

HKUSTx: ELEC1200.3x A System View of Communications: From Signals to Packets (Part 3)

Lab 2 Task 3 Question - almost there?

0 Votes

discussion posted about 9 hours ago by KarenWest

I have an error at time=2 for RT{3} but when I went through all the below numbers, it seems correct to me, but of course, I'm wrong - does anyone know where I went wrong here?

% RT{linked}(k,2) = cost of neighbor linked to get to node k = A

% RT $\{n\}(k,2)$ = cost of node n to get to node k = B = cost

% RT{n}(linked,2) = cost of node n to get to node linked = C

% if cost of B > cost of (A + C) then update route cost of n to A+C

```
A = RT{linked}(k,2);
B = RT{n}(k,2);
C = RT{n}(linked,2);
if (B > A + C) || ((B == inf) && (A ~= inf) && (C ~= inf))

RT{n}(k,2) = A + C;
RT{n}(k,1) = linked;
end
```

output error - The variable RT{3} at time 2 is incorrect -?? - seems correct to me?

Node 1: neighbors: 2,3,4 costs: 2,5,1

RT{1}

time1:	time2:	time3:
0 0	0 0	0 0
2 2	2 2	2 2
4 4	4 3	4 3
4 1	4 1	4 1
4 2	4 2	4 2
3 10	4 4	4 4

Node 2: neighbors: 1,3,4 costs: 2,3,2

RT{2}

time1:	time2:	time3:	
1 2	1 2	1 2	
0 0	0 0	0 0	
3 3	3 3	3 3	
4 2	4 2	4 2	
4 3	4 3	4 3	
3 8	4 5	4 5	

Node 3: neighbors: 1,2,4,5,6 costs: 5,3,3,1,5

RT{3}

time1:	time2:	time3:
4 4	4 3	4 3
2 3	2 3	2 3
0 0	0 0	0 0
5 2	5 2	5 2
5 1	5 1	5 1
5 3	5 3	5 3

Node 4: neighbors: 1,2,3,5 costs: 1,2,3,1

RT{4}

time1:	time2:	time3:
1 1	1 1	1 1
2 2	2 2	2 2
5 2	5 2	5 2
0 0	0 0	0 0
5 1	5 1	5 1
5 3	5 3	5 3

Node 5: neighbors: 3,4,6 costs: 1,1,2

RT{5}

time1:	time2:	time3:	
4 2	4 2	4 2	
4 3	4 3	4 3	
3 1	3 1	3 1	
4 1	4 1	4 1	
0 0	0 0	0 0	
6 2	6 2	6 2	

Node 6: neighbors: 3,5 costs: 5,2

RT{6}

time	e1:	time2:	time3:	
5 4		5 4	5	4
5 5		5 5	5	5
5 3		5 3	5	3
5 3		5 3	5	3
5 2		5 2	5	2
0 0		0 0	Θ	0

Search all posts **Q ■** All Discussions **▼** Show all by recent activity ▼

For each neighbor, which is referred to by the variable linked and which it can reach with the value stored in **cost**

In your case 'A' is the cost for 'linked' to 'k'. However if you assigned

$$A = cost + RT\{linked\}(k,2);$$

Then 'A' becomes the cost from 'n' to 'k' through 'linked' and your IF statement becomes if (A<B) and eliminated 'C' in the program - including assignment of the new cost.

Regards

Peter

Add a comment

aredirl

about an hour ago

Just make one substitution as shown below

 $A = RT\{linked\}(k,2);$

 $B = RT\{n\}(k,2);$

C = cost;

It works...

0 Votes

re noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or

