Литература

测线管 网络河南河 医拉马克河道 医通风性皮肤测断 经运动区据

[Abikoff (1980)] Abikoff, W. The real analytic theory of Teichmüller space. Lecture Notes in Mathematics 820, Springer-Verlag Berlin. [Имеется русский перевод: Абикофф У. Вещественно аналитическая теория пространства Тейхмюллера. М.: Мир, 1985.]

IAdams (1969)] Adams, J. F. Lectures on Lie groups. Benjamin, New York. [Имеется русский перевод: Адамс Дж. Лекции по группам Ли. М.: Наука, 1979.]

[Albeverio, Hoegh-Krohn (1978)] Albeverio, S., and Hoegh-Krohn, R. The energy representations of

[Albeverio, Hoegh-Krohn, Testard (1981)] Albeverio, S., Høegh-Krohn, R., and Testard, D. Irreducibility and reducibility representations of the group of maps a Riemannian manifold into a compact semisimple Lei group. J. Funct. Anal. 41, no. 3, 378-96. Sobolev-Lie groups. Compositio Math. 36, 37-52.

[Albeverio, Hoegh-Krohn, Testard, Vershik (1983)] Albeverio, S., Høegh-Krohn, R., Testard, D., and Vershik, A. Factorial representations of path groups. J. funct. Anal. 51, no 1, 115-31

[Aldous (1985)] Aldous, D.J. Exchangeability and related topics. Lecture Notes in Mathematics 1117, Springer-Verlag, Berlin, 2-199.

[Alvarez-Gaume, Gomes, Moore, Vafa (1988)] Alvarez-Gaume, L., Gomes, G., Moore, G., and Vafa, C. Springs in operator formalism. Nuclear Phys. B303, no. 3, 455-521.

[Araki (1970)] Araki, H. Factorizable representations of current algebra. Publ. Res. Inst. Math. Sci., Kyoto Univ. Ser. A 5, 361-422.

[Arbarello, de Concini, Kac, Procesi (1988)] Arbarello, E., de Concini, C., Kac. V. G., and Procesi, C.

[Arnol'd, Khesin (1992)] Arnol'd, V.I. and Khesin, B.A. Topological methods in hydrodynamics. Moduli spaces of curves and represetation theory. Comm. Math. Phys. 117, no 1, 1-36. Ann. Rev. Fluid Mech. 24, 145-66.

[Arveson (1976)] Arveson W. An invitation to C^* -algebras. Springer-Verlag: New York, Heidelberg, 1976

[Bargmann (1947)] Bargmann, V. Irreducible unitary representations of the Lorentz group. Ann. of [Bargmann (1954)] Bargmann V. On unitary ray representations of continuous groups. Ann. of Math. 48, 568-642. Math., 59, № 1.

[Bargmann (1961)] Bargmann, V. On Hilbert space of analytic functions and associated integral transform. I. Comm. Pure Appl. Math, 14, 187-214.

[Bargmann (1962)] Bargmann, V. Remarks on a Hilbert space of analytic functions. Proc. Nat. Acad. Sci. U.S.A. 48, no. 3, 199-204.

[Berezin (1976)] Berezin, F.A. Represetions of the infinite direct product of universal coverings of [Bart, Gohberg, Kaashoek (1979)] Bart, H., Gohberg, I., and Kaashoek, M.A. Minimal factorization of matrix and operator functions. Birkhauser, Basel.

isometry groups of the complex ball. Rep. Math. Phys. 9, no. 1, 15-30.

[Bott (1977)] Bott, R. On the characteristic classes of groups of diffeomorphisms. Enseign. Math. **23**, no. 3-4, 209-20.

[Bourbaki (1958)] Bourbaki, N. Algèbre, Chapitre 8. Hermann, Paris. [Имеется русский перевод [Bourbaki (1942)] Bourbaki, N. Topologie générale, Chapitre 3. Hermann, Paris. [Имеется русский перевод: Бурбаки Н. Общая топология. Основные структуры. Физматгиз, 1958.]

в книге: Бурбаки Н. Алгебра. Модули, кольца, формы. М.: Наука, 1966.]

[Bourbaki (1959)] Bourbaki, N. Algèbre, Chapitre 9. Hermann, Paris. [Имеется русский перевод в книге: Бурбаки Н. Алгебра. Модули, кольца, формы. М.: Наука, 1966.]

[Boyer (1983)] Boyer, R. Infinite traces of AF-algebras and characters of $U(\infty)$. J. Operator Theory

[Boyer (1993)] Boyer, R. Representation theory of infinite-dimensional unitary groups. Contemp. Math. 145, 381-91.

[Brauer (1937)] Brauer, R. On algebras which are connected with the semisimple continuous groups. Ann. of Math. (2) 38, 857–72.

[Brenier (1994)] Brenier Y. On the motion of an ideal imcompressible fluid. In Partial differential [Carey, Hannabuss (1992)] Carey, A. L. and Hannabuss, K. C. Temperature states on gauge groups. equations of elliptic type (Cortona, 1992), Cambridge Univ. Press.

[Cartan (1913)] Cartan, E. Les groupes progectifs qui ne laissent invariante aucune multiplicité plane. Bull. Soc. Math. France 14, 53–96. Ann. Inst. Poincaré Phys. Théor. 157, 219-57.

[Cartan (1935)] Cartan, E. Sur les domaines bornés homogènes de l'espase de n variables complexes. Abh. Math. Sem. Univ. Hamburg 11, 116-61.

[Cartan (1938)] Санап, Е. Leçons sur la théorie des spineurs. Hermmann, Paris. [Имеется русский перевод: Картан Э. Теория спиноров. М.: ИЛ, 1947.

[de Concini, Procesi (1983)] de Concini, C. and Procesi, C. Complete symmetric varieties. Lecture Notes in Mathematics 996, 1–44, Springer-Verlag, Berlin.

[Delorme (1978)] Delorme, P. Irréducibilité de centraines represétations de G^X . J. Funct. Anal. 30:

[Dieudonné (1971)] Dieudonné, J. La géométrie des groupes classiques. Springer-Verlag, Berlin. [Имеется русский перевод: Дьедонне Ж. Геометрия классических групп. М.: Мир, 1974.]

[Dixmier (1969)] Dixmier, J. Les C*-algebres et leurs represétations Gauthier-Villars, Paris. [Имеется русский перевод: Диксмье Ж. С*-алгебры и их представления. М.: Наука, 1974.]

[Dixmier (1974)] Dixmier, J. Algèbres enveloppantes. Gauthier-Villars, Paris. [Имеется русский перевод: Диксмье Ж. Универсальные обертывающие алгебры. М.: Мир, 1978.]

[Dunford, Schwartz (1963)] Dunford, N. and Schwartz, J. T. Linear operators, Part II. Interscience, New York. [Имеется русский перевод: Данфорд Н., Шварц Дж. Линейные операторы. Т. 2. Спектральная теория. М.: Мир, 1966.]

Interscience, New York. [Имеется русский перевод: Эмх Ж. Алтебраические методы [Duren (1983)] Duren, P. L. Univalent functions. Springer-Verlag, Berlin. [Emch (1972)] Emch, G. G. Algebraic methods in statistical mechanics and quantum filed theory. статической механики и квантовой теории поля. М.: Мир, 1976.]

[Feigin, Fuchs (1990)] Feigin B. L, Fuchs D. B. Representations of Virasoro algebra. In Representations [Feldman (1958)] Feldman, J. Equivalence and perpendicularity of Gaussian measures. Pacif. of Lie groups and Related topics (eds. A. M. Vershik, D. P. Zhelobenko)

J. Math. 8, no. 4, 699-708.

[de Finetti (1937)] de Finetti B. La prevision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré, 7, 1-68.

[Fock (1932)] Fock, V.A. Konfigurationsraum und zweite Quantelung. Z. Phys. 75, 622-47. [Имеется русский перевод: в Фок В. А. Работы по квантовой теории поля. Л., 1957.]

[Fock (1934)] Fock, V.A. Zur Quantenelectrodynamik. Soviet Phys. 6, 425. [Имеется русский [Frenkel (1981)] Frenkel, I.B. Two constructions of affine Lie algebra representations and перевод: в Фок В. А. Работы по квантовой теории поля. Л., 1957.]

[Frenkel (1984)] Frenkel, I. B. Orbital theory for affine Lie algebras. Invent. Math. 77, 301-52. boson-fermion correspondence in quantum field theory. J. Funct. Anal. 44, 259-327.

[Frenkel, Kac (1981)] Frenkel, I. B. and Kac, V. G. Basic representations of affine Lie algebras and

[Friedan, Qiu, Shenker (1985)] Friedan, D., Qiu, Z., and Shenker, S. Conformal invariance unitarity and two-dimensional critical exponents. In: Vertex operators in mathematics and physics. (ed. dual resonance models. Invent. Math. 62, no. 1, 23-66. J. Lepowsky et al.), 419-49.

[Gårding, Wightman (1954)] Gårding, L. and Wightman, A.S. Representations of the commutation Fuchs (1993)] Fuchs D. B. Singular vectors over the Virasoro algebras, Adv. Sov. Math., 17, 65-74. relations. Proc. Nat. Acad. Sci. U.S.A. 40, 622-626.

In: Representation of Lie groups and related topics (ed. A. M. Vershik and D. P. Zhelobenko), **[Gel'fand, Graev (1990)]** Gel'fand I. M. and Graev M. I. Principal representations of the group $U(\infty)$ 119-154. Gordon and Breach, New York.

[Gel'fand, Graev, Vershik (1981)] Gel'fand, I. M., Graev, M. I., and Vershik, A. M. Representations

of the group of functions taking values in a compact Lie group. Compositio Math. 42, 217-43. [Gel'fand, Graev, Vershik (1985)] Gel'fand, I.M., Graev M.I., and Vershik, A.M. Models of representations of current groups. In: Representations of Lie groups and algebras (ed. A.A. Kirillov), 121-80. Akademiai Kiado, Budapest.

[Goddard, Kent, Oliver (1986)] Goddard, P., Kent, A., and Oliver, D. Unitarisable representations of Virasoro algebra and super Virasoro algebra. Comm. Math. Phys. 103, 115-19.

[Gohberg, Goldberg, Kaashoek (1993)] Gohberg I., Goldberg S., Kaashoek M.A. Classes of linear operators. V. II. Birkhauser.

[Goodman (1979)] Goodman, R. Holomorphic representations of nilpotent Lie groups. J. Funct. Anal. 31, 115-37.

[Goodman, Wallach (1984)] Goodman, R. and Wallach, N.R. Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle. J. Reine Angew. Math. 347, 69-133.

[Goodman, Wallach (1985)] Goodman, R. and Wallach, N. R. Projective unitary positive energy cocylce representations of Diff(S^1). J. Funct. Anal. **63**, 299-321

[Gross (1965)] Gross, L. Abstract Wiener spaces. Proc. 5th Berkeley Symp. Math. Stat. Prob. 2, [Grunsky (1939)] Grunsky, H. Koeffizientenbedingunden für schlicht abbildende meromorphe

Funktionen. Math. Z. 45, 29-61.

[Guichardet (1972)] Guichardet, A. Symmetric Hilbert spaces and related topics. Lecture Notes in Mathematics 261, Springer-Verlag, Berlin.

Codic/Fernand Nathan, Paris. [Имеется русский перевод: Гишарде А. Когомологии групп [Guichardet (1980)] Guichardet, A. Cohomologie des groupes topologiques et des algèbres de Lie. Ли и гопологических алгебр. М.: Мир, 1984.]

Prentice-Hall, Engelwood Cliffs, NJ. [Имеется русский первод: Ганиинг Р., Росси Х. [Gunning, Rossi (1965)] Gunning, R. and Rossi, H. Analytic functions of several complex variables, Аналитические функции многих комплексных перменных. М.: Мир, 1969.]

[Hajek (1958)] Hajek, J. On a property of normal distributions an arbitrary stochastic process. Czechslovak Math. J. 8, 610–18.

[Heyer (1977)] Heyer, H. Probability measures on locally compact groups, Springer-Verlag, Berlin. [Имеется русский перевод: Хейер Дж. Вероятностные меры на локально-компактных группах. М.: Мир, 1977.]

New York. [Имеется русский перевод: Хелгасон С. Дифференциальная геометрия и [Helgason (1962)] Helgason, S. Differential geometry and symmetric spaces, Academic Press, симметрические пространства. М.: Мир, 1964.]

Hilgert, Hoffmann, Lawson (1989)] Hilgert, J., Hoffmann, K. N., and Lawson, J. Lie groups, convex cones and semigroups, Clarendon Press, Oxford.

[Hofer, Zehnder (1994)] Hofer H., Zehnder E. Symplectic invariant and hamilyonian dynamics,

[Hopf (1954)] Hopf, E. The general temporally discrete Markov process. J. Rat. Mech. Anal. 3,

Spinger-Verlag, Berlin. [Имеется русский перевод: *Хермандер Л*. Анализ линейных дифференциальных операторов с частными производными. Т. 3. М.: Мир, 1987.] [Hörmander (1985)] Hörmander, L. The analysis of linear partial differential operators. III.

[Hörmander (1995)] Hörmander, L. Symplectic classification of quadratic forms, and general Mehler formulas // Math. Z., T.219, 413-449.

[Howe (1988)] Howe, R. The oscillator semigroup. Proc. Symp. Pure Math. 48, 61-131.

[Howe (1989)] Howe, R. Remarks on classical invariant theory. Trans. Math. Soc. 313, 539-70.

[Howe, Moore (1979)] Howe, R. E. and Moore, C. C. Asymptotic properties of unitary representations. J. Funct. Anal. 32, 72-96.

[Hua (1958)] Ниа, Lo Keng Harmonic analysis of functions of several complex variables in classical domains (Chinese); [Имеется русский перевод: Хуа Ло Кен. Гармонический анализ функций многих комплексных переменных в классических областях. М.: ИЛ, 1959.] English translation (1963): Amer. Math. Soc, Providence, RI.]

[Hurwitz, Courant (1952)] Hurwitz, A. and Courant, R. Vorlesungen über allgemeine Functionentheorie und elliptische Functionen, Springer-Verlag, Berlin. [Имеется русский перевод: Гурвиц А., Курант Р. Теория функций. М.: Наука, 1968.]

[Ismagilov (1983)] Ismagilov, R. S. Infinite-dimensional groups and their representations. Trans. Interant. Math. Congress, Warsaw, 861-5.

[Ismagilov (1996)] Ismagilov, R. S. Representations of infinite dimensional groups. Amer. Math. Soc., Providence, 1996.

McKean (1965)] Ito, K. and McKean, H.P. Diffusion process and their sample paths. Springer-Verlag, Berlin. [Имеется русский перевод: Ито К., Маккин Г. Диффузионные процессы и их траектории. М.: Мир, 1968.] Ito,

[Kac (1979)] Kac, V. G. A contravariant form for infinite-dimensional Lie algebras and superalgebras. Lecture Notes in Physics 94, 441-5, Springer-Verlag, Berlin.

[Имеется русский перевод: Кац В.Г. Бесконечномерные алгебры Ли. М.: Мир, 1993.] [Kac, V.G. (1983)] Kac, V.G. (1983). Infinite-dimensional Lie algebras. Birkhauser, Boston, MA.

[Kac, Kazhdan, Lepowsky, Wilson (1981)] Kac, V. G., Kazhdan, D. A., Lepowsky, J., and Wilson, R. L. Realization of the basic representations of Euclidean Lie algebras. Adv. in Math. 42, 83-112.

[Kahane (1965)] Kahane, J. P. Some random series of functions. 2nd edn. Camridger Studies in Adv. Math. no. 5. Camridge University Press, Camridge.

[Kallenberg (1992)] Kallenberg O. Symmetries of random arrays and set-indexed processes. J. theory Probab., V.5, 727-765.

[Kallenberg (1995)] Kallenberg O. Multiple Wiener integrals and multivariant version of Schoenberg's theorem. Probab. Theory Rel. Fields., V. 102, 91–143. [Kashiwara, Vergne (1978)] Kashiwara, M. and Vergne, M. On Segal-Shale-Weil representation

[Kerov, Ol'shanskii (1994)] Kerov, S. V. and Ol'shanskii, G. I. Polynomial functions on the set of Young diagrams and characters of a symmetric group. C. R. Acad. Sci. Paris (1), 319, 121-6. and harmonic polynomials. Invent. Math. 44, 1-47.

Kerov, Ol'shanskii, Vershik (1993)] Kerov, S. V., Ol'shanskii G.I. and Vershik, A.M. Harmonic analysis on the infinite symmetric group. A deformation of the regular representation. C. R. Acad. Sci. Paris (1), 316, 773-8.

[Kervaire, Milnor (1963)] Kervaire M.A., Milnor J. W. Groups of homotopy spheres. Ann. Math., 77, 504-537

[Killing (1889)] Killing, W. Die Zusammensetzung der stetigen endlichen Transformationsgruppen I, II, III, IV. Math. Ann. 31, 252-90; (1889) 33, 1-48; (1889) 34, 57-122; (1890) 36, 161-89.

[Kingman (1978)] Kingman J. F. C. Random partitions in population genetics. Proc. R. Soc. Lond. (A) 361(1978), 1-20.

[Koebe (1907)] Koebe, P. Über die Uniformisierung beliebiger analytischer Kurven. Nacht. Akad Khyachko (1996)] Klyachko, A. Stable bundles. Mittag-Leffler inst. preprint, 1996-1997. sich. Math. Ann. 132, 134-44.

Klingen (1956)] Klingen, H. Über die analytichen Abbildungen varaligemeinerter Einheitskreise auf

[Kingman (1993)] Kingman J. F. C. Poisson processes. Clarendon Press, Oxford.

Wiss. Göttingen: Math.-Phys. KL. 1907, 191-210.

Krengel (1985)] Krengel, O. Ergodic theorems. de Gruyter, Berlin.

- [Kuo (1975)] Kuo, H.H. Gaussian measures in Banach spaces. Lecture notes in Mathematics 463, Springer-Vergal, Berlin. [Имеется русский перевод: X.-С. Го. Гауссовские меры в банаховых пространствах. М.: Мир, 1979.]
 - [Lepowsky, Wilson (1978)] Lepowsky, J. and Wilson, R. L. Construction of an affine Lie algebra. Comm. Math. Phys. 62, 45-53.
- Рапя. [Имеется русский перевод: Певи П. Стохастические процессы и броуновское [Lévy (1965)] Lévy, P. Processus stochastiques et mouvement brownien. 2nd edn. Gauthier-Villars, движение. М.: Наука, 1972.]
 - [Lieberman (1972)] Lieberman, A. The structure of certain unitary representations of infinite symmetric groups. Trans. Amer. Soc. 164, 189-98.
- [Lion, Vergne (1980)] Lion, G. and Vergne, M. The Weil representation; Maslov index and theta series. Birkhauser, Boston, MA. [Имеется русский перевод: Лион Ж., Вернье М. Представление Вейля, индекс Маслова и θ -ряды. М.: Мир, 1983.]
 - [Lukacs (1970)] Lukacs, E. Characteristic functions. Griggin, London. [Имеется русский перевод: *Лукач Е.* Характеристические функции. М., 1979.]
- Press, Oxford. [Имеется русский перевод: Макдональд И. Г. Симметрические функции и [Macdonald (1979)] Macdonald, I.G. Symmetric functions and Hall polynomials. Clarendon многочлены Холла. М., 1985.]
 - [Malliavin M. P., Malliavin P. (1990)] Malliavin, M. P. and Malliavin, P. Integration on loop groups. I. J. Funct. Anal. 93, 207-37.
- [Margulis (1991)] Margulis, G.A. Discrete subgroups of Lie groups. Springer-Verlag, Berlin. [McDuff, Salamon (1995)] McDuff D., Salamon D. Introduction to symplectic topology. Oxford, Clarendon Press.
- [Nazarov (1995)] Nazarov M.L. The oscillator semigroup over a non-Archimedean field. J. Funct. Anal. 128, 384-438.
- [Nazarov, Neretin, Ol'shanskii (1989)] Nazarov, M.L., Neretin, Yu.A., and Ol'shanskii, G.I. Semigroups engendrés par la représentation de Weil du groupe simpletique de dimension infinie. C. R. Acad. Sci Paris Sér. A 309, no. 7, 443-6.
- [Nelson (1959)] Nelson, E. Analytic vectors. Ann. of Math. (2) 70, 572-615. [Имеется русский перевод (1962): Нелсон Э. Аналитические векторы // Математика (сборник переводов) 6,3(1962), 89-131.]
 - [Nelson (1973)] Nelson, E. The free Markov field. J. Funct. Anal. 12, 211-227.
- [Neretin (1991)] Neretin, Yu. A. Infinite-dimensional groups. Their mantles, trains and representation. In Topics in representation theory (ed. A.A. Kirillov), Adv. Soviet Math. 2, 103-71.
- [Neretin (1994)] Neretin, Yu.A. Some remarks on quasi-invariant actions of the group of diffeomorphisms of the circle and loop groups. Comm. Math. Phys. 164, 599-626.
- [Neretin (1997a]] Neretin, Yu.A. Hinges and Study-Semple-Satake—de Concini—Procesi—Oshima boundary. In: Kirillov' seminar on representation theory. Ed. G.I. Olshanskii (Adv. in Math. Sciences, v. 35; AMS translations, v. 181), Amer. Math. Soc., Providence, 1996.
 - [Neretin (1997b)] Neretin, Yu. A. Notes on affine isometric actions of discrete groups. ApxuB dg-ga,
- [von Neumann (1938)] von Neumann, J. On infinite tensor products. Compositio Math. 6, 1-77. [Имеется русский перевод в кн. Дж. фон Нейман, Избранные труды. М.: Наука, 1987.] декабрь 1997
 - [Ol'shanskii (1985)] Ol'shanskii, G.I. Unitary representations of infinite symmetric group: semigroup [Obata (1987)] Obata, N. Certain unitary representations of the infinite symmetric group, I, II. Nagovoa Math. J. 105, 109-20; 106, 143-62.

approach. In Representations of Lie groups and algebras (ed. A. A. Kirillov), 181-97. Akadimiai

- [Ol'shanskii (1990)] Ol'shanskii, G.I. Unitary representations of infinite-dimensional pairs (G, K) and the formalisms of R. Howe. In Representations of Lie groups and related topics (eds. Kiado, Budapest.
 - [Oi'shanskii (1991a)] Oi'shanskii, G. I. Caractères généralisés de $U(\infty)$ et fonctions intérieures. C. R. Acad. Sci. Paris (1), 313, 9–12. A. M. Vershik, D. P. Zhelobenko), 269-464. Gordon and Breach, New York.

- [Ol'shanskii (1991b)] Ol'shanskii, G.I. On semigroups related to infinite-dimensional groups. In
 - Topics in representation theory (ed. A. A. Kirillov). Adv. Soviet Math. 2, 67–101. [Ol'shanskii (1991c)] Ol'shanskii, G. I. Representations of the infinite-dimensional classical groups, limit of enveloping algebras and Yangians. In Topics in representation theory (ed. A. A. Kirıllov), Adv. Soviet Math. 2, 1-66.
- [Onsager (1944)] Onsager, L. Crystal statistics. I. One-dimensional model with an order-disorder transition. Phys. Rev. 65, 117-49.
- [Paneitz (1981)] Paneitz, S.M. Invariant convex cones and causality in semisimple Lie algebras and groups. J. Funct. Anal. 43, 313-59.
- [Parthasarathy (1978)] Parthasarathy, K. R. Introduction to probability and measure. Springer-Verlag,
- [Parthasarathy, Schmidt (1972)] Parthasarathy, K.R. and Schmidt, K. Positive definite kernels, continuous tensor products and cenral limit theorems of probability theory. Lecture Notes in Mathematics 272, Springer-Verlag, Berlin.
 - [Pickrell (1987)] Pickrell, D. Measures on infinite-dimensional Grassmann manifolds. J. Funct. Anal. 70, 323-56.
- [Pickrell (1990)] Pickrell, D. Separable representations for automorphism groups of infinite symmetric spaces. J. Funct. Anal. 90, 1-26.
 - [Pickrell (1991)] Pickrell, D. Mackey analysis of infinite classical motion group. Pacif. J. Math. 150(1991), 139-166.
- [Pressley, Segal (1986)] Pressley, A. and Segal, G. Loop groups. Clarendon Press, Oxford. [Имеется русский перевод: Прессли А., Cuean Дж. Группы петель. М.: Мир., 1990.]
 [Ramer (1974)] Ramer, R. On non-linear transformations of measures. J. Funct. Anal. 15, 166–87.
- analysis. Academic Press, New York. [Имеется русский перевод: Рид М., Саймон Б. Методы [Reed, Simon (1972)] Reed, M. and Simon, B. Methods of modern mathematical physics. I. Functional современной математической физики. Т.1. Функциональный анализ. М.: Мир, 1977.]
- [Reed, Simon (1975)] Reed, M. and Simon, B. Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academio Press, New York. [Имеется русский перевод: Рид М., Саймон Б. Методы современной математической физики. Т. 2. Преобразование Фурье. Самосопряженность. М.: Мир, 1978.]
- [Renner (1985)] Renner, L. E. Classification of semisimple algebraic monoids. Trans. Amer. Math. Soc. 292, 193-223.
 - [Reshetihin, Turaev (1991)] Reshetihin, N. Yu. and Turaev, V. G. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547-597.
- [Riesz, Sz.-Nagy (1965)] Riesz, F. and Sz.-Nagy, B. Leçons d'analyse fonctionnelle. Academiai Kiado. Budapest. [Имеется русский перевод: Рисс Ф., Секефальви-Надь Б. Лекции по функциональному анализу. М.: Наука, 1979.]
- [Rudolph (1979)] Rudolph, D. An example of a measure-preserving map with minimal self-joinings and its applications. J. Analyse Math. 35, 97-122.
 - [Ruppert (1984)] Ruppert, W. Compact semitopological semigroups: an intrinsic theory. Lecture Notes in Mathematics 1079, Springer-Verlag, Berlin.
- [Satake (1960)] Satake, I. On representations and compactifications of symmetric Riemannian spaces. Ann. of Math. (2), 71, 77-110. [Имеется русский перевод: Сатаке И. О представлениях и компактных расширениях симметрических римановых пространств // Математика (сб. переводов) 1961, 5, № 3, 45-80.]
- [Sato, Miwa, Jimbo (1978)] Sato, M., Miwa, T., and Jimbo, M. Holonomic quantum fields, I. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14, 223-67. [Имеется русский перевод в кн. Сато М., Цзимбо Д., Мива Т. Голономные квантовые поля. М.: Мир, 1983.]
 - [Schoenberg (1938)] Schoenberg I.J. Metric spaces and positive definite functions. Trans. Amer. Math. Soc., 44, 522-536.
 - [Segal G.B. (1981)] Segal, G.B. Unitary representations of some infinite dimensional groups. Comm. Math. Phys., 80, 301-42.
- [Segal G. B. (1989)] Segal, G. B. Two-dimensional conformal field theories and modular functors. Proc. 9th Internat. Congr. Math. Phys. (Swansea, 1988) Hilger, Bristol.

- [Segal I.E. (1956)] Segal, I. E. Tensor algebras over Hilbert spaces. Trans. Amer. Math. Soc. 81,
- Segal, I. E. (1957)] Segal, I. E. The structure of a class of representations of the unitary group of a
 - Hilbert space. Proc. Amer. Math. Soc. 8, 197–203. [Segal, I. E. (1958)] Segal, I. E. (1958)] Segal, I. E. Distributions in Hilbert spaces and canonical systems of operators. Trans. Amer. Math. Soc. 88, 12-41.
 - [Segal, I. E. (1959)] Segal, I. E. Foundations of the theory of dynamical systems of infinitely many degrees of freedom, I. Danske Vid. Selsk. Mat. Fys. Medd. 31(12), 1-39.
 - [Semple (1951)] Semple I. G. The variety whose points represent complete collineations of S_r on S'_r. Univ. Roma Rend. Math., 10, 201-280.
- [Serre (1966)] Serre, J.-P. Algèbres de Lie Semisimples complexes. Benjamin, New York. [Имеется
- русский перевод в кн. Серр Ж.-П. Группы Ли и алгебры Ли. М.: Mup, 1969.] [Shale (1962)] Shale, D. Linear symmetries of boson fields. Trans. Amer. Math. Soc. 103, 149-67. [Shale, Stinespring (1964)] Shale, D. and Siinespring, W. States of the Clifford algebra. Ann. of Math. 80, 365-81.
 - [Strade, Farnsteiner (1988)] Strade, H. and Farnsteiner, R. Modular Lie algebras and their representations. Dekker, New York.
 - [Stratila, Voiculescu (1975)] Stratila, S. and Voiculescu, P. Representations of AF-algebras and the group $U(\infty)$. Lecture Notes in Mathematics 486, Springer-Verlag, Berlin.
- Streater (1971)] Streater, R. Infinitely divisible representations of Lie algebras. Z. Wahrsch. Verw. Gebiete 19, 67-80.
 - [Sz.-Nagy, Foias (1967)] Sz.-Nagy, B. and Foias, C. Analyse harmonique des opérateurs de l'espace de Hilbert. Academia, Kiado, Budapest. [Имеется русский перевод: Секефальви-Надь Б., Фояш Ч. Гармонический анализ операторов в гильбертовом пространстве. М.: Мир. 1970.3
- [Study (1886)] Study E. Über die Geometrie der Kegelshnitte insbesondere deren characteristische Probleme. Math. Ann., 27(1886), 51–58.
 - [Thoma (1964)] Thoma, E. Die unzerlegbaren, positiv-definiten Klassensunktionen der abzahlbar unendlichen symmetrischen Gruppe. Math. Z. 85, 40-61.
- [Tsuchiya, Kanie (1988)] Tsuchiya, A. and Kanie, Y. Vertex operators in conformal field theory on \mathbb{P}^1 and monodromy representations of braid groups. In Conformal field theory and solvable matrix models, Adv. Study Pure Math. 16, 297-327.
- [Verlinde (1988)] Verlinde, E. Fusion rules and modular transformations in 2D-conformal field theory. Nuclead Phys. B300, 360-380.
 - [Virasoro (1970)] Virasoro, M.A. Subsidiary conditions and ghosts in the dual resonance model. Phys. Rev. Appl. 55, 1-22.
 - [Voiculescu (1976)] Voiculescu, P. Représentations factorielles de type II de $U(\infty)$. J. Math Pures
- [Voiculescu, Dykema, Nica (1993)] Voiculescu, P. V., Dykema, K. J., and Nica, A. Free random
 - [Weil (1964)] Weil, A. Sur certains groupes d'opérateurs unitaires. Acta Math. 111, 143-211. [Имеется русский перевод: Вейль А. О некоторых группах унитарных операторов // variables. Amer. Math. Soc., Providence, 1993.
- Press, Princeton, NJ. [Имеется русский перевод: Вейль Г. Классические группы. Их [Weyl (1939)] Weyl, H. The classical groups. Their invariants and representations. Princeton Univ. Математика (сборник переводов) 13, 5, 33-44. 1969.] инварианты и представления. М.: ИЛ, 1947.]
 - [Witten, E. (1988)] Witten, E. (1988). Quantum field theory, Grassmannians and algebraic curves. Comm. Math. Phys. 113, 529-600
- [Азизов, Иохвидов (1986]]* Азизов А.Я., Иохвидов И.С. Основы теории линейных операторов в пространствах с индефинитной метрикой. М.: Наука, 1986.

Литература • 421

- [Арнольд (1974)]* Арнольд В.И. Математические методы классической механики. М.: Нау-
 - [Арнольд (1978)]* Арнольд В.И. Дополнительные главы теории обыкновенных дифференциальных уравнений. М.: Наука, 1978.
- Березанский, Кондратьев (1988)]* Березанский Ю.М., Кондратьев Ю.Г. Спектральные методы в бесконечномерном анализе. Киев: Наукова Думка.
 - Березии (1961)]* Березин Ф.А. Канонические преобразования операторов в пространстве
 - вторичного квантования // ДАН СССР, 1961, 137, № 2, 311-314.
- [Березин (1965)]* Березин Ф.А. Метод вторичного квантования. М.: Наука, 1965. [Березин (1967)]* Березин Ф.А. Автоморфизмы грассмановой алгебры // Мат. заметки, 1967, 1, Bbin. 3, c. 269-276.
 - Березин (19696)]* Березин Ф.А. Несколько замечаний о представлениях соотношений Березин (1969а)]* Березин Ф.А. Плоская модель Изинга. УМН, 24, № 3, 3—22.
- коммуникации // УМН, 24, № 4, 65—88. [Вершик (1977)]* Вершик А.М. Многозначные отображения с инвариантной метрикой // Записки научн. семин. ЛОМИ, 72, 26—61. [English translation in J. Sov. Math., 23(1983).]
 - Вершик, Гельфанд, Граев (1973)]* Вершик А. М., Гельфанд И. М., Граев М. И. Представления группы $SL_2(R)$, где R — кольцо функций // УМН, 28, № 5, 83—128.
- [Вершик, Гельфанд, Граев (1975)]* Вершик А. М., Гельфанд И. М., Граев М. И. Представления групп диффеоморфизмов // УМН, 30, № 6, 1—50. Вершик, Керов (1981а)]* Вершик А. М., Керов С.В. Асимптотическая теория характеров
 - [Вершик, Керов (19816)]* Вершик А.М., Керов С.В. Характеры и факторпредставления симметрической группы // Функц. анал. и прилож., 15, 4, 15-27.
- [Вершик, Керов (1982)]* Вершик А. М., Керов С. В. Характеры и факторпредставления бесконечной симметрической группы // Докл. АН СССР, 257, 1037-1040.
 - бесконечной унитарной группы // Докл. АН СССР, 267, 272-276.
- [Вершик, Шмидт (1977)]* Вершик А. М., Шмидт А.А. Предельные меры в асимптотической теории симметрических групп // Теория вероятности и примен., 22, 72-88.
- [Винберг (1980)]* Винберг Э. Б. Инвариантные конуса и упорядочения в группах Ли // Функц. анал. и прилож., 14, 1-13.
 - [Гантмахер (1953)]* Ганпмахер Ф. Р. Теория матриц. М.: ГТТИ, 1953.
- [Гельфанд, Граев, Виленкин (1962)]* Гельфанд И. М., Граев М. И., Виленкин Н.Я. Обобщенные функции, вып. 5, Интегральная геометрия и теория представлений. М.: Физматтиз, 1962.
 - Шапиро И.И. Обобщенные функции, вып. 6. Теория представлений и автоморфные [Гельфанд, Граев, Пятецкий-Шапиро (1966)]* Гельфанд И.М., Граев М.И., Пятецкийфункции. М.: Наука, 1966.
- [Гельфанд, Фукс (1968)]* Гельфанд И. М., Фукс Д. Б. Когомологии алгебры Ли векторных полей на окружности // Функц. анал. и прилож. 2, № 4, 92-93.
 - [Голузин (1966)]* Голузин Г. М. Геометрическая теория функций комплексного переменного. 2-е изд. М.: Наука, 1966.
- [Граев (1958)]* Граев М.И. Унитарные представления вещественных простых групп Ли. Graev M.I. Unitary representations of real simple Lie groups. Amer. Math. Soc. Transl. (2) Груды Московского Математического Общества, 7, 335–389. [English translation (1958):
- [Дринфельд (1989)]* Дринфельд В. Г. Квазихопфовы алтебры // Алгебра и анализ 1, №6, 114 - 148.
 - [Желобенко (1970)]* Желобенко Д.П. Компактные группы Ли и их представления. М.:
- над полем *P*, не являющимся локально-компактным, относительно подгруппы матриц с целыми коэффициентами // Изв. АН СССР, сер. Мат., 1967, 31, 2, 361–390. [Исмагилов (1967)] * Исмагилов Р. С. Элементарные сферические функции на группе SL(2,P)
- [Исмагилов (1969)]* Исмагилов Р. С. О линейных представлениях групп матриц с элементами из нормированного поля // Изв. АН СССР, 33, № 6, 1296-1323.

^{*} Звездочка обозначает существование английского перевода статьи или книги. Точная ссылка на английский перевод статьи указывается лишь в том случае, когда он находится в каком-либо нерегулярном (или не вполне регулярном) издании.

- [Nсмагилов (1970)] * /Uсмагилов P. С. Сферические функции над полем, поле вычетов которого бесконечно // Функц. анал. и прилож., 1970, 4, № 1, 42-51.
- [Исмагилов (1971)]* Исмагилов Р. С. Унитарные представления группы диффеоморфизмов окружности // Функц. анал. и прилож., 5, № 3, 45-53.
- [Исмагилов (1972)]* Исмагилов Р. С. Универсальные представления группы диффеоморфизмов компактного многообразия // Изв. АН СССР, сер. Мат., 36, 180-202.
 - [Исмагилов (1975)]* Исмагилов Р. С. Об унитарных представлениях группы диффеоморфизмов \mathbb{R}^n // Мат. сборник, 98, № 1, 55–71. [Mсмагилов $(1976)]^*$ $\mathit{Исмагилов}$ $\mathit{P.C.}$ Об унитарных представлениях группы $\mathit{C}^\infty(\mathit{K}, \mathit{G}),$
- [Исмагилов (1980)]* Исмагилов Р. С. Вложения группы диффеоморфизмов, сохраняющих объем, в полупрямое произведение, и ее унитарные представления // Мат. сб., 113, G = SU(2) // Mar. c6., 100, 117-131.
 - [Исмагилов (1993)]* Исмагилов Р. С. Группы и однородные области, связанные с факторами типа II, и представления группы диффеоморфизмов тора, сохраняющих обмотку //
- [Карпелевич (1965)]* Карпелевич Ф. И. Геометрия геодезических и собственные функции оператора Бельтрами—Лапласа на симметрических пространствах // Труды Моск. Мат. общества, 14, 48-185. [English translation in Trans. Mosc. Math. Soc., 14, 51-199.] Алгебра и анализ 5, 215-231.
 - [**Кац (1968)]*** Кац В. Г. Простые градупрованные алгебры Ли конечного роста // Изв. АН СССР, сер. Мат., т. 32, 1968, 1323-1367.
- [Кац (1970)]* Кац В. Г. О классификации простых алтебр Ли над полем ненулевой характеристики // Изв. АН СССР, сер. Мат., 34, 385-408.
- [Kepoв (1987)]* Керов С. В. Реализация представлений полугруппы Брауэра // Записки научн. семин. ЛОМИ, 164, 188-193. [English translation in J. Sov. Math., 1989, т. 47.]
- [Kepoв (1995)]* Керов С. В. Субординаторы и подстановочные действия с квазиинвариантной мерой // Записки научн. семин. ПОМИ, т. 223, 181-205. [English translation in J. Sov. Math., 1997.]
 - Кириллов (1972)]* Кириллов А.А. Элементы теории представлений. М.: Наука, 1972.
- Кириллов (1973)]* Кириллов А.А. Представления бесконечномерной унитарной группы // Докл. АН СССР, 212, 288-290.
- [Кириллов (1974)]* Кириллов А.А. Унитарные представления группы диффеоморфизмов и некоторых ее подгрупп // Препринт Инст. Прикл. Мат. № 62 за 1974. [English translation (1981): Kivillov, А.А. Unitary representations of the group of diffeomorphisms and some of its subgroups. Selecta Math. Soviet. 1.]
 - [Кириллов (1987)]* Кириллов А.А. Кэлерова структура К-орбит группы диффеоморфизмов окружности // Функц. анал. и прилож., 21, № 2, 42–45.
- [Кириллов, Юрьев (1987)]* Кириллов А. А., Юрьев Д. В. Кэперова геометрия бесконечномерного однородного пространства $M = \text{Diff}(S^1) / \text{Rot}(S^1) / /$ Функц. анал. и прилож., 21, 4,
- [Колмогоров, Фомин (1981)] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1981.
 - [Корнфельд, Синай, Фомин (1980)]* Корнфельд И. П., Синай Я. Г., Фомин С. В. Эргодическая теория. М.: Наука, 1980.
- [Кострикин, Шафаревич (1969)]* Кострикин А. И., Шафаревич И. Р. Градупрованные алтебры Ли конечной характеристики // Изв. АН СССР, сер. Мат., 33, 251—323.
- $[Kpeйn\ (1965)]^*\ Kpeйn\ M. Г.$ Введение в теорию индефинитных J-пространств и теорию операторов в этих пространствах / В кн. Вторая летняя математическая школа, 1, Киев, 1965, 15-92. [English translation in Amer. Math. Soc. Transl. 93(1970), 103-176.]
 - [Крейн (1950)]* Крейн М. Г. Об одном применении принципа преобразований с индефинитной метрикой // УМН 1950, 5, № 2, 180-190. [English translation (1950) in Amer. Math. Soc. Transl. (2), 1.]

- Крейн, Шмульян (1967)]* Крейн М.Г., Шмульян Ю.Л. О дробно-линейных преобразованиях с операторными коэффициентами // Мат. исследования, 2/3, Кишинев, 64-96. [English translation in Amer. Math. Soc. Transl. 103 (1974), 125-152.]
 - **Кричевер, Новиков (1987)]*** Кричевер И. М., Новиков С. П. Алгебры типа Вирасоро, римановы
- поверхности и стуктуры теории солитонов // Функц. анал. и прилож., 21, № 2, 46–63. [Кричевер, Новиков (1989)]* Кричевер И. М., Новиков С. П. Алтебра типа Вирасоро, тензор энергии-импульса и операторные разложения на римановых поверхностях // Функц. анал. и прилож., 23, 1, 24-40.
 - [Куппер (1972)] Кушнер Г. Ф. О компактификациях некомпактных римановых симметрических пространств // Труды семин. по вект. и тенз. анализу, 16, 99—152. [Лебедев, Милин (1951)] Лебедев Н. А., Милин И. М. О коэффициентах одного класса
 - аналитических функций // Мат. сборник, 28, 359-400.
- [Линник (1960)]* Линник Ю. В. Разложения вероятностных законов. Л: Изд-во ЛГУ, 1960. [Литвинов (1968)]* Литвинов Г.Л. О вполне неприводимых представлениях комплексных и
 - Литвинов (1972)]* Литвинов Г.Л. Представления групп в локально выпуклых пространствах и топологические групповые алгебры. Труды семинара по векторному и тензорному вещественных нильпотентных групп Ли. Функц. анал. и прилож., т. 3, № 4, 87—88.
- анализу, т. 16, 267—349. [English translation in Selecta Math. Sov., v. 7, № 2(1988).] [Лифшиц (1946)]* Лифшиц М.С. Об одном классе линейных операторов в гильбертовом пространстве // Мат. сборник, 19, 239—260. [English translation in Amer. Math. Soc.
 - Transl. (2), 5.] [Лифшиц (1954)]* Лифшиц M.C. О спектральном разложении линейных несамопряженных операторов // Мат. сборник 34, 145-199. [English translation in Amer. Math. Soc. Transl.
- [Лобачевский (1835)] Лобачевский Н. И. Способ уверяться в исчезновении бесконечных строк и приближаться к значениям функций от весьма больших чисел // Ученые записки Казанского Университета, 1835, 211-342. См. также Лобачевский Н. И. Полное собрание сочинений, т. 5., Москва, 1948.
 - [Наймарк (1976)] Наймарк М. А. Теория представлений групп. М.: Наука, 1976.
- [Hepernн (1982)]* Неретин Ю. А. Дополнительная серия представлений группы диффеоморфизмов окружности // УМН, 37:2, 213-214.
- [Неретин (1983а)] Неретин Ю.А. Унитарные представления алгебры Вирасоро со старшим весом. Диссертация. М.: МГУ, 1983.
- [**Нерстин** (19836)]* *Неретин Ю.А.* Унитарные представления группы диффеоморфизмов окружности со старшим весом // Функц. анал. и прлож. 17, № 3, 85–86.
- [Неретин (1983в)]* Неретин Ю.А. Бозонные представления группы диффеоморфизмов окружности // Докл. АН СССР, 272, 528—531. [Неретин (1986)]* Неретин Ю.А. О спинорном представлении $O(\infty,\mathbb{C})$ // Докл. АН СССР, 289, 282-285.
 - [Неретин (1987а)]* Неретин Ю.А. Комплексная полугруппа, содержащая группу диффеоморфизмов окружности // Функц. анализ и прилож., 21, № 2, 82-83.
- [Heperun (19876)]* Неретин Ю.А. Почти инвариантные структуры и конструкции унитарных представлений группы диффеоморфизмов окружности // Докп. АН СССР, 294, 37-41.
 - [**Неретин (1988**)]* *Неретин Ю.А.* Представления алгебры Вирасоро и аффинных алгебр // В кн. Теория представлений и некоммутативный гармонический анализ — 1. Соврем. пробл. мат., Фундаментальные направления, т. 22. М.: ВИНИТИ, 1988.
 - [Hepernn (1989а)]* Hepemun Ю. А. Спинорное представление бесконечномерной ортогональной полугруппы и алгебра Вирасоро. Функц. анализ и прилож., 23: 3, 32-44.
- **Неретин** (1990)]* *Неретин Ю.А.* Об одной полугруппе операторов в бозонном пространстве [Неретин (19896)]* Неретин Ю.А. Голоморфные продолжения представлений группы диффеоморфизмов окружности // Мат. сборник 180, 635-657.
 - [Heperun (1991)]* Неретин Ю.А. Продолжение представлений классических групп до Фока // Функц. анал. и прилож. 24: 2, 63-73.
 - представления категорий // Алгебра и анализ 3:1, 176-202.

[Heperun (19926)]* Неретин Ю.А. Категории бистохатических мер и представления некоторых бесконечномерных групп-// Мат. сборник, 183, 2, 52-76

[Hepernn (1992в)]* Нерепин Ю.А. Универсальные пополнения комплексных классических

[Неретин (1996)]* Неретин Ю.А. Случайные канторовские множества и группа диффеоморгрупп // Функц. анал. и прилож., 26, 4, 30-44.

[Нерегин (1997)] Неретин Ю.А. О соответствии между бозонным пространством Фока и физмов полупрямой // Мат. сборник, 187, № 6, 73-84.

голоморфных функций, особые унитарные представления групп O(p,q) и их пределы при $q \to \infty$. Зап. научн. семин. ПОМИ, 223, 9—91. [English translation in J. Math. [Неретин, Ольшанский (1995)]* Неретин Ю.А., Ольшанский Г.И. Граничные значения пространством L^2 по мере Пуассона. Мат. сборник, 188, 11. Sci., 1997.]

 $[ext{Hecconob} \ (1986)]^*$ $ext{\it Heccohog} \ H.M.$ Полная классификация представлений $GL(\infty)$, содержащих единичное представление унитарной подгруппы // Мат. сборник, 130, 131-150.

[Никольский (1980)]* Никольский Н. К. Лекции об операторе сдвига. М.: Наука, 1980.

[Окуньков (1994)]* Окуньков А. Теорема Тома и представления бесконечной бисимметрической группы // Функц. анал. и прилож., 28, № 2, 31-40.

сических групп $U(p,\infty),\ SO(p,\infty),\ Sp(p,\infty)$ и соответствующих групп движений // [Ольшанский (1978)]* Ольшанский Г.И. Унитарные представления бесконечномерных клас-Функц. анал. и прилож., 12, № 3, 32-44.

[Ольшанский (1980)]* Ольшанский Г.И. Новые большие группы типа І. Совр. пробл. математики, 16, 31-52. [English translation in J. Sov. Math., 18 (1982).]

[Ольшанский (1981)]* Ольшанский Г.И. Инвариантные конусы в алгебрах Ли, полугруппы Ли и голоморфные дискретные серии // Функц. анал. и прилож., 15, № 3, 53—66.

[Ольшанский (1983)]* Ольшанский Г.И. Унитарные представления бесконечночномерных пар (G, К) и формализм Хау // Докл. АН СССР, 269, 33-36.

[Ольшанский (1984)]* Ольшанский Г.И. Бесконечномерные классические группы конечного $[\mathbf{0}$ льшанский (1986)] * Ольшанский Г.И. Унитарные представления групп $SO(\infty,\infty)$ как R-ранга: описание представлений и асимптотическая теория // Φ ункц, анал. и прилож., 18, 1, 28–42.

пределы унитарных представлений групп $SO(p,\infty)$ при $p o \infty$ // Функц. анал. и [Ольшанский (1988)]* Ольшанский Г.И. Метод голоморфных продолжений в теории унитарных представлений бесконечномерных групп // Функц. анал. и прилож., 22:4, прилож., 20, № 4, 23-37.

 $[\mathbf{O}$ льшанский (1989)] * Ольшанский Г.И. Унитарные представления (G,K)-пар, связанных с бесконечной симметрической группой // Алгебра и анализ 1, № 4, 178-209

ров // Функц. анал. и прилож., 28, 1, 51–67. [Потапов (1955)]* Потапов В. П. Мультилликативная структура J-нерастягивающей матрич-[Олыпанский (1994)]* Ольшанский Г.И. Представления Вейля и нормы гауссовых операто-

ной функции // Труды моск. мат. общ., 4, 125-163. [English translation (1960) in Amer. Math. Soc. Transl. (2) 15.]

[Иятецкий-Шапиро (1961)]* Пятецкий-Шапиро И.И. Геометрия классических областей и [Рохлин (1949)]* Рохлин В. А. Об основных понятиях теории меры // Мат. сборник 25, теория автоморфных функций. М.: Физматгиз, 1961.

107-150. [English translation in Amer. Math. Soc. Transl. (1), 10.]

[Рыжиков (1993)]* Рыжиков В. В. Джойнинги, сплетающие операторы, факторы и косые произведения динамических систем // Изв. РАН, сер. Мат., 57, № 1, 102—128.

[Фейгин, Фукс (1982)]* Фейгин Р.Л., Фукс Д.Б. Кососимметричные инвариантные дифференциальные операторы на прямой и модули Верма над алгеброй Вирасоро // Функц. анал. и прилож. 16, № 2, 47–63.

[Хафизов (1990)] * Хафизов М. У. Квазиинвариантная гладкая мера на группе диффеоморфизмов области // Мат. Заметки, 48, № 3, 134-142.

[Хапкевич (1983)]* Хацкевич В.А. Обобщенная метрика Пуанкаре на операторном шаре //

Шабат (1976)]* *Шабат Б. В.* Введение в комплексный анализ, т. 2. М.: Наука, 1976.

 $[{
m III}$ авгулидзе $(1978)]^*$ IIIдвегулидзе E.T. Пример меры, квазиинвариатной относительно группы диффеоморфизмов окружности // Функц. анал. и прилож., 12, 3, 55-60. [Шавгулидзе (1988)]* Шавгулидзе Е. Т. Мера, квазиинвариантная относительно группы

[ПЛавгулиде (1997)]* Шаегулидзе Е. Т. Меры, квазиинвариантные относительно групп диффеоморфизмов // Труды МИРАН, т. 217, с. 189—208. диффеоморфизмов конечномерного многообразия // Докл. АН СССР, 303, 811–814.

[Шафаревич (1986)]* Шафаревич И.Р. Основные понятия алгебры // Соврем. пробл. мат.

[Шилов, Фан Дык Тинь (1967)] Шилов Г. Е., Фан Дык Тинь. Интеграл, мера, производная в конечномерном пространстве. М.: Наука 1967 Фунд. направления, т. 11, ВИНИТИ.

Ширяев (1980)]* Ширяев А. Н. Вероятность. М.: Наука, 1980.

[Шмульян (1976)]* Шмульян Ю.Л. Теория линейных отношений и пространства с индефинитной метрикой // Функц. анал. и прилож., 10, 1, 67–72.

Шмульян (1978)]* *Шмульян Ю.Л.* Обобщенно дробно-линейные отображения операторных шаров // Сибирск. мат. журн., 19, 418-425.

Предметный указатель

— доминантный, 79 — старший, 76 — фундаментальный, 80 Вирасоро алгебра, 194 Випта теорема, 387 Вложение плюкерово, 26 воспроизводящее свойство, 137 Гейзенбера группа, 154, 159 Гекке алгебра, 15 Гекке алгебра, 15 Гекке плебра, 16 Гекке плебра преобразование, 209	Тивьберта—Шлидта оператор, 9, 401 гранния Сатаке, 360 — симметрического пространства, 357 — Шилова, 135 грассманиан, 387 график оператора, 403 График оператора, 403 Группа автоморфизмов, 51 — теорема площавей, 367 группа автоморфизмов, 51 — дерева, 271 — танонических антикоммутационных соотношений, 121 — большая, 10 группа пределенный, 121 — большая, 10	- теласторски, 154, 159 - классическая, 71, 385 - однопараметрическая, 404 - ортогональная, 385, 386 - петель, 316 - полная линейная, 385 - певдосрогогональная, 385 - певдосумитарная, 385 - певдосумитарная, 385 - певдоумитарная, 385 - сымплектическая, 385 - унитарная, 385 - унитарная, 385 группоил, 51	двойственность Брауэра, 270 — Хау, 355 де Финетти теорема, 379 действие аффинно неприводимое, 331 — аффинное, 322 — группы на пространстве с мерой, 398 — инвариантное, 398 — квазиинариантное, 398 — вродическое, 398 лефект размерности, 111 джойнинг, 259 диатрамма Дылкина, 80 деполнение ортогональное, 384
(G, K)-пара, 261 — Ольшанского, 295 *-представление, 68 G-полиморфизм, 335 σ-ангебра, 394 — на полимо спарабельном метрическом пространстве, 394 — на полимо спарабельном метрическом пространстве, 394 сотlete collineations, 359 — quadrics, 359 exchangeability, 378	абсолот, 357 агомоофизм, 51 — пространства с мерой, 251 — унитарный, 68 алгебра <i>Вирасоро</i> , 194 — внешняя, 25 — <i>Гекке</i> , 12 — грассманова, 24 — Ли классмуеская, 70 — простая, 80 аннулятор, 390 антипредставление, 52, 407 <i>Арак</i> и интеграл мультиликативный, 326	базисы двойственные, 389 Баргмана—Сигала преобразование, 158 Березина интеграл, 27—28 — оператор, 48, 102 — формула, 46 биекция частичная, 235 Божира теорема, 373 Бахира теорема, 373 Бауэра двойственность, 270 — категория, 270 Вейля (4. Weil) представление, 142, 163 Вейля (Н. Weyl) унитарный прыем, 72	вектор аналитический, 22 — вакуумлый, 24, 99, 101, 136 — весовой, 73, 196 — изотролный, 386 — корневой, 73 — особый, 198 — старшего веса, 76, 196 — сферический, 411 — финтиый, 184 — целый, 22 — шклический, 408 векторы оргогональные, 384 вес, 73, 196

	403			в с мерой, 250, 395 68	384	ора, 400 ликативный, 326			sce, 76 69	3		7 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18			. 16		ные, 12		теорема, 156					<i>Маурера</i> , 321 Функтор, 132		ктеристическая, 368		икл, 321			 397		The second secon	ale, 313, 348, 375, 381	394 on a grafa, and as	
аграмма, 80	ropa,	идеал <i>Шаттена</i> , 8, 401 изометрия. 385	 — частичная, 400 	изоморфизм пространств	инволюция в категории, индекс инерции формы,	 фредгольмова оператора, 400 интеграл Араки мультипликативный 	— Березина, 27—28	,	 теорема о старшем ве категории изоморфные, 	— эквивалентные, 69	категория, 50 — <i>Брауэра</i> , 270	— марковская, 251	 с инволюцией, 68 топологическая, 66 	— — с инволюцией, 98	— урсзанная, оэ — чисто упорялоченная.	Каца формула, 200	классы смежности двойные	— Шаттена, 8, 401 Клиффонда вугебов. 42	1—Хинчина	комплекс Сэмпля, 359	, 73	 отрицательный, 75 положительный, 75 	— простой, 76		<i>ила</i> фо 	лемма <i>Шура,</i> 409 Лифшица функция характёристичес	мантия, 7, 263 матрина формы 382—383	на к	сонечная,	— борелевская, 395— вероятностная, 395	квазиинвариантная,конечная 395	— полная, 395 Плавона 344	— Пуассона, 344 — условная, 397		множество измеримое, 3 — по <i>Побегу</i> 395	——————————————————————————————————————

— канторовское, 313 — тотальное, 16	модуль со старшим весом, 196 — унитаризуемый, 195 морфизм, 50	395	326	1 6	образ линейного отношения, 51 — меры, 396	92 90			— М-дисипативный, 131 — М-сжимэрний 126	— антилиейный 389 — Балалия 48 107	— перемини, то, тод — — вещественной структуры, 391	— вещественный, 391 — внешнего умножения. 30	т виутренного	— 1 ильберта — Шмиота, 9, 401 — Грунского, 365		— замкнутыи, 403 — изометричный, 399	 — квадратичный, 183 — кососимметрический, 390 	— марковский, 254		— рождения-уничтож — самосопряженный		— неограниченный, - сжимающий, 399	, ³⁰⁰ — симметрический, 390, ⁴ — неограниченный, 40		— сохраняющия — сплетающий,	— существенно самосопряженный, 403	— транспонированный, 390 — угловой, 132	— унитарный, 399	— уничтожения, 30 — френгольмов. 400	трод от таке — ядерный, 401	определитель, 402 — кватернионный, 393	отношение аффин		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<i>Цынкина</i> диаграмма, 80	замыкание оператора, 403 идеал <i>Шаптена</i> , 8, 401 изометрия, 385	 — частичная, 400 изоморфизм пространств с мерой, 250, инволюция в категории, 68 	индскс инсрции формы, эот — фредгольмова оператора, 400 интеграл <i>Араки</i> мультипликативный,	Березина, 27—28 гауссов нечетный. 49	Карлемана признак, 404	_	жатегории изоморфиыс, оу — эквивалентные, 69	— Брауэра, 270	марковскам, 231 с инволюцией, 68	топологическая, бо упорядоченная, 91	 с инволюцией, 98 урезанная, 69 	чисто упорядоченная, 91	<i>Каца</i> формула, 200 классы смежности двойные, 12	— Шаттена, 8, 401	Колмогорова — Хинчина теорема, 156	комплекс <i>Сэмпая</i> , 359 комплексификация, 391	конфигурация, 344	отрицательный, 76	положительный, 75 простой. 76	коцикл Картана—Маурера, 321 Клайна— Шаульяна функтор 132	Кэмпбелла формула, 345	лемма <i>Шура</i> , 409	лифшица функция характеристическая мантия, 7. 263	матрица формы, 382-383	-Картана коцикл, 321	σ-конечная, 395 205	борелевская, 395 вероятностная, 395	rayccoba, 152	квазиинвариантная, 397 конецная 395	колечная, 395 непрерывная, 395	полная, 395 Писсона 344	условная, 397	меры квазиинвариантные, 313, 348 множество измеримое, 394	no Hebezy 395

сопряжение комплексное, 391

428 • Предметный указатель

произведение двойных классов смежности, 14, оставляющее меру квазиинвариантной, 397 Потапова, 46, 59, 111, 126, 129, 161, 174 соотношения канонические антикоммутацион- — операторных узлов, 368 — тензорное гильбертовых пространств, 404 преобразование Баргмана-Сигала, 158 пространство антидвойственное, 389 Радона — Никодима производная, 397 — унитарные эквивалентные, 412 — полинормированное, 100 - линейных отношений, 51, 52 размерность относительная, 114 коммутационные, 154, 179 — счетно-нормированное, 398 ранг линейного отношения, 51 симметрическое, 353, 357 — эквивалентные, 67, 408 — сохраняющее меру, 397 — представлений, 410 фермионное, 101, 361 — Радона — Никодима, 397 Фока бозонное, 151, 361 труппы центральное, 412 — нетривиальное, 412 разложение полярное, 400 признак Карлемана, 404 пинейное полное, 399 — пильбертово, 99 система согласованная, 95 — бесконечное, 406 — лебеговское, 250, 395 -- квадрик полное, 357 расстояние сложное, 167 расширение Ботта, 195 — мебиусовское, 192 — категорий, 68 Прохорова теорема, 373 Пуассона мера, 344 производная левая, 27 ресторан китайский, 380 представления, 407 — двойственное, 389 символ виковский, 31 — сплетающее, 67 Рохлина теорема, 397 Сатаке граница, 360 — Гильберта, 209 измеримое, 396 — оператора, 403 решетка весов, 79 свободная, 377 — Фреше, 399 сжатие, 245, 399 разбиение, 396 — правая, 27 пфаффиан, 40 целое, 173 свертка, 12 — мер, 328 ные, 30 Потапова преобразование, 46, 59, 111, 126, 129, представления групп диффеоморфизмов, 341 подалгебра борелевская обобщенная, 231 последовательность фундаментальная, 399 представление Вейля (А. Weil), 142, 163 — вполне приводимое, 67, 408 — обобщенно дробно-линейное, 133 отображение (Σ , Θ)-измеримое, 396 перестановка виртуальная, 379, 380 — группы $(GL(\infty,\mathbb{R}),O(\infty))$, 276 подпространства сравнимые, 114 подпространство аффинное, 173 — компактная с краем, 216 —— (U(∞), O(∞)), 281, 282 — категории, 88 —— GA, 64 дополнительной серии, 303 -- контраградиентное, 410 — со старшим весом, 192, 320 труппы двойственное, 410 поверхность риманова, 214 — категорий В, С, 85, 122 — аппроксимативная, 240 — дробно-линейное, 133 подпредставление, 66, 407 линеаризуемое, 412линейное, 407 — группы О(2n, С), 41 — биголоморфнос, 214 — неприводимое, 66, 408 полугруппа трубок, 214 — категории <u>GA</u>, 122 проективное, 412сферическое, 411 — фундаментальное, 80 — коизотропное, 386 — конформное, 214 — однолистное, 217 проективное, 53 полуспинорное, 85 плотность меры, 397 повышающая, 75понижающая, 75 — спинорное, 85, 281 тождественное, 407 — картановская, 7. — унитарное, 407 — весовое, 73, 196 — изотропное, 386 — лагранжево, 387 подчиненное, 66 тривиальное, 407 полиморфизм, 251 подкатегория, 69 --- \overline{CD} , 120 --- \overline{CD} , 56 сферическое, 8 — корневое, 73 — категории, 52 полунорма, 398 точное, 407

сопряжение комплексное, 391	
сларивание, 30м, 3мо степень внешняя гильбертова пространства 405	форма антиэрмитова, эоэ
— линейного пространства, 25	— знаконеопределенная, 383
— оператора, 26, 40e	- инвариантная, 195
— представления, 410	— индефинитная, 383
— — жатегорий, 68	— кососимметричная, 382
 особого вектора, 198 	— невырожденная, 383
— симметричная оператора, 405	 неотрицательно определенная, 383
—————————————————————————————————————	Hellomowniellaho olipedelehnan, 203
	— Optolohalishay, 362
Choung recogn 403	— опридаютьно опредстенная, 363
_	— положительно определенная, 363
Cholyna —— por neumana Teopema, 139	— полугоралиненняя, 56 <i>2</i>
структура кватеримонная, эээ — комплексная 392	— симметричная, 302 — <i>Шаповалова</i> 199
CTDVKTVDh Dabhomenhile Ha Invillax 10	— эпмитова 383
	формула Березина, 46
 представлений категорий, 67 	- Kaya, 200
сходимость слабая, 15	— Кэмпбелла, 345
— — мер, 328	— Фробениуса, 47
Сэмпая комплекс, 359	формы полубесконечные, 101
теорема аппроксимации, 240	— эквивалентные, 384 Дения проделжения 200
— Бохнера, 373	Openie IIpocipaliciBo, 399
— Bumma, 387	Фросеинуси формула, 4.
- двойственности Хау, 355	
— de Финетти, 379	— Крейна—Шмудьяна. 132
— жесткости аффинная, 3.28 Установа	~
— Konnosongga Vimming 156	функционал антилинейный, 389
— мультиппикативности 239 262 338	функция внутренняя, 369
— о замкнутом графике. 403	— измеримая, 396
— о сжатии, 169	— однолистная, 217
об униформизации кольца, 215	
— площадей Грунского, 367	HeyeTHay, 24
— Прохорова, 373	4cIHdx, 24
— Рохлина, 397	CHRHODHAM, 33
— Стоуна, 403	- chenuneckas 411
— Стоуна—фон Неймана, 159	— характеристическая. 289
— Jona, 269	——————————————————————————————————————
— Weibomana—Jaeka, 15/	— <i>IIIypa</i> , 362
reopny bepositioners coordina, 5/7-5/8	характер факторпредставления, 269
— тола толастрическая, 3,5 — хонформная. 233	Хау двойственность, 355
— топологическая, 376	 теорема двойственности, 355
Тома теорема, 269	числа сингулярные, 166, 401
топология равномерная, 400	Шаповалова форма билинейная, 199
— CMINHAR, 400	— — эрмитова, 199
— сласая, т., тоо — шейловская, 9	шар операторный (матричный), 132, 134 парнир 358
vzen onenaronutik 368	Шаттена класс. 8, 401
узсл операторный, 308 — — неразложимый, 368	граница, 13
умножение двойных классов смежности, 14,	шлейф, 8, 261
286, 378 VHHTEDDILL BOUGH (H Worl) 72	<i>Шура</i> лемма, 409 — функция, 362
yhniaphbin iipnem <i>peuin (11. rrepi), 12</i>	экспонента. 25
факторпредставление группы, 410 — категории. 69	эндоморфизмы, 51
•	
Фельдмана—Гаека теорема, 157	— с компактным носителем, 335
Фока пространство бозонное, 136, 151, 361	— линеиного отношения, эл — оператора 28 100 138—140 153
— фермионное, 101, 301 — — гильбертово, 99	— стохастическое, 251 — стохастическое, 251

цих переменных, 24