

Pandas 使用

Pandas 包是基于 Python 平台的数据管理利器,已经成为了 Python 进行数据分析和挖掘时的数据基础平台和事实上的工业标准。本课程将在实战中学习 Pandas 包,学员将学会独立使用 Pandas 包完成数据读入、数据清理、数据准备、图表呈现等工作,为继续学习数据建模和数据挖掘打下坚实基础

安装&导入

语言 Python3

pip install pandas

设定系统环境

inport pandas as pd

#设定自由列表输出最多为 10 行

pd. options .display.max_rows = 10

#显示当前 Pandas 版本号

pd. _version_

1 获取数据

1.1 新建数据

s_id	s_name	s_sex	s_age	s_birthday	s_addr	s_created	s_status
1	± 1	1	16	2007-04-18	重庆	2018-04-18	1
2	± 1	1	16	2007-04-18	重庆	2018-04-18	1
3	王小花	0	20	2000-08-11	重庆	2018-04-18	1
4	李四	0	10	2008-03-18	重庆	2018-04-18	0
5	王五	0	12	2002-05-02	上海	2018-04-18	1
7	张三跑	0	10	2008-01-18	西安	2018-04-18	1
8	王麻子	0	10	2008-01-18	杭州	2018-04-18	1
9	小四	0	10	2008-01-18	西安	2018-04-18	0
10	小5	0	10	2008-01-18	苏州	2018-04-18	1
11	小六	0	10	2008-01-18	西安	2018-04-18	1
15	张三跑	0	10	2008-01-18	西安	2018-04-18	1

Series

它是一种类似于一维数组的对象,是由一组数据(各种 NumPy 数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的 Series 对象

用值列表生成 Series 时, Pandas 默认自动生成整数索引

```
s = pd.Series([1, 3, 5, 6, 8])

0 1.0

1 3.0

2 5.0

3 6.0

4 8.0
```

```
pd.Series(
    data=None :数据列表,字典格式肘直接同肘提供变量名
    name=None : 变量名列表
)
```

DataFrame

DataFrame 是 Pandas 中的一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame 即有行索引也有列索引,可以被看做是由 Series 组成的字典

```
pd.DataFrame({
    'name':['zs1','zs2','zs3'],
    'sex':[1,1,0],
    'age':18
})
```



```
pd.DataFrame(
    data=None :数据列表,字典格式肘直接同肘提供变量名
    columns=None : 变量名列表

)

pd.DataFrame (
    data = [ [1,'test'] r,[2,'python'],[3,'test'] A [4, 'Hello']],
    columns = ['no','info']

)
```

1.2 读入文本格式数据文件


```
pandas. read_csv (filename, encoding)
pandas.read_table ( ):更通的文本文件读取命令
主要的区别在于默认的 sep="\t",即 tab 符号。
```

```
pd.read_csv(
filepath_or_buffer :要读入的文件路径
sep = , , ; :切分隔符
```


header = 'infer':指定数据中的第几行作为变量名

names = None:自定义变量名列表

index_col = None:将会被用作索引的列名,多列时只能使用序号列表

usecols = None:指定只读入某些列,使用索引列表或者名称列表均可。

[0,1,3],["名次","学校名称七"所在地区"]

encoding = None:读入文件的编码方式

utf-8/GBK,中文数据文件最好设定为 utf-8

na_values:指定将被读入为缺失值的数值列表,默认下列数据被读入为缺失值:

"A '#N/A* A '#N/A N/A* A '#NA1A A

'-l.#QNAN* A '-NaN1A '-nan'A 'l.#IND'A '1.#QNAN'A

'N/A* A 'NA。 'NULL'A 'NaN'A 'n/a* A 'nan'A 'null'

):读取 CSV 格式文件,但也可通用于文本文件读取

1.3 读取 EXCEL 文件

pd.read_excel (

filepath_or_buf fer:要读入的文件路径

sheet_name:读入的表单,字符串或者数字序号均可,默认读入第一个


```
)

df2 = pd.read_excel ( filename, sheet_name = 0 )
```

1.4 读入数据库数据

1.4.1 配置 MySQL 连接引擎

```
conn = pymysql.connect(
    host = 'localhost',
    user = 'root',
    passwd = '123456',
    db = 'mydb',
    port=3306,
    charset = 'utf8'
)
```


1.4.2 读取数据表

```
pd.read_sql(
sql:需要执行的 SQL 语句/要读入的表名称
con:连接引擎名称
index_col = None:将被用作索引的列名称
columns = None:当提供表名称时,需要读入的列名称 list
)
tbl = pd.read_sql ("select code, name from t_hero con = eng)
tbl = pd.read_sql ("select count (*) from t_hero con = eng)
```

2 保存数据

2.1 保存数据至外部文件

df.to_csv(

filepath_or_buffer:要保存的文件路径

sep = : 分隔符

columns:需要导出的变量列表

header = True:指定导出数据的新变量名,可直接提供 list

index = True :是否导出索引

mode = 'w': Python 写模式,读写方式: r,r+, w, w+, a, a+

encoding = 'utf-8':默认导出的文件编码格式

df2 . to_csv ('temp. txt')

df.to_excel(

filepath_or_buf fer:要读入的文件路径

sheet_name = 1 Sheetl1:要保存的表单名称

df2.to_excel('temp.xlsx' index = False sheet_name = data)

2.2 保存数据至数据库

df.to_sql(

name:将要存储数据的表名称


```
con:连接引擎名称

if_exists = 'fail':指定表已经存在时的处理方式 fail:不做任何处理(不插入新数据)

replace:删除原表并重建新表 append:在原表后插入新数据

index = True:是否导出索引
)

apptbl.to_sql(name=nj t_histrecn r con=engA

if_exists=1 append.1 r index=False)
```

3 变量列的基本操作

当我们有了数据源以后,先别急着分析,应该先熟悉数据,只有对数据充分熟悉了,才能更好的进行分析

3.1 了解数据基本情况

3.1.1 head()与 tail()

当数据表中包含了数据行数过多时,而我们又想看一下每一列数据都是什么样的数据时, 就可以把数据表中前几行或后几行数据显示出来进行查看

head()方法返回前 n 行(观察索引值),显示元素的数量默认是 5,但可以传递自定义数值 tail()方法返回后 n 行观察索引值),显示元素的数量默认是 5,但可以传递自定义数值 代码如下:

```
#浏览前几条记录
df.head()
df.head(10)
浏览最后几条记录
```


df.tail()

3.1.2 info()

熟悉数据的第一点就是看下数据的类型,不同的数据类型的分析思路是不一样的,比如说数值类型的数据就可以求均值,但是字符类型的数据就没法求均值了

info()方法查看数据表中的数据类型,而且不需要一列一列的查看,info()可以输出整个表中所有列的数据类型

df.info()

3.1.3 shape

熟悉数据的第二点就是看下数据表的大小,即数据表有多少行,多少列

shape()方法会以元组的形式返回行、列数。注意 shape 方法获取行数和列数时不会把索引和列索引计算在内

代码如下:

df.shape

3.1.4 describe()

熟悉数据的第三点就是掌握数值的分布情况,即均值是多少,最值是多少,方差及分位数 分别是多少

describe()方法就是可以就可以获取所有数值类型字段的分布值

代码如下:

df.describe()

3.2 修改变量列名

3.2.1 columns

```
df. columns =新的名称 list
df.columns
```

3.2.2 rename()

```
df.rename (
columns =新旧名称字典: {旧名称,:新名称,}
inplace = False:是否直接替换原数据框)
```

代码如下:

```
df.rename(columns = { 'newname':'name','newname2':'name2' } , inplace = True )
```

3.3 筛选变量列

通过 df.var 或 df[var] 可以选择单列

注意:但只适用于已存在的列,只能筛选单列,结果为 Series

代码如下:

df.var 单列的筛选结果为 Series

通过 df[[var]] 可以选择多列

代码如下:

df[[var]] 单列的筛选结果为 DataFream

df[['var1, 'var2']] 多列时,列名需要用列表形式提供(因此可使用列表中的切片操作)多 列的筛选结果为 DF

3.4 删除变量列

```
df.drop (
index / columns =准备删除的行/列标签,多个时用列表形式提供
inplace = False :是否直接更改原数据框
) # pandas0.21 版本以上
```

代码如下:

```
df.drop(columns =['col1','col2'] )
```

del df['column-name']

直接删除原数据框相应的一列,建议尽量少用

3.5 变量类型的转换

3.5.1 Pandas 支持的数据类型

具体类型是 Python, Numpy 各种类型的混合,可以比下表分的更细

- float
- int
- string
- bool
- datetime64[nsr] datetime64[nsr,tz] timedelta[ns]
- category
- object

df.dtypes:查看各列的数据类型

代码如下:

df.dtypes

3.5.2 在不同数据类型间转换

df.astype(

dtype:指定希望转换的数据类型,可以使用 numpy 或者 python 中的数据类型:int/float/bool/str

copy = True:是否生成新的副本,而不是替换原数据框

errors = 'raise': 转换出错时是否抛出错误, raise/ignore)

代码如下:

df.astype('str').dtypes

df.column.astype ('str')

df.astype('int', errors = 'ignore').dtypes 明确指定转换类型的函数:

旧版本方法:

pd.to_datetime ()

pd.to_timedelta ()

pd.to_numeric ()

df.to_string()

可以通过 df. apply 来批量进行多列的转换

pd. to_numeric (df.cloumn)

df [['cloumn1','cloumn2']].astype ('str').apply (pd. to_numeric).dtypes

3.6 变量列的添加

如果想给现有的数据增加新列可以使用如下方法:

3.6.1 根据新数据添加

df[cloumn] = pd.Series([val,val2,val3],index=[c1,c2,c3])

3.6.2 根据原数据添加

df[cloumn] = df[c2] + df[c3]

4 索引的使用

索引的用途:

用于在分析、可视化、数据展示、数据操作中标记数据行

提供数据汇总、合并、筛选时的关键依据

提供数据重构时的关键依据

注意事项:

索引是不可直接修改的,只能增、删、替换

逻辑上索引不应当出现重复值, Pandas 对这种情况不会报错, 但显然有潜在风险

4.1 建立素引

4.1.1 新建数据框时建立素引

所有的数据框默认都已经使用从 0 开始的自然数索引,因此这里的"建立"索引指的是自定义索引

df = pd.DataFrame(

{'varl': 1.0, 'var2': [1,2,3,4],

'var3': ['test', 'python', 'test', 'hello'], 'var4': 'cons'}, index = [0,1,2,6]

)

4.1.2 读入数据时建立素引

使用现有的列

```
df = pd. read_csv ("filename", index_col="column")
```

使用复合列

```
df = pd. read_csv ("filename", index_col=["column1","column2"])
```

4.1.3 指定某列为素引列

```
df.set_index(
```

keys:被指定为索引的列名,复合索引用list:格式提供

drop = True:建立索引后是否删除该列

append = False:是否在原索引基础上添加索引,默认是直接替换原索引

inplace = False :是否直接修改原数据框

)

```
df_new = df .set_index (['学号' , '性别'],drop = False)
```

df_new = df . set_index ('学号', append=True, drop=False)

4.2 将索引还原变量列

```
df.reset_index(
```

drop = False:是否将原索引直接删除,而不是还原为变量列

inplace = False :是否直接修改原数据框

)

df.set_index (['col1',col2,'col3'])

将索引全部还原为变量

df.reset_index ()

是否删除 index 列

df.reset_index (drop=True)

4.3 引用和修改索引

4.3.1 引用索引

注意:索引仍然是有存储格式的,注意区分数值型和字符型的引用方式

df.index

4.3.2 修改索引

修改索引名

本质上和变量列名的修改方式相同

修改索引值

这里的修改本质上是全部替换

dfl.index[3] = 6 #此处无法直接赋值

df1.index = ['a', 'b', 'c', 6]

4.3.3 更新索引

reindex 则可以使用数据框中不存在的数值建立索引,并据此扩充新索引值对应的索引行/列,同时进行缺失值填充操作

df.reindex(

labels:类数组结构的数值,将按此数值重建索引,非必需

copy = True:建立新对象而不是直接更改原 df/series

缺失数据的处理方式

method:针对已经排序过的索引,确定数据单元格无数据时的填充方法,非必需 pad / ffill:用前面的有效数值填充 backfill / bfill:用后面的有效数值填充

nearest:使用最接近的数值进行填充

fill_value = np.NaN:将缺失值用什么数值替代

limit = None:向前/向后填充时的最大步长

)

```
df.set_index ( '学号' )

df.reindex()

df.reindex([1,2,99,101])

df.reindex ( [1,2,99,101],method = 'ffill' )

df.reindex([1,2,99,101],fill_value="不知道")

df.reindex([1,2,99,101],fill_value="不知道").dtypes
```

5 案例的基本操作

5.1 案例排序

5.1.1 用索引排序

df.sort_index (

level:(多重索引时)指定用于排序的级别顺序号/名称


```
ascending = True :是否为升序排列,多列时以表形式提供 inplace = False : na_position = 'last' :缺失值的排列顺序 , f irst/last )
```

```
df = pd.read_excel ( "stu_data.xlsx", index_col=["学号","性别"] )

df. set_index( ['学号','性别'], inplace = True )

df2.sort_index()

df2.sort_index(ascending = [True,False])

df2.sort_index(level = '学号')
```

5.1.2 使用变量值排序

```
df.sort_values (
    by :指定用于排序的变量名 , 多列时以列表形式提供
    ascending = True :是否为升序排列
    inplace = False :
    na_position = 'last' :缺失值的排列顺序 , f irst/last
)
```

df.sort_values(['身高','支出'], 0, False)

5.2 数据选择

5.2.1 列选择

选择列

当想要获取 df 中某列数据时,只需要在 df 后面的方括号中指明要选择的列即可。如果是一列,则只需要传入一个列名;如果是同时选择多列,则传入多个列名即可(注意:多个列名用一个 list 存放)

df[col]

df[[col1, col2]]

Python 中我们把通过传入列名选择数的方式称为普通索引

除了传入具体的列名,我们可以传入具体列的位置,即第几行,对数据进行选取,通过传入位置来获取数据时需要用到 iloc 方法

df.iloc[,[0,2]]

df.iloc 意为 integer-location,即按照行列序号进行检索,iloc 后面的方括号中逗号之前的部分表示要获取的行的位置,只输入一个冒号,不输入任何数值表示获取所有的行,逗号之后方括号表示要获取的列的位置,列的位置同样也是从 0 开始计数

选择连续列

当需要获取连续列时,可以通过iloc方法实现

df[:,0:3]

5.2.2 案例(行)的选择

获取行的方式主要有2种:

一种是**普通索引**,即传入具体索引的名称 loc 方法;

另一种是**位置索引**,即传入具体的行数,需要用 iloc 方法

```
# 获取某行
```

df.loc[index_name]

获取某几行

df.loc[[index_name1,index_name2]]

获取某行

df.iloc[0]

获取某行

df.iloc[[0,3]]

获取某连续行

df.iloc[0:3]

获取满足条件的行

df[df["支出"]>10]

df[(df["支出"]>10) & (df["性别"]=='女')]

筛选操作的实质:基于 T/F 值进行筛选

select_list = [True, False, True]

df.iloc[select_list]

5.2.3 混合选择

#普通索引+普通索引

df.loc[[0,1],['学号','性别']]

#位置索引+位置索引

df.iloc[[0,1],[0,2]]

#Boolean 索引+普通索引

df[df['支出']>20][['学号','性别','支出']]

#切片索引+切片索引

df.iloc[0:2,0:2]

#切片索引+普通索引

df.loc[1:2,['学号','性别']]

df.isin(values) 返回结果为相应的位置是否匹配给出的 values

values 为序列:对应每个具体值

values 为字典:对应各个变量名称

values 为数据框:同时对应数值和变量名称

df.col.isin([1,3,5])

df[df.col.isin([1,3,5])]

df[df.col.isin(['val1','val2'])]

df[df.index.isin(['val1','val2'])]

6 变量变换

6.1 计算新变量

6.1.1 新变量为常数

```
df['vamame'] = value
```

```
df.newvar = 1 #注意该命令不会报错!
df.head ( )
df['col'] =1
```

6.1.2 基于原变量做简单四则运算

```
df['var'] = df['oldvar'] *100
df['var'] = df.oldvar * 100
```

```
df ['new_val'] = df.总分+df.名次+1
```

```
inport numpy

df.new_val = numpy.sqrt (df.col) # numpy 内置函数自动支持 serial 格式数据

Import math

df["new_val"] = math.sqrt(df.col) # 报错
```

6.1.3 基于一个原变量做函数运算

```
df.apply (
```

func:希望对行/列执行的函数表达式

axis = 0:针对行还是列拼行计算

0/'index':针对每列进行计算

1/' columns ':针对每行进行计算

)

简化的用法

```
df ['varname'] = df. oldvar. apply (函数表达式)
```

```
import math

df['new3'] = df.col.apply (math.sqrt)

df 2['new3'] = df 2.总分.apply (numpy.sqrt)
```

特殊运算的实现方式

```
例: 取变量的第一个字符
def m_head ( temp_str ):
return tmpstr[:1]
```

对所有单元格进行相同的函数运算

df_new = df.applymap (函数表达式)#是以cell 为单位在进行操作

df [['col1','col2']].applymap (math.sqrt)

不修改原 df,而是生成新的 df

df.assign(varname = expression)

df_new = df.assign (new = df.总分.apply (math, sqrt))

6.2 在指定位置插入新变量列

df.insert(

loc:插入位置的索引值, 0 <= loc <= len (columns)

column:插入的新列名称

value: Series 或者类数组结构的变量值

allow_duplicates = False :是否允许新列重名

)#该方法会直接修改原 df

df.insert(1, 'new_var', 'cons')

6.3 修改/替换变量值

本质上是如何直接指定单元格的问题,只要能准确定位单元地址,就能够做到准确替换

```
df.所在城市.isin ([,上海,])
```

df.所在城市[70]=,上海市,*这种引用方式会给出警告

df[69:75]

df[, 所在城市,][70]=,上海市,#这种引用方式会给出警告

df.loc[70, , 所在城市 ,]= , 上海市 , 精确引用,消停了

6.3.1 对应数值的替换

df.replace(

)

to_replace = None :将被替换的原数值,所有严格匹配的数值将被用 value 替换,可以str/regex/list/dict/Series/numeric/None

```
value = None:希望填充的新数值
```

inplace = False

df2.所在城市.replace ('北京市七,帝都,)#单个值替换

df2.所在城市.replace ([京市 L, 上海市[, 帝都七, 魔都,])却列表值批量替换

#字典批量映射替换

df2.所在城市.replace ({ 京市,:, 帝都七,上海市,:, 魔都,})

6.3.2 指定数值范围的替换

方法一:使用正则表达式完成替换

df.replace(regex, newvalue)

方法二:使用行筛选方式完成替换

用行筛选方式得到行索引,然后用 loc 命令定位替换

目前也支持直接筛选出单元格进行数值替换

注意: query 命令的类 SQL 语句可以进行检索,但不直接支持数值替换

df.总分.iloc[0:2] = 10

df.loc [3:5,'总分']=20

df.head(10)

#用 loc 命令完成替换

df.1oc[df2.名次 < 10, , 总分]=20 #用 index 引用出相应的

df.head(10)

6.4 虚拟变量变换

pd.get_dummies(

data:希望转换的数据框/变量列

prefix = None:哑变量名称前缀

prefix_sep = 11:前缀和序号之间的连接字符,设定有

prefix 或列名时生效

dummy_na = False :是否为 NaNs 专门设定一个哑变量列

columns = None:希望转换的原始列名,如果不设定,则转换所有符合条件的列

drop_first = False:是否返回 k-l 个哑变量,而不是 k 个哑变量

) #返回值为数据框

df2.head()

pd.get_dummies(df2.类型, prefix = npren)

pd. get_d.ummies (df 2 r columns=['类型'])

6.5 数值变量分段

pd.cut(

X:希望进行分段的变量列名称

bins:具体的分段设定

int:被等距等分的段数

sequence of scalars:具体的每一个分段起点,必须包括最值,可不等距

right = True:每段是否包括右侧界值

labels = None:为每个分段提供自定义标签

include_lowest = False:第一段是否包括最左侧界值,需要和 right 参数配合

)#分段结果是数值类型为 Categories 的序列

pd.qcut #按而不賤照取值范围进行等分

7 整体数据管理

7.1 数据拆分

7.1.1 数据分组

df.groupby(

by:用于分组的变量名/函数

level = None:相应的轴存在多重索引时,指定用于分组的级别

as_index = True:在结果中将组标签作为索引

sort = True :结果是否按照分组关键字进行排序

)#生成的是分组索引标记,而不是新的 df

```
dfg = df. groupby ('开设')
```

df.groups

df.describe()

dfg2 = df .groupby (['性别','开设'])

dfg2.mean ()

7.1.2 基于拆分进行筛选

筛选出其中一组

dfgroup.get_group()

dfg.get_group ('课程').mean ()

筛选出所需的列

该操作也适用于希望对不同的变量列进行不同操作时

dfg['身高'].max()

7.2 分组汇总

在使用 groupby 完成数据分组后,就可以按照需求进行分组信息汇总,此时可以使用其它专门的汇总命令,如 agg 来完成汇总操作

7.2.1 使用 agg 函数进行汇总

df.aggregate()

名称可以直接简写为 agg

可以用 axis 指定汇总维度

可以直接使用的汇总函数

名称	含义
count ()	Nuniber of non-null observations size () group sizes
sum()	Sum of values

mean()	Mean of values								
median()	Arithmetic median of values								
min ()	Minimum								
max()	Maximum								
std()	Unbiased standard deviation								
var ()	Unbiased variance								
skew()	Unbiased skewness(3rd moment)								
kurt()	Unbiased kurtosis (4th moment)								
quantile ()	Sample quantile (value at %) apply() Generic apply								
cov()	Unbiased covariance (binary)								
corr()	Correlation (binary)								

```
df2g.agg('count')
df2g.agg('median')
df2g.agg(['mean', 'median'])
df2g.agg(['mean', 'median'])
#引用非内置函数
import numpy as np
df2.身高. agg (np. sum)
df2g.身高. agg (np. sum)
```

引用自定义函数

def mymean(x): return x.mean() df2 .身高.agg (mymean) df2g.agg(mymean)

7.2.2 其他分组汇总方法

在生成交叉表的同时对单元格指定具体的汇总指标和汇总函数

df.pivot_table()

pd.crosstab()

pd.crosstab (df.性别,df.身高)

7.3 长宽格式转换

基于多重索引, Pandas 可以很容易地完成长型、宽型数据格式的相互转换。

7.3.1 转换为最简格式

df.stack(

level = -1:需要处理的索引级别,默认为全部,int/string/list

dropna = True:是否删除为缺失值的行

)#转换后的结果可能为 Series

df =pd.read_excel('person.xlsx')

dfs = df.stack()

7.3.2 长宽型格式的自由互转

df.unstack(

level = -1:需要处理的索引级别,默认为全部,int/string/list

fill_value:用于填充缺失值的数值

)

df3s.unstack (1)

df3s.unstack([1,2])

数据转置: df.T

7.3.3 其他可用于格式转换的命令(扩展)

df.melt()

df.pivot()

df.pivot_table()

7.4 多个数据源的合并

7.4.1 数据的纵向合并

	Result

		df1				1	Result		
	Α	В	C	D					
0	A0	B0	co	D0		Α	В	С	D
1	Al	B1	C1	D1	0	A0	B0	00	D0
2	A2	B2	(2	D2	1	Al	B1	Cl	D1
3	АЗ	В3	СЗ	D3	2	A2	B2	(2	D2
-	1.00	df2							
- [Α	В	С	D	3	A3	B3	СЗ	D3
4	A4	B4	C4	D4	4	A4	B4	C4	D4
5	A5	B5	C5	D5	5	A5	B5	C5	D5
6	A6	B6	C6	D6	6	A6	B6	C6	D6
7	A7	B7	C7	D7	7	A7	B7	C7	D7
		df3				(2 m)		300000	See
1	A	В	С	D	В	A8	B8	C8	DB
8	A8	B8	C8	DB	9	A9	B9	C9	D9
9	A9	B9	C9	D9	10	A10	B10	C10	D10
10	A10	B10	C10	D10	11	A11	B11	C11	D11
11	A11	B11	C11	D11					

df.append(

)

other:希望添加的 DF/Series/字典/上述对象的列表 使用列表方式,就可以实现一次合并多个新对象

ignore_index = False :添加时是否忽略索引 verify_integrity = False :是否检查索引值的唯一性,有重复时报错

df = df.append([df2, df3, df4])

7.4.2 数据的横向合并

df1

										Α	В	С	D	В	D	F
	Α	В	С	D		В	D	F	0	A0	B0	α	D0	NaN	NaN	NaN
0	A0	В0	CO	D0	2	B2	D2	F2	1	Al	B1	CI	Dl	NaN	NaN	NaN
1	Al	B1	а	D1	3	В3	D3	F3	2	A2	B2	(2	D2	B2	D2	F2
2	A2	B2	(2	D2	6	B6	D6	F6	3	A3	В3	СЗ	D3	В3	D3	F3
3	A3	В3	C3	D3	7	В7	D7	F7	6	NaN	NaN	NaN	NaN	B6	D6	F6
-		-							7	NaN	NaN	NaN	NaN	В7	D7	F7

merge 命令使用像 SQL 的连接方式

pd.merge (

需要合并的 DF

left:需要合并的左侧 DF

right:需要合并的右侧 DF

how = 'inner':具体的连接类型

{left, right, outer, inner,)

两个 DF 的连接方式

on:用于连接两个 DF 的关键变量 (多个时为列表),必须在两侧都出现

df1 = df1.set_index ('学号')

df2 = df2.set_index ('学号')

pd.merge (df1 , df2, left_index = True, right_index = True)

```
left_on:左侧 DF 用于连接的关键变量(多个时为列表)
         right_on:右侧 DF 用于连接的关键变量(多个时为列表)
         left_index = False:是否将左侧 DF 的索引用于连接
         right_index = False :是否将右侧 DF 的索引用于连接
         其他附加设定
         sort = False:是否在合并前按照关键变量排序(会影响合并后的案例顺序)
           suffixes: 重名变量的处理方式,提供长度为2的列表元素,分别作为后缀
           suffixes= ( '_x' \ '_y' )
         copy = True
         indicator = False:在结果 DF 中增加'_merge'列,用于记录数据来源也可以直接提
供相应的变量列名
         Categorical 类型,取值: left_only 、 right_only 、 both
         validate = None:核查合并类型是否为所指定的情况
               one to one or 1:1
               one_to_many or 1:m
               many_to_one or m:1
               many_to_many or m:m
   df1 = pd.read_excel ( "stu_data.xlsx", sheet_name = 'new4')
   df2 = pd.read_excel ( "stu_data.xlsx", sheet_name = 'new5' )
   pd.merge (df1, df2)
   pd.merge ( df1, df2[:20] )
```



```
# df2 没建立索引时
pd.merge(df1, df2, left_index = True, right_on = '学号')
```

7.4.3 Concat 命令简介

```
同时支持横向合并与纵向合并
pd.concat(
        objs:需要合并的对象,列表形式提供
        axis = 0:对行还是对列方向进行合并
            (0 index 、 1 columns)
        join = outer:对另一个轴向的索引值如何进行处理
            (inner 、outer)
        ignore_index = False
        keys = None:为不同数据源的提供合并后的索引值
        verify_integrity = False
        copy = True
)
```

```
#纵向合并

df1 = pd.read_excel ( "stu_data.xlsx", sheet_name = 'new1' )

df2 = pd.read_excel ( "stu_data.xlsx", sheet_name = 'new2' )

pd.concat ( [df1,df2] )

pd.concat ( [df1,df2], key=['a','b'] )
```

#横向合并


```
df1 = pd.read_excel ( "stu_data.xlsx", sheet_name = 'new4' )

df2 = pd.read_excel ( "stu_data.xlsx", sheet_name = 'new5' )

pd.concat ( [df1,df2 ], axis = 1 )
```

8 数据清洗

8.1 处理缺失值

8.1.1 系统默认的缺失值

系统默认的缺失值

None 和 np. nan

确定数值是否是缺失值

df. isna () # 别名为 isnull,反函数为 notna

df.身高.iloc[:3] = None

df.身高.isna()

import numpy as np

df.身高.iloc[:5] = np.nan

df.身高.isna()

None 和 np.nan 的区别:能否进行比较

None == None

np.nan == np.nan

设定 in 和 inf 是否被认定为缺失值

pandas.options.mode.use_inf_as_na

8.1.2 处理自定义缺失值

目前 Pandas 不支持设定自定义缺失值,因此只能考虑将其替换为系统缺失值 df.replace('自定义值', np.nan)

df.开设.replace ("不清楚",np.nan)

设定为 None 后的效果完全不同

df.开设,replace ("不清楚",None)

df2 = df.replace (["不清楚",171],[np.nan, np.nan]) # 后面的中括号可以简写 np.nan

8.1.3 标识缺失值

df.isna(): 检查相应的数据是否为缺失值 同 df.isnull()

df2 = df.replace (["不清楚",171],np.nan)

检查多个单元格的取值是否为指定数值

```
df.any(
        axis:index(0),columns(1)
        skipna = True:检查时是否忽略缺失值
        level = None:多重索引时指定具体的级别
df.all(
        axis:index(0),columns(1)
        skipna = True:检查时是否忽略缺失值
        level = None:多重索引时指定具体的级别
)
```


df.isna () .any(1)
df[df.isna().any(1)]

8.1.4 填充缺失值

df.fillna(

value :用于填充缺失值的数值,也可以提供 dict/Series/DataFrame 以进—步指明哪些索引/列会被替换 不能使用 list

```
method = None :有索引时具体的填充方法,向前填充,向后填充等
limit = None :指定了 method 后设定具体的最大填充步长,此步长不能填充
axis : index (0), columns (1)
inplace = False
)
```

```
df.replace (["不清楚",171],np.nan). fillna ('未知')

df.replace (["不清楚",171],np.nan).fillna(df2.mean())
```

8.1.5 删除缺失值

df.dropna(

axis = 0 : index (0), columns (1)

how = any: any, all

any:任何一个为 NA 就删除

all:所有的都是 NA 删除

thresh = None:删除的数量阈值, int

subset:希望在处理中包括的行/列子集

inplace = False :

)

8.2 数据查重

8.2.1 标识出重复的行

标识出重复行的意义在于进一步检查重复原因,以便将可能的错误数据加以修改 Duplicated


```
df['dup'] = df.duplicated(['课程','开设'])
```

利用索引进行重复行标识

df.index.duplicated()

```
df2 = df.set_index ( ['课程','开设'] )
df2.index. duplicated ()
```

8.2.2 直接删除重复的行

```
df. drop_duplicates ( ['课程', '开设' ] )
df. drop_duplicates ( ['课程', '开设' ] , keep = False )
```

利用查重标识结果直接删除

df[~df.duplicated()

```
df[~df.duplicated (['课程', '开设'])
```


9日期时间变量

9.1 Timestamp 与 Period

9.1.1 Timestamp

from datetime import datetime

pd.Timestamp(datetime(2022,1,1))

pd.Timestamp(datetime(2022,1,2,3,4,5))

pd.Timestamp(2022,1,2)

pd.Timestamp('2022-01-02 3:4:5')

9.1.2 Peroid

可以被看作是简化之后的 Timestamp 对象

由于详细数据的不完整,而表示的是一段时间,而不是一个时点

但是实际使用中很可能是按照时点在使用

很多使用方法和 Timestamp 相同, 因此不再详细介绍

pd.Period('2022-01')

pd.Period('2022-01',freq='D')

9.2 数据转换 Timestamp 类

9.2.1 使用 pd.Timestamp()直接转换

```
pd.Timestamp(df['date'] [0])
df['date'].apply(pd.Timestamp)
```

9.2.2 用 to_datetime 进同比量转换

```
pd.to\_datetime(
```

arg:需要转换为 Timestamp 类的数值

Integer, float, string, datetime, list, tuple, 1-d array, Series,

errors = 'raise' : ('ignore', 'raise', 'coerce')

'raise' 抛出错误

'coerce' 设定为 NaT

'ignore' 返回原值

短日期的解释方式:类似'10/11/12"这样的数据如何解释

dayfirst = 'False': 数值是否 day 在前

yearfirst = 'False':数值是否 year 在前,该设定优先

box = True :是否返回为 DatetimeIndex, False 时返回 ndarray 数组

format = None:需要转换的字符串格式设定)

代码如下:

```
pd.to_datetime(datetime(2022, 1, 2, 3, 4, 5))
pd.to_datetime('2022-01-02 3:4:5')
pd.to_datetime(['2022/01/02', '2022.01.03'])
pd.to_datetime(df[ 'date' ], format = '%Y-%m-%d %H:%M')
```


9 2.3 基于所需的变量列合成 Timestamp 类

pd.to_datetime(df[['Year', 'Month', 'Day', 'Hour']])

9.3 使用 DatetimeIndex 类

Datetimeindex 类对象除了拥有 Index 类对象的所有功能外,还针对日期时间的特点有如下增强:

基于日期时间的各个层级做快速索引操作

快速提取所需的时间层级

按照所指定的时间范围做快速切片

9.3.1 建立 Datetimeindex 对象

1. 建立素引时自动转换

使用 Timestamp 对象建立索引,将会自动转换为 DatetimeIndex 对象

df_index = df.set_index(pd.to_datatime(df['data1']))

2. 通过 date_range 建立

这种建立方式主要是和 reindx 命令配合使用,以快速完成对时间序列中缺失值的填充工作

pd.date_range(

start /end = None:日期时间范围的起点/终点,均为类日期时间格式的字符串/数

据

periods = None:准备生成的总记录数

freq = 'D':生成记录时的时间周期,可以使用字母和数值倍数的组合,如'5H'

name = None:生成的 DatetimeIndex 对象的名称

pd.bdate_range(

)

SXT 尚学堂 医抗混疗员

让人人享有高品质教育

主要参数和 pd.date_range 几乎完全相同,但默认 freq = 'B' (business daily) 另外附加了几个针对工作日/休息日筛选的参数

)

pd.date_range('2/1/2022', periods=5, freq='M')

9.4 时间序列做基本使用

9.4.1 序列的分组汇总

9.4.1.1 直接取出素引的相应层级

DatetimeIndex 对象可直接引用的属性

year	日期时间的年份。			
month	月份为1月=1,12月=12。			
day	日期时间的日期。			
hour	日期时间。			
minute	日期时间的分钟数。			
second	日期时间的秒数。			
microsecond	日期时间的微秒。			
nanosecond	日期时间的纳秒。			
date	返回python datetime.date对象的numpy数组(即没有时区信息的Timestamps的日期部分)。			
time	返回datetime.time的numpy数组。			
timetz	返回datetime.time的numpy数组,其中还包含时区信息。			
dayofyear	一年中的第几天。			
weekofyear	(不推荐) 一年中的第几周。			
week	(不推荐) 一年中的第几周。			
dayofweek	星期—=0,星期日=6的星期几。			
weekday	星期一=0,星期日=6的星期几。			

dayofweek	星期一=0,星期日=6的星期几。		
weekday	星期一= 0,星期日= 6的星期几。		
quarter	日期的四分之一。		
tz	返回时区(如果有)。		
freq	返回频率对象(如果已设置), 否则返回无。		
freqstr	如果设置了频率对象,则将其作为字符串返回,否则返回None。		
is_month_start	指示日期是否为每月的第一天。		
is_month_end	指示日期是否为每月的最后一天。		
is_quarter_start	日期是否为一个季度的第一天的指示器。		
is_quarter_end	日期是否为一个季度的最后一天的指标。		
is_year_start	指明日期是否为一年的第一天。		
is_year_end	指示日期是否为一年的最后一天。		
is_leap_year	布尔指标,如果日期属于the年。		
inferred_freq	尝试返回由infer_freq生成的代表频率猜测的字符串。		

df.index.year

9.4.1.2 直接使用 groupby 方法进行汇总

df.groupby(df2.index.year).max()

9.4.1.3 resample()

使用上比 groupby 更简单(输入更简洁)

可以将数值和汇总单位进行组合,实现更复杂的汇总计算

别名	偏移量类型	说明
D	Day	每日日历
В	BusinessDay	每工作日
Н	Hour	每小时
T或min	Minute	每分
S	Second	每秒
L或ms	Milli	每毫秒
U	Micro	每微妙
M	MonthEnd	每月最后一个日历日
BM	BusinessMonthEnd	每月最后一个工作日
MS	MonthBegin	每月第一个日历日
BMS	BusinessMonthBegin	每月第一个工作日
W-MON, W-TUE,	Week	从指定的星期几(MON, TUE, WED, THU, FRI, SAT, SUN)开始算起, 每周
WOM-1MON, WOM-2MON,	WeekOfMonth	产生每月第一,第二,第三或第四周的星期几。例如: WOM-3FR表示每月第一个星期五
Q-JAN, Q-FEB,	QuarterEnd	对于指定月份(JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC)结束的年度,每季度最后一月的最后一个日历日
BQ-JAN, BQ-FEB,	BusinessQuarterEnd	对于指定月份(JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC)结束的年度,每季度最后一月的最后一个工作日
QS-JAN, QS-FEB,	QuarterBegin	对于指定月份(JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC)结束的年度,每季度最后一月的第一个日历日
BQS-JAN, BQS-FEB,	BusinessQuarterBegin	对于指定月份(JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC)结束的年度,每季度最后一月的第一个工作日
A-JAN, A-FEB,	YearEnd	每年指定月份(JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC)的最后一个日历日
BA-JAN, BA-FEB,	BusinessYearEnd	每年指定月份(JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC)的最后一个工作日
AS-JAN, AS-FEB,	YearBegin	每年指定月份(JAN, FEB, MAR, APR, MAY, JUN, JUL AUG SEP, OCT, NOV, DEC)的第一个日历日

df.resample('3M').mean()

9.4.2 时间缺失值的处理

时间序列要求记录的时间点连贯无缺失,因此需要:

首先建立针对整个时间范围的完整序列框架

随后针对无数据的时间点进行缺失值处理

df = pd.read_excel('stu_data.xlsx', index_col = 2)

Index2 = pd.date_range('2005-01-01', '2018-01-01')

df.reindex(index2)

9.4.3 序列数值平移

df.shift(


```
periods = 1: 希望移动的周期数
```

freq:时间频度字符串

axis = 0

)

df.shift(3)

10 数据的图形展示

10.1 配置绘图系统环境

df ['体重'].plot.box (title='第一个图',ylim= (60,80))

#中文字符兼容问题

import matplotlib

matplotlib.reParams['font.sans-serif'] = ['SimHei']

#绘图功能的进一步美化和功能增强包,参考 http://seaborn.pydata.org/

import seaborn

seaborn.set_style('whitegrid')

#注意有中文兼容问题,需要重新导入中文设定!

进一步在一些细节上的美化和优化

import matplotlib.pyplot as plt

pit.figure ()

df.plot(

绘图用数据

data:数据框

x = None:行变量的名称/顺序号

y = None:列变量的名称/顺序号

kind = 'line':需要绘制的图形种类

line: line plot (default)

bar: vertical bar plot

barh: horizontal bar plot

hist: histogram

box:boxplot

kde: Kernel Density Estimation plot

density: same as kde

area: area plot

pie: pie plot

scatter: scatter plot hexbin: hexbin plot

各种辅助命令

figsize: a tuple (width, height) in inches

xlim / ylim: X/Y 轴的取值范围, 2-tuple/list 格式

logx / logy / loglog = False :对 X/Y/双轴同时使用对数尺度

title: string or list

Alpha:图形透明度, 0-1

图组命令

subplots = False :是否分图组绘制图形

sharex:是否使用相同的 X 坐标

ax = None 时,取值为True,否则取值为False

sharey = False :是否使用相同的 Y 坐标

ax = None:需要叠加的 matplotlib 绘图对象

图形种类的等价写法

df.plot.kind()

df ['身高'].plot .box (title='第一个图',ylim= (60,80))

df.体重.plot(figsize = (12,8))

df.groupby(df.性别).体重.plot()

10.2 条图

pd.value_counts(df.课程).plot.bar()

pd.value_counts(df.课程).plot.barh()

import numpy as np

df2 = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])

df2.plot.bar()

df2.plot.bar(stacked= True)

10.3 直方图


```
plot.hist(
        by :在 df 中用于分组的变量列(绘制为图组)
        bins = 10 :需要拆分的组数
)
```

df.体重.plot.hist(bins=10)

```
hist(
by:在df中用于分组的变量列(绘制为图组)
)
```


df.体重.hist(by=df.性别, bins=5)

10.4 饼图

plot.pie(

y:指定需要绘制的变量列名称

subplots = False:多个变量列时要求分组绘图

)

```
df.课程.value_counts().plot.pie()
pd.value_counts(df.课程).plot.pie()
```


pd.Series([0.1,0.2,0.3,0.2],index=['a','b','c','d']).plot.pie()

10.5 箱图

df.plot.box(vert = False)

10.6 散点图

plot.scatter (

- S:控制散点大小的变量列,不能使用 df 中的简写方式指定
- C:控制散点颜色的变量列

)

df.plot.scatter('体重','支出')

df.plot.scatter(x='体重',y='支出',c='支出')
df.plot.scatter(x='体重',y='支出',s=df.支出)

11 数据特征的分析探索

11.1 数值变量的基本描述

```
df.describe (
    percentiles :需要输出的百分位数,列表格式提供,如[.25, .5, .75]
    include = 'None ':要求纳入分析的变量类型白名单
        None ( default ) :只纳入数值变量列
        A list-like of dtypes :列表格式提供希望纳入的类型
        all :全部纳入
        exclude :要求剔除出分析的变量类型黑名单,选项同上
    )

df.describe()
    df.describe(include = 'all')
```

11.2 分类变量的频数统计

bins:对数值变量直接进行分段,可看作是 pd.cut 的筒便用法

```
dropna = True:结果中是否包括 NaN
```

)

```
pd. value_counts (df2.体重)

pd. value_counts (df2.体重,normalize=True)

pd. value_counts (df2.体重,sort = False)

df2.体重.value_counts (bins = 10)
```

11.3 交叉表/数据透视表

```
df.pivot_table (
行列设定
index / columns :行变量/列变量,多个时以 list 形式提供
```

values :在单元格中需要汇总的变量列,可不写

aggfunc = numpy.mean:相应的汇总函数

汇总设定

单元格设定

```
margins = False :是否加入行列汇总 margins_name = 'All':汇总行/列的名称
```

缺失值处理

```
fill_value = None :用于替换缺失值的数值
dropna = True :
```

pd.crosstab (

)

选项和 pivot_table 几乎相同

相对而言需要打更多字母,因此使用更麻烦

但是计算频数最方便

输出格式为数据框)

df.pivot_table(index =['课程','性别'],columns='软件',aggfunc = sum)

pd.crosstab(index =[df.课程],columns=df.软件,values=df.体重,aggfunc=sum)

12 如何优化 Pandas

除非对相应的优化手段已经非常熟悉,否则代码的可读性应当被放在首位。过早优化是万恶之源!

pandas 为了易用性,确实牺牲了一些效率,但同时也预留了相应的优化路径。因此如果要进行优化,熟悉并优先使用 pandas 自身提供的优化套路至关重要。

尽量使用 pandas (或者 numpy) 内置的函数进行运算,一般效率都会更高。

在可以用几种内部函数实现相同需求时,最好进行计算效率的比较,差距可能很大。

pandas 官方提供的讨论如何进行优化的文档:

https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html

12.1 学会使用各种计时工具

%time 和%timeit,以及%%timeit (需要在 IPython 下才可以使用)

%time df['new_col'] = df.体重-df.支出


```
%timeit df['new_col'] = df.体重-df.支出

%%timeit

df['new_col'] = df.体重-df.支出

df['new_col'] = df.体重-df.支出

df['new_col'] = df.体重-df.支出

df['new_col'] = df.体重-df.支出
```

python 时间方式

```
from datetime import datetime
import time
t1 = datetime.now()
t2 = time.time()

time.sleep(1)

print(datetime.now()- t1)
print(time.time()-t2)
```

用 line_profiler 做深入分析

```
from line_profiler import LineProfiler
import random

def m_test(numbers):
    s = sum(numbers)
    l = [numbers[i]/50 for i in range(len(numbers))]
```


m = ['hello' + str(numbers[i]) for i in range(len(numbers))]

lp = LineProfiler() # 定义一个 LineProfiler 对象

lp_wrapper = lp(m_test) # 用 LineProfiler 对象监控需要分析的函数

12.2 超大数据文件的处理

超大数据文件在使用 pandas 进行处理时可能需要考虑两个问题:读取速度,内存用量。

一般情况会考虑读入部分数据进行代码编写和调试,然后再对完整数据进行处理。

在数据读入和处理时需要加快处理速度,减少资源占用。

12.2.1 一些基本原则

当明确知道数据列的取值范围时,读取数据时可以使用 dtype 参数来手动指定类型,

如 np.uint8 或者 np.int16, 否则默认的 np.int64 类型等内存开销明显非常大。

尽量少用类型模糊的 object, 改用更明确的 category 等 (用 astype()转换)。

对类别取值较少,但案例数极多的变量,读入后尽量转换为数值代码进行处理。

```
data = pd.DataFrame({"a":[0,1,2,3,4,5,6,7,8,9],
"b":["祖安狂人","祖安狂人","冰晶凤凰","冰晶凤凰","冰晶凤凰","祖安狂人"]})
"祖安狂人","祖安狂人","祖安狂人","冰晶凤凰","冰晶凤凰","礼安狂人"]})
print(data)
data.info()

data['a'] = pd.to_numeric(data['a'], downcast = 'integer')
data['b'] = data['b'].astype('category')
print(data)
```



```
data.b.head() # category 格式明显更节省内存
data.info()

data.b.astype('str') # 必要时 category 也可以转换回 str
```

12.2.2 对文件进行分段读取

使用 chunksize 参数

```
dftmp = pd.read_csv('stu_date.csv', usecols = [0,2,3,4,5,6,7], chunksize = 5)

type(dftmp) # 注意得到的并不是一个数据框,而是 TextFileReader

n = 0

for item in dftmp: # 注意重复运行之后的效果

print(item)

n += 1

if n > 2:

break
```

使用 iterator 参数和 get_chunk()组合

```
dftmp = pd.read_csv('stu_date.csv', usecols = [0,2,3,4,5,6,7], iterator = True)
type(dftmp) # 注意得到的并不是一个数据框,而是 TextFileReader
```


dfiter.get_chunk(10) # 注意重复运行之后的效果

12.3 如何优化 pandas 的代码

12.3.1 简单优化

尽量不要在 pandas 中使用循环

如果循环很难避免,尽量在循环体中使用 numpy 做计算。

%%timeit #标准的行/列遍历循环方式效率最差, df['new'] = 0for i in range(df.shape[0]): df.iloc[i, 8] = df.iloc[i, 4] + 10# apply 自定义函数/外部函数效率稍差 def m_add(x): return x + 10%timeit df["new"] = df.支出.apply(lambda x: m_add(x)) #%% #在 apply 中应用内置函数方式多数情况下速度更快

%timeit df["new"] = df.支出.apply(lambda x: x + 10)

#%%

#直接应用原生内置函数方式速度最快

%timeit df["new"] = df.支出 + 10

12.3.2 如何进行多列数据的计算

同时涉及多列数据的计算不仅需要考虑速度优化问题,还需要考虑代码简洁性的问题。

```
%%timeit
def m_add(a, b, c):
    return a + b + c

df['new'] = df.apply(lambda x :m_add(x['支出'], x['体重'], x['身高']), axis = 1)

%%timeit

# lambda 多参方式可能效率反而更低

df['new'] = df[['支出', '体重', '身高']].apply(lambda x :x[0] + x[1] + x[2], axis = 1)

# 最香

%timeit df['new'] = df['支出'] + df['体重'] + df['身高']
```

pd.eval()命令

pd.eval()的功能仍是给表达式估值,但是基于 pandas 时,就可以直接利用列名等信息用于计算。

eval()默认会使用 numexpr 而不是 python 计算引擎,复杂计算时效率很高

engine 参数在调用 numexpr 失败时会切换为 python 引擎,一般不用干涉

%timeit df.eval('new = 支出 + 体重 + 身高', inplace = True)

eval()默认会使用 numexpr 而不是 python 计算引擎,复杂计算时效率很高

%timeit df.eval('new = 支出 + 体重 + 身高', engine = 'python', inplace = True)

%%timeit

df['n1'] = df.支出 + 1 df['n2'] = df.支出 + 2 df['n3'] = df.体重 + 3

df.head()

pd.在 eval()表达式中进一步使用局部变量

@varname: 在表达式中使用名称为 varname 的 Python 局部变量。该@符号在 query()和 eval()中均可使用。

%%timeit

arg = 3

bj.eval('new = 支出 + 体重 + 身高 + @arg').head()

12.4 利用各种 pandas 加速外挂

大部分外挂包都是基于 linux 环境, windows 下能用的不多。大部分外挂包还处于测试阶段, 功能上并未完善。

12.4.1 numba

对编写的自定义函数进行编译,以提高运行效率。

A Just-In-Time Compiler for Numerical Functions in Python 具体使用的是 C++编写的 LLVM(Low Level Virtual Machine) compiler 实际上主要是针对 numpy 库进行优化编译,并不仅限于 pandas

```
import random
def monte_carlo_pi(nsamples): acc = 0
for i in range(nsamples):
  x = random.random()
  y = random.random()
  if (x^{**} 2 + y^{**} 2) < 1.0:
          acc += 1
  return 4.0 * acc / nsamples
%timeit monte_carlo_pi(20) # 运行被监控的函数,获取各部分占用的运行时间数据
from numba import jit
@jit(nopython = True) # nopython 模式下性能最好
def monte_carlo_pi(nsamples): acc = 0
for i in range(nsamples):
  x = random.random()
  y = random.random()
  if (x ** 2 + y ** 2) < 1.0:
          acc += 1
   return 4.0 * acc / nsamples
%timeit monte_carlo_pi(20)
```



```
from numba import jit

@jit

def monte_carlo_pi(nsamples): acc = 0

for i in range(nsamples):

x = random.random()

y = random.random()

if (x ** 2 + y ** 2) < 1.0:

acc += 1

return 4.0 * acc / nsamples

%timeit monte_carlo_pi(20)
```

12.4.2 swifter

对 apply 函数进行并行操作

是专门针对 pandas 进行优化的工具包

```
df = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [5, 6, 7, 8]})

# runs on single core
%timeit df['x2'] = df['x'].apply(lambda x: x**2)

import swifter
# runs on multiple cores
%timeit df['x2'] = df['x'].swifter.apply(lambda x: x**2)

%timeit df['agg'] = df.apply(lambda x: x.sum() - x.min())
# use swifter apply on whole dataframe
%timeit df['agg'] = df.swifter.apply(lambda x: x.sum() - x.min())
```


