Part 2: Analysis

Question 1 (5 marks)

This question is about differentiation.

- (i) In one sentence explain the infinitesimal approach to differentiation and use it to show that $\frac{d(x^3)}{dx} = 3x^2$
- (ii) Using the chain rule, product rule and $d \sin x/dx = \cos x$, differentiate: $f(x) = x \sin x^2$

(5 marks)

Question 2 (5 marks)

This question is about partial derivatives.

- (i) Write down the definition of $\partial f(x,y)/\partial x$ and of ∇f .
- (ii) If $f(x,y) = x \sin xy + y^2$, what is ∇f and what is the derivative along a unit vector in the (1,1) direction?

(5 marks)

Question 3 (5 marks)

This question is about complex numbers.

- (i) Write $z = \frac{1+2i}{2+i}$ in the form x + iy.
- (ii) Write $z = 1 + \sqrt{3}i$ in the polar form.
- (iii) The quaternions are a type of generalization of complex numbers. Instead of just i there are three imaginary numbers i, j and k, and these all square to minus one: $i^2 = j^2 = k^2 = -1$. In addition ijk = -1 and the numbers are anti-commutative: ij = -ji, jk = -kj and so on. Lots of other relationships can be derived from these rules, for example if you multiply ijk = -1 you get jk = i, or if you switch it jik = 1 and multiply by j you get ik = 1. If z = 1 + 3i + 2j, what are zi and iz?

(5 marks)

Question 4 (5 marks)

This question is about differential equations.

- (i) In one sentence explain the difference between a homogeneous and an inhomogeneous differential equation.
- (ii) Solve $\frac{df}{dt} = 3f$ with f(0) = 4.
- (iii) Solve $\frac{df}{dt} = 3f + t$ with f(0) = 1.

(5 marks)

Question	5	(5)	marl	ks)
----------	----------	-----	------	----	---

This question is about optimization. Briefly describe gradient flow.

(5 marks)