

Theoretical Mechanics, Lab 4: KIN PLANE3 SPHER

Plane motion 3 Spherical motion

Questions from the class

mmP

No questions this time

Task 1 (yours)

Arm *OB* of the linkage has a clockwise angular velocity of 10 rad/sec in the position shown where $\phi = 45^{\circ}$. Determine the velocity of *A*, the velocity of *D*, and the angular velocity of link *AB* for the shown position.

Task 1

Task 1 (yours): solution

Directions of vel of A and B are tangent to their circular paths @ fixed centers O and O'

 Intersection of the two perpendiculars to the vel from A and B → IC C for the link AB

$$AC = AB an 45 = 350 an 45 = 350 an 6$$

 $CD^2 = 350^2 + 150^2 \rightarrow CD = 381 an 6$
 $CD^2 = 350^2 + 350^2 \rightarrow CB = 350 an 6$
 $CD^2 = 350^2 + 350^2 \rightarrow CB = 350 an 6$
 $CD^2 = 350^2 + 350^2 \rightarrow CD^2 = 350 an 6$
 $CD^2 = 350^2 + 350^2 \rightarrow CD^2 = 350^2 \rightarrow CD^2 \rightarrow CD^2 = 350^2 \rightarrow CD^2 \rightarrow CD^2 = 350^2 \rightarrow CD^2 \rightarrow$

$$v_A = r \omega = 350 \text{x} 4.29 = 1.5 \text{ m/s}$$

 $v_D = r \omega = 381 \text{x} 4.29 = 1.632 \text{ m/s}$
Directions of velocities are shown.

Task 2 (mine)

The task to find kinematics for the whole mechanism and velocities for *D*.

You know all lengths (OA, AB, BC), $\varphi(t)$. Coordinates of all bases are known. The basis near to M point is horizontal respect to the ground.

Task 2

Task 3 (mine)

The cone (angle -2α , $\alpha=30^{\circ}$, r=20 — base) is rolling on a ground without friction. $\vec{V}_C=const=60$. It is needed to find Ω , ε , \vec{V}_B , \vec{a}_B .

Task 3

Task 4 (yours): M (rus) 19.9

321. A disk OA of radius $R=4\sqrt{3}$ cm rotating about a fixed point O rolls round a stationary cone of semi-angle 30° at a vertex (Fig. 239). Find the angular velocity of rotation of the disk about its axis of symmetry if the acceleration w_A of a point A on the disk has a constant magnitude and equals 48 cm/sec^2 .

Ans.
$$\omega = 2 \sec^{-1}$$
.

Fig. 239

