Problem Set #3

Math230a: Differential Geometry

Due: September 25

- 1. (a) Let M be a 3-manifold and α a nonzero 1-form. Prove that the 2-dimensional distribution determined by α is integrable if and only if $\alpha \wedge d\alpha = 0$.
 - (b) The Hopf fibration $\pi\colon S^3\to S^2$ may be constructed by identifying S^3 as the unit sphere in \mathbb{C}^2 and S^2 as \mathbb{CP}^1 ; then the map is $\pi(z^1,z^2)=[z^1,z^2]$, where $(z^1)^2+(z^2)^2=1$ and $[z^1,z^2]$ is the equivalence class in the projective line. The kernel of the differential π_* is an (integrable) one-dimensional distribution on S^3 . Let $E\subset TS^3$ be the 2-dimensional distribution whose fiber at $p\in S^3$ is the orthogonal complement of $\ker \pi_*$ relative to the standard round metric on S^3 . Is E integrable? Find a nonzero 1-form α which generates the ideal $\mathcal{I}(E)$ associated to E. Compute $d\alpha$ and $\alpha \wedge d\alpha$.
- 2. Suppose M is a smooth manifold and $E \subset TM$ a distribution. Define

$$\mathcal{I}(E) = \{ \omega \in \Omega_M^{\bullet} : \omega \big|_{\Delta} = 0 \}.$$

- (a) Prove that $\mathcal{I}(E) \subset \Omega_M^{\bullet}$ is an ideal.
- (b) Prove that if E has corank r—that is, if $\dim E_m + r = \dim_m M$ for all $m \in M$ —then E is locally generated by r independent 1-forms.
- (c) Prove that $\mathcal{I}(E)$ is closed under d if and only if E is integrable.
- (d) Consider the distribution E on $\mathbb{A}^3_{x,y,z}$ spanned by the vector fields $\partial/\partial x$ and $x\,\partial/\partial y+\partial/\partial z$. Show that E is not integrable. Show that any point $(x,y,z)\in\mathbb{A}^3$ may be joined to (0,0,0) by a piecewise smooth curve whose tangent line belongs to E.
- 3. Example or proof of nonexistence: A codimension 1 foliation on the sphere S^4 .
- 4. (a) Let $P,Q:\mathbb{A}^2\to\mathbb{R}$ be smooth functions. Define the 2-dimensional distribution E on $\mathbb{A}^2_{x,y}\times\mathbb{R}_z$ with

$$E_{(x,y,z)} = \operatorname{span}\left\{\frac{\partial}{\partial x} + P\frac{\partial}{\partial z}, \frac{\partial}{\partial y} + Q\frac{\partial}{\partial z}\right\}.$$

Compute the Frobenius tensor of E.

(b) Suppose X is a manifold and G a Lie group. Let θ^i , $i=1,\ldots,n$ be a basis of left-invariant 1-forms on G and suppose

$$d\theta^i + \frac{1}{2}c^i_{jk}\theta^j \wedge \theta^k = 0$$

for constants c^i_{jk} . Let θ^i_X , $i=1,\ldots,n$ be 1-forms on X. Consider the ideal of differential forms on $X\times G$ generated by $\pi_2^*\theta^i-\pi_1^*\theta^i_X$, where $\pi_1\colon X\times G\to X$ and $\pi_2\colon X\times G\to G$ are projections. Prove that this ideal is closed under d if and only if

$$d\theta_X^i + \frac{1}{2}c_{jk}^i\theta_X^j \wedge \theta_X^k = 0$$

- (c) Compute the Frobenius tensor of the distribution in (b) defined as the simultaneous kernel of the 1-forms $\pi_2^* \theta^i \pi_1^* \theta_X^i$.
- 5. This is a collection of exercises on the Maurer-Cartan form.
 - (a) Let G be a Lie group with Maurer-Cartan form θ . Compute $R_g^*\theta$ for $g \in G$. Do this first for a matrix group, where you can write $\theta = g^{-1}dg$ for $g \colon G \to M_n\mathbb{R}$ the natural matrix-valued function on a matrix group. $(M_n\mathbb{R}$ is a vector space, so the differential of the function g is defined as a $M_n\mathbb{R}$ -valued 1-form.)
 - (b) Let G be a Lie group and suppose T is a right G-torsor. Show that the Maurer-Cartan form on G transports to a canonical element of $\Omega^1_T(\mathfrak{g})$. Can you give a prose definition of this Maurer-Cartan 1-form on the torsor: "its value at a point $t \in T$ on the vector $\zeta \in T_tT$ is..."? What is the Maurer-Cartan equation? What is the pullback of the Maurer-Cartan 1-form by an element of G acting on T?
 - (c) Let V be an n-dimensional real vector space and $\mathcal{B}(V)$ the right $GL_n(\mathbb{R})$ -torsor of bases. (Recall that a basis is an isomorphism $b \colon \mathbb{R}^n \to V$.) Let Θ_j^i be the Maurer-Cartan forms in the standard basis of the Lie algebra of $GL_n(\mathbb{R})$. Suppose b(t) is a smooth curve in $\mathcal{B}(V)$. Write the basis b(t) as $\{e_1(t), \ldots, e_n(t)\}$ and the dual basis as $\{e^1(t), \ldots, e^n(t)\}$. Prove that

$$\Theta_j^i(\dot{b}) = \langle e^i(0), \dot{e}_j(0) \rangle.$$

Heuristically, then, Θ_j^i measures the instantaneous motion of e_j in the direction of e_i , where 'direction' is determined by the entire basis e_1, \ldots, e_n . This interpretation is important!

(d) Let A be an n-dimensional real affine space and $\mathcal{B}(A)$ the right $\mathrm{Aff}_n(\mathbb{R})$ -torsor of bases of the underlying vector space at all points of A. So a point of $\mathcal{B}(A)$ is an affine isomorphism $\mathbb{A}^n \to A$. Let θ^i, Θ^i_j be the Maurer-Cartan forms in the standard basis of the Lie algebra of $\mathrm{Aff}_n(\mathbb{R})$. (Define this basis: the single index is for infinitesimal translations, and the double index for infinitesimal linear transformations, as in (c).) Suppose b(t) is a smooth curve in $\mathcal{B}(A)$ which projects to the curve x(t) in A, and write the underlying basis of V as in (c). Prove that

$$\theta^i(\dot{b}) = \langle e^i(0), \dot{x}(0) \rangle.$$

Interpret this in prose terms.