

SQL alapok

- Típusok
- Séma definíció
- Adatbevitel

Structured Query Language

- Szabvány– SQL-99
 - A legtöbb relációs DBMS támogatja (legalábbis kisebb eltérésekkel)
- > Tömör, felhasználóközeli
- Deklaratív
 - Azt mondjuk meg, hogy mit szeretnénk látni, a végrehajtás módját a DBMS-re bízzuk
- "Angol"
- Case-insensitive
 - A szöveg literálok kivételével
 - A nyelvi elemeket nagy betűvel szokás

SQL utasítások

- Adatleíró (Data Definition Language DDL)
 - Felhasználói objektumok kezelése
 - Új objektumok (adatbázisok, relációk, nézetek, kényszerek, ...)
 létrehozása
 - Meglévő objektumok módosítása (pl reláció kibővítése), törlése
 - CREATE, ALTER, DROP...
- Adatelérést vezérlő (Data Control Language DCL)
 - Jogosultság szabályozás (GRANT)

SQL utasítások – 2

- Adatmódosító (Data Manipulation Language DML)
 - Új adatok (példányok, entitások) beszúrása (INSERT)
 - Létező adatok módosítása (UPDATE)
 - Létező adatok törlése (DELETE)
 - Létező adatok lekérdezése, szűrése, rendezése (SELECT)
 - Data Query Language DQL

SQL típusok – Számok

> bit

0..1

> tinyint

0 .. 255 , **MySQL**: **-127..128**

> smallint

 $-2^{15}..+2^{15}-1$

int/integer

 $-2^{31}..+2^{31}-1$

bigint

 $-2^{63} + 2^{63} - 1$

b decimal[(p,s)]

 $-10^{38} + 1 ... 10^{38} - 1$ (0 <= s <= p <= 38)

■ E.g. decimal(5,2): -999.99 .. 999.99

default: decimal(18,0)

> numeric

~ decimal

float [(n)]

 $-1.79*10^{308} ... -2.23*10^{-308}$, 0, $2.23*10^{-308} ... 1.79*10^{308}$

n: bitek száma (1..53, default: 53)

> real

~float

MySQL: mindenhol alkalmazható unsigned változat is

SQL típusok – Sztringek

- char(n) ASCII, fix hossz
- varchar(n) ASCII, változó hossz
- => Maximum: MSSQL: 8000, Oracle: 4000, MySql: 255
- nchar(n), nvarchar(n) unicode
- => Maximum: MSSQL: 4000, Oracle: 2000, MySql: 255
- > varchar(MAX), nvarchar(MAX) MSSQL, 2³¹-1 ill 2³⁰-1 karakter
 - text, ntext (depricated)
- tinytext, text, mediumtext, longtext MySQL
 - 255, 2¹⁶-1, 2²⁴-1, 2³⁰-1 byte

SQL típusok – Dátum és idő

- > date
- > time
- datetime (date+time)
- > timestamp ~datetime, kisebb tartomány

! Eltérő tartományok!

SQL típusok – Egyéb adat

- MySQL
 - binary(n), varbinary(n) : maximum 255 byte
 - tinyblob, **blob**, medimumblob, longblob
 - \square maximum 255, 2^{16} -1, 2^{24} -1, 2^{32} -1 byte
 - □ blob(m) => a megfelelő méretű típus választódik ki automatikusan

SQL kiegészítések

- > ; a sorok végén (MySQL-ben kell, MS SQL-ben opcionális)
- Comment: #, /* */
 - Máshol: --

- Hibakezelés
 - Szintaktikai hibák
 - Végrehajtás közben történő hibák kezelése

SQL – Adatbázis létrehozása

- Új adatbázis létrehozása
 - CREATE DATABASE <adatbázisnév>
 - □ PL CREATE DATABASE test
- Kapcsolódás meglévő adatbázishoz
 - Ugyanazon usernek lehet több adatbázishoz is hozzáférése
 - USE <adatbázisnév>
 - □ PL **USE** test
 - (ORACLE: nincs rá szükség, a készítő user neve (egyben az adatbázis neve) része a tábla nevének (pl Joe.Salary))

SQL – Táblák (relációk) létrehozása

```
> CREATE TABLE <táblanév> (
      <oszlop1> <tipus1> [<megkötések1>],
      <oszlop1> <tipus2> [<megkötések1>],
      [<tábla szintű megkötések>]
  CREATE TABLE Termek (
                             CREATE TABLE Megrendeles(
    Id int,
                               Id int,
    Nev nvarchar(50),
                               Megrendelo nvarchar(50),
    Rakterkeszlet int )
                               Cim nvarchar(50),
                               Datum datetime);
```


SQL – Virtuális oszlopok

- Származtatott érték
 - Akár el is tárolódhat (hatékonysági okokból)
- > MySQL: egyelőre nem támogatott
- MSSQL: Computed column

```
CREATE TABLE Termek (
   Id int,
   Nev nvarchar(50),
   Ar int,
   BruttoAr as (Ar*1.27)) VAGY as Ar*1.27 PERSISTED
```

ORACLE: Virtual column

VAGY

...
BruttoAr NUMBER(5,2) GENERATED ALWAYS as (Ar*1.27) VIRTUAL

BruttoAr as Ar*1.27

SQL – Új adat bevitele

> INSERT INTO <táblanév>
 [(<oszlop1>, <oszlop2>, ...)]
 VALUES(<érték1>, <érték2>, ...)
> PL:
INSERT INTO Termek (Id, Nev, Raktarkeszlet)
VALUES (1, 'Alma', 15)

Sorrend tetszőleges

INSERT INTO Termek VALUES (1, 'Alma', 15)

Az attribútumok sorrendjében

SQL – NULL értékek

- > Egy rekord egy attribútuma nincs beállítva, üres
 - Pl mert nem adunk neki értéket:

INSERT INTO Termek (Id, Raktarkeszlet) VALUES (1, 15)

Vagy mert NULL értéket adunk:

INSERT INTO Termek (Id, Nev, Raktarkeszlet) VALUES(1,NULL,15)

- > Nem csak stringre, <u>bármilyen típusra</u> lehetséges
 - INSERT INTO Termek VALUES (NULL, NULL, NULL)

SQL – NULL értékek – 2

Ha meg akarjuk tiltani, akkor használjuk a NOT NULL opciót

```
CREATE TABLE Termek (
    Id int NOT NULL,
    Nev nvarchar(50) NOT NULL,
    Raktarkeszlet int NOT NULL
)
```

> Hibát okoz pl.

```
INSERT INTO Termek (Id, Nev, Raktarkeszlet) VALUES (1, NULL, 15)
```


SQL – Egyedi értékek, kulcsok

Még nem megoldott az Id egyedisége, megengedett pl

```
INSERT INTO Termek VALUES (1, 'Alma', 15)
INSERT INTO Termek VALUES (1, 'Körte', 25)
```

- Megoldás: unique, primary key
 - unique: különböző értékek, de megengedett a NULL
 - primary key: különböző értékek, és a NULL nem megengedett

```
CREATE TABLE Termek (

Id int PRIMARY KEY,

Nev nvarchar(50) NOT NULL,

Raktarkeszlet int NOT NULL

PRIMARY KEY(Id)

PRIMARY KEY(Id)
```


SQL – Egyedi értékek, kulcsok – 2

- Bár tudjuk biztosítani, hogy ne lehessen azonos kulccsal bejegyzés, honnan tudjuk, hogy mit kell beszúrni?
 - Megoldás 1 (rossz): megnézzük, hogy mi volt eddig a legnagyobb Id, és eggyel nagyobbat használunk
 - ☐ Mi van, ha ezt többen csinálják egyszerre??
 - **Megoldás** 2 : Automatikus generálás
 - MySQL: AUTO_INCREMENT

SQL – Egyedi értékek, kulcsok – 3

MySQL: AUTO_INCREMENT

```
CREATE TABLE Termek (
    Id int PRIMARY KEY AUTO_INCREMENT,
    Nev nvarchar(50) NOT NULL,
    Raktarkeszlet int NOT NULL)

INSERT INTO Termek (Nev, Raktarkeszlet) VALUES ('Alma', 15)
```


SQL – Összetett kulcsok

- Probléma: hogyan garantáljuk a megrendeléstételek egyediségét?
 - Megoldás 1: Külön azonosító (Id) minden rekordhoz
 - MEGRENDELESTETEL (Id, Termekld, MegrendelesId, Db)
 - Probléma: megengedi ugyanazt a terméket többször is, különböző darabszámmal
 - Megoldás 2: összetett kulcs: Termekid+Megrendelesid

```
CREATE TABLE MegrendelesTetel(
TermekId int NOT NULL,

MegrendelesId int NOT NULL,

db int NOT NULL,

PRIMARY KEY(TermekId, MegrendelesId)
)
```


SQL – Alapértelmezett érték

- > Ha egy mezőt nem töltünk ki, akkor NULL értéket kap
- Sokszor létezik alapértelmezett érték, használjuk inkább azt
 - Pl új dolgozónál a prémium 0 Ft
 - A számla fizetőeszköze €
- > Megoldás: **DEFAULT** kulcsszó

```
CREATE TABLE Termek (
    Id int PRIMARY KEY AUTO_INCREMENT,
    Nev nvarchar(50) NOT NULL,
    Raktarkeszlet int NOT NULL DEFAULT 50)
INSERT INTO Termek (Nev) VALUES ('Alma')
```


SQL – Kényszerek

- Probléma: a MEGRENDELESTETEL táblába olyan azonosítókat is be lehet szúrni, amelyekhez nem tartozik termék vagy megrendelés.
- Megoldás: Külső kulcs
 - Egy másik reláció kulcsa, csak azok közül kerülhet ki
 - Mező szinten

```
□ <mező> <típus> ... REFERENCES <tábla>(<mező<sub>2</sub>>)
```

```
CREATE TABLE MegrendelesTetel(
    TermekId int NOT NULL REFERENCES Termek(Id),
    MegrendelesId int NOT NULL REFERENCES Megrendeles(Id),
    db int NOT NULL,
    .
```

PRIMARY KEY(TermekId, MegrendelesId))

SQL – Kényszerek – 2

- Megoldás: Külső kulcs
 - Tábla szinten
 - □ [CONSTRAINT <név>] FOREIGN KEY (<mező>) REFERENCES <tábla>(<mező₂>)
 - MySQL-ben csak a táblaszintű működik

```
CREATE TABLE MegrendelesTetel(
    TermekId int NOT NULL,
    MegrendelesId int NOT NULL,
    db int NOT NULL,
    PRIMARY KEY(TermekId, MegrendelesId),
    CONSTRAINT FK_MT_T FOREIGN KEY (TermekId) REFERENCES Termek(Id),
    CONSTRAINT FK_MT_M FOREIGN KEY (MegrendelesId) REFERENCES
    Megrendeles(Id)
```


SQL – Kényszerek – 3

- Probléma: hogy hivatkozhatunk összetett kulcsra? Hogyan tudunk a megrendeléstételekhez pl megjegyzéseket fűzni?
 - Megoldás: Összetett külső kulcs

```
□ [CONSTRAINT <név>] FOREIGN KEY (<mező1>, <mező2>, ...)
REFERENCES <tábla>(<mező1₂><mező2₂>, ...)
```

```
CREATE TABLE MegrendelesTetelMegjegyzes(
    Id int PRIMARY KEY AUTO_INCREMENT,
    TermekId int NOT NULL,
    MegrendelesId int NOT NULL,
    Megjegyzes nvarchar(1000) NOT NULL,
    CONSTRAINT FK_MTM_MT FOREIGN KEY (TermekId, MegrendelesID)
    REFERENCES MegrendelesTetel(TermekId, MegrendelesId) )
```


SQL – Séma módosítás

- > Tábla törlése
 - DROP TABLE <táblanév>

DROP TABLE MegrendelesTetel

SQL – Séma módosítás – 2

- Új attribútum felvétele
 - ALTER TABLE <táblanév> ADD <új oszlop> <típus> <megköt.>

ALTER TABLE Termek ADD Leiras nvarchar(500) DEFAULT '?'

- Létező attribútum törlése
 - ALTER TABLE <táblanév> DROP COLUMN <oszlopnév>

ALTER TABLE Termek DROP COLUMN Raktarkeszlet

SQL – Séma módosítás – 3

- Létező attribútum tulajdonságainak változtatása
 - MySQL
 - □ ALTER TABLE <táblanév> CHANGE <oszlopnév>
 <új oszlopnév> <új típus> <új megkötések>
 ALTER TABLE Termek CHANGE Nev TeljesNev nvarchar(100) NOT NULL
- ! Inkompatibilis típusnál hiba vagy adatvesztés !

SQL – Séma módosítás – 4

- Létező kényszer törlése
 - ALTER TABLE <táblanév> DROP FOREIGN KEY <FK_név>
 - □ Szabvány (MS, ORACLE) : ALTER TABLE < táblanév > DROP CONSTRAINT < FK_név >

ALTER TABLE MegrendelesTetel DROP FOREIGN KEY FK_MT_T

- Új kényszer felvétele
 - ALTER TABLE <táblanév> ADD CONSTRAINT <név> FOREIGN KEY (...) REFERENCES ...(...)

ALTER TABLE MegrendelesTetel ADD CONSTRAINT FK_MT_T FOREIGN KEY (TermekId) REFERENCES Termek(Id)

- Valósítsuk meg a filmes adatbázist MySQL környezetben!
 - STUDIÓ (Id, Név, Székhely)
 - FILM (Id, Studióld, Cím, Év, Hossz, Műfaj)
 - SZÍNÉSZ (Id, Név, Nem, Születésnap)
 - SZEREPEL(FilmId, SzínészId)

> STUDIÓ (Id, Név, Székhely)

```
CREATE TABLE Studio (
   Id int PRIMARY KEY AUTO_INCREMENT,
   Nev nvarchar(50) NOT NULL,
   Szekhely nvarchar(50) NOT NULL)
```


> FILM (Id, Studióld, Cím, Év, Hossz, Műfaj)

```
CREATE TABLE Film (
  Id int PRIMARY KEY AUTO INCREMENT,
 StudioId int NOT NULL,
 Cim nvarchar(50),
  Ev int not null,
 Hossz int not null,
 Mufaj nvarchar(50),
  CONSTRAINT FK_Film_Studio FOREIGN KEY (StudioId)
       REFERENCES Studio(Id)
```

Hossz: pl percben kifejezve

> SZÍNÉSZ (Id, Név, Nem, Születésnap)

```
CREATE TABLE Szinesz (
   Id int PRIMARY KEY AUTO_INCREMENT,
   Nev nvarchar(100) not null,
   Nem bit not null,
   Szuletesnap datetime
)
```

- Nem: 1 biten tárolható (pl 0 : férfi, 1: nő)
- Születésnap: nem feltétlen ismert

SZEREPEL(FilmId, SzínészId)

```
CREATE TABLE Szerepel (
   FilmId int NOT NULL,
   SzineszId int NOT NULL,
   PRIMARY KEY(FilmID, SzineszId),
   CONSTRAINT FK_Szerepel_Film FOREIGN KEY (FilmId)
        REFERENCES Film(Id),
   CONSTRAINT FK_Szerepel_Szinesz FOREIGN KEY (SzineszId)
        REFERENCES Szinesz(Id)
)
```


DEMO