Теплотехнический расчет

Расчет требуемых теплотехнических параметров ограждающих конструкций выполнен согласно указаниям СНиП 23-02-2003 «Тепловая защита здания». Фактическое термическое сопротивление принятой конструкции ограждений должно быть больше или равно требуемому термическому сопротивлению. Последнее определяется, исходя из санитарно-гигиенических и комфортных условий и условий энергосбережения. Расчет ведется для каждого вида ограждений (стены, покрытия).

Определение требуемого термического сопротивления по санитарногигиеническим и комфортным условиям.

Термическое сопротивление вычисляется по формуле:

$$R_{reg} = \frac{n \cdot (t_{int} - t_{ext})}{\Delta t_n \cdot \alpha_{int}},$$

-n-коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху по табл.6 СНиП 23-02-2003;

для наружных стен и покрытий n=1

- $-t_{int}$ —расчетная средняя температура внутреннего воздуха здания, °C; t_{int} =18°C
- $-t_{ext}$ —расчетная температура наружного воздуха в холодный период года, °C; t_{ext} = -6° C
- $-\Delta t_{\text{н}}$ —нормируемый температурный перепад между температурой внутреннего воздуха t_{int} и температурой внутренней поверхности τ_{int} ограждающей конструкции, ${}^{\circ}$ С, принимаемый по табл.5 СНиП 23-02-2003;
- $-\alpha_{\text{int}}$ -коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 × $^{\circ}$ C), принимаемый по табл.7 СНиП 23-02-2003;

для стен, полов и потолков (гладких) α_{int} =8,7 BT/($M^2 \times {}^{\circ}$ C).

-для наружных стен производственных зданий $\Delta t_n = t_{int} - t_d$, но не более 7

При расчетной температуре внутреннего воздуха t_{int} =18°C и относительной влажности ϕ =50% температура точки росы t_d =7,5 °C.

- для наруж. стен произв. зданий Δt_n = t_{int} t_{d} , но не более 7, t_n = 18 7,5=10,5 °C. Принимаем Δt_n = 7 °C.
- для покрытий производственных зданий Δt_n = 0,8×(t_{int} t_d), но не более 6 Δt_n = 0,8×(18 7,5)=8,4 °C. Принимаем Δt_n = 6 °C.

Требуемое термическое сопротивление для наружных стен:

$$R_{reg} = \frac{1 \cdot (18 - (-6))}{7 \cdot 8.7} = 0.39 \frac{M^{2} \cdot {}^{o} C}{Bm};$$

то же для покрытия:

$$R_{reg} = \frac{1 \cdot (18 - (-6))}{6.0 \cdot 8.7} = 0.46 \frac{M^{2} \cdot C}{Bm};$$

<u>Определение требуемого термического сопротивления из условий</u> энергосбережения.

Величина R_{reg} определяется по табл.4. СНиП 23-02-2003 в зависимости от градусосуток района строительства D_d , °C \times сут.

для производственных помещений $D_d = (t_{int} - t_{ht.}) \times Z_{ht} = (18-5,1) \times 126 = 1625,4$ °C × сут

где t $_{\rm ht}$, $Z_{\rm ht}$ - средняя температура наружного воздуха, °C, и продолжительность, сут/год, отопительного периода, принимаемые по СНиП 23-01-99* «Строительная климатология», для периода со среднесуточной температурой наружного воздуха не более 8 °C,

Условия эксплуатации ограждающих конструкций при нормальном режиме помещений «Б».

Получаем следующие величины требуемого сопротивления теплопередаче:

- для наружных стен и перекрытий над неотапливаемыми подпольями $R_{reg} = 0.0002 \times 1625,4 + 1.0 = 1.33 \text{ м}^{2} \text{ C/BT}$
- для кровли
 R_{reg} =0,00025×1625,4+1,5=1,91 м²°C/Вт
- для окон
 R_{reg} =0,000025×1625,4+0,2=0,24 м²°C/Вт

Из полученных двух значений требуемых сопротивлений теплопередаче выбирается большее. Рассчитанные сопротивления сведены в таблицу.

Тип ограждения $R_o^{\mathit{TP}}, \frac{M^2 \cdot {}^o C}{Bm},$	Стена, перекрытия над неотаплив. подпольем	Покрытие	Окна
По санитарно-гигиеническим требованиям	0,39	0,46	-
По требованиям энергосбережения	1,33	1,91	0,24
Принятое требуемое термическое сопротивление, R_{reg}	1,33	1,91	0,24

Расчет сопротивления теплопередаче.

Покрытие ТИП1

Состав ограждения:

Керамическая черепица δ = 0,01м, $\lambda_{\rm b}$ = 0,81 Bt/м·°C

Обрешетка Профнастил

Гидроветрозащитная пленка

Стальные прогоны

Стальной термопрофиль с заполнением пустот

Rockwool ЛАЙТ БАТТС δ = 0,15м, $\lambda_{\rm b}$ = 0,041 Bt/м·°C

Строительная плёнка "Паробарьер"

Каркас для гипсокартона

2 слоя гипсокартона $\delta = 0.025 \text{м}, \ \lambda_{\rm b} = 0.21 \ \text{Bt/m} \cdot ^{\circ} \text{C}$

$$R_o = \frac{1}{\alpha_{\scriptscriptstyle B}} + \frac{1}{\alpha_{\scriptscriptstyle H}} + \frac{\delta}{\lambda} \ ({\rm M^2~^\circ C/~BT}),$$

где δ – толщина материала, м;

 λ – коэффициент теплопроводности материала, Bt/(м °C),

 $\alpha_{\text{н}}$ - коэффициент теплоотдачи наружной поверхности, ограждающей конструкций для условий холодного периода, принимаемый по таблице 6 СП 50.13330.2012

$$\alpha_{H}$$
=23 BT/(M2°C),

$$\alpha_{\rm B} = 8.7 \, \rm BT/(m^2 \, {}^{\circ}\rm C)$$
,

$$R_o = \frac{1}{8.7} + \frac{0.01}{0.81} + \frac{0.15}{0.041} + \frac{0.025}{0.21} + \frac{1}{23} = 3.95 \text{ m}^2 \text{ °C/BT}$$

С учетом коэффициента теплотехнической однородности ограждающей конструкции, сопротивление стены должно быть не менее

$$R=3,95\times0,75=2,96 \text{ m}^2\text{°C/BT}$$

$$R_{reg} = 1,91 \text{ m}^{2} \text{ C/BT}$$

 $R_0 > R_{reg}$. Выбранная ограждающая конструкция соответствует требованиям СНиП 23-02-2003.

Покрытие ТИПЗ

Состав ограждения:

Рулонный газон δ = 0,025м, $\lambda_{\rm B}$ = 1,75 Bt/м $^{\circ}$ C Растительный грунт δ = 0,125м, $\lambda_{\rm B}$ = 1,75 Bt/м $^{\circ}$ C Гидроизоляция геомебрана δ = 0,004м, $\lambda_{\rm B}$ = 0,17 Bt/м $^{\circ}$ C OSB-3 δ = 0,018м, $\lambda_{\rm B}$ = 0,14 Bt/м $^{\circ}$ C

Профлист

Гидроветрозащитная пленка

Стальные прогоны

Стальные балки

Стальной термопрофиль с заполнением пустот

Rockwool ЛАЙТ БАТТС

 $\delta = 0.15 \text{ m}, \ \lambda_{\rm B} = 0.041 \ \text{BT/m} \cdot ^{\circ} \text{C}$

Строительная плёнка "Паробарьер"

Каркас для гипсокартона

2 слоя гипсокартона

 $\delta = 0.025 \text{ m}, \ \lambda_{5} = 0.21 \ \text{BT/m} \cdot ^{\circ}\text{C}$

$$R_o = \frac{1}{\alpha_o} + \frac{1}{\alpha_u} + \frac{\delta}{\lambda}$$
 (M² °C/BT),

где δ – толщина материала, м;

 λ – коэффициент теплопроводности материала, Bt/(м °C),

 $\alpha_{\text{н}}$ - коэффициент теплоотдачи наружной поверхности, ограждающей конструкций для условий холодного периода, принимаемый по таблице 6 СП 50.13330.2012

$$\alpha_{H}$$
=23 BT/(M2°C),

$$\alpha_{\rm B} = 8.7 \, \text{BT/(M}^2 \, ^{\circ}\text{C)},$$

$$R_o = \frac{1}{8.7} + \frac{0.025}{1.75} + \frac{0.125}{1.75} + \frac{0.004}{0.17} + \frac{0.018}{0.14} + \frac{0.15}{0.041} + \frac{0.025}{0.21} + \frac{1}{23} = 4.16 \text{ m}^2 \, ^{\circ}\text{C/BT}$$

С учетом коэффициента теплотехнической однородности ограждающей конструкции сопротивление стены должно быть не менее R=4,16×0,75=3,12 м 2 °C/ Вт

$$R_{reg} = 1,91 \text{ m}^{2\circ}\text{C/BT}$$

 $R_0 > R_{reg}$. Выбранная ограждающая конструкция соответствует требованиям СНиП 23-02-2003.

Перекрытие пом. 10

Состав ограждения:

Выравнивающая стяжка с покрытием

из наливного пола

 δ = 0,055m, $\lambda_{\rm B}$ = 0,93 BT/m·°C

Ж/б перекрытие по профлисту

 $\delta_{min} = 0.050 \text{M}. \ \lambda_{5} = 2.04 \ \text{BT/M} \cdot ^{\circ}\text{C}$

Гидроветрозащитная пленка

Стальной термопрофиль с заполнением пустот

Rockwool ЛАЙТ БАТТС $\delta = 0.15$ м, $\lambda_{\rm b} = 0.041~{\rm Bt/m}^{\circ}{\rm C}$

Строительная плёнка "Паробарьер"

ЦСП $\delta = 0.020 \text{м}, \ \lambda_{\rm b} = 0.26 \ \text{Bt/m} \cdot ^{\circ} \text{C}$

$$R_o = \frac{1}{\alpha_s} + \frac{1}{\alpha_u} + \frac{\delta}{\lambda}$$
 (M² °C/ BT),

где δ – толщина материала, м;

 λ – коэффициент теплопроводности материала, Bt/(м °C),

 $\alpha_{\text{н}}$ - коэффициент теплоотдачи наружной поверхности, ограждающей конструкций для условий холодного периода, принимаемый по таблице 6 СП 50.13330.2012

$$\alpha_H$$
=23 BT/(M2°C),

$$\alpha_{\rm B}$$
 = 8,7 BT/(${\rm M}^2$ °C),

$$R_o = \frac{1}{8.7} + \frac{0,055}{0.93} + \frac{0,05}{2.04} + \frac{0,15}{0.041} + \frac{0,02}{0.26} + \frac{1}{23} = 3,967 \text{ m}^2 \text{ °C/BT}$$

С учетом коэффициента теплотехнической однородности ограждающей конструкции сопротивление стены должно быть не менее R=3,97×0,75=2,97 м 2 °C/Вт

$$R_{reg} = 1,91 \text{ m}^{2\circ}\text{C/BT}$$

 $R_0 > R_{reg}$. Выбранная ограждающая конструкция соответствует требованиям СНиП 23-02-2003.

Перекрытие пом. 26, 13

Состав ограждения:

Керамические плитки δ = 0,01м, λ_{δ} = 0,81 BT/м·°C Выравнивающая стяжка из ЦПР δ = 0,052м, λ_{δ} = 0,93 BT/м·°C Ж/б перекрытие по профлисту δ_{min} = 0,050м, λ_{δ} = 2,04 BT/м·°C

Гидроветрозащитная пленка

Стальной термопрофиль с заполнением пустот

Rockwool ЛАЙТ БАТТС δ = 0,15м, $\lambda_{\rm B}$ = 0,041 Bt/м·°C

Строительная плёнка "Паробарьер"

2 слоя гипсокартона $\delta = 0.020 \text{м}, \ \lambda_{\rm b} = 0.26 \ \text{Bt/m} \cdot ^{\circ} \text{C}$

$$R_o = \frac{1}{\alpha_e} + \frac{1}{\alpha_u} + \frac{\delta}{\lambda}$$
 (M² °C/BT),

где δ – толщина материала, м;

 λ – коэффициент теплопроводности материала, Bt/(м °C),

α_н - коэффициент теплоотдачи наружной поверхности, ограждающей конструкций для условий холодного периода, принимаемый по таблице 6 СП 50.13330.2012

$$\alpha_H=23 \text{ BT/(M2°C)}$$

$$\alpha_{\rm B} = 8.7 \, {\rm BT/(m^2 \, {}^{\circ}{\rm C})}$$

$$R_o = \frac{1}{8.7} + \frac{0.01}{0.81} + \frac{0.052}{0.93} + \frac{0.05}{2.04} + \frac{0.15}{0.041} + \frac{0.02}{0.26} + \frac{1}{23} = 3,975 \text{ m}^2 \text{ °C/BT}$$

С учетом коэффициента теплотехнической однородности ограждающей конструкции сопротивление стены должно быть не менее R=3,98×0,75=2,98 м² °C/Вт

$$R_{reg} = 1.91 \text{ m}^{2\circ}\text{C/BT}$$

 $R_0 > R_{reg}$. Выбранная ограждающая конструкция соответствует требованиям СНиП 23-02-2003.

Наружные стены

<u>Тип 1, 3</u>

ЦСП $\delta = 0.02$ м, $\lambda_{\rm b} = 0.26$ Вт/м·°С

Стальной профиль ПШ-25 Гидроветрозащитная пленка

Rockwool ЛАЙТ БАТТС δ = 0,15м, $\lambda_{\rm b}$ = 0,041 Bt/м·°C

Стальной термопрофиль с заполнением пустот

Пароизоляционная пленка

(Стойка каркаса)

Профиль гипсокартонный

Гипсокартон

 $\delta = 0.025 \text{m}$, $\lambda_{\text{B}} = 0.21 \text{ BT/m} \cdot ^{\circ}\text{C}$

$$R_o = \frac{1}{\alpha_e} + \frac{1}{\alpha_u} + \frac{\delta}{\lambda}$$
 (M² °C/BT),

где δ – толщина материала, м;

 λ – коэффициент теплопроводности материала, Bt/(м °C),

α_н - коэффициент теплоотдачи наружной поверхности, ограждающей конструкций для условий холодного периода, принимаемый по таблице 6 СП 50.13330.2012

$$\alpha_{H}$$
=23 BT/(M2°C),

$$\alpha_{\rm B} = 8.7 \, {\rm BT/(m^2 \, {}^{\circ}{\rm C})},$$

$$R_o = \frac{1}{8.7} + \frac{0.02}{0.26} + \frac{0.15}{0.041} + \frac{0.025}{0.21} + \frac{1}{23} = 4.01 \text{ m}^2 \,^{\circ}\text{C/BT}$$

С учетом коэффициента теплотехнической однородности ограждающей конструкции сопротивление стены должно быть не менее $R=4,16\times0,75=3,01$ $M^{2\circ}$ C/BT

$$R_{reg} = 1,91 \text{ m}^{2} \text{ C/BT}$$

 $R_0 > R_{reg}$. Выбранная ограждающая конструкция соответствует требованиям СНиП 23-02-2003.

Окна, Витражи

Однокамерный стеклопакет в металлопластиковом переплете из обычного стекла с межстекольным расстоянием 6 мм

$$R_0 = 0.31 \,\text{m}^2 \,^{\circ}\text{C/BT}$$

R₀>R_{reg}. Выбранная ограждающая конструкция соответствует требованиям СНиП 23-02.

Двери

Требуемое приведенное сопротивление теплопередаче входных дверей рассчитано как $0.6 \cdot \text{Rc}$ = $0.6 \times 1.33 = 0.8 \text{ BT/m} 2 \times ^{\circ} \text{C}$.

1. Двери и ворота металлические с утеплением. Утеплитель — минераловатные плиты δ = 0,05м

$$R_0 = 1/8,7 + 0.05/0.045 + 1/23 = 1.27 \text{ m}^2 \text{ °C/BT}$$

R₀>R_{reg}. Выбранная ограждающая конструкция соответствует требованиям СНиП 23-02.

2. Входные двери из однокамерного стеклопакета в алюминиевом переплете из обычного стекла с межстекольным расстоянием 6 мм.

$$R_0 = 0.31 \text{ m}^2 \, ^{\circ}\text{C/BT}$$

 $R_0 > R_{reg}$, 0,31>0,24 Выбранная ограждающая конструкция соответствует требованиям СНиП 23-02-2003.

Теплотехнические характеристики наружных ограждающих конструкций

Ограждающие конструкции	R _{reg} , m² °C/Bt	R₀, м² °С/Вт
Покрытие	1,91	3,95/4,16
Стены наружные	1,33	4,01
Окна	0.24	0,31
Двери из стеклопакета	- 0,24	0,31
Двери металлические с утеплителем	0,8	1,27
Перекрытия над неотапл. подпольем	1,33	3,97
Пол по грунту	-	1-я зона = 2,1 2-я зона = 4,3 3-я зона = 8,6
		4-я зона = 14,2