Übung 1

Philip Magnus

October 13, 2024

Aufgabe 1

$$2640: 2 \to 1320: 2 \to 660: 2 \to 330: 2 \to 165: 3 \to 55: 5 \to 11$$
 (a)
$$2640 = 2*2*2*2*3*5*11$$

$$3829:7 \to 547$$
 (b) $3829=7*547$

$$6561: 3 \to 2187: 3 \to 729: 3 \to 243: 3 \to 81: 3 \to 27: 3 \to 9: 3 \to 3$$

$$6561 = 3*3*3*3*3*3*3*3*3*3*3$$
(c)

Aufgabe 2

a)

a	b	r	q
765	98	79	7
98	79	19	1
19	3	1	6
3	1	0	3

 $\Rightarrow Teiler fremd$

b)

a	b	r	q
234	18	0	13

 $\Rightarrow ggT:18$

c)

a	b	r	q
819	49	35	16
49	35	14	1
35	14	7	2
14	7	0	2

 $\Rightarrow ggT:7$

d)

a	b	r	q
289	13	3	22
13	3	1	4
3	1	0	3

 $\Rightarrow Teiler fremd$

Aufgabe 3

Ausdruck	Landau	Erklärung	
$n^{\pi} + \pi^{n-1}$	$O(\pi^n)$	$\pi > 1$ Term wächst exponentiell $\to \infty$	
$42n^{42} + (-1)^{24n}$	$O(n^{42})$	Term $42n^{42}$ dominiert, zweiter Term wechselt zwischen $+/-1$	
$(n^3 + 3n^2 - 27)7$	$O(n^{21})$	$n^{21} + 3n^{14} - 27^7$, erster Term dominiert hier mit Wachstum	
		erster Term dominiert durch Wachstum	
$(-2n)^{10} + 0, 3^{n+1}n$	$O(n^{10})$	Koeffizient ist für Komplexität zu ignorieren,	
		zweiter Term mit Koeffzient 0,3 sieht das Wachstum wie folgt aus 0,3 \rightarrow 0	
		$e^{(i*\pi)*n} = (e^{(i*\pi)})^n,$	
$e^{(i*\pi)*n}$	O(1)	da $e^{(i*\pi)} = -1$ gilt $(e^{(i*\pi)})^n = (-1)^n$	
		Term wechselt also zwischen $+/-1$ Komplexität ist also Konstant	