[000211] ABSTRACT OF THE DISCLOSURE

2	[000212] A wireless communication receiver (20) comprises an antenna array (22)
3	and a joint searcher and channel estimator (24). Plural antenna elements of the array
4	provide respective plural signals (indicative of one or more arriving wavefronts) to the
5	joint searcher and channel estimator. The joint searcher and channel estimator
6	essentially concurrently considers the plural signals provided by the plural antennas for
7	determining both a time of arrival and composite channel coefficient for each
8	wavefront. The joint searcher and channel estimator applies the channel coefficient an
9	the time of arrival to a detector which provides, e.g., a symbol estimate. Since it
10	contemporaneously processes the signals from plural antennas over a sampling window
11	in order to determine both time of arrival and the channel coefficient, the joint searcher
12	and channel estimator (24) is considered a two dimensional unit. A first dimension is
13	with reference to a time index of the sampling window, i.e., a sampling window time
14	index. A second dimension is a spatial dimension imparted by the spacing of the plura
15	antennas of the array. The spatial joint searcher and channel estimator may take
16	differing embodiments and have differing implementations. In one example,
17	illustrative embodiment the joint searcher and channel estimator includes a non-
18	parametric type correlator (e.g., a correlator which performs a Fast Fourier Transform
19	(FFT) calculation). In another example, illustrative embodiment the joint searcher and
20	channel estimator utilizes a parametric approach