M311 Calculus III Recitation

Tim Lai

Indiana University

Fall 2019

Projections Section 12.1

Vector Operations Section 12.2

Suppose
$$a=\langle 2,3,0\rangle$$
 and $b=\langle -1,0,1\rangle$. Then
$$|a+2b|=|\langle 2,3,0\rangle+2\langle -1,0,1\rangle|$$

$$=|\langle 2,3,0\rangle+\langle -2,0,2\rangle|$$

$$=|\langle 0,3,2\rangle|$$

$$=\sqrt{0^2+3^2+2^2}$$

$$=\sqrt{13}$$

Dot Product Section 12.3

Dot products are a special case of matrix multiplication. Suppose $a = \langle 2, 3, 0 \rangle$ and $b = \langle -1, 0, 1 \rangle$. Then

$$a \cdot b = 2(-1) + 3(0) + 0(1) = -2$$

Compare to $(2,3,0)(-1,0,1)^T$ where these are now thought of as matrices and T denotes transpose.

- Dot product gives a computationally conducive way to get a handle on angles between vectors.
- $a \cdot b = |a||b|\cos\theta$ where θ is the angle between the two vectors.
- In particular, since $\cos \theta = 0$ if and only if $\theta = \pi/2 + k\pi$, we can conclude that $a \perp b \Leftrightarrow a \cdot b = 0$.
- Note: dot product takes two vectors and gives a number.
- In the previous example, since the dot product was nonzero, we can conclusively say that the vectors were not orthogonal.