Теория Шура для обыкновенных дифференциальных операторов

Студент 3-го курса группы 326 Родионов Данила Олегович Научный руководитель: Жеглов Александр Борисович

Введение.

Теория Шура для обыкновенных дифференциальных операторов — набор достаточно простых, но эффективных чисто алгебраических теорем, позволяющих работать с обыкновенными дифференциальными операторами.

В этой работе мы применяем эту теорию для исследования некоторых свойств коммутирующих дифференциальных операторов.

Напомним, что известны две классические алгебраические проблемы, связанные с теорией коммутирующих операторов, которые изучались еще в работах И. Шура, Дж. Бурчналла, Т. Чаунди в начале 20 века: как явно построить пару коммутирующих дифференциальных операторов и как классифицировать все коммутативные подалгебры дифференциальных операторов. Обе проблемы имеют обширные связи со многими разделами современной математики, прежде всего с интегрируемыми системами, поскольку явные примеры коммутирующих операторов позволяют строить явные решения многих нелинейных уравнений в частных производных.

Особый интерес представляют примеры коммутирующих операторов с полиномиальными коэффициентами: исследование свойств таких операторов может помочь в решении известной проблемы Диксмье. Напомним, что гипотеза Диксмье утверждает, что всякий эндоморфизм алгебры Вейля является автоморфизмом $End(A_n)\setminus\{0\}=Aut(A_n)$

Определение.

Пусть R — кольцо над полем K, ∂ — K-дифференцирование. Тогда мы можем определить кольцо обыкновенных линейных операторов с коэффициентами из R как множество

$$D(R)\coloneqq R[\partial]=\{\sum_{i=0}^n u_i\partial^i,u_i\in R\}$$
, причем правило композиции определяется так: $\partial^n u=\sum_{i=0}^n C_n^i u^{(i)}\partial^{n-i}$, где $C_n^i=\frac{n(n-1)...(n-i+1)}{i!}$ и $\partial^{(0)}=u$.

([1, ch. 2])

Заметим, что если $P = \sum_{k=0}^{n} a_k \partial^k$, а $Q = \sum_{l=0}^{m} b_l \partial^l$, то $PQ = \sum_{k=0}^{n} \sum_{l=0}^{m} \sum_{0 \le i \le k} C_k^i a_k b_l^{(i)} \partial^{k+l-i}$ Множество $R[\partial]$ с операциями сложения и композиции из определения 1 образуют кольцо над полем K.

Для любого ненулевого оператора $P=\sum_{k=0}^n a_k \partial^k$, $u_n \neq 0$ слагаемое $u_n \partial^n$ будем называть старшим членом $\sigma(P)$ оператора P.

Оператор P будем называть моническим, если слагаемое при старшем порядке $u_n = HT(P) = 1$.

Оператор P будем называть нормированным, если он имеет вид $P = \partial^n + u_{n-2}\partial^{n-2} + \dots + u_0$.

Заметим, что кольцо D содержит другое кольцо, которое носит название *первой алгебры Вейля*. Это кольцо принято обозначать $A_1 = K[x][\partial]$. Иными словами, это кольцо обыкновенных дифференциальных операторов, коэффициентами которых являются многочлены из кольца K[x]. Этот пример крайне важен для общего изучения, так как именно на его свойствах строится гипотеза Диксмье: является ли всякий ненулевой эндоморфизм первой алгебры Вейля её автоморфизмом, т.е. $End(A_1)\setminus\{0\}=Aut(A_1)$?

Эта гипотеза также имеет место и для n-ой алгебры Вейля, которая обозначается как $A_n = K[x_1, ..., x_n][\partial_1, ..., \partial_n]$, где $\partial_i = \frac{\partial}{\partial x_i}$ соответственно. Для неё она имеет ту же формулировку.

Немаловажной задачей является классификация коммутативных подколец дифференциальных операторов с различными коэффициентами. Так, например, рассматривается задача о коммутативных подкольцах кольца $D = K[[x]][\partial]$, где K[[x]] - кольцо рядов от переменной х над полем K.

После того, как мы определили структуру обыкновенных дифференциальных операторов и выяснили их основные свойства, следует ввести понятие псевдодифференциального оператора.

Определение.

Пусть R — кольцо над полем K, и $\partial - K$ — производная. Определим кольцо псевдодифференциальных операторов как $E(R) \coloneqq R \big((\partial^{-1}) \big) = \{ \sum_{i=-\infty}^N u_i \partial^i, \ u_i \in R, N \in \mathbb{Z} \}$, где правило композиции задано как $\partial^n u = \sum_{i=0}^\infty C_n^i u^{(i)} \partial^{n-i}$. Заметим, что E(R) является линейным пространством.

Также
$$P=\sum_{k=0}^n a_k \partial^k$$
, а $Q=\sum_{l=0}^m b_l \partial^l$, то $PQ=\sum_{k=-\infty}^m \sum_{l=-\infty}^m \sum_{i=0}^\infty \mathcal{C}_k^i a_k b_l^{(i)} \partial^{k+l-i}$.

([1, ch. 4, §4.1])

Множество $R((\partial^{-1}))$ со стандартной операцией сложения и композиции из определения 9 образуют кольцо над полем K.

Очевидно, что для кольца обыкновенных дифференциальных операторов выполняется включение $D(R) \subset E(R)$.

Также для кольца E(R) аналогично определяются понятия порядка оператора, а также понятия монического и нормированного псевдодифференциального оператора.

Теорема 11. ([1, ch. 4, §4.1])

Верны следующие утверждения:

- 1. Существует разложение векторного пространства E(R) в прямую сумму своих подалгебр $E(R) = E(R)^{\leq -1} \oplus D(R)$
- 2. Для любого монического оператора $P = \partial^d + a_{d-1}\partial^{d-1} + \cdots$ существует обратный оператор $P = \partial^{-d} + b_{-d-1}\partial^{d-1} + \cdots$.
- 3. Для любого монического оператора $P = \partial^d + a_{d-1}\partial^{d-1} + \cdots$ существует единственный корень степени d т.е. такой оператор, что $(P^{\frac{1}{d}})^d = P$.
- 4. Пусть $\partial: R \to R$ сюрьективно и уравнение $d(Logy) = y^{-1}y' = c$ имеет решения в $R \forall c \in R$.

Тогда для любого оператора первого порядка $L=\partial+u_0+u_{-1}\partial^{-1}+\cdots$ существует обратимый оператор нулевого порядка (оператор Шура) $S=s_0+s_1\partial^{-1}+\cdots$, такой, что $S^{-1}LS=\partial$. Если же \bar{S} - другой оператор с условием $\bar{S}^{-1}LS=\partial$ = и ядро $\ker(\partial)=R$, то существует обратимый оператор нулевого порядка с постоянными коэффициентами S_c , такой, что $S=\bar{S}\,S_c$.

Введенная нами конструкция кольца псевдодифференциальных операторов, а также сформулированная выше теорема позволяет обратиться к классу коммутирующих псевдодифференциальных операторов. Итак, пусть $P \in K[[x]][\partial]$ — монический оператор. Обозначим за B_P множество операторов, коммутирующих с P.

Предложение.

Операторы из множества $S^{-1}B_PS$ коммутируют с ∂ , т.е. имеют постоянные коэффициенты.

Заметим вначале, что коммутатор [,] подчиняется тождеству Лейбница. То есть [AB ,C] =

$$A[B,C] + [A,C]B, \forall A,B,C.$$

Действительно, воспользуемся определением коммутатора: [AB,C] = ABC - CAB,A[B,C] + [A,C]B = ABC - ACB + ACB - CAB = ABC - CAB.

Пусь $Q \in B_P$. По определению это означает: [P,Q]=0. Пусть для определенности ord(P)=d.

Тогда после сопряжения операторов P и Q оператором Шура S получим: $[\partial , S^{-1}QS] = 0$.

Пусть теперь $S^{-1}QS = T$. Надо доказать, что $[\partial, T] = 0$. Теперь воспользуемся свойством коммутатора для равенства $[T, \partial^d] = 0$

То есть $[T, \partial^d] = [T, \partial] \partial^{d-1} + \partial [T, \partial^{d-1}] = 0$. Рекурсивно представим каждое следующее слагаемое вида $[T, \partial^k]$. Тогда для k = d-1 имеем:

$$[T, \partial^{d-1}] = [T, \partial] \partial^{d-2} + \partial [T, \partial^{d-2}] = [T, \partial] \partial^{d-2} + \partial [T, \partial^{d-2}] \partial^{d-3} + \partial^{2} [T, \partial^{d-2}] \partial^{d-4} + \dots + \partial^{d-2} [T, \partial]$$
$$[T, \partial^{d}] = [T, \partial] \partial^{d-1} + \dots + \partial^{d-1} [T, \partial]$$

Пусть $[T,\partial]=F=\sum_{i=0}^N f_i\partial^i, f_N\neq 0.$ Будем рассматривать старшие коэффициенты этой суммы:

 $HT([T, \partial]) = d f_N$. Т.к. $d \neq 0$ по предположению, то получим, что $f_N = 0$, то есть $[T, \partial] = 0$.

Следствие.

 B_P образует коммутативное кольцо над полем K.

Определение.

Оператор $S = s_0 + s_1 \partial^{-1} + \cdots$ называется допустимым, если $S^{-1} \partial S \in K((\partial^{-1}))$.

Из определения сразу же следует, что $S\partial S^{-1} \in K((\partial^{-1}))$, а также, что допустимые операторы образуют группу.

Предложение.

Допустимый оператор S представим в виде $S = TS_0$, где $T = ce^{\alpha x}$, где $c, \alpha \in K$, а $S_0 = 1 + s_1 \partial^{-1} + \cdots$, где $s_i \in K[x]$, причем $\deg(s_i) \leq i$.

Доказательство:

Т.к. $ord(S^{-1}\partial S)=ord(\partial)$ запишем $S^{-1}\partial S$ в виде ряда $\sum_{i=-1}^{\infty}u_{-i}\partial^{-i}$.

Пусть $S = s_0 + s_1 \partial^{-1} + \cdots$. Рассмотрим уравнение $S^{-1}(\sum_{i=-1}^{\infty} u_{-i} \partial^{-i}) = \partial S$.

$$(s_0 + s_1 \partial^{-1} + \cdots) (\sum_{i=-1}^{\infty} u_{-i} \partial^{-i}) = \partial (s_0 + s_1 \partial^{-1} + \cdots).$$

Приравнивая коэффициенты при соответствующих порядках ∂ получим систему дифференциальных уравнений на коэффициенты оператора S. Выпишем в явном виде уравнения этой системы:

$$s_0 = s_0 u_{-1} \rightarrow s_0 = 1.$$

$$s_0' + s_1 = s_0 u_0 + s_1 u_{-1} \rightarrow s_0 = c e^{u_0 x}, c \in K$$

$$s_1' + s_2 = s_0 u_1 + s_1 u_0 + s_2 u_{-1}$$

. . .

$$s_k' = \sum_{i+j=k} s_i \, u_j$$

• • •

Тогда $S=TS_0$, где $T=ce^{u_0x}$ и $S_0=1+\widetilde{s_1}\partial^{-1}+\cdots$

Т.к. $T^{-1}\partial T = \partial + u_0$, \to T – допустим, $S_0 = T^{-1}S$ – допустим. Найдем компоненты S_0 . Запишем аналогичную систему уравнений:

$$S_0'\partial S=\sum_{i=-1}^\infty a_i\partial^{-i}$$
 . Заметим, что $a_{-1}=1$, $a_0=0$, $s_1'+s_2=a_1+s_2\to s_1=a_1x+c_1$

. . .

 $s_k' + s_{k+1} = \sum_{i+j=k+1} s_i \, u_j \to s_k' = \sum_{i=1}^{k-1} s_i u_{k-i}$. По индукции $\deg\left(\sum_{i=1}^{k-1} s_i u_{k-i}\right) \le k-1 \to \deg(s_k) \le k$.

Утверждение доказано.

Предложение.

Пусть $P \in A_1$ - монический оператор, B_P - множество коммутирующих с P операторов. Тогда $B_P \subset A_1$. Заметим, что если P не является моническим, то это утверждение, вообще говоря, неверно. Соответствующий пример для функций Вейерштрасса был построен Валленбергом.

Доказательство: Пусть ord(P) = d, $Q \in B_P$. По условию [P,Q] = 0. Если S — оператор Шура для оператора P, то верно равенство $[\partial^d, S^{-1}PS] = 0$. Из предыдущего предложения следует, что $[\partial, S^{-1}PS] = 0$.

Пусть $S^{-1}PS = F$. Тогда верно F' = 0 (из определения ∂). То есть у F постоянные коэффициенты. Следовательно, нужно доказать, что S также имеет постоянные коэффициенты. Доказательство проведем аналогично доказательству предложения 14. По определению оператора Шура имеем равенство: $SPS^{-1} = \partial$, $\rightarrow SP = \partial S$. Из предположения имеем, что коэффициенты оператора P — многочлены из K[x]. Таким образом получаем систему уравнений, но уже на коэффициенты оператора Шура S. Рекурсивно решая полученную систему, получаем, что S имеет постоянные коэффициенты, а значит, утверждение верно. Доказано.

Перспективы дальнейших исследований:

Данная область содержит большое количество задач для исследований.

Наибольший интерес представляют задачи, связанные с определением соотношений для коэффициентов операторов, в том числе коэффициентов, представляющих собой многочлены.

В частности, требует подробного изучения следующий вопрос:

Пусть $F \in K[X,Y]$, $F(X,Y) = \sum_{i+j \le N} c_{ij} X^i Y^j$ — многочлен от двух переменных. Положим $F(P,Q) = \sum c_{ij} P^i Q^j = 0$, где $P,Q \in A_1$. Верно ли, что [P,Q] = 0?

СПАСИБО ЗА ВНИМАНИЕ!