Equivalence of Regular Languages, Expressions, and Automata

CSCI 3136: Principles of Programming Languages

Agenda

Announcements

Assignment 1 is out and due May 24

• Readings:

• Today: 2.2.1

• Next: 2.2.1

- Note: I recommend using alternative texts for this part of the course:
- E..g, Hopcorft et al, "Introduction to Automata Theory"

Lecture Contents

- Regular Languages Equivalence Theorem
- Equivalence between RLs and Res
- Equivalence between RE's and NFAs
- Equivalence between NFAs and DFAs
- Minimization of DFAs (time permitting)

Are these all the same?

- We have discussed a variety of specifications: RLs, RE, DFAs, NFAs
 - RLs: a class of languages
 - RE a way to specify RLs
 - DFAs: a way to implement scanners for RLs
 - NFAs: a simpler way to implement scanners for RLs

• Questions:

- Are these all of equal power?
- Are NFAs same as DFAs?
- Do REs specify only regular languages?

Regular Languages Equivalence Theorem

- Thm: The following statements are equivalent:
 - i. L is a regular language.
 - ii. L is the language described by a regular expression.
 - iii. L is recognized by an NFA.
 - iv. L is recognized by a DFA.
- We will prove: (i) ≡ (ii) ≡ (iii) ≡ (iv)

Regular Languages are equivalent to Regular Expressions

- Every regular language can be specified by a regular expression.
- Every regular expression specifies a regular language.
- Idea: There is a one-to-one correspondence between the 2 definitions.
- Apart from notation, the recursive definitions are identical.

Operation	Regular Language	Regular Expression
Empty Language	Ø	Ø
Empty String	{ε}	ε
Single character	{a}, a ∈ Σ	a
Disjunction	$L_1 \cup L_2$	$R_1 \mid R_2$
Concatenation	L_1L_2	R_1R_2
Kleene-*	L*	R*

Regular Expressions are Equivalent to NFAs

- Proof: We will show that
 - 1. For each RE R there is an NFA M that recognizes L(R)
 - 2. For each NFA M there is an RE that specifies L(M)
- We do part 1 first.
 - Idea: For each RE base case and inductive step we can construct a corresponding NFA, hence for any RE, we can construct an NFA.
- Recall the base cases:
 - Empty Language: Ø
 - Empty String: ε
 - Single character: a
- And inductive steps:
 - Disjunction: R₁|R₂
 - Concatenation: R₁R₂
 - Kleene-*: R*

NFA for each RE Base Case.

Recall: An NFA $M = (Q, \Sigma, \delta, q_S, F)$

• Empty Language: \emptyset : $Q = \{q_1\}$, $F = \emptyset$, $\delta = \emptyset$

• Empty String: ε : Q = {q₁}, F = {q₁}, δ = Ø

• Single character: **a** : Q = { q_1,q_2 }, F = { q_2 }, $\delta(q_1,a) = q_2$

$$\rightarrow$$
 q_1 q_2

NFAs for each RE Inductive Step

 $M(R_1R_2)$

Notation:

- $M(R_1) = (Q_1, \Sigma, \delta_1, q_1, F_1)$
- $M(R_2) = (Q_2, \Sigma, \delta_2, q_2, F_2)$

• Disjunction: $R_1 | R_2$:

- $M(R_1|R_2) = (Q, \Sigma, \delta, q_0, F)$
- $Q = Q_1 \cup Q_2 \cup \{q_0\},$
- F = F₁ UF₂,
- $\delta = \delta_1 \cup \delta_2 \cup \{\delta(q_0, \epsilon) = \{q_1, q_2\}\}$

• **Concatenation**: R₁R₂:

- $M(R_1R_2) = (Q, \Sigma, \delta, q_1, F_2)$
- $Q = Q_1 UQ_2$
- $\delta = \delta_1 \cup \delta_2 \cup \{\delta(q, \epsilon) = \{q_2\} \mid q \in F_1\}^{l}$

- $M(R_1^*) = (Q_1, \Sigma, \delta, q_1, F_1)$
- $\delta = \delta_1 \cup \{\delta(q_1, \epsilon) = \{q \in F\} \cup \{\delta(q, \epsilon) = \{q_1\} \mid q \in F_1\}$

 $M(R_1)$ F_1

 $M(R_2)$

Back to Regular Expressions are Equivalent to NFAs

- Proof: We will show that
 - 1. For each RE R there is an NFA M that recognizes L(R)
 - 2. For each NFA M there is an RE the specifies L(M)
- Part 2 is a bit trickier.
- Proof Idea:
 - Treat NFA as a GNFA (Generalized NFA)
 - Edges are labeled by REs, not just characters
 - If $\delta(q_1, \alpha) = q_2$, the $(q_1, \alpha\beta) \rightarrow (q_2, \beta)$
- Start with the NFA (which is a GNFA)
- Collapse the GNFA, one state at a time into an RE

NFA to RE To Do List

- Normalize NFA by ensuring only one final state.
 - Add ε transitions and a new final state if needed
- Collapse GNFA to a two state start/finish GNFA
 - one state at a time
- Transform the two state
 GNFA to an RE

RE = $R_1 * R_2 ((R_3 R_1 * R_2) | R_4) *$

GNFA₁

GNFA₂

Collapsing the GNFA

Removing a State from a Path

Example for NFA to RE Process

Regular Languages Equivalence Theorem

- Thm: The following statements are equivalent:
 - i. L is a regular language.
 - ii. L is the language described by a regular expression.
 - iii. L is recognized by an NFA.
 - iv. L is recognized by a DFA.
- We will prove: (i) ≡ (ii) ≡ (iii) ≡ (iv)

NFAs are Equivalent to DFAs

- Proof: We will show that
 - 1. For each DFA M that accepts L there is an NFA N that recognizes L
 - 2. For each NFA N that accepts L there is an DFA M that recognizes L
- We do part 1 first.
 - This is easy. Every DFA is by definition also an NFA.
- The second part is a bit trickier. ©

For each NFA N(L) there is a DFA M(L)

- Define
 - NFA N = $(Q, \Sigma, \delta, q_0, F)$
 - DFA M = $(Q', \Sigma, \delta', q_0', F')$
- Where
 - $q_0' = \varepsilon close(q_0)$
 - ε -close(q) = {p \in Q | δ (q, ε) = p}
 - Set of states form q_0 reachable by ϵ transitions
 - Note: ε -close(P) = $\bigcup_{p \in P} \varepsilon$ -close(p)
- Each state in Q' is represented by a subset of Q
 I.e., Q' ⊆2^Q
- We will build Q'iteratively:
 - Start with the start state $q_0' \in Q'$
 - For each $q' \in Q$ and $a \in \Sigma$ compute $p' = \delta'(q', a)$
 - Add p' to Q' if p' ∉ Q'
 - Repeat steps until no more states are added.

The δ' Function for DFA M(L)

- The transition function $\delta'(q',a) = p'$ where
 - $p' = \epsilon close(P)$
 - $P = \{\delta(q,a) \mid q \in q'\}$
 - Example: $\delta'(\{q_0,q_1,q_2\},0) = \{q_3,q_4,q_5\}$
- Lastly, F' ={q'∈Q' | F∩q' ≠ ∅}
 - Every state in F 'contains a state of an NFA that was in its final set.
 - Example: $\{q_2,q_3,q_5\} \in F'$
- In the worst case, the DFA is exponentially bigger than the NFA.

Example L=(0|1)*1(0|1)(0|1)

- $q_0' = \{q_0\}$
- Q' = (see table)
- δ' = (see table)
- F' = (bolded states)

State	0	1
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_0,q_1\}$	$\{q_0,q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_0,q_2\}$	$\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$
$\{q_0,q_1,q_2\}$	$\{q_0,q_2,q_3\}$	$\{q_0,q_1,q_2,q_3\}$
${q_0,q_3}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_0,q_1,q_3\}$	$\{q_0,q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_0,q_2,q_3\}$	$\{q_0, q_3\}$	$\{q_0, q_1, q_3\}$
$\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_2,q_3\}$	$\{q_0,q_1,q_2,q_3\}$

Example L=(0|1)*1(0|1)(0|1)

State	Q'	0	1
$\{q_0\}$	q_0'	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_0,q_1\}$	q_1'	$\{q_0,q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_0,q_2\}$	q ₂ '	$\{q_0, q_3\}$	$\{q_0, q_1, q_3\}$
$\{q_0, q_1, q_2\}$	q_3	$\{q_0, q_2, q_3\}$	$\{q_0,q_1,q_2,q_3\}$
$\{q_0, q_3\}$	q_4	${q_0}$	$\{q_0,q_1\}$
$\{q_0,q_1,q_3\}$	q_5	$\{q_0,q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_0, q_2, q_3\}$	q_6	$\{q_0, q_3\}$	$\{q_0, q_1, q_3\}$
$\{q_0, q_1, q_2, q_3\}$	q ₇ '	$\{q_0, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$

Example L=(aa|bb)* | (ab|ba)*(a|b)

- $q_0' = \{q_0, q_1, q_4, q_7\}$
- Q' = (see table)
- δ' = (see table)
- F' = (see **bolded** entries)

State	а	b
$\{q_0,q_1,q_4,q_7\}$	$\{q_2, q_5, q_7\}$	$\{q_3, q_6, q_7\}$
$\{q_2,q_5,q_7\}$	$\{q_1,q_7\}$	$\{q_4\}$
$\{q_3,q_6,q_7\}$	$\{q_4\}$	$\{q_1,q_7\}$
$\{q_1,q_7\}$	$\{q_2\}$	$\{q_3\}$
$\{q_4\}$	$\{q_5,q_7\}$	$\{q_6, q_7\}$
$\{q_2\}$	$\{q_1,q_7\}$	Ø
{q ₃ }	Ø	$\{q_1,q_7\}$
$\{q_5,q_7\}$	Ø	$\{q_4\}$
$\{q_6,q_7\}$	{q ₄ }	Ø

Minimization of Automata

- Motivation: To build a scanner, we need to build a DFA
- The simpler a DFA is, the more efficient it is.
- So, we want to build the smallest DFA possible
- Process:
 - Build a DFA to recognize L
 - Minimize it.
- A DFA is minimal if it has the minimum number of states necessary to recognize L

Equivalence Classes

- Start with a DFA M = $(Q_{,,}\Sigma,\delta,q_{0},F)$
- Idea: Divide Q into equivalence classes.
- The classes represent the states of the minimal DFA
- **Definition**: q_1 and q_2 are *equivalent* (in the same class) means for all $\sigma \in \Sigma^*$, $\delta(q_1, \sigma) \in F$ if and only if $\delta(q_2, \sigma) \in F$
- I.e., If there exists a string σ such that
 - $\delta(q_1, \sigma) \in F$
 - $\delta(q_2,\sigma) \notin F$

then the two states are not in the same class.

• Example: q_0 and q_1 are in different classes

Minimization Procedure

- Initially all states are either accepting or not
- If there is a class C and character $a \in \Sigma$ such that $\{\delta(q_i,a) | q_i \in C\}$ are in k > 1 equivalence classes
- Then Split C into k classes C_j such that $\delta(q_i, a)$, where $q_i \in C_k$, are in the same equivalence class.
- Repeat until no more splits are needed.

Example 1

	Q	0	1
C_0	q_0	C_0	C_1
	q_2	C_0	C_1
C ₁	q_1	C_1	C_0
	q_3	C_1	C_0

Example 2

