EEE 135 Key concepts and Equations

AJ Mesa Jr.

August 5, 2020

Vectors

1.
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

2.
$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = -\mathbf{A}(\mathbf{B} \cdot \mathbf{C}) + \mathbf{B}(\mathbf{A} \cdot \mathbf{C})$$

3.
$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}) = |\mathbf{ABC}|$$

4.
$$\nabla (\mathbf{A} \times \mathbf{B}) = (\nabla \times \mathbf{A}) \cdot \mathbf{B} - (\nabla \times \mathbf{B}) \cdot \mathbf{A}$$

5.
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}) + \mathbf{A}(\mathbf{B} \cdot \nabla) - \mathbf{B}(\mathbf{A} \cdot \nabla)$$

6.
$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

7.
$$\nabla \times (\nabla A) = \mathbf{0}$$

8.
$$\nabla \cdot (\nabla \phi) = \nabla^2 \phi$$

9.
$$\nabla(\nabla \cdot \mathbf{A}) - \nabla \times (\nabla \times \mathbf{A}) = \nabla^2 \mathbf{A}$$

10. Divergence theorem:
$$\oint\limits_{\text{closed surface}} \mathbf{A} \cdot \mathrm{d}\mathbf{S} = \int\limits_{\text{volume bounded}} (\nabla \cdot \mathbf{A}) \, \mathrm{d}v$$

11. Stokes' theorem:
$$\oint\limits_{\text{closed loop}} \mathbf{A} \cdot \mathrm{d}\mathbf{L} = \int\limits_{\text{surface bounded}} (\nabla \times \mathbf{A}) \cdot \mathrm{d}\mathbf{S}$$

Coordinate Systems

	Rectangular	Cylindrical	Spherical	
	x	$\rho = \sqrt{x^2 + y^2}$	$r = \sqrt{x^2 + y^2 + z^2}$	
Parameters	y	$\phi = \arctan\left(\frac{y}{x}\right)$	$\phi = \arctan\left(\frac{y}{x}\right)$	
	z	z	$\theta = \arctan\left(\frac{\sqrt{x^2 + y^2}}{z}\right)$	
		$x = \rho \cos \phi$	$x = (r\sin\theta)\cos\phi$	
Conversion		$y = \rho \sin \phi$	$y = (r\sin\theta)\sin\phi$	
	z = z		$z = r \cos \theta$	
	$\hat{\mathbf{a}}_x$	$\hat{\mathbf{a}}_{\rho} = \hat{\mathbf{a}}_x \cos \phi + \hat{\mathbf{a}}_y \sin \phi$	$\hat{\mathbf{a}}_r = \hat{\mathbf{a}}_x \sin \theta \cos \phi + \hat{\mathbf{a}}_y \sin \theta \sin \phi + \hat{\mathbf{a}}_z \cos \theta$	
Unit Vectors	$\hat{\mathbf{a}}_y$	$\hat{\mathbf{a}}_{\phi} = -\hat{\mathbf{a}}_x \sin \phi + \hat{\mathbf{a}}_y \cos \phi$	$\hat{\mathbf{a}}_{\phi} = -\hat{\mathbf{a}}_x \sin \phi + \hat{\mathbf{a}}_y \cos \phi$	
	$\hat{\mathbf{a}}_z$	$\hat{\mathbf{a}}_z$	$\hat{\mathbf{a}}_{\theta} = \hat{\mathbf{a}}_x \cos \theta \cos \phi + \hat{\mathbf{a}}_y \cos \theta \sin \phi - \hat{\mathbf{a}}_z \sin \theta$	
$\mathrm{d}v$	$\mathrm{d}x\mathrm{d}y\mathrm{d}z$	$\mathrm{d}\rho(\rho\mathrm{d}\phi)\mathrm{d}z$	$\mathrm{d}r(r\mathrm{d}\phi)(r\sin\theta\mathrm{d}\theta)$	
$\mathrm{d}\mathbf{L}$	$\mathrm{d}x\hat{\mathbf{a}}_x + \mathrm{d}y\hat{\mathbf{a}}_y + \mathrm{d}z\hat{\mathbf{a}}_z$	$\mathrm{d}\rho\hat{\mathbf{a}}_{\rho} + \rho\mathrm{d}\phi\hat{\mathbf{a}}_{\phi} + \mathrm{d}z\hat{\mathbf{a}}_{z}$	$\mathrm{d}r\hat{\mathbf{a}}_r\hat{\mathbf{a}}_r + r\mathrm{d}\theta\hat{\mathbf{a}}_\theta + r\sin\theta\mathrm{d}\phi\hat{\mathbf{a}}_\phi$	
Vector Field	$A_x\hat{\mathbf{a}}_x + A_y\hat{\mathbf{a}}_y + A_z\hat{\mathbf{a}}_z$	$A_{\rho}\hat{\mathbf{a}}_{\rho} + A_{\phi}\hat{\mathbf{a}}_{\phi} + A_{z}\hat{\mathbf{a}}_{z}$	$A_{\rho}\hat{\mathbf{a}}_{\rho} + A_{\phi}\hat{\mathbf{a}}_{\phi} + A_{\theta}\hat{\mathbf{a}}_{\theta}$	
∇A	$\frac{\partial A}{\partial x}\hat{\mathbf{a}}_x + \frac{\partial A}{\partial y}\hat{\mathbf{a}}_y + \frac{\partial A}{\partial z}\hat{\mathbf{a}}_z$	$\frac{\partial A}{\partial \rho} \hat{\mathbf{a}}_{\rho} + \frac{1}{\rho} \frac{\partial A}{\partial \phi} \hat{\mathbf{a}}_{\phi} + \frac{\partial A}{\partial z} \hat{\mathbf{a}}_{z}$	$\frac{\partial A}{\partial r}\hat{\mathbf{a}}_r + \frac{1}{r}\frac{\partial A}{\partial \theta}\hat{\mathbf{a}}_\theta + \frac{1}{r\sin\theta}\frac{\partial A}{\partial \phi}\hat{\mathbf{a}}_\phi$	
$ abla \cdot \mathbf{A}$	$\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$	$\frac{1}{\rho} \frac{\partial (\rho A_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$	$\frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} + \frac{1}{r \sin \theta} \frac{\partial (A_{\theta} \sin \theta)}{\partial \theta}$	
$ abla imes \mathbf{A}$	$ \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \end{pmatrix} \hat{\mathbf{a}}_x $ $ + \begin{pmatrix} \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \end{pmatrix} \hat{\mathbf{a}}_y $ $ + \begin{pmatrix} \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \end{pmatrix} \hat{\mathbf{a}}_z $	$ \frac{\left(\frac{1}{\rho}\frac{\partial A_z}{\partial \rho} - \frac{\partial A_\phi}{\partial z}\right)\hat{\mathbf{a}}_\rho}{\left(\frac{\partial A_\rho}{\partial z} - \frac{\partial A_z}{\partial \rho}\right)\hat{\mathbf{a}}_\rho} $ $ \frac{1}{\rho}\left(\frac{\partial(\rho A_\phi)}{\partial \rho} - \frac{\partial A_\rho}{\partial \phi}\right)\hat{\mathbf{a}}_z $	$ \frac{1}{r\sin\theta} \left(\frac{\partial(A_{\phi}\sin\theta)}{\partial\theta} - \frac{\partial A_{\theta}}{\partial\phi} \right) \hat{\mathbf{a}}_{r} \\ \frac{1}{r} \left(\frac{1}{\sin\theta} \frac{\partial A_{r}}{\partial\phi} - \frac{\partial(rA_{\phi})}{\partial r} \right) \hat{\mathbf{a}}_{\theta} \\ \frac{1}{r} \left(\frac{\partial(rA_{\theta})}{\partial r} - \frac{\partial(A_{r})}{\partial\theta} \right) \hat{\mathbf{a}}_{\phi} $	
$\nabla^2 A$	$\frac{\partial^2 A_x}{\partial x^2} + \frac{\partial^2 A_y}{\partial y^2} + \frac{\partial^2 A_z}{\partial z^2}$	$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial A}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 A}{\partial \phi^2} + \frac{\partial^2 A_z}{\partial z^2}$	$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r \frac{\partial A}{\partial r} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 A}{\partial \phi^2} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial A}{\partial \theta} \right)$	

Unit vector dot products:

1. rectangular and cylindrical:

	$\hat{\mathbf{a}}_{ ho}$	$\hat{\mathbf{a}}_{\phi}$	$\hat{\mathbf{a}}_z$
$\hat{\mathbf{a}}_x$	$\cos \phi$	$-\sin\phi$	0
$\hat{\mathbf{a}}_y$	$\sin \phi$	$\cos \phi$	0
$\hat{\mathbf{a}}_z$	0	0	1

2. rectangular and spherical:

	0	1	
	$\hat{\mathbf{a}}_r$	$\hat{\mathbf{a}}_{\phi}$	$\hat{\mathbf{a}}_{ heta}$
$\hat{\mathbf{a}}_x$	$\sin \theta \cos \phi$	$-\sin\phi$	$\cos \theta \cos \phi$
$\hat{\mathbf{a}}_y$	$\sin \theta \sin \phi$	$\cos \phi$	$\cos\theta\sin\phi$
$\hat{\mathbf{a}}_z$	$\cos \theta$	0	$-\sin\theta$

1 Electrostatics

- 1. Coulomb's law, the force between two charged particles: $\mathbf{F}_2 = \frac{1}{4\pi\varepsilon_0} \frac{Q_1Q_2}{r^2} \hat{\mathbf{a}}_{12}$ with $\frac{\mathbf{r}_2 \mathbf{r}_1}{|\mathbf{r}_2 \mathbf{r}_1|}$
- 2. electric field intensity of charge Q is force per unit charge: $\mathbf{E} = \frac{\mathbf{F}_t}{Q_t} = \frac{1}{4\pi\varepsilon_0} \frac{Q_1}{r^2} \hat{\mathbf{a}}_r$
- 3. volume charge density: $\rho_v = \lim_{\Delta v \to 0} \frac{\Delta Q}{\Delta v} = \frac{\mathrm{d}Q}{\mathrm{d}v} \Longleftrightarrow Q = \int_{\text{volume}} \rho_v \, \mathrm{d}v$
- 4. field of line charge: $\mathbf{E}=rac{
 ho_L}{2\piarepsilon_0
 ho}\hat{\mathbf{a}}_
 ho$
- 5. field of sheet charge: $\mathbf{E} = \frac{\rho_S}{2 \varepsilon_0} \hat{\mathbf{a}}_N$
- 6. sketching streamlines: $\frac{E_y}{E_x} = \frac{\mathrm{d}y}{\mathrm{d}x}$
- 7. electric flux = induced charge of conductor on another (grounded) without contact: $\Psi=Q$
- 8. electric flux density = electric flux per unit area: $\mathbf{D} = \frac{Q}{4\pi r^2}\hat{\mathbf{a}}_r = \int\limits_{\text{volume}} \frac{\rho_v\,\mathrm{d}v}{4\pi r^2}\hat{\mathbf{a}}_r$
- 9. in free space: $\mathbf{D} = \varepsilon_0 \mathbf{E}$
- 10. Gauss's law: the electric flux passing through any closed surface is equal to the total enclosed charge by the surface. $\Psi = \int \mathrm{d}\Psi = \oint \mathbf{D}_s \cdot \mathrm{d}\mathbf{S} = Q = \int \rho_v \,\mathrm{d}v$
- 11. we apply Divergence theorem: $\oint_{\text{closed surface}} \mathbf{D}_s \cdot \mathrm{d}\mathbf{S} = \int (\nabla \cdot \mathbf{D}) \, \mathrm{d}v = \int \rho_v \, \mathrm{d}v \Longleftrightarrow \nabla \cdot \mathbf{D} = \rho_v$
- 12. point form of Gauss's law: $\nabla \cdot \mathbf{D} = \rho_v$
- 13. the work done by an external force to move a charge: $W = -Q \int_{\text{initial}}^{\text{final}} \mathbf{E} \cdot d\mathbf{L}$
- 14. potential difference = work done by external force per unit charge: $V = -\int_{\text{initial}}^{\text{final}} \mathbf{E} \cdot d\mathbf{L}$
- 15. potential difference is path independent, and $\oint \mathbf{E} \cdot d\mathbf{L} = 0$
- 16. relationship of potential and electric field: $\mathbf{E} = -\nabla V$
- 17. using the curl of divergence is 0: $\nabla \times \mathbf{E} = \nabla \times (-\nabla V) = \mathbf{0}$
- 18. Maxwell's 2nd equation: $\nabla \times \mathbf{E} = \mathbf{0}$
- 19. electric dipole: two point charges of same magnitude, opposite charge and has a fixed distance

- 20. dipole moment: $\mathbf{p} = Q\mathbf{d}$ where \mathbf{d} points from -Q to +Q
- 21. torque on dipole by electric field: $\mathrm{d}\mathbf{T} = \mathrm{d}\mathbf{p} \times \mathbf{E}$

- 22. potential energy of dipole on electric field: $U = -\operatorname{d}\mathbf{p}\cdot\mathbf{E}$
- 23. total energy of system of N charges: $W_E = \frac{1}{2} \sum_{n=1}^{n=N} Q_n V_n$

24. for continuous charge distribution:
$$W_E = \frac{1}{2} \int\limits_{\text{volume}} \rho_v V \, \mathrm{d}v = \frac{1}{2} \int\limits_{\text{volume}} \mathbf{D} \cdot \mathbf{E} \, \mathrm{d}v = \frac{1}{2} \int\limits_{\text{volume}} \varepsilon E^2 \, \mathrm{d}v$$

25. energy density:
$$\frac{\mathrm{d}W_E}{\mathrm{d}v} = \frac{1}{2}\mathbf{D}\cdot\mathbf{E}$$

2 Conductors and Dielectrics, Capacitance

- 1. current = charges passing through an area per unit time: $I=rac{\mathrm{d}q}{\mathrm{d}t}$
- 2. current density = current per area: $I = \oint\limits_{S} \mathbf{J} \cdot \mathrm{d}\mathbf{S}$
- 3. let Q_i be the charge flowing OUT a surface. the continuity equation: $\oint_S \mathbf{J} \cdot \mathrm{d}\mathbf{S} = -\frac{\mathrm{d}Q_i}{\mathrm{d}t}$
- 4. point form of continuity equation: $\nabla \cdot \mathbf{J} = \frac{\partial \rho_v}{\partial t}$
- 5. electron drift speed: $\mathbf{v}_d = -\mu_e \mathbf{E}$ with μ = mobility
- 6. conductivity: $\sigma_e = -\rho_e \mu_e$
- 7. vector form of Ohm's law: $\mathbf{J} = \sigma \mathbf{E}$
- 8. Ohm's law: V = IR
- 9. resistance $R = \frac{L}{\sigma S} = \frac{V_{ab}}{I} = \frac{-\int_b^a \mathbf{E} \cdot d\mathbf{L}}{\int_S \mathbf{E} \cdot d\mathbf{S}}$
- 10. boundary conditions for conductors:
 - $D_t = E_t = 0$
 - $D_N = \varepsilon \mathbf{E}_N = \rho_s$
 - there is no field inside
 - the field on the surface is normal to the surface
 - the surface is an equipotential surface
- 11. Method of Images: the effect of an infinite conducting sheet is the same as the effect of the sheet removed and all other charges reflected with respect to the sheet.

- 12. semiconductors: there is contribution of both electrons and holes $\sigma = -\rho_e \mu_e + \rho_h \mu_h$
- 13. polarization = dipole moment per unit volume: $\mathbf{P} = \lim_{\Delta v \to 0} \frac{1}{\Delta v} \sum_{i=1}^{n\Delta b} \mathbf{p}_i$
- 14. total bounded charges: $Q_b = -\oint_S \mathbf{P} \cdot \mathrm{d}\mathbf{S}$

- 15. total free charges: $Q = Q_T Q_b = \oint_S (\varepsilon_0 \mathbf{E} + \mathbf{P}) \cdot d\mathbf{S}$
- 16. linear relationship of ${f P}$ and ${f E}$: ${f P}=\chi_e arepsilon_0 {f E}$ where χ_e is the electric susceptibility of the material
- 17. relative permittivity: $\varepsilon_r = \chi_e + 1$
- 18. permitivity: $\varepsilon = \varepsilon_0 \varepsilon_r$
- 19. in polarizable material: $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 \mathbf{E} (1 + \chi_e) = \varepsilon \mathbf{E}$
- 20. boundary conditions for perfect dielectric materials:
 - $E_{t, 1} = E_{t, 2} \iff (\mathbf{E}_1 \mathbf{E}_2) \times \hat{\mathbf{n}} = 0$
 - $\bullet \ \frac{D_{t, 1}}{D_{t, 2}} = \frac{\varepsilon_1}{\varepsilon_2}$
 - $D_{N, 1} = D_{N, 2} \iff (\mathbf{D}_1 \mathbf{D}_2) \cdot \hat{\mathbf{n}} = \rho_S$
 - $\varepsilon_1 E_{N, 1} = \varepsilon_2 E_{N, 2}$
 - $D_2 = D_1 \sqrt{\cos^2 \theta_1 + \left(\frac{\varepsilon_1}{\varepsilon_2}\right)^2 \sin^2 \theta_1}$
 - $E_2 = E_1 \sqrt{\sin^2 \theta_1 + \left(\frac{\varepsilon_1}{\varepsilon_2}\right)^2 \cos^2 \theta_1}$
- 21. capacitance: dependent only on the geometry of the capacitor: $C = \frac{\oint_S \varepsilon \mathbf{E} \cdot d\mathbf{S}}{-\int_-^+ \mathbf{E} \cdot d\mathbf{L}}$
- 22. parallel plate: $C = \frac{\varepsilon S}{d}$
- 23. cylindrical capacitor: $C = \frac{2\pi \varepsilon L}{\ln \left(\frac{b}{a}\right)}$
- 24. spherical capacitor: $C=4\pi\varepsilon\left(rac{1}{a}-rac{1}{b}
 ight)^{-1}$
- 25. Poisson equation: $\nabla^2 V = -\frac{\rho_v}{\varepsilon}$
- 26. Laplace equation: $\nabla^2 V = 0$

3 Magnetostatics

- 1. Biot-Savart law: $\mathrm{d}\mathbf{H}=rac{I\,\mathrm{d}\mathbf{L} imes\hat{\mathbf{a}}_r}{4\pi r^2}$
- 2. magnetic field intensity ${f H}$ is analogous to electric field
- 3. only the integral form has experimental basis: $\mathbf{H} = \oint \frac{I \, \mathrm{d}\mathbf{L} \times \hat{\mathbf{a}}_r}{4\pi r^2} = \oint \frac{K \times \hat{\mathbf{a}}_r \, \mathrm{d}S}{4\pi r^2} = \oint \frac{J \times \hat{\mathbf{a}}_r \, \mathrm{d}v}{4\pi r^2}$

- 4. surface current density: $I d\mathbf{L} = \mathbf{K} dS = \mathbf{J} dv$
- 5. Ampere's circuital law: $\oint \mathbf{H} \cdot \mathrm{d}\mathbf{L} = I$
- 6. point form of Ampere's circuital law: $\nabla \times \mathbf{H} = \mathbf{J}$

- 7. magnetic flux density = magnetic flux per area (in free space): ${f B}=\mu_0{f H}$
- 8. magnetic flux: $\Phi = \int_S \mathbf{B} \cdot d\mathbf{S}$
- 9. for a closed surface: $\Phi = \oint_S \mathbf{B} \cdot \mathrm{d}\mathbf{S} = 0$
- 10. using divergence theoren: $\oint_S \mathbf{B} \cdot d\mathbf{S} = \int_{\text{volume}} (\nabla \cdot \mathbf{B}) \, dv = 0$
- 11. point form of magnetic flux: $\nabla \cdot \mathbf{B} = 0$
- 12. Maxwell's equations for static fields:

Differential	Integral
$\nabla \cdot \mathbf{D} = \rho_v$	$\oint_{S_{\mathbf{c}}} \mathbf{D} \cdot d\mathbf{S} = Q$
$ abla imes \mathbf{E} = 0$	$\oint \mathbf{E} \cdot d\mathbf{L} = 0$
$ abla imes \mathbf{H} = \mathbf{J}$	$\oint \mathbf{H} \cdot d\mathbf{L} = I$
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$

- 13. Scalar magnetic potential: we designate a scalar magnetic potential similar to electric potential such that $\mathbf{H} = -\nabla V_m(\text{when}\mathbf{J} = \mathbf{0})$ because the curl of a gradient is 0.
- 14. this scalar magnetic potential obey's Laplace's equation: $abla^2 V_m = 0$
- 15. however, this potential is NOT CONSERVATIVE. $V_{m,\ ab} = -\int_b^a \mathbf{H} \cdot \mathrm{d}\mathbf{L}, \ \oint \mathbf{H} \cdot \mathrm{d}\mathbf{L} = I \neq 0$
- 16. vector potential: we choose a vecor potential ${\bf A}$ such that ${\bf B} = \nabla \times {\bf A}$
- 17. from differential current elements $\mathbf{A} = \oint \frac{\mu_0 I \, d\mathbf{L}}{4\pi r} = \oint_S \frac{\mu_0 \mathbf{K} \, dS}{4\pi r} = \oint_{\text{volume}} \frac{\mu_0 \mathbf{J} \, dv}{4\pi r}$
- 18. magnetic force: $\mathbf{F} = Q\mathbf{v} \times \mathbf{B}$ (does no work on the object)
- 19. Lorentz force equation: $\mathbf{F} = Q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$
- 20. differential force on a current element: $d\mathbf{F} = \mathbf{J} \times \mathbf{B} dv = \mathbf{K} \times \mathbf{B} dS = I d\mathbf{L} \times \mathbf{B}$
- 21. force between differential current elements: $d(d\mathbf{F})2) = \mu_0 \frac{I_1 I_2}{4\pi r_{12}^2} d\mathbf{L}_2 \times (d\mathbf{L}_2 \times \hat{\mathbf{a}}_{r12})$
- 22. in a space of uniform magnetic flux density $F=-I\oint {f B} imes {
 m d}{f L}=-I{f B} imes\oint {
 m d}{f L}={f 0}$
- 23. define the torque with respect to an origin as $\mathbf{T} = \mathbf{R} \times \mathbf{F}$
- 24. torque on a loop: $d\mathbf{T} = I \, d\mathbf{S} \times \mathbf{B} = d\mathbf{m} \times \mathbf{B}$
- 25. define magnetic dipole moment $d\mathbf{m} = I d\mathbf{S}$
- 26. magnetization: magnetic dipole moment per unit volume: $\mathbf{M} = \lim_{\Delta v \to 0} \frac{1}{\Delta v} \sum_{i=1}^{n\Delta v} \mathbf{m}_i$

- 27. the bound current in a contour $I_B = \oint \mathbf{M} \cdot \mathrm{d}\mathbf{L}$
- 28. the free current: $I=I_T-I_B=\oint\left(rac{{f B}}{\mu_0}-{f M}
 ight)\cdot {
 m d}{f L}$
- 29. hence we have $\mathbf{H}=rac{\mathbf{B}}{\mu_0}-\mathbf{M}\Longleftrightarrow\mathbf{B}=\mu_0\left(\mathbf{H}+\mathbf{M}
 ight)$
- 30. magnetization is linear in linear isotropic media: ${f M}=\chi_m{f H}$ with magnetic susceptibility χ_m
- 31. relative permeability: $\mu_r=1+\chi_m$
- 32. permeability $\mu = \mu_r \mu_0$
- 33. relationship of ${\bf B}$ and ${\bf H}$: ${\bf B}=\mu{\bf H}$
- 34. boundary conditions of magnetic materials:
 - $\bullet \ B_{N2} = B_{N1}$
 - $\bullet \ H_{N2} = \frac{\mu_1}{\mu_2} H_{N1}$
 - $\bullet \ H_{t1} H_{t2} = K$
 - $\bullet \ \frac{B_{t1}}{\mu_1} \frac{B_{t2}}{\mu_2} = K$
- 35. magnetic circuit potential: $V_{m,\;ab} = \int_a^b \mathbf{H} \cdot \mathrm{d}\mathbf{L}$
- 36. vectorOhm's law analog: $\mathbf{B} = \mu \mathbf{H}$
- 37. current analog: $\Phi = \int_S \mathbf{B} \cdot \mathrm{d}\mathbf{S}$
- 38. Ohm's law analog: $V_m = \Phi \mathfrak{R}$
- 39. reluctance is dependent on geometry: $\Re = \frac{d}{\mu S}$
- 40. potential energy in magnetic field $W_H = \frac{1}{2} \int\limits_{
 m volume} {f B} \cdot {f H} \, {
 m d} v$
- 41. inductance = ratio of total flux to the current they link: $L = \frac{N\Phi}{I} = \frac{2W_H}{I^2} = \frac{1}{I^2} \int_{\text{volume}} \mathbf{B} \cdot \mathbf{H} \, \mathrm{d}v = \frac{1}{I^2} \int_{\text{volume}} \mathbf{A} \cdot \mathbf{J} \, \mathrm{d}v$
 - $\frac{1}{I^2} \int_{\text{volume}} \mathbf{A} \cdot \mathbf{J} \, \mathrm{d}v$
- 42. mutual inductance = depends on magnetic interaction between two currents: $M_{12} = \frac{1}{I_1 I_2} \int_{\text{volume}} (\mu \mathbf{H}_2 \cdot \mathbf{H}_2) \, dv = M_{21}$

4 Time-Varying Fields

- 1. Faraday's law = changing magnetic flux creates an emf: $\mathcal{E}=-rac{\mathrm{d}\Phi}{\mathrm{d}t}$
- 2. Lenz's law = the induced voltage acts to produce an opposing flux
- 3. Faraday's law: $\oint \mathbf{E} \cdot d\mathbf{L} = -\frac{d}{dt} \int_{s} \mathbf{B} \cdot d\mathbf{S} \Longleftrightarrow \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
- 4. motional emf (adds contribution of magnetic field is not constant): $\mathbf{E}_m = \frac{\mathbf{F}}{Q} = \mathbf{v} \times \mathbf{B}$
- 5. displacement current density = due to changing electric flux: $\mathbf{J}_d = \frac{\partial \mathbf{D}}{\partial t} \Longleftrightarrow \nabla \times \mathbf{H} = \mathbf{J} + \mathbf{J}_d$
- 6. when $\mathbf{J}=0$, we have: $\nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}$ and $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$
- 7. Integrating the equation on displacement current with respect to a surface: $\int_S \nabla \times \mathbf{H} \cdot \mathrm{d} = \int_S \mathbf{J} \cdot \mathrm{d} + \int_S \mathbf{J}_d \cdot \mathrm{d} \iff \oint \mathbf{H} \cdot \mathrm{d} \mathbf{L} = I + \int_S \frac{\partial \mathbf{D}}{\partial t} \cdot \mathrm{d} \mathbf{S}$
- 8. Maxwell's equations for time-varying fields:

Differential	Integral
Birierentiai	ricegiai
$\nabla \cdot \mathbf{D} = \rho_v$	$\oint_{C} \mathbf{D} \cdot d\mathbf{S} = Q$
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint \mathbf{E} \cdot d\mathbf{L} = -\int_{S} \frac{\partial B}{\partial t} \cdot d\mathbf{S}$
$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint \mathbf{H} \cdot d\mathbf{L} = I + \int_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S}$
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$

- 9. retarted potentials: $\mathbf{E} = -\nabla V \frac{\partial \mathbf{A}}{\partial t}$
- 10. EM waves travel at speed $v=\frac{1}{\sqrt{\mu \varepsilon}}$
- 11. replace time with $t'=t-\frac{R}{v}$ where R is the distance between the differential charge element and point where potential will be determined

- 12. $V = \int_{\text{volume}} \frac{[\rho_v]}{4\pi\varepsilon R} \, \mathrm{d}v$
- 13. $\mathbf{A} = \int_{\text{volume}} \frac{\mu[\mathbf{J}]}{4\pi R} \, \mathrm{d}v$

5 Plane Waves

1. In free space, the medium is sourceless $\rho_v = 0$, $\mathbf{J} = \mathbf{0}$, hence Maxwells' equations becomes:

Maxwell's equations
$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

$$\nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \cdot \mathbf{E} = 0$$

$$\nabla \cdot \mathbf{H} = 0$$

2. we consider the case such that ${\bf E}=E_x\hat{\bf a}_x$ and ${\bf H}=H_y\hat{\bf a}_y$ and they vary only in the z component in a sinusoidal manner with angular frequency ω

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} = -\mu \frac{\partial \left(\mathbf{H} \exp \left(j \omega t \right) \right)}{\partial t} = -j \omega \mu \mathbf{H}$$
$$\nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t} = \varepsilon \frac{\partial \left(\mathbf{E} \exp \left(j \omega t \right) \right)}{\partial t} = j \omega \varepsilon \mathbf{E}$$

Getting the curl of these two equations in the leftmost side gives

$$\nabla^2 \mathbf{H} + \omega^2 \mu \varepsilon \mathbf{H} = 0 \tag{2}$$

These two equations (Helmholtz Equation) have these solutions (define the wave number $k=\omega\sqrt{\mu\varepsilon}$):

$$E_x(z, t) = E_f \exp(-jkz) + E_r \exp(jkz)$$

$$H_y(z, t) = H_f \exp(-jkz) + H_r \exp(jkz)$$

- 3. the relationship between E and H: $H_y(z, t) = \frac{1}{\eta} \left[E_f \exp\left(-jkz\right) E_r \exp\left(jkz\right) \right]$
- 4. the speed of the wave propagation is $v_p = \frac{\omega}{k} = \frac{1}{\sqrt{\mu \varepsilon}}$
- 5. the wavelength is the distance between two consecutive reference points: $\lambda = \frac{2\pi}{k} = \frac{v_p}{f}$
- 6. the perfect medium has intrinsic impedance $\eta = \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}}$
- 7. in a lossy medium, there is conductivity and Maxwell's curl equations become

$$\nabla \times \mathbf{E} = -j\omega \mu \mathbf{H}$$
$$\nabla \times \mathbf{H} = j\omega \varepsilon \mathbf{E} + \sigma \mathbf{E}$$

Helmholtz equation becomes:

$$\nabla^2 \mathbf{E} + \omega^2 \mu \varepsilon \left(1 - j \frac{\sigma}{\omega \varepsilon} \right) \mathbf{E} = 0$$

The propagation constant(γ = attenuation constant + imaginary wave number) is complex:

$$\gamma = jk = \alpha + j\beta = j\omega\sqrt{\mu\varepsilon\left(1 - j\frac{\sigma}{\omega\varepsilon}\right)} \Longleftrightarrow \nabla^2 \mathbf{E} - \gamma^2 \mathbf{E} = 0$$

The solution to this equation is

$$E_x(z, t) = E_f \exp(-\gamma z) + E_r \exp(\gamma z)$$

$$E_x(z, t) = E_f \exp(-\alpha z) \cos(\omega t - \beta z) + E_r \exp(\alpha z) \cos(\omega t + \beta z)$$

- 8. the intrinsic impedance is $\eta = \frac{j\omega\mu}{\gamma}$
- 9. the magnetic field intensity is $H_{y}(z)=rac{1}{\eta}\left[E_{f}\exp\left(-\gamma z
 ight)-E_{r}\exp\left(\gamma z
 ight)
 ight]$
- 10. define the skin depth (depth of penetration) as $\delta_s=rac{1}{lpha}=\sqrt{rac{2}{\omega\mu\varepsilon}}$
- 11. the Poynting vector gives the power output of an EM wave: $\mathbf{S} = \mathbf{E} \times \mathbf{H}$
- 12. the average value of the poynting vector is $\langle \mathbf{S} \rangle = \frac{1}{2} \Re \left\{ \mathbf{E}_s \times \mathbf{H}_s^* \right\}$ with $\mathbf{E}_s = E_0 \exp\left(-\beta z\right) \hat{\mathbf{a}}_x$, $\mathbf{H}_s^* = H_0 \exp\left(+\beta z\right) \hat{\mathbf{a}}_y$
- 13. the boundary conditions for lossless medium to lossless medium:
 - $D_{N1} = D_{N2}$
 - $E_{t1} = E_{t2}$
 - $B_{N1} = B_{N2}$
 - $H_{t1} = H_{t2}$
- 14. let the boundary be z=0 and $\eta=\sqrt{\frac{\mu}{\varepsilon}}$. Then at the left side of the boundary is:

$$\mathbf{E}_{1}(0) = (E_{1}^{f} + E_{1}^{r})\hat{\mathbf{a}}_{x}$$
$$\mathbf{H}_{2}(0) = \frac{1}{\eta_{1}}(E_{1}^{f} + E_{1}^{r})\hat{\mathbf{a}}_{y}$$

at the right side of the boundary:

$$\mathbf{E}_2(0) = E_2^f \hat{\mathbf{a}}_x$$
$$\mathbf{H}_2(0) = \frac{1}{\eta_2} E_2^f \hat{\mathbf{a}}_y$$

these, along with the boundary conditions, give:

$$\frac{E_1^r}{E_1^f} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \Gamma$$

- 15. the reflection coefficient Γ is the ratio of the amplitudes of the REFLECTED wave to the INCIDENT wave
- 16. the transmission coefficient $T=1+\Gamma=\frac{2\eta_2}{\eta_2+\eta_1}$ is the ratio of the amplitudes of the TRANSMITTED wave to the INCIDENT wave
- 17. the boundary conditions from lossless medium to perfect electric conductor (0 electric fields inside)

- $D_{N1} = 0$
- $E_{t1} = 0$
- $B_{N1} = B_{N2}$
- $H_{t1} = J$
- 18. at the left side:

$$\mathbf{E}_{1}(0) = (E_{1}^{f} + E_{1}^{r})\hat{\mathbf{a}}_{x}$$
$$\mathbf{H}_{2}(0) = \frac{1}{n_{1}}(E_{1}^{f} + E_{1}^{r})\hat{\mathbf{a}}_{y}$$

using the boundary conditions:

$$E_1^f + E_1^r = 0$$
$$H_1^f + H_1^r = J$$

this means the electric field is reflected completety

19. the boundary conditions from lossless medium to good conductor: we can use the definition of the reflection coefficient with

$$\eta_2 = j \frac{\omega \mu_2}{\gamma_2} = \sqrt{\frac{j\omega \mu_2}{\sigma + j\omega \varepsilon_2}}$$

note that as $\sigma \to \infty \Longrightarrow \eta_2 \to 0, \; \Gamma \to -1$

6 Transmission Lines

- 1. transmission line = structure or media that transder information or energy between two points
- 2. transmission line theory:
 - physical dimensions are a fraction or multiple of wavelengths
 - has a distributed parameter network
 - voltages and currents vary in magnitude and phase over the length

3. lumped element model = transmission line is represented with L-network of R', L', G', and C' of length Δz . these are in per unit length elements (eg. Ω/m) KVL analysis of the big loop:

$$v(z, t) = R'\Delta z i(z, t) + L'\Delta z \frac{\partial i(z, t)}{\partial t} + v(z + \Delta z, t) \Longrightarrow -\frac{\partial v(z, t)}{\partial z} = R'i(z, t) + L'\frac{\partial i(z, t)}{\partial t}$$

KCL at node N+1

$$i(z, t) = G'\Delta v(z + \Delta z, t) + C'\Delta z \frac{\partial v(z + \Delta z, t)}{\partial t} + i(z + \Delta z, t) \Longrightarrow -\frac{\partial i(z, t)}{\partial z} = G'v(z, t) + C'\frac{\partial v(z, t)}{\partial t}$$

4. Telegrapher's equations:

$$-\frac{\partial v(z, t)}{\partial z} = R'i(z, t) + L'\frac{\partial i(z, t)}{\partial t}$$
$$-\frac{\partial i(z, t)}{\partial z} = G'v(z, t) + C'\frac{\partial v(z, t)}{\partial t}$$

we define the following (as sinusoidal steady state transmission):

$$v(z, t) = \Re \{V(z) \exp(j\omega t)\}\$$
$$i(z, t) = \Re \{I(z) \exp(j\omega t)\}\$$

the telegrapher's equations become:

$$-\frac{\partial v(z)}{\partial z} = (R' + j\omega L') i(z)$$
(3)

$$-\frac{\partial i(z)}{\partial z} = \left(G' + j\omega C'\right)v(z) \tag{4}$$

differentiating (3) w. r. t. z then combine with (4), and differentiate (4) w. r. t z then combine with (3):

$$\frac{\partial^2 v(z)}{\partial z^2} - \left(R' + j\omega L'\right) \left(G' + j\omega C'\right) v(z) = 0$$
$$\frac{\partial^2 i(z)}{\partial z^2} - \left(R' + j\omega L'\right) \left(G' + j\omega C'\right) i(z) = 0$$

let $\gamma = \sqrt{\left(R'+j\omega L'\right)\left(G'+j\omega C'\right)} = \alpha + j\beta$ the solutions are

$$v(z) = V_0^f \exp(-\gamma z) + V_0^r \exp(\gamma z)$$
$$i(z) = I_0^f \exp(-\gamma z) + I_0^r \exp(\gamma z)$$

5. the relationship of i(z) and v(z): $i(z) = \frac{\gamma}{R' + i\omega L'} \left[V_0^f \exp\left(-\gamma z\right) - V_0^r \exp\left(-\gamma z\right) \right]$

6. the characteristic impedance is
$$Z_0=rac{V_0^f}{I_0^f}=-rac{V_0^r}{I_0^r}=rac{R'+j\omega L'}{\gamma}=\sqrt{rac{R'+j\omega L'}{G'+j\omega C'}}$$

7. the time domain expressions are:

$$v(z, t) = V_0^f \exp(-\alpha z) \cos(\omega t - \beta z) + V_0^r \exp(\alpha z) \cos(\omega t + \beta z)$$
$$i(z, t) = I_0^f \exp(-\alpha z) \cos(\omega t - \beta z) + I_0^r \exp(\alpha z) \cos(\omega t + \beta z)$$

8. the wavelength $\lambda = \frac{2\pi}{\beta}$

9. the wavespeed
$$v_p = \frac{\omega}{\beta} = \lambda f$$

10. Lossless transmission lines: R' = 0, G' = 0

•
$$\gamma = \sqrt{\left((0) + j\omega L'\right)\left((0) + j\omega C'\right)} = (0) + j\beta = j\omega\sqrt{L'C'}$$

•
$$Z_0 = \sqrt{\frac{(0) + j\omega L'}{(0) + j\omega C'}} = \sqrt{\frac{L'}{C'}}$$

•
$$v(z) = V_0^f \exp(-j\beta z) + V_0^r \exp(j\beta z)$$

•
$$i(z) = I_0^f \exp(-j\beta z) + I_0^r \exp(j\beta z)$$

•
$$\lambda = \frac{2\pi}{\omega\sqrt{L'C'}}$$

•
$$v_p = \frac{1}{\sqrt{L'C'}}$$

11. in a lossy transmission line with permeability μ , surface resistance $R_S=\frac{1}{\sigma\delta_S}$, complex permittivity $\varepsilon=\varepsilon'-j\varepsilon''$:

$$W_{m} = \frac{\mu}{4} \int_{S} \mathbf{H}_{S} \cdot \mathbf{H}_{S}^{*} \, \mathrm{d}S \Longrightarrow L' = \frac{\mu}{|I_{0}|^{2}} \int_{S} \mathbf{H}_{S} \cdot \mathbf{H}_{S}^{*} \, \mathrm{d}S$$

$$W_{e} = \frac{\varepsilon}{4} \int_{S} \mathbf{E}_{S} \cdot \mathbf{E}_{S}^{*} \, \mathrm{d}S \Longrightarrow C' = \frac{\varepsilon'}{|V_{0}|^{2}} \int_{S} \mathbf{E}_{S} \cdot \mathbf{E}_{S}^{*} \, \mathrm{d}S$$

$$R' = \frac{R_{S}}{|I_{0}|^{2}} \int_{C1+C2} \mathbf{H}_{S} \cdot \mathbf{H}_{S}^{*} \, \mathrm{d}L$$

$$G' = \frac{\omega \varepsilon''}{|V_{0}|^{2}} \int_{S} \mathbf{E}_{S} \cdot \mathbf{E}_{S}^{*} \, \mathrm{d}S$$

12. terminanted transmission line. consider the case at which a lossless line is terminated by an impedance Z_L at the receiving port and extends infinitely from one end. let the point where the load side connects with the transmission line be z=0.

$$V(0) = V_0 = V_0^f + V_0^r$$

$$I(0) = \frac{V_0}{Z_L} = \frac{V_0^f}{Z_0} - \frac{V_0^r}{Z_0}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$V_0^f = \frac{V_0}{2} \left(\frac{1}{Z_0} + \frac{1}{Z_l}\right)$$

$$V_0^r = \frac{V_0}{2} \left(\frac{1}{Z_0} - \frac{1}{Z_l}\right)$$

The current and voltage is:

$$\begin{split} V(z) &= \frac{V_0}{2} \left(\frac{1}{Z_0} + \frac{1}{Z_l}\right) \exp\left(-jkz\right) + \frac{V_0}{2} \left(\frac{1}{Z_0} - \frac{1}{Z_l}\right) \exp\left(jkz\right) \\ I(z) &= \frac{V_0}{2Z_0} \left(\frac{1}{Z_0} + \frac{1}{Z_l}\right) \exp\left(-jkz\right) + \frac{V_0}{2Z_0} \left(\frac{1}{Z_0} - \frac{1}{Z_l}\right) \exp\left(jkz\right) \end{split}$$

the relationship of the forward and reverse wave is $rac{V_0^r}{V_0^f} = rac{Z_L - Z_0}{Z_L + Z_0}$

13. special cases:

	Reflected Voltage	Remarks
Open circuit ($Z_L o \infty$)	$\frac{V_0^r}{V_0^f} = 1$	same phase
Short circuit ($Z_L o 0$)	$\frac{V_0^r}{V_0^f} = -1$	π out of phase
Matched load ($Z_L=Z_0$)	$\frac{V_0^r}{V_0^f} = 0$	no reflection, maximum power transfer

- 14. Impedance transformation. using Ohm's law: $Z(z)=rac{V(z)}{I(z)}=Z_0rac{Z_L+jZ_0 an(\beta z)}{Z_0+jZ_L an(\beta z)}$
- 15. at the quarter wavelength line (quarter wave transform), $z=\frac{\lambda}{4}, \beta=\frac{2\pi}{\lambda}\Longrightarrow\beta z=\frac{\pi}{2}$

$$Z_{eq} = Z_0 \frac{Z_L + jZ_0 \tan\left(\frac{\pi}{2}\right)}{Z_0 + jZ_L \tan\left(\frac{\pi}{2}\right)}$$

$$\updownarrow$$

$$Z_{eq} Z_L = Z_0^2$$

special cases:

	Z_L	Z_{eq}
Open circuit	∞	0
Short circuit	0	∞
Matched load	Z_0	Z_0