

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет им.

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Лабораторная работа № 4
Тема Построение и программная реализация алгоритма наилучшего среднеквадратичного приближения.
Студент Малышев И. А.
Группа <u>ИУ7-41Б</u>
Оценка (баллы)
Преподаватель <u>Градов В.М.</u>

Цель работы. Получение навыков построения алгоритма метода наименьших квадратов с использованием полинома заданной степени при аппроксимации табличных функций с весами.

1 Исходные данные

- 1. Таблица функции с весами ho_i с количеством узлов N.
- 2. Степень аппроксимирующего полинома п.

2 Код программы

Код программы представлен на ЯП С#

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;
namespace Lab_04
   public partial class Form1 : Form
        public Form1()
        {
            InitializeComponent();
        }
        public struct Point
            public double x, y, p;
            public Point(double x, double y, double p)
                this.x = x;
                this.y = y;
                this.p = p;
            }
            public static List<Point> ReadFromGrid(DataGridView data)
                List<Point> points = new List<Point>();
                foreach (DataGridViewRow row in data.Rows)
                    try
                    {
                        if (!row.IsNewRow)
                            points.Add(new Point(double.Parse(row.Cells[0].Value.ToString(),
System.Globalization.CultureInfo.InvariantCulture),
                                                  double.Parse(row.Cells[1].Value.ToString(),
System.Globalization.CultureInfo.InvariantCulture),
                                                  double.Parse(row.Cells[2].Value.ToString(),
System.Globalization.CultureInfo.InvariantCulture)
                                                  ));
                    catch (Exception Ee)
                        MessageBox.Show(Ee.ToString(), "Ошибка чтения таблицы");
```

```
return points;
            }
        }
        public static List<double> Gauss(double[,] matrix, int power)
            double[] a = new double[power];
            for (int k = 1; k < power; k++)</pre>
                for (int j = k; j < power; j++)
                    double m = matrix[j, k - 1] / matrix[k - 1, k - 1];
                    for (int i = 0; i < power + 1; i++)
                        matrix[j, i] -= m * matrix[k - 1, i];
                }
            for (int i = power - 1; i >= 0; i--)
                a[i] = matrix[i, power] / matrix[i, i];
                for (int c = power - 1; c > i; c--)
                    a[i] -= matrix[i, c] * a[c] / matrix[i, i];
            }
            return a.ToList();
        }
        public static List<double> LeastSquares(List<Point> points, int power)
            int n = points.Count;
            double[,] matrix = new double[power + 1, power + 2];
            for (int k = 0; k \leftarrow power; k++)
                double sum = 0;
                for (int i = 0; i < n; i++)</pre>
                    sum += points[i].p * Math.Pow(points[i].x, k) * points[i].y;
                matrix[k, power + 1] = sum;
                for (int m = 0; m <= power; m++)</pre>
                {
                    sum = 0;
                    for (int i = 0; i < n; i++)</pre>
                         sum += points[i].p * Math.Pow(points[i].x, k + m);
                    matrix[k, m] = sum;
                }
            }
            return Gauss(matrix, power + 1);
        }
          public static List<(double, double)> GenPolynome(List<Point> points, List<double>
coefs)
        {
            double CanonPolynome(double x)
                double sum = 0;
```

}

```
for (int i = 0; i < coefs.Count; i++)</pre>
                    sum += coefs[i] * Math.Pow(x, i);
                return sum;
            }
            double x_min = points[0].x;
            double x_max = points[0].x;
            foreach (Point p in points)
                x_min = Math.Min(x_min, p.x);
                x_max = Math.Max(x_max, p.x);
            }
            double step = Math.Abs(x_max - x_min) / 100;
            List<(double, double)> polypts = new List<(double, double)>();
            for (double curr = x_min; curr <= x_max; curr += step)</pre>
                polypts.Add((curr, CanonPolynome(curr)));
            return polypts;
        }
        private void buttonAction_Click(object sender, EventArgs e)
            foreach (var p in chart1.Series)
                p.Points.Clear();
            List<Point> points = Point.ReadFromGrid(dataGridView);
            foreach (Point p in points)
                chart1.Series[0].Points.AddXY(p.x, p.y);
            for (int n = 1; n < 4; n++)
                List<double> a = LeastSquares(points, n);
                List<(double, double)> polynome_points = GenPolynome(points, a);
                foreach (var p in polynome_points)
                    chart1.Series[n].Points.AddXY(p.Item1, p.Item2);
            }
            chart1.Show();
        }
    }
}
```

3 Результат работы

Графики, построенные на основе табличных данных: точки - заданная табличная функция, кривые- найденные полиномы.

1. Веса точек одинаковы и равны единице

2. Веса точек разные. Изменён угловой коэффициент прямой

4 Вопросы при защите лабораторной работы

- 1. Что произойдет при задании степени полинома n=N-1 (числу узлов таблицы минус 1)? В таком случае полином n-ой степени будет совпадать с полиномом n-1 степени, проходя через те же точки.
 - 2. Будет ли работать Ваша программа при $n \ge N$? Что именно в алгоритме требует отдельного анализа данного случая и может привести к аварийной остановке?

Формально программа работать не будет, если не предусмотреть условие n < N, так как при n >= N определитель будет равен нулю, а потому коэффициенты не могут быть определены однозначно. На практике программа может выдавать результат из-за вычислений с числами с плавающей точкой, но при определённых данных она в любом случае завершится аварийно.

3. Получить формулу для коэффициента полинома a0 при степени полинома n=0. Какой смысл имеет величина, которую представляет данный коэффициент?

$$(x0, x0)a = (y, x0)$$
 $\sum p_i * a = \sum p_i * y_i$
 $a = \sum p_i * y_i / \sum p_i$, $0 \le i \le N$
рі – вес точки, N – количество точек

Коэффициент представляет собой математическое ожидание.

4. Записать и вычислить определитель матрицы СЛАУ для нахождения коэффициентов полинома для случая, когда n=N=2. Принять все ρ_i = 1.

5. Построить СЛАУ при выборочном задании степеней аргумента полинома $\phi(x) = a_0 + a_1 x^m + a_2 x^n$, причем степени n и m в этой формуле известны.

$$\begin{cases} (x^{\circ}, x^{\circ}) a_{\circ} + (x^{\circ}, x^{m}) a_{\circ} + (x^{\circ}, x^{n}) a_{\circ} = (y, x^{\circ}) \\ (x^{m}, x^{\circ}) a_{\circ} + (x^{m}, x^{m}) a_{\circ} + (x^{m}, x^{n}) a_{\circ} = (y, x^{m}) \\ (x^{n}, x^{\circ}) a_{\circ} + (x^{n}, x^{m}) a_{\circ} + (x^{n}, x^{n}) a_{\circ} = (y, x^{n}) \end{cases}$$

6. Предложить схему алгоритма решения задачи из вопроса 5, если степени n и m подлежат определению наравне с коэффициентами a_k , т.е. количество неизвестных равно 5.

Для каждой пары n и m (при условии, что степень полинома меньше количества точек) вычислить коэффициенты a_0 , a_1 , a_2 функции ϕ , а затем выбрать ту пару, для которой справедливо:

$$\sum_{i=1}^{N} \rho_{i} [y(x_{i}) - \varphi(x_{i})]^{2} = min$$