Project 3B

Bharath Karumudi

August 2, 2019

Abstract

This project is to demonstrate the capabilities of implementiong constructing and deconstructing HOL Terms using the tools and techniques - LATEX, AcuTeX, emacs and ML.

Each chapter documents the given problems with a structure of:

- 1. Problem Statement
- 2. Relevant Code
- 3. Execution Transcripts
- 4. Explanation of results

Acknowledgments: Professor Marvine Hamner and Professor Shiu-Kai Chin who taught the Certified Security By Design.

Contents

1	Executive Summary
2	Exercise 8.4.1
	.1 Problem Statement
	.2 Relevant Code
	.3 Execution Transcripts
	2.3.1 Explanation of Results
3	Exercise 8.4.2
	.1 Problem Statement
	.2 Relevant Code
	.3 Execution Transcripts
	3.3.1 Explanation of Results
4	Exercise 8.4.3
	.1 Problem Statement
	.2 Relevant Code
	.3 Execution Transcripts
	4.3.1 Explanation of Results
5	Appendix A: Chapter 8

Executive Summary

All the requirements for this project are statisfied specifically, and by using HOL proved the below theorems:

```
\begin{split} & [\texttt{conjSymThm}] \\ & \vdash p \, \land \, q \iff q \, \land \, p \\ & [\texttt{conjSymThmAll}] \\ & \vdash \forall \, p \, \ q. \  \  p \, \land \, q \iff q \, \land \, p \\ & [\texttt{problem1Thm}] \\ & \vdash p \Rightarrow (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow r \end{split}
```

Exercise 8.4.1

2.1 Problem Statement

In this exercise we need to prove the theorem: $\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow r$

2.2 Relevant Code

```
val problem1Thm =
let
val th1 = ASSUME ''p:bool''
val th2 = ASSUME ''p \Rightarrow q''
val th3 = ASSUME ''q \Rightarrow r''
val th4 = MP th2 th1
val th5 = MP th3 th4
val th6 = DISCH (hd(hyp th3)) th5
val th7 = DISCH (hd(hyp th2)) th6
in
   DISCH (hd(hyp th1)) th7
end;
val _ = save_thm("problem1Thm", problem1Thm);
```

2.3 Execution Transcripts

2.3.1 Explanation of Results

The above results shows that theorem is proved.

Exercise 8.4.2

3.1 Problem Statement

In this exercise we need to prove the theorem: $\vdash \forall p \ q. \ p \land q \iff q \land p$

3.2 Relevant Code

```
val conj1Thm =
 val th1 = ASSUME "p / q"
val th2 = CONJUNCT1 th1
 val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conj2Thm =
 val th1 = ASSUME 'q / p''
 val th2 = CONJUNCT1 th1
 val th3 = CONJUNCT2 th1
 val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conjSymThm =
IMP_ANTISYM_RULE conj1Thm conj2Thm;
val _ = save_thm("conjSymThm", conjSymThm);
```

3.3 Execution Transcripts

```
1
       HOL-4 [Kananaskis 11 (stdknl, built Sat Aug 19 09:30:06 2017)]
       For introductory HOL help, type: help "hol";
       To exit type <Control>-D
> > > # # # # # # # # ** types trace now on
> *** Globals.show_assums now true ***
> # # # # # # # ** Unicode trace now off
> # # # # # # # # val conj1Thm =
[] |- (p :bool) /\ (q :bool) ==> q /\ p:
   thm
> > # # # # # # # wal conj2Thm =
[] |- (q:bool) /\ (p:bool) ==> p /\ q:
   thm
> > # val conjSymThm =
   [] |- (p :bool) /\ (q :bool) <=> q /\ p:
   thm
> > > >
*** Emacs/HOL command completed ***
```

3.3.1 Explanation of Results

The above results shows that theorem is proved.

Exercise 8.4.3

4.1 Problem Statement

In this exercise we need to prove the theorem: $\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow r$

4.2 Relevant Code

```
val conj1Thm =
val th1 = ASSUME "p / q"
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conj2Thm =
val th1 = ASSUME 'q / p''
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conjSymThm =
IMP_ANTISYM_RULE conj1Thm conj2Thm;
val conjSymThmAll = GENL[''p:bool'', ''q:bool''] conjSymThm;
val _ = save_thm("conjSymThmAll", conjSymThmAll)
```

4.3 Execution Transcripts

```
1
       HOL-4 [Kananaskis 11 (stdknl, built Sat Aug 19 09:30:06 2017)]
       For introductory HOL help, type: help "hol";
       To exit type <Control>-D
> > > # # # # # # # # ** types trace now on
> *** Globals.show_assums now true ***
> # # # # # # # ** Unicode trace now off
> # # # # # # # # val conj1Thm =
[] |- (p :bool) /\ (q :bool) ==> q /\ p:
   thm
> > # # # # # # # wal conj2Thm =
[] |- (q:bool) /\ (p:bool) ==> p /\ q:
   thm
> > # val conjSymThm =
    [] |- (p :bool) /\ (q :bool) <=> q /\ p:
   thm
> > val conjSymThmAll =
    [] |- !(p :bool) (q :bool). p /\ q <=> q /\ p:
   thm
*** Emacs/HOL command completed ***
```

4.3.1 Explanation of Results

The above results shows that theorem is proved.

(*

Appendix A: Chapter 8

The following code is from the file project3bScript.sml (* Exercise: Chapter 8 (* Author: Bharath Karumudi *) Date: Jul 26, 2019 structure project3bScript = struct open HolKernel Parse boolLib bossLib; val _ = new_theory "project3b"; Exercise: 8.4.1 $val\ problem 1 Thm =$ *) $\lceil \rceil \mid -p \implies (p \implies q) \implies (q \implies r) \implies r$ (* val problem1Thm = let val th1 = ASSUME 'p:bool' $val th2 = ASSUME "p \implies q"$ $val th3 = ASSUME 'q \Longrightarrow r''$ val th4 = MP th2 th1val th5 = MP th3 th4val th6 = DISCH (hd(hyp th3)) th5val th7 = DISCH (hd(hyp th2)) th6DISCH (hd(hyp th1)) th7 end; val _ = save_thm("problem1Thm", problem1Thm); (* Exercise: 8.4.2 *) (* val conjSymThm =*) $// \mid - p \land q \iff q \land p$: thm *)

*)

```
val conj1Thm =
let
val th1 = ASSUME "p / q"
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conj2Thm =
val th1 = ASSUME 'q / p''
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conjSymThm =
IMP_ANTISYM_RULE conj1Thm conj2Thm;
val _ = save_thm("conjSymThm", conjSymThm);
(* Exercise: 8.4.3
                                                             *)
(* val conjSymThmAll =
                                                             * )
(* // |- !p q. p \wedge q \iff q \wedge p
(*
   : thm
(*
                                                             * )
val conj1Thm =
let
val th1 = ASSUME "p / q"
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
DISCH (hd(hyp th1)) th4
end:
val conj2Thm =
val th1 = ASSUME "q / p"
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 = CONJ th3 th2
in
```