In the Claims

Carlort

Chillia

.dhulad

1.

. . . ;

- 13 M

1, 1

1-3 (cancelled)

4. (currently amended): Photosensitive composition according to claim 1, wherein component (B) is a compound of formula I or II

Alkaline developable, photosensitive composition comprising

- (A) at least one alkaline soluble binder resin, prepolymer or monomer component;
- (B) at least one compound of formula I or II

$$\begin{array}{ccccc}
Q-R_1 & & & & & \\
N & & & & & \\
N & & & & \\
Ar_1 & C-H & & \\
\end{array}$$

$$M_1 = C-H \\
X & (II),$$

wherein

 R_1 is C_2 - C_6 alkanoyl or C_2 - C_5 alkoxycarbonyl; or R_1 is benzoyl which is unsubstituted or substituted by one or more C_1 - C_6 alkyl or halogen;

Ar₁ is phenyl or naphthyl,

each of these radicals is substituted 1 to 5 times by halogen, C_1 - C_{20} alkyl, benzyl or C_1 - C_{20} alkanoyl; or said phenyl or naphthyl is substituted by phenyl or benzoyl, each of which optionally is substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or said phenyl or naphthyl is substituted by C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O- and/or optionally substituted by one or more OH; or said phenyl or naphthyl is substituted by OR_3 , SR_4 or NR_5R_6 , wherein the substituents OR_3 , SR_4 or NR_5R_6 optionally form 5- or 6-membered rings via the radicals R_3 , R_4 , R_5 and/or R_6 with further substituents on the phenyl or naphthyl ring or with one of the carbon atoms of the phenyl or naphthyl ring; or Ar_1 is furyl, pyrrolyl, thienyl, benzofuranyl, indolyl, benzothiophenyl or pyrridyl, provided that R_1 is acetyl; wherein each of these radicals is unsubstituted or substituted 1 to 4 times by halogen, C_1 - C_{20} alkyl, benzyl, C_3 - C_8 cycloalkyl, phenyl, C_1 - C_{20} alkanoyl, benzoyl, C_2 - C_{12} alkoxycarbonyl, phenoxycarbonyl, OR_3 , SR_4 , SOR_4 , SOR_4 , SOR_4 , SOR_5 0 or SR_5 1.

x : is 2;

$$\mathbf{M}_1$$
 is a group , \mathbf{M}_2 , \mathbf{M}_3 or

 C_{12} alkyl, benzyl, OR_3 , SR_4 or NR_5R_6 ; or by phenyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or by benzoyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or by C_1-C_{12} alkanoyl; or by C_2-C_{12} alkoxycarbonyl optionally interrupted by one or more -O-and/or optionally substituted by one or more hydroxyl groups;

 M_2 is a direct bond, -O-, -S-, -SS-, -NR₃-, -(CO)-, C₁-C₁₂alkylene, phenylene, -(CO)O-(C₂-C₁₂alkylene)-O(CO)-, -(CO)O-(CH₂CH₂O)_n-(CO)- or -(CO)-(C₂-C₁₂-alkylene)-(CO)-; or M₂ is C₄-C₁₂alkylene or C₄-C₁₂alkylenedioxy-, each of which is optionally interrupted by 1 to 5 -O-, -S- and/or -NR₃-;

 M_3 is a direct bond, -CH₂-, -O-, -S-, -NR₃- or -(CO)-;

R₃ is hydrogen or C₁-C₂₀alkyl; or R₃ is C₂-C₁₂alkyl which is substituted by -OH, -SH, -O(CO)-C₁-C₄alkyl, -O(CO)-phenyl, -(CO)O(C₁-C₄alkyl), -N(C₁-C₄alkyl)₂, -N(CH₂CH₂OH)₂, -N[CH₂CH₂O-(CO)-C₁-C₄alkyl]₂ or morpholinyl; or R₃ is C₂-C₁₂alkyl which is interrupted by one or more -O-; or R₃ is -C₁₂alkyl (CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)-C₁-C₈alkyl, phenyl-C₁-C₃alkyl, C₂-C₈alkanoyl, C₃-C₁₂alkenyl or C₃-C₈alkenoyl; or R₃ is benzoyl which is unsubstituted or substituted by one or more C₁-C₈alkyl, halogen or C₁-C₄alkoxy; or R₃ is phenyl or naphthyl each of which is unsubstituted or substituted by halogen or C₁-C₁₂alkyl, C₁-C₁₂alkoxy, phenyl-C₁-C₃-alkoxy, phenoxy, C₁-C₁₂alkylsulfanyl, phenylsulfanyl, -N(C₁-C₁₂alkyl)₂, diphenylamino or -(CO)R₇;

n is 1 to 20;

R₄ is hydrogen, C_1 - C_{20} alkyl, C_3 - C_{12} alkenyl, phenyl- C_1 - C_3 alkyl; C_2 - C_8 alkyl which is substituted by -OH, -SH, -O(CO)- C_1 - C_4 alkyl, -O(CO)-phenyl or -(CO)O(C_1 - C_4 alkyl); or R₄ is C_2 - C_{12} alkyl which is interrupted by one or more -O- or -S-; or R₄ is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)- C_1 - C_8 alkyl, C_2 - C_8 alkanoyl, C_3 - C_1 2alkenyl, C_3 - C_6 alkenoyl; or R₄ is phenyl or naphthyl each of which is unsubstituted or substituted by halogen, C_1 - C_1 2alkyl, C_1 - C_1 2alkoxy or -(CO)R₇;

 R_5 and R_6 independently of each other are hydrogen, C_1 - C_{20} alkyl, C_2 - C_4 hydroxyalkyl, C_2 - C_{10} alkoxyalkyl, phenyl- C_1 - C_3 alkyl, C_1 - C_4 alkanoyl, C_3 - C_{12} alkenoyl, benzoyl; or are phenyl or naphthyl:

nogen . Waga each of which is unsubstituted or substituted by C_1 - C_{12} alkyl or C_1 - C_{12} alkoxy; or R_5 and R_6 together are C_2 - C_6 alkylene optionally interrupted by -O- or -NR₃- and/or optionally substituted by hydroxyl, C_1 - C_4 alkoxy, C_2 - C_4 alkanoyloxy or benzoyloxy; and

 R_7 is hydrogen, C_1 - C_{20} alkyl; or is C_2 - C_8 alkyl which is substituted by halogen, phenyl, -OH, -SH, C_3 - C_6 alkenoxy, -O(CO)- C_1 - C_4 alkyl, -O(CO)-phenyl or -(CO)O(C_1 - C_4 alkyl); or R_7 is C_2 - C_{12} alkyl which is interrupted by one or more -O-; or R_7 is -(CH $_2$ CH $_2$ O) $_{n+1}$ H, -(CH $_2$ CH $_2$ O) $_n$ (CO)- C_1 - C_8 alkyl or C_3 - C_{12} alkenyl; or is phenyl optionally substituted by one or more halogen, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, phenoxy, C_1 - C_{12} alkylsulfanyl, phenylsulfanyl, -N(C_1 - C_{12} alkyl) $_2$, or diphenylamino; and

(C) a photopolymerizable compound.

5. (previously presented): Photosensitive composition according to claim 1, wherein component (B) is a compound of formula I or II, wherein

 R_1 is C_2 - C_4 alkanoyl;

Ar₁ is phenyl or naphthyl, each of which is substituted by halogen, C₁-C₈alkyl, NR₅R₆ or OR₃, wherein the substituents OR₃, optionally form 5- or 6-membered rings *via* the radicals R₃ with further substituents on the phenyl or naphthyl ring; or provided that R₁ is acetyl, Ar₁ is 2-furyl, 2-pyrrolyl, 2-thienyl, 3-indolyl;

M₁ is

x is 2:

 R_3 is C_1 - C_{20} alkyl; or R_3 is C_2 - C_{12} alkyl which is substituted by OH, -O(CO)- C_1 - C_4 alkyl, -N(C_1 - C_4 alkyl)₂, -N(CH₂CH₂OH)₂, -N[CH₂CH₂O-(CO)- C_1 - C_4 alkyl or morpholinyl; or R_3 is C_2 - C_{12} alkyl which is interrupted by one or more -O-; or R_3 is -(CH₂CH₂O)_{n+1}H or -(CH₂CH₂O)_n(CO)- C_1 - C_4 alkyl;

n is 1 to 3; and

R₅ and R₆ are C₁-C₄alkyl.

6.(original): Photosensitive composition according to claim 1, wherein the oligomer or polymer (A) is a binder polymer.

7. (original): Photosensitive composition according to claim 6, wherein the binder polymer is a

1.15(2).5

· : ÷,

danis

(名) 10%

. .

.

copolymer of (meth)acrylate and (meth)acrylic acid, or a resin obtained by the reaction of a saturated or unsaturated polybasic acid anhydride with a product of the reaction of an epoxy compound and an unsaturated monocarboxylic acid, or is an addition product formed between a carboxyl group-containing resin and an unsaturated compound having an α,β -unsaturated double bond and an epoxy group.

- 8. **(original):** Photosensitive composition according to claim 1, which additionally to the components (A), (B) and (C) comprises at least one photosensitizer compound (D).
- 9. (previously presented): Photosensitive composition according to claim 8, comprising 100 parts by weight of component (A), 0.015 to 120 parts by weight of component (B), 5 to 500 parts by weight of component (C) and 0.015 to 120 parts by weight of component (D).
- 10.(original): Photosensitive composition according to claim 1, comprising further additives (E), which are selected from the group consisting of epoxy compounds, thermal polymerization inhibitors; inorganic fillers, colourants, epoxy curing agents, amines, chain transfer agents, thermal radical initiators, photoreducable dyes, optical brighteners, thickeners, antifoaming agents and leveling agents, in particular inorganic fillers.
- 11. **(original):** Photosensitive composition according to claim 1, additionally comprising an epoxy compound which contains at least two epoxy groups in the molecule.
- 12. (original): Solder resist comprising a composition according to claim 1.
- 13. (original): Color filter resist comprising a composition according to claim 1.
- 14. **(orignal):** Process for the photopolymerization of compounds containing ethylenically unsaturated double bonds, which comprises irradiating a composition according to claim 1 with electromagnetic radiation in the range from 150 to 600 nm.
- 15. **(original):** Coated substrate which is coated on at least one surface with a composition according to claim 1.

.g . ''.1

- 16. **(original):** Process for the production of relief images, wherein a coated substrate according to claim 15 is subjected to imagewise exposure with electromagnetic radiation in the range from 150 to 600 nm, and then the unexposed portions are removed with a solvent.
- 17. **(original):** A color filter prepared by providing red, green and blue (RGB) color elements and, optionally a black matrix, all comprising a photosensitive composition according to claim 1 and a pigment on a transparent substrate and providing a transparent electrode either on the surface of the substrate or on the surface of the color filter layer.
- 18. (original): Process for forming images, wherein
- (1) the components of a composition according to claim 1 are mixed,
- (2) the resulting composition is applied to the substrate,
- (3) the solvent, if present, is evaporated, at elevated temperature,
- (4) the coated substrate is patternwise exposed to irradiation,
- (5) the irradiated sample is developed with aqueous alkaline solution, thereby removing the uncured areas and
- (6) the sample is thermally cured.
- 19. **(new):** Photosensitive composition according to claim 4, wherein compound (A) is an oligomeric or polymeric compound.
- 20. (new): Photosensitive composition according to claim 4, wherein the photopolymerizable compound (C) is a liquid.

ખુહ

Rul divis