

Decode Gaming Behaviour Analysis

N A SQL Project Analysis by Neha Goyal

Contents

- About the Case Study
- Objective of the Analysis
- Knowing the Dataset
- Data Structure
- SQL Queries Analysis
- Key Findings

About the Case Study

Decode Gaming Behaviour project contains the records of the players. The information's are such as player id, player name, device id etc.

This project aims to analyse player behavior and performance within the game, providing valuable insights that can be used to enhance the gaming experience and optimize game design.

Objective of the Analysis

1

2

3

By Analysing the data in the "Player Details" and "Level Details" tables, you can identify patterns in player behaviour, such as how they progress through different levels, the strategies they use to overcome challenges, and the factors that contribute to their success or failure.

By understanding player behaviour and preferences, developers can make informed decisions about game features, content, and marketing strategies, ultimately leading to a more engaging and satisfying user experience. Analyse the player's Highest Scoring, total Stages crossed by player, top Headshot counts, levels Crossed by Player, Highest Kill counts and Login Time.

Knowing the Dataset

Table 1

The "Player Details" table contains key information about each player, including their unique Player ID (P_ID), Player Name (PName), and the status of their progress in Level 1 (L1_status) and Level 2 (L2_status) and their codes.

Table 2

The "Level Details" table provides a comprehensive view of player performance at each level of the game. It includes information such as the Player ID (P ID), Device ID (Dev ID), start time (start_time), stages crossed (stages crossed), game level (level), difficulty level (difficulty), kill count (kill count), headshots count (headshots_count), player score (score), and extra lives earned (lives earned).

Data Structure

Player Details

P_id int8 primary key,

Pname varchar(50),

L1_status int8,

L2_status int8,

L1_code varchar(50),

L2_code varchar(50)

Level Details

P_id int8 primary key,

Dev_ID varchar(50) primary key,

Time_stamp timestamp primary key,

Stages_crossed int8,

Level int8,

Difficulty varchar(15),

Kill_Count int8,

Headshots_Count int8,

Score int8,

Lives_Earned int8,

1. Extract `P_ID`, `Dev_ID`, `PName`, and `Difficulty_level` of all players at Level 0.

Select p.p_id , l.Dev_id,p.Pname,l.difficulty

from player_details as p join level_details as l

on p.p_id = l.p_id

where I.levels=0

order by p_id

	p_id bigint	dev_id character varying (10)	pname character varying (50)	difficulty character varying (15)
1	211 bd_017		breezy-indigo-starfish	Low
2	300	zm_015	lanky-asparagus-gar	Difficult
3	310	bd_015	gloppy-tomato-wasp	Difficult
4	358 zm_017		skinny-grey-quetzal	Low
5	358	zm_013	skinny-grey-quetzal	Medium
6	429	bd_013	flabby-firebrick-bee	Medium
7	558	wd_019	woozy-crimson-hound	Difficult
8	632	bd_013	dorky-heliotrope-barracuda	Difficult
9	641	rf_013	homey-alizarin-gar	Low
10	641	rf_015	homey-alizarin-gar	Medium
11	641	rf_013	homey-alizarin-gar	Difficult
12	656	rf_013	sloppy-denim-wolfhound	Medium

2. Find `Level1_code`wise average `Kill_Count` where `lives_earned` is 2, and at least 3 stages are crossed.

Select pd.l1_code , avg(ld.kill_count) as avg_killcount

from player_details as pd join level_details as ld

on pd.p_id = ld.p_id
where ld.lives_earned=2 and
ld.stages_crossed>=3
group by pd.l1_code;

Dat	Data Output							
=+								
	l1_code character varying (50)	avg_killcount numeric						
	bulls_eye	22.250000000000000						
] 2	war_zone	19.2857142857142857						
3	speed_blitz	19.33333333333333						

3. Find the total number of stages crossed at each difficulty level for Level 2 with players using `zm_series` devices. Arrange the result in decreasing order of the total number of stages crossed.

Select difficulty , sum(stages_crossed) as total_stagescrossed from level_details

where levels=2 and dev_id like 'zm%'

group by difficulty

order by sum(stages_crossed) desc;

4. Extract `P_ID` and the total number of unique dates for those players who have played games on multiple days.

Select P id , Count(Distinct(date(time stamp)))as total days

from level_details

group by P_id

having Count(Distinct(date(time_stamp))) >1

order by Count(Distinct(date(time_stamp))) desc

Data	Output		
=+		v i a	± ~
	p_id bigint	total_days bigint	
1	211	4	
2	656	4	
3	683	4	
4	632	3	
5	310	3	
6	300	3	
7	483	3	
8	590	3	
9	292	2	
10	242	2	
11	368	2	
12	641	2	
13	644	2	
14	224	2	
			•

5. Find `P_ID` and levelwise sum of `kill_counts` where `kill_count` is greater than the

average kill count for Medium difficulty.

Select P_id,levels,sum(Kill_count) as kill_counts

from level_details

where kill_count>(select avg(kill_count) from level_details

'Medium')

group by p_id ,levels

order by p_id ,levels

Data	Output	t			
= +	P ~		~ i		<u>*</u>
	p_id bigint	â	levels bigint	â	kill_counts numeric
1		211		0	20
2		211		1	55
3		224		1	54
4		224		2	58
5		242		1	58
6		292		1	21
7		300		1	48
8		310		0	34
9		310		1	20
10		368		1	20
11		368		2	24
12		429		1	30
13		429		2	55
14		483		1	40
15		483		2	94
16		547		1	20
17		558		0	21
18		590		1	24
19		632		0	45
20		632		1	28

6. Find `Level` and its corresponding `Level_code` wise sum of lives earned, excluding Level 0. Arrange in ascending order of level.

Select Id.levels , pd.l1_code , sum(lives_earned) as total_livesearned

from level_details as ld join player_details as pd

on ld.P_id = pd.P_id

where Id.levels>0

group by ld.levels, pd.l1_code

order by ld.levels desc

Data	Data Output							
=+								
	levels bigint	I1_code character varying (50)	total_liveseamed numeric					
1	2	bu <mark>l</mark> ls_eye	14					
2	2	speed_blitz	20					
3	2	war_zone	17					
4	1	bu <mark>l</mark> ls_eye	5					
5	1	leap_of_faith	0					
6	1	speed_blitz	7					
7	1	war_zone	11					

7. Find the top 3 scores based on each `Dev_ID` and rank them in increasing order using

`Row_Number`. Display the difficulty as well.

Select * from (Select score , dev_id , difficulty, row_number() over(partition by dev_id

order by score desc) as ranks from level_details) as results where ranks<=3

Data Output						
=+			•			
	score bigint	dev_id character varying (10)	difficulty character varying (15)	ranks bigint		
1	5300	bd_013	Difficult	1		
2	4570	bd_013	Difficult	2		
3	3370	bd_013	Difficult	3		
4	5300	bd_015	Difficult	1		
5	3200	bd_015	Low	2		
6	1950	bd_015	Difficult	3		
7	2400	bd_017	Low	1		
8	1750	bd_017	Medium	2		
9	390	bd_017	Low	3		
10	2970	rf_013	Difficult	1		
11	2700	rf_013	Medium	2		
12	2300	rf_013	Medium	3		
13	3950	rf_015	Difficult	1		
14	2800	rf_015	Medium	2		
15	900	rf_015	Medium	3		
16	5140	rf_017	Medium	1		
17	5140	rf_017	Difficult	2		
18	3500	rf_017	Difficult	3		
19	4390	wd_019	Difficult	1		
20	1550	wd_019	Low	2		

8. Find the 'first_login' datetime for each device ID.

Select * from (Select dev_id , time_stamp , row_number()over(partition by dev_id order by time_stamp) as rankss

from level_details) as result

where rankss=1

	dev_id character varying (10)	time_stamp timestamp without time zone	rankss bigint	ô	
1	bd_013	2022-10-11 02:23:00		1	
2	bd_015	2022-10-11 18:45:00		1	
3	bd_017	2022-10-12 07:30:00		1	1
4	rf_013	2022-10-11 05:20:00		1	1
5	rf_015	2022-10-11 19:34:00		1	1
6	rf_017	2022-10-11 09:28:00		1	1
7	wd_019	2022-10-12 23:19:00		1	
8	zm_013	2022-10-11 13:00:00		1	
9	zm_015	2022-10-11 14:05:00		1	
10	zm_017	2022-10-11 14:33:00		1	1
					-

9. Find the top 5 scores based on each difficulty level and rank them in increasing order using `Rank`. Display `Dev_ID` as well.

Select * from (Select dev_id , score , difficulty, rank() over(partition by difficulty order by score desc) as ranks from level_details) as results where ranks<=5

	dev_id character varying (10)	score bigint	difficulty character varying (15)	ranks bigint
1	zm_017	5500	Difficult	1
2	zm_017	5500	Difficult	1
3	bd_013	5300	Difficult	3
4	bd_015	5300	Difficult	3
5	rf_017	5140	Difficult	5
6	zm_015	3470	Low	1
7	zm_017	3210	Low	2
8	bd_015	3200	Low	3
9	bd_013	2840	Low	4
10	zm_015	2800	Low	5
11	zm_017	5490	Medium	1
12	rf_017	5140	Medium	2
13	zm_015	4950	Medium	3
14	zm_015	4950	Medium	3
15	rf_015	2800	Medium	5

10. Find the device ID that is first logged in (based on `start_datetime`) for each player (`P_ID`). Output should contain player ID, device ID, and first login datetime.

Select * from (select p_id , dev_id , time_stamp , rank()over(partition by p_id order by time_stamp) as rankss
from level_details) as result
where rankss=1

Data	Output			
=+	· ~	v i i i ± /	~	
	p_id bigint	dev_id character varying (10)	time_stamp timestamp without time zone	rankss bigint
1	211	bd_017	2022-10-12 13:23:00	1
2	224	rf_017	2022-10-14 01:15:00	1
3	242	bd_013	2022-10-13 01:14:00	1
4	292	rf_013	2022-10-12 04:29:00	1
5	296	zm_017	2022-10-14 15:15:00	1
6	300	rf_013	2022-10-11 05:20:00	- 1
7	310	rf_017	2022-10-11 15:15:00	1
8	319	zm_017	2022-10-12 14:20:00	1
9	358	zm_017	2022-10-14 05:05:00	1
10	368	zm_015	2022-10-12 01:14:00	1
11	428	bd_015	2022-10-15 18:00:00	1
12	429	rf_017	2022-10-11 09:28:00	3
13	483	zm_017	2022-10-11 14:33:00	1
14	547	bd_013	2022-10-15 02:19:00	1
15	558	wd_019	2022-10-12 23:19:00	1
16	590	bd_017	2022-10-12 07:30:00	1
17	632	bd_013	2022-10-12 16:30:00	1
18	641	rf_015	2022-10-13 04:04:00	1
19	644	zm_015	2022-10-11 14:05:00	- 1
20	656	bd_013	2022-10-11 17:47:00	1

11. For each player and date, determine how many `kill_counts` were played by the player so far. a) Using

window functions b) Without window functions

A) Using window functions

Select p_id,dates ,player_killcounts from

(select p_id , date(time_stamp) as dates, sum(kill_count) over(partition by p_id ,date(time_stamp)) as player_killcounts,

row_number() over(partition by p_id ,date(time_stamp)) as row_no

from level_details) as result

where row_no =1

B) Without window functions

Select p_id,Date(time_stamp) as Dates,Sum(kill count) as Kill Counts

From level details

Group by p_id, Date(time_stamp)

order by p_id, Date(time_stamp)

=+		~		~	ê	56	•	~
	p_i big	d jint	â	100	ites ite	â	kill_co	
1			211	20	022-1	0-12		45
2			211	20	022-1	0-13		44
3			211	20	022-1	0-14		.9
4			211	20	022-1	0-15		15
5			224	20	022-1	0-14		54
6			224	20	022-1	0-15		58
7			242	20	022-1	0-13		21
8			242	20	022-1	0-14		37
9			292	20	022-1	0-12		21
10			292	20	022-1	0-15		4
11			296	20	022-1	0-14		11
12			300	20	022-1	0-11		48
13			300	20	022-1	0-12		18
14			300	20	022-1	0-13		8
15			310	20	022-1	0-11		20
16			310	20	022-1	0-13		34
17			310	20	022-1	0-15		14
18			319	20	022-1	0-12		5
19			358	20	022-1	0-14		7
20			368	20	022-1	0-12		49

12. Find the cumulative sum of stages crossed over `start_datetime` for each `P_ID`, excluding the most recent `start_datetime`.

Select P_ID,time_stamp, stages_crossed,Cumulative_of_Stages_crossed from (Select

P ID,time_stamp,stages_crossed, sum(stages_crossed) Over(partition by P_ID Order by time_stamp) as Cumulative_of_Stages_crossed, Row_Number() Over(Partition by P_ID) as Row_NO From level_details) as result Where (P_ID,Row_NO) NOT IN (Select P_ID,MAX(Row_No) as Row_No From (Select P_ID,time_stamp, sum(stages_crossed) Over(partition by P_ID Order by time_stamp) as Cumulative_of_Stages_crossed, Row_Number() Over(Partition by P_ID) as Row_NO From level_details) as Project

Data	Output			
=+				
	p_id bigint	time_stamp timestamp without time zone	stages_crossed bigint	cumulative_of_stages_crossed anumeric
1	211	2022-10-12 13:23:00	4	4
2	211	2022-10-12 18:30:00	5	9
3	211	2022-10-13 05:36:00	5	14
4	211	2022-10-13 22:30:00	5	19
5	211	2022-10-14 08:56:00	7	26
6	224	2022-10-14 01:15:00	7	7
7	224	2022-10-14 08:21:00	5	12
8	224	2022-10-15 05:30:00	10	22
9	242	2022-10-13 01:14:00	6	6
10	292	2022-10-12 04:29:00	4	4
11	296	2022-10-14 15:15:00	2	2
12	300	2022-10-11 05:20:00	7	7
13	300	2022-10-11 19:19:00	5	12
14	300	2022-10-12 01:45:00	2	14
15	300	2022-10-12 11:21:00	3	17
16	310	2022-10-11 15:15:00	7	7
17	310	2022-10-13 19:18:00	5	12
18	358	2022-10-14 05:05:00	3	3

13. Extract the top 3 highest sums of scores for each `Dev_ID` and the corresponding

`P_ID`.

where row no<=3

Select p_id, dev_id , sum_ofscore from (select p_id , dev_id ,sum_ofscore,rank() over(partition by dev id order by sum ofscore desc) as row_no from (select p_id,dev_id,sum(score) as sum_ofscore from level_details group by p_id,dev_id order by sum ofscore desc, dev id asc) as result1) as result2

a the corresponding							
Data	Data Output						
=+							
	p_id bigint	dev_id character varying (10)	sum_ofscore numeric				
1	224	bd_013	9870				
2	310	bd_013	3370				
3	211	bd_013	3200				
4	310	bd_015	5300				
5	683	bd_015	3200				
6	368	bd_015	1950				
7	590	bd_017	2400				
8	644	bd_017	1750				
9	211	bd_017	390				
10	368	rf_013	2970				
11	211	rf_013	2700				
12	300	rf_013	2300				
13	483	rf_015	3950				
14	683	rf_015	2800				
15	590	rf_015	900				
16	310	rf_017	5140				
17	224	rf_017	5140				
18	429	rf_017	3500				
19	483	wd_019	4390				
20	590	wd_019	1550				

14. Find players who scored more than 50% of the average score, scored by the sum of scores for each `P_ID`.

select * from (select p_id , sum(score) as sumofscore from level_details group by p_id order by p_id asc) where sumofscore>(select 0.5 * avg(sumofscore) as avg_score from (select p_id,sum(score) as sumofscore from level_details group by p_id))

15. Create a stored procedure to find the top `n` `headshots_count` based on each `Dev_ID` and rank them

in increasing order using `Row_Number`. Display the difficulty as well.

Delimiter// Create procedure Top_N(IN Num int) begin select dev_id,headshots_count,difficulty from (select dev_id ,difficulty,headshots_count, row_number()over (partition by dev_id order by headshots_count)as row_no from level_details) as result where row_no<=Num; end//

call Top_N(3);

	Dev_ID	Difficulty	Headshots_Count
•	bd_013	Medium	4
	bd_013	Medium	8
	bd_013	Medium	10
	bd_015	Low	3
	bd_015	Difficult	8
	bd_015	Low	13
	bd_017	Low	15
	bd_017	Medium	16
	bd_017	Low	18
	rf_013	Low	3
	rf_013	Medium	6
	rf_013	Low	7
	rf_015	Medium	0
	rf_015	Medium	1
	rf_015	Low	2
	rf_017	Difficult	1
	rf_017	Difficult	11
	rf_017	Difficult	18
	wd_019	Difficult	0
	wd_019	Low	10
	wd_019	Difficult	16
	zm_013	Medium	1
_			

Findings

- The Device_id "zm_017" has crossed maximum stages i.e., 6 at Difficulty level.
- P_id 483 on '13-10-2022 6:20' has max kill count i.e., 134
- > Total 19 players have played games on multiple days.
- > Average of kill count by L1 code :

```
Bulls_eye = 22.2500
Speed_Blitz = 19.3333
War Zone = 19.2857
```

Lives earned by level's :

> Top Score's on Difficulty Level are 5300 and 4570.

Findings

By understanding player behaviour and preferences, developers can make data-driven decisions to improve game design, adjust difficulty levels, and create more engaging and challenging gameplay experiences.

Thank You

