Problems 6.3 and 6.6 from the Foundations of Machine Learning textbook

6.3 Update guarantee. Assume that the main weak learner assumption of AdaBoost holds. Let h_t be the base learner selected at round t. Show that the base learner h_{t+1} selected at round t+1 must be different from h_t .

from the algorithm in Figure 6.1:

$$D_0 = \frac{1}{m}$$

$$h_t \in \underset{h \in H}{\operatorname{argmin}} D_t(i) 1_{h(x_i) \neq y_i}$$

$$h_t \text{ is base learner in } H, \text{ i.e. } \epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i] < 1/2$$

$$\alpha_t = \frac{1}{2} \log(\frac{1 - \epsilon_t}{\epsilon_t})$$

$$D_{t+1}(i) = D_t(i) \cdot \exp(-\alpha_t y_i h_t(x_i)) \cdot Z_t^{-1}$$

assume:

$$h_t = h_{t+1}$$

implies:

ignoring normalization factor Z, which rescales D after its calculated

$$D_{t}(i) = (1/m) \cdot \exp(-\alpha_{t}y_{i}h_{t}(x_{i})) = D_{t}(i) \cdot \exp(-\alpha_{t+1}y_{i}h_{t}(x_{i}))$$

$$1 = \exp(-\alpha_{t+1}y_{i}h_{t}(x_{i}))$$

$$0 = -\alpha_{t+1}y_{i}h_{t}(x_{i})$$

$$0 = \frac{1}{2}\log(\frac{1-\epsilon_{t+1}}{\epsilon_{t+1}})$$

$$e^{0} = \frac{1-\epsilon_{t+1}}{\epsilon_{t+1}}$$

$$\epsilon_{t+1} = 1 - \epsilon_{t+1}$$

$$\epsilon_{t+1} = 1/2$$

•• $h_t = h_{t+1}$ Contradicts base learner assumption

 $\epsilon_t < \frac{1}{2}$, based on the weak learner assumption, forces α to reweigh the sample distribution through D_{t+1} , forcing $h_{t+1} \neq h_t$

6.6 Fix $\epsilon \in \{0, \frac{1}{2}\}$. Let the training sample be defined by m points in the plane with m/4negative points all at coordinate (1,1), another m/4 negative points all at coordinate (-1,-1), $\frac{m(1-\epsilon)}{4}$ positive points all at coordinate (1,-1), and $\frac{m(1+\epsilon)}{4}$ positive points all at coordinate (-1, +1). Describe the behavior of AdaBoost when run on this sample using boosting stumps. What solution does the algorithm return after *T* rounds?

consider four sets each with m/4 points:

$$A: y = -1$$
 at $(-1, -1)$, $B: y = -1$ at $(1, 1)$
 $C: y = +1$ at $(1, -1)$, $D: y = +1$ at $(-1, 1)$

 $D_0 = 1/m$, equally weighting of all points

 h_0 = horizontal line through origin implying positive for $x_1 > 0$

$$\epsilon_0 = \frac{1}{m}(B+C) = \frac{1}{m}(\frac{m}{4} + \frac{m}{4}) = \frac{1}{2}$$

$$\alpha_0 = \frac{1}{2}\log\frac{1-\epsilon_0}{\epsilon_0} = 0$$

$$\alpha_0 = \frac{1}{2} \log \frac{1 - \epsilon_0}{\epsilon_0} = 0$$

$$Z_0 = 2[\epsilon_0(1 - \epsilon_0)]^{1/2} = 2[(\frac{1}{2}^2)^{1/2}] = 1$$

$$Z_0 = 2[\epsilon_0(1 - \epsilon_0)]^{1/2} = 2[(\frac{1}{2}^2)^{1/2}] = 1$$

$$D_1 = D_0 \cdot \exp(-\alpha_0 Y h_0(X)) \cdot Z_0^{-1} = \frac{1}{m} \cdot 1 \cdot 1^{-1} = 1/m$$

 h_1 = vertical line through origin, gives the same ϵ :

$$\epsilon_1 = \frac{1}{m}(A+D) = \frac{1}{m}(\frac{m}{4} + \frac{m}{4}) = \frac{1}{2}$$

implies $D_2 = D_1 = D_0 = 1/m$

There can be no change through T iterations as ϵ will always be 1/2.

Final solution:

$$h = \text{sgn}(g_T)$$

 $g_T = \sum_{i=1}^{T} \alpha_i h_i = 1/2(h_0 + h_1)$

$$h(A) = 1/2(-m/4 + m/4) = 0$$

$$h(B) = 1/2(m/4 - m/4) = 0$$

$$h(C) = 1/2(m/4 - m/4) = 0$$

$$h(D) = 1/2(-m/4 + m/4) = 0$$