CycleGAN for MR-CT Synthesis Project

Jon Van Veen

CycleGAN Implements Unpaired Image-to-Image Translation

Generator $G: X \rightarrow Y$, associated discriminator D_Y Generator $F: Y \rightarrow X$, associated discriminator D_X

Challenge & Motivation for the Project

- CycleGAN has proven effective for MR -> CT synthesis for small datasets
- This project intends to implement CycleGAN with 10,000+ patient's worth of data
 - Several different scan types
- Unique challenges with such a large dataset

Keras Implementation

- Network architecture from: https://keras.io/examples/generative/cyclegan/
- Block diagram for model

Results with Unpaired Data

- Input data: 455 images each of CT and MR from t1_bravo scan type (subset of entire available dataset)
- Evaluation data: 5 t1_bravo MR images
- Augmentation: flips, rotations, scalings, shears, translations
- Normalization: offset and scale for correct HU for CT
- 200 epochs, 256 steps per epoch
- Somewhat varying voxel sizes across training images

Results with Unpaired Data

Results with Unpaired Data

Sanity Check -- Results with Paired Data

- Input data: 43 registered images each of CT and MR
- Evaluation data: 5 t1_bravo MR images
- Augmentation: flips, rotations, scalings, shears, translations
- Normalization: offset and scale for correct HU for CT
- 200 epochs, 256 steps per epoch

Sanity Check -- Results with Paired Data

Sanity Check -- Results with Paired Data

Discussion

- Registered/paired data vs. unregistered/unpaired data
- Voxel size normalization -- no success so far
 - Requires resampling: loss of data possibly detrimental to training
- Future directions towards understanding the dataset...

Thank you!