Exercise 8 Answer Sheet — Logic Theory (2), 80424

May 31, 2025

Question 2

We will show that the universal recursive function $U: \mathbb{N}^2 \to \mathbb{N}$ is not total, and that there is no total recursive function U' containing it.

Proof. We defined the universal function over the domain of coded Σ_1 -formulas, and directly by past constructions the number 1 does not codify such a formula. Let us assume towards a contradiction that there is $U' \supseteq U$ total universal function.

The idea is to take some recursive non-total function $f: \mathbb{N} \to \mathbb{N}$ that cannot be extended into total recursive function. Let us define,

$$\varphi(x,y) = x \le \underline{6} \land x = y$$

It corresponds to the function f(x) = x for $x \le 6$. To ensure that it is indeed recursive, note that $\varphi \equiv \exists y, x = y \land x \le \underline{6}$, which is Σ_1 and indeed recursive. Let e be the code for f in dom U' (note that it does not has to codify f in dom U). Then U'(e,x) = f(x) = x for all $x \le 6$, but U' is total and defined for every x. In particular U'(e,7) = f(7) = y', but there is no y' such that $\varphi(7,y')$ holds.

We can also see that,

$$\{0,\ldots,6\} = \operatorname{dom} f \neq \{x \in \mathbb{N} \mid \langle e, x \rangle \in \operatorname{dom} U'\} = \mathbb{N}$$

In contradiction to the definition of universal recursive functions.

Question 3

For every $l \in \mathbb{N}$ we define $b_l : \mathbb{N} \to \mathbb{N}$ by $b_0(n) = 2n$, $b_{l+1}(n) = b_l^{n+1}(1)$ in the sense of composition. Let $B(l,n) = b_l(n)$, such that B(0,n) = 2n, B(l+1,0) = B(l,1) and B(l+1,n+1) = B(l,B(l+1,n)).

Part a

We will show that for any $l \in \mathbb{N}$, b_l is primitive-recursive.

Proof.