

MATEMÁTICAS 1 2018-19

- >> Sistema de reglas
 - >> Procedimiento deductivo

RAZONA

"Siempre que llueve mi madre se queda en casa"

- Veo por la ventana que está lloviendo
- ☐ Veo por la ventana que no está lloviendo
- ☐ Mi madre está en casa
- ☐ Mi madre no está en casa

RAZONA

O voy o vengo Si voy, llego Si vengo, estoy

Luego, llego o estoy


```
.001.^
u$0N=1
z00BAI
l.=".
;</"
;</"
NBX"=->
z0c^\X\^
"B0s"\^\
00$#\"
n$0=\X\;\.\
iBBB0\U1="\'
\$00CBR\\U1
FAHZUqn=\
ZULPR0FI\.
iBRHv n$U\-
ZULPR0FI\.
iBRHv n$U\-
iOnv 0\.\
cOqn rs\
aUU
\\
RO-
nn\"
-=-\"
-=-\"
```


PROBLEMA 1

P1: "Resuelvo el mapa sólo si me como todos los cocos o falla el sistema"

P2: "De las tres condiciones: resuelvo el mapa, me como todos los cocos y falla el sistema, al menos una es cierta"

P3: "No me como todos los cocos"

7

Razona si es cierto que falla el sistema

Facultad humana

para

resolver problemas

según unas

reglas

determinadas

Usaremos

Reglas de la

Lógica de Primer

Orden (lógica)

Razonaremos de forma correcta cuando.

Razonaremos de forma NO correcta

cuando...

A partir de unos supuestos / hipótesis /

PREMISAS que asumimos

CIERTAS / VERDADERAS

Se propone una CONCLUSIÓN FALSA —

Razonamiento deductivo lógico

R: P1, P2, ...Pn \Rightarrow Q

Pi = premisas

Q: conclusión

⇒ deductor

>> Certidumbre TOTAL en decisiones

>> CERO ambigüedad

1º **Formalizar** el problema mediante fórmulas lógicas y obtener su estructura lógica

Necesitamos: Lenguaje formal

2º Interpretar si la estructura es correcta o falaz

Necesitamos: Métodos Semánticos

3º Aplicar reglas para obtener nuevas fórmulas

Necesitamos un método deductivo:

Deducción Natural

A tener en cuenta...

1º Las premisas sólo pueden ser <u>enunciados declarativos</u> que en lógica llamaremos proposición.

P1: " A Jaime le gusta el pan" atómica

P2: " A Jaime le gusta el pan y el queso" molecular

"lógicamente" la conclusión to será una proposición

No valen: ¿Piensas?

! Piensa un poco!

PROBLEMA 1:

Señala Proposiciones ????

P1: "Resuelvo el mapa sólo si me como todos los cocos o falla el sistema"

P2: "De las tres condiciones: resuelvo el mapa, me como todos los cocos y

falla el sistema, al menos una es cierta"

P3: "No me como todos los cocos"

Razona si es cierto que falla el sistema

Se reescribe

P2: "Resuelvo el mapa o me como todos los cocos o falla el sistema"

PROBLEMA 1:

Señala Proposiciones ????

P1: "Resuelvo el mapa sólo si me como todos los cocos o falla el sistema"

P2: "Resuelvo el mapa o me como todos los cocos o falla el sistema"

P3: "No me como todos los cocos"

Razona si es cierto que falla el sistema

Ejercicio 1:Decide las proposiciones y conexiones

P1: "Resuelvo el mapa si me como todos los cocos o alla el sistema"

P2: "Cojo la llave sólo si la vec y no llevo la pistola"

P3: "Para que me mate un enemigo es necesario que no o vea"

P4: "Para que no me mueva es suficiente que vea un enemigo o un fantasma"

P5. "No ne muevo a menos que vea un enemigo o un fantasma"

A tener en cuenta...

2º Sólo importa CÓMO se razona, no el qué se razona

Importan los símbolos que conforman la Estructura lógica del problema

Contenido de A, B...el que quieras

A: vamos de fiesta.

B: lo pasamos "pipa"

A tener en cuenta...

3º Toda proposición formalizada puede ser cierta o falsa
>> 2 VALORES DE VERDAD

ito!

"El Real Madrid ganó el mundial 2017"

FALSO!!!

Formalización lógica, p.ej.: p puede ser cierta o falsa.

El cálculo lógico "pasa" de lo que significa p, sólo le interesa cómo <u>aparece</u> p en el razonamiento

! Toca formalizar...

" La elección de una notación constituye una etapa importante en la **solución de un problema**.

Debe elegirse con cuidado.

/.../ Una **notación apropiada** podrá contribuir de modo primordial a la comprensión del problema"

Cómo plantear y resolver problemas, G. Polya

... con lenguaje lógico

¿Cuál es mejor?

Proposición como un "todo"

Símbolo: p

"Todos los alum son comecocos"

Depende ...

"detallamos más "

qué se afirma > que son comecocos

quién ? > los alum

 $\forall x [alum(x) \rightarrow comecocos(x)],$

 $x \in D = \{ alumnos de clase \}$

Lenguaje de proposiciones

Dada proposición A se obtiene fórmula proposicional: fbf-A

Representación

Proposiciones **atómicas** Variable proposicional: **p, q**...

conexiones

Negación: ¬

Conjunción: ^

Disyunción: v

Condicional: \rightarrow

Bicondicional \leftrightarrow

Conexiones >> conectivas lógicas

no A es falso A no es cierto A

Negación: ¬A

A	¬A
V	F
F	V

A y B A pero B A aunque B

Conjunción: A ^ B

A	B	A ^ B
V	V	V
V	F	F
F	V	F
F	F	F

A o B Al menos A o B Como mínimo A o B

Disyunción: A v B

A	В	AvB
V	V	V
V	F	V
F	V	V
F	F	F

Conectiva "estrella" >> implicador

- Si A entonces B
- A sólo si B
- B si A
- B es necesario para A
- A es suficiente para B
- No A a menos que B

Condicional : $A \rightarrow B$

A: antecedente;

B: consecuente

A	В	$A \rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

RAZONA

"Siempre que llueve mi madre se queda en casa"

Veo por la ventana que está lloviendo

- Veo por la ventana que no está lloviendo
- ☐ Mi madre está en casa
- ☐ Mi madre no está en casa

Α	В	$A \rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

Ejercicio.3 Escribe, en lenguaje natural, 3 frases equivalentes

P6: Si hay un enemigo, no me muevo

Es suficiente ...

Es necesario ...

Sólo si ...

A menos que...

RAZONA <<>> CONDICIONAL

suficiente / necesario

"Es suficiente que haya una consonante por una cara, para que haya un número par por la otra"

! Elige ! una carta ¿qué hay detrás?

2

Α	В	$A \rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

RAZONA <<>> CONDICIONAL

suficiente / necesario

"Es necesario que haya una consonante por una cara, para que haya un número par por la otra"

! Elige ! una carta ¿qué hay detrás?

2

A	В	$A \rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

Condicional en 2 direcciones >> bicondicional

SI y sólo SI:

$$A \leftrightarrow B = (A \rightarrow B) \land (B \rightarrow A)$$

A	В	$A \leftrightarrow B$
V	V	V
V	F	F
F	V	F
F	F	V

Implicador <<>> Razonamiento

$$A \rightarrow B$$

Α	В	$A \rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

R no correcto cuando premisas ciertas y conclusión falsa

"recopilamos "...

"traducir" frases del lenguaje natural al lenguaje lógico proposicional

- 1 Determinar qué significa la frase.
- 2 Buscar la fbf que tenga el mismo significado.
- 3 Elegir variables proposicionales y escribirlas en MC.

MC: conjunto llamado marco conceptual cuyos elementos son las variables proposicionales y la frase atómica del que representan.

Sin esto... tendrás problemas

Hay que tener en cuenta la PRIORIDAD de cada símbolo de la fbf para averiguar si R es válido

Prioridad de las conectivas en una fbf:

7

 \wedge \vee

 \rightarrow \leftrightarrow

Conectiva principal, la de mayor jerarquía

Árbol sintáctico

Escribe fbf:

Conectiva principal

A B

Escribe fbf:

Conectiva principal

Ejercicio 2: Formaliza con el lenguaje de proposiciones

P1: "Resuelvo el mapa si me como todos los cocos o falla el sistema"

MC = { re: resuelvo mapa;

co: como cocos;

fa: falla sistema }

Fbf-P1: co v fa \rightarrow re

Ejercicio 2:

CONT

P2: "Cojo la llave sólo si la veo y no llevo la pistola"

MC = { II: cojo la llave;

ve : veo la llave;

pi: llevo pistola }

Fbf-P2: $II \rightarrow ve \land \neg pi$

Ejercicio 2:

CONT

P3: "Para que me mate un enemigo es necesario que no lo vea"

MC = { ma: me mata enemigo;

en : veo enemigo }

Fbf-P3: ma $\rightarrow \neg$ en

Ejercicio 2:

CONT

P4: "Para que no me mueva es suficiente que vea un enemigo o un fantasma"

MC = { **mv**: me muevo;

en: veo enemigo;

fa : veo fantasma }

Fbf-P4: fa v en $\rightarrow \neg mv$

Ejercicio 2:

CONT

P5: "No me muevo a menos que vea un enemigo o un fantasma"

MC = { **mv** : me muevo;

en: veo enemigo;

fa : veo fantasma }

Fbf-P2: $mv \rightarrow fa v en$

i Cuidaditoi

Encuentra la diferencia

"No es necesario que sea cierto B y C, para que sea cierto A"

Fbf:
$$\neg (A \rightarrow \neg B \land C)$$

Conectiva principal: ¬

"Es necesario que no sea cierto B y C, para que sea cierto A"

Fbf:
$$A \rightarrow \neg (B \land C)$$

Conectiva principal: →

EJERCICIOS extras de formalización L. proposiciones

- 1. Popeye es inocente pero El Pirata es culpable, sin embargo Makinavaja no es inocente
- 2. No es verdad que los 3 sean culpables a la vez
- 3. A pesar de que Popeye es inocente, Makinavaja o El Pirata no lo son

MC = { po: Popeye es culpable;

pi : El Pirata es culpable;

ma: Makinavaja es culpable }

Fbf-1: ¬po ∧ pi ∧ ma

Fbf-2: \neg (ma \wedge pi \wedge po)

Fbf-3: $\neg po \land (ma \lor pi)$

EJERCICIOS extras de formalización L. proposiciones

- 4. El Pirata no es culpable si sucede que Makinavaja es inocente o Popeye es culpable
- 5. Popeye y El Pirata son inocentes sí y sólo sí Makinavaja es culpable

MC = { po: Popeye es culpable;

Fbf-4 ¬ma ∨ po → ¬pi

pi : El Pirata es culpable;

ma: Makinavaja es culpable }

Fbf:5 $\neg po \land \neg pi \leftrightarrow ma$

EJERCICIOS extras de formalización L. proposiciones

- 6. Sólo si El Pirata y Makinavaja son culpables, Popeye es inocente
- 7. Makinavaja no es culpable a menos que El Pirata o Popeye sean inocentes

MC = { **po**: Popeye es culpable; Fbf-6: \neg po \rightarrow pi \wedge ma

pi : El Pirata es culpable;

ma: Makinavaja es culpable } Fbf-7: ma $\rightarrow \neg pi \land \neg po$

8. A menos que Makinavaja sea culpable, no será verdad que si El Pirata es inocente, entonces Popeye sea culpable

pi : El Pirata es culpable;

ma: Makinavaja es culpable }

Fbf-8:
$$\neg(\neg pi \rightarrow po) \rightarrow ma$$

9. Si es verdad que la culpabilidad de El Pirata es suficiente para que Popeye sea inocente, entonces Makinavaja será inocente

pi : El Pirata es culpable;

ma: Makinavaja es culpable }

Fbf-9:
$$(pi \rightarrow \neg po) \rightarrow \neg ma$$