Definition 1. X is **Menger** if for all open covers $\mathcal{U}_0, \mathcal{U}_1, \ldots$ there exist finite subcollections $\mathcal{F}_n \subseteq \mathcal{U}_n$ such that $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

Proposition 2. σ -compact \Rightarrow Menger \Rightarrow Lindelof

Definition 3. In the two-player game $Cov_{C,F}(X)$ player C chooses open covers \mathcal{U}_n of X, followed by player F choosing a finite subcollection $\mathcal{F}_n \subseteq \mathcal{U}_n$. F wins if $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

Theorem 4. X is Menger if and only if $C \not\uparrow Cov_{C,F}(X)$.

Proof. Result due to (???)

First, suppose X wasn't Menger. Then there would exist open covers $\mathcal{U}_0, \mathcal{U}_1, \ldots$ of X such that for any choice of finite subcollections $\mathcal{F}_n \subseteq \mathcal{U}_n$, $\bigcup_{n<\omega} \mathcal{F}_n$ isn't a cover of X. Thus $C \uparrow_{\text{pre}} Cov_{C,F}(X) \Rightarrow S \not\uparrow Cov_{C,F}(X)$.

The other direction is based upon Gruenhage's topological game presentation. Assume X is Menger, and consider a strategy for C in $Cov_{C,F}(X)$.

Since X is Lindelof, we can assume C plays only countable covers of X. Then, since F is choosing finite subsets, we may assume F chooses some initial segement of the countable cover. In turn, we can assume C plays an increasing open cover $\{U_0, U_1, \ldots\}$ where $U_n \subseteq U_{n+1}$. And in that case, it's sufficient to assume F simply chooses a singleton subset of each cover. And finally, since choices made by F are already covered, we can assume that every open set in a cover played by C covers the sets chosen by F previously.

As a result, we have the following figure of a tree of plays which I need to draw:

(Insert figure here.)

Note that for $a, b \in \omega^{<\omega}$ and $m \le n$, we know:

- (a) $U_{a \frown m} \subseteq U_{a \frown n}$ (for example, $U_{1627} \subseteq U_{1629}$ - increasing the final digit yields supersets)
- (b) $U_a \subseteq U_{a \frown b}$ (for example, $U_{1627} \subseteq U_{162789}$ appending any sequence to the end yields supersets)
- (c) $U_{a \frown m} \subseteq U_{a \frown n} \subseteq U_{a \frown n \frown b} \subseteq U_{a \frown n \frown b} \frown m$ (for example: $U_{1627} \subseteq U_{1629283287}$ injecting a subsequence with initial number larger than the original's final number, prior to the final number, yields supersets)

We may observe that if F can find an $f: \omega \to \omega$ such that $\bigcup_{n < \omega} U_{f \upharpoonright (n+1)} = X$, she can use $\{U_{f \upharpoonright 0}\}, \{U_{f \upharpoonright 1}\}, \ldots$ to counter C's strategy.

Let $V_k^n = \bigcap_{a \in \omega^{\leq n}} U_{a \cap k}$. We claim that (1) V_k^n is open, (2) $\mathcal{V}^n = \{V_0^n, V_1^n, \dots\}$ is increasing, and (3) \mathcal{V}^n is a cover. Proofs:

1. Since due to (c) for each $b \in \omega^{\leq n} \setminus k^{\leq n}$, there is an $a \in k^{\leq n}$ with $U_{a \cap k} \subseteq U_{b \cap k}$:

$$V_k^n = \bigcap_{a \in \omega^{\leq n}} U_{a \cap k} = \bigcap_{a \in k^{\leq n}} U_{a \cap k} \cap \bigcap_{b \in \omega^{\leq n} \setminus k^{\leq n}} U_{b \cap k} = \bigcap_{a \in k^{\leq n}} U_{a \cap k}$$

making V_k^n a finite intersection of open sets.

2. We show $V_k^0 \subseteq V_{k+1}^0$:

$$V_k^0 = U_k \subseteq U_{k+1} = V_{k+1}^0$$

and then assume $V_k^n \subseteq V_{k+1}^n$:

$$V_k^{n+1} = \bigcap_{a \in \omega^{\leq n+1}} U_{a \cap k} = V_k^n \cap \bigcap_{a \in \omega^{n+1}} U_{a \cap k} \subseteq V_{k+1}^n \cap \bigcap_{a \in \omega^{n+1}} U_{a \cap (k+1)} = V_{k+1}^{n+1}$$

3. We easily see that $\mathcal{V}^0 = \{U_0, U_1, \dots\}$ is a cover, and then assume \mathcal{V}^n is a cover. Let $x \in X$ and pick $l < \omega$ such that $x \in V_l^n$. For $a \in l^{n+1}$ choose l_a such that $x \in U_{a \cap l_a}$, giving

$$x \in \bigcap_{a \in l^{n+1}} U_{a \cap l_a}$$

We will assume $k > l, l_a$ for all $a \in l^{\leq n+1}$.

For any $a \in k^{n+1} \setminus l^{n+1}$ note that $a = b \cap c$ where $b \in l^{\leq n}$ and c begins with a number l or greater:

$$V_l^n \subseteq U_{b \frown l} \subseteq U_{b \frown c} \subseteq U_{b \frown c \frown l_a} = U_{a \frown l_a}$$

Thus:

$$x \in V_l^n \cap \left(\bigcap_{a \in l^{n+1}} U_{a \cap l_a}\right)$$

$$= V_l^n \cap \left(\bigcap_{a \in k^{n+1} \setminus l^{n+1}} U_{a \cap l_a}\right) \cap \left(\bigcap_{a \in l^{n+1}} U_{a \cap l_a}\right)$$

$$= V_l^n \cap \left(\bigcap_{a \in k^{n+1}} U_{a \cap l_a}\right)$$

$$\subseteq V_k^n \cap \left(\bigcap_{a \in k^{n+1}} U_{a \cap k}\right)$$

$$= V_k^{n+1}$$

Finally, apply Menger to \mathcal{V}^n , resulting in the cover $\{V^0_{f(0)}, V^1_{f(1)}, \dots\}$, noting

$$X = \bigcup_{n < \omega} V_{f(n)}^n \subseteq \bigcup_{n < \omega} U_{(f \upharpoonright n) \frown f(n)} = \bigcup_{n < \omega} U_{f \upharpoonright (n+1)}$$

Proposition 5. X is compact if and only if $F \uparrow_{tact} Cov_{C,F}(X)$ if and only if $F \uparrow_{k-tact} Cov_{C,F}(X)$

Proof. Assume X is compact. For each open cover played by C, pick a finite subcover, and this yields a winning tactical strategy.

Assume F has a winning k-tactical strategy. For any open cover, have C play only it during the entire game. F's only choice must be a finite subcover.

Proposition 6. If X is σ -compact then $F \uparrow_{mark} Cov_{C,F}(X)$

Proof. Let $X = \bigcup_{n < \omega} X_n$ for compact X_n . On round n, F picks the finite subcover of C's open cover of X_n .

For Menger's game, there is no useful distinction between a k-Markov strategy for F, and a 2-Markov strategy.

Theorem 7. For any topological space X and all $k \geq 2$, $F \uparrow_{k-mark} Cov_{C,F}(X)$ if and only if $F \uparrow_{2-mark} Cov_{C,F}(X)$.

Proof. Assume $\sigma(\mathcal{U}_0, \dots, \mathcal{U}_{k-1}, n)$ is a winning k-Markov strategy. Define the 2-Markov strategy $\tau(\mathcal{U}, \mathcal{V}, n)$ so that it contains $\sigma(\mathcal{W}_0, \dots, \mathcal{W}_{k-2}, \mathcal{V}, m)$ for the following conditions on $\mathcal{W}_0, \dots, \mathcal{W}_{k-2}, m$:

- Each $W_i \in \{U, V\}$
- $m \le (n+1)k$; in particular, for i < k,

$$\sigma(\mathcal{W}_0,\ldots,\mathcal{W}_{k-2},\mathcal{V},(n+1)k+i)\subseteq\tau(\mathcal{U},\mathcal{V},n+1)$$

Considering an arbitrary play $\mathcal{U}_0, \mathcal{U}_1, \ldots$ by C versus τ , we note that σ defeats the play

$$\underbrace{\mathcal{U}_0,\mathcal{U}_0,\ldots,\mathcal{U}_0}_{k},\underbrace{\mathcal{U}_1,\mathcal{U}_1,\ldots,\mathcal{U}_1}_{k}\ldots$$

So we have that

$$\bigcup_{i < k, n < \omega} \sigma(\underbrace{\mathcal{U}_n, \dots, \mathcal{U}_n}_{k-i-1}, \underbrace{\mathcal{U}_{n+1}, \dots, \mathcal{U}_{n+1}}_{i+1}, (n+1)k+i)$$

http://github.com/StevenClontz/Research

is a cover for X, and as

$$\sigma(\underbrace{\mathcal{U}_{n},\ldots,\mathcal{U}_{n}}_{k-i-1},\underbrace{\mathcal{U}_{n+1},\ldots,\mathcal{U}_{n+1}}_{i+1},(n+1)k+i)\subseteq\tau(\mathcal{U}_{n},\mathcal{U}_{n+1},n+1)$$

 τ defeats the play $\mathcal{U}_0, \mathcal{U}_1, \ldots$

But there are spaces for which there is no Markov strategy, but there is a 2-Markov strategy.

In a question I posed to G, he answered:

Lemma 8. For all functions $\tau : \omega_1 \times \omega \to [\omega_1]^{<\omega}$, there exists a sequence $\alpha_0, \alpha_1, \dots < \omega_1$ such that $\{\tau(\alpha_n, n) : n < \omega\}$ is not a cover for $\{\beta : \forall n < \omega(\beta < \alpha_n)\}$.

Proof. Let $P_n = \{\beta : \beta < \alpha \Rightarrow \beta \in \tau(\alpha, n)\}$. Observe that each P_n is finite; else there is some α larger than every member of some countably infinite $P_n^* \subseteq P_n$ such that $P_n^* \subseteq \tau(\alpha, n)$.

Choose
$$\beta \notin \bigcup_{n < \omega} P_n$$
. Then for each $n < \omega$, pick $\alpha_n > \beta$ such that $\beta \notin \tau(\alpha_n, n)$.

Note that the one-point Lindelöfication of discrete ω_1 , ω_1^{\dagger} , is not σ -compact. With the above lemma, we may see that:

Example 9.
$$F \uparrow Cov_{C,F}(\omega_1^{\dagger})$$
 but $F \not\uparrow_{mark} Cov_{C,F}(\omega_1^{\dagger})$.

Proof. First, we see F has a simple perfect information strategy: in response to the initial cover of ω_1^{\dagger} , F chooses a co-countable neighborhood of ∞ . On successive turns she may pick a single set from C's covers to cover the countable remainder.

Now, suppose that $\sigma(\mathcal{U}, n)$ was a winning Markov strategy and aim for a contradiction. Consider the covers

$$\mathcal{U}(\alpha) = \{ [\alpha, \omega_1) \cup \{\infty\} \} \cup \{ \{\beta\} : \beta < \alpha \}$$

and define $\tau(\alpha, n)$ to be the union of singletons chosen by $\sigma(\mathcal{U}(\alpha), n)$.

Using the sequence $\alpha_0, \alpha_1, \dots < \omega_1$ from the previous lemma, we consider the play $\mathcal{U}(\alpha_0), \mathcal{U}(\alpha_1), \dots$

As σ was a winning strategy, $\{\sigma(\mathcal{U}(\alpha_n), n) : n < \omega\}$ must cover ω_1^{\dagger} , and thus $\{\tau(\alpha_n, n) : n < \omega\}$ must cover $\{\beta : \forall n < \omega(\beta < \alpha_n)\}$, contradiction.

Telgarski showed in "On Games of Topsoe" that a metrizable space is σ -compact if and only if there exists a winning strategy for F in the Menger game, and Scheepers gave a more direct proof later. We slightly generalize Scheeper's proof.

Definition 10. A space X is H-closed if for every open cover of X, there exists a finite subset of the cover whose union is dense in X.

Proposition 11. For regular spaces, X is H-closed if and only if X is compact.

Proof. The backward implication is trivial, so let X be H-closed. For any open cover \mathcal{U} of X and point $x \in X$, choose $x \in V_x \subseteq \overline{V_x} \subseteq U_x \in \mathcal{U}$. Then if $\mathcal{F} = \{V_{x_i} : i < n\}$ is a finite subset of $\mathcal{V} = \{V_x : x \in X\}$ with dense union in X, then $\mathcal{G} = \{U_{x_i} : i < n\} \subseteq \mathcal{U}$ is a finite subcover of X.

Definition 12. A set $R \subseteq X$ is relatively compact to the topological space X if for every open cover of the entire space X, there is a finite subcover of the set R.

Proposition 13. If X is regular, then Y is relatively compact if and only if \overline{Y} is compact.

Proof. The reverse implication is trivial.

Assume Y is relatively compact, let \mathcal{U} be an open cover of \overline{Y} , and let \mathcal{V} be an open cover of $X \setminus \overline{Y}$ such that the closure of each member also misses \overline{Y} (possible by regularity).

Let $W \subseteq \mathcal{U} \cup \mathcal{V}$ be a finite subcover of Y, and note $\overline{\bigcup \mathcal{W}} \supseteq \overline{Y}$. If $\mathcal{F} = \mathcal{W} \setminus \mathcal{V}$, then $\overline{\bigcup \mathcal{F}} \supseteq \overline{Y}$ as well. Thus $\bigcup \mathcal{F}$ is dense in \overline{Y} , showing \overline{Y} is H-closed and thus compact. \square

Theorem 14. For metrizable X, the following are equivalent:

- (a) X is σ -compact
- (b) X is σ -(relatively compact)
- (c) $F \uparrow Cov_{C,F}(X)$
- (d) $F \uparrow_{mark} Cov_{C,F}(X)$

Proof. We've seen $(a) \Rightarrow (d)$, and $(d) \Rightarrow (c)$, $(b) \Rightarrow (a)$ are trivial.

To prove $(c) \Rightarrow (b)$, let $\sigma(\mathcal{U}_0, \dots, \mathcal{U}_{n-1})$ be a winning strategy for F, and observe that since X is second-countable, we may assume all covers are countable. Let \mathfrak{C} be the collection of all countable covers of X. We define R_s, \mathcal{U}_s for $s \in \omega^{<\omega}$ as follows:

- $R_{\emptyset} = \bigcap_{\mathcal{U} \in \mathfrak{C}} \left(\bigcup \sigma(\mathcal{U}) \right)$
- Note that there are only countably many distinct finite subsets $\sigma(\mathcal{U})$ of the countable collection \mathcal{U} . Thus define each $\mathcal{U}_{\langle n \rangle}$ so that

$$R_{\emptyset} = \bigcap_{n < \omega} \left(\bigcup \sigma(\mathcal{U}_{\langle n \rangle}) \right)$$

•
$$R_s = \bigcap_{\mathcal{U} \in \mathfrak{C}} \left(\bigcup \sigma(\mathcal{U}_{s \uparrow 1}, \mathcal{U}_{s \uparrow 2}, \dots, \mathcal{U}_s, \mathcal{U}) \right)$$

• Again, note that there are only countably many distinct finite subsets $\sigma(\mathcal{U}_{s \upharpoonright 1}, \mathcal{U}_{s \upharpoonright 2}, \dots, \mathcal{U}_{s}, \mathcal{U})$ of the countable collection \mathcal{U} . Thus define each $\mathcal{U}_{s \frown \langle n \rangle}$ so that

$$R_s = \bigcap_{n < \omega} \left(\bigcup \sigma(\mathcal{U}_{s \upharpoonright 1}, \mathcal{U}_{s \upharpoonright 2}, \dots, \mathcal{U}_s, \mathcal{U}_{s \smallfrown \langle n \rangle}) \right)$$

We quickly confirm that each R_s is relatively compact as for each open cover \mathcal{U} of X we have the finite subcover $\sigma(\mathcal{U}_{s \upharpoonright 1}, \mathcal{U}_{s \upharpoonright 2}, \dots, \mathcal{U}_{s}, \mathcal{U})$ of R_s .

Finally, we claim that $X = \bigcup_{s \in \omega^{<\omega}} R_s$. If not, let x be missed by every R_s , and define $f \in \omega^{\omega}$ such that $x \notin \bigcup \sigma(\mathcal{U}_{f \upharpoonright 1}, \dots, \mathcal{U}_{f \upharpoonright n})$ for any n. Then $\mathcal{U}_{f \upharpoonright 1}, \mathcal{U}_{f \upharpoonright 2}, \dots$ is a counter to the winning strategy σ , a contradiction.

Lemma 15. Let $\sigma(\mathcal{U}, n)$ be a winning Markov strategy for F in $Cov_{C,F}(X)$, and \mathfrak{C} collect all open covers of X. Then for

$$R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$$

it follows that R_n is relatively compact to X, and $\bigcup_{n<\omega} R_n = X$.

Proof. First, we see that $\sigma(\mathcal{U}, n)$ witnesses the relative compactness of R_n . Suppose that $x \notin R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$ for any $n < \omega$. Then for each n, pick $\mathcal{U}_n \in \mathfrak{C}$ such that $x \notin \bigcup \sigma(\mathcal{U}_n, n)$. Then σ does not defeat the play $\mathcal{U}_0, \mathcal{U}_1, \ldots$ since the $\sigma(\mathcal{U}_n, n)$ do not cover

Theorem 16. A space X is σ -(relatively compact) if and only if $F \uparrow_{mark} Cov_{C,F}(X)$.

Proof. For the forward implication, let $X = \bigcup_{n < \omega} R_n$ for R_n relatively compact, and define $\sigma(\mathcal{U}, n)$ to be a finite subcover of R_n . The previous lemma proves the other direction. \square

Corollary 17. For regular spaces X, the following are equivalent:

- (a) X is σ -compact
- (b) X is σ -(relatively compact)
- (c) $F \uparrow_{mark} Cov_{C,F}(X)$

Example 18. Let R be given the topology from example 63 from Counterexamples in Topology, the topology generated by open intervals with countable sets removed. This space is non-regular, non- σ -compact, and Lindelöf. It is also Menger as $F \uparrow Cov_{C,F}(R)$, but $F \gamma_{mark} Cov_{C,F}(R)$.

Proof. From Counterexamples: The irrationals are open, but contain no closed neighborhood, showing non-regular. Compact subsets are exactly finite subsets, showing non- σ -compact.

Take open covers U_0, U_1, \ldots Define $\sigma(U_0, \ldots, U_{2n})$ to be a finite subcover of $[-n, n] \setminus C_n$ for some countable $C_n = \{c_{n,0}, c_{n,1}, \ldots\}$. For $\sigma(U_0, \ldots, U_{2n+1})$, use any subcover of $\{c_{i,j} : i, j < n\}$. It is easily seen that σ is a winning perfect information strategy.

There cannot be a winning Markov strategy $\sigma(\mathcal{U}, n)$, however. Define

$$R_n = \bigcap_{\mathcal{U} \in \mathfrak{C}} \bigcup \sigma(\mathcal{U}, n)$$

where \mathfrak{C} is the collection of open covers of R. For any $x_0, x_1, \dots \in R$, we may define the open cover $\mathcal{U} = \{R \setminus \{x_i : i \neq n\} : n < \omega\}$, and observe that $\bigcup \sigma(\mathcal{U}, n) \supseteq R_n$ contains only finitely many x_i . Thus R_n is finite, but since the previous lemma requires $\bigcup_{n < \omega} R_n = R$ if σ is a winning strategy, there exists a counter to σ .

Example 19. Let R be given the topology from example 67 from Counterexamples in Topology, the topology generated by open intervals with or without the rationals removed. This space is non-regular, non- σ -compact, and Lindelöf.

This space is an example of non- σ -compact but $F \uparrow_{mark} Cov_{C,F}(R)$ (and is thus also Menger).

Proof. From Counterexamples: The rationals are closed, but the closure of any open neighborhood is the whole real line, so they cannot be separated from any irrational point. Compact sets in this topology are nowhere dense in the Euclidean topology, so there cannot be countably many which union to the whole space. $\{(a,b) \setminus D : a,b \in \mathbb{Q}, D \in \{\emptyset,\mathbb{Q}\}\}$ is a countable base for the space, and second-countability implies Lindelöf.

To see $F \uparrow_{\text{mark}} Cov_{C,F}(R)$, we define $\sigma(\mathcal{U}_{2n}, 2n)$ to be a finite cover of $[-n, n] \setminus \mathbb{Q}$, and $\sigma(\mathcal{U}_{2n+1}, 2n+1)$ to be a finite cover of $\{q_n\}$ for each $q_n \in \mathbb{Q}$.

We define a new property " σ -compactish" to describe a sufficient condition for $F \uparrow_{2\text{-mark}} Cov_{C,F}(X)$.

Definition 20. Let \mathcal{U} be a cover of X. We say $C \subseteq X$ is \mathcal{U} -compact if there exists a finite subcover of \mathcal{U} which covers C.

Let \mathfrak{C} collect all the open covers of X. We say X is σ -compactish if there exists a function $f: \mathfrak{C} \times \omega \to \mathcal{P}(X)$ such that:

- $f(\mathcal{V}, n)$ is \mathcal{V} -compact
- $f(\mathcal{V}, n) \subseteq f(\mathcal{V}, n+1)$

- $\bigcup_{n<\omega} f(\mathcal{V},n) = X$
- The set

$$g(\mathcal{U}, \mathcal{V}, n) = \bigcup_{m \ge n} f(\mathcal{U}, m) \setminus (f(\mathcal{U}, m - 1) \cup f(\mathcal{V}, m))$$

is \mathcal{V} -compact

Obviously σ -compact implies σ -compactish implies Lindelöf. We shall see that the non- σ -compact space ω_1^{\dagger} is σ -compactish.

Lemma 21. There exist injective functions $f_{\alpha}: \alpha \to \omega$ such that if $\alpha < \beta$, then

$$f_{\beta} \upharpoonright \alpha =^* f_{\alpha}$$

that is, $f_{\beta} \upharpoonright \alpha$ and f_{α} agree on all but finitely many ordinals. (In addition, the range of each f_{α} is co-infinite.)

Proof. Taken from Kunen (used for the construction of an ω_1 -Aronszajn tree).

We begin with the empty function $f_0: 0 \to \omega_1$ which satisfies the hypothesis, and assume f_{α} is defined by induction. Let $f_{\alpha+1} = f_{\alpha} \cup \{\langle \alpha, n \rangle\}$ where n is not defined for f_{α} , and this satisfies the hypothesis.

Finally, suppose γ is the limit of $\alpha_0, \alpha_1, \ldots$, and f_{α} is defined for $\alpha < \gamma$. Let $g_0 = f_{\alpha_0}$, and define $g_n : \alpha_n \to \omega$ to be injective, $g_n =^* f_{\alpha_n}$, and $g_{n+1} \upharpoonright \alpha_n = g_n$. $g = \bigcup_{n < \omega} g_n$ is an injective function from $\gamma \to \omega$ and $g =^* f_{\alpha}$ for $\alpha < \gamma$, but the range need not be coinfinte. So let

$$f_{\gamma}(\beta) = \begin{cases} g(\alpha_{2n}) & \beta = \alpha_n \\ g(\beta) & \text{otherwise} \end{cases}$$

which frees up $\{g(\alpha_{2n+1}): n < \omega\}$ from the range of f_{γ} , but still agrees with all but finitely many points compared to previous f's.

Theorem 22. The one-point Lindelöfication of the uncountable discrete space, ω_1^{\dagger} , is σ -compactish.

Proof. Take the injective funcions f_{α} from Kunen's lemma such that $f_{\alpha} \upharpoonright \beta =^* f_{\beta}$. Let $\gamma(\mathcal{U})$ identify the least ordinal such that $[\gamma(\mathcal{U}), \omega_1) \cup \{\infty\}$ is in a refinement of \mathcal{U} . Then $f(\mathcal{U}, n) = f_{\gamma(\mathcal{U})}^{-1}([0, n]) \cup [\gamma(\mathcal{U}), \omega_1) \cup \{\infty\}$ is easily seen to witness the property.

Theorem 23. If X is σ -compactish, then $F \uparrow_{2\text{-mark}} Cov_{C,F}(X)$.

Proof. Let $\sigma(\mathcal{U}_n, \mathcal{U}_{n+1}, n+1)$ cover $f(\mathcal{U}_{n+1}, n+1)$ and $g(\mathcal{U}_n, \mathcal{U}_{n+1}, n+1)$. If $\mathcal{U}_0, \mathcal{U}_1, \ldots$ is any play by C, then for each $x \in X$, we note that $x \in f(\mathcal{U}_0, N)$ for some N. So either $x \in \bigcap_{m \le N} f(\mathcal{U}_m, N)$ and is covered by the strategy during round N, or for some m < N, $x \in f(\mathcal{U}_m, N) \setminus (f(\mathcal{U}_m, N-1) \cup f(\mathcal{U}_{m+1}, N))$ and is covered by the strategy during round m+1.

Corollary 24. $F \uparrow_{2\text{-}mark} Cov_{C,F}(\omega_1^{\dagger})$

Definition 25. X is **Rothberger** if for all open covers U_0, U_1, \ldots there exist open sets $U_n \in \mathcal{U}_n$ such that $\{U_n : n < \omega\}$ is a cover of X.

Proposition 26. Rothberger \Rightarrow Menger

Definition 27. In the two-player game $Cov_{C,O}(X)$ player C chooses open covers \mathcal{U}_n of X, followed by player O choosing an open set $U_n \in \mathcal{U}_n$. O wins if $\{U_n : n < \omega\}$ is a cover of X.

Theorem 28. X is Rothberger if and only if $C \uparrow Cov_{C,O}(X)$.

Proof. Due to Pawlikowski \Box