03

Data Characteristics of Recommendation Datasets

Recommendation data can be described by means of several properties, known as data characteristics.

The pioneering work from Adomavicius et al. [26] showed that recommenders' performance has a direct connection with these characteristics.

These results prompted further studies that focused on dataset characteristics to analyse their impact on various aspects of recommender systems [27, 28].

^[27] Deldjoo et al., SIGIR 2020, How Dataset Characteristics Affect the Robustness of Collaborative Recommendation Models

^[28] Deldjoo et al., IP&M 2021, Explaining recommender systems fairness and accuracy through the lens of data characteristics

By interpreting recommendation data as a bipartite graph, these characteristics can be extended to topological analyses.

A Novel Evaluation Perspective on GNNs-based Recommender Systems through the Topology of the User-Item Graph

Daniele Malitesta*†
Université Paris-Saclay
CentraleSupélec, Inria
Gif-sur-Yvette, France
daniele.malitesta@centralesupelec.fr

Politecnico di Bari Bari, Italy claudio.pomo@poliba.it

Claudio Pomo*

Vito Walter Anelli Politecnico di Bari Bari, Italy vitowalter.anelli@poliba.it

Alberto Carlo Maria Mancino Politecnico di Bari Bari, Italy

alberto.mancino@poliba.it

Politecnico di Bari Bari, Italy tommaso.dinoia@poliba.it

Tommaso Di Noia

Eugenio Di Sciascio Politecnico di Bari Bari, Italy eugenio.disciascio@poliba.it

In our study [29], we showed that these topological properties not only influence the final performance, but are also explicitly exploited by graph-based recommenders.

Preliminaries

U: user set

I: item set

R: number of ratings

 N_{i} : user neighbourhood

N: item neighbourhood

 N_{u}^{2} : user 2_{nd} order neighbourhood N_{i}^{2} : item 2_{nd} order neighbourhood

Structural

Space Size

Is one the 3 structural properties.

$$Space Size = |U| \times |I|$$

1		
	3	5
	5	4
2	1	
	4	4
1		5

Structural

User Item Ratio

Is one the 3 structural properties.

$$User\ Item\ Ratio\ =\ \frac{|U|}{|I|}$$

Structural

Density / Sparsity

Is one the 3 structural properties.

$$Density = \frac{|R|}{|U| \times |I|}$$

1		
	3	5
	5	4
2	1	
	4	4
1		5

|U|

Distributional

Gini Item/User

The Gini index measures inequality in the item/user frequency distribution.

$$\emph{litem/user}$$
 appearances $\emph{Gini} = 1 - 2 \sum_{i=1}^n \left(rac{n+1-i}{n+1}
ight) imes \left(rac{x_i}{total}
ight),$ total appearances

A Gini index equal to 0 represents perfect equality (items equally popular / users with the same history length)

Value

Variance

The variance of ratings values is a measure of how frequent controversial items are in a dataset.

An item that receives **conflicting ratings** from different users is a controversial item.

A high variance in the ratings values is related to errors in the recommender's predictions.

The mean rating can also be used as a metric.

Node Degree

Topological

The node degree is a measure of the number of connections that a node has.

User node degree = $|N_{u}|$

 $Item\ node\ degree\ =\ |N_i|$

Topological

Clustering Coefficient

It measures the connectivity level of nodes of the same type within the graph

$$\gamma_{u,v} = \frac{|N_u \cap N_i|}{|N_u \cup N_i|}$$

$$\gamma_u = \frac{\sum_{v \in N_u^2} \gamma_{u,v}}{|N_u^2|}$$

Topological

Degree Assortativity

It measures the activity level similarity.

Std of the probability distribution

Topological

Degree Assortativity

It measures the activity level similarity.

Graphical representation of the degree assortativity interpretation in the user-item graph. In this example, user nodes are different in terms of node degree, thus resulting in a low value of degree assorativity.

(b) degree (dis)assortativity ($\rho = -0.191$)

Datasets Selection

Dataset characteristics are a useful tool to analyse and distinguish datasets even before carrying out the recommendation task.

Given the multitude of datasets available for offline evaluation, the literature still debates how a proper selection of datasets in an experiment should be carried out [30,31].