Mechatronics System Integration (MCTA3203)

Week 5: L298P Motor Driver Shield with GPIO (ver. 1.0)

Controlling a DC Motor Using L298P Motor Driver Shield and GPIO

Objectives

- To understand the working of the L298P Motor Driver Shield.
- To control the speed and direction of a DC motor using GPIO pins.
- To implement PWM (Pulse Width Modulation) for speed control.
- To write and upload code using Arduino IDE

Required Hardware

- Arduino UNO
- L298P Motor Driver Shield
- DC Motor (6V–12V) 1–2
- External Power Supply (9V/12V)
- Jumper Wires
- Breadboard

Theory

L298P Motor Driver Shield

- Based on L298P H-Bridge chip.
- Can drive 2 DC motors with direction and speed control.
- Uses digital GPIO pins for direction.
- Uses PWM-capable GPIO pins for speed.

Important Pins on L298P Shield

Function	Arduino Pin Mapping
Motor A Direction	D12 (IN1), D13 (IN2)
Motor B Direction	D10 (IN3), D11 (IN4)
Speed Control A	D3 (ENA - PWM)
Speed Control B	D5 (ENB - PWM)

Note: Actual pin mapping may vary based on shield model (confirm from the datasheet).

How Does PWM Control Speed?

PWM (Pulse Width Modulation) is a technique that switches the motor's power **ON** and **OFF rapidly** at a high frequency (usually hundreds to thousands of times per second). By adjusting the **duty cycle** — the percentage of time the signal is ON — we control how much **average voltage** is delivered to the motor.

Duty Cycle (%)	ON Time	OFF Time	Effect on Speed
0%	0%	100%	Motor OFF
50%	Half	Half	Medium Speed
100%	Full	0%	Full Speed

This average voltage determines the motor's speed:

- Higher duty cycle → higher average voltage → faster rotation
- Lower duty cycle → lower average voltage → slower rotation

Circuit Diagram

- Attach the L298P Shield on top of the Arduino board.
- Connect the DC motors to Motor A and Motor B terminals.
- Supply external power to the shield's screw terminal (GND and +12V).
- Ensure GND is common between shield and Arduino.
- Details can be checked in the references.

Arduino Code Example

Control Direction and Speed of One Motor

```
// Motor A pin definitions
const int ENA = 3;  // PWM pin for const int IN1 = 12;  // Direction const int IN2 = 13;  // Direction
                                  // PWM pin for speed control
void setup() {
  pinMode(ENA, OUTPUT);
  pinMode(IN1, OUTPUT);
  pinMode(IN2, OUTPUT);
void loop() {
  // Move forward
  digitalWrite(IN1, HIGH);
  digitalWrite(IN2, LOW);
  analogWrite(ENA, 200);
                              // Speed: 0-255
  delay(2000);
  // Move backward
  digitalWrite(IN1, LOW);
  digitalWrite(IN2, HIGH);
  analogWrite(ENA, 200);
  delay(2000);
  // Stop
  analogWrite(ENA, 0);
```

```
delay(1000);
}

void moveMotor(int EN, int IN1, int IN2, int speed, bool forward) {
   // ... will be useful for Task 5
}
```


- Never power motors directly from Arduino 5V pin.
- Always double-check wiring before powering the circuit.
- Disconnect power before making changes.

Experiment Steps

- 1. Assemble the circuit and plug in the L298P shield.
- 2. Connect the motors to Motor A/B terminals.
- 3. Upload the Arduino code using Arduino IDE.
- 4. Observe the motor rotating in forward and reverse directions.
- 5. Modify the PWM value to observe speed changes (complete the observation table).

Observation Table

PWM Value	Direction	Observed Speed (RPM est.)*
255	Forward	??
128	Forward	??
255	Reverse	??
64	Reverse	??

^{*}Use a tachometer or estimate based on number of rotations per time.

Task

- 1. Explain the function of the ENA and ENB pins.
- 2. Describe the reason PWM is used for speed control.
- 3. Describe the outcome when both IN1 and IN2 are set HIGH.
- 4. Explain how braking can be implemented using the L298P.
- 5. Modify the code to control two DC motors simultaneously.

Appendix

Pin Reference (Arduino UNO)

Shield Pin	Arduino Pin	Function
ENA	D3	PWM (Speed A)
IN1	D12	Motor A Direction 1
IN2	D13	Motor A Direction 2
ENB	D5	PWM (Speed B)
IN3	D10	Motor B Direction 1
IN4	D11	Motor B Direction 2

References

- [1] https://www.instructables.com/Tutorial-for-L298-2Amp-Motor-Driver-Shield-for-Ard/
- Tutorial for L298 2Amp Motor Driver Shield for Arduino
- [2] https://github.com/CytronTechnologies/L298P_MotorDriverShield L298P_MotorDriverShield
- [3] https://my.cytron.io/p-shield-l298p-motor-driver-with-gpio?r=1 Shield L298P Motor Driver with GPIO
- [4] https://docs.cirkitdesigner.com/component/a25f6e70-294e-42fd-b77c-9e9349b76b9a/l298p-drive-shield
 How to Use L298P drive shield: Examples, Pinouts, and Specs