学
 号
 2020302011020

 密
 级

武汉大学本科毕业论文

任意温度下 Coulomb **气体内高斯震荡的中偏** 差

院(系)名称: 数学与统计学院

专业名称: 统计学

学生姓名: 杨润哲

指导教师: 高付清 教授

二〇二三年十二月

BACHELOR'S DEGREE THESIS OF WUHAN UNIVERSITY

Moderate Deviation for Gaussian Fluctuations of Coulomb Gases at Any Temperature

School (Department): SCHOOL OF MATHEMATICS AND STATISTICS

Major: Statistics

Candidate: Runzhe Yang

Supervisor: Prof. Fuqing Gao

WUHAN UNIVERSITY

December, 2023

郑重声明

本人呈交的学位论文,是在导师的指导下,独立进行研究工作所取得的成果,所有数据、图片资料真实可靠。尽我所知,除文中已经注明引用的内容外,本学位论文的研究成果不包含他人享有著作权的内容。对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确的方式标明。本学位论文的知识产权归属于培养单位。

本人签名:	日期:
, ,	

摘 要

在本论文中,我介绍并总结了 Serfaty 在 2020 年的论文 [11] 中为了得到 Coulmob 气体高斯震荡的自由能展开所使用的运输方法。然后,我使用这种方法建立了关于 d 维 Coulomb 气体(其中 $d \geq 2$)内高斯震荡的中偏差原理。

证明的主要思路是计算关于高斯震荡拉普拉斯变换和被所选取的运输测度运输之后的高斯震荡的拉普拉斯变换之商所产生误差余项的阶数,从而可以得到它的指数渐近估计,应用 [4] 中的 Gärtner-Ellis 定理便可获得高斯震荡的中偏差。

同时,我也给出了二维 Coulomb 气体内高斯震荡的正态逼近速度。

关键词: Coulomb 气体; 运输方法; 高斯震荡; 中偏差

ABSTRACT

In this thesis, I study and introduce the transport-based method introduced by Prof. Serfaty, which is used for obtaining the free energy expansion of Gaussian fluctuation of Coulmob gas in [11] in 2020. Then I make use of it to establish the moderate deviation principle for Gaussian fluctuation of d-dimensional Coulomb gases with $d \geq 2$.

The main ingredient is to calculate the order of error terms stemmed from the difference between original Laplace transformation of Gaussian fluctuation and the one transported by the chosen measure. Then we can get the estimation with exponential bound. After applying the Gärtner–Ellis theorem in [4], we can obtain the moderate deviation of the Gaussian fluctuation.

Meanwhile, I also give the speed of normal approximation of Gaussian fluctuation of 2-dimensional Coulomb gases.

Key words: Coulomb Gas; Transport-based Method; Gaussian Fluctuations; Moderate Deviation

目 录

摘	要		I
ABSTRACT			II
1	介绍	g	1
	1.1	问题背景	1
	1.2	定义与假设 · · · · · · · · · · · · · · · · · · ·	3
	1.3	主要结果	8
	1.4	论文安排	11
2	初步	- 预备	12
	2.1	运输方法介绍 · · · · · · · · · · · · · · · · · · ·	12
	2.2	运输函数选择	13
	2.3	引理及证明 · · · · · · · · · · · · · · · · · · ·	15
3	误差	έ余项的估计 ······	26
	3.1	第一项误差	28
	3.2	第二项误差 · · · · · · · · · · · · · · · · · · ·	28
	3.3	第三项误差 · · · · · · · · · · · · · · · · · · ·	28
	3.4	第四项误差 · · · · · · · · · · · · · · · · · · ·	29
4	定现	里证明	30
	4.1	维数 $d=2\cdots$	30
	4.2	维数 $d \ge 3 \cdots$	32
参	参考文献		
致i	致谢 ······ 35		

1 介绍

1.1 问题背景

在物理学中, Coulomb 气体, 也称为"单分量等离子体", 是在静电力作用下相互作用的带电粒子的多体系统, 它是统计力学中标准的在微观上不同但在宏观上相同的系统, 在数学物理的文献中受到了广泛关注。

在本文中,我们将研究逆温度 β 下的 d 维 Coulomb 气体(其中 d \geq 2),它 由 Gibbs 测度所刻画:

$$d\mathbb{P}_{N,\beta}(X_N) = \frac{1}{Z_{N,\beta}^V} \exp\left(-\beta N^{\frac{2}{\mathsf{d}}-1} \mathcal{H}_N(X_N)\right) dX_N, \tag{1.1.1}$$

其中 $X_N = (x_1, \ldots, x_N)$ 是每一个分量在 \mathbb{R}^d 中的 N 元组, $\mathcal{H}_N(X_N)$ 是系统在状态 X_N 中的能量,定义为

$$\mathcal{H}_N(X_N) := \frac{1}{2} \sum_{1 \le i \ne j \le N} \mathsf{g}(x_i - x_j) + N \sum_{i=1}^N V(x_i), \tag{1.1.2}$$

其中

$$g(x) := \begin{cases} -\log|x|, & d = 2\\ |x|^{2-d}, & d \ge 3 \end{cases}$$
 (1.1.3)

因此,能量 $\mathcal{H}_N(X_N)$ 是所有粒子之间的 Coulomb 相互排斥作用的总和,再加上外部场或约束势 NV 对每个粒子的影响,其强度与 N 成比例。在定义(1.1.1)中的标准化常数 $Z_{N,\beta}^V$ 称为配分函数,定义为

$$Z_{N,\beta}^{V} := \int_{(\mathbb{R}^{\mathsf{d}})^{N}} \exp\left(-\beta N^{\frac{2}{\mathsf{d}}-1} \mathcal{H}_{N}(X_{N})\right) dX_{N}, \tag{1.1.4}$$

我们通过选择在配分函数中选择缩放后的逆温度 $\beta N^{\frac{2}{6}-1}$ 而不是 β ,从而选取了特定的测量单位。这实际上是比较自然但不失一般性的选择,见 [8] 中的讨论。

在这篇文章中,下面我将用 c_d 表示使方程 $-\Delta g = c_d \delta_0$ 的在 d 维空间中成立的常数,以及在接下来的内容中,我们对测度 μ 及其密度函数使用相同的符号。

在 Coulomb 气体系统中, 如果 β 固定, 并且 V 增长得足够快, 那么当 $N \to \infty$ 时, 经验测度

$$\mu_N := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$$

会几乎处处收敛到一个具有紧支撑并且在其支撑上密度等于 $\mathbf{c}_{\mathsf{d}}^{-1}\Delta V$ 的平衡测度 μ_{∞} , 而 μ_{∞} 也可以被刻画为: 在所有概率测度 μ 中,使得等式

$$\mathcal{E}^{V}(\mu) = \frac{1}{2} \int_{\mathbb{R}^{\mathsf{d}} \times \mathbb{R}^{\mathsf{d}}} \mathsf{g}(x - y) d\mu(x) d\mu(y) + \int_{\mathbb{R}^{\mathsf{d}}} V(x) d\mu(x)$$
 (1.1.5)

最小化的唯一解,参见[10,第二章]。

根据 [1], 我们将不会直接使用 μ_{∞} , 而是使用特定修正后的平衡测度 μ_{θ} , 我们称之为热平衡测度,它适用于所有温度,并定义为: 在所有概率测度 μ 中,使得等式

$$\mathcal{E}_{\theta}^{V}(\mu) := \mathcal{E}^{V}(\mu) + \frac{1}{\theta} \int_{\mathbb{R}^{d}} \mu \log \mu$$
 (1.1.6)

最小化的概率测度,其中

$$\theta := \beta N^{\frac{2}{\mathsf{d}}},\tag{1.1.7}$$

同时,最小化等式(1.1.6)的热平衡测度也满足等式

$$g * \mu_{\theta} + V + \frac{1}{\theta} \log \mu_{\theta} = C_{\theta}, \tag{1.1.8}$$

其中 C_{θ} 是与 θ 有关的常数。

与 μ_{∞} 不同, μ_{θ} 在整个 \mathbb{R}^{d} 中是非负的并且具有一定的正则性,同时具有指数衰减的尾部。在 [2] 中,作者已经给出了 μ_{θ} 相对于 θ 的精确依赖关系,当 $\theta \to \infty$ 时, μ_{θ} 会收敛到 μ_{∞} ,同时作者也给出了收敛的精确估计。使用热平衡测度使我们能够获得更精确的数量估计,特别是在 β 足够小的情况下。

在本文中,我们关注在固定的逆温度 β 下,线性统计量 $\mathrm{Fluct}(\xi)$ 的中偏差原理,其中 $\mathrm{Fluct}(\xi)$ 定义为

Fluct(
$$\xi$$
) := $\sum_{i=1}^{N} \xi(x_i) - N \int \xi d\mu_{\theta}(x)$, (1.1.9)

我们要求其中的 ξ 足够正则。

1.2 定义与假设

在整篇文章中,我们将使用 C 表示一个正常数,与其他参数无关,但在不同的地方可能并不相同。我们使用符号 $|f|_{C^{\sigma}}$ 表示阶为 σ 的 Hölder 半范数,其中 $\sigma \geq 0$ (不一定是整数)。约定 $|f|_{C^0} = ||f||_{L^{\infty}}, |f|_{C^k} = ||D^k f||_{L^{\infty}},$ 其中 D 是微分算子。如果对于某个整数 k, $\sigma \in (k, k+1)$,我们定义

$$|f|_{C^{\sigma}(\Omega)} := \sup_{x \neq y \in \Omega} \frac{|D^k f(x) - D^k f(y)|}{|x - y|^{\sigma - k}}.$$

设 V 是定义在 \mathbb{R}^d 上的实值函数,下面我们假设

$$V \in C^7, \tag{1.2.1}$$

$$\begin{cases} \lim_{|x| \to \infty} V = +\infty, & d \ge 3 \\ \lim_{|x| \to \infty} (V + \mathbf{g}) = +\infty, & d = 2 \end{cases}$$
 (1.2.2)

$$\begin{cases} \int_{|x|\geq 1} \exp\left(-\frac{\theta}{2}V(x)\right) dx < \infty, & \mathsf{d} \geq 3 \\ \int_{|x|\geq 1} e^{-\frac{\theta}{2}(V(x) - \log|x|)} dx + \int_{|x|\geq 1} e^{-\theta(V(x) - \log|x|)} |x| \log^2|x| \, dx < \infty, & \mathsf{d} = 2 \end{cases} \tag{1.2.3}$$

这些假设确保了标准平衡测度 μ_{∞} 和热平衡测度 μ_{θ} 的存在性,见 [2]。回忆平衡 测度 μ_{∞} 被刻画为:存在一个常数 c,使得 $g*\mu_{\infty}+V-c$ 在 μ_{∞} 的支撑上为 0,

在其他地方非负。设 $\operatorname{supp} f$ 表示 f 的支撑,我们记 $\Sigma := \operatorname{supp} \mu_{\infty}$,并假设非退化条件

$$\Delta V \ge \alpha > 0$$
 在 Σ 的邻域内成立, (1.2.4)

以及

$$g * \mu_{\infty} + V - c \ge \alpha \min(\operatorname{dist}^2(x, \Sigma), 1),$$

其中 dist 表示欧氏空间中的距离函数。同时注意,(1.2.1)和(1.2.2)意味着 V 下界有限。

在整篇文章中, 我们将使用和[1]一样的记号:

$$\chi(\beta) = \begin{cases} 1, & d \ge 3\\ 1 + \max(-\log \beta, 0), & d = 2 \end{cases}$$
 (1.2.5)

注意此时除非 $\mathbf{d} = 2$ 且 β 很小,否则 $\chi(\beta)$ 近似于 1。修正因子 $\chi(\beta)$ 在二维情况下以及 β 很小时的不同形式出现反映了在二维情况下泊松点过程被期望具有无限的 Coulomb 相互作用能量(见 [1] 中的讨论)。

在 [1] 中作者引入了最小尺度 ρ_{β} , 其定义为

$$\rho_{\beta} = C \max \left(1, \beta^{-\frac{1}{2}} \chi(\beta)^{\frac{1}{2}}, \beta^{\frac{1}{d-2} - 1} \mathbf{1}_{d \ge 5} \right), \tag{1.2.6}$$

其中 C > 0 是某个特定的常数(χ 定义如上)。作者认为实际上 ρ_{β} 应该可以只定义为 $\max(1, \beta^{-\frac{1}{2}}\chi(\beta)^{\frac{1}{2}})$,而(1.2.6)中出现第三项仅由于某些技巧上的原因。

在 [1] 中,作者证明了无论 μ_{θ} 在 Σ 中是否有下界,都在距离比 d_0 远的地方有控制中等尺度矩形中的能量的局部法则,其中 d_0 由以下定义

$$d_0 := C \max\left(\left(\frac{N^{\frac{1}{\mathsf{d}}}}{\max(1, \beta^{-\frac{1}{2}}\chi(\beta)^{\frac{1}{2}})}\right)^{-\frac{2}{3}}, N^{\frac{1}{\mathsf{d}+2} - \frac{1}{\mathsf{d}}}\right), \tag{1.2.7}$$

其中C > 0是特定的常数。但我们不期望这样的局部法则在边界上成立,因为在

那里气体具有高振荡的特性,参见 [3]。因此,这让我们定义 Σ 的子集

$$\hat{\Sigma} := \{ x \in \Sigma, \operatorname{dist}(x, \partial \Sigma) \ge d_0 \}, \tag{1.2.8}$$

此时,对于存在一个常数 θ_0 ,对任意 $\theta \geq \theta_0$,我们还有:

$$\forall \sigma \le 3, \quad |\mu_{\theta}|_{C^{\sigma}(\hat{\Sigma})} \le C.$$
 (1.2.9)

在整个文章中,我们需要假设试验函数 ξ 在一个边长为 ℓ 的立方体中有支撑,其中 ℓ 满足:

$$\rho_{\beta} N^{-\frac{1}{d}} < \ell \le C, \tag{1.2.10}$$

 ℓ 将会被选取成满足这个条件的固定常数。同时,我们将用 Q_ℓ 表示边长在 $[\ell, 2\ell]$ 中的超矩形,它不一定以原点为中心。

下面我们定义二阶 Coulomb 能量为

$$\mathsf{F}_{N}(X_{N},\mu) := \frac{1}{2} \iint_{\mathbb{R}^{\mathsf{d}} \times \mathbb{R}^{\mathsf{d}} \setminus \triangle} \mathsf{g}(x-y) d\left(\sum_{i=1}^{N} \delta_{x_{i}} - N\mu\right)(x) d\left(\sum_{i=1}^{N} \delta_{x_{i}} - N\mu\right)(y), \tag{1.2.11}$$

其中 \triangle 表示 $\mathbb{R}^d \times \mathbb{R}^d$ 的对角线, μ 是任意选定的概率测度,当在适当的测度周围 展开 Coulomb 能量 \mathcal{H}_N 时二阶 Coulomb 能量会出现。

此外,在 [1] 中有一个"分裂公式": 对于所有具有两两不同点的状态 $X_N \in (\mathbb{R}^d)^N$,我们有:

$$\mathcal{H}_N(X_N) = N^2 \mathcal{E}_{\theta}^V(\mu_{\theta}) - \frac{N}{\theta} \sum_{i=1}^N \log \mu_{\theta}(x_i) + \mathsf{F}_N(X_N, \mu_{\theta}), \tag{1.2.12}$$

其中 \mathcal{E}_{θ}^{V} 如(1.1.6)中所定义, F_{N} 如(1.2.11)中所定义。这将使主导项 $N^{2}\mathcal{E}_{\theta}^{V}(\mu_{\theta})$ 与二阶项 $F_{N}(X_{N},\mu_{\theta})$ 分开。其中 $-\frac{1}{\theta}\log\mu_{\theta}$ 是二阶有效约束势。

同时,我们介绍 [1] 中首次引入的局部 Neumann 版本的二阶 Coulomb 能量。 考虑 $U \in \mathbb{R}^d$ 的子集,具有分段连续可微的边界,假设 $\Omega \in U$ 的子集,先定义改 进的最小边距:

$$\tilde{\mathbf{r}}_{i} := \frac{1}{4} \begin{cases} \min \left(\min_{x_{j} \in \Omega, j \neq i} |x_{i} - x_{j}|, \operatorname{dist}(x_{i}, \partial U \cap \Omega) \right) & \text{ } \sharp \operatorname{dist}(x_{i}, \partial \Omega \backslash \partial U) \geq \frac{1}{2} N^{-\frac{1}{d}} \\ \min \left(N^{-\frac{1}{d}}, \operatorname{dist}(x_{i}, \partial U \cap \Omega) \right) & \text{ } \sharp \operatorname{dist}(x_{i}, \partial \Omega \backslash \partial U) \geq \frac{1}{2} N^{-\frac{1}{d}} \end{cases}$$

$$(1.2.13)$$

这确保球 $B(x_i, \tilde{\mathbf{r}}_i)$ 仍然包含在 U 中。

我们定义 \mathbb{R} 上的函数 g(x), 令

$$g(\eta) := \begin{cases} -\log|\eta|, & \mathsf{d} = 2\\ \eta^{2-\mathsf{d}}, & \mathsf{d} \ge 3 \end{cases} \tag{1.2.14}$$

对于任意 $\eta > 0$, 我们定义:

$$f_{\eta}(x) := (g(x) - g(\eta)) +,$$
 (1.2.15)

其中(·)+表示数的正部。

当 $N\mu(U)$ =: n 是一个整数,记 \tilde{r} 表示向量 $(\tilde{r}_1, \dots, \tilde{r}_n)$,我们可以开始定义二阶 Coulomb 能量(1.2.11)关于区域 U 的局部 Neumann 版本为

$$\begin{split} \mathsf{F}_N^\Omega(X_\mathrm{n},\mu,U) &= \frac{1}{2\mathsf{c_d}} \left(\int_\Omega |\nabla v_{\tilde{\mathsf{r}}}|^2 - \mathsf{c_d} \sum_{i,x_i \in \Omega} g(\tilde{\mathsf{r}}_i) \right) - N \sum_{i,x_i \in \Omega} \int_U \mathsf{f}_{\tilde{\mathsf{r}}_i}(x-x_i) d\mu(x) \\ &+ \sum_{i,x_i \in \Omega} \left(g(\frac{1}{4} \mathrm{dist}(x_i,\partial U)) - g(\frac{N^{-\frac{1}{\mathsf{d}}}}{4}) \right)_+ \ \, (1.2.16) \end{split}$$

其中 v_i 是关于 v 在方向 \tilde{r} 上的截断势能, 定义为

$$v_{\tilde{\mathbf{r}}} := v - \sum_{i=1}^{n} \mathsf{f}_{\tilde{\mathsf{r}}_i}(x - x_i),$$

而 v 定义为

$$\begin{cases}
-\Delta v = \mathsf{c}_{\mathsf{d}} \left(\sum_{i=1}^{\mathsf{n}} \delta_{x_i} - N\mu \right) & \text{if } U \neq \\
\frac{\partial v}{\partial \nu} = 0 & \text{if } \partial U \perp
\end{cases}$$

$$(1.2.17)$$

的解,其中 $\partial/\partial\nu$ 表示法线导数。注意当 $n = N\mu(U)$ 是一个整数时,这个方程有仅相差一个常数的唯一解。当 $\Omega = U$ 时,我们用 $F_N(X_n, \mu, U)$ 表示 $F_N^U(X_n, \mu, U)$ 。

下面我们都将假设 $n = N\mu(U)$ 是一个整数,因此我们可以用二阶 Coulomb 能量的局部版本定义一个关于区域 U 的局部配分函数

$$\mathsf{K}_{N}(U,\mu) := \int_{U^{\mathbf{n}}} e^{-\beta N^{\frac{2}{\mathsf{d}}-1}} \mathsf{F}_{N}(X_{\mathbf{n}},\mu,U) \, d\mu^{\otimes \mathbf{n}}(X_{\mathbf{n}}), \tag{1.2.18}$$

并让

$$Q_N(U,\mu) := \frac{1}{\mathsf{K}_N(U,\mu)} e^{-\beta N^{\frac{2}{\mathsf{d}}-1} \mathsf{F}_N(X_n,\mu,U)} d\mu^{\otimes n}(X_n)$$
 (1.2.19)

作为 $K_N(U,\mu)$ 相关的 Gibbs 测度。如果 U 是 \mathbb{R}^d ,我们简记为

$$\mathsf{K}_{N}(\mu) := \int_{(\mathbb{R}^{\mathsf{d}})^{N}} \exp\left(-\beta N^{\frac{2}{\mathsf{d}}-1} \mathsf{F}_{N}(X_{N}, \mu)\right) d\mu^{\otimes n}(X_{n}), \tag{1.2.20}$$

并将 $Q_N(\mu)$ 作为其相关的 Gibbs 测度。它们将在证明引理2.3.8(局部法则) 中发挥巨大作用。

在 [1] 中,作者得到了立方体中的一致平衡测度的自由能展开,其中包含一个明确的误差项,与表面成比例,该误差项可以用一个函数 $f_{\rm d}(\beta)$ 表示,它也将会出现在本论文当维数 $\rm d \geq 3$ 时的误差估计中,见定理1.3.2。并且存在一个仅取决于维数 $\rm d$ 的常数 $\rm C > 0$,使得在 $\rm (0,\infty)$ 上 $\rm f_{\rm d}$ 满足局部 Lipschitz,同时

$$-C \le f_{\mathsf{d}}(\beta) \le C\chi(\beta),\tag{1.2.21}$$

$$|f_{\mathsf{d}}'(\beta)| \le \frac{C\chi(\beta)}{\beta},\tag{1.2.22}$$

如果 R^d 是整数, 我们还有 f_d 的隐式表达式:

$$\frac{\log \mathsf{K}(\square_R, 1)}{\beta R^{\mathsf{d}}} = -f_{\mathsf{d}}(\beta) + O\left(\chi(\beta) \frac{\rho_{\beta}}{R} + \frac{\beta^{-\frac{1}{\mathsf{d}}} \chi(\beta)^{1-\frac{1}{\mathsf{d}}}}{R} \log^{\frac{1}{\mathsf{d}}} \frac{R}{\rho_{\beta}}\right),\tag{1.2.23}$$

其中 ρ_{β} 如(1.2.6)中所定义, $K(\square_R,1)$ 是在边长为 R 的立方体 \square_R 中密度为 1 的被扩大后的 Coulomb 气体合适的配分函数。

1.3 主要结果

定义算子:

$$L := \frac{1}{\mathsf{Cd} \, \mathcal{U}_{\theta}} \Delta.$$

定理 1.3.1 (二维情况下误差的估计) 如果 $V \in C^7$, 且满足(1.2.2)-(1.2.4)。同时 $\xi \in C^4$, supp $\xi \subset Q_\ell \subset \hat{\Sigma}$,其中 ℓ 是固定的常数,且满足

$$|\xi|_{C^k} \le C\ell^{-k}$$
 对任意 $k \le 4$

设 τ_N 满足当 $N \to \infty$ 时, $\frac{\tau_N}{N^{\frac{1}{8}}} \to 0$ 和 $\tau_N \to \infty$,则对任意固定的逆温度 β ,我们有:

$$\exp\left(-\tau^2\ell^4\beta v(\xi)\right)\mathbb{E}_{\mathbb{P}_{N,\beta}}\left(\exp\left(\tau\beta\ell^2(\mathrm{Fluct}(\xi)-m(\xi))\right)\right) = \exp(O\left(\tau_N^4N^{-4}\right))$$

在 $|\tau| \leq \tau_N$ 上一致成立,其中

$$v(\xi) := \frac{3}{2c_2} \int_{\mathbb{R}^2} |\nabla \xi|^2 + \frac{1}{2\theta} \int_{\mathbb{R}^2} \mu_\theta |L(\xi)|^2,$$

$$m(\xi) := \frac{1}{4} \int_{\mathbb{R}^2} \left(\frac{\Delta \xi}{\mathsf{c}_2} \right) \log \mu_{\theta}$$

 $\theta = \beta N$ 和 $\mathbb{E}_{\mathbb{P}_{N,\beta}}$ 表示 $\mathbb{P}_{N,\beta}$ 概率测度下的数学期望。

注 1.3.1 在 [5] 中, 作者使用循环方程方法建立了一维情况下关于 β-cluster 的

线性统计量的中偏差原理。

推论 1.3.1 (二维情况下的大偏差) 在定理 1.3.1的条件下, 我们有: $\frac{\ell^2 \beta}{\tau_N}$ Fluct(ξ) 按 τ_N^2 的速度满足速率函数为 $J(x):=\frac{x^2}{r(\xi)}$ 的大偏差原理, 其中

$$r(\xi):=\ell^4\beta\frac{3}{2\mathsf{c}_2}\int_{\mathbb{R}^2}|\nabla\xi|^2\,,$$

即,对任意闭集 $F \subset \mathbb{R}$,满足

$$\limsup_{N \to \infty} \frac{1}{\tau_N^2} \log \mathbb{P}_{N,\beta} \left(\frac{\ell^2 \beta}{\tau_N} \text{Fluct}(\xi) \in F \right)$$

$$\leq -\inf_{x \in F} J(x)$$

和任意开集 $G \subset \mathbb{R}$,满足

$$\liminf_{N \to \infty} \frac{1}{\tau_N^2} \log \mathbb{P}_{N,\beta} \left(\frac{\ell^2 \beta}{\tau_N} \text{Fluct}(\xi) \in G \right) \\
\geq -\inf_{x \in G} J(x)$$

推论 1.3.2 (二维情况下的正态渐近收敛速度) 在定理 1.3.1的条件下,给定逆温度 β ,设 ϕ_N 和 ϕ 分别是 Fluct(ξ) $-m(\xi)$ 和正态分布 $N(0, \frac{3}{c_2\beta} \int_{\mathbb{R}^2} |\nabla \xi|^2)$ 的特征函数。对 \mathbb{R} 中的任意一个紧致集 K,我们有:

$$\sup_{x \in K} |\phi_N(x) - \phi(x)| = O\left(N^{-\frac{1}{8}} \log^{\frac{3}{4}} N\right) (N \to \infty)$$

注 1.3.2 在 [7] 中,作者使用更一般的 Fourier 级数方法给出了一维情况下关于 β-cluster 的线性统计量的正态渐进逼近速度,但其方法的缺陷是无法导出像定理1.3.1中的指数渐进估计。

而当维数 $d \ge 3$ 时,此时有另一种极限趋向方式可以使高斯震荡收敛到正态分布,见 [11] 中推论 2.4。

定理 1.3.2 (维数 $d \ge 3$ 时误差的估计) 如果 $V \in C^7$, 且满足(1.2.2)-(1.2.4)。

同时 $\xi \in C^4$, supp $\xi \subset Q_\ell \subset \hat{\Sigma}$, 其中 ℓ 是固定的常数, 且满足

$$|\xi|_{C^k} \leq C\ell^{-k}$$
 对任意 $k \leq 4$,

设 τ_N 满足当 $N \to \infty$ 时, $\frac{\tau_N}{N^{\frac{1}{2} + \frac{1}{d}}} \to 0$ 和 $\frac{\tau_N}{N^{\frac{1}{2} - \frac{1}{d^2} - \frac{1}{dd}}} \to \infty$,则对任意固定的逆温度 β ,我们有:

$$\exp\left(-\tau^2\ell^4\beta v(\xi)\right)\mathbb{E}_{\mathbb{P}_{N,\beta}}\left(\exp\left(\tau N^{\frac{1}{d}-\frac{1}{2}}\beta\ell^2(\mathrm{Fluct}(\xi)-N^{1-\frac{2}{d}}m(\xi))\right)\right) = \exp\left(O\left(\tau_N N^{\frac{1}{2}-\frac{1}{d^2}-\frac{1}{4d}}\right)\right)$$

在 $|\tau| \leq \tau_N$ 上一致成立, 其中

$$v(\xi) := \frac{3}{2\mathsf{c}_{\mathsf{d}}} \int_{\mathbb{R}^d} \left| \nabla \xi \right|^2 + \frac{1}{2\theta} \int_{\mathbb{R}^d} \mu_{\theta} \left| L(\xi) \right|^2,$$

$$m(\xi) := \left(1 - \frac{2}{\mathsf{d}}\right) \int_{\mathbb{R}^{\mathsf{d}}} \left(\frac{\Delta \xi}{\mathsf{c}_{\mathsf{d}}}\right) \left(f_{\mathsf{d}}(\beta \mu_{\theta}^{1 - \frac{2}{\mathsf{d}}}) + \beta \mu_{\theta}^{1 - \frac{2}{\mathsf{d}}} f_{\mathsf{d}}'(\beta \mu_{\theta}^{1 - \frac{2}{\mathsf{d}}})\right)$$

 $\theta := \beta N^{\frac{2}{d}}$ 和 $\mathbb{E}_{\mathbb{P}_{N,\beta}}$ 表示 $\mathbb{P}_{N,\beta}$ 概率测度下的数学期望。

推论 1.3.3 (**维数** \geq 3 的大偏差)在定理 1.3.2的条件下,我们有 $\frac{\ell^2 \beta}{\tau_N}$ (Fluct(ξ) – $N^{1-\frac{2}{d}}m(\xi)$) 按 τ_N^2 的速度满足速率函数为 $J(x):=\frac{x^2}{r(\xi)}$ 的大偏差原理,其中

$$m(\xi) := \left(1 - \frac{2}{\mathsf{d}}\right) \int_{\mathbb{R}^{\mathsf{d}}} \left(\frac{\Delta \xi}{\mathsf{c}_{\mathsf{d}}}\right) \left(f_{\mathsf{d}}(\beta \mu_{\theta}^{1 - \frac{2}{\mathsf{d}}}) + \beta \mu_{\theta}^{1 - \frac{2}{\mathsf{d}}} f_{\mathsf{d}}'(\beta \mu_{\theta}^{1 - \frac{2}{\mathsf{d}}})\right)$$

$$r(\xi) := \ell^4 \beta \frac{3}{2\mathsf{c}_\mathsf{d}} \int_{\mathbb{R}^d} \left| \nabla \xi \right|^2$$

即,对任意闭集 $F \subset \mathbb{R}$,满足

$$\limsup_{N \to \infty} \frac{1}{\tau_N^2} \log \mathbb{P}_{N,\beta} \left(\frac{\ell^2 \beta}{\tau_N} (\text{Fluct}(\xi) - N^{1 - \frac{2}{d}} m(\xi)) \in F \right)$$

$$\leq -\inf_{x \in F} J(x)$$

和任意开集 $G \subset \mathbb{R}$,满足

$$\liminf_{N \to \infty} \frac{1}{\tau_N^2} \log \mathbb{P}_{N,\beta} \left(\frac{\ell^2 \beta}{\tau_N} (\text{Fluct}(\xi) - N^{1 - \frac{2}{d}} m(\xi)) \right) \\
\geq -\inf_{x \in G} J(x)$$

1.4 论文安排

在第2章中,我们介绍并总结了[11]中的运输方法,并找到了一个合适的运输函数来应用计算 Coulomb 气体中高斯震荡的中偏差原理。然后,我们证明了一些非常有用的引理来估计后续误差余项的阶数。

在第3章中,我们将在使用运输方法中产生的误差余项分为四个部分,并使用第2章中的引理来计算每个误差余项的阶数。

在第 4 章中, 我们通过将第 3 章中的估计与第 2 章中的引理结合依次证明第1章中的定理与推论。

2 初步预备

2.1 运输方法介绍

通常我们使用 [6] 中的 Johansson 方法对震荡的估计进行控制,该方法的核心在于: 在计算震荡的拉普拉斯变换的过程中将其简化到计算两个配分函数的比值,即关于势场为 V 的 Coulomb 气体和势场为 $V_t := V + t\xi$ 的 Coulomb 气体的配分函数比值。

我们使用的运输方法也是基于 Johansson 方法,使用热平衡测度的定义与等式(3.0.4),可以得到高斯震荡 Laplace 变换的一个简洁形式:

$$\mathbb{E}_{\mathbb{P}_{N,\beta}}\left(e^{-\beta t N^{\frac{2}{\mathsf{d}}}\sum_{i=1}^{N}\xi(x_{i})}\right) = \frac{Z_{N,\beta}^{V_{t}}}{Z_{N,\beta}^{V}} = \exp\left(-\beta N^{1+\frac{2}{\mathsf{d}}}\left(\mathcal{E}_{\theta}^{V_{t}}(\mu_{\theta}^{t}) - \mathcal{E}_{\theta}^{V}(\mu_{\theta})\right)\right) \frac{\mathsf{K}_{N}(\mu_{\theta}^{t})}{\mathsf{K}_{N}(\mu_{\theta})},\tag{2.1.1}$$

其中 μ_{θ}^{t} 是与 V_{t} 相关的热平衡测度。

其中 $\exp\left(-\beta N^{1+\frac{2}{d}}(\mathcal{E}^{V_t}_{\theta}(\mu^t_{\theta}) - \mathcal{E}^{V}_{\theta}(\mu_{\theta}))\right)$ 的估计并不困难,这一部分在引理2.3.1中完成,主要的困难是估计比值 $\frac{\mathsf{K}_N(\mu^t_{\theta})}{\mathsf{K}_N(\mu_{\theta})}$ 。我们发现估计上述从 μ_{θ} 到 μ^t_{θ} 的差值是困难的,因此我们用新的运输测度替换掉 μ^t_{θ} ,从而引入了新的运输方式,即在 [9] 中的方法 — 用形式为 $(\mathrm{Id} + t\psi) \# \mu_{\theta}$ 的逼近 $\tilde{\mu}^t_{\theta}$ 代替 μ^t_{θ} (其中 # 表示与概率测度的复合),注意该方法在 t 的第一阶逼近中与 μ^t_{θ} 相同。

选择近似 $\tilde{\mu}_{\theta}^{t}$ 是因为它可以简单地被表达为 μ_{θ} 的运输,即 $(\mathrm{Id} + t\psi) \# \mu_{\theta}$,其中 ψ 是一个确定的运输映射。这也是使用运输方法的动机,而在最初的方法中,准 确表达出扰动的热平衡测度 μ_{θ}^{t} 更加困难,并且可参考的文献非常少。

然后,我们估计 $\log K_N(\mu)$ 沿着运输的变化,如果 μ 和 $\Phi \# \mu$ 是两个概率测度,根据定义,我们有:

$$\frac{\mathsf{K}_{N}(\Phi \# \mu)}{\mathsf{K}_{N}(\mu)} = \frac{1}{\mathsf{K}_{N}(\mu)} \int_{(\mathbb{R}^{\mathsf{d}})^{N}} \exp\left(-\beta N^{\frac{2}{\mathsf{d}}-1} \mathsf{F}_{N}(X_{N}, \Phi \# \mu)\right) d(\Phi \# \mu)^{\otimes N}(X_{N}) \quad (2.1.2)$$

$$= \frac{1}{\mathsf{K}_{N}(\mu)} \int_{(\mathbb{R}^{\mathsf{d}})^{N}} \exp\left(-\beta N^{\frac{2}{\mathsf{d}}-1} \mathsf{F}_{N}(\Phi(X_{N}), \Phi \# \mu)\right) d\mu^{\otimes N}(X_{N}) \quad (2.1.3)$$

$$= \mathbb{E}_{\mathsf{Q}_{N}(\mu)} \left(\exp\left(-\beta N^{\frac{2}{\mathsf{d}}-1} (\mathsf{F}_{N}(\Phi(X_{N}), \Phi \# \mu) - \mathsf{F}_{N}(X_{N}, \mu))\right), \quad (2.1.4)$$

其中 Q_N 是等式(1.2.20)中定义的 Gibbs 测度。因此,我们只需估计 $F_N(\Phi_t(X_N), \Phi_t \# \mu)$ 沿着输运 $\Phi_t = \mathrm{Id} + t\psi$ 的变化,其中 $\mu_t = \Phi_t \# \mu$ 是概率密度,我们将在引理2.3.6中 给出当 t 足够小时这一部分的估计。

2.2 运输函数选择

回忆:

$$L := \frac{1}{\mathsf{c}_{\mathsf{d}}\mu_{\theta}}\Delta,\tag{2.2.1}$$

并且从(1.2.9)中已知, μ_{θ} 在 C^3 中是一致有界的。这样, L 的迭代 L^k 满足估计

$$|L^k(\xi)|_{C^{\sigma}} \le C \sum_{m=\min(2k,2)}^{2k+\sigma} |\xi|_{C^m} \stackrel{\text{def}}{=} 2k + \sigma \le 3,$$
 (2.2.2)

其中 C 是依赖于 V, σ, k 的常数,在下面我们将反复使用这个结论。

我们现在选择 ψ 来定义 $\tilde{\mu}_{\theta}^t$,根据定义, μ_{θ}^t 是与 $V_t=V+t\xi$ 相关的热平衡测度,满足在 \mathbb{R}^d 中有等式

$$g * \mu_{\theta}^t + V + t\xi + \frac{1}{\theta} \log \mu_{\theta}^t = C_t$$
 (2.2.3)

成立。与等式(1.1.8)进行比较并对关于 t 变量级数展开进行线性化,我们发现应该选择满足等式

$$-g * (\operatorname{div}(\psi \mu_{\theta})) + \xi - \frac{1}{\theta \mu_{\theta}} \operatorname{div}(\psi \mu_{\theta}) = 0$$
 (2.2.4)

的函数 ψ 。

我们可以解出

$$\psi = -\frac{\nabla h}{\mathsf{c}_\mathsf{d} \mu_\theta}$$

其中 h 满足等式

$$-\frac{\Delta h}{\mathsf{C}_{\mathsf{c}}\theta\mu_{\theta}} + h = \xi$$

然而这个 ψ 无法在 ξ 的支撑上局部化,并且很难得到一个精细的有界性估计。

因此, 首先我们选择运输映射为

$$\psi := -\frac{\nabla \xi}{\mathsf{c}_{\mathsf{d}} \mu_{\theta}},\tag{2.2.5}$$

接着我们使用两个不同的测度逼近来克服这个困难,第一个是用 ψ 运输 μ_{θ} ,即

$$\tilde{\mu}_{\theta}^{t} := (\mathrm{Id} + t\psi) \# \mu_{\theta}; \tag{2.2.6}$$

第二个是

$$\nu_{\theta}^{t} := \mu_{\theta} + \frac{t}{\mathsf{c}_{\mathsf{d}}} \Delta \xi, \tag{2.2.7}$$

其中 ν_{θ}^{t} 是 $\tilde{\mu}_{\theta}^{t}$ 的一个很好的逼近,同时由于 ν_{θ}^{t} 是(2.2.3)的近似解,因此也很容易计算。

我们注意到 $\nu_{\theta}^t - \mu_{\theta}$ 支撑在包含 supp ξ 的 Q_{ℓ} 中,由于 $\int \nu_{\theta}^t = \int \mu_{\theta} = 1$ 和条件(1.2.4),而 supp $\xi \subset \hat{\Sigma}$, $\mu_{\theta} \geq \frac{\alpha}{2c_d}$,为了使 ν_{θ}^t 成为概率密度,只需满足条件

$$||t\Delta\xi||_{L^{\infty}} < \frac{\alpha}{4},\tag{2.2.8}$$

我们还需要条件

$$\left\| t \frac{1}{\mu_{\theta}} \nabla \xi \right\|_{L^{\infty}} < \frac{\alpha}{2\mathsf{c}_{\mathsf{d}}} \quad \text{fil} \quad \left| t \frac{1}{\mu_{\theta}} \nabla \xi \right|_{C^{1}} < \frac{\alpha}{2\mathsf{c}_{\mathsf{d}}}, \tag{2.2.9}$$

以确保(2.2.5)对 ψ 的定义满足

$$|t|(|\psi|_{L^{\infty}} + |\psi|_{C^1}) < 1,$$
 (2.2.10)

这是为了保证在对运输后的配分函数进行微分时,存在一个关于 t 的收敛邻域。

2.3 引理及证明

下面我们将证明一些引理来帮助我们后续估计误差余项,其中大部分引理的证明思路都与[11]中的定理相似,我们只是略做修改并填补证明中的缺漏。

引理 2.3.1 我们有:

$$\mathcal{E}_{\theta}^{V_t}(\nu_{\theta}^t) - \mathcal{E}_{\theta}^{V}(\mu_{\theta}) - t \int_{\mathbb{R}^d} \xi d\mu_{\theta} = t^2 v(\xi) + O\left(\frac{t^3}{\theta} \int_{\mathbb{R}^d} \mu_{\theta} |L(\xi)|^3\right), \tag{2.3.1}$$

其中 $v(\xi) := \frac{3}{2\mathsf{C}_\mathsf{d}} \int_{\mathbb{R}^d} \left| \nabla \xi \right|^2 + \frac{1}{2\theta} \int_{\mathbb{R}^d} \mu_\theta \left| L(\xi) \right|^2$ 。

证明 首先我们有

$$\begin{split} \mathcal{E}_{\theta}^{V_t}(\nu_{\theta}^t) - \mathcal{E}_{\theta}^{V}(\mu_{\theta}) \\ &= \left(\frac{1}{2} \iint \mathbf{g}(x-y) d\nu_{\theta}^t(x) d\nu_{\theta}^t(y) - \frac{1}{2} \iint \mathbf{g}(x-y) d\mu_{\theta}(x) d\mu_{\theta}(y) + \int V_t d\nu_{\theta}^t - \int V d\mu_{\theta}\right) \\ &\quad + \frac{1}{\theta} \left(\int \nu_{\theta}^t \log \nu_{\theta}^t - \int \mu_{\theta} \log \mu_{\theta}\right) \\ &= \frac{1}{2} \iint \mathbf{g}(x-y) d(\nu_{\theta}^t - \mu_{\theta})(x) d(\nu_{\theta}^t - \mu_{\theta})(y) + \iint \mathbf{g}(x-y) d(\nu_{\theta}^t - \mu_{\theta})(x) d\mu_{\theta}(y) \\ &\quad + \int V d(\nu_{\theta}^t - \mu_{\theta}) + t \int \xi d\mu_{\theta} + t \int \xi d(\nu_{\theta}^t - \mu_{\theta}) + \frac{1}{\theta} \left(\int \nu_{\theta}^t \log \nu_{\theta}^t - \int \mu_{\theta} \log \mu_{\theta}\right) \\ &= \frac{1}{2} \iint \mathbf{g}(x-y) d(\nu_{\theta}^t - \mu_{\theta})(x) d(\nu_{\theta}^t - \mu_{\theta})(y) + \int (\mathbf{g} * \mu_{\theta} + V + \frac{1}{\theta} \log \mu_{\theta}) d(\nu_{\theta}^t - \mu_{\theta}) \\ &\quad + t \int \xi d\mu_{\theta} + t \int \xi d(\nu_{\theta}^t - \mu_{\theta}) + \frac{1}{\theta} \int \nu_{\theta}^t (\log \nu_{\theta}^t - \log \mu_{\theta}), \end{split}$$

因为 μ_{θ} 在等式(1.1.8)中的定义, 右边的第二项为 0, 对等式中的 log 函数使用 Taylor 展开, 我们得到

$$\begin{split} &\mathcal{E}_{\theta}^{V_t}(\nu_{\theta}^t) - \mathcal{E}_{\theta}^{V}(\mu_{\theta}) - t \int \xi d\mu_{\theta} \\ &= \frac{1}{2\mathsf{c}_\mathsf{d}} \int |\nabla (\mathsf{g} * (\nu_{\theta}^t - \mu_{\theta}))|^2 + t \int \xi d(\nu_{\theta}^t - \mu_{\theta}) + \frac{1}{2\theta} \int \mu_{\theta} \left(\frac{\nu_{\theta}^t}{\mu_{\theta}} - 1\right)^2 + O\left(\frac{1}{\theta} \int \left(\frac{\nu_{\theta}^t}{\mu_{\theta}} - 1\right)^3 \mu_{\theta}\right), \end{split}$$

然后我们使用等式(2.2.7)和 L 的定义,以及

$$\mathbf{g} * \left(\nu_{\theta}^t - \mu_{\theta}\right) = -t\xi \tag{2.3.2}$$

得到:

$$|\nabla(\mathbf{g}*(\nu_{\theta}^t - \mu_{\theta}))|^2 = t^2 |\nabla\xi|^2$$

和

$$\frac{\nu_{\theta}^t}{\mu_{\theta}} = 1 + tL(\xi)$$

结合在一起代入等式之中即可得到结论。

引理 2.3.2

$$\varepsilon_t := \mathbf{g} * \nu_{\theta}^t + V + t\xi + \frac{1}{\theta} \log \nu_{\theta}^t - C_{\theta}, \tag{2.3.3}$$

其中 C_{θ} 如(1.1.8)定义,我们有 $\operatorname{supp} \varepsilon_{t} \subseteq \operatorname{supp} \xi$ 并且

$$|\varepsilon_t|_{C^1} \le Ct^2 \frac{1}{\theta} |\xi|_{C^2} |\xi|_{C^3} + C\frac{t}{\theta} (|\xi|_{C^2} + |\xi|_{C^3}).$$
 (2.3.4)

注 2.3.1 注意

$$g * \mu_{\theta} + V + \frac{1}{\theta} \log \mu_{\theta} = C_{\theta}$$

我们可以看到 ε_t 实际上是两个关于不同概率测度 $(\nu_\theta^t 与 \mu_\theta)$ 对应的式子(1.1.8)中的常数之差。

证明 由 ν_{θ}^{t} 的定义,注意到

$$g * \left(\nu_{\theta}^t - \mu_{\theta}\right) = -t\xi \tag{2.3.5}$$

支撑在 $\operatorname{supp}\xi$ 之中。又 $\operatorname{g}*\mu_{\theta}+V+\frac{1}{\theta}\log\mu_{\theta}=C_{\theta}$,用等式(1.1.8) 和定义 (2.2.1)

及 (2.2.7), 我们推出

$$\begin{split} \varepsilon_t &= \mathbf{g} * \boldsymbol{\nu}_{\theta}^t + \boldsymbol{V} + t\boldsymbol{\xi} + \frac{1}{\theta}\log\boldsymbol{\nu}_{\theta}^t - \boldsymbol{C}_{\theta} = -t\boldsymbol{\xi} + \frac{1}{\theta}\log\left(1 + \frac{t}{\mathsf{c}_\mathsf{d}}\frac{1}{\mu_{\theta}}\Delta\boldsymbol{\xi}\right) \\ &= \frac{1}{\theta}(\log(1+f) - f) + \frac{t}{\theta}L(\boldsymbol{\xi}), \end{split}$$

其中

$$f := \frac{t}{\mathsf{c}_{\mathsf{d}}\mu_{\theta}} \Delta \xi = tL(\xi)$$

因此 ε_t 也支撑在 $\operatorname{supp} \xi$ 之中。

由条件(1.2.9), $\phi \sigma = 1$, 得到

$$|f|_{C^1} \le Ct(|\xi|_{C^2} + |\xi|_{C^3}) \le Ct|\xi|_{C^3},$$
 (2.3.6)

又 $\nabla(\log(1+f)-f) = \left(\frac{1}{1+f}-1\right)\nabla f$, 将上式代人原式中得到:

$$|\varepsilon_{t}|_{C^{1}} \leq \frac{C}{\theta} |f|_{C^{1}} ||f||_{L^{\infty}} + C \frac{t}{\theta} (|\xi|_{C^{2}} + |\xi|_{C^{3}}) \leq C \frac{t^{2}}{\theta} |\xi|_{C^{3}} |\xi|_{C^{2}} + C \frac{t}{\theta} (|\xi|_{C^{2}} + |\xi|_{C^{3}})$$

$$(2.3.7)$$

因此引理成立。

接下来的引理来自[11]中的引理 5.4。

引理 2.3.3 我们有:

$$\left|\log \mathbb{E}_{\mathsf{Q}_{N}(\nu_{\theta}^{t})}\left(\exp\left(-\theta \int_{\mathbb{R}^{\mathsf{d}}} \varepsilon_{t} d\left(\sum_{i=1}^{N} \delta_{x_{i}} - N\nu_{\theta}^{t}\right)\right)\right)\right| \leq C\sqrt{\chi(\beta)}\beta N^{1+\frac{1}{\mathsf{d}}}\ell^{\mathsf{d}}|\varepsilon_{t}|_{C^{1}} + C\theta N\ell^{\mathsf{d}}|\varepsilon_{t}|_{C^{1}}^{2}.$$
(2.3.8)

引理 2.3.4 简记 $\#I_N$ 为 $\#I_{U_\ell}$, 令

$$\Xi(t) := \mathsf{F}_{N}^{U_{\ell}}((\mathrm{Id} + t\psi)(X_{N}), (\mathrm{Id} + t\psi)\#\mu_{\theta}) + \left(\frac{\#I_{N}}{4}\log N\right)\mathbf{1}_{\mathsf{d}=2} + C_{0}\#I_{N}N^{1-\frac{2}{\mathsf{d}}}$$
(2.3.9)

其中 $C_0 > 0$ 只依赖 μ 在 Ω 内的上界。如果 $t|\psi|_{C^1(U_\ell)}$ 足够小,我们有

$$\Xi(t) \le C\Xi(0),\tag{2.3.10}$$

$$|\Xi'(t)| \le C|\psi|_{C^1(U_\ell)}\Xi(t),$$
 (2.3.11)

其中 C 只依赖 d 和 $\|\mu_{\theta}\|_{L^{\infty}}$,并且,如果 $t|\psi|_{C^{2}}N^{-\frac{1}{d}}\log(\ell N^{\frac{1}{d}})$ 足够小,对任意的 $\alpha'>0$ 和 $0<\sigma\leq 1$,我们有

$$|\Xi''(t)| \leq C \left[|\psi|_{C^{1}}^{2} \left(1 + N^{-\frac{1}{d}} |\tilde{\mu}_{\theta}^{t}|_{C^{1}(U_{\ell})} + N^{-\frac{2}{d}} |\tilde{\mu}_{\theta}^{t}|_{C^{2}(U_{\ell})} \right) + |\psi|_{C^{2}} |\psi||_{L^{\infty}} (1 + N^{-\frac{\sigma}{d}} |\tilde{\mu}_{\theta}^{t}|_{C^{\sigma}(U_{\ell})}) \right]$$

$$+ |\psi|_{C^{1}} |\psi|_{C^{2}} N^{-\frac{1}{d}} \log(\ell N^{\frac{1}{d}}) (1 + N^{-\frac{2}{d}} |\tilde{\mu}_{\theta}^{t}|_{C^{2}(U_{\ell})}) \right]$$

$$\times \left((N^{\frac{1}{d}} \ell)^{\alpha'(d-2)} \mathbf{1}_{d \geq 3} + \log(\ell N^{\frac{1}{d}}) \mathbf{1}_{d=2} \right) \Xi(t)$$

$$+ \ell^{-1} ||\psi||_{L^{\infty}} |\psi|_{C^{1}} \left[(N^{\frac{1}{d}} \ell)^{-1} \left(1 + N^{-\frac{1+\sigma}{d}} |\tilde{\mu}_{\theta}^{t}|_{C^{1+\sigma}(U_{\ell})} + N^{-\frac{1}{d}} |\tilde{\mu}_{\theta}^{t}|_{C^{1}(U_{\ell})} \right) \Xi(t) \mathbf{1}_{d=2}$$

$$+ \left(\left((N^{\frac{1}{d}} \ell)^{1-2\alpha'} (1 + N^{-\frac{1+\sigma}{d}} |\tilde{\mu}_{\theta}^{t}|_{C^{1+\sigma}(U_{\ell})}) + (N^{\frac{1}{d}} \ell)^{1-\alpha'} N^{-\frac{1}{d}} |\tilde{\mu}_{\theta}^{t}|_{C^{1}(U_{\ell})} \right) \Xi(t)$$

$$+ (N^{\frac{1}{d}} \ell)^{1-2\alpha'} N^{-\frac{1}{d}} \Xi(t)^{\frac{d-1}{d-2}} \mathbf{1}_{d \geq 3} \right],$$

其中 $\tilde{\mu}_{\theta}^t$ 定义在等式(2.2.6), C 只依赖维数 d, $\|\mu_{\theta}\|_{L^{\infty}(U_{\ell})}$ 和 $t|\psi|_{C^1}$ 的上界还有

 $t|\psi|_{C^2}N^{-\frac{1}{\mathsf{d}}}\log(\ell N^{\frac{1}{\mathsf{d}}})$ 。同时也有

$$|\Xi''(t)| \leq C \left[|\psi|_{C^{1}}^{2} \left(1 + N^{-\frac{1}{d}} t |\psi|_{C^{2}} + N^{-\frac{2}{d}} (t^{2} |\psi|_{C^{2}}^{2} + t |\psi|_{C^{3}}) \right) + |\psi|_{C^{2}} |\psi|_{L^{\infty}} (1 + N^{-\frac{1}{d}} t |\psi|_{C^{2}}) \right]$$

$$(2.3.13)$$

$$+ |\psi|_{C^{1}} |\psi|_{C^{2}} N^{-\frac{1}{d}} \log(\ell N^{\frac{1}{d}}) \left(1 + N^{-\frac{2}{d}} (t^{2} |\psi|_{C^{2}}^{2} + t |\psi|_{C^{3}}) \right) \right]$$

$$\times \left((N^{\frac{1}{d}} \ell)^{\alpha'(d-2)} \mathbf{1}_{d \geq 3} + \log(\ell N^{\frac{1}{d}}) \mathbf{1}_{d = 2} \right) \Xi(t)$$

$$+ \ell^{-1} ||\psi||_{L^{\infty}} |\psi|_{C^{1}} \left[(N^{\frac{1}{d}} \ell)^{-1} \left(1 + N^{-\frac{2}{d}} (t^{2} |\psi|_{C^{2}}^{2} + t |\psi|_{C^{3}}) + t N^{-\frac{1}{d}} |\psi|_{C^{2}} \right) \Xi(t) \mathbf{1}_{d = 2}$$

$$+ \left(\left((N^{\frac{1}{d}} \ell)^{1-2\alpha'} \left(1 + N^{-\frac{2}{d}} (t^{2} |\psi|_{C^{2}}^{2} + t |\psi|_{C^{3}}) \right) + (N^{\frac{1}{d}} \ell)^{1-\alpha'} N^{-\frac{1}{d}} (1 + t |\psi|_{C^{2}}) \right) \Xi(t)$$

$$+ (N^{\frac{1}{d}} \ell)^{1-2\alpha'} N^{-\frac{1}{d}} \Xi(t)^{\frac{d-1}{d-2}} \right) \mathbf{1}_{d \geq 3} ,$$

其中 C 只依赖 μ_{θ} 的范数, μ_{θ} 的下界还有维数 d。

注 2.3.2 这是我们代替循环方程方法的关键一步。

证明 在 [11] 中的命题 $4.2 \diamondsuit \mu = \mu_{\theta}$,因此我们得到 (2.3.12)。

然后注意到,我们有

$$|(\mathrm{Id} + t\psi) \# \mu_{\theta}|_{C^{1}} \le C (|\mu_{\theta}|_{C^{1}} + |t\psi|_{C^{2}}),$$
 (2.3.14)

$$|(\mathrm{Id} + t\psi) \# \mu_{\theta}|_{C^{2}} \le C \left(|\mu_{\theta}|_{C^{2}} + (|\mu_{\theta}|_{C^{1}} + |t\psi|_{C^{2}})(1 + |t\psi|_{C^{2}}) + |t\psi|_{C^{3}} \right)$$
(2.3.15)

代入(2.3.12)中,因此我们得到(2.3.13)。

引理 2.3.5 (局部法则) 我们有:

$$\log \mathbb{E}_{\mathsf{Q}_{N}(U,\mu_{\theta})} \left(\exp \left(\frac{1}{2} \beta \left(N^{\frac{2}{\mathsf{d}}-1} \mathsf{F}_{N}^{Q_{\ell}}(\cdot,\mu_{\theta},U) + \left(\frac{\mathsf{n}}{4} \log N \right) \mathbf{1}_{\mathsf{d}=2} \right) + C \# \left(\{X_{\mathsf{n}}\} \cap Q_{\ell} \right) \right) \right)$$

$$< C \beta \chi(\beta) N \ell^{\mathsf{d}}, \quad (2.3.16)$$

其中 ℓ 定义在 (1.2.10)中,而 n := $N\mu(U)$ 。

证明 直接在 [11] 中的命题 3.7 中令 $\mu = \mu_{\theta}$ 即可得到结论

注 2.3.3 这给了我们关于二阶 Coulomb 能量 Laplace 变换的一个上界估计。

引理 2.3.6 在引理 2.3.4中,记 $A_1(X_N, \mu_\theta, \psi) := \Xi'(0)$,并定义配分函数的比较函数为

$$\mathcal{Z}(\beta,\mu) := -\beta \int_{\mathbb{R}^d} \mu^{2-\frac{2}{d}} f_{\mathsf{d}}(\beta \mu^{1-\frac{2}{d}}) - \frac{\beta}{4} \left(\int_{\mathbb{R}^d} \mu \log \mu \right) \mathbf{1}_{\mathsf{d}=2}, \tag{2.3.17}$$

令 $\mathcal{B}_1(\beta, \mu_{\theta}, \psi)$ 是函数 $\mathcal{Z}(\beta, \tilde{\mu}_{\theta}^t)$ 在 t = 0 的导数。

若

$$|\psi|_{C^k} \le C\ell^{-k-1} \quad \stackrel{\text{def}}{=} \quad 0 \le k \le 3$$
 (2.3.18)

和 $t\ell^{-2} < 1$ 足够小,则对任意 t 满足:

$$|t| < t_0 := C^{-1} \left(\max_{s \in [0, D_N(\psi)]} \mathcal{R}_s \right)^{\frac{1}{2}} D_N(\psi),$$
 (2.3.19)

其中

$$D_{N}(\psi)^{-2} := \begin{cases} \ell^{-4} \log(N^{\frac{1}{2}}\ell) & \mathsf{d} = 2\\ \ell^{-4} \left(\log(\ell N^{\frac{1}{\mathsf{d}}})(N^{\frac{1}{\mathsf{d}}}\ell)^{\alpha'(\mathsf{d}-2)} + (N^{\frac{1}{\mathsf{d}}}\ell)^{1-\alpha'} + (N^{\frac{1}{\mathsf{d}}}\ell)^{1-2\alpha' + \frac{\mathsf{d}}{\mathsf{d}-2}} \right) & \mathsf{d} \geq 3 \end{cases}$$

$$(2.3.20)$$

和

$$\mathcal{R}(N,\ell,\mu) := \max\left(x(1+|\log x|), (y^{\frac{1}{2}}+y)(1+|\log y|^{\frac{1}{d}})\right)$$
(2.3.21)

以及

$$x := \frac{\rho_{\beta}}{\ell N^{\frac{1}{d}}}, \quad y := \frac{\rho_{\beta} |\mu|_{C^1}}{N^{\frac{1}{d}}}$$
 (2.3.22)

如果 d=2, 我们有

$$\log \frac{\mathsf{K}_N(\tilde{\mu}_{\theta}^t)}{\mathsf{K}_N(\mu_{\theta})} = tN \frac{\beta}{4} \int_{\mathbb{P}^d} \operatorname{div}\left(\psi \mu_{\theta}\right) \log \mu_{\theta}$$

+
$$O\left(t\beta\chi(\beta)N\ell^{\mathsf{d}}\left(\max_{s\in[0,D_N(\psi)]}\mathcal{R}_s\right)^{\frac{1}{2}}D_N(\psi)^{-1}\right);$$
 (2.3.23)

如果 $d \ge 3$, 我们有

$$\log \frac{\mathsf{K}_{N}(\tilde{\mu}_{\theta}^{t})}{\mathsf{K}_{N}(\mu_{\theta})} = tN\left(1 - \frac{2}{\mathsf{d}}\right) \int_{\mathbb{R}^{\mathsf{d}}} \operatorname{div}\left(\psi\mu_{\theta}\right) \left(f_{\mathsf{d}}(\beta\mu_{\theta}^{1 - \frac{2}{\mathsf{d}}}) + \beta\mu_{\theta}^{1 - \frac{2}{\mathsf{d}}} f_{\mathsf{d}}'(\beta\mu_{\theta}^{1 - \frac{2}{\mathsf{d}}})\right) + O\left(t\beta N\ell^{\mathsf{d}}\left(\max_{s \in [0, D_{N}(\psi)]} \mathcal{R}_{s}\right)^{\frac{1}{2}} D_{N}(\psi)^{-1}\right) + o(1). \quad (2.3.24)$$

证明 首先我们定义"好事件"为

$$G = \begin{cases} (\mathbb{R}^{\mathsf{d}})^N & \mbox{$\stackrel{\text{d}}{=}$ } \mathsf{d} = 2 \\ \{X_N : \mathsf{F}_N^{Q_\ell}(X_N) \leq M(N\ell^{\mathsf{d}})N^{1-\frac{2}{\mathsf{d}}}\} & \mbox{$\stackrel{\text{d}}{=}$ } \mathsf{d} \geq 3 \end{cases}$$

其中 M 是某个常数。

应用引理2.3.4, 我们可以得到关于二阶 Coulomb 能量沿着运输的控制:

$$\mathsf{F}_N^{Q_\ell}(\Phi_t(X_N), \Phi_t \# \mu_\theta) \le C \mathsf{F}_N^{Q_\ell}(X_N, \mu_\theta),$$

结合不等式 (2.3.16) 和引理2.3.4,如果选择 M 和 N 足够大,此时有

$$\log \mathbb{P}_{N,\beta}(G^c) \le -\frac{1}{2} M \beta N \ell^{\mathsf{d}}, \tag{2.3.25}$$

同时我们也有

$$\log \frac{\mathsf{K}_N(\tilde{\mu}_{\theta}^t)}{\mathsf{K}_N(\mu_{\theta})} = \log \mathbb{E}_{\mathsf{Q}_N(\mu_{\theta})} \left(\exp \left(-\beta N^{\frac{2}{\mathsf{d}}-1} \left(\mathsf{F}_N^{Q_{\ell}}(\Phi_t(X_N), \Phi_t \# \mu_{\theta}) - \mathsf{F}_N^{Q_{\ell}}(X_N, \mu_{\theta}) \right) \right) \right)$$

$$= \log \mathbb{E}_{\mathsf{Q}_{N}(\mu_{\theta})} \left(\mathbf{1}_{G} \exp \left(-\beta N^{\frac{2}{\mathsf{d}}-1} \left(\mathsf{F}_{N}^{Q_{\ell}}(\Phi_{t}(X_{N}), \Phi_{t} \# \mu_{\theta}) - \mathsf{F}_{N}^{Q_{\ell}}(X_{N}, \mu_{\theta}) \right) \right) \right) + o(1),$$

$$(2.3.26)$$

这可以从等式(1.2.20)中得到。

接下来我们利用不等式(2.3.13), (2.3.18)以及条件 $t\ell^{-2} < 1$, 先考虑维数 $\mathbf{d} = 2$ 时, 我们有

$$\log \frac{\mathsf{K}_{N}(\tilde{\mu}_{\theta}^{t})}{\mathsf{K}_{N}(\mu_{\theta})} = \log \mathbb{E}_{\mathsf{Q}_{N}(\mu_{\theta})} \left[\exp \left(-\beta t \mathsf{A}_{1}(X_{N}, \mu_{\theta}, \psi) + t^{2}O\left(D_{N}(\psi)^{-2}\beta(N\ell^{\mathsf{d}} + \mathsf{F}_{N}^{Q_{\ell}}(X_{N}, \mu_{\theta}))\right) \right) \right]. \quad (2.3.27)$$

令

$$\gamma = \beta N^{\frac{2}{d} - 1} \mathsf{A}_1(X_N, \mu_{\theta}, \psi) + N \mathcal{B}_1(\beta, \mu_{\theta}, \psi), \tag{2.3.28}$$

同时由[11]中的引理 7.1, 我们得到

$$\log \mathbb{E}_{\mathsf{Q}_{N}(\mu_{\theta})} \left(\exp \left(-t\gamma + O\left(\beta t^{2} D_{N}(\psi)^{-2} \left(N\ell^{\mathsf{d}} + \mathsf{F}_{N}^{Q_{\ell}}(X_{N}, \tilde{\mu}_{\theta}^{t}) \right) \right) \right) \right)$$

$$= O\left(t^{2} N\ell^{\mathsf{d}} |\psi|_{C^{1}}^{2} \beta \chi(\beta) \right) + O\left(\beta \chi(\beta) N\ell^{\mathsf{d}}(\mathcal{R}_{t} + \mathcal{R}_{0}) \right),$$

再次使用柯西不等式和不等式 (2.3.16),我们推出: 如果 $|t|D_N(\psi)^{-1} < C^{-1}$ (C > 2),则可以得到

$$\log \mathbb{E}_{\mathbf{Q}_N(\mu_{\theta})} \left(\mathbf{1}_G \exp\left(-\frac{1}{2} t \gamma \right) \right) = O\left(\beta \chi(\beta) N \ell^{\mathsf{d}} \left(t^2 D_N(\psi)^{-2} + \mathcal{R}_t + \mathcal{R}_0 \right) \right). \tag{2.3.29}$$

对于维数 d≥3 我们使用不等式 (2.3.13)推出

$$\log \frac{\mathsf{K}_{N}(\tilde{\mu}_{\theta}^{t})}{\mathsf{K}_{N}(\mu_{\theta})} = \log \mathbb{E}_{\mathsf{Q}_{N}(\mu_{\theta})} \left[\mathbf{1}_{G} \exp \left(-\beta N^{\frac{2}{\mathsf{d}}-1} t \mathsf{A}_{1}(X_{N}, \mu_{\theta}, \psi) \right) \right. \\ \left. + \beta N^{\frac{2}{\mathsf{d}}-1} t^{2} O\left(\left(\left(\ell^{-4} \log(\ell N^{\frac{1}{\mathsf{d}}}) (N^{\frac{1}{\mathsf{d}}} \ell)^{\alpha'(\mathsf{d}-2)} + \ell^{-4} (N^{\frac{1}{\mathsf{d}}} \ell)^{1-\alpha'} \right) \left(\mathsf{F}_{N}^{Q\ell} + N^{1-\frac{2}{\mathsf{d}}} N \ell^{\mathsf{d}} \right) \right. \\ \left. + \ell^{-4} (N^{\frac{1}{\mathsf{d}}} \ell)^{1-2\alpha'} N^{-\frac{1}{\mathsf{d}}} \left(\mathsf{F}_{N}^{Q\ell} + N^{2-\frac{2}{\mathsf{d}}} \ell^{\mathsf{d}} \right)^{\frac{\mathsf{d}-1}{\mathsf{d}-2}} \right) \right) \right] + o(1),$$

同上,令(2.3.28)成立,使用引理 2.3.4,注意到在好事件 G 中,我们有等式(2.3.29)也在 $d \geq 3$ 中成立,并且只相差一个 o(1),这是因为在(2.3.20)中 $D_N(\psi)$ 的选择。

我们现在选择 $\alpha < D_N(\psi)$ 足够小, 使得

$$\frac{\alpha^2}{D_N(\psi)^2} \le C(\mathcal{R}_0 + \mathcal{R}_\alpha)$$

成立。同时我们令

$$\alpha = C^{-1} \left(\max_{t \in [0, D_N(\psi)]} \mathcal{R}_t \right)^{\frac{1}{2}} D_N(\psi),$$

如果 $\max_{t \in [0, D_N(\psi)]} \mathcal{R}_t$ 有界,我们可以选择常数 C,使得 $\alpha < D_N(\psi)$ 成立。

由此得到

$$\log \mathbb{E}_{\mathbf{Q}_{N}(\mu_{\theta})} \left(\mathbf{1}_{G} \exp\left(-\alpha \gamma\right) \right) = O\left(\beta \chi(\beta) N \ell^{\mathsf{d}} \max_{t \in [0, D_{N}(\psi)]} \mathcal{R}_{t} \right) + o(1) \mathbf{1}_{\mathsf{d} \geq 3}, \quad (2.3.30)$$

同样地,我们可以应用上述讨论于 - α 上,得到另一个等式。

使用 Hölder 不等式,我们推出如果 t/α 足够小,即当(2.3.19) 成立时,我们有

$$\left| \log \mathbb{E}_{\mathsf{Q}_{N}(\mu_{\theta})} \left(\mathbf{1}_{G} \exp \left(\gamma t \right) \right) \right| \leq C \frac{|t|}{\alpha} \left| \log \mathbb{E}_{\mathsf{Q}_{N}(\mu_{\theta})} \left(\mathbf{1}_{G} \exp \left(-\alpha \gamma \right) \right) \right|$$
 (2.3.31)

$$\leq C \frac{|t|}{\alpha} \beta \chi(\beta) N \ell^{\mathsf{d}} \max_{s \in [0, D_N(\psi)]} \mathcal{R}_s + o(1) \mathbf{1}_{\mathsf{d} \geq 3}, \qquad (2.3.32)$$

将(2.3.28) 和(2.3.32) 带入 (2.3.27)之中,然后再次使用 α 的定义和引理2.3.5中的不等式(2.3.16), 我们得到

$$\log \frac{\mathsf{K}_N(\tilde{\mu}_{\theta}^t)}{\mathsf{K}_N(\mu_{\theta})} = tN\mathcal{B}_1(\beta, \mu_{\theta}, \psi) + O\left(t\beta\chi(\beta)N\ell^{\mathsf{d}}D_N(\psi)^{-1}\left(\max_{t\in[0, D_N(\psi)]}\mathcal{R}_t\right)^{\frac{1}{2}}\right) + O\left(\beta\chi(\beta)N\ell^{\mathsf{d}}t^2D_N(\psi)^{-2}\right) + o(1)\mathbf{1}_{\mathsf{d}\geq 3},$$

并且用条件(2.3.19),我们可以将第二项误差与第一项合并。

最后, 当维数 d = 2 时, 我们可以直接计算出

$$\mathcal{B}_1(\beta, \mu_{\theta}, \psi) = \frac{\beta}{4} \int_{\mathbb{R}^d} \operatorname{div} (\psi \mu_{\theta}) \log \mu_{\theta},$$

在维数 $d \ge 3$ 时, 我们有

$$\mathcal{B}_{1}(\beta,\mu_{\theta},\psi) = \left(1 - \frac{2}{\mathsf{d}}\right)\beta\int_{\mathbb{D}\mathsf{d}}\operatorname{div}\left(\psi\mu_{\theta}\right)\left(f_{\mathsf{d}}(\beta\mu_{\theta}^{1 - \frac{2}{\mathsf{d}}}) + \beta\mu_{\theta}^{1 - \frac{2}{\mathsf{d}}}f_{\mathsf{d}}'(\beta\mu_{\theta}^{1 - \frac{2}{\mathsf{d}}})\right),$$

代入上述等式之中即可得到所需结论。

引理 2.3.7 如果 $V \in C^7$, 则我们有

$$|\log \mathsf{K}_N(\nu_{\theta}^t) - \log \mathsf{K}_N(\tilde{\mu}_{\theta}^t)|$$

$$\leq C\beta\chi(\beta)N\ell^{\mathsf{d}}t^{2}\left((|\xi|_{C^{1}}+|\xi|_{C^{3}})+|\xi|_{C^{1}}|\xi|_{C^{3}}+\ell(|\xi|_{C^{1}}|\xi|_{C^{2}}+|\xi|_{C^{1}}|\xi|_{C^{4}}+|\xi|_{C^{2}}|\xi|_{C^{2}})\right),\tag{2.3.33}$$

其中 C 只依赖 μ_{θ} 在 $\operatorname{supp} \xi$ 至多 C^3 的范数。

证明 我们在 [11] 中的
$$(7.24)$$
 令 $q = 0$ 即可得到结论。

最后介绍的引理来自 [4] 中的定理 2.3.6。

引理 2.3.8 (Gärtner–Ellis) 对于一列取值于 \mathbb{R}^d 中的随机向量 (Z_n) , 其中 Z_n 有分布 μ_n 和对数矩母函数 $\Lambda_n(\lambda) \triangleq \log E\left[e^{\langle \lambda, Z_n \rangle}\right]$ 。

若对任意 λ , $\Lambda(\lambda) \triangleq \lim_{n \to \infty} \frac{1}{n} \Lambda_n(n\lambda)$ 都存在,并且 $\Lambda(\cdot)$ 的 Fenchel-Legendre 变换 $\Lambda^*(x)$ 是光滑函数,则我们有:

(a) 对任意闭集 F,我们有

$$\limsup_{n \to \infty} \frac{1}{n} \log \mu_n(F) \le -\inf_{x \in F} \Lambda^*(x)$$

(b) 对任意开集 G, 我们有

$$\liminf_{n \to \infty} \frac{1}{n} \log \mu_n(G) \ge -\inf_{x \in G} \Lambda^*(x)$$

3 误差余项的估计

如果(2.2.8)和(2.2.9)都成立,回忆

$$\varepsilon_t := \mathbf{g} * \nu_{\theta}^t + V + t\xi + \frac{1}{\theta} \log \nu_{\theta}^t - C_{\theta}, \tag{3.0.1}$$

我们有表达式

$$\begin{split} \mathcal{H}_N^{V_t}(X_N) &= N^2 \mathcal{E}^{V_t}(\nu_\theta^t) + N \int_{\mathbb{R}^{\mathsf{d}}} (\mathsf{g} * \nu_\theta^t + V_t) d \left(\sum_{i=1}^N \delta_{x_i} - N \nu_\theta^t \right) + \mathsf{F}_N(X_N, \nu_\theta^t) \\ &= N^2 \mathcal{E}^{V_t}(\nu_\theta^t) + N \int_{\mathbb{R}^{\mathsf{d}}} (-\frac{1}{\theta} \log \nu_\theta^t + \varepsilon_t) d \left(\sum_{i=1}^N \delta_{x_i} - N \nu_\theta^t \right) + \mathsf{F}_N(X_N, \nu_\theta^t) \\ &= N^2 \mathcal{E}_\theta^{V_t}(\nu_\theta^t) + \mathsf{F}_N(X_N, \nu_\theta^t) - \frac{N}{\theta} \sum_{i=1}^N \log \nu_\theta^t(x_i) + N \int_{\mathbb{R}^{\mathsf{d}}} \varepsilon_t \, d \left(\sum_{i=1}^N \delta_{x_i} - N \nu_\theta^t \right), \end{split}$$

其中 \mathcal{E}^V_{θ} 定义在等式(1.1.6)中。将其代入到 $Z^{V_t}_{N,\beta}$ 的定义之中,然后使用 θ 在等式(1.1.7)中的定义,我们得到

$$Z_{N,\beta}^{V_t} = \exp\left(-\beta N^{1+\frac{2}{\mathsf{d}}} \mathcal{E}_{\theta}^{V_t}(\nu_{\theta}^t)\right) \times \int_{\mathbb{R}^{\mathsf{d}}} \exp\left(-\theta \int_{\mathbb{R}^{\mathsf{d}}} \varepsilon_t d\left(\sum_{i=1}^N \delta_{x_i} - N\nu_{\theta}^t\right) - \beta N^{\frac{2}{\mathsf{d}}-1} \mathsf{F}_N(X_N, \nu_{\theta}^t)\right) d(\nu_{\theta}^t)^{\otimes N}(X_N),$$

$$(3.0.2)$$

使用定义 (1.2.18) 和等式 (1.2.19), 我们可以将它改写成

$$Z_{N,\beta}^{V_t} = \exp\left(-\beta N^{1+\frac{2}{d}} \mathcal{E}_{\theta}^{V_t}(\nu_{\theta}^t)\right) \mathsf{K}_N(\nu_{\theta}^t) \mathbb{E}_{\mathsf{Q}_N(\nu_{\theta}^t)} \left(\exp\left(-\theta \int_{\mathbb{R}^d} \varepsilon_t d\left(\sum_{i=1}^N \delta_{x_i} - N\nu_{\theta}^t\right)\right)\right). \tag{3.0.3}$$

另一方面, 使用分裂公式 (1.2.12), 我们有

$$Z_{N,\beta}^{V} = \exp\left(-\beta N^{1+\frac{2}{d}} \mathcal{E}_{\theta}^{V}(\mu_{\theta})\right) \mathsf{K}_{N}(\mu_{\theta}), \tag{3.0.4}$$

这可以直接将(1.2.12)插入到 (1.1.4)之中然后使用等式(1.2.20)得到。

则由(3.0.3)和(3.0.4)得到

$$\mathbb{E}_{\mathbb{P}_{N,\beta}}\left(e^{-\beta t N^{\frac{2}{\mathsf{d}}}\sum_{i=1}^{N}\xi(x_{i})}\right) = \frac{Z_{N,\beta}^{V_{t}}}{Z_{N,\beta}^{V}} = \exp\left(-\beta N^{1+\frac{2}{\mathsf{d}}}\left(\mathcal{E}_{\theta}^{V_{t}}(\mu_{\theta}^{t}) - \mathcal{E}_{\theta}^{V}(\mu_{\theta})\right)\right) \frac{\mathsf{K}_{N}(\mu_{\theta}^{t})}{\mathsf{K}_{N}(\mu_{\theta})},\tag{3.0.5}$$

其中 μ_{θ}^{t} 是与 V_{t} 相关的热平衡测度。

结合使用等式(2.1.4)和(3.0.5), 我们得到

$$\mathbb{E}_{\mathbb{P}_{N,\beta}} \left(e^{-t\beta N^{\frac{2}{d}} \sum_{i=1}^{N} \xi(x_{i})} \right) \\
= e^{-\beta N^{1+\frac{2}{d}} \left(\mathcal{E}_{\theta}^{V_{t}}(\nu_{\theta}^{t}) - \mathcal{E}_{\theta}^{V}(\mu_{\theta}) \right)} \frac{\mathsf{K}_{N}(\nu_{\theta}^{t})}{\mathsf{K}_{N}(\mu_{\theta})} \mathbb{E}_{\mathsf{Q}_{N}(\nu_{\theta}^{t})} \left(\exp\left(-\theta \int_{\mathbb{R}^{d}} \varepsilon_{t} d\left(\sum_{i=1}^{N} \delta_{x_{i}} - N\nu_{\theta}^{t} \right) \right) \right) \\
= e^{-\beta N^{1+\frac{2}{d}} \left(\mathcal{E}_{\theta}^{V_{t}}(\nu_{\theta}^{t}) - \mathcal{E}_{\theta}^{V}(\mu_{\theta}) \right)} \frac{\mathsf{K}_{N}(\nu_{\theta}^{t})}{\mathsf{K}_{N}(\tilde{\mu}_{\theta}^{t})} \frac{\mathsf{K}_{N}(\tilde{\mu}_{\theta}^{t})}{\mathsf{K}_{N}(\mu_{\theta})} \mathbb{E}_{\mathsf{Q}_{N}(\nu_{\theta}^{t})} \left(\exp\left(-\theta \int_{\mathbb{R}^{d}} \varepsilon_{t} d\left(\sum_{i=1}^{N} \delta_{x_{i}} - N\nu_{\theta}^{t} \right) \right) \right), \tag{3.0.6}$$

其中

$$\mathsf{K}_{N}(\mu) = \int_{(\mathbb{R}^{\mathsf{d}})^{N}} \exp\left(-\beta N^{\frac{2}{\mathsf{d}}-1} \mathsf{F}_{N}(X_{N}, \mu)\right) d\mu^{\otimes n}(X_{n}). \tag{3.0.7}$$

使用高斯震荡的定义 (1.1.9), 我们可以得到

$$\left|\log \mathbb{E}_{\mathbb{P}_{N,\beta}}\left(\exp\left(-t\beta N^{\frac{2}{\mathsf{d}}}\mathrm{Fluct}(\xi)\right)\right) - t^2 N^{1+\frac{2}{d}}\beta v(\xi) + tN\beta m(\xi)\right| \leq \sum_{i=1}^{4} |\mathsf{Error}_i|,$$

其中

$$\begin{split} |\mathsf{Error}_1| &= \beta N^{1+\frac{2}{d}} |\mathcal{E}^{V_t}_{\theta}(\nu^t_{\theta}) - \mathcal{E}^{V}_{\theta}(\mu_{\theta}) - t \int_{\mathbb{R}^d} \xi d\mu_{\theta} - t^2 v(\xi)|, \\ |\mathsf{Error}_2| &= \left|\log \mathbb{E}_{\mathsf{Q}_N(\nu^t_{\theta})} \left(\exp\left(-\theta \int_{\mathbb{R}^d} \varepsilon_t \, d\left(\sum_{i=1}^N \delta_{x_i} - N \nu^t_{\theta}\right)\right)\right)\right|, \\ |\mathsf{Error}_3| &= \left|\log \frac{\mathsf{K}_N(\tilde{\mu}^t_{\theta})}{\mathsf{K}_N(\mu_{\theta})} + t N \beta m(\xi)\right|, \\ |\mathsf{Error}_4| &= \left|\log \frac{\mathsf{K}_N(\tilde{\nu}^t_{\theta})}{\mathsf{K}_N(\tilde{\mu}^t_{\theta})}\right|, \\ v(\xi) &= \frac{3}{2\mathsf{C}_4} \int_{\mathbb{R}^d} |\nabla \xi|^2 + \frac{1}{2\theta} \int_{\mathbb{R}^d} \mu_{\theta} \left|L(\xi)\right|^2, \end{split}$$

$$m(\xi) = \begin{cases} \frac{1}{4} \int_{\mathbb{R}^2} \left(\frac{\Delta \xi}{\mathsf{c}_2}\right) \log \mu_{\theta} & \stackrel{\text{def}}{=} d = 2\\ \left(1 - \frac{2}{\mathsf{d}}\right) \int_{\mathbb{R}^\mathsf{d}} \left(\frac{\Delta \xi}{\mathsf{c}_\mathsf{d}}\right) \left(f_\mathsf{d}(\beta \mu_{\theta}^{1 - \frac{2}{\mathsf{d}}}) + \beta \mu_{\theta}^{1 - \frac{2}{\mathsf{d}}} f_\mathsf{d}'(\beta \mu_{\theta}^{1 - \frac{2}{\mathsf{d}}})\right) & \stackrel{\text{def}}{=} \mathsf{d} \geq 3 \end{cases}$$

接下来我们固定 β 和 ℓ ,假设 t 是依赖 N 的变量,我们想要估计这些误差余项的阶数。

3.1 第一项误差

使用引理 2.3.1和 $\theta = \beta N^{\frac{2}{d}}$, 我们有

$$|\mathsf{Error}_1| = O\left(\frac{t^3}{\theta} \int_{\mathbb{R}^d} \mu_\theta \left| L(\xi) \right|^3 \right) = O\left(N^{-\frac{2}{d}} t^3 \right).$$

3.2 第二项误差

结合引理 2.3.2和引理 2.3.3, 我们有

$$\begin{split} |\mathsf{Error}_2| & \leq C \sqrt{\chi(\beta)} \beta N^{1 + \frac{1}{d}} \ell^{\mathsf{d}} |\varepsilon_t|_{C^1} + C \theta N \ell^{\mathsf{d}} |\varepsilon_t|_{C^1}^2 \\ & \leq C(\beta, \ell) (N^{1 + \frac{1}{d}} (t^2 \frac{1}{\theta} |\xi|_{C^2} |\xi|_{C^3} + C \frac{t}{\theta} (|\xi|_{C^2} + |\xi|_{C^3})) + \beta N (t^2 \frac{1}{\theta} |\xi|_{C^2} |\xi|_{C^3} + C \frac{t}{\theta} (|\xi|_{C^2} + |\xi|_{C^3}))^2) \\ & = O \left(t^2 N^{1 - \frac{2}{d}} \right), \quad (3.2.1) \end{split}$$

其中 $C(\beta, \ell)$ 是依赖 β 和 ℓ 的常数。

3.3 第三项误差

当维数 d=2 时, $D_N(\psi)$ 定义在 (2.3.20) 中,满足

$$C^{-1}\ell^2 \left(\log(\ell N^{\frac{1}{d}})\right)^{-\frac{1}{2}} \le D_N(\psi) \le C\ell^2$$
 (3.3.1)

在 $d \ge 3$ 时, 我们有

$$C^{-1}\ell^{2} \left(\log(\ell N^{\frac{1}{d}}) (N^{\frac{1}{d}}\ell)^{\alpha'(\mathsf{d}-2)} + (N^{\frac{1}{d}}\ell)^{1-\alpha'} + (N^{\frac{1}{d}}\ell)^{1-2\alpha' + \frac{\mathsf{d}}{\mathsf{d}-2}} \right)^{-\frac{1}{2}} \le D_{N}(\psi) \le C\ell^{2}, \tag{3.3.2}$$

我们现在取

$$\alpha' = \frac{2\mathsf{d} - 2}{\mathsf{d}(\mathsf{d} - 2)} \tag{3.3.3}$$

使得上面的不等式取到最好, 因此得到

$$D_N(\psi)^{-1} \le C\ell^{-2} (N^{\frac{1}{d}}\ell)^{1-\frac{1}{d}}, \tag{3.3.4}$$

并且代入 R 的定义之中, 我们可以得到上界为

$$\max_{s \in [0, C\ell^2]} \mathcal{R}_s = C \left(\frac{N^{\frac{1}{\mathsf{d}}} \ell}{\rho_\beta} \right)^{-\frac{1}{2}} \left(\log \frac{N^{\frac{1}{\mathsf{d}}} \ell}{\rho_\beta} \right)^{\frac{1}{\mathsf{d}}}, \tag{3.3.5}$$

结合引理 2.3.6 和(3.3.4)中的估计还有等式(3.3.5), 我们有

$$|\mathsf{Error}_3| = O\left(t\beta\chi(\beta)N\ell^{\mathsf{d}}\left(\max_{s\in[0,D_N(\psi)]}\mathcal{R}_s\right)^{\frac{1}{2}}D_N(\psi)^{-1}\right)$$

$$= \begin{cases} O\left(tN^{\frac{7}{8}}\log^{\frac{3}{4}}N\right) & \overset{\text{d}}{=} \mathsf{d} = 2\\ O\left(tN^{1+\frac{3}{4d}-\frac{1}{d^2}}\right) & \overset{\text{d}}{=} \mathsf{d} \geq 3 \end{cases}$$

3.4 第四项误差

我们直接使用引理2.3.7,得到

$$\begin{split} |\mathsf{Error}_4| &\leq C\beta\chi(\beta)N\ell^{\mathsf{d}}t^2\left((|\xi|_{C^1} + |\xi|_{C^3}) + |\xi|_{C^1}|\xi|_{C^3} + \ell(|\xi|_{C^1}|\xi|_{C^2} + |\xi|_{C^1}|\xi|_{C^4} + |\xi|_{C^2}|\xi|_{C^2})\right) \\ &= O\left(Nt^2\right). \end{split}$$

4 定理证明

为了选择 t 的值,我们先由 5.3 节中的等式 (3.3.1), (3.3.4) 和 (3.3.5)得到以下估计:

$$\left(\max_{t\in[0,D_N(\psi)]} \mathcal{R}_t\right)^{\frac{1}{2}} D_N(\psi) = \begin{cases} O\left(N^{-\frac{1}{8}}\right) & \overset{\text{uf}}{=} d = 2\\ O\left(N^{-\frac{5}{4d} + \frac{1}{d^2}}\right) & \overset{\text{uf}}{=} d \geq 3 \end{cases}$$

这是为了保证后续选择的 t 满足引理2.3.6的条件。

4.1 维数 d=2

我们取 $t = -\tau N^{-1}\ell^2$, 其中 $|\tau| \le \tau_N$, τ_N 满足当 $N \to \infty$ 时, $\tau_N \to \infty$ 和 $\frac{\tau_N}{N_N^2} \to 0$, 因此我们有

$$|t| \ll \ell^2$$

同时也可以保证引理 2.3.6 中的条件成立。

将第三章误差估计中的 t 替换掉,可以得到他们的阶的估计:

$$\begin{split} |\mathsf{Error}_1| &= O\left(\tau_N^3 N^{-4}\right), \\ |\mathsf{Error}_2| &= O\left(\tau_N^2 N^{-2}\right), \\ |\mathsf{Error}_3| &= O\left(\tau_N N^{-\frac{1}{8}} \log^{\frac{3}{4}} N\right), \\ |\mathsf{Error}_4| &= O\left(\tau_N^2 N^{-1}\right), \end{split}$$

因此我们得到

$$\exp\left(-\tau^2\ell^4\beta v(\xi)\right)\mathbb{E}_{\mathbb{P}_{N,\beta}}\left(\exp\left(\tau\beta\ell^2\{\mathrm{Fluct}(\xi)-m(\xi)\}\right)\right) = \exp\left(O\left(\tau_N^4N^{-4}\right)\right). \tag{4.1.1}$$

对任意 $s \in \mathbb{R}$, 令 $\tau = s\tau_N$, 在两边取对数并除以 τ_N^2 , 我们得到

$$\Lambda(s) := \lim_{N \to \infty} \frac{1}{\tau_N^2} \log \mathbb{E}_{\mathbb{P}_{N,\beta}} \left(\exp\left(\tau_N s \left\{ \text{Fluct}(\xi) - m(\xi) \right\} \right) \right) \\
= \lim_{N \to \infty} \frac{1}{\tau_N^2} \log \mathbb{E}_{\mathbb{P}_{N,\beta}} \left(\exp\left\{\tau_N s \text{Fluct}(\xi) \right\} \right) \\
= \ell^4 \beta \frac{3s^2}{2c_2} \int_{\mathbb{R}^2} |\nabla \xi|^2 = s^2 r(\xi),$$

其中

$$r(\xi) := \ell^4 \beta \frac{3}{2\mathsf{c}_2} \int_{\mathbb{R}^2} \left| \nabla \xi \right|^2,$$

我们可以看出 $\Lambda(s)$ 显然是光滑函数,因此满足引理2.3.8的条件。同时我们可以得到 $\Lambda(s)$ 的 Fenchel-Legendre 变换为

$$J(x) := \frac{x^2}{r(\xi)},$$

最后应用引理2.3.8, 我们可以得到 $\frac{\ell^2 \beta}{T_N}$ Fluct(ξ) 的大偏差原理。

再在等式(4.1.1)中取 $\tau = ix\beta^{-1}\ell^{-2}$,其中 i 是虚数单位, $x \in \mathbb{R}$ 。下面固定变量 x,使其在 \mathbb{R} 中的某个紧致集中,我们有

$$\phi_N(x) := \mathbb{E}_{\mathbb{P}_{N,\beta}} \left(\exp\left(ix \{ \text{Fluct}(\xi) - m(\xi) \} \right) \right)$$
(4.1.2)

$$= \exp\left(x^2 \beta^{-1} v(\xi) + O\left(N^{-\frac{1}{8}} \log^{\frac{3}{4}} N\right)\right) \tag{4.1.3}$$

$$= \exp\left(-x^{2}\beta^{-1}\frac{3}{2c_{2}}\int_{\mathbb{R}^{2}}\left|\nabla\xi\right|^{2} - x^{2}\beta^{-1}\frac{1}{2\theta}\int_{\mathbb{R}^{2}}\mu_{\theta}\left|L(\xi)\right|^{2} + O\left(N^{-\frac{1}{8}}\log^{\frac{3}{4}}N\right)\right)$$
(4.1.4)

 $= \exp\left(-x^2 \beta^{-1} \frac{3}{2c_2} \int_{\mathbb{R}^2} |\nabla \xi|^2 + O\left(N^{-1}\right) + O\left(N^{-\frac{1}{8}} \log^{\frac{3}{4}} N\right)\right)$ (4.1.5)

$$= \phi(x) \exp\left(O\left(N^{-\frac{1}{8}} \log^{\frac{3}{4}} N\right)\right),\tag{4.1.6}$$

其中

$$\phi(x) := \exp\left(\frac{-3x^2}{2c_2\beta} \int_{\mathbb{R}^2} |\nabla \xi|^2\right)$$

是正态分布 $N(0, \frac{3}{c_2\beta} \int_{\mathbb{R}^2} |\nabla \xi|^2)$ 的特征函数,而 ϕ_N 是 $\mathrm{Fluct}(\xi) - m(\xi)$ 的特征函数。

因此,我们得到了高斯震荡的特征函数趋向关于正态分布 $N(0, \frac{3}{c_2\beta} \int_{\mathbb{R}^2} |\nabla \xi|^2)$ 的特征函数的渐近速度,即,对 \mathbb{R} 中的任意一个紧致集 K,我们有

$$\sup_{x \in K} |\phi_N(x) - \phi(x)| \le |\exp\left(O\left(N^{-\frac{1}{8}}\log^{\frac{3}{4}}N\right)\right) - 1| \sim O\left(N^{-\frac{1}{8}}\log^{\frac{3}{4}}N\right). \tag{4.1.7}$$

4.2 维数 $d \ge 3$

同理,我们选择 $t=-\tau N^{-\frac{1}{2}-\frac{1}{d}}\ell^2$,其中 $|\tau|\leq \tau_N$, τ_N 满足当 $N\to\infty$ 时, $\tau_N\to\infty$ 和 $\frac{\tau_N}{N^{1+\frac{1}{d^2}-\frac{5}{4d}}}\to 0$ 。

$$\begin{split} |\mathsf{Error}_1| &= O\left(\tau_N^3 N^{-\frac{3}{2} - \frac{5}{d}}\right), \\ |\mathsf{Error}_2| &= O\left(\tau_N^2 N^{-\frac{4}{d}}\right), \\ |\mathsf{Error}_3| &= O\left(\tau_N N^{\frac{1}{2} - \frac{1}{d^2} - \frac{1}{4d}}\right), \\ |\mathsf{Error}_4| &= O\left(\tau_N^2 N^{-\frac{2}{d}}\right), \end{split}$$

因此我们得到

$$\exp\left(-\tau^2\ell^4\beta v(\xi)\right)\mathbb{E}_{\mathbb{P}_{N,\beta}}\left(\exp\left(\tau N^{\frac{1}{d}-\frac{1}{2}}\beta\ell^2\{\mathrm{Fluct}(\xi)-N^{1-\frac{2}{d}}m(\xi)\}\right)\right) = \exp(O\left(\tau_N N^{\frac{1}{2}-\frac{1}{d^2}-\frac{1}{4d}}\right))$$

对任意 $s \in \mathbb{R}$, 令 $\tau = s\tau_N$, 令 $\tau = s\tau_N$, 在两边取对数并除以 τ_N^2 , 我们得到

$$\Lambda(s) := \lim_{N \to \infty} \frac{1}{r_N^2} \log \mathbb{E}_{\mathbb{P}_{N,\beta}} \left(\exp\left(\tau_N s \{ \text{Fluct}(\xi) - N^{1 - \frac{2}{d}} m(\xi) \} \right) \right)$$
(4.2.1)

$$= \ell^4 \beta \frac{3s^2}{2c_d} \int_{\mathbb{R}^d} |\nabla \xi|^2 = s^2 r(\xi), \tag{4.2.2}$$

其中

$$r(\xi) := \ell^4 \beta \frac{3}{2\mathsf{c}_\mathsf{d}} \int_{\mathbb{R}^d} \left| \nabla \xi \right|^2,$$

而 $\Lambda(s)$ 的 Fenchel-Legendre 变换为

$$J(x) := \frac{x^2}{r(\xi)},$$

再应用引理2.3.8,我们同样可以得到 $\frac{\ell^2\beta}{\tau_N}(\mathrm{Fluct}(\xi)-N^{1-\frac{2}{d}}m(\xi))$ 的大偏差原理。

参考文献

- [1] S. Armstrong and S. Serfaty. Local laws and rigidity for coulomb gases at any temperature. *The Annals of Probability*, (1), 2019.
- [2] S. Armstrong and S. Serfaty. Thermal approximation of the equilibrium measure and obstacle problem. Annales de la Faculté des sciences de Toulouse : Mathématiques, (4), 2019.
- [3] G. Cardoso, J.-M. Stéphan, and A. G. Abanov. The boundary density profile of a coulomb droplet. freezing at the edge. *Journal of Physics A: Mathematical and Theoretical*, 54(1):015002, dec 2020.
- [4] A. Dembo and O. Zeitouni. *Large Deviations Techniques and Applications*. Springer Berlin, Heidelberg, 2009.
- [5] F. Gao and J. Mu. Moderate deviations for linear eigenvalue statistics of β -ensembles. Random Matrices: Theory and Applications, 11(2):2250017, 2022.
- [6] K. Johansson. On fluctuations of eigenvalues of random hermitian matrices. Duke Math. J., 91(1):151–204, 1998.
- [7] G. Lambert, M. Ledoux, and C. Webb. Quantitative normal approximation of linear statistics of β-ensembles. The Annals of Probability, 47(5):pp. 2619–2685, 2019.
- [8] T. Leblé and S. Serfaty. Large deviation principle for empirical fields of log and riesz gases. *Inventiones mathematicae*, 210:645–757, 2017.
- [9] T. Leblé and S. Serfaty. Fluctuations of two dimensional coulomb gases. Geometric and Functional Analysis, 28:443–508, 2018.
- [10] S. Serfaty. Coulomb gases and ginzburg-landau vortices, 2015.
- [11] S. Serfaty. Gaussian fluctuations and free energy expansion for coulomb gases at any temperature. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 59(2):1074 1142, 2023.

致 谢

在此处我想要感谢天地,感谢父母;感谢高付清老师对这篇毕业论文的悉心指导和帮助以及评阅这篇论文的老师的审稿;感谢 Ph.D. 项目申请的推荐人:邱彦奇, Maximilian Nitzschner 和高付清老师;感谢在大学期间陪伴我一起成长的张博涵,刘元新,汪润泽,马骐,许宏韬,赵瑞,赵文硕同学;感谢 ChatGPT 教会我使用 LATEX;感谢所有帮助过我的老师和同学!祝武汉大学数学与统计学院的老师们工作顺利;20级全体同学学业有成,前程似锦,希望你们有一片光明的未来!当然,祝你们,也祝我。

随机游动中有一个与 Liouville 定理相似的结论: 定义在 \mathbb{Z}^d 上,关于某个随机游动的有界离散调和函数一定是常值函数。而这一结果与随机游动某个现象有关,当随机游动走得足够远时,便会忘记自己的起始点。希望大家即使已经到达了很远的地方,也能不忘初心。

最后我想用希尔伯特在1930年退休感言的结束语作结:

"我们必将知道,我们终将知道."