PMATH 370 Winter 2024:

Lecture Notes

1 Iteration and Orbits						2
1.1 Orbits						2
1.2 Real Analysis Review						4
Back Matter						7
List of Named Results						7
Index of Defined Terms						8
Lecture notes taken, unless otherwise specified, PMATH 370, taught by Blake Madill.	, by myself	during the	Winter	2024	offering	of
Lectures	Lecture 2	Jan 10 .				4
Lecture 1 Jan 8						

Chapter 1

Iteration and Orbits

1.1 Orbits

Definition 1.1.1 (iteration)

Let $f: A \to \mathbb{R}$ such that $A \subseteq \mathbb{R}$ and $f(A) \subseteq A$. For $a \in A$ we may <u>iterate</u> the function at a:

Lecture 1

Jan 8

$$x_1 = a, x_2 = f(a), x_3 = \underbrace{f(f(a))}_{f^2(a)}, \dots, x_i = f^{i-1}(a), \dots \ .$$

The sequence $(x_n)_{n=1}^{\infty}$ is the <u>orbit of a under f</u> (abbreviated (x_n) without limits).

Example 1.1.2. Let $f(x) = x^4 + 2x^2 - 2$, a = -1. What is the orbit of a under f?

Solution. $a=-1, \ f(a)=1, \ f(f(a))=f(1)=1,$ so we have $-1,1,1,1,\ldots$ We call this eventually constant.

Example 1.1.3. Let $f(x) = -x^2 - x + 1$, a = 0. What is the orbit of a under f?

Solution. Calculate: $0, 1, -1, 1, -1, 1, \dots$ We call this eventually periodic (with period 2).

Example 1.1.4. Let $f(x) = x^3 - 3x + 1$, a = 1. What is the orbit of a under f?

Solution. Calculate the first few terms: $1, -1, 3, 19, \dots$ (too big). This is a divergence to infinity. \square

Example 1.1.5. Let $f(x) = x^2 + 2x$, a = -0.5. What is the orbit of a under f?

Solution. Calculate: -0.5, -0.75, -0.9375, -0.9961... and we make an educated guess that this converges to -1 since f(-1) = -1, a fixed point.

Example 1.1.6. Let $f(x) = x^3 - 3x$, a = 0.75. What is the orbit of a under f?

Solution. Calculate: $0.75, -1.828, -0.625, 1.631, -0.552, \dots$ There is no clear pattern, so we call this chaotic. In fact, the orbit is dense in a neighbourhood of 0.

We can start to formalize the examples.

Definition 1.1.7 (fixed point)

Let $f: A \to \mathbb{R}$ such that $f(A) \subseteq A$. A point $a \in A$ is fixed if f(a) = a.

Then, the orbit of a under f is (a, a, a, ...) which is constant.

Example 1.1.8. Find all fixed points of $f(x) = x^2 + x - 4$.

Solution. We find points where f(x) = x, i.e., $x^2 + x - 4 = x$.

$$x^2 + x - 4 = x \iff x^2 = 4 \iff x = \pm 2$$

Example 1.1.9. How many fixed points does $f(x) = 2 \sin x$ have?

Solution. Consider where the curve $y = 2 \sin x$ meets y = x:

We can see there are three fixed points.

Example 1.1.10. Prove that $f(x) = x^4 - 3x + 1$ has a fixed point.

Proof. We must show there is a solution to $x^4 - 3x + 1 \iff x^4 - 4x + 1 = 0$. Let $g(x) = x^4 - 4x + 1$. Since g(x) is continuous, g(0) = 1 > 0, and g(1) = -2 < 0, by the Intermediate Value Theorem, there must exist a root of g on the interval (0,1). That is, a fixed point of f.

Definition 1.1.11 (periodicity)

Let $f: A \to \mathbb{R}, f(A) \subseteq A$.

- 1. A point $a \in A$ is <u>periodic</u> for f if its orbit is <u>periodic</u>. An orbit is <u>periodic</u> if for some $n \in \mathbb{N}$, $f^n(a) = a$. The smallest n is the <u>period</u> of (the orbit of) a.
- 2. An orbit (of a point) is <u>eventually periodic</u> if there exists n < m such that $f^n(a) = f^m(a)$. The smallest difference m n is the period of the orbit.

Definition 1.1.12 (doubling function)

 $D:[0,1)\to[0,1):x\mapsto 2x-|2x|$ returns the fractional part of 2x.

Lecture 2 Jan 10

Example 1.1.13. D(0.4) = 0.8, D(0.6) = 0.2, D(0.8) = 0.6, D(0.5) = 0.

This is a nice function that gives lots of periodic orbits for funsies.

Example 1.1.14. Find the orbit of $a = \frac{1}{5}$ under D.

Solution. Double until we pass 1: $\frac{1}{5}, \frac{2}{5}, \frac{4}{5}, \frac{8}{5} \to \frac{3}{5}, \frac{6}{5} \to \frac{1}{5}$. The period is $\left| \left\{ \frac{1}{5}, \frac{2}{5}, \frac{4}{5}, \frac{3}{5} \right\} \right| = 4$.

Example 1.1.15. Find the orbit of $a = \frac{1}{20}$ under D.

Solution. Double: $\frac{1}{20}$, $\frac{1}{10}$, $\frac{1}{5}$ and we can stop because Example 1.1.14 showed $\frac{1}{5}$ is periodic.

So this is eventually periodic with period 4.

Problem 1.1.16

Given f and a, does $f^n(a)$ tend towards some limit L?

To solve this problem, we need to rigorously define "tend" and "limit".

1.2 Real Analysis Review

Notation. If $(x_n)_{n=1}^{\infty}$ is a sequence of real numbers, we write $(x_n) \subseteq \mathbb{R}$.

Definition 1.2.1 (convergence of a sequence)

Let $(x_n) \subseteq \mathbb{R}, x \in \mathbb{R}$.

We say (x_n) converges to x if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $|x_n - x| < \varepsilon$ for all n > N.

Then, we write $x_n \to x$ or $\lim x_n = x$.

Example 1.2.2. Show that $\frac{1}{n} \to 0$.

Proof. Let $\varepsilon > 0$. Consider $N = \frac{2}{\varepsilon} > \frac{1}{\varepsilon}$. For $n \ge N$, we have

$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \varepsilon$$

Therefore, $\frac{1}{n} \to 0$.

Example 1.2.3. Prove that $\frac{2n}{n+3} \to 2$.

Proof. Let $\varepsilon > 0$. Since we know $\frac{1}{n} \to 0$, let $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{6}$.

For $n \geq N$,

$$\left| \frac{2n}{n+3} - 2 \right| = \left| \frac{2n}{n+3} - \frac{2n+6}{n+3} \right| = \left| \frac{-6}{n+3} \right| = \frac{6}{n+3} < \frac{6}{n} \le \frac{6}{N} < 6 \cdot \frac{\varepsilon}{6} = \varepsilon$$

Therefore, $\frac{2n}{n+3} \to 2$.

Definition 1.2.4 (bounded sequence)

A sequence (x_n) is <u>bounded</u> (by M) if there exists M > 0 such that $\forall n \in \mathbb{N}, |x_n| \leq M$.

Proposition 1.2.5 (convergence implies boundedness)

If (x_n) is convergent, then (x_n) is bounded.

Proof. Suppose $x_n \to x$. Then, there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $|x_n - x| < 1$.

For $n \ge N$, $|x_n| - |x| \le |x_n - x| < 1$. That is, $|x_n| < 1 + |x|$.

Let $M = \max\{|x_1|, \dots, |x_{n-1}|, 1+|x|\}$. Then, for both all n < N and $n \ge N$, we have $|x_n| \le M$. \square

The converse is not true. Notice that $x_n = (-1)^n$ is bounded by 1 but obviously not convergent.

Proposition 1.2.6 (limit laws)

Let $x_n \to x$ and $y_n \to y$. Then:

- $(1) \ x_n + y_n \to x + y$
- (2) $x_n y_n \to xy$

Proof. (1) Let $\varepsilon > 0$. Then, since $x_n \to x$ and $y_n \to y$, there exist $N_1, N_2 \in \mathbb{N}$ such that $n \geq N_1 \implies |x_n - x| < \frac{\varepsilon}{2}$ and $n \geq N_2 \implies |y_n - y| < \frac{\varepsilon}{2}$.

For $N = \max\{N_1, N_2\}$ and $n \ge N$,

$$\begin{split} |(x_n+y_n)-(x+y)| &= |(x_n-x)+(y_n-y)| \\ &\leq |x_n-x|+|y_n-y| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{split}$$

That is, $x_n + y_n \to x + y$.

(2) Let $\varepsilon > 0$. Notice that:

$$|x_n y_n - xy| = |x_n y_n - x_n y + x_n y - xy| \le |x_n| \cdot |y_n - y| + |y| \cdot |x_n - x| \tag{*}$$

Since x_n is bounded, there exists M > 0 such that $|x_n| \leq M$ for all n.

Let $N_1, N_2 \in \mathbb{N}$ such that

$$\begin{split} n \geq N_1 \implies |x_n - x| & \leq \frac{\varepsilon}{2(|y| + 1)} \text{ and} \\ n \geq N_2 \implies |y_n - y| & < \frac{\varepsilon}{2M}. \end{split}$$

Then, for $n \ge N := \max\{N_1, N_2\}, |x_n y_n - xy| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ by (*).

List of Named Results

1.2.5 Proposition	(convergence	implies	boundedn	ess)	 	 	 			5
1.2.6 Proposition	(limit laws)				 	 	 			6

Index of Defined Terms

doubling function, 4	constant, 3	point
fixed point, 3	eventually periodic, 4 periodic, 4	periodic, 4
iteration, 2		sequence
recraetori, 2	period, 4	bounded, 5
orbit, 2	periodicity, 4	convergence, 5