2-5 谓词演算的等价与蕴含

谓词演算

- 对命题变元赋值比较容易,因为每个变元只有两个值可赋,所以可以画真值表。
- 在谓词演算中,由于谓词公式中可能有命题变元、个体变元。而论域中的个体可能有无限多个,所以没有办法画真值表。

谓词公式赋值

- 一、对谓词公式赋值(给谓词公式一个解释)
- 对一个谓词公式赋值由如下四部分组成:
- (1) 指定非空个体域集合;
- (2) 将谓词公式中的命题变元,用确定的命题替代;
- (3) 对公式中的个体变元用论域中的具体个体替代;
- (4) 对公式中含有的谓词变项,用谓词常项替代。

谓词公式赋值

例:给公式 $P \rightarrow N(x)$ 作赋值。

个体域:实数集合;

P: 2>1;

N(x): x是自然数;

x=4 \circ

是它的一个赋值:

此公式变成 T→N(4), 它的真值为"T"。

谓词公式的永真式

二、谓词公式的永真式

给定谓词公式 A,如果不论对其作任何赋值,都使得谓词公式 A的真值为真,则称 A为永真式。例如,公式 I(x) >¬I(x)

谓词公式的等价式

三、谓词公式的等价公式:

给定谓词公式 A、B,如果 A↔B是永真式,则

称 A 与 B 等价,记作 A⇔B。

例如:

 $N(x) \rightarrow I(x) \Leftrightarrow \neg N(x) \lor I(x)$

谓词公式的蕴含式

四、谓词公式的蕴含式

给定谓词公式 A、B,如果 A→B 为永真式,

则称 A 蕴含 B, 记作 A⇒B。

谓词公式的蕴含式

例如, $G(x) \land N(x) \Rightarrow N(x)$ 因为 (G(x)∧N(x))→N(x) $\Leftrightarrow \neg (G(x) \land N(x)) \lor N(x)$ $\Leftrightarrow (\neg G(x) \lor \neg N(x)) \lor N(x)$ ⇔¬G(x)∨(¬N(x)∨N(x)) ⇔T 是永真式, 所以 $G(x) \wedge N(x) \Rightarrow N(x)$

谓词演算的等价及蕴含公式

由命题演算推广出的公式

一、由命题演算推广出的公式

一个不含自由变元的谓词公式是命题。

含有 n 个自由变元的原子谓词公式,可以看成是命题变元。

所以只要不牵涉到量词的运算,命题演算中的等价公式和重言蕴含公式均可推广到谓词演算中使用。

由命题演算推广出的公式

例如:
$$A(x) \Rightarrow A(x) \lor B(x)$$

$$P \Rightarrow P \lor Q$$

$$\exists x (A(x) \Rightarrow B(x)) \Leftrightarrow \exists x (\neg A(x) \lor B(x))$$

$$P \rightarrow Q \Leftrightarrow \neg P \lor Q$$

$$\neg (\exists x A(x) \land \exists x B(x)) \Leftrightarrow \neg \exists x A(x) \lor \neg \exists x B(x)$$

$$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$$

有限个体域下谓词演算的消去量词公式

- 二、有限个体域下谓词演算的消去量词公式
- 谓词逻辑与命题逻辑的区别在于对命题的表达 不同。
- 谓词公式与命题公式的最大区别在于多了量词, 所以我们主要研究量词的处理。

有限个体域下谓词演算的消去量词公式

设论域为 {a₁,a₂,....,a_n},则

- 1. $\forall x A(x) \Leftrightarrow A(a_1) \land A(a_2) \land \land A(a_n)$
- 2. $\exists x B(x) \Leftrightarrow B(a_1) \lor B(a_2) \lor \lor B(a_n)$

2023/3/21

13

量词否定等价公式("¬"与量词的关系)

三、量词否定等价公式

谓词逻辑与命题逻辑的区别在于命题的表达不同。

谓词公式与命题公式的最大区别在于多了量词,而 所有的命题表达式都可以表示成只含有联结词"¬"、 "∧"、"∨"的表达式。

所以只要研究清楚"量词"与"¬"、"∧"、"∨"之间的关系,谓词表达式的运算也就清楚了。

量词否定等价公式("¬"与量词的关系)

三、量词否定等价公式(量词与"¬"的关系)

 $\neg \forall x A(x) \Leftrightarrow \exists x \neg A(x)$

 $\neg \exists x A(x) \Leftrightarrow \forall x \neg A(x)$

量词转换律

直观解释:

"并不是所有的 x 都有性质 A"与"存在 x 没有性质 A"是一个意思。

"不存在有性质 A 的 x "与"所有 x 都没有性质 A"是一个意思。

量词作用域的扩充与收缩

四、量词作用域的扩充与收缩

量词辖域的扩充与收缩研究的是量词与"\,\\"的关系,其中一个运算对象不受该量词约束,有如下公式:

- 1. $\forall x A(x) \lor B \Leftrightarrow \forall x (A(x) \lor B)$
- 2. $\forall x A(x) \land B \Leftrightarrow \forall x (A(x) \land B)$
- 3. $\exists x A(x) \lor B \Leftrightarrow \exists x (A(x) \lor B)$
- 4. $\exists x A(x) \land B \iff \exists x (A(x) \land B)$

量词作用域的扩充与收缩

我们以有限个体域证明公式

$$\forall x A(x) \lor B \Leftrightarrow \forall x (A(x) \lor B)$$

证明:设个体域为 {a₁,a₂,....,a_n},

$$\forall xA(x) \lor B$$

$$\Leftrightarrow (A(a_1) \land A(a_2) \land ... \land A(a_n)) \lor B$$

$$\Leftrightarrow (A(a_1) \vee B) \wedge (A(a_2) \vee B) \wedge ... \wedge (A(a_n) \vee B)$$

$$\Leftrightarrow \forall x(A(x) \lor B)$$

量词作用域的扩充与收缩

其它公式:

- 5. $B \rightarrow \forall x A(x) \Leftrightarrow \forall x (B \rightarrow A(x))$
- 6. $B \rightarrow \exists x A(x) \Leftrightarrow \exists x (B \rightarrow A(x))$
- 7. $\forall xA(x) \rightarrow B \Leftrightarrow \exists x(A(x) \rightarrow B)$
- 8. $\exists xA(x) \rightarrow B \iff \forall x(A(x) \rightarrow B)$

五、量词的分配公式

若两个运算对象均受同一个量词约束,量词与"∨,∧"运算是什么关系? 有如下的量词分配公式:

- 1. $\forall x(A(x) \land B(x)) \Leftrightarrow \forall xA(x) \land \forall xB(x)$
- 2. $\exists x(A(x) \lor B(x)) \Leftrightarrow \exists xA(x) \lor \exists xB(x)$
- 3. $\exists x(A(x) \land B(x)) \Rightarrow \exists xA(x) \land \exists xB(x)$
- 4. $\forall x A(x) \lor \forall x B(x) \Rightarrow \forall x (A(x) \lor B(x))$

证明公式1 ∀x(A(x)∧B(x)) ⇔ ∀xA(x)∧∀xB(x)

证明:设个体域为D。

若一个赋值使得 $\forall x(A(x) \land B(x))$ 为 T,则对任意个体 $x \in D$ 均有 $A(x) \land B(x)$ 为 T,于是对任意个体 $x \in D$ 均有 A(x) 为 T,并且对任意个体 $x \in D$ 均有 B(x) 为 T,所以 $\forall x A(x) \land \forall x B(x)$ 为 T。

2023/3/21 **20**

若一个赋值使得 $\forall x(A(x) \land B(x))$ 为 F,则至少有一个个体 a \in D 使得 A(a) \land B(a) 为 F,即 A(a) 为 F 或者 B(a) 为 F,于是 $\forall x A(x)$ 为 F 或者 $\forall x B(x)$ 为 F,所以 $\forall x A(x) \land \forall x B(x)$ 为 F。

综上,∀x(A(x)∧B(x))⇔∀xA(x)∧∀xB(x)。

2023/3/21 **21**

可以用公式1来证明公式2:

公式1 $\forall x(A(x) \land B(x)) \Leftrightarrow \forall xA(x) \land \forall xB(x)$

$$\exists x(A(x) \lor B(x)) \Leftrightarrow \exists xA(x) \lor \exists xB(x)$$

证明:

$$\exists x(A(x) \lor B(x))$$

$$\Leftrightarrow \neg(\neg\exists x(A(x) \lor B(x)))$$

$$\Leftrightarrow \neg(\forall x(\neg(A(x) \lor B(x))))$$

$$\Leftrightarrow \neg (\forall x (\neg A(x) \land \neg B(x)))$$

$$\Leftrightarrow \neg (\forall x \neg A(x) \land \forall x \neg B(x))$$

$$\Leftrightarrow \neg(\neg \exists x A(x) \land \neg \exists x B(x))$$

$$\Leftrightarrow \exists x A(x) \lor \exists x B(x)$$

公式1

```
举例说明公式3:
```

 $\exists x(A(x) \land B(x)) \Rightarrow \exists xA(x) \land \exists xB(x)$

设 A(x): x在联欢会上唱歌;

B(x): x在联欢会上跳舞。论域:{我们班}

∃x(A(x)^B(x))表示: 我们班有些同学在联欢会上既唱歌又跳舞"。

∃xA(x)^∃xB(x)表示: 我们班有些同学在联欢会上唱歌并且我们班有些

同学在联欢会上跳舞。

可看出: $\exists x(A(x) \land B(x)) \Rightarrow \exists xA(x) \land \exists xB(x)$

2023/3/21 **23**

证明公式3,

 $\exists x(A(x) \land B(x)) \Rightarrow \exists xA(x) \land \exists xB(x)$

证明: 假设前件 $\exists x(A(x) \land B(x))$ 为T,则个体域中至少有一个体a,使得 $A(a) \land B(a)$ 为 T,于是 A(a)和 B(a) 都为 T,所以有 $\exists xA(x)$ 为 T 以及 $\exists xB(x)$ 为 T,进而 $\exists xA(x) \land \exists xB(x)$ 为 T。 因此 $\exists x(A(x) \land B(x)) \Rightarrow \exists xA(x) \land \exists xB(x)$

2023/3/21 **24**

思考:能否证出

 $\exists x A(x) \land \exists x B(x) \Rightarrow \exists x (A(x) \land B(x))?$

假设 ∃xA(x)^∃xB(x) 为 T, 于是个体域中存在个体 a, 使得 A(a) 为 T,

并且存在个体 b, 使得 B(b) 为 T。

也就是未必能找出使得A(x)与B(x)都成立的个体。

2023/3/21

25

利用公式3可以证明公式4

公式3:∃x(A(x)∧B(x))⇒∃xA(x)∧∃xB(x)

证明:

 $\forall x A(x) \lor \forall x B(x) \Rightarrow \forall x (A(x) \lor B(x))$

其它公式:

- 5. $\exists x(A(x) \rightarrow B(x)) \Leftrightarrow \forall xA(x) \rightarrow \exists xB(x)$
- 6. $\exists x A(x) \rightarrow \forall x B(x) \Rightarrow \forall x (A(x) \rightarrow B(x))$

2023/3/21 **27**

证明公式6

$$\exists x A(x) \rightarrow \forall x B(x) \Rightarrow \forall x (A(x) \rightarrow B(x))$$

证明: ∃xA(x)→∀xB(x)

 $\Leftrightarrow \neg \exists x A(x) \lor \forall x B(x)$

 $\Leftrightarrow \forall x \neg A(x) \lor \forall x B(x)$

 $\Rightarrow \forall x(\neg A(x) \lor B(x))$

公式4

 $\Leftrightarrow \forall x(A(x) \rightarrow B(x))$

六、两个量词的谓词演算公式

在A(x,y)前若有两个量词,如果两个量词相同,则它们的次序是可以交换的:

但如果两个量词是不同的,它们的次序就不可以随便交换。

2023/3/21 **29**

例如,设 A(x,y)表示"x+y=0", 个体域:实数集合,

- ∀x∃yA(x,y)表示"对于任意给定的一个实数 x,可以找到一个实数 y,使得 x+y=0"。这是一个为"真"的命题。
- 而交换量词后∃y∀xA(x,y) 表示"存在一个实数 y, 与任意一个实数 x 之和都等于 0"。这是一个为"假"的命题。

2023/3/21

30

两个谓词的公式:

- 1. $\forall x \forall y A(x,y) \Leftrightarrow \forall y \forall x A(x,y)$
- 2. $\forall x \forall y A(x,y) \Rightarrow \exists y \forall x A(x,y)$
- 3. $\exists y \forall x A(x,y) \Rightarrow \forall x \exists y A(x,y)$
- 4. $\forall x \exists y A(x,y) \Rightarrow \exists x \exists y A(x,y)$
- 5. $\forall y \forall x A(x,y) \Rightarrow \exists x \forall y A(x,y)$
- 6. $\exists x \forall y A(x,y) \Rightarrow \forall y \exists x A(x,y)$
- 7. $\forall y \exists x A(x,y) \Rightarrow \exists x \exists y A(x,y)$
- 8. $\exists x \exists y A(x,y) \Leftrightarrow \exists y \exists x A(x,y)$

例如,设A(x,y): x与y是同乡,

个体域: 江南大学计算机21级所有学生,

$\exists y \forall x A(x,y) :$

表示"存在一个同学 y, 他与班中任意一个同学都是同乡"。 就是说这个班所有同学都是同乡。

$\forall x \exists y A(x,y) :$

表示"对任意一个同学 x,可以找到一个班中同学y, y与x是同乡"。

 $\exists y \forall x A(x,y) \Rightarrow \forall x \exists y A(x,y)$

注意: 下面式子不成立

 $\forall x \exists y A(x,y) \Rightarrow \exists y \forall x A(x,y)$

33

为了便于记忆,用下面图形表示上面八个公式。

