計量経済 I: 宿題 5

村澤 康友

提出期限: 2025年6月10日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例の結果を正確に再現すること (乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペした場合は提出点を 0 点とし,再提出も認めない。すべての結果を Word に貼り付けて印刷し(A4 縦・両面印刷可・手書き不可・写真 不可・文字化け不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. データセット「6_1_income.dta」を gretl に読み込み、以下の分析を行いなさい.
 - (a) 教科書 p. 135 のミンサー方程式の推定結果を再現しなさい.
 - (b) OLS の実行結果の画面でメニューから「検定」 \rightarrow 「変数を取り除く」として説明変数を取り除けば、取り除いた説明変数の係数 = 0 の F 検定が実行できる.上の分析で就業可能年数とその 2 乗の係数 = 0 の F 検定を実行し、教科書 p.~155 の結果と一致することを確認しなさい.
- 2. (教科書 p. 158, 実証分析問題 6-C) データセット「6_3_happy_work.dta」を gretl に読み込み, 以下 の分析を行いなさい.
 - (a) 仕事に対する満足度を通勤時間に単回帰.
 - (b) 上の単回帰に共変量として年収と修学年数を追加して重回帰.
 - (c) 重回帰モデルの2つの共変量の係数=0のF検定.
- 3. (教科書 p. 158, 実証分析問題 6-D) データセット「6_4_minshu.dta」を gretl に読み込み, 以下の分析を行いなさい.
 - (a) 民主党への支持感情を年収に単回帰
 - (b) 上の単回帰に共変量として修学年数を追加して重回帰.

※ただ実行して終わるのでなく、データ分析の際は、以下の点に常に注意すること:

分析前 データの数値を確認し、表・グラフ・統計量でデータの特徴を把握する.

分析後 推定値の統計的有意性・符号・大きさを確認し、分析結果を解釈する.

解答例

1. (a) ミンサー方程式

モデル 1: 最小二乗法 (OLS), 観測: 1–4299 従属変数: lincome

	係数	Std.	Error	t-ratio	p 値
const	2.48550	0.110	782	22.44	0.0000
yeduc	0.117547	0.007	06026	16.65	0.0000
exper	0.196174	0.007	49354	26.18	0.0000
exper2	-0.0063811	0.000	316188	-20.18	0.0000
Mean depender	nt var 5	.290452	S.D. dep	endent va	ar 0.895883
Sum squared re	esid 2	736.905	S.E. of r	egression	0.798267
R^2	0	.206603	Adjusted	R^2	0.206049
F(3,4295)	3	72.8097	P-value(F)	3.4e-215
Log-likelihood	-5	129.400	Akaike c	riterion	10266.80

10275.79

Schwarz criterion 10292.26 Hannan–Quinn

(b) F 検定

モデル 1 についての検定:

帰無仮説: 以下の変数の回帰パラメータはゼロである

exper, exper2

検定統計量: F(2, 4295) = 499.754, p値 7.46193e-196

2. (a) 単回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–3604 従属変数: happy_work

	係数		Std. Error		$t ext{-ratio}$	p 値	
const	2.22551		0.0337480		65.94	0.0000	
commute	-0.0014	3366	0.00	0832606	-1.722	0.0852	
Mean depender	nt var	2.1778	858	S.D. depe	endent var	1.159856	
Sum squared resid		4843.007		S.E. of regression		1.159540	
\mathbb{R}^2		0.0008	822	Adjusted	\mathbb{R}^2	0.000545	
F(1, 3602)		2.9649	926	P-value(F)	0.085174	
Log-likelihood	_	-5646.3	330	Akaike cı	riterion	11296.66	
Schwarz criterio	on	11309	.04	Hannan-	Quinn	11301.07	

(b) 重回帰

モデル 2: 最小二乗法 (OLS), 観測: 1–3604 従属変数: happy_work

	係数		Sto	d. Error	t-ratio	p 値
const	1.83565		0.14	1758	12.95	0.0000
commute	-0.00249	144	0.00	0848820	-2.935	0.0034
income	0.00047	3488	8.75	913e-005	5.406	0.0000
yeduc	0.02021	23	0.01	04646	1.931	0.0535
Mean depender	nt var	2.1778	558	S.D. depen	ident var	1.159856
Sum squared re	esid	4791.8	317	S.E. of reg	ression	1.153716
\mathbb{R}^2		0.0113	884	Adjusted I	\mathbb{R}^2	0.010560
F(3, 3600)		13.817	52	P-value (F))	5.87e-09
${\bf Log\text{-}likelihood}$	-	-5627.1	.82	Akaike crit	erion	11262.36
Schwarz criteri	on	11287.	.12	Hannan-Q	uinn	11271.19

(c) 共変量の係数=0のF検定

モデル 2 についての検定:

帰無仮説: 以下の変数の回帰パラメータはゼロである

income, yeduc

検定統計量: F(2, 3600) = 19.2288, p値 4.93539e-009

3. (a) 単回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–4218 従属変数: minshu

	係数		Std. Error		t-ratio	p '	値
const	43.8237		0.423	993	103.4	0.00	000
income	0.00249	040	0.001	19858	2.078	0.0	378
Mean depender	nt var	44.47	606	S.D. de	pendent va	ar	18.51297
Sum squared re	esid	1443	814	S.E. of	regression		18.50569
\mathbb{R}^2		0.001	023	Adjuste	ed R^2		0.000786
F(1,4216)		4.317	219	P-value	(F)		0.037789
Log-likelihood	_	-18292	2.54	Akaike	criterion		36589.07
Schwarz criterie	on	36601	1.77	Hannan	–Quinn		36593.56

(b) 重回帰

モデル 2: 最小二乗法 (OLS), 観測: 1–4218 従属変数: minshu

		係数		Std. Error		t-ratio	р1	p 値	
	const	39.3028		2.12	491	18.50	0.00	000	
į	income	0.00200	0227	0.00	121897	1.643	0.10	005	
	yeduc	0.33490	07	0.15	4250	2.171	0.03	300	
Mean o	dependen	t var	44.47	606	S.D. dej	pendent '	var	18.51297	
Sum so	quared res	sid	1442	201	S.E. of	regression	n	18.49754	
\mathbb{R}^2			0.002	139	Adjuste	$d R^2$		0.001665	
F(2,42)	215)		4.517	554	P-value	(F)		0.010969	
Log-lik	elihood	-	-18290	0.18	Akaike	criterion		36586.36	
Schwar	z criterio	n	36605	5.40	Hannan	-Quinn		36593.09	