

OOO «Сербалаб» Лицензия ЛО-78-01-007244 Адрес г.Санкт-Петербург, Большой пр. ВО д.90, к.2, лит «3» 8 (812) 602-93-38 Info-cerbalab.ru Cerbalab.ru

Молекулярно-генетическое тестирование по профилю «Витамины»

ЛАБОРАТОРНЫЙ НОМЕР: Ф.И.О./ИНП ПАЦИЕНТА:

ДАТА РОЖДЕНИЯ:

ΠΟΛ:

ЛЕЧЕБНОЕ УЧРЕЖДЕНИЕ:

ЛЕЧАЩИЙ ВРАЧ:

 Δ АТА ВЗЯТИЯ БИОМАТЕРИАЛА:

ИССЛЕДОВАННЫЙ МАТЕРИАЛ:

ДАТА ВЫДАЧИ РЕЗУЛЬТАТА:

Результаты генетического тестирования

Ген	Кодируемый белок	RS	Полиморфиз м	Результат
	Метаболизм ви	тамина А	1	
BCMO1	бета-каротин-монооксигеназа	rs7501331	C>T	C/C A/T
BCMO1	бета-каротин-монооксигеназа	rs12934922	A>T	
	Метаболизм ви	тамина С		<u> </u>
SLC23A1	Транспортер аскорбиновой кислоты	rs33972313	C>T	C/C
	Метаболизм ви	тамина D		
GC	Переносчик витамина D	rs2282679	T>G	T/G
NADSYN1	NAD синтаза 1	rs3829251	G>A	G/A
VDR	рецептор витамина Д	rs11568820	C>T	C/C
VDR	рецептор витамина Д	rs1544410	C>T	C/T
VDR	рецептор витамина Д	rs2228570	G>A	G/A
	Метаболизм ви	тамина Е		1
SCARB1	scavenger receptor class B type I	rs11057830	G>A	G/G
ApoA5	аполипопротеин А5	Rs964184	C>G	C/C
	Фолатный цикл и вито	мины группы В	•	1
BHMT	бетаин-гомоцистеин метилтрансфераза	rs3733890	G>A	G/G
CBS	Цистатион бета-синтаза	POL_GF_18	D/I	D/D
MTHFD	метилентетрагидрофолатдегидрогеназа	rs2236225	G>A	G/G
MTHFR	метилентетрагидрофолатредуктаза	rs1801133	G>A	G/A
MTR	метионин редуктаза	rs1805087	A>G	A/A
MTRR	метионин синтаза-редуктаза	rs1801394	A>G	A/G
SHMT	серин гидроксиметил трансфераза	rs1979277	G>A	G/G
SLC19A1	Транспортер фолатов	rs1051266	T>C	T/C
		амина В6	1	<u> </u>

NBPF3	Щелочная фосфатаза, неспецифичная	rs4654748	C>T	C/T	
Метаболизм витамина В12					
FUT2	фукозилтрансфераза	rs602662	G>A	G/G	

Общая информация

Витамины – важные компоненты полноценного питания, влияющие на многие биохимические процессы в нашем организме. Существуют варианты генов, влияющие на индивидуальные потребности в различных витаминах. К таким генам относятся те, которые отвечают за транспортировку витаминов, за образование активного витамина из попадающего с пищей в организм провитамина (предшественника), или кодирующие ферменты, работающие в паре с соответствующим витамином. Ниже Вы можете познакомиться с индивидуальной потребностью в витаминах, закодированной в Вашем геноме.

Генетический риск	Пониженный	Средний	Повышенный	Высокий
Витамины и микроэлементы				
Потребность в витамине А			V	
Потребность в витамине В2			V	
Потребность в витамине В6		V		
Потребность в витамине В 9 (фолиевая				V
кислота)				
Потребность в витамине В12				V
Потребность в витамине С		V		
Потребность в витаминеD		V		
Потребность в витаминеЕ		V		

Негативный эффект генов:

- у Вас выявлен генетически обусловленный риск повышения уровня голлоцистеина крови;
- выявлена склонность к дефициту витамина А.;
- выявлена склонность к дефициту витамина B2;
- выявлена склонность к дефициту витамина В12;

Среднепопуляционный риск:

– не выявлено склонности к дефициту витаминов B6, C, D, E – достаточно потребления стандартных рекомендованных суточных доз;

Продукты, которые необходимы для поддержания здоровья:

– чтобы минимизировать риск гипергомоцистеинемии необходимо избегать дефицита витаминов B2, B6, B9, B12 и минералов Mg и Zn, а также повышать потребление продуктов, содержащих холин (яичный желток, печень) и бетаин (свекла);

Рекомендации:

ВИТАМИНЫ

ВИТАМИН А

Витамин А (ретинол) – жирорастворимый витамин. Участвует в зрительном процессе, стимулирует рост и развитие, способствует нормальному обмену веществ, антиоксидант и т.д. Значительная часть витамина А в организме человека синтезируется из бета-каротина. В ходе генетических исследований было обнаружено, что синтез витамина А из бета-каротина нарушен у лиц, являющихся носителями определенных вариантов гена ВСМО. Соответственно им требуется увеличить содержание витамина А в рационе.

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
BCMO1 rs12934922	A/T	бета-каротин-монооксигеназа	Естьпотребность в повышенном употреблении витамина А. (оранжевые овощи и фрукты)
BCMO1 rs7501331	С/Т	бета-каротин-монооксигеназа	Выше потребность в употреблении витамина А. (оранжевые овощи и фрукты) Генотип ассоциирован со снижением активности перевода бета-каротина в ретинол.

В среднем, суточная норма составляет от 400 до 900мкг, токсический эффект при потреблении более 3000мкг в день.

Дефицит Вит А: ночная слепота, перифолликулярный гиперкератоз, сухость роговицы и конъюнктивы глаза.

Избыток Вит А: шелушение кожи, гепатоспленомегалия, внутричерепная гипертензия, головная боль, отек диска зрительного нерва, гиперкальциемия.

Заключение:

По исследованным генетическим локусам выявлена умеренная генетически обусловленная склонность к снижению уровня Вит А.

ВИТАМИН В2

Витамин В2 (рибофлавин) активирует процессы обмена веществ в организме, участвуя в метаболизме белков, жиров и углеводов. Ускоряет превращение витамина В6 в его активную форму, необходим для синтеза витамина РР из триптофана. Влияет на иммунную и кроветворную системы, облегчает поглощение кислорода клетками кожи, ногтей и волос. Благоприятно влияет на зрение, наряду с витамином А, участвует в процессах темновой адаптации, снижает усталость глаз и играет большую роль в предотвращении катаракты. Витамин В2сводиткминимумунегативноевоздействиеразличныхтоксиновнадыхательныепути.

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
MTHFR rs1801133	A/A	Фолиевая кислота, В2(рибофлавин)	Снижение активности фермента, кодируемого данным геном до 30% от исходного. Фактор риска венозного тромбоза и эндотелиальной дисфункции за счет гипергомоцистеинемии. При беременности, фактор риска гестоза и фетоплацентарной недостаточности. Риск нивелируется приемом фолиевой кислоты и витамина B2

Среднесуточное потребление рекомендовано от 0,5 до 2мг в день, токсические дозы не определены.

Дефицит Вит В2: ангулярный стоматит, воскуляризация роговицы, фактор риска катаракты хрусталика глаза, бессонница, замедленная умственная реакция.

Заключение:

По исследованным генетическим локусам выявлена генетически обусловленная повышенная потребность в Вит B2.

ВИТАМИН В6

Витамин В6 (пиридоксин) участвует в синтезе веществ, необходимых для нормальной работы центральной и периферической нервной системы. Участвует в синтезе белков, ферментов, гемоглобина, в метаболизме серотонина, глутаминовой кислоты, ГАМК и тд. Улучшает липидный обмен, снижает уровень холестерина и липидов в крови, улучшает сократимость миокарда, способствует превращению фолиевой кислоты в ее активную форму. Необходим для утилизации гомоцистеина. Витамине В6 разрушается при тепловой обработке (в среднем 20-35%).

.

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
CBS	D/D	Потребность в В6	Норма
SHMT rs1979277	G/A	Потребность в В6	Может наблюдаться нарушение оптимальной работы фермента SHMT1 в сочетании с дефицитом В6, может приводить к повышению риска спонтанных мутаций, (за счетснижения соотношения тимидилат/уроцил иповышению вероятностивстраивания в ДНК уроцила вместо тимидина)
MTHFD rs2236225	G/G	Фолиевая кислота	Норма

Суточная потребность составляет от 0,3 до 2мг, токсическая доза - 100мг.

Дефицит Вит В6: судороги, депрессия, раздражительность, заторможенность, повышение уровня тревожности, анемия, себорейный дерматит.

Избыток Вит В6: периферическая нейропатия (онемение и ощущение покалывания в области рук и ног, а также потеря чувствительности в этих же областях), аллергические реакции в виде крапивницы

Заключение:

По исследованным генетическим локусам не выявлено генетически обусловленной повышенной потребности в Вит В6.

ВИТАМИН В9

Витамин В9 (фолиевая кислота) – содержится в зеленых листьях растений, в печени животных. При тепловой обработке сырых продуктов разрушается до 90% фолиевой кислоты. Помимо поступления с пищей синтезируется микрофлорой кишечника. Фолиевая кислота – ключевой компонент фолатного цикла, в ходе которого гомоцистеин превращается в метионин. Гипергомоцистеинемия является фактором риска сердечно-сосудистых заболеваний и эндотелиальной дисфункции (нарушение функции сосудов, приводящее к атеросклерозу и атеротромбозу). При носительстве неблагоприятных вариантов генов, контролирующих фолатный цикл, активность цикла снижается.

Прием фолиевой кислоты особенно необходим при планировании беременности (достоверно снижает риск пороков развития плода).

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
MTHFR rs1801133	A/A	Фолиевая кислота, В2(рибофлавин)	Снижение активности фермента, кодируемого данным геном до 30% от исходного. Фактор риска венозного тромбоза и эндотелиальной дисфункции за счет гипергомоцистеинемии. При беременности, фактор риска гестоза и фетоплацентарной недостаточности. Риск нивелируется приемом фолиевой кислоты и витамина В2
SLC19A1 rs1051266	T/T	Фолиевая кислота	Нормальное усваивание фолатов из пищи
MTR rs1805087	A/G	Фолиевая кислота	Снижение активности фермента, кодируемого данным геном. Фактор риска гипергомоцистеинемии.

			Риск ниже при достаточном уровне фолиевой кислоты в организме и витамина В12.
MTHFD rs2236225	G/G	Фолиевая кислота	Норма

Суточная потребность составляет 200-400мкг, у беременных потребность значительно возрастает.

Дефицит фолиевой кислоты: сердечно-сосудистые заболевания, анемия, патология нервной системы у плода.

Заключение:

Потребность в фолиевой кислоте значительно выше среднепопуляционной.

ВИТАМИН В12

Витамин В12 (кобаламин) – водорастворимый витамин. Участвует в клеточном делении, присущем каждой живой клетке. Наиболее чувствительны к недостатку В12 клетки, которые делятся наиболее интенсивно: клетки крови, иммунные клетки, клетки кожи и клетки, выстилающие внутреннюю поверхность кишечника. В12 обладает липотропным действием, он предупреждает жировую инфильтрацию печени, повышает потребление кислорода клетками при острой и хронической гипоксии. При приготовлении пищи разрушается незначительно.

Витамин В12 содержится в продуктах питания животного происхождения, таких как мясо, рыба, птица, яйца и молоко. Рациональное питание обычно обеспечивает достаточное количество витамина В12, но у вегетарианцев, пожилых людей и у людей, с нарушением всасывания витамина В12 вследствие заболеваний пищеварительного тракта, может наблюдаться дефицит этого витамина. Известен вариант гена FUT2, при котором содержание витамина В12 в крови ниже, чем в норме.

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
FUT2 rs602662	G/G	Фукозилтрансфера за 2	Анализ вашего генотипа указывает на предрасположенность к сниженному уровню витамина В-12. Убедитесь, что в вашем рационе присутствует достаточное количество еды, богатой витамином В-12, например, мясо, рыба,птицаимолочные продукты. Вытакже можете получать витамин В-12 из обогащенных продуктов и витаминных добавок. Желательно 1 разв год определять уровень витамина В12 в крови.
MTR rs1805087	A/G	Фолиевая кислота	Снижение активности фермента, кодируемого данным геном. Фактор риска гипергомоцистеинемии. Риск ниже при достаточном уровне фолиевой кислоты в организме и витамина В12.

Суточная потребность 0,4-2,5мкг, токсическая доза не определена. **Дефицит Вит В12:** анемия, неврологические расстройства.

Заключение: Потребность в Вит В12 значительно выше среднепопуляционной.

витамин С

Витамин С (аскорбиновая кислота) обладает сильным антиоксидантным действием, регулирует окислительно-восстановительные процессы. Участвует в метаболизме фолиевой кислоты и железа, а также синтезе стероидных гормонов. Аскорбиновая кислота также регулирует свертываемость крови, нормализует проницаемость капилляров, необходима для кроветворения, оказывает противовоспалительное действие. Является фактором защиты организма от последствий стресса.

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
SLC23A1 rs33972313	C/C	Транспортер аскорбиновой кислоты	Не выявлено факторариска снижения уровня Вит С

Суточная норма потребления колеблется от 50 до 100мг, токсическая доза для взрослого составляет более 2г. Недостаточность Вит С может быть экзогенная (за счет недостатка аскорбиновой кислоты в продуктах питания) и эндогенная (за счет нарушения всасываемости и усвояемости витамина С в организме человека, в том числе за счет генетических механизмов).

Дефицит Вит С: при умеренном дефиците снижается активность иммунной системы, повышается частота и усиливается тяжесть респираторных и желудочно-кишечных инфекций, возникает кровоточивость десен, плохое заживление ран, потеря волос, сухость кожи, раздражительность. При тяжелом дефиците развивается заболевание цинга (геморрагии, потеря зубов, гингивит, костные и суставные дефекты).

Избыток Вит С: аллергические реакции, крапивница.

Заключение:

Не выявлено генетически обусловленной склонности к дефициту Вит С, достаточно потребление рекомендованных суточных норм данного витамина.

ВИТАМИН D

Витамин D синтезируется под действием ультрафиолетовых лучей в коже человека и поступает в организм с пищей. Необходим для усваивания кальция и фосфора из продуктов питания. Также участвует обменных процессах, стимулирует синтеза ряда гормонов. В географических областях, где пища бедна витамином D, повышена заболеваемость атеросклерозом, артритами, диабетом, особенно юношеским

При генетически обусловленном снижении активности рецепторов к витамину D нарушается обмен кальция и фосфора, в результате чего с возрастом происходит значительное снижение минеральной плотности костей и повышается риск переломов. Умеренная физическая активность и дополнительный прием витамина D являются защитными факторами в отношении снижения минеральной плотности костей. Шалфей и розмарин повышают активность рецептора к Вит D.

Ген	Ваш генотип	Физиологическая функция кодируеллого белка	Интерпретация (ассоциировано с)
VDR rs1544410	С/Т	Рецептор витамина D. Вsml, аллель В (Bsml+), связан с низкой активностью рецептора, низким уровнем остеокальцина и снижением минеральной плотности костей. (Т(B):Bsml+; C (b): Bsml-)	Умеренный фактор риска снижения минеральной плотности кости с возрастом и остеопороза
VDR rs2228570	G/G	Рецептор витамина D. Fokl Аллель, детерминирующий синтез длинного варианта рецептора витамина D обозначаетсякак«f», тогда какболее короткоговарианта рецептора –«F»	Протективный эффект в отношении остеопороза. У пациентов с метаболическим синдромом при данном генотипе тяжелее его течение повышен базальный уровень инсулина и снижен уровень липопротеинов высокой плотности по сравнению с носителями аллеля А
NADSYN1 rs3829251	G/A	NAD синтаза1	Факторрискасниженияуровня25(ОН) Dв крови. Необходим контроль уровня витамина D, сцелью выявления и своевременной коррекции витаминдефицитного состояния

Суточная потребность в Вит D составляет 400-800Ед, что соответствует 10-20 мкг, токсическая доза составляет 4000Ед. **Дефицит Вит D**: рахит, остеопороз.

Избыток Вит D: гиперкальцемия, анорексия, повреждение почек

Заключение: Потребность в Вит D среднепопуляционная, достаточно потребление рекомендованных суточных норм данного витамина.

ВИТАМИН Е

Витамин Е (а-токоферол) – жирорастворимый витамин, обладающий антиоксидантным эффектом. Защищает клетки от повреждения, замедляя окисление липидов (жиров) и формирование свободных радикалов. Обеспечивает нормальную циркуляцию и свертываемость крови; снижает кровяное давление; укрепляет стенки капилляров; предотвращает анемию. Способствует регенерации тканей; предупреждает развитие катаракты; улучшает атлетические достижения; снимает судороги ног. Витамин Е необходим для нормального функционирования репродуктивной системы. Защищает другие жирорастворимые витамины от разрушения кислородом, способствует усвоению витамина А. Витамин Е относится к препаратам, замедляющим старение, может предотвращать появление старческой пигментации.

Ген	Ваш генотип	Физиологическая функция кодируемого белка	Интерпретация (ассоциировано с)
SCARB1 rs11057830	G/G	Скавенджер рецептор В1, участвует в метаболизме липидов и витамина Е	Не выявлено фактора риска снижения уровня вит Е
ApoA5 rs964184	C/C	Белок «цинковых пальцев» регулирует транскрипцию генов, продукты которых регулируют уровень триглицеридов	Не выявлено фактора риска снижения уровня вит Е

СПРАВКА

Суточная потребность составляет от 4 до 15мг, токсическая доза – 1г.

Дефицит Вит Е: неврологические дефекты, гемолиз.

Заключение:

По исследованным генетическим локусам не выявлено генетически обусловленной склонности к снижению уровня Вит Е.

ПРИЛОЖЕНИЕ 1 «Примерное меню»

Обратить внимание на витамины B2, B9, B12, D

День 1

Завтрак	Тост из цельнозернового хлеба с кусочком сливочного масла Чай	Цельнозерновой хлеб - витамины группы В Сливочное масло - D, B12	По данному генотипу индивидуальная норма потребления витаминов В2, В9, D на 30-50% выше нормы, витамина В12 в 2 раза выше нормы Сливочное масло можно заменить на авокадо или ореховую пасту
Обед	Гречка стушеными овощами Овощной суп со сметаной	Овощной суп - клетчатка Гречка - витамины группы В Сметана - B12	Используйте разные виды бобовых для витаминного разнообразия и витамина В6
Полдник	Горсть орехов (миндаль, фундук)	Лучший орех по витамину В2 - миндаль	Постоянночередуйтеразныеорехи (грецкий, фисташки, фундук)
Ужин	Запеченная рыба жирных сортов (сельдь, тунец) Овощной салат	Овощи - источник фолиевой кислоты и клетчатки Рыба - B12, D	Овощи - хороший источник В6, всегда имейте разнообразие среди овощей, также обратите внимание, что термообработка не уменьшает количество этого витамина

День 2

Завтрак	Греческий йогурт без сахара с добавлением свежих фруктов (яблоки, груши, виноград)	Йогурт - белок, В12, D Фрукты - антиоксиданты	Поданномугенотипу индивидуальная норма потребления витаминов В2, В9, D на 30-50% выше нормы, витамина В12 в 2 раза выше нормы
Обед	Рис с бобами (фасоль, нут) Тарелка борща	Рис с бобами - кладезь витаминов группы В, клетчатка Борщ - клетчатка	Чередуйте разные видыриса и бобовых, добавляйте сметану в борщкак источник витамина В12
Полдник	Овощной салат из свежих овощей и зелени с добавлением раст, масла	Овощной салат - фолиевая кислота	Постоянночередуйтеразные овощидля витаминного разнообразия Используйте разные виды масел (тыквенное, льняное, кунжутное)
Ужин	Творог Пара фруктов (банан, груша)	Творог - белок, В12, D	Творог можно использовать жирный, фрукты чередовать (фолиевая кислота)

День 3

Завтрак	Льняная каша (молотые семена, рецепт будет после меню) Столовая ложка мёда	Льнянаякаша-омега-3, минералы, клетчатка, Вб Мёд - природный иммуномодулятор	По данному генотипу индивидуальная норма потребления витаминов В2, В9, D на 30-50% выше нормы, витамина В12 в 2 раза выше нормы Льняную кашу можно заменить на любой друг вид каши (овсяную, пшенную) Рецепт льняной каши будет после меню
---------	--	---	--

Обед	Лобио по-грузински Борщ	Лобио-витаминыгруппыВ (включая большое количество витамина В6) Борщ - клетчатка	Используйте разные бобовые, какисточник белка и витаминов группы В
Полдник	Набор фруктов (яблоки, груши, киви)	Фрукты - антиоксиданты, мягкая клетчатка, фолиевая кислота (В9)	Используйтеразные видыфруктов, которые вам больше всего идут по вкусу и желанию, и мейте постоянное разнообразие.
Ужин	Печеный картофель Овощной салат	Печеный картофель - сложный углевод Овощной салат - фолиевая кислота, антиоксиданты	Можно испечь разные овощи Обязательно использовать свежую зелень, можно сделать заправку изсметаны

День 4

Завтрак	Тост из цельнозернового хлеба с кусочком сливочного масла Чай	Цельнозерновой хлеб - витамины группы В Сливочное масло - D, B12	По данному генотипу индивидуальная норма потребления витаминов В2, В9, D на 30-50% выше нормы, витамина В12 в 2 раза выше нормы Сливочное масло можно заменить на авокадо или ореховую пасту
Обед	Пастаизтвердыхсортов Индейка отварная Капустный суп	Паста-витаминыгруппыВ Индейка - белок Капустныйсуп-клетчатка	Индейку можно заменить на курятину Используйте разные овощидля супа
Полдник	Творог с подсластителем	Творог - белок, В12, D	Можно заменить на йогурт
Ужин	Тушеные овощи (морковь, баклажан, кабачок)	Овощи - клетчатка, витамины группы В	Чередуйте разные виды овощей

День 5

Завтрак	Льняная каша Мед	Льнянаякаша-омега-3, минералы, клетчатка, В6 Мёд - природный иммуномодулятор	По данному генотипу индивидуальная норма потребления витаминов В2, В9, D на 30-50% выше нормы, витамина В12 в 2 раза выше нормы
Обед	Свекольный салат со сметаной Гречка с грибами	Свекла - фолиевая кислота, клетчатка, минералы Гречка- В6	Регулярно съедайте свеклу (можно в свекольном салате) - очень важно, так как повышает гемоглобин в крови, дает много минералов
Полдник	Тост с ореховой пастой (миндаль, арахис)	Миндаль - В2	используйте разные виды ореховых паст (желательно без сахара)
Ужин	Творог Пара фруктов (банан, груша)	Творог - белок	Творог можно использовать жирный, фрукты чередовать (фолиевая кислота)

Завтрак	Овсяная крупа Стакан молока (можно растительное) Овсяная крупа 1 Яблоко	Овсянка - витамины группы В Молоко - В12 Овсянка - витамины группы В, клетчатка Яблоко - антиоксиданты	По данному генотипу индивидуальная норма потребления витаминов В2, В9, D на 30-50% выше нормы, витамина В12 в 2 раза выше нормы Если есть проблемы с усвоением на молоко - можно добавить ферменты из аптеки, либо заменить на растительное молоко, также альтернатива - безлактозное молоко
Обед	Печеный картофель Куриная грудка Капустный суп	Картофель - фолиевая кислота Куриная грудка - белок, В6 Капустный суп - клетчатка	Картофель можно заменить на другие печеные овощи Курицу можно заменить на другое белое мясо
Полдник	Набор фруктов (бананы, яблоки, мандарины)	Фрукты - антиоксиданты, мягкая клетчатка, фолиевая кислота	Используйтеразные видыфруктов, которые вам больше всего идут по вкусу и желанию, имейте постоянное разнообразие.
Ужин	Йогурт Фрукты(бананы,яблоки)	Йогурт - белок, В12, D Фрукты - фолиевая кислота	Йогурт можно заменить на творог

День 7

Завтрак	Тосты с печенью трески	Печень трески - большое количество витамина B6, B12, A	По данному генотипу индивидуальная норма потребления витаминов В2, В9, D на 30-50% выше нормы, витамина В12 в 2 раза выше нормы Печеньтрески-лидерповитамину В6, В12, Ано слишком много не надо, можно заменитьна ореховуюпасту (миндальная, арахисовая, фундуковая) + немного фруктов
Обед	Макароны из полбы Салатизогурцовизелени с добавлениемраст. масла Овощной суп	Макароны из полбы - белок, витамины группы В Овощной салат - фолиевая кислота Растительное масло - витамин Е	Макароны можно заменить на гречку и другую крупу Овощной салат требует разнообразия (разные виды зелени) Используйтеразныевидымасел (оливковое, подсолнечное, тыквенное, грецкого ореха)
Полдник	Горсть ягод (голубика, земляника, клубника, малина)	Ягоды - богаты минералами и фолиевой кислотой (В9)	Постоянно чередуйте ягоды в своем рационе
Ужин	Печеные овощи (морковь, картошка, лук) Рыба жирных сортов запеченная в духовке	Овощи - источник фолиевой кислоты и клетчатки Рыба-В12,омега-3 жирные кислоты	Можноиспользоватьразные видыовощей Чередуйте разные виды рыб

Анализ проводили:

Биолог Врач-генетик Рук. Лаб. службы

