ESERCIZIO 2

Utilizzando il database TPCD si disegni l'albero di esecuzione proposto da ORACLE e si calcoli il costo di accesso della seguente query:

```
SELECT P_BRAND, sum (PS_SUPPLYCOST)
FROM TPCD.PART, TPCD.PARTSUPP
WHERE P_PARTKEY=PS_PARTKEY and P_TYPE='SMALL BURNISHED STEEL'
and PS_AVAILQTY>220
GROUP BY P BRAND;
```

OPERATION	OBJECT_NAME	CARDINALITY	COST
□ SELECT STATEMENT		25	4632
⊕ ·· • SORT (GROUP BY)		25	4632
TABLE ACCESS (BY INDEX ROWID)	PARTSUPP	4	3
PS_AVAILQTY>220			
□ NESTED LOOPS		5164	4577
TABLE ACCESS (FULL)	PART	1333	578
🖨 ◯ 📅 Filter Predicates			
P_TYPE='SMALL BURNISHED STEEL'			
□···□ۥ INDEX (RANGE SCAN)	IX_PART_PARTSUPP	4	2
⊟ O ∧ Access Predicates			
P_PARTKEY=PS_PARTKEY			

Si facciano le seguenti assunzioni e si estraggano dal DB eventuali dati mancanti:

$$D = 4096 \text{ byte len(P)} = \text{len(K)} = 4 \text{ byte}$$
 $NB = 101$ $u = 0.69$

Si assuma inoltre che ORACLE non applichi proiezioni sui risultati intermedi e che non esegua operazio<u>ni</u> in pipeline.

Full Access Part with predicate.

|Part|=200K

|Part select.| (considering uniform distr.)

= 200 K / 150 = 13334

Cost:

INDUCE CUSTENED ->

$$\frac{220 - 1}{9999 - 1} = 0.021$$