Semiconductor Materials

Stages of IC Manufacturing

- Material Preparation raw material mined and purified.
- Wafer Preparation Done in a separate dept. or supplied by vendors.
- Wafer Fabrication Devices or ICs are actually formed on wafers (merchant / Captive producers)
- 4. Testing and Packaging

Stages of Manufacturing

Atomic Structure

- ☐ There are 118 **elements**, and the entire universe is made from these elements
- The smallest piece of any element that still retains its properties is called an atom
- Atoms are the building block of the physical universe

Atomic Structure

- Further subdivision of the atom will result in 3 subatomic particles: Protons, Electrons and Neutrons
- They are arranged in a particular order which gives physical, chemical and electrical properties to the material

Bohr Atomic Model

□ The structure / organization of protons, electrons, neutrons are best explained by a model first proposed by a famous physicist, Niels Bohr in 1915

Bohr Atomic Model

Each orbit/shell has a max. number of positions available for electrons.

Shells: K, L, M, N, ...

Capacity: 2, 8, 18, 32, ... 2n²

Subshells: s, p, d, f

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}...$

Periodic Table

- ☐ It is the basic reference to the elements.
- Elements range from the simplest, hydrogen, to the most complicated one, lawrencium.
- In each atom of an element, the number of protons is equal to number of electrons.
- □ *Atomic number* no. of protons or electrons.
- ☐ Each orbit n can hold 2n² electrons.
- Elements with the same no. of outer-orbit (valence) electrons have similar properties and are grouped in the same column in the table.

1 H		Periodic Table															2 He
3 Li	4 Be	Periodic Table dated 28 November 2016												7 N	8	9 F	10 Ne
11 Na	12 Mg						13 A	14 Si	15 P	16 S	17 C1	18 Ar					
19 K	20 Ca	21 Sc	22 Ti	23 V	24 C	25 Mn	²⁶ Fe	27 CO	28 Ni	29 Cu	30 Zh	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kn
37 Rb	38 Sr	39 Υ	40 Zn	₄ 원	42 <u>C</u>	43 LO	4 R	45 E	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		2 H	73 	74 ≥	5 CX	76 ÚS	77 r	78 Pt	79 Au	80 Hg	81 T]	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra		104 Rf	105 Db	Şg Sg	107 Bh	108 Hs	109 Mt	110 Ds	III Rg	112 Uub	113 Uut	114 Uuc	115 Uup	116 Uuh	117 Uus	118 Uuo
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			89 Ac	90 Th		92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Ln

Periodic Table

- Elements are stable with a filled or with 8 electrons in the outer ring.
- Atoms seek to combine with other atoms to create the stable condition of full orbits or 8 electrons in their outer ring through sharing.

Electrical Conduction

- Conductors
- □ Insulators (Dielectrics)
- Semiconductors

Conductors

- Conduct electricity
- The attractive hold of the protons in the nucleus of the atom on the electrons is relatively week

Example:

29Cu
Copper

47Ag
Silver

79Au
Gold

Insulators (Dielectrics)

Exhibit a large force of attraction between the nucleus and the orbiting electrons.

Semiconductors

Semiconductors

■ Intrinsic Semiconductors - pure

Eg: Ge, Si

■ Extrinsic Semiconductors - doped

Dopants that create p-type - acceptors

Dopants that create **n**-type - do**n**ors

Germanium and Silicon

- □ First transistor was made with Germanium.
- Disadvantages of Germanium:
 - * Its 937°C melting point limits high temperature processing.
 - * It lacks naturally occurring oxide which leaves the surface prone to electrical leakage.

But Silicon allows higher temperature processing (melting point: 1415°C) and represents 90% of the wafers processed worldwide.

Compound Semiconducting materials

- Most used in commercial compound semiconductor devices are:
 - Gallium Arsenide (GaAs)
 - Gallium Arsenide Phosphide (GaAsP)
- Diodes made from GaAs and GaAsP gives off visible and laser light. Hence they make the LEDs.
- GaAs has high carrier mobility, hence can be used for high speed circuits. Devices of GaAs operate 2 to 3 times faster than their silicon counterparts.
- ☐ GaAs is naturally *radiation hardened* space application
- ☐ GaAs is semi-insulating minimizes leakage between adjacent devices, allowing higher packing density faster circuit.

Drawbacks:

- Trade-offs between performance & processing difficulty.
- Majority of electronic products do not require their level of speed.
- Do not possess a natural oxide. Layers of dielectrics must be deposited on the GaAs – longer processing and low yield.
- ☐ Half of the atoms in GaAs are Arsenic, an element very dangerous to human beings which evaporates from the compound at normal process temperatures.
- The same problem occurs during the crystal growing stage resulting in nonuniform crystals and wafers.