Experiment No. 6

Aim: Write a program to implement Job sequencing with deadlines problem.

Theory:

Given a set of tasks with deadlines and total profit earned on completing task, find maximum point earned by execution the tasks within the specified deadlines. Assume that a task tasks one unit of time to execute, and it can't execute beyond its deadline. Also, only single task will be executed at a time.

Algorithm:

*	300 sequencing with deadline problems -
	Algorith mir
	For i=1 to n do
	set k = min (dmax, DEADLINE (i))
	while k>=1 do
	it hime sbt(k) is Emoty then
	timeslot (k) = job (i)
	break
	cndit.
	sct K= K-1
	endwhile
	end for.

Code:

```
using namespace std;
#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
int main(){
 int n;
 int d, p;
 int max;
 cout << "Enter the number jobs";</pre>
 cin >> n;
 vector < pair <int, int>> a(n);
 vector <int>b(n);
 cout << "Profit Deadline" << endl;</pre>
 for(int i=0;i<n;i++){</pre>
   cin >> p;
   cin >> d;
   a.push_back(make_pair(p,d));
 sort(a.rbegin(),a.rend());
 for(int i=0;i<n;i++){</pre>
   if(b[a[i].second-1] == 0){
     b[a[i].second -1]=a[i].first;
   }else {
     for(int j=0; j<i; j++){</pre>
       if(b[j]==0 \& j != a[i].second -1 \& j < a[i].second -1){
         b[j]=a[i].first;
       }
   }
 b.erase(remove(begin(b), end(b), 0), end(b));
 max = accumulate(b.begin(), b.end(), 0);
 cout << "Sort Job Schedule " << endl;</pre>
 for(int x : b){
   cout << x <<" ";
 cout << endl;</pre>
 cout << "Max Profit " << max << endl;</pre>
 return 0;
```

Output:

```
Enter the number jobs 5
Profit Deadline
100 2
19 1
27 2
25 1
15 3
Sort Job Schedule
27 100 15
Max Profit 142
PS C:\Users\chinm\Downloads>
```

Time Complexity:

Job sequencing problems has the time complexity of O(n2).

Conclusion:

Hence, we studied the implementation of Job sequencing with deadlines problem.