STORAGE SYSTEM ARCHITECTURES

Network-Attached Storage

File Sharing Environment

- File system is structured way of storing and organizing data files
- File Sharing
 - Storing and accessing data files over network
 - FS must be mounted in order to access files
- Traditional client/server model, implemented with file-sharing protocols for remote file sharing
 - Example: FTP, DNS
- DFS is another examples of file sharing implementation

File Sharing Technology Evolution

What is NAS?

NAS is shared storage on a network infrastructure

General Purpose Servers vs. NAS Devices

General Purpose Servers (Windows or UNIX)

Benefits of NAS

- Support comprehensive access to information
- Improves efficiency
- Improved flexibility
- Centralizes storage
- Simplifies management
- Scalability
- High availability through native clustering
- Provides security integration to environment (user authentication and authorization)

Components of NAS

NAS File Sharing Protocols

- □ Two common NAS file sharing protocols are:
 - CIFS Common Internet File System protocol
 - Traditional Microsoft environment file sharing protocol, based upon the Server Message Block protocol
 - NFS Network File System protocol
 - Traditional UNIX environment file sharing protocol

Network File System (NFS)

- Client/server application
- Uses RPC mechanisms over TCP protocol
- Mount points grant access to remote hierarchical file structures for local file system structures
- Access to the mount can be controlled by permissions

NAS File Sharing - CIFS

- Common Internet File System
 - Developed by Microsoft in 1996
 - An enhanced version of the Server Message Block (SMB) protocol
 - Stateful Protocol
 - Can automatically restore connections and reopen files that were open prior to interruption
 - Operates at the Application/Presentation layer of the OSI model
 - Most commonly used with Microsoft operating systems, but is platform-independent
 - CIFS runs over TCP/IP and uses DNS (Domain Naming Service) for name resolution

NAS I/O

NAS Implementations

Integrated NAS Connectivity

Gateway NAS Connectivity

Traditional File Server Environment –

Storage Consolidation with NAS

Traditional File Server Environment – Example 2

General purpose OS serving files via FTP, CIFS, NFS, HTTP. . .

Server Consolidation with NAS

General purpose OS serving files via FTP, CIFS, NFS, HTTP. . .

Network Attached Storage

Decreasing Disk Diameters

14" » 10" » $\grave{8}$ " » 5.25" » 3.5" » 2.5" » 1.8" » 1.3" » . . . high bandwidth disk systems based on arrays of disks

Network provides well defined physical and logical interfaces: separate CPU and storage system! High Performance Storage Service on a High Speed Network

Network File Services

OS structures supporting remote file access

3 Mb/s » 10Mb/s » 50 Mb/s » 100 Mb/s » 1 Gb/s » 10 Gb/s networks capable of sustaining high bandwidth transfers

Increasing Network Bandwidth

Manufacturing Advantages of Disk Arrays

Replace Small # of Large Disks with Large # of Small Disks!

	IBM 3390 (K)	IBM 3.5" 0061	x70
Data Capacity	20 GBytes	320 MBytes	23 GBytes
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.
Power	3 KW	11 W	1 KW
Data Rate	15 MB/s	1.5 MB/s	120 MB/s
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s
MTTF	250 KHrs	50 KHrs	??? Hrs
Cost	\$250K	\$2K	\$150K

Array Reliability

- □ Reliability of N disks = Reliability of 1 Disk ÷ N
 - 50,000 Hours ÷ 70 disks = 700 hours
 - Disk system MTTF: Drops from 6 years to 1 month!
- Arrays (without redundancy) too unreliable to be useful!

Redundant Arrays of Disks

- □ Files are "striped" across multiple spindles
- Redundancy yields high data availability
 - Disks will fail
 - Contents reconstructed from data redundantly stored in the array
 - Capacity penalty to store it
 - Bandwidth penalty to update

Redundant Arrays of Disks RAID 1: Disk Mirroring/Shadowing

- Each disk is fully duplicated onto its "shadow"
 - Very high availability can be achieved
- Bandwidth sacrifice on write:
 - Logical write = two physical writes
- Reads may be optimized
- Most expensive solution: 100% capacity overhead
 - □ Targeted for high I/O rate , high availability environments

Redundant Arrays of Disks RAID 3: Parity Disk

- Parity computed across recovery group to protect against hard disk failures
 - 33% capacity cost for parity in this configuration
 - wider arrays reduce capacity costs, decrease expected availability, increase reconstruction time
- Arms logically synchronized, spindles rotationally synchronized
 - logically a single high capacity, high transfer rate disk
- Targeted for high bandwidth applications: Scientific, Image Processing

Redundant Arrays of Disks RAID 5+: High I/O Rate Parity

Problems of Disk Arrays: Small Writes

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

RAID

- Disk Mirroring, Shadowing (RAID 1)
 - Each disk is fully duplicated onto its "shadow"
 - Logical write = two physical writes
 - 100% capacity overhead
- Parity Data Bandwidth Array (RAID 3)
 - Parity computed horizontally
 - Logically a single high data bw disk
- High I/O Rate Parity Array (RAID 5)
 - Interleaved parity blocks
 - Independent reads and writes
 - Logical write = 2 reads + 2 writes
 - Parity + Reed-Solomon codes

