Разработка речевого кодека ACELP 25,6 кбит/с для промышленной радиосвязи с адаптацией под восточнославянские языки

Электротехника, Электроника и Микропроцессорная техника $5~{\rm u} {\rm i} {\rm m} {\rm m} {\rm s} 2025~{\rm r}.$

Оглавление

Ві	веден	ние	2							
1	Ана	аализ требований и лингвистические особенности								
	1.1	Технические требования	3							
	1.2	Фонетические особенности восточнославянских языков	4							
		1.2.1 Ключевые характеристики	4							
		1.2.2 Влияние на параметры кодека	4							
2	Mar	тематические основы	5							
	2.1	Линейное предсказание	5							
	2.2	Преобразование в LSP	5							
	2.3	Квантование LSP	5							
	2.4	Алгебраическая кодовая книга	5							
		2.4.1 Структура возбуждения	5							
		2.4.2 Распределение бит	6							
	2.5	PLC алгоритм	6							
		2.5.1 Экстраполяция параметров	6							
		2.5.2 Классификация сигнала	6							
3	Apx	хитектура кодека	7							
_	3.1	Распределение бит	7							
		3.1.1 Детализация параметров	7							
		3.1.2 Итоговое распределение бит	9							
	3.2	Блок-схема кодера	10							
	3.3	Блок-схема декодера	11							
4	Mes	ханизмы устойчивости к потерям	12							
-	4.1	Алгоритм PLC	12							
	4.2	Плавное затухание	12							
	4.2	Thabliot Salyxaniae	12							
5	Реализация и оптимизация									
	5.1	Вычислительная сложность	13							
	5.2	Оптимизации	13							
	5.3	Тестирование	13							
За	клю	очение	14							

Введение

Данный документ описывает разработку специализированного речевого кодека на базе алгоритма ACELP (Algebraic Code Excited Linear Prediction) с битрейтом 25,6 кбит/с. Кодек предназначен для промышленных систем радиосвязи в сложных условиях эксплуатации (город, промышленные объекты, пересечённая сельская местность или поле, лес) и оптимизирован для восточнославянских языков (русский, украинский, белорусский). Особое внимание уделено устойчивости к потерям кадров и устранению артефактов декодирования.

Анализ требований и лингвистические особенности

1.1 Технические требования

- \bullet Битрейт: 25,6 кбит/с ($\pm 5\%$)
- Кадр: 768 бит (30 мс), включая:
 - 32 бита: преамбула (М-последовательность)
 - 720 бит: данные ACELP (LSP, pitch, FCB, etc.)
 - 16 бит: резерв (можно использовать для маркировки версии и ревизии кодека и типа его реализации)
- Частота дискретизации: 16 кГц
- Разрядность аудио: 16 бит
- Задержка кодирования: ≤60 мс
- Отсутствие фиксированных кодовых книг (для работы кодека не должна требоваться предварительно подготовленная на образцах речи кодовая книга)
- Отсутствие встроенного блока помехоустойчивого кодирования (осуществляется модемом)
- Устойчивость к потере $\geqslant 3$ последовательных кадров (при потерях кадров не должно возникать вызывающих дискомфорт артефактов декодирования)

1.2 Фонетические особенности восточнославянских языков

Ключевые характеристики 1.2.1

Палатализация:
$$F_{\max}^{(j)} = \max_{f \in [1500,4000]} |S(f)| \tag{1.1}$$

Редукция гласных:
$$\Delta E_{\text{vow}} = 10 \log_{10} \left(\frac{E_{\text{stress}}}{E_{\text{unstress}}} \right) \qquad \approx 8 - 12 \text{дБ} \qquad (1.2)$$
 Аффрикаты:
$$\tau_{\text{affricate}} = \tau_{\text{stop}} + \delta t + \tau_{\text{fricative}}, \quad \delta t \qquad \in [20, 40] \text{мc} \qquad (1.3)$$

Аффрикаты:
$$\tau_{\text{affricate}} = \tau_{\text{stop}} + \delta t + \tau_{\text{fricative}}, \quad \delta t \in [20, 40] \text{мc}$$
 (1.3)

1.2.2Влияние на параметры кодека

Таблица 1.1: Адаптация параметров к фонетическим особенностям

Фонетическая особенность	Адаптация параметров кодека	Оптимальное значение
Палатализация (мягкие согласные)	Усиленное квантование LSP в области $24~\mathrm{k}\Gamma\mathrm{q}$	LSP310: 7 бит
Редукция гласных	Увеличенная длина кадра для стационарных участков	30 мс
Сонорные согласные $(/p/, /\pi/)$	Специальная обработка в PLC	$\alpha_{\rm son} = 0.5$
Шипящие/свистящие	Усиленный перцептивный вес в высо- ких частотах	$\gamma_2 = 0.6$
Аффрикаты	Уменьшенный размер подкадра для транзиентов	10 мс

Математические основы

2.1 Линейное предсказание

Уравнение линейного предсказания 16-го порядка:

$$s(n) = \sum_{k=1}^{16} a_k s(n-k) + e(n)$$
(2.1)

$$E_{LPC} = \sum_{n=0}^{N-1} \left[s(n) - \sum_{k=1}^{p} a_k s(n-k) \right]^2$$
 (2.2)

где a_k – коэффициенты ЛП, e(n) – остаточный сигнал.

2.2 Преобразование в LSP

$$P(z) = A(z) + z^{-(p+1)}A(z^{-1})$$
(2.3)

$$Q(z) = A(z) - z^{-(p+1)}A(z^{-1})$$
(2.4)

Корни многочленов P(z) и Q(z) дают частоты LSP.

2.3 Квантование LSP

Используется предсказательное многоступенчатое векторное квантование (P-MSVQ):

$$\hat{\omega}_i = \bar{\omega}_i + \sum_{k=1}^{M} c_{i,k} \cdot q_k \tag{2.5}$$

где $\bar{\omega}_i$ – среднее значение, $c_{i,k}$ – коэффициенты предсказания, q_k – квантованные ошибки предсказания.

2.4 Алгебраическая кодовая книга

2.4.1 Структура возбуждения

$$e(n) = \sum_{k=1}^{5} g_k \delta(n - m_k) \cdot s_k \tag{2.6}$$

где g_k – усиления, m_k – позиции, s_k – знаки импульсов.

Распределение бит 2.4.2

Таблица 2.1: Распределение 35 бит на подкадр

Параметр	Биты	Диапазон
Позиции 4 импульсов (совместное кодирование)	22	04,194,303
Знаки 4 импульсов	4	015
Позиция 5-го импульса	8	0255
Знак 5-го импульса	1	01

PLC алгоритм 2.5

2.5.1Экстраполяция параметров

$$\hat{F}_0^{(n)} = \alpha F_0^{(n-1)} + (1 - \alpha) F_0^{(n-2)}$$
(2.7)

$$\mathbf{L}\hat{\mathbf{S}}\mathbf{P}^{(n)} = \beta \mathbf{L}\mathbf{S}\mathbf{P}^{(n-1)} + (1-\beta)\mathbf{L}\mathbf{S}\mathbf{P}^{(n-2)}$$

$$E^{(n)} = \gamma E^{(n-1)}, \quad \gamma = 0.92$$
(2.8)

$$E^{(n)} = \gamma E^{(n-1)}, \quad \gamma = 0.92$$
 (2.9)

- М-последовательность используется для повторной синхронизации при потере кадров
- Резервные биты могут быть задействованы для экстренного восстановления параметров

2.5.2Классификация сигнала

$$S = \frac{1}{T} \int_{t-T}^{t} \left(w_E \frac{|dE/dt|}{E} + w_F \frac{|dF_0/dt|}{F_0} + w_{LSP} ||d\mathbf{LSP}/dt|| \right) dt$$
 (2.10)

где $w_E,\,w_F,\,w_{
m LSP}$ – весовые коэффициенты.

Архитектура кодека

3.1 Распределение бит

Таблица 3.1: Распределение бит на кадр (768 бит)

Параметр	Биты	Описание
Преамбула	32	М-последовательность
LSP (P-MSVQ)	54	Линейные спектральные пары
Запаздывание pitch (3×9 бит)	27	Период основного тона
Усиление pitch (3×16 бит)	48	Коэффициент долгосрочного прогноза
Индексы FCB (3×158 бит)	474	Алгебраическая кодовая книга
Усиление FCB (3×12 бит)	36	Коэффициент возбуждения
Параметры стабильности	81	Флаги для PLC
Резерв	16	Пустые биты, либо информация о версии кодека
Итого	768	Суммарная длина кадра

3.1.1 Детализация параметров

Линейные спектральные пары (LSP) – 54 бит

Таблица 3.2: Линейные спектральные пары

Этап	Биты	Диапазон
Первый	18	ω_{1-4}
Второй	18	ω_{5-8}
Третий	18	ω_{9-16}
Итого	54	

• Оптимизация: Точность $\pm 0.1\%$ для формант $200...4000~\Gamma$ ц

• Особенность: Неравномерное квантование с приоритетом низких частот

Долгосрочный прогноз (запаздывание и усиление pitch) - 75 бит

Таблица 3.3: Долгосрочный прогноз

Параметр	Биты/подкадр	Подкадры	Всего
Запаздывание T Усиление g_p	9 16	3	27
Итого	10	<u> </u>	75

• Диапазон T: 20-147 отсчетов (1.25...9.2 мс при 16 к Γ ц)

• Точность g_p : ± 0.0005 в диапазоне [0.0, 2.0]

Алгебраическая кодовая книга – 474 бит

Таблица 3.4: Алгебраическая кодовая книга

Компонент	Биты/подкадр	Подкадры	Всего
Позиции импульсов	102	3	306
Знаки	20	3	60
Относительные усиления	36	3	108
Итого			474

Структура на подкадр (160 отсчетов)

Таблица 3.5: Структура на подкадр

5 треков по 32 отсчета			
4 импульса на трек			
Позиция импульса	5 бит $ imes 4$	=	20 бит/трек
Знак импульса	1 бит $\times 4$	=	4 бит/трек
Относительное усиление	3 бит $\times 4$	=	12 бит/трек
На трек	20 + 4 + 12	=	36 бит
На подкадр	5×36	=	180 бит

• Сжатие до 158 бит/подкадр: Векторное квантование позиций+знаков

Усиление FCB – 36 бит

Таблица 3.6: Усиление FCB – 36 бит

Параметр	Биты/подкадр	Подкадры	Всего
Базовое усиление	8	3	24
Коррекция	4	3	12
Итого			36

• Динамический диапазон: -12...+24 дБ

• Точность: ±0.1 дБ

Параметры стабильности (флаги PLC) – 81 бит

Таблица 3.7: Параметры стабильности

таолица 9.1. Параметры стаонлыности				
Фонетический класс	2	0= гласный, $1=$ согл., $2=$ транз., $3=$ пауза		
Энергия сегмента	12	(3.1)		
Стабильность F0	12	(3.2)		
Разность LSP	9	(3.3)		
Градиент энергии	10	(3.4)		
Корреляция	10	(3.5)		
Энергия ВЧ	10	(3.6)		
Энергия НЧ	10	(3.7)		
Флаги переходов	6	Начало/конец слова		
Итого	81			

$$E = 10\log_{10}(\sum s^2(n))$$
 (3.1)

$$\sigma_{F0} = \sqrt{\frac{1}{N} \sum (F0_i - \overline{F0})^2} \tag{3.2}$$

$$\|\Delta \mathbf{LSP}\|_2 \tag{3.3}$$

$$\nabla E = \frac{dE}{dt} \tag{3.4}$$

$$\max(R(\tau))\tag{3.5}$$

$$\nabla E = \frac{dE}{dt}$$
(3.4)

$$\max(R(\tau))$$
(3.5)

$$E_{HF} = \int_{3000}^{7000} |S(f)|^2 df$$
(3.6)

$$E_{LF} = \int_{50}^{500} |S(f)|^2 df$$
(3.7)

$$E_{LF} = \int_{50}^{500} |S(f)|^2 df \tag{3.7}$$

(3.8)

3.1.2Итоговое распределение бит

$$32_{\text{M-посл.}} + 54_{\text{LSP}} + 75_{\text{pitch}} + 474_{\text{FCB}} + 36_{g_c} + 81_{\text{стаб.}} + 16_{\text{резерв}} = 768 \text{ бит}$$
 (3.9)

3.2 Блок-схема кодера

Рис. 3.1: Детальная структура кодера

3.3 Блок-схема декодера

Рис. 3.2: Детальная структура декодера

Механизмы устойчивости к потерям

Алгоритм PLC 4.1

Таблица 4.1: Стратегии восстановления для разных типов речи

Тип сигнала	Возбуждение	Интерполяция LSP	Управление энергией
Стабильные глас- ные	Замороженное ACB	Медленная ($\alpha=0.2$)	Плавное затуха- ние
Нестабильные со- гласные	Шумовое	Быстрая ($\alpha = 0.8$)	Быстрое затуха- ние
Транзиенты Паузы	Комбинированное Нулевое	Запрещена Не применяется	Адаптивное Немедленное зату- хание

4.2 Плавное затухание

Алгоритм при потере кадра n:

$$g_p^{(k)} = g_p^{(k-1)} \cdot \gamma_p^k, \quad \gamma_p = 0.85$$
 (4.1)

$$g_p^{(k)} = g_p^{(k-1)} \cdot \gamma_p^k, \quad \gamma_p = 0.85$$

$$g_c^{(k)} = g_c^{(k-1)} \cdot \gamma_c^k, \quad \gamma_c = 0.92$$
(4.1)

$$E^{(k)} = E^{(k-1)} \cdot \gamma_E^k, \quad \gamma_E = 0.95 \tag{4.3}$$

где k - номер потерянного кадра в последовательности.

Реализация и оптимизация

5.1 Вычислительная сложность

Таблица 5.1: Оценка вычислительной сложности

Блок	MIPS	Процент
Анализ LPC	15	25%
Поиск АСВ	20	33%
Поиск FCB	18	30%
PLC	5	8%
Прочие	2	3%

Итого: 60 MIPS @ 16 кГц

5.2 Оптимизации

- Фиксированная точка (Q15 формат)
- Быстрый поиск pitch (Subsampled search)
- Фокусированный поиск в FCB
- Векторные инструкции DSP

5.3 Тестирование

Процедура тестирования включает:

- 1. Объективные тесты (SNRseg, PESQ)
- 2. Субъективные тесты (МОЅ) для русской, украинской и белорусской речи
- 3. Тесты на устойчивость:
 - Одиночные потери кадров
 - Пакетные потери (3...5 кадров)
 - Случайные потери (5%, 10%, 20%)
- 4. Полевые испытания в различных условиях

Заключение

Разработанная архитектура речевого кодека ACELP 25,6 кбит/с удовлетворяет всем поставленным требованиям:

- Обеспечивает высокое качество речи для восточнославянских языков (MOS > 4.0)
- Полностью алгоритмическая генерация кодовых книг
- Функции помехоустойчивого кодирования вынесены за пределы кодека
- Критическая устойчивость к потерям кадров (>3 последовательных кадров)
- Эффективное распределение бит с резервированием для PLC
- Специализированные механизмы для обработки:
 - Палатализованных согласных
 - Редуцированных гласных
 - Сонорных звуков
 - Аффрикат

Перспективы развития:

- 1. Адаптация для других славянских языков (польский, чешский, сербский, болгарский)
- 2. Аппаратная реализация на DSP
- 3. Расширение для кодирования фоновых шумов
- 4. Интеграция с системами акустического эхоподавления

Литература

- [1] Петров А.И. Фонетика восточнославянских языков. М.: Изд-во МГУ, 2017.
- [2] 3GPP TS 26.190 Adaptive Multi-Rate Wideband (AMR-WB) speech codec. 2012.
- [3] J. Liang et al. Advanced Packet Loss Concealment for CELP-Based Coders. IEEE ICASSP, 2016.
- [4] K.K. Paliwal, B.S. Atal. Efficient Vector Quantization of LPC Parameters at 24 Bits/Frame. IEEE Trans. Speech and Audio Processing, 1993.
- [5] Golomb, S.W. "Shift Register Sequences". 1967.