fase3 2

May 21, 2025

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
```

2025-05-20 21:15:15.834157: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.

2025-05-20 21:15:15.843819: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32]

Could not find cuda drivers on your machine, GPU will not be used.

2025-05-20 21:15:15.873844: E

external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR

E0000 00:00:1747790115.930517 149871 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered

E0000 00:00:1747790115.945139 149871 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered

W0000 00:00:1747790115.985897 149871 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.

W0000 00:00:1747790115.985934 149871 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.

W0000 00:00:1747790115.985939 149871 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.

W0000 00:00:1747790115.985942 149871 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.

2025-05-20 21:15:15.997960: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in

performance-critical operations.

To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.

/home/darkcover/.cache/pypoetry/virtualenvs/gan-oPyfrVEv-py3.12/lib/python3.12/site-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

```
super().__init__(activity_regularizer=activity_regularizer, **kwargs)
2025-05-20 21:15:20.032553: E
external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to
cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)
```

- [3]: <keras.src.callbacks.history.History at 0x737b93493140>
- [4]: model_dnn.save("/home/darkcover/Documentos/Gan/Models/pseudo_label_dnn.h5") print(" Modelo de pseudo-label salvo")

WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g.
`model.save('my_model.keras')` or `keras.saving.save_model(model,

```
'my_model.keras')`.
Modelo de pseudo-label salvo
```

1250/1250 2s 2ms/step

```
[6]: import matplotlib.pyplot as plt
     import numpy as np
     # Carregar os dados reais de treino (centralizados)
     df_train = pd.read_csv("/home/darkcover/Documentos/Gan/Data/df_simulated.csv")
     sample_1000 = df_generated.iloc[:1000]
     # Criar gráfico
     plt.figure(figsize=(6.5, 6.5))
     # Treinamento: círculos vazados azuis
     plt.scatter(df_train['X'], df_train['Y'],
                 facecolors='none', edgecolors='blue', s=40, label='Training_
      ⇔positions')
     # Gerados: preenchidos em roxo
     plt.scatter(sample_1000['X'], sample_1000['Y'],
                 c='orange', marker='x', s=20, alpha=0.6, label='Generated_
      ⇔positions')
     # Sublinhas tracejadas de 1 em 1 metro (por cima dos pontos)
     for x in np.arange(0, 21, 1):
         plt.axvline(x, color='gray', linestyle=':', linewidth=0.5, zorder=0)
     for y in np.arange(0, 21, 1):
         plt.axhline(y, color='gray', linestyle=':', linewidth=0.5, zorder=0)
     # Configurações visuais
     plt.xlabel("X (m)")
     plt.ylabel("Y (m)")
     plt.title("FIGURE 4. Pseudo-labeled generated positions over training grid.")
     plt.xticks(np.arange(0, 21, 2))
     plt.yticks(np.arange(0, 21, 2))
     plt.xlim(0, 20)
     plt.ylim(0, 20)
```

```
plt.grid(True, linestyle='--', linewidth=0.5)
plt.gca().set_aspect('equal', adjustable='box')
plt.legend()
plt.tight_layout()
plt.show()
```



```
[7]: import matplotlib.pyplot as plt
import numpy as np

# Carregar os dados reais de treino (centralizados)
df_train = pd.read_csv("/home/darkcover/Documentos/Gan/Data/df_simulated.csv")
```

```
sample_1000 = df_generated
# Criar gráfico
plt.figure(figsize=(6.5, 6.5))
# Treinamento: círculos vazados azuis
plt.scatter(df_train['X'], df_train['Y'],
            facecolors='none', edgecolors='blue', s=40, label='Training_
 ⇔positions')
# Gerados: preenchidos em roxo
plt.scatter(sample_1000['X'], sample_1000['Y'],
            c='orange', marker='x', s=20, alpha=0.6, label='Generated_
 ⇔positions')
# Sublinhas tracejadas de 1 em 1 metro (por cima dos pontos)
for x in np.arange(0, 21, 1):
    plt.axvline(x, color='gray', linestyle=':', linewidth=0.5, zorder=0)
for y in np.arange(0, 21, 1):
    plt.axhline(y, color='gray', linestyle=':', linewidth=0.5, zorder=0)
# Configurações visuais
plt.xlabel("X (m)")
plt.ylabel("Y (m)")
plt.title("FIGURE 4. Pseudo-labeled generated positions over training grid.")
plt.xticks(np.arange(0, 21, 2))
plt.yticks(np.arange(0, 21, 2))
plt.xlim(0, 20)
plt.ylim(0, 20)
plt.grid(True, linestyle='--', linewidth=0.5)
plt.gca().set_aspect('equal', adjustable='box')
plt.legend()
plt.tight_layout()
plt.show()
```


[10]: df_generated.describe()

[10]:		WAP001	WAP002	WAP003	WAP004	WAP005	\
[10].	count	40000.000000	40000.000000	40000.000000	40000.000000	40000.000000	`
	mean	-52.131000	-97.930100	-60.247600	-89.294925	-63.500625	
	std	4.353879	5.075836	4.681441	4.961357	3.109902	
	min	-64.000000	-110.000000	-71.000000	-110.000000	-72.000000	
	25%	-55.000000	-101.000000	-64.000000	-93.000000	-66.000000	
	50%	-53.000000	-98.000000	-61.000000	-89.000000	-64.000000	
	75%	-49.000000	-94.000000	-57.000000	-86.000000	-62.000000	
	max	-40.000000	-82.000000	-40.000000	-78.000000	-46.000000	
		20100000	0_1100000	20100000	, 0.00000	10100000	
		WAPOO6	WAPO07	WAP008	WAPOO9	WAP010	\
	count	40000.000000	40000.000000	40000.000000	40000.000000	40000.000000	•
	mean	-94.420700	-70.493825	-97.648175	-93.546025	-67.002625	
	std	5.060805	2.509307	5.459940	3.898392	4.002002	
	min	-110.000000	-79.000000	-110.000000	-110.000000	-78.000000	
	25%	-98.000000	-72.000000	-101.000000	-96.000000	-70.000000	
	50%	-94.000000	-71.000000	-97.000000	-93.000000	-67.000000	
	75%	-91.000000	-69.000000	-93.000000	-91.000000	-64.000000	
	max	-80.000000	-60.000000	-85.000000	-82.000000	-50.000000	
		LONGITUDE	LATITUDE				
	count	40000.000000	40000.000000				
	mean	10.037706	9.903981				
	std	1.724494	1.243719				
	min	3.990654	6.160164				
	25%	8.866894	8.976322				
	50%	10.104205	9.870904				
	75%	11.266562	10.831815				

max 15.545594 13.339489

[11]: df_generated.head()

[11]:		WAP001	WAP002	WAP003	WAP004	WAP005	WAP006	WAPO07	WAP008	WAP009	\
	0	-54	-94	-60	-97	-60	-100	-71	-96	-97	
	1	-53	-95	-58	-96	-64	-94	-70	-94	-93	
	2	-56	-94	-58	-95	-64	-93	-73	-96	-91	
	3	-44	-104	-63	-92	-61	-100	-69	-101	-97	
	4	-54	-101	-60	-87	-66	-101	-71	-91	-91	

WAPO10 LONGITUDE LATITUDE
0 -71 12.596934 9.377690
1 -72 11.546078 8.916157
2 -73 10.771829 9.959242
3 -61 11.109782 10.355710
4 -70 7.718573 8.156986