ФГАОУ ВО «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Лабораторная работа	. №6
---------------------	------

Файлы

Вариант № 28

По дисциплине:

Основы программирования

Москва, 2025

Задание 1 (корректировка лабораторной работы №1)

Постановка задачи

Написать программу для расчета по формулам, входные данные берутся из файла, выходные записываются в файл. Предварительно подготовить тестовые кейсы в таблице Excel

$$z_1 = \frac{\sin^2 a - \tan^2 a}{\cos^2 a - \cot^2 a}$$
 $z_2 = \tan^6 a$

Чтение и запись данных должна происходить из соответствующих файлов данных.

Теоретическая часть

Работа с файлами

Программа использует файловый ввод-вывод:

- 1. Входные данные:
 - о Читаются из текстового файла
 - о Каждая строка содержит одно значение угла в градусах
 - о Поддерживается обработка ошибок:
 - Некорректные числовые значения
 - Пустые строки
- 2. Выходные данные:
 - о Записываются в текстовый файл
 - о Для каждого угла выводится:
 - Значение z₁ с точностью до 5 знаков после запятой
 - Значение z₂ с точностью до 5 знаков после запятой
 - о Сообщения об ошибках для некорректных углов

Особенности реализации

- 1. Используемые модули Python:
 - o math для тригонометрических функций
 - о Встроенные функции для работы с файлами
- 2. Обработка ошибок:
 - о Проверка корректности числового ввода
 - о Проверка допустимости углов
 - о Запись ошибок в выходной файл
- 3. Форматирование вывода:
 - о Использование символа градуса (°)
 - о Выравнивание чисел по десятичной точке
 - о Ограничение количества знаков после запятой

Описание программы

Программа написана на алгоритмическом языке Python 3.6, реализована в среде OC Windows 10 и состоит из частей, отвечающих за ввод данных, вычисление и представление данных на экране монитора.

Описание алгоритма

- 1. Инициализация математических функций
- 2. Подготовка файловых операций
 - о Определить функцию process_angles(input_file, output_file)
 - о Открыть файлы:

- Входной файл (input_file) в режиме чтения ('r')
- Выходной файл (output_file) в режиме записи ('w')

3. Обработка входных данных

- Для каждой строки во входном файле:
 - Удалить пробелы/переносы (strip())
 - Попытаться преобразовать строку в число (float())
 - При ошибке преобразования:
 - Записать в выходной файл сообщение об ошибке формата
 - Перейти к следующей строке
- 4. Тригонометрические вычисления
- 5. Завершение работы
 - Закрыть файлы (автоматически при использовании with)
 - о Вывести сообщение о завершении обработки

Описание входных и выходных данных

Входные данные поступают из файла «Входные_данные.txt» в виде строк и преобразуются в вещественные числа. Далее выходные данные записываются в «Выходной файл.txt».

Листинг программы

Результаты и тестовые кейсы

angle degree	a radians	z1 Excel	z2 Excel	z1 Python	z2 Python
30	0,523598776	0,037037037	0,037037037	0.03704	0.03704
45	0,785398163	1	1	1.00000	1.00000
60	1,047197551	27	27	27.00000	27.00000
108	1,884955592	849,8529157	849,8529157	849.85292	849.85292
129	2,251474735	3,54637571	3,54637571	3.54638	3.54638
150	2,617993878	0,037037037	0,037037037	0.03704	0.03704

Задание 2 (корректировка лабораторной работы №4)

Постановка задачи

С использованием модуля Random сформировать одномерный массив, состоящий из n вещественных элементов в котором элементы случайным образом принимают положительный или отрицательный знак и значение от -10 до 10. Для заданного числа amin < y < amax, вычислить:

- 1. Произведение элементов массива, значения модуля которого больше у.
- 2. Сумму модулей остальных элементов.

Чтение и запись данных должна происходить из соответствующих файлов данных.

Теоретическая часть

Данная программа выполняет обработку одномерного массива с использованием генерации случайных чисел, условных операторов, математических вычислений и файловых операций ввода и вывода.

Описание программы

Программа написана на алгоритмическом языке Python 3.6, реализована в среде OC Windows 10 и состоит из частей, отвечающих за ввод данных, вычисление и представление данных на экране монитора.

Описание алгоритма

- 1. Получение входных параметров:
 - о п (размер массива)
 - о у (пороговое значение)
- 2. Генерация массива:
- 3. Вычислительный блок:
 - о Разделение элементов на две группы
 - \circ Вычисление произведения для |x| > y
 - \circ Вычисление суммы модулей для $|x| \le y$
- 4. Формат вывода:
 - о Оригинальный массив
 - о Результаты вычислений
 - о Сообщения об ошибках

Описание входных и выходных данных

Входные данные поступают из файла «input_data.txt» в виде строк и преобразуются в вещественные числа. Далее выходные данные записываются в «output_data.txt».

Листинг программы

```
from random import uniform
import sys

def create_array(n):
    """Cosdaet массив из п случайных чисел от -10 до 10"""
    return [round(uniform(-10, 10), 2) for _ in range(n)] # Округляем до 2 знаков для
читаемости

def calculate(arr, y):
    """Вычисляет произведение и сумму модулей с проверкой корректности у"""
    if not (min(arr) < y < max(arr)):
        raise ValueError(f"y={y} должно быть между {min(arr)} и {max(arr)}")

product = 1
    sum_modules = 0

for num in arr:
    if abs(num) > y:
        product *= num
    else:
        sum_modules += abs(num)

return round(product, 4), round(sum_modules, 4) # Округляем результаты

def process file(input_file, output_file):
    """Oбрабатывает данные из файла и записывает результаты""
    try:
        with open(input_file, 'r') as infile, open(output_file, 'w') as outfile:
        # Читаем все строки, игнорируя пустые
        lines = [line.strip()]
```

```
if len(lines) < 2:</pre>
                raise ValueError("Файл должен содержать минимум 2 строки (n и у)")
               n = int(lines[0])
               y = float(lines[1])
                raise ValueError(f"Ошибка формата данных: {e}")
           outfile.write (f"Исходные данные:\n")
           outfile.write(f"n = {n}\n")
           outfile.write(f"y = {y} \n")
           outfile.write(f"Сгенерированный массив:\n{arr}\n\n")
               product, sum modules = calculate(arr, y)
               outfile.write("Результаты:\n")
                outfile.write(f"1. Произведение элементов с модулем > \{y\}:
{product}\n")
               outfile.write(f"2. Сумма модулей остальных элементов: {sum modules}\n")
               outfile.write(f"Ошибка вычислений: {e}\n")
       print(f"Ошибка: файл {input file} не найден!", file=sys.stderr)
   input_filename = 'Файлы_для_четвертой_лабы/input_data.txt'
   output_filename = 'Файлы_для_четвертой_лабы/output_data.txt'
   process_file(input_filename, output_filename)
   print(f"Обработка завершена. Результаты сохранены в {output_filename}")
```

Результаты работы программы

Задание 3 (корректировка лабораторной работы №5)

Постановка задачи

Произведением двух матриц Amn на Bnl называется такая матрица Cml, для которой:

$$c_{ik} = a_{i1} * b_{1k} + a_{21} * b_{2k} + \dots + a_{in} * b_{nk} = \sum_{j=1}^{n} a_{ij} * b_{jk}$$

То есть элемент c_{ik} матрицы C равен сумме произведений элементов i-й строки матрицы A на соответствующие элементы k-го столбца матрицы B.

Написать программу вычисления произведения двух матриц.

Программа должна по заданным размерностям матриц сообщать о возможности получения такого произведения.

Чтение и запись данных должна происходить из соответствующих файлов данных.

Теоретическая часть

Двумерный массив (матрица) — это структура данных, представляющая собой массив массивов, где каждый элемент имеет два индекса: номер строки и номер столбца. В Python двумерные массивы чаще всего реализуются как:

- Списки списков (list of lists)
- Массивы из библиотеки NumPy
- Матрицы из специализированных библиотек (SciPy, Pandas)

Описание программы

Программа написана на алгоритмическом языке Python 3.6, реализована в среде OC Windows 10 и состоит из частей, отвечающих за ввод данных, вычисление и представление данных на экране монитора.

Описание алгоритма

- 1. Инициализация и подготовка
- 2. Чтение данных из файла
- 3. Проверка возможности умножения
- 4. Умножение матриц
- 5. Запись результатов
- 6. Обработка ошибок
- 7. Завершение работы

Описание входных и выходных данных

Входные данные поступают из файла «input_data.txt» в виде строк и преобразуются в вещественные числа. Далее выходные данные записываются в «output_data.txt

Листинг программы

```
print("Ошибка: одна из матриц пустая")
   rows_B = len(B)
    if cols_A != rows_B:
(\{\text{rows }B\} \times \{len (B[0])\})")
    for row in A:
    for row in B:
           print("Ошибка: несоответствие размеров в матрице В")
   B transposed = list(zip(*B))
            C[i][j] = sum(A[i][k] * B transposed[j][k] for k in range(cols A))
        with open(filename, 'r') as file:
            matrix A = []
                line = file.readline().strip()
                matrix A.append(row)
            matrix B = []
            for line in file:
                matrix B.append(row)
```

```
return matrix A, matrix B
   print(f"Ошибка: файл {filename} не найден")
   print("Ошибка: все элементы должны быть числами!")
    with open(filename, 'w', encoding='utf-8') as file: # Добавляем параметр
        file.write("Матрица A:\n")
        for row in A:
            file.write(' '.join(f"\{x:.4f\}" for x in row) + '\n')
        file.write("\n")
        file.write("Матрица В:\n")
            file.write(' '.join(f''(x:.4f)'' for x in row) + '\n')
        file.write("\n")
        file.write("Матрица C = A×B:\n")
        for row in C:
            file.write(' '.join(f"\{x:.4f\}" for x in row) + '\n')
   print(f"Ошибка записи в файл {filename}")
print("Программа умножения матриц A(m×n) и B(n×l)")
   A, B = read matrices from file('Файлы для пятой лабы/input data.txt')
       write matrices to file('Файлы для_пятой_лабы/output_data.txt', A, B, C)
        print("Результат успешно записан в файл output.txt")
   print("\nПрограмма прервана пользователем")
   print(f"Произошла непредвиденная ошибка: {str(e)}")
        print(f"Произошла непредвиденная ошибка: {str(e)}")
        print("Пожалуйста, проверьте формат входных данных в файле input.txt")
```

Результаты работы программы

Тестовые кейсы

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 12 & 15 & 18 \\ 12 & 15 & 18 \\ 12 & 15 & 18 \end{pmatrix}$$

(Puc. 1)

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \end{pmatrix} = \begin{pmatrix} 55 & 70 & 85 & 100 \\ 70 & 90 & 110 & 130 \\ 85 & 110 & 135 & 160 \\ 100 & 130 & 160 & 190 \end{pmatrix}$$

$$(Puc, 2)$$

Список используемой литературы

- 1. Н.А. Прохоренок, В.А. Дронов, Python 3 и PyQt 5. Разработка приложений: СПб.: БХВ- Петербург, 2017
- 2. В.П. Рядченко, Методическое пособие по выполнению лабораторных работ.