Programme de colle : semaine 15

I	Arithmétique des polynômes		1
	I.1	Questions de cours	1
		Enoncer et démontrer le théorème de la division euclidienne sur $\mathbb{K}[X]$	1
		Enoncer et démontrer le théorème de principalité dans $\mathbb{K}[X]$	2
		Enoncer et démontrer la caractérisation des PGCD par les idéaux de $\mathbb{K}[X]$	2
	I.2	Exercices types	
II	Fractions rationnelles		4
	II.1	Questions de cours	4
		Enoncer et démontrer le théorème sur les propriétés du degré	4
		Démontrer que si deux fractions rationnelles sont égales sur une partie infinie, alors les	
		fractions rationnelles sont égales. Définir et démontrer l'existence de la partie	
		entière d'une fraction rationnelle	4
		Enoncer et démontrer l'existence d'une décomposition pour une fraction rationnelle de la	
		forme $\frac{A}{TS}$ avec T et S premiers entre eux et $\deg\left(\frac{A}{TS}\right) < 0$	5

Arithmétique des polynômes Ι

Questions de cours

Enoncer et démontrer le théorème de la division euclidienne sur $\mathbb{K}[X]$

Théorème 16.1

Soit $A \in \mathbb{K}[X]$ et $B \in \mathbb{K}[X]$ non nul, il existe un unique couple de polynômes (Q, R) tel que A = BQ + Ravec $\deg R < \deg B$. Le polynôme Q est appelé quotient et R le reste.

Existence:

On raisonne par récurrence sur le degré de A.

- Pour $n = \deg A = 0$. Soit $A \in \mathbb{K}[X]$.
 - Si $\deg B > 0$, alors (0, A) convient.
 - Si deg B=0, le couple $(B^{-1}\times A,0)$ convient (comme B est constant et non nul), alors $B\in\mathbb{K}^*$ donc inversible).
- On suppose le résultat vrai pour tout $A \in \mathbb{K}_n[X]$.

Soit $A \in \mathbb{K}_{n+1}[X]$ avec $\deg A = n+1$. On écrit $A = \underbrace{a}_{\neq 0} X^{n+1} + A_1$ avec $A_1 \in \mathbb{K}_n[X]$.

- Si $\deg A < \deg B$, le couple (0, A) convient.
- Si deg $A \ge \deg B$ et on note b le coefficient dominant de B:

$$A - ab^{-1}B \times X^{n+1-\deg B} \in \mathbb{K}_n[X]$$

D'après l'hypothèse de récurrence, on choisit $(Q,R) \in \mathbb{K}[X]^2$ tel que $\deg R < \deg B$ et $A-ab^{-1}B \times B$ $X^{n+1-\deg B} = QB + R.$

Donc:

$$A = \left[Q + ab^{-1}X^{n+1-\deg A}\right] \times B + R$$

Unicité:

On suppose que $A = BQ + R = BQ_1 + R_1$.

Donc:

$$B(Q-Q_1) = R_1 - R$$

$$\operatorname{donc} \underbrace{\deg (B(Q-Q_1))}_{\operatorname{deg} B + \operatorname{deg} Q - Q_1} = \operatorname{deg} (R_1 - R)$$

$$\leq \max(\operatorname{deg} R_1, \operatorname{deg} R)$$

$$< \operatorname{deg} B$$

$$\operatorname{donc} \operatorname{deg} (Q - Q_1) < 0$$

$$\operatorname{donc} Q - Q_1 = 0$$

$$\operatorname{puis} R_1 - R = 0$$

Enoncer et démontrer le théorème de principalité dans $\mathbb{K}[X]$

${ m Th\'eor\`eme}~16.15$

Soit I un idéal de $\mathbb{K}[X]$ non réduit à $\{0\}$. Il existe un unique polynôme unitaire D tel que

$$I = D\mathbb{K}[X]$$

Existence:

Soit $I \neq \{0\}$ un idéal.

On note $A = \{ \deg P, P \in I \setminus \{0\} \} \subset \mathbb{N}$.

 $A \neq \emptyset$ $(I \neq \{0\})$, d'après la propriété fondamentale de \mathbb{N} , A possède un plus petit élément noté $n \geq 0$.

Comme $n \in A$, on choisit $D \in I$ tel que deg D = n.

Comme I est un idéal de $\mathbb{K}[X]$ et que $\mathbb{K} = \mathbb{K}_0[X] \subset \mathbb{K}[X]$, on a :

$$\forall \alpha \in \mathbb{K}, \alpha D \in I$$

On peut donc supposer D unitaire. Comme I est un idéal de $\mathbb{K}[X]$, on a :

$$D \times \mathbb{K}[X] \subset I$$

Soit $P \in I$. On effectue la division euclidienne de P par $D \neq 0$:

$$P = BD + R$$

avec $\deg R \subset \deg D$.

Or:

$$R = \underbrace{P}_{\in I} - \underbrace{BD}_{\in I}$$

Par définition de deg D = n, R = 0.

Unicité:

$$I=D\mathbb{K}[X]=J\mathbb{K}[X]$$

avec D et J unitaires.

Or ils sont associés, donc égaux.

Enoncer et démontrer la caractérisation des PGCD par les idéaux de $\mathbb{K}[X]$

Propostion 16.18

Soit A et B deux polynômes non tous deux nuls. Soit $D \in \mathbb{K}[X]$. Alors D est un PGCD de A et B si et seulement si

$$A\mathbb{K}[X] + B\mathbb{K}[X] = D\mathbb{K}[X].$$

D'après (16.15), on choisit $F \in \mathbb{K}[X]$ tel que :

$$A\mathbb{K}[X] + B\mathbb{K}[X] = F\mathbb{K}[X]$$

Soit $D \in \mathbb{K}[X]$.

 \Rightarrow

On suppose que D est un PGCD.

Donc D|A et D|B.

Donc D|F (combinaison $F \in A\mathbb{K}[X] + B\mathbb{K}[X]$).

Or F|A et F|B $(A \in F\mathbb{K}[X], B \in F\mathbb{K}[X])$.

Par maximalité de $\deg D$, on a F et D associés.

 \Leftarrow

$$D\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X] = F\mathbb{K}[X]$$

Donc D|A et D|B.

Pour tout diviseur commun P de A et B, P|A et P|B.

Donc P|D $(D \in A\mathbb{K}[X] + B\mathbb{K}[X])$.

Donc $\deg D$ est maximal pour la divisibilité.

I.2 Exercices types

Exercice 1

Soit $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes définie par les relations

$$P_0 = 0, P(1) = 1 \text{ et } \forall n \in \mathbb{N}, P_{n+2} = XP_{n+1} - P_n$$

- 1. Déterminer P_2 et P_3 .
- 2. Pour tout $n \in \mathbb{N}^*$, déterminer le degré et le coefficient dominant de P_n .
- 3. Montrer que pour tout $n \in \mathbb{N}, P_{n+1}^2 = 1 + P_n P_{n+2}$.
- 4. En déduire que pour tout $n \in \mathbb{N}, P_n$ et P_{n+1} sont premiers entre eux.
- 5. Montrer que pour tout $m \in \mathbb{N}$ et pour tout $n \in \mathbb{N}^*$, on a

$$P_{m+n} = P_n P_{m+1} - P_{n-1} P_m$$

6. Montrer que pour tout $m \in \mathbb{N}$ et tout $n \in \mathbb{N}^*$, on a

$$P_{m+n} \wedge P_n = P_n \wedge P_m$$

En déduire que

$$P_m \wedge P_n = P_n \wedge P_r$$

où r est le reste de la division euclidienne de m par n.

7. Conclure que pour tout $m \in \mathbb{N}$ et tout $n \in \mathbb{N}^*$, on a

$$P_n \wedge P_m = P_{n \wedge m}$$
.

Exercice 2

Calculer le reste de la division euclidienne de X^n par $(X-1)^4$ pour tout $n \ge 4$.

Exemple 3

Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$. On note P le polynôme $(X+1)^n - e^{2inn}$.

- 1. Déterminer les racines de P dans \mathbb{C} .
- 2. En déduire que P est scindé à racines simples sur \mathbb{C} .
- 3. Simplifier le produit $\prod_{k=0}^{n-1} \sin \left(\theta + \frac{k\pi}{n}\right)$.

Exercice 4

Soit $P \in \mathbb{R}[X]$ tel que pour tout $x \in \mathbb{R}, P(x) \ge 0$.

- 1. Montrer que si $P \neq 0$, alors toute racine réelle de P est de multiplicité paire.
- 2. En déduire que $P = A^2 + B^2$, avec $(A, B) \in (\mathbb{R}[X])^2$.

II Fractions rationnelles

II.1 Questions de cours

Enoncer et démontrer le théorème sur les propriétés du degré

Théorème 17 13

Soit F et G deux fractions rationnelles. On a

$$\deg(F+G) \le \max(\deg(F), \deg(G))$$
 et $\deg(F \times G) = \deg(F) + \deg(G)$.

On retrouve les mêmes propriétés que pour les polynômes.

Soit
$$F = \frac{P}{Q}$$
 et $G = \frac{R}{S}$.

$$\begin{split} \deg(F+G) &= \deg(\frac{PS+QR}{QS}) \\ &= \deg(PS+QR) - \deg(QS) \\ &\leq \max(\deg(PS), \deg(QR)) - \deg(QS) \\ &= \max(\deg(PS) - \deg(QS), \deg(QR) - \deg(QS)) \\ &= \max\left(\deg\left(\frac{P}{Q}\right), \deg\left(\frac{R}{Q}\right)\right) \\ &= \max(\deg(F), \deg(G)) \end{split}$$

- RAS

Démontrer que si deux fractions rationnelles sont égales sur une partie infinie, alors les fractions rationnelles sont égales. Définir et démontrer l'existence de la partie entière d'une fraction rationnelle

Théorème 17.19

Soit F et G deux fractions rationnelles. Si les fonctions rationnelles \tilde{F} et \tilde{G} sont égales sur une partie infinie $\mathcal{D}_F \cap \mathcal{D}_G$ alors les fractions rationnelles sont égales, i.e. F = G.

On note
$$F = \frac{P}{Q}$$
 et $G = \frac{R}{S}$ avec $P \wedge Q = 1$ et $R \wedge S = 1$. On a :

$$\forall x \in \mathcal{D} \subset \mathcal{D}_F \cap \mathcal{D}_G, \tilde{F}(x) = \tilde{G}(x)$$

Soit:

$$\forall x \in \mathcal{D}, \tilde{P(x)} \times \tilde{S(x)} = \tilde{R(x)} \times \tilde{Q(x)}$$

Comme \mathcal{D} est infini, d'après le théorème de rigidité, PS = RQ, donc F = G.

Théorème 17 25

Soit $F \in \mathbb{K}(X)$. Il existe un unique polynôme Q tel que $\deg(F-Q) < 0$. Celui-ci est appelé **partie entière** de F, c'est le quotient dans la division euclidienne du numérateur de F par le dénominateur.

Existence:

 $\overline{\text{Soit } F = \frac{A}{B}} \text{ avec } A \wedge B = 1.$

Soit la division euclidiene de A par B:

$$A = BQ + R$$
 avec $\deg(R) < \deg(B)$

Donc:

$$F = \frac{A}{B} = \frac{BQ + R}{B} = Q + \frac{R}{B}$$

Donc:

$$\deg(F-Q) = \deg\left(\frac{R}{B}\right) = \deg(R) - \deg(B) < 0$$

Unicité:

On suppose que :

$$F = Q + G = Q_1 + G_1 \text{ avec } (Q_1, G_1) \in \mathbb{K}[X]^2 \text{ et } \deg(G), \deg(G_1) < 0$$

Donc:

$$Q - Q_1 = G_1 - G$$

$$\operatorname{deg}(Q - Q_1) = \operatorname{deg}(G_1 - G)$$

$$\leq \max(\operatorname{deg}(G_1), \operatorname{deg}(G))$$

$$< 0$$

Or $Q - Q_1 \in \mathbb{K}[X]$, donc $Q = Q_1$.

Enoncer et démontrer l'existence d'une décomposition pour une fraction rationnelle de la forme $\frac{A}{TS}$ avec T et S premiers entre eux et $\deg\left(\frac{A}{TS}\right)<0$

Théorème 17.31

Si T et S sont deux polynômes premiers entre eux et si deg $\left(\frac{A}{TS}\right) < 0$, alors il existe deux polynômes U et V tels que

$$\frac{A}{TS} = \frac{U}{T} + \frac{V}{S}, \text{ avec } \deg(U) < \deg(T) \text{ et } \deg(V) < \deg(S).$$

Comme $T \wedge S = 1$, d'après le théormème de Bézout, on écrit :

$$CT + DS = 1$$

Donc:

$$ACT + DSA = A$$

Donc:

$$\frac{A}{TS} = \frac{ACT + DSA}{TS}$$
$$= \frac{DA}{T} + \frac{AC}{S}$$

On écrit la division euclidienne de DA par T et de AC par S:

$$DA = TQ + U$$
 avec $\deg(U) < \deg(T)$
 $AC = SH + V$ avec $\deg(V) < \deg(S)$

 ${\bf Donc}:$

$$\frac{A}{TS} = \frac{U}{T} + \frac{V}{S} + Q + H$$

Ainsi:

$$\deg(Q+H) = \deg\left(\frac{A}{TS} - \frac{U}{T} - \frac{V}{S}\right)$$

$$\leq \max(\dots, \dots, \dots)$$

$$< 0$$

Donc Q + H = 0.