HDU物理营:959238750

杭州电子科技大学学生考试卷(B)卷

考试课程	大学物	理1	考试日期	2018年	月	Ħ	成 绩	
课程号	A0715011	教师号		任课教名	师姓			
考生姓名		学号 (8 位)		年级			专业	

【请将答案直接写在试卷上,最后两页是草稿纸,不要将答案写在草稿纸上。】

题号	_	=	Ξ	总分
得分				

- 一、单项选择题(本大题共24分,每小题3分)
- 1. 某质点作直线运动的运动学方程为 $X = 4 + 2t^2 3t$ (SI),则该质点作 「
 - (A) 匀加速直线运动,加速度沿 x 轴正方向.
 - (B) 匀加速直线运动,加速度沿 x 轴负方向.
 - (C) 变加速直线运动,加速度沿 x 轴正方向.
 - (D) 变加速直线运动,加速度沿 x 轴负方向.
- 2. 以下几种运动形式中, ā 保持不变的运动是
 - (A) 单摆的运动.
- (B) 匀速率圆周运动.
- (C) 行星的椭圆轨道运动. (D) 抛体运动.
- 3. 质量为 m 的小球, 以水平速度 v 与固定的竖直壁作弹性碰撞, 设指向壁内的方向为正方向, 则由于此碰撞,小球的动量变化为

 - (A) mv (B) 0

 - (C) -2mv (D) 2mv.
- 4. 关于质点系动量守恒定律,下列说法中正确的是
- (A) 质点系不受外力作用,且无非保守内力时,动量守恒;

- (B) 质点系所受合外力的冲量的矢量和为零时动量守恒;
- (C) 质点系所受合外力恒等于零, 动量守恒;
- (D) 动量守恒定律与所选参照系无关.
- 5. 两个匀质圆盘 A 和 B 的密度分别为 ρ_A 和 ρ_B ,若 $\rho_A > \rho_B$,但两圆盘的质量与厚度相同, 如两盘对通过盘心垂直于盘面轴的转动惯量各为 J_A 和 J_B ,则

 - (A) $J_A > J_B$. (B) $J_B > J_A$.

 - (C) $J_A=J_B$. (D) J_A 、 J_B 哪个大,不能确定.
- 6. 1mol 刚性双原子分子理想气体, 当温度为 T 时, 其内能为:
 - (A) $\frac{5}{2}$ RT (B) $\frac{3}{2}$ KT (C) $\frac{3}{2}$ RT (D) $\frac{5}{2}$ KT

- 7. 一带电体可作为点电荷处理的条件是
 - (A) 电荷必须呈球形分布;
 - (B) 带电体的线度很小;
 - (C) 电量很小。

Γ]

- (D) 带电体的线度与其它有关长度相比可忽略不计
- 8. 所讨论的空间处在稳恒磁场中,对于安培环路定律的理解,正确的是
- (A) 若 $\int_{I} \vec{B} \cdot d\vec{l} = 0$,则必定 L 上 \vec{B} 处处为零.
- (B) 若 $\oint_{L} \vec{B} \cdot d\vec{l} = 0$, 则 L 所包围电流的代数和为零.
- (C) 若 $\oint_I \vec{B} \cdot d\vec{l} = 0$, 则必定 L 不包围电流.
- (D) 回路 L 上各点的 \bar{B} 仅与所包围的电流有关.

得分

二、填空题(本大题共23分)

- 1. (本题 3 分) 质点沿半径 R 作圆周运动,运动方程为 $\theta = 2 + t^2$ (SI),则 t 时刻质点法向加速度大小为 ______,角加速度为 ______.
- 2. (本题 3 分) 质量为 M 的车沿光滑的水平轨道以速度 v_0 前进,车上的人质量为 m,开始时 人相对于车静止,后来人以相对于车的速度 v 向前走,此时车速变成 V,则车与人系统沿轨 道方向动量守恒的方程应写为
- 3. (本题 4 分) 一飞轮作为匀减速转动,在 5s 内角速度由 $40\pi rad \cdot s^{-1} \Rightarrow 10\pi rad \cdot s^{-1}$,则飞轮在这 5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。
- 4. $(本题 3 \, f)$ 某区域的电场线如图所示,把一个带负电的点电荷 f 放在点 f 成 成
 在点 f 成
 在点 f 成
 在点 f 成 f 成
 在点 f 成 f 成 f 表 f 。

- 5. (本题 3 分) 质量为 M,摩尔质量为 M_{mol} ,分子数密度为 n 的理想 气体,处于平衡态时,系统压强 P 与温度 T 的关系为 。
- 半径分别为 r_B 和 r_C 的金属球壳 B 同心放置如图. 则图中 P 点的电场强度 $\bar{E}=$ ______. 如果用导线将 A、B 连接起来,则 A 球的电势 U= . (设无穷远处电势为零)

6. (本题 4 分) 带有电荷 q、半径为 r_A 的金属球 A, 与一原先不带电、内外

7. (本题 3 分)如图所示,矩形线圈 abcd 左半边放在匀强磁场中,右半边在磁场外,当线圈以 ab 边为轴向纸外转过 60°过程中,线圈中 产生感应电流 (填会与不会)。

三、计算题(本大题共53分)

得分

1. (本题 8 分)如图,一质点作半径 R=2 m 的圆周运动, t=0 时质点位于 A 点,然后顺时针方向运动,

运动方程 $S = 3\pi t^2 + \pi t$ (SI) 求:

- (1) 质点绕行一周所经历的位移、平均速率;
- (2) 质点在1秒末的速度和加速度的大小.

得分

2. (本题 8 分) 质量为 5 kg 的质点,所受外力为 $\vec{F}=2t\vec{i}$ (SI),该质点

从t=0时刻由静止开始运动,求前3s内,外力所作的功.

得分

3. (本题 8 分) 一汽车发动机的转速在 8 秒内由 600 r/min 均匀地增加到 3000 r/min

(1) 求在这段时间内的初角速度 ω_0 、末角速度 ω 以及角加速度 β ;

(2) 求这段时间内转过的圈数 N。

.

得分

4. (本题 6 分)两个电量分别为 $q_1 = +2 \times 10^{-7} C$ 和

 $q_2 = -2 \times 10^{-7} C$ 的点电荷,相距 0.3m,求距 q_1 为 0.4 m、距 q_2 为 0.5 m处 p_2 点电场强度。 $(1/(4\pi\varepsilon_0) = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2/c^2)$ 。

得分

5. (本题 5 分) 无限长载流空心圆柱导体壳的内外半径分别为 a 和 b,电流

I 在导体截面上均匀分布,求r < a, a < r < b, r > b各区域中磁场 \bar{B} 的分

布.

6. (本题 8 分) 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M、

半径为R,其转动惯量为 $MR^2/2$,滑轮轴光滑. 试求该物体由静止开始下落的过程中,下落速率与时间的关系.

HDU物理营:959238750

得分

7. (本题 10 分) 两根平行无限长直导线相距为 d, 载有大小相等方向相反

的电流 I,电流变化率 $\frac{dI}{dt}=\gamma>0$.一个边长为 d 的正方形线圈位于导

线平面内与一根导线相距 d,如图所示. 求线圈中的感应电动势 ε ,并说明线圈中的感应电流是顺时针还是逆时针方向.

