Cross Sections and EMC effect.

Jason Bane

University of Tennessee jbane1@vols.utk.edu

Jason Bane (UTK) 1 / 18

Monte Carlo

- Generate events → Pass through magnetic apertures
- Tune Simulation offsets to match detector response
- Use model to weight events
 - Deep Inelastic and resonance region from Ari Bodek Fit from E139
 - Full Mo and Tsai radiative correction

[A. Bodek and U.K. Yang, 2002] [L.W. Mo and Y.S. Tsai, 1969]

Jason Bane (UTK) 2 / 18

Yield & MC ratio D

DIS Cross Section

Normalization uncertainty due to target thickness uncertainty 3 He - $1.12\% \bullet ^{3}$ H - $0.97\% \bullet D$ - 0.56%

Jason Bane (UTK) 4 / 18

Relative uncertatiny contributions for the cross section ³H.

Xbjc	0.185	0.305	0.49	0.57	0.705	0.825
Yield Error	0.01	0.0107	0.0149	0.0151	0.0141	0.0163
Stat Error*	0.0055	0.0059	0.01	0.0111	0.0113	0.0143
End Cap*	0.007	0.007	0.007	0.007	0.007	0.007
Eff Error*	0.004	0.0051	0.0083	0.0071	0.0041	0.0032
MC&Model	0.016	0.014	0.013	0.016	0.03	0.037
Resolution**	0.015	0.011	0.005	0.001	0.007	0.018
Model**	0.006	0.009	0.012	0.016	0.029	0.032
Total Error	0.019	0.018	0.02	0.022	0.033	0.04

^{*} Largest contributers to the uncertainty in the yield calculation

** Largest contributers to the uncertainty in Monte Carlo and Cross

section model calculation.

Jason Bane (UTK) 5 / 18

Cross section model

- Cross section code from Dr. Gaskell
- DIS model corrected with an EMC model -Bodek E139
 - neutron and proton structure functions from a Hydrogen fit and deuterium fit
 - proton 24 parameter fit for background and resonance and 11 parameters OMEGAW fit for F2.
 - deuterium 26 parameter fit for background and resonance and 11 parameters OMEGAW fit for F2
- EMC 8th-degree polynomial with a quadric polynomial in an exponential
 - $C = exp(0.017 + 0.018 \times log(x) + 0.005 \times log(x)^2)$
 - $ightharpoonup \alpha$ is polynomial
 - ▶ EMC correction = $C \times A^{\alpha}$

Jason Bane (UTK) 6 / 18

Cross section Models

 \bullet F_{2d} : Bodek: NMC 1995 (Phys. Lett. B364 107-115,1995) • EMC ratio $\frac{F_2(A=3)}{F_2}$ • K&P (no isoscalar correction); SLAC EMC (isoscalar nuclei) \bullet F_{2n}/F_{2p} ① linear: $F_{2n}/F_{2n} = 1 - 0.8 * x$ **Q** CJ15: MMC 1992 (Nucl. Physics. B 371(1992) 3-31) model111: Bodek + K&P: model211: NMC + K&P:model121: Bodek + SLAC EMC + linear F_{2n}/F_{2n} ;

Jason Bane (UTK) 7 / 18

Model Cross Section Error

Jason Bane (UTK) 8 / 18

Model Cross Section Error

Jason Bane (UTK) 9 / 18

Tacking/Reconstruction Error

 $\delta\theta=\pm0.15\%$ • $\delta E'=\pm0.025\%$ • $\delta E_{beam}=\pm0.005\%$ Determine new Q^2 and x_{bj} Calculated new cross sections for extreme situation.

Jason Bane (UTK) 10 / 18

Per Nucleon Cross Section Ratio

MARATHON results compared with E03103 [J.Seely, A. Daniel et al, 2009] and the A/D ratios from a DIS scattering model from Arie Bodek model [A. Bodek and U.K. Yang, 2002].

Jason Bane (UTK) 11 / 18

F² ratio

- J.Arrigton.
 - ► p=[0.0,0.816,-0.661,0.184,5.509,-0.034,8.714,-0.072,0.450]
 - (p[1] + p[2] * epl) + p[3] * np.exp(-p[4] * epl) + p[5] *np.exp(-p[6] * (1 - epl)) + p[7] * pow(max(0, epl - p[8]), 2)
- NMC
 - $AX = 0.979 1.692 * x + 2.797 * x^2 4.313 * x^3 + 3.075 * x^4$
 - $BX = -0.171 * x + 0.244 * x^2$
 - $F2NP_NMC = AX((Q2/20.0)^{BX})*(1+x^2/Q2)$
- K&P from table

Jason Bane (UTK) 12 / 18

Isoscalar Correction Error for ³H

Jason Bane (UTK)

Isoscalar Correction Error for ³He

Jason Bane (UTK) 14 / 18

- My EMC results for He3 in black H3 in red
- Previous Jlab He3 in green

MARATHON results compared with E03103 [J.Seely, A. Daniel et al, 2009] and the EMC ratios from a DIS scattering model from Arie Bodek model [A. Bodek and U.K. Yang, 2002].

Jason Bane (UTK) 15 / 18

EMC results with fits (0.35 - 0.7 in x)

Jason Bane (UTK) 16 / 18

Ratio of ${}^3H/{}^3He$ EMC effects

Ratio of EMC effects.

Jason Bane (UTK) 17 / 18

References I

A. Bodek and U.K. Yang

Nuclear Physics B, Procc. Suppl. 112 (2002) 70-76

J. Seely, A. Daniel et al

Phys. Rev. Lett. 103, 202301 (2009).

J. Arrington, F. Coester, R.J. Holt, T.-S.H. Lee (Argonne, PHY)

Neutron Structure Functions, May 2008, J.Phys. G36 (2009) 025005 DOI: 10.1088/0954-3899/36/2/025005

Jason Bane (UTK) 18 / 18