ONLINE TECHNICAL ASSESSMENT CLASSIFICATION BASED ON PERSONALIZATION

SUPERVISED BY: ASSOCIATE PROF. DR. NOR LIYANA BT MOHD SHUIB

PREPARED BY: LIM ZHENG YU (U2102809/1)

INTRODUCTION

The topic is focused on students in these domains: Computer Science, Technology, Engineering.

Programming certification examinations such as the Sun's Java Certification Examination and Novell's certification examinations are **multiple-choice** (Roberts et al., 2003), serving no significant purpose to evaluate programming students.

Traditional assessments are **standardized**, making them "indirect and inauthentic" (Bailey, 1998), also meaning that they are effective in measuring students' capabilities at one point in time but **ineffective in informing student progression** (Dikli, 2003).

The VAK (Visual-Auditory-Kinesthetic) Learning Styles Model describes that students are different in showcasing their skills and absorbing information. Hence, it would be fairer to evaluate every student differently too.

INTRODUCTION

VAK Learning Styles (Barbe et al., 1979)

Visual

- Learn by seeing
- Learn using graphs, posters, etc.
- Tend to look up while thinking (Pritchard, 2009)

- Learn by listening
- Learn through discussions, lectures, stories, etc.
- Tend to tilt their heads and use eye movements when thinking (Pritchard, 2009)

- Learn by doing
- Learn through physical activity and touch
- Hard to sit still and takes lots of breaks when learning

LITERATURE REVIEW

Reference	Domain	Sample Size	Method	Learning Style	Evaluation	Limitations		
Garcia et al. (2005)	Learning Object	10 computer science and engineering students	Bayesian Networks	Felder-Silverman	• More than 80% accuracy	• Too few training examples		
Ulloa-Cazarez et al. (2018)	Online Students Performance	245 student grades records and log records	Genetic Programming		 GP MAE = 14.38 MAD = 9.80 LR MAE = 17.49 MAD = 16.53 	 Independent variables unused Hard to acquire relevant data 		
Cetinkaya et al. (2023)	Programming Test Performance	600 secondary school students	1.SVM 2.Decision Tree 3.KNN 4.Quadratic Discriminant		 80.8% to 94.8% accuracy All scores of SVM are above 90% (Kappa, Precision, Recall, F1) 			

LITERATURE REVIEW

Reference	Domain	Sample Size	Method	Learning Style	Evaluation	Limitations
Dema (2021)	Programming Test Performance	40 Engineering in IT students		VAK/VARK		 No machine learning Only descriptive statistics No personalization
Ocepek et al. (2013)	Multimedia Type	272 undergraduates	Multi-target regression tree	Kolb, Rancourt, hemispheric, VAK		 No evaluation on performance of model Classifcation on multimedia type instead of assessment type
Seyal et al. (2015)	Programming Test Performance	70 Internet Computing undergraduates	Chi-square test	Kolb	 Learning styles have significant influence on academic performance 	 No classification model on suitable type of assessment

PROBLEM STATEMENT

There is **limited study** on the **classification of online technical assessments** for students with **technical background**.

Most research focus on **performance** instead of **suitable assessments** based on students' **VAK learning styles**.

OBJECTIVES

Objective 1

To develop a classification model of online technical assessment based on personalization

Objective 2

To evaluate the performance of the classification model of online technical assessment based on personalization

Objective 3

To develop a data product of the classification model of online technical assessment based on personalization

Mainly used for:

- Exploratory Data Analysis
- Data Cleaning
- Data Transformation
- Modelling

and more...

DATA SCIENCE METHODOLOGY

CRISP-DM

1. BUSINESS UNDERSTANDING

- Understanding the objectives and requirements of the project
 - Understand the dataset briefly
 - Determine business objectives
 - To develop a classification model for online technical assessments
 - To evaluate said classification model
 - To develop a data product from the classification model
 - Produce project plan
 - Plan entire workflow
 - Create schedules

1 BUSINESS UNDERSTANDING

Brief Overview of Dataset

Timestam	Email Add I understa	Gender	Level of St Field of	stilnstitution	Country	Househol	Preferred	Preferred	Preferred	Difficultie	Learning (Learning (L					
	_		Undergrac Veterina		test		Face to Fa				_	_	_	_	_	_	Somewha S
#######	liyanashu Agree	Female	Postgradu Compu	tin UM	Malaysia	RM 3001 -	Face to Fa	Instagram	Whatsapp	Technical	Somewha	Somewha	Somewha	Somewha	Somewha	Somewha	Somewha S
#######	azirasuho Agree	Female	Postgradu Compu	tin UM	Malaysia	RM 3001 -	Face to Fa	Facebook	Email, Un	Technical	Very Much	Somewha	Very Much	Somewha	Undecided	Somewha	Somewha l
#######	haslina_n Agree	Female	Postgradu 3:	00 University	Malaysia	RM 10 001	Face to Fa	Facebook	Email, Wh	Adaptabil	Very Much	Very Much	Very Much	Somewha	Somewha	Undecide	Somewha l
#######	noorain27 Agree	Female	Postgradu Human	iti∉UM	Malaysia	RM 10 001	Face to Fa	Facebook	Whatsapp	Technical	Very Much	Somewha	Very Much	Somewha	Somewha	Somewha	Very Much S
#######	viviantey0 Agree	Female	Undergrac Sports	University	Malaysia	RM 3001 -	Face to Fa	Facebook	Email, Un	Adaptabil	Somewha	Undecide	Very Much	Not Really	Somewha	Somewha	Undecided
#######	norsyazw: Agree	Female	Undergrac Sports	Universiti	Malaysia	Less than	Face to Fa	Instagram	University	Adaptabil	Very Much	Somewha	Very Much	Very Much	Very Much	Somewha	Undecided
#######	helihafisa Agree	Female	Undergrac Sports	UM	Malaysia	Less than	Face to Fa	Facebook	Whatsapp	Technical	Very Much	Somewha	Very Much	Undecided	Not Really	Very Much	Very Much \
#######	ainimusta Agree	Female	Undergrac Sports	University	Malaysia	Less than	Face to Fa	Instagram	Email, Un	Technical	Very Much	Somewha	Somewha S				
#######	piaabalqi Agree	Female	Undergrac Sports	Univeriti N	Malaysia	Less than	Face to Fa	Facebook	Email, Wh	Adaptabil	Very Much	Undecide	Very Much	Undecided	Very Much	Very Much	Very Much \
#######	a.halili_99 Agree	Female	Undergrac Sports	University	Malaysia	Less than	Face to Fa	Instagram	Email, Wh	Technical	Somewha	Undecide	Very Much	Somewha	Somewha	Very Much	Very Much \
#######	sitinorash Agree	Female	Undergrac Sports	University	Malaysia	RM 3001 -	Face to Fa	Twitter, In	Email, Wh	Technical	Undecide	Not at All	Very Much	Somewha	Somewha	Somewha	Very Much \
#######	kiewan2@ Agree	Male	Undergrac Sports	University	Malaysia	RM 3001 -	Face to Fa	Instagram	Email, Wh	Adaptabil	Somewha	Not Really	Somewha	Not Really	Somewha	Somewha	Somewha l
#######	izzuwansı Agree	Male	Undergrac Sports	University	Malaysia	RM 3001 -	Face to Fa	Instagram	Email, Wh	Technical	Very Much	Very Much	Very Much	Somewha	Very Much	Very Much	Somewha \
#######	nurulaisy: Agree	Female	Undergrac Sports	Uni malay	Malaysia	Less than	Asynchro	r Youtube	Whatsapp	Technical	Somewha	Not at All	Very Much	Undecided	Somewha	Very Much	Very Much S
#######	syafiqiqba Agree	Male	Undergrac Sports	University	Malaysia	Less than	Face to Fa	Instagram	Email, Un	Adaptabil	Undecide	Not Really N					

1 BUSINESS UNDERSTANDING

Gantt Chart

2 DATA UNDERSTANDING

ProfileReport

```
report = ProfileReport(df_, title="Quick EDA", minimal=True, html={"style": {"full_width": True}})
report.to_file("report.html")
```


Key Takeaways:

- Data from Jan 2021 to Nov 2023
- 104 variables
- 1052 rows
- 836 missing values

2 DATA UNDERSTANDING

ProfileReport

Timestamp Text	
Distinct	756
Distinct (%)	71.9%
Missing	0
Missing (%)	0.0%
Memory size	8.3 KiB

2. DATA UNDERSTANDING

Imbalanced Data

writing

2. DATA UNDERSTANDING

Dirty Data (Multiple Choice Selections)

df["Preferred Social Media Platform "].value_counts()

Youtube	59
Facebook, Instagram, Youtube	41
Instagram, Youtube	35
Twitter, Instagram, Youtube	34
Facebook, Youtube	27
Instagram	16
Twitter, Youtube	15
Twitter	10
Twitter, Instagram	10
Facebook	7
Blogger/Wordpress, Youtube	5
Facebook, Instagram	5
Facebook, Twitter, Instagram, Youtube	5
Facebook, Twitter, Instagram, Blogger/Wordpress, Youtube	4

df["Preferred Communication Platform"].value_counts()

Email, Whatsapp, Telegram	58
Whatsapp	45
Whatsapp, Telegram	42
Email, Whatsapp	38
University eLearning Chat Room, Whatsapp	16
Email, University eLearning Chat Room, Whatsapp, Telegram	13
Email, University eLearning Chat Room, Whatsapp	13
Email, Whatsapp, Call	11
University eLearning Chat Room, Whatsapp, Telegram	10
Email, University eLearning Chat Room, Whatsapp, Call, Telegram	7
Email, Telegram	7
Telegram	6

2 DATA UNDERSTANDING

Solution

```
def one_hot_encode_multiple_choice(col, suffix):
    a = set(', '.join(df[col]).split(', '))
    b = list(a)

for i in b:
    new_col = str(i) + "_" + suffix
    df[new_col] = df[col].apply(lambda x: 1 if i in x else 0)

df.drop(col, axis=1, inplace=True)
```


Output

one_hot_encode_multiple_choice("Preferred Social Media Platform ", "prefsocmed")

Reddit_prefsocmed	Google Classroom _prefsocmed	Tiktok_prefsocmed	google meet_prefsocmed	Twitter_prefsocmed	Google classroom_prefsocmed	Telegram and Google Classroom_prefsocmed
0	0	0	0	0	0	0
0	0	0	0	1	0	0
0	0	0	0	1	0	0
0	0	0	0	0	1	0
0	0	0	0	1	0	0

3. DATA PREPARATION

Finding Missing Values

```
[('I understand that my participation is voluntary and that I am free to withdraw at any time without giving any reason. I,
hereby agree to take part in the above study.',
   16),
   ('Institutions', 2),
   ('Please share any comments or suggestions related to this issue. Thank You',
   760),
   ('Faculty', 29),
   ('Department', 29)]
```

These columns are unused. They will be dropped before modelling stage.

3 DATA PREPARATION

Label Encoding

```
le = LabelEncoder()

def LabelEncoding(column):
    print(df[column].value_counts())
    print()
    df[column] = le.fit_transform(df[column])
    print(df[column].value_counts())
```


LabelEncoding("Gender")

```
Female 699
Male 352
Name: Gender, dtype: int64
0 699
1 352
Name: Gender, dtype: int64
```

LabelEncoding("Household Income")

```
Less than RM 4,849 158
RM 4,850 – RM10,959 111
More than RM10,960 45
Name: Household Income, dtype: int64

0 158
2 111
1 45
Name: Household Income, dtype: int64
```

```
LabelEncoding("Level of Study")

Undergraduate 900
Certificate/Diploma 134
Master 9
Postgraduate 5
PhD 3
Name: Level of Study, dtype: int64

4 900
0 134
1 9
3 5
2 3
Name: Level of Study, dtype: int64
```

3. DATA PREPARATION

Extracting Relevant Study Fields


```
mask = df["Field of study"].str.contains('|'.join(relevant_fields), case=False)
df = df[mask]
```

relevant_fields is a list with terms such as "computer", "engineering", "tech", "jurutera", "komputer"

LabelEncoding("Field of study")

```
Computer Science/Information Technology
Engineering 92
Medical Laboratory Technology 2
sijil sistem komputer 2
Computer and Information Technology 1
Science and Technology Studies 1
medical lab technology 1
Chemical engineering 1
Name: Field of study, dtype: int64

1 214
3 92
4 2
7 2
2 1
5 1
6 1
0 1
Name: Field of study, dtype: int64
```

```
df["Field of study"].replace([7, 2, 5, 6, 0], [1, 1, 4, 4, 3], inplace=True)
df["Field of study"].replace([1, 3, 4], [0, 1, 2], inplace=True)
df["Field of study"].value_counts()
```

```
0 217
1 93
2 4
Name: Field of study, dtype: int64
```

3 DATA PREPARATION

Cleaning Manual Inputs

```
nltk.download("wordnet")
nltk.download("stopwords")
stop_words = set(stopwords.words("english"))

def remove_stopwords(text):
    return ' '.join([word for word in text.split() if word not in stop_words])

lemmatizer = WordNetLemmatizer()

def lemmatize_text(text):
    return ' '.join([lemmatizer.lemmatize(word) for word in text.split()])
```

```
Youtube Video and Live Lecture
live lecture and youtube video
Games
Youtube video and live lecture
YouTube video
YOUTUBE VIDEO
Face to face
Procedural Demonstration
YouTube
Youtube Video & Live Lecture
Debugging
youtube video
Youtube and Live
Guided learning
face to face
Live Lecture or Youtube
```


- Keywords from "Online Instructional Strategies/ Assessment" are stored in a list "tech_pref"
- A lambda function is "applied" onto df (similar to one-hot encoding)
- If any word in "tech_pref" exists in the initial output, a new column is introduced with value 1, else O.

Identifying Target Variables

- Begin with "6. Online Instructional Strategies/Assessment"
 - _Written assignment_
 - Case Study_
 - _Real Time Online Exam_
 - _Individual Project/Assignment_
 - Group Project/Assignment_
 - Online Quiz/Test MCQ_
 - Online Quiz/Test Essay_
 - Online Quiz/Test Open Book_
 - Peer Review Assessment Live Presentation_
 - _Recorded Presentation_
 - Portfolio_

```
targets = [0, 1, 2, 3, 4]
replacements = [0, 0, 0, 1, 1]
```

- Initial preprocessing was defined as below:
 - Not at All O
 - Not Really 1
 - Undecided 2
 - Somewhat 3
 - Very Much 4
- For these targets to have binary outputs, "Somewhat" and "Very Much" are converted to 1, others to 0
- e.g.

 df[["6. Online Instructional Strategies/Assessment [Case Study]"]].replace(targets, replacements)

Removing Unused Columns

- Dropped columns are:
 - Institutions
 df.drop(df.columns[59], inplace=True, axis=1)
 Country
 df.drop(cols to drop, inplace=True, axis=1)
 - Faculty
 - Department
 - Please share any comments or suggestions...
 - For technical or hands-on subjects...
 (Online Technical Assessment Preference)

Train Test Split


```
X2 = df.loc[:, ~df.columns.isin(targets)]
y2 = df[targets]
print(f"X2.shape: {X2.shape}")
print(f"y2.shape: {y2.shape}")

X2.shape: (314, 115)
y2.shape: (314, 11)
```

```
X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.2, random_state=2024)
```

Models

GradientBoostingClassifier

```
def GBC(X_train, y_train, X_test, learning_rate):
    gbc = GradientBoostingClassifier(learning_rate=learning_rate, random_state=2024)
    model = MultiOutputClassifier(gbc).fit(X_train, y_train)
    prediction = model.predict(X_test)
    return model, prediction
```


XGBClassifier

```
def XGB(X_train, y_train, X_test):
    classifier = MultiOutputClassifier(XGBClassifier(random_state=2024))
    clf = Pipeline([("classify", classifier)])
    clf.fit(X_train, y_train)
    prediction = clf.predict(X_test)
    return clf, prediction
```

RandomForestClassifier

```
def RFC(X_train, y_train, X_test):
    rfc = RandomForestClassifier(random_state=2024)
    model = MultiOutputClassifier(rfc).fit(X_train, y_train)
    prediction = model.predict(X_test)
    return model, prediction
```

Initialize Models

```
gbc2, gbc_pred2 = GBC(X2_train, y2_train, X2_test, 0.1)
gnb2, gnb_pred2 = GNB(X2_train, y2_train, X2_test)
svm2, svm_pred2 = SVM(X2_train, y2_train, X2_test)
rfc2, rfc_pred2 = RFC(X2_train, y2_train, X2_test)
lr2, lr_pred2 = LR(X2_train, y2_train, X2_test)
xgb2, xgb_pred2 = XGB(X2_train, y2_train, X2_test)
```

	Hamming Loss	ROC AUC	F1 Score (Macro)
GBC2	0.228	0.693	0.83
RFC2	0.227	0.687	0.83
XGB2	0.258	0.655	0.81
LR2	0.276	0.669	0.79
SVM2	0.242	0.636	0.82
GNB2	0.553	0.576	0.34

Cross Validation with GBC2

```
learn
```

```
metrics = ["roc_auc", "f1_macro", "precision_macro", "recall_macro", "accuracy"]
gbc2_scores = cross_validate(gbc2, X, y, cv=5, scoring=metrics)
```


Cross Validation with RFC2

```
learn
```

```
metrics = ["roc_auc", "f1_macro", "precision_macro", "recall_macro", "accuracy"]
rfc2_scores = cross_validate(rfc2, X, y, cv=5, scoring=metrics)
```


Confusion Matrices of GBC2

Accuracy: 47/63 = 0.75

Precision: 34/40 = 0.85

Recall: 34/44 = 0.77

Accuracy: 50/63 = 0.79

Precision: 29/36 = 0.81

Recall: 29/35 = 0.83

Confusion Matrices of RFC2

Accuracy: 47/63 = 0.75

Precision: 33/38 = 0.87

Recall: 33/44 = 0.75

Accuracy: 44/63 = 0.70

Precision: 27/38 = 0.71

Recall: 27/35 = 0.77

6. DEPLOYMENT

Streamlit Application

Screenshot

Online Technical Assessment Classification Based on Your Personalization

Demographics

Gender

- Male
- Female

Level of Study (If not in selection, choose the closest one)

- Diploma
- Undergraduate
- Postgraduate

THANK YOU

REFERENCES

- Abduh, M. Y. M. (2021). Full-time online assessment during COVID-19 lockdown: EFL teachers' perceptions. Asian EFL Journal, 28(1.1), 26-46.
- Bailey, K. M. (1998). Learning about language assessment: dilemmas, decisionjs, and directions. Heinle& Heinle: US.
- Barbe, W. B., Swassing, R. H., & Milone, M. N. (1979). Teaching through modality strengths: concepts and practices. Zaner-Bloser. https://cir.nii.ac.jp/crid/1130282272992258816
- Çetinkaya, A., Baykan, Ö. K., & Kırgız, H. (2023). Analysis of Machine Learning Classification Approaches for Predicting Students' Programming Aptitude. Sustainability, 15(17), 12917.
- Chrysafiadi, K., Troussas, C., & Virvou, M. (2018, 7-10 Oct. 2018). A Framework for Creating Automated Online Adaptive Tests Using Multiple-Criteria Decision Analysis. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
- Dema, K. (2021). Understanding Students' C Programming Language Learning Styles: A Case Study in College of Science and Technology. Journal of Information Engineering and Applications, 11(1), 7-14.
- Dikli, S. (2003). Assessment at a distance: Traditional vs. alternative assessments. Turkish Online Journal of Educational Technology-TOJET, 2(3), 13-19.
- García, P., Amandi, A., Schiaffino, S., & Campo, M. (2005). Using Bayesian networks to detect students' learning styles in a web-based education system. Proc of ASAI, Rosario, 115, 126.
- Kim, N., Smith, M. J., & Maeng, K. (2008). Assessment in online distance education: A comparison of three online programs at a university. Online Journal of Distance Learning Administration, 11(1), 1-16.
- Maennel, O. M. (2019). Predicting student's success using technical labs as part of university admission to a cyber security program.
- Ocepek, U., Bosnić, Z., Nančovska Šerbec, I., & Rugelj, J. (2013). Exploring the relation between learning style models and preferred multimedia types. Computers & Education, 69, 343–355. https://doi.org/https://doi.org/10.1016/j.compedu.2013.07.029
- Papadakis, S. (2023). MOOCs 2012-2022: An overview. Advances in Mobile Learning Educational Research, 3, 682-693. https://doi.org/10.25082/AMLER.2023.01.017
- Parsons, D., Wood, K., & Haden, P. (2015, January). What are we doing when we assess programming?. In Proceedings of the 17th Australasian Computing Education Conference (ACE 2015) (Vol. 27, p. 30).
- Pritchard, A. (2009). Ways of learning: Learning theories and learning styles in the classroom (2nd ed.). New York, NY:Routledge.
- Roberts, G. H., & Verbyla, J. L. (2003, January). An online programming assessment tool. In Proceedings of the fifth Australasian conference on Computing education-Volume 20 (pp. 69-75).
- Robinson, P. E., & Carroll, J. (2017, 25-28 April 2017). An online learning platform for teaching, learning, and assessment of programming. 2017 IEEE Global Engineering Education Conference (EDUCON) (pp. 547-556). IEEE. https://10.1109/EDUCON.2017.7942900
- Seyal, A. H., Mey, Y. S., Matusin, M. H., Siau, N. H., & Rahman, A. A. (2015). Understanding students learning style and their performance in computer programming course: Evidence from Bruneian technical institution of higher learning. International Journal of Computer Theory and Engineering, 7(3), 241.
- Sievertsen, H. H., & Burgess, S. (2020, April 1). Schools, skills, and learning: The impact of covid-19 on Education. CEPR. https://cepr.org/voxeu/columns/schools-skills-and-learning-impact-covid-19-education
- Ulloa-Cazarez, R. L., López-Martín, C., Abran, A., & Yáñez-Márquez, C. (2018). Prediction of Online Students Performance by Means of Genetic Programming. Applied Artificial Intelligence, 32(9-10), 858-881. https://doi.org/10.1080/08839514.2018.1508839