## Aprendizagem Ativa no Ensino Superior: a proposta da sala de aula invertida José Armando Valente

Depto. de Multimeios, Nied e GGTEUnicamp & Ced PucSP

## Introdução

O ensino superior enfrenta atualmente dois grandes desafios. Um, as salas de aulas cada vez mais vazias ou quando o aluno está presente, ele está fazendo outra coisa diferente do que acompanhar a aula. Outro desafio é a incapacidade de atender a grandeademalunos que querem ingressar no ensino superior. Assim, o modelo de universidade que faz pesquisa, gera conhecimento e distribui este conhecimento para poucos, já não se sustenta mais.

As alternativas desenvolvidas por consórcios de universidadæsicamas, como Edx iniciativa do MIT e Harvard (Edx, 2013) ou CourseWare, proposta por Stanford (Courseware, 2013); ou mesmo soluções adotadas por universidades brasileiras como a Universidade Aberta do Brasil, o Prouni, não resolvem o problema da sala de aula vazia, nem mesmo a capacidade de atender a alta demanda por um ensino de qualidade e com certificação. Assim, as soluções a serem adotadas exigem mudanças no processo de ensino e aprendizagem, que são muito mais profundas. Especificamente com relação à sala de aula, ela terá de ser repensada na sua estrutura, bem como na abordagem pedagógica que tem sido utilizada.

Aprendizagem ativa e a estratégia dada de aula invertida (ou flipped classroo) na aprendizagem ativa, em oposição à aprendizagem ativa, baseada na transmissão de informação, o aluno assume uma postura mais ativa, na qual ele resolve problemas, desenvolve projetos e, com isto, cria oportunidades para a construção de conhecimento. Diversas estratégias têm sido utilizadas portunidades para a prendizagem ativa como a aprendizagem baseada na pesquisa, o uso de jogos ou o problem based learning (PBL). MIT e Harvard adotaram a estratégia da "sala de aula invertida", implantada em algumas disciplinas. Estas universidades têm inovadonsétos de ensino, procurando adequados para que possam explorar os avanços das tecnologias educacionais, bem como minimizar a evasão e o nível de reprovação.

Harvard introduziu o método Peer Instructio(PRI), desenvolvido pelo Prof. Eric

Mazur. O PI consiste em prover material de apoio de modo que o aluno possa estudar o
conteúdo antes de freqüentar a sala de aula. Com base no material estudado, o aluno
responde um conjunto de questões, via um Learning Management (\$\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathcal{L}\mathca

Utilizando esta estratégia, foi verificado que os estudantes apresentam ganhos significativos na compreensão conceitual, avaliados com testes padronizados, bem como ganham habilidades para resolver problemas comparáveis aos adquiridos nas aulas tradicionais (Crouch; Mazur, 2001). Esta metodologia foi utilizada inicialmente na disciplina introdutória de Física Aplicada e atualmente está sendo introduzida em outros cursos e disciplinas, inclusive sendo usada para atrair alunos para as áreas de ciências, tecnologia, engenharia e matemática (Watkins; Mazur, 2013).

O MIT desenvolveu o Projeto TEALI/Sdio Physics, cujo responsável é o Prof. John Belcher(2001). Classes de aulas tradicionais foram transformadas em Estúdio de Física e a metodologia de ensino é baseada rechñology Enabled Active Learning (TEAL). Esta abordagem está sendo utilizada nas disciplinas introdutórias de Hísticaductory Mechanics (8.01) e Electricity and Magnetism (8.02), ministradas para todos os alunos em ingressam no MIT (cerca de 1.000 por ano).

A figura 1 mostra a organização de uma salasTEAL/Estúdio de Física. São duas salas, para cada disciplina, sendoada uma com 3.0 metros quadrados, contendo uma estaçã trabalho no centro da sala pao instrutor, cercado por 13 mesas redondas. Em cada mesa ser grupos de três alunos, sendo que cada grupo com um computador para exibir slides das a acessar informação e coletar dados experimentos.

Figura 1 – Sala de aula do TEAL/Estúdiode Física

Os grupos são formados por alunos cobferentes níveis de conhecimento. Antes da aula, o aluno deve estudar o material de apoio e responder, via LMS, um conjunto de questões (similar ao método PI). Durante a aula, o professor apresenta o material em aproximadamente 20 minutos, intercalados questões para discussão, visualizações e exercícios de lápis e papel. Os alunos usam simulações animadas, desenvolvidas para ajudálos a visualizar conceitos e realizaram experimentos em grupos, com o auxílio do computador na aquisição e análise dos dados. O professor faz perguntas periodicamente sobre conceitos, e os alunos discutem e respondem através do sistema de resposta interativo.

Por intermédio do Projeto TEAL/Studio Physics o MIT conseguiu bons resultados com relação ao aproveitamento dos alu**nes**uzindo a taxa de reprovação nas disciplinas, que era de aproximadamente 15% e a freqüência no final do semestre inferior a 50% (Belcher,2001).

As técnicas mencionadas implicam na implantação do que tem sido denominado na literatura de a "sala de aulavertida" (Educause, 2012). No ensino tradicional a sala de aula serve para o professor transmitir informação para o aluno que, após a aula, deve estudar e ser avaliado. Nesta nova abordagem, o aluno estuda antes da aula e a aula se torna um lugar de apendizagem ativa, onde há perguntas, discussões e atividades práticas. O professor trabalha as dificuldades dos alunos, ao invés de apresentações sobre o conteúdo da disciplina.

A implantação desta estratégia exige a adequação ou reestruturação da sala de aula,

como realizada pelo MIT, o uso de tecnologias educacionais para acesso à informação e resolução de problemas e a produção de material de apoio para que o aluno possa estudar antes da aula.

## Referências

- BELCHER, J. Studio Physics at MIT. MIT Physicsn&al, 2001. Disponível em: <a href="http://web.mit.edu/jbelcher/www/PhysicsNewsLetter.pd">http://web.mit.edu/jbelcher/www/PhysicsNewsLetter.pd</a>Acessado em: agosto de 2013.
- COURSEWARE What is courseware? Disponível <a href="http://courseware.stanford.edu/">http://courseware.stanford.edu/</a> Acessado em: agosto 2013.
- CROUCH, C. H.,; MAZUR, E. Peer Instruction: Ten years of experience and results. American Journal of Physics, 69, p. 970–977, 2001.
- EDUCAUSE Things you should know about flipped classrooms. 2012. Disponível em: <a href="http://net.educause.edu/ir/library/pdf/eli7081.phhcessado">http://net.educause.edu/ir/library/pdf/eli7081.phhcessado</a> em: julho 2013.
- EDX Página do Edx. Disponível emttps://www.edx.org/Acessado em: agosto 2013.
- WATKINS, J.; MAZUR, E.Retaining students in science, technology, engineering, and mathematics (STEM) majors. Coll. Sci. Teach., 42, 5, p. **26**, 2013. Disponível em: <a href="http://www.cssia.org/pdf/20000248etainingStudentsinSTEMMajors.pdfcessado">http://www.cssia.org/pdf/20000248etainingStudentsinSTEMMajors.pdfcessado</a> em: agosto 2013.