ heißt i - te Frenet-Krümmung von c.

Satz (Hauptsatz der lokalen Raumkurventheorie). Seien $\kappa_1, ..., \kappa_{n-1}: I \to \mathbb{R}$ glatte Funktionen mit $\kappa_1, ..., \kappa_{n-2} > 0$ und $t_0 \in I$ und $\{v_1, ..., v_n\}$ eine positiv orientierte Orthonormalbasis, sowie $x_0 \in \mathbb{R}^n$. Dann gibt es genau eine nach BL parametrisierte Frenet-Kurve $c: I \to \mathbb{R}^n$, sodass gilt

- $c(t_0) = x_0$,
- das Frenet-*n*-Bein von c in t_0 ist $\{v_1, ..., v_n\}$ und
- die j-te Frenet-Krümmung von c ist κ_i .

Definition (Frenet-Kurven im \mathbb{R}^3). Sei $c: I \to \mathbb{R}^3$ eine nach BL parametrisierte Frenet-Kurve und $t \in I$. Dann heißt

- $b_1(t) = v(t) = c'(t)$ der Tangentenvektor an c in t,
- $b_2(t) = \frac{c''(t)}{\|c''(t)\|}$ Normalenvektor an c in t, $\mathrm{span}b_1(t), b_2(t)$ Schmiegebene an c in t,
- $b_3(t) = b_1(t) \times b_2(t)$ Binormalenvektor an c in t,
- $\tau_c(t) = \tau(t) := \kappa_2(t) = \langle b_2'(t), b_3(t) \rangle$ Torsion oder Windung von

Bemerkung. Die Frenet-Gleichungen für nach BL parametrisierte Frenet-Kurven im \mathbb{R}^3 lauten

$$b'_1 = \kappa_2 b_2$$

$$b'_2 = -\kappa_c b_1 + \tau_c b_3$$

$$b'_3 = -\tau_c b_2.$$

Bemerkung. Für eine nicht nach BL parametrisierte Frenet-Kurve $c: I \to \mathbb{R}^3$ gilt für Krümmung und Torsion

$$\kappa_c := \frac{\|c' \times c''\|}{\|c'\|^3} \quad \text{und} \quad \tau_c := \frac{\det(c', c'', c''')}{\|c' \times c''\|^2}.$$

Definition. Für eine glatte geschlossene reguläre Kurve $c:[a,b]\to\mathbb{R}^n$ ist die **Totalkrümmung** definiert durch

$$\overline{\kappa}(c) := \int_a^b \kappa_c(t) \cdot \|c'(t)\| \, \mathrm{d}t.$$

Hierbei ist die Krümmung einer regulären Raumkurve $c: I \to \mathbb{R}^n$ wie folgt definiert: Sei $\phi: I \to J$ orientierungserhaltend (d. h. $\phi' > 0$) und so gewählt, dass $\tilde{c} := c \circ \phi^{-1} : J \to \mathbb{R}^n$ nach BL parametrisiert ist, dann definieren wir $\kappa_c(t) := \kappa_{\tilde{c}}(\phi(t))$.

Satz (Fenchel). Für eine geschlossene reguläre glatte (oder \mathcal{C}^2) Kurve $c:[a,b]\to\mathbb{R}^3$ gilt

$$\overline{\kappa}(c) \geq 2\pi$$
.

Gleichheit tritt genau dann ein, wenn c eine einfach geschlossene konvexe reguläre glatte (oder C^2) Kurve ist, die in einer affinen Ebene des \mathbb{R}^3 liegt.

Satz. Sei $v:[0,b]\to S^2\subset\mathbb{R}^3$ eine stetige rektifizierbare Kurve der Länge $L < 2\pi$ mit c(0) = c(b), so liegt das Bild von v ganz in einer offenen Hemisphäre.