Le Produit Scalaire dans un repère orthonormé et calculs d'angles dans des solides

1. Définition

Dans l'espace, le produit scalaire de deux vecteurs \vec{u} et \vec{v} est défini par :

$$ec{u} \cdot ec{v} = \|ec{u}\| \cdot \|ec{v}\| \cdot \cos(heta)$$

où θ est l'angle entre \vec{u} et \vec{v} , $\|\vec{u}\|$ et $\|\vec{v}\|$ sont les normes des vecteurs \vec{u} et \vec{v} .

2. Cas particuliers

• Vecteurs orthogonaux :

Si $heta=90^\circ$, alors $\cos(90^\circ)=0$, donc :

$$\vec{u}\cdot\vec{v}=0$$

• Vecteurs de même sens :

Si $heta=0^\circ$, alors $\cos(0^\circ)=1$, donc :

$$ec{u}\cdotec{v}=\|ec{u}\|\cdot\|ec{v}\|$$

• Vecteurs de sens opposés :

Si $heta=180^\circ$, alors $\cos(180^\circ)=-1$, donc :

$$ec{u}\cdotec{v}=-\|ec{u}\|\cdot\|ec{v}\|$$

3. Formule dans un repère orthonormé

Dans un repère orthonormé, si $\vec{u}=(x_1,y_1,z_1)$ et $\vec{v}=(x_2,y_2,z_2)$, alors :

$$ec{u}\cdotec{v}=\underbrace{x_1\cdot x_2}+\underbrace{y_1\cdot y_2}+\underbrace{z_1\cdot z_2}$$

Justification : Il suffit d'en revenir à l'interprétation de l'écriture en composantes des vecteurs \vec{u} et \vec{v} dans un repère orthonormé :

composantes des vecteurs
$$\vec{u}$$
 et \vec{v} dans un repère orthonormé :

$$\vec{k} = \begin{pmatrix} x_1 \\ y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} x_1 \\ y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} x_1 \\ y_3 \\ y_3 \end{pmatrix} + \begin{pmatrix} x_1 \\$$

4. Exemple d'application

Soit $ec{u}=(2,1,3)$ et $ec{v}=(4,-1,2)$. Calculons le produit scalaire :

$$ec{u} \cdot ec{v} = 2 \cdot 4 + 1 \cdot (-1) + 3 \cdot 2 = 8 - 1 + 6 = \boxed{13}$$

$$\|\vec{u}\| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{4 + 1 + 9} = \sqrt{14}$$

La norme de $ec{v}$ est :

$$\| ec{v} \| = \sqrt{4^2 + (-1)^2 + 2^2} = \sqrt{16 + 1 + 4} = \sqrt{21}$$

L'angle
$$\theta$$
 entre \vec{u} et \vec{v} est donné par : $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$. L'angle $\theta = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$

$$\cos(heta) = rac{ec{u} \cdot ec{v}}{\|ec{u}\| \cdot \|ec{v}\|} = rac{13}{\sqrt{14} \cdot \sqrt{21}}$$

6. Traduction des termes importants

Produit scalaire : Dot product

• Vecteur: Vector

Norme: Magnitude

• Angle : Angle

• Repère orthonormé: Orthogonal coordinate system

Composante : Component

Orthogonaux : Perpendicular

- De même sens : In the same direction
- De sens opposés : In opposite directions

5. Exercices

Calculer les angles demandés en se basant sur la figure ci-dessous et à l'aide de la formule du produit scalaire.

$$\vec{EF} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \vec{ES} \begin{pmatrix} 2 \\ 2,5 \\ 0 \end{pmatrix}$$

$$\vec{EF} \cdot \vec{ES} = 4 \quad ||\vec{EF}|| = \sqrt{2^2 + 0^2 + 0^2} = 2$$

$$||\vec{ES}|| = \sqrt{2^2 + \left(\frac{5}{2}\right)^2}$$

$$||\vec{ES}|| = \sqrt{2^2 + \left(\frac{5}{2}\right)^2}$$

$$||ES|| = ||V_4 + ||2S|| = ||16 + ||2S||$$

$$= |V_4|$$

$$=$$