

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

UTILITY PATENT APPLICATION TRANSMITTAL LETTER

Box PATENT APPLICATION

Also enclosed are:

preliminary amendment:

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Enclosed for filing is the utility patent application of <u>Hiroyuki SUZUKI</u>, <u>Hideaki MIZUNO</u>, <u>Hideaki MIZUNO</u>, <u>HIGEANA</u>, NOBUO KAMEJ and TSUYOSHI YONEYAMA, FOR JMAGE PROCESSING APPARATUS.

sheet(s) of [X] formal [] informal drawing(s);

[X]	a claim for foreign priority under 35 U.S.C. §§ 119 and/or 365 is [X] hereby made to $\underline{11-328130}$ filed in \underline{Japan} on $\underline{November~18.~1999}$;
	[X] in the declaration;
[X]	a certified copy of the priority document;
[]	a General Authorization for Petitions for Extensions of Time and Payment of Fees;
[]	an Assignment document;
[]	an Information Disclosure Statement; and
[]	Other:
[X]	An [] executed [X] unexecuted declaration of the inventor(s)
	[X] also is enclosed [] will follow.
[]	Please amend the specification by inserting before the first line the sentence —This application claims priority under 35 U.S.C. §§ 119 and/or 365 to _ filed in _ on _; the entire content of which is hereby incorporated by reference.—
[]	A bibliographic data entry sheet is enclosed.
[]	Small entity status is hereby claimed.
ΓVI	The filing fee has been calculated as follows [] and in accordance with the analoged

	No. Of CLAIMS		EXTRA CLAIMS	RATE	FEE
Basic Application Fee					\$710.00 (101)
Total Claims	15	MINUS 20 =	0	× \$18.00 (103) =	0
Independent Claims	3	MINUS 3 =	0	× \$80.00 (102) =	0
If multiple dependent cla	ims are prese	ented, add \$270.00	(104)		
Total Application Fee				710.00	
If small entity status is cl	aimed, subtr	act 50% of Total A	pplication Fe		
Add Assignment Record	ng Fee \$ if /	Assignment docume	nt is enclosed		
TOTAL APPLICATIO			nt is enclosed	Control of the last	Budanica 1910°C

- [] This application is being filed without a filing fee. Issuance of a Notice to File Missing Parts of Application is respectfully requested.
- [X] A check in the amount of \$ 710.00 is enclosed for the fee due.
- [] Charge \$ _____ to Deposit Account No. 02-4800 for the fee due.
- [X] The Commissioner is hereby authorized to charge any appropriate fees under 37 C.F.R. §§ 1.16, 1.17 and 1.21 that may be required by this paper, and to credit any overnavment, to Denosit Account No. 02-4800. This paper is submitted in duplicate.

Please address all correspondence concerning the present application to:

Platon N. Mandros

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

P.O. Box 1404

Alexandria, Virginia 22313-1404.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

Date: November 17, 2000

3y: Loam Helly Reg. No. 31979
Platon N. Mandros
Recistration No. 22.124

P.O. Box 1404 Alexandria, Virginia 22313-1404 (703) 836-6620

15

20

25

IMAGE PROCESSING APPARATUS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is based on application No. 11-328130 filed in Japan, the contents of which are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The present invention relates to an image processing apparatus for processing image data, and more particularly, to an image processing apparatus using a rewritable device.

DESCRIPTION OF THE RELATED ART

A real-time image processing apparatus optimally processes image data read by a one-dimensional image sensor of a reader in real time, and sends the processed image data to an outputter. Here, a plurality of line memories (for example, FIFO memories) are used in an image processing circuit mainly using a spatial filter. The size, the number and the configuration of the line memories are univocally decided by a predetermined image processing condition, for example, the image quality, the output image size or the reading rate depending on the reading resolution of the image sensor, or the processing speed required in accordance with the printer system

15

20

25

speed. The circuit configuration associated with the line memories and the image processing algorithm are similarly univocally decided. Therefore, when the user changes the image processing condition such as the image quality, the output image size or the processing speed, since the configuration of the line memories for image processing and the image processing algorithm are always the same, there are cases where optimal image processing is not performed to degrade the image quality. Moreover, even when it is intended to output a high-quality image, since the configuration of the line memories for image processing and the image processing algorithm are always the same, the image quality cannot be increased to the desired one.

OBJECTS AND SUMMARY

An object of the present invention is to provide an image processing apparatus in which the configurations of the line memories and the circuit associated therewith and the image processing algorithm can be changed in accordance with the image processing condition such as the required image quality, processing speed or output image size.

An image processing apparatus according to a first aspect of the invention is provided with: a pixel matrix formation section consist of a device that has a rewritable circuit configuration, and having a plurality of line memories that output pixel data in parallel; a filtering circuit consist of

10

15

20

25

a device that has a rewritable circuit configuration, and performing filtering of pixel data by use of a pixel matrix based on the pixel data received in parallel from the line memories; a memory for storing setting information for rewriting the configurations of the devices; and a controller for rewriting the configuration of the line memories and the configuration of the filtering circuit by use of the setting information stored in the memory based on an image processing condition.

An image processing apparatus according to a second aspect of the invention is provided with: a processing circuit having a plurality of line memories and performing filtering of pixel data by use of a pixel matrix based on pixel data from the line memories; a memory for storing setting information for rewriting the configuration of the processing circuit; and a controller for rewriting the configuration of the line memories of the processing circuit and the configuration of filtering by use of the setting information stored in the memory based on an image processing condition.

An image processing apparatus according to a third aspect of the invention is provided with: a first circuit consist of a device that has a rewritable configuration, and having a plurality of line memories; a second circuit for processing image data output from the line memories; a memory for storing setting information for rewriting the configuration of the first circuit; and a controller for rewriting the configuration

10

15

20

of the line memories of the first circuit by use of the setting information stored in the memory based on an image processing condition.

These and other objects, advantages and features of the invention will become apparent from the following description thereof taken in conjunction with the accompanying drawings which illustrate specific embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 is a block diagram showing the general configuration
 of a color image processing circuit;
- FIG. 2 is a block diagram showing the configuration of a part of an area determination section:
- FIG. 3 is a block diagram showing the configuration of another part of the area determination section;
 - FIG. 4 shows the image reading ranges of a processing speed priority mode and an image quality priority mode;
- FIG. 5 shows a relationship between the sizes of an isolated point detection filter and isolated points in the processing speed priority mode:
- FIG. 6 shows a relationship between the sizes of the isolated point detection filter and the isolated points in the image quality priority mode:
- $\,$ FIG. 7 shows the dot area determination ranges of the 25 $\,$ modes;

15

20

25

FIG. 8 shows the configuration of a matrix formation section and an isolated point detection section in the processing speed priority mode;

FIG. 9 shows the configuration of the matrix formation

5 section and the isolated point detection section in the image
quality priority mode; and

FIG. 10 shows an example of calculation of the dot determination threshold values of the modes.

In the following description, like parts are designated by like reference numbers throughout the several drawings.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. In the figures, like reference numbers designate like parts.

FIG. 1 shows the general circuit configuration of a color image processing apparatus. The red, green and blue output signals of a color CCD sensor 10 comprising line sensors of three colors are converted into digital signals by an A/D conversion section 12. The obtained red (R), green (G) and blue (B) digital image data are corrected by a shading correction section 14 and supplied to a scaling and movement section 16, where scaling and movement of the image data are performed. The output image data from the scaling and movement section 16 are converted into print colors of cyan (C), magenta (M), yellow (Y) and black (Bk)

15

20

25

by a color correction section 18, and determination of areas is performed by an area determination section 20. An MTF correction section 22 corrects the image data output from the color correction section 18 in accordance with the result of the area determination by the area determination section 20, and outputs the corrected image data to a printer. The user can set, with an operation panel 28, the image processing condition such as the output image size (output sheet size), a processing speed priority mode or an image quality priority mode.

In the color image processing circuit, the area determination section 20 comprises a device having a rewritable circuit configuration such as a field programmable gate array (FPGA). The FPGA is an integrated circuit in which the logic circuit is reconstructed based on predetermined setting information. The image processing function is reconstructed by this integrated circuit. The setting information used in the reconstruction of the image processing function is stored in a ROM 26. A CPU 24 reconstructs the image processing function of the area determination section 20 by using the setting information stored in the ROM 26 or a processing circuit program in accordance with the set image processing condition such as the mode or the output size. Consequently, the circuit configuration of the area determination section 20 is rewritten, so that the image processing algorithm is changed.

15

20

25

Specifically, in the area determination section 20, a filtering circuit and line memories (for example, FIFO memories) for forming a pixel matrix are formed by using the FPGA, and the configuration of the line memories (the lateral size and the number of lines) and the configuration of the filtering circuit are changed in accordance with the set image processing condition such as the output size or the mode.

FIGs. 2 and 3 show the configuration of the area determination section 20. For simplicity, only determination of a dot area will be described. First, by an MIN circuit 200, lightness (V) data which is the minimum value of red, green and blue input image data RIN, GIN and BIN is obtained for each pixel from the data RIN, GIN and BIN. Then, at a matrix formation section 202, the lightness data successively input in units of pixels are held in a plurality of cascaded line memories, and the lightness data are paralelly read from the line memories, thereby extracting a pixel matrix. An isolated point detection section 204 detects whether the pixel of interest of the pixel matrix of the lightness (V) data extracted at the matrix formation section is a black or a white isolated point or not based on the pixel matrix, and produces a black isolated point signal KAMI or a white isolated point signal WAMI. The detection as to whether the pixel is an isolated point or not is performed for each pixel. For the pixels detected to be isolated points, the black isolated point signal KAMI or the

10

15

20

25

white isolated point signal WAMI becomes high. For the pixels not detected to be isolated points, the black isolated point signal KAMI or the white isolated point signal WAMI becomes low. The processing algorithms of the matrix formation section 202 and the isolated point detection section 204 are reconstructed by the CPU 24 through a CPU bus based on the setting information stored in the ROM 26. Then, the signals KAMI and the signals WAMI obtained for the pixels are developed into 9×41 matrices 206 and 208, respectively, and the number of black and white isolated points, that is, the number of pixels determined to be isolated points is counted by counter sections 210 and 212 to produce the number of black isolated points KOUT and the number of white isolated points WOUT.

Then, the obtained numbers of isolated points KOUT and WOUT are compared with black and white dot determination threshold values (KTh, WTh) by comparators 214 and 216, respectively. The numbers of isolated points KOUT and WOUT are added by an adder 218, and the sum is compared with a dot determination threshold value (TTh) by a comparator 220. When any of the comparison results is effective (low level), an OR gate 222 determines that the pixels constitute a dot area.

Next, the processing speed priority mode and the image quality priority mode set with the operation panel 28 will be described. When the processing speed priority mode is selected, speed-oriented image processing is performed. When the image

15

20

25

quality priority mode is selected, quality-oriented image processing is performed.

FIG. 4 shows the image reading areas of these modes. In the processing speed priority mode, the original is set in landscape orientation for readout. When the resolution is 600 dpi and the size is A4 in landscape orientation, the data amount is 7,500 pixels per line in the main scanning direction. The scan time is shorter than that of A4 in portrait orientation. In the image quality priority mode, the original is set in portrait orientation for readout. When the resolution is 600 dpi and the size is A4 in portrait orientation, the data amount is 5,000 pixels per line in the main scanning direction. The scan time is longer than that of A4 in landscape orientation. Therefore, the contents of the line memories (FIFO memories) are changed in accordance with the data amount per line. Specifically, in the processing speed priority mode, $8k \times 8$ bit FIFO memories are constructed, and in the image quality priority mode, 5k×8-bit FIFO memories are constructed.

The number of line memories (FIFO memories) is also changed in accordance with the mode. In the image quality priority mode, six FIFO memories are constructed for forming a 7×7-pixel isolated point detection filter. In the processing speed priority mode, four FIFO memories are constructed for forming a 5×5-pixel isolated point detection filter. In the image quality priority mode, the isolated point detection filter is

10

15

20

25

larger than that in the processing speed priority mode, and the time required for its computation is longer than that in the processing speed priority mode. In the image quality mode, since the isolated point detection filter is large, the accuracy of the isolation point detection is higher than that in the processing speed priority mode, so that the quality of the processed image is improved.

As described above, the configuration of the line memories in the matrix formation section 202, that is, the capacity of each line memory and the number of line memories are rewritten according to the mode. When the mode is changed with the operation panel 28, the CPU 24 reconstructs the configuration of the line memories in the matrix formation section 202 by use of the setting information in the ROM 26.

FIGs. 5 and 6 show the relationships between the sizes of the isolated point detection filter and the isolated point (hatched part) in the processing speed priority mode and in the image quality priority mode. In the processing speed priority mode (FIG. 5), since a 5×5-pixel filter is used for a pixel size of 600 dpi, an isolated point forming a dot of 85 L (L is a unit representative of the number of lines per inch, line/inch) is larger than the filter (FIG. 5(b)), so that the isolated point cannot be recognized. Only when forming a dot of not less than 100 L (FIG. 5(a)), an isolated point can be recognized and the dot area can be determined. On the contrary,

10

15

20

in the image quality priority mode (FIG. 6), since a 7×7-pixel filter is used for a pixel size of 600 dpi, an isolated point forming a dot of 85 L is not larger than the filter, so that the isolated point can be recognized. Likewise, an isolated point forming a dot of 65 L can be recognized. Thus, all the dot areas can be determined. FIG. 7 shows the dot area determination ranges of the modes. In the processing speed priority mode, the accuracy of the dot area determination is narrow and the dot area cannot be determined at 65L and 85L, so that image quality degradation (moiré pattern, etc.) occurs. In the image quality priority mode, all the dot areas can be determined, so that the image quality is excellent.

The circuit configuration of the area determination section 20 in accordance with the set mode and the output image size (sheet size) is reconstructed by the CPU 24 based on the setting information stored in the ROM 26. Specifically, the configuration of the line memories of the matrix formation section 20 and the circuit configuration of the isolated point detection section are reconstructed in accordance with the output image size and the mode. By thus rewriting the circuit configuration of the matrix formation section 202 and the circuit configuration of the isolated point detection section 204, the image processing accuracy can be changed, so that the image quality can be improved.

25 FIG. 8 shows the circuit contents of a matrix formation

10

15

20

section 202A and an isolated point detection section 204A constructed in the processing speed priority mode. Since the image data is 8-bit data of A4 size in landscape orientation and with a resolution of 600 dpi, FIFO memories of one line require a capacity of 8k×k bits. Moreover, since a 5×5-pixel filter is used, four FIFO memories 2020A are cascaded in the matrix formation section 202A. As pixel data V1 of the first line, the input pixel data is output as it is. Consequently, pixel data V1, V2, V3, V4 and V5 of five lines are output in parallel from the matrix formation section 202A.

The isolated point detection section 204A successively receives the pixel data V1, V2, V3, V4 and V5 in parallel from the matrix formation section 202A, and extracts a 5×5 pixel matrix 2040A. Here, Vi, j ($1 \le i$, $j \le 5$) represents data of a pixel (i, j). Then, for the 5×5 matrix, the condition of peripheral pixels of the pixel of interest situated at the center is examined by filtering sections 2042A and 2044A, and pixels of interest satisfying the conditions of determination of white and black isolated points shown in the figure, that is, white and black isolated points are detected. For the pixels detected to be isolated points, the black isolated point signal KAMI or the white isolated points, the black isolated point signal wall becomes high. For the pixels not detected to be isolated points, the black isolated point signal KAMI or the white isolated point signal

25 WAMI becomes low.

FIG. 9 shows the contents of a matrix formation section 202B and an isolated point detection section 204B constructed in the image quality priority mode. Since the image data of interest in this mode is 8-bit data of A4 in portrait orientation and with a resolution of 600 dpi, FIFO memories of one line require a capacity of 5k×8 bits. Moreover, six FIFO memories 2020B are cascaded for forming a 7×7-pixel isolated point detection filter. As pixel data V1 of the first line, the input pixel data is output as it is. Consequently, pixel data V1, V2, V3, V4, V5, V6 and V7 of seven lines are output in parallel from the matrix formation section 202B.

The isolated point detection section 204B successively receives the pixel data V1, V2, V3, V4, V5, V6 and V7 in parallel from the matrix formation section 202B, and extracts a 7×7 pixel matrix 2040B. Here, Vi, j ($1\le$ i, $j\le$ 7) represents data of a pixel (i, j). Then, after the 7×7 pixel matrix 2040B is smoothed by use of a 5×3 -pixel smoothing filter 2042B, a 5 $\times5$ pixel matrix 2044B is extracted from the smoothed data Si, j. In the case of a white isolated point, the condition of peripheral pixels of the pixel of interest is examined by use of the pixel matrices 2040B and 2044B, and the white isolated point that satisfies the condition of the white isolated point (WAMI="H") shown in the figure is obtained by a filtering section 2046B. In the case of a black isolated point, the condition of peripheral pixels of the pixel of interest is

15

examined by a filtering section 2048B by use of the pixel matrices 2040B and 2044B based on the condition shown in the figure, and the black isolated point that satisfies the condition of the black isolated point (KAMI="H") shown in the figure is obtained. For the pixels detected to be isolated points, the black isolated point signal KAMI or the white isolated point signal WAMI becomes high. For the pixels not detected to be isolated points, the black isolated point signal KAMI or the white isolated point signal WAMI becomes low.

Moreover, the area determination section 20 is rewritten in accordance with the output image size (output sheet size) set with the operation panel 28. For example, when A4 in landscape orientation is set as the output image size, the circuit configuration shown in FIG. 8 is constructed, and when A4 in portrait orientation is set as the output image size, the circuit configuration shown in FIG. 9 is constructed.

Description of the contents of FIGs. 8 and 9 is omitted as it has already been given.

FIG. 10 shows an example of calculation of the dot

20 determination threshold values of the modes. In the image
quality priority mode, in theory, there are 22 isolated points
detected by the isolated point detection section by use of the
7×7 pixel matrix in a 9×41 pixel matrix. Therefore, the
threshold value for the image quality priority mode is 22.

25 With the above-described embodiment, the circuit

configuration associated with filtering in the image processing circuit can be reconstructed in accordance with the image processing condition required by the user. Consequently, the image processing algorithm can be changed in accordance with various image processing conditions, so that the quality of the output image can be improved.

Although the present invention has been fully described by way of examples with reference to the accompanying drawings, it is to be noted that various changes and modification will be apparent to those skilled in the art. Therefore, unless otherwise such changes and modifications depart from the scope of the present invention, they should be construed as being included therein.

15

What is claimed is:

1. An image processing apparatus comprising:

a pixel matrix formation section consist of a device that has a rewritable circuit configuration, and having a plurality

- 5 of line memories that output pixel data in parallel;
 - a filtering circuit consist of a device that has a rewritable circuit configuration, and performing filtering of pixel data by use of a pixel matrix based on the pixel data received in parallel from the line memories;

a memory for storing setting information for rewriting the configurations of the devices; and

a controller for rewriting the configuration of the line memories and the configuration of the filtering circuit by use of the setting information stored in the memory based on an image processing condition.

An image processing apparatus as claimed in Claim 1, wherein said image processing condition is the output image size.

20

- 3. An image processing apparatus as claimed in Claim 1, wherein said image processing condition the processing speed.
- 4. An image processing apparatus as claimed in Claim 1,

15

further comprising:

an operation panel for setting the image processing condition.

- 5. An image processing apparatus as claimed in Claim 4, wherein said controller rewrites the circuit configuration in accordance with the operation mode set with the operation panel.
 - 6. An image processing apparatus as claimed in Claim 1, wherein said filtering circuit is used for image area determination.
 - 7. An image processing apparatus as claimed in Claim 6, wherein the filtering circuit performs filtering for detecting an isolated point of an image.
 - 8. An image processing apparatus comprising:
- a processing circuit having a plurality of line memories
 and performing filtering of pixel data by use of a pixel matrix
 based on pixel data from the line memories;
 - a memory for storing setting information for rewriting the configuration of the processing circuit; and
- a controller for rewriting the configuration of the line 25 memories of the processing circuit and the configuration of

15

20

filtering by use of the setting information stored in the memory based on an image processing condition.

- 9. An image processing apparatus as claimed in Claim 8, wherein said image processing condition is the output image size.
 - 10. An image processing apparatus as claimed in Claim 8, wherein said image processing condition the processing speed.
 - $11.\ \mbox{An image processing apparatus as claimed in Claim 8,} further comprising:$
 - an operation panel for setting the image processing condition.
 - 12. An image processing apparatus as claimed in Claim 11, wherein said controller rewrites the circuit configuration in accordance with the operation mode set with the operation panel.
 - 13. An image processing apparatus as claimed in Claim 8, wherein said processing circuit is used for image area determination.

25

14. An image processing apparatus as claimed in Claim 13, wherein the processing circuit performs filtering for detecting an isolated point of an image.

5 15. An image processing apparatus comprising:

a first circuit consist of a device that has a rewritable configuration, and having a plurality of line memories:

a second circuit for processing image data output from the line memories;

a memory for storing setting information for rewriting the configuration of the first circuit; and

a controller for rewriting the configuration of the line memories of the first circuit by use of the setting information stored in the memory based on an image processing condition.

15

10

10

15

Abstract of Disclosure

In an image processing circuit, an area determination section comprises a device having a rewritable circuit configuration such as a field programmable gate array (FPGA). Consequently, the circuit configuration of the area determination section is rewritten, so that the image processing algorithm is changed. Specifically, in the area determination section, a filtering circuit and line memories (for example, FIFO memories) for forming a pixel matrix are formed by using the FPGA, and the configuration of the line memories (the lateral size and the number of lines) and the configuration of the filtering circuit are changed in accordance with a set image processing condition such as the output size or the mode.

Fig. 5(a)

100L

Fig. 5(b)

85L

Fig. 6(a)

100L

Fig. 6(b)

85L

Fig. 10

Number of Isolated Points = 5

Number of Isolated Points in 9*41 Matrix

Threshold Value for Image Quality Priority Mode → 22

COMBINED DECLARATION AND POWER OF ATTORNEY FOR UTILITY PATENT APPLICATION

Attorney's Docket No. 018656-190

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name;

I BELIEVE I AM THE ORIGINAL, FIRST AND SOLE INVENTOR (if only one name is listed below) OR AN ORIGINAL, FIRST AND JOINT INVENTOR (if more than one name is listed below) OF THE SUBJECT MATTER WHICH IS CLAIMED AND FOR WHICH A PATENT IS SOUGHT ON THE INVENTION ENTITLED.

IMAGE PROCESSING APPARA	TUS		
he specification of which			
	(check one)	is attached hereto; was filed on Application No and was amended on(if applicable)	_ as

I HAVE REVIEWED AND UNDERSTAND THE CONTENTS OF THE ABOVE-IDENTIFIED SPECIFICATION, INCLUDING THE CLAIMS, AS AMENDED BY ANY AMENDMENT REFERRED TO ABOVE:

I ACKNOWLEDGE THE DUTY TO DISCLOSE TO THE OFFICE ALL INFORMATION KNOWN TO ME TO BE MATERIAL TO PATENTABILITY AS DEFINED IN TITLE 37, CODE OF FEDERAL REGULATIONS, Sec. 1.56 (as amended effective March 16, 1992):

I do not know and do not believe the said invention was ever known or used in the United States of America before my or our invention thereof, or patented or described in any printed publication in any country before my or our invention thereof or more than one year prior to said application; that said invention was not in public use or on sale in the United States of America more than one year prior to said application; that said invention has not been patented or made the subject of an inventor's certificate issued before the date of said application in any country foreign to the United States of America on any application filed by me or my legal representatives or assigns more than twelve months prior to said application;

I hereby claim foreign priority benefits under Title 35, United States Code Sec. 119 and/or Sec. 365 of any foreign application(s) for patent or inventor's certificate as indicated below and have also identified below any foreign application for patent or inventor's certificate on this invention having a filing date before that of the application(s) on which priority is claimed:

COMBINED DECLARATION AND POWER OF ATTORNEY

Attorney's Docket No.

018656-190

Gerald F. Swiss

Charles F. Wieland III

COUNTRY/INTERNATIONAL	APPLICATION NUMBER	DATE OF FILING (day, month, year)	PRIORITY CLAIMED
JAPAN	11-328130	18 11 99	YES_X_NO_
			YES_ NO_

I hereby appoint the following attorneys and agent(s) to prosecute said application and to transact all business in the Patent and Trademark Office connected therewith and to file, prosecute and to transact all business in connection with international applications directed to said invention:

	William L. Mathis	17,337	R. Danny Huntington	27,903
	Robert S. Swecker	19,885	Eric H. Weisblatt	30,505
	Platon N. Mandros	22,124	James W. Peterson	26,057
	Benton S. Duffett, Jr.	22,030	Teresa Stanek Rea	30,427
	Norman H. Stepno	22,716	Robert E. Krebs	25,885
2004	Ronald L. Grudziecki	24,970	William C. Rowland	30,888
0.3	Frederick G. Michaud, Jr.	26,003	T. Gene Dillahunty	25,423
12	Alan E. Kopecki	25,813	Patrick C. Keane	32,858
4.5	Regis E. Slutter	26,999	B. Jefferson Boggs, Jr.	32,344
	Samuel C. Miller, III	27,360	William H. Benz	25,952
fands	Robert G. Mukai	28,531	Peter K. Skiff	31,917
500	George A. Hovanec, Jr.	28,223	Richard J. McGrath	29,195
1 34	James A. LaBarre	28,632	Matthew L. Schneider	32,814
139	E. Joseph Gess	28,510	Michael G. Savage	32,596
\$45G			-	
Ш				
1000				

Bruce T. Wieder 33.815 Todd R. Walters 34.040 31,979 Ronni S. Jillions Harold R. Brown III 36 341 Allen R. Baum 36,086 Steven M. duBois 35,023 Brian P. O'Shaughnessy 32,747 Kenneth B. Leffler 36,075 Fred W. Hathaway 32,236

21839

DATE

and:

Address all correspondence to:

O 21839

Platon N Mandros

BURNS, DOANE, SWECKER & MATHIS, L.L.P. P.O. Box 1404

Alexandria, Virginia 22313-1404

SIGNATURE

Address all telephone calls to: Platon N. Mandros

FULL NAME OF SOLE OR FIRST INVENTOR

at (703) 836-6620.

30,113

33 096

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon

Hiroyuki SUZUKI			
RESIDENCE		CITIZENSHIP	
Toyokawa-Shi, Aichi-ken, Japan		Japan	
POST OFFICE ADDRESS			
C/O MINOLTA CO., LTD., Osaka Kokusai Bldg., 3-13, 2-chome,	Azuchi-machi, Chuo-ku, C	Saka-shi, Osaka, J	apan
FULL NAME OF SECOND JOINT INVENTOR, IF ANY	SIGNATURE		DATE
Hideaki MIZUNO			
RESIDENCE		CITIZENSHIP	•
Toyokawa-Shi, Aichi-ken, Japan		Japan	
POST OFFICE ADDRESS			
C/O MINOLTA CO., LTD., Osaka Kokusai Bldg., 3-13, 2-chome, Azuchi-machi, Chuo-ku, Osaka-shi, Osaka, Japan			

Page 2 of 3 (10/00)

COMPUSED DECLARATION AND DOWER	Attorney's Docket No.		
COMBINED DECLARATION AND POWER O	018656-190		
FULL NAME OF THIRD JOINT INVENTOR, IF ANY	SIGNATURE		DATE
Hideyuki TORIYAMA RESIDENCE		CITIZENSHIP	
Toyokawa-Shi, Aichi-ken, Japan		Japan	
POST OFFICE ADDRESS			
C/O MINOLTA CO., LTD., Osaka Kokusai Bldg., 3-13, 2-chome.	, Azuchi-machi, Chuo-ku,	Osaka-shi, Osaka, J	fapan
FULL NAME OF FOURTH JOINT INVENTOR, IF ANY	SIGNATURE		DATE
Nobuo KAMEI RESIDENCE		CITIZENSHIP	
Toyokawa-Shi, Aichi-ken, Japan POST OFFICE ADDRESS		Japan	
	to all model Olmonia	Olti Ol :	·
C/O MINOLTA CO., LTD., Osaka Kokusai Bldg., 3-13, 2-chome FULL NAME OF FIFTH JOINT INVENTOR, IF ANY	SIGNATURE	Osaka-siii, Osaka,	DATE
Tsuyoshi YONEYAMA			
RESIDENCE		CITIZENSHIP	
Toyokawa-Shi, Aichi-ken, Japan			
POST OFFICE ADDRESS			
©/O MINOLTA CO., LTD., Osaka Kokusai Bldg., 3-13, 2-chome FULL NAME OF SIXTH JOINT INVENTOR, IF ANY	, Azuchi-machi, Chuo-ku, SIGNATURE	Osaka-shi, Osaka, .	Japan DATE
FULL NAME OF SIXTH JOINT INVENTOR, IF ANY	SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	
wä.			
POST OFFICE ADDRESS			
FULL NAME OF SEVENTH JOINT INVENTOR, IF ANY	SIGNATURE		DATE
finer many			
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF EIGHTH JOINT INVENTOR, IF ANY	SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
			r
FULL NAME OF NINTH JOINT INVENTOR, IF ANY	SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF TENTH JOINT INVENTOR, IF ANY	SIGNATURE		DATE
RESIDENCE		CITIZENSHIP	

POST OFFICE ADDRESS