a)

We have:

$$P(A, b_1) = \emptyset_1(A, B) \times \emptyset_4(D, A) \times \emptyset_3(C, D) \times \emptyset_2(B, C)$$

Assigning B = b^1 , then $\emptyset_1(A, B)$ becomes $\emptyset_5(A)$ and $\emptyset_2(B, C)$ becomes $\emptyset_6(C)$:

A	$\emptyset_5(A)$
a^0	5
a^1	10

С	Ø ₆ (C)
c^0	1
c^1	100

Now we have:

$$P(A, b_1) = \emptyset_5(A) \times \emptyset_4(D, A) \times \emptyset_3(C, D) \times \emptyset_6(C)$$

Applying elimination ordering: C,D, we have:

$$P(A, b_1) = \sum_{C,D} \emptyset_5(A) \times \emptyset_4(D, A) \times \emptyset_3(C, D) \times \emptyset_6(C)$$

= $\emptyset_5(A) \sum_D \emptyset_4(D, A) \sum_C \emptyset_3(C, D) \times \emptyset_6(C)$

Eliminating C:

 $\emptyset_3(C,D) \times \emptyset_6(C)$:

C	D	Val
c^0	d^0	1×1=1
c^0	d^1	$100 \times 1 = 100$
c ¹	d^0	$100 \times 100 = 10000$
c ¹	d^1	1×100=100

Summing out C to get $\emptyset_7(D)$:

D	$\emptyset_7(D)$
d^0	1+10000= 10001
d ¹	100+100= 200

Now we have:

$$P(A, b_1) = \sum_{C,D} \emptyset_5(A) \times \emptyset_4(D, A) \times \emptyset_3(C, D) \times \emptyset_6(C)$$

= $\emptyset_5(A) \sum_D \emptyset_4(D, A) \times \emptyset_7(D)$

Eliminating D:

 $\emptyset_4(D,A) \times \emptyset_7(D)$:

D	A	Val
d^0	a^0	$100 \times 10001 = 1000100$
d^0	a ¹	$1 \times 10001 = 10001$
d^1	a^0	1×200= 200
d^1	a ¹	$100 \times 200 = 20000$

Summing out D to get $\emptyset_8(A)$:

A	$\emptyset_8(A)$
a^0	1000100+200 = 1000300
a ¹	10001+20000 = 30001

Now we have:

$$P(A, b_1) = \emptyset_5(A) \times \emptyset_8(A)$$

 $\emptyset_5(A) \times \emptyset_8(A)$:

A	$\emptyset_9(A)$
a^0	5×1000300 = 5001500
a ¹	$10 \times 30001 = 300010$

Normalizing:

Since $\sum_{a \in dom(A)} \emptyset_9(A) = 5001500 + 300010 = 5301510$, we have:

A	$P(A b_1)$
a^0	$\frac{5001500}{5301510} = 0.94341$
a ¹	$\frac{300010}{5301510} = 0.05659$

Part b

```
In [287... import random
         from random import choice
          from matplotlib import pyplot as plt
In [288... def get_f_AB(A,B):
             if A==0:
                  if B == 0:
                      return 30
                  elif B == 1:
                      return 5
              elif A == 1:
                  if B == 0:
                      return 1
                  elif B == 1:
                      return 10
In [289... def get_f_DA(D,A):
              if D==0:
                  if A == 0:
                      return 100
                  elif A == 1:
                      return 1
              elif D == 1:
                  if A == 0:
                      return 1
                  elif A == 1:
                      return 100
```

```
In [290... def get_f_BC(B,C):
             if B==0:
                 if C == 0:
                     return 100
                 elif C == 1:
                     return 1
             elif B == 1:
                 if C == 0:
                     return 1
                 elif C == 1:
                     return 100
In [291... def get_f_CD(C,D):
             if C==0:
                 if D == 0:
                     return 1
                 elif D == 1:
                     return 100
             elif C == 1:
                 if D == 0:
                     return 100
                 elif D == 1:
                     return 1
In [292... def normalize(a,b):
             total = a + b
             return (a/total, b/total)
         def resample(probOfZeroVal):
             # 1: true, 0: false
             # |---0val---|
             # 0
             return random.uniform(0,1) > prob0fZeroVal
```

```
In [293... def generate sample(curr sample var, A,C,D):
              B = 1 # observed value
              if curr sample var == "A":
                  (a0, a1) = (get_f_AB(0,B)* get_f_DA(D, 0), get_f_AB(1,B)* get_f_DA(D, 1))
                  (a0, a1) = normalize(a0, a1)
                  A = resample(a0)
              elif curr sample var == "C":
                  (c0, c1) = (get_f_BC(B,0)*get_f_CD(0,D), get_f_BC(B,1)*get_f_CD(1,D))
                  (c0, c1) = normalize(c0, c1)
                  C = resample(c0)
              elif curr sample var == "D":
                  (d0, d1) = (get_f_CD(C, 0) * get_f_DA(0, A), get_f_CD(C, 1) * get_f_DA(1, A))
                  (d0, d1) = normalize(d0, d1)
                  D = resample(d0)
              return A,C,D
In [294... def next sample var(curr var):
             return choice(["A", "C", "D"])
In [295...] a0 num = 0
          a1 num = 0
         sample size = 1000000
         curr sample var = "A"
         B = 1 # fixed, observed value
         # randomly initialize values for A,C,D
         A = choice([0, 1])
         C = choice([0, 1])
          D = choice([0, 1])
          # probA[0] = probability of a0 given b1
          # probA[1] = probability of al given bl
          probA = [[],[]]
```

```
In [296... | for i in range(1, sample size + 1):
              if A == 0:
                  a0 num += 1
              elif A == 1:
                 a1 num += 1
             probA[0].append(a0_num/i)
             probA[1].append(a1_num/i)
             # select next variable to sample on
             curr_sample_var = next_sample_var(curr_sample_var)
              (A, C, D) = generate_sample(curr_sample_var, A,C,D)
In [309...] GS a0 = probA[0][sample size-1]
         print("The estimate of P(A=a0|b1) using Gibbs Sampling with {} samples is: {:.5}"
                  .format(sample_size, GS_a0))
         The estimate of P(A=a0|b1) using Gibbs Sampling with 1000000 samples is: 0.94343
In [307...] GS a1 = probA[1][sample size-1]
         print("The estimate of P(A=a1|b1) using Gibbs Sampling with {} samples is: {:.5}"
                  .format(sample_size,GS_a1))
```

The estimate of P(A=a1|b1) using Gibbs Sampling with 1000000 samples is: 0.056574

```
In [308... x = list(range(1, sample size+1))]
         y0 = probA[0]
         y1 = probA[1]
         # P(a0|b1) from Question 1 part a
         ve\ a0 = 5001500/5301510
         # P(a1|b1) from Question 1 part a
         ve_a1 = 300010/5301510
         plt.plot(x,y0, c = "r")
         plt.axhline(ve_a0, c = "g")
         plt.plot(x,y1, c = "b")
         plt.axhline(ve_a1, c = "orange")
         plt.legend(labels = ["Gibbs: P(a0|b1)", "VE: P(a0|b1)",
                              "Gibbs: P(a1|b1)", "VE: P(a1|b1)"])
         plt.title('Approximation of P(A|b1) using Gibbs sampling vs number of samples')
         plt.xlabel('Number of samples')
         plt.ylabel('P(A|b1)')
         plt.xscale("log")
         plt.show()
```

Approximation of P(A|b1) using Gibbs sampling vs number of samples

a)

Applying Resolution, we have $\alpha = (A \leftrightarrow C)$ and the KB is:

- 1. (B ∨ C) ∧ ~A
- 2. \sim (B \rightarrow A)
- 3. $A \rightarrow (\sim B \lor C)$
- 4. A V E
- 5. C
- 6. ~(~B ∨ A)

by eliminating implication, clause 2

7. ~~B ∧ ~A

by de Morgan's rule, clause 6

8. B ∧ ~A

by double negation, clause 7

9. ~A V ~B V C

by eliminating implication, clause 3

Converting α into CNF:

- 10. \sim (A \leftrightarrow C)
- 11. \sim ((A \rightarrow C) \wedge (C \rightarrow A))
- 12. ~((~AVC) \(\times (~CVA))\)
 - $((-A \lor C) \lor (-C \lor A)) \qquad \text{by Chiminating}$
- 13. ~(~AVC) V ~(~CVA)
- 14. (~~A^~C) V (~~C^~A)
- 15. (A∧~C) ∨ (C∧~A)

by eliminating biconditional, clause 10

by eliminating implication, clause 11

- by de Morgan's rule, clause 12
- by de Morgan's rule, clause 13
- by double negation, clause 14

Hence, $\sim \alpha$ is:

- 16. ~((A∧~C) ∨ (C∧~A))
- 17. \sim (A \land \sim C) \land \sim (C \land \sim A)
- 18. (~AV~~C) ∧ (~CV~~A)
- 19. (~AVC) \(\times (~CVA)\)

by negation, clause 15

by de Morgan's rule, clause 16

by de Morgan's rule, clause 17

by double negation, clause 18

Converting all the clauses to CNF, we have:

- 1. B v C
- 2. ~A
- 3. A V E
- 4. C
- 5. B
- 6. ~A ∨ ~B ∨ C
- 7. ~A∨C
- 8. ~CVA
- resolve 1 and 6, we have:
 - 9. ~A V C
- resolve 1 and 8, we have:
 - 10. B V A
- resolve 2 and 8, we have:
 - 11. ~C

- resolve 4 and 11, we have empty clause: {}
 This indicates contradiction; thus KB∧~α is unsatisfiable and therefore, the query is entailed (i.e., KB ⊧ ~(A ↔ C)).
- (b) According to the answer from part a, KB entails \sim (A \leftrightarrow C). Hence, there is no case (i.e., no interpretation) in which KB is true and \sim (A \leftrightarrow C) is false.

Site used: https://gitlab.com/HenryKautz/Walksat

•

•

• 10 objects and 10 constant symbols: Each object is assigned with 1 symbol, and hence, there are 10! interpretations.

• 2 ternary predicates:

For each predicate, there are three arguments, thus having $10 \times 10 \times 10 = 1000$ combinations. Each combination can either be true or false, so there are 2^{1000} interpretations. Hence, for 2 ternary predicates, there are $(2^{1000})^2 = 2^{2000}$ interpretations.

• 2 binary predicates:

For each predicate, there are two arguments, thus having $10\times10=100$ combinations. Each combination can either be true or false, so there are 2^{100} interpretations. Hence, with 2 binary predicates, we have $(2^{100})^2=2^{200}$ interpretations.

• 10 unary predicates:

For each predicate, there are one argument, thus having 10 combinations. Each combination can either be true or false, so there are 2^{10} interpretations. With 10 unary predicates, there are $(2^{10})^{10} = 2^{100}$ interpretations.

Therefore, there are $10! \times 2^{2000} \times 2^{200} \times 2^{100} = 10! \times 2^{2300}$ interpretations in total.