NOM:

R1.06 - Mathématiques discrètes Contrôle Terminal

Nom du responsable :	A. Ridard
Date du contrôle :	Mardi 9 novembre 2021
Durée du contrôle :	1h30
Nombre total de pages :	6 pages
Impression:	A4 recto-verso agrafé (1 point)
Documents autorisés :	A4 recto-verso manuscrit
Calculatrice autorisée :	Non
Réponses :	Directement sur le sujet

Exercice 1.

On considère l'ensemble $E = [0, 9] = \{0, 1, 2, \dots, 9\}$ et $A = \{0, 2, 4, 6, 8\}$, $B = \{5, 7, 9\}$ deux parties de E.

1. Compléter les définitions **en compréhension** suivantes :

(a)
$$E = \{n \in \mathbb{N} \mid$$

(b)
$$A = \{n \in E \mid$$

2. Résoudre dans $\mathcal{P}(E)$ chacune des équations ensemblistes suivantes :

(a)
$$A \cap X = \{0, 4, 8\}$$

(b)
$$A \cap X = \{0, 1, 2\}$$

(c)
$$B \cap X = \emptyset$$

(d)
$$B \cup X = \overline{A}$$

(e)
$$X \setminus A = B$$

3. Déterminer les ensembles suivants :

(a)
$$A\Delta \overline{B}$$

(b)
$$\mathcal{P}(B)$$

Exercice 2.

On considère $E = \{-2, -1, 0, 1, 2\}$ et $F = \{0, 1, 2\}$.

1. Dans cette question, on s'intéresse à la relation binaire \mathcal{R}_1 de E vers E définie par :

$$\forall x \in E, \forall y \in E, \ x \mathcal{R}_1 \ y \Longleftrightarrow x^2 = y^2$$

Représenter graphiquement \mathcal{R}_1 en complétant le diagramme cartésien :

2. Dans cette question, on s'intéresse à la relation binaire \mathcal{R}_2 de E vers E définie par :

$$\forall x \in E, \forall y \in E, \ x \mathcal{R}_2 \ y \Longleftrightarrow y = \left(\sqrt{x}\right)^2$$

(a) Représenter graphiquement \mathcal{R}_2 en complétant le diagramme sagittal :

$$\begin{array}{c|c}
 & \mathcal{R}_2 \\
\hline
 & -2 \\
\hline
 & -1 \\
\hline
 & 0 \\
\hline
 & 0 \\
\hline
 & 1 \\
\hline
 & 2 \\
\hline
\end{array}$$

(b) Déterminer la partie 1 de $E \times E$ correspondant à \mathcal{R}_2 .

3. Dans cette question, on s'intéresse à la relation binaire \mathcal{R}_3 de E vers E définie par :

$$\forall x \in E, \forall y \in E, \ x \mathcal{R}_3 \ y \Longleftrightarrow y = \sqrt{x^2}$$

Représenter graphiquement \mathcal{R}_3 en complétant les diagrammes ci-dessous :

4. Parmi les assertions suivantes, cocher celles qui sont vraies.

- Dans chaque situation (numérotée de 1 à 7), il est possible de cocher 0, 1 ou 2 case(s).
- Attention aux ensembles de départ et d'arrivée exprimés dans chaque situation. Pour rappel :

$$E = \{-2, -1, 0, 1, 2\}$$
 et $F = \{0, 1, 2\}$

Dans la situation 3, par exemple, on pourra s'aider de la représentation graphique de \mathcal{R}_2 demandée à la question 2.(a), mais il ne faut pas oublier de restreindre l'ensemble de départ à F c'est à dire retirer les éléments -2 et -1 au départ.

1. La relation binaire \mathcal{R}_1 de E vers E est une	□ fonction
	□ application
2. La relation binaire \mathcal{R}_2 de E vers E est une	□ fonction
	□ application
3. La relation binaire \mathcal{R}_2 de F vers E est une	□ fonction
	□ application
4. La relation binaire \mathcal{R}_2 de F vers F est une application	□ injective
	□ surjective
5. La relation binaire \mathcal{R}_3 de E vers E est une application	□ injective
	□ surjective
6. La relation binaire \mathcal{R}_3 de E vers F est une application	□ injective
	□ surjective
7. La relation binaire \mathcal{R}_3 de F vers F est une application	□ injective
	□ surjective

Exercice 3.

- 1. On considère $A = \{(x, y) \in \mathbb{R}^2 \mid y = 4x 1\}$ et $B = \{(x, y) \in \mathbb{R}^2 \mid \exists t \in \mathbb{R}, \ x = t + 1 \text{ et } y = 4t + 3\}.$
 - (a) Représenter graphiquement ² l'ensemble A.

(b) Montrer par double inclusion que A = B.

- 2. On considère $C = \{(x, y) \in \mathbb{R}^2 \mid y^2 = 1\}$ et $D = \{(x, y) \in \mathbb{R}^2 \mid y \le 0\}$
 - (a) Représenter graphiquement les ensembles C et D.

(b) Compléter la définition en compréhension suivante :

$$C \cap D = \{(x, y) \in \mathbb{R}^2 \mid y = 1\}$$

- 3. (question bonus) On considère $E = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ et $F = \{(x, y) \in \mathbb{R}^2 \mid y \ge 0\}$
 - (a) Représenter graphiquement l'ensemble E.

(b) Compléter la définition en compréhension suivante :

$$E \cap F = \left\{ (x, y) \in \mathbb{R}^2 \mid y = \right\}$$