

中华人民共和国国家环境保护标准

HJ 962-2018

土壤 pH 值的测定 电位法

Soil — Determination of pH — Potentiometry (发布稿)

本电子版为发布稿。请以中国环境出版社出版的正式标准文本为准。

2018-07-29 发布

2019-01-01 实施

生 态 环 境 部 发布

目 次

前	〕 言	ii
1	适用范围	1
2	规范性引用文件	1
3	方法原理	1
4	试剂和材料	1
5	仪器和设备	2
6	样品	2
7	分析步骤	2
8	结果表示	3
9	精密度	3
10	0 质量保证和质量控制	3
11	1 注意事项	3
附	[†] 录 A (资料性附录)不同 pH 标准缓冲溶液(25℃)	4

前言

为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,规范土壤pH值的测定方法,制定本标准。

本标准规定了测定土壤pH值的电位法。

本标准的附录A为资料性附录。

本标准为首次发布。

本标准由环境监测司、科技标准司组织制订。

本标准起草单位:环境保护部南京环境科学研究所、江苏省环境监测中心。

本标准验证单位:湖南省环境监测中心站、苏州市环境监测中心、江苏康达检测技术股份有限公司、苏力环境科技有限责任公司、江苏省地质调查研究院和上海实朴检测技术服务有限公司。

本标准生态环境部2018年7月29日批准。

本标准自2019年1月1日起实施。

本标准由生态环境部解释。

土壤 pH值的测定 电位法

1 适用范围

本标准规定了测定土壤 pH 值的电位法。 本标准适用于土壤 pH 值的测定。

2 规范性引用文件

本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。

HJ/T 166 土壤环境监测技术规范

3 方法原理

以水为浸提剂,水土比为 2.5:1,将指示电极和参比电极(或 pH 复合电极)浸入土壤悬浊液时,构成一原电池,在一定的温度下,其电动势与悬浊液的 pH 值有关,通过测定原电池的电动势即可得到土壤的 pH 值。

4 试剂和材料

除非另有说明,分析时均使用符合国家标准的分析纯试剂。

- 4.1 实验用水:去除二氧化碳的新制备的蒸馏水或纯水。 将水注入烧瓶中,煮沸 10 min,放置冷却。临用现制。
- 4.2 邻苯二甲酸氢钾(C₈H₅KO₄)。 使用前 110℃~120℃烘干 2 h。
- 4.3 磷酸二氢钾(KH₂PO₄)。 使用前 110℃~120℃烘干 2 h。
- 4.4 无水磷酸氢二钠(Na₂HPO₄)。使用前 110℃~120℃烘干 2 h。
- 4.5 四硼酸钠(Na₂B₄O₇·10H₂O)。

与饱和溴化钠(或氯化钠加蔗糖)溶液(室温)共同放置在干燥器中 48 h,使四硼酸钠晶体保持稳定。

4.6 pH 4.01(25℃)标准缓冲溶液: *c*(C₈H₅KO₄)=0.05 mol/L。

称取 10.12 g 邻苯二甲酸氢钾 (4.2),溶于水中,于 25℃下在容量瓶中稀释至 1 L。也可直接采用符合国家标准的标准溶液。

4.7 pH 6.86 (25℃) 标准缓冲溶液: c (KH₂PO₄) =0.025 mol/L, c (Na₂HPO₄) =0.025 mol/L。 分别称取 3.387 g 磷酸二氢钾(4.3)和 3.533 g 无水磷酸氢二钠(4.4),溶于水中,于

25℃下在容量瓶中稀释至1L。也可直接采用符合国家标准的标准溶液。

4.8 pH 9.18 (25℃) 标准缓冲溶液: *c* (Na₂B₄O₇) =0.01 mol/L。

称取 3.80 g 四硼酸钠 (4.5),溶于水中,于 25℃下在容量瓶中稀释至 1 L,在聚乙烯瓶中密封保存。也可直接采用符合国家标准的标准溶液。

注:上述 pH 标准缓冲溶液于冰箱中 4℃冷藏可保存 2~3 个月。发现有混浊、发霉或沉淀等现象时,不能继续使用。

5 仪器和设备

- 5.1 pH 计: 精度为 0.01 个 pH 单位, 具有温度补偿功能。
- 5.2 电极:玻璃电极和饱和甘汞电极,或pH复合电极。
- 5.3 磁力搅拌器或水平振荡器:具有温控功能。
- 5.4 土壤筛: 孔径 2 mm (10 目)。
- 5.5 一般实验室常用仪器和设备。

6 样品

6.1 样品采集和保存

按照 HJ/T 166 的相关规定进行土壤样品的采集和保存。

6.2 样品的制备

按照 HJ/T 166 的相关规定进行土壤样品的制备,包括样品的风干、缩分、粉碎和过筛 (5.4)。制备后的样品不立刻测定时,应密封保存,以免受大气中氨和酸性气体的影响,同时避免日晒、高温、潮湿的影响。

6.3 试样的制备

称取 10.0 g 土壤样品置于 50 ml 的高型烧杯或其他适宜的容器中,加入 25 ml 水 (4.1)。 将容器用封口膜或保鲜膜密封后,用磁力搅拌器 (5.3) 剧烈搅拌 2 min 或用水平振荡器 (5.3) 剧烈振荡 2 min。静置 30 min,在 1 h 内完成测定。

7 分析步骤

7.1 校准

至少使用两种 pH 标准缓冲溶液对 pH 计进行校准。先用 pH 6.86(25℃)标准缓冲溶液(4.7),再用 pH 4.01(25℃)标准缓冲溶液(4.6)或 pH 9.18(25℃)标准缓冲溶液(4.8)校准。校准步骤如下:

- a)将盛有标准缓冲溶液并内置搅拌子的烧杯置于磁力搅拌器(5.3)上,开启磁力搅拌器。
 - b) 控制标准缓冲溶液的温度在(25±1)℃,用温度计测量标准缓冲溶液的温度,并将

pH 计的温度补偿旋钮调节到该温度上。有自动温度补偿功能的仪器,可省略此步骤。

c)将电极插入标准缓冲溶液中,待读数稳定后,调节仪器示值与标准缓冲溶液的 pH 值一致。重复步骤 a 和 b,用另一种标准缓冲溶液校准 pH 计,仪器示值与该标准缓冲溶液的 pH 值之差应 ≤ 0.02 个 pH 单位。否则应重新校准。

注:用于校准 pH 的两种标准缓冲溶液,其中一种标准缓冲溶液的 pH 值应与土壤 pH 值相差不超过 2 个 pH 单位。若超出范围,可选择其他 pH 标准缓冲溶液,参见附录 A。

7.2 测定

控制试样(6.3)的温度为(25±1) \mathbb{C} ,与标准缓冲溶液的温度之差不应超过 2 \mathbb{C} 。将电极插入试样的悬浊液,电极探头浸入液面下悬浊液垂直深度的 $1/3\sim2/3$ 处,轻轻摇动试样。待读数稳定后,记录 pH 值。每个试样测完后,立刻用水冲洗电极,并用滤纸将电极外部水吸干,再测定下一个试样。

8 结果表示

测定结果保留至小数点后 2 位。当读数小于 2.00 或大于 12.00 时,结果分别表示为 pH < 2.00 或 pH> 12.00。

9 精密度

六家实验室分别对湖南黄壤和贵州紫色土统一样品进行 6 次重复测定:湖南黄壤 pH 值 平均值为 4.62,实验室内相对标准偏差为 0.12%~1.5%,实验室间相对标准偏差为 2.7%,重 复性限为 0.10,再现性限为 0.37;贵州紫色土 pH 值平均值为 5.83,实验室内相对标准偏差 为 0.30%~1.5%,实验室间相对标准偏差为 2.8%,重复性限为 0.11,再现性限为 0.46。

10 质量保证和质量控制

每批样品应至少测定 10%的平行双样,每批少于 10 个样品时,应至少测定 1 组平行双样。两次平行测定结果的允许差值为 0.3 个 pH 单位。

11 注意事项

- 11.1 pH 计应参照仪器说明书使用和维护。
- 11.2 电极应参照电极说明书使用和维护。
- 11.3 温度对土壤 pH 值的测定具有一定影响,在测定时,应按要求控制温度。
- 11.4 在测定时,将电极插入试样的悬浊液,应注意去除电极表面气泡。

附录 A (资料性附录) 不同 pH 标准缓冲溶液(25°C)

标准缓冲 溶液	标准物质 名称	分子式	标准溶液浓度 (mol·kg ⁻¹)	配制 1 L 标准溶液所需标 准物质的质量(g)
pH 1.68	四草酸钾	KH ₃ (C ₂ O ₄) ₂ ·2H ₂ O	0.05	12.61
рН 3.56	酒石酸氢钾	KHC ₄ H ₄ O ₆	25℃饱和约为 0.034	>7
pH 4.01	邻苯二甲酸氢钾	KHC ₈ H ₄ O ₄	0.05	10.12
	磷酸氢二钠	Na ₂ HPO ₄	0.025	3.533
pH 6.86	磷酸二氢钾	KH ₂ PO ₄	0.025	3.387
nII 7 41	磷酸氢二钠	Na ₂ HPO ₄	0.03043	4.303
pH 7.41	磷酸二氢钾	KH ₂ PO ₄	0.008695	1.179
pH 9.18	四硼酸钠	Na ₂ B ₄ O ₇ ·10H ₂ O	0.01	3.80
рН 12.46	氢氧化钙	Ca(OH) ₂	25℃饱和约为 0.020	>2