

Dokumentasi Produk

Lembar Sampul Dokumen

Judul Dokumen SMART HEALTH MONITORING

Jenis Dokumen SPESIFIKASI

Nomor Dokumen **B200-YY.ZZZ**

Nomor Revisi **001**

Nama File **B200-YY.ZZZ-VVV**

Tanggal Penerbitan 28 June 2022

Unit Penerbit Prodi Teknik Komputer - ITEBA

Jumlah Halaman 8 (termasuk lembar sampul ini)

DAFTAR ISI

DAFTAR ISI		
CATA	ATAN SEJARAH PERBAIKAN DOKUMEN	3
1 F	PENGANTAR	4
1.1	RINGKASAN ISI DOKUMEN	4
1.2	TUJUAN PENULISAN DAN APLIKASI/KEGUNAAN DOKUMEN	4
1.3		
1.4	Daftar Singkatan	5
2 S	SPESIFIKASI	7
2.1	Spesifikasi Produk	7
2	2.1.1 Spesifikasi #1	
	2.1.2 Spesifikasi #2	
2.2	TABEL SPESIFIKASI PRODUK	8
2.3	Verifikasi	8
2	2.3.1 Spesifikasi #1	
2	2.3.2 Spesifikasi #2	8
3 I	LAMPIRAN	10

Catatan Sejarah Perbaikan Dokumen

VERSI, TGL, OLEH	PERBAIKAN
001, 23 Juni 2022,	Mengedit Bab 1 sampai Bab 3
Ricky, Yusuf,	
Rahmadi, Budi	

1 Pengantar

1.1 Ringkasan Isi Dokumen

Isi dari dokumen tentang spesifikasi smart monitoring system, yang dimana setiap spesifikasi nya di jelasin secara jelas

1.2 Tujuan Penulisan dan Aplikasi/Kegunaan Dokumen

Untuk menjelaskan spesifikasi produk Smart Health Monitoring

1.3 Referensi

- [1] "Kementrian Kesehatan Republik Indonesia," 2019. [Online]. Available: https://www.kemkes.go.id/. [Accessed 2020].
- [2] T. F. P. M. F. L. Harun Sujadi, "RANCANG BANGUN PURWARUPA SISTEM GENERAL CHECKUP KESEHATAN MANUSIA BERBASIS MIKROKONTROLER ARDUINO UNO R3," Jurnal JEnsitec, vol. 04, 02 Mei 2018.
- [3] R. Tamin, "Medical Check Up," 3 Januari 2021. [Online]. Available: https://www.alodokter.com/medicalcheck-up-ini-yang-harus-anda-ketahui. [Accessed Juni 2021].
- [4] A. Puji, "Kesehatan jantung," 2020. [Online]. Available: https://hellosehat.com/jantung/detak-jantungnormal/. [Accessed 27 Mei 2021].
- [5] d. D. Upahita, "Hipertensi," 22 Juni 2020. [Online]. Available: https://hellosehat.com/jantung/hipertensi/pengertian-tekanan-darah-adalah/. [Accessed 14 Juli 2021].
- [6] d. K. Adrian, "Memahami Suhu Tubuh," 13 Januari 2021. [Online]. Available: https://www.alodokter.com/memahami-suhu-tubuh. [Accessed 18 Juni 2021].
- [7] d. S. Agustin, "Seputar Indeks Masa Tubuh," 23 Mei 2021. [Online]. Available: https://www.alodokter.com/pemahaman-seputar-indeks-massa-tubuh. [Accessed 27 Mei 2021].
- [8] "firebase.com," [Online]. Available: https://firebase.google.com/products/realtime-database. [Accessed 26 Mei 2021].
- [9] Anonim, "NodeMCU ESP8266," 22 April 2020. [Online]. Available: https://components101.com/development-boards/nodemcu-esp8266-pinout-features-and-datasheet. [Accessed Mei 2021].
- [10] ardutech, "Arduino Sensor Suhu DS18B20," 22 Oktober 2019. [Online]. Available: https://www.ardutech.com/arduino-sensor-suhu-ds18b20/. [Accessed Mei 2021].
- [11] Freescale Semiconductor, Inc, "MPX5050/MPXV5050G Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated," Maret 2010.
- [12] Anonim, "Heart Rate Sensor Module," [Online]. Available: https://www.rohm.com/sensor-shieldsupport/heart-rate-sensor. [Accessed 26 Mei 2021].
- [13] Sparkfun, "Pulse Sensor," 2018. [Online]. Available: https://www.sparkfun.com/products/11574. [Accessed 29 Desember 2020].

- [14] Sparkfun, "Getting Started with Load Cells," 2016. [Online]. Available: https://www.sparkfun.com/. [Accessed 29 Desember 2020].
- [15] A. S. Galih, "PERANCANGAN ALAT UKUR BODY MASS INDEX BERBASIS ARDUINO UNO," PERANCANGAN ALAT UKUR BODY MASS INDEX BERBASIS ARDUINO UNO, 2018.
- [16] A. B. P. Y. S. Dena Anugrah, "Rancang Bangun Pengukur Laju Detak Jantung Berbasis PLC Mikro," Jurnal Electronics, Informatics, and Vocational Education, vol. 1, pp. 163-170, November 2016.
- [17] "Badan Pusat Statistik," 2018. [Online]. Available: https://www.bps.go.id/

SINGKATAN	ARTI
PCB	Printed Circuit Board atau Papan Sirkuit Cetak
GHz	Satuan frekuensi sama dengan satu biliun gelombang hertz

2 Spesifikasi

2.1 Spesifikasi Produk

Jelaskan spesifikasi produk yang akan dibuat dalam proyek ini. Spesifikasi harus memiliki sifat:

- traceable.
- tidak ambigu,
- measurable/verifiable,
- abstrak,
- realistik.

Traceable bahan yang digunakan adalah baja alumunium agar tidak mudah berkarat atau mengalami korosi.

Tidak ambigu/non-ambigu Berdasarkan hasil dari ujicoba dapat diambil kesimpulan bahwa alat Smart Health Monitoring dapat terintegrasi dengan baik

Verifiable Dari hasil keakuratan pembacaan sensor pada alat Smart Health Monitoring didapatkan nilai keakuratan pada sensor berat badan yaitu 98% dengan tingkat error sebesar 1,98%, pada sensor detak jantung diperoleh tingkat keakuratan sebesar 87% dengan ratarata error sebesar 13%, pada sensor tekanan darah diperoleh tingkat keakuratan sebesar 95% dengan tingkat error sebesar 5,04%, pada sensor tinggibadan diperoleh tingkat keakuratan sebesar 99% dengan tingkat error sebesar 0,8%, dan pada sensor suhu tubuh didapat tingkat keakuratan sebesar 98% dengan tingkat error sebesar 2,08%

Abstrak Hasil keluaran dari alat Smart Health Monitoring bisa melakukan Medical Check-Up dengan akurasi pada pengukuran berat badan yaitu 98%, pengukuran detak jantung sebesar 87%, pengukuran tekanan darah sebesar 95%, pengukuran tinggi badan sebesar 99%, dan pengukuran suhu sebesar 98%. Seluruh data hasil Medical CheckUp bisa dikirim ke aplikasi adadokter yang diintegrasikan melalui database real time dari fireba

Realistik produk biasanya digunakan sebentar dikarenakan produk digunakan buat check up medis saja

Spesifikasi harus terkait dengan karakteristik produk dan konstrain.

2.1.1 Spesifikasi #1

Mengurangi gelombang frekuensi dibawah batas tersebut agar tidak membuat gangguan Kesehatan

2.1.2 Spesifikasi #2

Memakai rangkaian PCB seperti diatas dengan memperhatikan system desain dan jalur sinyal pada PCB

2.2 Tabel Spesifikasi Produk

Tabel 1 Spesifikasi Produk

No	Karakteristik Produk	Spesifikasi	Rincian
1	Mengurai Frekuensi	Gelombang	0-300 GHz
2	Rangkaian PCB	Desain	Jalur Sinyal

Tabel 2 Karakteristik Produk

No	Karakteristik Produk
1	Mengurai Frekuensi
2	Rangkaian PCB

2.3 Verifikasi

Tuliskan rincian bagaimana spesifikasi produk yang hendak dirancang akan diverifikasi. Berikan metode pengukuran dan prosedur pengujian setiap poin spesifikasi.

2.3.1 Spesifikasi #1

Tabel 3 Verifikasi spesifikasi #1

Hal	Gelombang				
Rincian	0-300 GHz				
Metode Pengukuran	Frequency Counter Meter				
Prosedur Pengujian	Produk akan dijalankan lalu akan diukur radio frekuensinya menggunakan frequency counter meter				

2.3.2 Spesifikasi #2

Tabel 4 Verifikasi spesifikasi #2

Hal	Desain
Rincian	Jalur Sinyal
Metode Pengujian	Frequency Counter Meter

Nomor Dokumen: B200-YY.ZZZ	Nomor Revisi: 01	Tanggal: 6/28/2022	Halaman 8 dari 10

Prosedur Pengujian	Produk	akan	dijalankan	lalu	akan	diukur	radio
	frekuensinya menggunakan frequency counter meter				r		

3 Lampiran

3.1.1 Perkiraan Biaya

Perkiraan biaya yang akan diperlukan untuk mengembangkan produk diatas antara lain

- 1. Pulse Sensor SEN-11574 | Rp. 389.000
- 2. Modul AD8232 | Rp. 100.000
- 3. Sensor Infared MLX90614 | Rp. 149.000

Dengan total Rp. 638.000

Jika untuk biaya produksi maka

- 1. Pulse Sensor SEN-11574 | Rp. 389.000
- 2. Modul AD8232 | Rp. 100.000
- 3. Sensor Infared MLX90614 | Rp. 149.000
- 4. Listrik dan bahan pendukung pembuatan | Rp. 362.000

Maka biaya totalnya Rp.1.000.000