Spring 2018: STA 6448 Advanced Probability and Inference II Lecture 23

Yun Yang

- ► High-dimensional linear regression
- Non-parametric least squares

Variable selection consistency for the Lasso

Assume the design matrix *X* to be deterministic.

Conditions:

(A3) Lower eigenvalue:

$$\gamma_{\min}\left(\frac{X_S^T X_S}{n}\right) \ge c_{\min} > 0.$$

(A4) Mutual incoherence: There exists some $\alpha \in [0,1)$ such that

$$\max_{j \in S^c} ||X_j^T X_S (X_S^T X_S)^{-1}||_1 \le \alpha.$$

Variable selection consistency for the Lasso

Let $\Pi_{S^{\perp}} = I_n - X_S (X_S^T X_S)^{-1} X_S^T$ denote an orthogonal projection matrix.

Theorem

Under conditions (A3) and (A4), if $\lambda_n \geq \frac{2}{1-\alpha} \|X_{S^c}^T \Pi_{S^{\perp}} \frac{w}{n}\|_{\infty}$, then

- (a) Uniqueness: There is a unique optimal solution $\hat{\theta}$.
- (b) No false inclusion: This solution has its support \widehat{S} contained within the true support S.
- (c) ℓ_{∞} -bounds:

$$\|\widehat{\theta}_S - \theta_S^*\|_{\infty} \leq \underbrace{\left\| \left(\frac{X_S^T X_S}{n} \right)^{-1} X_S^T \frac{w}{n} \right\|_{\infty} + \left\| \left(\frac{X_S^T X_S}{n} \right)^{-1} \right\|_{\infty} \lambda_n}_{B(\lambda_n; X)}.$$

(d) No false exclusion: The Lasso includes all indices $j \in S$ such that $|\theta_j| > B(\lambda_n; X)$, and hence is variable selection consistent if $\min_{j \in S} |\theta_j| > B(\lambda_n; X)$.

Variable selection consistency for the Lasso

Corollary

Suppose the noise vector w has zero-mean i.i.d. σ -sub-Gaussian entries, and X satisfies (A3) and (A4), and is C-column normalized. If for some $\delta > 0$,

$$\lambda_n \ge \frac{2C\sigma}{1-\alpha} \Big\{ \sqrt{\frac{2\log(d-s)}{n}} + \delta \Big\},$$

then for any $\varepsilon>0$, the optimal solution $\widehat{\theta}$ is unique with its support contained within S, and satisfies the ℓ_{∞} -error bound

$$\|\widehat{\theta}_S - \theta_S^*\|_{\infty} \leq \frac{\sigma}{c_{\min}} \left\{ \sqrt{\frac{2 \log(d-s)}{n}} + \varepsilon \right\} + \|\left(\frac{X_S^T X_S}{n}\right)^{-1}\|_{\infty} \lambda_n,$$

all with probability at least $1-2e^{-\frac{n\delta^2}{2}}-2e^{-\frac{n\epsilon^2}{2}}$.

Non-parametric least squares: Problem setup

- ▶ Problem: use observations of predictors or covariates $x \in \mathcal{X}$ in to predict a response variable $y \in \mathcal{Y}$
- ▶ Goal: estimate a function $f: \mathcal{X} \mapsto \mathcal{Y}$ such that the error y f(x) is as small as possible over some range of pairs (x, y).
- In the random design scenario, both the response and covariate are random quantities. We measure the quality of f in terms of its mean-squared error (MSE)

$$\bar{\mathcal{L}}_f := \mathbb{E}_{X,Y}[(Y - f(X))^2].$$

► The function *f** minimizing this criterion is known as the *Bayes' least-squares estimate* or the *regression function*, and it is given by the conditional expectation

$$f^*(x) = \mathbb{E}[Y | X = x].$$

Non-parametric least squares: Problem setup

- ▶ In practice, the expectation defining the MSE cannot be computed, since the distribution over (X, Y) is not known.
- ▶ Instead, we are given a collection of samples $\{(x_i, y_i)\}_{i=1}^n$, which can be used to compute an empirical analogue of the mean-squared error

$$\widehat{\mathcal{L}}_f := \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

The method of non-parametric least squares is based on minimizing this least-squares criterion over some suitably controlled function class.

Different measures of prediction quality

► Given an estimate *f* of the regression function, it is natural to measure its quality in terms of the excess risk

$$\bar{\mathcal{L}}_f - \bar{\mathcal{L}}_{f^*} = \mathbb{E}_X [(f(X) - f^*(X))^2] = ||f - f^*||_{L^2(\mathbb{P})}^2.$$

where \mathbb{P} denotes the distribution over the covariates. We will adopt the shorthand notation $||f - f^*||_2^2$.

▶ We will measure the error using a closely related but slightly different measure by replacing \mathbb{P} with the empirical distribution $\mathbb{P}_n = n^{-1} \sum_{i=1}^n \delta_{x_i}$,

$$||f - f^*||_{L^2(\mathcal{P}_n)} := \left[\frac{1}{n} \sum_{i=1}^n \left(f(x_i) - f^*(x_i) \right)^2 \right].$$

We will adopt the shorthand notation $||f - f^*||_n$.