MATH 6320

Theory of Functions of a Real Variable Fall 2024

First name:	Last name:	Points:
tist name.	Last Hallie.	r units.

Assignment 9, due Thursday, November 14, 11:30am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let (X, \mathcal{M}, μ) be a measure space and f be a complex-valued measurable function on X. Let

$$\varphi(p) = \int |f|^p d\mu$$

and $E = \{p > 0 : \varphi(p) < \infty\}$. Assume $||f||_{\infty} \in (0, \infty]$.

(a) Show that if $r , and <math>r, s \in E$, then

$$\|f\|_{p} \leq \max\{\|f\|_{r}, \|f\|_{s}\},$$

so $p \in E$. Hint: Hölder's inequality.

(b) Assume that $r \in E$ for some r > 0 and prove

$$\lim_{p\to\infty}\|f\|_p=\|f\|_\infty.$$

Problem 2

Suppose $1 \le p \le \infty$, $(f_n)_{n=1}^{\infty}$ is a sequence in $L^p(\mu)$, $||f_n - f||_p \to 0$ and $f_n \to g$ pointwise almost everywhere. What is the relationship between f and g and why?

Problem 3

Let (X,\mathcal{M},μ) be a measure space and $f\in L^p(\mu)$, $(f_n)_{n=1}^\infty$ a sequence in $L^p(\mu)$ with $f_n\to f$ pointwise almost everywhere and $\|f_n\|_p\to \|f\|_p$. Show that $\|f-f_n\|_p\to 0$ using Egoroff's theorem, splitting $X=A\cup B$ such that $\int_A |f|^p d\mu < \varepsilon$ and $f_n\to f$ uniformly on B with $\mu(B)<\infty$, in combination with Fatou's lemma applied to $\int_B |f_n|^p d\mu$ which shows

$$\limsup_n \int_A |f_n|^p d\mu \leq \varepsilon.$$