

03. 6. 2004

日本特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 2004年 3月18日

出願番号
Application Number: 特願2004-079235

[ST. 10/C]: [JP2004-079235]

出願人
Applicant(s): シャープ株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 4月21日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

BEST AVAILABLE COPY

【書類名】 特許願
【整理番号】 04J00097
【提出日】 平成16年 3月18日
【あて先】 特許庁長官 殿
【国際特許分類】 G09G 3/36
 G02F 1/133

【発明者】
【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
【氏名】 藤根 俊之

【発明者】
【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
【氏名】 菊地 雄二

【発明者】
【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
【氏名】 長田 俊彦

【発明者】
【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
【氏名】 吉井 隆司

【特許出願人】
【識別番号】 000005049
【氏名又は名称】 シャープ株式会社

【代理人】
【識別番号】 100080034
【弁理士】
【氏名又は名称】 原 謙三
【電話番号】 06-6351-4384

【選任した代理人】
【識別番号】 100113701
【弁理士】
【氏名又は名称】 木島 隆一

【選任した代理人】
【識別番号】 100116241
【弁理士】
【氏名又は名称】 金子 一郎

【先の出願に基づく優先権主張】
【出願番号】 特願2003- 85260
【出願日】 平成15年 3月26日

【先の出願に基づく優先権主張】
【出願番号】 特願2003-392917
【出願日】 平成15年11月21日

【手数料の表示】
【予納台帳番号】 003229
【納付金額】 21,000円

【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 0316194

【書類名】特許請求の範囲**【請求項1】**

少なくとも1垂直期間前の画像データと現垂直期間の画像データとに基づいて、液晶表示パネルへ供給する画像データを強調変換することにより、前記液晶表示パネルの光学応答特性を補償する液晶テレビジョン受像機であって、

前記液晶テレビジョン受像機は、複数の放送方式の画像データを表示可能であり、

さらに、入力画像データが第1の放送方式の映像信号であるか、当該第1の放送方式の映像信号とは垂直周波数の異なる第2の放送方式の映像信号であるかの信号種別を検出する信号種別検出手段と、

前記液晶表示パネルが所定期間内において前記画像データの定める透過率となるように、前記画像データの強調変換を行う強調変換手段とを備え、

前記信号種別検出手段による検出結果に応じて、前記強調変換手段における前記画像データに対する強調変換度合いを可変制御することを特徴とする液晶テレビジョン受像機。

【請求項2】

現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを備え、

前記強調変換手段は、

前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、

前記演算部の出力データに対し、前記信号種別検出手段による検出結果に応じて、異なる係数を乗算する乗算部とを有することを特徴とする請求項1に記載の液晶テレビジョン受像機。

【請求項3】

前記乗算部における係数は、前記入力画像データが第2の放送方式の映像信号である場合、前記入力画像データが第1の放送方式の映像信号である場合に比べて小さくなるよう設定されていることを特徴とする請求項2に記載の液晶テレビジョン受像機。

【請求項4】

前記入力画像データが第1の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリと、

前記入力画像データが第2の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリとを備え、

前記強調変換手段は、前記信号種別検出手段による検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部を有することを特徴とする請求項1に記載の液晶テレビジョン受像機。

【請求項5】

前記強調変換パラメータは、前記入力画像データが第1の放送方式の映像信号である場合に読み出されるものに比べて、前記入力画像データが第2の放送方式の映像信号である場合に読み出されるものが小さい値であることを特徴とする請求項4に記載の液晶テレビジョン受像機。

【請求項6】

さらに、装置内温度を検出する温度検出手段を備え、

前記強調変換手段は、前記温度検出手段による検出結果に基づき、前記画像データに対する強調変換度合いを可変することを特徴とする請求項1に記載の液晶テレビジョン受像機。

【請求項7】

現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを備え、

前記強調変換手段は、

前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、

前記演算部の出力データに対し、前記信号種別検出手段による検出結果と前記温度検出手段の検出結果とに応じて、異なる係数を乗算する乗算部とを有することを特徴とする請求項6に記載の液晶テレビジョン受像機。

【請求項8】

前記入力画像データが第1の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリと、

前記入力画像データが第2の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリとを備え、

前記強調変換手段は、

前記信号種別検出手段による検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、

前記演算部の出力データに対し、前記温度検出手段の検出結果に応じて異なる係数を乗算する乗算部とを有することを特徴とする請求項6に記載の液晶テレビジョン受像機。

【請求項9】

前記入力画像データが第1の放送方式の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリと、

前記入力画像データが第2の放送方式の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリとを備え、

前記強調変換手段は、前記信号種別検出手段による検出結果と前記温度検出手段の検出結果とに応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部を有することを特徴とする請求項6に記載の液晶テレビジョン受像機。

【請求項10】

複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを備え、

前記強調変換手段は、前記信号種別検出手段による検出結果によって定められた切換温度と前記温度検出手段の検出結果との比較結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部を有することを特徴とする請求項6に記載の液晶テレビジョン受像機。

【請求項11】

前記強調変換パラメータの切り換え選択を制御する制御手段を備え、

前記制御手段は、

前記温度検出手段により検出された温度データに対して、前記入力画像データの信号種別毎に定められた所定の演算を施す演算部と、

前記演算部により演算が施された温度データと、予め決められた所定の閾値温度データとを比較する閾値判別部と、

前記閾値判別部による比較結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生成する制御信号出力部とを有することを特徴とする請求項10に記載の液晶テレビジョン受像機。

【請求項12】

前記強調変換パラメータの切り換え選択を制御する制御手段を備え、

前記制御手段は、

前記温度検出手段により検出された温度データと、前記入力画像データの信号種別毎に決められた所定の閾値温度データとを比較する閾値判別部と、

前記閾値判別部による比較結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生成する制御信号出力部とを有することを特徴とする請求項10に記載の

液晶テレビジョン受像機。

【請求項 1 3】

少なくとも 1 垂直期間前の画像データと現垂直期間の画像データに基づいて、液晶表示パネルへ供給する画像データを強調変換することにより、前記液晶表示パネルの光学応答特性を補償する液晶表示制御方法であって、

前記液晶表示パネルは、複数の放送方式の画像データを表示可能であり、

入力画像データが第 1 の放送方式の映像信号であるか、当該第 1 の放送方式の映像信号とは垂直周波数の異なる第 2 の放送方式の映像信号であるかの信号種別を検出する工程と

、前記液晶表示パネルが所定期間内において前記画像データの定める透過率となるように、前記画像データの強調変換を行う工程とを有し、

前記信号種別の検出結果に応じて、前記強調変換における前記画像データに対する強調変換度合いを可変制御することを特徴とする液晶表示制御方法。

【請求項 1 4】

現垂直期間の画像データと 1 垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、

前記演算による出力データに対し、前記信号種別の検出結果に応じて、異なる係数を乗算する工程とを有することを特徴とする請求項 1 3 に記載の液晶表示制御方法。

【請求項 1 5】

前記入力画像データが第 1 の放送方式の映像信号である場合に参照する、現垂直期間の画像データと 1 垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記入力画像データが第 2 の放送方式の映像信号である場合に参照する、現垂直期間の画像データと 1 垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記信号種別の検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程とを有することを特徴とする請求項 1 3 に記載の液晶表示制御方法。

【請求項 1 6】

装置内温度を検出する工程と、

前記装置内温度の検出結果に基づき、前記画像データに対する強調変換度合いを可変する工程とを有することを特徴とする請求項 1 3 に記載の液晶表示制御方法。

【請求項 1 7】

現垂直期間の画像データと 1 垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、

前記演算による出力データに対し、前記信号種別の検出結果と前記装置内温度の検出結果とに応じて、異なる係数を乗算する工程とを有することを特徴とする請求項 1 6 に記載の液晶表示制御方法。

【請求項 1 8】

前記入力画像データが第 1 の放送方式の映像信号である場合に参照する、現垂直期間の画像データと 1 垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記入力画像データが第 2 の放送方式の映像信号である場合に参照する、現垂直期間の画像データと 1 垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記信号種別の検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、

前記演算による出力データに対し、前記装置内温度の検出結果に応じて異なる係数を乗

算する工程とを有することを特徴とする請求項16に記載の液晶表示制御方法。

【請求項19】

前記入力画像データが第1の放送方式の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記入力画像データが第2の放送方式の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記信号種別の検出結果と前記装置内温度の検出結果とに応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程とを有することを特徴とする請求項16に記載の液晶表示制御方法。

【請求項20】

複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、

前記信号種別の検出結果によって定められた切換温度と前記装置内温度の検出結果との比較結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程とを有することを特徴とする請求項16に記載の液晶表示制御方法。

【請求項21】

前記装置内温度の検出結果である温度データに対して、前記入力画像データの信号種別毎に定められた所定の演算を施す工程と、

前記演算が施された温度データと、予め決められた所定の閾値温度データとを比較する工程と、

前記比較の結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生成する工程とを有することを特徴とする請求項20に記載の液晶表示制御方法。

【請求項22】

前記装置内温度の検出結果である温度データと、前記入力画像データの信号種別毎に決められた所定の閾値温度データとを比較する工程と、

前記比較の結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生成する工程とを有することを特徴とする請求項21に記載の液晶表示制御方法。

【請求項23】

複数の放送方式の画像データを表示可能で、しかも、少なくとも1垂直期間前の画像データと現垂直期間の画像データに基づいて、液晶表示パネルへ供給する画像データを、前記液晶表示パネルが所定期間内において前記画像データの定める透過率となるように強調変換することにより、前記液晶表示パネルの光学応答特性を補償する液晶テレビジョン受像機を制御するコンピュータのプログラムであって、

入力画像データが第1の放送方式の映像信号であるか、当該第1の放送方式の映像信号とは垂直周波数の異なる第2の放送方式の映像信号であるかの信号種別を検出した結果に応じて、前記画像データに対する強調変換度合いを可変制御する工程を、上記コンピュータに実行させるプログラム。

【請求項24】

請求項23記載のプログラムを記録した記録媒体。

【書類名】明細書

【発明の名称】液晶テレビジョン受像機、液晶表示制御方法、並びに、そのプログラムおよび記録媒体

【技術分野】

【0001】

本発明は、液晶表示パネルを用いて画像を表示する液晶テレビジョン受像機に関し、特に液晶表示パネルの光学応答特性を改善することができる液晶テレビジョン受像機に関するものである。

【背景技術】

【0002】

近来、パソコン用コンピュータやテレビジョン受信機などの軽量化、薄形化によってディスプレイ装置も軽量化、薄形化が要求されており、このような要求に従って陰極線管（CRT）の代わりに液晶表示装置（LCD）のようなフラットパネル型ディスプレイが開発されている。

【0003】

LCDは二つの基板の間に注入されている異方性誘電率を有する液晶層に電界を印加し、この電界の強さを調節して基板を透過する光の量を調節することによって所望の映像信号を得る表示装置である。このようなLCDは携帯の簡便なフラットパネル型ディスプレイのうちの代表的なものであり、この中でも薄膜トランジスタ（TFT）をスイッチング素子として用いたTFT-LCDが主に用いられている。

【0004】

最近は、LCDがコンピュータのディスプレイ装置だけでなくテレビジョン受信機のディスプレイ装置として広く用いられるため、動画像を具現する必要が増加してきた。しかしながら、従来のLCDは応答速度が遅いために動画像を具現するのは難しいという短所があった。

【0005】

このような液晶の応答速度の問題を改善するために、1フレーム前の入力映像信号と現フレームの入力映像信号の組み合わせに応じて、予め決められた現フレームの入力映像信号に対する階調電圧より高い（オーバーシュートされた）駆動電圧或いはより低い（アンダーシュートされた）駆動電圧を液晶表示パネルに供給する液晶駆動方法が知られている（たとえば特許文献1）。以下、本願明細書においては、この駆動方式をオーバーシュート（OS）駆動と定義する。

【0006】

また、液晶の応答速度は温度依存性が非常に大きいことが知られており、液晶表示パネルの温度が変化しても、これに対応して表示品位を損なうことなく、常に階調変化の応答速度を最適な状態に制御する液晶パネル駆動装置が、たとえば特許文献2に記載されている。

【0007】

このように、使用環境温度に応じて、液晶表示パネルの光学応答特性を補償すべくオーバーシュート駆動を行うものについて、図15乃至図19とともに説明する。ここで、図15は従来の液晶表示装置の要部構成を示すブロック図、図16はOSテーブルメモリの内容例を示す説明図、図17は制御CPUの概略構成を示す機能ブロック図、図18は装置内温度と参照テーブルメモリとの関係を示す説明図、図19は液晶に加える電圧と液晶の応答との関係を示す説明図である。

【0008】

図15において、1a～1dは入力画像データの1フレーム期間前後における階調遷移に応じたOSパラメータ（強調変換パラメータ）を、装置内温度毎に対応して格納しているOSテーブルメモリ（ROM）、15は入力画像データを1フレーム分記憶するフレームメモリ（FM）、14Hはこれから表示するM番目のフレームの入力画像データ（Current Data）と、フレームメモリ15に保存されたM-1番目のフレームの入力画像データ

(Previous Data) とを比較し、該比較結果（階調遷移）に対応するOSパラメータをOSテーブルメモリ (ROM) 1a～1dのいずれかより読み出して、このOSパラメータに基づいてM番目のフレームの画像表示に要する強調変換データ（書込階調データ）を決定する強調変換部である。

【0009】

また、16は強調変換部14Hからの強調変換データに基づいて、液晶表示パネル17のゲートドライバ18及びソースドライバ19に液晶駆動信号を出力する液晶コントローラ、20は当該装置内の温度を検出するための温度センサ、12Hは温度センサ20で検出された装置内温度に応じて、OSテーブルメモリ (ROM) 1a～1dのいずれかを選択参照して、画像データの強調変換に用いるOSパラメータを切り換えるための切換制御信号を強調変換部14Hに出力する制御CPUである。

【0010】

ここで、OSテーブルメモリ (ROM) 1a～1dに格納されているOSパラメータLEVEL1～LEVEL4は、それぞれ基準温度T1、T2、T3、T4 (T1 < T2 < T3 < T4) の環境下における、液晶表示パネル17の光学応答特性の実測値から予め得られるものであり、それぞれの強調変換度合いはLEVEL1>LEVEL2>LEVEL3>LEVEL4の関係となっている。

【0011】

なお、たとえば表示信号レベル数すなわち表示データ数が8ビットの256階調である場合、OSテーブルメモリ (ROM) 1a～1dには、256の全ての階調に対するOSパラメータ（実測値）を持っていてもよいが、たとえば図16に示すように、32階調毎の9つの代表階調についての9×9のOSパラメータ（実測値）のみを記憶しておく、その他の階調に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成することで、OSテーブルメモリ (ROM) の記憶容量を抑制することができる。

【0012】

また、制御CPU12Hは、図17に示すように、温度センサ20による温度検出データを、予め決められた所定の閾値温度データ値Th1, Th2, Th3と比較する閾値判別部12aと、該閾値判別部12aによる比較結果に応じて、OSテーブルメモリ (ROM) 1a～1dのいずれかを選択し、OSパラメータLEVEL1～LEVEL4を切り換えるための切換制御信号を生成して出力する制御信号出力部12bとを有している。

【0013】

ここでは、たとえば図18に示すように、温度センサ20で検出された装置内温度が切換閾値温度Th1 (=15°C) 以下であれば、制御CPU12Hは強調変換部14Hに対し、OSテーブルメモリ (ROM) 1aを選択して参照するように指示する。これによって、強調変換部14HはOSテーブルメモリ (ROM) 1aに格納されているOSパラメータLEVEL1を用いて、入力画像データの強調変換処理を行う。

【0014】

また、温度センサ20で検出された装置内温度が切換閾値温度Th1 (=15°C) より大きく且つ切換閾値温度Th2 (=25°C) 以下であれば、制御CPU12Hは強調変換部14Hに対し、OSテーブルメモリ (ROM) 1bを選択して参照するように指示する。これによって、強調変換部14HはOSテーブルメモリ (ROM) 1bに格納されている強調変換パラメータLEVEL2を用いて、入力画像データの強調変換処理を行う。

【0015】

さらに、温度センサ20で検出された装置内温度が切換閾値温度Th2 (=25°C) より大きく且つ切換閾値温度Th3 (=35°C) 以下であれば、制御CPU12Hは強調変換部14Hに対し、OSテーブルメモリ (ROM) 1cを選択して参照するように指示する。これによって、強調変換部14HはOSテーブルメモリ (ROM) 1cに格納されている強調変換パラメータLEVEL3を用いて、入力画像データの強調変換処理を行う。

【0016】

そしてまた、温度センサ20で検出された装置内温度が切換閾値温度Th3 (=35°C)

) より大きければ、制御C P U 1 2 H は強調変換部1 4 H に対し、O S テーブルメモリ (R O M) 1 d を選択して参照するように指示する。これによって、強調変換部1 4 H はO S テーブルメモリ (R O M) 1 d に格納されているO S パラメータL E V E L 4 を用いて、入力画像データの強調変換処理を行う。

【0017】

一般的に液晶表示パネルにおいては、ある中間調から別の中間調に変更させる時間は長く、また低温時の入力信号に対する追従性が極端に悪くなり、応答時間が増大するため、中間調を1フレーム期間（たとえば60Hzのプログレッシブスキャンの場合は16.7 msec）内に表示することができず、残像が発生するだけでなく、中間調を正しく表示することができないという課題があったが、上述のオーバーシュート駆動回路を用いて、予め決められた1フレーム表示期間経過後に液晶表示パネル17が入力画像データの定める目標階調輝度へ到達するように、入力画像データの階調レベルを階調遷移方向へ強調変換することにより、図19に示すように、目標の中間調を短時間（1フレーム期間内）で表示することが可能となる。

【特許文献1】特開平4-365094号公報

【特許文献2】特開平4-318516号公報

【発明の開示】

【発明が解決しようとする課題】

【0018】

ところで、上述したオーバーシュート駆動方法においては、予め決められた1垂直表示期間経過後に液晶表示パネルが入力画像データの定める目標階調輝度へ到達するように、入力画像データの階調レベルを階調遷移方向へ強調変換するものであり、同一条件であっても、放送方式の異なる入力画像データが入力され、入力画像データの垂直周波数（垂直表示周期）が異なると、1垂直表示期間経過後に液晶が到達する階調輝度も異なってしまうため、オーバーシュート駆動を正しく動作させることができない。

【0019】

たとえば、現在のテレビジョン放送には、垂直周波数が60Hz（走査線525本）であるN T S C 方式と、垂直周波数が50Hz（走査線625本）であるP A L 方式、S E C A M 方式とがあり、これら複数の放送方式のテレビジョン信号を受信して表示することが可能なマルチテレビジョン受像機が開発されているが、上述した従来の液晶表示装置をこのようなマルチテレビジョン受像機に適用した場合、オーバーシュート駆動を正しく動作させることができず、フレーム間データの誤差が拡大して、本来の入力画像データにはない映像ノイズを作り出すことになり、表示画像の画質を劣化させてしまうという問題があつた。

【0020】

解決しようとする問題点は、入力画像データのテレビジョン放送方式（映像フォーマット）が異なるにもかかわらず、該入力画像データに対して同一の強調変換処理を施すと、フレーム間データの誤差が拡大して、本来の入力画像データにはない映像ノイズが生じて画質劣化を招く可能性がある点である。

【課題を解決するための手段】

【0021】

請求項1の液晶テレビジョン受像機は、少なくとも1垂直期間前の画像データと現垂直期間の画像データとに基づいて、液晶表示パネルへ供給する画像データを強調変換することにより、前記液晶表示パネルの光学応答特性を補償する液晶テレビジョン受像機であつて、前記液晶テレビジョン受像機は、複数の放送方式の画像データを表示可能であり、さらに、入力画像データが第1の放送方式の映像信号であるか、当該第1の放送方式の映像信号とは垂直周波数の異なる第2の放送方式の映像信号であるかの信号種別を検出する信号種別検出手段と、前記液晶表示パネルが所定期間（画素書き換え周期）内において前記画像データの定める透過率となるように、前記画像データの強調変換を行う強調変換手段とを備え、前記信号種別検出手段による検出結果に応じて、前記強調変換手段における前

記画像データに対する強調変換度合いを可変制御することを特徴とする。なお、垂直期間は、1フレーム（1コマ）の期間に相当し、例えば、画像データの1フレーム（1コマ）の画像全体を、画像データの1フレーム期間に渡って書き込み走査する場合、1垂直期間は1垂直表示期間と一致する。また、上記画像データの強調変換は画素単位で行なわれる。

【0022】

請求項2の液晶テレビジョン受像機は、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを備え、前記強調変換手段は、前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、前記演算部の出力データに対し、前記信号種別検出手段による検出結果に応じて、異なる係数を乗算する乗算部とを有することを特徴とする。

【0023】

請求項3の液晶テレビジョン受像機は、前記乗算部における係数は、前記入力画像データが第2の放送方式の映像信号である場合、前記入力画像データが第1の放送方式の映像信号である場合に比べて小さくなるように設定されていることを特徴とする。

【0024】

請求項4の液晶テレビジョン受像機は、前記入力画像データが第1の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリと、前記入力画像データが第2の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリとを備え、前記強調変換手段は、前記信号種別検出手段による検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部を有することを特徴とする。

【0025】

請求項5の液晶テレビジョン受像機は、前記強調変換パラメータは、前記入力画像データが第1の放送方式の映像信号である場合に読み出されるものに比べて、前記入力画像データが第2の放送方式の映像信号である場合に読み出されるものが小さい値であることを特徴とする。

【0026】

請求項6の液晶テレビジョン受像機は、さらに、装置内温度を検出する温度検出手段を備え、前記強調変換手段は、前記温度検出手段による検出結果に基づき、前記画像データに対する強調変換度合いを可変することを特徴とする。

【0027】

請求項7の液晶テレビジョン受像機は、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを備え、前記強調変換手段は、前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、前記演算部の出力データに対し、前記信号種別検出手段による検出結果と前記温度検出手段の検出結果とに応じて、異なる係数を乗算する乗算部とを有することを特徴とする。

【0028】

請求項8の液晶テレビジョン受像機は、前記入力画像データが第1の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリと、前記入力画像データが第2の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリとを備え、前記強調変換手段は、前記信号種別検出手段による検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部と、

前記演算部の出力データに対し、前記温度検出手段の検出結果に応じて異なる係数を乗

算する演算部とを有することを特徴とする。

【0029】

請求項9の液晶テレビジョン受像機は、前記入力画像データが第1の放送方式の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリと、前記入力画像データが第2の放送方式の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリとを備え、前記強調変換手段は、前記信号種別検出手段による検出結果と前記温度検出手段の検出結果とに応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部を有することを特徴とする。

【0030】

請求項10の液晶テレビジョン受像機は、複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを備え、前記強調変換手段は、前記信号種別検出手段による検出結果によって定められた切換温度と前記温度検出手段の検出結果との比較結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す演算部を有することを特徴とする。

【0031】

請求項11の液晶テレビジョン受像機は、前記強調変換パラメータの切り換え選択を制御する制御手段を備え、前記制御手段は、前記温度検出手段により検出された温度データに対して、前記入力画像データの信号種別毎に定められた所定の演算を施す演算部と、前記演算部により演算が施された温度データと、予め決められた所定の閾値温度データとを比較する閾値判別部と、前記閾値判別部による比較結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生成する制御信号出力部とを有することを特徴とする。

【0032】

請求項12の液晶テレビジョン受像機は、前記強調変換パラメータの切り換え選択を制御する制御手段を備え、前記制御手段は、前記温度検出手段により検出された温度データと、前記入力画像データの信号種別毎に決められた所定の閾値温度データとを比較する閾値判別部と、前記閾値判別部による比較結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生成する制御信号出力部とを有することを特徴とする。

【0033】

請求項13の液晶表示制御方法は、少なくとも1垂直期間前の画像データと現垂直期間の画像データとに基づいて、液晶表示パネルへ供給する画像データを強調変換することにより、前記液晶表示パネルの光学応答特性を補償する液晶表示制御方法であって、前記液晶表示パネルは、複数の放送方式の画像データを表示可能であり、入力画像データが第1の放送方式の映像信号であるか、当該第1の放送方式の映像信号とは垂直周波数の異なる第2の放送方式の映像信号であるかの信号種別を検出する工程と、前記液晶表示パネルが所定期間内において前記画像データの定める透過率となるように、前記画像データの強調変換を行う工程とを有し、前記信号種別の検出結果に応じて、前記強調変換における前記画像データに対する強調変換度合いを可変制御することを特徴とする。

【0034】

請求項14の液晶表示制御方法は、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、前記演算による出力データに対し、前記信号種別の検出結果に応じて、異なる係数を乗算する工程とを有することを特徴とする。

【0035】

請求項15の液晶表示制御方法は、前記入力画像データが第1の放送方式の映像信号で

ある場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記入力画像データが第2の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記信号種別の検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程とを有することを特徴とする。

【0036】

請求項16の液晶表示制御方法は、装置内温度を検出する工程と、前記装置内温度の検出結果に基づき、前記画像データに対する強調変換度合いを可変する工程とを有することを特徴とする。

【0037】

請求項17の液晶表示制御方法は、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、前記演算による出力データに対し、前記信号種別の検出結果と前記装置内温度の検出結果とに応じて、異なる係数を乗算する工程とを有することを特徴とする。

【0038】

請求項18の液晶表示制御方法は、前記入力画像データが第1の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記入力画像データが第2の放送方式の映像信号である場合に参照する、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記信号種別の検出結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程と、前記演算による出力データに対し、前記装置内温度の検出結果に応じて異なる係数を乗算する工程とを有することを特徴とする。

【0039】

請求項19の液晶表示制御方法は、前記入力画像データが第1の放送方式の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記入力画像データが第2の放送方式の映像信号である場合に参照する、複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記信号種別の検出結果と前記装置内温度の検出結果とに応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程とを有することを特徴とする。

【0040】

請求項20の液晶表示制御方法は、複数の装置内温度毎に対応して、現垂直期間の画像データと1垂直期間前の画像データとから指定される強調変換パラメータが格納されたテーブルメモリを参照する工程と、前記信号種別の検出結果によって定められた切換温度と前記装置内温度の検出結果との比較結果に応じて、前記テーブルメモリから読み出される前記強調変換パラメータを用いて、前記画像データに強調演算を施す工程とを有することを特徴とする。

【0041】

請求項21の液晶表示制御方法は、前記装置内温度の検出結果である温度データに対して、前記入力画像データの信号種別毎に定められた所定の演算を施す工程と、前記演算が施された温度データと、予め決められた所定の閾値温度データとを比較する工程と、前記比較の結果に応じて、前記強調変換パラメータを切り換え制御する切換制御信号を生成する工程とを有することを特徴とする。

【0042】

請求項22の液晶表示制御方法は、前記装置内温度の検出結果である温度データと、前記入力画像データの信号種別毎に決められた所定の閾値温度データとを比較する工程と、前記比較の結果に応じて、前記強調変換パラメータを切り替え制御する切換制御信号を生成する工程とを有することを特徴とする。

【0043】

ところで、上記液晶テレビジョン受像機は、ハードウェアで実現してもよいし、プログラムをコンピュータに実行させることによって実現してもよい。具体的には、請求項23のプログラムは、複数の放送方式の画像データを表示可能で、しかも、少なくとも1垂直期間前の画像データと現垂直期間の画像データとに基づいて、液晶表示パネルへ供給する画像データを、前記液晶表示パネルが所定期間内において前記画像データの定める透過率となるように強調変換することにより、前記液晶表示パネルの光学応答特性を補償する液晶テレビジョン受像機を制御するコンピュータのプログラムであって、入力画像データが第1の放送方式の映像信号であるか、当該第1の放送方式の映像信号とは垂直周波数の異なる第2の放送方式の映像信号であるかの信号種別を検出した結果に応じて、前記画像データに対する強調変換度合いを可変制御する工程を、上記コンピュータに実行させるプログラムである。また、請求項24記載の記録媒体は、上記プログラムを記録した記録媒体である。

【0044】

本発明の液晶テレビジョン受像機は、信号種別検出手段により入力画像データが第1の放送方式（映像フォーマット）の映像信号であるか第2の放送方式（映像フォーマット）の映像信号であるかの信号種別を検出し、その検出した信号種別に応じて入力画像データの強調変換を行う。その際、信号種別の検出結果に応じて、強調変換手段における入力画像データに対する強調変換度合いを可変制御し、入力画像データが第1の放送方式（映像フォーマット）の映像信号である場合に比べて、フレーム周期が長い第2の放送方式（映像フォーマット）の映像信号の入力画像データに対する強調変換度合いを小さくする。従って、いずれの放送方式（映像フォーマット）による入力画像データに対しても、常に液晶表示パネルが所定期間（画素書き換え周期）内において該入力画像データの定める透過率となるように、該入力画像データの強調変換を行うことが可能となり、高画質の画像表示を実現することができる。

【発明の効果】**【0045】**

本発明の液晶テレビジョン受像機は、複数の異なるテレビジョン放送方式（映像フォーマット）の入力画像データに対し、常に適切な強調変換データを求めて、液晶表示パネルに供給することが可能となり、どのような放送方式（映像フォーマット）の画像データを表示する場合であっても、高画質の画像表示を実現することができる。

【発明を実施するための最良の形態】**【0046】**

本発明の液晶表示装置（液晶テレビジョン受像機）においては、液晶の応答速度を改善するために、入力画像データに対して上述したオーバーシュート駆動により強調変換処理を施すが、その際、PAL方式又はSECAM方式（50Hz）の映像信号は、NTSC方式（60Hz）の映像信号に比べてフレーム周期が長く、これらの画像データに同一の強調変換処理を施すと、1フレーム期間経過後における液晶表示パネルの到達階調輝度に誤差が生じ、表示画像の画質が劣化することを防止する。その際、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号である場合には、入力画像データがNTSC方式（60Hz）の映像信号である場合に比べて、画像データに対する強調変換度合いをより小さくする。これによって、いずれの放送方式（映像フォーマット）の画像データに対しても、液晶表示パネルの光学応答特性を補償して、残像や尾引きの発生を抑制するとともに、画像データの過度な強調変換による映像ノイズの発生を防止して高画質の画像表示を行うことが可能となる。ここで、NTSC方式（60Hz）の映像信号を第1

の放送方式（映像フォーマット）の映像信号、PAL方式又はSECAM方式（50Hz）の映像信号を第2の放送方式（映像フォーマット）の映像信号とする。

【0047】

（実施形態1）

図1は本発明の液晶表示装置の実施形態1を説明するための図、図2は図1のOSテーブルメモリ（ROM）を参照して得られるOSパラメータと、放送方式（映像フォーマット）によって異なる信号種別データに応じて与えられる乗算係数とを用いて、液晶表示パネルに供給する強調変換データを求める場合を説明するための図である。なお、以下に説明する図において、図1.5と共に通する部分には同一符号を付すものとする。また、以下の説明においては、各実施形態における強調変換部による強調変換が異なるため、それぞれの実施形態においては符号14A～14Fのいずれかを付している。同様に、各実施形態における制御CPUによる制御も異なるため、それぞれの実施形態では符号12A～12Gのいずれかを付している。

【0048】

図1に示す実施形態1の液晶表示装置は、液晶表示パネルの光学応答速度を改善するために、画像データに対する強調変換処理を施すものであり、その際、入力画像データがPAL方式又はSECAM方式である場合の入力画像データに対する強調変換度合いを、入力画像データがNTSC方式（60Hz）である場合より小さくするものであって、映像信号種別検出部10、制御CPU12A、強調変換部14A、フレームメモリ15、液晶コントローラ16、液晶表示パネル17を備えている。

【0049】

信号種別検出手段としての映像信号種別検出部10は、入力画像データがNTSC方式（60Hz）の映像信号であるかPAL方式又はSECAM方式（50Hz）の映像信号であるかの信号種別を検出する。

【0050】

一例として、映像信号種別検出部10は、上述した複数の放送方式のテレビジョン信号を受信し、受信したテレビジョン信号を入力画像データへデコードするチューナ・デコーダ部に設けられており、当該映像信号種別検出部10は、SECAM方式の映像信号であれば含まれているSECAM-IDが、入力された映像信号に含まれているか否かを判定して、入力された映像信号がSECAM方式であるか否かを判定できる。また、PAL方式は、1水平ライン毎に、バースト（R-Y）の位相が反転しているのに対して、NTSC方式は、1水平ライン毎には、バースト（R-Y）の位相が反転していないので、映像信号種別検出部10は、入力された映像信号のバースト（R-Y）の位相が1水平ライン毎に反転しているか否かを識別し、反転していれば、PAL方式、反転していなければ、NTSC方式と判定できる。また、PAL方式の映像信号には、副搬送波が3.58MHzの映像信号と、4.43MHzの映像信号とが存在するが、映像信号種別検出部10は、入力された映像信号の副搬送波の周波数に応じて、両者のいずれであるかを判定できる。なお、NTSC方式の映像信号の副搬送波の周波数は、3.58MHzなので、映像信号種別検出部10は、副搬送波の周波数によって、副搬送波が4.43MHzの映像信号PAL方式か否かを判定し、その後に、上記バースト（R-Y）の位相が1水平ライン毎に反転しているか否かに基づいて、NTSC方式の映像信号か、副搬送波が3.58MHzの映像信号PAL方式かを判定してもよい。また、上記映像信号種別検出部10は、たとえば放送方式の識別信号等から信号種別を求めてよい。なお、上記映像信号検出部10は、入力画像データが第1の放送方式の映像信号であるか、当該第1の放送方式の映像信号とは垂直周波数の異なる第2の放送方式の映像信号であるかの信号種別を判定できればよく、例えば、入力画像データの垂直同期信号からその周波数を直接検出して信号種別を判定してもよい。

【0051】

一方、制御手段としての制御CPU12Aは、映像信号種別検出部10によって検出された信号種別に応じて強調変換部14Aによる強調変換処理を制御する。

【0052】

強調変換手段としての強調変換部14Aは、制御CPU12Aによる制御により、これから表示する現フレームの画像データ（現垂直期間の画像データ）と、フレームメモリ15に格納された1フレーム前の画像データ（1垂直期間前の画像データ）とを比較し、その比較結果である階調遷移パターンに応じたOSパラメータ（強調変換パラメータ）をOSテーブルメモリ（ROM）13から読み出し、この読み出したOSパラメータに基づいて、これから表示する現フレームの画像表示に要する強調変換データ（書込階調データ）を求め、液晶コントローラ16に出力する。

【0053】

この場合、図2に示すように、OSテーブルメモリ（ROM）13を参照して得られるOSパラメータと、入力画像データの信号種別（放送フォーマット）に応じて与えられる乗算係数とを用いることで、液晶表示パネル17に供給する強調変換データを求めることができる。すなわち、演算部14dにより、これから表示するM番目のフレームの入力画像データ（Current Data）と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ（Previous Data）とを比較し、その比較結果（階調遷移）に対応する（すなわち、その比較結果により指定される）OSパラメータをOSテーブルメモリ（ROM）13から読み出し、線形補完等の演算を施すことにより、強調演算データを出力する。

【0054】

そして、減算器14aによって現フレームの画像データからその強調演算データを減算して差分データを求め、乗算器14bによってその差分データに対し制御CPU12Aからの係数切換制御信号により切り換えられる乗算係数 α_1 又は β_1 を乗算し、加算器14cによってその乗算係数が乗算された差分データを現フレームの画像データに加算し、その加算したデータを強調変換データとして液晶コントローラ16に与える。これにより、異なる信号種別の入力画像データに対し、液晶画素が所定期間内において入力画像データの定める透過率となるように駆動表示される。ここで、所定期間とは1フレーム画像の表示期間（画素書き換え周期）であり、通常のホールド型表示の場合、1フレーム期間（たとえば60Hzのプログレッシブスキャンの場合は16.7ms、50Hzのプログレッシブスキャンの場合は20.0ms）であり、たとえば1フレーム期間の50%の期間に黒表示を行う擬似インパルス型表示とした場合には、画像表示期間は1/2フレーム期間（たとえば60Hzのプログレッシブスキャンの場合は8.3ms、50Hzのプログレッシブスキャンの場合は10.0ms）となる。

【0055】

また、入力画像データがNTSC方式（60Hz）の映像信号の場合の乗算係数は $\alpha_1=1$ とし、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号の場合の乗算係数は $\beta_1 < 1$ としている。これにより、入力画像データがNTSC方式（60Hz）の映像信号の場合には、乗算係数 $\alpha_1 (=1)$ が選択されて、液晶画素が所定期間内において入力画像データの定める透過率となるように、画像データの強調変換を行うことにより、残像や尾引きが発生しない高画質の画像表示が行われる。

【0056】

一方、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号の場合は、乗算係数 $\beta_1 (< 1)$ が選択されて、強調変換度合いをより小さくすることができる。これにより、PAL方式又はSECAM方式（50Hz）の映像信号は、NTSC方式（60Hz）の映像信号に比べてフレーム周期が長いが、液晶画素が所定期間内において入力画像データの定める透過率となるように、画像データの強調変換を行うことにより、残像や尾引きが発生しない高画質の画像表示が行われる。すなわち、画像データに対する過度の強調変換によって液晶が過剰応答し、本来の入力画像データにはない映像ノイズが発生することを防止することが可能となる。

【0057】

なお、OSテーブルメモリ（ROM）13には、表示データ数が8ビットの256階調である場合、256の全ての階調に対するOSパラメータ（実測値）を持たせてもよいが

、たとえば図16に示したように、32階調毎の9つの代表階調についての 9×9 のOSパラメータ（実測値）のみを記憶しておく、その他の階調に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成することで、OSテーブルメモリ（ROM）13の記憶容量を抑制することができる。

【0058】

フレームメモリ15は、1フレーム分の画像データを格納することができるものであって、これから表示される現フレームの画像データに対し、1フレーム前の画像データが格納されている。液晶コントローラ16は、強調変換部14Aからの強調変換データに基づき、ゲートドライバ18及びソースドライバ19を駆動し、液晶表示パネル17に対し画像表示を行わせる。液晶表示パネル17は、上述した非線形素子（スイッチング素子）であるTFT（Thin Film Transistor）を有し、ゲートドライバ18及びソースドライバ19の駆動により画像表示を行う。

【0059】

次に、上述した実施形態1での入力画像データの強調変換による液晶表示制御方法について説明する。

【0060】

まず、入力画像データがあると、映像信号種別検出部10により、NTSC方式（60Hz）の映像信号であるかPAL方式又はSECAM方式（50Hz）の映像信号であるかの信号種別が検出される。

【0061】

ここで、たとえばNTSC方式（60Hz）の映像信号が検出されると、映像信号種別検出部10から制御CPU12Aに対し、NTSC方式（60Hz）の映像信号を検出したことが通知される。

【0062】

このとき、制御CPU12Aにより強調変換部14Aに対して、入力画像データに対する強調変換処理が指示される。この場合、上述したように、演算部14dにより、これから表示するM番目のフレームの入力画像データ（Current Data）と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ（Previous Data）とが比較され、その比較結果（階調遷移）に対応するOSパラメータがOSテーブルメモリ（ROM）13から読み出され、強調演算データが求められる。なお、この強調演算データは、NTSC方式の画像データに対し、液晶表示パネル17が所定期間内においてこれから表示するM番目のフレームの入力画像データにより定められる透過率に到達可能なデータである。減算器14aによってその強調演算データとこれから表示するM番目のフレームの入力画像データとの差分データが求められる。

【0063】

ここで、制御CPU12AによりNTSC方式（60Hz）の映像信号の場合の乗算係数 $\alpha_1 (=1)$ が選択されるため、乗算器14bによって減算器14aによる差分データに対し乗算係数 $\alpha_1 (=1)$ が乗算され（すなわち、差分データがそのまま出力され）、加算器14cによってその乗算されたデータとこれから表示するM番目のフレームの入力画像データとが加算され、その加算されたデータが強調変換データとして液晶コントローラ16に与えられる（従って、この場合、液晶表示パネル17に供給される強調変換データは、演算部14dによる強調演算データと等しい）。これにより、入力画像データがNTSC方式（60Hz）の映像信号の場合には、液晶画素が所定期間内において入力画像データの定める透過率となるように表示駆動されるので、液晶表示パネル17の光学応答特性を補償して、残像や尾引きのない高画質の画像表示が行われる。

【0064】

これに対し、映像信号種別検出部10により、PAL方式又はSECAM方式（50Hz）の映像信号が検出されると、制御CPU12Aにより強調変換部14Aに対して、PAL方式又はSECAM方式（50Hz）の入力画像データに対する強調変換処理が指示される。この場合、上述したように、演算部14dにより、これから表示するM番目のフ

レームの入力画像データ（Current Data）と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ（Previous Data）とが比較され、その比較結果（階調遷移）に対応するOSパラメータがOSテーブルメモリ（ROM）13から読み出され、強調演算データが求められる。なお、この強調演算データは、NTSC方式の画像データに対し、液晶表示パネル17が所定期間内においてこれから表示するM番目のフレームの入力画像データにより定められる透過率に到達可能なデータである。減算器14aによってその強調演算データとこれから表示するM番目のフレームの入力画像データとの差分データが求められる。

【0065】

ここで、制御CPU12AによりPAL方式又はSECAM方式（50Hz）の映像信号の場合の乗算係数 β_1 （<1）が選択されるため、乗算器14bによって減算器14aによる差分データに対し乗算係数 β_1 が乗算され（すなわち、差分データが低減されて出力され）、加算器14cによってその乗算されたデータとこれから表示するM番目のフレームの入力画像データとが加算され、その加算されたデータが強調変換データとして液晶コントローラ16に与えられる（従って、この場合、液晶表示パネル17に供給される強調変換データは、演算部14dによる強調演算データより強調変換度合いが小さい）。これにより、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号の場合にも、液晶画素が所定期間内において入力画像データの定める透過率となるように表示駆動されるので、液晶表示パネル17の光学応答特性を補償して、残像や尾引きのない高画質の画像表示が行われる。

【0066】

以上のように、実施形態1では、映像信号種別検出部10によりNTSC方式（60Hz）の映像信号が検出された場合、強調変換部14Aにより現フレームの入力画像データと1フレーム前の入力画像データとの比較結果（階調遷移）に対応するOSパラメータをOSテーブルメモリ（ROM）13から読み出し、その読み出したOSパラメータに基づいて得られた強調演算データを強調変換データとして液晶コントローラ16に出力するようにしたので、液晶画素が所定期間内において入力画像データの定める透過率となるように表示駆動することができ、残像や尾引きのない高画質の画像表示を行うことが可能である。

【0067】

これに対し、映像信号種別検出部10によりPAL方式又はSECAM方式（50Hz）の映像信号が検出された場合、強調変換部14Aにより現フレームの入力画像データと1フレーム前の入力画像データとの比較結果（階調遷移）に対応するOSパラメータをOSテーブルメモリ（ROM）13から読み出し、その読み出したOSパラメータに基づいて得られた強調演算データより強調変換度合いを小さくして、強調変換データとして液晶コントローラ16に出力するようにしたので、入力画像データの過強調による映像ノイズの発生を防止しつつ、液晶画素が所定期間内において入力画像データの定める透過率となるように表示駆動することができ、残像や尾引きのない高画質の画像表示を行うことが可能である。

【0068】

また、本実施形態に係る液晶表示装置は、少なくとも1フレーム前の画像データと現フレームの画像データとの比較を行い、該比較結果に基づいて、液晶表示パネルへ供給する画像データを強調変換することにより、前記液晶表示パネルの光学応答特性を補償する液晶表示装置であって、入力画像データが第1の放送方式（映像フォーマット）によるものか第2の放送方式（映像フォーマット）によるものかの信号種別を検出する信号種別検出手段と、前記液晶表示パネルが所定期間内において前記画像データの定める透過率となるように、前記画像データの強調変換を行う強調変換手段とを備え、前記信号種別検出手段による検出結果に応じて、前記強調変換手段における前記画像データに対する強調変換度合いを可変制御する。

【0069】

したがって、複数の異なる放送方式（映像フォーマット）の入力画像データに対し、常に適切な強調変換データを求めて、液晶表示パネルに供給することが可能となり、どのような放送方式の画像データを表示する場合であっても、高画質の画像表示を実現することができる。なお、当該液晶表示装置は、液晶表示パネルを用いて画像表示を行う液晶表示装置であればよく、また、このような表示装置を搭載しているパソコンコンピュータ、テレビジョン受信機等の身近な機器に限らず、計測機器、医療機器、産業機器全般等にも適用可能である。

【0070】

（実施形態2）

図3は入力画像データがNTSC方式（60Hz）の映像信号である場合に、画像データの強調変換に用いるOSパラメータが格納されたOSテーブルメモリ（ROM）と、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号である場合に、画像データの強調変換に用いるOSパラメータが格納されたOSテーブルメモリ（ROM）とを個別に設けた場合の実施形態2を示す図である。なお、以下に説明する図において、図1と共に通する部分には同一符号を付し重複する説明を省略する。

【0071】

図3に示す液晶表示装置では、入力画像データがNTSC方式（60Hz）の映像信号である場合に参照するOSテーブルメモリ（ROM）13aと、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号である場合に参照するOSテーブルメモリ（ROM）13bとを備え、映像信号種別検出部10により検出された入力画像データの信号種別（放送フォーマット）に応じてOSテーブルメモリ（ROM）13a, 13bのいずれかを切り換え参照して、画像データの強調変換処理を行うようにしている。

【0072】

また、OSテーブルメモリ（ROM）13b内のOSパラメータは、OSテーブルメモリ（ROM）13a内のOSパラメータより小さい値である。これは、上述したように、PAL方式又はSECAM方式（50Hz）の映像信号は、NTSC方式（60Hz）の映像信号に比べてフレーム周期が長く、過度な強調変換による映像ノイズの発生を防止するためである。

【0073】

なお、ここでは、それぞれのOSパラメータを、それぞれ個別に設けられたOSテーブルメモリ（ROM）13a, 13bに格納しているが、単一のOSテーブルメモリ（ROM）の異なるテーブル領域にそれぞれのOSパラメータを格納しておき、制御CPU12Bからの切換制御信号に応じて、参照するテーブル領域を適応的に切り換えることにより、OSパラメータを切換選択して、強調変換データを求めるように構成してもよい。

【0074】

このような構成では、上述したように、映像信号種別検出部10により、たとえばNTSC方式（60Hz）の映像信号が検出されると、映像信号種別検出部10から制御CPU12Bに対し、NTSC方式（60Hz）の映像信号を検出したことが通知される。

【0075】

このとき、制御CPU12Bにより強調変換手段としての強調変換部14Bに対して、入力画像データに対する強調変換処理が指示される。この場合、強調変換部14Bは、これから表示するM番目のフレームの入力画像データ（Current Data）と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ（Previous Data）との比較結果（階調遷移）に対応する（すなわち、その比較結果により指定される）OSパラメータを、入力画像データがNTSC方式（60Hz）の映像信号である場合に参照するOSテーブルメモリ（ROM）13aから読み出し、このOSパラメータを用いて線形補完等の演算を施すことでの、液晶コントローラ16に出力する強調変換データが求められる。なお、この強調変換データは、液晶表示パネル17が所定期間内においてこれから表示するM番目のフレームの入力画像データにより定められる透過率に到達可能なデータである。

【0076】

これにより、入力画像データがNTSC方式(60Hz)の映像信号の場合には、液晶素が所定期間内において入力画像データの定める透過率となるように表示駆動されるので、液晶表示パネル17の光学応答特性を補償して、残像や尾引きのない高画質の画像表示が行われる。

【0077】

これに対し、映像信号種別検出部10により、PAL方式又はSECAM方式(50Hz)の映像信号が検出されると、制御CPU12Bにより強調変換部14Bに対して、PAL方式又はSECAM方式(50Hz)の入力画像データに対する強調変換処理が指示される。この場合、強調変換部14Bは、これから表示するM番目のフレームの入力画像データ(Current Data)と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ(Previous Data)との比較結果(階調遷移)に対応する(すなわち、その比較結果により指定される)OSパラメータを、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)13bから読み出し、このOSパラメータを用いて線形補完等の演算を施することで、液晶コントローラ16に出力する強調変換データが求められる。なお、この強調変換データは、入力画像データがNTSC方式の映像信号である場合に、OSテーブルメモリ(ROM)13aを参照して求められた強調変換データに比べて、その強調変換度合いが小さくなっている。

【0078】

これにより、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場合には、液晶表示パネル17の光学応答特性を補償して、残像や尾引きの発生を抑えつつ、本来の入力画像データにはない映像ノイズが強調されて目立つことによる画質劣化を抑えることができ、高画質の画像表示を行うことが可能となる。

【0079】

このように、実施形態2では、入力画像データがNTSC方式(60Hz)の映像信号である場合に用いるOSパラメータが格納されたOSテーブルメモリ(ROM)13aと、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に用いるOSパラメータが格納されたOSテーブルメモリ(ROM)13bとを備え、OSテーブルメモリ(ROM)13b内のOSパラメータを、OSテーブルメモリ(ROM)13a内のOSパラメータより小さい値とし、検出された信号種別に応じてOSテーブルメモリ(ROM)13a, 13bのいずれかより読み出されたOSパラメータを用いて強調変換データを求めるようにしたので、入力画像データの信号種別に応じた適切な強調変換処理を画像データに施すことができる。

【0080】

(実施形態3)

図4は図1の構成に温度センサを追加し、OSテーブルメモリ(ROM)13を参照して得られるOSパラメータと、入力画像データの信号種別(放送フォーマット)及び装置内温度に応じた乗算係数を用いて、画像データに対する強調変換処理を行わせる場合の実施形態3を示す図である。

【0081】

図4に示す液晶表示装置では、OSテーブルメモリ(ROM)13に、上記同様に、入力画像データがNTSC方式(60Hz)の映像信号の場合に最適化されたOSパラメータ(強調変換パラメータ)が格納されており、信号種別検出手段としての映像信号種別検出部10による信号種別検出データと温度検出手段としての温度センサ20による温度検出データとに応じた後述の乗算係数 $\alpha_1 \sim \alpha_4$, $\beta_1 \sim \beta_4$ を用いて入力画像データに対する強調変換を行わせている。

【0082】

ここで、OSテーブルメモリ(ROM)13には、上述したように、表示データ数が8ビットの256階調である場合、256の全ての階調に対するOSパラメータ(実測値)を持っていてもよいが、たとえば図16に示したように、32階調毎の9つの代表階調に

についての 9×9 の OS パラメータ（実測値）のみを記憶しておき、その他の階調に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成することで、OS テーブルメモリ（ROM）13 の記憶容量を抑制することができる。

【0083】

本実施形態の強調変換部 14C は、図 2 と同様の構成により実現され、OS テーブルメモリ（ROM）13 から読み出された OS パラメータと、信号種別及び液晶表示パネル 17 の温度に応じた乗算係数 $\alpha_1 \sim \alpha_4$ 、 $\beta_1 \sim \beta_4$ を用いて、液晶表示パネル 17 の温度依存特性を含む光学応答特性を補償するための強調変換データを求めて、液晶コントローラ 16 に出力することができる。ここで、入力画像データが NTSC 方式（60 Hz）の映像信号の場合の乗算係数は $\alpha_1 \sim \alpha_4$ とし、入力画像データが PAL 方式又は SECAM 方式（50 Hz）の映像信号の場合の乗算係数は $\beta_1 \sim \beta_4$ とする。ただし、 $\beta_1 < \alpha_1$ 、 $\beta_2 < \alpha_2$ 、 $\beta_3 < \alpha_3$ 、 $\beta_4 < \alpha_4$ である。

【0084】

すなわち、温度センサ 20 からの温度検出データを、たとえば 15°C 以下、15°C より大きく 25°C 以下、25°C より大きく 35°C 以下、35°C より大きい場合の 4 段階の温度範囲に分けて、入力画像データが NTSC 方式（60 Hz）の映像信号であるとき、たとえば装置内温度が 15°C 以下である場合は乗算係数 $\alpha_1 (> \alpha_2)$ 、15°C より大きく 25°C 以下である場合は乗算係数 $\alpha_2 (> \alpha_3)$ 、25°C より大きく 35°C 以下である場合は乗算係数 $\alpha_3 (> \alpha_4)$ 、35°C より大きい場合は乗算係数 $\alpha_4 (= 1)$ とし、入力画像データが PAL 方式又は SECAM 方式（50 Hz）の映像信号であるとき、たとえば装置内温度が 15°C 以下である場合は乗算係数 $\beta_1 (> \beta_2)$ 、15°C より大きく 25°C 以下である場合は乗算係数 $\beta_2 (> \beta_3)$ 、25°C より大きく 35°C 以下である場合は乗算係数 $\beta_3 (> \beta_4)$ 、35°C より大きい場合は乗算係数 $\beta_4 (< 1)$ とするものについて説明するが、乗算係数 $\alpha_1 \sim \alpha_4$ 、 $\beta_1 \sim \beta_4$ は 3 段階以下或いは 5 段階以上の温度範囲に対応したものとしてもよいことは言うまでもない。

【0085】

なお、これらの乗算係数 $\alpha_1 \sim \alpha_4$ 、 $\beta_1 \sim \beta_4$ は、液晶表示パネル 17 の光学応答特性の実測値から予め得られたものである。これにより、入力画像データが PAL 方式又は SECAM 方式（50 Hz）の映像信号の場合は、NTSC 方式（60 Hz）の映像信号の場合よりも小さな強調変換度合いで画像データの強調変換を行うことができ、液晶表示パネル 17 の光学応答特性（温度依存特性を含む）を補償して、残像や尾引きの発生を抑えつつ、過強調によって映像ノイズが生成されることによる画質劣化を抑えることができる。

【0086】

また、温度センサ 20 は、その本来の目的から液晶表示パネル 17 内に設けることが望ましいが、これは構造上困難であるため、液晶表示パネル 17 にできる限り近い場所に設置すればよい。また、温度センサ 20 は、1 個に限らず複数個とし、液晶表示パネル 17 の各部位に対応して配置させるようにしてもよい。複数の温度センサ 20 を設けた場合には、それぞれの温度センサ 20 からの検出結果を平均した値を温度検出データとして用いてもよいし、変化の大きいいずれかの温度センサ 20 からの検出結果を温度検出データとして用いてもよい。

【0087】

このような構成では、上述したように、映像信号種別検出部 10 によりたとえば NTSC 方式（60 Hz）の映像信号が検出されると、映像信号種別検出部 10 から制御 CPU 12C に対し、NTSC 方式（60 Hz）の映像信号を検出したことが通知される。

【0088】

このとき、制御 CPU 12C により強調変換手段としての強調変換部 14C に対して、入力画像データに対する強調変換処理が指示される。この場合、上述したように、演算部 14d により、これから表示する M 番目のフレームの入力画像データ（Current Data）と、フレームメモリ 15 に格納された M-1 番目のフレームの入力画像データ（Previous Da

ta) とが比較され、その比較結果（階調遷移）に対応する（すなわち、その比較結果により指定される）OSパラメータがOSテーブルメモリ（ROM）13から読み出されて強調演算データが求められる。そして、減算器14aによってその強調演算データとこれから表示するM番目のフレームの入力画像データとの差分データが求められる。

【0089】

このとき、制御CPU12Cには温度センサ20からの温度検出データが取り込まれており、制御CPU12Cによりその温度検出データに応じた乗算係数 $\alpha_1 \sim \alpha_4$ のいずれかが切り替え選択される。ここで、温度検出データがたとえば15°C以下である場合は乗算係数 $\alpha_1 (> \alpha_2)$ となり、15°Cより大きく25°C以下である場合は乗算係数 $\alpha_2 (> \alpha_3)$ となり、25°Cより大きく35°C以下である場合は乗算係数 $\alpha_3 (> \alpha_4)$ となり、35°Cより大きい場合は乗算係数 $\alpha_4 (= 1)$ となる。

【0090】

温度検出データに応じて、これらの乗算係数 $\alpha_1 \sim \alpha_4$ のいずれかが制御CPU12Cにより切り替えられると、乗算器14bにより前記差分データに対していずれかの乗算係数 $\alpha_1 \sim \alpha_4$ が乗算され、加算器14cによってその乗算されたデータとこれから表示するM番目のフレームの入力画像データとが加算され、その加算されたデータが強調変換データとして液晶コントローラ16に与えられる。これにより、入力画像データがNTSC方式(60Hz)の映像信号の場合には、液晶表示パネル17の温度が変化しても、液晶表示パネル17の光学応答特性（温度依存特性を含む）を補償して、残像や尾引きのない高画質の画像表示が行われる。

【0091】

これに対し、映像信号種別検出部10により、PAL方式又はSECAM方式(50Hz)の映像信号が検出されると、制御CPU12Cにより強調変換部14cに対して、PAL方式又はSECAM方式(50Hz)の入力画像データに対する強調変換処理が指示される。この場合、上述したように、演算部14dにより、これから表示するM番目のフレームの入力画像データ(Current Data)と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ(Previous Data)とが比較され、その比較結果（階調遷移）に対応する（すなわち、その比較結果により指定される）OSパラメータがOSテーブルメモリ（ROM）13から読み出されて強調演算データが求められる。そして、減算器14aによってその強調演算データとこれから表示するM番目のフレームの入力画像データとの差分データが求められる。

【0092】

このとき、制御CPU12Cには温度センサ20からの温度検出データが取り込まれており、制御CPU12Cによりその温度検出データに応じた乗算係数 $\beta_1 \sim \beta_4$ のいずれかが切り替え選択される。ここで、温度検出データがたとえば15°C以下である場合は乗算係数 $\beta_1 (> \beta_2)$ となり、15°Cより大きく25°C以下である場合は乗算係数 $\beta_2 (> \beta_3)$ となり、25°Cより大きく35°C以下である場合は乗算係数 $\beta_3 (> \beta_4)$ となり、35°Cより大きい場合は乗算係数 $\beta_4 (< 1)$ となる。

【0093】

温度検出データに応じて、これらの乗算係数 $\beta_1 \sim \beta_4$ のいずれかが制御CPU12Cにより切り替えられると、乗算器14bにより前記差分データに対していずれかの乗算係数 $\beta_1 \sim \beta_4$ が乗算され、加算器14cによってその乗算されたデータとこれから表示するM番目のフレームの入力画像データとが加算され、その加算されたデータが強調変換データとして液晶コントローラ16に与えられる。

【0094】

ここで、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場合には、 $\beta_1 < \alpha_1$ 、 $\beta_2 < \alpha_2$ 、 $\beta_3 < \alpha_3$ 、 $\beta_4 < \alpha_4$ であるため、液晶表示パネル17の温度が変化しても、液晶表示パネル17の光学応答特性（温度依存特性を含む）を補償して、残像や尾引きの発生を抑えつつ、画像データに対する過度な強調変換による映像ノイズの発生を防止することができ、高品位な画像表示が行われる。

【0095】

このように、実施形態3では、温度センサ20による温度検出データに応じた、入力画像データがNTSC方式(60Hz)の映像信号の場合の乗算係数 $\alpha_1 \sim \alpha_4$ と、PAL方式又はSECAM方式(50Hz)の映像信号の場合の乗算係数 $\beta_1 \sim \beta_4$ とを用いて、画像データに対する強調変換度合いを可変制御するようにしたので、入力画像データの信号種別及び装置内温度に応じた適切な強調変換処理を画像データに施すことが可能となり、高画質の画像表示を行わせることができる。

【0096】

(実施形態4)

図5は図4のOSテーブルメモリ(ROM)を入力画像データがNTSC方式(60Hz)の映像信号である場合に参照する、画像データの強調変換に用いるOSパラメータが格納されたOSテーブルメモリ(ROM)と、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に参照する、画像データの強調変換に用いるOSパラメータが格納されたOSテーブルメモリ(ROM)とを個別に設けた構成とし、装置内温度に応じた乗算係数を用いて画像データに対する強調変換度合いを可変する場合の実施形態4を示す図、図6は図5のOSテーブルメモリ(ROM)を参照して得られるOSパラメータと温度センサによる温度検出データに応じた乗算係数とを用いて強調変換データを求める場合を説明するための図である。

【0097】

図5に示す液晶表示装置では、入力画像データがNTSC方式(60Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)13aと、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)13bとを備え、検出されたNTSC方式(60Hz)の映像信号、PAL方式又はSECAM方式(50Hz)の映像信号に応じてOSテーブルメモリ(ROM)13a、13bのいずれかを切り換え参照するとともに、温度センサ20による温度検出データに応じた後述の乗算係数 $\alpha_1 \sim \alpha_4$ を用いて入力画像データに対する強調変換を行わせるようにしている。

【0098】

また、OSテーブルメモリ(ROM)13b内のOSパラメータは、OSテーブルメモリ(ROM)13a内のOSパラメータより小さい値である。これは、上述したように、PAL方式又はSECAM方式(50Hz)の映像信号は、NTSC方式(60Hz)の映像信号に比べてフレーム周期が長く、過度な強調変換による映像ノイズの発生を防止するために、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場合には、画像データに対する強調変換度合いを、入力画像データがNTSC方式(60Hz)の映像信号の場合よりも小さくする必要があるためである。

【0099】

なお、ここでは、それぞれのOSパラメータを、それぞれ個別に設けられたOSテーブルメモリ(ROM)13a、13bに格納しているが、単一のOSテーブルメモリ(ROM)の異なるテーブル領域にそれぞれのOSパラメータを格納しておき、制御CPU12Dからの切換制御信号に応じて、参照するテーブル領域を適応的に切り換えることにより、OSパラメータを切換選択して、強調変換データを求めるように構成してもよい。

【0100】

また、OSテーブルメモリ(ROM)13a、13bには、上述したように、表示データ数が8ビットの256階調である場合、256の全ての階調に対するOSパラメータ(実測値)を持っていてもよいが、たとえば図16に示したように、32階調毎の9つの代表階調についての9×9のOSパラメータ(実測値)のみを記憶しておき、その他の階調に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成することで、OSテーブルメモリ(ROM)13の記憶容量を抑制することができる。

【0101】

本実施形態の強調変換部14Dは、図2と同様の構成により実現され、入力信号種別(

放送フォーマット)に応じてOSテーブルメモリ(ROM)13a, 13bのいずれかから読み出されたOSパラメータと、液晶表示パネル17の温度に応じた乗算係数は $\alpha_1 \sim \alpha_4$ とを用いて、液晶表示パネル17の温度依存特性を含む光学応答特性を補償するための強調変換データを求めて、液晶コントローラ16に出力することができる。

【0102】

すなわち、温度センサ20からの温度検出データを、たとえば15°C以下、15°Cより大きく25°C以下、25°Cより大きく35°C以下、35°Cより大きい場合の4段階の温度範囲に分けて、たとえば装置内温度が15°C以下である場合は乗算係数 $\alpha_1 (> \alpha_2)$ 、15°Cより大きく25°C以下である場合は乗算係数 $\alpha_2 (> \alpha_3)$ 、25°Cより大きく35°C以下である場合は乗算係数 $\alpha_3 (> \alpha_4)$ 、35°Cより大きい場合は乗算係数 $\alpha_4 (= 1)$ とするものについて説明するが、乗算係数は3段階以下或いは5段階以上の温度範囲に対応したものとしてもよいことは言うまでもない。

【0103】

なお、これらの乗算係数 $\alpha_1 \sim \alpha_4$ は、液晶表示パネル17の光学応答特性の実測値から予め得られたものである。これにより、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場合は、NTSC方式(60Hz)の映像信号の場合よりも小さな強調変換度合いで画像データの強調変換を行うことができ、過度な強調変換による映像ノイズの発生を防止しつつ、液晶表示パネル17の光学応答特性(温度依存特性を含む)を補償して、残像や尾引きのない高品位な画像表示が行われる。

【0104】

また、温度センサ20は、その本来の目的から液晶表示パネル17内に設けることが望ましいが、これは構造上困難であるため、液晶表示パネル17にできる限り近い場所に設置すればよい。また、温度センサ20は、1個に限らず複数個とし、液晶表示パネル17の各部位に対応して配置させるようにしてもよい。複数の温度センサ20を設けた場合には、それぞれの温度センサ20からの検出結果を平均した値を温度検出データとして用いてもよいし、変化の大きいいずれかの温度センサ20からの検出結果を温度検出データとして用いてもよい。

【0105】

このような構成では、上述したように、映像信号種別検出部10によりたとえばNTSC方式(60Hz)の映像信号が検出されると、映像信号種別検出部10から制御CPU12Dに対し、NTSC方式(60Hz)の映像信号を検出したことが通知される。このとき、制御CPU12により強調変換手段としての強調変換部14Dに対して、入力画像データに対する強調変換処理が指示される。この場合、図6に示すように、制御CPU12Dからのパラメータ切換制御信号によりOSテーブルメモリ(ROM)13aを参照するように指示される。そして、演算部14dにより、これから表示するM番目のフレームの入力画像データ(Current Data)と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ(Previous Data)との比較結果(階調遷移)に対応する(すなわち、その比較結果により指定される)OSパラメータがOSテーブルメモリ(ROM)13aから読み出されて強調演算データが求められる。そして、減算器14aによってその強調演算データとこれから表示するM番目のフレームの入力画像データとの差分データが求められる。

【0106】

このとき、制御CPU12Dには温度センサ20からの温度検出データが取り込まれており、制御CPU12Dによりその温度検出データに応じた乗算係数 $\alpha_1 \sim \alpha_4$ のいずれかを切り替え選択するための係数切換制御信号が強調変換部14Dに与えられる。ここで、温度検出データがたとえば15°C以下である場合は乗算係数 $\alpha_1 (> \alpha_2)$ となり、15°Cより大きく25°C以下である場合は乗算係数 $\alpha_2 (> \alpha_3)$ となり、25°Cより大きく35°C以下である場合は乗算係数 $\alpha_3 (> \alpha_4)$ となり、35°Cより大きい場合は乗算係数 $\alpha_4 (= 1)$ となる。

【0107】

温度検出データに応じて、これらの乗算係数 $\alpha_1 \sim \alpha_4$ のいずれかが制御CPU12Dからの係数切換制御信号により切り換えられると、乗算器14bにより前記差分データに対してもう一度の乗算係数 $\alpha_1 \sim \alpha_4$ が乗算され、加算器14cによってその乗算されたデータとこれから表示するM番目のフレームの入力画像データとが加算され、その加算されたデータが強調変換データとして液晶コントローラ16に与えられる。これにより、入力画像データがNTSC方式(60Hz)の映像信号の場合には、液晶表示パネル17の温度が変化しても、液晶表示パネル17の光学応答特性(温度依存特性を含む)を補償して、残像や尾引きのない高画質の画像表示が行われる。

【0108】

これに対し、映像信号種別検出部10により、PAL方式又はSECAM方式(50Hz)の映像信号が検出されると、制御CPU12Dにより強調変換部14Dに対して、PAL方式又はSECAM方式(50Hz)の入力画像データに対する強調変換処理が指示される。この場合、制御CPU12Dからのパラメータ切換制御信号によりOSテーブルメモリ(ROM)13bを参照するように指示される。そして、演算部14dにより、これから表示するM番目のフレームの入力画像データ(Current Data)と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ(Previous Data)との比較結果(階調遷移)に対応する(すなわち、その比較結果により指定される)OSパラメータがOSテーブルメモリ(ROM)13bから読み出されて強調演算データが求められる。そして、減算器14aによってその強調演算データとこれから表示するM番目のフレームの入力画像データとの差分データが求められる。

【0109】

このとき、制御CPU12Dには温度センサ20からの温度検出データが取り込まれており、制御CPU12Dからはその温度検出データに応じた乗算係数 $\alpha_1 \sim \alpha_4$ のいずれかを切り換え選択するための係数切換制御信号が強調変換部14Dに与えられる。ここで、温度検出データがたとえば15°C以下である場合は乗算係数 $\alpha_1 (> \alpha_2)$ となり、15°Cより大きく25°C以下である場合は乗算係数 $\alpha_2 (> \alpha_3)$ となり、25°Cより大きく35°C以下である場合は乗算係数 $\alpha_3 (> \alpha_4)$ となり、35°Cより大きい場合は乗算係数 $\alpha_4 (= 1)$ となる。

【0110】

温度検出データに応じてこれらの乗算係数 $\alpha_1 \sim \alpha_4$ のいずれかが制御CPU12Dからの係数切換制御信号により切り換えられると、乗算器14bにより前記差分データに対してもう一度の乗算係数 $\alpha_1 \sim \alpha_4$ が乗算され、加算器14cによってその乗算されたデータとこれから表示するM番目のフレームの入力画像データとが加算され、その加算されたデータが強調変換データとして液晶コントローラ16に与えられる。

【0111】

ここで、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場合には、上述したように、OSテーブルメモリ(ROM)13b内のOSパラメータがOSテーブルメモリ(ROM)13a内のOSパラメータより小さい値であるため、液晶表示パネル17の温度が変化しても、液晶表示パネル17の光学応答特性(温度依存特性を含む)を補償して、残像や尾引きの発生を抑えつつ、画像データに対する過度な強調変換によって映像ノイズが発生することを防止して、高画質の画像表示が行われる。

【0112】

このように、実施形態4では、入力画像データがNTSC方式(60Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)13aと、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)13bとを備え、前記検出されたNTSC方式(60Hz)の映像信号、PAL方式又はSECAM方式(50Hz)の映像信号に応じてOSテーブルメモリ(ROM)13a, 13bのいずれかから読み出されたOSパラメータを用いるとともに、温度センサ20による温度検出データに応じた乗算係数 $\alpha_1 \sim \alpha_4$ を用いて入力画像データに対する強調変換度合いを可変制御するようにしたので、入力画像データの信号種別及び装

置内温度に応じた適切な強調変換処理を画像データに施すことが可能となり、高画質の画像表示を行わせることができる。

【0113】

(実施形態5)

図7は入力画像データがNTSC方式(60Hz)の映像信号である場合に参照する、複数の温度範囲のそれぞれに対応したOSパラメータが格納されたOSテーブルメモリ(ROM)と、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に参照する、複数の温度範囲のそれぞれに対応したOSパラメータが格納されたOSテーブルメモリ(ROM)とを個別に設けた構成とした場合の実施形態5を示す図、図8は図7の制御CPUの詳細を説明するための図、図9は図7のOSテーブルメモリ(ROM)を入力画像データの信号種別(放送フォーマット)及び装置内温度に応じて切り換え選択する動作を説明するための図である。

【0114】

図7に示すように、実施形態5では、入力画像データがNTSC方式(60Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)131～134と、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)135～138とを設けている。そして、入力画像データがNTSC方式(60Hz)の映像信号であるか、PAL方式(50Hz)又はSECAM方式(50Hz)の映像信号であるかの信号種別を検出し、その信号種別と温度センサ20からの温度検出データによって得られる装置内温度とに応じて、OSテーブルメモリ(ROM)131～138のいずれかを切り換え参照し、画像データに対する強調変換処理を行うようにしている。

【0115】

ここで、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)135～138内のOSパラメータは、入力画像データがNTSC方式(60Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)131～134内のOSパラメータより小さい値である。これは、上述したように、PAL方式又はSECAM方式(50Hz)の映像信号は、NTSC方式(60Hz)の映像信号に比べてフレーム周期が長く、過度な強調変換による映像ノイズの発生を防止するために、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場合には、画像データに対する強調変換度合いを、入力画像データがNTSC方式(60Hz)の映像信号の場合よりも小さくする必要があるためである。

【0116】

なお、ここでは、それぞれのOSパラメータを、それぞれ個別に設けられたOSテーブルメモリ(ROM)131～138に格納しているが、単一のOSテーブルメモリ(ROM)の異なるテーブル領域にそれぞれのOSパラメータを格納しておき、制御CPU12Eからの切換制御信号に応じて、参照するテーブル領域を適応的に切り換えることにより、OSパラメータを切換選択して、強調変換データを求めるように構成してもよい。

【0117】

また、OSテーブルメモリ(ROM)131～138には、上述したように、表示データ数が8ビットの256階調である場合、256の全ての階調に対するOSパラメータ(実測値)を持っていてもよいが、たとえば図16に示したように、32階調毎の9つの代表階調についての9×9のOSパラメータ(実測値)のみを記憶しておき、その他の階調に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成することで、OSテーブルメモリ(ROM)131～138の記憶容量を抑制することができる。

【0118】

さらに、温度センサ20は、その本来の目的から液晶表示パネル17内に設けることが望ましいが、これは構造上困難であるため、液晶表示パネル17にできる限り近い場所に設置すればよい。また、温度センサ20は、1個に限らず複数個とし、液晶表示パネル1

7の各部位に対応して配置させるようにしてもよい。複数の温度センサ20を設けた場合には、それぞれの温度センサ20からの検出結果を平均した値を温度検出データとして用いてもよいし、変化の大きいいずれかの温度センサ20からの検出結果を温度検出データとして用いてもよい。

【0119】

ここで、各OSテーブルメモリ(ROM)131～138は、図9に示すように、温度センサ20からの温度検出データに応じて切り換えて参照されるようになっている。ここでは、装置内温度がたとえば15℃以下、15℃より大きく25℃以下、25℃より大きく35℃以下、35℃より大きい場合の4段階の温度範囲に対応させて、各OSテーブルメモリ(ROM)131～138を設けた構成としているが、3段階以下或いは5段階以上の温度範囲に対応したOSパラメータを用意してもよいことは言うまでもない。

【0120】

このような温度センサ20の温度検出データに応じて各OSテーブルメモリ(ROM)131～138を切り換え選択を指示する制御CPU12Eの構成を、図8により説明する。すなわち、制御手段としての制御CPU12Eは、閾値判別部12a、制御信号出力部12cを有している。

【0121】

閾値判別部12aは、温度センサ20からの温度検出データを受け取ると、たとえば予め決められた所定の切換温度(閾値温度)Th1、Th2、Th3とを比較する。ここでは、切換温度(閾値温度)Th1、Th2、Th3はたとえば15℃、25℃、35℃であり、装置内温度が15℃以下であるか、15℃より大きく25℃以下であるか、25℃より大きく35℃以下であるか、35℃より大きいかの判別結果を出力する。

【0122】

制御信号出力部12cは、映像信号種別検出部10によるNTSC方式(60Hz)の映像信号、PAL方式又はSECAM方式(50Hz)の映像信号のいずれかの信号種別の検出結果と、閾値判別部12aによる判別結果とに応じた切換制御信号を出力する。すなわち、映像信号種別検出部10からの信号種別の検出結果と閾値判別部12aによる判別結果とを受け取ると、その信号種別と温度検出データとに応じて、OSテーブルメモリ(ROM)131～138のいずれを参照させるかを切換制御信号で指示する。

【0123】

この場合、制御信号出力部12cは、たとえば入力画像データがNTSC方式(60Hz)の場合「0」、PAL方式又はSECAM方式(50Hz)の場合「1」とする識別データと、たとえば温度センサ20からの温度検出データが15℃以下の場合「00」、15℃より大きく25℃以下の場合「01」、25℃より大きく35℃以下の場合「10」、35℃より大きい場合「11」とする識別データとを組み合わせることにより、3ビットの切換制御信号で8個の各OSテーブルメモリ(ROM)131～138のいずれを参照して、画像データの強調変換を行うかの指示を行うことができる。

【0124】

このような構成では、上述したように、映像信号種別検出部10によりたとえばNTSC方式(60Hz)の映像信号が検出されると、映像信号種別検出部10から制御CPU12Eに対し、NTSC方式(60Hz)の映像信号を検出したことが通知される。このとき、制御CPU12Eにより強調変換手段としての強調変換部14Eに対して、入力画像データに対する強調変換処理が指示される。この場合、閾値判別部12aからの温度検出データが15℃以下であるか、15℃より大きく25℃以下であるか、25℃より大きく35℃以下であるか、35℃より大きいかの判別結果に応じて、制御信号出力部12cにより、入力画像データがNTSC方式(60Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)131～134のいずれかを選択指示するための切換制御信号が出力される。

【0125】

ここで、温度センサ20からの温度検出データがたとえば15℃以下である場合、OS出証特2004-3034187

テーブルメモリ（ROM）131を参照するように指示され、15℃より大きく25℃以下である場合、OSテーブルメモリ（ROM）132を参照するように指示され、25℃より大きく35℃以下である場合、OSテーブルメモリ（ROM）133を参照するよう指示され、35℃より大きい場合、OSテーブルメモリ（ROM）134を参照するように指示される。

【0126】

そして、その指示を受けた強調変換部14Eにより、これから表示するM番目のフレームの入力画像データ（Current Data）と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ（Previous Data）との比較結果（階調遷移）に対応する（すなわち、その比較結果により指定される）OSパラメータが、前記選択指示されたOSテーブルメモリ（ROM）131～134のいずれかから読み出され、その読み出されたOSパラメータに基づいて強調変換データが求められ、液晶コントローラ16に与えられる。これにより、入力画像データがNTSC方式（60Hz）の映像信号の場合には、液晶表示パネル17の温度が変化しても、液晶表示パネル17の光学応答特性（温度依存特性を含む）を補償して、残像や尾引きのない高画質の画像表示が行われる。

【0127】

これに対し、映像信号種別検出部10により、PAL方式又はSECAM方式（50Hz）の映像信号が検出されると、制御CPU12EによりPAL方式又はSECAM方式（50Hz）の入力画像データに対する強調変換処理が指示される。この場合、上述したように、閾値判別部12aからの温度検出データが15℃以下であるか、15℃より大きく25℃以下であるか、25℃より大きく35℃以下であるか、35℃より大きいかの判断結果に応じて、制御信号出力部12cにより、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号である場合に参照するOSテーブルメモリ（ROM）135～138のいずれかを選択指示するための切換制御信号が出力される。

【0128】

ここで、温度センサ20からの温度検出データがたとえば15℃以下である場合、OSテーブルメモリ（ROM）135を参照するように指示され、15℃より大きく25℃以下である場合、OSテーブルメモリ（ROM）136を参照するように指示され、25℃より大きく35℃以下である場合、OSテーブルメモリ（ROM）137を参照するように指示され、35℃より大きい場合、OSテーブルメモリ（ROM）138を参照するように指示される。

【0129】

そして、その指示を受けた強調変換部14Eにより、これから表示するM番目のフレームの入力画像データ（Current Data）と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ（Previous Data）との比較結果（階調遷移）に対応する（すなわち、その比較結果により指定される）OSパラメータが、選択指示されたOSテーブルメモリ（ROM）135～138のいずれかから読み出され、その読み出されたOSパラメータに基づいて強調変換データが求められ、液晶コントローラ16に与えられる。

【0130】

ここで、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号の場合には、上述したように、OSテーブルメモリ（ROM）135～138内のOSパラメータが、対応するOSテーブルメモリ（ROM）131～134内のOSパラメータより小さい値であるため、液晶表示パネル17の温度が変化しても、液晶表示パネル17の光学応答特性（温度依存特性を含む）を補償して、残像や尾引きの発生を抑えつつ、画像データに対する過度な強調変換によって映像ノイズが発生することを防止して、高画質の画像表示が行われる。

【0131】

このように、実施形態5では、入力画像データがNTSC方式（60Hz）の映像信号である場合に参照する、温度センサ20からの温度検出データに応じた複数のOSテーブルメモリ（ROM）131～134と、入力画像データがPAL方式又はSECAM方式

(50Hz) の映像信号である場合に参照する、温度センサ20からの温度検出データに応じた複数のOSテーブルメモリ(ROM)135～138とを設け、入力画像データがNTSC方式(60Hz)の映像信号であるか、PAL方式又はSECAM方式(50Hz)の映像信号であるかの信号種別と、温度センサ20からの温度検出データによって得られる装置内温度とに応じて、OSテーブルメモリ(ROM)131～138のいずれかを切り換え参照し、画像データに対する強調変換を行うようにしたので、信号種別及び装置内温度に対応した適切な強調変換処理を画像データに施すことが可能となり、高画質の画像表示を行わせることができる。

【0132】

(実施形態6)

図10は入力画像データがNTSC方式(60Hz)の映像信号である場合とPAL方式又はSECAM方式(50Hz)の映像信号である場合とでOSパラメータを共用した場合の実施形態6を示す図、図11は図10の制御CPUの詳細を示す図、図12は図10のOSテーブルメモリ(ROM)を入力画像データの信号種別及び装置内温度に応じて切り換え選択する動作を説明するための図である。

【0133】

図10に示すように、実施形態6では、図7に示したOSテーブルメモリ(ROM)131～138のうち、たとえば入力画像データがNTSC方式(60Hz)の映像信号である場合に参照する4個のOSテーブルメモリ(ROM)131～134を、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合にも参照できるようにし、映像信号種別検出部10による信号種別及び温度センサ20による装置内温度に応じて、OSテーブルメモリ(ROM)131～134のいずれかを切り換え参照し、画像データに対する強調変換処理を行うようにしている。

【0134】

このように、入力画像データの信号種別及び装置内温度の検出データに応じて、参照するOSテーブルメモリ(ROM)131～134の切り換え制御を行う制御CPU12Fは、図11に示す構成となっている。すなわち、制御CPU12Fは、閾値判別部12a、制御信号出力部12b、信号種別演算式格納部12e、演算部12fを有している。

【0135】

閾値判別部12aは、演算部12fにより演算が施された温度データと、予め決められた所定の切換温度(閾値温度)Th1, Th2, Th3とを比較する。ここで、Th1, Th2, Th3は、たとえば15℃、25℃、35℃である。制御信号出力部12bは、閾値判別部12aによる比較結果に応じて、強調変換手段としての強調変換部14Fに対しいずれのOSテーブルメモリ(ROM)131～134を選択して参照させるかを指示するための切換制御信号を生成する。

【0136】

信号種別演算式格納部12eには、入力画像データの信号種別毎に決められた所定値を、温度センサ20による温度検出データに対して加減算する等の演算式が格納されている。演算部12fは、映像信号種別検出部10により検出された信号種別のデータに応じ、信号種別演算式格納部12eから読み出された演算式を用いて、温度センサ20による温度検出データに補正演算を施す。

【0137】

このような構成では、たとえば図12に示すように、入力画像データがNTSC方式(60Hz)の映像信号である場合、温度センサ20で検出された装置内温度が切換温度Th1(=15℃)以下であれば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)131を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)131に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0138】

また、温度センサ20で検出された装置内温度が切換温度Th1(=15℃)より大き

く且つ切換温度T_h2 (=25°C) 以下であれば、制御C P U 1 2 Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)132を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)132に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0139】

さらに、温度センサ20で検出された装置内温度が切換温度T_h2 (=25°C) より大きく且つ切換温度T_h3 (=35°C) 以下であれば、制御C P U 1 2 Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)133を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)133に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0140】

そしてまた、温度センサ20で検出された装置内温度が切換温度T_h3 (=35°C) より大きければ、制御C P U 1 2 Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)134を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)134に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0141】

一方、入力画像データがP A L方式又はS E C A M方式(50Hz)の映像信号である場合は、上述したように、過度な強調変換による映像ノイズの発生を防止するために、入力画像データがP A L方式又はS E C A M方式(50Hz)の映像信号である場合における画像データの強調変換度合いを、入力画像データがN T S C方式(60Hz)の映像信号である場合より小さくする必要がある。そのため、その強調変換の度合いを補正するために、演算部12fでは信号種別演算式格納部12eより読み出された演算式を用いて、温度センサ20による温度検出データに対し所定の演算(ここでは、たとえば5°C分を加算)を施した上で、閾値判別部12aに出力する。なお、ここでの加算は、5°Cに限らず、4°C以下又は6°C以上であってもよく、液晶表示パネル17の光学応答特性に応じて任意に設定すればよい。

【0142】

これによって、入力画像データがP A L方式又はS E C A M方式(50Hz)の映像信号である場合、温度センサ20で検出された装置内温度が10°C以下であれば、制御C P U 1 2 Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)131を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)131に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0143】

また、温度センサ20で検出された装置内温度が10°Cより大きく且つ20°C以下であれば、制御C P U 1 2 Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)132を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)132に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0144】

さらに、温度センサ20で検出された装置内温度が20°Cより大きく且つ30°C以下であれば、制御C P U 1 2 Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)133を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)133に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0145】

そしてまた、温度センサ20で検出された装置内温度が30°Cより大きければ、制御C P U 1 2 Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)134を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(RO

M) 134に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0146】

このように、実施形態6では、温度センサ20による温度検出データに所定の演算を施した上で、予め決められた所定の切換温度Th1, Th2, Th3と比較し、OSパラメータを切り換えるための切換制御信号を生成している。すなわち、入力画像データがNTSC方式(60Hz)の映像信号である場合と、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合とで、参照するOSテーブルメモリ(ROM)131～134を参照する際の切換温度(装置内温度)を適宜可変するようにしたので、いずれの信号種別(放送フォーマット)の入力画像データに対しても、OSテーブルメモリ(ROM)131～134を共用して強調変換処理を施すことが可能であり、入力画像データがNTSC方式(60Hz)の映像信号、PAL方式又はSECAM方式(50Hz)の映像信号のいずれであっても、OSテーブルメモリ(ROM)を別個に設ける場合に比べ、メモリの記憶容量を抑制することができる。

【0147】

また、同一温度条件下において、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合には、入力画像データがNTSC方式(60Hz)の映像信号である場合に用いるOSパラメータより小さい値のOSパラメータを用いて、画像データの強調変換を行うことが可能となるため、PAL方式又はSECAM方式(50Hz)の映像信号の場合、画像データに対する過度な強調変換によって映像ノイズが発生することにより画質が劣化することを防止することができる。

【0148】

なお、各温度範囲に対応した複数のOSパラメータを、それぞれ個別に設けられたOSテーブルメモリ(ROM)131～134に格納しているが、単一のOSテーブルメモリ(ROM)の異なるテーブル領域に格納しておき、制御CPU12Fからの切換制御信号に応じて、参照するテーブル領域を適応的に切り換えることにより、OSパラメータを切換選択して、強調変換データを求めるように構成してもよいことは言うまでもない。

【0149】

また、OSテーブルメモリ(ROM)131～134には、上述したように、表示データ数が8ビットの256階調である場合、256の全ての階調に対するOSパラメータ(実測値)を持っていてもよいが、たとえば図16に示したように、32階調毎の9つの代表階調についての9×9のOSパラメータ(実測値)のみを記憶しておき、その他の階調に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成することで、OSテーブルメモリ(ROM)131～134の記憶容量を抑制することができる。

【0150】

(実施形態7)

図13は図10の制御CPUとして別の構成を備えた場合の実施形態7を示す図である。

【0151】

実施形態7における制御CPU12Gは、図13に示すように、入力画像データの信号種別毎に決められた所定の切換温度(閾値温度)のデータが格納されている信号種別閾値温度データ格納部12iと、入力画像データの信号種別に応じて、信号種別閾値温度データ格納部12iから読み出された切換温度Th1, Th2, Th3と、温度センサ20による温度検出データとを比較する閾値判別部12jと、この閾値判別部12jによる比較結果に応じ、強調変換部14Fに対してOSテーブルメモリ(ROM)131～134のいずれかを選択して参照させるための切換制御信号を生成する制御信号出力部12bとを有している。

【0152】

このような構成では、入力画像データがNTSC方式(60Hz)の映像信号である場

合は、温度センサ20で検出された装置内温度が切換温度T_{h1} (=15°C) 以下であれば、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(ROM)131を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)131に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0153】

また、温度センサ20で検出された装置内温度が切換温度T_{h1} (=15°C) より大きく且つ切換温度T_{h2} (=25°C) 以下であれば、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(ROM)132を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)132に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0154】

さらに、温度センサ20で検出された装置内温度が切換温度T_{h2} (=25°C) より大きく且つ切換温度T_{h3} (=35°C) 以下であれば、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(ROM)133を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)133に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0155】

そしてまた、温度センサ20で検出された装置内温度が切換温度T_{h3} (=35°C) より大きければ、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(ROM)134を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)134に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0156】

一方、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合は、上述したように、過度な強調変換による映像ノイズの発生を防止するために、同一条件下における画像データの強調変換度合いを、入力画像データがNTSC方式(60Hz)の映像信号である場合より小さくする必要がある。そのため、その強調変換の度合いを補正するために、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合は、閾値判別部12jでは信号種別閾値温度データ格納部12iより読み出された切換温度T_{h'1} (< T_{h1}) , T_{h'2} (< T_{h2}) , T_{h'3} (< T_{h3}) を用いて、温度センサ20による温度検出データの比較判別を行い、その結果を制御信号出力部12bに出力する。

【0157】

これによって、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合は、温度センサ20で検出された装置内温度がT_{h'1} (=10°C) 以下であれば、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(ROM)131を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)131に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0158】

また、温度センサ20で検出された装置内温度がT_{h'1} (=10°C) より大きく且つ切換温度T_{h'2} (=20°C) 以下であれば、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(ROM)132を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)132に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0159】

さらに、温度センサ20で検出された装置内温度がT_{h'2} (=20°C) より大きく且つ切換温度T_{h'3} (=30°C) 以下であれば、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(ROM)133を選択して参照するように指示する。これに

よって、強調変換部14FはOSテーブルメモリ(ROM)133に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0160】

そしてまた、温度センサ20で検出された装置内温度が $T_h' 3 (= 30^\circ\text{C})$ より大きければ、制御CPU12Gは強調変換部14Fに対し、OSテーブルメモリ(ROM)134を選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)134に格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0161】

このように、実施形態7では、入力画像データの信号種別毎に定められた切換温度(閾値温度)を用いて温度センサ20による温度検出データの比較判別を行うことにより、参照すべきOSテーブルメモリ(ROM)131～134を選択させるための切換制御信号を生成している。すなわち、入力画像データがNTSC方式(60Hz)の映像信号である場合と、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合とで、OSテーブルメモリ(ROM)131～134を切り換え選択する切換温度(装置内温度)を適宜可変するようにしたので、いずれの信号種別の入力画像データに対しても、OSテーブルメモリ(ROM)131～134を共用して強調変換処理を施すことが可能であり、NTSC方式(60Hz)の映像信号、PAL方式又はSECAM方式(50Hz)の映像信号のいずれであっても、OSテーブルメモリ(ROM)を別個に設ける場合に比べ、メモリの記憶容量を抑制することができる。

【0162】

また、同一温度条件下において、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合には、入力画像データがNTSC方式(60Hz)の映像信号である場合に用いるOSパラメータより小さい値のOSパラメータを用いて、画像データの強調変換を行うことが可能となるため、画像データに対する過度な強調変換によって映像ノイズが発生することにより画質が劣化することを防止することができる。

【0163】

(実施形態8)

図14は入力画像データがNTSC方式(60Hz)の映像信号の場合とPAL方式又はSECAM方式(50Hz)の映像信号の場合とで、一部のOSパラメータのみを共用した場合の実施形態8を示す図である。

【0164】

図14に示すように、実施形態8では、入力画像データがNTSC方式(60Hz)の映像信号である場合、PAL方式又はSECAM方式(50Hz)の映像信号である場合のいずれにおいても共用されるOSテーブルメモリ(ROM)13c～13eに加えて、入力画像データがNTSC方式(60Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)13aと、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合に参照するOSテーブルメモリ(ROM)13bとを設け、これらOSテーブルメモリ(ROM)13a～13eを、入力信号種別毎に定められる切換温度に従って切り換え参照し、画像データに強調変換を施す構成としている。

【0165】

ここで、それぞれの専用のOSテーブルメモリ(ROM)13a, 13bについては、たとえば常温より大きい場合において、画像データの強調変換に用いるOSパラメータが格納されている。また、OSテーブルメモリ(ROM)13a～13eを、信号種別毎に定められる切換温度に従って切り換え参照せる場合、図11(又は図13)で説明した制御CPU12F(又は12G)からの切換制御信号によって行わせることができる。

【0166】

このような構成では、入力画像データがNTSC方式(60Hz)の映像信号である場合、温度センサ20で検出された装置内温度が15°C以下であれば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)13cを選択して参照するよう

に指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)13cに格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0167】

また、温度センサ20で検出された装置内温度が15℃より大きく且つ25℃以下であれば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)13dを選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)13dに格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0168】

さらに、温度センサ20で検出された装置内温度が25℃より大きく且つ35℃以下であれば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)13eを選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)13eに格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0169】

そしてまた、温度センサ20で検出された装置内温度が35℃より大きければ、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)13aを選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)13aに格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0170】

一方、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号である場合は、温度センサ20で検出された装置内温度が10℃以下であれば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)13cを選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)13cに格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0171】

また、温度センサ20で検出された装置内温度が10℃より大きく且つ20℃以下であれば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)13dを選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)13dに格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0172】

さらに、温度センサ20で検出された装置内温度が20℃より大きく且つ30℃以下であれば、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)13eを選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)13eに格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0173】

そしてまた、温度センサ20で検出された装置内温度が30℃より大きければ、制御CPU12Fは強調変換部14Fに対し、OSテーブルメモリ(ROM)13bを選択して参照するように指示する。これによって、強調変換部14FはOSテーブルメモリ(ROM)13bに格納されているOSパラメータを用いて、入力画像データの強調変換処理を行う。

【0174】

このように、実施形態8では、入力画像データがNTSC方式(60Hz)の映像信号、PAL方式又はSECAM方式(50Hz)の映像信号である場合のそれぞれに対して共用するOSテーブルメモリ(ROM)13c～13eに加えて、入力画像データがNTSC方式(60Hz)の映像信号の場合に参照する専用のOSテーブルメモリ(ROM)13aと、入力画像データがPAL方式又はSECAM方式(50Hz)の映像信号の場

合に参照する専用のOSテーブルメモリ（ROM）13bとを設け、これらOSテーブルメモリ（ROM）13a～13eを、入力信号種別毎に定められる切換温度（装置内温度）に応じて切り換え参照し、画像データに対する強調変換を施す構成としたので、OSテーブルメモリ（ROM）13c～13eを共用して適切な強調変換処理を施すことが可能となる。

【0175】

なお、各信号種別及び各温度範囲に対応した複数のOSパラメータを、それぞれ個別に設けられたOSテーブルメモリ（ROM）13a～13eに格納しているが、単一のOSテーブルメモリ（ROM）の異なるテーブル領域に格納しておき、制御CPU12F（又は12G）からの切換制御信号に応じて、参照するテーブル領域を適応的に切り換えることにより、強調変換パラメータを切換選択して、強調変換データを求めるように構成してもよい。

【0176】

また、OSテーブルメモリ（ROM）13a～13eには、上述したように、表示データ数が8ビットの256階調である場合、256の全ての階調に対するOSパラメータ（実測値）を持っていてもよいが、たとえば図16に示したように、32階調毎の9つの代表階調についての9×9のOSパラメータ（実測値）のみを記憶しておき、その他の階調に対する強調変換データは、上記実測値から線形補完等の演算で求めるように構成することで、OSテーブルメモリ（ROM）13a～13eの記憶容量を抑制することができる。

【0177】

なお、上記各実施形態では、映像信号種別検出部10が入力される映像信号に基づいて当該映像信号の放送方式（映像フォーマット）を自動判別する場合について説明したが、これに限るものではなく、映像信号種別検出部10は、例えば、リモートコントローラなどによるユーザの映像信号の選択指示を受け付け、当該選択指示に基づいて、映像信号の放送方式を検出してもよい。いずれの場合であっても、映像信号の放送方式（映像フォーマット）を検出できれば、同様の効果が得られる。ただし、上記各実施形態のように自動判別する構成は、ユーザが、その都度操作する構成と比較して、ユーザの負担を軽減できる。

【0178】

また、上記各実施形態では、液晶テレビジョン受像機に表示する放送方式を常時変更可能な構成について説明したが、これに限るものではない。例えば、工場出荷時のように、予め定められた期間のみに変更可能であってもよい。当該構成では、当該期間中に、液晶テレビジョン受像機に表示する放送方式を変更することによって、上記期間以降において、ある放送方式の映像信号を表示する液晶テレビジョン受像機と、上記期間以降において、他の放送方式の映像信号を表示する液晶テレビジョン受像機とを共用できる。また、上記期間以降に、いずれの放送方式（映像フォーマット）による入力画像データが入力される場合であっても、常に、液晶表示パネルが所定期間内において該入力画像データの定める透過率となるように、該入力画像データの強調変換を行うことが可能となり、高画質の画像表示を実現することができる。このように、液晶テレビジョン受像機に表示する放送方式を変更可能な期間が制限されている場合であっても、液晶テレビジョン受像機が複数の放送方式の画像データを表示可能であり、しかも、入力画像データが第1の放送方式の映像信号であるか、当該第1の放送方式の映像信号とは垂直周波数の異なる第2の放送方式の映像信号であるかに応じて、前記画像データに対する強調変換度合いを可変制御できれば、同様の効果が得られる。ただし、上記各実施形態のように、常時変更可能であれば、より多機能な液晶テレビジョン受像機をユーザに提供できる。

【0179】

さらに、上記各実施形態では、液晶テレビジョン受像機が、複数の放送方式のテレビジョン放送信号を受信して表示可能なマルチテレビジョン受像機である場合を例にして説明したが、上記液晶テレビジョン受像機が表示可能な映像信号は、テレビジョン放送信号を

記録した記録媒体から映像信号を再生可能な再生装置からの映像信号であってもよいし、例えば、DVDなど、テレビジョン放送の映像信号と同一の映像フォーマットの映像信号を記録した記録媒体から、当該映像信号を再生可能な再生装置からの映像信号であってもよい。なお、この場合は、記録媒体に映像信号の放送方式（映像フォーマット）を示す情報を記録しておき、映像信号種別検出部10は、当該記録媒体から読み出した当該情報に基づいて、映像信号の放送方式（映像フォーマット）を検出してもよい。いずれの場合であっても、映像信号を出力する信号源に拘わらず、液晶テレビジョン受像機が表示可能な映像信号の映像フォーマット（放送方式）が複数であり、しかも、入力画像データが第1の放送方式の映像信号であるか当該第1の放送方式の映像信号とは垂直周波数の異なる第2の放送方式の映像信号であるかに応じて、前記画像データに対する強調変換度合いを可変制御できれば、同様の効果が得られる。

【0180】

なお、上記各実施形態では、一例として、例えば、画像データの1フレーム（1コマ）の画像全体を、画像データの1フレーム期間に渡って書き込み走査する駆動方法、すなわち、1垂直期間（1フレームの期間）が1垂直表示期間と一致する駆動方法を液晶テレビジョン受像機が採用した場合を例にして説明したが、これに限るものではない。例えば、1フレーム期間を画像を表示する期間（画像表示期間）と暗表示（例えば、黒表示）する期間（暗表示期間）とに分割する駆動方法を液晶テレビジョン受像機が採用してもよい。

【0181】

また、上記各実施形態では、1フレーム前の入力画像データと現フレームの入力画像データとの組み合わせに応じた強調変換データを液晶コントローラ16に出力する場合を例にして説明したが、これに限るものではない。例えば、1フレーム前の入力画像データだけではなく、1フレームよりも前の入力画像データ（例えば、2フレーム前の入力画像データなど）をも参照して、強調変換データを決定してもよい。いずれの場合であっても、少なくとも1フレーム前の入力画像データを参照して強調変換データを決定すれば、同様の効果が得られる。ただし、より以前の入力画像データを参照して強調変換データを決定するためには、より大きな記憶容量のフレームメモリが必要になる。したがって、記憶容量の削減が求められる場合には、上記各実施形態のように、各フレームの入力画像データのうち、1フレーム前の入力画像データと現フレームの入力画像データとのみを参照して、強調変換データを決定することが望まれる。

【0182】

さらに、上記各実施形態では、1フレーム前の入力画像データを参照して強調変換データを液晶コントローラ16に出力しているが、実際に入力された、1フレーム前の入力画像データに代えて、1フレーム前の入力画像データの書き込みによって、液晶パネルの画素が実際に到達している階調レベルを予測し、当該予測値を、上記1フレーム前の画像データ（Previous Data）として参照してもよい。なお、この場合であっても、到達階調予測のために、1フレーム前の入力画像データが参照される。いずれの場合であっても、少なくとも1フレーム前の入力画像データと現フレームの入力画像データに基づいて、強調変換データを決定すれば、同様の効果が得られる。

【0183】

なお、上記各実施形態では、強調変換部（14A～14F）が、OSテーブルメモリ（ROM13～13e・131～138）に格納されたOSパラメータ（強調変換パラメータ）を参照して強調変換する場合を例にして説明したが、これに限るものではない。例えば、強調変換部は、M番目のフレームの入力画像データ（Current Data）と、フレームメモリ15に格納されたM-1番目のフレームの入力画像データ（Previous Data）とを変数とする2次元関数f（Current Data, Previous Data）などの関数によって、液晶表示パネル（17）の光学応答特性を補償する強調変換データを算出してもよい。

【0184】

また、上記各実施形態では、映像信号種別検出部（10）、制御CPU（12A～12G）、強調変換部（14A～14F）、フレームメモリ（15）がいずれもハードウェア

の場合を例にして説明したが、コンピュータ（C P U）などの演算手段が、図示しない記憶装置（メモリなど）に格納されたプログラムを実行して同様の動作を行うことによって、これらの部材を実現してもよい。当該プログラムは、例えば、当該プログラムを記録した記録媒体を配布したり、あるいは、有線または無線の伝送路など、種々の伝送路を介して伝送したりすることによって配布され、上記コンピュータに実行される。

【産業上の利用可能性】

【0185】

本発明によれば、各放送方式の画像データを表示可能な液晶表示パネルの光学応答特性を適切に改善することができるので、液晶表示パネルを用いて画像を表示する液晶テレビジョン受像機に好適に適用できる。

【図面の簡単な説明】

【0186】

【図1】本発明の液晶表示装置の実施形態1を説明するための図である。

【図2】図1のOSテーブルメモリ（ROM）を参照して得られるOSパラメータと信号種別データに応じて与えられる乗算係数とを用いて液晶表示パネルに供給する強調変換データを求める場合を説明するための図である。

【図3】入力画像データがNTSC方式（60Hz）の映像信号である場合に参照するOSパラメータが格納されたOSテーブルメモリ（ROM）と、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号である場合に参照する、OSパラメータが格納されたOSテーブルメモリ（ROM）とを個別に設けた場合の実施形態2を示す図である。

【図4】図1の構成に温度センサを追加し、OSテーブルメモリ（ROM）を参照して得られるOSパラメータと、入力画像データの信号種別及び装置内温度に応じた乗算係数を用いて、画像データに対する強調変換処理を行わせる場合の実施形態3を示す図である。

【図5】図4のOSテーブルメモリ（ROM）を入力画像データがNTSC方式（60Hz）の映像信号である場合に参照するOSパラメータが格納されたOSテーブルメモリ（ROM）と、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号である場合に参照するOSパラメータが格納されたOSテーブルメモリ（ROM）とを個別に設けた構成とし、装置内温度に応じた乗算係数を用いて画像データに対する強調変換度合いを可変する場合の実施形態4を示す図である。

【図6】図5のOSテーブルメモリ（ROM）を参照して得られるOSパラメータと温度センサによる温度検出データに応じた乗算係数とを用いて強調変換データを求める場合を説明するための図である。

【図7】入力画像データがNTSC方式（60Hz）の映像信号である場合に参照する、複数の温度範囲のそれぞれに対応したOSパラメータが格納されたOSテーブルメモリ（ROM）と、入力画像データがPAL方式又はSECAM方式（50Hz）の映像信号である場合に参照する、複数の温度範囲のそれぞれに対応したOSパラメータが格納されたOSテーブルメモリ（ROM）とを個別に設けた構成とした場合の実施形態5を示す図である。

【図8】図7の制御C P Uの詳細を説明するための図である。

【図9】図7のOSテーブルメモリ（ROM）を入力画像データの信号種別及び装置内温度に応じて切り換え選択する動作を説明するための図である。

【図10】入力画像データがNTSC方式（60Hz）の映像信号である場合とPAL方式又はSECAM方式（50Hz）の映像信号である場合とでOSパラメータを共用した場合の実施形態6を示す図である。

【図11】図10の制御C P Uの詳細を示す図である。

【図12】図10のOSテーブルメモリ（ROM）を入力画像データの信号種別及び装置内温度に応じて切り換え選択する動作を説明するための図である。

【図13】図10の制御C P Uとして別の構成を備えた場合の実施形態7を示す図で

ある。

【図14】入力画像データがNTSC方式(60Hz)の映像信号の場合とPAL方式又はSECAM方式(50Hz)の映像信号の場合とで、一部のOSパラメータのみを共用した場合の実施形態8を示す図である。

【図15】従来の液晶表示装置の一構成例を示す図である。

【図16】図15のOSテーブルメモリ(ROM)に格納されているOSパラメータの一例を示す図である。

【図17】図15の制御CPUの一構成例を示す図である。

【図18】図15のOSテーブルメモリ(ROM)を装置内温度に応じて切り換え選択する動作を説明するための図である。

【図19】図15の液晶表示装置におけるオーバーシュート駆動を説明するための図である。

【符号の説明】

【0187】

10 映像信号種別検出部(信号種別検出手段)

12A～12G 制御CPU(制御手段)

12a 閾値判別部

12b, 12c 制御信号出力部

12e 信号種別演算式格納部

12f 演算部

12i 信号種別閾値温度データ格納部

12j 閾値判別部

13, 13a～13e, 131～138 OSテーブルメモリ(ROM)

14A～14F 強調変換部(強調変換手段)

15 フレームメモリ

16 液晶コントローラ

17 液晶表示パネル

20 温度センサ(温度検出手段)

特願2004-079235

ページ： 1/

【書類名】図面

出証特2004-3034187

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

入力画像データがNTSC方式(60Hz)の
映像信号の場合に参照されるOSテーブルメモリ
映像信号の場合はSECAM方式(50Hz)の
映像信号の場合に参照されるOSテーブルメモリ

【図10】

【図11】

【図12】

(入力画像データがNTSC方式(60Hz)の
映像信号の場合)
(入力画像データがPAL方式(50Hz)
又はSECAM方式(50Hz)の映像信号の場合)

【図 13】

映像信号種別検出部のデータ

【図14】

入力画像データがNTSC方式(60Hz)の映像信号の場合に参照されるOSテーブルメモリ

・
・
・
・
・

【図15】

【図16】

現フレームデータ

	0	32	64	96	128	160	192	224	255
0	0	51	118	165	194	214	230	242	255
32	0	32	120	159	183	206	226	240	255
64	0	12	64	110	150	182	209	234	255
96	0	0	48	96	140	175	204	232	255
128	0	0	43	81	128	167	201	232	255
160	0	0	35	66	117	160	196	229	255
192	0	0	2	56	105	152	192	227	255
224	0	0	0	50	85	139	186	224	255
255	0	0	0	44	75	136	181	215	255

1フレームデータ

【図17】

【図18】

【図19】

【書類名】要約書

【要約】

【課題】 液晶表示パネルの光学応答特性を補償するように、入力画像データに対する強調変換を行うとともに、PAL方式又はSECAM方式(50Hz)の画像データに対する過度な強調変換による映像ノイズの発生を防止することで、高画質の画像表示を行う。

【解決手段】 映像信号種別検出部10によりPAL方式又はSECAM方式(50Hz)の映像信号が検出されると、その入力画像データに対し、NTSC方式(60Hz)の場合より小さい強調変換度合いで強調変換処理を行うことによって、液晶の応答速度を改善しつつ、過強調による映像ノイズの発生を防止して、画質劣化を抑制する。

【選択図】 図1

特願 2004-079235

出願人履歴情報

識別番号 [000005049]

1. 変更年月日 1990年 8月29日

[変更理由] 新規登録

住所 大阪府大阪市阿倍野区長池町22番22号
氏名 シャープ株式会社

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.