Quantified Boolean Formulas: Solving and Proofs

Lower Bounds

Dr. Joshua Blinkhorn

Friedrich-Schiller-Universität Jena https://github.com/JoshuaBlinkhorn/QBF

1

Universal Expansion

Overview of Universal Expansion

- A method of deleting universal variables from a QBF
- After expansion we have only existential variables, i.e. a propositional formula
- This propositional formula is called the expansion of Φ, written exp(Φ)
- Semantics preserved: $\exp(\varPhi)$ is satisfiable if, and only if, \varPhi is true
- Expansion introduces new variables and increases the formula size (exponentially in the worst case)

Expansion of One Universal Variable

Consider a QBF with a single universal variable

$$\Phi = \exists x \forall \mathbf{u} \exists y \cdot F(x, \mathbf{u}, y)$$

• Eliminate variable *u* by expansion

$$\exists x \exists y_0 \exists y_1 \cdot F(x, 0, y_0) \land F(x, 1, y_1)$$

- We use two copies of y and two copies of F to respect the dependence of y on the expanded variable u
- Expanding u does not change the truth value
- The resulting formula has only existential variables, so it is essentially a propositional formula

$$\exp(\Phi) = F(x, 0, y_0) \wedge F(x, 1, y_1)$$

• $\exp(\Phi)$ is satisfiable if, and only if, Φ is true

Expansion of Two Universal Variables

Consider a QBF with two universal variables

$$\Phi = \exists x \forall u \exists y \forall v \exists z \cdot F(x, u, y, v, z)$$

• Eliminate variable *u* by expansion

$$\exists x \exists y_0 \exists y_1 \forall v \exists z_0 \exists z_1 \cdot F(x, 0, y_0, v, z_0) \land F(x, 1, y_1, v, z_1)$$

• Eliminate variable v by expansion

$$\exists x \exists y_0 \exists y_1 \exists z_{00} \exists z_{01} \exists z_{10} \exists z_{11} \cdot F(x, 0, y_0, 0, z_{00}) \land F(x, 0, y_0, 1, z_{01}) \land F(x, 1, y_1, 0, z_{10}) \land F(x, 1, y_1, 1, z_{11})$$

• Neither expansion changes the truth value

$$\exp(\Phi) = F(x, 0, y_0, 0, z_{00}) \land F(x, 0, y_0, 1, z_{01}) \land F(x, 1, y_1, 0, z_{10}) \land F(x, 1, y_1, 1, z_{11})$$

• $\exp(\Phi)$ is satisfiable if, and only if, Φ is true

Annotating with assignments

- In general, if there are n universal variables, the expansion is conjunction of 2^n substitution instances of the matrix
- Each substitution instance corresponds to one of the 2ⁿ universal assingments
- · To respect dependencies, variables must be copied
- In a substitution instance corresponding to $\alpha \in \langle \text{vars}_{\forall}(\Phi) \rangle$, a variable x is annotated with the restriction of α to its dependency set L(x)

$$\Phi = \exists x \forall u \exists y \forall v \exists z \cdot F(x, u, y, v, z)$$

$$\exp(\Phi) = \dots \land F(x, 0, y_0, 1, z_{01}) \land \dots$$

$$\exp(\Phi) = \dots \land F(x, 0, y_{u \mapsto 0}, 1, z_{u \mapsto 0, v \mapsto 1}) \land \dots$$

Universal Expansion in General

• The expansion of a QBF $\Phi = \mathcal{Q} \cdot F$ is the CNF

$$\exp(\Phi) := \bigcup_{\alpha \in \langle \mathsf{vars}_{\forall}(\Phi) \rangle} F \Big[\alpha \cup \big\{ x \mapsto x_{\alpha \upharpoonright L(x)} : x \in \mathsf{vars}_{\exists}(\Phi) \big\} \Big]$$

- Proposition: For any QBF Φ , $\exp(\Phi)$ is satisfiable if, and only if, Φ is true.
- In fact, there is a natural one-one correspondence between satisfying assignments of $\exp(\Phi)$ and models of Φ .

The QBF Proof System ∀Exp+Res

Definition: A $\forall \mathsf{Exp} + \mathsf{Res}$ refutation of a QBF Φ is a Resolution refutation of $\mathsf{exp}(\Phi)$.

Example ∀Exp+Res Refutation

$$\Phi = \exists x \forall \mathbf{u} \exists z \cdot (x \vee \mathbf{u} \vee z) \wedge (\overline{x} \vee \overline{\mathbf{u}} \vee z) \wedge (\overline{z})$$

$$\exp(\Phi) = (x \vee z_{\mathbf{u} \mapsto 0}) \wedge (\overline{z_{\mathbf{u} \mapsto 0}}) \wedge (\overline{x} \vee z_{\mathbf{u} \mapsto 1}) \wedge (\overline{z_{\mathbf{u} \mapsto 1}})$$

Which lower bound techniques apply?

Techniques for propositional proof systems

- size-width relation [Ben-Sasson & Wigderson 01]
- feasible interpolation [Krajíček 97]
- game-theoretic techniques [Pudlák, Buss, Impagliazzo, ...]

In QBF proof systems

- size-width relations fail for QBF resolution systems
- feasible interpolation holds for QBF resolution systems
- game-theoretic techniques work for weak tree-like systems
 [Beyersdorff et. al 16, 17, Chen 16]

We need new techniques

not derived from propositional proof complexity

Lower Bounds via Semantic Measures

- Many QBF proof systems have strategy extraction
- From a refutation, we effeciently compute a countermodel
- Hence, if the countermodel is 'large', so is the refutation
- Gives rise to lower bound techniques based on semantic measures: definitions of countermodel 'size'
- For example, minimal range of a countermodel

Definitions

• The partial expansion of a QBF $\Phi = \mathcal{Q} \cdot F$ w.r.t. a set of universal assignments $R \subseteq \langle \mathsf{vars}_{\forall}(\Phi) \rangle$ is the CNF

$$\exp(\Phi, R) := \bigcup_{\alpha \in R} F\left[\alpha \cup \left\{x \mapsto x_{\alpha \restriction L(x)} : x \in \mathsf{vars}_{\exists}(\Phi)\right\}\right]$$

- A countermodel for a QBF F is a function $f: \langle vars_{\exists}(F) \rangle \rightarrow \langle vars_{\forall}(F) \rangle$ such that
 - dependency: for each $u \in \text{vars}_{\forall (F)}$ and $\alpha, \beta \in \langle \text{vars}_{\exists}(F) \rangle$, if α, β agree on L(u), then $f(\alpha), f(\beta)$ agree on u.
 - semantic for each $\alpha \in \langle vars_{\exists}(F) \rangle$, $\alpha \cup f(\alpha)$ falsifies the matrix of F.

A Lower Bound Technique

Theorem: Let Φ be a QBF, and let $R \subseteq \langle \text{vars}_{\forall}(\Phi) \rangle$. The partial expansion $\exp(\Phi, R)$ is unsatisfiable if, and only if, $R \supseteq \text{rng}(h)$ for some countermodel h of Φ .

Definition: We define $\sigma(\Phi)$ as the minumum cardinality of the range of a countermodel for a false QBF Q:

$$\sigma(\Phi) := \min\{|\operatorname{rng}(h)| : h \text{ is a countermodel for } \Phi\}$$

Corollary: Any $\forall \mathsf{Exp} + \mathsf{Res}$ refutation of a false QBF Φ has size at least $\sigma(\Phi)$.

- If a partial expansion of Φ is unsatisfiable, it contains at least $\sigma(\Phi)$ non-trivial conjuncts
- So a $\forall \mathsf{Exp} + \mathsf{Res}$ refutation of Φ requires at least $\sigma(\Phi)$ axioms

Application to the Equality Formulas

$$EQ_n := \exists x_1 \cdots x_n \forall u_1 \cdots u_n \exists z_1 \cdots z_n \cdot \left(\bigwedge_{i \in [n]} (x_i \vee u_i \vee z_i) \right) \wedge \left(\bigwedge_{i \in [n]} (\overline{x_i} \vee \overline{u_i} \vee z_i) \right) \wedge \left(\bigvee_{i \in [n]} \overline{z_i} \right)$$

• The countermodel is unique:

$$h: \langle \mathsf{vars}_\exists(EQ_n) \rangle \rightarrow \langle \mathsf{vars}_\forall(EQ_n) \rangle$$

 $\alpha \mapsto \{ \underline{\mathsf{u}}_1 \mapsto \alpha(\mathsf{x}_1), \dots, \underline{\mathsf{u}}_n \mapsto \alpha(\mathsf{x}_n) \}$

- Clear: $rng(h) = \langle vars_{\forall}(EQ_n) \rangle$ and $|rng(h)| = 2^n$
- So $\sigma(EQ_n) = 2^n$, and we apply the technique
- Any $\forall Exp+Res$ refutation of EQ_n has size at least 2^n

Theorem: The equality formulas require exponential size $\forall \mathsf{Exp} + \mathsf{Res}$ refutations.

Theorem: Let Φ be a QBF, and let $R \subseteq \langle \text{vars}_{\forall}(\Phi) \rangle$. The partial expansion $\exp(\Phi, R)$ is unsatisfiable if, and only if, $R \supseteq \text{rng}(h)$ for some countermodel h of Φ .

- Proof by induction on the quantifier depth d of Φ
- Quantifier depth is the number of blocks:

$$\exists X_1 \forall U_1 \exists X_2 \forall U_2 \exists X_3 \cdot \phi(X_1, U_1, X_2, U_2, X_3)$$

here the quantifier depth is d = 5

- Base case d=0 is trivial: $\Phi=\phi(\emptyset)$
- We have $R = \langle \mathsf{vars}_{\forall}(\Phi) \rangle = \emptyset$
- $\exp(\Phi, R) = \phi$
- Note that ϕ is either \top or the empty clause \bot
- Suppose $\exp(\Phi)$ is unsatisfiable; then ϕ is the empty clause
- Then Φ has a trivial countermodel h with $rng(h) = \emptyset \subseteq R$

Theorem: Let Φ be a QBF, and let $R \subseteq \langle \mathsf{vars}_{\forall}(\Phi) \rangle$. The partial expansion $\exp(\Phi, R)$ is unsatisfiable if, and only if, $R \supseteq \mathsf{rng}(h)$ for some countermodel h of Φ .

- Inductive step $d \ge 1$, universal case: $\Phi = \forall UQ \cdot \phi(U, \text{vars}(Q))$
- Suppose that $\exp(\Phi, R)$ is unsatisfiable
- Idea: partition $\exp(\Phi, R)$ into conjucts corresponding to assignments to \red{U}
- $R' := \{\alpha \upharpoonright_{U} : \alpha \in R\}$
- For each $\beta \in R'$, define $R_{\beta} := \{\alpha \in R : \beta \subseteq \alpha\}$
- Observe that $R = \bigcup_{\beta \in R'} R_{\beta}$
- Hence $\exp(\Phi, R) = \bigwedge_{\beta \in R'} \exp(\Phi, R_{\beta})$
- The conjucts of $\bigwedge_{\beta \in R'} \exp(\Phi, R_{\beta})$ are pairwise variable-disjoint
- Hence there exists $\beta \in R'$ such that $\exp(\Phi, R_{\beta})$ is unsatisfiable

Theorem: Let Φ be a QBF, and let $R \subseteq \langle \text{vars}_{\forall}(\Phi) \rangle$. The partial expansion $\exp(\Phi, R)$ is unsatisfiable if, and only if, $R \supseteq \text{rng}(h)$ for some countermodel h of Φ .

- Fix $\beta \in R'$ such that $\exp(\Phi, R_{\beta})$ is unsatisfiable
- Define $S_{\beta} := \{ \alpha \setminus \beta : \alpha \in R_{\beta} \}$
- Observe that $\exp(\Phi, R_{\beta})$ is syntactically equivalent to $\exp(\Phi[\beta], S_{\beta})$; just delete β from the annotations
- Hence $\exp(\Phi[\beta], S_{\beta})$ is unsatisfiable
- $\Phi[\beta]$ has quantifier depth d-1; by inductive hypothesis:
- $S_{\beta} \supseteq \operatorname{rng}(h)$ for some countermodel h of $\Phi[\beta]$.
- Form a countermodel h' for Φ simply by adding β to every element of the range of h (check this satisfies the definition)
- $\operatorname{rng}(h') \subseteq R_{\beta} \subseteq R$

Theorem: Let Φ be a QBF, and let $R \subseteq \langle \text{vars}_{\forall}(\Phi) \rangle$. The partial expansion $\exp(\Phi, R)$ is unsatisfiable if, and only if, $R \supseteq \text{rng}(h)$ for some countermodel h of Φ .

- Inductive step $d \ge 1$, existential case: $\Phi = \exists X Q \cdot \phi(X, \text{vars}(Q))$
- Suppose that $\exp(\Phi, R)$ is unsatisfiable
- Idea: restrict by all assignments to X
- let $\alpha \in \langle X \rangle$; observe that $\exp(\Phi, R)[\alpha]$ is unsatisfiable
- observe that $\exp(\Phi, R)[\alpha] = \exp(\Phi[\alpha], R)$
- $\Phi[\alpha]$ has quantifier depth d-1; by inductive hypothesis:
- $R \supseteq \operatorname{rng}(h_{\alpha})$ for some countermodel h_{α} of $\Phi[\alpha]$.

Theorem: Let Φ be a QBF, and let $R \subseteq \langle \text{vars}_{\forall}(\Phi) \rangle$. The partial expansion $\exp(\Phi, R)$ is unsatisfiable if, and only if, $R \supseteq \text{rng}(h)$ for some countermodel h of Φ .

- For each $\alpha \in \langle X \rangle$, $R \supseteq \operatorname{rng}(h_{\alpha})$ for some countermodel h_{α} of $\Phi[\alpha]$.
- Construct a countermodel for Φ :

$$h : \langle \mathsf{vars}_\exists(\Phi) \rangle \rightarrow \langle \mathsf{vars}_\forall(\Phi) \rangle$$

 $\beta \mapsto h_{\beta \uparrow X}(\beta)$

and check it satisfies the countermodel definition

• Observe that $\operatorname{rng}(h) = \bigcup_{\alpha \in \langle X \rangle} \operatorname{rng}(h_{\alpha}) \subseteq R$

A Very Easy ∀Exp+Res Lower Bound

For $n \ge 1$, the pigeonhole formula PHP_n is the conjunction of

- $(x_{i,1} \vee \cdots \vee x_{i,n})$ for $1 \leq i \leq n+1$, and
- $(\overline{x_{i,j}} \vee \overline{x_{i',j}})$ for $1 \le i < i' \le n+1$ and $1 \le j \le n$.
- Pigeonhole formulas require exponential size resolution refutations
- Form a prenex QBF by quantifying all variables exisentially
- No universal variables so the expansion is exactly the pigeonhole formula: PHP_n = exp(PHP_n)
- Hence these 'QBFs' require exponential size ∀Exp+Res refutations

Propositional hardness transfers to QBF

- If $\phi_n(X)$ is hard for resolution, then $\exists X \phi_n(X)$ is hard for $\forall \mathsf{Exp} + \mathsf{Res}$.
- propositional hardness (Σ_1) : not what we want to study
- we want QBF systems with proof size modulo propositional hardness
- so we need a method of elimating Σ_1 (propositional) hardness from the proof size measure

Oracles

- We borrow an idea from complexity theory
- An oracle is a Turing Machine with a black box that can decide a specified decision problem in a single time step
- For example, a TM with a SAT oracle can solve any NP problem in polynomial time
- Allows us to study complexity modulo NP (or any complexity class)

Genuine QBF hardness

- can be modelled precisely by allowing NP oracles in QBF proofs
- informally: all 'essentially propositional' derivations are allowed in a single inference
- in line with QBF solvers using embedded SAT solvers

Genuine Lower Bounds in ∀Exp+Res

• Replace resolution and weakening with the following rule

oracle:
$$C_1, \ldots, C_k \subset C_1 \land \cdots \land C_k \vDash C$$

Genuine Lower Bounds in ∀Exp+Res

oracle:
$$C_1, \ldots, C_k = C$$

- The resolution phase is given for free (exactly one inference to refute the expansion)
- Therefore, proof size is effectively defined by the number of axioms
- precisely: given a CNF F, the minimal size of a refutation is the minimal cardinality of an unsatisfiable subset of clauses (+1)
- Therefore genuine hardness is characterised by large expansion

Characterisation of Genuine Lower Bounds in Expansion

Theorem: Let Φ be a QBF, and let $R \subseteq \langle \text{vars}_{\forall}(\Phi) \rangle$. The partial expansion $\exp(\Phi, R)$ is unsatisfiable if, and only if, $R \supseteq \text{rng}(h)$ for some countermodel h of Φ .

- This theorem completely characterises genuine lower bounds in ∀Exp+Res
- By characterising expansion size in terms of countermodel range
- There are short (oracle) refutations of Φ if, and only if, $\sigma(\Phi)$ is small

2

Q-Resolution Lower Bounds

QBF Proof Systems - The Small Picture

Q-Resolution

• Consider a QBF $Q \cdot F$

axiom:	<u></u>	C is a clause in F
resolution:	$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$	C and D are clauses \times is an existential variable $C \vee D$ is non-tautologous
weakening:	$\frac{C}{C \vee D}$	C and D are clauses $C \lor D$ is non-tautologous
universal reduction:	<u>C ∨ a</u> C	C is a clause $\frac{a}{a}$ is a universal literal vars $\frac{1}{2}(C)\subseteq L(\text{var}(\frac{a}{a}))$

QU-Resolution

• Resolution is allowed over universal variables as well

axiom:	<u>C</u>	C is a clause in F
resolution: _	$\frac{C \vee p \qquad D \vee \overline{p}}{C \vee D}$	C and D are clauses p is a variable $C \lor D$ is non-tautologous
weakening:	$C \setminus C \vee D$	C and D are clauses $C \lor D$ is non-tautologous
universal reduction:	<u>C ∨ a</u> <u>C</u>	C is a clause a is a universal literal $vars_{\exists}(C) \subseteq L(var(a))$

QU-resolution

- Completeness: QU-Res clearly simulates Q-Res
- Soundness: exactly as for Q-Res; resolution remains propositionally sound even with universal pivots
- QU-Res is exponentially stronger than Q-Res
- Separation via the Kleine Büning formulas

QU-Resolution with an NP Oracle

Resolution and weakening replaced by arbitrary propositional inferences

axiom:		C is a clause in F
oracle:	C_1,\ldots,C_k	$C_1 \wedge \cdots \wedge C_k \vDash C$ C is not tautological
universal reduction:	C ∨ a 	C is a clause a is a universal literal vars $_{\exists}(C) \subseteq L(\text{var}(a))$

QU-Res Refutations of the Equality Formulas

$$EQ_n := \exists x_1 \cdots x_n \forall u_1 \cdots u_n \exists z_1 \cdots z_n \cdot \left(\bigwedge_{i \in [n]} (x_i \vee u_i \vee z_i) \right) \wedge \left(\bigwedge_{i \in [n]} (\overline{x_i} \vee \overline{u_i} \vee z_i) \right) \wedge \left(\bigvee_{i \in [n]} \overline{z_i} \right)$$

- There is essentially only one way to refute them:
 - Resolve over all z_i to obtain $(x_1 \vee \cdots \vee x_n \vee u_1 \vee \cdots \vee u_n)$
 - Perform *n* universal reductions to obtain $(x_1 \lor \cdots \lor x_n)$
 - Repeat to obtain all 2^n clauses in the x_i
 - Resolve all 2^n clauses to get the empty clause
- With an NP oracle:
 - Derive $(x_1 \vee \cdots \vee x_n \vee u_1 \vee \cdots \vee u_n)$ immediately
 - Perform *n* universal reductions to obtain $(x_1 \lor \cdots \lor x_n)$
 - Repeat to obtain all 2^n clauses in the x_i
 - Derive the empty clause immediately
- Key: we need all 2ⁿ universal clauses as subclauses

32 / 47

Equality is Hard in QU-Res with an Oracle

Theorem: EQ_n requires refutations of size 2^n in NP-QU-Res

- Argument: example of the strategy extraction technique
- Proof ingredients:
 - Closure under existential restrictions (with subclause property)
 - Properties of refutations of QBFs of the form $\forall UQ \cdot F$
 - Semantic properties of EQ_n
- Without loss of generality: refutations contain no redundant clauses (every clause has a path to the unique empty clause)

Lemmata

Closure under existential restrictions

Lemma: Let Π be an NP-QU-Res refutation of a QBF Φ , let α be a partial assignment to vars $\exists (\Phi)$. Then $\Pi[\alpha]$ is an NP-QU-Res refutation of $\Phi[\alpha]$ whose every clause is a subclause of one in Π .

First universal clause

Lemma: Let C be the first fully universal clause in an NP-QU-Res refutation of a QBF $\Phi = \forall UQ \cdot F$. If $\beta \in \langle U \rangle$ falsifies $C \upharpoonright_U$, then $\Phi[\beta]$ is false.

Uniqueness of EQ_n countermodel

Lemma: For any $\alpha \in \langle x_1, \dots, x_n \rangle$, the only $\beta \in \langle u_1, \dots, u_n \rangle$ for which $\mathsf{EQ}_n[\alpha][\beta]$ is false is $\beta_\alpha := \{ u_i \mapsto \alpha(x_i) \}_{i \in [n]}$.

Proof of Hardness

Theorem: EQ_n requires refutations of size 2^n in NP-QU-Res

- Let Π be a ref. of EQ_n, $X = \{x_1, \dots, x_n\}$, $U = \{u_1, \dots, u_n\}$.
- Idea: for all $\beta \in \langle U \rangle$, $\overline{\beta}$ appears as a subclause in Π .
- Hence there are 2^n distinct clauses in Π (we have no tautological clauses).
- Let $\alpha \in \langle x_1, \dots, x_n \rangle$. By "closure under \exists -restrictions", $\Pi[\alpha]$ is a refutation of $EQ[\alpha]$, whose first block is U.
- Let C_{α} be the first fully universal clause in $\Pi[\alpha]$. By "first block universal literals" and "uniqueness of EQ_n countermodel", the only assignment in $\langle U \rangle$ falsifying C is β_{α} .
- Hence C_{α} is $\overline{\beta_{\alpha}}$.
- $\{\beta_{\alpha} : \alpha \in \langle X \rangle\} = \langle U \rangle$. Hence $|\Pi| \ge 2^n$

Lemmata Proofs 1

Closure under existential restrictions

Lemma: Let Π be an NP-QU-Res refutation of a QBF Φ , let α be a partial assignment to vars $\exists (\Phi)$. Then $\Pi[\alpha]$ is an NP-QU-Res refutation of $\Phi[\alpha]$ whose every clause is a subclause of one in Π .

- Let $\Pi = C_1, \ldots, C_k$, define $\Pi[\alpha] := C_1[\alpha], \ldots, C_k[\alpha]$
- Clearly, each $C_i[\alpha]$ is a subclause of C_i
- By induction on $i \in [k]$, show that $C_i[\alpha]$ is valid in Π'
- Axiom: if $C_i \in F$, then $C_i[\alpha] \in F[\alpha]$
- Oracle: if $C_{i_1} \wedge \cdots \wedge C_{i_r} \models C_i$ then $C_{i_1}[\alpha] \wedge \cdots \wedge C_{i_r}[\alpha] \models C_i[\alpha]$
- \forall -reduction: if C_i was derived from $(C_i \lor a)$, we have $\mathsf{vars}_\exists(C_i) \subseteq L(\mathsf{var}(a))$. Hence $\mathsf{vars}_\exists(C_i[\alpha]) \subseteq L(\mathsf{var}(a))$, and $C_i[\alpha]$ can be derived from $(C_i \lor a)[\alpha] = (C_i[\alpha] \lor a)$

Lemmata Proofs 2

First universal clause

Lemma: Let C be the first fully universal clause in an NP-QU-Res refutation of a QBF $\Phi = \forall UQ \cdot F$. If $\beta \in \langle U \rangle$ falsifies $C \upharpoonright_U$, then $\Phi[\beta]$ is false.

- Let Π be any refutation of Φ .
- Consider the refutation Π' obtained from Π by reducing all universal literals from C to derive the empty clause, then deleting all clauses which have no path to this empty clause.
- Let $\beta \in \langle U \rangle$ falsify $C \upharpoonright_U$
- Show that $\Pi'[\beta]$ is a refutation of $\Phi[\beta]$, which is therefore false
- Crux restriction by universal assignments is not closed in general, since one can satisfy a reduced literal
- But here, the only reduced U-literals in Π' are falsified by β .

Lemmata Proofs 3

Uniqueness of EQ_n countermodel

Lemma: For any $\alpha \in \langle x_1, \dots, x_n \rangle$, the only $\beta \in \langle u_1, \dots, u_n \rangle$ for which $\mathsf{EQ}_n[\alpha][\beta]$ is false is $\beta_\alpha := \{u_i \mapsto \alpha(x_i)\}_{i \in [n]}$.

- Easily verified by inspection
- Let $\alpha \in \langle X \rangle$
- $EQ_n[\alpha]$ is the QBF

$$\forall u_1 \cdots \forall u_n \exists z_1 \cdots \exists z_n \cdot (a_1 \vee z_1) \wedge \cdots \wedge (a_n \vee z_n) \wedge (\overline{z_1} \vee \cdots \vee \overline{z_n})$$

where the only assignment to U falsifying all the literals a_1, \ldots, a_n is β_{α}

General Technique for Σ_3 QBFs

Definition: We define $\sigma(\Phi)$ as the minumum cardinality of the range of a countermodel for a false QBF Q:

$$\sigma(\Phi) := \min\{|\operatorname{rng}(h)| : h \text{ is a countermodel for } \Phi\}$$

Theorem: Let Φ be a QBF of the form $\exists X \forall U \exists Z \cdot F$. Φ requires NP-QU-Res refutations of size $\sigma(\Phi)$.

- Proof idea: a form of strategy extraction
- Restrict by each assignment to X, choose an assignment to U
 falsifying the first universal clause
- This defines a countermodel for Φ
- Therefore we meet at least $\sigma(\Phi)$ first universal clauses
- Each is a subclause of the original proof

General Technique for Σ_3 QBFs

Theorem: Let Φ be a QBF of the form $\exists X \forall U \exists Z \cdot F$. Φ requires NP-QU-Res refutations of size $\sigma(\Phi)$.

- Subtlety: these first universal clauses are not necessarily wide: they may omit variables in U, they may even be empty
- Therefore they are not necessarily subclauses of distinct clauses in the original refutation
- Not actually a problem, but the argument is a little messy
- Easy fix: assume without loss of generality that universal reduction applies a total assignment to *U*
- Instead of the subclause property for existential restrictions, we have the following: any reduction assignment in the restriction is a reduction assignment in the original refutation

General Technique for All QBFs

- We look at countermodel range per universal block
- Compute the minimum of each range over all countermodels
- The take the maximum

Definition: For each universal block $\ensuremath{\textit{U}}$ of a QBF $\ensuremath{\varPhi}$, we define

 $\sigma_{\mathbf{U}}(\Phi) := \min\{|\operatorname{rng}(h)|_{\mathbf{U}}| : h \text{ is a countermodel for } \Phi\}$

Theorem: A QBF Φ requires NP-QU-Res refutations of size

 $\max\{\sigma_{\pmb{U}}(\Phi): \pmb{U} \text{ is a universal block in } \Phi\}$.

3

Long-Distance Q-Resolution

Bad tautologies

- Allowing tautologies is not sound
- Some true QBFs become refutable

• Problem: *u* is left of the pivot *x*

Good tautologies

- No problem if u is right of the pivot x
- Swap variable order now QBF is false

• These tautologies cause no problems [Zhang and Malik 2002]

Long-distance Q-Resolution

- Allows some tautologies [Balabanov and Jiang 2012]
- Consider a QBF $\Phi = \mathcal{Q} \cdot \Phi$

Example Long-Distance Refutation

$$\exists x_1 \exists x_2 \forall u_1 \forall u_2 \exists z_1 \exists z_2 \cdot (x_1 \vee u_1 \vee z_1) \wedge (\overline{x_1} \vee \overline{u_1} \vee z_1) \wedge (x_2 \vee u_2 \vee z_2) \wedge (\overline{x_2} \vee \overline{u_2} \vee z_2) \wedge (\overline{z_1} \vee \overline{z_2})$$

About Long-Distance Q-Resolution

- Completeness: LD-Q-Res clearly simulates Q-Res
- Soundness: not so simple
 - syntactic use of tautologies obfuscates semantics
 - tautologies represent Boolean functions of existential pivots
 - this is fine, because the (universal) tautology variable always depends on the (existential) pivot
- Long-distance resolution adds strength:
- Linear-size LD-Q-Res refutations of the equality formulas
- Therefore LD-Q-Res is exponentially separated from Q-Res
- This is important, because QCDCL solvers use long-distance resolution