

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Chiral Antibiotics

Chiral Antibiotics

Part A Chloramphenicol

Chloramphenicol is an antibiotic drug. Its formula is given below.

Figure 1: Structure of chloramphenicol

List any of the letters **a-g** which are chiral centres in alphabetical order without spaces *e.g.*"ab".

Part B Penicillin

Penicillin is widely used to kill bacteria. The general structure of a penicillin molecule is given below.

Figure 2: General structure of penicillin

List in alphabetical order (e.g."ab") any of the carbon atoms **a-i** which are chiral centres.

Part A adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 2, Question 5; Part B adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 3, Question 5

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Asthma drugs

Asthma drugs

Part A Salbutamol

Salbutamol is a widely used anti-asthmatic drug. The structure of salbutamol is:

Figure 1: Structure of salbutamol

Which of the carbon atoms numbered on the structure are chiral?

1, 2 and 3 are chiral
1 and 2 only are chiral
1 and 3 only are chiral
2 and 3 only are chiral
1 only is chiral
2 only is chiral
3 only is chiral
None of the labelled carbons are chiral

Part B Intal

The anti-asthma drug *Intal* contains disodium cromoglycate, which has the following structure:

Figure 2: Structure of disodium cromoglycate

How many chiral centres are there in the molecule?

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 38; Part B adapted with permission from UCLES, A-Level Chemistry, June 1988, Paper 3, Question 22

Gameboard:

STEM SMART Chemistry Week 43

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Chiral Centres

Chiral Centres

Part A Amino acids

Which of the following amino acids contains two chiral carbon atoms?

Figure 1: Amino acids A - E.

- () A

Part B Liquid crystal displays

The following compounds are used in liquid crystal displays in watches and calculators.

Figure 2: Compounds used in liquid crystal displays.

Which of the following are correct statements about these molecules?

- **1**. Both can exist in optically active forms.
- **2**. Both have permanent dipoles.
- **3**. Both react with bromine in the dark.
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 1 and 3 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 2 only is correct
 - 3 only is correct
 - None of the statements is correct.

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Drugs and Poisons

Drugs and Poisons

Many drugs show optical isomerism. The diagrams show the structure of three drugs.

amphetamine

$$\begin{array}{c|c} & & & & \\ & &$$

Figure 1: Structures of amphetamine, lidocaine and phenobarbital.

phenobarbital

What is the total number of chiral carbon centres in these three structures?

Part B Poisons

Warfarin is used as a rat poison.

Figure 2: Structure of Warfarin.

How many chiral centres are present in the Warfarin molecule?

Part A adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 20; Part B adapted with permission from UCLES, A-Level Chemistry, November 1992, Paper 4, Question 21

Gameboard:

STEM SMART Chemistry Week 43

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Types of Isomerism

Types of Isomerism

Which types of stereoisomerism would be exhibited by the following compounds?

Part A Compound A

Figure 1: Compound A.

- () Cis-trans
- Optical
- Both *cis-trans* and optical
- No isomerism

Part B	Compound B
$\mathrm{CH_{3}CI}$	$\mathrm{H}\mathrm{=}\mathrm{CHCH_{2}CH(OH)CH_{3}}.$
	Cis-trans
	Optical
	Both <i>cis-trans</i> and optical
	No isomerism
Part C	Compound C
$(\mathrm{CH_3})_2$	$_{2}$ C=CHCH $_{2}$ CH(OH)CH $_{2}$ CH=C(CH $_{3}$) $_{2}$.
	Cis-trans
	Optical
	Both <i>cis-trans</i> and optical
	No isomerism

Adapted with permission from UCLES, A-Level Chemistry, 1989, Paper 1, Question 6.

Gameboard:

STEM SMART Chemistry Week 43

Home Gameboard Chemistry Organic Isomerism Natural Products

Natural Products

Part A Compound P

A product ${\bf P}$, isolated from a naturally-occurring source, has a molecular formula of $C_9H_{11}NO_3$. It possesses a chiral centre and it forms a zwitterion.

What could the structure of **P** be?

A
$$O_2N$$
 \longrightarrow CH_2 \longrightarrow O_2N \longrightarrow O_2N

C HO
$$\longrightarrow$$
 CH₂ \longrightarrow CH₂ \longrightarrow CH₂ \longrightarrow CH₂ \longrightarrow CH₂ \longrightarrow CH₂ \longrightarrow COOH

Figure 1: Possible structures of compound P.

- () A

- **D**

Part B Insect attractant

The diagram shows the structure of the insect attractant *methoprene*.

Figure 2: Structure of methoprene.

What is the total number of stereoisomers (cis-trans and optical) of this molecule?

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 29; Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 22

Gameboard:

STEM SMART Chemistry Week 43

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism More Natural Products

More Natural Products

Part A Vitamin C

The diagram shows the structure of vitamin C.

Figure 1: Structure of vitamin C.

How many chiral centres are there in one molecule of vitamin C?

- 0

- \bigcirc 3
- 5

Part B Menthol

Menthol, a cyclohexane derivative is used in skin lotions since it counteracts itching. The structural formula of menthol is shown below.

Figure 2: Structure of menthol.

List in alphabetical order without spaces (e.g. **abc**) any of the carbon atoms **a-j** which are chiral.

Part A adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 3, Question 4

Gameboard:

STEM SMART Chemistry Week 43

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Optical Isomerism

Optical Isomerism

Part A Definition			
Optical isomers are that have the same structural and molecular, but are of each other.			
Optical isomerism is caused by molecules with a carbon atom joined to different groups. We call			
the carbon atom a or an carbon. It is often indicated by an asterisk, *. The two			
isomers are known as			
Items: three molecules mirror images two asymmetric enantiomers non-superimposable formulae four chiral centre			
Part B Chiral alkane			
Draw the structural formula of an alkane with the lowest M_r that can exhibit optical isomerism. Use the <u>structure editor</u> to generate a SMILES string.			

Part C Chiral alcohol

Draw the structural formula of one of the optical isomers of the alcohol with the lowest M_r that can show optical isomerism, indicating the stereochemistry with a wedged or hashed bond.

Use the <u>structure editor</u> to generate a SMILES string.

Part A created for isaacphysics.org by R. Less;
Part B adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 1, Question 9;
Part C created for isaacphysics.org by R. Less

Gameboard:

STEM SMART Chemistry Week 43

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Formulae and Isomers

Formulae and Isomers

2 only is correct

3 only is correct

1 and 3 only are correct

	PPP	
Part A $C_4H_{10}O$		
How many isomers (including both structural isomers and stereoisomers) are possible for $\mathrm{C_4H_{10}O}$?		
Part B $ m C_2H_2Br_2$		
In what ways could two compounds of molecular formula $C_2H_2Br_2$ be related to each other?		
 structural isomers cis-trans isomers optical isomers 		
1, 2 and 3 are correct		
1 and 2 only are correct		
2 and 3 only are correct		
1 only is correct		

Part C Chlorination of ethane

How many chiral compounds is it possible to prepare by subjecting ethane to repeated substitution by chlorine?

Part A adapted with permission from UCLES, A-Level Chemistry, 1989, Paper 3, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, 1988, Paper 3, Question 38; Part C adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 23

Gameboard:

STEM SMART Chemistry Week 43

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Chiral Resolution

Chiral Resolution

Separating enantiomers from a racemic mixture, also known as chiral resolution, can be achieved in multiple ways. In this question, we will focus on the technique of reacting the mixture with a **chiral resolving agent**.

Part A Moscher's acid

One chiral resolving agent, Moscher's acid, has the structure shown below.

Figure 1: Moscher's acid

Which of the following classes of compounds would react with Moscher's acid? Select all that apply			
Which of the following classes of compounds would teact with Moscher's acid (Select all that apply	Mhigh of the following classes o	f aanan ay nada yyay lad raaat yyith	Manaharia asida Calaat all that anni
	vynich of the following classes o	i compounds wolld react with	ivioschers acioz Select ali mai abbiv

amines
carboxylic acids
amides
alcohols

Created for isaacphysics.org by Andrea Chlebikova

benzene ring

enantiomers

double bond

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

diastereomers

chiral centre