

#### Instituto Politécnico Nacional

Escuela Superior de Cómputo





# Algoritmia y programación estructurada

# *Ejercicios 01:* Diseño de algoritmos en Pseudocódigo

M. en C. Edgardo Adrián Franco Martínez <a href="http://www.eafranco.com">http://www.eafranco.com</a> <a href="mailto:edfrancom@ipn.mx">edfrancom@ipn.mx</a>



#### Ejercicios: Diseño de soluciones en pseudocódigo

- Para cada uno de los siguientes problemas planteados diseñe un pseudocódigo valido en PSeInt que lo resuelva.
- Considere respetar la entrada (input) y la salida (output)
  planteados y compruebe cada una de sus soluciones
  simulando su funcionamiento en PSeInt.
- Enviar en un documento que incluya portada con fotografía los pantallazos de la ejecución de sus algoritmos para cada problema y adjunte cada uno de sus archivos ".psc" correspondientes en un solo archivo comprimido.



The second secon

Ejercicio08.psc





Ejercicio25.psc





### Ejercicios: Diseño de soluciones en pseudocódigo

 Calcular el perímetro y el área de un círculo, para un radio r dado.

| Input | Output            | Explicación                                                                                                |
|-------|-------------------|------------------------------------------------------------------------------------------------------------|
| 2     | 12.56<br>12.56    | 12.56 es el perímetro del circulo de radio 2 y<br>12.56 es el área del circulo de radio 2.                 |
| 20.5  | 128.80<br>1320.25 | 128.80 es el perímetro de un circulo de radio<br>20.5 y 1320.25 es al área de un círculo de radio<br>20.5. |

2. Convertir un **número dado de segundos** en el equivalente de **minutos** y **segundos**.

| Input | Output   | Explicación                                                  |
|-------|----------|--------------------------------------------------------------|
| 60    | 1<br>0   | 60 segundos son equivalentes a 1 minuto con 0 segundos.      |
| 1230  | 20<br>30 | 1230 segundos son equivalentes a 20 minutos con 30 segundos. |



3. Realizar un algoritmo que obtenga los n términos de la sucesión siguiente a partir de 0:

$$f_n = f_{n-1} + f_{n-2}$$
$$f_0 = 0$$
$$f_1 = 1$$

| Input | Output                                                  | Explicación                                                                                                                               |
|-------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 5     | 0<br>1<br>1<br>2<br>3                                   | Los primeros 5 términos de la sucesión dada son los resultados de calcular $f_0$ , $f_1$ , $f_2$ , $f_3$ y $f_4$                          |
| 11    | 0<br>1<br>1<br>2<br>3<br>5<br>8<br>13<br>21<br>34<br>55 | Los primeros 11 términos de la sucesión dada son los resultados de calcular $f_0, f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9$ y $f_{10}$ |







$$f_n = f_{n-1} + 2$$
$$f_0 = 0$$

| Input | Output | Explicación                                                                                                                                                         |
|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5     | 20     | Los primeros 5 términos de la sucesión dada son los resultados de calcular $f_0$ , $f_1$ , $f_2$ , $f_3$ y $f_4$ ; es decir 0, 2, 4, 6, 8 y la suma de estos es 20. |
| 11    | 110    | Los primeros 15 términos de la sucesión dada son 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 y la suma de estos es 110.                                                   |







| Input    | Output     | Explicación                                                                                                                                                     |
|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10<br>25 | 1250<br>25 | Si se evalúa el área del terreno de lados 100-2x y x con valores de x que van de 10 a 25 la máxima área se obtiene con una x de 25 y el valor del área es 1250. |
| 26<br>35 | 1248<br>26 | Si se evalúa el área del terreno de lados 100-2x y x con valores de x que van de 26 a 35 la máxima área se obtiene con una x de 26 y el valor del área es 1248. |







$$f(n) = 1 + 2 + 3 + \dots + (n-1) + n = \sum_{i=1}^{n} i$$

| Input | Output | Explicación                         |
|-------|--------|-------------------------------------|
| 10    | 55     | $f(10) = \sum_{i=1}^{10} i = 55$    |
| 130   | 8515   | $f(10) = \sum_{i=1}^{130} i = 8515$ |



Crear un algoritmo que muestre la multiplicación de los tres números mayores de una serie de números positivos, suponiendo que los datos se leen uno a uno. Un valor de cero como entrada indicará que se ha alcanzado el final de la serie de números positivos.

| Input                                | Output | Explicación                                                                                                                           |
|--------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>0 | 210    | De la serie de números recibidos el 7, 6 y 5 son los tres números mas grandes, la multiplicación 7 x 6 x 5 da por resultado 210.      |
| 10<br>5<br>3<br>6<br>1<br>20<br>0    | 1200   | De la serie de números recibidos el 20, 10 y 6 son los tres números mas grandes, la multiplicación 20 x 10 x 6 da por resultado 1200. |





8. Determine dado un año mayor a 0 si este es bisiesto o no según el calendario Gregoriano, retorne una 'S' si lo es y una 'N' si no lo es. Un año es **bisiesto** en el calendario Gregoriano, si es divisible entre 4 y no divisible entre 100 a excepción si es divisible entre 400.

| Input | Output | Explicación                                               |
|-------|--------|-----------------------------------------------------------|
| 2000  | S      | El año 2000 es bisiesto porque es divisible entre 4 y 400 |
| 2019  | N      | El año 2019 no es bisiesto porque no es divisible entre 4 |





De una lista de calificaciones (0.00 a 10.00) calcular el promedio, el número de aprobados (calificación mayor o igual a 6.0) y el número de reprobados (calificaciones menores a 6.0); el final de la lista de calificaciones será si se introduce un número menor a cero.

| Input                                                         | Output         | Explicación                                                                                                        |
|---------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------|
| 5.50<br>2.00<br>9.50<br>8.33<br>-1                            | 6.33<br>2<br>2 | De las calificaciones 5.50, 2.00, 9.50 y 8.33 el promedio es 6.33, 2 son los alumnos aprobados y 2 los reprobados. |
| 6.50<br>5.00<br>8.50<br>9.33<br>10.00<br>6.00<br>5.99<br>8.56 | 7.48<br>6<br>2 | De las calificaciones el promedio es 7.48, 6 son los alumnos aprobados y 2 los reprobados.                         |

| Input       | Output      | Explicación                                                                |
|-------------|-------------|----------------------------------------------------------------------------|
| 1<br>2<br>3 | N<br>S<br>S | El número 1 no es primo, el 2 y 3 si lo son.                               |
| 0           |             |                                                                            |
| 5<br>6      | S<br>N      | Los números 6, 933 y 1000 no son primos, el 5, 7, 97, 677 y 853 si lo son. |
| 7           | S           |                                                                            |
| 933<br>1000 | N<br>N      |                                                                            |
| 97          | S           |                                                                            |
| 677         | S           |                                                                            |
| 853<br>0    | S           |                                                                            |





## 11. Crear un algoritmo que reciba un número x a partir del cual calcula: $\sum_{i=x}^{x+10} i^2$ .

| Input | Output | Explicación                       |
|-------|--------|-----------------------------------|
| 1     | 506    | $\sum_{i=1}^{11} i^2 = 385$       |
| 100   | 121385 | $\sum_{i=100}^{110} i^2 = 121385$ |

## 12. Calcular el Máximo Común Divisor entre cuatro números dados.

| Input                    | Output | Explicación                            |
|--------------------------|--------|----------------------------------------|
| 20<br>300<br>50<br>500   | 10     | El MCD entre 20, 300, 50 y 500 es 10   |
| 450<br>150<br>75<br>1800 | 75     | El MCD entre 450, 150, 75 y 1800 es 75 |





#### 13. Obtener el mínimo común múltiplo de cuatro números.

| Input                    | Output | Explicación                              |
|--------------------------|--------|------------------------------------------|
| 20<br>300<br>50<br>500   | 1500   | El MCM entre 20, 300, 50 y 500 es 1500   |
| 450<br>150<br>75<br>1800 | 1800   | El MCM entre 450, 150, 75 y 1800 es 1800 |

## 14. Calcular al recibir un número entero todos sus divisores enteros que lo dividen excepto el 1 y el mismo.

| Input | Output      | Explicación                                                                                                       |
|-------|-------------|-------------------------------------------------------------------------------------------------------------------|
| 13    |             | Los divisores del 13 son 1, y 3, no se muestra<br>nada a la salida ya que no se deben incluir el 1<br>y el mismo. |
| 16    | 2<br>4<br>8 | Los divisores del 6 son 1, 2, 4, 8 y 16, se obtienen solo el 2, 4 y 8 ya que no se deben incluir el 1 y el mismo. |





#### 15. Calcular al recibir un número entero sus factores primos.

| Input | Output           | Explicación                                    |
|-------|------------------|------------------------------------------------|
| 4     | 2 2              | 2*2 da 4 y son factores primos                 |
| 24    | 2<br>2<br>2<br>3 | 2 * 2 *2 *3 da 24 y serian sus factores primos |

# 16. Crear un algoritmo que reciba un arreglo A de n números enteros y este obtenga en el arreglo A los números ordenados descendentemente.

| Input                    | Output              | Explicación                                                                                                                                                |
|--------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>1<br>2<br>3         | 3<br>2<br>1         | El primer dato es el tamaño del arreglo n=3 y los tres siguientes son los números a ordenar descendentemente {1, 2,3}. Se obtendría {3, 2, 1}              |
| 4<br>10<br>56<br>94<br>7 | 94<br>56<br>10<br>7 | El primer dato es el tamaño del arreglo n=4 y los tres siguientes son los números a ordenar descendentemente {10, 56, 94, 7}. Se obtendría {94, 56, 10, 7} |





17. Calcular el \*mínimo numero de monedas de un cambio a devolver; si se saben 4 valores de denominación posibles. \*Considerar que las monedas de cada denominación son infinitas.

| Input                   | Output | Explicación                                                                                                                                                                                      |
|-------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35<br>10<br>5<br>2<br>1 | 4      | 4 es el menor número de monedas que se pueden devolver para alcanzar un cambio de 35 para las denominaciones {10, 5,2,1}. Se obtendría con tres monedas de 10 y una de 5.                        |
| 56<br>20<br>10<br>5     | 5      | 5 es el menor número de monedas que se pueden devolver para alcanzar un cambio de 56 para las denominaciones {20, 10, 5, 1}. Se obtendría con dos monedas de 20, una de 10, una de 5 y una de 1. |



#### **Observaciones**





- Incluir de cada ejercicio sus archivos PSC.
- Explicar cada solución con sus propias palabras y una captura de pantalla de su funcionamiento (Pruebe los suficientes casos para validar su respuesta)
- Plantee casos que podrían ser inválidos para cada ejercicio o que llegaron a causar error.
- Portada con fotografía y encabezados de pagina.



## Lista cotejo de la evaluación del ejercicio

| Indicador                                                                                             | SI | NO |
|-------------------------------------------------------------------------------------------------------|----|----|
| Redacción del Problema (El reporte cuenta con encabezados y los datos están redactados completamente) |    |    |
| Desarrollo del Problema (Se explica fácilmente los pasos con lo que llego al resultado)               |    |    |
| Secuencia Lógica (Hay una correcta interpretación de los conceptos, cálculos, algoritmos y formulas)  |    |    |
| Resultado (El resultado esta claro y correctamente identificado en el problema. )                     |    |    |





# Algoritmia

## Fecha máxima de entrega en el sitio Web

La entrega se realizará a través de la página:

http://www.eafranco.com

Entregar a más tardar el día lunes 04 de Marzo de 2019





Grupo y contraseña





| Grupo | Contraseña      |
|-------|-----------------|
| 1CM12 | algoritmia1cm12 |

• Escribir y almacenar las claves de confirmación, para aclaraciones a con respecto a la evaluación.



