STAT 521: Homework 5

Problem 1:

Consider a finite population of size N with measurement (\mathbf{x}, y) .

We are interested in estimating $Y = \sum_{i=1}^{N} y_i$ using a linear estimator of the form $\hat{Y}_{\omega} = \sum_{i \in A} \omega_i y_i$. We wish to impose the following calibration constraints to the final weights:

$$\sum_{i \in A} \omega_i \mathbf{h}(\mathbf{x}_i) = \sum_{i=1}^{N} \mathbf{h}(\mathbf{x}_i)$$
 (1)

where $\mathbf{h}(\mathbf{x}) = [h_1(\mathbf{x}), \dots, h_L(\mathbf{x})]$ is a known function of \mathbf{x} .

To uniquely determine ω_i , we consider minimizing

$$Q(\boldsymbol{\omega}) = \sum_{i \in A} \left(\omega_i - \pi_i^{-1}\right)^2 q_i$$

subject to (1) where $q_i = q(\mathbf{x}_i)$ is a known function of \mathbf{x}_i and π_i is the first-order inclusion probability of unit i. Let $\hat{Y}_{\mathrm{cal}} = \sum_{i \in A} \hat{\omega}_i y_i$ be the calibration estimator of Y using $\hat{\omega}_i$ obtained from the above calibration problem. Answer the following questions.

- 1. Find the closed-form expression for $\hat{\omega}_i$.
- 2. Under the assumption of $\mathbf{h}'_i \mathbf{a} = q_i/\pi_i$ holds for some \mathbf{a} , show that

$$\sum_{i \in A} \frac{1}{\pi_i} \left(y_i - \mathbf{h}_i' \hat{\boldsymbol{\beta}}_h \right) = 0 \tag{2}$$

and

$$\sum_{i=1}^{N} \left(y_i - \mathbf{h}_i' B_h \right) = 0 \tag{3}$$

where $\mathbf{h}_i = \mathbf{h}(\mathbf{x}_i)$ and

$$\hat{\beta}_h = \left\{ \sum_{i \in A} \mathbf{h}(\mathbf{x}_i) \mathbf{h}(\mathbf{x}_i)' / q_i \right\}^{-1} \sum_{i \in A} \mathbf{h}(\mathbf{x}_i) y_i / q_i$$

and

$$B_h = \left\{ \sum_{i=1}^N \pi_i \mathbf{h}(\mathbf{x}_i) \mathbf{h}(\mathbf{x}_i)' / q_i \right\}^{-1} \sum_{i=1}^N \pi_i \mathbf{h}(\mathbf{x}_i) y_i / q_i.$$

3. Show this: If (1) holds, then $\hat{Y}_{cal} = \sum_{i \in A} \hat{\omega}_i y_i$ is equivalent to the projection estimator of the form

$$\hat{Y}_{\text{proj}} = \sum_{i=1}^{N} \mathbf{h}_{i}' \hat{\boldsymbol{\beta}}_{h}.$$

4. Show this: If (2) holds, then we have

$$\hat{Y}_{\text{cal}} = Y + \sum_{i \in A} \frac{1}{\pi_i} \eta_i + \left(\sum_{i=1}^N \mathbf{h}_i - \sum_{i \in A} \frac{1}{\pi_i} \mathbf{h}_i \right)' \left(\hat{\boldsymbol{\beta}} - B_h \right)$$

where

$$\eta_i = y_i - \mathbf{h}_i' B_h \tag{4}$$

and

$$B_h = \left\{ \sum_{i=1}^N \pi_i \mathbf{h}(\mathbf{x}_i) \mathbf{h}(\mathbf{x}_i)' / q_i \right\}^{-1} \sum_{i=1}^N \pi_i \mathbf{h}(\mathbf{x}_i) y_i / q_i.$$

- 5. Now, suppose that we have a superpopulation model with $Y_i \mid \mathbf{x}_i \sim (m(\mathbf{x}_i), q(\mathbf{x}_i)\sigma^2)$. Show that $E(\eta_i \mid \mathbf{X}) = 0$ if \mathbf{h}_i includes $m(\mathbf{x}_i)$ in the sense that $\mathbf{h}_i' \boldsymbol{\alpha} = m(\mathbf{x}_i)$ for some $\boldsymbol{\alpha}$. [Hint: Show that $E_{\zeta}(B_h) = \boldsymbol{\alpha}$.]
- 6. If the model is

$$y_i = m(x_i) + e_i$$

with $e_i \sim (0, q(\mathbf{x}_i)\sigma^2)$ and $\mathbf{h}_i' \boldsymbol{\alpha} = m(\mathbf{x}_i)$ for some $\boldsymbol{\alpha}$, then

$$AV\left(\sum_{i \in A} \frac{1}{\pi_i} \eta_i\right) \cong \sum_{i=1}^N \left(\frac{1}{\pi_i} - 1\right) q(\mathbf{x}_i) \sigma^2$$

where $AV\left(\sum_{i\in A}\pi_i^{-1}\eta_i\right)$ is the anticipated variance (=model expectation of the design variance) of $\sum_{i\in A}\pi_i^{-1}\eta_i$ where η_i is defined in (4). [Hint: Use

$$AV\left(\sum_{i \in A} \frac{1}{\pi_i} \eta_i\right) = E_{\zeta} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} (\pi_{ij} - \pi_i \pi_j) \frac{\eta_i}{\pi_i} \frac{\eta_j}{\pi_j}\right)$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} (\pi_{ij} - \pi_i \pi_j) \frac{E_{\zeta}(\eta_i)}{\pi_i} \frac{E_{\zeta}(\eta_j)}{\pi_j}$$

$$+ \sum_{i=1}^{N} \sum_{j=1}^{N} (\pi_{ij} - \pi_i \pi_j) \frac{1}{\pi_i} \frac{1}{\pi_j} Cov_{\zeta}(\eta_i, \eta_j)$$

and check that the first term is equal to zero.

Problem 2:

Consider a finite population of size N with measurement (x, y), where x > 0. We consider the following two-phase sampling.

- 1. Phase 1: select a sample A_1 of size n_1 by SRS and observe x_i for $i \in A_1$.
- 2. Phase 2: From A_1 , select a Poisson sample A_2 of expected sample size $n_2(< n_1)$ with the first-order inclusion probability $\pi_i = \pi(x_i) \in (0,1)$.

We use the following two-phase ratio estimator of $\theta = N^{-1} \sum_{i=1}^{N} y_i$:

$$\hat{\theta}_{tpr} = \frac{1}{n_1} \sum_{i \in A_1} x_i \hat{\gamma}_2$$

where

$$\hat{\gamma}_2 = \frac{\sum_{i \in A_2} \pi_i^{-1} y_i}{\sum_{i \in A_2} \pi_i^{-1} x_i}.$$

- 1. Show that $\hat{\theta}_{tpr}$ is asymptotically design unbiased.
- 2. Derive the formula for linearization variance estimator of $\hat{\theta}_{tpr}$.
- 3. Find the formula for optimal inclusion probability $\pi(x)$ for the second-phase sampling (in the sense that it minimizes the asymptotic variance).