

Ottimizzazione del design tramite Algoritmi Evolutivi e modello surrogato Machine Learning: caso di studio industriale

Tesi di Laurea magistrale in Fisica dei Sistemi Complessi

di

Giacomo

Deandrea

relatore

Prof.

Piero Fariselli

Overview

- Industrial design optimization
- Client's material and requirements
- Machine Learning modeling
- Optimization loop
- Results
- Final Remarks

Industrial Design Optimization

Iterative process to develop a product that achieves a given task

Early Designs - Designers mistakenly believed that these airfoils with sharp leading edges will have low drag. In practice, they stalled quickly, and generated considerable drag.

Examples:

- Finance- Portfolio optimization
- Architecture- Structure optimization
- Machine Learning Hyperparameter optimization

Industrial Design Optimization

Traditional loop

- Specifications and change of design are user defined
- Subjectivity in decisions is a problem to achieve optimal results

Industrial Design Optimization

Optimization loop

Client's material and requirements

- Design space: 6 features, 3 targets + constraints
- Grid search optimization (4096 points) using CFD model of the component as objective function
- CFD very expensive to compute (~1min x design)
- Provide a framework to find better designs for the component using AI

	feature1	feature2	feature3	feature4	feature5	feature6	target1	target2	target3
4091	0.75	0.663927	0.45	0.477041	1.620003	0.786852	0.207774	0.037435	0.081406
4092	0.60	0.704913	0.36	0.485889	1.620003	0.786852	0.311409	0.048445	0.117979
4093	0.65	0.713656	0.39	0.496380	1.620003	0.786852	0.266211	0.044430	0.109598
4094	0.70	0.722399	0.42	0.506872	1.620003	0.786852	0.226846	0.040863	0.109968
4095	0.75	0.731142	0.45	0.517363	1.620003	0.786852	0.220808	0.039623	0.106437

Framework

Supervised Machine Learning Problem Definition:

Starting from a dataset
$$oldsymbol{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$$

Where
$$y_i = f(\mathbf{x}_i)$$

With
$$f(\mathbf{x}): \mathbf{X} \subseteq \mathbb{R}^k \longrightarrow \mathbf{Y} \subseteq \mathbb{R}$$
 supposed true function

We look to find a function $g(\mathbf{x},\hat{ heta}): m{X} \subseteq \mathbb{R}^k \longrightarrow m{Y} \subseteq \mathbb{R}$

Such that
$$\hat{ heta} = argmin_{ heta} \left[\sum_{i=1}^{N} L(y_i, \hat{y}_i) \right]$$

With
$$g(\mathbf{x}_i, \theta) = \hat{y}_i$$

Train ML Surrogate Select Best ML model CFD Computed Dataset

Problem under consideration:

Supervised: true function values for data in dataset at our disposal

$$y_i = f(\mathbf{x}_i)$$

Multioutput: more than one target depending from same features

$$f(\mathbf{x}): \mathbb{R}^k \longrightarrow \mathbb{R}^q; \ f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_q(\mathbf{x}))$$

Regression: predicting continuous numerical values

$$L(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$$

Moreover:

$$N = 4096$$

$$k = 6$$

$$q = 3$$

ML modeling Train ML Surrogate Select Best ML model CFD Computed Dataset

Model selection:

Elastic Net: regularized version of Linear Regression (L1 and L2 penalty)

Support Vector Regression: popular and effective non linear model for regression

Random Forest: popular and effective 'bagging' method (CARTS

Xtreme Gradient Boosting: popular and effective 'boosting' method

Need to estimate model performance together with best hyperparameters

— How to compare different models? Out of sample performance

K-Fold Cross Validation - OOS + hyperparam performance estimation -> Positive Bias

Hyperparams selection + Model evaluation

Dataset X∈R^(n x k)

X1∈R^(%*n x k)

X2∈R^(%*n x k)

ML modeling

Train ML
Surrogate

Computed Dataset

ML model

Nested K-Fold Cross Validation

 cenno su allenamento modello utilizzato come surrogato in loop ottimizzazione cenno calcolo errori

Pred times are for every model (~10^-3 s compared to ~CFD pred time ~60 s)

Additive model: $\hat{y}_i(x_i) = \sum_{j=1}^{n} f_j(x_i), f_j \in \mathcal{F}$ combines different CART

$$\hat{y}_i^{(t)} = \sum_{j=1}^t f_j(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i)$$

$$\begin{cases} g_i = \partial_{\hat{y}_i^{(t-1)}} l(y_i, \hat{y}_i^{(t-1)}) \\ h_i = \partial_{\hat{y}_i^{(t-1)}}^2 l(y_i, \hat{y}_i^{(t-1)}) \end{cases}$$

ML model

ML modeling

Surrogate

Computed Dataset

$$obj^{(t)} = \sum_{i=1}^n l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \sum_{j=1}^t w(f_j) \text{ Taylor} obj^{(t)} \approx \sum_{i=1}^n [g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)] + w(f_t)$$

$$f_t(x) = w_{q(x)}; w \in \mathbb{R}^L; q(x) : \mathbb{R}^k \longrightarrow 1, 2, \dots, L$$

$$obj^{(t)} \approx \sum_{i=1}^{n} [g_i w_{q(x_i)} + \frac{1}{2} h_i w_{q(x_i)}^2] + \gamma L + \frac{1}{2} \lambda \sum_{l=1}^{L} w_l^2$$

$$obj^{(t)} \approx \sum_{l=1}^{L} [(\sum_{i \in I_l} g_i) w_l + \frac{1}{2} (\sum_{i \in I_l} h_i + \lambda) w_l^2] + \gamma L \quad \begin{cases} G_l = \sum_{i \in I_l} g_i \\ H_l = \sum_{i \in I_l} h_i \end{cases}$$

$$w_l^* = -\frac{G_l}{H_l + \lambda}$$
 $obj^* = -\frac{1}{2} \sum_{l=1}^L \frac{G_l^2}{H_l + \lambda} + \gamma L$

Greedy approx (would need to calculate obj* for every tree structure)

14/26

Framework

Optimization problem definition:

Constrained

linear constraints among features

Lagrange Multipliers method?

Black Box

no analytical function ties inputs to outputs (XGBoost using CARTs)

Quasi-Newton methods?

Multiobjective

multiple objectives to be minimized simultaneously

Evolutionary Algorithms!

Pareto Dominance

Impossible (in non trivial problems) to tell who is the 'best' according to multiple criteria

$$F(x): x \in \mathbb{R}^k \longrightarrow y \in \mathbb{R}^q, \ y = (f_1(x), f_2(x), \dots, f_q(x))$$

$$x^* \in P \iff \nexists x \in X \ t.c. \ f_i(x) \leq f_i(x^*) \ \forall \ i = 1, \dots, q$$

Update Design Variables No Evaluate Objective. Constraints Optimization loop No Termina tion?

Evolutionary algorithms

Euristics: lack of mathematical proof of convergence

Born to simulate evolution of species

Population based

Fittest reproduces
-> mixes genes with other
members of the population
-> genetic operators

Gene diversity among members of population - > stochasticity

Adaptable to multiobjective optimization problems!

Differential Evolution (multiobjective)

Random in feature space

G:
$$x_{i,G} \in \mathbb{R}^k$$
; $i = 1, 2, ..., \lambda$.

 λ = num of vectors in population

termination

parla di constraints and

While Termination == False:

$$\forall x_i; i = 1, ..., \lambda$$
 'father' vector

select $x_{r1}, x_{r2} \neq x_i$ from Pareto front or randomly

select x_{best} in Pareto front if x_i is not, else x_{best} = x_i

compute 'donor' vector
$$v_i = x_i + F \cdot (x_{best} - x_i) + F \cdot (x_{r1} - x_{r2})$$

compute 'son' vector

$$u_i = \begin{cases} v_{i,j} \text{ se } j = j_{rand} \ \lor \ r_{i,j} \le CR \\ x_{i,j} \text{ altrimenti} \end{cases}$$
Dove $i = 1, ..., \lambda; \ j = 1, ..., k; \ r_{i,i} \in \mathcal{U}(0, 1)$

'son' substitute 'father' in population if 'son' in Pareto front while 'father' is not or with proba (num of better targets/total num of targets)

Mutation

Crossover

Selection

Framework

Data Validation - 1st round

Lots of errors

Errors on points sent to CFD validation way bigger than expected

Model not good in predicting points belonging to Pareto front region

(was the model overfitting? even if so...)

ML modeling - 2nd round

Points ranked by uniform sum of standardized targets

first 12% of ranked points defined to be in 'minima region'

10% of points in 'minima region' to be used as test set only

Hyperparam selection remaining points in minima region used in 3-fold crossvalidation procedure: ²/₃ of them as early stopping points ¹/₃ of them for training

Model training early stopping with 3/3 of the remaining points in minima region

Data Validation - 2nd round

Better errors

Model's new training scheme improved performance

New datapoints have surely helped

Data Validation - 2nd round

Points are not spread in Pareto front (hypervolume measure?)

New minima for target 1 found, what about other targets?

Bounding the search space for target 3

Data Validation - 3rd round

Num di punti del fronte di Pareto, 3 targets, dataset a lunghezza minima dopo 1º ciclo ottimizzazione: 26
Num di punti del fronte di Pareto, 3 targets, dataset a lunghezza minima dopo 2º ciclo ottimizzazione: 49
Num di punti del fronte di Pareto, 3 targets, dataset a lunghezza minima dopo 3º ciclo ottimizzazione: 70
Num di punti dell intersezione tra i fronti di Pareto del 3º e 1º ciclo: 18
Num di punti dell intersezione tra i fronti di Pareto del 3º e 2º ciclo: 46

hypervolume metric?

Conclusioni

Framework for optimization using AI was provided

As result the Pareto front was enlarged when compared to original dataset's Pareto

Better result would have been to find a new Pareto front that dominates the original dataset's Pareto

Tons of ways to make the framework better

initializing optimization algorithm with surrogate's predictions on dataset compare different optimization techniques (scalarization vs multiobjective) compare different optimization algorithms couple CFD with optimization algorithm directly

In the end though, I managed to satisfy the customer:)

```
Confronto tra il punto selezionato nella prima fase e quello nella seconda: target1 variazione %: -2.56 target2 variazione %: 0.02 target3 variazione %: -2.53
```