Математическая Статистика

29 мая 2014 г.

Глава 1

Основы

1.1 Методы оценок характеристик распределения наблюдаемых случайных величин

 x_1, \ldots, x_n — независимые одинаково распределённые случайные величины с неизвестной функцией распределения F. Логично, что вероятность выпадения каждого x_k (вероятность того, что наугад взятый из выборки x будет равен x_k) одинакова

$$P(x = x_k) = \frac{1}{n}$$

Цель — найти F или сказать что-то о её свойствах.

1.1.1 Эмпирическая функция распределения

Определение 1.1.1 (Эмпирическая функция распределения). Эмпирической (выборочной) функцией распределения, построенной по выборке x_1,\ldots,x_n , называется функция

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}(x_k \le x)$$

Теорема 1.1.1. Неизвестная функция распределения F(x) может быть сколь угодно точно восстановлена по выборке достаточно большого объёма [1, стр. 25].

$$\mathbb{P}\left(F_n\left(x\right) \xrightarrow[n\to\infty]{} F\left(x\right)\right) = 1$$

Идея доказательства. Вспомним, чему равна эмпирическая функция распределения

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}(x_k \le x)$$

Заметим, что индикаторы $1 (x_k \leq x)$ являются независимыми одинаково распределёнными случайными величинами, а функцию распределения F(x) можно записать следующим образом

$$F(x) = \mathbb{P}\left\{x_1 \leq x\right\} = M \mathbb{1}\left(x_1 \leq x\right)$$

Так как эмпирическая функция распределения является средним арифметическим индикаторов, то по усиленному закону больших чисел она сходится к неизвестной функции распределения почти наверное при устремлении длины выборки к бесконечности

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}(x_k \le x) \xrightarrow[n \to \infty]{a.s.} M\mathbb{1}(x_1) = F(x)$$

Теорема доказана

$$F_n(x) \xrightarrow[n \to \infty]{a.s.} F(x)$$

1.1.2 Гистограмма

Как можно попытаться отследить плотность распределения? Постараемся найти функцию распределения, а потом и плотность.

Допустим, F имеет хорошую (непрерывную) плотность. Как тогда из F получить p?

Мы знаем, что F'=p, но это никому не нужно, так как F'_n — производная ступенчатой функции, которая почти везде будет равна нулю.

Но также мы помним, что

$$F(b) - F(a) = \int_{a}^{b} p(x) dx$$

Положим a=x и введём $\Delta_x=b-x$

$$F(x + \Delta_x) - F(x) = \int_{x}^{x + \Delta_x} p(y) dy$$

Делим обе части на Δ_x .

$$\frac{1}{\Delta_x} \cdot \int_{x}^{x+\Delta_x} p(y) \, dy = \frac{F(x+\Delta_x) - F(x)}{\Delta_x}$$

Несложно заметить, что при достаточно малых значениях Δ_x получаем плотность распределения p(x)

$$\frac{\Delta F(x)}{\Delta_x} \xrightarrow{\Delta_x \to 0} \frac{dF(x)}{dx} = p(x)$$

Значит, можем заменить p(x) не производной, а такой разностью.

$$p(x) \approx \frac{F(x+\Delta) - F(x)}{\Delta}$$

Возьмём m полуинтервалов на числовой прямой $I_j = (a_{j-1}, a_j], i = \overline{1, m}$ таких, что все значения выборки попадают в один из них. Для этого определим пару свойств точек, ограничивающих эти интервалы:

- 1.1. Методы оценок характеристик распределения наблюдаемых случайных величин5
 - 1. Каждая следующая точка строго правее (больше) предыдущей. (так как зачем нам одинаковые точки?)

$$a_0 < a_1 < \dots < a_m$$

2. Каждое значение выборки должно попадать ровно в один полуинтерваль. Очевидно, что данные полуинтервалы I_j не пересекаются между собой. Значит, осталось потребовать, чтобы крайнее левое значение было меньше минимального значения из выборки, а крайнее правое — не меньше максимального

$$a_0 < min(X) \le max(X) \le a_m$$

Введём функцию q(y)

$$q(y) = \sum_{j=1}^{m} \frac{F(a_j) - F(a_{j-1})}{a_j - a_{j-1}} \cdot 1 \quad (y \in I_j)$$

Определим последовательность функций $q_n(y)$, заменив F(x) на $F_n(x)$ в предыдущем определении

$$q_n(y) = \sum_{j=1}^{m} \frac{F_n(a_j) - F_n(a_{j-1})}{a_j - a_{j-1}} \cdot \mathbb{1}(y \in I_j)$$
(1.1)

Отметим, что q_n сходится к q почти наверное (согласно закону больших чисел), а q в свою очередь сходится к p (согласно центральной предельной теореме)

$$q_n\left(y\right) \xrightarrow[n \to \infty]{a.s.} q\left(y\right) \xrightarrow[m \to \infty]{} p\left(y\right)$$

Функция q_n называется **гистограммой**.

Избавимся от a_{j} в формуле, а для этого вспомним, чему равно $F_{n}\left(x\right)$

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}(x_k \le x)$$

Теперь посмотрим, чему равна разность $F_n\left(a_j\right) - F_n\left(a_{j-1}\right)$, которая, как мы видим, является вероятностью того, что x попало в отрезок I_j

$$F_n(a_j) - F_n(a_{j-1}) = \frac{1}{n} \cdot \sum_{k=1}^n \mathbb{1}(x_k \le a_j) - \frac{1}{n} \cdot \sum_{k=1}^n \mathbb{1}(x_k \le a_{j-1})$$

Сгруппируем слагаемые и получим чуть более компактную запись разности

$$F_n(a_j) - F_n(a_{j-1}) =$$

$$= \frac{1}{n} \cdot \sum_{k=1}^n \left[\mathbb{1}(x_k \le a_j) - \mathbb{1}(x_k \le a_{j-1}) \right]$$
(1.2)

Рассмотрим возможные значения индикаторов

Если оба индикатора равны единице, это значит, что x_k не больше a_j и не больше a_{j-1} . Поскольку $a_{j-1} \le a_j$, то можно обойтись тем, что $x \le a_{j-1}$

$$\begin{cases} \mathbb{1} (x_k \le a_j) = 1 \\ \mathbb{1} (x_k \le a_{j-1}) = 1 \\ a_{j-1} \le a_j \end{cases} \Rightarrow \begin{cases} x_k \le a_j \\ x_k \le a_{j-1} \\ a_{j-1} \le a_j \end{cases}$$
$$\Rightarrow x_k \le a_{j-1} \le a_j \Rightarrow x_k \le a_{j-1}$$

Такая ситуация, что x больше, чем a_j , но не больше, чем a_{j-1} , невозможна, так как a_{j-1} не больше, чем a_j , а признать возможной такое положение дел $(a_j < x_k \le a_{j-1})$ означало бы то, что $a_j < a_{j-1}$

$$\begin{cases} \mathbb{1}(x_k \le a_j) = 0 \\ \mathbb{1}(x_k \le a_{j-1}) = 1 \end{cases} \Rightarrow \begin{cases} x_k > a_j \\ x_k \le a_{j-1} \\ a_{j-1} \le a_j \end{cases}$$
$$\Rightarrow \begin{cases} a_j < x_k \le a_{j-1} \\ a_{j-1} \le a_j \end{cases}$$

Если оба индикатора равны нулю, то это значит, что x строго больше как a_j , так и a_{j-1} . Опять же, поскольку $a_{j-1} \le a_j$, то достаточно сказать, что $x > a_j$.

$$\begin{cases} \mathbb{1} (x_k \le a_j) = 0 \\ \mathbb{1} (x_k \le a_{j-1}) = 0 \\ a_{j-1} \le a_j \end{cases} \Rightarrow \begin{cases} x_k > a_j \\ x_k > a_{j-1} \\ a_j \ge a_{j-1} \\ a_j \ge a_{j-1} \end{cases}$$
$$\Rightarrow x_k > a_j \ge a_{j-1} \Rightarrow x_k > a_j$$

Если же x больше, чем a_{j-1} , но не больше, чем a_j , то x попадает в полуинтервал $(a_{i-1},a_i]$

$$\begin{cases} 1 & (x_k \le a_j) = 1 \\ 1 & (x_k \le a_{j-1}) = 0 \end{cases} \Rightarrow \begin{cases} x_k \le a_j \\ x_k > a_{j-1} \\ a_j \ge a_{j-1} \end{cases}$$
$$\Rightarrow a_{j-1} < x_k \le a_j$$

Вспомним формулу (1.2)

$$F_n(a_j) - F_n(a_{j-1}) = \frac{1}{n} \cdot \sum_{k=1}^n \left[\mathbb{1} (x_k \le a_j) - \mathbb{1} (x_k \le a_{j-1}) \right]$$

Очевидно, что нас интересуют те пары, разность которых не равна нулю. Это значит, что те случаи, когда $x>a_j$ или $x\leq a_{j-1}$, нас не интересуют. Поскольку такой случай, что $a_j< x\leq a_{j-1}$ невозможен, то его тоже отбросим. Значит, остался только тот вариант, когда x попадает в полуинтервал $(a_{j-1},a_j]$

$$\frac{1}{n} \cdot \sum_{k=1}^{n} \left[\mathbb{1} \left(x_k \le a_j \right) - \mathbb{1} \left(x_k \le a_{j-1} \right) \right] = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1} \left(x_k \in (a_{j-1}, a_j] \right)$$

Видим знакомые полуинтервалы $(a_{j-1}, a_j] = I_j$. Воспользуемся этим

$$\frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1} (x_k \in (a_{j-1}, a_j]) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1} (x_k \in I_j)$$

Получаем компактную запись для разности функций распределения

$$F_n(a_j) - F_n(a_{j-1}) = \frac{1}{n} \cdot \sum_{k=1}^n \mathbb{1}(x_k \in I_j)$$
 (1.3)

Вернёмся к уравнению (1.1)

$$q_n(y) = \sum_{j=1}^{m} \frac{F_n(a_j) - F_n(a_{j-1})}{a_j - a_{j-1}} \cdot \mathbb{1} (y \in I_j)$$

Воспользовавшись тем, что $(a_j - a_{j-1})$ — длина полуинтервала I_j , а разность $F_n(a_j) - F_n(a_{j-1})$ была только что переписана через индикаторы, получаем такую формулу

$$q_n(y) = \sum_{j=1}^{m} \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}(x_k \in I_j) \cdot \frac{1}{|I_j|} \cdot \mathbb{1}(y \in I_j)$$

Упростим, введя функцию $\nu_j(X)$ [1, стр. 68], которая считает количество элементов выборки $X=x_1,\ldots,x_n$, попавших в интервал I_j . Это будет сумма индикаторов того, что элемент x_k попал в I_j

$$\nu_j(X) = \sum_{x \in X} \mathbb{1}(x \in I_j) = \sum_{k=1}^n \mathbb{1}(x_k \in I_j)$$

Поскольку $\mathbb{1}(y \in I_j)$ зависит от j и не зависит от k, то его можно перенести во внешнюю сумму. Получаем следующую формулу

$$q_n(y) = \sum_{j=1}^{m} \frac{\mathbb{1}(y \in I_j)}{n \cdot |I_j|} \cdot \nu_j(X)$$

У этой суммы только один ненулевой элемент, так как y может попасть только в один полуинтервал. Тогда обозначим номер отрезка, в который попал y, через k ($y \in I_k$), а функцию q_n (y) запишем как q_n^k

$$q_n^k = \frac{\nu_k\left(X\right)}{n \cdot |I_k|} \tag{1.4}$$

Что мы тут видим? Теперь k — номер "столбика" гистограммы (номер интересующего нас полуинтервала — того, в который попал y).

"Высота" столбика (значение функции на определённом полуинтервале) пропорциональна количеству элементов, попавших в этот отрезок (что логично). Кроме того, происходит деление на общее количество элементов. Деление нужно, чтобы q(y) сходилось к p(y).

Делителю же $|I_k|$ отведена особая роль — он предотвращает искажение гистограммы при различных длинах отрезков. То есть, чем длиннее отрезок, тем ниже столбик, так как элементы более "размазаны" по отрезку, что тоже логично.

Представим, что значение функции — это высота прямоугольника, а длина отрезка — его ширина (графически это изображается именно так). Тогда отношение количества элементов, попавших в полуинтервал, к количеству всех элементов выборки (вероятность того, что случайно взятый элемент из выборки попадёт в k-ый отрезок [1, стр. 24]), является площадью прямоугольника

$$S_k = \frac{\nu_k(X)}{n} = \mathbb{P}_n(x \in I_k)$$

Введём замену в формуле (1.4) и умножим обе части на длину отрезка

$$\mathbb{P}_n \left(x \in I_k \right) = q_n^k \cdot |I_k|$$

Если устремить количество полуинтервалов к бесконечности $(m \to \infty)$, то каждый полуинтервал будет сжиматься в точку. При этом вероятность попадения x в отрезок будет стремиться к вероятности попадения x в точку y. Введём обозначения $|I_j|=\delta$, $I_j=\Delta_y$

$$\mathbb{P}_n(x=y) \approx \mathbb{P}_n(x \in \Delta_y) = q_n(y) \cdot \delta, \qquad m \to \infty$$

Очень напоминает ситуацию с плотностью распределения непрерывной случайной величины ξ

$$\mathbb{P}(\xi = x) \approx p(x) \cdot \delta, \quad \delta \to 0$$

Нужно отметить, что количество элементов выборки должно стремиться к бесконечности $(n \to \infty)$, так как плотность может быть лишь у непрерывных случайных величин. Чем больше будет элементов, тем плотнее они будут стоять на числовой прямой.

1.1.3 Оценка неизвестных параметров

Снова у нас есть x_1, \ldots, x_n — выборка из распределения F_{θ} , где θ — неизвестный параметр из множества Θ

Пример 1.1.1. Имеем нормальное распределение с известным СКО $\sigma=1$ и неизвестным математическим ожиданием $a-N\left(a,1\right)$. Тогда θ — математическое ожидание a

Пример 1.1.2. Есть нормальное распределение, в котором неизвестны оба параметра. Тогда θ будет парой (a,σ)

 Γ лавный вопрос — определение основных параметров распределения выборки.

Определение 1.1.2 (Статистика). Статистикой называют функцию S от выборки $X=(x_1,x_2,\ldots,x_n)$

$$S\left(X\right) = S\left(x_1, x_2, \dots, x_n\right)$$

Определение 1.1.3 (Оценка). Статистику, значение которой заменяет неизвестный параметр, называют оценкой

Пример 1.1.3. Предположим, что выборка сделана из распределения Бернулли, то есть $\{x_i\}$ — набор одинаково распределённых случайных величин, причём

$$x_i = \begin{cases} 1, & p \\ 0, & 1-p \end{cases}$$

Тогда неизвестный параметр — величина p (вероятность удачного эксперимента)

$$\theta = p \in [0; 1] = \Theta$$

Введём разные оценки \hat{p}

$$\hat{p}_1 = \frac{1}{n} \sum_{k=1}^n x_k$$

$$\hat{p}_2 = x_1$$

$$\hat{p}_3 = \frac{2}{n} \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} x_k$$

Замечание: Поскольку \hat{p} — случайная величина, то может оказаться, что она не равна настоящему параметру p

$$\mathbb{P}\left\{\hat{p}=p\right\}=0$$

- 1. Возникает мысль о том, что разность $\hat{p}-p$ должна быть "маленькой". Например, чтобы $\mathbf{M}\left(\hat{p}-p\right)^2$ было самое маленькое из возможных.
- 2. Также логично желать того, чтобы оценка \hat{p} сходилась к истинному значению параметра p по вероятности $(\hat{p} \xrightarrow[n \to \infty]{\mathbb{P}} p)$ или почти всюду $(\hat{p} \xrightarrow[n \to \infty]{a.s.} p)$
- 3. При многократном повторении эксперимента даже самая (на первый взгляд) плохая оценка может оказаться полезной

$$M\hat{p}_1 = p$$

$$M\hat{p}_2 = p$$

$$M\hat{p}_3 = p$$

Например, если целый год каждый день дают набор чисел, а статистик считает значение параметра p с помощью оценки $\hat{p_2}$, то в среднем за год у него получится величина, близкая к истинному p.

Определение 1.1.4 (Состоятельная оценка). Оценка $\hat{\theta}$ называется состоятельной, если стремится к истинному значению θ по вероятности

$$\hat{\theta} \xrightarrow[n \to \infty]{\mathbb{P}} \theta$$

Определение 1.1.5 (Сильно состоятельная оценка). Оценка $\hat{\theta}$ называется сильно состоятельной, если стремится к истинному значению θ почти наверное

$$\hat{\theta} \xrightarrow[n \to \infty]{a.s.} \theta$$

Пример 1.1.4. Оценка \hat{p}_1 из прошлого примера является сильно состоятельной.

Определение 1.1.6 (Несмещённая оценка). Оценка $\hat{\theta}$ несмещённая, если

$$\forall \theta \in \Theta : M_{\theta} \hat{\theta} = \theta$$

Замечание 1. Несмещённая оценка существует не всегда

Определение 1.1.7. Несмещённая оценка $\hat{\theta} \in K$ называется оптимальной в классе квадратично интегрируемых оценок K, если для всякой другой несмещённой оценки $\tilde{\theta} \in K$

$$D_{\theta}\hat{\theta} \leq D_{\theta}\tilde{\theta}, \quad \forall \theta \in \Theta$$

или же

$$M_{\theta} \left(\hat{\theta} - \theta \right)^2 \le M_{\theta} \left(\tilde{\theta} - \theta \right)^2, \quad \forall \theta \in \Theta$$

Замечание 2. В учебнике Боровкова А. А. "Математическая статистика" оценка, удовлетворяющая этим условиям, носит название эффективная оценка [1, стр. 130], но у нас этот термин будет использоваться далее в другом смысле

Пример 1.1.5. Сравним \hat{p}_1 и \hat{p}_3

$$D_p \hat{p}_1 = \frac{1}{n^2} \cdot n \cdot p \cdot (1 - p) = \frac{p \cdot (1 - p)}{n}$$
$$D_p \hat{p}_3 = \frac{2 \cdot p \cdot (1 - p)}{n}$$

1.1.4 Выборочные оценки. Метод моментов

Как восстановить неизвестный параметр $\theta \in \Theta$ из функции распределения $F_{\theta}\left(x\right)$?

Вспомним распределения и их параметры

- 1. Нормальное распределение $N\left(a,\sigma^2\right)$. В нём параметр a является средним, а параметр σ^2 дисперсией
- 2. Пуассоновское распределение $Poi\left(\lambda\right)$. Тут параметр λ является и средним, и дисперсией
- 3. Экспоненциальное распределение $Exp\left(\lambda\right)$. $\frac{1}{\lambda}$ среднее, $\frac{1}{\lambda^2}$ дисперсия

И так далее...

Как правило, неизвестный параметр θ можно искать следующим образом

$$\exists \varphi \in C(\mathbb{R}) : \int_{\mathbb{R}} \varphi(x) dF_{\theta}(x) = g(\theta)$$

Значит, у нас есть уравнение для поиска оценки $\hat{\theta}$ при непрерывной и монотонной $g(\hat{\theta})$

$$g\left(\hat{\theta}\right) = \int_{\mathbb{R}} \varphi\left(x\right) dF_n\left(x\right) \tag{1.5}$$

Пример 1.1.6. Если θ — среднее, то $\varphi\left(x\right)=x$

$$\int_{-\infty}^{+\infty} x dF_{\theta}(x) = \theta = g(\theta)$$

Теорема 1.1.2. Пусть функция $\varphi(x)$ в (1.5) непрерывна, ограничена и строго монотонная. Тогда оценка $\hat{ heta}$ существует и является сильно состоятельной.

Доказательство. Имеем формулу (1.5)

$$g\left(\hat{\theta}\right) = \int_{\mathbb{R}} \varphi\left(x\right) dF_n\left(x\right)$$

Поскольку функция $g\left(\hat{\theta}\right)$ непрерывна и монотонна, то она имеет обратную функцию $g^{-1}:g^{-1}\left(g\left(\hat{\theta}\right)\right)=\hat{\theta}.$ Применим обратную функцию к обеим частям уравнения

$$\hat{\theta} = g^{-1} \left(\int_{\mathbb{D}} \varphi(x) dF_n(x) \right)$$

Поскольку выборочная функция распределения почти всюду равна неизвестной функции распределения при достаточно большом объёме выборки,

$$\int_{\mathbb{R}} \varphi(x) dF_n(x) \xrightarrow[n \to \infty]{a.s.} \int_{\mathbb{R}} \varphi(x) dF_n(x)$$

Функция $g^{-1}(x)$ непрерывна

$$\hat{\theta} = g^{-1} \left(\int_{\mathbb{R}} \varphi(x) dF_n(x) \right) \xrightarrow[n \to \infty]{a.s.} g^{-1} \left(\int_{\mathbb{R}} \varphi(x) dF_n(x) \right) = \theta$$

Теорема доказана

$$\hat{\theta} \xrightarrow[n \to \infty]{a.s.} \theta$$

Определение 1.1.8 (Выборочное среднее). Выборочное средние обозначается через \overline{x} и считается по следующей формуле

$$\overline{x} = \int_{\mathbb{R}} x dF_n(x)$$

Поскольку все элементы выборки равновероятны, получаем математическое ожидание дискретной равномерно распределённой случайной величины, принимающей n значений

$$\overline{x} = \int_{\mathbb{R}} x dF_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} x_k$$

Определение 1.1.9 (Выборочная дисперсия). Выборочная дисперсия $\overline{\sigma^2}$ считается формуле

$$\overline{\sigma^2} = \int_{\mathbb{D}} (x - \overline{x})^2 dF_n(x) = \frac{1}{n} \cdot \sum_{k=1}^n (x_k - \overline{x})^2$$

1.2 Свойства оценок

1.2.1 Неравенство Рао-Крамера

Теорема 1.2.1 (Колмогорова). Оптимальная оценка единственная или её нет вообще

Доказатель ство. Допустим, есть две разные оптимальные и несмещённые оценки θ_1 и θ_2 . Тогда по определению для любой несмещённой оценки $\hat{\theta}$ будет

$$\begin{cases} D_{\theta}\theta_{1} \leq D_{\theta}\hat{\theta} \\ D_{\theta}\theta_{2} \leq D_{\theta}\hat{\theta} \end{cases}, \forall \theta \in \Theta$$

Поскольку неравенство выполняется для каждой несмещённой оценки $\hat{\theta},$ а оценки θ_1 и θ_2 являются несмещёнными, то можем их и поставить в неравенство в роли $\hat{\theta}$

$$\begin{cases} D_{\theta}\theta_{1} \leq D_{\theta}\theta_{2} \\ D_{\theta}\theta_{2} \leq D_{\theta}\theta_{1} \end{cases}, \forall \theta \in \Theta$$

А это возможно только если дисперсии этих оценок равны. Обозначим эту дисперсию через $\sigma^2\left(\theta\right)$

$$D_{\theta}\theta_1 = D_{\theta}\theta_2 = \sigma^2(\theta)$$

Возьмём несмещённую оценку $\tilde{\theta}$, равную среднеарифметическому оценок θ_1 и θ_2

$$\tilde{\theta} = \frac{1}{2} \cdot \theta_1 + \frac{1}{2} \cdot \theta_2$$

Тогда по определению θ_1 и θ_2 получаем, что дисперсия новой оценки не меньше, чем у оптимальных

$$D_{\theta}\tilde{\theta} \ge \sigma^2(\theta) \tag{1.6}$$

Попробуем честно вычислить дисперсию оценки $ilde{ heta}$

$$D_{\theta}\tilde{\theta} = M_{\theta} \left(\tilde{\theta} - \theta \right) = M_{\theta} \left[\frac{1}{2} \cdot (\theta_1 - \theta) + \frac{1}{2} \cdot (\theta_2 - \theta) \right]^2 =$$

$$= \frac{1}{4} \cdot D_{\theta} \theta_1 + \frac{1}{4} \cdot D_{\theta} \theta_1 + \frac{1}{2} \cdot M_{\theta} \left[(\theta_1 - \theta) \cdot (\theta_2 - \theta) \right]$$

Воспользуемся неравенством Коши (частный случай неравенства Гёльдера)

$$M_{\theta} [(\theta_{1} - \theta) \cdot (\theta_{2} - \theta)] \leq \sqrt{M_{\theta} (\theta_{1} - \theta)^{2} \cdot M_{\theta} (\theta_{2} - \theta)^{2}} =$$

$$= \sqrt{D_{\theta} \theta_{1} \cdot D_{\theta} \theta_{2}} = \sqrt{\sigma_{1}^{2} \cdot \sigma_{2}^{2}}$$
(1.7)

И вернёмся к вычислению дисперсии оценки $ilde{ heta}$

$$\begin{split} \frac{1}{4} \cdot D_{\theta} \theta_{1} + \frac{1}{4} \cdot D_{\theta} \theta_{1} + \frac{1}{2} \cdot M_{\theta} \left[(\theta_{1} - \theta) \cdot (\theta_{2} - \theta) \right] \leq \\ \leq \frac{1}{2} \cdot \sigma^{2} \left(\theta \right) + \frac{1}{2} \cdot \sqrt{\sigma^{2} \left(\theta \right) \cdot \sigma^{2} \left(\theta \right)} = \sigma^{2} \left(\theta \right) \end{split}$$

То есть, дисперсия оценки $\tilde{\theta}$ не больше дисперсии введённой оптимальной оценки

$$D_{\theta}\tilde{\theta} \le \sigma^2(\theta) \tag{1.8}$$

Воспользовавшись неравенствами (1.6) и (1.8), получаем равенство

$$D_{\theta}\tilde{\theta} = \sigma^2\left(\theta\right)$$

Это значит, что в неравенстве (1.7) в данном случае тоже выходит равенство

$$M_{\theta} \left[(\theta_1 - \theta) \cdot (\theta_2 - \theta) \right] = \sqrt{M_{\theta} (\theta_1 - \theta)^2} \cdot \sqrt{M_{\theta} (\theta_2 - \theta)^2}$$

Для дальнейших размышлений вспомним аналогию с векторами, а именно смысл равенства в неравенстве Коши для скалярного произведения векторов

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot \left| \vec{b} \right| \cdot \cos \left(\widehat{\vec{a}, \vec{b}} \right) = \sqrt{\vec{a}^2} \cdot \sqrt{\vec{b}^2} \cdot \cos \left(\widehat{\vec{a}, \vec{b}} \right)$$

Скалярное произведение двух векторов равно произведению их модулей только тогда, когда они сонаправлены

$$\left(\widehat{\vec{a},\vec{b}}\right) = 0 \Rightarrow \vec{a} \cdot \vec{b} = \sqrt{\vec{a}^2} \cdot \sqrt{\vec{b}^2}$$

Положим математическое ожидание нормой, а $\theta_1 - \theta$ и $\theta_2 - \theta$ векторами пространства случайных событий. Получаем, что нормы и направления этих векторов совпадают

$$M_{\theta} [(\theta_{1} - \theta) \cdot (\theta_{2} - \theta)] = \sqrt{M_{\theta} (\theta_{1} - \theta)^{2}} \cdot \sqrt{M_{\theta} (\theta_{2} - \theta)^{2}}$$

$$\Rightarrow (\theta_{1} - \theta, \theta_{2} - \theta)$$

Это значит, что они равны, что противоречит предположению о том, что они разные

$$\begin{cases} \left(\widehat{\theta_1 - \theta}, \widehat{\theta_2} - \theta\right) = 0 \\ M_{\theta} (\theta_1 - \theta)^2 = M_{\theta} (\theta_2 - \theta)^2 \end{cases} \Rightarrow \theta_1 - \theta = \theta_2 - \theta$$
$$\Rightarrow \theta_1 = \theta_2$$

Теорема доказана

Для дальнейших действий будем считать, что функция распределения $F_{\theta}(x)$ имеет плотность $p(x,\theta)$, которая дважды дифференцируема по θ . То есть её можно дифференцировать под знаком интеграла.

Также отметим, что выборка (x_1, \ldots, x_n) имеет плотность распределения, так как является случайным вектором в \mathbb{R}^n , все компоненты которого — случайные величины.

Определение 1.2.1 (Функция правдоподобия). Плотность распределения вектора независимых случайных величин, равная произведению плотностей распределения его компонент, называется функцией правдоподобия

$$L(\vec{x}, \theta) = \prod_{k=1}^{n} p(x_k, \theta)$$

Прологарифмировав функцию правдоподобия, получим симпатичную сумму

$$\ln L(\vec{x}, \theta) = \sum_{k=1}^{n} \ln p(x_k, \theta)$$

А симпатична она тем, что это сумма незасимых одинаково распределённых случайных величин. Воспользовавшись законом больших чисел, можем сказать, что она стремится к сумме n одинаковых математических ожиданий при достаточно большом размере выборки

$$\ln L(\vec{x}, \theta) = n \cdot \frac{\ln p(x_1, \theta) + \dots + \ln p(x_n, \theta)}{n} \approx n \cdot M_{\theta} \ln p(x_1, \theta)$$

Проблема в том, что мы не знаем среднего. Для разрешения этого вопроса введём ещё одно определение

Определение 1.2.2 (Вклад выборки). Ваклад выборки — частная производная по параметру θ от логарифма функции правдоподобия

$$U(\vec{x}, \theta) = \frac{\partial}{\partial \theta} \ln L(\vec{x}, \theta) = \sum_{k=1}^{n} \frac{\partial}{\partial \theta} \cdot \ln p(x_k, \theta)$$
$$= \frac{\frac{\partial}{\partial \theta} L(\vec{x}, \theta)}{L(\vec{x}, \theta)}$$

Замечание 3. Математическое ожидание вклада выборки равно нулю

$$M_{\theta}U\left(\vec{x},\theta\right) = 0$$

Доказательство. Посчитаем математическое ожидание вклада выборки

$$\begin{aligned} \mathbf{M}_{\theta}U\left(\vec{x},\theta\right) &= \int\limits_{\mathbb{R}^{n}} U\left(\vec{u},\theta\right) \cdot L\left(\vec{u},\theta\right) \; d\vec{u} = \\ &= \int\limits_{\mathbb{R}^{n}} \frac{\frac{\partial}{\partial \theta} L\left(\vec{x},\theta\right)}{L\left(\vec{x},\theta\right)} \cdot L\left(\vec{u},\theta\right) \; d\vec{u} = \\ &= \int\limits_{\mathbb{R}^{n}} \frac{\partial}{\partial \theta} L\left(\vec{u},\theta\right) \; d\vec{u} \end{aligned}$$

Воспользовавшись предположением о том, что функция распределения дважды дифференцируема, вынесем взятие производной за знак интеграла

$$M_{\theta}U(\vec{x},\theta) = \frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} L(\vec{u},\theta) d\vec{u}$$

Поскольку интегрируем плотность распределения случайного вектора по всему пространству, то он равен единице. Производная же от единице равна нулю. Это значит, что математическое ожидание вклада выборки равно нулю

$$M_{\theta}U(\vec{x},\theta) = \frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} L(\vec{u},\theta) \ d\vec{u} = \frac{\partial}{\partial \theta} 1 = 0$$

Замечание 4. Частная производная по оценке θ от функции правдоподобия $L\left(\vec{u},\theta\right)$ равна нулю.

Доказательство. Выше у нас было равенство

$$\frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} L\left(\vec{u}, \theta\right) \, d\vec{u} = 0$$

Так как производную можем заносить под знак интеграла (согласно нашему предположению), то получаем такое равенство

$$\int_{\mathbb{R}^n} \frac{\partial}{\partial \theta} L(\vec{u}, \theta) \ d\vec{u} = 0$$

Поскольку интеграл не зависит от θ , то такое возможно лишь в том случае, когда производная равна нулю

$$\frac{\partial}{\partial \theta} L\left(\vec{u}, \theta\right) = 0$$

Определение 1.2.3 (Количество информации Фишера). Математическое ожидание квадрата вклада выборки называется количеством информации Фишера

$$I_n(\theta) = M_\theta U(\vec{x}, \theta)^2$$

Замечание 5.

$$M_{\theta}U(\vec{x}, \theta)^{2} = -M_{\theta} \frac{\partial^{2}}{\partial \theta^{2}} \ln L(\vec{x}, \theta)$$

Доказательство. Будем доказывать справа налево

$$-M_{\theta} \frac{\partial^{2}}{\partial \theta^{2}} \ln L(\vec{x}, \theta) = -M_{\theta} \frac{\partial}{\partial \theta} \frac{\frac{\partial}{\partial \theta} L(\vec{x}, \theta)}{L(\vec{x}, \theta)} =$$

$$= -M_{\theta} \left(\frac{\frac{\partial^{2}}{\partial \theta^{2}} L(\vec{x}, \theta) \cdot L(\vec{x}, \theta) - \left[\frac{\partial}{\partial \theta} L(\vec{x}, \theta) \right]^{2}}{L(\vec{x}, \theta)^{2}} \right) =$$

$$= -M_{\theta} \frac{\frac{\partial^{2}}{\partial \theta^{2}} L(\vec{x}, \theta)}{L(\vec{x}, \theta)} + M_{\theta} \left[\frac{\frac{\partial}{\partial \theta} L(\vec{x}, \theta)}{L(\vec{x}, \theta)} \right]^{2}$$

Помним, что производная от функции правдоподобия по θ равна нулю. Значит вторая производная тоже равна нулю и остаётся лишь математическое ожидание квадрата, который равен квадрату производной логарифма функции правдоподобия, что в свою очередь и есть вклад выборки

$$\frac{\partial}{\partial \theta} L(\vec{u}, \theta) = 0 \Rightarrow -M_{\theta} \frac{\frac{\partial^{2}}{\partial \theta^{2}} L(\vec{x}, \theta)}{L(\vec{x}, \theta)} = 0$$

$$\Rightarrow -M_{\theta} \frac{\partial^{2}}{\partial \theta^{2}} \ln L(\vec{x}, \theta) = M_{\theta} \left[\frac{\frac{\partial}{\partial \theta} L(\vec{x}, \theta)}{L(\vec{x}, \theta)} \right]^{2} =$$

$$= M_{\theta} \left[\frac{\partial}{\partial \theta} \ln L(\vec{x}, \theta) \right]^{2} = M_{\theta} U(\vec{x}, \theta)^{2}$$

Утверждение доказано

$$M_{\theta}U(\vec{x}, \theta)^{2} = -M_{\theta} \frac{\partial^{2}}{\partial \theta^{2}} \ln L(\vec{x}, \theta)$$

Количество информации позволяет оценить точность, с которой можем получить параметр θ

Теорема 1.2.2 (Неравенство Рао-Крамера). Пусть $\hat{\theta}$ — несмещённая оценка параметра θ . Тогда имеет место неравенство

$$\forall \theta \in \Theta : D_{\theta} \hat{\theta} \ge \frac{1}{I_n(\theta)}$$

 $\mathcal{A}oказательство.$ Выпишем, чему равно математическое ожидание оценки θ

$$\begin{cases} \mathbf{M}_{\theta} \hat{\boldsymbol{\theta}} &= \boldsymbol{\theta} \\ \mathbf{M}_{\theta} \hat{\boldsymbol{\theta}} &= \int\limits_{\mathbb{R}^{n}} \hat{\boldsymbol{\theta}} \left(\vec{u} \right) \cdot L \left(\vec{u}, \boldsymbol{\theta} \right) \, d\vec{u} \\ \\ \Rightarrow \boldsymbol{\theta} &= \int\limits_{\mathbb{R}^{n}} \hat{\boldsymbol{\theta}} \left(\vec{u} \right) \cdot L \left(\vec{u}, \boldsymbol{\theta} \right) \, d\vec{u} \end{cases}$$

Продифференцируем с двух сторон полученное для θ равенство по самому параметру θ

$$\frac{\partial}{\partial \theta} \theta = \frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} \hat{\theta} \left(\vec{u} \right) \cdot L \left(\vec{u}, \theta \right) \, d\vec{u}$$

Левая часть равенства превращается в единицу, а справа заносим взятие производной под знак интеграла. Также помним, что оценка $\theta\left(\vec{u}\right)$ не зависит от параметра θ . Это значит, что производную нужно брать только от функции правдоподобия

$$1 = \int\limits_{\mathbb{D}^{n}} \hat{\theta}\left(\vec{u}\right) \cdot \frac{\partial}{\partial \theta} L\left(\vec{u}, \theta\right) \, d\vec{u}$$

Далее нам нужно получить вклад выборки. Для этого умножим и поделим подинтегральное выражение на функцию правдоподобия

$$\begin{split} &\int\limits_{\mathbb{R}^{n}}\hat{\theta}\left(\vec{u}\right)\cdot\frac{\partial}{\partial\theta}L\left(\vec{u},\theta\right)\;d\vec{u} = \\ &=\int\limits_{\mathbb{R}^{n}}\hat{\theta}\left(\vec{u}\right)\cdot\frac{\frac{\partial}{\partial\theta}L\left(\vec{u},\theta\right)}{L\left(\vec{u},\theta\right)}\cdot L\left(\vec{u},\theta\right)\;d\vec{u} \end{split}$$

Видим, что дробь под интегралом — производная логарифма функции правдоподобия, которая является вкладом выборки

$$\begin{split} \int\limits_{\mathbb{R}^{n}} \hat{\theta}\left(\vec{u}\right) \cdot \frac{\frac{\partial}{\partial \theta} L\left(\vec{u}, \theta\right)}{L\left(\vec{u}, \theta\right)} \cdot L\left(\vec{u}, \theta\right) \; d\vec{u} = \\ = \int\limits_{\mathbb{R}^{n}} \hat{\theta}\left(\vec{u}\right) \cdot U\left(\vec{x}, \theta\right) \cdot L\left(\vec{u}, \theta\right) \; d\vec{u} \end{split}$$

У нас есть математическое ожидание произведения оценки и вклада выборки, которое равно единице

$$1 = \mathcal{M}_{\theta} \left(\hat{\theta} \cdot U \left(\vec{x}, \theta \right) \right) \tag{1.9}$$

Помним, что математическое ожидание вклада выборки равно нулю. Значит, умножение его на константу ничего не меняет

$$\mathbf{M}_{\theta}U\left(\vec{x},\theta\right) = 0$$

$$\Rightarrow \theta \cdot \mathbf{M}_{\theta}U\left(\vec{x},\theta\right) = \mathbf{M}_{\theta}\left(\theta \cdot U\left(\vec{x},\theta\right)\right) = 0$$

Воспользовавшись полученным результатом, вернёмся к равенству (1.9). Отнимем от обеих частей ноль (то есть, полученное только что выражение)

$$1 = M_{\theta} \left(\hat{\theta} \cdot U \left(\vec{x}, \theta \right) \right) - M_{\theta} \left(\theta \cdot U \left(\vec{x}, \theta \right) \right)$$

Получаем компактное равенство

$$1 = \mathbf{M}_{\theta} \left[\left(\hat{\theta} - \theta \right) \cdot U \left(\vec{x}, \theta \right) \right]$$

Воспользовавшись неравенством Коши, узнаём, произведение корней дисперсии и количества информации больше, чем единица

$$1 = M_{\theta} \left[\left(\hat{\theta} - \theta \right) \cdot U \left(\vec{x}, \theta \right) \right] \le$$

$$\le \sqrt{M_{\theta} \left(\hat{\theta} - \theta \right)} \cdot \sqrt{M_{\theta} U \left(\vec{x}, \theta \right)} =$$

$$= \sqrt{D_{\theta} \hat{\theta}} \cdot \sqrt{I_{n} \left(\theta \right)}$$
(1.10)

Возводим обе части равенства в квадрат и делим на количество информации

$$D_{\theta}\hat{\theta} \ge \frac{1}{I_n(\theta)}$$

Неравенство доказано

Замечание 6. Иногда нужно оценивать не сам параметр, а функцию параметра

Если α — несмещённая оценка для $f\left(\theta\right)$, то справедливо следующее неравенство

$$\forall \theta \in \Theta : D_{\theta} \alpha \ge \frac{|f'(\theta)|}{I_n(\theta)}$$

1.2.2 Метод максимального правдоподобия

У нас есть нижняя оценка точности, с которой можно отыскать желаемую оценку, а это значит, что точнее определить просто не получится и нужно стремиться к равенству в неравенстве Рао-Крамера.

Определение 1.2.4 (Эффективная оценка). Оценка $\hat{\theta}$, для которой в неравенстве Рао-Крамера стоит равенство, называется эффективной

$$\forall \theta \in \Theta : D_{\theta}\hat{\theta} = \frac{1}{I_n(\theta)}$$

Попытаемся выяснить, какими свойствами должна обладать плотность, чтобы можно было получить эффективную оценку. Для этого в неравенстве Рао-Крамера нужно рассмотреть случай равенства (так как в этом случае оценка будет самой точной)

$$D_{\theta}\hat{\theta} = \frac{1}{I_n(\theta)}$$

Рассмотрим неравенство (1.10) и попытаемся понять, в каком случае в нём будет стоять знак равенства

$$\begin{split} 1 &= \mathbf{M}_{\theta} \left[\left(\hat{\theta} - \theta \right) \cdot U \left(\vec{x}, \theta \right) \right] = \\ &= \sqrt{\mathbf{M}_{\theta} \left(\hat{\theta} - \theta \right)^{2}} \cdot \sqrt{\mathbf{M}_{\theta} U \left(\vec{x}, \theta \right)^{2}} \end{split}$$

Снова проводим аналогию с векторами и видим, что скалярное произведение (математическое ожидание произведения) векторов (функций от параметра θ : $f_1(\theta) = \hat{\theta} - \theta$ и $f_2(\theta) = U(\vec{x}, \theta)$) равно произведению их норм (корней математических ожиданий квадратов).

Это в свою очередь означает, что "угол" между этими векторами (функциями) равен нулю и эти функции являются линейными комбинациями друг друга. Значит, есть такая функция $k(\theta)$, что $f_2(\theta)$ равняется произведению $f_1(\theta)$ и $k(\theta)$.

$$\begin{split} U\left(\vec{x},\theta\right) &= \left(\hat{\theta} - \theta\right) \cdot k\left(\theta\right) \\ \frac{\partial}{\partial \theta} \ln L\left(\vec{x},\theta\right) &= \hat{\theta} \cdot k\left(\theta\right) - \theta \cdot k\left(\theta\right) \\ \partial \ln L\left(\vec{x},\theta\right) &= \hat{\theta}\left(\vec{x}\right) \cdot k\left(\theta\right) \cdot \partial \theta - \theta \cdot k\left(\theta\right) \cdot \partial \theta \end{split}$$

Проинтегрируем обе части равенства

$$\int \partial \ln L(\vec{x}, \theta) = \hat{\theta}(\vec{x}) \cdot \int k(\theta) \, \partial \theta - \int \theta \cdot k(\theta) \, \partial \theta$$

Получим следующее равенство

$$\ln L(\vec{x}, \theta) + c_1(\vec{x}) = \hat{\theta}(\vec{x}) \cdot [a(\theta) + c_2] - [b^*(\theta) + c_3]$$

Сгруппируем константы и введём замену $b\left(\theta\right)=-b^{*}\left(\theta\right)$

$$\ln L(\vec{x}, \theta) = \hat{\theta}(\vec{x}) \cdot a(\theta) + b(\theta) + c(\vec{x})$$

Избавимся от логарифма слева, а для этого проэкспонируем обе части равенства

$$L(\vec{x}, \theta) = \exp \left\{ \hat{\theta}(\vec{x}) \cdot a(\theta) + b(\theta) + c(\vec{x}) \right\}$$

При конечном n положим такую плотность распределения

$$p(x_1, \theta) = \exp \left\{ \hat{\theta}(x_1) \cdot a_1(\theta) + b_1(\theta) + c_1(x_1) \right\}$$

В таком случае получим следующую функцию правдоподобия

$$L\left(\vec{x},\theta\right) = \prod_{k=1}^{n} p\left(x_{1},\theta\right) =$$

$$= \exp\left\{\sum_{k=1}^{n} \hat{\theta}\left(x_{k}\right) \cdot a_{1}\left(\theta\right) + n \cdot b_{1}\left(\theta\right) + \sum_{k=1}^{n} c_{1}\left(x_{k}\right)\right\}$$

Отметим, что в этом случае оценка $\hat{\theta}(\vec{x})$ является суммой оценок по каждой координате (случайной величине)

$$\hat{\theta}\left(\vec{x}\right) = \sum_{k=1}^{n} \hat{\theta}\left(x_k\right)$$

Определение 1.2.5 (Экспоненциальное распределение). Распределения следующего вида называются экспоненциальными

$$p\left(x,\theta\right)=\exp\left\{ \hat{\theta}\left(x\right)\cdot a\left(\theta\right)+b\left(\theta\right)+c\left(x\right)\right\}$$

Попробуем найти рецепт выяснения эффективной оценки. Начнём с примера

Пример 1.2.1. Есть выборка x_1, x_2, \ldots, x_n из нормального распределения с неизвестным математическим ожиданием $N(\theta, 1)$. Тогда плотность распределения k-ой случайной величины будет следующей

$$p(x_k) = \frac{1}{\sqrt{2 \cdot \pi}} \cdot exp\left\{-\frac{(x_k - \theta)^2}{2}\right\}$$

Её логарифм, очевидно, имеет такой вид

$$\ln p(x_k) = \ln \frac{1}{\sqrt{2 \cdot \pi}} - \frac{(x_k - \theta)^2}{2}$$

Теперь выпишем логарифм функции правдоподобия

$$\ln L(\vec{x}, \theta) = \sum_{k=1}^{n} \ln p(x_k) =$$

$$= \sum_{k=1}^{n} \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{(x_k - \theta)^2}{2} =$$

$$= n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{(x_k - \theta)^2}{2}$$

Раскроем скобки

$$\ln L\left(\vec{x},\theta\right) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2}{2} + \sum_{k=1}^{n} x_k \cdot \theta - \frac{n \cdot \theta^2}{2}$$

Воспользуемся формулой для несмещённой (ещё и эффективной) оценки среднего

$$\sum_{k=1}^{n} x_k \cdot \theta = \frac{1}{n} \cdot \sum_{k=1}^{n} x_k \cdot \theta \cdot n = \overline{x} \cdot \theta \cdot n$$

$$\Rightarrow \ln L(\vec{x}, \theta) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2}{2} + \overline{x} \cdot \theta \cdot n - \frac{n \cdot \theta^2}{2}$$

Сгруппировав множители n, получаем

$$\ln L(\vec{x}, \theta) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2}{2} - n \cdot \frac{\theta^2 - 2 \cdot \overline{x} \cdot \theta}{2}$$

Добавим и отнимем в числителе дроби выборочное среднее

$$\ln L\left(\vec{x},\theta\right) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2}{2} - n \cdot \frac{\theta^2 - 2 \cdot \overline{x} \cdot \theta + \left(\overline{x}^2 - \overline{x}^2\right)}{2}$$

Теперь в числителе очевиден квадрат разности

$$\ln L\left(\vec{x},\theta\right) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2}{2} + n \cdot \frac{\overline{x}^2}{2} - n \cdot \frac{\theta^2 - 2 \cdot \overline{x} \cdot \theta + \overline{x}^2}{2}$$

Записываем квадрат разности короче, а выборочное средние вносим под знак суммы

$$\ln L(\vec{x}, \theta) = n \cdot \ln \frac{1}{\sqrt{2 \cdot \pi}} - \sum_{k=1}^{n} \frac{x_k^2 - \overline{x}^2}{2} - n \cdot \frac{(\theta - \overline{x})^2}{2}$$

Видим, что последнее вычитаемое не может быть отрицательным, а когда оценка θ равна выборочному среднему, то последнее слагаемое обращается в нуль, а сама функция правдоподобия в таком случае принимает максимальное значение.

Делаем предположение о том, как находить наилучшую оценку

$$Q_* = \arg\max_{\theta} \ln L\left(\vec{x}, \theta\right)$$

Оказывается, именно так она и находится.

Определение 1.2.6 (Оценка максимального правдоподобия). Оценка максимального правдоподобия θ_* — такое значение параметра θ , при котором функция правдободобия достигает своего максимального значения

$$Q_* = \arg\max_{\theta} \ln L\left(\vec{x}, \theta\right)$$

Замечание 7. Оценок маесимального правдоподобия может быть несколько, а может не существовать ни одной.

Определение 1.2.7 (Уравнение правдоподобия). Уравнением правдоподобия называется равенство вида

$$U(\vec{x},\theta) = 0$$

Или же

$$\frac{\partial}{\partial \theta} \ln L\left(\vec{x}, \theta\right) = 0$$

Замечание 8. В гладком случае оценку θ_* можно искать с помощью уравнения правдоподобия. Тем не менее, нужно помнить, что равенство первой производной нулю является лишь необходимым условием максимума, поэтому полученные результаты необходимо проверять.

Определение 1.2.8 (Вариационный ряд). Вариационный ряд выборки x_1, x_2, \ldots, x_n — значения выборки, упорядоченные в порядке неубывания

$$x_{(1)}, x_{(2)}, \dots, x_{(n)}, x_{(1)} = \min_{k} x_k$$

Теорема 1.2.3. Если плотность $p(x,\theta)$ непрерывна и дифференцируема по параметру θ , а производная не равна нулю $\frac{\partial}{\partial \theta} p(x,\theta) \neq 0$, то оценка максимального правдоподобия состоятельна

Глава 2

Достаточные статистики

2.1 Оптимальная оценка

Определение 2.1.1 (Симметризация). Симметризация Λ оценки $\hat{\theta}$ — среднее оценок $\hat{\theta}$ для всевозможных перестановок $\sigma \in S_n$ элементов выборки x_1, x_2, \ldots, x_n

$$\Lambda \hat{\theta} = \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \hat{\theta} \left(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)} \right)$$

Лемма 2.1.1. Для произвольной несмещённой оценки $\hat{\theta}$ её симметризация $\Lambda \hat{\theta}$ не хуже её самой в среднем квадратическом

$$M_{\theta}\hat{\theta} = \theta \Rightarrow \begin{cases} M_{\theta}\Lambda\hat{\theta} = M_{\theta}\hat{\theta} = \theta \\ D_{\theta}\Lambda\hat{\theta} \leq D_{\theta}\hat{\theta} \end{cases}$$

Доказательство. Берём x_1, x_2, \ldots, x_n — независимые одинаково распределённые случайные величины.

Введём обозначения для более короткой записи используемых в доказательстве случайных векторов.

Вектор, состоящий из элементов выборки в их изначальном порядке, обозначим привычным \vec{x}

$$(x_1, x_2, \dots, x_n) = \vec{x}$$

Вектор, состоящий из элементов, изменивших своё местоположение под влиянием перестановки σ (значение которой будет ясно из контекста), будем обозначать через \vec{x}_{σ}

$$(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \vec{x}_{\sigma}$$

Тогда и оценки примут более красивый вид

$$\hat{\theta}(x_1, x_2, \dots, x_n) = \hat{\theta}(\vec{x})$$

$$\hat{\theta}(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \hat{\theta}(\vec{x}_{\sigma})$$

Теперь приступим непосредственно к доказательству.

1. Начнём с первого пункта — докажем несмещённость симметризации опенки $\hat{ heta}$.

Нетрудно показать, что вектора \vec{x} и \vec{x}_{σ} имеют одинаковое распределение для любой перестановки σ , а это значит, что и оценки $\hat{\theta}\left(\vec{x}\right)$ и $\hat{\theta}\left(\vec{x}_{\sigma}\right)$ распределены одинаково как функции случайных одинаково распределённых векторов. Следовательно, их математические ожидания равны между собой при любой перестановке σ

$$M_{\theta}\hat{\theta}(\vec{x}) = M_{\theta}\hat{\theta}(\vec{x}_{\sigma}) = \theta$$

Посчитаем математическое ожидание симметризации оценки $\hat{ heta}$

$$\mathbf{M}_{\theta} \Lambda \hat{\theta} = \mathbf{M}_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_{n}} \hat{\theta} \left(\vec{x}_{\sigma} \right) \right\}$$

Помним, что математическое ожидание линейно и константы можно выносить за знак математического ожидания, а математическое ожидание суммы равно сумме математических ожиданий

$$M_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \hat{\theta} \left(\vec{x}_{\sigma} \right) \right\} = \frac{1}{n!} \cdot \sum_{\sigma \in S_n} M_{\theta} \hat{\theta} \left(\vec{x}_{\sigma} \right)$$

Не забываем, что математическое ожидание оценки любого вектора \vec{x}_{σ} одинаково и равно параметру θ

$$\frac{1}{n!} \cdot \sum_{\sigma \in S_n} M_{\theta} \hat{\theta} \left(\vec{x}_{\sigma} \right) = \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \theta$$

Сумма имеет n! слагаемых (количество перестановок $\sigma \in S_n$)

$$\frac{1}{n!} \cdot \sum_{\sigma \in S_n} \theta = \frac{1}{n!} \cdot n! \cdot \theta = \theta$$

А это значит, что первый пункт доказан и симметризация несмещённой оценки $\hat{\theta}$ действительно несмещённая

$$M_{\theta}\Lambda\hat{\theta}=\theta$$

2. Теперь посмотрим, чему равна дисперсия симметризации оценки $\hat{\theta}$ Воспользуемся определением

$$D_{\theta} \Lambda \hat{\theta} = M_{\theta} \left(\Lambda \hat{\theta} - \theta \right)^{2} = M_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S} \hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right\}^{2}$$

Внесём параметр θ в сумму. Для этого нужно умножить и поделить его на n! (так как сумма имеет n! слагаемых)

$$\begin{aligned} \mathbf{M}_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right\}^2 &= \\ &= \mathbf{M}_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \hat{\theta} \left(\vec{x}_{\sigma} \right) - \frac{1}{n!} \cdot n! \cdot \theta \right\}^2 &= \\ &= \mathbf{M}_{\theta} \left\{ \frac{1}{n!} \cdot \left(\sum_{\sigma \in S_n} \hat{\theta} \left(\vec{x}_{\sigma} \right) - n! \cdot \theta \right) \right\}^2 &= \\ &= \mathbf{M}_{\theta} \left\{ \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right) \right\}^2 &= \\ &= \mathbf{M}_{\theta} \left\{ \sum_{\sigma \in S_n} \frac{1}{n!} \cdot \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right) \right\}^2 \end{aligned}$$

Вспомним неравенство Йенсена для выпуклой функции f

$$f\left(\sum_{i=1}^{n} q_i \cdot x_i\right) \le \sum_{i=1}^{n} q_i \cdot f\left(x_i\right), \qquad \sum_{i=1}^{n} q_i = 1$$

В нашем случае $x_i = (\hat{\theta}(\vec{x}_{\sigma_i}) - \theta)$, функция $f(x) = x^2$, сумма проходит по всевозможным перестановкам σ , а роль q_i выполняет $\frac{1}{n!}$, так как

$$\sum_{\sigma \in S_n} q_i = \sum_{\sigma \in S_n} \frac{1}{n!} = n! \cdot \frac{1}{n!} = 1$$

Перепишем неравенство Йенсена для нашего случая

$$M_{\theta} \left\{ \sum_{\sigma \in S_n} \frac{1}{n!} \cdot \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right) \right\}^2 \le M_{\theta} \sum_{\sigma \in S_n} \frac{1}{n!} \cdot \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right)^2 \tag{2.1}$$

Воспользуемся линейностью математического ожидания, внеся его под знак суммы

$$\mathbf{M}_{\theta} \sum_{\sigma \in S_n} \frac{1}{n!} \cdot \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right)^2 = \frac{1}{n!} \cdot \sum_{\sigma \in S_n} \mathbf{M}_{\theta} \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right)^2$$

Видим сумму дисперсий. Дисперсии одинаковы, так как оценки имеют одинаковые распределения

$$\frac{1}{n!} \cdot \sum_{\sigma \in S_n} M_{\theta} \left(\hat{\theta} \left(\vec{x}_{\sigma} \right) - \theta \right)^2 = \frac{1}{n!} \cdot \sum_{\sigma \in S_n} D_{\theta} \hat{\theta} \left(\vec{x}_{\sigma} \right) =$$

$$= \frac{1}{n!} \cdot \sum_{\sigma \in S_n} D_{\theta} \hat{\theta} \left(\vec{x} \right) = \frac{1}{n!} \cdot n! \cdot D_{\theta} \hat{\theta} \left(\vec{x} \right) = D_{\theta} \hat{\theta} \left(\vec{x} \right)$$

Из неравенства Йенсена (2.1) видим, что дисперсия симметризации не хуже дисперсии самой оценки

$$D_{\theta} \Lambda \hat{\theta} \leq D_{\theta} \hat{\theta} (\vec{x})$$

То есть, симметризация не ухудшает оценку, а в общем случае (когда неравенство строгое) даже делает её лучше. □

Замечание 9. Равенство в неравенстве Йенсена (в доказательстве выше) возможно только в случае симметричной функции. Значит, в качестве оценки достаточно брать только симметричные функции выборки

Определение 2.1.2 (Функция вариационного ряда). Если оценка $\hat{\theta}$ симметрична относительно перестановок аргументов, то она является функцией вариационного ряда

Замечание 10. Все оценки, которые претендуют быть оптимальными, должны быть функциями вариационного ряда

2.2 σ -алгебра, порождённая случайной величиной

Имеем вероятностное пространство $(\Omega, \mathfrak{F}, \mathbb{P})$, также есть функция $\xi: \Omega \to \mathbb{R}$ такая, что связанные с ней множества измеримы по Лебегу

$$\{\omega \mid \xi(\omega) < c\} \in \mathfrak{F}, c \in \mathbb{R}$$

Но это будет неудобно при использовании, поэтому возьмём борелевские подмножества $\mathfrak B$ множества $\mathbb R$

$$\mathbb{R} \supset \mathfrak{B} \ni \Delta : \xi^{-1}(\Delta) \in \mathfrak{F}$$

Рассмотрим более подробно, что же означает запись $\xi^{-1}(\Delta)$

$$\xi^{-1}(\Delta) = \{\omega \mid \xi(\omega) \in \Delta\}, \qquad \Delta \in \mathfrak{B}, \omega \in \Omega$$

Определение 2.2.1 (Сигма-алгебра, порождённая случайной величиной). $\mathfrak{F}_{\xi} = \sigma\left(\xi\right) - \sigma$ -алгебра, порождённая случайной величиной ξ

$$\mathfrak{F}_{\xi} = \left\{ \xi^{-1} \left(\Delta \right) \mid \Delta \in \mathfrak{B} \right\}$$

Из курса теории вероятностей помним лемму, которая утверждает, что ξ — случайная величина тогда и только тогда, когда

$$\forall \Delta \in \mathfrak{B} : \{\omega \mid \xi(\omega) \in \Delta\} = \{\xi \in \Delta\} = \xi^{-1}(\Delta) \in \mathfrak{F}$$

А это значит, что все элементы σ -алгебры \mathfrak{F}_ξ входят в σ -алгебру \mathfrak{F} , а сама \mathfrak{F}_ξ является подмножеством \mathfrak{F}

$$\begin{cases} \mathfrak{F}_{\xi} = \left\{ \xi^{-1} \left(\Delta \right) \mid \Delta \in \mathfrak{B} \right\} \\ \forall \Delta \in \mathfrak{B} : \xi^{-1} \left(\Delta \right) \in \mathfrak{F} \end{cases} \Rightarrow \mathfrak{F}_{\xi} \subset \mathfrak{F}$$

Проверим, что \mathfrak{F}_{ξ} действительно является σ -алгеброй

1. Множество элементарных исходов Ω входит в \mathfrak{F}_{ξ} . Поскольку случайная величина ξ принимает действительные значения, то прообраз множества действительных чисел $\mathbb R$ и будет множеством элементарных исходов Ω . А поскольку $\mathbb R$ принадлежит борелевской σ -алгебре, то его прообраз по определению принадлежит σ -алгебре \mathfrak{F}_{ξ}

$$\begin{cases} \xi^{-1} \left(\Delta \in \mathfrak{B} \right) \in \mathfrak{F} \\ \mathbb{R} \in \mathfrak{B} \\ \xi^{-1} \left(\mathbb{R} \right) = \Omega \end{cases} \Rightarrow \Omega \in \mathfrak{F}_{\xi}$$

2. Если событие A принадлежит $\mathfrak{F}_{\xi},$ то его дополнение \overline{A} тоже принадлежит \mathfrak{F}_{ξ}

$$A = \xi^{-1}(\Delta) = \{\omega \mid \xi(\omega) \in \Delta\}$$

$$\Rightarrow \overline{A} = \{\omega \mid \xi(\omega) \notin \Delta\} = \{\omega \mid \xi(\omega) \in \overline{\Delta}\}$$

$$\overline{A} = \xi^{-1}(\overline{\Delta})$$

Поскольку $\mathfrak B$ является σ -алгеброй, а Δ — её элемент, то дополнение $\overline \Delta$ тоже принадлежит σ -алгебре $\mathfrak B$. Из этого следует, что свойство выполняется

$$\begin{cases} \xi^{-1}\left(\Delta\right) \in \mathfrak{F} \\ \Delta \in \mathfrak{B} \Rightarrow \overline{\Delta} \in \mathfrak{B} \end{cases} \Rightarrow \overline{\xi^{-1}\left(\Delta\right)} = \xi^{-1}\left(\overline{\Delta}\right) \in \mathfrak{F}$$

3. Замкнутость относительно счётных пересечений.

Начнём с замкнутости относительно пересечения двух множеств

$$A = \xi^{-1}(\Delta_1), B = \xi^{-1}(\Delta_2)$$

Начинаем считать

$$A \cap B = \xi^{-1} (\Delta_1) \cap \xi^{-1} (\Delta_2) =$$

$$= \{ \omega \mid \xi (\omega) \in \Delta_1 \} \cap \{ \omega \mid \xi (\omega) \in \Delta_2 \} =$$

$$= \{ \omega \mid \xi (\omega) \in \Delta_1 \wedge \xi (\omega) \in \Delta_2 \} =$$

$$= \{ \omega \mid \xi (\omega) \in \Delta_1 \cap \Delta_2 \} = \xi^{-1} (\Delta_1 \cap \Delta_2)$$

Значит, имеем равенство

$$\xi^{-1}\left(\Delta_{1}\right)\cap\xi^{-1}\left(\Delta_{2}\right)=\xi^{-1}\left(\Delta_{1}\cap\Delta_{2}\right)$$

Пользуясь методом математической индукции нетрудно показать, что для любого n выполняется

$$\xi^{-1}\left(\bigcap_{i=1}^{n}\Delta_{i}\right)=\bigcap_{i=1}^{n}\xi^{-1}\left(\Delta_{i}\right),\Delta_{i}\in\mathfrak{B}$$

Как устроена эта σ -алгебра? Каждому элементарному исходу отвечает одно и только одно значение случайной величины, а каждому значению случайной величины отвечает один и больше элементарных исходов. Допустим, есть некое $a \in \mathbb{R}$, которое является образом по крайней мере двух элементарных исходов ω_1 и ω_2

$$\xi\left(\omega_{1}\right)=\xi\left(\omega_{2}\right)=a$$

Теперь рассмотрим элемент Δ борелевской σ -алгебры \mathfrak{B} . Из вышесказанного следует, что, если число a принадлежит множеству Δ , то прообраз этого множества содержит элементы ω_1 и ω_2 , в противном случае оба элементарных исхода не входят в прообраз

$$a \in \Delta \Rightarrow \xi^{-1}(\Delta) \ni \omega_1, \omega_2$$

 $a \notin \Delta \Rightarrow \xi^{-1}(\Delta) \not\ni \omega_1, \omega_2$

То есть, множество \mathfrak{F}_{ξ} не будет различать элементы ω_1 и ω_2 . Это в свою очередь означает, что можно разбить \mathfrak{F}_{ξ} на уровни — непересекающиеся подмножества

Определение 2.2.2 (Множество уровня). Множество уровня H_t — полный прообраз значения $t \in \mathbb{R}$ случайной величины ξ

$$H_t = \{ \omega \mid \xi(\omega) = t \} = \xi^{-1}(t)$$

Замечание 11. Уровни H_i составляют разбиение множества элементарных исходов Ω .

1. Множества H_i не пересекаются

$$H_{t_1} \neq H_{t_2} \Leftrightarrow t_1 \neq t_2$$

2. Объединение всех H_i даёт множество элементарных исходов

$$\bigcup_{t \in \mathbb{R}} H_t = \bigcup_{t \in \mathbb{R}} \xi^{-1} (t) = \xi^{-1} (\mathbb{R}) = \Omega$$

Очень похоже на гипотезы из курса теории вероятностей с той лишь разницей, что уровней может быть бесконечное и даже континуальное количество, из чего также следует, что вероятность некоторых из них может быть нулевой.

2.3 Случайная величина, измеримая относительно σ -алгебры, порождённой случайной величиной

В общем случае вероятностное пространство может быть разбито на континуальное количество множеств уровней (для σ -алгебры, порождённой непрерывной случайной величиной).

Начнём же с рассмотрения того случая, когда случайная величина ξ принимает n значений a_1, a_2, \ldots, a_n

$$\xi:\Omega\to\{a_1,a_2,\ldots,a_n\}$$

 \Im то в свою очередь означает, что у нас есть n уровней

$$H_k = \{ \omega \mid \xi(\omega) = a_k \}, k = \overline{1, n}$$

Нетрудно понять, что σ -алгебра $\sigma(\xi)$ содержит 2^n элементов

$$\sigma\left(\xi\right) = \left\{\bigcup_{k=1}^{n} H_{k}^{\eta_{k}} \mid \eta_{k} = \overline{0,1}, H_{k}^{0} = \emptyset, H_{k}^{1} = H_{k}\right\}$$

Нам нет смысла пользоваться лишь одной случайной величиной ξ . Нас интересует, как устроены случайные величины, которые измеримы относительно σ -алгебры σ (ξ).

Возьмём \varkappa — случайная величина, измеримая относительно $\sigma(\xi)$. Это значит, что все прообразы случайной величины \varkappa должны лежать в σ -алгебре $\sigma(\xi)$

$$\{\omega \mid \varkappa(\omega) \le c\} \in \sigma(\xi)$$

To есть, прообразы \varkappa выражаются через объединения уровней H_k

$$\{\omega \mid \varkappa(\omega) \le c\} = \bigcup_{k=1}^{n} H_k^{\eta_k}$$

Введём обозначение

$$A(c) = \{ \omega \mid \varkappa(\omega) \le c \}$$

Очевидно, что при $c \to -\infty$ прообразом является пустое множество, а когда $c \to +\infty$, то прообразом является всё множество элементарных исходов

$$\{\omega \mid \varkappa(\omega) \le -\infty\} = \{\omega \mid \varkappa(\omega) \in \emptyset\} = \varkappa^{-1}(\emptyset) = \emptyset$$
$$\{\omega \mid \varkappa(\omega) \le +\infty\} = \{\omega \mid \varkappa(\omega) \in \mathbb{R}\} = \varkappa^{-1}(\mathbb{R}) = \Omega$$

Также ясно, что, если имеются два элемента борелевского множества и один включён в другой, то полный прообраз первого элемента тоже будет включён в прообраз второго

$$\begin{split} \Delta_1, \Delta_2 &\in \mathfrak{B}, \Delta_1 \subseteq \Delta_2 \\ \Rightarrow \varkappa^{-1} \left(\Delta_1 \right) \subseteq \varkappa^{-1} \left(\Delta_1 \right) \cup \varkappa^{-1} \left(\Delta_2 \right) = \\ &= \varkappa^{-1} \left(\Delta_1 \cup \Delta_2 \right) = \varkappa^{-1} \left(\Delta_2 \right) \end{split}$$

Ни у кого не возникает сомнений, что справедливо и такое утверждение

$$c_1, c_2 \in \mathbb{R}, c_1 \le c_2 \Rightarrow A(c_1) \subseteq A(c_2)$$

Объединим и проанализируем вышеописанное:

1. Количество элементов в множестве A(c) не уменьшается с ростом c

$$c_1 \leq c_2 \Rightarrow A(c_1) \subseteq A(c_2)$$

2. Множество A(c) "разрастается" от пустого множества \emptyset до множества элементарных событий Ω с ростом c от $-\infty$ до $+\infty$

$$A(-\infty) = \emptyset, A(+\infty) = \Omega$$

3. Множество A(c) растёт дискретными шагами. Это связано с тем, что уровни H_k в нашей σ -алгебре неделимы, а каждый её элемент должен состоять из объединений этих уровней и ничего другого.

Из этого всего делаем более конкретные выводы о том, как изменяется значение функции $A\left(c\right)$ с ростом параметра c. Должны быть опорные точки, на которых происходит "скачок" — точки, на которых к объединению добавляется ещё один или более уровней.

Поскольку имеется n уровней, то может быть не более n скачков: ведь самый "медленный" рост будет происходить, если добавлять по одному уровню на определённых константах, а нужно пройти всё от пустого множества \emptyset до множества элементарных исходов Ω .

Выделим m точек $(m \le n)$ $c_1 < c_2 < \cdots < c_m$ на числовой прямой $\mathbb R$ как значения случайной величины \varkappa

$$\varkappa:\Omega\to\{c_1,c_2,\ldots,c_m\}$$

Посмотрим, как соотносятся между собой $A\left(c_{i}\right)$ и $A\left(c_{i-1}\right)$, чтобы лучше понять природу скачков.

Сначала покажем, что $A(c_1)$ является прообразом c_1

$$\varkappa^{-1}(c_1) = \{\omega \mid \varkappa(\omega) = c_1\}$$

Поскольку случайная величина не принимает значений до c_1 , то множество $A\left(c_1-0\right)=\{\omega\mid\varkappa(\omega)< c_1\}$ пустое. Получаем то, что хотели

$$\varkappa^{-1}(c_1) = \{\omega \mid \varkappa(\omega) = c_1\} \cup \emptyset =$$

$$= \{\omega \mid \varkappa(\omega) = c_1\} \cup \{\omega \mid \varkappa(\omega) < c_1\} =$$

$$= \{\omega \mid \varkappa(\omega) \le c_1\} = A(c_1)$$

Идём дальше. Обозначим $c_0 = -\infty$. Тогда в каждой точке $A(c_i)$, $i = \overline{1, m}$ происходит скачок на множество $\varkappa^{-1}(c_i)$, то есть

$$A\left(c_{i}\right) = A\left(c_{i-1}\right) \cup \varkappa^{-1}\left(c_{i}\right)$$

Так происходит, потому что имеет место равенство, которое выполняется из-за того, что функция имеет скачки лишь на параметрах c_i , а между ними не меняет значения

$$A\left(c_{i}\right) = A\left(c_{i+1} - 0\right)$$

В таком случае тождество очевидно

$$A(c_i) = \{\omega \mid \varkappa(\omega) \le c_i\} =$$

$$= \{\omega \mid \varkappa(\omega) < c_i\} \cup \{\omega \mid \varkappa(\omega) = c_i\} =$$

$$= A(c_{i-1} - 0) \cup \varkappa^{-1}(c_i) = A(c_{i-1}) \cup \varkappa^{-1}(c_i)$$

Поскольку \varkappa — случайная величина, принимающая m значений, то её прообразы составляют разбиение пространства элементарных исходов Ω . А поскольку $A(c_{i-1})$ состоит из объединений этих прообразов, то оно не пересекается с $\varkappa^{-1}(c_i)$. То есть, мы знаем, как вычислять прообраз \varkappa

$$\begin{cases} A\left(c_{i-1}\right) \cap \varkappa^{-1}\left(c_{i}\right) = \emptyset \\ A\left(c_{i}\right) = A\left(c_{i-1}\right) \cup \varkappa^{-1}\left(c_{i}\right) \end{cases} \Rightarrow \varkappa^{-1}\left(c_{i}\right) = A\left(c_{i}\right) \setminus A\left(c_{i-1}\right)$$

Значит, случайная величина \varkappa принимает значение c_i при выпадении любого элементарного исхода ω из множества $A\left(c_i\right)\setminus A\left(c_{i-1}\right)$

$$\varkappa(\omega) = c_i, \omega \in A(c_i) \setminus A(c_{i-1})$$
(2.2)

Запишем это в более удобном виде

$$\varkappa\left(\omega\right) = \sum_{i=1}^{m} c_{i} \cdot \mathbb{1}\left\{\omega \in A\left(c_{i}\right) \setminus A\left(c_{i-1}\right)\right\}$$

Но эта сумма кажется уродливой из-за длинного индикатора и непонятного m. Попытаемся разобраться, в чём же дело и как прийти к изначальной n и милым H_k .

Помним, что $A\left(c_{i}\right)\backslash A\left(c_{i-1}\right)$ — объединение нескольких множеств уровня $H_{k}.$

Для любого t разность множеств $A(c_t) \setminus A(c_{t-1}) \neq \emptyset$ (когда это множество пустое, то индикатор просто не сработает и нечего считать) можно представить как объединение двух непересекающихся множеств, которые обозначим $H_1^t \in \mathfrak{F}$ и $H_2^t \in \mathfrak{F}$, причём H_1^t — множество уровня, а H_2^t — произвольное множество из \mathfrak{F} (в том числе и пустое, если разность и есть множество уровня). Тогда t-ое слагаемое примет следующий вид

$$c_t \cdot \mathbb{1} \left\{ \omega \in A \left(c_t \right) \setminus A \left(c_{t-1} \right) \right\} = c_t \cdot \mathbb{1} \left\{ \omega \in H_1^t \cup H_2^t \right\}$$

Поскольку множества H_1^t и H_2^t по условию не пересекаются, то можно разбить индикатор на сумму

$$c_t \cdot \mathbb{1}\left\{\omega \in H_1^t \cup H_2^t\right\} = c_t \cdot \left(\mathbb{1}\left\{\omega \in H_1^t\right\} + \mathbb{1}\left\{\omega \in H_2^t\right\}\right)$$
$$= c_t \cdot \mathbb{1}\left\{\omega \in H_1^t\right\} + c_t \cdot \mathbb{1}\left\{\omega \in H_2^t\right\}$$

Если ввести две константы c_1^t и c_2^t , которые будут равны старой c_t , то равенство примет более симпатичный вид

$$c_t \cdot \mathbb{1}\left\{\omega \in H_1^t\right\} + c_t \cdot \mathbb{1}\left\{\omega \in H_2^t\right\} = c_1^t \cdot \mathbb{1}\left\{\omega \in H_1^t\right\} + c_2^t \cdot \mathbb{1}\left\{\omega \in H_2^t\right\}$$

Если же H_2^t не является пустым множеством \emptyset или множеством уровня H_k , то нужно повторить процедуру, разбив H_2^t на объединение двух непересекающихся множеств — на множество уровня и множество из \mathfrak{F} . В итоге (вследствие конечности множества \mathfrak{F}) индикатор разности $A(c_t) \setminus A(c_{t-1})$ будет разбита на сумму индикаторов множеств уровней.

Таким же образом можно поступить со всеми остальными индикаторами. В итоге получим n констант d_1, d_2, \ldots, d_n вместо m c_1, c_2, \ldots, c_m .

Теперь сумма примет более приятный для глаз и понятный из контекста начала раздела вид

$$\varkappa(\omega) = \sum_{i=1}^{m} c_i \cdot \mathbb{1} \left\{ \omega \in A(c_i) \setminus A(c_{i-1}) \right\}$$
$$= \sum_{i=1}^{n} d_i \cdot \mathbb{1} \left\{ \omega \in H_i \right\}$$

Видим, что теперь можно определить отображение из множества значений, принимаемых случайной величиной ξ , в множество значений, принимаемых случайной величиной \varkappa

$$f: \{a_1, a_2, \dots, a_n\} \to \{d_1, d_2, \dots, d_n\}$$

Попробуем показать, что \varkappa является функцией от ξ . Очевидно, что случайная величина ξ имеет такой же вид, что и \varkappa — сумма констант, умноженных на индикаторы, так как мы только что показали, что все функции, измеримые относительно σ -алгебры, порождённой случайной величиной ξ , выглядят именно так

$$f(\xi(\omega)) = f\left(\sum_{i=1}^{n} a_i \cdot \mathbb{1}\left\{\omega \in H_i\right\}\right)$$

Поскольку уровни H_i не пересекаются, то лишь одно слагаемое не будет равно нулю: ω может принадлежать лишь одному уровню. В таком случае запись принимает свой изначальный вид без суммы (2.2)

$$f(\xi(\omega)) = f(a_i), \omega \in H_i$$

Замечаем, что $f(a_i) = d_i$, а это и есть то значение, которое принимает случайная величина \varkappa на уровне H_i

$$f(\xi(\omega)) = f(a_i) = d_i = \varkappa(\omega), \omega \in H_i$$

Поскольку мы не привязывались к конкретным i и конкретным ω , то получаем желаемое равенство

$$\varkappa = f(\xi)$$

Отсюда делаем вывод, что случайной величине \varkappa необходимо и достаточно быть функцией случайной величины ξ , чтобы быть измеримой относительно σ -алгебры, порождённой случайной величиной ξ .

2.4 Условное математическое ожидание

Имеется произвольная случайная величина η , интегрируемая с квадратом. Нужно найти случайную величину $\tilde{\eta}$ которая измерима в $\sigma(\xi)$ и ближайшая в среднем квадратическом к η .

2.4.1 Проекция вектора

Для наглядности начнём с геометрической интерпретации задачи. Если представить η как вектор в некоем пространстве \mathfrak{L} , а $\sigma(\xi)$ как подпространство пространства \mathfrak{L} , то $\tilde{\eta}$ будет ни что иное, как проекция случайной величины η на пространство $\sigma(\xi)$.

Отдохнём от случайных величин и вспомним геометрию.

Имеется точка x в пространстве L'. Мы ищем такую точку y в подпространстве $L \subset L'$, что расстояние между x и y минимальное. Значит, надо опустить перпендикуляр от y на L.

У нас есть e_1, e_2, \ldots, e_n — ортонормированный базис в L, тогда y можно найти по формуле

$$y = \sum_{k=1}^{n} (x, e_k) \cdot e_k$$
 (2.3)

Потому что $y \in L$ должен лежать в пространстве L по условию, а это значит, что он должен быть линейной комбинацией базисных векторов e_1, e_2, \ldots, e_n и это очевидно выполняется

Также разностью x-y должен быть вектор, перпендикулярный пространству L. То есть, скалярное произведение этой разности с любым вектором z из пространства L должно равняться нулю

$$(x-y) \perp L \Leftrightarrow \forall z \in L : (x-y,z) = 0$$

Вследствие линейности скалярного произведения можно переписать это условие иначе

$$\begin{cases} \forall z \in L : (x-y,z) = 0 \\ (a+b,c) = (a,c) + (b,c) \end{cases} \Rightarrow \forall z \in L : (x,z) = (y,z)$$

Покажем, что и это выполняется. z является линейной комбинацией базисных векторов. Запишем это

$$z = \sum_{k=1}^{n} \beta_k \cdot e_k$$

В таком случае скалярное произведение (x, z) будет таким

$$(x,z) = \sum_{k=1}^{n} \beta_k \cdot (x, e_k)$$

 ${
m C}$ произведением (y,x) придётся чуть-чуть повозиться

$$(y,x) = \left(\sum_{k=1}^{n} (x, e_k) \cdot e_k, \sum_{k=1}^{n} \beta_k \cdot e_k\right) = \sum_{k=1}^{n} (x, e_k) \cdot \beta_k$$

Как видим, суммы равны, а значит, проекция x на L найдена верно.

2.4.2 Проекция случайной величины

Возьмём L — множество всех случайных величин, которые измеримы относительно $\sigma(\xi)$.

$$L \ni \sum_{k=1}^{n} c_k \cdot \mathbb{1}_{H_k}, c_k \in \mathbb{R}$$

Но что же взять в качестве ортонормированного базиса? По внешнему виду элементов пространства L кажется, что это $\mathbb{1}_{H_k}$. В качестве скалярного произведения случайных величин возьмём математическое ожидание произведения.

Оказывается, H_k действительно ортогональны

$$k_1 \neq k_2 \Rightarrow H_{k_1} \cap H_{k_2} = \emptyset \Rightarrow M \left(\mathbb{1}_{H_{k_1}} \cdot \mathbb{1}_{H_{k_1}} \right) = 0$$

Теперь нужно нормировать эти базисные вектора, а для этого их надо поделить на их нормы. В нашем пространстве норма порождена скалярным произведением, то есть

$$||x|| = \sqrt{(x,x)} = \sqrt{M(x \cdot x)} = \sqrt{M(x^2)}, x \in L$$

Теперь у нас есть всё необходимое для того, чтобы представить ортонормированный базис. Начнём преобразования H_k

$$e_k = \frac{\mathbbm{1}_{H_k}}{\sqrt{\mathbf{M} \left(\mathbbm{1}_{H_k}\right)^2}}$$

Поскольку индикатор может принимать лишь одно из двух значений 0 или 1, а их квадраты равны им самим, то в формуле квадрат тоже можно убрать

$$e_k = \frac{\mathbb{1}_{H_k}}{\sqrt{\mathbf{M}\,\mathbb{1}_{H_k}}}$$

Также помним, что математическое ожидание в знаменателе есть ни что иное, как вероятность события H_k , и теперь у нас есть красивый ортонормированный базис

$$e_k = \frac{\mathbb{1}_{H_k}}{\sqrt{\mathbb{P}(H_k)}} \tag{2.4}$$

Идём дальше, ищем проекцию. Вспомним снова пример с векторами (2.3)

$$y = \sum_{k=1}^{n} (x, e_k) \cdot e_k$$

Если заменить y на $\tilde{\eta},$ а x на $\eta,$ то получаем следующую картину, имеющую непосредственное отношение к задаче

$$\tilde{\eta} = \sum_{k=1}^{n} (\eta, e_k) \cdot e_k$$

Осталось заменить e_k на то, что получили выше (2.4)

$$\tilde{\eta} = \sum_{k=1}^{n} \left(\eta, \frac{\mathbb{1}_{H_k}}{\sqrt{\mathbb{P}(H_k)}} \right) \cdot \frac{\mathbb{1}_{H_k}}{\sqrt{\mathbb{P}(H_k)}}$$

Заменяем скалярное произведение на математическое ожидание произведения и получаем то, с чем можно дальше работать, не отвлекаясь на геометрию

$$\tilde{\eta} = \sum_{k=1}^{n} \mathbf{M} \left(\eta \cdot \frac{\mathbbm{1}_{H_k}}{\sqrt{\mathbb{P}\left(H_k\right)}} \right) \cdot \frac{\mathbbm{1}_{H_k}}{\sqrt{\mathbb{P}\left(H_k\right)}}$$

Поскольку вероятность $\mathbb{P}\left(H_{k}\right)$ — константа, то её можно вынести за математическое ожидание

$$\tilde{\eta} = \sum_{k=1}^{n} \frac{\mathbf{M} \left(\eta \cdot \mathbb{1}_{H_{k}} \right)}{\sqrt{\mathbb{P} \left(H_{k} \right)}} \cdot \frac{\mathbb{1}_{H_{k}}}{\sqrt{\mathbb{P} \left(H_{k} \right)}}$$

При умножении знаменателей получаем вероятность события H_k . Теперь у нас есть красивая формула для проекции случайной величины

$$\tilde{\eta} = \sum_{k=1}^{n} \frac{\mathbf{M} \left(\eta \cdot \mathbb{1}_{H_k} \right)}{\mathbb{P} \left(H_k \right)} \cdot \mathbb{1}_{H_k}$$
(2.5)

На что стоит обратить внимание в этой формуле:

- 1. $\tilde{\eta}$ случайная величина, так как индикатор вне математического ожидания никуда не девается и результат суммы будет зависеть от произошедшего ω , а точнее от того, какому уровню H_k оно принадлежит
- 2. Когда ω принадлежит H_k , то результатом суммы будет среднее значение случайной величины η на событии H_k

Если с первым пунктом всё очевидно, то небольшое пояснение ко второму не помещает.

Нужно показать, что k-я "координата" случайной величины $\tilde{\eta}$ действительно даёт среднее значение случайной величины η на событии H_k

$$\frac{\mathbf{M}\left(\eta\cdot\mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)}$$

Начнём с определения математического ожидания

$$M\left(\eta \cdot \mathbb{1}_{H_{k}}\right) = \int_{\Omega} \eta\left(\omega\right) \cdot \mathbb{1}_{H_{k}} \mathbb{P}\left(d\omega\right) =$$

$$= \int_{H_{k}} \eta\left(\omega\right) \mathbb{P}\left(d\omega\right) + \int_{\Omega \backslash H_{k}} 0 \mathbb{P}\left(d\omega\right)$$
(2.6)

Видим математическое ожидание случайной величины, которая гарантированно принимает нулевое значение на множестве $\Omega \setminus H_k$, что в свою очередь искажает желаемую картину и притягивает результат к нулю с силой, которая пропорциональна $\mathbb{P}\left(\Omega \setminus H_k\right)$. То есть, "вес" каждого ненулевого значения случайной величины уменьшился.

Почему так происходит? Потому что вероятность события H_k в общем случае не равна единице. Если ввести новую меру $\mathbb{P}_k(A) = \frac{\mathbb{P}(A)}{\mathbb{P}(H_k)}$, то наступит гармония, а вероятность $\mathbb{P}_k(H_k)$ будет равна единице.

Из контекста понятно, что эта мера будет использоваться лишь в интеграле по событию H_k , поэтому её значение будет колебаться в пределах [0;1], но строгости ради введём небольшую поправку (и увидим, что не напрасно)

$$\mathbb{P}_{k}(A) = \frac{\mathbb{P}(A \cap H_{k})}{\mathbb{P}(H_{k})}$$

Видим условную вероятность, а это значит, что мы на правильном пути! Логично, что в поисках условного математического ожидания должна была встретиться условная вероятность

$$\mathbb{P}_{k}\left(A\right) = \frac{\mathbb{P}\left(A \cap H_{k}\right)}{\mathbb{P}\left(H_{k}\right)} = \mathbb{P}\left(A \mid H_{k}\right)$$

Теперь математическое ожидание (2.6) принимает несколько иной вид

$$M\left(\eta \cdot \mathbb{1}_{H_k}\right) = \mathbb{P}\left(H_k\right) \cdot \int_{H_k} \eta\left(\omega\right) \, \mathbb{P}\left(d\omega \mid H_k\right)$$

Тут уже уровень H_k играет роль целого множества элементарных исходов, его мера $\mathbb{P}(H_k \mid H_k)$ равна единице, а мы получаем действительно среднее значение случайной величины η на множестве H_k , умноженное на вероятность $\mathbb{P}(H_k)$. Значит, осталось лишь поделить обе части на $\mathbb{P}(H_k)$

$$\frac{\mathbf{M}\left(\boldsymbol{\eta}\cdot\mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)}=\int_{H_{k}}\boldsymbol{\eta}\left(\boldsymbol{\omega}\right)\,\mathbb{P}\left(d\boldsymbol{\omega}\mid H_{k}\right)$$

Определение 2.4.1 (Условное математическое ожидание случайной величины относительно случайного события). Условное математическое ожидание случайной величины ξ относительно события A [2, стр. 68] обозначается M (ξ | A) и считается по формуле

$$M(\xi \mid A) = \frac{M(\xi \cdot \mathbb{1}_{A})}{\mathbb{P}(A)} = \int_{A} \xi(\omega) \mathbb{P}(d\omega \mid A)$$

Пользуясь только что введённым обозначением, можно более красиво переписать формулу (2.5) для получения проекции случайной величины η на σ -алгебру, порождённой уровнями H_1, H_2, \ldots, H_n

$$\tilde{\eta} = \sum_{k=1}^{n} M \left(\eta \mid H_k \right) \cdot \mathbb{1}_{H_k}$$

Забегая наперёд, введём определение частного случая условного математического ожидания случайной величины относительно σ -алгебры, чтобы обратить внимание на этот важный момент.

Определение 2.4.2 (Условное математическое ожидание случайной величины относительно сигма-алгебры, порождённой случайной величиной, принимающей конечное количество значений). Есть σ -алгебра \mathfrak{F}_1 , разбитая

на n уровней H_1, H_2, \ldots, H_n . Тогда условное математическое ожидание случайной величины η относительно этой σ -алгебры — случайная величина, которая обозначается $M(\eta \mid \mathfrak{F}_1)$ и вычисляется по формуле

$$\mathrm{M}\left(\eta\mid\mathfrak{F}_{1}\right)=\sum_{k=1}^{n}\frac{\mathrm{M}\left(\eta\cdot\mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)}\cdot\mathbb{1}_{H_{k}}$$

Замечание 12. У нас есть определения условного математического ожидания относительно σ -алгебры $\mathfrak F$ и относительно случайного события А. Из контекста будет ясно, какое именно определение используется, поэтому путаницы возникнуть не должно.

Например, последнее определение может выглядеть немного странно

$$M(\eta \mid \mathfrak{F}_1) = \sum_{k=1}^{n} M(\eta \mid H_k) \cdot \mathbb{1}_{H_k}$$

Зато при более детальном рассмотрении из самой записи очевиден её смысл: условное математическое ожидание относительно σ -алгебры — вектор, для получения которого нужно умножить проекции на базисные векторы. Ведь M ($\eta \mid H_k$) — ни что иное, как проекция вектора (случайной величины) η на ось (уровень) H_k , также эта величина является скаляром, как и проекция вектора на ось.

Лемма 2.4.1 (Равенство скалярных произведений для конечной сигмаалгебры). Для случайной величины η и её проекции $\tilde{\eta}$ на σ -алгебру \mathfrak{F}_{ξ} , порождённую случайной величиной ξ , принимающей конечное количество значений, выполняется равенство скалярных произведений

$$\forall A \in \mathfrak{F}_{\xi} : \mathcal{M} \left(\tilde{\eta} \cdot \mathbb{1}_{A} \right) = \mathcal{M} \left(\eta \cdot \mathbb{1}_{A} \right) \tag{2.7}$$

 \mathcal{A} оказательство. Для начала распишем $\tilde{\eta}$ по определению

$$\mathbf{M}\left(\tilde{\eta}\cdot\mathbb{1}_{A}\right)=\mathbf{M}\left(\sum_{k=1}^{n}\frac{\mathbf{M}\left(\eta\cdot\mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)}\cdot\mathbb{1}_{H_{k}}\cdot\mathbb{1}_{A}\right)$$

Произведение индикаторов $\mathbb{1}_{H_k}$ и $\mathbb{1}_A$ — индикатор пересечения $\mathbb{1}_{H_k\cap A}$. Воспользуемся линейностью математического ожидания, не забывая, что дробь в каждом слагаемом — константа и выносится за знак математического ожидания

$$M\left(\sum_{k=1}^{n} \frac{M\left(\eta \cdot \mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)} \cdot \mathbb{1}_{H_{k}} \cdot \mathbb{1}_{A}\right) = \sum_{k=1}^{n} \frac{M\left(\eta \cdot \mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)} \cdot M\left(\mathbb{1}_{H_{k} \cap A}\right)$$

Помним, что математическое ожидание индикатора — вероятность

$$\sum_{k=1}^{n} \frac{\mathrm{M}\left(\eta \cdot \mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)} \cdot \mathrm{M}\left(\mathbb{1}_{H_{k} \cap A}\right) = \sum_{k=1}^{n} \frac{\mathrm{M}\left(\eta \cdot \mathbb{1}_{H_{k}}\right)}{\mathbb{P}\left(H_{k}\right)} \cdot \mathbb{P}\left(H_{k} \cap A\right)$$

Замечаем условную вероятность

$$\sum_{k=1}^{n} \frac{\mathbf{M} (\eta \cdot \mathbb{1}_{H_{k}})}{\mathbb{P} (H_{k})} \cdot \mathbb{P} (H_{k} \cap A) = \sum_{k=1}^{n} \mathbf{M} (\eta \cdot \mathbb{1}_{H_{k}}) \cdot \frac{\mathbb{P} (H_{k} \cap A)}{\mathbb{P} (H_{k})} =$$

$$= \sum_{k=1}^{n} \mathbf{M} (\eta \cdot \mathbb{1}_{H_{k}}) \cdot \mathbb{P} (A \mid H_{k})$$

Поскольку A принадлежит множеству случайных событий \mathfrak{F}_{ξ} , то условная вероятность $\mathbb{P}(A\mid H_k)$ равна либо нулю, либо единице, поскольку A либо включает в себя уровень H_k , либо не пересекается с ним. То есть, получился индикатор $\mathbb{1}(H_k\subseteq A)$. А этот индикатор говорит о том, что теперь надо суммировать лишь по тем уровням, которые являются частью события A, а дальше можно смело воспользоваться линейностью математического ожидания

$$\sum_{k=1}^{n} M (\eta \cdot \mathbb{1}_{H_{k}}) \cdot \mathbb{P} (A \mid H_{k}) = \sum_{k=1}^{n} M (\eta \cdot \mathbb{1}_{H_{k}}) \cdot \mathbb{1} (H_{k} \subseteq A) =$$

$$= \sum_{H_{k} \subseteq A} M (\eta \cdot \mathbb{1}_{H_{k}}) = M \left(\sum_{H_{k} \subseteq A} \eta \cdot \mathbb{1}_{H_{k}} \right)$$

Далее мы имеем полное математическое и моральное право вынести η за знак суммы. Если с математикой всё очевидно (работает закон дистрибутивности), то напомню о морально-этической стороне дела: нам нужно, пройтись по всем возможным индикаторам $\mathbbm{1}_{H_k}$, из которых лишь один сработает (будет равен единице, а не нулю), поэтому сумма нужна лишь для того, чтобы не писать в конце каждой строчки "для тех ω , что входят в H_k " (помним, что случайная величина и индикатор — функции от элементарного события ω)

$$\mathbf{M}\left(\sum_{H_{k}\subseteq A}\eta\cdot\mathbb{1}_{H_{k}}\right)=\mathbf{M}\left(\eta\left(\omega\right)\cdot\sum_{H_{k}\subseteq A}\mathbb{1}_{H_{k}}\left(\omega\right)\right)$$

Сумма индикаторов непересекающихся событий — индикатор их объединения, которое является множеством A. Не забываем, что оно может состоять из объединений уровней и только из них (или же быть пустым)

$$\mathcal{M}\left(\eta \cdot \sum_{H_k \subseteq A} \mathbb{1}_{H_k}\right) = \mathcal{M}\left(\eta \cdot \mathbb{1}_A\right)$$

Значит, равенство (2.7) выполняется.

Замечание 13. В связи с выполнением равенства скалярных произведений можем сделать вывод, что математическое ожидание случайной величины и её проекции тоже равны. Это нетрудно показать, установив А равным всему множеству элементарных исходов (индикатор в таком случае станет просто тождественной единицей)

$$M(\eta) = M(\eta \cdot \mathbb{1}_{\Omega}) = M(\tilde{\eta} \cdot \mathbb{1}_{\Omega}) = M(\tilde{\eta})$$

2.4.3 Условное математическое ожидание

Введём же общее определение для условного математического ожидания случайной величины относительно σ -алгебры

Определение 2.4.3 (Условное математическое ожидание случайной величины относительно сигма-алгебры). Условным математическим ожиданием случайной величины η относительно σ -алгебры \mathfrak{F}_1 называется такая случайная величина $\tilde{\eta}$, что

- 1. Случайная величина $\tilde{\eta}$ измерима относительно σ -алгебры \mathfrak{F}_1
- 2. Выполняется равенство скалярных произведений

$$\forall A \in \mathfrak{F}_1 : M(\tilde{\eta} \cdot \mathbb{1}_A) = M(\eta \cdot \mathbb{1}_A)$$

Обозначение $\tilde{\eta} = M (\eta \mid \mathfrak{F}_1)$

Замечание 14. Условное математическое ожидание случайной величины η относительно σ -алгебры, порождённой случайной величиной ξ , будем обозначать $M(\eta \mid \sigma(\xi))$, а более кратко $M(\eta \mid \xi)$.

То есть, имеем три эквивалентных записи

$$M(\eta \mid \mathfrak{F}_{\xi}) = M(\eta \mid \sigma(\xi)) = M(\eta \mid \xi)$$

Попробуем обобщить определение условного математического ожидания, чтобы обладать универсальной формулой, из которой можно делать какие-то выводы. Начнём с того, что у нас уже есть

$$\mathbf{M}\left(\boldsymbol{\eta}\mid\mathfrak{F}_{\xi}\right)=\sum_{k=1}^{n}\mathbf{M}\left(\boldsymbol{\eta}\mid\boldsymbol{H}_{k}\right)\cdot\mathbb{1}_{H_{k}}$$

Множество уровня H_k — прообраз одного из значений случайной величины ξ , которой порождена σ -алгебра \mathfrak{F}_{ξ} . Если назвать эти значения a_1, a_2, \ldots, a_n , то запись примет следующий вид

$$M(\eta \mid \sigma(\xi)) = \sum_{k=1}^{n} M(\eta \mid \xi^{-1}(a_k)) \cdot \mathbb{1}(\xi^{-1}(a_k))$$
(2.8)

Вспомним альтернативные записи прообраза

$$\xi^{-1}(a_k) = \{ \omega \mid \xi(\omega) = a_k \} = \{ \xi = a_k \}$$

И перепишем формулу (2.8)

$$M(\eta \mid \sigma(\xi)) = \sum_{k=1}^{n} M(\eta \mid \xi = a_k) \cdot \mathbb{1}_{\xi = a_k}$$

Теперь введём функцию $\varphi^{\eta}(x) = \mathrm{M}\left(\eta \mid \xi = x\right)$ и условное математическое ожидание примет следующий вид

$$M\left(\eta \mid \xi\right) = \sum_{k=1}^{n} \varphi^{\eta}\left(a_{k}\right) \cdot \mathbb{1}_{\xi=a_{k}}$$

Вновь вспоминаем роль суммы и индикаторов и видим, что условное математическое ожидание в нашей формуле принимает значение $\varphi^{\eta}\left(x\right)$ в

зависимости от того, какое значение приняла случайная величина $\xi(\omega)$. То есть, можно переписать равенство следующим образом

$$M(\eta \mid \xi) = \varphi^{\eta}(a_k) : \xi(\omega) = a_k$$

То есть, можно просто подставить значение случайной величины ξ в качестве аргумента функции φ^{η} и получим условное математическое ожилание

$$M\left(\eta \mid \xi\right) = \varphi^{\eta}\left(\xi\right)$$

Остановимся ещё немного на функции φ^{η} . Она является случайной величиной, поэтому перепишем равенство следующим образом

$$\varphi^{\eta}(\xi)(\omega) = M(\eta \mid \xi)(\omega)$$

Тогда будет корректна следующая запись

$$\varphi^{\eta}(\xi)(\omega) = M(\eta \mid \xi = t)\Big|_{t=\xi(\omega)}$$

Не путаем случайную величину $\xi\left(\omega\right)$ саму по себе со случайной величиной в случайном событии

$$H_t = \{ \xi = t \} = \{ \tilde{\omega} \mid \xi \left(\tilde{\omega} \right) = t \}$$

Для удобства вернёмся к обозначению H_t

$$\varphi^{\eta}(\xi)(\omega) = M(\eta \mid H_t)\Big|_{t=\xi(\omega)} = \frac{M(\eta \cdot \mathbb{1}_{H_t})}{\mathbb{P}(H_t)}\Big|_{t=\xi(\omega)}$$

Покажем, что такая формула вычисления условного математического ожидания подходит для общего случая.*

Пемма 2.4.2 (Равенство скалярных произведений в общем случае). В общем случае случайная величина $\varphi^{\eta}(\xi)$ является условным математическим ожиданием случайной величины η относительно σ -алгебры, порождённой случайной величиной ξ

$$M(\eta \mid \sigma(\xi)) = \varphi^{\eta}(\xi)$$

Доказательство. Нужно доказать то, что выполняются оба свойства условного математического ожидания.

То, что $\varphi^{\eta}(\xi)$ измерима относительно $\sigma(\xi)$, очевидно из определения: $\varphi^{\eta}(\xi)$ является функцией случайной величины ξ , а это и есть измеримость. Дальше придётся немного повозиться.

$$\forall A \in \sigma(\xi) : M(\varphi^{\eta}(\xi) \cdot \mathbb{1}_A) = M(\eta \cdot \mathbb{1}_A)$$

Следуем определению. Пока что ничего очевидного нет кроме надежды на то, что была выведена достаточно общая формула, которая должна работать

$$M\left(\varphi^{\eta}\left(\xi\right)\cdot\mathbb{1}_{A}\right)=\int_{\Omega}\varphi^{\eta}\left(\xi\right)\cdot\mathbb{1}_{A}\,d\mathbb{P}$$

^{*}Так как формула была выведена из условного математического ожидания относительно σ -алгебры, порождённой случайной величиной, принимающей конечное количество значений, то справедливость формулы для этого случая доказывать уже нет нужды

Применим индикатор и будем интегрировать не по всему множеству элементарных исходов, а лишь по событию A, а также в явном виде покажем элементарный исход ω , так как сейчас с ним надо будет поработать основательно

$$\int_{\Omega} \varphi^{\eta}(\xi) \cdot \mathbb{1}_{A} d\mathbb{P} = \int_{A} \varphi^{\eta}(\xi(\omega)) \, \mathbb{P}(d\omega)$$
(2.9)

Теперь нужно немного остановиться и подумать, что же делать дальше. Немного выше оказалось, что сама по себе запись $\varphi^n(\xi)$ не даёт ничего полезного. Копнём немно глубже и посмотрим на то, что есть у нас. Значение случайной величины использовалось лишь для восстановления случайного события, которому принадлежит произошедший элементарный исход ω^{\dagger} . То есть, мы знали, чему равна случайная величина, но не знали, какое именно событие произошло, зато могли определить, какому уровню принадлежит произошедшее событие. Тут же у нас есть интеграл и мы проходим по каждому мельчайшему событию $d\omega$. Вспомним, чему равна $\varphi^n(x)$

$$\varphi^{\eta}(x) = M(\eta \mid \xi = x)$$

А теперь распишем условное математическое ожидание

$$\varphi^{\eta}(x) = M(\eta \mid \xi = x) = \frac{M(\eta \cdot \mathbb{1}_{\{\xi = x\}})}{\mathbb{P}\{\xi = x\}}$$

В общем случае для непрерывных случайных величин такая запись не имеет смысла, но мы как раз рассматриваем очень маленькие значения, а усложнять нет желания. Поэтому просто подставляем получившееся выражение в интеграл (2.9)

$$\int_{A} \varphi^{\eta} \left(\xi \left(\omega \right) \right) \mathbb{P} \left(d\omega \right) = \int_{A} \frac{M \left(\eta \cdot \mathbb{1}_{\left\{ \xi = x \right\}} \right)}{\mathbb{P} \left\{ \xi = x \right\}} \mathbb{P} \left(d\omega \right) \tag{2.10}$$

Дальше происходит магия, которую можно трактовать по-разному

Формулировка 1: Воспользовавшись вышесказанным, заменим событие $\{\xi=x\}$ на $d\omega$ и продолжим колдовать

$$\int_{A} \frac{\mathrm{M}\left(\eta \cdot \mathbb{1}_{\{\xi = x\}}\right)}{\mathbb{P}\left\{\xi = x\right\}} \, \mathbb{P}\left(d\omega\right) = \int_{A} \frac{\mathrm{M}\left(\eta \cdot \mathbb{1}_{d\omega}\right)}{\mathbb{P}\left(d\omega\right)} \, \mathbb{P}\left(d\omega\right)$$

Вероятности сокращаются, хоть это и немного смущает, а $d\omega$ находится в индикаторе, что ещё больше нагнетает обстановку. Учтём внесённые изменения и перепишем математическое ожидание через интеграл

$$\int_{A} \frac{M(\eta \cdot \mathbb{1}_{d\omega})}{\mathbb{P}(d\omega)} \mathbb{P}(d\omega) = \int_{A} \int_{\Omega} \eta \cdot \mathbb{1}_{d\omega} \cdot \mathbb{P}(d\tilde{\omega})$$

$$H_t = \xi^{-1}(a_t) = \{\omega \mid \xi(\omega) = a_t\}$$

[†]Ведь именно по значению случайной величины мы и находили уровни, элементарные исходы которых для нас неразличимы внутри одного множества уровня

Не путаемся: $d\omega$ принадлежит внешнему интегралу, а $d\tilde{\omega}$ внутреннему. Индикатор упрощает нашу задачу, сужая пределы интегрирования внутреннего интеграла до маленького события $d\omega$

$$\int_{A} \int_{\Omega} \eta \cdot \mathbb{1}_{d\omega} \cdot \mathbb{P}(d\tilde{\omega}) = \int_{A} \int_{d\omega} \eta(\tilde{\omega}) \, \mathbb{P}(d\tilde{\omega})$$

Поскольку событие $d\omega$ и без того маленькое, дробить его на более мизерные $d\tilde{\omega}$ смысла нет, а это значит, что внутренний интеграл просто уничтожается и остаётся произведение случайной величины η на вероятность события $d\omega$

$$\int_{d\omega} \eta\left(\tilde{\omega}\right) \, \mathbb{P}\left(d\tilde{\omega}\right) = \eta\left(\omega\right) \cdot \mathbb{P}\left(d\omega\right)$$

Формулировка 2: Если посмотреть на исходный двойной интеграл, то можно увидеть условное математическое ожидание η относительно события $\{\xi=x\}=d\omega$

$$\int_{A} \frac{\mathbf{M}\left(\eta \cdot \mathbb{1}_{\left\{\xi = x\right\}}\right)}{\mathbb{P}\left\{\xi = x\right\}} \, \mathbb{P}\left(d\omega\right) = \int_{A} \mathbf{M}\left(\eta \mid d\omega\right) \, \mathbb{P}\left(d\omega\right)$$

Если определить $d\omega$ как случайное событие, на котором случайная величина η принимает одно и то же значение почти всюду, то математическое ожидание равно значению η при появлении почти любого события из $d\omega^{\dagger}$ (если значение на промежутке $d\omega$ — константа, то очевидно, что среднее значение будет равно ей же).

$$\int_{A} \mathbf{M} (\eta \mid d\omega) \, \mathbb{P} (d\omega) = \int_{A} \eta \, \mathbb{P} (d\omega)$$

С этим моментом разобрались, вернёмся же к нашему двойному интегралу (2.10). Получаем такой вот результат

$$\int_{A} \frac{M(\eta \cdot \mathbb{1}_{\{\xi = x\}})}{\mathbb{P}\{\xi = x\}} \mathbb{P}(d\omega) = \int_{A} \eta \mathbb{P}(d\omega)$$

Но ведь это и есть искомое математическое ожидание! Значит, свойство доказано, формула верна

$$\int_{A} \eta \mathbb{P}(d\omega) = \int_{\Omega} \eta \cdot \mathbb{1}_{A} \cdot \mathbb{P}(d\omega) = M(\eta \cdot \mathbb{1}_{A})$$

 ‡ Нам достаточно постоянства значения $\xi\left(\omega\right)$ почти всюду на событии $d\omega$, так как интеграл Лебега простой функции (функции, что принимает конечное число значений [3, стр. 53]) — сумма значений функции, умноженных на меры соответствующих им прообразов [3, стр. 69]; в противном случае результатом будет наибольшее значение из интегралов Лебега всех простых функций, не превышающих данную в каждой точке. А это значит, что, если и будут отклонения от основного значения функции ξ на событии $d\omega$, то они будут уничтожаться мерой своих прообразов, равными нулю (в связи с тем, что функция $\xi\left(\omega\right)$ равна одному и тому же значению почти всюду на ω)

Теперь вернёмся к менее абстрактным вещам и посмотрим, как выглядит условное математическое ожидание, когда случайные величины ξ и η имеют совместную плотность распределения

$$\mathbb{P}\left\{ \left(\xi,\eta\right)\in\Delta\right\} = \iint\limits_{\Delta} p\left(x,y\right)\,dx\,dy$$

В таком случае компонента ξ имеет плотность r

$$r\left(x\right) = \int_{\mathbb{R}} p\left(x, y\right) \, dy$$

Компонента η имеет плотность q

$$q\left(y\right) = \int_{\mathbb{D}} p\left(x, y\right) \, dx$$

Уточним определение функции $\varphi^{\eta}\left(x\right)$ для данного случая. Вот первоначальный вариант

$$\varphi^{\eta}(x) = M(\eta \mid \xi = x) = \frac{M(\eta \cdot \mathbb{1}(\xi = x))}{\mathbb{P}\{\xi = x\}}$$

В данном (непрерывном) случае вероятность события $\mathbb{P}\left\{\xi=x\right\}$ является плотностью случайной величины ξ в точке x

$$\mathbb{P}\left\{ \xi = x \right\} = r\left(x \right)$$

Математическое ожидание случайной величины η , умноженной на индикатор $\mathbbm{1}(\xi=x)$, есть ни что иное как математическое ожидание η при фиксированном $\xi=x$

$$M(\eta \cdot \mathbb{1}(\xi = x)) = \int_{\mathbb{R}} y \cdot p(x, y) dy$$

Теперь у нас есть конкретная формула для $\varphi^{\eta}(x)$ для случая непрерывных случайных величин с общей плотностью распределения

$$\varphi^{\eta}(x) = \frac{\int\limits_{\mathbb{R}} y \cdot p(x, y) \, dy}{r(x)} = \frac{\int\limits_{\mathbb{R}} y \cdot p(x, y) \, dy}{\int\limits_{\mathbb{R}} p(x, y) \, dy}$$
(2.11)

Докажем снова, что $\varphi^{\eta}(\xi)$ является условным математическим ожиданием случайной величины η относительно σ -алгебры, порождённой случайной величиной ξ . Чтобы не было скучно, будем доказывать несколько иначе, чем ранее.

Лемма 2.4.3 (Равенство скалярных произведений для случайных величин с совместной плотностью). Пускай имеются две случайные величины (ξ, η) с совместной плотностью p(x,y). Тогда функция

$$\varphi^{\eta}\left(\xi\right) = \frac{\int\limits_{\mathbb{R}} y \cdot p\left(x, y\right) \, dy}{\int\limits_{\mathbb{R}} p\left(x, y\right) \, dy} \bigg|_{x=\xi}$$

Является условным математическим ожиданием $\mathrm{M}\left(\eta\mid\xi\right)$

Доказательство. Первое свойство снова очевидно, поэтому надо доказать

$$\forall A \in \sigma(\xi) : \mathcal{M}(\varphi^{\eta}(\xi) \cdot \mathbb{1}_A) = \mathcal{M}(\eta \cdot \mathbb{1}_A) \tag{2.12}$$

У нас есть совместная плотность и мы хотим посчитать математическое ожидание, пользуясь именно ею. Для этого превратим индикатор $\mathbbm{1}$ ($\omega \in A$) в функцию случайной величины ξ . Поскольку любое событие A принадлежит $\sigma(\xi)$, то оно представимо в виде $\xi^{-1}(\Delta)$, $\Delta \in \mathfrak{B}$. Перепишем индикатор следующим образом: $\mathbbm{1}$ ($\omega \in A$) = $\mathbbm{1}$ ($\xi \in \Delta$). И вот теперь мы готовы к тому, чтобы записать определение математического ожидания

$$M\left(\varphi^{\eta}\left(\xi\right)\cdot\mathbb{1}_{A}\right)=\int\limits_{\mathbb{R}}\int\limits_{\mathbb{R}}\varphi^{\eta}\left(x\right)\cdot\mathbb{1}\left(x\in\Delta\right)\cdot p\left(x,y\right)\,dx\,dy$$

От y зависит лишь совместная плотность, а интеграл от неё по всей оси y является плотностью распределения ξ . То есть, интеграл по y уходит, а вместо p(x,y) появляется r(x). Также учтём индикатор и сузим область интегрирования с $\mathbb R$ до Δ

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \varphi^{\eta}(x) \cdot \mathbb{1}(x \in \Delta) \cdot p(x, y) \ dx \ dy = \int_{\Delta} \varphi^{\eta}(x) \cdot r(x) \ dx$$

Дальше распишем функцию φ^{η} , пользуясь формулой (2.11)

$$\int\limits_{\Delta}\varphi^{\eta}\left(x\right)\cdot r\left(x\right)\,dx=\int\limits_{\Delta}\left(\frac{\int\limits_{\mathbb{R}}y\cdot p\left(x,y\right)\,dy}{r\left(x\right)}\cdot r\left(x\right)\right)\,dx$$

Сократим одинаковые плотности и получим интересный двойной интеграл

$$\int_{\Delta} \left(\frac{\int_{\mathbb{R}} y \cdot p(x, y) \, dy}{r(x)} \cdot r(x) \right) \, dx = \int_{\Delta} \int_{\mathbb{R}} y \cdot p(x, y) \, dy \, dx$$

Вернём индикатор обратно в интеграл

$$\int\limits_{\Delta}\int\limits_{\mathbb{R}}y\cdot p\left(x,y\right)\cdot\,dy\,dx=\int\limits_{\mathbb{R}}\int\limits_{\mathbb{R}}y\cdot\mathbbm{1}\left(x\in\Delta\right)\cdot p\left(x,y\right)\,dy\,dx$$

Видим, что это и есть то математическое ожидание, которое нам нужно

$$\int\limits_{\mathbb{D}}\int\limits_{\mathbb{D}}y\cdot\mathbbm{1}\left(x\in\Delta\right)\cdot p\left(x,y\right)\,dy\,dx=\mathrm{M}\left(\eta\cdot\mathbbm{1}_{\xi\in\Delta}\right)=\mathrm{M}\left(\eta\cdot\mathbbm{1}_{A}\right)$$

Это значит, что тождество доказано и условное математическое ожидание для случайных величин с совместной плотностью считается с помощью

$$\varphi^{\eta}(x) = \frac{\int\limits_{\mathbb{R}} y \cdot p(x, y) \, dy}{\int\limits_{\mathbb{R}} p(x, y) \, dy}$$

По формуле

$$M\left(\eta\mid\xi\right)=\varphi^{\eta}\left(\xi\right)=\left.\varphi^{\eta}\left(x\right)\right|_{x=\xi}$$

Теорема 2.4.1 (Существование условного математического ожидания). Условное математическое ожидание существует всегда и единственное почти наверное

Доказательство. [1, стр. 142] \Box

2.4.4 Свойства условного математического ожидания

Были даны определения условного математического ожидания для разных случай, теперь настало время привести основные свойства, которые позволят облегчить процедуру вычисления.§

1. Формула полной вероятности [1, стр. 144]

$$MM(\eta \mid \mathfrak{F}_1) = M\eta$$

2. Условное математическое ожидание неотрицательной случайной величины неотрицательно почти наверное

$$\eta \ge 0 \Rightarrow M(\eta \mid \mathfrak{F}_1) \ge 0$$

3. Неравенство Йенсена. Если функция φ выпуклая вниз, то

$$\varphi \left(M \left(\eta \mid \mathfrak{F}_1 \right) \right) \leq M \left(\varphi \left(\eta \right) \mid \mathfrak{F}_1 \right)$$

4. Теорема о трёх перпендикулярах

$$\mathfrak{F}_2 \subset \mathfrak{F}_1 \Rightarrow M(M(\eta \mid \mathfrak{F}_1) \mid \mathfrak{F}_2) = M(\eta \mid \mathfrak{F}_2)$$

5. Если случайная величина η измерима относительно σ -алгебры \mathfrak{F}_1 , то её условное математическое ожидание равно ей самой

$$M(\eta \mid \mathfrak{F}_1) = \eta$$

6. Если случайная величина η измерима относительно \mathfrak{F}_1 , то для любой случайной величины ξ

$$M\left(\eta\cdot\xi\mid\mathfrak{F}_{1}\right)=\eta\cdot M\left(\xi\mid\mathfrak{F}_{1}\right)$$

7. Если η не зависит от \mathfrak{F}_1 , то её условное математическое ожидание равно простому математическому ожиданию

$$\forall \Delta \in \mathfrak{B}, A \in \mathfrak{F}_1 : \mathbb{P}(\{\eta \in \Delta\} \mid A) = \{\eta \in \Delta\} \Rightarrow M(\eta \mid \mathfrak{F}_1) = M\eta$$

8. Условное математическое ожидание линейно, сохраняется теорема Лебега о возможности предельного перехода под знаком условного математического ожидания [5, стр. 302]. В книге Ширяева это называется теоремой о сходимости под знаком условных ожиданий [4, стр. 272]

 $[\]S$ Также со свойствами и их доказательствами можно ознакомиться в книгах Ширяева [4, стр. 270] и Боровкова [1, стр. 143]

2.4.5 Условное математическое ожидание функции произвольной случайной величины

Чем вызвала интерес эта тема? Допустим, у нас есть x_1,\dots,x_n — выборка с функцией правдоподобия L

$$L\left(\vec{x},\theta\right) = \prod_{k=1}^{n} p\left(x_k,\theta\right)$$

Также есть $\hat{\theta}$ — несмещённая оценка параметра θ . Как улучшить $\hat{\theta}$? Возьмём статистику $T = T(\vec{x})$, тогда улучшенной оценкой θ будет условное математическое ожидание $M(\hat{\theta} \mid T)$.

О свойствах, которыми должна обладать статистика T, поговорим позже. Одно ясно уже сейчас: T является функцией от выборки \vec{x} , как и оценка $\hat{\theta}$. Это значит, что нам не нужно погружаться в слишком абстрактные размышления, а достаточно выяснить, как считать математическое ожидание одной функции выборки (случайного вектора) $f(\vec{x})$ при условии другой функции $g(\vec{x})$ той же выборки \vec{x} .

$$f,g:\mathbb{R}^n\to\mathbb{R}$$

Вспомним, что для поиска условного математического ожидания мы находили функцию $\varphi^{\eta}(x)=\mathrm{M}\,(\eta\mid\xi=x)$. Тут изменилось совсем немного — лишь обозначения: вместо η у нас $f(\vec{x})$, а вместо ξ тут $g(\vec{x})$. Значит, нужно найти вид такого условного математического ожидания

$$M(f(\vec{x}) | g(\vec{x}) = t) = ?$$

Для начала нужно понять, что из себя представляет множество точек $S_t = \{\vec{u} \mid g\left(\vec{u}\right) = t\}.$

Очевидно, что функция $g(\vec{x})$ описывает скалярное поле в n-мерном пространстве. А для скалярного поля множество S_t имеет своё название — поверхность уровня (изоповерхность) — то есть, поверхность, на которой функция принимает одно и то же значение.

Для понимания ситуации рассмотрим несколько примеров.

Пример 2.4.1. Имеем двумерное пространство

$$n=2, g: \mathbb{R}^2 \to \mathbb{R}$$

Функция $g\left(x,y\right)$ просто даёт первую координату

$$g(x,y) = x$$

Очевидно, что поверхности уровней — просто вертикальные линии, так как при изменении y значение функции не меняется

$$S_t = \{(x, y) \mid g(x, y) = t\} = \{(x, y) \mid x = t\}$$

Пример 2.4.2. Опять возьмём двумерное пространство

$$n=2, q: \mathbb{R}^2 \to \mathbb{R}$$

Но в этот раз функция $g\left(x,y\right)$ будет квадратом расстояния от начала координат (0,0) до точки (x,y)

$$g\left(x,y\right) = x^2 + y^2$$

Тут поверхностями уровня будут окружности радиуса \sqrt{t} , так как окружность по определению является геометрическим местом точек, равноудалённых от определённой точки (расстояния до которых одинаковые)

$$S_t = \{(x,y) \mid x^2 + y^2 = t\} = \{(x,y) \mid x^2 + y^2 = \sqrt{t}^2\}$$

Литература

- [1] Боровков А. А. Математическая статистика. Санкт-Петербург: Лань, 2010. 705 с.
- [2] Боровков А. А. Теория Вероятностей. Москва: Эдиториал УРСС, 1999. 472 с.
- [3] Дороговцев А. Я. Элементы общей теории меры и интеграла. Киев: Выща школа. Головное издательство, 1989. 152 с.
- [4] Ширяев А. Н. Вероятность-1. Москва: МЦНМО, 2004. 520 с.
- [5] А. Н. Колмогоров С. В. Фомин. Элементы теории функций и функционального анализа. Москва: Наука, 1976. 543 с.

Предметный указатель

```
Сигма-алгебра, порождённая случай- выборочная дисперсия, 12
        ной величиной, 26
                                    выборочное среднее, 12
функция
                                    вклад выборки, 15
    правдоподобия, 14
    вариационного ряда, 26
функция распределения
    эмпирическая, 3
    неизвестная, 3
    выборочная, 3
гистограмма, 5
количество информации Фишера, 16
множество уровня, 28
неизвестный параметр, 8
неравенство
    Рао-Крамера, 16
оценка, 8
    эффективная, 18
    максимального правдоподобия, 21
    несмещённая, 10
   сильно состоятельная, 9
    состоятельная, 9
проекция
    случайной величины, 35
распределение
   экспоненциальное, 20
сигма-алгебра
    порождённая случайной величи-
        ной, 26
симметризация, 23
случайная величина
    измеримая относительно сигма-
        алгебры, 28
статистика, 8
теорема
    Колмогорова, 12
уравнение
   правдоподобия, 21
условное математическое ожидание,
        32, 36, 39
вариационный ряд, 22
```

Оглавление

1	Осн	новы
	1.1	Методы оценок характеристик распределения наблюдаемых
		случайных величин
		1.1.1 Эмпирическая функция распределения
		1.1.2 Гистограмма
		1.1.3 Оценка неизвестных параметров
		1.1.4 Выборочные оценки. Метод моментов
	1.2	Свойства оценок
		1.2.1 Неравенство Рао-Крамера
		1.2.2 Метод максимального правдоподобия
2	До	статочные статистики
	2.1	Оптимальная оценка
	2.2	σ -алгебра, порождённая случайной величиной
	2.3	Случайная величина, измеримая относительно σ -алгебры, по-
		рождённой случайной величиной
	2.4	Условное математическое ожидание
		2.4.1 Проекция вектора
		2.4.2 Проекция случайной величины
		2.4.3 Условное математическое ожидание
		2.4.4 Свойства условного математического ожидания
		2.4.5 Условное математическое ожидание функции произ-
		вольной случайной величины