FD 8-BIT SAR

DR. NIPUN KAUSHIK

DESIGN PARAMETERS

- Resolution = 8-bit
- Cu = 20fF
- Vref = IV
- Switching scheme = Charge recycling (Ginsberg et al., 2005 & 2006)
- CDAC arrangement = Split Capacitor DAC MSB split into lower sub-DAC
- System Clock = 100 MHz

SCHEMATIC TOP

Fig 1:Top cadence schematic of the ADC

CDAC

Fig 2: CDAC symbol and control signals

CDAC ARRANGEMENT

Fig 3: CDAC arrangement with reference switches

DOUBLE TAIL COMPARATOR

Fig 4: Comparator symbol and control signals

COMPARATOR SCHEMATIC

Fig 5: Double-tail comparator with SR latch

CDAC REFERENCE SWITCH

Fig 6: CDAC reference switch and control signals

CDAC SWITCH

Fig 7: Reference switch and control signals

SAR LOGIC BLOCK

Fig 8: SAR logic and signals

SYNCHRONOUS FD LOGIC

Fig 9: Sequencer, SAR registers, DAC control

SEQUENCER AND CODE REGISTERS

Fig 10: Sequencer and SAR registers

DAC CONTROL

Fig 11: DAC control for upper and lower DAC

SIMULATION RESULTS

WAVEFORM

Fig 12:Transient simulation for a conversion cycle

RAMP

Fig 13: Full-scale ramp used for PSCA security characterization

FFT

- Unsecure time 450.68u
- Target frequency around IMeg
- Points 4096
- Sampling Rate = 9.09MSPS
- $\Delta f = Sampling \frac{frequency}{Number of points} = \frac{9.09Meg}{4096} = 2.21946 KHz$
- Target frequency = $k. \Delta f$; so k = 451 nearest round number
- Trecord = 4096*I I0ns = 450.6+tdelay

FFT

Fig. 14: Dynamic performance of the ADC

FFT RESULTS

- ENOB 7.526
- SINAD 47.07
- SNR 47.44
- SFDR 60.26
- THD 132.5E-3
- THDDB -57.55
- Sig Power 6.095
- DC Power 6.061

- SNB 80.63
- SNRH 114.1
- Total harmonic power 63.65
- Peak Harmonic Power 66.35
- FoMw = 7.49fF/c-step
- FoMs = 67.5fj/c-step
- FoMs(db) = 225.8dB

16	ENOB	7.526	
17	SINAD	47.07	
18	SNR	47.44	
19	SFDR	60.26	
20	THD	132.5m	
21	THD_DB	-57.55	
22	Signal_Power	-6.095	
23	DC power	-6.061	
24	SNB	-80.63	
25	SNRH	-114.1	
26	Total Harmonic Power	-63.65	
27	Peak Harmonic Power	-66.35	

DNL INL NORMALIZED

Fig 15: DNL (LSB) min: -0.1318, max: 0.1162; INL (LSB) min: -0.1665, max: 0.1440

POST PROCESSING

- DNL and INL were executed in Python
- FFT analysis was also verified in Python.
- Matplotlib is used for plotting, please refer to the files for code.

POWER CONSUMPTION – UNSECURE FINAL

Test 🛆	Output	Min	Max	Mean	Median	Std Dev	Spec	Pass/Fai	
Tran	DVDD_avg	-78.95u	-77.1u	-77.72u	-77.67u	353.8n			
Tran	VCM_ref	3.977u	4.043u	4.007u	4.008u	11.93n			
Tran	VREF_avg	-64.39u	-52.74u	-60.35u	-61.73u	3.644u			
Tran	average(clip(IT("/V4/PLUS") 1.4e-07 2.4e-07))	-3.179n	11.59n	2.128n	1.406n	3.055n			
Tran	average(clip(IT("/V2/PLUS") 1.4e-07 2.4e-07))	-66.35u	-53.89u	-62.29u	-63.33u	3.652u			
Tran	average(clip(IT("/V0/PLUS") 1.4e-07 2.4e-07))	-78.04u	-75.88u	-76.67u	-76.63u	398n			
Tran	Value	1	254	127.5	127.5	73.32			

Fig 16: Power consumption for FoM

COMPARISON TABLE

TABLE II SECURE ADC COMPARISON

Publication	TCAS-II'20 [1]		JSSC'21 [6]		CICC'22 [2]		VLSI'22 [3]		CICC'23 [4]		HOST'24 [5]		This Work		
Process (nm)	180		65		65		65		65		65 ^a		65 ^a		
Supply (V)	N/A ^b		1.2		1.2		1.2		1.2		1		1		
Resolution (bits)		10		12		8		12		12		8		8	
Topology	Single-Ended		Differential		Differential		Differential		Differential		Differential		Differential		
Protected	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	
Power (µW)	63.5	65	83.2	158.5	43.4	50.2	539.8	539.8	722	698	145	150.7	138.96	373.45	
Sample Rate (MS/s)	1.07	1	1.25	1.25	3.33	2	25	25	45	40	20	20	9.09	11.11	
Area (mm ²)	0.07	0.075	0.34	0.5	0.064	0.073	0.072	0.072	0.075	0.075	0.015	0.017	0.356	0.384	
ENOB (bit)	8.8	8.7	11.2 ^c	11.2 ^c	7.2	7.7	10.9	10.9	10.9 ^c	10.8 ^c	7.86	7.8	7.52	7.91	
FoM _W (fJ/cs.)	130.8	151.5	27.9	54.3	88.6	120.7	11.3	11.3	8.5	9.8	31	33.8	7.49	124.30	
INL	-1.2	-1.2	-0.87	-1.01	N/A ^b	-0.46	-0.76	-0.76	-0.67	-0.73	-0.53	-0.56	-0.16	-0.74	
INL	+1.2	+1.2	+0.80	+0.86	IN/A	+0.44	+0.67	+0.67	+0.72	+0.69	+0.53	+0.58	0.11	0.59	
DNL	-0.6	-0.6	-0.53	-0.72	N/A ^b	-0.31	-0.49	-0.49	-0.62	-0.68	-0.5	-0.6	-0.13	-0.62	
DIVE	+0.6	+0.6	+0.79	+0.77	IVA	+0.37	+0.35	+0.35	+0.37	+0.31	+0.45	+0.52	0.14	0.61	
SFDR (dB)	64.5	64.3	86	89.6	53.7	54.6	86.6	86.6	80.5	80.2	N/A ^b	N/A ^b	60.26	60.05	
Leakage RMSE			117.74/	384.04/	0.7/	58/	14.21/	1625.39/	52.76/	1985.25/	24.5/	103/	30.29/	112.28/	
(LSBs)	_d	_d	4096	4096	256	256	4096	4096	4096	4096	256	256	256	256	
NRMSE	_d	_d	0.0287	0.0938	0.0027	0.2266	0.0035	0.3968	0.0129	0.4847	0.095	0.42	0.1183	0.4386	
Random Bits (Mb/s)	NA	1	NA	0	NA	360 ^e	NA	275	NA	4080 ^e	NA	200	NA	0	
^a Simulation only															

^aSimulation only

Table I: Comparison with other works

^bValue not disclosed

^cCalculated from FoM_W, Power, and Sample Rate

dReported an unprotected leakage ENOB of 4.6 bits and a protected leakage ENOB of 0.8, RMSE was not reported A variable amount of random bits are required, the reported value is the average per conversion

FOR MORE INFORMATION

• Reach out to me at contact@nipunkaushik.com