Machine Learning applied to Planetary Sciences

PTYS 595B/495B Leon Palafox

News of the day

Intelligent Beer

WRITTEN BY ALASDAIR ALLAN

29 August 2016 // 02:37 PM CET

http://motherboard.vice.com/en_uk/read/thearrival-of-artificially-intelligent-beer

Last Class Recap — Logistic Regression

- Imagine you want to sell you car:
 - How much do you ask for it:
 - Mileage
 - Year
 - Color
 - Options
 - Condition

What do places like Edmunds.com do?

Model	Year	Brand	Price	Options	Condition	Mileage
Corvette	1961	Chevrolette	100K	Standard	As New	100,000
Corvette	1961	Chevrolette	10K	Standard	Rust	100,000
Corvette	1961	Chevrolette	120K	Standard	Used	20,000

Price = Year + Options + Condition + Mileage

This doesn't work

Price = A*Year+ B*Options + C*Condition+ D*Mileage

Matrix form

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \quad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ x_{21} & \cdots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix},$$

$$eta = egin{bmatrix} eta_2 \ dots \end{bmatrix} \qquad \mathbf{y} = \mathbf{X} eta_2$$

Feature Engineering

By adding an extra squared factor, we got a perfect fit

Math background

• By adding extra features, we move to higher dimensional spaces.

Optimization problem

• Optimize:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}$$

• Score:

$$(X\beta - y)^2$$
$$(X\beta - y)^2$$

$$\frac{1}{2}(X\beta - y)^2$$

This is considered a cost!

Matrix Algebra approach

$$\frac{1}{2}(X\beta - y)^2 = \frac{1}{2}(X\beta - y)^T(X\beta - y)$$
$$= J(\beta)$$

$$\nabla_{\beta}J(\beta) = 0$$

Matrix Algebra Approach

$$\nabla_{\beta} J(\beta) = X^T X \beta - X^T y = 0$$

$$X^T X \beta = X^T y$$

$$\beta = (X^T X)^{-1} X^T y$$

Gradient descent

$$h_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

$$J(\beta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\beta}(x^{(i)}) - y^{(i)})^2$$

$$\beta_{j+1} = \beta_j - \alpha \frac{\delta}{\delta \beta_j} J(\beta)$$

Gradient descent

$$\beta_{j+1} = \beta_j - \alpha(y - h_\beta(x^{(i)}))x_j^{(i)}$$

What is the difference

- Large amount of data:
 - Gradient descent rules!
 - Matrix Algebra is a pain.
- Small datasets
 - Matrix algebra is way faster.
- In practice, most implementations use Gradient Descent, since datasets get large very fast.

How to control that polynomial problem?

Regularization

 Tries to keep the weights in check, by adding an extra penalty to the cost.

$$J(\beta) = \frac{1}{2} (y - h_{\beta}(x^{(i)}))^{2} + \lambda \|\beta\|$$

$$J(\beta) = \frac{1}{2} (y - h_{\beta}(x^{(i)}))^{2} + \alpha \|\beta\|$$

We refer to this as ridge regression