PH 102, Electromagnetism,

Post Mid Semester Lecture 10

Electromagnetic Waves in vacuum

D. J. Griffiths: 9.1, 9.2

Sovan Chakraborty, Department of Physics, IITG

One dimensional waves: The Wave Equation Wave???

Disturbance of a continuous medium: propagating with a fixed shape, constant velocity.

fixed shape: Dispersive medium, different frequencies @ different speed Standing waves do not propagate!

We will stick to the simple case.

Mathematical description:

Initial shape $g(z) \equiv f(z,o)$ and at time t, displacement f(z,t)

Displacement @ z & t, is the same as the displacement @ vt to the left (@ z - vt), back at time t = 0:

$$f(z, t) = f(z - vt, o) = g(z - vt)$$

only in the special combination of 'z - vt'.

wave:
$$f_1(z,t) = Ae^{-b(z-vt)^2}$$
, $f_2(z,t) = A\sin[b(z-vt)]$, $f_3(z,t) = \frac{A}{b(z-vt)^2 + 1}$
wave: $f_4(z,t) = Ae^{-b(bz^2+vt)}$, and $f_5(z,t) = A\sin(bz)\cos(bvt)^3$,

Not wave:

Wave motion of a stretched string:

It follows from Newton's 2nd law.

Very long string, tension T, displaced from equilibrium:

Net transverse force on the segment between z and $z + \Delta z$,

$$\Delta F = T \sin \theta' - T \sin \theta,$$

 θ' : angle the string makes with the z -direction at point $z + \Delta z$,

 θ : corresponding angle at point z.

For small distortions the angles are small enough to replace sine by tangent

$$\Delta F \cong T(\tan \theta' - \tan \theta) = T\left(\frac{\partial f}{\partial z}\Big|_{z+\Delta z} - \frac{\partial f}{\partial z}\Big|_{z}\right) \cong T\frac{\partial^2 f}{\partial z^2} \Delta z = \mu(\Delta z)\frac{\partial^2 f}{\partial t^2},$$

Newton's 2nd law

μ: mass per unit length.

Thus,
$$\frac{\partial^2 f}{\partial z^2} = \frac{\mu}{T} \frac{\partial^2 f}{\partial t^2} \longrightarrow \frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2},$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2},$$

Wave equation

$$v = \sqrt{\frac{T}{\mu}}.$$

Wave Equation:

$$\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2},$$

Admits solutions of the form : f(z, t) = g(z - vt) = g(u),

(z & t dependence in the form $u \equiv z - vt$).

$$\frac{\partial f}{\partial t} = \frac{dg}{du} \frac{\partial u}{\partial t} = -v \frac{dg}{du}, \qquad \frac{\partial^2 f}{\partial t^2} = -v \frac{\partial}{\partial t} \left(\frac{dg}{du} \right) = -v \frac{d^2 g}{du^2} \frac{\partial u}{\partial t} = v^2 \frac{d^2 g}{du^2},$$

$$\frac{\partial f}{\partial z} = \frac{dg}{du} \frac{\partial u}{\partial z} = \frac{dg}{du}, \qquad \frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} \left(\frac{dg}{du} \right) = \frac{d^2 g}{du^2} \frac{\partial u}{\partial z} = \frac{d^2 g}{du^2},$$

$$\frac{d^2g}{du^2} = \frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}.$$

- Such functions like g(u) represents waves propagating in the +z direction with speed v.
- g(u) can be any differentiable function, provided the disturbance propagates without changing its shape.

$$\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2},$$

Wave Equation:

Apart from g (z - vt), one can figure out another kind of solutions.

v dependence is through v^2 , hence v with both signs are allowed solutions.

$$f(z, t) = h(z + v t)$$

h represents waves propagating in the negative z direction with speed v.

The most general solution to the wave equation is the sum of a wave to the right and a wave to the left:

$$f(z, t) = g(z - vt) + h(z + vt).$$

Vibration: Oscillator equation is almost certainly responsible (at least, for small amplitudes).

Something is waving (mechanics or acoustics, optics or oceanography): The wave equation is bound to be involved.

Sinusoidal Waves:

$$f(z, t) = A \cos[k(z - vt) + \delta]$$

A: Amplitude of the wave

(it is +ve & represents the max displacement from equilibrium).

Phase: Argument of the cosine

 δ : Phase constant

(add integer multiple of 2π to δ same f(z,t); $0 \le \delta < 2\pi$).

• At $z = vt - \delta/k$, phase = 0 : Central Maximum.

 $\delta=0$, central maximum @ origin at time t = 0. δ/k , distance by which the central maximum (thus the entire wave) is "delayed."

• k: wave number: $\lambda = 2\pi/k$.

z advances by $2\pi/k$, the cosine executes one complete cycle.

- Time period, $T = 2\pi/kv$, fixed point z, string vibrates up and down, undergoes one full cycle.
- The frequency, $\mathbf{v} = \mathbf{1}/T = \mathbf{k}\mathbf{v}/2\pi = \mathbf{v}/\lambda$, (number of oscillations per unit time).

Sinusoidal Waves:
$$f(z, t) = A \cos[k(z - vt) + \delta]$$

The frequency, $\mathbf{v} = \mathbf{1}/T = \mathbf{k}\mathbf{v}/2\pi = \mathbf{v}/\lambda$, (number of oscillations per unit time).

Angular frequency $\omega = 2\pi v = kv$, (analogous case of uniform circular motion: number of radians per unit time.)

Sinusoidal waves in terms of ω ,

$$f(z, t) = A \cos(kz - \omega t + \delta).$$

Sinusoidal oscillation traveling to the left, $f(z, t) = A \cos(kz + \omega t - \delta)$.

Sign of \delta: consistent with convention (δ/k distance by which the wave is "delayed", wave is to the left, delay means shift to the right). Cosine being even function,

$$f(z, t) = A \cos(kz + \omega t - \delta) = A \cos(-kz - \omega t + \delta).$$

Switching the sign of k: wave with same amplitude, phase constant, frequency, and wavelength but traveling in the opposite direction.

Sinusoidal Waves:
$$f(z, t) = A \cos[k(z - vt) + \delta]$$

Complex notation:

Euler's formula, $e^{i\theta} = \cos \theta + i \sin \theta$,

The sinusoidal wave can be written as, $f(z, t) = \text{Re} \left[Ae^{i(kz - \omega t + \delta)} \right]$,

Introduce the complex wave function, $\tilde{f}(z,t) \equiv \tilde{A}e^{i(kz-\omega t)}$,

Complex amplitude $\tilde{A} \equiv Ae^{i\delta}$ absorbs the phase constant.

The actual wave function is the real part of : $f(z, t) = \text{Re}[\tilde{f}(z, t)]$.

Advantage of the complex notation:

exponentials are easier to manipulate than sines and cosines.

Sinusoidal Waves:
$$f(z, t) = A \cos[k(z - vt) + \delta]$$

Complex notation:

Suppose you want to combine two sinusoidal waves:

$$f_3 = f_1 + f_2 = \text{Re}(\tilde{f}_1) + \text{Re}(\tilde{f}_2) = \text{Re}(\tilde{f}_1 + \tilde{f}_2) = \text{Re}(\tilde{f}_3),$$

with $\tilde{f}_3 = \tilde{f}_1 + \tilde{f}_2$. You simply add the corresponding *complex* wave functions, and then take the real part. In particular, if they have the same frequency and wave number,

$$\tilde{f}_3 = \tilde{A}_1 e^{i(kz - \omega t)} + \tilde{A}_2 e^{i(kz - \omega t)} = \tilde{A}_3 e^{i(kz - \omega t)},$$

where

$$\tilde{A}_3 = \tilde{A}_1 + \tilde{A}_2$$
, or $A_3 e^{i\delta_3} = A_1 e^{i\delta_1} + A_2 e^{i\delta_2}$.

In other words, you just add the (complex) amplitudes. The combined wave still has the same frequency and wavelength,

$$f_3(z,t) = A_3 \cos(kz - \omega t + \delta_3),$$

Sinusoidal Waves: $f(z, t) = A \cos[k(z - vt) + \delta]$

Problem 9.3. Determine A_3 and δ_3 in terms of A_1 , A_2 , δ_1 , and δ_2 .

$$(A_3)^2 = (A_3 e^{i\delta_3}) (A_3 e^{-i\delta_3}) = (A_1 e^{i\delta_1} + A_2 e^{i\delta_2}) (A_1 e^{-i\delta_1} + A_2 e^{-i\delta_2})$$

$$= (A_1)^2 + (A_2)^2 + A_1 A_2 (e^{i\delta_1} e^{-i\delta_2} + e^{-i\delta_1} e^{i\delta_2}) = (A_1)^2 + (A_2)^2 + A_1 A_2 2 \cos(\delta_1 - \delta_2);$$

$$A_3 = \sqrt{(A_1)^2 + (A_2)^2 + 2A_1 A_2 \cos(\delta_1 - \delta_2)}.$$

$$A_3 e^{i\delta_3} = A_3(\cos \delta_3 + i \sin \delta_3) = A_1(\cos \delta_1 + i \sin \delta_1) + A_2(\cos \delta_2 + i \sin \delta_2)$$
$$= (A_1 \cos \delta_1 + A_2 \cos \delta_2) + i(A_1 \sin \delta_1 + A_2 \sin \delta_2).$$

$$\tan \delta_3 = \frac{A_3 \sin \delta_3}{A_3 \cos \delta_3} = \frac{A_1 \sin \delta_1 + A_2 \sin \delta_2}{A_1 \cos \delta_1 + A_2 \cos \delta_2};$$

$$\delta_3 = \left| \tan^{-1} \left(\frac{A_1 \sin \delta_1 + A_2 \sin \delta_2}{A_1 \cos \delta_1 + A_2 \cos \delta_2} \right). \right|$$

Sinusoidal Waves:
$$f(z, t) = A \cos[k(z - vt) + \delta]$$

Linear combinations of sinusoidal waves:

Any wave can be expressed as a linear combination of the sinusoidal ones:

$$\tilde{f}(z,t) = \int_{-\infty}^{\infty} \tilde{A}(k)e^{i(kz-\omega t)} dk.$$

Here, $\omega = \omega$ (k),

and k runs through the -ve values to include waves going in both directions.

Polarization:

Transverse wave: displacement perpendicular to the direction of propagation. (Shaking of string, EM wave)

Longitudinal wave: displacement from equilibrium along the direction of propagation. (Compression in a slinky, sound wave)

Polarization:

Transverse wave: two independent states of polarization

string up-and-down, "vertical" polarization

$$\tilde{\mathbf{f}}_{v}(z,t) = \tilde{A}e^{i(kz-\omega t)}\,\hat{\mathbf{x}},$$

string left-and-right, "horizontal" polarization

$$\tilde{\mathbf{f}}_h(z,t) = \tilde{A}e^{i(kz-\omega t)}\,\hat{\mathbf{y}},$$

Polarization:

Transverse wave: two independent states of polarization

along any other direction in the xy plane

$$\tilde{\mathbf{f}}(z,t) = \tilde{A}e^{i(kz-\omega t)}\,\hat{\mathbf{n}}.$$

Polarization vector $\hat{\mathbf{n}}$ defines the plane of vibration.

In terms of the polarization angle θ , $\hat{\mathbf{n}} = \cos \theta \, \hat{\mathbf{x}} + \sin \theta \, \hat{\mathbf{y}}$.

Transverse waves : $\hat{\mathbf{n}}$ is perpendicular to the direction of propagation,

$$\hat{\mathbf{n}} \cdot \hat{\mathbf{z}} = 0$$

Superposition of two waves—one horizontally polarized and the other one vertically:

$$\tilde{\mathbf{f}}(z,t) = (\tilde{A}\cos\theta)e^{i(kz-\omega t)}\,\hat{\mathbf{x}} + (\tilde{A}\sin\theta)e^{i(kz-\omega t)}\,\hat{\mathbf{y}}.$$

The Wave Equation for E and B in Vacuum:

For no charge or current, Maxwell's equations: $\underline{Coupled}$, first-order, pde for E & B.

(i)
$$\nabla \cdot \mathbf{E} = 0$$
, (iii) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$,

(ii)
$$\nabla \cdot \mathbf{B} = 0$$
, (iv) $\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$.

Decoupling E & B:

$$\nabla \times (\nabla \times \mathbf{E}) = \nabla(\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = \nabla \times \left(-\frac{\partial \mathbf{B}}{\partial t} \right)$$

$$= -\frac{\partial}{\partial t} (\nabla \times \mathbf{B}) = -\mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2},$$
and
$$= \mu_0 \epsilon_0 \frac{\partial}{\partial t} (\nabla \times \mathbf{E}) = -\mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}.$$

$$\nabla \cdot \mathbf{E} = 0$$
 and $\nabla \cdot \mathbf{B} = 0$,

$$\nabla^2 \mathbf{E} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}, \quad \nabla^2 \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}.$$

Interdependent, one is the other!

Price for decoupling: 2nd order equations.

The Wave Equation for E and B in Vacuum:

$$\nabla^2 \mathbf{E} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}, \quad \nabla^2 \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}.$$

$$\nabla^2 f = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}.$$
 empty space EM waves travelling speed v

$$v = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 3.00 \times 10^8 \,\text{m/s},$$

- 2 static quantities decide speed of em wave!!
 - Exactly same as light speed!!May be light is an EM wave!!!

No EM wave without Maxwell's term!!

<u>Monochromatic Plane Waves:</u>

Sinusoidal waves of frequency ω : different frequencies in the visible range correspond to different colors, such waves are called monochromatic.

	The Electromagnetic Spectrum	
Frequency (Hz)	Туре	Wavelength (m)
10 ²²		10-13
10^{21}	gamma rays	10^{-12}
10^{20}		10^{-11}
10^{19}		10^{-10}
10^{18}	x-rays	10^{-9}
10^{17}	•	10^{-8}
10^{16}	ultraviolet	10^{-7}
10^{15}	visible	10^{-6}
10^{14}	infrared	10^{-5}
10^{13}		10^{-4}
10^{12}		10^{-3}
10^{11}		10^{-2}
10^{10}	microwave	10^{-1}
10 ⁹		1
10^{8}	TV, FM	10
10^{7}		10^{2}
10^{6}	AM	10^{3}
10^{5}		10^4
10^{4}	RF	10^{5}
10^{3}		10^{6}

	The Visible Range	
Frequency (Hz)	Color	Wavelength (m)
1.0×10^{15}	near ultraviolet	3.0×10^{-7}
7.5×10^{14}	shortest visible blue	4.0×10^{-7}
6.5×10^{14}	blue	4.6×10^{-7}
5.6×10^{14}	green	5.4×10^{-7}
5.1×10^{14}	yellow	5.9×10^{-7}
4.9×10^{14}	orange	6.1×10^{-7}
3.9×10^{14}	longest visible red	7.6×10^{-7}
3.0×10^{14}	near infrared	1.0×10^{-6}

Monochromatic Plane Waves:

Sinusoidal waves of frequency ω : different frequencies in the visible range correspond to different colors, such waves are called monochromatic.

Waves traveling in the z direction, no x or y dependence: Plane waves

The fields are uniform over every plane perpendicular to the direction of propagation.

$$\tilde{\mathbf{E}}(z,t) = \tilde{\mathbf{E}}_0 e^{i(kz-\omega t)}, \quad \tilde{\mathbf{B}}(z,t) = \tilde{\mathbf{B}}_0 e^{i(kz-\omega t)},$$
 where $\tilde{\mathbf{E}}_0$ and $\tilde{\mathbf{B}}_0$ are the (complex) amplitudes Extra constraints on $\tilde{\mathbf{E}}_0$ and $\tilde{\mathbf{B}}_0$

$$\nabla \cdot \mathbf{E} = 0$$
 and $\nabla \cdot \mathbf{B} = 0$, implies $(\tilde{E}_0)_z = (\tilde{B}_0)_z = 0$.

E and B is perpendicular to the propagation direction.

EM plane wave can not have a longitudinal component.

Thus EM waves are purely transverse!

Monochromatic Plane Waves:

$$\tilde{\mathbf{E}}(z,t) = \tilde{\mathbf{E}}_0 e^{i(kz-\omega t)}, \quad \tilde{\mathbf{B}}(z,t) = \tilde{\mathbf{B}}_0 e^{i(kz-\omega t)},$$
 where $\tilde{\mathbf{E}}_0$ and $\tilde{\mathbf{B}}_0$ are the (complex) amplitudes

Extra constraints on $\tilde{\mathbf{E}}_0$ and $\tilde{\mathbf{B}}_0$

Faraday's law,
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
,

$$-k(\tilde{E}_0)_y = \omega(\tilde{B}_0)_x, \quad k(\tilde{E}_0)_x = \omega(\tilde{B}_0)_y,$$

$$\begin{split} \vec{\vec{r}} \times \vec{\vec{E}} &= -\frac{\partial \widetilde{B}_x}{\partial t} \hat{x} - \frac{\partial \widetilde{B}_y}{\partial t} \hat{y} - \frac{\partial \widetilde{B}_z}{\partial t} \hat{z} \\ \widetilde{\vec{E}} &= \Big(E_{0x} \hat{x} + E_{0y} \hat{y} \, \Big) e^{i(kz - \omega t)} \, e^{i\delta} \end{split}$$

$$\tilde{\mathbf{B}}_0 = \frac{k}{\omega} (\hat{\mathbf{z}} \times \tilde{\mathbf{E}}_0).$$

E & B are in phase and mutually perpendicular.

The real amplitudes, $B_0 = \frac{k}{\omega} E_0 = \frac{1}{c} E_0$.

Monochromatic Plane Waves:

$$\tilde{\mathbf{E}}(z,t) = \tilde{\mathbf{E}}_0 e^{i(kz-\omega t)}, \quad \tilde{\mathbf{B}}(z,t) = \tilde{\mathbf{B}}_0 e^{i(kz-\omega t)},$$
 where $\tilde{\mathbf{E}}_0$ and $\tilde{\mathbf{B}}_0$ are the (complex) amplitudes

Now, if \mathbf{E} points in the x direction then B points in the y direction $(\tilde{\mathbf{B}}_0 = \frac{k}{\omega}(\hat{\mathbf{z}} \times \tilde{\mathbf{E}}_0))$.

$$\tilde{\mathbf{E}}(z,t) = \tilde{E}_0 e^{i(kz - \omega t)} \hat{\mathbf{x}}, \quad \tilde{\mathbf{B}}(z,t) = \frac{1}{c} \tilde{E}_0 e^{i(kz - \omega t)} \hat{\mathbf{y}},$$

or

taking the real part,

$$\mathbf{E}(z,t) = E_0 \cos(kz - \omega t + \delta) \,\hat{\mathbf{x}}, \quad \mathbf{B}(z,t) = \frac{1}{c} E_0 \cos(kz - \omega t + \delta) \,\hat{\mathbf{y}}.$$

Monochromatic plane wave! (Direction of *E* specify polarization direction)

Monochromatic Plane Waves:

Generalize to monochromatic plane waves traveling in an arbitrary direction. (nothing special about the z direction)

Introducing the wave vector \mathbf{k} (pointing in the direction of propagation) The scalar product k.r is the appropriate generalization of kz so,

$$\tilde{\mathbf{E}}(\mathbf{r},t) = \tilde{E}_0 e^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)} \,\hat{\mathbf{n}},$$

$$\tilde{\mathbf{E}}(\mathbf{r},t) = \tilde{E}_0 e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} \,\hat{\mathbf{n}},$$

$$\tilde{\mathbf{E}}(\mathbf{r},t) = \frac{1}{c} \tilde{E}_0 e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} (\hat{\mathbf{k}} \times \hat{\mathbf{n}}) = \frac{1}{c} \hat{\mathbf{k}} \times \tilde{\mathbf{E}},$$

$$\tilde{\mathbf{n}} \text{ polarization vectors}$$

$$\hat{\mathbf{n}} \cdot \hat{\mathbf{k}} = 0.$$

$$\hat{\mathbf{n}} \cdot \hat{\mathbf{k}} = 0.$$

 $\hat{\mathbf{n}}$ polarization vector

E being transverse,

$$\hat{\mathbf{n}} \cdot \hat{\mathbf{k}} = 0.$$

The real **E** & **B** fields in a monochromatic plane wave with propagation vector \mathbf{k} and polarization $\hat{\mathbf{n}}$ are

$$\mathbf{E}(\mathbf{r}, t) = E_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \delta) \,\hat{\mathbf{n}},$$

$$\mathbf{B}(\mathbf{r},t) = \frac{1}{c} E_0 \cos{(\mathbf{k} \cdot \mathbf{r} - \omega t + \delta)} (\hat{\mathbf{k}} \times \hat{\mathbf{n}}).$$

Demonstrations of EM wave radiation, polarization

https://www.youtube.com/watch?v=j2gOh39IyPM&t=305s

https://www.youtube.com/watch?v=4xF1Fq2wB1I