Precalculus Lecture 15

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

- Quadratic Functions
 - Standard Form
 - Geometric Features
 - Quadratic Equations
 - Vieta's Formulas
 - Factoring quadratics
 - Plotting Quadratics
 - Maxima and Minima

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Quadratic Functions Standard Form 4/27

Definition

Let a, b, c be real numbers with $a \neq 0$. The function

$$f(x) = ax^2 + bx + c$$

is called a quadratic function.

• The graph of a quadratic function is called a parabola.

Quadratic Functions Standard Form 5/27

Example (Completing the square)

Complete the square.

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{25}{12} + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{13}{12}.$$

Quadratic Functions Standard Form 6/27

Definition (Completing the square)

Let $a \neq 0$. To *complete the square* means to carry out the following algebraic manipulation.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a \cdot \frac{b^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}.$$

Quadratic Functions Standard Form 7/27

Definition (Discriminant of quadratic function)

The quantity $D = b^2 - 4ac$ is called the *discriminant* of the quadratic function $ax^2 + bx + c$.

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}.$$

Definition

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and $k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$ is called the standard form of $ax^2 + bx + c$.

Definition

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of $y = x^2$ is a parabola; its shape is assumed known.
- The standard form shows how the graph of an arbitrary quadratic is obtained from the graph of y = x²:
 - ax^2 stretches $y = x^2$ by factor of a and possibly reflects across the x axis.
 - $a(x h)^2$ shifts $y = ax^2$ by h units right.
 - $a(x-h)^2 + k$ shifts $y = a(x-h)^2 + k$ by k units up.

Definition

The expression
$$f(x) = a(x - h)^2 + k$$
, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.
- The point $(h, k) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$ is called the vertex of the parabola.
- The parabola is symmetric with respect to the line $x = h = -\frac{b}{2a}$, i.e., the vertical line through its vertex.

Definition

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- When we change h and k we move the vertex of the parabola without change in steepness.
- Therefore when we change b and c we move the vertex of the parabola without change in steepness.

Quadratic Functions Geometric Features 9/27

Example

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x - h)^{2} + k = y$$

$$a(x - 1)^{2} + 2 = y$$

$$a(2 - 1)^{2} + 2 = \frac{3}{2}$$

$$a = \frac{3}{2} - 2 = -\frac{1}{2}$$

$$y = -\frac{1}{2}(x - 1)^{2} + 2$$

$$y = -\frac{1}{2}x^{2} + x + \frac{3}{2}$$

Standard form

Vertex at (1,2)

Passes through $(2, \frac{2}{3})$

Final answer

Alternative answer

Quadratic Functions Quadratic Equations 10/27

Problem (Quadratic equation formula)

Solve the general quadratic equation

Solve the general quadratic equation
$$ax^2 + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a}$$
or
$$x = \frac{-b - \sqrt{D}}{2a}$$

$$x = \frac{-b - \sqrt{D}}{2a}$$

Todor Milev 2020 Lecture 15

Quadratic Functions Quadratic Equations 11/27

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

where $D = b^2 - 4ac$, or equivalently by:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Find the *x*-intercepts of $\frac{x^2}{2} - x - 1$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{\cancel{2} \cdot \frac{1}{\cancel{2}}}$$

$$= 1 \pm \sqrt{3}$$

Find the *x*-intercepts of $x^2 - 4x + 3$.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4+2}{2} = \frac{6}{2} = 3\\ \frac{4-2}{2} = \frac{2}{2} = 1 \end{cases}$$

Quadratic Functions Quadratic Equations 14/27

Example

Find the *x*-intercepts of $x^2 - 2x + 3$.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$
no real solutions
no x – intercepts

Quadratic Functions Vieta's Formulas 15/27

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a} - \frac{\cancel{b}-\sqrt{D}}{2a}\right)$$

$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$

$$= a^{2}\left(\frac{\cancel{D}}{\cancel{2}a}\right)^{2}$$

$$= D, \text{ as desired.}$$

• Discriminant is zero \Leftrightarrow the quadratic has non-distinct roots, hence the discriminant discriminates between the two roots.

_

Quadratic Functions Vieta's Formulas 16/27

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$x_1x_2 = \frac{c}{a}$$

$$x_1 + x_2 = -\frac{b}{a}$$

The last two formulas are called Vieta's formulas (after François Viète (1540-1603), Latinized name: Franciscus Vieta).

Quadratic Functions Factoring quadratics 17/27

Theorem

The quadratic $ax^2 + bx + c$ factors as follows.

$$ax^2 + bx + c = a(x - x_1)(x - x_2),$$

where x_1 and x_2 are the roots of the quadratic, given by:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic Functions Factoring quadratics 18/27

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x + -1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

If there is a factorization using integers, it should be of the form

$$3x^{2} + 8x - 11 = (3x + p)(x + q)$$

$$= 3x^{2} + 3xq + px + pq$$

$$= 3x^{2} + x(3q + p) + pq$$

(Vieta's formulas) This means that :

$$8 = 3q + p$$

$$-11 = pq$$

$$p, q \text{ must be divisors of 11: } \pm 1, \pm 11$$

$$p = 11$$

a = -1

Quadratic Functions Factoring quadratics 18/27

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, where $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Example

Factor the polynomial. If possible, guess the factorization.

$$3x^2 + 8x - 11 = (3x + 11)(x + -1)$$

= $3(x - (-\frac{11}{3}))(x - 1)$

- What if we can't guess the factorization?
- Use the formulas for x_1, x_2 .

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 3 \cdot (-11)}}{2 \cdot 3}$$

$$= \frac{-8 \pm \sqrt{64 + 132}}{6} = \frac{-8 \pm \sqrt{196}}{6}$$

$$= \frac{-8 \pm 14}{6} = \begin{cases} \frac{-8 + 14}{6} = \frac{6}{6} = 1\\ \frac{-8 - 14}{6} = -\frac{22}{6} = -\frac{11}{3} \end{cases}$$

Quadratic Functions Factoring quadratics 19/27

Proposition (Vieta's formulas)

Let $ax^2 + bx + c$ be a quadratic functions with zeros x_1 and x_2 . Then:

$$a(x - x_1)(x - x_2) = ax^2 + bx + c$$

$$ax^2 - a(x_2 + x_1)x + ax_1x_2 = ax^2 + bx + c$$

$$x_1x_2 = \frac{c}{a}$$

$$x_1 + x_2 = -\frac{b}{a}$$

The last two formulas are called Vieta's formulas (after François Viète (1540-1603), Latinized name: Franciscus Vieta).

Quadratic Functions Factoring quadratics 20/27

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1x_2 = \frac{c}{a}$$
Vieta's formulas

Example

Factor the quadratic.

$$x^2 + 5x + 6 = (x + 2)(x + 3)$$

- The product of the two roots: $x_1x_2 = 6$.
- The divisors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$.
- Therefore the pair x_1, x_2 is $\pm 1, \pm 6$ or $\pm 2, \pm 3$.
- The sum of the two roots: $x_1 + x_2 = -5$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic.

$$x^2 + 3x + 1 = \left(x - \left(\frac{-3 + \sqrt{5}}{2}\right)\right) \left(x - \left(\frac{-3 - \sqrt{5}}{2}\right)\right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- No easy factorization; must use quadratic formula.

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$= \frac{-3 \pm \sqrt{5}}{2}$$

Todor Milev Lecture 15 2020

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$
 $\begin{vmatrix} x_{1}x_{2} &=& \frac{c}{a} \\ x_{1} + x_{2} &=& -\frac{b}{a} \end{vmatrix}$

Factor the quadratic, using complex numbers if needed.

$$x^2 + x + 1 = \left(x - \left(\frac{-1 + \sqrt{3}i}{2}\right)\right) \left(x - \left(\frac{-1 - \sqrt{3}i}{2}\right)\right)$$

- The product of the two roots: $x_1x_2 = 1$.
- Integer options: $x_1 = 1, x_2 = 1$ and $x_1 = -1, x_2 = -1$.
- $(x-1)(x-1) = (x-1)^2 = x^2 2x + 1$ $(x+1)(x+1) = (x+1)^2 = x^2 + 2x + 1$ both don't work.
- ullet \Rightarrow No easy factorization; must use quadratic formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{\frac{2a}{2}} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$
$$= \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm \sqrt{3}i}{2}$$

To plot a parabola by hand roughly, we need to do the following.

- Find the vertex of the parabola.
- Find the y intercept.
- Find the x intercept(s) if any.

- Plot the parabola freehand, making sure that the parabola passes through all special points you found in the preceding items.
- If a > 0 your parabola should open upwards, if a < 0 your parabola should open downwards.
- For |a| > 1 we should aim to draw the graph steeper than $a = x^2$, for |a| < 1 we should aim to draw the graph flatter than $a = x^2$.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21-3\sqrt{57}}{4}$, $x = \frac{21+3\sqrt{57}}{4}$.

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)3}{4\left(-\frac{2}{3}\right)} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8} = \frac{171}{8}.$$

24/27

• The *y*-intercept is f(0) = 3.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The x intercepts are given by the solutions of

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & | \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & | \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{41 + 72}}{-4} & | \\
= \frac{21 \pm \sqrt{513}}{4} & | \\
= \frac{21 \pm \sqrt{9} \sqrt{57}}{4} & | \\
= \frac{21 \pm 3\sqrt{57}}{4} & | \\
= \frac{21 \pm 3\sqrt{57}}{4} & | \\
\end{array}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4}=\frac{21-24}{4}=-\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.
 - Finally "connect the dots with a freehand drawing".

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$,

 $x = \frac{21 + 3\sqrt{57}}{4}$.

Vertex at:
$$(\frac{21}{4}, \frac{171}{8})$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4}=\frac{21-24}{4}=-\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.
 - Finally "connect the dots with a freehand drawing".

Quadratic Functions Maxima and Minima 25/27

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

- Therefore if a > 0 then $f(x) = a(\text{square}) \frac{D}{\Delta a} \ge \frac{D}{\Delta a}$.
- Similarly if a < 0 then $f(x) = a(\text{square}) \frac{D}{Aa} \le -\frac{D}{Aa}$.

Todor Milev Lecture 15 2020

Recall
$$f(x) = ax^2 + bx + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
.

Proposition

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ and let $D = b^2 - 4ac$.

- If a > 0 then f(x) has no maximum and has minimum at $x = -\frac{b}{2a}$.
- If a < 0 then f(x) has no minimum and has maximum at $x = -\frac{b}{2a}$.
- In both cases, the extremal value (either maximum or minimum) is $f\left(-\frac{b}{2a}\right) = -\frac{b^2-4ac}{4a} = -\frac{D}{4a}$.

Quadratic Functions Maxima and Minima 27/27

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = $xz = 6 \cdot 6 = 36$.