Hazel Phi: 11-type-constructors

May 8, 2022

NOTES

need to finish up OK* proofs now that unicity is done

SYNTAX

DECLARATIVES

 $\Delta; \Phi \vdash \tau ::> \kappa \mid \tau \text{ has principal (well formed) kind } \kappa$

$$\frac{\Delta; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash \mathsf{bse} ::> \mathsf{S}_{\mathsf{Type}}(\mathsf{bse})} \mathsf{PK-Base} \qquad \frac{\Delta; \Phi_1, t :: \kappa, \Phi_2 \vdash \mathsf{OK}}{\Delta; \Phi \vdash t ::> \mathsf{S}_{\kappa}(t)} \mathsf{PK-Var}$$

$$\frac{\Delta; \Phi \vdash \tau_1 :: \mathsf{Type} \quad \Delta; \Phi \vdash \tau_2 :: \mathsf{Type}}{\Delta; \Phi \vdash \tau_1 \oplus \tau_2 ::> \mathsf{S}_{\mathsf{Type}}(\tau_1 \oplus \tau_2)} \mathsf{PK-} \qquad \frac{\Delta_1, u :: \kappa, \Delta_2; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash (||u||)} \mathsf{PK-EHole}$$

$$\frac{\Delta_1, u :: \kappa, \Delta_2; \Phi \vdash \mathsf{OK} \quad \Delta; \Phi \vdash \tau :: \kappa_1}{\Delta; \Phi \vdash (||\tau||)^u} ::> \mathsf{S}_{\kappa}((||\tau||)^u)} \mathsf{PK-NEHole} \qquad \frac{\Delta_1, u :: \kappa, \Delta_2; \Phi \vdash \mathsf{OK} \quad t \notin \Phi}{\Delta; \Phi \vdash (|t|)^u} ::> \mathsf{S}_{\kappa}((|t|)^u)} \mathsf{PK-Unbound}$$

$$\frac{\Delta; \Phi \vdash (|\tau|)^u}{\Delta; \Phi \vdash \lambda t :: \kappa_1, \tau} ::> \mathsf{S}_{\Pi_{t :: \kappa_1}, \kappa_2}(\lambda t :: \kappa_1, \tau)} \mathsf{PK-} \lambda$$

$$\frac{\Delta; \Phi \vdash \tau_1, \tau_2 ::> \mathsf{S}_{\Pi_{t :: \kappa_1}, \kappa_2}(\lambda t :: \kappa_1, \tau)}{\Delta; \Phi \vdash \tau_1, \tau_2 ::> [\tau_2/t] \kappa_2} \mathsf{PK-Ap}$$

 $\Delta; \Phi \vdash \tau :: \kappa$ τ is well formed at kind κ

$$\frac{\Delta;\Phi \vdash \tau ::> \mathbf{S}_{\kappa}(\tau)}{\Delta;\Phi \vdash \tau ::\kappa} \text{ WFaK-1} \qquad \frac{\Delta;\Phi \vdash \tau ::> \kappa_{1}}{\Delta;\Phi \vdash \tau ::\kappa} \qquad \Delta;\Phi \vdash \kappa_{1} \lesssim \kappa}{\Delta;\Phi \vdash \tau ::\kappa} \text{ WFaK-Subsump}$$

$$\frac{\Delta;\Phi \vdash \tau ::> \kappa}{\Delta;\Phi \vdash \tau ::\kappa} \text{ WFaK-Reit} \qquad \frac{\Delta;\Phi \vdash \tau ::\kappa}{\Delta;\Phi \vdash \tau ::\kappa} \text{ WFaK-Self}$$

$$\frac{\Delta;\Phi \vdash \tau ::\Pi_{t ::\kappa_{3}}.\kappa_{4}}{\Delta;\Phi \vdash \tau ::\Pi_{t ::\kappa_{1}}.\kappa_{2}} \text{ WFaK-IICSKTrans}$$

$$\frac{\Delta;\Phi \vdash \tau ::\Pi_{t ::\kappa_{1}}.\kappa_{2}}{\Delta;\Phi \vdash \tau ::\kappa} \qquad \text{WFaK-Flatten}$$

$$\frac{\Delta;\Phi \vdash \tau ::\kappa}{\Delta;\Phi \vdash \tau ::\kappa} \qquad \text{WFaK-Flatten}$$

 $\Delta; \Phi \vdash \kappa \prod_{\Pi} \Pi_{t::\kappa_1}.\kappa_2$ κ has matched Π -kind $\Pi_{t::\kappa_1}.\kappa_2$

$$\frac{\Delta; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash \mathsf{KHole} \prod_{\Pi} \Pi_{t :: \mathsf{KHole}}.\mathsf{KHole}} \stackrel{\blacksquare}{\longrightarrow} \neg \mathsf{KHole} \qquad \frac{\Delta; \Phi \vdash \kappa \stackrel{\mathtt{norm}}{\equiv} \mathsf{S}_{\mathsf{KHole}}(\tau)}{\Delta; \Phi \vdash \kappa \prod_{\Pi} \Pi_{t :: \mathsf{S}_{\mathsf{KHole}}(\tau)}.\mathsf{S}_{\mathsf{KHole}}(\tau \ t)} \stackrel{\blacksquare}{\longrightarrow} \neg \mathsf{SKHole}} \\ \frac{\Delta; \Phi \vdash \kappa \stackrel{\mathtt{norm}}{\equiv} \Pi_{t :: \kappa_1}.\kappa_2}{\Delta; \Phi \vdash \kappa \prod_{\Pi} \Pi_{t :: \kappa_1}.\kappa_2} \stackrel{\blacksquare}{\sqcap} \neg \Pi}$$

 $\Delta; \Phi \vdash \kappa_1 \stackrel{*}{\equiv} > \kappa_2$ κ_1 singleton reduces to κ_2

$$\frac{\Delta; \Phi \vdash \mathbf{S}_{\mathbf{S}_{\kappa}(\tau_{I})}(\tau) \ \mathsf{OK}}{\Delta; \Phi \vdash \mathbf{S}_{\mathbf{S}_{\kappa}(\tau_{I})}(\tau) \overset{*}{\equiv} \mathbf{S}_{\kappa}(\tau_{I})} \overset{*}{\equiv} \mathsf{>} -1 \qquad \qquad \frac{\Delta; \Phi \vdash \kappa_{I} \overset{*}{\equiv} \mathsf{>} \kappa_{2}}{\Delta; \Phi \vdash \kappa_{I} \overset{*}{\equiv} \mathsf{>} \kappa_{3}} \overset{*}{\equiv} \mathsf{>} -\mathsf{Trans}$$

 $\Delta; \Phi \vdash \kappa_1 \stackrel{\text{norm}}{=} \kappa_2 \mid \kappa_1 \text{ has singleton normal form } \kappa_2$

$$\frac{\Delta; \Phi \vdash \kappa \stackrel{*}{\equiv} > S_{\mathsf{Type}}(\tau)}{\Delta; \Phi \vdash \kappa \stackrel{*}{\equiv} > S_{\mathsf{Type}}(\tau)} \stackrel{\text{norm}}{\equiv} -\mathsf{Type} \qquad \qquad \frac{\Delta; \Phi \vdash \kappa \stackrel{*}{\equiv} > S_{\mathsf{KHole}}(\tau)}{\Delta; \Phi \vdash \kappa \stackrel{\text{norm}}{\equiv} > S_{\mathsf{KHole}}(\tau)} \stackrel{\text{norm}}{\equiv} -\mathsf{KHole}$$

$$\frac{\Delta; \Phi \vdash \kappa \stackrel{*}{\equiv} > S_{\Pi_{t}::\kappa_{1}}.\kappa_{2}(\tau)}{\Delta; \Phi \vdash \kappa \stackrel{\text{norm}}{\equiv} > \Pi_{t}...\kappa_{2}} \stackrel{\text{norm}}{\equiv} -\Pi$$

 $\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2$ κ_1 is equivalent to κ_2

$$\frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi \vdash \kappa \equiv \kappa} \text{ KEquiv-Refl} \qquad \qquad \frac{\Delta; \Phi \vdash \kappa_2 \equiv \kappa_1}{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2} \text{ KEquiv-Symm}$$

$$\frac{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_3 \qquad \Delta; \Phi \vdash \kappa_3 \equiv \kappa_2}{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2} \text{ KEquiv-Trans}$$

$$\frac{\Delta; \Phi \vdash \kappa_1 \stackrel{*}{\equiv} \succ \kappa_2}{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2} \; \text{KEquiv-SReduc} \qquad \qquad \frac{\Delta; \Phi \vdash \kappa_1 \stackrel{\text{norm}}{\equiv} \succ \kappa_2}{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2} \; \text{KEquiv-SNorm}$$

$$\frac{\Delta;\Phi \vdash \kappa_1 \equiv \kappa_2 \qquad \Delta;\underline{\Phi},t :: \kappa_1 \vdash \kappa_3 \equiv \kappa_4}{\Delta;\Phi \vdash \Pi_{t :: \kappa_1}.\kappa_2 \equiv \Pi_{t :: \kappa_3}.\kappa_4} \; \text{KEquiv-}\Pi$$

$$\frac{\Delta; \Phi \vdash \tau_1 \stackrel{\kappa_1}{\equiv} \tau_2 \qquad \Delta; \Phi \vdash \kappa_1 \equiv \kappa_2}{\Delta; \Phi \vdash \mathtt{S}_{\kappa_1}(\tau_1) \equiv \mathtt{S}_{\kappa_2}(\tau_2)} \; \texttt{KEquiv-SKind}$$

 $\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2$ κ_1 is a consistent subkind of κ_2

$$\frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi \vdash \texttt{KHole} \lesssim \kappa} \text{ CSK-KHoleL} \qquad \qquad \frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi \vdash \kappa \lesssim \texttt{KHole}} \text{ CSK-KHoleR}$$

$$\frac{\Delta; \Phi \vdash \mathbf{S}_{\mathtt{KHole}}(\tau) \ \mathsf{OK} \qquad \Delta; \Phi \vdash \kappa \ \mathsf{OK}}{\Delta; \Phi \vdash \mathbf{S}_{\mathtt{KHole}}(\tau) \lesssim \kappa} \ \mathtt{CSK-SKind}_{\mathtt{KHole}} \mathsf{L}$$

$$\frac{\Delta; \Phi \vdash \kappa \text{ OK } \quad \Delta; \Phi \vdash \mathbf{S}_{\texttt{KHole}}(\tau) \text{ OK}}{\Delta; \Phi \vdash \kappa \lesssim \mathbf{S}_{\texttt{KHole}}(\tau)} \text{ CSK-SKind}_{\texttt{KHole}} \mathbf{R}$$

$$\frac{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2}{\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2} \text{ CSK-KEquiv } \frac{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_3}{\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2} \frac{\Delta; \Phi \vdash \kappa_3 \lesssim \kappa_4}{\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2} \text{ CSK-Normal } \frac{\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2}{\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2}$$

$$\frac{\Delta; \Phi \vdash \mathbf{S}_{\kappa}(\tau) \ \mathsf{OK}}{\Delta; \Phi \vdash \mathbf{S}_{\kappa}(\tau) \lesssim \kappa} \ \mathsf{CSK-SKind} \qquad \qquad \frac{\Delta; \Phi \vdash \kappa_{\mathcal{J}} \lesssim \kappa_{1}}{\Delta; \Phi \vdash \Pi_{t::\kappa_{1}}.\kappa_{2} \lesssim \Pi_{t::\kappa_{3}}.\kappa_{4}} \ \mathsf{CSK-\Pi}$$

$$\frac{\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2}{\Delta; \Phi \vdash S_{\kappa_1}(\tau_1) \lesssim S_{\kappa_2}(\tau_2)} \xrightarrow{\text{CSK}-?}$$

 $\Delta; \Phi \vdash \tau_1 \stackrel{\kappa}{=} \tau_2 \mid \tau_1 \text{ is provably equivalent to } \tau_2 \text{ at kind } \kappa$

 $\Delta; \Phi \vdash \mathsf{OK}$ Context is well formed

$$\frac{t \notin \Phi \quad \Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \underline{\Phi, t :: \kappa} \vdash \text{OK}} \text{ CWF-TypVar} \qquad \frac{u \notin \Delta \quad \Delta; \Phi \vdash \kappa \text{ OK}}{\underline{\Delta, u :: \kappa}; \Phi \vdash \text{OK}} \text{ CWF-Hole}$$

ALGORITHM

(syntactically distinguished up to α -equivalence... when needed)

(TODO: remove the '... when needed'. The bound variable renamings should get adjusted)

(NOTE: current implementation has explicit \equiv_{α} checks which are not written in these rules since we eventually want to use De Bruijn indices, hence the above)

 $\Delta; \Phi \triangleright \tau_1 \stackrel{\kappa}{=} \tau_2 \mid \tau_1 \text{ is equivalent to } \tau_2 \text{ at kind } \kappa$

$$\frac{\Delta; \Phi \triangleright \tau_1 \stackrel{\kappa}{\Longrightarrow} \tau_\omega \qquad \Delta; \Phi \triangleright \tau_2 \stackrel{\kappa}{\Longrightarrow} \tau_\omega}{\Delta; \Phi \triangleright \tau_1 \stackrel{\kappa}{\Longrightarrow} \tau_2}$$

 $\Delta; \Phi \triangleright \tau \uparrow \kappa$ τ has natural kind κ

$$\frac{\Delta_1, u :: \kappa, \Delta_2}{\Delta; \Phi \triangleright \mathsf{bse} \uparrow \mathsf{Type}} \qquad \frac{\Delta_1, u :: \kappa, \Delta_2}{\Delta; \Phi \triangleright t \uparrow \kappa} \qquad \frac{\Delta_1, u :: \kappa, \Delta_2}{\Delta; \Phi \triangleright \tau_1 \oplus \tau_2 \uparrow \mathsf{Type}} \qquad \frac{\Delta_1, u :: \kappa, \Delta_2}{\Delta; \Phi \triangleright (\mathbb{D}^{\mathsf{u}} \uparrow \kappa)}$$

$$\frac{\Delta_1, \mathbf{u} :: \kappa, \Delta_2}{\Delta; \Phi \triangleright (\tau)^{\mathbf{u}} \uparrow \kappa} \qquad \frac{\Delta; \Phi \triangleright \tau_1 \uparrow \kappa \qquad \Delta; \Phi \triangleright \kappa \Longrightarrow \Pi_{t :: \kappa_1} . \kappa_2}{\Delta; \Phi \triangleright \tau_1 \ \tau_2 \uparrow [\tau_2/t] \kappa_2}$$

 $\Delta; \Phi \triangleright \mathcal{E}[\tau_1] \leadsto \mathcal{E}[\tau_2]$ | $\mathcal{E}[\tau_1]$ single step weak head reduces to $\mathcal{E}[\tau_2]$

$$\frac{TODO: \ check \ \tau_1 \ against \ \kappa}{\Delta; \Phi \triangleright \mathcal{E}[(\lambda t :: \kappa. \tau) \ \tau_1] \leadsto \mathcal{E}[[\tau_1/t]\tau]} \qquad \frac{\Delta; \Phi \triangleright t \uparrow \mathbf{S}_{\kappa}(\tau)}{\Delta; \Phi \triangleright \mathcal{E}[t] \leadsto \mathcal{E}[\tau]} \qquad \frac{\Delta; \Phi \triangleright t \uparrow \mathbf{S}_{\kappa}(\tau)}{\Delta; \Phi \triangleright \mathcal{E}[t] \leadsto \mathcal{E}[\tau]}$$

$$\frac{\Delta; \Phi \triangleright \tau_1 \oplus \tau_2 \leadsto \tau_1 \oplus \tau_2}{\Delta; \Phi \triangleright \mathcal{E}[\emptyset]^{\mathbf{u}} \leadsto \mathcal{E}[\emptyset]^{\mathbf{u}}} \qquad \frac{\Delta; \Phi \triangleright \mathcal{E}[(\eta)^{\mathbf{u}}] \leadsto \mathcal{E}[(\eta)^{\mathbf{u}}]}{\Delta; \Phi \triangleright \mathcal{E}[(\eta)^{\mathbf{u}}] \leadsto \mathcal{E}[(\eta)^{\mathbf{u}}]}$$

$$\overline{\Delta;\Phi \triangleright \mathcal{E}[(t)^{\mathrm{u}}]} \mathcal{E}[(t)^{\mathrm{u}}] \qquad \overline{\Delta;\Phi \triangleright \lambda t :: \kappa.\tau} \mathcal{E}[(t)^{\mathrm{u}}]$$

 $\Delta; \Phi \triangleright \tau \Downarrow \tau_{\psi}$ τ weak head normalizes to τ_{ψ}

$$\frac{\Delta; \Phi \triangleright \tau \leadsto \tau_{\chi} \qquad \Delta; \Phi \triangleright \tau_{\chi} \Downarrow \tau_{\psi}}{\Delta; \Phi \triangleright \tau \Downarrow \tau_{\psi}} \quad \frac{\Delta; \Phi \triangleright \tau \leadsto \tau}{\Delta; \Phi \triangleright \tau \Downarrow \tau}$$

 $\Delta; \Phi \triangleright \tau \xrightarrow{\kappa} \tau_{\omega}$ τ normalizes to τ_{ω} at kind κ

$$\frac{\Delta;\Phi \triangleright \kappa \Longrightarrow \mathsf{Type} \qquad \Delta;\Phi \triangleright \tau \Downarrow \tau_{\psi} \qquad \Delta;\Phi \triangleright \tau_{\psi} \longrightarrow^{\mathsf{Type}} \tau_{\omega}}{\Delta;\Phi \triangleright \tau \stackrel{\kappa}{\Longrightarrow} \tau_{\omega}} \qquad \qquad \frac{\Delta;\Phi \triangleright \kappa \Longrightarrow \mathsf{KHole} \qquad TODO:}{\Delta;\Phi \triangleright \tau \stackrel{\kappa}{\Longrightarrow} \tau_{\omega}}$$

$$\frac{\Delta; \Phi \triangleright \kappa \Longrightarrow \mathtt{S}_{\mathsf{Type}}(\tau_s) \qquad \Delta; \Phi \triangleright \tau \Downarrow \tau_\psi \qquad \Delta; \Phi \triangleright \tau_\psi \longrightarrow^{\mathsf{Type}} \tau_\omega \qquad TODO: \ prop: \tau_\omega = \tau_s}{\Delta; \Phi \triangleright \tau \stackrel{\kappa}{\Longrightarrow} \tau_\omega}$$

$$\frac{\Delta; \Phi \triangleright \kappa \Longrightarrow \mathsf{S}_{\mathsf{KHole}}(\tau_s) \qquad TODO:}{\Delta; \Phi \triangleright \tau \overset{\kappa}{\Longrightarrow} \tau_\omega} \qquad \frac{\Delta; \Phi \triangleright \kappa \Longrightarrow \Pi_{t::\kappa_{\omega_1}}.\kappa_{\omega_2}}{\Delta; \Phi \triangleright \tau \overset{\kappa}{\Longrightarrow} \lambda t_1::\kappa_{\omega_1}.\tau_\omega} \xrightarrow{\Gamma_t ::\kappa_{\omega_1}} \tau_\omega$$

 $\Delta; \Phi \triangleright \kappa \Longrightarrow \kappa_{\omega}$ κ normalizes to κ_{ω}

$$\frac{\Delta; \Phi \triangleright \mathsf{Type} \Longrightarrow \mathsf{Type}}{\Delta; \Phi \triangleright \mathsf{Type} \Longrightarrow \mathsf{Type}} \qquad \frac{\Delta; \Phi \triangleright \mathsf{K} \Longrightarrow \mathsf{Type}}{\Delta; \Phi \triangleright \mathsf{KHole}} \qquad \frac{\Delta; \Phi \triangleright \kappa \Longrightarrow \mathsf{Type}}{\Delta; \Phi \triangleright \mathsf{S}_{\kappa}(\tau) \Longrightarrow \mathsf{S}_{\mathsf{Type}}(\tau_{\omega})} \\ \frac{\Delta; \Phi \triangleright \kappa \Longrightarrow \mathsf{KHole}}{\Delta; \Phi \triangleright \mathsf{S}_{\kappa}(\tau) \Longrightarrow \mathsf{S}_{\mathsf{KHole}}(\tau_{\omega})} \qquad \frac{\Delta; \Phi \triangleright \kappa \Longrightarrow \mathsf{S}_{\kappa_{1}}(\tau_{1})}{\Delta; \Phi \triangleright \mathsf{S}_{\kappa}(\tau) \Longrightarrow \kappa_{\omega}} \\ \frac{\Delta; \Phi \triangleright \kappa \Longrightarrow \mathsf{\Pi}_{t::\kappa_{1}}.\kappa_{2}}{\Delta; \Phi \triangleright \mathsf{S}_{\kappa}(\tau) \Longrightarrow \tau_{\omega}} \qquad \Delta; \Phi \triangleright \mathsf{S}_{\kappa}(\tau) \Longrightarrow \kappa_{\omega}} \\ \frac{\Delta; \Phi \triangleright \kappa \Longrightarrow \mathsf{\Pi}_{t::\kappa_{1}}.\kappa_{2}}{\Delta; \Phi \triangleright \mathsf{S}_{\kappa}(\tau) \Longrightarrow \mathsf{\Pi}_{t::\kappa_{1}}.\mathsf{S}_{[t_{1}/t]\kappa_{2}}(\tau_{\omega_{1}})} \\ \frac{\Delta; \Phi \triangleright \kappa_{1} \Longrightarrow \kappa_{\omega_{1}}}{\Delta; \Phi \triangleright \mathsf{\Pi}_{t::\kappa_{1}}.\kappa_{2} \Longrightarrow \mathsf{\Pi}_{t::\kappa_{\omega_{1}}}.\omega_{2}}$$

METATHEORY

subderivation preserving inferences:

- premiss
- COK (Context OK)
- PoS (premiss of subderivation)

Lemma 1 (COK). If Δ ; $\Phi \vdash \mathcal{J}$, then Δ ; $\Phi \vdash OK$ in a subderivation (where Δ ; $\Phi \vdash \mathcal{J} \neq \Delta$; $\Phi \vdash OK$)

Proof. By induction on derivations.

No interesting cases.

Lemma 2 (Exchange).

 $\textit{If}\ \Delta; \Phi_1, t_{L1} :: \kappa_{L1}, t_{L2} :: \kappa_{L2}, \Phi_2 \vdash \mathcal{J} \ \textit{and}\ \Delta; \Phi_1, t_{L2} :: \kappa_{L2}, t_{L1} :: \kappa_{L1}, \Phi_2 \vdash \textit{OK}, \ \textit{then}\ \Delta; \Phi_1, t_{L2} :: \kappa_{L2}, t_{L1} :: \kappa_{L1}, \Phi_2 \vdash \mathcal{J}$

Proof. By induction on derivations.

No interesting cases.

(Only rules with Φ extended in the consequent are interesting, which is only CWF-TypVar, but when \mathcal{J} is CWF, Exchange is identity)

Corollary 3 (Marked-Exchange).

$$\textit{If } \Delta; \underline{\Phi, t_{L1} :: \kappa_{L1}}, t_{L2} :: \kappa_{L2} \vdash \mathcal{J} \textit{ and } \Delta; \underline{\Phi, t_{L2} :: \kappa_{L2}}, t_{L1} :: \kappa_{L1} \vdash \textit{OK}, \textit{ then } \Delta; \underline{\Phi, t_{L2} :: \kappa_{L2}}, t_{L1} :: \kappa_{L1} \vdash \mathcal{J}$$

Proof. Exchange when
$$\Phi_2 = \cdot$$

Lemma 4 (Weakening).

If
$$\Delta$$
; $\Phi \vdash \mathcal{J}$ and Δ ; Φ , $t_L :: \kappa_L \vdash OK$ and $t_L \notin \mathcal{J}$ and $\forall t \in \kappa_L$, $t \notin \mathcal{J}$, then Δ ; Φ , $t_L :: \kappa_L \vdash \mathcal{J}$

$$Proof.$$
 see addendum

Lemma 5 (K-Substitution).

If
$$\Delta$$
; $\Phi \vdash \tau_{L1} :: \kappa_{L1}$ and Δ ; $\underline{\Phi}$, $\underline{t_L} :: \kappa_{L1} \vdash \tau_{L2} :: \kappa_{L2}$, then Δ ; $\Phi \vdash [\tau_{L1}/t_L]\tau_{L2} :: [\tau_{L1}/t_L]\kappa_{L2}$ (induction on Δ ; $\underline{\Phi}$, $\underline{t_L} :: \kappa_{L1} \vdash \tau_{L2} :: \kappa_{L2}$)

Lemma 6 (PK-Substitution). If Δ ; $\Phi \vdash \tau_{L1} :: \kappa_{L1}$ and Δ ; $\underline{\Phi}, t_L :: \kappa_{L1} \vdash \tau_{L2} ::> \kappa_{L2}$ and Δ ; $\Phi \vdash [\tau_{L1}/t_L]\tau_{L2} ::> \kappa_{L3}$, then Δ ; $\Phi \vdash [\tau_{L2}/t_L]\kappa_{L2} \equiv \kappa_{L3}$

Lemma 7 (OK-Substitution).

If Δ ; $\Phi \vdash \tau_L :: \kappa_{L1}$ and Δ ; $\underline{\Phi}, t_L :: \kappa_{L1} \vdash \kappa_{L2}$ OK, then Δ ; $\Phi \vdash [\tau_L/t_L]\kappa_{L2}$ OK (induction on Δ ; Φ , $t_L :: \kappa_{L1} \vdash \kappa_{L2}$ OK)

Theorem 8 (OK-PK). If $\Delta; \Phi \vdash \tau ::> \kappa$, then $\Delta; \Phi \vdash \kappa$ OK

Theorem 9 (OK-WFaK). If Δ ; $\Phi \vdash \tau :: \kappa$, then Δ ; $\Phi \vdash \kappa$ OK

Theorem 10 (OK-MatchPi). If Δ ; $\Phi \vdash \kappa \sqcap_{\Pi} \Pi_{t::\kappa_1}.\kappa_2$, then Δ ; $\Phi \vdash \kappa$ OK and Δ ; $\Phi \vdash \Pi_{t::\kappa_1}.\kappa_2$ OK

Theorem 11 (OK-KEquiv). If Δ ; $\Phi \vdash \kappa_1 \equiv \kappa_2$, then Δ ; $\Phi \vdash \kappa_1$ OK and Δ ; $\Phi \vdash \kappa_2$ OK

Theorem 12 (OK-CSK). If $\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2$, then $\Delta; \Phi \vdash \kappa_1$ OK and $\Delta; \Phi \vdash \kappa_2$ OK

Theorem 13 (OK-EquivAK). If Δ ; $\Phi \vdash \tau_1 \stackrel{\kappa}{\equiv} \tau_2$, then Δ ; $\Phi \vdash \tau_1 :: \kappa$ and Δ ; $\Phi \vdash \tau_2 :: \kappa$ and Δ ; $\Phi \vdash \kappa$ OK

Proof. see addendum

Proof.

Weakening

By induction on derivations.

Note: When applying Weakening in the induction, check that the left premiss is always a subderivation, and check variable exclusion conditions are satisfied (usually checked elsewhere in the derivation).

 $\frac{\overline{\Delta; \underline{\Phi, t :: \kappa_1} \vdash \tau ::> \kappa_2} \text{ premiss}}{\Delta; \underline{\Phi, t :: \kappa_1} \vdash \mathsf{OK}} \text{ COK}} \\ \underline{\frac{\Delta; \underline{\Phi, t :: \kappa_1} \vdash \mathsf{OK}}{\Delta; \underline{\Phi \vdash \kappa_1} \; \mathsf{OK}}} \text{ PoS} \\ \underline{\frac{\Delta; \underline{\Phi, t :: \kappa_L} \vdash \mathsf{OK}}{\Delta; \underline{\Phi, t_L :: \kappa_L} \vdash \mathsf{OK}}} \text{ Weakening}}$ $\frac{\Delta;\underline{\Phi,t::\kappa_{\textit{1}}} \vdash \tau ::> \kappa_{\textit{2}}}{\Delta;\underline{\Phi,t::\kappa_{\textit{1}}} \vdash \mathsf{OK}} \frac{\mathsf{premiss}}{t \notin \Phi}$ $t_{\underline{L}} \notin \underline{\Phi, t :: \kappa_{\underline{1}}}$ $\underline{\Delta; \underline{\Phi, t :: \kappa_1} \vdash \kappa_L \mathsf{OK}}$ $t \neq t_L$ $\Delta; \underline{\Phi, t :: \kappa_{1}, t_{L} :: \kappa_{L}} \vdash \mathsf{OK}$ $\Delta; \underline{\Phi, t :: \kappa_{1}, t_{L} :: \kappa_{L}} \vdash \tau ::> \kappa_{2}$ $\Delta; \underline{\Phi, t_L :: \kappa_L} \vdash \kappa_1 \mathsf{OK}$ $t \notin \underline{\Phi, t_L :: \kappa_L}$ $\Delta; \underline{\Phi, t_L :: \kappa_L, t :: \kappa_1} \vdash \mathsf{OK}$ — Marked-Exchange $\frac{\Delta; \underline{\Phi, t_L :: \kappa_L, t :: \kappa_1} \vdash \tau ::> \kappa_2}{\Delta; \underline{\Phi, t_L :: \kappa_L} \vdash \lambda t :: \kappa_1.\tau ::> S_{\Pi_{t :: \kappa_1}.\kappa_2}(\lambda t :: \kappa_1.\tau)}$

 $\frac{\overline{\Delta;\underline{\Phi,t::\kappa_1}\vdash\kappa_3\equiv\kappa_4}\text{ premiss}}{\Delta;\underline{\Phi,t::\kappa_1}\vdash\mathsf{OK}} \overset{\mathsf{COK}}{}{t\notin\Phi}$ $\frac{ \frac{\Delta; \underline{\Phi}, t :: \kappa_{\underline{1}} \vdash \kappa_{\underline{3}} \equiv \kappa_{\underline{4}}}{\Delta; \underline{\Phi}, t :: \kappa_{\underline{1}} \vdash \mathsf{OK}} \text{ premiss}}{\Delta; \underline{\Phi} \vdash \kappa_{\underline{1}} \; \mathsf{OK}} \; \mathsf{C}$ $rac{\overline{t_L
otin \mathcal{J}}}{t
otin t
otin t_L} ext{ IH } rac{\overline{t}
otin \mathcal{J}}{t}$ $\underline{\Delta;\underline{\Phi,t::\kappa_1}} \vdash \kappa_L \mathsf{OK}$ $t_L \notin \underline{\Phi, t :: \kappa_1}$ $\frac{}{\Delta;\Phi,t::\kappa_{1}\vdash\tau::>\kappa_{2}}\;\text{premiss}$ $\Delta; \underline{\Phi, t_L :: \kappa_L} \vdash \kappa_1 \mathsf{OK}$ $t \notin \underline{\Phi, t_L :: \kappa_L}$

 $\Delta; \underline{\Phi, t_L :: \kappa_L} \vdash \Pi_{t :: \kappa_1} . \kappa_2 \equiv \Pi_{t :: \kappa_3} . \kappa_4$

 $\Delta; \underline{\underline{\Phi, t :: \kappa_1}}, t_L :: \kappa_L \vdash \mathsf{OK}$ $\Delta; \underline{\underline{\Phi, t :: \kappa_1}}, t_L :: \kappa_L \vdash \tau ::> \kappa_2$ $\frac{\overline{\Delta;\Phi \vdash \kappa_1 \equiv \kappa_2} \text{ premiss } \overline{\Delta;\underline{\Phi,t_L :: \kappa_L} \vdash \mathsf{OK}} \text{ IH}}{\Delta;\underline{\Phi,t_L :: \kappa_L} \vdash \kappa_1 \equiv \kappa_2} \text{ Weakening}$ $\Delta; \underline{\Phi, t_L :: \kappa_L}, t :: \kappa_1 \vdash \mathsf{OK}$ $\Delta; \underline{\Phi, t_L :: \kappa_L}, t :: \kappa_1 \vdash \kappa_3 \equiv \kappa_4$

O?K-.*
By simultaneous induction on derivations.

The interesting cases per theorem:

K-Substitution by type size??

OK-Substitution

OK-PK

 $\Delta ; \Phi \vdash \mathtt{S}_{\mathtt{Type}}(\mathtt{bse}) \ \mathsf{OK}$

 $\mathbf{OK}\text{-}\mathbf{WFaK}$

 $\overline{\Delta;\Phi \vdash [au_2/t] \kappa_{\it 2\!\!2}} \; {\sf OK} \; {\sf OK ext{-Substitution}}$

Definition 1 (Singleton Depth).

$$SSize: "\{\kappa\}" \to \mathbb{N}$$

$$SSize(\kappa_x) = \begin{cases} SSize(\kappa) + 1 & \text{if } \kappa_x = S_{\kappa}(\tau) \\ 0 & \text{otherwise} \end{cases}$$

Lemma 14 ($\stackrel{*}{\equiv}$ >-diminution). If Δ ; $\Phi \vdash \kappa_L \stackrel{*}{\equiv} \succ \kappa_{L1}$, then $SSize(\kappa_L) > SSize(\kappa_{L1})$

Proof. By induction on derivations (and transitivity of > on \mathbb{N})

Lemma 15 ($\stackrel{*}{\equiv}$ >-n+1-nicity). If Δ ; $\Phi \vdash \kappa_L \stackrel{*}{\equiv}$ κ_{L1} and Δ ; $\Phi \vdash \kappa_L \stackrel{*}{\equiv}$ κ_{L2} where $SSize(\kappa_L) = n+1$ and $SSize(\kappa_{L1}) = SSize(\kappa_{L2}) = n$, then $\kappa_{L1} = \kappa_{L2}$

Proof. By \equiv^* -diminution, \equiv^* -Trans cannot be the last inference of a derivation of Δ ; $\Phi \vdash \kappa_L \equiv^* \succ \kappa_{L1}$ since $SSize(\kappa_1) \ge SSize(\kappa_3) + 2$ (in \equiv^* -Trans). Thus, \equiv^* -1 must have been the last inference. Similarly for Δ ; $\Phi \vdash \kappa_L \equiv^* \succ \kappa_{L2}$, thus $\kappa_{L1} = \kappa_{L2}$

Lemma 16 ($\stackrel{*}{\equiv}$)-stepwise). If Δ ; $\Phi \vdash \kappa_L \stackrel{*}{\equiv} > \kappa_{L1}$ where $SSize(\kappa_L) = m$ and $SSize(\kappa_{L1}) = n$ and m > n+1, then the derivation must contain subderivations of each singleton depth inbetween

Proof. More precisely this says, where m > n by $\stackrel{*}{\equiv} >$ -diminution, the derivation must contain subderivations of each Δ ; $\Phi \vdash \kappa_i \stackrel{*}{\equiv} > \kappa_j$ where $m \geq i > j \geq n$, $SSize(\kappa_k) = k$ when $m \geq k \geq n$, $\kappa_m = \kappa_L$, $\kappa_n = \kappa_{L1}$.

By induction on derivations (base case is where m = n + 2, which necessitates a last inference of $\equiv >$ -Trans. Each premiss must have SSize difference of 1, fulfilling hypothesis)

Lemma 17 ($\stackrel{*}{\equiv}$ >-m+n-nicity). If Δ ; $\Phi \vdash \kappa_L \stackrel{*}{\equiv} \succ \kappa_{L1}$ and Δ ; $\Phi \vdash \kappa_L \stackrel{*}{\equiv} \succ \kappa_{L2}$ where $SSize(\kappa_L) = m+n$ and $SSize(\kappa_{L1}) = SSize(\kappa_{L2}) = n$, then $\kappa_{L1} = \kappa_{L2}$

Proof. By \equiv^* -stepwise and \equiv^* -n+1-nicity when m>n+1.

By $\equiv > -n + 1$ -nicity when m = n + 1.

No other cases by $\equiv >$ -diminution.

Theorem 18 ($\stackrel{\text{norm}}{\equiv}$ -Unicity). If Δ ; $\Phi \vdash \kappa_L \stackrel{\text{norm}}{\equiv} \kappa_{L1}$ and Δ ; $\Phi \vdash \kappa_L \stackrel{\text{norm}}{\equiv} \kappa_{L2}$, then $\kappa_{L1} = \kappa_{L2}$

Proof. (this is a really quick sketch)

All $\stackrel{\text{norm}}{=}$ rules have $\stackrel{*}{=}$ premiss with rhs singleton depth 1. By $\stackrel{*}{=}$ -m+n-nicity, where n=1.

Theorem 19 (Π -Unicity). If Δ ; $\Phi \vdash \tau_L \Pi \kappa_{L1}$ and Δ ; $\Phi \vdash \tau_L \Pi \kappa_{L2}$, then $\kappa_{L1} = \kappa_{L2}$

Proof. (this is a really quick sketch)

Theorem 20 (PK-Unicity). If Δ ; $\Phi \vdash \tau_L ::> \kappa_{L1}$ and Δ ; $\Phi \vdash \tau_L ::> \kappa_{L2}$, then $\kappa_{L1} = \kappa_{L2}$

Proof. (this is a really quick sketch)

As PK is syntax directed, proof is by inspection for all rules except PK- λ (variables in contexts are unique—see context rules), which is by induction on derivations, and PK-Ap, which requires of unicity of Π (above theorem). \square

Theorem 21 (PK-Principality). If Δ ; $\Phi \vdash \tau ::> \kappa_1$ and Δ ; $\Phi \vdash \tau :: \kappa_2$, then Δ ; $\Phi \vdash \kappa_1 \lesssim \kappa_2$

Proof. From definition of Δ ; $\Phi \vdash \tau :: \kappa$ and CSK-SKind

Theorem 22 (why is this here?). If Δ ; $\Phi \vdash \kappa_1 \lesssim S_{\kappa_2}(\tau)$, then Δ ; $\Phi \vdash \kappa_1 \lesssim \kappa_2$

ELABORATION

By unicity of $\stackrel{\text{norm}}{\equiv} >$.