Заняття 9. Енергія електростатичного поля. Електрична ємність.

Аудиторне заняття

1. [1.50] У вершинах рівностороннього трикутника зі стороною a=2 см знаходяться заряди $q_1=1$ нКл, $q_2=2$ нКл та $q_3=3$ нКл. Визначити роботу A по переміщенню заряду q_3 до середини протилежної сторони трикутника (див.рис.).

2. [Пр.4] Дві металеві кулі радіусами $R_1 = 5$ см і $R_2 = 10$ см мають заряди $Q_1 = 40$ нКл і $Q_2 = -20$ нКл, відповідно. Знайти енергію W, яка виділиться при розряді, якщо кулі з'єднати провідником. Відстань між кульками настільки велика, що їхню взаємодію можна не враховувати.

3. [1.79] Конденсатор ємністю C заряджено до напруги U. До нього підключають незаряджений конденсатор ємністю C_1 (див.рис.). Визначити заряд q, який пройшов по провідникам після замикання ключа. Яка кількість тепла W при цьому виділилось?

- 4. [1.74] Площа кожної з обкладинок плоского конденсатора дорівнює S, відстань між ними D. У конденсатор паралельно обкладинкам вводять пластину з діелектрика товщиною d та діелектричною проникністю ε . Знайти ємність C створеної системи, коли: а) пластина введена повністю; б) на половину висоти конденсатора.
- 5. [1.88] На рис. наведена схема, яка складається з двох конденсаторів ємностями C_1 і C_2 та двох джерел струму з ЕРС ξ_1 і ξ_2 . Знайти різницю потенціалів ϕ_{AB} між точками A і B.

Домашнє завдання

1. [1.80] Три однакові конденсатори ємністю C кожен з'єднані так, як показано на схемі (див.рис.). Знайти ємність системи між точками A і B.

2. [1.44] У двох вершинах (див.рис.) квадрата знаходяться заряди величиною +Q, а в двох інших — величиною (-q). Чому дорівнює потенціальна енергія W системи зарядів, якщо сторона квадрата a.

3. [1.86] Обкладинки конденсатора з невідомою ємністю, зарядженого до напруги U_1 , з'єднують з обкладинками конденсатора ємністю C_2 , зарядженого до напруги U_2 . Визначити невідому ємність C_1 , якщо напруга на конденсаторах після з'єднання дорівнює U. Розглянути наступні випадки: а) конденсатори з'єднують однойменними обкладинками; б) різнойменними.