iv Nicht-singuläre Kurven

1 Divisoren

Sei $\mathcal C$ immer eine reguläre, projektive, zusammenhängende Kurve über einem algebraisch abgeschlossenen Körper K.

Ziel: Wir möchten die Divisorengruppe basteln und damit das Geschlecht definieren.

DEFINITION 1.1: (a) Ein Divisor auf C ist eine formale Summe

$$D = \sum_{i=1}^{k} n_i P_i$$

mit $k \in \mathbb{N}$, $n_i \in \mathbb{Z}$ und $P_i \in \mathcal{C}$. Die Menge

$$\operatorname{Div} \mathcal{C} := \{ D \mid D \text{ ist Divisor auf } \mathcal{C} \}$$

ist mit "+" die freie abelsche Gruppe über \mathcal{C} . Sie heißt Divisorengruppe.

(b) Für
$$D = \sum_{i=1}^{k} n_i P_i \in \text{Div } \mathcal{C} \text{ heißt } \deg D := \sum_{i=1}^{k} n_i \text{ der } Grad \text{ von } D.$$

deg: Div $\mathcal{C} \longrightarrow \mathbb{Z}$ ist also ein Gruppenhomomorphismus.

- (c) $D = \sum n_i P_i$ heißt effektiv, wenn alle $n_i \geq 0$ sind. Wir schreiben dann $D \geq 0$.
- Bemerkung 1.2: (a) Divisoren können allgemein auch für irreduzible Varietäten höherer Dimension definiert werden, also als endliche Summen von "Primdivisoren", d.h. irreduzible Untervarietäten von Kodimension 1.
 - (b) Im Spezialfall Kurven gilt für die zugehörigen lokalen Ringe: $\mathcal{O}_{\mathcal{C},P}$ ist ein noetherscher lokaler Ring von Dimension 1 und $\dim_K \mathfrak{m}_P/\mathfrak{m}_P^2 = 1$. Nach Algebra II gilt also:
 - $(\mathcal{O}_{\mathcal{C},P},\mathfrak{m}_P)$ ist ein diskreter Bewertungsring.
 - $(\mathcal{O}_{\mathcal{C},P},\mathfrak{m}_P)$ ist ein Hauptidealring.
 - Für alle $x \in \mathcal{O}_{\mathcal{C},P} \setminus \{0\}$ gibt es $u \in \mathcal{O}_{\mathcal{C},P}^{\times}$ und $n \in \mathbb{N}_0$, so dass $x = ut^n$, wobei t ein Erzeuger von \mathfrak{m}_P ist. So ein t nennen wir auch *Uniformisierende*.
 - $\nu_P \colon K(\mathcal{C})^{\times} \longrightarrow \mathbb{Z}, \frac{f}{g} \longmapsto n_1 n_2$, wobei $f = u_1 t^{n_1}$ und $g = u_2 t^{n_2}$, ist eine diskrete Bewertung.

DEFINITION/BEMERKUNG 1.3: Sei $f \in K(\mathcal{C})^{\times}$. Dann gilt:

- (a) $\operatorname{ord}_P f := \nu_P(f)$, mit ν_P wie in Bemerkung 1.2 (b), heißt *Ordnung von f in P*.
- (b) div $f := \sum_{P \in \mathcal{C}} \operatorname{ord}_P(f) \cdot P$ heißt $\operatorname{Divisor} zu \ f$.
- (c) Wir nennen $D \in \text{Div } \mathcal{C}$ Hauptdivisor, wenn es $f \in K(\mathcal{C})^{\times}$ gibt, so dass D = div f.
- (d) Die Hauptdivisoren bilden eine Untergruppe Div_H \mathcal{C} von Div \mathcal{C} .
- (e) $\mathcal{C}l(\mathcal{C}) := \text{Div } \mathcal{C}/\text{Div}_{H} \mathcal{C}$ heißt Divisorenklassengruppe.
- (f) $D, D' \in \text{Div } \mathcal{C}$ heißen linear äquivalent, wenn $D D' \in \text{Div}_H \mathcal{C}$ liegt. In dem Fall schreiben wir $D \sim D'$ oder $D \cong D'$.

Beweis: (b) Wir müssen noch zeigen, dass die Summe wirklich endlich ist. Da $f \neq 0$ gilt:

$$\operatorname{ord}_{P} f \neq 0 \iff \operatorname{ord}_{P} f > 0 \text{ oder } -\operatorname{ord}_{P} f = \operatorname{ord}_{P} \frac{1}{f} > 0$$

$$\iff P \in \mathfrak{V}(f) \text{ oder } P \in \mathfrak{V}\left(\frac{1}{f}\right).$$

Aber $\mathfrak{V}(f)$ und $\mathfrak{V}(\frac{1}{f})$ sind abgeschlossene echte Teilmenge einer Varietät von Dimension 1 und damit endlich. Damit gibt es auch nur endlich viele Summanden, die nicht 0 sind.

(d) Es gilt $\operatorname{div}(f \cdot g) = \operatorname{div} f + \operatorname{div} g$, $\operatorname{div}(1) = 0$ und $\operatorname{div} \frac{1}{f} = -\operatorname{div} f$, da ν_P ein Gruppenhomomorphismus ist.

Beispiel 1.4: Sei $\mathcal{C} = \mathbb{P}^1$. Dann können wir $f \in K(\mathcal{C})^{\times}$ als

$$f = \frac{\prod_{i=0}^{n} (X - a_i)}{\prod_{j=0}^{m} (X - b_j)}$$

schreiben und sehen, dass dann für $a \in \mathcal{C} \setminus \{\infty\}$

$$\operatorname{ord}_a f = |\{i \in \{1, ..., n\} \mid a_i = a\}| - |\{j \in \{1, ..., m\} \mid b_j = a\}|$$

gilt. Den Punkt $a=\infty$ fassen wir als (0:1) auf und setzen ihn in das homogenisierte Polynom

$$\mathcal{H}(f) = \frac{\prod_{i=0}^{n} (X - a_i X_0) X_0^{M-n}}{\prod_{i=0}^{m} (X - b_j X_0) X_0^{M-m}},$$

wobei $M := \max\{m, n\}$ ist, ein und sehen damit, dass

$$\operatorname{ord}_{\infty} f = (M - n) - (M - m) = m - n.$$

Insgesamt sehen wir also:

$$\deg(\operatorname{div} f) = \sum_{a \in \mathbb{P}^1} \operatorname{ord}_a f = |\{a \mid \exists i : a = a_i\}| - |\{a \mid \exists j : a = b_j\}| + m - n$$
$$= n - m + m - n = 0.$$

Umgekehrt kann zu jedem Divisor D von Grad 0 so ein f gefunden werden, mit dem D = div f ist. Wir erhalten also:

$$\operatorname{Div}_{\mathsf{H}} \mathbb{P}^1 = \{ D \in \operatorname{Div} \mathbb{P}^1 \mid \deg D = 0 \} = \operatorname{Kern}(\deg).$$

Also ist $\mathcal{C}l(\mathbb{P}^1) \cong \text{Bild}(\text{deg}) = \mathbb{Z}$.

Definition/Bemerkung 1.5: Sei $f \in K(\mathcal{C})^{\times}$ und $P \in \mathcal{C}$.

- (a) $\operatorname{ord}_P f = 0 \iff f \in \mathcal{O}_P^{\times} \iff f \text{ ist in } P \text{ definiert und } f(P) \neq 0.$
- (b) $\operatorname{ord}_P f > 0 \iff f \in \mathfrak{m}_P \subseteq \mathcal{O}_{\mathcal{C},P}$, d.h. f ist in P definiert und f(P) = 0.
- (c) $\operatorname{ord}_P f < 0 \iff f$ kann nicht in P fortgesetzt werden, also ist $\frac{1}{f}$ in P definiert und es gilt $\frac{1}{f}(P) = 0$.

In diesem Fall heißt P Polstelle.

(d) Sei t die Uniformisierende, also $\mathfrak{m}_P = \langle t \rangle$. Dann gibt es ein $u \in \mathcal{O}_P^{\times}$, so dass

$$f = ut^{\operatorname{ord}_P f}$$
.

PROPOSITION 1.6: Sei \mathcal{C} eine reguläre Kurve (nicht notwendigerweise projektiv), $P \in \mathcal{C}$, sowie X eine projektive Varietät und $f: \mathcal{C} \setminus \{P\} \longrightarrow X$ ein Morphismus. Dann existiert ein Morphismus

$$\overline{f} \colon \mathcal{C} \longrightarrow X, \quad \overline{f}|_{\mathcal{C}\setminus \{P\}} = f,$$

 $\det f$ fortsetzt.

Beweis: Sei $X \subseteq \mathbb{P}^n$. Dann ist, ohne Einschränkung, $X \not\subseteq \mathfrak{V}(X_i)$ für alle $i \in \{0,...,n\}$, denn ansonsten wählen wir n einfach kleiner.

Sei
$$\mathfrak{U}_i = \mathbb{P}^n \setminus \mathfrak{V}(X_i)$$
. Dann gilt für $U := \bigcap_{i=0}^n \mathfrak{U}_i$, dass

$$W:=f^{-1}(U)=\bigcap_{i=0}^n f^{-1}(\mathfrak{U}_i)\neq\varnothing$$

ist und, da offen, damit dicht in \mathcal{C} liegt, da f als Morphismus stetig ist.

Sei außerdem $h_{ij} = \frac{x_i}{x_j} \circ f$. Dann ist h_{ij} eine reguläre Funktion auf $W \setminus \{P\}$. Insbesondere definiert jedes h_{ij} ein Element im Funktionenkörper, wir können also $h_{ij} \in K(\mathcal{C})^{\times}$ auffassen.

Sei $r_i := \operatorname{ord}_P h_{i0}$. Wähle k mit r_k minimal. Dann ist

$$\operatorname{ord}_p(h_{ik}) = \operatorname{ord}_p\left(\frac{h_{i0}}{h_{k0}}\right) = r_i - r_k \ge 0$$

und nach Definition/Bemerkung 1.5 liegt P somit im Definitionsbereich von h_{ik} , d.h. es gibt eine Umgebung \widetilde{W} von P mit $h_{ik} \in \mathcal{O}_{\widetilde{W}}$.

Insbesondere ist auf \widetilde{W} , nach gleicher Argumentation, ord_P $h_{kk} = 0$, also $h_{kk}(P) \neq 0$.

Nun definieren wir \overline{f} durch

$$\overline{f}(x) = \begin{cases} f(x), & x \neq p, \\ (h_{0k}(p) : \dots : h_{nk}(p)), & x = p. \end{cases}$$

Dann ist \overline{f} ein Morphismus, denn für $x \in \widetilde{W}$ gilt

$$f(x) = (f_0(x) : \cdots f_n(x)) = ((x_0 \circ f)(x) : \cdots : (x_n \circ f)(x))$$
$$= ((\frac{x_0}{x_k} \circ f)(x) : \cdots : (\frac{x_n}{x_k} \circ f)(x)) = (h_{0k}(x) : \cdots : h_{nk}(x)).$$

Damit ist aber auch $\overline{f}(p) \in X$, denn ist X ist abgeschlossen.

Damit gilt auch:

KOROLLAR 1.7: Jede rationale Abbildung $\mathcal{C} \longrightarrow X$ für eine projektive Varietät X lässt sich zu einem Morphismus von \mathcal{C} nach X fortsetzen.

KOROLLAR 1.8: Sind zwei zusammenhängende reguläre projektive Kurven C_1 und C_2 birational äquivalent, so sind sie bereits isomorph.

Beweis: Seien $\Psi_1: \mathcal{C}_1 - \cdots \rightarrow \mathcal{C}_2$ und $\Psi_2: \mathcal{C}_2 - \cdots \rightarrow \mathcal{C}_1$ mit $\Psi_1 \circ \Psi_2 = \text{id}$ und $\Psi_2 \circ \Psi_1 = \text{id}$. Dann lassen diese sich nach Korollar 1.7 zu $\overline{\Psi}_1$, bzw. $\overline{\Psi}_2$ fortsetzen. Damit gilt, jeweils auf einer dichten Teilmenge, $\overline{\Psi}_1 \circ \overline{\Psi}_2 = \text{id}$ und $\overline{\Psi}_2 \circ \overline{\Psi}_1 = \text{id}$ und damit, da die Kurven zusammenhängend sind, schon jeweils auf der ganzen Kurve. \square

2 Verzweigungsindizes

In diesem Abschnitt seien C_1 und C_2 reguläre projektive zusammenhängende Kurven und $f: C_1 \longrightarrow C_2$ ein surjektiver Morphismus.

DEFINITION/BEMERKUNG 2.1: (a) Sei $Q \in \mathcal{C}_2$, $P \in f^{-1}(Q)$ und t Uniformisierende in Q, also $\mathfrak{m}_Q = \langle t \rangle$. Dann heißt

$$e_P := e_P(f) := \operatorname{ord}_P(t \circ f) = \nu_P(t \circ f)$$

 $Verzweigungsgrad\ von\ f\ in\ P.$

(b) Wir definieren einen Gruppenhomomorphismus f^* : Div $\mathcal{C}_2 \longrightarrow$ Div \mathcal{C}_1 durch

$$Q \longmapsto \sum_{P \in f^{-1}(Q)} e_P \cdot P.$$

- (c) Es gilt $f^*(\operatorname{div} g) = \operatorname{div}(g \circ f)$.
- (d) f^* steigt zu einem Homomorphismus von $\mathcal{Cl}(\mathcal{C}_2)$ nach $\mathcal{Cl}(\mathcal{C}_1)$ ab.

Beweis: (a) Wir zeigen, dass e_P nicht von der Wahl von t abhängt: Sei dazu t' = ut mit $u \in \mathcal{O}_Q^{\times}$ auch Uniformisierende. Dann gilt

$$\operatorname{ord}_{P}(t' \circ f) = \operatorname{ord}_{P}((u \circ f) \cdot (t \circ f)) = 0 + \operatorname{ord}_{P}(t \circ f),$$

da mit u auch $u \circ f$ eine Einheit ist.

- (b) Die Summe ist endlich, denn $f^{-1}(Q)$ ist eine abgeschlossene echte Teilmenge von \mathcal{C}_1 und damit endlich.
- (c) Es gilt, nach Definition,

$$f^*(\operatorname{div} g) = \sum_{P \in \mathcal{C}_2} \operatorname{ord}_P(g) \cdot f^*(P) = \sum_{P \in \mathcal{C}_2} \operatorname{ord}_P(g) \sum_{Q \in f^{-1}(P)} e_Q(f) \cdot Q$$

und

$$\operatorname{div}(g \circ f) = \sum_{Q \in \mathcal{C}_1} \operatorname{ord}_Q(g \circ f) \cdot Q = \sum_{P \in \mathcal{C}_2} \sum_{Q \in f^{-1}(P)} \operatorname{ord}_Q(g \circ f) \cdot Q,$$

da C_1 gerade die Vereinigung der Urbilder von f ist. Es genügt also zu zeigen, dass für $P \in C_2$ und $Q \in f^{-1}(P)$

$$\operatorname{ord}_Q(g \circ f) = \operatorname{ord}_P(g) \cdot e_Q(f)$$

ist. Es sei also $q := \operatorname{ord}_Q(g \circ f)$. Dann finden wir eine Uniformisierende $t_Q \in \mathcal{O}_{\mathcal{C}_1,Q}$ und $u_1 \in \mathcal{O}_{\mathcal{C}_1,Q}^{\times}$, so dass $g \circ f = u_1 \cdot t_Q^q$. Genauso finden wir für $r := \operatorname{ord}_P(g)$ eine Uniformisierende t_P und $u_2 \in \mathcal{O}_{\mathcal{C}_2,P}$ mit $g = u_2 \cdot t_P^r$. Außerdem haben wir $s := e_Q(f) = \operatorname{ord}_Q(t_P \circ f)$, also $u_3 \in \mathcal{O}_{\mathcal{C}_1,Q}^{\times}$ mit $t_P \circ f = u_3 \cdot t_Q^s$. Nun gilt, mit Hilfe des Einsetzungshomomorphismus,

$$u_1 \cdot t_Q^q = g \circ f = (u_2 \cdot t_P^r) \circ f = (u_2 \circ f) \cdot (t_P \circ f)^r$$
$$= (u_2 \circ f) \cdot (u_3 \cdot t_Q^s)^r = (u_2 \circ f) \cdot u_3^r \cdot t_Q^{rs}.$$

Da aber auch $u_2 \circ f$ und u_3^r Einheiten in $\mathcal{O}_{\mathcal{C}_1,Q}$ sind, haben die Ausdrücke die selbe Bewertung und damit ist q = rs, wie behauptet.

- (d) folgt aus (c), da Hauptdivisoren auf Hauptdivisoren abgebildet werden. \square BEISPIEL 2.2: Sei $K = \mathbb{C}$, $\mathcal{C} = \mathbb{P}^1(\mathbb{C})$ und $f : X \longmapsto X^3$.
 - Für P=0 ist t=X, also $t\circ f=X^3$ und damit $e_0=\operatorname{ord}_0(t\circ f)=3$.
 - Für $P=a\in\mathbb{C}^{\times}$ ist $t=X-a^3$ und damit, mit einer dritten Einheitswurzel $\zeta,$

$$e_a = \operatorname{ord}_a(X^3 - a^3) = \operatorname{ord}_a((X - a)(X - \zeta a)(X - \zeta^2 a)) = 1,$$

da nur (X - a) keine Einheit ist.

• Für $P = \infty$ ist $t = \frac{1}{X}$ und damit ist

$$e_{\infty} = \operatorname{ord}_{\infty}\left(\frac{1}{X^3}\right) = 3 = -\operatorname{ord}_{\infty}f.$$

DEFINITION 2.3: So ein Morphismus f induziert $f^{\sharp}: K(\mathcal{C}_2) \longrightarrow K(\mathcal{C}_1)$, wir können also $K(\mathcal{C}_1)$ als Körpererweiterung von $K(\mathcal{C}_2)$ auffassen. Wir definieren

$$\deg f := [K(\mathcal{C}_1) : K(\mathcal{C}_2)].$$

Bemerkung: Da $\operatorname{trdeg}_K(\mathcal{C}_1) = \operatorname{trdeg}_K(\mathcal{C}_2) = 1$ ist diese Körpererweiterung algebraisch.

Satz 7: Seien C_1 und C_2 zusammenhängende reguläre projektive Kurven und $f: C_1 \longrightarrow C_2$ ein surjektiver Morphismus, dann gilt:

(a) Für
$$Q \in C_2$$
 ist $\sum_{P \in f^{-1}(Q)} e_P(f) = n := \deg(f)$.

(b) Für jeden Divisor D auf C_2 gilt $\deg(f^*D) = \deg(D) \cdot \deg(f)$.

Bemerkung: Die Aussage (b) folgt direkt aus (a), denn sei $D := \sum n_i P_i$, dann ist

$$\deg(f^*D) = \deg\left(\sum_{i=1}^k n_i \sum_{P \in f^{-1}(P_i)} e_P P\right) = \sum_{i=1}^k n_i \sum_{P \in f^{-1}(P_i)} e_P = \deg(D) \deg(f).$$

Der Beweis von (a) kommt später.

KOROLLAR 2.4: Sei \mathcal{C} eine projektive, zusammenhängende, reguläre Kurve. Dann gilt:

- (a) Alle Hauptdivisoren auf \mathcal{C} haben Grad 0.
- (b) Die Abbildung deg: $\mathcal{Cl}(\mathcal{C}) \longrightarrow \mathbb{Z}$, $[D] \longmapsto \deg D$ ist wohldefiniert.

Beweis: (a) Sei $f \in K(C)^{\times}$. Dann lässt f sich nach Korollar 1.7 zu einem Morphismus von \mathcal{C} nach \mathbb{P}^1 fortsetzen. Dann gilt

$$\deg(\operatorname{div} f) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(f) = \sum_{P \in f^{-1}(0)} \operatorname{ord}_P(f) + \sum_{P \in f^{-1}(\infty)} \operatorname{ord}_P(f),$$

da nur Null- und Polstellen von 0 verschiedene Ordnung haben.

Wie in Beispiel 2.2 wählen wir t = X als Uniformisierende in 0 und $t = \frac{1}{X}$ als Uniformisierende in ∞ . Damit ist, für $P \in f^{-1}(0)$,

$$e_P = \operatorname{ord}_P(X \circ f) = \operatorname{ord}_P(f)$$

und, für $P \in f^{-1}(\infty)$,

$$e_P = \operatorname{ord}_P(\frac{1}{x} \circ f) = \operatorname{ord}_P(\frac{1}{f}) = -\operatorname{ord}_P(f).$$

Insgesamt erhalten wir so, nach Definition von f^* und mit Hilfe von Satz 7 (b),

$$\deg(f) = \sum_{P \in f^{-1}(0)} e_P - \sum_{P \in f^{-1}(\infty)} e_P = \deg(f^*(0 - \infty)) = \deg(f) \cdot \deg(0 - \infty) = 0,$$

wobei 0 bzw. ∞ die Divisoren sind, bei denen $n_0 = 1$ bzw. $n_\infty = 1$ und alle anderen $n_P = 0$ sind.

(b) folgt sofort aus (a) mit Definition/Bemerkung 1.3 (e).

Erinnerung: Aus Algebra II wissen wir, dass für einen nullteilerfreien Ring R, der kein Körper ist, gilt:

R ist ein Dedekindring \iff R ist eindimensional und normal \iff Für jedes Primideal $\wp \neq 0$ ist R_\wp ein diskreter Bewertungsring.

BEMERKUNG 2.5 (ohne Beweis): Sei \mathcal{C} eine affine Varietät. Dann ist \mathcal{C} genau dann eine zusammenhängende reguläre Kurve, wenn $K[\mathcal{C}]$ ein Dedekindring ist.

Bemerkung 2.6: Sei V irreduzible projektive Varietät in \mathbb{P}^n .

- (a) Sind $P_1,...,P_{N+1}$ endlich viele Punkte, so liegen sie in einer offenen, affinen Teilmenge U von V.
- (b) Es gibt ein $v \in K(V)$ mit $v \notin \mathcal{O}_{N+1}, v \in \mathcal{O}_i$ für $i \in \{1,...,N\}$.

Beweis: (a) Nach LA gibt es ein lineares $F \in K[X_0,...,X_n]$ mit $F(P_i) \neq 0$ ($\forall i$). Nach Koordinatenwechsel ist $F = X_0$ und $\mathfrak{U}_0 = \mathbb{P}^n \setminus \mathfrak{V}(F)$. Also sind

$$P_1, ..., P_{N+1} \in U := \mathfrak{U}_0 \cap V$$

und dies ist eine affine Varietät.

(b) Sei U wie in (a) mit $P_1,...,P_{N+1} \in U$. Wähle $h \in \mathcal{O}(U) = K[U]$ mit

$$h(P_1),...,h(P_N) \neq 0$$
 und $h(P_{N+1}) = 0$.

Das geht nach dem Primidealvermeidungslemma. Nun erfüllt $v:=\frac{1}{h}$ das Gewünschte. \Box

LEMMA 2.7: Sei $f: \mathcal{C}_1 \longrightarrow \mathcal{C}_2$ ein surjektiver Morphismus zwischen projektiven regulären zusammenhängenden Kurven. Dann gilt:

Wenn $V \subseteq \mathcal{C}_2$ offen und affin ist, dann ist $f^{-1}(V)$ offen und affin in \mathcal{C}_1 .

Beweis: (1) Zuerst konstruieren wir ein potentielles $f^{-1}(V) =: \widetilde{V}$. Dazu betrachten wir

$$B := K[V] \longrightarrow K(\mathcal{C}_2) \stackrel{f^*}{\longleftrightarrow} K(\mathcal{C}_1)$$

und bezeichnen den ganzen Abschluss von B in $K[\mathcal{C}_1]$ mit A. Aus Algebra II wissen wir, dass A dann ein endlich-erzeugter B-Modul ist (Algebra II, Satz 15, bzw. Shafarevich II.5, Thm. 4). A ist also eine endlich-erzeugte K-Algebra und nullteilerfrei, da $A \subseteq K(\mathcal{C}_1)$. Es gibt also ein affines \widetilde{V} mit $A = K[\widetilde{V}]$ und

$$K(\widetilde{V}) = \operatorname{Quot}(A) = K(\mathcal{C}_1).$$

Nach Satz 4 ist \widetilde{V} somit birational äquivalent zu \mathcal{C}_1 . Außerdem ist \widetilde{V} eine reguläre irreduzible Kurve, da $A = K[\widetilde{V}]$ ein Dedekindring ist. Nach Korollar 1.8 ist der Abschluss $\overline{\widetilde{V}}$ isomorph zu \mathcal{C}_1 , wir können \widetilde{V} also als Teilmenge von \mathcal{C}_1 auffassen.

(2) Zeige nun: $\widetilde{V} = f^{-1}(V)$

Angenommen, es gäbe $P_0 \in \mathcal{C}_1 \setminus \widetilde{V}$ mit $f(P_0) = Q \in V$. Seien $P_1,...,P_k$ alle Urbilder von $Q = f(P_0)$, die auch in \widetilde{V} liegen. Nach Bemerkung 2.6 (b) kann man nun ein $v \in K(\mathcal{C}_1)$ mit $v \notin \mathcal{O}_{P_0}$ und $v \in \mathcal{O}_{P_i} \ \forall i \in \{1,...,k\}$ wählen.

(a) Wir zeigen: Man kann ohne Einschränkung annehmen, dass v keine Polstelle in \widetilde{V} hat.

Ist nämlich $x \in \widetilde{V}$ eine Polstelle, so setzt man y = f(x) + Q. Wir wählen nun $h \in B = K[V]$ mit $h(Q) \neq 0$, h(y) = 0, d.h. $h \in \mathfrak{m}_v^v \setminus \mathfrak{m}_Q^v$.

Für $v' := v...(h \circ f)$ gilt damit:

$$\operatorname{ord}_x v' = \operatorname{ord}_x(v) + \operatorname{ord}_x(h \circ f) \ge \operatorname{ord}_x(v) + 1,$$

da f(x) = y Nullstelle in h ist.

Außerdem gilt $\operatorname{ord}_{P_i} v' = \operatorname{ord}_{P_i} v + 0$ und es sind keine neuen Pole in \widetilde{V} entstanden, da h auf ganz V regulär ist. Durch mehrmaliges Anwenden dieses Verfahrens kann man alle Polstellen entfernen.

(b) Somit ist v nun aus A = K[V] und damit ganz über B.

Also gibt es
$$b_0, ..., b_{n-1} \in B$$
 mit

$$v^n + b_{n-1}v^{n-1} + \dots + b_0 = 0,$$

d.h.
$$v = -b_{n-1} - \frac{b_{n-2}}{v} - \dots - \frac{b_0}{v^{n-1}}$$
.

Da $v \notin \mathcal{O}_{P_0}$ ist, ist die linke Seite nicht in P_0 definiert, aber es ist $\frac{1}{v} \in \mathcal{O}_{P_0}$. Demnach ist die rechte Seite in P_0 definiert, da $b_i \circ f$ auf ganz $f^{-1}(V)$ regulär ist, was ein Widerspruch ergibt.

Ab jetzt sei stets V eine affine Umgebung von Q, also ist nach Lemma 2.7 $\widetilde{V} = f^{-1}(V)$ affin.

Außerdem sei $B=K[V], A=K[\widetilde{V}]$ ist dann der ganze Abschluss von B in $K(\mathcal{C}_1)$.

LEMMA 2.8: Seien $P_i \in \mathcal{C}_1$ und $\widetilde{\mathcal{O}} := \bigcap_{i=1}^k \mathcal{O}_{P_i} \subseteq K(\mathcal{C}_1)$. Dann gilt:

- (a) $\widetilde{\mathcal{O}}$ ist Hauptidealring.
- (b) Es gibt $t_1,...,t_k \in \widetilde{\mathcal{O}}$ mit $\operatorname{ord}_{P_i}(t_j) = \delta_{ij}$.
- (c) Jedes $v \in \widetilde{\mathcal{O}}$ lässt sich eindeutig schreiben als

$$v = u \cdot t_1^{e_1} \cdots t_k^{e_k}$$

mit
$$u \in \widetilde{\mathcal{O}}^{\times}$$
, $e_i = \nu_{P_i}(v)$.

Beweis: (b) Sei $\mathfrak{m}_i = \mathfrak{m}_{P_i}^{\widetilde{V}} \subseteq A$ und \widetilde{t}_i Uniformisierende, d.h. $\mathfrak{m}_{P_i} = (\widetilde{t}_i) \subseteq \mathcal{O}_{P_i}$. Wie im Beweis von Lemma 2.7 kann \widetilde{t}_i ohne Einschränkung als regulär vorrausgesetzt werden.

Um die t_i zu konstruieren, wählen wir zuerst $g_i \in A = K[\widetilde{V}]$ mit:

$$g_i(P_i) \neq 0$$
 und $g_i(P_j) = 0$ wobei $i, j \in \{1, ..., k\}$ und $i \neq j$.

Sei
$$t_1 = \widetilde{t_1} + \sum_{j=2}^k \alpha_j \cdot g_j^2$$
 mit $\alpha_j \in K$, $\alpha_j \neq \frac{-\widetilde{t_1}(P_j)}{(g_j(P_j))^2}$.

Dann ist $t_1(P_j) = \tilde{t_1}(P_j) + \alpha_j(g_j(P_j))^2 \neq 0, t_1(P_1) = 0$ und

$$\widetilde{t_1} + \sum_{j=2}^k \alpha_j \cdot g_j^2 \in \mathfrak{m}_{P_1} \setminus \mathfrak{m}_{P_1}^2,$$

da die $g_j \in \mathfrak{m}_{P_1}^2$ und $\widetilde{t_1} \in \mathfrak{m}_{P_1} \setminus \mathfrak{m}_{P_1}^2$ sind.

Also ist $v_{P_1}(t_1) = 1$, d.h. t_1 tut Gewünschtes. Analog konstruiert man $t_2, ..., t_k$.

(c) folgt aus (b), denn wir setzen

$$u = \frac{v}{t_1^{\operatorname{ord}_{P_1}(v)} \cdots t_k^{\operatorname{ord}_{P_k}(v)}}$$

und sehen, dass $\operatorname{ord}_{P_i}(u) = 0$ (für jedes i) ist, also ist $u \in \widetilde{\mathcal{O}}$.

(a) folgt aus (c): Sei I ein Ideal in $\widetilde{\mathcal{O}}$, dann ist

$$I=(t_1^{e_1}\cdots t_k^{e_k}),$$

wobei $e_i = \inf\{\operatorname{ord}_{P_i}(v) \mid v \in I\}.$

LEMMA 2.9: Es gilt:

(a)
$$\widetilde{\mathcal{O}} = A \cdot \mathcal{O}_Q = \{ a \cdot (h \circ f) \mid a \in A_i, h \in \mathcal{O}_Q \}$$

- (b) $\widetilde{\mathcal{O}}$ ist ein freier \mathcal{O}_Q -Modul vom Rang $n = \deg f$. Dabei fasst man wiederum \mathcal{O}_Q via f^* als Teilring von $\widetilde{\mathcal{O}}$ auf.
- Beweis: (a) Seien $w \in \widetilde{\mathcal{O}}$, $x_1,...,x_r$ die Polstellen von w und $y_1,...,y_r$ ihre Bilder. Seien weiterhin $l_i = \operatorname{ord}_{x_i}(w)$ und $-n = \min\{l_1,...,l_r\}$.

Wir wählen $h' \in B$ mit $h'(y_i) = 0$ und $h'(Q) \neq 0$ und setzen $h = (h')^N$.

Dann ist $a := w \cdot (h \circ f) \in A$ und $h \in \mathcal{O}_Q^{\times}$. Folglich ist $w = a \cdot (h \circ f)^{-1}$.

(b) A ist der ganze Abschluss von B in $K(\mathcal{C}_1)$ und damit endlich erzeugt als B-Modul (vgl. Lemma 2.7). Nach (a) ist $\widetilde{\mathcal{O}}$ endlich erzeugt als \mathcal{O}_Q -Modul. Weiter ist $\widetilde{\mathcal{O}}$ torsionsfrei, d.h. $\widetilde{\mathcal{O}}$ ist ein freier \mathcal{O}_Q -Modul (Hauptsatz über Moduln von Hauptidealringen, siehe z.B. Bosch).

Ferner ist $\operatorname{Rang}_{\mathcal{O}_Q}(\widetilde{\mathcal{O}}) \leq \dim_{K(\mathcal{C}_2)} K(\mathcal{C}_1)$, da $K(\mathcal{C}_2) = \operatorname{Quot}(\mathcal{O}_Q)$ gilt.

Sei $\{\alpha_1,...,\alpha_n\}$ eine Basis von $K(\mathcal{C}_1)/K(\mathcal{C}_2)$, und l die maximale Polstellenordnung in den P_i 's. Dann sind $\alpha_1 \cdot t^l,...,\alpha_n \cdot t^l$ linear unabhängig und in $\widetilde{\mathcal{O}}$. Damit ist $\operatorname{Rang}(\widetilde{\mathcal{O}}) \geq n$, d.h. $\widetilde{\mathcal{O}}$ ist frei vom $\operatorname{Rang} n$.

Beweis von Satz 7 (a): Zu zeigen ist:

$$n = \deg(f) = \sum_{i=1}^{k} e_{P_i} = \sum_{i=1}^{k} \operatorname{ord}_{P_i}(t \circ f),$$

wobei $(t) = \mathfrak{m}_Q$.

Da $t \circ f \in \widetilde{\mathcal{O}}$ liefert Lemma 2.8: $t \circ f = u \cdot t_1^{e_{P_1}} \cdots t_k^{e_{P_k}}$, wobei $u \in \widetilde{\mathcal{O}}$. Mit dem Chinesischen Restsatz folgt

$$\widetilde{\mathcal{O}}/(t \circ f) \cong \bigoplus_{i=1}^k \widetilde{\mathcal{O}}/(t_i^{e_{P_i}}) \cong \bigoplus_{i=1}^k K^{e_{P_i}}.$$

Also ist $\dim_K \widetilde{\mathcal{O}}/(t \circ f) = \sum_{i=1}^k e_{P_i}$.

Andererseits ist $\widetilde{\mathcal{O}} \cong \mathcal{O}_Q^n \longrightarrow (\mathcal{O}_a/(t))^n \cong K^n$.

Damit gilt $\widetilde{\mathcal{O}}/(t \cdot \widetilde{\mathcal{O}}) = \widetilde{\mathcal{O}}/(t \circ f) \cong K^n$ und damit ist $\dim_K \widetilde{\mathcal{O}}/(t \circ f) = n$.

3 Das Geschlecht einer Kurve

Ø

Sei \mathcal{C} immer eine nicht-singuläre, zusammenhängende, projektive Kurve.

Definition/Bemerkung 3.1: (a) Sei D ein Divisor. Dann nennen wir

$$\mathcal{L}(D) := \{ f \in K(\mathcal{C})^{\times} \mid D + \operatorname{div}(f) \text{ ist effektiv} \} \cup \{ 0 \}$$

den Riemann-Roch-Raum von D. $\mathcal{L}(D)$ ist ein K-Vektorraum, da für $P \in \mathcal{C}$ immer

$$\operatorname{ord}_P(f+g) \ge \min{\{\operatorname{ord}_P(f), \operatorname{ord}_P(g)\}}$$
 gilt.

- (b) Wir setzen $\ell(D) := \dim_K \mathcal{L}(D)$.
- (c) Für einen Divisor $D = \sum n_P P$ nennen wir $\{P \in \mathcal{C} \mid n_P \neq 0\}$ den Träger von D.

Bemerkung 3.2: (a) Es gilt $\mathcal{L}(0) = K$ und $\ell(0) = 1$.

- (b) Ist $\deg D < 0$, so gilt schon $\mathcal{L}(D) = \{0\}$ und $\ell(D) = 0$.
- (c) Ist $D \sim D'$, so gilt $\ell(D) = \ell(D')$.

Insbesondere ist ℓ somit auf $\mathcal{C}\ell(\mathcal{C})$ wohldefiniert.

Beweis: (a) Nach Satz 5 (a) sind die regulären Funktionen alle konstant.

- (b) Nach Korollar 2.4 ist $\deg(\operatorname{div}(f)) = 0$ und damit ist der Grad von $D + \operatorname{div}(f)$ kleiner als 0 und somit ist der Divisor für kein f effektiv.
- (c) Sei $g \in K(\mathcal{C})^{\times}$ mit $D' = D + \operatorname{div} g$. Dann gilt

$$\operatorname{div} f + D' \ge 0 \iff 0 \le \operatorname{div} f + \operatorname{div} g + D = \operatorname{div}(fg) + D,$$

also erhalten wir einen Vektorraumisomorphismus durch

$$\mathcal{L}(D') \longrightarrow \mathcal{L}(D), \quad f \longmapsto fg,$$

und damit sind die Dimensionen der beiden Räume gleich.

Satz 8 (Riemann): (a) Ist $D \in \text{Div } \mathcal{C}$ mit $\deg D \geq -1$, so gilt:

$$\ell(D) \le \deg D + 1.$$

(b) Es gibt ein $\gamma \in \mathbb{N}_0$, so dass für alle $D \in \text{Div } \mathcal{C}$

$$\deg D + 1 - \gamma \le \ell(D)$$
.

DEFINITION 3.3: Das kleinste γ , für das Satz 8 (b) erfüllt ist, nennen wir das Geschlecht von \mathcal{C} . Wir schreiben auch $\mathfrak{g}(\mathcal{C})$ oder \mathfrak{g} .

BEMERKUNG 3.4: Ist $\mathcal{C} \cong \mathcal{C}'$, so ist $\mathfrak{g}(\mathcal{C}) = \mathfrak{g}(\mathcal{C}')$, da schon die Divisorengruppen gleich sind.

LEMMA 3.5: Seien $D \in \text{Div}(\mathcal{C})$ und $P_0 \in \mathcal{C}$. Dann ist

$$\mathcal{L}(D) \subset \mathcal{L}(D+P_0)$$
 und $\ell(D+P_0) < \ell(D)+1$.

Beweis: Sei $D := \sum_{P \in \mathcal{C}} n_P P$.

Dass $\mathcal{L}(D) \subseteq \mathcal{L}(D+P_0)$ ist klar, denn für $f \in \mathcal{L}(D)$ gilt $\operatorname{ord}_{P_0}(f) \ge -n_0 := -n_{P_0}$ und damit liegt f insbesondere in $\mathcal{L}(D+P_0)$. Wir sehen sogar, dass für

$$f \in \mathcal{L}(D+P_0) \setminus \mathcal{L}(D)$$
 dann $\operatorname{ord}_{P_0}(f) = -(n_0+1)$

gelten muss.

Um die zweite Aussage einzusehen, nehmen wir zunächst an, dass $\ell(D+P_0) < \infty$. Sei also $f_1,...,f_r$ eine Basis von $\mathcal{L}(D+P_0)$, wobei $f_1,...,f_s \notin \mathcal{L}(D)$ und $f_{s+1},...,f_r \in \mathcal{L}(D)$. Sei t ein Erzeuger von \mathfrak{m}_{P_0} . Dann finden wir für $i \in \{1,...,s\}$ jeweils $u_i \in \mathcal{O}_{\mathcal{C},P_0}^{\times}$ mit

$$f_i = u_i t^{-(n_0+1)}$$
.

Damit definieren wir $g_i := u_i(P_0) \cdot f_1 - u_1(P_0) \cdot f_i$ und sehen, dass damit

$$g_i = t^{-(n_0+1)} \cdot (u_i(P_0) \cdot u_1 - u_1(P_0) \cdot u_i), \text{ wobei } u_i(P_0) \cdot u_1 - u_1(P_0) \cdot u_i \in \mathfrak{m}_{P_0},$$

da der Ausdruck in P_0 verschwindet. Damit ist aber $\operatorname{ord}_{P_0}(g_i) \geq -n_0$, also sind die g_i schon aus $\mathcal{L}(D)$.

Nun sind aber $g_2,...,g_s,f_{s+1},...,f_r$ linear unabhängig und in $\mathcal{L}(D)$, es gilt also, wie behauptet,

$$\ell(D) > r - 1 = \ell(D + P_0) - 1.$$

Mit gleichem Argument sieht man aber nun, dass aus $\ell(D + P_0) = \infty$ schon $\ell(D) = \infty$ folgt, die Aussage also auch in diesem Fall stimmt.

Beweis von Satz 8: (a) Wir zeigen $\ell(D) \leq \deg(D) + 1$ durch vollständige Induktion über $\deg D =: d$.

Für deg D=-1 gilt nach Bemerkung 3.2 (b) $\ell(D)=0$, wir beschränken uns demnach auf deg $D\in\mathbb{N}_0$.

Sei also zuerst d=0 und seien $f,g\in\mathcal{L}(D)$. Dann ist $\operatorname{div}(f)+D\geq 0$ und es gilt sogar $\operatorname{div}(f)+D=0$, da beide von Grad 0 sind. Gleiches gilt für g und damit erhalten wir

$$\operatorname{div} f = -D = \operatorname{div} q.$$

Damit ist auch div $\left(\frac{f}{g}\right) = 0$ und $\frac{f}{g}$ somit, nach Satz 5 (a), konstant, da $\frac{f}{g}$ hier schon regulär ist.

Sei nun $d \geq 1$. Wir schreiben $D = \sum n_i P_i$ und wählen ein P_i mit $n_i > 0$. Für $D' := D - P_i$ ist dann deg $D' = \deg D - 1$ und nach Lemma 3.5 gilt, zusammen mit der Induktionsvoraussetzung,

$$\ell(D) = \ell(D' + P_i) < \ell(D') + 1 < d + 1.$$

(b) Wir setzen $s(D) := \deg D + 1 - \ell(D)$ und zeigen, dass es ein $\gamma \in \mathbb{N}$ mit $s(D) \leq \gamma$, für alle $D \in \text{Div } \mathcal{C}$, gibt.

Wir erinnern uns, dass nach Bemerkung 3.2 (c) und Korollar 2.4 (b)

$$D \sim D' \implies s(D) = s(D')$$

gilt. Außerdem überlegen wir uns, dass es für $D = \sum n_P P$ und $D' = \sum n'_P P$ mit $D' \leq D$ Punkte $P_1, ..., P_k$ mit $n'_{P_i} \leq n_{P_i}$ gibt, an allen anderen Stellen sind sie gleich. Lemma 3.5 liefert dann iterativ, dass

$$\ell(D) \le \ell(D') + \sum_{i=1}^{k} (n_{P_i} - n'_{P_i}) = \ell(D') + \deg D - \deg D'.$$

Das bedeutet aber gerade, dass hier $s(D') \leq s(D)$ ist. Wir zeigen nun:

- (1) Für alle $D \in \text{Div } \mathcal{C}$ gibt es $D' \in \text{Div } \mathcal{C}$ mit $D \sim D'$, so dass $D' \leq k \cdot N$, wobei $k \in \mathbb{N}$ und N für $f \in K(\mathcal{C}) \setminus K$ der Nullstellendivisor f^*0 ist.
- (2) Es gibt ein $\gamma \in \mathbb{N}$, so dass für alle $k \in \mathbb{N}$ damit $s(k \cdot N) \leq \gamma$ gilt.

Dann folgt die Behauptung, denn für alle $D \in \text{Div } \mathcal{C}$ gibt es nach (1) und obiger Überlegung ein D' mit s(D) = s(D') und nach der anderen Überlegung gilt mit (2) schon

$$s(D') \le s(k \cdot N) \le \gamma.$$

Wir zeigen zuerst Behauptung (1): Dazu sei wieder $D := \sum n_P P$. Wir suchen also ein $g \in K(\mathcal{C}) \setminus K$ mit $D + \operatorname{div} g \leq k \cdot N$.

Insbesondere heißt das für g, dass alle Nullstellen von g im Träger von N liegen sollten und dass für $n_P > 0$ für ein P, das nicht im Träger von N liegt,

$$\operatorname{ord}_P(g) \le -n_P$$

gelten muss. Dabei ist P genau dann im Träger von N, wenn $\operatorname{ord}_{P}(f) > 0$ ist, also f da eine Nullstelle hat.

Seien $P_1,...,P_r$ die Punkte in \mathcal{C} mit $n_{P_i}>0$ und $\mathrm{ord}_{P_i}(f)\leq 0$. Sei

$$h_i := \frac{1}{f} - \frac{1}{f}(P_i)$$
 für $i \in (1, ..., r)$.

Dann ist $\operatorname{ord}_{P_i}(h_i) \geq 1$ und für alle P_j mit $\operatorname{ord}_{P_j}(f) \leq 0$ ist $\operatorname{ord}_{P_j}(h_i) \geq 0$. Da die Ordnung von einer Bewertung herkommt, gilt auch

$$\operatorname{ord}_{P_i}(h_i^{-n_{P_i}}) \le -n_{P_i} \text{ und } \operatorname{ord}_{P_i}(h_i^{-n_{P_i}}) \le 0$$

für die entsprechenden Punkte. Die $h_i^{-n_{P_i}}$ haben also sicherlich keine Nullstellen außerhalb des Trägers von N,

$$g := \prod_{i=1}^r h_i^{-n_{P_i}}$$

erfüllt also alle unsere Wünsche. Nun können wir unser k so wählen, dass für P in dem Träger von N immer

$$n_P + \operatorname{ord}_P(g) \le k \cdot e_P(f)$$

gilt, da es sich dabei nur um endlich viele Punkte handelt. Und damit gilt, wie behauptet

$$D + \operatorname{div} g \le k \cdot N$$
.

Nun zeigen wir noch Behauptung (2), also dass es ein $\gamma \in \mathbb{N}$ gibt, so dass

$$s(k \cdot N) = \deg(k \cdot N) + 1 - \ell(k \cdot N) < \gamma.$$

Sei also $f \in K(\mathcal{C})^{\times}$ und $g_1,...,g_r$ eine Basis von $K(\mathcal{C})$ über $K(f) = K(\frac{1}{f})$, also $r = \deg f$. Ohne Einschränkung können wir die g_i ganz über $K[\frac{1}{f}]$ wählen. Dann gilt nach ähnlicher Argumentation wie im Beweis zu Lemma 2.7: Wenn P eine Polstelle von g_i ist, so ist P schon eine Polstelle von $\frac{1}{f}$. Damit ist P aber eine Nullstelle von f und liegt somit im Träger von N. Wir finden also ein γ_0 , so dass, für $i \in \{1,...,r\}$,

$$\operatorname{div} q_i + \gamma_0 \cdot N > 0$$

gilt. Damit zeigen wir nun, dass $\ell(k \cdot N) \geq \deg(k \cdot N) - r \cdot (\gamma_0 - 1)$, wir also

$$\gamma := r(\gamma_0 - 1) + 1$$

finden. Sei dazu $h_{ij}:=\frac{g_i}{f^j}$, für $j\in\{0,...,k\}$. Damit gilt

$$\operatorname{div} h_{ij} + (k + \gamma_0) \cdot N = \operatorname{div} g_i - j \cdot \operatorname{div} f + k \cdot N + \gamma_0 \cdot N \ge (k - j) \cdot N \ge 0,$$

da div $f \leq N$ und div $g_i + \gamma_0 \cdot N \geq 0$ ist. Damit liegen die h_{ij} alle in $\mathcal{L}((k+\gamma_0)\cdot N)$ und, da die h_{ij} über K linear unabhängig sind, ist

$$\ell((k+\gamma_0)\cdot N) \ge r\cdot (k+1).$$

Wenn wir Lemma 3.5 iterativ anwenden, sehen wir, ähnlich wie oben, dass

$$\ell(k \cdot N) \ge \ell((k + \gamma_0) \cdot N) - \deg(\gamma_0 \cdot N) \ge r \cdot (k + 1) - \gamma_0 r = kr - r \cdot (\gamma_0 - 1),$$

da, nach Satz 7 (a), $\deg N = \deg f = r$ ist und damit folgt auch schon die Behauptung, denn dann ist auch $kr = \deg(k \cdot N)$.

4 Der Satz von Riemann-Roch

Ø

 $\mathcal C$ sei stets eine zusammenhängende, reguläre, projektive Kurve, K algebraisch abgeschlossen.

DEFINITION/BEMERKUNG 4.1: Sei $\Omega_{\mathcal{C}} = \Omega_{K(\mathcal{C})/K} \operatorname{der} K(\mathcal{C})$ -Vektorraum der K-Differentiale von $K(\mathcal{C})$ (siehe auch Algebra II).

- (a) $\Omega_{\mathcal{C}}$ heißt auch Vektorraum der rationalen Differentiale.
- (b) Es ist $\dim_{K(\mathcal{C})} \Omega_{\mathcal{C}} = 1$.

Beweis: (b) \mathcal{C} ist birational zu einer Hyperfläche $\mathfrak{V}(F)\subseteq \mathbb{A}^2(K)$ nach Lemma 4.4 aus Kapitel III. Damit ist $K(\mathcal{C})=K(\overline{X},\overline{Y})$ und $F(\overline{X},\overline{Y})=0$.

Außerdem wird $\Omega_{\mathcal{C}}$ von d \overline{X} , d \overline{Y} erzeugt und die notwendige Bedingung

$$dF(\overline{X}, \overline{Y}) = 0$$
 erzwingt $\frac{dF}{dX}d\overline{X} + \frac{dF}{dY}d\overline{Y} = 0$.

Der Lösungsraum dieses linearen Gleichungssystems ist eindimensional. \Box Definition/Bemerkung 4.2: Sei $\omega \in \Omega_{\mathcal{C}}, \, \omega \neq 0$.

(a) Sei $P \in \mathcal{C}$, t_P uniformisierend. Dann ist $\omega = f \cdot dt_P$ und

$$\operatorname{ord}_P(\omega) := \operatorname{ord}_P(f)$$

ist wohldefiniert.

- (b) Man definiert $\operatorname{div} \omega := \sum_{P \in \mathcal{C}} \operatorname{ord}_P(\omega) \cdot P$.
- (c) \mathcal{K} heißt kanonischer Divisor, wenn $\mathcal{K} = \operatorname{div} \omega$ für ein $\omega \in \Omega_{\mathcal{C}}$ gilt.
- (d) Je zwei kanonische Divisoren sind linear äquivalent.

Für den Beweis von (a) muss man die Unabhängigkeit der Ordnung von t_P zeigen. Das ist schwierig! Die restlichen Aussagen folgen dann aus (a).

Satz 9 (Riemann-Roch): Sei K ein kanonischer Divisor auf C und $D \in Div(C)$. Dann gilt:

$$\ell(D) - \ell(\mathcal{K} - D) = \deg D + 1 - \mathfrak{g}.$$

KOROLLAR 4.3: (a) Ist K ein kanonischer Divisor sowie D = 0, so ist deg D = 0 und $\ell(D) = 1$ nach Bemerkung 3.2 (a). Also ist in diesem Fall $\ell(K) = \mathfrak{g}$.

(b) Ist $D = \mathcal{K}$ ein kanonischer Divisor, so ist $\ell(\mathcal{K}) = \mathfrak{g}$ nach (a). Also gilt hier

$$\deg(\mathcal{K}) = \mathfrak{g} - 1 + \ell(D) - \ell(0) = 2\mathfrak{g} - 2.$$

BEISPIEL 4.4: Sei $\mathcal{C} = \mathbb{P}^1(K)$. Dann ist $K(\mathcal{C}) = K(X)$ und $\Omega_{\mathcal{C}} = K(X) dX$, $\omega = dX$ ist uniformisierend.

Wir suchen den kanonischen Divisor $\mathcal{K} = \operatorname{div} \omega$, d.h. wir müssen für jeden Punkt P die Ordnung $\operatorname{ord}_P(\omega)$ bestimmen (vgl. Definition/Bemerkung 4.2).

Sei dazu zunächst $a \in K$. Dann ist X-a uniformisierend. Es gilt also d $X=\mathrm{d}(X-a)$. Also ist $\mathrm{ord}_a(\omega)=0$.

Nun sei $a = \infty$. Dann ist $\frac{1}{X}$ uniformisierend und mit der Leibnizregel sieht man:

$$\mathrm{d}\frac{1}{X} = -\frac{1}{X^2}\mathrm{d}X.$$

Also ist $\operatorname{ord}_{\infty}(\omega) = -2$ und damit ist $\mathcal{K} = -2 \cdot \infty$ der kanonische Divisor zu ω . Insbesondere ist $\operatorname{deg} \mathcal{K} = -2$. Setze $D = \mathcal{K}$. Nun liefert Korollar 4.3 (b):

$$\mathfrak{g}(\mathbb{P}^1(K)) = 0.$$