Movie Recommendation System Using the MovieLens Dataset

About The Project

This project develops and evaluates a movie recommendation system using the MovieLens dataset (ml-latest-small) from GroupLens, containing 100,836 ratings from 610 users across 9,742 movies. The goal is to identify the most effective algorithm for predicting user ratings and generating high-quality recommendations, evaluated primarily through Recall@20 and NDCG@20, with secondary metrics including accuracy (±0.5 or ±0.25 tolerance), precision@20, and F1-score@20. Five algorithms were implemented: Matrix Factorization (MF), Tuned Matrix Factorization, Funk Singular Value Decomposition (SVD) with Robust Principal Component Analysis (RPCA), Neural Collaborative Filtering (NCF), and NCF with Contrastive Learning. Key challenges addressed include:

- Data Sparsity: The rating matrix is ~1.7% filled, mitigated by filtering users (≥20 ratings) and movies (≥5 ratings).
- 2. Cold-Start Problem: Handled by focusing on users and movies with sufficient ratings.
- 3. **Overfitting**: Addressed with regularization (L2 in NCF, weight decay in MF) and early stopping.
- 4. **Model Complexity**: Balanced simple (MF, Funk SVD) and complex (NCF) models to optimize performance and interpretability.
- 5. **Generalization**: Ensured through user-based data splitting (70% train, 15% CV, 15% test) and hyperparameter tuning.

Models were trained and evaluated on a filtered dataset (~90,274 ratings) with the following strategies:

- Challenges 1 & 2 (Sparsity & Cold-Start): Applied filtering to reduce sparsity and improve data quality.
- **Challenge 3 (Overfitting)**: Used regularization, early stopping, and contrastive learning in NCF to enhance generalization.
- Challenge 4 (Model Complexity): Compared linear (MF, SVD) and non-linear (NCF) approaches for optimal performance.

To further optimize the Neural Collaborative Filtering (NCF) and NCF with Contrastive Learning models, several experiments were conducted to evaluate performance improvements:

• NCF Experiments:

- 1. **Patience Parameter**: Doubling the patience parameter increased training epochs from 8 to 20, improving Recall@20 from 0.2906 to 0.3168 and NDCG@20 from 0.1941 to 0.2155, indicating better model convergence.
- 2. **Dropout Parameter**: Increasing the dropout rate from 0.2 to 0.9 further improved Recall@20 from 0.3168 to 0.3631 and NDCG@20 from 0.2155 to 0.2297, enhancing generalization by reducing overfitting.
- Activation Function in NeuMF Layer: Changing the activation function from none to sigmoid resulted in Recall@20 of 0.2944 and NDCG@20 of 0.1962, which was better than the initial baseline but lower than the dropout experiment.

4. Number of MLP Layers:

- Increasing from 3 to 5 layers slightly improved performance, with Recall@20 increasing from 0.3631 to 0.3640 and NDCG@20 from 0.2297 to 0.2298.
- Decreasing to 2 layers yielded the best NCF performance, with Recall@20 of 0.3651 and NDCG@20 of 0.2366, suggesting a simpler architecture improved generalization.
- Defining Numerical Variables: Defining numerical variables (e.g., hyperparameters) at the beginning of the code improved reproducibility and ease of tuning.
- NCF with Contrastive Learning Experiments: Applying the above parameter changes
 (patience, dropout, activation, MLP layers) improved performance from a baseline of
 Recall@20=0.3494 and NDCG@20=0.2330 to Recall@20=0.3748 and NDCG@20=0.2447,
 demonstrating the effectiveness of these optimizations in enhancing ranking quality and
 recommendation relevance.

Next Steps

To further improve the recommendation system:

- 1. Incorporate content-based features (e.g., movie genres) to enhance hybrid recommendations.
- 2. Explore advanced contrastive learning techniques (e.g., SimCLR) for better embedding alignment.
- 3. Optimize hyperparameters using grid search or Bayesian optimization to boost Recall@20 and NDCG@20.
- 4. Implement attention mechanisms in NCF to capture complex user-item interactions.
- 5. Test ensemble methods combining MF, SVD, and NCF for improved recommendation quality.
- 6. Validate on larger datasets (e.g., MovieLens 1M) for better generalizability.

Models Performance Comparison

Model	Split	Accuracy	Precision@20	Recall@20	F1-Score@20	NDCG@20
Matrix Factorization	Train	0.7987 (±0.5)	0.4011	0.7822	0.4711	0.7678
	CV	0.4008 (±0.5)	0.0666	0.3688	0.2320	0.2238
	Test	0.4088 (±0.5)	0.0716	0.3712	0.2400	0.2311
Tuned- Matrix Factorization	Train	0.8000 (±0.5)	0.3960	0.7689	0.4671	0.7575
	CV	0.4004 (±0.5)	0.0677	0.3586	0.2343	0.2217
	Test	0.4103 (±0.5)	0.0719	0.3739	0.2377	0.2372

FunkSVD+RP CA	Train	0.8825 (±0.25)	0.4348	0.7872	0.5432	0.7834
	CV	0.2277 (±0.25)	0.0582	0.2744	0.2633	0.1695
	Test	0.2251 (±0.25)	0.0621	0.2854	0.2667	0.1804
NCF	Train	0.2725 (±0.25)	0.2659	0.5193	0.3567	0.5681
	CV	0.2533 (±0.25)	0.0725	0.3460	0.2613	0.2272
	Test	0.2476 (±0.25)	0.0757	0.3658	0.2658	0.2390
NCF+Contras tive Learning	Train	0.1668 (±0.25)	0.2778	0.5623	0.3445	0.6258
	CV	0.1101 (±0.25)	0.0706	0.3977	0.2255	0.2474
	Test	0.1109 (±0.25)	0.0730	0.3947	0.2342	0.2478

Comparison with Papers

- Xiangnan et al.(2017), Neural Collaborative Filtering: On MovieLens 1M (1M ratings), their NeuMF model achieved HR@10≈0.71 and NDCG@10≈0.426–0.450. My NCF model reached Recall@20=0.3658 and NDCG@20=0.2390, and NCF with Contrastive Learning hit (Recall@20=0.3947 and NDCG@20=0.2478) on MovieLens mllatest-small (90K ratings). The gap is due to the smaller dataset and simpler architectures, but contrastive learning improved ranking quality.
- Koren et al. (2009), Matrix Factorization Techniques for Recommender Systems, IEEE
 Computer 2009: Their SVD++ model on Netflix (~100M ratings) achieved RMSE≈0.86,
 with strong ranking performance. My Funk SVD + RPCA yielded Recall@20=0.2854 and
 NDCG@20=0.1804, likely with higher RMSE, due to overfitting on the smaller MovieLens

ml-latest-small dataset. Matrix Factorization (Recall@20=0.3712, NDCG@20=0.2311) and Tuned MF (Recall@20=0.3739, NDCG@20=0.2372) performed better, showing effective tuning despite dataset limitations.

Conclusion

The key evaluation metrics for this project are Recall@20, which measures the ability to recommend relevant items, and NDCG@20, which assesses ranking quality. NCF with Contrastive Learning outperformed all models in both Recall@20 (0.3947) and NDCG@20 (0.2478) on the test set, demonstrating superior ability to recommend relevant movies and rank them effectively. Tuned Matrix Factorization followed closely (Recall@20=0.3739, NDCG@20=0.2372), slightly improving over standard Matrix Factorization (Recall@20=0.3712, NDCG@20=0.2311). Funk SVD + RPCA, despite strong training performance (Recall@20=0.7872, NDCG@20=0.7834), showed the weakest generalization (Recall@20=0.2854, NDCG@20=0.1804). Compared to literature, my models lag behind advanced methods like SVD++ or NCF on larger datasets due to the limited size of ml-latest-small, but NCF with Contrastive Learning is competitive in ranking quality. Filtering, regularization, and contrastive learning significantly enhanced performance. Future work includes integrating content-based features, advanced ensembles, and testing on larger datasets to further improve Recall@20 and NDCG@20.