REMARKS

By this amendment, applicants have amended claims 2, 3 and 6 - 8 to clarify that the atmosphere in which the absorption refrigerator part is heated is an atmosphere containing oxygen gas. See, e.g., numbered paragraphs 0019 and 0022 of applicants' specification.

The foregoing amendments are necessary in order to respond to the comments made by the Examiner, for the first time, in numbered section 1 of the outstanding office action. In particular, it is noted the Examiner has apparently interpreted the phrase "atmosphere" originally appearing in the rejected claims to read broadly as any atmosphere. However, as is clear from applicants' specification, applicants use the term "atmosphere" to refer to an atmosphere containing oxygen gas, e.g., air. See, e.g., numbered paragraphs 0019 and 0022 of applicants' specification. Since the foregoing amendments merely clarify the term "atmosphere," the meaning of which was already clear from applicants' specification, the amendments do not raise new issues. Moreover, since the amendments are necessary to respond to the arguments made for the first time by the Examiner in the outstanding office action, entry of this amendment under 37 CFR 1.116 is requested.

Claims 2, 3 and 6 - 8 stand rejected under 35 USC 103(a) as allegedly being unpatentable over United States Patent No. 4,596,122 to Kantner in view of United States Patent No. 4,596,122 (sic-4,912,934) to Itoh et al. Applicants traverse this rejection and request reconsideration thereof.

The rejected claims relate to a <u>production method</u> for an absorption refrigerator using a refrigerant and its absorption solution. The claims set forth the step of heating a

surface of at least a part of a heat exchanger and high temperature generator in an atmosphere containing oxygen gas. This process can form an oxide film on the surface, as more specifically recited in claims 3 and 6-8. This production method has an effect that a fairly dense film is formed on the surface.

The Kantner patent discloses a system for controlling a sorption heat pump. While the construction and mode of operation of the heat pump are described in great detail in Kantner, the Kantner patent contains little, if any, discussion of the production method for producing the heat pump. Clearly, as apparently admitted by the Examiner, the Kantner patent does not disclose the step of heating a surface of at least part of a heat exchanger and high temperature generator in an atmosphere. In fact, there does not appear to be any discussion of the formation of an oxide film or any other corrosion protection film in Kantner.

It should be kept in mind that the claims in the present application are not drawn to an absorption refrigerator, but to the production method therefor. The Kantner patent has little, if any, teaching concerning a production method, and clearly does not disclose the production method presently claimed.

The Examiner alleges the production method to be inherent in the Kantner patent. Even assuming, arguendo, some production method to be inherent in the Kantner patent, there is absolutely no reason to conclude that the production method presently claimed is inherent in Kantner. That is, the Kantner patent does not explicitly or inherently teach heating a part of a heat exchanger or high temperature regenerator in an atmosphere containing oxygen gas.

In the Itoh et al '934 patent, the inside wall of a high temperature regenerator is provided with a composite film of molybdenum oxides and iron oxide by, as described in the passage at column 5, lines 45 - 66, subjecting the regenerator to a film-forming operation while exposed to an aqueous lithium molybdate solution. In Example 1 of Itoh et al '934, steel plate is dipped in a film-making tank filled with an aqueous 10% lithium molybdate solution while, in Example 2 of Itoh et al '934, an aqueous 20% lithium molybdate solution is sealed as a film-forming solution into the high temperature regenerator. Thus, the Itoh et al '934 patent does not disclose heating a surface of at least part of a heat exchanger and high temperature regenerator in atmosphere or in an atmosphere in which an oxygen partial pressure or steam partial pressure is higher than atmospheric air, as presently claimed. Accordingly, the Itoh et al '934 patent does not disclose the presently claimed production method.

Claims 2, 3 and 6 - 8 require the step of heating at least part of a heat exchanger and high temperature generator in an atmosphere containing oxygen gas. On the other hand, in Itoh et al '934, the surface that is to be protected from corrosion is heated in a film forming solution, but not heated in an atmosphere containing oxygen gas. In Itoh et al '934, however, the surface is covered with a film forming solution, not an oxygen gas atmosphere.

Thus, the Itoh et al '934 patent also does not explicitly or inherently teach heating a part of a heat exchanger or high temperature regenerator in an atmosphere containing oxygen gas.

Since neither Kantner nor Itoh et al, nor even the combination thereof, would have disclosed or suggested the production method of the present invention, it is

submitted claims 2, 3 and 6 - 8 are patentable over the proposed combination of references.

Applicants note the indication that claims 4 and 5 are allowed.

In view of the foregoing amendments and remarks, entry of this amendment and favorable reconsideration and allowance of all of the claims now in the application are requested.

To the extent necessary, applicants petition for an extension of time under 37 CFR 1.136. Please charge any shortage in the fees due in connection with the filing of this paper, including extension of time fees, to the deposit account of Antonelli, Terry, Stout & Kraus, LLP, Deposit Account No. 01-2135 (Case: 503.34897CC3), and please credit any excess fees to such deposit account.

Respectfully submitted,

ANTONELLI, TERRY, STOUT & KRAUS, LLP

Alan E. Schiavelli

Registration No. 32,087

AES/jla (703) 312-6600