ESPACIOS VECTORIALES LINEALES: 1) Grupos, campos y espacios vectoriales a) Demostrar que Pn es un espacio vectorial respecto a la suma de polinomios y la multiplicación de polinomios por un número real · Cerrado bajo la suma: si se nene p,(x), P2(x) & Pn -1 P2> = (a0+a,x1+a2x2+...+anxn)+(b0+b,x1+b2x2+...+bnxn) = \(\hat{2}\)qix\(\displies\) x\(\displies\) x\(\displies\) x\(\displies\) = \(\hat{2}\) (\(\alpha\); \(\hat{b}\); \(\hat{a}\) = \(\hat{E}\) C; \(\hat{x}\) = \(\hat{P}_{0}\) \(\hat{e}\) · La suma de Polinomios es conmutativa: 194>+103> = (a0+a1x1+a2x1+...+anxn)+(b0+b1x1+b2x2+...+bnxn) $= \sum_{i=0}^{n} q_i x^i + \sum_{i=0}^{n} b_j x^i = \sum_{i=0}^{n} (a_i + b_i) x^i = \sum_{i=0}^{n} (b_i + q_i) x^i = \sum_{i=0}^{n} b_i x^i + \sum_{i=0}^{n} q_i x^i = 10, >10,>$ - Único elemento neutro: 10> -> 10> +194> = (0+0x1+0x2....+0x2)+(a+0x2....+0x2)+(a+0x2....+0x2)+(a+0x2....+0x2)+(a+0x2... *Un elemento simétrico para cada elemento: $\frac{1p_4}{4} + \frac{1}{4} - \frac{1}{4} = (a_0 + a_1 x^1 + a_1 x^2 + ... + a_n x^n) + (-a_0 - a_1 x^1 - a_1 x^2 - ... - a_n x^n) = \sum_{\substack{i=0 \\ i \neq 0}} a_i x^i + \sum_{\substack{i=0 \\ i \neq 0}} (-a_i x^i) = \frac{1}{4} - \frac{1}{4}$ · cerrado bajo el producto por un número real: « ETR, P. (x) E Pn + al Py> = x(a0+a,x+a0x2+...+anx2) = x \(\frac{2}{a}; \frac{1}{a} = \frac{2}{a} (\frac{1}{a}a; \frac{1}{a} = (\frac{1}{a}a + \frac{1}{a}a + \frac{ * α, β ε π, p, (x) ε P, + κ (β | p, >) = α (β α + β α, x'+... + β α, x") = α ξ (β α;) x' = α β ξα; x' = (αβ) (α + α, x'+... + α, x") = (α, β) | p, > - W, BE IR, P.(x) = P. + (4+B)(P.) = (4+B)(Q.+Q.x+Q.x+...+Q.x+...+Q.x+)=(4+B)\2\Q; x'= \2\Q; x'+B\2\Q; x'+\2\Q; (4Q;)x'+\2\Q; (4Q;)x'+\Q; (4Q; =(xa,+xa,x+xa,x+,..+xa,x+)+(Ba,+Ba,x++Ba,x++Ba,x++Ba,x+) = x1p++B1p+> · « ER, Pq(x), Pz(x) EP, + «(1P4) + 1P2>) = «((q0+q,x+q2+...+qx*)+(b0+b,x+b2x+...+b2x*) = a (2 a,x1+2 b,x1) = a2 a,x1+ a2 b,x1=2 (aa,)x1+2 (ab) x1 = a1p+>+a1p> 16 R, P, (x) 6 Pn - 11 Pn >= 1 (a, a, a, x 1 + a, x 2 + ... + a, x 3 + ... + a, x 4 + ... + a, x 3 + ... + a, x 4 + ... + a, x 5 + ... + a, x - Pn es un espacio vectorial (EV) con el campo de reales! b) Si los coeficientes ai son enteros ¿Pn será un espacio vectorial? ¿Por qué? Este no será un E.V. sobre ZZ porque los enteros no son un campo. Para ser un campo, ZZ debería ser un grupo abeliano para la suma y la multiplicación y debe ser distributiva respecto a la suma. Sin embargo, los enteros no son un grupo abeliano respecto a la multiplicación pues, a pesar de tener producto conmutativo y el 1 como elemento neutro, muchos elementos no tienen inversos multiplicativos. Por ejemplo, 2.½=1 pero ½ \$\mathbb{Z}\$. En consecuencia, si los coeficientes a; son enteros, Po no será un £.V. c) ¿Cuál de los siguientes subconjuntos de Pn es un subespacio vectorial? 1) El polinomio cero y todos los polinomios de grado n - 1 - Denominémoslo Pn-1, Lo3 3 SI, es un subespacio 1) La instrucción inicial nos indica que 10>€ Pn-1, foz 2) Lettado bajo la suma: suponga 1P1>= an, xn-1 y 1P2>= bn-1 xn-1: 1P1>+1P2>= an, xn-1+bn-1 xn-1: (an,+bn-1) xn-1=(an,+bn-1) xn-1=1P3>€ Pn-1, toz 3) Cerrado bajo el producto por escalar: suponga 19.>=an. xn-1 y aclik: a19.>=alan xn-1)=(kan-1)xn-1 = a19.> & Pn-1,10} II) El polinomio cero y todos los polinomios de grado par -> Denominémoslo Pan 1) La instrucción inicial nos indica que 10> € Pan 2) (errado bajo la suma: 19x>, 19x> = P2n+ 19x>+19x>+19x> = (a0+02x2+...+02nx2n) + (b0+0x2+...+02nx2n) = (a0+00)+(a2+02)x2+...+(a2n+02x2n)+(a2+ 3) Certado bajo el producto por escalat: si 194> EP2n y ace (R: a197) = ala +a2x2+ ... +a2nx2n) = (aa)+(aa)x2+ ... + (aa2n)x2n EP2n

(2) Espacios métricos, normados y con producto interno
6) a) Compruebe si los cuaterniones 🖎 forman un espacio vectorial respecto a esa operación suma y esa
multiplicación por escalares, análoga a la de los vectores en R en coordenada cartesianas.
Si la>= a#19 a>, 16>= b#19 a>, 1c>= c#19 a> & Cuaterniones y escalares B, x = IR, comprobemas las propiedades de un espacio vectorial:
· Cerrado bajo la suma: la>+1b>= ak lax>+pk lax>= (ak+pk) lax>= ck lax>= 1c> € Cuaterniones
- For sinual so committation: $ a\rangle + b\rangle = a_K d^K\rangle + p_K d^K\rangle = (a_K + p_K) d^K\rangle = (p_K + a_K) d^K\rangle = p_K d^K\rangle + a_K d^K\rangle = p\rangle + a\rangle$
. For solution of accordance: 10>+(10>+10>) = 0, 10 =
· Único elemento neutro: 10>= 0x qa> E (vater niones puez 10>+10>= a qa>+0x qa>= (ax+0x) qa>= a qa>= a>
· Un elemento simétrico para cada elemento: para cada la> existe un 1-a>=(-a")1q"> tal que la>+1-a>= a"1q">+(-a")1q">= (aa+(-a"))1q">= 01q">= 0)1q">= 10>
- cerrado bajo el producto por un número real: \$1a>=\$(a"12">)=(Bax)12"
$\beta(x a)=\beta(xa^{\alpha} q_{\alpha})=(\beta x)a^{\alpha} q_{\alpha}>=(\beta x) a>\in Cuaterniones$
\(\(\alpha \) \) \(\alpha \) \(\alph
-B(a>+ b>)=B(a# q_>+ b# q_z)=Ba# q_>+Bb# q_>=B a>+B b>
·1 a>=1(a^ a, >)=((1)a*) a, >>=(a^) a, a>=1a>
→ Los cuaterniones forman un EV sobre IR con la suma y multiplicación por escalares dadas!
b) Dados dos cuaterniones cualesquiera (b>=(bº,b) y (r>=(10,1), y su tabla de multiplicación, muestre que el
producto entre esos cuaterniones podrá representarse como la>=16>01>>01>>01>>01>>01>>01>>01>>01>>01>>0
corresponden con los productos escalares y vectoriales tridimensionales de siempre.
Construyamos su tabla de multiplicación:
0 1 1b> 1r> 1d> - Primero, observe que 1qi>0 qi>=-1, es decir, con i=j, 1qi>0 qj>=-1, un sistema muy parecido a sij, por lo tanto, diremos, 1d> 1b> 1b> 1d> 1d
1b> 1b> -1 1d> -17 1r> -1 1d> -17 1r> -1 1d> -17 Para if;, so observa facilmente que existe un operador antisimétrico, pues 19,2019,2=19,3, pero 19,2019,2=19,3, muy 1d> 1d> 1r> -1b> -1 similar al funcionamiento de Euk, de monera que diremos que, para if;, 19,2019;>=Eik19,2
Podemos juntar estas dos ideos para describir el producto como 19:>019:>=-Si19o>+Eiik19e> pues la operación dependerá de si i=j y i =j
Ahora, resolvemos: d>= b=0 1>= b=0 1>= b=0 1 = b=0 1
dold of the part of the state o
=P.L.+P.L.1d;>+P.L.1d:>+P.L.1(-9!14">+F. 10"×>) -
c) Ahora con índices: dados (b>=b*lq_> y 11>=1*lq_>, compruebe si el producto (d>=1b>o(1)> puede ser siempre
escrito de la forma ld>=alq+>+5(=i)8% lq;>+A ^{E;K,1} +j _{TK} Q;>, donde a representa un número, 5(=i)8% (recuerde que
j.k,l=1,2,3 y alfa=0,1,2,3), donde s''' indica s''-s'', que la cantidad s'' es simétrica y (s''s2+s''s2) q;>
Mientras A ^{Cik3} representa un conjunto de objetos anti simétricos en j, k: A ^{ik1} = (A ^{ik1} b ₁ r _k -A ^{E3} b ₁ r _k) q ₁ >
Del punto b) obtuvimos que para cualquier 167 y 117, tenemos que 1d>=1b>01r>=(d°,d)= (b°°-b-r, 1°b+b°r+b×r) De esto, observemos que obtenemos una Parte con solo componentes reales d°=b°r-b-r, y que b se compone de una operación simétrica (b°r+1°b) y
una antisimétrica (bxr).
De c), tenemos S(1)+Si=Si, una operación simétrica entre términos de índices districtos, al igual que rob y bor. Además está la operación
Alixii que es antisimétrica pues Aixi=-Akii, al iqual que rxb=-(bxr). Por lo tanto, ld>= 16>01r> siempre podrá ser visto como:
Id>= QIQo> + S(aI) & (IQi) + A TIKI b) TR IQi> Parte real simetrico respecto a O.j 1 Antisimetrica entre b; I'K
parte real simétrica respecto a O.j 1 Antisimétrica entre bjik

d) Identifique las cantidades a, 5⁽¹⁾ y A^{E(3)} en términos de las componentes de los cuaterniones. ¿El producto Id>= Ia>aIr> sera un vector, pseudovector o ninguna? ¿Por qué? Con base en el análisis desarrollado en c), tenemos: 7 1d> se compone de: -do =boro-b-r -> componente escalar +d=bor+rop+pxr + 10+por es vector pues 10(-p)+bo(-1)=-(10+por) a + 600 - 611 = 600 - 6.1 componente vectorial +bxr es pseudovector pues (-b)x(-r)=bxr S(ij) + bori+biro= S(0j) AFIKJI - EIJK ON AFIKJI birk = EIJK birk - Por lo tanto, Id> no es rector ni pseudovector, es un cuaternión, compuesto por una parte escalar y otra vectorial. e) Compruebe su las matrices de Pauli y la identidad (=(%1), (pueden ser consideradas como cuaterniones, donde z = x + iu y w = a + ib son números complejos. Para verificar que estas matrices pueden representar la base de los cuaterniones, comprobema si estos cumplen la misma tabla de multiplicación: 190>019; >=19; >, 19; >019; >=-8; 190>+& 19k> → Note gue vo es la identidad, así que vov;=v; vo=v; . con 1=1,2,3 +0102=(01)(00)=(00)=i(00)=i03 0204=(0-i)(01)=(-i0)=-i(10)=-i03 Para que sean la base de los cuatermones, emplearemos Eo= 00= I y E;=-10;, de manera que E; E1 =- 5; E0+ EijK Ex → €0=I, €; I=I€;= €; → $E_i^2 = (-i\sigma_i)(-i\sigma_i) = i^2\sigma_i^2 = -(\delta_i^i I) = -I = -E_0$ Estas 4 matrices SI son una base de los chaterniones! → E; E; = (-io;)(-io;) = (-i)30; o; = -(5! I+18" or) =-5! E.+8" ilk (-ior) Ahora, demostremos que las matrices $|b\rangle = \begin{pmatrix} 2 & \omega \\ -\omega^2 & 2^2 \end{pmatrix}$ pueden ser consideradas cuaterniones: Considere $|b\rangle = \begin{pmatrix} \alpha & \beta \\ -\beta^2 & \alpha^2 \end{pmatrix} + \begin{pmatrix} \alpha & \beta \\ -\omega^2 & 2^2 \end{pmatrix}$, donde x = a0+ia4, B=a2+ia3, 2=60+ib4, w=b2+ib3: La idea es demostrar que Mallb=1a>01b> para cuaterniones. $H_{\alpha H_{b}} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \omega \\ -(\alpha \omega + \Delta z^{\alpha})^{\alpha} \end{pmatrix} = \begin{pmatrix} \alpha z - \beta \omega z \\ -(\alpha \omega + \Delta z^{\alpha})^{\alpha} \end{pmatrix} = \begin{pmatrix} \alpha x \\ -\beta \omega z \end{pmatrix} = \begin{pmatrix} \alpha x \\ -\beta \omega z \end{pmatrix} \begin{pmatrix} \alpha x$ Decordemos que si tenemos ia>= aº+ a¹iq,>+a¹iq,>+a¹iq,>, ib>=bº+ b¹iq,>+b¹iq,>+b¹iq,>, entonces lc>=ia>+ib>= c+c,iq,>+c,iq,>+c,iq,>, donde: Demostremos que « = co+ic1 y B'= c2+ic3 -> 01'= 02- BW# = (00+101)(60+101)-(02+103)(62-163)=(006-0161-0262-0363)+i(0061+0160-0362+0263) = 00+i01 -> B'= KW+ BZ# = (00+101)(b2+103)+(02+103)(b0-101) = (0063-0163+0260+0361)+1 (0063+0360+0161-0261) = (2+103 De esta manera, si asociamos a un cuaternion 19> una matrit (a a b) con la definición dada de Ry B, Hall b generan 10s a'y B' hallados previamente, de manera que Makh=la>016> f) Muestre que una representación posible para la base de cuaterniones es: la matriz identidad y las matrices reales 4x4 de la forma (q,>=(3000), (q,>=(0000), (q,>=(0000)) Para demostrar este punto, comprobemos que estas matrices cumplen la tabla de multiplicación de los cuaterniones: $Q_0 = \begin{pmatrix} 0.00 &$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

Así, se observa g	pue Q4,Q2,Q3,Q0 representan una pos	ible base para los waternion	es .		
a) Compruebe	e si la siguiente es una buena	definición de producto i	nterno: <aib>= 142 011</aib>	0>	
	la operación: Suporga la>=(aº,a)				
			= a°b°+a°b') q;>-a'b°		
	(alb> dará como resultado un cuo debe cumplir (•,•):YxV→IR, (alb>=	=00P0+00P11d !>-0,P01	q;>-aibi(-&;14,>+Eik19K>)		
	ara ser producto interno pues no da		= (a0b0+a.b., a0b-c		
	a si se dijera que, por ejemplo, el prod		Escalar Ve	ctorial	
solo la parte esc	calar de <aīb>, es decir, a°b°+a·b</aīb>				
h) Modifique	un poco la definición anterior	de tal forma que: ¿alb>=	र् [(बाँ४)-। १,>० (बाँ४) ०। १,	>] y compruebe si	
	n compleja de producto inter				
	>= 5° 4 5° 19.> es un número com			ı,	
	nuevo producto interno: <alb>= 1/2 [4aib</alb>		os (aib>=19>=g°190>+g119	1+>+9,10*>+9,10*>	
-> 14,> 0< alib>= 14,> 019>			/ L+ g= a= b= + a.b		
	d'od°)+d, d'od')+d, d'od')+d,(d'od')			_ g ^K = a°b ^K - a ^K b° - a×b (K=1,2,3)	
	>= d ₆ (d ⁴ 0d ⁴) -d ₄ (d ⁹ 0d ⁴) +d ₅ (d ³ 0d ⁴) -d ₉ (10>-9,121>+3,123>+3,123>)	
	=-9-10->-3,101>+3,105>+3,103>	= 2[29140>+29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		= (a.p.+a.p) 13°	>+ (aop1-a1b0- (a1b3-a3b2))	19,>	
→ ¿wmple con la	as propiedades?				
	-a)1q+>+(a0a-aa0-(a2a3-a3a2))1q+>	2) (a1b>= (a°b°+a.b) qo>+(a			
= (0°)-+1	11a11² ≥0, y <ala>=0 si 1a>=10></ala>	<			
		= (0.19>	op1 - a1p0 - (a2p3-a3p2)) q1>		
3) (alab+sc) = -	124+6114+6194+61949/	q,>+6,14,>)+(x1q,>+4)q,>)(c°1q,	>+ c1q,>+c3q,>+C3q,s>)		
x= 21q,>+w1q,>	= \$P0 18">+5P118">+5P518">+5P318	12>+mpo1d">-mpo1do>+mpo1d">>-	mp31d ² >		
\$=x19.07+y19.17	=(5Pg-5Pq+xcg-dc,)ld°>+(5Pq+mp	xc3 q,>+yc3 q,>-yc3 q,>+yc3 q.		2110 >	
	0°-0°261+0°xc°-0°yc1+01261+01w6+01xc				
	25644aamp4axc1+agyc9)-(a126-a12614		-	· ·	
	,+xa ₅ ,p,+xa ₂ p ₃) ð°2+(xa ₆ c,-xa ₁ c ₆ -(xa ₅ c p,+ \$a ₇ p,+\$a ₂ p ₃) ð°2+(\$a ₀ p ₁ - \$a ₁ p ₀ - (\$i				
) ((aobo+ a1b1+a2b3+a3b3) qo> + (aob1-a		7,50 //41 1,50 50	0 14-0 3-0 11-40	
+(x1d°>+A1d+>.) ((a°c°+a1c1+a2c2+a3c3))19,0>+(a°c1-a	1c0 - (a1c3-a3c2)) (a,>)			
8+691D>X =					
4) < Kb+ Bc q> = ->	000+BC=15p-5p1+xc2-4c2)1d0>+(5p1+mp	0+xc1+yc0) q1>+(3b1-mb3+XC2-	4c3)125+18p3+mp3+xc3+4c	2) 13 >	
	b ⁰ 0°-2b ¹ 0°+xc°0°-yc¹0°+2b ¹ 0 ¹ +wb°0 ¹ +x				
+()	(26°01-26101+xc°01-yc101)-(2610+w6°00	+xc100+Acoo)-((\$p103-mp303+x	C, a, -AC, a,) - (\$ P, a, + M P, a, +	xc,a,+Ac,a,))) (d 12	
	269142693) q0>+(26801-26100-261034				
	xc3a3+xc3a3) qa>+(xc9a1-xc1a9-xc3a3+		22a2-4c3a3) 194>+14c9a1-1	1c,00- Ac 503+ Ac 305)100>	
(<pre>(<pre> (<pre></pre></pre></pre>	((boao+ 6,01+6,03+6,03) 180>+ (Poa1-6,0	a - (6, a - 6, a 2,)) (a >)			
= KP(bla)+B					

```
5) (a10)= (a00+a.0)1g++ (a00-a00-(a303-a302))1g+>= (00a+0.0)1g+>+(00a-0a0-(02a3-03a2))1g+>=(01a>=0
 - Este producto interno cumple con las propiedades y da como resultado un número complejo convencional
 i) Compruebe si la siguiente es una buena definición de norma para los cuaterniones: n(16>)=1(10>)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1(010)=1
   1)(10>)=|110>|1=\(a1a>=\(a1a>=\(a2\alpha)=\(a2\alpha+a\cdota)\(a2\alpha+\(a2\alpha-a2\alpha-\(a2\alpha-a2\alpha)\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha\(a2\alpha-a2\alpha-a2\alpha\(a2\alpha-a2\alpha-a2\alpha\(a2\alpha-a2\alpha-a2\alpha-a2\alpha\(a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha\(a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha-a2\alpha
   ¿Cumplirá las propiedades de la norma? N:V > IRV
     = \ \( \( \langle \) \( \langl
     3);|||a>+1b>|| ≤ |||a>||+||1b>||? → ||1a>+1b>||2= (a+b|a+b>= ||1a>||2+ (a|b>+4b|a>+ ||1b>||2
                                                                                                                                                                                                                                                                          =114>112+(416)+(416)+4116>112 Aplicamos Cachy-Schwarz:
                                                                                                                                                                                                                                                                        = 11 19 > 112 + 11 16 > 112 + 2 Re (a1b) -
                                                                                                                                                                                                                                                                                                                                                                                                                                         11 (a1 b) || \( || 11 a> || 11 b> ||
                                                                                 11(a16>112 4(a1a>(b16>
     - ya que se cumplen las propiedades, esta es una buena definición de norma para cuaterniones.
    i) Compruebe si un cuaternión definido por 📭 🎎 puede ser considerado como el inverso o elemento
       simétrico de la respecto a la multiplicación o
    |\overline{Q}\rangle \bigcirc |Q\rangle = \frac{10^{\frac{1}{2}}}{||Q\rangle|^{2}} \bigcirc |Q\rangle = \frac{1}{||Q\rangle|^{2}} \{ |Q\rangle|^{2} \bigcirc |Q\rangle = \frac{1}{||Q\rangle|^{2}} \{ |Q\rangle|^{2} + ||Q||^{2} \} |Q\rangle = \frac{1}{||Q\rangle|^{2}} \| |Q\rangle|^{2} = \frac{1}{||Q\rangle|^{2}} \| |Q\rangle|^{2}
    k) Compruebe si los cuaterniones in forman un grupo respecto a la operación multiplicación o Construya
     la tabla de multiplicación para el grupo de cuaterniones.
     *(errada respecto a 0: para la>= (a*,a), lb>= (b*,b)& cuater nuones, la>01b>= (a*1g,b+aise1q;b+aise1q;b+aise1q;b) (1q;b) [q;b)
                                                                                                                                                                                                                                                                                                                                                                         = a b + a b 19; > + a b 19; > + a b [- 8; 19, > + E k 19, >)
                                                                                                                                                                                                                                                                                                                                                                         = (a°6°-a.6, a°6+6°a+ax6) = (c°, c) = 1c> € cuaterniones
    · Asociativa respecto a ⊙: (a Ob) Oc. → Para demostrar esta propiedad, retomenos el punto e) con lg.>=Eo=I y lg.>=Ei=-Oi.
        Tomando Ma=(a°I-iairi), Mb=(b°I-ibiri) como matrices 1×2 con las operaciones indicadas.
                                        = (a_0 P_0 I_1 - i a_0 P_1 a_1 - i P_2 a_1 a_1 - (a_1 a_2) (P_1 a_2) 
= (a_0 P_0 I_1 - i a_0 P_1 a_1 - i P_2 a_1 a_1 - (a_1 a_2) (P_1 a_2) 
= a_1 P_1 + i (E_{ijk} a_1 P_1) a_k 
= a_1 P_1 + i (E_{ijk} a_1 P_1) a_k 
          MaHb=(aºI-iaig;)(bºI-ibig;)
                                         = (a.P. - a.p.) I -! (a.p. + a.p. + E.j. a.p.) Q.
                                       The cool coincide con lare ib= (a b-a.b, a b+ab+axb)
    - POI to tanto, Hallo = la > 0 162. Ahora, si la >, 16>, 16>, 16> (la > 0 16>) OC = (Hallo) NC = Mallo He Ha( No He) = la > O(16> 0 16>)
 · Existe un elemento neutro: en este caso, 190> es el elemento neutro pues: 190>010>= 11190>019;>) O(00190>+01190>)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = a° 1g,>+ ai 1g;>+0'a°1Q;>+0'ai (1q;>01q;>)
                                                                                                                                                                                                                                                                                                                                                                                                                                                             = 19>0190> = 19>
 · Existe un elemento inverso: para todo la>≠0, existe un la>= \frac{1a^\frac{16}{3}}{|||a>||1}, tal que:
\overline{|Q>0} | a> = \frac{|a>^{\frac{1}{10}}}{\||a>||^{\frac{1}{2}}} | 0 | a> = \frac{1}{\||a>||^{\frac{1}{2}}} | |a>^{\frac{1}{10}}| |a>||^{\frac{1}{2}} | |a>||^{\frac{1}{2}}
 Así, los cuaterniones las forman un grupo respecto a la multiplicación O
```

```
1) Los vectores en R3 en coordenadas cartesianas in pueden ser representados como cuaterniones,
  donde la parte escalar es nula ve o lus vigo. Compruebe si el siguiente producto conserva la norma:
   |\v)=|\v0\\v>0\\v>0\\v), esto es: ||\v'>|\v2\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\\+(\v1)\+
Verifiquemos si lliv'>112 = 111>112:
= \left(\frac{10^{\frac{1}{10}}}{||(\alpha>||^{2}} ||(1)>|(10>||^{\frac{1}{10}}) ||(1)>||(10>||^{\frac{1}{10}})||(1)>||(10>||^{\frac{1}{10}})||(1)>||(10>||(10>||^{\frac{1}{10}})||(1)>||(10>||(10>||(10>||^{\frac{1}{10}})||(1)>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||(10>||
     -- 11 10>10 14>= 11 10>10 14>= 11 10>11 (014), a 44- & 11 (014) = (60, d)=1d>
      -14>@1a>=(aaivi-E(avi-Eikaivk)1a,])|Qo>+((aivi)kak+ao [aoy-Eikaivk]+ [av-axv]xa)|Q;>
                                                   = (0)190> + ((aivi)ax + 1100112v-(axv)a0 + a6 (vxa) - axvxa)14; >
                                                   = (0, (a141) ax + 11001124 - (ax4) a0 + a0 (4xa) - (1101124 - a[4.0]) | gi>
                                                  = (0, Y ((a0)3+na112)+2[(a1v1) ax+[vxa]a0])
                                                   = (0, V(19> 019>) + 2[(QY) a+ [vxa] a0]) = 14 > 010>010>
 (10>01v>01a>) = (0,-v(1a) 01a>) - 2[(av)ia+[vxa]a0])
                                                                 =10,-V(197 019)-200-BEV×a]), con x=20V, B=20°
Si suponemos
qo=nulo = (0, -vii qii2- ma-B[vxa])
→Ahora miremos [vilali²- xa-B[vxa]]²= [vilali²]²+ [xa]²+ B²[a²|iv|i²- (a·y)]²- 2vilali²xa
                                                                                                                                                                             = 11V112 11a114+ (av)21(a 112+4ao[a211V112-(a.v)]2-2(v11ay2(a.v).a)
                                                                                                                                        9=0 - = 11411211a114
```