

# Submitted to the Mechatronics Engineering Department The Hashemite University

The project of Artificial Intelligence (Calculator Find Summation & Average Of Two Number)

Supervised by:

Dr. Mohammed Abu Mallouh

Student Name ID Number

1. Mu'men Fayez Abu-Zeneh 1636716

# We get some correct data

| Н   | G   | F   | Е   | D   | С   | В   | Α    |   |
|-----|-----|-----|-----|-----|-----|-----|------|---|
| EX7 | EX6 | EX5 | EX4 | EX3 | EX2 | EX1 |      | 1 |
| 0   | 0   | 0   | 0   | 0   | 0   | 0   | IN 1 | 2 |
| 6   | 5   | 4   | 3   | 2   | 1   | 0   | IN 2 | 3 |
|     |     |     |     |     |     |     |      | 4 |
| 6   | 5   | 4   | 3   | 2   | 1   | 0   | SUM  | 5 |
| 3   | 2.5 | 2   | 1.5 | 1   | 0.5 | 0   | Avg  | 6 |

#### Include it to workspace in matlab as to group input & output



# Run nntool & import input & target data from workspace



Create new neural network & name it test1 type of it feed-forward backprop with training function variable learning rate gradient decent and performance function is square of sum and two layer with 5 neurons has transfer function TANSIG



#### Select input & target



#### Initialize weight



#### Chose epochs max fail min grad & learning rate



# After train 14 epochs gradient stop learning



## Train performance



#### Train state



# Train regression



That's bad performance

We create new neural network named test2 type of it feed-forward backprop with training function variable learning rate gradient decent and performance function is square of sum and 3 layer with 5 neurons in layer 1 & 3 neurons in layer 2 has transfer function PURELIN



#### Select input & target



#### Initialize weight



### Chose epochs max fail min grad & learning rate



# After train 651 epochs validation check stop learning



#### Train performance



#### Train state



# Train regression



That's good performance let's test it

#### We export test2 to workspace



## Write { genism(test2) } in command window



#### Run Simulink as black box has input & output



#### Change input randomly number



#### Then output get



# After zoom in to the yellow line we get sum



#### After zoom in to the blue line we get avg



#### Change input randomly number



#### Then output get



# After zoom in to the yellow line we get sum



## After zoom in to the blue line we get avg

