4. Arbres couvrants et théorie de la complexité

25 Octobre 2023

- Arbres couvrants
- 2 Théorie de la complexité

Rappel sur les arbres et forêts

Forêt : graphe (non orienté) acyclique

Arbre : graphe (non orienté) acyclique connexe/

Ju-v Juhanin

Proposition.

- ► Chaque composante connexe d'une forêt est un arbre.
- ▶ Un arbre avec n sommets possède exactement n-1 arêtes.

· m >, 1. Ashre area n + 1 sommats

Onétes

Arbre couvrant

Définition. Un arbre couvrant dans un graphe G = (V)E est un arbre T = (V)E' tel que $E' \subset E$.

G

Problème d'arbre couvrant de poids minimum

Arbre couvrant de poids minimum

- ▶ Instance. Graphe non orienté G = (V, E), poids $(c(e))_{e \in E}$.
- ▶ Question. Trouver un arbre couvrant T = (V, E') de poids minimum

$$c(T) = \sum_{e \in E} c(e)$$

$$G = (V, E)$$

1. Trier les arêtes $e \in E$ par coût croissant : $E = \{e_1, \ldots, e_m\}$, avec $c(e_i) \le c(e_j)$ si i < j

$$G = (V, E)$$

- 1. Trier les arêtes $e \in E$ par coût croissant : $E = \{e_1, \dots, e_m\}$, avec $c(e_i) \le c(e_j)$ si i < j
- 2. $E'_0 = \emptyset$

$$G = (V, E)$$

- 1. Trier les arêtes $e \in E$ par coût croissant : $E = \{e_1, \dots, e_m\}$, avec $c(e_i) \le c(e_j)$ si i < j
- 2. $E'_0 = \emptyset$
- 3. Pour tout $i \in \{1, \ldots, m\}$
 - $lackbox{ Si } E'_{i-1} \cup \{e_i\}$ n'a pas de cycles : $E'_i = E'_{i-1} \cup \{e_i\}$
 - ightharpoonup Sinon, $E'_i = E'_{i-1}$

$$G = (V, E)$$

- 1. Trier les arêtes $e \in E$ par coût croissant : $E = \{e_1, \dots, e_m\}$, avec $c(e_i) \le c(e_j)$ si i < j
- 2. $E'_0 = \emptyset$
- 3. Pour tout $i \in \{1, \ldots, m\}$
 - lacksquare Si $E'_{i-1} \cup \{e_i\}$ n'a pas de cycles : $E'_i = E'_{i-1} \cup \{e_i\}$
 - ightharpoonup Sinon, $E'_i = E'_{i-1}$
- 4. Retourner $T = (V, E'_m)$

$$G = (V, E)$$

- 1. Trier les arêtes $e \in E$ par coût croissant : $E = \{e_1, \ldots, e_m\}$, avec $c(e_i) \le c(e_j)$ si i < j
- 2. $E'_0 = \emptyset$
- 3. Pour tout $i \in \{1, \ldots, m\}$
 - lacksquare Si $E'_{i-1} \cup \{e_i\}$ n'a pas de cycles : $E'_i = E'_{i-1} \cup \{e_i\}$
 - ightharpoonup Sinon, $E'_i = E'_{i-1}$
- 4. Retourner $T = (V, E'_m)$

Proposition. Si G est connexe, l'algorithme de Kruskal retourne un arbre couvrant de poids minimum en $\mathcal{O}(|E| \cdot \log |E|)$ $(= \mathcal{O}(|E| \cdot \log |V|))$

Algorithme de Kruskal : exercice 4.2 $\tau = (V, E)$

Proposition intermédiaire

Proposition. Un arbre couvrant T=(V,E') est de coût minimum ssi pour tout $e\in E'$, e est l'arête de poids minimale de la coupe $\delta(V_1)$ entre les deux composantes connexes V_1 et V_2 de $(V,E'\backslash\{e\})$.

Preuve =
$$(V, F')$$

(=5) T de cont minimum.

Si e E E', e'e S(V1) to ce < ce

$$C(T') = C(T) - Ce + Ce + C(T)$$

(E). To where convait de cuit min

le assètes différentes par sapport al T

itératirement Te = T de court min

Preuve de Kruskal

- · A chaque itération T:= (V, E:) est une foreit.
- . A la fin Tom est un arbre convent
- · To est de poids minimal d'agrès la proposition

Preuve de Kruskal

- Arbres couvrants
- 2 Théorie de la complexité

Quelques définitions

Problème de décision (P)

- ► Instance. données/input
- Question. réponse par oui ou non pour l'instance

Quelques définitions

$$\leq n \in 2^{n}-1$$

 $\log_{n}(n+1) \leq f$

Problème de décision (P)

- ► Instance. données/input
- Question. réponse par oui ou non pour l'instance

Taille d'une instance. Taille binaire $|I|_2$

- ► Taille d'un graphe G = (V, E)? → V12
- ► Taille d'un graphe G = (V, E) pondéré par c?

Quelques définitions

Problème de décision (P)

- Instance. données/input
- Question. réponse par oui ou non pour l'instance

Taille d'une instance. Taille binaire $|I|_2$

- ▶ Taille d'un entier naturel $n? \to \lceil \log_2(n+1) \rceil$
- ► Taille d'un graphe G = (V, E)? $\rightarrow |V|^2$
- ► Taille d'un graphe G = (V, E) pondéré par c? $\rightarrow \sum_{(i,j)\in A} \lceil \log_2(c_{i,j}+1) \rceil$ (+ Ivi?)

Un algorithme $\mathcal A$ est dit **polynomial** s'il trouve la solution de toute instance I en $\mathcal O(Q(|I|))$, avec Q un polynôme.

Exemples : Dijkstra

Algorithme de Dijkstra :
$$\mathcal{O}(n^2)$$
 $(n = |V|)$

$$|I|_2 = \sum_{i,j} \lceil \log_2(c_{i,j} + 1) \rceil$$

Exemples : Dijkstra

Algorithme de Dijkstra : $\mathcal{O}(n^2)$

$$|I| = \sum_{i=1}^{n} \sum_{j=1}^{n} \underbrace{\lceil \log_2(c_{i,j}+1) \rceil}_{\geq 1} \geq n^2$$

Soit Q(x) = x.

On a
$$Q(n^2) \leq Q(|I|)$$
, i.e. $\underline{n^2} \leq \underline{Q(|I|)}$ donc complexité $\underline{Q(Q(|I|))}$ can $\underline{Q(Q(|I|))}$

⇒ Dijkstra est polynomial.

Exemples : test de primalité

Pour tester si n est premier, on essaie de la diviser par tous les entier de 1 à $\sqrt{n}:\mathcal{O}(\sqrt{n})$

Exemples : test de primalité

Pour tester si n est premier, on essaie de la diviser par tous les entier de 1 à \sqrt{n} : $\mathcal{O}(\sqrt{n})$

$$|I|=\lceil\log_2(n+1)\rceil\simeq\log_2(n)$$

$$\sqrt{n}=\sqrt{2^{\log_2 n}}=2^{\frac{|I|}{2}}\implies \text{non polynomial}$$

Classification des problèmes

On souhaite séparer les problèmes "faciles" et "difficiles", pour savoir quel type de méthode utiliser :

- ▶ Problème "facile" ⇒ algorithme exact
- ightharpoonup Problème "difficile" \Longrightarrow approximation/heuristique

Classification des problèmes

On souhaite séparer les problèmes "faciles" et "difficiles", pour savoir quel type de méthode utiliser :

- ▶ Problème "facile" ⇒ algorithme exact
- ▶ Problème "difficile" ⇒ approximation/heuristique

Facile	Difficile	
Cycle eulérien	Cycle Hamiltonien	
Plus court chemin avec $c>0$	Plus court chemin avec $c < 0$	
Arbre couvrant de poids min	Arbre de Steiner	
Vehicle scheduling (flots)	Stochastic Vehicle Scheduling	

Classe \mathcal{P} (polynomial)

Un problème est dit **polynomial** s'il existe un algorithme polynomial le résolvant.

 $\textbf{D\'efinition.} \ \mathcal{P} = \{ \text{probl\`emes polynomiaux} \} \ \text{(probl\`emes "faciles")}.$

Classe \mathcal{NP} (non deterministic polynomial)

Définition. $\mathcal{NP} = \{\text{problèmes de décision pour lesquels on peut vérifier qu'une instance positive admet bien la réponse "oui" en temps polynomial à l'aide d'un certificat proposé par un devin<math>\}$

Cycle Hamiltonien & NP

Certificat = un cycle hamiltonien

G

artificat : (a b d e c

Conjecture $\mathcal{P} \neq \mathcal{NP}$

Théorème. $\mathcal{P} \subset \mathcal{NP}$

A = A' • 4

Transformations polynomiales,
$$T \xrightarrow{\varphi} T' \xrightarrow{A} S$$

Soit D et D' deux problèmes de décision. On dit que \underline{D} se transforme/réduit polynomialement en $\underline{D'}$ s'il existe une application φ vérifiant :

- 1. $\forall I$ instance de D, $\varphi(I)$ est une instance de D'
- 2. $\forall I$ instance de D, I et $\varphi(I)$ admettent la même réponse
- 3. φ est polynomial

On écrit alors $D \prec D'$.

Interprétation de $D \prec D' : D'$ est au moins aussi difficile que D.

Proposition. Si D' est polynomial et $D \prec D'$, alors D est polynomial

Classe \mathcal{NP} -complet

Définition. Un problème de décision D est \mathcal{NP} -complet si :

- 1. $D \in \mathcal{NP}$
- 2. $\forall D' \in \mathcal{NP}, \ D' \prec D \ \text{(i.e. } D \ \text{est au moins aussi difficile que tous les problèmes de } \mathcal{NP} \text{)}$

Comment montrer qu'un problème est \mathcal{NP} -complet?

Classe \mathcal{NP} -complet

Définition. Un problème de décision D est \mathcal{NP} -complet si :

- 1. $D \in \mathcal{NP}$
- 2. $\forall D' \in \mathcal{NP}, \ D' \prec D \ \text{(i.e. } D \ \text{est au moins aussi difficile que tous les problèmes de } \mathcal{NP} \text{)}$

Comment montrer qu'un problème est \mathcal{NP} -complet?

Théorème. Soit D un problème de décision. Si on a :

- 1. $D \in \mathcal{NP}$
- 2. $D' \prec D$ avec D' un problème \mathcal{NP} -complet.

Alors D est \mathcal{NP} -complet.

Exemple: 3.20

Cycle Hamiltonien = CH Clemin ____ = Ch H

· CRH L CH:

1

I adnot la réponse 'an'

Si I admet la réponse ou ona un cycle vu, = u San I', on relectionne on construit le chemin 'almost la réponse 'an.

Classe \mathcal{NP} -difficile

e
$$\mathcal{NP}$$
-difficile

min $C(n)$
 $n \in X(I)$

PD: $I \subseteq X(I)$

existe $-t$ -il $x \in X(I)$ $t \in X(I)$

Définition. Un problème d'optimisation est \mathcal{NP} -difficile s'il est au moins aussi difficile que tous les problèmes de \mathcal{NP} .

Rappel: b-flot

Definition. Soit $\underline{D}=(V,A)$ un graphe orienté, $(C):A\to\mathbb{R}_+$ et $(D):A\to\mathbb{R}_+$ des capacités telles que $(D):A\to\mathbb{R}_+$ une fonction telle que $(D):A\to\mathbb{R}_+$ une

Un b-flot est une application $f: A \to \mathbb{R}$ telle que :

$$\forall v \in V, \sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} f(a) = b(v)$$

Et pour tout $a \in A$:

$$\ell(a) \le f(a) \le u(a)$$

Une **circulation** est un b-flot avec b = 0.

Rappel : b-flot de coût minimum

Soit une fonction de coût $c:A\to\mathbb{R}$, le coût d'un b-flot f est :

$$\sum_{a \in A} c(a) \underline{f(a)}$$

Minimum cost flow

- Instance. Un graphe orienté D=(V,A), $\ell:A\to\mathbb{R}_+$ et $u:A\to\mathbb{R}_+$ des capacités telles que $\ell\le u$, $b:V\to\mathbb{R}$ une fonction telle que $\sum_v b(v)=0$, et une fonction de coût $c:A\to\mathbb{R}$.
- ▶ Question. Un *b*-flot de coût minimum.

$$A = \{(x, y) \mid x < y\}$$

$$A = \{(x, y) \mid x < y\}$$

$$u(i,j) = d_{ij} \quad l(i,j) = 0$$

