MMR lab seminar

Numerical Modelling of Neutron Transport in SP₃ Approximation by FEM

Aleksandr Vasilev^{1,2}

¹North-Eastern Federal University, Yakutsk ²Nuclear Safety Institute, Russian Academy of Sciences, Moscow

Motivation

- Neutron transport equation
 - time, energy, spatial and angular variables (7 unknowns)
- Diffusion approximation
- SP₃ approximation

Equations

Diffusion approximation

$$\frac{1}{v_g} \frac{\partial \phi_g}{\partial t} - \nabla \cdot D_g \nabla \phi_g + \Sigma_{rg} \phi_g = (1 - \beta) \chi_g S_n + S_{s,g} + \widetilde{\chi}_g S_d,$$

$$S_n = \sum_{g'=1}^G \nu \Sigma_{f,g'} \phi_{g'}, \quad S_{s,g} = \sum_{g \neq g'=1}^G \Sigma_{s,g' \to g} \phi_{g'}, \quad S_d = \sum_{m=1}^M \lambda_m c_m.$$

SP₃ approximation

$$\phi_{0,g} = \phi_g + 2\phi_{2,g}$$

$$\frac{1}{v_{a}} \frac{\partial \phi_{0,g}}{\partial t} - \frac{2}{v_{a}} \frac{\partial \phi_{2,g}}{\partial t} - \nabla \cdot D_{0,g} \nabla \phi_{0,g} + \Sigma_{r,g} \phi_{0,g} - 2\Sigma_{r,g} \phi_{2,g} = (1 - \beta)\chi_{n,g} S_{n} + S_{s,g} + \chi_{d,g} S_{d},$$

$$-\frac{2}{v_{g}}\frac{\partial\phi_{0,g}}{\partial t} + \frac{9}{v_{g}}\frac{\partial\phi_{2,g}}{\partial t} - \nabla\cdot D_{2,g}\nabla\phi_{2,g} + (5\Sigma_{t,g} + 4\Sigma_{r,g})\phi_{2,g} - 2\Sigma_{r,g}\phi_{0,g} = -2(1-\beta)\chi_{n,g}S_{n} - 2S_{s,g} - 2\chi_{d,g}S_{d},$$

Delayed neutron source
$$\frac{\partial c_m}{\partial t} + \lambda_m c_m = \beta_m S_n$$
, $m = 1, 2, ..., M$, $G = 1, 2, ..., G$

Operator notation

Diffusion approximation

$$\mathbf{u} = \{\phi_1, \phi_2, \dots, \phi_G\}, \quad \mathbf{c} = \{c_1, c_2, \dots, c_M\}$$

$$V\frac{\partial \mathbf{u}}{\partial t} + A\mathbf{u} = (1 - \beta)F\mathbf{u} + E\mathbf{c},$$

$$\frac{\partial \mathbf{c}}{dt} + \Lambda \mathbf{c} = Q\mathbf{u}.$$

SP₃ approximation

$$\mathbf{u_1} = \{\phi_{0,1}, \phi_{0,2}, \cdots, \phi_{0,G}\}, \quad \mathbf{u_2} = \{\phi_{2,1}, \phi_{2,2}, \cdots, \phi_{2,G}\}.$$

$$V(\frac{\partial \mathbf{u_1}}{\partial t} - 2\frac{\partial \mathbf{u_2}}{\partial t}) + A_1 \mathbf{u_1} + B \mathbf{u_2} = (1 - \beta)F(\mathbf{u_1} - 2\mathbf{u_2}) + E\mathbf{c},$$

$$\frac{\partial \mathbf{c}}{\partial t} + \Lambda \mathbf{c} = Q(\mathbf{u_1} - 2\mathbf{u_2}).$$

$$V(-2\frac{\partial \mathbf{u_1}}{\partial t} + 9\frac{\partial \mathbf{u_2}}{\partial t}) + A_2\mathbf{u_2} + B\mathbf{u_1} = -2(1-\beta)F(\mathbf{u_1} - 2\mathbf{u_2}) - 2E\mathbf{c},$$

Software

HWR test problem

2D geometry and stationary

2 groups of instantaneous (G=2) neutrons

Lambda- and alpha- spectral problems

Spectral problems

Diffusion approximation

SP₃ approximation

Lambda-
$$A\mathbf{y} = \lambda^{(k)} F \mathbf{y}$$

$$L\varphi = \lambda^{(k)} M\varphi$$

Alpha-
$$A\mathbf{y} - (1 - \beta)F\mathbf{y} - E\mathbf{s} = \lambda^{(\alpha)}V\mathbf{y}$$
$$\Lambda \mathbf{s} - Q\mathbf{y} = \lambda^{(\alpha)}\mathbf{y}$$

$$L\varphi - (1 - \beta)M\varphi - I\mathbf{s} = \lambda^{(\alpha)}W\varphi,$$
$$\Lambda\mathbf{s} - R\varphi = \lambda^{(\alpha)}\mathbf{s}.$$

$$\varphi = \{\mathbf{y_1}, \mathbf{y_2}\}, \quad L = \begin{pmatrix} A_1 & B \\ B & A_2 \end{pmatrix}, \quad M = \begin{pmatrix} F & -2F \\ -2F & 4F \end{pmatrix}, \quad I = \begin{pmatrix} E \\ -2E \end{pmatrix}, \quad R = \begin{pmatrix} Q & -2Q \end{pmatrix}, \quad W = \begin{pmatrix} V & -2V \\ -2V & 9V \end{pmatrix}$$

Table: The effective multiplication factor

\overline{n}	p	k_{dif}	Δ_{dif}, pcm	δ_{dif}	k_{sp_3}	Δ_{sp_3}, pcm	δ_{dif}
	1	0.991985	2.0	1.16	0.992178	5.0	0.80
6	2	0.991989	2.4	0.31	0.992166	3.8	0.24
	3	0.991964	0.1	0.08	0.992132	0.4	0.07
	1	0.991983	1.8	0.05	0.992165	3.7	0.08
24	2	0.991965	0.0	0.01	0.992133	0.5	0.01
	3	0.991963	0.2	0.01	0.992128	0.0	0.00
	1	0.991969	0.4	0.08	0.992140	1.2	0.01
96	2	0.991963	0.2	0.02	0.992129	0.1	0.00
	3	0.991963	0.2	0.01	0.992128	_	_
Ref.		0.991965			0.992128		

Table: The first 10 eigenvalues for p=3, n=96

\overline{i}	diffusion	SP_3
1	0.991963 + 0.0i	0.992128 + 0.0i
2	0.983594 + 1.1645e-05i	0.983793 + 1.2072 e-05i
3	0.983594 - 1.1645e-05i	0.983793 - 1.2072 e-05i
4	0.964240 + 2.1564 e- $05i$	0.964523 + 2.2337e-05i
5	0.964240 - 2.1564 e-05i	0.964523 - 2.2337 e-05i
6	0.943290 + 0.0i	0.943733 + 0.0i
7	0.923872 + 0.0i	0.924257 + 0.0i
8	0.918657 + 0.0i	0.918798 + 0.0i
9	0.895682 + 3.5570 e- 05i	0.896317 + 3.6750 e- 05i
10	0.895682 - 3.5570 e-05i	0.896317 + 3.6750 e- 05i

Table: The first 10 eigenvalues for p=3, n=96

\overline{i}	Diffusion	SP_3
1	42.263 + 0.0i	41.380 + 0.0i
2	84.867 - 0.06130i	83.821 - 0.06358i
3	84.867 + 0.06130i	83.821 + 0.06358i
4	182.914 - 0.11367i	181.471 - 0.11805i
5	182.914 + 0.11367i	181.471 + 0.11805i
6	293.017 + 0.0i	290.940 + 0.0i
7	371.528 + 0.0i	369.374 + 0.0i
8	515.465 - 0.16397i	512.337 - 0.17197i
9	515.465 + 0.16397i	512.337 + 0.17197i
10	518.670 + 0.0i	517.975 + 0.0i

Fig: Real part of eigenfunctions $\phi_1^{(2)}$, $\phi_2^{(3)}$ and $\phi_1^{(4)}$, $\phi_2^{(5)}$

Fig: imaginary part of eigenfunctions $\phi_1^{(2)}$, $-\phi_2^{(3)}$ and $\phi_1^{(4)}$, $-\phi_2^{(5)}$

TWIGL test problem

2D geometry and non-stationary

2 groups of instantaneous (G=2) and 1 group of delayed (M=2) neutrons

3 scenarios of dynamic process

Table: The effective multiplication factor

\overline{n}	p	$k_{dif}(\gamma = 0.5)$	$k_{dif}(\gamma = 100)$	k_{sp_3}
	1	0.915519	0.913286	0.916144
9	2	0.915519	0.913333	0.916190
	3	0.915419	0.913234	0.916094
	1	0.915486	0.913288	0.916147
36	2	0.915423	0.913238	0.916096
	3	0.915408	0.913223	0.916076
	1	0.915434	0.913245	0.916102
144	2	0.915409	0.913223	0.916076
	3	0.915408	0.913222	0.916073

Scenario No 1 (step change)

$$P(t) = a \sum_{g=1}^{G} \int_{\Omega} \Sigma_{fg} \phi_g d\mathbf{x}$$

$$n = 144, p = 3, \tau = 0.0001$$

Fig: Reference solution for the SP₃ model

Scenario No1 (step change)

t	Dif $(\gamma = 0.5)$	Dif $(\gamma = 100)$	SP_3
0.0	1.0000	1.0000	1.0000
0.1	2.0783	2.0613	2.0898
0.2	2.0961	2.0786	2.1079
0.3	2.1139	2.0959	2.1260
0.4	2.1319	2.1135	2.1442
0.5	2.1500	2.1311	2.1626

Fig: Reference solutions

Fig: Differences of the diffusion solution from SP₃

Scenario No1 (step change)

Fig: Differences at different time steps for diffusion and SP₃ models

Scenario No2 (linear change)

$$n = 144, p = 3, \tau = 0.0001$$

Fig: Reference solution for the SP₃ model

Scenario No2 (linear change)

\overline{t}	Dif $(\gamma = 0.5)$	Dif $(\gamma = 100)$	SP_3
0.0	1.0000	1.0000	1.0000
0.1	1.3112	1.3083	1.3134
0.2	1.9729	1.9595	1.9826
0.3	2.0921	2.0747	2.1038
0.4	2.1099	2.0921	2.1219
0.5	2.1278	2.1096	2.1401

Fig: Reference solutions

Fig: Differences of the diffusion solution from SP₃

Scenario No2 (linear change)

Fig: Differences at different time steps for diffusion and SP₃ models

Scenario No3 (combined)

0.0	0.2	Linear change
0.2	0.2	Step change
0.2	0.4	Linear change
0.4	0.4	Step change

$$n = 144, p = 3, \tau = 0.0001$$

Fig: Reference solution for the SP₃ model

Scenario No3 (combined)

t	Dif $(\gamma = 0.5)$	$Dif (\gamma = 100)$	SP_3
0.0	1.0000	1.0000	1.0000
0.1	1.3422	1.3393	1.3402
0.2	2.1686	2.1580	2.1757
0.3	0.7103	0.7119	0.7109
0.4	0.6452	0.6470	0.6455
0.5	1.0024	1.0024	1.0051

Fig: Reference solutions

Fig: Differences of the diffusion solution from SP₃

Scenario No3 (combined)

Fig: Differences at different time steps for diffusion and SP₃ models

Conclusion

- Compared the spectral parameters and non-stationary solutions, calculated by both the diffusion and SP₃ options using the FEM.
- Solution of the lambda- and alpha- spectral problems has been tested for the HWR reactor benchmark test. Three scenarios for non-stationary TWIGL benchmark were solved.
- Of particular interest is the problem associated with appearance of complex eigenvalues and eigenfunctions. It was found that this tendency occurs for both the diffusion and SP₃ solutions of the HWR reactor test.

Thank you for your attention!