$\frac{5}{\sqrt{2}} A \cdot a \cdot \frac{1}{\sqrt{2}} \left(\frac{10}{10} + \frac{11}{12} \right)$ $B \cdot \alpha \cdot \frac{1}{\sqrt{2}} \left(10 \right) - |1\rangle$ b. 11> 01 (0) c. 1 (10>-11>). 1 (10>+(11>) Both the parts have a similar solution for (d.). The first beam splitter creates superposition. For 10> it creates 1 (10>+11>), for 11> it creates 1 (10>-11>). The second beam splitter however can produce the initial input as the output. The most is as follows: Initial input for B.S. 2. 1 (10>+11>). $B.S\left(\frac{1}{\sqrt{2}}(10)+11)\right)=\frac{1}{\sqrt{2}}\left(B.S(10))+B.S(11)\right).$ $=\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\left(10\right)+\frac{1}{\sqrt{2}}\left(10\right)-11\right)$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{10}{10} + \frac{10}{10} - \frac{11}{10} \right)$$

$$= \frac{1}{2} \left(\frac{210}{10} \right) = \frac{10}{2}$$
Similarly for $\frac{1}{\sqrt{2}} \left(\frac{10}{10} - \frac{11}{10} \right)$ we get $\frac{1}{10}$.

B. $S \left(\frac{1}{\sqrt{2}} \left(\frac{10}{10} - \frac{10}{10} \right) \right) = \frac{1}{\sqrt{2}} \left(\frac{10}{\sqrt{2}} - \frac{10}{10} \right) = \frac{1}{\sqrt{2}} \left(\frac{10}{\sqrt{2}} - \frac{10}{\sqrt{2}} - \frac{10}{\sqrt{2}} \right)$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{10}{10} + \frac{10}{10} \right) + \frac{10}{\sqrt{2}} \left(\frac{10}{\sqrt{2}} - \frac{10}{\sqrt{2}} \right)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{10}{10} + \frac{10}{10} + \frac{10}{10} \right)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{10}{\sqrt{2}} + \frac{10}{10} + \frac{10}{10} + \frac{10}{10} \right)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{10}{\sqrt{2}} + \frac{10}{10} + \frac{10}{10} + \frac{10}{10} \right)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{10}{\sqrt{2}} + \frac{10}{10} + \frac{10}{10} + \frac{10}{10} \right)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{10}{\sqrt{2}} + \frac{10}{10} + \frac{10}{10} + \frac{10}{10} \right)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{10}{\sqrt{2}} + \frac{10}{10} + \frac{10}{10} + \frac{10}{10} \right)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{10}{\sqrt{2}} + \frac{10}{10} + \frac{10}{10}$$

which is a similar matrix representation of H gate.

The beam splitter can be represented as 1 11

8. To find:
$$\langle 0|\gamma\rangle = ?$$

Given: $|\gamma\rangle = |\lambda|0\rangle + |\beta|1\rangle$
 $\langle 0|\gamma\rangle = |\langle 0|\langle \lambda|0\rangle + |\beta|1\rangle$
 $= |\langle 0|0\rangle + |\langle 0|1\rangle$

=
$$\alpha (1(1) + (0)(0)) + \beta (1(0) + o(1))$$

= $\alpha (1) + \beta (0) = \alpha$.

Probability of
$$|\langle 0|\gamma \rangle|^2 = d^2$$