הרצאה 7 (המשך): הצפנה אסימטרית נחזור לעניינינו: הצפנה אסימטרית

מטרה: ליצור מפתח משותף סודי על ערוץ פתוח •

בעיית הלוג הדיסקרטי:

לפני הצגת הבעיה נגדיר:

- :שדה גלואה מעל המספר הראשוני GF(p) :p שדה גלואה מעל המספר הראשוני
 - 0, 1, 2, ..., p-1
- סגור תחת חיבור, חיסור, כפל במודולו ק.
- שלם שונה מספר הופכי: לכל מספר a שונה מאפס בשדה ישנו מספר אחר (שלם . $a\cdot a^{-1}=1\ mod\ p$. חיובי
 - $GF(13) = \{0,1,...,12\}$ •
 - 5-12=-7+13=6 פעולת חיסור:
 - 12 + 11 = 23 13 = 10 פעולת חיבור:

בעיית הלוג הדיסקרטי

נגדיר איבר פרימיטיבי

- נתחיל בלהסביר על ידי דוגמה
- p = 5 עם סדר שדה , $GF(5) = \{0,1,2,3,4\}$ נסתכל על
 - 2^{i} , i = 0,1,... to \bullet
 - $a^{p-1} = 1 \mod p$ לפי המשפט הקטן של פרמה: •
- $2^4 = 1 \ mod \ 5$ ונקבל: $a = 2, \ p = 5$
- כעת נשאל: האם $2^{p-2},...,2^{p-2}$ פורשים את כל איברי השדה מלבד איבר האפס?
 - .GF(5) אם התשובה חיובית, אז 2 הוא איבר פרימיטיבי של
 - $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8 \mod 5 = 3$: נבדוק
 - GF(5) לכן 2 הוא איבר פרימיטיבי של •

בעיית הלוג הדיסקרטי

- ?GF(5) האם 3 הוא איבר פרימיטיבי של •
- $3^0 = 1$, $3^1 = 3$, $3^2 = 9 \mod 5 = 4$, $3^3 = 27 \mod 5 = 2$: נבדוק:
 - GF(5) לכן גם 3 הוא איבר פרימיטיבי של
 - ?GF(5) האם 4 הוא איבר פרימיטיבי של •
 - $4^0 = 1$, $4^1 = 4$, $4^2 = 16 \mod 5 = 1$: נבדוק
 - GF(5) לכן 4 אינו איבר פרימיטיבי של
 - כעת לאחר שראינו את הדוגמה נגדיר •
- לא בהכרח יחיד) הוא איבר בעל התכונה α של GF(p) של GF(p) של איבר פרימיטיבי הבאה:
 - פורשים את כל איברי השדה השונים $lpha^{i} mod p, \ i = 0,1,...,p-2$ מאפס ב GF(p) מאפס

בעיית הלוג הדיסקרטי

עובדה: לכל eta שונה מאפס ששייך ל GF(p) עובדה לכל eta

$$\alpha^x = \beta \mod p$$

- $\beta = \alpha^x \mod p$:אם נתון α, x, p ניתן לחשב בקלות α, x, p
- לעומת זאת, כעת נציג את בעיית הלוג הדיסקרטי (בעיה בשלמים מודולו) שהיא בעיה קשה:
 - :טפותר α,β , שפותר α,β , יש למצוא α שלם בטווח α,β
 - לא קיים אלגוריתם יעיל לפתרון הבעיה ועל זה מתבססת ההצפנה.
 - ליצירת מפתח (Diffi Hellman (DH)) כעת נלמד על תהליך דיפי הלמן שפתח (משותף על ערוץ פתוח בהתבסס על תובנה זו.

ליצירת מפתח משותף על ערוץ פתוח DH תהליך

- α , p :פרמטרים ידועים לכל העולם
 - x, y :מפתחות פרטיים •

Bob

ightharpoonupמחשב מ $K_R = \beta^y \mod p$

$$(0 < x < p-1)$$
 אקראי x אקראי $y < y < p-1$ מייצר $y < y < y < p-1$ מחשב $y = \alpha^y \mod p$ מחשב $y = \alpha^y \mod p$ משדר $y \in \beta$ לבוב

Alice

 $K_A = \gamma^x \mod p$ מחשבת

- . ורק אליס ובוב יודעים את הערך הזה , $K=K_A=K_B$ טענה:
 - זהו המפתח המשותף לאליס ובוב K
 - אלו מפתחות פרטיים x,y

ליצירת מפתח משותף על ערוץ פתוח DH תהליך

- $: K_A = K_B :$ הוכחה ש
- $K_A = \gamma^x = (\alpha^y)^x = \alpha^{yx} = (\alpha^x)^y = \beta^y = K_B$
 - K הוכחה שרק אליס ובוב יודעים את ullet
- ידועים לכל העולם $\gamma=lpha^y mod p$, $eta=lpha^x mod p$ וגם lpha, m p ידועים לכל העולם
 - מספיק לדעת x או y כדי לחשב את K ולשבור את ספיק \bullet
- y ואת $eta=lpha^x mod p$ ברור שפעולת לוג דיסקרטי מחלצת את x מתוך $\gamma=lpha^y mod p$ ושוברת את המערכת
 - ללא α^y, α^x מתוך α^{xy} מתוך אניתן לחשב את α^y, α^y מתוך שימוש בפעולת לוג דיסקרטי
 - Kקיבלנו שתחת השערת דיפי הלמן רק אליס ובוב יודעים את ullet

הוכחת זהות

- עדיין קיימת בעיה: איך ידעו אליס ובוב שהם אכן מדברים אחד עם השנייה? חסרה פה הוכחת זהות. נראה בהמשך פרוטוקול RSA שפותר זאת.
 - לשם כך נצטרך רקע מתמטי נוסף •
 - :(Euler's Totient Function) פונקציית אוילר •
 - עבור n שלם וחיובי היא מספר המספרים השלמים החיוביים $\phi(n)$ שקטנים מ n וזרים לו.
 - **דוגמה:**
 - $\phi(12) = 4$ עבור n=12, קיימים n=12, ולכן n=12
 - $\phi(8)=4$ עבור n=8 קיימים n=8 ולכן n=8
 - $\phi(5) = 4$ עבור n=5 , n=5 ולכן , n=5
 - $\phi(p) = p 1$ עבור n=p עבור •

הוכחת זהות

:משפט אוילר

$$a^{\phi(n)} = 1 \mod n$$

(סימון ל GCD, כלומר
$$a$$
 , n וכן $a \neq 0$ וכן $a \neq 0$ עבור $a \neq 0$

- ?מה מקבלים עבור n ראשוני
 - :טענה

$$a^x=a^{x \bmod \phi(n)} \bmod n$$
 נקבל: $a \neq 0$ וכן $a \neq 0$ עבור $a \neq 0$

בדומה למה שקיבלנו עבור פרמה הקטן: אם נציב n=p ראשוני קיבלנו $a^x=a^{x \bmod p-1} \bmod p$ שגרר: $a^{p-1}=1 \bmod p$

אלגוריתם RSA

- אלגוריתם שפורסם בשנות ה 70 על ידי ריבסט, שמיר, ואדלמן
 - יישום נפוץ מאד של הצפנה אסימטרית •
- יישום נפוץ מאד לחתימה דיגיטלית בערוץ פתוח משתמש מייצר חתימה
 שלו ולכל העולם יש יכולת לאשר את החתימה שלו מבלי היכולת לייצר
 את החתימה שלו
 - :נסמן:
 - (private) פרטי PR , (public) ציבורי PU •
 - אליס תייצג את המשתמש , בוב ייצג נציג של העולם
 - מפתח פרטי של אליס, ידוע רק לה K_{PRA}
 - מפתח ציבורי של אליס, ידוע לכל העולם K_{PUA}
 - K_{PUA} מתוך K_{PRA} מתוך דרישה אי אפשר למצוא את

RSA אלגוריתם

- נדון בשני סוגי תקשורת:
- חתימה דיגיטלית אליס נועלת את ההודעה ששולחת לעולם ואחר כך העולם פותח
 את ההודעה

• הצפנה – העולם נועל את ההודעה ששולח לאליס ואחר כך אליס פותחת את ההודעה

- אליס רוצה להוכיח לבוב את זהותה (שהיא זו שחותמת על המסמך)
 - ההודעה לא סודית, רק דרושה הוכחת זהותה של אליס
 - אליס נועלת את המסמך לפי המפתח הפרטי שלה
 - שולחת את המסמך הנעול לבוב •
- בוב משתמש במפתח הציבורי של אליס בשביל לפתוח את המסמך •
- לאחר פתיחת המסמך בוב יחשוף את הטקסט הקבוע המוכיח את זהותה
 של אליס

חתימה דיגיטלית

: \mathcal{C} י אריאציה נוספת היא לשלוח את בנוסף ל \bullet

הצפנה

- בוב משתמש במפתח הציבורי של אליס בשביל לנעול הודעה סודית
 המיועדת לאליס
 - רק אליס יכולה לפתוח את ההודעה בעזרת המפתח הפרטי שלה •

בטיחות של RSA מתבססת על קושי פירוק לגורמים של מספר גדול
 בעיית פקטוריזציה)

RSA פקטוריזציה ב

- $n=p\cdot q$ מספרים ראשוניים, נסמן את המכפלה p,q
 - נניח p,q לא ידועים, n ידוע •
- מתבסס על עובדה זו RSA , p,q מתוך p,q מתבסס על עובדה אין שיטה יעילה למציאת p,q

כעת נדון כיצד אליס מייצרת מפתח פרטי וציבורי

- אליס מייצרת שני מספרים ראשוניים p,q סודיים
 - $n = p \cdot q$ מחשבת את המכפלה
- מחשבת: $(q-1)\cdot (q-1) \cdot \phi(n) = (p-1)\cdot (q-1)$ מחשבת:
 - $\phi(n)$ מייצרת פרמטר ציבורי e בתחום e בתחום
 - $d = e^{-1} \mod \phi(n)$ מחשבת:
 - (מפתח ציבורי $e,\,n$ בערוץ פתוח (מפתח ציבוריo
 - d :מפתח פרטי של אליס

RSA פקטוריזציה ב

- $\phi(n) = (p-1) \cdot (q-1)$ נוכיח כי
- :בסך הכול המספרים הקטנים מ $p\cdot q$ או שווים לו

$$\{1, 2, ..., p \cdot q\}$$

 $:p\cdot q$ או p שהם לא זרים ל $p\cdot q$ נוריד כפולות של

$$|\{1 \cdot p, \ 2 \cdot p, \ ..., q \cdot p\}| = q$$

$$|\{1 \cdot q, 2 \cdot q, \dots, p \cdot q\}| = p$$

אבל הורדנו $p \cdot q$ פעמיים ולכן נוסיף ullet

$$\phi(n) = p \cdot q - p - q + 1 = (p-1)(q-1)$$
 = \bullet

ייצור חתימה ובדיקת חתימה ב RSA

- $S = M^d \bmod n$, M < n ייצור חתימה על ידי אליס:
 - בדיקת חתימה על ידי בוב:
- S משתמש במפתח הציבורי e, e, בהודעה M (לא סודית), ובחותמת
 - $S^e = M \bmod n$ בודק האם השוויון הבא מתקיים: •
- שוויון מתקיים החתימה אמיתית, שוויון לא מתקיים החתימה לא אמיתית •

ייצור חתימה ובדיקת חתימה ב RSA

- הוכחת נכונות השיטה:
- נבדוק את הוכחת הזהות על ידי בוב:

$$S^e = (M^d)^e \mod n$$

$$a^x = a^{x \bmod \phi(n)} \bmod n$$
 מאוילר ידוע כי:

$$S^e = (M^d)^e = M^{d \cdot e \bmod \phi(n)} \bmod n$$
 :ולכן:

:נקבל
$$d=e^{-1}\ mod\ \phi(n)$$
 נקבל

$$S^e = (M^d)^e = M^{d \cdot e \bmod \phi(n)} \bmod n = M \bmod n = M$$

הצפנה

- :על ידי בוב למסר מוצפן שרק אליס יכולה לפענח M הצפנת ההודעה M הצפנת ההודעה $C=M^e\ mod\ n$
 - :פענוח על ידי אליס

$$M = C^d \mod n$$

הצפנה

- הוכחת נכונות השיטה:
- :נבדוק את הפענוח על ידי אליס

$$C^d = (M^e)^d \mod n$$

$$a^x = a^{x \bmod \phi(n)} \bmod n$$
 מאוילר ידוע כי:

$$C^d = (M^e)^d = M^{e \cdot d \bmod \phi(n)} \bmod n$$
 :ולכן:

:נקבל
$$d=e^{-1}\ mod\ \phi(n)$$
 נקבל

$$C^d = (M^e)^d = M^{e \cdot d \mod \phi(n)} \mod n = M \mod n = M$$

RSA הרצאה 8: בטיחות

- e,n מתוך d מתוך ullet נראה בשלילה שלא ניתן לגלות את
- $d=e^{-1} \ mod \ \phi(n)$ דרך א' נגלה את $\phi(n)$ מתוך $\phi(n)$ מתוך
 - $:\phi(n)$ נרשום את •

$$\phi(n) = (p-1)(q-1) = pq - (p+q) + 1$$

כך ש: A נניח בשלילה שישנו אלגוריתם •

$$n \longrightarrow A \longrightarrow \phi(n) = pq - (p+q) + 1$$

בעיית $\phi(n)$ אבל אז נוכל לחלץ את p,q ולכן לא יתכן שנגלה את פקטוריזציה)

RSA בטיחות

- e,n מתוך d מתוך •
- e,n מתוך מתוך $d=e^{-1} \mod \phi(n)$ מתוך B מתוך שישנו אלגוריתם

$$\begin{array}{cccc}
e & & & & \\
n & & & & \\
\end{array}$$

- מתאים B אם כן, נוכל לייצר הרבה e_i להכניס לאלגוריתם \bullet
 - נקבל הרבה זוגות e_i , d_i כך ש

$$d_i = e_i^{-1} \bmod \phi(n)$$

$$d_i \cdot e_i = 1 \bmod \phi(n)$$
 ולכן:

$$d_i \cdot e_i - 1 = m_i \phi(n)$$
 ולכן:

- (בעיית פקטוריזציה) אבל אז נוכל לחלץ את $\phi(n)$ וזה לא יתכן ullet
 - $S = M^d \bmod n$ דרך ג' נגלה את d מתוך
 - לא יתכן (בעיית לוג דיסקרטי) •

RSA זרים ב M, n

- M < n זרים כאשר M, n נזכור שהשתמשנו באוילר שדורש
 - RSA נראה שההסתברות ש M,n לא יהיו זרים זניחה ב
 - : כל M זר אפשרי לn שנבחר חייב להיות באחת הקבוצות •

$$|\{1 \cdot p, 2 \cdot p, ..., q \cdot p\}| = q$$

$$|\{1 \cdot q, 2 \cdot q, \dots, p \cdot q\}| = p$$

- כלומר יש לנו פחות מq+p מסרים אבודים •
- $rac{p+q}{p\cdot q}$ אינם זרים קטנה מ M,n ולכן ההסתברות ש

$$\frac{2^{513}}{2^{1024}} = 2^{-511}$$
 עבור p ו p טיפוסיים בגודל 512 ביט נקבל הסתברות q ו p .

• הסתברות קטנה מאד

RSA אלגוריתם מילר-רבין למציאת $p, \, q$ ראשוניים ב

- אליס צריכה למצוא p, q ראשוניים RSA ב •
- לשם כך משתמשים באלגוריתם מילר רבין •
- האלגוריתם עושה שימוש בלמה של אוקלידס
 - הלמה של אוקלידס:
 - נניח p ראשוני, וa,b שלמים •
- אזי p מחלק את המכפלה $a\cdot b$ אם משתנה ראשוני p מחלק את המספרים b או a או לפחות את אחד המספרים b

הלמה של אוקלידס - דוגמאות

- דוגמה ליישום הלמה:
- a=56, b=17 , p=7 נניח •
- $56 \cdot 17 = 952 = 0 \mod 7$ נקבל: •
- $56 = 7 \cdot 8$ את מחלק את המכפלה $6 \cdot 17$ וגם מחלק את $7 \cdot 8$
 - דוגמה נגדית:
 - a=4, b=15 (לא ראשוני), p=10
 - $4 \cdot 15 = 60 = 0 \mod 10$ נקבל: •
- 4 אבל לא מחלק את $4\cdot 15=60$ אבל לא מחלק את כלומר 10 מחלק את 15 ולא מחלק את

רעיון אלגוריתם מילר-רבין

p נניח ש x הוא שורש ריבועי של x

$$x^2 = 1 \ mod \ p$$
 לכן: $x^2 - 1 = 0 \ mod \ p$ ולכן:

(*)
$$(x-1)(x+1) = 0 \bmod p$$
 :ולכן:

$$(x-1)(x+1)$$
 נשים לב כי במשוואה (*), p ראשוני והוא מחלק את •

• לכן לפי הלמה של אוקלידס

$$x + 1 = 0 \mod p$$
 או $x - 1 = 0 \mod p$

 $x = \pm 1 \mod p$: כלומר

רעיון אלגוריתם מילר-רבין

- p>2 , כעת נניח p ראשוני
- $p-1=2^s\cdot d$:לכן p-1 זוגי וניתן לרישום כך s,d שלמים, s,d עבור
 - ולרשום s=2, d=7 ראשוני ונוכל להציב p=29 : למשל $p-1=28=2^2\cdot 7$
- p עבור $a^{p-1}=1\ mod\ p$ כעת נשתמש במשפט הקטן של פרמה: $a^{p-1}=1\ mod\ p$ עבור ראשוני

$$a^{2^s \cdot d} = 1 \mod p$$
 : נציב $p-1=2^s \cdot d$ בפרמה ונקבל

$$(a^{2^{s-1}\cdot d})^2 = 1 \mod p$$
 : ואפשר לרשום:

$$a^{2^{s-1}\cdot d}=\pm 1\ mod\ p$$
 ולפי הלמה של אוקלידס נקבל:

רעיון אלגוריתם מילר-רבין

$$a^{2^{s-1}\cdot d} = -1 \bmod p$$

$$a^{2^{s-1}\cdot d} = (a^{2^{s-2}\cdot d})^2 = 1 \mod p$$

$$a^{2^{s-2}\cdot d} = -1 \bmod p$$

$$a^{2^{s-2} \cdot d} = (a^{2^{s-3} \cdot d})^2 = 1 \mod p$$

אפשרות אחת:

$$a^{2^r \cdot d} = -1 \ mod \ p$$
 , for some $0 \le r \le s-1$ אפשרות אחת: •

$$a^d = 1 \mod p$$
 :אפשרות שנייה

אלגוריתם מילר-רבין לבדיקת q ראשוני

- $p_{-indicator} = 1 \bullet$
- (i=1 to T) פעמים •
- :בחר a ובדוק האם מתקיים (1

$$a^{2^r\cdot d}
eq -1 \mod p$$
 , for all $0 \leq r \leq s-1$ $a^d \neq 1 \mod p$: וגם ($p_{-indicator} = 0$) וצא מהלולאה (2

- נסיק ($p_{-indicator} = 1$) אם רצנו על כל הניסויים ולא יצאנו מהלולאה ($p_{-indicator} = 1$) מכך ש $p_{-indicator}$ ראשוני בהסתברות גבוהה (עדיין יש סיכוי שקיים $p_{-indicator}$ בחרנו וכן מקיים את התנאי בשורה $p_{-indicator}$
 - ככל שנגדיל את T נוריד את ההסתברות לשגיאה •

אלגוריתם מילר-רבין לבדיקת *p* ראשוני

:טענה

p לכל ניסוי בלולאה יש הסתברות שגיאה של 1/4. כלומר אנו חושבים ש ראשוני כשעברנו את המבחן (כלומר המשכנו בלולאה) אך הוא לא ראשוני.

מסקנה:

 $(1/4)^T = 2^{-2T}$ הסתברות השגיאה של המבחן היא:

הסתברות השגיאה קטנה אקספוננציאלית עם מספר הניסויים. נוכל ullet לבחור ullet מספיק גדול שיבטיח מערכת בטוחה

• סיבוכיות:

- בחישוב נאיבי: סיבוכיות $O(\sqrt{p})$ לפתרון וודאי ullet
- במילר-רבין מבצעים העלאה בחזקה T פעמים, נקבל סיבוכיות במילר-רבין מבצעים העלאה בחזקה $O(T\log^3(p))$ יעיל יותר, אך הפתרון בעל הסתברות שגיאה שיורדת אקספוננציאלית עם T

אלגוריתם מילר-רבין לבדיקת p ראשוני - דוגמה

- **דוגמה:**
- ראשוני p=221 ראשוני •
- $p-1=220=2^2 \cdot 55 \Rightarrow s=2, d=55$
 - ניסוי ראשון: •
- a=174 נבחר באקראי , 1 < a < p-1 נבחר באקראי •
- $a^{2^r\cdot d} \neq -1 \ mod \ p$, for all $0 \leq r \leq s-1$ נבדוק תנאי ראשון:
- $a^{2^0 \cdot d} \ mod \ p = 174^{55} \ mod \ 221 = 47 \neq 1$ נקבל: r = 0 עבור r = 0
 - :עבור r=1 נקבל

$$a^{2^{1} \cdot d} \mod p = 174^{110} \mod 221 = 220 = p - 1 = -1$$

- כלומר ממשיכים לעוד ניסוי •
- $a^d \neq 1 \ mod \ p$:(לשם תרגול) נבדוק תנאי שני
 - $174^{55} \ mod \ 221 = 47 \neq 1$ נקבל: •

אלגוריתם מילר-רבין לבדיקת p ראשוני - דוגמה

- ניסוי שני:
- a = 137 נניח , 1 < a < p 1 נבחר באקראי •
- $a^{2^r \cdot d} \neq -1 \ mod \ p$, for all $0 \leq r \leq s-1$: נבדוק תנאי ראשון
 - $a^{2^{0} \cdot d} \ mod \ p = 137^{55} \ mod \ 221 = 188$ נקבל: r = 0 עבור r = 0
 - :עבור r=1 נקבל

$$a^{2^{1} \cdot d} \mod p = 137^{110} \mod 221 = 205 \neq -1$$

- $a^d \neq 1 \ mod \ p$: נבדוק תנאי שני
- $137^{55} \ mod \ 221 = 188 \neq 1$ נקבל:
 - אינו ראשוני p=221
- אם היינו עוצרים לאחר ניסוי ראשון הייתה שגיאה •

חתימה על מסר ארוך ב RSA

- $M < M_A$ בעבר ניתחנו את הארכיטקטורה מעלה לחתימה למסר קצר:
 - :(hashing) בשביל לחתום על מסר ארוך $M>M_A$ נבצע גיבוב ullet

- Mדרישה: לא ניתן לחשב הופכי מהמצב הדחוס ל
- Secure HASH Algorithm 1 (SHA1) : HASH תקן ל

חתימה על מסר ארוך ב RSA

כך: RSA עבור חתימה ארוכה נבצע •

Mכעת אליס חייבת לשלוח את המסר ullet

התקפת יום הולדת

- רקע בעיית\פרדוקס יום ההולדת:
 - נניח קבוצה של 23 אנשים •
- ? מה הסיכוי שלפחות שני אנשים חוגגים יום הולדת באותו היום
 - ההסתברות שכל אחד נולד ביום שונה:

$$P = 1 \cdot \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \cdot \left(1 - \frac{3}{365}\right) \cdots \left(1 - \frac{22}{365}\right) < 0.5$$

- לכן ההסתברות שלפחות שני אנשים חוגגים יום הולדת באותו היום
 גדולה מ 0.5
- n זוהי המחשה לעובדה הבאה: אם נבחר ערכים בעלי סיכוי שווה מבין אפשרויות, אז נקבל חזרות בהסתברות גבוהה לאחר שנבחר סדר גודל של \sqrt{n} אפשרויות

התקפת יום הולדת

- נוכיח•
- (ימי הולדת אפשריים) זורקים m כדורים (אנשים) באקראי לn תאים (ימי הולדת אפשריים)
 - הסתברות שm הכדורים ייפלו לתאים שונים:

$$P = 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \cdot \left(1 - \frac{3}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right)$$

:נשתמש בחסם $1 - x < e^{-x}$ נשתמש בחסם •

$$P < e^{-1/n}e^{-2/n} \cdots e^{-\frac{m-1}{n}} = e^{-\frac{1}{n}(1+2+\cdots+m-1)} = e^{-\frac{m(m-1)}{2n}} \approx e^{-\frac{m^2}{2n}}$$

- $Ppprox e^{-K}$:לכן עבור $m=\sqrt{2Kn}$ עבור $m=\sqrt{2Kn}$ לכן עבור
- Kלכן ההסתברות P שנקבל חזרות שואפת ל 1 עם הגדלת •

זיוף חתימה

- תזכורת:
- בחתימה דיגיטלית המסר M נדחס באמצעות פונקציית גיבוב, נסמנו פחתימה דיגיטלית המסר f(M) בעזרת מפתח סודי
 - מבנה ההתקפה:
 - M' וחוזה מזויף M התוקף מכין חוזה אמין וחוזה מזויף \bullet
- אך עדיין שומר על אמינות תוכן המסמך ullet התוקף מכניס שינויים קטנים ל
 - לכן לתוקף מספר גדול של מסמכים אמינים ששקולים ל M מבחינת התוכן
 - אך עדיין שומר על תוכנו המזויף ullet התוקף מכניס שינויים קטנים גם לM' אך אריין שומר על תוכנו המזויף
 - לכן לתוקף מספר גדול של מסמכים ששקולים לM' מבחינת התוכן ממזויף

זיוף חתימה

• התוקף מפעיל פונקציית גיבוב על כל המסמכים עד שמוצא

$$f(M_1)=f(M_1')$$

זוגות מסמכים $\sqrt{
m size}$ of hashing output צריך לשם כך סדר גודל של

הנבחר (שהוא אמין מבחינת תוכנו) לאליס התוקף מראה את מסמך M_1 הנבחר שמבצעת גיבוב וחותמת עליו:

זיוף חתימה

 $:{M_1}'$ התוקף מצמיד את החתימה ל •

 ${M_1}^\prime$ נקבל שבוב מאמת שאליס חתמה על המסמך המזויף •

הגנה נגד זיוף חתימה

- פתרון 1: נשתמש בגיבוב במספר ביטים מספיק גדול כדי להקשות על התוקף
 - מסמכים הדרושים לזיוף נחשבת למערכת בטוחה $2^{80} ullet$
 - לכן נשתמש בפונקציית גיבוב של 160 ביט •
- פתרון 2: אליס יכולה להכניס שינויים קלים למסמך לפני שחותמת ואז:

f (modified M_1 that Alice singed) $\neq f(M'_1)$