Exercice3: Régression[4pts]

1. La régression linéaire permet d'étudier les individus atypiques. Décrire les différents cas possibles d'anormalité. [1pt]

Atypique aberrant: valeur inhabituelle sur une variable ou combinaison de variables Influent: pèse de manière exagérée dans la régression Atypique régression: cible très mal expliquée, erreur très élevée

2. Quelles sont les méthodes pas à pas pour la construction de modèles réduits? Donner brièvement l'idée de chacune. [1pt]

méthode descendante ou élimination en arrière lorsqu'on élimine des variables

- -méthode ascendante ou sélection en avant lorsque on ajoute des variables
- -méthode mixteest une combinaison de ces deux méthodes
- **3.** Expliciter une méthode pour l'obtention des coefficients estimateurs dans la régression linéaire.[1pt]

Exercice2 : On propose de construire un modèle permettant de prédire les ventes semestrielles d'un produit agroalimentaire via la régression linéaire multiple.

Les variables explicatives sont: MT: Besoin du marché,RG: Remises aux grossistes,PRIX: Prix du produit, BR: Budget de Recherche, INV: Investissement, PUB: Publicité, FV = Frais de ventes, TPUB = Total budget publicité de la branche.

Les résultats du modèle sont affichés ci-dessus.

Coefficients^a

		Unstand Coeffi			
Model		В	Std. Error	t	Sig.
1	(Constant)	3129.231	641.355	4.879	.000
	MT	4.423	1.588	2.785	.009
	RG	1.676	3.291	.509	.614
	PRIX	-13.526	8.305	-1.629	.114
	BR	-3.410	6.569	519	.608
	INV	1.924	.778	2.474	.019
	PUB	8.547	1.826	4.679	.000
	FV	1.497	2.771	.540	.593
	TPUB	-2.15E-02	.401	054	.958

Model	Summary
Model	Summany

			Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	.898ª	.806	.752	256.29

1. En étudiant individuellement les coefficients liés à chaque variable explicative, déterminer les variables significativement pertinentes dans l'augmentation des ventes semestrielles du produit. [1pt]

PUB, MT ont les plus faibles valeurs significatives donc elles sont les plus pertinentes.

2. En se basant sur les résultats des coefficients de détermination, conclure sur la qualité du modèle construit. [1pt]

R² = 0.806 donc il s'agit d'un bon modèle.

3. On propose de sélectionner les variables pertinentes du modèle en utilisant la méthode de sélection pas à pas descendante (Backward). Expliquer brièvement les étapes de cette méthode. [2pts]

AIC, le critère de choix du modèle le plus performant : itération par itération on élimine la variable la moins pertinente.

4. Donner l'équation du modèle permettant de prédire les ventes semestrielles en fonction de toutes les variables explicatives. [2pts]

VENTES = 3129,231 + 4,423 MT + 1,676 RG - 13,526 PRIX - 3,410 BR +1,924 INV + 8,328 PUB + 1,497 FV - 0,00215 TPUB

Exercice 3: Régression Linéaire Multiple [5pts]

On propose de construire le meilleur modèle permettant de prédire une variable Y via la régression linéaire multiple.

Les variables explicatives sont: X₁, X₂, X₃ et X₄.

a. Dependent Variable: VENTES

Les résultats des modèles global et réduit sont affichés ci-dessous.

Modèle Global	Coefficients
Constante	10
X ₁	1
X ₂	1.5
X_3	2.5
X ₄	5

Modèle Réduit	Coefficients
Constante	15
X_3	3
X ₄	1

1. Expliquer la méthode des **moindres carrées** (possibilité d'utiliser un schéma)

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

Cette méthode consiste à chercher des coefficients prédicteurs qui représentent la droite qui minimise la somme au carré des distances entre Y_{réelle} et Y_{prédite}

2. Décrire l'utilité de la régression linéaire. [2pts]

La régression linéaire permet :

- de prédire une variable décisionnelle quantitative via un modèle global ou un modèle avec sélection de variables pertinentes (modèle réduit via le critère AIC)
- d'avoir une vision sur l'ordre de pertinence des variables prédictives à l'aide des valeurs des coefficients prédicteurs
- de détecter les anomalies, les individus atypiques ou aberrants
 - 3. Donner la **formule** du modèle global et celle du modèle réduit. [1pt]

$$Y_{global} = 10 + X_1 + 1.5 X_2 + 2.5 X_3 + 5 X_4$$

 $Y_{réduit} = 15 + 3 X_3 + X_4$

- **4.** Calculer les **prédictions** d'un individu $I(X_1=1, X_2=1, X_3=1, X_4=2)$.
 - 4. Sachant que la valeur réelle de la variable décisionnelle de l'individu I est Yréelle = 20, Comparer les deux prédictions obtenues et Conclure. [0.5pt]

$$Y_{réduit} = Y_{réelle}$$

Donc on peut constater que prédire Y à partir des valeurs de X₃ et X₄ est mieux que prédire à l'aide de toutes les variables prédictives // le modèle réduit mieux que le modèle global