

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Projeto e Desenvolvimento de Algoritmos AP3 1° semestre de 2008.

Nome -

Assinatura –

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas no local apropriado, ao final do caderno de questões.

1ª questão (valor 1.0)

Considere que os valores mostrados abaixo foram fornecidos na ordem indicada ao algoritmo a seguir:

```
2 4 3 2
3
1 1
2 2
3 3
0 0 0 0
início
      leia tix, tiy, tfx, tfy
      enquanto (tix<>0) e (tiy<>0) e (tfx<>0) e (tfy<>0) faça
            dentro ← 0
            leia meteoros
            para i \leftarrow 1 até meteoros faça
                  leia mx, my
                  se (tix<=mx)e(mx<=tfx)e(tfy<=my)e(my<=tiy) então</pre>
                        dentro \leftarrow dentro + 1
                  fim se
            próximo i
            imprime dentro
            leia tix, tiy, tfx, tfy
      fim enquanto
fim
```

O valor impresso pelo algoritmo é:

- A) 0
- B) 1
- C) 2
- D) 3
- E) 4

2ª questão (valor 1.0)

Considere que os valores mostrados abaixo foram fornecidos na ordem indicada ao algoritmo abaixo.

```
0 0 0 0 0 0 0
11111111
1 1 0 1 1 1 0 1
1 0 1 0 1 0 1 0
início
    leia casos
    para i \leftarrow 1 até casos faça
           m \ \leftarrow \ 0
           s \;\leftarrow\; 0
           para j \leftarrow 1 até 8 faça
                  leia bit
                  se bit = 1 então
                      s \leftarrow s + 1
                  senão
                         se m < s então
                             \mathsf{m} \; \leftarrow \; \mathsf{s}
                         fim se
                         s \;\leftarrow\; 0
                  fim se
           próximo j
           se m < s então
               m \leftarrow s
           fim se
           imprime m
    próximo i
fim
```

Considere que o comando **imprime** não passa para a linha seguinte ao terminar de imprimir. O valor impresso pelo algoritmo é:

```
A) 0 7 3 4
B) 0 8 3 1
C) 0 8 6 4
D) 0 4 3 2
E) 8 0 1 1
```

Considere que os valores mostrados abaixo foram fornecidos na ordem indicada ao algoritmo a seguir:

```
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 11
função leiaV (saídas: v[])
início
      \texttt{i} \,\leftarrow\, \texttt{1}
      leia ∨[i]
      enquanto (i < 9) e (v[i] > 0) faça
             i \leftarrow i + 1
             leia v[i]
      fim enquanto
      v[i+1] \leftarrow -1
fim
função tam (entradas: v[])
início
       i \leftarrow 1
      enquanto v[i] > 0 faça
             i \leftarrow i + 1
      fim enquanto
       resultado \leftarrow i - 1
fim
procedimento processa (entradas: v1[], v2[])
início
      e \leftarrow 0
      t1 \leftarrow tam(v1)
      t2 \leftarrow tam(v2)
      imprime t1, t2
       se t1 <> t2 então
             e \leftarrow 1
       senão
             para i \leftarrow 1 até t1 faça
                    se (v1[i] mod 2) <> (v2[i] mod 2) então
                    fim se
             próximo i
      fim se
       se e = 1 então
             imprime 'um'
       senão
             imprime 'zero'
      fim se
fim
início
       leiaV (v1)
```

```
leiaV (v2)
processa(v1,v2)
fim
```

Considere que o comando **imprime** não passa para a linha seguinte ao terminar de imprimir. O valor impresso pelo algoritmo é:

```
A) 10 10 zero
B) 10 10 um
C) 9 10 zero
D) 9 9 um
E) 9 9 zero
```

4ª questão (valor 1.0)

Considere que os valores mostrados abaixo foram fornecidos na ordem indicada ao algoritmo a seguir:

```
4
3 3
1 2
2 1
0 -1
função f (entradas: p, c)
início
       a \leftarrow 1
       se p > c então
           a \leftarrow 3
       fim se
       se p < c então
           a \leftarrow 0
       fim se
       resultado \leftarrow a
fim
início
   leia j
   p \leftarrow 0
   para i \leftarrow 1 até j faça
          leia gp, gc
          p \leftarrow p + f(gp, gc)
   próximo i
    imprime p
fim
```

O valor impresso pelo algoritmo é:

```
A) 12
B) 9
C) 6
D) 7
E) -1
```

O que será impresso pelo algoritmo a seguir? Considere que o comando **imprime** não muda para a linha seguinte ao terminar de imprimir.

```
Variáveis públicas i
procedimento f1 (entradas: i)
início
      i \leftarrow i + 1
      imprime i
fim
procedimento f2 (saídas: i)
início
      i \leftarrow i + 1
      imprime i
fim
procedimento f3()
início
      i \leftarrow i + 1
      imprime i
fim
início
      i \leftarrow 0
      f3()
      f2(i)
      f1(i)
      imprime i
fim
A) 1 2 2 2
B) 1 2 3 2
C) 1 2 3 4
D) 1 2 3 3
E) 1 2 3 1
```

6ª questão (valor 1.0)

Um bombeiro hidráulico dispõe de uma quantidade **N** de canos inteiros de cobre de comprimento variável dos quais ele precisa cortar **P** pedaços iguais de cano com o maior tamanho possível. O algoritmo a seguir lê da entrada padrão (teclado) o número de pedaços de cano necessários (**P**), o número de canos inteiros disponíveis para corte (**N**) e o tamanho de cada cano inteiro.

```
variáveis públicas
   tamanhoCano[], N, P

função verifica(entradas: t)
```

```
início
   total \leftarrow 0
   para i \leftarrow 1 até N faça
       total \leftarrow total + tamanhoCano[i] / t
   próximo i
   resultado \leftarrow (total >= P)
fim
início
   MAX \leftarrow 0
   leia P
   leia N
   para i \leftarrow 1 até N faça
       leia tamanhoCano[i]
       se tamanhoCano[i] > MAX então
          MAX ← tamanhoCano[i]
       fim se
   próximo i
   pedacoMaximo \leftarrow MAX
   encontrou \leftarrow falso
   enquanto não encontrou faça
       se verifica(pedacoMaximo) então
          encontrou \leftarrow verdadeiro
       senão
          pedacoMaximo \leftarrow pedacoMaximo - 1
       fim se
   fim enquanto
   imprima pedacoMaximo
fim
Considere que as entradas foram fornecidas ao algoritmo na ordem:
2
45
85
A saída gerada pelo algoritmo será:
A) 40
B) 42
C) 44
D) 46
E) 82
7ª questão (valor 1.0)
Observe o algoritmo a seguir:
função max(entradas: p1, p2)
início
   se p1 > p2 então
       resultado \leftarrow p1
       resultado ← p2
   fim se
```

```
fim
início
   leia N
   para i \leftarrow 1 até N faça
       leia val[i]
   próximo i
   sum[1] \leftarrow 0
   best[1] \leftarrow 0
   para i \leftarrow 1 até N faça
        sum[i+1] \leftarrow sum[i] + val[i]
       best[i+1] \leftarrow max(best[i], sum[i+1])
   próximo i
   ans \leftarrow 0
   para i \leftarrow 1 até (N+1) faça
        ans \leftarrow \max(ans, best[i] + (sum[N] - sum[i]))
   próximo i
   tmp \leftarrow 0
   para i \leftarrow 1 até N faça
        tmp \leftarrow max(0, tmp + val[i])
       ans \leftarrow max(ans, tmp)
   próximo i
   imprime ans
fim
Entradas:
-3
-10
Se as entradas acima forem fornecidas ao algoritmo, o valor impresso será:
A) 0
B) 2
C) 4
D) 6
E) 9
```

O algoritmo a seguir que determina corretamente o maior de dez números inteiros fornecidos pelo usuário é:

```
i.
    início
    para i ← 1 até 10 faça
        leia array[i]
    próximo i
    max ← 0
    para i ← 1 até 10 faça
        se array[i] > max então
            max ← array[i]
        fim se
    próximo i
    imprime max
fim
```

```
ii.
   início
   i \leftarrow 1
   enguanto i \le 10 faca
       leia array[i]
        i \leftarrow i + 1
   fim enquanto
   max \leftarrow array[1]
   i \leftarrow 2
   enquanto i \le 10 faça
        se array[i] > max então
           max \leftarrow array[i]
       fim se
        i \leftarrow i + 1
    fim enquanto
    imprime max
fim
```

- A) somente i
- B) somente ii
- C) i e ii
- D) nenhum dos dois algoritmos resolve o problema
- E) nenhuma das respostas anteriores

Observe a expressão a seguir:

$$\frac{\frac{A^2}{X} + \frac{B^2}{Y}}{\frac{A*C}{X*Y}} + \frac{A}{B}$$

A alternativa abaixo que representa corretamente em PETEQS essa expressão, com o menor número possível de parênteses é:

```
A) A*A/X+B*B/Y/A*C/X*Y+A/B
B) (A*A)/X+(B*B)/Y/(A*C)/(X*Y)+(A/B)
C) ((A*A)/X+(B*B)/Y)/((A*C)/(X*Y))+(A/B)
D) (((A*A+B*B)/(X+Y))+A)/((A*C)/(X*Y)+B)
E) (A*A/X+B*B/Y)/(A*C/(X*Y))+A/B
```

10ª questão (valor 1.0)

Cinco amigos costumam freqüentemente viajar juntos pelo Brasil. Eles combinaram que todas as despesas de viagem seriam rateadas por igual. Durante a viagem cada um deles anota suas despesas e o acerto é feito no regresso para casa. O algoritmo a seguir calcula quanto cada um dos amigos tem a pagar ou a receber.

```
início soma \leftarrow 0 para i \leftarrow 1 até 5 faça
```

```
leia array[i]
    soma ← soma + array[i]
próximo i
    media ← soma/5.0
    para i ← 1 até 5 faça
        imprime array[i]-media, ', '
    próximo i
fim
```

Se as entradas fornecidas ao algoritmo forem 100, 120, 80, 150 e 50, nessa ordem, a saída gerada será:

```
A) 20.0, 40.0, 0.0, 70.0, -30.0

B) -20.0, 0.0, -40.0, 30.0, -70.0,

C) 20.0, 0.0, 40.0, -30.0, 70.0,

D) 0.0, 20.0, -20.0, 50.0, -50.0,

E) 0.0, -20.0, 20.0, -50.0, 50.0,
```

Questão					
1	A	В	С	D	E
2	A	В	С	D	E
3	A	В	С	D	E
4	A	В	С	D	E
5	A	В	С	D	E
6	A	В	С	D	E
7	A	В	С	D	E
8	A	В	С	D	E
9	A	В	С	D	E
10	A	В	С	D	E