

NO-A104 621

CONSOER TOWNSEND AND ASSOCIATES LTD ST LOUIS MO

F/6 13/13

NATIONAL DAM SAFETY PROGRAM. PERRY PHILIPS DAM (NO10019) MISSOURI ETC(U)

DACW43-80-C-0094

SEP 80 W G SHIFRIN

ML

UNCLASSIFIED

10
SAC
ADAM

AD A104621

LEVEL

MISSOURI · KANSAS CITY RIVER BASIN

PERRY PHILIPS DAM
BOONE COUNTY, MISSOURI
MO. 10019

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

THIS DOCUMENT IS BEST QUALITY PRACTICABLE.
THE COPY FURNISHED TO DDC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

United States Army
Corps of Engineers
...Serving the Army
...Serving the Nation

St. Louis District

This document has been approved
for public release and sale; its
distribution is unlimited.

BTM FILE COPY

PREPARED BY: U. S. ARMY ENGINEER DISTRICT, ST. LOUIS

FOR: STATE OF MISSOURI

SEPTEMBER, 1980

81 9 28 117

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
		AD-A104 621
4. TITLE (and Subtitle) Phase I Dam Inspection Report National Dam Safety Program Perry Phillips Dam (MO 10019) Boone County, Missouri		5. TYPE OF REPORT & PERIOD COVERED Final Report
7. AUTHOR(s) Consoer, Townsend and Associates, Ltd.		6. PERFORMING ORG. REPORT NUMBER
		8. CONTRACT OR GRANT NUMBER(s) DACW43-80-C-0094 ✓
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101		12. REPORT DATE September 1980
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES Approximately 95
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dam Safety, Lake, Dam Inspection, Private Dams		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared by or for DoD organizations.

C. CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-sponsored RDT&E," AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents.")

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & 15a. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in 15 the highest classification of the report. If appropriate, enter in 15a the declassification/downgrading schedule of the report, using the abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200.1-R.

Block 16. Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report). Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . . . Translation of (or by) . . . Presented at conference of . . . To be published in . . .

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.

REPLY TO
ATTENTION OF

DEPARTMENT OF THE ARMY
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
210 TUCKER BOULEVARD, NORTH
ST. LOUIS, MISSOURI 63101

SUBJECT: Perry Philips Dam (Mo. 10019) Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Perry Philips Dam (Mo. 10019).

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe, non-emergency by the St. Louis District as a result of the application of the following criteria:

- 1) Spillway will not pass 50 percent of the Probable Maximum Flood
- 2) Overtopping could result in dam failure
- 3) Dam failure significantly increases the hazard to loss of life downstream

SIGNED

SUBMITTED BY:

Chief, Engineering Division

09 OCT 1980

Date

SIGNED

APPROVED BY:

Colonel, CE, District Engineer

10 OCT 1980

Date

PERRY PHILIPS DAM
BOONE COUNTY, MISSOURI

MISSOURI INVENTORY NO. 10019

PHASE I INSPECTION REPORT

NATIONAL DAM SAFETY PROGRAM

Perry Philips Dam (~~Inventory Number~~ MO-10019)
Missouri-Kansas City River Basin.
Boone County, Missouri. Phase I Inspection
Report.

PREPARED BY

CONSOER, TOWNSEND AND ASSOCIATES, LTD.

ST. LOUIS, MISSOURI

AND

PRC ENGINEERING CONSULTANTS, INC.

ENGLEWOOD, COLORADO

A JOINT VENTURE

UNDER DIRECTION OF
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
FOR
GOVERNOR OF MISSOURI

Accession For	
NTIS GRA&I	
DFIC TAB	
Unannounced	
Justification	
By	
Distribution/	
Availability Codes	
Dist	Avail and Special
A	23
	CD

(1) SEPTEMBER 1980

(2) 110

410-1

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Perry Philips Dam, Missouri Inv. No. 10019
State Located: Missouri
County Located: Boone
Stream: An unnamed tributary of the Clear Creek
Date of Inspection: June 3, 1980

Assessment of General Condition

Perry Philips Dam was inspected by the engineering firms of Consoer, Townsend and Associates, Ltd. and PRC Engineering Consultants, Inc. (A Joint Venture) of St. Louis, Missouri according to the U. S. Army Corps of Engineers "Engineer Regulation No. 1110-2-106" and additional guidelines furnished by the St. Louis District of the Corps of Engineers. Based upon the criteria in the guidelines, the dam is in the high hazard potential classification, which means that loss of life and appreciable property damage could occur in the event of failure of the dam. Within the estimated damage zone of six miles downstream of the dam are three dwellings, one building, and three sheds, all of which may be subjected to flooding, with possible damage and/or destruction, and possible loss of life. Perry Philips Dam is in the intermediate size classification since it is less than 100 feet but greater than 40 feet in height.

Our inspection and evaluation indicate that the reservoir/spillway system of Perry Phlips Dam does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Perry Philips Dam being an intermediate size dam with a high hazard potential is required by the guidelines to be able to pass the

Probable Maximum Flood (PMF) without dathout overtopping the dam. Therefore, the appropriate spillway design flood for Perry Philips Dam is considered to be the PMF. It was determined that the reservoir/spillway system can accommodate approximately 12 percent of the Probable Maximum Flood before overtopping of the dam occurs. Our evaluation also indicates that the reservoir/spillway system will not accommodate the one-percent chance flood (100-year flood) without overtopping the dam.

The Probable Maximum Flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorological and hydrologic conditions that are reasonably possible in the region.

Perry Philips Dam and its appurtenant structures are in satisfactory condition. However, some deficiencies were noted by the inspection team which could affect the safety of the dam and appurtenant structures. These items are as follows: the possible seepage downstream of the toe, the trees on the downstream slope, the erosion due to wave action on the upstream slope, the accumulation of moss and other debris on the crest of the service spillway, the rutting in the emergency spillway, a need for periodic inspection by a qualified engineer and a lack of a maintenance schedule. The lack of seepage and stability analyses on record is also a deficiency that should be corrected.

It is recommended that the owner take immediate action to correct the major inadequacy of the reservoir/spillway system to pass the Probable Maximum Flood. Remedial measures should also be taken to correct or control the other deficiencies described above in the near future.

Walter G. Shifrin, P.E.

Overview of Perry Phillips Dam

NATIONAL DAM SAFETY PROGRAM

PERRY PHILIPS DAM, I.D. No. 10019

TABLE OF CONTENTS

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 1	PROJECT INFORMATION	1
	1.1 General	1
	1.2 Description of Project	2
	1.3 Pertinent Data	7
SECTION 2	ENGINEERING DATA	10
	2.1 Design	10
	2.2 Construction	10
	2.3 Operation	11
	2.4 Evaluation	11
SECTION 3	VISUAL INSPECTION	13
	3.1 Findings	13
	3.2 Evaluation	19

TABLE OF CONTENTS

(Continued)

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 4	OPERATION PROCEDURES	21
4.1	Procedures	21
4.2	Maintenance of Dam	21
4.3	Maintenance of Operating Facilities	21
4.4	Description of Any Warning System in Effect	21
4.5	Evaluation	22
SECTION 5	HYDRAULIC/HYDROLOGIC	23
5.1	Evaluation of Features	23
SECTION 6	STRUCTURAL STABILITY.	27
6.1	Evaluation of Structural Stability.	27
SECTION 7	ASSESSMENT/REMEDIAL MEASURES.	29
7.1	Dam Assessment	29
7.2	Remedial Measures.	31

TABLE OF CONTENTS

(Continued)

LIST OF PLATES

	<u>Plate No.</u>
LOCATION MAP	1
PLAN AND ELEVATION OF DAM	2
EMBANKMENT SECTION AND SPILLWAY PROFILE	3
SCS DESIGN DRAWING	4
GEOLOGIC MAP	5-6
SEISMIC ZONE MAP	7

APPENDICES

APPENDIX A - PHOTOGRAPHS

APPENDIX B - HYDROLOGIC AND HYDRAULIC COMPUTATIONS

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PERRY PHILIPS DAM, Missouri Inv. No. 10019

SECTION I: PROJECT INFORMATION

1.1 General

a. Authority

The Dam Inspection Act, Public Law 92-367 of August, 1972, authorizes the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspections. Inspection for Perry Philips Dam was carried out under Contract DACW 43-80-C-0094 between the Department of the Army, St. Louis District, Corps of Engineers, and the engineering firms of Consoer, Townsend & Associates, Ltd., and PRC Engineering Consultants, Inc. (A Joint Venture), of St. Louis, Missouri.

b. Purpose of Inspection

The visual inspection of Perry Philips Dam was made on June 3, 1980. The purpose of the inspection was to make a general assessment regarding the structural integrity and operational adequacy of the dam embankment and its appurtenant structures.

c. Scope of Report

This report summarizes available pertinent data relating to the project, provides a summary of visual observations made during the field inspection, gives an assessment of hydrologic and hydraulic conditions at the site, presents an evaluation of the

structural adequacy of the various project features and appraises the general condition of the dam with respect to safety.

Subsurface investigations, laboratory testing and detailed analyses were not within the scope of this study. No warranty as to the absolute safety of the project features is implied by the conclusions presented in this report.

It should be noted that in this report reference to the left or right abutments is viewed looking downstream. Where left abutment or left side of the dam is used in this report, this also refers to the south abutment or side, and right to the north abutment or side.

d. Evaluation Criteria

The inspection and evaluation of the dam is performed in accordance with the U.S. Army Corps of Engineers "Engineer Regulation No. 1110-2-106" and additional guidelines furnished by the St. Louis District office of the Corps of Engineers for Phase 1 Dam Inspection.

1.2 Description of the Project

a. Description of Dam and Appurtenances

The following description is based exclusively upon observations and measurements made during the visual inspection and from conversations with Mr. Perry Philips, the owner. One design drawing was located and is included in this report (see Plate 4). Any discrepancies between our field notes and the design drawing are noted in Section 2.1 in this report. No major discrepancies were observed.

The dam is a homogeneous, rolled, earthfill structure between earthen abutments, and consists of two straight portions angled at approximately 35° to each other. Photos 1 through 5 show views of the embankment. The major portion of the embankment has a bearing of approximately N 10° E and an axis length of 595 feet between the emergency spillway and the point of intersection of the two axes. The other portion has a bearing of approximately N 45° E and an axis length of 340 feet between the point of intersection of the two axes and the right abutment. The top of dam has a width of 15 feet and a total length of 935 feet between the emergency spillway and the right abutment. The top of dam slopes upward from the emergency spillway to the point of intersection of the two axes with a total elevation gain of approximately 2.4 feet; from this point of intersection to the right abutment it drops 0.8 feet in elevation (see Plate 2). The minimum elevation of the top of dam is approximately 771 feet above mean sea level (M.S.L.). The maximum structural height of the dam was measured to be approximately 44 feet. The upstream slope above the water surface varies from 1 vertical to 3 horizontal (1V to 3H) to near vertical. The downstream slope was measured as 1V to 2.25H. A 15-foot wide and 12- to 15-feet deep core trench was to be excavated into bedrock, parallel to the dam axis, according to the design drawing. Mr. Philips stated that the core trench was indeed constructed.

The double spillway system is located within the left section of the embankment. The emergency spillway is cut into the embankment at the left abutment and the service spillway is 295 feet to the right of the emergency spillway.

The service spillway consists of a 12-inch welded steel pipe laid perpendicularly through the embankment. The pipe is set on a 25 percent grade and is 145 feet in length, according to field measurements; it connects to an approximately 2-foot high, 21-inch diameter steel standpipe at the inlet end. The system functions as a drop inlet (see Photo 6). It is of Soil Conservation Service design and, according to the drawing given to the inspection team,

the design includes three 5-foot square collars welded to the pipe. A steel plate about 10 feet in length and one foot wide is welded vertically across the inlet pipe in order to act as an anti-vortex device (see Photos 6 and 7). The service spillway crest elevation is assumed to be 769 feet above M.S.L.

The emergency spillway control section is cut as a trapezoidal area into the left side of the dam at the left abutment and functions as an open channel (see Photo 10); according to field measurements, the top width is 64 feet, the bottom width is 36 feet, and the side slopes vary between 1V to 5H and 1V to 12H. The elevation of the crest is 769.75 feet above M.S.L. placing it 9 inches above the crest of the service spillway and 2.65 feet below the top of dam at the maximum section. When the water spills over the emergency spillway crest, it flows over a 46 foot long flat area, including a gravel road, and then spreads out into a type of sheet flow on an approximately 3 percent grade before eventually finding its way to the downstream channel (see Photo 11).

No low level drains or outlet works were provided for this dam.

b. Location

Perry Philips Dam is located in Boone County of the State of Missouri on an unnamed tributary of Clear Creek. The dam is located approximately 4.5 miles southeast of Columbia. There are no downstream communities. The dam is located in the southeast portion of Section 32 of Range 12 West, Township 48 North as shown on the Columbia, Missouri Quadrangle (7.5 minute series) sheet.

c. Size Classification

Perry Philips Dam impounds less than 1000 acre-feet and more than 50 acre-feet which classifies it as a "small" size dam. However, the maximum structural height of the dam is less than 100 feet but greater than 40 feet which classifies it as an "intermediate" size dam. The size classification is determined by either the storage or the height, whichever option gives the larger size category. Therefore, the size classification is determined to fall within the "intermediate" category, according to the "Engineer Regulation No. 1110-2-106, Appendix D" by the U.S. Department of the Army, Office of the Chief Engineer.

d. Hazard Classification

The dam has been classified as having a "high" hazard potential in the National Inventory of Dams, on the basis that in the event of failure of the dam or its appurtenances, excessive damage could occur to downstream property, together with the possibility of the loss of life. From a visual inspection of the downstream area, our findings concur with this classification. There are three dwellings, one building and three sheds within the estimated damage zone, which extends approximately six miles downstream of the dam (see Photos 13 and 14).

e. Ownership

Perry Philips Dam is privately owned by Mr. Perry Philips. His mailing address is as follows: Mr. Perry Philips, Box 978, Columbia, Missouri 65205.

f. Purpose of Dam

Perry Philips Dam was constructed to impound water for recreational use.

g. Design and Construction History

According to the present owner, Mr. Perry Philips, the dam was designed by Bernard G. Browning of the Soil Conservation Service in 1962. One design drawing was made available from the Soil Conservation Service and is included as part of this report.

According to Mr. Philips, the dam was constructed by Twehous Excavation Co. of Jefferson City, Missouri.

h. Normal Operational Procedures

Normal procedure for the Perry Philips Dam is to allow the reservoir to remain as full as possible while the water level is controlled by rainfall, runoff, evaporation and the elevation of the service spillway crest.

1.3

Pertinent Data

a. Drainage Area (square miles): 0.55

b. Discharge at Damsite

Estimated experienced maximum flood (cfs): Unknown

Estimated ungated spillway capacity with reservoir at top of dam elevation (cfs): 149

c. Elevation (Feet above MSL)

Top of dam (minimum): 771.0

Spillway crest:

 Service Spillway 769.0 (Assumed)

 Emergency Spillway 769.75

Normal Pool: 769.0

Maximum Experienced Pool: >769.75

Observed Pool: 769.0

d. Reservoir

Length of pool with water surface
at top of dam elevation (feet): 2300

e. Storage (Acre-Feet)

Top of dam (minimum): 437

Spillway crest:

 Service Spillway 366

 Emergency Spillway 394

Normal Pool: 366

Maximum Experienced Pool: Unknown

Observed Pool: 366

f. Reservoir Surfaces (Acres)

Top of dam (minimum): 39

Spillway crest:

 Service Spillway 31

Emergency Spillway	35
Normal Pool:	31
Maximum Experienced Pool:	Unknown
Observed Pool:	31

g. Dam

Type:	Rolled, Earthfill
Length:	935 feet
Structural Height:	44 feet
Hydraulic Height:	44 feet
Top width:	15 feet
Side slopes:	
Downstream	1V to 2.25H (measured)
Upstream	1V to 3H to near vertical (measured, above water surface)
Zoning:	Homogeneous
Impervious core:	NA
Cutoff:	A core trench with 15-foot bottom width and side slopes of 1H to 1V. Excavated to bedrock. (According to design drawing).
Grout curtain:	No
Freeboard above normal reservoir level:	2 feet (minimum)
Volume:	59,497 cu.yds. (from design drawing)

h. Diversion and Regulating Tunnel. . . . None

i. Spillway

Type:	
Service Spillway	Drop inlet, uncontrolled
Emergency Spillway	Earthcut channel, uncontrolled
Length of crest:	
Service Spillway	5.5 feet, (21-inch diameter standpipe)

Emergency Spillway 36.0 feet

Crest Elevation (feet above MSL):

Service Spillway 769.0

Emergency Spillway 769.75

j. Regulating Outlets None

SECTION 2: ENGINEERING DATA

2.1 Design

One design drawing was made available for use in this report (see Plate 4). The Soil Conservation Service supplied the drawing and was also responsible for the design of the dam and appurtenant structures. The drawing was dated September 21, 1962 and revisions were made to the drawing in August of 1963.

According to the design drawing, the downstream slope was 1V to 2H, and the service spillway conduit was 138 feet; however, field measurements resulted in a downstream slope of 1V to 2.25H and a spillway conduit length of 145 feet. The design also utilized a hooded pipe structure instead of a drop inlet structure.

2.2 Construction

No data are available concerning the construction of the dam and appurtenant structures, other than the design drawing, and the information obtained from Mr. Philips.

According to Mr. Philips, the compaction of the embankment was achieved by the activity of the earthmoving equipment across the embankment. No compaction control was employed. A core trench was excavated to bedrock (limestone) parallel to the dam axis; this corresponds to what is shown on the design drawing. The trench has a bottom width of 15 feet and side slopes of 1V to 1H, as shown on the design drawing.

2.3

Operation

No operational data are available for Perry Philips Dam.

2.4

Evaluation

a. Availability

The availability of engineering data is somewhat lacking and consists of only one design drawing, a Soil Survey for Boone County published by the Soil Conservation Service, State Geological Maps, and U.S.G.S. quadrangle sheets. No information was available on construction or operation of the dam, other than the information obtained from Mr. Philips.

b. Adequacy

The available engineering data did not allow for a definitive review and evaluation. Therefore, the adequacy of this dam could not be assessed from the standpoint of reviewing and evaluating design, operation and construction data, but is based primarily on visual inspection, past performance and present condition of the dam. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.

c. Validity

The only valid engineering data is the one design drawing obtained from the Soil Conservation Service. From field measurements, the dam appears to have been basically constructed according to the available design drawing with only minor discrepancies which are noted in Section 2.1. The only discrepancy that might have some

effect on the safety of the dam and appurtenant structures would be the use of the drop inlet structure instead of the hooded pipe structure. This appears to have changed the design freeboard from 3.1 feet to a minimum of approximately 2 feet.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

A visual inspection of the Perry Philips Dam was made on June 3, 1980. The following persons were present during the inspection:

Name	Affiliation	Disciplines
Mark Haynes, P.E.	PRC Engineering Consultants, Inc.	Project Engineer, Soils and Mechanical
Jerry Kenny	PRC Engineering Consultants, Inc.	Hydraulics and Hydrology
Kenneth Bullard, P.E.	PRC Engineering Consultants, Inc.	Hydraulics and Hydrology
Robert McLaughlin, P.E.	PRC Engineering Consultants, Inc.	Civil
Razi Quraishi, R.P.G.	PRC Engineering Consultants, Inc.	Geology
Kevin Blume	Consoer, Townsend & Assoc., Ltd.	Civil and Structural
Perry Philips	Owner	

Specific observations are discussed below.

b. Dam

The overall condition of the dam appears to be satisfactory. However, some items of concern were observed and are described below.

The top of dam supports a gravel access road (see Photos 2 and 3). No tire ruts or depressions, which are sometimes associated with vehicular traffic across earthen structures were observed. The difference in elevation along the top of dam did not appear to be due to an instability of the embankment. According to the design drawing, an additional layer of soil, up to 4 feet thick, was placed on the top of dam in order to allow for settlement of the embankment and foundation materials. Therefore, the difference in elevation is possibly due to the nonoccurrence of the anticipated settlement in the embankment and foundation. No depressions indicating a localized settlement of the embankment were observed. No cracks or misalignment, other than the change in the alignment as originally constructed, in either the vertical or horizontal directions were apparent. According to Mr. Philips, the dam has never been overtopped and no evidence indicating the contrary was observed.

Dumped riprap was seen on the upstream slope in some areas, however, the slope does not appear to be adequately protected against wave erosion. The upstream slope has undergone some erosion due to wave action. Erosional scarps due to wave action were observed along the slope extending from the water surface to approximately the top of dam in some areas. According to Mr. Philips, canary reed grass was planted along the shoreline recently to try to prevent further erosion of the slope. The slope appeared to be adequately protected against surface runoff by a heavy, unmaintained grass cover. No depressions, bulges or cracks indicative of major slope or foundation movement were observed.

The downstream slope is adequately protected against surface runoff by a tall, unmaintained grass cover. No major surface erosion was observed. Several large trees were observed growing on the slope. One area of possible seepage was observed near the bend in the embankment starting at the toe of the slope and extending downstream of the toe. Moist boggy ground, standing water and cattails were observed in the area of possible seepage. The biggest portion of the area is located approximately 60 feet downstream of the toe and is approximately 120 feet long and 50 feet wide (see Photo 5). No measurable seepage was observed. No bulges, depressions or cracks indicative of major slope or foundation movement were observed. A comprehensive inspection of the slope, however, was hampered due to the tall grass cover.

Both abutments are at approximately the same elevation as the average top of dam. Both abutments appear to be adequately protected against erosion. No instabilities or seepage areas were observed on either abutment.

No evidence of burrowing animals was observed on either of the abutments or the embankment. According to Mr. Philips, they have had muskrat problems in the reservoir in the past, however, the muskrats are trapped during the winter months when present.

c. Project Geology and Soils

(1) Project Geology

The damsite is located on an unnamed tributary of Clear Creek in the Dissected Till Plains Section of the central Lowland Physiographic Province. Loess-mantled Kansas drift covers the surface of most of the Dissected Till Plains Section. This section is distinguished from the Young Drift Section to the north and from the Till Plains on the east by the stage it has reached in the post-glacial erosion cycle. Broadly generalized, this section is a nearly flat till plain submature to mature in its erosion cycle.

The topography at the damsite is rolling with V- to U-shaped valleys. Elevation ranges from 760 feet above M.S.L. at the damsite to 800 feet nearly 0.25 miles south of the damsite. The reservoir slopes are generally between 5° and 10° from the horizontal. The area near the damsite is covered with slope wash deposits of glacial-fluvial and loess origins consisting of yellowish brown clayey silt.

The regional bedrock geology beneath the glacial outwash deposits in the damsite area, as shown on Geologic Map of Missouri (1979) (see Plate 5), consists of Pennsylvanian age undifferentiated rocks, Pennsylvanian Marmaton-Cherokee Group rocks (cyclic deposits of shale, limestone, and sandstone), Mississippian age Burlington Limestone (cherty, grayish brown, sandy limestone), Devonian age rocks of the Sulphur Spring Group (Glen Park Limestone and Grassy Creek Shale), and Ordovician age rocks consisting of St. Peter Sandstone and Powell Dolomite. The predominant bedrock near the site vicinity underlying the glacial-fluvial deposits are the Pennsylvanian Marmaton-Cherokee Group, and the Mississippian Burlington Limestone. Inlet and outlet areas of the unnamed tributary of Clear Creek contain Quaternary alluvium. No outcropping of bedrock was seen at the site.

No faults have been identified in the vicinity of the damsite. The closest trace of a fault to the damsite is the Fox Hollow Fault nearly 10 miles south of the damsite. The Fox Hollow Fault had its last movement in post-Mississippian time. Thus, the fault has no effect on the dam.

Perry Philips Dam consists of a homogeneous, earthfill embankment, a drop inlet service spillway with a metallic outlet pipe located at the maximum section of the embankment and the emergency spillway located near the left abutment.

Based on the design drawing from the Soil Conservation Service, and conversations with the owner, Mr. Perry Philips, the embankment rests on the glacial-fluvial deposits with a core trench excavated to the Burlington Limestone bedrock. According to the boring logs on the design drawing, the limestone bedrock was encountered at depths of 5 to 10 feet below the top of overlying glacial-fluvial deposit. The service spillway metallic outlet pipe and the drop inlet structure rest on compacted embankment fill (dark brown, fine, sandy silt to brown, clayey silt). The emergency spillway was cut into the compacted embankment fill.

(2) Project Soils

According to the "Soil Survey for Boone County, Missouri" published by the Soil Conservation Service in 1962, the common soils in the general area of the dam belong to the Thin Loess Timber:Weldon-Union association. From the Boone County soil maps, the soils at the damsite consist of the Lindley loam and clay loam, the Sharon silt loam and the Union silt loam, and silty clay loam. These soils are basically formed from glacial till, alluvium, and weathered rock. The Lindley soil is generally quite susceptible to erosion. If the Lindley soil type was used in the embankment, the potential of failure of the embankment would be increased due to erosion during overtopping.

Materials removed from the embankment appeared to be a light brown, clayey silt with traces of fine to medium sand. Based upon the Unified Soil Classification System, the soil would probably be classified as an ML. This is an impervious soil type which generally has the following characteristics: a coefficient of permeability less than 50 feet per year; medium to low shear strength, and intermediate to low resistance to piping.

d. Appurtenant Structures

(1) Service Spillway

There is much floating moss and organic debris which floats toward the shoreline (see Photo 7) where it gathers; as it does so, it also gathers around the inlet standpipe and the metal posts in the vicinity (see Photo 6). Since there is not a trashrack included in the inlet system, the moss, weeds, etc., begin to grow and hang over the crest of the standpipe. The pipe does not appear to have a protective coating; also, the anti-vortex device has no protective coating and is presently rusting. The entire outlet opening of the conduit was underwater on the day of the inspection (see Photo 8).

(2) Emergency Spillway

The crest of the emergency spillway is well protected with a grass cover and an apparently well compacted gravel road. The discharge area is also well protected with a grass cover (see Photos 10 and 11). The approach channel area of the open channel crest has some rutting and the grass cover in general is somewhat sparse. The ruts appear to be from vehicular wheels and were filled with water on the day of inspection, although the ruts were somewhat above the reservoir water level. Although the emergency spillway has been used by excess reservoir flows on a few occasions in the past, it appears that no damage has been sustained.

(3) Outlet Works

There were no regulated outlet works or low level drain pipes constructed for this dam.

e. Reservoir Area

The reservoir water surface elevation at the time of the inspection was 769 feet above M.S.L.

The surface area of the reservoir at normal water level is about 31 acres. The rim seems to be stable. Considerable erosion due to wave action was observed along the rim, however, the erosion does not jeopardize the safety of the dam or appurtenant structures. The land around the reservoir slopes gently to the rim and is grass and/or tree covered. There are no homes built in close proximity to the reservoir (see Photo 12).

f. Downstream Channel

The downstream channel near the dam is undefined and obstructed with trees and bushes (see Photo 9).

3.2 Evaluation

The visual inspection uncovered nothing of a consequential nature which would require immediate remedial action. However, some conditions were observed which could adversely affect the dam in the future and these should be corrected within a reasonable period of time.

1. The possible seepage indicated by the cattails, standing water, and boggy ground at the toe and downstream of the toe could affect the structural stability of the dam. If caused by seepage and if the rate of seepage were to increase, it is possible that the seepage could transport soil particles which could cause piping of embankment material. This could lead to an eventual failure of the embankment.

2. The trees observed on the downstream slope pose a potential danger to the safety of the dam depending upon the extent of the root system. The roots of trees present possible paths for piping through the embankment. The root systems can also do damage to the

embankment from being uprooted during a storm.

3. The wave erosion on the upstream slope does not appear to affect the stability of the dam in its present condition. Measures have been taken, according to Mr. Philips, to control the erosion (e.g., the planting of the canary reed grass). Nevertheless, continual erosion of the slope can only be detrimental to the stability of the dam.

4. The vegetation on the embankment should be properly maintained. A tall growth of vegetation on the embankment hinders a comprehensive inspection of the dam and potential problems could go undetected.

5. The moss and other miscellaneous floating debris get caught in a position of half in and half out of the drop inlet, but eventually pressure can build until the floating debris falls to the bottom of the standpipe and the into the spillway pipe (see Photo 6). If this situation continues unchecked, it could cause a severe blockage in the service spillway system, thus causing reservoir levels to rise faster than necessary during heavy reservoir inflows.

6. The anti-vortex plate has a coating of rust as do the supports to which it is welded. As the rusting gradually becomes more severe, more corrosive action could take place causing the weakening and possible failure of the plate (see Photo 6).

7. The rutting in the emergency spillway approach is a relatively small item at this time, and is easily correctable.

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

There are no specific operational procedures for the Perry Philips Dam. The dam was built to impound water primarily for recreational purposes.

4.2 Maintenance of Dam

The dam and appurtenant structures are maintained by the owner, Mr. Perry Philips and his resident maintenance crew. The top of dam appears to be in fair condition and is covered with a one lane gravel road. According to the owner, Mr. Philips, the road was recently graded. Mr. Philips also stated that the slopes are too steep to mow and, consequently, the slopes are covered with a tall unmaintained grass cover. There are several trees growing on the downstream slope, and erosion due to wave action has occurred on the upstream slope near the waters edge.

4.3 Maintenance of Operating Facilities

There are no operable facilities at the damsite.

4.4 Description of Any Warning System in Effect

The inspection team is not aware of any existing warning system consisting of any electrical or manual warning notification plans in effect for this dam.

4.5 Evaluation

The operation procedures are nonexistent and maintenance for Perry Phillips Dam seems to be adequate. Although the dam does not appear to be neglected, the remedial measures described in Section 7 should be undertaken to improve the condition of the dam.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design Data

The watershed area of the Perry Philips Dam upstream from the dam axis consists of approximately 353 acres. The watershed area is mostly pasture and range land with some urbanized areas. Land gradients in the watershed average roughly 2 percent. The Perry Philips Dam and Reservoir are located on an unnamed tributary of Clear Creek. The reservoir is about 0.5 miles upstream from the confluence of the unnamed tributary and Clear Creek. The watershed is approximately 1 mile long at its longest arm. A drainage map showing the watershed and the downstream hazard zone is presented as Plate 1 in Appendix B.

Evaluation of the hydraulic and hydrologic features of Perry Philips Dam was based upon criteria set forth in the Corps of Engineers' "Engineer Regulation No. 1110-2-106" and additional guidance provided by the St. Louis District of the Corps of Engineers. The Probable Maximum Flood (PMF) was calculated from the Probable Maximum Precipitation (PMP) using the methods outlined in the U.S. Weather Bureau Publication, Hydrometeorological Report No. 33. The probable maximum storm duration was set at 24 hours, and storm rainfall distribution was based upon criteria given in the Corps of Engineers' EM 110-2-1411 (Standard Project Storm). The Soil Conservation Service (SCS) method was used for deriving the unit hydrograph, utilizing the Corps of Engineers' computer program HEC-1 (Dam Safety Version). The unit hydrograph parameters are presented in Appendix B. The SCS method also was used for determining the loss rate. The hydrologic soil group of the watershed was determined by use of published soil maps. The hydrologic soil group

of the watershed and the SCS curve numbers are presented in Appendix B. The curve number, unit hydrograph parameters, the PMP index rainfall and the percentages for various durations were direct input into the HEC-1 (Dam Safety Version) computer program to obtain the PMF hydrograph. The computed peak inflows of the PMF and the one-half PMF are 5,824 cfs and 2,912 cfs, respectively.

Both the PMF and the one-half PMF inflow hydrographs were routed through the reservoir by the Modified Puls Method also utilizing the REC-1 (Dam Safety Version) computer program. A storm of 50 percent of the PMF preceded the PMF and a storm of 25 percent of the PMF preceded the one-half PMF, each by four days. The reservoir was assumed at the mean annual high water level at the beginning of the antecedent storms. The mean annual high water level for Perry Philips Dam Reservoir was estimated to be at the crest of the service spillway. The antecedent storm of 50 percent of the PMF, when routed through the reservoir, will leave the reservoir at approximately the same elevation as the crest of the service spillway at the end of the four day period. Thus, the reservoir was assumed at the crest level of the service spillway at the start of the routing computation for the PMF, the one-half PMF and other PMF ratio floods. The peak outflow discharges for the PMF and the one-half PMF are 4,777 and 1,916 cfs, respectively. Both the PMF and the one-half PMF when routed through the reservoir resulted in overtopping of the dam.

The sizes of physical features utilized to develop the stage-outflow relation for the spillway and overtopping of the dam were taken from field notes and sketches prepared during the field inspection. The reservoir elevation-area data were obtained from the U.S.G.S. Columbia, Missouri Quadrangle topographic map (7.5 minute series). The reservoir elevation-area curve and the spillway and overtop rating curve are presented as Plates 2 and 3, respectively, in Appendix B.

From the standpoint of dam safety, the hydrologic design of a dam must aim at avoiding overtopping. Overtopping is especially dangerous for an earth dam because of its erodible characteristics. The safe hydrologic design of an embankment dam requires a spillway discharge capability combined with an embankment height that can handle a very large and exceedingly rare flood without overtopping the dam.

The Corps of Engineers designs dams to safely pass the Probable Maximum Flood that could be generated from the dam's watershed. This is the generally accepted criterion for major dams throughout the world and is the standard for dam safety where overtopping would pose any threat to human life. Accordingly, the hydrologic requirement for safety for this dam is the capability to pass the Probable Maximum Flood without overtopping the dam.

b. Experience Data

It is believed that records of reservoir stage or spillway discharge are not maintained for this dam site. However, according to the owner, flow of an undetermined depth has passed through the emergency spillway on one or two occasions since 1964. Reportedly, the dam has also never been overtopped.

c. Visual Observations

Observations made of the spillways during the visual inspection are discussed in Section 3.1.d and evaluated in Section 3.2

d. Overtopping Potential

As indicated in Section 5.1a, both the Probable Maximum Flood and the one-half Probable Maximum Flood when routed through the reservoir, resulted in overtopping of the dam. The peak outflow discharges for the PMF and the one-half PMF are 4,777 and 1,916 cfs,

respectively. The maximum capacity of the spillway just before overtopping the dam is 149 cfs. The PMF overtopped the dam by 2.62 feet and the one-half PMF overtopped the dam by 1.82 feet. The total duration of flow over the lowest point on the top of dam is 11.67 hours during the PMF and 7.42 hours during the occurrence of the one-half PMF. The spillway/reservoir system of Perry Philips Dam is capable of accommodating a flood equal to approximately 12 percent of the PMF just before overtopping the dam. The reservoir/spillway system of Perry Philips Dam will not accommodate the one percent chance (100-year flood) flood without overtopping the dam.

The failure of the dam could cause extensive damage to the property downstream of the dam and possible loss of life. The estimated damage zone extends approximately six miles downstream of the dam. There are three dwellings, one building and three sheds within the damage zone.

SECTION 6: STRUCTURAL STABILITY

6.1

Evaluation of Structural Stability

a. Visual Observations

There were no major signs of settlement or distress observed on the embankment or foundation during the visual inspection. The embankment is protected against surface erosion by an adequate cover of unmaintained vegetation. The possible seepage observed near the bend in the dam axis does not appear to affect the stability of the dam in its present condition. Nevertheless, any increases in the condition of the seepage can only be detrimental to the embankment. The erosion due to wave action on the upstream slope does not appear to be serious enough to constitute an unsafe condition and according to Mr. Philips, steps have been taken to control the problem. Nevertheless, the erosional problem should be monitored and corrective measures should be taken when deemed necessary. There was no indication of past or present slope instability. In the absence of seepage and stability analyses, no quantitative evaluation of the structural stability can be made.

The service and emergency spillways appeared to be structurally stable on the day of the inspection, as there were no obvious weak spots observed or seepage found in connection with the spillways at the inlet or outlet areas.

b. Design and Construction Data

No design computations were uncovered during the report preparation phase. Parameters used for the hydraulic design of the spillways and boring logs of materials encountered in the borrow areas and in the embankment foundation are shown on the design

drawing presented in this report (see Plate 4). Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available. No embankment or foundation soil parameters were available for carrying out a conventional stability analysis on the embankment. No construction data or specifications relating to the degree of embankment compaction were available for use in a stability analysis.

c. Operating Records

No operating records are available relating to the dam or appurtenant structures. No regulated outlet works system was provided for the dam. The water level on the day of the visual inspection was at the crest of the service spillway. The reservoir remains close to full at all times, according to Mr. Philips.

d. Post Construction Changes

No post construction changes are known to exist which will affect the structural stability of the dam.

e. Seismic Stability

The dam is located in Seismic Zone 1 (see Plate 5), as defined in "Recommended Guidelines for Safety Inspection of Dams" prepared by the Corps of Engineers, and will not require a seismic stability analysis. An earthquake of the magnitude which would be expected in Seismic Zone 1 will not cause distress to a well designed and constructed earth dam. Available literature indicates that no active faults exist near the vicinity of the damsite.

SECTION 7: ASSESSMENT/REMEDIAL MEASURES

7.1

Dam Assessment

The assessment of the general condition of the dam is based upon available data and the visual inspection. Detailed investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation, however, the investigation is intended to identify any need for such studies.

It should be realized that the reported condition of the dam is based upon observations of field conditions at the time of the inspection along with data available to the inspection team.

It is also important to realize that the condition of a dam depends upon numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be assurance that an unsafe condition could be detected.

a. Safety

The spillway capacity of Perry Philips Dam is found to be "Seriously Inadequate". The spillway/reservoir system will accommodate about 12 percent of the PMF without overtopping the dam. The safety of the embankment will be in jeopardy if the dam is overtopped. The dam itself would be susceptible to erosion due to the high velocity of flow on its downstream slope which could lead to an eventual failure of the dam.

The dam and appurtenant structures appeared to be in satisfactory condition. However, no quantitative evaluation of the structural safety of the embankment can be made in view of the absence of seepage and stability analyses. The present embankment and appurtenant structures, however, have reportedly performed satisfactorily since their construction without failure or evidence of instability. The dam has reportedly never been overtopped.

The safety of the dam can be improved if the deficiencies described in Section 3.2 and 6.1a and below are properly corrected according to the procedure given in Section 7.2b. The trees on the downstream slope could jeopardize the safety of the dam.

b. Adequacy of Information

The conclusions presented in this report are based upon field measurements, the design drawing, past performance and the present condition of the dam. The design drawing was of limited use to the overall assessment of the dam and appurtenant structures. Information on the operation and maintenance of the dam was not available. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were also not available, which is considered a deficiency.

c. Urgency

The remedial measures recommended in Paragraph 7.2 should be accomplished within a reasonable period of time. The items recommended in paragraph 7.2a should be pursued on a high priority basis.

d. Necessity for Phase II Inspection

Based upon results of the Phase I inspection, and if the remedial measures recommended in Paragraph 7.2 are undertaken, a Phase II inspection is not felt to be necessary.

7.2 Remedial Measures

a. Alternatives

There are several general options which may be considered to reduce the possibility of dam failure or to diminish the harmful aspects of such a failure. Some of these options are:

1. Increase the spillway capacity to pass the PMF without overtopping.
2. Increase the height of the dam enough to pass the PMF without overtopping the dam; an investigation should be done which also includes studying the effects on the structural stability of the existing embankment. The overtopping depth during the occurrence of the PMF, stated in Section 5.1d, is not the required or recommended increase in the height of the dam.
3. A combination of 1 and 2 above.

b. O & M Procedures

1. The potential seepage at the toe of the slope and downstream of the toe should be monitored to detect any changes in turbidity, location or quantity. Any changes should be investigated further under the guidance of an engineer experienced in the design and construction of earth dams and repairs made as necessary.

2. Remove the trees from the downstream slope of the dam. Removal of large trees should be accomplished under the guidance of an engineer experienced in the design and construction of earth dams.
3. The erosion due to wave action on the upstream slope should be monitored and if the erosion continues, protective measures should be employed to protect the slope from further damage. The repairs should be accomplished under the guidance of an engineer experienced in the design and construction of earth dams.
4. The vegetation on the embankment should be properly maintained and an adequate vegetative cover retained on the embankment to protect it from surface erosion and to prevent excessive erosion in the event the dam is overtopped. A high dense growth of vegetation on the embankment could prevent a comprehensive inspection of the dam and potential problems could go undetected.
5. Seepage and stability analyses should be performed by a professional engineer experienced in the design and construction of earth dams.
6. The moss and weed growth in and around the service spillway inlet area should be cleared away and prevented from returning and accumulating.
7. The condition of rust on the service spillway inlet and outlet areas should be monitored and watched for the occurrence of more corrosive reaction.
8. The rutting in the emergency spillway approach area should be refinished to the same degree of protection as the surrounding spillway crest and channel.

9. The owner should initiate the following programs:

- (a) Periodic inspection of the dam by a professional engineer experienced in the design and construction of earth dams.
- (b) Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.

PLATES

PLATE 1

LOCATION MAP - PERRY PHILIPS DAM

MO. 10019

PLATE 2

PERRY PHILIPS DAM (MO. 10019)
PLAN AND ELEVATION
(SHEET 1 OF 2)

OBSERVED RESERVOIR WATER SURFACE EL. 769 (ASSUMED) ON JUNE 3, 1980

SECTION A-A
EMERGENCY SPILLWAY PROFILE

(1) REFERENCE POINT, SEE SHEET 1 OF 2

PERRY PHILIPS DAM (MO. 10019)
MAXIMUM SECTION OF EMBANKMENT AND
EMERGENCY SPILLWAY PROFILE
(SHEET 2 OF 2)

TAK #1, ELEV. 100.00 Nail In Notch West Root
 18" Hickory Tree N.E. of Junct. of Two Main
 Drainage Ways, Also 525' S.E. of ¹⁰⁰
 North End of Fill.

<u>STORAGE</u>	
885V.	Acc.
116.0	31.
<u>116.0</u>	<u>36.</u>
116.0	39.6
119.0	48.

LOCATION MAP

200' 0 200' 400'

Sec. 32 T 48 N R 13 W

Serino F-14, T-60 110
EMERGENCY SERVO 116.3

PLATE 4

Borrow Areas No. 1 and No. 2 are planned to be completed and used as fish ponds.

It is the intent of this contract that contract items, No. 8, Earth Fill; No. 9, Finish Grading; and No. 10, Structure Spurways, will complete these fish ponds for operations.

Materials from these areas will be zoned and placed in the fill as directed by the engineer.

The following special conditions apply to these borrow areas:

1. The floor to be leveled in benches to 0.4% at grade lines as established in field
 2. Side Slopes 3:1

WATERSHED Map

1330 0 1320 1340

BILL OF MATERIALS

EARTH FILL	53.697	LILYME
PINE, 12' 6" WITH 1' PINE	7.98	ZIN PINE
ANTL. SUEP CULTURE 5' X 15'	1.3	LILY
BOTTLE 18" X 18"	1	LILY
PINE (2 IN HATCH PINE)	1	LILY
ONE ELEVATION POINT	0.00	LILYME

BERNARD B. BREWSTER

PENNY PHILIPS
Boose Co S.W.C.D.
Hoped Park School

U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

卷之三

卷之三

ପାତ୍ରକାଳୀନମାନଙ୍କ

卷之三

—
—

• • • • •

FIGURE 6. CHANGES IN THE DENSITY OF
THE CROWN & MATURE FOREST.

PLATE 5

SCALE

⊕ LOCATION OF DAM

NOTE: LEGEND OF THIS DAM IS ON PLATE 6

REFERENCE:

GEOLOGIC MAP OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

MISSOURI GEOLOGICAL SURVEY

KENNETH H. ANDERSON, 1979

REGIONAL GEOLOGICAL MAP
OF
PERRY PHILIPS DAM

PERRY PHILIPS DAM
PLATE 6

LEGEND

<u>PERIOD</u>	<u>SYMBOL</u>	<u>DESCRIPTION</u>
QUATERNARY	Qal	ALLUVIUM: SAND, SILT, GRAVEL
PENNSYLVANIAN	Pu	PENNSYLVANIAN UNDIFFERENTIATED
	Pm	MARMATON GROUP: CYCLIC DEPOSITS OF SHALE, LIMESTONE AND SANDSTONE
	Pcc	CHEROKEE GROUP: CYCLIC DEPOSITS OF SHALE, LIMESTONE AND SANDSTONE
MISSISSIPPIAN	Mo	KEOKUK - BURLINGTON FORMATION: CHERTY GRAYISH BROWN SANDY LIMESTONE
	Mk	CHOUTEAU GROUP: NORTHVIEW, COMPTON AND BACHELOR FORMATION (LIMESTONE AND SHALE)
DEVONIAN	D	SULPHUR SPRING GROUP: BUSHBERG SANDSTONE, GLEN PARK LIMESTONE, GRASSY CREEK SHALE
ORDOVICIAN	Osp	ST PETER SANDSTONE
	Ojc	SMITHVILLE FORMATION, POWELL DOLOMITE

PLATE 7

APPENDIX A
PHOTOGRAPHS TAKEN DURING INSPECTION

Perry Philips Lake Dam

Photographs

- Photo 1 - View of the upstream slope from the right side showing the reeds canary grass.
- Photo 2 - View of the top of dam looking across the emergency spillway.
- Photo 3 - View of the top of dam and upstream slope from the right side of the embankment.
- Photo 4 - View of the downstream slope.
- Photo 5 - View of the downstream slope showing the area of possible seepage. The area shows up in the photo as the dark green area in the center of the photo.
- Photo 6 - View of the service spillway drop inlet showing the anti-vortex steel plate, the moss-weed growth over spillway edge, and the lack of some kind of trashrack.
- Photo 7 - View of the upstream slope showing the location of the service spillway.
- Photo 8 - View of the submerged outlet of the service spillway.
- Photo 9 - View of the downstream channel from the outlet of the service spillway.
- Photo 10 - View of the control section of the emergency spillway looking toward the reservoir.

Photo 11 - View of the discharge channel of the emergency spillway showing sheet flow type discharge channel.

Photo 12 - View of the reservoir and rim.

Photo 13 - View of a dwelling approximately 0.6 miles downstream of the dam taken from the downstream channel.

Photo 14 - View of a dwelling approximately 1.1 miles downstream of the dam taken from the downstream channel.

Perry Phillips Dam

Photo 1

Photo 2

Perry Phillips Dam

Photo 3

Photo 4

Perry Phillips Dam

Photo 5

Photo 6

Perry Phillips Dam

Photo 7

Photo 8

Perry Phillips Dam

Photo 9

Photo 10

Perry Philips Dam

Photo 11

Photo 12

Philip L.

Perry Phillips Dam

Photo 13

Photo 14

APPENDIX B

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

PLATE IA, APPENDIX B

**PERRY PHILIPS DAM (MO. 10019)
DRAINAGE BASIN AND
DOWNSTREAM HAZARD ZONE**

PLATE 1B, APPENDIX B

BRAINCAGE BOUNDARY -----

SCALE 1:24000

PERRY PHILIPS DAM (MO. 10019)
DRAINAGE BASIN AND
DOWNSTREAM HAZARD ZONE

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 1 OF 1

DAM NAME: PERRY PHILIPS DAM / ID NO.: 10019 JOB NO. 1263

RESERVOIR ELEVATION - AREA DATA

BY F Z DATE 6/27/82
KIR

ELEV. (M.S.L.) (Ft.)	RESERVOIR SURFACE AREA (Acres)	REMARKS
735	0	Estimated Streambed at dam
740	2	Interpolated
750	7	"
760	16	"
769	31	Service Spillway Crest (Assumed)
769.75	35	Emergency Spillway Crest
770	36.5	Measured on USGS Quad.
771	39	Top of dam (Minimum)
780	77.0	Measured on USGS Quad.
790	132.0	"

PLATE 2, APPENDIX B

PERRY PHILIPS DAM (MO. 10019)
RESERVOIR ELEV.-AREA CURVE

PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI

SHEET NO. 1 OF 1

DAM NAME: PERRY PHILLIPS DAM (MO 10019)

JOB NO. 1263

UNIT HYDROGRAPH PARAMETERS

BY D.C. DATE 6-23-FO
R.L.B.

1) DRAINAGE AREA, $A = .56 \text{ sq. mi} = (353 \text{ acres})$

2) LENGTH OF STREAM, $L = (1.9'' \times 2000' = 3800') = .72 \text{ mi.}$

3) ELEVATION AT DRAINAGE DIVIDE ALONG THE LONGEST STREAM,

$$H_1 = 833$$

4) ELEVATION OF RESERVOIR AT SPILLWAY CREST, $H_2 = 769.0$

5) ELEVATION OF CHANNEL BED AT $0.85L$, $E_{85} = 822$

6) ELEVATION OF CHANNEL BED AT $0.10L$, $E_{10} = 775$

7) AVERAGE SLOPE OF THE CHANNEL, $S_{AVG} = (E_{85} - E_{10}) / 0.75L = \frac{822 - 775}{.75(3800)} = 1.7\%$

8) TIME OF CONCENTRATION:

A) BY KIRPICH'S EQUATION,

$$t_c = [(11.9 \times L^3) / (H_1 - H_2)]^{0.385} = \left[\frac{(11.9 \times .72^3)}{833 - 769} \right]^{0.385} = .358 \text{ hrs.}$$

B) BY VELOCITY ESTIMATE,

$$\text{SLOPE} = 17\% \Rightarrow \text{AVG. VELOCITY} = 2 \text{ ft/s}$$

$$t_c = L/v = \frac{3800}{2 \times 3600} = .53 \text{ hrs.}$$

USE $t_c = .358 \text{ hrs.}$

9) LAG TIME, $t_l = 0.6 t_c = .215 \text{ hrs.}$

10) UNIT DURATION, $D \leq t_c / 3 = .072 \text{ hrs.} < 0.083 \text{ hr.}$

USE $D = .083 \text{ hrs.}$

11) TIME TO PEAK, $T_p = D/2 + t_l = .256 \text{ hrs.}$

12) PEAK DISCHARGE,

$$q_p = (484 \times A) / T_p = \frac{1042}{.083} \text{ cfs}$$

ECM-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980 SHEET NO. 1 OF 1
 DAM NAME: PERRY PHILLIPS DAM (MO 10019) JOB NO. 1263
 CURVE NUMBER DETERMINATION BY DC DATE 6-23-80
 HLB ✓

I) SOIL GROUP

WATERSHED SOILS IN THE BASIN CONSIST OF:

WELLER, KESWICK, LINDLEY, MANDEVILLE, PUTNAM, MEXICO.

GROUP D SOILS SEEM TO PREDOMINATE THE BASIN. THEREFORE,
 ASSUME GROUP D SOILS FOR THE ENTIRE WATERSHED
 FOR HYDROLOGIC PURPOSES.

II) COVER COMPLEX

ASSUMED LAND USE	ASSUMED HYDROLOGIC CONDITION	PER CENT AREA	CN (AMC II)
Pasture/Rangeland	Fair	95	84
Urban	Fair	5	90

III) CURVE NUMBER

WEIGHTED AVERAGE CN = 84 FOR AMC II

CURVE NUMBER = 93 FOR AMC III

PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI SHEET NO. _____ OF _____
 D.A. NAME: PEERY PHILLIPS DAM (MO 10019) JOB NO. 1262
ERODABLE MAXIMUM PRECIPITATION BY D.C. DATE 6-23-80
H10

DETERMINATION OF PMP

- 1) Determine drainage area of the basin

$$D.A. = .5816 \text{ sq mi} \quad (353 \text{ acres})$$

- 2) Determine PMP Index Rainfall (for D.A. = 200 sq. mi., & 24 hr. duration)

Location of centroid of basin,

$$\text{Long.} = 92^{\circ} 17' 15'' \quad \text{Lat.} = 38^{\circ} 53' 57''$$

$$\text{PMP} = 249 \quad (\text{from Fig. 1, HMR 33})$$

$$\text{Zone} = 7$$

- 3) Determine basin rainfall in terms of percentage of PMP Index Rainfall for various durations.
 (from Fig. 2, HMR 33)

Duration (Hrs.)	Percent of Index Rainfall (%)	Total Rainfall (Inches)	Rainfall Increments (Inches)	Duration of Increment (Hrs.)
6	100	24.9	24.9	6
12	120	29.9	5	6
24	130	32.4	2.5	12

PRC ENGINEERING CONSULTANTS, INC.

SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 3 OF 3

FERRY PHILIPS DAM (MO. 10019)

JOB NO. 1263

SERVICE SPILLWAY RATING CURVE

BY JFK DATE 7/1/80
KLB

U.S. ELEV	H	Q	CONTROLLING FLOW
769	0	0	
769.25	0.25	2.3	Weir Flow
769.5	0.50	6.4	" "
769.67	0.67	9.5	Orifice Flow
770	1.0	11.6	" "
770.51	1.51	14.2	" "
770.84	1.84	15.7	" "
771.11	42.01	16.9	Pressure Flow
771.41	42.31	16.9	" "
771.68	42.58	17.0	" "
771.96	42.86	17.0	" "
772.36	43.26	17.1	" "
772.82	43.72	17.2	" "
773.34	44.24	17.3	" "
773.91	44.81	17.4	" "
774.60	45.5	17.5	" "

DAM SAFETY INSPECTION / Missouri - 1988
PERRY PHILIPS DAM (MD 10013)
SERVICE SAILLENT RATING CURVE

PRC ENGINEERING CONSULTANTS, INC.

27M. SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 1 OF 2

PERRY PHILIPS LAM (MO 10019)

JOB NO. 1263

EMERGENCY SPILLWAY AND OVERTOP RATING CURVE

BY JFK DATE 7/1/80

SECTION ①:

at the critical depth sections;

$$\text{for } 0 < \gamma \leq 1.25 \rightarrow T = 18(2 + \gamma) \\ A = \gamma(T - 3\gamma)$$

$$\text{for } 1.25 < \gamma \leq 2.3 \rightarrow T = 52(1 + 0.1\gamma) \\ A = \gamma(T - 2.6\gamma) - 10$$

$$\text{for } \gamma > 2.3, \quad T = 64 \\ A = Ty - 23.8$$

at the upstream section, at the dam, y_1 was determined from a backwater analysis using HEC-2

SECTION ②:

$$H_2 = W.S. EL. - 771$$

$$\text{for } 0 < \gamma_2 < 1.4, \quad \frac{y_2}{T} = 210.7 \gamma_2 \\ A = Ty_2/2$$

$$\text{for } 1.4 \leq \gamma_2, \quad \frac{y_2}{T} = 2/3(H_2 + 0.35) \\ A = Ty_2 - 2.06.5$$

SECTION ③:

$$H_3 = H_2 - 1.4$$

$$\text{for } 0 < \gamma_3 < 1, \quad \frac{y_3}{T} = 4/5 H_3 \\ A = Ty_3/2$$

$$\text{for } 1 \leq \gamma_3, \quad \frac{y_3}{T} = 2/3(H_3 + 0.25) \\ A = Ty_3 - 150$$

SECTION ④:

$$H_4 = H_3 - 0.2$$

$$\text{for } 0 < \gamma_4 < 0.8, \quad \frac{y_4}{T} = 4/5 H_4 \\ A = Ty_4/2$$

$$\text{for } 0.8 \leq \gamma_4, \quad \frac{y_4}{T} = 2/3(H_4 + 0.2) \\ A = Ty_4 - 136$$

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 2 OF 2

PERKY PHILLIP LAM (AO 10019)

JOB NO. 1263

EMERGENCY SPILLWAY AND OVERTOP RATING CURVE

BY J.F.K. DATE 7/11/80

KLB

METHODS & CALCULATIONS TO VERIFY DATA FROM HEC 2

Y	A	T	$V = \frac{A_3}{T}$	$Q = VA$	γ_1	S_{140}^{-3}	A_1	P_1	$R^2 S_2^2$	$\frac{V^2}{R^2} \frac{P_1}{g}$	$\frac{V^2}{R^2} \frac{P_1}{g}$	$\frac{V^2}{R^2} \frac{P_1}{g}$	$W.S.E.L. =$ $\gamma_1 + \frac{V^2}{R^2} \frac{P_1}{g}$	H_2	γ_2	T_2	A_2	$Q_2 = \frac{A_2 S_2}{T_2}$
0.38	45.93	42.82	3.35	50	0.72	20.19	30.22	49.02	1.63	0.44	770.51	-	-	-	-	0	0	
0.59	24.27	46.59	4.12	100	1.01	24.56	45.73	54.26	2.19	0.67	770.84	-	-	-	-	0	0	
0.77	33.27	49.95	4.66	155	1.26	27.87	69.63	58.51	2.63	1.1	771.11	0.11	0.09	18.96	0.33	1.0	1.0	
0.99	44.36	53.80	5.18	230	1.91	29.27	74.64	59.88	3.09	1.15	771.41	0.41	0.33	69.11	11.40	24.3	24.3	
1.19	55.35	57.36	5.60	310	1.74	30.95	88.52	61.09	3.50	1.19	771.68	0.68	0.54	14.62	34.95	91.3	91.3	
1.37	66.17	59.15	6.05	400	1.97	32.87	102.22	62.25	3.91	1.24	771.96	0.96	0.77	161.82	12.39	2194	2194	
1.64	82.48	60.57	6.67	550	2.30	34.87	123.17	64.23	4.47	1.31	772.36	1.36	1.09	229.74	124.94	5234	5234	
1.97	102.35	62.26	7.13	750	2.67	36.26	147.32	64.27	5.09	1.40	772.82	1.82	1.45	29.5	221.25	1087.3	1087.3	
2.33	125.09	64.10	7.99	1000	3.08	37.81	173.74	64.27	5.51	1.49	773.34	2.34	1.79	29.5	321.55	1905.0	1905.0	
2.70	149.01	67.0	8.72	1300	3.51	39.94	201.06	64.27	6.47	1.45	773.91	2.91	2.17	29.5	433.65	2983.5	2983.5	
3.16	178.23	64.0	9.54	1700	4.04	41.75	233.45	64.27	7.25	1.42	774.60	3.60	2.63	29.5	570.33	4500.0	4500.0	

* $n = 0.027$

CCI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 1 OF 1

PERKY PHILLIPS DAM (MO. 10019)

JOB NO. 1263

CHECK SLOPE IN EMERGENCY SPILLWAY

BY JFK DATE 2/16/80

$$\text{Slope bed} = 1.6/50 = 0.032$$

$$S_c = \left[\frac{Q}{1.49} \frac{1}{A} \frac{1}{R^{2/3}} \right]$$

for $y = 1.0$, $Q = 233.1$
 $A = 45.0$
 $R = 0.83$

$$S_c = \left[233.1 \frac{0.03}{1.49} \frac{1}{45.0} \frac{1}{0.83^{2/3}} \right]^2 = 0.0139 < 0.032 \quad \text{O.K.}$$

for $y = 0.5$, $Q = 77.1$
 $A = 20.25$
 $R = 0.45$

$$S_c = \left[77.1 \frac{0.03}{1.49} \frac{1}{20.25} \frac{1}{0.45^{2/3}} \right]^2 = 0.017 < 0.032 \quad \text{O.K.}$$

∴ The slope of the emergency spillway channel is steep.

EC-4 PRC ENGINEERING CONSULTANTS, INC.

LEVEE SAFETY INSPECTION / MISSOURI - 1980SHEET NO. 1 OF 1PERRY PHILIPS DAM (MO 10019)JOB NO. 1263COMBINED RATING CURVEBY JFK DATE 7/11/80
668

W.S. EL.	Q _S SPILLWAY	Q _{OVERTOP}	Q _{TOTAL}
769	0	0	0
769.25	2.3	0	2.3
769.5	6.4	0	6.4
769.67	9.5	0	9.5
770	11.6	0	11.6
770.51	14.2	50	64
770.84	15.7	100	115
771.11	16.9	156	173
771.41	16.9	256	273
771.68	17.0	401	418
771.96	17.0	619	636
772.36	17.1	1073	1090
772.82	17.2	1889	1906
773.34	17.3	3429	3446
773.91	17.4	6136	6153
774.6	17.5	10379	10397

PLATE 3, APPENDIX B

PERRY PHILIPS DAM (MO. 10019)
SPILLWAY AND OVERTOP RATING CURVE

EE-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 1 OF 1

PEKKI PHILIPS DAM (MO. 10019)

JOB NO. 1263

STARTING W.S. EL. FOR PMF ROUTING

BY JFE DATE 7/3/80

W.S. ELEV. _i	W.S. ELEV. _f	A STORAGE	Q AVG	Δ TIME	Σ TIME (DAYS)
770.6	770.3	12	55	0.11	1.0
770.3	770.	11	26	0.21	1.32
770	769.5	16.5	12	0.69	2.01
769.5	769	16.5	4	2.08	4.09
					≈ 4 days

∴ At the end of the 4-day period from the beginning of the antecedent storm, the water surface elevation has returned to the level of the service spillway crest. The PMF routing will start at the service spillway crest elevation.

HEC1DB INPUT DATA

FLOOD HYDROGRAPH FACTORY (HEC-1)
DAM SAFETY VERSION
LAST MODIFICATION 26 FEB 79

DAM SAFETY INSPECTION - MISSOURI	
PERRY PHILIPS DAM (W.C. 10019)	
PMF AND SM PERCENT.PMF	
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	0
11	0
12	0
13	0
14	0
15	0
16	0
17	0
18	0
19	0
20	0
21	0
22	0
23	0
24	0
25	0
26	0
27	0
28	0
29	0
30	0
31	0
32	0
33	0
34	0
35	0
36	0
37	0
38	0
39	0
40	0
41	0
42	0
43	0
44	0
45	0
46	0
47	0
48	0
49	0
50	0
51	0
52	0
53	0
54	0
55	0
56	0
57	0
58	0
59	0
60	0
61	0
62	0
63	0
64	0
65	0
66	0
67	0
68	0
69	0
70	0
71	0
72	0
73	0
74	0
75	0
76	0
77	0
78	0
79	0
80	0
81	0
82	0
83	0
84	0
85	0
86	0
87	0
88	0
89	0
90	0
91	0
92	0
93	0
94	0
95	0
96	0
97	0
98	0
99	0
100	0
101	0
102	0
103	0
104	0
105	0
106	0
107	0
108	0
109	0
110	0
111	0
112	0
113	0
114	0
115	0
116	0
117	0
118	0
119	0
120	0
121	0
122	0
123	0
124	0
125	0
126	0
127	0
128	0
129	0
130	0
131	0
132	0
133	0
134	0
135	0
136	0
137	0
138	0
139	0
140	0
141	0
142	0
143	0
144	0
145	0
146	0
147	0
148	0
149	0
150	0
151	0
152	0
153	0
154	0
155	0
156	0
157	0
158	0
159	0
160	0
161	0
162	0
163	0
164	0
165	0
166	0
167	0
168	0
169	0
170	0
171	0
172	0
173	0
174	0
175	0
176	0
177	0
178	0
179	0
180	0
181	0
182	0
183	0
184	0
185	0
186	0
187	0
188	0
189	0
190	0
191	0
192	0
193	0
194	0
195	0
196	0
197	0
198	0
199	0
200	0
201	0
202	0
203	0
204	0
205	0
206	0
207	0
208	0
209	0
210	0
211	0
212	0
213	0
214	0
215	0
216	0
217	0
218	0
219	0
220	0
221	0
222	0
223	0
224	0
225	0
226	0
227	0
228	0
229	0
230	0
231	0
232	0
233	0
234	0
235	0
236	0
237	0
238	0
239	0
240	0
241	0
242	0
243	0
244	0
245	0
246	0
247	0
248	0
249	0
250	0
251	0
252	0
253	0
254	0
255	0
256	0
257	0
258	0
259	0
260	0
261	0
262	0
263	0
264	0
265	0
266	0
267	0
268	0
269	0
270	0
271	0
272	0
273	0
274	0
275	0
276	0
277	0
278	0
279	0
280	0
281	0
282	0
283	0
284	0
285	0
286	0
287	0
288	0
289	0
290	0
291	0
292	0
293	0
294	0
295	0
296	0
297	0
298	0
299	0
300	0
301	0
302	0
303	0
304	0
305	0
306	0
307	0
308	0
309	0
310	0
311	0
312	0
313	0
314	0
315	0
316	0
317	0
318	0
319	0
320	0
321	0
322	0
323	0
324	0
325	0
326	0
327	0
328	0
329	0
330	0
331	0
332	0
333	0
334	0
335	0
336	0
337	0
338	0
339	0
340	0
341	0
342	0
343	0
344	0
345	0
346	0
347	0
348	0
349	0
350	0
351	0
352	0
353	0
354	0
355	0
356	0
357	0
358	0
359	0
360	0
361	0
362	0
363	0
364	0
365	0
366	0
367	0
368	0
369	0
370	0
371	0
372	0
373	0
374	0
375	0
376	0
377	0
378	0
379	0
380	0
381	0
382	0
383	0
384	0
385	0
386	0
387	0
388	0
389	0
390	0
391	0
392	0
393	0
394	0
395	0
396	0
397	0
398	0
399	0
400	0
401	0
402	0
403	0
404	0
405	0
406	0
407	0
408	0
409	0
410	0
411	0
412	0
413	0
414	0
415	0
416	0
417	0
418	0
419	0
420	0
421	0
422	0
423	0
424	0
425	0
426	0
427	0
428	0
429	0
430	0
431	0
432	0
433	0
434	0
435	0
436	0
437	0
438	0
439	0
440	0
441	0
442	0
443	0
444	0
445	0
446	0
447	0
448	0
449	0
450	0
451	0
452	0
453	0
454	0
455	0
456	0
457	0
458	0
459	0
460	0
461	0
462	0
463	0
464	0
465	0
466	0
467	0
468	0
469	0
470	0
471	0
472	0
473	0
474	0
475	0
476	0
477	0
478	0
479	0
480	0
481	0
482	0
483	0
484	0
485	0
486	0
487	0
488	0
489	0
490	0
491	0
492	0
493	0
494	0
495	0
496	0
497	0
498	0
499	0
500	0
501	0
502	0
503	0
504	0
505	0
506	0
507	0
508	0
509	0
510	0
511	0
512	0
513	0
514	0
515	0
516	0
517	0
518	0
519	0
520	0
521	0
522	0
523	0
524	0
525	0
526	0
527	0
528	0
529	0
530	0
531	0
532	0
533	0
534	0
535	0
536	0
537	0
538	0
539	0
540	0
541	0
542	0
543	0
544	0
545	0
546	0
547	0
548	0
549	0
550	0
551	0
552	0
553	0
554	0
555	0
556	0
557	0
558	0
559	0
560	0
561	0
562	0
563	0
564	0
565	0
566	0
567	0
568	0
569	0
570	0
571	0
572	0
573	0
574	0
575	0
576	0
577	0
578	0
579	0
580	0
581	0
582	0
583	0
584	0
585	0
586	0
587	0
588	0
589	0
590	0
591	0
592	0
593	0
594	0
595	0
596	0
597	0
598	0
599	0
600	0
601	0
602	0
603	0
604	0
605	0
606	0
607	0
608	0
609	0
610	0
611	0

RECEIVED IN THE LIBRARY OF ST. JOHN'S SEMINARY CIRCULATION DEPT.
July 19
1965
SACRED HEART COLLEGE LIBRARY
FIRE CLOTH BOOK

INFLOW PMF AND ONE-HALF PMF HYDROGRAPHS

GRAPH DESIGN (ECHO)
1.0
SILVIA VISION AND INSTRUMENTATION
UNIVERSITY OF FLORIDA

DATE: 07/12.
TIME: 11:47:09.

DATA SILVIA INSPECTION - MASSQUA
PERIODS DAY (WJ.15019)
ONE AND SE PERCENT PHF

NUC	NMIN	DAY	TWIN	S/TAC	INLI	IPAT	INSTAN
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0
31	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0
34	0	0	0	0	0	0	0
35	0	0	0	0	0	0	0
36	0	0	0	0	0	0	0
37	0	0	0	0	0	0	0
38	0	0	0	0	0	0	0
39	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0
41	0	0	0	0	0	0	0
42	0	0	0	0	0	0	0
43	0	0	0	0	0	0	0
44	0	0	0	0	0	0	0
45	0	0	0	0	0	0	0
46	0	0	0	0	0	0	0
47	0	0	0	0	0	0	0
48	0	0	0	0	0	0	0
49	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0
51	0	0	0	0	0	0	0
52	0	0	0	0	0	0	0
53	0	0	0	0	0	0	0
54	0	0	0	0	0	0	0
55	0	0	0	0	0	0	0
56	0	0	0	0	0	0	0
57	0	0	0	0	0	0	0
58	0	0	0	0	0	0	0
59	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0
61	0	0	0	0	0	0	0
62	0	0	0	0	0	0	0
63	0	0	0	0	0	0	0
64	0	0	0	0	0	0	0
65	0	0	0	0	0	0	0
66	0	0	0	0	0	0	0
67	0	0	0	0	0	0	0
68	0	0	0	0	0	0	0
69	0	0	0	0	0	0	0
70	0	0	0	0	0	0	0
71	0	0	0	0	0	0	0
72	0	0	0	0	0	0	0
73	0	0	0	0	0	0	0
74	0	0	0	0	0	0	0
75	0	0	0	0	0	0	0
76	0	0	0	0	0	0	0
77	0	0	0	0	0	0	0
78	0	0	0	0	0	0	0
79	0	0	0	0	0	0	0
80	0	0	0	0	0	0	0
81	0	0	0	0	0	0	0
82	0	0	0	0	0	0	0
83	0	0	0	0	0	0	0
84	0	0	0	0	0	0	0
85	0	0	0	0	0	0	0
86	0	0	0	0	0	0	0
87	0	0	0	0	0	0	0
88	0	0	0	0	0	0	0
89	0	0	0	0	0	0	0
90	0	0	0	0	0	0	0
91	0	0	0	0	0	0	0
92	0	0	0	0	0	0	0
93	0	0	0	0	0	0	0
94	0	0	0	0	0	0	0
95	0	0	0	0	0	0	0
96	0	0	0	0	0	0	0
97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0
105	0	0	0	0	0	0	0
106	0	0	0	0	0	0	0
107	0	0	0	0	0	0	0
108	0	0	0	0	0	0	0
109	0	0	0	0	0	0	0
110	0	0	0	0	0	0	0
111	0	0	0	0	0	0	0
112	0	0	0	0	0	0	0
113	0	0	0	0	0	0	0
114	0	0	0	0	0	0	0
115	0	0	0	0	0	0	0
116	0	0	0	0	0	0	0
117	0	0	0	0	0	0	0
118	0	0	0	0	0	0	0
119	0	0	0	0	0	0	0
120	0	0	0	0	0	0	0
121	0	0	0	0	0	0	0
122	0	0	0	0	0	0	0
123	0	0	0	0	0	0	0
124	0	0	0	0	0	0	0
125	0	0	0	0	0	0	0
126	0	0	0	0	0	0	0
127	0	0	0	0	0	0	0
128	0	0	0	0	0	0	0
129	0	0	0	0	0	0	0
130	0	0	0	0	0	0	0
131	0	0	0	0	0	0	0
132	0	0	0	0	0	0	0
133	0	0	0	0	0	0	0
134	0	0	0	0	0	0	0
135	0	0	0	0	0	0	0
136	0	0	0	0	0	0	0
137	0	0	0	0	0	0	0
138	0	0	0	0	0	0	0
139	0	0	0	0	0	0	0
140	0	0	0	0	0	0	0
141	0	0	0	0	0	0	0
142	0	0	0	0	0	0	0
143	0	0	0	0	0	0	0
144	0	0	0	0	0	0	0
145	0	0	0	0	0	0	0
146	0	0	0	0	0	0	0
147	0	0	0	0	0	0	0
148	0	0	0	0	0	0	0
149	0	0	0	0	0	0	0
150	0	0	0	0	0	0	0
151	0	0	0	0	0	0	0
152	0	0	0	0	0	0	0
153	0	0	0	0	0	0	0
154	0	0	0	0	0	0	0
155	0	0	0	0	0	0	0
156	0	0	0	0	0	0	0
157	0	0	0	0	0	0	0
158	0	0	0	0	0	0	0
159	0	0	0	0	0	0	0
160	0	0	0	0	0	0	0
161	0	0	0	0	0	0	0
162	0	0	0	0	0	0	0
163	0	0	0	0	0	0	0
164	0	0	0	0	0	0	0
165	0	0	0	0	0	0	0
166	0	0	0	0	0	0	0
167	0	0	0	0	0	0	0
168	0	0	0	0	0	0	0
169	0	0	0	0	0	0	0
170	0	0	0	0	0	0	0
171	0	0	0	0	0	0	0
172	0	0	0	0	0	0	0
173	0	0	0	0	0	0	0
174	0	0	0	0	0	0	0
175	0	0	0	0	0	0	0
176	0	0	0	0	0	0	0
177	0	0	0	0	0	0	0
178	0	0	0	0	0	0	0
179	0	0	0	0	0	0	0
180	0	0	0	0	0	0	0
181	0	0	0	0	0	0	0
182	0	0	0	0	0	0	0
183	0	0	0	0	0	0	0
184	0	0	0	0	0	0	0
185	0	0	0	0	0	0	0
186	0	0	0	0	0	0	0
187	0	0	0	0	0	0	0
188	0	0	0	0	0	0	0
189	0	0	0	0	0	0	0
190	0	0	0	0	0	0	0
191	0	0	0	0	0	0	0
192	0	0	0	0	0	0	0
193	0	0	0	0	0	0	0
194	0	0	0	0	0	0	0
195	0	0	0	0	0	0	0
196	0	0	0	0	0	0	0
197	0	0	0	0	0	0	0
198	0	0	0	0	0	0	0
199	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0
201	0	0	0	0	0	0	0
202	0	0	0	0	0	0	0
203	0	0	0	0	0	0	0
204	0	0	0	0	0		

1110	100	22
1095	00	22
1080	00	22
1065	00	22
1050	00	22
1035	00	22
1020	00	22
1005	00	22
990	00	22
975	00	22
960	00	22
945	00	22
930	00	22
915	00	22
900	00	22
885	00	22
870	00	22
855	00	22
840	00	22
825	00	22
810	00	22
795	00	22
780	00	22
765	00	22
750	00	22
735	00	22
720	00	22
705	00	22
690	00	22
675	00	22
660	00	22
645	00	22
630	00	22
615	00	22
600	00	22
585	00	22
570	00	22
555	00	22
540	00	22
525	00	22
510	00	22
495	00	22
480	00	22
465	00	22
450	00	22
435	00	22
420	00	22
405	00	22
390	00	22
375	00	22
360	00	22
345	00	22
330	00	22
315	00	22
300	00	22
285	00	22
270	00	22
255	00	22
240	00	22
225	00	22
210	00	22
195	00	22
180	00	22
165	00	22
150	00	22
135	00	22
120	00	22
105	00	22
90	00	22
75	00	22
60	00	22
45	00	22
30	00	22
15	00	22
00	00	22
1110	267	22
1095	267	22
1080	267	22
1065	267	22
1050	267	22
1035	267	22
1020	267	22
1005	267	22
990	267	22
975	267	22
960	267	22
945	267	22
930	267	22
915	267	22
900	267	22
885	267	22
870	267	22
855	267	22
840	267	22
825	267	22
810	267	22
795	267	22
780	267	22
765	267	22
750	267	22
735	267	22
720	267	22
705	267	22
690	267	22
675	267	22
660	267	22
645	267	22
630	267	22
615	267	22
600	267	22
585	267	22
570	267	22
555	267	22
540	267	22
525	267	22
510	267	22
495	267	22
480	267	22
465	267	22
450	267	22
435	267	22
420	267	22
405	267	22
390	267	22
375	267	22
360	267	22
345	267	22
330	267	22
315	267	22
300	267	22
285	267	22
270	267	22
255	267	22
240	267	22
225	267	22
210	267	22
195	267	22
180	267	22
165	267	22
150	267	22
135	267	22
120	267	22
105	267	22
90	267	22
75	267	22
60	267	22
45	267	22
30	267	22
15	267	22
00	267	22
1110	977	22
1095	977	22
1080	977	22
1065	977	22
1050	977	22
1035	977	22
1020	977	22
1005	977	22
990	977	22
975	977	22
960	977	22
945	977	22
930	977	22
915	977	22
900	977	22
885	977	22
870	977	22
855	977	22
840	977	22
825	977	22
810	977	22
795	977	22
780	977	22
765	977	22
750	977	22
735	977	22
720	977	22
705	977	22
690	977	22
675	977	22
660	977	22
645	977	22
630	977	22
615	977	22
600	977	22
585	977	22
570	977	22
555	977	22
540	977	22
525	977	22
510	977	22
495	977	22
480	977	22
465	977	22
450	977	22
435	977	22
420	977	22
405	977	22
390	977	22
375	977	22
360	977	22
345	977	22
330	977	22
315	977	22
300	977	22
285	977	22
270	977	22
255	977	22
240	977	22
225	977	22
210	977	22
195	977	22
180	977	22
165	977	22
150	977	22
135	977	22
120	977	22
105	977	22
90	977	22
75	977	22
60	977	22
45	977	22
30	977	22
15	977	22
00	977	22
1110	974	22
1095	974	22
1080	974	22
1065	974	22
1050	974	22
1035	974	22
1020	974	22
1005	974	22
990	974	22
975	974	22
960	974	22
945	974	22
930	974	22
915	974	22
900	974	22
885	974	22
870	974	22
855	974	22
840	974	22
825	974	22
810	974	22
795	974	22
780	974	22
765	974	22
750	974	22
735	974	22
720	974	22
705	974	22
690	974	22
675	974	22
660	974	22
645	974	22
630	974	22
615	974	22
600	974	22
585	974	22
570	974	22
555	974	22
540	974	22
525	974	22
510	974	22
495	974	22
480	974	22
465	974	22
450	974	22
435	974	22
420	974	22
405	974	22
390	974	22
375	974	22
360	974	22
345	974	22
330	974	22
315	974	22
300	974	22
285	974	22
270	974	22
255	974	22
240	974	22
225	974	22
210	974	22
195	974	22
180	974	22
165	974	22
150	974	22
135	974	22
120	974	22
105	974	22
90	974	22
75	974	22
60	974	22
45	974	22
30	974	22
15	974	22
00	974	22
1110	971	22
1095	971	22
1080	971	22
1065	971	22
1050	971	22
1035	971	22
1020	971	22
1005	971	22
990	971	22
975	971	22
960	971	22
945	971	22
930	971	22
915	971	22
900	971	22
885	971	22
870	971	22
855	971	22
840	971	22
825	971	22
810	971	22
795	971	22
780	971	22
765	971	22
750	971	22
735	971	22
720	971	22
705	971	22
690	971	22
675	971	22
660	971	22
645	971	22
630	971	22
615	971	22
600	971	22
585	971	22
570	971	22
555	971	22
540	971	22
525	971	22
510	971	22
495	971	22
480	971	22
465	971	22
450	971	22
435	971	22
420	971	22
405	971	22
390	971	22
375	971	22
360	971	22
345	971	22
330	971	22
315	971	22
300	971	22
285	971	22
270	971	22
255	971	22
240	971	22
225	971	22
210	971	22
195	971	22
180	971	22
165	971	22
150	971	22
135	971	22
120	971	22
105	971	22
90	971	22
75	971	22
60	971	22
45	971	22
30	971	22
15	971	22
00	971	22
1110	968	22
1095	968	22
1080	968	22
1065	968	22
1050	968	22
1035	968	22
1020	968	22
1005	968	22
990	968	22
975	968	22
960	968	22
945	968	22
930	968	22
915	968	22
900	968	22
885	968	22
870	968	22
855	968	22
840	968	22
825	968	22
810	968	22
795	968	22
780	968	22
765	968	22
750	968	22
735	968	22
720	968	22
705	968	22
690	968	22
675	968	22
660	968	22
645	968	22
630	968	22
615	968	22
600	968	22
585	968	22
570	968	22
555	968	22
540	968	22
525	968	22
510	968	22
495	968	22
480	968	22
465	968	22
450	968	22
435	968	22
420	968	22
405	968	22
390	968	22
375	968	22
360	968	22
345	968	22
330	968	22
315	968	22
300	968	22
285	968	22
270	968	22
255	968	22
240	968	22
225	968	22
210	968	22
195	968	22
180	968	22
165	968	22
150	968	22
135	968	22
120	968	22
105	968	22
90	968	22
75	968	22
60	968	22
45	968	22
30	968	22
15	968	22
00	968	22
1110	965	22
1095	965	22
108		

	PEAK	0-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME	PLAN 1 RTIC 2
PEAKS	5020	1953	455	447	34627	
CW	175	41	13	12	7715	
CHIEFS	2457	4144	314	3144	31446	
EV	24917	79567	759459	759459	759459	
SCFT	726	921	921	921	921	
THOUS CUP	699	117	117	117	117	
						1139.

PHOTOGRAPH AT STA 10015 FOR PLAN 1 RTIC 2

PEAKS 0-HOUR 24-HOUR 72-HOUR TOTAL VOLUME

5020 1953 455 447 34627

175 41 13 12 7715

2457 4144 314 3144 31446

24917 79567 759459 759459

726 921 921 921 921

699 117 117 117 117

1139.

PMF AND ONE-HALF PMF ROUTING

SD-A104 621

CONSOER TOWNSEND AND ASSOCIATES LTD ST LOUIS MO

F/6 13/13

NATIONAL DAM SAFETY PROGRAM. PERRY PHILIPS DAM (MO10019) MISSOURI ETC(U)

DACW43-80-C-0094

SEP 60 W G SHIFRIN

NL

UNCLASSIFIED

2 of 2

RECORDED

END
DATE FILMED
40-81
DTIC

END
DATE FILMED
40-81
DTIC

OUTFLow is a 2D simulation tool for the study of the flow of water through soil.

卷之三

EDUCATIONAL INFORMATION

END-OF-PERIOD PAYOFFS AND ORDINALS

OFFICERS

卷之三

ప్రాణికి విషయముల ప్రశ్నల జవాబ్

卷之三

卷之三

卷之三

卷之三

卷之三

卷之三

卷之三

丁巳仲夏
王國維

THE JOURNAL OF CLIMATE

SUMMARY OF PMF AND ONE-HALF PMF FLOOD ROUTING

CRITICAL LEVELS FOR 1000 SUMMARY FOR MULTIPLE PLACEMENT ECONOMIC COMPUTATIONS
FLDS (CUMULATIVE WITH SECOND CRITICAL LEVEL OF COMP)
MATERIAL, ALUMINUM MILFIC (DURAF ALUMINUM)

POSITION	SERVICE	PERCENT	DATA	PERCENT	DATA
W02	0.000	100.0	1.51	1.426	1.015
W03	0.000	100.0	1.451	1.422	1.016
W04	0.000	100.0	1.401	1.377	1.016
W05	0.000	100.0	1.351	1.350	1.016

SUMMARY OF DAM SAFETY ANALYSIS

ELEVATION OF GATE OF TAIL	INITIAL VALUE OF CREST OF TAIL	INITIAL VALUE OF CREST OF TAIL	TIME OF FAILURE		TIME OF OVERFLOW FROM HOURS	TIME OF OVERFLOW FROM HOURS
			MAXIMUM PERIODIC CREEPAGE	MINIMUM CREEPAGE		
14.25	17.00	15.60	2.02	0.90	4.071	1.067
14.25	17.00	15.60	1.42	0.90	15.160	7.642
14.25	17.00	15.60	-	-	-	-

PERCENT OF PMF FLOOD ROUTING
EQUAL TO SPILLWAY CAPACITY

PROVISIONS FOR SURFACE OF STREAM NETWORK CALCULATIONS

ROUTE HYDROGRAPH AT
ROUTE HYDROGRAPH TO
UNIT OF NETWORK

18019

18019

18019

卷之三

卷之三

卷之三

卷之三

卷之三

LOSSE MARIA
SILKE
ERIK
STEN
GUNNAR
HANS
KLAUS
JENS
MORTEN

$$C_{\text{O}_2}V_2 = 30 = -0.35 \cdot 7.0$$

TCF U-99 TAG= 022
INTERVIEW DATA

PERIOD RAIN FOGS LOSS FROST-OF-PIRATES field COMP PLEA BORN RAIN EYES LOSS CLOUDS

5

CUM 7.37 31.48 699 134.115.
 (92.31(6006) 28.11(744.68)

HYDROCARBON ANALYSIS

FACTORY OUTLET IS AT THE 1735 HUNTS

卷之三

YEAR JOURNAL OF THE AMERICAN MUSEUM OF NATURAL HISTORY

卷之三

卷之三

ONE OUTFLYED IN 1000 AT 1400 FT. AT 1600 FT. 1600 HOUSES

卷之三

卷之二

卷之三

GENERAL SUMMARY FOR MATURE PLANTATION ECO-MIX COMBINATIONS AT THE CULTIC FIFTH OR SECOND CROP STAGE (EVEN SPACED) IN SINGAPORE (SQUARE ALLOTMENTS)

HEC-2 INPUT AND SUMMARY TABLE

RECEIVED - RELEASED NOV 18 1961 - GULFPORT, MISS.
CHUCK CONN - CALIFORNIA
- FILED 11-19-61

CONFIDENTIAL

ESTATE TAX PLANNING

TABLE 1. Comparison of Estimated Parameters

RELEASE DATE: 07-04-2014 1573
SEARCHED INDEXED SERIALIZED FILED
FBI - SACRAMENTO - 50-1045

NOTE: Serial No. at left of chart-effect, before it indicates effect of summary of record. List

SUBTLETY OF TUNERS

CAUTION: SIGHTING PROFILES 1-4 CRITICAL DEPTH ASSUMED
CAUTION: SIGHTING PROFILE 5 CRITICAL DEPTH ASSUMED
PROFILER 5 CRITICAL DEPTH ASSUMED
ANCHOR 1-300 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 300-500 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 500-700 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 700-900 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 900-1100 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 1100-1300 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 1300-1500 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 1500-1700 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 1700-1900 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 1900-2100 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 2100-2300 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 2300-2500 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 2500-2700 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 2700-2900 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 2900-3100 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 3100-3300 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 3300-3500 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 3500-3700 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 3700-3900 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 3900-4100 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 4100-4300 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 4300-4500 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 4500-4700 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 4700-4900 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 4900-5100 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 5100-5300 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 5300-5500 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 5500-5700 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 5700-5900 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 5900-6100 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 6100-6300 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 6300-6500 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 6500-6700 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 6700-6900 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 6900-7100 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 7100-7300 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 7300-7500 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 7500-7700 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 7700-7900 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 7900-8100 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 8100-8300 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 8300-8500 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 8500-8700 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 8700-8900 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 8900-9100 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 9100-9300 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 9300-9500 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 9500-9700 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 9700-9900 PROFILE 1-4 CRITICAL DEPTH ASSUMED
ANCHOR 9900-10000 PROFILE 1-4 CRITICAL DEPTH ASSUMED

FILME

