

ODC FILE COPY

DISTRIBUTION STITEMENT A

Approved for public release;
Distribution Unlimited

NORTHROP

Research and Technology Center

KINETIC STUDIES OF THE KrF LASER FINAL TECHNICAL REPORT

March 1977

Prepared By

W. B. Lacina, R. S. Bradford, Jr., and M. L. Bhaumik Advanced Laser Research Laboratory

For

Office of Naval Research Department of the Navy

Contract N00014-76-C-0777

NORTHROP CORPORATION

Northrop Research and Technology Center

3401 West Broadway

Hawthorne, California 90250

Telephone: (213) 970-4881

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

NRTC_77-29R 4. TITLE (and Subsecte)	CCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
TITLE (And S. herria)	5. TYPE OF, REPORT & PERIOD POVER
4. THEE (and Subtrice)	Final Technical Report.
Kinetic Studies of the KrF Laser,	1 29 March 1976-28 Feb! 1
	6. PERPORMING ORG. REPORT NUMBER
	NRTC 77-29R
7. AUTHOR(s)	(12)
W. B. Lacina, R. S. Bradford, Jr. and M. L. Bhaumik	N00014-76-C-0777 new
9. PERFORMING CRGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAS
Northrop Research and Technology Center	
3401 West Broadway	121107
Hawthorne, California 90250	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research	March 1977
Department of the Navy	13. NUMBEROF PAGES
Arlington, Virginia 22217	64
14. MONITORING AGENCY NAME & ADDRESS/If different from Cont	
(12) 10	Unclassified
(/2)(670	Onciassified
- (10) 6 p.	
16. DISTRIBUTION STATEMENT (of this Report) Distribution of this document is unlimite	15a. DECLASSIFICATION COWNGRADING SCHEDULE
	154. DECLASSIFICATION DOWNGRADING SCHEDULE
Distribution of this document is unlimite	154. DECLASSIFICATION DOWNGRADING SCHEDULE
Distribution of this document is unlimite	154. DECLASSIFICATION DOWNGRADING SCHEDULE
Distribution of this document is unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify 5	15a. DECLASSIFICATION, DOWNGRADING SCHEDULE If different from Report)
Distribution of this document is unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify the same of the continue on the continue of the continue on the	15a. DECLASSIFICATION, DOWNGRADING SCHEDULE if different from Report)
Distribution of this document is unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 26 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify: Laser Kinetics Excimer Small Signal Gain	15a. DECLASSIFICATION, DOWNGRADING SCHEDULE If different from Report)
Distribution of this document is unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify the same of the continue on the continue of the continue on the continue of the continue on the	15a. DECLASSIFICATION, DOWNGRADING SCHEDULE If different from Report)

KINETIC STUDIES OF THE KrF LASER

Contract Number:

N00014-76-C-0777

Principal Investigator:

Dr. R. S. Bradford, Jr.

(213) 970-4881

Project Manager:

Dr. M. L. Bhaumik

(213) 970-4756

Name of Contractor:

Northrop Corporation

Northrop Research and Technology Center 3401 West Broadway

Hawthorne, California 90250

Scientific Officer:

Director, Physics Program Physical Sciences Division Office of Naval Research Department of the Navy 801 N. Quincy Street Arlington, Virginia 22217

Effective Date of Contract:

29 March 1976 - 28 February 1977

Amount of Contract:

\$39, 406, 00

Reproduction in whole or in part is permitted for any purpose of the United States Government.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Office of Naval Research or the United States Government.

TABLE OF CONTENTS

1.0	SUMM	IARY	1
2.0	INTRO	DDUCTION	3
3.0	TECH	NICAL REPORT	5
	3.1	KrF Gain Measurements	5
	3.2	KrF Kinetic Modeling	8

1.0 SUMMARY

The overall objective of this program has been the investigation of the fundamental physical mechanisms of electrically excited, high pressure rare gas halide excimer laser systems, such as KrF, which are based upon bound-free transitions. The specific purpose of this study was to attain a theoretical understanding of the KrF system in order to optimize efficiency and output extraction in present devices and to predict scalability to higher powers and larger devices. This requires an understanding of the kinetic reaction scheme and determination of the appropriate rate constants, and to obtain this information a wide range of experimental and theoretical work is needed, some of which is currently in progress. For the present program, efforts have been concentrated on theoretical kinetic modeling and experimental measurements of small signal gain coefficients. During the period of investigation, the following specific tasks were performed:

- 1) The small signal gain coefficient for KrF in a high pressure, e-beam excited mixture of Ar/Kr/F₂ has been measured at different pressures using an oscillator-amplifier configuration. The value for the small signal gain coefficient was found to vary from 0.13 to 0.35 cm⁻¹ over the range of parameters investigated.
- 2) Kinetic modeling of the electrically excited KrF laser system has been carried out using a sophisticated and comprehensive computer analysis which couples molecular and electron kinetics, radiative extraction, and external driving circuit. All relevant reactions and species which are currently believed to contribute to the kinetics have been

- included in this analysis, and the best current estimates of corresponding rate constants are used.
- 3) Comparisons of the results of kinetic modeling with small signal gain measurements have been made, and reasonable agreement is obtained. The sensitivity of the reactions included in the kinetic scheme has been investigated.

2.0 INTRODUCTION

The recent success of the KrF laser represents a breakthrough in the attainment of high power uv visible lasers. By pumping a dye laser with the newly developed KrF laser, a blue-green laser appears feasible with output in the multikilowatt range with an overall efficiency exceeding 1%. The development of this dye laser will represent a two orders of magnitude improvement in laser output over present devices at these wavelengths.

In order to realize the full potential of the KrF laser, the mechanism of operation must be understood. Different mechanisms have been proposed to explain the KrF laser operation in a high pressure e-beam pumped system. To elucidate the reactions which form KrF*, the small signal gain has been measured for various conditions and compared with a sophisticated computer model which predicts the gain for these conditions.

Experimental measurement of the gain utilized simultaneous excitation of the oscillator and amplifier cavity by the same e-beam to avoid the problem of synchronizing short pulses. Details of the experiment are discussed in Section 3.1.

In addition, a computer analysis of the KrF system has been carried out. In general, the straightforward attempt to write the subroutines which define molecular kinetics for a complicated reaction scheme is a difficult task, and the resulting computer program would have little flexibility for analysis of any system except those in a very limited class. Having anticipated the necessity for a powerful and general analytical capability, a much more sophisticated approach was taken.

Under IR&D funding, a generalized computer code was developed which itself synthesizes all the necessary subroutines for kinetics analysis. Details of the capabilities of this code and its application to the present program are discussed in Section 3.2.

3.0 TECHNICAL REPORT

The small signal gain is an essential parameter for predicting the scaling of the KrF laser. The mechanism of operation may also be best understood by comparing measured small signal gain with the results of kinetic modeling. The experiments and computer predictions are presented in the following sections.

3.1 KrF Gain Measurements

The experiments were carried out using two independent gas cells (1 cm² x 10 cm extracted optical volume) stacked side by side and simultaneously pumped with a Pulserad 110A e-beam which provides an output of 1 MeV for 20 ns at 500 A/cm². Each cell was fitted with AR windows, one cell was used as oscillator with external optics while the other served as an amplifier. The output from the oscillator was directed into the amplifier with a prism after 10% was split off by a beam splitter and measured with a F4000 UVG S-1 photodiode. After passing through the second cell, the amplified signal was measured by a second photodiode.

Both photodiodes had a 10X neutral density filter and quartz diffuser over the photo cathode. The pair of diodes were calibrated at 249 nm on a relative basis with radiation from the oscillator using several shots. The amplifier photodiode was placed 1 m from the amplifier output to reduce the detection of spontaneous emission. The addition of various neutral density filters to the oscillator beam allowed the power into the amplifier to be varied over a wide range. A schematic layout of the experiment is shown in Figure 1.

Gain measurements were taken over several mixture ratios and pressure ranges. A typical data run is shown in Figure 2. For each of

Figure 1. Schematic Diagram of the KrF Gain Measurement

Figure 2. Typical KrF Gain Data

the following cases, with 500 A/cm² beam current, the Kr partial pressure held constant while the F₂ partial pressure was varied and vice versa.

The gain was also calculated from the kinetics code described in the next section for the pressures indicated in Tables I, II, and III. From the data, the optimum mixture is Ar:Kr:F₂(1965:105:4.5 Torr) with a measured gain of 0.35 cm⁻¹. More Kr causes KrF* loss while less inhibits KrF* production. The best amplifier performance also coincides with the best laser performance. That is, the mixture with the highest gain as an amplifier is also the best mixture for the oscillator.

3.2 KrF Kinetic Modeling

In order to theoretically model the KrF laser, it is necessary to construct a coupled analysis containing electron and molecular kinetics, optical radiation fields, and an external driving circuit. However, KrF is only one of a broad class of several promising schemes for uv or visible lasers which are currently under investigation (or which will be pursued in the future), and it is impractical to construct new computer codes for the analysis of each new kinetic reaction scheme. The straightforward approach to write the rate subroutines which define the molecular kinetics for a complicated reaction scheme is a time consuming task, and the resulting computer program has little flexibility for analysis of any system except those in a very limited class. Furthermore, as understanding of the reaction scheme evolves, addition of new reactions (or deletion of old reactions) may be required in addition to simple modification of rate constants. Thus, such a code would itself have to be revised in a continuing manner, rather than merely executed with revised input values for rate constants.

Table I. KrF Gain Measurement Data at Constant Kr Pressure (207 Torr) for various F_2 Pressures

F ₂ Torr	Ar Torr	Measured Gain (cm ⁻¹)	Calculated Gain (cm ⁻¹)
9.0	1860	0.30	0.27
4.5	1860	0.33	0.26
2.2	1655	0.29	0.22

Table II. KrF Gain Measurement Data at Constant F₂ Pressure (4.5 Torr) for Various Kr Pressures

Kr	Ar	Measured	Calculated
Torr	Torr	Gain (cm ⁻¹)	Gain (cm ⁻¹)
105	1965	0.35	0.34
207	1860	0.33	0.26
415	1655	0,27	0.17

Table III. KrF Gain Measurement Data Constant for Various Total Pressures as a Function of Kr and F $_2$ Pressures

Ar Torr	Kr Torr	F ₂ Torr	Measured Gain (cm ⁻¹)
1654	415	9.0	0.24
1654	415	4.5	0.27
1965	105	9.0	0.32
1965	105	4.5	0.35
931	105	4.5	0.31
931	105	2.2	0.30
414	105	2.2	0.24
414	105	1.1	0.18
982	52	4.5	0.25
982	52	2.2	0.28
465	52	2.2	0.19
465	52	1.1	0.15
491	25	2.2	0.16
491	25	1.1	0.13

Therefore, in order to obtain a more powerful analytical capability, a generalized code which itself synthesizes a coupled analysis (as described above) has been developed. This code automatically generates its own subroutines for analysis of the molecular kinetics by translating symbolic reactions into computer-coded equations. Thus, for the most complicated reaction scheme containing an arbitrary number of kinetic collision processes and interacting species, it is possible to construct the complete computer code required with virtually no effort. All that is required is to provide an input deck, arbitrarily long, consisting of pairs of cards, the first containing a reaction, followed by the second containing the forward and reverse rate constants. The syntax for the reactions is very flexible, with a free format that specifies the reaction just as it would normally be written. The content of each reaction is analyzed, and the appearance of each new species is recognized and its name stored. The syntax of each reaction is subjected to numerous tests to detect errors. If the reaction is determined to be acceptable, it is translated into appropriate expressions in the generation of synthesized subroutines. Otherwise, diagnostic comments are produced. Program generation and execution are protected by automatic exit (by input request) if specified error conditions are encountered.

There are several obvious advantages to this approach. First of all, there is simplicity and the minimization of the possibility of error. For example, approximately 70 reactions are currently believed to contribute to the KrF reaction kinetics, and to write subroutines for such a complicated system would not be a simple task. Secondly, the program diagnoses error conditions in the

reaction syntax which may not have been noticeable or which may be overlooked. For example, duplicate reactions are detected (even when written backwards), charge particle and heavy particle conservation is insured, detail balance relations for binary collision processes are enforced, and miscellaneous other error conditions are detected. Secondary electron collision processes are recognized and properly coupled to the electron kinetics analysis, except for the case with no discharge, in which case their rate constants can be defined by input. Finally, the subroutines are constructed in such a way that null operations are completely eliminated (e.g., if no input rate constant is provided, no translation of the corresponding term occurs), and in such a way as to optimize execution efficiency.

For a given system, the required analysis includes the coupled system of equations consisting of 1) the Boltzmann transport equation for the electron energy distribution function to describe electron kinetics, 2) the master equations for the population densities of the electrons, ions, neutrals, excimers, and 3) circuit equations to describe the external driving circuit. It is usually the case that rate constants involved in molecular kinetic reaction schemes can vary over several orders of magnitude, and therefore, the resulting master equations become a "stiff" system of differential equations. Therefore, the approach which has been taken is to employ a multistep integration technique developed by Gear for solution of such equations. method automatically adjusts the integration step size as the solution proceeds, in such a way that required accuracy conditions are maintained. The Gear method requires subroutines not only for the rates of change of the population densities, dni/dt, but also for the Jacobian, $\delta\left(\dot{n}_{i}\right)/\delta n_{i}$, as a function of time. Because numerical evaluation of the Jacobian is not satisfactory, it is necessary to generate

both such subroutines symbollically in the synthesis section of the program, where the reaction scheme is translated into computer-coded equations.

Figure 3 presents a schematic flow diagram of the present approach. The rate constants initially assumed in the generation of the program can be changed in the subsequent execution, if desired. The main purpose of the rate constants in the initial input deck is to define whether the forward and/or reverse process is to be included, for if a zero rate constant is entered for other than secondary electron collisions, no translation of the forward (or backward) term occurs in the generated subroutines. If correct values of the rate constants are known, they may be entered for once and for all in the original reaction input data deck.

After the kinetics code has been synthesized, initial conditions and experimental parameters are entered and the analysis is executed. The entry of control parameters, experimental parameters, revised rate constants, initial conditions, etc., is quite flexible, and permits the code to be executed for a variety of situations of interest. In pure e-beam excitation cases, rate constants for secondary electron processes default to zero, but can be specified by input if desired. This makes it possible to use the same general code for both discharge and e-beam excitation conditions. The integration of the coupled set of equations over the total pulse length is carried out with the Gear technique which automatically adjusts its step size. However, the total pulse length is divided into 50 subintervals at which time the electron kinetics are updated, and a variety of output options can be specified. Sample output from a typical run is presented below, where comparison with experimental data is made.

GENERALIZED SYNTHESIS LASER KINETICS CODE

Figure 3 Laser Kinetics Code Flow Diagram

The molecular kinetic processes required for the KrF system are summarized in Figure 4, which is a reproduction of the input data deck which defines the reaction scheme. Figure 5 is a reproduction of output summarizing details and comments about the reaction scheme generated during synthesis of the subroutines for the rates, and Figure 6 presents the results of an edit of the reaction scheme. The KrF kinetic processes include excitation of excited states and ions of Ar and Kr by secondary and high energy e-beam electrons, fluorine attachment, formation and quenching of several excimers, charge transfer, electron and negative Fion recombination with positive ions, miscellaneous replacement reactions, a variety of energy transfer collisions and quenching processes, spontaneous radiative decay, and stimulated emission and absorption in the active gain medium. Figure 7 illustrates the input data deck for execution of the analysis, and Figure 8 summarizes the modified rate constant input data. Input parameters have been chosen to make comparison with experimental data for an Ar/Kr/F2= 1965/105/4.5 Torr mixture pumped with a 500 A/cm² e-beam (nominally 1 MeV). Effective cross sections for electron-beam excitation of excited states and ions of Ar and Kr are taken to be those of Berger and Seltzer, defined by

$$\sigma_{\text{eff}}^+ < u > N_o/M = 1.4 \text{ MeV cm}^2/g$$

where $\langle u \rangle \sim 26$ eV is the average energy loss in an ionizing collision, $N_0 = 6 \times 10^{23}$ is Avogodro's number, and M is the molecular weight of the gas. (The effective cross section for excited states is taken to be a factor of 3.5 smaller.) The stimulated emission cross section for KrF* has been taken to be

$$\sigma = \frac{\lambda^2}{8 \pi c \tau \Delta \widetilde{\nu}} \sim 2.0 \times 10^{-16} \text{ cm}^2$$

SUMMARY OF CARD IMAGES FOR INPUT DATA DECK

2AR . E . AR E . SCHAPER.SCHEIBNER.BEITR. AUS PLASHA PHYS. 9, 45 3 5 6KR . E . KR E . SCHAPER. SCHEIBNER. BEITR. AUS PLASHA PHYS. 9, 45 6KR E . AR E . 60.E-16 CHZ AI 1.6 .V THRESHHOLD ASSUMED.	
KR · E · KR · E	5. 9. 45
KR. E A KR. E	
**************************************	175. 9. 45
A	
	•
ARe . F . AR(*) . F . F	
KR E . KR(.) . E . E	
10.E-16 CMZ AT 4.0 EV THRESHHOLD ASSUMED.	•
F 2 . E . F . F .	
•	
17 1.00 E-07	
19 1.00 E-07	
22 48 4 HE + 48(1) + HE + 5	
1 30 E-13	M AT 300 KEV
- H - HE - HE - HE	
6.00 E-18 6.00 E-18	
26 KR + HE - 4 KR(+) + HE - + E	
27 2.40 E-17	
36 AR(+) . KH . AR . KR(+)	
JU AHZ (-) + KH + KH(-) + AH + AH	110.

Figure 4

SUMMARY OF CARD IMAGES FOR INPUT DATA DECK

	**
	•
	1976 1876
	7, E
	8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	2
	1 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	330.6 3115 5776 6-95 6-95 16
	# E # E # E # E # E # E # E # E # E # E
	ASP ASP LUTS.
1	10ND 10ND 110ND 110ND 110ND 110ND 110ND
	3,2E-10 KR21.) - E
-	TIT T T T T T T T T T T T T T T T T T T
	x x
	R ARRY KREF
	* * * * * * * * * * * * * * * * * * *
	20
-	3.2E-10 4.00 E-08 AR2(1) • E AR* • AR 4.00 E-08 AR* • AR • H AR2* • H 1.00 E-03 KR* • AR • H ARKR* • H 1.00 E-10 AR2(1) • F AR • RR 1.00 E-10 AR2(1) • F AR • RR 1.00 E-10 AR2(1) • F ARF 1.00 E-06 ARR(1) • F ARF 1.00 E-06
	\$\frac{1}{4}\frac{1}\frac{1}{4}\f
	44444444444

123456⁷89012345678901234567890123456⁷890123456⁷890123456⁷890123456⁷890123456⁷890

Figure 4 (Continued)

SUMMARY OF CARD IMAGES FOR INPUT DATA DECK

3.0E-10 ARR - KR - KRF - AR ARR - 10 E-10 ARR -	8.00 AR2.	8.00 E-11	ZAMIN (PRI	AR Z	ANIK.	(PRIV	00	MHCIN	ZAMIR (PHIV. COMMUN. TO SRI)	SRIJ	
AR2" • F ARF • AR 3.06-10 AR2" • F ARF • AR 3.06-10 AR2" • F ARF • AR 3.06-10 AR4" • F AR • F SRI REPORT NO. MP 76-99. DEC., 1976 AR4" • F AR • F SRI REPORT NO. MP 76-99. DEC., 1976 AR4" • F AR • F F F AR 3.00 €-10 AR2" • F AR • AR • F F F AR 1.00 €-09 AR4" • F AR • KR • F F F AR SRI REPORT NO. MP 76-99. DEC., 1976 AR2" • F AR • AR • F F F AR SRI REPORT NO. MP 76-99. DEC., 1976 AR2" • F AR • KR • F F F AR SRI REPORT NO. MP 76-99. DEC., 1976 AR2" • F AR • KR • F F F AR AR • F AR • KR • F F F AR AR • F AR • KR • F F F F AR AR • F F F AR • F F F F F F F F F F F F F F F F F F	ARF.	0E-10	KHF AR	ī		. 000	9	9	90-	0	,,,,,
3.02-10 ARKR* F 5	AR2.	F F 6 A	ARF AR	n	, .	-		- -			
SALE-10 12.50 E-10 12.50 E-10 12.50 E-10 12.50 E-10 12.50 E-10 13.00 E-10	(R2.	¥ .	(RF KR								
SKI REPORT NO. MP 76-99. DEC 1976 BARKH. F F ARKRF F F SKI REPORT NO. MP 76-99. DEC 1976 BARKH. F F ARKRF F F SKI REPORT NO. MP 76-99. DEC 1976 SKI REPORT NO. MP 76-99. DEC 1976 SKI REPORT NO. MP 76-99. DEC 1976 REF F F F S SKI REPORT NO. MP 76-99. DEC 1976 REF F F F S SKI REPORT NO. MP 76-99. DEC 1976 REF F F S SKI REPORT NO. MP 76-99. DEC 1976 REF F S SKI REPORT NO. MP 76-99. DEC 1976 REF F S SKI REPORT NO. MP 76-99. DEC 1976 SKI REPORT NO. MP 76-99. DEC 1976 REF F S SKI REPORT NO. MP 76-99. DEC 1976	J	· F2 *	ARZF F								
ARKH" - FZ AKKRF - F SKI REPORT NO, HP 76-99, DEC., 1976 ARKH" + FZ AKKRF - F SKI REPORT NO, HP 76-99, DEC., 1976 B. OLE 10 B. OL	2.50	6-10			RI RE	PORT	. ON	MP 7	166-9	OEC.	1976
JOE 20 JOE 20	ARKH.	E-10	· KRF · · AF		RI RE	PORT	NO	NP 7	66-9	DEC.	1976
RR2** FF KR2F* F 3.00 E-10 ARKFF* FF AR AR AR F F FF SRI REPORT NO. MP 76-99. DEC., 1976 SRI REPORT NO. MP 76-99. DEC., 1976 ARKFF* FF F F F SRI REPORT NO. MP 76-99. DEC., 1976	ARKH	+ F2 4	. AHKRF								
3.00 E-10 SRI REPORT NO. MP 76-99. DEC., 1976 ARKF - F2 AR + RR + F F ARKF - F2 AR + KR + F F 1.00 E-09 SRI REPORT NO. HP 76-99. DEC., 1976 RRF - F2 AR + F + F2 SRI REPORT NO. HP 76-99. DEC., 1976 RRF - F2 AR + F + F2 SRI REPORT NO. HP 76-99. DEC., 1976 RRF - F2 AR + F + F2 SRI REPORT NO. HP 76-99. DEC., 1976 RRF - F2 AR + F + F2 SRI REPORT NO. HP 76-99. DEC., 1976 RRF - F2 AR + AR	KR2.	· F2 6	KRZF* . F								
MRKHF . FZ ~ AR . AR . F . F . SRI REPORT NO. HP 76-99, DEC., 1976 1,00 E-09 1,00 E-09 1,00 E-09 1,00 E-09 2,01 E-09 2,01 E-09 2,01 E-09 2,01 E-09 3,01 KRPF . FZ 2,00 E-33 3,01 KRPF . AH 2,00 E-33 3,01 KRPWT NO. HP 76-99, DEC., 1976 3,01 E-09 3,01 KRPWT NO. HP 76-99, DEC., 1976 3,01 E-09 3,01 KRPWT NO. HP 76-99, DEC., 1976 3,02 E-33 3,03 E-09 3,04 E-09 3,05 E-09 3,06 E-09 3,07 E-09 3,08 E-09 3,08 E-09 3,09 E-09 3,09 E-09 3,00 E-09 3,0 E-09	3.00	E-10		S	RI REI	PORT	NO.	MP 7	.66-9	DEC.	1976
RKKFF - F2 AH - KR - F F2 1.00 E-09 1.00 E-09 1.00 E-09 1.00 E-09 1.00 E-09 1.00 E-09 2.00 E-33 2.00 E-30 2.00 E-33 2.00 E-30 2.00 E	ARZF.	• F2 4	. AR . AR .		F2	1000	9	7	4-00	0.00	101
SRI REPORT NO. MP 76-99, DEC., 1976 (RZF * FZ * KR * KR * F * FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * KR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976 ARF* · FZ * RR · F · FZ SRI REPORT NO. MP 76-99, DEC., 1976	RKRF	52	AR . KR	٠.	F 2		•	-		200	
1.00 E-09 SRI NEPORT NO. MP 76-99. DEC., 1976	1.00	E-09		S	RI RE	PORT	. ON	MP 7	.66-9	DEC.	1976
AR & KRZF	KR2F.	. F2	. KR . KR .		F 2	1900	0	7	.00-	7,90	107
AH & AR2F . AR . KH . F . F 2 . AR . F . F 2 . KHF . AR . AR . H	RF.	KR .	AR & KAZF.	. ×		5	•			770	
AR AREF • AR KR • F • F2 AR • F • F2 AR • F • F2 KRF • AR •	2.00	£-33		S	RI RE	PORT	. ON	MP 7	.66-9	DEC.	1976
KK F F F F C AR AR F K F C F C AR AR C AR C AR C AR C AR C AR	ARF	. AR .	AR & ARZF		2	100	9	0	00-7	250	1076
. KH . F . F2 . KHF AR . AR* . H	ARKRE	-	* KHZF .		1	5	•	-			
. AR . F . F2 . ARF AR . AR* . H	1.00	E-10			RI RE	PORT	0N	MP 7	66-9	DEC.	1976
. AR . F . F . AR . AR . AR . AR . AR .	KRF.	· F2 .	KK · F · F		0.0	1800	0	07	.00-	250	107
AR* . H KR* . H	ARF.	. 62 4	AR . F . F		Ju 1		•				
AR" . H KR" . H	1.00	E-09		S	RI RE	PORT	NO.	HP 7	166-9	DEC.	1976
1.0E-10 AR** * H. 1.00 E-10 KR** * N. KR* * H	AR2F.	· KR	. KRF AR	•	~						
1,00 E-10 KR** * H , KK* * H		OE-10	H								
1.00 E-10	1.00	E-10									
1.00 £=10	KR.	* * *	K W)								
	1.00	E-10									

1234567890123456789012345678901234567890123456789012345678901234567890 1 2 2 3 4 5 8 8 8 8

Figure 4 (Continued)

SUMMARY OF CARD IMAGES FOR INPUT DATA DECK

890	
1 1234567890123456789012345678901234567890123456789012345678901234567890	SRI REPORT NO. HP 76-99. DEC 1976 HAY. DUNNING (6 NS LIFETIME) ARO LASER TRANSITION A. MANDL. PHYS REV AJ. 251 (1971) AR(*) KR(*) ESTIMATED. BUT NOT CURRENTLY UNDERSTOOD
7890123	SRI REPORT NO. MP 76-99. DEC 1976 HAY. DUNNING (6 NS LIFETIME) LASER TRANSITION A. MANDL. PHYS REV A3. 251 (1971) STEVENS (PARK CITY CONFERENCE) ESTIMATED. BUT NOT CURRENTLY UNDERSTOOD
0123456	121 3.30 E 07 SRI REPORT NO. HP 76-99, DEC 1976 123 3RR * AR SRI REPORT NO. HP 76-99, DEC 1976 124 3RR * AR SRI REPORT NO. HP 76-99, DEC 1976 125 3.30 E 06 SRI REPORT NO. HP 76-99, DEC 1976 126 3.30 E 08 SRI REPORT NO. HP 76-99, DEC 1976 137 5.00 E 08 SRI REPORT NO. HP 76-99, DEC 1976 138 5.00 E 07 SRI REPORT NO. HP 76-99, DEC 1976 139 5.00 E 07 SRI REPORT NO. HP 76-99, DEC 1976 131 5.00 E 07 SRI REPORT NO. HP 76-99, DEC 1976 132 6.70 E 07 SRI REPORT NO. HP 76-99, DEC 1976 133 6.70 E 07 SRI REPORT NO. HP 76-99, DEC 1976 134 KRF * RR * KR * F * HNU HAY. DUNNING (6 NS LIFETIME) 135 6.70 E 08 LASER TRANSITION 135 6.70 E 08 LASER TRANSITION 136 7.50 E - 16 LASER TRANSITION 137 6.70 E - 16 LASER TRANSITION 147 5.40 E - 18 LASER TRANSITION 147 5.40 E - 18 LASER TRANSITION 147 5.40 E - 18 LASER TRANSITION 148 6.70 E - 17 STEVENS (PARK CITY CONFERENCE) 149 6.70 E - 17 STEVENS (PARK CITY CONFERENCE) 140 6.70 E - 17 STEVENS (PARK CITY CONFERENCE) 140 6.70 E - 17 STEVENS (PARK CITY CONFERENCE) 141 6.70 E - 17 STEVENS (PARK CITY CONFERENCE) 144 6.70 E - 17 STEVENS (PARK CITY CONFERENCE)
456789	76-99, 76-99, 76-99, 76-99, 76-99, 76-99, 76-99, 76-99, CONFECTION
7890123	40. HP
123456	(EPORT I (EPORT I (EPORT I (EPORT I (EPORT I (IRANS
4567890	SRIF SRIF SRIF SRIF SRIF SRIF SRIF SRIF
7890123	# F F F F F F F F F F F F F F F F F F F
123456	AD A S S S S S S S S S S S S S S S S S S
567890	######################################
1234	121 3.30 E 07 122 AR. AR. AR. 123 124 AR. R. B.
CARD NO.	127.127.227.227.227.227.227.227.227.227.

12345678901234567890123456789012345678901234567890123456789012345678901234567890 1 5

Figure 4 (Continued)

SUMMARY OF INPUT: REACTIONS AND RATE CONSTANTS (SEC-1, CH3/SEC, CH6/SEC, ... OR CM2) WITH REFERENCES

(IF A RATE CONSTANT KF OR KR FOR A BINARY ELECTRON COLLISION IS NOT EXPLICITLY SPECIFIED. IT WILL BE COMPUTED SELF CONSISTENTLY AS A FUNCTION OF EZM. GAS COMPOSITION. AND EXCITED LEVEL DENSITIES FROM A COUPLED ELECTHON ANALYSIS.)

-	REACTION(1) (1)GNORED REACTIONS ARE NOT NUMBERED)	HATE C	HATE CONSTANTS	RAIE REFERENCES AND/OR COMMENIS
-	AR · E · AR · · E	(COMPUTED)	(COMPUTED)	SCHAPER.SCHEIBNER.BEITR. AUS PLASMA PHYS. 9. 45 FORWARD HATE IS OBTAINED FROM E- KINETICS ANALYSIS REVERSE RATE IS OBTAINED FROM E- KINETICS ANALYSIS
~	KR . E & XR* . E	(COMPUTED)	(COMPUTED)	SCHAPER, SCHEIBNER, BEITR, AUS PLASMA PHYS, 9, 45 FORWARD RATE IS OBTAINED FROM E- KINETICS ANALYSIS REVERSE RATE IS OBTAINED FROM E- KINETICS ANALYSIS
•	KR E & KR E	(COMPUTED)	(COMPUTED)	60.E-16 CH2 AT 1.6 EV THRESHHOLD ASSUMED. FORWARD HATE IS OBTAINED FROM E- KINETICS ANALYSIS HEVERSE RATE IS OBTAINED FROM E- KINETICS ANALYSIS
•	AR" . E & AR" . E	(COMPUTED)	(COMPUTED)	60.E-16 CH2 AT 2 EV THRESHHOLD ASSUMED. FORWARD RATE IS OBTAINED FROM E- KINETICS ANALYSIS REVERSE RATE IS OBTAINED FROM E- KINETICS ANALYSIS
v	AR* • E r AR(•) • E • E	(COMPUTED)		7.E-16 CH2 AT 4.2 EV THRESHHOLD ASSUMED. FORWARD RATE IS OBTAINED FROM E- KINETICS ANALYSIS REVERSE REACTION IS IGNORED KR = 0.
٠	KR E . KRI.) . E . E	(COMPUTED)		10.E-16 CH2 AT 4.0 EV THRFSHHOLD ASSUMED. FORWARD RATE IS OBTAINED FROM E- KINETICS ANALYSIS REVEHSE REACTION IS IGNORED KR = 0.
-	F2 · E · F · F-	(COMPUTED)		HOFLAND, AEROSPACE CORP. FORWARD RATE IS OBTAINED FROM E- KINETICS ANALYSIS REVERSE REACTION IS IGNORED KR = 0.
•	ARZ* . E . AR . AR . E	1.0000E-07		REVERSE HEACTION IS IGNORED KR = 0.
6	KRZ* . E . KR . KR . E	1.0000E-07		REVERSE REACTION IS IGNORED KR = 0.
01	AR . HE AR HE-	3.3000£-18	3.3000E-18	
=	AR . HE AR(.) . HE E	1.20006-17		3 X BERGER, SELIZER: STOP = 1.7 HEVCH2/6M AT 300 K HEVERSE REACTION IS IGNOPED KR = 0.
21	KR . HE KR HE-	6.0000E-18	6.0000E-18	
2	KR . HE - A KR(.) . HE - · E	2.4000E-17		REVEHSE REACTION IS IGNORED KR = 0.

Figure 5

Figure 5 (Continued)

SUMMARY OF INPUT: REACTIONS AND RATE CONSTANTS (SEC-1, CH3/SEC, CH6/SEC, ..., OR CH2) WITH REFERENCES

4	-
SE	15
ED	7
5	¥.
d HO	۷ ۲
3	ğ
BE	ECT.
7	E
3	03
=	7
•	200
E	4
CIF	N
PE	FR
>	ES
1	Ξ
101	NSI
4	OE
3	E.
101	EV
S	0
7	11
0	XC
IS) [
LIF A RATE CONSTANT OF KR FOR A BINARY ELECTRON COLLISION IS NOT EXPLICITLY SPECIFIED. IT WILL BE COMPUTED SELF	CONSISTENTLY AS A FUNCTION OF E/N: GAS COMPOSITION: AND EXCITED LEVEL DENSITIES FROM A COUPLED ELECTRON ANALYSIS.)
NO	Š.
IR	Ξ
LEC	081
E	H
ARY	၁
ž	Y S
A	•
3	Z
F	4
¥	0
80	0
¥	INCT
Z	3
ATC	4
NO	4
3	17
A	W
*	151
-	NS
=	S

	CONSISTENTLY AS A FUNCTION OF E/N. GAS COM	OSITION, AND EXCIT	ED LEVEL DEN	INT OR AN FOR A BINARY ELECTION. COLLISION IS NOT EXPLICITE. STELLITED, IT WILL BE COMPUTED SELF. UNCTION OF E/N. GAS COMPOSITION. AND EXCITED LEVEL DENSITIES FROM A COUPLED ELECTRON ANALYSIS.)
-	REACTION(1) (IGNORED REACTIONS ARE NOT NUMBERED)	RATE CONSTANTS KF(1) KR(TANTS KR(1)	RAIE REFERENCES AND/OR COMMENTS
1	AR(+) + AR + M # AR2(+) . M	2,50006-31		REVERSE REACTION IS IGNORED KR = 0.
15	ARI.1 . KR . H . ARKRI.1 . M	2.5000E-31		REVERSE REACTION IS IGNORED KR = 0.
91	KRI+1 + KR + H + KRZI+! + H	3.0000E-31		REVERSE REACTION IS IGNORED KR = 0.
11	KRI+) + AR + M + ARKRI+) + M	1.00006-31		REVERSE REACTION IS IGNORED KR = 0.
18	ARI+) + KR + AR + KRI+)	3.0000E-11 X	X E (-E/KT)	REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
19	ARZ(+) + KR + KR(+) + AR + AR	7.5000E-10		BOHME EI AL, J. CHEM, PHYS. 52, 5094 (1970) PEVERSE REACTION IS IGNORED KR = 0.
20	ARKRILLI + KR + KRZIL) + AR	3.2000E-10 X	X E1-E/KT)	BURNE ET AL. J. CHEN, PHYS, 52. 5094 (1970) REVERSE HATE IS OBTAINED FROM DETAILED BALANCE.
21	KR2(+) + E + KR* + KR	4.0000E-08		MEMER. BIONDI (TE = 30,000 K) REVERSE REACTION IS IGNORED KR = 0.
22	ARZI+1 + E + AR + AR	4.0000E-08		MEHR. BLONDI (TE = 30,000 K) HEVERSE REACTION IS IGNORED KR = 0.
23	AR + H + AR2 + H	1.0000E-32		HILL, GUTCHECK, HUESTIS, ET AL, SRI REPORT, 1974. REVERSE REACTION IS IGNORED KR = 0.
54	AR* . KR . M . ARKR* . M	1.0000E-32		REVERSE REACTION IS IGNORED KR = 0.
\$2	KR KR . M . KR2 M	5.5000E-J2		HUGHES LASL ASPEN 9/76 REVERSE REACTION IS IGNORED KR = 0.
92	KR* . AR . M . ARKR* . M	1.0000E-32		REVERSE REACTION IS IGNORED KR = 0.
23	ARKR . KR . KRZ AH	1.0000E-10 x	X E(-E/KI)	SRI REPORT NO. MP 76-99, DEC., 1976 REVERSE RATE IS ORTAINED FROM DETAILED BALANCE.
28	ARZIL) + F- r ARF + AR	1.0000E-06 X	X E(-E/KI)	REVERSE HATE IS OBTAINED FROM DETAILED BALANCE.
62	ARZ(+) + F- + ARZF#	1.0000E-06		REVENSE REACTION IS IGNORED KR = 0.
30	ARIOI . F - ARF"	1.0000E-06		HEVERSE REACTION IS IGNORED KR * 0.

Figure 5 (Continued)

S	
w	
0	
OR CM2) WITH REFERENCES	
w	
œ	
w	
•	
W	
œ	
I	
=	
-	
3	
_	
-	
0	
=	
-	
_	
~	
#	
0	
1	
•	
•	
•	
•	
•	
U	
CM6/SEC	
S	
-	
Ť	
-	
_	
_	
0	
w	
S	
-	
CH3/SEC.	
I	
U	
-	
u	
w	
SE	
SE	
(SE	
5 (SEC-1	
15 (56)	
115 (SE	
ANIS (SE	
IANIS (SE	
STANTS (SE	
ISTANTS (SE	
NSTANTS (SE	
CONSTANTS (SE	
CONSTANTS (SE	
CONSTANTS (SE	
E CONSTANTS (SE	
TE CONSTANTS (SE	
TE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
REACTIONS AND RATE CONSTANTS	
TE CONSTANTS	
REACTIONS AND RATE CONSTANTS	

•	-
Ψ	S
-	S
(IF A RATE CONSTANT KF OR KR FOR A BINARY ELECTRON COLLISION IS NOT EXPLICITLY SPECIFIED. IT WILL BE COMPUTED SELF	CONSISTENTLY AS A FUNCTION OF E/N. GAS COMPOSITION. AND EXCITED LEVEL DENSITIES FROM A COUPLED ELECTRON ANALYSIS.)
5	¥
P	₹
3	z
S	2
¥	Ξ
æ	Ĕ
=	H
Ξ	_
-	H
=	٦
	Ž
0	$\ddot{\circ}$
=	~
=	I
0	≥
P	-
S	S
>	IE
E	-
5	2
-	Z.
4	2
ũ	_
_	Ķ
9	4
_	_
=	E0
-	=
5	2
S	3
٦	0
7	Z
ರ	
Z	ž
20	2
-	=
E	S
F	2
-	H
3	0
ž	S
8	3
~	ž
9	É
•	
S	0
-	Z
9	2
	5
×	3
=	=
4	<
15	S
Z	<
2	-
w	=
-	Z
2	=
4	15
	S
=	0
_	0

	CONSISTENTLY AS A FUNCTION OF EZN. GAS COMPOS	TION. AND EX	CITED LEVEL DEI	FUNCTION OF E/N: GAS COMPOSITION, AND EXCITED LEVEL DENSITIES FROM A COUPLED ELECTRON ANALYSIS.)
-	REACT 10	RATE C	RATE CONSTANTS	RATE REFERENCES AND/OR COMMENTS
3	KRZ(.) . F KRF KR	1.0000E-06	X E (-E/KT)	REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
32	KRZ(+) + F- + KRZF*	1.0000E-06		REVERSE REACTION IS IGNORED KR = 0.
33	KR(+) + F- + KRF*	1.0000£-06		REVERSE REACTION IS IGNORED KR = 0.
34	ARKRI + F - + KHF + - AR	1.0000E-06	X E (-E/KT)	REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
35	ARKR(+) . F ARKRF.	1.0000E-06		REVERSE REACTION IS IGNORED KR = 0.
36	KR F.Z . KRF F	7.20006-10	X E (-E/KT)	VELAZCO. KOLTS. SETSER. JCP 65. 3469 11976) REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
37	AR" . FZ . ARF" . F	7.50006-10	X E (-E/KT)	VELAZCO. KOLIS. SETSFR. JCP 65. 3469 (1976) REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
38	AR* . KR . AR . KR*	6.2000E-12	X E (-E/KT)	PIPER, SETSER, CLYNE, JCP 63, 4018 (1975) REVENSE RATE IS OBTAINED FROM DETAILED BALANCE.
39	AR + KRF + H + ARKRF + M	4.00006-33		SRI REPORT NO. MP 76-99, DEC., 1976 REVERSE REACTION IS IGNORED KR = 0.
0,	ARZ* + KR + AR + AR + KR*	8.00006-11		ZAMIR (PRIV. COMMUN. TO SRI) REVERSE REACTION IS IGNORED KR = 0.
7	AR2" . AR2" . AR2(.) . AR . AR . E	3.0000E-10		REVEHSE REACTION IS IGNORED KR = 0.
45	ARF . KR . KRF AR	1.5000E-10	X E (-E/KT)	SRI REPORT NO. MP 76-99. DEC., 1976 REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
43	ARZ" . F . ARF" . AR	3.0000E-10	X E (-E/KT)	REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
1,	KR2* . F . KRF* . KR	3.0000E-10	X E (-E/KT)	REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
45	AR2" . F2 . AR2F" . F	2.5000E-10	X E (-E/KT)	SRI REPORT NO. MP 76-99. DEC 1976 REVEKSE RATE IS OBTAINED FROM DETAILED BALANCE.
4	ARKR . FZ . KHF . AR . F	6.0000E-10		SRI REPORT NO. MP 76-99. DEC 1976 REVERSE REACTION IS IGNORED KR = 0.
1,	ARKR. • F2 & ARKHF. • F	3.0000E-10	X E (-E/KT)	REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.

Figure 5 (Continued)

OR CHZ) WITH REFERENCES
CH2)
OR
:
CH6/SEC.
CM3/SEC. CM6/SEC.
(SEC-1.
IS AND RATE CONSTANTS (SEC-1 . C
RATE
AND
REACT IONS
SUMMARY OF INPUT!
10
SUMMARY

LIF A RATE CONSTANT KF OR KR FOR A BINARY ELECTRON COLLISION IS NOT EXPLICITLY SPECIFIED. IT WILL BE COMPUTED SELF	CONSISTENTLY AS A FUNCTION OF E/N: GAS COMPOSITION, AND EXCITED LEVEL DENSITIES FROM A COUPLED ELECTRON ANALYSIS.)
7	165
EXPLICIT	L DENSIT
101	Š
S	0
1 NO1 S1	EXCITE
770	AND
ARY ELECTRON C	COMPOSITION.
BIN	6AS
FOR A	F E/N.
X X	0
S.	0
KF	CNC
Z	4
CONST	Y AS
TE	N.
A	STE
(IF A	CONSI

-	REACTION(1) (IGNORED REACTIONS ARE NOT NUMBERED)	RATE CO	RATE CONSTANTS	RATE REFERENCES AND/OR COMMENTS
84	KR2* . F2 . KR2F* . F	3.0000E-10	X E(-E/KT)	SRI REPORT NO. HP 76-99. DEC 1976 REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
\$	ARZF . FZ . AR . AK . F . FZ	1.0000E-09		SRI REPORT NO. MP 76-99. DEC 1976 REVERSE REACTION IS IGNORED KR = 0.
20	ARKRF . FZ . AH . KH . F . FZ	1.0000£-09		SRI REPORT NO. MP 76-99. DEC., 1976 REVERSE REACTION IS IGNORED KR = 0.
51	KRZF + FZ + KR + KR + F + FZ	1.00006-09		SRI REPORT NO. MP 76-99. DEC 1976 REVERSE REACTION IS IGNORED KR = 0.
25	KHF . KR . AR . KHZF AR	2,00006-33		SRI REPORT NO. MP 76-99, DEC., 1976 REVENSE REACTION IS IGNORED KR = 0.
£	ARF . AR . AR . AREF . AR	2.00006-33		SRI REPORT NO. MP 76-99, DEC., 1976 REVERSE REACTION IS IGNORED KR = 0.
35	ARKRF" . KR & KHZF" . AR	1.0000E-10	X E(-E/KT)	SRI REPORT NO. MP 76-99. DEC., 1976 REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
55	KAFF . FZ . KR . F . FZ	1.0000E-09		SRI REPORT NO. MP 76-99, DEC., 1976 REVERSE REACTION IS IGNORED KR = 0.
99	ARF . FZ . AR . F . FZ	1.00006-09		SRI REPORT NO. MP 76-99, DEC., 1976 REVERSE REACTION IS IGNORED KR = 0.
23	ARZF . KR . KHF . AR . AR	1.0000E-10		REVERSE REACTION IS IGNORED KR = 0.
58	AR** . M . AR* . M	1.00006-10	X EI-E/KI)	REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
65	KR M . KR M	1.0000E-10	X E (-E/KT)	REVERSE RATE IS OBTAINED FROM DETAILED BALANCE.
9	ARF . AR . F	3.3000E.07		SRI KEPORT NO. MP 76-99. DEC 1976 REVERSE REACTION IS IGNORED KR = 0.
9	AR2 . AR . AR	3.8000E.06		SRI REPORT NO. MP 76-99. DEC 1976 REVERSE REACTION IS IGNORED KR = 0.
62	ARKR AR . KR	3.0000E + 06		REVERSE REACTION IS IGNORED KR = 0.

SUMMARY OF INPUTE REACTIONS AND RATE CONSTANTS (SEC-1, CH3/SEC, CH6/SEC, ..., OR CH2) WITH REFERENCES

(IF A RATE CONSTANT KF OR KR FOR A BINARY ELECTRON COLLISION IS NOT EXPLICITLY SPECIFIED. IT WILL HE COMPUTED SELF CONSISTENTLY AS A FUNCTION OF EZN. GAS COMPOSITION, AND EXCITED LEVEL DENSITIES FROM A COUPLED ELECTRON ANALYSIS.)

					VE DECAY.					
COMMENTS	. 1976 - KR = 0.	. 1976 - KR = 0.	. 1976 - KR = 0.	. 1976 - KR = 0.	- KR = 0. OR RADIAT	- KR = 0.	- KR = 0.	971) - KR = 0.	- KR = 0.	UNDERSTOOF - KR = 0.
RAIE REFERENCES AND/OR COMMENTS	16NORED -	16NORED -	16NORED -	16NORED -	IGNORED -	I GNORED -	1GNORED -	13. 251 (1 1GNORED -	ONFERENCE IGNORED -	URRENTLY IGNORED -
REFERENCE	NO. MP 76	NO. MP 76	NO. MP 76	NO. MP 76	16 (6 NS L	STTTON ACT TON 15	ST NOT 15	HYS REV A	ARK CITY C	BUT NOT C
RAIE REFERENCES AND/OR COMMENTS	SKI REPORT NO. MP 76-99. DEC 1976 REVERSE HEACTION IS JONORED KR =	SRI REPORT NO. MP 76-99, DEC 1976 REVERSE REACTION IS IGNORED KR =	SRI HEPORT NO. MP 76-99, DEC., 1976 REVERSE REACTION IS IGNORED KR = 0.	SRI REPORT NO. MP 76-99, DEC., 1976 REVERSE REACTION IS IGNORED KR =	MAY. DUNNING (6 NS LIFETIME) REVERSE REACTION IS IGNORED KR = 0. NO REVERSE REACTION ALLOWED FOR RADIATIVE DECAY.	LASER THANSITION REVERSE REACTION IS IGNORED KR = 0.	REVERSE REACTION IS IGNORED KR =	A. MANDL, PHYS REV A3, 251 (1971) REVERSE REACTION IS IGNORED KR = 0.	STEVENS (PARK CITY CONFERENCE) REVERSE REACTION IS IGNORED	ESTIMATED, BUT NOT CURRENTLY UNDERSTOOD REVERSE REACTION IS IGNORED KR = 0.
ASTANTS KR(1)										
RF(I) KR(3.3000£.06	2.0000£.08	S.0000E.07	6.7000E.07	1.6000E .08	2.5000E-16	1.5000E-20	5.4000E-18	1.5000E-17	1.00006-17
E NOT NUMBERED)										
I (IGNOMED REACTIONS ARE NOT NUM			u.		O.W.	F . RAD			AR(+)	. KR(.)
REACTION(1)	** • KR	AR2F* * AR . AR . F	ARKRF* . AR . KH . F	KRZF . KR . KR . F	KRF * * KR * F * HNU	KRF* · RAD · KR · F	F2 . RAD . F . F	F RAD . F . E	ARZ(+) + RAD + AR + AR(+)	KR2(+) + RAD + KH + KR(+)
LIGNORE	KH2. F KH . KR	AR2F .	ARKRF.	KR2F.	KRF.	KRF.	FZ . RA	F RA		KR2(•)
-	63	3	65	9	19	8	69	0/	2	22

OF 72 INPUT REACTIONS SCANNED. 72 WERE RETAINED (MAXIMUM ALLOWED = 200) AND 0 WERE IGNORED FUR REASONS ITEMIZED IN THE TABLE. OF THOSE RETAINED. 7 REQUIRE RATES FROM AN E-KINETICS ANALYSIS. 24 SEPARATE SPECIES WERE ENCOUNTERED (MAXIMUM ALLOWED = 30).

Figure 6

SUMMARY OF REACTIONS FOR WHICH EACH SPECIES OCCURS: NIYPE = 24 (THIS EDIT PERMITS RAPID DELETION OF ANY SPECIES FROM THE KINETIC SYSTEM)

		Ē	15 60	11 PL	RMITS	(THIS EDIT PERMITS RAPID DELETION OF	0 061	100		A SP	CIES	F KOH	Ĭ	I NE	ANY SPECIES FHOM THE KINETIC SYSTEMS	2					
-	(1)599						-	EACT I	ONS	REACTIONS CONTAINING GAS(1)	NING	645(_								
-	RAD	89	69	70.	::	72.															
2	(-) J	=	۶.		;	5.	• 9	7,		6	:	3.	.12	22,	.:	10.					
•	84	-:	. ·	10.	50.	14,	17.	18.	19,	20.	22.	23.	26.	27.	28.	34.	38.	39.	•	.1.	75
•	AR.	-	;	5.	10.	22.	23.	54.	37.	38,	58.										
s	æ	2.	;;	12,	13,	15,	16.	18.	19.	20.	21.	24.	52.	27,	31.	38.	.0,	45.	;	• 05	15
•	KR•	2.	÷	•	12.	21.	25,	56.	36,	38.	.04	.65									
,	кв	3.	59.																		
•	AR	;	58.																		
•	AR(+)	\$:		15.	18,	30.	::													
10	KR(+)	•	13,	16.	17.	18.	19.	33.	12,												
=	12	1,	36.	37.	454	.94	.1.	48,	.64	.05	51,	92.	.95	.69							
15	•	.69	36.	37.	;	;	.5	• 9•	.1.	.8	.64	20.	51.	55,	.95	• 0 •	• • • •	• 5 •	• 99	67.	89
13	f-	7.	.62	.62	30.	31,	32.	33,	34.	35.	70.										
-	AR2.	8	23.	+0+	;	43.	.5.	.10													
15	KR2.		.55	27.	**	48.	63,														
91	AR2(+)		13.	22.	28.	. 59.	.1.	::													
-	ARKR (+)	15,	:	50.	34.	35,															
91	KH2(.)	16,	50,	21.	31.	32,	12.														
-	ARKR.	54.	56.	27.	46.	41.	65.														
-		-		-			-	-	-		-	-		-				-		-	

Figure 6 (Continued)

SUMMARY OF REACTIONS FOR WHICH EACH SPECIES OCCURS: NIYPE = 24 (THIS EDIT PERMITS RAPID DELETION OF ANY SPECIES FROM THE KINETIC SYSTEM)

ARF* 28, 30, 37, 42, 43, 53, 56, 60,

Figure 7

SUMMARY OF CARD IMAGES FOR INPUT DATA DECK

8 367890
5678901234
65678901234
567890123
5678901234
3678901234
678901234
1 123456789012345678901234567890123456789012345678901234567890123456789012345678
CARD NO.

IPULSE = 50.E-09\$	11	F = 10.	50	11	- 5	22 =	1681 = 2	6 = 1011	=======================================	"	KF(13) = 6.6E-18	1965.	105.	5.4	5.11	13.5	15.8	5.6	6.11	1.1	10.	6.9	0.5	5.6	8.2	13.0	9.11	5.0	0.4	12.4	3.0	4 9
-095 -095				-01.	.01.	-01.		-19. KR(10) = 9.0E-19.		-18. KR(12) = 1.6E-18.	-18\$.0.	. 48	38.																		

1234567B901234567B901234567B901234567B901234567B901234567B901234567B901234567B90 1 2 2 4 8

SUMMARY OF UPDATED RATES FOR JUPUL REGELTON SCHEME OF SYNTHETIC KINETICS CORE GENERALE SHAMTHORME. CALIFERNIA

1 18 1. 18 1. 1. 1. 1.		-	REACTION(1)	KF (1)	KR(I)	REFERENCES OR CONNENTS
1 KR. E. E. KR. R. E. E ************************************		_	AR . E. AR" . E			***** THE ORIGINAL RATE HAS BEEN MODIFIED ****
4 ARR * E C ARR* * E ************************************		2	KR · E · KR · E			**** THE ORIGINAL RATE HAS BEEN MODIFIED ****
4 ARR * E c AR** E ************************************		0	KR E . KR E			**** THE ORIGINAL RATE HAS BEEN MODIFIED ****
5 AR* • · E ~ AR(!) · E · E		4	AR" . E . AR" . E			
1 F.Z. & C. F. F. F. 1.00006-07 ************************************		S	AR E . AR(*) . E . E			***** THE ORIGINAL RATE HAS BEEN MODIFIED ****
1 FEZ. E F F F F F F F F F F F F F F F F F F		•	KR E . KR(.) . E . E			**** THE ORIGINAL RATE MAS BEEN MODIFIED ****
9 ARZ** · E r AR* · AR · E 1.0000E-07 10 AR* · HE - r AR** · HE - 9.0000E-19 9.0000E-19 11 AR · HE - r AR* · HE - 1.0000E-19 9.0000E-19 12 KR · HE - r AR* · HE - 1.0000E-19 9.0000E-19 13 KR · HE - r AR* · HE - 1.0000E-19 9.0000E-19 14 AR · HE - r AR* · HE - r AR* · HE - 2.5000E-31 9.0000E-19 15 AR (**) · AR · H r AR2(*) · H 2.5000E-31 9.0000E-31 16 KR (**) · KR · H r AR KR (**) · H 1.0000E-31 800HHE 20 AR (**) · KR r AR · KR (**) · AR 3.0000E-31 9.0000E-31 19 AR (**) · KR r AR · KR (**) · AR 3.0000E-31 9.0000E-31 21 KR (**) · KR r AR · KR (**) · AR 3.0000E-31 9.0000E-31 22 AR (**) · KR r AR · KR (**) · AR 3.0000E-31 9.0000E-31 23 AR (**) · KR r AR · KR (**) · AR 3.0000E-31 9.0000E-31 24 AR R (**) · E r AR · KR r · KR 4.0000E-31 9.0000E-31 25 AR R · KR · H r AR R R · H 1.0000E-32 9.0000E-32 25 AR R · KR · H r AR R R · H		1	F2 . E . F . F .	1.0000E-07		**** THE ORIGINAL RATE HAS BEEN MODIFIED ****
9 KR2** * E F KR * KH * E 1,0000E-07 ************ 10 AR * HE - F ARI** * HE - 3,3000E-19 ************************************		8	AR2" . E . AR . AR . E	1.0000E-07		
10 AR · HE - r AR · · HE - 9,0000E-19 9,0000E-19 11 AR · HE - r AR · · HE - 1,6000E-18 0.0000E-19 12 KH · HE - r KR · · HE - 6,6000E-18 0.0000E-18 13 KH · HE - r KR · · · HE - · · E 6,6000E-18 0.0000E-18 14 AR (·) · AR · · · · AR AR R (·) · · · · 2,5000E-31 0.0000E-31 15 AR (·) · · KR · · · · · AK R (·) · · · 3,0000E-31 0.0000E-31 16 AR (·) · · KR · · · R R (·) · · · AR 3,0000E-31 X E (-E/K1) 0.000E-31 19 AR (·) · · KR · · · KR (·) · · AR · · AR 3,2000E-31 X E (-E/K1) 0.000E-31 19 AR (·) · · KR · · KR (·) · · AR · · AR 3,2000E-31 X E (-E/K1) 0.000E-31 20 AR (·) · · KR · · KR · · KR · · KR · · · KR · · · KR · · · ·		6	KR2" . E . KR . KH . E	1.0000E-07		
11 AR · HE - r AR(·) · HE - · E 3.3000E-18 ••••• 12 KR · HE - r KR(·) · HE - · E 1.6000E-18 ••••• 13 KR · HE - r KR(·) · HE - · E 6.6000E-18 ••••• 14 AR(·) · AR · H r ARZ(·) · H 2.5000E-31 ••••• 15 AR(·) · KR · H r ARZ(·) · H 3.0000E-31 BOHHE 16 KR(·) · AR · H r ARR(·) · H 1.0000E-31 BOHHE 19 ARZ(·) · KR r KR(·) · AH · AR 3.0000E-10 X E(-E/KI) 19 ARZ(·) · KR r KR(·) · AH · AR 3.0000E-10 X E(-E/KI) 20 ARKH(·) · KR r KR(·) · AH · AR 3.0000E-10 X E(-E/KI) 21 ARZ(·) · E r KH · KR · KR AR 1.0000E-07 ••••• 22 ARZ(·) · E r KH · AR AR 1.0000E-07 •••• 23 ARR · KR · H r ARR² · H 1.0000E-32 HILL· 24 ARR · KR · H r KR² · H 1.0000E-32 HILL· 25 KR* · KR · H r KR² · H r KR² · H 1.0000E-32 HILL·	•	0	AR . HE AR" . HE-		9.0000E-19	***** THE ORIGINAL RATE HAS BEEN MODIFIED ****
12 KR · HE · C KR* · HE · C 1.6000E - 18 ••••• 13 KR · HE · C KR(1) · HE · C 6.6000E - 18 •••• 14 AR(1) · AR · H · C ARZ(1) · H 2.5000E - 31 •••• 15 AR(1) · KR · H · C KRZ(1) · H 3.0000E - 31 KE (-E/K1) 16 KR(1) · KR · M · KRZ(1) · H 3.0000E - 31 BOHHE 20 ARZ(1) · KR · KR(1) · AR · AR 3.2000E - 10 BOHHE 21 ARZ(1) · KR · KR(1) · AR · AR 3.2000E - 10 * E (-E/K1) 22 ARZ(1) · KR · KR(1) · AR · AR 2.0000E - 07 * * * * * * * * * * * * * * * * * * *		=	•	3.3000E-18		**** THE ORIGINAL RATE HAS BEEN MODIFIED ****
13 KR · HE - r KR(·) · HE - · E 14 AR(·) · AR · H r AR2(·) · H 15 AR(·) · KR · H r AKR(·) · H 16 KR(·) · KR · H r AKR(·) · H 17 KR(·) · KR · H r AKR(·) · H 18 AR(·) · KR · H r AKR(·) · H 19 AR2(·) · KR r KR2(·) · AR · AR 20 ARKH(·) · KR r KR2(·) · AR 21 KR2(·) · E r KR r · KR 22 AR2(·) · E r AR r · AR 23 AR r · AR · H r AR2 r · H 24 AR r · KR · H r AR2 r · H 25 AR2 r · KR · H r AR2 r · H 26 AR r · KR · H r AR2 r · H 27 AR r · KR · H r AR2 r · H 28 AR r · KR · H r AR2 r · H 29 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r AR2 r · H 20 AR r · KR · H r RR2 r · H 20 AR r · KR · H r RR2 r · H 20 AR r · KR · H r RR2 r · H 20 AR r · KR · H r RR2 r · H 20 AR r · KR · H r RR2 r · H 20 AR r · KR · H r RR2 r · H 20 AR r · KR · H r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 21 AR r · KR · H r r RR2 r · H 22 AR r · KR · H r r RR2 r · H 23 AR r · KR · H r r RR2 r · H 24 AR r · KR · H r r RR2 r · H 25 AR r · KR · H r r RR2 r · H 26 AR r · KR · H r r RR2 r · H 27 AR r · KR · H r r RR2 r · H 28 AR r · KR · H r r RR2 r · H 29 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 20 AR r · KR · H r r RR2 r · H 21 AR r · KR · H r r RR2 r · H 22 AR r · KR · H r r RR2 r · H 23 AR r · KR · H r r RR2 r · H 24 AR r · KR · H r r RR2 r · H 25 AR r · KR · H r r RR2 r · H 26 AR r · KR · H r r RR2 r · H 27 AR r · KR · H r r RR2 r · H 28 AR r · KR · H r r RR2 r · H 29 AR r · KR · H r r R	•	15	KR . HE- & KR* . HE-		1.6000E-18	**** THE ORIGINAL RATE HAS BEEN MUDIFIED ****
14 AR(**) · AR · H · ARZ(**) · H 2.5000E-31 15 AR(**) · KR · H · AKKR(**) · H 2.5000E-31 16 KR(**) · KR · H · AKKR(**) · H 1.0000E-31 17 KR(**) · AR · A	•	2		6.6000E-18		***** THE ORIGINAL RATE HAS BEEN MODIFIED ****
15	~	4		2.5000£-31		
16 KR(*) • KR • M ~ KR2(*) • M 17 KR(*) • AR • M ~ AKR2(*) • M 18 AR(*) • KR ~ AR • KR(*) 19 AR2(*) • KR ~ KR(*) • AR • AR 20 ARKH(*) • KR ~ KR2(*) • AR 21 KR2(*) • E ~ KR* • KR 22 AR2(*) • E ~ AR* • AR 23 AR* • AR • H ~ AR2" • H 24 AR* • KR • H ~ AR2" • H 25 KR* • KR • H ~ AR2" • H 26 KR* • KR • H ~ AR2" • H 27 AR8 • KR • H ~ AR2" • H 28 KR* • KR • H ~ AR2" • H 29 AR* • KR • H ~ AR2" • H 20 AR* • KR • H ~ AR2" • H 20 AR* • KR • H ~ AR2" • H 21 KR2(*) • E ~ AR4 • AR2" • H 22 AR8 • KR • H ~ AR2" • H 23 AR* • KR • H ~ AR2" • H 24 AR* • KR • H ~ KR2" • H 25 KR* • KR • H ~ KR2" • H 26 KR* • KR • H ~ KR2" • H 27 AR8 • KR • H ~ KR2" • H 28 KR* • KR • H ~ KR2" • H 29 KR* • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 21 KR000E-32 22 KR* • KR • H ~ KR2" • H 23 KR* • KR • H ~ KR2" • H 24 KR • KR • H ~ KR2" • H 25 KR* • KR • H ~ KR2" • H 26 KR* • KR • H ~ KR2" • H 27 KR • KR • H ~ KR2" • H 28 KR* • KR • H ~ KR2" • H 29 KR* • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 21 KR • KR • H ~ KR2" • H 22 KR • KR • KR • H ~ KR2" • H 23 KR • KR • KR • H ~ KR2" • H 24 KR • KR • H ~ KR2" • H 25 KR • KR • KR • H ~ KR2" • H 26 KR • KR • H ~ KR2" • H 27 KR • KR • H ~ KR2" • H 28 KR • KR • KR • H ~ KR2" • H 29 KR • KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 20 KR • KR • H ~ KR2" • H 21 KR • KR • H ~ KR3" • H 22 KR • KR • KR • H ~ KR3" • H 23 KR • KR • KR • H ~ KR3" • H 24 KR • KR • KR • KR • H ~ KR3" • H 25 KR • KR	-	5		2.50008-31		
17 KR(t) - AR · M r AKKR(t) · H 1,0000E-31 18 ARR(t) · KR r AR · KR(t) 3,0000E-11 X E(-E/KT) 19 ARZ(t) · KR r KR2(t) · AR · AR 7,5000E-10 BOHHE 20 ARKH(t) · KR r KR2(t) · AR 2,0000E-10 ***** 21 KRZ(t) · E r AH* · AR 7,0000E-07 ***** 22 ARZ(t) · E r AH* · AR HILL, ***** 23 AR* · AR · H r ARN* · H 1,0000E-32 HILL, 24 AR* · KR · H r ARN* · H 5,5000E-32 HIJGHES	=	9		3.0000E-31		
18 ARICII · KK · AH · KRICII AR · E/KII BOHHE 19 ARZII · KR · KRICII · AH · AR 7.5000E-10 BOHHE 20 ARKHICII · KR · KRZIII · AH 3.2000E-10 X EI-E/KII BOHHE 21 KRZIII · E · KH · KR KR 7.0000E-07 ************************************	-	1		1.0000E-31		
19 ARZ(1) · KR r KRZ(1) · AH · AR 7.5000E-10 BOHHE 20 ARKH(1) · KR r KRZ(1) · AH ARZ(1) BOHHE 21 KRZ(1) · E r AH · AR KR C.0000E-07 ****** 22 ARZ(1) · E r AH · AR AR HILL, ***** 23 AR* · AR · H r ARN* · H HILL, HILL, 24 AR* · KR · H r ARN* · H S.5000E-32 HIJGHES	=	8	ARIO1 + KH + AM + KRIO1		X E (-E/KT)	
20 AHKH(1) · KH ~ KR2(1) · AH 21 KR2(1) · E ~ KH · · KH 22 AR2(1) · E ~ AH · · AR 23 AR · · · AR · · · · AR 24 AR · · · KH · · · · · ARNH · · · H 25 KH · · · KR · · · · · · · · · · · · · · ·	-	6		7.5000E-10		ВОНИЕ ЕТ АL, J. CHEM. РНYS. 52, 5094 (1970)
21 KR2(*) · E & KK* · KH	2	0.0			X E (-E/KT)	
22 AR2(1) + E + AR+ + AR 23 AR+ + AR + H + AR2" + H 24 AR+ + KR + H + ARNH + H 25 KR+ + KR + H + KR2" + H 25 KR+ + KR + H + KR2" + H 26 BOOGE-32 27 HJGHES		=	KR2(*) . E . KR* . KR	2.00005-07		**** THE ORIGINAL RATE HAS BEEN MODIFIED ****
AR* • AR • H # AR2* • H 1.0000E-32 AR* • KR • H # ARRH* • H 1.0000E-32 KR* • KR • H # KR2* • H 5.5000E-32		25	ARZIVI . E + AH AR	7.0000E-07		***** THE ORIGINAL RATE HAS BEEN MODIFIED ****
AR* • KR • M • ARKR • • M 1.0000E-32 KR* • KR • M • KH2* • 4 5.5000E-J2	2	63	AR* . AR . H . AR2" . H	1.0000E-32		HILL, GUTCHECK, HUESTIS, ET AL, SRI REPORT, 1974.
KH* * KR * H * KHZ* * 4	2	4	AR" + KH + M + ARNNe + M	1.00006-32		
	2	5	KR* · KR · M · KH2* · M	5.5000£-J2		HUGHES LASL ASPEN 9/76

. THE ORIGINAL RATE CONSTANT(S) HAVE BEEN MODIFIED

Figure 8 (Continued)

OF UPDATED RATES FOR INPUT REACTION SCHEME OF SYNTHETIC KINETICS CODE GENERATED Milliam B. Lacina, northrup research and technology center, hawthorne, california	REFERENCES OR COMMENTS		SRI REPORT NO. MP 76-99, DEC., 1976									VELAZCO, KOLTS, SETSER, JCP 65, 3469 (1976)	VELAZCO, KOLTS, SETSER, JCP 65, 3469 (1976)	PIPER, SETSER, CLYNF, JCP 6 , 4018 (1975)	SRI REPORT NO. MP 76-99, DEC., 1976	ZAMIR (PRIV. COMMUN. TO SRI)		SHI REPORT NO. MP 76-99, DEC 1976			SRI REPORT NO. MP 76-99, DEC., 1976	SRI HEPORT NO. MP 76-99, DEC., 1976		SKI REPORT NO. MP 76-99, DEC. 1976	SRI REPORT NO. MP 76-99, DEC., 1976	SRI REPORT NO. MP 76-99, DEC., 1976
TECHNOLOGY C	KR(1)		X E (-E/KT)	x E (-E/KT)			X E (-E/KT)			X E1-E/KT)		X E (-E/KT)	X E (-E/KT)	X E (-E/KT)				X E (-E/KT)	X E (-E/KT)	X E (-E/KT)	X E (-E/KT)		X E (-E/KT)	X E(-E/KT)		
REACTION SCHEME PP RESEARCH AND	KF (1)	1.00006-32	1.0000E-10	1.0000E-06	1.0000£-06	1.0000E-06	1.0000E-06	1.0000E-06	1.0000E-06	1.0000E-06	1.0000t-06	7.2000E-10	7.5000E-10	6.2000E-12	4.0000E-33	B.0000E-11	3.0000E-10	1.5000E-10	3.0000E-10	3.0000E-10	2.5000E-10	6.0000E-10	3.0000E-10	3.0000E-10	1.0000E-09	1.0000E-09
SUMMARY OF UPDATED RATES FOR INPUT "ILLIAM B. LACINA, NORTHRO	REACTION(I)	KR. AR . H . ARKH H	ARKR + KR + KH2 + AR	ARZ(+) + F- + ARF + AR	AH2(+) + F- + AR2F4	AR(+) + F- + ARF+	KR2(+) + F- + KRF + KR	KR2(+) + F- + KR2F*	KR(+) + F- + KHF*	ARKRI+1 + F- + KRF + + AR	ARKHI.) . F ARKHF.	KR. + F2 & KRF F	ARe . FZ . ARF F.	ARe . KR . AR . KK.	AH . KHF M . ARKHF M	ARZ" . KH . AK . AK . KR"	AR2" . AR2" " AR2(+) . AR . AR . E	ARF . KH & KHF . AR	ARZ" . F . ARF" . AR	KR2 F . KRF KR	ARZ* + FZ + ARZF* + F	ARKH . FZ . KHF . AR . F	AHKH . FZ & ARKRF . F	KR2* . FZ . KRZF* . F	ARZF* . FZ . AK . AR . F . FZ	ARKRF" . F2 . AH . KR . F . F2
	-	92	12	82	62	30	3	32	33	34	35	36	37	38	39	0 7	7	24	£,	7,	54	94	1.7	48	64	9.0

Figure 8 (Continued)

UMMARY OF UPDATED RATES FOR INPUT BEACTION SCHEME OF SYNTHETIC KINETICS CODE GENERALED	
HAW THORN	
TIC KINE	
CHN3LOGY	
CH AND 16	
OBEACT TON	-
NONTHU	
RATESFO	
UPDATED	
SUMMARY U	

REFERENCES OR COMMENTS	SHI REPORT NO. MP 76-99, DEC., 1976	SRI REPORT NO. MP 76-99, DEC 1976	SAI REPORT NO. MP 76-99, DEC 1976	SRI REPORT NO. HP 76-99, DEC., 1976	SRI REPORT NO. MP 76-99, DEC., 1976	SHI HEPORT NO. MP 76-99, DEC., 1976				SRI REPORT NO. MP 76-99, DEC., 1976	SRI REPORT NO. MP 76-99, DEC., 1976		SRI REPORT NO. MP 76-99, DEC., 1976	SHI REPURT NO. MP 76-99, DEC., 1976	SRI REPORT NO. NP 76-99, DEC., 1976	SRI REPORT NO. MP 76-99, DEC., 1976	HAY. DUNNING (6 NS LIFETIME)	***** THE ORIGINAL RATE HAS BEEN HODIFIED ****		A. MANDL. PHYS REV A3. 251 (1971)	STEVENS (PARK CITY CONFERENCE)	ESTIMATED
KR(1)				X E (-E/KT)				X E (-E/KT)	X E (-E/KT)													
KF (1)	1.0000E-09	2.0000E-33	2.0000E-33	1.0000E-10	1.0000E-09	1.0000E-09	1.0000E-10	1.0000E-10	1.0000E-10	3.3000E.07	3.8000£.06	3.0000E .06	3.3000E.06	2.0000E.08	5.0000E.01	6.7000E.07	1.6000E+08	2.0000E-16	1.50006-20	5.4000E-18	1.5000£-17	1.0000E-17
KEACT10N(1)	KHZF . FZ . KH . KH . F . FZ	KRF . KR . AK . KHZF AK	ARF . AR . AH . AHZF . AH	AHKHF KR & KRZF AH	KRF . FZ . KR . F . FZ	ARF . FZ . AR . F . FZ	ARZF . KR . KHF AR . AH	AR** . H . AR* . H	KR. · H · KH. · H	ARF . A AR . F	ARZ AR . AH	ARKH . AH . KH	KR2 KR . KH	ARZF . AR . AH . F	AHKHF . AR . KR . F	KR2F . KR . KH . F	KRF * KR + F + HNU	KHF* . RAD A KH . F . RAD	FZ . RAD . F . F	F RAD . F . E	ARZ(+) . RAD . AR . AR(+)	KRZ(+) + RAD " KR + KR(+)
-	15	25	53	54	55	99	57	28	65	09	79	29	63	40	53	99	19	. 68	69	7.0	11	12

. THE ORIGINAL RATE CONSTANTIS) HAVE BEEN HODIFIED

where it has been assumed that $\Delta \tilde{\nu} \sim 600\,\mathrm{cm}^{-1}$, and $\tau \sim 6.7\,\mathrm{ns}$. It should be noted, of course, that comparison of gain predictions with experimental data depend directly upon this cross section. The value assumed, $2.0\times10^{-16}\,\mathrm{cm}^2$, provides very good agreement with the experimentally measured value. Current estimates of the stimulated emission cross section range from $1.0-2.5\times10^{-16}\,\mathrm{cm}^2$, so the present choice is not unreasonable. The pulse shape of the e-beam was found to be peaked at about $500\,\mathrm{A/cm}^2$, with a full-width at half maximum of about 20 ns, so a Gaussian shape was used in the analysis as shown in Figure 9. Figure 10 and 11 show the predicted values of laser gain, internal absorption in the medium, and the resulting net gain coefficient. Figure 12 shows results of the analysis for the population densities for the various species included in the excited mixture.

In order to provide some quantitiative assessment of the sensitivity of the various reactions included in the kinetic scheme, the computer code generates, according to input requests, tables such as those presented in Figure 13. These tables summarize the numerical value of the contribution each reaction makes (at a given time) to each species in the system, expressed for each species as a percentage of the maximum rate contribution for that species. Those reactions which never contribute more than a specified percentage are flagged with an asterisk, and are summarized at the conclusion of the analysis. Thus, after a variety of calculations have been made for different conditions and parameters, it is possible to determine whether any given reaction may be considered to be unimportant and deleted from the scheme.

For KrF*, for example, it can be seen from Figure 13 that spontaneous emission, fluorine quenching, ArF* displacement, ion-ion

recombination, metastable production, and trimer formation of ArKrF* all contribute. The relative importance of these mechanisms changes in an electric discharge excitation, where there is more metastable production, and less F for ion-ion recombination processes. From Figure 13 it is possible to get a quantitative feeling for the importance of each reaction. Figure 14 presents a schematic representation of the principal reactions involved in KrF* production and loss.

In conclusion, the dominant reactions involved in the krypton fluoride laser operation are identified. The results of the small signal gain measurement agree quite well with those predicted by the code, thereby supporting the proposed reactions and their rate constants. However, uncertainties regarding some of these rates still remain to be resolved. For example, estimates of the stimulated emission cross section, the electron attachment rate for F_2 , and ion-ion recombination rates appear to vary by at least a factor of two. Parameters such as the electron energy deposition profile and the three-body quenching of KrF^* by Ar present even more uncertainty. Some of these rates are expected to be refined in the near future as a result of continuing investigations at several laboratories. These updated rates will be most useful for scaling predictions. However, the basic mechanisms for the KrF laser operation, identified in this investigation, are not expected to change significantly.

Figure 9

LASER GAIN AND MEDIUM ABSORPTION COFFFICIENTS (CM-1)

Figure 10

Figure 11

Figure 12

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

7. 3.

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 13

-10.182 -63.578 12.782 100.000 20.605 116.11--68.992 100.000 -6.623 -31.214 AR (.) AR. PERCENTAGE CONTRIBUTION OF REACTION K 18 ON (1170). EXPRESSED (FOR EACH SPECIES) AS A PERCENTAGE OF THE MAXIMUM RATE OCCURING FOR ALL REACTIONS INCLUDED *** -13.084 .119 19,526 -100.000 47.221 89,920 -.677 -6.657 -52.080 -19.959 -3.702 -2.601 -4.722 12.132 11.978 -67.185 5.780 -6.291 X -42.781 -100.000 92.463 AK. -26,316 -31.789 6.391 100.000 19.162 -12.176 6.039 -10.123 -23.000 -003 64.502 -66.572 4.534 8.466 1.060 6.031 AR 9.540 -.092 -100.000 89.348 E (-) 100. KAD 100.0 HAX 2.6806.23 2.426.20 6.5316.22 2.426.20 2.426.22 1.6806.21 1.2666.22 1.2666.22 1.266.22 2.4716.20 3.0226.22 1.266.22 2.4716.20 3.0226.22 2.4716.20 3.0226.22 2.4716.20 3.0226.22 2.4716.20 3.0226.22 2.4716.20 3.0226.22 2.4716.20 3.026.22 2.4766.22 2.4766.22 2.4766.22 2.4766.22 2.4766.22 2.4766.22 2.4766.22 2.4766.22 2.4766.22 2.4766.22 2.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 3.4766.22 RATE (K) ×

* THIS REACTION CUNTRIBUTES LESS THAN S. % TO ALL SPECIES THROUGHOUT THE ENTIRE CALCULATION SO FAR

77-44

Figure 13 (Continued)

	KR(+)																						
	AR(+)																						
[5]	RAD E(-) AR AR* KR* KR* KR* AR** AR(+) KR(+)								-100.000														
EACH SPECI	X & a									100.000													
ESSED (FOR	* XX									0000-													
PERCENTAGE CONTRIBUTION OF REACTION K 10 DN(1)/DT. EXPRESSED (FOR EACH SPECIES) AS A PERCENTAGE OF THE MAXIMUM RATE OCCURING FOR ALL REACTIONS INCLUDED	æ	40.126	261		-14.837	82,158		-8.062					.042	.329		5.199	20.452	100.000					
ION K 10 DN	AR.								000.														
ON OF REACT F THE MAXIM	A.R.			-1.018	14.244		16.752	15.480			4.206	.324	050.		9.176	2.111							
CONTRIBUTI ERCENTAGE O	E (-)																						
PERCENTAGE AS A P	RAD																						
	HAA &	100.0	1.3	10.8	100.0	85.2	56.0	82.1	100.0	100.0	6.5	1.3		3.5	48.7	14.8	51.0	100.0	0.0	0.0	0.0	0.0	0.0
	RATETKI	4.781E-22	6.352E+20	2.5276.21	3,5356.22	1.9586.23	4.158E +22	1.921E+22	1.240E-11	-5.228E-07	1.0446.22	4.018E .20	1.000E.20	3.9196.20	1.1395.22	5.2396.21	2.4376.22	2.3836.23	.0	.0		.0	••
	×	15	• 55	53	54	55	99	25	58	65	09	. 61	. 62	. 63	49	65	99	19	. 68	69 .	02 .	=	21 .

. THIS REACTION CONTRIBUTES LESS THAN 5. % TO ALL SPECIES THROUGHOUT THE ENTIRE CALCULATION SO FAR

Figure 13 (Continued)

* THIS REACTION CONTRIBUTES LESS THAN 5. % TO ALL SPECIES THROUGHOUT THE ENTIRE CALCULATION SO FAR

60

7.5

Figure 13 (Continued)

	ARF .		-1.579		-25.972			-6.520										
	ARKR.									707								
	KR2(+)																	
ACH SPECIES	ARKR (.)																	
TAGE CONTRIBUTION OF REACTION K 10 DN(1)/DI, EXPRESSED (FOR EACH SPECIES) A PERCENTAGE OF THE HAXIMUM HATE OCCURING FOR ALL REACTIONS INCLUDED	ARZIFI	17,836																
-08 SEC ALLIZOT, EXPR	KR2.	1								-3.483								
1 = 2500E TION K 10 DN HUM RATE OCC	AR2.								-1.330									
ON OF REACT	Ţ																	
CONTRIBUTI ERCENTAGE C	•	17.836		73.036	15.512			3.894			4.248	1.954	AB 898					
PERCENTAGE AS A P	2																	
	HAX &	100.0	9.0	82.2	26.0	82.1	100.00	5.0	:	3.5	48.7	8.41	0.00	0.0	0.0	0.0	0.0	0.0
	RATE (K)	4.781E-22	2.5276.21	1.9586.23	4.158E+22	1.9216.22	-5.2281-07	1.0446.22	4.0186.20	3.919E.20	1.1396.22	5.2396.21	19 JE . 2	0.		.0		•
	¥	153	2.5	55	95	23	ď			2 5	*0				69	70	=	22

. THIS HEACTION CONTRIBUTES LESS THAN 5. % TO ALL SPECIES THROUGHOUT THE ENTIRE CALCULATION SO FAR

Figure 13 (Continued)

PERCENTAGE CONTRIBUTION OF REACTION K TO ONCITYDT, EXPRESSED (FOR EACH SPECIES) AS A PERCENTAGE OF THE MAXIMUM MATE OCCURING FOR ALL MEACTIONS INCLUDED

ARKRF.

KHZF.

KRF .

ARZF "

HAX &

RATEIKI

- ~	•	•				
u m	•	0.0				
4	.0	0.0				
s		0.0				
9		0.0				
-	2.680E+23	0.001				
3	2.156E . 20					
,	2.455t · 50	2.2				
0	6.531E . 22	95.5				
=	2.395E.23	100.0				
15	6.198E.21	19.5				
13	2.557E+22	50.6				
14	1.652E+23	100.0				
15	8.821E+21	11.2				
91	1.264E+22	26.6				
11	7.890E . 2	100.0				
18	1.586E+22	12.8				
2	1.2416.23	0.001				
20	4.756E . 22	0.00				
17	2.471F . 20					
	6. 999F . 20					
10	3.0226.22					
76	16.176.21	7				
25	15.36.36.4	25.0				
3	13.75					
97	77.7515.1	0.00				
17	1.1656.66	100.0				
88	2.339£ .22	14.0				
57	2.336.52	0.001	100.000			
30	7.475E-22	1.95				
=	2.891E . 22	£0.0		12.132		
35	2.8916.22	8.00			994.09	
33	8.9241.22	6.17		37.451		
34	25.10155	26.6		8		
35	2.101E-22	59.4				59.433
36	3.174E + 22	100.0		13.321		
37	7.064E+22	100.0				
38	1.4995.22	41.2				
39	2.513E+22	71.1		-10.544		71.067
0 4	2.854E . 22	94.5				
-	3.354F . 1A					
	1.6016.23	100		67.185		
77	7.546F . 20					
	07.756.30			154		
	27.301.00		7.70 71			
42	12.16/1-61		14.024			
46	2.6 JOE . 21	18.6		1.104		
1.5	1.3156.21	4.3				3.720
48	4.683E.21	41.6			161.6	
07	7.484F . 21	12.0	-31.992			
-	17.	000				

* THIS REACTION CONTRIBUTES LESS THAN 5. % TO ALL SPECIES THROUGHOUT THE ENTIRE CALCULATION SO FAR

Figure 13 (Continued)

PERCENTAGE CONTRIBUTION OF REACTION K TO DNITLYDT. EXPRESSED IFOR EACH SPECIES)
AS A PERCENTAGE OF THE MAXIMUM RATE OCCURING FOR ALL REACTIONS INCLUDED

*	KATE (K)	4 X X X X X X X X X	ARZF .	Z Z Z	NICE	
51	4.7816.22	100.0			-100,000	00
25	6.352E+20	1.3		267	1.32	0
53	2.5276.21	10.8	10.003			
24	3.535£.22	100.0			13.952	2
55	1.958€ . 23	82.2		-82.158		
26	4.158E .22	26.0				
21	1.921E+22	82.1	-82.120	8.062		
28	1.2405-11	100.0				
65	-5.228E-07	100.0				
09	1.0446.22	6.5				
19	4.0186.20	1.3				
62	1.000E . 20					
63	3.9196.20	3.5				
40	1.1395.22	48.7	-48.675			
65	5.2396.21	9.41				
99	2.4376.22	51.0			-50,969	•
10	2.3836.23	100.0		-100.000		
99	.0	0.0				
69		0.0				
10	•	0.0				
=	.0	0.0				
12	.0	0.0				

5. % TO ALL SPECIES THROUGHOUT THE ENTIRE CALCULATION SO FAR . THIS REACTION CONTRIBUTES LESS THAN

Figure 14 Schematic Representation of the Principal Reactions Involved in KrF* Production and Loss