ISO OSI - Livello Datalink

Indice

Error control	2
Parità dispari pari	2
Tasso di errore	2
Tasso di erroreorto tra i bit ricevuti e gli errori.	2
Codici di Hamming	2
Esempio	3
Medium Access Control Sublayer	3
Giocattolini che permettono di creare una rete	3
:/	3
Punti chiave	3
ALOHA	3
802.11: WiFi	4

Error control

Per essere sicuri che tutti i frame inviati sulla rete siano privi di errori e in ordine verranno usati alcuni bit per la *parità*.

Parità dispari | pari

Viene aggiunto un bit finale per fare in modo che i bit ad 1 siano pari/dispari.

Questo permette solo di rilevare un solo errore (non due), ma non di correggerlo.

Tasso di errore

Il tasso di errori è il rapptte solo di rilevare un solo errore (non due), ma non di correggerlo.

Tasso di erroreorto tra i bit ricevuti e gli errori.

Esempi:

- fibra ottica: $\tau = 10^{-14}$
- ethernet: $\tau=10^{-10}$

probabilità:

$$p = 1 - \tau$$

Codici di Hamming

$$n = m + r$$

- Le codeword totali sono: 2^n .
- Le codeword totali valide sono: 2^m .
- Codeword con un bit diverso: n+1.
- Codeword valide e con un bit diverso da quelle valide: $(n+1) \times 2^m$.

Queste devono essere meno delle codeword valide: $(n+1) \times 2^m < 2^n \to m+r+1 < 2^r$.

//La distanza minima tra codeword deve essere 2d + 1.

Esempio

```
• m = 5;
```

• r = 4;

• n = 9;

Hamming code (9, 5) autocorrezione ad un bit.

```
syn r r m r m m m r m
0 1 2 3 4 5 6 7 8 9
```

r0 r1 m0 r2 m1 m2 m3 r3 m4

[][||||||]

syn indica la posizione del bit sbagliato.

Medium Access Control Sublayer

Giocattolini che permettono di creare una rete

I bridge hanno più NIC con lo stesso MAC che permettono di collegare più protocolli diversi (ethernet / wifi).

:/

Se più dispositivi parlano sullo stesso canale si crea una collisione.

Punti chiave

- · Comunicazioni indipendenti;
- Single channel;
- Observable collision by the trasmitter;
- Continuous or Slotted time;
- Carrier Sense or No Carrier Sense.

ALOHA

pag. 263

Il primo protocollo di rete. Si appoggiava ad un satellite geostazionario.

802.11: WiFi

Le reti wireless hanno un costo minore perché si elimina tutto il costo dietro l'installazione dei cavi e dell'infrastruttura collegata hai cavi ethernet fisici.

Nella _infrastructure mode_tutto il traffico avviene tra access point e NIC, due NIC non si possono parlare direttamente.

Nella rete *ad hoc* invece le NIC possono inviare frame direttamente tra di loro e non è presente un access point.