Sample Set 1 MID-SEMESTER TEST

MULTIPLE CHOICE QUESTIONS

1. What is the signal processing unit, A in Figure A1.

Figure A1

- (a) Low pass filter
- (b) Modulator
- (c) Rectifier
- (d) Fourier Transform
- 2. What is the purpose of sampling?
 - (a) Convert a continuous-time analog signal to a discrete time signal
 - (b) Convert a discrete time signal to a continuous-time analog signal
 - (c) Convert a continuous-time analog signal to a higher frequency continuous analog signal
 - (d) Convert a discrete time signal to a continuous-time digital signal
- 3. The first two samples of a discrete time signal $x(n) = \cos(0.5\pi n)u(n) + 2\sin(0.5\pi n) \delta(n-1)$ are :
 - (a) {0}
 - (b) {2.0000, 0.7071}
 - (c) $\{1, 2\}$
 - (d) $\{2, 1\}$
- 4. If aliasing occurs, what is the most likely result?
 - (a) Signal distortion
 - (b) Signal amplitude amplification
 - (c) Signal amplitude reduction
 - (d) No changes to the signal

- 5. A square wave having period T=1 ms, is filtered by an ideal low pass filter having cutoff frequency $f_c=4$ kHz. What are the frequency components at the output of the low pass filter?
 - (a) 1 kHz and 10 kHz.
 - (b) 1 kHz and 4 kHz.
 - (c) 1 kHz and 3 kHz.
 - (d) 0.1 kHz
- 6. A signal consisting of 2 kHz, 3 kHz and 6 kHz frequency components is sampled at 10 kHz. After sampling, what frequency components are there between 0 and 5 kHz?
 - (a) 2 kHz, 5 kHz, 7 kHz
 - (b) 2 kHz, 3 kHz, 4 kHz
 - (c) 2 kHz, 3 kHz, 5 kHz, 6 kHz
 - (d) 2 kHz, 5 kHz, 8 kHz
- 7. Spectrum of a continuous signal, x(t), shown in Figure A7. What is the proper sampling frequency for this signal?

- (a) $f_s = -4 \text{ kHz}$
- (b) $f_s = 4 \text{ kHz}$
- (c) $f_s = -2 \text{ kHz}$
- (d) $f_s = +20 \text{ kHz}$
- 8. A system is described by the following equation: $y(n) = \delta(n-1) x(n-3)$. What is the output if $x(n) = \delta(n)$?
 - (a) $\{0, 0, 1, 1\}$
 - (b) $\{0, 1, 0, -1\}$
 - (c) $\{1, 0, 0, -1\}$
 - (d) $\{1, 1, -1, -1\}$

9.	A 6 kHz wave is sampled at 18 kHz. How many samples are there in one cycle?
	(a) 2
	(b) 3
	(c) 4
	(d) 5
10.	The output of the reconstruction filter is a
	(a) continuous-time and continuous-amplitude signal.
	(b) continuous-time and discrete-amplitude signal.
	(c) discrete-time and continuous-amplitude signal.(d) discrete-time and discrete-amplitude signal.
	(d) discrete-time and discrete-ampittude signar.

SECTION B

B1 A typical DSP system is shown below.

- (a) What are functions of Quantizer and Reconstruction filter?
- (b) Given the sampling frequency is 10kHz, signal x(n) is composed of three sine wave:

$$x(n) = \cos(0.1\pi n) + 2\sin(0.25\pi n) + \sin(0.3\pi n)$$

- (i) Find the magnitude of the first two samples, x(0) and x(1).
- (ii) Derive the equation for the continuous time signal x(t).
- (iii) If the signal x(n) is applied to a high pass filter of 1.3 kHz, what will be frequency at the output of the high pass filter.

B2 A digital signal system is described by the difference equation

$$y(n) = 0.9 y(n-2) + x(n-1)$$

Assume that y(n) = 0 when n < 0,

- (a) Compute the system impulse response, h(n) for a given input signal $x(n) = \delta(n)$ for n = 0,1,2,3.
- (b) Sketch the equivalent digital network for this system.
- (c) Is this system stable based on the system impulse response?
- **B3** Answer the following short questions. Please note that the questions are not related to each other.
 - (a) Given a sequence,

$$x(n) = \{1,2,3,4,5,6,7\}$$

Find
$$x_1(n) = 2x(n-2)+x(n)$$
 and $x_2(n) = x(3n)+x(n-2)$

- (b) Given the signal, $y(n) = 2^{0.1n} \sin(0.1\pi n)$, plot the first 4 signal samples and indicate their amplitude values.
- **B4** Given a special device that transmits a signal, $x_1(n) = \delta(n) + 2\delta(n-2) + 3\delta(n-3)$ and and $x_2(n) = u(n) u(n-2)$.
 - (a) Determine the convolution of $x_1(n) * x_2(n)$.
 - (b) Find the cross-correlation of $y(n) = x_1(n) \otimes x_2(n)$ where ' \otimes ' denotes **cross correlation**?
 - (c) Evaluate the autocorrelation of $x_1(n)$.

END OF PAPER

Appendix

The z-transform is defined as $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$

Sequence	Transform
δ[n]	1
u[n]	$\frac{1}{1-z^{-1}}$
δ[n - m]	Z ^{-m}
a ⁿ u[n]	$\frac{1}{1-az^{-1}}$
na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$
$[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos\omega_0]z^{-1}}{1 - [2\cos\omega_0]z^{-1} + z^{-2}}$
$[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$
$[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r \cos \omega_0] z^{-1}}{1 - [2r \cos \omega_0] z^{-1} + r^2 z^{-2}}$
$[r^n \sin \omega_0 n]u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$

n==∞			
Some	z-transform		
properties:			
Sequence	Transf		
	orm		
x[n]	X(z)		
$x_1[n]$	$X_1(z)$		
$x_2[n]$	$X_2(z)$		
$ax_1[n] +$	$aX_1(z)$		
$bx_2[n]$	+		
	$bX_2(z)$		
x[n - m]	$z^{-m}X(z)$		