- 1.2. **Przestrzenie topologiczne.** Własności wyróżnione w Twierdzeniu 1.1.5 przyjmiemy za określenie topologii w przestrzeniach bez metryki.
- Definicja 1.2.1. Rodzina T podzbiorów zbioru X jest topologią w X, jeśli
 (i) ∅, X ∈ T,
 (ii) przecięcie skończenie wielu elementów T jest elementem T,
 (iii) suma dowolnie wielu elementów T jest elementem T.

 $Pare(X, \mathcal{T})$ nazywamy przestrzenią topologiczną, elementy zbioru X punktami

tej przestrzeni, a elementy rodziny \mathcal{T} zbiorami otwartymi w (X, \mathcal{T}) .

Definicja 1.2.4. Rodzinę \mathcal{B} podzbiorów otwartych przestrzeni topologicznej (X, \mathcal{T}) nazywamy bazą topologii \mathcal{T} , jeśli dla dowolnego $U \in \mathcal{T}$ i $x \in U$ istnieje $B \in \mathcal{B}$ spełniające $x \in B \subset U$.

Przykład 1.2.5. Niech (X, d) będzie przestrzenią metryczną i niech $A \subset X$ będzie zbiorem takim, że każda kula w (X, d) zawiera element A. Wówczas rodzina $\mathcal{B} = \{B(a, \frac{1}{n}) : a \in A, n = 1, 2, \ldots\}$ jest bazą topologii $\mathcal{T}(d)$.

Baza topologii jednoznacznie wyznacza tę topologię: zbiór jest otwarty wtedy i tylko wtedy, gdy jest sumą pewnej rodziny zbiorów z bazy. Opiszemy teraz metodę generowania topologii przy pomocy rodzin mających dwie własności przysługujące każdej bazie.

Twierdzenie 1.2.6. Niech \mathcal{B} będzie rodziną podzbiorów zbioru X spełniającą warunki

(i)
$$\bigcup \mathcal{B} = X$$
,
(ii) dla dowolnych $B_1, B_2 \in \mathcal{B}$ i $x \in B_1 \cap B_2$ istnieje $B \in \mathcal{B}$ takie, $\dot{z}e \ x \in B \subset \mathcal{B}$

(ii) dla dowolnych $B_1, B_2 \in \mathcal{B}$ i $x \in B_1 \cap B_2$ istnieje $B \in \mathcal{B}$ takie, ze $x \in B \subset B_1 \cap B_2$. Wówczas rodzina \mathcal{T} zbiorów $U \subset X$ takich, że jeśli $x \in U$, to $x \in B \subset U$ dla pewnego $B \in \mathcal{B}$, jest topologią w X. sób jako przestrzeń topologiczna, bo dla $Y \subset X$, rodzina $\{U \cap Y : U \in T\}$ śladów na Y zbiorów otwartych w X jest topologia w Y, zob. 1.2.1. Przyjęta przez nas poniżej definicja podprzestrzeni jest zgodna z tym, co opisaliśmy w Uwadze 1.1.8 dla przestrzeni metrycznych.

Podzbiór przestrzeni topologicznej (X,T) można rozpatrywać w naturalny spo-

Definicja 1.2.9. Niech (X, \mathcal{T}_X) będzie przestrzenią topologiczną i niech $Y \subset$ X. Przestrzeń topologiczną (Y, \mathcal{T}_Y) , gdzie $\mathcal{T}_Y = \{U \cap Y : U \in \mathcal{T}_X\}$, nazywamy podprzestrzenią przestrzeni (X, \mathcal{T}_X) , a \mathcal{T}_Y - topologią indukowaną w Y.

W przestrzeni metrycznej (X, d), dla każdej pary różnych punktów $x_1, x_2 \in X$ istnieją rozłączne zbiory otwarte U_1, U_2 takie, że $x_i \in U_i$ - wystarczy przyjąć $U_i = B(x_i, r/2)$, gdzie $r = d(x_1, x_2)$.

Definicja 1.2.11. Przestrzeń topologiczną (X, \mathcal{T}) nazywamy przestrzenią Hausdorffa, jeśli dla każdej pary różnych punktów $x_1, x_2 \in X$ istnieją $U_i \in \mathcal{T}$ takie, że $x_i \in U_i$, oraz $U_1 \cap U_2 = \emptyset$.

Przestrzenie niemetryzowalne opisane w przykładach 1.2.2 i 1.2.10 sa przestrze-

niami Hausdorffa.

Przykład 1.2.12. Niech X będzie zbiorem nieskończonym. Topologia $\mathcal{T} = \{U \subset X : U = \emptyset, \text{ lub } X \setminus U \text{ jest zbiorem skończonym} \}$ nazywa się topologią Zariskiego w X. W przestrzeni (X, \mathcal{T}) każde dwa niepuste zbiory otwarte mają niepuste przecięcie, w szczególności przestrzeń (X, \mathcal{T}) nie jest Hausdorffa.

Definicja 1.2.15. W przestrzeni metrycznej (X,d), ciąg punktów $(x_n)_{n=1}^{\infty}$ jest zbieżny do punktu $x_0, x_n \to x_0, jeśli d(x_n, x_0) \to 0.$

Twierdzenie 1.2.16. W przestrzeni metrycznej (X,d), warunek $x_0 \in \overline{A}$ jest równoważny temu, że istnieje ciąg punktów $x_n \in A$ taki, że $x_n \to x_0$.

Dowód. Niech $x_0 \in \overline{A}$. Kula $B(x_0, \frac{1}{n})$ jest otoczeniem x_0 , istnieje więc $x_n \in$ $B(x_0,\frac{1}{n})\cap A$. Ponieważ $d(x_0,x_n)<\frac{1}{n},\ x_n\to x_0$.

Na odwrót, załóżmy, że $x_n \to x_0$ dla pewnego ciągu $x_n \in A$. Niech V będzie otoczeniem x_0 i niech $B(x_0,r) \subset V$. Wówczas, jeśli $d(x_0,x_n) < r$, to $x_n \in V$. Tak

więc każde otoczenie punktu x_0 przecina A.

1.3. Ciagłość przekształceń. Klasyczna $(\varepsilon - \delta)$ -definicja ciagłości funkcji rzeczywistej $f: \mathbb{R} \to \mathbb{R}$ przenosi się na przypadek przekształceń $f: X \to Y$ między przestrzeniami metrycznymi (X, d_X) i (Y, d_Y) w następujacy sposób:

(1) $\forall_{a \in X} \forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in X} d_X(a, x) < \delta \implies d_Y(f(a), f(x)) < \varepsilon$. Część formuły (1) otrzymaną przez pominięcie pierwszych trzech kwantyfikatorów można zapisać w postaci $f(B_X(a,\delta)) \subset B_Y(f(a),\varepsilon)$ lub też $B_X(a,\delta) \subset$

 $f^{-1}(B_Y(f(a),\varepsilon))$, gdzie $B_X(a,\delta)$, $B_Y(f(a),\varepsilon)$ sa kulami w (X,d_X) i (Y,d_Y) , od-

powiednio. Zastępując kule otoczeniami, można rozszerzyć pojęcie ciągłości na

przekształcenia między dowolnymi przestrzeniami topologicznymi. Przyjmiemy jednak jako definicje ciagłości przekształceń inny równoważny warunek (zob. Twierdzenie 1.3.2), majacy prostsze sformułowanie.

Definicja 1.3.1. Przekształcenie $f: X \to Y$ przestrzeni topologicznej (X, \mathcal{T}_X) w (Y, \mathcal{T}_V) jest ciagle, jeśli dla każdego $U \in \mathcal{T}_V$, $f^{-1}(U) \in \mathcal{T}_V$.

Twierdzenie 1.3.2. Dla przekształcenia $f: X \to Y$ przestrzeni topologicznej (X, \mathcal{T}_X) w (Y, \mathcal{T}_Y) następujące warunki są równoważne: (i) f jest przekształceniem ciągłym, (ii) jeśli zbiór F jest domkniety w (Y, \mathcal{T}_Y) , to $f^{-1}(F)$ jest zbiorem domknietym $w(X,\mathcal{T}_X),$ (iii) $f(\overline{A}) \subset \overline{f(A)}$, dla każdego $A \subset X$,

(iv) dla każdego $a \in X$ i otoczenia U punktu f(a) w (Y, \mathcal{T}_Y) istnieje otoczenie

V punktu a $w(X, \mathcal{T}_X)$ takie, że $f(V) \subset U$.

Wybierzmy $W \in \mathcal{T}_Y$ takie, że $f(a) \in W \subset U$. Wówczas $V = f^{-1}(W) \in \mathcal{T}_X$ jest otoczeniem punktu a i $f(V) \subset U$. (iv) \Longrightarrow (iii) Niech $a \in \overline{A}$. Mamy sprawdzić, że $f(a) \in \overline{f(A)}$. Wybierzmy dowolne otoczenie U punktu f(a) w (Y, \mathcal{T}_Y) . Na mocy (iv) istnieje otoczenie V

Dowód. (i) \Longrightarrow (iv) Niech $a \in X$ i niech U będzie otoczeniem f(a) w (Y, \mathcal{T}_Y) .

punktu $a \le (X, \mathcal{T}_X)$ takie, że $f(V) \subset U$. Ponieważ $a \in \overline{A}$, $V \cap A \neq \emptyset$, skąd $U \cap f(A) \supset f(V \cap A) \neq \emptyset$.

(iii) \Longrightarrow (ii) Niech F będzie zbiorem domkniętym w (Y, \mathcal{T}_Y) i $A = f^{-1}(F)$. Z

(iii), $f(\overline{A}) \subset \overline{f(A)} \subset \overline{F} = F$, skąd $\overline{A} \subset f^{-1}(F) = A$. Tak więc $\overline{A} = A$, czyli zbiór A jest domknięty.

(iii), f(A) ⊂ f(A) ⊂ F = F, skąd A ⊂ f⁻¹(F) = A. Tak więc A = A, czyli zbiór A jest domknięty.
(ii) ⇒ (i) Wynika to natychmiast z faktu, że zbiory domknięte są dopełnieniami zbiorów otwartych, zob. 1.2.18, (ii).

Uwaga 1.3.3. Jeśli w przestrzeni (Y, \mathcal{T}_Y) jest wyróżniona baza \mathcal{B} generująca topologie \mathcal{T}_Y , to dla dowodu ciągłości przekształcenia $f: X \to Y$, gdzie (X, \mathcal{T}_X) jest przestrzenią topologiczną, wystarczy sprawdzić, że $f^{-1}(U) \in \mathcal{T}_X$ dla każdego $U \in \mathcal{B}$. Wynika to natychmiast z Definicji 1.3.1 i faktu, że każdy zbiór otwarty iest suma pewnej podrodziny rodziny \mathcal{B} .

Uwaga 1.3.4. Ciagłość przekształcenia $f: X \to Y$ przestrzeni metrycznej (X, d_X) w przestrzeń metryczna (Y, d_Y) jest równoważna warunkowi, że jeśli $x_n \to x_0$, to $f(x_n) \to f(x_0)$, zob.1.2.15. Istotnie, zgodnie z Twierdzeniem 1.2.16, ten warunek zapewnia własność (iii)

w Twierdzeniu 1.3.2. Na odwrót, jeśli f jest przekształceniem ciągłym, $x_n \to x_0$ i $\varepsilon > 0$, to zgodnie z 1.3.2 (iv), dla pewnego otoczenia V punktu x_0 , obraz f(V) jest zawarty w kuli o środku w $f(x_0)$ i promieniu ε , a ponieważ prawie

wszystkie wyrazy x_n leża w V, $d_V(f(x_0), f(x_n)) < \varepsilon$, dla prawie wszystkich n.

Zatem $f(x_n) \to f(x_0)$.

Uwaga 1.3.5. (A) Dla ustalonego $a \in X$, własność (iv) w 1.3.2 definiuje ciagłość przekształcenia f w punkcie a. Dla przekształcenia między przestrzeniami metrycznymi, ciągłość w punkcie a jest więc opisana formułą (1), z pominięciem kwantyfikatora $\forall_{a \in X}$. (B) Niech $f_n, f: X \to Y$ beda przekształceniami przestrzeni topologicznej

 (X,\mathcal{T}) w przestrzeń metryczną (Y,d) takimi, że $\gamma_n = \sup\{d(f_n(x),f(x)): x \in \mathcal{T}\}$ $X \rightarrow 0$. Wówczas, jeśli wszystkie przekształcenia f_n są ciągłe w punkcie $a \in X$ (ze wzgledu na topologie $\mathcal{T}(d)$ w Y), to także f jest ciagłe w tym punkcie. Istotnie, niech U bedzie otoczeniem punktu f(a) w przestrzeni $(Y, \mathcal{T}(d))$ i niech $B(f(a),r) \subset U$. Ustalmy n takie, że $\gamma_n < r/3$ i korzystając z ciągłości f_n w a

wybierzmy otoczenie V punktu $a \le (X, \mathcal{T})$ takie, że $f_n(V) \subset B(f_n(a), r/3)$. Wów-

 $3 \cdot \frac{r}{2} = r$, a zatem $f(V) \subset U$.

czas, dla $x \in V$, $d(f(x), f(a)) \leq d(f(x), f_n(x)) + d(f_n(x), f_n(a)) + d(f_n(a), f(a)) < d(f(x), f(a)) = d(f(x), f(a)) + d$

 (Y, \mathcal{T}_Y) jest homeomorfizmem, jeśli f jest różnowartościowe, f(X) = Y oraz oba przekształcenia f i $f^{-1}: Y \to X$ są ciągłe. Jeśli f jest homeomorfizmem przestrzeni (X, \mathcal{T}_X) na podprzestrzeń $(f(X), (\mathcal{T}_Y)_{f(X)})$ przestrzeni (Y, \mathcal{T}_Y) , mówimy, że f jest zanurzeniem homeomorficznym.

Definicja 1.3.6. Przekształcenie $f: X \to Y$ przestrzeni topologicznej (X, \mathcal{T}_X) w

Uwaga 1.3.7. Z Definicji 1.3.1 wynika natychmiast, że złożenie przekształceń ciągłych jest ciągłe. W szczególności, złożenie homeomorfizmów jest homeomorfizmem.

desowej (\mathbb{R}^n, d_e) (rozpatrywane jako podprzestrzenie) sa homeomorficzne, zob. Uzupełnienie 7.1. Jednakże, każde ciągłe przekształcenie $f: \mathbb{R}^2 \to \mathbb{R}$ płaszczyzny w prosta ma

Przykład 1.3.8. (A) Każde dwa otwarte zbiory wypukłe w przestrzeni eukli-

nieprzeliczalna warstwę. Aby to sprawdzić, rozpatrzmy funkcje $f_x(y) = f(x,y)$, dla $x \in \mathbb{R}$. Funkcja $f_x : \mathbb{R} \to \mathbb{R}$ jest ciagła, wiec $f_x(\mathbb{R})$ jest przedziałem. Jeśli jeden z tych przedziałów redukuje się do punktu, $f_x(\mathbb{R}) = \{r\}$, mamy $f^{-1}(r) = \{x\} \times \mathbb{R}$.

jest nieprzeliczalna.

W przeciwnym razie, zawsze istnieje liczba wymierna $q_x \in f_x(\mathbb{R})$. Dla pewnei liczby wymiernej q zbiór $\{x:q_x=q\}$ jest nieprzeliczalny, a więc warstwa $f^{-1}(q)$ (B) Przekształcenie $f(t) = (\cos t, \sin t)$ odcinka $[0, 2\pi)$ na prostej euklidesowej na okrag $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ (z topologia podprzestrzeni płaszczyzny euklidesowej) jest ciągła bijekcją, ale nie jest homeomorfizmem. Istotnie, dla

 $a_n = (\cos(2\pi - \frac{1}{n}), \sin(2\pi - \frac{1}{n})), a_n \to f(0), \text{ ale } f^{-1}(a_n) \neq 0.$ Zauważmy też, że nie istnieje ciągłe i różnowartościowe przekształcenie $q:S^1\to\mathbb{R}$. Załóżmy przeciwnie i rozpatrzmy złożenie $q \circ f : [0, 2\pi) \to \mathbb{R}$. Przekształcenie $q \circ f$ jest ciagłe i różnowartościowe, a więc jest albo rosnące, albo malejące. W pierwszym przypadku

 $g \circ f(0) < g(a_1) < g(a_2) < \dots$, be $g(a_n) = g \circ f(2\pi - \frac{1}{n})$, oraz $g(a_n) \to g \circ f(0)$, co jest niemożliwe. Podobnie do sprzeczności dochodzi się, jeśli $q \circ f$ maleje.

 (X, \mathcal{T}_X) w przestrzeń (Y, \mathcal{T}_Y) i niech $Z \subset X$. Wówczas obcięcie $f \mid Z : Z \to Y$ jest przekształceniem ciagłym, gdzie w Z rozpatruje się topologie podprzestrzeni przestrzeni X. Ponadto $f \mid Z$ jest ciagłe jako przekształcenie z Z na podprzestrzeń

Uwaga 1.3.9. (A) Niech $f: X \to Y$ bedzie przekształceniem ciągłym przestrzeni

f(Z) przestrzeni Y. Istotnie, zbiory otwarte w f(Z) są postaci $W = U \cap f(Z)$, gdzie $U \in \mathcal{T}_Y$, a $(f \mid Z)^{-1}(W) = f^{-1}(U) \cap Z$ jest zbiorem otwartym w Z, bo $f^{-1}(U) \in \mathcal{T}_X$.

(B) Niech $f: X \to Y$ bedzie przekształceniem przestrzeni (X, \mathcal{T}_X) w (Y, \mathcal{T}_Y) .

Jeśli $X = F_1 \cup \ldots \cup F_m$, gdzie każdy ze zbiorów F_i jest domkniety i każde obcięcie $f \mid F_i : F_i \to Y$ jest ciagle, to przekształcenie f jest ciagle. Istotnie, dla dowolnego zbioru domknietego F w Y, zbiór $A_i = f^{-1}(F) \cap F_i$

jest domkniety w przestrzeni (F_i, \mathcal{T}_{F_i}) , a ponieważ F_i jest zbiorem domknietym w (X, \mathcal{T}_X) , zbiór A_i jest też domknięty w X, zob. 1.2.19 (B). Zatem $f^{-1}(F) =$

 $A_1 \cup \ldots \cup A_m$ jest zbiorem domknietym w X.

Podobnie sprawdza się, że jeśli $X = \bigcup_{s \in S} U_s, U_s \in \mathcal{T}_X$ i obcięcia $f \mid U_s : U_s \to Y$

sa ciagle, to f jest przekształceniem ciaglym.