Họ và tên: Giản Thanh Sang

MSSV: 22521238

BÁO CÁO THỰC HÀNH CE118

Lab02: Thiết kế máy trạng thái hữu hạn

1. Lý thuyết

2. Thực hành

Mã số sinh viên: 22521238

Yêu cầu:

Phát hiện chuỗi

Moore: 8 > 7, 8-3 = 5-> 101

Mealy: 3 -> 0011

Moore: phát hiện chuỗi 101

Máy trạng thái

	TTKT		Υ	
TTHT	X = 0	X = 1	X = 0	X = 1
S0	S0	S1	0	0
S1	S2	S1	0	0
S2	S0	S3	0	0
S3	S2	S1	0	1

Mã hóa trạng thái

S0	00
S1	01
S2	10
S3	11

Bảng trạng thái sau khi mã hóa

3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
TTHT	TTKT (Q1_next,Q0_r	next)(D1,D0)	Υ				
Q1Q0	X = 0	X = 1	X = 0	X = 1			
00	00	01	0	0			
01	10	01	0	0			
10	00	11	0	0			
11	10	01	0	1			

Vì ta sử dụng D_FlipFlop nên trạng thái kế tiếp Q_next = D, ta có:

D1 = X'Q0 + XQ1Q0'

D0 = X

Y = Q1Q0

Thiết kế khối NEXT_STATE

Thiết kế khối CURRENT_STATE

Thiết kế khối OUTPUT_LOGIC

Thiết kế tổng thể

Mô phỏng

Nhận xét:

Input: 0 1 1 0 1 0 1 Output: 0 0 0 0 1 0 1

Nhìn chung khi đưa input là 0110101 thì output xuất ra kết quả đúng, output bật lên 1 tại cái vị trí khi phát hiện ra chuỗi 101.

Máy trạng thái Moore sẽ cho ra output Y = 1 sau khi CLK tích cực, tức là phụ thuộc vào CLK ở trạng thái cuối cùng. Điều này khác so với Mealy.

Mealy: 3 -> 0011 Máy trạng thái

TTHT	TTKT((Q1,Q0)/ Y)				
Q1Q0	X = 0	X = 1			
S0	S1/0	S0/0			
S1	S2/0	S0/0			
S2	S2/0	S3/0			
S3	S1/0	S0/0			

Bảng mã hóa trạng thái

S0	00
S1	01
S2	10
S3	11

Bảng trạng thái sau khi mã hóa

TTHT	TTKT((Q1,Q0)/ Y)				
Q1Q0	X = 0	X = 1			
00	01/0	00/0			
01	10/0	00/0			
10	10/0	11/0			
11	01/0	00/1			

Vì sử dụng D_FlipFlop nên Q_next = D, từ bảng trạng thái ta có biểu thức rút gọn:

D1 = X'Q1'Q0 + Q1Q0'

D0 = X'Q1'Q0 + X'Q1Q0 + XQ1Q0'

Y = XQ1Q0

Thiết kế khối NEXT_STATE

Thiết kế khối CURRENT_STATE

Thiết kế khối OUTPUT_Y (OUTPUT_LOGIC)

Thiết kế tổng thể

Mô phỏng

Nhân xét:

Input: 0 0 1 1 1 0 0 1 1 1 Output: 0 0 0 1 1 0 0 0 1 1

Nhìn chung mô phỏng chạy đúng. Khi thiết kế máy trạng thái theo Mealy thì khi đến trạng thái gần cuối, tức là khi input nhận được 001, thì ngõ ra Y lập tức lên khi khi input nhận thêm 1. Lúc này output là ngõ ra bất đồng bộ với CLK, điều này chính là điểm khác biệt giữa máy trạng thái Moore và Mealy

3. Bài tập làm thêm

Thiết kế bộ phát hiện MSSV (8 ký số) theo FSM Moore và Mealy. Giả sử MSSV là 23456789. Khi input lần lượt là 2, 3, 4, 5, 6, 7, 8, 9, lúc input = 9 thì output = 1, có nghĩa là đã phát hiện 8 số của MSSV. Ngược lại output = 0 khi input không thỏa mãn điều trên, chẳng hạn: input lần lượt là 2, 6, 7, 3, 9... hay 3, 6, 8, 9 ...

MSSV: 22521238 Thiết kế bộ phát hiện MSSV theo FSM Moore

TTHT	TTKT	TTKT									
	0	1	2	3	4	5	6	7	8	>8	Υ
S0	S0	S0	S1	S0	0						
S1	S0	S0	S2	S0	0						
S2	S0	S0	S2	S0	S0	S3	S0	S0	S0	S0	0
S3	S0	S0	S4	S0	0						
S4	S0	S5	S2	S0	0						
S5	S0	S0	S6	S0	0						
S6	S0	S0	S2	S7	S0	S0	S0	S0	S0	S0	0
S7	S0	S0	S0	S0	S0	S0	S0	S0	S8	S0	0
S8	S0	S0	S1	S0	1						

Bảng mã hóa trạng thái

S0	0000
S1	0001
S2	0010
S3	0011
S4	0100
S5	0101
S6	0110
S7	0111
S8	1000

Sử dụng D_FlipFlop

Từ bảng trạng thái ta có:

D3 = S7(I=8)

D2 = S3(I=2) + S4(I=1) + S5(I=2) + S6(I=3)

D1 = S1(I=2) + S2(I=2) + S4(I=2) + S6(I=2) + S2(I=5) + S5(I=2) + S6(I=3)

D0 = S0(I=2) + S2(I=5) + S4(I=1) + S6(I=3) + S8(I=2)

Do ngõ vào I là 4 bit, và các trạng thái mã hóa là 4 bit nên bảng trạng thái khi mã hóa rất phức tạp và dễ gây nhầm lẫn nên ta có thể làm bằng cách:

D3 = S7(I=8):

- Các trạng thái được mã hóa bằng 4 bit: Q3Q2Q1Q0
- Input cũng được mã hóa thành 4 bit: I3I2I1I0

Nên ta có thể biểu diễn D3 = (Q3'Q2Q1Q0)(I3I2'I1'I0')

Tường tự với các trường hợp còn lại

Thiết kế khối NEXT_STATE

4 khối OR tương ứng với các D[4..0] Input là I[3..0] và Q[3..0]

Thiết kế khối CURRENT_STATE

Thiết kế khối OUTPUT_LOGIC

Thiết kế tổng thể

Mô phỏng

Nhận xét:

Input: 2252123822522521238 Output:000000010000000001

Nhìn chung mô phỏng đúng với yêu cầu đề bài, khi nhận được chuỗi 22521238 thì output xuất ra 1. Do đây là FSM Moore nên output sẽ xuất ra ngay cạnh lên CLK

MSSV: 22521238

Thiết kế bộ phát hiện MSSV theo FSM Mealy

Máy trạng thái

TTHT	TTKT									
	0	1	2	3	4	5	6	7	8	<8
S0	S0/0	S0/0	S1/0	S0/0						
S1	S0/0	S0/0	S2/0	S0/0						
S2	S0/0	S0/0	S2/0	S0/0	S0/0	S5/0	S0/0	S0/0	S0/0	S0/0
S3	S0/0	S0/0	S4/0	S0/0						
S4	S0/0	S5/0	S2/0	S0/0						
S5	S0/0	S0/0	S6/0	S0/0						
S6	S0/0	S0/0	S2/0	S7/0	S0/0	S0/0	S0/0	S0/0	S0/0	S0/0
S7	S0/0	S0/0	S1/0	S0/0	S0/0	S0/0	S0/0	S0/0	S0/1	S0/0

Bảng mã hóa trạng thái

S0	000
S1	001
S2	010
S3	011
S4	100
S5	101
S6	110
S7	111

Sử dụng D_FlipFlop

Từ bảng trạng thái ta có:

$$D2 = S3(I=2) + S4(I=1) + S5(I=2) + S6(I=3)$$

$$D1 = S1(I=2) + S2(I=2) + S4(I=2) + S6(I=2) + S2(I=5) + S5(I=2) + S6(I=3)$$

$$D0 = S0(I=2) + S2(I=5) + S4(I=1) + S6(I=3)$$

$$Y = S7(I=8)$$

Thiết kế khối NEXT_STATE

Thiết kế khối CURRENT_STATE

Thiết kế khối OUTPUT_LOGIC

Thiết kế tổng thể

Mô phỏng

Nhận xét:

Input: 2252123822522521238 Output:000000010000000001

Nhìn chung, kết quả mô phỏng chính xác theo yêu cầu đề bài. Tuy nhiên, khi thiết kế máy trạng thái theo Mealy thì ngõ ra xuất kết quả bất đồng bộ với CLK, nên ta thấy mặc dù khi chưa đến CLK nhưng khi nhận số thứ 8 thì output lập tức lên 1. Điều này là sự khác biệt giữa Moore và Mealy

Link video:

https://drive.google.com/drive/folders/1xW3ytrUyhD3LjPZhpq1I-1rEa9ETsQPU?usp=drive_link