SC105- Calculus with Complex Variables

Home Work on Application of Partial Differential Equations

- 1. Show that the equation $u_t = c^2(u_{xx} + u_{yy} + u_{zz})$ with u = 0 on the boundary S of a closed and bounded region D and u(x, y, z, 0) = 0, has only the trivial solution i.e. $u = 0 \ \forall x, y, z \in D$ and $\forall t$.
- 2. Find the temperature in a bar of length 10 cm, and of homogeneous material with $c^2 = 1$, which is perfectly insulated laterally, whose ends are kept at temperature $0^o c$ and whose initial temperature (in o) is f(x), where (i) $f(x) = \begin{cases} x & \text{if } 0 \le x \le 5, \\ 0 & \text{if } 5 < x \le 10 \end{cases}$, (ii) f(x) = x(10 x).

 3. Find the temperature in a bar of length L which is perfectly insulated also at the ends at x = 0
- 3. Find the temperature in a bar of length L which is perfectly insulated also at the ends at x = 0 and x = L, assuming u(x, 0) = f(x). [Note: flux of heat through the face at the end is proportional to $\frac{\partial u}{\partial x}$].
- 4. Find the temperature $u_L(x)$ after a long time $t \to \infty$ in a bar of length L, which is partially insulated laterally and whose ends are kept in different temperatures, $u(0,t) = T_1$ and $u(L,t) = T_2$.
- 5. Find the temperature in a bar of length L and of homogeneous material, which is perfectly insulated laterally, whose ends are kept in different temperatures, $u(0, t) = T_1$, is given by $u(L, t) = T_2$ and whose initial temperature is proportional to f(x).
- 6. Show that the temperature in an infinite bar (with extends to infinity both side and is laterally perfectly insulated) with initial temperature given by u(x, 0) = f(x),

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} f(v)e^{\left(-\frac{(x-v)^2}{4a^2t}\right)} dv.$$

- 7. Find the deflection u(x,t) of the vibrating string (length $L=\pi$, ends fixed and $c^2=\frac{T}{\rho}=1$) corresponding to zero initial velocity and initial deflection f(x) prescribed as
 - $(i) f(x) = k(\sin x + \sin 3x),$
 - (ii) $f(x) = 0.01x(\pi x)$,
- 8. The forced vibrations of an elastic strings (of length L) under an external force $P = A\rho \sin \omega t$ per unit length and acting normal to the string are given by $u_{tt} = c^2 u_{xx} + P/\rho$. If the two ends are kept fixed and initial velocity is zero, initial deflection is prescribed as f(x), determine u(x,t). [Hint: $u(x,t) = \sum_{0}^{\infty} G_n(t) \sin \frac{n\pi x}{L}$ satisfies the boundary conditions; write Fourier sine series of P/ρ in term of $\sin \frac{n\pi x}{L}$; substituting the two in the equation for forced vibrations obtain the equations for $G_n(t)$].
- 9. Find the potential in the interior as well as exterior of the surface R = 1 if the potential on the surface is prescribed as (i) $f(\rho) = 1$, (ii) $f(\rho) = \cos^2 \rho$.