Introdução a Computação 05 - Placas mãe, Processadores e Memórias

Márcio Daniel Puntel marcio.puntel@ulbra.edu.br

- Responsável por conectar todos os dispositivos de um computador
- Conexões para:
 - Processador
 - Memória
 - HD
 - □ I/O
- Padrões:
 - AT
 - ATX
 - □ BTX
 - □ ITX

- Processador
 - Socket (modelos específicos)
 - Velocidade (clock / processamento)
 - Quantidade de memória cache
 - Consumo de energia

Memória RAM

- Variam conforme o tipo:
 - Antigas SDRAM
 - Atuais DDR
- Velocidades diferentes
 - Ex: PC de 333 Mhz com memória de 400 Mhz
- Capacidades variadas

- Slots de expansão
 - Adicionar funções ao computador
 - Vídeo
 - Som
 - Rede
 - Modem
 - Exemplos:
 - PCI (Peripheral Component Interconnect)
 - AGP (Accelerated Graphics Port)
 - ISA (Industry Standard Architecture)

BIOS e bateria

- Bateria alimenta bios para que sejam mantidas configurações básicas para o funcionamento do computador
- Bios é responsável pelo funcionamento do HW
 bem como avisar do funcionamento incorreto
- Bios trabalha em conjunto com Post
- Via setup é possível reconfigurar HW

- Conectores de teclado, mouse, USB, impressora e outros
 - Entradas para mouses/teclados (serial, OS/2, USB)
 - Porta paralela para impressora
 - Fácil acesso

Chipset

- Ponte norte
 - Trabalho mais pesado (por isso possui dissipador)
 - Controle de velocidade de conexão do processador com os componentes
 - Frequência da memória
 - · Barramento AGP
 - Etc.
- Ponte sul
 - Controle de I/O (IDE / SATA)

Onboard

- Possuem um ou mais dispositivos de expansão integrados
- Itens integrados ficam junto às entradas
- Menor custo
- Menor desempenho
 - Rede e som (menor influência)
 - Vídeo e modem (maior influência)

- Central Processing Unit
- Cálculos, decisões lógicas e instruções
- Basicamente são Intel, AMD e Via
- Função de controlar dados de entrada e saída

- Barramentos:
 - Endereço
 - Onde um dado está ou deve ser buscado
 - Dados
 - Onde os dados transitam
 - Controle
 - Sincroniza as atividades

- Clock interno
 - Frequências que os processadores trabalham
 - Processo de sincronização das atividades
 - A cada pulso são executadas as tarefas
 - Medida em herts (hz). Ex.: 800 hz executa 800 instruções a cada ciclo de clok por segundo
- Clock externo ou Front Side Bus (FSB)
 - Para realizar a comunicação com a memória (Ponte norte)
 - Frequência mais baixa

- Bits
 - Influem diretamente no desempenho
 - Exemplos:
 - 286 = 16 bits (65.535)
 - Linha Pentium, Athlon XP e Duron da AMD = 32 bits (4.294.967.295)
 - Core 2 Duo ou Athlon 64 = 64 bits (18.446.744.073.709.551.616)
 - Conforme o tamanho do número processado, o processador precisará de mais ciclos

- Memória cache
 - Evolução lenta das memórias força avanços no processador
 - Adaptação da SRAM
 - Maior velocidade em menor distância
 - Intermedia acesso a memória RAM
 - Agiliza processos usados com frequência
 - Dois tipos
 - L1 cache no núcleo
 - Dados
 - Instruções
 - L2 no chipset (antigamente na placa mãe) e com maior capacidade de armazenamento

- Dois núcleos
 - Dual-core ou multi-core
 - Mais de um núcleo no mesmo circuito integrado
 - Dois/N processos por vez
 - Não é fator para melhor desempenho

Memórias:

- Memórias primárias
 - Rápidas
 - Capacidade limitada
 - Armazenamento temporário
 - ROM;PROM;EPROM;EEPROM;RAM;SRAM;DRAM;

Source: Toshiba, Intel, and Rambus

Memórias:

- Memórias secundárias
 - Lentas
 - Capacidade grande
 - Armazenamento permanente
 - Discos; CD's; Tapes; Disquetes

Memórias primárias

- **ROM** (Read Only Memory)
 - Apenas leitura
 - Informações gravadas pelo fabricante
 - Não podem ser apagadas ou modificadas
 - Informações permanentes
 - Não volátil

- **PROM** (programmable read-only memory)
 - Primeiros tipos de ROM
 - Gravação via reação física e eletrecidade
 - Dados não podem ser alterados
 - Exemplo:
 - Bios
 - Micro-ondas
 - Máquina lavar

- **EPROM** (erasable programmable read-only memory)
 - Permite que dados sejam regravados
 - Processo via equipamento de ultravioleta com equipamento especial
 - Primeiro dados são apagados e depois gravados

- **EEPROM** (electrically-erasable programmable read-only memory)
 - Permite que dados sejam regravados
 - Processo para regravar é somente elétrico
 - Não precisa mover o dispositivo do lugar

- **EAROM** (electrically-alterable programmable read-only memory)
 - Permite que dados sejam regravados
 - Permite que os dados sejam alterados aos poucos
 - Utilizado em aplicações onde necessite reescrita parcial

Memórias primárias

- Memória RAM (Random-Access Memory)
 - Dados em uso
 - Extremamente rápida
 - Volátil
 - Há dois tipos:
 - Estática (SRAM)
 - · Dinâmica (DRAM)

- **SRAM** (Static Random-Access Memory)
 - Muito mais rápidos que DRAM
 - Menor armazenamento
 - Preço elevado por MB
 - Utilizadas em cache

- **DRAM** (Dynamic Random-Access Memory)
 - Alta capacidade de dados
 - Mais lenta que SRAM
 - Menor custo

- MRAM (Magnetoresistive Random-Access Memory)
 - Alta capacidade de dados
 - Mais lenta que SRAM
 - Menor custo

- SIPP (Single In-Line Pins Package)
 - Primeiros no mercado
 - Soldados na placa mãe

- **SIMM** (Single In-Line Memory Module)
 - Encaixados na placa mãe
 - SIMM 30 vias:
 - Transferência de 1 byte por ciclo de clock
 - 1MB 16MB
 - SIMM 72 pinos:
 - Transferência de 32 bits por ciclo de clock
 - 4MB 64MB

- **DIMM** (Double In-Line Memory Module)
 - Terminais em ambos os lados
 - □ 168 pinos:
 - Transferência de 64 bits por vez
 - Aplicada em SDR SDRAM
 - □ 184 vias:
 - Aplicada em DDR
 - 240 vias:
 - Aplicada em DDR2 e DDR3
 - SODIMM (Small Outline DIMM) padrão usado em notebooks

- **RIMM** (Rambus In-Line Memory Module)
 - Formado por 168 vias
 - Utilizado pelas memórias RAMBUS

- **FPM** (Fast-Page Mode)
 - Primeira leitura com acesso maior
 - SIMM de 30 quanto de 72 vias
 - Assíncronas com processador
- **EDO** (Extended Data Output)
 - Acesso a memória enquanto ainda processa solicitação anterior
 - SIMM e DIMM de 168 vias
 - Assíncronas com processador
- **SDRAM** (Synchronous Dynamic Random Access Memory)
 - Síncronas com processador
 - Começaram a trabalhar com 66 MHz, 100 MHz e

- **SDRAM** (Synchronous Dynamic Random Access Memory)
 - Síncronas com processador
 - Passou-se a considerar as frequências de memórias
 - Começaram a trabalhar com 66 MHz, 100 MHz e
 133 MHz (também chamadas de PC66, PC100 e
 PC133, respectivamente)

- **DDR SDRAM** (Double Data Rate SDRAM)
 - Dobro de dados da SDR (1 operação por ciclo)
 - DDR trabalhando a 100 MHZ equivale a trabalhar
 com uma taxa de 200 MHZ

DDR2 SDRAM

 Capacidade de trabalhar com quatro operações por ciclo

DDR3 SDRAM

- Capacidade de trabalhar com oito operações por ciclo
- Novidade de Tiple Channel

- Rambus (Rambus DRAM)
 - Criação da empresa Rambus Inc
 - Trabalham com 16 bits por vez
 - Frequência de 400 MHZ
 - Desvantagens:
 - Taxa latência alta
 - Aquecimento
 - Valor elevado
 - Módulos vazios
 - Perdeu mercado para DDR
 - Usado Nintendo 64