Report

R06922074 吳柏威

- Describe your Policy Gradient & DQN model
 - Policy Gradient
 - ◆ 前處理
 - 首先將每次的 observation 經過 preprocess 處理,將畫面進行 灰階化之後並且將影像壓縮,從(210,160,3)壓縮成(80,80,1),這樣子可以有效的降低 model 的大小,降低圖片的複雜 度,有效提升 training 的速度與品質。
 - 接著在 training 或是 testing 時,丟入 model 的 input 都是目前的 state(已經過前處理的畫面)減去上一個 state,讓 model 只關注於那些有移動的地方,像是球以及敵我雙方的位置與軌跡,藉由擷取這些特徵,可以讓 pong 學的更好

◆ 紀錄

● 在訓練時我們會有 4 個 array 去記錄每場之中所有的 state (目前 state 與上一個 state 相減的畫面,下同)、決定每次動作時得到的 reward、每一次 state 輸入 model 之後得出每一個動作的機率分佈、以及 gradient。 gradient 是在該 state 輸入 model 之後得出每一個動作的機率分佈 prob 輸出之後,並經過該機率分佈隨機選擇出的動作進行 one hot 並且與該機率分佈相檢所獲得的梯度。

◆ 訓練

- 接著我們將每次個動作的 reward 進行 discount 以及疊加的動作,讓一個動作當下雖然沒 reward,但是根據之後的移動我們可以計算出一個動作之後到結果預期的 reward 是多少,而discount 的動作是為了要讓遊戲盡快贏得越快越好,避免鬼打牆情況出現,接著進行 normalize 的動作,避免突然巨大的回饋影響了整個學習的過程。
- 最後我們將 rewards 乘上先前的 gradient 以及 learning rate, 這就是我們最後所要算的 loss,之後與 prob 相加之後成為 keras model 的 label,而 input 為每一場的所有 states。

◆ 模型

- Adam(lr=0.0001), gamma=0.99
- 因為在 pong 遊戲中 123 和 045 動作相同,所以只輸出動作 123,可以讓收斂速度大幅增加,訓練更快

DQN

- ◆ 前處理
 - 助教已經做好前處理了

◆ 紀錄

- 在訓練時不斷的將目前的狀態、移動所獲得的獎勵、model 所 predict 出的移動、以及下一個 state 和遊戲是否結束給記錄至 memory 中,memory 是一個 deque,當塞入的東西超過了,就會將最早塞入的給移除。
- 在遊戲的過程中,我設定經過 4 個 state 就會更新一次 online model,以及每 1000 個 state 更新一次 target model,從 online model 複製參數過去。如果不使用 fix target Q 的技術,會在學習上不能好好的根據 reward 去更新 Q 值,導致整 個網路無法訓練。

◆ 訓練

在訓練時我們會根據 memory 隨機抽樣產生一組 minibatch,
 我設定為 32。接著依照 Q learning 的公式進行更新。

Sample random minibatch of transitions
$$(\phi_j, a_j, r_j, \phi_{j+1})$$
 from D

$$Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

j 是 minibatch 中的 index

 r_j 是 reward、a'是選擇的動作、 γ 是 gamma 值、 \emptyset 是 state 最後算完 y 之後成為 model 的 label,同時 input 為 state 放入 model 訓練

◆ 模型

RMSprop(lr=0.0001), gamma=0.05, epsilon_step=100000

Plot the learning curve to show the performance of your Policy Gradient on

Pong

Plot the learning curve to show the performance of your DQN on Breakout

Plot all four learning curves in the same graph
 以下是以 dqn 為例

best 為 lr = 0.0001, gamma=0.95, update target frequency=10000 並且以此基礎進行以下更動

- Explain why you choose this hyperparameter and how it effect the results
 - Learning rate 0.001
 - ◆ 在 reinforcement learning 中,learning rate 的更動往往佔有非常重要得角色,所以我選擇更動此參數
 - ◆ 過大的 learning rate 會使得模型更動幅度太大,無法訓練
 - ◆ 適當的 Ir 才能讓 model 有緩慢的進步
 - Target Q update frequency 10000
 - ◆ 挑選一個好的 Target Q update frequency 也很重要,影響了訓練的 速度與品質,所以我選此參數
 - ◆ 我發現 Target Q update frequency 調大之後,在約 6000 左右的 episode 才 score 才開始有進步,而且進步的幅度比調成 1000 還 慢

■ gamma 0.99

- ◆ 好的 gamma 可以使得模型具有遠見,不會短視近利。同時不容易 讓遊戲進入鬼打牆情況發生,所以我選擇此參數
- ◆ 當 gamma 調成 0.99 時,我發現訓練後期分數並不如 gamma 為 0.95 的模型,我認為是因為小的 gamma 可以讓模型能夠在更短的時間內得到更多分數,模型可以訓練得更快更好。

 Implement at least two improvements to DQN (p.9) and describe why they can improve the performance

Double DQN

◆ 我們將 Q learning 的公式從以上的公式改為

$$Y_t^{\text{DoubleDQN}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname*{argmax}_a Q(S_{t+1}, a; \pmb{\theta}_t), \pmb{\theta}_t^-) \,.$$

也就是我們先把下一個 state 丟入 online Q 中求出分數最好的動作,接著我們在把該動作丟入 target Q 中求出 Q 值

◆ 因為我們的神經網絡預測 Qmax 本來就有誤差,每次也向著最大 誤差的改進 Q 现实神經網絡,就是因為這個 Qmax 導致了 overestimate。所以 Double DQN 的想法就是引入另一個神經網絡 來打消一些最大誤差的影響。

Duel DQN

◆ 我們將原本的 model 改為以下架構

- ◆ 我們將最後面一層分成兩個部分,一個是 value function 以及 advantage function,value function 是接收 state 之後預期的 Q 值,而 advantage function 是輸出每一種動作可以創造出的價值,分開來之後接著在串接起來並且最後 dense 成每個動作的 Q 值。
- ◆ 利用 Duel DQN 可以大幅提升學習效果以及收斂速度。

 Plot a graph to compare and analyze the results with and without the improvements

當我們 double 還有 duel 都沒有使用時效果最差 使用 double dqn 可以避免 overestimate 情形發生,效果比都沒有好一點 使用 duel dqn 可以有效的收斂 Q value,效果又比加了 double 更好 最後兩個都加效果最好同時也可以通過作業的 baseline