Carson Schubert

(214) 287-1839 | carson.schubert14@gmail.com | www.carsonschubert.com

PERSONAL SUMMARY

- Highly motivated engineer passionate about and focused on space technology, systems, exploration, and business.
- Demonstrated and diverse track record of meaningful project contributions.
- Detail oriented with a focus on long term usability of developed processes and systems.
- Effective communicator with over four years of experience presenting, documenting, and leading technical work.
- Working toward a career at the forefront of space research and leadership via continued graduate studies.

EDUCATION

University of Texas at Austin	B.S Electrical and Computer Engineering	, B.S Mathematics	May 2021
<i>GPA</i> : 3.90/4.0	Concentration: Communications, Signal Processing, and Embedded Systems		
COURSEWORK		* indicates Spring 2020 cours	
Linear Systems and Signals	Algorithms	Software Engineering	
Embedded Systems	Statistics and Probability	Multicore Computing*	
Circuit Theory	Linear Algebra	Digital Communications*	

RELEVANT EXPERIENCE

Blue Origin | Advanced Development Programs Intern | Kent, WA

Sep 2019 - Dec 2019

- Led software development efforts for a large-scale, research level embedded computing platform survey in C/C++
- Ported performance benchmarking workloads to a variety of SoC's, single board computers, and microcontrollers
- Architected and injected a generic porting layer into each workload that enables rapid porting for new platforms
- Developed a rigorous, automated build infrastructure that ensures experimental repeatability
- Implemented control script in Python to facilitate environmental test campaigns via simple terminal interface
- · Post-processed and visualized experimental data using Python to effectively communicate key conclusions

Jet Propulsion Laboratory | Mission Simulation Intern | Pasadena. CA

May 2019 - Aug 2019

- Converted Europa Clipper mission simulation to cloud based architecture based on Docker and Jenkins
- Automated transitions between simulation steps to reduce human workload by over 80% per simulation run
- New architecture abstracted simulation pipeline complexity, opening simulation use to many more lab members
- Scalable cloud architecture enabled the first parallel simulation runs, improving analysis turn-around time by an order of magnitude and greatly lowering barrier to additional simulations
- Integrated external Johns Hopkins Applied Physics Laboratory scheduling tool with JPL simulation pipeline

Texas Spacecraft Laboratory | Undergraduate Researcher | Austin, TX

Jan 2019 - Aug 2019

- Led research efforts to achieve full pose estimation of spacecraft on-orbit via a single monocular camera
- Developed an open-source, plugin-based Python CLI that simplifies training machine learning models and vastly improves model iteration time, allowing greater exploration of the solution space (bit.ly/ravenML)
- Aided in development of open-source Python CLI to simplify curating image datasets for model training (Jigsaw)
- Integrated these tools into an end-to-end model training pipeline supported by AWS that enables project members to build datasets and train models from anywhere on scalable compute

UT Nuclear Robotics Group | Undergraduate Research Assistant | Austin, TX

Jan 2019 - May 2019

- Improved communications for an industrial robot from 100Mb/s to 10Gb/s via a fiber optic tether
- Prototyped a field deployable wireless mesh for robot communication on offshore oil platforms
- Wrote and released a Python ROS package for programmatic topic communication throttling (rosthrottle)

NASA Glenn Research Center | Research Intern | Cleveland, OH

Aug 2018 - Dec 2018

- Developed a proof-of-concept reinforcement learning agent which optimizes on-orbit satellite data downlink autonomously to maximize data throughput and reduce human workload
- Repurposed existing simulation tools written in MATLAB to generate necessary training episodes quickly

- Wrote an OpenAI Gym environment in Python to facilitate the use of training episodes and provide agent rewards
- Modeled agent policy using a neural network developed and trained with PyTorch
- Tuned network hyperparameters via grid search and trained agent using K-fold cross validation
- Final agent achieves over 98% of maximum possible reward on the test set, demonstrating optimal behavior

Nate Controls | Remote Cloud Engineering Contractor

Aug 2018 - Dec 2018

- Developed a Continuous Integration/Continuous Deployment pipeline for Balena IOT devices
- Wrote and released an open source NPM package (balena-staged-releases) to provide staged application deployment for a Balena device fleet
- Used GitLab CI/CD scripts to trigger fleet actions that advance devices through alpha, beta, and stable stages

Nate Controls | Cloud Engineering Intern | Austin, TX

Jun 2018 - Aug 2018

- Developed service in Rust to connect arbitrary BeagleBone IOT devices to wireless access point via captive portal
- Designed and wrote a new IOT device backend from scratch in Typescript using AWS Lambda, DynamoDB, and S3
- Implemented an automated Javascript testing workflow using Jest that greatly improved developer confidence

Texas Spacecraft Laboratory | **Seeker-1 Vision Flight Software Lead** | *Austin, TX* Sep 2017 – May 2018

- Developed a novel visual navigation system for NASA JSC's Seeker-1 mission based on a single monocular camera
- Aided in development of a convolutional neural network for target identification using Google's TensorFlow
- Developed and tested all flight software in C to facilitate vision algorithms and send solutions to guidance system
- Implemented two tier process monitoring between Bash, C, and Python resulting in zero crashes during testing
- Wrote a custom suite of scripts to characterize performance onboard target hardware, providing key feedback for iterative algorithm development
- Final system selected for flight over competing solutions due to robustness and used during mission in Sep. 2019

SKILLS

Programming Languages	Technologies	Miscellaneous
C C++ Python Java	PyTorch OpenCV Docker	Project Management
Javascript Typescript Bash	AWS GitLab CI ROS Git	Technical Writing
MATLAB Rust	Jenkins NodeJS Latex	Ability to work independently

PUBLICATIONS

C. Schubert, R. Roche, and J. Briones, "Reinforcement Learning Applied to Cognitive Space Communications." 2019 *IEEE Cognitive Communications for Aerospace Applications Workshop*, pp. 1-8. doi: 10.1109/CCAAW.2019.8904912

N. Dhamani, G. Martin, C. Schubert, et. al, "Applications of Machine Learning And Monocular Vision for Autonomous On-Orbit Proximity Operations." *AIAA SciTech 2020 Forum*, Orlando, FL, Jan. 2020. doi: 10.2514/6.2020-1376

PROIECTS

RPILED | bit.ly/RPILED

Jun 2018 – Present

- Open-source, full-stack web application for controlling digital LED lights via Raspberry Pi running balenaOS
- Uses NodeJS, Express, and SQLite to expose a backend RESTful API for LED control
- Externally hosted, mobile friendly Vue S frontend allows for customizing animations/colors and saving favorites
- RESTful API enables voice control of lights via any configurable home assistant

Chain Reaction Robotics (FRC 6171) | *chainreaction6171.org*

Oct 2015 - Aug 2016

- Co-founded team and secured over \$20,000 in grants and donations to get team off the ground
- Led the development and fabrication of all subsystems to their successful integration in six weeks
- Developed Java software for closed-loop autonomous and piloted control of robot drivetrain and actuators
- Led the team as captain to the Rookie-All-Star award at Dallas Regional and a spot in World Championships

ACTIVITIES/HONORS