逻辑、本体、推理以及实战工具与方法

王丛

文因互联 - Memect

2016年6月17日

目录

逻辑

Monotonic Logic

Non-monotonic Logic

本体

描述逻辑

规则

推理

工具

推理机

解析

存储

实战

Classic Logic

Computational Logic is trying to solve:

- how to formulate the model
- how to compute the model

Computational Logic has 3 components:

- ▶ a well-defined syntax
- ▶ a well-defined semantics
- ▶ a well-defined *proof-theory*

Propositional Logic - Syntax

Example: $\neg A \land B \lor C \rightarrow X \land \neg Y$

An atomic formula is a propositional variable. Formulas are defined by the following inductive process.

- All atomic formulas are formulas.
- ▶ For every formula F, $\neg F$ is a formula.
- ▶ For all formulas F and G, also $(F \lor G)$ and $(F \land G)$ are formulas.

Propositional Logic - Semantics

Define a function $\mathcal{A}:\mathcal{A}(F)\to\{0,1\}$, where F is a formula, and $\{0,1\}$ represents True and False.

- ▶ $A(F \land G) = 1$ if A(F) = 1 and A(G) = 1, otherwise 0
- ▶ $A(F \lor G) = 1$ if A(F) = 1 or A(G) = 1, otherwise 0
- ▶ $\mathcal{A}(\neg F) = 1$ if $\mathcal{A}(F) = 0$, otherwise 0

Propositional Logic - Proof

- ► Truth table
- ► Tableau Algorithm (Top-Down Tree)
- Resolution Algorithm (Bottom-Up Tree)

Tableau - Unsatisfiable

Given $\{(a \lor \neg b) \land b, \neg a\}$. Every branch is closed (conflicted).

Tableau - Satisfiable

Given $\{(a \land c) \land (\neg a \lor b)\}$. Exist a branch is not closed.

Resolution

- ► Normalize all statement into Disjunction Normal Formal (DNF)
- ▶ Inferring between two DNF clause, one has a positive elment, the other has the negation of it.
- ▶ Inferring until no new clause can be inferred.

Resolution - Cont.

First-Order Logic

Example:

Every cat is cute or extremely cute.

$$\forall x : Cat(x) \rightarrow Cute(x) \lor ECute(x)$$

Every cat has someone who loves it.

$$\forall x : Cat(x) \rightarrow \exists y : People(y) \lor Loves(y, x)$$

First-Order Logic - Syntax

- ▶ $P(x_1,...,x_k)$ is a formula.
- ▶ For each formula F, $\neg F$ is a formula.
- ▶ For all formulas F and G, $F \land G$ and $F \lor G$ are formulas.
- ▶ If x is a variable and F is a formula, $\exists xF$ and $\forall xF$ are formulas.

First-Order Logic - Semantics

Define U as a space, A as a function where mapping variables x in predicate P to some elements on the space, and mapping predicate P to a k-ary relation on the space.

- ▶ $\mathcal{A}(F(x_1,...,x_k)) = 1$ if $(\mathcal{A}(x_1),...,\mathcal{A}(x_k)) \in F^{\mathcal{A}}$, otherwise 0.
- ▶ $\mathcal{A}(F \land G) = 1$ if $\mathcal{A}(F) = 1$ and $\mathcal{A}(G) = 1$, otherwise 0.
- ▶ $A(F \lor G) = 1$ if A(F) = 1 or A(G) = 1, otherwise 0.
- ▶ $\mathcal{A}(\neg F) = 1$ if $\mathcal{A}(F) = 0$, otherwise 0.
- ▶ $\mathcal{A}(\forall xF) = 1$ if for all $x \in U_{\mathcal{A}}$, $\mathcal{A}(F(x)) = 1$, otherwise 0
- ▶ $\mathcal{A}(]\exists xF)=1$ if exists some $x \in U_{\mathcal{A}}$, $\mathcal{A}(F(x))=1$, otherwise 0

First-Order Logic - Semantics

$$F = \forall x \forall y (P(a) \land (P(x) \rightarrow Q(x, x)))$$

Example1:
$$U_A = \mathcal{N}, P^A = \mathcal{N}, Q^A = \{(n, k) | n < k\}$$

Example2:
$$U_{\mathcal{A}} = \{ \odot, \odot \}$$
, $P^{\mathcal{A}} = U_{\mathcal{A}}$, $Q_{\mathcal{A}} = \{ (\odot, \odot) \}$

First-Order Logic - Proof

The problem "Given a First-formula F, is F valid?" is undecidable. (proof by reduction of the Halting Problem.)

Reasoning Algorithms:

- ► Tableau
- Resolution

Monotonic Logic

The conclusion is not changed by the addition of premises.

- ▶ If $K \models F$, then $K \sqcup G \models F$.
- ▶ If $M \subseteq N$, then $\{F | M \models F\} \subseteq \{F | N \models F\}$.

- Typically birds fly.
- Penguins do not fly.
- ► Tweety is a bird.
- ► Tweety flies.

- Typically birds fly.
- Penguins do not fly.
- ► Tweety is a bird.
- Tweety flies.

- Typically birds fly.
- Penguins do not fly.
- Tweety is a bird.
- Tweety flies.
- ► Tweety is a penguin.

- Typically birds fly.
- Penguins do not fly.
- Tweety is a bird.
- ► Tweety flies.
- Tweety is a penguin.

If $K \models F$, then not necessarily $K \sqcup G \models F$.

- Typically birds fly.
- Penguins do not fly.
- Tweety is a bird.
- ► Tweety flies.
- Tweety is a penguin.

The previous conclusion must be retracted, such that Tweety does not fly will hold.

Non-monotonic History

Non-Monotonic logics have been proposed at the beginning of the 80's, here are historically the most important proposals.

- ▶ Non-monotonic logic, by McDermott and Doyle, '80
- Default Logic, by Reiter, '80
- Circumscription, by McCarthy, '80
- Autoepistemic logic, Moore, '84

Most of current research is based on these 3 main frames.

Problem: How to represent that objects are not affected by state change?

Example: Moving an object does not change its color.

- ightharpoonup color(x, c, s)
 ightharpoonup color(x, c, result(move, x))
- ► $color(x, c, s) \rightarrow color(x, c, result(open_door, x))$
- ▶ $color(x, c, s) \rightarrow color(x, c, result(a_cat_pass_by, x)$

We need a great number of frame axioms

Problem: How to represent that objects are not affected by state change?

Example: Moving an object does not change its color.

- ► $color(x, c, s) \rightarrow color(x, c, result(move, x))$
- ► $color(x, c, s) \rightarrow color(x, c, result(open_door, x))$
- ► $color(x, c, s) \rightarrow color(x, c, result(a_cat_pass_by, x)$

We need a great number of frame axioms

We nee a *General axiom* of such form: $holds(p, s) \land \neg exception(p, a, s) \rightarrow holds(p, result(a, s))$

But what action is not an exception? We need a non-monotonic reasoning mechanism.

We nee a General axiom of such form:

$$\mathit{holds}(\mathit{p},\mathit{s}) \land \neg \mathit{exception}(\mathit{p},\mathit{a},\mathit{s}) \rightarrow \mathit{holds}(\mathit{p},\mathit{result}(\mathit{a},\mathit{s}))$$

But what action is not an exception?

We need a non-monotonic reasoning mechanism.

▶ OWA (Open World Assumption):

Define: What is True only if it's known to be True Used in Semantic Web, assume no one has complete knowledge.

Monotonic Logic

OWA (Open World Assumption):
 Define: What is True only if it's known to be True
 Used in Semantic Web, assume no one has complete knowledge.

Monotonic Logic.

CWA (Closed World Assumption):
 Define: What is not known to be True, is False.
 Used in Database System, whhich is assumed to be complete.
 Also called Negation as failure.

► OWA (Open World Assumption):

Define: What is True only if it's known to be True Used in Semantic Web, assume no one has complete knowledge.

Monotonic Logic.

CWA (Closed World Assumption):

Define: What is not known to be True, is False.

Used in Database System, whhich is assumed to be complete.

Also called Negation as failure.

Non-monotonic Logic

► OWA (Open World Assumption):

Define: What is True only if it's known to be True Used in Semantic Web, assume no one has complete knowledge.

Monotonic Logic.

CWA (Closed World Assumption):

Define: What is not known to be True, is False.

Used in Database System, whhich is assumed to be complete.

Also called Negation as failure.

Non-monotonic Logic.

本体

本体是定义了关系 (semantics) 的一组领域词汇 (entities)

- ▶ **TBox** 类的关系 (subClassOf, objectProperty, etc.)
- ▶ RBox 关系的关系 (Property Chains, etc.)
- ► ABox 实例的关系 (typeOf, etc.)

本体语言

- ▶ RDF 实例的关系
- ▶ RDFS 类的关系
- ▶ OWL 基于描述逻辑 (DL) 的更加复杂的类关系
 - ▶ OWL EL Modelling 医学、法律本体
 - ► OWL RL Query
 - ▶ OWL QL Rule

RDF

RDF idea

■Use (directed) graphs as data model

Subject

Predicate

Object

"Resource Description Framework"

RDFS

Classes and Instances

- □ Classes stand for sets of things. In RDF: Sets of URIs.
- □ book:uri is a member of the class ex:Textbook

```
book:uri rdf:type ex:Textbook .
```

URI can belong to several classes

```
book:uri rdf:type ex:Textbook .
book:uri rdf:type ex:WorthReading .
```

classes can be arranged in hierarchies: each textbook is a book

```
ex:Textbook rdfs:subClassOf ex:Book .
```


RDFS cont.

Implicit knowledge

☐ if an RDFS document contains

```
u rdf:type ex:Textbook .
and
ex:Textbook rdfs:subClassOf ex:Book .
then
u rdf:type ex:Book .
```

is implicitly also the case: it's a logical consequence. (We can also say it is deduced (deduction) or inferred (inference)

RDF - RDFS

The same as graph

本体语言

- ▶ RDF 实例的关系
- ▶ RDFS 类的关系
- ▶ OWL 基于描述逻辑 (DL) 的更加复杂的类关系
 - ▶ OWL EL Modelling 医学、法律本体
 - ► OWL RL Query
 - ▶ OWL QL Rule

描述逻辑

描述逻辑是一阶逻辑 (FOL) 的可判定子集,W3C 标准 OWL 语言的逻辑基础

▶ 类 (Concept or Class)

一元关系: 猫, 公司

▶ 关系 (Role or Property) 二元关系: 喜欢, 雇佣

实例 (Individual)常量: 咪咪. 文因互联

描述逻辑语法1

▶ TBox

科技公司 □ 公司

公司 □ ∃hasPresident.CEO

► RBox

hasFather \circ hasFather \sqsubseteq hasGrandFather

► ABox CEO(鲍捷)

¹http://dblp.uni-trier.de/db/conf/dlog/handbook2003.html

描述逻辑 - 举例

Example

Heart is a muscular organ that is part of the circulatory system

 $\textbf{Heart} \sqsubseteq \textbf{MuscularOrgan} \sqcap \exists \textbf{part-of.CirculatorySystem}$

描述逻辑复杂度

- OWL NExpTime-complete
- ► OWL 2 **2NExpTime-complete**
- OWL 2 EL PTime-complete
- ▶ OWL 2 RL **PTime-complete**
- OWL 2 QL AC⁰

描述逻辑与规则的转换

- ► RBox hasFather(x, y) \land hasFather(y,z) \rightarrow hasGrandFather(y,z)
- ► ABox CEO(鲍捷)

OWL 本体推理

常用推理机²

推理机	ELK	RDFox	TrOWL	Konclude	Pellet
算法	Completion Rule	Datalog	Approximation	Tableau	Tableau
Soundness	√	\checkmark	\checkmark	\checkmark	\checkmark
Completeness	✓	\checkmark	×	\checkmark	\checkmark
针对 OWL 语言	OWL EL	OWL RL	OWL 2	OWL 2	OWL 2
特性	Best of EL	Best of RL	快,不完备	Best of OWL 2	慢,功能全
实现语言	Java	C	Java	C++	Java

²http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

```
逻辑、本体、推理以及实战工具与方法

--- 工具
---- 推理机
```

推理机

OWL2 推理机

- Pellet
- ► Hermit
- ► TRon
- MoRe
- ► Konclude

OWLEL、RL 推理机

- ► ELK
- ▶ RDFox

本体解析工具

用干解析 RDF, OWL

- ▶ Jena Java 语言,支持简单的存储与查询 (rdb,tdb),支持简单 的推理 (Rule)
- ▶ OWLApi Java 语言,纯解析工具,最适合解析 OWL,大部分 推理机再其上开发的
- ▶ rdflib Python 语言,纯解析工具,支持一些 Sparql 的接口,

Neo4j

优点:

- ▶ 支持 Relation Property, 避免 Reification
- ▶ 良好的 Api 以及社区支持
- ▶ 商业版支持分布式
- ▶ 易上手

缺点: 各种坑

- ▶ 插入需要写 batch transaction, 否则极慢
- ▶ 删除数据很坑,要不直接删 graph.db 文件,要不用 batch 的方式先遍历再删除
- ▶ Optional Match 一多,查询极慢,需要拆开处理
- ▶ 不支持推理, Query 写法不够自由


```
逻辑、本体、推理以及实战工具与方法

工具

一工具

一方储
```

Stardog

优点:

- ▶ 支持推理
- ▶ 支持一些特别规则的写法
- ▶ 支持 Validating Constraints

缺点:

- ▶ 标准的 Triple Store, 学习成本较高
- ▶ 数据量大后,查询速度慢,推理速度慢

Stardog

- ▶ Titan 支持分布式查询, 查询速度快, 但近 1 年没人维护
- ▶ Graphx 据说很快,但目前刚起步
- ▶ Postgres 干啥都行,稳定,坑少,但做图查询很繁琐

明确核心推理任务

- ▶ TBox or ABox
- Classification or Instance Retrieval
- ▶ Precision or Recall (2-8 原则)
- ▶ 复杂% or 简单%

选择推理机

- ▶ 复杂度是多少3
- ▶ 本体与规则是否可以转化 (RDfox or EL)
- ▶ 本体是否可以拆分 (Modular-based Reasoner4)
- ▶ 任务是否可以拆分 (Pipeline Reasoning)

³http://www.cs.man.ac.uk/~Eezolin/dl/

⁴https://code.google.com/p/more-reasoner/

简化 OWL 复杂度

- ▶ 简化 inverse role 和 universal role⁵
- ▶ 简化 Role Transtivity⁶
- ▶ 简化 Datatype
- ▶ 小心使用 Class Equivalence
- ▶ 小心使用 Individual as Class

⁵http://120.52.72.44/daselab.cs.wright.edu/c3pr90ntcsf0/pub/ijcar2014.pdf

⁶http://www.cs.ox.ac.uk/boris.motik/pubs/motik06PhD.pdf

Query as Reasoning

▶ 直接将推理用查询展开 (OBDA⁷, stardog⁸)

$$\mathcal{T} = \{A \sqsubseteq B; B \sqsubseteq C\}$$

Query: C(?x)

Rewrite Query: $A(?x) \cup B(?x) \cup C(?x)$

▶ 使用传统数据库代替

⁷http://ontop.inf.unibz.it

⁸http://stardog.com

Query in Neo4j

```
OPTIONAL MATCH (s:)-[:r1]->(o)
OPTIONAL MATCH (s)-[:r1]->()-[:r2]->(o)
OPTIONAL MATCH (s)-[:r2]->()-[:r2]->(o)
OPTIONAL MATCH (s)-[r2]->()-[r1]->()-[r2]->(o)
OPTIONAL MATCH ...
RETURN .....
```


Query in Sparql

```
Select ?s, ?o
Where {
?s (:r1|:r2)+ ?o .
}
```


Thanks

因为是内部讲义,所以部分内容未严格定义

参考 1 http://www.lsis.org/olivetti/TEACHING/MASTER/INTRONMR1.pdf

参考 2 http://www.computational-logic.org/content/events/iccl-ss-

2005/lectures/bonatti/iccl-slides.pdf

参考 3 http://arxiv.org/pdf/1201.4089v3.pdf

