Demolition in Detroit: The Effect of the Hardest Hit Fund in the Distressed Housing Market

Angela Li

5/2/2018

Question

- What is the effect of rapid, targeted demolition on house sales prices in a distressed housing market?
 - Does getting rid of nearby "blight" improve a home's property value?

Background

- Depopulation of Detroit
 - 1.8 million in 1950 to 700,000 today
 - Accelerated by foreclosure crisis
 - · Households leave, but houses left behind
- Distressed housing market
 - More supply than demand
 - Large number of aging structures
 - "Blight" is common

Policy Intervention

- Federal government allocates money to states for foreclosure prevention in 2010
 - Hardest Hit Fund distributed by US Treasury to 18 states, including Michigan
 - Goal: support homeowners with their mortgages
- Michigan funding reallocated in 2013
 - Hardest Hit Fund now can be used for demolition efforts.
 - First HHF-funded demolition in Detroit, April 2014

Demolitions Before/After HHF

Demolitions Over Time

Motivation

- Take Hardest Hit Fund demolitions as a natural experiment
- What effect did they have on house sales prices, if any?
- Goals:
 - Assess impact of nearby distress conditions (blighted structures vs. vacant lots)
 - Assess impact of demolition program

Median Sales Price Before/After HHF

Literature Review

- Effect of property distress
 - Foreclosure: Kobie (2003), Immergluck (2006), Lin (2009), Harding (2009)
 - Tax delinquency, additional conditions: Mikelbank (2008), Whitaker (2013), Carroll (2016)
- Hedge effect
 - Griswold (2006), Griswold (2014), Dynamo Metrics (2015)

Data

- Detroit Space-Time Analytics Data System (D-STADSTM)
 - Compiled by Dynamo Metrics
 - ~400,000 city parcels with quarterly information
 - Sales, property characteristics
 - Demolition
 - Occupancy, vacancy
 - Tax foreclosure, delinquency
 - Crime
 - I use data from April 2013 March 2015
- Detroit Open Data Portal
 - City record of all demolitions
 - Detroit boundary shapefiles

Summary Statistics

Table 1: Summary Statistics for Properties Sold, Q2 2013 - Q1 2015 (N = 8592)

Variable	Mean	Standard deviation	Min	Max
Sales price	\$25,699.91	\$39,264.22	\$1,000*	\$1,600,000.00
Log of sales price	9.563	1.126	6.900	14.400
Unoccupied tax foreclosable	5.722	4.560	0	34
Vacant lots	8.423	10.326	0	100
Occupied	73.959	23.232	4	312
Violent crime (500 ft)	0.158	0.507	0	8
Property crime (500 ft)	0.413	0.865	0	7
Res. sales (500 ft) >\$25,000	0.291	0.710	0	24
Tax foreclosure eligible sale	0.124	0.330	0	1
Square footage	1,138	1,492	0	32,767
Number of bathrooms	1.220	0.473	0	9
Number of fireplaces	0.404	0.519	0	3
If brick	0.690	0.463	0	1
Porch area	104	78	0	948
If air conditioning	0.152	0.359	0	1
Age	74.4	13.6	0	135
Q1	0.217	0.412	0	1
Q2	0.273	0.446	0	1
Q3	0.264	0.441	0	1
Q4	0.245	0.430	0	1
Arms-length sale	0.047	0.212	0	1
Quit-claim sale	0.013	0.114	0	1
Warranty deed sale	0.038	0.191	0	1
Land contract sale	0.037	0.190	0	1
REO sale	0.159	0.366	0	1
Investor sale	0.158	0.365	0	1

*Note: n = 8592; sales lower than \$1000 were omitted from analysis.

Hedonic Model Specification

$$log(salesprice_i) = \beta_0 + \beta_1 D_i^R + \beta_2 P_i^{HHF} + \beta_3 S_i + \beta_4 M_i + \beta_5 Q_i + \beta_6 T_i + u_i$$
(1)

- D_i^R , property counts
- P_i^{HHF}, policy variables,
- *S_i*, physical characteristics,
- M_i, housing submarket,
- Q_i, quarter sold,
- T_i, sale or deed type,
- *u_i*, error term (heteroskedastic)

Property Counts

Property Counts

Table 2: Average Number of Nearby Properties by Buffer Size

	Buffer Size		
Property Type	500 ft	1000 ft	1500 ft
Unoccupied and Tax Foreclosable	5.72	21.31	45.86
Vacant Lots	8.42	33.44	74.68

^{*}Note: counts are for residentially-zoned properties.

Spatial Hedonic Model Specification

- I first do OLS regressions:
 - Policy variables only
 - Policy variables with full controls
- I run spatial diagnostics on my regression results and find that spatial autocorrelation is likely present.
- I perform a spatial specification search and proceed with the following spatial regression models:
 - Spatial lag
 - Space-time lag, past quarter
 - Space-time lag, all previous periods

Spatial Lag Models

Spatial lag model

$$InP_{i,t} = \beta_0 + \beta X + \lambda \mathbf{W_t} \mathbf{P_{i,t}} + u_i$$
 (2)

Space-time lag model

$$InP_{i,t} = \beta_0 + \beta X + \lambda \mathbf{W_{t-1}} \mathbf{P_{i,t-1}} + u_i$$
 (3)

where X represents a matrix of the original hedonic variables.

Results

Table 3: Space-Time Lag Model, Past Quarter, All Controls

	De	pendent varia	hle:
	Log of sales price		
Buffer Size	(1) 500 ft	(2) 1000 ft	(3) 1500 ft
Spatial Lag $(W_{t-1}P_{t-1})$	0.263***	0.239***	0.225***
	(0.021)	(0.022)	(0.022)
Spatial Variables	0.000***		0.005***
Unoccupied Tax Foreclosable	-0.029***		-0.005***
	(0.003)	(0.001)	(0.000)
Vacant Lots	-0.008***	-0.002***	-0.001***
	(0.002)	(0.000)	(0.000)
In HHF Zone	0.100*** (0.022)	0.099*** (0.022)	0.097*** (0.022)
After HHF Implementation	0.050	0.068*	0.082*
Auto Titi Imperionation	(0.037)	(0.040)	(0.042)
Unoccupied Tax Foreclosable * After HHF	-0.014*** (0.005)	-0.005*** (0.002)	-0.003*** (0.001)
Vacant Lots * After HHF	-0.002	-0.001	-0.0002
	(0.002)	(0.001)	(0.000)
Observations	8592	8592	8592
R^2	0.358	0.359	0.359
Adjusted R ²	0.356	0.356	0.357

*p<0.1; **p<0.05; ***p<0.01

Note:

Results Summary

- For the baseline model, we find:
 - Blight decreases home values more than vacant lots
 - Blight has a larger negative impact after HHF implementation
 - Sales prices are higher within HHF zones
- This holds up across models

Policy Evaluation

- Treatment effect analysis
 - Before/after implementation
 - In/out of HHF zone
- Use spatial regimes specification
 - Identification strategy similar to difference-in-differences
 - Addresses spatial heterogeneity

Spatial Heterogeneity

Spatial Heterogeneity

Results

Table 4: Spatial Regimes Model by In/Out of HHF Zone, 500 ft Buffer

	Depender	nt variable:	
	Log of sales price		
	(1) In HHF Zone	(2) Out of HHF Zon	
Spatial Variables			
Unoccupied Tax Foreclosable	-0.032***	-0.042***	
	(0.003)	(0.006)	
Vacant Lots	-0.005**	-0.014***	
	(0.002)	(0.002)	
Policy Variables In HHF Zone	_	_	
After HHF Implementation	0.142***	-0.043	
	(0.043)	(0.073)	
Unoccupied Tax Foreclosable * After HHF	-0.015**	-0.010	
·	(0.006)	(0.009)	
Vacant Lots * After HHF	-0.005*	0.002	
	(0.003)	(0.004)	
Observations	5626	2966	
R ²	0.306	0.392	
Adjusted R ²	0.302	0.386	

Results Summary

- For this spatial regimes model, we find:
 - Blight is worse than vacant lots in both zones
 - Blight only has an additional negative effect within HHF zones
 - HHF implementation is indeed a treatment

Results

Table 5: Spatial Regimes Model by Submarket, 500 ft Buffer

	Dependent variable: Log of sales price			
Submarket	(1) Low	(2) Medium Low	(3) Medium High	(4) High
Spatial Variables				
Unoccupied Tax Foreclosable	-0.038*** (0.006)	-0.031*** (0.004)	-0.049*** (0.007)	-0.092*** (0.020)
Vacant Lots	-0.009*** (0.003)	-0.008*** (0.002)	-0.005 (0.005)	-0.014* (0.008)
Policy Variables				
In HHF Zone	0.167*** (0.044)	0.174*** (0.031)	0.095** (0.045)	-0.284* (0.168)
After HHF Implementation	-0.061	0.104*	0.071	0.306**
	(0.089)	(0.060)	(0.068)	(0.128)
Unocc. Tax Forecl. * After HHF	0.004	-0.021***	-0.010	-0.018
	(0.009)	(800.0)	(0.013)	(0.034)
Vacant Lots * After HHF	0.0002 (0.004)	-0.004 (0.004)	-0.008 (0.008)	0.010 (0.011)
Observations	2327	3775	2093	397
R ²	0.288	0.270	0.338	0.536
Adjusted R ²	0.279	0.265	0.329	0.502

Note: *p<0.1; **p<0.05; ***p<0.01

Results Summary

- For this spatial regimes model, we find:
 - Blight has worse effects in higher-price submarkets
 - Effects of vacant lots differ across submarkets
 - Interaction effect of blight and policy is only significant for the Medium Low submarket

Conclusion

We find that:

- Blight is worse than vacancy for house prices
- Effect of blight varies across spatial regimes
- Demolition appears to be effective

Further Work

- Refine defintion of submarkets
- Add accessibility measures
- Explore cost-benefit analysis