Software Testing and Validation A.A. 2025/2026

Corso di Laurea in Informatica

Logics in Model Checking

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

Beyond Invariants

- Invariants represent a huge share of properties to be verified on a system
- For many systems, one may be happy with invariants only
 - "nothing bad happens", that's all folks
- However, it is not always sufficient: a non-running system of course satisfies invariants
 - no starting states, thus no reachable states...

Safety vs. Liveness

- Safety properties: something bad must never happen
 - example: in the Peterson's protocol, it must not happen that both processes are accessing the resource (L3 in the Murphi model)
- Invariants are a special case of safety properties
 - there are some safety properties which are not invariants
 - however, they can be expressed with invariants by adding variables to the Kripke Structure
 - in the following, we will consider "invariants" and "safety properties" as synonyms
- Liveness properties: something good will eventually happen
 - example: in the Peterson's protocol, both processes will eventually access the resource
 - not at the same time!
 - cannot be expressed with invariants

Safety vs. Liveness

- ullet Notation: let ${\mathcal S}$ be a KS and ${arphi}$ be a formula in any logic
- $\mathcal{S} \models \varphi$ is true iff φ is true in \mathcal{S}
 - what this means depends on the logic, as we will see
- For most properties φ , if $\mathcal{S} \not\models \varphi$ then there exists a path $\pi \in \operatorname{Path}(\mathcal{S})$ which is a *counterexample*
 - by overloading the symbol \models , $\pi \not\models \varphi$
- For safety properties, $|\pi| < \infty$
 - \bullet S arrives to an *unsafe* state and that's it
- For liveness properties, $|\pi| = \infty$
 - since ${\mathcal S}$ is finite, this implies that π contains a loop (*lasso*) in its final part

Safety vs. Liveness

- Equivalent definition for a safety formula: given a finite counterexample, every extension still contains the error
- There is one formula which is both safety and liveness: the true invariant
 - it cannot have a counterexample...
- There are formulas which are neither safety nor liveness
 - their counterexample is not a path
- For typically used formulas, they are either safety or liveness properties

Safety vs. Liveness: Mathematical Definition

- Let a model σ be an infinite sequence of truth assignments to all $p \in AP$
 - $\sigma \in (2^{AP})^{\omega}$
 - could also be seen as a sequence of sets $P \subseteq AP$
 - given a path π of a KS \mathcal{S} , we can always obtain a model from π by replacing each $\pi(i)$ with $L(\pi(i))$
- It is possible to define if $\sigma \models \varphi$, for a given formula φ
- φ is a safety property if, for all σ s.t. $\sigma \not\models \varphi$, there exists j s.t. $\forall \sigma'.\sigma|_i = \sigma'|_i \to \sigma' \not\models \varphi$
 - i.e., given an (infinite) counterexample σ , there must exist a prefix p of σ s.t. all other models σ' having p as a prefix are again counterexamples
- φ is a liveness property if, for each prefix $w_0 \dots w_i$, there exists σ s.t. $\sigma|_i = w_0 \dots w_i$ and $\sigma \models \varphi$
 - i.e., a (finite) prefix of a model σ cannot be a counterexample as you may always complete it in a "good" way

Safety vs. Liveness: Mathematical Definition

If we identify a property by the set of its models $(\varphi = \{\sigma \mid \sigma \models \varphi\})$

Model Checking Logics: Preliminaries

- ullet Model Checking logics are based on the concept of execution of a Kripke structure ${\cal S}$
 - thus, on $\pi \in \operatorname{Path}$
- Often, paths are directly viewed as a sequence of atomic propositions, rather than states
 - from $\pi = s_1, s_2, ...$ to $AP(\pi) = L(s_1), L(s_2), ...$
- Focusing on executions allows to model time
 - time in the sense that we have something coming before of something else (in a path...)
- Trade-off between
 - logics expressiveness: interesting properties can be written
 - logics efficiency: there is an efficient model checking algorithm to compute if $\mathcal{S} \models \varphi$

Model Checking Logics: Preliminaries

- We will focus on the two leading Model Checking logics: LTL and CTL
 - with some hints on CTI*
 - LTL (Linear-time Temporal Logic) established by Pnueli in 1977
 - CTL (Computation Tree Logic) established by Clarke and Emerson in 1981
 - used for IEEE standards:
 - PSL (Property Specification Language, IEEE Standard 1850)
 - SVA (SystemVerilog Assertions, IEEE Standard 1800).
- We will see syntax and semantics of both logics
 - syntax: how a valid formula is written
 - semantics: what a valid formula "means"
 - ullet that is, when $\mathcal{S} \models \varphi$ holds

$$\Phi ::= p \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid (\Phi) \mid \mathbf{X} \Phi \mid \Phi_1 \mathbf{U} \Phi_2$$

- Other derived operators:
 - of course true, false, OR and other propositional logic connectors
 - future (or eventually): $\mathbf{F}\Phi = \text{true } \mathbf{U} \Phi$
 - globally: $\mathbf{G}\Phi = \neg(\text{true }\mathbf{U} \neg \Phi) = \neg \mathbf{F} \neg \Phi$
 - release: $\Phi_1 \mathbf{R} \Phi_2 = \neg(\neg \Phi_1 \mathbf{U} \neg \Phi_2)$
 - weak until: $\Phi_1 \mathbf{W} \Phi_2 = (\Phi_1 \mathbf{U} \Phi_2) \vee \mathbf{G} \Phi_1$
- Other notations:
 - next: $\mathbf{X}\Phi = \bigcap \Phi$
 - \bullet $\mathbf{G}\Phi = \Box \Phi$
 - $\mathbf{F}\Phi = \Diamond \Phi$
- We are dropping past operators, thus this is the future LTG

LTL Semantics

- ullet Goal: formally defining when $\mathcal{S} \models \varphi$, being \mathcal{S} a KS and φ an LTL formula
 - we say that ${\mathcal S}$ satisfies φ , or φ holds in ${\mathcal S}$
- This is true when, for all paths π of \mathcal{S} , π satisfies φ
 - i.e., $\forall \pi \in \text{Path}(\mathcal{S}). \ \pi \models \varphi$
 - symbol ⊨ is overloaded...
- For a given π , $\pi \models \varphi$ iff π , $0 \models \varphi$
- Finally, to define when $\pi, i \models \varphi$, a recursive definition over the recursive syntax of LTL is provided
 - $\pi \in \text{Path}(S), i \in \mathbb{N}$

LTL Semantics for $\pi, i \models \varphi$

- $\pi, i \models p \text{ iff } p \in L(\pi(i))$
- $\pi, i \models \Phi_1 \land \Phi_2 \text{ iff } \pi, i \models \Phi_1 \land \pi, i \models \Phi_2$
- $\pi, i \models \neg \Phi \text{ iff } \pi, i \not\models \Phi$
- $\pi, i \models \mathbf{X}\Phi \text{ iff } \pi, i+1 \models \Phi$
- $\pi, i \models \Phi_1 \cup \Phi_2$ iff $\exists k \geq i : \pi, k \models \Phi_2 \land \forall i \leq j < k. \pi, j \models \Phi_1$

LTL Semantics for Added Operators

- It is easy to prove that:
 - $\forall \pi \in \text{Path}(S), i \in \mathbb{N}. \ \pi, i \models \text{true}$
 - $\pi, i \models \mathbf{G}\Phi \text{ iff } \forall j \geq i. \ \pi, j \models \Phi$
 - $\pi, i \models \mathbf{F}\Phi \text{ iff } \exists j \geq i. \ \pi, j \models \Phi$
 - $\pi, i \models \Phi_1 \mathbf{R} \Phi_2 \text{ iff } \forall k \geq i. \ \pi, k \models \Phi_2 \lor \exists i \leq j < k : \ \pi, j \models \Phi_1$
 - i.e., $\forall k \geq i$. $\pi, k \not\models \Phi_2 \rightarrow \exists i \leq j < k : \pi, j \models \Phi_1$
 - i.e., $\forall k \geq i$. $\forall i \leq j < k$. $\pi, j \not\models \Phi_1 \rightarrow \pi, k \models \Phi_2$
 - $\pi, i \models \Phi_1 \mathbf{W} \Phi_2 \text{ iff } (\forall j \geq i. \ \pi, j \models \Phi_1) \lor (\exists k \geq i: \ \pi, k \models \Phi_2 \land \forall i \leq j < k. \ \pi, j \models \Phi_1)$
- For many formulas, it is silently required that paths are infinite
- That's why transition relations in KSs must be total

LTL Semantics: Typical Paths for Common Formulas

- For $p \in AP$, we will also consider p to be any set in $\{P \in 2^{AP} \mid p \in P\}$
 - ullet that is, p is any subset of atomic propositions containing p
 - e.g., p may be any of $\{p\}, \{p, q\}, \{p, r, s\}...$
 - furthermore, $\bar{p} = \neg p \in \{P \in 2^{AP} \mid p \notin P\}$
 - e.g., \bar{p} may be any of $\{q\}, \{q, r\}, \{r, s\}...$
 - \bullet finally, \bot denotes any subset of atomic propositions
- If $\pi \models \mathbf{G}p$, then $\pi = p^{\omega}$

q...

- of course, this includes, e.g., $\pi=\{p,q\}\{p,r\}\{p\}\{p,q\}\{p\}\dots$
- π , 3 \models **G**p: $\pi = \bot \bot \bot p^{\omega}$
- If $\pi \models \mathbf{F}p$, then $\pi = \perp^* p \perp^{\omega}$
- If $\pi \models p \cup q$, then $\pi = \{p, \bar{q}\}^* q \perp^{\omega}$
- If $\pi \models p \mathbf{W} q$, then either $\pi = \{p, \bar{q}\}^* q \perp^{\omega}$ or $\pi = p^{\omega}$
- If $\pi \models p \mathbf{R} q$, then either $\pi = \{\bar{p}, q\}^{\omega}$ or $\pi = \{\bar{p}, q\}^* \{p, q\} \perp^{\omega}$
 - $=\{p,q\}$ $\{p,q\}$ \perp^n =q must be kept holding till when a p appears and the leases.

Safety and Liveness Properties in LTL

- Given an LTL formula φ , φ is a safety formula iff $\forall \mathcal{S}. (\exists \pi \in \operatorname{Path}(\mathcal{S}) : \pi \not\models \varphi) \to \exists k : \pi|_k \not\models \varphi$
- Given an LTL formula φ , φ is a liveness formula iff $\forall \mathcal{S}. \ (\exists \pi \in \operatorname{Path}(\mathcal{S}): \ \pi \not\models \varphi) \to |\pi| = \infty$
- All LTL formulas are either safety, liveness, or the AND of a safety and a liveness
 - being defined on paths, the counterexample is always a path
- Safety properties are those involving only G, X, true and atomic propositions
- Liveness are all those involving an F or a U
 - but beware of negations...
- Some formulas are both safety and liveness, like true, **G** true and so on

 $\mathcal{S} \models \mathbf{F}p$ since p holds in the first state For full: let $\pi \in \operatorname{Path}(\mathcal{S})$ $\pi, 0 \models \mathbf{F}p$ with j = 0

recall: $\pi, i \models \mathbf{F}\Phi$ if $\exists j \geq i. \ \pi, j \models \Phi$ $\pi, i \models p$ iff $p \in L(\pi(i))$

 $\mathcal{S} \not\models \mathbf{F}a$ since s_6 is not reachable from s_0 counterexample: $\pi = s_0 s_5 s_0 s_5 \dots$ For full: $\pi, 0 \not\models \mathbf{F}a$ as, for all $j \geq 0$, $a \notin L(\pi(j))$

Counterexample is infinite, thus this is a liveness property Any finite prefix of π is not a counterexample.

 $\mathcal{S} \not\models \mathbf{G}p$ since there are many counterexamples, here is one:

 $\pi = s_0 s_5 s_0 s_5 \dots$

For full: π , 0 $\not\models$ **G**p with j=1

recall: $\pi, i \models \mathbf{G}\Phi$ iff $\forall j \geq i. \ \pi, j \models \Phi$ $\pi, i \models p$ iff $p \in L(\pi(i))$

Safety property, actually $\pi|_2$ is enough Every path $\max_{\mathbf{n}} \pi|_2$ as π

prefix is a counterexample

 $\mathcal{S} \models \mathbf{G} \neg a$ since s_6 is not reachable from s_0 For full: let $\pi \in \operatorname{Path}(\mathcal{S})$ $\pi, 0 \models \mathbf{G} \neg a$ as the only state s with $a \in L(s)$ is s_6 , which is not reachable from s_0

recall: $\pi \in \operatorname{Path}(\mathcal{S})$ implies $\pi(0) \in I$, thus $\pi(0) = s_0$ here

 $\mathcal{S} \not\models p \ \mathbf{U} \ r$, a counterexample is $\pi = s_0 s_1 (s_2 s_3 s_4)$

Again this is a liveness formula, even if $\pi|_1$ would have been enough

In fact, you have to rule out $\{p, \bar{r}\}^{\omega}$...

 $\mathcal{S} \not\models \neg (p \ \mathbf{U} \ r), \text{ a counterexample is } \pi = (s_0 s_5) \\ \text{In fact, } (s_0 s_5), 0 \models p \ \mathbf{U} \ r \\ \text{Thus it may happen that } \mathcal{S} \not\models \Phi \text{ and } \mathcal{S} \not\models \neg (\Phi) \\ \text{Instead, it is impossible that } \mathcal{S} \models \Phi \text{ and } \mathcal{S} \models \neg (\Phi) \\ \end{cases}$

 $\mathcal{S} \not\models q$, since s_0 is the only initial state and $q \notin L(s_0)$ (all paths in $\mathrm{Path}(\mathcal{S})$ must start from s_0)

 $S \models p$, since $p \in L(s_0)$

 $\mathcal{S} \models \mathbf{X}q$, since $q \in L(s_1) \land q \in L(s_5)$

 $\mathcal{S} \not\models \mathbf{XX}q$, since all states but s_5, s_6 are reachable in exactly 2 steps

 $S \models \mathbf{GF}p$ All lassos are s_0s_5 or $s_2s_3s_4$ In both such lassos, there are states in which p holds

 $\mathcal{S} \not\models \mathbf{G}(p \ \mathbf{U} \ q)$, a counterexample is $\pi = s_0 s_1(s_2 s_3 s_4)$ $(p \ \mathbf{U} \ q)$ must hold at any reachable state Ok in s_0, s_1, s_2 , but not in s_3

LTL Non-Toy Examples

- Recall the Peterson's protocol: checking mutual exclusion is $\mathbf{G}(\neg(p \land q))$, being p = P[1] = L3, q = P[2] = L3
 - all invariants are of the form GP, where P does not contain modal operators X, U or F
- Checking that both processes access to the critical section infinitely often is GF P[1] = L3 ∧ GF P[2] = L3
 - liveness property: no process is infinitely banned to access the critical section
- Even better: **G** $(P[1] = L2 \rightarrow F P[1] = L3)$
 - the same for the other process
 - since it is simmetric, this is actually enough

Equivalence Between LTL Properties

Definition of equivalence between LTL properties:

$$\varphi_1 \equiv \varphi_2 \quad \text{iff} \quad \forall \mathcal{S}. \ \mathcal{S} \models \varphi_1 \Leftrightarrow \mathcal{S} \models \varphi_2$$

- equivalent: $\forall \sigma \dots$
- Idempotency:
 - $FFp \equiv Fp$
 - $GGp \equiv Gp$
 - $p \mathbf{U} (p \mathbf{U} q) \equiv (p \mathbf{U} q) \mathbf{U} q \equiv p \mathbf{U} q$
- Absorption
- Absorption:
 - $\mathsf{GFG}p \equiv \mathsf{FG}p$
 - $\mathbf{FGF}p \equiv \mathbf{GF}p$
- Expansion (used by LTL Model Checking algorithms!):
 - $p \mathbf{U} q \equiv q \vee (p \wedge \mathbf{X}(p \mathbf{U} q))$
 - $\mathbf{F}p \equiv p \vee \mathbf{X}\mathbf{F}p$
 - $\mathbf{G}p \equiv p \wedge \mathbf{X}\mathbf{G}p$

CTL Syntax

$$\Phi ::= p \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid (\Phi) \mid \textbf{EX}\Phi \mid \textbf{EG}\Phi \mid \textbf{E}\Phi_1 \textbf{ U } \Phi_2$$

- Other derived operators (besides true, false, OR, etc):
 - $\mathbf{EF}\Phi = \mathbf{E}\mathrm{true}\; \mathbf{U}\; \Phi$
 - cannot be defined using $\mathbf{E} \neg \mathbf{G} \neg \Phi$, as this is not a CTL formula
 - actually, it is a CTL* formula (see later)
 - in fact, you cannot place a negation between E and the subformula
 - AF $\Phi = \neg EG \neg \Phi$, AG $\Phi = \neg EF \neg \Phi$, AX $\Phi = \neg EX \neg \Phi$
 - $\mathbf{A}\Phi_1 \mathbf{U} \Phi_2 = (\neg \mathbf{E} \neg \Phi_2 \mathbf{U} (\neg \Phi_1 \wedge \neg \Phi_1)) \wedge \neg \mathbf{E} \mathbf{G} \neg \Phi_2$
 - $\bullet \ \, \Phi_1 \textbf{A} \textbf{U} \Phi_2 = \textbf{A} \Phi_1 \textbf{U} \Phi_2, \, \Phi_1 \textbf{E} \textbf{U} \Phi_2 = \textbf{E} \Phi_1 \textbf{U} \Phi_2$

Comparison with LTL Syntax

$$\Phi ::= \operatorname{true} \mid p \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid (\Phi) \mid \mathbf{X} \Phi \mid \Phi_1 \mathbf{U} \Phi_2$$

- Essentially, all temporal operators are preceded by either E or
 A
 - with some care for U

CTL Semantics

- Goal: formally defining when $S \models \varphi$, being S a KS and φ a CTL formula
- This is true when, for all initial states $s \in I$ of S, $s \models \varphi$
 - thus. CTL is made of state formulas
 - LTL has path formulas
- To define when $s \models \varphi$, a recursive definition over the recursive syntax of CTL is provided
 - no need of an additional integer as for LTL syntax

CTL Semantics for $s \models \varphi$

- $\forall s \in S$. $s \models \text{true}$
- $s \models p \text{ iff } p \in L(s)$
- $s \models \Phi_1 \land \Phi_2$ iff $s \models \Phi_1 \land s \models \Phi_2$
- $s \models \neg \Phi \text{ iff } s \not\models \Phi$
- $s \models \mathsf{EX}\Phi \text{ iff } \exists \pi \in \mathrm{Path}(\mathcal{S}, s). \ \pi(1) \models \Phi$
- $s \models \mathsf{EG}\Phi \text{ iff } \exists \pi \in \mathrm{Path}(\mathcal{S}, s). \ \forall j. \ \pi(j) \models \Phi$
- $s \models \mathbf{E}\Phi_1 \ \mathbf{U} \ \Phi_2 \ \text{iff}$ $\exists \pi \in \text{Path}(S, s) \exists k : \ \pi(k) \models \Phi_2 \land \forall j < k. \ \pi(j) \models \Phi_1$

CTL Semantics for Added Operators

- It is easy to prove that:
 - $s \models \mathbf{AG}\Phi$ iff $\forall \pi \in \mathrm{Path}(\mathcal{S}, s)$. $\forall j. \ \pi(j) \models \Phi$
 - $s \models \mathsf{AF}\Phi$ iff $\forall \pi \in \mathrm{Path}(\mathcal{S}, s)$. $\exists j. \ \pi(j) \models \Phi$
 - analogously for AU, AR, AW
 - just replace ∀ with ∃ for EF, ER, EW
- Analogously to LTL, for many CTL formulas it is silently required that paths are infinite
- So again transition relations in KSs must be total

Safety and Liveness Properties in CTL

- Some CTL formulas may be neither safety nor liveness
 - being defined on states, the counterexample may be an entire computation tree
- Safety properties are those involving only AG, AX, true and atomic propositions
- Some formulas are both safety and liveness, like true,
 AG true and so on
- Liveness are formulas like AF, AFAG, AU
- EF or EG are neither liveness nor safety

 $\mathcal{S} \models \mathbf{AF}p$ since p holds in the first state For full: $s_0 \models \mathbf{F}p$ since $p \in L(s_0)$, thus, for all paths starting in s_0 , p holds in the first state, so it holds eventually

 $\mathcal{S} \models \mathbf{EF}p$ for the same reason as above

If it holds for all paths, then it holds for one path

 $\text{AF}\Phi \to \text{EF}\Phi$

The same holds for the other temporal operators \mathbf{G}, \mathbf{U} etc

 $\mathcal{S} \not\models \mathbf{EF} a$ since s_6 is not reachable

Note that the counterexample cannot be a single path
Since it would not enough to

The full reachable graph must be provided

disprove existence

One could also show the tree of all paths

Neither safety ner liveness

 $\mathcal{S} \not\models \neg \mathbf{E}(p \ \mathbf{U} \ r)$, a counterexample is $\pi = (s_0 s_5)$ In fact, $\mathcal{S} \not\models \Phi$ iff $\mathcal{S} \models \neg(\Phi)$ whenever |I| = 1In fact, the implicit for all is on initial states only, whilst it is on all paths for LTL...

 $\mathcal{S} \not\models \mathbf{AFAG}p$, a counterexample is $\pi = s_0 s_1(s_2 s_3 s_4)$ This is a liveness formula

 $\mathcal{S} \not\models \mathbf{EFEG}p$, a counterexample is again a computation tree All lassos are s_0s_5 or $s_2s_3s_4$ In both such lassos, there are states in which p does not hold

 $\mathcal{S} \not\models \mathbf{AFEG}p$, a counterexample is again a computation tree Since $\mathcal{S} \not\models \mathbf{EFEG}p$...

 $\mathcal{S} \not\models \mathbf{EFAG}p$, a counterexample is again a computation tree Since $\mathcal{S} \not\models \mathbf{EFEG}p$...

CTL Non-Toy Examples

- Recall the Peterson's protocol: checking mutual exclusion is $AG(\neg(p \land q))$, being p = P[1] = L3, q = P[2] = L3
 - equivalent to LTL Gp
- It is always possible to restart: **AGEF** $P[1] = L0 \land AGEF$ P[2] = L0

- Recall that $\varphi_1 \equiv \varphi_2$ iff $\forall \mathcal{S}. \ \mathcal{S} \models \varphi_1 \Leftrightarrow \mathcal{S} \models \varphi_2$
 - ullet also holds (w.l.g.) when $arphi_1$ is LTL and $arphi_2$ is CTL
- Of course, some CTL formulas cannot be expressed in LTL
 - it is enough to put an **E**, since LTL always universally quantifies paths
 - ullet so, there is not an LTL φ s.t. $\varphi \equiv \mathbf{EG}p$
 - no, $\mathbf{F} \neg p$ is not the same, why?
- So, one might think: LTL is contained in CTL
 - in the sense, for each LTL formula, there is a CTL equivalent formula
 - simply replace each temporal operator **O** with **AO**, that's it
 - ullet let ${\mathcal T}$ be a translator doing this
 - for any LTL formula φ , $\varphi \equiv \mathcal{T}(\varphi)$
 - actually, $\mathbf{G}p \equiv \mathcal{T}(\mathbf{G}p) = \mathbf{AG}p$

- Theorem. Let φ be an LTL formula. Then, either i) $\varphi \equiv \mathcal{T}(\varphi)$ or ii) there does not exist a CTL formula ψ s.t. $\varphi \equiv \psi$
 - idea of proof: replacing with **E** is of course not correct, and temporal operators on paths are the same
- Corollary. There exists an LTL formula φ s.t., for all CTL formulas $\psi,\ \varphi \not\equiv \psi$
- Proof of corollary:
 - by the theorem above and the definitions, we need to find
 - lacktriangledown an LTL formula arphi
 - \bigcirc a KS \mathcal{S}
 - where $\mathcal{S} \models \varphi$ and $\mathcal{S} \not\models \mathcal{T}(\varphi)$
 - viceversa is not possible

- ullet For example, as for the LTL formula, we may take $arphi={f FG} p$
 - note instead that $\mathbf{GF}p \equiv \mathbf{AGAF}p$
- ullet For example, as for the KS \mathcal{S} , we may take

- We have that $S \models \mathbf{FG}p$, but $S \not\models \mathbf{AFAG}p$
- Thus, CTL requires "more" than the corresponding LTL

- $\mathcal{S} \not\models \mathbf{AFAG} p$ means that $\neg (\forall \pi \in \mathrm{Path}(\mathcal{S}). \ \exists j : \ \forall \rho \in \mathrm{Path}(\mathcal{S}, \pi(j)). \ \forall k. \ p \in \rho(k)) = \exists \pi \in \mathrm{Path}(\mathcal{S}). \ \forall j : \ \exists \rho \in \mathrm{Path}(\mathcal{S}, \pi(j)). \ \exists k. \ p \notin \rho(k)$
- In our S, $\pi = s_0^{\omega}$: in fact, at any point of π , you may branch and go through $\neg p$ instead...
- $S \models \mathbf{FG}p$ means that $\forall \pi \in \mathrm{Path}(S)$. $\exists j : \forall k \geq j. \ p \in \pi(k)$
- Thus, there is not a CTL formula equivalent to FGp
- Furthermore, there is not an LTL formula equipments to AFAGD

CTL, LTL and CTL*

- CTL* introduced in 1986 (Emerson, Halpern) to include both CTL and LTL
- No restrictions on path quantifiers to be 1-1 with temporal operators, as in CTL
- State formulas: $\Phi ::= \operatorname{true} \mid p \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbf{A} \Psi \mid \mathbf{E} \Psi$
- Path formulas: $\Psi ::= \Phi \mid \Psi_1 \wedge \Psi_2 \mid \neg \Psi \mid \Psi_1 \mathbf{U} \Psi_2 \mid \mathbf{F} \Psi \mid \mathbf{G} \Psi$

CTL, LTL and CTL*

- The intersection between CTL and LTL is both syntactic and "semantic"
- Some formulas are both CTL and LTL in syntax: all those involving only boolean combinations of atomic propositions
- "Semantic" intersection: some LTL formulas may be expressed in CTL and vice versa, using different syntax
 - AGAFp and GFp
 - AGp and Gp
 - etc

