demo document

October 15, 2019

1 Equations

This is equation section. $Studentcount = \mu ni + \sum \frac{Ak}{Bk}$ is an example for inline equation. $Student_{count} = \mu ni + \sum \frac{Ak}{B^k}$ is another example. Equation-2 is an example for numbered equation.

$$a = 10b = 90 \tag{1}$$

$$a = 09 + 89 - 67$$

$$\frac{\sum \frac{a}{\varpi b}}{b - 90} \tag{2}$$

In the content based analysis, the amount of T contained by R is quantified. The respective contents of T present in each of the partitioned zones are symbolized by l^s , l^a , l^p , l^{ua} and l^{us} as listed above. The relative contents $\frac{l^s}{l^t}$, $\frac{l^a}{l^t}$, $\frac{l^a}{l^t}$ and $\frac{l^{us}}{l^t}$ are defined. They are multiplied by suitable weightage factors, which are so chosen to properly project the relative contents. The set of weightage factors $(w_a, w_b, w_c, w_d, w_e)$ used for content based computations are given in table-??. The expression for similarity due to the content component in the k^{th} feature is given by

$$S_c(R_k, T_k) = \frac{l^s}{l^t} w_a + \frac{l^a}{l^t} w_b + \frac{l^p}{l^t} w_c + \frac{l^{ua}}{l^t} w_d + \frac{l^{us}}{l^t} w_e$$
 (3)

The expression for similarity due to the content component in the k^{th} feature is given by:

$$D_c(R_k, T_k) = 1 - S_c(R_k, T_k) \tag{4}$$

2 Tables

This section shows the syntax for inserting tables.

The different examples are as follows.

val1	val2	val3	val4
10	10	30	40

Table 1: This is a demo table1

 val1
 val2
 val3
 val4

 10
 10
 30
 40

Table 3: Interpretation of the values in feature-interaction table(FIT). FIT data Dj_i indicates data from row-j and column-i

\mathcal{I}_{I} indicates data from Tow J and Column 1				
		Common Heading		
FIT	Feature	Inferred from	Inferred from	Net/overall
data	inter-	previously ob-	present feature	affiliation
	action	served features'	value	
	value	values		
D1i	0	healthy	healthy	healthy
D4i	1	PD	PD	PD

Table 4: Proposed Range of distribution zones for different distribution patterns. μ_{ni} represents mean value of i^{th} feature in distribution of healthy samples, σ_{ni} represents the standard deviation. μ_{ai} and σ_{ai} represent the same in PD samples.

Distribution	Safe	Acceptable	Permissible	Unacceptable	Unsafe
Pattern	(Wi=00.1)	(Wi=0.1)	(Wi=1)	(Wi=10)	(Wi=100)
	$\leq (\mu_{ni} - 2\sigma_{ni})$	$(\mu_{ni} - 2\sigma_{ni})$	$(\mu_{ni} - \sigma_{ni})$	$(\mu_{ni} + \sigma_{ni})$	$\geq (\mu_{ni} + 2\sigma_{ni})$
1		to	to	to	
		$(\mu_{ni} - \sigma_{ni})$	$(\mu_{ni} + \sigma_{ni})$	$(\mu_{ni} + 2\sigma_{ni})$	
		$\leq min_{ai}$	min_{ai}	$\geq max_{ai}$	
2	-		to		-
			max_{ai}		
		$\geq max_{ai}$	max_{ai}	$\leq min_{ni}$	

Table 5: Regions of partitions and corresponding weightage factors.

	Region of	Weightage factors for analysis based on	
	$T^k = (\underline{T}_k, \overline{T}_k)$	Position	Content
Case 1	$< Z_s(\text{pattern 1}) \text{ or }$	$W_1 = 0.1$	$W_a = 1.0$
	$> Z_s(\text{pattern 4})$		
Case 2	$[Z_s, Z_a]$ (patterns 1 and 2) or	$W_2 = 0.3$	$W_b = 0.8$
	$[Z_a , Z_s]$ (patterns 3 and 4)		