

PSYC214: Statistics Lecture 1 – Measurement, variance and inferential statistics

Michaelmas Term
Dr Richard Philpot
r.philpot@lancaster.ac.uk

Lecture 1 – Measurement, variance and inferential statistics

Agenda/Content

- Experimental science
- Variables
- Descriptive statistics
 - Levels of measurement
 - Measures of central tendency
 - Measures of variability
- Distributions
- Inferential statistics and hypotheses
- Within and between participant designs

Controlled experiment

A scientific investigation in which both the control group and experimental group(s) are kept under similar conditions apart from the factor under study, so that the effect of influence of that factor can be identified or determined.

Experimental science

Population versus sample

Population is every individual you are interested in

Experimental science

Population versus sample

- Population is every individual you are interested in
- The sample is a subset of your population of interest. We examine samples because it is typically impossible to sample everyone in the population

Experimental science

Population versus sample

- You should always opt for random sampling, where you pick your sample randomly
- However, in reality, we often use opportunity sampling where we recruit who we have access to

Variables

Independent Variable

 The variable the experimenter manipulates or changes, which may be assumed to have a direct effect (i.e., influences change) on the dependent variable.

Dependent Variable

 The outcome of interest. It is the variable being tested and measured in an experiment. It is 'dependent' on the effect (i.e., influence) of the independent variable.

Independent variable

Dependent variable – i.e., outcome

Statistics

- Use descriptive statistics to describe characteristics and tendencies of your sample
- Use inferential statistics to determine whether the performance and characteristics of your sample generalizes to the population

Descriptive statistics

- 1. Levels of measurement
- 2. Measures of central tendency
- 3. Measures of variability

Descriptive statistics

- 1. Levels of measurement
- 2. Measures of central tendency
- 3. Measures of variability

1. Levels of measurement

Nominal, Ordinal, Interval, Ratio

1. Levels of measurement

Nominal, Ordinal, Interval, Ratio

1. Levels of measurement - Types

	Nominal	Ordinal	Interval	Ratio
Categories, Names				
Rank or order				
Known and proportionate intervals				
True zero				

	Nominal	Ordinal	Interval	Ratio
Categories, Names				
Rank or order				
Known and proportionate intervals				3
True zero				

Nominal	Numbers assigned to an athlete	5 3	5	5 8
Ordinal	Rank order of winners	List)	2nd	Sro)
Interval	Performance rating on a scale (0-10)	9.8	9.6	8.6
Ratio	Time to finish in seconds	21.07	21.14	21.79

Descriptive statistics

- 1. Levels of measurement
- 2. Measures of central tendency
- 3. Measures of variability

2. Measures of central tendency

A single value that describes the way in which a group of data clusters around a central value, i.e., the centre of the data set

- There are three measures of central tendency
 - Mode
 - Median
 - Mean

2. Measures of central tendency

	Nominal	Ordinal	Interval	Ratio
Categories, Names	Mode, % frequencies	Mode, % frequencies	Mode, % frequencies	Mode, % frequencies
Rank or order		Median, percentile	Median, percentile	Median, percentile
Known and proportionate intervals			Mean, standard deviation	Mean, standard deviation
True zero				All above

2. Measures of central tendency - Mode

The most frequent score/data

- Level of measurement: Nominal, ordinal or interval/ratio
- Shape of distribution: Bimodal or multimodal

2. Measures of central tendency - Median

The middle number when data are ordered

- Level of measurement: Ordinal or interval/ratio
- Shape of distribution: Highly skewed

2. Measures of central tendency - Mean (X) Lancaster University

The average, i.e., the sum (Σ) of all scores (x)divided by the number of scores (N)

$$\overline{X} = \frac{\partial X}{N}$$

The little worry ball

2. Measures of central tendency - Mean (X) Lancaster University

The average, i.e., the sum (Σ) of all scores (x)divided by the number of scores (N)

2. Measures of central tendency - Mean (\bar{X}) Lancaster University

The average, i.e., the sum (Σ) of all scores (x)divided by the number of scores (N)

Descriptive statistics

- 1. Levels of measurement
- 2. Measures of central tendency
- 3. Measures of variability

3. Measures of variability

The spread or dispersion of scores in relation to the midpoint of data.

- Range
- Sum of squares
- Variance
- Standard deviation

3. Measures of variability - why care?

3. Measures of variability - range

The difference between the highest and lowest score

 Subtract the lowest value in the distribution by the highest value

3. Measures of variability - range

When is it not useful?

1. Calculate difference

Data point	χ - μ
χ1	-2
χ2	1
χ3	-2
χ4	3
χ5	-1
χ6	1
χ7	-1
χ8	1
χ9	0
Total	0

1. Calculate difference	<i>X</i> -	μ
-------------------------	------------	-------

Data point	χ - μ
χ1	-2
χ2	1
χ3	-2
χ4	3
χ5	-1
χ6	1
χ7	-1
χ8	1
χ9	0
Total	0

3. Measures of variability - sum of squares

- 1. Calculate difference X μ
- 2. Calculate the sum of squares

Data point	χ - μ	$(\chi - \mu)^2$
χ1	-2	4
χ2	1	1
χ3	-2	4
χ4	3	9
χ5	-1	1
χ6	1	1
χ7	-1	1
χ8	1	1
χ9	0	0
Total	0	22

3. Measures of variability - variance

<u>Variance</u>: Average deviation around the mean of a distribution (average of sum of squares)

3. Measures of variability – standard deviation

• Standard deviation (σ): Measure of the typical deviation from the mean. It is the squared root of the variance

3. Measures of variability – standard deviation

• Standard deviation (σ): Measure of the typical deviation from the mean. It is the squared root of the variance

Inferential statistics

- 1. Allow you to draw conclusions based on extrapolations
- 2. Use data from the sample of participants in the experiment to compare the treatment groups and make generalizations about the larger population of participants
- 3. Provide a quantitative method to decide if the null hypothesis (H₀) should be rejected

Inferential statistics - comparing groups

Often, a researcher is interested in gathering information about different populations in order to compare them

- What is the effect of our treatment/manipulation on an outcome of interest?
- Compare anxiety levels in different age groups
- Compare charitable behaviour before and after Christmas
- Compare Pre and Post consumer behaviour of Covid-19

Inferential statistics - Hypotheses

Ho the Null Hypothesis

- H₀: there is no significant difference between the conditions/groups and the null hypothesis is accepted.
- Under H₀, the samples come from the <u>same</u> population.

H₁ the Experimental Hypothesis

- H₁: there is a significant difference between the conditions/groups and the null hypothesis is rejected.
- Under H₁, the samples come from the <u>different</u> populations.

Inferential statistics - (Non)parametric tests

- Statistical tests can be separated into:
 - Parametric
 - Non-parametric

While parametric tests are the norm in psychology and are generally more powerful than non-parametric tests, they require that the scores be an <u>interval or ratio measure</u> and there needs to be <u>homogeneity of variance</u>

Example set 1

George observed a group of patients before, during and after the administration of a drug X to evaluate the effectiveness of the treatment.

Fozia measured participants' scores on a Psychological test of creativity in the morning, noon and afternoon in order to see whether there are any differences throughout the day.

Kenji measured the visual acuity of a single group of observers. He asked each subject to complete a vision test after they wore each of the five different brands of contact lenses under investigation.

The <u>same</u> subject is being tested in different conditions

- Morning, noon and afternoon
- Before, during and after treatment
- Five different brands of contact lenses

As each observer provides scores on the different conditions, we say that the measures are **related** and **correlated**

In these three cases, the Independent Factor is said to be a WITHIN-subject factor as it is altered within each subject.

Example set 2

Lucy is interested in age differences in mental toughness. She recruits 20 young adults, 20 middle-aged adults and 20 older adults, and asks them to complete a Hardiness Test.

Manuel is studying whether statistics lectures are more effective in the morning or in the afternoon. He administers a pop quiz to the morning and afternoon classes and compares the performance.

Mo wants to examine differences in personality traits between students of different universities. He recruits students from Lancaster, York and Bath and asks them to complete a sociability questionnaire.

The <u>different</u> subjects are being tested in different conditions

- Young, Middle-Aged and Older Adults
- Morning class and Afternoon class
- Lancaster, York and Bath Universities

Because different observer provides scores on the different conditions, we say that the measures are unrelated and uncorrelated

In this case, the Independent factor is said to be a BETWEEN-subject factor as it is altered between each subject.

Lecture 1 – Measurement, variance and inferential statistics

Review

- Experimental science
- Variables and levels of measurement
- Descriptive statistics
 - Levels of measurement
 - Measures of central tendency
 - Measures of variability
- Distributions
- Inferential statistics and hypotheses
- Within and between participant designs

Thank you for attention!

