Document Title

Summary of the fate and behaviour in the environment
Bixafen + Fluoxastrobin + Prothioconazole EC 190 (40+50+100 g/L)

Data Requirements

EU Regulation 1107/2009 & EU Regulation 283/2013

Document MCP

Section 9: Fate and behaviour in the environment

According to the guidance document, SANCO 16181/2013, for preparing dessiers for the approval of a second

Date Requirements .attion 1107/2009 & Et Regulation 284/21 Document MCF .section 9s at eard behaviour in the environment According to the guidance/focument, SANCO 16481/203, for preparing descending to the approval of a diemical active substance 2016-01-12 Bav

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer Prop Science No part of the document or any information contained therein may be disclosed to any third

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment would be a submitted for the purpose of the assessment would be a submitted for the purpose of the assessment would be a submitted for the purpose of the assessment would be a submitted for the purpose of the assessment would be a submitted for the purpose of the assessment would be a submitted for the purpose of the assessment would be a submitted for the purpose of the assessment which is a submitted for the assessmen ungablished proprietary day contained, in the summaries and evaluation are base either:

From Bayer Cropscience; or From other applicants once the period of data protection has expired. authority. Other registration authorities should not grant, amend, or review a registration on the basis of the summaries and evaluation of unpublished proprietary data contained in this

Version history

Date Data points containing amendments or additions and Servision number of the servision number of the suggested that applicants adopt a similar approach to showing revision and version history as putlined in ANCO/10180/2013 Chapter 4 How to revise an Assessment Report			Doğumant idantific And
It is suggested that applicants adopt a similar approach to showing revisions and version history as putlined in ANCO/10180/2013 Chapter 4 How to revise an Assessment Report	Date	Data points containing amendments or additions ¹ and	Document identifier and
It is suggested that applicants adopt a similar approach to showing revision and version history as Southing Lin ANCO/10180/2013 Chapter 4 How to revise an Assessment Report		brief description	yversion number
It is suggested that applicants adopt a similar approach to showing revision and version history as Suttlined an ANCO/10180/2013 Chapter 4 How to revise an Assessment Report			
It is suggested that applicants adopt a similar approach to showing revisions and version history as solutined in ANCO/10180/2013 Chapter 4 How to revise an Assessment Report			
It is suggested that applicants adopt a similar approach to showing revision and version highly a Sudding Lin ANCO/10180/2013 Chapter 4 How to revise an Assessment Report			
ANCO/10180/2013 Chapter 4 How to revise an Assessment Report	It is suggested the	hat applicants adopt a similar approach to showing revision on	d version history as putlined in
	ANCO/10180/2	013 Chapter 4 How to revise an Assessment Report	
		y g° ,5° ,5°	
			* Y
	. (J ^v
	Ö		
	, Ø		
	_@		
	×2 11		
	4		
	Ũ		

Table of Contents

	EATE AND DEHAMIOUD IN THE ENVIRONMENT 🙈	
CP 9 CP 9.1	FATE AND BEHAVIOUR IN THE ENVIRONMENT	
CP 9.1 CP 9.1.1	Pate of degradation in soil	
CP 9.1.1 CP 9.1.1.1	Rate of degradation in soil	.O
	Laboratory studies Field studies	Y
CP 9.1.1.2	Coil discination studies	···\$9'····×
CP 9.1.1.2.1	Soil dissipation studies	
CP 9.1.1.2.2	Son accumulation studies	,
CP 9.1.2	Mobility in the soil	····· Ø ·····
CP 9.1.2.1	Laboratory studies	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CP 9.1.2.2	Lysimeter studies	, 4
CP 9.1.2.3	Field leacning studies	
CP 9.1.3	Estimation of concentrations in soil	~~~
CP 9.2	Fate and behaviour in water and sediment	\$
CP 9.2.1	Aerobic mineralisation in surface water.	·····
CP 9.2.2	water/sediment study	·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CP 9.2.3	Irradiated water/sediment study	
CP 9.2.4	Estimation of concentrations in groundwater	v
CP 9.2.4.1	Calculation of concentrations for groundwater	
CP 9.2.4.2	Additional field tests &	
CP 9.2.5	Estimation of concentrations in surface ovater and sediments	
CP 9.3	Fate and behavious in au	
CP 9.3.1	Roote and rate Ordegradation in au and transport via air	
CP 9.4	Estimation of concentrations for other routes of exposure	
2		
Ď		
Ky v		
<i>Q</i>		
* \$		
A		
<u></u> و		
	Laboratory studies Lysimeter studies Field leaching studies Estimation of concentrations in soil Fate and behaviour inwater and sediment Aerobic mineralisation in surface water. Water/sediment study Irradiated water/sediment study Estimation of concentrations in groundwater Calculation of concentrations in groundwater Additional field tests Estimation of concentrations in surface water and sediment Fate and behaviour in air. Route and rate of degradation in air and transport via air Estimation of concentrations for other routes of exposure	
~Q		
(C j		

CP 9 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Table CP 9-1: Intended application patterns

	rns considere	d in this risk	assessment		ONMENT Application rate her treatment
Table CP 9	-1: Intended	l application pa	atterns		
Crop	Timing of application (range)	Number of applications	Application interval	Maximum label rate per treatment [L/ha]	
Wheat, rye, triticale*	BBCH 30-69	1–2	14-21	0 1.750	
Barley*	BBCH 30-61	1–2	14-21	Ø.50 Q	75 0 150 5
Oats*	BBCH 30-61	1-2	14-24	1.75	70 2 87.5
					ochicts summarised in

Table CP 9- 2 are addressed in this document as they were major in environmental fate studies. In this paragraph the approach to the risk assessment of the Z-isomer of fluoxastrobin is specifically considered. The chemical structure of fluoxastrobin contains an oxime ether moiety. Due the substitution pattern of that double bond E- and Z-isomers exist. The common name fluoxastrobin denotes the E-isomer. The Z-isomer is known to be an impurity in echnical fluoxastroom (specification limit 2 mg/kg). The Z-isomer can be formed from the E-isomer by photolytic processes exclusively. The transformation will lead to an equilibrium state in which the E-isomore is the more E-isomer. Further, the Z-isomer shows a very similar toxicological profile, A study with Daphnia at least comparable, potentially lower ecotoxicological profile than the garent spisomer, degeonstrating that there is no further risk for the aquatic compartment (please refer to CAs 8.2 4.) M-030533307-1). Taking this information into account, both isomers can be evaluated as suit of E. Z-isomers, providing a conservative environmental risk assessments.

Table CP 9-2: Active substance and degradation products addressed in this document

Table CF 9- 2: Active	substance and degradation pr	Evalenation for	
Compound / Codes	Chemical Structure	Explanation for Consideration	Considered for
Fluoxastrobin	E-isomer N	active substance	PEC _{soil}
(HEC 5725)	CI F	The state of the s	PEC _{gw} PEC _{sw}
	0 0 0		As a worst case approach,
	1		the sam of both isomers
	2		(Flugaxastronin E±1
			Isomers) is considered for
HEC 5725-Z-Isomer	Z-isomer N 0	photolytic metabolite .	Exposure and risk
	3		assessment
	2		
		A S	
HEC 5725-		protolytic metaborite	PEC _{soi}
carboxylic acid			PECsoj PECsw PECsw & PCcsed
(HEC7180, M40)	CI OH		PEGw & PECsed
	1 O N O N		
	CH ₃		
			₩
HEC 5725-E-des-		Occurrence in & **	KLC _{soil}
chlorophenyl		(210 70) ° /	PECgw
(HEC 7155, M48)		water sediment study (>10 ~	PEC _{sw} & PEC _{sed}
		% in water O	
	O N CH ₃		
2-chlorophenol		occurrence in - aerobic coil (>10%)	PEC _{soil}
(M82)		- aerobic soil (\$10%)	PEC _{gw}
			PEC _{sw} & PEC _{sed}
**		- 37	
- O)	A NO NO		

Compartment	Residue Definition for Risk Assessment
Soil	fluoxastrobin (E- isomer),
	HEC 5725 -Z-isomer,
	HEC 5725-carboxylic acid (<i>M40</i>), HEC 5725- <i>E</i> -des-chlorophenyl (<i>M48-E</i>),
	2-chlorophenol (<i>M82</i>)
Groundwater	fluoxastrobin (E-isomer),
	fluoxastrobin (<i>E</i> -isomer), HEC 5725- <i>Z</i> -isomer, HEC 5725-carboxylic acid (<i>M40</i>), HEC 5725- <i>E</i> -des-chlorophenyl (M48 a), 2-chlorophenol (M82)
	HEC 5725-carboxylic acid ($M40$),
	HEC 5725-E-des-chlorophenyl (M48@E),
2 0	HEC 5725-E-des-chlorophenyl (M48-E), 2-chlorophenol (M82) fluoxastrobin (E-isomer), HEC 5725-Z-isomer, HEC 5725-E-des-chlorophenyl (M48-E), 2-chlorophenol (M82) fluoxastrobin (E- isomer), HEC 5725-E-des-chlorophenyl (M48-E), 2-chlorophenol (M82) fluoxastrobin (E- isomer), HEC 5725-Z-isomer, HEC 5725-Z-isomer, HEC 5725-Carboxylic acid (M00),
Surface water	Illuxastrobin (E- isomer),
	HEC 5725 carboxylic acid (MM)
	HEC 5725-carboxylic acid (MHO), WHEC 5725-E-des-chlorophenyl (MHS-E)
Sediment	HEC 5725-E-des-chlorophenyl (M48E), 2-chlorophenol (M82) fluoxastrobin (E- isomer), HEC 5725-Z-isomer, HEC 5725-E-des-chlorophenyl (M48-E) fluoxastrobin (E- isomer)
	2-chlorophenol (M82) fluoxastrobin (E- isomer), HEC 5725-Z-isomer, HEC 5725-E-des-chlorophenyl (M8-E) fluoxastrobin (E- isomer) HEC 5725-Z-isomer none
Air	none Q V Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
į	
	HEC 5725-E-des-chlorophenyl (M82) 2-chlorophenol (M82) fluoxastrobin (E- isomer) HEC 5725-E-des-chlorophenyl (M8-E) HEC 5

CP 9.1 Fate and behaviour in soil

For detailed information on the fate and behaviour in soil please refer to MCA Section 37 point 7.1.

The proposed degradation pathway of fluoxastrobin in soil is shown in Figure 9.1-1.

Figure CP 9.1- 1:

Rate of degradation in so

No specific studies with the formulation are required. For further information on the fate and behaviour in soil please refer to MCAS section 7, data points 7.1.1 and 7.1.2.

ą̃borątory stwdies∾

ion on laboratory studies please refer to MCA Section 7, data point 7.1.2.1.

Field studies

For information on field studies please refer to MCA Section 7, data point 7.1.2.2.

CP 9.1.1.2.1 Soil dissipation studies

For information on field dissipation studies please refer to MCA Section 7, data point 7.1.2.2.1

CP 9.1.1.2.2 Soil accumulation studies

For information on field accumulation studies please refer to MCA Section, data point .

Lysimeter studies
Information on lysimeter studies glease refer to MCA Section 7, data point 9, 1.4 k.

CP 9.1.2.3 Field leaching studies
For information on field leaching studies refers to MCA Section 9, data point 2, 1.4.3.

CP 9.1.3 Estimation of concentrations in soil

New calculations were performed to reflect findings from new studies presented in the settive. substance dossier, section 7 "Fate and behaviour in the environment". In addition these calculations considered the most recent guidance documents for exposure calculations. Calculations of predicted 7. Mata point 7.1 environmental concentrations in soil (PEC_{soil}) are presented below.

Predicted environmental concentrations in soil (PECs)

Endpoints for PEC_{soil}

For deriving the respective end points please refer to MCA Section

Key modelling input parameters for fluoxastroom and is metabolites Table CP 9.1.3- 1:

Compound	Worst case DTso Maximum non-normalised occurrence in soil occurrence in soil of the state of the of the st	Molar mage [ganol]	Molar mass correction factor
Fluoxastrobin (E+Z)	(rates equivalent to DT 50 fast phase 39.8 lod, DT 50 slow phase 237 lod, grast 0.4996) (DCOP: DT 50 initial 86.41 dt) DT of Sirial 552 8 d1) 5	\$\tag{458.8}	1
HEC 5725-E- des- chlorophenyl	95.87 ^{2, 5}	348.3	0.7592
HEC 5725 a carboxylic acid	28,600 0 0 16.9	417.8	0.9106
2-chlorophenol	23 ⁴ 5 23 ⁷ 49.2 ⁷	128.56	0.2802

^{1:} worst case non-noppadized field site Phursten R812404) with worst-case DFOP DT90, initial value

^{2:} worst case non-normalize cappare of field decline D 50 value

^{3:} worst case non normalized laboratory D'T value

^{4:} worst case NT50 value according to the recommendations of ERSA (EFSA, 2007)

^{7:} theoretical estimation by EFSA (EFSA) 2007)

Report: KCP 9.1.3/01 ,; 2015; M-537905-01-1

Title: Fluoxastrobin (FXA) and metabolites: PECsoil EUR - Use in cereals and onions in

Europe

Report No.: EnSa-15-0541
Document No.: M-537905-01-1
Guideline(s): not applicable
Guideline deviation(s): not applicable

GLP/GEP: no

Methods and Materials: The predicted environmental concentrations in soil (PEC.) of fluorastrobin and its metabolites were estimated based on a corst tier approach using a Microsoft Excel spreadsheet. A bulk density of 1.5 kg/L and a soil mixing depths of 5 cm were used as recommended by FOCUS (1996) and EU Commission (1995, 2000). The accumulation potential of fluorastrobin after long term use was also assessed, employing the mixing depth of 20 cm for the calculation of the background concentration.

Detailed application data used for simulation of PECson were compiled in Taple CP9.1.3-

Table CP 9.1.3- 2: Application pattern used for PEC_{soil} calculations of Thoxastrobin

Individual crop	FOCUS crop used for interception	Rate per season [g a.s. /ha]	Interval	interception	BBCH Ostage	Amount reaching soil per season application [g a.s./ha]
Cereals	*Gereals	@x 87.5©	314 × ¥	2×2×80 €	30 - 89	2 x 17.5
Cereals	Cereals	2 x 5	\$ 14.20	2 x 80 ♥	№ 0-61	2 x 15.0

Substance Specific Parameters: The compound specific input parameters (endpoints for PEC_{soil} calculations) are summarize in Table CP\$1.3-

Findings: The maximum PEC walves for fluoxastrobin and its operabolites are summarised in Table CP 9.1%, 3. The maximum short-term and long term PEC and the time weighted average values (TWAC soil) are provided in Tables 9.1.3-4 and 9.1.3-5.

Table CP 9.1.3-3: Maximum PECG of fluoxastrobin and its metabolites for the uses assessed

		Fluorastrobia (E+Z)	des- chlorophenyl	HEC 5725- carboxylic acid	2-chlorophenol
Use Pattern		PECsoil Ong/kg	PECsoil [mg/kg]	PECsoil [mg/kg]	PECsoil [mg/kg]
Cereals 2x87.5 g a.s./ha,	Hays, 2x80%	0.044	0.011	0.006	0.005
Cereals 2x75 g a.s./ha=14	days 2x80	0.4%	0.009	0.005	0.005
		,			

Table CP 9.1.3-4: Cereals, 2×87.5 g a.s./ha: PEC_{soil} (actual) of fluoxastrobin and its metabolites

					@ ^v	
		2 97 5	rcention			
	-	Fluoxastrobin	2 x 87.5 g a.s./ha, 14 days app. interval, 2 × 80% interce Fluoxastrobin HEC 5725-E-des- HEC 5725-			
		(E+Z)	chlorophenyl	carboxylic acid	2-chlorophenol)	
	Time	PECsoil	PECsoil	PECsoil	REC soil	
	[days]	[mg/kg]	[mg/kg]	[mg/kg]	mg/k@	
Initial	0	0.044	0.011	0.096	\$\tag{0.005}\$	
Chart	1	0.043	0.011	£ 506	29005 L	
Short	2	0.043	0.011	Q0.006 ×	J 50.005\$ &	
term	4	0.042	0.014	0.006	(°°0.0 6)	
	7	0.041	0,000	0,095 Q"	0,004	
	14	0.038	0.010	[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	©.003 °C	
Long	21	0.036	№ 0.009 ©) <u>~</u> 0.004~ ~	₹ 70.003 × 10000 × 10	
Long term	28	0.034	0.009	0.00 °	\$\ 0.0 0 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	42	0.030	Q.008	Q.002 Q	© 02 0°	
	50	0.028	√° ×9.008 √°	© 2002 ° 3	√ 0.001 √	
	100	0.021	0.005	/O<0.0 0 U /	<0.00	

Table CP 9.1.3- 5: Cereals, 2 87.5 gas./ha: WACon of flooxastrovin and its metabolites

			O A		
		\$\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right(\frac{1}{2}\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right(\frac{1}{2}\right)\right)\right)\right(\frac{1}{2}\right)\right)\right)\right(\frac{1}{2}\right)\right)\right)\right)\right(\frac{1}{2}\right)\right)\right)\right)\right(\frac{1}{2}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\righ	Cer	reals interval 2 × 80% inte	A
		2 🔊 87.5	gor.s./ha@14 days app.	interval 2 × 80% inte	reption
		Flinexastrobin (E+Z)	HEC 5725-K-des-Calorophenyl	THÉC 5725- Carboxylic acid	2-chlorophenol
	Time			U TWAC _{soil}	TWACsoil
	[days]	[mg/kg]	(m̃o/kol≎	(∥ı lmg/kgl	[mg/kg]
Initial	0	k			
Chart		0.043	0.0M	0.096 ©006	0.005
Short	9	W.D43	0.011 0.011 0.011	© 006	0.005
term	<u>م</u> 4		1 3 0 .011 0 0	0.006	0.005
	7	~ 0.04	0.011	0.006	0.005
	14	0.038	0.014	0.005	0.004
Long	21	0° 40,040 ° .	O	△ ″ 0.005	0.004
Long	28	0.0380 4	> √00.010 [©] >		0.004
term	42	Q 0.03	0.009	0.004	0.003
	_5Ø/	0.035	Q.909 '0'	0.004	0.003
	, 100	030	Q. \@.008 <u>\</u> \	0.002	0.002
A A					
		0.038 0.038 0.038 0.038 0.038 0.030 0.038 0.030 0.038			

Table CP 9.1.3-6: Cereals, 2×75 g a.s./ha: PEC_{soil} (actual) of fluoxastrobin and its metabolites

		2 x 75 ;	rception		
		Fluoxastrobin (E+Z)	HEC 5725-E-des- chlorophenyl	HEC 5725- Carboxylic acid	2-chlorophenot
	Time [days]	PEC _{soil} [mg/kg]	PEC _{soil} [mg/kg]	PEC _{soil}	RECsoil
Initial	0	0.037	0.009	0.005	\$\tag{0.005}
Chart	1	0.037	0.009	£ 505	29004 V
Short	2	0.037	0.009 🍫	©.005 ×	J 50.004\$ &
term	4	0.036	0.00	0.005	
	7	0.035	0,000	0,094 Q"	0,004
	14	0.033	0.008	[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20. 003
Long	21	0.031	\$0.008\$\text{\$\tilde{\chi}\$}	~ ~ 0.003~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	[∞] 0.002 [∞]
Long term	28	0.029	0.008	@ 0. 069	√ 0.0 0 2 , ∘
term	42	0.026	Q.007	Q.002 Q	Q 901 V
	50	0.024	₹ ? 0.006 ~ /	©	0.001
	100	0.018	V (2) 0.005 (2) %	/O<0.0 0 0_/	<0.00

Table CP 9.1.3-7: Cereals, 2 × 7\(\tilde{Q}\)g a.s./ha: TWAC soil of fluoxastrobin and its metabolites

		(n) ×			(.
		2 x 75 g	o Oha 14 days ann i	eals Q Somition of the control of th	confion
			MEC 5725-E-des-	HEC 5725	(Ception
		Fluoxastrobin	\$ 14\D 1 P 1	HCC 5725 carboxylic acid	2-chlorophenol
	Time	TWACSil	TWA Csoil O	& TWACsoil	TWACsoil
	[days]	TWAC 6il [mg/kg] 0.037	TWA Soil O I I I I I I I I I I I I I I I I I I	K TWACsoil O	[mg/kg]
Initial	0	\$ 4 S ;		v a, *	
Chart	1	$\bigcirc 0.037$	0.009	0.005	0.004
Short	20	0.037	0,009	0.095	0.004
term	•	9.937 U	0.009	© 0005	0.004
	<i>₾</i> 7	0.036	₹ 0.009 ©	0.005	0.004
8	¥ 14	0.036	0.009	0.004	0.004
1	21	, O Q, ODA	Q. Q)9 V	0.004	0.003
Long	28	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	O* <0.008 %	0.004	0.003
term	42	0.031 ×	0.008 0.008 0.008	0.003	0.003
	50	(a) (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	× 0.0 0 8	0.003	0.002
	<u> 1</u> 000	00025	Q.907 °°	0.002	0.001
Ž					
		0.036 0 0 0.035 0 0 0.031 0 0 0.025 0			

(BATER) Bay	er CropScience		Page 15 of 4 2016-01-1
	Section 9 Fate and behaviour EC 190 (40+50+100) G	in the environment	
Potential accum	oulation in soil:		
		use was also assesse	d. The results for a standard-movi
depth of 20 cm f	or an arable crop with tillage	are presented in Tab	le CP 9.1.3- 8.
Table CP 9.1.3- 8	: PEC _{soil} of fluoxastrobin ta	ıking the effect of accu	mulation into account (mixing depth
	of 20 cm)		Fluoxastrobin (E+Z) [mg/kg] 0.0047 0.003
	Use Pattern	PECsoil	(E+Z) (mg/kg) (S)
	Cereals	plateau 4	9.003 V
	Cereals	plateau	0.047
	total = plateau (background conce	o" O' totak; ntration after mysti-yeaQ	ise) + max. PEC _{soil}
	Q Q		
	J 4. 59		
~ ©			L G
K,			<i>y</i>
4 1 E			
Š		,	
	10. P		
			d. The results for a standard-naxi le CP 9.1.3-8. mulation into account (mixing depth of the count) [E+Z) [mg/kg] 0.003 0.047 0.0603 Se) + max. PEC soil

CP 9.2 Fate and behaviour in water and sediment

The proposed degradation pathway of fluoxastrobin in water and sediment is shown in Figure 9.2.

For information on the fate and behaviour in water and sediment please refer to MCA Section 7, data point 7.2.

Figure CP 9.2-1: Proposed bio-degradation pathway of fluoxastrobin in water and sediment (major degradation products)

CP 9.2.1 Aerobic mineralisation in surface water

For information on aerobic mineralisation in surface water studies please refer to MCA Section, 7 data point 7.2.2.2.

CP 9.2.2 Water/sediment study

For information on water/sediment studies please refer to MCA Section 7, data point 7, 222

CP 9.2.3 Irradiated water/sediment study

For information on irradiated water/sediment studies please point 7.2.2.4.

Estimation of concentrations in groundwater **CP 9.2.4**

Calculations were performed, to reflect tindings from new studies presented in the active substance dossier, section 7 "Fate and behaviour in the environment". In addition these calculations consider the most recent guidance documents for posure calculations?

Calculations of predicted environmental concentrations in groundwater are presented below.

PEC_{gw} modelling approach

The predicted environmental concentrations in groundwater (PEC) for the active substance were calculated using the simulation models GOCUS PEARL and FOCUS POLMO following the recommendations of the FOOUS working group on groundwater scenarios further, where a crop of scenario, FOCLO MACRO simulations were performed (EFSA interest is defined for Guidance Document, 2014¹).

The leaching calculations were run over 26 years, as proposed for pesticides which may be applied every year. The first six years are a 'warm up' beriod only the last 20 years were considered for the assessment of the leaching potential. The 80th perceptile of the mean annual groundwater concentrations in the percolate at 1 redepth under a treated plantation were evaluated and were taken as the relevant PEC values. In respect to the assessment of a potential groundwater contamination this shallow depth reflects a worst case. The effective long-term groundwater concentrations will be even lower due to dilution in the upper groundwater layer.

Crop interception will educe the amount of a compound reaching the soil and therefore this has been taken into account depending on the growth stage a application. The interception rates follow the EFSA Guidance Document (2014)¹ resommendations (Table CP 9.2.4- 1).

¹ EFSA (2014): EFSA Guidance Document for evaluating laboratory and field dissipation studies to obtain DegT50 values of active substances of plant protection products and transformation products of these active substances in soil. EFSA Journal 2014;12(5):3662.

Table CP 9.2.4-1: EFSA (2014) groundwater crop interception values

			-	p stage ption [%]			
_	Bare – emergence	Leaf development	Ste elonga		Flow	ering 🍣	Senescence O
Crop				ВСН		0	
	00 - 09	10 - 19	20 - 29	30 - 39	40 - 69	70 - 89	90 - 99
Winter cereals	0	0	20 (tillering)	80 (elong.)	90 Å	» 80 ≽	
Spring cereals	0	0	20 (tillering)	80 (elong.)	90%	80	895 5 5
Winter cereals 0 0 0 20 80 90 80 Spring cereals 0 0 0 (tillering) (elong.) 90 80 80 For deriving the respective endpoints please refer to MCA Section 7, data point 71.							
able CP 9.2.4-		elling input par			Q	s metabol	lifes , S
Compou	nd	- G	DT 50 soft	Koc mL/g]	K K		REUNDLICH® exponent 163

Endpoints for PECow

Compound	DT 50 soft	¥γος √mL/g]⊘	Kom [m]L/g] &	REUNDLICH® exponent 1/9
Fluoxastrobin (E+Z)	38.89	752.00	436.2	0.8584
HEC 5725-E-des-chloroph@yl	J 056.7 S	1923 1)	11.20	0.9967 2)
HEC 5725-carboxylic and	\$ 17,01	56.4	, \$ 2.8 &	0.9043
2-chlorophenol	Z	104.7	\$ 60.7\$\frac{1}{2}\$	©0.8520

- 1) geomean of neutral pH cluster
- 2) Arithm. mear of neutral pH chaster
- CP 9.2.4.1 Calculation of Concentration in ground

CP 9.2.4.1 Calculation of concentrations in groundwater

Predicted environmental concentrations in groundwater (PECGW)

©015; M-537900-01-1 Report:

Fluoxartrobin (FXA) and memboliter PECgw FOCUS PEARL, PELMO EUR - Use Title:

in cereals in Europe

Report No. Eisa-15-0545 M-537**20**0-01-16 Document No.: Guideline(s): not applicable Guideline deviation(s) not applicable GLP/GEP:

The predicted environmental concentrations in groundwater (PEC_{gw}) for fluoxastrobin and its metabolites were calculated using the simulation model FOCUS PEARL (version 4.4.4) and FOCUS PELMO (Sersion 5.5.3) Crop interception was taken into account according to the BBCH growth stage, a recommended by FISA (EFSA (2014), FOCUS (2014)). The absolute dates for applications based on BBOM codes given in the GAP were determined using AppDate2 (Klein (2010)), a German regulatory cool for estimating application dates and crop interception.

Typically, a leaching assessment is carried out considering aerobic conditions as a common agricultural situation. Therefore, observed mayor aerobic metabolites were taken into account, implementing their amounts and behaviour as observed under aerobic conditions.

However, in anaerobic soil, a further fast degrading mayor metabolite, HEC5725-carboxylic acid (HEC7180, M40), was identified (16.9 % at day 120), which did not occur under aerobic conditions. Based on these observations, a conservative anaerobic leaching assessment was carried out to this metabolite, respectively.

Anaerobic leaching scenario:

Under common agricultural situations in Europe, considering e.g. climatic conditions or stope of fields, it is obviously unrealistic, that a total treated agricultural field or area turns anacrobic, each year after application and lasting for a long time period, as typically considered for aerobic leaching assessments. Such conditions would make farming effectively impossible.

Therefore, 2 more realistic, but still very conservative scenarios have been considered here:

Scenario 1: Anaerobic conditions may occur regularly in plane fields or cropping areas, when Jain water remains in small sinks and furrows with low permeability. In this case, only a relatively small percentage of the total cropped area or field would be affected.

Scenario 2: Anaerobic conditions on <u>larger scale</u> may occur due to flooding along rivers. Typically, this flooding will not occur regularly or each year, only with <u>large time intervals</u> in between.

The following assumptions have been made to address these two scharios. Partly additional safety factors are applied to address uncertainties in the estimation.

Here, it is implicitly included that anaerobic conditions occur more or less immediately after application (1 day later) and that anaerobic conditions are as strict as simulated in the lab. In reality, it may take considerable time after ponding until anaerobic conditions occur, because the remaining oxygen in soil and water has to be consumed by microbes first. Further on, in the lab studies anaerobic conditions are ensured by vointilating the samples with introgen. Such conditions will not appear in reality.

Therefore, it has to be noted, that the described assumptions and seenarios are highly conservative.

Table CP 9.2,4.1-1: Assumptions used for an aerobio leaching scenarios

	Assumption	Safety factor	actually used
1	not more than 10 % area (Fan agricultural field becomes anaerobic every year shortly after application	1	application rate reduced to 10 % , applied every year (application rate 100 %, applied every year, PEC _{gw} divided by 10)
2	Calculation base for dimension of leves, dyke and flood plains along reservation of 100-year-floodings. Hence, ponding on larger areas can be assumed to occur in average very 100 years.	10	application rate 100 %, applied every 10 years
both	Farmer will not apply on saturated and onded fields. Therefore, it is assurated, that parent sompound degrades 1 day inder acrobic conditions before anaerobic conditions		$\frac{\text{degradation}}{\text{before anaerobic}} \text{ time for } \frac{\text{parent}}{\text{1 day}}$
S	Anaer Dic conditions availly will not last for longer than 1 week. Maximum Ocurrence of metabolite might not yet be reached at this time.		maximum occurrence in anaerobic soil of M40 = 16.9% (found after 120 d)
	After an anaerobic period, normal aerobic agricultural conditions may dominate in soil again. Thus, aerobic degradation of the anaerobic metabolite is assessed.		<u>Aerobic</u> lab <u>DT₅₀</u> of <u>17.01 d</u> (M40)

Pseudo application of anaerobic metabolite:

The anaerobic metabolite is assumed to be applied directly to the soil by pseudo application. Hence, no "pathway"-calculation was done in which the parent is applied. This is considered the only plausible but conservative way to account for the anaerobic formation (expressed by the maximum occurrence) and the aerobic degradation of the anaerobic metabolite. Applying the aerobic pathway for groundwater calculations may disregard the formation under anaerobic conditions.

Detailed application data used for simulation of PEC_{gw} for all compounds were compiled in Table CP 9.2.4.1- 2:

Application pattern used for FC_{gw} calculations

Table CP 9.2.4.1- 2: Application pattern used for ECgw calculations

1 abit C1 7.2.4.1- 2.	Аррисации р	million asca y			- V	
		~		lieation 🤝		«∴Amonot
Individual	FOCUS crop	Rate	In@rval_*	Plant 🖔	BBCH	Yeaching soil
Individual	used for	per season		interception	Stage 🔏	per⊈seasop ∘
crop	interception	- A	r V	Q	~ ° 0′	application
	•	[g.a.s. /ha]	[days]	<u>~ [%]</u>		g a.s. (pa]
Winter & spring cereals, GAP	-	Q2 × 8 4 5	©14 ×		30 69 D	
Spring cereals 1, simulation	Spring cereats	2 × 87.5) 14	2 × 80°	© 30-69 ⁵	2×17.5
Spring cereals 2, simulation ²⁾	Spring	2 × 13.23 1)	\$\\ \text{7}\\ \text{14} \text{7}\\ \text{7}\\ \text{14} \text{7}\\ \text{7}	80	30 -69 %	2×2.65^{-1}
Winter cereals 1, simulation	Winger cere@s	2 87.5 ©	14	2 2 500	30-69	2 × 17.5
Winter cereals 2, simulation ²⁾	Winter Cereals	2 × 13Q3 ¹⁾	\$\tag{14}		\$ 0 -69	2 × 2.65 ¹⁾
Winter & spring cereals, GAP Spring cereals 3,		2 75.0			30-61	-
simulation &	Spring cereals	2 2 5.0	J 14	2×80 ⁴	30-61	2 × 15.0
Spring cereals 4, simulation ²	Spring cereals	24, 11.3	0 4	2 % 80	30-61	2 × 2.27 ¹⁾
Silliulation	Winter Pereals	2 × 75.0 ×	0 14	2×80	30-61	2 × 15.0
Winter cereals 4, simulation ²⁾	Winter cerals	2 11.340	94	2 × 80	30-61	2 × 2.27 ¹⁾

¹⁾ Pseudo application [Smetabolite /hat]

For cereal applications, absolute dates were derived for the simulation runs. All application dates are summarised in the table below.

Pseudo application state of the property of the property of the pseudo application and ps corrected for molar masses and maximum occurrence in anaerobic soil (= 100% metabolite rate)

Table CP 9.2.4.1-3: Application dates and related information for fluoxastrobin as used for the

	imulation runs	id related illioi illa	ttion for muoxasti	obin as used for the
	Individual crop	Spring cereals 1 – 4	Winter cereals 1 – 4	
	Repeat Interval for App. Events	Every Year	Every Year	
	Application Technique	Spray	Spray	
	Absolute / Relative to	Absolute	Absolute	
	Scenario	1 st App Date (Julian day) Offset	1 st App. Date (Julian dag) Offser	
	į.	10 Aggr (190)	24 Apr (111)	
		(Julian day)	(Julian day) Offset 24 Apr (111) 19 Apr (1443) (19 Apr (109)	The state of the s
		\$\begin{picture}(156) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5 (145) 0 	
The state of the s		O 22% Pr U	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(U)
			(105) 16 Apr (100) - 30 Mar	
		6 Apr. 5 (106) 7 - 5 7 - 5	304yrar 2	
			(6) - 02 Mar	
			(61)	

Substance specific and model plated input parameters for FOCUS PEARL & PELMO PEC_{gw} calculations are summarised in Table CP 9.2.4.1-4. Degradation pathway related parameters are given in Table CP 9.2.4.1-5.

Table CP 9.2.4.1- 4: Compound input parameters for fluoxastrobin and its metabolites

Parameter	Unit	Fluoxastrobin (E+Z)	HEC 5725-E- des- chlorophenyl	HEC 5725- carboxylic acid	2- chlorophenol
Common				A.	
Molar Mass	[g/mol]	458.8	348.3	417.80	128.56 (264.81)
Solubility	[mg/L]	2.292	9600	244-000	23000
Vapour Pressure	[Pa]	5.63E-10	6.00E-05	7.00E-04	1,44E+02
Freundlich Exponent		0.8584	367	20 .9043	0.8520
Plant Uptake Factor		0.0	0.0	₽ 0.0	0.0
Walker Exponent		0.7	6 0.7 a	0.7	
PEARL Parameters			4 - {		
Substance Code		FXA	E-des 🦠	ू @Carb ♥	Chlpb C
DT ₅₀	[days]	38.89	ຼຸ o 56.7ູ 🦁 ໌	17.00°	23.9
Molar Activ. Energy	[kJ/mol]	65.4	654	C 654	65.4
Kom	[mL/g]	436.2	Ŭ <u>1</u> €2 Ø	3 2.8 <i>"0"</i>	₹60.7 ↑
$K_{\rm f}$	[mL/g]		y ~~- ~~	4 - 8	
PELMO Parameters					
Substance Code		C AS	ANT A	Pi sas ô	y B1
Rate Constant	[1/day]	6 0.0¥782 °	© 0, 6 ©222	Q\$\text{94075}	Ø .0301 4
Q_{10}		<i>2</i> 058	2.58	2.58	. S 2.58 J
Koc	[mL/g	<i>₿</i> 752.0 ₽	© 19.36°	JU 5609	© 10°42.7

PELMO parameters: An auxiliary molar mass of 2-chiorophenol is incoduced, to compensate for the low split degradation rate and to cover the correct mass flux

Table CP 9.2.4.1-5: Degradation pathway related parameters for fluoxastrobin and its metabolites

Tuble of 5.2 Begindation	pathway related parameters for magazina by metasonies
Degradation fraction from to	I XA ->Chiph X
(FOCUS PEARL)	©0.5145FXA \E-des O' \
	0.00917 Active Substance -> A1
Degradation rate from → to	0.00865 Netive Substance -> BN
(FOCUS PELMO)	% √ 00.01222 A1 ≈
	0.030 A BL < < BRO CO2
0 -	

Findings: PEC_{GW} were evaluated as the 80th percentile of the mean annual leachate concentration at 1 m soil depth. BOCUS PEARC and PELMO PEC_{GW} results for fluoxastrobin and its metabolites after application to winter and asring cereals are given in Table CP 9.2.4.1-6.

Table CP 9.2.4.1-6: Spring cereals: FOCUS PEARL & PELMO PECgw results of fluoxastrobin and its metabolites

Use Pattern		Spring cer	eals 1 & 2,		
	$2 \times 87.5 \text{ g a}$.s./ha, $2 \times 80\%$	interception, 1	4 d interval	
	Fluoxastrobin (E+Z)	HEC 5725-E- des- chlorophenyl	2- chlorophenol	EAEC 5725- carboxylic acid ¹⁾	
FOCUS PEARL	PEC _{gw} [μg/L]	PECgwੴ [μg/L∕¶√	PECgw [[µg/L]	PEC _{gw} ζ	
	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ©	0.647 4.34 3.287 0.950 0.953 0.9648	<0.001 <0.001 <0.001 <0.000 <0.000 <0.001 <0.001	<i>₽</i> ® 001.€	
OCUS PELMO	PECg√→ [μg/L]	ÇPEC _{EW} γ [μg/][γ	PEC _{sw} Φ [μg(I)	PECgw [µg/L]	
	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.622 0.509 1.250 0.96 0.015	\$0.001 \$0.001 \$<0.001 \$0.001 \$0.001 \$0.001	0.001 0.001 0.001 0.001 0.001	

Pseudo application Pattern for the maerobic metabolite HDC 5725 carbox lic acid (Scenario 1).

ARL PELMO PECgw results of fluoxastrobin and

		onites - * *			
	Uso Pattern	2 × 75 g a.ş./	Spring cerea In, 2 × 89% in	ıl ş ③ & 4,♥	d interval
ÖZ,		Fluorestrobin E+Z)	HEC \$725-E- \$\times des-\$\times\$ chlorophenyl	2- coorophenol	HEC 5725- carboxylic acid ¹⁾
	FOCES PEARL	PEC _{gw} & [stg/L]	PEC _{gw} = [μg/L] >	PEC _{gw} [μg/L]	PEC _{gw} [μg/L]
6		\$\int 0.001 \\ \sqrt{0.001}	0.524	<0.001 <0.001	<0.001 <0.001
1		20.001 20.001 20.000	₹ 2 090 3 0.808 3 0.810	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001
		7 < 0.00 T	0.550	< 0.001	< 0.001
	FOCUS PELMO	FLEgw O	PEC _{gw} [μg/L]	PEC _{gw} [μg/L]	PEC _{gw} [μg/L]
		<0.001 <0.001	0.432 1.179	<0.001 <0.001	<0.001 <0.001
C		<0.001 <0.001 <0.001	1.060 0.814 0.780	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001
		< 0.001	0.530	<0.001	<0.001

Pseudo application pattern for the anaerobic metabolite HEC 5725-carboxylic acid (Scenario 1).

Winter cereals: FOCUS PEARL & PELMO PECgw results of fluoxastrobin and **Table CP 9.2.4.1-8:**

Fluoxastrobin (E+Z) HEC 5725-E-des-chlorophenyl Clarboxylic acidii Clarboxylic acidi	its metab	ontes							
CE+Z) Chlorophenyl Chlorophenyl Carloly Carlo	Use Pattern	ttern Winter cereals 1 & 2,							
CE+Z) Chlorophenyl Chlorophenyl Carloly Carlo		2×87.5 g a.s	./ha, 2 × 80% ii	nterception, 14	d interval				
CE+Z) Chlorophenyl Chlorophenyl Carloly Carlo		Fluorestrobin	HEC 5725-E-	2	FEC 5725-				
Co.001			des-	_	"carboxylic z				
Co.001		(E+Z)	chlorophenyl	cinor opinenoi	acid ¹⁾ ू 🤇				
CO CO CO CO CO CO CO CO	FOCUS PEARI	PECgw	PEC	PECgw	PECgy				
Co.001	TOCUS I EARL	[µg/L]	[μg/ k]	[µg/🅰	[μg/ J Q/	2° 4 4			
COCUS PELMO CO.001 CO.0		< 0.001	0.682	<0.001	<0.001				
Co.001		< 0.001	₹ 9.401	Ø0.00 <u>1</u> .	©.001 ₁				
Co.001			Day 1	₹0.09€	\$\sqrt{0.00}				
Co.001					<0.001				
Co.001		@ °	9	₹0 :001 ≪	<6 001 ″	y			
FOCUS PELMO		<0.001			*©0.001A				
FOCUS PELMO	_		1						
FOCUS PELMO			0.139	> < U2.000 1 \ \	0.0001 				
FOCUS PELMO		O	\$\frac{\psi_4/0}{\psi_5}	* / * ·		O ²			
1.543 0.001 0.00	FOCUS PELMO		PEC	©PEC	W				
0.001			[µg/L]	μgŒ	(n 4				
0.001 0.981 0.001		, × <0.901 ~	0 507	40 .001		<i>y</i>			
0.001 0.981 0.001		×9.001	01.451L	€ 0.001	I (())				
0.001 0.981 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001			1.353	<0.001	- A				
© 0.001 © 0.732 © 0.001 © 0.001 © 0.001 © 0.001		0.400		<0.001	<0.001				
0.001	2	<0.3001	0.935		00:001				
0.001 0.001 0.001 0.001 0.001		y	0.732	0.001	~ ************************************				
3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			DADES @	<0.001 <0.001	i. 39/				
─── ─────────────────────────────────		<0.001 \(\sqrt{1} \)	285	Ø.001 Ø.001	<0.001				

Oseud Capplication pattern for the anaerobic metabolite HEC 3725-carboxylic acid (Scenario 1)

Winter cereals: FOCUS PEARL & PELMO PECgw results of fluoxastrobin and its intrabolites its metabolites

Use Pattern	2 75 g.s	Winter ceres		d interval
Use Pattern FOCUS PEARL			2- chlorophenol	HEC 5725- carboxylic acid ¹⁾
	PEC _{gy}	PEC _{gw} [μg/L]	PEC _{gw} [μg/L]	PEC _{gw} [μg/L]
	<0.901 ©0.001	0.579 1.192	<0.001 <0.001	<0.001 <0.001
	(0.001) (0.001)	1.268 0.752	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001
	<0.001 <0.001 <0.001	0.766 0.480	<0.001 <0.001	<0.001 <0.001
	<0.001 <0.001	0.466 0.136	<0.001 <0.001	<0.001 <0.001
	< 0.001	0.399	< 0.001	< 0.001

Use Pattern		Winter ceres			0
	$2 \times 75 \text{ g a.s.}$	$\frac{1}{1}$ ha, $2 \times 80\%$ in	terception, 14	d interval	
	Fluoxastrobin	HEC 5725-E- des-	2-	HEC 5725- cârboxylic	
	(E+Z)	chlorophenyl	chlorophenol	Sacid ¹⁾	
FOCUS PELMO	PECgw	PECgw	PEC _{gw}	PECgw	
TOCOST ELMO	[µg/L]	[µg/L]	[µg/L]	[μg/L] 👡 🔘	
	< 0.001	0.51	<0.001	<0.003	
	< 0.001	1.232	<0.001	<0.001	9' v
	< 0.001	1\$04	<0.001	<0%.001 👌	
	< 0.001	<u>4</u> 0.836	Ø.001 °	0.001	`````.'\\
	< 0.001	© *0.797	₹0.00	\$\infty\{0.00\frac{1}{2}\times\text{0.00}\frac{1}{2}\times\text{0.00}\frac{1}{2}\times\text{0.00}	
	<0.001	0.622	<0.001	<0.001	
	<0.001	0 25 41	\$0.001 \(\tilde{\pi} \)	<0.001	4
	<0.001 <0.001	9.154 9.154 0.242	\$\int_{\infty}^{\infty} 0.001	©0.001	
D 1 1' 4'	-0.00A	18 18	*** TIE 0 572 d	0.00	
Pseudo applicatio (Scenario 1).	on pattern for the a	paeroble/metabo	onte HEC 5/43	carboxylic acid	1
(Scenario 1).	Q, ,\(\sqrt{\sq}\sqrt{\sq}}}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}				0
for scanario 1 10	n % of the bota	ntvol psaudo ai	Mication rate	z F angstobia	AFEC 5725
d was applied, eag	h your me poie	niiai pseudo a	grandi i ale	Tor allagionic	Vanisation
ad already in aco	Pontrations < 191	10.1 ava/I	without a His	vicion by M	Therefore
tion according	anaria 2 avary	10 veers was	windout a ur	t snymore	it is already
the first simulation	charlo 2, cycry	nu years was i	ingi carrica ou	Manymore, as	it is aircady
			· 4 79		
4 , A			& . · · ·	. 5	
Ä Ä			0' %		
There are no conc	erns for grounds	vater from the	use of fluoxa	strobin in acco	ordance with
n forthe représent	ative formulation	ı. 🧳 🦃			
the first simulation. There are no concurrent for the representation of the metal					
anon of the meta	ıbolite HE€572	€E-des€hlor@	henyl (M48) was predict	ed to reach

As described for scenario 1, 100 % of the potentral pseudo application rate of anatobic MEC 5725-carboxylic acid was applied, each year, all PEQw values for all groundwater scenarios and application poriods resulted already in the second se periods resulted already in concentrations ≤ 0.001 keV. Therefore, a further simulation according Scenario 2, every 10 years, was not carried out anymore, as it is already covered with the first simulation.

Conclusion: There are no concerns for coundwater from the use of fluoxastrobin in accordance with the use pattern for the representative formulation.

The concentration of the metabolite HEC5725E-des chlorophenyl (M48) was predicted to reach groundwater at concentrations exceeding 0.1 dg/L. However, the relevance of assessed and the metabolite is non-relevant in groundwater (see Document N4). groundwater at concentrations exceeding 0.1 Toweyer, the relevance of this metabolite was

<u>PEC_{gw} values for the use in cereals – FOCUS MACRO</u>

As recommended by FOCUS (2014), PEC_{gw} were calculated in addition with MACRO 5.5.35 as the scenario has been defined for cereals.

Report:

Title:

KCP 9.2.4.1/03

Fluoxastrobin (FXA) and metabolites PECgw FOCOS MACRO 5.5.3 EUR Use of cereals and onions in Europe

Report No.:

Ensa-15-0546

Document No.:

M-537903-01-1

Guideline(s):

Guideline deviation(s):

Guideline deviation(s):

GLP/GEP:

no

The predicted environmental concentrations in groundwafer (PEC_{gw}) for fluoxastrobin and its metabolites were calculated using the simulation model FOCUS MACRO (version 5.5.3) to simulate macro pore flow for drained soils for the simulation model FOCUS MACRO (version 5.5.3) to simulate macro pore flow for drained soils for the simulation model FOCUS MACRO (version 5.5.3) to simulate scenario. Crop interception was taken into account macro pore flow for drained soils for according to the BBCH growth stage, as recommended by EFSA (EFSA (2014), FOCUS (2014)). The absolute dates for application based on BBCH sodes goven in the GAP were determined using (2015)), a German regulatory tool for estimating application clates and crop AppDate2 (interception.

Typically, a leaching assessment is carried out considering aerobic conditions as a common agricultural situation. Therefore, observed mayor aerobic metabolites were taken into account, implementing their amounts and behaviour as observed under aerobic conditions.

However, in anacyobic soil, a further fast degrading mayor metabolite. HEC5725-carboxylic acid (HEC7180, M40), was identified (16.9 % at day 120), which do not occur under aerobic conditions. Based on these observations, a conservative anaerobic leaching assessment was carried out for this metabolite, respectively,

Anaerobie leaching scenario:

Under common agricultural situations in Europe, considering e.g. climatic conditions or slope of fields, it is obviously unrealistic that a total treated agricultural field or area turns anaerobic, each year after application and asting for a long time period, as typically considered for aerobic leaching assessments. Such conditions would make farming effectively impossible.

Therefore, 2 more realistic but soll very consorvative scenarios have been considered here:

Scenario 1: Anaerobic conditions may of air regularly in plane fields or cropping areas, when rain water remains in small sinks and furrows with low permeability. In this case, only a relatively small percentage of the total cropped area or field would be affected.

Scenario 2: Amerobic conditions of large scale may occur due to flooding along rivers. Typically, this flooding will not occur regularly or each year, only with <u>large time intervals</u> in between.

The following assumptions have been made to address these two scenarios. Partly, additional safety factors are applied to address uncertainties in the estimation.

Here, it is implicitly included that anaerobic conditions occur more or less immediately after application (1 day later) and that anaerobic conditions are as strict as simulated in the lab. In reality, it may take considerable time after ponding until anaerobic conditions occur, because the remaining oxygen in soil and water has to be consumed by microbes first. Further on, in the lab studies maerobic conditions are ensured by ventilating the samples with nitrogen. Such conditions will not appear in reality.

Therefore, it has to be noted, that the described assumptions and scenarios are highly conservative.

Table CP 9.2.4.1- 10: Assumptions used for anaerobic leaching scenarios

anaerobic, every year shortly after application (application rate 100) %, applied every year PEC (application rate 100) %, applied every 100 years ponding on larger areas can be assumed to occur in average every 100 years.	10010 01 /	7.2.1.1 10. Assumptions used for anacrobit scaening	5 5 5 5 7 5 6 1 1 0 5	
anaerobic, every year shortly after application anaerobic, every year shortly after application (application rate 100 %, applied every year PEC ovided by 10) Calculation base for dimension of leves, dyke and flood plains along rivers are 100-year-floodings. Hence, ponding on larger areas can be assumed to occur in average every 100 years.	Scenario	Assumption		actually used
anaerobic, every year shortly after application anaerobic, every year shortly after application (application rate 100 %, applied every year PEC ovided by 10) Calculation base for dimension of leves, dyke and flood plains along rivers are 100-year-floodings. Hence, ponding on larger areas can be assumed to occur in average every 100 years.		<u></u>	factor	
anaerobic, every year shortly after application anaerobic, every year shortly after application (application rate 100 %, applied every year PEC ovided by 10) Calculation base for dimension of leves, dyke and flood plains along rivers are 100-year-floodings. Hence, ponding on larger areas can be assumed to occur in average every 100 years.	1	not more than 10 % area of an agricultural field becomes		application rate reduces to
2 Calculation base for dimension of levers, dyke and flood plains along rivers are 100-year-floodings. Hence, ponding on larger areas carries assumed to occur in average every 100 years.		anaerobic, every year shortly after application &		
2 Calculation base for dimension of levers, dyke and flood plains along rivers are 100-year-floodings. Hence, ponding on larger areas carries assumed to occur in average every 100 years.				(apporcation rate 100, %,
Calculation base for dimension of leve's, dyke and flood plains along rivers are 100-year-floodings. Hence, ponding on larger areas can be assumed to occur in average every 100 years.		A . O ~ O		
plains along rivers are 100-year-floodings. Hence, applied every 10 years ponding on larger areas care be assumed to occur in average every 100 years.			× 🚓	
ponding on larger areas can be assumed to occur in	2	Calculation base for dimension of levers, dyke and flow	O10 🔏	yapplication rate 100%,
average every 100 years. 2				applied every 10 years
average every 100 years.				
1. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		average every 100 years. Q		
both Farmer with not apply on saturated and pronded fields. Or or degradation, time for pare	both	Farmer will not apply on saturated and conded fields.		degradation time for parent
Therefore, it is assumed, that parent compound degrades 1 before anacrobic = 1 day		Therefore, it is assumed, that parent compound degrades	le o	before anacrobic = 1 day
day under aerobic conditions before anaerobic conditions		day under aerobic conditions before anaerobic conditions		
			2 y =	J J
both Anaerobic conditions usually will not west for two near than a maximum occurrence in	both	Anaerobic conditions usually will not wast for longer than		maximum occurrence in
1 week. Maximum occurrence of metabolite might pot & amerobic soil of M40 =		1 week. Maximum occurrence of metabolitemight pot	~ W	
		yet be reached at this time of O S	0′	<u>16.9%</u> (found after 120 d)
both After an araerolar period normal aerobic agricultural Aerobic lab DT ₅₀ of 17.0	both			Aerobic lab DT ₅₀ of 17.01 d
conditions may dominate in soil again. Thus, aerobic (M40)				(M40)
degradation of the anaerobic metabolite is assessed.		degradation of the anaerobic metabolite is assessed.		

Pseudo application of anaerobic metabolite

The anaerobic metabolite is assumed to be applied directly to the soil by pseudo application. Hence, no "pathway"-calculation was done in which the parent is applied. This is considered the only plausible but conservative way to account for the anaerobic formation (expressed by the maximum occurrence) and the aerobic degradation of the anaerobic metabolite. Applying the aerobic pathway for groundwater calculations may disregate the formation under anaerobic conditions.

Detailed application data used for simulation of PEC_{gw} for all compounds were compiled in Table CP 9.2.4.1-11.

Table CP 9.2.4.1- 11: Application pattern used for PEC_{gw} calculations

Table CP 9.2.4.1- 11:	Application p	attern used i	Dr PLCgw ca	iculations		•
			App	lication		Amound
Individual crop	FOCUS crop used for interception	Rate per season	Interval	Plant interception	BBCH stage	reaching soil per ceason application
Winter & spring cereals, GAP	-	[g a.s./ha] 2 × 87.5	[days]	[%] - £	30-69	
Spring cereals 1, simulation	Spring cereals	2 × 87.5	14	2 × 86	30-69	2 × 17.5
Spring cereals 2, simulation ²⁾	Spring cereals	2 × 13.23 ¹⁾	1 4	20 80	30069	2 × 2.65 1) W
Winter cereals 1, simulation	Winter cereals	2 × 87.5	14	2 × 80	30-6	2 × 17 5 ×
Winter cereals 2, simulation ²⁾	Winter cereals	2×13.29^{1}	V14 5	2 80	36 69	2 × 2.65 ¹⁾ 。
Winter & spring cereals, GAP	-	1 87.5			© 30- 6 9	
Spring cereals 3, simulation	Spring cereals	Q1 × 8.7.5	Ž - Ž	80 0	3 -69	1 × 17.5
Spring cereals 4, simulation ²⁾	Spring cereas	1 3 13.23	Ď	\$\int 1 \times 80	30-69	× 2.65 1)
Winter cereals 3, simulation	Winter Screals	71 ×87.5		Ø×80₺	30-69	1 × 17.5
Winter cereals 4, simulation ²⁾	Winter cereals	13.23	, , , o	1 280	30469	1 × 2.65 ¹⁾

1) Pseudo application [g/metabolite /ha]

For cereal applications absolute dates were derived for the simulation runs. All application dates are summarised in the table below.

Table CP 9.2.4.1- 12: Application dates and related information for fluoxastrobin as used for the simulation runs.

1	Indix dual crop	Spring cereals	Winter cereals
,	Repert Interval for App. Events	Every Year	Every Year
	Application C. Technique	Spra	Spray
,	Absolute / Absolute / Relative to	Assolute	Absolute
	Scenario	App. Date (Julian day)	1 st App. Date (Julian day)
		10 Apr (100)	21 Apr (111)

Substance specific and model related input parameters for FOCUS MACRO PEC $_{\rm gw}$ calculations are supprairised in Table CP 9.2.4.1- 13.

Pseudo application pattern for anaerobic metabolite PIEC 3725-carboxylic acid: parent rate – 1 d degradation, corrected for molar masses, and noximum occurrence in anaerobic soil (= 100% metabolite rate)

Table CP 9.2.4.1- 13: Compound input parameters for fluoxastrobin and its metabolites

Parameter	Unit	Fluoxastrobi n (E+Z)	HEC 5725-E- des- chlorophenyl	HEC 5725- carboxylic acid	2- W chlorophenol
Common				Ø 417.8	
Molar Mass	[g/mol]	458.8	348.3	<i>™</i> 417.8	128.56
Solubility	[mg/L]	2.292	9600 🚄	244 000	23,000
Vapour Pressure	[Pa]	5.63E-10	6.0E-05	7.00E-04°	1 144 2
Freundlich Exponent		0.85	0.936	0.904	Ø.85200°
Plant Uptake Factor		o »	0×Q	9©	
Walker Exponent		0 (2) (1)	0.491)	0.49(1)	$0.\Phi^{(1)}$
DT ₅₀	[days]	38.89	\$6.7 °	4 7.01 ∠	©23 (4)
Formation fraction		20° -	~ 0.514 5	% - _\ 0'	
MACRO Parameters	l a	× 0 4		~ ~ ~	
Koc	[mL/g]	7 5 2.0 🖒	19.3	96.4	104.7
Q_{10}		₹2 .58 ²) ♥	2.58 ²	2.58 ²	258 ² / ₂ °
Canopy dgradation half-life	[[]	100	¥ 10 ₄		10 0
Metabolite conversion factor (fconvert) ³⁾	₩.^	y ~ .	O 0.3406 %	O _ 4 0	0.2802

as proposed for MACRO 5.5.3

corresponding parameter in MACRO Tresp 6.0948

metabolite formation in MACRO is based on molar masses M and formation fraction: fconvert = $M_{metab} / M_{parent} *$ formation fraction \bigcirc

4) not available, as no formation fraction available, pseudo application and in MACRO

Findings: PEC_{GW} were evaluated as the 80 perceptile of the mean annual leachate concentration at 1 m soil depth. FQCUS MACRO PEC_{gw} results for fluorastrobin and its metabolites after application to winter and spring cereals are given in the table below.

Table CP 9.2.4.1-14: FOCUS MACRO PEC gw results of fluoxastrobin and its metabolites at

(O)				
Scenario	Fluoxastrobia	@chlorophenyl	256 inoropytenor	HEC 5725- carboxylic acid ¹⁾
Scenario	Ş΄ [μg/L] Ş̈́	PEC [µg/M	PECgw hg/L]	PEC _{gw} [μg/L]
$2 \times 87.5 \text{ g a.s./h}$	0.000	0.542 °	<0.001	<0.001
Winter cereals 2 × 87.5 g a //ha Spring cereals	< 0001	0.6	<0.001	<0.001
1×87.5 g a.s./ha	<0.001	0.257	< 0.001	<0.001
Winter cereals 1 × 87.5 g a.s./ha	40. 001	0.34	< 0.001	<0.001

Pseudo application pattern for the macrobio metabolite HEC 5725-carboxylic acid (Scenario 1).

As described for scenario 7, 100% of the potential pseudo application rate of anaerobic HEC 5725-carboxylic acid was applied, each year. All PEC_{gw} values for all groundwater scenarios and application periods resulted already in concentrations \leq 0.001 µg/L, also without a division by 10. Therefore, a further simulation according Scenario 2, every 10 years, was not carried out anymore, as it is already covered with the first simulation.

Conclusion: There are no concerns for groundwater from the use of fluoxastrobin in accordance with the use pattern for the representative formulation.

reach ding was by the state of the calculated by the state of the calculated by the state of the calculated by the state of the state o The concentration of the metabolite HEC5725-E-des-chlorophenyl (M48) was predicted to reach groundwater at concentrations exceeding 0.1 µg/L. However, the relevance of this metabolite was assessed and the metabolite is non-relevant in groundwater (see Document N4).

CP 9.2.4.2 Additional field tests

No additional field studies were performed or required due to low PFC values calculate 9.2.4.1). The state of the s

CP 9.2.5 Estimation of concentrations in surface water and sediment

New calculations were performed, to reflect findings from new studies presented in the active substance dossier, section 7 "Fate and behaviour in the environment". In addition these calculations consider the most recent guidance documents for exposure calculations, Calculations of predicted environmental concentrations are presented below.

Predicted environmental concentrations in water (PECsw) and sectiment (PECsw)

Endpoints for surface water (PECsw) and sediment (PECsed)

For deriving the respective end points please refer to MCA Section 7, data point 7.2

Table CP 9.2.5-1: Key modelling input parameters for fluorastrobin and its metabolites at Steps 1-2 level ° PEC calculations

Parameter	Unit	Fluoxastrobin (E+Z)	ØEC 5725	HEC 5725	2-chlorophenol
		Q 44	-E des-chlorophenyl	-carboxylic acid	
Molar Mass	g/mol	468.8	348.3	3 41 D8 5	J2 8.56
Water Solubility	mg/L	Q 292	≈9600 ≈ ° (24\dday 000 \cdot \dagger	23000
Koc	mL/g	752 6	9600	6.4.0	(₄ 104.7
Degradation					Ď
Soil	days	[[∞] §8.89 ⊝ [®]	& 56.7 ∜	°√ 1,7 © 01	23
Total System	days	E) \$250.75_0 A	♥	7.89 J	1000*
Water	days ~	230.4	1000	& 6 7.89 €	1000*
Sediment	da≪s	1000*	D 1000*	(c) 67:89 ²	1000*
Max Occurrence				0 4	
Water / Sediment	% /	5100	18.3 ₂ .	_@ 10.6	0.01
Soil	7% √C	100	32.3	16.9	49.2

^{*} Default value used

Table CP 9.25-2: Additional modelling input parameters for fluoxastrobin at steps 3/4 level PEC calculations.

Parameter 🗸 📞	Uniț 🦠 💪	Kluoxastrobin (E+Z)
General Parameters		~
Molar Mass	g≸nnol _≪	458.8
√ Water Solubitity €	mg/L O	2.292
Vapour Prossure 🧳 🥎	Pa 🔊 🔊	5.6E-10
Plant Uptake Factor		0.0
Wash-Off Factor PRZIV	Dem 🔪	0.5
Wash Off Factor MACRO	Ţ/mmᢩ©″	0.05
Sorption S		
Koc O O	m © ′g	752
Freundlich Exponent	Õ.	0.8584
Degradation 4	*	
8911 S 4	days	38.89
Water O	days	238.4
Sediment ~	days	1000
Warker Exponent		0.7 (PRZM), 0.49 (MACRO)
Effect of Temperature		
Activation Energy	J/mol	65 400
Exponent	1/K	0.095
Q10		2.58

KCP 9.2.5/01 ; 2015; M-537907-01-1 Report:

Title: Fluoxastrobin (FXA) and metabolites: PECsw, sed FOCUS EUR - Use in cereals od

onions in Europe

Report No.: Ensa-15-0571 Document No.: M-537907-01-1 Guideline(s): not applicable Guideline deviation(s): not applicable

GLP/GEP:

Materials and Methods: Predicted environmental concentrations on surface water and sediment (PEC_{sw} and PEC_{sed}) of fluoxastrobin and its metabolites have been calculated for the use on winder and spring cereals in Europe. All relevant entry routes of a compound into surface water (combination of spray drift and runoff/erosion or drain flow) were considered in these calculations.

At FOCUS Step 2 the application period was set to May and the use in Northern and Southern Europe was considered. Details of the application pattern used in the Step Scalculations are summarised in Table CP 9.2.5-3.

Table CP 9.2.5-3: Application pattern used for PECox, sed calculations at FQCUS Seep

Сгор	Rate [g a.s./ha]	Interval , [days]	BBCH stage	FOCUS crop (crop group)	Season	Crow cover
Cereals, GAP	2 × 87.5	14/	30-69	- Y	O V	G - Q
Cereals (winter), simulation 1	2 % 87.3	©14		Winter Greals		~~ %) %
Cereals (spring), simulation 2	2 × 87.5	14	30-59	Spring cercals	Mor, - May	Intermediate crop cover 20 %
Cereals, GAP			3 0-61,		- 0	-
Cereals (winter),	75.0	14	30-∕6√	Winter ceres	Mar.∜May	Intermediate crop cover
simulation	13.4	C C			.//	V 20 /0
Cereals Opring	2 × 73 0	Q 4	3 0-61	Spring @reals	Mar - May	Intermediate crop cover
simulation 2	2 × 1 3.0	~ ~ ·	×\$/0-01 %	pring corcais	Orai May	20 %

In FOCKS Step 3, the application date for each scenario is determined by the Pesticide Application Timer (PAT), which is part of the FOCUS SW Scenarios. The user may only define an application time window. Absolute application dates for the crop imulation runs were estimated using a German regulatory tool AppDate 22. Details of the parameters used in the Step 3 calculations are summarised

or each set of the crop details of the parameters

^{2015:} Computer programme: "AppDate: Estimation of application dates based on crop development." (v.2.0b.).

Table CP 9.2.5-4: Application dates of fluoxastrobin for the FOCUS Step 3 calculations

Parameter	Winter cereals	Spring cereals	
PAT start date		~	
rel./absolute	Absolute	Absolute ground spray	
Appl. method	ground spray	ground spræ	
(appl. type)	(CAM 2)	(CAM\2)	
No of appl.	2	, 2 ^y , 2	
PAT window		\$ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
range	44	Q,44	
Appl. interval	14	ground spr@y (CAMQ) 44 14	
Application	PAT Start Date		
Details	TAT Start Days	PAT Spart Date	
D1	20/04/02 ° 23/05/02 ° 02/07/02 ° 02/07/02 ° 05/03/02 ° 05/03/02 ° 02/03/02 °	PAT Spart Dates 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
D2	23/05/02		Λ
D3	02/07/02	28/04/01 0 A	
D4	2,1704/02	18/05/01\$	
D5	A5/03/02/	(O)	
D6, 1st	©02/03/10/2 ~		
D6, 2 nd		7 . T . 2 - Z - Z	i de
R1	26904/02		
R2	~ \$ \$ \$		**************************************
R3	10/04/02	28/04/01 18/05/01 	*
R4	15,03/02	৺ "" 09494/01 <u>"</u> ○	

Compound input parameters for the Steps 1&2 simulation runs are summarised in Table CP 9.2.5-1 and for the Steps 3&4 simulation runs in Table CP 9.2.5-2

Findings: Steps 1 2: The maximum PC sw and PE sed values for fluoxastrobin and its metabolites at Steps 1&2 are summarised in Table CP 92.3-5.

Table CP 9.2.5-5: Maximum PEC_{sv} and PEC_{sed} values for fluoxastrobin and its metabolites

	<u> </u>					<u> </u>			
Use pattern	Scenario	Fknoxastrobin Fknoxastrobin Gedes- Chlorophenyl			HEC 5725 -carboxylic acid		2-chlorophenol		
		PEC	PE sed	REC _{sw}	PECsed	PECsw	PEC _{sed}	PECsw	PEC _{sed}
		[µg/]L]	Įμ <mark>g</mark> /kg] _?	Jug/L]	[]] [μg/kg]	[µg/L]	[µg/kg]	[µg/L]	[µg/kg]
2	Step 1	30%.74	Q 19.04©	20.96	4.01	11.35	6.35	13.74	7.67
	Step 2	F Ö							
Cereals,	N-EU Multi	4.69	3 42 3	% 3.03	0.58	1.34	0.75	1.70	0.95
2 x 87,5 g/ha	S-EC Multi	8,38	₿ 3.24 %	5.89	1.14	2.61	1.46	3.28	1.83
	N-EU Single	×2.65 4	Q19.3 6 \$	1.67	0.32	0.82	0.46	1.03	0.57
	S-EU Single	ٍ04.82 ₀	35,6°	3.24	0.62	1.61	0.90	1.99	1.11
(Step 1 \ @	[∞] 26;35	18 Q ,75	17.97	3.44	9.73	5.45	11.78	6.57
Į "	Step 2	* U*	,						
Cereals,		≪4 .02 ≈	29.34	2.60	0.50	1.15	0.64	1.46	0.81
2 x 75 g/h	S-EU Multi	7.33	54.21	5.05	0.97	2.24	1.25	2.81	1.57
	N-EN Single	2.27	16.54	1.43	0.28	0.71	0.39	0.88	0.49
	S-190 Single	4.13	30.52	2.77	0.53	1.38	0.77	1.70	0.95
/ //	NEU Morti S-EU Multi N-EN Single	7.33 2.27	54.21 16.54	5.05 1.43	0.97 0.28	2.24 0.71	1.25 0.39	2.81 0.88	1.57 0.49

Step 3: The maximum PEC_{sw}, PEC_{sed} values and time weighted average concentrations at Day 7 of fluoxastrobin for relevant FOCUS Step 3 scenarios are given in the following tables.

Table CP 9.2.5- 6: Winter cereals: Maximum PEC_{sw}, PEC_{sed} and TWAC_{sw}-7 values for fluoxastrobin at Step 3

			Fluoxastro	obin (E+Z)		
Use pattern		Cereals ((winter), 1 a	, W		
	Si	ngle application	1	Mu	ltiple application	ons 🤻 🎺
	PECsw	TWAC _{sw} -7	PEC _{sed}	PECsw	₄ TWACsw-7	PEC
FOCUS scenario	[µg/L]	[µg/L]	[µg/kg]	[µg/L] s	🎾 [μg/L] 🦠	$\mathcal{O}[\mu g/k g]$
D1 (ditch)	0.600	0.467	1.827	0.598	0.498	2.972
D1 (stream)	0.498	0.049	0.65	0.457	0.113	№ 368 €
D2 (ditch)	0.592	0.394	1.428	0.6 3©	0.453	2.558
D2 (stream)	0.481	0.039	.4 % .375	0,365	. 0,2,96	1.222
D3 (ditch)	0.555	0.116	€0.412	0.486	Ø116 💍	0.518
D4 (pond)	0.019	0.017	0.148	0.025	0.023	× 9.254
D4 (stream)	0.426	0.005 📞	0 2 €18	O 0.3 99 °	0.019	~ 0.046√′
D5 (pond)	0.019	0.018©	(J. 149)	0,028	Ø 0.00 <u>2</u> 6 ₁	0.243
D5 (stream)	0.442	0.002	© 0.01 %	Q,422, U	2 0.006 ⊘	QQ035 g
D6 (ditch)	0.553	0.086	0.328	≫ 0.48 6 →	0.205	0.613
R1 (pond)	0.043	Ø.040, ×	@#08 . A	© 0.1 6 33 .	9 0.1 .07	
R1 (stream)	0.365	Q0.039\sqrt	Ø.321 P	Ø:908	r 943	0.917
R3 (stream)	0.515	(°0.06) 3	7 0.7 46	√9.731√°	3 7.100 S	202844
R4 (stream)	0.449 4	0.124	0498	\$\int 0.956	0.27	√1.148

Table CP 9.2.5-7: Spring cereals: Maximum PECsw, PECsed and TWACsw 7 values for fluoxastrobine at Step 3.

	 	<i>©</i> O	<u> </u>					
				obi©(E+ Z) ∜				
Use pattern W Cereats (spring), 1 and 2 × 87.5 g a.s./ha								
		ngle application	on Sec.	My	tiple applicati	ons		
O	ECsw TVACsw PECscd μμg/μg μμg/μg μμg/μg			G [∞] ECsw [∞]	PEC _{sed}			
FOCUS scenario	Ç[μg/JΦ	©[μg/ ½]	μg/k@	[μg/ L]	[µg/L]	[µg/kg]		
D1 (ditch)	0.583 (5.490 (0.55546) 0.019 0.433 (0.909) 0.609	0,473	N/ 1) /ANI/AV	0.840	0.692	3.925		
D1 (stream)	6.4 90	00063 °° •0.090	Q,817 🚕	~Q 4 24	0.146	1.679		
D3 (diten)	0.5545 0.019 0.433 0.019	≪0.090_ ১	0.817 0.346 0.150	° ©0.485	0.082	0.413		
D4 (pond)	0.019		× 0.1 5 0	ॐ 0.027	0.025	0.258		
D4 (stream)	0,433	§ 0 <u>,</u> 896 @	0.631	0.404	0.012	0.054		
D5 (pond)	9 919	Ø \$018.∜	Q .148 🔎	0.027	0.025	0.241		
D5 (stream)	0.465	. 00.0045°	0.020	0.418	0.005	0.031		
R4 (stream)	0.66 ×	♥ 0.1 8%	× 0.974	1.211	0.273	1.450		
D1 (stream) D3 (ditan) D4 (pond) D4 (stream) D5 (pond) D5 (stream) R4 (stream)								

Table CP 9.2.5-8: Winter cereals: Maximum PEC_{sw}, PEC_{sed} and TWAC_{sw}-7 values for fluoxastrobin at Step 3

	Fluoxastrobin (E+Z)							
Use pattern		Cerea	als (winter), 1 a	and 2 × 75.0 g a.s./ha				
	S	ingle application	n	Mu	ions " " " " " " " " " " " " " " " " " " "			
	PEC _{sw}	TWAC _{sw} -7	PEC _{sed}	PEC _{sw}	TWAC _{sw} -7	PEGed		
FOCUS scenario	[µg/L]	[µg/L]	[µg/kg]	[μg/L] 🐇	🏓 [μg/L] 👡	[μ @ kg] «		
D1 (ditch)	0.510	0.396	1.540 🖒	0.509	0.423 👟 "	2.480		
D1 (stream)	0.425	0.039	0.523	0.38	0.099	\$\tag{1.134}		
D2 (ditch)	0.501	0.332	1.189	0. 5®	0.3880	2. 1 2.		
D2 (stream)	0.410	0.030	Q [©] 305	63 394 .	9 972 ,	9 ,997 <i>©</i>		
D3 (ditch)	0.476	0.099	60 .355	0.417	Ø.100°	0.447		
D4 (pond)	0.016	0.015	© 0.126	0.024	0.020	(J) 0.246		
D4 (stream)	0.365	0.004 &	0. 03 5 *	o 35442 ≪	<i>J</i> 0,008 `	°√ 0.694		
D5 (pond)	0.016	0.015	JOP 128	€ 024 €	Ø022 €	20 .209 .		
D5 (stream)	0.379	0.002	0.0110	Q0.362 ^U	0.0050	©0.030 \$\frac{1}{2}		
D6 (ditch)	0.474	0.079	0.282	> 0.4 17 ,	O.176	0.530		
R1 (pond)	0.036	0,534 %	, 0. 85 0 . 4	~ 0,696 ,°	7 0. 0 91	4 0. ₹ \$\$3		
R1 (stream)	0.313	Q033 (S	278	9.763 S	Ø.095 🔊	0.793		
R3 (stream)	0.442	0.051	%°0.641€°	~~0.61 5 ~	.\$0.084€	Q 0.726		
R4 (stream)	0.379	Q 0.105	0.429	ॐ 0.8€°	© 0.239	0.989		

Table CP 9.2.5-9: Spring cereals: Maximum PEC_{sw} PEC_{sed} and TWAC_{sw} values for fluoxastrobin at Step 3

D1 (ditch)	PECsw 7	gle application TWACsw-7 [ug/L]	ls (spring), 1 a	nd 2 × 75 / g a // Mu // PC Csw // ng/L	Solution Columbia Columbia	Ons PEC _{sed} [μg/kg] 3.346 1.395 0.356 0.219 0.046 0.207 0.027 1.245
FOCUS scenarie	PECsw Sign	gle application TWACsw-7 [ug/L]	PACSed Suggested	Mu PLCsw Qug/L	Itiple applicati TWACsw-7 [μg/L] 0.590 0.113 0.070 0.022 0.010 0.021 0.004	PECsed [μg/kg] 3.346 1.395 0.356 0.219 0.046 0.207 0.027
FOCUS scenarie	PECsw 7	TWACsw-7	2 1 88 P	0.69%	TWAC _{sw} -7 [μg/L] 0.590 0.113 0.070 0.022 0.010 0.021 0.004	PECsed [μg/kg] 3.346 1.395 0.356 0.219 0.046 0.207 0.027
FOCUS scenarie	Jug/L]	(μg/L)	2 1 88 P	0.69%	[μg/L] 0.590 0.113 0.070 0.022 0.010 0.021 0.004	[μg/kg] 3.346 1.395 0.356 0.219 0.046 0.207 0.027
D1 (ditch) D1 (stream) D3 (ditch) D4 (popul) D4 (stream) D5 (pond) D5 (stream) R4 (stream)	Hug/L	\bigcirc 0.40%	2 1 88 P	0.69%	0.590 0.113 0.070 0.022 0.010 0.021 0.004	3.346 1.395 0.356 0.219 0.046 0.207 0.027
D1 (ditch) D1 (stream) D3 (ditch) D4 (popul) D4 (stream) D5 (pond) D5 (stream) R4 (stream)	0.499 0.420 0.475 0.0165 0.388 0.017 9399 0.511	0.403 0.054 0.077 0.015 0.005 0.085 0.085	1.88 0.664 0.298 0.128 0.027 0.027 0.028 0.017 0.0839	് 0 69 ∂ .	0.113 0.070 0.022 0.010 0.021 0.004	1.395 0.356 0.219 0.046 0.207 0.027
D1 (stream) D3 (ditch) D4 (point) D4 (stream) D5 (pond) D5 (stream) R4 (stream)	0.420 0.475 0.0166 0.388 0.017 0.511	0.054 0.077 0.015 0.005 0.085 0.085 0.085	0.664 0.298 0.128 0.027 0.028 0.017 0.839	0.364 0.416 0.023 0.347 0.023 0.358 1.023	0.070 0.022 0.010 0.021 0.004	0.356 0.219 0.046 0.207 0.027
D3 (ditch) D4 (popul) D4 (stream) D5 (pond) D5 (stream) R4 (stream)	0.016 0.388 0.017 0.511	0.005 0.005 0.005 0.005 0.005 0.015 0.015	0.298 0.128 0.027 0.028 0.017 0.839	0.023 0.023 0.023 0.023 0.358 1.023	0.022 0.010 0.021 0.004	0.219 0.046 0.207 0.027
D4 (popul) D4 (stream) D5 (pond) D5 (stream) R4 (stream)	0.0160 0.3887 0.0177 0.0177 0.5115	0.015 0.005 0.015 0.035 0.158	0.128° 0.027 0.027 0.028 0.017 0.839° 0	©0.023 0.347 0.023 0.358 1.023	0.010 0.021 0.004	0.046 0.207 0.027
D4 (stream) D5 (pond) D5 (stream) R4 (stream)	0.388	0.005 0.015 0.003 0.158	0.027 0.028 0.017 0.839	0.347 0.023 0.358 1.023	0.021 0.004	0.207 0.027
D5 (pond) D5 (stream) R4 (stream)	0.017	0.085 0.003 0.158	0.028 0.017 0.8396	0.023 0.358 1.023	0.004	0.027
D5 (stream) R4 (stream)	9399 9.5115 9.50	003	0.017 0.839	0.358 1.023		
R4 (stream)	50.511	0.158	(50.8397) (57)	1.023	0.231	1.245
			N O			

Step 4: The maximum PEC_{sw} and PEC_{sed} values and time weighted average concentrations at Day 7 of fluoxastrobin for relevant FOCUS Step 4 scenarios are given in the following tables.

Table CP 9.2.5- 10: Winter cereals: Maximum PEC_{sw} values for fluoxastrobin at Step 4 after single and multiple applications

		Fluoxastrobin (E+Z)							
		Cereals (winter), 1 and 2 × 87.5 g a.s./ha							
		Single application Multiple a					pplications		
Buffer				$[\mu g/L])$	a Y		PEC	μg/LD	
Width	Scenario			eduction 🔏				eduction	O Q
& Type		0%	50%	75%		00% 05	50%	O5% &	90%
	D1 (ditch)	0.192	0.116	0.083	0.085	0.212	% 198	0.198	0.198
	D1 (stream)	0.195	0.108	0.065	©0.053	0.190	Ø.124 C	0.124	0.124
	D2 (ditch)	0.220	0.220	0.220 ≪	0.220	00485	0.485	0.485	0.485
	D2 (stream)	0.184	0.139	0.1390	0 39	9 .310	0.300	0.310	0.300
	D3 (ditch)	0.150	0.075	0.038	9 .015	0.126	0.063		0.013
_	D4 (pond)	0.017	0.00	0.005	©0.005	0.021	40.013	0.017	3 .011
5m	D4 (stream)	0.156	0.678	% 0.039 ©	0.020	141	0.0	00042	0.042
SD	D5 (pond)	0.017	0008	0.004	0.002	0.024	0.012	\$0.006 0.037	0.003
	D5 (stream)	0.162	9.081	0. 04 0 0.038	҈0.016 \$`0.01\$	0.149	0.063		0.015
	D6 (ditch)	0.150	0.075° 0.038	~ ((0.035	0526 Ø111 Ø		0\$Q32 \$\tilde{Q}\delta{1}01	0.017
	R1 (pond) R1 (stream)	0.041 0.313	0.038	0.036	0.039 0@13	0.908	0.104	© 0.908	0.099 0.908
	R1 (stream)	0.313 Q.438		0.363	0.438 ×	0.731	0,908 ∞731 ×	© 0.908	0.908
	R4 (stream)	0.449	0.4385 , 0.449	(4) 140 (4)	0.438	Ø.950	0.950	0.731	0.751
	D1 (ditch)	0.449	0.449 0.085	0,0850	0.446	Ø.930 Ø.198&	((// 1)	0.930	0.930
	D1 (stream)	0.127	9 .067	0.05	0.053	0.124	0.124	0.138	0.138
	D2 (ditch)	Ø.213	0.220	Q.220	\$0.220\$	0.124	©.124 ©.485	0.124	0.124
	D2 (stream)	$\sqrt[6]{0.139}$	0.220	0.139	0.139		9.310	0.403	0.310
	D3 (diteh)	0.080	Ø5040 &	0.026	0.139	20.066	0.033	0.016	0.007
	D4 (pond)	0.642	20.006, ×	0.003	Q :005	0.01	0.012	0.011	0.010
10m	D4 (stream)	_≪ 0,083 ≪	0.041	00021	0.020	0.073	0.042	0.042	0.042
SD	(pond)	©0.01 2 ©	0.006	0.003	0.000	0.017	0.009	0.005	0.002
&RO	D5 (stream)	0.086	0.043	0.021 ⁰	0.009	~ 0.077	0.039	0.019	0.010
	D6 (ditch)	0.4979	≈ 040 ©	0.020	[%] 0×008 ≈	0.066	0.033	0.017	0.017
	R1 (pond)	.40.019	0.046	.0.9 15	0.01	0.049	0.044	0.042	0.040
	R1 (stream)	Q0.142\$	0.192	°>0.142<	0.142	0.412	0.412	0.412	0.412
	R3 (stream)	0.200	200	0.200	0.200	0.329	0.329	0.329	0.329
	R4 (stream)	0.2 03	∕>0.203Q	0,203	© 7.203	0.429	0.429	0.429	0.429
20m SD & RO	D4 (ditch)	0.085 🖏	Ø.0 85	°,0,085 ≼	$\int_{0.085}^{\infty} 0.085$	0.198	0.198	0.198	0.198
	🗗 (stream) 🦠	0.069	0.053	©0.053°Y	0.053	0.124	0.124	0.124	0.124
	Ď2 (ditch)	0.220	0.220	× 0.220	0.220	0.485	0.485	0.485	0.485
	D2 (stream)	9 9739	0.1390	0,039	0.139	0.310	0.310	0.310	0.310
	D3 (ditch) _{\s\}	0.042 ℃ 0.008	0.021 90005	Q.010	0.004	0.033	0.017	0.008	0.003
	D4 (pond)		900 05	0.005	0.005	0.012	0.011	0.011	0.010
	D4 (@eam)	0.03	9.021	0.020	0.020	0.042	0.042	0.042	0.042
	D5 (pond) \(\sqrt{'}	Ø08 ≰	().()()4 ()	0.002	0.001	0.011	0.006	0.003	0.002
	Do (stream)	٥.044 \$	0.022	0.011	0.004	0.039	0.020	0.010	0.010
1	D6 (diton)	0.044	0.021	0.010	0.008	0.033	0.017	0.017	0.017
4	R1 (pond)	(Q.6₩1	0.009	0.008	0.007	0.026	0.023	0.021	0.020
Æ,	R lostream)	074	0.074	0.074	0.074	0.216	0.216	0.216	0.216
*	(stream)	0.105	0.105	0.105	0.105	0.172	0.172	0.172	0.172
* SD and	R4 (stream)	0.106	0.106	0.106	0.106	0.224	0.224	0.224	0.224

^{*} SD and RO denote spray drift and runoff buffer

Table CP 9.2.5-11: Winter cereals: TWAC_{sw}-7 for fluoxastrobin at Step 4 after single and multiple applications

					T31 .	11 (5:5)			
						obin (E+Z)			
				,	winter), 1 ย	and 2×87 .	<u> </u>		<u>, W'</u>
				plication				pplications	
Buffer				v-7 [μg/L]				,-7 [μg Æ	
Width	Scenario		Drift Ro	eduction		۵	₩Drift Re		
& Type		0%	50%	75%	90%	0% Ø	50%	75%	90%°
	D1 (ditch)	0.153	0.095	0.079	0.079	0.18	0.181	,©0.1815	0,081
	D1 (stream)	0.049	0.049	0.049	$\sqrt[\infty]{0.049}$	0.413	0.113		© .113
	D2 (ditch)	0.128	0.079	0.077	0.077	094 €	° 0.194	00194	0.194
	D2 (stream)	0.035	0.035	0.035	0.035	0.101	0.101	9 .101 @	0.1004
	D3 (ditch)	0.031	0.016	0,008	0.003		00015	0.007	0.003
	D4 (pond)	0.015	0.007	6005	© 0.00 4 €	0.020	6 0.012	0.010	0.010
5m	D4 (stream)	0.005	0.005	0.005	0.0∮\$	0.010	0.012	8 010	0.01 Q °
SD	D5 (pond)	0.015	0.008	0.004	0.002	0.023	0.641	0.006	0.003
	D5 (stream)	0.001	0.000	0.0 6 0	Ø.000	0.062	20,001	~ 0.001	00001
	D6 (ditch)	0.023	0.01	Ø,006 ×	$\int_{0.002}^{\infty} 0.002$	0.053	₩ 0.026®	0.001/3	20 .005
	R1 (pond)	0.039	0.035	0.034	0.033	105	0.09	Ø96	0.094
	R1 (stream)	0.039	0.039	0.039	0.039	y0.1130°	0 3 73	30.113	0.113
	R3 (stream)	0.061	0.061	0.001	Ø.061 6	0.100	©.100	0.100	0.100
	R4 (stream)	0.124	0.124	0.124	0.124	00271	0.27	0.271	0.271
	D1 (ditch)	0.099	0.079	0.079	0.079	Ø.181	0.181	0.181	0.181
	D1 (stream)	0.049	0.049	0.049	09049	0.113	0.113	© 0.113	0.113
	D2 (ditch)	0,082	0.077	0.077	\$\int_0.077_\cdot\	0.194	Ø.194 0.104	0.194	0.194
	D2 (stream)	0.035	0.035	0.035	0.035	Ø,101	0.106	0.101	0.101
	D3 (ditch)	0.01	\$60 08	0.004	0.002	00.016	0.008	0.004	0.002
10m	D4 (pond)	0.011	Ø.005	0.069	0 :004	0.014 0.6\10	0.011 Ø.010	0.010	0.010
SD	D4 (stream)	Ø005 €	0.00\$	0.005	90.005	(7) n		0.010	0.010
&RO	D5 (pond)	0.011	00005	9.003 0.005	0.00°° 0000	0.016 «	0.008	0.004	0.002
	D5 (stream) D6 (ditch)	0.000 0.042	©0000	0.000	9.001	0.001	0.001 0.014	0.001 0.007	0.001 0.003
	D6 (ditch) O'R1 (pond)	0.042 ∞ 0.018 <u>≪</u>	() , N	0.003	0.013	0.02)	0.014	0.007	0.003
	(stream)	0.018	0.015 0. 01 8	0.018	0.018	0.051	0.042	0.039	0.038
l.	R3 (stream)	0.028	0.028	0.018 0.028	0.028	$\gg 0.045$	0.031	0.031	0.031
	R4 (stream)	0.025	©.028 ©0.056	0.028	Ø.056	0.123	0.043	0.043	0.043
	D1 (ditch)	\$0.030 \$0.079	0.039	20,079	0.070	0.123	0.123	0.123	0.123
	D1 (stream)	Q0.0495	0.049	30.049 30.049	0.07	0.113	0.113	0.113	0.113
	D2 (disch)	0.04	. ° % .077≪	$Q \wedge Q \mathcal{P}$	0.077	0.113	0.113	0.113	0.113
	D2 (stream)	©35 _~		0.625	0.077	0.101	0.101	0.101	0.101
	D3 (ditch)	0.009	0.0 5	0.035 0.002 4 0.004	0.001	0.008	0.004	0.002	0.001
	(pond) >	0.007	0.005	\$002 \$0.004 \$0.004	0.004	0.000	0.010	0.002	0.001
ZUIII	D4 (stream)	1 0 0% 5	Ø.005 (0.005	0.005	0.010	0.010	0.010	0.010
SD &	D5 (pond)	2 007	> 0.004Q	0.002	0.003	0.010	0.006	0.003	0.001
RO	D5 (stream)	000	0.000	0.000	0.000	0.001	0.001	0.001	0.001
	D6 (ditch)	0.000 0.000	9 903	$\sqrt[9]{0.002}$	0.001	0.014	0.007	0.003	0.002
	R1 (20nd)	0.000	0.008 _@	0.007	0.007	0.025	0.022	0.020	0.019
	RJ (stream)	0009 %	~ 0.0 0 9₽	0.009	0.009	0.027	0.027	0.027	0.027
	Pa (stream)	0.015	0.015	0.015	0.015	0.023	0.023	0.023	0.023
~ 4	10 1 (-1 ·) 4	$\Omega = \Omega \Omega \Omega \Omega \Omega$	$\alpha \alpha \alpha \alpha$	0.029	0.029	0.065	0.065	0.065	0.065
* SD and	RO denote sprav	drift and run	off buffer						
	RO denote spray								
. 4	Q _A	=							
Ĉ	. S								

Table CP 9.2.5-12: Winter cereals: Maximum PEC_{sed} values for fluoxastrobin at Step 4 after single and multiple applications

					Fluoxastro	bin (E+Z)			
						nd 2 × 87.	5 g a.s. Þá	6	.V A
			Single ap	plication]	Multople a	pplications	
Buffer								[μg/kg	
Width	Scenario			eduction	<i>></i>	.((Drift Ro	eduçtiøn	
& Type		0%	50%	75%	90%	0% Ø	50%	75%	90%
- V I	D1 (ditch)	1.192	1.161	1.145	_e 1.136	2.52	2.447	©2.407	2,383
	D1 (stream)	0.649	0.648	0.648	0.648	1.361	1.359 🖔	1.35	₾358
	D2 (ditch)	0.778	0.742	0.724	0.713	1 9 99	າ° 1.60 ≸ ∕	1579	1.561
	D2 (stream)	0.372	0.372	0.370	0.371	≫ 0.857©	0.843	√ 9.836 ¢	0.892
	D3 (ditch)	0.117	0.060	0,031	0.013	0.143	.00074 7	0.038	0.016
	D4 (pond)	0.132	0.081	0.056	7.0.041	0.227	0.146	0.105	4 0.082
5m	D4 (stream)	0.017	0.017	å 0.017 %	0.0 G	Ø.038 C	0.037	Ø37	0.036
SD	D5 (pond)	0.130	0.069 🔏	0.03	0.017	Ø.21 <u>2</u>	0.4973	0.063	0.033
	D5 (stream)	0.005	0.003	0.001	Ø.001	0.043	20,007 <u></u>	90.004	0003
	D6 (ditch)	0.093	0.048	© ,025 √	0.014	Q.J71	.‱.089®	0.0046	© .020
	R1 (pond)	0.395	0.352	4 0.331	0.398	7 0.962	0.89	£864 ∂	0.844
	R1 (stream)	0.316	315	0.314	0.313	×0.907	0@05	Ĵ0.903√	0.903
	R3 (stream)	0.719	0.711	0.907	Ø.704 6	0.820	9 .813	0.809	0.807
	R4 (stream)	0.494	0.492	0.492	> 0.49P (1Q38	1.135	1,434	1.133
	D1 (ditch)	1.163	1.146	\$1.138	1.133	2.45Q	2.408	2.387	2.375
	D1 (stream)	0.648	0.648	0.6	09648	1.350	1.358	<i>©</i> 1.358	1.357
	D2 (ditch)	10,744	0.7250	0.416	 √0.710 √	1.64∕Ĭ	<i>"</i> \$₹.580,%	1.565	1.555
	D2 (stream)	0.372	0.371 0.032	371	0.370	20,844	0.83	0.833	0.831
	D3 (ditch)	0.06		0.017	Q _e QØ7	⊙0.077 [©]	0.040	0.020	0.009
10m	D4 (pond) 🔎	0,103	Ø.067	0.049	0 :038	, 0.181	0.123	0.094	0.077
SD	D4 (stream)	(Ø017 🍹	0.01	0.017	90.01 <i>7</i> ©	0,637	4 0.037	0.036	0.036
&RO	D5 (pond)	√ 0.096 ∜	0,00,51	№ .028 €	0.013	€ 155 €) 0.084	0.047	0.027
XKO	D5 (spream)	0.00	©0001 &	0.00	00001	£0.007,	0.004	0.003	0.003
	D6 (ditch) O	0.030	0.026	0.014	9 .006	0.022	0.048	0.025	0.011
	R1 (pond)	≈ 00.197 <u> </u> ≪	J 0.1653	00,49	0.139	Q. 40 85	0.405	0.380	0.364
Ž	® (stream)	©0.10 7 \$	0.496	0.106	0.106	® .297	0.295	0.295	0.294
«	R3 (stream) 📉	0.20	_0 .197 _	0.194	0.193	≫0.264	0.261	0.259	0.257
	R4 (stream)	0.245	©0.214	0,21/4	Ø.214 [~]	0.471	0.469	0.468	0.468
	D1 (ditch)	ر 147 کے	1.13%	34 ×	1.130	2.409	2.388	2.377	2.371
	D1 (stream)	\$0.648	0.648	\$0.648\$\$	0.638	1.358	1.358	1.358	1.357
	D2 (dijich)	0.786	% 716	0.71	0.708	1.580	1.565	1.557	1.552
	D2 (stream)	0.034	0.371Q 0.057 0.055	0, \$ 71 2 0 ,009, 4	0.708	0.837	0.833	0.831	0.830
	D3 (ditch)	0.034	0.047		<i>≥</i> 0.004	0.040	0.021	0.011	0.004
20m '	(pond) %	90.080°	0.055	©0.043	0.036	0.141	0.103	0.085	0.074
SD &	D4 (stream)	0.04.7	Ø.017 Ø	0.017	0.017	0.037	0.036	0.036	0.036
RO 🔭	D5 (pond)	\$ 066	> 0.03€	0020	0.010	0.107	0.059	0.036	0.023
	D5 (stream)	0.002 C	0.001	0.001	0.001	0.004	0.003	0.003	0.003
	D6 (ditch)	\ \ 0.02 \	6 014	$\bigcirc 0.008$	0.004	0.049	0.026	0.014	0.010
	R1 (pond)	0.455	0.092 @		0.074	0.254	0.220	0.202	0.192
	R1 (stream)	0054	₩ 0.0 5 \$	0.053	0.053	0.147	0.147	0.146	0.146
~	(stream)	©0.095	0.092	0.091	0.090	0.130	0.128	0.127	0.126
K CD C:	R4 (stream)	0.140	0.114	0.114	0.113	0.247	0.247	0.246	0.246
SD and	RO denote spray	drift and run	off buffer						

Table CP 9.2.5- 13: Spring cereals: Maximum PECsw values for fluoxastrobin at Step 4 after single and multiple applications

			аррисации		T31 .	11 (5:50)			
						obin (E+Z)	. 2		
				,	spring), 1 a	and 2 × 87.5	<u> </u>		
				plication		N		pplications	
Buffer				[µg/L])			PECsw	, [μg/L]	
Width	Scenario			eduction	(A)	1	^		// ALS/
& Type		0%	50%	75%	90%	0%	50%	75%	¥ 90%¥
	D1 (ditch)	0.174	0.103	0.103	0.103	0.250	0.250	0.250	0,2,50
	D1 (stream)	0.180	0.090	0.064	© 0.064	0.457	0.157		0 .157
_	D3 (ditch)	0.150	0.075	0.038	0.015	Ø. 126 @	0.003%	0031	0.013
5m	D4 (pond)	0.017	0.008	0.000	0.005	0.023	0.014	9.013	
SD	D4 (stream)	0.166	0.083	0,041 0,004	0.022	0.143	00071 50.012\$	0.044	0.044
	D5 (pond) D5 (stream)	0.017	0.008 0.085	0.043	© 0.00 2 0.0€7	0.923 0.148 ©	0.012	9.006 9.937	0.003
	R4 (stream)	0.170 0.607	0.607	0.043	0.019	Y.2114	1.2071	1.211	1.20
	D1 (ditch)	0.103	0.007	Q, T\$/3	0 102 °C	. <u>/</u>	×0,250	0.250	0.250
	D1 (ditch) D1 (stream)	0.103	0.103	Q.103 Q.064 ×	Ø.103 0.064	Q.937	90.157®	0.239	©.157
	D3 (ditch)	0.033	0.040		0.004	Ø.066	0.03	Old 1	0.00=
10m	D4 (pond)	0.012	0.006	0.020 0.006	0.005	0.017	0.0013	50.012°	0.012
SD	D4 (stream)	0.088	0.0440	0.000	Ø.022 6	0.074	∞ 0 .044 €	0.044	0.044
&RO	D5 (pond)	0.012		0.003	0.00	QQ 16	0.008	0.004	0.002
	D5 (stream)	0.090	0.045	©0.023	0.009	\$ 9.077 Q	0.038	0.019	0.010
	R4 (stream)	0.276	Ø.276 ×	0.276	6 9276	0.544	0.544	<u>\$0.544</u>	0.544
	D1 (ditch)	0,103	0.103	0.903	√0.103 _~ °	0.245/0	Ø.250	0.250	0.250
	D1 (stream)	, 0.064	0.064	0.010	D 0.00	20.157	[™] 0.15 %	0.157	0.157
20m	D3 (ditch)	0 04	% Ø21	0.010		00.033	0.017	0.008	0.003
SD &	D4 (pond) D4 (stream) D5 (pond)	0,008	0.006		0 :005	0.014	0.013	0.012	0.012
RO	D4 (stream)	6 046 €	90.02 3	0,022 %	90.022¢5	0.644	9 .044	0.044	0.044
110			0004	©.002 K	0.00	0.011		0.003	0.001
	D5 (stream)	0.040	©0023 &	0.01	0005	0.039	0.020	0.010	0.010
# GD 1	R4 (stream)	0.145	0.145	0.143	9.145	0.28	0.284	0.284	0.284
* SD and	Reg denote spray	drytt and rum	off buffer	2		~\varphi			
Ê	,	v , S			′ «U'	~O			
	~ (°		~ ~ C		& £	1			
		<u> </u>		4 P	0				
		Q Ş		'N &	y Ç				
			, °~		*O*				
	4		N Q						
					, 9				
	K y	y Q	A		,				
. &	~ Q								
Ŋ	~		y Q						
	@1 ^{\\}		' _ @	4					
	L 2	,	43	Q,					
			, ~Q						
*									
*									
~Š									
Æ, "	R4 (stream) RQ denote spray	A.							
	.O`								

Table CP 9.2.5- 14: Spring cereals: TWAC_{sw}-7 for fluoxastrobin at Step 4 after single and multiple applications

						obin (E+Z) and 2×87.3			, W
			Single or	oplication	pring), 1 t	u 2 ^ 0/	oga.sana Multanda o	pplications	
D 00						-	winiethic a	ppiications	<u>' "</u>
Buffer				-7 [μg/L]			→ AWACsw Drift Re	-7 [μg/L)	
Width	Scenario	00/		eduction		00/	· /		//
& Type	D1 (1'(1)	0%	50%	75%	90%	0% @	50%	Ø5%	¥ 90
	D1 (ditch)	0.142	0.097	0.097	0.097	0.23	0.234	©0.234 0.146	0,2
	D1 (stream)	0.061	0.061	0.061	0.061	0.446	0.146 ⊘ ° 0.014√	0.148	0.0
<i>-</i>	D3 (ditch)	0.024	0.012	0.006	0.002	0.921		0005 0.012	0.0
5m SD	D4 (pond) D4 (stream)	0.015 0.005	0.007 0.005	0.005	0.005	0.022© 0.012	0.013 00012	0.012	0.0 Q.0
SD		0.003	0.003	0,005 0,004	0.005 0.00 2	0.021			0.0
	D5 (pond) D5 (stream)	0.013	0.008	0.000	0.002	Ø.002 °C	70.011 0.001	0.000	
	R4 (stream)	0.001	0.001	0.000	0.430	0.266	0.001	€001 0.264.	0.2
	D1 (ditch)	0.187	0.187	Q.09/7	N 007 .) กาส์ 4 y	9.0 324 S	V 0 221	0.2
	D1 (ditch) D1 (stream)	0.097	0.097	(0.0 9 / (0.061 ×	0.064	0.234	90.1460	0.234 0.434	Q .1
	D3 (ditch)	0.001	0.006	\$0.001 &	0.001	1 0.140	0.140	0.4.40 \$003 @	
10m	D4 (pond)	0.013	0.00 6	0.003 0.005	0.005	0.015	0.06	\$003 \$0.01.1\$	
SD	D4 (polid) D4 (stream)	0.005	0.005	0.003	Ø.005 &	0.012	©012	0.012	0.0
&RO	D5 (pond)	0.003		0.003	\$0.005 0.001	0.012 0015	0.008	0.012	0.0
	D5 (polid) D5 (stream)	0.004	0.000	0.003 %	0.000	(0.001 ©		0.001	0.0
	R4 (stream)	0.085	0.085		0.000	0.121	0.001	© 0.120	0.0
	D1 (ditch)	0.097	0.097	0:097	\$\text{0.097}	0.12(1)	Ø.234	0.234	0.1
	D1 (atten)	0.061	0.0572 0.061	0.061	0.00	©,146	0.146	0.234	0.2
	D3 (ditch)	~ 0 00 <i>\$</i>	Ø Ø Ø Ø 3	0.002	0.001	00.006	0.003	0.001	0.0
20m	D4 (nond)	0,007	Ø.005	0.003	0 :005 @	0.013	0.012	0.011	0.0
SD &	D4 (pond) D4 (stream) D5 (pond)	0005	0.00 \$	0.005	90.005%	0.612	Ø.012	0.012	0.0
RO	D5 (pond)	0.007	0,0004	₹,002 £	0.00	Ø010 ×		0.003	0.0
	DE ()	$\bigvee \cap \cap \cap \partial a$	@0000 /	100000000	വര്	. \$\infty 001	0.001	0.001	0.0
	R4 (stream)	0.045	0.045	0.045	0.045	0.06	0.063	0.234	0.0
* SD and	RQ denote spray	drift and rush	off buffer	0.043	. W	~ 0			
Į.	EG"					, O _x			
«	7		4		6 5				
	2	. ~	\$.~			1)			
	Ö	A							
	<i>@1</i> . (, O						
	~ Ö				*				
	4	O, 4) 4×		W .				
	Ø" .		W'		J				
			~ /	Ç .Q					
	₹J [™]	<i>₹</i>							
. 4	^	<i>\text{\ti}\}\\ \text{\te}\}\\ \text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex</i>	, ~	O					
	<i>"</i> @`` ,	\ aY		DY .					
			W a.	Y					
				,					
		0 2	, y						
*	9 D .1	\ \@\							
L.									
	Q"	-							
	, O								
Ĉ	Ĵ								
Č	R4 (stream) RQ denote spray								

Table CP 9.2.5- 15: Spring cereals: Maximum PEC_{sed} values for fluoxastrobin at Step 4 after single and multiple applications

			аррисации		- ·	11 (5 5			
						obin (E+Z)	, 2		
				`	spring), 1 a	and 2 × 87.5	<u> </u>		
				plication		N		pplications	
Buffer				[µg/kg])			PECsed	[µg/kg]	
Width	Scenario			eduction	(A)	1	^		// ALV
& Type		0%	50%	75%	90%	0%	50%	<u></u>	¥ 90%¥
	D1 (ditch)	1.521	1.441	1.400	1.376	3.06₹	2.939	\$\tilde{\text{\$\pi_{2.874}}}	2,836
	D1 (stream)	0.807	0.804	0.803	0.802	1.663	1.658		D.655
_	D3 (ditch)	0.098	0.050	0.025	0.010	0.13	° 0.05	0030	0.012
5m	D4 (pond)	0.134	0.085	0.059	0.044	0.233@	0.154	9 .115 ©	
SD	D4 (stream)	0.020	0.019	0.019	0.019	0.043	00042	0.042	0.041
	D5 (pond)	0.130	0.069	037	© 0.017		0.112 0.006	0.062	0.031
	D5 (stream)	0.008	0.004	0.002		Ø.011 ©		\$ 903	0.003
	R4 (stream)	0.965	0.963		0.961	¥.432	1.427	T.424	1.423
	D1 (ditch)	1.445	1.402	1.381 .0,802 ×	Y.368 0.802	2.944	`2,877 ,≪1.656©	2.844	2823
	D1 (stream)	0.804 0.053	0.89 \$ 0. 02 7		0.8025	1.658 Ør.061	0.03	1. 65 5 L016 ₀	Q.654 0.007
10m	D3 (ditch)	0.053	0.02°/ 0.070	0.014 0.052	0.042	0.187	~ JA	\$616 \$0.104	0.007
SD	D4 (pond) D4 (stream)	0.100	0.019	0.032	Ø.042 Ø.019 &	0.042	0₫31 ∞0.042 /	0.104	0.088
&RO	D4 (stream) D5 (pond)			0.028	0.0190	0.042 00.53	0.083	0.041	0.041
	D5 (polid) D5 (stream)	0.095 0.004	0.002	$0.028 \ t_0$	0.001	# 9.006 ©	0.003	0.003	0.020
	R4 (stream)	0.362	0.361	0.360	0.001	0.564	0.562	© 0.560	0.559
	D1 (ditch)	4 404 ₄	1.382	1.371	√1.364~°	2.878	2.844 ×	2.827	2.817
	D1 (stream)	0.803	0.892	0.802	0.800	Ø,656 €	1.656	1.654	1.654
• 0	D3 (ditch)	~ 0 028~	% Ø14	0.002	0,003	00.032	0.016	0.008	0.004
20m	D4 (pond) D4 (stream) D5 (pond)	0,083	30 .058		0 :039 @	0 1 10	0.112	0.095	0.084
SD &	D4 (stream)	, 6 019 %	0.01%	0.019	90.019	0.642	4 0.041	0.041	0.041
RO	D5 (pond)	0.066	0,036	^or∩20 √	0.01	0.105 Z	ιν	0.034	0.022
	D5 (-6.0) -	\forall α α	@001 /	0.00	r (200 1	\$8,000	0.003	0.003	0.003
	R4 (stream)	0.186	© 0.185 ₄	0.485	9.185	0.293	0.292	0.291	0.290
* SD and	RQ denote spray	drift and rust	off buffer	*	. O	~ 0"			
/						. 0			
•	¥ %		4 6		Q				
		, 😽	F .~			3)			
	<i>\tilde{Q}</i>								
	<i>@1</i> . (, Ö						
	~Q~~ U				*				
	4	O, 4)" A		, Ø				
	Ø".		"		J				
		7 4	~	Ç"Q"					
			r e						
**	^	O' É	, ~	O					
	(O),			2					
			V	*					
			,						
	Š , 3 , 4	, ~~							
L									
	R4 (stream) RQ denote spray								
~~	Ğ'	~							
Ĉ	. <u>V</u>								

Table CP 9.2.5- 16: Winter cereals: Maximum PEC_{sw} values for fluoxastrobin at Step 4 after single and multiple applications

D1 (ditch) D1 (stream) O.165 O.096 O.068 O.068 O.189 O.153 O.153 O.153 O.153 D1 (stream) O.165 O.091 O.053 O.043 O.461 O.098 O.098 O.096 O.0			munipic a			Fluovaetra	obin (F+7)			
Buffer Width & Scenario PEC							` ′	ிர வ சடிக்		
No. Property				Single ar		winter <i>j</i> , 1 <i>a</i>	1	<u> </u>	nnlications	
No. Property	Ruffer						-			
& Type 0% 50% 75% 90% 0% 50% 75% 9 D1 (stream) D1 (stream) 0.161 0.090 0.008 0.068 0.189 0.153 0.153 0.053 0.004 0.098 0.096 0.008 0.009		Scenario		Drift Ro	eduction	Δ.		Drift Ro	eductiøn	
D1 (ditch)			0%			90%	0% 🕏	·/	· · · · · · · · · · · · · · · · · · ·	90%
D2 (ditch) D.178	* *	D1 (ditch)	0.161	0.096	0.068	_e 0.068	0.180	0.153		0,1,53
D2 (stream)			0.165	0.091	0.053	0.043		0.098	0.0%	0.096
D2 (stream)		D2 (ditch)	0.178	0.178	0.178	0.178	0,395 ∂	_ຈ ° 0.39 5 ⁄⁄ັ		0.395C
D3 (dirch) 0.129 0.065 0.032 0.013 0.108 0.054 0.037 0.07 0.004 0.004 0.004 0.004 0.004 0.004 0.005		D2 (stream)	0.155	0.112	0.112	0.112	→ 0.253 ©	0.253	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.25
5m D4 (stream) 0.133 0.067 0.033 0.066 0.121 0.060 0.934 0.0 SD D5 (pond) 0.014 0.007 0.004 0.902 0.021 0.011 0.005 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.034 0.035 0.065 0.032 0.032 0.004 0.032 0.007 0.007 0.008 0.063 0.064 0.063 0.064 0.063 0.064 0.064 0.064 0		D3 (ditch)	0.129	0.065	0032	0.013	0.108	_00054 (0.027	Q:Q/11
SD D5 (pond) D5 (pond) D104 D.007 D.004 D.002 D.021 D.005 D.0 D5 (stream) D138 D.069 D.035 D.035 D.014 D.128 D.064 D.027 D. 066 D.027 D.066 D.068 D.06		D4 (pond)	0.014	0.007		&0.00 ,4 €	0.018		l P	₄ 0.009
D5 (stream) D6 (ditch) D1 (ditch) D1 (ditch) D1 (ditch) D1 (ditch) D2 (ditch) D2 (ditch) D2 (ditch) D3 (ditch) D3 (ditch) D5 (stream) D1 (ditch) D5 (stream) D1 (ditch) D6 (ditch) D2 (ditch) D6 (ditch) D6 (ditch) D1 (ditch) D1 (ditch) D1 (ditch) D2 (ditch) D2 (ditch) D2 (ditch) D2 (ditch) D2 (ditch) D2 (ditch) D3 (ditch) D4 (stream) D5 (stream) D1 (ditch) D1 (ditch) D2 (ditch) D2 (ditch) D3 (ditch) D4 (stream) D5 (stream) D6 (ditch) D6 (ditch) D6 (ditch) D6 (ditch) D6 (ditch) D7 (ditch) D6 (ditch) D7 (ditch		` /	0.133		0.033	0.0	Ø.121 C	0.060	Ø34	0.034°
D5 (stream) D6 (ditch) D1 (ditch) D1 (ditch) D1 (ditch) D1 (ditch) D2 (ditch) D2 (ditch) D2 (ditch) D3 (ditch) D3 (ditch) D5 (stream) D1 (ditch) D5 (stream) D1 (ditch) D6 (ditch) D2 (ditch) D6 (ditch) D6 (ditch) D1 (ditch) D1 (ditch) D1 (ditch) D2 (ditch) D2 (ditch) D2 (ditch) D2 (ditch) D2 (ditch) D2 (ditch) D3 (ditch) D4 (stream) D5 (stream) D1 (ditch) D1 (ditch) D2 (ditch) D2 (ditch) D3 (ditch) D4 (stream) D5 (stream) D6 (ditch) D6 (ditch) D6 (ditch) D6 (ditch) D6 (ditch) D7 (ditch) D6 (ditch) D7 (ditch	SD				0.004	0.002	≰. *** <i>-Z</i> =1.	0.071	o ~	
R1 (pond)					0.03/5	0,0.01.				0013
R1 (stream)				≪).	1. 8					@ .014
R3 (stream)								~ 1ĕ	,(~)	0.084
R4 (stream)				A())	0.263	0.263			\$0.763€	0.763
D1 (ditch)						9 0.368 (5)	0.615		0.615	0.615
D1 (stream)				0.379				$\overline{}$	0%01	0.801
D2 (ditch)					0.068					0.153
D2 (stream)		\ /			0.043		0.101	0.096		0.096
D3 (ditch)				-	0/4/8	77.		V.395		0.395
D4 (pond)			4/ /	0.612		, , , ,	0.253			0.253
D4 (stream)		, , ,	3b	~~~		A 00.4	0.01	م اھ		0.006
BD (stream)	10m		AL a	()/\)						0.009
D5 (stream)	SD			4			(// n - 4	SI 37		0.034 0.002
D6 (ditch)	&RO				0.003 A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.002
R1 (pond)										0.008
R3 (stream)	İ	(%) /				4/18				0.014
R3 (stream)							~ ^			0.347
R4 (stream) 0.171 0.171 0.362 0.362 0.362 0. D1 (ditch) 0.068 0.068 0.068 0.068 0.068 0.043 0.096 0.09							1 💚			0.277
D1 (ditch)		` ′ 🍙 ′	0.10,0	20,100 C		(1)	<i>M</i> -			0.362
D1 (stream) 0.057 0.043 0.043 0.096 0.096 0.096 0.096 0.096 0.2 (dirch) 0.148 0.178 0.178 0.395				0.068	(//89	(())				0.153
D2 (drifch)			Q0.057	0.043						0.096
D2 (sfream) D3 (ditch) D4 (pond) D4 (stream) D5 (pond) D5 (stream) D6 (ditch) D6 (ditch) D6 (ditch) D7 (pond) D8 (pond) D8 (pond) D9 (po		\ (7/n / (0.1		0 138	a 0.178				0.395
20m SD & (ditch)			Ø 12		0.192	0.112				0.253
D4 (stream) 0.037 0.018 0.046 0.016 0.034 0.034 0.034 0.034 0.05 0.006 0.006 0.006 0.007 0.008 0.007 0.009 0.007 0.009 0.007 0.009 0.014 0			≈0.036 \$	0.0	×0.009 ×	0.004				0.003
D4 (stream) 0.037 0.018 0.046 0.016 0.034 0.034 0.034 0.034 0.05 0.006 0.006 0.006 0.007 0.008 0.007 0.009 0.007 0.009 0.007 0.009 0.014 0	20 4		$\sqrt{0.007}$	0.004	©0.004°	0.004				0.008
RO D5 (stream)	20m		1 0 0 % 7	Ø.018 Ø	0.046	0.016				0.034
D5 (stream)	SD &	D5 (pond)	a ₩607 ³	∾ĭ0 00 4 Q.	0002	0.001				0.001
D6 (difch)	KO ·		0.038	0.04,9	20 .010	0.004	0.034		0.008	0.008
R1(stream) 0063 0.069 0.063 0.063 0.182 0.182 0. R2 (stream) 0.088 0.088 0.088 0.144 0.144 0.144 0. R4 (stream) 0.089 0.089 0.089 0.189 0.189 0.189 0.189 0.		D6 (ditch) 4		9 9 18	\mathbb{Q} 0.009		0.029		0.014	0.014
R1(*stream)		R1 (pond)	0,009	*v.007_@/	0.007	0.006	0.022	0.019	0.018	0.017
R4 (stram) 4 0.089 0.089 0.089 0.189 0.189 0.189 0.		R J (stream)	©063 ×	₩ 0.06 %	0.063		0.182	0.182		0.182
R4 (stream) 1 0.089 0.089 0.089 0.189 0.189 0.189 0.		PO (stream)	40.088							0.144
	<u> </u>	R4 (stream) 🗳	0.089		0.089	0.089	0.189	0.189	0.189	0.189
* SD and RO denote spray drift and runoff buffer	* SD and	RO denote spray	drift and run	off buffer						
	Æ,		A "							

Table CP 9.2.5- 17: Winter cereals: TWAC_{sw}-7 for fluoxastrobin at Step 4 after single and multiple applications

						11 (= =			
						obin (E+Z)			<u> </u>
					winter), 1 a	and 2×75.0	<u> </u>	4	.V' 👌
			Single ap	plication]	Multople a	pplications	
Buffer			TWACsw	-7 [μg/L]				-7 [μg⁄ 4)	
Width	Scenario		Drift Ro	eduction	<i>≿</i> ₄	al	∽Drift Re	eduction	
& Type		0%	50%	75%	90%	0% Ŵ	50%	75%	90%
	D1 (ditch)	0.128	0.078	0.062	0.062	0.15	0.144 🎺	©0.1445	0,1744
	D1 (stream)	0.039	0.039	0.039	$\sqrt[\infty]{0.039}$	0.490	0.090	0.09	0 .090
	D2 (ditch)	0.105	0.063	0.059	0.059	0.149 ∂	° 0.14 9 %	00149	0.149
	D2 (stream)	0.026	0.026	0.026	0.026	~ 0.080	0.076	√ 9.076, ©	0.0746
	D3 (ditch)	0.027	0.013	0,007	0.003	0.026	_00013 0	0.006	0.003
	D4 (pond)	0.013	0.006	0004	© 0.00 , €	0.017	©0.009\$	0.008	0.008
5m	D4 (stream)	0.004	0.004	0.004	0.004	Ø.008 C	0.008	Ø008 _	\$\\0.00 \ \$\\°
SD	D5 (pond)	0.013	0.006	0.003	0.001	0.012	0.671.0	0.005	0.002
	D5 (stream)	0.001	0.000	0.000	Ø.000 C	0.062	20,001	> 0.000	0000
	D6 (ditch)	0.020	0.01	Ø,005 ×	$\int_{0.002}^{\infty}$	0.045	₩ 0.022 <i>®</i>	0.001	3 .004
	R1 (pond)	0.033	0.030	0.028	0,028	10 0.089	0.08	0.081	0.079
	R1 (stream)	0.033	0.033	0.033	0.033	0.095	0095	\$0.095√	0.095
	R3 (stream)	0.051	0.051	0.031	Ø.051 6	0.084	0.084	0.084	0.084
	R4 (stream)	0.105	0.405	0.905	0.105	0 Q 30	0.142	0.230	0.230
	D1 (ditch)	0.084	0.062	0.062	0.062	(0.144)	0.144	0.144	0.144
	D1 (stream)	0.039			0.050	0.096	0.090 0.149	© 0.090	0.090
	D2 (ditch)	0.026	0.05%	0.039	(0.059) (0.039)	0.19 Ø,076.	\mathscr{A}_{n} \mathscr{A}_{n}	0.149	0.149
	D2 (stream) D3 (ditch)	0.026	, 0.026 8007	0.004	0.0 26 ° 0.001	0.078	0.076	0.076 0.003	0.076 0.001
	D4 (pond)	0.01	Ø.005	0.004	A 7004	0.012	0.009	0.003	0.001
10m	D4 (pond) D4 (stream)	0,009 , 6004 ≯	0.004 0.004	0.004	90.004 ©	0.012	Ø.009 Ø.008	0.008	0.008
SD	D5 (pond)	0.009	00005	9.002 L	0.00	0.038 .014 &	0.007	0.003	0.003
&RO	D5 (stream)	0.000	©000 &		0.001	20 001	0.000	0.004	0.002
	D6 (ditch)	0.040	©0005 ₄	0.003	9.001 °	0.02	0.012	0.006	0.000
	R1 (pond)	≈ 0.015 <u>×</u>	0.013	0.0012	0.011	0.039	0.035	0.033	0.032
,	(stream)	0.015	0.695	0.015	0.018	0.043	0.043	0.043	0.043
	R3 (stream)	0.023	0,023	\$\int 0.023	.0.023	> 0.038	0.038	0.038	0.038
	R4 (stream) °	0.648	©0.048 C	0.048	Ø.048 Ž	0.105	0.105	0.105	0.105
	D1 (ditch)	-30 062 a	0.062	£0,062	0.062	0.144	0.144	0.144	0.144
	D1 (stream)	Q0.0395	0.039	°>0.039≈	0.039	0.090	0.090	0.090	0.090
	D2 (dijich)	0.059	~°⁄0.059 ~	0.059	_0.059	0.149	0.149	0.149	0.149
	D2 (stream)	© 926 ≈	0.026	0.03 0.026 20.002 20.004	0.039	0.076	0.076	0.076	0.076
	D3 (ditch)	0.007	0.06	×0.002 ×	0.001	0.007	0.003	0.002	0.001
20m	(D)4 (pond) 💸	√° 0.00 6 %	0.004	©0.004°	0.003	0.009	0.008	0.008	0.008
SD &	D4 (stream)	0.0404	Ø.004 Ø	0.0 04	0.004	0.008	0.008	0.008	0.008
RO	D5 (pond)	\$ 006	≫ĭ0 00 3 Q.	0.002	0.001	0.009	0.005	0.002	0.001
KO	D5 (stream)	0.000 0.002 0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	D6 (ditch)	\ 0.0 0\$ /	9 903	$\mathbb{Q}_{0.001}$	0.001	0.012	0.006	0.003	0.001
	R1 (pond)	0.008	0.007 @		0.006	0.021	0.018	0.017	0.016
	R1 (stream)	. Ø00008 .≾	√ 0.0 0%	0.008	0.008	0.023	0.023	0.023	0.023
	PO (stream)	0.012	0.012	0.012	0.012	0.020	0.020	0.020	0.020
# CF #:	R4 (stream)			0.025	0.025	0.055	0.055	0.055	0.055
* SD and	RO denote spray	drift and run	ott buffer						
Æ,									
~	O "								
	J								

Table CP 9.2.5-18: Winter cereals: Maximum PEC_{sed} values for fluoxastrobin at Step 4 after single and multiple applications

						obin (E+Z)			
					winter), 1 a	and 2×75.0	<u> </u>		
				plication]		pplications	
Buffer				[µg/kg])			PECsed	[μg/kg]	
Width	Scenario		Drift Ro	eduction			™Drift Re	eductiøn	
& Type		0%	50%	75%	90%	0% @	50%	Ø5%	× 90%
	D1 (ditch)	0.959	0.933	0.919	0.911	2.09	2.024	#1.98 9	1,068
	D1 (stream)	0.521	0.520	0.520	$\sqrt[\infty]{0.520}$	1.425	1.123 🔘	1.12	D.122
	D2 (ditch)	0.634	0.603	0.587	0.578	19401 @	° 1.322	1/290	01.275C
	D2 (stream)	0.303	0.303	0.302	0.302	√ 0.699 <i>©</i>	0.687	√ 9.681 ©	0.672
	D3 (ditch)	0.101	0.052	0,026	0.011	0.124	00064	0.033	0.014
	D4 (pond)	0.112	0.069	047	© 0.03 4 €	0.494	0 .124	0.088	0.068
5m	D4 (stream)	0.014	0.014	0.014	0.054	Ø.031 C	0.030	Ø30	₹\0.03 0
SD	D5 (pond)	0.112	0.059	0.014	0.014	0.183	0.698	0.054	0.027
	D5 (stream)	0.004	0.002	0.001	Ø.001	0.04	×0,006	> 0.003	00002
	D6 (ditch)	0.080	0.04	Ø Ø21 ×	0.009	0.148	¥0.07 <i>7©</i> ″	0.040	3 .017
	R1 (pond)	0.339	0.302	0.284	0.23/2	% .825	0.76	740	0.723
	R1 (stream)	0.274	272	0.272	0.271	5, 0.7850°	0083	30.782 €	0.781
	R3 (stream)	0.618	0.611	0.607	Ø.605 👌	0.705	0.699	0.696	0.694
	R4 (stream)	0.426	0.425	0.424 @ \$0.913	0.424	9 9 81	0.97	0977	0.976
	D1 (ditch)	0.934	0.920	A~	0.908 09520	7.020	1.990	1.972	1.961
	D1 (stream)	0.520	() ()	0.520	0,520 4,0.575,	1.120	15.¥22 ≈0₹201 ×	Ø 1.122	1.122
	D2 (ditch)	0.303	0.58	0.580	7 0.3/3 ·	1.3 <u>2</u> 3 Ø,688	0.68	1.278 0.678	1.270 0.676
	D2 (stream) D3 (ditch)	0.303	0.392 X028	0.014	0.300° 0.006	0.066	0.034	0.078	0.007
	D4 (pond)	0.032	\$0.057\$	0.04	D :031 @	0.153	0.103	0.018	0.064
10m	D4 (pond)	0.088 0.0814 %	0.014 0.014	0.044 0.014 s	90.0140	0.133	Ø.030	0.078	0.030
SD	D5 (pond)	0.082	0,014	9.024 L	0.01	Ø333 €	50.030	0.030	0.030
&RO	D5 (stream)	0.002	©001 &	(O>> >)/	0.011	\$0.006	0.003	0.002	0.002
	D6 (ditch)	0.044	0.022	0.012	9.005 (0.07	0.041	0.022	0.009
	R1 (pond)	≈ 0.169 ≪	0.14	02727	0.1190	0.200	0.346	0.325	0.312
,	(stream)	0.092	0.691	0.091	0.09	255	0.253	0.253	0.252
	R3 (stream)	0.17	0,167	0.165	0.164	3 √0.226	0.223	0.221	0.220
	R4 (stream) (0.185	€0.184 [©]	0.184	Ø.183 [~]	0.403	0.402	0.401	0.401
	D1 (ditch)	△ 0.920 €	0.9\$\3\"	0,909	0.900	1.991	1.973	1.963	1.958
	D1 (stream)	Q0.5205	0.520	№ 0.520	0.520	1.122	1.122	1.122	1.122
	D2 (driftch)	0.5	ू°⁄9⁄.580 <i>~</i>	0.576	0.573	1.292	1.278	1.271	1.267
	D2 ₃ (stream)	© 702 √	$5^{9}0.302$	0.502	0.573	0.681	0.678	0.676	0.675
	D3 (ditch)	0.029	0.0 6	0.502	0.003	0.035	0.018	0.009	0.004
20m '	(pond) 🦩	⊗ 0.00 / γ	_~ 0.0π0	<i>₹</i> ©0.03 <i>5</i> √	0.029	0.119	0.086	0.070	0.060
SD &	D4 (stream)	0.044	Ø.014 Ø	0.04	0.014	0.030	0.030	0.030	0.030
RO	D5 (pond)	9 057	√0.03 <i>6</i> Q	0.017	0.009	0.092	0.051	0.030	0.019
ito	D5 (stream)	0.001	0.001	0.001	0.001	0.003	0.002	0.002	0.002
	D6 (ditch)	^ 0.02 3 / 0.698	9 5912	$\bigcirc 0.007$	0.004	0.042	0.022	0.012	0.008
	R1 (pond)	0.098	0.079 @		0.063	0.218	0.188	0.173	0.164
	R le (stream)	0046	0.046	0.045	0.045	0.126	0.125	0.125	0.125
~	PO (streggin)	0.080	0.078	0.077	0.076	0.111	0.109	0.108	0.108
* CD	R4 (stream)	0.09	0.098	0.097	0.097	0.212	0.211	0.211	0.210
" SD and	RO denote spray	aritt and run	oit buffer						
Æ, "	Ğ	T,							
~	O"								
	y .								

Table CP 9.2.5- 19: Spring cereals: Maximum PECsw values for fluoxastrobin at Step 4 after single and multiple applications

						obin (E+Z) and 2×75 .	l o a c Aba		
			Single or	oplication	pring <i>j</i> , 1 a	mu 2 ^ /3.	v g a.s.ana Multania a	pplications [µg/L6] eduction	/ ` .
D.,.££				•			« DEC	Ina/I	,
Buffer Width	Scenario			[µg/L]) eduction			FECsw Or:ft D.	lμα\τΦ.	
& Type	Scenario	0%	50%	75%	90%	0% Ø	50%	75%	× 90
& Type	D1 (ditch)	0.147	0.084	0.084	_0.084	0.200			0,6
	D1 (ditch) D1 (stream)	0.147	0.084	0.084	0.084	0.200	0.198	©0.1985 0.124	
	D3 (ditch)	0.134	0.077	0.033	0.033	0.429 0.408 &	0.1240) 3°0.054	0.12\square 0\square	0.0
5m	D4 (pond)	0.129	0.004	0.032	0.013	0.¥08	0.034	9.010 Q	0.0
SD	D4 (polid) D4 (stream)	0.014	0.007	0.005	0.004 0.018	0.122	0.011 00061	0.037	Q.(
SD	D5 (pond)	0.014	0.007	0.004	0.018 0.00 2	0.020			, 0.0
	D5 (polid) D5 (stream)	0.146	0.007	0.036 %	b 00(4	Ø.126 Ĉ	0.010	Ø32	20.0 20.0
	R4 (stream)	0.511	0.511			1.023	1 (1)23	¥023&	
	D1 (ditch)	0.086	0.084	Q.084	0.084 0.053	0 160	\(\int_{0}^{1}\)\(\frac{2}{98}\)\(\frac{3}{2}\)	₩ 0.1 98	00
	D1 (stream)	0.082	0.05	Ø,053 «	0.053	0.924	198 198 40.124	0.424	3
	D3 (ditch)	0.068	0.034	017	0.007	® .056	0.02	Ø14 g	
10m	D4 (pond)	0.010	0.005	0.017 0.005	0 004	X0 0140°	0.038	S0.010	
SD	D4 (stream)	0.075	0.038	0,029	Ø.018 &	0.064	©037 ©	0.037	0.0
&RO	D5 (pond)	0.010	0.005	0.003	0.00	0014	0.00	0.004	0.0
	D5 (stream)	0.010 0.072	0.039	©0.019	0.008	Ø.066	0.033	0.016	0.0
	R4 (stream)	0.233	0.233	0.2	09233	0.460	0.4 60	₯ 0.460	0.4
	D1 (ditch)	0,084	0.0842	0.084	√,0.084 _~ °	0.169/8	7 9.198	0.198	0.1
	D1 (stream)	0.053	0.053	0.053	0.053	Q,124	0.124	0.124	0.1
20m	D3 (ditch)	~~ 0 03m~~	% Ø18	0.00	U 404	00.029	0.014	0.007	0.0
SD &	D4 (pond) D4 (stream) D5 (pond)	0,007	Ø.005	0.003	0 :004	0.011	0.010	0.010	0.0
RO	D4 (stream)	€ 039 €	√0.02 ©	0.018	90.018	0.037	9 0.037	0.037	0.0
RO	D5 (pond)		0004	Ø.002 K	0.001	0.009 🐇		0.003	0.0
	D5 (stream)	0.040	©020 %	0.010	0004	0.033	0.017	0.008	0.0
1.00	R4 (stream)	0.122	0.122	0.122	0.004 9.122	0.240	0.240	0.240	0.2
4	R4 (stream) RQ denote spray								
			, Ş	,					

Table CP 9.2.5- 20: Spring cereals: TWAC_{sw}-7 for fluoxastrobin at Step 4 after single and multiple applications

D1 (ditch)							obin (E+Z)	A.		
Single application With the price application Scenario TWACsw-7 μg/L TWACsw-7 μg/L Drift Reduction Dr						pring), 1 a				,W"
& Type 0% 50% 75% 90% 0% 50% 75% 90 D1 (ditch) 0.120 0.078 0.078 0.078 0.182 0.182 0.182 0.182 0.0095 0.0095				Single ap	plication		I	Multiple a	pplications	<u> </u>
& Type 0% 50% 75% 90% 0% 50% 75% 90 D1 (ditch) 0.120 0.078 0.078 0.078 0.182 0.182 0.182 0.182 0.182 0.0095 0.0095	Buffer			TWACsw	-7 [μg/L]					25
& Type 0% 50% 75% 90% 0% 50% 75% 90 D1 (ditch) 0.120 0.078 0.078 0.078 0.182 0.182 0.182 0.182 0.182 0.0095 0.005 0.0095 <		Scenario						✓ Drift Re Output Drift		
D1 (ditch)			0%			90%	0%		- 	
D1 (stream) D.049 D.049 D.049 D.049 D.049 D.043 D.113 D.113 D.05 D.005 D.005 D.002 D.004 D.005						''00				
D3 (ditch)								0.102	0.11	⋒ "i
Sm D4 (pond) 0.013 0.006 0.004 0.004 0.019 0.009 0.005 0.005 0.009 0.005 0.005 0.004 <t< td=""><td></td><td></td><td></td><td></td><td>0.005 🚄</td><td>√ 0 002</td><td>0918</td><td>°0.00\$</td><td>0005</td><td>$\mathcal{O}_{0,0}$</td></t<>					0.005 🚄	√ 0 002	0918	°0.00\$	0005	$\mathcal{O}_{0,0}$
SD	5m				0.004	0.004			\$ 9.010 @	0.0
D5 (pond)					0,004	≈0.004 ×				0.0
D5 (stream)					0.003	7, 0.00K	0.018		0.005	, 0.0
R4 (stream) 0.158 0.158 0.158 0.58 0.25 0.24 0.223 0.22 0.2					0 000 ≪	0.00	Ø.002 C	0.001	£000 /	∑ 0.0
D1 (ditch)					0.158	0.15 8		0.224	0.223	
D1 (stream)					0.0%	A	0 182	%0,182 å	♥ 0.1 82	
10m SD D4 (pond)					6 0,049 ×	$\int_{0.049}^{\infty} 0.049$	0.93	∜0.113 <i>6</i> %	0.4073	
SD	10		0.011	0.006	‱ 003 ©			0.06	D1 -	o.0
&RO D4 (stream) 0.004 0.004 0.004 0.004 0.004 0.004 0.001 0.000 0.			0.009		0.004	0.004	0.0130	00010	₿0.009∜	0.0
D5 (pond)			0.004	♥0.004©	0,004	Ø.0046	0. Q (0		0.010	0.0
D5 (stream)	aku	D5 (pond)	0.009	0.005	0.002	> 0.00 °	QQ 13	0.00	0.003	0.0
R4 (stream) 0.072 0.072 0.007 0.102 0.102 0.101 0.10 D1 (ditch) 0.078 0.078 0.078 0.078 0.182 0.182 0.182 D1 (stream) 0.049 0.049 0.049 0.001 0.113 0.113 0.113 0.10 20m D3 (ditch) 0.006 0.004 0.004 0.001 0.005 0.002 0.001 0.00 SD & D4 (stream) 0.004 0.004 0.004 0.004 0.010 0.010 0.010 D5 (pond) 0.006 0.003 0.004 0.004 0.004 0.000 0.000 R4 (stream) 0.008 0.008 0.008 0.008 0.009 0.000 0.000 0.000 R4 (stream) 0.038 0.038 0.038 0.038 0.053 0.053 0.053 0.053		D5 (stream)			©0.000 °	0.000	J. 001 Q	0.000	0.000	0.0
D1 (ditch)		R4 (stream)	0.072	0.072	0.07	09072	0.102	0. 101	© 0.101	0.1
D1 (stream)		D1 (ditch)	9 ,078 ₄	0.078	0.078	√0.078 _€ °	0.18/2	Ø.182	0.182	
20m D3 (ditch)		D1 (stream)	0.049	0.049	3 .049	0.04 9 °	113	0.118	0.113	
SD & D4 (pond)	20m	D3 (ditch)	0.00%	E 20 003	, 0.001	Q.901	©0.005	0.002	0.001	
RO D4 (stream) 0.006 0.003 0.002 0.001 0.004 0.002 0.00	SD &	D4 (pond)	0.006	0.004	0.004	0 :004 @	0.010			
D5 (speam) 0.000 0000 0000 0000 0.00	RO	D4 (stream)	0004 €	y 0.004)	0.004	₩0.004©	0.610			
D5 (steam) 0.000 0	110	D5 (pond)	0.006	00003	9 .002 (0.00₹	€ 3009 ⊀			
* SD and RQ denote spray drifty and runoff buffer		D5 (stream)	0.000	©0000 %	0.000	0000	\$0.000			
*SD and RO denote spray draft and rusoff burger	* CD	R4 (stream) "0"	0.098	0.038	0.838	3 9.038	0.025	0.053	0.053	0.0

Table CP 9.2.5- 21: Spring cereals: Maximum PEC_{sed} values for fluoxastrobin at Step 4 after single and multiple applications

Buffer Width & Type Scenario Driver Description Buffer Width & Type 0% 50 D1 (ditch) 1.243 1.1 D1 (stream) 0.656 0.6 D3 (ditch) 0.084 0.0 Sm D4 (pond) 0.115 0.0 SD D4 (stream) 0.016 0.0 D5 (pond) 0.112 0.0 D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D4 (pond) 0.090 0.0 SD D4 (pond) 0.090 0.0 &RO D5 (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.33 D1 (ditch) 1.1 1.1 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.32 D1 (ditch) 0.070 0.0	gle application ECsed [μg/kg] ift Reduction 75% 75% 75% 75% 759 7653 7653 7659 7650 7659	on) on 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	90% 1.116 0.651 0.009 0.037 0.012 0.014 0.827 7.109 0.654 0.034 0.065 0.034 0.016 0.016 0.016 0.016 0.016 0.016 0.037	0% 2.55 1.88 6.99 0.19 0.02 0.48 9.01 1.22 2.44 1.97 0.05 0.05 0.03 0.48 0.00 0.48	1 8 8 9 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.445 1.377 0.056 0.130 0.096 0.096 0.005 1.224 2.391 0.375 0.035 0.036 0.071 0.070 0.093 0.380 2.363 1.376 0.914	0.026 0.096 0.034 0.053 0.053 0.033 1.222 2.362 1.374 0.086 0.033	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Buffer Width & Type Scenario Driver Description Buffer Width & Type 0% 50 D1 (ditch) 1.243 1.1 D1 (stream) 0.656 0.6 D3 (ditch) 0.084 0.0 Sm D4 (pond) 0.115 0.0 SD D4 (stream) 0.016 0.0 D5 (pond) 0.112 0.0 D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D4 (pond) 0.090 0.0 &RO D4 (pond) 0.090 0.0 &RO D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 1.1 D1 (ditch) 0.044 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 0.052 0.6 D2 (ditch) 0.070 0.0	ECsed [µg/kg] rift Reduction 75% 75% 172	1) on 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.116 0.651 0.009 0.037 0.018 0.001 0.001 0.654 0.005 0.005 0.001 0.	2.55 1.48 0.99 0.19 0.02 0.48 9.01 1.22 2.44 1.97 0.05 0.03 0.03 0.48 2.39	1 8 8 9 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.445 1.377 0.056 0.130 0.096 0.096 0.005 1.224 2.391 0.375 0.035 0.036 0.071 0.070 0.093 0.380 2.363 1.376 0.914	2.38% 1.37% 0.026 0.096 0.034 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Width & Scenario Drivent & Type 0% 50 D1 (ditch) 1.243 1.1 D1 (stream) 0.656 0.6 D3 (ditch) 0.084 0.0 5m D4 (pond) 0.115 0.0 SD D4 (stream) 0.016 0.0 D5 (pond) 0.112 0.0 D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D4 (pond) 0.090 0.0 SD D4 (stream) 0.016 0.0 BC D4 (stream) 0.016 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 1.1 D1 (ditch) 0.052 0.6 D3 (ditch) 0.024 0.6 D4 (pond) 0.070 0.0 D6 (ditch) 0.070 <td< th=""><th>rift Reduction 75</th><th>6 7 6 7 6 6 6 6 6 6 7 7 8 8 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>1.116 0.651 0.009 0.037 0.018 0.001 0.001 0.654 0.005 0.005 0.001 0.</th><th>2.55 1.48 0.99 0.19 0.02 0.48 9.01 1.22 2.44 1.97 0.05 0.03 0.03 0.48 2.39</th><th>1 8 8 9 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</th><th>2.445 1.377 0.056 0.130 0.096 0.096 0.005 1.224 2.391 0.375 0.035 0.036 0.071 0.070 0.093 0.380 2.363 1.376 0.914</th><th>2.38% 1.37% 0.026 0.096 0.034 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374</th><th>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</th></td<>	rift Reduction 75	6 7 6 7 6 6 6 6 6 6 7 7 8 8 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8	1.116 0.651 0.009 0.037 0.018 0.001 0.001 0.654 0.005 0.005 0.001 0.	2.55 1.48 0.99 0.19 0.02 0.48 9.01 1.22 2.44 1.97 0.05 0.03 0.03 0.48 2.39	1 8 8 9 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.445 1.377 0.056 0.130 0.096 0.096 0.005 1.224 2.391 0.375 0.035 0.036 0.071 0.070 0.093 0.380 2.363 1.376 0.914	2.38% 1.37% 0.026 0.096 0.034 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Width & Scenario Drivent & Type 0% 50 D1 (ditch) 1.243 1.1 D1 (stream) 0.656 0.6 D3 (ditch) 0.084 0.0 5m D4 (pond) 0.115 0.0 SD D4 (stream) 0.016 0.0 D5 (pond) 0.112 0.0 D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D4 (pond) 0.090 0.0 SD D4 (stream) 0.016 0.0 BC D4 (stream) 0.016 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 1.1 D1 (ditch) 0.052 0.6 D3 (ditch) 0.024 0.6 D4 (pond) 0.070 0.0 D6 (ditch) 0.070 <td< th=""><th>rift Reduction 75</th><th>6 7 6 7 6 6 6 6 6 6 7 7 8 8 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>1.116 0.651 0.009 0.037 0.018 0.001 0.001 0.654 0.005 0.005 0.001 0.</th><th>2.55 1.48 0.99 0.19 0.02 0.48 9.01 1.22 2.44 1.97 0.05 0.03 0.03 0.48 2.39</th><th>1 8 8 9 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</th><th>2.445 1.377 0.056 0.130 0.096 0.096 0.005 1.224 2.391 0.375 0.035 0.036 0.071 0.070 0.093 0.380 2.363 1.376 0.914</th><th>2.38% 1.37% 0.026 0.096 0.034 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374</th><th>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</th></td<>	rift Reduction 75	6 7 6 7 6 6 6 6 6 6 7 7 8 8 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8	1.116 0.651 0.009 0.037 0.018 0.001 0.001 0.654 0.005 0.005 0.001 0.	2.55 1.48 0.99 0.19 0.02 0.48 9.01 1.22 2.44 1.97 0.05 0.03 0.03 0.48 2.39	1 8 8 9 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.445 1.377 0.056 0.130 0.096 0.096 0.005 1.224 2.391 0.375 0.035 0.036 0.071 0.070 0.093 0.380 2.363 1.376 0.914	2.38% 1.37% 0.026 0.096 0.034 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
& Type 0% 50 D1 (ditch) 1.243 1.1 D1 (stream) 0.656 0.6 D3 (ditch) 0.084 0.0 5m D4 (pond) 0.115 0.0 SD D4 (stream) 0.016 0.0 D5 (pond) 0.112 0.0 D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D4 (pond) 0.045 0.0 SD D4 (stream) 0.016 0.0 BC D4 (stream) 0.016 0.0 D5 (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 1.1 D1 (stream) 0.652 0.6 D3 (ditch) 0.024 0.0 D6 (ditch) 0.070 0.0 D6 (ditch) 0.070 <th> 75% 75% 1.13° </th> <th>6 57 52 22 6 6 6 6 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>1.116 0.651 0.009 0.037 0.018 0.001 0.001 0.654 0.005 0.005 0.001 0.</th> <th>2.55 1.48 0.99 0.19 0.02 0.48 9.01 1.22 2.44 1.97 0.05 0.03 0.03 0.48 2.39</th> <th>1 8 8 9 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</th> <th>2.445 1.377 0.056 0.130 0.096 0.096 0.005 1.224 2.391 0.375 0.035 0.036 0.071 0.070 0.093 0.380 2.363 1.376 0.914</th> <th>2.38% 1.37% 0.026 0.096 0.034 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374</th> <th>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</th>	75% 75% 1.13°	6 57 52 22 6 6 6 6 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1	1.116 0.651 0.009 0.037 0.018 0.001 0.001 0.654 0.005 0.005 0.001 0.	2.55 1.48 0.99 0.19 0.02 0.48 9.01 1.22 2.44 1.97 0.05 0.03 0.03 0.48 2.39	1 8 8 9 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.445 1.377 0.056 0.130 0.096 0.096 0.005 1.224 2.391 0.375 0.035 0.036 0.071 0.070 0.093 0.380 2.363 1.376 0.914	2.38% 1.37% 0.026 0.096 0.034 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
D1 (ditch)	172	66 62 72 71 71 71 71 71 71 71 71 71 71 71 71 71	1.116 0.651 0.009 0.037 0.018 0.001 0.001 0.654 0.005 0.005 0.001 0.	2.55 1.48 0.99 0.19 0.02 0.48 9.01 1.22 2.44 1.97 0.05 0.03 0.03 0.48 2.39	1 8 8 8 6 1 0 9 5 7 2 8 7 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.445 1.377 0.056 0.130 0.035 0.096 0.005 1.224 2.391 1.375 0.035 0.034 0.071 0.093 0.093 0.096 0.0034 0.071 0.093 0.093 0.093 0.094 0.094	2.38% 1.37% 0.026 0.096 0.034 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
D1 (stream) 0.656 0.6 D3 (ditch) 0.084 0.0 Sm D4 (pond) 0.115 0.0 SD D4 (stream) 0.016 0.0 D5 (pond) 0.112 0.0 D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 SD D4 (pond) 0.045 0.0 SD D4 (stream) 0.016 0.0 SD D5 (pond) 0.090 0.0 SC (pond) 0.082 0.0 D5 (stream) 0.016 0.0 CC (pond) 0.082 0.0 CC (pond) 0.0652 0.0 CC (pond) 0.052 0.0 CC (pond) 0.070 0.0 CC (pond) 0.000 0.0 CC (pond) 0.00	553 0.652 043 0.022 072 0.056 016 0.016 059 0.03 0.002 0.03 0.002 0.03 0.002 0.03 0.002 0.04 0.02 0.04 0.02 0.02 0.02 0.0	52 66 62 71 71 71 72 73 74 75 76 76 77 78 78 78 78 78 78 78 78 78	0.651 0.009 0.037 0.015 0.017 0.054 0.827 1.109 0.058 0.034 0.018 0.018 0.018 0.001 0.018 0.001 0.	1.38 0.99 0.19 0.03 0.48 0.05 0.15 0.05 0.00 0.48 2.39 4.37	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.377 0.056 0.130 0.035 0.096 0.005 1.224 2.391 1.375 0.025 0.036 0.036 0.037 0.003 0.	1.37% 0.026 0.096 0.096 0.034 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
D3 (ditch) 0.084 0.0 D4 (pond) 0.115 0.0 D5 (pond) 0.112 0.0 D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D3 (ditch) 0.045 0.0 SD D4 (pond) 0.090 0.0 R4 (stream) 0.016 0.0 D5 (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.33 D1 (ditch) 0.045 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.33 D1 (ditch) 0.052 0.0 R4 (stream) 0.652 0.6 D3 (ditch) 0.024 0.0 SD & D4 (pond) 0.070 0.0 SD & D4 (pond) 0.070 0.0 SD & D4 (stream) 0.016 0.0 D6 (pond) 0.070 0.0 D7 (pond) 0.070 0.0 D8 (pond) 0.070 0.0 D9 (pond) 0.070 0.0 D4 (pond) 0.070 0.0 D6 (pond) 0.070 0.0 D6 (pond) 0.070 0.0 D6 (pond) 0.070 0.0 D7 (pond) 0.070 0.0 D8 (pond) 0.070 0.0 D9 (pond) 0.00 D9	043	22	0.009 0.037 0.016 0.018 0.067 0.654 0.065 0.034 0.016 0.001 0.001 0.001 0.001 0.003 0.003 0.003	0.09 0.19 0.03 0.48 0.01 1.22 0.05 0.05 0.05 0.06 0.48 2.39	8 8 8 8 9 1 0 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.056 0.130 0.035 0.096 0.005 1.224 2.391 1.375 0.035 0.010 0.034 0.071 0.093 0.480 2.363 1.376 0.914	0,026 0,096 0,096 0,034 0,053 0,003 1,222 2,362 1,374 0,086 0,034 0,040 0,002 0,478 2,348 1,374	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
5m D4 (pond) 0.115 0.0 SD D4 (stream) 0.016 0.0 D5 (pond) 0.112 0.0 D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D3 (ditch) 0.045 0.0 SD D4 (pond) 0.090 0.0 &RO D5 (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 1.1 D1 (stream) 0.652 0.6 D4 (pond) 0.070 0.0 SD & D4 (pond) 0.070 0.0 SD & D4 (stream) 0.016 0.0	0.050 0.050 0.050 0.050 0.000	66 2 2 2 3 3 3 6 6 2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.037 0.016 0.018 0.064 0.827 1.109 0.654 0.005 0.034 0.016 0.001 0.001 0.001 0.001 0.003 0.003 0.003	0.19 0.02 0.48 9.01 1.22 2.44 1.97 0.05 0.05 0.03 0.04 0.48 2.39	80 1 0 9 9 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 8 7 8 8 8 8	0.130 0.035 0.096 0.005 1.224 2.391 1.375 0.035 0.010 0.034 0.071 0.003 0.480 2.363 1.376 0.014	0.096 0.034 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.3
SD D4 (stream) 0.016 0.0 D5 (pond) 0.112 0.0 D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D3 (ditch) 0.045 0.0 SD D4 (pond) 0.090 0.0 SD (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 1.1 D1 (stream) 0.652 0.6 D3 (ditch) 0.024 0.0 SD & D4 (pond) 0.070 0.0 SD & D4 (stream) 0.016 0.0 D5 (pond) 0.057 0.0	0.016 0.059 0.03 0.002 0.082 0.085 0.015 0.042 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03	6 2 2 2 3 3 3 6 6 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.016 0.018 0.094 0.827 7.109 0.653 0.034 0.016 0.001 0.001 0.001 0.001 0.003 0.003 0.003	0.02 0.48 9.01 1.22 0.05 0.05 0.03 0.00 0.48 2.39	6 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.035 0.096 0.005 1.224 2.391 1.375 0.035 0.035 0.036 0.071 0.003 0.	0.034 0.053 0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.3
D5 (pond) 0.112 0.0 D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D3 (ditch) 0.045 0.0 SD D4 (pond) 0.090 D5 (stream) 0.016 0.0 D5 (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 D1 (stream) 0.652 0.6 D3 (ditch) 0.025 0.6 SD & D3 (ditch) 0.025 0.6 SD & D4 (pond) 0.070 0.0 SD & D4 (stream) 0.016 0.025 0.6 SD & D4 (pond) 0.070 0.0 SD & D4 (stream) 0.016 0.000 0.000 0.000 SD & D4 (stream) 0.070 0.00	059 0032 0.002 0.059 0.042 0.002 0.0	12 0 12 1 13 1 15 1 16 1 16 1 17 1 18 1 18 1 18 1 18 1 18 1 18 1 18	0.064 0.827 V.109 0.654 0.065 0.012 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.003	0.01 0.05 0.05 0.05 0.00 0.48 2.39	1 0 9 9 7 2 9 7 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.096 0.005 1.224 2.391 1.375 0.035 0.035 0.010 0.003 0.	0.053 0.003 1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
D5 (stream) 0.006 0.0 R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D3 (ditch) 0.045 0.0 SD D4 (pond) 0.090 0.0 EARO D5 (pond) 0.082 0.0 D5 (stream) 0.016 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 D1 (stream) 0.652 0.6 D3 (ditch) 0.024 0.6 SD & D4 (pond) 0.070 0.0 SD & D4 (stream) 0.016 0.024 0.0 SD & D4 (pond) 0.070 0.0 SD & D4 (stream) 0.016 0.000	003	12	0.064 0.827 V.109 0.654 0.065 0.012 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.003	0.01 0.05 0.05 0.05 0.00 0.48 2.39	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.24 2.391 1.375 0.025 0.010 0.034 0.071 0.003 0.480 2.363 1.376 0.914	1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	Q.3 0.0
R4 (stream) 0.831 0.8 D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 10m D3 (ditch) 0.045 0.0 SD D4 (pond) 0.090 0.0 ERO D5 (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 D1 (stream) 0.652 0.6 SD & D4 (pond) 0.024 0.0 SD & D4 (pond) 0.070 0.0 SD & D4 (stream) 0.016 0.070 SD & D4 (stream) 0.070 0.0 D4 (stream) 0.066 0.00	329 0.82 139 0.05 55 0.01 559 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.12 0.00 0.36 0.36 0.36 0.36 0.36 0.03	51 51 22 33 66 24 70 70 70 70 70 70 70 70 70 70 70 70 70	0.654 0.095 0.034 0.0016 0.001 0.001 0.001 0.650 0.003 0.003	2.44 1.37 0.05 0.05 0.03 0.00 0.48 2.39	9 7 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.24 2.391 1.375 0.025 0.010 0.034 0.071 0.003 0.480 2.363 1.376 0.914	1.222 2.362 1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	1.2 2.3 0.0 0.0 0.0 0.0 0.0 0.0 1.3
D1 (ditch) 1.177 1.1 D1 (stream) 0.653 0.6 D3 (ditch) 0.045 0.0 SD D4 (pond) 0.090 0.0 &RO D5 (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 D1 (stream) 0.652 0.6 SD & D4 (pond) 0.024 0.0 SD & D4 (pond) 0.070 0.0 SD & D4 (stream) 0.016 0.070 SD & D4 (stream) 0.070 0.0	139 0.05 559 0.04 0.059 0.04 0.062 0.00 0.080 0.30 1212 1.51 0.00 0.12 0.00 0.12 0.00 0	51 51 22 33 66 24 70 70 70 70 70 70 70 70 70 70 70 70 70	0.0034 0.016 0.001 0.001 0.001 0.001 0.630 0.003 0.003	0.05 0.05 0.03 0.00 0.48 2.39		1.375 0.025 0.010 0.034 0.071 0.003 0.480 2.363 1.376 0.014	1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.3
10m	23	2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0034 0.016 0.001 0.001 0.001 0.001 0.630 0.003 0.003	0.05 0.05 0.03 0.00 0.48 2.39		1.375 0.025 0.010 0.034 0.071 0.003 0.480 2.363 1.376 0.014	1.374 0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.3
10m SD	23	2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0034 0.016 0.001 0.001 0.001 0.001 0.630 0.003 0.003	0.05 0.05 0.03 0.00 0.48 2.39		0.023 0.010 0.034 0.071 0.003 0.480 2.363 1.376 0.014	0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.0 0.0 0.4 2.3 1.3
SD D4 (pond) 0.090 0.0 &RO D4 (stream) 0.016 0.0 D5 (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 3.41 1.1 D1 (stream) 0.652 0.6 20m D3 (ditch) 0.024 0.0 SD & D4 (pond) 0.070 0.0 D4 (stream) 0.16 0.0	016 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.016 0 0.01 2 0.001 0.001 0.507 0.650 0.003 0.032	0.15 0.03 0.03 0.00 0.48 2.39	2 2 2 2 2 2 2 2 2 3	0.010 0.034 0.075 0.003 0.480 2.363 1.376 0.014	0.086 0.034 0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.0 0.4 2.3 1.3
&RO D4 (stream) 0.016 0.0 D5 (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 7.3 D1 (ditch) 741 1.1 D1 (stream) 0.652 0.6 D3 (ditch) 0.024 0.0 SD & D4 (pond) 0.070 0.0 D4 (stream) 0.016 0.0	016 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 2 0.001 0.307 1.106 0.650 0.032	0.33 0.00 0.48 2.39	2 5	©.034 0.071 0.003 0.480 2.363 1.376 0.014	0.040 0.002 0.478 2.348 1.374	0.0 0.0 0.4 2.3 1.3
D5 (pond) 0.082 0.0 D5 (stream) 0.004 0.0 R4 (stream) 0.310 0.3 D1 (ditch) 1.1 D1 (stream) 0.652 0.6 20m D3 (ditch) 0.024 0.0 SD & D4 (pond) 0.070 0.0 D4 (stream) 0.016 0.0	002 00.00 008 0.30 121 1.51 551 0.65 012 0.00 049 0.03 016 0.01	2 2 51 6	0.0 2 0.001 0.307 1.106 0.650 0.032	0.33 0.00 0.48 2.39	2 5	0.003 0.480 2.363 1.376 0.014	0.002 0.478 2.348 1.374	0.0 0.4 2.3 1.3
R4 (stream) 0.310 7.3 D1 (ditch) 741 1.1 D1 (stream) 0.652 0.6 D3 (ditch) 0.027 0.0 SD & D4 (pond) 0.070 0.0 D4 (stream) 0.016 0.0	808 0.36 12 0 16 51 0.65 12 0.00 049 0.03 016 0.01	2 51 8 6	0.001 <u>69307</u> (1.106 0.650 0.003 0.032	0.48 0.48 2.39		0.003 0.480 2.363 1.376 0.014	0.002 0.478 2.348 1.374	0.4 2.3 1.3
D1 (ditch)	12 12 14 12 14 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2 51 6 6	0.650 0.032	2.39	$\frac{2}{5}$	②.363 1.37♠ 0.014	2.348 1.374	2.3 1.3
D1 (stream) 0.652 0.6 D3 (ditch) 0.024 0.0 D4 (pond) 0.070 0.0 D4 (stream) 0.016 0.0	51 0.65 012 0.000 049 0.03 016 6.01	6	0.650 0.003 0:032	″ Ø 37	'5 ×	1.37 6) 0.014	1.374	1.3
SD & D4 (pond) 0,070 0.00 D4 (stream) 0,016 0.00	0.03 016 0.03	8 6 • 1	0:032	© .02 0.12	5 7	0.014		
SD & D4 (pond) 0,070 0.00 D4 (stream) 0,016 0.00	0.03 016 0.03	8 6 • 1	0:032	©0.02 0.12	7		0.007	\perp 0 (
SD & D4 (pond) 0,070 0.0	01 6 0° 6.0 10	6		a. 0.12	(())			
RO D4 (stream) 0.016 0.057 0.0 D5 (pond) 0.057 0.0 R4 (stream) 0.159 0.1 SD and RQ denote spray drift and runoff but	031 0.00 001 0.00 0.58 0.45	6 · 7 · 7	$>$ 0 O I ω 0	0 60	5	0.093	0.078	0.0
DS (pond) 0.003 000 R4 (stream) 0.159 0.1 * SD and R0 denote spray drift and rusoff but	0.00	1.4				Ø.034	0.034	0.0
R4 (stream) 0.1439 0.1 * SD and RQ denote spray drift and rusoff but	0.00 58 0.45	Al n	0.009	0.09 0.00 0.25	0 «\(\)	0.050	0.029	0.0
* SD and RQ denote spray drift and rule of but	108" U. 182"		0001	0.00	D	0.002	0.002	0.0
SD and Recorder spray drag and runon out	- CC	»8	(y.138	0.42	<i>y</i>	0.249	0.248	0.2

CP 9.3 Fate and behaviour in air

For information on the fate and behaviour in air please refer to MCA Section 7, data point 7.3.

CP 9.3.1

Estimation of concentrations for other coutes of exposure
her routes of exposure if the product is used according to good
ther estimations are considered incressary. For information on route and rate of degradation in air and transport via air please reference of the section 7, data points 7.3.1 and 7.3.2.

Due to the low volatility and short half-life in air no PCC calculations are required

CP 9.4

There are no other routes of exposure if the product is used according to good agricultural practice. Therefore no further estimations are considered necessary.