

Problem Overview

Predict CO2 emissions (g/km) using car features

Potential Impact:

Quantify CO2 emissions for a given car and driving regimen

Quantify vehicular CO2 emissions in a jurisdiction (city, province, or Canada)

Assess how technology has evolved in reducing CO2 emissions from 1995 - 2023

Target variable: CO2 emissions (g/km)

Features:

- Car year
- Car make
- Vehicle class
- Engine size
- Fuel Type
- Transmission
- Cylinders
- Fuel consumption (city/hwy/combined)

Dataset

Preprocessing and EDA

Strong positive correlation between CO2 emissions and:

Fuel consumption

Cylinders

Engine size

Bigger vehicles emit more CO2

No strong correlation between year of car make and CO2 emissions

Suggests no drastic change in technology

Data Modeling Approach

Linear Regression Decision tree regressor

Random forest

kNN

Data Modeling Approach

Linear Regression

Decision tree regressor

Random forest

kNN

Evaluation Metrics

Root mean squared error (RMSE)

R-squared

Percentage mean absolute error (PMAE) Next Steps

Apply PCA

Decision tree regressor

kNN

Neural Networks

Thank you!