PJWSTK •

TEST PRZYKŁADOWY

Imię i nazwisko:

Numer indeksu:

Numer grupy:

Test jest testem wielokrotnego wyboru (tzn. wszystkie kombinacje odpowiedzi są możliwe). Pytanie jest uznane za poprawnie rozwiązane wttw, gdy wszystkie podpunkty w pytaniu mają zaznaczone właściwe odpowiedzi. Odpowiedzi "+" oraz "-" proszę zaznaczać przy każdym podpunkcie pytania w stosownym miejscu - wewnątrz nawiasu kwadratowego poprzedzającego treść []. Życzę powodzenia.

- 1. Które z poniższych zdań jest prawdziwe:
 - (a) $[-] [2,3] \cup \mathbb{N} = \mathbb{N}$
 - (b) [-] $(2,3) \oplus \mathbb{N} = \mathbb{N} \setminus \{2,3\}$
 - (c) [-] $\{2,3\} \setminus \mathbb{N} = (2,3)$
- 2. Niech $\Sigma = \{a\}$ oraz $X = \{w \in \Sigma^* : |w| \le 3\}$, wtedy:
 - (a) $[-] P(X) = \{a, aa, aaa\}$
 - (b) [+] |P(X)| = 16
 - (c) [+] $\Sigma \in P(X)$
- 3. Niech $A_i = \{-i, i\}, B_i = [-i, i], \text{ wtedy:}$

(a)
$$[+]$$
 $\left(\bigcap_{i\in\mathbb{N}}A_i\right)\cap\left(\bigcap_{i\in\mathbb{N}}B_i\right)=\emptyset$

(b)
$$[+]$$
 $\left(\bigcup_{i\in\mathbb{N}}A_i\right)\setminus\left(\bigcap_{i\in\mathbb{N}}B_i\right)=\mathbb{Z}\setminus\{0\}$

$$(\mathrm{c}) \ \ [+] \ \left(igcup_{i\in\mathbb{N}} A_i
ight) \oplus \left(igcup_{i\in\mathbb{N}} B_i
ight) = \mathbb{R}\setminus\mathbb{Z}$$

- 4. Niech $A = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$, wtedy:
 - (a) $[-] P(A) = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\}$
 - (b) [-] |P(A)| = 4
 - (c) [+] |P(A)| = 8
- 5. Niech $P(X_n)$ oznacza zbiór potęgowy n-elementowego zbioru X_n , wtedy:
 - (a) [+] jeżeli $A_3 \subset B_4$, to $P(A_3) \subset P(B_4)$
 - (b) [-] jeżeli $A_3 \subset B_4$, to $P(P(A_3)) \supset P(B_4)$
 - (c) $[-] \sum_{i=0}^{n} |P(X_i)| = 2^{n+1}$
- 6. Niech $A = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}, B = \{1, 2, 3, \dots, 10\}, \text{ wtedy:}$
 - (a) $[+] |A \times B| = |B \times A|$
 - (b) $[-] |A \times B| = 40$
 - (c) $[+] |P(A)| \cdot |P(B)| = |P(A \cup B)|$

- 7. Czy istnieją zbiory A, B oraz C takie, że $A \cap B \neq \emptyset$, $A \cap C = \emptyset$ i $(A \cap B) \setminus C = \emptyset$
 - (a) [-] Tak, dla dowolnych zbiorów A, B i C
 - (b) [-] Tak, dla pewnych zbiorów A, B i C
 - (c) [+] Nie
- 8. Niech A, B oraz C będą dowolnymi zbiorami. Które z poniższych zdań jest prawdziwe:
 - (a) [-] $(A \setminus B) \cup B = A$
 - (b) $[+] (A \oplus B = A \oplus C) \to (B = C)$
 - (c) [+] $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
- 9. Jeżeli macierz binarna M reprezentuje relację r w zbiorze n-elementowym, to:
 - (a) [-] macierz M jest macierzą kwadratową rzędu n^2
 - (b) [+] macierz M jest symetryczna względem diagonalnej gdy relacja r jest symetryczna i spójna
 - (c) [-] macierz M jest symetryczna względem diagonalnej gdy relacja r jest przechodnia
- 10. Niech $U = \{0, 1, 2\}$, wtedy:
 - (a) [-] $r = \{(i, j) \in U^2 : i = j\} = \{(0, 0), (0, 1), (0, 2), (1, 1)\}$
 - (b) [+] $r = \{(i, j) \in U^2 : i^2 + j^2 = 2\} = \{(1, 1)\}$
 - (c) [+] $r = \{(i, j) \in U^2 : i = \max(\{1, j\})\} = \{(1, 0), (1, 1), (2, 2)\}$
- 11. Niech uniwersum relacji r będzie zbiór wszystkich słów nad alfabetem $\sum = \{0, 1\}$, wtedy:
 - (a) [-] jeżeli relacja r jest przeciwzwrotna, przeciwsymetryczna i przechodnia, to r jest zbiorem skończonym
 - (b) [+] jeżeli relacja r jest symetryczna i przeciwsymetryczna, to r jest zbiorem skończonym
 - (c) [-] jeżeli relacja r nie jest spójna, to r jest zbiorem skończonym
- 12. Relacja $r = \{(i, j) \in \mathbb{N} \times \mathbb{N} : (i \cdot j) \mod 3 = 1\}$ jest:
 - $(a) \ [-] \ przeciwzwrotna$
 - (b) [+] symetryczna
 - (c) [-] antysymetryczna
- 13. Niech $U = \mathbb{N} \times \mathbb{N}$ będzie uniwersum relacji r, wtedy:
 - (a) [+] jeżeli $r = \emptyset$, to r jest relacją antysymetryczną, przechodnią
 - (b) [+] jeżeli $r = \{(a,b) \in U : (a+b) \mod 2 = 1\}$, to r jest relacja zwrotna lub symetryczna
 - (c) [+] jeżeli $r = \{(a,b) \in U : a = 1 \land b > a\}$, to r jest relacją przeciwzwrotną lub spójną
- 14. Niech r_1 będzie relacją zwrotną i symetryczną oraz r_2 będzie relacją symetryczną i przechodnią, wtedy:
 - (a) [-] $r_1 \cap r_2$ jest relacją zwrotną, symetryczną i przechodnią
 - (b) [-] $r_1 \cup r_2$ jest relacją zwrotną, symetryczną i przechodnią
 - (c) [-] $r_1 \oplus r_2$ jest relacją zwrotną, symetryczną i przechodnią
- 15. Dla dowolnej relacji r zdefiniowanej nad niepustym uniwersum prawdą jest, że jeżeli relacja r jest:
 - (a) [-] antysymetryczna, to nie jest symetryczna
 - (b) [-] przeciwzwrotna, to nie jest przechodnia
 - (c) [-] spójna, to jest przechodnia i antysymetryczna

- 16. Które z poniższych zdań jest tautologią rachunku zdań:
 - (a) [+] $(p \lor (q \lor r)) \leftrightarrow ((p \lor q) \lor r)$
 - (b) [+] $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
 - (c) [+] $(p \land q) \leftrightarrow \neg (p \rightarrow \neg q)$
- 17. Niech p, q, r będą zmiennymi zdaniowymi, wtedy:
 - (a) [+] jeżeli p = q i q = r, to $p \rightarrow q$ i $q \rightarrow r$
 - (b) [-] jeżeli $p \to q$ i $q \to r$, to zdanie $p \leftarrow r$ jest zawsze prawdziwe
 - (c) [-] jeżeli $p \to q$ i $p \to r$, to zdanie $q \leftrightarrow r$ jest zawsze prawdziwe
- 18. Niech $p \leftrightarrow q$ oraz $q \rightarrow r$ i r będą zbiorem przesłanek, wtedy:
 - (a) [+] zbiór ten jest niesprzeczny
 - (b) [–] wnioskiem ze zbioru przesłanek jest stwierdzenie $p \wedge q$
 - (c) [–] wnioskiem ze zbioru przesłanek jest stwierdzenie $r \to p$
- 19. Rozumowanie "Jeśli dana wejściowa programu P spełnia warunek Q, to spełnia też warunek R. Zatem, jeżeli dana wejściowa programu P nie spełnia warunku Q, to nie spełnia też warunku R", jest:
 - (a) [-] poprawne
 - (b) [+] niepoprawne
 - (c) [-] bez sensu
- 20. Dla którego z poniższych stwierdzeń istnieje kontrprzykład:
 - (a) [+] jeżeli $a \in \mathbb{N}$ i $b \in \mathbb{Z}$, to $a \cdot |b| < c$, gdzie c dowolną liczbą naturalną
 - (b) [-] jeżeli $a \in \mathbb{N}$ i $b \in \mathbb{Z}$, to $a \cdot |b| \geq c$, gdzie c dowolną liczbą całkowitą ujemną
 - (c) [-] $\sqrt{x} = z$ wtedy i tylko wtedy, gdy $z \ge 0$, gdzie $x, z \in \mathbb{R}$