Optimisation convexe et combinatoire TD 4

8 décembre 2016

Exercice 1 T-joint et complexité

Le but de cet exercice est d'étudier la complexité asymptotique d'algorithmes liés au T-joint.

- 1. Prouver le théorème suivant.
 - **Théorème 1.** Quand les poids sont non négatifs la complexité du problème du T-joint de poids minimum est en $O(n^3)$.
- 2. Prouver le théorème suivant.
 - **Théorème 2.** Soient G un graphe avec des poids $c: E(G) \to \mathbb{R}$ et $T \subseteq V(G)$, |T| pair, un ensemble de sommet. Soient E^- l'ensemble des arêtes de poids négatif et T^- l'ensemble des sommets incidents à un nombre impair d'arêtes négatives, et soit $d: (G) \to \mathbb{R}_+$ défini par d(e) = |c(e)|, on a l'équivalence suivante : J est un T-joint de poids minimum avec les poids c si et seulement si $J \triangle E^-$ et un $(T \triangle T^-)$ joint de poids minimum selon les poids d.
- 3. Quelle est la complexité du problème du T joint de poids minimum?
- 4. Prouver le corollaire suivant.

Corollaire 3. La recherche d'une plus courte chaîne entre deux sommets donnés dans un graphe nonorienté, sans cycle négatif, peut se résoudre en $O(n^3)$.

Exercice 2 Problème du voyageur du commerce et algorithme de l'ellipsoïde

Problème 1. Voyageur du commerce

Pour un graphe G et un poids c_e pour chaque arête $e \in E(G)$, trouver un cycle contenant tous les sommets, de poids minimum.

Définition 1. Tour du voyageur du commerce

Soit un graphe G et un poids c_e pour chaque arête $e \in E(G)$, on appelle tour un cycle contenant tous les sommets.

Soient G = (V, E) un graphe non orienté avec des poids $c : E(G) \to \mathbb{R}_+$, une variable x_e est associée à chaque arête e de G. On considère les équations suivantes :

$$\begin{split} \sum_{e \in \delta(V)} x_e &= 2 \quad \forall v \in V, \\ \sum_{e \in \delta(S)} x_e &\geq 2 \quad \forall S \subseteq V | \varnothing \neq S \neq V. \end{split}$$

- 1. Montrer que les solutions avec les x_e dans $\{0,1\}$ sont les tours du voyageur du commerce.
- 2. Transformer le problème du voyageur du commerce en PLNE. Combien de contraintes contient-il?
- 3. Montrer comment résoudre la relaxation de ce PLNE à un PL en temps polynomial avec l'algorithme de l'ellipsoïde.