

Introduction to Plant Health in Controlled Environments

Bayer Russia Biotechnology Conference

July 2023

Career Path Influenced My

Strengths and Styles

Daniel Warnock

SIGNATURE THEMES

Learner

Achiever

Maximizer

Connectedness

Relator

StrengthsFinder®

Education and Training:

- 1980-1993: Warnock's Chrysanthemum Farm Crop Production Specialist and Sales
- 1990: B. Sc. Agriculture, University of Georgia, Athens, Georgia;
 - Major: Horticulture
- 1993: M. Sc., University of Georgia, Athens, Georgia;
 - Major: Horticulture
- 1998: Ph. D., University of Minnesota, St. Paul, Minnesota;
 - Major: Horticulture, Minor: Plant Breeding and Genetics
- 1998-2010: University of Illinois Faculty of Horticulture
- 2010-Present: Monsanto/Bayer Controlled Environments

 Team/relationship centric with emphasis on stewardship and improving life

 Delivering creative solutions to complex problems through application of scientific discovery

Steady and Conscientious

Senior Research Scientist

environment success at Bayer

opeka Provide novel solutions to emerging needs while onboarding new technologies as a isiana subject matter expert in controlled environment spaces. Deliver robust data to Baton Rouge enable strategic decisions for controlled

Tallahassee

Florida

Introduction to Plant Health: Agenda

- Everything essential must be close for survival
- For success in a greenhouse, we must provide adequate
 - Light
 - Temperature
 - Water
 - Nutrients
 - Carbon Dioxide
- A potted plant is an island sitting on a sea of concrete
 - Everything associated with plant survival may be in limited supply

- Ability to control 5 essentials varies by:
 - Mechanical equipment available
 - Geographic location
 - Availability and quality of consumable inputs
 - Personnel experience
- Temperature >
 Water/Nutrients >
 Light > Humidity >
 CO₂ for easiness of control

- Transpiration drives transport
- Stomata opening and closing is a balancing act
- Any stress during production limits growth but may speed fruiting

V-Stage

GDUs

Plant growth and development has a pattern

Monoculture of similar aged (sized) plants = optimized decisions and limits stress

Mixed crops or different aged plants in the same

> space = compromises

Think Like the Plant: Communication and Signals

- Plants express stress in various ways
 - Slowed growth rate
 - Atypical phenotypes
 - Color changes
 - Necrosis
 - Missing tissue
 - Fungal growth
- If you can see it, it is too late the damage is done

Environmental Control Levers to Pull: Managed vs Controlled

- 5 Levers to pull in Controlled Environments
 - 1. Light
 - 2. Temperature
 - 3. Water
 - 4. Nutrients
 - 5. Carbon Dioxide
- Ease of manipulation varies by facility mechanics, size, location, and the time of year
- Liebig's law of minimum

Precision Decreases with Controlled Environment

Action and Reaction: Light

- Gas/Energy
- In northern climates PAR light is often limited especially in winter
- Use Daily light integral (DLI) Light accumulated per day (mol/m²/day)
- Agronomic crops are high light users. Minimum of 25 mol/m²/day
- Supplemental light sources vary in quality and quantity of PAR light
- Greenhouse lighting must meet minimum target during winter season

humidity falls, and VPD, irrigation demand, and

evapotranspiration rates climb.

Action and Reaction: Temperature

- Accelerator/Speed
- Each crop has an optimum temperature for growth and development
- Greenhouse manages air temperature not leaf temperature
- Thermal layers may impact upper canopy health and pollen viability

Greenhouse Cooling Relationships

Ventilation and evaporative cooling work well together as they both increase cooling while balancing the other climate effects.

Action and Reaction:

Water - Irrigation/Fertigation

- Oil
- Rooting medium impacts water holding capacity, aeriation, and plant health – Avoid using topsoil in pots
- Seasonal transitions are difficult to manage Daily fluctuations
- Early life stage management may impact late-stage development
- Agronomic crops are not bred for production in greenhouses

Ventilation alone may not always decrease the relative climate humidity, depending on the amount of moisture in the incoming air and how much the greenhouse temperature is decreased. However, in greenhouses, ventilation for humidity control is usually combined with reheating to the target setpoint, resulting in a net reduction in the relative humidity.

Action and Reaction: Water – Humidity/VPD

- Brakes on internal transport and CO₂ capture
- Vapor Pressure Deficit (VPD) in greenhouses is approximation based on air temperature and RH
- Too high = closed stomata to conserve H₂O and thus no CO₂ capture

Action and Reaction:

Carbon Dioxide/Oxygen

- Spark Plug?
- Difficult to manage in open and semi-closed greenhouses due to ventilation needs
- Low levels in crop canopy may limit growth during winter without air exchanges
- Supplemental CO₂ beneficial when possible

Increased ventilation will lower supplemental CO₂ levels unless internal CO₂ levels are below ambient

Environmental Control Parameters: Climate

- During rapid growth phase target even environment without excessive growth rate
- Plant growth slows with reproductive development so target carbon reallocation
- As plant senescence (grain fill) occurs, target drier environment with cooler temperatures

Climate Controls	Vegetative	Reproductive	Range of Control Values
Average Daily Setpoint Temperature	Lower	Higher	20 – 28° C: higher temperatures at higher light levels
Day-Night Temperature Difference	Smaller	Larger	0 – 5° C
Start time for heating in the morning	Earlier	Later	4 hours before sunrise to sunrise
Afternoon temperature increase	None or small	Larger	0 – 2.5° C
Start Time for Day-Night Temperature Decrease	Earlier	Later	2 hours before to 2 hours after sunset
Speed of Day-Night Temperature Decrease	Slower	Faster	0 - 4° C per hour
Humidity deficit	Decrease	Increase	8 - 15 mB
Vapor Pressure Deficit	Lower	Higher	0.8 – 1.5 kPa
CO ₂ enrichment	More	Less	350 – 1500 ppm: Higher CO ₂ at higher light levels

Environmental Control Parameters: Fertigation

- During rapid growth phase plant will be utilizing nutrients and water at increasing rate
- Plant growth slows with reproductive development but avoid drought stress during flowering and pollination
- As plant senescence (grain fill) occurs water use will decrease
 - Last 2 weeks of cycle

Watering Controls	Vegetative	Reproductive	Range of Control Values
EC Growing Medium	Decrease	Increase	1.8 - 4.5 EC
EC Irrigation Water	Decrease	Increase	2.0 - 2.8 EC
Substrate Water Content	Increase	Decrease	45 - 65%
Day-Night Water Content Decrease	Decrease	Increase	2 - 10% (5 - 15% with Rockwool)
Irrigation cycle length and frequency	Short and Higher	Long and Lower	50 - 150 ml per dripper
Start time first irrigation	Earlier	Later	1 - 3 hours after sunrise/lights on
Stop time last irrigation	Later	Earlier	3 - 5 hours before sunset/lights off

Summary: Survival is Key

- Environmental management early in crop cycle impacts later developmental stages
 - Early mistakes may be impactful
- Limiting factors vary by crop, location, season, and greenhouse mechanics
 - Manage what you have available
 - There are limits to what can be controlled
- For every lever pulled there is a reaction with the other levers
- Balancing act between open and closed stomates
- Water management is critical for success
- When stressed the plant wants to survive

DISCLAIMER

THE INFORMATION CONTAINED HEREIN IS EXPERIMENTAL IN NATURE AND IS PROVIDED "AS IS". BAYER MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO THE MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE INFORMATION WILL NOT INFRINGE ANY THIRD-PARTY PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS.

Thank you!

Any questions?

