

GLOBAL INSTITUTE OF TECHNOLOGY

B. Tech. II Semester Exam 202'2-23

II MID TERM EXAMINATION (II Sern.) 2022-23

2FY2-01 Engineering Mathernatics-II

Branch- All Branches

Date/Day- 27/04/2023 Tuesday

Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly, no supplementary sheet shall be issued in any case.

Part A(Answer should be given up to 25 words only)

All questions are compulsory	CO5
(1) Q.1 Define order of partial differential equation?	CO4
(2) Define second order of partial differential equation?	CO3
(3) Write a standard form of Clairut's equation?	COS
(4) Solve $\frac{d^4y}{dx^4} - 2\frac{d^2y}{dx^2} + y = 0$?	CO3
(5) Write a characteristic equations of Charpit's?	CC 4
(6) Find the partial differential equation by elimination of a and b from	m the equation
z = (x+a)(y+b)?	C.04
(2) Define a degree of a partial differential equation?	(205
(8) Find a order and degree of $px + qy = nz$?	CO4
(9) Write a Lagrange form of a differential equation?	CO4
Solve $sinpxcosy = cospx siny + p$	CO3

Part B. Analytical/Problem solving questions Attempt all questions (word Limit 100)

(1) Find the partial differential equation by eliminating arbitrary	function from the
from the following equation: $z = e^{xy}\phi(x - y)$	CO4
	12212211

Solve
$$y^2p - xyq = x(z - 2y)$$

(3) Solve $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$

CO3

(3) Solve
$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$$
 CO3

(4) Solve
$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} - \frac{dy}{dx} + y = 0$$
 CO3

(5) Solve
$$\frac{d^3y}{dx^3} + a^2 \frac{dy}{dx} = sinax$$
 CO3

Part C(Descriptive/Analytical/Problem Solving/Design Question) Attempt all questions,

(1) Q.1 Solve the following two dimensional heat conduction equation by the method of separation of variables:

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{1}{k} \frac{\partial^2 z}{\partial t^2}$$
 CO5

(2) Solve
$$(1-x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = x(1-x^2)^3/2$$

(3) Solve(
$$x^2$$
) $\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 2y = x \log x$. CO3

3x 10 = 30

10x 2 = 20