Pascaleff, Equivarant Lagh Branes & Representatus Sont -1 Y. Lekerii.

G C-suple sly-group eng. G=5h (T) B Borel subgrap

e-2. (***) 7 (524) Borel-weil: G/B has lie modes Z_{λ} s.t. $H^{\circ}(Z_{\lambda}) = V_{\lambda}$ there is hybert early A. c.g. SL2 ~ P' SLn ~ Fla Morror (Rietsch): R C G/BL, W Lie theoretically define) superpotil ? large du du gp. conferent of a part of opposite scholart divisors. (Flay Bupp. Fleg) E-g. SL2 C*CP' eg. Scholet statisfique D. W=2+2 SL3 Rc Fl3 $R = \left\{ \begin{pmatrix} 1 \times 2 \\ 1 & 1 \end{pmatrix} \middle| 2 \neq 0 \right\} \qquad W = x + y + \frac{x}{z} + \frac{y}{xy - z}$

HMS:
$$\mathcal{L}_{\lambda} \longrightarrow \mathcal{L}_{\lambda} \subset \mathcal{R}$$

 $V_{\lambda} = \Gamma(\lambda_{\lambda}) = HF^{\circ}(L_{\circ}, L_{\lambda}),$

o interesting feature of symplectic side! Canonical basis of intersection pts, coming from intersection pts. of Lagrangians (need q'=0)

The grap action is hidden on the A-side.

Go diesenot maturally act on R.

Equivarant stricties let us see this action in terms of symplectic geometry (holumorphic curves).
George Parallel in rep. theory: Georgeons Satake correspondere:
G Grg ² = $G^{L}(K)/G(O)$ $K = \mathbb{C}((+))$ G G G G G G G G G G G G G G G G G G G
$V_{\lambda} \leftarrow J_{\mu^{+}(G^{L}(\omega)[\lambda])}$
V _λ (G ^L (O)[λ]) * l M-V basis gres basis of this rep'n
Tunnakian fomalism tells us that these) one rep-of some group.
Q: What acts on Floer ahouslay? Ans! SH*(R) vector fields g = Vect(G/B) = H°(N° Ta/3) Hero
g c Vect (G/B) C H (N° Ta/3)
= HIt'(Coh (G/B)) atrannia
5H*(R) = HH*(W(R)) = HH*(Gh((G/B)\D))
Symplectic eshandagy: Floer cahonalary for invex symple monifolds (org. Skin diffels or affine varieties)
generated by perodic sibility of a "gradate" Hamiltonian-? SC*(R)
of tell on the we defined a
d: Product & BV Product

SH"(R) To a BV algebra: grades countité product
lie bradeet of degree _1.
in particles: $SH^{2}(R)$ is a Lie algebra. (typically so - diniel).
Action: on wrapped Floer cohomology, via closed-open string maps,
gives a map ϕ_1 : $SUC(R)$ $CW^2(L,L)$.
$K = SC'(R) \rightarrow Hu(Cw^*(k,L),Cw^*(k,L))$ fits together into a map $SK^*(R) - \chi(C^*(w(R)))$.
fits together into a map SK (R) - ZIC (W(N)).
Also need to essider maps with multiple SC*(R) in put. (N. Sherridan).
Equivariant structure: Chasse (L: SC2(R) -> CW°(L,L)
s.t. $dc_1 = \phi^0$ ughes it invariant.
$\phi^{\circ}: \text{Vect} \longrightarrow \text{Ext}^{2}(\mathcal{E}, \mathcal{E})$
(K, CK), (L, CL)
Action agres (R): 0,(z)-42(c(z).)+42(, ck(z))
This is a cell-defined map SH2(R) -> End(I+W*(K,L))
(Building on Seidel - Solomon).

More compatibility condition to make this a map of the algebrar. Since SHA is typically or - digit, noise looking for a sub-algebra g - SH+(R) $SH^{2}(R) = Vect(G/B)(D) \supseteq Vect(G/B)$. (shall be listing-ished wing the superpotential W). Observations: For any Q: 1) H1(R) -> SH1(R) its maye is an abelian subalgebra. (maybe not maximal??) (Carta) 2) 14, (R; Z) - grading. (naybe root lattice ?? wal of come), (not lattice). 3) If Kand Lare singly anated Lagins, then ItW (K, L) came, a relative H_ (R; Z) grading. (gods set (a torso over)) 4) In general, we expect to find of = Lie G inside 542(RD = 6/BV) in away empetible of 1)-3). Case of $G = SL_2(C)$: $R = C^*W = X^*$. $L(n) \forall n$. SH°(R)= K[2,2] SH²(R) = K[z,z-1]0z = Vect(Gn), H(R).

< 02, 202, 2027 = 5l2=8"

Thin: L(k) may be made equivariant CL(k) = 0.

(when embedded this way)

then the subspace

HF°(L(0), L(k) c HW°(L(0), L(k))

To of - stable and is of-equiamntly

Konophic to $\Gamma(P', O(k))$

Manney SLz-agur. shicke.