

Introduction to image processing and analysis with ImageJ / Fiji. Part 5

Automating Image Analysis

Course by Dale Moulding

Session 5

3 hours
1 hour lecture
2 h for demos & exercises

Learning objectives:

- Correct background for better analysis
- Develop multiple strategies for image analysis
- Use filters to pre-process images
- Cell counting. Manually and automatic
- Thresholding to generate binary images and masks
- Identifying double / triple stained cells
- Explain the difference between colocalization and co-expression
- Track moving objects

Image segmentation, automatic counting and measurements

Automatic image analysis has benefits and pitfalls...

Pros:

Quick (once methodology is set up)

Unbiased (computers don't care which sample is which)

n = lots!

Cons:

Never 100% accurate (but n = lots!)

Set up can be time consuming (but then n = lots!)

Mistakes can be missed (make sure to validate results)

Spatial filters

Process / Filters >

Common filters (2D & 3D):

- Gaussian (fast smoothing)
- Median (slow, keeps edges)
- Mean (fast smoothing)
- Min / Max (~ dims / brightens)
- Unsharp mask (~ enhances edges & noise)
- Variance (~ shows image gradients)

Typically work over a defined distance from each pixel &

can be previewed

Spatial filters – reduce image noise

Spatial filters - Mean

192 168 136

176 144 112

120

96

72

88

72

56

152

128

96

80

56

48

200

152

120

」 − 5x5 pixels; 8-bit	Mean
	_

1	220	181	148	145	115
	185	157	156	114	48
	203	155	133	70	60
	148	94	104	86	60
	142	91	55	39	56

Mean... Radius 2

Changes each pixel's value to the mean value of the surrounding pixels in a 3x3 grid.

Result:

Less noise

Edges slightly blurred (depending on radius used)

Spatial filters - Median

192 168 136

176 144 112

96

72

88

72

56

152 120

128

96

200

152

120

96

80

56

48

40

220 181 148 145 115

55

48

60

60

56

108

91

70

39

185 157 156 114

148 94 104 86

203 155 133

142 91

<u>ш</u> । — 5x5 pixels; 8-	Med	ian
oxo pixoro, o	/ Invertil	19 20 1
	-	

204	198	156	145	106
192	157	147	114	79
173	148	114	86	60
155	133	91	60	54

70

55

46

Median... Radius 2

Changes each pixel's value to the median (middle) value of the surrounding pixels in a 3x3 grid.

Result:

Less noise.

Edges remain defined.

Corners may be lost.

Spatial filters - Gaussian

	OK	Cancel	
Gauss	ian	. Radii	us 2

Gaussian Blur...

☐ Preview

Sigma (Radius): 2.00

216	192	168	136	96
200	176	144	112	80
184	152	120	88	56
152	128	96	72	48
120	96	72	56	40

Changes each pixel's value to the median (middle) value of the surrounding pixels in a 3x3 grid.

×

Result:

Less noise.

Edges blurred.

Objects come to a peak.

Spatial filters - others

Manual Counting

Plugins / Analyze / Cell Counter

Add / remove Types

Rename types

Delate last count /

Delete mode (click to delete)

Change counter colours

Results

Save / Load

Measure... more results (location & intensity)

Counter Windo... × 256x254 pixels; 8-bit (inverting LUT); 64K

Slow. Accurate? No double counting. Bias?

Automatic counting – Find Maxima

Process / Find Maxima...

Analyze / Surface Plot...

Automatic counting – Find Maxima

Process / Find Maxima...

Prominence: How bright does a maxima need to be?

Prominence = 20 would give 5 peaks on the graph

Prominence = 5 would give 6 peaks

Prominence = 80 would give 2 peaks

Automatic counting – Find Maxima

Process / Find Maxima...

Prominence = 10

Prominence = 20

Prominence = 50

Automatic counting – Find Maxima

Process / Find Maxima...

Prominence = 10

Analyze / Surface Plot...

Prominence = 50

Automatic counting – Find Maxima

Process / Find Maxima...

Results as a Point Selection can be added to the ROI manager

Automatic counting – Find Maxima

Automatic counting – Thresholding

- Thresholding is a key step in many image analysis workflows.
- Make a binary (2 colour) mask of your image

Light Microscopy Core Facility UCL Great Ormond St. Institute of Child Health

Automatic counting – Thresholding

Light Microscopy Core Facility UCL Great Ormond St. Institute of Child Health

Automatic counting – Thresholding

Automatic counting – Thresholding

Image / Adjust > Threshold...

Binary (2 colour) mask

Automatic counting – Thresholding

Automatic counting – Thresholding

Must be a single channel image

Automatic counting – Thresholding

Automatic counting – Thresholding

Automatic counting – Analyze particles...

Analyze / Analyze particles...

Automatic counting – Analyze particles...

Analyze / Analyze particles...

Automatic counting – Analyze particles...

Analyze / Analyze particles...

Specify a size range

Automatic counting – Split overlapping objects

Process / Binary > Watershed

Automatic counting – Real samples

Pre-process the image before thresholding / find maxima.

Subtract background

Filter: Median / Gaussian / Mean?

Median

Median – keeps edges – good for thresholding

Gaussian – blurs & softens edges – good for find maxima

Automatic counting – Real samples - Cilia

Automatic counting – Real samples - Cilia

Alternative strategies – look for tube like structures...

Plugins / Analyze > Tubeness

Alternative strategies – look for ridges...

Plugins / Ridge detection (Requires BioMedGroup update site to be activated)

Double & Triple stained cells

Identifying and counting double (or triple) stained cells is as simple as thresholding, with a single additional step...

🖺 Image Ca	lculator X
Image1:	Mask of Green ▼
Image2:	Mask of Red ▼
_	e new window (float) result
	OK Cancel Help

Double & Triple stained cells

Threshold to binary images, then find overlaps between images...

Double & Triple stained cells

Find overlaps between images...

Double & Triple stained cells

Double & Triple stained cells

Plugins / MorpholibJ / Morphological Reconstruction

Double & Triple stained cells

Plugins / MorpholibJ / Morphological Reconstruction

Double & Triple stained cells

Make an image to show the result

Exercises Session 5 – Thresholding, Particle Analyzer and Find Maxima

Counting tools, filters, thresholding etc 2 hour for exercises

- 13) Run a macro to check out some filters.
- 14) Count Blobs, thresholding
- 15) Count real samples Nuclei
- 16) Cilia!
- 17) Double stained cells