Mathematics

Robin Adams

February 6, 2024

Contents

Ι	Set Theory	5
	Axioms	7
	1.1 Classes	
	1.2 Primitive Notions	
	1.3 Axioms	8
	1.4 Basic Constructions on Sets	S
2	Ordered Pairs and Relations	11

4 CONTENTS

Part I Set Theory

Chapter 1

Axioms

1.1 Classes

We speak informally about *classes*. A *class* is determined by a unary predicate. We write $\{x \mid P(x)\}$ for the class determined by P.

We say an object a is a member or element of the class $\mathbf{A} = \{x \mid P(x)\}$, or \mathbf{A} contains a, and write $a \in \mathbf{A}$ or $\mathbf{A} \ni a$, iff P(a) is true.

We say two classes are equal iff they have exactly the same elements.

We write $\{x \in \mathbf{A} \mid P(x)\}$ for $\{x \mid x \in \mathbf{A} \land P(x)\}$. We write $\{t[x_1, \dots, x_n] \mid P(x_1, \dots, x_n)\}$ for $\{y \mid \exists x_1 \cdots \exists x_n (P(x_1, \dots, x_n) \land y = t[x_1, \dots, x_n])\}$.

Definition 1.1 (Disjoint). Two classes are *disjoint* iff they have no common element.

Definition 1.2 (Subclass). Given classes **A** and **B**, we say **A** is a *subclass* of **B**, **B** is a *superclass* of **A**, or **B** *includes* **A**, and write $\mathbf{A} \subseteq \mathbf{B}$ or $\mathbf{B} \supseteq \mathbf{A}$, iff every element of **A** is an element of **B**.

If, in addition, $\mathbf{A} \neq \mathbf{B}$, then we say \mathbf{A} is a *proper* subclass of \mathbf{B} , \mathbf{B} is a *proper* superclass of \mathbf{A} , or \mathbf{B} properly includes \mathbf{A} , and write $\mathbf{A} \subsetneq \mathbf{B}$ or $\mathbf{B} \supsetneq \mathbf{A}$.

Proposition 1.3. Every class is a subclass of itself.

PROOF: For any class A, we have that every element of A is an element of A.

Definition 1.4 (Empty Class). The *empty class* \emptyset is $\{x \mid \bot\}$. All other classes are *nonempty*.

Proposition 1.5. The empty class is a subclass of every class.

PROOF: For any class **A**, vacuously every element of \emptyset is an element of **A**. \sqcup

Definition 1.6 (Universal Class). The universal class V is $\{x \mid \top\}$.

Definition 1.7. Given objects a_1, \ldots, a_n , we write $\{a_1, \ldots, a_n\}$ for the class $\{x \mid x = a_1 \lor \cdots \lor x = a_n\}$.

A class of the form $\{a\}$ is called a singleton.

Definition 1.8 (Union). The *union* of classes **A** and **B** is the class $\mathbf{A} \cup \mathbf{B} = \{x \mid x \in \mathbf{A} \lor x \in \mathbf{B}\}.$

Definition 1.9 (Intersection). The *intersection* of classes **A** and **B** is the class $\mathbf{A} \cap \mathbf{B} = \{x \mid x \in \mathbf{A} \land x \in \mathbf{B}\}.$

Definition 1.10 (Relative Complement). Let **A** and **B** be classes. The *relative* complement of **B** in **A** is the class $\mathbf{A} - \mathbf{B} = \{x \in \mathbf{A} \mid x \notin \mathbf{B}\}.$

1.2 Primitive Notions

Let there be sets.

Let there be a binary relation \in between sets, called *membership*. When $a \in b$ holds, we say a is a *member* or *element* of b, or a is in b, or b contains a, and we also write $b \ni a$. When this does not hold, we write $a \notin b$ or $b \not\ni a$.

Definition 1.11 (Pairwise Disjoint). Let A be a set. We say the elements of A are pairwise disjoint iff, for all $x, y \in A$, if there exists z such that $z \in x$ and $z \in y$, then x = y.

1.3 Axioms

Axiom 1 (Extensionality). Two sets with exactly the same elements are equal.

Thanks to this axiom, we may identify a set A with the class $\{x \mid x \in A\}$. Our usage of the symbols \in and = is consistent.

Definition 1.12. We say that a class **A** is a set iff there exists a set A such that $A = \mathbf{A}$. That is, $\{x \mid P(x)\}$ is a class iff there exists a set A such that $\forall x (x \in A \Leftrightarrow P(x))$. Otherwise, **A** is a proper class.

Definition 1.13 (Subset). A (proper) *subset* of a class is a (proper) subclass that is a set.

A (proper) superset of a class is a (proper) superclass that is a set.

Definition 1.14 (Union). For any class **A**, the *union* of **A** is the class $\{x \mid \exists A \in \mathbf{A}. x \in A\}$.

Axiom 2 (Regularity). For any nonempty set A, there exists a set $m \in A$ such that m and A are disjoint.

Axiom 3 (Union). The union of a set is a set.

Axiom 4 (Replacement). For any property P(x, y), the following is an axiom: Let A be a set. Assume that, for any $x \in A$, there exists at most one y such that P(x, y). Then $\{y \mid \exists x \in A.P(x, y)\}$ is a set. **Axiom 5** (Infinity). There exists a set I such that:

- I has an element that is empty.
- For all $x \in I$, there exists $y \in I$ such that the elements of y are exactly x and the members of x.

Axiom 6 (Power Set). For any set A, the class of all subsets of A is a set.

Axiom 7 (Choice). Let A be a set whose elements are nonempty and pairwise disjoint. Then there exists a set B that has exactly one member in common with each member of A.

1.4 Basic Constructions on Sets

Proposition 1.15. The empty class \emptyset is a set.

Immediate from the Axiom of Infinity. \Box

Definition 1.16 (Power Set). For any set A, the *power set* of A, denoted $\mathcal{P}A$, is the set of all subsets of A.

(This is a set by the Power Set Axiom.)

Theorem 1.17. For any sets a and b, the class $\{a,b\}$ is a set.

```
Proof:
\langle 1 \rangle 1. Let: a and b be sets.
\langle 1 \rangle 2. Let: P(x,y) be the property (x = \emptyset \land y = a) \lor (x = \mathcal{P}\emptyset \land y = b).
\langle 1 \rangle 3. For any x \in \mathcal{PP}\emptyset, there exists at most one y such that P(x,y).
    \langle 2 \rangle 1. Let: x \in \mathcal{PP}\emptyset
    \langle 2 \rangle 2. Assume: P(x,y) and P(x,z)
             Prove: y = z
    \langle 2 \rangle 3. Case: x = \emptyset, y = a, x = \emptyset and z = a
       PROOF: Then y = z.
    \langle 2 \rangle 4. Case: x = \emptyset, y = a, x = \mathcal{P}\emptyset and z = b
       PROOF: This case is impossible since we have \emptyset \in \mathcal{P}\emptyset but \emptyset \notin \emptyset.
    \langle 2 \rangle5. Case: x = \mathcal{P}\emptyset, y = b, x = \emptyset and z = a
       PROOF: This case is impossible since we have \emptyset \in \mathcal{P}\emptyset but \emptyset \notin \emptyset.
    \langle 2 \rangle 6. Case: x = \mathcal{P}\emptyset, y = b, x = \mathcal{P}\emptyset and z = b
       PROOF: Then y = z.
\langle 1 \rangle 4. Let: A = \{ y \mid \exists x \in \mathcal{PP}\emptyset.P(x,y) \}
    PROOF: By \langle 1 \rangle 3 and the Axiom of Replacement.
\langle 1 \rangle 5. A = \{a, b\}
    \langle 2 \rangle 1. \ a \in A
       PROOF: Since \emptyset \in \mathcal{PP}\emptyset and P(\emptyset, a).
    \langle 2 \rangle 2. \ b \in A
       PROOF: Since \mathcal{P}\emptyset \in \mathcal{PP}\emptyset and P(\mathcal{P}\emptyset, b).
    \langle 2 \rangle 3. For all y \in A we have y = a or y = b.
```

 $\langle 1 \rangle 2$. PICK $A \in \mathbf{A}$ $\langle 1 \rangle 3$. $\bigcap \mathbf{A} \subseteq A$ $\langle 1 \rangle 4$. $\bigcap \mathbf{A}$ is a set.

PROOF: By Comprehension.

PROOF: Immediate from $\langle 1 \rangle 4$. Corollary 1.17.1. For any set a, the class $\{a\}$ is a set. **Proposition 1.18.** The union of two sets is a set. PROOF: Since for sets A and B we have $A \cup B = \bigcup \{A, B\}$. \square **Proposition 1.19.** For any sets a_1, \ldots, a_n , the class $\{a_1, \ldots, a_n\}$ is a set. PROOF: It is $\{a_1\} \cup \cdots \cup \{a_n\}$. \square **Theorem 1.20** (Comprehension). Every subclass of a set is a set. Proof: $\langle 1 \rangle 1$. Let: A be a set, **B** a class with $\mathbf{B} \subseteq A$. $\langle 1 \rangle 2$. Let: P(x,y) be the property $x \in \mathbf{B} \wedge y = x$ $\langle 1 \rangle 3$. For any $x \in A$ there exists at most one y such that P(x, y). $\langle 1 \rangle 4$. $\mathbf{B} = \{ y \mid \exists x \in A.P(x,y) \}.$ $\langle 1 \rangle 5$. Q.E.D. PROOF: Hence \mathbf{B} is a set by the Axiom of Replacement. **Corollary 1.20.1.** For any set A and class B, the intersection $A \cap B$ is a set. Corollary 1.20.2. For any set A and class B, the relative complement A - Bis a set. Theorem 1.21 (Russell's Paradox). The universal class V is a proper class. $\langle 1 \rangle 1$. Let: $\mathbf{R} = \{ x \mid x \notin x \}$ $\langle 1 \rangle 2$. **R** is not a set. PROOF: If it were, we would have $\mathbf{R} \in \mathbf{R}$ if and only if $\mathbf{R} \notin \mathbf{R}$. $\langle 1 \rangle 3$. **V** is not a set. PROOF: By Comprehension. **Definition 1.22** (Intersection). The intersection of a class **A** is the class $\bigcap \mathbf{A} = \{x \mid \forall A \in \mathbf{A}. x \in A\} .$ Proposition 1.23. The intersection of a nonempty class is a set. Proof: $\langle 1 \rangle 1$. Let: **A** be a nonempty class.

Chapter 2

Ordered Pairs and Relations

Definition 2.1 (Ordered Pair). For any sets a and b, the ordered pair (a,b) is defined to be $\{\{a\},\{a,b\}\}.$

Proposition 2.2. For any sets a, b, c and d, if (a,b) = (c,d) then a = c and b = d.

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } a, b, c, d \text{ be sets.} \\ \langle 1 \rangle 2. \text{ Assume: } (a,b) = (c,d) \\ \langle 1 \rangle 3. \ a = c \\ \text{PROOF: Since } \{a\} = \bigcap (a,b) = \bigcap (c,d) = \{c\}. \\ \langle 1 \rangle 4. \ \{a,b\} = \{c,d\} \\ \text{PROOF: Since } \{a,b\} = \bigcup (a,b) = \bigcup (c,d) = \{c,d\}. \\ \langle 1 \rangle 5. \ b = d \\ \langle 2 \rangle 1. \text{ Case: } a = b \\ \text{PROOF: Then the set } \{a,b\} = \{c,d\} \text{ is a singleton, and so } a = b = c = d. \\ \langle 2 \rangle 2. \text{ Case: } a \neq b \\ \text{PROOF: Then we have } \{b\} = \{a,b\} - \{a\} = \{c,d\} - \{c\} \text{ and so } b = d. \\ \square
```

Definition 2.3 (Cartesian Product).