Compute Engine & Load Balancing FOR ARCHITECTS

Compute Engine & Load Balancing for Architects

It is not sufficient to get things working. We want more!

- Build Resiliency
- Increase Availability
- Increase Scalability
- Improve Performance
- Improve Security
- Lower Costs
- and

in 28 Minutes

Professional Cloud Architect vs Associate Cloud Engineer

- Associate Cloud Engineer
 - Focused on tasks that Cloud Engineers perform in day to day job!

Professional Cloud Architect

- Understand business and technical requirements
- Design cloud solutions that meet your functional and non-functional needs
- GCP Services are the same:
 - BUT your perspective should be different
 - With Professional Cloud Architect
 - You need to know the services
 - AND learn to build highly resilient, highly available, scalable, secure, performant solutions that have low cost!
 - Sounds Complex??
 - o (Don't worry) We will understand each of these as we go further
 - o Availability, Scalability, Resilience etc..

What is Availability?

- Are the applications available when the users need them?
- Percentage of time an application provides the operations expected of it
- Example: 99.99% availability. Also called four 9's availability

Availability Table

Availability	Downtime (in a month)	Comment		
99.95%	22 minutes			
99.99% (four 9's)	4 and 1/2 minutes	Most online apps aim for 99.99% (four 9's)		
99.999% (five 9's)	26 seconds	Achieving 5 9's availability is tough		

High Availability for Compute Engine & Load Balancing

Highly Available Architecture:

- Multiple Regional Instance Groups for each Microservice
- Distribute Load using a Global HTTPS Load Balancing
- Configure Health Checks for Instance Group and Load Balancing
- Enable Live Migration for VM instances

Advantages:

- Instances distributed across regions
 - Even if a region is down, your app is available
- Global Load Balancing is highly available
- Health checks ensure auto healing

In 28 Minutes

What is Scalability?

- A system is handling 1000 transactions per second. Load is expected to increase 10 times in the next month
 - Can we handle a **growth in users, traffic, or data size** without any drop in performance?
 - Does ability to serve more growth increase proportionally with resources?
- Ability to adapt to changes in demand (users, data)
- What are the options that can be considered?
 - Deploy to a bigger instance with bigger CPU and more memory
 - Increase the number of application instances and setup a load balancer
 - And a lot more.

What is Vertical Scaling?

- Deploying application/database to bigger instance:
 - A larger hard drive
 - A faster CPU
 - More RAM, CPU, I/O, or networking capabilities
- There are limits to vertical scaling

Vertical Scaling for GCE VMs

Machine name	vCPUs ¹	Memory (GB)	Max number of persistent disks (PDs) ²	Max total PD size (TB)	Local SSD	Maximum egress bandwidth (Gbps) ³
e2-standard-2	2	8	128	257	No	4
e2-standard-4	4	16	128	257	No	8
e2-standard-8	8	32	128	257	No	16
e2-standard-16	16	64	128	257	No	16
e2-standard-32	32	128	128	257	No	16

• Increasing VM machine size:

- e2-standard-2 to e2-standard-4 or
- e2-standard-16 to e2-standard-32 or
- ...

What is Horizontal Scaling?

- Deploying multiple instances of application/database
- (Typically but not always) Horizontal Scaling is preferred to Vertical Scaling:
 - Vertical scaling has limits
 - Vertical scaling can be expensive
 - Horizontal scaling increases availability
- (BUT) Horizontal Scaling needs additional infrastructure:
 - Load Balancers etc.

Horizontal Scaling for GCE VMs

- Distribute VM instances
 - in a single zone
 - in multiple zones in single region
 - in multiple zones across multiple regions
- Auto scale: Managed Instance Group (s)
- Distribute load : Load Balancing

In 28 Minutes

Compute Engine: Live Migration & Availability Policy

- How do you keep your VM instances running when a host system needs to be updated (a software or a hardware update needs to be performed)?
- Live Migration
 - Your running instance is migrated to another host in the same zone
 - Does NOT change any attributes or properties of the VM
 - SUPPORTED for instances with local SSDs
 - NOT SUPPORTED for GPUs and preemptible instances
- Important Configuration Availability Policy:
 - On host maintenance: What should happen during periodic infrastructure maintenance?
 - Migrate (default): Migrate VM instance to other hardware
 - Terminate: Stop the VM instance
 - **Automatic restart** Restart VM instances if they are terminated due to non-user-initiated reasons (maintenance event, hardware failure etc.)

Compute Engine Features: GPUs

 How do you accelerate math intensive and graphics-intensive workloads for AI/ML etc?

- Add a **GPU** to your virtual machine:
 - High performance for math intensive and graphics-intensive workloads
 - Higher Cost
 - (REMEMBER) Use images with GPU libraries (Deep Learning) installed
 - OTHERWISE, GPU will not be used
 - GPU restrictions:
 - NOT supported on all machine types (For example, not supported on shared-core or memory-optimized machine types)
 - On host maintenance can only have the value "Terminate VM instance"
- Recommended Availability policy for GPUs
 - Automatic restart on

Compute Engine & Load Balancing for Architects

Security

- Use Firewall Rules to restrict traffic
- Use Internal IP Addresses as much as possible
- Use Sole-tenant nodes when you have regulatory needs
- Create a hardened custom image to launch your VMs

Performance

- Choose right Machine Family for your workload
- Use GPUs and TPUs to increase performance
 - Use GPUs to accelerate machine learning and data processing workloads
 - Use TPUs for massive matrix operations performed in your machine learning workloads
- Prefer creating a hardened custom image to installing software at startup

Resiliency for Compute Engine & Load Balancing

- Resiliency "Ability of system to provide acceptable behavior even when one or more parts of the system fail"
- Build Resilient Architectures
 - Run VMs in MIG behind global load balancing
- Have the right data available
 - Use Cloud Monitoring for monitoring
 - Install logging agent to send logs to Cloud Logging
- Be prepared for the unexpected (and changes)
 - Enable Live Migration and Automatic restart when available
 - Configure the right health checks
 - (Disaster recovery) Upto date image copied to multiple regions
- We will talk about resiliency as we go further!

Sustained use discounts

- Automatic discounts for running VM instances for significant portion of the billing month
 - Example: If you use N1, N2 machine types for more than 25% of a month, you get a 20% to 50% discount on every incremental minute.
 - Discount increases with usage (graph)
 - No action required on your part!
- Applicable for instances created by Google
 Kubernetes Engine and Compute Engine
- **RESTRICTION**: Does NOT apply on certain machine types (example: E2 and A2)
- **RESTRICTION**: Does NOT apply to VMs created by App Engine flexible and Dataflow

Source: https://cloud.google.com

Committed use discounts

For workloads with predictable resource needs

- Commit for 1 year or 3 years
- Up to 70% discount based on machine type and GPUs
- Applicable for instances created by Google Kubernetes Engine and Compute Engine
- RESTRICTION: Does NOT apply to VMs created by App Engine flexible and Dataflow

Preemptible VM

- Short-lived cheaper (upto 80%) compute instances
 - Can be stopped by GCP any time (preempted) within 24 hours
 - Instances get 30 second warning (to save anything they want to save)

- Your applications are fault tolerant
- You are very cost sensitive
- Your workload is NOT immediate
- Example: Non immediate batch processing jobs

• RESTRICTIONS:

- NOT always available
- NO SLA and CANNOT be migrated to regular VMs
- NO Automatic Restarts
- Free Tier credits not applicable

Spot VMs

- Spot VMs: Latest version of preemptible VMs
- Key Difference: Does not have a maximum runtime
 - Compared to traditional preemptible VMs which have a maximum runtime of 24 hours

- May be reclaimed at any time with 30-second notice
- NOT always available
- Dynamic Pricing: 60 91% discount compared to on-demand VMs
- Free Tier credits not applicable

Google Compute Engine - Billing

- You are billed by the second (after a minimum of 1 minute)
- You are NOT billed for compute when a compute instance is stopped

- However, you will be billed for any storage attached with it!
- (RECOMMENDATION) Always create Budget alerts and make use of Budget exports to stay on top of billing!
- What are the ways you can save money?
 - Choose the right machine type and image for your workload
 - Be aware of the discounts available:
 - Sustained use discounts
 - Committed use discounts
 - Discounts for preemptible VM instances

In 28 Minutes

Compute Engine & Load Balancing - Cost Efficiency

- Use Auto Scaling
 - Have optimal number and type of VM instances running
- Understand Sustained use discounts
- Make use of Committed use discounts for predictable long term workloads
- Use Preemptible VMs for non critical fault tolerant workloads

