Styloid Process Classification

Aim: AI model that will detect elongations automatically classify the X-ray images into Normal, Right side elongated (RS), Left side elongated (LS), and Both sides elongated (RLS) directly

```
To enable the following instructions: SSE3 SSE4.1 SSE4.2 AVX AVX2 propriate compiler flags.
Found 400 files belonging to 4 classes.
Using 80 files for validation.
Classes found: ['LS - 100', 'N - 100', 'RLS - 100', 'RS - 100']
```

Dataset Splitting

Objective 2. To design and implement a convolutional neural network (CNN) for automated feature extraction and classification.

Model: "sequential"				
Layer (type)	Output Shape	Param #		
rescaling (Rescaling)	(None, 224, 224, 3)	0		
conv2d (Conv2D)	(None, 222, 222, 32)	896		
max_pooling2d (MaxPooling2D)	(None, 111, 111, 32)	0		
conv2d_1 (Conv2D)	(None, 109, 109, 64)	18,496		
max_pooling2d_1 (MaxPooling2D)	(None, 54, 54, 64)	0		
conv2d_2 (Conv2D)	(None, 52, 52, 128)	73,856		
max_pooling2d_2 (MaxPooling2D)	(None, 26, 26, 128)	0		
flatten (Flatten)	(None, 86528)	0		
dense (Dense)	(None, 128)	11,075,712		
dropout (Dropout)	(None, 128)	0		
dense_1 (Dense)	(None, 4)	516		

CNN Model Layers

Objective 3. To evaluate the CNN model performance using classification accuracy, precision, recall, F1-score, and confusion matrix.

Classification Report:							
	precision	recall	f1-score	support			
LS - 100	0.90	0.86	0.88	22			
N - 100	0.85	0.69	0.76	16			
RLS - 100	0.72	0.81	0.76	16			
RS - 100	0.79	0.85	0.81	26			
			0.01	22			
accuracy			0.81	80			
macro avg	0.81	0.80	0.81	80			
weighted avg	0.82	0.81	0.81	80			

CNN Classification Report

CNN Confusion Matrix

CNN training and Validation Accuracy

Objective 4. To compare the performance of a custom-built CNN with transfer learning models such as ResNet18, EfficientNetB0, and MobileNetV2.

	Model	Validation Accuracy
0	Custom_CNN	0.725
1	ResNet18	0.775
2	EfficientNetB0	0.200
3	MobileNetV2	0.750

Comparism of the four models

Objective 5. To explore the impact of data augmentation techniques on improving model generalizability.

Model Performance Model	Before vs Before	After Augmentation: After
CustomCNN ResNet50V2 EfficientNetB0	0.7750 0.6250 0.2250	0.3875 0.2750 0.2750
MobileNetV2	0.3250	0.2875

