Rule-Based Chatbots

Natalie Parde UIC CS 421

Rulebased Chatbots

- Revisiting ELIZA:
 - Rogerian psychologist (reflect patients' statements right back at them)
 - Takes the stance of knowing almost nothing about the world
 - Common position for chatbots trying to pass the Turing Test ...users may assume that the chatbot is pretending not to know anything to fulfill some type of conversational goal

U: Men are all alike.

E: IN WHAT WAY

U: They're always bugging us about something or other.

E: CAN YOU THINK OF A SPECIFIC EXAMPLE

U: Well my boyfriend made me come here.

E: YOUR BOYFRIEND MADE YOU COME HERE

U: He says I'm depressed much of the time.

E: I AM SORRY TO HEAR YOU ARE DEPRESSED

Rule-based Chatbots

- ELIZA works by matching patterns and transforming slots from those patterns into responses
 - (.* [yY][oO][uU] .* [mM][eE]) → (WHAT MAKES YOU THINK I 3 YOU)
 - You hate me → WHAT MAKES YOU THINK I HATE YOU
- Each pattern used by ELIZA is based on keyword(s) that might occur in users' sentences

Rule-based Chatbots

- In ELIZA, keywords are associated with a rank
 - More specific keywords → higher rank
 - More general keywords → lower rank
- Consider two rules:
 - (I .*) → (YOU SAY YOU 2)
 - (EVERYBODY .*) → (WHO IN PARTICULAR ARE YOU THINKING OF)
- Consider an input sentence:
 - "I know everybody made a cooler chatbot."
- Since "I" is more general than "everybody," the system will return WHO IN PARTICULAR ARE YOU THINKING OF rather than YOU SAY YOU KNOW EVERYBODY MADE A COOLER CHATBOT

Rule-based Chatbots

- What if no keywords are matched in an input?
 - ELIZA defaults to a non-committal response
 - PLEASE GO ON
 - THAT'S VERY INTERESTING
 - I SEE

Rule-based Chatbots

- Alternately, if no keywords are matched in an input, ELIZA can access facts from its memory
 - Whenever "my" is the highestranked keyword, select a transformation rule, apply it to the input, and store the transformed input on a stack
 - My boyfriend made me come here. → DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE
 - Pop the most recent transformed input off the stack if no keywords are matched in an input

Men are all alike.

Rule	Rank
$(I.*) \rightarrow (YOU SAY YOU 2)$	2
(I'm .*) \rightarrow (I AM SORRY TO HEAR THAT YOU ARE 2)	1
$(my .*) \rightarrow (YOUR 2)$	1
(.* always .*) \rightarrow CAN YOU THINK OF A SPECIFIC EXAMPLE	1
$(.*) \rightarrow IN WHAT WAY$	3
(.* my .*) \rightarrow (DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3)	(Memory)

Men are all alike.

They're always bugging us about something or other.

Well my boyfriend made me come here.

Rule	Rank
$(I.*) \rightarrow (YOU SAY YOU 2)$	2
(l'm .*) \rightarrow (I AM SORRY TO HEAR THAT YOU ARE 2)	1
$(my .*) \rightarrow (YOUR 2)$	1
(.* always .*) \rightarrow CAN YOU THINK OF A SPECIFIC EXAMPLE	1
$(.*) \rightarrow IN WHAT WAY$	3
(.* my .*) \rightarrow (DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3)	(Memory)

Well my boyfriend made me come here.

RuleRank $(I .*) \rightarrow (YOU SAY YOU 2)$ 2 $(I'm .*) \rightarrow (I AM SORRY TO HEAR THAT YOU ARE 2)$ 1 $(my .*) \rightarrow (YOUR 2)$ 1 $(.* always .*) \rightarrow CAN YOU THINK OF A SPECIFIC EXAMPLE$ 1 $(.*) \rightarrow IN WHAT WAY$ 3 $(.* my .*) \rightarrow (DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3)(Memory)$

Memory:

1) DOES THAT HAVE ANYTHING TO DO
WITH THE FACT THAT YOUR
BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.

RuleRank(I .*) → (YOU SAY YOU 2)2(I'm .*) → (I AM SORRY TO HEAR THAT YOU ARE 2)1(my .*) → (YOUR 2)1(.* always .*) → CAN YOU THINK OF A SPECIFIC EXAMPLE1(.*) → IN WHAT WAY3(.* my .*) → (DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3)(Memory)

Memory:

1) DOES THAT HAVE ANYTHING TO DO
WITH THE FACT THAT YOUR
BOYFRIEND MADE YOU COME HERE

I AM SORRY TO HEAR THAT YOU ARE DEPRESSED MUCH OF THE TIME

Maybe he is the problem.

Memory:

1) DOES THAT HAVE ANYTHING TO DO
WITH THE FACT THAT YOUR
BOYFRIEND MADE YOU COME HERE

Maybe he is the problem.

Memory:

DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

Formal Algorithm: ELIZA

```
find the word w in the sentence s that has the highest keyword rank
if w exists:
      choose the highest ranked rule r for w that matches s
      response \leftarrow apply the transformation in r to s
      if w == \text{"my"}:
             future \leftarrow apply a transformation from the memory rule list to s
             push future onto the memory stack
else: # No keyword applies!
      either:
             response \leftarrow apply the transformation for NONE to s
      or:
             response ← pop the top response from the memory stack
```

Continued popularity of ELIZA's framework....

- Still used in many applications today!
 - Modern chatbot systems like ALICE are based on updated versions of ELIZA's pattern/action architecture

PARRY

- Another clinical psychology chatbot developed several years after ELIZA
- Included a model of its own mental state, with affect variables for its levels of fear and anger
 - High anger → hostile output
 - High fear → sequence of deluded statements
- First known system to pass the Turing Test (psychiatrists were unable to distinguish transcripts from PARRY with transcripts from people with real paranoia)