EDS 231 - Sentiment_Analysis_II

Juliet Cohen

2022-04-26

Read in Twitter data:

Number of Tweets per day

Data Cleaning

Think about how to further clean a twitter data set. Let's assume that the mentions of twitter accounts is not useful to us. Remove them from the text field of the tweets tibble.

```
# let's clean up the URLs from the tweets
tweets$text <- gsub("http[^[:space:]]*", "", tweets$text)

# remove emojis
tweets$text <- iconv(tweets$text, "latin1", "ASCII", sub="")

# remove @ and the name of the account tagged because we dont need tagged people in this analysis, just
tweets$text <- gsub("@[^[:space:]]*", "", tweets$text)

# remove # but keep the word following
tweets$text <- gsub("#", "", tweets$text)

# convert all text to lower case
tweets$text <- str_to_lower(tweets$text)

# remove quotes
#tweets$text <- gsub("'", "", tweets$text)

#load sentiment lexicons as usual
bing_sent <- get_sentiments('bing')
nrc_sent <- get_sentiments('nrc')</pre>
```

```
select(id, date, text) %>%
  unnest_tokens(output = word, input = text, token = "words") %>%
  anti_join(stop_words, by = "word") %>% # remove stop words
  left_join(bing_sent, by = "word") %>% # join the words to the sentiment words (label with a sentiment
  left_join(
    tribble(
      ~sentiment, ~sent_score,
      "positive", 1,
      "negative", -1),
    by = "sentiment")
# the new sentiment score column is numerical, it is how we assign sentiment to words besides just pos/
Compare the ten most common terms in the tweets per day. Do you notice anything interesting?
# examine trends of the top 10 words per day
top_daily_words <- words %>%
  group by(date, word) %>%
  summarize(count = n()) %>%
  arrange(desc(count)) %>%
 slice(1:10)
## `summarise()` has grouped output by 'date'. You can override using the `.groups`
## argument.
top_daily_words_table <- kable(top_daily_words,</pre>
                         caption = "Top Daily Words by Day")
top_daily_words_table
# examine trends of the top 10 words total
top_10_total <- top_daily_words %>%
  ungroup() %>%
  slice_max(count, n = 10)
#top_10_total
#order(daily_word_counts$count, decreasing = TRUE)
#subset(daily_word_counts, count == [646)
#unique_word_counts <- unique(sort(daily_word_counts$count, decreasing = TRUE))</pre>
#top_daily_words <- head(sort(daily_word_counts$count, decreasing = TRUE), n = 10)</pre>
```

tokenize tweets to individual words so they will be 1 word per row

words <- tweets %>%

Adjust the wordcloud in the "wordcloud" chunk by coloring the positive and negative words so they are identifiable.

Let's say we are interested in the most prominent entities in the Twitter discussion. Which are the top 10 most tagged accounts in the data set. Hint: the "explore_hashtags" chunk is a good starting point.

The Twitter data download comes with a variable called "Sentiment" that must be calculated by Brandwatch. Use your own method to assign each tweet a polarity score (Positive, Negative, Neutral) and compare your classification to Brandwatch's (hint: you'll need to revisit the "raw tweets" data frame).

Table 1: Top Daily Words by Day

date	word	count
2022-04-01	ipcc	13
2022-04-01	report	10
2022-04-01	climate	9
2022-04-01	change	4
2022-04-01	carbon	3
2022-04-01	climatereport	3
2022-04-01	fossil	3
2022-04-01	monday	3
2022-04-01	rapid	3
2022-04-01	read	3
2022-04-01		13
2022-04-02	ipcc	11
2022-04-02	report climate	
		7
2022-04-02	emissions	4
2022-04-02	04	3
2022-04-02	2022	3
2022-04-02	carbon	3
2022-04-02	change	3
2022-04-02	gt	3
2022-04-02	monday	3
2022-04-03	ipcc	107
2022-04-03	dr	75
2022-04-03	report	64
2022-04-03	climate	53
2022-04-03	scientists	30
2022-04-03	mitigation	27
2022-04-03	fossil	26
2022-04-03	aitt	25
2022-04-03	authors	25
2022-04-03	dasgupta	25
2022-04-04	ipcc	646
2022-04-04	climate	634
2022-04-04	report	478
2022-04-04	change	318
2022-04-04	world	170
2022-04-04	emissions	142
2022-04-04	scientists	141
2022-04-04	warming	132
2022-04-04	fossil	105
2022-04-04	limit	101
2022-04-05	ipcc	412
2022-04-05	climate	350
$\frac{2022-04-05}{2022-04-05}$	report	294
$\frac{2022-04-05}{2022-04-05}$	change	157
$\frac{2022-04-05}{2022-04-05}$	emissions	98
$\frac{2022-04-05}{2022-04-05}$	world	74
2022-04-05	global	66
$\frac{2022-04-05}{2022-04-05}$	fossil	61
2022-04-05	warming	59
2022-04-05	action	46
2022-04-06	ipcc	179
2022-04-06	climate	169
2022-04-06	report	121
2022-04-06	change	52
2022-04-06	world	49