Министерство науки и высшего образования Российской Федерации

Муромский институт

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИВлГУ)

Факультет	ИТР
Кафедра	ИС

ЛАБОРАТОРНАЯ РАБОТА №1

ПО	МиСЦОИ			
Тема	Локальная линейная фильт	рация изображ	ений	
		Руководитель		
		Андрианов Д.	E	
<u>/ (фамилия, инициалы</u>				
		(подпись)	(дата)	
		Студент	ИСм-121	
			(группа)	
		Минеев Р. Р.		
		(фамилия,	инициалы)	
		(подпись)	(дата)	

Лабораторная работа №1.

Тема: Локальная линейная фильтрация изображений.

Цель работы: изучение и освоение различных алгоритмов локальной фильтрации, используемых для устранения помех, повышения резкости, подчеркивания контуров изображений.

Задание на работу: подготовить исходные изображения (нормальное, зашумлённое на 10%, 15%; реализовать нерекурсивную линейную фильтрацию; реализовать рекурсивную фильтрацию первого рода; реализовать рекурсивный алгоритм второго рода; отобразить результаты и гистограммы результатов.

Рис. 1 – Исходные изображения. Нормальное, 10% шума, 15% шума

Листинг реализованных методов:

```
def deNoise_nonRec(image: np.array, mask: tuple) -> np.array:
    newImage = image.copy()
    for x in range(1, image.shape[0] - 1):
        for y in range(1, image.shape[1] - 1):
            newImage[x,y] = np.trunc(np.sum(image[x-1:x+2, y-1:y+2] * mask) / np.sum(mask))
    return newImage

def deNoise_Rec(image: np.array, mask: tuple) -> np.array:
    newImage = image.copy()
    for x in range(1, image.shape[0] - 1):
```

Изм	Лист	№ докум.	Подп.	Дата	МИВУ 09.04.02-	-01.00)1		
Сту	дент	Минеев Р. Р.		02.03.		Литер	oa	Лист	Листов
Рук	DB.	Андрианов Д. Е.			Лабораторная работа №1	У		2	6
Кон	2				Локальная линейная				_
Н.кс	нтр.				фильтрация изображений			МИ ВлГ	
Утв.					фильтрации изооражении			ИСм-12 ⁻	1

```
for y in range(1, image.shape[1] - 1):
    newImage[x,y] = np.trunc(np.sum(newImage[x-1:x+2, y-1:y+2] * mask) /
np.sum(mask))

return newImage

def deNoise_Rec2(image: np.array, mask: tuple, k: float) -> np.array:
    newImage = image.copy()

nonRec = deNoise_nonRec(newImage, mask)

Rec = deNoise_Rec(newImage, mask)

newImage = np.trunc(k * nonRec + (1 - k) * Rec)

return newImage
```

По моему варианту были следующие значения маски и k-коэффициентов:

```
Весовые коэффициенты
[1, 1, 1,
1/9 1, 1, 1,
1, 1, 1]

Коэффициенты
k1, k2, k3
0,1 0,6 0,5
```


Рис. 2 – Результаты линейной нерекурсивной фильтрации

Изм	Лист	№ докум.	Подп.	Дата

Происходит сглаживание изображения по маске, заполненной единицами. Уменьшается контрастность изображения из-за преобладающего количества светлых «грязных» пикселей, но происходит сглаживание этого шума, как показывают получившиеся гистограммы.

Рис. 3 — Сглаживание рекурсивным методом первого рода

Реурсивный метод ещё больше сглаживает исходное изображение, так как происходит повторный пробег по уже обработанным пикселям, что приводит к усилению сглаживания и усреднению значений пикселей (гистограмма стремиться к центру).

Далее будут приведены результаты рекурсивного метода второго рода с тестированием на разных коэффициентах k.

						Лист
					МИВУ 09.04.02-01.001	
Изм	Лист	№ докум.	Подп.	Дата		4

						Лист
					МИВУ 09.04.02-01.001	5
Изм	Лист	№ докум.	Подп.	Дата		ິ່

Рис. 6 – Применение третьего к-коэффициента

Применение рекурсивного метода второго рода сглаживает шум немного лучше, чем рекурсивный метод первого рода, но также уменьшает контрастность результирующего изображения. Применение разных k-коэффициентов не даёт видимых глазу отличий, но чем меньше k-коэффициент, тем сглаженней получается результирующая гистограмма.

Вывод: В данной лабораторной работе были получены навыки реализации алгоритмов сглаживания изображений путём применения методов линейной фильтрации.

Изм	Лист	№ докум.	Подп.	Дата