Power

Power function

Suppose that H_0 is false in the Example 1.10, i.e. $\mu \neq \mu_0$.

Let
$$\mu_1$$
 = true value of μ ($\mu_1 \neq \mu_0$)
Power = $1-\beta = P(reject Hol Hofalse) = $P(1Z^*| \geq Z_{\frac{\alpha}{2}} | \mu \neq \mu_0)$$

$$Z^* = \frac{\overline{Y} - \mu_0}{\overline{n}} = \frac{\overline{Y} - \mu_1 + \mu_1 - \mu_0}{\overline{n}} = \frac{\overline{Y} - \mu_1}{\overline{n}} + \frac{\mu_1 - \mu_0}{\overline{n}}$$

$$\sim N(0,1)$$
by Lemma 3 constant

$$E[Z^*] = E\left[\frac{Y-\mu_1}{E} + \frac{\mu_1-\mu_0}{E}\right]$$

$$= E\left[\frac{Y-\mu_1}{E}\right] + \frac{\mu_1-\mu_0}{E}$$

$$= 0 + \frac{\mu_1-\mu_0}{E}$$

$$= \frac{\mu_1-\mu_0}{E}$$

$$Var(Z^*) = Var(\frac{\overline{Y} - \mu_1}{\overline{\Xi}}) = 1$$

Power function (cont.)

```
Power = P(|Z^*| \ge z \le |\mu \ne \mu_0)

= P(Z^* \le -z \le |\mu \ne \mu_0) + P(Z^* \ge z \le |\mu \ne \mu_0)

= \Phi(-z \le \frac{\mu - \mu_0}{\le z}, 1) + 1 - P(Z^* \le z \le |\mu \ne \mu_0)

= \Phi(-z \le \frac{\mu - \mu_0}{\le z}, 1) + 1 - \Phi(z \le z \le \frac{\mu - \mu_0}{\le z}, 1)
```

 $\Phi(x;\mu,\sigma^2)$ is the traditional notation for the cdf of $N(\mu,\sigma^2)$. That is, $\Phi(x;\mu,\sigma^2) = P(\chi \leq x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(t-\mu)^2} dt$,
where $\chi \sim N(\mu,\sigma^2)$.

Power function (cont.)

One-sided tests

Consider $y_1, y_2, ..., y_n$ are i.i.d. $N(\mu, \sigma^2)$ observations with σ^2 known.

We can test the one-sided hypothesis

$$H_0$$
: $\mu \leq \mu_0$.

The test statistic is

$$Z = \frac{\overline{Y} - \mu_0}{\sigma / \sqrt{n}}$$

The rule is

Reject
$$H_0$$
 if $z \ge z_{\alpha}$.

One-sided power function

Following the same argument as the two-sided test, we have:

If
$$H_0$$
 is false (i.e. $\mu > \mu_0$), then $Z \sim N\left(\frac{\mu - \mu_0}{\sigma/\sqrt{n}}, 1\right)$.

Power = $P(\text{reject Holhofalse})$

= $P(Z^* \ge Z_\alpha \mid \mu \ne \mu_0)$

= $1 - P(Z^* < Z_\alpha \mid \mu \ne \mu_0)$

= $1 - \Phi\left(Z_\alpha; \frac{\mu - \mu_0}{S_\alpha}, 1\right)$

One-sided power function

One-sided vs two-sided

For one-sided test, the type I error probability is not a single number, i.e.

$$P(\text{reject } H_0 | H_0 \text{ true}) \leq \alpha$$

$$P(Z')Z_{\alpha}|H_{\alpha}$$
 true) =
$$\begin{cases} \alpha & \text{if } \mu = \mu_{\alpha} \\ \alpha & \text{if } \mu \neq \mu_{\alpha} \end{cases}$$

One-sided vs two-sided

One-sided vs two-sided

One-sided test are often subject to an abuse:

Suppose we begin with a problem where a two-sided test is appropriate, but then observed a test statistic such that

$$z_{\alpha} \le z_{obs} \le z_{\alpha/2}$$

One-sided vs two-sided simulation

If we use a one-sided test when in fact a two-sided test should be used, the type I error probability will double.

Let's do a simulation to see this:

- 1. Generate 100,000 replications of n = 100 observations from N(5,4).
- 2. Perform one-sided and two-sided tests with $\mu_0 = 5$.
- 3. Compare the proportion of times where we commit a type I error (i.e. rejecting H_0 in this case).

One-sided vs two-sided simulation

Function to perform the Z-test

```
perform z test <- function(sample, null, cheat = FALSE, known var) {
# Get sigma
sigma <- sqrt(known var)</pre>
# Get number of obs
n <- length(sample)</pre>
# Calculate sample mean
sample mean <- mean(sample)</pre>
# Calculate test statistic
Z <- (sample mean - null) / (sigma / sqrt(n))</pre>
# Decide if to reject or retain
if(abs(Z) > qnorm(0.025, lower.tail = FALSE)){
      return("reject")
if (cheat) { # (incorrectly) using the one-sided test
      if(abs(Z) > gnorm(0.05, lower.tail = FALSE))
              return("reject")
return ("fail to reject")
```

One-sided vs two-sided simulation

Generate the samples

```
library(tidyverse)
sim_data <- 100000 %>%
rerun(rnorm(100, 5, 2))
```

Run the proper test

```
sim_data %>%
    map_chr(perform_z_test, null = 5, known_var = 4) %>%
    table() %>%
    prop.table()
```

Run the wrong test

```
sim_data %>%
    map_chr(perform_z_test, null = 5, known_var = 4, cheat =
    TRUE) %>%
    table() %>%
    prop.table()
```