1. IDENTIFICACION.

Materia: INTRODUCCION A LA INGENIERIA

QUIMICA

Códigos: SIRE: 6000 EIQ: IQ-5023

Prelación: IQ-5022, IQ-5021 Ubicación: Tercer Semestre

TPLU: 3-2-0-4 Condición: Obligatoria

Departamento: Operaciones Unitarias y Proyectos

2. JUSTIFICACION.

En esta asignatura se presentan un conjunto de conceptos básicos necesarios para comprender adecuadamente los procesos estudiados en Ingeniería Química. Con el curso se pretende reforzar conceptos de Química General y dar una base preliminar de Termodinámica y Cinética.

3. REQUERIMIENTOS.

Conocimientos de Química 11 y Cálculo 20

4. OBJETIVOS.

GENERALES

El objetivo del curso es presentar a los estudiantes un conjunto de conceptos de Química General, Termodinámica y Cinética, necesarios para comprender adecuadamente el funcionamiento de sistemas, procesos y balances empleados en las distintas asignaturas del pensum de Ingeniería Química.

ESPECIFICOS

- En relación al tema 1, el objetivo es mostrar una visión general de las teorías modernas de la estructura de la materia y energía y analizar la tabla periódica enfatizando su poder predictivo en la sistematización de los elementos, reactividad y formación de compuestos.
- El objetivo del tema 2 es mostrar como se forman los compuestos más conocidos en el campo de la Ingeniería Química, sales, ácidos, bases, óxidos, hidruros, halógenos, sulfuros, nitritos, hidrocarburos, complejos, etc.
- En relación al tema 3, el objetivo es el estudio de los gases reales y sus mezclas.
- El tema 4 tiene como objetivo introducir un conjunto de conceptos básicos de Termodinámica, útiles para entender los procesos físicos y químicos.

- La intención del tema 5 es presentar los diagramas de fase y propiedades de las sustancias puras. Se enfatizará el uso de las tablas termodinámicas del agua.
- El objetivo del tema 6 es enseñar el concepto de velocidad de reacción en casos elementales.
- En cuanto al tema 7 la intención es presentar al estudiante una descripción general de las principales operaciones de la Ingeniería Química.

5. CONTENIDO PROGRAMATICO.

CAPITULO 1. TEORIAS MODERNAS DE LA ESTRUCTURA DE LA MATERIA Y ENERGIA (15 h).

Introducción a la mecánica cuántica. La tabla periódica y su poder predictivo. Ubicación y distribución electrónica de los elementos. Elementos representativos de los grupos y propiedades físicas y químicas. Elementos electropositivos y electronegativos. Metales y no metales. Elementos de transición. Conductores, semiconductores y aislantes. Reactividad. Tendencia a la formación de compuestos.

CAPITULO 2. REACCIONES QUIMICAS ELEMENTALES Y PREPARACION DE COMPUESTOS (18 h)

Formación de sales, ácidos, bases, óxidos, hidruros, halógenos, sulfuros, nitritos, carbonos, carburos, carbonatos, silicio, silicatos, hidrocarburos. Formación de complejos.

CAPITULO 3. GASES REALES (12 h)

Características de los gases reales. Ecuaciones de estado: Van der Waals, Virial, Hougen-Watson, Pitzer. Estados correspondientes, variables reducidas, factor de compresibilidad, factor acéntrico, correlaciones generalizadas. Mezclas de gases: Dalton, Amagat, Kay. Densidad de mezclas.

CAPITULO 4. TERMODINAMICA QUIMICA (18 h)

Conceptos básicos: sistema, alrededores, universo. Naturaleza de la energía. Energía interna, cinética y potencial, entalpía. Calor, trabajo. Primera Ley de la Termodinámica. Capacidad calorífica Cp y Cv. Estimación de Cp y Cv por métodos gráficos y correlaciones. Termoquímica. Ley de Hess. Calores de formación, combustión y reacción. Temperatura adiabática de llama. Entropía y energía libre de Gibbs.

CAPITULO 5. PROPIEDADES Y DIAGRAMAS DE FASE (15 h)

Características generales de gases, sólidos y líquidos. Propiedades: densidad, viscosidad, punto de ebullición, punto de fusión, punto triple. Cambios de estado: evaporación, fusión, sublimación. Diagramas de fase presión-temperatura. Punto de burbuja y punto de rocío. Transiciones energéticas durante los cambios de estado.

Estimación de la presión de vapor. Utilización de tablas termodinámicas del agua. Vapor saturado, líquido saturado y calidad del vapor.

CAPITULO 6. VELOCIDAD DE REACCION (8 h)

Concepto. Constante de velocidad. Orden de reacción. Deducción de expresiones de velocidad para reacciones elementales de 1 y 2 orden. Efecto de la temperatura y concentración sobre la velocidad de reacción. Catalizadores.

CAPITULO 7. INTRODUCCIÓN A LAS OPERACIONES UNITARIAS (4h)

Introducción. Clasificación de las operaciones unitarias. Procesos y operaciones unitarias. Leyes reguladoras de los procesos químicos. Operaciones unitarias en los procesos de preparación de la materia prima. Operaciones unitarias en los procesos de conversión. Procesos de separación

6. METODOLOGIA.

Clases teóricas y prácticas con aplicaciones en el computador.

7. RECURSOS.

Tiza, pizarrón, sala de computación.

8. EVALUACION SUGERIDA:

Cuatro (4) exámenes parciales.

9. BIBLIOGRAFIA.

Felder R. y Rausseau R. "Principios Elementales de los Procesos Químicos". Addison-Wesley Iberoamericana S.A., Delaware, U.S.A., 1991.

Himmelblau D. "Principios y Cálculos Básicos de Ingeniería Química". Editorial Continental, México, DF, 1982.

Bruce Mahan, Adisson-Wesley Inc. 1985.

Brown-Le May. "Química la Ciencia Central". Editorial Prenhice Hall, 1994

10. VIGENCIA:

Desde: Semestre B-2001.