12.
$$\lim_{x\to 0} tg(x)^{sen(x)}$$

15.
$$\lim_{x\to 0} (e^x + 3x)^{\frac{1}{2x}}$$

13.
$$\lim_{x \to \frac{\pi}{2}^{-}} tg(x)^{\cos(x)}$$

16.
$$\lim_{x \to \frac{\pi}{2}} (1 + 2\cos(x))^{\frac{1}{\cos(x)}}$$

14.
$$\lim_{x\to +\infty} (2x)^{\frac{x+1}{x^2}}$$

17.
$$\lim_{x \to +\infty} \frac{sen(x)}{x}$$

Resolução:

Repare que não existe $\lim_{x\to +\infty} sen(x)$.

$$Mas, \ \frac{-1}{x} \leq \frac{sen(x)}{x} \leq \frac{1}{x} \quad e \ como \ \lim_{x \to +\infty} \frac{-1}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0, \ então \ \lim_{x \to +\infty} \frac{sen(x)}{x} = 0$$

(ver o teorema de encaixe de limites).

5.7 Aplicações da derivada ao estudo das funções.

Pontos críticos e intervalos de monotonia:

Definição:

Seja f uma função e $c \in D_f$. Diz-se que f(c) é um **extremo relativo** de f se em x = c ocorre uma máximo ou um mínimo (rever definições página 12).

Por exemplo, a função representada ao lado tem:

- máximos em x = c' e x = c''
- mínimos em x = d', x = d'' e x = d'''.

Note que os dois últimos pontos assinalados no gráfico da função são simultaneamente máximos e mínimos.

Teorema:

Seja f uma função que tem um extremo relativo em $x = c \in D_f$ (i.e., f(c) é um máximo ou um mínimo local) então ou f'(c) = 0 ou não existe f'(c).

Como consequência do teorema anterior resulta que os pontos candidatos a extremos relativos de uma função f encontram-se entre os zeros da função derivada e/ou os pontos do domínio de f que não admitem derivada. A estes pontos chamámos **pontos críticos**.

Obs.:

- f'(c) = 0 significa que a tangente ao gráfico de f em x = c é horizontal, situação que ocorre em x = d', x = c' e x = c'';
- f'(c) não existir significa que as semi-tangentes ao gráfico de f em x = c têm declives distintos, como acontece em x = d'' e x = d'''.

Nota:

O recíproco deste teorema é falso, isto é, pelo facto de f'(c) = 0 não se pode concluir que f(c) seja um extremo. Por exemplo, $f(x) = x^3$ tem derivada $f'(x) = 3x^2$, e f'(0) = 0, e no entanto f(0) não é máximo nem mínimo de f. Conclusão: nem todo o ponto crítico é um extremo.

Corolário do teorema de Lagrange: Monotonia

Seja f uma função <u>derivável</u> no intervalo a,b, então:

- se f'(x) > 0 para todo $x \in]a,b[$, então f é estritamente crescente;
- se f'(x) < 0 para todo $x \in a, b[$, então f é estritamente decrescente;
- se f'(x) = 0 para todo $x \in [a, b[$, então f é constante.

Como decidir se um ponto crítico é máximo ou mínimo relativo?

Critério da 1ª derivada para classificação de extremos:

Seja f uma função <u>contínua</u> em $c \in]a,b[$ e derivável em $]a,b[\setminus \{c\}]$. Se x=c é um ponto crítico de f e

- f' passa de positiva para negativa em x = c, então f(c) é máximo relativo;
- f' passa de negativa para positiva em x = c, então f(c) é mínimo relativo;
- f'(x) > 0 ou f'(x) < 0 para todo $x \in]a,b[$, então f(c) não é extremo relativo.

Critério da 2ª derivada para classificação de extremos:

Seja f uma função derivável em]a,b[, $com\ c\in]a,b[$, $e\ f'(c)=0$:

- se f''(c) < 0 então f tem um máximo relativo em x = c (f(c) é máximo relativo)
- se f''(c) > 0 então f tem um mínimo relativo em x = c (f(c) é mínimo relativo).

Este pode ser compreendido quando analisarmos a concavidade da função $\,f\,$, de que falaremos em seguida.

Exercício:

Determine os extremos relativos e indique os intervalos de monotonia das seguintes funções:

a)
$$f(x) = \begin{cases} 2 - x^2 & \text{, se } x < 0 \\ log_2(x+1) & \text{, se } x \ge 0 \end{cases}$$

b)
$$g(x) = x^3 - x$$

c)
$$h(x) = x^{1/3}(8-x)$$

Resolução de c):

 $D_h = IR$ e h é contínua, pois é o produto de funções contínuas ($\sqrt[3]{x}$ é uma função irracional e 8-x é uma função polinomial)

Note que se existir algum ponto onde a função seja descontínua então ele deve ser considerado como ponto crítico.

Cálculo da primeira derivada:

$$h'(x) = \frac{8-x}{3x^{\frac{2}{3}}} - x^{\frac{1}{3}} = \frac{8-x}{3\sqrt[3]{x^2}} - \sqrt[3]{x} = \frac{8-4x}{3\sqrt[3]{x^2}} = \frac{2}{3}x^{-\frac{2}{3}}(2-x);$$

Pontos críticos:

- x = 0 porque $0 \in D_h$ mas $0 \notin D_{h'}$
- x = 2 pois h'(2) = 0

	$-\infty$	0		2	+ ∞
Sinal de <i>h</i> '	+	n.d.	+	0	-
h					

n.d. – não definida

Extremos relativos:

Máximos relativos: h(2); Mínimos relativos: não tem;

Note que

- h(0) não é um extremo pois à volta de x = 0, h' não muda de sinal;
- alternativamente, podemos utilizar o teste da 2^a derivada para concluir que em x = 2 ocorre um máximo pois:

$$h''(x) = 0$$

$$h''(x) = \frac{-4(x+4)}{9x^{\frac{5}{3}}}$$

$$h''(2) < 0$$

$$\Rightarrow h(2) \text{ é um máximo}$$

<u>Intervalos de monotonia:</u>

h é crescente se $x \in]-\infty,2[$;

 $h ext{ \'e decrescente se } x \in]2,+\infty[$.

Quais os pontos que se devem considerar na elaboração do quadro para o estudo da monotonia de uma função f?

Devem ser considerados os seguintes pontos:

- pontos críticos, i.e. pontos tais que f'(x) = 0 ou pontos onde não existe f'(x);
- \bullet pontos de descontinuidades de f e
- no caso do domínio ser um intervalo ou união de intervalos há que considerar os extremos desses intervalos.

Pontos inflexões e concavidades:

Vimos que o sinal de f' dá-nos informação sobre a monotonia da função f. Analogamente, podemos estudar o sinal de f'' para determinar a monotonia de f'. Assim, se f é duas vezes derivável no intervalo a,b e

- se $f''(x) \ge 0$ para todo $x \in a, b[$, então f' é crescente;
- se $f''(x) \le 0$ para todo $x \in [a,b[$, então f' é decrescente.

Ora, geometricamente, f' ser crescente significa que à medida que x cresce o declive da recta tangente a f aumenta e que o gráfico da função (à volta do ponto x) fica acima de cada tangente (ver figura ao lado).

De forma análoga, f' ser decrescente significa que à medida que x cresce o declive da recta tangente a f diminui e que o gráfico da função (à volta de x) fica abaixo de cada tangente (ver figura ao lado).

Definição:

Seja f uma função, diz-se que $c \in D_f$ é um **ponto de inflexão** se f muda a concavidade à volta de x = c.

Teorema:

Seja f uma função que tem um ponto de inflexão em $x = c \in D_f$ então ou f''(c) = 0 ou não existe f''(c).

Como consequência do teorema anterior resulta que os pontos candidatos a pontos de inflexão de uma função f encontram-se entre os zeros da segunda derivada da função e/ou os pontos do domínio de f que não admitem segunda derivada.

Nota:

O recíproco deste teorema é falso, isto é, pelo facto de f''(c) = 0 não se pode concluir que x = c é um ponto de inflexão. Por exemplo, $f(x) = x^4$ tem segunda derivada $f''(x) = 12x^2$, e f''(0) = 0, e no entanto x = 0 não é ponto de inflexão (porque à volta de x = 0, f não muda a concavidade) conforme se pode ver na figura ao lado.

Teorema (teste da concavidade)

Seja f uma função duas vezes derivável em a,b.

- Se f''(x) > 0 para todo $x \in a, b[$, então f tem concavidade voltada para cima;
- Se f''(x) < 0 para todo $x \in [a,b[$, então f tem concavidade voltada para baixo.

Podemos agora compreender o "Critério da 2ª derivada para classificação dos extremos" atrás enunciado:

• se temos f'(c) = 0 (a tangente em x = c é horizontal), e se f''(c) > 0 (a concavidade é voltada para cima) então f(c) é um mínimo (ver figura ao lado).

• se temos f'(c) = 0 (a tangente em x = c é horizontal), e se f''(c) < 0 (a concavidade é voltada para baixo) então f(c) é um máximo (ver figura ao lado).

Exercício:

Determine os pontos de inflexão e a concavidade das seguintes funções:

a)
$$f(x) = x^{2/3}(5+x)$$

b)
$$f(x) = 2x^3 + 3x^2 - 12x + 3$$

c)
$$g(x) = 3x^4 - 4x^3 - 12x^2 + 17$$

d)
$$h(x) = |(x+1)(x-1)^2|$$

Resolução da alínea a):

 $D_f = IR$ e f é contínua pois é o produto de funções contínuas ($\sqrt[3]{x^2}$ é uma função irracional e 5 + x é uma função polinomial)

Note que se existir algum ponto onde a função seja descontínua então ele deve ser considerado como ponto crítico.

Cálculo da primeira derivada:

$$f'(x) = \frac{2(5+x)}{3x^{\frac{1}{3}}} + x^{\frac{2}{3}} = \frac{10+5x}{3x^{\frac{1}{3}}}$$

Embora não seja pedido no enunciado do exercício, vamos fazer o estudo dos pontos críticos, extremos relativos e intervalos de monotonia.

Pontos críticos:

- x = 0 porque $0 \in D_f$ mas $0 \notin D_{f'}$
- x = -2 pois f'(-2) = 0

	$-\infty$	-2		0	+ ∞
Sinal de f'	+	0	-	n.d	+
f					

n.d. – não definida

Extremos relativos: f(-2); Mínimos relativos: f(0).

Obs. - importante!

Apesar de não existir derivada em x=0, f é contínua em x=0 e f muda de sinal em torno de x=0 e portanto pelo critério da I^a derivada para classificação de extremos (página 122) podemos concluir que f(0) é um mínimo relativo. **Muita atenção!!!** se f não fosse contínua em x=0 mas $0 \in D_f$ ter-se-ia que analisar os limites laterais para poder concluir se existia ou não extremo nesse ponto.

Intervalos de Monotonia:

f estritamente crescente: se $x \in]-\infty,-2[$ e se $x \in]0,+\infty[$ f estritamente decrescente: $x \in]-2,0[$.

Cálculo da segunda derivada:

$$f''(x) = \frac{10}{9} \left(\frac{x-1}{x^{4/3}} \right)$$

Candidatos a pontos de inflexão:

- x = 0 porque $0 \in D_f$ mas $0 \notin D_{f'}$
- x = 1 pois f''(1) = 0

	$-\infty$	0		1	+ ∞
Sinal de f''	-	n.d.	-	0	+
f	n		Λ		U

<u>Pontos de inflexão</u>: x = 1 (**note que:** o ponto de inflexão é o "valor da abcissa" ao contrário dos extremos que se referem ao "valor da ordenada".)

Obs. - importante!

Apesar de x = 0 não ser zero da 2^a derivada poderia ser ponto de inflexão, bastaria que à sua volta o sinal de f'' mudasse.

Sentido da concavidade:

```
f tem concavidade voltada para baixo: se x \in ]-\infty,1[ f tem concavidade voltada para cima: se x \in ]1,+\infty[.
```

Quais os pontos que se devem considerar na elaboração do quadro para o estudo das concavidades de uma função f?

Devem ser considerados os seguintes pontos:

- pontos candidatos a pontos de inflexão, i.e. pontos $x \in D_f$ tais que f''(x) = 0 ou pontos onde não existe f''(x);
- \bullet pontos de descontinuidades de f e
- no caso do domínio ser um intervalo ou união de intervalos há que considerar os extremos desses intervalos.

Assímptotas:

Seja f uma função real de variável real.

Ideia intuitiva de assímptota:

Uma recta é uma assímptota de uma função se o seu gráfico se aproxima indefinidamente dessa recta e no limite confunde-se com a própria recta.

Consideremos a função definida por $f(x) = x + \frac{1}{x}$, cuja representação gráfica é:

Esta função não está definida em x = 0.

O que é que acontece quando x se aproxima de zero?

À medida que x se aproxima de zero, quer pela direita quer pela esquerda, os correspondentes valores de f(x) "explodem", isto é, crescem sem limite. Podemos

então escrever:
$$\lim_{x \to 0} f(x) = \begin{cases} -\infty & se \quad x \to 0^- \\ +\infty & se \quad x \to 0^+ \end{cases}$$

Neste caso, dizemos que a recta x = 0 é uma assímptota vertical do gráfico de f.

Como determinar as equações das assímptotas verticais do gráfico de uma função?

Para identificar os pontos onde eventualmente o gráfico admite uma assímptota determina-se:

- D_f ;
- os pontos $a \in D_f$ onde a função é descontínua;
- no caso do domínio ser um intervalo ou união de intervalos devem-se considerar os pontos extremos que tais que $a \notin D_f$;

• $\lim_{x \to a^{-}} f(x)$ e $\lim_{x \to a^{+}} f(x)$ quando fazem sentido.

Se algum destes limites for $\pm \infty$, a recta x = a diz-se uma *assímptota vertical* do gráfico de f (unilateral ou bilateral conforme exista um ou dois limites laterais infinitos, respectivamente).

Exercício:

Determine, caso existam, as assímptotas verticais dos gráficos das seguintes funções:

a)
$$f(x) = \frac{x}{\sqrt{x^2 - 1}}$$

Resolução:

$$D_f = \{x \in IR : x^2 - 1 > 0\} =] - \infty, -1[\cup]1, +\infty[.$$

f é continua porque é quociente entre uma função polinomial e uma função irracional.

Pontos onde podem existir assímptotas verticais: x = -1 e x = 1.

$$\lim_{x \to -1^{-}} f(x) = -\infty \quad \text{e} \quad \lim_{x \to 1^{+}} f(x) = +\infty$$

 $\therefore x = -1$ e x = 1 são duas assímptotas verticais do gráfico de f.

b)
$$f(x) = \frac{e^x - 1}{x}$$

Resolução:

$$D_f = IR \setminus \{0\}.$$

f é contínua porque é diferença e quociente de funções contínuas (exponencial, constante e polinomial).

Pontos onde podem existir assímptotas verticais: x = 0

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \text{ (pela Regra de Cauchy)}$$

 \therefore x = 0 não é assímptota vertical do gráfico de f.

 \therefore o gráfico de f não tem assímptotas verticais.

c)
$$f(x) = \begin{cases} \ln(4 - x^2) & se \quad x \ge 0 \\ -\frac{1}{x} & se \quad x < 0 \end{cases}$$

Resolução:

$$D_{f} = \begin{cases} x \in IR : (4 - x^{2} > 0 \quad \land \quad x \ge 0) \quad \lor \quad (x \ne 0 \quad \land \quad x < 0) \end{cases}$$

$$= \begin{cases} x \in IR : (-2 < x < 2 \quad \land \quad x \ge 0) \quad \lor \quad (x \ne 0 \quad \land \quad x < 0) \end{cases}$$

$$= \begin{cases} x \in IR : 0 \le x < 2 \quad \lor \quad x < 0 \end{cases}$$

$$= \left[-\infty, 2 \right[$$

f é continua em todo o seu domínio excepto em x = 0:

Para x > 0, f é continua porque é composta de funções contínuas (logarítmica com polinomial). Para x < 0, f é continua porque é uma função racional.

Para
$$x = 0$$
, $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \ln(x^2 + 4) = \ln(4) \neq -\infty = \lim_{x \to 0^-} \frac{1}{x} = \lim_{x \to 0^-} f(x)$, logo f é descontinua em $x = 0$.

Pontos onde podem existir assímptotas verticais: x = 0 e x = 2. (Exercício ...)

Assímptotas não verticais:

Consideremos as funções representadas graficamente:

$$f(x) = \frac{1}{x}$$

$$g(x) = x + \frac{1}{x}$$

$$y = \frac{1}{x}$$

$$y =$$

Quando $x \to +\infty$ o gráfico da função f aproxima-se da recta y = 0. Quando $x \to -\infty$ o gráfico da função f aproxima-se da recta y = 0.

Dizemos que a recta y = 0 é uma assímptota horizontal (bilateral).

No caso da função g, quando $x \to \pm \infty$ o gráfico da função g aproxima-se da recta

$$y = x \cdot \left(\text{Note-se que } g(x) - x = \frac{1}{x} e \xrightarrow{1}_{x} \to 0 \text{ quando } x \to \pm \infty \right)$$

A existência de assímptotas não verticais (horizontais e oblíquas) depende do comportamento da função quando $x \to +\infty$ e quando $x \to -\infty$.

Se a recta y = mx + b é uma assímptota não vertical do gráfico da função, quando $x \to +\infty$, é porque o gráfico da função se aproxima cada vez mais da recta quando $x \to +\infty$.

(De modo inteiramente análogo se diria quando $x \to -\infty$).

Suponhamos que $x \to +\infty$.

Temos que

$$\lim_{x \to +\infty} [f(x) - (mx + b)] = 0.$$

Desta expressão vamos determinar as constantes $m \in b$.

Determinação de m:

$$\lim_{x \to +\infty} [f(x) - (mx + b)] = 0$$

Dividindo por x vem:

$$\lim_{x \to +\infty} \frac{f(x) - (mx + b)}{x} = 0 \iff \lim_{x \to +\infty} \frac{f(x)}{x} - \frac{mx}{x} - \frac{b}{x} = 0$$

$$\Leftrightarrow \lim_{x \to +\infty} \frac{f(x)}{x} - m = 0$$

$$\Leftrightarrow m = \lim_{x \to +\infty} \frac{f(x)}{x}$$

Logo,
$$m = \lim_{x \to +\infty} \frac{f(x)}{x}$$

Determinação de b:

$$\lim_{x \to +\infty} [f(x) - (mx + b)] = 0 \iff \lim_{x \to +\infty} (f(x) - mx) = \lim_{x \to +\infty} b \iff b = \lim_{x \to +\infty} (f(x) - mx)$$

$$\text{Logo, } b = \lim_{x \to +\infty} (f(x) - mx).$$

No caso em que $x \to -\infty$, procedendo do modo análogo concluímos que:

$$\bullet \quad m = \lim_{x \to -\infty} \frac{f(x)}{x}$$

•
$$b = \lim_{x \to -\infty} (f(x) - mx)$$

Notas:

- A existência de assímptotas não verticais (horizontais ou oblíquas) pressupõe que as expressões $\lim_{x\to-\infty} f(x)$ e $\lim_{x\to+\infty} f(x)$ tenham sentido, isto é, que o domínio da função contenha um intervalo ilimitado do tipo $]-\infty,a[$ e/ou $]a,+\infty[$.
- Se m = 0 então a assímptota, a existir, é horizontal.
- Se $m = \infty$ ou não existir, então o gráfico da função não tem assímptotas não verticais.
- Se $b = \infty$ ou não existir, então o gráfico da função não tem assímptotas
- Em geral, é <u>mais fácil</u> determinar as assímptotas horizontais do que as oblíquas, pelo que há vantagem em começar por verificar se uma função tem assímptotas horizontais: $b = \lim_{x \to \pm \infty} f(x)$, e caso este limite seja finito conclui-se que a (única) assímptota não vertical é y = b.
- Se uma função tem uma assímptota horizontal quando $x \to +\infty$ então não pode ter simultaneamente uma oblíqua quando $x \to +\infty$. Porquê?
- Uma função pode ter uma assímptota horizontal e outra oblíqua desde que uma seja quando $x \to +\infty$ e outra quando $x \to -\infty$.
- O gráfico de uma função pode intersectar <u>no máximo uma vez</u> uma assímptota vertical (caso em que a função é descontinua num ponto mas está definida nesse ponto).
- O gráfico de uma função <u>pode intersectar mais</u>
 <u>do que uma vez</u> uma assímptota não vertical.
 Por exemplo, consideremos a função definida

por
$$f(x) = \begin{cases} \frac{5sen(2x)}{x} + x & se \\ 10 & se \end{cases}$$
 $x \neq 0$

cuja representação gráfica é:

Verifique que a recta y = x é uma assímptota oblíqua ao gráfico de f.

Exercício:

Determine, caso existam, as assímptotas não verticais dos gráficos das seguintes funções:

a)
$$f(x) = \frac{x}{\sqrt{x^2 - 1}}$$

Resolução:

$$D_f = \left[-\infty, -1 \right[\cup \left[1, +\infty \right[.$$

Assímptotas horizontais:

$$\lim_{x \to +\infty} \frac{x}{\sqrt{x^2 - 1}} = \lim_{x \to +\infty} \frac{x}{x\sqrt{1 - \frac{1}{x^2}}} = 1$$

$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 - 1}} = \lim_{x \to -\infty} \frac{x}{-x\sqrt{1 - \frac{1}{x^2}}} = -1$$

Note que nos dois limites anteriores não se consegue levantar as indeterminações aplicando a Regra de Cauchy (experimente!).

 \therefore y=1 é uma assímptota horizontal do gráfico de f quando $x \to +\infty$ e y=-1 é uma assímptota horizontal do gráfico de f quando $x \to -\infty$.

b)
$$f(x) = \frac{e^x - 1}{x}$$

Resolução:

$$D_f = IR \setminus \{0\}.$$

Assímptotas horizontais:

$$\lim_{x \to +\infty} \frac{e^x - 1}{x} = \lim_{x \to +\infty} e^x = +\infty \quad (\text{Re } gra \ de \ Cauchy)$$

$$\lim_{x \to -\infty} \frac{e^x - 1}{x} = \frac{-1}{-\infty} = 0$$

 \therefore y = 0 é uma assímptota horizontal do gráfico de f quando $x \to -\infty$ e o gráfico de f não tem assímptotas horizontais quando $x \to +\infty$.

Assimptotas oblíquas:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^x - 1}{x^2} = \lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2} = +\infty$$

 \therefore o gráfico de f não admite assímptotas oblíquas quando $x \to +\infty$.

c)
$$f(x) = \begin{cases} ln(4-x^2) & se \quad x \ge 0 \\ -\frac{1}{x} & se \quad x < 0 \end{cases}$$

Resolução:

$$D_f = -\infty,2[$$
.

Neste caso não faz sentido verificar se a função tem assímptotas oblíquas quando $x \to +\infty$.

Assímptotas horizontais quando $x \to -\infty$:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{x} = 0$$

 \therefore y = 0 é uma assímptotas horizontal do gráfico de f.