Testing out multiple prior inclusions

cool people

Summary of the previous algorithm

Given an $n \times p$ matrix X and an $n \times q$ matrix Z, we hope to find function $\Omega : R^q \to R^{p \times p}$, which models the dependence of variables (represented as columns) in X as a function of extraneous covariates in Z. We do this by performing n * p regressions, one for each observation and variable.

Suggested fix

For each of the n regressions across observations, specify a separate inclusion probability π_i .

Steps of the current algorithm

Below are the steps of the current algorithm that specifically highlight how the algorithm depends on the specification of the prior inclusion probability π :

- 1. The wrapper R function is covdepGE.R. It specifies the parameters for the grid search and then calls the workhorse function below for each of the p variables. For our experiment, I think it's okay if we just focus on the brute force grid_search for hyper-parameters and ignore other methods.
- 2. The workhorse R function that runs the algorithm is cavi.R inside the R folder, which returns α, μ, σ^2 , the posterior parameters for each of the n spike-and-slab weighted regressions. These parameters have shapes $n \times p$ for each of n regressions and p. The main methods in cavi.R for the grid search are grid_search_c and cavi_c, which are both inside the covdepGE.cpp file.
- 3. The function grid_search_c is just a loop that goes through all the hyperparameter specifications.

- 4. The function cavi_c is the function that computes cavi updates for each of the *n* regressions. The specific part that is of interest to us is the update for alpha, specified in alpha_update_c.
- 5. Disregarding all the terms that do not depend on **prior inclusion probability** π , the update for α depends on π through $\alpha_1 = \log(\pi/(1-\pi))$, which is currently a double.

Proposed changes

Essentially, all the parts of the algorithm above stay the same in terms of the logic / algebra. However, we need to change / specify 2 pieces:

- 1. The data type of prior inclusion probability π needs to change from double to a n-vector. This entails also changing the (algebraic) operations that we do with π , which occur in cavi_c and alpha_update_c functions.
- 2. The specification of the grid search for π needs to change. Currently, in grid_search_c, candidate π values are specified as double. Now, we need to specify candidates for π as the n-vectors. Ideally, the idea is to initialize different n-vectors based on the clustering of the n-observations. This is, however, non-trivial, since we also need to chose clustering algorithm. Two simpler ways to test if this will work is to:
 - Randomly initialize candidate *n*-vectors, which would correspond to assuming different inclusion probabilities for each of the *n* regressions;
 - Assume oracle knowledge of the clusters (which we have in simulation settings), and assign different inclusion probabilities $\pi_i = v_{c(i)}$ for $i=1,\ldots,n$, where c(i) indicates cluster assignment for observation i.

Results

We'll compare results with the baseline under 3 different paradigms:

- 1) Every row i gets its own π_i
- 2) The rows are clustered with an oracle mapping O(i) giving the true membership of each row, and each cluster gets its own π
- 3) The rows are clustered with a mapping learned from the data and each cluster gets its own π

	p	n	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
1	5.00	90.00	0.00	0.00	0.03	0.34	0.47	2.62
2	15.00	90.00	0.00	0.00	0.62	0.82	1.25	4.42
3	25.00	150.00	0.00	0.64	1.08	1.29	1.75	5.17
4	50.00	150.00	0.39	2.68	4.37	4.36	5.80	11.31

Table 1: False positives per sample - Normalized Z, Centered X

The baseline performance (one π value) is listed below. Lower false positives per sample is the goal, as well as keeping the false negatives per sample relatively constant.

% latex table generated in R 4.2.2 by xtable 1.8-4 package % Sat Nov 19 00:00:40 2022

% latex table generated in R 4.2.2 by xtable 1.8-4 package % Sat Nov 19 00:00:40 2022

	p	n		•		Mean	3rd Qu.	Max.
1	5.00	90.00	0.00	0.78	1.03	0.99	1.29	2.16
2	15.00	90.00	0.00	0.89	1.32	1.41	1.99	2.98
3	25.00	150.00	0.00	0.77	0.92	0.91	1.10	2.00
4	50.00	150.00	0.08	0.92	1.13	1.19	1.40	3.28

Table 2: False negatives per sample - Normalized Z, Centered X

Oracle mapping

% latex table generated in R 4.2.2 by xtable 1.8-4 package % Sat Nov 19 00:00:42 2022

% latex table generated in R 4.2.2 by xtable 1.8-4 package % Sat Nov 19 00:00:42 2022

	p	n	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
1	5.00	90.00	0.00	0.00	0.24	0.45	0.62	3.29
2	15.00	90.00	0.00	0.51	1.09	1.25	1.78	4.33
3	25.00	150.00	0.41	2.23	3.13	3.24	4.13	7.31
4	50.00	150.00	3.64	7.53	9.06	9.16	10.60	14.80

Table 3: False positives per sample - Oracle Clustering

	p	n	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
1	5.00	90.00	0.00	0.80	1.10	1.09	1.42	2.60
2	15.00	90.00	0.00	1.02	1.58	1.53	2.00	3.04
3	25.00	150.00	0.00	0.80	0.98	0.99	1.26	2.21
4	50.00	150.00	0.16	0.80	1.02	1.01	1.24	1.92

Table 4: False negatives per sample - Oracle Clustering

Unique per observation

Clustering

We'll use hierarchical clustering, and assume that even if we don't know which observations belong to which cluster we at least know there are either 2, 3, or 6 clusters (in truth there are 3). In a sense, we are testing the model's robustness to misspecification of the number of clusters.

```
k_vec = c(2, 3, 6)

estimate_membership = function(setup, k) {
   setup %>% pluck(1, "Z") %>% dist() %>% hclust() %>% cutree(k = k)
}

cluster_results = simulation_list %>% map(function(setup){
   map(k_vec, function(k) {
```

% latex table generated in R 4.2.2 by x table 1.8-4 package % Sat Nov 19 00:00:50 2022

	p	n	clusts	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
1	5.00	90.00	2.00	0.00	0.00	0.22	0.47	0.67	3.18
2	5.00	90.00	3.00	0.00	0.00	0.28	0.47	0.62	3.38
3	5.00	90.00	6.00	0.00	0.00	0.33	0.48	0.69	3.11
4	15.00	90.00	2.00	0.00	0.35	0.82	1.07	1.58	4.69
5	15.00	90.00	3.00	0.00	0.44	1.02	1.21	1.57	5.13
6	15.00	90.00	6.00	0.00	0.68	1.22	1.41	1.82	4.44
7	25.00	150.00	2.00	0.44	1.71	2.52	2.71	3.59	6.24
8	25.00	150.00	3.00	0.93	2.18	2.98	3.20	4.13	6.67
9	25.00	150.00	6.00	1.00	2.62	3.50	3.54	4.46	6.97
10	50.00	150.00	2.00	2.80	6.20	7.68	7.76	9.08	13.40
11	50.00	150.00	3.00	3.25	7.08	8.81	8.78	10.20	14.12
12	50.00	150.00	6.00	4.52	8.37	10.14	10.14	11.60	15.63

Table 5: False positives per sample - Hierarchical Clustering

% latex table generated in R 4.2.2 by xtable 1.8-4 package % Sat Nov 19 00:00:50 2022

	p	n	clusts	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
1	5.00	90.00	2.00	0.00	0.77	1.08	1.08	1.49	2.60
2	5.00	90.00	3.00	0.00	0.78	1.08	1.09	1.47	2.60
3	5.00	90.00	6.00	0.00	0.77	1.12	1.09	1.46	2.60
4	15.00	90.00	2.00	0.00	1.03	1.57	1.53	2.00	3.56
5	15.00	90.00	3.00	0.00	1.02	1.56	1.51	2.00	3.20
6	15.00	90.00	6.00	0.00	1.04	1.57	1.52	2.00	3.02
7	25.00	150.00	2.00	0.00	0.79	0.96	1.00	1.21	2.21
8	25.00	150.00	3.00	0.00	0.80	0.97	0.99	1.25	2.21
9	25.00	150.00	6.00	0.00	0.82	0.99	0.99	1.21	2.21
10	50.00	150.00	2.00	0.28	0.82	1.08	1.06	1.22	2.00
11	50.00	150.00	3.00	0.21	0.80	1.06	1.04	1.24	2.00
12	50.00	150.00	6.00	0.16	0.79	1.02	1.00	1.23	1.88

Table 6: False negatives per sample - Hierarchical Clustering