101. Sea A un subconjunto no vacío de \mathbb{R} tal que $\sup(A) \in A$ y sea $u \notin A$ un número real. Demuestra que $\sup(A \cup \{u\}) = \sup\{\sup(A), u\}$.

Solución. Los dos únicos casos posibles son los siguientes:

- (1) Si $u \ge \sup(A)$, entonces $u = \sup(A \cup \{u\})$.
 - En efecto, para todo $a \in A$, u es una cota superior de $A \cup \{u\}$.
 - Por otra, parte, si c es una cota superior de $A \cup \{u\}$, entonces $c \ge u$, con lo que u es la menor cota superior de $A \cup \{u\}$.

(2) Si $u \leq \sup(A)$, entonces existe $a \in A$ tal que tal que $u < a \leq \sup(A)$, de forma que $\sup(A) = \sup(A \cup \{u\})$.

Con esto concluye la solución del ejercicio.

102. Demuestra que un subconjunto no vacío finito A de \mathbb{R} contiene a su supremo. Como sugerencia, aplica el principio de inducción matemática y el ejercicio anterior.

Solución. Lo probaremos por inducción matemática sobre la cardinalidad del conjunto A, que denotamos $n = |A| \in \mathbb{N}$.

El caso base es trivialmente cierto, dado que si $S = \{u\}$, necesariamente $\sup(A) = u \in A$.

Supongamos ahora que se verifica que $\sup(B) \in B$ para todo conjunto finito B con cardinalidad n, esta es, la hipótesis de inducción, y veamos así que se verifica para n+1.

En efecto, sea $u \in A$ un elemento cualquiera de A. El conjunto $A \setminus \{u\}$ es un subconjunto de A verificando $A = (A \setminus \{u\}) \cup \{u\}$ y con cardinalidad n.

En virtud del Ejercicio 101,

$$\sup(A) = \sup[(A \setminus \{u\}) \cup \{u\}] = \sup\{\sup(A \setminus \{u\}), u\} \in A$$

dado que tanto $u \in A$ si $u \ge \sup(A \setminus \{u\})$ como $\sup(A \setminus \{u\}) \in A \setminus \{u\} \subseteq A$ en caso contrario, por la hipótesis de inducción.

Esto concluye la solución del ejercicio.

Aplicaciones de la propiedad del supremo.

103. Demuestra que $\sup\{1 - 1/n : n \in \mathbb{N}\} = 1$.

Solución. Denotemos $A = \{1 - 1/n : n \in \mathbb{N}\}$ por comodidad. Observamos, dado que 0 < 1/n para todo $n \in \mathbb{N}$, que se verifica que -1/n < 0 para todo $n \in \mathbb{N}$ y por consiguiente que 1 - 1/n < 1 para todo $n \in \mathbb{N}$.

Por tanto \underline{A} está acotado superiormente por $\underline{1}$ y, dado que el conjunto de los números reales es por definición Dedekind-completo, sabemos que el número real $\sup(\underline{A})$ existe.

Veamos ahora que $\sup(A) = 1$. Una forma de conseguirlo es probar que para todo número real $\varepsilon > 0$ existe $a_{\varepsilon} \in A$ tal que $1 - \varepsilon < a_{\varepsilon}$, como sabemos por la teoría (ya hemos probado que es cota superior).

En efecto, dado un número real $\varepsilon > 0$ arbitrario, sabemos como consecuencia de la Propiedad Arquimediana que existe cierto $n_{\varepsilon} \in \mathbb{N}$ tal que $1/n_{\varepsilon} < \varepsilon$, de forma que $1-\varepsilon < 1-1/n_{\varepsilon}$. De esta manera, hemos encontrado un elemento $a_{\varepsilon} = 1 - 1/n_{\varepsilon} \in A$ para todo $\varepsilon > 0$ que verifica que $1-\varepsilon < a_{\varepsilon}$, como queríamos.

104. Sea $A = \{1/n - 1/m : n, m \in \mathbb{N}\}$. Determina $\inf(A)$ y $\sup(A)$.

Solución. Probaremos que $\sup(A) = 1$; que $\inf(A) = -1$ se prueba con el mismo razonamiento.

Para cualesquiera dos $m, n \in \mathbb{N}$, se verifica que

$$\frac{1}{n} - \frac{1}{m} \le 1 - \frac{1}{m} \le 1 - 0 = 1,$$

con lo que 1 es una cota superior de A y sup $(A) \le 1$.

Sea $\varepsilon > 0$, sabemos que existe, por la Propiedad Arquimediana, cierto $n_{\varepsilon} \in \mathbb{N}$ para el cual $1/n_{\varepsilon} < \varepsilon$, con lo que hemos encontrado $a_{\varepsilon} = 1 - 1/n_{\varepsilon} \in A$ verificando $1 - \varepsilon < a_{\varepsilon} < 1$. Recordamos que ésta es una caracterización del supremo y por ende $\sup(A) = 1$.

105. Sea $A \subseteq \mathbb{R}$ no vacío. Demuestra que si $\xi \in \mathbb{R}$ tiene las propiedades

- (i) para todo $n \in \mathbb{N}$, $\xi 1/n$ no es una cota superior de A,
- (ii) para todo $n \in \mathbb{N}, \, \xi + 1/n$ es una cota superior de A, entonces $\xi = \sup(A).$

Solución. (\leq) Supongamos que para cada $n \in \mathbb{N}$, el número $\xi + 1/n$ es una cota superior de A, de forma que $a \leq \xi + 1/n$ para cualquier $a \in A$, $n \in \mathbb{N}$, y por ende $a \leq \xi$ (se prueba por reducción al absurdo fácilmente).

Dada la arbitrariedad de $a \in A$, deducimos que $\sup(A) \leq \xi$.

 (\geq) Veamos ahora que para todo $\varepsilon > 0$, existe $a_{\varepsilon} \in A$ tal que $\xi - \varepsilon \leq a$.

Por la Propiedad Arquimediana existe $n_{\varepsilon} \in \mathbb{N}$ tal que $1/n_{\varepsilon} \leq \varepsilon$ y por tanto

$$\xi - \varepsilon \le \xi - \frac{1}{n_{\varepsilon}}.$$

Como $\xi - 1/n_{\varepsilon}$ no es una cota superior de A, existe $a_{\varepsilon} \in A$ tal que $\xi - 1/n_{\varepsilon} \leq a_{\varepsilon}$.

Con ello
$$\xi - \varepsilon \leq a_{\varepsilon}$$
 y $\xi = \sup(A)$.

106. Sea $A \subseteq \mathbb{R}$ no vacío y acotado.

(1) Sea $a \in \mathbb{R}$, a > 0 y denotemos $aS = \{as : s \in S\}$. Demuestra que $\inf(aS) = a\inf(S)$ y que $\sup(aS) = a\sup(S)$.

(2) Sea $b \in \mathbb{R}$, b < 0 y denotemos $bS = \{bs : s \in S\}$. Demuestra que $\inf(bS) = b \sup(S)$ y que $\sup(bS) = b \inf(S)$.

Solución. (1) $(\geq, \cot \inf(aS) \geq a \inf(S)$.

Dado que $\inf(S) \leq s$ para todo $s \in S$, $a \cdot \inf(S) \leq a \cdot s$ para todo $s \in S$.

 $(\underline{=}, \underline{\inf}\underline{\inf}\underline{\inf})$ Sea $\varepsilon > 0$. Existe $s_{\varepsilon} \in S$ tal que $s_{\varepsilon/a} \leq \underline{\inf}(S) + \frac{\varepsilon}{a}$ y con ello $t_{\varepsilon} := a \cdot s_{\varepsilon/a} \leq a \underline{\inf}(S) + \varepsilon$, de lo que deducimos que $\underline{\inf}(aS) = a \underline{\inf}(S)$.

Se demuestra análogamente que $\sup(aS) = a \sup(S)$.

107. Sea X un conjunto no vacío, sea $f: X \to \mathbb{R}$ una aplicación acotada. Prueba que $\sup\{a+f(x): x \in X\} = a + \sup\{f(x): x \in X\}$ así como que $\inf\{a+f(x): x \in X\} = a + \inf\{f(x): x \in X\}$, cualquiera que sea $a \in \mathbb{R}$.

Solución. Veamos la primera identidad.

(\leq , cota superior) Sea $y_0 \in \{a + f(x) : x \in X\}$, de forma que $y_0 = a + f(x_0)$ para cierto $x_0 \in X$; con ello, $y_0 \leq a + \sup\{f(x)\}$, de forma que $a + \sup\{f(x)\}$ es una cota superior de $\{a + f(x) : x \in X\}$ y como el supremo es la menor de las cotas superiores, $\sup\{a + f(x) : x \in X\} \leq a + \sup\{f(x) : x \in X\}$.

 $(=, \underline{\text{supremo}})$ Por definición de supremo, para todo $\varepsilon > 0$ existe $y_{\varepsilon} \in \{f(x)\}$, digamos $y_{\varepsilon} = f(x_{\varepsilon})$, tal que $\sup\{f(x)\} - \varepsilon \leq y_{\varepsilon}$, pero entonces

$$a + \sup\{f(x)\} - \varepsilon \le \underbrace{a + y_{\varepsilon}}_{\sim} =: z_{\varepsilon}$$

con lo que hemos encontrado $z_{\varepsilon} \in \{a + f(x)\}$ tal que $a + \sup\{f(x)\} - \varepsilon \le z_{\varepsilon}$, y como ya sabíamos que era cota superior de $\{a + f(x)\}$, concluimos que es el supremo, por lo sabido de la teoría.

La otra identidad se deduce de manera análoga.

108. Sean A y B dos subconjuntos no vacíos de \mathbb{R} y denotemos, como resulta habitual, $A+B=\{a+b:a\in A,b\in B\}$. Demuestra que $\sup(A+B)=\sup(A)+\sup(B)$ y que $\inf(A+B)=\inf(A)+\inf(B)$.

Solución. Probemos solo la primera, que $\sup(A+B) = \sup A + \sup B$.

Se trata de demostrar que el número $\sup A + \sup B$ es una cota superior de A + B y, de hecho, verifica el criterio del supremo.

(\leq , cota superior) Sea $z \in A + B$, entonces $z = a_0 + b_0$ y como sup A es cota de A y sup B es cota de B, $z \leq \sup A + \sup B$. Dada la arbitrariedad de z y la definición de supremo como menor de las cotas superiores, $\sup(A + B) \leq \sup(A) + \sup(B)$.

(=, es el supremo). Veamos que $\eta := \sup A + \sup B$ es el supremo, ya sabemos que es cota superior, falta que para todo $\varepsilon > 0$, exista $z_{\varepsilon} \in A + B$ tal que $\eta - \varepsilon \le z_{\varepsilon}$.

Ahora bien, por <u>definición de sup A y de sup B</u> para $\varepsilon/2$ tenemos que existen $a_{\varepsilon/2} \in A$, $b_{\varepsilon/2} \in B$, tales que sup $A - \varepsilon/2 \le a_{\varepsilon/2}$ y lo mismo con B.

Por tanto,

$$\underbrace{\eta - \varepsilon}_{\text{---}} \stackrel{\text{def.}}{=} \sup(A) + \sup(B) - \varepsilon = \left(\sup A - \frac{\varepsilon}{2}\right) + \left(\sup B - \frac{\varepsilon}{2}\right) \leq a_{\varepsilon/2} + b_{\varepsilon/2} = \underbrace{z_{\varepsilon}}_{\text{---}}$$

como queríamos concluir.

109. Sea X un conjunto no vacío y sean $f, g: X \to \mathbb{R}$ dos aplicaciones acotadas. Demuestra que

$$\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$$

así como que

$$\inf\{f(x) + g(x) : x \in X\} \ge \inf\{f(x) : x \in X\} + \inf\{g(x) : x \in X\}.$$

Proporciona ejemplos que muestren que cada una de estas desigualdades puede ser una igualdad o una desigualdad estricta.

Solución. Probaremos solo la primera. La segunda es análoga.

Es claro, sea $y_0 \in \{f(x) + g(x) : x \in X\}$, entonces $y_0 = f(x_0) + g(x_0)$ para cierto $x_0 \in X$, y por tanto, $y_0 = f(x_0) + g(x_0) \le \sup\{f(x)\} + \sup\{g(x)\} + \sup\{g(x)\} \le \max$ de $\{f(x) + g(x)\}$

Como el supremo es la menor de las cotas superiores, tenemos la desigualdad del enunciado.

Ejemplo de igualdad, cuando X = [0, 1], f(x) = g(x) = x:

$$\sup_{0 \le x \le 1} (x+x) = 2 = 1 + 1 = \sup_{0 \le x \le 1} x + \sup_{0 \le x \le 1} x.$$

Ejemplo de desigualdad estricta: X = [0, 1], f(x) = x, g(x) = 1 - x.

$$\sup_{0 \le x \le 1} (x + (1 - x)) = 1 < 1 + 1 = \sup_{0 \le x \le 1} x + \sup_{0 \le x \le 1} (1 - x).$$

110. Denotemos $J = \{x \in \mathbb{R} : 0 < x < 1\}$ y definamos la aplicación $h : J \times J \to \mathbb{R}$ dada por h(x,y) = 2x + y para cada par $(x,y) \in J \times J$.

- (1) Para cualquier $x \in J$, determina $f(x) = \sup\{h(x,y) : y \in J\}$ y, con ello, calcula inf $\{f(x) : x \in J\}$.
- (2) Para cualquier $y \in J$, determina $g(y) = \inf\{h(x,y) : x \in J\}$ y, con ello, calcula $\sup\{g(y) : y \in J\}$.
- (3) Compara los resultados obtenidos en los apartados anteriores.

Solución. (1) En primer lugar,

$$f(x) = \sup\{2x + y : y \in \mathbb{R}, 0 < y < 1\} = 2x + 1$$

cualquiera que sea $x \in J$, de forma que

$$\inf\{f(x) : x \in J\} = \inf\{2x + 1 : x \in \mathbb{R}, 0 < x < 1\} = 1.$$

(2) Análogamente, se comprueba que

$$g(y) = \inf\{2x + y : x \in \mathbb{R}, 0 < x < 1\} = y$$

cualquiera que sea $y \in J$, de forma que

$$\sup\{g(y) : y \in J\} = \inf\{2 + y : y \in \mathbb{R}, 0 < y < 1\} = 2.$$

(3) Podemos concluir que, en este caso,

$$\inf_{x \in J} \sup_{y \in J} h(x,y) = \sup_{y \in J} \inf_{x \in J} h(x,y)$$

y podemos intercambiar el orden al tomar ínfimos y supremos.

111. Realiza los cálculos del ejercicio anterior para $h: J \times J \to \mathbb{R}$, con

$$h(x,y) = \begin{cases} 0 & \text{si } x < y, \\ 1 & \text{si } x \ge y, \end{cases}$$

para cada par $(x, y) \in J \times J$.

Solución. En primer lugar, para cualquier $x \in (0,1)$ existe $y \in (0,1)$ tal que $y \le x$ (basta tomar y = x), de forma que

$$f(x) = \sup\{h(x,y) : y \in J\} = 1 \implies \inf\{f(x) : x \in J\} = 1.$$

Por otra parte, para cualquier $y \in (0,1)$ existe $x \in J$ tal que x < y (basta tomar x = y/2), de modo que

$$g(y) = \inf\{h(x,y) : x \in J\} = 0 \implies \sup\{g(y) : y \in J\} = 0.$$

Así, en este caso no se pueden intercambiar los supremos e ínfimos en los distintos argumentos.

Intervalos.

112. Sean $a, b, c, d \in \mathbb{R}$ y denotemos por I = [a, b], J = [c, d] dos intervalos cerrados en \mathbb{R} . Demuestra que $I \subseteq J$ si y solo si $c \le a$ y $b \le d$.

Solución. (\Rightarrow) Supongamos en primer lugar que $I \subseteq J$. Deducimos así que como $a \in I$ se verifica que $a \in J$ y por ende $c \le a$ (y $a \le d$) por la definición de intervalo. De la misma forma se concluye que $b \le d$.

- (\Leftarrow) Supongamos ahora que $c \le a$ y $b \le d$. En tal caso, para todo $x \in I$ se verifica que $a \le x \le b$, con lo que por transitividad se tiene que $c \le x \le d$, es decir, $x \in J$, y de la arbitrariedad de x se deduce que $I \subseteq J$. \square
- **113.** Sea $A \subseteq \mathbb{R}$ no vacío. Demuestra que A es acotado si y solo si existe un intervalo cerrado y acotado I tal que $A \subseteq I$.

Solución. (\Rightarrow) Supongamos que A es un conjunto acotado. Sea a_1 una cota inferior de A, de forma que $a_1 \leq a$ para todo $a \in A$, y sea a_2 una cota superior de A, de forma que $a \leq a_2$ para todo $a \in A$. Claramente si $a \in A$, entonces se tiene que $a_1 \leq a \leq a_2$, de forma que $A \subseteq [a_1, a_2]$ y un intervalo cerrado y acotado I válido para el enunciado será $I = [a_1, a_2]$.

(⇐) Digamos que $A \subseteq I = [a_1, a_2]$. Así,

$$\forall a \in A, |a| < 1 + \max\{|a_1|, |a_2|\}$$

de manera que A es trivialmente acotado.

114. Sea $A \subseteq \mathbb{R}$ acotado no vacío y denotemos $I_A = [\inf(A), \sup(A)]$. Demuestra que $A \subseteq I_A$. Más aún, si J es cualquier intervalo cerrado y acotado conteniendo a A, demuestra que $I_A \subseteq J$.

Solución. Dado que A es acotado y \mathbb{R} es Dedekind-completo, deducimos que $\inf(A)$ y $\sup(A)$ existen como números reales, y claramente verifican que $\inf(A) \leq \sup(A)$.

Dado que $\inf(A)$ es una cota inferior de A y $\sup(A)$ es una cota superior de A, se verificará que $\inf(A) \le a \le \sup(A)$ para todo $a \in A$, con lo que $A \subseteq I_A$, como queríamos probar.

Supongamos ahora que J es un intervalo cerrado y acotado tal que $A \subseteq J$. Digamos $J = [\eta, \xi]$ para ciertos $\eta, \xi \in \mathbb{R}$, de manera que $\eta \le a \le \xi$ para todo $a \in A$.

Con ello, η es una cota inferior de A y ξ una cota superior de A y por consiguiente, por la definición de ínfimo

y supremo como mayor de las cotas inferiores y menor de las cotas superiores, respectivamente, deducimos que $\eta \leq \inf(A)$ y sup $(A) \leq \xi$, y por el Ejercicio 112 deducimos que $I_A \subseteq J$. 115. Sea $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ una sucesión de reales encajados. Si denotamos $I_n = [a_n, b_n]$ para cada $n \in \mathbb{N}$, demuestra que necesariamente se tiene que $a_1 \leq a_2 \leq \cdots \leq a_n \leq \cdots$ así como que $b_1 \geq b_2 \geq \cdots \geq a_n \leq \cdots$ $b_n \geq \cdots$. Solución. Es una consecuencia inmediata del Ejercicio 112. **116.** Sea $I_n = [0, 1/n]$ para cada $n \in \mathbb{N}$. Demuestra que $\bigcap_{n=1}^{\infty} I_n = \{0\}$. Solución. (\subseteq) Sea $x \in \bigcap_{n=1}^{\infty} I_n$. Necesariamente $x \geq 0$, dado que $x \in \bigcap I_n \subseteq I_1 = [0, 1]$. Supongamos por reducción al absurdo que x > 0, por la Prop. Arquimediana existe $N \in \mathbb{N}$ tal que $\frac{1}{x} < N$, es decir, $\frac{1}{N} < x$ Por tanto, $x \notin I_N$, de forma que $x \notin \bigcap_{n=1}^{\infty} I_n$, lo cual es absurdo. Así, $\bigcap_{n=1}^{\infty} I_n \subseteq \{0\}$ necesariamente. (\supseteq) Es claro que $0 \in I_n$ para todo $n \in \mathbb{N}$, con lo que $0 \in \bigcap_{n=1}^{\infty} I_n$. 117. Sea $J_n = (0, 1/n)$ para cada $n \in \mathbb{N}$. Demuestra que $\bigcap_{n=1}^{\infty} J_n = \emptyset$. **Solución.** (\supseteq) Trivialmente cierto, siempre se cumple $\emptyset \subseteq \cdots$. (\subseteq) Supongamos por reducción al absurdo que existe $x \in \bigcap J_n$ (i.e. $x \in J_n \ \forall n \in \mathbb{N}$). Como $x \in \bigcap J_n \subseteq J_1 = (0,1)$, necesariamente 0 < x < 1. Por la Prop. Arquimediana aplicada a $\frac{1}{x} \in (1, \infty)$, existe $N \in \mathbb{N}$ tal que $\frac{1}{x} < N$, esto es, $\frac{1}{N} < x$. Pero entonces, $x \notin J_N = (0, \frac{1}{N})$. Es absurdo pues supusimos que $x \in J_n$ para todo $n \in \mathbb{N}$. **118.** Sea $K_n = (n, \infty)$ para cada $n \in \mathbb{N}$. Demuestra que $\bigcap_{n=1}^{\infty} K_n = \emptyset$. **Solución.** (\supseteq) Trivialmente cierto, siempre se cumple $\emptyset \subseteq \cdots$. (⊆) Supongamos por reducción al absurdo que existe $x \in \bigcap K_n$ (i.e. $x \in K_n \forall n \in \mathbb{N}$). Como $x \in \bigcap K_n \subseteq K_1 = (1, \infty)$, necesariamente x > 1. Por la Prop. Arquimediana, existe $N \in \mathbb{N}$ tal que x < N. Pero entonces, $x \notin K_N = (N, \infty)$. Es absurdo pues supusimos que $x \in K_n$ para todo $n \in \mathbb{N}$.