- 30 De kat Milou valt van een balkon af. Milou maakt een vrije val die 1,27 s duurt.
 - a Laat zien dat Milou de grond raakt met een snelheid van 12,5 m s⁻¹.
 - b Schets een (v,t)-diagram van de val.
 - c Bepaal met dit diagram vanaf welke hoogte Milou viel.

Opgave 30

a De eindsnelheid bereken je met de formule voor de (gemiddelde) versnelling.

$$a = \frac{\Delta v}{\Delta t}$$

Tijdens een vrije val is de versnelling $a = g = 9,81 \text{ m s}^{-2}$.

$$\Delta t = 1,27 \text{ s}$$

 $9,81 = \frac{\Delta v}{1,27}$

 $\Delta v = 12,45 \text{ m s}^{-1}$.

Afgerond: $\Delta v = 12,5 \text{ m s}^{-1}$.

Omdat de beginsnelheid 0,0 m s⁻¹ is, is de eindsnelheid dus 12,5 m s⁻¹.

b Je weet de snelheid op t = 0 s en de snelheid op t = 1,27 s.
De vorm van de grafiek volgt uit het gegeven dat de beweging van Milou een vrije val is.

Zie figuur 2.29.

De vorm van de grafiek is een rechte lijn, omdat een vrije val een eenparig versnelde beweging is.

Figuur 2.29

c De hoogte van waaraf Milou viel, bepaal je met de oppervlakte onder de (v,t)-grafiek van figuur 2.29.

$$\Delta x = \frac{1}{2} \times (12,5-0,0) \times 1,27$$

 $\Delta x = 7,937 \text{ m}$
Afgerond: $\Delta x = 7,94 \text{ m}$.