1.某有色化合物,分子量为 100,当其含量为 1.50mg/L 时,用 2.0cm 吸收池于波长 520nm 测得 T=53 %,求该化合物的摩尔吸光系数 $_{520}$ 。

解: $c=1.50\times10^{-3}\div100=1.5\times10^{-5}$ mol·L⁻¹

$$A = \lg \frac{1}{T} : \qquad \text{(1)}$$

$$A = \varepsilon bc$$
 ②

代入数据,解①②得 520=9.2×10³ L·mol⁻¹·cm⁻¹

 $(9.2 \times 10^3 \text{ L·mol}^{-1} \cdot \text{cm}^{-1})$

2. 某试液用 1cm 的吸收池测量时,T=80%,若改用 2cm 的吸收池,T 和 A 等于多少?

解: $\log (1/T_1) = \varepsilon b_1 c$

$$log (1/T_2) = \varepsilon b_2 c$$

其中 b_1 =1cm b_2 =2cm T_1 =80%

 $T_2=64\%$

$$A = log (1/T_2) = log (1/64\%) = 0.19$$

(64%, 0.19)

3. 一未知摩尔质量的药物,其摩尔吸光系数为 $1.35 \times 10^4 L \cdot mol^{-1} \cdot cm^{-1}$ 。称取该药物 0.0500g,准确配制成 1L 溶液,用 1.0cm 的吸收池在 420nm 处测得吸光度为 0.760。求该药物的摩尔质量。

解: $A = \varepsilon bc$

$$0.760=1.35\times10^{4}\times c$$

 \therefore c=5.63×10⁻⁵ mol·L⁻¹

$$c = \frac{n}{V} = \frac{m}{MV}$$

$$M = \frac{m}{cV} = \frac{0.05}{5.63 \times 10^{-5} \times 1} = 888$$

(888)

- 4. 某样品中镍的质量分数约 0.12%,用丁二酮肟光度法($\epsilon_{470}=1.3\times10^4~\mathrm{L\cdot mol}^{-1}\cdot\mathrm{cm}^{-1}$)进行测定。试样溶解后转入 $100\mathrm{mL}$ 容量瓶中,显色,再加水稀释至刻度。在 $\lambda=470\mathrm{nm}$ 处,使用 $1~\mathrm{cm}$ 吸收池进行测量。计算样品的称量范围。已知 $M_{\mathrm{Ni}}=58.69$ 。
 - 解:保证测定结果的相对误差较小,则对应的吸光度 A 约为 0.15~1.0 之间

当 A=0.15 时,
$$A = \varepsilon bc$$

代入数据得 c=1.2×10⁻⁵ mol·L⁻¹

$$c = \frac{n}{V} = \frac{m}{MV} \frac{m_{\text{per}} \omega}{MV}$$

代入数据得 m #1=0.058g

 $(0.57 \sim 3.7g)$

5. 用分光光度法测定浓度为 c 的溶液,得吸光度为 0.434,假定所使用的仪器的透光率测定误差为 0.2%,由仪器产生的相对误差为多少?

解:
$$\frac{\mathrm{d}c}{c} = \frac{\mathrm{d}A}{A} = \left(\frac{0.434}{T \log T}\right) \mathrm{d}T$$
 ①

由已知得 dT=0.2%

$$A = \lg \frac{1}{T} = -\log T$$

 $\log T = -A = -0.434$

代入公式①得 Er=-0.5%

(0.5%)

6. 用磺基水杨酸法测定微量铁。标准铁溶液是由 0.2160 g $NH_4Fe(SO_4)_2\cdot 12H_2O$ (铁铵矾,M=482.18) 溶于水中,稀释至 500ml 配制成的。根据下列数据,绘制标准曲线。

标准铁溶液的体积 v/mL	0.0	2.0	4.0	6.0	8.0	10.0
吸光度 A	0.0	0.158	0.300	0.470	0.625	0.768

某试液 5.00ml,稀释至 250 mL。取该稀释液 2.00mL,与绘制标准曲线相同条件下显色和测定吸光度。测得 A=0.385。求试液中的铁含量(单位: $mg\cdot mL^{-1}$)。

解: 绘制标准曲线如下:

当 A=0.385,时,试样相对于标准物 V=0.385/0.0773=4.98mL

标准铁溶液
$$c = \frac{0.2160}{482.18 \times 0.5} = 8.96 \times 10^{-4} \, mol.L^{-1}$$

$$n_{Fe} = \frac{cV}{2} \times 250 = \frac{8.96 \times 10^{-4} \times 4.98 \times 10^{-3}}{2} \times 250 = 5.58 \times 10^{-4} \, mol$$
 铁含量
$$= \frac{1000 \text{n}M}{5} = \frac{1000 \times 5.58 \times 10^{-4} \times 55.84}{5} = 6.23 \, mg.mL^{-1}$$

$$(1.00 \, \text{mg·mL}^{-1})$$

7. 测定土壤中 Al 含量时, 称取 1.00g 土壤, 经消化处理后定容为 50 ml, 然后吸取 10.0ml 于 50ml 容量瓶中显色定容, 测得吸光度为 0.300。取浓度为 10.0mg·L⁻¹标准 Al 溶液 10.00 ml 于 50ml 容量瓶中显色定容, 在同样条件下测得吸光度为 0.250,求该土壤中 Al 的质量分数。

解:
$$A = \varepsilon bc$$

∴0.25=10×10×εb

 $0.3=c\times10\times\epsilon b$ $c=12 \text{ mg}\cdot\text{L}^{-1}$ $\therefore \text{m}_{Al}=12\times10^{-3}\times50\times10^{-3}\text{g}=6.00\times10^{-4}\text{g}$ $\omega=6.00\times10^{-4}/1.00\times100\%=0.0600\%$

(0.0600%)

8. 称取含铬、锰的钢样 0.500g,酸解后定容至 100mL。吸取该试液 10.0mL 置于 100mL 容量瓶中,加硫磷混酸,在沸水浴中,用 Ag^+ 做催化剂,用 $(NH_4)_2S_2O_8$ 将 Cr 与 Mn 分别定量氧化为 $Cr_2O_7^{2-}$ 和 MnO_4^- 。冷却后,用水稀释至刻度,摇匀。再取 5.00 mL Cr 标准溶液(含 Cr 1.00 mg·mL⁻¹)和 1.00 mL Mn 标准溶液(含 Mn 1.00mg·mL⁻¹),分别置于 2 只 100mL 容量瓶中,按钢样的显色方法处理。在相同条件下,于波长 440nm 和 540nm 处分别测量各有色溶液的吸光度,数据列于下表。计算钢样中 Cr 与 Mn 的质量分数。

溶液	c/(mg·100mL ⁻¹)	A ₁ (440nm)	A ₂ (540nm)	
Mn 标准溶液	1.00	0.032	0.780	
Cr 标准溶液	5.00	0.380	0.011	
试液		0.368	0.604	

解: $A = \varepsilon bc$

对于 Mn, $\epsilon_{Mn,440}b{=}0.032~mg^{\text{--}1}{\cdot}100^{\text{--}1}mL$

 $\varepsilon_{\text{Mn 540}}$ b=0.780 mg⁻¹·100⁻¹mL

对于 Cr, $\epsilon_{Cr,440}$ b=0.380/5=0.076 mg⁻¹·100⁻¹mL

_{Cr.540}b=0.011/5=0.0022 mg⁻¹·100⁻¹mL

对于试液, $A_1 = \varepsilon_{Mn.440} b c_{Mn} + \varepsilon_{Cr.440} b c_{Cr}$

 $A_2 = \varepsilon_{Mn,540}bc_{Mn} + \varepsilon_{Cr,540}bc_{Cr}$

代入数据得 c_{Mn} =0.8 $mg\cdot100mL^{-1}$ c_{Cr} =4.51 $mg\cdot100mL^{-1}$

 $_{Cr}$ =(4.51×10×10⁻³)/0.500=9.02%

 $_{Mn}$ =(0.8×10×10⁻³)/0.500=1.60%

(9.04%, 1.53%)

9. 在下列不同 pH 的缓冲溶液中,甲基橙的浓度均为 2.0×10^{-4} mol·L⁻¹。用 1cm 比色皿 在 520 nm 处测得下列吸光度数据,采用直线作图法求甲基橙的 pKa 值。

рН	0.88	1.17	2.99	3.41	3.95	4.89	5.50
\overline{A}	0.890	0.890	0.692	0.552	0.385	0.260	0.260

解:
$$\lg \frac{A_{\text{HA}} - A}{A - A_{\text{A}}} = pH - pK_a$$

以 $\lg \frac{A_{HA} - A}{A - A_A}$ 为纵坐标,以 pH 为横坐标绘图,得一直线,直线对应的纵坐标截距即为 $-pK_a$ 。

由表知: A_{HA}=0.89, A_A=0.260

根据公式计算得

рН	2.99	3.41	3.95
$log (A_{HA}-A)$			
$/(A-A_A)$	-0.339	0.0645	0.606

∴-
$$pK_a$$
=-3.29
 pK_a =3.29

(3.29)

10. 配制一系列溶液,其中 Fe^{2+} 含量相同(各加入 7.12×10^{-4} mol·L⁻¹ Fe^{2+} 溶液 2.00 ml),分别加入不同体积的 7.12×10^{-4} mol·L⁻¹ 的邻二氮菲溶液,稀释至 25 ml 后用 1cm 比色皿在 510 nm 处测得吸光度如下,求配合物的组成。

邻二氮菲溶液 的体积/mL	2.00	3.00	4.00	5.00	6.00	8.00	10.00	12.00
A	0.240	0.360	0.480	0.593	0.700	0.720	0.720	0.720
解:已知得:								
[R]/[M]	1	1.5	2	2.5	3	4	5	6
A	0.240	0.360	0.480	0.593	0.700	0.720	0.720	0.720
绘制 A -[R]/[M]	曲线如下:	0.8 0.7 0.6 0.5 < 0.4 0.3 0.2 0.1 0	1 2	3 [R]/	4 5	6	◆ 系列1 7	

由图可知, 当配体试剂增加到[R]/[M]为 3 时, [R]/[M]仅有微小变化 ∴[R]/[M]=3:1

 $(c_{\rm R}/c_{\rm M}=3:1)$