Mathématique - DS n°6

L'usage de documents, de calculatrices ou de téléphones portables est interdit. Les étudiants sont invités à encadrer les résultats de leurs calculs.

Exercice 1

L'espace est muni d'un repère orthonormé direct $(\mathcal{O}, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

Soit S la sphère d'équation $x^2 + y^2 + z^2 - 4x - 2y + 1 = 0$ et soient

$$\mathcal{D}:\left\{ egin{array}{lll} x&=&2y+1\ z&=&y+4 \end{array}
ight. \qquad ext{et} \qquad \mathcal{D}':\left\{ egin{array}{lll} x-y+z+1&=&0\ 2x-y+9&=&0 \end{array}
ight.$$

deux droites.

- 1. Déterminer le centre et le rayon de S.
- 2. Expliciter les caractéristiques géométriques de \mathcal{D} et \mathcal{D}' .
- 3. Déterminer le ou les plans \mathcal{P} tangents à \mathcal{S} tels que \mathcal{D} et \mathcal{D}' soient parallèles à \mathcal{P} . On précisera le ou les points de contact entre \mathcal{S} et le ou les plans trouvés.

Exercice 2

Soit $a \in [-1, 1]$. On suppose l'existence d'une application f, continue sur \mathbb{R} , telle que $\forall x \in \mathbb{R}$, $f(x) = \int_0^{ax} f(t) dt$.

- 1. Calcul des dérivées successives de f
 - (a) Justifier l'existence d'une primitive F de f sur \mathbb{R} et en déduire une expression de f(x) en fonction de x, a et F.
 - (b) Justifier la dérivabilité de f sur $\mathbb R$ et montrer que, pour tout nombre réel x, f'(x) = af(ax).
 - (c) Démontrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} et que, pour tout nombre entier naturel n, on a $\forall x \in \mathbb{R}, \quad f^{(n)}(x) = a^{n(n+1)/2}f(a^nx).$
 - (d) En déduire, pour tout nombre entier naturel n, la valeur de $f^{(n)}(0)$.
- 2. Démontrer que, pour tout nombre réel x et tout nombre entier n, on a $f(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$
- 3. Soit A un nombre réel strictement positif.
 - (a) Justifier l'existence d'un nombre réel positif ou nul M tel que $\forall x \in [-A; A], |f(x)| \leq M$ et en déduire que, pour tout nombre entier naturel n, on a $\forall x \in [-A; A], |f^{(n)}(x)| \leq M$.
 - (b) Soit x un nombre réel appartenant à [-A;A].

 Démontrer que, pour tout nombre entier naturel n, on a $|f(x)| \leq M \frac{A^{n+1}}{(n+1)!}$.
 - (c) En déduire que f(x) = 0 pour $x \in [-A, A]$.
- 4. Que peut-on en déduire sur la fonction f?

Exercice 3

- 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application définie par $\forall (x,y) \in \mathbb{R}^2$, f(x,y) = (x, -x y, 0). On note F le sous-ensemble des vecteurs $(x,y,z) \in \mathbb{R}^3$ vérifiant z=0.
 - (a) Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 . En donner une famille génératrice.
 - (b) Montrer que f est linéaire.
 - (c) Établir que f est injective.
 - (d) Déterminer Im(f).

2. Soit $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ l'application linéaire définie par :

$$g(1,0,0) = (1,-1);$$
 $g(0,1,0) = (0,-1);$ $g(0,0,1) = (1,1).$

- (a) Soit $(x, y, z) \in \mathbb{R}^3$. Déterminer g(x, y, z).
- (b) Déterminer une base de Ker(g).
- (c) Montrer que q est surjective.
- (d) Les sous-espaces vectoriels $\operatorname{Ker}(g)$ et $\operatorname{Im}(f)$ sont-ils supplémentaires dans \mathbb{R}^3 ? Justifier votre réponse.
- 3. Soit $(x,y) \in \mathbb{R}^2$. Déterminer $(g \circ f)(x,y)$. Que peut-on dire de l'application $g \circ f$?

On étudie maintenant le cas général : soient E et F des \mathbb{K} -espaces vectoriels non nuls et $f:E\to F$ et $g:F\to E$ deux applications linéaires (qui ne sont plus les applications des questions précédentes).

On suppose que $g \circ f = id_E$.

- 4. (a) Montrer que f est injective et g surjective.
 - (b) Établir que $f \circ g$ est un projecteur de F.
 - (c) À l'aide d'une double-inclusion établir que : $Ker(g) = Ker(f \circ g)$ et $Im(f) = Im(f \circ g)$.
 - (d) Que peut-on conclure sur Ker(g) et Im(f)?

Exercice 4

Dans cet exercice, on pose $\forall x \in [0, +\infty[: F(x) = \frac{1}{2} \int_0^{\pi/2} \exp(-x \sin(t)) dt$.

- 1. Justifier l'existence de F(x) pour tout $x \in [0, +\infty[$.
- 2. Montrer (sans dérivation) que F est décroissante sur $[0, +\infty[$ et que l'on a $\forall x \in [0, +\infty[, 0 \leqslant \frac{\pi}{4}]]$
- 3. Montrer en étudiant une fonction et ses deux premières dérivées que l'on a $\forall t \in \left[0, \frac{\pi}{2}\right], \quad \frac{2}{\pi}t \leqslant \sin(t)$.
- 4. En déduire que l'on a $\forall x \in]0, +\infty[$, $F(x) \leqslant \frac{\pi}{4x} \left(1 e^{-x}\right)$, puis que l'on a $\lim_{x \to +\infty} F(x) = 0$.
- 5. (a) Montrer, en utilisant l'inégalité des accroissements finis, que l'on a $\forall (a,b) \in [0,+\infty[,\quad \left|e^{-a}-e^{-b}\right|\leqslant |a-b|.$
 - (b) En déduire que l'on a $\forall (x,y) \in [0,+\infty[,\quad |F(x)-F(y)| \leqslant \frac{1}{2}|x-y|.$
 - (c) En déduire que F est continue sur $[0, +\infty[$.
- 6. (a) Montrer rigoureusement que F est strictement décroissante sur $]0, +\infty[$.
 - (b) Montrer que l'équation F(x)-x=0 admet une unique solution notée α sur $[0,+\infty[$.
 - (c) On définit la suite $(u_n)_{n\in\mathbb{N}}$ par : $u_0\in[0,+\infty[$ fixé et $\forall n\in\mathbb{N}, \quad u_{n+1}=F(u_n).$ Montrer que l'on a $\forall n\in\mathbb{N}, \quad |u_{n+1}-\alpha|\leqslant \frac{1}{2}|u_n-\alpha|.$
 - (d) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers α .