ÁLGEBRA I - 2022

Práctico 5: vectores

Mayo, 2022

1. Dados los vectores

Realizar gráficamente las siguientes operaciones:

- 2. Sean los vectores $\vec{u}=(4,3)$ y $\vec{v}=(2,-4)$, obtener geométrica y analíticamente:

a)
$$\vec{u} + \vec{v}$$
 b $\frac{1}{5}\vec{u}$ **c**) $2\vec{u} - \frac{2}{3}\vec{v}$

3. Para cada par de puntos:

- i) Hallar las componentes del vector con punto inicial P y punto final Q.
- ii) Calcular la norma de los vectores obtenidos. ¿Qué relación hay entre la norma mencionada y la distancia entre los puntos P y Q ?
- iii) Graficar en el mismo sistema de coordenadas P,Q,\overrightarrow{PQ} y el vector posición correspondiente.

1

- 4. Demostrar que si \vec{u} es diferente del vector cero, entonces $\frac{\vec{u}}{|\vec{u}|}$ tiene norma 1.
- 5. Dados los vectores $\vec{u} = (1, 2); \ \vec{v} = (6, -8) \ y \ \vec{w} = (2, -1).$
 - i) Calcular $\vec{u}\cdot\vec{v},\vec{u}\cdot(\vec{v}+3\vec{w})$ y $|\vec{u}|(\vec{w}\cdot\vec{v})$
 - ii) Hallar el ángulo entre \vec{u} y \vec{v} .
 - iii) Determinar el ángulo formado entre \vec{w} y el semieje positivo de abscisas.
 - iv) Determinar dos vectores de norma 1 ortogonales a \vec{w} .
- 6. Sean los vectores en \mathbb{R}^3 , $\vec{a} = (4, 1, 6)$, $\vec{b} = (3, 0, -2)$ y $\vec{c} = (1, 2, -3)$.
 - i) Calcular $\vec{a} \cdot \vec{b}$. Puede decir algo respecto a los vectores \vec{a} y \vec{b} ?.
 - ii) Hallar el coseno del ángulo entre \vec{a} y \vec{c} .
- 7. Calcular $\vec{a} \cdot \vec{b}$ sabiendo que:
 - a) $|\vec{a}|=5,\,|\vec{b}|=4,$ y el ángulo formado por \vec{a} y \vec{b} es $\frac{\pi}{6}.$

- b) $\vec{a} = -4\vec{b} \text{ y } |\vec{a}| = 3.$
- 8. Sean los vectores $\vec{i} = (1,0)$ y $\vec{j} = (0,1)$ en \mathbb{R}^2 . Suponga que \vec{v} es un vector no nulo de modo que θ es el ángulo desde el semieje positivo de abscisas al vector \vec{v} .
 - i) Explique por qué es posible expresar al vector \vec{v} de la siguiente forma:

$$\vec{v} = (|\vec{v}|cos\theta)\vec{i} + (|\vec{v}|sen\theta)\vec{j}$$

- ii) Dados los vectores $\vec{v}_1=(1,2), \vec{v}_2=(-1,2), \vec{v}_3=(3,-4)$ y $\vec{v}_4=(0,-5)$ graficarlos y expresarlos en la forma dada en la parte i).
- 9. Dados los puntos P(4,8,1) y Q(3,0,-4) en \mathbb{R}^3 .
 - a) Representar los puntos P y Q y los vectores \overrightarrow{OP} y \overrightarrow{OQ} en un mismo sistema de ejes coordenados
 - b) Obtener las componentes de los vectores \overrightarrow{PQ} y \overrightarrow{QP} . Representarlos gráficamente.
 - c) Calcular la distancia entre P y Q.
 - d) Dar las coordenadas del punto medio del segmento \overline{PQ} y señalarlo en el primer gráfico.
 - e) Determinar un punto cuya distancia a P sea la mitad de su distancia a Q.
 - f) Obtener dos vectores paralelos a \overrightarrow{OP} de módulo 2.
 - g) Calcular el ángulo entre \overrightarrow{OP} y \overrightarrow{OQ} .
- 10. Usar vectores para decidir si el triángulo formado por los puntos P(1,-3,-2), Q(2,0,-4) y R(6,-2,-5) es rectángulo.
- 11. Dado el vector $\vec{v} = (3, -4)$:
 - a) Obtener una ecuación que satisfagan todos los vectores (x,y) ortogonales a \vec{v} . Interpretar gráficamente.
 - b) Obtener los vectores ortogonales a \vec{v} de longitud 2.
- 12. Sean los vectores $\vec{u} = (-1, 4, 2)$ y $\vec{v} = (3, y, -6)$:
 - a) Determine y de modo que los vectores dados resulten:
 - i) Ortogonales
 - ii) Paralelos
 - b) Exprese los vectores dados en términos de los vectores unitarios canonicos \vec{i}, \vec{j} y \vec{k} de \mathbb{R}^3 .
- 13. Todo vector no nulo \vec{v} determina una única dirección. En \mathbb{R}^3 existen infinitas direcciones ortogonales a ésta. Dado el vector $\vec{v} = (2, -5, 1)$.
 - a) ¿Qué ecuación satisfacen las coordenadas de todo vector ortogonal a \vec{v} ?
 - b) Obtener cuatro vectores no nulos ortogonales a \vec{v} , todos ellos en distintas direcciones.
- 14. Sean \vec{u} y \vec{v} dos vectores de \mathbb{R}^2 de igual módulo. Demostrar las siguientes afirmaciones utilizando propiedades del producto escalar. Verificar gráficamente.
 - a) $\vec{u} + \vec{v}$ y $\vec{u} \vec{v}$ son ortogonales.
 - b) Si \vec{u} y \vec{v} son ortogonales, entonces el ángulo que $\vec{u} + \vec{v}$ forma con cada uno de ellos es de 45°.
- 15. Usando los vectores del ejercicio 1), obtener gráficamente las siguientes provecciones:
 - a) $\overrightarrow{proy}_{\vec{u}}\vec{w}$ b) $\overrightarrow{proy}_{\vec{w}}\vec{v}$ c) $\overrightarrow{proy}_{\vec{w}}\vec{a}$, para un \vec{a} ortogonal a \vec{w} .
- 16. Obtener gráfica y analíticamente $\overrightarrow{proy}_{\vec{u}}\vec{v}$, cuando $\vec{v}=(3,1)$ y \vec{u} es:
 - **a)** $\vec{u} = (1,3)$ **b)** $\vec{u} = (-3,4)$ **c)** $\vec{u} = (2,-6)$.

17. En cada caso calcular $\overrightarrow{proy}_{\vec{b}}\vec{a}$. Representar gráficamente \vec{a} , \vec{b} y $\overrightarrow{proy}_{\vec{a}}\vec{b}$ en un mismo gráfico.

i)
$$\vec{a} = (3, 4, 5) \text{ y } \vec{b} = (6, 8, 0)$$
 ii) $\vec{a} = (6, 8, 0) \text{ y } \vec{b} = (3, 4, 5)$

ii)
$$\vec{a} = (6, 8, 0) \text{ y } \vec{b} = (3, 4, 5)$$

iii)
$$\vec{a} = (3, 5, 1)$$
 y $\vec{b} = (1, 2, -1)$ iv) $\vec{a} = (3, 5, 1)$ y $\vec{b} = (-1, -2, 1)$

- 18. Demostrar que para dos vectores \vec{u} y \vec{v} de \mathbb{R}^n con $\vec{v} \neq \vec{0}$, vale la igualdad $(\vec{u} \overrightarrow{proy}_{\vec{v}}\vec{u}) \cdot \vec{v} = 0$. Interpretar geométricamente y verificar esta interpretación en los gráficos del ejercicio anterior.
- 19. i) Calcular los productos vectoriales $\vec{u} \times \vec{v}$ para los siguientes casos:

b)
$$\vec{u} = (0, 2, 0)$$
 $\vec{v} = (3, 0, -1)$

c)
$$\vec{u} = (3, 1, 1)$$
 y $\vec{v} = (-1, 2, 4)$

- ii) En cada caso, graficar \vec{u}, \vec{v} y $\vec{u} \times \vec{v}$ en el mismo sistema.
- iii) En general, ¿qué es posible afirmar sobre la dirección, el sentido y el módulo de $\vec{u} \times \vec{v}$? Verificar analíticamente para a)
- 20. Sean \vec{u} y \vec{v} vectores de \mathbb{R}^3 tales que $\vec{u} \times \vec{v} = (1,0,2)$. Calcular:

a)
$$4\vec{u} \times 3\vec{v}$$

b)
$$\vec{v} \times (2\vec{v} + \vec{u})$$

a)
$$4\vec{u} \times 3\vec{v}$$
 b) $\vec{v} \times (2\vec{v} + \vec{u})$ c) $(\vec{v} \times \vec{u}) \cdot (5\vec{u} - \vec{v})$

21. Determinar si cada expresión tiene sentido. Si no, explique por qué. En caso afirmativo, diga si el resultado es un vector o un escalar (número).

$$\vec{i}$$
) $\vec{a} \cdot (\vec{b} \times \vec{c})$

ii)
$$\vec{a} \times (\vec{b} \cdot \vec{a})$$

iii)
$$\vec{a} \times (\vec{b} \times \vec{c})$$

$$\vec{\mathbf{i}}\mathbf{v}$$
) $\vec{a}\cdot(\vec{b}\cdot\vec{c})$

$$\begin{array}{llll} \mathbf{i)} & \vec{a} \cdot (\vec{b} \times \vec{c}) & \mathbf{ii)} & \vec{a} \times (\vec{b} \cdot \vec{c}) \\ \mathbf{iii)} & \vec{a} \times (\vec{b} \times \vec{c}) & \mathbf{iv}) & \vec{a} \cdot (\vec{b} \cdot \vec{c}) \\ \mathbf{iv}) & (\vec{a} \cdot \vec{b}) \times (\vec{c} \cdot \vec{d}) & \mathbf{iv}) & (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) \end{array}$$

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})$$

22. Dados los puntos P(4,8,1) y Q(3,0,-4), obtener el cuarto vértice del paralelogramo con vértice en el origen de \mathbb{R}^3 , cuyos lados están dados por los vectores \overrightarrow{OP} y \overrightarrow{OQ} . Graficar y calcular su área.