Мрежова сигурност І

http://training.iseca.org/

IP – лекции 1/7 и 2/7

Преговор и план на курса

- Увод в мрежовата сигурност
- Криптография
- Увод в мрежите
- Ethernet
- Wi-Fi
- \rightarrow IP
- UDP, DHCP, ARP, IP routing protocols
- IPv6
- TCP
- Тест средата-края на Ноември
- Демо
- ...

План

- История
- Стандартите
- IP service model
- Адресиране
 - ОСНОВИ
 - специални адреси
 - CIDR
 - алокиране на IР адреси
- The IPv4 protocol
 - header format
 - basic routing
 - fragmentation
 - options

История

- 1969 ARPANET transmits first packets
- 1974 first TCP spec RFC 675
- 1981 current TCP/IP base specification RFC 791, 792, 793, 768
- Плавни ъпгрейди и промени през годините
 - вкл. 1993 CIDR

Слоевете

7. HTTP, FTP, SMTP, POP3, IMAP4, SIP, XMPP, IRC, SNMP, SSH, DNS, NTP, DHCP

4/5. TCP, UDP, RTP, SCTP

3. IP / IPv6

2. Ethernet, Wi-Fi, etc.

1. physical media, modulation and coding

Стандартите

- IETF
 - http://www.rfc-editor.org/rfcsearch.html
- IETF Draft, RFC, STD, BCP, etc.
 - Request for Comment
 - Status
 - Informational някои стават FYI
 - Best Current Practice някои стават ВСР
 - Experimental
 - Standards Track някои стават STD
 - Draft Standard -> Proposed Standard -> Internet Standard
 - Version
 - Updates, Updated by, Obsoletes, Obsoleted by

Стандартите

- STD5 съдържа
 - **RFC791** IP
 - Updated by RFC1349 TOS
 - **RFC792** ICMP
 - Updated by RFC950
 - Updated by **RFC4884** Support Multi-Part ICMP Messages
 - RFC919 Broadcasting Internet Datagrams
 - RFC950 Internet Standard Subnetting Procedure
 - **RFC1112** Host extensions for IP multicasting
 - Updated by RFC2236 IGMPv2

IP service model

- End-to-end principle
 - dumb network
 - smart hosts
- IP services
 - Addressing
 - Routing
 - и други

- Няма гаранции за
 - Доставка изобщо
 - Доставка в последователен ред
 - Доставка само веднъж (повторение)
 - Грешки в съдържанието

Адресиране

- ІР адрес
 - 32 битово число без знак 0 до 4 294 967 295
 - Записва се 0.0.0.0 до 255.255.255
 - старши байт първо
- Unicast адреси
 - 0.0.0.0 до 223.255.255.255
- Multicast адреси (бивш class D)
 - 224.0.0.0 до 239.255.255.255
- Експериментални адреси (бивш class E)
 - 240.0.0.0 до 255.255.255.255

Unicast адреси

- Всеки IP интерфейс има IP адрес
 - адреса не е на хоста
 - адреса не е на кабела или мрежовата карта
- Всеки IP пакет съдържа адреса на изпращача (source address) и адреса на получателя (destination address)
- Мрежата доставя IP пакета на един IP интерфейс на базата на destination address

Адресиране

- Част от адреса е глобален мрежов локатор
 - обозначава мястото в мрежата
- Част от адреса е локален хост идентификатор
 - обозначава кой хост от локалната мрежа

IP Address, decimal	62	44	96	11
Netmask, decimal	255	255	255	0
Netmask, binary	1111 1111	1111 1111	1111 1111	0000 0000

• Йерархично адресиране

Смятане на маски

- Prefix notation
 - a.b.c.d/n
 - n e броя битове които са 1-ца в мрежовата маска
 - примерно 255.255.255.0 = /24, 255.255.240.0 = /20, 255.255.255.248 = /27
- host адрес 62.44.96.11
- Macka /24 = 255.255.255.0
- host AND mask = network address -> 62.44.96.0
- host OR NOT mask = broadcast -> 62.44.96.255
- рутерът типично е на network+1, понякога на broadcast-1

Смятане на маски

62.44.96.11/24

IP Address, decimal
IP Address, binary
Netmask, binary
Netmask, decimal

62	44	96	11	
0011 1110	0010 1100	0110 0000	0000 1011	
1111 1111	1111 1111	1111 1111	0000 0000	
255	255	255	0	

Network, decimal Network, binary

62	44	96	0
0011 1110	0010 1100	0110 0000	0000 0000

Broadcast, binary Broadcast, decimal

0011	1110	0010	1100	0110	0000	1111	1111
6	2	44		9	6	25	55

Смятане на маски

62.44.96.11/24

[P Address, decimal
IP Address, binary
Netmask, binary
Netmask, decimal

62	44	96	11
0011 1110	0010 1100	0110 0000	0000 1011
1111 1111	1111 1111	1111 1111	0000 0000
255	255	255	0

Network, decimal Network, binary

62	44	96	0
0011 1110	0010 1100	0110 0000	0000 0000

Broadcast, binary Broadcast, decimal

0011	1110	0010	1100	0110	0000	1111	1111
6	2	4	44		6	25	55

Въпроси

Йерархия на адресите

Йерархия на адресите (пример)

- IANA управлява 0.0.0.0/0
- IANA алокира на RIPE 42.0.0.0/8
- RIPE алокира на български LIR 42.12.224.0/19
- Български LIR заделя за цел бизнес клиенти в София 42.12.240.0/20
- Български LIR алокира на клиента си Банка А 42.12.241.0/24
- Банката алокира за локалната мрежа за сървъри – 42.12.241.0/25
- И на конкретен съврър 42.12.241.100/32

Йерархия на адресите (пример)

```
the Internet | 0.0.0.0/0 | 2^32 | 4 294 967 296
RIPE block 42 | 42.0.0.0/8 | 2^24 |
                                       16 777 216
BG LIR block | 42.12.224.0/19 | 2^13 |
                                            8 192
LIR sub-block | 42.12.240.0/20 | 2^12 |
                                            4 096
Bank A block | 42.12.241.0/24 | 2^8 |
                                              256
servers LAN
                              2^6
            42.12.241.0/26
                                              64
            42.12.241.42/32
                              2^0
DB server
```

• 42.12.241.42/32 се съдържа в 42.12.241.0/26, което се съдържа в 42.12.241.0/24 <- 42.12.240.0/20 <- 42.12.224.0/19 <- 42.0.0.0/8 <- 0.0.0.0/0

Адресиране

- Комуникацията между хостове в същия subnet е директна – не преминава през рутери
 - multi-access мрежи (E.g. Ethernet, Wi-Fi)
 - рутиране в хоста

Routing tables

directly connected indirect

Router A routing table			
Network	Through		
192.168.1.0/24	eth0		
172.16.3.0/24	eth1		
10.1.5.0/24	172.16.3.1		

Router B routing table			
Network	Through		
10.1.5.0/24	eth1		
172.16.3.0/24	eth0		
192.168.1.0/24	172.16.3.2		

thor routing table				
Network	Through			
192.168.1.0/24	-			
172.16.3.0/24	192.168.1.1			
10.1.5.0/24	192.168.1.1			

loki routing table	
Network	Through
172.16.3.0/24	-
192.168.1.0/24	172.16.3.2
10.1.5.0/24	172.16.3.1

asgard routing table	
Network	Through
10.1.5.0/24	-
172.16.3.0/24	10.1.5.1
192.168.1.0/24	10.1.5.1

Routing tables (recursive lookup)

directly connected indirect

Router A routing table	
Network	Through
192.168.1.0/24	eth0
172.16.3.0/24	eth1
10.1.5.0/24	172.16.3.1

Router B routing table	
Network	Through
10.1.5.0/24	eth1
172.16.3.0/24	eth0
192.168.1.0/24	172.16.3.2

thor routing table	
Network	Through
192.168.1.0/24	-
172.16.3.0/24	192.168.1.1
10.1.5.0/24	172.16.3.1

loki routing table	
Network	Through
172.16.3.0/24	-
192.168.1.0/24	172.16.3.2
10.1.5.0/24	172.16.3.1

asgard routing table	
Network	Through
10.1.5.0/24	ı
172.16.3.0/24	10.1.5.1
192.168.1.0/24	172.16.3.2

Специални адреси

- Unknown/Unassigned 0.0.0.0
- Broadcast 255.255.255.255
- Loopback 127.0.0.0/8
- Link Local 169.254.0.0/16 (RFC3927)
- Organization Scope Addresses (RFC1918)
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16
- Фалшиви, Истински, Реални и Имагинерни адреси
 - Публични, Public
 - Частни, Private (RFC1918)

Classless inter-domain routing

- RFC1518 (Sept 1993)
- Класовете
 - A 0.0.0.0/1, leading bits (0), маска /8
 - В 128.0.0.0/2, leading bits (10), маска /16
 - С 192.0.0.0/3, leading bits (110), маска /24
 - D 224.0.0.0/4, leading bits (1110)
 - E 240.0.0.0/4, leading bits (1111)
- Защо без класове
- "- Дай ми едно клас Це."
 - казвайте /24, "слаш-двайсчетири"

Class-full

Class-less

unicast

multicast

reserved

Алокиране на IP адреси

- ICANN (Internet Corporation for Assigned Names and Numbers)
- IANA (Internet Assigned Numbers Authority)
 - 0.0.0.0/0
- RIR (Regional Internet Registry)
 - ARIN, RIPE, APNIC, LACNIC, AFRINIC
 - /8s
- NIR (National Internet Registry)
- LIR (Local Internet Registry)

Въпроси

IP encapsulation

- IP върху Ethernet, Wi-Fi, etc
- ТСР върху IP, UDP върху IP, etc.

IP header

- Обичайните полета source, destination, protocol
- Други полета
- Big-endian (MSB first)

Как работи рутера

- Рутинг таблица
 - Попълва се статично от администратора
 - ... или динамично (routing protocol)
 - Всеки ред съдържа
 - Prefix e.g. 10.22.33.0/24
 - Next hop e.g. via 192.168.1.1 on eth0
- Longest prefix match
 - Имаме пътища за 10.0.0.0/8, 10.22.33.0/24 и 10.22.33.44/32 в таблицата
 - Пристига пакет за 10.22.33.42
 - Кой път да изберем?
- Default route, default gateway 0.0.0.0/0

Routing tables

directly connected indirect

Router A routing table	
Network	Through
192.168.1.0/24	eth0
172.16.3.0/24	eth1
10.1.5.0/24	172.16.3.1

Router B routing table	
Network	Through
10.1.5.0/24	eth1
172.16.3.0/24	eth0
192.168.1.0/24	172.16.3.2

thor routing table	
Network	Through
192.168.1.0/24	-
172.16.3.0/24	192.168.1.1
10.1.5.0/24	172.16.3.1

loki routing table	
Network	Through
172.16.3.0/24	-
192.168.1.0/24	172.16.3.2
10.1.5.0/24	172.16.3.1

asgard routing table	
Network	Through
10.1.5.0/24	I
172.16.3.0/24	10.1.5.1
192.168.1.0/24	172.16.3.2

Как работи рутера

- Hop-by-hop
 - Обработката на IP пакет във всеки рутер зависи само от информация (routing таблица) която се намира в рутера
 - Всеки рутер предава пакета на следващия рутер в посоката на destination address
 - Стъпка по стъпка, пакета се приближава и евентуално достига destination
- Stateless Routers
 - Обработката на IP пакет не оставя никаква следа в рутера. Всеки пакет се обработва сам за себе си
 - От пакети спомен няма

Switch vs. Router

- Bridge и Switch Layer 2 Ethernet
 - MAC address learning
 - lookup destination MAC in table
 - forward
- Router Layer 3 IP
 - lookup destination IP in table
 - forward
 - няма научаване на IP адреси
 - таблицата се попълва статично от администратора или динамично от routing protocol

Какво е NAT

• Ще говорим за NAT в лекцията за Firewalls & Tunnels

Въпроси

Length, Checksum

0 0 1 2 3	4 5 6 7	1 0 1 2 3 4 5 6 7	2 0 1 2	3 3 4 5 6 7 0 1 2 3 4 5 6 7		
Version	IHL	Type of Service	Total Length			
Identification			Flags	lags Fragment Offset		
Time To Live (TTL) Protocol		Header Checksum				
Source Address						
Destination Address						
Options						
σρει				Padding		

- IHL Internet Header Length
 - *4 или <<2
 - 5 -> 20, ако няма опции

Length, Checksum

- Total Length дължина на целия пакет
- Header Checksum 16-битова чек сума на хедъра

TTL

- Намалява се с 1 от всеки рутер
- Ако е станал 0 drop и генерираме ICMP грешка

DSCP/TOS field

0 0 1 2 3 4 5 6 7		1 0 1 2 3 4 5 6 7	2 0 1 2	3 3 4 5 6 7 0 1 2 3 4 5 6 7		
Version	IHL	Type of Service	Total Length			
Identification			Flags	Fragment Offset		
Time To Live (TTL) Protocol		Header Checksum				
Source Address						
Destination Address						
Options						
		О Ρ C.	LUIIS	Padding		

- Пре-дефиниран 3 пъти виж допълнителния материал
- 6 бита DSCP приоритет, клас на трафика
- 2 бита ECN flags

Фрагментация

- Identification
- Fragment Offset *8 или <<3
- Don't Fragment (DF) flag
- More Fragments (MF) flag

Фрагментация

ІР Опции

0		1	2	3			
0 1 2 3	4 5 6 7	0 1 2 3 4 5 6 7	0 1 2	3 4 5 6 7 0 1 2 3 4 5 6 7			
Version	IHL	Type of Service	Total Length				
Identification			Flags Fragment Offset				
Time To Live (TTL) Protocol		Header Checksum					
Source Address							
Destination Address							
Options							
Upt1				Padding			

IР опции

- Source Routing
 - Strict
 - Loose
- Record route

- Други глупости
 - http://www.iana.org/assignments/ip-parameters

IP features и производителност

- Fast path
 - TTL > 1
 - и no options
 - и no fragmentation needed
- Slow path
 - TTL = 1
 - или Fragmentation needed
 - DF set
 - DF not set
 - или IP options

Въпроси

