1 Dynamical Compressed Sensing: Replica Method

We wish to compute the typical properties the Gibbs distribution $P_G(\mathbf{s}) = \frac{1}{Z}e^{-\beta E(\mathbf{s})}$, with energy function $E(\mathbf{s})$ given by

$$E(\mathbf{s}) = \frac{\lambda}{2} \mathbf{u}^T \mathbf{A}^T \mathbf{A} \mathbf{u} + \sum_{i=1}^T |\mathbf{s}_i|, \tag{1}$$

where \mathbf{s}^0 is the true signal history, \mathbf{s} is a candidate signal reconstruction, and \mathbf{u} is the residual $\mathbf{s} - \mathbf{s}^0$. This energy function depends on the random annealed measurement matrix \mathbf{A} and we compute the typical properties of P_G by averaging over \mathbf{A} . To do so, we must compute the average free energy $-\beta \bar{F} \equiv \langle \langle \ln Z \rangle \rangle$, where $\langle \langle \cdot \rangle \rangle$ is an average over \mathbf{A} , and $Z = \int \prod_{i=0}^{\infty} ds_i \, e^{-\beta E(\mathbf{s})}$. We use the replica method [1], which relies on the identity $\ln Z = \lim_{n \to 0} \frac{Z^n - 1}{n}$. Z^n can be written as an integral over n replicated variables s_i^a , $a = 1, \ldots n$,

$$\langle\langle Z^n \rangle\rangle = \left\langle \left\langle \int \prod_{a=1}^n \prod_{i=0}^\infty du_i^a e^{\sum_{a=1}^n - \frac{\beta\lambda}{2} \sum_{\mu=1}^N \sum_{ij=0}^\infty u_i^a A_{\mu i} A_{\mu j} u_j^a - \beta \sum_{i=0}^\infty |u_i^a + s_i^0|} \right\rangle \right\rangle.$$
(2)

Here the $u_i^a \equiv s_i^a - s_i^0$ is the replicated residual. Now (2) depends on \mathbf{A} only through the variables $b_{\mu}^a \equiv \sum_{i=0}^{\infty} A_{\mu i} u_i^a$, which are jointly gaussian distributed with zero mean and covariance $\langle \delta b_{\mu}^a \, \delta b_{\nu}^b \rangle = Q_{ab} \delta_{\mu\nu}$, where $Q_{ab} \equiv \frac{1}{N} \sum_{i=0}^{\infty} \rho^i u_i^a u_i^b$. Introducing delta functions

$$\delta\left[\sum_{i=0}^{\infty} \rho^{i} u_{i}^{a} u_{i}^{b} - NQ_{ab}\right] = \int d\hat{Q}_{ab} \, e^{i\hat{Q}_{ab}(\sum_{i=0}^{\infty} \rho^{i} u_{i}^{a} u_{i}^{b} - NQ_{ab})}$$
(3)

to decouple the integrals over u_i^a and b_μ^a , and performing the gaussian integral over b_μ^a yields,

$$\langle\langle Z^n \rangle\rangle = \int \prod_{a,b=1}^n dQ_{ab} \hat{Q}_{ab} \, e^{N[i\sum_{ab} \hat{Q}_{ab}Q_{ab} + \frac{1}{N}\sum_{i=0}^{\infty} \ln \mathcal{Z}_i - \frac{1}{2} \operatorname{Tr} \log(I + \beta \lambda Q)]}, \quad (4)$$

where $\mathcal{Z}_i = \int \prod_{a=1}^n du^a \, \mathrm{e}^{-i\rho^i \sum_{ab} u^a \hat{Q}_{ab} u^b - \beta \sum_a |u^a + s_i^0|}$. The remaining integrals over Q_{ab} and \hat{Q}_{ab} in (4) can be done via the saddle point approximation. We work with a replica symmetric (RS) ansatz for the saddle point: $Q_{ab} = (Q_1 - Q_0)\delta_{ab} + Q_0$ and $\hat{Q}_{ab} = (\hat{q}_1 - \hat{q}_0)\delta_{ab} + \hat{q}_0$. Inserting this ansatz into the above equations and taking the $n \to 0$ limit yields

$$-\beta \bar{F} = \operatorname{extr}_{(\hat{q}_1 Q_1 \hat{q}_0 Q_0)} \left\{ i(\hat{q}_1 Q_1 - \hat{q}_0 Q_0) + \left\langle \left\langle \ln \zeta_i \right\rangle \right\rangle_z - \frac{\alpha}{2} \left(\frac{\beta \lambda}{1 + \beta \lambda \Delta Q} + \ln \left(1 + \beta \lambda \Delta Q \right) \right) \right\},$$
(5)

where

$$\zeta_i = \int du \, e^{-i\rho^i (\hat{q}_1 - \hat{q}_0)u^2 + \sqrt{-2i\hat{q}_0\rho^i}zu - \beta|u + s_i^0|}, \tag{6}$$

and $\Delta Q \equiv Q_1 - Q_0$. Here z is a zero mean unit variance gaussian variable introduced to decouple the replicas under the RS assumption via the identity

$$e^{-i\hat{q}_0\rho^i(\sum_a u^a)^2} = \int \mathcal{D}z \ e^{\sqrt{-2i\hat{q}_0\rho^i} z \sum_a u_a}.$$
 (7)

Extremizing (5) with respect to Q_0 and Q_1 yields the saddle point equations

$$-i\hat{q}_0 = \frac{\alpha}{2} \frac{(\beta \lambda)^2 Q_0}{(1 + \beta \lambda \Delta Q)^2}, \qquad i(\hat{q}_1 - \hat{q}_0) = \frac{\alpha}{2} \frac{\beta \lambda}{1 + \beta \lambda \Delta Q}, \tag{8}$$

while extremizing with respect to \hat{q}_0 and \hat{q}_1 yields

$$Q_0 = \frac{1}{N} \sum_{i=0}^{\infty} \rho^i \langle \langle \langle u \rangle_{H_i^{MF}}^2 \rangle \rangle_z$$
 (9)

$$\Delta Q = \frac{1}{N} \sum_{i=0}^{\infty} \rho^{i} \langle \langle \langle \delta u^{2} \rangle_{H_{i}^{MF}} \rangle \rangle_{z}, \tag{10}$$

where the effective Hamiltonian

$$H_i^{MF}(s) = \rho^i \frac{\beta \lambda}{2(1 + \beta \lambda \Delta Q)} \left(s - s_k^0 - z \sqrt{Q_0/\rho^k} \right)^2 + \beta |s|, \qquad (11)$$

is obtained by substituting (8) into the exponent of (6) and completing the square. According to the replica method [1], the mean field approximation to the marginal distribution of a signal reconstruction component s_i conditioned on the true signal component s_i^0 is then given by

$$P_i^{MF}(s_i = s) = \int \mathcal{D}z \, \frac{1}{Z_i^{MF}} \exp(-H_i^{MF}(s)),$$
 (12)

where $\mathcal{D}z$ is the standard gaussian measure. In this mean field approximation, the integral over the annealed measurement matrix \mathbf{A} has been replaced with an integral over a zero mean unit variance gaussian scalar variable z, which reflects the mean field effect of the measurement constraints in P_G after averaging over \mathbf{A} .

References

[1] M. Mezard, G. Parisi, and M.A. Virasoro. *Spin glass theory and beyond*. World scientific Singapore, 1987.