Contração Nebular

Primeiro modelo de contração nebular René Descartes (século XVII)

Nuvem grande de gás e poeira começa a se contrair sob a influência de sua própria gravidade⇒ fica + densa e mais quente e eventualmente forma uma estrela

Enquanto o Sol se forma no centro mais quente e denso da nuvem, os planetas se formam nas regiões mais externas e frias ⇒ planetas são subprodutos da formação de estrelas.

Contração Nebular

Laplace (1796) ⇒ demonstração qualitativa do colapso de uma nuvem de gás que gira (formato do sistema solar)

Quanto mais uma nuvem interestelar se contrai, mais rápido ela gira

conservação de momentum angular :

$$L = m. v \times r$$

Contração Nebular

Laplace (1796) ⇒ demonstração qualitativa

Força centrífuga se opõe ao colapso na região perpendicular ao eixo de rotação

⇒ nuvem colapsa + rapidamente paralelamente ao eixo de rotação

PANQUECA

Contração Nebular

Laplace (1796) ⇒ demonstração qualitativa

FORMAÇÃO DO SISTEMA SOLAR Teoria Nebular

Mas... Disco de gás quente NÃO forma conjuntos de nuvens que eventualmente formarão planetas

O gás quente tende a se dispersar e não se aglomerar

INGREDIENTE CHAVE: PRESENÇA DE POEIRA INTERESTELAR

POEIRA = grãos (aglomerados de moléculas) formados por:

100 nanometers graphite and silicates

- carbonáceos (ex. grafite)
- silicatos (ex. Olivina (Mg²⁺, Fe²⁺)₂SiO₄)
- + cobertos com gelo

A typical dust grain (note the tiny scale!).

a) Resfriamento do gás quente através da presença de metais: irradia o calor através de emissão de radiação no IR

Conversão de energia térmica (energia cinética) em energia radiante (fótons) no Infravermelho

Para excitar H ou He requer altas energias ⇒ T mais altas para excitação colisional de seus estados fundamentais ⇒ mais provável excitar elétrons em átomos mais pesados.

Colisão de H ou elétrons com fons e átomos neutros mais pesados: energia cinética (elétron vai para um nível de maior energia) ⇒ transformação em emissão de fótons no IR quando o elétron volta para um nível de menor energia [desexcitação]

RESFRIAMENTO DO GÁS INTERESTELAR OCORRE ATRAVÉS DE LINHAS METÁLICAS!

Mas... se o decaimento radiativo ocorre por meio de uma transição permitida⇒ é muito provável que o fóton seja reabsorvido novamente pelo gás (re- excitação) ⇒ transição permitida é ineficiente para o resfriamento.

Em gases de baixíssima densidade tem uma probabilidade maior da ocorrência de transições proibidas (não seguem as regras de seleção): ESTADOS META-ESTÁVEIS

Ex. Resfriamento de uma nuvem HI (H neutro)					
Ion/Espectro	Transição	colisionador	∆E/k	λ (μm)	
	${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$	H ₂ ,H, é	92K	158	
O°/[OI]	$^{3}P_{1}^{\longrightarrow}$ $^{3}P_{2}^{\longrightarrow}$	H,é	228K	63.2	
	$^{3}P_{o}^{\rightarrow} ^{2}P_{1}^{-}$		99K	146	

Radiação emitida por transições proibidas (regras de seleção) são menos prováveis de serem reabsorvidas

INGREDIENTE CHAVE: PRESENÇA DE POEIRA INTERESTELAR

- b) Resfriamento ⇒ diminui pressão interna ⇒ facilita colapso
- c) Facilita um agrupamento maior de moléculas através de núcleos de condensação formados pela poeira ⇒ como gotas de chuva que se formam na atmosfera da Terra: poeira e fuligem atuam como núcleos de condensação ao redor dos quais moléculas de água podem se aglomerar.

Grãos de poeira formam núcleos de condensação ao redor do quais a matéria começa a se aglomerar (bola de neve)

- (a) Uma nuvem de gás que tem uma rotação inicial, começa a se contrair devido a sua própria massa (colapso gravitacional).
- (b) Quanto mais uma nuvem interestelar se contrai, mais rápido ela gira (conservação de momentum angular $L = m.v \times r$). DISCO.
- (c) Grãos de poeira atuam como núcleos de condensação: através de colisões, moléculas se aderem aos grãos e formam pequenos corpos chamados "planetesimais" (tamanho da Lua).
- (d) A sequência das colisões forma corpos cada vez maiores (aglutinação de pequenos corpos que colidem), no centro forma-se o PROTOSOL.
- alguns 10⁶ anos
- (e) A ignição termonuclear do Sol (tornase uma estrela) aquece o disco, fazendo com que os corpos + próximos, menores e + voláteis evaporem
- (f) O sistema solar é formado com a configuração que é observada atualmente

Idade do sistema solar = $4,5 \times 10^9$ anos

Sucesso do modelo de formação do sistema solar

- •as órbitas dos planetas e satélites seguem a rotação original da mesma nuvem de gás e poeira que os formou.
- as órbitas dos planetas principais estão ~
 no mesmo plano (formação do disco)

Temperatura no sistema solar primitivo antes da aglutinação começar

Temperatura
maior: somente
metais podem
se condensar
para formar
grãos.

Temperatura menor: podem se formar grãos de gelo

Resumindo:

TEORIA DA CONTRAÇÃO NEBULAR + TEORIA DA CONDENSAÇÃO

Explicam as características do nosso sistema solar:

Órbitas dos planetas principais:

- 1. aproximadamente circulares
- 2. no mesmo plano
- 3. na mesma direção da rotação do Sol em torno do seu próprio eixo

Consequência do formato e rotação da nuvem mãe.

Resumindo:

TEORIA DA CONTRAÇÃO NEBULAR + TEORIA DA CONDENSAÇÃO

Explicam as características do nosso sistema solar:

Crescimento dos protoplanetas através da aglomeração de matéria e posterior aquecimento da nebulosa quando o Sol se torna uma estrela:

- 1. Planetas se encontram largamente espaçados
- 2. Debris da fase de acreção + fragmentação: asteróides, o cinturão de Kuiper e Nuvem de Oort.

Mas...

TEORIA DA CONTRAÇÃO NEBULAR + TEORIA DA CONDENSAÇÃO

Teorias são flexíveis no que diz respeito a detalhes:

Exemplos:

TEORIA NEBULAR: não implica necessariamente que os planetas devem todos rotar em torno de seu próprio eixo no mesmo sentido.

TEORIA DA CONDENSAÇÃO: encontros randômicos combinam os planetesimais em protoplanetas.

Algumas características do sistema solar que podem ser modeladas por eventos randômicos:

- 1ou 2 protoplanetas podem ter colidido com Vênus na época de sua formação, dando origem à sua rotação muito lenta e retrógrada.
- o sistema Terra-Lua pode ter surgido da colisão entre a protoTerra e um objeto da ordem do tamanho de Marte.
- o eixo de rotação de Urano pode ter sido causado por colisões de dois ou mais protoplanetas na época da sua formação.
- ❖ a lua de Urano Miranda pode ter sido parcialmente destruída por uma por uma colisão com um planetesimal.
- interações entre os planetas jovianos e um ou mais planetesimais podem explicar algumas irregularidades nas luas destes planetas (movimento retrógrado de Triton (lua de Netuno)).

A PROCURA DE PLANETAS EXTRASOLARES

- Possibilidade de vida astrobiologia
- Teste das teorias de formação do sistema solar

 Planetas extra-solares são muito fracos em brilho e geralmente estão muito próximos às suas estrelas ⇒

difícil a observação direta.

 Algumas poucas dezenas de planetas foram detectados por imageamento direto.

Na figura: planeta tipo Júpiter (5M_J) orbitando a 55 UA uma anã marron (failed star), fraca o suficiente para se observar o planeta (brilho da estrela não ofusca!).

Medidas indiretas: análise da luz da estrela

VARIAÇÕES NA VELOCIDADE RADIAL DE ESTRELAS

Flutuação na v_{rad} do Sol devido à presença de Júpiter 12 m/s

(a) Variação na velocidade radial da estrela 51 Pegasi (estrela gêmea do Sol – 1M_☉). v_{rad}= ± 50 m/s. Período orbital ~ 4,2 dias (1994) ⇒ limite inferior de M do planeta.

CÁLCULO

$$(M_{\bigstar} + m_{plan}) = \frac{a^3}{P^2}$$

Estimativa de a

$$\frac{m_{plan}V_{plan}^2}{a} = \frac{Gm_{plan}M_{\bigstar}}{a^2} \Rightarrow V_{plan}^2 = \frac{GM_{\bigstar}}{a}$$

Estimativa da massa do planeta:

Estimativa de V_{plan} orbital do planeta

3) CONSERVAÇÃO DO MOMENTUM LINEAR

$$p_{\bigstar} = p_{plan} \Rightarrow M_{\bigstar} V_{\bigstar} = m_{plan} V_{plan}$$

LIMITE INFERIOR DE MASSA: medimos V_{rad} = a componente da velocidade orbital na linha de visada V_{\star} × sin θ

$$m_{plan}^{(\lim inf)} = \frac{M \star V_{rad} \star}{V_{plan}}$$

(b) Variação na velocidade radial da estrela Upsilon Andromedae (estrela gêmea do Sol). Evidência de 3 planetas com limites inferiores de massa 0,7, 2,1 e 4,3 $M_{\rm J}$, com órbitas com semieixo maior de 0,06, 0,83 e 2,6 UA respectivamente.

Comparação com os 3 planetas do sistema Upsilon Andromedae

Até Setembro de 2020 foram detectados 820 sistemas extra-solares confirmados através de medida da v_{rad}

TRÂNSITO

- Estrela HD209458. Determinação do raio do planeta (1,4R_J).
- Determinação da variação na v_{rad} da estrela ⇒ orbita uma distância de 7 milhões de km (0,05 UA) e massa estimada do planeta de m_{plan} = 0,6 M_J
- A queda no brilho ocorre a cada 3,5 dias.
- ÚNICO MÉTODO QUE ESTIMA O TAMANHO DO PLANETA.

Densidade = 200 kg/m³ (0,2 g/cm³) ⇒ planeta gasoso gigante e quente (orbita bem próximo a estrela)

TRÂNSITO

Este método funciona apenas com uma pequena porcentagem de planetas cujos planos orbitais estejam perfeitamente alinhados com nossa linha de visada, mas pode ser aplicado mesmo a estrelas muito distantes.

Survey de telescópios espaciais para detectar trânsitos

Missão CoRoT (Convection Rotation and planetary transits 2006-2014): orbita geocêntrica:

- 34 planetas confirmados e estudados em detalhes.
- O menor exoplaneta detectado pelo CoRoT: $5M_{\oplus}$ e 1,7D $_{\oplus}$.
- 160.000 curvas de luz de estrelas com variações de brilho.

TRÂNSITO

Sonda Kepler (2009-final de outubro de 2018): orbita heliocêntrica

2392 planetas foram confirmados, 2368 a serem confirmados.

941 são ~ do tamanho da Terra

O último a ser lançado : TESS Transiting Exoplanet Survey Satellite (Julho 2018) .

74 novos planetas confirmados

PROPRIEDADES DOS EXOPLANETAS

https://exoplanetarchive.ipac.caltech.edu/

Até agora (24/09/20) : 4284 planetas extra-solares e 1717 sistemas múltiplos confirmados

Pelo menos 10% das estrelas + próximas observadas apresentam planetas

Planetas tipo Júpiter, netuno, super-Terra e terra

Massas determinadas por v_{rad}:

400 planetas extra-solares

Terminologia:

- Jupiters: planetas gasosos massivos
- Jupiter quente: encontra-se próximo a estrela-mãe: atmosfera turbulenta
- Netunos: planetas gasosos menos massivos
- Super-Terras : planetas com 2M_⊕<M<10M_⊕

Obs. Teoricamente $10M_{\oplus}$ representa o limite inferior de massa necessária para que o núcleo planetário rochoso agregue grandes quantidades de gás nebular, tornando-se assim um gigante gasoso.

Terras : planetas com M < 2 M_⊕

Baseado na distância

Método de v_{rad} não pode medir variações na estrela devido a órbitas de planetas muito pequenos ou muito distantes (mesmo serve para trânsito).

ATENÇÃO: BIAS OBSERVACIONAL

Métodos privilegiam objetos mais massivos ou maiores em tamanho e que orbitam mais próximos às suas estrelas.

https://exoplanetarchive.ipac.caltech.edu/cgi-bin/lcePlotter/nph-icePlotInit?mode=demo&set=confirmed

Planetas de massa ~ M_J. Órbitas de planetas extra-solares (muitos estão a 0,05 UA da estrela). Muitos planetas tem alta excentricidade orbital (o que não ocorre com os jovianos do nosso sistema solar).

COMPOSIÇÃO QUÍMICA DOS EXOPLANETAS

Estimando MASSA e RAIO ⇒ densidade ESTIMATIVA DA COMPOSIÇÃO QUÍMICA

PROBLEMAS:

Densidades muito baixas entre 1,3 < ρ < 0,2 g/cm³ Inconsistentes com modelos teóricos (menor do que densidade mais leve de puro H+He)!!!

COMPOSIÇÃO QUÍMICA DOS EXOPLANETAS

Possível explicação: planetas muito próximos as estrelas ⇒ calor e efeitos de maré fizeram com que o tamanho destes planetas ficassem maiores do que o normal.

	Dens. g/cm ³	
Sol	1,410	
Mercúrio	5,4	
Vênus	5,2	
Terra	5,5	
Lua	3,3	
Marte	3,9	
Ceres (asteróide)	2,7	
Júpiter	1,3	
Saturno	0,7	
Urano	1,3	
Neptuno	1,6	
Plutão (Kuiper)	2,1	
Hale-Bopp (cometa)	0,1	

Somente dezenas de Terras e Super-Terras tem M e R conhecidos: densidades médias de $0.5 < \rho < 9$ g/cm^{3.}

 Menor limite de densidade: anãs gasosas: núcleo de rocha/gelo e atmosferas de H+He,

 Maior limite de densidade: composição rochosa: terras comprimidas.
 Super Terra ou

CoRot 7b: $5.7M_{\oplus}$ e $1.7R_{\oplus}$ \Rightarrow $\rho = 7.5$ g/cm³ a= 0.02 UA (quente)

GJ 1214b: 6,3M_⊕ e 2,9R_⊕ ⇒ ρ = 1,5 g/cm³ (Netuno pequeno) núcleo de água/gelo cercado por uma atmosfera de H+He

7-8 planetas candidatos pela Kepler que estão na zona habitável: distantes o suficiente da estrela para possuir água líquida em suas superfícies.

Marrom : rochoso Azul: gasoso e gelo no núcleo Cinza: desconhecido

Medidas de trânsito : previsão da posição do planeta na sua fase quarto-crescente/quarto minguante

Kepler-186f

espectroscopia IR (neste λ a luz refletida na atmosfera do planeta (que é bem mais frio do que a estrela) é distinguível da luz vinda direto da estrela.

Composição química da atmosfera do planeta.

Spitzer Space Telescope: observou H, Na, CH₄ (metano), CO₂ e vapor d'agua e determinou a T das atmosferas de uns poucos planetas.

Comparação com as propriedades do nosso sistema solar com o observado em exoplanetas

- Órbitas coplanares e largamente espaçadas: sistemas com múltiplos exoplanetas também parecem apresentar o mesmo.
- 2. Planetas orbitam na mesma direção da rotação solar: exoplanetas parecem apresentar o mesmo. No entanto, foi achado um Júpiter quente com normal a órbita perpendicular ao eixo de rotação da estrela (possível colisão com outro objeto?).
- 3. Debris como asteroides e objetos do cinturão de Kuiper: não dá para observar isso em sistemas extra-solares, mas em estrelas recém formadas dá para se observar um disco de matéria ao redor.

SST Estrela recém formada

Como se formam os planetas do tipo Júpiter quente, se a proximidade com a estrela faria este tipo de formação improvável?

R. O Júpiter quente poderia ter sido formado em uma órbita mais externa e aos poucos foi espiralando na direção da estrela por fricção com o disco nebular.

Este efeito continua até o disco começar a ser disperso pela estrela recém nascida. Este processo não inibe a formação posterior de planetas terrestres no disco interno do sistema solar.

No nosso sistema solar isso não aconteceu porque a formação de Saturno estabilizou a órbita de Júpiter.

A PROCURA POR PLANETAS TIPO TERRA

Condições para formação de vida:

Existência de água líquida na superfície ⇒ planeta na zona habitável ⇒ T superficial entre 0 e 100° C.

Zona habitável ⇒ depende da distância e do brilho intrínseco da estrela

AGOSTO 2016

RV [m/s]

Planeta do tipo terrestre foi descoberto orbitando Próxima Centauri, a estrela mais próxima do nosso sistema solar, que fica a uma distância de 4,2 anos-luz.

Próxima Centauri b

1,5 m/s

10

Phase [days]

Método da velocidade radial (telescópios: 3,6 m do ESO em la Silla e o VLT[8 m]).