Importing Libraries

In [1]: import pandas as pd
 import numpy as np
 from numpy import log,dot,exp,shape
 import matplotlib.pyplot as plt
 import seaborn as sns

Importing the Dataset

In [2]: dataset=pd.read_csv("diabetes.csv")

In [3]: dataset

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFu
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

768 rows × 9 columns

In [4]: dataset.describe()

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diab
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

Univariate Naive Bayes

In [5]: dataset["Outcome"].hist()

Out[5]: <AxesSubplot:>

Analyzing the coorelation matrix in order to choose our feature

In [6]: dataset.corr()

Out[6]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	C
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	C
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	C
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	C
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	C
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	C
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	C
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	C

Out[7]: <AxesSubplot:>

As from the above table we can see that The feature Glucode is best correlated with our target variable (Outcome), therefore choosing our univariate feature to be Glucose

Out[8]:

```
In [8]: dataset=dataset[["Glucose","Outcome"]]
dataset
```

	Glucose	Outcome
0	148	1
1	85	0
2	183	1
3	89	0
4	137	1
763	101	0
764	122	0
765	121	0
766	126	1
767	93	0

768 rows × 2 columns

Setting the feature and target variable

```
In [9]: x=dataset.iloc[:,:-1].values
         y=dataset.iloc[:,-1].values
In [10]: x
Out[10]: array([[148],
                  [ 85],
                 [183],
                  [89],
                 [137],
                 [116],
                  [ 78],
                 [115],
                 [197],
                 [125],
                 [110],
                 [168],
                  [139],
                 [189],
                 [166],
                 [100],
                  [118],
                 [107],
                 [103],
```

```
In [11]: y
Out[11]: array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1,
         0, 0,
                1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,
         0, 1,
                0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
         1, 0,
                1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,
         0, 0,
                1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
         0, 1,
                1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1,
         1, 1,
                1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
         1, 0,
                1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0,
         0, 1,
                0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
         0, 1,
                1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0,
         1, 1,
                1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
         0, 0,
                1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,
         0, 0,
                1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
         1, 0,
                0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0,
         1, 0,
                1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0,
         1, 0,
                0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
         0, 0,
                0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
         0, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
         1, 0,
                0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1,
         0, 1,
                0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
         0, 0,
                1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
         0, 0,
                0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
         0, 0,
                1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
         0, 0,
                1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
         0, 0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0,
         0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,
         0, 0,
                0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
         1, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0,
         1, 0,
                0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
```

Filling the missing values

```
In [12]: | from sklearn.impute import SimpleImputer
          imputer=SimpleImputer(missing values=np.nan,strategy='mean')
          imputer.fit(x)
         x=imputer.transform(x)
In [13]: x
Out[13]: array([[148.],
                 [ 85.],
                 [183.],
                 [ 89.],
                 [137.],
                 [116.],
                 [ 78.],
                 [115.],
                 [197.],
                 [125.],
                 [110.],
                 [168.],
                 [139.],
                 [189.],
                 [166.],
                 [100.],
                 [118.],
                 [107.],
                 [103.],
```

Splitting the dataset into training set and test set(test data set 20%)

```
In [31]: train=dataset.iloc[:616,:]
    x_train=x[:616,:]
    x_test=x[616:,:]
    y_train=y[:616]
    y_test=y[616:]
```

```
In [32]: x train
Out[32]: array([[148.],
                  [ 85.],
                  [183.],
                  [ 89.],
                  [137.],
                  [116.],
                  [ 78.],
                  [115.],
                  [197.],
                  [125.],
                  [110.],
                  [168.],
                  [139.],
                  [189.],
                  [166.],
                  [100.],
                  [118.],
                  [107.],
                  [103.],
In [33]: x_test
Out[33]: array([[117.],
                  [ 68.],
                  [112.],
                  [119.],
                  [112.],
                  [ 92.],
                  [183.],
                  [ 94.],
                  [108.],
                  [ 90.],
                  [125.],
                  [132.],
                  [128.],
                  [ 94.],
                  [114.],
                  [102.],
                  [111.],
                  [128.],
                  [ 92.],
```

```
In [34]: y train
Out[34]: array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1,
         0, 0,
                1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,
         0, 1,
                0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
         1, 0,
                1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,
         0, 0,
                1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
         0, 1,
                1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1,
         1, 1,
                1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
         1, 0,
                1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0,
         0, 1,
                0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
         0, 1,
                1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0,
         1, 1,
                1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
         0, 0,
                1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,
         0, 0,
                1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
         1, 0,
                0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0,
         1, 0,
                1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0,
         1, 0,
                0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
         0, 0,
                0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
         0, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
         1, 0,
                0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1,
         0, 1,
                0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
         0, 0,
                1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
         0, 0,
                0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
         0, 0,
                1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
         0, 0,
                1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
         0, 0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0,
         0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,
         0, 0,
                0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
         1, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0,
         1, 0])
```

```
In [35]: y test
Out[35]: array([0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
         0, 0,
                1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
         0, 1,
                0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0,
         0, 1,
                0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
         1, 0,
                0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
         0, 0,
                0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
         1, 0,
                1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0])
In [36]: len(x train)+len(x test)
Out[36]: 768
In [37]: len(y train)+len(y test)
Out[37]: 768
In [38]: len(x train)
Out[38]: 616
In [39]: len(y train)
Out[39]: 616
```

Feature Scaling

```
In [40]: from sklearn.preprocessing import StandardScaler
    sc=StandardScaler()
    x_train=sc.fit_transform(x_train)
    x_test=sc.transform(x_test)
```

```
In [41]: x train
Out[41]: array([[ 0.84404469],
                 [-1.08628039],
                 [ 1.91644751],
                 [-0.96372007],
                 [ 0.5070038 ],
                 [-0.13643789],
                 [-1.30076095],
                 [-0.16707797],
                 [ 2.34540864],
                 [ 0.13932283],
                 [-0.32027837],
                 [ 1.4568463 ],
                 [ 0.56828396],
                 [ 2.10028799],
                 [ 1.39556614],
                 [-0.62667918],
                 [-0.07515773],
                 [-0.41219862],
                 [-0.53475894],
In [42]: x test
Out[42]: array([[-0.10579781],
                 [-1.60716176],
                 [-0.25899821],
                 [-0.04451765],
                 [-0.25899821],
                 [-0.87179983],
                 [ 1.91644751],
                 [-0.81051966],
                 [-0.38155854],
                 [-0.93307999],
                 [ 0.13932283],
                 [ 0.3538034 ],
                 [ 0.23124308],
                 [-0.81051966],
                 [-0.19771805],
                 [-0.56539902],
                 [-0.28963829],
                 [ 0.23124308],
                 [-0.87179983],
```

Defining Naive Bayes Classification

```
In [56]: def prior_cal(data, y):
    class_set = sorted(list(data[y].unique()))
    prior = []
    for i in class_set:
        prior.append(len(data[data[y]==i])/len(data))
    return prior
```

```
In [57]: def likelihood gaussian(data, name, val, y, label):
         feat = list(data.columns)
         data = data[data[y]==label]
         mean, std = data[name].mean(), data[name].std()
         PX given Y = (1 / (np.sqrt(2 * np.pi) * std)) * np.exp(-((val-me
         return PX given Y
In [58]: def naive bayes(data, x, y):
         # extracting feature names
         features = list(data.columns)[:-1]
         # calculate prior
         prior = prior cal(data, y)
         y pred = []
         # loop over every data sample
         for x in x:
            # calculate likelihood
            labels = sorted(list(data[y].unique()))
            likelihood = [1]*len(labels)
            for j in range(len(labels)):
               for i in range(len(features)):
                 likelihood[j] *= likelihood gaussian(data, features[j
            # calculate posterior probability (numerator only)
            post prob = [1]*len(labels)
            for j in range(len(labels)):
              post prob[j] = likelihood[j] * prior[j]
            y pred.append(np.argmax(post prob))
         return np.array(y pred)
In [59]: y pred = naive bayes(train, x test, y="Outcome")
In [60]: y pred
0, 0,
           0, 0,
           0, 0,
           0, 0,
           0, 0,
           0, 0,
```

```
In [68]: y test
Out[68]: array([0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
         0, 0,
                1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
         0, 1,
                0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0,
         0, 1,
                0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
         1, 0,
                0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
         0, 0,
                0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
         1, 0,
                1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0])
In [70]: from sklearn.metrics import confusion matrix, f1 score
         print(confusion matrix(y test, y pred))
         print(f1 score(y test, y pred))
         [[98
               01
          [54
               0]]
         0.0
```

Multivariate Naive Bayes

```
In [71]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    sns.set_style("darkgrid")
In [74]: dataset = pd.read_csv("diabetes.csv")
```

In [7	'5]:	dataset
-------	------	---------

Out[75]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFu
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

768 rows × 9 columns

In [76]: dataset.head()

76]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunct
	0	6	148	72	35	0	33.6	0.
	1	1	85	66	29	0	26.6	0.
	2	8	183	64	0	0	23.3	0.
	3	1	89	66	23	94	28.1	0.
	4	0	137	40	35	168	43.1	2.

In [77]: dataset.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diab
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

In [78]: dataset["Outcome"].hist()

Out[78]: <AxesSubplot:>

In [79]: dataset.corr()

Out[79]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	C
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	C
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	C
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	C
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	C
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	C
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	C
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	C

Out[80]: <AxesSubplot:>


```
In [81]: def calculate_prior(df, Y):
    classes = sorted(list(df[Y].unique()))
    prior = []
    for i in classes:
        prior.append(len(df[df[Y]==i])/len(df))
    return prior
```

```
In [82]: def calculate_likelihood_gaussian(df, feat_name, feat_val, Y, label):
    feat = list(df.columns)
    df = df[df[Y]==label]
    mean, std = df[feat_name].mean(), df[feat_name].std()
    p_x_given_y = (1 / (np.sqrt(2 * np.pi) * std)) * np.exp(-((feat_return p_x_given_y)));
```

```
In [83]: def naive bayes gaussian(df, X, Y):
              # get feature names
              features = list(df.columns)[:-1]
              # calculate prior
              prior = calculate prior(df, Y)
              Y pred = []
              # loop over every data sample
              for x in X:
                   # calculate likelihood
                   labels = sorted(list(df[Y].unique()))
                   likelihood = [1]*len(labels)
                   for j in range(len(labels)):
                       for i in range(len(features)):
                           likelihood[j] *= calculate likelihood gaussian(df, fe
                   # calculate posterior probability (numerator only)
                   post prob = [1]*len(labels)
                   for j in range(len(labels)):
                       post prob[j] = likelihood[j] * prior[j]
                   Y pred.append(np.argmax(post prob))
              return np.array(Y_pred)
In [84]: train 1=dataset.iloc[:616,:]
          x1 train=x[:616,:]
          x1 test=x[616:,:]
          y1_train=y[:616]
          y1 test=y[616:]
In [85]: train 1
Out[85]:
               Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFui
            0
                              148
                                                               0 33.6
                       6
                                           72
                                                        35
                                                        29
                                                               0 26.6
            1
                       1
                              85
                                           66
            2
                       8
                              183
                                                        0
                                                               0 23.3
                                           64
                                                              94 28.1
            3
                       1
                              89
                                           66
                                                        23
            4
                       0
                              137
                                           40
                                                        35
                                                             168 43.1
                       3
                                                             194 32.9
           611
                              174
                                           58
                                                        22
                       7
           612
                              168
                                           88
                                                        42
                                                             321 38.2
           613
                       6
                              105
                                           80
                                                        28
                                                               0 32.5
           614
                                           74
                                                        26
                                                             144 36.1
                       11
                              138
           615
                       3
                              106
                                           72
                                                        0
                                                               0 25.8
          616 rows × 9 columns
```

In [87]: y_pred = naive_bayes_gaussian(train, X=x_test, Y="Outcome")

```
In [88]: y pred
0, 0,
     0, 0,
     0, 0,
     0, 0,
     0, 0,
     0, 0,
     In [89]: from sklearn.metrics import confusion matrix, f1 score
   print(confusion matrix(y test, y pred))
   print(f1 score(y test, y pred))
   [[98
    01
   [54
    0]]
   0.0
```