```
Presentar las capturas de pantalla en archivo PDF.

1. Generar aleatoriamente un sistema lineal de 10 x 10, con entradas reales en el intervalo [-10,10] y con solución exacta x = [1,1,...,1].

2. Imprimir la matriz de coeficientes y el vector de términos independientes del sistema.

3. Resolver por eliminación gaussiana simple, imprimiendo en pantalla lo siguiente: matriz aumentada, matriz aumentada escalonada, solución del sistema y la norma suma del residuo.
```

Con np.random.seed(0), A y b tendremos los mismos valores en cada ejecución del script.

Como se observa en el siguiente programa trabajado en clase miblioteca1.py y miprogramaprincipal.py

```
Go Run ···

∠ Search [Administrator]

                                                                                                                        ■ Untitled-1.ipynb • ■ Primera_clase_JUNTO.ipynb
                                                 mibiblioteca.py mibiblioteca1.py
                                                                                          miprogramaprincipal.py 4
C: > Users > Usuario > Desktop > matematica_computacional > 🌳 miprogramaprincipal.py > ...
       import mibiblioteca1 as bib
       #import time
      np.random.seed(0) # Para reproducibilidad
       A = np.random.uniform(-10, 10, (10, 10))
      x = xacta = np.ones((10, 1)) # Solución exacta <math>x = [1, 1, ..., 1]
      b = np.dot(A, x_exacta)
       print("Matriz de coeficientes A:")
       print(A)
       print("\nVector de términos independientes b:")
       print(b)
       # Paso 3: Resolución por eliminación gaussiana simple
       Ab = np.append(A, b, axis=1)
       print("\nMatriz aumentada [A|b]:")
       print(Ab)
       bib.escalonaSimple(Ab)
       print("\nMatriz aumentada escalonada:")
       print(Ab)
      A1 = Ab[:, :10]
      b1 = Ab[:, 10]
      b1 = b1.reshape(b1.shape[0], 1)
       x = bib.sustRegresiva(A1, b1)
                                                                                         Ln 56, Col 2 Spaces: 4 UTF-8 CRLF {} Python
        print("\nSolución del sistema:")
        print(x)
        residuo = b - np.dot(A, x)
        norma_suma_residuo = np.sum(np.abs(residuo))
        print("\nNorma suma del residuo:")
        print(norma_suma_residuo)
```


Go Run ···	← →		∠ Search [Administrator]	
PROBLEMS 10 OUTPUT	DEBUG CONSOLE	TERMINAL POR	TS JUPYTER	
Matriz aumentada [A b	1:			
	378733 2.05526752	0.89766366	-1.52690401	
2.91788226 -1.24	825577 7.83546002	9.27325521	-2.33116962	
23.15325666]				
	78984 1.36089122	8.51193277	-8.57927884	
	563205 6.65239691	5.56313502	7.40024296	
9.46867315]	347400 0 77044075	F 64050353	7 63454440	
	317128 -0.77041275	5.61058353	-7.63451148	
2.79842043 -7.13 16.05026717]	293425 8.89337834	0.43696644	-1.7067612	
	467379 -0.87699336	1.36867898	-9.62420399	
•	191445 2.33867994	8.87496157	3.63640598	
11.08793955]	213300733.	3137 130237	2102010220	
	936092 3.95262392	-8.79549057	3.33533431	
3.41275739 -5.79	234878 -7.42147405	-3.69143298	-2.72578458	
-21.79501825]				
[1.40393541 -1.22	796973 9.76747676	-7.95910379	-5.82246488	
	216651 -4.93416795	-0.67378454	-5.11148816	
-18.26921001]				
	249718 3.12659179	-7.23634097	-6.06835277	
	98646 -8.05797448	6.75889815	-8.07803184	
-30.37394762] [9.5291893 -0.626	697597 9.53522176	2.09691039	4.78527159	
	386075 -7.59606878	-4.07719605	-7.62544562	
-7.53919827]	-7.35000676	-4.07713003	-7:02344302	
_	474011 -8.71705007	3.84944239	1.33202908	
_	496107 -8.12118978	1.51892991	8.58592395	
-11.13424016]				
_	82076 -7.36404275	4.32654408	-4.21187814	
-6.33617276 1.73	02587 -9.59784908	6.57880058	-9.90609048	
-25.06084319]]				

```
Matriz aumentada escalonada:
[[ 9.76270079e-01 4.30378733e+00 2.05526752e+00 8.97663660e-01
  -1.52690401e+00 2.91788226e+00 -1.24825577e+00 7.83546002e+00
  9.27325521e+00 -2.33116962e+00 2.31532567e+01]
[ 0.00000000e+00 -2.51429047e+01 -1.09220417e+01 3.14720898e+00
  5.45985600e-01 -2.56956072e+01 -2.13565819e+00 -4.01748064e+01
 -4.98567900e+01 2.13320547e+01 -1.28902559e+02]
 [ 0.00000000e+00 0.00000000e+00 -5.19037278e+00 -7.72425834e+00
  6.55040974e+00 1.12002115e+01 8.18244771e+00 -1.00661555e+01
 -1.86743563e+01 -9.57606763e+00 -2.52981416e+01]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.25011427e+01
  -1.94022854e+01 -1.54943384e+01 -9.73442098e+00 2.78299812e+00
  1.00688641e+01 1.90191761e+01 -2.58863761e-01]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 -1.35713081e+01 -3.95662073e+00 -1.19802024e+01 -9.67277123e+00
  -7.26373379e+00 9.44749940e+00 -3.69971368e+01]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
  0.00000000e+00 -4.08622288e+00 2.83209013e+01 3.23161391e+00
  9.31750513e-01 -9.31289295e+00 1.90851499e+01]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
  0.00000000e+00 0.00000000e+00 6.11466556e+01 1.82702541e+01
  2.01013805e+01 -3.36807688e+01 6.58375215e+01]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
  0.00000000e+00 0.00000000e+00 -1.77635684e-15 -1.88279571e+01
 -1.09468932e+01 -4.45483594e+00 -3.42296862e+01]
[ 0.00000000e+00 -1.77635684e-15 0.00000000e+00 0.00000000e+00
  0.00000000e+00 0.00000000e+00 -6.12040388e-16 0.00000000e+00
  1.99631398e+01 -1.05726222e+01 9.39051762e+00]
[ 0.00000000e+00 2.41794748e-15 0.00000000e+00 0.00000000e+00
  0.00000000e+00 0.00000000e+00 3.47124519e-16 0.00000000e+00
  3.55271368e-15 -1.94633229e+01 -1.94633229e+01]]
```

Para visualizar mejor importamos labulate

```
Go Run ···
                                                           Search [Administrator]
■ Untitled-1.ipynb • ■ Primera_clase_JUNTO.ipynb
                                                    mibiblioteca.py mibiblioteca1.py
                                                                                               miprogramaprincipal.py 4 ×
C: > Users > Usuario > Desktop > matematica_computacional > 💠 miprogramaprincipal.py > ...
       import numpy as np
      import mibiblioteca1 as bib
       from tabulate import tabulate
       np.random.seed(0) # Para reproducibilidad
 103
       A = np.random.uniform(-10, 10, (10, 10))
       x_{exacta} = np.ones((10, 1)) # Solución exacta x = [1, 1, ..., 1]
       b = np.dot(A, x_exacta)
       print("Matriz de coeficientes A:")
       print(tabulate(A, tablefmt="fancy_grid"))
       print("\nVector de términos independientes b:")
       print(tabulate(b, tablefmt="fancy_grid"))
       # Paso 3: Resolución por eliminación gaussiana simple
       # Matriz aumentada
       Ab = np.append(A, b, axis=1)
       print("\nMatriz aumentada [A|b]:")
       print(tabulate(Ab, tablefmt="fancy_grid"))
       bib.escalonaSimple(Ab)
       print("\nMatriz aumentada escalonada:")
       print(tabulate(Ab, tablefmt="fancy_grid"))
      A1 = Ab[:, :10]
                                                                                             Ln 103, Col 1 Spaces: 4 UTF-8 CRLF
 128 b1 = b1.reshape(b1.shape[0], 1)
     x = bib.sustRegresiva(A1, b1)
 131 print("\nSolución del sistema:")
     print(tabulate(x, tablefmt="fancy_grid"))
     residuo = b - np.dot(A, x)
     norma_suma_residuo = np.sum(np.abs(residuo))
     print("\nNorma suma del residuo:")
      print(norma_suma_residuo)
 140
                                                                        Ln 140, Col 1 Spaces: 4 UTF-8 CRLF {} Python 3.12.7 (Microsoft Store)
```

	le coeficientes A	

0.97627	4.30379	2.05527	0.897664	-1.5269	2.91788	-1.24826	7.83546	9.27326	-2.33117
5.8345	0.577898	1.36089	8.51193	-8.57928	-8.25741	-9.59563	6.6524	5.56314	7.40024
9.57237	5.98317	-0.770413	5.61058	-7.63451	2.79842	-7.13293	8.89338	0.436966	-1.70676
-4.70889	5.48467	-0.876993	1.36868	-9.6242	2.35271	2.24191	2.33868	8.87496	3.63641
-2.80984	-1.25936	3.95262	-8.79549	3.33533	3.41276	-5.79235	-7.42147	-3.69143	-2.72578
1.40394	-1.22797	9.76748	-7.9591	-5.82246	-6.77381	3.06217	-4.93417	-0.673785	-5.11149
-6.82061	-7.7925	3.12659	-7.23634	-6.06835	-2.6255	6.41986	-8.05797	6.7589	-8.07803
9.52919	-0.626976	9.53522	2.09691	4.78527	-9.21624	-4.34386	-7.59607	-4.0772	-7.62545
-3.64034	-1.71474	-8.71705	3.84944	1.33203	-4.69221	0.464961	-8.12119	1.51893	8.58592
-3.62862	3.34821	-7.36404	4.32654	-4.21188	-6.33617	1.73026	-9.59785	6.5788	-9.90609

Vector de términos independientes b:

23.1533

9.46867

16.0503

11.0879

-21.795

-18.2692

-30.3739

-7.5392

-11.1342

-25.0608

Comentario

Si no ponemos np.random.seed(0), cada vez que ejecutemos nuestro script, la matriz A generada y el vector b serán diferentes debido a la naturaleza aleatoria del generador de números. Esto significa que no obtendremos resultados reproducibles.

Caso contrario podemos omitir y generara matrices diferentes en cada iteración que hagamos correr.

Por ejemplo aquí:

Matriz aument	tada [A b]:									
3.55633	-4.59984	4.70388	9.24377	-5.02494	1.52315	1.84084	1.44504	-5.53837	9.05498	16.2048
-1.05749	6.92817	3.98959	-4.05126	6.27596	-2.06989	7.62206	1.62546	7.63471	3.85063	30.7479
4.50509	0.0264876	9.12167	2.8798	-1.5229	2.12786	-9.61614	-3.9685	3.20347	-4.19845	2.5584
2.36031	-1.42463	-7.29052	-4.03435	1.3993	1.81746	1.4865	3.06402	3.04207	-1.37163	-0.951481
7.93093	-2.64876	-1.2827	7.83847	6.12388	4.07777	-7.99546	8.38965	4.28483	9.97694	36.6955
-7.01103	7.36252	-6.75014	2.31119	-7.5236	6.96016	6.14638	1.38201	-1.85633	-8.61666	-7.5955
3.94858	-0.929146	4.44111	7.32765	9.51043	7.11607	-9.76572	-2.80044	4.59981	-6.56741	16.8809
0.420732	-8.91324	-6.00007	-9.62956	5.87395	-5.52151	-3.09297	8.56163	4.08829	-9.36322	-23.576
-6.70612	2.42957	1.54457	-5.24214	8.68428	2.27932	0.712656	1.7982	4.60244	-3.7611	6.34167
-2.03558	-5.80313	-6.27614	8.88745	4.79102	-0.190824	-5.45171	-4.91287	-8.83942	-1.31167	-21.1429

Matriz aumentada escalonada:

3.55633	-4.59984	4.70388	9.24377	-5.02494	1.52315	1.84084	1.44504	-5.53837	9.05498	16.2048
0	5.56039	5.38831	-1.30258	4.78177	-1.61697	8.16945	2.05515	5.98785	6.54317	35.5665
0	0	-2.50942	-7.45877	-0.191221	1.90057	-20.5481	-7.96252	3.9159	-22.5572	-55.4108
0	9	1.77636e-15	25.8509	4.24774	-7.8011	96.0537	39.549	-13.7462	98.4833	242.637
-8.88178e-16	9	-3.15514e-15	9	4.70039	2.2489	-37.1103	-7.13869	2.97963	-21.9871	-56.3072
-3.31625e-15	9	-1.23112e-14	9	9	23.357	-189.169	-46.8581	10.8103	-137.811	-339.671
1.69989e-15	0	6.81005e-15	0	-1.77636e-15	9	69.4904	9.38777	-1.85924	32.539	109.558
-4.25614e-16	9	-8.64472e-16	9	7.10547e-16	9	0	13.9936	6.60077	-3.11871	17.4757
-8.84651e-17	0	6.00853e-16	0	1.66904e-15	9	9	0	-3.93198	20.5633	16.6313
3.73534e-16	9	2.41466e-15	0	2.66446e-15	0	9	0	9	10.1297	10.1297