Despose the elliptic fixed points of a Fushman group I are not a discrete set.

Let E>0 and Sind an elliptic Sized point Z such that $B_{HZ}(Z,E)$ contains infinitely many elliptic fixed points Z_n and let $g_n \in \Gamma$ be the an elliptic element fixing Z_n , ie $g_n(Z_n)=Z_n$ $\forall n$. Let $B=B_H(Z,3E)$ be the closed ball centred at Z with radius 3E.

We proved in lectures that $\{g \in \Gamma : g(z) \in B\}$

= $\sqcap \cap \{g \in PSL(2,R) : g(z) \in B\}$ is finite since \sqcap is discrete; and \oplus is compact. Hence, for some (in fact infinitely many) \sqcap we have

 $3E < d_{H^2}(\bar{z}, g_n(\bar{z})) \le d_{H^2}(\bar{z}, g_n(\bar{z}_n)) + d_{H^2}(g_n(\bar{z}_n), g_n(\bar{z}))$ = $2d_{H^2}(\bar{z}, \bar{z}_n) \le 2E$, a contradiction. (8) (i) Let $g \in PSL(2, \mathbb{R})$ be hyperbolic with fixed points $u, v \in \mathbb{R} \cup \{\infty\}$ and let $\langle g \rangle = \Gamma$. Let $\mathbb{R} = \mathbb{R} \cup \{\infty\}$ be arbitrary and let C be the unique circle (or vertical line) containing $\{u, v, z\}$. Then $\Gamma(z)$ is a discrete subset of C (although) it does accumulate in 1.1 at u, v). Hence Γ is Fuchsian by part 6.

we construct a fundamental domain as a Dirichled region using base point z contained in the geodesic ray from u to v.

(ii) This time, let $g \in PSL(2,\mathbb{R})$ be parabolic with fixed point $u \in \mathbb{R} \cup \{\infty\}$. Let $\Gamma = \langle g \rangle$ and $z \in \mathbb{H}^2$ arbitrary. Then $\Gamma(z)$ is a discrete subset of the horocycle containing $\{z, u\}$, and so Γ Fuchrian by 6.

gi(F) (whomen g(F) g(F)

Doming (F)

when $u = \infty$, base point z

when u≠∞, bose point z.

(iii) let $g \in PSL(2, \mathbb{R})$ be an elliptic element with order $n < \infty$.

Then $\langle g \rangle = \{ Id, g, g^2, g^3, \dots, g^{n-1} \}$

is the (finite) cyclic group of order n. Finite groups $\Gamma \leq PSL(2,1R)$ are

dearly Fuchnan.

Fundamental Domain F

Example fundamental domain when n = 13 and z is the base point.

Easier to visualise in D, when \$=0.

Here n = 8.

8 continued...

The only case not covered is when g is an elliptic element with infinite order. Let g be such an element, with fixed point $u \in H^2$ and $\Gamma = \langle g \rangle \leq PSL(2,1R)$. claim: For any $z \in H^2 \setminus \{u\}$, $\Gamma(z)$ is infinite. Proof: Suppose m, n & Z with m ≠ n and g''(z) = g'''(z). Then $g''(z) = g' \cdot g''(z) = z$ gr-m therefore fixes Z and u and is therefore the identity, implying g has finite order? a contradiction! The claim Johns since $g^{n}(z)$ (n \in Z) are distinct elements of $\Gamma(z)$. Since $d_{H^2}(\mathbf{a}, g^n(z)) = d_{H^2}(u, z)$ $\forall n$, we have $\Gamma(z) \cap B_{H^2}(u, 2d_{H^2}(u, v))$ infinite which contracted implies 17 does not act properly discontinuously, and is therefore not Fuchnian.

Using the generators, the above area F is a good candidate for $D_{4i}(\Gamma)$. Clearly $D_{4i}(\Gamma) \leq F$ and, moreover, some simple calculations show $\Gamma(F)$ is a tiling. Therefore, if $D_{4i}(\Gamma) \not\subseteq F$, then $\Gamma(D_{4i}(\Gamma))$ cannot be a tiling, which is a contradiction.

Let p, h ∈ PSL(2,1R) be a parabolic & hyperbolic element which share a common fixed point. We may assume that the common fixed point is ∞ by conjugating if necessary. Therefore, by conjugating Serther, we may assume

assume
$$p(z) = Z + 1 \qquad (if p(z) = Z - 1, use p^{-1})$$
 and

and h(z) = xz for some 1>x>0, when.

(if x>1, use h^{-1})

Consider $\Gamma = \langle p h \rangle$ and $\Gamma(i)$.

For all m, n integers h"p" h" & M
and

$$h^{n} \rho^{m} h^{-n}(i) = h^{n} \left(\rho^{m} \left(\alpha^{-n} i \right) \right)$$

$$= h^{n} \left(\alpha^{-n} i + m \right)$$

$$= \alpha^{n} \left(\alpha^{-n} i + m \right)$$

$$= \alpha^{n} \left(\alpha^{-n} i + m \right)$$

Hence $i \in \Gamma(i)$ is an accumulation point, $\Gamma(i)$ is not discrete, and so Γ is not Fuchsian

sides , are paired by g and 11 are paired by h. Since all vertices are on the boundary, in order to apply Poincaré & Theorem we only need to check that cycle transformations are parabolic.

Consider (i) $-1 = V_1$ $h(V_1) = 1 = V_2$ $g^{-1}(V_2) = -1 = V_3 = V_1$ terminate Therefore $-1 = g^{-1}h(-1)$

 $g^{-1}h(z) = g^{-1}(\frac{z}{2z+1}) = \frac{z}{2z+1} - 2 = \frac{3z+2}{-2z-1}$ $tr(g^{-1}h)^2 = 4$ and so $g^{-1}h$ is parabolic,

(ii)
$$0 = V_1$$

 $h(0) = 0 = V_2 = V_1$ terminate
 $h(z) = \frac{z}{2z+1}$, so $\{r(h)^2 = 4\}$
and h is parabolic.

(iii)
$$1 = V_1$$

 $h'(V_1) = -1 = V_2$
 $g(V_2) = 1 = V_3 = V_1$ terminate
Therefore $1 = gh'(1)$
However $gh' = (hg')^{-1}$ and
so is parabolic.

(iv)
$$\infty = V$$
,
 $g(V_1) = \infty = V_2 = V$, terminate
g is parabolic and so we are done!

(I) Continued...

Poincarés Theorem tells us that

(9,h) is a Fuchrian group with F a fundamental domain.

Moreover, as there are no vertices in the interior, there are no cycle transformations which are elliptic.

Hence, if $\Gamma = \langle 9, h \rangle \leq PSL(2, IR)$

we have the abstract presentation:

7 = < g,h : \$\forall >

2 F2

so I is the free group on 2 generators,