Sherrington-Kirkpatrick modelのレプリカ対称解 1

髙橋 昂 January 21, 2021

Abstract

スピングラス研究の最初期に提案された平均場モデルであるSherrington-Kirkpatrickモデルのレプリカ対称解の計算。ここでは最も愚直な計算を示した。元ネタは[SK75, KS78]である。"1"と言っても、これで完結していないというわけではなくて、単に1つの計算の仕方を書いているということである 1 。

1 introduction

Sherrington-Kirkpatrick(SK)モデル[SK75]の分配関数をレプリカ法を用いて計算したいのだとする。不純物の影響で結合定数が不規則に分布しているスピングラスの性質を反映した可解模型として、スピングラス研究の極めて初期に提案されたモデルである。その自由エネルギーの典型評価をしたいのだとする。これはもう既に数学としてもかなり理解が進んでいるが、ここではレプリカ法を用い、レプリカ対称仮定下での表式を得るところまでを紹介する。特に、古い教科書によく出てくる標準的なレプリカ計算を扱う。文献としては[Nis01, MM09]がある²。

2 setting

Sherrington-KirkpatrickモデルはIsingスピンのモデルで、そのハミルトニアンは以下のように与えられる:

$$H(\boldsymbol{x};J) = -\sum_{i < j} J_{ij} x_i x_j - h \sum_{i=1}^N x_i, \quad \boldsymbol{x} \in \{-1,1\}^N, h \in \mathbb{R}$$
$$J_{ij} \sim_{\text{iid}} \mathcal{N}\left(\frac{J_0}{N}, \frac{J^2}{N}\right).$$

つまり、全結合のIsingスピン系で、ただしその相互作用が確率変数になっていて一定の 値にはならないようになっている。自由エネルギーは

$$-\frac{1}{\beta N}\log Z, \quad Z=\mathrm{Tr}_{\boldsymbol{x}}e^{-\beta H(\boldsymbol{x};J)}, \quad \beta>0,$$

で与えられる。 $\beta > 0$ は逆温度である。また、 Tr は、下付きの添字で書かれた変数について全ての組み合わせの和をとる記号である。

我々はこの典型評価

$$\lim_{N \to \infty} -\frac{1}{\beta N} \mathbb{E}_J \left[\log Z \right], \tag{1}$$

に興味がある。

[「]日本語のSKのRS計算がインターネットに落ちてたらいいかなと思って書き出したのだが、結局[SK75]と[KS78]を追った際のメモなのかRS計算の解説なのかよくわからなくなってしまった。

²レプリカ法を使わない数学的に厳密な議論については[Tal10, Pan13]がある

3 method

恒等式 $\mathbb{E}[\log Z] = \lim_{n\to 0} n^{-1} \log \mathbb{E}[Z^n]$ を用い、極限 $\lim_{N\to\infty} \mathbb{E}[X^n]$ と $\mathbb{E}[X^n]$ を用い、極限 $\mathbb{E}[X^n]$ を入れ替えられるとすれば、自由エネルギーの典型評価は以下のように書き直せる:

$$f = \lim_{n \to \infty} \frac{1}{n} \phi_n,$$

$$\phi_n = \lim_{N \to \infty} \frac{-1}{\beta N} \log \mathbb{E} [Z^n].$$

これは(極限の順序の入れ替えを気にしなければ)ただの恒等式であるが、この表式の 利点は $n=1,2,\ldots$ に対しては分配関数の定義式を用いて ϕ_n が

$$\phi_n = \lim_{N \to \infty} \frac{-1}{\beta N} \log \mathbb{E}_J \left[\operatorname{Tr}_{\boldsymbol{x}}^n \prod_{a=1}^n \exp \left(\beta \sum_{i < j} J_{ij} x_{a,i} x_{a,j} + \beta h \sum_i x_{a,i} \right) \right],$$

と書き直せる点にある。ここで、 $x_a \in \{-1,1\}^N, a=1,2,\ldots,n$ であり、 $\mathrm{Tr}_x^n=\mathrm{Tr}_{x_1,x_2,\ldots,x_n}$ である。もとの表式では、 $\log Z$ というxの和をとって対数をとった後には一体どんな風にJに依存しているのかよくわからないものの平均を取る必要があった。しかし、ここではJ依存性が透明なものの平均をとるだけでよい。先にJについての平均をとってしまって、その後でN次元からNn次元に高次元化されたものの問題を扱おうというわけである。こちらは、もし平均をとった後でも対称性が高ければ、統計力学でも高次元統計学でも何でも普通の多体問題を扱う手段が使えるだろう。 $n=1,2,\ldots$ に対して計算結果を得たとする。もしその表式がnの離散性を陽に含まないかたちであったならば、 $n\to 0$ の外挿によって答えを得ることができる。このようにしてべきの極限で難しいところを書き直し、整数べきからの外挿によって結果を得る方法をレプリカ法と呼ぶ。この整数べきからの外挿法はParisiの変分原理を用いたものが適用範囲が広いのだが、ここでは最も簡単なものとしてレプリカ対称性を仮定したものを扱う。

4 replica calculation

このセクションでは $\mathbb{E}_J[Z^n]$ とその外挿によって得られる自由エネルギーの計算をまとめる。

4.1 Zⁿの整理

まず、 $Z^n, n \in \mathbb{N}$ を以下の様に整理する

$$Z^{n} = \operatorname{Tr}_{\boldsymbol{x}}^{n} \prod_{a=1}^{n} \exp \left(\beta \sum_{i < j} J_{ij} x_{a,i} x_{b,j} + \beta h \sum_{i} x_{a,i} \right)$$
$$= \operatorname{Tr}_{\boldsymbol{x}}^{n} \prod_{i < j} \exp \left(\beta \sum_{a=1}^{n} x_{a,i} x_{a,j} J_{ij} \right) \prod_{i=1}^{N} \exp \left(\beta h \sum_{a=1}^{n} x_{a,i} \right).$$

こうすると、 J_{ij} は独立した因子に含まれていて、各 J_{ij} ごとに平均をとればよいことがわかる。

4.2 J_{ij} 平均

 J_{ij} がGaussianなので容易に平均がとれて以下のようになる

$$\mathbb{E}_{J_{ij}}\left[\exp\left(\beta\sum_{a=1}^{n}x_{a,i}x_{a,j}J_{ij}\right)\right] = \exp\left(\frac{\beta^{2}J^{2}}{2N}\left(\sum_{a=1}^{n}x_{a,i}x_{a,j}\right)^{2} + \frac{\beta J_{0}}{N}\left(\sum_{a=1}^{n}x_{a,i}\right)^{2}\right).$$

これを Z^n の式に代入して整理すると、

$$\mathbb{E}_{J}\left[Z^{n}\right] = \operatorname{Tr}_{\boldsymbol{x}}^{n} \exp\left(\frac{\beta^{2} J^{2}}{2} \sum_{a \neq b} \left(\sum_{i=1}^{N} x_{a,i} x_{b,i}\right)^{2} + \frac{\beta J_{0}}{2} \sum_{a=1}^{n} \left(\sum_{i=1}^{N} x_{a,i}\right)^{2}\right) \times \prod_{i=1}^{N} \exp\left(\beta h \sum_{a=1}^{n} x_{a,i}\right). \tag{2}$$

となる。ここで、 $(\sum_{a=1}^n\ldots)^2$ を展開したあと $\sum_{i< j}\cdots=\frac{1}{2}\sum_{i,j}\cdots-\frac{1}{2}\sum_{i=1}^N\ldots$ を利用し、i=1からNまでの和の項はxに依存しない量となることを用いた。

4.3 秩序変数の導入

(2)式はxに $\sum_{i=1}^{N} x_{a,i}x_{b,i}$ と $\sum_{i=1}^{N} x_{a,i}$ を通して依存しているので、恒等式

$$1 = \prod_{a < b} \int \delta(NQ_{ab} - \sum_{i=1}^{N} x_{a,i} x_{b,i}) dQ_{ab},$$

$$1 = \prod_{a=1}^{n} \int \delta(Nm_a - \sum_{i=1}^{N} x_{a,i}) dm_q,$$

を挿入して秩序変数を導入する。これをFourier変換して、その際の共役変数を \tilde{Q}_{ab} , $-\tilde{m}_a$ として整理すれば以下のようになる:

$$\begin{split} \mathbb{E}_{J}\left[Z^{n}\right] &\stackrel{(a)}{=} \int \exp\left(\frac{N}{2} \sum_{a \neq b} Q_{ab} \tilde{Q}_{ab} - N \sum_{a=1}^{n} m_{a} \tilde{m}_{a} + \frac{\beta^{2} J^{2} N}{4} \sum_{a \neq b} Q_{ab}^{2} + \frac{\beta J_{0} N}{2} \sum_{a=1}^{n} m_{a}^{2}\right) \\ & \times \prod_{i=1}^{N} \operatorname{Tr}_{\{x_{a,i}\}_{a=1}^{n}} \exp\left(-\sum_{a < b} \tilde{Q}_{ab} x_{a,i} x_{b,i} + \sum_{a=1}^{n} (\beta h + \tilde{m}_{a}) x_{a,i}\right) dQ d\tilde{Q} dm d\tilde{m} \\ &\stackrel{(b)}{=} \int \exp\left(\frac{N}{2} \sum_{a \neq b} Q_{ab} \tilde{Q}_{ab} - N \sum_{a=1}^{n} m_{a} \tilde{m}_{a} + \frac{\beta^{2} J^{2} N}{4} \sum_{a \neq b} Q_{ab}^{2} + \frac{\beta J_{0} N}{2} \sum_{a=1}^{n} m_{a}^{2}\right) \\ & \times \left(\operatorname{Tr}_{\{x_{a}\}_{a=1}^{n}} \exp\left(-\sum_{a < b} \tilde{Q}_{ab} x_{a} x_{b} + \sum_{a=1}^{n} (\beta h + \tilde{m}_{a}) x_{a,i}\right)\right)^{N} dQ d\tilde{Q} dm d\tilde{m} \\ &\stackrel{(c)}{=} \int \exp\left\{N\left(\frac{1}{2} \sum_{a \neq b} Q_{ab} \tilde{Q}_{ab} - \sum_{a=1}^{n} m_{a} \tilde{m}_{a} + \frac{\beta^{2} J^{2} N}{4} \sum_{a \neq b} Q_{ab}^{2} + \frac{\beta J_{0} N}{2} \sum_{a=1}^{n} m_{a}^{2}\right) \\ & + \log \operatorname{Tr}_{\{x_{a}\}_{a=1}^{n}} e^{-\sum_{a < b} \tilde{Q}_{ab} x_{a} x_{b} + \sum_{a=1}^{n} (\beta h + \tilde{m}_{a}) x_{a}}\right)\right\} dQ d\tilde{Q} dm d\tilde{m} \\ &\stackrel{(d)}{=} \exp\left\{N \sum_{Q, \tilde{Q}, m, \tilde{m}} \left[\frac{1}{2} \sum_{a \neq b} Q_{ab} \tilde{Q}_{ab} - \sum_{a=1}^{n} m_{a} \tilde{m}_{a} + \frac{\beta^{2} J^{2}}{4} \sum_{a \neq b} Q_{ab}^{2} + \frac{\beta J_{0}}{2} \sum_{a=1}^{n} m_{a}^{2} - \beta \phi\right]\right\} \\ & \phi = -\frac{1}{\beta} \log \operatorname{Tr}_{\{x_{a}\}_{a=1}^{n}} e^{-\sum_{a < b} \tilde{Q}_{ab} x_{a} x_{b} + \sum_{a=1}^{n} (\beta h + \tilde{m}_{a}) x_{a}}. \end{split}$$

(a)では各iごとに x_a の和がとれることを利用した。(b)では各iごとに和をとった結果が等しいことを利用し、(c)では計算結果を指数関数の肩に上げ、(d)では $N\gg 1$ で鞍点評価をした。

4.4 $n=1,2,\ldots$ での鞍点(一般論)

 $\mathbb{E}_J[Z^n]$ は一般に上のようにして鞍点法で評価できることがわかった。この鞍点条件を一般に書き下すと、まずQ,mに関する鞍点条件は以下のようになる:

$$\tilde{Q}_{ab} = -\beta^2 J^2 Q_{ab},$$

$$\tilde{m}_a = \beta J m_a.$$

つまり、SKモデルの場合には共役変数は秩序変数に比例したものになる 3 。また、 \tilde{Q},\tilde{m} に関する鞍点条件は

$$\begin{split} Q_{ab} &= \frac{\text{Tr}_{\{x_a\}_{a=1}^n} x_a x_b e^{-\sum_{a < b} \tilde{Q}_{ab} x_a x_b + \sum_{a=1}^n (\beta h + \tilde{m}_a) x_a}}{\text{Tr}_{\{x_a\}_{a=1}^n} e^{-\sum_{a < b} \tilde{Q}_{ab} x_a x_b + \sum_{a=1}^n (\beta h + \tilde{m}_a) x_a}}, \\ m_a &= \frac{\text{Tr}_{\{x_a\}_{a=1}^n} x_a e^{-\sum_{a < b} \tilde{Q}_{ab} x_a x_b + \sum_{a=1}^n (\beta h + \tilde{m}_a) x_a}}{\text{Tr}_{\{x_a\}_{a=1}^n} e^{-\sum_{a < b} \tilde{Q}_{ab} x_a x_b + \sum_{a=1}^n (\beta h + \tilde{m}_a) x_a}}, \end{split}$$

である。

4.5 レプリカ対称仮定

さて、鞍点条件は一般に出せたが、 $\mathbb{E}[Z^n]$ はまだ離散的な変数a,bについての和を陽に含んでいて、 $n \to 0$ の外挿は行えない。そこで、鞍点の構造を適当に仮定することにする。最も単純な構造として以下のものを考える:

$$Q_{ab} = q,$$
$$m_a = m.$$

ただし、 \tilde{q} , \tilde{m} はQ,mを決めれば勝手に決まるのでそれに応じたものとする。このようにレプリカの番号に依存しないような鞍点とするのをレプリカ対称仮定と呼ぶ。このもとでは、極値条件は以下のようになる 4 :

$$q = \frac{\mathbb{E}_{\xi} \left[\tanh^{2} \beta (h + J_{0}m + J\sqrt{q}\xi) \left(2\cosh \beta (h + J_{0}m + J\sqrt{q}\xi) \right)^{n} \right]}{\mathbb{E}_{\xi} \left[\left(2\cosh \beta (h + J_{0}m + J\sqrt{q}\xi) \right)^{n} \right]}$$

$$m = \frac{\mathbb{E}_{\xi} \left[\tanh \beta (h + J_{0}m + J\sqrt{q}\xi) \left(2\cosh \beta (h + J_{0}m + J\sqrt{q}\xi) \right)^{n} \right]}{\mathbb{E}_{\xi} \left[\left(2\cosh \beta (h + J_{0}m + J\sqrt{q}\xi) \right)^{n} \right]},$$

$$\xi \sim \mathcal{N}(0, 1).$$

ここで、 $e^{-\sum_{a< b} \tilde{Q}_{ab}x_ax_b + \sum_{a=1}^n (\beta h + \tilde{m}_a)x_a}$ の部分がRS仮定のもとでは、恒等式 $\mathbb{E}_{\xi}[e^{a\xi}] = e^{\frac{a^2}{2}}, \xi \sim \mathcal{N}(0,1)$ を用いて

$$\exp\left(\frac{\beta^{2} J^{2}}{2} q \left(\sum_{a=1}^{n} x_{a}\right)^{2} - \frac{\beta^{2} J^{2} n q}{2} + \beta (h + J_{0} m) \sum_{a=1}^{n} x_{a}\right)$$

$$= \mathbb{E}_{\xi} \left[e^{\beta (h + J_{0} m + J \sqrt{q} \xi)} \right] e^{-\frac{\beta^{2} J^{2}}{2} n q}, \quad \xi \sim \mathcal{N}(0, 1),$$

³これは一般的な構造ではない

⁴RSの自由エネルギーを書いてから極値条件を改めて出すよりも、一般的な極値条件の式をRS仮定下で変形したほうが楽だと思う。

と書けることを用いた。また、この極値の値を用いると \mathbb{Z}^n のほうも同様の計算によってnの1次までで以下のように求まる。

$$\phi_n = \lim_{N \to \infty} \frac{-1}{\beta N} \log \mathbb{E}_J[Z^n]$$

$$= -\frac{\beta J^2 n}{4} (1 - q)^2 + \frac{J_0 n}{2} m^2 + n \phi_{RS} + \mathcal{O}(n^2),$$

$$\phi_{RS} = -\frac{1}{\beta} \mathbb{E}_{\xi} \left[\log 2 \cosh \beta (h + J_0 m + J \sqrt{q} \xi) \right],$$

$$\xi \sim \mathcal{N}(0, 1).$$

これは見かけ上はnの離散性は残っておらず、 $n \to 0$ に外挿に外挿できる格好である。この $n \to 0$ 極限から自由エネルギーを求めれば以下のようになる:

$$f_{\rm RS} = -\frac{\beta J^2}{4} (1 - q)^2 + \frac{J_0}{2} m^2 + \phi_{\rm RS},$$
 (3)

$$m = \mathbb{E}_{\xi} \left[\tanh \beta (h + J_0 m + J \sqrt{q} \xi) \right], \tag{4}$$

$$q = \mathbb{E}_{\xi} \left[\tanh^2 \beta (h + J_0 m + J \sqrt{q} \xi) \right]. \tag{5}$$

4.5.1 秩序変数の意味

秩序変数の意味はそれぞれ

$$\mathbb{E}_{J} \left[\operatorname{Tr}_{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}} \frac{1}{N} \sum_{i=1}^{N} x_{1, i} x_{2, i} \frac{1}{Z^{2}} e^{-\beta H(\boldsymbol{x}_{1}; J) - \beta H(\boldsymbol{x}_{2}; J)} \right]$$

$$= \mathbb{E}_{J} \left[\frac{1}{N} \sum_{i=1}^{N} \left(\operatorname{Tr}_{\boldsymbol{x}} x_{i} \frac{1}{Z} e^{-\beta H(\boldsymbol{x}; J)} \right)^{2} \right],$$

$$\mathbb{E}_{J} \left[\operatorname{Tr}_{\boldsymbol{x}_{1}} \frac{1}{N} \sum_{i=1}^{N} x_{i} \frac{1}{Z} e^{-\beta H(\boldsymbol{x}; J)} \right],$$

である。まず1つ目は同じ結合定数の実現値を持った2つの同一の系の自由度間の内積の典型評価で、これは各サイトの局所磁化の2乗の平均であるとも見られる。2つ目は磁化の典型評価である。これらがうえのQ,mに逸するのを調べるためには以下のようなレプリカ法を考えればよい。一般にこのようなモーメントの典型評価が難しいのは、分配関数が分母にあるためである。これをまず冪の極限で以下の様に書き直す:

$$\mathbb{E}_{J} \left[\operatorname{Tr}_{\boldsymbol{x}_{1},\boldsymbol{x}_{2}} \frac{1}{N} \sum_{i=1}^{N} x_{1,i} x_{2,i} \frac{1}{Z^{2}} e^{-\beta H(\boldsymbol{x}_{1};J) - \beta H(\boldsymbol{x}_{2};J)} \right]$$

$$= \lim_{n \to 0} \mathbb{E}_{J} \left[\operatorname{Tr}_{\boldsymbol{x}_{1},\boldsymbol{x}_{2}} \frac{1}{N} \sum_{i=1}^{N} x_{1,i} x_{2,i} Z^{n-2} e^{-\beta H(\boldsymbol{x}_{1};J) - \beta H(\boldsymbol{x}_{2};J)} \right],$$

$$\mathbb{E}_{J} \left[\operatorname{Tr}_{\boldsymbol{x}_{1}} \frac{1}{N} \sum_{i=1}^{N} x_{i} \frac{1}{Z} e^{-\beta H(\boldsymbol{x};J)} \right]$$

$$= \lim_{n \to 0} \left[\operatorname{Tr}_{\boldsymbol{x}_{1}} \frac{1}{N} \sum_{i=1}^{N} x_{i} Z^{n-1} e^{-\beta H(\boldsymbol{x};J)} \right].$$

すると、n=2,3,...に対しては分配関数の負冪は消えて、分子にBoltzmann因子があるだけという格好になる。その後の評価はほぼ自由エネルギーの評価と同じで、変わるのは

唯一 $x_{a,i}$ の和の部分が

$$\begin{split} \frac{\text{Tr}_{\{x_a\}_{a=1}^n} x_1 x_2 e^{-\sum_{a < b} \tilde{Q}_{ab} x_a x_b + \sum_{a=1}^n (\beta h + \tilde{m}_a) x_a}}{\text{Tr}_{\{x_a\}_{a=1}^n} e^{-\sum_{a < b} \tilde{Q}_{ab} x_a x_b + \sum_{a=1}^n (\beta h + \tilde{m}_a) x_a}} \\ & \times \left(\text{Tr}_{\{x_a\}_{a=1}^n} e^{-\sum_{a < b} \tilde{Q}_{ab} x_a x_b + \sum_{a=1}^n (\beta h + \tilde{m}_a) x_a} \right)^N, \\ \frac{\text{Tr}_{\{x_a\}_{a=1}^n} x_1 e^{-\sum_{a < b} \tilde{Q}_{ab} x_a x_b + \sum_{a=1}^n (\beta h + \tilde{m}_a) x_a}}{\text{Tr}_{\{x_a\}_{a=1}^n} e^{-\sum_{a < b} \tilde{Q}_{ab} x_a x_b + \sum_{a=1}^n (\beta h + \tilde{m}_a) x_a}} \\ & \times \left(\text{Tr}_{\{x_a\}_{a=1}^n} e^{-\sum_{a < b} \tilde{Q}_{ab} x_a x_b + \sum_{a=1}^n (\beta h + \tilde{m}_a) x_a} \right)^N \end{split}$$

となることのみである。ここでは対数をとってnで割るようなことはしていないので、赤字の部分以外は $e^{\mathcal{O}(n)}$ という格好であり、 $n \to 0$ で1になる。 Q_{ab}, m_a はRS仮定下ではa, bに依存しないので 5 、結果的にそれぞれq, mだけが残る。

5 thermodynamic properties under RS ansatz

ここではレプリカ対称下でのSKモデルの性質を調べていくことにする。

5.1 rs phase diagram

まず、簡単のため、h=0の場合にRS仮定下での相図を調べてみる 6 。 $J_0=0$ の場合は常に $m=\mathbb{E}_{\xi}[\tanh\beta\sqrt{q}\xi]=0$ である。よって秩序変数はqのみであり、q=0からq>0となるような転移がありえるだろう。二次相転移点を調べるためにqに関する自己無撞着方程式を $q\ll1$ で展開すると最低次の寄与で

$$q = \beta^2 J^2 q$$
,

となり、転移点は $\beta J=1$ となることがわかる。このとき、q>0, m=0である。つまり、全体的にはスピンはバラバラの方向を向いているが、各局所磁化の期待値は非ゼロであるという状況を表している。このようにランダムに凍結しているような状態をスピングラス状態と呼ぶ。また、 $J_0>0$ の場合にはq=0, m=0の状態から、q, m>0の状態への強磁性転移がありえるだろう。そこで、q をq, $|m| \ll 1$ で展開すると

$$q = \beta^2 J^2 q + \beta^2 J_0^2 m^2,$$

だから、まずqはmの二乗のオーダーになることが分かる。これを踏まえてmを展開すると

$$m = \beta J_0 m,$$

が最低次の寄与である。qからの寄与もあるのだが、それは結局 m^2 のオーダーだから高次項である。これを踏まえると、 J_0 が十分に大きなところでは $\beta J_0=1$ の直線上で二次相転移があるのではないかという予想が立つ。実際、極値条件(4), (5)を反復代入法で解いてみた結果が図1である。 $J_0/J=0$, T/J=1で予想通り相転移があり、その

 $^{^5}$ なんか騙された感じがすると思うかもしれない。a,bといろいろあったうちの恣意的な1つだけを選ぶというのは…。実際ここはレプリカ法の手続きの重要なポイントになっている。ただ、ここの事情はレプリカ対称性仮定の破綻が出てくるときに考え直すのがよいと思ってここではRSでの秩序変数の計算をやってQ行列のどこをとってくるかという悩みを無視して進むことにした。

 $^{^6}h \neq 0$ では最初からIsingスピンの反転対称性が破れているわけで、RSの世界観では素朴な相転移はなさそうだというわけである。

転移線は $J_0/J=1$ のところまで水平に続いている。さらに、 $J_0/J>1$ のところでは、 $T/J_0=1$ でq,m>0に移る強磁性転移が続く。また、 $J_0/J=1$ のあたりでは、低温で一旦m>0になった後に再びm=0になっている。qはずっと正の値だから、常磁性から強磁性そしてスピングラスと転移するということになる(が、これはRS仮定が導く誤った結論である)。

Figure 1: RS仮定下での相図。左から順にq,mそして反復代入法で数値的に鞍点条件を解くのに要した反復回数を示している。白い点線はそれぞれ $T/J=1.0,J_0/J=1.0,T=J_0$ を表している。このh=0の場合には各相転移点の直上で反復回数が発散するような振る舞いが見える(でもh>0でRSBによる転移があるときはこうはならない)。

5.2 熱力学関数あれこれ

自由エネルギーの表式から、内部エネルギー密度 uは

$$u = -\frac{1}{2} \left(J_0 m^2 + \frac{J^2}{T} (1 - q^2) + 2hm \right),$$

となる。この微分から比熱が計算できるが、 $h \neq 0$ の場合には転移点でカスプや不連続性などの特異性が現れる。また、磁化mの磁場微分 $\chi = \partial m/\partial h$ はmに関する自己無撞着方程式の両辺をh微分することで

$$\chi = \frac{\chi_0}{1 - J_0 \chi_0}, \quad \chi_0 = \beta (1 - q),$$

となる。これらを図示すると比熱が図2、微分感受率が図3となる。転移点で帯磁率や比熱にはカスプが出る。

5.3 RS計算の明らかな問題点: 負のエントロピー

低温でレプリカ対称仮定は実は正しくないのだが、初期に認識された明らかな問題点 $ch = 0, J_0 = 0$ のとき $T \to 0$ でエントロピーが負になるというものがある 7 。これを見て みる。 $h = 0, J_0 = 0$ のとき、自由エネルギー、鞍点条件は下記の通りである:

$$\begin{split} f_{\rm RS} &= -\frac{\beta J^2}{4} (1-q)^2 + \phi_{\rm RS}, \\ \phi_{\rm RS} &= \mathbb{E}_{\xi} \left[\log 2 \cosh \beta \sqrt{q} \xi \right], \\ q &= \mathbb{E}_{\xi} \left[\tanh^2 \beta \sqrt{q} \xi \right]. \end{split}$$

⁷レプリカ法の正しさを調べる路線ではいわゆるAlmeida-Thouless条件に行くのが筋だと思うが、[SK75]の時点では「一通り調べて見るとエントロピーがなんか変」という話で終わるので、それに合わせた。でもレプリカ法の解説という筋ではとっととATの話をしたほうが良いのかもしれない。

Figure 2: 比熱。

Figure 3: 微分感受率。

 $0 < T \ll 1$ では $q \simeq 1$ である。 q = 1からの微小なずれを最低次の寄与で計算して調べる。そのためにはまず $\tanh^2 x = 1 - 1/\cosh^2 x = 1 - \partial_x \tanh x$ と、 $\lim_{a \to \infty} \partial_x \tanh ax = 2\delta(x)$ であることを用いて

$$q \simeq 1 - \sqrt{\frac{2}{\pi}} \frac{T}{J},$$

を導く。これを f_{RS} に代入してTの一次までの寄与を計算すると 8 、

$$f_{\rm RS} = -J\sqrt{\frac{2}{\pi}} + \frac{T}{2\pi},$$

となり、 $T \to 0$ でのエントロピーは以下のようになる:

$$-\frac{1}{2\pi}$$

離散スピンの系でこれはおかしい。一応、MCMCで調べてみても当然低温でエントロピーは0である[KS78]。

6 summary

レプリカ対称仮定のもとでの、SK模型の自由エネルギーをレプリカ法を用いた計算を紹介した。RS解で一応相転移点は出てくるということ、そしてRS解はなんかおかしいということを確認した。[SK75]の論文ではこのおかしさは $N \to \infty$ と $n \to 0$ の極限の順序を入れ替えたのが悪いのではないかと言っていたが、実際にはレプリカ対称性に問題があるらしいというのがその後すぐ明らかになった [dAT78]。

参考文献

- [dAT78] Jairo RL de Almeida and David J Thouless, *Stability of the sherrington-kirkpatrick solution of a spin glass model*, Journal of Physics A: Mathematical and General **11** (1978), no. 5, 983.
- [KS78] Scott Kirkpatrick and David Sherrington, *Infinite-ranged models of spin-glasses*, Physical Review B 17 (1978), no. 11, 4384.
- [MM09] Marc Mezard and Andrea Montanari, *Information, physics, and computation*, Oxford University Press, 2009.
- [Nis01] Hidetoshi Nishimori, Statistical physics of spin glasses and information processing: an introduction, no. 111, Clarendon Press, 2001.
- [Pan13] Dmitry Panchenko, *The sherrington-kirkpatrick model*, Springer Science & Business Media, 2013.
- [SK75] David Sherrington and Scott Kirkpatrick, *Solvable model of a spin-glass*, Physical review letters **35** (1975), no. 26, 1792.
- [Tal10] Michel Talagrand, *Mean field models for spin glasses: Volume i: Basic examples*, vol. 54, Springer Science & Business Media, 2010.

 $^{^8}$ ここでは、 $\mathbb{E}_{\xi}[\log 2\cosh \beta \sqrt{q\xi}] = 2\int_0^\infty \log 2\cosh \beta \sqrt{q\xi} \frac{d\xi}{\sqrt{2\pi}}$ として計算するのがよい。ここを間違えてエントロピーがマイナス無限大になると結論するのがありがちな間違いっぽい。冷静に考えると間違えない気がするんだが、僕自身も、そして僕以外の人も少なくとも2人その間違いを犯したことがあることを知っているのでありがちなんだと思う。