DEGIGNEN TOLLER => Kategorik Degiskenler [) Ocatual (Singleyer) -> Sürekli Degiskenler - Analik NOT

todlern yeri degittirildiginde degal stralama bosulmuyorsa nominal, bosuluyorsa ordinaldir.

DRNEKLEM TEXNILLERI

+) Tesadiifi Ornellene Yöntember

1) Basit Tessifi arrelleme Yorkitledeki birimlerin tamamı her bir birime esit seculme ransı tanımak üzere bir

torbaga atılır ve belirleren örreklem sayısı kader birim tesadiffi olerak secritis

sand forms compleme

2) Tabakalı Örnekleme

4 chakütle araştırılan konu acısından tabokalana ayrıldbiliyorsa her bir tabokadan basit tesadifi örnekleme metaduyla örneklem secillis birleg-tirilerek analise tabi tutulus => örnegin bir songyi bölgesindeki zirketler

werine bir anastirma japilmak istendiginde sirketler küciök, arta ve býrök ölcekli sirketler almak søere tabakalara agrilir ve her bir tabakadan tesadifi örnetlere metoduyla birimter secilir.

3) Kime Ornekleni 4 Moduitle iderisinale algal bir Lünelenme soft konusyyse her bir kumeden bosit tessdiffi örnekleme metodyda birimler secifir. Daha sand birlestirilerek enalis adrlir.

> Ornegin Aksoray ilinde yapıladı bir araştırmat tesadiifi jontemle mahalleler, mahallelerden tesadiifi johtemle sokaklar ve binalar seatlin

4) Tesalifi Olmayon Örneldeme Yöntemleri

1) Kolayda örrekleme

Godnakütleden ulasılabilen herhangi birimlerin secilmesiyle alusturulan örneklene tekniğidir.

2) Kartopu Örneklemesi &

Godnakitle iderisindeki birimler birbirleriyle yüksek iliski iderisindeyse genelde kartopu örneklemesi yapılın Kartopu örneklemesinde araştırmaya bir kişi ile başlanır, araştırma o kiçinin yönlendirdiği kişiler ve anlarında yönlendirdiği bişiler almak üsere örneklem sayısına alaşılınca örneklem sazimi durdurulur.

VER MADENCILIES YOUTENLERI

Güsellikle dijitat ortamlarda sınırsız sayıda verinin ger alması bu verilerin nispeten daha ucus yallarla veri tərbanlarında hatta bulut bilizim gibi sistemlerin geliymezigle kixi, kurum ya da kuruludarın ellerinde lojgalata (Büyük veri) sıdı verilen veri yığınları bulunmaktadır. Bu veri yığınlarında matematiksel ve istatistiksel yöntemlerle sınlamlı sanuçlar elde etmek işine veri madencilişi denilir.

- Lygulama Alanberi => Pasarlama, bankacılık, elektronik ticaret vb. gibi aak sayıda alanda uygulamaktadır.

5) Fibre Emerlens

→ Örnegin müsteri satın alma davnanışının, kredi taleplerinin değerlendirilmesinde, sosyal alanda müsteri yorumlarının değerlendirilmesinde gibi pek cok sayıda alanda yygulanabilmektadir.

VER: MADENCILIGININ SIRECI

1) Veri Temisleme

Bagi bijgük verilende veriler östenilen öselliklere Sahip olmsyabiliri

Örnegin bası yöntemler dotada kayıp verinin almasını istemes.
Böyle durumlarda ya kayıp veriler genelde serinin ortalamasıyla tamamlarır
ya da bütüniyle ilgili göstem avkarılır.

Migher: No	Cheen	Cinsyell	Chelir	Kredi
	38	Kodin	3,000	Onsylandi
2	35	Erkek	5000	Oncylenmodi
\$//	136	Kadig /	- 4ph 1	Oppolated/
X	36		8.000	

2) Ver: Bitinlestirme

Forkli veri tabanlarından elde edilen vertlerin tek bir veri tabanı altında toplanmasıdır.

3) Veri Danistirme

Veri madenciliği algoritmaları uygulanmadan örce ortdama ve varjansları dolayisiylə aldıkları doğerlerin birbirinden öremli ölcüde farklı olduğu değişkenlerle Galışırken veri dönüştürme işlemi uygulanır.

-> Terrelde 2 yöntem kullanılır.

a) Minimum - maximum Normallegtirilmesi

$$\frac{X_{1}}{3} \qquad \frac{X_{1}^{2}}{0.005} \qquad X_{3}^{2} = \frac{3-3}{0.005} = \frac{1}{192} = 0.005 \qquad X_{150}^{2} = \frac{150-3}{195-3} = \frac{113}{192} = 0.854$$

$$30 \qquad 0.156 \qquad X_{30}^{2} = \frac{30-3}{195-3} = \frac{22}{192} = 0.156 \qquad X_{115}^{2} = \frac{1150-3}{195-3} = \frac{113}{192} = 1$$

$$450 \qquad 0.854 \qquad X_{45}^{2} = \frac{45-3}{195-3} = \frac{42}{192} = 0.244$$

$$175 \qquad 1 \qquad X_{45}^{2} = \frac{45-3}{195-3} = \frac{42}{192} = 0.244$$

b) 2 Score Standart lagter larger

Formul
$$X = \frac{X - \overline{X}}{\sqrt{X}}$$
 $\sqrt{X} = \frac{\sum (X_i - \overline{X})^2}{n-1}$

$$\chi_{150} = \frac{150-80, L}{76,77} = \frac{63.4}{76,97} = 0,803$$

$$\chi_{175}^{+} = \frac{175-90, L}{76,77} = \frac{3L, L}{76,77} = 1,213$$

VER MODENCILIÈN YOUTENERI

Veri madenosligi yöntemleri temelde ische agrilis.

1) Sinif lamo

Eger ven tobaninden elde edilen vertlerle siniflogici konor konollari dusturulmak istenizorsa siniflondirma teknikleri kallanılır.

Ornegin bir bankanın germiş müsterilerinin yaş, cinsiyet gelir gibi iselliklerine bakarak kredi verip vermemeyi ya de riskli müsteri olup almadıklarını sınylandındatlıris.

2) Limeleme

Limelene, verilerin kendi aralamındaki bengerlikleri dikkate alanak gruplandırma klemidir.

Örngin üniversiteler ögrencilerin memnuniyet düseyine göre, alınan TÜBİFAK destek sayısına göre megunlarının iye gerlestirilme oranlarına göre kümelenelərlir.

3) Birtiktelik Kuralları

Bir veri tabanında yer alan birbiriyle ilişkili verilerin incelenerek hangi alay ya da durumların birlikte ya da ex samanlı ortaya cıktığını belirlemeye ablıxan veri madenciliği yöntemleridir.

Örnegin bir marketten bir yılda yapılan bütün alış-verişlerin fişleri incelenerek hangi ürünlerin birlikte alındıkları taspit edilebilir. Böylece örnegin internet reklamlarında bu ürünler birlikte yer adır.

SINIFLANDIENA ALGORITHANDEL

1) Karar Agacilari

Siniflandirma algoritmalarında belli değişkenlerin incelermesiyle hedef niteliğin sinifinin belirlenmesi amadlanmıştır. Qoğu veri maden ciliği algoritmasında alduğu gibi eğitim ve test seti ya da kümesi bulunmaktadır.

Egitim seti, sınıfları örceden belirlenmiz verinin yapıyı Öğrenme azamazını kıerir. Verinin eğitildiği yer burazıdır.

Test setigle ise algaritmans sinifi belli almayon veriler gösterilip siniflandirma performansi ölcülür.

	Cinsineti	12021	Öndi Kredi Miktori	Yredi Dings
1	Kadin	38	10.000	Evet
2	Erkek	25	15.000	Hoyar
	1	Miles		Contract of the

Karar agacıları bir agacı gibi kök, dal ve sınıflama etiketleriyle gösterilen yapraklardan oluşan bir yapı gösterilir

Ozuinlan tarafından 1980'li yılların sonunda gercekleştirilmiştir.
En sik kullanılan karar ağacı algoritmaları ID3, C4.5 (C5 geliştirildi)
ve Classification and Repression Trees (CART) sınıflandırma ve
regresyon ağacılarıdır.

a) 103 Algoritmaları

Entrop: tabanlı algoritmalardır. Bir sistemdeki belirsizliğin ölgüsüne entropi denir.

"S" bir kaynak almak übere, kaynağın Mı, Mı, --, m. alarak mesairların alduğunu varsayalım. Bi mesairların üretilme alaşılığına "P." dersek "S" kaynağının entropisi

 $H(S) = -\sum_{i} P_{i} \cdot log_{2}(P_{i})$

seklinde obsterilir.

DR Br deneyin sonuclarinin alaşılıkları, reduced a men 3(1 1. deney iain => 1/2 1. deney ich => 13 3. deney icin => 16 olarak varsayılsın, Entropisi kacıtır? H(S) = - ZPi · (82 (Pi) == 0,33 HB) = - (= · log2(=)+= · log2(=)+= · log2(=)) 1=0.16 H(S)=- (0,50. log_2 0,50 +0,33. log_2 0,33 + 0,16 · log_2 0,16) $= -\left(0.50 \cdot \frac{\log 0.50}{\log_2} + 0.33 \cdot \frac{\log 0.33}{\log_2} + 0.16 \cdot \frac{\log 0.16}{\log_2}\right)$ $= -\left(0.50, \frac{-0.30}{0.32} + 0.33, \frac{-0.48}{0.30} + 0.16, \frac{-0.79}{0.30}\right)$ =- (0,50.(-1)+0,33.(-1,60)+0,16.(-2,63)) =-(-0,50+(-0,52)+(-0,42)) =-(-0,50-0,52-0,42) =-(-1,44) = 1,44

Hadrontipolo Edi (B

by 10 elemanli risk kinned av sekildedir;

(Var, Var, Var, Jok, Var, Jok, Jok, Var, Var, Jok)

entropis kactur?

Var > b

Jok > 4

P1 = Var = $\frac{b}{10} = 0.b$ $P_2 = Jok = \frac{h}{10} = 0.h$ H(lisk) = $-\left(\frac{b}{10} \cdot (\log_2 \frac{b}{10} + \frac{h}{10} \cdot \log_2 \frac{h}{10})\right)$ H(lisk) = $-\left(0.b \cdot \log_2 0.b + 0.h \cdot \log_2 0.h\right)$

$$log_1 0.6 = \frac{log 0.6}{log_2} = \frac{-0.22}{0.30} = -0.73$$

$$log_2 O_{14} = \frac{log O_{14}}{log 2} = \frac{-0.39}{0.30} = -1.30$$

$$H(Risk) = -(0.6 \cdot (-0.73) + 0.4 \cdot (-1.30))$$

= $-(-0.43 + (-0.52)) = -(-0.43 - 0.52) = -(-0.95) = 0.95$

Dollanna lain Niteliklerin Searlmeni ve Kasana Ölaistö

bilgi kriteri: H(X,T)= [Til.H(Ti)

Labora Blastis: Karna(X,T) - H(T) - H(X,T)

Lygul	and				
Hovalo		Nem (0.15)	Rose 6,05) Oyun	. f
Gisnesli	SICAL	Julser	Habif	Hayır	
Garegli	Sical	Tiksek	Yuvetli	Hayır	
Bulutlu	Sicak	Höksek	Hafif	Exek	
Yagmurlu	lak.	Yoksek	HA) है	Evet	
Lognorlo	Sogul	Normal	Hafif	Evet	_
_ Yezmurlu.	saguk	Normal	Youvet(;	Heyr	
Bulutlu	Sagul	Normal	Kuvvetli	Evet	
Chinesti	clik	yüksek	Hafif	Hayer	
-Göresli	Sozul	Normal	rlof:f	Evet	
Jagmurlu	Clik	Normal	Hafif	Evet	
Gijneali	clik	Normal	Luvvetti	Evet	
Bulutlu	Clik	Jölsek	Kunvetli	Evet	
Buluttu	Sical	Narmal	Hafif	Evet	
125 murlu	(lule	Julsek	LuvvetCi	Hagir	

1. Adm: Lök niteligi bulunmad

$$H(0yun) = -\left(\frac{5}{14} \log_{1} \frac{5}{14} + \frac{9}{14} \log_{2} \frac{9}{14}\right)$$

$$= -\left(0.35 \log_{2} 0.35 + 0.64 \log_{2} 0.64\right)$$

$$= -\left(0.35 \cdot \frac{\log 0.35}{\log_{2}} + 0.64 \cdot \frac{\log 0.64}{\log_{2}}\right)$$

$$= -\left(0.35 \cdot \frac{-0.45}{0.30} + 0.64 \cdot \frac{-0.19}{0.30}\right) = -\left(0.35 \cdot (-1.5) + 0.64 \cdot (-0.63)\right)$$

$$= -\left(-0.52 + (-0.40)\right) = -(-0.52 - 0.40) = -(-0.92) = 0.32$$

Lasana (Hava) = H(Oyun) - H(Hava, Oyun)

H(Hava, Oyun) = H(Havagonesti) + H(Havabulutlo) + H(Havagogmurlu)

$$H(Havaginesli) = \frac{5}{14} \left(\frac{3}{5} \cdot \log_2 \frac{3}{5} + \frac{2}{5} \cdot \log_2 \frac{2}{5} \right)$$

$$=\frac{5}{14}\left(0.60\cdot\frac{0.22}{0.30}+0.40\frac{0.39}{0.30}\right)=\frac{5}{14}\left(0.60\cdot0.73+0.40\cdot1.3\right)=0.35\left(0.43+0.52\right)\\=0.35\cdot0.95=0.33$$

H (Have jogmurlu) =
$$\frac{5}{44} \left(\frac{3}{5} \log_2 \frac{3}{5} + \frac{2}{5} \log_2 \frac{2}{5} \right) = 0.35 \cdot 0.85 = 0.33$$

H(181, Dyun) = H(181scele) + H(181,66) + H(181 sogue)

H(18181CAK) = 4 (2 log2 2 + 2 log2 2)= 4 (0,50 log20,50+0,50 log20,50)

 $=\frac{4}{14}\left(0.50\frac{\log 0.50}{\log 2}+0.50\frac{\log 0.50}{\log 2}\right)=\frac{4}{14}\left(0.50\frac{0.30}{0.30}+0.50\frac{0.30}{0.30}\right).$

 $=\frac{4}{14}\left(0.50\cdot1+0.50\cdot1\right)=\frac{4}{14}\left(0.50+0.50\right)=0.28\cdot1=0.28$

H(14(6)) = 6/6/6/692 4 + 2/6/92 6) = 6/0,66/0920,66+0,33/cg20,33)

 $=\frac{6}{14}\left(0.66\frac{\log 0.66}{\log 0}+0.33\frac{\log 0.33}{\log 0}\right)=\frac{6}{14}\left(0.66\frac{0.18}{0.30}+0.33\frac{0.48}{0.30}\right)$

 $= \frac{6}{14} (0.66 \cdot 0.60 + 0.33 \cdot 1.60) = \frac{6}{14} (0.33 + 0.52) = 0.42 \cdot 0.31 = 0.38$

H((sisoque) = 4 (3 log2 3 + 1 log2 1)= 4 (0,75.log20,75+0,25.log20,25)

 $=\frac{4}{14}\left(0.75\frac{\log 0.75}{\log 2}+0.25\frac{\log 0.25}{\log 2}\right)=\frac{4}{14}\left(0.75\frac{0.12}{0.30}+0.25\frac{0.60}{0.30}\right)$

 $=\frac{4}{14}\left(0.75\cdot0.40+0.25\cdot2\right)=\frac{4}{14}\left(0.30+0.50\right)=0.28\cdot0.80=0.22$

H ((si, Oyun) = 0,28+0,38+0,22 = 0,88

Kazara (181) = 0,92 - 0,88 = 0,04

$$=\frac{7}{14}\left(0.42\cdot\log_20.42+0.57\cdot\log_20.57\right)=\frac{7}{14}\left(0.42\frac{\log 0.42}{\log 2}+0.57\frac{\log 0.57}{\log 2}\right)$$

$$=\frac{7}{14}\left(0.42\frac{0.37}{0.30}+0.57\frac{0.24}{0.30}\right)=\frac{7}{14}\left(0.42\cdot1.23+0.57\cdot0.80\right)$$

$$=\frac{7}{14}\left(0.85\frac{0.07}{0.30}+0.14\frac{0.85}{0.30}\right)=\frac{7}{14}\left(0.85\cdot0.23+0.14\cdot2.83\right)$$

$$\begin{split} &H\left(l\log_2 \frac{b}{a_1}\right) = \frac{8}{14} \left(\frac{b}{8} \log_2 \frac{b}{8} + \frac{2}{8} \log_2 \frac{2}{8}\right) \\ &= \frac{8}{14} \left(0.75 \log_2 0.75 + 0.25 \log_2 0.25\right) = \frac{8}{14} \left(0.75 \frac{\log_2 0.75}{\log_2} + 0.25 \frac{\log_2 0.25}{\log_2}\right) \\ &= \frac{8}{14} \left(0.75 \frac{0.12}{0.30} + 0.25 \frac{0.60}{0.30}\right) - \frac{8}{14} \left(0.75 \cdot 0.40 + 0.25 \cdot 2\right) \end{split}$$

$$H\left(\text{Liagar}_{\text{Eunvetti}}\right) = \frac{6}{14} \left(\frac{3}{6} \log_2 \frac{3}{6} + \frac{3}{6} \log_2 \frac{3}{6}\right)$$

$$= \frac{6}{14} \left(0.50 \log_2 0.50 + 0.50 \log_2 0.50\right) = \frac{6}{14} \left(0.50 \frac{\log 0.50}{\log_2} + 0.50 \frac{\log 0.50}{\log_2}\right)$$

$$= \frac{6}{14} \left(0.50 \frac{0.30}{0.30} + 0.50 \frac{0.30}{0.30}\right) = \frac{6}{14} \left(0.50.1 + 0.50.1\right)$$

<i>Witelik</i>	Kasag	
Hava	0.26	Y&K SHOVA
181	0.04	
Nem	0,15	
Lügger	0,05	

1) Hara niteliginin "gönezli" degeri iain dollanno

Hava	O,55 Loc	0,95 Nem	0.01 202gar	Ogun
Garegli	Scale	Joksek	Hafif	Hayer
Gisneali	Sicak	Türser	Kuvvetli	Hogir
Güreşli	Clik	Yoksek	Hafif	Hogir
Chinesli	Sogue	Normal	Hafif	Evet
Chinesti	Llic	Normal	Kuvetli	Evet

=> Burado d'nce OJUN iain entropiji hesoplamak gerekiyar.

$$H(Oyun) = -\left(\frac{2}{5} \cdot \log_2 \frac{2}{5} + \frac{3}{5} \cdot \log_2 \frac{3}{5}\right)$$
$$= -\left(0.40 \cdot \log_2 0.40 + 0.60 \cdot \log_2 0.60\right)$$

$$= -\left(0.40 \frac{-0.39}{0.30} + 0.60 \frac{-0.22}{0.30}\right) = -\left(0.40 \cdot (-1.3) + 0.60 \cdot (-0.73)\right)$$

$$= -\left(-0.52 + (-0.43)\right) = -\left(-0.52 - 0.43\right) = -\left(-0.95\right) = 0.95$$

-> Keener ((b) = H (Ogun) - H ((u, ogun)

Loc

Sical the

Soguk =

evet

hoger 2

evet how $\frac{1}{2}$

evet hours

H (Oyun) = 0,35

$$H(lsi, ayisn) = \frac{2}{5} \left(\frac{2}{2} \cdot log_2 \frac{2}{2}\right) + \frac{2}{5} \left(\frac{1}{2} \cdot log_2 \frac{1}{2} + \frac{1}{2} \cdot log_2 \frac{1}{2}\right) + \frac{1}{5} \left(\frac{1}{1} \cdot log_2 \frac{1}{2}\right)$$

= 0+ 0.40 (0,50 log_ 0,50 +0,50 · log_ 0,50)+0

Kozona ((81) = 0,95-0,40 = 0,55

9 Kassona (Nem) = H(Oyun) - H(Nem, Oyun) evet 0 H(0800) =0.35 H (Nem, Oyun) = $\frac{3}{7} \left(\frac{3}{3} \cdot \log_2 \frac{3}{3} \right) + \frac{2}{5} \left(\frac{2}{2} \cdot \log_2 \frac{2}{2} \right)$ H (Nem, Oyun) = > Kasana (Nem) = 0,95-0=0,95 -> Kasana (Ritager) = H(Oyun) - H(Ritager, Oyun) hoger while mid in evet them hope and the H (0gun) = 0.85 = 0,60 (0,33. log_ 0,33+0,66. log_ 0,66)+0,40 (0,50. log_ 0,50+0,50. log_ 0,50) = 0.60 (0,33. \(\langle \frac{log 0.33}{log 2} + 0.66 \frac{log 0.66}{log 2}\) + 0.60 (0.50 \(\langle \frac{log 0.50}{log 2} + 0.50 \) \(\langle \frac{log 0.50}{log 2}\) = 0,60 (0,33 0,48 + 0,66 0,18)+0,40 (0,50 0,30 +0,50 0,30) = 0,60 (0,33.1,60+0,66.0,60)+0,40 (0,50.1+0,50.1) = 0,60 (0,52 + 0,39) + 0,40 (0,50+0,50) = 0,60 (0,81) + 0,40 · 1 = 0,54+0,40 = 0,84 Karone (Ryagar) = 0,35 - 0,84 = 0,01

Senitelik	Labora,			
los	0.55			
Nem	0,35 -	$\longrightarrow E_n$	しざみむと	kasona.
Roager	0.01	7.00		

2) Hava niteliginin "yagmurlu" degeri iain dellenne 0,01 Have Nem Ryager Dywn Yagmurlu Mk JUKsek Evet Urampal Soguk Normal Evet Normal Yagmurlu Soguk Luvetti Hoyer llik Joanurlu Normal Hafrf Jogmarle Clik JUKsek Heyer => Burado dree Egun iain entropigi hespolamak geneliyar. Hlogun) - (3. log2 3 + 2. log2 2) = - (0.60 log2 0.60 + 0.40 log2 0.40) $=-\left(0.60\frac{\log 0.60}{\log 2}+0.60\frac{\log 0.60}{\log 2}\right)=-\left(0.60\frac{-0.22}{0.30}+0.60\frac{-0.39}{0.30}\right)$ =- (0,60.(-0,73)+0,40.(-1,30)) =- (-0,43+(-0,52)) =- (-0,43-0,52) = - (-0,95) = 0,95

+ Kasana ((81) = H(Oyun) - H((81, Oyun) Sicak lle H (0yun) = 0.95 H(lor, oyun) === (1 · log2 1 + 1 · log2 1) + 3 (3 · log2 1 + 1 · log2 1) = 0.40 (0.50. log 2 0.50+0.50. log 2 0.50)+0.60 (0.66. log 20.66+0.33. log 2 0.33) = 0,40 (0.50 log 0,50 + 0,50 log 0,50)+0,60 (0,66 log 0,66 + 0,33 log 0,33) = 0,40 (0,50 0,30 +0,50 0,30)+0,60 (0,66 0,30 +0,33 0,48) = 0,40 (0,50.1+0,50.1)+0,60 (0,66.0,60+0,33.1,60) = 0,40 (0,50+0,50) +0,60 (0,39+0,52) = 0,40.1+0,60.0.91 = 0,40+0,54 = 0,94

Kagara (161) = 0,95-0,94 = 0,01

& Kasana (Nem) = H(Oyun) - H(Nem, Oyun) Nem Hilksek 4 (ogun) = 0,95 H(Nem, Dyun) = = (1/2. log_2 1/2. log_2 1/2) + 3/5 (2. log_2 2/3 + 1/3. log_2 1/3) = 0,40 (0,50. log 2 0,50 + 0,50. log 2 0,50) + 0,60 (0,66. log 2 0,66 + 0,33. log 2 0,33) = 0,40 (0,50 \frac{lag 0,50}{lag 1} +0,50 \frac{lag 0,50}{lag 2}) + 0,60 (0,66 \frac{lag 0,66}{lag 2} + 0,33 \frac{lag 0,33}{lag 2}) = 0.40 (0.50 0.30 +0.50 0.30)+0.60 (0.66 0.18 +0.33 0.48) = 0,40 (0,50.1 + 0,50 .1) + 0,60 (0,66.0,60 + 0,33.1,60) = 0,40 (0,50+0,50) + 0,60 (0,39 + 0,52) = 0,40.1 + 0,60.0,91 = 0,40+0,54 Lazona (Nem) = 0,95-0,94=0,01 -> Kasana (Risagar) = H (Oyun) - H(Esagar, Oyun) LUZgar

H(Oyun) = 0.85 H(Ruegar, Oyun) = $\frac{3}{5} \left(\frac{3}{3} \cdot \log_2 \frac{3}{3}\right) + \frac{2}{5} \left(\frac{2}{2} \cdot \log_2 \frac{2}{2}\right)$ H(Usegar, Oyun) = 0

Kassara (RSsgar) = 0,95-0=0,95

Hove	lsi	Nem	l'ager	Dyun
Bulutla	Sicak	Jousek	Haff	Evet
Bolutto	Soguk	Normal	Kuvvetli	Evet
Bulutle	Clik	Yöksek	Kuvvetti	Evet
Bulstlu	Scale	Normal	Haff	Evet

=> Göröldisğis gibi töm karar değerleri "evet" olduğu icin herhangi bir analize gerek yoktur. Bu noktadon itibaren bir oldlanma olmas ve bu değer bir yaprağı belirlemiş olur.

KARAK KINEALI

=> Eger have gönesli, nem yöksek ise ogun ognanamag

=> Eger havo görexli, nem normal ise oyun oynanabilir.

=> Eger have yagmurlu, rügger kuvvelli ise oyun oynanomaz.

=) Eger have yagmurlu, rüzger hafif isk oyun oynanabilir.

=> Eger nous buluttu ise oyun oynanshir.

b) C4,5 Algoritmost

yeni versiyonu C5 algoritmosidir.

ID3 algoritmasinin önemli bir degavantajini yok etmek icin ortage alemistic

Brlindigi gibi ID3 algoritmagendo hem hedef hem de nitelik degiskenler: kategorik almak zarundadır. Odnock gerciek dünya örneklerinde all soyida degisken süreklidir. Bu durumda CH,5 algorikmasında sürekli olan değişkenler kategorik hále dönüstünülür.

Bunun iain exit bir değer belirlenir. Bu exit değer serinin medioni ye do oritmetik ortalaması dalatlir. Genelde serinin aritmetik ortalaması kısılanılır. Buna göre serinin terimleri aritmetik ortalamoja gore "<" ve">" zeklinde sinflandirilir. Daha sonra islem-

Bu algoritmenin WELA programindali ad J48'dir.

SINIFLANDIEMS VE REGRESYON AGMOUNTED (Classification and Regression Tress)

CORT, Koror agacinin itili dollarmosi ilkesine doganir. Dologunglo bir doğum secoldiğinde o düğümden catece İki dol · Cikorilia

Chi önemli algoritmen verdir:

- Twoing allgartmoss
- Gini Algoritmess

1) Twoing algoritmose

Ф(slt) = 2. Psol. Psos · [| P(j|tsol) - P(j|tsos) | P (brager Head)

had down the hour week they there

wimely who where defermine

amenti titi

- Uygulama

Müsteri	Chelir	4-7	A.	45
	Chelir	Egitim	Sektor	Memoun
1	Normal	Orta	Brigan	Evet
2	Bayak	ille	Brlizim	Evet
3	Kuare	cille	Cheapt	Evet
4	Bayar	orta	Chesot	Evet
5	Kisik	Q-ta	Cheapt	Evet
6	Berik	Lise	Cresot	Evet
7	KUCKL	Lise	Chiant	Evel
8	Bürk	Orto	Bition	Hayiral
(egil mer	Luck	Ortani	Billiam and	Hayir
10	Bursk	Lise	Brlisim	Hayır
11	Kuask_	Libe	Billisim	Hayır
		3.		

Ady	Bolime	(s)	Esol	24
-----	--------	-----	------	----

	Chelina Normal	Celins Boy Derkingth
2	Cholin - Büyök	Gelir = Normal, Kücük
3	Gelir = Mailk	Chelir = Normal, bigük
4	Egitim - 19c	Egitim=Orto, live
5	Egitim = Orto	Egitim= cla, lise
6	Egitim = Lise	Egitim= UNL, orto
+	Selder = 3rligam	Sektor = Cheapt
0	Seletor = Chroat	Selder = Bitzim

in tes

Harris million present L.

Ly ≤06 göre iqlemler

Böllisnme	tsoboki kayıt sayısı	Psol	evet	hoyer	Plevet Hsol)	P(hayn-Hsol)
1	1/11	0.00				2 / 1
2	5/11	0,03	/	0	1,00	0.00
3	5/1100000	0.45	3/5	2/5	0,60	0,40
4	2/15	10,45	2/5	2/5	0,60	0.10
5	5 Kg	0.18	2/2	0	1,00	0,00
6	4./4	0.36	3/5	2/5	0.60	0,40
7		0.54	2/4	2/4	0,50	0,50
8	5/11	0.45	2/6	4/6	0,33	0.66
Printer.	-		5/5	0	1.00	0,00

4 Saga gore islemler

Oslishme	toget source	Psos	evet	hayer	Plevet Itsag)	P(hayor Itsag)
1	10/11	0,30	6/10	4/10	0,60	0,40
2 -	6/11	0.54	4/6	2/1	0.66	0,33
4	3/1	. 054	4/6	2/1	0,66	0,33
5	6/11	0.81	5/8	419	0,55	0,44
6	7/11	0,54	4/6	2/4	0.66	0.33
7	5/11	0,45	5/7	2/2	0,41	0,28
8	6/11	0.54	715	0	1.00	0,00
	,,,	41.78	2/1	4/6	0.33	0,66

Modey	" rhe-				-
Balanne		Φ		which is	e electe
1 >	2.0,09.0	90.(11.0-	Olal + la	1401) = 0,12	13/14/14
2 ->	2.0.45.00	1 /101	VIBIT 1900-0	1401) = 0,12	Madae in
3 =>	2	4.(10,60-	0,661 + 10,40.	0,131) = 0,06	and the same
3 =>	2.0,45.0,5	4. (10,60-	0,661+10,40	-0,331)=0.06	*
4 =>.	2.0,18.0,3	1. (11,00-0	0.551+10	0,441) = 0,09	1
5 =>.	1.0,45.05	4./1010	11110166-	0,441) = 0,03	b
6 3	0 0 11 0 1	-/10/60-0	0,661+10,10-	0,331) = 0,06	
7	2.0136.016	3.110,50-0	711+10,50-0,	281) = 0,19	1
マ ⇒	2.0154.045.	(10,31-1,00	1+10,66-0,00	1) = 0,63	
8 =>_	2.0,45.0,54	(11,00-0,331	+10,00-0,661)	-010 1	PORTS A
1639)	- K&	X (SEXTO	e)		and side of
					7.
Creat			Beligin		4
Evet	-		(1,2,8,9,	10'11)	
3,4,5,6	<i></i>		N		
Müzteri	Color	Egilim	Sekto	Memnun	
1	Normal	o-ta "	Bilizim	Evet	
2	BYBL	ille	Beligian	Exet	
8	Beger	Orta	Brlizim	Hoger	- 10
9	Ksask	Orto	B-lizim	Hayer	
10	Buook	Lise	Britism	Honer	
11	KUWE	1:5e	Brlieim	Hoger	

oxbly Billinne	tsol	tsos			
1	Gelir = Normal	Celir = Bistile, Kousk			
- 2	Chelir = Bijok	Gelir = Nomal, KSKIL			
3	Gelir = Kuauk	Chelir = Biysk, Normal			
4	Egitim = ilk	Egitim= Orta, Lise			
5	Egitim= orta	Ezitim= ille, Lose			
6	Egitim o Lise	Egitim = cilk, orto			

4506 give itlemler

	0				+	month
Abley Baltinme	tsoldti Legit seggi	Psol	evet	hegur	P(evet Itsol)	P(hoyur Head)
1	1/6	0116	1/	0	1,00	0,00
2	3/6	0,90	1/3	2/3	0.33	0,66
3	2/4	0,33	0	2/2	400	1,00
4	1/6	0,16	1/1	0	1,00	0,00
. 5	3/6	0,50	1/3	2/3	0133	0,66
ь р	2/6	0,13	0	2/2	0100	1,00
- 4	Saga gon	e Ulem	ler			
Odday Solitime	tsojibki kojit sojin	Psos	evet	hogu	P(evet1tses)	P(hoyur Itsog)
2	5/6	0.83	1/3	4/5	0,20	0,80
3	3/6	0150 001	The second second	2/3	0.33	0,660
4	5/6	0,66	2/4	2/4	0,50	0.50
5	3/6	0.83	1/5	4/5	0,20	080 -
6	4/6	0150	1/3	2/3	0.33	0.66
	16	0.00	2/4	2/4	0,50	0,50
Solinne		φ				
1 =>	- 0126. 0163	3. (11,00-	0,201+1	0,00-0,0	801)= 0.11	
2 =>	2.0150.0150.	(10,33-0,	331 +1 0.1		0,41	Dia.
3 =>						
	2.0133.0,66.(1	0,00-050	1+14.00	-0.5-11)=0	44

XELVER

⇒ 2.0,16-0,93.(11.00-0,201+10,00-0,801)= 0,41

=> 2.0,50.0,50.(10,33-0,331+10,66-0,661) = 0

6 => 2.0133.0166.(10,00-01501+11,00-01501)=0,43/6s

Balance.	Lagit sayon	Pang.	evet	hoger	P(evot Hassis)	Plheyrlt	45)
4	3 11	0,60	1	2	0.33	0.66	Ak Si
2	1	000	1	0	2.00	0.00	All rivers
3	3	0,60	1	1 2	0,33	0,66	
4	2	0,40	1	1	0.50		
5	3 west	0,60	2		0.66	0,33	
Beltome		φ.	white it		Light.	W.	

BELEK TABILLI SINIFLANDIRM

En Yokin X - Xameu Algaritman

En yekin komzu olgoritmokt sinflori belli alan bir örnek komesindeki göslem değerlerinden yararlanarak örneğe katılacak yeni bir götlemin hangi sinflo ait aldığının belirleneyi amacılar

Bu yöntemde årnek kimedekt birimlerin sonradan belirleren degertere issakliklari hesaplanir. En yakın birimlerin singiyla diketlerir.

Daakliklarin hesaplanmasında öglil uzaklık formülününden yararlanılır.

$$d(i,j) = \sqrt{\sum (x_{ik} - x_{jk})^2}$$

Algoritmo adimbre sunbodir:

=> K (Verten bir noktoga en yakın komzuların sayın) belirtenic

> Usakliklar hesaplanir

=> Ugakliklar giralanır ve en kouök "k" tanesi secitin

⇒ Section satisfar en col hangi sinfa arte beliden satisfa o sinfigla etitetleur

 $X_1=8$, $X_2=4$ yen goden birminin K=4 almok spece

Singlandrmage	belirlegi	12.		
×1	X ₂	1	J	uzalelek
2-	4		NAF2	d(i.i)
3	6		i'g:	5.38
3	H		ig:	5100
4	10		VSte	7.21
5	8	-	18th	2231
6	3	L	igi igi	5103
7	3	1174.	1286S	3,16 5
9	7		yst's	4.24 W
11	7		Wats	2.12 2
10	2		2000	
8	4			

$d(i,j) = \sqrt{(2-8)^{1}+(4-4)^{2}} = \sqrt{36} = 6.00$
d(in) = \((3.8)^2 + (6-4)^2 = \(\frac{123}{2} = \frac{5.38}{}
d(iis) = \((3-8)^2+(4-4)^2 = \(\sigma 25 = 5100\)
d(1)= 14-812+(10-4)2= 152=3,21
J(1+)= V(5-8) + (9-4) = 125 - 5100
al(1,5) = \(6-8)2+(3-4)2 = 15=
12(1+)= 1(4-8)2+ (3-4)2 = 126 = 710
1/11 - 1/0-012 (8-4)2 = 10 = 3/16 3/3
1 (1+) = 1 (11-4) + (2-4) = 110 = 410
d(ing) = \(\int(10-8)^2 + (2-4)^2 = \(\pi \ = 2.82 => 2\)
O holde X, = 8 ve X = 4 ile

O holde X, = 8 ve X = 24 illen
Janua: Kolli

Agirlikli Singlandirma

Bir önceki yöntemde sinifi bilinmeyen yeri bir göslem degeri iain en sik tekrar eden sinif seailigardu.

dicak burada sadece K odet göslem dikkete alindiğində her saman gergekai sonucı elde edilmeyetilir.

Bu yösden bunun yerine sinif K adet komu arasından ağırlandırılarak segilir.

$$d(i,\frac{1}{2})' = \frac{1}{d(i,\frac{1}{2})^2}$$

Ot 10 bireyin gen soyıları ve hemoglobin değerlerine cadın ve estek alarak sınıflandırılmışlardır. Buno gere X1 degiskeni 0.10, aldigina gore, K=3 geni gösteminin X2 degisteri 0.50 cinsiyati redir? XI d(i,j) X2 Cins (Asirtile) 0,08 020 Erkek 0,30 3 -→ 17'1T 0,07 DOT Erkek 0,42 0,20 0,03 Erkek 041 1,00 0.20 0,94 0.05 0.06 0,43 0,20 0,25 Erkek 0,26 0.17 0.04 Erkek 0,42 0,15 0155 : Kadin 0,50 0.08 Erkek 0,57 0,10 0,06 Kadin 0143 0,10 0,50 Uzoklik:

 $d(i,j) = \sqrt{(0.08 - 0.10)^2 + (0.20 - 0.50)^2} = \sqrt{(-0.02)^2 + (-0.20)^2} = \sqrt{0.08} = 0.30$ $d(i,j) = \sqrt{(0.07 - 0.10)^2 + (0.07 - 0.50)^2} = \sqrt{(-0.03)^2 + (-0.43)^2} = \sqrt{0.18} = 0.41$ $d(i,j) = \sqrt{(0.20 - 0.10)^2 + (0.08 - 0.50)^2} = \sqrt{(0.20)^2 + (-0.41)^2} = \sqrt{0.17} = 0.41$ $d(i,j) = \sqrt{(1.00 - 0.10)^2 + (0.20 - 0.50)^2} = \sqrt{(0.80)^2 + (-0.30)^2} = \sqrt{0.90} = 0.94$ $d(i,j) = \sqrt{(0.05 - 0.10)^2 + (0.06 - 0.50)^2} = \sqrt{(-0.05)^2 + (-0.44)^2} = 0.43$

$$d(2,\frac{1}{3}) = \sqrt{(0.20 - 0.10)^2 + (0.25 - 0.50)^2} = \sqrt{(0.10)^2 + (-0.25)^2} = \sqrt{0.07} = 0.26$$

$$d(2,\frac{1}{3}) = \sqrt{(0.17 - 0.10)^2 + (0.07 - 0.50)^2} = \sqrt{(0.07)^2 + (-0.43)^2} = \sqrt{0.15} = 0.42$$

$$d(2,\frac{1}{3}) = \sqrt{(0.15 - 0.10)^2 + (0.55 - 0.50)^2} = \sqrt{(0.05)^2 + (0.05)^2} = \sqrt{0.004} = 0.06$$

$$d(2,\frac{1}{3}) = \sqrt{(0.50 - 0.10)^2 + (0.08 - 0.50)^2} = \sqrt{(0.40)^2 + (-0.42)^2} = \sqrt{0.33} = 0.57$$

$$d(2,\frac{1}{3}) = \sqrt{(0.10 - 0.10)^2 + (0.06 - 0.50)^2} = \sqrt{(0)^2 + (-0.44)^2} = \sqrt{0.13} = 0.43$$

amalored & Marietraph (The

Sprlik:

$$d(c, \dot{z})' = \frac{1}{d(c, \dot{z})^2}$$

$$(0.06)^{2} = \frac{1}{(0.06)^{2}} = \frac{1}{0.003} = 333,33 \rightarrow \text{kadin}$$

2)=>
$$\frac{4}{(0.26)^2} = \frac{1}{0.06} = 16.66 \rightarrow \text{erkek} + 327.77$$

3)=> $\frac{1}{(0.30)^2} = \frac{1}{0.03} = 11.11 \rightarrow \text{erkek}$

$$3) \Rightarrow \frac{1}{(0.30)^2} = \frac{1}{0.08} = 11.11 \rightarrow \text{erkek}$$

O hâlde
$$X_1 = 0.40$$
 ve $X_2 = 0.50$ then

#NOT: Kac adet "K" göglen degeri vertmisse a kadar göstem degeri sorulupardur ve verten "k" degeri kan ise "digirlik" hesoplanoss o verten dezer hadar en kücüğünden beşlenlerek yepilir.

KINELEME

* Kömelene birbirine benzeyen veri parcialari ayırma islemidir. Bunu yaparken gözlemler arasındaki uzaklıklara adaklanır. ('ki temel algoritması vardır. En yakın komsu algoritması ve en uzak konsu algoritmasıdır.

1) Higerarsik Ksmelene

Higerarzik kümeleme yöntemleri kümelerin bir ana küme darak ele alınması ve sonra azamalı alarak bir küme bigiminde birlextirilme esasına dayanır.

a) En Yakın Komzu allgaritması

Bu algoritmeda tim göblem degerleri birer kilme kabul edilir. Daha sonra yakınlıklarına göre kilmeler birleştirilir.

Je odsogiolaki gözlemler dikkate alinarak bu birimleri en yakın komsu algoritmanına göre kümelerine ayırınız.

Charlemler		- Ser	C Lathe X = 4,10
		X2	
	4	0	Constitution of
	6	1	
3	5		
4	10		
5	11	6	: YOUT
10.0		8	

1.91 M = 1.96 Liklarin hesoplanmasını Öklid formülüyle yapanış, $d(i,j) = \sqrt{\sum (X_{ij} - X_{jk})^2}$

$$\Delta(1,2) = \sqrt{(4-6)^2 + (2-4)^2} = \sqrt{4+4} = \sqrt{8} = 2.82$$

$$d(4.3) = \sqrt{(4-5)^2 + (2-1)^2} = \sqrt{1+1} = \sqrt{2} = 1.41$$

$$d(1,4) = \sqrt{(4-10)^2 + (2-6)^2} = \sqrt{36+16} = \sqrt{52} = 7.21$$

$$d(1.5) = \sqrt{(4-11)^2 + (2-8)^2} = \sqrt{49+36} = \sqrt{85} = 9,21$$

$$d(2.3) = \sqrt{(6-5)^2 + (4-1)^2} = \sqrt{143} = \sqrt{10} = 3.16$$

$$d(2.4) = \sqrt{(6-10)^2 + (4-6)^2} = \sqrt{16+14} = \sqrt{20} = 1.44$$

$$d(2.5) = \sqrt{(6-11)^2 + (4-8)^2} = \sqrt{25+16} = \sqrt{11} = 6.40$$

$$d(3.4) = \sqrt{(5-10)^2 + (1-6)^2} = \sqrt{25+25} = \sqrt{50} = 7.07$$

$$d(3.5) = \sqrt{(5-11)^2 + (6-8)^2} = \sqrt{36+23} = \sqrt{65} = 3.21$$

$$d(4.5) = \sqrt{(10-11)^2 + (6-8)^2} = \sqrt{144} = \sqrt{5} = 2.23$$

$$1 = 2 + 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$1 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$2 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 + 5 = 2.23$$

$$3 = 2 + 3 + 5 = 2.23$$

$$4 = 2 + 3 +$$

	h) F	1)	74		7-1-1	
	0) (~	Deak 1	former a	Algorita	nesc	
St.			· ·		سعدر	(oh, k)
	1	emler	XT	X ₂		
	2	(53)	4	8		
	3	(E)	-6	2	-	100
	L	-0.5	0	3 ,	-	
				7		1
	7	Maria S	ع	9		5 2
d	(1,2) = 1(7	-4)2+(8-2)2	$=\sqrt{5^2+}$	62 = 134	36' = 545' = 6,4	
dl	1,5) - \((7-5)	2+(8-3)2 -	102452 -		(8,8)	4,2)
	1,5) = \((7-5)				~	
21(:	1,4) = \((7-8)	+(8-7)	J141 = V	1+4 = 0.	2 = 1,41	1 141 4
J (1,5) = (7-9)	12+(8-9) = 1	$\sqrt{2^2 + 1^2} = \sqrt{4}$	1+1 = 15	-2,23	(2,2
	(2,3) = \((4-4)					1 3/
a	12/3/ - 114	7 (12 5) -				-
) لے	$(2,4)=\sqrt{4-8}$	$(2-7)^2 + (2-7)^2 =$	= \42+52	- 1 16+27	= 541 = 6.40	1
al	2,5) = \((4-9)	2+(2-9)2 = >	52+72'=	525+49 =	V74 = 8,60	(347)
		2 10 212	[02 c/2 - x	9+16 =	25 = 5,00	18,2
d(3,4) = \(\int(5-) 3,5) = \(\int(5-) \)	8)+(3-+) =	13-14 -	1496' = S	52 = ¥, 21	1
41	3,5) = 1(5-5) -+ (3-3) =	14.46. = 0	76130	7 102	In-
20	$4.5) = \sqrt{(8-9)^2}$	+(7-9)2 =V	12+22 =	1+4 = 1	5'=2,23	
	1					
	VI	2	3	4	5	. 43
-	_					
					0	
2	6,40				1 ile	
2	0,			,	ortak k	
	- 10	1.41	_		©(U2+U	-U-181.
3	7,38					1,44.
		6,40	5.00	+		
14	1,41	6140				1
		K	7.6	2.23	£ 2	1
5	2,23,	8,60	+121			

