

Elicitation and explanation for voting rules

Beatrice Napolitano

Supervisors: Remzi Sanver, Olivier Cailloux

Pré-soutenance de thèse 06 July 2021

Outline

- Notation
- 2 Compromising as an equal loss principle
- Simultaneous Elicitation of Scoring Rule and Agent Preferences for Robust Winner Determination
- Preference Elicitation under Majority Judgment

Outline

- Notation
- 2 Compromising as an equal loss principle
- Simultaneous Elicitation of Scoring Rule and Agent Preferences for Robust Winner Determination
- 4 Preference Elicitation under Majority Judgment

```
 \mathcal{A} \text{ set of alternatives, } |\mathcal{A}| = m 
 N \text{ set of voters, } |N| = n 
 \mathcal{L}(\mathcal{A}) \text{ set of all linear orderings given } \mathcal{A} 
 \succ_i \in \mathcal{L}(\mathcal{A}) \text{ preference ranking of voter } i \in N 
 P = (\succ_1, \dots, \succ_n) \in \mathcal{L}(\mathcal{A})^N \text{ a profile } 
 \mathscr{P}^*(\mathcal{A}) \text{ possible winners (the non-empty subsets of } \mathcal{A} ) 
 f : \mathcal{L}(\mathcal{A})^N \to \mathscr{P}^*(\mathcal{A}) \text{ an SCR}
```

Outline

- Notation
- 2 Compromising as an equal loss principle
- Simultaneous Elicitation of Scoring Rule and Agent Preferences for Robust Winner Determination
- 4 Preference Elicitation under Majority Judgment

Introducing the problem

Setting: Several voters express their preferences over a set of alternatives

Introducing the problem

Setting: Several voters express their preferences over a set of alternatives

Goal: Find a procedure determining a collective choice that promotes a notion of compromise

• **Plurality**: selects the alternatives considered as best by the highest number of voters

- Plurality: selects the alternatives considered as best by the highest number of voters
- Median Voting Rule: picks all alternatives receiving a majority of support at the highest possible quality (Bassett and Persky, 1999 [1])

- Plurality: selects the alternatives considered as best by the highest number of voters
- Median Voting Rule: picks all alternatives receiving a majority of support at the highest possible quality (Bassett and Persky, 1999 [1])
- Majoritarian Compromise: MVR and ties are broken according to the quantity of support received (Sertel, 1986 [5])

- Plurality: selects the alternatives considered as best by the highest number of voters
- Median Voting Rule: picks all alternatives receiving a majority of support at the highest possible quality (Bassett and Persky, 1999 [1])
- Majoritarian Compromise: MVR and ties are broken according to the quantity of support received (Sertel, 1986 [5])
- Fallback Bargaining: bargainers fall back to less and less preferred alternatives until they reach a unanimous agreement (Brams and Kilgour, 2001 [3])

- Plurality: selects the alternatives considered as best by the highest number of voters
- Median Voting Rule: picks all alternatives receiving a majority of support at the highest possible quality (Bassett and Persky, 1999 [1])
- Majoritarian Compromise: MVR and ties are broken according to the quantity of support received (Sertel, 1986 [5])
- Fallback Bargaining: bargainers fall back to less and less preferred alternatives until they reach a unanimous agreement (Brams and Kilgour, 2001 [3])
- q-approval FB: picks the alternatives which receive the support of q voters at the highest possible quality, breaking ties according to the quantity of support

$$\textit{n} = 100, \mathcal{A} = \{\textit{a}, \textit{b}, \textit{c}\}$$

$$51 \quad a \quad \succ \quad b \quad \succ \quad c$$

$$49 \quad c \quad \succ \quad b \quad \succ \quad a$$

Motivation: A simple example

$$n = 100, \mathcal{A} = \{a, b, c\}$$

$$49 \quad c \quad \succ \quad b \quad \succ \quad a$$

• Plurality: $\{a\}$

$$n=100, \mathcal{A}=\{a,b,c\}$$

- Plurality: $\{a\}$
- MVR: {a}

$$n=100, \mathcal{A}=\{a,b,c\}$$

$$51 \quad a \quad \succ \quad b \quad \succ \quad c$$

$$49 \quad c \quad \succ \quad b \quad \succ \quad a$$

- Plurality: $\{a\}$
- MVR: {a}
- MC: {a}

$$n=100, \mathcal{A}=\{a,b,c\}$$

$$51 \quad a \quad \succ \quad b \quad \succ \quad c$$

$$49 \quad c \quad \succ \quad b \quad \succ \quad a$$

- Plurality: $\{a\}$
- MVR: {a}
- MC: {a}
- FB: {*b*}

$$n = 100, \mathcal{A} = \{a, b, c\}$$

$$51 \quad a \quad \succ \quad b \quad \succ$$

$$49 \quad c \quad \succ \quad b \quad \succ$$

- Plurality: {a}
- MVR: {a}
- MC: {a}
- FB: {b}
- FB_q , $q \in \{1, ..., \frac{n}{2} + 1\}$: $\{a\}$

Motivation: A simple example

$$n = 100, \mathcal{A} = \{a, b, c\}$$

$$51 \quad a \succ b \succ$$

$$49 \quad c \succ b \succ$$

- Plurality: {a}
- MVR: {a}
- MC: {a}
- FB: {b}
- FB_q , $q \in \{1, ..., \frac{n}{2} + 1\}$: $\{a\}$

Does b seem a better compromise?

Losses

$$\lambda_P: \mathcal{A} o \llbracket 0, m-1
rbracket^N$$
 a loss vector

Losses

$$P$$
 λ_{P} $v_{1}: a \succ b \succ c$ $a: (0,2)$ $v_{2}: c \succ b \succ a$ $b: (1,1)$ $c: (2,0)$

Given $P = (\succ_i)_{i \in N}$:

- $\lambda_{\succ_i}(x) = |\{y \in \mathcal{A} \mid y \succ_i x\}| \in [0, m-1]$ the loss of i when choosing $x \in \mathcal{A}$ instead of her favorite alternative
- $\lambda_P(x)$ associates to each voter her loss when choosing x

Losses

$$\lambda_P: \mathcal{A} o \llbracket 0, m-1
rbracket^N$$
 a loss vector

Losses

$$\lambda_P: \mathcal{A} \to \llbracket 0, m-1
rbracket^N$$
 a loss vector $\sigma: \llbracket 0, m-1
rbracket^N o \mathbb{R}^+$ a spread measure

Losses

$$\lambda_P: \mathcal{A} \to \llbracket 0, m-1 \rrbracket^N$$
 a loss vector $\sigma: \llbracket 0, m-1 \rrbracket^N \to \mathbb{R}^+$ a spread measure

 Σ is the set of spread measures σ such that

$$\sigma(I) = 0 \iff I_i = I_j, \ \forall i, j \in \mathbb{N}, \quad \forall I \in [0, m-1]^{\mathbb{N}}$$

.

Minimizing losses

Given
$$X \subseteq \mathcal{A}$$

$$\arg\min_{X}(\sigma \circ \lambda_{P}) = \{x \in X \mid \forall y \in X : \sigma(\lambda_{P}(x)) \leq \sigma(\lambda_{P}(y))\}$$

 $\arg\min_X (\sigma \circ \lambda_P)$ denotes the alternatives in X whose loss vectors are the most equally distributed according to σ

Minimizing losses

$$P$$
 λ_{P} $v_{1}: a \succ b \succ c$ $a: (0,2)$ $v_{2}: c \succ b \succ a$ $b: (1,1)$ $c: (2,0)$

$$\underset{X}{\operatorname{arg\,min}}(\sigma \ \circ \ \lambda_P) = \{b\} \quad \forall \sigma \in \Sigma$$

Egalitarian compromises

An SCR is Egalitarian Compromise Compatible iff at each profile, it selects some "less unequal" alternatives

Egalitarian compromise compatibility

An SCR f is ECC iff

$$\exists \sigma \in \Sigma \mid \forall P \in \mathcal{L}(\mathcal{A})^N : f(P) \cap \arg\min_{\mathcal{A}} (\sigma \circ \lambda_P) \neq \emptyset$$

ECC rules are very egalitarian

$$P$$
 λ_{P} $v_{1}: a \succ c \succ b$ $a: (0,1)$ $v_{2}: c \succ a \succ b$ $b: (2,2)$ $c: (1,0)$

$$\underset{A}{\operatorname{arg\,min}}(\sigma \circ \lambda_P) = \{b\} \quad \forall \sigma \in \Sigma$$

ECC rules are very egalitarian

$$P$$
 λ_{P} $v_{1}: a \succ c \succ b$ $a: (0,1)$ $v_{2}: c \succ a \succ b$ $b: (2,2)$ $c: (1,0)$

$$\underset{A}{\operatorname{arg\,min}}(\sigma \circ \lambda_P) = \{b\} \quad \forall \sigma \in \Sigma$$

ECC rules are very egalitarian

$$P$$
 λ_{P} $v_{1}: a \succ c \succ b$ $a: (0,1)$ $v_{2}: c \succ a \succ b$ $b: (2,2)$ $c: (1,0)$

$$\underset{\mathcal{A}}{\operatorname{arg\,min}}(\sigma \circ \lambda_P) = \{b\} \quad \forall \sigma \in \Sigma$$

Theorem

$$ECC \cap Paretian = \emptyset$$

(for $n, m \ge 2$)

ECC rules are very egalitarian

$$P$$
 λ_{P} $v_{1}: a \succ c \succ b$ $a: (0,1)$ $v_{2}: c \succ a \succ b$ $b: (2,2)$ $c: (1,0)$

$$\underset{\mathcal{A}}{\operatorname{arg\,min}}(\sigma \circ \lambda_P) = \{b\} \quad \forall \sigma \in \Sigma$$

Theorem

$$ECC \cap Paretian = \emptyset$$

(for $n, m \geq 2$)

$$f \in \mathsf{ECC} \Rightarrow b \in f(P), \ f \in \mathsf{Paretian} \Rightarrow b \notin f(P)$$

Paretian compromises

An SCR is Paretian Compromise Compatible iff at each profile, it selects some "less unequal" alternatives among the Pareto optimal ones

Paretian compromise compatibility

An SCR f is PCC iff

$$\exists \sigma \in \Sigma \mid \forall P \in \mathcal{L}(\mathcal{A})^N : f(P) \cap \arg\min_{PO(P)} (\sigma \circ \lambda_P) \neq \emptyset$$

FB and AP are PCC

Theorem

FB and Antiplurality are PCC.

(for $n, m \geq 3$)

Proof sketch.

Define $\sigma^{\text{discrete}}(I) = 1 \iff I$ is not constant.

If some $a \in PO(P)$ has a constant loss vector, e. g.

$$a_1 \succ a_2 \succ a_3 \succ a_4$$

$$a_3 \succ a_2 \succ a_1 \succ a_4$$

there is exactly one such alternative, $FB(P) = \{a\}$ and it is never last so $a \in AP(P)$.

Otherwise, σ does not discriminate among PO(P), thus Paretianism suffices.

Restricting Σ

Definition (Condition $C_{m,n}$)

Given
$$m \ge 4$$
, $n \ge \max\{4, m-1\}$, σ satisfies condition $C_{m,n}$ iff $\sigma(m-3, m-1, m-2, \ldots, m-2) < \sigma(m-2, m-3, \ldots, 1, 0, \ldots, 0)$.

$$v_1:$$
 x y a_1
 $v_2:$ y x
 $v_3:$ y x a_2
 $v_4:y$ x x x

Requires that:

$$(\sigma \circ \lambda_P)(x) < (\sigma \circ \lambda_P)(y)$$

Restricting Σ

Theorem

Under condition $C_{m,n}$, AP and FB are not PCC.

Proof for m = 5, n = 4.

- $v_1: x y a_1$
- v_2 : y x
- v_3 : y x a_2
- $V_4: y \qquad x \quad a_3$
 - y is the only alternative never last, thus for both rules: $f(P) = \{y\}$
 - $(\sigma \circ \lambda_P)(x) < (\sigma \circ \lambda_P)(y)$
 - and $x \in PO(P)$, thus $y \notin \arg\min_{PO(P)} (\sigma \circ \lambda_P)$

Other results

Theorem

Condorcet consistent rules are neither ECC nor PCC

(for $m, n \geq 3$)

Theorem

Scoring rules, except AP, are neither ECC nor PCC enough n)

(for $m \ge 3$ and large

Theorem

 FB_q rules with $q \in \llbracket 1, n-1
rbracket$ are neither ECC nor PCC

(for $m, n \geq 3$)

Outline

- Notation
- Compromising as an equal loss principle
- Simultaneous Elicitation of Scoring Rule and Agent Preferences for Robust Winner Determination
- 4 Preference Elicitation under Majority Judgment

Introducing the problem

Setting: Incompletely specified preferences and social choice rule

Introducing the problem

Setting: Incompletely specified preferences and social choice rule

Introducing the problem

(Head of the)

Setting: Incompletely specified preferences and social choice rule

Goal: Develop an incremental elicitation strategy to quickly acquire the most relevant information

Who?

• Imagine to be an external observer helping with the voting procedure

Who?

Imagine to be an external observer helping with the voting procedure

Why?

- Voters: difficult or costly to order all alternatives
- Committee: difficult to specify a voting rule precisely

Who?

Imagine to be an external observer helping with the voting procedure

Why?

- Voters: difficult or costly to order all alternatives
- Committee: difficult to specify a voting rule precisely

What?

 We want to reduce uncertainty, inferring (eliciting) the true preferences of voters and committee, in order to quickly converge to an optimal or a near-optimal alternative

Approach

- Develop query strategies that interleave questions to the committee and questions to the voters
- Use Minimax regret to measure the quality of those strategies

Approach

- Develop query strategies that interleave questions to the committee and questions to the voters
- Use Minimax regret to measure the quality of those strategies

Assumptions

- We consider positional scoring rules, which attach weights to positions according to a scoring vector w
- We assume w to be convex

$$w_r - w_{r+1} \ge w_{r+1} - w_{r+2}$$
 $\forall r$

and that $w_1 = 1$ and $w_m = 0$

Related Works

Incomplete profile

 and known weights: Minimax regret to produce a robust winner approximation (Lu and Boutilier 2011, [4]; Boutilier et al. 2006, [2])

Uncertain weights

- and complete profile: dominance relations derived to eliminate alternatives always less preferred than others (Stein et al. 1994, [6])
- in positional scoring rules (Viappiani 2018, [7])

Notation

 $P\in\mathcal{P}$ complete preferences profile $W=(\pmb{w}_r,\ 1\leq r\leq m),\ W\in\mathcal{W}$ (convex) scoring vector that the committee has in mind

Notation

$$P\in\mathcal{P}$$
 complete preferences profile $W=(m{w}_r,\ 1\leq r\leq m),\ W\in\mathcal{W}$ (convex) scoring vector that the committee has in mind

W defines a Positional Scoring Rule $f_W(P) \subseteq A$ using scores $s^{W,P}(a), \ \forall \ a \in A$

Notation

$$P\in\mathcal{P}$$
 complete preferences profile $W=(m{w}_r,\ 1\leq r\leq m),\ W\in\mathcal{W}$ (convex) scoring vector that the committee has in mind

W defines a Positional Scoring Rule $f_W(P) \subseteq A$ using scores $s^{W,P}(a), \forall a \in A$

P and W exist in the minds of voters and committee but unknown to us

Questions

Two types of questions:

Questions

Two types of questions:

Questions to the voters

Comparison queries that ask a particular voter to compare two alternatives $a,b\in\mathcal{A}$

$$a \succ_j b$$
 ?

Questions

Two types of questions:

Questions to the voters

Comparison queries that ask a particular voter to compare two alternatives $a,b \in \mathcal{A}$

$$a \succ_j b$$
 ?

Questions to the committee

Queries relating the difference between the importance of consecutive ranks from r to r + 2

$$w_r - w_{r+1} \ge \lambda (w_{r+1} - w_{r+2})$$
 ?

The answers to these questions define C_P and C_W that is our knowledge about P and W

• $C_P \subseteq \mathcal{P}$ constraints on the profile given by the voters

- ullet $C_P\subseteq \mathcal{P}$ constraints on the profile given by the voters
- ullet $\mathcal{C}_W\subseteq\mathcal{W}$ constraints on the voting rule given by the committee

- ullet $C_P\subseteq \mathcal{P}$ constraints on the profile given by the voters
- ullet $\mathcal{C}_W\subseteq\mathcal{W}$ constraints on the voting rule given by the committee

- $C_P \subseteq \mathcal{P}$ constraints on the profile given by the voters
- $C_W \subseteq \mathcal{W}$ constraints on the voting rule given by the committee

- $C_P \subseteq \mathcal{P}$ constraints on the profile given by the voters
- $C_W \subseteq \mathcal{W}$ constraints on the voting rule given by the committee

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P, W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between a and b under all possible realizations of the full profile and weights

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P, W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between $\it a$ and $\it b$ under all possible realizations of the full profile $\it and$ weights

We care about the worst case loss: *maximal regret* between a chosen alternative *a* and best real alternative *b*

$$MR^{C_P,C_W}(a) = \max_{b \in A} PMR^{C_P,C_W}(a,b)$$

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P,W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between $\it a$ and $\it b$ under all possible realizations of the full profile $\it and$ weights

We care about the worst case loss: *maximal regret* between a chosen alternative *a* and best real alternative *b*

$$\mathsf{MR}^{C_P,C_W}(a) = \max_{b \in \mathcal{A}} \mathsf{PMR}^{C_P,C_W}(a,b)$$

We select the alternative which minimizes the maximal regret

$$\mathsf{MMR}^{C_P,C_W} = \min_{a \in \mathcal{A}} \mathsf{MR}^{C_P,C_W}(a)$$

Pairwise Max Regret Computation

The computation of PMR^{C_P , C_W} (\P , \ref{P}) can be seen as a game in which an adversary both:

Pairwise Max Regret Computation

The computation of $PMR^{C_P,C_W}(\P^p, I)$ can be seen as a game in which an adversary both:

ullet chooses a complete profile $P \in \mathcal{P}$

Pairwise Max Regret Computation

The computation of $PMR^{C_P,C_W}(\P^p, I)$ can be seen as a game in which an adversary both:

ullet chooses a complete profile $P \in \mathcal{P}$

ullet chooses a feasible weight vector $W \in \mathcal{W}$

$$(1,?,0)$$
 $(1,0,0)$

in order to maximize the difference of scores

At each step, the strategy selects a question to ask either to one of the voters about her preferences or to the committee about the voting rule

At each step, the strategy selects a question to ask either to one of the voters about her preferences or to the committee about the voting rule

The termination condition could be:

At each step, the strategy selects a question to ask either to one of the voters about her preferences or to the committee about the voting rule

The termination condition could be:

• when the minimax regret is lower than a threshold

At each step, the strategy selects a question to ask either to one of the voters about her preferences or to the committee about the voting rule

The termination condition could be:

- when the minimax regret is lower than a threshold
- when the minimax regret is zero

Pessimistic Strategy

Assume that a question leads to the possible new knowledge states (C_P^1, C_W^1) and (C_P^2, C_W^2) depending on the answer, then the badness of the question in the worst case is:

$$\max_{i=1,2}\mathsf{MMR}(\mathit{C}_{P}^{i},\mathit{C}_{W}^{i})$$

Pessimistic Strategy

Assume that a question leads to the possible new knowledge states (C_P^1, C_W^1) and (C_P^2, C_W^2) depending on the answer, then the badness of the question in the worst case is:

$$\max_{i=1,2}\mathsf{MMR}(\mathit{C}_{P}^{i},\mathit{C}_{W}^{i})$$

The pessimistic strategy selects the question that leads to minimal regret in the worst case from a set of n+1 candidate questions

Pessimistic Strategy

Assume that a question leads to the possible new knowledge states (C_P^1, C_W^1) and (C_P^2, C_W^2) depending on the answer, then the badness of the question in the worst case is:

$$\max_{i=1,2} \mathsf{MMR}(C_P^i, C_W^i)$$

The pessimistic strategy selects the question that leads to minimal regret in the worst case from a set of n+1 candidate questions

Note:

if the maximal MMR of two questions are equal, then prefers the one with the lowest MMR values associated to the opposite answer

Pessimistic Strategy: Candidate questions

Let $(a^*, \bar{b}, \bar{P}, \bar{W})$ be the current solution of the minimax regret

We select n + 1 candidate questions:

- One question per voter: For each voter *i*, either:
 - $a^* \succ_{\bar{j}}^{\bar{P}} \bar{b}$: we ask about an incomparable alternative that can be placed above a^* by the adversary to increase PMR (a^*, \bar{b})
 - $\bar{b} \succ_{\bar{j}}^{\bar{P}} a^*$: we ask about an incomparable alternative that can be placed between a^* and \bar{b} by the adversary to increase PMR (a^*, \bar{b})
 - a^* and \bar{b} are incomparable: we ask to compare them
- One question to the committee: Consider W_{τ} the weight vector that minimize the PMR in the worst case.

We ask about the position
$$r = \argmax_{i = \llbracket 1, m-1 \rrbracket} |\bar{W}(i) - W_{\tau}(i)|$$

Empirical Evaluation

Pessimistic for different datasets

Figure: Average MMR (normalized by n) after k questions with Pessimistic strategy for different datasets.

Empirical Evaluation

Pessimistic reaching "low enough" regret

Table: Questions asked by Pessimistic strategy on several datasets to reach $\frac{n}{10}$ regret, columns 4 and 5, and zero regret, last two columns.

dataset	m	n	$q_c^{MMR \leq n/10}$	$q_a^{MMR \leq n/10}$	$q_c^{MMR=0}$	$q_a^{MMR=0}$
m5n20	5	20	0.0	[4.3 — 5.0 —	5.8] 5.3	[5.4 — 6.2 — 7.2]
m10n20	10	20	0.0	[13.9 - 16.1 - 1]	8.4] 32.0	[19.7 — 21.8 — 24.7]
m11n30	11	30	0.0	[16.6 - 19.0 - 2]	2.3] 45.2	[23.1 - 25.7 - 28.9]
tshirts	11	30	0.0	[13.1 - 16.6 - 1	9.6] 43.2	[28.2 — 32.0 — 35.6]
courses	9	146	0.0	[6.0 — 7.0 —	7.0] 0.0	[6.8 - 7.0 - 7.0]
m14n9	14	9	5.4	[30.3 - 33.5 - 3]	6.7] 64.1	[37.6 - 40.5 - 44.3]
skate	14	9	0.0	[11.4 - 11.6 - 1	2.3] 0.0	[11.5 - 11.8 - 12.8]
m15n30	15	30	0.0	[25.0 — 29.5 — 3	3.7]	

Empirical Evaluation

Pessimistic committee first and then voters (and vice-versa)

Table: Average MMR in problems of size (10, 20) after 500 questions, among which q_c to the chair.

q_c	2 ph. ca \pm sd	2 ph. ac \pm sd
0	0.6 ± 0.5	0.6 ± 0.5
15	0.5 ± 0.5	0.5 ± 0.5
30	0.3 ± 0.5	0.3 ± 0.4
50	0.0 ± 0.1	0.0 ± 0.1
100	0.1 ± 0.2	0.1 ± 0.1
200	2.3 ± 1.4	2.1 ± 1.8
300	5.2 ± 2.4	6.8 ± 0.6
400	10.9 ± 0.9	12.2 ± 1.0
500	20.0 ± 0.0	20.0 ± 0.0

Outline

- Notation
- Compromising as an equal loss principle
- 3 Simultaneous Elicitation of Scoring Rule and Agent Preferences for Robust Winner Determination
- Preference Elicitation under Majority Judgment

Context

Context

Introducing the problem

Setting: Voters judges a random subset of alternatives and the preferences are aggregated with the Majority Judgment rule

Context

Introducing the problem

Setting: Voters judges a random subset of alternatives and the preferences are aggregated with the Majority Judgment rule

Goal: Analyse the impact of the randomness in the result and find a more efficient elicitation procedure

Context

Majority Judgment

Voters judges candidates assigning grades from an ordinal scale. The winner is the candidate with the highest median of the grades received.

Current Work: Preference Elicitation under Majority Judgment

Introducing the problem

In the last few years MJ has being adopted by a progressively larger number of french political parties including: Le Parti Pirate, Génération(s), LaPrimaire.org, France Insoumise and La République en Marche.

Current Work: Preference Elicitation under Majority Judgment

Introducing the problem

In the last few years MJ has being adopted by a progressively larger number of french political parties including: Le Parti Pirate, Génération(s), LaPrimaire.org, France Insoumise and La République en Marche.

LaPrimaire.org is a french political initiative whose goal is to select an independent candidate for the french presidential election using MJ as voting rule.

Current Work: Preference Elicitation under Majority Judgment

LaPrimaire.org

The procedure consists of two rounds:

Current Work: Preference Elicitation under Majority Judgment LaPrimaire.org

The procedure consists of two rounds:

1: each voter expresses her judgment on five random candidates. The five ones with the highest medians qualify for the second round.

Current Work: Preference Elicitation under Majority Judgment LaPrimaire.org

The procedure consists of two rounds:

- 1: each voter expresses her judgment on five random candidates. The five ones with the highest medians qualify for the second round.
- 2: each voter expresses her judgment on all the five finalists. The one with the best median is the winner.

• Does expressing judgment on random candidates influence the result?

- Does expressing judgment on random candidates influence the result?
- Does the number of questions influence the result?

- Does expressing judgment on random candidates influence the result?
- Does the number of questions influence the result?
- What is the best trade-off between communication cost and optimal result?

- Does expressing judgment on random candidates influence the result?
- Does the number of questions influence the result?
- What is the best trade-off between communication cost and optimal result?
- What is the voting rule applied on the resulting incomplete profile?
 What are its properties?

- Does expressing judgment on random candidates influence the result?
- Does the number of questions influence the result?
- What is the best trade-off between communication cost and optimal result?
- What is the voting rule applied on the resulting incomplete profile? What are its properties?
- The random selection of questions is fair in terms of probability of being asked about a certain candidate i, but is it fair in terms of i being elected?

- Does expressing judgment on random candidates influence the result?
- Does the number of questions influence the result?
- What is the best trade-off between communication cost and optimal result?
- What is the voting rule applied on the resulting incomplete profile? What are its properties?
- The random selection of questions is fair in terms of probability of being asked about a certain candidate i, but is it fair in terms of i being elected?
- Can we select the next question using a minimax regret notion instead of randomly selecting a candidate?

- Does expressing judgment on random candidates influence the result?
- Does the number of questions influence the result?
- What is the best trade-off between communication cost and optimal result?
- What is the voting rule applied on the resulting incomplete profile? What are its properties?
- The random selection of questions is fair in terms of probability of being asked about a certain candidate i, but is it fair in terms of i being elected?
- Can we select the next question using a minimax regret notion instead of randomly selecting a candidate?
- Suppose that the fraction of candidates that each voter judges is variable, how this rule differ from the previous one? Can a voter manipulate the result by judging only certain candidates?

Thank You!

Plan of the thesis and questions

- Final dissertation by October 2021, defense by December 2021
- Status of the works:
 - Compromise: Rejected from Social Choice and Welfare; under submission to Review of Economic Design;
 - Elicitation PSR: Rejected from IJCAI20, AAMAS21 and IJCAI21; under revision at ADT21;
 - Elicitation MJ: ongoing work, plan to have a final draft before the defense.
- Given the current status of my works, is the plan feasible?
- Any suggestions on the dissertation structure ?

Gilbert W. Bassett and Joseph Persky.

Robust voting.

Public Choice, 99(3):299-310, Jun 1999.

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans. Constraint-based optimization and utility elicitation using the minimax decision criterion.

Artificial Intelligence, 2006.

Steven J. Brams and D. Marc Kilgour.

Fallback bargaining.

Group Decision and Negotiation, 10(4):287–316, Jul 2001.

Tyler Lu and Craig Boutilier.

Robust approximation and incremental elicitation in voting protocols. In *Proc. of IJCAI'11*. 2011.

Murat R. Sertel.

Lecture notes on microeconomics (unpublished).

Boğaziçi University, İstanbul, 1986.

William E. Stein, Philip J. Mizzi, and Roger C. Pfaffenberger.

A stochastic dominance analysis of ranked voting systems with scoring.

EJOR, 1994.

Paolo Viappiani.

Positional scoring rules with uncertain weights.

In Scalable Uncertainty Management, 2018.