

## CLAIMS

1. A method of producing a sensitizer dispersion, which comprises emulsifying and finely dividing a heat-sensitive recording sensitizer by melting under heating in an aqueous emulsifying dispersant, and then 5 crystallizing the finely divided emulsified dispersion under rapid cooling, wherein the sensitizer is at least one member selected from the group consisting of 1,2-bis(phenoxy)ethane, 1,2-bis(3-methylphenoxy)ethane, 1,2-bis(4-methylphenoxy)ethane, p-benzylbiphenyl, di-p-methylbenzyl oxalate, and  $\beta$ -naphthyl benzyl ether.
- 10 2. The method of producing a sensitizer dispersion according to claim 1, wherein the emulsified sensitizer dispersion is crystallized under rapid cooling, and the temperature after the rapid cooling is 50°C or less.
- 15 3. The method of producing a sensitizer dispersion according to claim 1 or 2, wherein the sensitizer is emulsified and finely divided such that the solids content of a mixture of the sensitizer and the emulsifying dispersant becomes 10 to 65 wt%, and the average particle diameter thereof becomes 3  $\mu\text{m}$  or less.
- 20 4. A sensitizer dispersion obtained by the method described in any one of claims 1 to 3.
5. A method of producing a mixed dispersion for a heat-sensitive recording material, which comprises wet-grinding the sensitizer dispersion of claim 4 and a dye for a heat-sensitive recording material or a developer for a heat-sensitive recording material.
- 25 6. A mixed dispersion of a sensitizer dispersion and a dye for heat-sensitive recording material and a mixed dispersion of the sensitizer dispersion and a developer for a heat-sensitive recording material, which are obtained by the method described in claim 5.

7. A heat-sensitive recording material comprising a heat-sensitive recording layer containing the sensitizer dispersion of claim 4 or the mixed dispersion for a heat-sensitive recording material of claim 6 formed on the surface of a support.

- 5       8. The heat-sensitive recording material according to claim 7,  
wherein the dye is at least one member selected from the group consisting  
of 3-N,N-dibutylamino-6-methyl-7-anilinofluoran,  
3-N,N-diethylamino-6-methyl-7-anilinofluoran,  
3-N,N-diamylamino-6-methyl-7-anilinofluoran,  
10     3-N,N-diethylamino-7-(m-trifluoromethylanilino) fluoran,  
3-(N-isoamyl-N-ethyl) amino-6-methyl-7-anilinofluoran,  
3-(N-p-tolyl-N-ethyl) amino-6-methyl-7-anilinofluoran,  
3-(N-isopentyl-N-ethyl) amino-6-methyl-7-anilinofluoran,  
3-(N-cyclohexyl-N-methyl) amino-6-methyl-7-anilinofluoran,  
15     3-N,N-diethylamino-6-chloro-7-anilinofluoran and  
3,3-bis(4-dimethylaminophenyl)-6-dimethylaminophthalide.

9. The heat-sensitive recording material according to claim 7 or 8,  
wherein the developer is at least one member selected from the group  
consisting of 4,4'-dihydroxy diphenyl sulfone, 2,4'-dihydroxy diphenyl  
20     sulfone, 4-hydroxy-4'-isopropoxy diphenyl sulfone,  
bis(3-allyl-4-hydroxyphenyl) sulfone, 2,2-bis(4-hydroxyphenyl) propane,  
bis(4-hydroxyphenylthioethoxy) methane, bis(4-hydroxyphenylthioethyl)  
ether, 4,4'-cyclohexylidene diphenol, 4-benzyloxy-4'-hydroxy diphenyl  
sulfone, 4-allyloxy-4'-hydroxy diphenyl sulfone, benzyl p-hydroxybenzoate,  
25     3,5-di( $\alpha$ -methylbenzyl) salicylic acid and its zinc salt,  
2,4-bis(phenylsulfonyl) phenol, 2,4-bis(phenylsulfonyl)-5-methyl phenol,  
4-hydroxy benzene sulfoanilide, a reaction mixture of toluene diisocyanate,

diaminodiphenyl sulfone and phenol,  
4,4'-bis(p-toluenesulfonylaminocarbonylamino)-diphenyl methane,  
p-toluene sulfonyl aminocarboanilide,  $\alpha,\alpha'$ -bis{4-(p-hydroxyphenylsulfone)  
phenoxy}-p-xylene, a dehydration condensate of a  
5 2,2-bis(hydroxymethyl-1,3-propane diol polycondensate and  
4-hydroxybenzoic acid, and 4,4'-{oxybis(ethyleneoxy-p-phenylene sulfonyl)}  
diphenol.