Devoir maison n°10 À rendre le 05/05/2025

Les candidats sont invités à porter une attention particulière à la qualité de leurs raisonnements ainsi qu'à la rédaction. Les références de questions doivent obligatoirement être mentionnées.

Problème I: Décomposition de Fitting

Soit f un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. On définit la suite des noyaux et des images itérées de f par $N_k = \ker(f^k)$, $I_k = \operatorname{Im}(f^k)$ et on note $N_f = \bigcup_{k \in \mathbb{N}} N_k$, $I_f = \bigcap_{k \in \mathbb{N}} I_k$. L'objectif est de démontrer la décomposition de Fitting, où l'espace vectoriel E se décompose en une somme directe de sous-espaces invariants sous f.

- 1. Montrer que la suite $(N_k)_{k\in\mathbb{N}}$ (respectivement $(I_k)_{k\in\mathbb{N}}$) est croissante (respectivement décroissante) par rapport à l'inclusion, autrement: $\forall k \in \mathbb{N}$, $N_k \subseteq N_{k+1}$ et $I_{k+1} \subseteq I_k$.
- **2.** Soit $A_f = \{k \in \mathbb{N}; N_k = N_{k+1}\}.$
 - a) Montrer par l'absurde que $A_f \neq \emptyset$. On note $r = min(A_f)$, dit l'indice de f.
 - **b)** Déterminer l'indice *r* de l'endomorphisme défini par :

$$u: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$$
, $(x, y, z, t) \longmapsto (0, y, z + t, z + t)$.

- c) Montrer que:
 - Si k < r, alors $N_k \subseteq N_{k+1}$ et $I_{k+1} \subseteq N_k$.
 - Si $k \ge r$, alors $N_k = N_{k+1}$ et $I_k = I_{k+1}$.
- **3.** En déduire que N_f et I_f sont des sous-espaces vectoriels de E, stables par f.
- **4.** Montrer que $E = N_f \oplus I_f$, dite décomposition de Fitting.
- **5.** On note f_N l'endomorphisme induit par f sur N_f et f_I celui induit par f sur I_f .
 - a) Montrer f_N est nilpotent et f_I est un automorphisme.
 - **b)** Déterminer u_N et u_I .

Problème II: Lemme des noyaux

Soit E un \mathbb{K} espace vectoriel et f un endomorphisme de E.

Pour tout polynôme $P(X) = \sum_{k=0}^{m} a_k X^k \in \mathbb{K}[X]$, on définit l'endomorphisme de E noté P(f) par :

$$P(f) := a_0 \operatorname{Id}_E + a_1 f + \dots + a_m f^m$$

Et on note $\mathbb{K}[f] := \{P(f) \mid P \in \mathbb{K}[X]\}.$

- 1. Propriétés algébriques de $\mathbb{K}[f]$
 - a) Montrer que pour tous $P, Q \in \mathbb{K}[X]$ et tout $\lambda \in \mathbb{K}$,

$$(\lambda P + Q)(f) = \lambda P(f) + Q(f)$$
 et $(PQ)(f) = P(f) \circ Q(f)$.

b) En déduire que ($\mathbb{K}[f]$, +, ·) est un \mathbb{K} -espace vectoriel et que ($\mathbb{K}[f]$, +, o) est un anneau commutatif.

Prof: A.EL GARGATI Année scolaire: 2024/2025

2. Étude des noyaux et images associées

Pour tout $P \in \mathbb{K}[X]$, on pose :

$$N_P = \ker(P(f))$$
 et $I_P = \operatorname{Im}(P(f))$.

- **a)** Montrer que si *P* divise *Q* dans $\mathbb{K}[X]$, alors : $N_P \subset N_Q$ et $I_Q \subset I_P$.
- **b)** Montrer que : $N_P \cap N_Q = N_{P \wedge Q}$ et $N_P + N_Q = N_{P \vee Q}$.
- c) Montrer que : $I_P + I_Q = I_{P \wedge Q}$ et $I_P \cap I_Q = I_{P \vee Q}$.
- 3. Lemme de décomposition des noyaux
 - **a)** Montrer que si $P \wedge Q = 1$, alors : $N_{PO} = N_P \oplus N_O$.
 - **b)** En déduire que si $P \wedge Q = 1$ et PQ(f) = 0, alors : $E = N_P \oplus N_Q$.
 - c) Application: Soit $f \in \mathcal{L}(E)$ tel que: $f^2 5f + 6\operatorname{Id}_E = 0$. Montrer que: $E = \ker(f 2\operatorname{Id}_E) \oplus \ker(f 3\operatorname{Id}_E)$.

Problème III: sous-espaces vectoriels stables

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$, on dit qu'un sous-espace vectoriel F de E est stable par f si $f(F) \subset F$.

On dit que f possède la **propriété S** si tout sev de E stable par f admet un supplémentaire stable par f. On se propose d'étudier les propriétés de stabilité et la **propriété S**.

Partie I:

- **1.** Montrer que si f est une homothétie ($f = \alpha i d_E$ avec $\alpha \in \mathbb{R}$), alors tout sev de E est stable par f. Une homothétie possède-t-elle la **propriété S**?
- **2.** Soit $f \in \mathcal{L}(E)$ laissant stable toutes les droites de E (Une droite de E est sev de E de dimension 1).
 - **a)** Montrer que $\forall x \in E \setminus \{0\}$, $\exists ! \lambda_x \in \mathbb{R}$ tel que $f(x) = \lambda_x x$.
 - **b)** Montrer que si (x, y) est libre, alors $\lambda_x = \lambda_y$.
 - c) Montrer que si x et y sont non nuls et liés alors $\lambda_x = \lambda_y$.
 - **d)** En déduire qu'il existe $\lambda \in \mathbb{R}$ tel que $\forall x \in E$, $f(x) = \lambda x$.
- **3.** On suppose que $E = \mathbb{R}^3$. Montrer que toute droite vectorielle de E est l'intersection de deux plans vectoriels.
- **4.** Montrer que si $f \in \mathcal{L}(\mathbb{R}^3)$ laisse stable tous les plans alors f est une homothétie.

Partie II:

- **1. a)** Soit p un projecteur de E. Montrer que si F est somme d'un sev de $\ker(p)$ et d'un sev de Im(p), alors F est stable par p.
 - **b)** Montrer réciproquement que si F est stable par p alors F est somme d'un sev de $\ker(p)$ et d'un sev de Im(p).
 - c) Montrer qu'un projecteur possède la propriété S.
 - d) Les symétrie possèdent-elles la propriété S.
- **2.** Soit $f \in \mathcal{L}(E)$ vérifiant $f^n = id_E$ avec $n \in \mathbb{N}^*$. Soit F un sev de E stable par f.
 - a) Montrer que $f \in GL(E)$ et que F est stable par f^{-1} .
 - **b)** Soit p un projecteur de E tel que Im(p) = F. On pose $q = \frac{1}{n} \sum_{k=0}^{n-1} f^k \circ p \circ f^{-k}$. Montrer que $\forall (i, j) \in \{0, ..., n-1\}^2$, $f^i \circ p \circ f^{-i} \circ f^j \circ p \circ f^{-j} = f^j \circ p \circ f^{-j}$. et en déduire que q est un projecteur.

- c) Montrer que Im(q) = F (on pourra montrer deux inclusions).
- d) Montrer que f et q commutent et en déduire que f possède la **propriété S**.
- **3.** Soit $f \in \mathcal{L}(E)$ nilpotent d'indice $n \ge 2$.
 - a) Montrer que ker(f) est différent de $\{0\}$ et de E.
 - **b)** Supposons que $\ker(f)$ admette un supplémentaire F stable par f et soit $y \in F \setminus \{0\}$. Montrer qu'il existe $p \ge 2$ tel que $f^p(y) = 0$ et $f^{p-1}(y) \ne 0$.
 - c) En déduire que $\ker(f) \cap F \neq \{0\}$.
 - d) f possède-t-il la **propriété S**?