

Actividad nº5. Resolver examen del curso 2018

Ejercicios de recapitulación

Inteligencia Artificial - Grado en Ingeniería Informática – 2019/2020

Estudiante: Borja López Pineda

Profesor: Luis Ignacio López Gómez

Índice

1E	xamen 2018	3
	1.1. – Ejercicio Clips	3
	1.2. – Ejercicio Grafos	
	1.3. – Ejercicio ID3	
	1.4. – Ejercicio Redes Bayesianas	8
	1.5. – Ejercicio MiniMax	9

1.- Dado el siguiente código en CLIPS:

```
(defrule regla
(datos $?ini ?x $?fin)
=>
(assert (datos $?ini $?fin)))
(deffacts datos
(datos 1 2))
```

Escribir la tabla de seguimiento de su ejecución e indicar los hechos que quedan finalmente en memoria.

```
Inicial:
                                 datos 12
regla (ini = "", x = "1", fin = "2"):datos 1 2
                                                  datos 2
regla (ini = "", x = "2", fin = ""): datos 1 2
                                                  datos 2
                                                                   datos
regla (ini = "1", x = "2", fin = ""):datos 1 2,
                                                  datos 2
                                                                   datos
                                                                                    datos1
regla (ini = "", x = "1", fin = ""): datos 1 2,
                                                                   datos
                                                                                    datos1
                                                  datos 2
Los hechos al final de la ejecución son los siguientes
(datos 1 2), (datos 2), (datos), (datos 1)
```

2.- Dado el siguiente grafo, donde A es el nodo inicial y K es el nodo meta, explorarlo mediante los siguientes métodos: a) Búsqueda primero el mejor, b) A*.

En ambos casos se pide indicar las listas abiertas y cerradas de los nodos visitados. Indicar explícitamente el camino encontrado y su coste. En igualdad de condiciones, consideraremos el orden alfabético.

a) Búsqueda primero el mejor

Abiertos	Cerrados
A(40)	Α
B(20)	В
C(100)	E
D(110)	G
E(20)	I
F(40)	
G(10)	
I(0)	

El camino encontrado es: A -> B -> E -> G -> I El coste total es 136

b) A*

Abiertos	Cerrados	
A(40)	Α	
B(30)	В	
C(120)	F	
D(130)	E	
F(60)	С	
E(120)	G	
G(50)	l	
I(0)		

El camino encontrado es: A -> C -> G -> I

El coste total es 41

3.- Se desea generar un árbol de decisión que clasifique entre células normales y células cancerígenas según los datos de la siguiente tabla:

Ejemplo	Antenas	Colas	Núcleos	Cuerpo	Clase
1	1	0	2	Rayado	Normal
2	1	0	1	Blanco	Cancerígena
3	1	2	0	Rayado	Normal
4	0	2	1	Rayado	Normal
5	1	1	1	Rayado	Cancerígena
6	2	2	1	Rayado	Cancerígena

$$I(X,C) = -\frac{3}{6}\log\left(\frac{3}{6}\right) - \frac{3}{6}\log\left(\frac{3}{6}\right) = 1$$

$$E(X,C,Antenas)$$

$$= \frac{1}{6}\left(-\frac{1}{1}\log\left(\frac{1}{1}\right) - \frac{0}{1}\log\left(\frac{0}{1}\right)\right) + \frac{4}{6}\left(-\frac{2}{4}\log\left(\frac{2}{4}\right) - \frac{2}{4}\log\left(\frac{2}{4}\right)\right)$$

$$+ \frac{1}{6}\left(-\frac{0}{1}\log\left(\frac{0}{1}\right) - \frac{1}{1}\log\left(\frac{1}{1}\right)\right) = 0.6667$$

$$E(X,C,Colas)$$

$$= \frac{2}{6}\left(-\frac{1}{2}\log\left(\frac{1}{2}\right) - \frac{1}{2}\log\left(\frac{1}{2}\right)\right) + \frac{1}{6}\left(-\frac{0}{1}\log\left(\frac{0}{1}\right) - \frac{1}{1}\log\left(\frac{1}{1}\right)\right)$$

$$+ \frac{3}{6}\left(-\frac{2}{3}\log\left(\frac{2}{3}\right) - \frac{1}{3}\log\left(\frac{1}{3}\right)\right) = 0.7925$$

$$E(X,C,Núcleos)$$

$$= \frac{1}{6}\left(-\frac{1}{1}\log\left(\frac{1}{1}\right) - \frac{0}{1}\log\left(\frac{0}{1}\right)\right) + \frac{4}{6}\left(-\frac{1}{4}\log\left(\frac{1}{4}\right) - \frac{3}{4}\log\left(\frac{3}{4}\right)\right)$$

$$+ \frac{1}{6}\left(-\frac{1}{1}\log\left(\frac{1}{1}\right) - \frac{0}{1}\log\left(\frac{0}{1}\right)\right) = 0.5409$$

$$E(X,C,Cuerpo) = \frac{5}{6}\left(-\frac{3}{5}\log\left(\frac{3}{5}\right) - \frac{2}{5}\log\left(\frac{2}{5}\right)\right) + \frac{1}{6}\left(-\frac{0}{1}\log\left(\frac{0}{1}\right) - \frac{1}{1}\log\left(\frac{1}{1}\right)\right)$$

$$= 0.9192$$

$$I(X,C,Antenas) = I(X,C) - E(X,C,Antenas) = 0,3333$$

$$I(X,C,Colas) = I(X,C) - E(X,C,Colas) = 0,2075$$

$$I(X,C,Núcleos) = I(X,C) - E(X,C,Núcleos) = 0,4591$$

$$I(X,C,Cuerpo) = I(X,C) - E(X,C,Cuerpo) = 0,0807$$

El atributo que maximiza la información es Núcleo.

Una vez divididos los ejemplos por este atributo obtenemos el siguiente árbol de decisiones.

Estos son los ejemplos que tienen un

Ejemplo	Antenas	Colas	Cuerpo	Clase
2	1	0	В	С
4	0	2	R	N
5	1	1	R	С

6

$$\begin{split} I(X,C) &= -\frac{1}{4}\log\left(\frac{1}{4}\right) - \frac{3}{4}\log\left(\frac{3}{4}\right) = 0.8112 \\ &= \frac{1}{4}\left(-\frac{1}{1}\log\left(\frac{1}{1}\right) - \frac{0}{1}\log\left(\frac{0}{1}\right)\right) + \frac{2}{4}\left(-\frac{0}{2}\log\left(\frac{0}{2}\right) - \frac{2}{2}\log\left(\frac{2}{2}\right)\right) \\ &\quad + \frac{1}{4}\left(-\frac{0}{1}\log\left(\frac{0}{1}\right) - \frac{1}{1}\log\left(\frac{1}{1}\right)\right) = 0 \\ &E(X,C,Colas) \\ &= \frac{1}{4}\left(-\frac{0}{1}\log\left(\frac{0}{1}\right) - \frac{1}{2}\log\left(\frac{1}{1}\right)\right) + \frac{1}{4}\left(-\frac{0}{1}\log\left(\frac{0}{1}\right) - \frac{1}{1}\log\left(\frac{1}{1}\right)\right) \\ &\quad + \frac{2}{4}\left(-\frac{1}{2}\log\left(\frac{1}{2}\right) - \frac{1}{2}\log\left(\frac{1}{2}\right)\right) = 0.5 \\ &E(X,C,Cuerpo) = \frac{1}{4}\left(-\frac{0}{1}\log\left(\frac{0}{1}\right) - \frac{1}{1}\log\left(\frac{1}{1}\right)\right) + \frac{3}{4}\left(-\frac{1}{3}\log\left(\frac{1}{3}\right) - \frac{2}{3}\log\left(\frac{2}{3}\right)\right) \end{split}$$

C

núcleo.

$$I(X, C, Antenas) = I(X, C) - E(X, C, Antenas) = 0.8112$$

 $I(X, C, Colas) = I(X, C) - E(X, C, Colas) = 0.3113$
 $I(X, C, Cuerpo) = I(X, C) - E(X, C, Cuerpo) = 0.1226$

UHU ETSI - Grado en Ingeniería Informática — Inteligencia $P\'{a}gina~6$

El atributo que maximiza la información cuando el número de núcleos es 1, es Antenas.

Este es el resultado final de aplicar el algoritmo ID3 con estos datos de ejemplo.

4.- Dada la red bayesiana adjunta, junto con los datos expuestos en las tablas que a continuación se exponen:

P(+c a, b)	+a	-a
+b	0.99	0.9
-b	0.8	0.001

Y

P(+d c)	+c	-c
+d	0.99	0.9

Calcular: a) P(+a| +c, -b),

$$P(+a|+c,-b) = \frac{P(+a,+c,-b)}{P(+c,-b)} = \frac{0.007952}{0.008936} = 0.8899$$

$$P(+c,-b) = P(+a,+c,-b) + P(-a,+c,-b) = 0.007952 + 0.0009841$$

$$= 0.008936$$

$$P(+a,+c,-b) = P(+a) \cdot P(+c|-b,+a) \cdot P(-b) = 0.01 \cdot 0.8 \cdot 0.994 = 0.007952$$

$$P(-a,+c,-b) = P(-a) \cdot P(+c|-b,-a) \cdot P(-b) = 0.99 \cdot 0.001 \cdot 0.994$$

$$= 0.0009841$$

$$P(+c|+d,+a,-b) = \frac{P(+c,+d,+a,-b)}{P(+d,+a,-b)} = \frac{0.007872}{0.009661} = 0.8148$$

$$P(+d,+a,-b) = P(+c,+d,+a,-b) + P(-c,+d,+a,-b) = 0.007872 + 0.001789$$

$$= 0.009661$$

$$P(+c,+d,+a,-b) = P(+c|-b,+a) \cdot P(+d|+c) \cdot P(+a) \cdot P(-b)$$

$$= 0.8 \cdot 0.99 \cdot 0.01 \cdot 0.994 = 0.007872$$

$$P(-c,+d,+a,-b) = P(-c|-b,+a)P(+d|-c) \cdot P(+a) \cdot P(-b)$$

$$= 0.2 \cdot 0.9 \cdot 0.01 \cdot 0.994 = 0.001789$$

5.- Dado el árbol

Donde los valores numéricos que aparecen en los nodos hoja corresponden a estimaciones de lo prometedoras que son para el jugador MAX las situaciones de la partida representadas por dichos nodos. Describir paso a paso el comportamiento de la estrategia de poda alfa-beta en función de los valores de los números reales "a" y "b", suponiendo que el nodo raíz es un nodo MAX y el recorrido se realiza de izquierda a derecha. Por otra parte, ¿cuál es la decisión o jugada más acertada para MAX en cada caso?

La poda P1 se producirá si a > 2

La poda P2 se producirá siempre, con independencia de b.

Para cualquier valor de a, b la jugada más acertada es que MAX se decante por la derecha.