Università degli Studi di Genova

Scuola Politecnica

Corso di Laurea Magistrale in Ingegneria Informatica

Progetto relativo al corso di Software Engineering (Progetto 46)

Studente:

De Luca Jacopo

Docente:

Prof. Narizzano Massimo

Azienda:

WeSii s.r.l.

Contesto

Geolocalizzazione dei malfunzionamenti nell'impianto fotovoltaico con l'obiettivo di aumentare la produzione del cliente.

- Raccolta dati con droni
- Elaborazione immagini
- Interfaccia con l'utente

Problema

Numero di pannelli da analizzare (migliaia di moduli!).

Molti passaggi automatizzati, altri necessitano ancora di

interventi manuali.

Obiettivo

Automatizzazione del processo di riconoscimento di ogni singolo pannello solare all'interno delle immagini del drone.

Tool di uso interno a WeSii.

Solar Panel Analyzer (SPA)

- Immagini input (drone)
- Elaborazione automatica
- Raccolta dati dei pannelli
- Immagini pannelli e informazioni pannelli come output
- Interfaccia grafica essenziale

Di cosa ha bisogno il cliente?

- Identificazione del problema (esigenze del cliente)
- Identificazione delle funzionalità del software
- Stesura dell'URD (User Requirements Document)
- Analisi del documento scritto (rispecchia le necessità?)

Fondamentali:

- la comprensione delle esigenze del cliente (priorità)
- la traduzione delle esigenze in requisiti del software

Come?

Dai requisiti identificati alla progettazione del software:

- Analizzare l'URD
- Documentarsi (Quali strumenti servono? Come usarli?)
- Ideare possibili soluzioni per l'implementazione delle funzionalità
- Disegnare grafici
- Stesura DRS (Design Requirement Specification Document)

Nel DRS:

- Architecture
- Interfacce
- Data stores

- Use cases
- Structural design (Class and Object diagram)
- Dynamic model

Il codice

Python 3, OpenCV, altre librerie (wxPython, tifffile, etc.)

- Installazione dell'ambiente di lavoro.
- Mantenersi fedeli al DRS, anche se durante la scrittura del codice è stata necessaria qualche modifica/aggiunta.
- Algoritmo di riconoscimento (procedura basata sul riconoscimento della geometria nelle immagini).

Risolvere problemi in fase di coding:

- Compatibilità
- Uso della memoria

Testing

Test strutturale:

- · Identificare il percorso che utilizza tutte le funzionalità del tool
- coverage.py per calcolare la copertura (94% di Branch Coverage)
- unittest.py per testare il modulo Elaboration.py (codice)

Test funzionale:

• Simulare l'utente nell'utilizzo del software

Documentazione

- Doxygen per generare documentazione direttamente dal codice commentato attraverso #
- Stesura file README.md per spiegazioni (installazione, running, testing)

Il software

Dimostrazione pratica del software.

Problemi incontrati

- Installazione librerie in versione Ubuntu non recente (Xubuntu)
- Uso di strumenti mai incontrati (Python e OpenCV)
- Identificazione dei parametri
- Elaborazione delle immagini .TIF (Out of memory! Molto grandi)
- Riconoscimento dello stesso pannello in due immagini diverse
- Aggiornamento librerie wxPython (GUI)
- Testing: poche informazioni su testing in Python
- Documentazione: tool (tipo javadoc) poco pratici e poche informazioni
- Mantenere il software fedele a URD e DRS

PRO

- Prima esperienza come Ingegnere Informatico nella pratica
- Sviluppo di nuove conoscenze (documentazione, strumenti e problemi)
- Contatto diretto con azienda esterna
- Uso di GitHub

CONTRO

- Necessità di conoscenze preliminari per utilizzo di alcuni strumenti
- Grande quantità di tempo necessaria per completare al meglio i vari step
- Utilizzo di versione Xubuntu non recente

RINGRAZIAMENTI

A TUTTI PER L'ATTENZIONE

Al prof. Narizzano e a WeSii s.r.l. per l'opportunità!

Studente:De Luca Jacopo