Noise-contrastive estimation of normalising constants and GANs

Fonctions génériques

Algorithme d'Hasting

Utilité : simuler selon $p_m(., \psi)$ pour un paramètre ψ choisi.

Argument	Type	Exemple	Indication
X	vecteur	reauchy $(100, 0, 1)$	notre échantillon de densité inconnue
n	entier	100	taille de la simulation
psi	vecteur	c(0,1)	paramètres de la fonction h
h	fonction		fonction qui retourne $\overline{p_m}(.,\psi)$

Note: on peut très certainement écrire sous forme matricielle cette fonction pour une meilleure performance.

MC MLE

Utilité: retourne une estimation des paramètres selon la méthode décrite dans le papier de Geyer.

```
mc_mle = function(x, n, psi, h){

y = hasting(x, n, psi, h)

L = function(theta){
   return(sum(log(h(x,theta)/h(x,psi))) - n*log(mean(h(y,theta)/h(y,psi))))}
}

theta = optim(
   par = rep(1,length(psi)),
   gr = "CG",
```

```
control = list(fnscale=-1),
  fn = L
)$par

return(theta)
}
```

NCE

Utilité : Retourne l'estimation de la constante et des paramètres.

Argument	Type	Exemple	Indication
X	vecteur	reauchy $(100, 0, 1)$	notre échantillon de densité inconnue
law_y	fonction	rnorm	fonction qui retourne un échantillon suivant la loi p_n
n	entier	100	taille de l'échantillon de bruit suivant la loi p_n
params_y	vecteur	c(0,1)	arguments de la fonction law_y
log_pm	fonction		fonction qui retourne le logarithme de la densité p_m
log_pn	fonction		fonction qui retourne le logarithme de la densité p_n
nb_of_params	entier	3	taille de θ , vaut habituellement 2 ou 3
method	string	"CG"	méthode d'optimisation, habituellement "CG" ou "BFGS"

```
nce = function(x, law_y, n, params_y, log_pm, log_pn, nb_of_params, methode = "CG"){
    y = do.call(law_y,c(list(n),params_y))

    m = length(x)

h = function(u, theta){
    return( 1 / (1 + n/m * exp(log_pn(u) - log_pm(u, theta))))
}

J = function(theta){
    return( sum(log(h(x, theta))) + sum(log(1 - h(y, theta))))
}

theta = optim(
    par = initialisation,
    gr = methode,
    control = list(fnscale=-1),
    fn = J
)$par

return(c(exp(-theta[1]), theta[-1]))
}
```