1、实验名称及目的

传感器标定实验:基于前面的基础实验和分析实验,独立完成磁力计的标定。根据给出的磁力计误差模型,设计磁力计数据采集模型,用测得的数据和 LM 算法函数求出模型 参数的最优解,完成磁力计的标定,并绘制标定前后的指标对比图。

2、实验效果

标定后的最优化指标比标定前的最优化指标更小,最优化指标随着迭代次数的增加收敛的很快,并且趋向于常值 0.5。

3、文件目录

文件夹/文件名称		说明
rawdataFile	e_acc_A.bin	飞控飞行日志文件。
px4_read_binary_file.m		MATLAB 飞行日志读取处理函数。
acquire_data_ag.slx		获取飞控中加速度计数据模型文件。
calFunc.m		加速度计误差模型函数
calLM.m		对飞控中采集到的数据基于误差模型进行计算并标定。
lm.m		Levenberg-Marquardt 求解最小值函数。
readdata.m		飞控中的数据读取程序。

4、运行环境

序号	*************************************	硬件要求	
11, 4	人们 安本	名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 [®]	1
2	RflySim 平台免费版及以上	卓翼 H7 飞控 ^②	1
3	MATLAB 2017B 及以上	遥控器 [®]	1
4		遥控器接收器	1
5		数据线、杜邦线等	若干

- ① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: droneyee_zyfc-h7_default, 固件版本为: 1.12.1。其他配套飞控请见: http://doc.rflysim.com/hardware.html
- ③:本实验演示所使用的遥控器为:福斯 FS-i6S、配套接收器为:FS-iA6B。遥控器相关配置见:http://doc.rflysim.com/hardware.html

5、实验步骤

Step 1:

打开 MATLAB 软件, 在 MATLAB 中打开 acquire_data_ag.slx 文件, 在 Simulink 中, 点击编译命令。

Step 2:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图为生成的编译报告。

Step 3:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行或 点击 PX4 PSP: Upload code to Px4FMU, 弹出 CMD 对话框,显示正在上传固件至飞控中, 等待上传成功。

Step 4:

上传成功后, 打开 QGroundControl 软件。确认无人机机架及遥控器通设置如下:

Step 5:

遥控器的设置如下图。注:遥控器设置中, CH5 通道需设置为二段式开关, CH6 通道设置为三段式开关。

Step 6:

拨动遥控器的 CH5 到最底部,即: CH5>1500,自驾仪开始往 SD 卡中写入数据,然后按照下图所示面向六个方向放置自驾仪,并分别在每个方向逆时针或顺时针旋转自驾仪。最后,将遥控器 CH5 通道拨到最顶部,即: CH5<1500,会停止采集数据。

注:若暂时无法采集到飞控中的数据,可使用本实验文件夹中的"rawdataFile/e3_m_A. bin"文件,也可进行下一步实验,但需将 e3_m_A.bin 文件复制到本实验文件夹中。

① 朝上

② 朝下

③ 朝左

④ 朝右

⑤ 朝上

⑥ 朝下

Step 7:

读取数据。将 SD 卡取出,使用读卡器将文件" $log/e3_m_A.bin$ "复制到目录到本实验文件夹中,使用本实验所提供的函数,在 MATLAB 命令行中依次逐行输入:

clear:clc:

[datapoints, numpts]=px4_read_binary_file('e3_m_A.bin');

最终数据保存在"datapoints"中,数据个数保存在"numpoints"中。

Step 8:

打开 QGC 软件,在飞控与电脑正常连接的情况下,在"Vehicle Setup"-"参数"中,进行如下图的操作。

将记录的数值对应填写在 calLM.m 文件中,如下所示:

```
% 确认第 8 行程序中的 bin 文件名称是否与采集到的文件名称对应。
[datapoints, numpoints] = px4_read_binary_file('e3_m_A.bin');

CAL_MAG_SCALE = [1, 1, 1]';
CAL_MAG_OFF = [0, 0, 0]';
```

Step 9

在 MATLAB 中,运行 readdata.m 文件,MATLAB 将会弹出如下图像,该图像表示的是 Step 6 中采集的飞控中的磁力计数据。

Step 10:

运行 calLM.m 文件,即可弹出标定的结果如下图所示。其中 Figure 1 表示利用 LM 法 迭代过程中适应度函数的变化; Figure 2 表示未标记数据、LM 法标记数据、PX4 标记数据 的指标函数对比; Figure 3 表示未标定和标定后的数据对比。

MATLAB 命令行中也将弹出, 最终标定后的参数, 如下图所示。

```
命令行窗口

Km =

0.9827 0 0
0 1.0175 0
0 0 0.9977

|
bm =

-0.0092
-0.0037
-0.0226
```

6、参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版 社, 2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社,2020.