

10. $F(x, y(\sin x), y(\cos x)) = 0$.

On substituting $\frac{\pi}{2} - x$ for x, we obtain $F\left(\frac{\pi}{2} - x, y(\cos x), y(\sin x)\right) = 0$ On eliminating $y(\cos x)$ from this equation and the original one, we arrive at an ordinary algebraic (or transcendental) equation of the form $\Psi(x, y(\sin x)) = 0$, the solution of which presents no difficulty.

The solution of the original functional equation, y = y(x), is determined parametrically by the system of three algebraic (transcendental) equations

$$F(t, y, w) = 0,$$
 $F(\frac{\pi}{2} - t, w, y) = 0,$ $x - \sin t = 0,$

where t and w are the parameters.

Reference

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations: Exact Solutions (Supplement. Some Functional Equations)* [in Russian], Faktorial, Moscow, 1998.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/fe/fe2310.pdf