Review of surface propagation studies in Moore's Bay, and other calculations

Jordan Hanson CCAPP February 24th, 2017

Outline

- Explanation of an experiment conducted in Moore's Bay, 2011-12
 - Motivation
 - Setup
 - Results
- Theoretical calculations (Fermat's principle)
- Reading: "Radio surf in polar ice: A new method of ultrahigh energy neutrino detection." J. Ralston, Phys. Rev. D 71 011503 (2005)

Moore's Bay Surface Propagation Experiment

Moore's Bay Surface Propagation Experiment

Moore's Bay Surface Propagation Experiment

Component	Delay (ns)		
RG-58	4.0		
10 m LMR-600	38		
20 m LMR-600	76		
RG-8X	2134		
PCD	10		

$$\Delta = \Delta t_{\text{prop}} - \Delta t_{\text{sys}} = n \Delta x / c - \Delta t_{\text{sys}}$$

$$n = c (\Delta + \Delta t_{\text{sys}}) / \Delta x$$

$$\sigma_n = \frac{c}{\Delta_x} \sqrt{\sigma_{\Delta}^2 + \sigma_T^2 + \left(\frac{\sigma_x}{x}\right)^2 (\Delta + \Delta t_{sys})^2}$$

Results: Δ = 360+/-10 ns, Δt_{sys} = 1964 ns n = 1.29+/-0.02 (No one source of error dominates).

Data Acquired

Deep Ice

Measured index profiles in Antarctica

Ref./Location	$A = n_{ice}$	В	n_s	$C (m^{-1})$	$z_0 ({\rm m})$
MB#1/Moore's Bay	1.78	0.46 ± 0.01	1.32 ± 0.01	0.029 ± 0.002	34.5 ± 2
MB#2/Moore's Bay	1.78	0.481 ± 0.007	1.299 ± 0.007	0.027 ± 0.001	37 ± 1
Ebimuna (1983)/Byrd	1.78	0.464 ± 0.006	1.316 ± 0.006	0.0244 ± 0.0004	41 ± 1
Ebimuna (1983)/Mizuho	1.78	0.423 ± 0.008	1.357 ± 0.006	0.027 ± 0.001	37 ± 1
RICE (2004)/South Pole	1.78	0.43 ± 0.02	1.35 ± 0.02	0.014 ± 0.001	71 ± 5
Eisen (2003)/South Pole	1.78	0.48 ± 0.01	1.3 ± 0.01	0.020 ± 0.001	50 ± 2.5
Gow (xxxx)/South Pole	1.78	0.435 ± 0.01	1.345 ± 0.01	0.016 ± 0.001	62.5 ± 4

Table 1: The fit parameters for the curves shown in Fig. 1. The function fit to the data is $n(z) = n_{ice} - \Delta n \exp(Cz)$. The differential equation derived in the first section requires $n_{ice} = 1.78$ and $B = \Delta n = n_{ice} - n(0)$ as boundary conditions.

$$\delta S = 0 \tag{19}$$

$$\delta \int_{A}^{B} n(z)(1+\dot{y}^{2})^{1/2}dxdydz = \int_{A}^{B} L(z,\dot{y})dxdydz = 0$$
 (20)

$$\dot{u} = z_0^{-1} \left(\frac{\Delta n e^{z/z_0}}{n_{ice} - \Delta n e^{z/z_0}} \right) (u^3 + u)$$
(24)

Definitions:

- 1) Derivatives are with respect to z
- 2) u = dy/dz
- 3) z_0 is the same from n(z)

Limiting Cases:

- a) Deep ice: **straight lines**
- b) Surface, ~horizontal: quadratic
- c) Shallow: quadratic

$$|z| \gg z_0, \ z < 0:$$

$$z(y) = -\frac{1}{2z_0} \left(\frac{n_{ice} - n_s}{n_s} \right) (y - y_1)^2 + z_1 \qquad z(y) = -\frac{1}{2} \frac{Q_1}{z_0} (y - y_1)^2 - \frac{Q_0}{Q_1} z_0$$

$$\dot{x} = 0$$

Wait for it...If z_0 is the quadratic curvature, and that number is measured to be larger for Moore's Bay, *paths should be bent MORE in Moore's Bay.*

They are not, apparently. Or, at least some portion of the wave is not.

So although my analytic model of ray-tracing is fast, simple, and based on Fermat's principle, it's not entirely correct.

Conclusions

- Explanation of an experiment conducted in Moore's Bay, 2011-12
 - Motivation Looking for surface propagation
 - Setup 540 meter baseline
 - Results Prompt and Delayed Components propagated along surface
- Theoretical calculations: Fermat's principle tells us that if there is a solution between two points, the fastest path between them for firn is roughly quadratic.
- Reading: "Radio surf in polar ice: A new method of ultrahigh energy neutrino detection." J. Ralston, Phys. Rev. D 71 011503 (2005)