What is a hierarchy?	$Define\ digital.$
Define analogue.	How many values can be represented by a binary number containing n bits?
Arrange AND, OR and NOT in order of operator precedence.	What is the symbol for AND?
What is the symbol for \mathtt{OR} ?	What is the symbol for \mathtt{NOT}

A hierarchy is a group of objects arranged in tiers of descending magnitude, importance or complexity.

2

1

 2^n

 $\begin{array}{c} \textit{An entity that can reside in an infinite number of possible} \\ \textit{states.} \end{array}$

4

3

E.g. $A \cdot B$

NOT, AND, OR

6

5

E.g. \overline{A}

 $\begin{array}{c} + \\ E.g. \ A+B \end{array}$

What is the symbol for XOR	What is De Morgan's theorem commonly used for when designing digital circuits?
What is the symbol for an AND gate? $\cite{1}$	What is the symbol for an OR gate?
What is the symbol for an XOR gate?	What is the symbol for an NOT gate?
What is the symbol for an NAND gate?	What is the symbol for an NOR gate?

 $Converting \ gates \ such \ as \ {\tt AND}, \ {\tt OR}, \ {\tt XOR} \ etc \ into \ {\tt NAND} \ and \ {\tt NOR} \\ since \ they \ are \ cheap \ and \ fast.$

12 11

13

What's the symbol for a n:1 multiplexer?	What is the truth table for binary addition?
How do you negate a binary number?	Convert binary 6 to -6
Which bit is the signed bit when using 2's complement?	How do you subtract two binary numbers?
What is the sum-of-products?	What is the product-of-sums?

What is the truth table for binary addition?

UIUC	u au	wore,	joi	viiiaiy
A	B	c_{in}	S	c_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

18

1. Start with 0110
2. Invert the bits - 1001
3. Add 1 - 1010

1. Invert the bits 2. Add 1

20 19

1. Invert the number you're subtracting 2. Add 1 to the inverted number

3. Add the number you're subtracting from with the inverted number.

Basically, add the original number to the 2's complement negative of what you're taking away.

 $The \ \mathit{left} \ \mathit{most} \ \mathit{bit}.$

22 21

When a number of \mathtt{OR} gates are \mathtt{AND} 'ed together.

When a number of AND gates are OR'ed together.

