

形态学运算与区域生长 实验报告

院(系)名称				自动化科学与电气工程学院		
专	业	名	称	模式识别与智能系统		
学	生	姓	名	孔昭宁		
学			号	14031259		
任	课	老	师	郑红		

2017年5月16日

1. 实验目的

形态学的基础是作用于物体形状的非线性算子的代数,它在很多方面都要优于基于卷积的线性代数系统。在很多领域中,如预处理、给予物体形状分割、物体量化等,与其他标准算法相比,形态学方法都有更好的结果和更快的速度。形态学运算主要用于如下几个目的:

- 图像预处理(去噪声、简化形状)
- 增强物体结构(抽取骨骼、细化、粗话、凸包、物体标记)
- 从背景中分割物体
- 物体量化描述(面积、周长、投影)

2. 实验内容及算法流程

- 2.1 针对 cell2.bmp 对比中值、均值和形态学开闭运算对细胞图像的滤波效果,选择适用于细胞图像的滤波方法;
- 2.2 运用大津阈值(可用自带函数)对分割出的细胞图像进行再分割,观察分割后的噪声情况,观察目标边缘出的分割效果;
- 2.3 通过区域生长法实现对连通区域的标号(可用自带函数);
- 2.4 分割细胞核与核仁,并测量细胞核与核仁面积比,判断异常细胞;

3. 实验过程及结果分析

3.1 针对 cell2.bmp 对比中值、均值和形态学开闭运算对细胞图像的滤波效果,选择适用于细胞图像的滤波方法

分别采用上述三种方法,对 cell2.bmp 进行滤波,结果如下图所示:

图 1 中值滤波

图 2 均值滤波

图 3 形态学开闭运算滤波

根据以上图像可以发现,相比于中值滤波或均值滤波,形态学开闭运算对于此图像有更好的滤波效果,对于不属于细胞的细小噪声的滤除更加有效,因此降低了后期对非细胞物体滤除的要求。

3.2 运用大津阈值(可用自带函数)对分割出的细胞图像进行再分割,观察分割后的噪声情况,观察目标边缘出的分割效果;

首先计算出整幅图像计算出大津阈值,并利用此阈值进行阈值化。阈值化后图像中依然存在非细胞的物体,因此使用一次形态学开运算,对这些噪音进行滤除。

初步分割出细胞图像如下:

图 4 细胞分割图像

随后,对于所有分割得到的细胞图像,分别利用大津阈值计算阈值,并利用此阈值对图像进行阈值化,分割得到细胞核。

根据观察发现,通过 matlab 自带函数计算得到的阈值,无法达到最佳的分割:细胞核面积比理想值更大。因此根据此先验知识,对得到的阈值进行少量的增加,得到较好的效果。

同时,观察发现形态学滤波的半径过大会导致分割出的细胞核模糊。根据多次实验,选择了半径为1的圆对灰度图像进行形态学滤波,能够最大程度保留图像中的细节。

分割得到的细胞核如下图所示:

图 5 分割出的细胞核

3.3 通过区域生长法实现对连通区域的标号(可用自带函数)

利用 matlab 自带函数 bwlabel 对图 4 所示结果进行编号,结果如下图所示:

图 6 对细胞进行编号

3.4 分割细胞核与核仁,并测量细胞核与核仁面积比,判断异常细胞;

对每个细胞,根据分割结果,分别计算细胞核的面积和细胞整体的面积,得到细胞核占细胞的面积如下:

细胞编号	细胞面积	核面积	比例	X 坐标	Y坐标
1	227	0	0	76.379	116.87
2	251	0	0	90.371	145.88
3	2324	422	0.18158	120.16	354.13
4	211	0	0	118.63	145.63
5	2270	509	0.22423	170.69	522.04
6	2248	460	0.20463	222.69	172.08
7	3344	733	0.2192	250.84	305.54
8	3507	508	0.14485	296.31	205.63
9	907	48	0.052922	301.4	266.75
10	1991	450	0.22602	348.35	447.34
11	2823	559	0.19802	381.14	388.19
12	2884	662	0.22954	416.48	326.02
13	2670	501	0.18764	443.59	135.78
14	2384	460	0.19295	457.45	35.568
15	909	68	0.074807	483.68	507.46

北京航空航天大学实验报告

/	1952 (185)									
	16	3666	700	0.19094	506.67	387.79				
	17	2199	373	0.16962	585.61	369.36				
	18	714	160	0.22409	610.03	78.417				

如上表所示,此图像中 1、2、4、9、15 细胞为异常细胞,其余细胞的细胞核面积与细胞面积之比均在 $0.1\sim0.5$ 之间。

4. 总结

本次实验主要涉及形态学运算,包括利用形态学开闭运算对灰度图像进行滤波,并与非 形态学方式的滤波结果进行了比较,发现对于所提供的细胞图像,形态学滤波具有更好的结 果。除此以外,本次试验中也利用了形态学滤波对二值图像中一些具有特殊性质(比如较小)的物体进行滤除。

本次实验还使用了大津阈值的方式,从图像中分割出了细胞图像,又从细胞中分割出了细胞核,以计算细胞核占细胞面积的大小,达到了判断细胞正常与否的目的。

源程序将于此报告一同提交。