Laboratório de Sistemas Digitais Aula Teórico-Prática 5

Ano Letivo 2023/24

Modelação em VHDL de registos e módulos combinatórios de deslocamento

Conteúdo

- Modelação em VHDL
 - Registos de deslocamento
 - Módulos combinatórios de deslocamento (shifters)

Operações de Deslocamento

Deslocamento	Operando	Resultado (deslocam. de 1 bit)	Resultado (deslocam. de 2 bits)
À esquerda <u>lógico ou aritmético</u> (introduz 0's)	0100	1 00 <u>0</u>	00 <u>00</u>
	01 01	1 01 <u>0</u>	01 <u>00</u>
À direita <u>lógico</u> (introduz 0's)	0011	<u>0</u> 001	<u>00</u> 00
	10 11	<u>0</u> 101	<u>00</u> 10
aritmético	0011	<u>0</u> 001	<u>00</u> 00
	10 11	<u>1</u> 101	<u>11</u> 10

Aplicações típicas:

Conversão de dados <u>paralelo</u> \leftrightarrow <u>série</u> em sistemas computacionais de/para as interfaces Ethernet, SATA, PCIe, etc.

Algoritmos de deteção e correção de erros em sistemas de comunicação, etc.

Abordagens / implementações típicas:

- Iterativa (registo de deslocamento c/clock)
- Paralela (combinatória barrel shifter)

Deslocar i bits à esq. ⇔ × 2ⁱ Deslocar i bits à direita ⇔ ÷ 2ⁱ

Interface e Estrutura de um Registo de Deslocamento

Interface e Estrutura de um Registo de Deslocamento Bidirecional

enable	loadEn	dirLeft	Operação
0	-	-	Nenhuma (registo inalterado)
1	1	-	Carregamento paralelo
1	0	1	Deslocamento p/ a esquerda
1	0	0	Deslocamento p/ a direita

Determine a função lógica de cada sinal de seleção dos multiplexadores em função das entradas "loadEn" e "dirLeft"

Exemplo de Registo de Deslocamento

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
entity ShiftReg is
  port(clk
                 : in std logic;
       loadEn : in std logic;
       dataIn : in std logic vector(7 downto 0);
       dirLeft : in std logic;
       dataOut : out std logic vector(7 downto 0));
end ShiftReg;
architecture Behavioral of ShiftReg is
  signal s shiftReg : std logic vector(7 downto 0);
begin
  process(clk)
  begin
    if (rising edge(clk)) then
      if (loadEn = '1') then
        s shiftReg <= dataIn;
      elsif (dirLeft = '1') then
        s shiftReg <= s shiftReg(6 downto 0) & '0';</pre>
      else
        s shiftReg <= '0' & s shiftReg(7 downto 1);</pre>
      end if:
    end if:
  end process;
  dataOut <= s shiftReg;</pre>
```

end Behavioral;

Exemplo com
carregamento
paralelo de uma
"palavra" e o seu
deslocamento
bit-a-bit de
forma síncrona
com o clock

loadEn	dirLeft	Operação
1	-	Carregamento paralelo
0	1	Deslocamento p/ a esquerda
0	0	Deslocamento p/ a direita

Como realizar um deslocamento aritmético para a direita? (ex. $\underline{1}010 >> 1 = \underline{11}01$) Como realizar rotações?

Simulação do Registo de Deslocamento

 Simulação do carregamento paralelo e deslocamento para a <u>direita</u> (loadEn = '1' -> loadEn = '0'; dirLeft = '0')

Simulação do Registo de Deslocamento

 Simulação do carregamento paralelo e deslocamento para a <u>esquerda</u> (loadEn = '1' -> loadEn = '0'; dirLeft = '1')

Mais um Exemplo de um Registo de Deslocamento

```
use IEEE.STD LOGIC 1164.all;
entity IterShifter is
  port(clk
                  : in std logic;
       loadEn
                  : in std logic;
       sInLeft : in std logic;
       sInRight : in std logic;
                  : in std_logic_vector(7 downto 0);
       dataIn
       dirLeft : in std logic;
                  : out std logic vector(7 downto 0));
       dataOut
end IterShifter;
architecture Behavioral of IterShifter is
  signal s shiftReg : std logic vector(7 downto 0);
begin
  process (clk)
  begin
    if (rising edge(clk)) then
      if (loadEn = '1') then
        s shiftReg <= dataIn;
      elsif (dirLeft = '1') then
        s shiftReg <= s shiftReg(6 downto 0) & sInLeft;</pre>
      else
        s shiftReg <= sInRight & s shiftReg(7 downto 1);</pre>
      end if:
    end if;
  end process;
  dataOut <= s shiftReg;</pre>
```

end Behavioral;

loadEn	dirLeft	Operação
1	-	Carregamento paralelo
0	1	Deslocamento p/ a esquerda
0	0	Deslocamento para a direita

Exemplo com entradas série e também de carregamento paralelo de uma "palavra" e o seu deslocamento bit-a-bit de forma síncrona com o *clock*

Interface e Estrutura de um *Barrel*Exemplo de Shifter (Combinatório)

deslocamento lógico à direita e implementação com Muxs

pln(6)pln(5)pln(4)pln(3)pln(1) pln(0)pln(7)pln(2)shAmountR(0) 'O' shAmountR(1) 'O' '0' shAmountR(2)pOut(4) pOut(5) pOut(0) pOut(6) pOut(3) pOut(2) pOut(1) pOut(7)

Deslocamento realizado de forma combinatória (sem *clock*)

Entrada **shAmountR(i) = '1'** provoca um deslocamento de **2**ⁱ

Realiza o deslocamento de "qualquer" número de bits sem necessitar de um sinal de relógio (de forma combinatória)

Exemplo de Operação de um *Barrel Shifter* (Combinatório)

TPC:

Como adaptar o circuito para realizar deslocamentos aritméticos? Como estender o circuito para suportar também deslocamentos à esquerda?

Exemplo em VHDL de um Módulo Combinatório de Deslocamento

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
use IEEE.NUMERIC STD.all;
entity CombShifter is
  port(dataIn : in std logic vector(7 downto 0);
       dirLeft : in std logic;
       shAmount : in std logic vector(2 downto 0);
                 : out std logic vector(7 downto 0));
       dataOut
end CombShifter;
architecture Behavioral of CombShifter is
   signal s shAmount : integer;
begin
  s shAmount <= to integer(unsigned(shAmount));</pre>
  process(dataIn, dirLeft, s shAmount)
  begin
    if (dirLeft = '1') then
      dataOut <= std logic vector(shift left(unsigned(dataIn), s shAmount));</pre>
    else
      dataOut <= std logic vector(shift right(unsigned(dataIn), s shAmount));</pre>
```

end if;
end process;

end Behavioral:

Deslocamento Lógico

shift_left(unsigned, integer)
shift_right(unsigned, integer)
Deslocamento Aritmético

shift_right (signed, integer)

A síntese deste módulo resulta num Barrel Shifter

Simulação do Módulo Combinatório de Deslocamento

Comentários Finais

- No final desta aula e do trabalho prático 6 de LSD, deverá ser capaz de:
 - Modelar em VHDL módulos de deslocamento
 - Sequenciais
 - Combinatórios

(o trabalho prático 5 é sobre parametrização de componentes em VHDL – abordada nas aulas TP 3 e 4)