Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 4 - Parcial Julio 2022

Consigna

Se considera el subespacio $S=\{(x,y,z)\in\mathbb{R}^3:2x+y-z=0\}$ y $T:\mathbb{R}^3\to\mathbb{R}^3$ una transformación lineal tal que:

- 1. $T|_{S} = Id$
- 2. $(2, 1, -1) \in \ker(T)$

Indicar la opción correcta:

 $\mathbf{A.}$ Si $P_S:V\to V$ es la proyección ortogonal sobre S, entonces $T(v)=P_S(v)$ para todo $v\in V$

B. La matriz asociada a T en la base canónica $_{\mathcal{C}}(T)_{\mathcal{C}}$ es:

$$\frac{1}{3} \begin{pmatrix} 1 & -1 & 1 \\ -1 & 5 & 2 \\ 1 & 1 & 2 \end{pmatrix}$$

C. Si $P_{S^\perp}:V\to V$ es la proyección ortogonal sobre $S^\perp,$ entonces $T(v)=P_{S^\perp}(v)$ para todo $v\in V$

D. La matriz asociada a T en la base canónica $_{\mathcal{C}}(T)_{\mathcal{C}}$ es:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Resolución

La estrategia de este ejercicio es nuevamente definir bien que es lo que nos aporta cada dato.

Dato #1:

•
$$T|_S = Id$$

Este dato puede resultar engañoso, pero lo que nos está diciendo es que:

•
$$\forall s \in S : T(s) = s$$

Que es lo mismo que decir que 1 es valor propio de T. Observemos que entonces cualquier vector en S, es un vector asociado al valor propio 1. Entonces podemos decir que:

• $S \subseteq S_1$

Veamos además que se puede decir sobre la definición de S

•
$$S = \{(x, y, z) \in \mathbb{R}^3 : 2x + y - z = 0\}$$

De donde obtenemos que:

- z = y + 2x
- $x, y \in \mathbb{R}$

Entonces una definición alternativa de S podría ser:

- $S = \{(\alpha, \beta, \beta + 2\alpha) : \alpha, \beta \in \mathbb{R}\}$ o
- S = [(1,0,2),(0,1,1)]

Dato #2

• $(2, 1, -1) \in \ker(T)$

Este dato es más directo, nos dice que $ker(T) \neq \emptyset$, por lo que entonces 0 es valor propio de T.

Esto nos dice que $S=S_1$, pues $dim(S)=dim(S_1)=2$ y por tanto tenemos una base de S formada por vectores propios.

Teniendo en cuenta que $S_0=S_2^{\perp}$, podemos hallar una definición del conjunto para hallar la forma de los vectores propios asociados a 0. Considerando $v=(x,y,z)\in S_0$, entonces:

- $\langle (x, y, z), (1, 0, 2) \rangle = 0 \to x = -2z$
- $\langle (x, y, z), (0, 1, 1) \rangle = 0 \to y = -z$

Por lo que:

Observación: Creo que todo este razonamiento era innecesario, pero ante la duda no está mal confirmar quién es S_0 .

Para rematar el problema la clave está en que $S_0 = S_2^{\perp} = S^{\perp}$.

Consideremos la opción A.

Por el dato 1, sabemos que:

• $\forall s \in S : P_S(s) = T(s) = s$, entonces para todos los vectores $s \in S$ sabemos que la afirmación es verdadera.

Por otra parte, podemos caracterizar T para los vectores que están en S^{\perp} , usando el dato 2:

- Nos restaría probar que $\forall v \in S^{\perp} \colon T(v) = P_S(v) = 0$

Pero observemos que esto último se cumple, pues si $v \in S^{\perp}$, entonces todos los productos internos $\langle v, s_i \rangle$ con s_i vectores de la base de S es 0.