LAB 6. Latch, Flip-Flop and Shift Register

2017 Fall Logic Design LAB

Department of Computer Science and Engineering

Seoul National University

Outline

- 1. 순차 논리 회로 (Sequential Logic Circuits)
- 2. Latch 회로도 및 Verilog 구현
- 3. Flip-Flop 회로도 및 Verilog 구현
- 4. Shift Register 회로도 및 Verilog 구현

순차 논리 회로 (Sequential Logic Circuits)

- 순차 논리 회로란?
 - 출력이 입력에 의해서만 결정되지 않고 기존에 들어왔던 입력과 출력에 영향을 받는
 논리 회로

- 회로의 입력 및 출력, 내부 상태 등 저장하기 위해서는 bit를 저장할 수 있는 회로(storage element)가 필요
 - Latches, edge-triggered Flip-Flops
 - Registers

RS-Latch

RS(Reset-Set) Latch Verilog 구현

```
module RS Latch(
    input R,
    input S,
    output Q,
    output Qn
//nor nor1(Q, R, Qn);
//nor nor2(Qn, S, Q);
assign Q = \sim (R \mid Qn);
assign Qn = \sim (S \mid Q);
endmodule
```


R	S	Q _{next}
0	0	Q
1	0	0
0	1	1
1	1	Χ

D-Latch

Gated D Latch Verilog 구현

```
module D_Latch(
    input D,
    input E,
    output reg Q
    );

always @(D or E)
begin
    if (E) Q <= D;
end
endmodule</pre>
```


D	Е	Q _{next}
0	1	0
1	1	1
Χ	0	Q

D Flip-Flop

Positive edge-triggered D Flip-Flop Verilog 구현

```
module D_FlipFlop(
    input D,
    input CLK,
    output reg Q
    );

always @ (posedge CLK)
begin
    Q <= D;
end
endmodule</pre>
```


D Flip-Flop의 schematic symbol

- Shift Register 란?
 - Flip-Flop으로 구성되며 데이터를 저장 및 각각 저장 소자 사이에서 shift 할 수 있는 register

ex) 4-bit shift right register

- 기능
 - Parallel input
 - Serial input / output
 - Shift one direction
 - Positive edge-triggered

mode	operation	
0	shift right	
1	load new input	

▪ Shift Right Register Verilog 구현

```
operation
                                                   mode
module shift 4bit(
    input clk,
                                                             shift right
                                                     0
    input s in,
                                                             load new input
    input mode,
    input [3:0] p in,
    output reg out
);
req [3:0] sreq;
always @ (posedge clk)
                                               4-Bit Shift Right Register
begin
    if (mode == 1'b0)
                                     s_in -
    begin
        sreg <= {s in, sreg[3:1]};</pre>
    end
                                   mode-
    else
    begin
                                     clk
        sreg <= p in;</pre>
    end
    out <= sreq[0];
end
                                                           p_in
endmodule
```

4-Bit Universal Shift Register

[실습4]

- 기능
 - Parallel input / output
 - Serial input / output
 - Shift left / right

<u>m0</u>	m1	operation
0	0	hold state
0	1	shift right
1	0	shift left
1	1	load new input

4-Bit Universal Shift Register 시뮬레이션

[실습4]

Shift Right Register / Universal Shift Register

[실습4]

실습 1. RS Latch를 이용하여 Gated D Latch 구현

- 목표
 - RS Latch를 이용해서 Gated D Latch 구현
- 실습 내용
 - 먼저, 주어진 코드를 이용해 RS Latch를 구현한다.
 - RS Latch를 이용해서 Gated D Latch를 구현한다.
 - 시뮬레이션을 통해 동작이 예상한 결과와 같은 지 확인해본다.
- 제출 사항
 - 소스코드 및 시뮬레이션 결과 실습지 양식으로 제출

실습 1. RS Latch Verilog code 및 D Latch block diagram

RS Latch Verilog code 및 RS Latch를 이용하여 D Latch를 구성한 모습

```
module RS_Latch(
    input R,
    input S,
    output Q,
    output Qn
    );

nor nor1(Q, R, Qn);
nor nor2(Qn, S, Q);
endmodule
```

RS Latch Verilog code

D Latch

실습 2. RS Latch를 이용하여 D Flip-Flop 구현

- 목표
 - RS Latch를 이용하여 D Flip-Flop 구현
- 실습 내용
 - 실습 1에서 구현한 RS Latch와 비슷하지만 input이 3개인 RS Latch'를 구현한다.
 - RS Latch 2개와 RS Latch' 를 이용하여 negative edge-triggered
 D Flip-Flop을 구현해본다.
 - 시뮬레이션을 통해 동작이 예상한 결과와 같은 지 확인해본다.
- 제출 사항
 - 소스코드 및 시뮬레이션 결과 실습지 양식으로 제출

실습 2. RS Latch를 이용한 D Flip-Flop block diagram

RS Latch 2개와 R 입력이 3-input nor gate인 RS Latch'를 이용하여
 negative edge-triggered D Flip-Flop을 구성한 모습

실습 3. D Latch와 D Flip-Flop 차이 비교

- 목표
 - 실습1과 2에서 구현해 본 D Latch와 D Flip-Flop의 차이를 비교
- 실습 내용
 - 구현한 D Latch와 D Flip-Flop의 차이를 확인해 볼 수 있도록 모듈을 설계한다.
 - 시뮬레이션을 통해 동작이 예상한 결과와 같은 지 확인해본다.
 - 구현한 D Flip-Flop은 negative edge-triggered 이므로, 모듈 내에서 CLK 입력을 invert 시켜 D Flip-Flop의 입력으로 만들어 비교해야 한다.
- 제출 사항
 - 소스코드 및 실습지에 제공된 입력을 사용하여 시뮬레이션한 결과

실습 4. 4-Bit Universal Shift Register 구현

- 목표
 - 현재 저장중인 상태를 출력하는 4-Bit Universal Shift Register 구현
- 실습 내용
 - 이전 슬라이드에서 다룬 내용을 바탕으로 4-Bit Universal Shift Register를 구현해본다.
 - 시뮬레이션을 통해 동작이 예상한 결과와 같은 지 확인해본다.
- 제출 사항
 - 소스코드 및 실습지에 제공된 입력을 사용하여 시뮬레이션한 결과

실습 4. 4-Bit Universal Shift Register에 대한 정보

 현재 저장된 상태를 출력하는 4-Bit Universal Shift Register의 block diagram과 4가지 operation에 대한 control signal encoding

m0	m1	operation
0	0	hold state
0	1	shift right
1	0	shift left
1	1	load new input

Control signal encoding

4-Bit Universal Shift Register

실습 제출 안내

■ 제출 항목

- 실습지 참고하여 보고서 작성
- 각 실습에서 작성한 Verilog 소스 코드

■ 제출 방법 및 기한

- 작성한 보고서(PDF) 및 소스코드를 압축하여 하나의 파일로 제출
- ETL 과제 게시판에 **팀 별로 제출**
- 일요일 오후 6시까지