Audition CNRS – Concours 06/03 Réseaux structurés : cryptanalyse et nouvelles constructions

Alice Pellet-Mary

- ▶ Janvier mars 2020 : chercheure invitée au Simons institute, Berkeley
- ▶ Depuis novembre 2019 : Post-doctorante à KU Leuven, avec Frederik Vercauteren
- ▶ De 2016 à 2019 : Doctorante à l'ENS de Lyon, sous la direction de Damien Stehlé

```
Primitives cryptographiques

chiffrement signature chiffrement chiffrement ...
```

```
codes correcteurs réseaux euclidiens isogénies
factorisation logarithme discret · · · ·

Problèmes algorithmiques (supposés difficiles)
```

```
Primitives cryptographiques

chiffrement signature chiffrement chiffrement ...
```

```
codes correcteurs réseaux euclidiens isogénies

factorisation logarithme discret ...

Problèmes algorithmiques (supposés difficiles)
dans un monde quantique
```


Réseau euclidien

- ▶ $L = \{Bx \mid x \in \mathbb{Z}^n\}$ est un réseau
- lacksquare $B\in \mathrm{GL}_n(\mathbb{R})$ est une base
- ▶ n est la dimension de L

Problèmes algorithmiques

Problèmes algorithmiques

Problèmes (supposés) difficiles

- même avec un ordinateur quantique
- ullet même en autorisant une approximation $\operatorname{poly}(n)$

Réseau module : réseau euclidien + structure algébrique

Réseau module : réseau euclidien + structure algébrique

• Réseau de dimension n sur \mathbb{Z}

Réseau module : réseau euclidien + structure algébrique

- Réseau de dimension n = kd sur \mathbb{Z}
- Réseau de rang k sur $R := \mathbb{Z}[X]/P(X)$, avec P irréductible de degré d

(en fais, anneau des entiers d'un corps de nombres)

e.g.,
$$k = 3$$
, $d = 256$, $n = 768$

Réseau module : réseau euclidien + structure algébrique

- Réseau de dimension n = kd sur \mathbb{Z}
- Réseau de rang k sur $R := \mathbb{Z}[X]/P(X)$, avec P irréductible de degré d

(en fais, anneau des entiers d'un corps de nombres)

Avantages/inconvénients:

- + Constructions plus efficaces
- SVP restreint aux réseaux modules pourrait être plus facile

e.g., k = 3, d = 256, n = 768

Réseau module : réseau euclidien + structure algébrique

- Réseau de dimension n = kd sur \mathbb{Z}
- Réseau de rang k sur $R := \mathbb{Z}[X]/P(X)$, avec P irréductible de degré d

(en fais, anneau des entiers d'un corps de nombres)

Avantages/inconvénients:

- Constructions plus efficaces
- SVP restreint aux réseaux modules pourrait être plus facile (pas pour l'instant)

e.g., k = 3, d = 256, n = 768

Un de mes résultats : LLL pour les réseaux modules

LLL sur Z

Résout SVP

Temps : poly(n)

Approx: 2^n

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

LLL sur Z

LLL sur R?

Résout SVP Résoudrait SVP dans les modules de rang k

Temps : poly(n) Temps : poly(d, k) Approx : $poly(d) \cdot 2^k$

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

LLL sur \mathbb{Z}

LLL sur R?

Résout SVP

Temps: poly(n)

Approx: 2^n

Résoudrait SVP dans les modules de rang k

Temps: poly(d, k)Approx: $poly(d) \cdot 2^k$

► Attaquerait 11 des 26 candidats du NIST¹

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

¹ Processus de standardisation post-quantique débuté en 2017

LLL sur \mathbb{Z}

LLL sur R?

Résout SVP Résoudrait SVP dans les modules de rang k

Temps : poly(n) Temps : poly(d, k) Approx : $poly(d) \cdot 2^k$

Attaquerait 11 des 26 candidats du NIST¹

Problème ouvert depuis plus de 20 ans [Nap96, FP96, KL17] \Rightarrow jusqu'à présent : généralisation seulement si $d \leq 4$

[[]Nap96] H. Napias. A generalization of the LLL-algorithm over Euclidean rings or orders. Journal de théorie des nombres de Bordeaux.

[[]FP96] C. Fieker, M. E. Pohst. Lattices over number fields. ANTS.

[[]KL17] T. Kim, C. Lee. Lattice reductions over euclidean rings with applications to cryptanalysis. IMACC.

Résultat

An LLL Algorithm for Module Lattices

avec C. Lee, D. Stehlé et A. Wallet, Asiacrypt 2019.

Résultat

An LLL Algorithm for Module Lattices

avec C. Lee, D. Stehlé et A. Wallet, Asiacrypt 2019.

Algorithme LLL pour n'importe quel P de degré d:

- Approx : $quasipoly(d)^k$ (pour les cyclotomiques)
 - Temps : poly(k, d) à condition d'avoir un oracle résolvant CVP dans un réseau L = L(R) fixé

An LLL Algorithm for Module Lattices

avec C. Lee, D. Stehlé et A. Wallet, Asiacrypt 2019.

Algorithme LLL pour n'importe quel P de degré d:

- Approx : quasipoly $(d)^k$ (pour les cyclotomiques)
 - Temps : poly(k, d) à condition d'avoir un oracle résolvant CVP dans un réseau L = L(R) fixé

À retenir :

- * Premier algorithme LLL pour tous les polynômes P
- \star Bon formalisme pour passer de $\mathbb Z$ à R

$$M = \begin{pmatrix} 10 & 7 \\ 2 & 2 \end{pmatrix}$$

$$M = \begin{pmatrix} 10 & 7 \\ 2 & 2 \end{pmatrix}$$

factorisation QR

$$M = \begin{pmatrix} 10,2 & 7,3 \\ 0 & 0,6 \end{pmatrix}$$

réduire b_2 avec b_1

$$M = \begin{pmatrix} 10,2 & 7,3 \\ 0 & 0,6 \end{pmatrix}$$

"division euclidienne centrée" (sur \mathbb{R}) de 7,3 par 10,2

$$M = \begin{pmatrix} 10,2 & -2,9 \\ 0 & 0,6 \end{pmatrix}$$

échanger b_1 et b_2

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

recommencer

$$M = \begin{pmatrix} -2,9 & 10,2 \\ 0,6 & 0 \end{pmatrix}$$

rotation

$$M = \begin{pmatrix} 3 & -10 \\ 0 & -2 \end{pmatrix}$$

réduire b_2 avec b_1

$$M = \begin{pmatrix} 3 & -10 \\ 0 & -2 \end{pmatrix}$$

"division euclidienne centrée" $(\operatorname{\mathsf{sur}}\ \mathbb{R})$ de -10 par 3

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

Ingrédient principal

La division euclidienne (et la factorisation QR)

Une pseudo-division euclidienne sur R

Entrée : $a, b \in R$ Sortie : $r \in R$ t.q.

$$||b/a - r|| \le 1/2$$

Division euclidienne \sim CVP dans R

Une pseudo-division euclidienne sur R

Entrée : $a, b \in R$

Sortie: $r \in R$ t.q.

$$||b/a - r|| \le 1/2$$

Division euclidienne \sim CVP dans R

Entrée : $a, b \in R$ Sortie : $r \in R$ t.q.

$$||b/a - r|| \le 1/2$$

Division euclidienne \sim CVP dans R

```
Entrée : a, b \in R

Sortie : u, v \in R t.q.

\|b/a - u/v\| \le 1/\text{poly}(d)

et \|v\| \le \text{poly}(d)
```

Division euclidienne \sim CVP dans R

Entrée : $a, b \in R$

Sortie: $u, v \in R$ t.q.

$$||b/a-u/v|| \le 1/\text{poly}(d)$$

et
$$||v|| \leq \operatorname{poly}(d)$$

Division euclidienne \sim CVP dans R

Entrée : $a,b \in R$

Sortie: $u, v \in R$ t.q.

$$||b/a - u/v|| \le 1/\text{poly}(d)$$

et $||v|| \le \text{poly}(d)$

Comment calculer u et v?

Entrée : $a, b \in R$

Sortie: $u, v \in R$ t.q.

$$||b/a-u/v|| \le 1/\mathrm{poly}(d)$$

$$\text{et } \|v\| \leq \operatorname{poly}(d)$$

Comment calculer u et v?

Techniques : • chercher $u/v = \prod_i x_i^{\alpha_i}$ avec $x_i \in R$ fixés et $\alpha_i \in \mathbb{Z}$

Entrée : $a, b \in R$ Sortie: $u, v \in R$ t.g.

$$||b/a-u/v|| \le 1/\text{poly}(d)$$

et $||v|| \le \text{poly}(d)$

Comment calculer μ et ν ?

- Techniques: chercher $u/v = \prod_i x_i^{\alpha_i}$ avec $x_i \in R$ fixés et $\alpha_i \in \mathbb{Z}$
 - prendre le log
 - $\triangleright \log(u/v) \in L := \{ \sum_i \alpha_i \log(x_i), \alpha_i \in \mathbb{Z} \}$

Entrée :
$$a, b \in R$$

Sortie : $\log(u/v) \in L$ t.q.
 $\|\log(b/a) - \log(u/v)\| \le 1/\text{poly}(d)$
et $\|\log(v)\| \le O(\log d)$

Comment calculer u et v?

Techniques : • chercher
$$u/v = \prod_i x_i^{\alpha_i}$$
 avec $x_i \in R$ fixés et $\alpha_i \in \mathbb{Z}$

- prendre le log
 - ▶ $\log(u/v) \in L := \{\sum_i \alpha_i \log(x_i), \alpha_i \in \mathbb{Z}\}$

```
Entrée : a, b \in R

Sortie : \log(u/v) \in L t.q.

\|\log(b/a) - \log(u/v)\| \le 1/\mathrm{poly}(d)

et \|\log(v)\| \le O(\log d)

\log(x_1) / \log(x_2)
```

Pseudo-division euclidienne \sim CVP dans L

CVP dans $L \Rightarrow$ pseudo-division euclidienne dans $R \Rightarrow$ LLL pour les R-modules de rang 2

CVP dans
$$L \Rightarrow$$
 pseudo-division euclidienne dans $R \Rightarrow$ LLL pour les R -modules de rang 2

Sous le tapis :

• le 'vrai' L contient les unités et le groupe des classes de R

CVP dans
$$L \Rightarrow$$
 pseudo-division euclidienne dans $R \Rightarrow$ LLL pour les R -modules de rang 2

Sous le tapis :

- le 'vrai' L contient les unités et le groupe des classes de R
- heuristiques sur la densité de L

```
CVP dans L \Rightarrow pseudo-division euclidienne dans R \Rightarrow LLL pour les R-modules de rang k
```

Sous le tapis :

- le 'vrai' L contient les unités et le groupe des classes de R
- heuristiques sur la densité de L
- généralisation au rang k

CVP dans
$$L \Rightarrow$$
 pseudo-division euclidienne dans R
 \Rightarrow LLL pour les R -modules de rang k

Sous le tapis :

- le 'vrai' L contient les unités et le groupe des classes de R
- heuristiques sur la densité de L
- ullet généralisation au rang k

Une seule chose manquante : un algorithme efficace pour CVP dans L

Projet de recherche

Projet de recherche

Une question possible :

Une question possible :

• Deux anneaux avec la même géométrie ?

Une question possible :

- Deux anneaux avec la même géométrie ?
- Un anneau qui en domine d'autres ?

Une autre question possible :

[Sch08] : Module de rang 1 \backsim classe du groupe des classes d'Arakelov

- "bon" formalisme pour les modules de rang 1
- ▶ réduction 'pire cas / moyen cas' pour les modules de rang 1 (collaboration avec K. de Boer, L. Ducas et B. Wesolowski)

Une autre question possible :

[Sch08] : Module de rang 1 \backsim classe du groupe des classes d'Arakelov

- "bon" formalisme pour les modules de rang 1
- ▶ réduction 'pire cas / moyen cas' pour les modules de rang 1 (collaboration avec K. de Boer, L. Ducas et B. Wesolowski)

Existe-t-il une généralisation au rang $k \geq 2$?

2. Lien avec d'autres problèmes algorithmiques

2. Lien avec d'autres problèmes algorithmiques

2. Lien avec d'autres problèmes algorithmiques

3. Nouvelles constructions

Alice Pellet-Mary

3. Nouvelles constructions

Mises à jour :

- Un article accepté à Eurocrypt 2020
 - ▶ avec S. Agrawal (IIT Madras, Chennai)
- Un article accepté à Crypto 2020
 - ▶ avec K. de Boer, L. Ducas et B. Wesolowski (CWI, Amsterdam + CNRS)

Intégrations possibles :

- équipe de théorie des nombres de l'IMB, Bordeaux
- équipe géométrie et algèbre effective de l'IRMAR, Rennes
- institut Fourier, Grenoble