Homework 4

The problems below are from the Sipser textbook.

1.21 Convert the following finite automata to regular expressions.

- 1.28 Convert the following regular expressions to NFAs. In all parts, the alphabet is {a, b}.
 - $a. a(abb)^* \cup b$
 - **b.** $a^{+} \cup (ab)^{+}$
 - c. $(a \cup b^+)a^+b^+$
 - **1.47** Let $\Sigma = \{1, \#\}$ and let

$$Y = \{w | w = x_1 \# x_2 \# \cdots \# x_k \text{ for } k \ge 0, \text{ each } x_i \in \textbf{1}^*, \text{ and } x_i \ne x_j \text{ for } i \ne j\}.$$

Prove that Y is not regular.

- **1.49** a. Let $B = \{\mathbf{1}^k y | y \in \{\mathbf{0}, \mathbf{1}\}^* \text{ and } y \text{ contains at least } k \text{ 1s, for } k \geq 1\}.$ Show that B is a regular language.
 - **b.** Let $C = \{1^k y | y \in \{0,1\}^* \text{ and } y \text{ contains at most } k \text{ 1s, for } k \geq 1\}$. Show that C isn't a regular language.
- **1.53** Let $\Sigma = \{0, 1, +, =\}$ and

$$ADD = \{x=y+z | x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}.$$

Show that ADD is not regular.

6 Consider the languages $A = 0^*1^*$ and $B = \{1^n0^m1^m : n, m \ge 0\}$. Prove that $A \cup B$ is a nonregular language.