

INSTRUCCIONES DE BAJO Y ALTO NIVEL

EJERCICIO

int main (){ int i=-19600; b[2]=33; if (i-b[2])>12{ return i+15; }else{ return i*32; } }

¿CÓMO SE REALIZA LA IMPLEMENTACIÓN?

Para realizar la conversión a instrucciones de bajo y alto nivel debemos hacer uso de los principios de diseño de hadware para desarrollarlo se de tener en cuenta:

- 1-Definir los registros de cada variable
- 2-Inicializar las variables en cero con la variable global [0] (%G0) utilizando la variable sintética MOV
- 3- Realizar el complementos a dos al valor de la variable (i), la cual tiene una valor negativo. 4-Cuando se obtenga la conversión de lenguaje ensamblador se procede a realizar la conversión a Lenguaje Máquina (Binario) y luego inicializar la variable con la instrucción Sethi y or.
- 4-Realizar las operaciones entre los registros, se utilizó la variable sintética CMP del operador SUB para realizar comparación.
- 5-Reutilizar registros que no voy a volver a utilizar
- 6-Utilizar el formato #3,el cual se utiliza para las instrucciones aritmético-lógicas y desplazamientos (SHCNT) y utilizó y formato #2 Instrucciones de Salto(SETHI, BRANCH y NOP), en caso de no realizar las operaciones anteriores se puede utilizar el formato #1Instrucciones de llamado (CALL)
- 7-Utilizar el formato OP de las operaciones a realizar, en este caso se utiliza el OP 10(Aritmético-lógica y shcnt) y OP 00 (Branch, Nop y Sethi).
- 8-Utilizar el formato OP3 de las instrucciones y OP2, en este caso se utiliza el OP3 del OR-MOV (000010), ADD (000000), SUB (000100), CMP (SUBcc (010100)) y el OP2 del BA y BGE (010), NOP (100), SETHI (100).
- 9- Diligenciar el formato #3 (ADD, SUB, SUBcc OR y SHNCT) y formato #2 (BRANCH, NOP y SETHI) de cada
- 10-Se utiliza para las comparaciones la variable sintética CMP que es un SUBcc.

LENGUAJE ENSAMBLADOR Definición de registros

i=%L0 h=%I1

NOP

Inicialización de variables

SETHI -20,%L0 OR %L0,880,%L0 mov 33,%L2

Ejecución de operaciones

ST %L2,[%L1 + (2*4)] LD [%L1+(2*4)],%L3 SUB %L0,%L3,%L4 CMP %L4,12 ,%L5 BLE a SALTO1 ADD %L0,15,%L0 BA a EXIT SALTO1 SLL %L0,32,%L0 **FXIT**

DESARROLLO

LENGUAJE DE MÁQUINA

DIRECCIONES	OP	RD	OP2	Imm22 1111111111111111110100			
OX0000	00	10000	100				
	OP	RID	OP3	RS1	i	Unusued/zero	RS2
OX0004	10	10000	00010	10000	1	0001101110000	
OX0008	11	10010	000100	10001	1	000000001000	
OX000C	11	10011	000000	10001	1	000000001000	
OX0010	10	10100	00010	10000	0	00000000	10011
OX0014	10	10101	010100	10100	1	000000001100	
	OP	a	cond	OP2	disp22		
OX0018	00	1	0010	010	000000000000000000011		
	OP	RD	OP3	RS1	i	Unusued/zero	RS2
OX001C	10	01000	000000	10000	1 000000001111		
	OP	a	cond	OP2	disp22		
OX0020	00	1	1000	010	000000000000000000000000000000000000000		
	OP	RD	OP3	RS1	i	Unusued/zero	SHCNT
OX0024	10		100101		1	00000000	100000
	OP	RID	OP2	lmm22			
OX0028	00	00000	100	0000000000000000000000			

CONCLUSIONES

- *Para iniciar a realizar las conversiones se colocó la práctica de lo aprendido en clase de los principios del diseño del hadware, los cuales me guiaron paso a paso para realizar dichas conversiones.
- *Inicialmente le asigné a cada variable un registro Local
- *Posterior a la asignación de registro de variable, realicé la inicialización de las variables, en este caso se inicializaron con la variable sintética MOV del operador OR.
- *Se utilizó la variable sintética CMP para realizar las comparaciones.
- *Realicé los complementos a dos al valor de la variable (i), la cual tiene un valor negativo. El completo a dos se utiliza para representar los números negativos, se realiza invirtiendo sus bits y luego sumando uno. Después de realizar la operación se selecciona los 22 bits más significativos de izquierda a derecha y realizó nuevamente complemento a dos para obtener un número más pequeño. Luego de realizar el complemento a dos inicializó la variable con la instrucción SETHI y OR.
- *Para realizar las conversiones debo verificar que operaciones voy a realizar para así saber qué tipos de operandos utilizar, en este caso utilicé los operandos SUB, ADD, OR, variable sintética CMP para comparar, voy a utilizar las instrucciones de BRANCH las cuales son BA y BGE, la instrucción NOP, instrucción de desplazamiento SHCNT e instrucción SETHI.
- *Para realizar la conversión de lenguaje de máquina verifiqué que tipos de instrucciones iba a utilizar para así seleccionar el tipo de formato, en este caso utilicé el formato #3 el cual se utiliza para las instrucciones Aritmético-lógicas-shcnt y el formato #2 el cual se utiliza para las instrucciones BRANCH, NOP y SETHI.
- *Seleccioné el formato OP de las operaciones que voy a realizar en el ejercicio, en este caso utilicé el OP 10 (aritmético-lógicas-shcnt) y OP
- *Se aplicó los conocimientos de los tipos de instrucciones y formatos que se deben utilizar para cada caso, para este ejercicio se utilizó el formato OP3 donde se utiliza las instrucciones aritmético-lógica y desplazamiento y OP2 donde se utiliza las instrucciones de salto.