The LNM Institute of Information Technology Jaipur, Rajasthan

MATH-I ■ Solutions Assignment #6

(Riemann Integration & Improper Integrals)

- Q1. Let $f:[0,1]\to\mathbb{R}$ be defined as $f(x)=\begin{cases} 1 & \text{if } 0\leq x<1\\ 10^9 & \text{if } x=1 \end{cases}$. Show that f is integrable on [0,1] and that $\int_0^1 f=1$.
- Ans. Let $P = \{x_0, \dots, x_n\}$ be a partition of [0, 1]. Note that $m_i(f) = M_i(f) = 1$ for $i = 1, 2, \dots, n-1$ and $M_n(f) = 10^9$ and $m_n(f) = 1$. Hence, we have

$$L(P,f) = \sum_{i=1}^{n} m_i(f)(x_i - x_{i-1}) = \sum_{i=1}^{n} (x_i - x_{i-1}) = 1,$$

$$U(P,f) = \sum_{i=1}^{n} M_i(f)(x_i - x_{i-1}) = \sum_{i=1}^{n-1} (x_i - x_{i-1}) + M_n(f)(x_n - x_{n-1}) = x_{n-1} + 10^9 (1 - x_{n-1})$$

Claim. $\inf\{U(P,f): P \text{ is a partition of } [0,1]\} = \inf\{t+10^9(1-t): 0 < t < 1\} = 1.$ First we show that 1 is a lower bound. Note that $10^9 > 1$. Hence $10^9(1-t) > 1 - t$ if t < 1. This implies $t+10^9(1-t) > 1$. In order to show that 1 is infimum, let $\epsilon > 0$ be given. Then we can find $t \in (0,1)$ such that $t > \frac{10^9-1-\epsilon}{10^9-1}$. This would imply $(10^9-1)t > 10^9-1-\epsilon \implies 1+\epsilon > t+10^9(1-t)$.

Q2. Define $f: [-1,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} -1, & -1 \le x \le 0 \\ 1, & 0 < x \le 1. \end{cases}$$

Is the function continuous on [-1,1]? Is the function Riemann integrable?

- Ans. Clearly f is not continuous at x = 0. Since f is monotonically increasing on [-1, 1] hence it is integrable.
- Q3. Does there exist a continuous function f on [0,1] such that

$$\int_0^1 x^n f(x) dx = \frac{1}{\sqrt{n}} \quad \text{for all} \quad n \in \mathbb{N}.$$

Ans. Suppose there is such a function f and sup f = M. Then

$$\frac{1}{\sqrt{n}} = \left| \int_0^1 f(x) x^n dx \right| \le M \left| \int_0^1 x^n dx \right| = \frac{M}{n+1}.$$

This implies that $1 \leq \frac{M\sqrt{n}}{n+1} \to 0$ which is a contradiction.

Q4. For each $n \in \mathbb{N}$, let $g_n : [0,1] \to \mathbb{R}$ be defined as $g_n(x) := \begin{cases} \frac{(n+1)x^n}{1+x}, & \text{if } 0 \le x < 1 \\ 0, & x = 1. \end{cases}$.

Then prove that $\lim_{n \to \infty} \int_0^1 g_n(x) dx = \frac{1}{2}$ whereas $\int_0^1 \lim_{n \to \infty} g_n(x) dx = 0$.

Ans.

Claim. $\lim_{n\to\infty} g_n(x) = 0$ for all $x \in [0,1]$.

Proof. 1. If x = 1, 0, then $g_n(x) = 0$ for all $n \in \mathbb{N}$.

2. If $x \in (0,1)$, then $g_n(x) > 0$ for all n. Also

$$\lim_{n \to \infty} \frac{g_{n+1}(x)}{g_n(x)} = \lim_{n \to \infty} \frac{(n+2)x^{n+1}}{1+x} \times \frac{1+x}{(n+1)x^n} = \lim_{n \to \infty} \frac{(n+2)x}{n+1} = x < 1$$

By ratio test, it follows that $g_n(x) \to 0$.

Therefore $\int_0^1 \lim_{n \to \infty} g_n(x) dx = 0.$

For the other part, use integration by parts to see that $\int_0^1 \frac{(n+1)y^n}{1+y} dy = \frac{1}{2} + \int_0^1 \frac{y^{n+1}}{(1+y)^2} dy.$ Note that $\int_0^1 \frac{y^{n+1}}{(1+y)^2} dy \le \int_0^1 y^{n+1} dy = \frac{1}{n+2} \to 0 \text{ as } n \to \infty.$ Therefore,

$$\lim_{n \to \infty} \int_0^1 g_n(y) dy = \frac{1}{2} .$$

Q5. Let $f: [-1,1] \to \mathbb{R}$ such that

$$f(x) = \begin{cases} a, & \text{if } -1 \le x < 0 \\ 0, & \text{if } x = 0 \\ b, & 0 < x \le 1 \end{cases}$$

Assume that a, b > 0.

- Ans. Without loss of generality assume that a < b. For each $\epsilon > 0$, find a partition $P := \{-1, \frac{-1}{N}, \frac{1}{N}, 1\}$ of [-1, 1] such that $\frac{2b}{N} < \epsilon$. This follows from Archimedian property. Note that $U(P, f) = a(1 \frac{1}{N}) + b(1 + \frac{1}{N})$ and $L(P, f) = a(1 \frac{1}{N}) + b(1 \frac{1}{N})$. Therefore $U(P, f) L(P, f) = \frac{2b}{N} < \epsilon$. (For more details see Page 183, Ajit kumar-Kumaresan book of Real Analysis.)
- Q6. Consider $a_n := \sum_{i=1}^n \frac{1}{\sqrt{n^2 + in}}$ for $n \in \mathbb{N}$. Find $\lim_{n \to \infty} a_n$.
- Ans. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \sum_{i=1}^n \frac{1}{n} \frac{1}{\sqrt{1+\frac{i}{n}}}$. Therefore using Riemann sum $\lim_{n\to\infty} a_n = \int_0^1 \frac{1}{\sqrt{1+x}} = 2(\sqrt{2}-1)$.
- Q7. Find the intervals in which the function $f(x) = 2x^3 + 2x^2 2x 1$ is convex, concave, increasing, decreasing. Also find local maxima, local minima and point of inflection.
- Ans. Let $f(x) = x^3 6x^2 + 9x + 1$. Note that f'(x) = 3(x 1)(x 3). Therefore, f is increasing on $(-\infty, 1) \cup (3, \infty)$ and f is decreasing on (1, 3). Moreover, f has a local maximum at x = 1 and local minimum at x = 3. Since f''(x) = 6(x 2), f is convex on $(2, \infty)$ and concave on $(-\infty, 2)$. Moreover, f has a point of inflection at x = 2.