Advanced Python

Chapter 6
Automatic Differentiation and Accelerated Linear Algebre for Machine Linearing

Agenda

- Jax
- SVM
- Kernel
- SVM with JAX Notebook

JAX

Developed by Google

Core Features of JAX:

- Autodiff: Efficient automatic differentiation for gradient calculations jax.grad
- 2. JIT Compilation: Accelerates code with the XLA compiler jax.jit
- 3. Vectorization & Parallelism: jax.vmap, jax.pmap
- 4. Compatibility with NumPy

Use Cases: Large-scale gradient calculations and parallel acceleration

SVM-1

$$\widetilde{\gamma} = \frac{|w^T x + b|}{||w||} = \frac{y(w^T x + b)}{||w||}$$

Objective: $\max \widetilde{\gamma}$

Optimization Prob1 - hard margin(linearly separable)

$$min \frac{1}{2} ||w||^2 s.t y_i(w^T x_i + b) \ge 1, i = 1,...,n$$

Lagrange

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^n \alpha_i (y_i(w^T x_i + b) - 1)$$

$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j$$

$$w = \sum_{i=1}^n \alpha_i y_i x_i \quad f(x) = \sum_{i=1}^n \alpha_i y_i < x_i, x > + b$$

only inner product -> Kernel -> complex, high dimensional spaces

Optimization Prob2 - soft margin and slack variables(linearly non-separable)

$$\min \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \delta_i \ s. \ t \ y_i(w^T x_i + b) \ge 1 - \delta_i, \delta_i \ge 0, i = 1, \dots, n$$

$$=> \min \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max(0, 1 - y_i(w^T x_i + b))$$

SVM-2

Hinge loss is used for "maximum-margin" classification.

$$l(y) = max(0, 1 - t * y)$$

Figure 4.1: Plots of Common Classification Loss Functions - x-axis: $h(\mathbf{x}_i)y_i$, or "correctness" of prediction; y-axis: loss value

$$\min_{\mathbf{w}} \ C \underbrace{\sum_{i=1}^{n} \max[1-y_i(\mathbf{w}^{ op}\mathbf{x}_i+b), 0]}_{h(\mathbf{x}_i)} + \underbrace{\|\mathbf{w}\|_2^2}_{l_2-Regularizer}$$

$$\min_{\mathbf{w}} rac{1}{n} \sum_{i=1}^{n} \underbrace{\ell(h_{\mathbf{w}}(\mathbf{x}_i), y_i)}_{Loss} + \underbrace{\lambda r(w)}_{Regularizer}$$

Github:

https://github.com/nfmcclure/tensorflow_cookbook/tree/mast er/04_Support_Vector_Machines

Source: https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote10.html

Kernel

- Many learning methods rely on training and test data only in form of inner products, e.g regularized least sqaure, NN, SVM.
- kernel function φ_i to introduce nonlinearity

$$f(x) = \sum_{i=1}^{N} w_i \varphi_i(x) + b$$

SVM -
$$f(x) = \sum_{i=1}^{N} w_i < \varphi_i(x), \varphi(x) > + b$$

- $K(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle$
- Gaussian Kernel $K(x_i, x_j) = exp(-\frac{||x_i x_j||^2}{2\sigma^2})$

Appendix

$\mathbf{Loss}\ell(h_{\mathbf{w}}(\mathbf{x}_i,y_i))$	Usage	Comments
Hinge-Loss $\max \left[1-h_{\mathbf{w}}(\mathbf{x}_i)y_i,0 ight]^p$	• Standard $SVM(p=1)$ • (Differentiable) $Squared$ $Hingeless SVM (p=2)$	When used for Standard SVM, the loss function denotes the size of the margin between linear separator and its closest points in either class. Only differentiable everywhere with $p=2$.
$\frac{\textbf{Log-Loss}}{\log(1 + e^{-h_{\mathbf{w}}(\mathbf{x}_i)y_i})}$	Logistic Regression	One of the most popular loss functions in Machine Learning, since its outputs are well-calibrated probabilities.
Exponential Loss $e^{-h_{\mathbf{w}}(\mathbf{x}_i)y_i}$	AdaBoost	This function is very aggressive. The loss of a misprediction increases exponentially with the value of $-h_{\mathbf{w}}(\mathbf{x}_i)y_i$. This can lead to nice convergence results, for example in the case of Adaboost, but it can also cause problems with noisy data.
Zero-One Loss $\delta(\operatorname{sign}(h_{\mathbf{w}}(\mathbf{x}_i)) \neq y_i)$	Actual Classification Loss	Non-continuous and thus impractical to optimize.

Table 4.1: Loss Functions With Classification $y \in \{-1, +1\}$

$\textbf{Loss}~\ell(h_{\mathbf{w}}(\mathbf{x}_i,y_i))$	Comments	
Squared Loss $(h(\mathbf{x}_i) - y_i)^2$	 Most popular regression loss function Estimates Mean Label Also known as Ordinary Least Squares (OLS) Differentiable everywhere Somewhat sensitive to outliers/noise 	
Absolute Loss $ h(\mathbf{x}_i) - y_i $	 Also a very popular loss function Estimates Median Label Uss sensitive to noise Not differentiable at 0 	
$egin{aligned} ext{Huber Loss} \ &\circ rac{1}{2}(h(\mathbf{x}_i)-y_i)^2 ext{ if } \ & h(\mathbf{x}_i)-y_i <\delta, \ &\circ ext{ otherwise } \ &\delta(h(\mathbf{x}_i)-y_i -rac{\delta}{2}) \end{aligned}$	 Also known as Smooth Absolute Loss "Best of Both Worlds" of <u>Squared</u> and <u>Absolute</u> Loss Once-differentiable Takes on behavior of Squared-Loss when loss is small, and Absolute Loss when loss is large. 	
$egin{aligned} extbf{Loss} \ log(cosh(h(\mathbf{x}_i)-y_i)), \ cosh(x) = rac{e^x+e^{-x}}{2} \end{aligned}$	 Similar to Huber Loss, but twice differentiable everywhere More expensive to compute 	

Table 4.2: Loss Functions With Regression, i.e. $y \in \mathbb{R}$

Source: https://www.cs.cornell.edu/courses/cs4780/2023sp/lectures/lecturenote10.html