Laboratorio 3

28 ottobre 2020

Si consideri un pendolo il cui moto è descritto dalla legge:

$$\frac{d^{2}\theta\left(t\right)}{dt^{2}} = -\frac{g}{l}\sin\left(\theta\left(t\right)\right) \tag{1}$$

e se ne determini il periodo in funzione dell'angolo iniziale θ_0 (parte da fermo). Per θ_0 che varia da 0° a 90° efare un grafico del rapporto tra il periodo del pendolo e quello di un pendolo ideale: $2\pi\sqrt{l/g}$.

Usare il propagatore di Runge Kutta. Si consiglia di scegliere $l=1\,\mathrm{m}$. Per verificare la correttezza dell'implementazione e i parametri d'integrazione necessari ad avere sufficiente accuratezza si consiglia di simulare all'inizio un oscillatore armonico.