Class room problems on Conic Sections

Lectures 1-2: Circles

1. Find the equation of the circle with centre (-3, 2) and radius 4.

Ans: $(x + 3)^2 + (y - 2)^2 = 16$

2. Find the equation of the circle with centre (0,2) and radius 2.

Ans: $x^2 + (y-2)^2 = 4$

3. Find the centre and radius of the circles.

i) $(x+5)^2 + (y-3)^2 = 36$

Ans: centre=(-5,3), radius=6

ii) $x^2 + y^2 - 8x + 10y - 12 = 0$

Ans: centre=(4, -5), radius= $\sqrt{53}$

iii) $2x^2 + 2y^2 - x = 0$

Ans: centre=(1/4,0), radius=1/4

4. Find the equation of the circle passing through the points (4,1) and (6,5) and whose centre is on the line 4x + y = 16.

Ans: $x^2 + y^2 - 6x - 8y + 15 = 0$

5. Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point (2,3).

Ans: $x^2 + y^2 - 12x + 11 = 0$

6. Find the equation of the circle passing through (0,0) and making intercepts a and bon the coordinate axes.

Ans: $x^2 + y^2 - ax - by = 0$

7. Find the equation of the circle which passes through the points (1, 0), (0, -6) and (3, 4).

Ans: $4x^2 + 4y^2 - 142x + 47y + 138 = 0$

8. Find the equation of the circles which touches the axis of x and passes through the points (1,-2) and (3,-4).

Ans: $x^2 + y^2 - 6x + 4y + 9 = 0$ and $x^2 + y^2 + 10x + 20y + 25 = 0$

Lecture. 3,4: Parabola

1. Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum.

i. $y^2 = 12x$ 2. $x^2 = 6y$ 3. $y^2 = -8x$ 4. $x^2 = -16y$

Ans:

	1			
	focus	axis	directrix	Length of
				latus
				rectum
1	(3,0)	X axis	x=-3	12
2	(0,3/2)	Y axis	y = -3/2	6
3	(-2,0)	X axis	x=2	8
4	(0,-4)	Y axis	y=4	16

- **2.** Find the equation of the parabola with focus (2,0) and directrix x=-2. $Ans: y^2 = 8x$
- 3. Find the equation of the parabola with vertex at (0, 0) and focus at (0, 2). $Ans: x^2 = 8y$
- **4.** Find the equation of the parabola that satisfies the following given conditions:
 - i) Focus (6,0); directrix x = -6 $Ans:y^2=24x$
 - ii) Focus (0,-3); directrix y = 3 $Ans: x^2 = -12y$
 - iii) Vertex (0,0), passing through (5,2) and symmetric with respect to y-axis. $Ans:2x^2=25y$

Lecture 5,6: Ellipse

1. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse

i.
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$

ii.
$$4x^2 + 9y^2 = 36$$

the eccentricity and the i.
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$
ii.
$$4x^2 + 9y^2 = 36.$$
iii.
$$\frac{x^2}{4} + \frac{y^2}{25} = 1$$
iv.
$$\frac{x^2}{25} + \frac{y^2}{100} = 1$$

iv.
$$\frac{x^2}{25} + \frac{y^2}{100} = 1$$

Ans:

	foci	vertices	Length of major axis	Length of major axis	eccentricity	Length of Latus rectum
1	$(\pm 2\sqrt{5},0)$	(±6,0)	12	8	$\frac{\sqrt{5}}{3}$	$\frac{16}{3}$
2	$(\pm\sqrt{5},0)$	(±3,0)	6	4	$\frac{\sqrt{5}}{3}$	$\frac{8}{3}$
3	$(0, \pm \sqrt{21})$	(0, ±5)	10	4	$\frac{\sqrt{21}}{5}$	8 5
4	$(0, \pm 5\sqrt{3})$	(0, ±10)	20	10	$\frac{\sqrt{3}}{2}$	5

- 2. Find the equation of the ellipse,
 - (a) whose latus rectum is 5 and whose eccentricity is $\frac{2}{3}$.
 - (b) whose minor axis is equal to the distance between the foci and whose latus rectum is 10.

(c) whose foci are the points (4,0) and (-4,0) and whose eccentricity is $\frac{1}{3}$.

Ans: (a)
$$20x^2 + 36y^2 = 405$$
 (b) $x^2 + 2y^2 = 100$ (c) $8x^2 + 9y^2 = 1152$

3. Find the eccentricity of the ellipse, if its latus rectum be equal to one half its minor

Ans:
$$\frac{\sqrt{3}}{2}$$

Lecture 7: Hyperbola

1. Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.

1.
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

2. $\frac{y^2}{9} - \frac{x^2}{27} = 1$
3. $9y^2 - 4x^2 = 36$
4. $16x^2 - 9y^2 = 576$

$$2.\frac{y^2}{9} - \frac{x^2}{27} = 1$$

$$3. 9y^2 - 4x^2 = 36$$

4.
$$16x^2 - 9y^2 = 576$$

Ans:

	Foci	vertices	eccentricity	Length of
				Latus rectum
1	$(\pm 5, 0)$	$(\pm 4,0)$	5	9
			$\frac{\overline{4}}{4}$	$\overline{2}$
2	$(0, \pm 6)$	$(0,\pm 3)$	2	18
3	$(0, \pm \sqrt{13})$	$(0, \pm 2)$	$\sqrt{13}$	9
			2	
4	$(\pm 10, 0)$	$(\pm 6,0)$	5	64
			3	3

- 2. Find the equations of the hyperbola satisfying the given conditions.
 - **i.** Vertices $(\pm 2, 0)$, foci $(\pm 3, 0)$

Ans:
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$

Ans:
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$

ii. Vertices $(0, \pm 5)$, foci $(0, \pm 8)$
Ans: $\frac{y^2}{25} - \frac{x^2}{39} = 1$

Ans:
$$\frac{y^2}{25} - \frac{x^2}{39} = 1$$

iii. Foci (± 4 , 0), the latus rectum is of length 12

Ans:
$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$

iv. vertices (±7,0), $e = \frac{3}{4}$

Ans:
$$\frac{x^2}{49} - \frac{9y^2}{343} = 1$$

Foci $(0, \pm \sqrt{10} \ 10)$, passing through (2,3) Ans: $\frac{y^2}{5} - \frac{x^2}{5} = 1$ v.