From regular expressions to automata

Marcello Bonsangue^{1,2} Jan Rutten^{1,3} Alexandra Silva¹

¹Centrum voor Wiskunde en Informatica ²LIACS - Leiden University ³Vrije Universiteit Amsterdam

January 2009

1/8

Motivation

Context: Regular expressions

Goal: Decide $r_1 = r_2$.

Usual approach:

Motivation

Context: Regular expressions

Goal: Decide $r_1 = r_2$. Usual approach:

Motivation

Context: Regular expressions

Goal: Decide $r_1 = r_2$.

Usual approach:

For Regular Expressions to Deterministic automata

Direct method : Brzozowski derivatives

$$(ab+b)^*ba$$

Problems:

- Comparing derivatives is very expensive.
- Method does not scale so well (cf. Circ/KAT)

For Regular Expressions to Deterministic automata

 Direct method : Brzozowski derivatives (ab + b)*ba

Problems

- Comparing derivatives is very expensive.
- Method does not scale so well (cf. Circ/KAT)

For Regular Expressions to Deterministic automata

 Direct method : Brzozowski derivatives (ab + b)*ba

Problems:

- Comparing derivatives is very expensive.
- Method does not scale so well (cf. Circ/KAT)

More efficient algorithms

- Partial derivative (Antimirov)
- Continuation automaton (Berry-Sethi)
- Position automaton (Berry-Sethi, Glushkov, McNaughton-Yamada)

More efficient algorithms

- Partial derivative (Antimirov)
- Continuation automaton (Berry-Sethi)
- Position automaton (Berry-Sethi, Glushkov, McNaughton-Yamada)

Basic idea: Assume that all occurrences of letters are different.

$$(ab+b)^*ba \to (a_1b_2+b_3)^*b_4a_5$$

- Let the magic begin: example in the board.
- Key: The states are known from the beginning!

Theorem

- Nice property: all the transitions entering a state have the same label.
- Not so nice: the continuations need to be computed explicitly.

Basic idea: Assume that all occurrences of letters are different.

$$(ab+b)^*ba \rightarrow (a_1b_2+b_3)^*b_4a_5$$

- Let the magic begin: example in the board.
- Key: The states are known from the beginning!

Theorem

- Nice property: all the transitions entering a state have the same label.
- Not so nice: the continuations need to be computed explicitly.

Basic idea: Assume that all occurrences of letters are different.

$$(ab+b)^*ba \rightarrow (a_1b_2+b_3)^*b_4a_5$$

- Let the magic begin: example in the board.
- Key: The states are known from the beginning!

Theorem

- Nice property: all the transitions entering a state have the same label.
- Not so nice: the continuations need to be computed explicitly.

Basic idea: Assume that all occurrences of letters are different.

$$(ab+b)^*ba \rightarrow (a_1b_2+b_3)^*b_4a_5$$

- Let the magic begin: example in the board.
- Key: The states are known from the beginning!

Theorem

- Nice property: all the transitions entering a state have the same label.
- Not so nice: the continuations need to be computed explicitly.

Basic idea: Assume that all occurrences of letters are different.

$$(ab + b)^*ba \rightarrow (a_1b_2 + b_3)^*b_4a_5$$

- Let the magic begin: example in the board.
- Key: The states are known from the beginning!

Theorem

- Nice property: all the transitions entering a state have the same label.
- Not so nice: the continuations need to be computed explicitly.

Basic idea: Assume that all occurrences of letters are different.

$$(ab + b)^*ba \rightarrow (a_1b_2 + b_3)^*b_4a_5$$

- Let the magic begin: example in the board.
- Key: The states are known from the beginning!

Theorem

- Nice property: all the transitions entering a state have the same label.
- Not so nice: the continuations need to be computed explicitly.

Position automaton

Definition

Let E be a regular expression and \overline{E} the corresponding marked expression.

$$\begin{array}{lll} \mathit{first}(E) & = & \{i \mid a_i w \in L(\overline{E})\} \\ \mathit{follow}(E,i) & = & \{j \mid u a_i a_j v \in L(\overline{E})\} \\ \mathit{last}(E) & = & \{i \mid w a_i \in L(\overline{E})\} \end{array}$$

The position automaton for *E* is defined as

$$A_{pos}(E) = (pos(E), \Sigma, \delta_{pos}, 0, last(E))$$

where

$$\delta_{\mathsf{pos}} = \{(i, a, j) \mid j \in follow(E, i), a = \overline{a_j}\}$$

Remark: Berry-Sethi provide an efficient algorithm to compute *follow*. Example in the board.

Position automaton

Definition

Let E be a regular expression and \overline{E} the corresponding marked expression.

$$\begin{array}{lll} \textit{first}(E) & = & \{i \mid a_i w \in L(\overline{E})\} \\ \textit{follow}(E,i) & = & \{j \mid u a_i a_j v \in L(\overline{E})\} \\ \textit{last}(E) & = & \{i \mid w a_i \in L(\overline{E})\} \end{array}$$

The position automaton for E is defined as :

$$A_{pos}(E) = (pos(E), \Sigma, \delta_{pos}, 0, last(E))$$

where

$$\delta_{\mathsf{pos}} = \{(i, a, j) \mid j \in \mathit{follow}(E, i), a = \overline{a_j}\}$$

Remark: Berry-Sethi provide an efficient algorithm to compute *follow*. Example in the board.

Definition ($Q_1 \equiv Q_2$)

Let $A_1 = (\Sigma, S_1, I_1, \delta_1, F_1)$ and $A_1 = (\Sigma, S_2, I_2, \delta_2, F_2)$ be NFA's. For $Q_1 \subseteq S_1$ and $Q_2 \subseteq S_2$, $Q_1 \equiv Q_2$ iff

- $Q_1 \cap F_1 \neq \emptyset \Leftrightarrow Q_2 \cap F_2 \neq \emptyset$
- ② $\delta_1[Q_1](a) \equiv \delta_2[Q_2](a)$, for all $a \in \Sigma$.

Theorem

$$\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2) \Leftrightarrow l_1 \equiv l_2$$

Definition ($Q_1 \equiv Q_2$)

Let $A_1 = (\Sigma, S_1, I_1, \delta_1, F_1)$ and $A_1 = (\Sigma, S_2, I_2, \delta_2, F_2)$ be NFA's.

For $\mathit{Q}_1 \subseteq \mathit{S}_1$ and $\mathit{Q}_2 \subseteq \mathit{S}_2$, $\mathit{Q}_1 \equiv \mathit{Q}_2$ iff

- ② $\delta_1[Q_1](a) \equiv \delta_2[Q_2](a)$, for all $a \in \Sigma$.

Theorem

$$\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2) \Leftrightarrow l_1 \equiv l_2$$

Definition $(Q_1 \equiv Q_2)$

Let $A_1 = (\Sigma, S_1, I_1, \delta_1, F_1)$ and $A_1 = (\Sigma, S_2, I_2, \delta_2, F_2)$ be NFA's.

For $Q_1 \subseteq S_1$ and $Q_2 \subseteq S_2$, $Q_1 \equiv Q_2$ iff

- ② $\delta_1[Q_1](a) \equiv \delta_2[Q_2](a)$, for all $a \in \Sigma$.

Theorem

$$\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2) \Leftrightarrow l_1 \equiv l_2$$

Definition $(Q_1 \equiv Q_2)$

Let $\mathcal{A}_1=(\Sigma,\mathcal{S}_1,\mathit{I}_1,\delta_1,\mathit{F}_1)$ and $\mathcal{A}_1=(\Sigma,\mathcal{S}_2,\mathit{I}_2,\delta_2,\mathit{F}_2)$ be NFA's.

For $Q_1 \subseteq S_1$ and $Q_2 \subseteq S_2$, $Q_1 \equiv Q_2$ iff

- ② $\delta_1[Q_1](a) \equiv \delta_2[Q_2](a)$, for all $a \in \Sigma$.

Theorem

$$\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2) \Leftrightarrow I_1 \equiv I_2$$

Definition $(Q_1 \equiv Q_2)$

Let $\mathcal{A}_1=(\Sigma,\mathcal{S}_1,\mathit{I}_1,\delta_1,\mathit{F}_1)$ and $\mathcal{A}_1=(\Sigma,\mathcal{S}_2,\mathit{I}_2,\delta_2,\mathit{F}_2)$ be NFA's.

For $Q_1 \subseteq S_1$ and $Q_2 \subseteq S_2$, $Q_1 \equiv Q_2$ iff

- ② $\delta_1[Q_1](a) \equiv \delta_2[Q_2](a)$, for all $a \in \Sigma$.

Theorem

$$\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2) \Leftrightarrow I_1 \equiv I_2$$

Conclusions

Can we implement this algorithms in CIRC? Can we extend them to KAT?