

PROJECT | EXPLORING WEATHER TRENDS

Term 1 : Data Analyst Nanodegree Program
Submitted by : Rajendra B Pal

- 1. Data Extraction
- 2. Opening CSV Files
- 3. Line Chart
- 4. Making observations
- 5. Extra

1. DATA EXTRACTION

Fig 1-01: SQL query to output columns from table city_list.

Extracting city data from the temperatures database, city_list table. SQL queries shown in Fig 1-01. Clicked 'Download CSV' link to download CSV file. Repeated above steps for table 'city_data' and 'global_data'.

1. DATA EXTRACTION

Fig 1-01 - a: SQL query to output columns from table city_list.

Extracting city Philadelphia-USA data from the temperatures database, city_list table. SQL queries shown in Fig 1-01 - a. Clicked 'Download CSV' link to download CSV file specific to city Philadelphia-USA. Repeated above steps for table 'city_data' and 'global_data'.

2. OPENING CSV FILES

Please refer Jupyter notebook "DAND-rbpal-Project Explore Weather Trends-two.ipynb" for details.

```
df_city_list = pd.read_csv('csv/ProjectExploreWeatherTrends/city_list.csv')

df_city_list.head()

city country

Abidjan Côte D'Ivoire

Abu Dhabi United Arab Emirates

Abuja Nigeria

Accra Ghana

Adana Turkey
```

Fig 1-02: Reading city_list CSV file

```
df_city_data = pd.read_csv('csv/ProjectExploreWeatherTrends/city_data.csv')

df_city_data.head()

year city country avg temp
```

	year	city	country	avg_temp
0	1849	Abidjan	Côte D'Ivoire	25.58
1	1850	Abidjan	Côte D'Ivoire	25.52
2	1851	Abidjan	Côte D'Ivoire	25.67
3	1852	Abidjan	Côte D'Ivoire	NaN
4	1853	Abidjan	Côte D'Ivoire	NaN

Fig 1-03: Reading city_data CSV file

Used Python Pandas package to open CSV files as shown above.

2. OPENING CSV FILES

```
df_city_list = pd.read_csv('csv/ProjectExploreWeatherTrends/city_list.csv')

df_city_list.head()

city country

0 Abidjan Côte D'Ivoire

1 Abu Dhabi United Arab Emirates

2 Abuja Nigeria

3 Accra Ghana

4 Adana Turkey
```

Fig 1-02: Reading city_list CSV file

```
df_city_data = pd.read_csv('csv/ProjectExploreWeatherTrends/city_data.csv')

df_city_data.head()

year city country avg_temp

1849 Abidjan Côte D'Ivoire 25.58

1850 Abidjan Côte D'Ivoire 25.67

1851 Abidjan Côte D'Ivoire 25.67

1852 Abidjan Côte D'Ivoire NaN

4 1853 Abidjan Côte D'Ivoire NaN
```

Fig 1-03: Reading city_data CSV file

Used Python Pandas package to open CSV files as shown above.

STEP 1 - DATA CLEANING

```
df_city_list.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 345 entries, 0 to 344
Data columns (total 2 columns):
city 345 non-null object
country 345 non-null object
dtypes: object(2)
memory usage: 5.5+ KB
df_city_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 71311 entries, 0 to 71310
Data columns (total 4 columns):
year 71311 non-null int64
city
           71311 non-null object
country 71311 non-null object
avg temp 68764 non-null float64
dtypes: float64(1), int64(1), object(2)
memory usage: 2.2+ MB
df_global_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 266 entries, 0 to 265
Data columns (total 2 columns):
        266 non-null int64
avg temp 266 non-null float64
dtypes: float64(1), int64(1)
memory usage: 4.2 KB
```

Fig 1-04

A. Data information of 'city_data' shows that column 'avg_temp' has '68764' non-null values out of total '71311'

STEP 1 - DATA CLEANING

```
df_city_data.isnull().values.any()
True
df city data.isnull().sum()
                0
year
                0
city
country
avg_temp
            2547
dtype: int64
df_city_data_no_null = df_city_data[pd.notnull(df_city_data['avg_temp'])]
df_city_data_no_null.isnull().values.any()
False
df_city_data_no_null.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 68764 entries, 0 to 71310
Data columns (total 4 columns):
year 68764 non-null int64
          68764 non-null object
city
country 68764 non-null object avg_temp 68764 non-null float64
dtypes: float64(1), int64(1), object(2)
memory usage: 2.6+ MB
```

Fig 1-05

B. From Dataframe 'df_city_data' discarded all rows having 'null' value against column 'avg_temp.'.

STEP 1 - DATA CLEANING

```
df_city_data_no_null_philadelphia =
df_city_data_no_null[df_city_data_no_null['city'] == 'Philadelphia']

df_city_data_no_null_philadelphia.head()
```

	year	city	country	avg_temp
50194	1743	Philadelphia	United States	6.07
50195	1744	Philadelphia	United States	13.74
50196	1745	Philadelphia	United States	3.96
50201	1750	Philadelphia	United States	12.36
50202	1751	Philadelphia	United States	13.05

Fig 1-06

 $\hbox{\it C. Extracting temperature weather trend information for city 'Philadelphia,' closest to my hometown 'Pittsburgh', from Dataframe 'df_city_data_no_null.' .}$

STEP 1 - DATA CLEANING

```
df global data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 266 entries, 0 to 265
Data columns (total 2 columns):
             266 non-null int64
            266 non-null float64
avg_temp
dtypes: float64(1), int64(1)
memory usage: 4.2 KB
df global data.head()
   year avg_temp
0 1750
            8.72
1 1751
            7.98
2 1752
            5.78
3 1753
            8.39
4 1754
            8.47
```

Fig 1-07

D. Data information of 'global_data' shows that there are two columns 'year' and 'avg_temp' and has '266' rows which are non-null.

STEP 1 - DATA CLEANING

df_global_data_sortYear_1750_2013_index_year.head()				
ur_g.	TODAT_uat	ta_softfear_1/30_2013_index_year.nead()		
	avg_temp			
year				
1750	8.72			
1751	7.98			
1752	5.78			
1753	8.39			
1754	8.47			
df_g	lobal_dat	ta_sortYear_1750_2013_index_year.tail()		
	avg_temp			
year				
2009	9.51			
2010	9.70			
2011	9.52			
2012	9.51			
2013	9.61			

Fig 1-08

E. In 'global_data', taking note of start year '1750' and end year '2013' to match against 'df_city_data' for 'Philadelphia,' Note: removed row for year 2014 and 2015.

STEP 1 - DATA CLEANING

```
# rename global 'avg_temp_ name to 'global_avg_temp'
df_global_data_sortYear_1750_2013_index_year_ColRename =
df_global_data_sortYear_1750_2013_index_year.rename(columns=
{'avg_temp':'global_avg_temp'})
```

```
df_global_data_sortYear_1750_2013_index_year_ColRename.head()
```

global_avg_temp

year	
1750	8.72
1751	7.98
1752	5.78
1753	8.39
1754	8.47

Fig 1-09

F. In 'global_data', renaming column 'avg_temp' to 'global_avg_temp' for ease.

STEP 1 - DATA CLEANING

Fig 1-10

G. In 'city_data' for city 'Philadelphia, renaming column 'avg_temp' to 'global_avg_temp' for ease. Note the of start year '1750' and end year '2013'. Checking the shape- it comes out 263, one more than 'global_data'.

STEP 1 - DATA CLEANING

```
df_final_global_city_philadelphia =
pd.concat([df_global_data_sortYear_1750_2013_index_year_ColRename,df_c
ity_data_no_null_philadelphia_sortYear_year_avg_temp_1750_2013_index_y
ear ColRename], axis=1)
df final global city philadelphia.head()
      global_avg_temp phil_avg_temp
year
1750
                 8.72
                              12.36
1751
                 7.98
                              13.05
1752
                               5.64
1753
                 8.39
                              11.85
1754
                 8.47
                              12.29
df_final_global_city_philadelphia.tail()
      global_avg_temp phil_avg_temp
year
2009
                 9.51
                              12.50
2010
                 9.70
                              13.28
                 9.52
                              13.65
2011
                 9.51
2012
                              14.05
2013
                 9.61
                              14.01
df_final_global_city_philadelphia.isnull().sum()
global_avg_temp
                       0
phil_avg_temp
dtype: int64
```

Fig 1-11

H. Creating final Dataframe, 'df_final_global_city_philadelphia' by concatenating Dataframe 'df_global_data_sortYear_1750_2013_index_year_ColRename' and 'df_city_data_no_null_philadelphia_sortYear_year_avg_temp_1750_2013_index_year_ColRename' along axis=1.

STEP 1 - DATA CLEANING

```
# Finding 'null' row
null columns =
df final global city philadelphia.columns[df final global city philade
lphia.isnull().any()]
df_final_global_city_philadelphia[df_final_global_city_philadelphia['p
hil_avg_temp'].isnull()][null_columns]
     phil_avg_temp
year
1780
            NaN
# Removing 'null' row for year '1780'
df final global city philadelphia no null =
df final global city philadelphia[pd.notnull(df final global city phil
adelphia['phil avg temp'])]
# checking again for null row
df final global city philadelphia no null.isnull().sum()
global avg temp
phil avg temp
                   0
dtype: int64
```

Fig 1-12

From 'df_final_global_city_philadelphia', removing year '1780' for null data. Rechecking for null value for column 'phil_avg_temp'.

STEP 1 - DATA CLEANING

<pre>df_final_global_city_philadelphia.head()</pre>					
	global_avg_temp	phil_avg_temp			
year					
1750	8.72	12.36			
1751	7.98	13.05			
1752	5.78	5.64			
1753	8.39	11.85			
1754	8.47	12.29			
df_fi	nal_global_cit	ty_philadelph	nia.tail()		
	global_avg_temp	phil_avg_temp			
year	global_avg_temp	phil_avg_temp			
year 2009	global_avg_temp 9.51	phil_avg_temp 12.50			
2009	9.51	12.50			
2009	9.51 9.70	12.50 13.28			
2009 2010 2011	9.51 9.70 9.52	12.50 13.28 13.65			

Fig 1-13

J. Final Dataframe having both column 'global_avg_temp', 'phil_avg_temp', and 'year' as index.

STEP 2 - FINDING MOVING AVERAGES

```
# Using new method of Moving Average
df final global city philadelphia no null rolling newMethod =
df final global city philadelphia no null.rolling(window=7).mean()
df final global city philadelphia no null rolling newMethod.head(10)
     global_avg_temp phil_avg_temp
year
1750
               NaN
                            NaN
1751
               NaN
                            NaN
1752
               NaN
                            NaN
1753
               NaN
                            NaN
                            NaN
1755
               NaN
                            NaN
1756
            8.078571
                        10.960000
                        10.802857
1757
            8.121429
                        10.428571
1758
            7.944286
1759
            8.260000
                        11.244286
# checking total null
df_final_global_city_philadelphia_no_null_rolling_newMethod.isnull().s
um()
global_avg_temp
                     6
phil_avg_temp
                     6
dtype: int64
```

Fig 1-14

A. Using Python package Pandas rolling mean on Dataframe 'df_final_global_city_ philadelphia_no_null_rolling_newMethod' for 7 days – resulting 6 rows null/NaN..

STEP 2 - FINDING MOVING AVERAGES

```
# removing null rows
df_final_global_city_philadelphia_no_null_rolling_newMethod_no_null =
df_final_global_city_philadelphia_no_null_rolling_newMethod[pd.notnull
(df_final_global_city_philadelphia_no_null_rolling_newMethod['global_a
vg_temp'])]
```

```
\label{limiting_newMethod_no_null_rolling_newMethod_no_null.he} $$ \operatorname{ad}() $$
```

global avg temp phil avg temp

year 8.078571 1756 10.960000 1757 8.121429 10.802857 1758 7.944286 10.428571 8.260000 11.244286 1759 1760 8.088571 10.997143

Fig 1-15

B. From Dataframe 'df_final_global_city_philadelphia_no_null_rolling_newMethod', removing these 6 rows having column value 'NaN '. and then checking again for null Values.

STEP 2 - MAKING LINE CHART

```
plt.figure(figsize=(12,6))

plt.plot(df_final_global_city_philadelphia_no_null_rolling_newMethod_
o_null.index,df_final_global_city_philadelphia_no_null_rolling_newMet
od_no_null['global_avg_temp'],'r',color='red',label='Global
Temperature Rise',alpha=0.6,lw=4)

plt.plot(df_final_global_city_philadelphia_no_null_rolling_newMethod_
o_null.index,df_final_global_city_philadelphia_no_null_rolling_newMet
od_no_null['phil_avg_temp'],'b',color='orange',label='Philadelphia
Temperature Rise',alpha=0.6,lw=4)

plt.title('Global_Temperature Rise Vs_Philadelphia_Temperature Rise')
plt.xlabel('Year')
plt.ylabel('Average_Temperature')
plt.legend()
```

<matplotlib.legend.Legend at 0x13247839c18>

Fig 1-16

A. From Dataframe 'df_final_global_city_philadelphia_no_null_rolling_newMethod', removing these 6 rows having column value 'NaN '. and then checking again for null Values.

STEP 2 - MAKING LINE CHART

```
# order 1 : global_avg_temp | Linear Fit
sns.regplot(
    x='year',
    y='global_avg_temp',
    data=df_final_global_city_philadelphia_02,
    order=1,
    scatter_kws={'marker':'0','color':'indianred'},
    line_kws={'linewidth':5,'color':'blue'})

plt.title('Global temprature trends')
plt.xlabel('Year')
plt.ylabel('Average Temperature,Global')
plt.legend()
```

```
# order 1 : phil_avg_temp | Linear Fit
sns.regplot(
    x='year',
    y='phil_avg_temp',
    data=df_final_global_city_philadelphia_02,
    order=1,
    scatter_kws={'marker':'0','color':'indianred'},
    line_kws={'linewidth':5,'color':'blue'})
plt.title('City Philadelphia-USA, temprature trends')
plt.xlabel('Year')
plt.ylabel('Average Temperature,City Philadelphia-USA')
plt.legend()
```


Fig 1-17

B. Using Seaborn library to plot regression line for 7 Day Moving Average, Global and City Philadelphia-USA temperature trends.

4. MAKING OBSERVATIONS

```
# order 1 : global_avg_temp | Linear Fit
sns.regplot(
    x='year',
    y='global_avg_temp',
    data=df_final_global_city_philadelphia_02,
    order=1,
    scatter_kws={'marker':'0','color':'indianred'},
    line_kws={'linewidth':5,'color':'blue'})

plt.title('Global_temprature_trends')
plt.xlabel('Year')
plt.ylabel('Average_Temperature,Global')
plt.legend()
```

```
# order 1 : phil_avg_temp | Linear Fit
sns.regplot(
    x='year',
    y='phil_avg_temp',
    data=df_final_global_city_philadelphia_02,
    order=1,
    scatter_kws={'marker':'0','color':'indianred'},
    line_kws={'linewidth':5,'color':'blue'})
plt.title('City Philadelphia-USA, temprature trends')
plt.xlabel('Year')
plt.ylabel('Average Temperature,City Philadelphia-USA')
plt.legend()
```


Fig 1-17

A. Figure-1-17, regression line show positive slope implying trend in temperature rise from year 1750 to 2013.

4. MAKING OBSERVATIONS

Slope for Global Temperature trend

```
series_year = df_final_global_city_philadelphia_02['year']

series_global_avg_temp = df_final_global_city_philadelphia_02['global_avg_temp']

# finding slop of regression line for global temp
from scipy.stats import linregress
linregress(series_year, series_global_avg_temp)

LinregressResult(slope=0.0045946002421798238, intercept=-0.31381095465200204, rvalue=0.739924
84785095092, pvalue=8.3255541941042298e-46, stderr=0.00026158010202298254)
```

Finding slope for City Philadelphia

```
series_phil_avg_temp = df_final_global_city_philadelphia_02['phil_avg_temp']
linregress(series_year, series_phil_avg_temp)
LinregressResult(slope=0.0059865151472888178, intercept=0.5272342528329208, rvalue=0.74908731811250906, pvalue=1.6595795744261839e-47, stderr=0.00033154203782684375)
```

Fig 1-18

B. Slope value of city Philadelphia-USA temperature trends is higher than Global temperature trends, thus city Philadelphia-USA temperature are rising at higher rate in comparison to Global temperature trends.

4. MAKING OBSERVATIONS

Fig 1-19

- C. There is some correlation, 0.78, between Global temperature and city Philadelphia-USA temperature as shown above.
- D. Overall trend from last few centuries show temperature rise resulting Earth temperature gradually getting warmer.

ASSUMPTIONS

- Created Dataframe from city_list CSV and discarded all NaN rows.
- Chosen cities from different continents
 - 1. Accra Ghana, Africa
 - 2. Surat India, Asia
 - 3. Sydney-Australia
 - 4. Wuhan China, Asia
- Created new Dataframe of the specific city.
- Chosen matching years from city Accra-Ghana, Africa, for parity i.e. from year 1849 to 2013.
- Rename cities column name "avg_temp" to identify Colum correctly.
- Then created final Dataframe with columns "df_global_data_final", "df_city_data_ Surat_final", "df_city_data_Sydney_final", "df_city_data_Wuhan_final"
- Taken seven-day rolling average for smooth plot. Removed 6 rows NaN rows as result after applying seven-day rolling average

Please refer Jupyter notebook "DAND-rbpal-Project Explore Weather Trends -ExtrafavoriteCities.ipynb" for details.

```
plt.figure(figsize=(10,6))

plt.plot(df_final_mean_rolling_7days_mean.index,df_final_mean_rolling_7days_mean['global_avg_temp'],'r',color='red',lab
el='Global Temperature Trends',lw=4)

plt.plot(df_final_mean_rolling_7days_mean.index,df_final_mean_rolling_7days_mean['Accra_avg_temp'],'b',color='blue',lab
el='City:Accra-Ghane Temperature trend',lw=4)

plt.plot(df_final_mean_rolling_7days_mean.index,df_final_mean_rolling_7days_mean['Surat_avg_temp'],'b',color='green',la
bel='City:Surat-India Temperature trend',lw=4)

plt.plot(df_final_mean_rolling_7days_mean.index,df_final_mean_rolling_7days_mean['Sydney_avg_temp'],'b',color='silver',
label='City:Sydney_Australia Temperature trend',lw=4)

plt.plot(df_final_mean_rolling_7days_mean.index,df_final_mean_rolling_7days_mean['Wuhan_avg_temp'],'b',color='teal',lab
el='City:Wuhan_China_Temperature trend',lw=4)

plt.title('Global_Temperature trend',lw=4)
```


Fig 1-20

A. The above line plot show temperature trends for "global," "Accra - Ghana, Africa," Surat - India, Asia," "Sydney-Australia," and "Wuhan – China, Asia." over two centuries. There appears to be temperature rising trend.

Correlation

<matplotlib.axes. subplots.AxesSubplot at 0x294e6cb00b8>

Fig 1-21

- B. The value of correlation coefficient(r) is strong i.e. a positive linear relationship between
 - 1. "global_avg_data" and "Wuhan_avg_temp" is 0.94.
 - 2. "global_avg_data" and "Sydney_avg_temp" is 0.88
 - 3. "global_avg_data" and "Surat_avg_temp" is 0.90
 - 4. "global_avg_data" and "Accra_avg_temp" is 0.88

Ref: https://www.youtube.com/watch?v=4EXNedimDMs

<matplotlib.legend.Legend at 0x294e8aa0780>

Covariance plot average temprature: Global Vs City Accra-Ghana

Fig 1-22

C. There is a positive linear covariance between Global temperature and city Accra - Ghana, Africa temperature as shown above. This means that as Global temperature rises so does at city Accra - Ghana, Africa.

<matplotlib.legend.Legend at 0x294e8a84710>

Covariance plot average temprature: Global Vs City Surat-India

Fig 1-23

D. There is a positive linear covariance between Global temperature and city Surat - India, Asia temperature as shown above. This means that as Global temperature rises so does at Surat - India, Asia.

<matplotlib.legend.Legend at 0x294e8b0bf28>

Covariance plot average temprature: Global Vs City Sydney-Australia

Fig 1-24

E. There is a positive linear covariance between Global temperature and city Sydney-Australia, temperature as shown above. This means that as Global temperature rises so does at Sydney-Australia.

<matplotlib.legend.Legend at 0x294e8b50160>

Covariance plot average temprature: Global Vs City Wuhan-China

Fig 1-25

F. There is a positive linear covariance between Global temperature and city Wuhan – China, Asia, temperature as shown above. This means that as Global temperature rises so does at Wuhan – China, Asia.

Average Temperature : Global Vs cities

df_final_mean_rolling_7days_mean.describe()					
	global_avg_temp	Accra_avg_temp	Surat_avg_temp	Sydney_avg_temp	Wuhan_avg_temp
count	145.000000	145.000000	145.000000	145.000000	145.000000
mean	8.580680	26.279596	26.453734	17.048108	16.873911
std	0.410866	0.463643	0.387001	0.304628	0.418177
min	7.925714	25.081429	25.284286	16.562857	16.098571
25%	8.290000	25.857143	26.270000	16.841429	16.515714
50%	8.602857	26.418571	26.467143	16.954286	16.891429
75%	8.744286	26.550000	26.642857	17.192857	17.130000
max	9.588571	27.160000	27.284286	17.881429	17.865714

Fig 1-26

E. Above table show mean, standard deviation for "global," "Accra - Ghana, Africa, "Surat - India, Asia," "Sydney-Australia," and "Wuhan – China, Asia." over two centuries.

THANK YOUR VERY MUCH