Learning Kernels with Random Features

Aman Sinha John Duchi

Stanford University

NIPS, 2016

Presenter: Ritambhara Singh

- Introduction
 - Motivation
 - Background
 - State-of-the-art
- Proposed Approach
 - Work-flow
 - Formulation
 - Efficient solution
- Second Second
 - Learning a kernel
 - Feature Selection
 - Benchmark Datasets

- Introduction
 - Motivation
 - Background
 - State-of-the-art
- 2 Proposed Approach
 - Work-flow
 - Formulation
 - Efficient solution
- Evaluation
 - Learning a kernel
 - Feature Selection
 - Benchmark Datasets

• Randomized features computationally efficient for approximating kernels.

- Randomized features computationally efficient for approximating kernels.
- Existing methods require a user defined kernel.

- Randomized features computationally efficient for approximating kernels.
- Existing methods require a user defined kernel.
- **Weakness:** Poor choice of user defined kernel can lead to a useless model.

- Randomized features computationally efficient for approximating kernels.
- Existing methods require a user defined kernel.
- Weakness: Poor choice of user defined kernel can lead to a useless model.
- Goal: Combine kernel learning with randomization.

- Randomized features computationally efficient for approximating kernels.
- Existing methods require a user defined kernel.
- Weakness: Poor choice of user defined kernel can lead to a useless model.
- Goal: Combine kernel learning with randomization.
- Idea: Exploit computational advantage of randomized features for supervised kernel learning.

- Introduction
 - Motivation
 - Background
 - State-of-the-art
- Proposed Approach
 - Work-flow
 - Formulation
 - Efficient solution
- 3 Evaluation
 - Learning a kernel
 - Feature Selection
 - Benchmark Datasets

Kernel

Kernel

$$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$
 (1)

Random Features for Kernel [Rahimi and Recht, NIPS '07]

$$K(x,y) = \langle \phi(x), \phi(y) \rangle = z(x)'z(y) \tag{2}$$

Random Features for Kernel [Rahimi and Recht, NIPS '07]

$$K(x,y) = \langle \phi(x), \phi(y) \rangle = z(x)'z(y) \tag{2}$$

Random Features for Kernel [Rahimi and Recht, NIPS '07]

$$K(x,y) = \langle \phi(x), \phi(y) \rangle = z(x)'z(y)$$
 (2)

Algorithm 1 Random Fourier Features.

Require: A positive definite shift-invariant kernel $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$.

Ensure: A randomized feature map $\mathbf{z}(\mathbf{x}) : \mathcal{R}^d \to \mathcal{R}^D$ so that $\mathbf{z}(\mathbf{x})'\mathbf{z}(\mathbf{y}) \approx k(\mathbf{x} - \mathbf{y})$.

Compute the Fourier transform p of the kernel k: $p(\omega) = \frac{1}{2\pi} \int e^{-j\omega'} \delta k(\delta) d\Delta$.

Draw D iid samples $\omega_1, \dots, \omega_D \in \mathcal{R}^d$ from p and D iid samples $b_1, \dots, b_D \in \mathcal{R}$ from the uniform distribution on $[0, 2\pi]$.

Let
$$\mathbf{z}(\mathbf{x}) \equiv \sqrt{\frac{2}{D}} \left[\cos(\omega_1' \mathbf{x} + b_1) \cdots \cos(\omega_D' \mathbf{x} + b_D) \right]'$$
.

- Introduction
 - Motivation
 - Background
 - State-of-the-art
- 2 Proposed Approach
 - Work-flow
 - Formulation
 - Efficient solution
- Evaluation
 - Learning a kernel
 - Feature Selection
 - Benchmark Datasets

Kernel Learning

- Heuristic rules to combine kernels
- Optimize structured compositions of kernels w.r.t an alignment metric [Elaborate]
- Jointly optimize kernel composition with empirical risk

- Introduction
 - Motivation
 - Background
 - State-of-the-art
- 2 Proposed Approach
 - Work-flow
 - Formulation
 - Efficient solution
- Evaluation
 - Learning a kernel
 - Feature Selection
 - Benchmark Datasets

Work-flow

- Create randomized features
- Solve an optimization problem to select a subset
- Train a model with the optimized features
- Learn lower dimensional models than original random-feature approach

- Introduction
 - Motivation
 - Background
 - State-of-the-art
- 2 Proposed Approach
 - Work-flow
 - Formulation
 - Efficient solution
- Evaluation
 - Learning a kernel
 - Feature Selection
 - Benchmark Datasets

Formulation

• For binary classification: given n data points $(x^i, y^i) \in R^d \times \{-1, 1\}$. Let $\phi: R^d \times \mathcal{W} \to [-1, 1]$ and Q be a probability measure on a space \mathcal{W} , a kernel can be defined as:

$$K_Q(x,x') := \int \phi(x,w)\phi(x',w)dQ(w)$$
 (3)

Formulation

• For binary classification: given n data points $(x^i, y^i) \in R^d \times \{-1, 1\}$. Let $\phi: R^d \times \mathcal{W} \to [-1, 1]$ and Q be a probability measure on a space \mathcal{W} , a kernel can be defined as:

$$K_Q(x,x') := \int \phi(x,w)\phi(x',w)dQ(w) \tag{3}$$

ullet Find the "best" kernel K_Q over all distributions Q in some set ${\mathcal P}$ of possible distributions on random features

$$maximize_{Q \in \mathcal{P}} \sum_{i,j} K_Q(x^i, x^j) y^i y^j \tag{4}$$

Formulation

• For binary classification: given n data points $(x^i, y^i) \in R^d \times \{-1, 1\}$. Let $\phi: R^d \times \mathcal{W} \to [-1, 1]$ and Q be a probability measure on a space \mathcal{W} , a kernel can be defined as:

$$K_Q(x,x') := \int \phi(x,w)\phi(x',w)dQ(w)$$
 (3)

ullet Find the "best" kernel K_Q over all distributions Q in some set ${\mathcal P}$ of possible distributions on random features

$$maximize_{Q \in \mathcal{P}} \sum_{i,j} K_Q(x^i, x^j) y^i y^j \tag{4}$$

• Given some base (user defined) distribution P_0 , Consider collections $\mathcal{P}:=\{Q:D_f(Q||P_0\leq\rho)\}$, where $\rho>0$ is a specified constant.

- Using randomized feature approach, approximate integral (3) as discrete sum over samples $W^i \sim P_0, i \in [N_w]$
- Approximate to $\mathcal{P}:\mathcal{P}_{N_w}:=\{q:D_f(q||1/N_w)\leq \rho\}$
- Problem (4) becomes:

$$maximize_{q \in \mathcal{P}_{N_w}} \sum_{i,j} y^i y^j \sum_{m=1}^{N_w} q_m \phi(x^i, w^m) \phi(x^j, w^m)$$
 (5)

- Given a solution \hat{q} , two ways to solve learning problem:
- Draw D samples $W^1, \ldots, W^d \sim \hat{q}$ defining features $\phi^i = [\phi(x^i, w^1) \ldots \phi(x^i, w^D)]^T$ and solve :

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left\{ \sum_{i=1}^{n} c \left(\frac{1}{\sqrt{D}} \theta^{T} \phi^{i}, y^{i} \right) + r(\theta) \right\}$$
 (6)

- Given a solution \hat{q} , two ways to solve learning problem:
- Draw D samples $W^1, \ldots, W^d \sim \hat{q}$ defining features $\phi^i = [\phi(x^i, w^1) \ldots \phi(x^i, w^D)]^T$ and solve :

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left\{ \sum_{i=1}^{n} c \left(\frac{1}{\sqrt{D}} \theta^{T} \phi^{i}, y^{i} \right) + r(\theta) \right\}$$
 (6)

• Set $\phi^i = [\phi(x^i, w^1) \dots \phi(x^i, w^{N_w})]^T$ (original random samples from P_0) and directly solve:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left\{ \sum_{i=1}^{n} c \left(\theta^{T} \operatorname{diag}(\hat{q})^{1/2} \phi^{i}, y^{i} \right) + r(\theta) \right\}$$
 (7)

- Given a solution \hat{q} , two ways to solve learning problem:
- Draw D samples $W^1, \ldots, W^d \sim \hat{q}$ defining features $\phi^i = [\phi(x^i, w^1) \ldots \phi(x^i, w^D)]^T$ and solve :

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left\{ \sum_{i=1}^{n} c \left(\frac{1}{\sqrt{D}} \theta^{T} \phi^{i}, y^{i} \right) + r(\theta) \right\}$$
 (6)

• Set $\phi^i = [\phi(x^i, w^1) \dots \phi(x^i, w^{N_w})]^T$ (original random samples from P_0) and directly solve:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left\{ \sum_{i=1}^{n} c \left(\theta^{T} \operatorname{diag}(\hat{q})^{1/2} \phi^{i}, y^{i} \right) + r(\theta) \right\}$$
 (7)

• This is a two step approach

- Introduction
 - Motivation
 - Background
 - State-of-the-art
- Proposed Approach
 - Work-flow
 - Formulation
 - Efficient solution
- 3 Evaluation
 - Learning a kernel
 - Feature Selection
 - Benchmark Datasets

Efficient solution

• Re-write the optimization problem in (5) as:

$$q^{T}((\phi y) \circ (\phi y)) \tag{8}$$

Efficient solution

• Re-write the optimization problem in (5) as:

$$q^{T}((\phi y) \circ (\phi y)) \tag{8}$$

• Also solve (5) via bisection over dual variable λ . Using $\lambda \geq 0$ for constraint $D_f(Q||P_0) \leq \rho$, partial Lagrangian is:

$$\mathcal{L}(q,\lambda) = q^{T}((\phi y) \circ (\phi y)) - \lambda(D_{f}(q||1/N_{w}) - \rho)$$
 (9)

Efficient solution

• Re-write the optimization problem in (5) as:

$$q^{T}((\phi y) \circ (\phi y)) \tag{8}$$

• Also solve (5) via bisection over dual variable λ . Using $\lambda \geq 0$ for constraint $D_f(Q||P_0) \leq \rho$, partial Lagrangian is:

$$\mathcal{L}(q,\lambda) = q^{T}((\phi y) \circ (\phi y)) - \lambda(D_{f}(q||1/N_{w}) - \rho)$$
 (9)

- **Consistency**: Solution to problem (5) approaches a population optimum as data and random sampling increases.
- Generalization: Class of estimators used has strong performance guarantees.

- Introduction
 - Motivation
 - Background
 - State-of-the-art
- 2 Proposed Approach
 - Work-flow
 - Formulation
 - Efficient solution
- Secondary Expression
 3 Evaluation
 - Learning a kernel
 - Feature Selection
 - Benchmark Datasets

Learning a kernel

- Introduction
 - Motivation
 - Background
 - State-of-the-art
- 2 Proposed Approach
 - Work-flow
 - Formulation
 - Efficient solution
- Secondary Expression
 3
 - Learning a kernel
 - Feature Selection
 - Benchmark Datasets

Feature Selection

- Introduction
 - Motivation
 - Background
 - State-of-the-art
- 2 Proposed Approach
 - Work-flow
 - Formulation
 - Efficient solution
- Secondary Expression
 Secondary Expression
 - Learning a kernel
 - Feature Selection
 - Benchmark Datasets

Benchmark Datasets

Table 1: Best test results over benchmark datasets

Dataset	n,	n_{test}	d Model Our error (%), time(s)		, time(s)	Random error (%), time(s)		
adult	32561,	16281	123	Logistic	15.54,	3.6	15.44,	43.1
reuters	23149,	781265	47236	Ridge	9.27,	0.8	9.36,	295.9
buzz	105530,	35177	77	Ridge	4.92,	2.0	4.58,	11.9

Summary

- Learn a kernel in a supervised manner using random features.
- Demonstrate consistency and generalization of the method.
- Attain competitive results on benchmark datasets with a fraction of training time.
- Future Direction
 - Usefulness of simple optimization methods on random features in speeding up traditionally expensive learning problems.