Practice Final Exam

Due No due date Points 60 Questions 49 Time Limit None Allowed Attempts 3

Instructions

For practice only. Not graded. You get three attempts.

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	467 minutes	60 out of 60

Score for this attempt: 60 out of 60

Submitted Jun 7 at 8:27am

This attempt took 467 minutes.

Question 1 1 / 1 pts

Rank the following functions by increasing order of growth:

$$\log(n^2)$$
, 10000n, n^3 , 2^n , $\sqrt[3]{n}$

O $\log(n^2)$, n^3 , 2^n , $\sqrt[3]{n}$, 10000n

 $\sqrt[3]{n}$, log(n²), 10000n, n³, 2ⁿ

 \bigcirc 10000n, log(n²), n³, 2ⁿ, $\sqrt[3]{n}$

 \bigcirc 10000n, log(n²), n³, $\sqrt[3]{n}$, 2ⁿ,

none of the above

Question 2 1/1 pts

Give a tight bound on the number of times the statement z = z + 1 is executed. Assume n is a power of 2.

i = n

while (i > 1)

i = floor(i/2)

z = z + 1

}

Theta(n)

Theta(nlgn)

Question 3 1 / 1 pts

Determine the theoretical running time of the following algorithm:

```
int Algo1(int n)
{
    int sum = 0;
    for (int i = n; i > 0; i--) {
        for (int j = i+1; j <=n; j++) {
            sum = sum + j;
            cout << i << " " << sum << endl;
        }
    }
}</pre>
```

 $\Theta(n)$

 $\Theta\left(\lg n
ight)$

 $igotimes\Theta\left(n^2
ight)$

 $\Theta(nlgn)$

None of the above

Question 4

2 / 2 pts

Let $f(n) = n^3$

Let $g(n) = n^2 \log(n^3)$

What is the asymptotic relation between f(n) and g(n)? Check all that apply.

f(n) = Omega(g(n))

f(n) = Theta(g(n))

g(n) = Theta(f(n))

g(n) = O(f(n))

Question 5

3 / 3 pts

Let $f(n) = 10000n^3$

Let $g(n) = n^4$

What is the asymptotic relation between f(n) and g(n)? Check all that apply.

f(n) = O(g(n))

f(n) = Omega(g(n))

f(n) = Theta(g(n))

g(n) = Theta(f(n))

g(n) = O(f(n))

g(n) = Omega(f(n))

If $g(n) = 2^n$ and $f(n) = 2^{n+1}$. What is the asymptotic relation between f(n) and g(n)? Check all that apply.

- f(n) = O(g(n))
- $f(n) = \Omega(g(n))$
- $f(n) = \Theta(g(n))$
- $g(n) = \Theta(f(n))$
- g(n) = O(f(n))
- $g(n) = \Omega(f(n))$

Question 7 1 / 1 pts

If $f(n) = O(n^2)$ and $g(n) = O(n^2)$, then $f(n) = \Theta(g(n))$.

- True
- False

consider, e.g., $f(n) = n^2$ and g(n) = n

```
total = 0

if n = 1 return 2

else {

total = Foo(n/4) + Foo(n/4)

for i = 1 to n do

for k = 1 to 3 do

total = total + k

return total }
```

- T(n) = T(n/2) + 2n
- T(n) = 2T(n/4) + 3n
- $T(n) = 2T(n/4) + n^2$
- $T(n) = T(n/4) + 2n^2$

None of the above

Question 9 1 / 1 pts

Given the following algorithm

```
goo(n)

if n <= 1 {
    return 1 }

else {
    x = goo(n-1)
    for i = 1 to 3*n {
        x = x + i }

return x }</pre>
```

Determine the asymptotic running time. Assume that addition can be done in constant time.

 $igotimes\Theta\left(n^2
ight)$

 $\Theta(n)$

O(n)

 $\Theta(2^n)$ $\Theta(n^3)$ none of the above

Question 10 1 / 1 pts

Solve the following recurrence by giving the tightest bound possible.

$$T(n)=2T(rac{n}{8})+4n^2$$

- $igotimes\Theta(n^2)$
- $\Theta(n)$
- $\Theta(n\log(n))$
- $\Theta(\log(n))$

Question 11

None of the above

$$T(n)=4T(rac{n}{4})+4n$$

- $\Theta(logn)$
- $\Theta(n^2)$
- $igotimes \Theta(nlgn)$
- $\Theta(n)$
- $\Theta(n^3)$
- None of the above

Question 12

1 / 1 pts

Solve the following recurrence by giving the tightest bound possible.

$$T(n) = T(n-1) + 5$$

 $\Theta(logn)$

 $\Theta(n)$

 $\Theta(n^3)$

 $\Theta(n^2)$

None of the above

Question 13

1 / 1 pts

Solve the following recurrence by giving the tightest bound possible.

$$T(n) = T(n-2) + n$$

 $\Theta(n^2)$

 $\Theta(n)$

 $\bigcirc \ \Theta(n\log(n))$

 $\Theta(\log(n))$

None of the above

Question 14 1 / 1 pts

Which of the following is/are property/properties of a dynamic programming problem?

- Optimal Substructure
- Overlapping Subproblems
- Greedy approach
- Both optimal substructure and overlapping subproblems

Question 15 1/1 pts

Consider the following two sequences:

 $X = \langle K, L, M, L, J, K, L \rangle$, and

 $Y = \langle L, J, M, K, L, K \rangle$

The length of the longest common subsequence of X and Y is:

- **5**
- 3

Question 16
1/1 pts

If a dynamic programming algorithm uses an nxn table then the running time is always:

O(n^2)

O(n)

O(nlgn)

O(n^3)

not enough information to determine

Question 17 1 / 1 pts

False

Question 18 5 / 5 pts

Suppose we have an alphabet with only five letters A, B, C, D, E which occur with the following frequencies:

• A = 51, B = 10, C = 8, D = 12, E = 19

Construct a Huffman code using the following guidelines while constructing the code

- the lowest frequency node is the left child in the tree while the higher frequency node is the right child
- when creating the code the left branch is assigned a 0 while the right branch is assigned a 1.

The Huffman binary coding is:

○ A = 0, B = 11, C = 10, D = 11, E = 111

○ A = 0, B = 1,1, C = 1001, D = 101, E = 1000

Question 19 1 / 1 pts

Consider the following greedy choice strategies to solve the activity-selection problem of section 16.1 in CLRS.

Select the compatible activity with:

- 1. the earliest start time.
- 2. the shortest total time.
- 3. the fewest conflicts.
- 4. the latest finishing time.
- 5. the latest start time.

Which strategy is guaranteed to result in an optimal solution.

0 1

2

3

0 4

Question 20

1 / 1 pts

Item	Value in \$	Weight in lbs
1	15	10
2	30	15
3	48	12
4	25	5
5	12	4

Assume that each item can be used at most once and **can be broke**n. What is the maximum value of items that can be placed in the knapsack.

90

85

82

87

Let X be an NP-complete problem and Y and Z be two other problems not known to be in NP. Y is polynomial time reducible to X and X is polynomial-time reducible to Z. Which of the following statements is true?

- Z is in NP-complete
- Z is in NP-Hard
- Y is in NP-complete
- Y is in NP-Hard

Question 22 1/1 pts

The problems 3-SAT and 4-SAT are

Both in P

Consider two decision problems X and Y. If X reduces in polynomial time to 3-SAT and 3-SAT reduces in polynomial time to Y. Which of the following can be inferred from the previous statement?

X is in NP and Y is in NP-Hard

Y is in NP and X is in NP-Hard

Both X and Y are in NP-hard.

Both X and Y are in NP.

Question 24

A problem in NP is in NP-complete if

•

Question 26

NP-complete is a subset of NP-Hard.

True			
False			

If you discover a polynomial time algorithm for the 0-1 knapsack problem this will imply that P=NP.

True

False

Question 28 1 / 1 pts

Every problem in P can be reduced to HAM-CYCLE,

True

Every problem in P is in NP, and every problem in NP can be reduced to any NP-complete problem. Circuit-SAT is NP-complete.

○ False

The traveling salesman problem can never be solved exactly.

True

False

Given two vertices s and t in a connected graph G, which of the two traversals, BFS and DFS can be used to find if there is a path from s to t?
Only DFS
Only BFS
Both BFS and DFS
Neither BFS nor DFS

Question 32	1 / 1 pts
Let T be a complete binary tree with n vertices . Finding a shortest path (measured by numedges) from the root of T to a given vertex $v \in T$ takes	iber of
O(n)	
O(lgn)	
O(n^2)	
O(nlgn)	

Question 34 3 / 3 pts

Given a weighted directed graph G = (V,E,w) and a shortest path P from s to t, if we doubled the weight of every edge to produce G'=(V,E,w'), then P is also a shortest path in G'.

True

False

In an undirected graph with edge weights that are all 1, a DFS from vertex s to some vertex t will always produce a shortest path from s to t.

True

False

Question 37 1 / 1 pts

In an undirected weighted graph the heaviest edge is never in the MST.

True

False

Question 38 1 / 1 pts

What is the weight of the MST for the graph below? Give strictly a numeric answer.

16

1 / 1 pts

In the graph above, the shortest path from vertex 0 to vertex 7 has weight of

21

0 19

15

16

Question 40 3 / 3 pts

Given a weighted directed graph G = (V,E,w) and a shortest path P from s to t, if we doubled the weight of every edge to produce G'=(V,E,w'), then P is also a shortest path in G'.

True			
O False			

Dijkstra's algorithm may not terminate with the correct distances if the graph contains negative-weight cycles.

True

False

A Breadth First Search Algorithm has been implemented using a queue data structure. One possible order of visiting the vertices of the graph above is:

- 0, 5, 4, 1, 2
- 0 4, 1, 0, 5, 2, 3
- 0 4, 0, 1, 3, 5, 2
- 1, 0, 5, 2, 4, 3

Question 43 1 / 1 pts

Which of the following is a topological sort of the graph above.

7, 6, 5, 2, 4, 3, 1, 0

6, 7, 0, 1, 3, 2, 5, 4		
0, 1, 2, 3, 4, 5, 6, 7		
0, 3, 2, 5, 1, 4, 6, 7		
None of the above		

Question 44	1 / 1 pts
What is the running time of a 2-OPT approximation algorithm for the 0-1 Knapsack probler the greedy criteria of value/weight?	n that uses
○ Theta(n)	
Theta(nlgn)	
○ Theta(lgn)	
○ Theta(n^2)	
None of the above	

•

Question 45	1 / 1 pts
Which of the following graph algorithms can be used to create a polynomial-time 2-approx algorithm for the traveling salesman problem?	imation
ODFS	
O BFS	
Shortest Path	
● MST	
O None of the above	

An an approximation algorithm with an approximation ratio of 2 is always twice as fast as an exact algorithm for solving the problem.

True

False

Question 47 1 / 1 pts

In the TSP problem with Euclidean distances what is the relationship between the cost of the MST and the cost of the optimal TSP tour T*? Assume all edge wrights are positive.

- \circ cost(MST) = cost(T*)
- \bigcirc cost(MST) > cost(T*)
- ost(MST) < cost(T*)</pre>
- None of the above

Question 48 1 / 1 pts

You are using a polynomial time 2-approximation algorithm to find a tour t for the traveling salesman problem. Which of the following statements is true.

- The tour t is never optimal.
- The cost of tour t is at most twice the cost of the optimal tour.e the
- The cost of tour t is always 2 times the cost of the optimal tour.

All of the above

Question 49 1 / 1 pts

```
Testing(n) {
  total = 0
  if n = 1 return 2
  else {
    total = Testing(n/4) + Testing(n/4)
    for i = 1 to n do
        for k = 1 to n do
        total = total + k
    return total }
}
```

Write a recurrence for the running time T(n) of Testing(n)

```
T(n) = T(n/4) + n
```

- $T(n) = T(2n/4) + n^2$
- $T(n) = 2T(n/4) + n^2$
- T(n) = 2T(n/4) + n
- None of the above

Quiz Score: 60 out of 60