

Workshop Latent Variable Modeling (LVM)

Menggunakan JASP: Bagian 2 - Korelasi

Rizqy Amelia Zein

- Dosen, Fakultas Psikologi, Universitas Airlangga
- Anggota, #SainsTerbuka Airlangga ®
- Relawan, INA-Rxiv
- Researcher-in-training, Institute for Globally Distributed Open Research and Education (IGDORE)

Mengapa memulai dari korelasi?

LVM-SEM merupakan teknik yang digunakan untuk mengestimasi korelasi antar-variabel

Untuk melakukan SEM, peneliti tidak harus menyediakan data kasar (*raw data*), tetapi ada pilihan untuk meng*input correlation* atau *variance-covariance matrix*.

Jenis-jenis korelasi

Koefisien Korelasi	Level Pengukuran
Pearson's product moment	Kedua variabel setidaknya interval
Spearman's rank dan Kendall's tau	Kedua variabel ordinal
Phi, contingency table	Kedua variabel nominal
Point biserial	Variabel interval dengan nominal
Gamma, rank biserial	Variabel ordinal dengan nominal
Biserial	Variabel interval dengan dummy
Polyserial	Variabel interval dengan variabel <i>underlying continuity</i>
Tetrachoric	Kedua variabel <i>dummy</i> (dikotomis)
Polychoric	Kedua variabel ordinal (dengan kontinuitas implisit)

Faktor-faktor yang mempengaruhi korelasi

- Level pengukuran (apakah variabel tersebut nominal, ordinal, interval, atau rasio)
 - Sehingga berdampak pada variabilitas (restriction range) dan normalitas data
- Linearitas
 - Semua teknik korelasi mengasumsikan korelasi antar-variabel linear, sehingga korelasi yang tidak linear akan memberikan informasi **tidak adanya korelasi** (padahal tidak selalu).
- Adanya data outlier
- Koreksi atenuasi
- Jumlah sampel
 - Jumlah sampel yang terlalu sedikit akan memberikan estimasi yang kurang akurat (karena standard errornya besar)
- Sampling variance
 - Yang kemudian berefek pada *confidence interval*, *effect size* (koefisien korelasi itu sendiri), dan *statistical power*
- Missing data
 - Kalau data tidak lengkap, estimasi koefisien korelasi akan langsung terdampak.
 - Ada beberapa pilihan yang bisa dilakukan, yaitu *listwise deletion*, *pairwise deletion*, dan melakukan *data imputation*.
 - Listwise deletion tidak disarankan karena membuat jumlah sampel turun drastis mengurangi statistical power.

Silahkan unduh dan buka Dataset Contoh Korelasi, untuk melihat contoh.

MY HOBBY: EXTRAPOLATING

Variance-covariance dan correlation matrix (1)

- Untuk melakukan SEM, maka perangkat lunak membutuhkan variance-covariance matrix untuk mengestimasi parameter model
- Pada bagian diagonal variance-covariance matrix menunjukkan varians, sedangkan sisanya adalah covariance

- Jumlah nilai unik (non-redundant information) dalam variance-covariance matrix adalah p(p+1)/2
 - dimana p adalah jumlah observed variable
 - Sehingga dengan contoh di atas maka jumlah nilai unik (*non-redundant information*) di *variance-covariance matrix* adalah 3(3+1)/2=6, yaitu **3 varians (diagonal)** dan **3 covariance (sisanya)**

Variance-covariance dan correlation matrix (2)

- Sebagian besar perangkat lunak SEM menggunakan variance-covariance matrix bukan correlation matrix
 - Ingat | korelasi adalah *standardised* covariance.
- Menggunakan correlation matrix biasanya lebih sering menghasilkan parameter yang statistically significant tapi standard error yang tidak akurat.
- Oleh karena itu, meskipun user menginput correlation matrix, maka perangkat lunak akan mengubahnya dulu menjadi variance-covariance matrix dulu, baru parameter model dapat diestimasi.

Koreksi Atenuasi

- Asumsi dasar dalam Psikometri adalah skor kasar (*observed score*) mengandung skor murni (*true score*) dan *measurement error*, sehingga dalam mengestimasi korelasi, *measurement error* perlu dibuang agar estimasi lebih akurat.
- Dengan teknik *koreksi atenuasi*, kita dapat 'membuang' *measurement error*, sehingga kita dapat mengestimasi korelasi antar-variabel menggunakan *true score*-nya.
- Tetapi apabila reliabilitas skala kita kurang baik, maka setelah dikoreksi koefisien korelasi bisa lebih dari 1 🏾
- Misalnya diketahui bahwa korelasi *observed scores* antar dua variabel (r_{ab}) adalah 0.9 dan reliabilitas skala *a* (Cronbach's α) adalah 0.6 dan skala *b* adalah 0.7, maka:

$$r_{ab}^* = \frac{r_{ab}}{\sqrt{r_{aa} * r_{bb}}}$$

$$r_{ab}^* = \frac{0.9}{\sqrt{0.7(0.6)}}$$

$$r_{ab}^* = 1.389$$

WARNING! Covariance/correlation matrix is not positive definite

Apa yang terjadi?

Perangkat lunak akan menghentikan proses estimasi

...dan memberikan pesan *non-positive definite*

Matrik korelasi dengan *non-positive definite*

- Koefisien korelasi yang nilainya ≥1 menyebabkan matriks korelasi menjadi non-positive definite
 - Artinya, parameter model tidak mungkin diestimasi
- Mengapa terjadi?
 - Data didapatkan dari observasi yang tidak independen (linear dependency)
 - Terjadi multikolinearitas
 - o Jumlah sampel lebih sedikit dari jumlah variabel yang diuji dalam model
 - Sepasang variabel berbagi varians negatif atau tidak sama sekali (0) Heywood case
 - Varians, kovarians, dan korelasi nilainya diluar batas kewajaran
 - Kesalahan mengatur pembatasan (constraint) pada parameter tertentu yang dilakukan oleh peneliti (userspecified model)

Heywood dan ultra-Heywood case

- Terjadi ketika *communalities* = 1 (*Heywood*) atau ≥1 (*ultra-Heywood*), atau terjadi ketika varians *measurement error* bernilai negatif
 - \circ Communalities adalah kuadrat dari koefisien korelasi (R^2)
 - Apabila terjadi, maka ada yang salah dengan spesifikasi model (hipotesis)
- Terjadi karena
 - Common factor terlalu banyak/terlalu sedikit
 - Ukuran sampel tidak memadai
 - Model SEM (common factor model) bukan model yang cocok untuk menguji hipotesis hubungan antar-variabel (alternatifnya Principal Component Analysis - PCA)
- Yang bisa dilakukan
 - Tinjau kembali hipotesis modelnya
 - Kurangi jumlah faktor laten dengan 'membuang' jalur/korelasi yang bermasalah
 - o Identifikasi variabel yang terlibat multikolinearitas. Masukkan salah satu saja dalam model, sisanya sisihkan

Korelasi Bivariat: Part dan partial correlation

Metrik variabel (*standardised* vs *unstandardised*)

- Unstandarised solution/estimates
 - Dapat dibandingkan antar kelompok sampel
 - Merupakan parameter yang digunakan oleh perangkat lunak untuk menghitung standard error dan taraf signifikansi (p-value)
 - Membandingkan unstandardised factor loading harus melihat standard erromya juga karena mereka seharusnya sepaket
- Standarised solution/estimates
 - Hanya interpretable untuk kelompok sampel yang diuji tidak bisa dibandingkan dengan kelompok sampel yang lain.
 - Berguna untuk membandingkan factor loading antar-variabel di dalam model peneliti dapat mengidentifikasi variabel mana yang paling berkontribusi menjelaskan dependent variable
 - Apabila variabel dalam model memiliki unit pengukuran yang berbeda, maka standardised estimates akan sangat membantu untuk menstandardisasi unit antar-variabel tersebut
- Ada banyak perbedaan pendapat mengenai metrik mana yang harus dilaporkan, tetapi...
 - Selalu laporkan unstandarised solution/estimates dan standard erromya (boleh juga dengan standarised solution/estimates, boleh juga tidak)

Terima kasih banyak! 😉

Paparan disusun dengan menggunakan **@** package **xaringan** dengan *template* dan *fonts* dari R-Ladies.

Chakra dibuat dengan remark.js, knitr, dan R Markdown.