Unit 2J: Orthonormal Bases

Prof.Dr.P.M.Bajracharya

School of Mathematical Sciences T.U., Kirtipur March 26, 2024

Summary

- Orthogonal and orthonormal sets
- 2 Orthogonal and orthonormal bases
- 3 Orthogonal Projection
- Orthonormality and Matrices

Orthogonal and orthonormal sets

Orthogonal set

A set S of vectors in \mathbb{R}^n is called **orthogonal** if every pair of distinct vectors in S are orthogonal.

A set S of vectors in \mathbb{R}^n is called **orthonormal** if S is orthogonal and every vector in S is a unit vector.

Orthogonal set

A set S of vectors in \mathbb{R}^n is called **orthogonal** if every pair of distinct vectors in S are orthogonal.

A set S of vectors in \mathbb{R}^n is called **orthonormal** if S is orthogonal and every vector in S is a unit vector.

Example.

It is easy to check that the standard basis $E = \{e_1, e_2, ..., e_n\}$ for \mathbb{R}^n is an orthonormal set.

Let $u_1 = (2, 0, 0)$, $u_2 = (0, 1, 1)$ and $u_3 = (0, 1, -1)$. Find the orthonormal set associated with the set $S = \{u_1, u_2, u_3\}$.

We have

Orthonormal

0000000000

$$u_1 \cdot u_2 = 2 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0$$

Solution:

We have

$$u_1 \cdot u_2 = 2 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0$$

$$u_1 \cdot u_3 = 2 \cdot 0 + 0 \cdot 1 + 0 \cdot (-1) = 0$$

Solution:

We have

$$u_1 \cdot u_2 = 2 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0$$

$$u_1 \cdot u_3 = 2 \cdot 0 + 0 \cdot 1 + 0 \cdot (-1) = 0$$

$$u_2 \cdot u_3 = 0 \cdot 0 + 1 \cdot 1 + 1 \cdot (-1) = 0.$$

Solution:

We have

$$u_1 \cdot u_2 = 2 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0$$

$$u_1 \cdot u_3 = 2 \cdot 0 + 0 \cdot 1 + 0 \cdot (-1) = 0$$

$$u_2 \cdot u_3 = 0 \cdot 0 + 1 \cdot 1 + 1 \cdot (-1) = 0.$$

Projection

Hence the set S is orthogonal.

Let

$$v_1 = \frac{1}{\|u_1\|} u_1 = \frac{1}{2} (2, 0, 0) = (1, 0, 0)$$

Let

$$v_1 = \frac{1}{\|u_1\|} u_1 = \frac{1}{2} (2, 0, 0) = (1, 0, 0)$$

$$v_2 = \frac{1}{\|u_2\|} u_2 = \frac{1}{\sqrt{2}} (0, 1, 1) = (0, 1/\sqrt{2}, 1/\sqrt{2})$$

Projection

Let

$$v_{1} = \frac{1}{\|u_{1}\|} u_{1} = \frac{1}{2} (2, 0, 0) = (1, 0, 0)$$

$$v_{2} = \frac{1}{\|u_{2}\|} u_{2} = \frac{1}{\sqrt{2}} (0, 1, 1) = (0, 1/\sqrt{2}, 1/\sqrt{2})$$

$$v_{3} = \frac{1}{\|u_{3}\|} u_{3} = \frac{1}{\sqrt{2}} (0, 1, -1) = (0, 1/\sqrt{2}, -1/\sqrt{2}).$$

Then for
$$i = 1, 2, 3$$

Orthonormal

$$||v_i|| = 1$$

Then for i = 1, 2, 3

$$||v_i|| = 1$$

Projection

and if $i \neq j$, then

$$v_i \cdot v_j = \frac{1}{\|u_i\| \|u_i\|} (u_i \cdot u_j) = 0.$$

Then for i = 1, 2, 3

$$||v_i|| = 1$$

and if $i \neq j$, then

$$v_i \cdot v_j = \frac{1}{\|u_i\| \|u_i\|} (u_i \cdot u_j) = 0.$$

Therefore, the set $\{v_1, v_2, v_3\}$ is orthonormal.

9 / 57

Note that

The process of converting an orthogonal set to an orthonormal set by multiplying each vector u by is called **normalizing**.

Note that

The process of converting an orthogonal set to an orthonormal set by multiplying each vector u by $\frac{1}{\|u\|}$ is called **normalizing**.

Theorem

An orthogonal set of nonzero vectors in a vector space is linearly independent.

Orthonormal

Let
$$S = \{v_1, v_2, ..., v_k\}.$$

Orthonormal

0000000000

Let
$$S = \{v_1, v_2, ..., v_k\}$$
. Consider the equation $c_1v_1 + c_2v_2 + ... + c_kv_k = 0$.

Let
$$S = \{v_1, v_2, ..., v_k\}$$
. Consider the equation $c_1v_1 + c_2v_2 + ... + c_kv_k = 0$.

Since S is orthogonal, $v_i \cdot v_j = 0$ for $i \neq j$.

Let
$$S = \{v_1, v_2, ..., v_k\}$$
. Consider the equation $c_1v_1 + c_2v_2 + ... + c_kv_k = 0$.

Since S is orthogonal, $v_i \cdot v_j = 0$ for $i \neq j$. For i = 1, 2, ..., k, $0 = (c_1v_1 + c_2v_2 + ... + c_kv_k) \cdot v_i$

Let
$$S = \{v_1, v_2, ..., v_k\}$$
. Consider the equation $c_1v_1 + c_2v_2 + ... + c_kv_k = 0$.

Since S is orthogonal, $v_i \cdot v_j = 0$ for $i \neq j$. For i = 1, 2, ..., k $0 = (c_1v_1 + c_2v_2 + \dots + c_kv_k) \cdot v_i$

$$= (c_1v_1) \cdot v_i + (c_2v_2) \cdot v_i + \dots + (c_kv_k) \cdot v_i$$

Let
$$S = \{v_1, v_2, ..., v_k\}$$
. Consider the equation $c_1v_1 + c_2v_2 + ... + c_kv_k = 0$.

Since S is orthogonal, $v_i \cdot v_j = 0$ for $i \neq j$. For i = 1, 2, ..., k, $0 = (c_1v_1 + c_2v_2 + ... + c_kv_k) \cdot v_i$ $= (c_1v_1) \cdot v_i + (c_2v_2) \cdot v_i + ... + (c_kv_k) \cdot v_i$

 $= c_1(v_1 \cdot v_i) + c_2(v_2 \cdot v_i) + ... + c_k(v_k \cdot v_i)$

Let
$$S = \{v_1, v_2, ..., v_k\}$$
. Consider the equation $c_1v_1 + c_2v_2 + ... + c_kv_k = 0$.

Since S is orthogonal, $v_i \cdot v_i = 0$ for $i \neq j$. For i = 1, 2, ..., k $0 = (c_1v_1 + c_2v_2 + \dots + c_kv_k) \cdot v_i$ $= (c_1v_1) \cdot v_i + (c_2v_2) \cdot v_i + ... + (c_kv_k) \cdot v_i$ $= c_1(v_1 \cdot v_i) + c_2(v_2 \cdot v_i) + ... + c_k(v_k \cdot v_i)$

 $= c_i(v_i \cdot v_i)$

Orthonormal

000000000

Given that $v_i \neq 0$ for each i, we have $v_i \cdot v_i \neq 0$.

Proof...

Given that $v_i \neq 0$ for each i, we have $v_i \cdot v_i \neq 0$. This means, $c_i = 0$ for each i. Therefore, S is linearly independent.

Orthogonal and orthonormal bases

Orthogonal basis

A basis B for a vector space is called an **orthogonal basis** if B is orthogonal.

A basis B for a vector space is called an **orthonormal basis** if B is orthonormal.

Let
$$u_1 = (2, 0, 0), u_2 = (0, 1, 1)$$
 and $u_3 = (0, 1, -1).$

Let
$$u_1 = (2, 0, 0)$$
, $u_2 = (0, 1, 1)$ and $u_3 = (0, 1, -1)$.

• We have shown that the set $S = \{u_1, u_2, u_3\}$ is orthogonal.

Bases

0000000000000000

Let
$$u_1 = (2, 0, 0)$$
, $u_2 = (0, 1, 1)$ and $u_3 = (0, 1, -1)$.

• We have shown that the set $S = \{u_1, u_2, u_3\}$ is orthogonal. It is clear that each vector in S is nonzero.

Let $u_1 = (2, 0, 0), u_2 = (0, 1, 1)$ and $u_3 = (0, 1, -1).$

• We have shown that the set $S = \{u_1, u_2, u_3\}$ is orthogonal. It is clear that each vector in S is nonzero. Hence by the previous theorem, S is linearly independent.

Let
$$u_1 = (2, 0, 0)$$
, $u_2 = (0, 1, 1)$ and $u_3 = (0, 1, -1)$.

- We have shown that the set $S = \{u_1, u_2, u_3\}$ is orthogonal. It is clear that each vector in S is nonzero. Hence by the previous theorem, S is linearly independent.
- We also know that any linearly independent set of n elements of an n-dimensional vector space V must span V and thus is a basis.

Let $u_1 = (2,0,0), u_2 = (0,1,1)$ and $u_3 = (0, 1, -1).$

- We have shown that the set $S = \{u_1, u_2, u_3\}$ is orthogonal. It is clear that each vector in S is nonzero. Hence by the previous theorem, S is linearly independent.
- We also know that any linearly independent set of n elements of an n-dimensional vector space V must span V and thus is a basis. Therefore, S is an orthogonal basis for \mathbb{R}^3 .

Example

Let $u_1 = (2, 0, 0), u_2 = (0, 1, 1)$ and $u_3 = (0, 1, -1).$

- We have shown that the set $S = \{u_1, u_2, u_3\}$ is orthogonal. It is clear that each vector in S is nonzero. Hence by the previous theorem, S is linearly independent.
- We also know that any linearly independent set of n elements of an n-dimensional vector space V must span V and thus is a basis. Therefore, S is an orthogonal basis for \mathbb{R}^3 .
- Moreover, the orthonormal set associated with S is an orthonormal basis for \mathbb{R}^3 .

Theorem

Let $B = \{v_1, v_2, ..., v_k\}$ be an orthogonal basis for a vector space V. Then for any vector $w \in V$, $w \cdot v_1 \quad w \cdot v_2 \quad w \cdot v_k$

$$w = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \dots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k,$$

Let $B = \{v_1, v_2, ..., v_k\}$ be an orthogonal basis for a vector space V. Then for any vector $w \in V$,

$$w = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \dots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k,$$

that is,

$$w = \left(\frac{w \cdot v_1}{v_1 \cdot v_1}, \frac{w \cdot v_2}{v_2 \cdot v_2}, \dots, \frac{w \cdot v_k}{v_k \cdot v_k}\right)$$

with respect to Basis B.

Theorem...

Moreover, if $B = \{v_1, v_2, ..., v_k\}$ is an orthonormal basis for a vector space V, then for any vector $w \in V$,

$$w = (w \cdot v_1)v_1 + (w \cdot v_2)v_2 + \dots + (w \cdot v_k)v_k,$$

Theorem...

Moreover, if $B = \{v_1, v_2, ..., v_k\}$ is an orthonormal basis for a vector space V, then for any vector $w \in V$

$$w = (w \cdot v_1)v_1 + (w \cdot v_2)v_2 + \dots + (w \cdot v_k)v_k,$$

that is,

$$w = (w \cdot v_1, w \cdot v_2, ..., w \cdot v_k)$$

with respect to Basis B.

Let $B = \{v_1, v_2, ..., v_k\}$ be an orthogonal basis for a vector space V and $w \in V$.

Proof.

Let $B = \{v_1, v_2, ..., v_k\}$ be an orthogonal basis for a vector space V and $w \in V$. Then

$$w = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

for some real numbers $c_1, c_2, ..., c_k$.

Let $B = \{v_1, v_2, ..., v_k\}$ be an orthogonal basis for a vector space V and $w \in V$. Then

$$w = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

for some real numbers $c_1, c_2, ..., c_k$. Since S is orthogonal, $v_i \cdot v_j = 0$ for $i \neq j$.

Bases

Let $B = \{v_1, v_2, ..., v_k\}$ be an orthogonal basis for a vector space V and $w \in V$. Then

$$w = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

for some real numbers $c_1, c_2, ..., c_k$. Since S is orthogonal, $v_i \cdot v_j = 0$ for $i \neq j$. For i = 1, 2, ..., k, $w \cdot v_i = (c_1v_1 + c_2v_2 + ... + c_kv_k) \cdot v_i$

Bases

Proof.

Let $B = \{v_1, v_2, ..., v_k\}$ be an orthogonal basis for a vector space V and $w \in V$. Then

$$w = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

for some real numbers $c_1, c_2, ..., c_k$. Since S is orthogonal, $v_i \cdot v_j = 0$ for $i \neq j$. For i = 1, 2, ..., k, $w \cdot v_i = (c_1v_1 + c_2v_2 + ... + c_kv_k) \cdot v_i$ $= (c_1v_1) \cdot v_i + (c_2v_2) \cdot v_i + ... + (c_kv_k) \cdot v_i$

Bases

00000000000000000

Proof.

Let $B = \{v_1, v_2, ..., v_k\}$ be an orthogonal basis for a vector space V and $w \in V$. Then

$$w = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

for some real numbers $c_1, c_2, ..., c_k$. Since S is orthogonal, $v_i \cdot v_j = 0$ for $i \neq j$. For i = 1, 2, ..., k,

$$w \cdot v_i = (c_1 v_1 + c_2 v_2 + \dots + c_k v_k) \cdot v_i$$

= $(c_1 v_1) \cdot v_i + (c_2 v_2) \cdot v_i + \dots + (c_k v_k) \cdot v_i$
= $c_1(v_1 \cdot v_i) + c_2(v_2 \cdot v_i) + \dots + c_k(v_k \cdot v_i)$

Proof.

Let $B = \{v_1, v_2, ..., v_k\}$ be an orthogonal basis for a vector space V and $w \in V$. Then

$$w = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

for some real numbers $c_1, c_2, ..., c_k$. Since S is orthogonal, $v_i \cdot v_j = 0$ for $i \neq j$. For i = 1, 2, ..., k,

$$w \cdot v_i = (c_1 v_1 + c_2 v_2 + \dots + c_k v_k) \cdot v_i$$

= $(c_1 v_1) \cdot v_i + (c_2 v_2) \cdot v_i + \dots + (c_k v_k) \cdot v_i$
= $c_1 (v_1 \cdot v_i) + c_2 (v_2 \cdot v_i) + \dots + c_k (v_k \cdot v_i)$
= $c_i (v_i \cdot v_i)$

Proof...

Given that $v_i \neq 0$ for each i, we have $v_i \cdot v_i \neq 0$.

Proof...

Given that $v_i \neq 0$ for each i, we have $v_i \cdot v_i \neq 0$.

Therefore,

$$c_i = \frac{w \cdot v_i}{v_i \cdot v_i}$$

for each i.

Proof...

Given that $v_i \neq 0$ for each i, we have $v_i \cdot v_i \neq 0$.

Therefore,

$$c_i = \frac{w \cdot v_i}{v_i \cdot v_i}$$

for each i. That means,

$$w = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \dots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k.$$

Proof ...

That is,

$$w = \left(\frac{w \cdot v_1}{v_1 \cdot v_1}, \frac{w \cdot v_2}{v_2 \cdot v_2}, ..., \frac{w \cdot v_k}{v_k \cdot v_k}\right)$$

with respect to Base B.

Proof ...

That is,

$$w = \left(\frac{w \cdot v_1}{v_1 \cdot v_1}, \frac{w \cdot v_2}{v_2 \cdot v_2}, ..., \frac{w \cdot v_k}{v_k \cdot v_k}\right)$$

with respect to Base B.

If $B = \{v_1, v_2, ..., v_k\}$ is an orthonormal basis for a vector space V, then the result follows from the previous result, because $v_i \cdot v_i = ||v_i||_2 = 1$ for all i.

Let

Orthonormal

$$v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Show that $B = \{v_1, v_2\}$ is an orthonormal basis for \mathbb{R}^2 . Find a vector $x \in \mathbb{R}^2$ with respect to the basis B.

We have

$$v_1 \cdot v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

We have

$$v_1 \cdot v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} (1 \cdot 1 + 1 \cdot (-1)) = 0.$$

We have

$$v_1 \cdot v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} (1 \cdot 1 + 1 \cdot (-1)) = 0.$$

Also, we have

$$v_1 \cdot v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

We have

$$v_1 \cdot v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} (1 \cdot 1 + 1 \cdot (-1)) = 0.$$

Also, we have

$$v_1 \cdot v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{2} (1^2 + 1^2) = 1.$$

We have

$$v_1 \cdot v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} (1 \cdot 1 + 1 \cdot (-1)) = 0.$$

Also, we have

$$v_1 \cdot v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{2} (1^2 + 1^2) = 1.$$

Similarly,

$$v_2 \cdot v_2 = 1.$$

Therefore, $B = \{v_1, v_2\}$ is an orthonormal basis for \mathbb{R}^2 .

Therefore, $B = \{v_1, v_2\}$ is an orthonormal basis for \mathbb{R}^2 .

To find a vector $x \in \mathbb{R}^2$ with respect to the basis B, assume that $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ with respect to the standard basis for \mathbb{R}^2 .

Therefore, $B = \{v_1, v_2\}$ is an orthonormal basis for \mathbb{R}^2 .

To find a vector $x \in \mathbb{R}^2$ with respect to the basis B, assume that $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ with respect to the standard basis for \mathbb{R}^2 . Then

$$v_1 \cdot x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Therefore, $B = \{v_1, v_2\}$ is an orthonormal basis for \mathbb{R}^2 .

To find a vector $x \in \mathbb{R}^2$ with respect to the basis B, assume that $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ with respect to the

standard basis for \mathbb{R}^2 . Then

$$v_1 \cdot x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{\sqrt{2}} (x_1 + x_2)$$

Therefore, $B = \{v_1, v_2\}$ is an orthonormal basis for \mathbb{R}^2 .

To find a vector $x \in \mathbb{R}^2$ with respect to the basis B, assume that $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ with respect to the

standard basis for \mathbb{R}^2 . Then

$$v_1 \cdot x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{\sqrt{2}} (x_1 + x_2)$$

and

$$v_2 \cdot x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Therefore, $B = \{v_1, v_2\}$ is an orthonormal basis for \mathbb{R}^2 .

To find a vector $x \in \mathbb{R}^2$ with respect to the basis B, assume that $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ with respect to the

standard basis for \mathbb{R}^2 . Then

$$v_1 \cdot x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{\sqrt{2}} (x_1 + x_2)$$

and

$$v_2 \cdot x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{\sqrt{2}} (x_1 - x_2).$$

Therefore,

$$x = \left(\frac{1}{\sqrt{2}}(x_1 + x_2), \frac{1}{\sqrt{2}}(x_1 - x_2)\right)$$

with respect to the basis B.

Example

Let V be a plane in \mathbb{R}^3 defined by the equation

$$ax + by + cz = 0$$
. Let $n = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. For any vector

$$u = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in V$$
, we have

$$n \cdot u = ax + by + cz = 0.$$

Thus n is orthogonal to V.

Example ...

In fact,

$$V = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0\}$$

= $\{u \in \mathbb{R}^3 | n \cdot u = 0\}.$

The vector n is a normal vector of V.

Example

Let $V = \text{span}\{u_1, u_2\}$ be a subspace of \mathbb{R}^4 , where

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ -1 \\ -1 \\ 1 \end{pmatrix}$$
. Find all vectors that

are orthogonal to V.

Let v = (w, x, y, z) be a vector in \mathbb{R}^4 .

Let
$$v = (w, x, y, z)$$
 be a vector in \mathbb{R}^4 . Then $v \cdot (au_1 + bu_2) = 0$ for all $a, b \in \mathbb{R}$

Solution:

Let
$$v = (w, x, y, z)$$
 be a vector in \mathbb{R}^4 . Then $v \cdot (au_1 + bu_2) = 0$ for all $a, b \in \mathbb{R}$
 $\Leftrightarrow v \cdot u_1 = 0, \ v \cdot u_2 = 0$
 $\Leftrightarrow \begin{cases} w + x + y = 0 \\ -x - y + z = 0 \end{cases}$

Solution:

Let v = (w, x, y, z) be a vector in \mathbb{R}^4 . Then $v \cdot (au_1 + bu_2) = 0$ for all $a, b \in \mathbb{R}$ $\Leftrightarrow v \cdot u_1 = 0, v \cdot u_2 = 0$ $\Leftrightarrow \begin{cases} w + x + y = 0 \\ -x - y + z = 0 \end{cases}$ \Leftrightarrow (w, x, y, z) = (-t, -s + t, s, t) for some $s, t \in \mathbb{R}$.

So a vector v is orthogonal to V if and only if v = (-t, -s + t, s, t)

So a vector v is orthogonal to V if and only if v = (-t, -s + t, s, t) = s(0, -1, 1, 0) + t(-1, 1, 0, 1)

So a vector v is orthogonal to V if and only if v = (-t, -s + t, s, t) = s(0, -1, 1, 0) + t(-1, 1, 0, 1)for some $s, t \in \mathbb{R}$,

So a vector v is orthogonal to V if and only if

$$v = (-t, -s + t, s, t) = s(0, -1, 1, 0) + t(-1, 1, 0, 1)$$

for some $s, t \in \mathbb{R}$, i.e.

$$v \in \text{span}(0, -1, 1, 0), (-1, 1, 0, 1).$$

Solution ...

Orthonormal

So a vector v is orthogonal to V if and only if

$$v = (-t, -s + t, s, t) = s(0, -1, 1, 0) + t(-1, 1, 0, 1)$$

Projection

for some $s, t \in \mathbb{R}$, i.e.

$$v \in \text{span}(0, -1, 1, 0), (-1, 1, 0, 1).$$

Therefore, span $\{(0, -1, 1, 0), (-1, 1, 0, 1)\}$ is orthogonal to V.

Orthogonal projection

Projection

•0000000000000

Orthogonal projection

Let V be a subspace of \mathbb{R}^n . Every vector $u \in \mathbb{R}^n$ can be written uniquely as

Projection

$$u = n + p$$

such that n is a vector orthogonal to V and p is a vector in V. The vector p is called the (orthogonal) projection of u onto V.

The projection of

$$u = \begin{pmatrix} x \\ y \end{pmatrix}$$

onto the x-axis is

$$p = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

Here,

$$n = \begin{pmatrix} 0 \\ y \end{pmatrix}$$

The projection of
$$u = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 onto the xy -plane

is
$$p = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$
. Here, $n = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$

$$\begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$$
.

Theorem

Let V be a subspace of \mathbb{R}^n and w a vector in \mathbb{R}^n .

(a) If $\{v_1, v_2, ..., v_k\}$ be an orthogonal basis for V, then

$$\frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \dots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k,$$

is the projection of w onto V.

Theorem

Let V be a subspace of \mathbb{R}^n and w a vector in \mathbb{R}^n .

(a) If $\{v_1, v_2, ..., v_k\}$ be an orthogonal basis for V, then

$$\frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \dots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k,$$

is the projection of w onto V.

(b) If $\{v_1, v_2, ..., v_k\}$ is an orthonormal basis for V, then $(w \cdot v_1)v_1 + (w \cdot v_2)v_2 + ... + (w \cdot v_k)v_k$ is the projection of w onto V.

(a) Let

$$p = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \ldots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k, \qquad n = w - p.$$

(a) Let

$$p = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \ldots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k, \qquad n = w - p.$$

Then for i = 1, 2, ..., k,

$$n \cdot v_i = w \cdot v_i - p \cdot v_i$$

(a) Let

$$p = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \ldots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k, \qquad n = w - p.$$

Then for i = 1, 2, ..., k,

$$n \cdot v_i = w \cdot v_i - p \cdot v_i$$

= $w \cdot v_i - \frac{w \cdot v_1}{v_1 \cdot v_1} (v_1 \cdot v_i) - \dots - \frac{w \cdot v_k}{v_k \cdot v_k} (v_k \cdot v_i)$

(a) Let

$$p = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \ldots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k, \qquad n = w - p.$$

Then for i = 1, 2, ..., k,

$$n \cdot v_i = w \cdot v_i - p \cdot v_i$$

$$= w \cdot v_i - \frac{w \cdot v_1}{v_1 \cdot v_1} (v_1 \cdot v_i) - \dots - \frac{w \cdot v_k}{v_k \cdot v_k} (v_k \cdot v_i)$$

$$= w \cdot v_i - \frac{w \cdot v_i}{v_i \cdot v_i} (v_i \cdot v_i) = 0.$$

(a) Let

$$p = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \dots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k, \qquad n = w - p.$$

Then for i = 1, 2, ..., k,

Bases

$$n \cdot v_i = w \cdot v_i - p \cdot v_i$$

$$= w \cdot v_i - \frac{w \cdot v_1}{v_1 \cdot v_1} (v_1 \cdot v_i) - \dots - \frac{w \cdot v_k}{v_k \cdot v_k} (v_k \cdot v_i)$$

$$= w \cdot v_i - \frac{w \cdot v_i}{v_i \cdot v_i} (v_i \cdot v_i) = 0.$$

This means, n is orthogonal to V.

(a) Let

$$p = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \dots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k, \qquad n = w - p.$$

Then for i = 1, 2, ..., k,

$$n \cdot v_i = w \cdot v_i - p \cdot v_i$$

$$= w \cdot v_i - \frac{w \cdot v_1}{v_1 \cdot v_1} (v_1 \cdot v_i) - \dots - \frac{w \cdot v_k}{v_k \cdot v_k} (v_k \cdot v_i)$$

$$= w \cdot v_i - \frac{w \cdot v_i}{v_i \cdot v_i} (v_i \cdot v_i) = 0.$$

This means, n is orthogonal to V. Since w = n + pwhere $n \perp V$ and $p \in V$,

(a) Let

$$p = \frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 + \dots + \frac{w \cdot v_k}{v_k \cdot v_k} v_k, \qquad n = w - p.$$

Then for i = 1, 2, ..., k,

$$n \cdot v_i = w \cdot v_i - p \cdot v_i$$

$$= w \cdot v_i - \frac{w \cdot v_1}{v_1 \cdot v_1} (v_1 \cdot v_i) - \dots - \frac{w \cdot v_k}{v_k \cdot v_k} (v_k \cdot v_i)$$

$$= w \cdot v_i - \frac{w \cdot v_i}{v_i \cdot v_i} (v_i \cdot v_i) = 0.$$

This means, n is orthogonal to V. Since w = n + p where $n \perp V$ and $p \in V$, p is the projection of w onto V.

Proof...

(b) This is a consequence of part (a), becasuse $|v_i \cdot v_i| = ||v_i||_2^2 = 1.$

Example

Orthonormal

Let V be a subspace of \mathbb{R}^3 spanned by the orthogonal

vectors
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. Find the projection of

$$w = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 onto V .

Solution:

The projection of $w = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ onto V is equal to

$$\frac{w \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{w \cdot v_2}{v_2 \cdot v_2} v_2 = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Gram-Schmidt Process

Discussion

(a) Let $\{u_1, u_2\}$ be a basis for a vector space V where V is either \mathbb{R}^2 or a plane in \mathbb{R}^3 containing the origin.

Gram-Schmidt Process

Discussion

(a) Let $\{u_1, u_2\}$ be a basis for a vector space V where V is either \mathbb{R}^2 or a plane in \mathbb{R}^3 containing the origin. Let W be the subspace of V spanned by u_1 . (W is a line through the origin.)

Gram-Schmidt Process

Discussion

(a) Let $\{u_1, u_2\}$ be a basis for a vector space V where V is either \mathbb{R}^2 or a plane in \mathbb{R}^3 containing the origin. Let W be the subspace of V spanned by u_1 . (W is a line through the origin.) Then the projection of u_2 onto W is

Projection

$$p = \frac{u_2 \cdot u_1}{u_1 \cdot u_1} u_1$$

Define
$$v_1 = u_1$$
 and $v_2 = u_2 - p = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1$.

Then $\{v_1, v_2\}$ is an orthogonal basis for V.

(b) Let $\{u_1, u_2, u_3\}$ be a basis for \mathbb{R}^3 and let V be the subspace of \mathbb{R}^3 spanned by u_1, u_2 . Let W be the subspace of V spanned by u_1 . (V is a plane containing the origin.) Define $u_2 \cdot v_1$

$$v_1 = u_1, \quad v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1.$$

By Part (a), $\{v_1, v_2\}$ is an orthogonal basis for V.

Then the projection of u_3 onto V is

$$p = \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2.$$

Define

$$v_3 = u_3 - p = u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2.$$

Then $\{v_1, v_2, v_3\}$ is an orthogonal basis for \mathbb{R}^3 .

In general, we have the following process, known as Gram-Schmidt Process:

Gram-Schmidt Process:

Let $\{u_1, u_2, ..., u_k\}$ be a basis for a vector space V. Define

$$\begin{split} v_1 &= u_1, \\ v_2 &= u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1, \\ v_3 &= u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2, \\ &\vdots \\ v_k &= u_k - \frac{u_k \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_k \cdot v_2}{v_2 \cdot v_2} v_2 - \dots - \frac{u_k \cdot v_{k-1}}{v_{k-1} \cdot v_{k-1}} v_{k-1} \end{split}$$

$$w_1 = \frac{1}{\|v_1\|} v_1, w_2 = \frac{1}{\|v_2\|} v_2, ..., w_k = \frac{1}{\|v_k\|} v_k.$$

Then $\{w_1, w_2, w_3\}$ is an orthonormal basis for V.

Orthonormality and Matrices

Let $\{v_1, v_2, ..., v_k\}$ be an orthonormal basis for vector space V. Then

$$v_i \cdot v_j = v_i^T v_j = 0 \text{ if } i \neq j$$

 $||v_i|| = \sqrt{v_i^T v_i} = 1 \text{ for all } i.$

If we use the relatively common notation that

$$\delta_{ij} = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{if } i = j. \end{cases}$$

then the two normality conditions can be written compactly as

$$v_i \cdot v_j = \delta_{ij}$$
 for all $i \in \{1, 2, ..., k\}$.

To express the two orthonormality conditions in terms of conditions on matrices, let's define an $n \times k$ matrix A to be

$$A = (v_1 \quad v_2 \quad \cdots \quad v_k),$$

where $v_i = A_{:i}$ is the *i*th column of A.

Next, let's consider the matrix A^TA . Observe that A^TA is a $k \times k$ matrix. Let's ask what information is contained in the (ij) element of this matrix, i.e., in the element $(A^TA)_{ij}$? That is, $(A^TA)_{ij} = v_i^Tv_i$,

which, in this case, equals 1 or 0, depending on whether or not i = j.

That is, in this case,

$$(A^T A)_{ij} = \delta_{ij}$$

and we can write the matrix product as

$$A^T A = I_k,$$

where I_k is the identity matrix of dimension k. This is the matrix way to express that a matrix has columns that form an orthonormal basis. Given an $n \times n$ matrix A, recall that the inverse matrix A^{-1} is the matrix such that

$$A^{-1}A = AA^{-1} = I_n.$$

So, we have the following definition:

Orthogonal matrix

A square matrix A is called **orthogonal** if

$$A^{-1} = A^T.$$

Example

Let

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Determine if A is an orthogonal matrix.

Example

Let

$$B = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Determine if B is an orthogonal matrix.

Practice Problems

Determine if the matrix

$$\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

is an orthogonal matrix.

- Prove that the product of two orthogonal matrices is orthogonal.
- 3 If $A = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{pmatrix}$ is an orthogonal matrix, then find the values of x and y.

From the above discussion, we have the following result:

Let A be a square matrix of order n. The following statements are equivalent:

- A is orthogonal.
- The columns of A form an orthonormal basis for \mathbb{R}^n .
- The rows of A form an orthonormal basis for \mathbb{R}^n .

matrix, let's define an $n \times k$ matrix A to be $A = (v_1 \quad v_2 \quad \dots \quad v_k).$

$$A = (v_1 \quad v_2 \quad \dots \quad v_k).$$

The requirement that the basis vectors be orthogonal to each other means that

$$A^T A = D,$$

where D is a $k \times k$ diagonal matrix, all the diagonal entries of which are positive.

The matrix D is diagonal since the off-diagonal elements are the dot products between different basis vectors, which equal zero, since they are orthogonal; and the diagonal entries are all non-zero since each vector in the basis is non-zero and thus has a non-zero non-negative norm.