Нелинейные методы строительной механики

Введение

Черновик

ИВТ и ПМ ЗабГУ

2019

Нелинейные методы строительной механики

"A view of nature as dense and nonlinear is at the core of our contemporary science"

- Gregory Benford

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет статически неопределимых балок по предельному

Статический способ

Кинематический способ

Вопрось

Ссылки

Материалы курса

vetrovsv.github.io/NelST/

Литература курса

Сухов М. Ф. Нелинейные задачи строительной механики [Текст]: учеб. пособие / М.Ф. Сухов, Д.А. Кожанов; Нижегор. гос. архитектур. - строит. ун-т – Н.Новгород: ННГАСУ, 2017. – 66 с

Линейная строительная механика

- Принцип отвердевания
- Принцип малых перемещений
- Принцип независимости действия сил
- ▶ Закон Гука

Линейная строительная механика

- Принцип отвердевания
- Принцип малых перемещений
- Принцип независимости действия сил
- Закон Гука
 σ_x

$$\varepsilon_X = \frac{\sigma_X}{E} - \frac{\mu}{E}\sigma_Y - \frac{\mu}{E}\sigma_Z$$

• • •

Нелинейная строительная механика

- Расчёт конструкции для всех этапов нагружения, включая разрушения
- Рассматриваются в том числе неупругие деформации
- Принцип отвердевания неприменим. Размеры и форма конструкции могут изменятся.

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет статически неопределимых балок по предельному

Статический способ

Кинематический способ

Вопрось

Ссылки

Нелинейность

Какие уравнения называют линейными?

Нелинейность

Какие уравнения называют линейными?

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

Какие уравнения называют нелинейными?

Виды нелинейности

В механике выделяют три вида нелинейности:

- Физическая нелинейность
- Геометрическая нелинейность
- Конструктивная нелинейность

- Бетон, дерево, пластик и некоторые другие строительные материалы характеризуются нелинейной зависимостью напряжений от деформаций даже при небольших нагрузках
- Такая нелинейность называется физической
- Проявляется при возникновении пластических деформаций в различных формах (текучести – деформировании при постоянных напряжениях, ползучести – росте деформаций во времени без увеличения нагрузки), при криволинейной диаграмме «напряжения-деформации», при изменении свойств материалов от внешних воздействий и т. д

Диаграмма деформирования.

Диаграмма деформирования. Упругие деформации (линейные) - слева от т. 1 Пластические деформации - справа от т. 1

Задачи рассматривающие обе части деформаций называются упругопластическими.

 Связь между напряжениями и деформациями в общем виде

$$\sigma = E(\varepsilon)\varepsilon$$

где $E(\varepsilon)$ – матрица, характеризующая физические свойства материала – элементы ее являются функциями компонент вектора деформаций ε . То есть физические свойства материала зависят от того, насколько он деформирован.

- ε вектор деформаций.
- Причем приведённая система уравнений (в матричной форме) в случае присутствия физической нелинейности превращается в систему нелинейных уравнений.
- Закон Гука не учитывает такую нелинейность

Геометрическая нелинейность (ГН)

- Большие перемещения
- Значительные деформации
- Нелинейная зависимость между нагрузками и перемещениями
- Учитывается в уравнениях связывающих деформации с перемещениями
- Например, в случае продольного и продольно-поперечного изгиба стержней, изменении координат точек конструкции из-за сравнительно больших перемещений

Конструктивная нелинейность (КН)

- Изменение расчётной схемы из-за нагружения
- Включение и выключение связей
- ► Например, возникновение контакта с опорой в из-за прогиба.
- Уравнения равновесия должны включать перемещения

Конструктивная нелинейность (КН)

изменение расчётной схемы в результате появления новой связи (опоры)

Методы расчёта нелинейно деформируемых систем

Классификация задач

Классификация задач нелинейной строительной механики (без учёта конструктивной нелинейности):

- ФЛ, ГЛ
- ФН, ГЛ
- ФЛ, ГН
- ФН, ГН

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет статически неопределимых балок по предельному

Статический способ

Кинематический способ

Вопрось

Ссылки

Диаграмма деформирования

- Как будет вести себя стержень из малоуглеродистой стали если приложить к нему небольшое растягивающее усилие, а затем постепенно увеличивать?
- Как будет изменятся его длина?
- Что будет если на определённом этапе убрать нагрузку?
- Стержень сможет восстановить свою исходную форму любой деформации?

Диаграмма деформирования

Пластичный материал

F — продольная растягивающая сила, [H]; Δl — абсолютное удлинение рабочей части образца, [мм]

I — участок пропорциональности;II — участок текучести;

III — участок самоупрочнения;

IV — участок разрушения.

 $F_{\Pi \downarrow}$ – предел пропорциональности; F_{T} – предел текучести; F_{max} – предел прочности; F = предел упругости. $\frac{1}{2} = \frac{900}{69}$

Нагрузка и разгрузка

Упругие деформации (до точки E) исчезнут (верхняя схема), если убрать нагрузку с материала.

Текучесть

Предел текучести материала – наименьшее напряжение, при котором деформация увеличивается без заметного увеличения нагрузки. На диаграмме – точка, после которой линия диаграммы некоторое время движется параллельно оси деформаций ε . Практически горизонтальный участок диаграммы, следующий за пределом текучести, называется площадкой текучести.

Пластичные материалы (малоуглеродистая сталь, латунь, алюминий и многие другие металлы) обладают свойствами текучести (увеличения деформаций без увеличения нагрузки) при нормальных температурах.

Хрупкие и пластичные материалы

Диаграмма деформирования (растяжения) для хрупкого (слева) и пластичного материала (справа)

Бетон

Диаграмма одноосного сжатия

Фибробетон

Диаграмма одноосного сжатия

Тесты материалов на растяжение и сжатие

https://youtu.be/D8U4G5kcpcM

Первая часть ролика - В ролике упоминается yeld-point – это предел текучести.

Тест бетона на сжатие https://youtu.be/c7U91LbKFjI

Модели деформирования

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет статически неопределимых балок по предельному

Статический способ

Кинематический способ

Вопрось

Ссылки

Пластический шарнир

Этапы изменения напряжений в балке в условиях чистого сгиба.

Пластический шарнир

Пластический шарнир

Допускаемая нагрузка

- Интерес представляет величина внешней силы Q при котором элемент ещё не исчерпал свою несущую способность
- ▶ Будем называть такую величину **допускаемым значением** $Q_{\text{доп}}$
- Допускаемое значение внешней силы связано с допускаемым моментом М_{доп}, возникающем в опасном сечении.

Допускаемая нагрузка

 Допускаемый момент зависит от свойств материала и элемента конструкции:

$$M_{\text{доп}} = \sigma_{\text{T}} W_{X} \tag{1}$$

где $\sigma_{\rm T}$ – предел текучести, $W_{\rm X}$ – момент сопротивления поперечного сечения балки.

Таблица моментов сопротивления

Предельная нагрузка

- ▶ Кроме допускаемой нагрузки, интерес представляет
 предельное значение нагрузки Q_{пр}
- Это значение, при котором возникает пластический шарнир
- ▶ $Q_{np} > Q_{доп}$
- ▶ Приложить силу больше чем $Q_{\rm np}$ невозможно, ибо балка разрушится.
- Значение предельной силы определяется из условия равенства моментов внутренних и внешних сил для опасного сечения балки.

https://youtu.be/F5RtSUbrifg

Пластический шарнир и разрушение всей конструкции

- В статически определимых системах возникновение пластического шарнира ведет к разрушению конструкции.
- В статически неопределимых системах пластический шарнир снимает одну степень статической неопределимости.

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет статически неопределимых балок по предельному

Статический способ

Кинематический способ

Вопрось

Ссылки

Расчет по допускаемым напряжениям

В методе расчета по допускаемым напряжениям должно соблюдаются неравенство:

$$\sum S_i \le A[\sigma] \tag{2}$$

где S_i - воздействие на рассчитываемый элемент і-ой *нормативной* нагрузки (постоянной или временной)

А - геометрическая характеристика сечения

 $[\sigma]$ - допускаемое напряжение в элементе

Расчет по допускаемым напряжениям

Введя коэффициенты надёжности получим неравенство 2 в виде:

$$\sum \gamma_i S_i \leq A \frac{\sigma_{\mathsf{пред}}}{\gamma_R}$$

где γ_i – коэффициент надежности по нагрузке $\gamma_{\mathcal{R}}$ – коэффициенты надежности по материалам

Расчет по предельным состояниям

Предельное состояние – состояние конструкции (сооружения), при котором она перестаёт удовлетворять эксплуатационным требованиям.

- используется несколько коэффициентов запаса, учитывающих особенности работы сооружения, независимых коэффициентов
- учёт вероятностных свойств действующих на конструкции нагрузок и сопротивлений этим нагрузкам
- **...**

Предельные состояния

- Первое предельное состояние характеризуется потерей устойчивости и полной непригодностью к дальнейшей эксплуатации.
- Второе предельное состояние характеризуется наличием признаков, при которых эксплуатация конструкции или сооружения хотя и затруднена, но полностью не исключается

Предельные состояния

Первое предельное состояние

изображение с сайта lib.dystlab.com/index.php/engineering/civil/structural/87-limit-states

Предельные состояния

изображение с сайта lib.dystlab.com/index.php/engineering/civil/structural/87-limit-states

Проверки по предельным состояниям

 $N_{max} \leq N$

N_{max} – фактор характеризующий нагрузку Например: изгибающий момент, напряжение, деформация, перемещение, ...

N – нормативное значение соответствующего N_{max} фактора или расчётное значение соответствующего сопротивления

В настоящее время расчёт по предельным состояниям заменил расчёт по допускаемым напряжениям и определяется ГОСТом и Eurocode.

Теория предельного равновесия

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям Расчет статически неопределимых балок по предельному состоянию

Статический способ

Кинематический способ

Вопрось

Ссылки

Расчет статически неопределимых балок по предельному состоянию

- несущая способность балки исчерпается, когда, хотя бы в одном, т.е. в наиболее опасном сечении пластическая область заполняет все сечение, т.е. когда в этом сечении образуется пластический шарнир и система становится геометрически изменяемой.
- Для статически неопределимых балок образование одного пластического шарнира не приводит к исчерпанию несущей способности, т.к. в этом случае степень кинематической определимости системы снижается на одну единицу.
- В случае п раз статически неопределимой балки исчерпание несущей способности происходит при формировании n + 1 пластических шарниров.

Расчет статически неопределимых балок по предельному состоянию

 Однако в ряде случаев часть балки может стать геометрически изменяемой при значительно меньшем числе пластических шарниров.

Задача

Для балки прямоугольного сечения (b x h) требуется определить допускаемое и предельное значения нагрузки P.

Решение

- 1. Значение силы $P_{\text{доп}}$ определим используя значение $M_{\text{доп}}$.
- 2. $M_{\text{доп}}$ будем считать равным M_{max} наибольшему моменту, действующему в опасном сечении.

$$M_{\text{доп}} = M_{max}$$

При этом значение, напряжение в опасном сечении достигает предела текучести, но пластический шарнир ещё не образуется.

Решение

1. Определим наиболее опасное сечение и M_{max} построив эпюру М

- 2. $M_{\text{доп}} = M_{\text{max}} = 13/64Pl$
- 3. Вместо Р используем $P_{\text{доп}}$
- 4. $M_{\text{доп}} = 13/64 P_{\text{доп}} l$

Решение

- 1. $P_{\text{доп}} = 13/64 \cdot M_{\text{доп}}/l$
- 2. Определим $M_{\text{доп}}$ из формулы (1):

$$M_{ extsf{DOR}} = \sigma_{ extsf{T}} W_{ extsf{X}} \ P_{ extsf{DOR}} = rac{13}{64} \sigma_{ extsf{T}} W_{ extsf{X}} / l$$

- 3. Для балки прямоугольного сечения $W_{\chi} = \frac{bh^2}{6}$
- 4. $P_{AO\Pi} = \frac{13}{64} \sigma_{T} \frac{bh^{2}}{6l}$ $P_{AO\Pi} = \frac{32}{39} \sigma_{T} \frac{bh^{2}}{l}$

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет статически неопределимых балок по предельному состоянию

Статический способ

Кинематический способ

Вопрось

Ссылки

Решение

Определим предельное значение силы Р.

- Увеличивая величину внешней силы Р > Рдоп, пластическая область в опасном сечении В балки увеличивается.
- При некотором значении силы в сечении В возникает пластический шарнир, тогда величина изгибающего момента в этом сечении становится равной M_{пр}.
- При дальнейшем росте внешней силы Р, момент в сечении В остается постоянным и равным M_{пр}.
- Возникновение пластического шарнира в т. В превращает один раз статически неопределимую балку в балку статически определимую

Решение

1. Определим способ разрушения балки

Что будет происходить с балкой дальше, если сила P проложит действовать?

Решение

1. Определим способ разрушения балки

Что будет происходить с балкой дальше, если сила P проложит действовать?

Наибольшая величина изгибающего момента формируется в сечении C, достигает предельной величины $M_{\rm np}$, формируется пластический шарнир, балка превращается в геометрически изменяемую систему.

Решение

• 2. Составим уравнения равновесия:

7

ightharpoonup 3. ...и равенства изгибающего момента в сечениях пластического шарнира предельному моменту $M_{\rm np}$:

..

- 4. Из уравнений выразим $P_{\text{доп}}$ через $M_{\text{пр}}$
- 5. М_{пр} выразим через уравнение (1)

Статическая теорема

Статический метод

- 1. Задаются различные схемы разрушения предельной стадии работы рассматриваемой системы, и для каждой из них составляются уравнения равновесия и определяются предельные значения внешних сил.
- 2. Из их числа, наименьшая является расчетной величиной предельной силы.
- 3. Из числа рассмотренных схем разрушения, на основании которых определяется предельная сила, является наиболее вероятной схемой разрушения конструкции.

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет статически неопределимых балок по предельному состоянию

Статический способ

Кинематический способ

Вопрось

Ссылки

Кинематический способ

- в предельном состоянии составляется уравнение работы всех внешних и внутренних усилий на основе принципа возможных перемещений
- принцип возможных перемещений: если система твердых тел находится в равновесии под действием системы сил, то работа, совершаемая этими силами на любом малом возможном перемещении системы, должна быть равна нулю

Расчёт кинематическим методом.

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет статически неопределимых балок по предельному

Статический способ

Статическии способ

Кинематический способ

Вопросы

Ссылки

Вопросы

- Что такое нелинейность?
- Какие виды нелинейности бывают? Примеры.
- Что такое упругие и пластические деформации?
- Какую часть диаграммы деформирования описывает закон Гука?
- Что такое пластический шарнир?
- Что такое допускаемое значение нагрузки?
- Что такое предельное значение нагрузки?
- Какое соотношение между этими двумя величинами?

Вопросы

- Как изменяется статически неопределимая система при возникновении пластического шарнира?
- Объясните статический метод определения предельной нагрузки.

Вопросы

- Как изменяется статически неопределимая система при возникновении пластического шарнира?
- Объясните статический метод определения предельной нагрузки.
- Какие проверки нужно делать для каждого варианта образования пластических шарниров?
- Как выбирается значение предельной силы из всех вариантов для схем образования пластических шарниров?

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет статически неопределимых балок по предельному

Статический способ

Кинематический способ

Вопрось

Ссылки

Ссылки