

LoRa2HA

MLD03

Piscine – Arrosage 2 voies

Table des matières

1	Description	3
2	Caractéristiques techniques	4
	2.1 Microprocesseur	4
	2.2 Entrées	5
	2.2.1 JI1, JI2, JI3	5
	2.2.2 JI4	6
	2.2.3 JI5	6
	2.2.4 Mode « piscine »	6
	2.3 Sorties.	6
	2.4 Alimentation	8
	2.5 Indicateurs LED	8
	2.5.1 LED0	3
	2.5.2 LED1	8
	2.5.3 LED2	8
	2.6 Module LoRa	8
	2.7 RTC	8
	2.8 CN1	9
	2.9 SERIAL	9
	2.10 UDPI	9
	2.10.1 RST	10
	2.10.2 CFG	10
3	Montage de la carte	11
	3.1 Schéma	11
	3.2 Nomenclatures	11
4	Programmation	13
5	Anneye	14

1 Description

Le module MLD03 est dédié à la gestion de piscine (hors chimie) ou d'arrosage (2 voies, ou arrosage / pompage), il est prévu pour pouvoir être fixé sur rail DIN à l'aide de fixations DRG-02

Il est autonome et possède un module RTC secouru par une pile CR2032 ce qui lui permet de conserver l'horodatage en cas de coupure de l'alimentation générale.

Pour une piscine, le module permet :

- · La gestion de la durée filtration,
- · La gestion du remplissage,
- · La gestion du mode « Hors-gel »,
- Le suivi de la pression du filtre, pour nettoyage.

Pour de l'arrosage, le module permet :

- La gestion multicritère horaire de l'arrosage,
- Le suivi de l'humidité du sol
- · La détection de pluie
- Le suivi de niveau de cuve d'eau

2 Caractéristiques techniques

2.1 Microprocesseur

Le processeur utilisé est un ATtiny3216 :

- 32 KB In-system self-programmable Flash memory
- 256 bytes EEPROM
- 2 KB SRAM
- 16/20 MHz low-power internal RC oscillator
- 32.768 kHz Ultra Low-Power (ULP) internal RC oscillator
- · Speed Grades:
 - 0-5 MHz @ 1.8V 5.5V
 - 0-10 MHz @ 2.7V 5.5V
 - \circ 0-20 MHz @ 4.5V 5.5

Ordering Code ⁽¹⁾	Flash/SRAM	Pin Count	Max. CPU Speed	Supply Voltage	Package Type ^(2,3)	Temperature Range
ATtiny3216-SNR	32 KB/2 KB	20	20 MHz	1.8V to 5.5V	SOIC	-40°C to +105°C
ATtiny3216-SN	32 KB/2 KB	20	20 MHz	1.8V to 5.5V	SOIC	-40°C to +105°C
ATtiny3216-SFR	32 KB/2 KB	20	16 MHz	2.7V to 5.5V	SOIC	-40°C to +125°C
ATtiny3216-SF	32 KB/2 KB	20	16 MHz	2.7V to 5.5V	SOIC	-40°C to +125°C
ATT: 0047 AMID	00 1/0/0 1/0		20.1411	4 00 44 5 504	WOEN	4000 1 40500

Le schéma de connexion est le suivant :

2.2 Entrées

La carte comporte 5 connecteurs à vis, permettant de brancher les différents capteurs.

2.2.1 JI1, JI2, JI3

Ces 3 connecteurs permettent de brancher 3 capteurs analogiques (JI3 fourni une alimentation 5 vdc).

Le schéma par défaut propose une résistance de 1K (RJ1, RJ2) afin de créer un pont diviseur si le capteur fourni une tension (résistif), RJ3 ne sera montée que si le capteur nécessite un pont diviseur.

2.2.2 JI4

Le connecteur JI4 est configurable et permet de brancher, soit un capteur analogique, soit un capteur sur bus I2C.

Pour une utilisation en mode I2C, les switch 1 et 2 doivent être sur ON et les autres sur OFF.

Pour une utilisation avec capteur analogique, le switch 3 doit être sur ON, 1 et 2 sur OFF. Le switch 4 sur ON si il faut un pont diviseur (RJ4) sinon sur OFF.

2.2.3 JI5

Ce connecteur fourni une alimentation 5 vdc.

2.2.4 Mode « piscine »

Dans le firmware par défaut, la configuration du mode « Piscine », est la suivante :

- JI1, JI2: Thermistance NTC 5K (si la thermistance fait 10K, il est conseillé RJ1/2 = 2,7K)
- JI3 : transducteur de pression, fournissant 0.5 à 4.5 v pour la plage 0 à « psi max ».
- JI4 : capteur de niveau inductif sur bus I2C, SWJ4 est configuré en [ON ON OFF OFF]
- JI5 : est utilisé pour l'alimentation du capteur inductif I2C

2.3 Sorties

Le 2 sorties principales sont des relais, K1 et K2, pour piloter respectivement une électrovanne (connecteur VALVE) et une pompe (connecteur PUMP).

Les relais sont raccordés aux connecteurs en mode NO (Normalement Ouvert), ce qui signifie qu'a l'arrêt du système le courant ne circule pas sur le connecteur, et il faut donc « activer » le relais pour que le courant circule.

Le schéma de câblage des équipements est le suivant :

Les deux connecteurs de K1 et K2 sont totalement indépendants de la carte et peuvent laisser passer n'importe quel type de tension : VAC/VDC, dans la limite des caractéristiques des relais HF41F :

CONTACT DATA			
1A, 1C			
No gold plated:100mΩ max. (at 1A 6VDC) Gold plated: 30mΩ max. (at 1A 6VDC)			
AgSnO₂, AgNi			
6A 250VAC / 30VDC			
400VAC / 300VDC			
6A			
1500VA / 180W			
1 x 10 ⁷ ops			
H type: 6 x 10 ⁴ ops (6A 250VAC/30VDC, Resistive load, AgNi, at 85°C, 1s on 9s off) Z type: 3 x 10 ⁴ ops (NO, 6A 250VAC/30VDC, Resistive load, AgNi, at 85°C, 1s on 9s off) 1 x 10 ⁴ ops (NC, 6A 250VAC/30VDC, Resistive load, AgNi, at 85°C, 1s on 9s off)			

Notes:1)	The	data	shown	above	are	initial	values.
----------	-----	------	-------	-------	-----	---------	---------

CHAR	ACTERI	STICS	
Insulation	resistance	1000MΩ (at 500VDC)	
Dielectric Between		coil & contacts	4000VAC 1 min
strength	Between	open contacts	1000VAC 1 min
Operate ti	me (at rate	d.volt.)	8ms max.
Release ti	me (at rate	d.volt.)	4ms max.
Chook roo	ictopoo*1)	Functional	49m/s ²
Shock resistance*1)		Destructive	980m/s ²
Vibration r	esistance*	10Hz to 55Hz 1mm DA	
Humidity		5% to 85% RH	
Ambient to	emperature		-40°C to 85°C
Terminatio	n	PCB	
Unit weigh	nt	Approx. 5g	
Construction			Plastic sealed, Flux proofed
		e 1 141 4	

Notes: 1) *Index is that of relay without socket and is not in relay length

:1) "Index is that of relay without socket and is not in relay length direction.
2) The data shown above are initial values.
3) Please find coil temperature curve in the characteristic curves below.
4) Please do not install a SPDT(1 Form C) type relay on either of the smallest sides or facing downward.
5) UL insulation system: Class A.

COIL	
Coil power	5VDC to 24VDC: Approx. 170mW
Coll power	48VDC, 60VDC: Approx. 210mW

COIL D	at 23°C			
Nominal Voltage VDC	Pick-up Voltage VDC max. ²⁾	Drop-out Voltage VDC min. ²⁾	Max. Voltage VDC ³⁾	Coil Resistance Ω
5	3.75	0.25	7.5	147 x (1±10%)
6	4.50	0.30	9.0	212 x (1±10%)
9	6.75	0.45	13.5	476 x (1±10%)
12	9.00	0.60	18	848 x (1±10%)
18	13.5	0.90	27	1906 x (1±15%)
24	18.0	1.20	36	3390 x (1±15%)
48 ⁴⁾	36.0	2.40	72	10600 x (1±15%)
60 ⁴⁾	45.0	3.00	90	16600 x (1±15%)

Notes: 1) When require pick-up voltage ≤70% nominal voltage, special order allowed .
2) The data shown above are initial values.

- 3) Maximum voltage refers to the maximum voltage which relay coil could endure in a short period of time.
- 4) For products with rated voltage ≥ 48V, measures should be taken to prevent coil overvoltage in order to protect coil in test and application (eg. Connect diodes in parallel).

SAFETY APPROVAL RATINGS			
	6A 30VDC at 85°C		
	6A 277VAC at 85°C		
UL/CUL	R300		
	B300		
	6A 30VDC at 85°C		
VDE	6A 250VAC at 85°C		

Notes: 1) All values unspecified are at room temperature.

2) Only typical loads are listed above. Other load specifications can be available upon request.

2.4 Alimentation

Si l'alimentation est directement du 5 VDC, il n'est pas utile de monter le régulateur REG1, mais il faut faire un « shunt » en reliant les deux pastilles indiquées sur le PCB (1 et 3).

Lorsque le régulateur REG1 est monté, il accepte une tension d'entrée comprise entre 7 et 30 VDC.

2.5 Indicateurs LED

Ce sont des leds WS2812D-F5, donc RGB adressables.

Elles sont utilisées pour servir d'indicateur local de bon fonctionnement ou d'erreur.

Le descriptif ci-dessous correspond au firmware « Piscine ».

2.5.1 LED0

A la mise sous tension elle est affichée en BLEU, si une erreur est détectée lors de l'initialisation du système, il y a un clignotement de 3 coups brefs en ROUGE.

Lorsque le système a démarré, si tout est correctement initialisé elle clignote à la période de 1 seconde en VERT, ou en ROUGE si au moins une erreur a été détectée.

2.5.2 LED1

Elle est allumée en VERT quand le relais K1 (VALVE) est activé.

2.5.3 LED2

Elle est allumée en VERT quand le relais K2 (PUMP) est activé.

2.6 Module LoRa

Le module LoRa est un RA-02, en 433MHz, il est conseillé de lui connecter une antenne adaptée à la distance souhaitée ; généralement une antenne de 3 dbi permet de couvrir une distance d'au moins 2Km.

2.7 RTC

Le maintien de l'horodatage, quand la carte n'est pas alimentée, est assuré par un module DS1307 et une pile de type CR2032.

En utilisation avec un HUB LoRa2HA (MLH01, 02, 03, 04), une mise à l'heure est reçue une foi par jour et corrige ainsi tout dérive excessive du module.

☑ Lors de l'hivernage, si le module n'est pas utilisé, il est recommandé d'enlever la pile. Lors de la remise en service, la mise à l'heure sera effectuée automatiquement via le HUB.

2.8 CN1

Ce connecteur (JST XH) est prévu pour des extensions futures, comme :

- Afficheur OLED
- · Platine de boutons de commandes locales
- etc...

2.9 SERIAL

Ce connecteur est plus particulièrement dédié au « Debug » mais peut aussi bien servir pour dialoguer avec des équipements adaptés (en modifiant le code du firmware).

Le connecteur est configuré de telle manière qu'il puisse directement être utilisé avec les cartes du type cidessous, très courantes chez les vendeurs en ligne. Si la carte sert d'alimentation elle doit être configurée en 5V.

2.10 UDPI

C'est le connecteur qui permet la programmation du module, référez vous au chapitre « Programmation ». Il est recommandé d'utiliser le type de pince ci-dessous pour effectuer la programmation.

🗵 Il faut débrancher l'alimentation principale lors de la programmation.

2.10.1 RST

Le bouton RST sert à effectuer un « reset » de la carte pour la ré-initialiser.

2.10.2 CFG

Ce bouton sert à envoyer la configuration au HUB lors de la première utilisation, il doit être enfoncé lors du démarrage, il y a un clignotement VERT de LED0 durant l'appui pour indiquer qu'il a bien été pris en compte. Une foi relâché, le démarrage continu et le module enverra sa configuration au HUB.

3 Montage de la carte

Il est conseillé de souder en premier les composants CMS puis ensuite les traversants.

3.1 Schéma

3.2 Nomenclatures

Article	Identification/marquage	Quantité
ATTINY3216	U1	1
KF301-5.0-2P	JPW,PUMP,VALVE	3
DIP switchEI-04	SWJ4	1
KF128L-3.81-3P	JI3	1
KF128L-3.81-2P	JI4,JI1,JI2,JI5	4
Résistance 1K	RJ1,RJ2,RJ4 [RJ3]	3
R-78E5.0-1.0	REG1	1
HF41F/5	K1,K2	2
Condensateur polarisé 470uF	C1	1
Condensateur céramique 100nF	C2,C3	2
SW-SMD-6X3R5X4R3	CFG,RST	2
JST XH	CN1	1
1N4448	D1,D2	2
BS170	Q1,Q2	2

Résistance 200Ω	R1,R4	2
Résistance 22kΩ	R2,R3	2
Résistance 47kΩ	R5	1
HDR-F-2.54_1x6	SERIAL	1
LORA RA-02	U2	1
AMS1117-3.3	U3	1
HDR-F-2.54_1x3	UDPI	1
CR2032	B1	1
DS1307N	U4	1
Oscillateur 32.768KHZ	X1	1

4 Programmation

La programmation utilise « MegaTinyCore », un projet Github prévu pour tous les microprocesseurs de la gamme MegaTiny de la série O/1/2.

https://github.com/SpenceKonde/megaTinyCore

Dans le projet on trouve toute la documentation afin de transformer un simple Arduino (Uno, Nano) en programmateur UDPI.

Toutes les librairies utiles sont incluses dans le package MegaTinyCore ou l'IDE Arduino, sauf la libraire dédiée à LoRa2HA: Radiolink (version 2.0 obligatoire).

https://github.com/PM04290/RadioLink

🗵 Si vous avez installé une ancienne version, il faut la re-télécharger.

5 Annexe

Voici quelques liens permettant d'acheter les différents composants ou outillage connexe, pour un montage « Piscine ».

Outillage

Support rail DIN: (DRG-02)

https://fr.aliexpress.com/item/32834853066.html

Pince de programmation :

https://fr.aliexpress.com/item/1005004258921308.html

Composants carte

Relais: (5v)

https://fr.aliexpress.com/item/1005004360170067.html

Module RA-02 : (celui avec le connecteur 4x2)

https://fr.aliexpress.com/item/1005004992009022.html

Connecteurs KF128, 3.81:

https://fr.aliexpress.com/item/1005002424998185.html

Connecteurs KF301 5.0:

https://fr.aliexpress.com/item/1005001341135808.html

Bouton poussoir SMD: 3x6x4.3

https://fr.aliexpress.com/item/32884600594.html

DIP switch: 4 bits

https://fr.aliexpress.com/item/1005004848151376.html

Régulateur AMS1117 : 3.3

https://fr.aliexpress.com/item/1005004908874511.html

Assortiment de condensateur CMS : 0805

https://fr.aliexpress.com/item/1005006157020955.html

Assortiment de résistance CMS : 0805

https://fr.aliexpress.com/item/1005003021579348.html

Assortiment de diodes :

https://fr.aliexpress.com/item/1005006359972346.html

Mosfet BS170:

https://fr.aliexpress.com/item/32694408264.html

Support batterie CR2032:

https://fr.aliexpress.com/item/4001240194584.html

Régulateur R-78E3 : 1.0 1

https://fr.aliexpress.com/item/1005003137936602.html

ATTiny3216: 2

https://fr.aliexpress.com/item/1005007202986972.html

Capteurs pour l'application « Piscine »

Thermistance NTC 5K:

https://fr.aliexpress.com/item/1005005314075798.html

Transducteur de pression : output 0.5-4.5v, pressions adaptée au filtre

https://fr.aliexpress.com/item/1005006317511174.html

Carte MPR121 pour capteur de niveau d'eau inductif : à souder sur le PCB ML90 (cf Github)

https://fr.aliexpress.com/item/1005006201984763.html

ou capteur binaire : XKC-Y25-V

https://fr.aliexpress.com/item/4001212670355.html

¹ le régulateur se trouve moins cher chez les distributeurs institutionnels : RS, Mouser, Digikey, etc...

² sur ce composant critique, rien ne garantit que Aliexpress livre un original.