PHY 107

HW 4

Due April 22, 2021 (11:45 pm)

NOTE You may write on paper, scan them and merge them all into 1 single PDF and submit on google classroom.

$\mathbf{Q}\mathbf{1}$

Is positive or negative work done by a constant force \overrightarrow{F} on a particle during a straight-line displacement \overrightarrow{d} if (a) the angle between \overrightarrow{F} and \overrightarrow{d} is 30°; (b) the angle is 100°; (c) $\overrightarrow{F} = 2\hat{i} - 3\hat{j}$ and $\overrightarrow{d} = -4\hat{i}$? [2+2+2]

$\mathbf{Q2}$

A force $\overrightarrow{F} = (cx - 3.00x^2)\hat{i}$ acts on a particle as the particle moves along an x axis, with \overrightarrow{F} in newtons, x in meters, and c a constant. At x=0, the particle's kinetic energy is 20 J; at x = 3.00 m, it is 11 J. Find c. [5]

$\mathbf{Q3}$

What is the spring constant of a spring that stores 25 J of elastic potential energy when compressed by 7.5 cm? [2]

$\mathbf{Q4}$

The figure below shows a plot of potential energy U versus position x of a 0.200 kg particle that can travel only along an x axis under the influence of a conservative force. The graph has these values: $U_A = 9.00J$, $U_C = 20.00J$, and $U_D = 24.00J$. The particle is released at the point where U forms a potential hill of height $U_B = 12.00J$, with kinetic energy 4.00 J. What is the speed of the particle at (a) x = 3.5 m? What is the position of the turning point on (b) the right side and (c) the left side?

Q5

A rope is used to pull a 3.57 kg block at constant speed 4.06 m along a horizontal floor. The force on the block from the rope is 7.68 N and directed $\theta = 15.0^{\circ}$ above the horizontal. What are (a) the work done by the rope's force, (b) the increase in thermal energy of the block-floor system, and (c) the coefficient of kinetic friction between the block and floor? [2+2+2]