# CIS 678 - Machine Learning

**Predictive modeling: Classification** 

 Main difference is the target or response variable (y)

- Main difference is the target or response variable (y)
- One predicts real/floating-point values whereas the other predicts categorical values (predefined set)

- Main difference is the target or response variable (y)
- One predicts real/floating-point values whereas the other predicts categorical values (predefined set)
- Regression examples:
  - Diabetes scores
  - Healthcare cost

- Main difference is the target or response variable (y)
- One predicts real/floating-point values whereas the other predicts categorical values (predefined set)
- Regression examples:
  - Diabetes scores
  - Healthcare cost

- Classification examples:
  - Character recognition (10 classes)
  - Yes/No (or Binary) questions:
    - Accept/reject loan application
    - Positive vs negative sentiment
  - Dog vs cat (2 classes), still binary class

- Main difference is the target or response variable (y)
- One predicts real/floating-point values whereas the other predicts categorical values (predefined set)
- Regression examples:
  - Diabetes scores
  - Healthcare cost

- Classification examples:
  - Character recognition (10 classes)
  - Yes/No (or Binary) questions:
    - Accept/reject loan application
    - Positive vs negative sentiment
  - Dog vs cat (2 classes), still binary class

- Main difference is the target or response variable (y)
- One predicts real/floating-point values whereas the other predicts categorical values (predefined set)
- Regression examples:
  - Diabetes scores
  - Healthcare cost

- Classification examples:
  - Character recognition (10 classes)
  - Yes/No (or Binary) questions:
    - Accept/reject loan application
    - Positive vs negative sentiment
  - Dog vs cat (2 classes), still binary class

- Main difference is the target or response variable (y)
- One predicts real/floating-point values whereas the other predicts categorical values (predefined set)
- Regression examples:
  - Diabetes scores
  - Healthcare cost
- We have learned about regression (not complete yet; will continue ..)

- Classification examples:
  - Character recognition (10 classes)
  - Yes/No (or Binary) questions:
    - Accept/reject loan application
    - Positive vs negative sentiment
  - o Dog vs cat (2 classes), still binary class
- We will start our classification predictive modeling journey today



- We have some overweight and underweight people



- We have some overweight and underweight people
- We need to learn a classifier



- We have some overweight and underweight people
- We need to learn a classifier
- Can we do it using a straight line?



- We have some overweight and underweight people
- We need to learn a classifier
- Can we do it using a straight line?
- Yes; how ..



- We have some overweight and underweight people
- We need to learn a classifier
- Can we do it using a straight line?
- Yes; how ..



**Straight Line as the Separator** 

$$y = \beta_0 + \beta_1 x$$



#### **Straight Line as the Separator**

$$y = \beta_0 + \beta_1 x$$

#### **Classification Rule**

$$\hat{y} = \begin{cases} 1, & \text{if } \beta_0 + \beta_1 x > 0 \\ 0, & \text{otherwise} \end{cases}$$

# **Let's Try**



- We have some overweight and underweight people
- We need to learn a classifier
- Can we do it using a straight line?



- We have some overweight and underweight people
- We need to learn a classifier
- Can we do it using a straight line?
- No; We will require a non-linear classifier.

#### **Classification Models**

- Logistic Regression
- Random Forest Classifier
- Support Vector Machines (SVMs)
- Boosting Classifiers
- Naive Bayes

Probabilistic classifier

Sigmoid function characteristic

$$p(x)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

• Sigmoid function









QA