MIT GR Course Problem Set 2

Solutions and Explanations

Peter Benjamin Zhu

Problem1. Show that the number density of dust measured by an observer whoes 4-velocity is \vec{U} is given by $n = -\vec{N} \cdot \vec{U}$, where \vec{N} is the matter current 4-velocity.

Solution. By definition we have the matter current 4-velocity $N^a = nU^a$, we have

$$\boxed{-N^a U_a = -n U^a U_a = n} \tag{1}$$

Problem2. Take the limit of continuity equation for $|\mathbf{v}| \ll 1$ to get $\partial n/\partial t + \partial (nv^i)/\partial x^i = 0$

Solution. For $|\mathbf{v}| \ll 1$, the Lorentz factor satisfies $\gamma \approx 1$. Therefore the 4-velocity can be expressed as $\overrightarrow{U} = (1, \mathbf{v})$.

According to the continuity equation $\partial_{\alpha}N^{\alpha}=0$ and $N^{\alpha}=nU^{\alpha}$, we have

$$\partial_{\alpha}(nU^{\alpha}) = 0$$

$$\Rightarrow \partial_{t}(nU^{t}) + \partial_{i}(nU^{i}) = 0$$

$$\Rightarrow \boxed{\frac{\partial n}{\partial t} + \frac{\partial(nv^{i})}{\partial x^{i}} = 0}$$
(2)

Problem3. In an inertial frame \mathcal{O} , calculate the components of the stress-energy tensors of the following systems:

- (a) A group of prticles all moving with the same 3-velocity $\mathbf{v} = \beta \vec{e}_x$ as seen in \mathscr{O} . Let the rest-mass desnity of these particles be ρ_0 , as measured in their own rest frame. Assume a sufficiently high density of particles to enable treating them as a continuum.
- (b) A ring of N similar particles of rest mass m rotating counterclockwise in the x-y plane about the origin of \mathcal{O} , at a radius a from this point, with an angular velocity ω . The ring is a torus of circular crosssection $\delta a \ll a$, within which the particles are uniformly distributed with a high enough density for the continuum approximation to apply. Do not include the stress-energy of whatever forces keep them in orbit. Part of this calculation will relate ρ_0 of part (a) to N, a, δa , and ω .
- (c) Two such rings of particles, one rotating clockwise and the other counter-clockwise, at the same radius a. The particles do not collide or otherwise interact in any way.

Solution.

(a) First, in the rest frame of the group of these particles, the stressenergy tensor $T^{\mu\nu}$ assumes the simplified form $T^{\mu\nu} = \rho_0 U^{\mu} U^{\nu}$, or in matrix:

$$\begin{pmatrix} \rho_0 & & \\ & 0 & \\ & & 0 \\ & & & 0 \end{pmatrix}$$

Second, given these particles move in the same 3-velocity $\mathbf{v} = \beta \vec{e}_x$ as seen in \mathscr{O} , their 4-velocity in this frame becomes $\overrightarrow{U'} = (\gamma, \gamma\beta, 0, 0)$. Consequently,

the stress-energy tensor in frame \mathcal{O} assumes the form:

(b) First, given the torus volume $V=2\pi a\pi(\delta a)^2$, the rest-mass density ρ_0 is determined as:

$$\rho_0 = \frac{Nm}{2\pi^2 a(\delta a)^2} \tag{4}$$

Next, for particles undergoing counter-clockwise rotation with angular velocity ω , the corresponding 4-velocity components at the angle ϕ are derived via Cartesian coordinates:

$$\vec{U} = \gamma(1, -a\omega\sin(\phi), a\omega\cos(\phi), 0), \quad \gamma = (1 - a^2\omega^2)^{-\frac{1}{2}}$$
 (5)

Finally, combining the system's symetry and the strss-energy tensor definition $T^{\mu\nu} = \rho_0 U^{\mu} U^{\nu}$, angular averaging over ϕ yields:

$$\langle T^{00} \rangle = \gamma^2 \rho_0$$

$$\langle T^{11} \rangle = \gamma^2 \rho_0 \cdot \frac{1}{2} a^2 \omega^2$$

$$\langle T^{22} \rangle = \gamma^2 \rho_0 \cdot \frac{1}{2} a^2 \omega^2$$

$$\langle T^{12} \rangle = \langle T^{21} \rangle = \langle \sin \phi \cos \phi \rangle = 0$$
(6)

Combining Eq.(4), Eq.(5) and Eq.(6) to get the final stress-energy tensor assuming the matrix representation:

$$T^{\mu\nu} = \gamma^2 \rho_0 \begin{pmatrix} 1 & & & \\ & \frac{1}{2} a^2 \omega^2 & & \\ & & \frac{1}{2} a^2 \omega^2 & \\ & & & 0 \end{pmatrix}$$
 (7)

(c) Since the two rings are counter-rotating and the constituent particles exhibit no interactions, the stress-energy tensor for each ring independently assumes the form specified in Eq.(7). The composite system's stress-energy tensor is therefore given by linear superposition:

$$T^{\mu\nu} = 2\gamma^2 \rho_0 \begin{pmatrix} 1 & & & \\ & \frac{1}{2}a^2\omega^2 & & \\ & & \frac{1}{2}a^2\omega^2 & \\ & & & 0 \end{pmatrix}$$
 (8)

Notes for Problem3.

In problem (a), the stress-energy tensor $T'^{\mu\nu}$ can be derived via an alternative approach distinct from Eq.(3):

$$T^{\prime\mu\nu} = \frac{\partial x^{\prime\mu}}{\partial x^{\sigma}} \frac{\partial x^{\prime\nu}}{\partial x^{\rho}} T^{\sigma\rho} = \frac{\partial x^{\prime\mu}}{\partial x^{0}} \frac{\partial x^{\prime\nu}}{\partial x^{0}} T^{00}$$
(9)

Evidently, the application of tensor transformation formula in Eq.(9) yields identical result.

Problem4. Use the identity $\partial_{\nu}T^{\mu\nu}=0$ to prove the following results for a bounded system (i.e., a system for which $T^{\mu\nu}=0$ beyond some bounded region of space):

- (a) $\partial_t \int T^{0\alpha} d^3x = 0$. This expresses conservation of energy and momentum.
- (b) $\partial_t^2 \int T^{00} x^i x^j d^3 x = 2 \int T^{ij} d^3 x$. This result is a version of the virial theorem; it will come in quite handy when we derive the quadrupole formula for gravitational radiation.
- (c) $\partial_t^2 \int T^{00} (x^i x_i)^2 d^3 x = 4 \int T_i^i x^j x_j d^3 x + 8 \int T^{ij} x_i x_j d^3 x$. No pithy wisdom for this one.

Solution. Utilizing the identity $\partial_{\nu}T^{\mu\nu}=0$, we derive the following equations:

$$\begin{cases} \partial_t T^{00} + \partial_k T^{0k} = 0, & \mu = 0 \\ \partial_t T^{0i} + \partial_k T^{ik} = 0, & \mu = i \end{cases}$$
 (10)

Later we will use Eq.(10) for multiple times, so it's best to put these relations before the steps of the solutions.

(a) For the $\mu = 0$ component in Eq.(10), integration to get

$$\partial_t \int T^{00} \, \mathrm{d}^3 x = -\int \partial_k T^{0k} \, \mathrm{d}^3 x \tag{11}$$

Applying Gauss's law we get $\int \partial_k T^{0k} d^3x = \oint T^{0k} dS_k$. Given that it is a bounded system, T^{0k} vanishes at spatial infinity, leading to:

$$\partial_t \int T^{00} d^3x = 0$$
 (Conservation of Energy) (12)

Similarly, for $\mu = i$ we have:

$$\partial_t \int T^{0i} \, \mathrm{d}^3 x = 0 \quad \text{(Conservation of Momentum)}$$
 (13)

This completes the proof of $\partial_t \int T^{0\alpha} d^3x = 0$ $(\alpha = 0, 1, 2, 3)$.

(b) According to Eq.(10) we have:

$$\partial_t \int T^{00} x^i x^j \, \mathrm{d}^3 x = -\partial_k \int T^{0k} x^i x^j \, \mathrm{d}^3 x$$

Applying integration by parts yields:

$$-\int \partial_k T^{0k} x^i x^j d^3 x = \int T^{0k} \partial_k (x^i x^j) d^3 x - 0$$
$$= \int T^{0k} (x^j \delta_k^i + x^i \delta_k^j) d^3 x = \int (T^{0i} x^j + T^{0j} x^i) d^3 x$$

Subsequently taking the time derivative once and combining Eq.(10) when $\mu = i$ provides:

$$\partial_t \int (T^{0i}x^j + T^{0j}x^i) d^3x = \int (\partial_k T^{ik}x^j + \partial_k T^{jk}x^i) d^3x$$
$$= \int (T^{ik}\delta_k^j + T^{jk}\delta_k^i) d^3x = 2 \int T^{ij} d^3x$$

Thus, we prove the identity $\partial_t^2 \int T^{00} x^i x^j d^3 x = 2 \int T^{ij} d^3 x$

(c) According to Eq.(10) we have:

$$\partial_t \int T^{00} (x^i x_i)^2 d^3 x = -\partial_k \int T^{0k} (x^i x_i)^2 d^3 x$$

Applying integration by parts yields:

$$-\partial_{k} \int T^{0k} (x^{i}x_{i})^{2} d^{3}x = \int T^{0k} \partial_{k} (x^{i}x_{i})^{2} d^{3}x$$

$$= \int T^{0k} \cdot 2(x^{i}x_{i})(x^{i}\delta_{ik} + x_{i}\delta_{K}^{i}) d^{3}x = \int T^{0k} \cdot 2(x^{i}x_{i}) \cdot 2x_{k} d^{3}x$$

$$= 4 \int T^{0k} (x^{i}x_{i})x_{k} d^{3}x$$

Subsequently taking the time derivative once and combining Eq.(10) when $\mu = i$ provides:

$$4 \int \partial_t T^{0k}(x^i x_i) x_k \, \mathrm{d}^3 x = -4 \int \partial_j T^{jk} x_k(x^i x_i) \, \mathrm{d}^3 x$$

$$= 4 \int T^{jk} \partial_j \left[x_k(x^i x_i) \right] \, \mathrm{d}^3 x$$

$$= 4 \int T^{jk} x^i x_i \delta_{jk} \, \mathrm{d}^3 x + 8 \int T^{jk} x_k x_j \, \mathrm{d}^3 x$$

$$= 4 \int T^j_j x^i x_i \, \mathrm{d}^3 x + 8 \int T^{jk} x_j x_k \, \mathrm{d}^3 x$$

Regroup the index to get the identity $\partial_t^2 \int T^{00} (x^i x_i)^2 d^3 x = 4 \int T_i^i x^j x_j d^3 x + 8 \int T^{ij} x_i x_j d^3 x$.

Problem5.

The vector potential $\overrightarrow{A} \doteq (A^0, \mathbf{A})$ generates the electromagnetic field tensor via

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

(a) Show that the electric and magnetic fields in a special Lorentz frame

are given by

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$$

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \mathbf{\nabla} A^0.$$

(b) Show that the Maxwell's equations hold if and only if

$$\partial_{\mu}\partial^{\mu}A^{\alpha} - \partial^{\alpha}\partial_{\mu}A^{\mu} = -4\pi J^{\alpha}$$

(c) Show that a gauge transformation of the form

$$A_{\mu}^{\text{new}} = A_{\mu}^{\text{old}} + \partial_{\mu}\phi$$

leaves the field tensor unchanged.

(d) Show that one can adjust the gauge so that

$$\partial_{\mu}A^{\mu}=0$$

Show that Maxwell's equations take on a particularly simple form with this gauge choice. Use the operator $\Box \equiv \partial_{\mu}\partial^{\mu}$ to simplify your result.

Solution. The components of electromagnetic field tensor in a particular reference frame assume the matrix form:

$$(F_{\mu\nu}) = \begin{bmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{bmatrix}$$
(14)

(a) By utilizing the Levi-Civita symbol ϵ_{ijk} , the curl of the vector **A** can be reformulated in the following tensorial notation:

$$\mathbf{\nabla} \times \mathbf{A} = \epsilon^{ijk} \partial_i A_j$$

By definition, the electric and magnetic field vectors can be expressed by $F_{\mu\nu}$:

$$E_{\mu} = F_{\mu 0} \tag{15}$$

$$B_{\mu} = \frac{1}{2} \epsilon_{0\mu\nu\sigma} F^{\nu\sigma} \tag{16}$$

where $\mu, \nu, \sigma = 1, 2, 3$. Since $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ and $F^{ij} = F_{ij}$, combining Eq.(15) and Eq.(16) yields:

$$E_{\mu} = \partial_{\mu} A_0 - \partial_0 A_{\mu} \tag{17}$$

$$B_{\mu} = \frac{1}{2} \epsilon_{0\mu\nu\sigma} (\partial_{\nu} A_{\sigma} - \partial_{\sigma} A_{\nu}) = \epsilon_{0\mu\nu\sigma} \partial_{[\nu} A_{\sigma]} = \epsilon_{0\mu\nu\sigma} \partial_{\nu} A_{\sigma}$$
 (18)

Because of $A_0 = -A^0$, the electric and magnetic field vectors assume the more familiar form:

$$E_{\mu} = -\partial_{\mu}A^{0} - \partial_{0}A_{\mu} \doteq -\frac{\partial \mathbf{A}}{\partial t} - \nabla A^{0}$$

$$B_{\mu} = \epsilon_{0\mu\nu\sigma}\partial_{\nu}A_{\sigma} \doteq \nabla \times \mathbf{A}$$
(19)

(b) Starting from the 4-dimensional Maxwell's equations

$$\partial^{\mu}F_{\mu\nu} = -4\pi J_{\nu}$$

we raise indices via the Minkowski metric tensor $\eta^{\mu\nu}$ to obtain the countravariant form:

$$\partial_{\mu}F^{\mu\nu} = -4\pi J^{\nu}$$

Substituting the field tensor definition $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ yields:

$$\partial_{\mu}(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})=-4\pi J^{\nu}$$

Performing the index substitution $\nu \to \alpha$, we arrive at the final form:

$$\partial_{\mu}\partial^{\mu}A^{\alpha} - \partial^{\alpha}\partial_{\mu}A^{\mu} = 4\pi J^{\alpha}$$
(20)

(c) We can easily prove this gauge transformation formula by substitution:

$$\begin{bmatrix}
F_{\mu\nu}^{\text{new}} = \partial_{\mu} A_{\nu}^{\text{new}} - \partial_{\nu} A_{\mu}^{\text{new}} \\
\partial_{\mu} A_{\nu}^{\text{old}} + \partial_{\mu} \partial_{\nu} \phi - \partial_{\nu} A_{\mu}^{\text{old}} + \partial_{\nu} \partial_{\mu} \phi = \begin{bmatrix}
\partial_{\mu} A_{\nu}^{\text{old}} - \partial_{\nu} A_{\mu}^{\text{old}} + F_{\mu\nu}^{\text{old}}
\end{bmatrix}$$
(21)

(d) Under the gauge transformation $A^{\mu} = A'^{\mu} + \partial^{\mu}\phi$, the divergence of the 4-potential transforms as:

$$\partial_{\mu}A^{\mu} = \partial_{\mu}A^{\prime\mu} + \partial_{\mu}\partial^{\mu}\phi$$

Employing the Lorentz gauge condition $\partial_{\mu}A^{\mu}=0$, we obtain a wave equation for the gauge function ϕ :

$$\partial_{\mu}\partial^{\mu}\phi = -\partial_{\mu}A^{\prime\mu}$$

Provided A' satisfies the integrability condition $\partial_{\nu}(\partial_{\mu}A'^{\mu}) = \partial_{\mu}(\partial_{\nu}A'^{\mu})$, there always exists a non-trivial solution ϕ for given initial and boundary conditions. This guarantees the existence of a gauge function ϕ that enforces $\partial_{\mu}A^{\mu} = 0$. Consequently, Eq.(20) simplifies to the form:

$$\Box A^{\alpha} = -4\pi J^{\alpha} \quad \text{with} \quad \Box \equiv \partial_{\mu} \partial^{\mu}$$
 (22)

Problem6. An astronaut has acceleration g in the x direction (in other words, the magnitude of his 4-acceleration, $\sqrt{\vec{a} \cdot \vec{a}}$ is g). This astronaut assigns coordinates $(\bar{t}, \bar{x}, \bar{y}, \bar{z})$ to spacetime as follows:

First, the astronaut defines spatial coordinates to be $(\bar{x}, \bar{y}, \bar{z})$, and sets the time coordinates \bar{t} to be his own proper time.

Second, at $\bar{t}=0$, the astronaut assigns $(\bar{x},\bar{y},\bar{z})$ to coincide with the Euclidean coordinates (x,y,z) of inertial reference frame that momentarily coincides with his motion. (In other words, though the astronaut is not inertial — he is accelerating — there is an inertial frame that, at $\bar{t}=0$, is

momentarily at rest with respect to him. This is the frame used to assign $(\bar{x}, \bar{y}, \bar{z})$ at $\bar{t} = 0$) Observers who remain at fixed values of the spatial coordinates $(\bar{x}, \bar{y}, \bar{z})$ are called coordinate-stationary observers (CSOs). Note that proper time for these observers is not neccessarily \bar{t} ! — we cannot assume that the CSOs' clocks remain synchronized with the clocks of the astronaut. Assume that some function A converts between coordinate time \bar{t} and proper time at the location of CSO:

$$A = \frac{\mathrm{d}\bar{t}}{\mathrm{d}\tau}$$

The function A is evaluated at a CSO's location and thus can in principle depend on all four coordinates \bar{t} , \bar{x} , \bar{y} , \bar{z} .

Finally, the astronaut requires that the worldlines of CSOs must be orthogonal to the hypersurface $\bar{t}=$ constant, and that for each \bar{t} there exists an inertial frame, momentarily at rest with respect to the astronaut, in which all events with $\bar{t}=$ constant are simultaneous.

It is easy to see that $\bar{y} = y$ and $\bar{z} = z$; henceforth we drop this coordinates from the problem.

- (a) What is the 4-velocity of the astronaut, as a function of \overline{t} , in the initial inertial frame [the frame that uses coordinates (t, x, y, z)]?(Hint: by considering the conditions on $\overrightarrow{u} \cdot \overrightarrow{u}$, $\overrightarrow{u} \cdot \overrightarrow{a}$, and $\overrightarrow{a} \cdot \overrightarrow{a}$, you should be able to find simple forms for u^t and u^x .)
- (b) Imagine that each coordinate-stationary observer carries a clock. What is the 4-velocity of each clock in the intial inertial frame?
- (c) Explain why $A(\bar{x}, \bar{t})$ cannot depend on time. In other words, why can we put $A(\bar{x}, \bar{t}) = A(\bar{x})$?(Hint: consider the coordinate system that a different CSO may set up.)
 - (d) Find an explicit solution for the coordinate transformation $x(\bar{t}, \bar{x})$

and $t(\bar{t}, \bar{x})$.

(e) Show that the line element $ds^2 = -dt^2 + dx^2 = -(1+g\bar{x})^2 d\bar{t}^2 + d\bar{x}^2$.

Solution. (a) Since the astronaut's 4-velocity possesses only a spatial component along x direction, we may model their motion in a 1+1-dimensional spacetime. Let the 4-velocity be $\vec{U} = (u_t, u_x)$. The normalization condition of 4-velocity gives:

$$U^{\alpha}U_{\alpha} = -u_t^2 + u_r^2 = -1 \tag{23}$$

Give the astronaut's 4-acceleration magnitude g, the 4-acceleration satisfies:

$$A^{\alpha}A_{\alpha} = -a_t^2 + a_x^2 = g^2 \tag{24}$$

Orthogonality between 4-velocity and 4-acceleration requires:

$$A^{\alpha}U_{\alpha} = -a_t u_t + a_x u_x = 0 \tag{25}$$

Boundary Condition:

- At $\bar{t} = 0$: $u_t = 0$, $u_x = 0$;
- For $\bar{t} > 0$: $u_r > 0$

Combining the Boundary Condition and Eq.(23) - Eq.(25) we get the solution:

$$\overrightarrow{U} = (\cosh(g\overline{t}), \sinh(g\overline{t}))$$

$$\overrightarrow{A} = (g\sinh(g\overline{t}), g\cosh(g\overline{t}))$$
(26)

Problems (b)-(e) fundamentally constitute different facets of a unified physical scenario. The subsequent analysis will synthesize these components through an integrated treatment, deliberately omitting distinct problem identifiers to emphasize their intrinsic coherence.

First, let's explain the reason why $A(\bar{x}, \bar{t})$ cannot depend on time, as to say $A(\bar{x}, \bar{t}) = A(\bar{x}).$

- 1. Coordinate Consistency: If A depends on \bar{t} , coordinate-stationary observers (CSOs) at different times would establish divergent time synchronization standards, thereby precluding the cunstruction of a globally consistent coordinate system.
- 2. Symmetry Consideration: While the astronaut's fixed acceleration direction preserves spatial translational symmetry, explicit time dependence in the metric components breaks this symmetry.
- 3. Orthogonality Constraints: The requierment that the CSOs' worldlines remain orthogonal to constant- \bar{t} hypersurfaces enforces A to depend exclusively on spatial coordinates.

Second, integrate Eq.(26) to get astronaut's equations of motion:

$$t = -\frac{1}{q}\sinh\left(g\bar{t}\right) \tag{27}$$

$$t = \frac{1}{g}\sinh(g\bar{t})$$

$$x = \frac{1}{g}\cosh(g\bar{t}) - \frac{1}{g}$$
(27)
$$(28)$$

Assuming that CSOs' equations of motion are similar to Eq.(27) and Eq.(28), but are parameterized by \bar{x} in the following way:

$$t = T(\bar{x})\sinh(g\bar{t}) \tag{29}$$

$$x = X(\bar{x})\cosh(g\bar{t}) + Y(\bar{x}) \tag{30}$$

Obviously, CSOs' 4-velocity components assume the form:

$$u_t = gAT \cosh(g\bar{t})$$
 with $A = \frac{d\bar{t}}{d\tau}$ (31)
 $u_x = gAX \sinh(g\bar{t})$

According to Eq.(23), we obtain:

$$g^{2}A^{2}(T^{2}\cosh^{2}(g\bar{t}) - X^{2}\sinh^{2}(g\bar{t})) = 1$$

$$\Rightarrow \begin{cases} T = X \\ X = \frac{1}{gA} \end{cases}$$
(32)

The reason why Eq.(32) can be solved like this is that A, T, X are all independent to \bar{t} . Now, let's what will happen when we try to obtain the expression of the line element.

$$-dt^{2} + dx^{2} = -g^{2}T^{2}\cosh^{2}(g\bar{t})d\bar{t}^{2} - \left(\frac{dT}{d\bar{x}}\right)^{2}\sinh(g\bar{t})d\bar{x}^{2}$$

$$-2gT\frac{dT}{d\bar{x}}\cosh(g\bar{t})\sinh(g\bar{t})d\bar{t}d\bar{x} + g^{2}X^{2}\sinh^{2}(g\bar{t})d\bar{t}^{2}$$

$$+ \left(\frac{dX}{d\bar{x}}\right)^{2}\cosh(g\bar{t})d\bar{x}^{2} + \left(\frac{dY}{d\bar{x}}\right)^{2}d\bar{x}^{2} + 2\frac{dX}{d\bar{x}}\frac{dY}{d\bar{x}}\cosh(g\bar{t})d\bar{x}^{2}$$

$$= 2gX\frac{dX}{d\bar{x}}\cosh(g\bar{t})\sinh(g\bar{t})d\bar{t}d\bar{x} + 2gX\frac{dY}{dy}\sinh(g\bar{t})d\bar{t}d\bar{x}$$

$$= -(g^{2}T^{2}\cosh^{2}(g\bar{t}) - g^{2}X^{2}\sinh(g\bar{t}))d\bar{t}^{2} - \left(\frac{dT}{d\bar{x}}\right)^{2}\sinh^{2}(g\bar{t})d\bar{x}^{2}$$

$$+ \left(\frac{dX}{d\bar{x}}\right)\cosh^{2}(g\bar{t})d\bar{x}^{2} + \left(\frac{dY}{d\bar{x}}\right)^{2}d\bar{x}^{2} + 2\frac{dX}{d\bar{x}}\frac{dY}{d\bar{x}}\cosh(g\bar{t})d\bar{x}^{2}$$

$$+ 2gX\frac{dX}{d\bar{x}}\cosh(g\bar{t})\sinh(g\bar{t})d\bar{t}d\bar{x} + 2gX\frac{dY}{d\bar{x}}\sinh(g\bar{t})d\bar{t}d\bar{x}$$

$$- 2gT\frac{dT}{d\bar{x}}\cosh(g\bar{t})\sinh(g\bar{t})d\bar{t}d\bar{x}$$

$$(33)$$

Combining Eq.(32) and according to the **Symmetry Consideration** part, the metric tensor exhibits no explicit dependence on the coordinate \bar{t} and contains no temporal-spatial cross terms, which means:

$$\begin{cases} \frac{X}{\cosh(g\bar{t})} \frac{dY}{d\bar{x}} = 0\\ -dt^2 + dx^2 = -g^2 X^2 d\bar{t}^2 + \left(\frac{dX}{d\bar{x}}\right)^2 d\bar{x}^2 \end{cases}$$
(34)

It therefore follows that Y must be a constant. To determine its explicit form, considering the following boundary conditions:

• Initial Inertial Frame Alignment: At $\bar{t} = 0$, the CSOs' coordinates coincide with the initial inertial coordinate \bar{x} yielding:

$$X + Y = \bar{x} \tag{35}$$

• Observer Self-Consistency Condition: When $\bar{x} = 0$ (the astronaut serves as his own CSO), the coordinate must reduce to the astronaut's known equations of motion:

$$-Y\cosh(g\bar{t}) + Y = -\frac{1}{q}\cosh(g\bar{t}) - \frac{1}{q}$$
(36)

Combining Eq.(35) and Eq.(36) to obtain:

$$X = \bar{x} + \frac{1}{g}$$

$$Y = -\frac{1}{g}$$
(37)

By Eq.(32) we obtain:

$$A = \frac{1}{1 + g\bar{x}} \tag{38}$$

Now we can write the completed version of CSOs equations of motion:

$$t = \left(\bar{x} + \frac{1}{g}\right) \sinh(g\bar{t})$$

$$x = \left(\bar{x} + \frac{1}{g}\right) \cosh(g\bar{t}) - \frac{1}{g}$$

$$u_t = g\left(\bar{x} + \frac{1}{g}\right) \frac{1}{1 + g\bar{x}} \cosh(g\bar{t}) = \cosh(g\bar{t})$$

$$u_x = g\left(\bar{x} + \frac{1}{g}\right) \frac{1}{q + g\bar{x}} \sinh(g\bar{t}) = \sinh(g\bar{t})$$
(39)

Henceforth, the line element assumes the simplified form:

$$ds^{2} = -dt^{2} + dx^{2} = -(1 + g^{2}\bar{x})^{2}d\bar{t}^{2} + d\bar{x}^{2}$$
(40)

This spacetime is called the Rindler spacetime and the metric is called Rindler metric.