Infinite geometric sum

Date_____Period___

Evaluate the related series of each sequence.

- 1) 3, -12, 48, -192, 768
 - A) 635
- B) 598
- C) 615 D) $\frac{3}{5}$

- 2) 2, 10, 50, 250
 - A) 295
- B) 312
- C) 346 D) $-\frac{1}{2}$

Evaluate each geometric series described.

3)
$$\sum_{m=1}^{9} 0.5 \cdot (-2)^{m-1}$$

- A) 116.4
- B) 85.5
- C) 97.6
- D) 0.16666666667

4)
$$\sum_{m=1}^{9} 20 \cdot \left(-\frac{1}{2}\right)^{m-1}$$

- A) $\frac{855}{64}$ B) $\frac{171}{13}$ C) $\frac{173}{13}$ D) $\frac{40}{3}$

Determine if each geometric series converges or diverges.

5)
$$1 - \frac{5}{2} + \frac{25}{4} - \frac{125}{8}$$
...

- A) Converges
- B) Diverges

- 6) $5+1+\frac{1}{5}+\frac{1}{25}...$
 - A) Converges
- B) Diverges

7)
$$3 + \frac{15}{4} + \frac{75}{16} + \frac{375}{64}$$
...

- A) Diverges
- B) Converges

- 8) 7.7 + 4.62 + 2.772 + 1.6632...
 - A) Diverges
- B) Converges

Evaluate each infinite geometric series described.

9)
$$\sum_{m=1}^{\infty} -4 \cdot \left(-\frac{1}{5}\right)^{m-1}$$

- A) No sum B) $\frac{5}{6}$

- C) -3 D) $-\frac{10}{3}$

10)
$$\sum_{m=1}^{\infty} -6 \cdot \left(\frac{2}{3}\right)^{m-1}$$

- A) 3 B) -22 C) -20 D) -18

11)
$$\sum_{k=1}^{\infty} -40 \cdot \left(-\frac{1}{2}\right)^{k-1}$$

- A) $\frac{2}{3}$ B) $-\frac{79}{3}$
- C) No sum D) $-\frac{80}{3}$

12)
$$\sum_{k=1}^{\infty} \frac{3}{4} \cdot \left(\frac{1}{5}\right)^{k-1}$$

- A) No sum B) $\frac{15}{16}$ C) $\frac{17}{16}$ D) $\frac{5}{4}$

Infinite geometric sum

Date_____Period___

Evaluate the related series of each sequence.

- 1) 3, -12, 48, -192, 768
 - A) 635
- B) 598
- *C) 615 D) $\frac{3}{5}$

- 2) 2, 10, 50, 250
 - A) 295
- *B) 312
- C) 346 D) $-\frac{1}{2}$

Evaluate each geometric series described.

3)
$$\sum_{m=1}^{9} 0.5 \cdot (-2)^{m-1}$$

- A) 116.4
- *B) 85.5
- C) 97.6
- D) 0.16666666667

4)
$$\sum_{m=1}^{9} 20 \cdot \left(-\frac{1}{2}\right)^{m-1}$$

- *A) $\frac{855}{64}$ B) $\frac{171}{13}$ C) $\frac{173}{13}$ D) $\frac{40}{3}$

Determine if each geometric series converges or diverges.

5)
$$1 - \frac{5}{2} + \frac{25}{4} - \frac{125}{8}$$
...

- A) Converges *B) Diverges

- 6) $5+1+\frac{1}{5}+\frac{1}{25}...$
- *A) Converges
- B) Diverges

7)
$$3 + \frac{15}{4} + \frac{75}{16} + \frac{375}{64}$$
...

- *A) Diverges B) Converges

- 8) 7.7 + 4.62 + 2.772 + 1.6632...
 - A) Diverges
- *B) Converges

Evaluate each infinite geometric series described.

9)
$$\sum_{m=1}^{\infty} -4 \cdot \left(-\frac{1}{5}\right)^{m-1}$$

- A) No sum B) $\frac{5}{6}$

- C) -3 *D) $-\frac{10}{3}$

10)
$$\sum_{m=1}^{\infty} -6 \cdot \left(\frac{2}{3}\right)^{m-1}$$

- A) 3 B) -22 C) -20 *D) -18

11)
$$\sum_{k=1}^{\infty} -40 \cdot \left(-\frac{1}{2}\right)^{k-1}$$

- A) $\frac{2}{3}$ B) $-\frac{79}{3}$
- C) No sum *D) $-\frac{80}{3}$

12)
$$\sum_{k=1}^{\infty} \frac{3}{4} \cdot \left(\frac{1}{5}\right)^{k-1}$$

- A) No sum *B) $\frac{15}{16}$ C) $\frac{17}{16}$ D) $\frac{5}{4}$