

Description

The VSM12N15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} = 150V, I_{D} =12A $R_{DS(ON)}$ <160mΩ @ V_{GS} =10V (Typ:130mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM12N15-T1	VSM12N15	TO-251	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	150	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	12	Α	
Drain Current-Pulsed (Note 1)	I _{DM}	50	Α	
Maximum Power Dissipation	P _D	55	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 2)	Rejc	2.7	°C/W
--	------	-----	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250µA	1.5	2	2.5	V
Drain-Source On-State Resistance	Source On-State Resistance $R_{DS(ON)}$ V_{GS} =10V, I_D =5A		-	130	160	mΩ
Forward Transconductance	G FS	V _{DS} =15V,I _D =10A	-	15	-	S
Dynamic Characteristics (Note4)			•	•		
Input Capacitance	C _{lss}		-	900	-	PF
Output Capacitance	C _{oss}	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	115	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	70	-	PF
Switching Characteristics (Note 4)			•	•		
Turn-on Delay Time	t _{d(on)}		-	8	-	nS
Turn-on Rise Time	t _r	$V_{DD} = 75V, I_{D} = 1A, R_{L} = 75\Omega$	-	10	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =6 Ω	-	20	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	75)/1 454	-	19		nC
Gate-Source Charge	Q _{gs}	V _{DS} =75V,I _D =1.5A,	-	5.5	-	nC
Gate-Drain Charge	Q_{gd}	- V _{GS} =10V	-	7	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =2A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	12	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to product

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson- Junction Temperature

Qg Gate Charge (nC)

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

 T_J -Junction Temperature($^{\circ}\mathbb{C}$)

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance