Здесь лежит учебник Круглова, издание 2016 года.

1 Теорема Серпинского (1.2.7)

Обозначение класса всех подмножеств: 2^{Ω} .

Определение 1.1. Класс $\mathcal{E} \in 2^{\Omega}$ называется

- π -классом, если он замкнут относительно пересечения своих элементов $(\forall A, B \in \mathcal{E} : A \cap B \in \mathcal{E})$
- ullet алгеброй, если $\Omega, A \cup B, A^c \in \mathcal{E}$
- σ -алгеброй, если он является алгеброй и содержит счётное объединение любых своих подмножеств. σ -алгеброй, nopo mode mod
- монотонным, если $\forall A_n \uparrow : \cup_{i=1}^{\infty} A_i \in \mathcal{E}, \forall A_n \downarrow : \cap_{i=1}^{\infty} A_i \in \mathcal{E}$
- λ -классом, если $\Omega, A \setminus B, \bigcup_{i=1}^{\infty} A_i \in \mathcal{E}$ при $B \subseteq A, A_n \uparrow$.

Если класс является π - и λ -классом, то он σ -алгебра. Кроме того, все эти специальные классы замкнуты относительно пересечения, то есть любое пересечение, например, алгебр является алгеброй.

Если L - один из специальных классов, определённых выше, то $L \cap B$ - класс того же типа, $\forall B \in 2^{\Omega}$. Кроме того, если L - образ некоторого отображения, то его прообраз также является классом того же типа. Если же есть L - прообраз некоторого отображения в Ω' , то класс множеств из Ω' , прообразы которых лежат в L, является классом того же типа.

Вообще, следующая теорема содержит два утверждения. Круглов пишет, что первое из них - теорема Серпинского, а второе - теорема о монотонном классе. Но раз они сформулированы вместе, думаю, что теормин этого билета содержит оба утверждения.

Теорема 1.2 (Серпинский). Справедливы следующие утверждения:

- 1. Если π -класс \mathcal{E} содержится в λ -классе \mathcal{D} , то $\sigma(\mathcal{E}) \subseteq \mathcal{D}$.
- 2. Если алгебра \mathcal{A} содержится в монотонном классе \mathcal{M} , то $\sigma(\mathcal{A}) \subseteq \mathcal{M}$.

Идея доказательства. 1. Пусть $\lambda(\mathcal{E})$ - минимальный λ -класс, содержащий \mathcal{E} . Для произвольного $A \in \mathcal{E}$ вводится класс $\mathcal{L}(A)$ множеств $B \in \lambda(\mathcal{E})$ таких, что $A \cap B \in \lambda(\mathcal{E})$. Доказывается, что $\mathcal{L}(A)$, является λ -классом и проверяется, что $\mathcal{E} \subseteq \mathcal{L}(A)$. Поскольку $\mathcal{L}(A) \subseteq \lambda(\mathcal{E})$, получаем, что $\mathcal{L}(A) = \lambda(\mathcal{E})$.

Теперь берём $B \in \lambda(\mathcal{E})$ и класс $\mathcal{M}(B)$ множеств D таких, что $B \cap D \in \lambda(\mathcal{E})$. Это λ -класс и содержит π -класс \mathcal{E} . Откуда $\mathcal{M}(B) = \lambda(\mathcal{E})$. Тем самым доказано, что $\lambda(\mathcal{E})$ - π -класс. Тогда по утверждению до теоремы, $\lambda(\mathcal{E})$ - σ -алгебра. А дальше утверждается, что осталось заметить, что $\lambda(\mathcal{E}) \subset \lambda(\mathcal{D}) \subset \mathcal{D}$.

2. Похожие действия. Пусть $m(\mathcal{A})$ - минимальный монотонный класс, содержащий \mathcal{A} , далее, зафиксировав $A \in \mathcal{A}$, вводим класс $\mathcal{L}(A)$ множеств $B \in m(\mathcal{A})$ таких, что $B \setminus A \in m(\mathcal{A})$. Убеждаемся, что $\mathcal{L}(A)$ является монотонным классом, содержащим алгебру \mathcal{A} . Поэтому $m(\mathcal{A}) \subseteq \mathcal{L}(A) \subset \mathcal{M}$.

Теперь берём $B \in m(\mathcal{A})$, вводим класс $\mathcal{M}(B)$ множеств $D \in m(\mathcal{A})$ таких, что $D \setminus B \in m(\mathcal{A})$. Убеждаемся, что $\mathcal{M}(B)$ - тоже монотонный класс, содержащий алгебру \mathcal{A} . Тогда $m(\mathcal{A}) \subseteq \mathcal{M}(B)$. Поэтому $m(\mathcal{A})$ - λ -класс, содержащий π -класс \mathcal{A} . Тогда по первому утверждению сигма-алгебра $\sigma(\mathcal{A})$ содержится в $m(\mathcal{A})$. Замечаем, что $\mathcal{A} \subseteq m(\mathcal{A}) \subseteq \mathcal{M}$.

2 Измеримое пространство, прямое произведение измеримых пространств, цилиндрические множества (1.2.14 - 1.2.18)

Обозначение прямого произведения: $\times_{t \in T} \Omega_t$.

Определение 2.1. Пара (Ω, \mathcal{F}) , состоящая из некоторого множества Ω и некоторой σ -алгебры $\mathcal{F} \subseteq 2^{\Omega}$, называется измеримым пространством. Множества из \mathcal{F} называются измеримыми множествами.

Определение 2.2. Пусть есть множество измеримых пространств $(\Omega_t, \mathcal{F}_t), t \in T$. Тогда прямоугольник $\times_{t \in T} A_t$ называется *измеримым*, если все $A_t \in \mathcal{F}_t$.

Определение 2.3. Сигма-алгебра, порождённая измеримыми прямоугольниками с $A_t = \Omega_t$ для почти всех $t \in T$, называется *прямым произведением* σ -алгебр \mathcal{F}_t и обозначается $\otimes_{t \in T} \mathcal{F}_t$

Определение 2.4. Измеримое пространство $(\times_{t \in T} \Omega_t, \otimes_{t \in T} \mathcal{F}_t)$ называется *прямым произведением* измеримых пространств $(\Omega_t, \mathcal{F}_t), t \in T$.

Определение 2.5. Для любых $U \subset T, A \subseteq \otimes_{t \in T} \mathcal{F}_t$ множество $C_U(A)$ функций из $\times_{t \in T} \Omega_t$, сужения которых на U принадлежат A, называется *цилиндрическим множеством* c *основанием* A. Если U конечное (счётное), то $C_U(A)$ называется цилиндрическим множеством с *конечномерным* (счётно-конечным) основанием.

В адекватных обозначениях для конечномерного основания $U = \{t_1, \dots, t_n\}$: $C_U(A) = \{\omega \in (\times_{t \in T} \Omega_t \mid (\omega_{t_1}, \dots, \omega_{t_n}) \in A\}$. Важны два факта:

- 1. Прямое произведение $\times_{t \in T} \Omega_t$ является цилиндрическим множеством.
- 2. Дополнение цилиндрического множества суть цилиндрическое множество.

В обозначениях выше, справедливы следующие теоремы:

Теорема 2.6. Класс A цилиндрических множеств c конечномерными основаниями является алгеброй и $\sigma(A) = \bigotimes_{t \in T} \mathcal{F}_t$.

Идея Доказательства. Учитывая два факта выше, для доказательства, что \mathcal{A} - алгебра, достаточно показать, что в \mathcal{A} содержится любое пересечение $C_U(A) \cup C_V(B)$. Берутся два отображения π_1, π_2 , сужающие функцию ω_t на множества U и V соответственно. Дальше доказываются соотношения $C_{U \cup V}(\pi_1^{-1}(A)) = C_U(A), C_{U \cup V}(\pi_2^{-1}(B)) = C_V(B)$, после чего записывается равенство

$$C_U(A) \cup C_V(B) = C_{U \cup V}(\pi_1^{-1}(A) \cup (\pi_2^{-1}(B)) \in \mathcal{A}.$$

Вывод второй части теоремы заключается в том, что \mathcal{A} содержится в $\otimes_{t \in T} \mathcal{F}_t$, а кроме того в \mathcal{A} содержится любой прямоугольник $\times_{t \in T} A_t$, в том числе и если взять $A_t = \Omega_t$ для всех t, кроме конечного числа. Из этого следует, что $\sigma(\mathcal{A}) = \otimes_{t \in T} \mathcal{F}_t$.

Теорема 2.7. Пусть множество $B \subseteq \times_{t \in T} \Omega_t$. $B \in \otimes_{t \in T} \mathcal{F}_t \iff B = C_U(A)$ с конечномерным или счётным основанием A.

 $\mathit{Идея}\ \mathit{Доказательства}.$ Обозначим $\mathcal L$ класс цилиндрических множеств со счётно-конечными или конечномерными основаниями. Доказывается, что $\mathcal L$ является σ -алгеброй. Сложность представляет лишь проверка условия для счётного объединения, которая производится так же, как в доказательстве предыдущей теоремы, вводя сужающие отображения.

В силу того, что все цилиндрические множества с конечномерными основаниями лежат в \mathcal{L} , верно вложение $\otimes_{t\in T}\mathcal{F}_t\subseteq \mathcal{L}$. Осталось показать, что любое цилиндрическое множество с основанием U лежит в $\otimes_{t\in T}\mathcal{F}_t$. Если основание множества конечное, то утверждение, очевидно, справедливо. Если нет, то вводим класс \mathcal{L}_U множеств $A\in \otimes_{t\in U}\mathcal{F}_t$ таких, что $C_U(A)\in \otimes_{t\in T}\mathcal{F}_t$. Показывается, что \mathcal{L}_U является сигма-алгеброй. Кроме того, класс \mathcal{L}_U содержит все прямоугольники $\times_{t\in U}C_t, C_t\in \mathcal{F}_t$ (это проверяется довольно красиво, вводятся счётномерные прямоугольники D_m , в которых первые m сторон равны $C_k, k=1,\ldots,m$, а остальные возьмём Ω_t . Такие прямоугольники лежат в \mathcal{L}_U , а $\times_{t\in U}C_t=\cap_{m=1}^\infty D_m$). Ну значит $\otimes_{t\in U}\mathcal{F}_t\subseteq \mathcal{L}_U$, что и приводит нас к нужному утверждению.

Пример 2.7.1. Существуют множества не из прямого произведения сигма-алгебр. Положим $T=[0,1], \Omega_t=[0,2], \mathcal{F}_t=\mathcal{B}([0,2]).$ Множество $B=\{\omega\in \times_{t\in T}\Omega_t\mid \sup_{t\in T}\omega_t=1\}$ не лежит в $\otimes_{t\in T}\mathcal{F}_t.$ Доказываем от противного, применяя предыдущую теорему. По ней основание A цилиндрического множества B должно быть прямым произведением счётного числа $\mathcal{F}_{t_n}.$ Поскольку мощность T - континуум, можно изменить функцию $\omega\in B$, положив её равной 2 во всех точках $[0,1]\backslash\{t_n\}.$ Тогда её принадлежность B не изменится, но супремум уже будет равен 2, что приводит к противоречию.

3 Понятие случайного процесса. Теорема Колмогорова о существовании случайного процесса с данными конечномерными распределениями (3.1.1 – 3.1.4)

Мы живём в некотором вероятностном пространстве (Ω, \mathcal{F}, P) . Надо понимать, что у Круглова не случайный вектор является набором случайных величин, а случайная величина является одномерным случайным вектором. А случайный вектор - это измеримое отображение $\Omega \to R^d$. Измеримая функция же в свою очередь определяется точно так же, как мы привыкли, только вместо $\mathcal{B}(R)$ берётся $\mathcal{B}(R^d)$.

Определение 3.1. Произвольное семейство случайных векторов $X_t: \Omega \to R^d, t \in T$ называется *случайным процессом*.

Определение 3.2. Конечномерным распределением случайного процесса называется мера $P_{t_1,...,t_n}\{A\} = P\{(X_{t_1},...,X_{t_n}) \in A\}, A \in \mathcal{B}(R^{dn}).$

Семейство конечномерных распределений является основной характеристикой случайного процесса. Дальше в билете формулируем две теоремы о них: простую и фундаментальную (ну ясен пень, это ж Колмогоров! Ктонибудь видел не оч важную теорему Колмогорова?). Фундаментальность заключается в том, что она, по сути, гласит, что по заданным конечномерным распределениям можно построить случайный процесс.

Теорема 3.3. Конечномерные распределения удовлетворяют условиям согласованности:

$$P_{t_1,...,t_n}\{\times_{k=1}^n A_k\} = P_{t_{\pi(1)},...,t_{\pi(n)}}\{\times_{k=1}^n A_{\pi(k)}\}$$

$$P_{t_1,\dots,t_{n+1}}\{\times_{k=1}^n A_k \times R^d\} = P_{t_1,\dots,t_n}\{\times_{k=1}^n A_k\}$$

, где, очевидно, $t_i \in T$ - любые, $A_i \in \mathcal{B}(\mathbb{R}^d)$, π - перестановка.

 $\mathit{Идея}\ \mathit{doкaзameльcmsa}.\ \mathit{Идеи}\ \mathit{нет},\ \mathit{две}\ \mathit{строчки},\ \mathit{тупо}\ \mathit{по}\ \mathit{определению}.\ \mathit{He}\ \mathsf{бо-}$ имся, следующее доказательство отыграется. \square

Теорема 3.4 (Колмогоров). Пусть семейство вероятностей $P_{t_1,...,t_n}\{A\}, A \in \mathcal{B}(R^{dn})$ удовлетворяет условиям согласованности из предыдущей теоремы. Тогда существуют вероятность $P^T: \mathcal{B}((R^d)^T) \to [0,1]$ и случайный процесс $X = X_t, t \in T$, определённый на вероятностном пространстве $((R^d)^T, \mathcal{B}((R^d)^T), P^T),$ такие, что

$$P_{t_1,...,t_n}^T\{A\} = P_{t_1,...,t_n}\{A\}, \forall t_i \in T, A \in \mathcal{B}(\mathbb{R}^{dn})$$

.

Идея доказательства. Оно обосраться какое здоровое, страницы 3, но по сути строится мера $\mu\{C_U(A)\} = P_{t_1,\dots,t_n}\{A\}$ на алгебре цилиндрических множеств с конечномерными основаниями A, проверяется, что это действительно мера, и потом строится искомая P^T как продолжение этой меры. Построив вероятность, процесс строится тупо полагая $X_t(\omega) = \omega_t, \forall \omega \in (R^d)^T, t \in T$.

4 Эквивалентные, неотличимые, одинаково распределенные, непрерывные случайные процессы (3.1.6 - 3.1.12)

Определение 4.1. Случайные процессы $\{X_t, t \in T\}$ на (Ω, \mathcal{F}, P) и $\{X'_t, t \in T\}$ на $(\Omega', \mathcal{F}', P')$ называются одинаково распределёнными, если для любых t_1, \ldots, t_n, A выполнено

$$P\{(X_{t_1},\ldots,X_{t_n})\in A\}=P'\{(X'_{t_1},\ldots,X'_{t_n})\in A\}$$

.

Определение 4.2. Пусть случайные процессы X_t, X_t' определены на одном вероятностном пространстве и принимают значения в R^d . Если $\forall t \in T: P\{X_t \neq X_t'\} = 0$, то эти процессы называются эквивалентными. Эквивалентные случайные процессы называются версиями друг друга.

Если интерпретировать T как время, то эквивалентность означает равенство почти наверное в любой фиксированный момент времени. Понятно, что эквивалентные процессы одинаково распределены.

Определение 4.3. Пусть случайные процессы X_t, X_t' определены на одном вероятностном пространстве и принимают значения в R^d . Пусть есть некое Ω' такое, что $P\{\Omega'\}=1$ и $\forall \omega \in \Omega'$ совпадают траектории $X_t(\omega)$ и $X_t'(\omega)$. Такие случайные процессы называются $neom_{\Lambda}u$ чимыми.

Неотличимые случайные процессы эквивалентны. Неотличимость — самое сильное из возможных свойство двух процессов, далее эквивалентность и только потом одинаковая распределённость. Однако, если потребовать некоторые дополнительные условия на процессы и/или множество T, то можно показать, что и из эквивалентности следует неотличимость. Этому посвящены следующие две теоремы.

Теорема 4.4. Эквивалентные процессы со счётным множеством T неотличимы.

Идея доказательства. В качестве Ω' из определения неотличимых процессов возьмём $\cap_{t \in T} \{X_t = X_t'\} \in \mathcal{F}$.

Для следующей теоремы понадобится ещё одно

Определение 4.5. Случайный процесс называется (*noчти*) *непрерывным* (*непрерывным слева/справа*), если (почти) все его траектории непрерывны (непрерывны слева/справа).

Теорема 4.6. Если эквивалентные процессы почти всюду непрерывны слева/справа, а множество T выпукло, то они неотличимы.

Идея доказательства. Берём Ω'' как в предыдущей теореме, только на $T \cap Q$, где Q - множество рациональных чисел. Для Ω'' всё хорошо. Все остальные t приближаем последовательностью $\{t_n\}, t_i \in T \cap Q$.

5 Стохастически непрерывные случайные процессы (3.1.13 - 3.1.14)

Я очень сильно подозреваю, что t^* и t_* - это супремум и инфимум T соответственно. Очень надеюсь, что это правда.

Определение 5.1. Случайный процесс $X = X_t, t \in T$ с выпуклым множеством T называется cmoxacmuчecku непрерывным cneba, если

$$\lim_{t \uparrow s} P\{\|X_t - X_s\| > \epsilon\} = 0, \forall \epsilon > 0, s > t_*$$

Стохастическая непрерывность справа:

$$\lim_{t \downarrow s} P\{\|X_t - X_s\| > \epsilon\} = 0, \forall \epsilon > 0, s < t^*$$

Случайный процесс называется стохастически непрерывным, если он стохастически непрерывен слева и справа.

Определение 5.2. Случайный процесс называется *равномерно стохасти- чески непрерывным.* если

$$\lim_{h \to 0} \sup_{|t-s| < h} P\{ ||X_t - X_s|| > \epsilon \} = 0, \forall \epsilon > 0$$

Теорема 5.3. Стохастически непрерывный случайный процесс равномерно стохастически непрерывен.

Идея доказательства. Стохастическая непрерывность: $\lim_{t\to s} P\{\|X_t - X_s\| > \epsilon\} = 0, \forall \epsilon > 0, s \in T$. Доказываем от противного, отсутствие равномерности означает, что $\sup_{\|t-s\|< h_n} P\{\|X_t - X_s\| > \epsilon\} > \alpha$, для некоторых $\epsilon, \alpha > 0$ и монотонно убывающей последовательности $\{h_n\}, h_n \downarrow 0$. Берём подпоследовательности t_n, s_n , сходящиеся к некоторому числу s, такие, чтобы для них было верно $P\{\|X_{t_n} - X_{s_n}\| > \epsilon\} > \frac{\alpha}{2}$. Противоречие возникает, если устремить $n\to\infty$ в неравенстве

$$P\{\|X_{t_n} - X_{s_n}\| > \epsilon\} \le P\{\|X_{t_n} - X_s\| > \frac{\epsilon}{2}\} + P\{\|X_{s_n} - X_s\| > \frac{\epsilon}{2}\}$$

6 Теорема существования сепарабельных случайных процессов (3.2.1 - 3.2.5)

Рассматривается задача: вычислить вероятность того, что траектории случайного процесса лежат в данном множестве. Фишка в том, что эта задача может оказаться некорректной для некоторого процесса X (например для $X_t(\omega)=1$ при $\omega\in A$, иначе 0, для неборелевского $A\subset [0,1]$). С другой стороны, можно взять процесс Y, эквивалентный X (в примере выше просто $Y_t=0$), для которого задача будет звучать корректно. Это утверждение верно для любого X и является теоремой, которую мы сформулируем дальше (доказана Дубом. Даже Дуб что-то может доказать, а ты нет...). Процесс Y называют сепарабельной версией X. Определим теперь всё более формально.

Кроме уже надоевшего процесса X, определённого на вероятностном пространстве (Ω, \mathcal{F}, P) со значениями в R^d , введём ещё обозначение $\overline{X(U,\omega)}$. Это замыкание множества $X(U,\omega)=\{X_t(\omega)\mid t\in U\}$. Кроме того, назовём относительным интервалом пересечение $(a,b)\cap T$ вещественного интервала (a,b) и множества T.

Определение 6.1. Случайный процесс называется *сепарабельным*, если существует конечное или счётное $S \subset T$ и событие $N \in \mathcal{F}, P\{N\} = 0$ такие, что

$$X_u(\omega) \in \cap_{J:u \in J} \overline{X(J \cap S, \omega)}$$

для любых $u \in T$ и $\omega \notin N$, а J - относительный интервал, содержащий u. Пересекаем по всем таким J. S называется cenapahmoй, а N - ucknowledge menshum cofumuem случайного процесса.

Смысл условия в определении заключается в том, что почти каждая траектория случайного процесса определяется своими значениями на счётном множестве S. Понятно, что процесс может быть несепарабельным только в случае несчётного T, иначе можно просто взять S=T. Верно также утверждение, что почти всюду непрерывный слева/справа процесс с выпуклым T является сепарабельным. Следующая теорема является критерием сепарабельности случайного процесса.

Теорема 6.2. Случайный процесс сепарабельный \iff существуют счётное множество S, событие нулевой вероятности N такие, что для любого замкнутого множества $K \subset \overline{R}^d$ и относительного интервала J

$$\bigcap_{t \in J \cap S} \{ X_t \in K \} \subseteq \bigcap_{t \in J} \{ X_t \in K \} \cup N$$

или (эквивалентное условие)

$$\cap_{t \in J \cap S} \{ X_t \in K \} \subseteq \{ X_u \in K \} \cup N, \forall u \in J$$

 $\mathit{Идея}\ \mathit{doкaзameльcm6a}.\ \mathsf{Докaзывaетc}\ \mathsf{q}$ цепочка следствий: условие в определении сепарабельного процесса \Longrightarrow первое утверждение теоремы \Longrightarrow второе

утверждение теоремы \Longrightarrow условие в определении сепарабельного процесса. Каждое из них несложно и разбирается непосредственно при запоминании доказательства.

Теорема 6.3. Для любого случайного процесса найдутся счётное множество $S \subset T$ и события $N^u \in \mathcal{F}, u \in T$ нулевой вероятности такие, что

$$X_u(\omega) \in \cap_{J:u\in J} \overline{X(J\cap S,\omega)}$$

для любых $u \in T \ u \ \omega \notin N^u$.

Идея доказательства. Рассуждая как в доказательстве предыдущей теоремы, получим, что утверждение в этой теореме равносильно

$$\cap_{t \in J \cap S} \{ X_t \in K \} \subseteq \{ X_u \in K \} \cup N^u$$

Дальше какие-то нее*ические финты ушами для доказательства этого утверждения. $\hfill \Box$

Теперь самое время для, собственно, основной теоремы. Предварительно только определим cenapaбельную версию процесса X, как некий эквивалентный процесс Y, обладающий свойством сепарабельности.

Теорема 6.4. Любой случайный процесс X имеет сепарабельную версию $Y, Y_t: \Omega \to \overline{R}^d$.

Идея доказательства. Берём S, N^u из предыдущей теоремы. Обозначаем M^u множество всех тех ω , для которых не выполняется утверждение в предыдущей теореме. Очевидно, $M^u \in N^u, P\{M^u\} = 0$. Вводим процесс $Y = \{Y_u, u \in T\}$, где $Y_u(\omega)$ совпадает с $X_u(\omega)$ везде, кроме случая, когда $u \notin S, \omega \in M^u$. В этом случае берём $Y_u(\omega) = x$, где x - любая точка множества $\bigcap_{J:u \in J} \overline{X}(J \cap S, \omega)$ (хотя бы одна существует, это доказывается в первой главе книги).

Последнее утверждение касается сепарант сепарабельных стохастически непрерывных процессов с выпуклым множеством T.

Теорема 6.5. Если процесс сепарабельный и стохастически непрерывный с выпуклым множеством T, то в качестве сепаранты можно взять любое всюду плотное множество счётное множество $S \subset T$.

Идея доказательства. Берём N, S_0 - некоторые исключительное событие и сепаранта, S - произвольное всюду плотное множество. Приближаем u последовательностью $\{s_n\}, s_n \in S$, чтобы ещё и $\|X_{s_n} - X_u\|$ сходилось к 0 по вероятности. Можно считать, что последовательность сходится тогда почти всюду(иначе выберем подпоследовательность, сходящуюся почти всюду). Вводим событие $N^u = \Omega \setminus \{\lim_{n \to \infty} \|X_{s_n} - X_u\| = 0\}$. Оно нулевой вероятности. Вводим новое событие $N_0 = N \cup \cup_{u \in S_0} N^u$. Оно тоже нулевой вероятности, а дальше показывается, что оно и будет исключительным событием для сепаранты S.

7 Свойства вещественных сепарабельных процессов (3.2.6)

Обозначим J(T) - класс всех относительных интервалов множества $T\subseteq R$, $\mathcal E$ - класс множеств вида $[-\infty,a],[a,b],[a,\infty],a\le b,a,b\in R$. В формулировке следующей теоремы выбираются любые множества: $J\in J(T), K\in \mathcal E, u\in J, \omega\notin N$, где N - исключительное событие.

Теорема 7.1. Пусть всё так же есть вещественный случайный процесс X, который ещё и сепарабелен c сепарантой S и исключительным событием N. Тогда следующие утверждения эквивалентны:

1.
$$\cap_{t \in J \cap S} \{X_t \in K\} \subseteq \cap_{t \in J} \{X_t \in K\} \cup N$$

2.
$$\inf_{t \in J} X_t(\omega) = \inf_{t \in J \cap S} X_t(\omega);$$

 $\sup_{t \in J} X_t(\omega) = \sup_{t \in J \cap S} X_t(\omega)$

3.
$$\inf_{t \in J \cap S} X_t(\omega) \le X_u(\omega) \le \sup_{t \in J \cap S} X_t(\omega)$$

4.
$$\lim_{J\ni t\to u}\inf X_t(\omega) = \lim_{J\cap S\ni t\to u}\inf X_t(\omega);$$

 $\lim_{J\ni t\to u}\sup X_t(\omega) = \lim_{J\cap S\ni t\to u}\sup X_t(\omega)$

5.
$$\lim_{J \cap S \ni t \to u} \inf X_t(\omega) \le X_u(\omega) \le \lim_{J \cap S \ni t \to u} \sup X_t(\omega)$$

Эти пять условий на самом деле довольно просто запоминаются мнемонически, достаточно помнить, что 1 - это просто из теоремы предыдущего билета, 2 - два одинаковых утверждения для точных нижних и верхних граней, меняется (сужается) лишь множество, в котором мы смотрим t, третье - тупо неравенство для инфимума и супремума из второго, а 4 и 5 - по сути 2 и 3, только с добавленными пределами при $t \to u$.

Идея доказательства. Доказываем цепочку следствий: $1\Longrightarrow 2\Longrightarrow 3\Longrightarrow 4\Longrightarrow 5\Longrightarrow 1.$

8 Достаточные условия непрерывности случайных процессов (3.3.1 - 3.3.4)

Теорема 8.1. Сепарабельный случайный процесс с выпуклым множеством T почти всюду непрерывен, если

$$\lim_{h \downarrow 0} P\{ \sup_{|s-t| < h} ||X_s - X_t|| > \epsilon \} = 0, \forall \epsilon > 0$$

 $\mathit{Идея}\ \mathit{доказательства}.$ То, что должно быть больше эпсилона, – убывающая последовательность $Z_h.$ Тогда есть её предел. В силу условия теоремы, этот предел Z равен нулю почти всюду. Тогда траектории непрерывны в любом $\omega \in Z.$

Теорема 8.2. Сепарабельный случайный процесс c T = [a, b] почти всюду непрерывен \iff выполнено условие из предыдущей теоремы.

Идея доказательства. По предыдущей теореме следствие в одну сторону верно. В другую пользуемся теоремой Кантора, по которой из непрерывности почти всюду следует равномерная непрерывность почти всюду, а из сходимости почти всюду вытекает сходимость по вероятности.

Разница между первой и следующей теоремой в том, что в первой мы берём любые $s,t\in T$ внутри вероятности, а в этой смотрим супремум по s вероятностей, где s уже фиксированное.

Теорема 8.3. Сепарабельный случайный процесс с выпуклым множеством T почти всюду непрерывен, если

$$\lim_{h\downarrow 0} \frac{1}{h} \sup_{s\in T} P\{\sup_{|s-t|< h} \|X_s - X_t\| > \epsilon\} = 0, \forall \epsilon > 0$$

Идея доказательства.

Последняя теорема - какой-то пи**ец, запомнить можно, доказывать не советую. Выглядит полезно и классно, и оценка скорости равномерной сходимости, и все дела, но это всё вплоть до доказательства.

Теорема 8.4. Пусть случайный процесс с выпуклым множеством T удовлетворяет условию:

$$P\{||X_s - X_t|| \ge p(|t - s|)\} \le q(|t - s|)$$

для любых $s,t\in T:|t-s|<\delta,\delta>0$ и для некоторых функций $p,q:[0,\delta]\to R_+$ таких, что

$$\int_0^\delta \frac{p(u)}{u} du < \infty, \int_0^\delta \frac{q(u)}{u^2} du < \infty.$$

Тогда существует непрерывная версия Y процесса X. Более того, для любого конечного отрезка $[a,b]\subseteq T$ существует функция $H:\Omega\to\{1,2,\ldots\}$ такая, что $\forall\omega\in\Omega,h\in(0,2^{-H(\omega)}\wedge\delta)$ выполнено неравенство

$$\sup_{s,t \in [a,b]: |t-s| < \frac{h}{2}} \|Y_s(\omega) - Y_t(\omega)\| \le \frac{2}{\ln 2} \int_0^h \frac{p(u)}{u} du$$

 $\mathit{Идея}\ \mathit{доказательства}.$ Эта жопа разбивается на 5 пунктов, каждый из которых всё больше обобщает теорему.

9 Теорема Колмогорова о непрерывных случайных процессах (3.3.5)

Какая-то странная теорема Колмогорова... Во-первых потому, что Круглов не упомянул в учебнике, что это именно Колмогоров, во-вторых почему-то

она не очень фундаментально звучит, в-третьих, всего-то страница доказательства, а я с трудом верю, что Колмогоров называл своим именем то, что Тыртышникову очевидно. Ну да ладно, собственно, сама

Теорема 9.1 (Колмогоров). Если случайный процесс с выпуклым множеством T удовлетворяет условию

$$\mathsf{E}||X_t - X_s||^{\alpha} \le c|s - t|^{1+\beta}$$

для любых s,t и каких-то положительных a,b,c, то он имеет непрерывную версию Y со свойством

$$\lim_{h \downarrow 0} \frac{1}{h^{\gamma}} \sup_{s,t \in [a,b]: |t-s| < h} ||Y_t - Y_s|| = 0$$

для любого $\gamma \in (0, \frac{\beta}{\alpha})$ и любого сегмента $[a, b] \in T$.

Идея доказательства.

10 Функции без разрывов второго рода (3.4.1 - 3.4.5)

Определение 10.1. Функция $f: T \to R^d$ не имеет разрывов второго рода, если есть $f(t-) \forall t > t_*$ и $f(t+) \forall t < t^*$.

Доопределим $f(t_*-)=f(t_*), f(t^*+)=f(t^*).$ Разность $\Delta f(t)=f(t+)-f(t-)$ назовём скачком функции f в точке $t\in T,$ а $\|\Delta f(t)\|$ - величиной скачка.

Теорема 10.2. Пусть дана функция без разрывов второго рода. Тогда $\forall c > 0, a, b \in T, a < b$ множество $E_{c,a,b} = \{t \in [a,b] \mid \|\Delta f(t)\| \geq c\}$ конечно, а множество $E = \{t \in [a,b] \mid \|\Delta f(t)\| \geq 0\}$ конечно или счётно.

Идея доказательства.

Теорема 10.3. Если нет разрывов второго рода, то $\sup_{a \le t \le b} \|f(t)\| \le \infty, \forall a,b \in T$. Если, ко всему прочему, ещё $u \|\Delta f(t)\| \le c$ для некоторого c > 0 u всех t, то $\forall \epsilon > 0$, $a,b \exists \delta(\epsilon,a,b) > 0$ такое, что $\|f(t) - f(s)\| < c + \epsilon$ при любых $s,t \in [a,b], |t-s| < \delta$.

По сути утверждается, что точная верхняя грань конечна, а если скачки ограничены какой-то константой, то на любом сегменте для наперёд заданного эпсилона можно выбрать дельту так, чтобы функция за время, не большее, чем дельта, (всё ещё интерпретируем T как время) изменилась меньше, чем на ограничивающую константу плюс эпсилон.

Uдея доказательства.

Определение 10.4. Функция называется *регулярной справа*(слева), если она непрерывна справа(слева) в каждой точке $t \in T, t < t^*(t > t_*)$ и имеет предел слева(справа) в каждой точке $t \in T, t > t_*(t < t^*)$.

Теорема 10.5. Пусть функция определена на всюду плотном подмножестве S множества T. Предположим, что существуют $\lim_{S\ni s\uparrow t} f(s)=g(t-)\in R^d, \forall t\in T, t>t_*$ и $\lim_{S\ni s\downarrow t} f(s)=g(t+)\in R^d, \forall t\in T, t< t^*.$ Тогда функция $g(t-), t\in T, t>t_*$ регулярна слева, функция $g(t+), t\in T, t< t^*$ регулярна справа и $\sup_{t\in [a,b]\cap S} \|f(t)\| < \infty, \forall a,b\in T,a< b.$

Идея доказательства.

11 Случайные процессы без разрывов второго рода: знать формулировки теорем (3.4.7 - 3.4.8)

Спасибо Круглову за отсутствие необходимости знать доказательства, в противном случае можно было бы сразу идти на пересдачу.

Теорема 11.1. Пусть случайный процесс с выпуклым множеством $T, t_* \in T$ удовлетворяет условию

$$P\{\|X_{t_1} - X_{t_2}\|\|X_{t_2} - X_{t_3}\| \ge p(t_3 - t_1)\} \le q(t_3 - t_1)$$

для любых $t_i \in T, t_1 < t_2 < t_3, t_3 - t_1 < \delta, \delta > 0$ и для некоторых неубывающих функций $p,q:[0,\delta] \to R_+$ таких, что

$$\int_0^{\delta} \frac{p(u)}{u} du < \infty, \int_0^{\delta} \frac{q(u)}{u^2} du < \infty.$$

 ${\it Torda}\ {\it npoyecc}\ {\it X}\ {\it umeem}\ {\it версию}\ {\it Y}\ {\it без}\ {\it paspывов}\ {\it второго}\ {\it poda}.$

Теорема выше является обобщённым случаем второй теоремы.

Теорема 11.2 (Ченцов). Пусть случайный процесс с выпуклым множеством $T, t_* \in T$ удовлетворяет условию

$$\mathsf{E}(\|X_{t_1} - X_{t_2}\| \|X_{t_2} - X_{t_3}\|)^{\alpha} \le c|t_3 - t_1|^{1+\beta}$$

для некоторых $\alpha, \beta > 0, t_i \in T, t_1 < t_2 < t_3$. Тогда процесс X имеет версию Y без разрывов второго рода.

В некотором роде эти две теоремы являются аналогами теорем 8.4 и 9.1(Колмогорова), только там непрерывные, а здесь без разрывов второго рода.

12 Фильтрации и их свойства, естественные фильтрации случайных процессов (3.5.1 - 3.5.6)

Определение 12.1. Семейство $F_T = \{ \mathcal{F}_t \mid \mathcal{F}_t \subseteq \mathcal{F}, t \in T \}$ сигма-алгебр называется фильтрацией, если $\mathcal{F}_s \subseteq \mathcal{F}_t$ для любых $s < t, s, t \in T$.

Определение 12.2. Фильтрация называется *расширенной*, если любое множество $A \in \mathcal{F}$ нулевой вероятности принадлежит всем сигма-алгебрам \mathcal{F}_t .

Введём обозначения $\mathcal{F}_{t+} = \bigcap_{s>t} \mathcal{F}_s, \mathcal{F}_{t-} = \sigma(\mathcal{F}_s, s < t).$

Определение 12.3. Фильтрация называется *непрерывной справа*(слева), если $\mathcal{F}_t = \mathcal{F}_{t+}(\mathcal{F}_{t-} = \mathcal{F}_t), \forall t \in T.$

Фильтрация со счётным T непрерывна слева \Longleftrightarrow все сигма-алгебры равны между собой.

Пусть дана фильтрация F_T с выпуклым параметрическим множеством T. Введём следующие классы: $\mathcal{N} = \{A \mid A \in \mathcal{F}, P(A) = 0\}, \mathcal{G}_t = \sigma(\mathcal{F}_t, \mathcal{N}), \mathcal{G}_{t+} = \cap_{s>t} \mathcal{G}_s, \forall t < t^*, \mathcal{G}_{t^*+} = \mathcal{G}_{t^*}.$

Теорема 12.4. В обозначениях выше, для определённой выше фильтрации F_T справедливо, что фильтрация \mathcal{G}_{T+} непрерывна справа, расширена и обладает минимальным свойством в том смысле, что $\mathcal{G}_{t+} \subseteq \mathcal{H}_t, \forall t \in T$ для любой расширенной, непрерывной справа фильтрации $\{\mathcal{H}_t \mid \mathcal{F}_t \subseteq \mathcal{H}_t, \forall t \in T\}$.

Идея доказательства.

Определение 12.5. Случайный процесс называется *согласованным* с фильтрацией, если для любого t случайный вектор X_t измерим относительно \mathcal{F}_t .

Определение 12.6. Фильтрация $\mathcal{F}_T^{(X)}, \mathcal{F}_t^{(X)} = \sigma(X_s, s \leq t)$ называется естественной фильтрацией случайного процесса X.

Определение 12.7. Фильтрация $\mathcal{G}_{T}^{(X)}, \mathcal{G}_{t}^{(X)} = \sigma(\mathcal{F}_{t}^{(X)}, \mathcal{N})$ называется расширенной естественной фильтрацией случайного процесса X.

Случайный процесс согласован с каждой из своих естественных фильтраций. Если вспомнить, что мы привыкли интерпретировать T как время, то $\mathcal{F}_t^{(X)}$ содержит информацию о поведении процесса вплоть до времени $t\in T$

Теорема 12.8. Если случайный процесс с выпуклым множеством T непрерывен слева, то его естественные фильтрации $\mathcal{F}_T^{(X)}, \mathcal{G}_T^{(X)}$ тоже непрерывны слева.

 $\mathit{Идея}\ \mathit{доказательствa}.$

Теорема 12.9. Если случайный процесс с выпуклым множеством T стохастически непрерывен слева, то его расширенная естественная фильтрация $\mathcal{G}_T^{(X)}$ тоже непрерывна слева.

Идея доказательства.

13 Марковские моменты (3.6.1 - 3.6.7)

Определение 13.1. Функция $\tau: \Omega \to T \cup \{\infty\}$ называется F_T -марковским моментом или марковским моментом относительно фильтрации F_T , если $\{\tau \le t\} \in \mathcal{F}_t, \forall t \in T$.

Пример 13.1.1. Функция, тождественная равная $u \in T$, является марковским моментом, потому что множество $\{\tau \leq t\}$ либо \emptyset , либо Ω , а оба они лежат в любой сигма-алгебре.

Теорема 13.2. Если τ - марковский момент, то $\{\tau < t\} \in \mathcal{F}_t, \forall t \in T$.

Идея доказательства.

Теорема 13.3. Пусть множество T - счётное. Тогда функция τ является марковским моментом $\iff \{\tau = t\} \in \mathcal{F}, \forall t \in T$.

 $\mathit{Идея}\ \mathit{доказательствa}.$

Теорема 13.4. Функция τ является марковским моментом относительно непрерывной справа фильтрации с выпуклым множеством $T \iff \{\tau < t\} \in \mathcal{F}_t, \forall t \in T \ u \ \{\tau = \infty\} \in \mathcal{F}_{t^*}, \ ecnu \ t^* \in T.$

Идея доказательства.

Теорема 13.5. Пусть $\tau, \sigma: \Omega \to T \cup \{\infty\}$. Если τ - марковский момент относительно расширенной фильтрации F_t и почти всюду $\tau = \sigma$, то σ - марковский момент относительно F_t .

Идея доказательства.

Теорема 13.6. Если τ - марковский момент, то функция $\tau \wedge t$ измерима относительно \mathcal{F}_t для любого $t \in T$.

Идея доказательства.

Теорема 13.7. *Если* τ , σ - марковские моменты, то $\tau \wedge \sigma$, $\tau \vee \sigma$ - тоже марковские моменты.

Идея доказательства.

14 Сигма-алгебры, связанные с марковскими моментами (3.6.8 - 3.6.9)

Определение 14.1. С каждым F_T -марковским моментом τ связаны две σ -алгебры \mathcal{F}_{τ} и $\mathcal{F}_{\tau-}$.

Сигма-алгебра \mathcal{F}_{τ} состоит из множеств $A \in \sigma(\mathcal{F}_t, t \in T)$, для которых $A \cap \{\tau \leq t\} \in \mathcal{F}_t$. Она называется сигма-алгеброй событий, предшествующих марковскому моменту τ .

Сигма-алгебра $\mathcal{F}_{\tau-}$ порождается множествами $A \cap \{t < \tau\}, A \in \mathcal{F}_t$. Если дополнительно $t_* \in T$, то к классу порождающих множеств добавляются ещё все множества $A \in \mathcal{F}_{t_a}$.

Теорема 14.2. Пусть τ , σ - марковские моменты. Тогда верны следующие утверждения:

- 1. $\mathcal{F}_{\tau-} \subseteq \mathcal{F}_{\tau}$.
- 2. $\mathcal{F}_{\tau} \subseteq \mathcal{F}_{\sigma}, \mathcal{F}_{\tau-} \subseteq \mathcal{F}_{\sigma-} npu \ \tau \leq \sigma$.
- 3. $\mathcal{F}_{\tau \wedge \sigma} = \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$.
- 4. $\mathcal{F}_{\tau} \subseteq \mathcal{F}_{\sigma-} npu \ \tau < \sigma$.
- 5. $\{\tau \leq \sigma\}, \{\tau = \sigma\} \in \mathcal{F}_{\tau \wedge \sigma}$ $\{\tau < \sigma\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma-}$.
- 6. Ecnu $A \in \mathcal{F}_{\tau}$, mo $A \cap \{\tau \leq \sigma\}, A \cap \{\tau = \sigma\} \in \mathcal{F}_{\sigma}$.
- 7. Ecnu $A \in \mathcal{F}_{\tau}$, mo $A \cap \{\tau < \sigma\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma-}$.

Идея доказательства.

15 Измеримость марковских моментов и другие из свойства (3.6.10 - 3.6.15)

Теорема 15.1. Любой марковский момент τ измерим относительно σ -алгебры $\mathcal{F}_{\tau-}$.

Идея доказательства.

Теорема 15.2. Пусть дан марковский момент τ и \mathcal{F}_{τ} -измеримая функция $\sigma: \Omega \to T \cup \{\infty\}$. Тогда:

- 1. Если $\tau \leq \sigma$, то σ марковский момент.
- 2. $\forall A \in \mathcal{F}_{\tau}$ функция $\tau_A = \tau \mathbf{1}_A + \infty \mathbf{1}_{A^c}$ является марковским моментом.

Идея доказательства.

Теорема 15.3. Для любого марковского момента τ относительно фильтрации F_T с выпуклым множеством T существуют такие марковские моменты τ_n , что каждый из них принимает конечное число значений и $\tau_n \downarrow \tau$.

 $\mathit{Идея}\ \mathit{доказательствa}.$

Теорема 15.4. Пусть дана последовательность марковских моментов $\{\tau_n\}$. Если она убывает и $\forall \omega \in \Omega$ найдётся номер m, начиная c которого все $\tau_n(\omega) = \tau_m(\omega)$, то функция $\tau = \lim_{n \to \infty} \tau_n$ является марковским моментом.

Идея доказательства.

Теорема 15.5. Пусть даны марковские моменты τ_n . Если $\forall t_n \in T \sup_{n \to \infty} t_n \in T \cup \{\infty\}$, то $\tau = \sup_{n \to \infty} \tau_n$ - марковский момент $u \cup_{n=1}^{\infty} \mathcal{F}_{\tau_n} \subseteq \mathcal{F}_{\tau}$.

Идея доказательства.

Теорема 15.6. Пусть даны марковские моменты τ_n относительно фильтрации F_T . Если фильтрация непрерывна справа, а $T=1,2,\ldots$ или T=[a,b], или $T=[a,\infty)$, то функции

 $\limsup \tau_n, \liminf \tau_n, \sup \tau_n, \inf \tau_n, n \to \infty$

являются марковскими моментами и $\mathcal{F}_{\inf \tau_n} = \bigcap_{n=1}^{\infty} \mathcal{F}_{\tau_n}$.

Идея доказательства.

16 Предсказуемые марковские моменты (3.7.1 - 3.7.7)

Теперь у нас $T=[0,\infty)$ и фильтрация $F=\{\mathcal{F}_t\mid \mathcal{F}_t\subseteq \mathcal{F}, t\geq 0\}$. Соответственно, все марковские моменты берутся относительно этой фильтрации, теперь это функции вида $\tau:\Omega\to\overline{R}_+$.

Определение 16.1. Марковский момент называется *предсказуемым*, если $\exists \tau_n \uparrow, \tau_n < \tau$ на множестве $\{\tau > 0\}$ такая, что $\lim_{n \to \infty} \tau_n = \tau$. Сама последовательность называется *предвещающей*.

Дальше идут три примера:

- 1. $\forall \alpha \geq 0, A \in \mathcal{F}_{\alpha} : \tau = \alpha \mathbf{1}_{A} + \infty \mathbf{1}_{A^{c}}$ предсказуемый марковский момент. Марковский момент потому что теорема в предыдущем билете, предсказуемый потому что если $\alpha > 0$, то есть $\alpha_{n} \uparrow$ такая, что $\alpha_{n} \to \alpha$, ну и предвещающей последовательностью берём $\{\tau_{n} \land n\}$, где $\tau_{n} = \alpha_{n} \mathbf{1}_{A} + \infty \mathbf{1}_{A^{c}}$. А если $\alpha = 0$, то возьмём $\{\tau_{A} \land n\}$.
- 2. Сумма $\tau + \sigma$, где τ марковский момент, а σ предсказуемый марковский момент, является предсказуемым марковским моментом. В качестве предвещающей последовательности берём $\{\tau + \sigma_n\}$, где σ_n предвещающая последовательность для σ . Каждая из таких сумм марковский момент, потому что была такая задача в предыдущем параграфе, причём без решения, так что, видимо, просто потому что.
- 3. X случайный процесс: F-согласованный, непрерывный, вещественный (нашедший своё место в жизни, самореализовавшийся, семья, дети, все дела. Кто-нибудь помнит, что эти слова вообще значат?). Тогда $\forall c \in R: \tau = \inf\{t \geq 0 \mid X_t \geq c\}$ предсказуемый марковский момент. Потому что, бл*ть, гладиолус, дальше на страницу чё-то расписано, но сводится к тому, что предвещающая последовательность $\{\tau_n \wedge n\}$, где $\tau_n = \inf\{t \geq 0 \mid X_t \geq c \frac{1}{n}\}$.

Настало время теорем. Особенно неожиданным результатом кажется первое утверждение следующей теоремы.

Теорема 16.2. Предсказуемый марковский момент является марковским моментом; $\mathcal{F}_{\tau-} = \sigma(\cup_{n=1}^{\infty} \mathcal{F}_{\tau_n})$ для любой предвещающей последовательности τ_n .

 $\mathit{И}\mathit{des}\ \mathit{dorasame.}$

Теорема 16.3. Пусть τ, σ - предсказуемые марковские моменты. Тогда:

- 1. $\tau \wedge \sigma, \tau \vee \sigma$ предсказуемые марковские моменты.
- 2. $\{\tau \leq \sigma\}, \{\tau < \sigma\}, \{\tau \geq \sigma\}, \{\tau > \sigma\}, \{\tau = \sigma\} \in \mathcal{F}_{\tau-} \cap \mathcal{F}_{\sigma-}$.
- 3. $A \cap \{\tau \leq \sigma\}, A \cap \{\tau < \sigma\}, A \cap \{\tau = \sigma\} \in \mathcal{F}_{\tau-} \cap \mathcal{F}_{\sigma-}$ для любого $A \in \mathcal{F}_{\tau-}$

Идея доказательства.

Теорема 16.4. Пусть даны предсказуемые марковские моменты τ_n .

- 1. Если $\tau_n \uparrow$, то $\tau = \lim_{n \to \infty} \tau_n$ предсказуемый марковский момент.
- 2. Если $\tau_n\downarrow u$ для любого $\omega\in\Omega$ найдётся номер m, начиная c которого $\tau_n(\omega)=\tau_m(\omega),$ то $\tau=\lim_{n\to\infty}\tau_n$ предсказуемый марковский момент.

Идея доказательства.

Теорема 16.5. Пусть τ - предсказуемый марковский момент. Тогда $\forall A \in \mathcal{F}_{\tau-}$ функция $\tau_A = \tau \mathbf{1}_A + \infty \mathbf{1}_{A^c}$ - предсказуемый марковский момент.

Идея доказательства.