1

Let A be a non-empty bounded subset of \mathbb{R} and suppose $\sup A \notin A$. Show that there exists an increasing sequence of points $\{a_n\}_{n\geq 1}$ in A such that $\lim_{n\to\infty} a_n = A$.

 $\mathbf{2}$

Let S be a non-empty bounded subset of \mathbb{R} .

- (2.a) Prove that inf $S \leq \sup S$.
- (2.b) What can you say about S if $\inf S = \sup S$.

3

Let A be a non-empty subset of \mathbb{R} which is bounded below and let

$$-A = \{-a : a \in A\}. \tag{1}$$

Prove that $\inf A = -\sup(-A)$.

4

Let S and T be two non-empty bounded subsets of \mathbb{R} and let

- (4.a) [Exercise 1.1.4 of Lebl 2023] Prove that if $S \subset T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$.
- (4.b) Prove that $\sup(S \cup T) = \max\{\sup(S), \sup(T)\}.$

5

- (5.a) [Proposition 2.2.7 of ibid.] Show that if a sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers converges to a, then the sequence $\{|a_n|\}_{n\in\mathbb{N}}$ converges to |a|.
- (5.b) Show (via an example) that the converse is not true.

6

Let $\{a_n\}_{n\geq 1}$ be a sequence of positive numbers. Show that

$$\lim_{n \to \infty} \frac{1}{a_n} = \infty \iff \lim_{n \to \infty} a_n = 0.$$
 (2)

7

Show that the sequence

$$\lim_{n \to \infty} \left(\sqrt{n^2 + n} - n \right) = \frac{1}{2}.$$
 (3)

8

[Exercise 2.2.12 of Lebl 2023] Let $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ be two sequences of real numbers such that $\{a_n\}_{n\geq 1}$ is bounded and $\{b_n\}_{n\geq 1}$ converges to 0. Show that the sequence $\{a_nb_n\}_{n\geq 1}$ converges to 0.

9

Let $\{a_n\}_{n\geq 1}$ be a convergent sequence of real numbers and let $a\in\mathbb{R}$ such that $\lim_{n\to\infty}a_n>a$. Show that there exists $n_0\in\mathbb{N}$ such that $a_n>a$ for all $n>n_0$.

References

Lebl, Jiri (July 11, 2023). Basic Analysis I: Introduction to Real Analysis, Volume I. version 6.0. URL: https://www.jirka.org/ra/realanal.pdf.