Crim 250: Statistics for the social sciences

Introduction

Outline

- Meet the toolkit: from the video you followed.
- Review Chapter 1 of DVB
- What is R?
- Exploratory data analysis using an example: Prisoner count in PA

The toolkit

- R is like the engine Programming language for statistical computing and graphics.
- **RStudio is like the car** Integrated Development Environment (IDE) for R (we'll use desktop version).
- R Markdown is a way to produce nice-looking write-ups of R code (and more), on PDF, HTML, etc. Lightweight markup language for creating formatted text using a plain-text editor.
- GitHub saves version of code online (and has version control)
 Software for tracking changes in a set of files. Desktop version allows you to work on your computer, but save changes online.

Breakout room activity

R

- What is it? A programming language used for statistical computing and graphics that you can use to clean, analyze, and graph your data.
- Who uses it? Most commonly used language in statistics and data science (which language is used depends on the discipline).
- Who runs it? Free, open-source: can be edited in a collaborative and public manner on CRAN (The Comprehensive R Archive Network).

Why use it?

- State-of-the-art You will always be able to perform the newest statistical analyses as soon as anyone thinks of them (over 15k packages in late 2020).
- Quickly updated R will fix its bugs quickly and transparently.
- Helpful community has brought together a community of programming and stats nerds (a.k.a., useRs) that you can turn to for help.

Visualization in R

https://www.r-graph-gallery.com/

R data types

- R has 6 basic data types:
 - character: eg. "Maria", "Cuellar 1987", "1987"
 - numeric (real or decimal): eg. 1.5, 1987, 2e10
 - integer: eg. as.integer(3.14) gives 3
 - logical: true or false, eg. NA (missing value, either missing or not).
 - complex: 4+2i
 - raw: stores data as raw bytes

R data structures

- R has several data structures:
 - vector:
 - atomic vector: usually of same type, eg. x<- c(1,2,3)
 - list: acts as a container, eg. x<- list(1, "a", TRUE, 1 + (0+4i))
 - matrix: like a vector but with 2 dimensions, eg. m <- matrix(nrow = 2, ncol = 2)
 - data frame: VERY IMPORTANT in R, it's the data table.
 - factors: special vectors for categorical data, eg. factor(c("yes", "no", "no", "yes", "yes"))
 - tables: a frequency table (how many of a type in a vector or matrix)

An example: Prisoner count in PA (1978-2016)

- Source: https://jacobdkaplan.com/
- How many prisoners are there in the US? (Note: not how many new admissions, just the count for that year.)
- See R code on Canvas.

Exploratory data analysis (EDA)

- The idea is to explore the data before you perform any analysis on it.
- EDA: Some of the most useful parts of statistics.
- Most of the statistics we see on the news are EDA.

Exploratory data analysis

- A method is either non-graphical (usually calculations of summary statistics) or graphical (summarizes data in a diagrammatic way).
- A method is either univariate (one variable) or multivariate (several, but usually two, variables).
 - Note: It is almost always a good idea to perform univariate EDA on each of the components of a multivariate EDA before performing the multivariate EDA.
- -> The four types of EDA are univariate non-graphical, multivariate non-graphical, univariate graphical, and multivariate graphical.

Categorical data: Univariate non-graphical

 The only useful univariate non-graphical techniques for categorical variables is some form of tabulation of the frequencies, usually along with calculation of the fraction (or percent) of data that falls in each category.

Statistic/Group	Green	Blue	Yellow	Total
Count	5	15	10	30
Proportion	0.167	0.5	0.33	1
Percent	16.7	50	33	100

Quantitative data EDA

- The characteristics of the population distribution of a quantitative variable are its **center**, **spread**, **modality** (number of peaks in the prob. density function), **shape** (including "heaviness of the tails"), and **outliers**.
- Our observed data represent just one sample out of an infinite number of possible samples.

Sample population standing in for population

 Univariate EDA for a quantitative variable is a way to make preliminary assessments about the population distribution of the variable using the data of the observed sample.

Central tendency

 The most common measure of central tendency is the mean. For skewed distribution or when there is concern about outliers, the median may be preferred.

DVB Chp 1: Define these

- Data:
- Data table:
- Cases/Records:
- Respondent:
- Subject or Participant:
- Experimental unit:

- Sample:
- Population:
- Variable:
- Categorical (or qualitative) variable:
- Quantitative variable:
- Units:
- Identifier variable:
- Ordinal variable:

Terms from DVB Chp 1

- Data: information about something.
- Data table: a way to organize information (think Excel table)
- Cases/Records: rows of data table
- Respondent: individuals who answer a survey
- Subject or Participant: person on whom we experiment.
- Experimental unit: inanimate subjects, eg. animals, plants, websites.

- Sample: what was collected...
- Population: from the group of interest
- Variable: eg. columns in a data table.
- Categorical (or qualitative) variable: eg. Green=1, Yellow=2, Blue=3.
- Quantitative variable: eg. Age, time of day, number of buses.
- Units: eg. meters, pounds, seconds.
- Identifier variable: eg. Student ID: 0001, 0002, etc.
- Ordinal variable: eg. How worried are you about global warming? Not very=1, Not sure=2, Very worried=3.

R Markdown cheat sheet

 https://www.rstudio.com/wp-content/uploads/2015/02/ rmarkdown-cheatsheet.pdf

