Заняття 3

Другий спосіб знаходження коефіцієнтів. Коливання стержня з вільними кінцями, неповнота базису.

Задача № 3.3

Знайти коливання пружного стержня довжиною l з вільними кінцями, якщо початкове відхилення дорівнює нулю, а початкова швидкість $\psi(x) = \nu_0$. Якщо всі знайдені вами коефіцієнти Фур'є (коефіцієнти загального розв'язку) дорівнюють нулю, поясніть, що це означає, і знайдіть, де була допущена помилка.

Розв'язок

Формальна постановка задачі:

$$\begin{cases}
 u = u(x,t), \\
 u_{tt} = v^2 u_{xx}, \\
 0 \le x \le l, t \ge 0, \\
 u_x(0,t) = u_x(0,t) = 0, \\
 u(x,0) = \varphi(x) = 0, \\
 u_t(x,0) = \psi(x) = \nu_0.
\end{cases}$$
(3.1)

Це задача із заданими початковими умовами (а саме - початковим розподілом зміщення та швидкостей), яка має єдиний розв'язок.

Для початку скористаємося розв'язком задачі 2.1:

$$\begin{cases} u_0(x,t) = A_0 + B_0 t, \\ u_n(x,t) = [A_n \cos(\omega_n t) + B_n \sin(\omega_n t)] \cos(k_n x), \\ k_n = \frac{\pi n}{l} - \text{ хвильові вектори,} \\ \omega_n = v k_n = \frac{v \pi n}{l} - \text{ власні частоти,} \\ n = 1, 2, \dots \end{cases}$$
 (3.2)

I запишемо загальний розв'язок:

$$u(x,t) = A_0 + B_0 t + \sum_{n=1}^{\infty} [A_n \cos(\omega_n t) + B_n \sin(\omega_n t)] \cos(k_n x)$$
 (3.3)

Та похідна по часу:

$$u_t(x,t) = B_0 + \sum_{n=1}^{\infty} \left[-A_n \omega_n \sin(\omega_n t) + B_n \omega_n \cos(\omega_n t) \right] \cos(k_n x)$$
 (3.4)

Підставляємо (3.3) у початкові умови (3.1):

$$u(x,0) = \varphi(x) \implies A_0 + \sum_{n=1}^{\infty} A_n \cos k_n x = 0$$
(3.5)

Підставляємо (3.4) у початкові умови (3.1):

$$u_t(x,0) = \psi(x) \implies B_0 + \sum_{n=1}^{\infty} B_n \omega_n \cos k_n x = \nu_0$$
 (3.6)

Прирівняємо коефіцієнти при лінійно незалежних функціях. В результаті отримаємо

$$B_0 = \nu_0; \ A_n, B_n = 0, \$$
при $n \in \mathbb{N}$

Підставляємо знайдені коефіцієнти і отримуємо розв'язок із одного доданку.

$$u(x,t) = \nu_0 t \tag{3.7}$$

Перевіряємо відповідь

- Власні функції перевірені в задачі 2.1
- Постановка задачі містить неоднорідний член у початковій швидкості, який пропорційний $\sim v_0$. Перевірити наявність цих множників у загальному розв'язку.
- Перевіряємо початкові умови виконуються?