Machine Learning-Based Fingerprinting of Network Traffic Using Programmable Forwarding Engines

University of Colorado Boulder

Greg Cusack, Oliver Michel, Eric Keller

Goal

Explore the efficacy of classifying large amounts of network traffic using PFE-generated, rich flow records in two separate applications

- Ransomware identification and classification
- Censorship circumvention traffic fingerprinting

Programmable Forwarding Engines (PFEs)

- Allow commodity network equipment to support the scalable generation of rich flow records
- Stream processing systems utilize PFE switch hardware to process network data at high-rates of speed and extract vital, per-packet flow information
- Provide system designers with the data and speed necessary for network, flow-based traffic analysis and fingerprinting

Compact, per-packet flow records

PFE flow record overview

- The data extracted from a flow can be tailored to fit a user's specific application

Flow Records and Processing

Stream processor

- 5 kernel stream processor
- Simulates PFE-generated compact, rich flow records
- Extracts vital features from flow records
- Feeds into Python classifier

Ransomware Overview

- Victim makes initial key request to C&C server
- C&C server returns encryption key
- Tor hidden service communicates method of payment

[Cabaj, Mazurczyk. CoRR '16]

Shadowsocks (SS) Overview

- Censorship circumvention tool
- User sets up own proxy server outside GFW domain

Ransomware Classification Results

Goal

- Minimize false negatives
- Balance FNR and FPR

Random Forest Classifier

- 40 decision trees with depth 15

Performance

- Precision: 0.89 F1 Score: 0.87
- Recall: 0.83 AUC of ROC: 0.93

Key Flow Features

- Packet interarrival times
- Inflow to outflow packet ratios
- Burst lengths
- Flow duration

Shadowsocks Classification Results

Goal

- Minimize false positives

Random Forest Classifier

- 10 decision trees with depth 10

Performance

- Precision: 0.996 F1 Score: 0.987
- Recall: 0.977 AUC of ROC: 0.99

Key Flow Features

- Packet interarrival times
- Traffic latency
- Payload entropy

Discussion

Takeaway

- Preliminary results show efficacy of utilizing high-rate PFEgenerated, rich flow records to fingerprint different types of web traffic

Future Work

- Write classifiers in C++ for line rate classification
- Continue to explore other classification techniques

Acknowledgements

This work was supported in part by the NSF grants 1652698 (CAREER) and 1406192 (SaTC), and by the NSF and VMWare grant 1700527 (SDI-CSCS).

