TABLE I-continued

	A	В_	С	D	E	F	G	H	
Metal Phenate	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
neutral CaSulfonate		0.28	_	_	0.28		0.8	0.28	
nonylphenylsulfide			0.32	_	0.32	0.32	_	0.32	
friction modifier(etheramine)	_			0.10	_	0.10	0.10	0.10	
Corrosion Bench Test	(as described in ASTMD4485)								
Си, ррш	0	5	7	5	7	9	4	8	
Pb, ppm (corr)	0	3.3	14.1	5.0	14.1	25.7	7.7	24.8	

The above table illustrates the benefits of the instant invention in affording superior corrosion inhibition.

EXAMPLE 2

The corrosion bench test (as above) was conducted to determine if conventional antioxidants, such as thiadiazoles, would yield satisfactory results. The results are shown in the following table.

TABLE II

_						
COMPONENT	A	B	С	D	E	_
Dispersant Metal Phenate	3.9 0.3	3.9	3.9 0.3	3.9 0.3	3.9 0.3	- 2'
Thiadiazole	-	0.3 0.06	0.12	0.06	0.06	
Neut CaSulfonate Nonylphenolsulfide	_	_		0.28	— 0.32	
CORROSION BENCH TEST						- 30
Cu ppm Pb, ppm (corr.)	D 0	5 1.7	5 1.7	5 3.1	36 35.3	
						- - ~

The above results show that when conventional antioxidants, such as thiadiazoles, are used in the instant lubricating oils, corrosion control is not afforded.

What is claimed is:

- 1. A lubricating oil for use in heavy duty diesel engines 40 comprising an admixture
 - (A) a major amount of an oil of lubricating viscosity
 - (B) at least 4 mass % dispersant,
 - (C) at least 0.3 mass % of a metal phenate,
 - (D) less than 0.1 mass % friction modifier,
 - (E) less than 0.3 mass % of ashless sulfurized phenols,

45

- (F) less than 0.12% neutral calcium sulfonate.
- 2. The lubricating oil of claim 1 wherein the oil has a sulfated ash content of about 0.35 to about 2 mass %.
- 3. The lubricant of claim 1 further characterized by having 50 no more than 0.2 mass % active ingredient of aromatic amines having at least two aromatic groups attached directly to the nitrogen.
- 4. The lubricant of claim 1 further comprising a boron containing additive in an amount that provides at least 100 ppm (mass) boron.

- 5. The lubricant of claim 4 wherein said dispersant is a introgen-containing dispersant and the lubricant has a boron-to-nitrogen mass ratio of at least 0.1.
 - The lubricant of any of claims 1-5 wherein the lubricant further comprises Overbased metal sulfonate.
 - 7. The lubricating oil of claim 6 wherein the metal sulfonate is magnesium sulfonate.
 - 8. A concentrate comprising an admixture of:
 - (A) at least 32 mass % dispersant,
 - (B) at least 2.4 mass % of a metal phenate,
 - (C) less than 1.6 mass % friction modifier
 - (D) less than 1.96 mass % of ashless sulfurized phenols,
 - (E) less than 0.94 mass % calcium sulfonate.
 - 9. A heavy duty diesel lubricating oil comprising a major amount of an oil of lubricating viscosity and
 - (A) at least 4 mass % dispersant,
 - (B) at least 0.3 mass % of a metal phenate,
 - (C) less than 0.1 mass % friction modifier,
 - (D) less than 0.3 mass % of ashless sulfurized phenois,
 - (E) less than 0.12% neutral calcium sulfonate.
 - 10. A concentrate comprising:
 - (A) at least 32 mass % dispersant,
 - (B) at least 2.4 mass % of a metal phenate,
 - (C) less than 1.6 mass % friction modifier
 - (D) less than 1.96 mass % of ashless sulfurized phenols,
 - (E) less than 0.94 mass % calcium sulfonate.
 - 11. The lubricating oils of claims 1, 8, 9, or 10 further comprising (G) a metal dithiophosphate.
 - 12. The lubricating oil of claim 11 wherein at least 50 mole % of the hydrocarbyl groups on the metal dithiophosphate are secondary.
 - 13. The lubricating oils of claims 1,8,9 or 10 comprising less than 0.3 mass % sulfurized ester.
 - 14. A method for controlling corrosion in diesel engines comprising using the oil of claim 1.

. * * * :