ENGR 065 Electric Circuits

Lecture 13: The Laplace Transform and the Functional/Operational Transform

Today's Topics

- What is the Laplace transform?
- ▶ The functional transform
 - The Laplace transform of specified functions of t
- ▶ The operational transform
 - Mathematical operations of how f(t) is transformed to F(s) or vice versa
 - 1. Multiplication by a constant
 - 2. Addition/subtraction
 - 3. Differentiation
 - 4. Integration
 - 5. Translation in the time domain
 - 6. Translation in the frequency domain
 - 7. Scale changing
- Covered in Sections 12.1, 12.2, 12.3, 12.4 and 12.5

Laplace Transform

Why Laplace transform in this course?

Transform a set of differential equations in the time domain to a set of algebraic equations in the frequency domain.

How does it work?

- a. Transform a problem from the time domain to the frequency domain
- b. Obtain the solutions for the problem in the frequency domain
- c. Inversely transform the solutions back to the time <u>domain</u>

A French scientist who made important contributions in engineering, mathematics, statistics, physics, astronomy, and philosophy.

Laplace Transform

Definition of Laplace transform

The Laplace transform (one-sided, unilateral) of a function f(t) is defined by:

$$\mathcal{L}{f(t)} = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

It is also denoted as $F(s) = \mathcal{L}\{f(t)\}\$, where $f(t) \le ce^{kt}$, c > 0, k > 0.

The Functional Transform

- The functional transform is the Laplace transform of specified functions of t.
- ▶ Some of these specified functions are:
 - 1. Impulse function: $\delta(t)$
 - 2. Step function: u(t)
 - 3. Ramp function: t
 - 4. Exponential function: e^{-at}
 - 5. Sinusoidal function: $sin(\omega t)$
 - 6. Sinusoidal function: $\cos(\omega t)$

Some Useful Results

- $\lim e^{\alpha t} = +\infty \ (\alpha > 0)$ $\lim_{n \to \infty} e^{-\alpha t} = 0 \quad (\alpha > 0)$
- $\lim_{t \to 0} e^{\alpha t} = \lim_{t \to 0} e^{-\alpha t} = 1 \quad (\alpha > 0)$
- $\frac{d}{dt}(e^{at}) = ae^{at}$
- $\int e^{at}dt = \frac{1}{2}e^{at} + c$
- $\frac{d}{dt}(uv) = \frac{du}{dt}v + u\frac{dv}{dt} = u'v + uv' \text{ (product rule)}$ $\frac{d}{dt}\left(\frac{u}{v}\right) = \frac{\frac{du}{dt}v u\frac{dv}{dt}}{v^2} = \frac{u'v uv'}{v^2} \text{ (quotient rule)}$
- If a function f(t) is continuous on the interval [a, b], for every t in the interval [a, b], $\frac{d}{dt} \int_a^t f(x) dx = f(t)$

The Impulse Function

An impulse function is a function that is zero everywhere except at one single point, and when integrated over all reals gives a

nonzero value. Mathematically, it is defined as

$$f(t) = \begin{cases} K\delta(t), & t = 0 \\ 0, & t \neq 0 \end{cases}$$
$$\int_{-\infty}^{+\infty} K\delta(t)dt = K$$

If K = 1, the function is called the unit impulse function, and denoted as

$$\delta(t) = 0 \text{ for } t \neq 0, \text{ and } \int_{-\infty}^{+\infty} \delta(t)dt = 1$$
In fact,
$$\int_{-\infty}^{+\infty} \delta(t)dt = \int_{-\infty}^{0^{-}} \delta(t)dt + \int_{0^{-}}^{0^{+}} \delta(t)dt + \int_{0^{-}}^{0^{+}} \delta(t)dt + 0 = \int_{0^{-}}^{0^{+}} \delta(t)dt = 1$$

The Laplace Transform of $\delta(t)$

The Laplace transform of $\delta(t)$

$$\mathcal{L}\{\delta(t)\} = \int_{0^{-}}^{\infty} \delta(t)e^{-st}dt = e^{-s \times 0} = 1$$

The Step Function

- The step function is a mathematical function of a single real variable that remains constant within each of a series of adjacent intervals but changes in value from one interval to the next.
- In this course, the step function is defined as:

$$f(t) = ku(t) = \begin{cases} 0, & t < 0 \\ K, & t > 0 \end{cases}$$

where

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

u(t) is called the unit step function.

$$u(t-a) = \begin{cases} 0, & t-a < 0 \text{ (t 0 \text{ (t>a)} \end{cases}$$

The Laplace Transform of $\mathbf{u}(t)$

 \triangleright The Laplace transform of $\mathbf{u}(t)$

$$\mathcal{L}\{u(t)\} = \int_{0^{-}}^{\infty} u(t)e^{-st}dt = \int_{0^{+}}^{\infty} e^{-st}dt = \frac{1}{s}$$

Laplace Transform

Time Domain

Frequency Domain

The Laplace Transform of t

▶ The Laplace transform of *t*

$$\mathcal{L}\{t\} = \int_{0^{-}}^{\infty} t e^{-st} dt = \frac{1}{s^2}, \qquad s > 0$$

Time Domain

Laplace Transform

Frequency Domain

$$t$$
 (t^n)

$$\frac{1}{s^2} \quad \left(\frac{n!}{s^{n+1}}\right)$$

Integration by parts
$$\int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x)dx$$

The Laplace Transform of $e^{-\alpha t}$

The Laplace transform of $e^{-\alpha t}$

$$\mathcal{L}\{e^{-\alpha t}\} = \int_{0^{-}}^{\infty} e^{-\alpha t} e^{-st} dt = \int_{0^{-}}^{\infty} e^{-(s+\alpha)t} dt = \frac{1}{s+\alpha} \text{ , } s+\alpha > 0$$

Time Domain

Laplace Transform

Frequency Domain

Mathematical operations of how f(t) is transformed to F(s) or vice versa. Assume $\mathcal{L}\{f_i(t)\} = \int_{0^-}^{\infty} f_i(t)e^{-st}dt = F_i(s)$

1. Multiplication by a constant

$$\mathcal{L}\{Kf(t)\} = KF(s)$$

Proof:

$$\mathcal{L}\lbrace Kf(t)\rbrace = \int_{0^{-}}^{\infty} Kf(t)e^{-st}dt = K\int_{0^{-}}^{\infty} f(t)e^{-st}dt = KF(s)$$

2. Addition/Subtraction

$$\mathcal{L}\{f_1(t) \pm f_2(t) \pm f_3(t)\} = F_1(s) \pm F_2(s) \pm F_3(s)$$

Proof:

$$\mathcal{L}\{f_1(t) \pm f_2(t) \pm f_3(t)\} = \int_{0^-}^{\infty} \{f_1(t) \pm f_2(t) \pm f_3(t)\} e^{-st} dt$$

$$= \int_{0^-}^{\infty} f_1(t) e^{-st} dt \pm \int_{0^-}^{\infty} f_2(t) e^{-st} dt \pm \int_{0^-}^{\infty} f_3(t) e^{-st} dt$$

$$= F_1(s) \pm F_2(s) \pm F_3(s)$$

The Laplace Transform of sin(\omega t)

The Laplace transform of $sin(\omega t)$

$$\mathcal{L}\{\sin(\omega t)\} = \int_{0^{-}}^{\infty} \sin(\omega t) e^{-st} dt = \frac{\omega}{s^2 + \omega^2}$$

Laplace Transform

Time Domain

Frequency Domain

Inverse Laplace Transform

Euler's identity:

For any real number θ :

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

$$cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
$$sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

3. Differentiation

$$\mathcal{L}\left\{\frac{d}{dt}f(t)\right\} = sF(s) - f(0^{-})$$

$$\mathcal{L}\left\{\frac{d^{2}}{dt^{2}}f(t)\right\} = s^{2}F(s) - sf(0^{-}) - f'(0^{-})$$

$$\mathcal{L}\left\{\frac{d^n}{dt^n}f(t)\right\} = s^n F(s) - s^{n-1}f(0^-) - s^{n-2}f'(0^-) - \dots - f^{(n-1)}(0^-)$$

It transforms differential operations into algebraic operations.

Proof:

Using the integration by parts
$$\int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x) dx$$

$$\mathcal{L}\left\{\frac{d}{dt}f(t)\right\} = \int_{0^{-}}^{\infty} f'(t)e^{-st}dt = f(t)e^{-st}\Big|_{0^{-}}^{\infty} - \int_{0^{-}}^{\infty} f(t) \left(-se^{-st}\right)dt$$

$$= -f(0^{-}) + s \int_{0^{-}}^{\infty} f(t) e^{-st}dt = sF(s) - f(0^{-})$$

$$note: u(t) = e^{-st}, v' = f'(t), \text{ so } u'(t) = -se^{-st}, v(t) = f(t)$$

3. Differentiation – cont'd.

$$\mathcal{L}\left\{\frac{d^2}{dt^2}f(t)\right\} = s^2F(s) - sf(0^-) - f'(0^-)$$

Proof:

Let
$$g(t) = \frac{df(t)}{dt}$$
, so $G(s) = sF(s) - f(0^-)$ and $g(0^-) = f'(0^-)$

Because
$$\frac{dg(t)}{dt} = \frac{d^2f(t)}{dt^2}$$
,

$$\mathcal{L}\left\{\frac{d^2}{dt^2}f(t)\right\} = \mathcal{L}\left\{\frac{d}{dt}g(t)\right\} = sG(s) - g(0^-) = s[sF(s) - f(0^-)] - f'(0^-)$$
$$= s^2F(s) - sf(0^-) - f'(0^-)$$

Repeating the same process, we can prove:

$$\mathcal{L}\left\{\frac{d^n}{dt^n}f(t)\right\} = s^n F(s) - s^{n-1}f(0^-) - s^{n-2}f'(0^-) - \dots - f^{(n-1)}(0^-)$$

Example #1

$$\mathcal{L}\{\cos(\omega t)\}$$

$$= \frac{1}{\omega} \mathcal{L} \left\{ \frac{d}{dt} \sin(\omega t) \right\}$$

$$= \frac{1}{\omega} \left[s \frac{\omega}{s^2 + \omega^2} - \sin(0^-) \right]$$

$$= \frac{1}{\omega} \left[s \frac{\omega}{s^2 + \omega^2} - 0 \right]$$

$$= \frac{s}{s^2 + \omega^2}$$

4. Integration

$$\mathcal{L}\left\{\int_{0^{-}}^{t} f(x)dx\right\} = \frac{F(s)}{s}$$

Proof:

$$\mathcal{L}\left\{\int_{0^{-}}^{t} f(x)dx\right\} = \int_{0^{-}}^{\infty} \left[\int_{0^{-}}^{t} f(x)dx\right]e^{-st}dt = \int_{0^{-}}^{\infty} uv'dt$$

$$u = \int_{0^{-}}^{t} f(x)dx, \qquad u' = f(t), \qquad v' = e^{-st}, \qquad v = -\frac{e^{-st}}{s},$$

$$\int_{0^{-}}^{\infty} \left[\int_{0^{-}}^{t} f(x) dx \right] e^{-st} dt = -\frac{e^{-st}}{s} \int_{0^{-}}^{t} f(x) dx \Big|_{0^{-}}^{\infty} + \int_{0^{-}}^{\infty} \frac{e^{-st}}{s} f(t) dt$$
$$= 0 + \frac{1}{s} \int_{0^{-}}^{\infty} f(t) e^{-st} dt = \frac{F(s)}{s}$$

5. Translation in the time domain

$$\mathcal{L}\{f(t-a)u(t-a)\} = e^{-as}F(s), \qquad a > 0$$

Proof:
$$\mathcal{L}\lbrace f(t-a)u(t-a)\rbrace = \int_{0^{-}}^{\infty} f(t-a)u(t-a)e^{-st}dt$$

$$= \int_{a^{-}}^{\infty} f(t-a)e^{-st}dt$$

Let
$$x = t - q$$
.

So
$$dx = dt$$
. When $t = a^-$, $x = 0^-$; when $t = \infty$, $x = \infty$; and $t = x + a$.

$$\int_{a^{-}}^{\infty} f(t-a)e^{-st}dt = \int_{0^{-}}^{\infty} f(x)e^{-s(x+a)}dx = e^{-sa} \int_{0^{-}}^{\infty} f(x)e^{-sx}dx$$

$$=e^{-as}F(s)$$
 $a>0$

6. Translation in the frequency domain

$$\mathcal{L}\{e^{-at}f(t)\} = F(s+a)$$

7. Scale changing (Assignment)

$$\mathcal{L}{f(at)} = \frac{1}{a}F\left(\frac{s}{a}\right), \qquad a > 0$$

Laplace Transform Table-1

Туре	$f(t) \ (t>0^-)$	F(s)
(impulse)	$\delta(t)$	1
(step)	u(t)	$\frac{1}{s}$
(ramp)	t	$\frac{1}{s^2}$
(exponential)	e^{-at}	$\frac{1}{s+a}$
(sine)	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
(cosine)	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
(damped ramp)	te^{-at}	$\frac{1}{(s+a)^2}$
(damped sine)	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
(damped cosine)	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$

Laplace Transform Table-2

Operation	f(t)	F(s)
Multiplication by a constant	Kf(t)	KF(s)
Addition/subtraction	$f_1(t) + f_2(t) - f_3(t) + \cdots$	$F_1(s) + F_2(s) - F_3(s) + \cdots$
First derivative (time)	$\frac{df(t)}{dt}$	$sF(s) - f(0^-)$
Second derivative (time)	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0^-) - \frac{df(0^-)}{dt}$
nth derivative (time)	$\frac{d^n f(t)}{dt^n}$	$s^n F(s) - s^{n-1} f(0^-) - s^{n-2} \frac{df(0^-)}{dt}$
		$-s^{n-3}\frac{df^{2}(0^{-})}{dt^{2}}-\cdots-\frac{d^{n-1}f(0^{-})}{dt^{n-1}}$
Time integral	$\int_0^t f(x) \ dx$	$\frac{F(s)}{s}$
Translation in time	f(t-a)u(t-a), a>0	$e^{-as}F(s)$
Translation in frequency	$e^{-at}f(t)$	F(s+a)
Scale changing	f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$
First derivative (s)	tf(t)	$-\frac{dF(s)}{ds}$
nth derivative (s)	$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$
s integral	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(u) \ du$

The Laplace transform of $-2\delta(t)$ is

- A.
- B. —
- **c**. 2
- D. -2

The Laplace transform of e^{10t} is

A.
$$\frac{1}{s+10}$$
B.
$$\frac{1}{s-10}$$
C.
$$\frac{1}{s}$$
D.
$$-\frac{1}{s}$$

The Laplace transform of $\frac{3}{4}e^{-3t}$ is

A.
$$\frac{1}{s+3}$$

$$\frac{1}{s-3}$$

$$\frac{3}{4(s+3)}$$

$$\frac{-3}{4(s+3)}$$

The Laplace transform of $\frac{3}{4}e^{-3t}$ + cos(5t) is

A.
$$\frac{3}{4(s+3)} + \frac{5}{s^2+25}$$

$$\frac{3}{4(s+3)} + \frac{s}{s^2 + 25}$$

$$\frac{1}{s+3} + \frac{5}{s^2+25}$$

D.
$$\frac{1}{s+3} + \frac{s}{s^2+25}$$

The Laplace transform of

$$4\int_{0^{-}}^{t} xe^{-2x}dx$$
 is

$$A. \frac{4}{s(s+2)^2}$$

$$\frac{B}{(s+2)^2}$$

$$\frac{4}{s(s+2)}$$

$$\frac{D}{S^3}$$

Example #2 – Find f(t)

If f(t) satisfies the following equation, find f(t).

$$f''(t) + 3f'(t) + 2f(t) = \sin 2t$$

Step 1: Applying Laplace transform to the both sides of the above equation and assuming $F(s) = \mathcal{L}\{f(t)\}\$, we have:

$$s^{2}F(s) - sf(0^{-}) - f'(0^{-}) + 3sF(s) - 3f(0^{-}) + 2F(s) = \frac{2}{s^{2} + 4}$$

Step 2: Find F(s). Rearranging the above equation, we have:

$$F(s) = \frac{\frac{2}{s^2 + 4} + (s+3)f(0^-) + f'(0^-)}{s^2 + 3s + 2}$$
$$= \frac{(s^2 + 4)[(s+3)f(0^-) + f'(0^-)] + 2}{(s^2 + 4)(s^2 + 3s + 2)}$$

Find f(t) - cont'd

For example, if $f(0^-) = 1$, $f'(0^-) = 2$,

$$F(s) = \frac{(s^2 + 4)[(s + 3)f(0^-) + f'(0^-)] + 2}{(s^2 + 4)(s^2 + 3s + 2)}$$
$$= \frac{s^3 + 5s^2 + 4s + 22}{(s^2 + 4)(s^2 + 3s + 2)}$$

Step 3: f(t) can be found by applying the inverse Laplace transform.

Summary

- The definition of Laplace transform
- Two types of transforms were introduced in this lecture
 - The functional transform
 - The operational transform
- In next lecture, we will discuss
- ▶ The inverse Laplace transform
- How to apply the Laplace transform to simple circuit analysis.