APV21B - Performance Evaluation

Deng LiWei Nijigasaki IC Design Club

May 30, 2022

INTRODUCTION

The APV21B Real-time Video 16X Bicubic Super-resolution core is a soft IP core. It provides fully real-time 16X Bicubic interpolation video super-resolution, and its high performance design allows it to support video output resolutions in excess of 4K 60FPS.

The APV21B is compatibled with the AXI4-Stream Video protocol as described in the **Video IP: AXI Feature Adoption** section of the *Vivado AXI Reference Guide* (Xilinx Inc. UG1037) and **AXI4-Stream Signaling Interface** section of the *AXI4-Stream Video IP and System Design Guide* (Xilinx Inc. UG934).

This document is part of the IP user manual and is intended to describe the maximum achievable performance of this IP on several devices. Complete technical documentation can be found in the User's Manual for this IP.

1 Performance

The Real-time Video Bicubic Super-resolution IP is benchmarking by timing analysis tools in Vivado and Synopsys Synplify Premier. The parameters used in the benchmark test were configured as follows

Input Video Width: 960Input Video Height: 540

Table 1 shows the results of the maximum frequencies benchmark.

FPGA Device Family	Analysis Tool	Fmax (MHz)
Xilinx Virtex UltraScale+	Synopsys Synplify Premier 2020.03 ¹	628.6
Xilinx Kintex UltraScale+	Synopsys Synplify Premier 2020.03 ¹	417.2
Xilinx Zynq UltraScale+	Vivado 2021.1 ¹²	428.4
	Synopsys Synplify Premier 2020.03 ¹	394.1
Xilinx Kintex 7	Synopsys Synplify Premier 2020.03 ³	361.7
Xilinx Artix 7	Synopsys Synplify Premier 2020.03 ³	192.2
Intel Stratix 10	Synopsys Synplify Premier 2020.03 ³	260.7
Intel MAX 10	Synopsys Synplify Premier 2020.03 ³	220.5
Intel Arria V	Synopsys Synplify Premier 2020.03 ³	142.5

Table 1: Maximum Frequencies

2 Latency

Table 2 shows the Real-time Video Bicubic Super-resolution IP latency cycles measured on real-time video path. It does not include system dependent latency or throttling. Suppose the width of the input video frame is W.

Description	Clocks		
Bicubic pipeline input to output	13		
First pixel input to First pixel (group) output	$10 \cdot W + 28$		
Last pixel input to last pixel (group) output	$13 \cdot W + 31$		

Table 2: Latency

¹Using DSP48E2 Macro.

²Using XPM Macro.

³Using pure Verilog inferring synthesis.

3 Throughput

Table 3 shows the Real-time Video Bicubic Super-resolution IP throughput measured for different input frame size.

Input Resolution	Output Resolution	Throughput (FPS/MHz)	FPS @150MHz
320 x 240	1280 x 960	3.23	484.7
480 x 270	1920 x 1080	1.92	287.6
640 x 360	2560 x 1440	1.08	162.1
960 x 540	3840 x 2160	0.48	72.1

Table 3: Throughput

4 Resource Utilization

Table 4 shows the Real-time Video Bicubic Super-resolution IP resource utilization on specified FPGA devices with specified settings for reference.

Resource utilization results of Xilinx Zynq UltraScale+ devices is evaluated under with Vivado synthesizer and using DSP48E2 and XPM Macros. The evaluation result of other devices are complete using Verilog automatically inferring, may different caused by the difference of data width of DSP module of each device. The Real-time Video Bicubic Super-resolution IP is specially optimized for DSP48E2 block of Xilinx UltraScale+ series devices. In order to maximum the resource utilization, it is recommended to use these devices for synthesis.

Device	Configuration Parameters		Resource Utilization			
	Input Res- olution	fCLK (MHz)	LUTs	FFs	DSPs	BRAMs
XCZU15EG	960 x 540	300	431	694	49 ¹	2.5 ³
XC7K325T	960 x 540	150	1979	2713	30 ²	2 ³

Table 4: Resource Utilization

¹Xilinx UltraScale+ architecture DSP48E2 unit

²Xilinx 7 series FPGA DSP48E1 unit

³Xilinx FPGA Block RAM 36K unit

NOTICE OF DISCLAIMER

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Nijigasaki IC Design Club products. Tothe maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Nijigasaki IC Design Club hereby DISCLAIMS ALL WAR-RANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOTLIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTIC-ULARPURPOSE; and (2) Nijigasaki IC Design Club shall not be liable (whether in contract or tort, including negligence, or under any other theory ofliability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including lossof data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if suchdamage or loss was reasonably foreseeable or Nijigasaki IC Design Club had been advised of the possibility of the same. Nijigasaki IC Design Club assumes noobligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to productspecifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. IP cores may be subject to warranty and support terms contained in a license issued toyou by Nijigasaki IC Design Club. Nijigasaki IC Design Club products are not designed or intended to be fail-safe or for use in any plication requiring fail-safeperformance; you assume sole risk and liability for use of Nijigasaki IC Design Club products in Critical.