

Data ingestion performance optimization

Linda Wang @AzDataFactory

ADF Program Manager

Agenda

- Data ingestion scenarios
- Breath of connectivity
- Copy performance features and best practice
- Performance tuning steps

Data movement scenarios

Ingest data using ADF to bootstrap your analytics workload

KEY SCENARIO

Data migration for data lake & EDW

- 1. Big data workload migration from AWS S3, onprem Hadoop File System, etc.
- 2. EDW migration from Oracle Exadata, Netezza, Teradata, AWS Redshift, etc.

WHY ADF

- Tuned for perf & scale: PBs for data lake migration, tens of TB for EDW migration
- Cost effective: serverless, PAYG
- Support for initial snapshot & incremental catch-up

Data ingestion for cloud ETL

- 1. Load as-is from a variety of data stores
- 2. Stage for code-free or code-based transformation
- 3. Publish to DW for reporting or OLTP store for app consumption

- Rich built-in connectors: file stores, RDBMS, NoSQL.
- **Hybrid connectivity:** on-prem, other public clouds, VNet/VPC
- Enterprise grade security: AAD auth, AKV integration
- Developer productivity: code-free authoring, CICD
- Single-pane-of-class monitoring & Azure Monitor integration

Access all your data - 90+ built-in connectors & growing

Azure	Database & DW		File Storage	File Formats	NoSQL	Services & Apps		Generic
Blob Storage	Amazon Redshift	Phoenix	Amazon S3	Avro	Cassandra	Amazon MWS	PayPal	НТТР
Cosmos DB – SQL API	DB2	PostgreSQL	File System	Binary	Couchbase	CDS for Apps	QuickBooks	OData
Cosmos DB – MongoDB API	Drill	Presto	FTP	CDM	MongoDB	Concur	Salesforce	ODBC
ADLS Gen1	Google BigQuery	SAP BW Open Hub	Google Cloud Storage	Delimited Text	MongoDB Atlas	Dynamics 365	SF Service Cloud	REST
ADLS Gen2	Greenplum	SAP BW MDX	HDFS	Delta		Dynamics AX	SF Marketing Cloud	
Data Explorer	HBase	SAP HANA	SFTP	Excel		Dynamics CRM	SAP C4C	
Database for MariaDB	Hive	SAP Table		JSON		Google AdWords	SAP ECC	
Database for MySQL	Impala	Snowflake		ORC		HubSpot	ServiceNow	
Database for PostgreSQL	Informix	Spark		Parquet		Jira	SharePoint List	
Databricks Delta Lake	MariaDB	SQL Server		XML		Magento	Shopify	
File Storage	Microsoft Access	Sybase				Marketo	Square	
SQL Database	MySQL	Teradata				Office 365	Web Table	
SQL Database MI	Netezza	Vertica				Oracle Eloqua	Xero	
Synapse Analytics	Oracle			Support read 8	ι write	Oracle Responsys	Zoho	
Search Index		Support read only			Oracle Service Cloud			
Table Storage								

Connectivity to additional data stores

Not in the supported list? No worries:

Database/DW ✓ Use generic ODBC connector ODBC ✓ If it provides RESTful APIs, use **generic REST** connector SaaS apps ✓ If it provides SOAP APIs, use **generic HTTP** connector ✓ If it has OData feed, use **generic OData** connector REST OData ✓ Check if you can load data to or expose data as ADF supported data stores, e.g. Azure Blob/File/FTP/SFTP/Amazon S3. SFTP Custom Invoke **custom data loading mechanism** via Azure Function, Custom activity, Databricks/HDInsight, Web activity, etc. SFTP File System

Fully-managed runtime

- Azure Integration Runtime: managed, serverless, and pay-as-you-go
- Support managed virtual network.
- Specify how much horsepower to use for each copy by **Data Integration Units** (**DIUs**)
- DIU is a combination of CPU, memory, and network resource allocation.
- Default behavior based on your data pattern – larger file size & file count, larger DIUs.
- You can set DIU = 2, 4, 8, ..., 256.

Self-hosted runtime

- Self-hosted Integration Runtime: component installed on machine on-prem or VM in cloud
- Touchless: latest version automatically pushed down to machine during downtime
- **HA and scale-out:** register up to 4 nodes for each self-hosted IR.
- Active-active mode: requests are dispatched to each node.
- **Single-node concurrency:** # of concurrent activity runs on each node, determined based on IR CPU/memory, can be tuned.

Extract data from file sources

Copy activity in parallel copy/parse multiple files (determined by "parallel copy") across Azure IR Data Integration Units (DIUs) or Self-hosted IR nodes; within each file, data is handled by chunks concurrently.

P Tips:

- Start with default DIUs. Increase the DIU if your source has a number of files and with large size or file count.
- When using file/folder filter, avoid enumerating large number of files but only copying few.
- To copy to file-based sink:
 - Use default "degree of parallelism", ADF auto determine based on your file pattern size/count.
 - To copy files as-is, use Binary dataset to avoid unexpected SerDes.
- To copy to non-file sink, you can increase the "degree of parallelism" to enable parallel write.

Extract data from non-file sources (database, NoSQL, SaaS)

Out-of-box optimization for Azure SQL Database, Azure SQL MI, Azure Synapse Analytics, SQL Server, Oracle, Teradata, Netezza, SAP HANA, SAP Table & SAP BW via Open Hub

- Enable built-in parallel copy by partitions to boost perf for large migration/ingestion.
- Options of range partition and native partition mechanism per data store.
- Tune the parallel copy count and DIUs/# of Selfhosted IR nodes to increase parallelism.
- For data sources without built-in partition, for very large copy, manually partition to multiple copy activities to divide and conquer.

Build your solution – process

Understand the scenario and the workload:

- Connectivity: What are the source and sink stores? Which format?
- Network: What is the network requirement?
- Data loading pattern: One-time historical or incremental copy?
- Scale: What is the data volume, # of objects (tables/files) and size distribution?

Identify key criteria:

- Security requirement
- Performance expectation
- Special need

Build your solution – process

Performance test and tuning to handle data at scale:

- 1. Pick a representative workload
- 2. Obtain throughput baseline and compare to the performance expectation
- 3. Identify performance bottlenecks
- 4. Tune configurations to optimize
- 5. Scale to entire dataset

Consideration: maximize performance of a single copy activity

VS maximize aggregate throughput across objects/data stores

Easily identify bottlenecks

- Follow the performance tuning tips, which is auto generated based on the execution status.
- **2** Check the execution details to identify bottlenecks and refer to <u>performance and scalability guide</u>.

E.g. Queue time – scale IR; Time to first byte – tweak query; Read/write – scale out or add parallelism

Provide us feedback on the perf you experienced

Understand how ADF copy scales

Reference

- Connector overview
- Copy data using Copy Activity
- Performance and scalability guide
- Troubleshoot performance
- Performance features

Learn with us!

View our on-demand playlist: aka.ms/azuresqlandadf

@AzureSQL
@AzDataFactory

