Géométrie

TD 3 : Homotopie et théorème de Van Kampen

Lucie Le Briquer

1^{er} février 2018

Exercice 5 (cylindre et ruban de Möbius)

Rétractation par déformation. X espace topologique, $Y \subset X$. Une rétractation par déformation de X sur Y est $H \colon X \times [0,1] \longrightarrow X$ tel que :

$$\forall x \in X, \ H(x,0) = x$$

 $\forall x \in X, \ H(x,1) \in Y$

$$\forall y \in Y, \forall t \in [0,1] \ H(y,t) = y$$

1.

$$S^1 = [0,1] \times \{0\}/_{(0,0)\sim(1,0)}$$

On a bien $S^1 \subset C$. Soit :

$$H \colon \left\{ \begin{array}{ll} [0,1] \times C & \longrightarrow & C \\ (t,(c_1,c_2)) & \longmapsto & (c_1,tc_2) \end{array} \right.$$

Alors $H(0,c) = (c_1,0) \in \mathcal{S}^1$, $H(1,c) = (c_1,c_2) = c$ et $H(t,(c_1,0)) = (c_1,0) \ \forall c_1 \in \left[-\frac{1}{2},\frac{1}{2}\right]$. H continue. Donc C se rétracte par déformation sur \mathcal{S}^1 .

$$\pi_1(C) = \pi_1(\mathcal{S}^1) = \mathbb{Z}$$

Idem pour le ruban de Möbius.

2. En retirant un cercle à C on a deux composantes connexes alors que le ruban reste d'un seul tenant. Supposons qu'il existe $h \colon M \longrightarrow C$ homéomorphisme. Soit $Y := \{y = 0\}$ dans $M, Y \simeq \mathcal{S}_1$. Alors $h(Y) \subset C$ homéomorphe à \mathcal{S}^1 et $C \setminus h(Y)$ a deux composantes connexes (Jordan). Mais $C \setminus h(Y) = h(M \setminus Y)$ est connexe. Contradiction.

Exercice 1 (groupes topologiques)

Soit $\gamma \colon [0,1] \longrightarrow G$ un lacet enraciné en e.

$$\gamma * e \sim \gamma$$

On pose:

$$\gamma_s(t) = \begin{cases} \gamma(s(2t) + (1-s)t) & \text{si } t \leq \frac{1}{2} \\ \gamma(s+(1-s)t) & \text{si } t \geqslant \frac{1}{2} \end{cases}$$

$$e * \sigma \sim \sigma$$

On pose $\tilde{\sigma}_s(t)$ de manière similaire. On pose alors :

$$H \colon \left\{ \begin{array}{ccc} [0,1] \times [0,1] & \to & G \\ (t,s) & \longmapsto & \gamma_s(t) \tilde{\sigma}_s(t) \end{array} \right.$$

Ainsi:

$$H(0,t) = \gamma(t)\sigma(t) = (\gamma\sigma)(t)$$

$$H(1,t) = (\gamma * e)(t)(e * \sigma)(t)$$

$$= (\gamma * \sigma)(t)$$

De même $\sigma \gamma \sim (e * \sigma)(\gamma * e) = \gamma * \sigma$. Donc :

$$[\gamma\sigma] = [\gamma * \sigma] = [\sigma\gamma] = [\sigma * \gamma]$$

Donc $[\gamma][\sigma] = [\sigma][\gamma]$ donc $\pi_1(G, e)$ est abélien.

Exercice 7 (présentations de groupes)

On se donne:

- un alphabet fini $\{a_1, \ldots, a_n\} = \mathcal{A}$,
- une nombre fini de relations $\{w_1, \ldots, w_m\}$ qui sont des mots en les $a_i^{\pm 1}$.

Exemple. Alphabet : $\{a, b\}$, Relations : $aba^{-1}b$. On pose :

$$A^* = \bigsqcup_{n\geqslant 0} \{a_i^{\pm 1}\}^n$$
 l'ensemble des mots finis en les $a_i^{\pm 1}$

Soit \sim la relation d'équivalence sur \mathcal{A}^* définie par $u \sim v$ si on peut passer de u à v en échangeant $a_i a_i^{-1}$ et \emptyset et w_j et \emptyset .

On peut alors écrire un mot sous la forme $a_{i_1}^{n_1} \dots a_{i_m}^{n_m}, n_k \in \mathbb{Z}, i_k \neq i_{k+1} \ \forall k.$

Sur \mathcal{A}^* : on peut concaténer les mots. La concaténation passe au quotient en $\mathcal{A}^*/_{\sim} \times \mathcal{A}^*/_{\sim} \longrightarrow \mathcal{A}^*/_{\sim}$. Si $G = \mathcal{A}^*/_{\sim}$ munit de cette loi, G est un groupe. On le note :

$$G = \langle a_1, \dots, a_n \mid w_1, \dots, w_m \rangle$$

Propriété universelle. Soit H un groupe engendré par $\tilde{a}_1, \ldots, \tilde{a}_n$. Supposons que $\tilde{a}_1, \ldots, \tilde{a}_n$ vérifient les relations \tilde{w}_j (obtenues à partir de w_j en remplaçant a_i par \tilde{a}_i). Alors $\exists ! \varphi \colon G \longrightarrow H$ morphisme surjectif tel que $\varphi(a_i) = \varphi(\tilde{a}_i) \ \forall i$.

Exemple. $G = \langle a | \emptyset \rangle, H = \mathbb{Z}/_{n\mathbb{Z}}. \exists ! \varphi : G \longrightarrow H \text{ tel que } \varphi(1) = 1.$

 $Graphe\ de\ Cayley.$ Soit G un groupe, $S\subset G$ des générateurs, symétrique. Le graphe de Cayley est défini par :

- ullet sommets : éléments de G
- $q q' \Leftrightarrow \exists s \in S : q = sq'$

1.

- 2. $\mathbb{Z}/_{n\mathbb{Z}}$ est engendré par 1 et n-1=0[n]. Donc $\exists \varphi \colon \langle a|a^n\rangle \longrightarrow \mathbb{Z}_{n\mathbb{Z}} \varphi(a)=1$. Soit $u\in \ker(\varphi)$. On écrit $u=a^m$. Alors $u\sim a^r$ pour un $r\in [0,n-1]$, $\varphi(u)=r\varphi(a)=r[n]=0[n]$. Donc r=0. Donc $u\sim a^0=\emptyset$.
- 3. \mathbb{Z}^n est engendré par les $(e_i)_{1 \leq i \leq n}$ où $e_i = (0, \dots, 1, \dots, 0)$. $[e_i, e_j] = 0 \ \forall i, j$. Donc $\exists ! \varphi \colon \langle (a_i)_{1 \leq i \leq n} | [a_i, a_j] \rangle \longrightarrow \mathbb{Z}^n$ tel que $\varphi(a_i) = e_i \ \forall i$. Soit $u \in \ker(\varphi)$. $u = a_{i_1}^{n_1} \dots a_{i_m}^{n_m}$. En utilisant les relations de commutation, on a $u \sim a_1^{n_1} \dots a_n^{n_n}$.

$$\varphi(0 = \sum_{i=1}^{n} p_i e_i = 0$$

Donc $p_i = 0 \ \forall i$. Donc $\varphi(u) \sim a_1^0 \dots a_n^0 = \emptyset$.

$$\langle a, b \mid a^n = b^2 = baba^{-1} = e \rangle \simeq D_n$$

 $u \in \ker(\varphi)$ alors $u \sim b^{\varepsilon}a^{r}$ avec $\varepsilon \in \{0,1\}$ et $0 \leqslant r \leqslant n-1$. $\varphi(u) = I \Rightarrow \varepsilon = 0$ et r = 0 donc $u \sim \emptyset$.

4. $\mathbb{Z}/_{2\mathbb{Z}} * \mathbb{Z}$ $2\mathbb{Z} \simeq D_{\infty} = \mathbb{Z} \times \mathbb{Z}/_{2\mathbb{Z}}$

Jeudi 01 février

Utiliser le théorème de Van Kampen. X connexe par arcs, U,V ouvert non vides de X, connexes par arcs tels que $U \cup V = X$. On suppose $U \cap V$ connexe par arcs, $x \in U \cap V$. On se donne :

$$\pi_1(U, x) = \langle a_i | x_i \rangle$$
 $\pi_1(V, x) = \langle b_i | w_i \rangle$ $\pi_1(U \cap V, x) = \langle c_k | t_k \rangle$

Alors

$$\pi_1(X,x) \simeq \langle a_i, b_i | v_i, w_i, i_{U*}(c_k) = i_{V*}(c_k) \rangle$$

 $i_{U*}(c_k)$: écrire c_k en concaténation de a_i dans U.

Exercice 4 (variétés topologiques)

En procédant par récurrence, il suffit de démontrer que $\pi_1(X,x) \simeq \pi_1(X\setminus\{a\},x) \ \forall a\neq x\in X$. Posons :

$$U = \text{un voisinage de } a \text{ hom\'eomorphe à } \mathbb{R}^d$$
 $V = X \setminus \{a\}$

Alors $X=U\cup V,\,U\cap V$ est homéomorphe à $\mathbb{R}^d\backslash\{0\}$ qui est connexe par arcs. Soit $x\in X\cap V$. Par le théorème de Van Kampen :

$$\pi_1(X,x) = \pi_1(U,x) *_{\pi_1(U \cap V,x)} \pi_1(V,x)$$

$$\pi_1(U, x) = \pi_1(\mathbb{R}^d, 0) \simeq \{e\}$$
 $\pi_1(U \cap V, x) \simeq \pi_1(\mathbb{R}^d \setminus \{0\}, y) \simeq \pi_1(\mathcal{S}_{d-1}, y') = \{e\}$ car $d \geqslant 3$. Donc $\pi_1(X, x)\pi_1(V, x) = \pi_1(X \setminus \{a\}, x)$.

Exercice 9 (applications du théorème de Van Kampen)

- 1. On démontre par récurrence que $\bigcup_{k=1}^n S_1 \simeq F_n$
 - n = 1 : ok
 - On suppose cette hypothèse au rang n. Soit $U = \bigcup_{k=1}^n \mathcal{S}_1 \cap \mathcal{B}(x, \varepsilon)$ et V = (n+1)-ème cercle $\cup \mathcal{B}(x, \varepsilon)$.
 - U se rétracte par déformation sur $\bigcup_{k=1}^n S^1$ donc $\pi_1(U,x) \simeq F_n$ par hypothèse de récurrence.
 - V se rétracte par déformation sur $S_1: \pi_1(V,x) = \mathbb{Z}$
 - $-U \cap V$ se rétracte par déformation sur $\{x\}: \pi_1(U \cap V, x) = \{e\}$

Par le théorème de Van Kampen :

$$\pi_1 \left(\bigcup_{k=1}^{n+1} \mathcal{S}_1, x \right) \simeq F_n * \mathbb{Z} \simeq F_{n+1}$$

2.

3. Prenons les ouverts U et V suivants (correspondent à X privé d'un cercle) :

 $U,V,U\cap V$ sont connexes par arcs. U et V sont des cylindres donc $U\cap V\simeq (0,1)^2,$ ainsi :

$$\pi_1(U,x) \simeq \langle a|\emptyset \rangle$$
 $\pi_1(V,x) \simeq \langle b|\emptyset \rangle$ $\pi_1(U \cap V,x) \simeq \langle \emptyset|\emptyset \rangle$

Alors, par Van Kampen:

$$\pi_1(\mathbb{T}^2 \setminus \{a\}, x) = \langle a, b | \emptyset \rangle \simeq F_2$$

4. Prenons $U = \mathbb{T}^2 \setminus \{a\}$ et $V = \mathcal{B}(a, \varepsilon)$.

 $U, V, U \cap V$ sont connexes par arcs.

$$\pi_1(\mathbb{T}^2, x) = \langle a, b | i_{U_*}(c) \rangle = \langle a, b | aba^{-1}b^{-1} \rangle \simeq \mathbb{Z}^2$$