Tärnülesanne nr. 104

Joosep Näks

Olgu funktsioon f pidevalt diferentseeruv vahemikus (a, b). Kas iga $c \in (a, b)$ korral leiduvad $x_1, x_2 \in (a, b)$ nii, et $x_1 < c < x_2$ ja $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$?

Lahendus:

Vaatlen funktsiooni $f(x) = x^3$. Tuletise definitsiooni järgi on selle funktsiooni tuletis:

$$f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to a} \frac{(x - a)(x^2 + xa + a^2)}{x - a} = \lim_{x \to a} x^2 + xa + a^2 = 3x^2$$

See on pidev reaalarvude hulgas seega on f diferentseeruv reaalarvude hulgas. Võtan c=0, sel juhul $f'(c)=3*0^2=0$. Selleks et leida x_1 ja x_2 , mille puhul kehtiks $\frac{f(x_2)-f(x_1)}{x_2-x_1}=f'(c)=0$, peab kehtima $f(x_1)-f(x_2)=0$ ehk $f(x_1)=f(x_2)$. Kuid kui $x_1< c=0$, siis ka $x_1^3<0$ ehk $f(x_1)<0$ ning kui $x_2>c=0$ siis ka $x_2^3>0$ ehk $f(x_2)>0$. Seega ei saa $f(x_1)=f(x_2)$ kunagi kehtida.

Kokkuvõttes ei, iga c korral ei saa vastavaid x_1 ja x_2 väärtuseid leida.