FACTORIZATION HOMOLOGY OF ENRICHED ∞-CATEGORIES

DAVID AYALA, AARON MAZEL-GEE, AND NICK ROZENBLYUM

ABSTRACT. I am interested in Stratifications in general. There does not seem to be an exceeding amount of literature on the subject, so I am interested in compiling notes on the subject as I learn. The hope is to compile notes on stratifications of topological spaces, conical stratifications, and stratifications of stable infinity categories.

Contents

0.	Stratifications	-
0.1.	Posets	1
0.2.	Posets as Categories	

0. Stratifications

0.1. **Posets.**

Definition 0.1.1 (Posets). A poset is

- +) A set P
- +) A binary relation \leq

such that the binary relation satisfies the following properties. Let

- -) (Reflexive)- $p \leq p$
- -) (Antisymmetry)-If $p \leq p'$ and $p' \leq p$, then p = p'
- -) (Transitive)- $p \le p'$ and $p' \le p''$ then $p \le p''$

Example 0.1.2. The most basic example of a poset is a finite set, with a linear ordering. A linear ordering is a binary operation such that for all p and p' in P, either $p \le p'$ or $p' \le p$. Since every set is isomorphic to a set $\{0, \ldots, n\}$, we defined the following poset [n], which gives the usual ordering to the set $\{0, \ldots, n\}$

$$[n] := \{0 \le \dots \le n\}$$

Definition 0.1.3. A map between posets P and P'

+) A map $f: P \to P'$

such that

Date: February 10, 2022.

-) The map f induces a map on the binary relation \leq_P to $\leq_{\mathsf{P}'}$

0.2. Posets as Categories.

Definition 0.2.1 (Poset). A poset is

+) A category P

such that

- -) Either $\mathsf{Hom}(p,p')=\emptyset$ or $\mathsf{Hom}(p,p')\simeq *$
- -) If $\mathsf{Hom}(p,p')=\ast$ and $\mathsf{Hom}(p',p)\simeq\ast$ then p=p'

Remark 0.2.2. The transitive condition of a poset P is the condition that there is a composition rule for the category, namely if $\mathsf{Hom}(p,p') \simeq \mathsf{Hom}(p',p'') \simeq *$, then it must be the case that $\mathsf{Hom}(p,p'') \simeq *$.