Clustering Algorithms comparision

	K-means	K-medoids	DBSCAN	Spectral clustering
Principio matemático	Optimización de la función objetivo (mínimos cuadrados)	Optimización de la función objetivo (distancia manhattan o Euclidiana)	Densidad de puntos	Descomposición Espectral
Descripción	Divide los datos en K clusters minimizando la varianza dentro de cada uno.	Divide los datos en K clusters minimizando la varianza dentro de cada uno.	<u>Utiliza</u> la densidad de los puntos vecinos para identificar clusters conectados.	Utiliza la descomposición espectral de la matriz de afinidad para identificar clusters
Desventajas	 No funciona bien con clusters de tamaños y formas irregulares. Sensible a la inicialización de los centroides y puede converger a un mínimo local. 	- más lento que k-means por el cálculo de las <u>distancias</u> entre medoides.	Sensible a los parámetros eps y min_samplesNo funciona bien con datos de alta dimensionalidad	Sensible a la elección del número de clusters y la construcción de la matriz de similitud.
Ventajas	Escalable a grandes dimensionesEficiente en grandes conjuntos de datos	 Adecuado para datos con presencia de outliers Menos sensible a la inicialización que KMeans debido a la selección de medoide 	 No hay que definir el número de clusters previamente Detecta a outliers Clúster en formas que no sean esféricas 	- Robusto a la inicialización de los centroides.
Aplicaciones	Segmentación de clientesReconocimiento de patrones	- Análisis de redes sociales	Imágenes Datos geográficos Agrupas usuarios en RRSS	Clasificación de imágenes Reconocimiento de patrones
Computacionalmente	Eficiente	Eficiente	Moderadamente costoso	Costoso debido al cálculo de la matriz de similitud y la descomposición espectral.

Imagen tomada de: https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68