

Analiza kardioloških slika korištenjem duboke neuronske mreže

Završni rad Adam Vuković

> Mentor: Akademik prof. dr. sc. Sven Lončarić

3. rujan 2024.

Sveučilište u Zagrebu

Fakultet elektrotehnike i računarstva

Sadržaj

- Motivacija
- Umjetne neuronske mreže
- Konvolucijske neuronske mreže
- Skup podataka
- Programska implementacija
- Rezultati
- Zaključak
- Literatura

Motivacija

- Stupanj odbacivanja presatka transplatiranog srca
- Problemi: subjektivna dijagnoza, potreba za stručnjakom
- Rješenje: umjetne neuronske mreže

Umjetne neuronske mreže

- Imitacija ljudskog mozga
- Aktivacijske funkcije
- Funkcije gubitka

Konvolucijske neuronske mreže

- Konvolucija
- ResNet rezidualni blokovi
- DenseNet gusti blokovi

Podatkovni skup

- Sivonijansne X-PCI slike formata TIF
- 1024 x 1024 i 2048 x 2048

Stupanj odbacivanja	Skup za treniranje	Skup za provjeru	Skup za testiranje
0R	8012	2160	4221
1R	2160	2160	4721
2R	4320	2160	4919
3R	3881	2160	8138

Stupanj odbacivanja "0R"

Stupanj odbacivanja "3R"

Podatkovni skup – problemi

- Artefakti
- Razlika u kontrastu

Skup za trening/provjeru (stupanj "3R")

Skup za testiranje (stupanj "3R")

7/17

Programska implementacija

- PyTorch radni okvir
- Učitavanje podatkovnog skupa: klasa CustomImageDataset
 - Transformacije: mijenjanje veličine, rotiranje, pretvaranje u tenzor, normalizacija
 - Mini-grupe: 4 slike
- Modeli: prilagođene klase ResNetNeuralNetwork i DenseNetNeuralNetwork
 - Klasifikacija i regresija
 - Ulaz s jednim kanalom
 - Sigmoidalna aktivacijska funkcija
- Treniranje:
 - 15 epoha
 - Srednje kvadratno odstupanje (MSE) i gubitak unakrsne entropije
 - Stopa učenja: 10⁻⁵
 - Adam optimizator
 - CUDA

Rezultati - točnosti

ResNet regresija

ResNet klasifikacija

DenseNet klasifikacija

Rezultati – točnosti

Model	Točnost na skupu za provjeru	Točnost na skupu za testiranje
ResNet – regresija	92.29%	56.08%
ResNet – klasifikacija	68.23%	39.81%
DenseNet – regresija	82.89%	50.55%
DenseNet - klasifikacija	58.90%	40.28%

Rezultati – ResNet matrice zabune

ResNet regresija – skup za provjeru

ResNet klasifikacija – skup za provjeru

ResNet regresija – skup za testiranje

ResNet klasifikacija – skup za testiranje

Rezultati – DenseNet matrice zabune

DenseNet regresija – skup za provjeru

DenseNet klasifikacija – skup za provjeru

DenseNet regresija – skup za testiranje

DenseNet klasifikacija – skup za testiranje

Rezultati – područja aktivacije

Stupanj odbacivanja "0R"

Stupanj odbacivanja "3R"

Rezultati – područja aktivacije

ResNet regresija – stupanj odbacivanja "0R"

ResNet klasifikacija – stupanj odbacivanja "0R"

Rezultati – područja aktivacije

ResNet regresija – stupanj odbacivanja "3R"

ResNet klasifikacija – stupanj odbacivanja "3R"

Zaključak

- Nema velike razlike između ResNet i DenseNet arhitektura
- Regresijski modeli bolji od klasifikacijskih
- Problemi: predtrenirani modeli, kontrast slika, lažno negativni rezultati
- Buduća istraživanja
 - Plići modeli
 - Vlastiti modeli
 - Treniranje na zahtjevnijim (slabije kontrastnim) slikama
 - Pronalaženje anomalija na skupu slika za jedno srce

Literatura

- B. Dalbelo Bašić, M. Čupić, i J. Šnajder, Umjetne neuronske mreže. Zagreb: Zavod za elektroniku, mikroelektroniku i inteligentne sustave, Fakultet elektrotehnike i računarstva, Sveučilište u Zagrebu, svibanj 2008.
- B. Dalbelo Bašić, M. Čupić, i J. Šnajder, Umjetne Neuronske mreže, 2019., akademska godina 2019./2020.
- M. Cheung, J. Shi, O. Wright, X. Liu, L. Jiang, i J. Moura, "Graph signal processing and deep learning: Convolution, pooling, and topology", 07 2020.
- F. Ramzan, M. U. Khan, A. Rehmat, S. Iqbal, T. Saba, A. Rehman, i Z. Mehmood, "A deep learning approach for automated diagnosis and multiclass classification of alzheimer's disease stages using resting-state fmri and residual neural networks", Journal of Medical Systems, sv. 44, 12 2019.
- C. Raju, Ashoka, i B. Prakash, "Hybridtransfernet: Advancing soil image classification through comprehensive evaluation of hybrid transfer learning", 06 2023.
- I. Planinc, I. Ilic, H. Dejea, P. Garcia-Canadilla, H. Gasparovic, H. Jurin, D. Milicic, B. Skoric, M. Stampanoni, B. Bijnens, A. Bonnin, i M. Cikes, "A novel threedimensional approach towards evaluating endomyocardial biopsies for follow-up after heart transplantation: X-ray phase contrast imaging and its agreement with classical histopathology", Transplant International, sv. 36, str. 11046, Jan 2023., published 2023 Jan 24.
- A. M. From, J. J. Maleszewski, i C. S. Rihal, "Current status of endomyocardial biopsy", Mayo Clinic Proceedings, sv. 86, br. 11, str. 1095–1102, Nov 2011., review.

Hvala na pažnji!

Sveučilište u Zagrebu

Fakultet elektrotehnike i računarstva