## **Redes Neurais Recorrentes**

Jorge K. S. Kamassury

EEL7514/EEL7513 - Tópico Avançado em Processamento de Sinais EEL410250 - Aprendizado de Máquina

EEL / CTC / UFSC

## Exemplos de dados sequenciais

| Aplicações                         | X                                                 |               | Y                                                 |
|------------------------------------|---------------------------------------------------|---------------|---------------------------------------------------|
| Reconhecimento de voz              | <del>+</del>                                      | $\rightarrow$ | Os alunos estão animados                          |
| Geração de música                  | Ø                                                 | $\rightarrow$ |                                                   |
| Análise de sentimentos             | "Não há nada de<br>bom no filme"                  | $\rightarrow$ | <b>★</b> ☆☆☆☆                                     |
| Análise de sequência<br>de DNA     | AGCCCCTGTGAGGAACTAG                               | $\rightarrow$ | AGCCCCTGTGAGGAACTAG                               |
| Tradução automática                | Voulez – vous chanter avec moi?                   | $\rightarrow$ | Quer cantar comigo?                               |
| Reconhecimento de ações em vídeo   | A A A                                             | $\rightarrow$ | Correndo                                          |
| Reconhecimento de entidade nomeada | Ontem, Rafael encontrou a<br>Laís na sala de aula | $\rightarrow$ | Ontem, Rafael encontrou a<br>Laís na sala de aula |
|                                    |                                                   |               |                                                   |

## Notação

#### Exemplo motivador: reconhecimento de entidade nomeada

X: "Harry Potter and Hermoine Granger invented a new spell";



- $lackbox{ }T_x$  e  $T_y$  correspondem aos comprimentos das sequências de entrada e saída, respectivamente;
- $x^{(i) \le t >}$  é o t-ésimo elemento na sequência de entrada do i exemplo de treinamento;
- $y^{(i) < t>}$  é o t-ésimo elemento na sequência de saída do i exemplo de treinamento.

## Representação das palavras

#### Enfoque: Processamento de Linguagem Natural

- Lista de vocabulário;
  - Cada palavra terá um índice exclusivo com a qual pode ser representada;
  - A classificação é realizada em ordem alfabética (neste caso);
  - Os tamanhos de vocabulários em aplicações modernas são da ordem 100000 palavras;
- Inicialmente, usaremos a codificação one-hot para cada palavra no conjunto de dados.

## Representação das palavras

Enfoque: Processamento de Linguagem Natural

- ightharpoonup Objetivo: usando uma representação de x, aprender um mapeamento via modelo de sequência para, então, obter uma sequência y;
- Problema de aprendizado supervisionado.



## Porque não usar uma rede padrão?



#### Problemas:

- As entradas e as saídas podem ter comprimentos diferentes em exemplos diferentes ( $T_x \neq T_y$ );
- Rastreamento de dependências a longo prazo: informações sobre a ordem da sequência;
- Não compartilha features aprendidas em diferentes posições da sequência;
- A rede neural recorrente contorna ambos os problemas.

#### **Redes Neurais Recorrentes**

lacktriangle Exemplo: reconhecimento de entidade mencionada ( $T_x=T_y$ )



- $ightharpoonup a^{<0>}$  é geralmente inicializado com zeros;
- ► Matrizes de pesos:  $W_{ax}$ ,  $W_{aa}$  e  $W_{ay}$ ;
- $ightharpoonup W_{aa}$  é a *memória* que a RNN mantém das camadas anteriores.

#### **Redes Neurais Recorrentes**



- $\bullet$   $a^{< t>} = f_W(a^{< t-1>}, x^{< t>})$ : estado oculto (estado da célula);
- A saída atual  $\hat{y}^{< t>}$  depende das entradas e ativações anteriores;
- Essa arquitetura n\(\tilde{a}\)o pode aprender com os elementos posteriores da sequ\(\tilde{e}\)ncia;
  - He said, Teddy Roosevelt was a great President.

RNN: Propagação para frente



$$a^{} = g \left( w_{aa} a^{} + w_{ax} x^{} + b_a \right)$$

$$\hat{y}^{} = g \left( w_{ua} a^{} + b_u \right)$$
(2)

$$\hat{y}^{\langle t \rangle} = g \left( w_{ya} a^{\langle t \rangle} + b_y \right) \tag{2}$$

- A função de ativação de a é geralmente Tanh ou ReLU;
- A função de ativação de  $\hat{y}$  depende da tarefa em questão.

## RNN: Notação simplificada



$$a^{} = g \left( w_{aa} a^{} + w_{ax} x^{} + b_a \right)$$
  
=  $g \left( w_a \left[ a^{}, x^{} \right] + b_a \right)$ 

- $w_a = [w_{aa}|w_{ax}]$ : empilhados horizontalmente;
- $igl[ a^{< t-1>}, x^{< t>} igr]$ : empilhados verticalmente;

## RNN: retropropagação através do tempo



- ► Função de perda:  $\mathcal{L}(\hat{y}, y) = \sum_{t=1}^{T_y} \mathcal{L}(\hat{y}^{<t>}, y^{<t>});$
- ▶ Retropropagação através do tempo: passamos a ativação *a* de um elemento de sequência para outro (como retrocedendo no tempo).

## Diferentes tipos de RNNs



Exemplos de aplicações: análise de sentimento, geração de música, tradução automática, etc.

## Linguagem e geração de sequência

- O que é um modelo de linguagem?
- Exemplo (reconhecimento de voz):
  - The apple and pair salad/ The apple and pear salad.
  - Uma vez que pair e pear têm sons similares, como um sistema de reconhecimento de voz escolheria entre os dois termos?
- O trabalho de um modelo de linguagem é fornecer uma probabilidade de qualquer sequência de palavras dada.

## Como construir modelos de linguagem com RNN?

- De início, obter um conjunto de treinamento: um grande corpus de texto do idioma em questão;
- Tokenizar o conjunto de treinamento de forma a obter um dicionário (aplicação de one-hot para cada palavra);
- Uso de < EOS > (para final de frase) e < UNK > (para palavras desconhecidas)



## Como construir modelos de linguagem com RNN?



- $\blacktriangleright$  Função de perda:  $\mathcal{L}\left(\hat{y}^{< t>}, y^{< t>}\right) = -\sum_i y_i^{< t>} \log \hat{y}_i^{< t>}$ 
  - i (p/ todos elementos do corpus) e t (p/ todos os passos temporais).
- Para prever a **próxima palavra**, alimentamos a sentença para a RNN e obtemos  $\hat{y}^{< t>}$ , classificando-o pela máxima probabilidade.

## Como construir modelos de linguagem com RNN?



Para calcular a probabilidade de uma frase, calculamos:

$$\mathsf{P}\left(y^{<1>},y^{<2>},y^{<3>}\right) = \mathsf{P}\left(y^{<1>}\right) \mathsf{P}\left(y^{<2>}|y^{<1>}\right) \mathsf{P}\left(y^{<3>}|y^{<2>},y^{<1>}\right)$$

Isso é simplesmente alimenta a frase na rede e multiplicar as probabilidades (saídas)!

## Amostragem de novas sequências



- i Consideramos  $a^{<0>}=\vec{0}$  e  $x^{<1>}=\vec{0}$ ;
- ii Selecionamos uma previsão aleatoriamente da distribuição obtida por  $\hat{y}^{<1>};$ 
  - Isto é, obter um início aleatório da frase cada vez que se executa uma nova sequência de amostra.
- iii Passamos a última palavra prevista como  $a^{<1>}$  calculado;
- iv Continuamos as etapas ii e iii por um comprimento fixo ou até obter o token <EOS>.
- Também é possível implementar modelos de linguagem em nível de caractere (embora sejam menos eficientes).

## Fluxo padrão de gradiente de uma RNN



- O cálculo do gradiente em relação aos termos a envolvem muitos fatores de  $w_{aa}+$  repetidos cálculos de gradiente;
- Problemas:
  - Explosão de gradiente: Muitos valores > 1;
  - Desaparecimento de gradiente: Muitos valores < 1:</p>

## RNN: explosão de gradiente



- Soluções:
  - Retropropagação truncada: não atualizar sempre todos os pesos;
  - Recorte de gradiente (clipping): abordagem mais empregada
    - Redimensionamento de parte do vetor de gradiente para que n\u00e3o seja maior que algum limite m\u00e1ximo pr\u00e9-definido.



## RNN: desaparecimento de gradiente



- Problema associado: dependências de longo prazo;
- Soluções:
  - Ideia 1: uso da função de ativação ReLU para evitar a redução dos gradientes para valores menores que 0;
  - Ideia 2: inicialização dos parâmetros para evitar que os pesos sejam reduzidos a 0;
  - ► Ideia 3: uso de uma unidade recorrente mais complexa com portas para controlar quais informações são passadas (LSTM, GRU, etc.).

## **Long Short Term Memory**

(LSTM) Networks

## Long Short Term Memory (LSTM)

- Módulos LSTM contêm blocos computacionais que controlam os fluxos de informação;
- As células LSTM são capazes de rastrear informações ao longo de muitas etapas de tempo;
- A informação é adicionada ou removida através de estruturas chamadas portas (gates).



▶ I) Forget  $\rightarrow$  II) Store  $\rightarrow$  III) Update  $\rightarrow$  IV) Output

### Esquece partes irrelevantes do estado anterior



$$\Gamma_f = \sigma \left( W_f \left[ a^{< t-1>}, x^{< t>} \right] + b_f \right)$$

▶ Sigmoide:  $(0 \rightarrow \text{esquecer})$  ou  $(1 \rightarrow \text{manter})!$ 

▶ I) Forget  $\rightarrow$  II) Store  $\rightarrow$  III) Update  $\rightarrow$  IV) Output

#### Armazena novas informações relevantes no estado da célula



$$\Gamma_u = \sigma \left( W_u \left[ a^{< t-1>}, x^{< t>} \right] + b_u \right)$$

$$\tilde{c}^{< t>} = \tanh \left( W_c \left[ a^{< t-1>}, x^{< t>} \right] + b_c \right)$$

Duas etapas: Sigmoide (o que atualizar?) e Tanh (valores candidatos)!

▶ I) Forget  $\rightarrow$  II) Store  $\rightarrow$  III) Update  $\rightarrow$  IV) Output

#### Atualiza seletivamente os valores do estado da célula



$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

Sem multiplicação matricial: evita o desaparecimento de gradiente!

I) Forget → II) Store → III) Update → IV) Output

### Controla quais informações são enviadas para a próxima etapa de tempo



$$a^{< t>} = \Gamma_o * \tanh\left(c^{< t>}\right)$$

Versão filtrada do estado oculto!

**Gated Recurrent Unit (GRU)** 

## Gated Recurrent Unit (GRU): Gates

#### ► I) Reset → II) Update



$$\Gamma_r = \sigma \left( W_r \left[ c^{\langle t-1 \rangle}, x^{\langle t \rangle} \right] + b_r \right)$$

## Gated Recurrent Unit (GRU): Gates

► I) Reset → II) Update



$$\Gamma_u = \sigma \left( W_u \left[ c^{}, x^{} \right] + b_u \right)$$

## Gated Recurrent Unit (GRU): Gates



$$\begin{split} \tilde{c}^{} &= \tanh \left( \left. W_c \left[ \Gamma_r * c^{< t-1>}, x^{< t>} \right] + b_c \right) \right. \\ c^{} &= \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \\ a^{} &= c^{< t>} \end{split}$$

# Bidirectional RNN (BRNN)

## Bidirectional RNN (BRNN)

Exemplo: problema de entidade mencionada



- O nome Teddy não pode ser aprendido com as palavras He e said, mas sim a partir de bears;
- BRNN soluciona esse problema!

## Bidirectional RNN (BRNN)



- Gráfico acíclico;
- Para obter  $\hat{y}^{< t>}$  utilizamos as ativações que vêm de ambas direções;
- Os blocos podem ser RNNs, LSTMS ou GRUs;
- Principal desvantagem: precisa-se de toda a sequência antes de processá-la!

## Deep RNNs (Deep-RNNs)

## Deep RNNs



- Em muitos problemas, é útil empilhar algumas camadas RNN para formar uma rede mais profunda;
- No exemplo acima temos uma rede com 3 camadas RNN.

## Introdução ao Word Embeddings

## Representação de palavras

- NLP foi revolucionada pelo aprendizado profundo e especialmente pelas RNNs;
- Relembrando: exemplo de representação via one-hot.



## Representação de palavras: one-hot

- Problema com essa abordagem: não considera a similaridade entre palavras, dificultando assim a generalização.
- Por exemplo:

```
I want a glass of orange ?

I want a glass of apple ?
```

- Um modelo treinado e capaz de prever juice para a primeira frase, terá dificuldade para prever juice na segunda frase;
- ▶ Observe: as palavras **orange** e **apple** estão relacionadas;
- O produto interno entre qualquer vetor one-hot é nulo. Ademais as distâncias são as mesmas;
- Opção: Word Embeddings.

## Representação de palavras: Word Embeddings

 Word Embeddings é um meio de representar palavras que leva em consideração a similaridade destas;



## Representação de palavras: Word Embeddings

|         |        | Man<br>(5391) | Woman<br>(9853) | King<br>(4914) | Queen<br>(7157) | Apple<br>(456) | Orange<br>(6257) |
|---------|--------|---------------|-----------------|----------------|-----------------|----------------|------------------|
| 1       | Gender | -1            | 1               | -0.95          | 0.97            | 0.00           | 0.01             |
|         | Royal  | 0.01          | 0.02            | 0.93           | 0.95            | -0.01          | 0.00             |
| Ex: 300 | Age    | 0.03          | 0.02            | 0.7            | 0.69            | 0.03           | -0.02            |
|         | Food   | 0.04          | 0.01            | 0.02           | 0.01            | 0.95           | 0.97             |
|         | . :    | :             | :               | :              | ÷               | :              | :                |

- Nesse caso, cada palavra terá 300 features;
- Cada coluna de palavras é um vetor que corresponde a sua representação;
- Nesse caso,  $e_{5391}$  representa o vetor de features relacionado à palavra **man**;
- Observe que como as palavras orange e apple compartilham muitas features similares, a generalização é mais facilitada.

## Word Embeddings: t-SNE

- ▶ t-SNE (t-distributed Stochastic Neighbor Embedding)
  - Técnica que visa reduzir embeddings de alta dimensão em um espaço dimensional inferior;
  - Na prática, é comumente usado para visualizar vetores de palavras no espaço 2D.



## Representação de palavras: Word Embeddings

Exemplo: reconhecimento de entidade nomeada



- Após treinar a rede com a sentença acima, o modelo é capaz de descobrir que para a sentença Robert Lin is an apple farmer, Robert Lin é um nome!;
- Isso é possível porque as palavras orange e apple têm representações próximas;
- Ao usarmos Word Embeddings, estamos aprendendo uma representação para cada palavra do vocabulário em questão.

## Word Embeddings

Word Embeddings auxilia no raciocínio por analogia;

|        | Man<br>(5391)      | Woman<br>(9853) | King<br>(4914) | Queen<br>(7157) | Apple (456) | Orange<br>(6257) |
|--------|--------------------|-----------------|----------------|-----------------|-------------|------------------|
| Gender | -1                 | 1               | -0.95          | 0.97            | 0.00        | 0.01             |
| Royal  | 0.01               | 0.02            | 0.93           | 0.95            | -0.01       | 0.00             |
| Age    | 0.03               | 0.02            | 0.7            | 0.69            | 0.03        | -0.02            |
| Food   | 0.04               | 0.01            | 0.02           | 0.01            | 0.95        | 0.97             |
|        | $e_{\mathrm{Man}}$ | $e_{ m Woman}$  | $e_{ m King}$  | $e_{Oueen}$     |             |                  |

- Se Man → Woman, então King → ?;
- Para prever a correspondência, consideremos as diferenças:
  - $e_{Man} e_{Woman} = [-2 \ 0 \ 0 \ 0];$
  - $\qquad \qquad e_{King} e_{Queen} \approx [-1.9 \ 0 \ 0 \ 0]$

## Word Embeddings

- ► A diferença é sobre o gênero em ambos os casos;
- O vetor representa o gênero;



Podemos reformular o problema para encontrar:

$$e_{Man} - e_{Woman} \approx e_{King} - e_{?}$$

Matematicamente, busca-se alcançar a correspondência ótima tal que:

$$\underset{w}{\operatorname{argmax}} \operatorname{sim} \left( e_w , e_{King} - e_{Man} + e_{Woman} \right)$$

## Word Embeddings:

Similaridade de cosseno: a função mais comumente usada;

$$sim = \frac{w_1 \cdot w_2}{\| w_1 \| \| w_2 \|} = \cos(\theta) \tag{3}$$



Lembre-se:  $w_1 \cdot w_2$  representa o produto interno entre os vetores  $w_1$  e  $w_2$ .

## **Embedding Matrix**

Para uma dada palavra w, a embedding matrix E é uma matriz que mapeia a representação one-hot  $o_w$  para uma representação embedding  $e_w$ , tal como:

$$e_w = Eo_w$$

- Por exemplo:
  - Suponhamos que temos um vocabulário de 10000 palavras (incluindo o token);
  - Nesse caso, a ação do algoritmo criará uma matriz E de ordem (300,10000), onde o valor 300 corresponde a quantidade de features extraídas.

