1988 FI4.2

若 27 = 12Q + r,其中 $Q \cdot r$ 是整數,且 0 < r < 12,求r的值。

If 27 = 12Q + r, where Q, r are integers and 0 < r < 12, find the value of r.

1993 HI9

若 a 為一實數,且 $a^2-a-1=0$,求 $a^4-2a^3+3a^2-2a+10$ 的值。

If a is a real number such that $a^2 - a - 1 = 0$,

find the value of $a^4 - 2a^3 + 3a^2 - 2a + 10$.

1994 FI4.2

若
$$x^2 - x + 1 = 0$$
 及 $b = x^3 - 3x^2 + 3x + 8$, 求 b 的 值 。

If $x^2 - x + 1 = 0$ and $b = x^3 - 3x^2 + 3x + 8$, find the value of b.

1995 FI4.2

若
$$x^2 + x - 1 = 0$$
 且 $s = x^3 + 2x^2 + 3$, 求 s 的 值 。

If $x^2 + x - 1 = 0$ and $s = x^3 + 2x^2 + 3$, find the value of s.

1996 FG10.2

設
$$f(x) = x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$
。

當
$$f(x^{10})$$
 除以 $f(x)$, 餘數是 $b \circ 求 b$ 的值。

Let
$$f(x) = x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$
.

When $f(x^{10})$ is divided by f(x), the remainder is b. Find the value of b.

2000 HG1

如果
$$a$$
 是 $x^2 + 2x + 3 = 0$ 的根, 求 $\frac{a^5 + 3a^4 + 3a^3 - a^2}{a^2 + 3}$ 的值。

If a is a root of $x^2 + 2x + 3 = 0$, find the value of $\frac{a^5 + 3a^4 + 3a^3 - a^2}{a^2 + 3}$.

2000 FG1.1

已知整數 n 除 81849、106392 及 124374 得出的餘數相等,求 n 的最大值 a。 Given that when 81849, 106392 and 124374 are divided by an integer n, the remainders are equal. If a is the maximum value of n, find the value of a. **2002 FI4.1**

已知
$$f(x) = (x^2 + x - 2)^{2002} + 3$$
 及 $f\left(\frac{\sqrt{5}}{2} - \frac{1}{2}\right) = P$,求 P 的值。

Given that
$$f(x) = (x^2 + x - 2)^{2002} + 3$$
 and $f\left(\frac{\sqrt{5}}{2} - \frac{1}{2}\right) = P$, find the value of P.

2004 FI3.3

已知實數 x_0 满足方程 $x^2 - 5x + 1 = 0$ 。若 $c = \frac{x_0^2}{x_0^4 + x_0^2 + 1}$,求 c 的值。

Given that x_0 satisfies the equation $x^2 - 5x + 1 = 0$.

If
$$c = \frac{x_0^2}{x_0^4 + x_0^2 + 1}$$
, find the value of c.

2004 FIS.2

已知x 和 y 是正整數。若 $x^4 + y^4$ 除以 x + y,所得的商是 97, 餘數是 O,求 O 的值。

Given that x and y are positive integers. If $x^4 + y^4$ is divided by x + y, the quotient is 97 and the remainder is Q, find the value of Q.

2004 FG3.4

已知
$$f(x) = (x^4 + 2x^3 + 4x - 5)^{2004} + 2004$$
,若 $f(\sqrt{3}-1) = d$,求 d 的值。

Given that $f(x) = (x^4 + 2x^3 + 4x - 5)^{2004} + 2004$.

If $f(\sqrt{3}-1)=d$, find the value of d.

2004 FGS.2

已知 x_0 满足方程 $x^2+x+2=0$ 。若 $b=x_0^4+2x_0^3+3x_0^2+2x_0+1$,求 b 的值。

Given that x_0 satisfies the equation $x^2 + x + 2 = 0$.

If $b = x_0^4 + 2x_0^3 + 3x_0^2 + 2x_0 + 1$, find the value of b.

2005 FI1.3

設C是一正整數且小於 $\sqrt{70}$ 。若70除以C,餘數是2。

除以(C+2),餘數是C,求C的值。

Let C be a positive integer less than $\sqrt{70}$. If 70 is divided by C, the remainder is 2; when divided by C + 2, the remainder is C, find the value of C.

2007 HG3

已知
$$a^2 - 3a + 1 = 0$$
。若 $A = \frac{2a^5 - 5a^4 + 2a^3 - 8a^2 + 7a}{3a^2 + 3}$,求 A 的值。

Given that $a^2 - 3a + 1 = 0$. If $A = \frac{2a^5 - 5a^4 + 2a^3 - 8a^2 + 7a}{3a^2 + 3}$, find the value of A.

2008 FG1.4

當491除以一個兩位數,餘數是59。求這兩位數。

When 491 is divided by a two-digit integer, the remainder is 59.

Find this two-digit integer.

2009 HG2

設 $x=1+\sqrt{2}$, 求 $x^5-2x^4+3x^3-4x^2-10x-6$ 的值。

Let $x = 1 + \sqrt{2}$, find the value of $x^5 - 2x^4 + 3x^3 - 4x^2 - 10x - 6$.

2009 FI4.1

已知 $x_0^2 + x_0 - 1 = 0$ 。若 $m = x_0^3 + 2x_0^2 + 2$,求 m 的值。

Given that $x_0^2 + x_0 - 1 = 0$. If $m = x_0^3 + 2x_0^2 + 2$, find the value of m.

2011 HG2

 \overline{ab} 表示一個兩位數,其十位是a,個位是b,

且 $R_{\overline{ab}}$ 表示 \overline{ab} 除以a+b的餘數。求 $R_{\overline{ab}}$ 的最大值。

 \overline{ab} denotes a two digit number with a as tens digit and b as the unit digit. $R_{\overline{ab}}$ is the remainder when \overline{ab} is divided by a+b. Find the maximum value of $R_{\overline{ab}}$.

2013 FI3.3

已知392除以一個兩位正整數的餘數是7,

符合這個條件的兩位正整數共有 c 個,求 c 的值。

The remainder when 392 is divided by a 2-digit positive integer is 7.

If c is the number of such 2-digit positive integers, find the value of c.

2016 FI3.1

若 $f(x) = x^4 + x^3 + x^2 + x + 1$, 求 $f(x^5)$ 除以 f(x) 的餘值 a。

If $f(x) = x^4 + x^3 + x^2 + x + 1$, determine the remainder a of $f(x^5)$ divided by f(x).

2016 FI4.2

當整數 1108、1453、1844 及 2281 除以正整數 n (>1) 都得相同餘數 b, 求 b 的值。

When the integers 1108, 1453, 1844 and 2281 divided by some positive integer n > 1, they all get the same remainder b. Determine the value of b.

2017 FG3.1

設 $a \cdot b$ 及c 為整數且 $1 < a < b < c \circ \ddot{a}(ab-1)(bc-1)(ac-1)$ 可被abc 整除,求ab+bc+ac-1 除以abc 所得之餘數R的值。

Let a, b and c be integers with $1 \le a \le b \le c$. If (ab-1)(bc-1)(ac-1) is divisible by abc, determine the value of the remainder R when ab+bc+ac-1 is divided by abc.

2018 HI2

設 a 及 k 均為常數。若 $(6x^3 + ax^2 + 7x - 3) \div (2x^2 + kx - 1)$ 的商和餘式分別 為 3x + 5 及 -5x + 2,求 a 的值。

Let *a* and *k* be constants.

If the quotient and the remainder of $(6x^3 + ax^2 + 7x - 3) \div (2x^2 + kx - 1)$ are 3x + 5 and -5x + 2 respectively, find the value of a.

Answers

1111311013				
1988 FI4.2	1993 HI9	1994 FI4.2	1995 FI4.2	1996 FG10.2
3	13	10	4	10
2000 HG1 -3	2000 FG1.1 243	2002 FI4.1 4	2004 FI3.3 $\frac{1}{24}$	2004 FIS.2 8
2004 FG3.4 2005	2004 FGS.2 1	2005 FI1.3 4	2007 HG3	2008 FG1.4 72
2009 HG2	2009 FI4.1	2011 HG2	2013 FI3.3	2016 FI3.1
$2\sqrt{2}$	3	15	4	5
2016 FI4.2	2017 FG3.1	2018 HI2		
4	0	19		