RAJSHAHI UNIVERSITY OF ENGINEERING AND TECHNOLOGY LAB REPORT - 04

COURSE NAME: SESSIONAL BASED ON CSE 2103 COURSE CODE: CSE 2104

SUBMITTED TO-

Prof. Dr. Boshir Ahmed

Professor

Department of Computer Science & Engineering Rajshahi University of Engineering & Technology

Md. Zahirul Islam

Lecturer

Department of Computer Science & Engineering Rajshahi University of Engineering & Technology

SUBMITTED BY-

Srabonti Deb Roll-1803163

Section - C

Department of Computer Science & Engineering

SUBMISSION DATE -3 JULY,2021

5.1) Experiment Name: Verify the Half Adder Circuit.

Objectives:

- To learn the properties of Half Adder Circuit.
- To know the different implementation ways of Half Adder Circuit.
- To draw the diagram of Half Adder Circuit.
- To write the Boolean expression for Half Adder Circuit.
- To generate the truth table of a Half Adder Circuit.

Theory: A combinational circuit that performs the addition of two bits is called a Half Adder Circuit. The Half Adder is able to add two single binary digits and provide the output plus a carry value. It has two inputs x and y, and two outputs S (sum) and C (carry). The common representation uses a XOR gate and an AND gate.

Using basic gates:

 $S = x^{\wedge}y + xy^{\wedge}$

C = xy

Using the universal gates:

 $S = x \oplus y$

C = xy

Experimental Analysis:

• Circuit Diagram:

5.1.1- The Half Adder Circuit(Using Basic Gates)

5.1.1 The Half Adder Circuit(using the basic gates)

5.1.2- The Half Adder Circuit(Using Universal Gates)

5.1.2 The Half Adder Circuit(using the universal gates)

• Truth Table:

X	0	0	
Ō	1	1	ت
1	0	1	0
1	1	0	1

<u>Conclusion:</u> In this experiment, we discussed about Half Adder Circuit using both basic gates and universal gates. The truth table shows the exact result in both ways of implementation.

5.2) Experiment Name: Verify the Full Adder Circuit.

Objectives:

- To learn the properties of Full Adder Circuit.
- To know the different implementation ways of Full Adder Circuit.
- To draw the diagram of Full Adder Circuit.
- To write the Boolean expression for Full Adder Circuit.
- To generate the truth table of a Full Adder Circuit.

Theory: A combinational circuit that is able to add three single binary digits and provide the output and a carry value is called a Full Adder Circuit. It has three inputs x,yand z, and two outputs S (sum) and C (carry). The common representation uses three AND gate, an OR gate and a XOR gate.

Using basic gates:

 $S = x^{\wedge}y^{\wedge}z + x^{\wedge}yz^{\wedge} + xy^{\wedge}z^{\wedge} + xyz$

C = xy + xz + yz

Using the universal gates:

 $S = (x \oplus y) \oplus z$

C = xy + yz + zx

Experimental Analysis:

• Circuit Diagram:

5.2.1- The Full Adder Circuit(Using Basic Gates)

5.1.2- The Full Adder Circuit(Using Universal Gates)

5.2.2 The Full Adder Circuit(using the universal gates)

• Truth Table:

\mathbf{x}	\mathbf{Y}	\mathbf{z}	s	\mathbf{C}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

<u>Conclusion:</u> In this experiment, we discussed about Full Adder Circuit using both basic gates and universal gates. The truth table shows the exact result in both ways of implementation.

5.3) **Experiment Name:** Implement the Full Adder Circuit by using Half Adder Circuit and verify the result.

Objectives:

- To draw the diagram of Full Adder Circuit using Half Adder Circuit.
- To generate the truth table of a Full Adder Circuit.
- To verify the result of the implemention.

Theory: A combinational circuit that is able to add three single binary digits and provide the output and a carry value is called a Full Adder Circuit. It has three inputs x,yand z, and two outputs S (sum) and C (carry). The common representation uses three AND gate, an OR gate and an XOR gate.

Using basic gates: $S = x^y^z + x^yz^x + xy^z^x + xyz$ C = xy + xz + yzUsing the universal gates: $S = (x \oplus y) \oplus z$

C = xy + yz + zx

A Full Adder Circuit can be respented using two Half Adder Circuits and an OR gate.

Experimental Analysis:

• Circuit Diagram:

5.3- The Full Adder Circuit Using Half Adder Circuit

5.3 The Full Adder Circuit by Using Half Adder

Truth Table:

X	Y	Z	S	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	_1_
1	1	1	1	1

<u>Conclusion:</u> In this experiment, we discussed about Full Adder Circuit using Half Adder Circuit. The truth table shows the exact result of implementation.