Appendix B

Finding identities between hypergeometric functions: Reddot

```
    search identities

                                                                                                                       □ display wolfram alpha links
                                 ☑ allow argument in coefficients

    □ list results immediately

                                 ☑ allow argument to change
                                                                                                                       □ use 'Hypergeom' (to prevent evaluation)
                                 □ include weirdos
                                □ maximum number of hypergeometric functions:
                                                                                                                      \hfill \Box display where formula is internally stored
                                              <sub>2</sub>F<sub>1</sub>'s:
                                              <sub>3</sub>F<sub>2</sub>'s:
  red dot procedure
> hypergeom([3/2, 3/2, 3/2], [3, 1/2], x);
reddot(%);
                \frac{1}{4} hypergeom \left(\left[\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}\right], \left[-\frac{1}{2}, 3\right], x\right) + \frac{3}{4} hypergeom \left(\left[\frac{3}{2}, \frac{3}{2}, \frac{5}{2}, \frac{5}{2}\right], \left[\frac{1}{2}, 3\right], x\right)
                                                     4 \operatorname{hypergeom} \left( \left[ \frac{3}{2}, \frac{3}{2}, \frac{3}{2} \right], \left[ \frac{1}{2}, 2 \right], x \right) - 3 \operatorname{hypergeom} \left( \left[ \frac{3}{2}, \frac{3}{2}, \frac{5}{2} \right], \left[ \frac{1}{2}, 3 \right], x \right)
                                                         -hypergeom \left(\left[\frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right], \left[-\frac{1}{2}, 3\right], x\right) + 2 \text{ hypergeom} \left(\left[\frac{3}{2}, \frac{3}{2}\right], [3], x\right)
                                                             4 hypergeom \left(\left[\frac{3}{2}, \frac{3}{2}\right], [2], x\right) - 3 hypergeom \left(\left[\frac{3}{2}, \frac{3}{2}\right], [3], x\right)
                                                             -2 \text{ hypergeom} \left( \left[ \frac{3}{2}, \frac{3}{2} \right], [3], x \right) + 3 \text{ hypergeom} \left( \left[ \frac{3}{2}, \frac{5}{2} \right], [3], x \right)
```

Figure B.1: Interface of the **reddot** procedure.

A program for finding hypergeometric identities is provided in the file maple.mw. It tests a total of 988 equalities as to whether they are applicable to a given hypergeometric function, applies them in all possible ways, and returns a list of expressions equivalent to the input. The equalities known to this program have been collected from https://functions.wolfram.com/HypergeometricFunctions/for identities and special values of ${}_{0}F_{1}$, ${}_{1}F_{0}$, ${}_{1}F_{2}$, ${}_{2}F_{1}$, ${}_{2}F_{2}$, ${}_{2}F_{3}$, ${}_{3}F_{2}$, ${}_{4}F_{3}$, ${}_{5}F_{4}$ and ${}_{6}F_{5}$. For roughly 40000 further conversions to elementary functions for hypergeometrics with specific numerical values of the parameters, the program provides a link to the relevant wolfram alpha site.

Usage

After opening the file, if Maple asks whether to execute content automatically, click "Yes". Input any hypergeometric function, and apply the procedure reddot to it.

Options

The following options can be activated by ticking the corresponding boxes:

search identities

Search for identities between different hypergeometric functions. There are multiple sub-options to narrow down the often very long list of results:

allow arguments in coefficients

If true, includes results in which the argument appears outside of hypergeometric functions, such as the argument x in the identity

$$_{3}\mathsf{F}_{2}\begin{bmatrix}1,\frac{3}{2},\frac{3}{2}\\\frac{1}{2},3\end{bmatrix};\mathsf{x}\end{bmatrix} = \frac{24}{\mathsf{x}^{2}} _{2}\mathsf{F}_{1}\begin{bmatrix}-\frac{1}{2},-\frac{1}{2}\\\frac{-3}{2}\end{bmatrix};\mathsf{x}\end{bmatrix} + \frac{4\left(\mathsf{x}-6\right)}{\mathsf{x}^{2}}$$

allow argument to change

If true, includes results where the argument of the hypergeometric function is transformed in some way, such as

$$_{2}\mathsf{F}_{1}\!\left[\!\begin{array}{c} \frac{1}{2},1\\ \frac{3}{2} \end{array}\!;x\right] = \frac{1}{1+\sqrt{x}} {_{2}}\mathsf{F}_{1}\!\left[\!\begin{array}{c} 1,1\\ 2 \end{array}\!;\frac{2\sqrt{x}}{1+\sqrt{x}}\right]$$

include weirdos

Includes a small number of especially complicated identities.

maximum number of hypergeometric functions

One may wish to limit the total number of hypergeometric functions of each size; adjust the sliders to filter out results containing too many such functions.

search specific values

Search for non-hypergeometric representations of the input hypergeometric function, such as

$$_2F_1\left\lceil \frac{\frac{1}{2},1}{\frac{3}{2}};x\right\rceil = \frac{1}{\sqrt{x}}\operatorname{arctanh}\left(\sqrt{x}\right)$$

The remaining options control the display of the output.

display wolfram alpha links

Toggles the line with the link to the relevant wolfram alpha site:

"Check here for possible conversion to elementary functions: ", http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric3F2/03/08/06/02/01/05/

list results immediately

If ticked, any detected results are immediately printed on screen. If not, the screen remains blank until the **reddot** function returns the set of results.

use 'Hypergeom'

Sometimes, maple automatically replaces simple hypergeometric functions by their elementary representation. Returning the output using the capitalized Hypergeom function name prevents this.

show LHS

Display LHS (the input hypergeometric function) together with the found RHS.

display where formula is internally stored

This is merely a debug option and can be ignored.