

NEB-211US.ST25.txt SEQUENCE LISTING

e " 44

```
<110>
      Evans, Thomas C.
       Pradhan, Sriharsa
      Organellar Targeting of RNA and its Use in the Interruption of
<120>
       Environmental Gene Flow
<130>
      NEB-211-US
<140>
      10/698,630
<141>
      2003-10-31
<150>
      60/423,341
<151>
      2002-11-01
<160>
      50
<170>
      PatentIn version 3.2
<210>
<211>
      486
<212>
      RNA
<213>
      unknown
<220>
<223>
      Tetrahymena thermophila fused with Aequorea victoria
<220>
<221>
      misc_feature
<222>
      (1)..(44)
<223>
      n is a, c, g, or u
<220>
<221>
      misc_feature
<222>
      (53)..(57)
<223>
      n is a, c, g, or u
<400>
60
                                                                  120
aguuaucagg caugcaccug guagcuaguc uuuaaaccaa uagauugcau cgguuuaaaa
ggcaagaccg ucaaauugcg ggaaaggggu caacagccgu ucaguaccaa gucucagggg
                                                                  180
aaacuuugag auggccuugc aaaggguaug guaauaagcu gacggacaug guccuaacca
                                                                  240
                                                                  300
cgcagccaag uccuaaguca acagaucuuc uguugauaug gaugcaguuc acagacuaaa
ugucggucgg ggaagaugua uucuucucau aagauauagu cggaccucuc cuuaauggga
                                                                  360
gcuagcggau gaagugaugc aacacuggag ccgcugggaa cuaauuugua ugcgaaagua
                                                                  420
uauugauuag uuuuggagua cucgggaauc aaagcuaacu ucaaaauuag acacaacauu
                                                                  480
aaauaa
                                                                  486
<210>
      2
```

<210> 2 <211> 64 <212> RNA <213> Aequorea victoria

a of a

NEB-211US.ST25.txt

<220> <221> <222> <223>	(21)	c_feature)(64) s a, c, g, (or u				
<400> augacaa	2 laca	aaagaauaga	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	60
nnnn							64
<210> <211> <212> <213>	3 247 DNA avoc	cado sunblo	tch viroid				
<400> tttatta	3 igaa	caagaagtga	ggatatgatt	aaactttgtt	tgacgaaacc	aggtctgttc	60
cgacttt	ccg	actctgagtt	tcgacttgtg	agagaaggag	gagtcgtggt	gaacttttat	120
taaaaaa	att	agttcactcg	tcttcaatct	cttgatcact	tcgtctcttc	agggaaagat	180
gggaaga	aca	ctgatgagtc	tcgcaaggtt	tactcctcta	tcttcattgt	ttttttacaa	240
aatcttg	l						247
<210> <211> <212> <213>	4 1069 DNA unkr						
<220>							
<223>		on construc Aequorea v		do sunblotch	n viroid, Ni	icotiana tab	acum
<400>	and 4	Aequorea v					acum
<400> tttatta	and 4 gaa	Aequorea v	ictoria	aaactttgtt	tgacgaaacc	aggtctgttc	
<400> tttatta cgacttt	and 4 gaa ccg	Aequorea vacaagaagtga	ictoria ggatatgatt	aaactttgtt agagaaggag	tgacgaaacc gagtcgtggt	aggtctgttc gaacttttat	60
<400> tttatta cgacttt taaaaaa	and 4 gaa ccg	Aequorea vacaagaagtga actctgagtt agttcactcg	ictoria ggatatgatt tcgacttgtg	aaactttgtt agagaaggag cttgatcact	tgacgaaacc gagtcgtggt tcgtgctagc	aggtctgttc gaacttttat atgtatttgg	60 120
<400> tttatta cgacttt taaaaaa caaatca	and 4 gaa ccg att	Aequorea vacaagaagtga actctgagtt agttcactcg accatggtct	ggatatgatt tcgacttgtg tcttcaatct	aaactttgtt agagaaggag cttgatcact cattctgatt	tgacgaaacc gagtcgtggt tcgtgctagc agttgataat	aggtctgttc gaacttttat atgtatttgg attagtatta	60 120 180
<400> tttatta cgacttt taaaaaa caaatca gttggaa	and 4 gaa ccg att aat	Aequorea vacaagaagtga actctgagtt agttcactcg accatggtct ttgtgaaaga	ggatatgatt tcgacttgtg tcttcaatct aataatcaaa	aaactttgtt agagaaggag cttgatcact cattctgatt aagtttcatt	tgacgaaacc gagtcgtggt tcgtgctagc agttgataat aacacggaat	aggtctgttc gaacttttat atgtatttgg attagtatta tcgtgtcgag	60 120 180 240
<400> tttatta cgacttt taaaaaa caaatca gttggaa tagacct	and 4 gaa ccg att aat att	Aequorea vacaagaagtga actctgagtt agttcactcg accatggtct ttgtgaaaga tgttgtgaga	ggatatgatt tcgacttgtg tcttcaatct aataatcaaa ttcctatgaa	aaactttgtt agagaaggag cttgatcact cattctgatt aagtttcatt catgagttgt	tgacgaaacc gagtcgtggt tcgtgctagc agttgataat aacacggaat agggagggat	aggtctgttc gaacttttat atgtatttgg attagtatta tcgtgtcgag ttatgagtaa	60 120 180 240 300
<400> tttatta cgacttt taaaaaa caaatca gttggaa tagacct aggagaa	and 4 gaa ccg att aat att tgt gaa	Aequorea vacaagaagtga actctgagtt agttcactcg accatggtct ttgtgaaaga tgttgtgaga cttttcactg	ggatatgatt tcgacttgtg tcttcaatct aataatcaaa ttcctatgaa attcttaatt	aaactttgtt agagaaggag cttgatcact cattctgatt aagtttcatt catgagttgt aattcttgtt	tgacgaaacc gagtcgtggt tcgtgctagc agttgataat aacacggaat agggagggat gaattagatg	aggtctgttc gaacttttat atgtatttgg attagtatta tcgtgtcgag ttatgagtaa gtgatgttaa	60 120 180 240 300 360
<400> tttatta cgacttt taaaaaa caaatca gttggaa tagacct aggagaa tgggcac	and 4 gaa ccg att aat tgt gaa aaa	Aequorea vacaagaagtga actctgagtt agttcactcg accatggtct ttgtgaaaga tgttgtgaga cttttcactg ttttctgtca	ggatatgatt tcgacttgtg tcttcaatct aataatcaaa ttcctatgaa attcttaatt gagttgtccc	aaactttgtt agagaaggag cttgatcact cattctgatt aagtttcatt catgagttgt aattcttgtt tgaaggtgat	tgacgaaacc gagtcgtggt tcgtgctagc agttgataat aacacggaat agggagggat gaattagatg gcaacatacg	aggtctgttc gaacttttat atgtatttgg attagtatta tcgtgtcgag ttatgagtaa gtgatgttaa gaaaacttac	60 120 180 240 300 360 420
<400> tttatta cgacttt taaaaaa caaatca gttggaa tagacct aggagaa tgggcac ccttaaa	and 4 gaa ccg att aat tgt gaa aaa ttt	Aequorea vacaagaagtga actctgagtt agttcactcg accatggtct ttgtgaaaga tgttgtgaga cttttcactg ttttctgtca atttgcacta	ggatatgatt tcgacttgtg tcttcaatct aataatcaaa ttcctatgaa attcttaatt gagttgtccc gtggagaggg	aaactttgtt agagaaggag cttgatcact cattctgatt aagtttcatt catgagttgt aattcttgtt tgaaggtgat acctgttcca	tgacgaaacc gagtcgtggt tcgtgctagc agttgataat aacacggaat agggagggat gaattagatg gcaacatacg tggccaacac	aggtctgttc gaacttttat atgtatttgg attagtatta tcgtgtcgag ttatgagtaa gtgatgttaa gaaaacttac ttgtcactac	60 120 180 240 300 360 420 480
<400> tttatta cgacttt taaaaaa caaatca gttggaa tagacct aggagaa tgggcac ccttaaa tttctct	and 4 gaa ccg att aat tgt gaa taaa ttt	Aequorea vacaagaagtga actctgagtt agttcactcg accatggtct ttgtgaaaga tgttgtgaga cttttcactg ttttctgtca atttgcacta ggtgttcaat	ggatatgatt tcgacttgtg tcttcaatct aataatcaaa ttcctatgaa attcttaatt gagttgtccc gtggagaggg ctggaaaact	aaactttgtt agagaaggag cttgatcact cattctgatt aagtttcatt catgagttgt aattcttgtt tgaaggtgat acctgttcca atacccagat	tgacgaaacc gagtcgtggt tcgtgctagc agttgataat aacacggaat agggagggat gaattagatg gcaacatacg tggccaacac catatgaagc	aggtctgttc gaacttttat atgtatttgg attagtatta tcgtgtcgag ttatgagtaa gtgatgttaa gaaaacttac ttgtcactac ggcacgactt	60 120 180 240 300 360 420 480 540

780	agttggaata	ctcggccaca	cggaaacatc	tcaaggagga	ggaatcgatt	cgagcttaag
840	gaatcaaagc	caaaagaatg	ggcagacaaa	tatacatcac	tcccacaacg	caactacaac
900	accattatca	caactagcag	tggaagcgtt	acattgaaga	attagacaca	taacttcaaa
960	acctgtccac	gacaaccatt	ccttttacca	atggccctgt	ccaattggcg	acaaaatact
1020	ttcttgagtt	cacatggtcc	aaagagagac	atcccaacga	ctttcgaaag	acaatctgcc
1069		tacaaataa	ggatgaacta	cacatggcat	gctgggatta	tgtaacagct

<210> <211> <212> <213> 1069 DNA

unknown

<220>

<223> Fusion construct of avocado sunbotch viroid, Nicotiana tabacum and Aequorea victoria

<400> 5 acttgtgaga gaaggaggag tcgtggtgaa cttttattaa aaaaattagt tcactcgtct	60
tcaatctctt gatcacttcg tctcttcagg gaaagatggg aagaacactg atgagtctcg	120
caaggtttac tcctctatct tcattgtttt tttacaaaat cttggctagc atgtatttgg	180
caaatcaaat accatggtct aataatcaaa cattctgatt agttgataat attagtatta	240
gttggaaatt ttgtgaaaga ttcctatgaa aagtttcatt aacacggaat tcgtgtcgag	300
tagaccttgt tgttgtgaga attcttaatt catgagttgt agggagggat ttatgagtaa	360
aggagaagaa cttttcactg gagttgtccc aattcttgtt gaattagatg gtgatgttaa	420
tgggcacaaa ttttctgtca gtggagaggg tgaaggtgat gcaacatacg gaaaacttac	480
ccttaaattt atttgcacta ctggaaaact acctgttcca tggccaacac ttgtcactac	540
tttctcttat ggtgttcaat gcttttcaag atacccagat catatgaagc ggcacgactt	600
cttcaagagc gccatgcctg agggatacgt gcaggagagg accatctctt tcaaggacga	660
cgggaactac aagacacgtg ctgaagtcaa gtttgaggga gacaccctcg tcaacaggat	720
cgagcttaag ggaatcgatt tcaaggagga cggaaacatc ctcggccaca agttggaata	780
caactacaac tcccacaacg tatacatcac ggcagacaaa caaaagaatg gaatcaaagc	840
taacttcaaa attagacaca acattgaaga tggaagcgtt caactagcag accattatca	900
acaaaatact ccaattggcg atggccctgt ccttttacca gacaaccatt acctgtccac	960
acaatctgcc ctttcgaaag atcccaacga aaagagagac cacatggtcc ttcttgagtt	1020
tgtaacagct gctgggatta cacatggcat ggatgaacta tacaaataa	1069

a state

NEB-211US.ST25.txt

<212> DNA <213> unknown	
<220> <223> Fusion construct of avocado sunblotch viroid, Nicotiana tabacand Aequorea victoria	um
<400> 6 tcttcaggga aagatgggaa gaacactgat gagtctcgca aggtttactc ctctatcttc	60
attgtttttt tacaaaatct tgtttattag aacaagaagt gaggatatga ttaaactttg	120
tttgacgaaa ccaggtctgt tccgactttc cgactctgag tttcgctagc atgtatttgg	180
caaatcaaat accatggtct aataatcaaa cattctgatt agttgataat attagtatta	240
gttggaaatt ttgtgaaaga ttcctatgaa aagtttcatt aacacggaat tcgtgtcgag	300
tagaccttgt tgttgtgaga attcttaatt catgagttgt agggagggat ttatgagtaa	360
aggagaagaa cttttcactg gagttgtccc aattcttgtt gaattagatg gtgatgttaa	420
tgggcacaaa ttttctgtca gtggagaggg tgaaggtgat gcaacatacg gaaaacttac	480
ccttaaattt atttgcacta ctggaaaact acctgttcca tggccaacac ttgtcactac	540
tttctcttat ggtgttcaat gcttttcaag atacccagat catatgaagc ggcacgactt	600
cttcaagagc gccatgcctg agggatacgt gcaggagagg accatctctt tcaaggacga	660
cgggaactac aagacacgtg ctgaagtcaa gtttgaggga gacaccctcg tcaacaggat	720
cgagcttaag ggaatcgatt tcaaggagga cggaaacatc ctcggccaca agttggaata	780
caactacaac tcccacaacg tatacatcac ggcagacaaa caaaagaatg gaatcaaagc	840
taacttcaaa attagacaca acattgaaga tggaagcgtt caactagcag accattatca	900
acaaaatact ccaattggcg atggccctgt ccttttacca gacaaccatt acctgtccac	960
acaatctgcc ctttcgaaag atcccaacga aaagagagac cacatggtcc ttcttgagtt	1020
tgtaacagct gctgggatta cacatggcat ggatgaacta tacaaataa	1069
<210> 7 <211> 52 <212> DNA <213> Tetrahymena thermophila <400> 7 gccatggaac tcgagcccgc tcttccaaaa gttatcaggc atgcacctgg ta <210> 8 <211> 53	52
<212> DNA <213> Tetrahymena thermophila	
<400> 8 gattgcatcg gtttaaaagg caagaccgtc aaattgcggg aaaggggtca aca	53

<210> <211>	9 52	NEB-211US.	ST25.txt		
<211> <212> <213>	DNA Tetrahymena thermophila				
<400> tcagggg	9 gaaa ctttgagatg gccttgcaaa	gggtatggta	ataagctgac	gg	52
<210> <211> <212> <213>	10 53 DNA Tetrahymena thermophila				
<400> gccaagt	10 tcct aagtcaacag atcttctgtt	gatatggatg	cagttcacag	act	53
<210> <211> <212> <213>	11 53 DNA Tetrahymena thermophila				
<400> atgtat1	11 tctt ctcataagat atagtcggac	ctctccttaa	tgggagctag	cgg	53
<210> <211> <212> <213>	12 52 DNA Tetrahymena thermophila				
<400> gagccgc	12 Etgg gaactaattt gtatgcgaaa	gtatattgat	tagttttgga	gt	52
<210> <211> <212> <213>	13 53 DNA Tetrahymena thermophila				
<400> gctgcag	13 gagg cggccgccaa aggaccgaat	gcgagtactc	caaaactaat	caa	53
<210> <211> <212> <213>	14 53 DNA Tetrahymena thermophila				
<400> ttagtto	14 ccca gcggctccag tgttgcatca	cttcatccgc	tagctcccat	taa	53
<210> <211> <212> <213>	15 52 DNA Tetrahymena thermophila				
<400> ttatgag	15 gaag aatacatctt ccccgaccga	catttagtct	gtgaactgca	tc	52

<210> <211> <212>	16 53 DNA	NEB ZIIOS.	3123. CXC		
<213>	Tetrahymena thermophila				
<400> ttgact	16 tagg acttggctgc gtggttagga	ccatgtccgt	cagcttatta	cca	53
<210> <211> <212> <213>	17 52 DNA Tetrahymena thermophila				
<400> ctcaaag	17 gttt cccctgagac ttggtactga	acggctgttg	acccctttcc	cg	52
<210> <211> <212> <213>	18 53 DNA Tetrahymena thermophila				
<400> tttaaac	18 ccga tgcaatctat tggtttaaag	actagctacc	aggtgcatgc	ctg	53
<210> <211> <212> <213>	19 61 DNA unknown				
<220> <223>	oligonucleotide				
<400> catgcad a	19 ccag gatttgtcgt gaggcctgag	ttcagaccgg	tgaattgaga	acacggtaag	60 61
<210> <211> <212> <213>	20 60 DNA unknown				
<220> <223>	oligonucleotide				
<400> ttttctt	20 cacc gtgttctcaa ttcaccggtc	tgaactcagg	cctcacgaca	aatcctggtg	60
<210> <211> <212> <213>	21 30 DNA unknown				
<220> <223>	primer				
<400> ggcccat	21 ggg taaaggagaa gaactttca	Do so	6		30

Page 6

<210><211><212><213>	22 38 DNA unknown	
<220> <223>	primer	
<400> ggcacc	22 ggtt ttctacgata agagaaagta gtgacaag	38
<210> <211> <212> <213>	23 30 DNA unknown	
<220> <223>	primer	
<400> ggcgaa	23 tgcg ggtgttcaat gcttttcaag	30
<210> <211> <212> <213>	24 33 DNA unknown	
<220> <223>	primer	
<400> gaagcg	24 gccg cttatttgta tagttcatcc atg	33
<210> <211> <212> <213>	25 49 DNA unknown	
<220> <223>	synthetic DNA equivalent of avocado sunblotch viroid	
<400> tttatta	25 aaaa aaattagttc actcgtcttc aatctcttga tcacttcgt	49
<210> <211> <212> <213>	26 49 DNA unknown	
<220> <223>	synthetic DNA equivalent of avocado sunblotch viroid	
<400> ctaatti	26 tttt taataaaagt tcaccacgac tcctccttct ctcacaagt	49
<210>	27	

Page 7

<211> <212>	39 DNA	
<213>	unknown	
<220> <223>	synthetic DNA equivalent of avocado sunblotch viroid	
<400> gtctag	27 aact tgtgagagaa ggaggagtcg tggtgaact	39
<210> <211> <212> <213>	28 50 DNA unknown	
<220> <223>	synthetic DNA equivalent of avocado sunblotch viroid	
<400> ggaagaa	28 acac tgatgagtct cgcaaggttt actcctctat cttcattgtt	50
<210> <211> <212> <213>	29 40 DNA unknown	
<220> <223>	synthetic DNA equivalent of avocado sunblotch viroid	
<400> ggctage	29 ccaa gattttgtaa aaaaacaatg aagatagagg	40
<210> <211> <212> <213>	30 51 DNA unknown	
<220> <223>	synthetic DNA equivalent of avocado sunblotch viroid	
<400> ctcatca	30 agtg ttcttcccat ctttccctga agagacgaag tgatcaagag a	51
<210> <211> <212> <213>		
<400> gggctag	31 gcat gtatttggca aatcaaatac catggtctaa	40
<210> <211> <212> <213>	32 52 DNA Nicotiana tabacum	
<400> agttgat	32 taat attagtatta gttggaaatt ttgtgaaaga ttcctatgaa aa Page 8	52

and 1 to 10 to

NEB-211US.ST25.txt

<210> <211> <212> <213>	33 52 DNA Nicotiana tabacum	
	33 cgag tagaccttgt tgttgtgaga attcttaatt catgagttgt ag	52
<210> <211> <212> <213>	34 40 DNA Nicotiana tabacum	
<400> ccgctc	34 ttca cataaatccc tccctacaac tcatgaatta	40
<210> <211> <212> <213>		
	35 actc gacacgaatt ccgtgttaat gaaacttttc ataggaatct tt	52
<210> <211> <212> <213>	36 52 DNA Nicotiana tabacum	
<400> tactaa	36 tatt atcaactaat cagaatgttt gattattaga ccatggtatt tg	52
<210> <211> <212> <213>	37 41 DNA unknown	
<220> <223>	primer	
<400> gggcta	37 gcgc tgctcttcca tgagtaaagg agaagaactt t	41
<210> <211> <212> <213>	38 31 DNA unknown	
<220> <223>	primer	
<400> ggctgca	38 agga gagctcttat ttgtatagtt c	31
<210>	39	

Page 9

d of a second

NEB-211US.ST25.txt <211> 40 <212> DNA <213> unknown <220> <223> primer <400> 39 40 gggctagcgc tgctcttcca tggaatccct gacgttacaa <210> 40 <211> 43 <212> DNA <213> unknown <220> <223> primer <400> 40 43 ggcctgcagg agctctttct gccacctgga gagtgatact gtt <210> 41 <211> 61 <212> DNA <213> unknown <220> <223> oligonucleotide 60 catgttgcca aatgtttgaa cgatcgggga aattcgagct cgaattgtga tagccgcctg 61 g <210> 42 <211> 60 <212> DNA <213> unknown <220> <223> oligonucleotide <400> 42 tttccaggcg gctatcacaa ttcgagctcg aatttccccg atcgttcaaa catttggcaa 60 <210> 43 <211> 27 <212> DNA <213> unknown <220> <223> primer <400> 43 27 ggcgaatgcg cgctatctgg tcgaggg

<210>

<211>

44

36

6 1K 2 1 1 1 1 3

NEB-211US.ST25.txt <212> DNA <213> unknown <220> <223> primer <400> 44 36 gaagcggccg caccggttta ggcaggcgta ctcatt 45 <210> <211> 35 <212> DNA <213> unknown <220> <223> primer <400> 45 35 gggctagcgc tgctcttcca tggccaccgc cgccg <210> 46 <211> 43 <212> DNA <213> unknown <220> <223> primer <400> 46 43 ggcctgcagg agctctttct ttcatgtgct tccttcaaga aga <210> 47 <211> 61 <212> DNA <213> unknown <220> <223> oligonucleotide <400> 47 catgttgcca aatgtttgaa cgatcgggga aattcgagct cgaattgttt ctttcgtgtg 60 61 <210> 48 <211> 60 <212> DNA <213> unknown <220> <223> oligonucleotide

<210> 49 <211> 31 <212> DNA

<400> 48

60

tttgcacacg aaagaaacaa ttcgagctcg aatttccccg atcgttcaaa catttggcaa

e i Kar

		NEB-ZIIUS.SIZS.TXT	
<213>	unknown		
<220> <223>	primer		
<400>		_	21
ggcgaat	gcg caaagaagag ctttgacttt	g	31
<211> <212>			
<220> <223>	primer		
<400> gaagcgg	50 pccg caccggttca gtacacagtc	ctgcc	35