Asymmetric Key Cryptography

Using a private key (not shared) and a public key (which is distributed) for encryption

Maths

Euler's Phi/Totient Function

- $\phi(1) = 0$
- $\phi(p) = p-1$ for p -> Prime number
- $\phi(m \ x \ n) = \phi(m) imes \phi(n)$ for m, n are relative primes
- $\phi(p^e)=p^e-p^{e-1}$ for p-> prime number

Fermat's Little Theorem

⊘ Note

Only apply if p -> Prime number

- 1. $a^{p-1} = 1 \mod p$
- $2. \quad a^p = a \bmod p$
- 3. $a^{-1} mod p = a^{p-2} mod p$

Euler's Theorem

- 1. $a^{\phi(n)} = 1 \pmod{n}$
- $2. \ a^{k x \phi(n)+1} = a \pmod{n}$
- 3. $a^{-1} mod \ n = a^{\phi(n)-1} \ mod \ n$

Principles

Authentication

- Can be implemented by using the keys (public and private) from the same key source
- For example: in the communication between A and B if A's private key is used for encryption and A's public key is used for decryption by B, A is the aunthenticated sender

Confidentiality

- Using double encryption and decryption:
 - Encrypt using the private key of A and public key of B
 - Decrypt using the private key of B and public key of A

RSA

Key Generation

- 1. Select 2 **relatively prime** numbers (p,q)
- 2. n = p * q
- 3. $\phi(n) = (p-1)(q-1)$
- 4. Choose value of $oldsymbol{\mathsf{e}}$ such that $1 < e < \phi(n)$ and $gcd(e,\phi(n)) = 1$
- 5. $d = e^{-1} mod \ \phi(n)$

Private Key

 $\{e,n\}$

Public Key

 $\{d, n\}$

Encryption

 $c = m^e mod n$

Decryption

 $m=c^d mod \ n$

Potential Attacks

- Factorisation
- Chosen Cipher Text Intercept and masking plaintext
- Encryption Exponent When the encryption exponent is set too low (Recommended: Prime numbers around $2^{16} + 1$
 - Coppersmith
 - ullet For $C=M^e mod \ N$
 - If $M < N^{\frac{1}{e}}$, M can be directly recovered by taking eth root of C
 - Broadcast
 - If Alice sends the same message with same exponent to 3 different recipients, attacker (Eve) can use chinese remainder theorem to decrypt the message
 - Related messages (Franklin Reiter)

- If 2 messages (P1 and P2) were encrypted with same e, and if P1 is related to P2 in by a *linear function*, Eve can decrypt the corresponding C1 and C2 in feasible computation time
- Short pad (Coppersmith)
 - Alice pads with r1, encrypts and sends message to Bob
 - Eve intercepts and drops message (C1)
 - Bob requests message again and Alice sends again with padding of r2
 - Eve intercepts again (C2)
 - Eve knows C1 and C2 has same plaintext
 - If r1 and r2 are short, Eve can recover original plaintext
- Decryption Exponent Releaved and low exponent
- Plaintext
 - Short message
 - Short messages can be easily decrypted by brute force
 - Use padding (in the start or end of message) using OAEP to prevent this
 - Cyclic
 - Unconcealed
- Modulus Common modulus
- Implementation
 - Timing and power (Paul Kocher)
 - Blinding and Random Delays can help with this

Diffie Hellman Key Exchange Algorithm

Procedure

- 1. Consider a prime number ${\bf q}$
- 2. Select α such that $\alpha < q$ and α is *primitive root* of q
- 3. Assume X_A (Private key of A) and $X_A < q$. Calculate $Y_A = lpha^{X_A} mod \ q$ (Public Key of A)
- 4. Repeat previous step for B
- 5. Calculate secret keys
 - $K_A = (Y_B)^{X_A} \mod q$
 - $K_B = (Y_A)^{X_B} mod q$
- 6. If $K_A == K_B$, key exchange succesfull

Man in the middle attack

Insert a man in the middle of A and B (Eve) and carry out diffie hellman exchange with each A and B

Complete this section

El-Gamal

Key Generation

- 1. Select prime number P
- 2. Select private key d
- 3. Select 2nd part of encryption key e_1
- 4. Select 3rd part of encryption key e_2 $e_2 = e_1^d mod \ P$
- 5. Public key = (e_1, e_2, P) , Private Key = d

Encryption

- 1. Select random integer r
- 2. Calculate $C_1 = e_1^r mod \ P$
- 3. Calculate $C_2 = (M st e_2^r) mod \ P$
- 4. Cipher Text = (C_1, C_2)

Decryption

1. $M = [C_2 * (C_1^D)^{-1}] mod P$

Knapsack Algorithm

⊘ Todo

Complete this section

Given:

- Sum (S)
- Weights (W) Superincreasing tuple

Key Generation

Public Key (Hard Knapsack)

Private Key (Easy Knapsack)

Key Distribution

Methods

- Public Announcement
- Public Key Directory
- Public Key Authority
- Certificate Authority

Digital Signature

A cryptosystem uses the private and public keys of the receiver: a digital signature uses the private and public keys of the sender

Services

- Message Authentication
- Message Integrity
- Nonrepudiation

Attacks Types

- Key Only Attack
- Known Message Attack
- Chosen Message Attack

Forgery Types

- Existential Forgery
- Selective Forgery

Algorithms

RSA Digital Signature

- Signing
 - $S = M^d mod n$
- Verifying
 - $M' = S^e \mod n$

ullet If M'==M, accept

With Message Digest

- Signing
 - D = h(M) (Digest)
 - $S = D^d mod n$
- Verifying
 - $D' = S^e mod n$
 - If D' == h(M), accept

ElGamal Digital Signature

- Public key (e_1,e_2,p) , Private key d
- Signing
 - $S_1 = e_1^r mod p$
 - $S_2 = (M dS_1)r^{-1}mod(p-1)$
- Verifying
 - $ullet V_1 = e_1^M mod \ p$
 - $ullet \ V_2 = e_2^{S_1} S_1^{S_2} mod \ p$
 - ullet If $V_1 == V_2$, accept

Schnorr Digital Signature

- ullet Public key (e_1,e_2,p,q) , Private key d
- Signing
 - $S_1 = h(M \mid e_1^r mod p)$
 - $S_2 = r + dS_1 \mod q$
- Verifying
 - $ullet \ V = h(\ M \ | \ e_1^{S_1} e_2^{-S_2} mod \ p \)$
 - If $V == S_1$, accept $(S_1 \text{ is congruent to } V \ mod \ p)$

Digital Signature Standard

- ullet Public key (e_1,e_2,p,q) , Private key d
- Signing
 - $\bullet \ \ S_1 = (e_1^r \ mod \ p) \ mod \ q$
 - $S_2 = (h(M) + dS_1) \ r^{-1} \ mod \ q$
- Verifying
 - $ullet \ V = (e_1^{h(M)S_2^{-1}}\ e_2^{S_1S_2^{-1}}\ mod\ p)\ mod\ q$
 - If $V == S_1$, accept $(S_1$ is congruent to $V \ mod \ p)$
- Properties:

- Faster computation wrt RSA
- Smaller signatures wrt ElGamal

Elliptic Curve Digital Signature

Application

- Time Stamped Signatures
 - Time stamped to prevent replay of documents
- Blind Signatures (David Chaum)
 - Signing without knowing content of message
 - Procedure
 - Blinding the message from Bob: $B=M imes b^e mod\, n$ (e -> Alice Public Key, b -> Blinding Factor)
 - ullet Signing by Alice: $S_{blind}=B^d\ mod\ n$
 - ullet Unblind by Bob: $S=S_bb^{-1}\ mod\ n$