MATH 208: Homework #6

Jesse Farmer

16 February 2004

1. Prove the Banach-Steinhaus Theorem

Let V, W be normed linear spaces with V complete, and $\{T_{\alpha} : V \to W\}$ be a family of bounded linear maps such that $\{\|T_{\alpha}v\|\}$ is bounded. Define $F_n := \{v \in V \mid \|T_{\alpha}v\| \le n\|v\|\}$.

Each F_n is closed and $\bigcup_{n\in\mathbb{N}} F_n = V$. The Baire Category Theorem implies that there exists some $k\in\mathbb{N}$ such that F_k has a nonempty interior, so there exists $v_0\in V$ such that for $\epsilon>0$ we have $B_{\epsilon}(v_0)\subset F_k$.

Let $v \in V$ be such that ||v|| = 1. Then

$$||T_{\alpha}v|| \leq \epsilon^{-1}(||T_{\alpha}(v_{0} + \epsilon v)|| + ||T_{\alpha}v_{0}||)$$

$$\leq \epsilon^{-1}k(||v_{0} + \epsilon v|| + ||v_{0}||)$$

$$\leq \epsilon^{-1}k(2||v_{0}|| - \epsilon)$$

2. Prove the Open Mapping Theorem

Let V, W be Banach space and $T \in B(V, W)$ be surjective. For $n \in \mathbb{N}$ and $0 \in V$ define $B_n := B_n(0)$. Clearly $V = \bigcup_{n \in \mathbb{N}} B_n$.

By the surjectivity of T, T(V) = W, so $W = \bigcup_{n \in \mathbb{N}} T(B_n)$ and since W is complete, $\overline{T(B_1)}^o \neq \emptyset$. Note that if $T(B_1)$ is nowhere dense then $T(B_n)$ is nowhere dense, and vice versa, since we can simply scale B_1 by multiplying or dividing by n.

We want to show that there exists r > 0 such that $B_r(0) \subset T(B_1(0))$, which implies that T is an open map.

Let $w_0 \in \overline{T(B_1)}$ be such that $B_{4r}(w_0) \subset \overline{T(B_1)}$ for some r > 0. Then take w_1 such that $||w_1 - w_0|| \le 2r$. We can pick $v_1 \in V_1$ such that $w_1 = Tv_1$ (by density). Consider $B_{2r}(w_1) \subset B_{4r}(w_0) \subset \overline{T(B_1)}$.

 $B_{2r}(0) = -w_1 + B_{2r}(w_1)$. Suppose $w \in B_{2r}(0)$, then $w \in -w_1 + B_{2r}(w_1) \subset \overline{-w_1 + B_{2r}(w_1)}$. If $w \in -w_1 + T(B_1)$ then for some $v \in B_1$ we have

$$w = -w_1 + T(v)$$
$$= -T(v_1) + T(v)$$
$$= T(v - v_1)$$

So $||T(v-v_1|| < 2$ implies $w \in T(B_2)$. This statement follows mutatis mutantis for $\overline{T(B_2)}$. If ||w|| < r then $w \in \overline{T(B_1)}$, and hence $B_r(0) \subset \overline{T(B_1)}$. In general, $||w|| < r2^{-n}$ implies $w \in \overline{T(B_{2^{-n}})}$.

To reduce this to the case of $T(B_1)$ instead of the closure it is sufficient to show that there exists $v \in B_1$ such that Tv = w, for $||w|| < \frac{r}{2}$. We will do so by the completeness of V.

There exists a $v_1 \in B_{\frac{1}{2}}$ such that $\|w - Tv_1\| < \frac{r}{4}$. And, in general, there exists $v_n \in B_{2^{-n}}$ such that $\|w - \sum_{j=1}^n Tv_j\| < r2^{-n-1}$. Because V is a Banach space it follows that $\sum_{j=1}^\infty Tv_j = v \in V$, where Tv = w. Note that $\|v\| < \sum_{n=1}^\infty 2^{-n}$, so $B_{\frac{r}{2}}(0) \subset T(B_1)$.

3. Prove the Hahn-Banach Theorem

Let V ve a normed linear space, $V_0 \subset V$ a subspace, $f \in V_0^*$, and $v_0 \in V \setminus V_0$. We will show that it is possible to extend V_0 by v_0 and retain the desired properties, and then apply Zorn's Lemma to conclude for all \mathbb{R} in general.

Take $F(v + \lambda v_0) = f(v) + \lambda F(v_0)$. Denote $F(v_0) = \alpha$. We need $|f(v) + \lambda \alpha| \le ||v + \lambda v_0||$.

This is equivalent to

$$-\|v + \lambda v_0\| \le f(v) + \lambda \alpha \le \|v + \lambda v_0\|$$

or

$$-f(v) - ||v + \lambda v_0|| \le \lambda \alpha \le -f(v) + ||v + \lambda v_0||$$

It follows immediately that for arbitrary $v_1, v_1 \in V$ we have the inequality

$$-f(v_1) - ||v_1 + v_0|| \le \alpha \le -f(v_2) + ||v_2 + v_0||$$

or

$$f(v_2 - v_1) = f(v_2) - f(v_1) \le ||v_1 + v_0|| + ||v_2 + v_0|| \le ||v_2 - v_1||$$

Letting $a = \sup\{-f(v_1) - ||v_1 + v_0||\}$ and $b = \inf\{-f(v_2) + ||v_2 + v_0||\}$, we see that choosing $\alpha \in [a, b]$ allows us to extend f in such a way that the norm is preserved. We now must deal with arbitrary extensions.

Let \mathcal{F} be the set of all extensions of f satisfying the conditions of the hypothesis. This set is partially ordered by set inclusion and each totally ordered subset $\mathcal{F}_0 \subset \mathcal{F}$ has an upper bound, namely the functional defined on the union of the domains of all functionals. By Zorn's Lemma \mathcal{F} has a maximal element, \tilde{f} . This function is exactly the function which satisfies the conclusions of the Hahn-Banach Theorem, since, if it were not, we could extend \tilde{f} from the proper subspace on which it is defined to a larger subspace – a contradiction of the maximality of \tilde{f} .

We can now consider the Hahn-Banach Theorem over \mathbb{C} . Let V_{0R} and V_R denote the spaces V_0, V as real linear spaces. Clearly $f_R(v) = \Re f(v) \le ||v||$. By the previous part there exists F such that $|F(v)| \le ||v||$ on all V_{0R} .

Define $\tilde{f}(v) := F(v) - iF(iv)$. It is clear that $\tilde{f}(v) = F(v)$ for $v \in V_0$ and that $\Re \tilde{f}(v) = F(v)$. Write $\tilde{f}(v) = \rho e^{i\theta}$ and $w = e^{-i\theta}v$ and assume for contradiction that $|\tilde{f}(v)| \ge ||v||$. Then

$$F(w) = \Re \tilde{f}(w) = \Re [e^{-i\theta} \tilde{f}(v)] = \rho > \|v\| = \|w\|$$

which contradicts the properties of F given to us by the Hahn-Banach Theorem on \mathbb{R} .