Combinatorics Basics

Agenda

- Addition and Multiplication Rule

- Permutation Baics

— Combination Basics & Proporties

- Parcal triangle

- Find Nth column tile.

Previous PSP Convent PSP

Next target

66 · 4

67.25 1.

70%

Personal target : 2 100% PSP

Live Contest 1 re-attempt 2 um Feb

 $Q \longrightarrow Q tab$

A ----> Private Chat.

Q> Given 10 girls and 7 boys. How many different pairs can be formed.

of Boys * # of girls =
$$7*10 = 70$$
.

AND \longrightarrow * of Multiplication Rule 3.

ways to reach Agra from Pune via belhi.

Quiz 1> # ways of reaching Agra from Pune.

Permutation Arrangements. order matters.

Given 3 distinct charactery. How many ways can we

awange them.

a b c

3*2 * 1 = 31

a b c b a c c a b

acb bca Cba

date

ways to awange n distinct charactery

Given N distinct characters, in how many ways you can awange

N=4 R=2

$$3+3+3+3 = 12$$

Given N distinct characters, average R characters.

R positions

$$n + n-1 + n-2 + \dots + n-k + \dots + 1$$

$$(n-k) + (n-k-1) + \dots + 1$$

$$\frac{n!}{(n-n)!}$$
 = # ways to arrange a objects

from N distinct objects

Given 4 players, # ways to relect 3 players.

$$P_1$$
 P_2 P_3

$$p_1$$
 p_3 p_4

$$p_1$$
 p_2 p_4

$$\rho_2$$
 ρ_3 ρ_4

Assume no of ways to select 3 players from 4 = χ

way felect * # ways arrange = total arrange monts. each selection

$$X * 3! = \frac{4!}{(4-3)!} = 24$$

$$X = \frac{U!}{(U-3)!} = \frac{U}{3!}$$

: Similarly.

Assume no. of ways to select a object from N object = x

way felect * # way arrange = total arrange each felection ments.

no. of ways to select Robjects from Nobjects $= \frac{N!}{(N-n)!}$ $= \frac{N!}{N^{c_n}}$ $0 \le n \le N$

Properties of Combination

ways to select 0 items from n items

$$n_{C_0} = 1$$

ways to select nitemy from nitemy

$$n_{C_n} = 1$$

ways to select n-k items from nitems

$$n_{C_{n-x}} = \frac{n!}{(n-(n-x))!} = \frac{n!}{(n-x)!} (n!)$$

$$n_{C_{\mathcal{H}}} = n_{C_{n-\mathcal{H}}}$$

Special Property

Break \longrightarrow 22:34

Parcal's Triangle

Generate Parcal's triangle for given value of n.

$$n = q$$

$${}^{\circ}C_{0}$$
 ${}^{1}C_{0}$
 ${}^{1}C_{1}$
 ${}^{2}C_{0}$
 ${}^{2}C_{1}$
 ${}^{2}C_{2}$
 ${}^{3}C_{0}$
 ${}^{3}C_{1}$
 ${}^{3}C_{2}$
 ${}^{3}C_{3}$
 ${}^{3}C_{4}$
 ${}^{4}C_{5}$
 ${}^{4}C_{4}$

 $Tc: O(n^3)$

Bruteforce Approach

$$\begin{cases}
f & x \longrightarrow 0 \text{ to } n & \{
f & c \longrightarrow 0 \text{ to } x & \{
ATXJCCJ = {}^{4}c_{c}\} \text{ generate}
\end{cases}$$

TC to calculate
$$n! = O(n)$$

idea we special property.

```
nCe [N+1] [N+1] // initally all o
for n \longrightarrow 0 to N f how idx for <math>how idx how how idx how idx how idx how idx how idx how how idx how idx how ho
                                                                                                  T(: O(N^2)
                                                                                                       Sc: O(1) ignore output space.
```

Nth Column tile *** { MSFT3

Find the nth column title.

A B C Z AA AB AZ BA BB ZZ

4nout

4dea - Base 26 conversion

$$n = 1$$
 and $an = A$ $an = A$

n = 50

$$\begin{array}{c|cccc}
26 & 50 & -1 & 23 & \longrightarrow & X \uparrow \\
1 & -1 & 0 & \longrightarrow & A \uparrow \\
0 & & & & & \\
\end{array}$$

$$n = 10000$$

$$\begin{array}{c|cccc}
26 & 52-1 & 25 \longrightarrow 2 \\
1-1 & 0 \longrightarrow A \\
0 & & \end{array}$$

while
$$(n>0)$$
 {
 $n-=1$
 $ch = (char)(n\% 26) + 'A'$
 $S = ch + S$
 $n = n/26$
}

$$n = 50$$

print (s)

TC: $O(log_{26}N)$ SC: $O(log_{26}N)$ because of string concatenation