THE ARCHITECTURE OF METAL COORDINATION GROUPS IN PROTEINS

Tables associated with paper being submitted to Acta Cryst. D (August 2003, revised Dec 2003)
Table 1 D Lists of composition, conformation, etc. of all coordination groups in 30% cull set of metalloproteins.)
. (Deposited Tables 2D, 4D and Figure 5D, will be deposited with paper, and are not yet available here (Dec 03), but the web Tables 2W and below are available.)
. Table 2 D Statistics about compositioon, chelate loop sizes, common chelate loops, for all metals Ca K
<u>Table 4 D</u> Commonly occurring chelate loops with Ca or Zn: numbers found, conformation(s), standard deviations of fi,psi angles in the set, similarity of folds and of local conformation and name of example of each.
Fig 5 D Details of close approaches of metal atoms, for ZnZn up to 6A, and for CaCa up to 7A.
<u>Table 2 W</u> Statistics for all chelate loops in 30% cull set of metalloproteins, of different donor groups with different <i>seqdif</i> values; also full statistics for coordination numbers, number of protein donors, no of non protein donors, etc.
\ldots statistics \ldots \underline{Ca} \ldots \underline{Mg} \ldots \underline{Mn} \ldots $\underline{Fe^*}$ \ldots \underline{Cu} \ldots \underline{Na} \ldots \underline{K} \ldots
* Fe coordintaion groups which do not involve haem groups or Fe/S clusters.
Table 3 W Details of sequences, conformations, etc in individual Ca and Zn coordination groups which occur more than once in 30% cull set of metalloproteins

<u>Table 4 W</u> Details of sequence, conformation, etc. in individual Ca and Zn chelate loops which occur frequently within the 30% cull set of metalloproteins.

.

<u>Table 5 W</u> Proteins with more than one metal per protein chain

Table 5 W (continued) Metal coordination groups where one metal ion is coordinated to more than one protein chain

.

METAL COORDINATION GROUPS IN PROTEINS - Table 1 D

explanation of tables

For each metal there are two tables. The basic information on composition appears in both. The first then includes reliability, nature of protein, etc., while the name of the metal atom and details of conformation are in the second.

The full tables can be downloaded from the web (or from the deposited part of the publication) and manipulated, for example with Micorsoft Excel.

In the <u>first</u> part, nsp is nspan, np is the number of donors from the protein chain, nw the number of water molecules, nn the number of non-protein donor groups, dons are the amino-acid donor groups in the order in which they occur in polypeptide chain, using normal one letter codes for amino-acids, and O for main chain carbonyl oxygen; sd1 to sd7 are the seqdifs (-99 signifies donors are from two different polypeptide chains, -1 is given when the second donor is water or other non-amino-acid donor); his indicates for each f donor groups, including water molecules and small molecule ligands, treating carboxylate always as one group (coordination number, as it would be defined by chemist, is then number of donor groups + number of bidentate carboxylate groups). cn2 is the change in coordination number if sphere is extended from axis - if the number is < 20 then the metal atom is not near a rotation; - if 20- 29 then 20 has been added, signifying that a 2-fold axis is possible; - if 30-39 then 30 has been added, signifying that a 3-fold axis is possible; to establish with certainty it is necessary to look at the spacegroup and coordinates. rms is the r.m.s. deviation of metal to donor atom distances within the coordination sphere from target distances - a useful indicator of quality (0 is good, 0.5 is poor). res is the resolution (A) of the structure determination. carbi indicates bidentate carboxylate groups, e.g. ..b. indicates that the third of four donor groups appears to be a bidentate carboxylate. othdon indicates the type of other donor groups present; Z is a water molecule, U, B, X indicate O, N, S donors in non-protein (small) molecules or ions; J indicates any other non-protein donor group, usually another metal atom. ecno is the E.C. enzyme number, when it is given in the PDB file, followed by the header name given in the PDB file.

In the <u>second</u> part the columns are the same, up to sd7. This is followed by the PDB names of the metal atom and the first donor residue, and then a string indicating the conformation according to the Efimov type categories starting two amino-acid residues before the first donor group (i.e. at relseq = -2); when nspan <30 the conformation sequence is given in full, otherwise it includes the donor residues plus two amino-acids on either side, with a hyphen to indicate where there is a break; at the end are two amino-acid conformations beyond the last donor residue.

Table 1D for \underline{K} : composition, etc.... \underline{K} : conformations....

*Fe coordination groups excluding those which involve haem groups and Fe/S clusters.

no cngpname nsp np nw nn dons	met sd1 sd2 sd3 sd4 sd5 sd6 sd7 his cn pdb cn2 rms res carbi othdon ecno	
1 lscf_D 54 4 2 2 0 DD	Ca 4 -1 -1 -1 -1 -1 -1 4 lscf 0 0.4 2.2 .b ZZ	MONE/CHROWTH F
2 1rdr_ 233 96 2 5 0 DD	Ca 96 -1 -1 -1 -1 -1 7 1rdr 0 0.3 2.4 ZZZZZ 2.7.7.48;	NUC LEOTIDYLTRANS
3 1fsu_ 53 248 4 0 3 DD DN	N Ca 1 -1 -1 -1 246 1 -17 lfsu 0 0.3 2.5 b. UXU 3.1.6.12;	HYD ROLASE
4 1bn8_A 184 43 3 1 0 DDD	Ca 39 4 -1 -1 -1 -1 -1 4 lbn8 1 0.5 1.8 b Z 4.2.2.2	LYA SE
5 lalv_B 135 91 4 2 0 DDDN	Ca 88 2 1 -1 -1 -1 -1 6 1alv 0 0.1 1.9 .bb. ZZ 3.4.22.17;	CAL CIUM BINDING
6 2scp_A 16 11 5 1 0 DDDOD	Ca 2 2 2 5 -1 -1 -1 6 2scp 0 0.1 2.0b Z	IRIING PROTEIN
7 lcdl_A 20 11 5 0 0 DDDOE	Ca 2 2 2 5 -1 -1 -1 5 lcdl 0 0.4 2.2 .bb	CCAM-BINDING
8 lcdl_B 129	Ca 2 2 2 5 -1 -1 -1 5 lcdl 0 0.4 2.2 .bb	CAMM-BINDING
9 lacc_ 177 11 5 1 0 DDDOE	Ca 2 2 2 5 -1 -1 -1 6 lacc 1 0.2 2.1 Z	I N OX
10 1g4y_R 20 11 5 1 0 DDDOE	Ca 2 2 2 5 -1 -1 -1 6 lg4y 0 0.2 l.6b Z	SNELING PROTEI
11 1sra_ 257 11 5 1 0 DDDOE	Ca 2 2 2 5 -1 -1 -1 6 1sra 0 0.2 2.0b Z	CAM-BINDING
12 lvrk_A 20 11 5 1 0 DDDOE	Ca 2 2 2 5 -1 -1 -1 6 lvrk 0 0.1 1.9b Z 2.7.1.117;	COM PLEX(CALCIUM-
13 lvrk_A 129 11 5 1 0 DDDOE	Ca 2 2 2 5 -1 -1 -1 6 lvrk 0 0.2 1.9b Z 2.7.1.117;	COM PLEX(CALCIUM-
14 2pvb_A 90 11 5 1 0 DDDOE	Ca 2 2 2 5 -1 -1 -1 6 2pvb 0 0.1 0.9b Z	METAL BINDING PR
15 lacc_ 179 56 6 0 0 DDEOOD	Ca 2 7 34 3 10 -1 -16 lacc 0 0.3 2.1b	TOX IN
16 2por_ 93 8 4 2 0 DDND	Ca 2 5 1 -1 -1 -1 -1 6 2por 0 0.2 1.8 bb ZZ	EGRAT MEMBRAN
17 lcdl_B 56 11 6 0 0 DDNNOE	Ca 2 2 0 2 5 -1 -16 lcdl 0 0.6 2.2b	CALUM-BINDING
18 lcdl_C 56 11 6 0 0 DDNODE	Ca 2 2 2 3 -1 -16 lcdl 0 0.6 2.2b	CALUM-BINDING
19 lcdl_A 93 11 5 0 0 DDNOE	Ca 2 2 2 5 -1 -1 -1 5 1cdl 0 0.3 2.2 .bb	CAUM-BINDING
20 lcdl_A 56 11 5 0 0 DDNOE	Ca 2 2 2 5 -1 -1 -1 5 1cdl 1 0.4 2.2b	CCMM-BINDING
21 1g4y_R 56 11 5 0 0 DDNOE	Ca 2 2 2 5 -1 -1 -1 5 1g4y 0 0.4 1.6b	NATEING PROTEI
22 lrec_ 110 11 5 1 0 DDNOE	Ca 2 2 2 5 -1 -1 -1 6 1rec 0 0.2 1.9b Z	CAUM-BINDING
23 lvrk_A 56 11 5 1 0 DDNOE	Ca 2 2 2 5 -1 -1 -1 6 lvrk 0 0.1 1.9b Z 2.7.1.117;	COM PLEX(CALCIUM-
24 lfzc_B 381 4 3 2 0 DDO	Ca 2 2 -1 -1 -1 -1 -1 5 lfzc 0 0.2 2.3 b ZZ	OIBL©OAGULATIO
25 2sns_ 21 20 3 0 1 DDO	Ca 19 1 -1 -1 -1 -1 -1 4 2sns 0 0.3 1.5 U 3.1.33.1)	HYD ROLASE (PHOSP
26 lkit_ 621 62 3 1 0 DDO	Ca 61 1 -1 -1 -1 -1 -1 4 lkit 0 0.2 2.3 bb. Z 3.2.1.18;	HYD ROLASE
27 2mas_B 10 232 4 1 2 DDOD	Ca 5 111 116 -1 -1 -1 -1 7 2mas 0 0.2 2.3 .b UUZ 3.2.2.1;	HYD ROLASE
28 lfzc_C 318 6 4 0 0 DDOO	Ca 2 2 2 -1 -1 -1 -1 4 lfzc 0 0.2 2.3 b	OD BTWAGULATIO
29 3fib_ 318 6 4 2 0 DDOO	Ca 2 2 2 -1 -1 -1 -1 6 3fib 0 0.2 2.1 b ZZ	ODB D OAGULATIO
30 lqge_E 241 54 4 2 0 DDOO	Ca 46 4 4 -1 -1 -1 -1 6 lqge 0 0.2 1.7 ZZ 3.1.1.3;	HYD ROLASE
31 lava_A 127 21 5 1 0 DDOOD	Ca 15 1 3 2 -1 -1 -1 6 lava 1 0.2 1.9 Z 3.2.1.1;	HYD ROLASE INHIBI

32 lalv_B 180 11 5	1 0 DDSOE	Ca 2 2 2	5 -1 -1 -1 6 lalv 0 0.1 1.9b Z 3.4.22.17;	CAL CIUM BINDING
33 2pvb_A 51 11 6	0 0 DDSOEE	Ca 2 2 2	2 3 -1 -16 2pvb 0 0.1 0.9b	METAL BINDING PR
34 lalv_A 150 11 5	1 0 DDTOE	Ca 2 2 2	5 -1 -1 -1 6 lalv 0 0.2 1.9b z 3.4.22.17;	CAL CIUM BINDING
35 1f71_A 8 50 2	3 0 DE	Ca 50 -1 -3	-1 -1 -1 -1 5 1f7l 0 0.2 1.5 b. ZZZ 2.7.8.7;	TRANSFERASE
36 2msb_A 161 33 5	1 0 DEDOD	Ca 4 23 5	1 -1 -1 -1 6 2msb 0 0.2 1.7 bb \mid z	LEC TIN
37 lhyo_A 126 107 4	0 2 DEED	Ca 73 2 32	-1 -1 -1 -1 6 lhyo 0 0.1 1.3 UU 3.7.1.2;	HYD ROLASE
38 lezm_ 136 49 5	1 0 DEEDO	Ca 36 3 8	2 -1 -1 -1 6 lezm 0 0.3 1.5b Z 3.4.24.26)	HYD ROLASE
39 1tn3_ 116 35 5	1 0 DEOON	Ca 4 27 3	1 -1 -1 -1 6 1tn3 0 0.2 2.0 bb Z	LECIN
40 2sas_ 19 11 5	0 0 DNDOD	Ca 2 2 2	2 5 -1 -1 -1 5 2sas 0 0.2 2.4b	CIUMABINDING
41 1a2x_A 139 11 5	0 0 DNDOE	Ca 2 2 2	5 -1 -1 -1 5 la2x 1 0.4 2.3b.b	COM PLEX (SKELETA
42 1a2x_A 103 11 5	0 0 DNDOE	Ca 2 2 2	5 -1 -1 -1 5 la2x 2 0.2 2.3b	COMPLEX (SKELETA
43 2scp_B 104 11 5	0 0 DNDOE	Ca 2 2 2	5 -1 -1 -1 5 2scp 0 0.3 2.0b	BING PROTEIN
44 2sas_ 70 11 5	1 0 DNDOE	Ca 2 2 2	2 5 -1 -1 -1 6 2sas 0 0.4 2.4b Z	CIMM-BINDING
45 2scp_B 138 11 5	1 0 DNDOE	Ca 2 2 2	5 -1 -1 -1 6 2scp 0 0.1 2.0b z	BINING PROTEIN
46 1gca_ 134 71 6	0 0 DNDOQE	Ca 2 2 2	2 63 -1 -16 lgca 0 0.1 1.7b	GALACTOSE-BINDIN
47 1i8a_A 81 13 5	1 0 DNEDD	Ca 2 8 2	1 -1 -1 -1 6 li8a 0 0.3 l.9bb Z 3.2.1.8;	HYD ROLASE
48 lsac_C 58 80 5	0 0 DNEOD	Ca 1 77 1	1 -1 -1 -1 5 lsac 0 0.2 2.0 b.b	AMYLOID PROTEIN
49 lsac_A 58 242 6	0 0 DNEODO	Ca 1 77 1	1 162 -1 -16 1sac 0 0.3 2.0 b.b	AMY LOID PROTEIN
50 1bfd_ 428 29 3	1 2 DNO	Ca 27 2 -1	-1 -1 -1 -1 6 lbfd 0 0.2 1.6 UUZ 4.1.1.7;	LYA SE
51 1trk_A 157 32 3	1 2 DNO	Ca 30 2 -1	-1 -1 -1 -1 6 ltrk 0 0.2 2.0 UUZ 2.2.1.1)	TRA NSFERASE (KETO
52 1b0p_B 983 78 5	0 0 DNOOO	Ca 2 71 3	2 -1 -1 -1 5 lb0p 1 0.4 2.3 1.2.7.1;	OXI DOREDUCTASE
53 1qq9_A 3 263 4	2 0 DODD	Ca 1 258 4	-1 -1 -1 -1 6 1qq9 0 0.2 1.5b ZZ 3.4.11	HYD ROLASE
54 le43_A 159 45 5	1 0 DODDD	Ca 22 2 19	2 -1 -1 -1 6 le43 0 0.1 1.7 b Z 3.2.1.1;	HYD ROLASE
55 loac_A 533 146 5	1 0 DODDO	Ca 1 1 143	1 -1 -1 -1 6 loac 0 0.1 2.0 Z 1.4.3.6	OXI DOREDUCTASE
56 li8a_A 60 95 5	1 0 DODDO	Ca 2 12 80	1 -1 -1 -1 6 li8a 0 0.3 l.9 b.b z 3.2.1.8;	HYD ROLASE
57 1qho_A 76 26 5	1 0 DODEE	Ca 1 2 22	1 -1 -1 -1 6 lqho 1 0.2 1.7b Z 3.2.1.133;	HYD ROLASE
58 1sra_ 222 12 5	1 0 DODOE	Ca 3 2 2	5 -1 -1 -1 6 lsra 0 0.2 2.0b Z	COAM-BINDING
59 lcvr_A 78 180 3	3 0 DOE	Ca 171 9 -1	-1 -1 -1 -1 6 lcvr 0 0.2 2.0 b.b ZZZ 3.4.22.37;	HYD ROLASE
60 ldx5_J 423 20 6	1 0 DOENOO	Ca 1 2 13	1 3 -1 -17 ldx5 0 0.2 2.3 b Z 3.4.21.5;	SER INE PROTEINAS
61 1nls_ 10 9 4	2 0 DOND	Ca 2 2	5 -1 -1 -1 -1 6 1nls 0 0.1 0.9 b ZZ	LU 'ARG IN
62 lqho_A 21 29 6	1 0 DONNOD	Ca 2 3 1	21 2 -1 -17 lqho 0 0.2 1.7 Z 3.2.1.133;	HYD ROLASE
63 lee6_A 80 23 3	3 0 DOO	Ca 1 22 -1	-1 -1 -1 -1 6 lee6 0 0.3 2.3 ZZZ 4.2.2.2	LYA SE
64 ld2s_A 50 110 3	3 0 DOO	Ca 2 108 -1	-1 -1 -1 -1 6 1d2s 0 0.1 1.5 b ZZZ	TRA NSPORT PROTEI

65 lsvy_ 222	7 3 3 0 DOO	Ca 5 2 -1 -1 -1 -1 6 lsvy 0 0.3 1.8 ZZZ	INACENINDING PR
66 ldyk_A2808	68 4 1 0 DOOD	Ca 17 49 2 -1 -1 -1 5 ldyk 0 0.2 2.0 Z	MET AL BINDING PR
67 ldyk_A2982	73 4 0 0 DOOD	Ca 17 54 2 -1 -1 -1 4 ldyk 0 0.2 2.0	MET AL BINDING PR
68 lfjs_A 70	10 5 1 0 DOOEE	Ca 2 3 2 3 -1 -1 -1 6 lfjs 0 0.3 1.9 Z 3.4.21.6;	BLO OD CLOTTING
69 1gcy_A 1	16 6 0 0 DOOHDE	Ca 1 11 0 3 1 -1 -1 d6 1gcy 0 0.2 1.6 b 3.2.1.60;	HYD ROLASE
70 lga6_A 328	20 5 1 0 DOOOD	Ca 1 15 2 2 -1 -1 -1 6 1ga6 0 0.1 1.0 Z 3.4.23.37;	HYD ROLASE
71 1i76_A 154	26 6 0 0 DOOODE	Ca 1 2 2 18 3 -1 -16 1i76 0 0.1 1.2 3.4.24.34;	HYD ROLASE
72 1hdf_B 45	47 4 2 0 DOOS	Ca 17 28 2 -1 -1 -1 -1 6 1hdf 0 0.3 2.3 ZZ	STRCTURAL PROTE
73 ledm_C 47	18 5 0 0 DOQDO	Ca 1 2 14 1 -1 -1 -1 5 ledm 0 0.2 1.5b.	COA GULATION FACT
74 1kap_P 446	8 5 1 0 DSDOD	Ca 2 2 2 2 -1 -1 -1 6 lkap 0 0.3 1.6b Z 3.4.24;	ZIN C METALLOPROT
75 2sas_ 115	11 5 0 0 DSDOE	Ca 2 2 2 5 -1 -1 -1 5 2sas 0 0.2 2.4b	CICMALBINDING
76 lc7k_A 76	2 2 4 0 DT	Ca 2 -1 -1 -1 -1 -1 -1 6 1c7k 0 0.1 1.0 b. ZZZZ 3.4.24	HYD ROLASE
77 1hei_A 441	4 2 1 0 DT	Ca 4 -1 -1 -1 -1 -1 -1 3 lhei 0 0.4 2.1 b. Z	ICASE HEL
78 2cbl_A 229	11 5 1 0 DTNOE	Ca 2 2 2 5 -1 -1 -1 6 2cbl 0 0.1 2.1b Z	COMPLEX (PROTO-O
79 1d0b_A 55	4 2 3 0 ED	Ca 4 -1 -1 -1 -1 -1 -1 5 1d0b 0 0.3 1.9 .b ZZZ	L CADHESION
80 2por_ 80	28 2 4 0 ED	Ca 28 -1 -1 -1 -1 -1 -1 6 2por 0 0.1 1.8 b. ZZZZ	EGRNAT MEMBRAN
81 2msb_A 165	29 2 4 0 ED	Ca 29 -1 -1 -1 -1 -1 -1 6 2msb 0 0.2 1.7 .b ZZZZ	LEC TIN
82 1g0h_A 65	136 4 0 2 EDDD	Ca 16 3 117 -1 -1 -1 -1 6 1g0h 0 0.3 2.3 UU 3.1.3.25;	HYD ROLASE
83 1cb8_A 405	12 4 2 0 EDDO	Ca 2 9 1 -1 -1 -1 -1 6 1cb8 0 0.2 1.9 .b ZZ 4.2.2.5	LYA SE
84 1g0h_B 365	18 3 0 1 EDO	Ca 16 2 -1 -1 -1 -1 -1 4 1g0h 1 0.4 2.3 .b. U 3.1.3.25;	HYD ROLASE
85 latl_A 9	191 4 1 0 EDON	Ca 84 104 3 -1 -1 -1 -1 5 1atl 0 0.2 1.8 .b Z 3.4.24.42;	MET ALLOENDOPEPTI
86 lsac_C 136	12 3 0 0 EDQ	Ca 2 10 -1 -1 -1 -1 -1 3 1sac 0 0.2 2.0 .b.	LOAMY PROTEIN
87 lblx_A 69	3 2 4 0 EE	Ca 3 -1 -1 -1 -1 -1 -1 6 lblx 0 0.2 1.9 ZZZZ	PLEEXM (INHIBIT
88 li7o_A 276	31 3 3 0 EED	Ca 2 29 -1 -1 -1 -1 -1 6 1i7o 0 0.1 1.7 ZZZ 5.3.3.10,	ISO MERASE, LYASE
89 lcvr_A 293	9 3 1 0 EEH	Ca 3 6 -1 -1 -1 -1e 4 lcvr 1 0.5 2.0 b Z 3.4.22.37;	HYD ROLASE
90 lcvr_A 161	131 3 3 0 EHD	Ca 5 126 -1 -1 -1 -1 .d. 6 1cvr 1 0.3 2.0 ZZZ 3.4.22.37;	HYD ROLASE
91 1g72_A 171	84 2 0 3 EN	Ca 84 -1 -1 -1 -1 -1 -1 5 1g72 0 0.3 1.9 b. UBU 1.1.99.8;	OXI DOREDUCTASE
92 lbyf_B 86	22 5 0 2 ENDOD	Ca 3 18 1 0 -1 -1 -1 7 1byf 0 0.1 2.0 UU	SUG AR BINDING PR
93 2msb_A 185	21 6 0 0 ENENOD	Ca 2 6 12 1 0 -1 -16 2msb 0 0.2 1.7	LEC TIN
94 1cru_B 253	10 2 4 0 EO	Ca 10 -1 -1 -1 -1 -1 -1 6 lcru 0 0.1 1.5 b. ZZZZ 1.1.99.17;	OXI DOREDUCTASE
95 1bag_ 276	37 2 3 0 EO	Ca 37 -1 -1 -1 -1 -1 -1 5 lbag 0 0.2 2.5 b. ZZZ 3.2.1.1;	ALP HA-AMYLASE
96 loac_A 573	99 4 2 0 EODE	Ca 94 3 2 -1 -1 -1 -1 6 loac 0 0.2 2.0 b ZZ 1.4.3.6	OXI DOREDUCTASE
97 1g5c_F 97	24 3 3 0 EOO	Ca 21 3 -1 -1 -1 -1 6 lg5c 0 0.3 2.1 b ZZZ 4.2.1.1;	LYA SE

98 lava_B 108 9 4 1 0	OOD Ca 3 2 4	-1 -1 -1 -1 5 lava 0 0.4 1.9 bb	Z 3.2.1.1;	HYD ROLASE INHIBI
99 lsbw_A 70 10 4 2 0	OOE Ca 2 3 5	-1 -1 -1 -1 6 1sbw 0 0.2 1.8	ZZ 3.4.21.4;	HYD ROLASE/HYDROL
100 2btc_E 70 10 4 2 0	OOE Ca 2 3 5	-1 -1 -1 -1 6 2btc 0 0.2 1.5	ZZ 3.4.21.4;	HYD ROLASE/HYDROL
101 lavw_A 70 10 5 1 0	OOEE Ca 2 3 2	3 -1 -1 -1 6 lavw 0 0.1 1.8	Z 3.4.21.4;	COM PLEX (PROTEIN
102 lfs7_A 217 59 4 2 0 I	00Q Ca 1 56 2 -	1 -1 -1 -1 6 lfs7 0 0.1 1.6 b	ZZ	OXIDOREDUCTASE
103 lpyt_C 470 10 5 0 0 I	DOQE	3 -1 -1 -1 5 lpyt 1 0.3 2.3	3.4.17.1;	TER NARY COMPLEX
104 lgcy_A 116 81 5 1 0 m	OODO Ca 35 3 8 3	5 -1 -1 -1 6 lgcy 0 0.2 1.6 .b	Z 3.2.1.60;	HYD ROLASE
105 lava_A 91 92 5 1 0	DODO Ca 47 3 7	35 -1 -1 -1 6 lava 0 0.2 1.9 .b	Z 3.2.1.1;	HYD ROLASE INHIBI
106 2por_ 116 24 4 1 0	DOO Ca 20 2 2	-1 -1 -1 -1 5 2por 0 0.2 1.8 .b	Z	ENGRAL MEMBRAN
107 ljg8_D 330 3 2 1 0	E Ca 3 -1 -1	-1 -1 -1 -1 3 ljg8 0 0.1 1.8	Z 4.1.2.5;	LYSE
108 le43_A 444 3 2 5 0	E Ca 3 -1 -1	-1 -1 -1 -1 7 le43 0 0.2 1.7 .b	ZZZZZ 3.2.1.1;	HYD ROLASE
109 li9z_A 568 29 2 4 0 1	Ca 29 -1 -1	-1 -1 -1 -1 6 li9z 2 0.5 l.8 .b	ZZZZ	HYD ROLASE
110 ldjx_B 312 78 4 1 1 1	EDE Ca 29 2 47 -	1 -1 -1 -1 6 ldjx 0 0.2 2.3b.	UZ 3.1.4.11;	LIP ID DEGRADATIO
111 1e29_A 49 1 2 6 0	N Ca 1 -1 -1	-1 -1 -1 -1 8 1e29 0 0.1 1.2	ZZZZZZ	ELECTRON TRANSPO
112 legi_A 747	OD Ca 1 0 -1	-1 -1 -1 -1 4 legi 0 0.2 2.3	z	AR SEMENDING PR
113 1e43_A 102 133 5 1 0 N	DDO Ca 92 0 6 3	5 -1 -1 -1 6 1e43 1 0.2 1.7	Z 3.2.1.1;	HYD ROLASE
114 lbag_ 101 79 4 1 0	ODO Ca 36 9 34 -	-1 -1 -1 -1 5 lbag 0 0.2 2.5b.	Z 3.2.1.1;	ALP HA-AMYLASE
115 7taa_ 121 89 4 3 0	ODO Ca 41 13 35 -	1 -1 -1 -1 7 7taa 0 0.2 2.0b.	ZZZ 3.2.1.1	HYD ROLASE
116 lclv_A 98 91 4 3 0	ODO Ca 48 9 34	-1 -1 -1 -1 7 1clv 0 0.2 2.0b.	ZZZ 3.2.1.1;	HYD ROLASE
117 lqho_A 131 101 4 3 0 N	DO Ca 53 14 34 -1	-1 -1 -1 7 1qho 0 0.2 1.7b.	ZZZ 3.2.1.133;	HYD ROLASE
118 lnps_A 36 43 3 3 0	OS Ca 17 26 -1	-1 -1 -1 -1 6 lnps 0 0.5 1.8	ZZZ	SINALING PROTEI
119 le29_A 35 0 2 4 0	D Ca 0 -1 -1	-1 -1 -1 -1 6 1e29 0 0.3 1.2	ZZZZ	CIRON TRANSPO
120 lbag_ 169 2 2 3 0	D Ca 2 -1 -1	-1 -1 -1 -1 5 1bag 0 0.1 2.5 .b	ZZZ 3.2.1.1;	ALP HA-AMYLASE
121 1d0b_A 49 2 2 5 0	D Ca 2 -1 -1	-1 -1 -1 -1 7 1d0b 0 0.2 1.9	ZZZZZ	CEL ADHESION
122 lqh4_D 41 3 2 0 0	D Ca 3 -1 -1	-1 -1 -1 -1 2 1qh4 0 0.2 1.4 .b	2.7.3.2;	TRASFERASE
123 3std_C 51 4 2 2 0	D Ca 4 -1 -1	-1 -1 -1 -1 4 3std 0 0.3 1.6	ZZ 4.2.1.94;	LYASE
124 lwdc_C 19 8 6 1 0	DDODO Ca 0 3 1	2 2 -1 -17 lwdc 0 0.2 2.0	Z	MUS CLE PROTEIN
125 ldjx_A 651 26 3 2 0 0	ON Ca 2 24 -1	-1 -1 -1 -1 5 ldjx 1 0.4 2.3 .b.	ZZ 3.1.4.11;	LIP ID DEGRADATIO
126 lclc_ 520 5 3 3 0	DO Ca 3 2 -1	-1 -1 -1 -1 6 lclc 0 0.1 1.9	ZZZ 3.2.1.4;	GLY COSYL HYDROLA
127 le54_A 29 280 3 0 0 0	00 Ca 35 245 -1 -	1 -1 -1 -1 3 le54 0 0.2 2.1	I	OUER MEMBRANE P
128 lajj_ 22 14 6 0 0	DODDE Ca 3 2 2	6 1 -1 -16 lajj 0 0.1 1.7	1	E P'REEC
129 li8a_A 10 120 5 1 0 0	DODE Ca 2 2 2 11	4 -1 -1 -1 6 li8a 0 0.2 l.9b	Z 3.2.1.8;	HYD ROLASE
130 laru_ 57 22 5 2 0	DODS Ca 0 18 2	2 -1 -1 -1 7 laru 0 0.2 1.6	ZZ 1.11.1.7;	PER OXIDASE (DONO

131	1kap_P	288	41	4	2	0 ODOE	Ca	2	37	2	-1	-1	-1	-1	6	1kap	0 0.1	1.6	b		ZZ	3.4.24;	ZIN	C METALLOPROT
132	1cvr_A	100	7	4	2	0 ODOE	Ca	3	2	2	-1	-1	-1	-1		6 1cvr	0 0.2	2.0	b	- 1	ZZ	3.4.22.37;	HYD	ROLASE
133	lalv_B	107	10	4	2	0 ODOE	Ca	3	2	5	-1	-1	-1	-1		6 lalv	0 0.1	1.9	b		ZZ	3.4.22.17;	CAL	CIUM BINDING
134	ltf4_B	504	71	5	1	0 ODOND	Ca	2	65	3	1	-1	-1	-1	6	1tf4	0 0.1	1.9	.b	-	Z	3.2.1.4;	GLY	COSYL HYDROLA
135	1pa2_A	43	9	6	1	0 ODOODS	Ca	0	3	2	2	2	-1	-1		7 1pa2	0 0.1	1.5		-	Z	1.11.1.7;	OXI	DOREDUCTASE
136	1e8u_A	261	35	5	0	0 ODOOO	Ca	0	3	2	30	-1	-1	-1	5	1e8u	0 0.1	2.0		-		3.2.1.18	SIA	LIDASE
137	4sgb_E	120	123	5	1	0 ODOOY	Ca	0	1 1:	22	0	-1	-1	-1	6	4sgb	0 0.1 2	2.1		1	Z		COM	PLEX(SERINE P
138	1e8u_B	261	35	6	0	0 ODOSOO	Ca	0	3	0	2	30	-1	-1	6	1e8u	0 0.2 2	2.0		1		3.2.1.18	SIA	LIDASE
139	1g5c_C	147	0	2	3	0 OE	Ca	0	-1	-1	-1	-1	-1	-1		5 1g5c	0 0.4	2.1			zzz	4.2.1.1;	LYA	SE
140	layo_B	120	1	2	3	0 OE	Ca	1	-1	-1	-1	-1	-1	-1		5 layo	0 0.1	1.9			ZZZ		NRAXC	SLOBULIN
141	1c1y_B	123	2	2	2	0 OE	Ca	2	-1	-1	-1	-1	-1	-1		4 1cly	0 0.2	1.9	.b		ZZ	2.7.1;	SIGNA	LING PROTEI
142	1qhd_A	151	189	2	2	0 OE	Ca 1	189	-1	-1	-1	-1	-1	-1	4	l 1qhd	1 0.2	2.0		- 1	ZZ		VIRS	S/VIRAL PROT
143	ldyo_A	14	135	5	0	0 OEOOD	Ca	2	23	3 1	L07	-1	-1	-1	5	1dyo	0 0.4 2	2.1	b	1			CAR	BOHYDRATE-BIN
144	lfmj_A	118	4	3	0	0 OND	Ca	3	1	-1	-1	-1	-1	-1		3 lfmj	0 0.2	2.0					NSF ER	ASE
145	1clc_	236	10	5	1	0 ONODD	Ca	3	2	2	3	-1	-1	-1		6 1clc	0 0.1	1.9			Z	3.2.1.4;	GLY	COSYL HYDROLA
146	1cru_B	247	1	2	2	3 00	Ca	1	-1	-1	-1	-1	-1	-1		7 lcru	0 0.1	1.5			UBUZ	Z 1.1.99.17;	OXI	DOREDUCTASE
147	1c8n_A	173	2	2	0	0 00	Ca	2	-1	-1	-1	-1	-1	-1		2 1c8n	0 0.5	2.3					US/VIRA	IR PROT
148	1kap_P	370	30	4	2	0 OODD	Ca	2	2	26	-1	-1	-1	-1	6	1kap	1 0.2	1.6			ZZ	3.4.24;	ZIN	C METALLOPROT
149	11pb_B	187	8	4	2	0 OODD	Ca	3	2	3	-1	-1	-1	-1		6 11pb	0 0.2	2.5	b	- 1	ZZ	3.1.1.3) C	HYD	ROLASE (CARBOX
150	1cru_B	269	40	4	2	0 OODE	Ca	2	2	36	-1	-1	-1	-1	6	1cru	0 0.1	1.5	b		ZZ	1.1.99.17;	OXI	DOREDUCTASE
151	lf8e_A	293	54	4	2	0 OODO	Ca	4	27	23	-1	-1	-1	-1	. 6	1f8e	0 0.4	1.4		-	ZZ	3.2.1.18;	HYD	ROLASE/HYDROL
152	lkap_P	361	29	5	1	0 OODOD	Ca	2	2	18	7	-1	-1	-1	6	1kap	0 0.1	1.6		1	Z	3.4.24;	ZIN	C METALLOPROT
153	1kap_P	334	22	6	0	0 OODOOD	Ca	2	2	13	2	3	-1	-1	6	1kap	0 0.3	1.6	b	1		3.4.24;	ZIN	C METALLOPROT
154	lkap_P	352	22	6	0	0 OODOOD	Ca	2	2	13	2	3	-1	-1	6	1kap	0 0.3	1.6	b	1		3.4.24;	ZIN	C METALLOPROT
155	1sra_	241	5	3	2	0 OOE	Ca	2	3	-1	-1	-1	-1	-1		5 1sra	1 0.4	2.0			zz		CIUMGARD	INDING
156	1ej8_A	124	44	3	3	0 OON	Ca	44	0	-1	-1	-1	-1	-1		6 1ej8	0 0.2	1.5		- 1	ZZZ		CHAP	ERONE
157	1kit_	253	60	6	0	0 OONDOT	Ca	3	0	33	24	0	-1	-1	6	1kit	0 0.2 2	2.3	b	1		3.2.1.18;	HYD	ROLASE
158	1kap_P	343	22	6	0	0 OONOOD	Ca	2	2	13	2	3	-1	-1	6	1kap	0 0.3	1.6	b	1		3.4.24;	ZIN	C METALLOPROT
159	1dmu_A	99	5	3	3	0 000	Ca	2	3	-1	-1	-1	-1	-1		6 1dmu	0 0.2	2.2			zzz	3.1.21.4;	HYD	ROLASE/DNA
160	la0t_P	454	8	3	0	0 000	Ca	3	5	-1	-1	-1	-1	-1		3 1a0t	0 0.1	2.4					ER M en	RANE P
161	lpoc_	8	27	4	0	2 000D	Ca	2	2	23	-1	-1	-1	-1		6 lpoc	0 0.1	2.0	b		UU	3.1.1.4) C	HYD	ROLASE
162	laxn_	32	44	4	0	0 OOOD	Ca	2	2	40	-1	-1	-1	-1		4 laxn	0 0.4	1.8	b				CCIAIN	M/PHOSPHOL
163	2sic_E	169	28	4	2	0 000D	Ca	5	21	2	-1	-1	-1	-1	6	5 2sic	1 0.6	1.8			ZZ	3.4.21.14)	COM	PLEX (PROTEIN

164 li76_A 137	36	4	2	0 000D	Ca	32	2	2	-1	-1	-1	-1	6	1i76	0 0.	1 1.2		I	ZZ	3.4.24.34;	HYD	ROLASE
165 le43_A 300	130	5	1	0 000DD	Ca	2	104	1	23	-1	-1	-1	6	1e43	0 0.1	1.7	b		Z	3.2.1.1;	HYD	ROLASE
166 laxn_ 187	45	4	2	0 OOOE	Ca	3	2	40	-1	-1	-1	-1 .	6	1axn	0 0.	2 1.8	b		ZZ		CAL	TIUM/PHOSPHOL
167 1gen_ 476	142	4	3	0 0000	Ca	45	48	49	-1	-1	-1	-1	7	1gen	0 0.3	2.2			ZZZ	3.4.24.24;	HYD	ROLASE
(METAL																						
168 lqla_A 371	24	5	1	0 00000	Ca	1	1	20	2	-1	-1	-1	6	1qla	0 0.2	2 2.2			Z	1.3.99.1;	OXI	DOREDUCTASE
169 lnzy_A 49	161	6	0	0 0000TQ	Ca 1	.53	1	2	2	3	-1	-1	6	1nzy	0 0.4	1.8				3.8.1.6;	LYA	SE
170 lfo4_A 867	41	6	0	0 000SSO	Ca	3	1	3	33	1	-1	-1	6	1fo4	0 0.4	2.1				1.1.1.204	OXI	DOREDUCTASE
171 lscj_A 169	5	4	1	0 000T	Ca	2	3	0	-1	-1	-1	-1 .	5	s 1scj	0 0.	.4 2.0			Z	3.4.21.62;	HYD	ROLASE
172 lhdf_A 19	70	4	2	0 OOSD	Ca	27	2	41	-1	-1	-1	-1	6	1hdf	0 0.	2 2.3			ZZ		STRUC	CTURAL PROTE
173 lnps_A 7	69	4	1	0 OOSN	Ca	30	2	37	-1	-1	-1	-1 .	5	1nps	0 0.	6 1.8			Z		KAGI	NG PROTEI
174 lkap_P 253	37	6	0	0 OOTDOD	Ca	2	2	28	2	3	-1	-1	6	1kap	1 0.1	1.6	b			3.4.24;	ZIN	C METALLOPROT
175	220	4	2	0 OQED	Ca	0	5	215	-1	-1	-1	-1	6	1fae	0 0.2	2.0	b.		ZZ	3.2.1.4;	HYD	ROLASE
176 ledm_B 53	0	2	5	0 os	Ca	. (0 -1	-1	-1	-1	-1	-1 .		7 ledm	n 0 (0.2 1.9	5		ZZZ	ZZ	COA	GULATION FACT
177 laru_ 185	24	7	0	0 OSDOTOD	Ca	0	17	2	0	3	2	-1 .	7	1aru	0 0.2	2 1.6	b			1.11.1.7;	PER	OXIDASE (DONO
178 liod_A 41	87	5	1	0 OSEEE	Ca	0	2	4	81	-1	-1	-1 .	6	1iod	0 0.	3 2.3	bb		Z	3.4.21.6	HYD	ROLASE/HYDROL
179 liod_B 241	79	5	2	0 OSQEE	Ca	0	2	4	73	-1	-1	-1	7	1iod	1 0.3	3 2.3	b		ZZ	3.4.21.6	HYD	ROLASE/HYDROL
180 1dl2_A 525	0	2	4	0 OT	Ca	0	-1	-1	-1	-1	-1	-1 .	-	6 1dl2	1 0	.1 1.5		1	ZZZZ	3.2.1.113;	HYD	ROLASE
181 lnbc_B 44	82	6	1	0 OTDOND	Ca	0	2	76	3	1	-1	-1 .	7	1nbc	0 0.2	2 1.8	b		Z		CEL	LULOSE DEGRAD
182 1pa2_A 170	59	7	0	0 OTDOTOD	Ca	0	51	3	0	3	2	-1	7	1pa2	0 0.1	1.5				1.11.1.7;	OXI	DOREDUCTASE
183 lbrw_A 88	167	5	0	0 OTOOE	Ca	2	153	3	9	-1	-1	-1	5	1brw	0 0.3	2.1		1		2.4.2.2	TRA	NSFERASE
184 lcse_E 2	79	6	0	0 QDONOO	Ca	39	34	2	2	2	-1	-1 .	6	1cse	0 0.1	1.2	.b			3.4.21.62)	COM	PLEX(SERINE P
185 lgci_ 2	79	6	0	0 QDONOO	Ca	39	34	2	2	2	-1	-1 .	6	1gci	0 0.	1 0.8	.b	1		3.4.21.62;	SER	INE PROTEASE
186 lscj_A 2	79	6	0	0 QDONOO	Ca	39	34	2	2	2	-1	-1 .	6	1scj	0 0.2	2 2.0	.b			3.4.21.62;	HYD	ROLASE
187 2sic_E 2	79	6	0	0 QDONOO	Ca	39	34	2	2	2	-1	-1 .	6	2sic	0 0.2	2 1.8	.b			3.4.21.14)	COM	PLEX (PROTEIN
188 1tn3_ 143	22	4	1	0 QEOD	Ca	7	15	0	-1	-1	-1	-1 .	5	1tn3	2 0.	2 2.0			Z		TIENC	
189 ltf4_A 210	51	5	0	0 SODEO	Ca	1	3	1	46	-1	-1	-1	5	1tf4	0 0.2	2 1.9	bb.			3.2.1.4;	GLY	COSYL HYDROLA
190 lclc_ 356	45	5	2	0 TODDO	Ca	2	3	1	39	-1	-1	-1 .	7	1clc	0 0.	2 1.9	b		ZZ	3.2.1.4;	GLY	COSYL HYDROLA

sd3 sd4 sd5 sd6 sd7 metal | conf efimov nsp np nw nn dons met. sd1 sd2 startaa nο cngpname 1 1scf_D 54 2 0 DD -1 -1 -1 -1 -1 CA 1022 ASPD 54 aaaaaaaaa 2 1rdr_ 233 -1 -1 -1 -1 -1 CA 501 ASP 233 b.bbb-.kbbb 5 0 DD 3 1fsu 53 248 4 0 3 DD Ca -1 -1 246 1 -1 CA 604 ASP 53 bbbabb 4 1bn8 A 184 3 -1 -1 -1 CA 400 ASPA 184 abbab-kb.babbbb 5 1alv B 135 91 4 2 0 DDDN -1 -1 -1 -1 CA 8 ASPB 135 b.kjb-bbbaaaaa Ca 6 2scp_A 16 11 5 1 0 DDDOD -1 -1 -1 CA 190 ASPA 16 akdakgkgbbbaaaaa Ca 7 1cdl A 20 11 5 0 0 DDDOE -1 -1 -1 CA 1 ASPA 20 aadakgkgbbbaaaaa Ca 8 1cdl B 129 11 5 0 0 DDDOE -1 -1 CA 4 ASPB 129 akbakgkgbbbaaaaa Ca 9 lacc_ 177 11 5 1 0 DDDOE Ca 2 -1 -1 -1 CA 800 ASP 177 .bdakgkgbbaaaaaa 10 1q4y R 20 11 5 1 0 DDDOE -1 -1 CA 1001 ASPR 20 kabakgkgbbbaaaaa 11 1sra_ 257 11 5 1 0 DDDOE Ca 2 2 -1 -1 -1 CA 302 ASP 257 akdakgkgbbbaaaaa 12 1vrk A 20 5 0 DDDOE -1 -1 CA 151 ASPA 20 aadakqkqbbbaaaaa 13 1vrk_A 129 11 5 0 DDDOE Ca -1 -1 -1 CA 154 ASPA 129 akbakgkgbbbaaaaa 1 14 2pvb_A 90 11 5 1 0 DDDOE Ca -1 -1 CA 111 ASPA 90 aadkkgkgbbbaaaaa 15 lacc_ 179 6 0 0 DDEOOD Ca 3 10 -1 -1 CA 801 ASP 179 dakgkgb-aaaaa-bbbkkbab-bbaaa -1 CA 303 ASP 16 2por_ 93 4 2 0 DDND -1 -1 -1 93 akgdkak.jkbbd 17 1cdl B 56 6 0 0 DDNNOE Ca 5 -1 -1 CA 2 ASPB 56 aabakqaqbbbaaaaa 18 1cdl_C 56 6 0 0 DDNODE Ca 3 -1 -1 CA 2 ASPC 56 aabakgkgbbbaaaaa 19 1cdl_A 93 11 5 0 0 DDNOE Ca 2 5 -1 -1 -1 CA 3 ASPA 93 aadakgkgbbbaaaaa 20 1cdl_A 56 11 5 0 DDNOE 2 -1 -1 CA 56 akbakgkgbbbakaaa 0 Ca -1 2 ASPA 21 1g4y_R 56 11 5 0 DDNOE Ca -1 -1 CA 1002 ASPR 56 adbakgkgbbbaaaka 22 lrec_ 110 11 5 1 0 DDNOE -1 -1 CA 501 ASP 110 aadakgkgbbbaaaaa Ca -1 23 1vrk_A 56 11 5 1 0 DDNOE -1 -1 CA 152 ASPA 56 akdakgkgbbbaaaaa 24 lfzc_B 381 2 0 DDO 4 3 -1 -1 -1 -1 CA 2 ASPB 381 kbbkbkbbb 25 2sns 21 20 3 0 1 DDO -1 -1 -1 -1 CA 1 ASP 21 .akbbbbdbq..b.bbbbq.bbbb 26 1kit_ 621 62 3 1 0 DDO 1 -1 -1 -1 -1 CA 803 ASP 621 bbbbb-bbbbb 61 27 2mas B 10 232 4 1 2 DDOD 5 111 116 -1 -1 -1 CA 6 ASPB 10 bbdbbaaaaa-bbkbb-baaaa 28 1fzc C 318 0 0 DD00 -1 -1 -1 -1 CA 1 ASPC 318 k.bdbkba.ba 29 3fib 318 0 DD00 -1 -1 CA 400 ASP 318 kbbkbkba.ba 30 lqge_E 241 2 0 DD00 -1 -1 -1 CA 320 ASPE 241 akbak-aaaadgbbggbbb 4 -1 31 lava_A 127 21 5 1 0 DDOOD 15 2 -1 -1 CA 502 ASPA 127 akbbkabkgkbbbbk.bbbakbbbbb

32	lalv_B	180	11	5	1	0 DDSOE	Ca	2	2	2	5	-1	-1	-1	CA	7 2	ASPB	180	akdkkgkgbbbaaaaa
33	2pvb_A	51	11	6	0	0 DDSOEE	Ca	2	2	2	2	3	-1	-1	CA	110 A	ASPA	51	aadakgkgbbbaaaaa
34	lalv_A	150	11	5	1	0 DDTOE	Ca	2	2	2	5	-1	-1	-1	CA	2 1	ASPA	150	akdakgkgbbbaaaaa
35	1f71_A	8	50	2	3	0 DE	Ca	50	-1	-1	-1	-1	-1	-1	CA	130 A	ASPA	8	bbbbb-aaaaa
36	2msb_A	161	33	5	1	0 DEDOD	Ca	4	23	5	1	-1	-1	-1	CA	1 A	ASPA	161	bbdaabbgb-bkgb.k.bkbb
37	1hyo_A	126	107	4	0	2 DEED	Ca	73	2	32	-1	-1	-1	-1 C	CA 1	1006 ASI	PA 12	26 b	dddd-ddddddddddddddddddddddddddddddddd
38	1ezm_	136	49	5	1	0 DEEDO	Ca	36	3	8	2	-1	-1	-1	CA	400 A	ASP	136	baaaa-aaaaaaa-bbkgbbg
39	1tn3_	116	35	5	1	0 DEOON	Ca	4	27	3	1	-1	-1	-1	CA	182 A	ASP	116	bbkaabbgb-kk.kkbkbb
40	2sas_	19	11	5	0	0 DNDOD	Ca	2	2	2	5	-1	-1	-1	CA	. 186 <i>I</i>	ASP	19	k.dakgkgbbbaaaaa
41	1a2x_A	139	11	5	0	0 DNDOE	Ca	2	2	2	5	-1	-1	-1	CA	161 A	ASPA	139	aabakgkgbbbaaaaa
42	1a2x_A	103	11	5	0	0 DNDOE	Ca	2	2	2	5	-1	-1	-1	CA	160 A	ASPA	103	aabakgkgbbbaaaaa
43	2scp_B	104	11	5	0	0 DNDOE	Ca	2	2	2	5	-1	-1	-1	CA	194 A	SPB	104	aadak.kgbbbaaaaa
44	2sas_	70	11	5	1	0 DNDOE	Ca	2	2	2	5	-1	-1	-1	CA	. 187 2	ASP	70	aabakgkgbbbaaaaa
45	2scp_B	138	11	5	1	0 DNDOE	Ca	2	2	2	5	-1	-1	-1	CA	195 A	SPB	138	aadkk.kgbbbaaaaa
46	1gca_	134	71	6	0	0 DNDOQE	Ca	2	2	2	2	63	-1	-1	CA	1 2	ASP	134	kkdakgkgbbbbb-kbabb
47	1i8a_A	81	13	5	1	0 DNEDD	Ca	2	8	2	1	-1	-1	-1	CA	190 A	ASPA	81	bbbakgkgbkbbbakbbb
48	lsac_C	58	80	5	0	0 DNEOD	Ca	1	77	1	1	-1	-1	-1	CA	1 2	ASPC	58	gbbgab-gbbbkbb
49	lsac_A	58	242	6	0	0 DNEODO	Ca	1	77	1	1, :	162	-1	-1 C	A	1 AS	SPA	58	gbbgab-gbbbkbb
50	1bfd_	428	29	3	1	2 DNO	Ca	27	2	-1	-1	-1	-1	-1	CA	529 A	ASP	428	bbaaaaadakaaaaaakgbdbbbbbbbbbgbda
51	1trk_A	157	32	3	1	2 DNO	Ca	30	2	-1	-1	-1	-1	-1	CA	681 AS	SPA 1	157	bbaaa-bdkgbba
52	1b0p_B	983	78	5	0	0 DNOOO	Ca	2	71	3	2	-1	-1	-1	CA	1238 AS	SPB 9	83 9	dbbbbb-aaaakbd.bb
53	1qq9_A	3	263	4	2	0 DODD	Ca	1	258	4	-1	-1	-1	-1	CA	905 AS	SPA	3	.bbbba-aaaaaaaa
54	1e43_A	159	45	5	1	0 DODDD	Ca	22	2	19	2	-1	-1	-1 (CA	502 AS	SPA 1	.59 }	ba.b-gb.bbbb-bbbkaba
55	loac_A	533	146	5	1	0 DODDO	Ca	1	1 1	.43	1	-1	-1	-1 C	CA	802 AS	SPA 5	33 b	bbbbbg-gbbbbb
56	1i8a_A	60	95	5	1	0 DODDO	Ca	2	12	80	1	-1	-1	-1	CA	192 AS	SPA	60	bb.kbb-kbb.b-bbbbk
57	1qho_A	76	26	5	1	0 DODEE	Ca	1	2	22	1	-1	-1	-1	CA	696 A	ASPA	76	kbbbbkbbdjbgbbdaagkdbkbkkbbbaaa
58	1sra_	222	12	5	1	0 DODOE	Ca	3	2	2	5	-1	-1	-1	CA	301 A	ASP	222	aabkdbb.gbbbaakka
59	1cvr_A	78	180	3	3	0 DOE	Ca	171	9	-1	-1	-1	-1	-1 (CA	501 AS	SPA	78	o.baa-kbkkb-aaaaa
60	1dx5_J	423	20	6	1	0 DOENOO	Ca	1	2	13	1	3	-1	-1	CA	1001 AS	SPJ 4	23 k	obbbbaaaajgaba.bbbbbg.bb
61	lnls_	10	9	4	2	0 DOND	Ca	2	2	5	-1	-1	-1	-1	CA	240	ASP	10	bbbkbbbakkgbbd
62	1qho_A	21	29	6	1	0 DONNOD	Ca	2	3	1	21	2	-1	-1	CA	698 A	SPA	21	abbkbkkkadbaadbgkbbkkgkbkkbbkgbbaa
63	lee6_A	80	23	3	3	0 DOO	Ca	1	22	-1	-1	-1	-1	-1	CA	300 A	ASPA	80	bk.b.ababbbabb.bbbbbjj.bbgba
64	1d2s_A	50	110	3	3	0 DOO	Ca	2	108	-1	-1	-1	-1	-1 (CA	401 AS	SPA	50	.kbkb.b-babbb

```
3
                       0 DOO
                                               -1 -1 -1 -1 CA
65 1svy_ 222
               7 3
                                                                      1 ASP 222 aaaaakggabbb
66 1dyk A2808
                       0 DOOD
                                                -1 -1 -1 CA 4001 ASPA2808 gab.b-.bkgk-bkbbbbb
67 ldyk_A2982
                       0 DOOD
                                                 -1 -1 -1 -1 CA 4002 ASPA2982 a...b-bbkgk-bkbbdb.
              73 4
                   0
68 1fjs A 70
                 5
                    1 0 DOOEE
                                                   3 -1 -1 -1 CA 507 ASPA 70 bgbkbad.bagkbbb
                       0 DOOHDE
                                                      1 -1 -1 CA 452 ASPA
                                                                                  .bb.bbkkgbdkgggkbbb
69 lgcy_A
              16
                     0
                                  Ca
                                       1
                                          11
                                                                              1
          1
                 6
70 1ga6_A 328
                 5
                    1 0 DOOOD
                                                     -1 -1 CA 374 ASPA 328 bbbbabjbd.bggbjbbb.bjbbaa
71 1i76 A 154
              26
                 6
                    0 0 DOOODE
                                  Ca
                                      1
                                                 18
                                                      3 -1 -1 CA 997 ASPA 154 bbkjbjjba.bbbbb.b.abqbbbbkkbbb
72 1hdf_B
         45
                 4
                     2 0 DOOS
                                                         -1 -1 CA 1101 ASPB 45 abgkb-bbabb-bg.bk..
73 ledm C
        47
                 5
                     0
                       0 DOODO
                                  Ca
                                                     -1
                                                         -1 -1 CA
                                                                      1 ASPC 47 ..bbbkkakgkbbggbbbbbbbg
74 1kap_P 446
               8 5
                    1 0 DSDOD
                                                         -1 -1 CA 621 ASPP 446 bbbaagkgbbabb
              11 5
75 2sas 115
                     0
                       0 DSDOE
                                  Ca
                                                     -1
                                                         -1 -1 CA 188 ASP 115 kadakgkgbbbaaaaa
76 1c7k_A 76
               2 2
                     4
                       0 DT
                                                   -1
                                                      -1 -1 -1 CA 134 ASPA 76 abbaaaa
77 1hei A 441
               4 2
                    1
                       0 DT
                                   Ca
                                                     -1
                                                         -1 -1 CA 633 ASPA 441 ag.a.bbbb
78 2cbl_A 229
              11 5
                    1
                       0 DTNOE
                                                         -1
                                                            -1 CA 352 ASPA 229 aadakgkgbbbaaaaa
79 1d0b A
         55
                     3
                        0 ED
                                   Ca
                                                   -1
                                                      -1 -1
                                                             -1 CA 202 GLUA
                                                                            55 aaaaaaaak
80 2por_
         80
                        0 ED
                                                      -1
                                                         -1
                                                              -1 CA 302 GLU
                                                                             80 aaaaakjbbbbbjakgdkak.jkbbdbabjgga
81 2msb A 165
                                                             -1 CA
                                                                      3 GLUA 165 abbqbbbbakj.bbabbdbbbqbbkqb.k.bkbb
                                                 -1
                                                         -1
                                                -1 -1 -1 CA 290 GLUA 65 bbad.-bbbabbga-aaaka
82 1g0h_A 65
             136
                 4
                    0
                       2 EDDD
                                           3 117
83 1cb8 A 405
                        0 EDDO
                                                         -1 -1 CA 3000 GLUA 405 kbbkkdbbgbb.bbbab
                     2
                                                     -1
84 1g0h_B 365
              18
                 3 0 1 EDO
                                             -1 -1 -1 -1 CA 590 GLUB 365 bbad..bbbkgbkbbbbbbbbbbbb
85 latl A
          9
             191
                 4
                        0 EDON
                                                         -1 -1 CA 403 GLUA
                                                                             9 bbbbb-b.abb-baakabb.
                                   Ca
                                                     -1
86 lsac_C 136
              12
                 3
                    0
                       0 EDO
                                          10
                                              -1 -1
                                                    -1 -1 -1 CA
                                                                      2 GLUC 136 gbbbkbbg.gbbakkbb
                                   Ca
87 1blx_A 69
               3 2
                     4 0 EE
                                   Ca
                                               -1 -1 -1 -1 CA
                                                                       0 GLUA 69 aaakagba
88 1i7o_A 276
              31 3
                    3 0 EED
                                              -1 -1
                                                     -1 -1 -1 CA 1001 GLUA 276 bbbbbbb-bbdbb
89 1cvr_A 293
               9 3
                     1 0 EEH
                                               -1 -1 -1 -1 CA 686 GLUA 293 aaaaaaaakgkbak
90 1cvr_A 161
             131 3 3
                       0 EHD
                                             -1
                                                 -1
                                                    -1 -1 -1 CA 648 GLUA 161 ggbbaaaaaa-aaaaa
91 1g72_A 171
                                             -1 -1 -1 -1 -1 CA 702 GLUA 171 .akkg-bbbbb
                 2
                    0
                       3 EN
92 lbyf_B 86
              22 5
                    0 2 ENDOD
                                                   93 2msb_A 185
                       0 ENENOD
                                                      0
                                                         -1 -1 CA
                                                                      21 6
                    0
                                             12
                                                     94 1cru_B 253
              10
                 2
                    4
                       0 EO
                                      10
                                                 -1
95 1bag_ 276
                        0 EO
                                                         -1 -1 CA
                                                                      8 GLU 276 kagak-jggba
              37
                 2
                     3
                                                 -1
                                                     -1
96 loac_A 573
                     2
                        0 EODE
                                                  -1
                                                     -1
                                                         -1
                                                            -1 CA 803 GLUA 573 kbaaa-aaakakgbbk
97 1g5c_F 97
              24 3 3 0 EOO
                                      21
                                              -1 -1 -1 -1 CA 1009 GLUF 97 bbaaaaaaaaakgbbaaaaaaaaabbb
```

98 lava_B 10	8 9	4	1	0 EOOD	Ca	3	2	4	-1	-1	-1	-1 CA	. 501 GL	UB 108	bbbkgbkbkbgdbb
99 lsbw_A '	70 10	4	2	0 EOOE	Ca	2	3	5	-1	-1	-1	-1 CA	801 GL	UA 7	b.bkkbbk.gbbb
100 2btc_E 7	0 10	4	2	0 EOOE	Ca	2	3	5	-1	-1	-1	-1 CA	700 GL	UE 70	babkkbbkgkbbb
101 lavw_A 7	0 10	5	1	0 EOOEE	Ca	2	3	2	3	-1	-1	-1 CA	700 GL	UA 70	babkkbbkgkbbb
102 lfs7_A 21	7 59	4	2	0 EOOQ	Ca	1	56	2	-1	-1	-1	-1 CA	651 GLU	A 217	dbbbbb-bbbb.d
103 lpyt_C 47	0 10	5	0	0 EOOQE	Ca	2	3	2	3	-1	-1	-1 CA	650 GL	JC 470	bgb.bkkbbkgabbb
104 lgcy_A 11	6 81	5	1	0 NDODO	Ca	35	3	8	35	-1	-1	-1 CA	451 ASN	A 116	baabb-kk.kbbb-kkbb
105 lava_A 9	1 92	5	1	0 NDODO	Ca	47	3	7	35	-1	-1	-1 CA	500 ASN	IA 91	bkabb-bbbk.bbb-bbbb-kkkbb
106 2por_ 11	6 24	4	1	0 NDOO	Ca	20	2	2	-1	-1	-1	-1 CA	304 AS1	1 116	bgdbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
107 ljg8_D 33	0 3	2	1	0 NE	Ca	3	-1	-1	-1	-1	-1	-1 CA	906 AS	ND 330	baaaaaaa
108 le43_A 44	4 3	2	5	0 NE	Ca	3	-1	-1	-1	-1	-1	-1 CA	503 AS	NA 444	akkbgbbb
109 li9z_A 56	8 29	2	4	0 NE	Ca	29	-1	-1	-1	-1	-1	-1 CA	301 ASN	A 568	bkggbbbbkdkaaaadabdbbbbbbbbbbbgab
110 ldjx_B 31	2 78	4	1	1 NEDE	Ca	29	2	47	-1	-1	-1	-1 CA	2 ASI	NB 312	bbgak-bbbbbbb-bbbbk
111 1e29_A 4	9 1	2	6	0 NN	Ca	. 1	-1	-1	-1	-1	-1	-1 CA	. 225 AS	NA 4	9 kkbbgd
112 legi_A 74	7 1	3	1	0 NOD	Ca	1	0	-1	-1	-1	-1	-1 CA	801 AS	NA 747	bbbbbb
113 1e43_A 10	2 133	5	1	0 NODDO	Ca	92	0	6	35	-1	-1	-1 CA	501 ASNA	102	bkabb-bkabab.bbbb-akkbb
114 lbag_ 10	1 79	4	1	0 NODO	Ca	36	9	34	-1	-1	-1	-1 CA	6 AS:	N 101	bkabb-aaakb-bbbbd-kkkbb
115 7taa_ 12	1 89	4	3	0 NODO	Ca	41	13	35	-1	-1	-1	-1 CA	477 ASN	121	bka.b-aaakb-bbbbb-akkbb
116 1clv_A 9	8 91	4	3	0 NODO	Ca	48	9	34	-1	-1	-1	-1 CA	601 ASN	A 98	bkabaaakb-bbbbb-aakbb
117 1qho_A 13	1 101	4	3	0 NODO	Ca	53	14	34	-1	-1	-1	-1 CA	697 ASNA	. 131 (lkabaaakb-bbbbb-kkkbb
118 lnps_A 3	6 43	3	3	0 NOS	Ca	17	26	-1	-1	-1	-1	-1 CA	145 ASN	IA 36	bbgab-bbabbbkbb
119 1e29_A 3	5 0	2	4	0 OD	Ca	. 0	-1	-1	-1	-1	-1	-1 CA	. 226 AS	PA 3	5 aaaaa
120 lbag_ 16	9 2	2	3	0 OD	Ca	. 2	-1	-1	-1	-1	-1	-1 CA	. 7 G	LY 16	9 ak.bk.b
121 1d0b_A 4	9 2	2	5	0 OD	Ca	. 2	-1	-1	-1	-1	-1	-1 CA	. 201 PR	OA 4	9 ababaaa
122 1qh4_D 4	1 3	2	0	0 OD	Ca	ı 3	-1	-1	-1	-1	-1	-1 CA	. 382 LY	SD 4	l aaakkkbb
123 3std_C 5	1 4	2	2	0 OD	Ca	. 4	-1	-1	-1	-1	-1	-1 CA	502 AR	.GC 5	l bdaaakgbb
124 1wdc_C 1	9 8	6	1	0 ODDODO	Ca	0	3	1	2	2	-1	-1 CA	. 501 AS	PC 1	aaaakk.b.gbbb
125 ldjx_A 65	1 26	3	2	0 ODN	Ca	2	24	-1	-1	-1	-1	-1 CA	3 IL	EA 651	abbbdbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
126 1clc_ 52	0 5	3	3	0 ODO	Ca	3	2	-1	-1	-1	-1	-1 CA	. 593 SE	R 52) aaakkbkbab
127 le54_A 2	9 280	3	0	0 ODO	Ca	35	245	-1	-1	-1	-1	-1 CA	500 LEU	A 29	b.bbb-baakg-bbga.
128 lajj_ :	22 14	6	0	0 ODODDE	Ca	3	2	2	6	1	-1	-1 CA	. 73 TF	RP 2	2 akkbgkgbbabakgakkbg
129 1i8a_A 1	0 120	5	1	0 ODODE	Ca	2	2	2	114	-1	-1	-1 CA	191 VAL	A 10	bbbb.gbbbaa-bbbbb
130 laru_ !	57 22	5	2	0 ODODS	Ca	0	18	2	2	-1	-1	-1 CA	346 AS	P 5	7 aaaakdbbaaaaakgbbk.kjdkgaaa

131	1kap_P	288	41	4	2	0	ODOE C	la	2	37	2	-1	-1	-1	-1 CA	615 GLYP	288	k.jbbbb-gbbbabb
132	1cvr_A	100	7	4	2	0	ODOE	Ca	3	2	2	-1	-1	-1	-1 CA	477 VALA	100	babggbkbbabb
133	lalv_B	107	10	4	2	0	ODOE C	la	3	2	5	-1	-1	-1	-1 CA	5 ALAB	107	aaajakgbbbaaaaa
134	1tf4_B	504	71	5	1	0	ODOND C	a	2	65	3	1	-1	-1	-1 CA	3004 THRB	504	bbbbbbg-gbbkakbak
135	1pa2_A	43	9	6	1	0	ODOODS C	la	0	3	2	2	2	-1	-1 CA	307 ASPA	43	aaaakbgjdkgaak
136	1e8u_A	261	35	5	0	0	OD000 C	a	0	3	2	30	-1	-1	-1 CA	1002 ASPA	261	aaaakbabbb-kbkbb
137	4sgb_E	120	123	5	1	0 0	ODOOY Ca	a	0	1 1	22	0	-1	-1	-1 CA	8 GLYE	120	bbab-bb
138	1e8u_B	261	35	6	0	0	ODOSOO Ca	a	0	3	0	2	30	-1	-1 CA	1003 ASPB	261	aaakkbabbb-kbabb
139	1g5c_C	147	0	2	3	0	OE	Ca	0	-1	-1	-1	-1	-1	-1 CA	1001 GLUC	147	bbkkb
140	layo_B	120	1	2	3	0	OE	Ca	1	-1	-1	-1	-1	-1	-1 CA	1 ASPE	3 120	bbgdbb
141	1cly_B	123	2	2	2	0	OE	Ca	2	-1	-1	-1	-1	-1	-1 CA	173 GLYB	123	kbgbbbb
142	1qhd_A	151	189	2	2	0 0	OE (Ca 18	39	-1	-1	-1	-1	-1	-1 CA	603 THRA	151 l	obbbb-kabka
143	ldyo_A	14	135	5	0	0	OEOOD C	a	2	23	3 1	.07	-1	-1	-1 CA	300 THRA	14	bbagdgabjkbbb-bbbgb
144	1fmj_A	118	4	3	0	0	OND	Ca	3	1	-1	-1	-1	-1	-1 CA	402 GLUA	118	kaakakkb
145	1clc_	236	10	5	1	0	ONODD C	la	3	2	2	3	-1	-1	-1 CA	591 GLU	236	bakkkbkbbaaaaaa
146	1cru_B	247	1	2	2	3	00	Ca	1	-1	-1	-1	-1	-1	-1 CA	908 GLYB	247	bbb.kb
147	1c8n_A	173	2	2	0	0	00	Ca	2	-1	-1	-1	-1	-1	-1 CA	305 SERA	173	aaakbbg
148	1kap_P	370	30	4	2	0	OODD C	la	2	2	26	-1	-1	-1	-1 CA	617 GLYP	370	bajbjbbbbbbkbaaadbaadbbbbkdbbbgabbb
149	11pb_B	187	8	4	2	0	OODD	Ca	3	2	3	-1	-1	-1	-1 CA	450 GLUB	187	bbaakbb.akkba
150	1cru_B	269	40	4	2	0	OODE C	la	2	2	36	-1	-1	-1	-1 CA	902 ALAB	269	abbjbbkgb-bbakk
151	1f8e_A	293	54	4	2	0	00D0 C	la	4	27	23	-1	-1	-1	-1 CA	999 ASPA	293	bbbaa.bkb-bkbbb-bgb
152	1kap_P	361	29	5	1	0	OODOD C	a	2	2	18	7	-1	-1	-1 CA	619 GLYP	361	bajbjbbbbajbjbbbbbkbaaadbaadbbbb
153	1kap_P	334	22	6	0	0	OODOOD Ca	a	2	2	13	2	3	-1	-1 CA	616 GLYP	334	bb.kbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
154	1kap_P	352	22	6	0	0	OODOOD Ca	a	2	2	13	2	3	-1	-1 CA	620 GLYP	352	bajbjbbbbajbjbbbbajbjbbbb
155	1sra_	241	5	3	2	0	OOE	Ca	2	3	-1	-1	-1	-1	-1 CA	303 PRO	241	kbakbbgkkk
156	1ej8_A	124	44	3	3	0	OON C	Ca 4	44	0	-1	-1	-1	-1	-1 CA	218 PROA	124	gbabb-akgbb
157	1kit_	253	60	6	0	0	OONDOT C	a	3	0	33	24	0	-1	-1 CA	802 ALA	253	bgbkd.bb-kbbbb-bbkkb
158	1kap_P	343	22	6	0	0	OONOOD Ca	a	2	2	13	2	3	-1	-1 CA	618 ASNP	343	bbbkbbbbbbajbjbbbbajbjbbbb
159	1dmu_A	99	5	3	3	0	000	Ca	2	3	-1	-1	-1	-1	-1 CA	125 SERA	. 99	aaakbakbbb
160	1a0t_P	454	8	3	0	0	000	Ca	3	5	-1	-1	-1	-1	-1 CA	10 ASNP	454	akakabakbabgb
161	1poc_	8	27	4	0	2	OOOD	Ca	2	2	23	-1	-1	-1	-1 CA	501 TRP		8 bkkbjbjbdbkbakbbbadaaaaaaaaakb
162	laxn_	32	44	4	0	0	000D	Ca	2	2	40	-1	-1	-1	-1 CA	351 ILE	32	aaabjbjbb-aaabb
163	2sic_E	169	28	4	2	0	000D C	la	5	21	2	-1	-1	-1	-1 CA	502 GLYE	169	bkaabakbbbbbbbbbkkgbbbaabbb.kkbabb

164 li76_	A 137	36	4	2	0	OOOD	Ca	32	2	2	-1	-1	-1	-1 CA	996	ASPA	137	bbabbb.abgbbb
165 le43_	_A 300	130	5	1	0	OOODD	Ca	2	104	1	23	-1	-1	-1 CA	504	GLYA	300 }	kggkbbk-kbkabb-bbk.b
166 laxn_	187	45	4	2	0	OOOE	Ca	3	2	40	-1	-1	-1	-1 CA	353	GLY	187	ak.akbbjbb-aaabb
167 lgen_	476	142	4	3	0	0000	Ca	45	48	49	-1	-1	-1	-1 CA	302	ASP	476	bbabb-bba.bbabb-gba.b
168 lqla_	_A 371	24	5	1	0	00000	Ca	1	1	20	2	-1	-1	-1 CA	9	SERA	371	.bbab.bbbkkgbbabbgbbbbjakbda
169 lnzy_	_A 49	161	6	0	0	O000TQ	Ca 1	53	1	2	2	3	-1	-1 CA	271	GLYA	49	kbk.b-aaaaabbaaaaaa
170 lfo4_	_A 867	41	6	0	0	000880	Ca	3	1	3	33	1	-1	-1 CA	4009	ALAA	867	bbajk.a.kaaa-bbbb.b
171 lscj_	A 169	5	4	1	0	000T	Ca	2	3	0	-1	-1	-1	-1 CA	382	ALAA	169	bkaabaabbb
172 lhdf_	_A 19	70	4	2	0	OOSD	Ca	27	2	41	-1	-1	-1	-1 CA	1101	LYSA	19	bbabb-bgkbabb-dbg.b
173 lnps_	_A 7	69	4	1	0	OOSN	Ca	30	2	37	-1	-1	-1	-1 CA	90	TYRA		7 bbabb-bgabkbb-kbg.b
174 1kap_	P 253	37	6	0	0	OOTDOD	Ca	2	2	28	2	3	-1	-1 CA	614	ARGP	253	kbgkbbbbb-bbbk.jbbbb
175	A 185	220	4	2	0	OQED	Ca	0	5 2	215	-1	-1	-1	-1 CA	2000	JLNA	185	jakbbakkbb-bkdbb
176 ledm_	_B 53	0	2	5	0	os	Ca	C	-1	-1	-1	-1	-1	-1 C	A	3 SER	B 5	3 kbgga
177 laru_	185	24	7	0	0	OSDOTOD	Ca	0	17	2	0	3	2	-1 CA	347	SER	185	akkdbbbakabkadbgbbkbkdkkbbbka
178 liod_	_A 41	87	5	1	0	OSEEE	Ca	0	2	4	81	-1	-1	-1 CA	501	SERA	41	bbbbk.aaaa-bbb
179 liod_	В 241	79	5	2	0	OSQEE	Ca	0	2	4	73	-1	-1	-1 CA	502	SERB	241	bbbbkbaaaaa-bbbbb
180 1dl2_	_A 525	0	2	4	0	OT	Ca	0	-1	-1	-1	-1	-1	-1 CA	901	THRA	525	bbkkg
181 1nbc_	_B 44	82	6	1	0	OTDOND	Ca	0	2	76	3	1	-1	-1 CA	1	THRI	3 44	4 b.bag.b-bbbkkdbak
182 1pa2_	A 170	59	7	0	0	OTDOTOD	Ca	0	51	3	0	3	2	-1 CA	308	THRA	170	kkkbj-babkabakbbbka
183 1brw_	_A 88	167	5	0	0	OTOOE	Ca	2	153	3	9	-1	-1	-1 CA	3001	GLYA	88	.bgbkaa-bbbjabbaaaaa
184 lcse_	_E 2	79	6	0	0	QDONOO	Ca	39	34	2	2	2	-1	-1 CA	430	GLNE	2	.bbb-bakbb-kbbb.kbjbbb
185 1gci_	_ 2	? 79	6	0	C) QDONOO	Ca	39	34	2	2	2	-1	-1 CA	277	GLN		2 .bbb-bkkbbbbb.kbjbbb
186 lscj_	_A 2	79	6	0	0	QDONOO	Ca	39	34	2	2	2	-1	-1 CA	381	GLNA	2	.bbb-bkkbb-dbbb.kb.bbb
187 2sic_	_E 2	79	6	0	0	QDONOO	Ca	39	34	2	2	2	-1	-1 CA	501	GLNE	2	.bbb-bakbb-dbbb.dbjbbb
188 1tn3_	143	22	4	1	0	QEOD	Ca	7	15	0	-1	-1	-1	-1 CA	183	GLN	143	bbbbkk.kkbkbbbbbaakggbbbbbb
189 ltf4_	_A 210	51	5	0	0	SODEO	Ca	1	3	1	46	-1	-1	-1 CA	3001	SERA	210	bakjkaaaaakabk
190 1clc_	356	45	5	2	0	TODDO	Ca	2	3	1	39	-1	-1	-1 CA	592	THR	356	gbbabkaaaaaaabk

no cngpname	nsp np nw nn dons	met sdl sd2 sd3 sd4 sd5 sd6 sd7 his cn pdb cn2 rms res carbi othdon ecno	
1 8ruc_A 203	1 2 0 3 DE	Mg -1 1 -1 -1 -1 -1 -1 6 8ruc 0 0.3 1.6 UUU 4.1.1.39	LYA SE (CARBON-CA
2 lbpy_A 190	2 2 1 3 DD	Mg 2 -1 -1 -1 -1 -1 -1 6 lbpy 0 0.3 2.2 UUUZ 2.7.7.7;	COM PLEX (NUCLEOT
3 leqo_A 95	2 2 1 3 DD	Mg 2 -1 -1 -1 -1 -1 6 leqo 0 0.2 1.3 UUUZ 2.7.6.3;	TRA NSFERASE
4 luby_ 117	4 2 0 1 DD	Mg 4 -1 -1 -1 -1 -1 3 luby 0 0.4 2.4 U 2.5.1.1;	TNSF ERASE
5 1b13_B 64	52 2 2 0 DD	Mg 52 -1 -1 -1 -1 -1 -1 4 1b13 0 0.6 2.0 ZZ	IMMAGRATION
6 lt7p_A 475	179 2 2 1 DD	Mg 179 -1 -1 -1 -1 -1 -1 5 1t7p 1 0.3 2.2 UZZ 2.7.7.7;	COM PLEX(HYDROLAS
7 lbpy_A 190	66 3 0 1 DDD	Mg 2 64 -1 -1 -1 -1 -1 4 1bpy 0 0.3 2.2 b U 2.7.7.7;	COM PLEX (NUCLEOT
8 lobw_A 65	37 3 3 0 DDD	Mg 5 32 -1 -1 -1 -1 -1 6 lobw 0 0.2 1.9 ZZZ 3.6.1.1;	HYD ROLASE
9 lauk_ 29	253 4 0 0 DDDN	Mg 1 251 1 -1 -1 -1 -1 4 lauk 0 0.3 2.1b. 3.1.6.8;	HYD ROLASE
10 lwdc_B 28	11 5 1 0 DDDOD	Mg 2 2 2 5 -1 -1 -1 6 lwdc 1 0.3 2.0 Z	MUS CLE PROTEIN
11 1vid_ 141	29 3 1 2 DDN	Mg 28 1 -1 -1 -1 -1 -1 6 lvid 0 0.2 2.0 UUZ 2.1.1.6;	TRA NSFERASE (MET
12 1dqn_A 125	1 2 2 2 DE	Mg 1 -1 -1 -1 -1 -1 -1 6 ldqn 0 0.4 1.8 UUZZ 2.4.2.8;	TRA NSFERASE
13 1gsa_ 273	8 2 1 3 DE	Mg 8 -1 -1 -1 -1 -1 -1 6 lgsa 0 0.3 2.0 UUUZ 6.3.2.3;	LIG ASE
14 liow_ 257	13 2 1 3 DE	Mg 13 -1 -1 -1 -1 -1 -1 6 liow 0 0.2 1.9 UUUZ 6.3.2.4;	LIG ASE
15 1qr0_A 107	44 3 1 2 DEE	Mg 2 42 -1 -1 -1 -1 -1 6 lqr0 0 0.4 1.9 JJZ	T NE FERASE
16 1mdl_ 195	52 3 1 2 DEE	Mg 26 26 -1 -1 -1 -1 -1 6 1mdl 1 0.2 1.9 UUZ 5.1.2.2;	ISO MERASE
17 lec7_A 235	54 3 3 0 DEN	Mg 25 29 -1 -1 -1 -1 -1 6 lec7 0 0.2 1.9 ZZZ 4.2.1.40;	LYA SE
18 1bx4_A 130	1 2 0 4 DN	Mg 1 -1 -1 -1 -1 -1 -1 6 1bx4 0 0.2 1.5 UUUU 2.7.1.20;	TRA NSFERASE
19 1g97_A 102	125 2 2 2 DN	Mg 125 -1 -1 -1 -1 -1 6 1g97 0 0.1 2.0 UUZZ 2.7.7.23;	TRA NSFERASE
20 lig5_A 54	6 4 2 0 DNDO	Mg 2 2 2 -1 -1 -1 -1 6 lig5 0 0.2 1.5 ZZ	MAET BINDING PR
21 1pox_A 447	29 3 1 2 DNO	Mg 27 2 -1 -1 -1 -1 -1 6 lpox 0 0.2 2.1 UUZ 1.2.3.3) M	OXI DOREDUCTASE
(0			
22 lpvd_A 444	29 3 1 2 DNO	Mg 27 2 -1 -1 -1 -1 -1 6 lpvd 0 0.2 2.3 UUZ 4.1.1.1)	LYA SE (CARBON-CA
23 1zpd_A 440	29 3 1 2 DNO	Mg 27 2 -1 -1 -1 -1 -1 6 lzpd 0 0.2 1.9 UUZ 4.1.1.1;	ALC OHOL FERMENTA
24 lqs0_A 213	31 3 1 2 DNO	Mg 29 2 -1 -1 -1 -1 -1 6 lqs0 1 0.2 2.4 UUZ	OXI DOREDUCTASE
25 lqf5_A 13	27 2 0 5 DO	Mg 27 -1 -1 -1 -1 -1 7 lqf5 0 0.4 2.0 UUUJJ 6.3.4.4	LIG ASE
26 lfiu_B 140	46 2 2 2 DO	Mg 46 -1 -1 -1 -1 -1 6 lfiu 0 0.2 1.6 UUZZ 3.1.21.4;	HYD ROLASE/DNA
27 lt7p_A 475	179 3 0 3 DOD	Mg 1 178 -1 -1 -1 -1 6 1t7p 0 0.2 2.2 UUU 2.7.7.7;	COM PLEX(HYDROLAS
28 lhyo_A 233	24 5 0 0 DOOOT	Mg 1 19 3 1 -1 -1 -1 5 1hyo 0 0.4 1.3 3.7.1.2;	HYD ROLASE
29 1f1z_A 114	17 3 3 0 DQO	Mg 16 1 -1 -1 -1 -1 6 1f1z 0 0.2 2.4 ZZZ	DNA BINDING PROT

31 1qb7_A 146 8 2 1 0 DT	Mg 8 -1 -1 -1 -1 -1 -1	3 1qb7 1 0.6 1.5	Z	NSF EIRA SE
32 Seau_ 444 8 3 1 0 DTE	Mg 4 4 -1 -1 -1 -1 -1	. 4 5eau 0 0.5 2.2	Z	PRENOIDSOSYNTH
33 1b0p_A 963 30 3 1 2 DTO	Mg 28 2 -1 -1 -1 -1 -1	6 1b0p 0 0.3 2.3	UUZ 1.2.7.1;	OXI DOREDUCTASE
34 1g29_2 293 63 3 0 0 DYD	Mg 2 61 -1 -1 -1 -1 -1	3 1g29 0 0.6 1.9	I	ARUŒINDING PR
35 1g29_2 292	Mg 1 -1 -1 -1 -1 -1 -1	3 1g29 1 0.3 1.9	J	AR B IND ING PR
36 la49_B 871 24 2 1 2 ED	Mg 24 -1 -1 -1 -1 -1 -1	5 1a49 0 0.2 2.1	UUZ 2.7.1.40;	TRA NSFERASE
37 ldxe_A 153	Mg 26 -1 -1 -1 -1 -1 -1	5 1dxe 0 0.2 1.8	UZZ 4.1.2.20	CLA SS II ALDOLAS
38 ld8c_A 427	Mg 28 -1 -1 -1 -1 -1 -1	6 1d8c 0 0.2 2.0	UUZZ 4.1.3.2;	LYA SE
39 ld3y_A 197 52 2 4 0 ED	Mg 52 -1 -1 -1 -1 -1 -1	6 1d3y 0 0.2 2.0	ZZZZ 5.99.1.3;	ISO MERASE
40 lg29_1 292 67 3 0 1 EDK	Mg 1 66 -1 -1 -1 -1 -1	4 1g29 0 0.5 1.9	J	ARUGBINDING PR
41 1qgx_A 72 72 3 1 2 EDO	Mg 70 2 -1 -1 -1 -1 -1	6 lqgx 0 0.3 1.6	UUZ 3.1.3.7;	HYD ROLASE
42 lalo_ 899 4 2 3 0 EE	Mg 4 -1 -1 -1 -1 -1 -1	5 1alo 0 0.4 2.0	ZZZ	DORED UXT ASE
43 leyz_A 267 12 2 1 2 EE	Mg 12 -1 -1 -1 -1 -1	5 leyz 0 0.2 1.8 b.	UUZ 2.1.2;	TRA NSFERASE
44 li7q_A 361 l37 2 2 2 EE	Mg 137 -1 -1 -1 -1 -1	6 li7q 0 0.4 2.0	UUZZ 4.1.3.27;	LYA SE
45 ldp0_A 416 45 3 3 0 EHE	Mg 2 43 -1 -1 -1 -1 -1 .d.	6 ldp0 0 0.2 1.7	ZZZ 3.2.1.23;	HYD ROLASE
46 liow_ 270 2 2 1 2 EN	Mg 2 -1 -1 -1 -1 -1 -1	5 liow 0 0.3 1.9 b.	UUZ 6.3.2.4;	LIG ASE
47 lgsa_ 281 2 2 1 3 EN	Mg 2 -1 -1 -1 -1 -1 -1	6 1gsa 1 0.4 2.0 b.	UXUZ 6.3.2.3;	LIG ASE
48 2hgs_A 144 224 3 0 2 ENE	Mg 2 222 -1 -1 -1 -1 -1	5 2hgs 0 0.2 2.1 b	UU 6.3.2.3;	AMI NE/CARBOXYLAT
49 linp_ 79 76 2 0 0 EO	Mg 76 -1 -1 -1 -1 -1 -1	2 linp 0 0.4 2.3	3.1.3.57)	HKOLASE (PHOSPH
50 lew2_A 216 69 4 1 0 EOED	Mg 53 1 15 -1 -1 -1 -1	5 lew2 0 0.3 1.8 bb	Z 3.1.3.1	HYD ROLASE
51 1g8f_A 46 120 3 2 0 EOH	Mg 118 2 -1 -1 -1 -1d	5 lg8f 0 0.5 2.0 b	ZZ 2.7.7.4	TRA NSFERASE
52 lh2r_L 62 490 3 3 0 EOH	Mg 436 54 -1 -1 -1 -1e	6 1h2r 0 0.1 1.4	ZZZ 1.12.2.1;	OXI DOREDUCTASE
53 la6o_ 161 14 2 0 0 ND	Mg 14 -1 -1 -1 -1 -1 -1	2 la6o 1 0.4 2.1	2.7.1.37;	TRANSFERASE
54 lalo_ 649 44 3 1 0 OEO	Mg 2 42 -1 -1 -1 -1 -1	4 1alo 0 0.3 2.0 .b.	Z	DOREXUCTASE
55 le3m_A 99 3 2 0 4 00	Mg 3 -1 -1 -1 -1 -1 -1	6 1e3m 0 0.3 2.2	ן טטטט	DNA BINDING
56 1b25_A 92 89 2 2 2 00	Mg 89 -1 -1 -1 -1 -1 -1	6 1b25 0 0.1 1.9	UUZZ	MOC O
57 lbfd_ 117 3 3 0 0 000	Mg 1 2 -1 -1 -1 -1 -1	3 1bfd 1 0.3 1.6	4.1.1.7;	LSTA
58 lryp_M 183 6 3 1 0 000	Mg 3 3 -1 -1 -1 -1 -1 .	4 1ryp 0 0.3 1.9	Z 3.4.99.46;	MUL TICATALYTIC P
59 lryp_H 163 6 3 0 0 000	Mg 3 3 -1 -1 -1 -1 -1	3 lryp 0 0.5 1.9	3.4.99.46;	MUL TICATALYTIC P
60 lryp_J 166 6 3 2 0 000	Mg 3 3 -1 -1 -1 -1 -1	5 lryp 0 0.3 1.9	ZZ 3.4.99.46;	MUL TICATALYTIC P
61 lewk_B 89 7 3 2 0 000	Mg 6 1 -1 -1 -1 -1 -1	5 lewk 1 0.3 2.2	ZZ	NALGNG PROTEI
62 lewk_A 89 7 4 2 0 0000	Mg 3 3 1 -1 -1 -1 -1	6 lewk 0 0.4 2.2	ZZ	SNALING PROTEI
63 ldp0_D 15 178 5 0 0 000QD	Mg 3 3 142 30 -1 -1 -1	. 5 1dp0 0 0.3 1.7b	3.2.1.23;	HYD ROLASE

64	1ezw_A	56	1	2	1	0 os	Mg	1	-1	-1	-1	-1	-1	-1	3 lezw	20 0.5 1.6		z		DORE	DXICTASE
65	3prn_	28	29	2	3	0 SD	Mg	29	-1	-1	-1	-1	-1	-1	5 3prn	0 0.3 1.9		ZZ2		BNI	ENE PROTEIN
66	3pmg_B	116	175	4	1	1 SDDD	Mg	171	2	2	-1	-1	-1	-1	6 3pmg	0 0.2 2.4		UZ	5.4.2.2;		
PHOS	PHOTRAN	SFERA																			
67	1qc5_B	342	101	3	3	0 SSD	Mg	2	99	-1	-1	-1	-1	-1	6 1qc5	0 0.2 2.0		ZZZ		CEL	L ADHESION
68	lido_	142	67	3	2	0 SST	Mg	2	65	-1	-1	-1	-1	-1	5 lido	0 0.1 1.7		ZZ		L AD	HESION PR
69	1cly_A	17	18	2	2	2 ST	Mg	18	-1	-1	-1	-1	-1	-1	6 lcly	0 0.2 1.9		uuz	Z 2.7.1;	SIG	NALING PROTEI
70	1ctq_A	17	18	2	2	2 ST	Mg	18	-1	-1	-1	-1	-1	-1	6 lctq	0 0.1 1.3		UUZ	Z	NSAIL	GING PROTEI
71	1f5n_A	52	23	2	2	2 ST	Mg	23	-1	-1	-1	-1	-1	-1	6 1f5n	0 0.2 1.7		UUZ	Z	SIZ	LING PROTEI
72	1cip_A	47	134	2	2	2 ST	Mg	134	-1	-1	-1	-1	-1	-1	6 lcip	0 0.1 1.5		UUZZ		HYD	ROLASE
73	lfqj_A	43	134	2	2	2 ST	Mg	134	-1	-1	-1	-1	-1	-1	6 lfqj	1 0.2 2.0		JUZ2	3.1.4.17;	SIG	NALING PROTEI
74	lazs_C	54	150	2	2	2 ST	Mg	150	-1	-1	-1	-1	-1	-1	6 lazs	0 0.3 2.3		UUZZ	4.6.1.1;	COM	PLEX (LYASE/H
75	1g29_2	43	121	2	0	0 TD	Mg	121	-1	-1	-1	-1	-1	-1	2 1g29	0 0.5 1.9	.b	1		AESU	J B INDING PR
76	1ryp_A	17	117	4	1	0 T000	Mg	111	3	3	-1	-1	-1	-1	5 1ryp	0 0.3 1.9		Z	3.4.99.46;	MUL	TICATALYTIC P
77	ld0y_A	186	51	2	2	2 TS	Mg	51	-1	-1	-1	-1	-1	-1	6 1d0y	0 0.2 2.0		JUZ	Z	COL	NTRACTILE PROT
78	1cxz_A	19	18	2	2	2 TT	Mg	18	-1	-1	-1	-1	-1	-1	6 lcxz	0 0.3 2.2		uuz	Z	SNZ	SLING PROTEI
79	lhe1_C	17	18	2	2	2 TT	Mg	18	-1	-1	-1	-1	-1	-1	6 lhel	0 0.2 2.0		UJZ	Z	SA	GLING COMPL
80	1tx4_B	19	18	2	2	2 TT	Mg	18	-1	-1	-1	-1	-1	-1	6 1tx4	0 0.2 1.6		UJZ	Z	CĐ	MEX(GTPASE A

81 1dek_A 42 66 3 0 0 YQE Mg 43 23 -1 -1 -1 -1 -1 ... 3 1dek 0 0.6 2.0 ... | 2.7.4.13; PHO SPHOTRANSFERA

no cngpname	nsp np nw nn dons	met sdl sd2 sd3 sd4 sd5 sd6 sd7 metal startaa conf_efimov
1 8ruc_A 203	1 2 0 3 DE	Mg -1 1 -1 -1 -1 -1 MG 476 ASPA 203bakb
2 lbpy_A 190	2 2 1 3 DD	Mg 2 -1 -1 -1 -1 -1 MG 339 ASPA 190 ba.bbbb
3 leqo_A 95	2 2 1 3 DD	Mg 2 -1 -1 -1 -1 -1 MG 162 ASPA 95 abbbbba
4 luby_ 117	4 2 0 1 DD	Mg 4 -1 -1 -1 -1 -1 MG 403 ASP 117 aaaaakkgb
5 1bl3_B 64	52 2 2 0 DD	Mg 52 -1 -1 -1 -1 -1 MG 503 ASPB 64 bb.bb-bbbkb
6 lt7p_A 475	179 2 2 1 DD	Mg 179 -1 -1 -1 -1 -1 MG 4002 ASPA 475 bbbbb-d.kbb
7 lbpy_A 190	66 3 0 1 DDD	Mg 2 64 -1 -1 -1 -1 MG 340 ASPA 190 ba.bbbb-bbbbb
8 lobw_A 65	37 3 3 0 DDD	Mg 5 32 -1 -1 -1 -1 MG 1 ASPA 65 bakgbbbbbb-jbdbb
9 lauk_ 29	253 4 0 0 DDDN	Mg 1 251 1 -1 -1 -1 MG 44 ASP 29 bbbgbb-bba.bb
10 lwdc_B 28	11 5 1 0 DDDOD	Mg 2 2 2 5 -1 -1 -1 MG 502 ASPB 28 aadak.kgbbbaaaaa
11 lvid_ 141	29 3 1 2 DDN	Mg 28 1 -1 -1 -1 -1 MG 300 ASP 141 bbd.bakkaaaaaaaakgkbbbgbbbbbgka
12 1dqn_A 125	1 2 2 2 DE	Mg 1 -1 -1 -1 -1 -1 MG 450 ASPA 125 bbbabb
13 1gsa_ 273	8 2 1 3 DE	Mg 8 -1 -1 -1 -1 -1 MG 319 ASP 273 bbbbb.kbbabbb
14 liow_ 257	13 2 1 3 DE	Mg 13 -1 -1 -1 -1 -1 MG 331 ASP 257 bbbbbbbkkgbbbba.bb
15 lqr0_A 107	44 3 1 2 DEE	Mg 2 42 -1 -1 -1 -1 MG 400 ASPA 107 bbbbbbb-aaaaa
16 1mdl_ 195	52 3 1 2 DEE	Mg 26 26 -1 -1 -1 -1 MG 360 ASP 195 bbbkg-bbbgakkb
17 lec7_A 235	54 3 3 0 DEN	Mg 25 29 -1 -1 -1 -1 MG 498 ASPA 235 bbbkgbbga-bbkak
18 1bx4_A 130	1 2 0 4 DN	Mg 1 -1 -1 -1 -1 -1 MG 365 ASPA 130 b.kbbb
19 1g97_A 102	125 2 2 2 DN	Mg 125 -1 -1 -1 -1 -1 MG 1 ASPA 102 bkkdk-bbabk
20 lig5_A 54	6 4 2 0 DNDO	Mg 2 2 2 -1 -1 -1 MG 78 ASPA 54 aadakgkgbbb
21 lpox_A 447	29 3 1 2 DNO	Mg 27 2 -1 -1 -1 -1 MG 610 ASPA 447 bbaaaakakaakaaaaakgbbbbbbbbbbbbbbbbbbbb
22 lpvd_A 444	29 3 1 2 DNO	Mg 27 2 -1 -1 -1 -1 MG 558 ASPA 444 bbaaaaaakaakaaaaakgbdbbbbbbbbgjda
23 1zpd_A 440	29 3 1 2 DNO	Mg 27 2 -1 -1 -1 -1 MG 601 ASPA 440 bbaaaakakaakaaaaakgbdbbbbbbbbgjba
24 lqs0_A 213	31 3 1 2 DNO	Mg 29 2 -1 -1 -1 -1 MG 501 ASPA 213 .baak-bbkgbb.
25 lqf5_A 13	27 2 0 5 DO	Mg 27 -1 -1 -1 -1 -1 MG 3 ASPA 13 djgkgaaaaaakkakbabbbbk.j.kkbbbb
26 lfiu_B 140	46 2 2 2 DO	Mg 46 -1 -1 -1 -1 -1 MG 3333 ASPB 140 bbabb-bbbba
27 lt7p_A 475	179 3 0 3 DOD	Mg 1 178 -1 -1 -1 -1 MG 4001 ASPA 475 bbbbbg-d.kbb
28 lhyo_A 233	24 5 0 0 DOOOT	Mg 1 19 3 1 -1 -1 -1 MG 1004 ASPA 233 bbbbbbaaaaaaakbkkjb.kkakk.bbb
29 lflz_A 114	17 3 3 0 DQO	Mg 16 1 -1 -1 -1 -1 MG 2002 ASPA 114 bbabbbbba.babk.bbbbbb
30 lew2_A 42	269 3 3 0 DSE	Mg 113 156 -1 -1 -1 -1 MG 1003 ASPA 42 bbbgd-baaaa-bbbbk
31 1qb7_A 146	8 2 1 0 DT	Mg 8 -1 -1 -1 -1 -1 MG 335 ASPA 146 bbbabbakgaaaa

```
8 3 1 0 DTE
                                              -1 -1 -1 -1 MG 733 ASP 444 aaaaaakaaaaak
32 5eau_ 444
33 1b0p A 963
              30 3 1 2 DTO
                                             -1 -1 -1 -1 MG 1237 ASPA 963 .baaaaaaakaaaaaakagbbbbbbbbbbbg.ba
34 1g29_2 293
              63 3 0 0 DYD
                                                                   16 ASP2 293 akkbbbk-bbbak
                                          61 -1 -1 -1 -1 MG
35 1q29 2 292
               1 2
                      1 ED
                                              -1 -1 -1 -1 MG
                                                                    79 GLU2 292 bakkbb
              24 2 1 2 ED
                                            -1 -1 -1 -1 MG 1134 GLUB 871 bbk.aaaaakaaaaaabk.bbbbaaaak
36 1a49_B 871
37 1dxe_A 153
                2
                    2 1 ED
                                             -1 -1 -1 -1 MG 901 GLUA 153 bbdbaaaaakaaaaakbbgbabbbbaaaaa
38 1d8c A 427
              28
                2
                    2 2 ED
                                          -1 -1 -1 -1 -1 MG 3001 GLUA 427 ..kbaaaaadaaaaakdakkbk.bbbbkaaaa
39 1d3y_A 197
                2
                    4 0 ED
                                          -1 -1 -1 -1 -1 MG 371 GLUA 197 bbaba-bbbdb
40 1g29_1 292
              67 3
                    0 1 EDK
                                            -1 -1 -1 -1 MG
                                                                    83 GLU1 292 bakkbb-akkbb
41 lqgx_A 72
              72 3
                    1 2 EDO
                                           2 -1 -1 -1 -1 MG 401 GLUA 72 bbabb-bbbabbg
42 1alo 899
               4 2 3 0 EE
                                              -1 -1 -1 -1 MG 918 GLU 899 baaaaaaaa
                                          - 1
43 leyz_A 267
              12 2 1 2 EE
                                          -1 -1 -1 -1 -1 MG 402 GLUA 267 bbbbbbb.kbbbbabbb
                                               -1 -1 -1 MG 1701 GLUA 361 aaaaa-aaaaa
44 1i7q_A 361
             137 2 2 EE
                                            -1
45 1dp0_A 416
              45
                3 3 0 EHE
                                             -1 -1 -1 -1 MG 3001 GLUA 416 dbbdakb-jbgkj
46 liow_
        270
               2 2
                    1 2 EN
                                   Μa
                                              -1 -1 -1 -1 MG 330 GLU 270 ba.bbkd
47 1gsa_
        281
               2 2
                     1 3 EN
                                              -1
                                                 -1 -1 -1 MG 320 GLU 281 babbbka
             224
                3
                                                    -1 -1 -1 MG 501 GLUA 144 ba.bbkb-dbbg.
48 2hqs A 144
                                                -1
                                          -1 -1 -1 -1 -1 MG 402 GLU
49 linp_
         79
              76
                 2
                    0 0 EO
                                                                            79 b.abb-babbg
50 1ew2 A 216
                4 1 0 EOED
                                                    -1 -1 -1 MG 1004 GLUA 216 baadk-bbkba.-aabbb
                                          1 15 -1
             120 3 2 0 EOH
                                            -1 -1 -1 -1 MG 521 GLUA
51 1g8f_A 46
                                                                          46 aaaaa-bbbbbkb
52 1h2r L
         62
                3 3 0 EOH
                                                    -1 -1 -1 MG 1005 GLUL
                                                                           62 gaaaa-bbbbbb-aa...
             490
                                                -1
53 1a6o_
        161
              14 2 0 0 ND
                                             -1 -1 -1 -1 -1 MG 341 ASN
                                                                           161 aakbbbbaakgbbbbbgka
54 lalo_
        649
              44 3
                   1 0 OEO
                                             -1 -1 -1 -1 MG 916 ALA
                                                                           649 bbdbbba-bkjbd
55 1e3m_A 99
               3 2
                    0 4 00
                                              -1
                                                 -1 -1 -1 -1 MG
                                                                    11 PROA 99 bbakkba.
                                          - 1
56 1b25_A 92
                 2
                     2 2 00
                                              -1 -1 -1 -1 MG1 800 ASNA 92 bbbbb-.bbbg
57 1bfd_ 117
               3 3
                     0
                       0 000
                                              -1 -1 -1 -1 MG 531 ASN 117 aakakbkk
                    1 0 000
                                                                     4 THRM 183 aaaakbkkb..
58 lryp_M 183
               6 3
                                           3 -1 -1 -1 -1 MG
59 lryp_H 163
               6 3
                    0 0 000
                                           3 -1 -1 -1 -1 MG
                                                                     6 ILEH 163 aaaaabakb.j
                    2 0 000
                                                                     5 ALAJ 166 aaakkbakbjg
60 lryp_J 166
               6 3
                                           3 -1 -1 -1 -1 MG
                                              -1 -1 -1 -1 -1 MG 1002 ILEB 89 aaakkbaabgak
61 lewk_B
        89
               7 3
                    2 0 000
                                  Mg
                                              1 -1 -1 -1 -1 MG 1001 ILEA 89 aaakkbaabgad
62 lewk_A
        89
               7 4
                    2 0 0000
63 1dp0_D 15
             178
                5
                    0 0 0000D
                                          3 142
                                                30
                                                    -1 -1 -1 MG 3002 ASPD 15 .dkkdbkkbk.-bbb.k-bbaaa
64 lezw_A 56
               1 2 1 0 OS
                                         -1 -1 -1 -1 -1 MG 361 THRA 56 akbkab
```

65	3prn_	28	29	2	3	0 SD	Mg 29	-1	-1	-1	-1	-1	-1 MG	121 SER	28 bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
66	3pmg_B	116	175	4	1	1 SDDD	Mg 171	2	2	-1	-1	-1	-1 MG	2 SERB	116 bd.kb-bbbakgkbb
67	1qc5_B	342	101	3	3	0 SSD	Mg 2	99	-1	-1	-1	-1	-1 MG	602 SERB	342 bkbaabb-bbk.b
68	lido_	142	67	3	2	0 SST	Mg 2	65	-1	-1	-1	-1	-1 MG	400 SER	142 bkbakbb-jbbda
69	lcly_A	17	18	2	2	2 ST	Mg 18	-1	-1	-1	-1	-1	-1 MG	171 SERA	17 gaaaaaaaakgbbbabbbba.
70	1ctq_A	17	18	2	2	2 ST	Mg 18	-1	-1	-1	-1	-1	-1 MG	168 SERA	17 gaaaaaaaakgbbbabbdbbab
71	1f5n_A	52	23	2	2	2 ST	Mg 23	-1	-1	-1	-1	-1	-1 MG	595 SERA	52 gaaaaaaakgbbbbbbkkbb.bbj
72	lcip_A	47	134	2	2	2 ST	Mg 134	-1	-1	-1	-1	-1	-1 MG	356 SERA	47 gaaaa-bbbbj
73	lfqj_A	43	134	2	2	2 ST	Mg 134	-1	-1	-1	-1	-1	-1 MG	352 SERA	43 gaaaa-bbbbj
74	lazs_C	54	150	2	2	2 ST	Mg 150	-1	-1	-1	-1	-1	-1 MG	396 SERC	54 .aaaa-bbbbj
75	1g29_2	43	121	2	0	0 TD	Mg 121	-1	-1	-1	-1	-1	-1 MG	264 THR2	43 gaaaa-bbbgk
76	1ryp_A	17	117	4	1	0 TOOO	Mg 111	3	3	-1	-1	-1	-1 MG	1 THRA	17 abdbb-aaaaabaabbb
77	ld0y_A	186	51	2	2	2 TS	Mg 51	-1	-1	-1	-1	-1	-1 MG	998 THRA	186 gaaaa-dbbkb
78	1cxz_A	19	18	2	2	2 TT	Mg 18	-1	-1	-1	-1	-1	-1 MG	501 THRA	19 gaaaaaaaakgbbbabbbba.
79	lhe1_C	17	18	2	2	2 TT	Mg 18	-1	-1	-1	-1	-1	-1 MG	202 THRC	17 gaaaaaaaakgbbbabbbbba.
80	1tx4_B	19	18	2	2	2 TT	Mg 18	-1	-1	-1	-1	-1	-1 MG	681 THRB	19 gaaaaaaaakgbbbab

81 ldek_A 42 66 3 0 0 YQE Mg 43 23 -1 -1 -1 -1 MG 300 TYRA 42 aaaaa-aaaaa-gbbbb

no cngpname nsp np nw nn dons	met sdl sd2 sd3 sd4 sd5 sd6 sd7 his cn pdb cn2 rms res carbi othdon ecno	
1 1gg1_A 61 265 4 0 1 CHED	Mn 207 34 24 -1 -1 -1 -1 .e 5 lggl 0 0.3 2.0 U 4.1.2.15;	LYA SE
2 1f5a_A 113	Mn 2 -1 -1 -1 -1 -1 5 1f5a 3 0.4 2.5 UUZ 2.7.7.19;	TRA NSFERASE
3 le9g_B 147	Mn 5 -1 -1 -1 -1 -1 6 le9g 0 0.1 1.1 UUZZ 3.6.1.1;	HYD ROLASE
4 lf5a_A 113 54 3 1 2 DDD	Mn 2 52 -1 -1 -1 -1 6 1f5a 0 0.3 2.5 BUZ 2.7.7.19;	TRA NSFERASE
5 le9g_B 115 37 3 2 1 DDD	Mn 5 32 -1 -1 -1 -1 6 le9g 0 0.2 1.1 UZZ 3.6.1.1;	HYD ROLASE
6 la6q_ 60 222 3 3 0 DDD	Mn 179 43 -1 -1 -1 -1 6 la6q 1 0.3 2.0 ZZZ 3.1.3.16;	HYD ROLASE
7 laz9_ 260 146 3 2 0 DDE	Mn 11 135 -1 -1 -1 -1 -1 5 1az9 2 0.2 2.0 b ZZ 3.4.11.9;	PRO LINE PEPTIDAS
8 1ga8_A 103 141 3 0 2 DDH	Mn 2 139 -1 -1 -1 -1e 5 1ga8 0 0.1 2.0 .b. UU 2.4.1.44;	TRA NSFERASE
9 1i74_B 14 135 4 1 1 DDHD	Mn 61 22 52 -1 -1 -1e. 6 1i74 0 0.2 2.2 UZ 3.6.1.1;	HYD ROLASE
10 lqmg_A 315 4 2 2 2 DE	Mn 4 -1 -1 -1 -1 -1 6 lqmg 0 0.1 1.6 UUZZ 1.1.1.86;	OXI DOREDUCTASE
11 1f3i_A 97 229 2 2 1 DE	Mn 229 -1 -1 -1 -1 -1 5 1f3i 1 0.4 2.3 UZZ	TNECRIPTION/DN
12 1muc_A 198 51 3 3 0 DED	Mn 26 25 -1 -1 -1 -1 -1 6 1muc 0 0.3 1.9 ZZZ 5.5.1.1	ISO MERASE
13 lhhs_A 454 41 3 3 0 DEO	Mn 37 4 -1 -1 -1 -1 6 1hhs 0 0.2 2.0 ZZZ	RNA POLYMERASE
14 1d3v_A 124 110 4 0 2 DHDD	Mn 2 106 2 -1 -1 -1 .d 6 1d3v 1 0.3 1.7b UU 3.5.3.1;	HYD ROLASE
15 1ii7_A 8 200 4 1 1 DHDH	Mn 2 39 159 -1 -1 -1 -1 .e.e 6 1ii7 0 0.2 2.2 UZ	REP LICATION
16 laz9_ 271 135 4 2 0 DHEE	Mn 83 29 23 -1 -1 -1 -1 .e 6 laz9 1 0.3 2.0 ZZ 3.4.11.9;	PRO LINE PEPTIDAS
17 leqj_A 403 59 3 0 2 DHH	Mn 4 55 -1 -1 -1 -1 -1 .ee 5 legj 0 0.3 1.7 b UU 5.4.2.1;	ISO MERASE
18 1ii7_A 49 157 4 1 1 DNHH	Mn 35 89 33 -1 -1 -1 -1ed 6 1ii7 0 0.2 2.2 UZ	REP LICATION
19 la6q_ 60 1 2 4 0 DO	Mn 1 -1 -1 -1 -1 -1 -1 6 la6q 0 0.3 2.0 ZZZZ 3.1.3.16;	HYD ROLASE
20 3bam_A 94 18 2 1 1 DO	Mn 18 -1 -1 -1 -1 -1 4 3bam 1 0.3 1.8 UZ 3.1.21.4;	HYD ROLASE/DNA
21 1ksi_A 451 142 5 1 0 DODDO	Mn 1 1 139 1 -1 -1 -1 6 1ksi 0 0.3 2.2 Z 1.4.3.6;	OXI DOREDUCTASE
22 leqj_A 12 433 4 0 0 DSDH	Mn 50 382 1 -1 -1 -1 -1e 4 legj 1 0.3 1.7 b 5.4.2.1;	ISO MERASE
23 lnls_ 8 16 4 2 0 EDDH	Mn 2 9 5 -1 -1 -1 -1e 6 1nls 0 0.1 0.9 ZZ	LU AGN IN
24 1f3i_A 110 235 2 3 0 EE	Mn 235 -1 -1 -1 -1 -1 -1 5 1f3i 1 0.3 2.3 b. ZZZ	TRASCRIPTION/DN
25 1d8h_B 305 191 3 2 0 EEE	Mn 2 189 -1 -1 -1 -1 -1 5 1d8h 1 0.4 2.0 ZZ 3.1.3.33;	HYD ROLASE
26 1f52_A 131 89 3 2 0 EEE	Mn 81 8 -1 -1 -1 -1 -1 5 1f52 1 0.2 2.5 ZZ 6.3.1.2;	LIG ASE
27 1f52_A 129 228 3 2 2 EHE	Mn 140 88 -1 -1 -1 -1 -1 .d. 7 1f52 0 0.3 2.5 UUZZ 6.3.1.2;	LIG ASE
28 la9x_A 299 2 2 1 2 EN	Mn 2 -1 -1 -1 -1 -1 5 la9x 0 0.2 1.8 b. UUZ	ADOTRANSFERASE
29 lcpo_ 104	Mn 1 3 -1 -1 -1 -1 6 lcpo 0 0.2 1.9 UZZ 1.11.1.10	OXI DOREDUCTASE
30 1b8a_A 361 3 2 2 3 ES	Mn 3 -1 -1 -1 -1 -1 7 1b8a 0 0.4 1.9 JUUZZ 6.1.1.12;	LIG ASE

32 1d3v_A 101	131	4	0	3 HDDD	Mn	23	4 1	.04	-1	-1	-1	-1 d	7 1d3v	0 0.3 1.7		JUU	3.5.3.1;	HYD	ROLASE
33 li0h_A 26	145	4	0	1 HHDH	Mn	55	86	4	-1	-1	-1	-1 ee.e	5 1i0h	0 0.1 1.4		U	1.15.1.1;	OXI	DOREDUCTASE
34 lfi2_A 88	49	4	2	0 ннен	Mn	2	5	42	-1	-1	-1	-1 ee.e	6 1fi2	0 0.2 1.6	 - 1	ZZ	1.2.3.4	OXI	DOREDUCTASE
35 la9x_A 829	12	2	0	2 QE	Mn	12	-1	-1	-1	-1	-1	-1	4 1a9x	0 0.2 1.8		ן עע		AID!	TTRANSFERASE
36 la9x_A 285	14	2	0	3 QE	Mn	14	-1	-1	-1	-1	-1	-1	5 la9x	0 0.2 1.8		ן עעע		AM	DOTRANSFERASE
37 la9x_C2829	12	3	1	2 QQE	Mn	0	12	-1	-1	-1	-1	-1	6 la9x	0 0.4 1.8		UUZ		AMI	DOTRANSFERASE

met. sd1 sd2 sd3 sd4 sd5 sd6 sd7 metal | conf efimov cnapname nsp np nw nn dons startaa 1 1gg1_A 61 265 4 0 1 CHED 34 24 -1 -1 -1 -1 MN 371 CYSA 61 .babb-kb.ka-bbbbb-kabbb 2 1f5a A 113 2 2 1 2 DD -1 -1 -1 -1 -1 MN 1002 ASPA 113 qbbbbbb -1 -1 -1 -1 MN 2008 ASPB 147 bbbggbbdbb 3 le9g B 147 5 2 2 2 DD 4 1f5a A 113 54 3 1 2 DDD -1 -1 -1 -1 MN 1001 ASPA 113 gbbbbbb-bbbbb 5 le9q B 115 37 3 2 1 DDD -1 -1 -1 -1 -1 MN 2005 ASPB 115 bbkgbbbbb-bbdbb 6 la6q 60 222 3 3 0 DDD -1 -1 -1 -1 -1 MN 1 ASP 60 bbbbb-bbkaa-bdbbb 7 laz9 260 146 3 2 0 DDE Mn 11 135 -1 -1 -1 -1 -1 MN 442 ASP 260 bbbbb-bbbbb-bbbbb 8 1ga8 A 103 141 3 0 2 DDH -1 -1 -1 -1 MN 400 ASPA 103 bbbadbb-bbbdb 9 1i74_B 14 135 4 1 1 DDHD 52 -1 -1 -1 -1 MN 402 ASPB 14 baaaa-bbg..-bbkbb-aaakg 10 1qmq A 315 4 2 2 2 DE -1 -1 -1 -1 MN 601 ASPA 315 aaaaaaaaa. 11 1f3i_A 97 229 2 2 1 DE - 1 -1 -1 -1 MN 498 ASPA 97 bb.bb-akaaa 12 1muc A 198 51 3 3 0 DED -1 -1 MN 373 ASPA 198 bbbkg-.bbga-bb.ak 13 1hhs_A 454 41 3 3 0 DEO -1 -1 -1 -1 -1 MN 665 ASPA 454 .kb.b-bbbbgbbbg 14 1d3v_A 124 110 4 0 2 DHDD -1 -1 -1 -1 MN 501 ASPA 124 bb.kbkg-bbbakab 200 4 1 1 DHDH 15 1ii7 A 8 39 159 - 1 -1 -1 -1 MN 403 ASPA 8 b.gagbg-djgab-.babb 135 4 2 0 DHEE -1 -1 -1 MN 441 ASP 271 bbbbb-abbbb-bbdb.-bbbb 16 laz9_ 271 23 -1 17 leqj_A 403 59 3 0 2 DHH -1 -1 -1 -1 -1 MN 601 ASPA 403 aaaakakkg-kbbbk 18 1ii7_A 49 157 4 1 1 DNHH 33 -1 -1 -1 -1 MN 404 ASPA 49 djgab-bbaak-bbbbb-bb.ba 19 1a6q_ 60 1 2 4 0 DO -1 -1 -1 -1 -1 MN 2 ASP 60 bbbbba 20 3bam_A 94 18 2 1 1 DO -1 -1 -1 -1 MN 901 ASPA 94 bbabb.bbbd.gbbbbbbbbbbbb 21 1ksi_A 451 142 5 1 0 DODDO 1 -1 -1 -1 MN 653 ASPA 451 bbbbdbg-gbbbbb 22 leqj_A 12 433 4 0 0 DSDH 1 -1 -1 -1 -1 MN 701 ASPA 12 bbbgb-b.aaa-.bk.b. 23 1nls 16 4 2 0 EDDH 5 -1 -1 -1 -1 MN 239 GLU 8 bbbbbkbbbakkqbbd.bbbb 24 1f3i_A 110 235 2 3 0 EE -1 -1 -1 -1 -1 -1 MN 499 GLUA 110 aakbb-bkbaa 25 1d8h B 305 191 3 2 0 EEE -1 -1 -1 -1 MN 502 GLUB 305 kbbbbbb-bbbbb 26 1f52_A 131 89 3 2 0 EEE -1 -1 -1 -1 -1 MN 469 GLUA 131 dbbbb-.bbab-bbbbb 27 1f52 A 129 228 3 2 2 EHE -1 -1 -1 -1 MN 470 GLUA 129 bbdbb-bdbbb-.bbbk 28 1a9x_A 299 2 2 1 2 EN -1 -1 -1 -1 MN 1901 GLUA 299 ba.bbd. 29 1cpo 104 2 1 EOS -1 -1 -1 MN 301 GLU 104 .abbbgbak 30 1b8a_A 361 3 2 2 3 ES -1 -1 -1 -1 MN 601 GLUA 361 gbbkbb.. -1 31 1i74_B 8 67 3 1 1 HDD Mn 63 -1 -1 -1 -1 -1 MN 401 HISB 8 bbbbgbbaa-bbg..

32 1d3v_A 101	131 4	0	3 HDDD	Mn	23	4 1	.04	-1	-1	-1	-1 MN 500 HISA 101 .bkkk-bb.kbkgkb-bbbak	
33 1i0h_A 26	145 4	0	1 HHDH	Mn	55	86	4	-1	-1	-1	-1 MN 206 HISA 26 aaaaa-aaaaabbkbaakk	
34 1fi2_A 88	49 4	2	0 ннен	Mn	2	5	42	-1	-1	-1	-1 MN 202 HISA 88 bbbbbak.bbbb-bbbbb	
35 la9x_A 829	12 2	0	2 QE	Mn	12	-1	-1	-1	-1	-1	-1 MN 1911 GLNA 829 bbbbbbbggbbbba.bb	
36 la9x_A 285	14 2	0	3 QE	Mn	14	-1	-1	-1	-1	-1	-1 MN 1902 GLNA 285 bbbbbbbbka.gbbbba.bb	
37 la9x_C2829	12 3	1	2 QQE	Mn	0	12	-1	-1	-1	-1	-1 MN 3911 GLNC2829 bbbbbbbbggbbbba.bb	

no cngpname	nsp np nw nn dons	met sd1 sd2 sd3 sd4 sd5 sd6 sd7 his cn pdb cn2 rms res carbi othdon ecno	
1 leg9_A 81	20 2 0 3 CC	Fe 20 -1 -1 -1 -1 -1 5 leg9 0 0.3 1.6 JXX 1.14.12.12	OXI DOREDUCTASE
2 1h2r_L 84	465 2 0 2 CC	Fe 465 -1 -1 -1 -1 -1 -1 4 1h2r 2 0.2 1.4 JX 1.12.2.1;	OXI DOREDUCTASE
3 1b71_A 158	19 4 0 0 CCCC	Fe 3 13 3 -1 -1 -1 -1 4 1b71 0 0.1 1.9	CTRON TRANSPO
4 ldxg_A 9	20 4 0 0 CCCC	Fe 3 16 1 -1 -1 -1 -1 4 1dxg 20 0.1 1.8	-HNMN IRON PR
5 1rb9_ 6	36 4 0 0 CCCC	Fe 3 30 3 -1 -1 -1 -1 4 1rb9 0 0.1 0.9	N-SULFURIREROT
6 le5d_A 83	321 4 1 1 DDHO	Fe 82 61 178 -1 -1 -1e. 6 1e5d 1 0.3 2.5 UZ	OXI DOREDUCTASE
7 lute_A 14	487 5 0 1 DDYH O	Fe 38 3 168 -1 278 -1 -1e .6 lute 0 0.2 1.5 U 3.1.3.2;	HYD ROLASE
8 lr2f_B 67	125 4 0 0 DEHE	Fe 31 3 91 -1 -1 -1 -1d. 4 1r2f 0 0.4 2.1b 1.17.4.1;	OXI DOREDUCTASE
9 lute_A 52	449 5 0 1 DNHH O	Fe 39 95 35 -1 280 -1 -1ed .6 lute 0 0.3 1.5 U 3.1.3.2;	HYD ROLASE
10 1b71_A 53	78 4 1 0 EEEH	Fe 41 34 3 -1 -1 -1 -1d 5 1b71 0 0.1 1.9 .b Z	ELETRON TRANSPO
11 lafr_A 143	89 4 0 0 EEEH	Fe 53 33 3 -1 -1 -1 -1d 4 lafr 0 0.3 2.4 .b 1.14.99.6;	OXI DOREDUCTASE
12 lr2f_B 98	97 4 0 0 EEEH	Fe 60 34 3 -1 -1 -1 -1d 4 lr2f 0 0.3 2.1 .b 1.17.4.1;	OXI DOREDUCTASE
13 lmty_E 144	102 4 2 0 EEEH	Fe 65 34 3 -1 -1 -1 -1d 6 lmty 1 0.3 1.7 ZZ 1.14.13.25	MON OOXYGENASE
14 lmty_E 114	33 3 3 0 EEH	Fe 30 3 -1 -1 -1 -1 -1d 6 1mty 1 0.3 1.7 ZZZ 1.14.13.25	MON OOXYGENASE
15 lafr_A 105	124 4 0 0 EEHE	Fe 38 3 83 -1 -1 -1 -1d. 4 lafr 0 0.3 2.4 b 1.14.99.6;	OXI DOREDUCTASE
16 lguq_B 182	116 4 0 0 EHHH	Fe 99 15 2 -1 -1 -1 -1 dee 4 lguq 0 0.1 1.8 b 2.7.7.10;	NUC LEOTIDYLTRANS
17 ldqi_A 14	100 6 0 0 EHHHCH	Fe 2 25 6 64 3 -1 -1 .eee.d6 1dqi 0 0.2 1.7	OXI DOREDUCTASE
18 2hmq_A 58	48 5 0 1 EHHHD	Fe 15 4 24 5 -1 -1 -1 .eee. 6 2hmq 0 0.2 1.7 U	OXY GEN TRANSPORT
19 1bk0_ 214	56 3 1 1 HDH	Fe 2 54 -1 -1 -1 -1 e.e 5 1bk0 0 0.2 1.3 XZ	BCEAM ANTIBIO
20 lds1_A 144	135 3 1 2 HEH	Fe 2 133 -1 -1 -1 -1 e.e 6 1ds1 0 0.1 1.1 UUZ	OXI DOREDUCTASE,L
21 le5d_B 79	325 5 0 0 HEHDO	Fe 2 65 19 239 -1 -1 -1 e.e 5 1e5d 0 0.2 2.5	OXI DOREDUCTASE
22 1mrp_ 9	187 4 1 1 HEYY	Fe 48 138 1 -1 -1 -1 -1 e 6 1mrp 0 0.1 1.6 UZ	IRON TRANSPORT
23 leg9_A 83	21 2 0 3 HH	Fe 21 -1 -1 -1 -1 -1 dd 5 leg9 0 0.3 1.6 JXX 1.14.12.12	OXI DOREDUCTASE
24 ldxr_C 124	185 2 0 4 HH	Fe 185 -1 -1 -1 -1 -1 ee 6 1dxr 0 0.1 2.0 BBBB	PHO TOSYNTHETIC R
25 leg9_A 208	154 3 0 1 HHD	Fe 5 149 -1 -1 -1 -1 ee. 4 leg9 0 0.2 1.6b U 1.14.12.12	OXI DOREDUCTASE
26 4pah_ 285	45 3 1 2 HHE	Fe 5 40 -1 -1 -1 -1 ee. 6 4pah 0 0.2 2.0 UUZ 1.14.16.1;	MON OOXGYGENASE
27 lbou_D 12	230 3 1 0 HHE	Fe 49 181 -1 -1 -1 -1 ee. 4 1bou 1 0.1 2.2 Z 1.13.11.8;	DIO XYGENASE
28 lcjx_D 161	161 3 0 1 HHE	Fe 79 82 -1 -1 -1 -1 ee. 4 lcjx 1 0.1 2.4 U 1.13.11.27	OXI DOREDUCTASE
29 2hmq_D 25	81 4 0 1 HHED	Fe 29 4 48 -1 -1 -1 -1 ee 5 2hmq 1 0.2 1.7 U	OXY GEN TRANSPORT
30 lcjx_A 161	469 4 0 1 HHEO	Fe 79 82 308 -1 -1 -1 -1 ee 5 lcjx 0 0.3 2.4 U 1.13.11.27	OXI DOREDUCTASE
31 lyge_ 499	191 3 1 1 HHH	Fe 5 186 -1 -1 -1 -1 eee 5 1yge 1 0.3 1.4 UZ 1.13.11.12	DIO XYGENASE

32 ldqi_B 16 98	5 1	0 нннсн	Fe 2	5 6	64	3	-1	-1 -1 eee.	d 6 1dqi	0 0.3 1.7	 Z	OXI DOREDUCTASE
33 1lox_ 361 184	4 0	1 нннн	Fe	5 175	4	-1	-1 -	-1 -1 eeed	5 1lox	1 0.2 2.4	 U 1.13.11.33	OXI DOREDUCTASE
34 ldxr_C 233 15	2 0	4 MH	Fe :	15 -1	-1	-1	-1	-1 -1 .e	6 1dxr	0 0.1 2.0	 BBBB	PHO TOSYNTHETIC R
35 ldxr_C 74 17	2 0	4 MH	Fe	17 -1	-1	-1	-1	-1 -1 .e	6 ldxr	0 0.1 2.0	 BBBB	PHOTOSYNTHETIC R
36 ldxr_C 110 26	2 0	4 MH	Fe :	26 -1	-1	-1	-1	-1 -1 .e	6 1dxr	0 0.1 2.0	 BBBB	PHO TOSYNTHETIC R
37 3pcg_0 408 54	4 0	1 ҮҮНН	Fe 3	9 13	2	-1	-1 -	-1 -1ee	5 3pcg	0 0.2 2.0	 U 1.13.11.3;	DIO XYGENASE
38 2ahj_C 109 4	3 0	4 CC#	Fe	3 1	-1	-1	-1	-1 -1	6 2ahj	0 0.2 1.7	 X BXB 4.2.1.84;	LYA SE

met sd1 sd2 sd3 sd4 sd5 sd6 sd7 metal nsp np nw nn dons startaa | conf efimov cngpname 1 leg9_A 81 20 2 0 3 CC -1 -1 -1 -1 -1 FE2 751 CYSA 81 dbbkakgbbabkba..bbk.bbbka 2 1h2r L 84 2 0 2 CC -1 -1 -1 -1 -1 FE 1004 CYSL 465 84 kadaa-aaaaa 3 1b71 A 158 19 4 0 0 CCCC 3 -1 -1 -1 -1 FE 192 CYSA 158 bbbaakgbbbb,abbbk,baakgb 4 1dxa A 4 0 0 CCCC 1 -1 -1 -1 FE 37 CYSA 5 1rb9 36 4 0 0 CCCC 30 3 -1 -1 -1 -1 FE 54 CYS 6 bbbkakqb-bbbkakqb 6 le5d A 321 4 1 1 DDHO 61 178 -1 -1 -1 FE2 404 ASPA 83 bkkak-k.abg-babib-.... 7 lute A 14 487 5 0 1 DDYH O 3 168 -1 278 -1 -1 FE1 501 ASPA 14 bbgkk-kjqabbkd-.bd.b 8 1r2f B 67 125 4 0 0 DEHE 3 91 -1 -1 -1 FE 402 ASPB 67 aaaaa-aaaaaaaa-aaaaa 9 lute_A 52 449 5 0 1 DNHH O 35 -1 280 -1 -1 FE2 501 ASPA 52 kjgab-bbaaa-bbabb-b..bd 10 1b71 A 53 4 1 0 EEEH 3 -1 -1 -1 FE 193 GLUA 53 aaaaa-aaaaa-aaaaaaaa 11 lafr_A 143 89 0 0 EEEH -1 -1 -1 -1 FE 364 GLUA 143 aaaaa-aaaaa-aaaaaaaa 12 1r2f B 98 0 EEEH -1 -1 -1 FE 403 GLUB 98 aaaaa-aaak.-aaaaaaaa 13 1mty_E 144 102 4 2 0 EEEH -1 -1 -1 -1 FE 1 GLUE 144 aaaaa-aaaaa-kaaaaaaa 14 1mty_E 114 33 3 3 0 EEH -1 -1 -1 -1 -1 FE 2 GLUE 114 aaaaa-aaaaaaa 15 lafr A 105 124 4 0 0 EEHE -1 -1 -1 FE 365 GLUA 105 aaakk-aaaaaaa-aaaaa 16 lguq_B 182 116 4 0 0 EHHH -1 -1 -1 FE 351 GLUB 182 aaaaa-.bbbb-bb.bbbb 17 1dqi A 14 100 6 0 0 EHHHCH 3 -1 -1 FE 501 GLUA 14 b.bbabb-bbbbbbbaab.b-bbbakkjb -1 -1 -1 FE1 101 GLUA 18 2hmq_A 58 5 0 1 EHHHD 5 58 aaaaa-aaaaaaaaa-aaaaaaaaak 19 1bk0_ 214 56 3 1 1 HDH -1 -1 -1 -1 FE 350 HIS 214 bb.bbb.-bbbb 135 3 1 2 HEH -1 -1 -1 -1 FE 341 HISA 144 bbbbbga-bbbbb 20 ldsl_A 144 21 1e5d B 325 5 0 0 HEHDO 19 239 -1 -1 -1 FE1 404 HISB 79 bk.kbkk-gdkba-k.abg-.... 9 187 4 1 1 HEYY 1 -1 -1 -1 -1 FE 310 HIS 9 kbbaa-bbaba-baaaaa 22 1mrp_ 48 138 23 leg9_A 83 21 2 0 3 HH -1 -1 -1 -1 -1 FE1 751 HISA 83 bkakgbbabkba..bbk.bbbkakgb 24 ldxr_C 124 185 2 0 4 HH Fe 185 -1 -1 -1 -1 -1 FE 404 HISC 124 akak.-aaagg 25 leg9 A 208 154 3 0 1 HHD -1 -1 -1 -1 FE 752 HISA 208 aakaaaakaa-aakaa 45 3 1 2 HHE 40 -1 -1 -1 -1 FE 425 HIS 285 aaaaaaaaaa-aaakb 26 4pah_ 285 -1 -1 -1 -1 FE 502 HISD 27 1bou D 12 230 3 1 0 HHE 12 .bkba-bbdga-kkaaa 28 lcjx_D 161 161 3 0 1 HHE -1 -1 -1 FE 629 HISD 161 babbb-babbb-bbbbb 29 2hmg D 25 81 4 1 HHED -1 -1 -1 FE2 101 HISD 25 aaaaa-aaaaaaaaa-aaaaa 30 lcjx_A 161 469 4 0 1 HHEO -1 -1 -1 FE 629 HISA 161 ba.bb-babbb-bbbb-.... 31 lyge_ 499 191 3 1 1 HHH 5 186 -1 -1 -1 -1 FE 840 HIS 499 aaaaaaaaaa-aaaaa

32 1dqi_B 16	98 5 1 0 HHHCH	Fe 25 6 64	3 -1 -1 -1 FE	502 HISB 16abb-bbbbdbaab.b-bbbakkjb
33 1lox_ 361	184 4 0 1 HHHH	Fe 5 175 4	-1 -1 -1 FE	840 HIS 361 aaaaaaaaaa-aaaaaaaak
34 ldxr_C 233	15 2 0 4 MH	Fe 15 -1 -1	-1 -1 -1 FE	403 METC 233 aaaaaaaakgbbakaabbk
35 ldxr_C 74	17 2 0 4 MH	Fe 17 -1 -1	-1 -1 -1 FE	401 METC 74 aaaaaaaaaaaaajakaabba
36 ldxr_C 110	26 2 0 4 MH	Fe 26 -1 -1	-1 -1 -1 FE	402 METC 110 aaaaaaaaaaakdakak.kajbbaaaaagg
37 3pcg_0 408	54 4 0 1 YYHH	Fe 39 13 2	-1 -1 -1 FE	600 TYRO 408 gbbdb-bbbbb-bbbbbbb
38 2ahj_C 109	4 3 0 4 CC#	Fe 3 1 -1	-1 -1 -1 FE	300 CYSC 109 bbba

no cngpname	nsp np	nw r	nn dons	met sd	l1 sd	.2 sd3	sd4	sd5	sd6	sd7	his cn	odb cn2 r	ms res car	bi oth	don ec	no	
1 loac_A 524	165 3	0	0 ннн	Cu	-1	2	163	-1	-1	-1	-1 .eed	4 loac	0 0.1 2.0			1.4.3.6	OXI DOREDUCTASE
2 lehk_B 149	8 :	3 0	1 CCH	Cu	4	4	-1	-1	-1	-1	-1d	4 lehk	1 0.3 2.4	1	3	1.9.3	1; OMEOREDUCTASE
3 lcyx_ 207	8	4 0	1 COCH	Cu	2	2	4	-1	-1	-1	-16	l 5 1cyx	0 0.3 2.3	3		J 1.10.3	; ELECTRON TRANSPO
4 2cua_A 149	8	1 0	1 COCH	Cu	2	2	4	-1	-1	-1	-1d	5 2cua	0 0.4 1.6			J 1.9.3.	1; ELE CTRON TRANSPO
5 2occ_B 196	8	1 0	1 COCH	Cu	2	2	4	-1	-1	-1	-1d	5 2occ	0 0.2 2.3			J 1.9.3.	1; OXI DOREDUCTASE
6 lcyx_ 172	39	3 0	1 HCC	Cu	35	4	-1	-1	-1	-1	-1 d	4 1cyx	1 0.2 2.3		J	1.10.3	; ELECTRON TRANSPO
7 lehk_B 114	46 4	. 0	1 HCCM	Cu	35	4	7	-1	-1	-1	-1 d	5 lehk	0 0.3 2.4		0	1.9.3.1	; OXI DOREDUCTASE
8 2cua_A 114	46 4	. 0	1 HCCM	Cu	35	4	7	-1	-1	-1	-1 d	5 2cua	0 0.3 1.6		0	1.9.3.1	; ELE CTRON TRANSPO
9 2occ_B 161	46 4	. 0	1 HCCM	Cu	35	4	7	-1	-1	-1	-1 d	5 2occ	0 0.3 2.3		3	1.9.3.1	; OXI DOREDUCTASE
10 2mta_A 53	42 3	0	0 НСН	Cu	39	3	-1	-1	-1	-1	-1 d.d	3 2mta	1 0.3 2.4			1.4.99	.3) ELE CTRON TRANSPO
11 1a65_A 396	61 3	0	0 HCH	Cu	56	5	-1	-1	-1	-1	-1 d.d	3 1a65	0 0.2 2.2			1.10.3	.2; OXI DOREDUCTASE
12 1pmy_ 40	46	1 0	0 нснм	Cu	38	3	5	-1	-1	-1	-1 d.d.	4 1pmy	0 0.3 1.5				EIETRON TRANSFE
13 1f56_A 34	50 4	. 0	0 НСНМ	Cu	40	5	5	-1	-1	-1	-1 d.d.	4 1f56	0 0.3 2.0		1		NTA PROTEIN
14 lplc_ 37	55	1 0	0 HCHM	Cu	47	3	5	-1	-1	-1	-1 d.d.	4 lplc	0 0.4 1.3				CTHOME TRANSPO
15 laoz_A 445	72 4	0	0 HCHM	Cu	62	5	5	-1	-1	-1	-1 d.d.	4 laoz	0 0.4 1.9		1	1.10.3.	3) OXI DOREDUCTASE(O
16 lqhq_A 57	75 4	. 0	0 HCHM	Cu	65	5	5	-1	-1	-1	-1 d.d.	4 1qhq	0 0.4 1.5				EKETRON TRANSFE
17 ljer_ 46	53	1 0	0 нсно	Cu	43	5	5	-1	-1	-1	-1 d.d.	4 ljer	20 0.2 1.6				CTR ØN E TRANSPO
18 1e30_A 85	63 4	. 0	0 HCHQ	Cu	53	5	5	-1	-1	-1	-1 d.d.	4 1e30	0 0.2 1.5				RUSCYANIN
19 1bxa_A 53	45 3	0	0 HCM	Cu	39	6	-1	-1	-1	-1	-1 d	3 1bxa	0 0.5 1.3				CTRON TRANSPO
20 laoz_A 60	388 2	0	1 нн	Cu	388	-1	-1	-1	-1	-1	-1 ee	3 laoz	0 0.1 1.9		l n	1.10.3	.3) OXI DOREDUCTASE(O
21 1phm_ 107	65 3	0	0 ннн	Cu	1	64	-1	-1	-1	-1	-1 ddd	3 1phm	0 0.2 1.9			1.14.1	7.3; MON OOXYGENASE
22 lyai_B 45	80 3	0	0 ннн	Cu	2	78	-1	-1	-1	-1	-1 dee	3 lyai	1 0.1 1.9			1.15.1	.1; OXI DOREDUCTASE
23 1ksi_A 442	161 3	2	0 ннн	Cu	2	159	-1	-1	-1	-1	-1 eed	5 1ksi	0 0.3 2.2		zz	1.4.3.6	OXI DOREDUCTASE
24 111a_ 173	31 3	0	0 ннн	Cu	4	27	-1	-1	-1	-1	-1 eee	3 111a	20 0.1 2.2		1		GENOXYRANSPORT
25 1bt3_A 240	34 3	0	2 ннн	Cu	4	30	-1	-1	-1	-1	-1 eee	5 1bt3	0 0.4 2.5	• • •	Jt	1.10.3.	1; OXI DOREDUCTASE
25 lbt3_A 240 26 llla_ 324			2 ннн0 ннн	Cu Cu									0 0.4 2.5 20 0.2 2.2		Jt	1.10.3.	1; OXI DOREDUCTASE GENOXYRANSPORT
_	40 3	0		Cu		36	-1	-1	-1	-1		3 111a					GENOXYRANSPORT
26 1lla_ 324	40 3 30 3	0	0 ннн	Cu Cu	4 21	36 9	-1 -1	-1 -1	-1 -1	-1 -1	-1 eee	3 111a 5 1bt3	20 0.2 2.2		i I		GENOXYRANSPORT 1; OXI DOREDUCTASE
26 111a_ 324 27 1bt3_A 88	40 3 30 3 446 3	0 0	0 ннн 2 ннн	Cu Cu	4 21 42	36 9 404	-1 -1 -1	-1 -1 -1	-1 -1 -1	-1 -1 -1	-1 eee -1 eee	3 111a 5 1bt3 4 1aoz	20 0.2 2.2 0 0.4 2.5		' J1	J 1.10.3.	GENOXYRANSPORT 1; OXI DOREDUCTASE 3) OXI DOREDUCTASE(0
26 111a_ 324 27 1bt3_A 88 28 1aoz_A 62	40 3 30 3 446 3 387 3	0 0	0 HHH 2 HHH 1 HHH	Cu Cu Cu	4 21 42	36 9 404	-1 -1 -1	-1 -1 -1	-1 -1 -1	-1 -1 -1	-1 eee -1 eee -1 dee	3 111a 5 1bt3 4 1aoz 3 1a65	20 0.2 2.2 0 0.4 2.5 0 0.2 1.9		' J1	J 1.10.3.	GENOXTRANSPORT 1; OXI DOREDUCTASE 3) OXI DOREDUCTASE(O 2; OXI DOREDUCTASE

32 laoz_A 106 400 3 0 1 HHH	Cu 344 56 -1 -1 -1 -1 eee 4 laoz 0 0.1 1.9	l ū	1.10.3.3)	OXI DOREDUCTASE(O	
33 lyai_C 45 80 4 1 0 нннн	Cu 2 23 55 -1 -1 -1 -1 deee 5 lyai 0 0.4 1.9	z	1.15.1.1;	OXI DOREDUCTASE	
34 1a65_A 111 340 4 0 1 HHHH	Cu 288 2 50 -1 -1 -1 -1 eeee 5 1a65 0 0.2 2.2	l ū	1.10.3.2;	OXI DOREDUCTASE	
35 lphm_ 242 72 3 1 0 HHM	Cu 2 70 -1 -1 -1 -1 ee. 4 lphm 0 0.3 1.9	Z	1.14.17.3;	MON OOXYGENASE	
36 2trx_A 1 1 3 1 0 ##D	Cu 1 0 -1 -1 -1 -1 -1 4 2trx 0 0.4 1.7	Z		CTRON TRANSPO	
37 lgof_ 272 309 3 0 1 YHH	Cu 224 85 -1 -1 -1 -1 -1 .ee 4 1gof 1 0.2 1.7	l n	1.1.3.9) (OXI DOREDUCTASE(O	

no cngpname	nsp np nw nn dons	met sdl sd2 sd3 sd4 sd5 sd6 sd7 metal startaa conf_efimov	
1 1oac_A 524	165 3 0 0 ннн	Cu -1 2 163 -1 -1 -1 CU 801 HISA 524 bbbbb	
2 1ehk_B 149	8 3 0 1 CCH	Cu 4 4 -1 -1 -1 -1 CU1 802 CYSB 149 bbbkbbkjakakk	
3 lcyx_ 207	8 4 0 1 COCH	Cu 2 2 4 -1 -1 -1 CU1 201 CYS 207 bbbkbbkjadaak	
4 2cua_A 149	8 4 0 1 COCH	Cu 2 2 4 -1 -1 -1 CU2 169 CYSA 149 bbbkbbkjakaak	
5 2occ_B 196	8 4 0 1 COCH	Cu 2 2 4 -1 -1 -1 CU 229 CYSB 196 bbbd.bkjadakd	
6 lcyx_ 172	39 3 0 1 HCC	Cu 35 4 -1 -1 -1 -1 CU2 201 HIS 172 bbbbb-bbbkbbkja	
7 lehk_B 114	46 4 0 1 HCCM	Cu 35 4 7 -1 -1 -1 CU2 802 HISB 114 bbbbb-bbbkbbkja-kkbbb	
8 2cua_A 114	46 4 0 1 HCCM	Cu 35 4 7 -1 -1 -1 CU1 169 HISA 114 bbbbb-bbbkbbkja-akbbb	
9 2occ_B 161	46 4 0 1 HCCM	Cu 35 4 7 -1 -1 -1 CU 228 HISB 161 bbbbb-bbbd.bkja-kddbb	
10 2mta_A 53	42 3 0 0 HCH	Cu 39 3 -1 -1 -1 -1 CU 0 HISA 53 bbbbb-bbbakdkk	
11 1a65_A 396	61 3 0 0 HCH	Cu 56 5 -1 -1 -1 -1 CU 1 HISA 396 bbbbb-b.bkbakaaa	
12 lpmy_ 40	46 4 0 0 HCHM	Cu 38 3 5 -1 -1 -1 CU 124 HIS 40 bgbbb-bbbaakaakgbbb	
13 1f56_A 34	50 4 0 0 HCHM	Cu 40 5 5 -1 -1 -1 CU 92 HISA 34 gkbbb-bbbkbbgaaakgd.b	
14 lplc_ 37	55 4 0 0 HCHM	Cu 47 3 5 -1 -1 -1 CU 100 HIS 37 bbbbb-bbbakkaakgbb.	
15 laoz_A 445	72 4 0 0 HCHM	Cu 62 5 5 -1 -1 -1 CU 701 HISA 445 bbbbb-bbbkbaaaaakgd.b	
16 1qhq_A 57	75 4 0 0 HCHM	Cu 65 5 5 -1 -1 -1 CU 141 HISA 57 bbbbb-bbbkbbgaaakgbb.	
17 ljer_ 46	53 4 0 0 HCHQ	Cu 43 5 5 -1 -1 -1 CU 110 HIS 46 gabbb-bbbkb.kaaakgdbb	
18 1e30_A 85	63 4 0 0 HCHQ	Cu 53 5 5 -1 -1 -1 CU 156 HISA 85 bbbbb-bbbkbbgaaakgb.b	
19 1bxa_A 53	45 3 0 0 HCM	Cu 39 6 -1 -1 -1 -1 CU 107 HISA 53 bbbbb-bbbakdkkbbb	
20 laoz_A 60	388 2 0 1 HH	Cu 388 -1 -1 -1 -1 -1 -1 CU4 703 HISA 60 bbbbb-bbbbb	
21 lphm_ 107	65 3 0 0 ннн	Cu 1 64 -1 -1 -1 -1 CU 357 HIS 107 ababbb-bbbba	
22 lyai_B 45	80 3 0 0 HHH	Cu 2 78 -1 -1 -1 -1 CU 152 HISB 45 bbbbbab-bbbab	
23 1ksi_A 442	161 3 2 0 ннн	Cu 2 159 -1 -1 -1 -1 CU 650 HISA 442 bbbbbbb-bbbbb	
24 111a_ 173	31 3 0 0 ннн	Cu 4 27 -1 -1 -1 -1 CU 629 HIS 173 aaaaaakaa-aaaaa	
25 1bt3_A 240	34 3 0 2 ННН	Cu 4 30 -1 -1 -1 -1 CU3 500 HISA 240 aaaaaaaaa-aaaaa	
26 111a_ 324	40 3 0 0 HHH	Cu 4 36 -1 -1 -1 -1 CU 630 HIS 324 daaaaaaaa-aaaaa	
27 1bt3_A 88	30 3 0 2 ннн	Cu 21 9 -1 -1 -1 -1 CU2 500 HISA 88 aaaaakkdgkbbbakdkabbbbabg.kkaaaaaaa	
28 laoz_A 62	446 3 0 1 HHH	Cu 42 404 -1 -1 -1 -1 CU3 702 HISA 62 bbbgbb.bd-bbkba	
29 1a65_A 66	387 3 0 0 ННН	Cu 43 344 -1 -1 -1 -1 CU 3 HISA 66 bbbgbb.bkbkba	
30 lehk_A 233	50 3 0 1 HHH	Cu 49 1 -1 -1 -1 -1 CU 803 HISA 233 aaaaa-akkka	
31 2occ_A 240	51 3 0 1 HHH	Cu 50 1 -1 -1 -1 -1 CU 517 HISA 240 aaaaa-akkkdk	

32 laoz_A 106	400 3 0 1 HHH	Cu 344 56 -1 -1 -1 -1 -1 CU2 702 HISA 106 .bdbj-bbbbbb
33 lyai_C 45	80 4 1 0 HHHH	Cu 2 23 55 -1 -1 -1 -1 CU 152 HISC 45 bbbbbab-jbbbd-bbbab
34 1a65_A 111	340 4 0 1 HHHH	Cu 288 2 50 -1 -1 -1 -1 CU 2 HISA 111 .bkbj-bbbbbgb-bb.bk
35 lphm_ 242	72 3 1 0 HHM	Cu 2 70 -1 -1 -1 -1 CU 358 HIS 242 bbbb.ak-bbbbb
36 2trx_A 1	1 3 1 0 ##D	Cu 1 0 -1 -1 -1 -1 CU 109 SERA 1 .kkb
37 lgof_ 272	309 3 0 1 YHH	Cu 224 85 -1 -1 -1 -1 -1 CU 700 TYR 272 bbgbbbgbb-b.ggb

no engpname nsp np nw nn dons	met sdl sd2 sd3 sd4 sd5 sd6 sd7 his cn pdb cn2 rms res carbi othdon	n ecno	
1 1j79_A 139 38 2 1 0 HH	Zn -1 38 -1 -1 -1 -1 -1 de 4 1j79 1 0.2 1.7	Z	3.5.2.3; HYD ROLASE
2 lppt_ 1 0 2 0 0 #0	Zn 0 -1 -1 -1 -1 -1 -1 2 lppt 0 0.2 1.4	1	CREATIC HORMOPAN
3 1hw7_A 232 2 2 0 0 CC	Zn 2 -1 -1 -1 -1 -1 2 1hw7 0 0.2 2.2		PERONEHA
4 1h7n_A 133 10 3 1 0 CCC	Zn 2 8 -1 -1 -1 -1 -1 4 1h7n 0 0.1 1.6	Z	4.2.1.24; DEH YDRATASE
5 lalr_A 123 48 3 1 0 CCC	Zn 2 46 -1 -1 -1 -1 -1 4 lalr 0 0.2 2.5	Z	AL PARTEIN
6 1i3j_A 151 16 4 0 0 CCCC	Zn 2 11 3 -1 -1 -1 -1 4 1i3j 0 0.1 2.2		3.1; HYMOLASE/DNA
7 2occ_F 60 25 4 0 0 CCCC	Zn 2 20 3 -1 -1 -1 -1 4 2occ 0 0.1 2.3		1.9.3.1; OXMOREDUCTASE
8 1e3j_A 96 14 4 0 0 CCCC	Zn 3 3 8 -1 -1 -1 -1 4 le3j 0 0.2 2.3		doredu ox ase
9 1het_A 97 14 4 0 0 CCCC	Zn 3 3 8 -1 -1 -1 -1 4 lhet 0 0.2 1.1		1.1.1; OMMREDUCTASE
10 1zme_C 34 16 4 0 1 CCCC	Zn 3 7 6 -1 -1 -1 -1 5 1zme 0 0.4 2.5	J	CROMEX (TRANSCR
11 1hwt_C 64 17 4 0 1 CCCC	Zn 3 7 7 -1 -1 -1 -1 5 lhwt 0 0.3 2.5	J	PTONK (ACTIVAT
12 1f4l_A 145	Zn 3 10 3 -1 -1 -1 -1 4 1f41 0 0.3 1.9		6.1.1.10; HYD ROLASE
13 ldsz_A1135 20 4 0 0 CCCC	Zn 3 14 3 -1 -1 -1 -1 4 1dsz 0 0.1 1.7		INSERIPTION/DN
14 1dcq_A 264 23 4 0 0 CCCC	Zn 3 17 3 -1 -1 -1 -1 4 1dcq 0 0.1 2.1		MET BINDING PR
15 lee8_A 238 23 4 0 0 CCCC	Zn 3 17 3 -1 -1 -1 -1 4 lee8 0 0.1 1.9		DIMMINDING PROT
16 lrmd_ 26 23 4 0 0 CCCC	Zn 3 17 3 -1 -1 -1 -1 4 1rmd 0 0.1 2.1		-HINMADING PROT
17 lzin_ 130 23 4 0 0 CCCC	Zn 3 17 3 -1 -1 -1 -1 4 1zin 0 0.1 1.6		2.7.4.3; PHOSPHOTRANSFERA
18 lvfy_A 192 33 4 0 0 CCCC	Zn 3 27 3 -1 -1 -1 -1 4 lvfy 0 0.1 1.1		NSRART PROTEI
19 1e7l_A 23 38 4 0 0 CCCC	Zn 3 32 3 -1 -1 -1 -1 4 1e71 0 0.1 1.3	[3.1; ENDNUCLEASE
20 lile_ 461 43 4 1 0 CCCC	Zn 3 38 2 -1 -1 -1 -1 5 lile 0 0.8 2.5	Z	NOACAMLETRNA S
21 1hxr_A 23 74 4 0 0 CCCC	Zn 3 68 3 -1 -1 -1 -1 4 1hxr 0 0.1 1.6		ALMETINDING PR
22 lile_ 181 211 4 1 0 CCCC	Zn 3 205 3 -1 -1 -1 -1 5 lile 0 0.7 2.5	Z	NOMMOYL-TRNA S
23 4mt2_ 15 14 4 0 0 CCCC	Zn 4 5 5 -1 -1 -1 -1 4 4mt2 0 0.2 2.0		ALLOMETIONEIN
24 lj8f_A 195 29 4 0 0 CCCC	Zn 5 21 3 -1 -1 -1 -1 4 1j8f 0 0.1 1.7		E GEN ULATION,
25 1qf8_A 109 31 4 0 0 CCCC	Zn 5 23 3 -1 -1 -1 -1 4 lqf8 0 0.1 1.7		2.7.1.37; TRA NSFERASE
26 1d09_B 109 32 4 0 0 CCCC	Zn 5 24 3 -1 -1 -1 -1 4 1d09 0 0.1 2.1		2.1.3.2; TRA NSFERASE
27 1hc7_A 427 34 4 0 0 CCCC	Zn 5 26 3 -1 -1 -1 -1 4 1hc7 0 0.1 2.4		6.1.1.15; AMI NOACYL-TRNA S
28 4mt2_ 7 19 4 0 0 CCCC	Zn 6 2 11 -1 -1 -1 -1 4 4mt2 0 0.1 2.0		ALLOMETIONEIN
29 ldsz_Al171 19 4 0 0 CCCC	Zn 6 10 3 -1 -1 -1 -1 4 ldsz 0 0.1 1.7		INSERIPTION/DN
30 la5t_ 50 15 4 0 0 CCCC	Zn 9 3 3 -1 -1 -1 -1 4 la5t 0 0.1 2.2		2.7.7.7; CZFNINGER
31 1zme_C 34 26 4 0 1 CCCC	Zn 16 3 7 -1 -1 -1 -1 5 1zme 0 0.4 2.5	J	COMLEX (TRANSCR

32 1hwt_C 64 29 4 0 1 CCCC	Zn 17 3 9 -1 -1 -1 -1 5 lhwt 0 0.3 2.5	J		CROMEX (ACTIVAT
33 lpud_ 318 31 4 0 0 CCCH	Zn 2 3 26 -1 -1 -1 -1d 4 lpud 0 0.1 1.9	1	2.4.2.29;	TRA NSFERASE
34 2hrv_A 52 62 4 0 0 CCCH	Zn 2 58 2 -1 -1 -1 -1d 4 2hrv 0 0.1 2.0	-	3.4.22.29;	HYD ROLASE
35 la8h_ 127 20 4 0 0 CCCH	Zn 3 14 3 -1 -1 -1 -1d 4 1a8h 0 0.2 2.0	-	6.1.1.10;	AMI NOACYL-TRNA S
36 lvfy_A 176 27 4 0 0 CCCH	Zn 3 21 3 -1 -1 -1 -1d 4 lvfy 0 0.1 1.1	1		WBRORT PROTEI
37 1a73_A 41 69 4 0 0 CCCH	Zn 59 5 5 -1 -1 -1 -1d 4 1a73 0 0.1 1.8	-		CROMEX (HOMING
38 lfn9_A 51 22 4 0 0 CCHC	Zn 3 17 2 -1 -1 -1e. 4 1fn9 0 0.2 1.8	-		US WIRAL PROT
39 1g73_C 300 27 4 0 0 CCHC	Zn 3 17 7 -1 -1 -1e. 4 1g73 0 0.2 2.0	1		APPOSIS/APOPTO
40 lptq_ 244 28 4 0 0 CCHC	Zn 3 22 3 -1 -1 -1 -1d. 4 1ptq 0 0.3 2.0	1	2.7.1;	PHO SPHOTRANSFERA
41 1a73_A 125 13 4 0 0 CCHC	Zn 7 2 4 -1 -1 -1d. 4 1a73 0 0.2 1.8	1		CROMEX (HOMING
42 lali_A 137 20 4 0 0 CCHH	Zn 3 13 4 -1 -1 -1 -1ee 4 1a1i 0 0.1 1.6	1		CDMEX (ZINC FI
43 lali_A 165 20 4 0 0 CCHH	Zn 3 13 4 -1 -1 -1 -1ee 4 lali 0 0.1 1.6	1		CDMEX (ZINC FI
44 lguq_A 52 112 4 0 0 CCHH	Zn 3 60 49 -1 -1 -1 -1dd 4 1guq 0 0.1 1.8	1	2.7.7.10;	NUC LEOTIDYLTRANS
45 lrmd_ 91 21 4 0 0 CCHH	Zn 5 12 4 -1 -1 -1ee 4 1rmd 0 0.1 2.1			ĐNANDING PROT
46 lali_A 107 22 4 0 0 CCHH	Zn 5 13 4 -1 -1 -1 -1ee 4 1a1i 0 0.1 1.6	I		CPMEX (ZINC FI
47 lclc_ 155 42 4 0 0 CCHH	Zn 18 1 23 -1 -1 -1 -1de 4 1clc 0 0.3 1.9	I	3.2.1.4;	GLY COSYL HYDROLA
48 1g5c_A 32 58 3 1 0 CHC	Zn 55 3 -1 -1 -1 -1 -1 .e. 4 1g5c 0 0.1 2.1	z	4.2.1.1;	LYA SE
49 lekj_D 160 63 3 0 0 CHC	Zn 60 3 -1 -1 -1 -1 -1 .e. 3 lekj 0 0.1 1.9		4.2.1.1	LYASE
50 1g71_A 106	Zn 2 6 3 -1 -1 -1 -1 .e 4 1g71 0 0.2 2.3	1		IREATION
51 1rmd_ 41 23 4 0 0 CHCC	Zn 2 18 3 -1 -1 -1 -1 .d 4 1rmd 0 0.1 2.1			-IRNANDING PROT
52 1d0q_A 40 24 4 0 0 CHCC	Zn 3 18 3 -1 -1 -1 -1 .d 4 1d0q 0 0.2 1.7	1	2.7.7;	TRA NSFERASE
53 ltup_A 176 66 4 0 0 CHCC	Zn 3 59 4 -1 -1 -1 -1 .d 4 ltup 0 0.1 2.2	1		CRIMEX (TUMOR S
54 lvsr_A 66 51 4 0 0 CHCC	Zn 5 2 44 -1 -1 -1 -1 .d 4 lvsr 0 0.2 1.8	1	3.1;	HYD ROLASE
55 1rmd_ 2 29 4 0 0 CHCH	Zn 4 23 2 -1 -1 -1 -1 .d.d 4 1rmd 0 0.1 2.1	1		-BNADING PROT
56 1kev_A 37 113 3 0 0 CHD	Zn 22 91 -1 -1 -1 -1 -1 .e. 3 1kev 1 0.1 2.0	1	1.1.1.2;	OXI DOREDUCTASE
57 le3j_A 41 26 3 1 0 CHE	Zn 25 1 -1 -1 -1 -1 -1 .e. 4 le3j 0 0.2 2.3	z		DOREDICTASE
58 1kev_B 37 113 4 0 0 CHED	Zn 22 1 90 -1 -1 -1 -1 .e 4 1kev 0 0.3 2.0	1	1.1.1.2;	OXI DOREDUCTASE
59 lbs4_C1090 46 3 0 1 CHH	Zn 42 4 -1 -1 -1 -1 -1 .ee 4 lbs4 0 0.1 1.9	l ū	3.5.1.31;	HYD ROLASE
60 levl_A 334 177 3 0 2 CHH	Zn 51 126 -1 -1 -1 -1 .ed 5 1evl 0 0.3 1.5	BU	6.1.1.3;	LIG ASE
61 lczf_B 308 28 2 1 0 DD	Zn 28 -1 -1 -1 -1 -1 -1 3 lczf 1 0.1 1.7	Z	3.2.1.15	HYD ROLASE
62 lfrp_A 118 162 3 1 1 DDE	Zn 3 159 -1 -1 -1 -1 -1 5 1frp 0 0.4 2.0	UZ	3.1.3.11)	HYD ROLASE (PHOSPH
63 lete_B 40 2 2 1 0 DE	Zn 2 -1 -1 -1 -1 -1 3 lete 1 0.3 2.2	Z		OKINE CYT
64 lcy5_A 27 13 2 1 0 DE	Zn 13 -1 -1 -1 -1 -1 -1 3 lcy5 0 0.3 1.3 .b	Z		PTOSECS

65 loto G 14 64 2 0 0 DB	7n 64 1 1 1 1 1 1 2 1ctc 0 0 2 2 2	OVINE CIVI
65 lete_C 14 64 2 0 0 DE	Zn 64 -1 -1 -1 -1 -1 -1 2 lete 0 0.2 2.2	OKINE CYT
66 lamp_ 117 139 3 1 0 DEH	Zn 35 104 -1 -1 -1 -1 -1e 4 lamp 0 0.3 1.8 .b.	Z 3.4.11.10) HYD ROLASE(AMINOP
67 lcg2_A 141 244 3 1 0 DEH	Zn 35 209 -1 -1 -1 -1 -1e 4 1cg2 0 0.2 2.5 .b.	Z 3.4.17.11;
METALLOCARBOXYPE		
68 lqh5_B 58 115 4 1 0 DHDH	Zn 1 75 39 -1 -1 -1 -1 .e.e 5 1qh5 0 0.2 1.5	Z 3.1.2.6; HYD ROLASE
69 lush_ 41 213 4 0 1 DHDQ	Zn 2 41 170 -1 -1 -1 -1 .e 5 lush 0 0.2 1.7	U 3.1.3.5; HYD ROLASE
70 1sml_A 88 137 3 2 0 DHH	Zn 1 136 -1 -1 -1 -1 -1 .ee 5 1sml 0 0.2 1.7	ZZ 3.5.2.6; HYD ROLASE
71 led8_A 327 85 3 0 2 DHH	Zn 4 81 -1 -1 -1 -1 -1 .ee 5 led8 0 0.4 1.8 b	UU 3.1.3.1; HYD ROLASE
72 lew2_A 316 116 3 0 2 DHH	Zn 4 112 -1 -1 -1 -1 .ee 5 1ew2 0 0.4 1.8 b	UU 3.1.3.1 HYD ROLASE
73 lah7_ 55 67 4 1 0 DHHD	Zn 14 49 4 -1 -1 -1 -1 .de. 5 lah7 0 0.2 1.5	Z 3.1.4.3; HYD ROLASE
74 lak0_ 45 75 4 0 0 DHHD	Zn 15 56 4 -1 -1 -1 .de. 4 lak0 0 0.5 1.8	3.1.30.1 END ONUCLEASE
75 lush_ 84 168 4 0 2 DNHH	Zn 32 101 35 -1 -1 -1 -1ed 6 lush 0 0.3 1.7	UU 3.1.3.5; HYD ROLASE
76 lbyf_A 52 74 2 0 2 DO	Zn 74 -1 -1 -1 -1 -1 4 lbyf 1 0.4 2.0	UU ARSUBSINDING PR
77 llam_ 255 79 4 1 1 DODE	Zn 77 0 2 -1 -1 -1 -1 6 llam 0 0.4 1.6	JZ 3.4.11.1 HYD ROLASE (ALPHA
78 lew2_A 42 315 3 0 1 DSD	Zn 50 265 -1 -1 -1 -1 -1 4 lew2 1 0.4 1.8 b	U 3.1.3.1 HYD ROLASE
79 ltaf_B 31 4 2 1 0 ED	Zn 4 -1 -1 -1 -1 -1 -1 3 ltaf 0 0.4 2.0 .b	Z PLEX (TMOM TRA
80 lnoy_B 114 210 2 0 1 ED	Zn 210 -1 -1 -1 -1 -1 3 lnoy 0 0.6 2.2	U 2.7.7.7; COM PLEX (NUCLEOT
81 1d8w_B 234 100 4 0 0 EDHD	Zn 33 27 40 -1 -1 -1 -1d. 4 1d8w 0 0.1 1.6	5.3.1.14; ISO MERASE
82 lqtw_A 145 116 4 1 0 EDHE	Zn 34 37 45 -1 -1 -1 -1d. 5 lqtw 0 0.2 1.0	Z 3.1.21.2; HYD ROLASE
83 3cao_A 26 3 2 0 0 EE	Zn 3 -1 -1 -1 -1 -1 -1 2 3cao 1 0.4 1.6 b.	CTRON THANSPO
84 lec5_A 10 29 3 0 0 EEH	Zn 26 3 -1 -1 -1 -1d 3 lec5 0 0.2 2.5 b	NOVOEPROTEIN
85 lete_C 58 22 2 1 0 EH	Zn 22 -1 -1 -1 -1 -1 .e 3 lete 0 0.6 2.2	Z OKINECYT
86 lcvr_A 152 59 2 1 0 EH	Zn 59 -1 -1 -1 -1 -1 .e 3 lcvr 1 0.5 2.0	Z 3.4.22.37; HYD ROLASE
87 lbf6_A 125 61 3 0 0 EHH	Zn 33 28 -1 -1 -1 -1 -1 .de 3 1bf6 0 0.2 1.7	BREOTRIESTERA
88 ldqs_B 194 93 3 0 2 EHH	Zn 77 16 -1 -1 -1 -1 .ee 5 1dqs 0 0.1 1.8	UU 4.6.1.3; LYA SE
89 le4c_P 73 82 4 1 0 EHHH	Zn 19 2 61 -1 -1 -1 -1 .eee 5 1e4c 0 0.2 1.7	Z 4.1.2.17; ALD OLASE (CLASS
90 1a2p_C 60 2 2 1 0 EK	Zn 2 -1 -1 -1 -1 -1 3 1a2p 0 0.2 1.5 b.	Z 3.1.27; KONNUCLEASE
91 lctt_ 102 30 3 1 0 HCC	Zn 27 3 -1 -1 -1 -1 d 4 lctt 0 0.2 2.2	Z 3.5.4.5) C HYD ROLASE
92 1btk_A 143 22 4 0 0 HCCC	Zn 11 1 10 -1 -1 -1 d 4 1btk 0 0.1 1.6	2.7.1.112; TRA NSFERASE
93 1gpc_ 64 26 4 0 0 HCCC	Zn 13 10 3 -1 -1 -1 -1 e 4 lgpc 0 0.4 2.2	DEMONDING PROT
94 lptq_ 231 49 4 0 0 HCCC	Zn 30 3 16 -1 -1 -1 -1 d 4 lptq 0 0.3 2.0	2.7.1; PHO SPHOTRANSFERA
95 lamp_ 97 82 3 1 0 HDD	Zn 20 62 -1 -1 -1 -1 -1 e 4 lamp 0 0.2 1.8b	Z 3.4.11.10) HYD ROLASE(AMINOP
96 lcg2_A 112 88 3 1 0 HDE	Zn 29 59 -1 -1 -1 -1 e 4 lcg2 0 0.2 2.5b	Z 3.4.17.11; MET ALLOCARBOXYPE

97 lj9y_A 79	42 3 1 0 HDE	Zn 32 10 -1 -1 -1 -1 e	4 1j9y 0 0.2 1.9b Z	3.2.1.78; HYD ROLASE
98 li76_A 147	15 3 0 0 HDH	Zn 2 13 -1 -1 -1 -1 -1 e.e	3 1i76 0 0.1 1.2	3.4.24.34; HYD ROLASE
99 lvhh_ 141	42 3 1 0 HDH	Zn 7 35 -1 -1 -1 -1 e.d	4 lvhh 1 0.1 1.7 z	NANUGING PROTE
100 1lbu_ 154	43 3 1 0 HDH	Zn 7 36 -1 -1 -1 -1 -1 e.d	4 1lbu 0 0.2 1.8 z	3.4.17.8 HYD ROLASE
101 lqtw_A 182	49 3 2 0 HDH	Zn 47 2 -1 -1 -1 -1 -1 e.e	5 lqtw 0 0.2 1.0 .b. ZZ	3.1.21.2; HYD ROLASE
102 2cua_B 117	2 2 0 0 HE	Zn 2 -1 -1 -1 -1 -1 e.	2 2cua 1 0.5 1.6	1.9.3.1; ETERON TRANSPO
103 lili_P 160	4 2 1 0 HE	Zn 4 -1 -1 -1 -1 -1 e.	3 lili 0 0.2 2.3 z	3.4.24.16; HYDROLASE
104 lak0_ 15	166 2 1 0 HE	Zn 166 -1 -1 -1 -1 -1 -1 e.	3 lak0 0 0.3 l.8 .b Z	3.1.30.1 END ONUCLEASE
105 2a0b_ 728	30 3 0 0 HEE	Zn 26 4 -1 -1 -1 -1 -1 e	3 2a0b 1 0.1 1.6	2.7.3; SENSORY TRANSDUC
106 lpyt_B 69	127 3 1 0 HEH	Zn 3 124 -1 -1 -1 -1 -1 d.d	4 lpyt 0 0.4 2.3 .b. Z	3.4.17.1; TER NARY COMPLEX
107 2ctc_ 69	127 3 1 0 HEH	Zn 3 124 -1 -1 -1 -1 -1 d.d	4 2ctc 0 0.2 1.4 .b. Z	3.4.17.1) HYD ROLASE(C-TERM
108 1dq3_A 156	2 2 0 0 НН	Zn 2 -1 -1 -1 -1 -1 de	2 1dq3 0 0.2 2.1	RO HAD E
109 1fio_A 75	3 2 0 0 нн	Zn 3 -1 -1 -1 -1 -1 dd	2 1fio 0 0.2 2.1	BRANEMERROTEIN
110 lhzy_A 201	29 2 2 1 НН	Zn 29 -1 -1 -1 -1 -1 de	5 1hzy 0 0.2 1.3 UZZ	3.1.8.1; HYD ROLASE
111 1j79_A 16	234 3 1 1 HH D	Zn 2 -1 232 -1 -1 -1 -1 ee .	5 1j79 0 0.2 1.7 U Z	3.5.2.3; HYD ROLASE
112 1j98_A 54	72 3 1 0 HHC	Zn 4 68 -1 -1 -1 -1 -1 ee.	4 1j98 0 0.1 1.2 z	NÆHLENG PROTEI
113 1lba_ 17	113 3 1 0 HHC	Zn 105 8 -1 -1 -1 -1 -1 dd.	4 11ba 0 0.6 2.2 Z	3.5.1.28) HYD ROLASE(ACTING
114 lia9_A1751	63 4 0 0 HHCC	Zn 57 2 4 -1 -1 -1 de	4 lia9 0 0.2 2.0	2.7.1.37; TRA NSFERASE
115 1hzy_B 55	246 3 1 1 HHD	Zn 2 244 -1 -1 -1 -1 -1 ee.	5 lhzy 0 0.1 1.3 UZ	3.1.8.1; HYD ROLASE
116 1c7k_A 83	10 3 1 0 HHD	Zn 4 6 -1 -1 -1 -1 ee.	4 lc7k 0 0.1 1.0 z	3.4.24 HYD ROLASE
117 1g12_A 117	13 3 2 0 HHD	Zn 4 9 -1 -1 -1 -1 ee.	5 1g12 0 0.2 1.6b ZZ	3.4.24.20 HYD ROLASE
118 lak0_ 126	27 3 0 1 HHD	Zn 23 4 -1 -1 -1 -1 -1 ee.	4 lak0 0 0.4 l.8b U	3.1.30.1 END ONUCLEASE
119 leu3_A 162	42 3 0 0 HHD	Zn 40 2 -1 -1 -1 -1 de.	3 leu3 1 0.1 1.7	IMMNE SYSTEM
120 lf0j_A 238	154 4 1 0 HHDD	Zn 36 1 117 -1 -1 -1 -1 ee	5 lf0j 0 0.2 1.8 z	3.1.4.17; HYD ROLASE
121 1hs6_A 295	23 3 0 2 HHE	Zn 4 19 -1 -1 -1 -1 ee.	5 1hs6 1 0.2 2.0 UU	3.3.2.6; HYD ROLASE
122 lezm_ 140	24 3 1 0 HHE	Zn 4 20 -1 -1 -1 -1 -1 ee.	4 lezm 1 0.2 1.5 Z	3.4.24.26) HYD ROLASE
123 lili_P 474	29 3 1 0 HHE	Zn 4 25 -1 -1 -1 -1 -1 ee.	4 1i1i 0 0.4 2.3b z	3.4.24.16; HYD ROLASE
124 1dmt_A 583	63 3 0 1 HHE	Zn 4 59 -1 -1 -1 -1 -1 ee.	4 1dmt 0 0.4 2.1b U	3.4.24.11; HYD ROLASE
125 1hr6_B 70	80 3 1 0 HHE	Zn 4 76 -1 -1 -1 -1 -1 ee.	4 1hr6 0 0.1 2.5b Z	3.4.24.64; HYD ROLASE
126 lqtw_A 69	76 3 1 0 HHE	Zn 40 36 -1 -1 -1 -1 -1 ee.	4 1qtw 0 0.1 1.0 z	3.1.21.2; HYD ROLASE
127 lbf6_A 12	231 4 0 0 HHED	Zn 2 111 118 -1 -1 -1 -1 ee	4 lbf6 0 0.3 1.7	PHO SPHOTRIESTERA
128 lpsz_A 67	213 4 0 0 HHED	Zn 72 66 75 -1 -1 -1 -1 ee	4 lpsz 1 0.3 2.0b.	IMM UNE SYSTEM
129 1koq_A 92	19 3 1 0 ннн	Zn 2 17 -1 -1 -1 -1 eed	4 1koq 0 0.2 1.9 Z	4.2.1.1; LYA SE

130 2bc2_A 86	63 3	2	0 ннн	Zn	2	61	-1	-1	-1	-1	-1 ede	5 2bc2	0 0.3 1.7		1	ZZ	3.5.2.6;	HYD	ROLASE
131 1sml_A 84	76 3	1	0 ннн	Zn	2	74	-1	-1	-1	-1	-1 ede	4 1sml	1 0.2 1.7			Z	3.5.2.6;	HYD	ROLASE
132 1i76_A 197	10 3	0	2 ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	5 1i76	0 0.3 1.2			UU	3.4.24.34;	HYD	ROLASE
133 11ml_ 264	70 3	1	0 ннн	Zn	4	66	-1	-1	-1	-1	-1 eee	4 11ml	20 0.4 1.9		1	Z	3.4.24.36	LEI	SHMANOLYSIN
134 1b66_B 23	27 3	0	1 ннн	Zn	25	2	-1	-1	-1	-1	-1 eee	4 1b66	0 0.5 1.9			U	4.6.1.10;	TET	RAHYDROBIOPTE
135 1ton_ 57	42 3	0	0 ннн	Zn	40	2	-1	-1	-1	-1	-1 eee	3 lton	0 0.1 1.8				NUMBER NO	HYD	ROLASE (SERINE
136 lbkc_E 405	10 3	0	2 ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	5 1bkc	0 0.4 2.0			UU		ZN-	-ENDOPEPTIDASE
137 1qh5_B 54	80 4	1	0 нннр	Zn	2	54	24	-1	-1	-1	-1 ede.	5 1qh5	0 0.3 1.5			Z	3.1.2.6;	HYD	ROLASE
138 lmfm_A 63	20 4	0	0 нннр	Zn	8	9	3	-1	-1	-1	-1 ddd.	4 1mfm	1 0.1 1.0		1		1.15.1.1;	OXI	DOREDUCTASE
139 lyai_A 70	21 4	0	0 нннр	Zn	9	9	3	-1	-1	-1	-1 ddd.	4 lyai	1 0.2 1.9		- [1.15.1.1;	OXI	DOREDUCTASE
140 1toa_A 68	211 4	0	0 нннр	Zn	65	66	80	-1	-1	-1	-1 eee.	4 1toa	0 0.3 1.8	b				BIN	DING PROTEIN
141 1lam_ 250	84 4	1	1 KDDE	Zn	5	18	61	-1	-1	-1	-1	6 llam	0 0.4 1.6			JZ	3.4.11.1	HYD	ROLASE (ALPHA
142 1b0n_A 1	63 3	1	0 #OE	Zn	0	63	-1	-1	-1	-1	-1	4 1b0n	1 0.2 1.9			Z		nstr	APTION RE
143 1lam_ 173	98 2	1	0 00	Zn	98	-1	-1	-1	-1	-1	-1	3 llam	22 0.7 1.6		2	Z	3.4.11.1	HYD	ROLASE (ALPHA
144 lpmi_ 111	174 4	1	0 QHEH	Zn	2	25	147	-1	-1	-1	-1 .e.e	5 1pmi	1 0.1 1.7			Z	5.3.1.8	ISO	MERASE
145 ltaf_B 45	0 2	2	0 QQ	Zn	0	-1	-1	-1	-1	-1	-1	4 1taf	0 0.5 2.0)	1	ZZ		PLEX C	OMWO TRA
146 lj9y_A 208	112 4	0	0 RHDE	Zn	3	72	37	-1	-1	-1	-1 .d	4 1j9y	0 0.4 1.9	b.			3.2.1.78;	HYD	ROLASE
147 lak0_ 1	119 4	0	0 #OHD	Zn	0	5	114	-1	-1	-1	-1e.	4 1ak0	0 0.4 1.8				3.1.30.1	END	ONUCLEASE
148 lcal_ 1	129 4	1	0 #OHD	Zn	0	10	119	-1	-1	-1	-1e.	5 1ca1	0 0.5 1.9			Z	3.1.4.3;	HYD	ROLASE
149 lah7_ 1	121 4	1	0 #OHD	Zn	0	13	108	-1	-1	-1	-1e.	5 1ah7	1 0.2 1.5			Z	3.1.4.3;	HYD	ROLASE
150 1fio_A 30	1 3	0	1 ##H	Zn	1	0	-1	-1	-1	-1	-1 . d	3 1fic	0 0.2 2.3	1	E			BRANE	EMROTEIN
151 1qe3_A 2	1 3	3 2	1 ##H	Zn	1	0	-1	-1	-1	-1	-1 . d	5 1qe:	0 0.5 1.	5	1	3 ZZ	3.1.1;	HYD	ROLASE

sd3 sd4 sd5 sd6 sd7 metal | conf efimov nsp np nw nn dons met. sd1 sd2 startaa cngpname 1 1j79_A 139 2 1 0 HH -1 -1 -1 -1 -1 ZN 401 HISA 139 bbbbb 2. 0 0 #0 -1 -1 -1 -1 ZN 1 GLY 2 1ppt_ 1 3 1hw7_A 232 2 2 0 0 CC -1 -1 -1 -1 -1 ZN 240 CYSA 232 bbbk... 4 1h7n_A 133 10 3 1 0 CCC -1 -1 -1 ZN 1342 CYSA 133 bb.kakkbakgbkbb 5 lalr A 123 48 3 1 0 CCC -1 -1 -1 -1 ZN 901 CYSA 123 bbbkkgb-bbbkk 6 1i3j_A 151 16 4 0 0 CCCC -1 -1 -1 ZN 100 CYSA 151 .bbakgbbbkkbabbaakbb 7 2occ F 60 25 4 0 0 CCCC 3 -1 -1 -1 ZN 99 CYSF 60 bbbbbabadbkbbbb.bbbb.bbbbaakgb Zn 8 le3j_A 96 0 0 CCCC -1 -1 ZN 901 CYSA 96 bbaqkbaaaakqdakkbad 9 1het_A 97 14 4 0 0 CCCC Zn -1 -1 -1 -1 ZN 401 CYSA 97 bbagkbaaakbaabkdbkk 10 1zme C 34 4 0 1 CCCC -1 -1 -1 -1 ZN 1 CYSC 34 bbbaaaaakqbbbkjj.bbaa 11 1hwt_C 64 17 4 Ω 1 CCCC -1 -1 -1 -1 ZN 1 CYSC 64 kbbaaaaaagbbbkgbbabbaa 12 1f4l A 145 0 0 CCCC -1 -1 ZN 701 CYSA 145 .bbaakgbbgbbjkbbkakgb 13 1dsz_A1135 20 4 Ω 0 CCCC -1 -1 -1 -1 ZN 1121 CYSA1135 ..baakgbbbkjbbggbbbbaaaaa 14 1dcq_A 264 4 0 0 CCCC -1 -1 -1 ZN 600 CYSA 264 kbbakkgbbgbkbbbakkgbbbbaaaaa 15 1ee8 A 238 23 4 0 0 CCCC -1 -1 ZN 501 CYSA 238 bbbkakgbbbbbbbbgg.bbb.baaadg 16 1rmd_ 26 23 4 0 0 CCCC 3 -1 -1 -1 -1 ZN 118 CYS 26 kbbkakgbbbbbbbbbbbbbbaaaaa -1 -1 ZN 219 CYS 130 bbbaakgbbbbaaa.bbabbgbbaakgb 17 1zin 130 4 0 0 CCCC -1 -1 -1 -1 ZN 300 CYSA 192 bbbkakgb-bbbaaaaa 18 lvfy_A 192 33 4 0 0 CCCC 19 1e71_A 23 4 0 0 CCCC -1 -1 -1 ZN 1165 CYSA 23 gbbaakgb-bbbaaaaa 1 0 CCCC 461 4 -1 -1 ZN 1102 CYS 461 bbba....-bbbak.b 20 lile_ 43 -1 -1 21 1hxr A 4 0 CCCC -1 -1 -1 ZN 200 CYSA 23 bbbkakgb-bbbaakgb 22 lile_ 181 211 4 1 0 CCCC -1 -1 -1 ZN 1101 CYS 181 bbbaaag.-bbbkabkb 3 205 -1 23 4mt2_ 15 14 4 0 0 CCCC -1 -1 -1 -1 ZN 67 CYS 15 bdaggkbkbadbkbkkbdb 3 -1 -1 -1 -1 ZN 1001 CYSA 195 bbbkbakagbbbbaaaaaaaakgbbbbkakgb 24 1j8f_A 195 29 4 0 0 CCCC Zn 25 1qf8 A 109 31 4 0 0 CCCC 3 -1 -1 -1 ZN 216 CYSA 109 jbbkbakkqq-bbbaa... 26 1d09_B 109 32 4 0 0 CCCC -1 -1 -1 ZN 1313 CYSB 109 bbbkbakbaa-bbbaakgb Zn 3 -1 27 1hc7 A 427 4 0 0 CCCC -1 -1 -1 ZN 490 CYSA 427 bbaqbaaaaa-.bbaakqb 28 4mt2_ 19 0 0 CCCC 11 -1 -1 -1 -1 ZN 68 CYS 7 bkbbdkgkbdaggkbkbadbkbkk 4 29 1dsz A1171 19 0 0 CCCC -1 -1 ZN 1122 CYSA1171 bbbk.kgkbbbbakkakabaaaaa 30 la5t_ 50 15 0 0 CCCC -1 -1 -1 ZN 501 CYS 50 akbkdbb.kbbagabaaaaa -1 31 1zme_C 34 26 4 0 1 CCCC 7 -1 -1 -1 ZN 2 CYSC 34 bbbaaaaakgbbbkjj.bbaaaaakgbbbbb

32 1hwt_C	64	29	4	0	1 CCCC	Zn	17	3	9	-1	-1	-1	-1 Zi	1	2 CYSC	C 64	kbbaaaaagbbbkgbbabbaaaaakgkakkbbb
33 1pud_	318	31	4	0	0 CCCH	Zn	2	3	26	-1	-1	-1	-1 Zi	1 400	CYS	318	kkbkbaakka-aaaaa
34 2hrv_A	52	62	4	0	0 СССН	Zn	2	58	2	-1	-1	-1	-1 Zi	ı 143	CYSA	52	bdbkbkb-bbbaa.b
35 la8h_	127	20	4	0	0 CCCH	Zn	3	14	3	-1	-1	-1	-1 Zi	1 1000	CYS	127	bbbaaagbbbbaaabdg.bbabggb
36 lvfy_A	176	27	4	0	0 CCCH	Zn	3	21	3	-1	-1	-1	-1 ZN	301	CYSA	176	kbbkakgbbbbakbbbbbbkakgbbbbaakdk
37 1a73_A	41	69	4	0	0 CCCH	Zn	59	5	5	-1	-1	-1	-1 Zi	1 202	CYSA	41	bbbbb-bkkgbakbkbkkkbb
38 lfn9_A	51	22	4	0	0 CCHC	Zn	3	17	2	-1	-1	-1	-1 Zi	1 1001	CYSA	51	bbbkkkgbbk.baakgbkbbbbbbbkg
39 1g73_C	300	27	4	0	0 CCHC	Zn	3	17	7	-1	-1	-1	-1 ZN	501	CYSC	300	bbbaakgbbbbgbbabbbaaaaaaadakbka
40 lptq_	244	28	4	0	0 ССНС	Zn	3	22	3	-1	-1	-1	-1 Zi	1	2 CYS	244	bbbkakgbbbbjabga.bbbaakgbbbbakkak
41 1a73_A	125	13	4	0	0 CCHC	Zn	7	2	4	-1	-1	-1	-1 Zi	1 201	CYSA	125	akbkjkkkgbkbabbbkb
42 lali_A	137	20	4	0	0 ССНН	Zn	3	13	4	-1	-1	-1	-1 ZN	202	CYSA	137	bbbkakgbbbabaaaaaaakaaag
43 lali_A	165	20	4	0	0 ССНН	Zn	3	13	4	-1	-1	-1	-1 ZN	203	CYSA	165	bbbaakgbbbabaaaaaaakkkb.
44 1guq_A	52	112	4	0	0 ССНН	Zn	3	60	49	-1	-1	-1	-1 ZN	350	CYSA	52	aabkkbbg-kbkkb-bkbb.
45 1rmd_	91	21	4	0	0 ССНН	Zn	5	12	4	-1	-1	-1	-1 Z	N 12	O CYS	91	bbbkbbgbdbbbaakaaaaakbbb
46 lali_A	107	22	4	0	0 ССНН	Zn	5	13	4	-1	-1	-1	-1 ZN	201	CYSA	107	bbbkbakbkbbbabaaaaaaaaaakg
47 lclc_	155	42	4	0	0 ССНН	Zn	18	1	23	-1	-1	-1	-1 ZN	594	CYS	155	kbbgb-bbbgkk-jbba.
48 1g5c_A	32	58	3	1	0 CHC	Zn	55	3	-1	-1	-1	-1	-1 Zi	1001	CYSA	32	bbbkb-bbbbgagk
49 lekj_D	160	63	3	0	0 CHC	Zn	60	3	-1	-1	-1	-1	-1 ZN	4004	CYSD	160	bbbkb-bbbbgbaa
50 1g71_A	106	11	4	0	0 CHCC	Zn	2	6	3	-1	-1	-1	-1 Zi	1 339	CYSA	106	babdbbbgbbbaaaaa
51 1rmd_	41	23	4	0	0 CHCC	Zn	2	18	3	-1	-1	-1	-1 Z	N 11	9 CYS	41	bakgbbbbaaaaaaaaaajdbbaakgb
52 1d0q_A	40	24	4	0	0 CHCC	Zn	3	18	3	-1	-1	-1	-1 Zi	1 151	CYSA	40	.bbkabbbabbkbbbbaakgbb.bkk.gb
53 1tup_A	176	66	4	0	0 CHCC	Zn	3	59	4	-1	-1	-1	-1 ZN	951	CYSA	176	bbbaaaak-bkbbakbbg
54 lvsr_A	66	51	4	0	0 CHCC	Zn	5	2	44	-1	-1	-1	-1 Zi	1 201	CYSA	66	bbaaakgbkbkk-baaaa
55 1rmd_	2	29	4	0	0 CHCH	Zn	4	23	2	-1	-1	-1	-1 Z	N 11	7 CYS		2 .kaakbbbkkkbabdbbaaaaakbbkakgbbb
56 1kev_A	37	113	3	0	0 CHD	Zn	22	91	-1	-1	-1	-1	-1 ZN	353	CYSA	37	bbbaa-bbaa.aa
57 le3j_A	41	26	3	1	0 CHE	Zn	25	1	-1	-1	-1	-1	-1 Zi	1 902	CYSA	41	bbbaaaaaaakg.k.kbbbabbbbbbbbb
58 1kev_B	37	113	4	0	0 CHED	Zn	22	1	90	-1	-1	-1	-1 ZN	353	CYSB	37	bbbaa-bb.b-aa.aa
59 lbs4_Cl	090	46	3	0	1 СНН	Zn	42	4	-1	-1	-1	-1	-1 ZN	2003	CYSC1	090 k	ob.ak-aaaaaakk
60 levl_A	334	177	3	0	2 СНН	Zn	51	126	-1	-1	-1	-1	-1 ZN	1	CYSA	334	bkaaa-b.bbb-bbbbb
61 lczf_B	308	28	2	1	0 DD	Zn	28	-1	-1	-1	-1	-1	-1 ZN	504	ASPB	308	bbgbbbbgbbjbbbkkbbabbbbbbbbbbbbbbbbbbbbb
62 lfrp_A	118	162	3	1	1 DDE	Zn	3	159	-1	-1	-1	-1	-1 ZN	5	ASPA	118	bbbabbga-akaaa
63 lete_B	40	2	2	1	0 DE	Zn	2	-1	-1	-1	-1	-1	-1 Z	N 113	7 ASPB	40	bbbbaaa
64 lcy5_A	27	13	2	1	0 DE	Zn	13	-1	-1	-1	-1	-1	-1 Zi	1 102	ASPA	27	aaaaaaagkbbaaaaaa

```
2
                         0 DE
                                               -1 -1 -1 -1 ZN 2136 ASPC 14 bkkaa-aaaka
65 lete_C 14
               64
                     0
66 lamp
        117
             139
                 3 1
                        0 DEH
                                                       -1 -1 -1 ZN 501 ASP 117 aabda-gakkg-kbgbk
67 lcg2_A 141
             244 3 1 0 DEH
                                                       -1 -1 -1 ZN 500 ASPA 141 aabda-dakdg-gbgbk
                                        35 209
                                               -1
                                                   -1
68 1qh5 B
          58
             115
                  4 1 0 DHDH
                                                           -1 -1 ZN
                                                                      262 ASPB
                                                                                58 bakakk-k.kab-babdk
              213 4 0 1 DHDQ
                                                       -1 -1 -1 ZN
                                                                      600 ASP
69 lush_
          41
                                            41 170
                                                   -1
                                                                                41 b.gaggd-kjgab-.kgbb
70 1sml_A
          88
              137
                  3 2 0 DHH
                                                       -1 -1 -1 ZN
                                                                      268 ASPA
                                                                                88 bakaka-babaa
71 1ed8 A 327
               85
                  3
                     0 2 DHH
                                                -1 -1 -1 -1 ZN 450 ASPA 327 kaaaaaakg-bbbbk
                                    7n
72 1ew2_A 316
             116
                 3
                     0
                        2 DHH
                                                       -1 -1 -1 ZN 1001 ASPA 316 kaaaaaakg-bbbbk
73 lah7
          55
               67
                     1 0 DHHD
                                        14
                                                    -1 -1
                                                           -1 -1 ZN 246 ASP
                                                                                 55 aakkb-akkb.-aaaaaakk
                  4
74 lak0_
                  4
                     0 0 DHHD
                                                    -1 -1 -1 -1 ZN 271 ASP
                                                                                 45 aaaaa-kkkbb-aaaaaaak
75 lush
          84
              168
                  4
                     0 2 DNHH
                                        32 101
                                               35
                                                   -1
                                                       -1 -1 -1 ZN 601 ASP
                                                                                84 kjgab-bbakk-bbda.-b..kg
76 lbyf_A
         52
               74
                  2
                      0 2 DO
                                                    -1 -1 -1 -1 ZN 302 ASPA
                                                                                52 gbbbb-....
77 1lam
         255
               79
                  4
                     1 1 DODE
                                    Zn
                                                        -1
                                                            -1 -1 ZN 488 ASP
                                                                                255 abbkg-bkkdaaa
                                                       -1 -1 -1 ZN 1002 ASPA
78 lew2_A
          42
              315
                  3
                     0
                        1 DSD
                                                                               42 bbbqd-bbaaa-bba.b
                                                        -1 -1 -1 ZN 2001 GLUB
79 1taf B 31
                4
                   2
                      1
                         0 ED
                                     7.n
                                                     -1
                                                                                31 aaaaaaaaa
80 lnoy_B 114
             210
                  2
                     0
                        1 ED
                                               - 1
                                                   -1
                                                        -1
                                                           -1 -1 ZN
                                                                         2 GLUB 114 bbbbb-aaaaa
81 1d8w B 234
             100
                                                              -1 ZN 450 GLUB 234 bbbbb-bbbak-bbbb.-bbdbb
                                                   -1 -1 -1 ZN 303 GLUA 145 bbbbb-bbbaa-.bbbb-bbdbk
82 1qtw_A 145
             116
                 4 1
                       0 EDHE
                                               45
83 3cao_A 26
                         0 EE
                                                    -1 -1 -1 ZN 114 GLUA 26 aaaaaaak
                      0
                        0 EEH
                                                -1 -1 -1 -1 ZN
                                                                        50 GLUA 10 akaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
84 1ec5_A 10
                  3
                      0
85 lete C
         58
                                                            -1 -1 ZN 2135 GLUC 58 aaaaaaadbbaaaaaaaaaaaaaaaaaa
                                                        -1
86 1cvr_A 152
               59
                  2
                     1
                        0 EH
                                                -1 -1
                                                       -1 -1 -1 ZN 731 GLUA 152 bkbj.-b.b.b
87 1bf6_A 125
                  3
                     0 0 EHH
                                                       -1 -1 -1 ZN
                                                                         2 GLUA 125 b.bbb-bbbb-bbgkd
88 ldqs_B 194
               93
                  3
                     0
                        2 EHH
                                               -1
                                                   -1
                                                       -1 -1 -1 ZN
                                                                      402 GLUB 194 aaaaa-bgkaa-bbaaa
89 le4c_P
         73
                         0 EHHH
                                                        -1 -1 -1 ZN
                                                                       999 GLUP
                                                                                90 1a2p_C 60
                2 2
                     1
                         0 EK
                                                 -1
                                                     -1 -1 -1 -1 ZN 112 GLUC
                                                                                60 qakqabb
               30 3
                     1 0 HCC
                                                   -1 -1 -1 -1 ZN 296 HIS
                                                                               102 bbbaaaaaaaaaaakgba.ba.bbbkbbbaaaaa
91 1ctt_ 102
92 1btk_A 143
                 4
                     0 0 HCCC
                                       11
                                             1 10 -1
                                                       -1 -1 -1 ZN
                                                                         1 HISA 143 bbbabbbbgg.baakgbkbakbbbkbb
                                                                                  64 bbbbbbbggbbbbbbbbkakdgdaakbaaaaa
93 1gpc_
          64
                  4
                      0
                        0 HCCC
                                            10
                                                 3
                                                    -1
                                                       -1
                                                            -1 -1 ZN
                                                                         1 HIS
94 1ptq_
         231
                  4
                     0
                         0 HCCC
                                    7.n
                                        30
                                               16
                                                    -1
                                                        -1
                                                            -1
                                                               -1 ZN
                                                                         1 HIS
                                                                                231 ...bb-bbbaakgb-ab...
                         0 HDD
                                                            -1 -1 ZN
                                                                       502 HIS
                                                                                 97 .bbkb-aabda-bbb.k
95 1amp_
          97
                  3
                      1
                                                        -1
                                                                      501 HISA 112 b.bab-aabda-bdbbb
96 1cg2_A 112
               88
                  3
                         0 HDE
                                                    - 1
                                                        -1
                                                            -1
                                                               -1 ZN
97 1j9y_A 79
               42 3
                     1 0 HDE
                                    Zn 32
                                            10
                                               -1 -1 -1 -1 -1 ZN 1003 HISA 79 bbgak-bbbkk-gakjb
```

```
98 1i76_A 147
               15 3 0 0 HDH
                                        2 13 -1 -1 -1 -1 -1 ZN 998 HISA 147 .b.gkgdbbkjbjjba.bbb
 99 lvhh 141
               42 3
                        0 HDH
                                              -1 -1 -1 -1 -1 ZN 400 HIS 141 bkakk-bbbbb-.bbbb
               43 3 1 0 HDH
                                             -1 -1 -1 -1 ZN 214 HIS 154 bkakk-bbbbb-.bbbb
100 1lbu_ 154
101 lqtw A 182
                 3
                                                     -1 -1 -1 ZN 302 HISA 182 aaaaa-gbbbbbb
                       0 HE
                                           -1 -1 -1 -1 -1 ZN 172 HISB 117 bbbbbgb
102 2cua_B 117
                2 2
                     0
103 1i1i_P 160
                4 2 1 0 HE
                                              -1 -1 -1 -1 ZN 702 HISP 160 baaaaaaaa
104 lak0
          15
              166 2 1 0 HE
                                   Zn 166
                                             -1 -1 -1 -1 -1 ZN 274 HIS
                                                                            15 aaakb-aaad.
105 2a0b_
         728
               30
                  3
                     0 0 HEE
                                              -1 -1
                                                     -1 -1 -1 ZN
                                                                   800 HIS
                                                                           728 baaaaaaaaaakdkkbakaaakaaaaaaaaakaa
106 lpyt_B
          69
              127
                 3 1 0 HEH
                                       3 124 -1
                                                -1 -1 -1 -1 ZN 350 HISB
                                                                            69 qkbaadka-bb..b
107 2ctc_
              127 3 1 0 HEH
                                             -1 -1 -1 -1 -1 ZN 308 HIS
                                                                            69 gabakdaa-bbbbb
108 1dq3_A 156
                2 2
                     0 0 HH
                                              -1 -1 -1 -1 ZN 901 HISA 156 bbbaqbb
109 1fio_A 75
                3 2 0 0 HH
                                              -1 -1 -1 -1 ZN 502 HISA 75 aaaaaaaa
110 lhzy_A 201
              29 2 2 1 HH
                                             -1 -1
                                                     -1 -1 ZN 402 HISA 201 bbbbbaakgaaaaaaaakkgbbakkbbbbgak
111 1j79_A 16
              234 3 1 1 HH D
                                          -1 232
                                                 -1
                                                     -1 -1 -1 ZN 400 HISA
                                                                           16 bk.bbkj
112 1i98 A 54
               72
                  3 1 0 HHC
                                   7.n
                                              -1 -1
                                                     -1 -1 -1 ZN 300 HISA
                                                                           54 aaaaaaaaa-akbkd
113 11ba
          17
              113 3 1 0 HHC
                                   Zn
                                                 -1
                                                     -1
                                                         -1 -1 ZN 151 HIS
                                                                            17 bbbbk-bbaka-bkbkg
114 lia9 A1751
                                                        -1 -1 ZN 2001 HISA1751 aaaaa-aabbbbaaaaa
                    0
              246 3 1 1 HHD
                                                 -1 -1 -1 -1 ZN 401 HISB
                                                                           55 bkbbbab-bkgb.
115 1hzy_B 55
116 1c7k A 83
               10 3 1 0 HHD
                                              -1 -1 -1 -1 ZN 133 HISA 83 aaaaaaaakgbbbda
                                   Zn
117 1g12_A 117
              13 3 2 0 HHD
                                             -1 -1 -1 -1 ZN 200 HISA 117 aaaaaaabaak.gbbbab
                                   Zn
118 1ak0 126
               27 3 0
                       1 HHD
                                                     -1 -1 ZN 272 HIS 126 akkdbabggggakbbbbbggbbbaaaaaaaa
                                   Zn
119 1eu3_A 162
               42 3 0
                       0 HHD
                                      40
                                           2 -1 -1 -1 -1 -1 ZN 401 HISA 162 bbbbk-ba.bbbb
                                   Zn
120 lf0j_A 238
              154 4 1 0 HHDD
                                          1 117 -1 -1 -1 -1 ZN 1101 HISA 238 kaaaa-akkkbg-aaadk
121 1hs6_A 295
              23 3 0
                       2 HHE
                                             -1 -1 -1 -1 ZN 701 HISA 295 aaaaaaakab.aabbbabkakaaaaaaa
                                   7,n
122 lezm_ 140
               24 3 1 0 HHE
                                              -1 -1 -1 -1 ZN 300 HIS 140 aaaaakaaaak.agbbdbjaaaaaaaaa
123 1i1i_P 474
              29 3 1 0 HHE
                                             -1
                                                 -1
                                                     -1 -1 ZN 701 HISP 474 aaaaaaaaaaakbbbabakkb.kdbbakkakaa
                                   Zn
              63 3 0 1 HHE
                                             -1 -1 -1 -1 ZN 755 HISA 583 aaaaaaakk-aaaaa
124 1dmt_A 583
125 1hr6_B 70
               80 3 1 0 HHE
                                   7.n
                                             -1 -1 -1 -1 ZN 501 HISB 70 aaaaaaakk-aaaaa
               76 3 1 0 HHE
                                                     -1 -1 -1 ZN 301 HISA
                                                                            69 dbbbb-bbba.-bbbb
126 1qtw_A 69
                                             -1 -1
127 lbf6_A
         12
              231 4 0
                       0 HHED
                                       2 111 118
                                                -1 -1 -1 -1 ZN
                                                                    1 HISA
                                                                           12 bkbbbab-b.bbb-.agbk
                        0 HHED
                                                 -1 -1 -1 -1 ZN 1000 HISA
                                                                           67 bkabb-bkdak-babdk-bakbb
128 1psz_A
          67
              213 4 0
129 1koq_A
         92
               19
                  3
                     1
                        0 HHH
                                             -1 -1
                                                     130 2bc2_A 86
               63 3 2 0 HHH
                                          61 -1 -1 -1 -1 ZN
                                                                     1 HISA 86 ba.dbak-b.aba
```

131 lsml_A 84	76	3	1	0 ннн	Zn	2	74	-1	-1	-1	-1	-1	ZN	269 HIS	A 84	babdbak-b.aba
132 1i76_A 197	10	3	0	2 ннн	Zn	4	6	-1	-1	-1	-1	-1	ZN	999 HIS	A 197	aaaaaaakgbbbbk
133 11ml_ 264	70	3	1	0 ннн	Zn	4	66	-1	-1	-1	-1	-1	ZN	100 HIS	264	aaaaaaaak-gkbbb
134 1b66_B 23	27	3	0	1 ннн	Zn	25	2	-1	-1	-1	-1	-1	ZN	402 HIS	в 23	bb.bbbkabbaaaaaak.akkbakj.bbbb
135 lton_ 57	42	3	0	0 ннн	Zn	40	2	-1	-1	-1	-1	-1	ZN	200 HIS	5 5	7 baakbbbbkbg
136 1bkc_E 405	10	3	0	2 ннн	Zn	4	6	-1	-1	-1	-1	-1	ZN	1 HI	SE 405	aaaaaaaak.bbbbb
137 1qh5_B 54	80	4	1	0 нннр	Zn	2	54	24	-1	-1	-1	-1 2	ZN :	261 HIS	в 54	ba.kbak-b.abk-k.kab
138 lmfm_A 63	20	4	0	0 нннр	Zn	8	9	3	-1	-1	-1	-1	ZN	154 HIS	SA 63	jbbbdakgbbbbbakbabbbakbkj
139 lyai_A 70	21	4	0	0 нннр	Zn	9	9	3	-1	-1	-1	-1	ZN	153 HIS	SA 70	jbbbdakgagbb.bkkbadbbakbbb
140 ltoa_A 68	211	4	0	0 HHHD	Zn	65	66	80	-1	-1	-1	-1 Z	N 5	01 HISA	68	baakb-bkdkk-babdk-bakbb
141 1lam_ 250	84	4	1	1 KDDE	Zn	5	18	61	-1	-1	-1	-1 2	ZN -	489 LYS	250	bbbdbabbkg-kkkka-kdaaa
142 1b0n_A 1	63	3	1	0 #OE	Zn	0	63	-1	-1	-1	-1	-1	ZN 1	.004 MET	A 1	.ka-kbkak
143 1lam_ 173	98	2	1	0 00	Zn	98	-1	-1	-1	-1	-1	-1	ZN	490 THR	173	aabba-kkkk
144 1pmi_ 111	174	4	1	0 QHEH	Zn	2	25	147	-1	-1	-1	-1 Z	N 4	145 GLN	111	bbbbbbb-dbbb-bb.bb
145 ltaf_B 45	0	2	2	0 QQ	Zn	0	-1	-1	-1	-1	-1	-1	ZN 2	2007 GL1	IB 45	aaaaa
146 lj9 _{Y_} A 208	112	4	0	0 RHDE	Zn	3	72	37	-1	-1	-1	-1 Z	N 10	04 ARGA	208	bbbbgbgk-b.bbb-babb.
147 lak0_ 1	119	4	0	0 #OHD	Zn	0	5	114	-1	-1	-1	-1	ZN	273 TRP		1 .baaaaaa-aaaak
148 1cal_ 1	129	4	1	0 #OHD	Zn	0	10	119	-1	-1	-1	-1 2	ZN :	371 TRP	1	.bjaaaa-aaakk
149 lah7_ 1	121	4	1	0 #OHD	Zn	0	13	108	-1	-1	-1	-1 2	ZN :	248 TRP	1	.bd-baaaa-aaakk
150 1fio_A 30	1	3	0	1 ##H	Zn	1	0	-1	-1	-1	-1	-1	ZN	501 ME	ra 3	0aka
151 1qe3_A 2	1	3	2	1 ##H	Zn	1	0	-1	-1	-1	-1	-1	ZN	500 TH	RA	2kgb

no cngpname	nsp np nw nn dons	met sdl sd2 sd3 sd4 sd5 sd6 sd7 his cn pdb cn2 rms res carbi othdon ecno	
1 ldps_K 140	2 2 2 0 OD	Na 2 -1 -1 -1 -1 -1 -1 5 1dps 0 0.3 1.6 ZZ	-BI NNA NG PROT
2 le43_A 159	42 5 0 0 DDDDO	Na 24 11 6 1 -1 -1 -1 5 1e43 0 0.2 1.7b 3.2.1.1;	HYD ROLASE
3 lhx6_A 143	6 3 3 0 DND	Na 3 3 -1 -1 -1 -1 -1 6 1hx6 0 0.1 1.6 ZZZ	USTRIRAL PROT
4 ldp0_A 201	403 3 2 0 DON	Na 400 3 -1 -1 -1 -1 5 1dp0 0 0.2 1.7 ZZ 3.2.1.23;	HYD ROLASE
5 1g29_1 82	75 3 0 0 DOO	Na 74 1 -1 -1 -1 -1 3 1g29 0 0.6 1.9	AR BEINDING PR
6 lqus_A 237	14 5 0 0 DSDOD	Na 2 2 2 8 -1 -1 -1 5 1qus 1 0.1 1.7b 3.2.1;	HYD ROLASE
7 lhx6_B 111	150 2 4 0 EE	Na 150 -1 -1 -1 -1 -1 -1 6 1hx6 0 0.2 1.6 ZZZZ	VIRUS/VIRAL PROT
8 1g29_1 11	42 2 1 0 KE	Na 42 -1 -1 -1 -1 -1 3 1g29 0 0.2 1.9 Z	AR BISNIGEING PR
9 lhzy_A 38	116 2 4 0 NO	Na 116 -1 -1 -1 -1 -1 -1 6 1hzy 1 0.5 1.3 ZZZZ 3.1.8.1;	HYD ROLASE
10 leyz_A 100	3 3 3 0 NOO	Na 1 2 -1 -1 -1 -1 6 leyz 0 0.3 1.8 ZZZ 2.1.2;	TRA NSFERASE
11 ldps_A 140	2 2 3 0 OD	Na 2 -1 -1 -1 -1 -1 5 1dps 0 0.3 1.6 ZZZ	-BNADING PROT
12 lsvy_ 187	23 3 1 0 ODE	Na 1 22 -1 -1 -1 -1 -1 4 1svy 1 0.2 1.8b Z	INACEINDING PR
13 lgof_ 29	113 7 0 0 ODOOTOE	Na 3 2 3 0 104 1 -17 1gof 0 0.3 1.7 1.1.3.9) (OXI DOREDUCTASE(O
14 1g29_2 181	0 2 0 0 OE	Na 0 -1 -1 -1 -1 -1 2 1g29 0 0.2 1.9	AR BINÐUNG PR
15 let1_B 1	3 2 0 0 OE	Na 3 -1 -1 -1 -1 -1 -1 2 let1 0 0.5 0.9 .b	MONE/GROWHOUR F
16 1cm5_B 654	47 3 0 0 OEO	Na 46 1 -1 -1 -1 -1 -1 3 lcm5 1 0.2 2.3 2.3.1.54;	TRA NSFERASE
17 2occ_A 40	401 4 0 0 OEOO	Na 0 5 396 -1 -1 -1 -1 4 2occ 0 0.1 2.3 1.9.3.1;	OXI DOREDUCTASE
18 lebf_B 143	7 5 0 0 OEOOO	Na 0 3 2 2 -1 -1 -1 5 lebf 0 0.3 2.3 1.1.1.3;	OXI DOREDUCTASE
19 1hx6_A 262	0 2 3 0 ON	Na 0 -1 -1 -1 -1 -1 -1 5 1hx6 0 0.2 1.6 ZZZ	US//IRIRAL PROT
20 1c9o_A 20	3 2 4 0 00	Na 3 -1 -1 -1 -1 -1 -1 6 1c9o 1 0.1 1.2 ZZZZ	NERTERIPTION
21 1cm5_A 652	49 4 0 0 OOEO	Na 2 46 1 -1 -1 -1 -1 4 1cm5 0 0.1 2.3 2.3.1.54;	TRA NSFERASE
22 1bpy_A 60	5 3 2 1 000	Na 2 3 -1 -1 -1 -1 -1 6 lbpy 0 0.4 2.2 UZZ 2.7.7.7;	COM PLEX (NUCLEOT
23 1bpy_A 101	5 3 2 1 000	Na 2 3 -1 -1 -1 -1 -1 6 lbpy 0 0.5 2.2 UZZ 2.7.7.7;	COM PLEX (NUCLEOT
24 1c24_A 74	157 3 1 0 000	Na 2 155 -1 -1 -1 -1 -1 4 1c24 1 0.4 1.7 Z 3.4.11.18;	HYD ROLASE
25 ldp0_A 556	6 3 2 0 000	Na 3 3 -1 -1 -1 -1 -1 5 ldp0 1 0.2 1.7 ZZ 3.2.1.23;	HYD ROLASE
26 1g3k_A 157	6 3 3 0 000	Na 3 3 -1 -1 -1 -1 -1 6 1g3k 0 0.2 1.9 ZZZ 3.4.99;	HYD ROLASE
27 ldp0_B 932	38 3 1 0 000	Na 35 3 -1 -1 -1 -1 -1 4 1dp0 0 0.3 1.7 Z 3.2.1.23;	HYD ROLASE
28 lf6d_C 298	54 3 0 0 000	Na 52 2 -1 -1 -1 -1 3 1f6d 2 0.5 2.5 5.1.3.14;	ISO MERASE
29 1qop_B 232	76 3 2 0 000	Na 74 2 -1 -1 -1 -1 5 lqop 0 0.1 1.4 ZZ 4.2.1.20;	LYA SE
30 ldp0_B 647	23 3 2 1 000	Na 3 20 -1 -1 -1 -1 -1 7 1dp0 0 0.4 1.7 X ZZ 3.2.1.23;	HYD ROLASE
31 1lla_ 507	71 4 2 0 000D	Na 3 68 0 -1 -1 -1 -1 6 1lla 0 0.3 2.2 ZZ	CHANY TRANSPORT

32 1dp0_C 556	6	4	2	0 0000	Na	3	1	2	-1	-1	-1	-1	6 1dp0	0 0.4 1.7		ZZ	3.2.1.23;	HYD	ROLASE
33 1gen_ 478	142	4	1	1 0000	Na	45	48	49	-1	-1	-1	-1	6 1gen	0 0.3 2.2		JZ	3.4.24.24;	HYD	ROLASE (METAL
34 1hxn_ 236	140	4	1	0 0000	Na	45	52	43	-1	-1	-1	-1	5 1hxn	0 0.3 1.8		Z		BINDI	ING PROTEIN
35 1e39_A 506	30	5	1	0 00000	Na	1	1	26	2	-1	-1	-1	6 1e39	0 0.3 1.8		Z		FUM .	ARATE REDUCTA
36 1gdo_A 154	20	3	2	0 00S	Na	20	0	-1	-1	-1	-1	-1	5 1gdo	0 0.2 1.8		ZZ	2.6.1.16;	COM	PLEX (TRANSFE
37 1d7u_A 95	7	5	0	0 00T00	Na	3	0	1	3	-1	-1	-1	. 5 1d7u	0 0.3 2.0			4.1.1.64;	LYA	SE
38 lpox_B 452	3	2	1	0 OQ	Na	3	-1	-1	-1	-1	-1	-1	3 1pox	20 0.4 2.1	 -	Z	1.2.3.3) M	OXI	DOREDUCTASE(O
39 1ewn_A 149	28	5	1	0 osooo	Na	22	1	2	3	-1	-1	-1	6 lewn	1 0.1 2.1		Z	3.2.2.21;	HYD	ROLASE/DNA
40 lcfb_ 679	64	4	1	0 SOON	Na	1	60	3	-1	-1	-1	-1	5 lcfb	0 0.3 2.0		Z		R ATE UA	ADHESION

met sd1 sd2 sd3 sd4 sd5 sd6 sd7 metal | conf efimov cngpname nsp np nw nn dons startaa 1 ldps_K 140 2 2 2 0 OD -1 -1 -1 -1 NA 11 LYSK 140 kbabaaa 2 1e43 A 159 42 5 0 0 DDDDO 1 -1 -1 -1 NA 505 ASPA 159 kba.b-.bbbb-bkabab.bbbbk -1 -1 -1 -1 NA 705 ASPA 143 b.bakgabb.b 3 1hx6 A 143 6 3 3 0 DND 4 1dp0_A 201 403 3 2 0 DON -1 -1 -1 -1 NA 3101 ASPA 201 dbb.b-.kkkbkba 5 1q29 1 82 75 3 0 0 DOO 1 -1 -1 -1 -1 -1 NA 422 ASP1 82 kbdbb-aakgba 6 laus A 237 14 5 0 0 DSDOD 8 -1 -1 -1 NA 400 ASPA 237 bbbkagkgbbbkkbaaaaa 7 1hx6 B 111 150 2 4 0 EE -1 -1 -1 -1 -1 NA 706 GLUB 111 .bbbb-bbbbb 8 1g29_1 11 42 2 1 0 KE -1 -1 -1 -1 -1 NA 112 LYS1 11 bbbbb-gabbb 9 1hzy_A 38 116 2 4 0 NO -1 -1 -1 -1 -1 NA 405 ASNA 38 bbbbk-aaaaa 10 leyz A 100 3 3 3 0 NOO -1 -1 -1 -1 NA 961 ASNA 100 gbbbba.a 11 1dps_A 140 2 2 3 0 OD -1 -1 -1 -1 NA 1 LYSA 140 kbabaaa 12 1svy 187 23 3 0 ODE -1 -1 -1 -1 NA 2 GLY 187 bkkbbbbbbk.kbbbbbbbbbbbbbbbbakbbaaaaa 13 1gof_ 29 113 7 0 0 ODOOTOE 0 104 1 -1 NA 702 LYS 29 akakdagbkabbb-bbabbb -1 -1 -1 -1 NA 265 GLU2 181 aaaaa 14 1g29_2 181 0 2 0 0 OE 15 1et1 B 1 3 2 0 0 OE -1 -1 -1 -1 -1 NA 101 SERB 1 kaaaa 1 -1 -1 -1 -1 NA 1057 LEUB 654 aabba-kbajba 16 1cm5_B 654 47 3 0 0 OEO 17 2occ A 40 401 4 0 0 OEOO Na -1 -1 -1 -1 NA 519 GLUA 40 aaakkbbjba-qbkbb 2 -1 -1 -1 NA 2114 GLUB 143 bdakabg.kbda 18 lebf_B 143 7 5 0 0 OEOOO 19 1hx6_A 262 0 2 3 0 ON Na -1 -1 -1 -1 NA 703 ASNA 262 bbbbb 20 1c9o_A 20 4 0 00 -1 -1 -1 -1 NA 101 VALA 20 bbbbgbbb 3 2 -1 21 1cm5 A 652 4 0 OOEO 1 -1 -1 -1 NA 1056 ALAA 652 aaaabba-kbajba 22 1bpy_A 60 5 3 2 1 000 -1 -1 -1 -1 NA 342 LYSA 60 aaakbbgbba 23 1bpy_A 101 5 3 2 1 000 3 -1 -1 -1 -1 NA 341 THRA 101 aakkbbgbba 157 3 1 0 000 -1 -1 -1 -1 -1 NA 501 ASNA 74 bb.kba.-bbbbb 24 1c24_A 74 25 1dp0 A 556 6 3 2 0 000 3 -1 -1 -1 -1 NA 3102 PHEA 556 aaaaabakbki 26 1g3k_A 157 6 3 3 0 000 3 -1 -1 -1 -1 NA 500 GLYA 157 aaakabkkbbk Na 27 1dp0 B 932 38 3 1 0 000 3 -1 -1 -1 -1 NA 3103 PROB 932 abb.b-aaakkbkb 28 1f6d C 298 54 3 0 0 000 2 -1 -1 -1 -1 NA 3378 PROC 298 aakkk-...kbbb 29 1gop B 232 76 3 2 0 000 -1 -1 -1 NA 501 GLYB 232 bbaag-dkbk..b 30 ldp0_B 647 23 3 2 1 000 -1 31 111a_ 507 71 4 2 0 OOOD 0 -1 -1 -1 NA 631 SER 507 akbkkbba-gkada

32	1dp0_C	556	6	4	2	0	0000	Na	3	1	2	-1	-1	-1	-1 NA	3102	PHEC	556	aaaaabakbkj
33	1gen_	478	142	4	1	1	0000	Na	45	48	49	-1	-1	-1	-1 NA	304	ILE	478	abbbb-a.bbb-a.bbb
34	1hxn_	236	140	4	1	0	0000	Na	45	52	43	-1	-1	-1	-1 NA	4	SER	236	bbk.b-bba.b-bbabbba.b
35	1e39_A	506	30	5	1	0	00000	Na	1	1	26	2	-1	-1	-1 NA	810	THRA	506	.bbab.
bbbb	kkgbbbbl	kgbbbl	bgbbbb	jkak	obg														
36	1gdo_A	154	20	3	2	0	oos	Na	20	0	-1	-1	-1	-1	-1 NA	300	GLYA	154	bb.bbbbbbbkkdkkbbbbbbbdgb
37	1d7u_A	95	7	5	0	0	00T00	Na	3	0	1	3	-1	-1	-1 NA	43	5 ALA	A 9	5 aaaakbbbgbab
38	lpox_B	452	3	2	1	0	QQ	Na	3	-1	-1	-1	-1	-1	-1 NA	614	METE	452	aaakaaka
39	1ewn_A	149	28	5	1	0	0S000	Na	22	1	2	3	-1	-1	-1 NA	501	META	149	aaakbbbgbbbbbbbgg.bbbbbbbbbbbbbbbbbbbbbb
40	1cfb_	679	64	4	1	0	SOON	Na	1	60	3	-1	-1	-1	-1 NA	!	5 SER	67	9 bbbbgbakkag.b

no cngpname	nsp np nw nn dons	met sdl sd2 sd3 sd4 sd5 sd6 sd7 his cn pdb cn2 rms res carbi othdon ecno	
1 1bup_A 10	5 2 2 3 DO	K 5 -1 -1 -1 -1 -1 -1 7 lbup 1 0.3 1.7 b. UUUZZ	HYPOLASE
2 la9x_E4841	2 2 0 2 EN	K 2 -1 -1 -1 -1 -1 4 la9x 0 0.3 1.8 b. UU	DOTRMNSFERASE
3 la9x_A 215	32 6 0 0 ENOOOS	K 21 2 1 3 5 -1 -16 la9x 0 0.2 1.8	AMDOTRANSFERASE
4 la9x_A 761	31 5 0 0 EOOOS	K 22 1 3 5 -1 -1 -1 5 la9x 0 0.2 1.8	DAMIRANSFERASE
5 la9x_C2217	68 5 2 1 ETNNQ	K 27 39 0 2 -1 -1 -1 8 la9x 0 0.5 1.8 UZZ	AMI DOTRANSFERASE
6 la9x_E4217	68 4 1 1 ETNQ	K 27 39 2 -1 -1 -1 -1 6 la9x 0 0.4 1.8 UZ	AMIDOTRANSFERASE
7 ljf8_A 13	52 5 2 0 NOSOD	K 23 0 27 2 -1 -1 -1 7 1jf8 0 0.2 1.1 ZZ	DØREDUCTASE
8 lbup_A 199	7 5 1 1 ODOTD	K 0 5 0 2 -1 -1 -1 7 lbup 0 0.3 1.7 UZ	HYROLASE
9 la9x_G6126	174 4 3 0 OEEO	K 1 172 1 -1 -1 -1 -1 7 1a9x 1 0.3 1.8 ZZZ	AMI DOTRANSFERASE
10 1a9x_C2126	175 5 3 0 OEEON	K 1 172 1 1 -1 -1 -1 8 1a9x 0 0.3 1.8 ZZZ	AMI DOTRANSFERASE
11 1k4c_C 77	1 2 0 1 00	K 1 -1 -1 -1 -1 -1 3 1k4c 40 0.3 2.0 J	BRANEMERROTEIN
12 1k4c_C 76	1 2 0 2 00	K 1 -1 -1 -1 -1 -1 4 1k4c 40 0.3 2.0 JJ	BRANMEMPROTEIN
13 1k4c_C 75	1 2 0 2 00	K 1 -1 -1 -1 -1 -1 4 1k4c 40 0.3 2.0 JJ	BRANMEMPROTEIN
14 1guq_A 153	13 2 5 0 00	K 13 -1 -1 -1 -1 -1 7 lguq 0 0.2 1.8 ZZZZZ 2.7.7.10;	NUC LEOTIDYLTRANS
15 1a9x_D3516	96 2 2 0 00	K 96 -1 -1 -1 -1 -1 . 4 la9x 0 0.2 1.8 ZZ	DAMIRANSFERASE
16 lad1_B 75	4 3 2 0 000	K 2 2 -1 -1 -1 -1 5 ladl 0 0.4 2.2 ZZ 2.5.1.15;	TRA NSFERASE
17 laop_ 362	35 4 3 0 000N	K 33 1 1 -1 -1 -1 -1 7 laop 0 0.3 1.6 ZZZ 1.8.1.2;	OXI DOREDUCTASE
18 2irf_J 685	6 4 0 0 0000	K 1 2 3 -1 -1 -1 4 2irf 20 0.1 2.2	E REGULEATION/
19 lelu_A 316	6 4 1 0 0000	K 1 2 3 -1 -1 -1 5 lelu 0 0.3 1.5 Z	SE LYA
20 lg8m_A 426	164 6 0 0 OOSSDO	K 3 2 2 107 50 -1 -16 1g8m 0 0.2 1.8 2.1.2.3, 3	TRA NSFERASE, HYD
21 1a9x_E4084	30 3 2 0 OOT	K 28 2 -1 -1 -1 -1 -1 5 la9x 0 0.3 1.8 ZZ	AMOTRANSFERASE
22 la9x_C2084	30 3 1 0 OOT	K 28 2 -1 -1 -1 -1 -1 5 la9x 0 0.5 1.8 Z	AMOTRANSFERASE
23 leex_A 261	19 4 2 0 OSEE	K 3 1 15 -1 -1 -1 -1 6 leex 0 0.2 1.7b. ZZ 4.2.1.28;	LYA SE
24 1d7u_A 78	229 5 1 0 OSOOD	K 2 223 2 2 -1 -1 -1 6 1d7u 0 0.2 2.0 Z 4.1.1.64;	LYA SE
25 1k4c_C 75	0 2 0 1 OT	K 0 -1 -1 -1 -1 -1 3 1k4c 40 0.3 2.0 J	BRANEMERROTEIN
26 la9x_E4143	1 3 3 0 OTO	K 0 1 -1 -1 -1 -1 -1 6 1a9x 0 0.3 1.8 ZZZ	AMTRANSFERASE
27 ljdr_A 176	23 7 0 0 OTTONOE	о к 0 16 2 0 3 2 -17 1jdr 0 0.2 1.5 1.11.1.5;	OXI DOREDUCTASE
28 leex_A 141	221 5 0 2 QEEQO	K 29 51 75 66 -1 -1 -1 7 leex 0 0.5 1.7 UU 4.2.1.28;	LYA SE

no cngpname	nsp np nw nn dons	met sd1 sd2 sd3 sd4 sd5 sd6 sd7 metal startaa conf_efimov
1 1bup_A 10	5 2 2 3 DO	K 5 -1 -1 -1 -1 -1 K 490 ASPA 10 bbbbbaabbb
2 1a9x_E4841	2 2 0 2 EN	K 2 -1 -1 -1 -1 -1 K 5912 GLUE4841 babbbd.
3 1a9x_A 215	32 6 0 0 ENOOOS	K 21 2 1 3 5 -1 -1 K 1903 GLUA 215 bbbbb-bbbabbbgbbaakbbb
4 la9x_A 761	31 5 0 0 EOOOS	K 22 1 3 5 -1 -1 -1 K 1913 GLUA 761 bbbbb-babbbgbbakkbbb
5 la9x_C2217	68 5 2 1 ETNNQ	K 27 39 0 2 -1 -1 -1 K 3942 GLUC2217 bbbbb-bbakk-bbbbbbb
6 la9x_E4217	68 4 1 1 ETNQ	K 27 39 2 -1 -1 -1 -1 K 5942 GLUE4217 bbbbb-bbakk-bbbbbbb
7 ljf8_A 13	52 5 2 0 NOSOD	K 23 0 27 2 -1 -1 -1 K 133 ASNA 13 akgabbbbb-kbbbbbb
8 1bup_A 199	7 5 1 1 ODOTD	K 0 5 0 2 -1 -1 -1 K 491 ASPA 199 bbbb.akbbbbb
9 la9x_G6126	174 4 3 0 OEEO	K 1 172 1 -1 -1 -1 K 7904 ALAG6126 aaaaba-ba.bbd
10 la9x_C2126	175 5 3 0 OEEON	K 1 172 1 1 -1 -1 -1 K 3904 ALAC2126 aaaaba-ba.bbd.
11 1k4c_C 77	1 2 0 1 00	K 1 -1 -1 -1 -1 -1 K 3001 GLYC 77 gagaga
12 1k4c_C 76	1 2 0 2 00	K 1 -1 -1 -1 -1 -1 K 3002 VALC 76 kgagag
13 1k4c_C 75	1 2 0 2 00	K 1 -1 -1 -1 -1 -1 K 3003 THRC 75 akgaga
14 1guq_A 153	13 2 5 0 00	K 13 -1 -1 -1 -1 -1 K 353 ASNA 153 bbbb.akkgbkbbb.bb
15 la9x_D3516	96 2 2 0 00	K 96 -1 -1 -1 -1 -1 K 3941 HISD3516 bbb.b-bbgbb
16 lad1_B 75	4 3 2 0 000	K 2 2 -1 -1 -1 -1 K 1 VALB 75 akakbd.bb
17 laop_ 362	35 4 3 0 OOON	K 33 1 1 -1 -1 -1 K 590 ILE 362 bbbbg-bkkgbbb
18 2irf_J 685	6 4 0 0 0000	K 1 2 3 -1 -1 -1 K 4005 METJ 685 aaaaabakbbb
19 lelu_A 316	6 4 1 0 0000	K 1 2 3 -1 -1 -1 K 1001 LEUA 316 aaaaabakbbb
20 1g8m_A 426	164 6 0 0 OOSSDO	K 3 2 2 107 50 -1 -1 K 1001 VALA 426 aaaakbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
21 la9x_E4084	30 3 2 0 OOT	K 28 2 -1 -1 -1 -1 K 5940 ASPE4084 gbabbbkkkd.aaaaaaaaaaakgaaaakgbbbb
22 1a9x_C2084	30 3 1 0 OOT	K 28 2 -1 -1 -1 -1 K 3940 ASPC2084 gbabbbkkkdjaaaaaaaaaaakgaaaakgbbbb
23 leex_A 261	19 4 2 0 OSEE	K 3 1 15 -1 -1 -1 K 604 GLYA 261 bbgaaaakgbkggbbaaaaaaa
24 1d7u_A 78	229 5 1 0 OSOOD	K 2 223 2 2 -1 -1 -1 K 436 LEUA 78 abbbkkb-bbakbgbaa
25 1k4c_C 75	0 2 0 1 OT	K 0 -1 -1 -1 -1 -1 K 3004 THRC 75 akgag
26 la9x_E4143	1 3 3 0 OTO	K 0 1 -1 -1 -1 -1 K 5943 THRE4143 bbbbbb
27 ljdr_A 176	23 7 0 0 OTTONO	O K 0 16 2 0 3 2 -1 K 500 THRA 176 kkkbj.bbaaakgbbjbabadkkbbbka
28 leex_A 141	221 5 0 2 QEEQO	K 29 51 75 66 -1 -1 -1 K 603 GLNA 141 bbbbb-bbbbbadb-bbbbg-abd.b

statistics for 190 Ca coordination groups

N: 0 1 2 3 4 5 6 7 8

Numbers with

total coordn number = N 0 0 2 6 13 36 110 22 1

N protein donor groups 0 0 29 26 45 61 27 2 0

N non-protein donors 51 60 39 26 8 5 1 0 0

(Note: total coord.no includes both Os of bidentate carboxlyate;

numbers of protein and non protein donors treat a -COO group as one donor.

also, reminder: coordination nos >8 not recorded correctly by makseq)

Numbers of cngps with span, min and max segdif =

0 1 2 3 4 5 6 7 8 9 10 10-20-30-40-50-100-150-200-250-500- >1000

2 protein donors in cngp

4 3 5 4 4 0 0 0 0 0 1 0 3 1 0 3 0 1 0 0 0 0 span
4 3 5 4 4 0 0 0 1 0 3 1 0 3 0 1 0 0 0 0 min

3 protein donors in cngp

4 protein donors in cngp

5 protein donors in cngp

6 protein donors in cngp

0 0 0 0 0 0 0 0 1 1 0 5 7 2 1 8 0 1 1 0 0 0 span

7 protein donors in cngp

numbers of each type of donor

D E S T O H C K M N Q R Y W \$
269 109 18 15 305 3 0 0 0 64 13 0 1 0 0

numbers of donor pairs found with each seqdif

0 1 2 3 4 5 6 7 8 9 10 10-20-30-40-50-100-150-200-250-500- >1000

DD 0 3 35 4 3 1 2 0 0 1 0 3 2 1 1 4 2 0 0 0 3 1 2 2 0 0 1 0 0 0 DS 0 0 6 0 0 0 0 0 0 0 0 DT 0 0 3 0 1 0 0 0 0 0 DO 0 19 38 7 1 2 0 0 0 0 0 7 3 13 0 DN 0 4 16 0 0 1 0 0 0 0 DQ 0 0 0 0 0 0 0 0 0 1 0 0 ED 0 0 4 0 1 0 0 0 1 0 0 2 4 1 0 EE 0 1 2 6 1 0 0 0 0 0 0 0 0 0 2 0 EO 0 3 4 1 0 0 0 0 0 0 1 1 3 2 EH 0 0 0 0 0 1 1 0 0 0 0 0 EN 0 0 1 1 0 0 0 0 0 0 2 0 0 SD 0 0 2 0 0 0 0 0 0 0 1 0 0 SE 0 0 1 0 0 0 0 0 0 0 0 0 0 SS 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 3 0 0 0 0 0 0 0 0 0 0 SN 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

TD 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 TO 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 TN 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TO 0 0 0 1 0 0 0 0 0 0 0 0 0 0 OD 12 5 32 12 2 2 0 2 1 2 1 4 2 1 1 0 2 0 0 1 OE 1 1 8 1 0 27 0 0 0 2 0 0 0 0 1 0 0 1 0 os 5 0 3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 OT 7 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 5 38 20 2 2 0 0 0 0 0 2 5 4 5 2 3 1 0 OH 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ON 2 1 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 OY 1 0 0 0 0 0 0 0 0 0 0 0 0 0 HD 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ND 0 4 7 0 0 1 0 0 0 0 0 1 1 2 1 0 0 NE 0 0 0 2 0 0 1 0 1 0 0 0 2 0 0 2. 0 NO 0 3 15 0 0 0 0 0 0 0 0 2 1 1 2 NN 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 OD 0 0 0 0 0 0 0 0 0 0 1 0 4

all 31 56237 68 14 38 4 4 3 5 3 26 28 34 14 22 11 5 2 1 0 0

N:	0	1	2	3	4	5	6	7	8

Numbers with

total coordn number = N 0 0 3 8 7 16 46 1 0

N protein donor groups 0 0 41 31 6 3 0 0 0

N non-protein donors 10 12 9 25 24 1 0 0 0

(Note: total coord.no includes both Os of bidentate carboxlyate;

numbers of protein and non protein donors treat a -COO group as one donor.

also, reminder: coordination nos >8 not recorded correctly by makseq)

Numbers of cngps with span, min and max seqdif =

0 1 2 3 4 5 6 7 8 9 10 10-20-30-40-50-100-150-200-250-500->1000

2 protein donors in cngp

0 5 4 1 2 0 0 0 2 0 0 8 6 0 1 5 5 2 0 0 0 0 span
0 5 4 1 2 0 0 0 8 6 0 1 5 5 2 0 0 0 0 min

3 protein donors in cngp

0 0 0 1 0 0 3 1 1 0 0 1 4 3 3 8 2 1 1 2 0 0 span
0 6 15 3 1 1 0 0 0 0 0 0 1 8 1 4 6 1 2 1 1 0 0 max

4 protein donors in cngp

5 protein donors in cngp

D E S T O H C K M N Q R Y W # 68 37 15 20 51 3 0 1 0 14 3 0 2 0 0

numbers of donor pairs found with each segdif

0 1 2 3 4 5 6 7 8 9 10 10- 20- 30- 40- 50-100-150-200-250- 500- >1000

 $\texttt{OT} \quad \texttt{0} \quad \texttt{1} \quad \texttt{0} \quad \texttt{0}$ 00 0 3 1 14 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ND 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 OD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 QE 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 YO 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

 $\text{all} \quad 0 \ 17 \ 28 \ 14 \quad 4 \quad 2 \quad 1 \quad 0 \quad 2 \quad 0 \quad 0 \quad 11 \quad 17 \quad \quad 2 \quad \quad 5 \quad 13 \quad \quad 9 \quad \quad 5 \quad \quad 1 \quad \quad 2 \quad \quad 0 \quad \quad 0$

	N:	0	1	2	3	4	5	6	7	8
Numbers with										
total coordn number = N	0	0	0	0	3	13	18	3	0	
N protein donor groups	0	0	11	14	11	1	0	0	0	

(Note: total coord.no includes both Os of bidentate carboxlyate;

numbers of protein and non protein donors treat a -COO group as one donor.

also, reminder: coordination nos >8 not recorded correctly by makseq)

Numbers of cngps with span, min and max seqdif =

2 protein donors in cngp

N non-protein donors

1 3 15 13 4 1 0 0 0

3 protein donors in cngp

4 protein donors in cngp

5 protein donors in cngp

D E S T O H C K M N Q R Y W

numbers of donor pairs found with each segdif

0 1 2 3 4 5 6 7 8 9 10 10- 20- 30- 40- 50-100-150-200-250- 500- >1000

DD 0 0 4 0 1 2 0 0 0 1 0 1 0 1 3 2 1 0 0 0 0 DE 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 $\ \, \text{DS} \ \, 0$ DO 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 DH 0 1 2 0 2 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 EE 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 ES 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 EO 0 1 0 0 1 0 0 0 0 0 0 0 0 EH 0 0 0 0 0 0 0 0 0 0 0 0 1 EN 0 0 1 0 0 0 0 0 0 0 0 0 0 SD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OD 0 1 0 0 0 0 0 0 0 0 0 0 0 $\ \, \text{HD} \ \, 0 \ \, 0 \ \, 0 \ \, 1 \ \, 0 \ \,$ HH 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 CH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

all 1 6 10 2 6 4 0 0 1 1 0 5 7 6 2 12 6 3 3 1 0 0

statistics for 38 Fe coordination groups

	N:	0	1	2	3	4	5	6	7	8
Numbers with										
total coordn number = N	0	0	0	0	12	10	16	0	0	
N protein donor groups	0	0	7	9	16	5	1	0	0	
N non-protein donors	10	12	6	5	5	0	0	0	0	

(Note: total coord.no includes both Os of bidentate carboxlyate;

numbers of protein and non protein donors treat a -COO group as one donor.

also, reminder: coordination nos >8 not recorded correctly by makseq)

Numbers of cngps with span, min and max seqdif =

0 1 2 3 4 5 6 7 8 9 10 10- 20- 30- 40- 50-100-150-200-250- 500- >1000

2 protein donors in cngp

0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 1 0 1 0 0 span
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 min

3 protein donors in cngp

4 protein donors in cngp

5 protein donors in cngp

6 protein donors in cngp

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 span

numbers of each type of donor

D E S T O H C K M N Q R Y W # 11 30 0 0 5 60 20 0 3 1 0 0 5 0 1

numbers of donor pairs found with each segdif

0 1 2 3 4 5 6 7 8 9 10 10- 20- 30- 40- 50-100-150-200-250- 500- >1000 $\ \ \, \mathsf{DD} \ \ \, \mathsf{0} \ \ \,$ DE 0 0 0 0 0 0 0 0 0 0 0 1 0 DO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 DH 0 1 0 0 0 1 0 0 0 0 0 0 0 ED 0 0 0 0 0 0 0 0 0 0 0 0 0 1 EE 0 0 0 0 0 0 0 0 0 0 0 6 EO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 EH 0 0 1 7 0 0 0 0 0 0 0 1 0 EY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HE 0 0 2 0 1 0 0 0 0 0 0 0 0 0 2 4 0 1 0 0 1 HH 0 0 2 0 2 4 2 0 0 0 0 1 5 1 1 2 HC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CH 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CC 0 1 0 6 0 0 0 0 0 0 0 2 1 1 0 0 0 0 1 0 0 C# 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NH 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 YH 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 all 0 3 6 16 3 5 2 0 0 0 0 8 7 12 5 17 3 6 1 2 0 0

statistics for 37 Cu coordination groups

N: 0 1 2 3 4 5 6 7 8

Numbers with

total coordn number = N 0 0 0 9 17 11 0 0 0

N protein donor groups 0 0 1 21 15 0 0 0 0

N non-protein donors 16 18 3 0 0 0 0 0 0

(Note: total coord.no includes both Os of bidentate carboxlyate;

numbers of protein and non protein donors treat a -COO group as one donor.

also, reminder: coordination nos >8 not recorded correctly by makseq)

Numbers of cngps with span, min and max segdif =

0 1 2 3 4 5 6 7 8 9 10 10- 20- 30- 40- 50-100-150-200-250- 500- >1000

2 protein donors in cngp

3 protein donors in cngp

0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 4 0 0 span

1 3 4 1 5 1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 min

0 1 0 0 1 0 0 0 0 0 0 0 0 2 5 1 5 0 2 1 3 0 0 max

4 protein donors in cngp

numbers of each type of donor

D E S T O H C K M N Q R Y W # 1 0 0 0 3 80 26 0 10 0 2 0 1 0 2

0 1 2 3 4 5 6 7 8 9 10 10- 20- 30- 40- 50-100-150-200-250- 500- >1000

all 1 4 12 3 12 13 1 3 0 1 0 0 3 9 6 12 0 2 1 5 0 0

statistics for 151 Zn coordination groups

N: 0 1 2 3 4 5 6 7 8

Numbers with

total coordn number = N 0 0 7 20 89 32 3 0 0

N protein donor groups 0 0 22 54 75 0 0 0 0

N non-protein donors 71 59 19 2 0 0 0 0 0

(Note: total coord.no includes both Os of bidentate carboxlyate;

numbers of protein and non protein donors treat a -COO group as one donor.

also, reminder: coordination nos >8 not recorded correctly by makseq)

Numbers of cngps with span, min and max segdif =

0 1 2 3 4 5 6 7 8 9 10 10-20-30-40-50-100-150-200-250-500->1000

- 2 protein donors in cngp
 - 2 0 5 2 2 0 0 0 0 0 0 1 3 1 0 4 0 1 1 0 0 0 span
- 3 protein donors in cngp
 - 0 2 0 0 0 0 0 0 0 0 4 3 7 2 8 15 7 2 3 1 0 0 span
 - 3 2 12 7 16 0 0 2 1 0 1 1 4 3 0 2 0 0 0 0 0 0 min
 - 0 2 0 0 0 0 3 0 1 1 0 3 8 4 6 14 7 1 3 1 0 0 max
- 4 protein donors in cngp
 - 0 0 0 0 0 0 0 0 0 0 0 12 25 6 3 12 9 3 5 0 0 span
 - 4 5 18 36 5 2 0 0 0 0 0 0 1 2 0 2 0 0 0 0 0 min

numbers of each type of donor

D E S T O H C K M N Q R Y W #

61 45 1 0 9 177 196 2 0 1 4 1 0 0 9

Ω

0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 10-20-30-40-50-100-150-200-250-500- >1000

all 9 9 37 69 29 13 7 8 5 6 6 32 30 19 12 40 15 3 4 1 0 0

statistics for 40 Na coordination groups															
	N: 0 1 2 3 4 5 6 7 8														
Numbers with															
total coordn number = N	0	0	2	5	5	13	13	2	0						
N protein donor groups	0	0	10	16	7	6	0	1	0						
N non-protein donors	12	9	8	8	3	0	0	0	0						
(Note: total coord.no includes both Os of bidentate carboxlyate;															
numbers of protein and non pro	otein	dono	rs tr	reat a	-CO	0 gro	oup as	one	donor	:.					
also, reminder: coordin	nation	nos	>8 1	not re	cord	ed co	orrect	ly by	maks	eq)					

Numbers of cngps with span, min and max seqdif =																						
	0) 1	. 2	3	4	5	6	7	8	9	10	10-	20-	30-	40-	50-100	-150-	200-2	50-	500-	>10	000
2	prot	ein	don	ors	in	cngp)															
	2	0	2	3	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0 span
	2	0	2	3	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0 min
3	prot	ein	don	ors	in	cngp)															
	0	0	0	1	0	2	3	0	0	0	0	0	3	1	1	3	0	1	0	1	0	0 span
	1	4	5	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 min
	0	0	1	5	0	0	0	0	0	0	0	0	3	1	1	3	0	1	0	1	0	0 max
4	prot	ein	don	ors	in	cngp)															
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	2	2	0	0	1	0	0 span
	2	3	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0 min
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2	3	0	0	0	1	0	0 max
5	prot	ein	don	ors	in	cngp)															
	0	0	0	0	0	0	0	2	0	0	0	1	1	1	1	0	0	0	0	0	0	0 span
	2	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 min
	0	0	0	2	0	0	0	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0 max
7	prot	ein	don	ors	in	cngp)															
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0 span

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 max

numbers of each type of donor

D E S T O H C K M N Q R Y W #

16 11 4 2 92 0 0 1 0 6 1 0 0 0

numbers of donor pairs found with each segdif

0 1 2 3 4 5 6 7 8 9 10 10- 20- 30- 40- 50-100-150-200-250- 500- >1000

DE 0 0 0 0 0 0 0 0 0 0 0 DS 0 0 1 0 0 0 0 0 0 0 0 0 0 DO 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Ω 2 0 1 0 1 0 0 0 0 0 SD 0 0 1 0 0 0 0 0 0 0 0 SO 0 2 0 0 0 0 0 0 0 0 TO 0 1 0 0 0 0 0 0 0 0 0 0 0 OD 1 1 2 1 0 0 0 0 1 0 0 OE 3 1 0 1 0 0 0 0 0 0 0 0 0 OS 1 0 0 0 0 0 0 0 0 0 0 1 0 OT 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 4 12 15 0 0 0 0 0 0 0 3 ON 1 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 KE 0 0 0 0 0 0 0 0 0 0 0 0 0 ND 0 0 0 1 0 0 0 0 0 0 0 0 0

statistics for 28 K coordination groups

	N:	0	1	2	3	4	5	6	7	8
Numbers with										
total coordn number = N	0	0	0	2	5	5	6	8	2	
N protein donor groups	0	0	8	4	6	7	2	1	0	
N non-protein donors	5	5	11	5	0	2	0	0	0	

(Note: total coord.no includes both Os of bidentate carboxlyate;

numbers of protein and non protein donors treat a -COO group as one donor.

also, reminder: coordination nos >8 not recorded correctly by makseq)

Numbers of cngps with span, min and max segdif =

0 1 2 3 4 5 6 7 8 9 10 10- 20- 30- 40- 50-100-150-200-250- 500- >1000

2 protein donors in cngp

3 protein donors in cngp

4 protein donors in cngp

5 protein donors in cngp

6 protein donors in cngp

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 span

0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 min
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0 max

7 protein donors in cngp

numbers of each type of donor

D E S T O H C K M N Q R Y W = 7 13 7 9 57 0 0 0 0 9 4 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 10- 20- 30- 40- 50-100-150-200-250- 500- >1000

numbers of donor pairs found with each seqdif

TO 0 1 1 0 0 0 0 0 0 0 0

TN 0 0 0 0 0 0 0 0 0 0

OD 1 0 3 0 0 0 0 0 0 0

os 1 0 2 1 0 2 0 0 0 0

0 2 0 0 0 0 0 0 0 0

DO 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 ET 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 EN 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 SD 0 0 0 0 0 0 0 0 0 0 0 0 0 SE 0 1 0 0 0 0 0 0 0 0 0 0 0 SS 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SO 0 0 0 0 0 0 0 0 0 0 0 1 0 TD 0 0 1 0 0 0 0 0 0 0 0 TT 0 0 0 0 0 0 0 0 0 0 0 1

0

0

0

 $\ \, \text{OT} \ \, 4 \ \, 0 \ \, 2 \ \, 0$

0

0

0

0

0

0

0

 OO
 0
 8
 5
 5
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

all 8 16 19 7 0 4 0 0 0 0 0 3 9 3 0 5 1 2 1 0 0 0

ZN & CA COORDINATION GROUPS IN PROTEINS which occur more than once in 30% cull set

The data includes, for the individual occurrences:
i) amino-acid sequences, starting at relseq=-10; relseq=0 is the first donor amino-acid
ii) sequences of amino-acid types - g is glycine, s is small hydrophobic, h is large hydrophobic, a is acidic, b is basic, p is polar
iii) sequences of (Efimov type) conformations
iv) starting residue number, resolution, PDB header name,
v) coordination group definition (as in Table 3D)
vi) summary of analysis of agreement of torsion angles over selected regions of protein chain; chains are identified by their protein chain numbers (pc) - this is the first number in each row of the tables.
<u>Ca EOOE 2 3 5</u>
<u>Ca QDONOO 39 34 2 2 2</u>
Ca DDDOE, DDDOE 2 2 2 5
Ca DDDOD 2225 and related
<u>Ca DDOO 2 2 2</u>
For Zn coordination groups the data included is like that for Ca, except that details are also given of individual examples of these coordination groups when they occur in proteins in the 90% cull set, and the conformations are described by the categories of Hovmoller et al., using a for helix, b for sheet, g for turn, and j for other.

Zn CCCC 3 17 3

Zn CCCC 338

****** cnqps *******

```
amino-acid sequences ****
 start of selected part of cngroup
 relsea
               -10
                                                10
 1sbw from
          60 A: KSGIOVR EDNINVVEGNEOFISASKSIV
          60 E: KSGIOVR EDNINVVEGNEOFISASKSIV
  lavw from
          60 A: KSRIOVR EHNIDVLEGNEOFINAAKIIT
 1pvt from 460 C: STRTYOVVLGEYDRSVLOGSEOVIPIGDLFV
                                * see below
aa types - acidic, etc **
 relsea
                       -5
                                                1.0
          60 A: bsqhphb aaphphhaqpaphhsssbshh
  1sbw from
  2btc from
          60 E: bsghphb___aaphphhagpaphhsssbshh
          60 A: bsbhphb___apphahhagpaphhpssbhhs
  lavw from
4 1pyt from 460 C: ssbshphhhqahabshhpqsaphhhhqahhh
conformation sequences **
                           0
               -10
                        -5
 relseq
          60 A: . b q b b b b b . . . b . b k k b b k . q b b b b b b b b b
 1sbw from
          60 E: bbgbbbb...babkkbbkgkbbbbbbbbbbbbb
  2btc from
          60 A: babbbbb...babkkbbkgkbbbbbbbbbbbbb
****** protein names (pdb header) ******
1 1sbw at
         70 A
             1.80
                     HYDROLASE/HYDROLASE INHIBITOR Trypsin-like serine proteases
  2btc at
        70 E
             1.50
                     HYDROLASE/HYDROLASE INHIBITOR Trypsin-like serine proteases
  lavw at
        70 A
             1.75
                     COMPLEX (PROTEINASE/INHIBITOR) Trypsin-like serine proteases
4 1pyt at 470 C 2.35
                     TERNARY COMPLEX (ZYMOGEN)
                                          Trypsin-like serine proteases
```

2 1	EOOE	Ca	2	3	5	-1	-1	-1	-1	6 2btc	0 0.2 1.5	CA	700 GLUE	70		ZZ	3.
3 1	EOOEE	Ca	2	3	2	3	-1	-1	-1	6 lavw	0 0.1 1.8	CA	700 GLUA	70	-	Z	3.
4 1	EOOOE	Ca	2	3	2	3	-1	-1	-1	5 lpvt	1 0.3 2.3	CA	650 GLUC	470	1		3.

* aa sequences: in first three entries, there is no residue number 68,

residues 67 and 69 are L G, and numbering anomaly seems

to have thrown my program tortab (found 2.7.02, tortabl2a now corrected))

\$3\$ protein chains to be compared start and end seq values for fi \$1\$ 10; for psi \$0\$ 9

relseq	meanfi	meanpsi	number		
0	-89(17)	146(3)	3	b	
1	-131(7)	-66(10)	3		near a
2	-91(14)	107(3)	3	b	
3	-70(5)	-6(3)	3	k	
4	-101(5)	-7(11)	3	k	
5	-129(17)	132(10)	3	b	
6	-72(9)	124(10)	3	b	
7	-114(14)	-7(8)	3	k	
8	101(7)	-13(7)	3	g	
9	-99(7)	-3(18)	3	k	
10	-74(13)	148(3)	3	b	

1 is like them over relseq 1-7, different at relseq 9-10

\$4\$ protein chains to be compared start and end seq values for fi \$1\$ 10; for psi \$0\$ 9

relseq	meanfi	meanpsi	number	
0	-89(14)	147(3)	4	b

1	-131(6)	-69(10)	4		near a
2	-88(12)	108(3)	4	b	
3	-71(4)	-7(3)	4	k	
4	-101(4)	-6(9)	4	k	
5	-129(14)	133(9)	4	b	
6	-75(9)	121(10)	4	b	
7	-114(11)	-8(6)	4	k	
8	104(7)	26(81)	4	g	
9	126(166)	-3(15)	4		
10	-75(11)	148(3)	4	b	

all belong to same fold family

local conformations same from relseq -7 to relseq + 7,

local conformations same from relseq -7 to relseq +14 for pcs 2 3 4

- 1 1sbw at 70 A 1.80 Ca 801
 - 4 donors, 2 wat, CN 6, delta oct 13 deg, six good dists
- 2 2btc at 70 E 1.50 Ca 700
 - 4 donors, 2 wat, CN 6, delta oct 11 deg, six fairly good dists
- 3 lavw at 70 A 1.75 Ca 700
 - 5 donors, 1 wat, CN 6, delta oct 9 deg, six good dists
- 4 1pyt at 470 C 2.35 Ca 650
 - 5 donors, CN 5, angles 68-94, and 159(two) if oct v distorted donor 4 (Q) is at 2.91 A, other dists look a bit odd

ODONOO

4 1 QDONOO

3 1

has been done in parts a) OD 39 amino-acid sequences **** start of selected part of cngroup relsea 5 10 1 1cse from -8 E: A O T V P Y G I P L I K A D K V O A O G F K G A N V K V A V L D T G I O A S H P 2 laci from -8: AOSVPWGISRVOAPAAHNRGLTGSGVKVAVLDTGIS THP 3 1sci from -8 A: _ _ _ _ _ A Q S V P Y G I S Q I K A P A L H S Q G Y T G S N V K V A V I D S G I D S S H P -8 E: A O S V P Y G V S O I K A P A L H S O G Y T G S N V K V A V I D S G I D S S H P 2sic from aa types - acidic, etc ** relsea -5 0 1.0 15 -8 E: _____spshhhghhhbsabhpspghbgsphbhshhasghpssph 1 1cse from -8: _____spshhhghsbhpshssppbghsgsghbhshhasqhs_sph 2 laci from 3 1scj from -8 A: _ _ _ _ _ spshhhghsphbshshpspghsgsphbhshhasghassph 4 2sic from -8 E: _ _ _ _ _ spshhhghsphbshshpspghsgsphbhshhasghassph conformation sequences ** -10 -5 0 5 10 15 relseq -8 E: bbbbaaaaakqaaaaaqbkqbqbbbbb, kibbakba 1 1cse from -8:bbbbaaaaakgaaaakgbkgbgbbbbb.kjb...bk 2 lgci from 3 1sci from -8 A: bbbbaaaaakgaaaaakgbkgbgbbbbbbkkbk 4 2sic from -8 E: bbbbaaaaakgaaaakgbkgbgbbbbbbkkjbkkba ****** cnqps ******* ODONOO 2 2 2 -1 -16 lcse 0 0.1 1.2 CA 430 GLNE 2 .b.... 3. 1 1 2 -1 -16 1gci 0 0.1 0.8 CA 277 GLN ODONOO 2 .b.... 3.

2 -1 -16 1scj 0 0.2 2.0 CA 381 GLNA

Ca 39 34 2 2 2 -1 -16 2sic 0 0.2 1.8 CA 501 GLNE

2 .b....

2 .b....

3.

3.

that there is one residue missing, at relseg 35 in 1gci b) DONO 34 2 2 amino-acid sequences **** start of selected part of cngroup relseq -10 10 15 31 E: L D T G I O A S H P D L N V V G G A S F V A G E A Y N T D G N G H G T H V A G T V A A L D N T T 1 lcse from 31 : LDTGIS THPDLNIRGGASFVPGEPST ODGNGHGTHVAGTIAALNNSI 2 1qci from 3 1sci from 31 A: IDSGIDSSHPDLNVRGGASFVPSETNPYODGSSHGTHVAGTIAALNNSI 2sic from 31 E: I D S G I D S S H P D L K V A G G A S M V P S E T N P F O D N N S H G T H V A G T V A A L N N S I aa types - acidic, etc ** -5 5 10 relseq 1.5 1 1cse from 31 E: hasghpssphahphhggsshhsgas_hpsagpgpgsphsgshsshapss 31: hasqhs sphahphbqqsshhhqahss paqpqpqsphsqshsshppsh 2 lgci from 3 1scj from 31 A: hasghassphahphbggsshhhsasphhpagsspgsphsgshsshppsh 4 2sic from 31 E: hasqhassphahbhsqqsshhhsasphhpappspqsphsqshsshppsh conformation sequences ** 0 5 10 relseq -10 31 E: b.kjbbakbakbbbk..bbkbbgb...kbbaagaaaaaakbbb.kb 1 1cse from 31 : b.kjb...bkkbbbk...bkbbqdab...bka.aaaaaaa.bbb.kb 2 lgci from 3 1scj from 31 A: b.kjbbkkbkkbbbk...bkbakdkbkkbbkagaaaaaaadbbb.kb 4 2sic from 31 E: b.kjbbkkbakbbba..bbkbakbkbakbbkagaaaaaadbbb.db ******* cngps ******** Ca 39 34 2 2 2 -1 -16 1cse 0 0.1 1.2 CA 430 GLNE 2 .b.... ODONOO 3.

2 .b....

3.

Ca 39 34 2 2 2 -1 -16 1gci 0 0.1 0.8 CA 277 GLN

all torsion angles along this part of chain have s.d. <= 13 deg, except

2 2 ODONOO

```
ODONOO
                       2 2 2 -1 -1 .....6 lscj 0 0.2 2.0 CA 381 GLNA 2 .b....
     ODONOO
            Ca 39 34 2 2 2 -1 -1 ......6 2sic 0 0.2 1.8 CA 501 GLNE 2 .b....
note missing residue numbers in 34 loop in 1 and 2, but residue numbering has been done
  so that the rest aligns well
torsion angles agree well over whole range, with s.d. <= 15 deg, EXCEPT
 i) small increases to 20-30 deg around missing residues
  ii) major anomaly at relseq 12: in pc 1 2 this is G with conformation g
                                 in pc 3 4 this is S with conformation k
c) ONOO 2 2 2 part of ODONOOO
  amino-acid sequences ****
   start of selected part of cngroup
                                               5
   relseq
                                                                1.5
 1 lcse from
            65 E: GTHVAGTVAALDNTTGVLGVAPSVSL
  1gci from
             65 : GTHVAGTIAALNNSIGVLGVAPSAEL
 3 1scj from
            65 A: GTHVAGTIAALNNSIGVLGVSPSASL
  2sic from
            65 E: G T H V A G T V A A L N N S I G V L G V A P S A S L
  aa types - acidic, etc **
                  -10
                                     0
                                               5
  relseq
                            -5
                                                     10
                                                                1.5
            65 E: gsphsgshsshapssghhghshshsh
 2 lgci from
            65 : qsphsqshsshppshqhhqhshssah
  1scj from
             65 A: gsphsgshsshppshghhghshsssh
 4 2sic from 65 E: gsphsgshsshppshghhghshsssh
  conformation sequences **
   relseq
                  -10
                            -5
                                  0
                                                     10
                                                                15
            65 E: aaaaaaakbbb.kbjbbabkkbbb
 1 lcse from
 2 lgci from 65 : aaaaaaa.bbb.kbjbbadkkbbb
```

3.

- 3 lscj from 65 A: aaaaaaadbbb.kb.bbbabkkbbb
- 4 2sic from 65 E: a a a a a a a d b b b . d b j b b a d a k b b b

******* protein names (pdb header) ******

1	1cse at	75 E	1.2	COMPLEX (SERINE	PROTEINASE-INHIBITOR)	Subtilisin-like
---	---------	------	-----	-----------------	-----------------------	-----------------

Subtilisin from Bacillus subtilis, carlsberg

2 1gci at 75 0.78 SUBTILISIN FROM BACILLUS LENTUS Subtilisin-like

Subtilisin from Bacillus lentus

3 1scj at 75 A 2.0 HYDROLASE Subtilisin-like

Subtilisin from Bacillus subtilis, E

4 2sic at 75 E 1.8 COMPLEX (PROTEINASE/INHIBITOR) Subtilisin-like

Subtilisin from Bacillus amyloliquefaciens, Novo/BPN'

******* cngps *******

1 3	QDONOO	Ca	39	34	2	2	2	-1	-16 1	lcse 0	0.1	1.2	CA	430	GLNE	2 .1	0	l	3.
2 3	QDONOO	Ca	39	34	2	2	2	-1	-16 1	lgci 0	0.1	0.8	CA	277	GLN	2 .	b	I	3.
3 3	QDONOO	Ca	39	34	2	2	2	-1	-16 1	lscj 0	0.2	2.0	CA	381	GLNA	2 .1	0	I	3.
4 3	ODONOO	Ca	39	34	2	2	2	-1	-16 2	2sic 0	0.2	1.8	CA	501 (GLNE	2.1	0	I	3.

chains agree over whole range within 8 deg

			number	i	meanps		meanfi	relseq
)	!	4	4)	149(4)	-64(0
)	1	4	2)	102(8)	-90(1
near a			4	4)	-149(2)	-153(2
	2	:	4	9)	19(7)	-108(3
)	ŀ	4	2)	164(7)	-135(4
	j		4	3)	-131(5)	62(5
		b	4	4)	-165(2)	-118(6

1 lcse at 75 E 1.2

D is bidentate, CN 7, 0...0 dists 3.0-4.9 (except bidentate D)

2 1gci at 75 0.78

D is bidentate, CN 7, 0...0 dists 3.0-4.7 (except bidentate 0)

3 1scj at 75 A 2.0

D is bidentate, CN 7, 0...0 dists 3.1-5.3 (except bidentate 0)

4 2sic at 75 E 1.8

D is bidentate, CN 7, 0...0 dists 3.0-4.7 (except bidentate 0)

amino-acid sequences ****

start of selected part of engroup

	relsec	I			-1	.0					-5						0					5	•				1	.0					15		
1	1cd1	from	10	A :	A	E	F	K	Ε	A	F	S	L	F	D	K	D	G	D	G	Т	I	Т	Т	K	E	L	G	Т	V	M	R	S	L	G
2	1cdl	from	119	B:	E	Е	V	D	E	М	I	R	E	A	D	I	D	G	D	G	Q	V	N	Y	Е	Ε	F	V	Q	М	М	Т	_	_	_
3	1acc	from	167	:	_	_	_	_	_	_	_	_	V	P	D	R	D	N	D	G	I	P	D	S	L	E	V	E	G	Y	Т	V	D	V	K
4	1g4y	from	10	R:	A	E	F	K	E	A	F	S	L	F	D	K	D	G	D	G	Т	I	Т	Т	K	E	L	G	Т	V	M	R	S	L	G
5	1sra	from	247	:	Н	С	Т	Т	R	F	F	E	Т	С	D	L	D	N	D	K	Y	I	A	L	D	Ε	W	A	G	С	F	G	I	K	Q
6	1vrk	from	10	A:	A	E	F	K	E	A	F	S	L	F	D	K	D	G	D	G	Т	I	Т	Т	K	Ε	L	G	Т	V	M	R	S	L	G
7	1vrk	from	119	A:	E	E	V	D	E	М	I	R	E	A	D	V	D	G	D	G	Q	V	N	Y	E	Ε	F	V	Q	V	М	М	A	K	_
8	2pvb	from	80	A:	A	E	Т	K	A	F	L	A	D	G	D	K	D	G	D	G	М	I	G	V	D	E	F	A	A	М	I	K	A	_	_
9	1a2x	from	129	A:	E	E	I	E	S	L	М	K	D	G	D	K	N	N	D	G	R	I	D	F	D	Ε	F	L	K	M	М	E	G	V	Q
10	1a2x	from	93	A:	E	E	L	A	E	С	F	R	I	F	D	R	N	A	D	G	Y	I	D	A	E	E	L	A	E	I	F	R	A	S	G
11	2sas	from	60	:	D	E	W	R	D	L	K	G	R	A	D	I	N	K	D	D	V	V	S	W	E	Ε	Y	L	A	М	W	E	K	Т	I
12	2scp	from	94	A:	G	P	L	P	L	F	F	R	A	V	D	Т	N	E	D	N	N	I	S	R	D	Ε	Y	G	I	F	F	G	М	L	G
13	2scp	from	128	A:	Т	М	A	P	A	S	F	D	A	I	D	Т	N	N	D	G	L	L	S	L	E	E	F	V	I	A	G	S	D	F	F
14	1cdl	from	83	A:	E	E	I	R	E	A	F	R	V	F	D	K	D	G	N	G	Y	I	S	A	A	E	L	R	Н	V	М	Т	N	L	G
15	1cd1	from	46	A:	A	E	L	Q	D	М	I	N	E	V	D	A	D	G	N	G	Т	I	D	F	P	Ε	F	L	Т	М	М	A	R	K	М
16	1g4y	from	46	R:	A	Ε	L	Q	D	М	I	N	E	V	D	A	D	G	N	G	Т	I	D	F	P	E	F	L	Т	М	М	A	R	K	M
17	1rec	from	100	:	Q	K	L	E	W	A	F	S	L	Y	D	V	D	G	N	G	Т	I	S	K	N	Ε	V	L	E	I	V	Т	A	I	F
18	1vrk	from	46	A:	A	Ε	L	Q	D	М	I	N	E	v	D	A	D	G	N	G	Т	I	D	F	P	E	F	L	N	L	М	A	R	K	М

aa types - acidic, etc **

10 A: sahbashshhabagagshssbahgshhbshg 1vrk from 119 A: aahaahhbasahaqaqphphaahhphhhsb 80 A: sasbshhsagabagaghhghaahsshhbs__ 2pvb from 1a2x from 129 A: aahashhbaqabppaqbhahaahhbhhaqhp 93 A: aah sah h b h h a b p sagh h a saah sah h b ssg 1.0 la2x from 2sas from 60 : aah bah b g b sah p b aah h s h aah h s h h ab s h 2scp from 94 A: qhhhhhhbshaspaapphsbaahqhhhqhhq 2scp from 128 A: shshsshashasppaghhshaahhhsgsahh 1cdl from 83 A: aah bash bhhabaqpqhhsssah bphhsphq 1cdl from 46 A: sahpahhpahasagpgshahhahhshhsbbh 16 1q4y from 46 R: sahpahhpahasaqpqshahhahhshhsbbh 1rec from 100 : pbhahshshhahagpgshsbpahhahhsshh lvrk from 46 A: sahpahhpahasaqpqshahhahhphhsbbh

conformation sequences **

-10 -5 Ω 5 10 1.5 relseq 1 1cdl from 10 A: aaaaaaaaadakqkqbbbaaaaaaaadq 1cdl from 119 B: a a a a a a a a a k b a k g k g b b b a a a a a k a k 167 : bdakqkqbbaaaaa . bbbbbb lacc from 10 R: aaaaaaakabakgkgbbbaaaaaakkg 1q4v from 247 : kkaaaaaakdakqkqbbbaaaaaakqbba 1sra from 1vrk from 10 A: aaaaaaaaadakgkgbbbaaaaaaakkg 1vrk from 119 A: aaaaaaaakbakgkgbbbaaaaaakb.. 80 A: aaaaaaaaadkkqkqbbbaaaaaak... 2pvb from 1a2x from 129 A: aaaaaaaabakgkgbbbaaaaaakbgb. 10 1a2x from 93 A: aaaaaaaabakqkqbbbaaaaaakakbk 2sas from 60 : aaaaaakaabakgkgbbbaaaaaaaaa 11 94 A: akaaaaaaadakgkgbbbaaaaaaaakg 2scp from 2scp from 128 A: kkaaaaaaadakqkqbbbaaaaaaaaaa 13 83 A: aaaaaakaadakgkgbbbaaaaaaakg 1cdl from 1cdl from 46 A: aaaaaaakbakqkqbbbakaaaakbbb 15 1g4y from 46 R: aaaaaaadbakgkgbbbaaakaaaakda 17 lrec from 100 : kkaaaaaaadakgkgbbbaaaaaaaaaa

* *	*****	protein	names (po	db header	*****	*											
1	1cdl at	20 A	2.2	CALCI	UM-BIND:	ING PR	OTEIN	EF	Hand-	like C	almod	dulin-li	.ke				
2	1cdl at	129 B	2.2	CALCI	JM-BINDI	NG PRO	OTEIN										
3	lacc at	177	2.1	TOXIN	An	thrax	protec	tive ant	igen								
4	1g4y at	20 R	1.6	SIGNA	LING PR	OTEIN		EF :	Hand-l	ike Ca	almod	ulin-li}	кe				
5	1sra at	257	2.0	CALCI	UM-BIND:	ing pr	OTEIN		EF H	and-li	ke Os	steonect	in				
6	1vrk at	20 A	1.9	COMPL	EX(CALC	ium-Bi	NDING	PROTEIN/	PEPT	Calm	oduli	n (fold	l)				
7	1vrk at	129 A	1.9	COMPL	EX(CALCI	UM-BIN	NDING E	PROTEIN/P	EPT								
8	2pvb at	90 A	0.91	METAL	BINDING	PROT	EIN	EF Han	d-like	e Pa	arvall	bumin					
9	1a2x at	139 A	2.3	COMPL	EX (SKE	LETAL	MUSCLE	/MUSCLE	PROT	EF F	Iand-	like Ca	lmodu	ılin-like			
10	1a2x at	103 A	2.3	COMPLE	X (SKEI	ETAL 1	MUSCLE	MUSCLE I	ROT								
11	2sas at	70	2.4	CALCI	UM-BIND	ing pr	OTEIN	EF Ha	nd-lik	e Calm	nodul:	in-like					
12	2scp at	104 A	2.0	BINDI	G PROTE	IN	EF H	and-like	Calmo	dulin-	like						
13	2scp at	138 A	2.0	BINDI	IG PROTE	IN											
14	1cdl at	93 A	2.2	CALCI	JM-BINDI	NG PRO	OTEIN										
15	1cdl at	56 A	2.2	CALCI	JM-BINDI	NG PRO	OTEIN										
16	1g4y at	56 R	1.6	SIGNA	LING PRO	OTEIN											
17	1rec at	110	1.9	CALCI	JM-BINDI	NG PRO	OTEIN	EF Har	nd-lik	e Cal	Lmodu	lin-like	е				
18	lvrk at	56 A	1.9	COMPL	EX(CALCI	UM-BIN	NDING E	PROTEIN/P	EPT								
**	*****	cngps	******	***													
1	1 DDDOE	Ca	2 2	2 5	-1 -	1 -1		5 1cdl	0 0	4 2.2	CA	1	ASPA	20 .bb			
2	1 DDDOE	Ca	2 2	2 5	-1 -	1 -1		5 1cdl	0 0	4 2.2	CA	4	ASPB	129 .bb			
3	1 DDDOE	Ca	2 2	2 5	-1 -	1 -1		6 lacc	1 0	2 2.1	CA	800 <i>I</i>	ASP	177	-	Z	
4	1 DDDOE	Ca	2 2	2 5	-1 -	1 -1		6 1g4y	0 0	2 1.6	CA	1001 A	ASPR	20b		Z	
5	1 DDDOE	Ca	2 2	2 5	-1 -	1 -1		6 1sra	0 0	2 2.0	CA	302 1	ASP	257b	1	Z	
6	1 DDDOE	Ca	2 2	2 5	-1 -	1 -1		6 lvrk	0 0	1 1.9	CA	151 <i>I</i>	ASPA	20b	-	Z	2.
7	1 DDDOE	Ca	2 2	2 5	-1 -	1 -1		6 lvrk	0 0	2 1.9	CA	154 <i>I</i>	ASPA	129b		Z	2.

Ca 2 2 2 5 -1 -1 -1 6 2pvb 0 0.1 0.9 CA 111 ASPA 90b | Z

Ca 2 2 2 5 -1 -1 -1 5 la2x 1 0.4 2.3 CA 161 ASPA 139 ..b.b

Ca 2 2 2 5 -1 -1 -1 5 la2x 2 0.2 2.3 CA 160 ASPA 103b

8 1 DDDOE

9 1 DNDOE

10 1 DNDOE

11 1	DNDOE	Ca	2	2	2	5	-1	-1	-1 6 2	2sas (0.4 2.	4 CA	187 ASP	70b		Z	
12 1	DNDOE	Ca	2	2	2	5	-1	-1	-1 6 2	2scp (0.1 2.	0 CA	191 ASPA	104b	1	Z	
13 1	DNDOE	Ca	2	2	2	5	-1	-1	-1 6 2	2scp (0.2 2.	0 CA	192 ASPA	138b	1	Z	
14 1	DDNOE	Ca	2	2	2	5	-1	-1	-1 5 1	lcdl (0.3 2.	2 CA	3 ASPA	93 .bb			
15 1	DDNOE	Ca	2	2	2	5	-1	-1	-1 5 1	lcdl 1	L 0.4 2.	2 CA	2 ASPA	56b			
16 1	DDNOE	Ca	2	2	2	5	-1	-1	-1 5 1	lg4y (0.4 1.	6 CA	1002 ASPR	56b	1		
17 1	DDNOE	Ca	2	2	2	5	-1	-1	-1 6 1	lrec (0.2 1.	9 CA	501 ASP	110b		Z	
18 1	DDNOE	Ca	2	2	2	5	-1	-1	-1 6 1	lvrk (0.1 1.	9 CA	152 ASPA	56b	I	Z	2.

excluding 3 (lacc) agreement over whole cngp very close (relseq 1-11, 0-10)

relseq	meanfi	meanpsi	number	
0	-78(7)	84(12)	17	b
1	-65(14)	-40(16)	17	a
2	-86(12)	2(11)	17	k
3	58(10)	28(12)	17	g
4	-86(12)	5 (8)	17	k
5	81(12)	3(12)	17	g
6	-134(9)	159(16)	17	b
7	-109(12)	121(5)	17	b
8	-94(9)	172(9)	17	b
9	-55(11)	-44(10)	17	a
10	-60(7)	-39(8)	17	a
11	-68(6)	-36(5)	17	a

before cngp, i.e. relseq -10 to 0, conformations all same after cngp, some diversity: from relseq 17 onwards

1 4 6 12 14 are similar

7 8 15 18 are similar

11 13 17 are similar

start of selected part of engroup

and, for comparison,

protein chains 1 and 2 are the models from the set of 18 DDDOE 2225 groups

amino-acid	sequences	***
------------	-----------	-----

relseq -10 -5 0 5 10

1 lacc from 167 : _ _ _ _ _ _ V P D R D N D G I P D S L E V E G Y T V D V K

15

2 2pvb from 80 A: A E T K A F L A D G D K D G D G M I G V D E F A A M I K A _ _

3 2scp from 6 A: Q K M K T Y F N R I D F D K D G A I T R M D F E S M A E R F A

4 2sas from 9 : KIKFTFDFFLDMNHDGSIQDNDFEDMMTRYK

5 1cdl from 46 B: A E L Q D M I N E V D A D G N G T I D F P E F L T M M A R K M

6 1cdl from 46 C: A E L Q D M I N E V D A D G N G T I D F P E F L T M M A R K M

7 lalv from 170 B: KKWQAIYKQFDVDRSGTIGSSELPGAFEAAG

8 lalv from 140 A: D T C R S M V A V M D S D T T G K L G F E E F K Y L W N N I K

9 2pvb from 41 A: D D V K K A F Y V I D Q D K S G F I E E D E L K L F L Q N F S

10 2sas from 105 : NRIPFIFKGMDVSGDGIVDIEFFONYCKNFO

11 2cbl from 219 A: LEAMALKSTIDLTCNDYISVFEFDIFTRLFQ

aa types - acidic, etc **

relseq -10 -5 0 5 10 15

1 lacc from 167: _ _ _ _ _ hhabapaghhashahaghshahb

2 2pvb from 80 A: sasbshhsagabagaghhghaahsshhbs__

3 2scp from 6 A: p b h b s h h p b h a h a b a g s h s b h a h a s h s a b h s

4 2sas from 9: bhbhshahhhahppagshpapahaahhsbhb

5 lcdl from 46 B: sahpahhpahasagpgshahhahhshhsbbh

6 1cdl from 46 C: sahpahhpahasaqpqshahhahhshhsbbh

7 lalv from 170 B: b b h p s h h b p h a h a b s g s h g s s a h h g s h a s s g

8 lalv from 140 A: a shb shh shh a sa s s q b h q h a a h b h h h p p h b

9 2pvb from 41 A: aahbbshhhhapabsghhaaaahbhhhpphs

10 2sas from 105: pbhhhhhbghahsgaghhahaahpphhbphp

conformation sequences **

	relsec	A					-5						0					5					1	0					15						
1	1acc	from	167	:										b	d	a	k	g	k	g	b	b	а	а	а	а	а	a		b	b	b	b	b	b
2	2pvb	from	80	A:	a	a	а	а	а	a	a	a	a	а	d	k	k	g	k	g	b	b	b	а	а	а	а	a	a	a	a	k			
3	2scp	from	6	A:	a	а	a	a	a	a	a	а	а	k	d	а	k	g	k	g	b	b	b	а	а	a	a	а	а	а	а	а	а	а	а
4	2sas	from	9	:	а	a	a	a	а	a	a	a	k		d	a	k	: 9	k	. 9	b	b	b	а	а	а	а	a	а	a	. a	. a	. a	a	а
5	1cd1	from	46	в:	а	a	а	a	k	a	a	a	a	а	b	a	k	g	a	g	b	b	b	a	a	a	а	a	a	a	a	k	b	b	b
6	1cd1	from	46	С:	а	a	а	a	a	a	a	a	a	а	b	a	k	g	k	g	b	b	b	a	a	a	а	a	a	a	a	k	b	b	b
7	1alv	from	170	в:	a	a	a	a	a	а	а	а	a	k	d	k	k	g	k	g	b	b	b	a	a	a	a	a	a	a	a	a	а	k	g
8	1alv	from	140	A:	a	a	a	a	a	а	а	а	а	k	d	а	k	g	k	g	b	b	b	a	a	a	а	а	а	а	а	a	a	а	a
9	2pvb	from	41	A:	а	а	а	а	а	а	а	а	а	а	d	a	k	g	k	g	b	b	b	а	а	а	а	а	k	a	а	а	k	а	b
10	2sas	from	105	:	a	а	a	a	a	а	а	k	k	a	d	a	k	g	k	g	b	b	b	a	a	a	а	а	a	а	а	а	d		d
11	2cbl	from	219	A:	a	a	a	a	a	a	a	a	a	a	d	a	k	g	k	g	b	b	b	a	a	a	a	a	a	a	a	a	a	d :	b

******* protein names (pdb header) ******

1	lacc at	177	2.1	TOXIN Anthrax protective antigen
2	2pvb at	90 A	0.91	METAL BINDING PROTEIN EF Hand-like Parvalbumin
3	2scp at	16 A	2.0	BINDING PROTEIN EF Hand-like Calmodulin-like
4	2sas at	19	2.4	CALCIUM-BINDING PROTEIN EF Hand-like Calmodulin-like
5	1cdl at	56 B	2.2	CALCIUM-BINDING PROTEIN EF Hand-like Calmodulin-like
6	1cdl at	56 C	2.2	CALCIUM-BINDING PROTEIN EF Hand-like Calmodulin-like
7	1alv at	180 B	1.9	CALCIUM BINDING EF Hand-like EF-hand modules in multidomain proteins
8	1alv at	150 A	1.9	CALCIUM BINDING
9	2pvb at	51 A	0.91	METAL BINDING PROTEIN EF Hand-like
10	2sas at	115	2.4	CALCIUM-BINDING PROTEIN
11	2cbl at	229 A	2.1	COMPLEX (PROTO-ONCOGENE/PEPTIDE)

******* cngps *******

1 1	DDDOE	Ca	2	2	2	5	-1	-1	-1	6 lacc	1 0.2 2.	l CA	800 ASP	177	Z
2 1	DDDOE	Ca	2	2	2	5	-1	-1	-1	6 2pvb	0 0.1 0.	9 CA	111 ASPA	90b	Z
3 1	DDDOD	Ca	2	2	2	5	-1	-1	-1	6 2scp	0 0.1 2.) CA	190 ASPA	16b	Z

4 1	DNDOD	Ca	2	2	2	5	-1	-1	-1 5 2	2sas 0 0	.2 2.4	CA	186 ASP	19b			
5 1	DDNNOE	Ca	2	2	0	2	5	-1	-16 10	cdl 0 0.	.6 2.2	CA	2 ASPB	56b			
6 1	DDNODE	Ca	2	2	2	2	3	-1	-16 10	cdl 0 0.	.6 2.2	CA	2 ASPC	56b			
7 1	DDSOE	Ca	2	2	2	5	-1	-1	-1 6 1	Lalv 0 0	.1 1.9	CA	7 ASPB	180b	1	Z	3.
8 1	DDTOE	Ca	2	2	2	5	-1	-1	-1 6 1	Lalv 0 0	.2 1.9	CA	2 ASPA	150b	1	Z	3.
9 1	DDSOEE	Ca	2	2	2	2	3	-1	-16 2]	pvb 0 0.	.1 0.9	CA	110 ASPA	51b	1		
10 1	DSDOE	Ca	2	2	2	5	-1	-1	-1 5 28	sas 0 0.	.2 2.4	CA	188 ASP	115b			
11 1	DTNOE	Ca	2	2	2	5	-1	-1	-1 6 20	cbl 0 0.	.1 2.1	CA	352 ASPA	229b	1	Z	

p chain 1, lacc, is different

all others: over fi 1-11, psi 0-10 all agree with model (no 2) within 22 deg

relseq	meanfi	meanpsi	number	
0	-76(10)	75 (7)	10	d
1	-61(9)	-33(14)	10	a
2	-89(12)	3 (7)	10	k
3	59(13)	32(18)	10	g
4	-91(18)	0(13)	10	k
5	82(12)	3(12)	10	g
6	-136(8)	152(14)	10	b
7	-95(11)	121(10)	10	b
8	-101(28)	171(8)	10	b
9	-56(5)	-39(8)	10	a
10	-63(8)	-35(8)	10	a
11	-68(8)	-37(8)	10	a

local conformations pretty similar over relseq -10 to17, but diverge beyond that except that even there 3,4,8 are alike.

rms agreement of fi and psi together

pchain 3 4 5 11 2 6 7 8 9 10

3 2scp	C) 10	15	22	21	14	21	19	17	19
4 2sas	10	0	19	21	21	16	22	21	19	21
5 1cdl	15	19	0	27	21	15	22	17	15	19
11 2cbl	22	21	27	0	23	19	17	19	19	22
2 2pvb	21	21	21	23	0	13	15	15	13	13
6 lcdl	14	16	15	19	13	0	15	14	11	14
7 lalv	21	22	22	17	15	15	0	11	9	17
8 lalv	19	21	17	19	15	14	11	0	8	17
9 2pvb	17	19	15	19	13	11	9	8	0	13
10 2sas	19	21	19	22	13	14	17	17	13	0
pchain	3	4	5	11	. 2	2	5	7	8	9 10

-99(8)

19(3)

```
amino-acid sequences ****
  start of selected part of engroup
  relseq
                 -10
                       -5
                                      5 10
1 1fzc from 308 C: N G M O F S T W D N D N D K F E G N C A E O D G S G
2 3fib from 308 : NGMOFSTWDNDNDKFEGNCAEODGSG
 aa types - acidic, etc **
  relseq
               -10
                        -5 0 5
                                                 10
                                                         15
1 1fzc from 308 C: pqhphsshapapabhaqphsapaqsq
 2 3fib from 308: pghphsshapapabhagphsapagsg
 conformation sequences **
                -10
                        -5
                               0
                                                 10
  relseq
1 lfzc from 308 C: b q b b b b b a k . b d b k b a . b a a a a k q b b
 ****** protein names (pdb header) ******
1 1fzc at 318 C 2.3
                       BLOOD COAGULATION
                                     Fibrinogen C-terminal domain-like
 2 3fib at 318 2.1
                     BLOOD COAGULATION
                                    Fibrinogen C-terminal domain-like
 ******* cngps ********
1 1 DD00
               2 2 2 -1 -1 -1 -1 .... 4 lfzc 0 0.2 2.3 CA 1 ASPC 318 b...
2 1 DDOO
            Ca 2 2 2 -1 -1 -1 -1 .... 6 3fib 0 0.2 2.1 CA 400 ASP 318 b... | ZZ
within cngp same with s.d. 1-9 deg
 relseq
          meanfi
                      meanpsi
                                number
    0
          -84( 1)
                      120( 4)
          -135(2)
                       28(6)
          -86(2)
                      182(9)
```

4	-104(2)	150(5)	2	h
5	-67(4)	-33 (1)	2	ė
6	-90(1)	-156(0)	2	

local conformations same (r.m.s. 8 deg) proteins same fold and family

first D is bidentate

coordination no 4 or 6 $\,$ - latter, in 3fib, has 2 waters

***	****	* cng	gps **	***	***	***																																			
1	1 CC	CCC	Zn	3		3	8	-	1	-1	-3	L	-1			4	10	cdo		0 ().2	2.	0	ZN	3	77	CYS.	A	98								1.				
2	1 CC	CCC	Zn	3		3	8	-	1	-1	- 3	L	-1			4	10	llt		0 (.2	2.	4	ZN	3	75	CYS.	A	97								1.				
3	1 CC	CCC	Zn	3		3	8	-	1	-1	- 3	L	-1			4	16	e3i		0 ().1	2.	1	ZN	3	81	CYS.	A	97								1.				
4	1 CC	CCC	Zn	3		3	8	-	1	-1	-3	L	-1			4	16	e3j		0 ().2	2.	3	ZN	9	01	CYS.	A	96												
5	1 CC	CCC	Zn	3		3	8	-	1	-1	-3	L	-1			4	11	net		0 ().2	1.	1	ZN	4	01	CYS.	A	97								1.				
6	1 CC	CCC	Zn	3		3	8	-	1	-1	-3	L	-1			4	11	nt0		0 ().2	2.	0	ZN	13	75	CYSI	Ā	97								1.				
a	mino-a	acid s	equence	s **	***																																				
	relse	q			-10				-5					0				5				1	.0			1	.5														
1	1cdo	from	88 1	<i>A</i> :	E I	K V	I	ΡI	L F	I	s Q	С	G	E	C R	F	С	Q	S	PΙ	7	N	Q	C V	K	G	W A	N	E	S F	D	V	M	S	P K	Œ	з т	R	F	Т	C
2	1d1t	from	87 1	<i>A</i> :	D I	K V	I	P I	L F	L	P Q	С	R	E (C N	Α	С	R	N	ΡI) (3 N	L	CI	R	S	D _	_	_	G F	G	V	L	A '	D G	T	гт	R	F	Т	С
3	1e3i	from	87 1	<i>7</i> :	D I	K V	I	P E	FF	A	P Q	С	K	R (СК	L	С	L	S	P I	. 1	N	L	C G	K	L	R N	F	K	Y F	Т	I	D	Q :	ΕI	. M	4 E	D	R	Т	S
4	1e3j	from	86 1	<i>7</i> :	D I	R V	A	V I	ΞP	G	V P	С	R	R (C Q	F	С	K	Е	G I	ζ 7	. N	L	C P	D	L	T F	С	A	T F	P	D	D	G!	N I	∡ ۔	4 R	Y	Y	V	Н
5	1het	from	87 1	<i>A</i> :	D I	K V	I	P I	L F	Т	P Q	С	G	K (C R	V	С	K	Н	PΙ	2 (3 N	F	C L	K	N	DЬ	S	M	P F	G	Т	М	Q '	D G	T	r s	R	F	Т	С
6	1ht0	from	87 2	<i>A</i> :	D I	K V	I	ΡI	F	Т	P Q	С	G	K	C R	I	С	K	N	PΙ	E 5	S N	Y	C L	K	N	DЬ	G	N	P F	. G	Т	L	Q :	D G	T	ſR	R	F	Т	С
С	onfor	mation	sequen	ces	(1	Hovm	oll	er	ty	pe)	**																														
	relse	đ			-10				-5					0				5				1	.0			1	.5														
1	1cdo	from	88 1	<i>A</i> :	b l	b b	b	b k	э а	b	b b	а	g	a l	о а	. а	а	а	b	a a	a k	а	b	b a	b	j	a a	а	а	b a	а	a	g	b!	b e	ı k	o b	a	b	b	b
2	1d1t	from	87 1	<i>A</i> :	b l	b b	b	b k	э а	b	b b	а	g	a l	о а	. а	а	а	b	a a	a k	а	b	b a	a	b	b b	b	b	g a	g	b	b	a i	a g	j k	o b	a	b	b	b
3	1e3i	from	87 1	<i>A</i> :	b l	b b	b	b k	э а	b	b b	а	g	a l	о а	. а	а	а	b	a a	a k	а	b	b a	a	b	a b	а	а	b a	а	a	b	g i	a k) k	э а	a	g	b	b
4	1e3j	from	86 1	<i>A</i> :	b l	b b	b	b k	э а	b	b b	a	g	a l	о а	a	a	a	a	g a	a a	ı a	a	b a	a	b	b b	b	g	b k	a	b	b	b i	a k) k	o a	b	b	b	b
5	1het	from	87 1	<i>A</i> :	b l	b b	b	b k	э а	b	b b	а	g	a l	о а	. а	а	а	b	a a	a k	а	b	b a	a	b	a a	а	b	b a	g	b	b	a i	a g	j k	o b	a	b	b	b
6	1ht0	from	87 1	<i>A</i> :	b l	b b	b	b k	э а	b	b b	а	g	a l	о а	. а	а	а	b	a a	a k	а	b	b a	a	b	a a	а	b	b a	g	b	b	a i	a g	j k	o b	a	b	b	b
***	****	* pro	otein n	ames	(E	odb	hea	der) ;	***	***																														
1	1cdo	at	98 A	2	.05			OXI	DOR	EDUC	TAS	E (CH	-ОН	(D)	-NA	D(A	.))																							
2	1d1t	at	97 A	2	.40			OXI	DOR	EDUC	TAS	E																													
3	1e3i	at	97 A	2	.08			ALC	ОНО	L DI	EHYD	ROG	EN	ASE																											

```
4 le3j at 96 A 2.3 OXIDOREDUCTASE
5 lhet at 97 A 1.15 OXIDOREDUCTASE
6 lht0 at 97 A 2.00 OXIDOREDUCTASE
```

******* SCOP classification ******

1	1cdo at	98 A	2.05	GroES-like	/Alcohol	dehydrogenase-like,	N-terminal	domain

- 2 1d1t at 97 A 2.40 same
- 3 le3i at 97 A 2.08 same
- 4 le3j at 96 A 2.3 same
- 5 1het at 97 A 1.15 same
- 6 1ht0 at 97 A 2.00 same

over 1-14/0-13, i.e. whole group, 2,5,6 agree within 15 deg

- 1,3, differ from them by 20-37 deg
- 4 differs by 60 deg

1-6/0-5, i.e. first two loops, 1,2,4,5,6 agree within 12 deg.

3 is different by 23-30 deg

7-14/6-13, i.e. 3rd loop, 2,5,6 agree within 18 deg

1,3 agree with each other within 18 deg,

(but 30-40 from 2,5,6)

4 different by 70 deg from rest

Zn CCCC 3 17 3

all except protein chain no. 19 are in the 30% cull set of proteins; protein chain 19 is only in the 90% set.

amino-acid sequences ****

conformation sequences (Hovmoller type) **

******* protein names (pdb header) ******

17 1dcq at 264 A 2.10 METAL BINDING PROTEIN

18 lee8 at 238 A 1.90 DNA BINDING PROTEIN

```
19 1ffy at 886 A 2.2
                               LIGASE/RNA
20 1rmd at 26
                      2.1
                               DNA-BINDING PROTEIN
21 1zin at 130
                     1.6
                               PHOSPHOTRANSFERASE
over -1 to 7, i.e. first loop +, 18,19,20,21 agree, within 16
                                       17 a bit different
over -1 to 23, i.e. all three loops p17-p21 are ALL DIFFERENT - by 40-90 deg!
NOTE THAT THE SEQUENCES SHOW MUCH LESS SIMILARITY FOR THIS SET, AND THE FOLDS ARE ALL DIF.
 ******* SCOP classification ******
17 1dcq at 264 A 2.10 Pyk2-associated protein beta ARF-GAP domain
18 lee8 at 238 A
                    1.90 DNA repair protein MutM (Fpg
19 1ffy at 886 A 2.2 Anticodon-binding domain of a subclass of class I aminoacyl-tRNA synthetases
20 1rmd at
                     2.1 RING finger domain, C3HC4
21 1zin at 130
                     1.6 Rubredoxin-like /Microbial and mitochondrial ADK, insert "zinc finger" domain
```

recheck fold info from scratch (i.e. start with findseq) 24.4.02

1dcq Pyk2-associated protein beta ARF-GAP domain

Class: Small proteins

Class: Multi-domain proteins (alpha and beta)

1ffy Anticodon-binding domain of a subclass of class I aminoacyl-tRNA synthetases

Class: All alpha proteins

1rmd RING finger domain, C3HC4

Class: Small proteins

1zin Rubredoxin-like Microbial and mitochondrial ADK, insert "zinc finger" domain

Class: Small proteins

loop 1

===== 5 protein chains to be compared

start and end seq values for fi 1 3; for psi 0 2

rms agreement of fi and psi together

pchain 17 18 19 20 21

17 1dcq 0 20 29 35 23

18 lee8 20 0 19 23 16

19 1ffy 29 19 0 6 11

20 1rmd 35 23 6 0 16

21 1zin 23 16 11 16 0

loop 2

======

5 protein chains to be compared start and end seq values for fi 4 20; for psi 3 19

rms agreement of fi and psi together

pchain 17 18 19 20 21

17 1dcq 0 64 75 52 90

18 1ee8 64 0 69 63 84

19 1ffy 75 69 0 67 63

20 1rmd 52 63 67 0 82

21 1zin 90 84 63 82 0

loop 3

=====

5 protein chains to be compared start and end seq values for fi 21 23; for psi 20 22

rms agreement of fi and psi together

pchain 17 18 19 20 21

17 1dcq 0 24 7 19 32

18 lee8 24 0 21 16 27

19 1ffy 7 21 0 16 28

20 1rmd 19 16 16 0 27

21 1zin 32 27 28 27 0

```
Zn HHH 4 6
 (in 90% cull set of proteins, protein chains 7 and 12 are in 30% set)
 ( redundant chains have not been removed)
includes some related cogroups HHHXX 4 6 + + where additional residues
  in a second protein chain are coordinated to Zn
 18 groups and ALL agree over relseg -6 to 10 within <= 13 deg.
  amino-acid sequences ****
   start of selected part of engroup
                              -5
                                           0
                                                    5
    1bud from 132 A: V N R L V A I T L A H E M A H N L G V S H D E G S C S C G G
```

15

start of selected part of cngroup

						-1	.0		-5									0					5					1	0					15
1	1bud	from	132	A:	b	а	a	a	а	а	a	а	а	а	а	a	a	a	a	а	а	g	b	b	b	b	b	j	а	b	b	а	g	j
2	liag	from	132	:	b	a	а	a	a	а	а	a	a	a	а	а	а	а	а	а	а	g	b	b	b	b	b	a	a	b	b	b	j	а
3	1qua	from	132	A:	b	а	a	a	а	а	a	а	a	a	а	a	а	a	a	а	а	g	b	b	b	b	b	а	а	a	g	b	a	a
4	1sat	from	166	:	a	b	a	a	a	a	a	a	a	a	a	а	a	a	a	a	a	g	b	b	b	a	b	b	b	b	b	g	a	b
5	1ciz	from	191	A:	a	b	b	b	а	a	а	a	a	a	a	a	a	а	a	a	a	g	b	b	b	b	a	b	a	a	b	а	а	b
6	1hfc	from	208	:	b	b	b	b	a	a	a	a	a	a	a	а	а	a	а	а	а	g	b	b	b	b	а	b	а	a	b	a	a	b
7	1i76	from	187	A:	b	b	b	b	a	а	a	а	a	a	а	a	a	a	a	а	а	g	b	b	b	b	a	b	а	a	b	а	a	b
8	1mmq	from	208	:	b	j	b	b	a	a	a	a	a	a	a	а	а	a	а	a	a	g	b	b	b	b	а	b	а	a	b	a	a	b
9	830c	from	212	A:	b	j	b	b	а	а	a	а	a	a	а	a	a	a	a	а	а	g	b	b	b	b	a	b	а	a	b	a	a	b
10	830c	from	212	в:	b	j	b	b	а	a	а	a	а	а	a	а	a	а	а	a	a	g	b	b	b	b	a	b	a	а	b	а	а	b
11	1fbl	from	208	:	b	b	g	b	а	а	а	а	а	а	а	a	a	а	a	а	а	g	b	b	b	b	а	b	а	а	b	а	a	b
12	1bkc	from	395	E:	b	a	а	а	а	a	а	a	а	а	a	а	a	а	а	a	a	g	b	b	b	b	b	b	g	g	а	а	а	a
13	1bkc	from	395	A:	b	a	а	а	а	a	а	a	а	а	a	а	a	а	а	a	a	g	b	b	b	b	b	b	j	а	а	g	а	b
14	1bkc	from	395	ı:	b	a	a	a	a	a	a	a	a	а	a	a	a	a	a	a	a	g	b	b	b	b	b	b	j	a	b	a	a	b
15	1bkc	from	395	C:	b	a	а	а	а	a	а	a	а	а	a	а	a	а	а	a	a	g	b	b	b	b	b	b	j	b	j	а	а	b
16	1kap	from	166	p:	b	g	b	а	a	a	a	a	а	а	a	a	a	a	a	a	a	g	b	b	b	а	b	b	b	b	b	g	b	j
17	latl	from	132	A:	b	a	а	a	a	a	a	a	a	а	a	а	a	a	a	a	a	g	b	b	b	b	b	a	a	b	b	b	j	a
18	1atl	from	132	в:	b	а	а	a	а	a	a	a	a	а	a	а	a	a	а	a	a	g	b	b	b	b	b	a	a	b	b	b	j	a

******* protein names (pdb header) + CATH and SCOP classification ******

1	1bud at	142 A	1.90	TOXIN	d.92.1.9 Zincin-like
2	liag at	142	2.0	METALLOPROTEASE	d.92.1.9
3	lqua at	142 A	2.2	TOXIN	
4	1sat at	176	1.75	HYDROLASE (SERINE PROTEASE)	
5	lciz at	201 A	1.64	METALLOPROTEINASE	
6	1hfc at	218	1.56	METALLOPROTEASE	
7	1i76 at	197 A	1.20	HYDROLASE	(no code given)
8	1mmq at	218	1.9	METALLOPROTEASE	
9	830c at	222 A	1.6	MATRIX METALLOPROTEASE d.	92.1.11
10	830c at	222 B	1.6	MATRIX METALLOPROTEASE	
11	1fbl at	218	2.5	METALLOPROTEASE	

12	1bkc at	405 E	2.0	ZN-ENDOPEPTIDASE d	.92.1.10 Zinci	in-like
13	1bkc at	405 A	2.0	ZN-ENDOPEPTIDASE		
14	1bkc at	405 I	2.0	ZN-ENDOPEPTIDASE		
15	1bkc at	405 C	2.0	ZN-ENDOPEPTIDASE		
16	1kap at	176 P	1.64	ZINC METALLOPROTEASE	d.92.1.6	Zincin-like
17	latl at	142 A	1.8	METALLOENDOPEPTIDASE	d.92.1.9	Zincin-like
18	latl at	142 B	1.8	METALLOENDOPEPTIDASE		

******* cngps *******

1 1	ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	4 1bud	0 0.1 1.9	ZN	800 HISA 142	l ū	
2 1	ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	4 liag	0 0.2 2.0	ZN	999 HIS 142	Z	3.
3 1	ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	4 1qua	0 0.1 2.2	ZN	999 HISA 142	z	
4 1	ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	4 1sat	1 0.2 1.8	ZN	472 HIS 176	Z	
5 1	ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	5 lciz	0 0.3 1.6	ZN	301 HISA 201	ן עע	3.
6 1	ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	5 1hfc	0 0.1 1.6	ZN	275 HIS 218	ן טט	л 3.
7 1	ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	5 li76	0 0.3 1.2	ZN	999 HISA 197	ן עע	3.
8 1	ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	5 1mmq	1 0.2 1.9	ZN	1 HIS 218	U	U 3.
9 1	ННН	Zn	4	6	-1	-1	-1	-1	-1 eee	5 830c	1 0.2 1.6	ZN	261 HISA 222	ຫັ	3.
10 1	ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	5 830c	1 0.2 1.6	ZN	261 HISB 222	ן טט	3.
11 1	ннн	Zn	4	6	-1	-1	-1	-1	-1 eee	6 lfbl	0 0.5 2.5	ZN	998 HIS 218	BUI	U 3.
12 1	ннн о	Zn	4	6	-1-41	3	-1	-1	-1 eee .	5 1bkc	0 0.4 2.0	ZN	1 HISE 405	l n	
13 1	ннн о	Zn	4	6	-1-41	3	-1	-1	-1 eee .	5 1bkc	1 0.4 2.0	ZN	1 HISA 405	l u	
14 1	ннн о	Zn	4	6	-1-41	3	-1	-1	-1 eee .	5 1bkc	1 0.4 2.0	ZN	1 HISI 405	l u	
15 1	ннн о	Zn	4	6	-1-41	3	-1	-1	-1 eee .	5 1bkc	1 0.5 2.0	ZN	1 HISC 405	l n	
16 1	HHHOS	Zn	4	6 -	-99	0	-1	-1	-1 eee	5 1kap	0 0.2 1.6	ZN	613 HISP 176		3.
17 1	ннноч	Zn	4	6 -	-99	0	-1	-1	-1 eee	5 latl	0 0.1 1.8	ZN	401 HISA 142		3.
18 1	ннноч	Zn	4	6 -	-99	0	-1	-1	-1 eee	5 latl	0 0.1 1.8	ZN	402 HISB 142		3.

18 groups and ALL agree over relseq -6 to 10 within <= 13 deg.

Separate analysis of simple HHH groups in 90% cull set (different numbering)

5	1bud	from	132	A:	V	N	R	L	V	A	I	Т	L	A	Н	E	М	A	Н	N	L	G	V	S	Н	D	Е	G	S	С	S	С	G	G	K	S	С	I
6	liag	from	132	:	I	N	L	L	V	A	V	Т	М	A	Н	E	L	G	Н	N	L	G	М	E	Н	D	G	K	D	С	L	R	G	A	S	L	С	I
7	1qua	from	132	A:	I	P	L	L	M	A	V	Т	М	A	Н	E	L	G	Н	N	L	G	М	N	Н	D	G	A	G	С	S	С	A	Т	С	Ι	М	A
8	1sat	from	166	:	Т	Ε	D	Y	G	R	Q	Т	F	Т	Н	E	I	G	Н	A	L	G	L	S	Н	P	G	D	Y	N	A	G	Е	G	D	Р	Т	Y
9	1ciz	from	191	A:	Т	G	Т	N	L	F	L	V	A	A	Н	Е	I	G	Н	S	L	G	L	F	Н	S	A	N	Т	Е	A	L	М	Y	P	L	Y	Н
10	1hfc	from	208	:	R	E	Y	N	L	Н	R	V	A	A	Н	E	L	G	Н	S	L	G	L	S	Н	S	Т	D	Ι	G	A	L	М	Y	P	S	Y	Т
11	1i76	from	187	A:	A	N	Y	N	L	F	L	V	A	A	Н	E	F	G	Н	S	L	G	L	A	Н	S	S	D	P	G	A	L	M	Y	P	N	Y	A
12	1mmq	from	208	:	L	G	Ι	N	F	L	Y	A	A	Т	Н	E	L	G	Н	S	L	G	М	G	Н	S	S	D	P	N	A	V	М	Y	P	Т	Y	G
13	830c	from	212	A:	K	G	Y	N	L	F	L	V	A	A	Н	E	F	G	Н	S	L	G	L	D	Н	S	K	D	P	G	A	L	M	F	P	I	Y	Т
14	830c	from	212	в:	K	G	Y	N	L	F	L	V	A	A	Н	Ε	F	G	Н	S	L	G	L	D	Η	S	K	D	P	G	A	L	M	F	P	I	Y	Т
15	1fbl	from	208	:	R	D	Y	N	L	Y	R	V	A	A	Н	E	L	G	Н	S	L	G	L	S	Н	S	Т	D	Ι	G	A	L	M	Y	P	N	Y	I
5	1bud	from	132	A :	b	а	а	а	а	а	а	a	а	а	а	а	а	а	а	а	a	g	b	b	b	b	b	j	а	b	b	а	g	j	а	b	b	a
6	liag	from	132	:	b	а	а	а	а	а	а	а	a	а	a	а	а	a	a	а	а	g	b	b	b	b	b	а	а	b	b	b	j	а	b	b	b	a
7	1qua	from	132	A:	b	a	а	а	а	а	a	а	а	а	а	а	а	а	а	а	a	g	b	b	b	b	b	a	а	а	g	b	а	а	b	a	а	b
8	1sat	from	166	:	a	b	а	а	a	а	а	а	a	a	a	а	a	a	a	а	а	g	b	b	b	а	b	b	b	b	b	g	a	b	b	b	b	a
9	1ciz	from	191	A :	а	b	b	b	а	а	а	a	а	а	а	а	а	а	а	а	a	g	b	b	b	b	а	b	а	а	b	а	а	b	а	b	b	b
10	1hfc	from	208	:	b	b	b	b	а	а	a	а	а	а	а	а	а	а	а	а	a	g	b	b	b	b	a	b	а	а	b	а	а	b	а	b	b	b
11	1i76	from	187	A:	b	b	b	b	a	a	а	а	a	a	a	a	a	а	a	a	а	g	b	b	b	b	a	b	a	a	b	а	а	b	a	b	b	b
12	1mmq	from	208	:	b	j	b	b	a	a	a	a	а	а	а	a	а	а	а	а	a	g	b	b	b	b	a	b	a	a	b	а	а	b	а	b	b	g
13	830c	from	212	A:	b	j	b	b	a	a	a	a	a	a	a	a	a	а	a	a	a	g	b	b	b	b	a	b	a	a	b	а	а	b	a	b	b	b
14	830c	from	212	в:	b	j	b	b	a	a	a	a	a	a	a	a	a	а	a	a	a	g	b	b	b	b	a	b	a	a	b	а	а	b	a	b	b	b
15	1fbl	from	208	:	b	b	g	b	a	а	a	а	а	а	а	а	а	а	а	а	a	g	b	b	b	b	a	b	a	а	b	а	а	b	а	b	b	b
						-1	0					-5						0					5					1	0					15				

-----10-----

н н н

10 and 11 same over whole range within 6 degs

13 and 14 same over whole range within 14 degs

1i76 at 197 A should be model

5	1bud	1.90	TOXIN	
6	1iag	2.0	METALLOPROTEASE	
7	1qua	2.2	TOXIN	
8	1sat	1.75	HYDROLASE (SERINE PROTEASE)	
9	1ciz	1.64	METALLOPROTEINASE	
10	1hfc	1.56	METALLOPROTEASE	
11	1i76	1.20	HYDROLASE	
12	1mmq	1.9	METALLOPROTEASE	
13	830c	1.6	MATRIX METALLOPROTEASE	
14	830c	1.6	MATRIX METALLOPROTEASE	
15	1fbl	2.5	METALLOPROTEASE	
5	1bud	at 14	12 A:Snake venom metalloprotease from Five-pace snake	Zincin-like
6	liag	at 14	2 :Snake venom metalloprotease from Eastern diamond	Zincin-like
7	1qua	at 14	12 A: Snake venom metalloprotease from Chinese five	Zincin-like
8	1sat	at 17	76 : Metallo protease, catalytic (N-terminal) domain	Zincin-like
9	1ciz	at 20	01 A:Stromelysin-1 (MMP-3) from Human (Homo sapiens),	Zincin-like
10	1hfc	at 218	8 :	
11	1i76	at 19'	7 A:	
12	1mmq	at 218	8 :	
13	830c	at 222	2 A:	
14	830c	at 222	2 B:	
15	1fbl	at 218	8 :	
5	1bud	at 14	12 A:	
_				

6 liag at 142 :
7 lqua at 142 A:
8 lsat at 176 :

```
9 lciz at 201 A:

10 lhfc at 218 :

11 li76 at 197 A:

12 lmmq at 218 :

13 830c at 222 A:

14 830c at 222 B:

15 lfbl at 218 :
```

COMMONLY OCCURRING CHELATE LOOPS in ZN and CA COORDINATION GROUPS

CHELATE LOOP: the term donor pair was used previously for this.
The data includes, for the individual occurrences:
i) amino-acid sequences, starting at relseq=-10; relseq=0 is the first donor amino-acid
ii) sequences of amino-acid types - g is glycine, s is small hydrophobic, h is large hydrophobic, a is acidic, b is basic, p is polar
iii) sequences of (Efimov type) conformations
iv) starting residue number, resolution, PDB header name,
v) coordination group definition (as in Table 3D)
vi) summary of analysis of agreement of torsion angles over selected regions of protein chain; chains are identified by their protein chain numbers (pc) - this is the first number in each row of the tables.
[Occasionally, additional information is given from an earlier analysis of donor pairs which included metal coordination geometry; the protein chain numbering may be different and the conformations are described by the categories of Hovmoller et al., using a for helix, b for sheet, g for turn, and j for other.]
<u>Ca D D 2</u>
<u>Ca D N 2</u>
<u>Ca D O 2</u>
<u>Ca N O 2</u>
<u>Ca D O 1</u>
<u>Ca O D 0</u>
<u>Ca O D 2</u>

<u>Ca O E 2</u>
<u>Ca O E 5</u>
Ca O S 0 and Ca O T 0
<u>Ca O O 2</u>
<u>Ca O O 3</u>
<u>Zn H H 4</u>
Zn C C 2
Zn C C 3
<u>Zn C C 5</u>
Zn H C 3
<u>Zn H H 2</u>

amino-acid sequences ****

start of selected part of cngroup relseq -10 -5 15 1 2scp from 6 A: OKMKTYFNRIDFDKDGAITRMD 2 1cdl from 10 A: A E F K E A F S L F D K D G D G T I T T K E 3 1q4y from 10 R: AEFKEAFSLFDKDGDGTITTKE 1sra from 247 : HCTTRFFETCDLDNDKYIALDE lvrk from 10 A: A E F K E A F S L F D K D G D G T I T T K E 1cdl from 46 B: A E L O D M I N E V D A D G N G T I D F P E 1rec from 100 : OKLEWAFSLYDVDGNGTISKNE 1vrk from 46 A: A E L O D M I N E V D A D G N G T I D F P E 2pvb from 41 A: DDVKKAFYVIDODKSGFIEEDE lalv from 140 A: D T C R S M V A V M D S D T T G K L G F E E 2pvb from 80 A: A E T K A F L A D G D K D G D G M I G V D E 1g4y from 46 R: A E L Q D M I N E V D A D G N G T I D F P E 12 1.3 lalv from 170 B: K K W O A I Y K O F D V D R S G T I G S S E lacc from 167 : _ _ _ _ P D R D N D G I P D S L E 1e43 from 192 A: NYDYLMYADVDYDHPDVVAETK 2scp from 8 A: MKTYFNRIDFDKDGAITRMDFE 12 A: FKEAFSLFDKDGDGTITTKELG 1cdl from 1g4y from 12 R: FKEAFSLFDKDGDGTITTKELG 18 1sra from 249 : TTRFFETCDLDNDKYIALDEWA 12 A: FKEAFSLFDKDGDGTITTKELG 20 1vrk from 2pvb from 82 A: TKAFLADGDKDGDGMIGVDEFA lacc from 169 : _ _ _ _ P D R D N D G I P D S L E V E 1fzc from 308 C: N G M O F S T W D N D N D K F E G N C A E O 3fib from 308 : NGMOFSTWDNDNDKFEGNCAEO 1fzc from 371 B: N G M F F S T Y D R D N D G W L T S D P R K

lalv from 213 B: RRYSDEGGNMDFDNFISCLVRL

28 lalv from 213 A: RRYSDEGGNMDFDNFISCLVRL 29 2por from 83 : FGDLYEVGYTDLDDRGGNDIPY

aa types - acidic, etc **

0 5 10 relseq -10 -5 15 1 2scp from 6 A: pbhbshhpbhahabagshsbha 2 1cdl from 10 A: sahbashshhabaqaqshssba 194v from 10 R: sahbashshhabagagshssba 1sra from 247: phssbhhashahapabhhshaa lvrk from 10 A: sahbashshhabagagshssba 46 B: sahpahhpahasaqpqshahha 1cdl from 7 lrec from 100 : p b h a h s h b h a h a q p q s h s b p a 46 A: sahpahhpahasaqpqshahha lvrk from 41 A: aahbbshhhhapabsqhhaaaa 2pvb from lalv from 140 A: a sh b sh h sh h a sa s s g b h g h a a 2pvb from 80 A: sasbshhsaqabaqaqhhqhaa 1q4y from 46 R: sahpahhpahasaqpqshahha lalv from 170 B: b b h p s h h b p h a h a b s g s h g s s a lacc from 167: _ _ _ _ _ habapaghhasha 1e43 from 192 A: phahhhhsahahaphahhsasb 2scp from 8 A: hbshhpbhahabaqshsbhaha 17 1cdl from 12 A: hbashshhabaqaqshssbahq 12 R: hbashshhabagagshssbahg 1sra from 249 : ssbhhashahapabhhshaahs 12 A: hbashshhabagagshssbahg lvrk from 2pvb from 82 A: sbshhsaqabaqaqhhqhaahs lacc from 169: _ _ _ _ habapaghhashaha lacc from 169 : _ _ _ _ habapaghhashaha 1fzc from 308 C: pghphsshapapabhagphsap 3fib from 308 : pghphsshapapabhagphsap 1fzc from 371 B: pqhhhsshabapaqhhssahbb lalv from 213 B: b b h s a a g g p h a h a p h h s h h h b h 28 lalv from 213 A: b b h s a a g g p h a h a p h h s h h b h

conformation sequences **

	relseq		-	10				-5					0					5					10		1	5
1	2scp fro	m 6	A:	a a	a a	ı a	а	a a	а а	ı a	b	a	a	g	a	g	b	b	b	а	а	а				
2	1cdl fro	m 10	A: a	a a	a a	a	a	a a	ı a	a	b	a	a	g	a	g	b	b	b	a	a	a				
3	1g4y fro	m 10	R: a	a a	a a	а	а	a a	ı a	а	b	а	а	g	а	g	b	b	b	а	a	a				
4	lsra fro	m 247	: 8	a a	a a	а	a	a a	ı a	a	b	а	а	g	а	g	b	b	b	а	a	a				
5	lvrk fro	m 10	A: a	a a	a a	а	а	a a	ı a	а	b	а	а	g	а	g	b	b	b	а	a	a				
6	1cdl fro	m 46	В: а	a a	a a	а	а	a a	ı a	а	b	а	а	g	а	g	b	b	b	а	a	a				
7	1rec fro	m 100	: 8	a a	a a	a	a	a a	ı a	a	b	a	a	g	a	g	b	b	b	a	a	a				
8	lvrk fro	m 46	A: a	a a	a a	а	а	a a	ı a	а	b	а	а	g	а	g	b	b	b	а	a	a				
9	2pvb fro	m 41	A: a	a a	a a	а	а	a a	ı a	а	b	а	а	g	а	g	b	b	b	а	a	a				
10	lalv fro	n 140 A	A: a	a a	ıa	а	a	a a	a	a	b	a	a	g	a	g	b	b	b	а	а	a				
11	2pvb fro	m 80	A: a	. a :	a a	а	а	a a	a	а	b	а	a	g	a	g	b	b	b	а	а	а				
12	1g4y fro	n 46	R: a	. a :	a a	а	а	a a	a	а	b	а	a	g	a	g	b	b	b	а	а	а				
13	lalv fro	n 170 I	3: a	a a	ı a	a	a	a a	a	a	b	a	a	g	a	g	b	b	b	a	а	a				
14	lacc from	n 167	: h	b l	o b	b	b	b b	b	b	b	a	a	g	a	g	b	b	а	a	а	a				
15	1e43 fro	n 192 i	A: b	a a	b	a	b	j b	b	b	b	a	a	b	a	a	a	a	a	a	а	a				
16	2scp fro	n 8	A: 6	a a	a a	a	a	a a	ı b	a	a	g	a	g	b	b	b	a	а	а	а	a				
17	1cdl from	n 12	A: a	. a a	a a	a	а	a a	b	а	a	g	a	g	b	b	b	a	a	a	а	а				
18	1g4y fro	n 12	R: a	. a a	a a	a	а	a a	b	а	a	g	a	g	b	b	b	a	a	a	а	а				
19	1sra fro	n 249	: a	. a a	a a	a	а	a a	b	а	a	g	a	g	b	b	b	a	a	a	а	а				
20	lvrk fro	n 12	A: a	. a a	a a	a	a	a a	b	a	a	g	a	g	b	b	b	a	а	a	а	a				
21	2pvb fro	m 82	A: a	. a a	a a	а	а	a a	b	а	а	g	a	g	b	b	b	a	а	а	а	а				
22	lacc fro	m 169	: b	b l	o b	b	b	b b	b	а	а	g	a	g	b	b	а	a	а	а	а	а				
23	lacc from	n 169	: h	b l	o b	b	b	b b	b	a	a	g	a	g	b	b	а	a	а	a	а	a				
24	1fzc fro	m 308 (c: b	g k	b	b	b :	b a	a	b	b	a	b	a	b	a	b	b	a	а	а	a				
25	3fib fro	n 308	: h	g l	o b	b	b	b a	a	b	b	а	b	a	b	a	b	b	a	а	а	а				
26	1fzc fro	m 371 I	3: b	g k	b	b	b :	b a	a	b	b	a	b	a	b	b	b	а	b	а	а	b				
27	lalv fro	n 213 I	3: a	a a	ı b	b	a	a g	b	b	b	a	a	a	a	a	a	a	a	a	a	a				
28	lalv fro	n 213 <i>i</i>	A: a	a a	ı a	g	a	a g	b	b	b	a	a	a	a	a	a	a	a	а	а	a				
29	2por fro	m 83	: 6	a j	b b	b	b	b :	j a	a	g	b	a	а	а	g	j	a	b	b	b	b				

conformation sequences ** revised - efimov

rerseq				-	. 0					,						U					-	,				_
15																										
2scp	from	6	A:	a	a	a	а	a	a	a	a	a	k	d	a	k	g	k	g	b	b	b	а	a	a	
1cdl	from	10	A :	a	а	a	а	a	a	а	a	a	a	d	a	k	g	k	g	b	b	b	а	a	а	
1g4y	from	10	R:	a	a	а	a	a	a	a	a	k	a	b	a	k	g	k	g	b	b	b	a	a	a	
1sra	from	247	:	k	k	a	a	a	a	а	a	a	k	d	a	k	g	k	g	b	b	b	а	a	а	
1vrk	from	10	A:	a	a	a	а	a	a	a	a	a	a	d	a	k	g	k	g	b	b	b	а	a	а	
1cd1	from	46	B:	a	а	a	а	k	a	а	а	a	a	b	а	k	g	а	g	b	b	b	а	а	a	
1rec	from	100	:	k	k	а	а	а	a	а	а	а	а	d	а	k	g	k	g	b	b	b	а	а	а	
1vrk	from	46	A:	а	а	а	а	а	a	а	а	а	k	d	а	k	g	k	g	b	b	b	а	а	а	
2pvb	from	41	A:	a	a	a	а	a	a	a	a	a	a	d	a	k	g	k	g	b	b	b	а	a	а	
lalv f	Erom	140	A:	a	a	a	a	a	a	a	a	a	k	d	a	k	g	k	g	b	b	b	а	a	a	
2pvb f	Erom	80	A:	a	a	a	а	a	a	a	a	a	a	d	k	k	g	k	g	b	b	b	а	a	a	
1g4y f	Erom	46	R:	a	a	a	а	a	a	a	a	a	d	b	a	k	g	k	g	b	b	b	а	a	a	
lalv i	Erom	170	в:	a	a	a	a	a	a	a	a	a	k	d	k	k	g	k	g	b	b	b	a	a	a	
lacc i	Erom	167	:										b	d	а	k	g	k	g	b	b	a	a	a	a	
1e43 i	Erom	192	A:	b	k	a	b	a	b		b	b	b	b	k	a	b	a	a	a	a	a	a	a	a	
2scp i	Erom	8	A :	a	а	а	а	а	a	а	k	d	a	k	g	k	g	b	b	b	a	а	а	а	а	
1cdl f	Erom	12	A:	a	а	a	а	a	а	a	a	d	a	k	g	k	g	b	b	b	а	a	a	a	a	
1g4y i	Erom	12	R:	а	а	а	a	а	а	k	а	b	а	k	g	k	g	b	b	b	а	a	a	а	а	
1sra i	Erom	249	:	a	а	a	а	a	а	a	k	d	a	k	g	k	g	b	b	b	а	a	a	a	a	
lvrk i	Erom	12	A:	a	а	a	а	a	а	a	a	d	a	k	g	k	g	b	b	b	а	a	a	a	a	
2pvb i	Erom	82	A:	a	а	a	а	a	а	a	a	d	k	k	g	k	g	b	b	b	а	a	a	a	a	
lacc i	Erom	169	:								b	d	а	k	g	k	g	b	b	а	а	a	a	а	а	
lacc i	Erom	169	:								b	d	а	k	g	k	g	b	b	а	а	a	a	а	а	
1fzc i	Erom	308	C:	b	g	b	b	b	b	b	a	k		b	d	b	k	b	а		b	a	a	a	a	
3fib f	Erom	308	:	b	g	b	b	b	b	b	а	k	b	b	k	b	k	b	a		b	a	a	а	а	
1fzc i	Erom	371	в:	b	g	b	b	b	b	b	k	k	b	b	k	b	k	b	b	b	a	b	a	a	d	
lalv i	Erom	213	в:	a	a	a	b	b	a	k	g	b	b	b	a	a	a	a	a	a	a	a	a	a	a	
lalv i	Erom	213	Α:	a	a	k	а	g		k	g	b	b	b	a	a	a	a	a	a	a	а	a	a	a	
2por f	Erom	83	:	k	j	b	b	b	b	b	j	a	k	g	d	k	a	k		j	k	b	b	d	b	
	15 2scp 1cdl 1g4y 1sra 1rec 1rec	-	15 2scp from 6 6 1cdl from 10 1sra from 247 1vrk from 10 1cdl from 46 1rec from 46 2pvb from 46 2pvb from 46 2pvb from 46 1alv from 170 1acc from 167 1e43 from 12 2scp from 8 1cdl from 12 1sra from 249 1vrk from 12 1sra from 249 1vrk from 12 2pvb from 8 2 2pvb from 308 3 3 3 3 3 3 3 3 3	15 2 3 6 A 1 1 1 1 1 1 1 1 1	15 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4	15 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4	2scp from 6 A: a a a a lodd from 10 A: a a a a lodd from 247 : k k a a lodd from 100 A: a a a a lodd from 46 B: a a a a lodd from 46 A: a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a lodd from 100 A: a a a a a a lodd from 100 A: a a a a a a a lodd from 100 A: a a a a a a lodd from 100 A: a a a a a a a lodd from 100 A: a a a a a a a a lodd from 100 A: a a a a a a a a a a a a a a a a a a	2scp from 6 A: a a a a a a lodd from 10 A: a a a a a a low from 247 : k k a a a a a a lodd from 46 B: a a a a a a lodd from 46 B: a a a a a a lodd from 46 A: a a a a a a lodd from 46 A: a a a a a a a low from 46 A: a a a a a a a a a a a a a a a a a a	2scp from 6 A: a a a a a a a a a a a a a a a a a a	2scp from 6 A: a a a a a a a a a a a a a a a a a a	2scp from 6 A:	2scp from 6 A: a a a a a a a a a a a a a a a a a a	2scp from	2sop from 6 A: a a a a a a a a a a a a a a a a a a	2scp from 6 A: a a a a a a a a a a a a a a a a a a	2scp from 6 A: a a a a a a a a a a a a a a a a a a	2scp from 6 A: a a a a a a a a a a a a a a a a a a	2scp from 6 A:	2scp from	2ccp from	2ccp from 6 A:	28cp from 6 A: a a a a a a a a a a a a a a a a a a	2scp from 6 A: a a a a a a a a a a a a a a a a a a	2sop from 6 A: a a a a a a a a a a a a a a a a a a	2scp from 6 A: a a a a a a a a a a a a a a a a a a	2scp from

relseq -10 -5 0 5 10

		procein	names (pa	D Headel /
1	2scp at	16 A	2.0	BINDING PROTEIN
2	1cdl at	20 A	2.2	CALCIUM-BINDING PROTEIN
3	1g4y at	20 R	1.6	SIGNALING PROTEIN
4	1sra at	257	2.0	CALCIUM-BINDING PROTEIN
5	1vrk at	20 A	1.9	COMPLEX(CALCIUM-BINDING PROTEIN/PEPT
6	1cdl at	56 В	2.2	CALCIUM-BINDING PROTEIN
7	1rec at	110	1.9	CALCIUM-BINDING PROTEIN
8	1vrk at	56 A	1.9	COMPLEX(CALCIUM-BINDING PROTEIN/PEPT
9	2pvb at	51 A	0.91	METAL BINDING PROTEIN
10	lalv at	150 A	1.9	CALCIUM BINDING
11	2pvb at	90 A	0.91	METAL BINDING PROTEIN
12	1g4y at	56 R	1.6	SIGNALING PROTEIN
13	lalv at	180 B	1.9	CALCIUM BINDING
14	lacc at	177	2.1	TOXIN
15	1e43 at	202 A	1.7	HYDROLASE
16	2scp at	18 A	2.0	BINDING PROTEIN
17	1cdl at	22 A	2.2	CALCIUM-BINDING PROTEIN
18	1g4y at	22 R	1.6	SIGNALING PROTEIN
19	1sra at	259	2.0	CALCIUM-BINDING PROTEIN
20	lvrk at	22 A	1.9	COMPLEX(CALCIUM-BINDING PROTEIN/PEPT
21	2pvb at	92 A	0.91	METAL BINDING PROTEIN
22	lacc at	179	2.1	TOXIN
23	lacc at	179	2.1	TOXIN
24	1fzc at	318 C	2.3	BLOOD COAGULATION
25	3fib at	318	2.1	BLOOD COAGULATION
26	1fzc at	381 B	2.3	BLOOD COAGULATION
27	lalv at	223 B	1.9	CALCIUM BINDING
28	lalv at	223 A	1.9	CALCIUM BINDING
29	2por at	93	1.8	INTEGRAL MEMBRANE PROTEIN PORIN

******* protein names (pdb header) ******

****** cnqps ******** 5 -1 -1 -1 6 2scp 0 0.1 2.0 CA 190 ASPA 16b 1 1 DDDOD 2 1 DDDOE 5 -1 -1 -1 5 1cdl 0 0.4 2.2 CA 1 ASPA 20 .b..b 5 -1 -1 -1 6 lg4y 0 0.2 1.6 CA 1001 ASPR 20b 3 1 DDDOE DDDOE 5 -1 -1 -1 6 1sra 0 0.2 2.0 CA 302 ASP 257b 5 1 DDDOE 5 -1 -1 -1 6 lvrk 0 0.1 1.9 CA 151 ASPA 20b 6 1 DDNNOE 2 5 -1 -16 1cdl 0 0.6 2.2 CA 2 ASPB 56b 7 1 DDNOE 5 -1 -1 -1 6 lrec 0 0.2 1.9 CA 501 ASP 110b 8 1 DDNOE 5 -1 -1 -1 6 lvrk 0 0.1 1.9 CA 152 ASPA 56b 9 1 DDSOEE 2 3 -1 -16 2pvb 0 0.1 0.9 CA 110 ASPA 51b 10 1 DDTOE 5 -1 -1 -1 6 lalv 0 0.2 1.9 CA 2 ASPA 150b z 3. 5 -1 -1 -1 6 2pvb 0 0.1 0.9 CA 111 ASPA 90b 11 1 DDDOE 12 1 DDNOE 5 -1 -1 -1 5 1g4y 0 0.4 1.6 CA 1002 ASPR 56b 13 1 DDSOE 5 -1 -1 -1 6 1alv 0 0.1 1.9 CA 7 ASPB 180b z 3. 14 1 DDDOE 5 -1 -1 -1 6 lacc 1 0.2 2.1 CA 800 ASP 177 2 -1 -1 -1 6 1e43 0 0.1 1.7 CA 502 ASPA 159 b.... DODDD 5 -1 -1 -1 6 2scp 0 0.1 2.0 CA 190 ASPA 16b 16 2 DDDOD 17 2 DDDOE 5 -1 -1 -1 5 1cdl 0 0.4 2.2 CA 1 ASPA 20 .b..b 5 -1 -1 -1 6 1g4y 0 0.2 1.6 CA 1001 ASPR 20b 18 2 DDDOE 19 2 DDDOE 5 -1 -1 -1 6 1sra 0 0.2 2.0 CA 302 ASP 257b 20 2 DDDOE 2 5 -1 -1 -1 6 lvrk 0 0.1 1.9 CA 151 ASPA 20b 21 2 DDDOE 2 5 -1 -1 -1 6 2pvb 0 0.1 0.9 CA 111 ASPA 90b 22 2 DDDOE 5 -1 -1 -1 6 lacc 1 0.2 2.1 CA 800 ASP 177 DDEOOD 3 10 -1 -16 lacc 0 0.3 2.1 CA 801 ASP 179 ..b... 24 1 DDOO 2 -1 -1 -1 -1 4 1fzc 0 0.2 2.3 CA 1 ASPC 318 b... 2 -1 -1 -1 -1 6 3fib 0 0.2 2.1 CA 400 ASP 318 b... 25 1 DDOO 2 -1 -1 -1 -1 -1 ... 5 1fzc 0 0.2 2.3 CA 26 1 DDO 2 ASPB 381 b.. ZZ 2 1 -1 -1 -1 -1 6 lalv 0 0.1 1.9 CA 27 2 DDDN 8 ASPB 135 .bb. ZZ 3. 2 1 -1 -1 -1 -1 6 lalv 0 0.2 1.9 CA 28 2 DDDN 4 ASPA 135 .bb. ZZ 3. 1 -1 -1 -1 -1 6 2por 0 0.2 1.8 CA 303 ASP 93 bb.. 29 1 DDND ZZ

```
over loop: 0-2
```

group 1: 1-10, same within 20 deg over loop

+11-13 within 20-30 deg

+ 14 15 within 25-35 deg

model for all: 2pvb at 51 A 0.91 (9)

of these 1-13 are related proteins and similar over relseq -10 to 11 $\,$

14 15 quite different

1-14 are first loop of a 2 2 5 sequence

group 2: 16-23, same within 16 deg

model : 2pvb at 92 A 0.91 (21)

of these 16-21 are related proteins and similar over relseq -10 to 11

22 23 quite different

16-22 are second loop of a 2 2 5 sequence

group 3: 24-26, same within 8 deg - closely related proteins

model: 3fib at 318 2.1 (25)

of these 24 25 are pretty similar over relseq -10 to 11, 26 is dif !

(others: 27 28, same, 29 dif from all)

means	pc 1-15	model: 2p	b at	51 A	0.91	(9)	
relseq	meanfi		meanpsi		number		
0	-84(19))	79(9)	15	d	(or b)
1	-59(10)) -	37(21)		15	a	(or k)
2	-88(12))	1(10)	15	k	(or a)

means pc 1-10

 ${\tt relseq} \qquad {\tt meanfi} \qquad {\tt meanpsi} \qquad {\tt number} \qquad ({\tt for \ st \ devns \ see \ below} \) \ {\tt q}$

0 -76 77 10 d

```
1
                     -43
           -56
                               10
                     1
                               10
   means pc 16-23 model: 2pvb at 92 A 0.91 (21)
   relseq
          meanfi meanpsi number
    0
            -89( 11)
                           0(7)
    1
           62(9)
                          25(7)
          -85(5)
                         0(11)
              model: 3fib at 318
                                     2.1 (25)
  means pc 24-26
    relseq meanfi meanpsi number
           -84( 1)
                         118( 4)
                                       3
                                            b **
          -134(2)
                         27(5)
                                        3 k (or d)
                                       3 b **
    2
          -82(6)
                     183( 6)
p chains 1-15
   relseg 0: chi1 172 to 194, chi2 -3 to 34 - all but one
   relseq 2: chil 51 to 72, chi2 -4 to 31
                                         - all but three
p chains 16-23
   relseq 0: al have chil 51 to 65, chi2 1 to 31
                         58 to 82, chi2 -52 to 22
p chains 24-26 chis close
                                               SCOP FOLD, FAMILY
(in old order)
  2scp at 16 A 2.0
                        BINDING PROTEIN
                                          EF Hand-like Calmodulin-like
 1cdl at 20 A 2.2
                        CALCIUM-BINDING PROTEIN
 1g4y at 20 R 1.6
                        SIGNALING PROTEIN
                                              EF Hand-like
                                                             Calmodulin-like
```

1sra at	257	2.0	CALCIUM-BINDING PROTEIN EF Hand-like/ Osteonectin
1vrk at	20 A	1.9	COMPLEX(CALCIUM-BINDING PROTEIN/PEPT Calmodulin/Calmodulin
1cdl at	56 B	2.2	CALCIUM-BINDING PROTEIN EF Hand-like / Calmodulin-like
1rec at	110	1.9	CALCIUM-BINDING PROTEIN EF Hand-like / Calmodulin-like
lvrk at	56 A	1.9	COMPLEX(CALCIUM-BINDING PROTEIN/PEPT Calmodulin/Calmodulin
2pvb at	51 A	0.91	METAL BINDING PROTEIN EF Hand-like Parvalbumin
lalv at	150 A	1.9	CALCIUM BINDING EF Hand-like/EF-hand modules in multidomain proteins
2pvb at	90 A	0.91	METAL BINDING PROTEIN EF Hand-like Parvalbumin
1g4y at	56 R	1.6	SIGNALING PROTEIN EF Hand-like Calmodulin-like
lalv at	180 B	1.9	CALCIUM BINDING EF Hand-like EF-hand modules in multidomain proteins
lacc at	177	2.1	TOXIN Anthrax protective antigen
1e43 at	202 A	1.7	HYDROLASE TIM beta/alpha-barrel/ alpha-Amylases, N-terminal domain
2scp at	18 A	2.0	BINDING PROTEIN EF Hand-like Calmodulin-like
1cdl at	22 A	2.2	CALCIUM-BINDING PROTEIN EF Hand-like/ Calmodulin-like
1g4y at	22 R	1.6	SIGNALING PROTEIN EF Hand-like/ Osteonectin
1sra at	259	2.0	CALCIUM-BINDING PROTEIN EF Hand-like/ Osteonectin
1vrk at	22 A	1.9	COMPLEX(CALCIUM-BINDING PROTEIN/PEPT Calmodulin/Calmodulin
2pvb at	92 A	0.91	METAL BINDING PROTEIN EF Hand-like/ Parvalbumin
lacc at	179	2.1	TOXIN Anthrax protective antigen
lacc at	179	2.1	TOXIN Anthrax protective antigen
1fzc at	318 C	2.3	BLOOD COAGULATION Fibrinogen C-terminal domain-like
3fib at	318	2.1	BLOOD COAGULATION Fibrinogen C-terminal domain-like
lfzc at	381 B	2.3	BLOOD COAGULATION Fibrinogen C-terminal domain-like
lalv at	223 B	1.9	CALCIUM BINDING EF Hand-like / EF-hand modules in multidomain proteins
lalv at	223 A	1.9	CALCIUM BINDING EF Hand-like / EF-hand modules in multidomain proteins
2por at	93	1.8	INTEGRAL MEMBRANE PROTEIN PORIN Transmembrane beta-barrelS/Porin

pc 1-13

start and end seq values for fi -10 11; for psi -10 11

¹³ protein chains to be compared

relseq	meanfi	meanpsi	number	
-10	-67(10)	-35(16)	13	a
-9	-71(17)	-34(19)	13	a
-8	-61(7)	-40(7)	13	a
-7	-63(4)	-40(7)	13	a
-6	-63(5)	-37(7)	13	a
-5	-63(5)	-42(5)	13	a
-4	-59(7)	-43(6)	13	a
-3	-59(6)	-36(13)	13	a
-2	-63(6)	-33(8)	13	a
-1	-92(17)	-19(24)	13	a
0	-79(6)	78 (7)	13	d
1	-59(8)	-41(17)	13	a
2	-87(13)	3 (8)	13	k
3	59(10)	29(10)	13	g
4	-84(7)	-1(10)	13	k
5	88(8)	0(8)	13	a
6	-137(7)	155(11)	13	b
7	-98(11)	121(9)	13	b
8	-97(19)	171(6)	13	b
9	-57(7)	-40(8)	13	a
10	-62(8)	-36(7)	13	a
11	-69(7)	-35(7)	13	a

pc 16-23 8 protein chains to be compared start and end seq values for fi -10 11; for psi -10 11

relseq	meanfi	meanpsi	number	
-10	-58(8)	-40(10)	6	a
-9	-65(5)	-38(7)	6	a
-8	-64(5)	-38(7)	6	a

-7	-62(6)	-44(5)	6	a
-6	-56(9)	-40(7)	6	a
-5	-61(4)	-32(12)	6	a
-4	-66(4)	-32(8)	6	a
-3	-83(11)	0(66)	8	k
-2	-96(33)	76(5)	8	d
-1	-54(10)	-39(14)	8	a
0	-89(11)	0(7)	8	k
1	62(9)	25(7)	8	g
2	-85(5)	0(11)	8	k
3	93(14)	-1(14)	8	g
4	-127(25)	146(15)	8	b
5	-90(25)	127(12)	8	b
6	-88(28)	207(67)	8	
7	-59(4)	-37(7)	8	a
8	-64(5)	-39(6)	8	a
9	-64(5)	-39(6)	8	a
10	-66(4)	-43(5)	8	a
11	-66(11)	-39(6)	8	a

pc 24,25,26

3 protein chains to be compared

start and end seq values for fi -10 11; for psi -10 11

relseq	meanfi	meanpsi	number	
-10	-60(2)	133(10)	3	b
-9	83(4)	0(8)	3	g
-8	-82(2)	146(13)	3	b
-7	-80(11)	159(6)	3	b
-6	-80(6)	143(4)	3	b

-5	-131(6)	147(4)	3	b	
-4	-134(8)	165(2)	3	b	
-3	-60(6)	-24(10)	3	a	
-2	-101(8)	14(2)	3	k	
-1	-158(3)	87(5)	3	b	
0	-84(1)	118(4)	3	b	**
1	-134(2)	27 (5)	3	k	
2	-82(6)	183(6)	3	b	**
3	-98(6)	14(8)	3	k	
4	-104(2)	138(20)	3	b	
5	-76(17)	6 (69)	3	k	
6	-98(15)	-166(18)	3	b	
7	-117(6)	55(77)	3	d	
8	-59(6)	6 ((96)	3	k	
9	-57(3)	-38(9)	3	a	
10	-69(5)	-33(10)	3	a	
11	-72(10)	0 (70)	3	k	

Ca D N 2

cadn2 sequences , and, added for comparison

protein chains 16,16 18 from cadd2 (were 9, 21, 25)

amino-acid sequences ****

start of selected part of cngroup

relseq -10 -5 0 5 10 15

1 1cdl from 48 B: L Q D M I N E V D A D G N G T I D F P E F L

2 1cdl from 85 A: IREAFRVFDKDGNGYISAAELR

3 1g4y from 48 R: L Q D M I N E V D A D G N G T I D F P E F L

4 lrec from 102 : LEWAFSLYDVDGNGTISKNEVL

5 1vrk from 48 A: LODMINEVDADGNGTIDFPEFL

6 2sas from 9 : KIKFTFDFFLDMNHDGSIQDND

7 la2x from 129 A: E E I E S L M K D G D K N N D G R I D F D E

8 la2x from 93 A: EELAECFRIFDRNADGYIDAEE

2scp from 94 B: GPLPLFFRAVDTNEDNNISRDE

10 2sas from 60 : DEWRDLKGRADINKDDVVSWEE

1 2scp from 94 A: GPLPLFFRAVDTNEDNNISRDE

2 2scp from 128 B: TMAPASFDAIDTNNDGLLSLEE

13 1gca from 124 : AKHWQANQGWDLNKDGKIQYVL

14 1i8a from 71 A: WEODSVEIFIDENNHKTGYYED

5 1b0p from 973 B: G L D H V L A S G E D V N V F V M D T E V Y

16 2pvb from 41 A: D D V K K A F Y V I D Q D K S G F I E E D E

.7 2pvb from 82 A: T K A F L A D G D K D G D G M I G V D E F A

18 3fib from 308 : NGMQFSTWDNDNDKFEGNCAEQ

aa types - acidic, etc **

relseq -10 -5 0 5 10 15

1 1cdl from 48 B: hpahhpahasagpgshahhahh

2 1cdl from 85 A: h b a s h b h h a b a q p q h h s s s a h b

3 1g4y from 48 R: hpahhpahasagpgshahhahh

4 lrec from 102: hahshshhahagpgshsbpahh

5 1vrk from 48 A: hpahhpahasagpgshahhahh 2sas from 9: bhbhshahhhahppaqshpapa 1a2x from 129 A: aahashhbagabppagbhahaa la2x from 93 A: aahsahhbhhabpsaqhhasaa 2scp from 94 B: ghhhhhhbshaspaapphsbaa 2sas from 60 : aahbahbgbsahpbaahhshaa 2scp from 94 A: qhhhhhhbshaspaapphsbaa 2scp from 128 B: shshsshashasppaghhshaa 1qca from 124 : sbphpsppqhahpbaqbhphhh 1i8a from 71 A: hapashahhhaapppbsghhaa 973 B: ghaphhssgaahphhhhasahh 1b0p from 2pvb from 16 41 A: aahbbshhhhapabsqhhaaaa 82 A: sbshhsaqabaqaqhhqhaahs 2pvb from 3fib from 308: pghphsshapapabhagphsap

conformation sequences **

-10

5 relseq 10 1 1cdl from 48 B: aakaaaabakgagbbbaaaa 1cdl from 85 A: aaaakaadakqkqbbbaaaa 3 1g4y from 48 R: aaaaaadbakgkgbbbaaaka 1rec from 102 : aaaaaaadakqkqbbbaaaa 1vrk from 48 A: aaaaaakdakqkqbbbaaaa 9: aaaaaaak.dakgkgbbbaaa 2sas from 1a2x from 129 A: aaaaaaaabakqkqbbbaaa 93 A: aaaaaaaabakgkgbbbaaa 1a2x from 2scp from 94 B: aaaaaaaadak.kqbbbaaa 2sas from 60 : aaaaaakaabakgkgbbbaaa 10 94 A: akaaaaaaadakgkgbbbaaa 2scp from 2scp from 128 B: kkaaaaaaadkk.kqbbbaaa 12 124: aaaakdakkdakgkgbbbbbb 1gca from 1i8a from 71 A: kkbb.bbbbbakqkqbkbbba 1b0p from 973 B: aaaaaagbbbbbbbbbkg.b 2pvb from 41 A: aaaaaaaaadakgkgbbbaaa

-5

15

```
17 2pvb from 82 A: a a a a a a a d k k g k g b b b a a a a a a

18 3fib from 308 : b g b b b b b a k b b k b k b a . b a a a a
```

***	*****	protein na	mes (pdb	header) ******
1	1cdl at	58 B	2.2	CALCIUM-BINDING PROTEIN
2	1cdl at	95 A	2.2	CALCIUM-BINDING PROTEIN
3	1g4y at	58 R	1.6	SIGNALING PROTEIN
4	1rec at	112	1.9	CALCIUM-BINDING PROTEIN
5	lvrk at	58 A	1.9	COMPLEX(CALCIUM-BINDING PROTEIN/PEPT
6	2sas at	19	2.4	CALCIUM-BINDING PROTEIN
7	la2x at	139 A	2.3	COMPLEX (SKELETAL MUSCLE/MUSCLE PROT
8	la2x at	103 A	2.3	COMPLEX (SKELETAL MUSCLE/MUSCLE PROT
9	2scp at	104 В	2.0	BINDING PROTEIN
10	2sas at	70	2.4	CALCIUM-BINDING PROTEIN
11	2scp at	104 A	2.0	BINDING PROTEIN
12	2scp at	138 в	2.0	BINDING PROTEIN
13	1gca at	134	1.7	GALACTOSE-BINDING PROTEIN
14	1i8a at	81 A	1.90	HYDROLASE
15	1b0p at	983 В	2.31	OXIDOREDUCTASE
16	2pvb at	51 A	0.91	METAL BINDING PROTEIN
17	2pvb at	92 A	0.91	METAL BINDING PROTEIN
18	3fib at	318	2.1	BLOOD COAGULATION

******* cngps *******

1 2	DDNNOE	Ca	2	2	0	2	5	-1	-16 1cdl	0 0.6 2.2	CA	2 ASPB	56b			
2 2	DDNOE	Ca	2	2	2	5	-1	-1	-1 5 1cdl	0 0.3 2.2	CA	3 ASPA	93 .bb			
3 2	DDNOE	Ca	2	2	2	5	-1	-1	-1 5 1g4y	0 0.4 1.6	CA 10	02 ASPR	56b			
4 2	DDNOE	Ca	2	2	2	5	-1	-1	-1 6 lrec	0 0.2 1.9	CA 5	01 ASP	110b		Z	
5 2	DDNOE	Ca	2	2	2	5	-1	-1	-1 6 lvrk	0 0.1 1.9	CA 1	L52 ASPA	56b		Z	2.
6 1	DNDOD	Ca	2	2	2	5	-1	-1	-1 5 2sas	0 0.2 2.4	CA 1	L86 ASP	19b			
7 1	DNDOE	Ca	2	2	2	5	-1	-1	-1 5 1a2x	1 0.4 2.3	CA 1	L61 ASPA	139b.b			
8 1	DNDOE	Ca	2	2	2	5	-1	-1	-1 5 1a2x	2 0.2 2.3	CA 1	L60 ASPA	103b			
9 1	DNDOE	Ca	2	2	2	5	-1	-1	-1 5 2scp	0 0.3 2.0	CA 1	L94 ASPB	104b			

```
10 1 DNDOE
                         2 5 -1 -1 -1 ..... 6 2sas 0 0.4 2.4 CA 187 ASP 70 ....b
     DNDOE
                         2 5 -1 -1 -1 ..... 6 2scp 0 0.1 2.0 CA 191 ASPA 104 ....b
12 1 DNDOE
                         2 5 -1 -1 -1 ..... 6 2scp 0 0.1 2.0 CA 195 ASPB 138 ....b
     DNDOOE
                         2 2 63 -1 -1 .....6 1gca 0 0.1 1.7 CA
                                                                   1 ASP 134 ....b
     DNEDD
                        2 1 -1 -1 -1 ..... 6 1i8a 0 0.3 1.9 CA 190 ASPA 81 ...bb
14 1
                                                                                         z 3.
15 1
     DNOOO
                       3 2 -1 -1 -1 .... 5 1b0p 1 0.4 2.3 CA 1238 ASPB 983 ....
                        2 2 3 -1 -1 .....6 2pvb 0 0.1 0.9 CA 110 ASPA 51 .....b |
16 1 DDSOEE
17 2 DDDOE
                        2 5 -1 -1 -1 ..... 6 2pvb 0 0.1 0.9 CA 111 ASPA 90 ....b
                    2 2 -1 -1 -1 -1 .... 6 3fib 0 0.2 2.1 CA 400 ASP 318 b...
18 1 DDOO
```

group 1: p chains 6-14, agree within 10-30 deg, bak, and similar to $\label{eq:group 1} \mbox{group 1 of cadd2}$

p chains 9 10 11 12 13 are within 8-15 deg, dak

and are within 12 deg of p chain ch 16 $\,$ i.e. group 1 of cadd2 $\,$

model 1gca at 134 1.7 (13)

relseq -10 to 11: 9,10,11,12 are fairly similar, and 6,7,8

group 2: p chains 1-5 agree 11-25 deg and same as 21 of cadd2 kgk model: 1g4y at 58 R (3)

chains are fairly similar to each other over relseq -10 to 11, and top 17

p chains 1-5

relseq meanfi meanpsi number

0 -79(14) 1(10) 5 k

1	59 (11)	29 (8)	5	
2	-85 (12)	0 (14)	5	1

p chains 6-14

relseq	meanfi	meanpsi	number		
0	-86(17)	85(14)	9	b	
1	-67(17)	-34(11)	9	a	
2	-94(7)	8(13)	9	k	

p chains 9-14

relseq	meanfi	meanpsi	number	
0	-79(3)	78(6)	5	d
1	-61(6)	-31(12)	5	a
2	-98(6)	17(9)	5	k

20

1wdc from

lajj from

1i8a from

11.6.02 cado2

amino-acid sequences ****

start of selected part of cngroup relseq -10 15

1 2scp from 10 A: TYFNRIDFDKDGAITRMDFESM 2 1cdl from 14 A: EAFSLFDKDGDGTITTKELGTV 3 1cdl from 123 A: E M I R E A D I D G D G O V N Y E E F V O M 194v from 14 R: EAFSLFDKDGDGTITTKELGTV lvrk from 14 A: EAFSLFDKDGDGTITTKELGTV 2pvb from 84 A: A F L A D G D K D G D G M I G V D E F A A M 2sas from 13 : TFDFFLDMNHDGSIODNDFEDM 1a2x from 97 A: ECFRIFDRNADGYIDAEELAEI 2sas from 109 : FLFKGMDVSGDGIVDLEEFONY 2por from 126 : G A F S V A A S M S D G K V G E T S E D D A 1vrk from 123 A: E M I R E A D V D G D G O V N Y E E F V O V 1gca from 128 : QANQGWDLNKDGKIQYVLLKGE 1sra from 251 : R F F E T C D L D N D K Y I A L D E W A G C 1kap from 440 P: A G S L A I D F S G D A H A D F A I N L I G 98 B: L F F R A V D T N E D N N I S R D E Y G I F lezm from 173 : A A E F Y M R G K N D F L I G Y D I K K G S lalv from 100 B: R R L F A O L A G D D M E V S A T E L M N I 2sas from 64 : D L K G R A D I N K D D V V S W E E Y L A M 18 2scp from 132 B: A S F D A I D T N N D G L L S L E E F V I A

26 lfzc from 373 B: M F F S T Y D R D N D G W L T S D P R K Q C

lsra from 217 : Q F G Q L D Q H P I D G Y L S H T E L A P L

1a2x from 133 A: SLMKDGDKNNDGRIDFDEFLKM

lacc from 171 : _ _ _ _ PDRDNDGIPDSLEVEGY

15 C: FELFDFWDGRDGAVDAFKLGDV

15 : GECIHSSWRCDGGPDCKDKSDE

2 A: A T A K Y G T P V I D G E I D E I W N T T E

1fzc from 310 C: M O F S T W D N D N D K F E G N C A E O D G 3fib from 310 : M O F S T W D N D N D K F E G N C A E O D G 1clc from 513 : MNPHDRRSGADGIWEPWPGYLV 1nls from 0 : DTIVAVELDTYPNTDIGDPS laho from 11 A: IYOIIIDRFYDGDTTNNNPAKS 31 1d2s from 40 A: TSSSFEVRTWDPEGVIFYGDTN 1q0h from 371 B: D N S S E W T V V I D P I D G S F N F I N G 1q0h from 71 A: DNSSEWTVVIDPIDGSFNFING 50 A: NYLYVLAIVKDPVLNKDNSNPW 1i8a from 1fjs from 60 A: YAKRFKVRVGDRNTEOEEGGEA 93 A: DOVYGOIVGNDHYNEVFIGRFS 1cvr from 1kap from 275 P: S S S K L V F S V W D A G G N D T L D F S G laru from 192 : LNSAIFRSPLDSTPOVFDTOFY

aa types - acidic, etc **

-10 -5 0 5 relseq 1 2scp from 10 A: shhpbhahabaqshsbhahash 2 1cdl from 14 A: ashshhabagagshssbahgsh 3 1cdl from 123 A: ahhbasahagagphphaahhph 4 1g4y from 14 R: a sh sh h a b a g a g sh s sb a h g sh 1vrk from 14 A: ashshhabaqaqshssbahqsh 2pvb from 84 A: shhsagabagaghhghaahssh 13: shahhhahppagshpapahaah 2sas from 1a2x from 97 A: ahhbhhabpsaqhhasaahsah 2sas from 109: hhhbghahsgaghhahaahpph 2por from 126 : qshshssshsaqbhqassaas lvrk from 123 A: ahhbasahagagphphaahhph 1gca from 128: psppghahpbagbhphhhhbbga 1sra from 251 : bhhashahapabhhshaahsgh 13 1kap from 440 P: sgshshahsgaspsahshphhg 2scp from 98 B: hhhbshaspaapphsbaahqhh lezm from 173 : ssahhhbgbpahhhghahbbgs 17 lalv from 100 B: b b h h s p h s g a a h a h s s s a h h p h

1.0

15

2sas from 64: ahbgbsahpbaahhshaahhsh 2scp from 132 B: sshashasppaghhshaahhhs 1sra from 217: ph g ph a p ph h a g h h s p s a h s h h 1a2x from 133 A: shhbaqabppaqbhahaahhbh 1wdc from 15 C: hahhahhaqbaqshashbhqah 22 lacc from 171 : _ _ _ _ habapaghhashahagh laji from 15: qahhpsshbhaqqhahbabsaa 1i8a from 2 A: sssbhgshhhagahaahhpssa 1fzc from 373 B: hhhsshabapaghhssahbbph 1fzc from 310 C: hphsshapapabhaqphsapaq 3fib from 310: hphsshapapabhagphsapag 1clc from 513: hphpabbsqsaqhhahhhqhhh 29 0: __ashhshahashhpsahgahs 30 1nls from 11 A: hhphhhabhhagasspphsbs 1aho from 1d2s from 40 A: sssshahbshahaqhhhhqasp 1q0h from 371 B: apssahshhhahhaqshphhpq 1g0h from 71 A: apssahshhhahhagshphhpg 34 1i8a from 50 A: phhhhhshhbahhhpbapsphh 36 1fis from 60 A: hsbbhbhbhgabpsapaaggas 1cvr from 93 A: aphhqphhqpaphpahhhqbhs 1kap from 275 P: sssbhhhshhasggpashahsg laru from 192: hpsshhbshhasshphhasphh

conformation sequences **

relseq -10 -5 0 5 1 2scp from 10 A: aaaakdakgkgbbbaaaaa 14 A: aaaaadakgkgbbbaaaaaa 2 1cdl from 3 lcdl from 123 A: aaaakdakgkgbbbaaaaaa 14 R: aaaakabakgkgbbbaaaaa 1g4y from 1vrk from 14 A: aaaaadakqkqbbbaaaaaa 84 A: aaaaadkkgkgbbbaaaaa 2pvb from 7 2sas from 13: aaaak.dakgkgbbbaaaaaa

10

15

```
la2x from
         97 A: aaaaabakgkgbbbaaaaaa
   2sas from 109: aaakkadakqkqbbbaaaaaa
   2por from 126 : . k b b b b b b * b k g b b . d b k b b b b
   1vrk from 123 A: aaaakbakqkqbbbaaaaaa
   12
   1sra from 251: aaaakdakgkgbbbaaaaaa
   1kap from 440 P: bb.bbbaaqkqbbabbbbbj
          98 B: aaaaadak * kgbbbaaaaaa
   1ezm from 173 : aaaaakqbbkqbbqaakbbja
   lalv from 100 B: aaaaaaajakgbbbaaaaaa
18
   2sas from
          64 : aaakaabakqkqbbbaaaaaa
19
   2scp from 132 B: a a a a a a d k k * k q b b b a a a a a a
         217 : aaaaabkdbb * qbbbaakkaak
20
   1sra from
                                              * far from q
   1a2x from
         133 A: aaaaaabakqkqbbbaaaaaa
          15 C: aaaaakk * b - qbbbkkkaaaa
   1wdc from
                                              * far from q
   lacc from 171 : . . . . bdakgkgbbaaaaa.b
                                               - v near k
   laji from
          15 : qbbbbakkbqkqbbabakqakk
  1i8a from
           2 A: bbbbb.bbb*gbbbaaakkbb
  1fzc from 373 B: b b b b b k k b b k b b b a b a a d b a
   1fzc from 310 C: b b b b b a k . b d b k b a . b a a a a k q
   3fib from 310 : b b b b b a k b b k b k b a . b a a a a a q
   lclc from 513 : adbbbaaakkbkbabbbgbb
30
   1nls from
           0 : . . b b b b b b b b b b b a k k q b b d
          11 A: b b b b b a k k a b b k b k k k a d b a a d
   1qho from
   1d2s from
          40 A: dbbb.bbb.kbkb.babbbk.
   1q0h from
         371 B: bkgbkbbbbbbbbbgaaakkg
          71 A: bkgbkbbbbbbbbbgaaaakg
34
   1g0h from
   1i8a from
          50 A: abbbbbbbbbbbbbaak
35
          36
   1fjs from
          93 A: aaakbabqqbkbbabbbbbb
   1cvr from
         275 P: kkbbbb.bbbk.jbbbbdak
   1kap from
  laru from 192: abkadbgbbkbkdkkbbbkaaa
```

**	*****	protein	names (pdb	header) ******
1	2scp at	20 A	2.0	BINDING PROTEIN
2	1cdl at	24 A	2.2	CALCIUM-BINDING PROTEIN
3	1cdl at	133 A	2.2	CALCIUM-BINDING PROTEIN
4	1g4y at	24 R	1.6	SIGNALING PROTEIN
5	1vrk at	24 A	1.9	COMPLEX(CALCIUM-BINDING PROTEIN/PEPT
6	2pvb at	94 A	0.91	METAL BINDING PROTEIN
7	2sas at	23	2.4	CALCIUM-BINDING PROTEIN
8	la2x at	107 A	2.3	COMPLEX (SKELETAL MUSCLE/MUSCLE PROT
9	2sas at	119	2.4	CALCIUM-BINDING PROTEIN
10	2por at	136	1.8	INTEGRAL MEMBRANE PROTEIN PORIN
11	1vrk at	133 A	1.9	COMPLEX(CALCIUM-BINDING PROTEIN/PEPT
12	1gca at	138	1.7	GALACTOSE-BINDING PROTEIN
13	1sra at	261	2.0	CALCIUM-BINDING PROTEIN
14	1kap at	450 P	1.64	ZINC METALLOPROTEASE
15	2scp at	108 B	2.0	BINDING PROTEIN
16	lezm at	183	1.5	HYDROLASE
17	1alv at	110 B	1.9	CALCIUM BINDING
18	2sas at	74	2.4	CALCIUM-BINDING PROTEIN
19	2scp at	142 B	2.0	BINDING PROTEIN
20	1sra at	227	2.0	CALCIUM-BINDING PROTEIN
21	1a2x at	143 A	2.3	COMPLEX (SKELETAL MUSCLE/MUSCLE PROT
22	1wdc at	25 C	2.0	MUSCLE PROTEIN
23	lacc at	181	2.1	TOXIN
24	lajj at	25	1.7	RECEPTOR
25	1i8a at	12 A	1.90	HYDROLASE
26	1fzc at	383 B	2.3	BLOOD COAGULATION
27	1fzc at	320 C	2.3	BLOOD COAGULATION
28	3fib at	320	2.1	BLOOD COAGULATION
29	1clc at	523	1.9	GLYCOSYL HYDROLASE
30	1nls at	10	0.94	AGGLUTININ
31	1qho at	21 A	1.70	HYDROLASE

32	1d2s at	50 A	1.55	TRANSPORT PROTEIN
33	1g0h at	381 B	2.30	HYDROLASE
34	1g0h at	81 A	2.30	HYDROLASE
35	li8a at	60 A	1.90	HYDROLASE
36	1fjs at	70 A	1.92	BLOOD CLOTTING
37	1cvr at	103 A	2.00	HYDROLASE
38	1kap at	285 P	1.64	ZINC METALLOPROTEASE
39	laru at	202	1.6	PEROXIDASE (DONOR: H2O2 OXIDOREDUCTAS

****	****	cngps	***	*****	**										
1 3	DDDOD	Ca	2	2	2	5	-1	-1	-1 6 2scp	0 0.1 2.0	CA	190 ASPA 16b		Z	
2 3	DDDOE	Ca	2	2	2	5	-1	-1	-1 5 lcdl	0 0.4 2.2	CA	1 ASPA 20 .bb	-		
3 3	DDDOE	Ca	2	2	2	5	-1	-1	-1 5 1cdl	1 0.6 2.2	CA	4 ASPA 129 .bb			
4 3	DDDOE	Ca	2	2	2	5	-1	-1	-1 6 lg4y	0 0.2 1.6	CA	1001 ASPR 20b		Z	
5 3	DDDOE	Ca	2	2	2	5	-1	-1	-1 6 lvrk	0 0.1 1.9	CA	151 ASPA 20b		Z	2.
6 3	DDDOE	Ca	2	2	2	5	-1	-1	-1 6 2pvb	0 0.1 0.9	CA	111 ASPA 90b		Z	
7 3	DNDOD	Ca	2	2	2	5	-1	-1	-1 5 2sas	0 0.2 2.4	CA	186 ASP 19b			
8 3	DNDOE	Ca	2	2	2	5	-1	-1	-1 5 1a2x	2 0.2 2.3	CA	160 ASPA 103b			
9 3	DSDOE	Ca	2	2	2	5	-1	-1	-1 5 2sas	0 0.2 2.4	CA	188 ASP 115b			
10 2	NDOO	Ca	20	2	2	-1	-1	-1	-1 5 2por	0 0.2 1.8	CA	304 ASN 116 .b		Z	
11 3	DDDOE	Ca	2	2	2	5	-1	-1	-1 6 1vrk	0 0.2 1.9	CA	154 ASPA 129b		Z :	2.
12 3	DNDOQE	Ca	2	2	2	2	63	-1	-16 1gca	0 0.1 1.7	CA	1 ASP 134b			
13 3	DDDOE	Ca	2	2	2	5	-1	-1	-1 6 1sra	0 0.2 2.0	CA	302 ASP 257b		Z	
14 3	DSDOD	Ca	2	2	2	2	-1	-1	-1 6 1kap	0 0.3 1.6	CA	621 ASPP 446b		Z	3.
15 3	DNDOE	Ca	2	2	2	5	-1	-1	-1 5 2scp	0 0.3 2.0	CA	194 ASPB 104b			
16 4	DEEDO	Ca	36	3	8	2	-1	-1	-1 6 lezm	0 0.3 1.5	CA	400 ASP 136b		Z :	3.
17 2	ODOE	Ca	3	2	5	-1	-1	-1	-1 6 1alv	0 0.1 1.9	CA	5 ALAB 107b		ZZ	3.
18 3	DNDOE	Ca	2	2	2	5	-1	-1	-1 6 2sas	0 0.4 2.4	CA	187 ASP 70b		Z	
19 3	DNDOE	Ca	2	2	2	5	-1	-1	-1 6 2scp	0 0.1 2.0	CA	195 ASPB 138b		Z	
20 3	DODOE	Ca	3	2	2	5	-1	-1	-1 6 1sra	0 0.2 2.0	CA	301 ASP 222b		Z	
21 3	DNDOE	Ca	2	2	2	5	-1	-1	-1 5 1a2x	1 0.4 2.3	CA	161 ASPA 139b.b			
22 5	ODDODO	Ca	0	3	1	2	2	-1	-17 lwdc	0 0.2 2.0	CA	501 ASPC 19		Z	

23 3 DDDOE Ca 2 2 2 5 -1 -1 -1 6 lacc 1 0.2 2.1 CA 800 ASP 177 | Z

```
24 2 ODODDE
                         2 6 1 -1 -1 ......6 lajj 0 0.1 1.7 CA 73 TRP 22 ......
25 2
     ODODE
                        2 114 -1 -1 -1 .... 6 1i8a 0 0.2 1.9 CA 191 VALA 10 ....b
26 2 DDO
                     2 -1 -1 -1 -1 -1 ... 5 1fzc 0 0.2 2.3 CA
                                                                    2 ASPB 381 b..
                                                                                    l zz
27 2
     DDOO
                        2 -1 -1 -1 -1 .... 4 1fzc 0 0.2 2.3 CA
                                                                    1 ASPC 318 b...
28 2
                       2 -1 -1 -1 -1 .... 6 3fib 0 0.2 2.1 CA 400 ASP 318 b...
    DDOO
29 2
     ODO
                     2 -1 -1 -1 -1 -1 ... 6 lclc 0 0.1 1.9 CA 593 SER 520 ...
                                                                                    ZZZ 3.
30 1
    DOND
                        5 -1 -1 -1 -1 .... 6 lnls 0 0.1 0.9 CA 240 ASP
                                                                          10 b...
     DONNOD
                        1 21 2 -1 -1 ......7 1qho 0 0.2 1.7 CA 698 ASPA 21 ......
                  2 108 -1 -1 -1 -1 -1 ... 6 1d2s 0 0.1 1.5 CA 401 ASPA 50 b..
32 1
    DOO
33 2
     EDO
                     2 -1 -1 -1 -1 -1 ... 4 1g0h 1 0.4 2.3 CA 590 GLUB 365 .b.
                                                                                          3.
34 2 EDO
                     2 -1 -1 -1 -1 -1 ... 6 1q0h 0 0.2 2.3 CA 291 GLUA 65 b..
                                                                                    UZZ 3.
35 1 DODDO
                 2 12 80 1 -1 -1 -1 ..... 6 1i8a 0 0.3 1.9 CA 192 ASPA 60 b.b..
                                                                                        z 3.
                     3 2 3 -1 -1 -1 .... 6 1fis 0 0.3 1.9 CA 507 ASPA 70 ....
36 1
     DOOEE
                                                                                        z 3.
                       2 -1 -1 -1 -1 .... 6 lcvr 0 0.2 2.0 CA 477 VALA 100 ...b
37 2
     ODOE
                                                                                       ZZ 3.
                     2 28 2 3 -1 -1 ......6 1kap 1 0.1 1.6 CA 614 ARGP 253 ...b..
38 4
     OOTDOD
                                                                                          3.
39 3 OSDOTOD
                 0 17 2 0 3 2 -1 ......7 laru 0 0.2 1.6 CA 347 SER 185 ..b....
                                                                                          1.
```

over donor pair 0-2,0-1

1-25 are similar, within 30-40 deg - kgb

1-10 are within 5-14 deg model:2pvb at 94 A 0.9 (6)

14-19 are within 12 deg of each other model:lezm at 183 1.5 (16)

23-24 are within 17 deg of each other model:lajj at 25 1.7 (24)

26-39 are similar, within 50-60 deg of each other, 80+ deg from above - bkb or bab

26-29 are very close (10 deg) model:3fib at 320 2.1 (28)

30-32 are very close (13 deg) model:1nls at 10 0.94 (30)

33-34 are very close (10 deg) - probably identical (A&B), sloppy crystallography

39 fairly close to 34 35 (16 deg)

how much of this is just as a part of whole chain -10 to 11 ?

donor pair (0-2,0-1)

1-10 are within 5-14 deg 10 very different, also 12 14

14-19 are within 12 deg of each other: 16 different

23-25 are within 14 deg of each other 20, 22-25 fairly different

26--39 are similar, within 50--60 deg of each other, 80+ deg from above

26-29 are very close (8 deg) all different (50-80 deg)

30-32 are very close (11 deg) all different (80 deg)

p chains 1-25

relseq	meanfi	meanpsi	number	
0	-100(22)	6(10)	25	k
1	80(15)	5(17)	25	g
2	-128(17)	149(18)	25	b

p chains 1-10

	number	meanpsi		meanfi	relseq
k) 10	3(7)	9)	-89 (0
g	10	5(9)	(6)	86 (1
b	10	151(13)	5)	-140(2

p chains 14-19

relseq	meanfi	meanpsi	number	
0	-103(7)	12(9)	6	k
1	60(6)	21(6)	6	g
2	-130(7)	138(11)	6	b

p chains 23-24

	number	meanpsi	meanfi	relseq
k	2	-6(15)	-96(15)	0
g	2	-33(15)	108(8)	1
b	2	130(2)	-88(1)	2

p chains 26	-39				
relseq	meanfi	meanpsi	number		
0	-110(31)	-214(38)	13	b	
1	-89(20)	-2(19)	13	k	
2	-126(27)	125(27)	13	b	
p chains 26	-29				
relseq	meanfi	meanpsi	number		
0	-83(6)	-175(5)	4	b	
1	-100(6)	17(8)	4	k	
2	-103(2)	138(17)	4	b	
p chains 30	-32				
relseq	meanfi	meanpsi	number		
0	-91(6)	106(13)	3	b	
1	-81(8)	-11(2)	3	k	
2	-138(8)	124(22)	3	b	
side chains	of 1-25				
all but	t 3 have chil 4	0 to 82, chi2 -	52 to 83		
	3 has	68	156	(probably other OD)	
side chains	of 26-39 wide	ly scattered, but			
for pro	ot chains 26-29	chil 63 to 73,	chi2	7 to 37	
	30-	32 chi1 -177 t	o -171, chi2	-18 to -1	

amino-acid sequences **** start of selected part of engroup relseq -10 -5 0 5 10 15 1 1cdl from 50 B: DMINEVDADGNGTIDFPEFLTM 2 1cdl from 87 A: EAFRVFDKDGNGYISAAELRHV 1q4v from 50 R: D M I N E V D A D G N G T I D F P E F L T M 1rec from 104 : WAFSLYDVDGNGTISKNEVLEI 1vrk from 50 A: D M I N E V D A D G N G T I D F P E F L N L 1bfd from 445 : NIPTIFVIMNNGTYGALRWFAG 1trk from 177 A: L G N L I A I Y D D N K I T I D G A T S I S 2cbl from 223 A: A L K S T I D L T C N D Y I S V F E F D I F 1clc from 229 : PVALEIPEKNNSIPDFLDELKY 1cse from 67 E: H V A G T V A A I, D N T T G V I, G V A P S V 1gci from 67 : HVAGTIAALNNSIGVLGVAPSA 11 1scj from 67 A: HVAGTTAAINNSTGVIGVSPSA 2sic from 67 E: H V A G T V A A L N N S I G V L G V A P S A 13 2pvb from 84 A: A F L A D G D K D G D G M I G V D E F A A M 0 : __DTIVAVELDTYPNTDIGDPS 1nls from aa types - acidic, etc ** -5 0 5 relsea 10 15 1 1cdl from 50 B: ahhpahasagpgshahhahhsh 2 1cdl from 87 A: a s h b h h a b a q p q h h s s s a h b p h 3 1g4y from 50 R: ahhpahasagpgshahhahhsh 1rec from 104: hshshhahaqpqshsbpahhah 1vrk from 50 A: ahhpahasagpgshahhahhph 1bfd from 445: phhshhhhppqshqshbhhsq 1trk from 177 A: hgphhshhaapbhshagsshs

8 2cbl from 223 A: shbsshahshpahhshhahahh

```
9 1clc from 229 : h h s h a h h a b p p s h h a h h a a h b h

10 1cse from 67 E: p h s g s h s s h a p s s g h h g h s h s h

11 1gci from 67 A: p h s g s h s s h p p s h g h h g h s h s s

12 1scj from 67 A: p h s g s h s s h p p s h g h h g h s h s s

13 2sic from 67 E: p h s g s h s s h p p s h g h h g h s h s s

14 2pvb from 84 A: s h h s a g a b a g a g h h g h a a h s s h

15 1nls from 0 : _ _ a s h h s h a h a s h h p s a h g a h s
```

conformation sequences **

-10 -5 0 5 10 relseq 15 1 1cdl from 50 B: kaaaaabakqaqbbbaaaaaa 2 1cdl from 87 A: aaakaadakgkgbbbaaaaaa 3 194v from 50 R: aaaaadbakgkgbbbaaakaaa lrec from 104 : aaaaaadak q k q b b b aaaaaa lvrk from 50 A: aaaakdakqkqbbbaaaaaa 1bfd from 445 : qbdbbbbbbbqbdaaaaaa 1trk from 177 A: bakbbbbbbbbbakjbaaa. 2cbl from 223 A: aaaaadakgkgbbbaaaaaa 1clc from 229: kbbbdbakkkbbbaaaaaa 1cse from 67 E: aaaaakbbb.kbjbbbabkkb 67 : aaaaaa.bbb.kbjbbbadkkb 1qci from 12 1scj from 67 A: aaaaadbbb.kb.bbbabkkb 2sic from 67 E: aaaaadbbb.dbjbbbadakb 2pvb from 84 A: aaaaadkkqkqbbbaaaaaa 15 lnls from 0 : . . b b b b b b b b b b b b a k k g b b d

****** protein names (pdb header) ******

1	1cdl at	60 B	2.2	CALCIUM-BINDING PROTEIN
2	1cdl at	97 A	2.2	CALCIUM-BINDING PROTEIN
3	1g4y at	60 R	1.6	SIGNALING PROTEIN
4	1rec at	114	1.9	CALCIUM-BINDING PROTEIN
5	lvrk at	60 A	1.9	COMPLEX(CALCIUM-BINDING PROTEIN/PEPT
6	1bfd at	455	1 6	LYASE

```
7 1trk at 187 A 2.0
                            TRANSFERASE(KETONE RESIDUES)
 8 2cbl at 233 A 2.1
                            COMPLEX (PROTO-ONCOGENE/PEPTIDE)
 9 1clc at 239 1.9
                             GLYCOSYL HYDROLASE
10 lcse at 77 E 1.2
                            COMPLEX(SERINE PROTEINASE-INHIBITOR)
           77
11 1gci at
                    0.78
                            SUBTILISIN FROM BACILLUS LENTUS
12 1scj at 77 A 2.0
                            HYDROLASE
13 2sic at 77 E 1.8
                            COMPLEX (PROTEINASE/INHIBITOR)
14 2pvb at 94 A 0.91
                            METAL BINDING PROTEIN
15 1nls at 10 0.94
                            AGGLUTININ
```

***	**	***** cn	gps	****	*****	* *												
1 4	4	DDNNOE	Ca	2	2	0	2	5	-1	-1	6 1cdl	0 0.6 2.2	CA	2 ASPB	56b	1		
2 3	3	DDNOE	Ca	2	2	2	5	-1	-1	-1	5 1cdl	0 0.3 2.2	CA	3 ASPA	93 .bb			
3 3	3	DDNOE	Ca	2	2	2	5	-1	-1	-1	5 1g4y	0 0.4 1.6	CA	1002 ASPR	56b			
4 3	3	DDNOE	Ca	2	2	2	5	-1	-1	-1	6 lrec	0 0.2 1.9	CA	501 ASP	110b	1	Z	
5 3	3	DDNOE	Ca	2	2	2	5	-1	-1	-1	6 lvrk	0 0.1 1.9	CA	152 ASPA	56b	1	Z	2.
6 2	2	DNO	Ca	27	2	-1	-1	-1	-1	-1	6 1bfd	0 0.2 1.6	CA	529 ASP	428		UUZ	4.
7 2	2	DNO	Ca	30	2	-1	-1	-1	-1	-1	6 ltrk	0 0.2 2.0	CA	681 ASPA	157		UUZ	2.
8 3	3	DTNOE	Ca	2	2	2	5	-1	-1	-1	6 2cbl	0 0.1 2.1	CA	352 ASPA	229b		Z	
9 2	2	ONODD	Ca	3	2	2	3	-1	-1	-1	6 lclc	0 0.1 1.9	CA	591 GLU	236	1	Z	3.
10 4	ŀ	QDONOO	Ca	39	34	2	2	2	-1	-16	1cse	0 0.1 1.2	CA	430 GLNE	2 .b			3.
11 4	ŀ	QDONOO	Ca	39	34	2	2	2	-1	-16	1gci	0 0.1 0.8	CA	277 GLN	2 .b			3.
12 4	ŀ	QDONOO	Ca	39	34	2	2	2	-1	-16	1scj	0 0.2 2.0	CA	381 GLNA	2 .b			3.
13 4	ŀ	QDONOO	Ca	39	34	2	2	2	-1	-16	2sic	0 0.2 1.8	CA	501 GLNE	2 .b			3.
14 3	3	DDDOE	Ca	2	2	2	5	-1	-1	-1	6 2pvb	0 0.1 0.9	CA	111 ASPA	90b	-	Z	
15 1	_	DOND	Ca	2	2	5	-1	-1	-1	-1	6 1nls	0 0.1 0.9	CA	240 ASP	10 b		ZZ	

]	p chains 1-8				
	relseq	meanfi	meanpsi	number	
	0	-96(20)	4(11)	9	k
	1	80(14)	3(10)	9	g

2	-135(10)	153(15)	9	b

p chains 10-13

	number	psi	mean	-	meanfi	relseq
	4	4)	-149(2)	-153(0
k	4	9)	19(7)	-108(1
b	4	2)	164(7)	-135(2

group 1: p chains 1-8, 8 agrees poorly, without it sds 9-16

and this is close to cado2 no. 14

p chains 1-5, and 8 are fairly similar over relseq -10 to 11, 6 7 dif

model : 1bfd at 455 1.6

group 2: p chains 10-13

chain 9 is similar but difs of 30 + degs

chains 10-13 are similar over relseq -10 to 11, 9 is very different

(11-13 have same aa sequence)

model : 1gci at 77 0.78 - no equiv in cadd2

conformation of relseq =0 is some way from alpha region

no chains like 15 of cadd2

```
amino-acid sequences ****
  start of selected part of cngroup
  relseq
                 -10
                      -5 0 5 10
                                                              15
1 2sns from 30 : OPMTFRLLLVDTPETKHPKKG
2 loac from 668 A: SKDNESLDNTDAVVWMTTGTT
3 li8a from 144 A: T V I G F N I O V N D A N E K G O R V G I
   1gho from 66 A: V T T I W L S P V L D N L D T L A G T D N
   4sgb from 110 E: N T T P K _ _ _ D D I T S A A _ _ N A
   lava from 132 A: D G T G N P D T G A D F G A A P D I D H L
   1byf from 97 B: VOIWSKYNLLDDVGCGGARRV
   1dx5 from 413 J: Y I L D D G F I C T D I D E C E N G G F C
   1qq9 from -7 A: _ _ _ _ A P D I P L A N V K A H L
   1ga6 from 318 A: A I S S T P S L V H D V K S G N N G Y G G
   lee6 from 70 A: DCTITNVIWEDVGEDALTLKS
   loac from 523 A: THQHIYNFRLDLDVDGENNSL
   1cb8 from 406 A: W D K T P G T T S R D Y L T D R P L T K L
   1kit from 672 : V F S N I S T G T V D A S I T R F E Q S D
   1edm from 54 C: N P C L N G G S C K D D I N S Y E C W C P
   ledm from 37 C: _ _ _ _ _ V D G D Q C E S N P C L
          -9 A: _ _ _ _ _ _ D Q A G K S P N A V R
   lacy from
   1i76 from 144 A: Q R D H G D N S P F D G P N G I L A H A F
19 1wdc from 12 C: K D V F E L F D F W D G R D G A V D A F K
 aa types - acidic, etc **
                -10
                       -5 0 5
                                                     10
                                                              15
  relsea
1 2sns from 30 : phhshbhhhashasbphbbq
  loac from 668 A: sbapashapsashhhhssgss
   118a from 144 A: shhqhphphpaspabqpbhqh
   1qho from 66 A: hsshhhahhaphashsgsap
5 4sgb from 110 E: psshb____aahssss___ps
```

lava from 132 A: agsgphasgsahgsshahaph 1byf from 97 B: hphhsbhphhaahqhqqsbbh 1dx5 from 413 J: hhhaaghhhsahaahapgghh -7 A: _ _ _ _ _ shahhhsphbsph 19a6 from 318 A: shssshshhpahbsqpqhqq 1ee6 from 70 A: ahshsphhhaahgaashshbs loac from 523 A: sppphhphbhahahaqappsh 1cb8 from 406 A: habhhghssbahhsabhhsbh 1kit from 672: hhsphssqshasshsbhapsa 1edm from 54 C: phhhpggshbaahpshahhhh 1edm from 37 C: _ _ _ _ hagaphasphhh -9 A: _ _ _ _ _ apsgbshpshb 1qcy from 1176 from 144 A: pbapgapshhaghpghhspsh 12 C: bahhahhahhaqbaqshashb 1wdc from

conformation sequences **

relseq

1 2sns from 30 : . b . b b b b b g . b b b b . . . a . . . 3 li8a from 144 A: b b b b b b b b b b b k k g b b k b b 4sgb from 110 E: badb....bbabb....b lava from 132 A: kgkbbbbk.bbbakbbbbkk 1byf from 97 B: b b b b a a k q b b b b b k k b b b b b ldx5 from 413 J: b b b b b g g b b b b b a a a a j g a b 1qq9 from -7 A: b b b b a a a a a a a 1ga6 from 318 A: aaakdakkbbbbabjbd.bgg 70 A: bbbbbgbbk.b.ababbab 1ee6 from loac from 523 A: b b b b b b b b b b b b g j a b b b b 1kit from 672 : abbqbbbbbbbbbbbbbbbbak 54 C: gkbbggbbbbbbbg.bbbbb 1edm from 16 ledm from 37 C: b b b k k a k g k b b

-5

-10

0 5

10

```
17 lgcy from -9 A: . . . . . . . . . . . . . . . . b b . b k k g b d

18 li76 from 144 A: b . b . g k g d b b k j b j j b a . b b b

19 lwdc from 12 C: a a a a a a a a k k . b . g b b b k k k
```

******* protein names (pdb header) ******

Τ	2sns	at	40	1.5	HYDROLASE	(PHOSPHORIC	DIESTER)

- 2 loac at 678 A 2.0 OXIDOREDUCTASE
- 3 1i8a at 154 A 1.90 HYDROLASE
- 4 1gho at 76 A 1.70 HYDROLASE
- 5 4sgb at 120 E 2.1 COMPLEX(SERINE PROTEINASE-INHIBITOR)
- 6 lava at 142 A 1.9 HYDROLASE INHIBITION
- 7 lbyf at 107 B 2.00 SUGAR BINDING PROTEIN
- 8 1dx5 at 423 J 2.3 SERINE PROTEINASE
- 9 1qq9 at 3 A 1.53 HYDROLASE
- 10 1ga6 at 328 A 1.00 HYDROLASE
- 11 1ee6 at 80 A 2.30 LYASE
- 12 loac at 533 A 2.0 OXIDOREDUCTASE
- 13 1cb8 at 416 A 1.90 LYASE
- 14 1kit at 682 2.3 HYDROLASE
- 15 ledm at 64 C 1.5 COAGULATION FACTOR
- 16 ledm at 47 C 1.5 COAGULATION FACTOR
- 17 1gcy at 1 A 1.6 HYDROLASE
- 18 1i76 at 154 A 1.20 HYDROLASE
- 19 1wdc at 22 C 2.0 MUSCLE PROTEIN

******* cngps ********

- 2 4 DODDO Ca 1 1 143 1 -1 -1 -1 6 loac 0 0.1 2.0 CA 802 ASPA 533 | Z 1.
- 3 4 DODDO Ca 2 12 80 1 -1 -1 -1 6 1i8a 0 0.3 1.9 CA 192 ASPA 60 b.b.. | Z 3.
- 4 1 DODEE Ca 1 2 22 1 -1 -1 -1 6 lqho 1 0.2 1.7 CA 696 ASPA 76b | Z 3.
- 5 2 ODOOY Ca 0 1 122 0 -1 -1 -1 6 4sgb 0 0.1 2.1 CA 8 GLYE 120 | Z
- 6 2 DDOOD Ca 15 1 3 2 -1 -1 -1 6 lava 1 0.2 1.9 CA 502 ASPA 127 | Z 3.
- 7 3 ENDOD Ca 3 18 1 0 -1 -1 -1 7 1byf 0 0.1 2.0 CA 201 GLUB 86 | U

8 1	DOENOO	Ca	1	2	13	1	3	-1	-1	.7 1dx5	0 0.2 2.3	CA	1001 ASPJ 423 k	·		Z	3.
9 1	DODD	Ca	1	258	4	-1	-1	-1	-1	6 1qq9	0 0.2 1.5	CA	905 ASPA 3	b		ZZ	3.
10 1	DOOOD	Ca	1	15	2	2	-1	-1	-1	6 1ga6	0 0.1 1.0	CA	374 ASPA 328			Z	3.
11 1	DOO	Ca	1	22	-1	-1	-1	-1	-1	6 lee6	0 0.3 2.3	CA	300 ASPA 80			ZZZ	4.
12 1	DODDO	Ca	1	1	143	1	-1	-1	-1	6 loac	0 0.1 2.0	CA	802 ASPA 533 .		1	Z	1.
13 3	EDDO	Ca	2	9	1	-1	-1	-1	-1	6 1cb8	0 0.2 1.9	CA	3000 GLUA 405	.b		ZZ	4.
14 2	DDO	Ca	61	1	-1	-1	-1	-1	-1	4 1kit	0 0.2 2.3	CA	803 ASP 621	bb.		Z	3.
15 4	DOQDO	Ca	1	2	14	1	-1	-1	-1	5 ledm	0 0.2 1.5	CA	1 ASPC 47	b.			
16 1	DOQDO	Ca	1	2	14	1	-1	-1	-1	5 ledm	0 0.2 1.5	CA	1 ASPC 47	b.			
17 1	DOOHDE	Ca	1	11	0	3	1	-1	-1 d	.6 1gcy	0 0.2 1.6	CA	452 ASPA 1	b			3.
18 1	DOOODE	Ca	1	2	2	18	3	-1	-1	6 li76	0 0.1 1.2	CA	997 ASPA 154 .				3.
19 3	ODDODO	Ca	0	3	1	2	2	-1	-1	.7 1wdc	0 0.2 2.0	CA	501 ASPC 19			Z	

over chelate loop

pchains 1-17 are similar, but within there are subgroups

p chain 1-4

-				
relseq	meanfi	meanpsi	number	
0	-96(39)	120(11)	4	b
1	-105(4)	154(7)	4	b
p chain 5-9)			
relseq	meanfi	meanpsi	number	
0	-101(36)	140(10)	5	b
1	-95(13)	126(6)	5	b
p chain 10-	13			
relseq	meanfi	meanpsi	number	
0	-106(41)	97(12)	4	b
1	-72(5)	141(8)	4	b

relseq	meanfi		meanps	i	number	
0	-86(8)	137(1)	2	k k
1	-120(1)	-166(1)	2	b
all 1-17						
relseq	meanfi		meanps	i	number	
0	-95(35)	124(20)	16	b
1	-97(19)	148(25)	17	b

no similarities in local conformation

```
Ca OD 0
```

1e29 from

1wdc from

(both donors belong to same aspartate residue)

amino-acid sequences **** start of selected part of cngroup relseq -10 5 1.0 15 1 1bvf from 98 B: O I W S K Y N L L D D V G C G G A R R V I 2msb from 196 A: V T T V D N G L W N D T S C O A S H T A V 2msb from 196 B: V T I V D N G L W N D I S C O A S H T A V legi from 738 A: LKGDPTMSWNDINCEHLNNWI 1tn3 from 155 : LSGAANGKWFDKRCRDQLPYI 4sgb from 110 E: N T T P _ _ _ _ D I T S A _ _ _ A 1e43 from 184 A: W E V S S E N G N Y D Y L M Y A D V D Y D 1e29 from 25 A: OFTNGOKIFVDTCTOCHLOGK 1wdc from 9 C: D D L K D V F E L F D F W D G R D G A V D laru from 47 : VRKTIRTVFHDATGFSPALTA 1pa2 from 33 A: GASLIRLHFHDCFVNGCDASI 1e8u from 251 A: CSKVTETEEEDYNSAVPTIMA 1e8u from 251 B: C S K V T E T E E E D Y N S A V P T L M A 86 A: FMQWGQLLDHDLDFTPEP___ aa types - acidic, etc ** -10 -5 0 5 10 15 relseq 1 1byf from 98 B: phhsbhphhaahghggsbbhh 2msb from 196 A: h s h h a p g h h p a h s h p s s p s s h 2msb from 196 B: h s h h a p q h h p a h s h p s s p s s h legi from 738 A: hbgahshshpahphaphphh 1tn3 from 155: hsqsspqbhhabbhbaphhhh 4sgb from 110 E: pssh____ahsss___s

1e43 from 184 A: hahssapqphahhhhsahaha

25 A: phspgpbhhhashsphphpgb
9 C: aahbahhahhahhagbagsha

```
10 laru from 47 : h b b h h b h h p a s h g h s h s h s s s

11 lpa2 from 33 A: g s s h h b h p h p a h h h p g h a s s h

12 le8u from 251 A: h s b h s a s a a a a h p s s h h s h h s

13 le8u from 251 B: h s b h s a s a a a a h p s s h h s h h s

14 ld2v from 86 A: h h p h g p h h a p a h a h s h a h _ _ _ _ _
```

conformation sequences **

	relseq		-10	-5	0	5	10
1	1byf from	98 B:	b b b a	a k g b b	b b b b k k	b b b b b b	
2	2msb from	196 A:	b b b b	a k g b b	b b b b k k !	b b b b b	
3	2msb from	196 B:	b b b .	b g g b b	b b b b k k i	b b b b b	
4	legi from	738 A:	b b d b	a a g b b	b b b b k k l	b b b b b	
5	1tn3 from	155 :	b b a a	k g g b b	b b b b a k	b b b b b b	
6	4sgb from	110 E:	b a d b		. b b a b b	b	
7	1e43 from	184 A:	b b b b	k b g . b	kabab.	b b b b k a	
8	1e29 from	25 A:	аааа	aaaaa	aaaka	k d b g g b	
9	1wdc from	9 C:	aaaa	ааааа	aaakk.	b . g b b b	
10	laru from	47 :	аааа	ааааа	a a a k d b	baaaaa	
11	1pa2 from	33 A:	аааа	ааааа	aaakbg	jdkgaa	
12	1e8u from	251 A:	b b b b	kbbaa	aaakbal	bbbbbb	
13	1e8u from	251 B:	b b b b	kbbaa	aakkbal	bbbbbb	
14	1d2v from	86 A:	аааа	aaaaa	k a a b b b i	b b b	

15

****** protein names (pdb header) ******

1	1byf at	108 B	2.00	SUGAR BINDING PROTEIN C-type lectin-like
2	2msb at	206 A	1.7	LECTIN C-type lectin-like
3	2msb at	206 В	1.7	LECTIN C-type lectin-like
4	legi at	748 A	2.30	SUGAR BINDING PROTEIN C-type lectin-like
5	1tn3 at	165	2.0	LECTIN C-type lectin-like
6	4sgb at	120 E	2.1	COMPLEX(SERINE PROTEINASE-INHIBITOR)Trypsin-like serine proteases
7	1e43 at	194 A	1.7	HYDROLASE TIM beta/alpha-barrel /alpha-Amylases, N-terminal domain
8	1e29 at	35 A	1.21	ELECTRON TRANSPORT Cytochrome c
9	1wdc at	19 C	2.0	MUSCLE PROTEIN EF Hand-like

10	1 <i>a</i>	ıru at	57	1.	6]	PEROX	IDASE	(DO	NOR:	н202 О	XIDOREDU	CTAS Heme-	deper	ndent perox	idases		
11	1p	a2 at	43 A	1.	45	0	XIDOF	REDUCT	TASE		Heme-d	ependent	peroxidase					
12	16	8u at	261 A	2.0)	S	IALII	DASE			6-blad	ded beta-	-propeller					
13	16	8u at	261 В	2.0)	S	IALII	DASE										
14	10	l2v at	96 A	1.	75	0	XIDOF	REDUCT	TASE		Heme-d	ependent	peroxidase	3				
* 1	***	**** C	ngps	****	***	***												
1	4	ENDOD	Ca	3	18	1	0	-1	-1	-1		7 lbyf	0 0.1 2.0	CA	201 GLUB	86	- 1	UU
2	5	ENENOD	Ca	2	6	12	1	0	-1	-1		.6 2msb	0 0.2 1.7	CA	2 GLUA	185		
3	5	ENENOD	Ca	2	6	12	1	0	-1	-1		.8 2msb	0 0.2 1.7	CA	2 GLUE	185		UU
4	2	NOD	Ca	1	0	-1	-1	-1	-1	-1		4 legi	0 0.2 2.	3 C	A 801 ASN	A 747		Z
5	3	QEOD	Ca	7	15	0	-1	-1	-1	-1		5 1tn3	2 0.2 2.0	CA	183 GLN	143	- 1	Z
6	1	ODOOY	Ca	0	1	122	0	-1	-1	-1		6 4sgb	0 0.1 2.1	CA	8 GLYE	120	-	Z
7	2	NODDO	Ca	92	0	6	35	-1	-1	-1		6 1e43	1 0.2 1.7	CA	501 ASNA	102		z 3.
8	1	OD	Ca	0	-1	-1	-1	-1	-1	-1		6 1e29	0 0.3 1.	2 C	A 226 ASP	A 35	- 1	ZZZZ
9	1	ODDODO	Ca	0	3	1	2	2	-1	-1		.7 1wdc	0 0.2 2.0	CA	501 ASPC	19		Z
10	1	ODODS	Ca	0	18	2	2	-1	-1	-1		7 laru	0 0.2 1.6	CA	346 ASP	57	I	ZZ 1.
11	1	ODOODS	Ca	0	3	2	2	2	-1	-1		.7 1pa2	0 0.1 1.5	CA	307 ASPA	43		z 1.
12	1	OD000	Ca	0	3	2	30	-1	-1	-1		5 1e8u	0 0.1 2.0	CA	1002 ASPA	261	I	3.
13	1	ODOSOO	Ca	0	3	0	2	30	-1	-1		6 1e8u	0 0.2 2.0	CA	1003 ASPB	261		3.
14	1	ODOTODS	Ca	0 -9	99	0	2	2	2	-1	'	7 1d2v	0 0.2 1.8	CA	600 ASPA	96		1.
not	e 2	and 3 h	nave fa	irly	diff	erent	con	forma	tions	ove	er -10	to 10 -	- possibly					
		pept	ide fli	ips a	t re	lseq	-5 aı	nd -6	i									
		12 and 1	13 have	fair	rly o	differ	ent	confc	rmati	ions	over	-10 to 1	10, around	relse	q -5, -6			
				s	o sa	y onl	y 12	uniq	_{[ue}									
gro	up	1 pc	1-6	mode	el:	2	2msb	at	206	A	1.7							
re	else	q n	neanfi			mea	npsi		nu	mber								
		0	-89 (15)		14	44(7)			6	b						

(without 6 agreement is much better)

local conformations fairly different (30-80 deg)

group 2 pc 7-14 model: 1pa2 at 43 A 1.45

relseq meanfi meanpsi number

0 -68(10) -45(9) 8 a

local conformations different, except 12 13 similar

group 1 pc 1-5 chi1, chi2 all within 25 deg range

pc 6 chil different

group 2 pc 7-16 chi1 all within 17 deg

chi2 -46 to +32

amino-acid sequences ****

start of selected part of cngroup relsea -10 -5 5 10 15 1 1kap from 353 P: A G N D I L Y G G L G A D O L W G G A G A D 2 1cdl from 52 C: INEVDADGNGTIDFPEFLTMMA 1kap from 278 P: K L V F S V W D A G G N D T L D F S G F S O 1kap from 362 P: L G A D O L W G G A G A D T F V Y G D I A E 1kap from 326 P: V T V E N A I G G S G S D L L I G N D V A N 1kap from 344 P: D V A N V L K G G A G N D I L Y G G L G A D ldyk from 2864 A: S Q T I S P K K A D I L D V V G I L Y V G G ldyk from 3043 A: DAQSPNSASTSADTNDPVFVGG 1i8a from 4 A: AKYGTPVIDGEIDEIWNTTEEI 1d0b from 39 A: TVSTPIKQIFPDDAFAETIKDN 1e43 from 171 A: RIFKFRGEGKAWDWEVSSENGN 1clc from 231 : A L E I P E K N N S I P D F L D E L K Y E I 12 1tf4 from 494 B: L D K G T F R Y W F T L D E G V D P A D I T lajj from 17 : CIHSSWRCDGGPDCKDKSDEEN 14 2sic from 185 E: O R A S F S S V G P E L D V M A P G V S I O 1kap from 442 P: S L A I D F S G D A H A D F A I N L I G Q A lava from 136 A: N P D T G A D F G A A P D I D H L N L R V O ldjx from 641 A: L P K V N K N K N S I V D P K V I V E I H G 18 1bag from 159 : KRFLERALNDGADGFRFDAAKH 11pb from 180 B: P C F Q G T P E L V R L D P S D A K F V D V 20 1gho from 38 A: PTKSKWKMYWGGDLEGVROKLP 1ga6 from 336 A: Y G G Y G Y N A G T G W D Y P T G W G S L D 1sra from 215 : H W O F G O L D O H P I D G Y L S H T E L A 1i8a from O A: V A T A K Y G T P V I D G E I D E I W N T 1pa2 from 217 A: I T N L D L S T P D A F D N N Y F A N L O S 1wdc from 13 C: DVFELFDFWDGRDGAVDAFKLG

laru from 197 : FRSPLDSTPQVFDTQFYIETLL

15

aa types - acidic, etc **

č	аа суре	es - a	acidic	, et	.C																						
	relsec	I			-1	LO					-5						0					į	5				10
1	1kap	from	353	p:	s	g	р	а	h	h	h	g	g	h	g	s	а	р	h	h	g	g	s	g	s	a	
2	1cd1	from	52	C:	h	р	а	h	a	s	a	g	р	g	s	h	a	h	h	a	h	h	s	h	h	s	
3	1kap	from	278	p:	b	h	h	h	s	h	h	а	s	g	g	р	а	s	h	a	h	s	g	h	s	р	
4	1kap	from	362	p:	h	g	s	a	р	h	h	g	g	s	g	s	а	s	h	h	h	g	а	h	s	a	
5	1kap	from	326	p:	h	s	h	а	р	s	h	g	g	s	g	s	а	h	h	h	g	р	а	h	s	р	
6	1kap	from	344	p:	а	h	s	р	h	h	b	g	g	s	g	р	а	h	h	h	g	g	h	g	s	a	
7	1dyk	from	2864	A:	s	р	s	h	s	h	b	b	s	a	h	h	a	h	h	g	h	h	h	h	g	g	
8	1dyk	from	3043	A:	a	s	р	s	h	р	s	s	s	s	s	s	a	s	р	a	h	h	h	h	g	g	
9	1i8a	from	4	A:	s	b	h	ı g	s	h	h	h	а	. 9	a	h	а	a	h	ı h	ı p) S	s	а	a	h	
10	1d0b	from	39	A:	s	h	s	s	h	h	b	р	h	h	h	a	а	s	h	s	a	s	h	b	а	р	
11	1e43	from	171	A:	b	h	h	b	h	b	g	a	g	b	s	h	a	h	a	h	s	s	a	р	g	р	
12	1clc	from	231	:	s	h	а	h	h	а	b	р	р	s	h	h	а	h	h	a	a	h	b	h	a	h	
13	1tf4	from	494	в:	h	а	b	g	s	h	b	h	h	h	s	h	а	а	g	h	a	h	s	а	h	s	
14	1ajj	from	17	:	h	h	р	s	s	h	b	h	а	g	g	h	a	h	b	a	b	s	a	a	a	р	
15	2sic	from	185	E:	p	b	s	s	h	s	s	h	g	h	a	h	a	h	h	s	h	g	h	s	h	р	
16	1kap	from	442	p:	s	h	s	h	a	h	s	g	a	s	р	s	a	h	s	h	р	h	h	g	р	s	
17	1ava	from	136	A:	p	h	а	s	g	s	a	h	g	s	s	h	a	h	a	р	h	р	h	b	h	р	
18	1djx	from	641	A:	h	h	b	h	р	b	р	b	р	s	h	h	a	h	b	h	h	h	a	h	р	g	
19	1bag	from	159	:	b	b	h	h	a	b	s	h	р	a	g	s	а	g	h	b	h	а	s	s	b	р	
20	11pb	from	180	в:	h	h	h	р	g	s	h	a	h	h	b	h	a	h	s	a	s	b	h	h	a	h	
21	1qho	from	38	A:	h	s	b	s	b	h	b	h	h	h	g	g	а	h	a	g	h	b	р	b	h	h	
22	1ga6	from	336	A:	h	g	g	h	g	h	р	s	g	s	g	h	a	h	h	s	g	h	g	s	h	a	
23	1sra	from	215	:	р	h	р	h	g	р	h	a	р	р	h	h	а	g	h	h	s	р	s	а	h	s	
24	1i8a	from	0	A:	_	h	s	s	s	b	h	g	s	h	h	h	a	g	a	h	a	a	h	h	р	s	
25	1pa2	from	217	A:	h	s	p	h	a	h	s	s	h	a	s	h	a	р	р	h	h	s	р	h	р	s	

 26
 1wdc from
 13 C:
 a h h a h h a h h a g b a g s h a s h b h g

 27
 1aru from
 197 :
 h b s h h a s s h p h h a s g h h h a s p h h h a s h h

 28
 1pa2 from
 38 A:
 b h p h p a h h p b s g h a s s h h h a a s g h

 29
 1cru from
 261 B:
 g p h g h p h g g g g g s a g s h h s p s p h

 30
 1aru from
 65 :
 h s s s g p h g g g g s a g s h h s p s p h

 31
 1qho from
 67 A:
 s s h h h s h h a p h a s h s g s a p s a

 32
 1i76 from
 161 A:
 s p s h p h g p g h g g a s p h a s a a s h

10

15

conformation sequences **

relseq -10 -5 1cdl from 52 C: aaaabakgkgbbbaaaaaak 278 P: bbb.bbbk.ibbbbdakbkb 1kap from 1kap from 362 P: b j b b b b b a j b j b b b b b k b a a a 1kap from 344 P: k b b b b b a j b j b b b b a j b j b b ldyk from 2864 A: bb.bbb.kbbbbbbbg. 1dyk from 3043 A: b b b b k d k a b k b b d b . b b b b g . 1i8a from 39 A: kbbbbakaababaaaaaaa 1d0b from 1clc from 231 : bbdbakkkbkbbaaaaaaaa laji from 17 : bbbakkbqkqbbabakqakkbq 2sic from 185 E: b b b a a b b b . k k b a b b b k b g b b 1kap from 442 P: . b b b b a a q k q b b a b b b b b j b b 17 lava from 136 A: b b b k . b b b a k b b b b k k b a a a a ldjx from 641 A: b b b d g . . . a b b b d b b b b b b b . 1bag from 159: akaaaaak.bk.bbbgkkk 19 11pb from 180 B: bg.bgbbaakbb.akkbabbbb 38 A: kkgkbkkbbkgbbaaaakaa 1qho from 1ga6 from 336 A: bggbjbbb.bjbbaakjkjbbb 23 1sra from 215 : aaaaaabkdbb.gbbbaakka

24	1i8a	from	0	A:		b	b	b	b	b	b		b	b	b	b		g	b	b	b	а	a	a	k	k
25	1pa2	from	217	A:	b	b	b	a	b	k	a	b	a	k	b	b	b	k	a	a	a	a	a	а	k	k
26	1wdc	from	13	C:	a	a	a	a	a	а	a	а	k	k		b		g	b	b	b	k	k	k	а	a
27	1aru	from	197	:	b	g	b	b	k	b	k	d	k	k	b	b	b	k	а	a	а	a	а	k	k	b
28	1pa2	from	38	A:	a	a	a	а	а	а	а	k	b	g	j	d	k	g	а	а	k	b	b	b	b	а
29	1cru	from	261	в:	b	b	k	g	b	k	a	b	b	j	b	b	k	g	b	g	b	b	b	b	b	a
30	1aru	from	65	:	a	a	а	k	g	b	b	k		k	j	d	k	g	а	а	a	a	d	a	a	a
31	1qho	from	67	A:	k	b	b	b	b	b	b	k	b	b	b	b	k	b	b	d	j	b	g	b	b	d
32	1i76	from	161	A:		b	b	b	b	b		b		а	b	g	b	b	b	b	b	k	k	b	b	b

******* protein names (pdb header) ******

18 1djx at 651 A 2.30 LIPID DEGRADATION

		-		•	
1	1kap at	363 P	1.64	ZINC METALLOPROTEASE	beta-Roll Metalloprotease, C-terminal domain
2	1cdl at	62 C	2.2	CALCIUM-BINDING PROTEIN	EF Hand-like Calmodulin-like
3	1kap at	288 P	1.64	ZINC METALLOPROTEASE	beta-Roll
4	1kap at	372 P	1.64	ZINC METALLOPROTEASE	beta-Roll
5	1kap at	336 P	1.64	ZINC METALLOPROTEASE	beta-Roll
6	1kap at	354 P	1.64	ZINC METALLOPROTEASE	beta-Roll
7	ldyk at	2874 A	2.0	METAL BINDING PROTEIN	Concanavalin A-like lectins/glucanases
8	1dyk at	3053 A	2.0	METAL BINDING PROTEIN	Laminin G-like module
9	li8a at	14 A	1.90	HYDROLASE	Immunoglobulin-like beta-sandwich
					Family 9 carbohydrate-binding module, CBD9
10	1d0b at	49 A	1.86	CELL ADHESION Leucine-	rich repeat, LRR (right-handed beta-alpha sup
11	1e43 at	181 A	1.7	HYDROLASE TIM beta	/alpha-barrel
12	1clc at	241	1.9	GLYCOSYL HYDROLASE	alpha/alpha toroid Cellulases catalytic domain
13	1tf4 at	504 в	1.9	GLYCOSYL HYDROLASE Common	fold of diphtheria toxin/transcription factors/cytochrome f
					Cellulose-binding domain family III
14	lajj at	27	1.7	RECEPTOR	
15	2sic at	195 E	1.8	COMPLEX (PROTEINASE/INHIBI	TOR)
16	1kap at	452 P	1.64	ZINC METALLOPROTEASE	
17	lava at	146 A	1.9	HYDROLASE INHIBITION	

19	lbag at	169	2.5	ALPHA-AMYLASE	
20	11pb at	190 в	2.46	HYDROLASE(CARBOXYLIC ESTERASE)	
21	1qho at	48 A	1.70	HYDROLASE	
22	1ga6 at	346 A	1.00	HYDROLASE	
23	1sra at	225	2.0	CALCIUM-BINDING PROTEIN	
24	li8a at	10 A	1.90	HYDROLASE	
25	1pa2 at	227 A	1.45	OXIDOREDUCTASE	
26	1wdc at	23 C	2.0	MUSCLE PROTEIN	
27	laru at	207	1.6	PEROXIDASE (DONOR:H2O2 OXIDOREDUCTAS	
28	1pa2 at	48 A	1.45	OXIDOREDUCTASE	
29	1cru at	271 В	1.50	OXIDOREDUCTASE	
30	laru at	75	1.6	PEROXIDASE (DONOR:H202 OXIDOREDUCTAS	
31	1qho at	77 A	1.70	HYDROLASE	
32	1i76 at	171 A	1.20	HYDROLASE	
**	*****	cngps	******	**	
1	2 OODOD	Ca	2 2	18 7 -1 -1 -1 6 1kap 0 0.1 1.6 CA 619 GLYP 361 Z 3.	
2	4 DDNOD	E Ca	2 2	2 2 3 -1 -16 lcdl 0 0.6 2.2 CA 2 ASPC 56b	
3	1 ODOE	Ca	2 37	2 -1 -1 -1 -1 6 1kap 0 0.1 1.6 CA 615 GLYP 288b ZZ 3.	
4	2 OODD	Ca	2 2	26 -1 -1 -1 -1 6 1kap 1 0.2 1.6 CA 617 GLYP 370 ZZ 3.	
5	2 OODOO!	D Ca	2 2 1	13 2 3 -1 -16 1kap 0 0.3 1.6 CA 616 GLYP 334b 3.	
6	2 OODOO!	D Ca	2 2 1	13 2 3 -1 -16 1kap 0 0.3 1.6 CA 620 GLYP 352b 3.	
7	3 DOOD	Ca	17 49	2 -1 -1 -1 -1 5 ldyk 0 0.2 2.0 CA 4001 ASPA2808 Z	
8	3 DOOD	Ca	17 54	2 -1 -1 -1 -1 4 ldyk 0 0.2 2.0 CA 4002 ASPA2982	
9	3 ODODE	Ca	2 2	2 114 -1 -1 -1 6 1i8a 0 0.2 1.9 CA 191 VALA 10b Z 3.	
1.0					
10	1 OD	Ca	2 -1	-1 -1 -1 -1 -1 7 1d0b 0 0.2 1.9 CA 201 PROA 49 ZZZZZ	
11		Ca Ca		·	
	2 DODDD		22 2 1	•	
11	2 DODDD 3 ONODD	Ca	22 2 1	19 2 -1 -1 -1 6 le43 0 0.1 1.7 CA 502 ASPA 159 b Z 3.	

15 3 000D 5 21 2 -1 -1 -1 -1 6 2sic 1 0.6 1.8 CA 502 GLYE 169 16 4 DSDOD 2 2 2 -1 -1 -1 ... 6 1kap 0 0.3 1.6 CA 621 ASPP 446b 17 4 DDOOD 1 3 2 -1 -1 -1 6 lava 1 0.2 1.9 CA 502 ASPA 127 Z 3. 18 1 ODN 24 -1 -1 -1 -1 -1 ... 5 ldjx 1 0.4 2.3 CA 3 ILEA 651 .b. 19 1 -1 -1 -1 -1 -1 -1 .. 5 lbag 0 0.1 2.5 CA 7 GLY 169 .b ZZZ 3. OD 20 2 OODD 3 -1 -1 -1 -1 6 llpb 0 0.2 2.5 CA 450 GLUB 187 ...b 21 5 DONNOD 3 1 21 2 -1 -17 1gho 0 0.2 1.7 CA 698 ASPA 21 z 3. DOOOD 2 2 -1 -1 -1 6 lga6 0 0.1 1.0 CA 374 ASPA 328 23 2 DODOE 2 2 5 -1 -1 -1 6 1sra 0 0.2 2.0 CA 301 ASP 222b ODODE 2 2 114 -1 -1 -1 6 1i8a 0 0.2 1.9 CA 191 VALA 10b 0 51 3 0 3 2 -17 lpa2 0 0.1 1.5 CA 308 THRA 170 | OTDOTOD 1. ODDODO 0 3 1 2 2 -1 -17 lwdc 0 0.2 2.0 CA 501 ASPC 19 OSDOTOD 0 17 2 0 3 2 -17 laru 0 0.2 1.6 CA 347 SER 185 ..b.... 1. 0 3 2 2 2 -1 -17 lpa2 0 0.1 1.5 CA 307 ASPA 43 28 4 ODOODS z 1. 2 36 -1 -1 -1 -1 6 1cru 0 0.1 1.5 CA 902 ALAB 269 ...b 29 2 OODE ZZ 1. 30 3 ODODS 2 2 -1 -1 -1 7 laru 0 0.2 1.6 CA 346 ASP 57 ZZ 1. 31 2 DODEE 2 22 1 -1 -1 -1 6 1gho 1 0.2 1.7 CA 696 ASPA 76b z 3. 32 3 000D Ca 32 2 2 -1 -1 -1 -1 6 1i76 0 0.1 1.2 CA 996 ASPA 137 ZZ 3.

seems to be a gradation in conformations ?? over fi 1-2, psi 1 1

pchain 1-7

relseq	meanfi		meanpsi	number	
1	-90(4)	106(10)	7	b
2	-101(8)	149(20)	7	b

pc 8-9

	number	meanpsi		meanfi	relseq
b	2	98(8)	5)	-89(1
b	2	116(54)	7)	-66(2

pchain	10-12						
rels	seq	meanfi		meanp	si	number	
	1	-57(7)	132(11)	3	b
	2	-58(9)	-93(99)	3	a
pchain	13-17						
rels	seq	meanfi		meanp	si	number	
	1	-64(3)	130(5)	5	k
	2	-99(9)	253 (93)	5	
pchain	18-22						
rels	seq	meanfi		meanp	si	number	
	1	-62(4)	149(8)	5	k
	2	-142(16)	115(79)	5	b
	23-27						
relseq	me	eanfi		meanpsi		number	
	1	-78(7)	105(7)	5	k
	2	-149(5)	77 (93)	5	d
pchain	28-29						
rels	seq	meanfi		meanp	si	number	
	1	-83(3)	80 (0)	2	C
	2	-127(2)	5 (11)	2	k
all of	these	plus 30	,31	i.e. pchains			
rels	seq	meanfi		meanp	si	number	
				116(b
	2	-110(31)	128(1	03)	31	b

```
Ca OE 2 compared with Ca OD 2
```

1-5 are caod2

amino-acid sequences **** start of selected part of engroup relseq -10 -5 0 5 10 1.5 1 1kap from 353 P: A G N D I L Y G G L G A D O L W G G A G A D 2 le43 from 171 A: RIFKFRGEGKAWDWEVSSENGN 3 1ga6 from 336 A: Y G G Y G Y N A G T G W D Y P T G W G S L D 4 1pa2 from 38 A: R L H F H D C F V N G C D A S I L L D D T G 5 li76 from 161 A: A H A F O P G O G I G G D A H F D A E E T W 2pvb from 47 A: FYVIDODKSGFIEEDELKLFLO 7 1dx5 from 414 J: I L D D G F I C T D I D E C E N G G F C S G 8 1fjs from 65 A: K V R V G D R N T E Q E E G G E A V H E V E 9 lavw from 65 A: V R _ _ E H N I D V L E G N E Q F I N A A 10 1kap from 317 P: K G N V S I A A G V T V E N A I G G S G S D 1cvr from 95 A: V Y G O I V G N D H Y N E V F I G R F S C E 1cly from 113 B: DWNTDAASLIGEELQVDF____ 13 ldyo from 4 A: _ _ D A G Y Y Y H D T F E G S V G Q W T A R aa types - acidic, etc ** -10 -5 0 5 10 1.5 relseq 1 1kap from 353 P: sgpahhhgghgsaphhggsgsa 2 le43 from 171 A: bhhbhbgagbshahahssapgp 3 1qa6 from 336 A: hqqhqhpsqsqhahhsqhqsha 4 1pa2 from 38 A: bhphpahhhpghasshhhaasg 5 1i76 from 161 A: spshphqpqhqqasphasaash 2pvb from 47 A: hhhhapabsqhhaaaahbhhhp

7 1dx5 from 414 J: hhaaghhhsahaahapgghhsg 8 1fjs from 65 A: bhbhgabpsapaaggashpaha

```
9 law from 65 A: h b _ _ _ a p p h a h h a g p a p h h p s s

10 lkap from 317 P: b g p h s h s s g h s h a p s h g g s g s a

11 lcvr from 95 A: h h g p h h g p a p h p a h h h g b h s h a

12 lcly from 113 B: a h p s a s s s h h g a a h p h a h _ _ _ _ _

13 ldyo from 4 A: _ _ a s g h h h p a s h a g s h g p h s s b
```

conformation sequences **

	relseq		-10	-5	0	5	10 15
1	1kap from	353 P:	b j b b b	b b a j b	jbbbbl	bajbjbb	
2	1e43 from	171 A:	b b b b b	b.bgb	. b b b b l	bbkbg.b	
3	1ga6 from	336 A:	bggbj	b b b . b	j b b a a !	k j k j b b b	
4	1pa2 from	38 A:	aaaaa	ıaakbg	jdkga	akbbbba	
5	1i76 from	161 A:	. b b b b	b . b . a	bgbbb!	bbkkbbb	
6	2pvb from	47 A:	aaaad	lakgkg	, b b b a a	aaakaaa	
7	1dx5 from	414 J:	b b b b g	gbbbb	bbaaaa	ajgaba.	
8	1fjs from	65 A:	b b b b g	, b k b a d	l.bagk	b b b b b b a	
9	lavw from	65 A:	b b	babkk	bbkgk	b b b b b a	
10	1kap from	317 P:	b g k b b	b b b g b	b b a b b b	b . k b b b	

11 lcvr from 95 A: a a k b a b g g b k b b a b b b b b b b b k

12 lcly from 113 B: b k k b b a a k k b g b b b b b b b

13 ldyo from 4 A: . . . k g b a b b b a g d g . k j k b b b b

SERINE PROTEINASE

BLOOD CLOTTING

****** protein names (pdb header) ******

1	1kap at	363 P	1.64	ZINC METALLOPROTEASE
2	1e43 at	181 A	1.7	HYDROLASE
3	1ga6 at	346 A	1.00	HYDROLASE
4	1pa2 at	48 A	1.45	OXIDOREDUCTASE
5	1i76 at	171 A	1.20	HYDROLASE
6	2pvb at	57 A	0.91	METAL BINDING PROTEIN

7 1dx5 at 424 J 2.3

8 1fjs at 75 A 1.92

```
9 lavw at
          75 A 1.75
                          COMPLEX (PROTEINASE/INHIBITOR)
10 1kap at 327 P
                 1.64
                          ZINC METALLOPROTEASE
11 1cvr at 105 A
                 2.00
                          HYDROLASE
   1cly at 123 B
                 1.90
                          SIGNALING PROTEIN
13 1dyo at 14 A 2.1
                          CARBOHYDRATE-BINDING MODULE
 ****** cnqps *******
 1 2 OODOD
                           7 -1 -1 -1 ..... 6 lkap 0 0.1 1.6 CA 619 GLYP 361 .....
                    2 19 2 -1 -1 -1 .... 6 1e43 0 0.1 1.7 CA 502 ASPA 159 b....
 2 2 DODDD
 3 4 DOOOD
                1 15 2 2 -1 -1 -1 ..... 6 1ga6 0 0.1 1.0 CA 374 ASPA 328 .....
                    3 2 2 2 -1 -1 ......7 lpa2 0 0.1 1.5 CA 307 ASPA 43 ......
 4 4 ODOODS
                                                                                       z 1.
             Ca 32 2 2 -1 -1 -1 -1 .... 6 1i76 0 0.1 1.2 CA 996 ASPA 137 .... | ZZ 3.
 5 3 000D
                2 2 2 3 -1 -1 .....6 2pvb 0 0.1 0.9 CA 110 ASPA 51 .....b |
 6 4 DDSOEE
                    2 13 1 3 -1 -1 ......7 ldx5 0 0.2 2.3 CA 1001 ASPJ 423 b.....
 7 2 DOENOO
                                                                                       z 3.
                        2 3 -1 -1 -1 ..... 6 1fjs 0 0.3 1.9 CA 507 ASPA 70 .....
 8 3 DOOEE
                                                                                       z 3.
 9 3 EOOEE
                        2 3 -1 -1 -1 .... 6 lavw 0 0.1 1.8 CA 700 GLUA 70 ....
10 3 ODOE
                 2 37 2 -1 -1 -1 -1 .... 6 1kap 0 0.1 1.6 CA 615 GLYP 288 ...b
                    2 2 -1 -1 -1 -1 .... 6 lcvr 0 0.2 2.0 CA 477 VALA 100 ...b
11 3 ODOE
12 1 OE
                 2 -1 -1 -1 -1 -1 -1 ... 4 lcly 0 0.2 1.9 CA 173 GLYB 123 .b
                                                                                  ZZ
             Ca 2 23 3 107 -1 -1 -1 ..... 5 1dyo 0 0.4 2.1 CA 300 THRA 14 ....b
13 1 OEOOD
over chelate loop
pchains 1,6,7,8,9,10 are pretty alike, for 6-10
```

relseq	meanfi	meanpsi	number	
1	-90(11)	112(15)	5	b
2	-86(15)	300(72)	5	a

pchains 11 12 like each other and somewhat like 2

	number	si	meanps		meanfi	relseq
b	2	4)	152(17)	-68 (1
d	2	108)	49 (7)	-106(2

pchains 5 13 alike

relseq	meanfi		meanpsi	number	
1	79 (0)	0(24)	2	g
2	-76(4)	114(52)	2	b

7, 8 are similar (rms 27), otherwise local conformations fairly different

```
Ca OE 5
```

```
p chains 1 2 3 from 2225 EF hand type set, 4 5 6 different
  (remainder of 2225 set omitted)
 amino-acid sequences ****
 start of selected part of cngroup
 relseq
              -10
                      -5 0 5 10
                                                       1.5
1 lacc from 173 : _ _ V P D R D N D G I P D S L E V E G Y T V D V K
2 1q4y from 16 R: F S L F D K D G D G T I T T K E L G T V M R S L G
3 1q4v from 52 R: INEVDADGNGTIDFPEFLTMMARKM
 1sbw from 65 A: V R L _ G E D N I N V V E G N E Q F I S A S K S I
  2btc from 65 E: V R L G E D N I N V V E G N E O F I S A S K S I
6 lalv from 102 B: L F A O L A G D D M E V S A T E L M N I L N K V V
aa types - acidic, etc **
          -10 -5 0 5 10
                                                       15
 relseq
1 lacc from 173: __hhabapaghhashahaghshahb
2 194y from 16 R: h s h h a b a g a g s h s s b a h g s h h b s h g
3 1q4y from 52 R: hpahasaqpqshahhahhshhsbbh
 1sbw from 65 A: hbh_gaaphphhagpaphhsssbsh
  2btc from 65 E: hbh_gaaphphhagpaphhsssbsh
 1alv from 102 B: hhsphsgaahahsssahhphhpbhh
conformation sequences **
              -10
                   -5 0 5 10
 relseq
                                                         15
1 lacc from 173 : . . . bdakgkgbbaaaaa.bbbbbb
2 1q4y from 16 R: aakabakqkqbbbaaaaaakkq
3 194y from 52 R: aaadbakgkgbbbaaakaaakda
  1sbw from 65 A: bb...bkkbbk.qbbbbbbbbbbbbb
  2btc from 65 E: bb...babkkbbkgkbbbbbbbbbbbbb
 lalv from 102 B: a a a a a a j a k q b b b a a a a a a a a a a
```

******* protein names (pdb header) ******

1	lacc at	183	2.1		TOXIN										
2	1g4y at	26 R	1.6		SIGNA	LING	PROTI	EIN							
3	1g4y at	62 R	1.6		SIGNA	LING	PROTI	EIN							
4	1sbw at	75 A	1.80		HYDROI	LASE/	HYDRO	LASE IN	HIBITOR						
5	2btc at	75 E	1.50		HYDROI	JASE/	HYDRO	LASE IN	HIBITOR						
6	lalv at	112 B	1.9		CALCIU	JM BI	NDING	ł							
***	*****	cngps	*****	****											
1 4	DDDOE	Ca	2	2	2 5	-1	-1	-1	6 lacc	1 0.2 2.1	CA 800 ASP	177		Z	
2 4	DDDOE	Ca	2	2	2 5	-1	-1	-1	6 1g4y	0 0.2 1.6	CA 1001 ASPR	20b	1	Z	
3 4	DDNOE	Ca	2	2	2 5	-1	-1	-1	5 1g4y	0 0.4 1.6	CA 1002 ASPR	56b	1		
4 3	EOOE	Ca	2	3	5 -1	-1	-1	-1	. 6 1sbw	0 0.2 1.8	CA 801 GLUA	70	1	ZZ	3.

Ca 2 3 5 -1 -1 -1 -1 6 2btc 0 0.2 1.5 CA 700 GLUE 70 | ZZ 3.

Ca 3 2 5 -1 -1 -1 -1 6 lalv 0 0.1 1.9 CA 5 ALAB 107 ...b | ZZ 3.

p chains 2 3 6 are similar at chelate loop - i.e. 6 in lalv is like the end of 2225 set, but 4 and 5 are different from this and from each other

over loop 0 4, 1-5 p chains 2 3 6

5 3 EOOE

6 3 ODOE

relseq	meanfi	meanpsi	number	
0	-139(7)	155(7)	3	b
1	-101(6)	122(6)	3	b
2	-97(12)	170(8)	3	b
3	-54(14)	-40(10)	3	a
4	-61(7)	-42(2)	3	a
5	-68(4)	-36(6)	3	a

local conformation of 6 is similar to 2 over relseq -2 to 12

amino-acid sequences **** start of selected part of cngroup relseq -10 -5 0 5 10 15 1 1kit from 303 : TVLVSYARWPTDAAONGDRIK 2 1dl2 from 515 A: EFDLTKVVFNTEAHPFPVLDE 3 1pa2 from 160 A: N D L V A L S G A H T F G R A R C G V F N 4 laru from 175 : DEVVDLLAAHSLASOEGLNSA 1d2v from 158 C: I T I R N O I N A L T S F V D A S M V Y G 1jg8 from 4 C: _ I D L R S D T V T K P T E E M R K A _ 1sci from 164 A: TVGYPAKYPSTIAVGAVNSSN 1e8u from 254 B: V T E T E E E D Y N S A V P T L M A H G R 1nbc from 34 B: LSKLTLRYYYTVDGOKDOTFW 1iod from 31 A: T K Q V N G G H L V S I E S S G E A D F V 1pa2 from 214 A: A S T I T N L D L S T P D A F D N N Y F A laru from 194 : SAIFRSPLDSTPQVFDTQFYI 13 ledm from 43 B: _ _ _ D G D Q C E S N P C L N G G S C K aa types - acidic, etc ** -10 -5 0 5 10 relseq 1.5 1 lkit from 303 : shhhshsbhhsassppgabhb 2 1dl2 from 515 A: ahahsbhhhpsasphhhhhaa 3 1pa2 from 160 A: pahhshsqspshqbsbhqhhp 4 laru from 175 : aahhahhsspshsspaghpss 1d2v from 158 C: h s h b p p h p s h s s h h a s s h h h q 1jg8 from 4 C: _ hahbsashsbhsaahbbs _ 1scj from 164 A: shqhhsbhhsshshqshpssp 1e8u from 254 B: h s a s a a a h p s s h h s h h s p g b 1nbc from 34 B: h s b h s h b h h h s h a q p b a p s h h liod from 31 A: sbphpggphhshassgasahh

11 1pa2 from 214 A: ssshsphahsshashapphhs

```
12 laru from 194 : sshhbshhasshphhasphhh
13 ledm from
           43 B: agaphasphhhpggshb
  conformation sequences **
   relseq
                   -10
                                       0
                                                                   15
   1kit from 303 : b b b b b b b b b k k b . a b g g k b b
   1dl2 from 515 A: b b b k k k b b b b k k q b b b b b b a
   1pa2 from 160 A: aaaaakkkkb j b b b aakkk
   laru from 175: aaaaakaakkd b b b a k a b k a
   1d2v from 158 C: abbbbbbbbbbbbbbbbbbcb.
              4 C: . . b b k a . k a k b b b b a a a a a a .
   ljg8 from
   1scj from 164 A: k b b b k a a b a a b b b b b b b k k q
   1e8u from 254 B: b k b b a a a a k k b a b b b b b b b
             1nbc from
   liod from
             31 A: kkabbabbbbbbk.aaaaaa
   laru from 194: kadbqbbkbkdkkbbbkaaaa
   ledm from 43 B: . . . b b b k k b g g a b b g g b b b b
 ****** protein names (pdb header) ******
 1 1kit at 313
                  2.3
                          HYDROLASE
                                     Concanavalin A-like lectins/glucanases
   1dl2 at 525 A
                 1.54
                          HYDROLASE
                                     alpha/alpha toroid
                                        Heme-dependent peroxidases
   1pa2 at 170 A
                 1.45
                          OXIDOREDUCTASE
   laru at 185
                  1.6
                          PEROXIDASE (DONOR: H202 OXIDOREDUCTAS Heme-dependent peroxidases
                                     Heme-dependent peroxidases
   1d2v at 168 C
                 1.75
                          OXIDOREDUCTASE
   1jg8 at
          14 C
                  1.80
                          LYASE PLP-dependent transferases
   1scj at 174 A
                 2.0
                                   Subtilisin-like
                          HYDROLASE
   1e8u at 264 B
                                  6-bladed beta-propeller
                 2.0
                          SIALIDASE
                                              Common fold of diphtheria toxin/transcripti
   1nbc at
            44 B
                 1.8
                          CELLULOSE DEGRADATION
                                                   C-type lectin-like
   liod at
           41 A
                 2.30
                          HYDROLASE/HYDROLASE INHIBITOR
   1pa2 at 224 A
                 1.45
                         OXIDOREDUCTASE
```

PEROXIDASE (DONOR: H2O2 OXIDOREDUCTAS

COAGULATION FACTOR

laru at 204

13 ledm at 53 B 1.5

1.6

****** cnqps ******* 0 33 24 0 -1 -16 lkit 0 0.2 2.3 CA 802 ALA 253 ...b.. 2 1 -1 -1 -1 -1 -1 -1 ... 6 1dl2 1 0.1 1.5 CA 901 THRA 525 ... 3 1 OTDOTOD 3 0 3 2 -17 1pa2 0 0.1 1.5 CA 308 THRA 170 OSDOTOD 2 0 3 2 -17 laru 0 0.2 1.6 CA 347 SER 185 ..b.... 2 2 -1 -1 -17 1d2v 0 0.2 1.8 CA 600 THRC 168 5 1 OTODS 6 2 OOTOO 5 -1 -1 -16 1jg8 0 0.5 1.8 CA 904 THRC 12 0 -1 -1 -1 -1 5 lscj 0 0.4 2.0 CA 382 ALAA 169 7 3 COOT ODOSOO 0 2 30 -1 -16 le8u 0 0.2 2.0 CA 1003 ASPB 261 2 76 3 1 -1 -17 1nbc 0 0.2 1.8 CA 9 1 OTDOND 1 THRB 44 ..b... 2 4 81 -1 -1 -1 6 1iod 0 0.3 2.3 CA 501 SERA 41 ...bb 10 1 OSEEE 7. 3. 3 0 3 2 -17 lpa2 0 0.1 1.5 CA 308 THRA 170 OTDOTOD 2 0 3 2 -17 laru 0 0.2 1.6 CA 347 SER 185 ..b.... OSDOTOD 1.

3 SERB 53 ..

ZZZZZ

-1 -1 -1 -1 -1 -1 .. 7 ledm 0 0.2 1.5 CA

In 5 and 6 there were originally -99 in cngp definition, i.e. donor atoms come from two different protein chains. in.tors adjusted so that required donor pair OT is picked up.

for relseq = 0

13 1

group 1 pc 1-4 (rms 3-10 deg) 3T and 1S

relseq meanfi meanpsi number

0 -68(8) -11(5) 4

local confs all different

group 2 pc 5-12 6T and 3S

pc 5 6 (rms 12) seems to be a continuous range of conformation

7 from 5,6 through to 12. beginning and end members

8 9 up to 70 deg apart

10 11 12

local confs all different

		number	meanpsi	meanfi	relseq
for whole set 5-12	b	8	118(30)	-99(27)	0
for pc 5 and 6	b	2	135(2)	-63(12)	0
for pc 11 and 12	d	2	78(12)	-129(3)	0

pc 13 completely different

amino-acid sequences ****

start of selected part of cngroup relseq -10 -5 15 1 1fzc from 312 C: F S T W D N D N D K F E G N C A E O D G S G 2 3fib from 312 : FSTWDNDNDKFEGNCAEODGSG lava from 101 B: R G T Y C T F E G G T P D A R I D W G P H M 1kap from 243 P: OKLYGANLTTRTGDTVYGFNSN 1kap from 324 P: A G V T V E N A I G G S G S D L L I G N D V 1kap from 333 P: G G S G S D L L I G N D V A N V L K G G A G 1qla from 383 A: A K L K G L F S A G E A A C W D M H G F N R 1scj from 159 A: S G S T S T V G Y P A K Y P S T I A V G A V 1svy from 217 : VARAIDAERKGLPKVEV___TD 1e8u from 254 A: V T E T E E E D Y N S A V P T L M A H G R L 1c8n from 163 A: D V A P G S R V O L S O T Y K A I N F P P Y 1dmu from 89 A: A V G S K L T R L V S Q R E D I T V R E I G 12 1176 from 159 A: I L A H A F O P G O G I G G D A H F D A E E 1e43 from 290 A: F N L Q A A S S Q G G G Y D M R K L L N G T 1nzy from 193 A: E V A W K V A R E L A A A P T H L Q V M A K 2 B: _ _ _ I D L R S D T V T K P T E E M R K A 1jg8 from 1sra from 231 : SHTELAPLRAPLIPMEHCTTRF lga6 from 334 A: N G Y G G Y G Y N A G T G W D Y P T G W G S 18 1176 from 145 A: R D H G D N S P F D G P N G I L A H A F O P 2por from 128 : F S V A A S M S D G K V G E T S E D D A Q E 20 0 : __IYPGTLWCGHGNKSSGPNEL laxn from 22 : SVDAEAIOKAIRGIGTDEKMLI laxn from 180 : A O I L Y K A G E N R W G T D E D K F T E I laxn from 24 : DAEAIOKAIRGIGTDEKMLISI 1kap from 360 P: G G L G A D Q L W G G A G A D T F V Y G D I 1kap from 351 P: G G A G N D I L Y G G L G A D Q L W G G A G

1kap from 342 P: G N D V A N V L K G G A G N D I L Y G G L G

1poc from -2 : _ _ _ I Y P G T L W C G H G N K S S G P N 1176 from 147 A: H G D N S P F D G P N G I L A H A F O P G O 1cru from 259 B: K G G N Y G W P N V A G Y K D D S G Y A Y A 1kap from 341 P: I G N D V A N V L K G G A G N D I L Y G G L 1kap from 359 P: Y G G L G A D O L W G G A G A D T F V Y G D 1kap from 350 P: K G G A G N D I L Y G G L G A D Q L W G G A 69 E: AGTVAALDNTTGVLGVAPSVSL 1cse from laci from 69 : AGTIAALNNSIGVLGVAPSAEL 69 A: A G T I A A L N N S I G V L G V S P S A S L 1scj from 69 E: AGTVAALNNSIGVLGVAPSASL 2sic from 1bOp from 1049 B: F L K V L K E A E S F P G P S L V I A Y A T 1pa2 from 36 A: LIRLHFHDCFVNGCDASILLDD lig8 from 226 B: ARKMLGGGMROAGVLAAAGIIA

aa types - acidic, etc **

-10 -5 0 5 1.0 relseq 1 1fzc from 312 C: hsshapapabhaqphsapaqsq 2 3fib from 312: hsshapapabhagphsapagsg lava from 101 B: b q h h h h h a q q s h a s b h a h q h p h 1kap from 243 P: pbhhgsphssbsgashhghpsp 1kap from 324 P: sqhshapshqqsqsahhhqpah 1kap from 333 P: ggsgsahhhgpahsphhbggsg 1qla from 383 A: sbhbghhssgasshhahpghpb 1scj from 159 A: sqsssshqhhsbhhsshshqsh 1svy from 217: hsbshasabbghhbhah___sa 1e8u from 254 A: hsasaaahpsshhshhspgbh 1c8n from 163 A: a h s h g s b h p h s p s h b s h p h h h h 1dmu from 89 A: shqsbhsbhhspbaahshbahq 1176 from 159 A: hhspshphgpghggasphasaa 1e43 from 290 A: hphpsssspgghahbbhhpgs 1nzy from 193 A: a h s h b h s b a h s s s h s p h p h h s b 2 B: _ _ _ hahbsashsbhsaahbbs 1jg8 from 17 1sra from 231 : spsahshhbshhhhhaphssbh

15

1ga6 from 334 A: pghgghghpsgsghahhsghgs 1176 from 145 A: bapqapshhaqhpqhhspshph 2por from 128: hshssshsagbhgassaaaspa 1poc from 0: hhhqshhhqpqpbssqhpah 22: shasashpbshbghgsaabhhh laxn from laxn from 180 : sphhhbsgapbhgsaaabhsah laxn from 24: asashpbshbqhqsaabhhhsh 1kap from 360 P: gghgsaphhggsgsashhhgah 1kap from 351 P: qqsqpahhhqqhqsaphhqqsq 1kap from 342 P: gpahsphhbggsgpahhhgghg 1poc from -2: _ _ _ hhhgshhhgpgpbssghp 1176 from 147 A: pgapshhaghpghhspshphgp 1cru from 259 B: bggphghhhphsghbaasghshs 1kap from 341 P: hgpahsphhbggsgpahhhggh 1kap from 359 P: haghasaphhagsashhhaa 1kap from 350 P: bqqsqpahhhqqhqsaphhqqs 69 E: sqshsshapssqhhqhshshsh 1cse from 69 : sgshsshppshghhghshssah 35 1gci from 1scj from 69 A: sqshsshppshqhhqhshsssh 2sic from 69 E: sgshsshppshghhghshsssh 37 1b0p from 1049 B: hhbhhbasashhqhshhhshs 1pa2 from 36 A: hhbhphpahhhpghasshhhaa 1jg8 from 226 B: sbbhhggghbpsghhsssghhs

conformation sequences **

10

15

```
lsci from 159 A: b.kbbkbbkaabaabbbbbbb
   1svy from 217 : aaaaaaakqqabbbb...kb
   1e8u from 254 A: bkbbaaaakbabbbbbbbbbbbb
   1c8n from 163 A: bbbbk.aaaakbbgbbb.bkk
   1dmu from
           89 A: aaaaaaaaakbakbbbbbbb
   1i76 from 159 A: ba.bbbbb.b.abgbbbbkkb
   1e43 from 290 A: aaaaakkkqqkbbkkkakbqb
   1nzy from 193 A: aaaaaaaaaabbaaaaaa
   1jq8 from
            2 B: . . . b b k a . k a k b b b b a a a a a
   1sra from 231 : baakkaakkbakbbgkkkaaa
   19a6 from 334 A: d.bqqbjbbb.bjbbaakjkjb
   1i76 from 145 A: . b . g k g d b b k j b j j b a . b b b b
          128 : bbbbbb.bkgbb.dbkbbbbb
   2por from
            0 : . . b b b q b k k b j b j b d b k b a k b b
   1poc from
           22 : aaaaaaaaaabibibbaaaaa
   laxn from
          180 : aaaaaak.akbbjbbaaaaaa
   laxn from
           24 : aaaaaaaab j b j b b a a a a a a
   laxn from
   1kap from 360 P: a j b j b b b b b a j b j b b b b b k b a
   1kap from 351 P: a j b j b b b b b a j b j b b b b a j b j
   1kap from 342 P: b b k b b b b b b a j b j b b b b a j b j
           -2 : . . . bbbgbkkbjbjbdbkbak
   1176 from 147 A: .gkgdbbkjbjjba.bbbb.b
   1cru from 259 B: b g b b k g b k a b b j b b k g b g b b b b
   1kap from 341 P: b b b k b b b b b b a j b j b b b b a j b
   1kap from
          350 P: bajbjbbbbbajbjbbbbajb
           69 E: aaaakbbb.kbjbbbabkkbbb
   1cse from
           69 : aaaa.bbb.kbjbbbadkkbbb
   1gci from
   1sci from
           69 A: a a a a d b b b . k b . b b b a b k k b b b
           69 E: a a a a d b b b . d b j b b b a d a k b b b
37
   2sic from
   1b0p from 1049 B: a a a a a a a a a b d . b b b b b b b b
   1pa2 from
           36 A: aaaaaaaakbgjdkgaakbbb
   1jg8 from 226 B: aaaaag k b b a d k aaaaaaaaa
```

**	*****	protein	names (pdb	header) ******
1	lfzc at	322 C	2.3	BLOOD COAGULATION Fibrinogen C-terminal domain-like unusual fold
2	3fib at	322	2.1	BLOOD COAGULATION Fibrinogen C-terminal domain-like unusual fold
3	lava at	111 B	1.9	HYDROLASE INHIBITION beta-Trefoil Amylase/subtilisin inhibitor
4	1kap at	253 P	1.64	ZINC METALLOPROTEASE beta-Roll Metalloprotease, C-terminal d
5	1kap at	334 P	1.64	ZINC METALLOPROTEASE
6	1kap at	343 P	1.64	ZINC METALLOPROTEASE
7	1qla at	393 A	2.2	OXIDOREDUCTASE FAD/NAD(P)-binding domain Succinate dehydrogenase/fumara
8	lscj at	169 A	2.0	HYDROLASE Subtilisin-like
9	1svy at	227	1.75	ACTIN-BINDING PROTEIN
10	1e8u at	264 A	2.0	SIALIDASE
11	1c8n at	173 A	2.25	VIRUS/VIRAL PROTEIN
12	1dmu at	99 A	2.2	HYDROLASE/DNA
13	1i76 at	169 A	1.20	HYDROLASE
14	1e43 at	300 A	1.7	HYDROLASE
15	1nzy at	203 A	1.8	LYASE
16	1jg8 at	12 B	1.80	LYASE
17	1sra at	241	2.0	CALCIUM-BINDING PROTEIN
18	lga6 at	344 A	1.00	HYDROLASE : Subtilisin-like Serine-carboxyl proteinase
19	1i76 at	155 A	1.20	HYDROLASE Zincin-like Matrix metalloproteases, catalyti
20	2por at	138	1.8	INTEGRAL MEMBRANE PROTEIN PORIN Membrane and cell surface proteins and peptides
21	lpoc at	10	2.0	HYDROLASE Phospholipase A2, PLA2
22	laxn at	32	1.78	CALCIUM/PHOSPHOLIPID-BINDING PROTEIN Annexin
23	laxn at	190	1.78	CALCIUM/PHOSPHOLIPID-BINDING PROTEIN
24	laxn at	34	1.78	CALCIUM/PHOSPHOLIPID-BINDING PROTEIN
25	1kap at	370 P	1.64	ZINC METALLOPROTEASE beta-Roll
26	1kap at	361 P	1.64	ZINC METALLOPROTEASE
27	1kap at	352 P	1.64	ZINC METALLOPROTEASE
28	lpoc at	8	2.0	HYDROLASE
29	1i76 at	157 A	1.20	HYDROLASE Zincin-like

30	10	cru at	269 в	1.5	50	0	XIDOR	EDUC'	TASE		6-bladed	beta-propell	er				
31	1k	ap at	351 P	1.6	54	Z	INC N	METAL	LOPRO	TEASE	beta-F	1011					
32	11	ap at	369 P	1.6	54	Z	INC N	METAL	LOPRO	TEASE							
33	11	ap at	360 P	1.6	54	Z	INC N	METAL	LOPRO	TEASE							
34	10	cse at	79 E	1.:	2	(COMPL	EX(SE	RINE	PROTEINA	SE-INHIBIT	OR)Subtilisi	n-lik	e			
35	19	gci at	79	0.	78	S	SUBTI	LISIN	I FRO	M BACILLU	S LENTUS	Subtil	lisin	-like			
36	1s	scj at	79 A	2.	0	I	HYDRO	LASE					Subt	ilisin-like			
37	25	sic at	79 E	1.	8	(COMPL	EX (1	PROTE	INASE/INH	IBITOR)	Subtil	isin-	-like			
38	1k	00p at 1	1059 в	2.3	1	ΟΣ	KIDOR	EDUCI	CASE		Thi	amin diphosp	hate-	-binding fold (THDP-bi	nding)		
39	1r	oa2 at	46 A	1.	45	О	XIDOE	REDUC	TASE		Н	eme-dependen	t per	coxidases			
40	1	jg8 at	236 В	1.8	30	L	YASE					PLP-depende	ent t	ransferases			
* *	***	****	cngps	****	****	***											
1	3	DDOO	Ca	2	2	2	-1	-1	-1	-1	4 lfzc	0 0.2 2.3	CA	1 ASPC 318 b			
2	3	DDOO	Ca	2	2	2	-1	-1	-1	-1	6 3fib	0 0.2 2.1	CA	400 ASP 318 b	-	ZZ	
3	2	EOOD	Ca	3	2	4	-1	-1	-1	-1	5 lava	0 0.4 1.9	CA	501 GLUB 108 bb	- 1	Z	3.
4	1	OOTDOD	Ca	2	2	28	2	3	-1	-1	6 1kap	1 0.1 1.6	CA	614 ARGP 253b			3.
5	1	OODOOD	Ca	2	2	13	2	3	-1	-1	6 1kap	0 0.3 1.6	CA	616 GLYP 334b	1		3.
6	1	OONOOD	Ca	2	2	13	2	3	-1	-1	6 1kap	0 0.3 1.6	CA	618 ASNP 343b	1		3.
7	4	00000	Ca	1	1	20	2	-1	-1	-1	. 6 1qla	0 0.2 2.2	CA	9 SERA 371	1	Z	1.
8	1	OOOT	Ca	2	3	0	-1	-1	-1	-1	5 1scj	0 0.4 2.0	CA	382 ALAA 169	- 1	Z	3.
9	2	DOO	Ca	5	2	-1	-1	-1	-1	-1	6 1svy	0 0.3 1.8	CA	1 ASP 222	1	ZZZ	1
10	3	OD000	Ca	0	3	2	30	-1	-1	-1	. 5 1e8u	0 0.1 2.0	CA	1002 ASPA 261			3.
11	1	00	Ca	2	-1	-1	-1	-1	-1	-1	2 1c8n	0 0.5 2.3	CA	305 SERA 173			
12	1	000	Ca	2	3	-1	-1	-1	-1	-1	6 1dmu	0 0.2 2.2	CA	125 SERA 99		ZZZ	3.
13	2	OOOD	Ca	32	2	2	-1	-1	-1	-1	6 li76	0 0.1 1.2	CA	996 ASPA 137	- 1	ZZ	3.
14	1	OOODD	Ca	2 1	04	1	23	-1	-1	-1	6 1e43	0 0.1 1.7	CA	504 GLYA 300b	1	Z	3.

Ca 153 1 2 2 3 -1 -16 lnzy 0 0.4 1.8 CA 271 GLYA 49 | 3.

Ca 2 0 188 5 -99 -1 -16 1jg8 0 0.5 1.8 CA 901 THRB 12 | 4.

Ca 1 15 2 2 -1 -1 -1 6 1ga6 0 0.1 1.0 CA 374 ASPA 328 | Z 3.

Ca 1 2 2 18 3 -1 -16 1i76 0 0.1 1.2 CA 997 ASPA 154 | 3.

16 1 OOTOOQ

17 1 OOE

18 3 DOOOD

19 2 DOOODE

20 3 NDOO 2 2 -1 -1 -1 -1 5 2por 0 0.2 1.8 CA 304 ASN 116 .b.. 21 2 OOOD 2 23 -1 -1 -1 -1 6 1poc 0 0.1 2.0 CA 501 TRP 8 ...b UU 3. 22 1 OOOD 2 40 -1 -1 -1 -1 4 laxn 0 0.4 1.8 CA 351 ILE 32 ...b 23 2 OOOE -1 -1 -1 -1 6 laxn 0 0.2 1.8 CA 353 GLY 187 ...b 24 2 OOOD -1 -1 -1 -1 4 laxn 0 0.4 1.8 CA 351 ILE 32 ...b 25 1 OODD -1 -1 -1 -1 6 1kap 1 0.2 1.6 CA 617 GLYP 370 ZZ 3. 26 1 OODOD 7 -1 -1 -1 6 1kap 0 0.1 1.6 CA 619 GLYP 361 z 3. 27 1 OODOOD 2 3 -1 -16 1kap 0 0.3 1.6 CA 620 GLYP 352b 3. 28 1 000D 2 23 -1 -1 -1 -1 6 1poc 0 0.1 2.0 CA 501 TRP 8 ...b UU 3. DOOODE 29 3 2 18 3 -1 -16 1i76 0 0.1 1.2 CA 997 ASPA 154 3. 2 36 -1 -1 -1 -1 6 1cru 0 0.1 1.5 CA 902 ALAB 269 ...b 30 1 OODE ZZ 1. 2 3 -1 -16 lkap 0 0.3 1.6 CA 616 GLYP 334b 31 4 OODOOD 2 13 3. 2 3 -1 -16 lkap 0 0.3 1.6 CA 620 GLYP 352b 32 4 OODOOD 3. 2 3 -1 -16 1kap 0 0.3 1.6 CA 618 ASNP 343b 33 4 OONOOD 3. 34 5 ODONOO 2 -1 -16 lcse 0 0.1 1.2 CA 430 GLNE 2 .b.... 3. 2 -1 -16 lgci 0 0.1 0.8 CA 277 GLN 2 .b.... 3. ODONOO 2 -1 -16 1scj 0 0.2 2.0 CA 381 GLNA 36 5 QDONOO 2 .b.... 3. 37 5 ODONOO 2 -1 -16 2sic 0 0.2 1.8 CA 501 GLNE 2 .b.... 3. DNOOO 2 -1 -1 -1 5 lb0p 1 0.4 2.3 CA 1238 ASPB 983 38 4 71 1. ODOODS 2 -1 -17 1pa2 0 0.1 1.5 CA 307 ASPA 43 z 1. 40 2 000T00 Ca -99 2 0 188 5 -1 -16 1jg8 0 0.5 1.8 CA 904 GLNB 236 | 4.

NB pc 40 incorrectly interpreted because of -99 - two protein chains contribute to cngp

group 1: 1-17

relseq	meanfi	meanpsi	number	
1	-70(9)	-18(14)	17	k
2	-77(15)	-198(24)	17	b

sub group a) 1-7 model: 1kap at 253 P 1.64 (4)

relseq	meanfi	meanpsi	number		
1	-69(6)	-18(12)	7	k	
2	-91(7)	-173(13)	7	b	
sub group	b) 8-10				
relseq	meanfi	meanpsi	number		
1	-58(3)	-37(3)	3	a	
2	-66(5)	146(9)	3	b	
sub group	c) 11-16	model: 1i76 at	169 A 1.20	(13)	
relseq	meanfi	meanpsi	number		
1	-74(7)	-14(9)	6	k	
2	-64(10)	145(10)	6	b	

no similarity in local conformations (-10 to 11) except that \$1\$ and \$2\$ are very close (rms \$9\$)

group 2: 18-28

relseq	meanfi	meanpsi	number	
1	-63(8)	142(16)	10	b
2	76(14)	-166(22)	10	j
sub group	a) 18-23	model: 1i76 at	155 A 1.20	(19)
relseq	meanfi	meanpsi	number	
1	-59(6)	132(9)	6	b
2	67(10)	-151(11)	6	j
sub group	b) 25-27	model: 1kap at	370 P 1.64	(25)
relseq	meanfi	meanpsi	number	
1	-65(1)	164(3)	3	b
2	92(3)	166(5)	3	j

no similarity in local conformations (-10 to 11) except that chains 25--27 are v similar over relseq 4--17

group 3: 29-37

			r	nodel	1gci	at	79	0	.78	(35)	
relse	q	n	eanfi			mean	psi		number		
1			67(7)		-141(15)		9		j
2			-90(27)		173(22)		9		b
sub g	group	a)	29-33								
relse	q	n	eanfi			mean	psi		number		
1			71(4)		-149(15)		5		j
2			-67(3)		157(14)		5		b
sub g	group	b)	34-37								
relseq		me	anfi			meanp	si	r	number		
1			62(5)		-131(3)		4		j
2		-	-118(2)		-165(4)		4		b

subgroup a) local conformations different, all proteases
subgroup b) local conformations all same, all proteases

+ 4 outliers (reduced to 3 when pc 40 removed, althoug it may belong toone of the main groups.)

amino-acid sequences ****

start of selected part of cngroup relseq -10 -5 15 1 lacc from 212 : EKKGLTKYKSSPEKWSTASDPYS 2 lsbw from 62 A: G I Q V R _ _ _ E D N I N V V E G N E Q F I S 2btc from 62 E: G I O V R E D N I N V V E G N E O F I S 62 A: RIQVR___EHNIDVLEGNEQFIN lavw from 1pyt from 462 C: R T Y Q V V L G E Y D R S V L Q G S E Q V I P 1tn3 from 137 : ETEITAOPDGGKTENCAVLSGAA 11pb from 177 B: PAEPCFOGTPELVRLDPSDAKFV lava from 133 A: G T G N P D T G A D F G A A P D I D H L N L R laxn from 177 : KODAOILYKAGENRWGTDEDKFT 62 B: RIQV___GEHNINVLEGNEQFVN 1slu from 1dmu from 91 A: G S K L T R L V S O R E D I T V R E I G L P T 1b0p from 1046 B: K Q Q F L K V L K E A E S F P G P S L V I A Y 1q5c from 108 F: G V E E E V I E N F S I D V L N P V G D E E E 1scj from 161 A: S T S T V G Y P A K Y P S T I A V G A V N S S 1aOt from 444 P: TSWMDWSKKLNNYASDDALGSDG 1kit from 243 : EKRVGGGDPGALSNTNDIITRTS 1dx5 from 430 J: G G F C S G V C H N L P G T F E C I C G P D S 1fjs from 62 A: K R F K V R V G D R N T E Q E E G G E A V H E 1dvo from 29 A: EVLLSGRTAYKGSESLLVRNRTA 1fo4 from 857 A: V A L E V D H Y S N A G N S R D L S H S I M E 1brw from 233 A: M A V I S D M S O P L G Y A V G N A L E V K E aa types - acidic, etc ** relseq -10 -5 0 5 10 15 1 lacc from 212 : abbqhsbhbsshabhssssahhs 1sbw from 62 A: ghphb___aaphphhagpaphhs 3 2btc from 62 E: ghphb___aaphphhagpaphhs

lavw from 62 A: bhphb___apphahhagpaphhp 1pyt from 462 C: b s h p h h h q a h a b s h h p q s a p h h h 1tn3 from 137 : asahssphaggbsaphshhsgss 11pb from 177 B: h s a h h h p q s h a h h b h a h s a s b h h lava from 133 A: gsgphasgsahgsshahaphphb laxn from 177: bpasphhhbsgapbhgsaaabhs 1slu from 62 B: bhph___gapphphhagpaphhp 1dmu from 91 A: gsbhsbhhspbaahshbahghhs 1b0p from 1046 B: bpphhbhhbasashhqhshhhsh 1g5c from 108 F: ghaaahhaphshahhphhgaaaa 1scj from 161 A: sssshqhhsbhhsshshqshpss 1a0t from 444 P: sshhahsbbhpphssaashqsaq 1kit from 243 : abbhqqahqshspspahhsbss 1dx5 from 430 J: qqhhsqhhpphhqshahhhqhas 62 A: bbhbhbhqabpsapaaqqashpa 1fis from 1dyo from 29 A: ahhhsqbsshbqsashhhbpbss 1fo4 from 857 A: h s h a h a p h s p s q p s b a h s p s h h a

conformation sequences **

relseq 1 lacc from 212 : akkqbbbbbbbkkbabakqbkbb 62 A: gbbbb...b.bkkbbk.gbbbb 1sbw from 62 E: qbbbb...babkkbbkqkbbbb 2btc from 62 A: bbbbb...babkkbbkgkbbbb lavw from 1tn3 from 137 : bad.bbbbkk.kkbbbbbbaak 7 1lpb from 177 B: b b a b g . b g b b a a k b b . a k k b a b b lava from 133 A: qkbbbbk.bbbakbbbbkkbaa laxn from 177 : aaaaaaaak.akbbjbbaaaa 1slu from 62 B: b b b b . . . q b . b a k b b k . b . q b b b 91 A: aaaaaaaakbakbbbbbbbbbbbb 1dmu from 12 1b0p from 1046 B: aaaaaaaaakbd.bbbbbb

1brw from 233 A: h s h h s a h s p h h g h s h g p s h a h b a

******* protein names (pdb header) ******

* *	*****	***** protein names (pdb h		header) ******
1	lacc at	222	2.1	TOXIN Anthrax protective antigen
2	1sbw at	72 A	1.80	HYDROLASE/HYDROLASE INHIBITOR Trypsin-like serine proteases
3	2btc at	72 E	1.50	HYDROLASE/HYDROLASE INHIBITOR Trypsin-like serine proteases
4	lavw at	72 A	1.75	COMPLEX (PROTEINASE/INHIBITOR) beta-Trefoil (is trypsin inhibitor)
5	1pyt at	472 C	2.35	TERNARY COMPLEX (ZYMOGEN)
6	1tn3 at	147	2.0	LECTIN C-type lectin-like
7	11pb at	187 B	2.46	HYDROLASE(CARBOXYLIC ESTERASE) Trypsin-like serine proteases
8	lava at	143 A	1.9	HYDROLASE INHIBITION TIM beta/alpha-barrel
9	laxn at	187	1.78	CALCIUM/PHOSPHOLIPID-BINDING PROTEIN Annexin
10	1slu at	72 B	1.8	COMPLEX (SERINE PROTEASE/INHIBITOR) Trypsin-like serine proteases
11	1dmu at	101 A	2.2	HYDROLASE/DNA Restriction endonuclease-like
12	1b0p at	1056 В	2.31	OXIDOREDUCTASE
13	1g5c at	118 F	2.10	LYASE
14	1scj at	171 A	2.0	HYDROLASE
15	la0t at	454 P	2.4	OUTER MEMBRANE PROTEIN
16	1kit at	253	2.3	HYDROLASE
17	1dx5 at	440 J	2.3	SERINE PROTEINASE
18	1fjs at	72 A	1.92	BLOOD CLOTTING
19	1dyo at	39 A	2.1	CARBOHYDRATE-BINDING MODULE
20	1fo4 at	867 A	2.10	OXIDOREDUCTASE
21	1brw at	243 A	2.1	NUCLEOSIDE PHOSPHORYLASE

****** cnaps ******* 1 4 DDEOOD 7 34 3 10 -1 -16 lacc 0 0.3 2.1 CA 801 ASP 179 ..b... 2 2 EOOE 5 -1 -1 -1 -1 6 1sbw 0 0.2 1.8 CA 801 GLUA 70 ZZ 3. 3 2 EOOE 5 -1 -1 -1 -1 6 2btc 0 0.2 1.5 CA 700 GLUE 70 ZZ 3. 4 2 2 3 -1 -1 -1 6 lavw 0 0.1 1.8 CA 700 GLUA 70 EOOEE z 3. EOOQE 3 -1 -1 -1 5 lpyt 1 0.3 2.3 CA 650 GLUC 470 6 3 DEOON 3 1 -1 -1 -1 6 1tn3 0 0.2 2.0 CA 182 ASP 116 bb... 7 1 OODD -1 -1 -1 -1 6 llpb 0 0.2 2.5 CA 450 GLUB 187 ...b 8 3 DDOOD 3 2 -1 -1 -1 6 lava 1 0.2 1.9 CA 502 ASPA 127 z 3. 9 1 000E 40 -1 -1 -1 -1 6 laxn 0 0.2 1.8 CA 353 GLY 187 ...b 10 2 EOOEO 2 -99 -1 -1 -1 7 1slu 0 0.5 1.8 CA 101 GLUB 70 UZ 3. 11 2 000 3 -1 -1 -1 -1 -1 ... 6 1dmu 0 0.2 2.2 CA 125 SERA 99 ... ZZZ 3. 3 2 -1 -1 -1 5 1b0p 1 0.4 2.3 CA 1238 ASPB 983 12 3 DNOOO 1. 3 -1 -1 -1 -1 -1 ... 6 lg5c 0 0.3 2.1 CA 1009 GLUF 97 b.. 13 2 EOO ZZZ 4. 0 -1 -1 -1 -1 5 1sci 0 0.4 2.0 CA 382 ALAA 169 14 2 OOOT 15 1 000 -1 -1 -1 -1 -1 ... 3 la0t 0 0.1 2.4 CA 10 ASNP 454 ... OONDOT 0 -1 -16 lkit 0 0.2 2.3 CA 802 ALA 253 ...b.. 3. 17 5 DOENOO 13 1 3 -1 -17 1dx5 0 0.2 2.3 CA 1001 ASPJ 423 b..... z 3. 18 2 DOOEE 2 3 -1 -1 -1 6 lfjs 0 0.3 1.9 CA 507 ASPA 70 z 3. 19 3 OEOOD 3 107 -1 -1 -1 5 1dyo 0 0.4 2.1 CA 300 THRA 14b 3 33 1 -1 -16 1fo4 0 0.4 2.1 CA 4009 ALAA 867

3 9 -1 -1 -1 5 1brw 0 0.3 2.1 CA 3001 GLYA 88

1.

2.

for chelate loop use fi and psi 1-3

2 153

000SS0

21 3 OTOOE

group 1: pc 1-6 model: 2btc at 72 E 1.50 (3) relseq meanfi meanpsi number 1 -72(4) -4(5) k 2 -101(6) -8(7) k b 3 -129(12) 127(12)

local conformations 3 4 5 similar

group 2: pc 7-10 model: 1slu at 72 B 1.8 (10)

relseq meanfi meanpsi number

1 -58(5) -40(4) 4 6

2 -79(7) -5(11) 4 b

3 -144(9) 163(11) 4 b

local conformations all different

group 3: pc 11-14 model: 1g5c at 118 F 2.10 (13)

	number	meanpsi	meanfi	relseq
a	4	-45(10)	-54(9)	1
a	4	-19(18)	-72(10)	2
b	4	131(26)	-83(20)	3

local conf: 11,14 quite b at relseq 0, 12 13 are a, and other difs

groups 1-3, and pc 15 16 are all within ca 45 deg r.m.s

relseq	meanfi	meanpsi	number	
1	-64(11)	-24(20)	16	a
2	-85(17)	-9(21)	16	k
3	-125(30)	142(23)	16	b

pc 17-21 are quite different from them, and mostly from each other, $\,$

except that 18 19 21 are within about 30 deg of each other

	number	meanpsi	meanfi	relseq	for 19 21
:	2	-149(1)	67(8)	1	
k	2	-17(27)	-116(1)	2	
b	2	154(21)	-103(30)	3	

amino-acid sequences ****																															
start of selected part of engroup																															
	relsec	I			-1	0					-5						0					5	5					10		1	.5
1	1a1i	from	143	A:	N	F	S	R	S	D	Н	L	Т	Т	Н	I	R	Т	Н	Т	G	E	K	P	F	A	С	D			
2	1a1i	from	171	A:	K	F	A	R	S	D	E	R	K	R	Н	Т	K	I	Н	L	R	_	_	_	_	_	_	_			
3	1rmd	from	98	:	E	E	V	S	L	Е	K	Y	N	Н	Н	V	S	S	Н	K	E	S	K	: _	_	-					
4	1a1i	from	115	A:	R	F	S	R	S	A	D	L	Т	R	Н	I	R	I	Н	Т	G	Q	K	P	F	Q	С	R			
5	1bs4	from	1122	C:	A	D	G	L	L	A	Ι	С	I	Q	Н	E	M	D	Н	L	V	G	K	L	F	M	D	Y			
6	1j98	from	44	A:	N	K	Q	A	М	K	Ρ	D	Т	I	Н	Т	L	E	Н	L	L	A	F	Т	I	R	S	Н			
7	1c7k	from	73	A:	Q	Q	Y	D	S	Т	R	V	Т	A	Н	Ε	Т	G	Н	V	L	G	L	P	D	Н	Y	Q			
8	1g12	from	107	A:	G	Т	D	S	Q	A	G	Т	L	V	Н	E	S	S	Н	F	Т	R	N	G	G	Т	K	D			
9	1hs6	from	285	A:	G	D	K	S	L	S	N	V	I	A	Н	E	I	S	Н	S	W	Т	G	N	L	V	Т	N			
10	1ezm	from	130	:	Y	P	L	V	S	L	D	V	A	A	Н	E	V	S	Н	G	F	Т	E	Q	N	S	G	L			
11	1i1i	from	464	p:	L	R	Н	D	E	V	R	Т	Y	F	Н	E	F	G	Н	V	М	Н	Q	I	С	A	Q	Т			
12	1dmt	from	573	A:	N	Y	G	G	I	G	M	V	Ι	G	Н	E	I	Т	Н	G	F	D	D	N	G	R	N	F			
13	1hr6	from	60	в:	A	E	N	V	K	N	N	G	Т	A	Н	F	L	Е	Н	L	A	F	K	G	Т	Q	N	R			

1176 from 187 A: ANYNLFLVAAHEFGHSLGLAHSSD

aa types - acidic, etc **

relseq -10 -5 0 5 10 15

1 lali from 143 A: phsbsaphssphbspsgabhhsha
2 lali from 171 A: bhsbsaabbbpsbhphb_______
3 lrmd from 98 : aahshabhppphsspbasb______
4 lali from 115 A: bhsbssahsbphbhppbhsspbahhphb
5 lbs4 from 1122 C: saghhshhhppahaphhgbhhah
6 lj98 from 44 A: pbpshbhashpshaphhshaphp
7 lc7k from 73 A: pphassbhsspasgphhghhaphp

15

conformation sequences *

-10 -5 5 1.0 relseq lali from 143 A: bbabaaaaaaakaaaqbbkbba lali from 171 A: bbabaaaaaakkkb...... 98: bbbbaakaaaaakbbba..... lali from 115 A: bbabaaaaaaaaakgbbkbbbk 1bs4 from 1122 C: bbjaaaaaaaaakkqbbakkk 44 A: gabbbbaaaaaaaaaaaaaa 1i98 from 73 A: aabbaaaaaaaaaakqbbbdak 1q12 from 107 A: jbqbaaaaaaaaabaak.qbbb 1hs6 from 285 A: gkgakkaaaaaaakab.aabbb lezm from 130 : bbkbbaaaaaakaaaak.aqb lili from 464 P: b b a a a a a a a a a a a a a a k b b b 1dmt from 573 A: aaaaaaaaaaakkbkaaakb 1hr6 from 60 B: kbbaaabqaaaaakkkk.bkab 13 1i76 from 187 A: b b b b a a a a a a a a a a k g b b b b k b 11ml from 254 : dbaaaaaaaaaaak.bbaaaa 15 1bkc from 395 E: baaaaaaaaaaaa.bbbbbbb 1kap from 166 P: b q b a a a a a a a a a a a k . b b b k b b latl from 132 A: baaaaaaaaaaaakgbbbbbk

```
******* protein names (pdb header) ******
 1 lali at 153 A 1.6
                           COMPLEX (ZINC FINGER/DNA)
 2 lali at 181 A 1.6
                           COMPLEX (ZINC FINGER/DNA)
   1rmd at 108
                   2.1
                            DNA-BINDING PROTEIN
   1ali at 125 A 1.6
                           COMPLEX (ZINC FINGER/DNA)
   1bs4 at 1132 C 1.90
                           HYDROLASE
   1j98 at 54 A
                  1.20
                           SIGNALING PROTEIN
   1c7k at
           83 A
                  1.00
                           HYDROLASE
   1g12 at 117 A
                  1.6
                           HYDROLASE
   1hs6 at 295 A 1.95
                           HYDROLASE
   lezm at 140
                  1.5
                           HYDROLASE
11 1ili at 474 P
                  2.30
                           HYDROLASE
   1dmt at 583 A
                  2.10
                           HYDROLASE
   1hr6 at 70 B
                  2.50
                           HYDROLASE
   1i76 at 197 A 1.20
                           HYDROLASE
   11ml at 264
                  1.86
                           LEISHMANOLYSIN
   1bkc at 405 E
                  2.0
                           ZN-ENDOPEPTIDASE
   1kap at 176 P
                           ZINC METALLOPROTEASE
                  1.64
18 latl at 142 A 1.8
                           METALLOENDOPEPTIDASE
****** cnqps *******
1 3 CCHH
                        4 -1 -1 -1 -1 ..ee 4 lali 0 0.1 1.6 ZN 202 CYSA 137 ....
                        4 -1 -1 -1 -1 ..ee 4 1ali 0 0.1 1.6 ZN 203 CYSA 165 ....
2 3 CCHH
3 3
     CCHH
                         4 -1 -1 -1 ..ee 4 1rmd 0 0.1 2.1 ZN 120 CYS 91 ....
                         4 -1 -1 -1 ..ee 4 lali 0 0.1 1.6 ZN 201 CYSA 107 ....
4 3
     CCHH
5 2 CHH
                      4 -1 -1 -1 -1 -1 .ee 4 1bs4 0 0.1 1.9 ZN 2003 CYSC1090 ...
                                                                                      U
                        -1 -1 -1 -1 ee. 4 1j98 0 0.1 1.2 ZN 300 HISA 54 ...
6 1 HHC
                                              4 1c7k 0 0.1 1.0 ZN 133 HISA 83 ...
                                                                                      | Z
7 1 HHD
                      6 -1 -1 -1 -1 ee.
                                                                                              3.
8 1 HHD
                         -1 -1 -1 -1 ee. 5 1g12 0 0.2 1.6 ZN 200 HISA 117 ..b
                                                                                       ZZ
                        -1 -1 -1 -1 ee. 5 1hs6 1 0.2 2.0 ZN 701 HISA 295 ...
9 1 HHE
                                                                                       UU
                                                                                             3.
10 1 HHE
                        -1 -1 -1 -1 ee. 4 lezm 1 0.2 1.5 ZN 300 HIS 140 ...
                                                                                       Z
```

-1 -1 -1 -1 ee.

11 1 HHE

12 1 HHE

4 1i1i 0 0.4 2.3 ZN 701 HISP 474 ..b

59 -1 -1 -1 -1 ee. 4 1dmt 0 0.4 2.1 ZN 755 HISA 583 ..b

Z

U

3.

3.

```
13 1 HHE
                   76 -1 -1 -1 -1 ee. 4 1hr6 0 0.1 2.5 ZN 501 HISB 70 ..b
                                                                                 Z
                     6 -1 -1 -1 -1 eee 5 1i76 0 0.3 1.2 ZN 999 HISA 197 ...
15 1 HHH
                    66 -1 -1 -1 -1 eee 4 11ml 20 0.4 1.9 ZN 100 HIS 264 ...
                                                                                 Z
                                                                                        3.
16 1 HHH O
                     6 -1-413 -1 -1 -1 eee . 5 lbkc 0 0.4 2.0 ZN
                                                                 1 HISE 405 ... .
17 1
    HHHOS
                    6 -99 0 -1 -1 -1 eee.. 5 1kap 0 0.2 1.6 ZN 613 HISP 176 .....
                                                                                       3.
18 1
     HHHOY
                    6 -99 0 -1 -1 -1 eee.. 5 latl 0 0.1 1.8 ZN 401 HISA 142 .....
```

all 18 same over 0-4 - alpha helix

relseq	meanfi	meanpsi	number	
0	-62(5)	-48(6)	18	a
1	-61(6)	-38(7)	18	a
2	-62(3)	-32(10)	18	a
3	-60(6)	-33(14)	18	a
4	-65(10)	-26(42)	18	a

model: 1c7k at 83 A 1.00 (7)

1rmd is worst fit, then 1ali

note quite a few k conformations at relseq 3 and 4

local conformations nearly all quite different 40-90 deg rms.

info from 'old sequences files' (with different numbering of protein chains,

but almost exactly same ordering apart from 1rmd/1ali

SCOP fold info

1,2,4 lali:Alkaline phosphatase-like core:3 layers: a/b/a; mixed beta-sheet of 8 strands, order 43516728, strand 7 is antipar

allel

to the rest

3 1rmd: 1-86 RING finger domain, C3HC4

87-116 C2H2 and C2HC zinc fingers alpha+beta metal(zinc)-bound fold: beta

5 1bs4: Peptide deformylase alpha-beta(5)-alpha; 3 layers: a/b/a; meander beta-sheet wraps around the C-terminal alp

ha-hel

ix

8 1j98: LuxS/MPP-like metallohydrolase core: beta-alpha-beta(2)-alpha(2); 2 layers: alpha/beta

9 1c7k: Zincin-like contains mixed beta sheet with connection over free side of the sheet

10 1g12: Zincin-like contains mixed beta sheet with connection over free side of the sheet

11 lhs6: Zincin like [one of three entries, this one includes right aa seqno]

12 lezm: Zincin-like contains mixed beta sheet with connection over free side of the sheet

13 lili: Zincin-like contains mixed beta sheet with connection over free side of the sheet

14 ldmt: Zincin-like contains mixed beta sheet with connection over free side of the sheet

15 1hr6: LuxS/MPP-like metallohydrolase core: beta-alpha-beta(2)-alpha(2); 2 layers: alpha/beta

19 li76: Zincin-like contains mixed beta sheet with connection over free side of the sheet

20 11ml: Zincin-like contains mixed beta sheet with connection over free side of the sheet

21 lbkc: Zincin-like contains mixed beta sheet with connection over free side of the sheet

25 1kap: Zincin-like [choose n terminal domain]

26 latl: Zincin-like

Scop would put 8 15 in a group

9 10 11 12 13 14 19 20 21 25 26 in a group

i.e. eleven are zincin like, rest various

Cath classification

1,2,4 lali COMPLEX (ZINC FINGER/DNA) 3.40.720.10 (446)

3 1rmd DNA-BINDING PROTEIN 3.30.40.10 (86) ,3.30.160.60 (30),

5.1.2887.1 (116)

5 1bs4 HYDROLASE 3.90.45.10 (three domains 168 each)

8 1j98 SIGNALING PROTEIN 1.2 A 8.1.1.1 (154)

9 1c7k HYDROLASE 3.40.390.10 (132)

10 1g12 HYDROLASE 6.1.211.10 (167)

11 1hs6 HYDROLASE 8.1.30.1 (610)

12 lezm HYDROLASE 1.10.390.10 (146), 3.10.170.10 (152),

5.1.790.1 (290)

13	lili	HYDROLASE	7.1.155.10	(665)
14	1dmt	HYDROLASE	7.1.25.10	(696)
15	1hr6	HYDROLASE	7.1.83.10	(457)
19	1i76	HYDROLASE	3.40.390.10	(163)
20	11ml	LEISHMANOLYSIN	2.10.55.10 (63),	2.30.34.10 (99), 3.10.170.20 (170)
				3.90.132.10 (124), 5.1.2855.1 (465)
21	1bkc	ZN-ENDOPEPTIDASE	3.40.390.10	(254,239,254,249)
25	1kap	ZINC METALLOPROTEASE	2.150.10.10 (237),	3.40.390.10 (233), 5.1.1240.1 (170)
26	1atl	METALLOENDOPEPTIDASE	3.40.390.10 (2	00)

agreement of conformations

In lali there are three different HH4 groups within one chain - keep all

phi/psi agreement - rms difs

before i.e. 0-10 1ali all same (8,8,11 degs), otherwise different (80-100)

just before - from -3 1hr6 wildly different, others same (<=10 degs)

Just before - from -3 fifth wildly different, others same (<=10 degs)

loop all same within 20 deg, many within 10 deg,

after to 14 all very different, except three within 1ali same

chil at 0 all 161 to 184

chi2 at 0 five -158 to -124 (1j98, 1hr6x4), twenty-two 77 to 127

chi1 at 4 all -52 to -110

chi2 at 4 five -134 to -127(1j98, 1hr6x4), twenty-one -62 to -38, one at -82 (1rmd)

coordination number, shape, distortion, ${\tt N-M-N}$ angle, comments on bond lengths etc

		CN	delta	his-M-his	unusual dists or ?
1	1ali	4	tet 5	100	
2		4	tet 4	109	
4		4	tet 5	100	
3	1rmd	4	tet 7	114	
5	1bs4	4	tet 9,9,9	104,104,106	cngroup includes O of ZN-O-ZN' ?
8	1j98	4	tet 5	103	
9	1c7k*	4	tet 8	107	
10	1g12	6	oct 17	104	cngp includes bidentate asp
11	1hs6	5	tetp 9	103	+ long bond (2.8) to second O of glu
12	1ezm	4	tet 6	113	
13	1i1i	5	tetp 16	108	cngp includes bidentate glu
14	1dmt	5	tbp 20	101	cngp includes bidentate glu
15	1hr6	5	tetp 16,17,17,15	86,87,88,90	cngp includes bidentate glu
19	1i76	5	tetp 14	105	
20	11ml	4	tet 21	95	dif 0.27-0.38, shape odd, ? extra sym
21	1bkc	5	tetp 6,9,8,7	102,99,100,100	difs 0.26-0.39, addl donor at 2.9
25	1kap	5	tetp 14	104	
26	1atl	5	tetp 13,13	101,100	

^{*} selected as model

old classification of conformation types

s	tart o	f sel	.ected	par	t c	f	cn	gro	oup																						
						-1	0					-5						0					5					1	.0		15
1	1a1i	from	143	A:	b	b	а	b	a	a	a	a	a	a	a	а	а	a	а	а	g	b	b	а	b	b	b	a	а		
2	lali	from	171	Α:	b	b	a	b	a	a	a	a	a	a	a	a	a	a	a	b	b	b	b	b	b	b	b	b	b		
3	1rmd	from	98	:	b	b	b	b	a	a	a	a	a	a	a	a	а	a	b	b	b	а	b	b	b	b	b	b	b		
4	lali	from	115	A:	b	b	a	b	a	a	a	a	a	a	a	а	a	a	a	а	g	b	b	a	b	b	b	a	a		
5	1bs4	from	1122	С:	b	b	j	a	a	a	a	a	a	а	а	a	a	a	a	a	a	g	b	b	а	a	a	а	b		
8	1j98	from	44	A:	g	а	b	b	b	b	a	а	a	а	а	a	a	а	а	a	a	a	a	a	a	a	a	a	a		

7n C C 2

amino-acid sequences **** start of selected part of cngroup -10 -5 0 5 10 15 relsea 1 1hw7 from 222 A: V Y D P Q D V E F K C T C _ _ _ _ _ _ 2 lalr from 113 A: A P O G S R S L T P C T C G S S D L Y L V T 3 4mt2 from 3 : PNCSCATDGSCSCAGSCKCKOC 4 1pud from 308 : SEDLKPLDSECHCAVCOKWSRA 2hry from 42 A: N T V G D D Y I P S C D C T O A T Y Y C K H 1h7n from 123 A: FPELYIICDVCLCEYTSHGHCG 1i3j from 141 A: KFCKCGVRIOTSAY lile from 492 : RPYVDOVELACACGGTMRRVPY 2occ from 50 F: PSITNKRIVGCICEEDNSTVIW aa types - acidic, etc ** 0 5 10 -5 relsea 1 1hw7 from 222 A: hhahpahahbhsh______ 2 lalr from 113 A: shpqsbshshhshqssahhhhs 4mt2 from 3: hphshssagshshsgshbhbph 4 1 pud from 308 : saahbhhasahphshhpbhsbs 2hrv from 42 A: pshgaahhhshahspsshhhbp 1h7n from 123 A: hhahhhhahhhhahsspapha 7 1i3j from 141 A: _ _ _ _ _ b h h b h g h b h p s s s h lile from 492 : bhhhaphahshshggshbbhhh 9 2occ from 50 F: h s h s p b b h h g h h h a a a p s s h h h conformation sequences ** -5 0 5 10 relseq -10 15 4mt2 from 3 : akbkbbdkqkbdaqqkbkbadb

4 lpud from 308 : akbkbbabkbaakkabbaa

```
2hrv from
           42 A: kbbbkbbbbbbbbbaa
   1h7n from 123 A: dkkbbbbbbb.kakkbakqbkb
 7 1i3j from 141 A: . . . . . . . b b a k g b b b b k k b a
   2occ from 50 F: b b k . k b b b b b b b a b a d b k b b b b
 ******* protein names (pdb header) ******
 1 1hw7 at 232 A 2.2
                          CHAPERONE
   lalr at 123 A
                 2.5
                          VIRAL PROTEIN
   4mt2 at
           13
                  2.0
                           METALLOTHIONEIN
   1pud at 318
                  1.85
                          TRANSFERASE
   2hrv at
           52 A
                 1.95
                          HYDROLASE
   1h7n at 133 A
                          DEHYDRATASE
                 1.6
   1i3j at 151 A 2.2
                          HYDROLASE/DNA
                  2.5
                           AMINOACYL-TRNA SYNTHETASE
   lile at 502
                 2.3
   2occ at
           60 F
                           OXIDOREDUCTASE
 ****** cngps *******
 1 1 CC
                  2 -1 -1 -1 -1 -1 ..
                                              2 1hw7 0 0.2 2.2 ZN 240 CYSA 232 ..
 2 1 CCC
                        -1 -1 -1 -1 -1 ... 4 lalr 0 0.2 2.5 ZN 901 CYSA 123 ...
 3 2 CCCC
                     2 11 -1 -1 -1 -1 .... 4 4mt2 0 0.1 2.0 ZN
                                                                  68 CYS
                                                                           7 ....
 4 1 CCCH
                        26 -1 -1 -1 -1 ...d 4 lpud 0 0.1 1.9 ZN 400 CYS 318 ....
                                                                                           2.
                        2 -1 -1 -1 -1 ...d 4 2hrv 0 0.1 2.0 ZN 143 CYSA 52 ....
 5 1 CCCH
 6 1 CCC
                        -1 -1 -1 -1 -1 ... 4 1h7n 0 0.1 1.6 ZN 1342 CYSA 133 ...
                        3 -1 -1 -1 -1 .... 4 li3j 0 0.1 2.2 ZN 100 CYSA 151 ....
 7 1 CCCC
 8 3 CCCC
                         2 -1 -1 -1 -1 .... 5 lile 0 0.8 2.5 ZN 1102 CYS 461 ....
 9 1 CCCC
                        3 -1 -1 -1 -1 .... 4 2occ 0 0.1 2.3 ZN 99 CYSF 60 ....
over loop (phi 1-2, psi 0-1)
prot chains 1 and 2 agree within 11 deg
           1-6 agree within 30-35 deg
            7,8 agree with each other withion 26 deg
```

9 is slightly similar to 3 (31 deg)

for p chains 1-6

relseq	meanfi	meanpsi	number	
0	-93(38)	157(21)	6	b
1	-120(16)	17(15)	6	k
2	-69(22)	48(98)	5	đ

for p chains 1 and 2

relseq	meanfi		meanp	si	number	-	
0	-72(4)	153(4)		2]
1	-138(3)	19(12)		2	k
2	-104(3)	-3 (12)		1	k

for p chains 7,8

	number	si	meanps		meanfi	relseq
b	2	34)	136(13)	-69 (0
а	2	2)	-30 (5)	-50(1
k	2	3)	-16(14)	-62(2

no similarity in local conformations in any of these groups

amino-acid sequences ****

start of selected part of cngroup relseq -10 -5 15 1 lvfy from 182 A: K F S L L N R K H H C R S C G G V F C O E H S 2 1f4l from 135 A: FLPDRFVKGTCPKCKSPDOYGDN 3 1zin from 120 : LMERLTGRRICRNCGATYHLIFH 1hxr from 84 A: KDVGNVKFLVCADCEIGPIGWHC 1qf8 from 127 A: I P G E A _ V K L Y C P K C _ D V Y T P K S S lvfy from 166 A: _ _ D W I D S D A C M I C S K K F S L L N R 1ptq from 234 : K V Y N Y M S P T F C D H C G S L L W G L V K lali from 127 A: RIHTGOKPFOCRICMRNFSRSDH 2occ from 72 F: FWLHKGEAORCPSCGTHYKLVPH 1hc7 from 448 A: PFEAEPEEGFCVRCGRPSAYGKR 1rmd from 51 : IRCIKVMGSYCPSCRYPCFPTDI 1j8f from 211 C: EKIFSEVTPKCEDCQSLVKPDIV 1ptg from 251 : LWGLVKOGLKCEDCGMNVHHKCR ldsz from 1125 A: _ _ _ _ _ P C F V C Q D K S S G Y H Y 1973 from 290 C: YALGEGDKVKCFHCGGGLTDWKP 1rmd from 16 : F P A H F V K S I S C Q I C E H I L A D P V E 1e71 from 13 A: OKFYDAONGKCLICORELNPDVO 1d09 from 128 B: R K R A N D I A L K C K Y C E K E F S H N V V 1zin from 140 : I F H P P A K P G V C D K C G G E L Y O R A D 1f4l from 148 A: C K S P D Q Y G D N C E V C G A T Y S P T E L 1ee8 from 228 A: HAVYGREGLPCPACGRPVERRVV 1hxr from 13 A: A E G R N R K A V L C O R C G S R V L O P G T 1j8f from 211 A: EKIFSEVTPKCEDCOSLVKPDIV 1d0q from 51 A: SVSPEKOIFHCFGCGAGGNAFTF 1fn9 from 41 A: D M M V C G G A V V C M H C L G V V G S L O R ldsz from 1177 A: C I I N K V T R N R C Q Y C R L Q K C F E V G

27 1gpc from 77 : CSSTHGDYDSCPVCQYISKNDLY

lee8 from 248 A: R V V A G R G T H F C P T C Q G E G P _ _ _ _ 42 A: KOVLPAHDPDCFLCAGNVRVTGD 1dcq from 254 A: E V Q R M T G N D V C C D C G A P D P T W L S 1vfy from 212 A: D L G I Y E P V R V C D S C F E D Y E F I V T la5t from 52 : OPOGHKSCGHCRGCOLMOAGTHP 1zme from 40 C: RHIKCPGGNPCQKCVTSNAICEY 1971 from 104 A: K R C N H E P G T V C P I C L E D A K E L A K 1ctt from 119 : LAAITVNYTPCGHCROFMNELNS ldsz from 1142 A: S S G Y H Y G V S A C E G C K G F F R R S I O 1dcg from 274 A: W L S T N L G I L T C I E C S G I H R E L G V 48 A: PKAGKVRGLLCNLCDAAEGOMKH 1e71 from 1pud from 310 : D L K P L D S E C H C A V C O K W S R A Y I H 54 C: _ _ _ R I P L S C T I C R K R K V K C D K 1hwt from 71 C: K V K C D K L R P H C O O C T K T G V A H L C 1hwt from 89 A: A V E P G V P C R R C O F C K E G K Y N L C P 1e3i from 90 A: I P L F T P O C G K C R V C K H P E G N F C L 1het from 1i3j from 154 A: GVRIOTSAYTCSKCRNRSGENNS 24 C: _ _ _ _ S V A C L S C R K R H I K C P G 1zme from 1rmd from 36 : PVETSCKHLFCRICILRCLKVMG 1a8h from 117 : IYYGEYEGLYCVSCERFYTEKEL 1e3j from 86 A: DRVAVEPGVPCRRCOFCKEGKYN 1het from 87 A: DKVIPLFTPOCGKCRVCKHPEGN 49 : LCQQPQGHKSCGHCRGCQLMQAG 1a5t from

aa types - acidic, etc **

relseq -10 -5 0 5 10

1 1vfy from 182 A: b h s h h p b b p p h b s h g g h h h p a p s

2 1f41 from 135 A: h h h a b h b g s h h b h b s h a p h g a p

3 1zin from 120 : h h a b h s g b b h h b p h g s s h p h h h p h

4 1hxr from 84 A: b a h g p h b h h h h s a h a h g h h g h p h

5 1qf8 from 127 A: h h g a s h h h h h b h a h h s h b s s

6 1vfy from 166 A: _ _ _ a h h a s a s h h h h s b b h s h h p b

15

```
lali from 127 A: bhpsqpbhhphbhhbbphsbsap
2occ from 72 F: hhhpbqaspbhhshqsphbhhpp
1hc7 from 448 A: hhasahaaghhhbbhgbhsshgbb
       51: hbhhbhhqshhhshbhhhhsah
1 i8f from 211 C: abhhsahshbhaahpshhbhahh
1ptq from 251: hhghhbpghbhaahghphppbhb
ldsz from 1125 A: _ _ _ _ _ h h h h h p a b s s g h p h
1973 from 290 C: h s h g a g a b h b h h p h g g g h s a h b h
1rmd from 16: hhsphhbshshphhaphhsahha
1e71 from 13 A: p b h h a s p p g b h h h h p b a h p h a h p
1d09 from 128 B: b b b s p a h s h b h b h h a b a h s p p h h
1zin from 140 : hhphhsbhqhhabhqqahhpbsa
1f4l from 148 A: hbshaphqaphahhqsshshsah
lee8 from 228 A: pshhqbaqhhhhshqbhhabbhh
       13 A: sagbpbbshhhpbhgsbhhphgs
1hxr from
1j8f from 211 A: a b h h s a h s h b h a a h p s h h b h a h h
1d0g from
       51 A: shshabphhphhqhqsqqpshsh
1fn9 from 41 A: a h h h h g g s h h h h p h h g h h g s h p b
ldsz from 1177 A: hhhpbhsbpbhphhbhpbhhahq
1gpc from 77: hssspgahashhhhphhsbpahh
lee8 from 248 A: bhhsgbgsphhhshpgagh____
1quq from
      42 A: bphhhspahahhhhsgphbhsga
1dcq from 254 A: ahpbhsqpahhhahqshahshhs
lvfy from 212 A: ahqhhahhbhhashhaahahhhs
la5t from
       52: phpgpbshgphbghphhpsgsph
1zme from
       40 C: bphbhhqqphhpbhhsspshhah
1g71 from 104 A: b b h p p a h g s h h h h h a a s b a h s b
1ctt from 119: hsshshphshhgphbphhpahps
ldsz from 1142 A: ssghphghsshaghbghhbbshp
1dcq from 274 A: hhssphghhshhahsghpbahgh
1e7l from 48 A: hbsgbhbghhhphhassagphbp
1pud from 310 : ahbhhasahphshhpbhsbshhp
1hwt from 54 C: _ _ _ _ b h h h s h s h h b b b h b h a b
```

41	1hwt	from	71	C:	b	h	b	h	а	b	h	b	h	р	h	р	р	h	s	b	s	g	h	s	р	h	h
42	1e3j	from	89	A:	s	h	а	h	g	h	h	h	b	b	h	р	h	h	b	a	g	b	h	р	h	h	h
43	1het	from	90	A:	h	h	h	h	s	h	р	h	g	b	h	b	h	h	b	р	h	а	g	р	h	h	h
44	1i3j	from	154	A:	g	h	b	h	р	s	s	s	h	s	h	s	b	h	b	р	b	s	g	а	р	р	s
45	1zme	from	24	C:	-	-	-	_	-	-	-	s	h	s	h	h	s	h	b	b	b	р	h	b	h	h	g
46	1rmd	from	36	:	h	h	a	s	s	h	b	р	h	h	h	b	h	h	h	h	b	h	h	b	h	h	g
47	1a8h	from	117	:	h	h	h	g	а	h	а	g	h	h	h	h	s	h	а	b	h	h	s	a	b	а	h
48	1e3j	from	86	A:	а	b	h	s	h	а	h	g	h	h	h	b	b	h	р	h	h	b	а	g	b	h	р
49	1het	from	87	A:	а	b	h	h	h	h	h	s	h	р	h	g	b	h	b	h	h	b	р	h	а	g	р
50	1a5t	from	49	:	h	h	р	р	h	р	g	р	b	s	h	g	р	h	b	g	h	р	h	h	р	s	g

15

conformation sequences **

	relsec	A			-1	.0					-5						0					5	i				10
1	1vfy	from	182	Α:	b	b	b	a	k	b	b	b	b	b	b	k	a	k	g	b	b	b	b	a	a	k	d
2	1f41	from	135	Α:	b	b	b	a	k	k	b	b		b	b	a	a	k	g	b	b	g	b	b	j	k	b
3	1zin	from	120	:	а	a	а	a	а	а	k	b	b	b	b	a	a	k	g	b	b	b	b	a	а	а	
4	1hxr	from	84	Α:	b	b	b	g	g	b	b	b	b	b	b	a	a	k	g	b		b	k		b	b	b
5	1qf8	from	127	A:	b	b	g	а				b	b	b	b	а	а				b	b	b	b	а	b	k
6	1vfy	from	166	A:					b	b	b		k	b	b	k	а	k	g	b	b	b	b	а	k	b	b
7	1ptq	from	234	:	b	b	b	b	b	k	b	b	b	b	b	k	a	k	g	b	b	b	b	j	а	b	g
8	1a1i	from	127	A:	а	а	а	k	g	b	b	k	b	b	b	k	а	k	g	b	b	b	а	b	а	а	a
9	2occ	from	72	F:		b	b	b	b		b	b	b	b	b	a	a	k	g	b	b	b	b	b	b	b	b
10	1hc7	from	448	Α:	b	a	b		b	b	b	b		b	b	a	a	k	g	b	b	b	b	g	g		b
11	1rmd	from	51	:	a	a	a	a	a	a	a	j	d	b	b	a	a	k	g	b	b	b	b	a	k	k	b
12	1j8f	from	211	C:	a	a	a	k	k	g	b	b	b	b	b	k	a	k	g	b	b	b	b	b	d	b	b
13	1ptq	from	251	:	b	b	j	а	b	g	а		b	b	b	a	а	k	g	b	b	b	b	a	k	k	a
14	1dsz	from	1125	Α:											b	a	a	k	g	b	b	b	k	j	b	b	g
15	1g73	from	290	C:	b	b	k	g	b	j	k	b	b	b	b	a	a	k	g	b	b	b	b	g	b	b	a
16	1rmd	from	16	:	b	b	a	a	a	a	a	a	k	b	b	k	a	k	g	b	b	b	b	g	b	b	b
17	1e71	from	13	Α:	а	а	а	а	а	а	k	g	g	b	b	а	а	k	g	b	b	b	b	k	b	а	k
18	1d09	from	128	в:	b	b	a		a	b	b	b	b	b	b	а	a	k	g	b	b	b	b	k	a	a	b
19	1zin	from	140	:	а	a		b	b	a	b	b	g	b	b	a	a	k	g	b	b	b	b	b	b	a	k
20	1f41	from	148	Α:	k	g	b	b	g	b	b	j	k	b	b	k	а	k	g	b	b		b	k	k	k	b

21	lee8	from	228	Α:	b	a		b	g	k	b	g	b	b	b	k	a	k	g	b	b	b	b	b	b	b	b
22	1hxr	from	13	A:	а	k	g	b	b	а	b	b	b	b	b	k	а	k	g	b	b	а	b	b	b	g	k
23	1j8f	from	211	Α:	a	a	a	a	k	g	b	b	b	b	b	k	a	k	g	b	b	b	b	b	d	b	b
24	1d0q	from	51	A:	b	b	b	а	а	k	g	b	b		b	k	k		g	b		j	b	а	а	a	a
25	1fn9	from	41	A :	a	b	b	b	b		k	b	b	b	b	k	k	k	g	b	b	k		b	а	a	k
26	1dsz	from	1177	Α:	b	b	b	b	a	k	k	a	k	a	b	a	a	a	a	a	a	a	a	а	a	k	g
27	1gpc	from	77	:	b	k	а	k	d	g	d	а	a	k	b	а	a	a	a	а	a	a	a	k	g	а	a
28	1ee8	from	248	Α:	b	b	b	g	g		b	b	b		b	a	a	a	d	g							
29	1guq	from	42	A :	b	a	b	b	b	k	b	b	a	a	b	k	k	b	b	g	b	b	b	а	k	g	b
30	1dcq	from	254	Α:	a	а	a	k	b	b	g	k	k	b	b	a	k	k	g	b	b	g	b	k	b	b	b
31	1vfy	from	212	Α:	k	k	g	b	k	b	b	b	b	b	b	a	a	a	a	a	a	а	а	a	a	a	k
32	1a5t	from	52	:	d	b	b		k	b	b	a	g	a	b	a	a	a	a	a	a	a	a	g	k	b	k
33	1zme	from	40	C:	k	g	b	b	b	k	j	j		b	b	a	а	a	a	a	k	g	b	b	b	b	b
34	1g71	from	104	Α:	b	a	b	d	b	b	b	g	b	b	b	a	a	a	a	a	a	а	a	a	a	a	a
35	1ctt	from	119	:	b	а		b	b	b	k	b	b	b	b	а	а	a	a	a	a	a	k	a	b	k	k
36	ldsz	from	1142	A:	b	k	j	b	b	g	g		b	b	b	a	a	a	a	a	a	a		a	a	a	a
36 37		from from	1142 274									b											a			a j	
	1dcq			A:	b	b	b	a	k	k	g	b b	b	b	b	a	a	а	a	a	a	а	a a	a	a		a
37	1dcq 1e71	from	274	A:	b a	b k	b b	a g	k b	k b	g a	b b	b b	b b	b b	a a	a a	a a	a a	a a	a a	a a	a a a	a a	a a	j	a a
37 38	1dcq 1e71 1pud	from	274 48 310	A: A: :	b a b	b k k	b b b	a g b	k b a	k b b	g a k	b b k	b b b	b b k	b b b	a a a	a a a	a a k	a a k	a a a	a a b	a a b	a a a	a a a	a a a	j a	a a a
37 38 39	1dcq 1e71 1pud 1hwt	from from	274 48 310	A: :	b a b	b k k	b b b	a g b	k b a	k b b	g a k b	b b k b	b b b	b b k b	b b b	a a a	a a a	a a k a	a a k a	a a a	a a b a	a a b	a a a a b	a a a b	a a a b	j a a	a a a g
37 38 39 40	1dcq 1e71 1pud 1hwt 1hwt	from from from from	274 48 310 54	A: A: : C:	b a b	b k k	b b c b	a g b	k b a k	k b	g a k b	b b k b	b b b k	b b k b	b b b b	a a a a	a a a a	a a k a	a a k a	a a a a	a a b a	a a b g	a a a b k	a a a b	a a a b	j a a k	a a a g b
37 38 39 40 41	1dcq 1e71 1pud 1hwt 1hwt	from from from from	274 48 310 54 71	A:	b a b	b k k	b b c	a g b . b	k b a k	k b g	g a k b b	b b k b	b b k a	b b k b	b b b b b	a a a a a	a a a a a	a a k a a	a a k a a	a a a a	a a b a k	a a b g d	a a a a b k a	a a b a	a a b k	j a a k k	a a a g b
37 38 39 40 41 42	1dcq 1e71 1pud 1hwt 1hwt 1e3j 1het	from from from from from	274 48 310 54 71 89	A:	b a b g b	b k k b b b	b b b b b	a g b . b k a	k b a k b	k b g b	g a k b b	b b k b a a	b b k a g	b k b k k	b b b b b b	a a a a a a	a a a a a	a a k a a a	a a k a a k	a a a a k b	a a b a k	a a b g g d a	a a a b k a b	a a b a k	a a b k k	j a a k k	a a a g b a
37 38 39 40 41 42 43	1dcq 1e71 1pud 1hwt 1hwt 1e3j 1het	from from from from from from	274 48 310 54 71 89 90 154	A:	b a b b b g	b k k b b b	b b b b b b	a g b . b k a b	k b a k b b b	k b g b b	g a k b b b k	b k b a a b	b b k a g	b b k b k b	b b b b b b b	a a a a a a	a a a a a a	a a k a a a k	a a k a a k b	a a a a k b	a a b a k g a k	a a b g g d a b	a a a b k a b .	a a a b a k k	a a b k d d	j a a k k b	a a a g b a k
37 38 39 40 41 42 43 44	1dcq 1e71 1pud 1hwt 1hwt 1e3j 1het 1i3j 1zme	from from from from from from from	274 48 310 54 71 89 90 154	A:	b a b c g b b g .	b k k · b b · ·	b b b b b b b	a g b b k a b	k b a k b b	k b c g b k .	g a k b b b c k .	b k b a a b	b b k a g a b	b k b k b b k b	b b b b b b b b b	a a a a a a a	a a a a a a a	a a k a a a k	a a k a a a k	a a a a k b	a a b a k g a k	a a b g d a b g	a a a a b k a b . b	a a b a k k k	a a a b k d k	j a a k b b	a a a g b a k
37 38 39 40 41 42 43 44	1dcq 1e71 1pud 1hwt 1hwt 1e3j 1het 1i3j 1zme 1rmd	from from from from from from from from	274 48 310 54 71 89 90 154 24	A:	b a b b g c b	b k k b b b b b	b b b b b b b	a g b . b k a b . b	k b a k b b c a	k b b k	g a k b b b k . g	b k b a a b	b b k a g a b	b k b k b k b b k b	b b b b b b b b b b b	a a a a a a a a	a a a a a a a a	aakaaakaa	a a k a a k b a a	a a a a k b b a a	a a b a k g a k a	a a b g g d a b g a	a a a a b k a b . b a	a a a b a k k b a	a a a b k d d k b a	j a a k b b	a a a g b a k k
37 38 39 40 41 42 43 44 45	1dcq 1e71 1pud 1hwt 1hwt 1e3j 1het 1i3j 1zme 1rmd 1a8h	from from from from from from from from	274 48 310 54 71 89 90 154 24	A:	b a b b b b b	b k k b b b b b	b b b b b b b	a g b b k a b b	k b a · k b b · a b	k b b k k	g a k b b b b	b b c k b a a b c b	b b k a g a b b	b k b k b b k b b b	b b b b b b b	a a a a a a a a a	a a a a a a a a	a a a a a k a a	aa kaaa kbaa	aaaakb baa	a a b a k g a k k	a a b g g d a b g a b	a	aaabakk kba	aaabkkdkbaa	j a a k b b	a a g b a k t b
37 38 39 40 41 42 43 44 45 46 47	1dcq 1e7l 1pud 1hwt 1hwt 1e3j 1het 1i3j 1zme 1rmd 1a8h 1e3j	from from from from from from from from	274 48 310 54 71 89 90 154 24 36 117	A:	b a b b b b	b k k · b b b b b	b b b b b b b b	a g b b k a b b b	k b a k b b c a b	k b b . g b b k . k b	g a k b b b k . g b k	b b k b a a b b	b b k a g g a b b b	b k b k b k b b b b	b b b b b b a	a a a a a a a a a g	a a a a a a a a k	aakaaakaab	aakaakbaaga	a a a a k b b a a b	a a b a k g a k k a b a	a a b g g d a b g a b a	a a a b k a b · b a b k	a a a b a k k b a a g	aaabkkdkbaad	j a a k b b b a a	a a a b a k j b k

******* protein names (pdb header) ******

1 1vfy at 192 A 1.15 TRANSPORT PROTEIN

2	1f41	at	145 A	1.85	HYDROLASE
3	1zin	at	130	1.6	PHOSPHOTRANSFERASE
4	1hxr	at	94 A	1.65	METAL BINDING PROTEIN
5	1qf8	at	137 A	1.74	TRANSFERASE
6	1vfy	at	176 A	1.15	TRANSPORT PROTEIN
7	1ptq	at	244	1.95	PHOSPHOTRANSFERASE
8	lali	at	137 A	1.6	COMPLEX (ZINC FINGER/DNA)
9	2occ	at	82 F	2.3	OXIDOREDUCTASE
10	1hc7	at	458 A	2.43	AMINOACYL-TRNA SYNTHETASE
11	1rmd	at	61	2.1	DNA-BINDING PROTEIN
12	1j8f	at	221 C	1.70	GENE REGULATION, TRANSFERASE
13	1ptq	at	261	1.95	PHOSPHOTRANSFERASE
14	1dsz	at	1135 A	1.70	TRANSCRIPTION/DNA
15	1g73	at	300 C	2.00	APOPTOSIS/APOPTOSIS INHIBITOR
16	1rmd	at	26	2.1	DNA-BINDING PROTEIN
17	1e71	at	23 A	1.32	ENDONUCLEASE
18	1d09	at	138 В	2.10	TRANSFERASE
19	1zin	at	150	1.6	PHOSPHOTRANSFERASE
20	1f41	at	158 A	1.85	HYDROLASE
21	1ee8	at	238 A	1.90	DNA BINDING PROTEIN
22	1hxr	at	23 A	1.65	METAL BINDING PROTEIN
23	1j8f	at	221 A	1.70	GENE REGULATION, TRANSFERASE
24	1d0q	at	61 A	1.71	TRANSFERASE
25	1fn9	at	51 A	1.80	VIRUS/VIRAL PROTEIN
26	1dsz	at	1187 A	1.70	TRANSCRIPTION/DNA
27	1gpc	at	87	2.2	DNA BINDING PROTEIN
28	1ee8	at	258 A	1.90	DNA BINDING PROTEIN
29	1guq	at	52 A	1.8	NUCLEOTIDYLTRANSFERASE
30	1dcq	at	264 A	2.10	METAL BINDING PROTEIN
31	1vfy	at	222 A	1.15	TRANSPORT PROTEIN
32	1a5t	at	62	2.2	ZINC FINGER
33	1zme	at	50 C	2.5	COMPLEX (TRANSCRIPTION REGULATION/DN
34	1g71	at	114 A	2.30	REPLICATION

35	1ctt at	129	2.2	HYDROLASE													
36	ldsz at	1152 A	1.70	TRANSCI	RIPTION/D	NA											
37	1dcq at	284 A	2.10	METAL	BINDING	PROTEIN											
38	1e7l at	58 A	1.32	ENDONU	JCLEASE												
39	1pud at	320	1.85	TRANSF	ERASE												
40	1hwt at	64 C	2.5	COMPLI	EX (ACTIV	ATOR/DNA)											
41	1hwt at	81 C	2.5	COMPLI	EX (ACTIV	ATOR/DNA)											
42	1e3j at	99 A	2.3	OXIDO	REDUCTASE												
43	1het at	100 A	1.15	OXIDOR	EDUCTASE												
44	li3j at	164 A	2.2	HYDROI	ASE/DNA												
45	1zme at	34 C	2.5	COMPL	COMPLEX (TRANSCRIPTION REGULATION/DN												
46	1rmd at	46	2.1	DNA-B	DNA-BINDING PROTEIN												
47	la8h at	127	2.0	AMINO	AMINOACYL-TRNA SYNTHETASE												
48	1e3j at	96 A	2.3	OXIDO	REDUCTASE												
49	1het at	97 A	1.15	OXIDOR	REDUCTASE												
50	la5t at	59	2.2	ZINC	FINGER												
**	*****	cngps	******	*													
1	1 CCCC	Zn	3 27	3 -1	-1 -1	-1	4 lvfy	0 0.1 1.1	ZN	300 CYSA 192	-						
2	1 CCCC	Zn	3 10	3 -1	-1 -1	-1	4 1f4l	0 0.3 1.9	ZN	701 CYSA 145	-	6.					
3	1 CCCC	Zn	3 17	3 -1	-1 -1	-1	4 1zin	0 0.1 1.6	ZN	219 CYS 130		2.					
4	3 CCCC	Zn	3 68	3 -1	-1 -1	-1	4 1hxr	0 0.1 1.6	ZN	200 CYSA 23							
5	3 CCCC	Zn	5 23	3 -1	-1 -1	-1	4 1qf8	0 0.1 1.7	ZN	216 CYSA 109		2.					
6	1 CCCH	Zn	3 21	3 -1	-1 -1	-1d	4 lvfy	0 0.1 1.1	ZN	301 CYSA 176							
7	1 CCCII						2	0 0.1 1.1									
		Zn	3 22	3 -1	-1 -1	-1d.	4 1ptq	0 0.3 2.0	ZN	2 CYS 244	1	2.					
8	1 CCHC			3 -1 4 -1	-1 -1 -1 -1		_			2 CYS 244 202 CYSA 137	I	2.					
8	1 CCHC 1 CCHH	Zn	3 22			-1d.	4 1ptq	0 0.3 2.0	ZN		 	2.					
	1 CCHC 1 CCHH 3 CCCC	Zn Zn	3 22 3 13	4 -1	-1 -1	-1d.	4 lptq 4 lali	0 0.3 2.0 0 0.1 1.6	ZN ZN	202 CYSA 137	 						
9	1 CCHC 1 CCHH 3 CCCC	Zn Zn Zn	3 22 3 13 2 20	4 -1 3 -1	-1 -1 -1 -1	-1d. -1ee -1	4 1ptq 4 1a1i 4 2occ	0 0.3 2.0 0 0.1 1.6 0 0.1 2.3	ZN ZN ZN	202 CYSA 137 99 CYSF 60		1.					

Zn 5 21 3 -1 -1 -1 -1 4 1j8f 0 0.1 1.7 ZN 3001 CYSC 195

Zn 30 3 16 -1 -1 -1 d... 4 lptq 0 0.3 2.0 ZN 1 HIS 231

Zn 3 14 3 -1 -1 -1 -1 4 1dsz 0 0.1 1.7 ZN 1121 CYSA1135

Zn 3 17 7 -1 -1 -1 -1 ..e. 4 1g73 0 0.2 2.0 ZN 501 CYSC 300

12 3 CCCC

13 2 HCCC

14 1 CCCC 15 1 CCHC

16 1	CCCC	Zn	3	17	3	-1	-1	-1	-1	4 1rmd	0 0.1 2.1	ZN	118 CYS	26	1		
17 1	CCCC	Zn	3	32	3	-1	-1	-1	-1	4 1e71	0 0.1 1.3	ZN	1165 CYSA 2	23			3.
18 3	CCCC	Zn	5	24	3	-1	-1	-1	-1	4 1d09	0 0.1 2.1	ZN	1313 CYSB 10	9			2.
19 3	CCCC	Zn	3	17	3	-1	-1	-1	-1	4 1zin	0 0.1 1.6	ZN	219 CYS 1	30	1		2.
20 3	CCCC	Zn	3	10	3	-1	-1	-1	-1	4 1f41	0 0.3 1.9	ZN	701 CYSA 14	15			6.
21 1	CCCC	Zn	3	17	3	-1	-1	-1	-1	4 1ee8	0 0.1 1.9	ZN	501 CYSA 23	88			
22 1	CCCC	Zn	3	68	3	-1	-1	-1	-1	4 1hxr	0 0.1 1.6	ZN	200 CYSA	23	1		
23 3	CCCC	Zn	5	21	3	-1	-1	-1	-1	4 1j8f	0 0.1 1.7	ZN	1001 CYSA 19	5			
24 3	CHCC	Zn	3	18	3	-1	-1	-1	-1 .d	4 1d0q	0 0.2 1.7	ZN	151 CYSA	40	-		2.
25 1	CCHC	Zn	3	17	2	-1	-1	-1	-1e.	4 1fn9	0 0.2 1.8	ZN	1001 CYSA 5	51			
26 3	cccc	Zn	6	10	3	-1	-1	-1	-1	4 ldsz	0 0.1 1.7	ZN	1122 CYSA117	1			
27 3	HCCC	Zn	13	10	3	-1	-1	-1	-1 e	4 1gpc	0 0.4 2.2	ZN	1 HIS	64			
28 3	cccc	Zn	3	17	3	-1	-1	-1	-1	4 lee8	0 0.1 1.9	ZN	501 CYSA 23	88			
29 1	ССНН	Zn	3	60	49	-1	-1	-1	-1dd	4 1guq	0 0.1 1.8	ZN	350 CYSA S	52			2.
30 1	cccc	Zn	3	17	3	-1	-1	-1	-1	4 ldcq	0 0.1 2.1	ZN	600 CYSA 26	54			
31 3	cccc	Zn	3	27	3	-1	-1	-1	-1	4 lvfy	0 0.1 1.1	ZN	300 CYSA 19	2			
32 3	CCCC	Zn	9	3	3	-1	-1	-1	-1	4 1a5t	0 0.1 2.2	ZN	501 CYS	50			2.
33 2	CCCC	Zn	16	3	7	-1	-1	-1	-1	5 1zme	0 0.4 2.5	ZN	2 CYSC	34	-	J	
34 3	CHCC	Zn	2	6	3	-1	-1	-1	-1 .e		0 0 0 0 0						
	CIICC	211				_	_			4 1g71	0 0.2 2.3	ZN	339 CYSA 1	06			
35 2	HCC	Zn	27	3	-1	-1	-1	-1	-1 d	4 1g71 4 1ctt	0 0.2 2.3	ZN		06		Z	3.
35 2 36 3												ZN		02		Z	3.
	HCC	Zn	27	3	-1	-1	-1	-1	-1 d	4 lctt	0 0.2 2.2	ZN	296 HIS 1	02	 	Z	3.
36 3	нсс	Zn Zn	27 3	3 14	-1 3	-1 -1	-1 -1	-1 -1	-1 d	4 lctt 4 ldsz	0 0.2 2.2 0 0.1 1.7	ZN ZN ZN	296 HIS 1 1121 CYSA113 600 CYSA 26	02	 	z	3.
36 3 37 3	нсс сссс	Zn Zn Zn	27 3 3	3 14 17	-1 3 3	-1 -1 -1	-1 -1 -1	-1 -1 -1	-1 d -1	4 1ctt 4 1dsz 4 1dcq	0 0.2 2.2 0 0.1 1.7 0 0.1 2.1	ZN ZN ZN	296 HIS 1 1121 CYSA113 600 CYSA 26 1165 CYSA 2	02 5 54	 	z	
36 3 37 3 38 3	HCC CCCC CCCC	Zn Zn Zn Zn	27 3 3 3	3 14 17 32	-1 3 3 3	-1 -1 -1	-1 -1 -1	-1 -1 -1 -1	-1 d -1 -1	4 lctt 4 ldsz 4 ldcq 4 le71	0 0.2 2.2 0 0.1 1.7 0 0.1 2.1 0 0.1 1.3	ZN ZN ZN ZN	296 HIS 1 1121 CYSA113 600 CYSA 26 1165 CYSA 2	02 5 64		Z	3.
36 3 37 3 38 3 39 2	HCC CCCC CCCC CCCC	Zn Zn Zn Zn Zn	27 3 3 3 2	3 14 17 32 3	-1 3 3 3 26	-1 -1 -1 -1	-1 -1 -1 -1	-1 -1 -1 -1	-1 d111	4 1ctt 4 1dsz 4 1dcq 4 1e71 4 1pud	0 0.2 2.2 0 0.1 1.7 0 0.1 2.1 0 0.1 1.3 0 0.1 1.9	ZN ZN ZN ZN ZN	296 HIS 1 1121 CYSA113 600 CYSA 26 1165 CYSA 2 400 CYS 3	02 5 64 18			3.
36 3 37 3 38 3 39 2 40 1	HCC CCCC CCCC CCCH CCCC	Zn Zn Zn Zn Zn	27 3 3 3 2 3	3 14 17 32 3	-1 3 3 3 26 7	-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	-1 d11111	4 1ctt 4 1dsz 4 1dcq 4 1e71 4 1pud 5 1hwt 5 1hwt	0 0.2 2.2 0 0.1 1.7 0 0.1 2.1 0 0.1 1.3 0 0.1 1.9 0 0.3 2.5	ZN ZN ZN ZN ZN ZN ZN	296 HIS 1 1121 CYSA113 600 CYSA 26 1165 CYSA 2 400 CYS 3 1 CYSC 2 CYSC	02 5 64		J	3.
36 3 37 3 38 3 39 2 40 1 41 2	HCC CCCC CCCC CCCC CCCC	Zn Zn Zn Zn Zn Zn Zn Zn Zn	27 3 3 3 2 3 17	3 14 17 32 3 7	-1 3 3 3 26 7 9	-1 -1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1	-1 d111111	4 1ctt 4 1dsz 4 1dcq 4 1e71 4 1pud 5 1hwt 5 1hwt 4 1e3j	0 0.2 2.2 0 0.1 1.7 0 0.1 2.1 0 0.1 1.3 0 0.1 1.9 0 0.3 2.5 0 0.3 2.5	ZN ZN ZN ZN ZN ZN ZN ZN ZN	296 HIS 1 1121 CYSA113 600 CYSA 26 1165 CYSA 2 400 CYS 3 1 CYSC 2 CYSC	02 5 64 64 96		J	3.
36 3 37 3 38 3 39 2 40 1 41 2 42 2	HCC CCCC CCCC CCCC CCCC CCCC	Zn	27 3 3 2 3 17 3	3 14 17 32 3 7 3	-1 3 3 3 26 7 9	-1 -1 -1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1	-1 d111111	4 1ctt 4 1dsz 4 1dcq 4 1e71 4 1pud 5 1hwt 5 1hwt 4 1e3j 4 1het	0 0.2 2.2 0 0.1 1.7 0 0.1 2.1 0 0.1 1.3 0 0.1 1.9 0 0.3 2.5 0 0.3 2.5 0 0.2 2.3	ZN ZN ZN ZN ZN ZN ZN ZN ZN	296 HIS 1 1121 CYSA113 600 CYSA 26 1165 CYSA 2 400 CYS 3 1 CYSC 2 CYSC 901 CYSA	02 5 34 18 64 96		J	3.
36 3 37 3 38 3 39 2 40 1 41 2 42 2 43 2	HCC CCCC CCCC CCCC CCCC CCCC CCCC	Zn	27 3 3 3 2 3 17 3	3 14 17 32 3 7 3 3	-1 3 3 3 26 7 9 8	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-1 d1111111	4 lctt 4 ldsz 4 ldcq 4 le7l 4 lpud 5 lhwt 5 lhwt 4 le3j 4 lhet 4 li3j	0 0.2 2.2 0 0.1 1.7 0 0.1 2.1 0 0.1 1.3 0 0.1 1.9 0 0.3 2.5 0 0.3 2.5 0 0.2 2.3 0 0.2 1.1	ZN	296 HIS 1 1121 CYSA113 600 CYSA 26 1165 CYSA 2 400 CYS 3 1 CYSC 2 CYSC 901 CYSA 401 CYSA 100 CYSA 15	02 5 34 18 64 96		J	3. 2.
36 3 37 3 38 3 39 2 40 1 41 2 42 2 43 2 44 3	HCC CCCC CCCC CCCH CCCC CCCC CCCC CCCC	Zn	27 3 3 2 3 17 3 3	3 14 17 32 3 7 3 3 11	-1 3 3 3 26 7 9 8 8	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-1 d11111111	4 1ctt 4 1dsz 4 1dcq 4 1e71 4 1pud 5 1hwt 5 1hwt 4 1e3j 4 1het 4 1i3j 5 1zme	0 0.2 2.2 0 0.1 1.7 0 0.1 2.1 0 0.1 1.3 0 0.1 1.9 0 0.3 2.5 0 0.3 2.5 0 0.2 2.3 0 0.2 1.1 0 0.1 2.2	ZN	296 HIS 1 1121 CYSA113 600 CYSA 26 1165 CYSA 2 400 CYS 3 1 CYSC 2 CYSC 901 CYSA 401 CYSA 100 CYSA 19	02 5 64 64 96 97		J	3. 2.
36 3 37 3 38 3 39 2 40 1 41 2 42 2 43 2 44 3 45 1	HCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC	Zn Z	27 3 3 2 3 17 3 2 3 2 3	3 14 17 32 3 7 3 3 11 7	-1 3 3 3 26 7 9 8 8 3 6	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-1 d111111111	4 1ctt 4 1dsz 4 1dcq 4 1e71 4 1pud 5 1hwt 5 1hwt 4 1e3j 4 1het 4 1i3j 5 1zme 4 1rmd	0 0.2 2.2 0 0.1 1.7 0 0.1 2.1 0 0.1 1.3 0 0.1 1.9 0 0.3 2.5 0 0.3 2.5 0 0.2 2.3 0 0.2 1.1 0 0.1 2.2 0 0.4 2.5	ZN Z	296 HIS 1 1121 CYSA113 600 CYSA 26 1165 CYSA 2 400 CYS 3 1 CYSC 2 CYSC 901 CYSA 401 CYSA 100 CYSA 19 1 CYSC	02 5 64 64 96 97 31		J	3. 2.

49 1	CCCC	Zn	3	3	8	-1	-1	-1	-1	4 1het	0 0.2 1.1	ZN	401 CYSA	97	1	1.
50 2	CCCC	Zn	9	3	3	-1	-1	-1	-1	4 1a5t	0 0.1 2.2	ZN	501 CYS	50		2.

3 cngps of lile removed, because of doubts about the structure determination accuracy

p chains 48,49 are very similar, and 50 close, over loop phi 1-3, psi 0-2

relseq	meanfi	meanpsi	number	
0	-73(4)	-27(6)	3	a
1	77(7)	7(7)	3	g
2	-128(8)	-21(21)	3	a
3	-73(20)	171(8)	3	b

entirely different from others

p chains 1-47 are failry close over loop phi 1-3, psi 0-2

relseq	meanfi	meanpsi	number	
0	-77(23)	139(19)	47	b
1	-63(9)	-25(12)	47	a
2	-80(15)	-45(13)	47	a
3	-91(26)	-13(29)	46	k

but within this there are subgroups

p chains 1-14

relseq	meanfi	meanpsi	number	
0	-69(14)	126(4)	14	b
1	-64(6)	-20(6)	14	a
2	-88(7)	-50(6)	14	a
3	-109(10)	-4(4)	13	k

local confs similar (17 deg) for relseq-1 to 5, not outside this

p chains 31-46

relseq	meanfi	meanpsi	number	
0	-76(21)	163(10)	16	b

1	-58(8)	-34(5)	16
2	-64(5)	-45(6)	16
3	-68(6)	-31(11)	16

no similarity in local conformations

Zn C C 5

amino-acid sequences **** start of selected part of cngroup -10 -5 0 5 10 15 relsea 1 4mt2 from 14 : SCAGSCKCKOCKCTSCKKSCCSCCP 2 1j8f from 185 A: E A H G T F Y T S H C V S A S C R H E Y P L S W M 3 1gf8 from 99 A: EKYOOGDFGYCPRVYCENOP LPIG 4 lali from 97 A: RPYACPVESCDRRFSRSAD 1d09 from 99 B: LPERIDNVLVCPNSNCISHAEPVSS 4mt2 from 9 : TDGSCSCAGSCKCKOCKCTSCKKSC 1hc7 from 417 A: V O E G F A L A F H C G D K A C E R L I O E E T T 1a73 from 90 A: NGKTCTASHLCHNTRCHNPLHLCWE 1rmd from 81 : LNILNSLMVKCPAODCNEEVSLEKY 10 led5 from 86 A: L C A O S O O D G P C T P R R C L G S L V L P R K aa types - acidic, etc ** -5 -10 15 relseq 1 4mt2 from 14: shsqshbhbphbhsshbbshhshhh 2 1j8f from 185 A: aspgshhssphhssshbpahhhshh 3 1qf8 from 99 A: abhppgahghhhbhhhapph_hhhg lali from 97 A: _ _ _ _ b h h s h h h a s h a b b h s b s s a 99 B: hhabhaphhhhhpsphhspsahhss 9 : sagshshsgshbhbphbhsshbbsh 4mt2 from 7 1hc7 from 417 A: hpaghshshphgabshabhhpaass 8 1a73 from 90 A: pgbshsssphhppsbhpphhphha 1rmd from 81: hphhpshhhbhhspahpaahshabh 10 led5 from 86 A: hhspsppaghhshbbhhgshhhhbb conformation sequences ** relseq -10 -5 0 10 15 1 4mt2 from 14: daggkbkbadbkbkkbdbbkbkkbb

2 1j8f from 185 A: bakjbkabbbkbakagbbbbaaaa

3	1qf8	from	99	A:	a a	a a	a k	g a	k j	b k	k	b a	k k	g s	g b			b I	b b							
4	lali	from	97	A:					k b	b k	k	b a	k b	k l	b b	b	a b	a	аа							
5	1d09	from	99	в:	b b	k !	b b	b g	a b	b h	k	b a	k b	a a	a a	a	b d	b l	b b							
6	4mt2	from	9	:	d	k g	k b	d a	g s	j k	b k	b a	d l	o k	b k	s k	b d	l b	b k							
7	1hc7	from	417	A:	k a	a	. b 1	b b	b b	b a	g	b a	a a	a a	a a	a	a a	a k	g							
8	1a73	from	90	Α:	g g	j b	b b	b b	b b	k ł	g	b a	k b	k l	b k	k	k b	b 1	b b							
9	1rmd	from	81	:	a a	a a	a k	k b	b b	b l	o k	b b	g b	d	b b	b	b a	a	k a							
10	1ed5	from	86	A:	a a	. k]	c b l	k b	b b	k b	b	a a	b b	k a	a k	b	a d	b d	l a							
**	****	** p	rotein	ı nam	nes (pdb	head	er)	****	***																
1	4mt2	at	24	:	2.0		ME	TALL	OTHI	ONEI	N.															
2	1j8f	at	195 A	1	.70		GEN	E RE	GULA	TION	, T	RANSI	FERAS	E												
3	1qf8	at	109 A	1	.74		TRA	NSFE	RASE																	
4	lali	at	107 A	1	.6		CON	IPLEX	(Z)	NC :	FING	ER/D	NA)													
5	1d09	at	109 В	2	.10		TRA	NSFE	RASE																	
6	4mt2	at	19	:	2.0		ME	TALL	OTHI	ONEI	N.															
7	1hc7	at	427 A	2	.43		AMI	NOAC	YL-T	RNA	SYNT	HETA	SE													
8	1a73	at	100 A	1	. 8		CON	IPLEX	(НС	MINO	EN	DONU	CLEAS	SE/DI	NA)											
9	1rmd	at	91	:	2.1		DN	A-BI	NDIN	G PR	OTE	N														
10	1ed5	at	96 A	1	.80		OXI	DORE	DUCT.	ASE																
**	****	** c	ngps	***	****	****																				
1	3 CC	CC	Zn	4	į	5	5	-1	-1	-1	-1		. 4	4m	t2	0	0.2	2.0	ZI	N	67	CYS	1	5		
2	1 CC	CC	Zn	5	21	L	3 -	1	-1	-1	-1		. 4	1j8	3f	0	0.1	1.7	ZN	J 1	L001 C	CYSA	195			
3	1 CC	CC	Zn	5	23	3	3 -	-1	-1	-1	-1		. 4	1qf	8	0	0.1	1.7	ZN	1	216 0	CYSA	109			2.
4	1 CC	НН	Zn	5	13	3	4 -	-1	-1	-1	-1	e	e 4	1a1	Li	0	0.1	1.6	ZN	1	201 (CYSA	107			
5	1 CC	CC	Zn	5	24	ł	3 -	-1	-1	-1	-1		. 4	1d0)9	0	0.1	2.1	ZN	1 1	L313 C	CYSB	109			2.
6	2 CC	CC	Zn	4	į	5	5	-1	-1	-1	-1		. 4	4m	t2	0	0.2	2.0	Zl	N	67	CYS	1	5		
7	1 CC	CC	Zn	5	26	5	3 -	-1	-1	-1	-1		. 4	1hc	27	0	0.1	2.4	ZN	1	490 (CYSA	427			6.
8	2 CC	CH	Zn	59	5	5	5 -	-1	-1	-1	-1		i 4	la7	73	0	0.1	1.8	ZN	1	202 (CYSA	41			

9 1 CCHH Zn 5 12 4 -1 -1 -1 ..ee 4 1rmd 0 0.1 2.1 ZN 120 CYS 91

10 1 CCCC Zn 5 -99 5 -1 -1 -1 -1 4 led5 0 0.1 1.8 ZN 900 CYSA 96 | 1.

over loop (phi 1-5, psi 0-4)

p chains 1-4 are same within 17 deg

1-5 are same within 20 deg

7,8 are same within 22 deg but dif from above others all fairly different

for p chains 1-4 model lali at 107 A 1.6

relseq	meanfi	meanpsi	number	
0	-60(4)	133(5)	4	b
1	-80(8)	-8(5)	4	k
2	-70(5)	127(4)	4	b
3	-56(12)	-32(18)	4	a
4	-79(5)	-4(6)	4	k
5	-107(12)	135(118)	4	b

local conformations all fairly different (> 60 deg) and 5

for p chains 7 8

relseq	meanfi	meanpsi	number	
0	-79(22)	-15(14)	2	k
1	75(28)	22(14)	2	9
2	-106(17)	113(20)	2	b
3	-53(4)	-45(0)	2	ā
4	-62(6)	-33(19)	2	a
5	-65(4)	48(124)	2	d

local confs not similar

aı	amino-acid sequences ****																												
	start of selected part of cngroup																												
	relsec	I			-1	0					-5						0					5					10		15
1	1ptq	from	259	:	L	K	С	E	D	С	G	М	N	V	Н	Н	K	С	R	Е	K	V	A	N	L	С	_		
2	1g5c	from	77	A:	L	G	D	N	E	I	I	I	V	G	Н	Т	D	С	G	M	A	R	L	D	E	D	L		
3	1g5c	from	77	C:	L	G	D	N	E	I	I	I	V	G	Н	Т	D	С	G	M	A	R	L	D	E	D	L		
4	1g5c	from	77	E:	L	G	D	N	E	Ι	I	I	V	G	Н	Т	D	С	G	M	A	R	L	D	E	D	L		
5	1ekj	from	210	D:	L	K	V	S	N	Ι	V	V	I	G	Н	S	A	С	G	G	I	K	G	L	L	S	F		
a	aa types - acidic, etc **																												
	relsec	I			-1	0					-5						0					5					10		15
1	1ptq	from	259	:	h	b	h	а	а	h	g	h	р	h	р	р	b	h	b	а	b	h	s	р	h	h	-		
2	1g5c	from	77	Α:	h	g	а	р	а	h	h	h	h	g	р	s	а	h	g	h	s	b	h	а	а	а	h		
3	1g5c	from	77	C:	h	g	а	р	а	h	h	h	h	g	р	s	а	h	g	h	s	b	h	а	а	а	h		
4	1g5c	from	77	Ε:	h	g	а	р	а	h	h	h	h	g	р	s	а	h	g	h	s	b	h	а	а	а	h		
5	1ekj	from	210	D:	h	b	h	s	р	h	h	h	h	g	р	s	s	h	g	g	h	b	g	h	h	s	h		
C	onform	ation	seque	nce	3 *	*																							
	relsec	A			-1	.0					-5						0					5					10		15
1	1ptq	from	259	:	b	b	b	а	а	k	g	b	b	b	b	а	k	k	а	k	k	b	b	a	b	٠	•		
2	1g5c	from	77	Α:	k	g	b	k	b	b	b	b	b	b	b	b	g	а	g	k	d		b	d	а	а	a		
3	1g5c	from	77	C:	k	g	b	k	b	b	b	b	b	b	b	b	g	b	а	k	k	d	b	b	а	а	a		
4	1g5c	from	77	Ε:	k	g	b	k	b	b	b	b	b	b	b	b	g	b		b	b	a	а	b	а	а	a		
5	1ekj	from	210	D:	k	g	b	k	b	b	b	b	b	b	b	b	g	b	а	а	а	а	а	а	а	а	b		
***	****	** pr	otein	ı na	mes	(]	pdk	h	ıea	dei	(د	* *	**	**	k														
1	1ptq	at 2	69		1.9	5			PH	OS	PHO	OTR	AN	SFI	ERA	SE		Су	ste	ein	ie-	ric	h	do	ma	in			
2	1g5c	at	87 A		2.1	0			LY	AS	E																		
3	1g5c	at	87 C		2.1	0			LY	AS	E																		

Resolvase-like

4 1g5c at 87 E 2.10 LYASE

5 lekj at 220 D 1.93 LYASE Resolvase-like

***	*****	cngps	****	****	***										
1 3	CCHC	Zn	3	22	3	-1	-1	-1	-1d.	4 1ptq	0 0.3 2.0	ZN 2 CYS	244		2.
2 2	CHC	Zn	55	3	-1	-1	-1	-1	-1 .e.	4 1g5c	0 0.1 2.1	ZN 1001 CYSA	32	Z	4.
3 2	CHC	Zn	55	3	-1	-1	-1	-1	-1 .e.	4 1g5c	0 0.1 2.1	ZN 1003 CYSC	32	Z	4.

5 2 CHC Zn 60 3 -1 -1 -1 -1 -1 .e. 3 lekj 0 0.1 1.9 ZN 4004 CYSD 160 ...

Zn 55 3 -1 -1 -1 -1 -1 .e. 4 1g5c 0 0.1 2.1 ZN 1005 CYSE 32 ...

Conformations at loop

4 2 CHC

1 different, rest all same

for pc 2-5 model 1ekj at 220 D 1.93

relseq	meanfi	meanpsi n	umber	
0	-150(4)	156(3)	4	b
1	-67(5)	153(5)	4	b
2	58(2)	48(5)	4	a
3	-92(19)	-95(166)	4	a

local conformations of 2-5 are fairly different - r.m.s. 35-60 deg

but are same before loop

amino-acid sequences **** start of selected part of cngroup relsea -10 15 1 le4c from 82 P: OSRPDANAVVHNHAVHCTAVSI 2 1dg3 from 146 A: I A G D G C F D K Y H S H V K G H E Y I Y D 3 1j79 from 6 A: VI, KIRRPDDWHI, HI, RDGDMI, KT 45 B: TISEAGFTLTHEHICGSSAGFL 1bf6 from 2 A: S F D P T G Y T L A H E H L H I D L S G F K 1kog from 82 A: NGRTYTLKOFHFHVPSENOIKG 2bc2 from 76 A: OKRVTDVIITHAHADRIGGIKT 1sml from 74 A: PRDLRLILLSHAHADHAGPVAE 1b66 from 38 B: V F G K C N N P N G H G H N Y K V V V T I H 1ton from 87 : QSFRHPDYPVHDHSNDLMLLHL 11 lgh5 from 44 B: G V K L T T V L T T H H H W D H A G G N E K aa types - acidic, etc ** 5 -10 10 15 relseq 82 P: psbhaspshhpppshphsshsh 1dq3 from 146 A: hsgaghhabhpsphbgpahhha 1i79 from 6 A: hhbhbbhaahphphbagahhbs 45 B: shsasghshspaphhgsssghh 1hzy from 2 A: shahsghshspaphphahsghb 1bf6 from 82 A: pgbshshbphphphhsapphbg 1koq from 2bc2 from 76 A: pbbhsahhhspspsabhqqhbs 1sml from 74 A: hbahbhhhhspspsapsghhsa 1b66 from 38 B: hhqbhpphpqpphbhhhshp 1ton from 87 : pshbphahhhpapspahhhhph 44 B: ghbhsshhssppphapsggpab 11 lgh5 from

	relseq			-10				-5						0					5					10	
1	le4c fro	om 82	p:	a a	b	a	k l	o k	b	b	b	b	b	d	b	а	а	а	а	а	a	a	a		
2	1dq3 fro	om 146	A:	a a	a	k	b k	b		b	b	b	a	g	b	b	g	d	b	b	b	b	b		

15

3 1j79 from 6 A: b b b b b b b b b k b b k j b a a a a a

4 lhzy from 45 B: b a a k a j b b b k b b a b b . b b g a a

6 1koq from 82 A: g g b b b b b a . b b b b b b a b b g g

7 2bc2 from 76 A: g b b b a b b b a . d b a k a k a a a

8 1sml from 74 A: a a a b a b b b b a b d b a k a k a k a a a

9 1b66 from 38 B: a k . a k k b a k j . b b b b b b b b b b

10 1ton from 87 : . b b b b a k b . b b b b b b b b b b b

11 1qh5 from 44 B: gbbbabbbabba.kbakakkkaaa

******* protein names (pdb header) ******

1	1e4c at	92 P	1.66	ALDOLASE (CLASS II)	Class II aldolase
2	1dq3 at	156 A	2.10	HYDROLASE	Homing endonuclease-like
3	1j79 at	16 A	1.70	HYDROLASE	TIM beta/alpha-barrel
4	1hzy at	55 B	1.30	HYDROLASE	TIM beta/alpha-barrel
5	1bf6 at	12 A	1.7	PHOSPHOTRIESTERASE	TIM beta/alpha-barrel
6	1koq at	92 A	1.90	LYASE	Carbonic anhydrase
7	2bc2 at	86 A	1.7	HYDROLASE	Metallo-hydrolase/oxidoreductase
8	1sml at	84 A	1.70	HYDROLASE	Metallo-hydrolase/oxidoreductase
9	1b66 at	48 B	1.9	TETRAHYDROBIOPTERIN BIOSYNTH	HESIS T-fold
10	1ton at	97	1.8	HYDROLASE(SERINE PROTEINASE)	Trypsin-like serine proteases
11	1qh5 at	54 B	1.45	HYDROLASE	Metallo-hydrolase/oxidoreductase

******* cngps *******

6 1 HHH

1 2	ЕННН	Zn	19	2	61	-1	-1	-1	-1 .eee	5 le4c	0 0.2 1.7	ZN	999 GLUP	73	Z	4.
2 1	НН	Zn	2	-1	-1	-1	-1	-1	-1 de	2 1dq3	0 0.2 2.1	ZN	901 HISA	156	I	
3 1	HH D	Zn	2	-1	232	-1	-1	-1	-1 ee .	5 1j79	0 0.2 1.7	ZN	400 HISA	16	UZ	3.
4 1	HHD	Zn	2 2	44	-1	-1	-1	-1	-1 ee.	5 lhzy	0 0.1 1.3	ZN	401 HISB	55	UZ	3.
5 1	HHED	Zn	2 11	11 1	.18	-1	-1	-1	-1 ee	4 1bf6	0 0.3 1.7	ZN	1 HISA	12		

Zn 2 17 -1 -1 -1 -1 eed 4 1koq 0 0.2 1.9 ZN 301 HISA 92 ... | Z 4.

```
7 1 HHH Zn 2 61 -1 -1 -1 -1 ede 5 2bc2 0 0.3 1.7 ZN 1 HISA 86 ... | ZZ 3.8 1 HHH Zn 2 74 -1 -1 -1 -1 ede 4 1sml 1 0.2 1.7 ZN 269 HISA 84 ... | Z 3.9 2 HHH Zn 25 2 -1 -1 -1 -1 eee 4 1b66 0 0.5 1.9 ZN 402 HISB 23 ... | U 4.1 1 1 HHHD Zn 2 54 24 -1 -1 -1 eee 5 1qh5 0 0.3 1.5 ZN 261 HISB 54 ... | Z 3.9 3.9 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.
```

Over loop

pchains 3 4 5 agree well, 1 and 10 a little less well with them

model: 1hzy at 55 B 1.30 (4)

relseq	meanfi	meanpsi	number	
0	-130(40)	113(20)	5	b
1	-143(6)	171(13)	5	b
2	-122(19)	90(56)	5	b

but local conformations different 3 4 5 same fold

p chains 7 8 agree bdb

p chains 6 9 agree bbb and are somewhat like 3 4 5

p chains 2 11 different from each other and above

info from old sequence file, some different numbering

loop region: 3,5,7,9,14 are bbb model 5 1hzy at 55B (resoln 1.30)

0-2 11,13,17 are bab model 17 1qh5 at 54B 1.45)
1,16 bba 1 le4c at 92P 1.66

2 bag

start of selected part of cngroup

-10 -5 0 5 10 15

1 le4c from 82 P: aabaababbbbbbaaaaaaa

3	1j79 from	6 A:	b	b	b	b	b	b	b	b	b	а	b	b	b	а	j	b	j	а	а	a	а	а
5	1hzy from	45 B:	b	а	a	а	а	j	b	b	b	а	b	b	b	а	b	b	b	b	b	g	а	a
7	1bf6 from	2 A:	b	b	b	a	a	b	b	b	b	а	b	b	b	a	b	b	b	а	а	a	а	a
9	1koq from	82 A:	g	g	b	b	b	b	b	а	b	b	b	b	b	b	b	b	a	b	b	b	g	g
11	2bc2 from	76 A:	g	b	b	b	a	b	b	b	b	а	b	а	b	a	a	а	а	a	a	a	а	a
13	1sml from	74 A:	а	a	a	b	a	b	b	b	b	а	b	a	b	a	a	а	a	а	a	a	a	a
14	1b66 from	38 B:	а	a	j	a	a	а	b	a	a	j	b	b	b	b	b	b	b	b	b	b	b	b
16	1ton from	87 :	b	b	b	b	b	a	а	b	j	b	b	b	a	b	g	b	b	b	b	b	b	b
17	1qh5 from	44 B:	g	b	b	b	a	b	b	b	b	а	b	а	b	a	a	а	а	a	a	a	а	a

		CN	delta	his-M-his	unusual dists or ?
1	1e4c	5	tetp 2.6	103	-
2	1dq3	2		123	??
3	1j79	5	tbp 6.7,7.7	115,121	-
5	1hzy	5	tbp 7,7.5	116,114	-
7	1bf6	4	sqp 25,25	119,120	looks like tbp, one don missing
					dists long too (.162+)
9	1koq	4	tet 10,13	107,111	dif 0.1-0.3
11	2bc2	5	tbp 12,9	101,98	dif 0-0.27
13	1sml	4	tet 8	99	+ H2O at 3.04
14	1b66	5	tbp 13	114	.2230
		and 4	tet 11	115	.1722, missing donor ?
16	1ton	3		100	missing donor ?
17	1qh5	6	oct 16	95	.1522, or CN 5 plus H2O at 2.47
		and 5	tetp 11	95	.1323,

ARCHITECTURE OF METAL COORDINATION GROUPS - TABLE 5W

<u>Proteins</u> where there appears to be <u>more than one metal coordination group</u> associated with the protein.

Equivalent coordination groups involving duplicate protein chains within the asymmetric unit have been eliminated. The column headings have the same meaning as in Table 3 a) and Table 3D. Most cases are straightforward, with two or more metal ions coordinated by amino-acids of one protein chain. In a few cases (marked) there are two different protein chains, each with a metal site. In 11 cases (marked as ambiguities) the procedure has picked differences between nearly equivalent protein chains within the asymmetric unit. In a few of these the coordinating amino-acid is interpreted as asp in one, asn in another, or glu and gln; more often, an extra donor has been identified in one of the coordination groups.

Coordination groups where the metal is associated with two or more protein chains within the asymmetric unit are not included, but are listed separately.

cngroup		se	qdif	1 t	0 7			his cn	cn2 rms res	metal	startAA	carbi	othdonors	e.c.no
1a2x	ζ													
DNDOE	Ca	2	2	2	5	-1	-1	-1 5 1a2	x 2 0.2 2.3	CA 16	0 ASPA 103	b		
DNDOE	Ca	2	2	2	5	-1	-1	-1 5 1a2	x 1 0.4 2.3	CA 16	1 ASPA 139	b.b		
1acc	C													
DDDOE	Ca	2	2	2	5	-1	-1	-1 6 lac		CA 80	0 ASP 177		Z	
DDEOOD	Ca	2	7	34	3	10	-1	-16 lac	0 0.3 2.1	CA 80	1 ASP 179	b		
1al _v	J													
ODOE	Ca	3	2	5	-1	-1	-1	-1 6 lal	v 0 0.2 1.9	CA	1 ALAA 107	b	ZZ	3.4.22.17;
DDTOE	Ca	2	2	2	5	-1	-1	-1 6 lal	v 0 0.2 1.9	CA	2 ASPA 150	b	Z	3.4.22.17;
DDSOE	Ca	2	2	2	5	-1	-1	-1 6 lal	v 0 0.2 1.9	CA	3 ASPA 180	b	Z	3.4.22.17;
DDDN	Ca	88	2	1	-1	-1	-1	-1 6 lal	v 0 0.2 1.9	CA	4 ASPA 135	.bb.	ZZ	3.4.22.17;
1arı	l													
ODODS	Ca	0	18	2	2	-1	-1	-1 7 lar	ı 0 0.2 1.6	CA 34	6 ASP 57		ZZ	1.11.1.7;
OSDOTOD	Ca	0	17	2	0	3	2	-17 lar	ı 0 0.2 1.6	CA 34	7 SER 185	b	.	1.11.1.7;
1ava	ā													
NDODO	Ca	47	3	7	35	-1	-1	-1 6 lav	a 0 0.2 1.9	CA 50	O ASNA 91	.b	Z	3.2.1.1;
EOOD	Ca	3	2	4	-1	-1	-1	-1 5 lav	a 1 0.2 1.9	CA 50	1 GLUA 108	b	Z	3.2.1.1;
DDOOD	Ca	15	1	3	2	-1	-1	-1 6 lav	a 1 0.2 1.9	CA 50	2 ASPA 127		Z	3.2.1.1;
1axr	ı													
OOOD	Ca	2	2	40	-1	-1	-1	-1 4 lax	n 0 0.4 1.8	CA 35	1 ILE 32	b		
OOOE	Ca	3	2	40	-1	-1	-1	-1 6 lax	n 0 0.2 1.8	CA 35	3 GLY 187	b	ZZ	
1b0r														
DTO	Mg	28	2	-1	-1	-1	-1	-1 6 1b0	0 0.3 2.3	MG 123	7 ASPA 963		UUZ	1.2.7.1;
DNOOO	Ca	2	71	3	2	-1	-1	-1 5 1b0	2 0.4 2.3	CA 123	8 ASPA 983			1.2.7.1;
1bag	3													

```
NODO
        Ca 36
               9 34 -1 -1 -1 -1 ...
                                         5 1bag 0 0.2 2.5 CA
                                                                6 ASN 101 ..b.
                                                                                        3.2.1.1;
                                                                                    Z
           2 -1 -1 -1 -1 -1 ...
                                         5 1baq
                                                0 0.1 2.5 CA
                                                                7 GLY 169 .b
                                                                                        3.2.1.1;
\Omega D
                                                                                   ZZZ
ΕO
        Ca 37 -1 -1 -1 -1 -1 ...
                                         5 1bag 0 0.2 2.5 CA
                                                                8 GLU 276 b.
                                                                                  ZZZ
                                                                                        3.2.1.1;
   1bfd
DNO
                2 -1 -1 -1 -1 ...
                                         6 1bfd 0 0.2 1.6 CA 529 ASP
                                                                     428 . . .
                                                                                   UUZ 4.1.1.7;
        Ca 27
000
            1
                2 -1 -1 -1 -1 ...
                                         3 1bfd 1 0.3 1.6 MG 531 ASN 117 ...
                                                                                        4.1.1.7;
   1c1v
                                           ** dif chains ***
ST
        Ma
          18
              -1 -1 -1 -1 -1 ...
                                         6 1cly 0 0.2 1.9 MG 171 SERA 17 ...
                                                                                   UUZZ 2.7.1.-;
ΟE
        Ca
            2 -1 -1 -1 -1 -1 ...
                                         4 1cly 0 0.2 1.9 CA 173 GLYB 123 .b
                                                                                   ZZ
                                                                                        2.7.1.-;
   1c7k
                  -1 -1 -1 -1 ee.
                                         4 1c7k 0 0.1 1.0 ZN 133 HISA 83 ...
                                                                                        3.4.24.-
HHD
        Zn
            2 -1 -1 -1 -1 -1 ...
DТ
        Ca
                                         6 1c7k 0 0.1 1.0 CA 134 ASPA 76 b.
                                                                                 | ZZZZ 3.4.24.-
   1cd1
                                           ** ambiguities ***
DDDOE
        Ca
                         -1 -1 -1 ..... 5 1cdl 0 0.4 2.2 CA
                                                                1 ASPA 20 .b..b
            2.
                         -1 -1 -1 ..... 5 1cdl 1 0.4 2.2 CA
DDNOE
        Ca
                    2.
                       5
                                                                2 ASPA 56 ....b
                    2
                         -1 -1 -1 ..... 5 1cdl
DDNOE
                                                0 0.3 2.2 CA
                                                                3 ASPA 93 .b..b
            2
                    2
                             -1 -1 ..... 5 1cdl
DDDOE
                                               1 0.6 2.2 CA
                                                                4 ASPA 129 .bb..
        Ca
                             -1 -1 .....6 1cdl 0 0.6 2.2 CA
DDNNOE
        Ca
                                                                2 ASPB 56 ....b
                           3 -1 -1 .....6 1cdl 0 0.6 2.2 CA
DDNODE
            2
                2
                    2
                                                                2 ASPC 56 ....b
        Ca
 1010
                          -1 -1 -1 .... 6 1clc 0 0.1 1.9 CA 591 GLU
ONODD
                    2
                                                                      236 . . . . .
                                                                                     z = 3.2.1.4;
TODDO
                   1
                      39
                         -1 -1 -1 ..... 7 1clc 0 0.2 1.9 CA 592 THR
        Ca
                                                                     356 ..b..
                                                                                     ZZ 3.2.1.4;
ODO
                  -1
                      -1 -1 -1 -1 ...
                                         6 1clc 0 0.1 1.9 CA 593 SER
                                                                     520 . . .
                                                                                    ZZZ 3.2.1.4;
                      -1 -1 -1 -1 ..de 4 1clc 0 0.3 1.9 ZN 594 CYS 155 ....
        Zn 18
                                                                                        3.2.1.4;
CCHH
   1cru
               -1 -1 -1 -1 -1 ...
ΕO
        Ca 10
                                         6 1cru 0 0.1 1.5 CA 901 GLUB 253 b.
                                                                                  ZZZZ 1.1.99.17;
OODE
                     -1 -1 -1 -1 .... 6 1cru 0 0.1 1.5 CA 902 ALAB 269 ...b
                                                                                    ZZ 1.1.99.17;
            1 -1 -1 -1 -1 -1 ...
                                         7 1cru 0 0.1 1.5 CA 908 GLYB 247 ...
00
                                                                                  UBUZZ 1.1.99.17;
  1cvr
EHD
                  -1 -1 -1 -1 .d.
                                         6 lcvr 1 0.3 2.0 CA 648 GLUA 161 ...
            5 126
                                                                                    ZZZ 3.4.22.37;
DOE
        Ca 171
                9 -1 -1 -1
                             -1 -1 ...
                                         6 1cvr 0 0.2 2.0 CA 501 ASPA 78 b.b
                                                                                    ZZZ 3.4.22.37;
                    2
                      -1 -1 -1 -1 .... 6 lcvr 0 0.2 2.0 CA 477 VALA 100 ...b
ODOE
                                                                                  ZZ 3.4.22.37;
EEH
                  -1 -1 -1
                             -1 -1 ..e
                                         4 1cvr 1 0.5 2.0 CA 686 GLUA 293 b...
                                                                                  Z
                                                                                        3.4.22.37;
EH
               -1 -1 -1 -1
                             -1 -1 .e
                                         3 1cvr 1 0.5 2.0 ZN 731 GLUA 152 ..
                                                                                   Z
                                                                                        3.4.22.37;
  1d0b
            2 -1 -1 -1 -1 -1 ...
OD
        Ca
                                         7 1d0b
                                                0 0.2 1.9
                                                         CA 201 PROA
                                                                       49 ..
                                                                                   ZZZZZ
ED
        Ca
            4 -1 -1 -1 -1 -1 ...
                                         5 1d0b 0 0.3 1.9 CA 202 GLUA 55 .b
                                                                                   ZZZ
   1d jx
NEDE
                2 47 -1 -1 -1 -1 .... 6 1djx 0 0.3 2.3 CA
                                                                2 ASNA 312 ..b.
                                                                                    UZ 3.1.4.11;
ODN
            2 24 -1 -1 -1 -1 -1 ... 5 ldjx 1 0.4 2.3 CA
                                                                3 ILEA 651 .b.
                                                                                 | ZZ 3.1.4.11;
   1dx5
                                           ** dif chains ***
DOENOO
                           3 -1 -1 ......7 1dx5 0 0.3 2.3 CA 1001 ASPI 423 b.....
                                                                                      Z 3.4.21.5;
00
        Na
            3 -1 -1 -1 -1 -1 ...
                                         5 1dx5 0 0.2 2.3 NA 2001 ARGN 221 ..
                                                                               | ZZZ 3.4.21.5;
   1dyk
DOOD
                   2 -1 -1 -1 -1 .... 5 1dyk 0 0.2 2.0 CA 4001 ASPA2808 ....
```

```
DOOD
        Ca 17 54 2 -1 -1 -1 -1 .... 4 ldvk 0 0.2 2.0 CA 4002 ASPA2982 ....
   1e29
        Fe 51 -1 -1 -1 -1 -1 ee
                                         6 1e29
                                                0 0.1 1.2 FE 136 HISA 41 ..
                                                                                   BBBB
            1 -1 -1 -1 -1 -1 ...
                                         8 1e29
                                                0 0.1 1.2 CA 225 ASNA 49 ..
                                                                                   ZZZZZZ
NN
OD
           0 -1 -1 -1 -1 -1 ...
                                         6 1e29
                                                0 0.3 1.2 CA 226 ASPA 35 ...
                                                                                   ZZZZ
  1e43
NODDO
                      35 -1 -1 -1 .... 6 1e43 1 0.2 1.7 CA 501 ASNA 102 .....
                                                                                      Z 3.2.1.1;
DODDD
                       2 -1 -1 -1 ..... 6 le43 0 0.1 1.7 CA 502 ASPA 159 b....
                                                                                      Z 3.2.1.1;
NE
                   -1 -1 -1 -1 ..
                                         7 1e43 0 0.2 1.7 CA 503 ASNA 444 .b
                                                                                   ZZZZZ 3.2.1.1;
                         -1 -1 -1 ... 6 1e43 0 0.1 1.7 CA 504 GLYA 300 ....b
                                                                                     Z 3.2.1.1;
OOODD
                       1 -1 -1 -1 ..... 5 1e43 0 0.2 1.7 NA 505 ASPA 159 ..b..
DDDDO
        Na 24 11
                    6
                                                                                         3.2.1.1;
                                           ** ambiguities ***
  1e8u
ODOOO
                             -1 -1 .... 5 le8u 0 0.1 2.0 CA 1002 ASPA 261 ....
                                                                                         3.2.1.18
                             -1 -1 .....6 1e8u 0 0.2 2.0 CA 1003 ASPB 261 .....
                    Ω
ODOSO0
        Ca
                                                                                         3.2.1.18
  1edm
                                           ** dif chains ***
               -1 -1 -1 -1 -1 ...
                                       7 1edm 0 0.2 1.5 CA
                                                                                   ZZZZZ
OS
                                                               3 SERB
                                                                       53 . .
DOODO
               2 14
                      1 -1 -1 -1 ..... 5 ledm 0 0.2 1.5 CA
                                                              1 ASPC 47 ...b.
   1ezm
HHE
                  -1 -1 -1 -1 ee.
                                         4 lezm 1 0.2 1.5 ZN 300 HIS 140 ...
                                                                                        3.4.24.26) (
                       2 -1 -1 -1 .... 6 lezm 0 0.3 1.5 CA 400 ASP 136 ..b..
DEEDO
                                                                                Z 3.4.24.26) (
  1fo4
000SS0
                           1 -1 -1 .....6 1fo4 0 0.4 2.1 CA 4009 ALAA 867 .....
                                                                                         1.1.1.204
                      33
               -1 -1 -1 -1 -1 ...
CC
                                         5 1fo4 0 0.3 2.1 FE13001 CYSA 113 ...
                                                                                   JXX
                                                                                        1.1.1.204
           32 -1 -1 -1 -1 -1 ...
CC
                                         5 1fo4 0 0.3 2.1 FE23001 CYSA 116 ..
                                                                                   JXX
                                                                                        1.1.1.204
CC
        Fe 22
              -1 -1 -1
                          -1
                             -1 -1 ..
                                         5 1fo4 0 0.3 2.1 FE13002 CYSA 51 ...
                                                                                   JXX
                                                                                        1.1.1.204
           5 -1 -1 -1 -1
                                         5 1fo4 0 0.3 2.1 FE23002 CYSA 43 ..
CC
                             -1 -1 ..
                                                                                   JXX
                                                                                        1.1.1.204
   1fs7
                                         6 1fs7 0 0.2 1.6 FE 509 HISA 172 ..
_{
m HH}
        Fe 141 -1 -1 -1 -1 -1 ee
                                                                                   BBBB
_{\mathrm{HH}}
              -1 -1 -1 -1 -1 ee
                                         6 1fs7 0 0.1 1.6 FE 510 HISA 102 ...
                                                                                   BBBB
        Fe 113
               -1 -1 -1 -1 -1 ee
                                         6 1fs7 0 0.2 1.6 FE 511 HISA 299 ..
_{
m HH}
        Fe 106
                                                                                   BBBB
               -1 -1 -1 -1 -1 ee
                                         6 1fs7 0 0.1 1.6 FE 512 HISA 288 ...
                                                                                   BBBB
                                -1 .... 6 1fs7 0 0.1 1.6 CA 651 GLUA 217 b...
EOOO
           1 56
                                                                                     ZZ
  1fzc
                                           ** ambiguities ***
DDO
            2
                2 -1 -1 -1 -1 ...
                                         5 1fzc 0 0.2 2.3 CA
                                                               2 ASPB 381 b..
                                                                                    ZZ
DDOO
                2 \quad 2 \quad -1 \quad -1 \quad -1 \quad -1 \quad \dots
                                         4 1fzc 0 0.2 2.3 CA
                                                               1 ASPC 318 b...
 1q0h
EDDD
                3 117 -1 -1 -1 -1 .... 6 1q0h 0 0.3 2.3 CA 290 GLUA 65 ....
                                                                                     UU 3.1.3.25;
        Ca 16
                                         6 lg0h 0 0.2 2.3 CA 291 GLUA 65 b..
                             -1 -1 ...
                                                                                 UZZ 3.1.3.25;
EDO
        Ca 16
  1g4y
DDDOE
            2
                       5 -1 -1 -1 ..... 6 1q4y 0 0.2 1.6 CA 1001 ASPR
                                                                       20 ....b
DDNOE
                       5 -1 -1 -1 ..... 5 1q4y 0 0.4 1.6 CA 1002 ASPR 56 ....b
                                           ** dif chains ***
   1q5c
CHC
        Zn 55
                3 -1 -1 -1 -1 -1 .e. 4 1q5c 0 0.1 2.1 ZN 1001 CYSA 32 ...
                                                                                 l z
                                                                                         4.2.1.1;
EOO
           21
                3 -1 -1 -1 -1 -1 ... 6 1q5c 0 0.3 2.1 CA 1009 GLUF 97 b..
                                                                                  ZZZ 4.2.1.1;
                                         5 1q5c 0 0.4 2.1 CA 1001 GLUC 147 ...
OE
               -1 -1 -1 -1
                             -1 -1 ..
                                                                                 ZZZ
                                                                                         4.2.1.1;
```

1gcy	Y																		
NDODO	Ca	35	3	8	35	-1	-1	-1	6 1gcy	0	0.2 1	.6	CA	451	ASNA	116	.b	Z	3.2.1.60;
DOOHDE	Ca	1	11	0	3	1	-1	-1 d.	.6 1gcy	0	0.2 1	. 6	CA	452	ASPA	1	b		3.2.1.60;
1ger	n																		
0000	Ca	45	48	49	-1	-1	-1	-1	7 1gen	0	0.3 2	2.2	CA	302	ASP	476		ZZZ	3.4.24.24;
0000	Na	45	48	49	-1	-1	-1	-1	6 1gen	0	0.3 2	2.2	NA	304	ILE	478		JZ	3.4.24.24;
1hdf	E																		
OOSD	Ca	27	2	41	-1	-1	-1	-1	6 1hdf	0	0.2 2	1.3	CA	1101	LYSA	19		ZZ	
DOOS	Ca	17	28	2	-1	-1	-1	-1	7 1hdf	0	0.3 2	1.3	CA	1102	ASPA	45		ZZZ	
1hyc)																		
TOOOD	Mg	1	19	3	1	-1	-1	-1	5 1hyo	0	0.4 1	3	MG	1004	ASPA	233			3.7.1.2;
DEED	Ca	73	2	32	-1	-1	-1	-1	6 1hyo	0	0.1 1	. 3	CA	1006	ASPA	126		עט	3.7.1.2;
1i76	5																		
OOOD	Ca	32	2	2	-1	-1	-1	-1	6 1i76	0	0.1 1	. 2	CA	996	ASPA	137		ZZ	3.4.24.34;
DOOODE	Ca	1	2	2	18	3	-1	-1	.6 1i76	0	0.1 1	. 2	CA	997	ASPA	154			3.4.24.34;
HDH	Zn	2	13	-1	-1	-1	-1	-1 e.e	3 1i76	0	0.1 1	. 2	ZN	998	HISA	147		j	3.4.24.34;
ННН	Zn	4	6	-1	-1	-1	-1	-1 eee	5 1i76		0.3 1		ZN	999	HISA	197		ט	3.4.24.34;
1i8a	a																	1	
DNEDD	Ca	2	8	2	1	-1	-1	-1	6 1i8a	0	0.3 1	. 9	CA	190	ASPA	81	bb	l Z	3.2.1.8;
ODODE	Ca	2	2	2	114			-1											3.2.1.8;
DODDO	Ca	2	12	80	1			-1					CA				b.b		3.2.1.8;
liod		_			_	_	_	,			lguiti						•	, –	
OSEEE	Ca	0	2	4	81	-1	-1	-1			_			501	SERA	41	bb	Z	3.4.21.6
OSQEE	Ca	0	2	_				-1											3.4.21.6
lkar		J		-	, 5	_	_		, 110a	_	J.J Z		O11	502	2210			1 22	J. 1. 21. 0
OOTDOD	Ca	2	2	28	2	3	– 1	-1	.6 1kap	1	0.1 1	. 6	CA	614	ARGP	253	b	1	3.4.24;
ODOE	Ca	2	37		-1	-1		-1	_									 7.7.	3.4.24;
OODOOD	Ca	2	2	13	2	3	-1											""	3.4.24;
OODOOD	Ca	2	2		-1	-1	-1		_									 7.7	3.4.24;
OODD	Ca	2	2	13	2	3	-1											44	3.4.24;
OODOD	Ca	2	2	18	7			-1										 7	3.4.24;
00D0D	Ca	2	2	13	2			-1	_									4	3.4.24;
	Ca	2	2	2	2			-1	_									 7	3.4.24;
DSDOD 1kit		4	۷	۷	۷	-т	- T	-т	о ткар	U	U.3 I	0	CA	υZI	ASPP	440	u	4	3.4.24/
		າ	0	22	2.4	0	1	1	6 11 -1 +	Λ	0 2 2	, ,	C17	000	71 71) E 2	h	1	2 2 1 10.
TODIOC	Ca	3	_	33				-1											3.2.1.18;
DDO		ЬΤ	1	-1	-T	-T	- ⊥	-1	4 IKIT	U	0.2 2	. 3	CA	803	ASP	62I	. aa	Z	3.2.1.18;
1nls		_	^	_	_	-		1	6 1 3	_	0 1 1			000	~	^		1	
EDDH		2						-1e										ZZ	
DOND		2	2	5	-1	-1	-1	-1	6 lnls	0	0.1 0	1.9	CA	240	ASP	10	b	ZZ	
1nps																			
OOSN		30						-1	_									l Z	
NOS		17	26	-1	-1	-1	-1	-1	6 1nps	0	0.5 1	8	CA	145	ASNA	36		ZZZ	
1oac																			
HHH	Cu	-1	2	163	-1			-1 .eed	4 loac	0	0.1 2		CU	801		524			1.4.3.6
																			1.4.3.6

EODE		94	3	2	-1	-1	-1	-1		6	1oac	0 0.2 2.	. 0 C	A 80	03 GLT	TA 57	B b	ZZ	1.4.3.6
1pa2 ODOODS	Ca	0	3	2	2	2	_1	_1		7	1na2	0 0 1 1	5 0	7 2 (17 7 GI	on /1:	Σ	7	1.11.1.7;
OTDOTOD	Ca	0	51	3	0	3					_	0 0.1 1.							1.11.1.7;
1pyt		Ü	31	J	O	3	_	_		• ′	_	f chains		11 5	30 1111			I	1.11.1,
EOOQE	Ca	2	3	2	3	-1	-1	-1		5		1 0.3 2.		A 65	50 GLT	rc 47)		3.4.17.1;
~ HEH	Zn	3										0 0.4 2.						Z	3.4.17.1;
1qho																		'	
DODEE	Ca	1	2	22	1	-1	-1	-1		6	1qho	1 0.2 1.	.7 C	A 69	96 ASI	A 7	5b	l z	3.2.1.133;
NODO	Ca	53	14	34	-1	-1	-1	-1		7	1qho	0 0.2 1.	.7 C	A 69	97 ASI	TA 13	Lb.	ZZZ	3.2.1.133;
DONNOD	Ca	2	3	1	21	2	-1	-1		. 7	1qho	0 0.2 1.	.7 C	A 69	98 ASI	A 2	L	Z	3.2.1.133;
1qla											** di	f chains	/ ?	* * *					
HH	Fe	89	-1	-1	-1	-1	-1	-1	ee	6	1qla	0 0.1 2.	.2 F	E	1 HIS	C 9:	3	BBBB	1.3.99.1;
HH	Fe	99	-1	-1	-1	-1	-1	-1	ee	6	1qla	0 0.1 2.	2 F	E	2 HIS	C 4	ł	BBBB	1.3.99.1;
CC	Fe	12	-1	-1	-1	-1	-1	-1			1qla				3 CYS	B 6	5	JXX	1.3.99.1;
CC	Fe	5	-1								_	0 0.3 2.			3 CYS		7	JXX	1.3.99.1;
00000	Ca	1	1	20	2	-1	-1	-1		6	1qla	0 0.2 2.	. 2 C	A	9 SEF	A 37	L	Z	1.3.99.1;
1sac																			
DNEOD	Ca		77	1								0 0.3 2.					B b.b	0	
EDQ	Ca	2	10	-1	-1	-1	-1	-1	• • •	4	1sac	0 0.3 2.	.0 C	A	2 GLt	TA 13	5 .b.	U	
1scj							_	_		_			_				_		
QDONOO	Ca	39	34	2							_	0 0.2 2.							3.4.21.62;
000T	Ca	2	3	0	-1	-1	-1	-1	• • • •	5	Iscj	0 0.4 2.	. 0 C	A 38	32 ALA	A 16)	l Z	3.4.21.62;
1sra		2	0	0	_	-	-1	-		_	4	0 0 0 0	0 0	- 20	21 7 7 7		. 1		
DODOE	Ca	3	2 2	2	_	-1						0 0.2 2.					2b	Z	
DDDOE	Ca Ca	2 2	∠ 3	2 -1	5 -1	-1 -1						0 0.2 2.)2 ASI		7b	Z	
00E 1svy		2	3	-1	-1	-1	-T	-1	• • •	5	ISIa	1 0.4 2.	. 0 C	A 30	J3 PRO	24.	L	ZZ	
DOO ISVY	Ca	5	2	1	1	1	1	1		6	1	0 0.3 1.	0 0	71	1 ASI		2	ZZZ	
ODE	Na	5 1									_	1 0.2 1.			2 GL				
1tf4	-		22						• • •	-	труу	1 0.2 1.	. 0 11	Λ	2 611	10		4	
SODEO	Ca	1	3	1	46	_1	_1	_1		5	1+f4	0 0.2 1.	9 0	<u>Δ</u> 30()1 SEE	Δ 21) hh	1	3.2.1.4;
ODOND	Ca	2	65	3		-1						0 0.2 1.							3.2.1.4;
1tn3		_	0.5	J	_	_	_	_		Ū	1011	0 0.2 1.		11 300	22 1111	50		1 -	3.2.1.1,
DEOON	Ca	4	27	3	1	-1	-1	-1		6	1tn3	0 0.2 2.	.0 C	A 18	32 ASI	110	5 bb	l z	
QEOD	Ca	7		0								2 0.2 2.							
1vrk																		, –	
DDDOE	Ca	2	2	2	5	-1	-1	-1		6	1vrk	0 0.1 1.	.9 C	A 15	51 ASI	A 2)b	l z	2.7.1.117;
DDNOE	Ca	2		2	5	-1						0 0.1 1.						j z	2.7.1.117;
DDDOE	Ca	2	2	2	5	-1	-1	-1		6	1vrk	0 0.2 1.	.9 C	A 15	54 ASI	A 12	b	j z	2.7.1.117;
1wdc											** di	f chains	***						
ODDODO	Ca	0	3	1	2	2	-1	-1		. 7	1wdc	0 0.2 2.	. 0 C	A 50	01 ASI	C 1		Z	
DDDOD	Mg	2	2	2	5	-1	-1	-1		6	1wdc	1 0.3 2.	. 0 M	G 50	02 ASI	B 28	3	Z	
2msb	ı																		
DEDOD	Ca	4	23	5	1	-1	-1	-1		6	2msb	0 0.2 1.	7 C	A	1 ASI	A 16	bb	Z	

ENENOD	Ca	2	6	12	1	0	-1	-1		.6	2msb	0	0.2	1.7	CA	2	GLUA	185			
ED	Ca	29	-1	-1	-1	-1	-1	-1		6	2msb	0	0.2	1.7	CA	3	GLUA	165	.b	ZZZZ	
2poi	<u>-</u>																				
ED	Ca	28	-1	-1	-1	-1	-1	-1		6	2por	0	0.1	1.8	CA	302	GLU	80	b.	ZZZZ	
DDND	Ca	2	5	1	-1	-1	-1	-1		6	2por	0	0.2	1.8	CA	303	ASP	93	bb	ZZ	
NDOO	Ca	20	2	2	-1	-1	-1	-1		5	2por	0	0.2	1.8	CA	304	ASN	116	.b		
2pvl)																				
DDSOEE	Ca	2	2	2	2	3	-1	-1		.6	2pvb	0	0.1	0.9	CA	110	ASPA	51	b		
DDDOE	Ca	2	2	2	5	-1	-1	-1		6	2pvb	0	0.1	0.9	CA	111	ASPA	90	b	Z	
2sas	5																				
DNDOD	Ca	2		2	5	-1	-1	-1		5	2sas	0	0.2	2.4	CA	186	ASP	19	b		
DNDOE	Ca	2	2	2	5	-1	-1	-1		6	2sas	0	0.4	2.4	CA	187	ASP	70	b	Z	
DSDOE	Ca	2	2	2	5	-1	-1	-1		5	2sas	0	0.2	2.4	CA	188	ASP	115	b		
2scr)																				
DDDOD	Ca	2	2	2	5	-1	-1	-1		6	2scp	0	0.1	2.0	CA	190	ASPA	16	b	Z	
DNDOE	Ca	2	2	2	5	-1	-1	-1		6	2scp	0	0.1	2.0	CA	191	ASPA	104	b	Z	
DNDOE	Ca	2	2	2	5	-1	-1	-1		6	2scp	0	0.2	2.0	CA	192	ASPA	138	b	Z	
2sid	2																				
QDONOO	Ca	39	34	2	2	2	-1	-1		.6	2sic	0	0.2	1.8	CA	501	GLNE	2	.b		3.4.21.14) C
OOOD	Ca	5	21	2	-1	-1	-1	-1		6	2sic	1	0.6	1.8	CA	502	GLYE	169		ZZ	3.4.21.14) C
1g8}	2																				
CC	Fe	18	-1	-1	-1	-1	-1	-1		5	1g8k	0	0.3	1.6	FE1	5006	CYSB	60		JXX	
HH	Fe	19	-1	-1	-1	-1	-1	-1	dd	5	1g8k	0	0.3	1.6	FE2	5006	HISB	62		JXX	
1a49)										** a	mbi	igui	cies	* * *						
NSDOS	K	2	36	1	129	-1	-1	-1		6	1a49	0	0.3	2.1	K	532	ASNA	74		U	2.7.1.40;
ED	Mg	24	-1	-1	-1	-1	-1	-1		6	1a49	0	0.2	2.1	MG	534	GLUA	271		UUUZ	2.7.1.40;
NSODO	K	2	36	0	1	-1	-1	-1		7	1a49	0	0.4	2.1	K	1132	ASNB	674		ZZ	2.7.1.40;
NNSDO	K	0	2	36	1	-1	-1	-1		7	1a49	1	0.4	2.1	K	4732	ASNG ⁴	4274		UZ	2.7.1.40;
NSDO	K	2	36	1	-1	-1	-1	-1		6	1a49	0	0.1	2.1	K	5332	ASNH4	4874		ZZ	2.7.1.40;
1a73	3																				
CCHC	Zn	7	2	4	-1	-1	-1	-1	d.	4	1a73	0	0.2	1.8	ZN	201	CYSA	125			
CCCH	Zn	59	5	5	-1	-1	-1	-1	d	4	1a73	0	0.1	1.8	ZN	202	CYSA	41			
1alo)																				
CC	Fe	39	-1		-1					5	1alo	0	0.2	2.0	FE1	907	CYS	100		JXX	
CC	Fe	34	-1	-1	-1	-1	-1	-1		5	1alo	0	0.2	2.0	FE2	907	CYS	103		JXX	
CC	Fe	5	-1	-1	-1	-1	-1	-1		5	1alo	0	0.3	2.0	FE1	908	CYS	40		JXX	
CC	Fe	12	-1	-1	-1	-1	-1	-1		5	1alo	0	0.3	2.0	FE2	908	CYS	48		JXX	
OEO	Mg	2	42	-1	-1	-1	-1	-1		4	1alo	0	0.3	2.0	MG	916	ALA	649	.b.	Z	
EE	Mg	4	-1	-1	-1	-1	-1	-1		5	1alo	0	0.4	2.0	MG	918	GLU	899		ZZZ	
1bpy	7																				
DD	Mg	2	-1	-1	-1	-1	-1	-1			1bpy			2.2	MG		ASPA			UUUZ	2.7.7.7;
DDD	Mg	2	64	-1	-1	-1	-1	-1			1bpy				MG		ASPA			U	2.7.7.7;
000	Na	2	3	-1	-1	-1	-1	-1		6	1bpy	0	0.5	2.2	NA	341	THRA			UZZ	2.7.7.7;
000																					
1bur	Na	2	3	-1	-1	-1	-1	-1		6	1bpy	0	0.4	2.2	NA	342	LYSA	60		UZZ	2.7.7.7;

DO	K	5						-1		1bup									UUUZZ	
ODOTD	K	0	5	0	2	-1	-1	-1		_					491	ASPA	199		UZ	
1dp(EHE		2	12	1	1	1	1	1 1		** a		_			2001	OT TTA	116		1 222	2 2 1 22.
	Mg	2		-1 142	-1 30	-1 -1	-1 -1	-1 .d. -1		1dp0 1dp0										3.2.1.23; 3.2.1.23;
OOOQD DON	Mg	3 400	3		-1	-1 -1	-1 -1	-1 -1		1dp0						ASPA		b	l l zz	3.2.1.23;
				-1 -1		-1 -1	-1 -1			_			2 1.7			PHEA			1	
000	Na	3	3		-1 1	-1 -1		-1 -1		1dp0						PROA				3.2.1.23;
000	Na	35 3	3 20	-1 -1	-1 -1	-1 -1	-1 -1	-1 -1		1dp0 1dp0			3 1.7			SERA			ZZ OZZ	3.2.1.23; 3.2.1.23;
	Na Na	_			-1 -1		-1 -1			1dp0						PHEC				3.2.1.23;
0000 1ew2		3	1	۷	-1	-1	-1	-ı	O	тари	U	0.4	± 1./	NA	3102	PHEC	550	• • • •		3.2.1.231
DHH	Zn	1	112	-1	1	-1	1	-1 .ee	_	1ew2	0	0 /	1 1.8	7NT	1001	ASPA	216	h	ן עע	3.1.3.1
DHH DSD	Zn		265	-1 -1		-1 -1				1ew2			1 1.8			ASPA			U	3.1.3.1
DSE				-1 -1		-1 -1		-1		1ew2			3 1.8			ASPA			ZZZ	3.1.3.1
	_			15		-1 -1				1ew2			3 1.8			GLUA			222 Z	3.1.3.1
EOED 1ewk	Mg -	53	1	13	-1	-1	-1	-ı	5	** a					1004	GLUA	210	DD	4	3.1.3.1
0000		3	2	1	1	1	1	-1	6	1ewk		_			1001	TT 177	00		ZZ	
0000	Mg Ma	6	1			-1 -1		-1		lewk									ZZ ZZ	
1eyz	_	O		-1	-1	-1	-1	-±	5	TEMY		0.3	0 4.4	MG	1002	тпрр	09	• • •	44	
EE EE	Mg	1 2	-1	-1	1	-1	-1	-1	_	1eyz	0	0 1	0 1 0	МС	402	GLUA	267	h	UUZ	2.1.2;
NOO	Na	1		-1	-1		-1			leyz 1eyz										
1g29	-	_	2		_			±	U	_						ities		• • •	222	2.1.2. /
DYD	Ma	2	61	-1	_1	-1	_1	-1	3	1g29					_	ASP2			I	
ED	Ma		-1			-1				1g29			3 1.9			GLU2			 J	
EDK	Mq	1		-1	-1	-1				1g29			5 1.9			GLU1			J	
KE	Na	42			-1	-1		-1					2 1.9			LYS1			l Z	
OE	Na		-1			-1				1g29									Z	
TD		121				-1				1g29						THR2			-	
D00	Na			-1		-1		-1		1g29										
1gsa			_	_	_	_	_			-9		•				11011	0_		1	
DE	Mq	8	-1	-1	-1	-1	-1	-1	6	1gsa	0	0.3	3 2.0	MG	319	ASP	273		l uuuz	6.3.2.3;
EN	Mq		-1			-1		-1		1gsa							281			6.3.2.3;
1h2r	_									J										
EOH		436	54	-1	-1	-1	-1	-1e	6	1h2r	0	0.1	L 1.4	MG	1005	GLUL	62		ZZZ	1.12.2.1;
CC	_			-1	-1	-1				1h2r						CYSL			JХ	1.12.2.1;
1i74																			1	
HDD	Mn	4	63	-1	-1	-1	-1	-1 e	5	1i74	1	0.3	3 2.2	MN	401	HISA	8	.b.	UZ	3.6.1.1;
DDHD	Mn		22					-1e.		1i74									!	3.6.1.1;
1iow																			1	
EN	Mg	2	-1	-1	-1	-1	-1	-1	5	1iow	0	0.3	3 1.9	MG	330	GLU	270	b.	UUZ	6.3.2.4;
DE	Mq							-1		1iow									UUUZ	6.3.2.4;
1pox	_																		1	
DNO	Mg	27	2	-1	-1	-1	-1	-1	6	1pox	0	0.2	2 2.1	MG	610	ASPA	447		UUZ	1.2.3.3) MUT
OQ	Na							-1		1pox									Z	1.2.3.3) MUT
1ryp										** di									•	

```
T000
                            -1 -1 -1 ....
                                            5 1rvp 0 0.3 1.9 MG
                                                                    1 THRA 17 ....
                                                                                              3.4.99.46;
        Ma 111
                     3
                        -1
                                            4 1ryp
                                                   0 0.3 1.9
000
                    -1 -1 -1 -1 . .
                                                                    4 THRM 183 ...
                                                                                         Z
                                                                                              3.4.99.46;
                                                             MG
000
                    -1
                        -1
                            -1
                               -1 -1 ...
                                            5 1ryp
                                                   0 0.3 1.9
                                                             MG
                                                                    5 ALAJ 166 ...
                                                                                         ZZ
                                                                                              3.4.99.46;
        Ma
                   -1 -1
                            -1
                               -1 -1 ...
                                            3 1ryp 0 0.5 1.9 MG
                                                                    6 ILEH 163 ...
                                                                                              3.4.99.46;
000
        Ma
   1t.7p
DOD
            1 178
                    -1 -1
                            -1
                               -1 -1 ...
                                            6 1t7p 0 0.2 2.2 MG 4001 ASPA 475 ...
                                                                                         UUU
                                                                                              2.7.7.7;
        Mq 179 -1 -1 -1
DD
                               -1 -1 . .
                                            5 1t7p 1 0.3 2.2 MG 4002 ASPA 475 ...
                                                                                        \Pi ZZ
                                                                                              2.7.7.7;
                                             ** dif chains ***
    2occ
_{
m HH}
                -1 -1 -1 -1
                                  -1 ee
                                            6 2occ 0 0.2 2.3 FE
                                                                 515 HISA 61 ..
                                                                                        BBBB
                                                                                              1.9.3.1;
                                           4 2occ 1 0.2 2.3 CU
                                                                 517 HISA 240 ...
                                                                                              1.9.3.1;
HHH
                    – 1
                        -1
                            -1
                               -1
                                   -1 dee
                 5 396
                        -1
                            -1
                               -1 -1 ....
                                            4 2occ
                                                   0 0.1 2.3 NA 519 GLUA 40 ....
                                                                                              1.9.3.1;
OEOO
                               -1 -1 d...
                                            5 2occ 0 0.3 2.3
HCCM
                            -1
                                                              CU
                                                                 228 HISB 161 ....
                                                                                              1.9.3.1;
COCH
             2
                        -1
                            -1
                               -1 -1 ...d
                                            5 2occ 0 0.2 2.3
                                                              CU 229 CYSB 196 ....
                                                                                          J 1.9.3.1;
             2.
                2.0
                                            4 2occ 0 0.1 2.3
                                                                   99 CYSF 60 ....
CCCC
         7n
                                -1 -1 ....
                                                              ZN
                                                                                              1.9.3.1;
1a9x
                                              ** dif chains / ? ambiguities ***
             2
                                            5 1a9x 0 0.3 1.8
                                                             MN 7901 GLUG6299 b.
EN
                -1 -1
                        -1
                            -1 -1 -1 ...
                                                                                        UUZ
ΟE
            14
               -1
                    -1
                        - 1
                            -1
                               -1
                                   -1 . .
                                            6 la9x 0 0.2 1.8
                                                             MN 7902 GLNG6285 ...
                                                                                        UUUZ
                     1
                         3
                             5
                                  -1 .....6 1a9x 0 0.2 1.8
ENOOOS
                               -1
                                                               K 7903 GLUG6215 .....
OEEO
                               -1 -1 .... 7 1a9x 1 0.3 1.8
                                                               K 7904 ALAG6126 ....
                                                                                          ZZZ
             1 172
                            -1
            12
                -1
                    -1
                        -1
                            -1
                                -1
                                   -1 . .
                                            4 1a9x 1 0.3 1.8
                                                             MN 7911 GLNG6829 ..
QΕ
                                                                                        TJTJ
                        -1
                            -1
                               -1 -1 ..
                                            4 1a9x 0 0.3 1.8
                                                               K 7912 GLUG6841 b.
                                                                                        IJIJ
EN
        K
            22
                 1
                     3
                         5
                            -1
                               -1
                                  -1 ..... 5 1a9x 0 0.3 1.8
                                                               K 7913 GLUG6761 .....
EOOOS
COT
        K
            28
                    -1
                        -1
                            -1
                               -1
                                  -1 ...
                                            5 1a9x 0 0.3 1.8
                                                               K 7940 ASPG6084 ...
                                                                                         ZZ
                – 1
                                                               K 7941 HISH7516 ..
                                                                                        ZZ
00
        K
                    -1
                            -1
                                -1
                                   - 1
                                            4 1a9x 0 0.4 1.8
            27
                39
                     0
                         2
                            -1
                                -1
                                   -1 ..... 8 1a9x 1 0.5 1.8
                                                               K 7942 GLUG6217 .....
                                                                                           UZZ
ETNNO
        K
                               -1 -1 ...
                                            6 la9x 0 0.4 1.8
OTO
        K
                            -1
                                                               K 7943 THRG6143 ...
                                                                                         ZZZ
                                  -1 ..... 8 la9x 0 0.3 1.8
OEEON
             1 172
                     1
                         1
                            -1
                               -1
                                                               K 3904 ALAC2126 .....
                                                                                          ZZZ
                12
                        -1
                            -1
                               -1 -1 ...
                                            6 la9x 0 0.4 1.8
                                                              MN 3911 GLNC2829 ...
                                                                                         UUZ
OOE
        Mn
            28
                     0
                        -1
                            -1
                               -1 -1 .... 5 1a9x 0 0.5 1.8
                                                               K 3940 ASPC2084 ....
                                                                                          Z
00#T
        K
                        -1 -1
                               -1 -1 ....
            2.7
                39
                                            6 la9x 0 0.4 1.8
                                                                                          UΖ
ETNO
                                                               K 5942 GLUE4217 ....
1az9
                                                                                          ZZ 3.4.11.9;
DHEE
            83 29
                    23
                       -1 -1 -1 -1 .e.. 6 laz9 1 0.3 2.0
                                                              MN 441 ASP
                                                                          271 ....
DDE
        Mn 11 135
                   -1 -1 -1
                               -1 -1 ...
                                            5 laz9 2 0.2 2.0
                                                                 442 ASP
                                                                          260 b..
                                                                                              3.4.11.9;
                                                              MN
                                                                                         ZZ
  1d3v
                               -1 -1 d... 7 1d3v 0 0.3 1.7
                                                                  500 HISA 101 ....
                                                                                          JUU 3.5.3.1;
HDDD
                            -1
                                                              MN
DHDD
             2 106
                     2
                       -1 -1 -1 -1 .d.. 6 1d3v 1 0.3 1.7 MN 501 ASPA 124 ...b
                                                                                          UU 3.5.3.1;
   1e9a
                   -1 -1 -1 -1 -1 ...
                                            6 le9g 0 0.2 1.1 MN 2005 ASPB 115 ...
DDD
        Mn
             5 32
                                                                                         UZZ 3.6.1.1;
                                                                                        UUZZ 3.6.1.1;
DD
        Mn
             5 -1 -1 -1 -1
                               -1 -1 ..
                                            6 le9q 0 0.1 1.1 MN 2008 ASPB 147 ..
  1eqi
                                            5 legi
                                                    0 0.3 1.7
                                                              MN 601 ASPA 403 b..
                                                                                              5.4.2.1;
DHH
                    -1 -1 -1 -1 .ee
                                                                                         UU
DSDH
        Mn
            50 382
                     1 -1 -1
                               -1 -1 ...e 4 leqj 1 0.3 1.7 MN 701 ASPA 12 b...
                                                                                              5.4.2.1;
   1f3i
DE
                -1 -1 -1 -1 -1 ...
                                            5 1f3i 1 0.4 2.3
                                                                 498 ASPA 97 ..
                                                                                        UZZ
        Mn 229
                                                              MN
EE
                               -1 -1 ..
                                            5 1f3i 1 0.3 2.3 MN
                                                                                       ZZZ
        Mn 235 -1 -1 -1 -1
                                                                 499 GLUA 110 b.
```

1f52	2																				
EEE	Mn	81	8	-1	-1	-1	-1	-1		5	1f52	1	0.2	2.5	MN	469	GLUA	131		ZZ	6.3.1.2;
EHE	Mn	140	88	-1	-1	-1	-1	-1	.d.												6.3.1.2;
1f5a	a																				
DDD	Mn	2	52	-1	-1	-1	-1	-1		6	1f5a	0	0.3	2.5	MN	1001	ASPA	113		BUZ	2.7.7.19;
DD	Mn	2	-1	-1	-1	-1	-1	-1		5	1f5a	3	0.4	2.5	MN	1002	ASPA	113		i uuz	2.7.7.19;
1ii7	7																				
DHDH	Mn	2	39	159	-1	-1	-1	-1	.e.e	6	1ii7	0	0.2	2.2	MN	403	ASPA	8		l uz	
DNHH	Mn	35	89	33	-1	-1	-1	-1	ed	6	1ii7	0	0.2	2.2	MN	404	ASPA	49		i uz	
1ksi	i																				
ННН	Cu	2	159	-1	-1	-1	-1	-1	eed	5	1ksi	0	0.3	2.2	CU	650	HISA	442		ZZ	1.4.3.6;
DODDO	Mn	1	1	139	1	-1	-1	-1		6	1ksi	0	0.3	2.2	MN	653	ASPA	451		j z	1.4.3.6;
1dqi	i										** a	mbi	igui	ties	***						
ЕНННСН	Fe	2	25	6	64	3	-1	-1	.eee.	d6	1dqi	0	0.2	1.7	FE	501	GLUA	14			
нннсн	Fe	25	6	64	3	-1	-1	-1	eee.d	6	1dqi	0	0.3	1.7	FE	502	HISB	16		Ż	
1guç	1										_										
CCHH	Zn	3	60	49	-1	-1	-1	-1	dd	4	1guq	0	0.1	1.8	ZN	350	CYSA	52			2.7.7.10;
EHHH	Fe	99	15	2	-1	-1	-1	-1	.dee	4	1guq	0	0.2	1.8	FE	351	GLUA	182	b	İ	2.7.7.10;
00	K	13	-1	-1	-1	-1	-1	-1		7	1guq	0	0.2	1.8	K	353	ASNA	153		ZZZZZ	2.7.7.10;
1mty	Y																				
EEEH	Fe	65	34	3	-1	-1	-1	-1	d	6	1mty	1	0.3	1.7	FE	3	GLUD	144		ZZ	1.14.13.25;
EEH	Fe	30	3	-1	-1	-1	-1	-1	d	6	1mty	1	0.3	1.7	FE	4	GLUD	114		ZZZ	1.14.13.25;
1r2f	E																				
DEHE	Fe	31	3	91	-1	-1	-1	-1	d.	4	1r2f	1	0.4	2.1	FE	400	ASPA	67	b		1.17.4.1;
EEEH	Fe	60	34	3	-1	-1	-1	-1	d	5	1r2f	0	0.3	2.1	FE	401	GLUA	98	.b	Z	1.17.4.1;
1afr	r																				
EEEH	Fe	53	33																.b		1.14.99.6;
EEHE	Fe	38	3	83	-1	-1	-1	-1	d.	4	1afr	0	0.3	2.4	FE	365	GLUA	105	b		1.14.99.6;
1e5d	f																				
HEHD	Fe	2	65	19	-1	-1	-1	-1	e.e.												
DDH	Fe	82	61	-1	-1	-1	-1	-1	e	6	1e5d	1	0.3	2.5	FE2	2 404	ASPA	83		OUZ	
1ute	9																				
DDYH	Fe	38	3	168	-1	-1	-1	-1	e	6	1ute	0	0.2	1.5	FE1	L 501	ASPA	14		UO	3.1.3.2;
DNHH	Fe	39	95	35	-1	-1	-1	-1	ed	6	1ute	0	0.3	1.5	FE2	2 501	ASPA	52		UO	3.1.3.2;
2hmc	4																				
EHHHD	Fe	15	4	24	5	-1	-1	-1	.eee.	6	2hmq	0	0.2	1.7	FE1	101	GLUA	58		0	
HHED	Fe	29	4	48	-1	-1	-1	-1	ee	6	2hmq	0	0.4	1.7	FE2	2 101	HISA	25		OZ	
1eg9	9																				
HHD	Fe	5	149	-1	-1	-1	-1	-1	ee.		1eg9									U	1.14.12.12;
HH	Fe			-1						5	1eg9	0	0.3	1.6	FE1	L 751	HISA	83		JXX	1.14.12.12;
CC	Fe	20	-1	-1	-1	-1	-1	-1		5	1eg9	0	0.3	1.6	FE2	751	CYSA	81		JXX	1.14.12.12;
1aoz	Z																				
HCHM		62							d.d.		1aoz										1.10.3.3)
HHH				-1							1aoz									U	1.10.3.3)
HHH	Cu	42	404	-1	-1	-1	-1	-1	dee	4	1aoz	0	0.2	1.9	CU3	3 702	HISA	62		U	1.10.3.3)

НН	Cu	388	-1	-1	-1	-1	-1	-1	ee	3	1aoz	0	0.1	1.9	CU4	703	HISA	60		U	1.10.3.3)
1bt3	3																				
ННН	Cu	21	9	-1	-1	-1	-1	-1	eee	5	1bt3	0	0.4	2.5	CU2	500	HISA	88		JU	1.10.3.1;
ННН	Cu	4	30	-1	-1	-1	-1	-1	eee	5	1bt3	0	0.4	2.5	CU3	500	HISA	240		JU	1.10.3.1;
1a65	5																				
HCH	Cu	56	5	-1	-1	-1	-1	-1	d.d	3	1a65	0	0.2	2.2	CU	1	HISA	396			1.10.3.2;
НННН	Cu	288	2	50	-1	-1	-1	-1	eeee	5	1a65	0	0.2	2.2	CU	2	HISA	111		0	1.10.3.2;
HHH	Cu	43	344	-1	-1	-1	-1	-1	dee	3	1a65	0	0.2	2.2	CU	3	HISA	66			1.10.3.2;
1gof	-																				
YHH	Cu	224	85	-1	-1	-1	-1		.ee		1gof			1.7	CU		TYR	272		U	1.1.3.9) (PH
ODOOTOE	Na	3	2	3	0	104	1	-1		. 7	1gof	0	0.3	1.7	NA	702	LYS	29			1.1.3.9) (PH
111a	a.																				
ННН	Cu	4	27	-1	-1	-1	-1	-1	eee		111a				CU	629	HIS	173			
HHH	Cu	4	36	-1	-1	-1	-1		eee		111a				CU	630	HIS	324			
OOOD	Na	3	68	0	-1	-1	-1	-1		6	111a	0	0.3	2.2	NA	631	SER	507		ZZ	
1phn	n																				
ННН	Cu	1		-1			-1		ddd		1phm				CU	357	HIS	107			1.14.17.3;
HHM	Cu	2	70	-1	-1	-1	-1	-1	ee.		1phm				CU	358	HIS	242		Z	1.14.17.3;
1yai	L										** 6				* * *						
ННН	Cu	2	78	-1	-1	-1	-1	-1	dee		1yai				CU	152	HISA	45			1.15.1.1;
HHHD	Zn	9	9	3	-1	-1	-1	-1	ddd.	4	1yai	1	0.2	1.9	ZN		HISA				1.15.1.1;
НННН	Cu	2	23	55	-1	-1	-1	-1	deee	5	1yai		0.4		CU	152	HISC	45			1.15.1.1;
2mta	a.										** d:	if d	chair	ns *	* *						
HCH	Cu	39				-1				3	2mta	1	0.3	2.4	CU	0	HISA	53			1.4.99.3) CO
HM	Fe	40	-1	-1	-1	-1	-1	-1	e.	6	2mta	0	0.1	2.4	FE	200	HISC	61		BBBB	1.4.99.3) CO
1cyx	2																				
COCH	Cu	2	2	4	-1	-1	-1	-1	d		1cyx							207		J	1.10.3;
HCC	Cu	35	4	-1	-1	-1	-1	-1	d	4	1cyx					201	HIS	172		J	1.10.3;
2cua	a.										** d:				* *						
HE	Zn	2	-1	-1	_		-1				2cua			1.6			HISB				1.9.3.1;
HCCM	Cu	35	4	7	-1	-1	-1	-1	d	5	2cua		0.3		CU1	169	HISA	114		J	1.9.3.1;
COCH	Cu	2	2	4	-1	-1	-1	-1	d	5	2cua	0	0.4	1.6	CU2	169	CYSA	149		J	1.9.3.1;
1ah7	7																				
DHHD	Zn	14	49	4	-1	-1	-1		.de.		1ah7		0.2		ZN		ASP			Z	3.1.4.3;
#OHD	Zn	0	13	108	-1	-1	-1	-1	e.	5	1ah7	1	0.2	1.5	ZN	248	TRP	1		Z	3.1.4.3;
1ak()																				
DHHD	Zn	15	56	4	-1	-1	-1	-1	.de.		1ak0		0.5	1.8	ZN		ASP	45			3.1.30.1
HHD	Zn	23							ee.		1ak0		0.4		ZN		HIS	126	b	U	3.1.30.1
#OHD	Zn	_							e.		1ak0	0	0.4	1.8	ZN	273	TRP				3.1.30.1
HE		166	-1	-1	-1	-1	-1	-1	e.	3	1ak0	0	0.3	1.8	ZN	274	HIS	15	.b		3.1.30.1
1amp)																				
DEH	Zn					-1					1amp			1.8	ZN			117		Z	3.4.11.10)
HDD		20	62	-1	-1	-1	-1	-1	е	4	1amp	0	0.2	1.8	ZN	502	HIS	97	b		3.4.11.10)
1bf6	5																				
HHED	Zn	2	111	118	-1	-1	-1	-1	ee	4	1bf6	0	0.3	1.7	ZN	1	HISA	12	• • • •		

ЕНН	Zn	33	28	-1	-1	-1	-1	-1 .de	3	1bf6	0	0.2	1.7	ZN	2	GLUA	125				
1cg2)																		·		
DEH	Zn	35	209	-1	-1	-1	-1	-1e	4	1cg2	0	0.2	2.5	ZN	500	ASPA	141	.b.		Z	3.4.17.11;
HDE	Zn	29	59	-1	-1	-1	-1	-1 e	4	1cg2	0	0.2	2.5	ZN	501	HISA	112	b	ĺ	Z	3.4.17.11;
1dsz	i									** eg	quiγ	<i>r</i> ale	nt ch	ains	s prol	bably	***				
CCCC	Zn	3	14	3	-1	-1	-1	-1	4	1dsz	0	0.1	1.7	ZN	1121	CYSA	1135				
CCCC	Zn	6	10	3	-1	-1	-1	-1	4	1dsz	0	0.1	1.7	ZN	1122	CYSA	1171				
CCCC	Zn	3	14	3	-1	-1	-1	-1	4	1dsz	0	0.1	1.7	ZN	1221	CYSB	1235				
CCCC	Zn	6	10	3	-1	-1	-1	-1	4	1dsz	0	0.1	1.7	ZN	1222	CYSB	1271				
1e3j	İ																				
CCCC	Zn	3	3	8	-1	-1	-1	-1	4	1e3j	0	0.2	2.3	ZN	901	CYSA	96				
CHE	Zn	25	1	-1	-1	-1	-1	-1 .e.	4	1e3j	0	0.2	2.3	ZN	902	CYSA	41			Z	
1ete	<u> </u>									** di	.f c	chair	ıs *	* *							
EH	Zn	22	-1	-1			-1	-1 .e	4	1ete	0	0.4	2.2	ZN	135	GLUA	58			ZZ	
DE	Zn	64	-1	-1	-1	-1	-1	-1	2	1ete	1	0.1	2.2	ZN	1136	ASPB	14				
DE	Zn	2	-1	-1	-1	-1	-1	-1	3	1ete	1	0.3	2.2	ZN	1137	ASPB	40			Z	
1fic)																				
##H	Zn	1	0		-1		-1	-1 . d		1fio				ZN		META					
HH	Zn	3	-1	-1	-1	-1	-1	-1 dd	2	1fio	0	0.2	2.1	ZN	502	HISA	75				
1hwt																					
CCCC	Zn	3	7		-1			-1		1hwt			2.5	ZN		CYSC			ļ	J	
CCCC		17	3	9	-1	-1	-1	-1	5	1hwt	0	0.3	2.5	ZN	2	CYSC	64			J	
1hzy	7																				
HHD	Zn		244					-1 ee.		1hzy						HISA				UZ	3.1.8.1;
HH								-1 de		1hzy						HISA				UZZ	3.1.8.1;
NO		116	-1	-1	-1	-1	-1	-1	6	1hzy	1	0.5	1.3	NA	405	ASNA	38	• •		ZZZZ	3.1.8.1;
1i1i																					
HHE	Zn	4						-1 ee.		1i1i				ZN		HISP				Z	3.4.24.16;
HE	Zn	4	-1	-1	-1	-1	-1	-1 e.	3	1i1i	0	0.2	2.3	ZN	702	HISP	160	• •		Z	3.4.24.16;
1ile		_	005	_	_	-		-	_	4 . 7	_					~~	101		1	_	
CCCC	Zn		205		-1			-1		1ile										Z	
CCCC	Zn	3	38	2	-1	-1	-1	-1	5	1ile	Ü	0.8	2.5	ZN	1102	CYS	461	• • • •		Z	
1j79		0	-	000	-	-	1	-	_	1 '50	0	0 0	1 🖪		400		1.0		1 .		2 5 0 2.
HH D	Zn		-1		-1			-1 ee .		_						HISA				U Z	3.5.2.3;
HH 1:0	Zn	-1	38	-1	-1	-1	-1	-1 .de	4	1j79	Т	0.2	1./	ZIV	401	HISA	139	• • •		Z	3.5.2.3;
1j9y		2.0	1.0	1	1	1	1	1 -	1	1 - 0	0	0 0	1 0	737	1002	TTT (17)	70	1_	1	-	2 2 1 70.
								-1 e												Z	3.2.1.78;
RHDE		3	12	3 /	-1	-1	-1	-1 .d	4						1004	ARGA	208	b.			3.2.1.78;
1kev		2.2	0.1	1	1	1	1	1 -	~	** a		_			252	OVO?	27		ı		1 1 1 0.
CHD	Zn	22						-1 .e.		1kev						CYSA					1.1.1.2;
CHED	Zn	22	1	90	-T	- T	- T	-1 .e	4	1kev	U	0.3	∠.∪	ΔIN	353	CYSB	3 /	• • • •	I		1.1.1.2;
1lam		77	0	2	1	1	1	1	c	1lam	Λ	0 4	1 6	711	100	7 C.D	255		1	T 17	3.4.11.1
DODE KDDE	Zn Zn	, , 5	0 18					-1 -1		11am				ZN							3.4.11.1
00 VDDF		5 98						-1 -1		11am						THR				Z	3.4.11.1
00	∠11	20	-T	-1	-T	-T	-1	-ı	3	тташ	44	0.7	1.0	ΔIN	430	IUK	т/3	• •	I	۷	2.4.11.1

1pt	za																					
HCCC	Zn	30	3	16	-1	-1	-1	-1	d	4	1ptq	0	0.3	2.0	ZN	1	HIS	231		1		2.7.1;
CCHC	Zn										1ptq									į		2.7.1;
1qł																				'		
HHHD	Zn	2	54	24	-1	-1	-1	-1	ede.	6	1qh5	0	0.3	1.5	ZN	261	HISA	54		1	ZZ	3.1.2.6;
DHDH	Zn	1	75								1qh5									i		3.1.2.6;
1qt	-W																			•		
HHE	Zn	40	36	-1	-1	-1	-1	-1	ee.	4	1qtw	0	0.1	1.0	ZN	301	HISA	69		1	Z	3.1.21.2;
HDH	Zn	47	2	-1	-1	-1	-1	-1	e.e	5	1qtw	0	0.2	1.0	ZN	302	HISA	182	.b.	j	ZZ	3.1.21.2;
EDHE	Zn	34	37	45	-1	-1	-1	-1	d.	5	1qtw	0	0.2	1.0	ZN	303	GLUA	145		Ì	Z	3.1.21.2;
1rm	nd																			·		
CHCH	Zn	4	23	2	-1	-1	-1	-1	.d.d	4	1rmd	0	0.1	2.1	ZN	117	CYS	2				
CCCC	Zn	3	17	3	-1	-1	-1	-1		4	1rmd	0	0.1	2.1	ZN	118	CYS	26		j		
CHCC	Zn	2	18	3	-1	-1	-1	-1	.d	4	1rmd	0	0.1	2.1	ZN	119	CYS	41		j		
ССНН	Zn	5	12	4	-1	-1	-1	-1	ee		1rmd				ZN		CYS	91		į		
1sm	nl																			'		
DHH	Zn	1	136	-1	-1	-1	-1	-1	.ee	5	1sml	0	0.2	1.7	ZN	268	ASPA	88		1	ZZ	3.5.2.6;
ННН	Zn	2	74	-1							1sml						HISA			į	Z	3.5.2.6;
1ta	af																			'		
ED	Zn	4	-1	-1	-1	-1	-1	-1		3	1taf	0	0.4	2.0	ZN	2001	GLUB	31	.b	2	<u></u>	
QQ	Zn	0	-1	-1	-1	-1	-1	-1			1taf						GLNB				ZZ	
-~ 1us	sh																			'		
DHDQ	Zn	2	41	170	-1	-1	-1	-1	.e	5	1ush	0	0.2	1.7	ZN	600	ASP	41		1	U	3.1.3.5;
DNHH	Zn										1ush									i		3.1.3.5;
1vf			-																	ļ		
CCCC	Zn	3	27	3	-1	-1	-1	-1		4	1vfy	0	0.1	1.1	ZN	300	CYSA	192		1		
CCCH	Zn		21								1vfy									i		
1zn											_ · - 1	-								ı		
CCCC	Zn	3	7	6	-1	-1	-1	-1		5	1zme	0	0.4	2.5	ZN	1	CYSC	34		1	J	
CCCC	Zn		3								1zme				ZN					i	J	
3ca				•	_	_	_	_		-		Ŭ	- • •			_				ı	-	
EE	Zn	3	– 1	-1	-1	-1	-1	-1		2.	3cao	1	0.4	1.6	ZN	114	GLUA	26	b.	1		
HH	Fe	16		-1							3cao				FE		HISA				BBBB	
HH	Fe	22		-1			-1				3cao			1.6	FE		HISA				BBBB	
HH	Fe			-1							3cao			1.6	FE		HISA				BBBB	
HH									ee													
4mt			_	_	_	-	_	_		J	5040	J	· · ·	1.0		-07	111011	, ,	• •	1 -		
CCCC	Zn	4	5	5	_1	_1	_1	_1		4	4mt2	Ω	0 2	2 0	7.N	67	CYS	15		1		
CCCC											4mt2									1		
1cm		O			_			_			** am					0.0	010	,		I		
OOEO	Na	2	46	1	_1	_1	_1	_ 1			1cm5	_	-			1056	71 7 7 7	652		1		2.3.1.54;
OEO	Na Na																			 		2.3.1.54;
0£0 1d7		40	Т	- T	- T	-1	-T	-т	• • •	٥	TCIIIO	Τ	∪.∠	4.3	MA	105/	TEUB	054		1		4.3.1.341
Ta :		2	0	1	າ	1	1	1		Е	1.47	0	0.3	2 0	אַד אַר.	ΛOF	71 77 77	٥٤		1		4.1.1.64;
Ω						- 1		- 1		ר	1(1/11	()	U 3	/ U	NA	4 17	ALIAA	95		- 1		4.1.1.04/
OOTOO OSOOD	Na K		223																	l I	-	4.1.1.64;

```
1e39
        Fe 57 -1 -1 -1 -1 -1 ee
                                          6 le39 0 0.2 1.8 FE
                                                              801 HISA 18 ..
                                                                                    BBBB
HH
_{\mathrm{HH}}
           32
               -1 -1 -1 -1
                             -1 -1 ee
                                          6 le39 0 0.2 1.8 FE
                                                              802 HISA
                                                                                    BBBB
           14 -1 -1 -1 -1 -1 ee
                                                 0 0.2 1.8 FE 803 HISA 58 ..
_{
m HH}
                                          6 1e39
                                                                                    BBBB
_{\mathrm{HH}}
               -1
                  -1
                      -1 -1
                             -1 -1 ee
                                          6 1e39 0 0.2 1.8 FE
                                                              804 HISA 61 ..
                                                                                    BBBB
00000
                1
                   26
                        2
                          -1
                              -1 -1 ..... 6 le39 0 0.3 1.8 NA 810 THRA 506 .....
                                                                                    Z
                                            ** dif chains ***
   1hx6
               -1 -1 -1 -1
                                          5 1hx6 0 0.2 1.6 NA 703 ASNA 262 ...
                                                                                    ZZZ
ON
        Na
                              -1 -1 ..
                3 -1 -1 -1 -1 ...
DND
                                          6 1hx6
                                                 0 0.1 1.6
                                                          NA 705 ASPA 143 ...
                                                                                     ZZZ
        Na 150 -1 -1 -1 -1 -1 ...
                                          6 1hx6
                                                 0 0.2 1.6
                                                          NA 706 GLUB 111 ..
                                                                                    ZZZZ
1eex
                          -1 -1 -1 ..... 7 leex 0 0.5 1.7
OEEOO
                       66
                                                            K 603 GLNA 141 .....
                                                                                     UU 4.2.1.28;
OSEE
               1 15 -1 -1 -1 -1 .... 6 leex 0 0.2 1.7
                                                            K 604 GLYA 261 ..b.
                                                                                      ZZ 4.2.1.28;
   1k4c
                                                            K 3001 GLYC
00
        K
            1 -1 -1 -1 -1 -1 ...
                                          3 1k4c 40 0.3 2.0
                                                                        77 ...
                                                                                    J
00
            1 -1 -1 -1 -1 -1 ..
                                          4 1k4c 40 0.3 2.0
                                                            K 3002 VALC
                                                                        76 ..
                                                                                    JJ
00
                  -1 -1 -1
                             -1 -1 ..
                                          4 1k4c 40 0.3 2.0
                                                            K 3003 THRC
                                                                        75 ..
                                                                                    JJ
             0 -1 -1 -1 -1 -1 ...
OT
        K
                                          3 1k4c 40 0.3 2.0
                                                            K 3004 THRC 75 ..
                                                                                    J
```

ARCHITECTURE OF METAL COORDINATION GROUPS - TABLE 5W (continued)

Metal coordination groups in which one metal ion is coordinated by more than one protein chain within the asymmetric unit.

Equivalent coordination groups involving duplicate protein chains within the asymmetric unit have been eliminated. The column headings have the same meaning as in Table 3 a) and Table 3D. When the *seqdif* is given as -99 this indicates that the two donors are in different protein chains; for example in the first coordination group Zn HHH 4 6 starts at his A142 and the same Zn atom is part of Zn OY 0 where O and Y belong to another protein chain.

cngroup		se	eqdi	f 1 1	to 7			his	cn	cn2	rms	res	met	tal	startAA	carbi	othdonors	e.c.no
НННОУ	Zn	4	6	-99	0	-1	-1	-1 eee.	. 5 1atl	L 0	0.1	1.8	ZN	401	HISA 142			3.4.24.42;
DDON	Ca	3	-99	56	-1	-1	-1	-1	4 1c8r	n 0	0.5	2.3	CA	302	ASPB 160		j	
ONDD	Ca	56	-99	3	-1	-1	-1	-1	5 1c8r	n 0	0.5	2.3	CA	303	THRA 219		Z	
ODOTODS	Ca	0	-99	0	2	2	2	-1	7 1d2v	7 0	0.2	1.8	CA	600	ASPA 96			1.11.1.7;
DOQDON	Ca	1	2	14	1	-99	-1	-1	6 ledr	n 0	0.1	1.5	CA	2	ASPB 47	b		
DE	Ca	-99	-1	-1	-1	-1	-1	-1	2 1hei	L 2	0.5	2.1	CA	632	ASPA 437	.b		
OOTOOQ	Ca	2	0	188	5	-99	-1	-1	6 1jg8	3 0	0.5	1.8	CA	901	THRB 12			4.1.2.5;
QOTOO	Ca	-99	0	188	5	-1	-1	-1	. 5 1jg8	3 1	0.4	1.8	CA	903	GLNA 236			4.1.2.5;
QOOTOO	Ca	-99	2	0	188	5	-1	-1	6 1jg8	3 0	0.5	1.8	CA	904	GLNB 236			4.1.2.5;
HHHOS	Zn	4	6	-99	0	-1	-1	-1 eee.	. 5 1kar	0 9	0.2	1.6	ZN	613	HISP 176			3.4.24;
OSO	Ca	5	-99	-1	-1	-1	-1	-1	6 1qd6	5 0	0.3	2.1	CA	1	ARGC 147		ZZZ	3.1.1.32;
00S	Ca	-99	5	-1	-1	-1	-1	-1	4 1qd6	5 0	0.2	2.1	CA	2	SERC 106		Z	3.1.1.32;
HDDM	Zn	12	63	-99	-1	-1	-1	-1 e	4 1qq	9 1	0.1	1.5	ZN	901	HISA 85			3.4.11
DEHOM	Zn	35	115	-99	0	-1	-1	-1e.	. 5 1qq	0	0.4	1.5	ZN	902	ASPA 97	.b		3.4.11
DDD	Ca	-99	-99	-1	-1	-1	-1	-1	3 2mp1	0	0.2	2.4	CA	1	ASPA 78			
QODD	Ca	287	29	-99	-1	-1	-1	-1	6 1g8}	0 2	0.1	1.6	CA	5008	GLNA 467	b	ן טט	
DQOD	Ca	-99	287	29	-1	-1	-1	-1	6 1g8}	0 2	0.1	1.6	CA	5108	ASPA 129	b	ן טט	
HHHEH	Fe	40	-99	15	32	-1	-1	-1 eee.	e 5 1dxı	0	0.2	2.0	FE	500	HISL 190	b.		
EE	Mg	-99	-1	-1	-1	-1	-1	-1	3 laih	n 0	0.3	2.5	MG	103	GLUB 270	.b	Z	
DDD	Mg	-99	-99	-1	-1	-1	-1	-1	6 1e2a	a 0	0.1	2.3	MG	57	ASPA 81		ZZZ	2.7.1.69;
DD	Mg	-99	-1	-1	-1	-1	-1	-1	6 1em9	0	0.2	2.0	MG	306	ASPA 71		ZZZZ	
00	Na	-99	-1	-1	-1	-1	-1	-1	5 1eyz	z 1	0.2	1.8	NA	960	ALAA 53		ZZZ	2.1.2;
DE	Mg	-99	-1	-1	-1	-1	-1	-1	2 1g29	0	0.5	1.9	MG	203	ASP1 80			
ESS	Mg	-99	3	-1	-1	-1	-1	-1	6 1ryp	0 9	0.4	1.9	MG	2	GLUE 105		ZZZ	3.4.99.46;
OOOD	Mg	3	3	-99	-1	-1	-1	-1	4 1ryr	0 9	0.2	1.9	MG	7	ILEI 163			3.4.99.46;
0000	Mg	3	3	-99	-1	-1	-1	-1	4 1ryr	0 9	0.3	1.9	MG	8	ALAL 165			3.4.99.46;
HDE	Mg	1	-99	-1	-1	-1	-1	-1 e	3 2occ	0	0.3	2.3	MG	518	HISA 368			1.9.3.1;
DDOE	Mg	4	-99	1	-1	-1	-1	-1	6 1qh8	3 0	0.2	1.6	MG	3002	ASPB 349		ן טט	1.18.6.1;
OEDD	Mg	1	-99	4	-1	-1	-1	-1	6 1qh8	3 0	0.1	1.6	MG	3006	LYSB 106	• • • •	ן טט	1.18.6.1;

DD	Mn -99 -	1 -1	-1	-1	-1	-1	5 1cnz	1 0.5 1.8	MN	801 ASPA	A 251		UZZ	
DDD	Mn -99	4 -1	-1	-1	-1	-1	3 1cnz	1 0.5 1.8	MN	802 ASPA	A 227			
HDE	Fe -99	4 -1	-1	-1	-1	-1 e	3 1qgh	0 0.3 2.3	FE	157 HIS	31			
DEH	Fe 4-9	9 -1	-1	-1	-1	-1e	3 1qgh	0 0.3 2.3	FE	157 ASPI	58		ĺ	
DHD	Zn -99	4 -1	-1	-1	-1	-1 .e.	3 1hfe	0 0.2 1.6	ZN	500 ASPS	86		ĺ	1.18.99.1;
HH	Cu -99 -	1 -1	-1	-1	-1	-1 ee	2 laoz	0 0.1 1.9	CU	812 HIS	A 286		İ	1.10.3.3)
DHEE	Zn 3-9	9 4	-1	-1	-1	-1 .e	4 1b0n	0 0.3 1.9	ZN	1001 ASPA	4 63	b.	İ	
DKD	Zn 37 -9	9 -1	-1	-1	-1	-1	3 1b0n	1 0.2 1.9	ZN	1003 ASPA	4 55		İ	
HE	Zn -99 -	1 -1	-1	-1	-1	-1 d.	5 1b0n	1 0.4 1.9	ZN	1005 HISA	4 66		UUZ	
H D	Zn -1 -	1 -99	-1	-1	-1	-1 d.	4 1cg2	0 0.2 2.5	ZN	502 HIS	A 229		ZZ	3.4.17.11;
DH	Zn -99 -	1 -1	-1	-1	-1	-1 .d	4 1cg2	0 0.3 2.5	ZN	502 ASPA	387		ZZ	3.4.17.11;
DCHC	Zn 2 6	3 –99	-1	-1	-1	-1e.	4 1d8d		ZN	1001 ASPE	3 297	b	İ	2.5.1.21;
HDCH	Zn -99	2 50	-1	-1	-1	-1 ee	4 1dce	0 0.2 2.0	ZN	900 HIS	A 2	.b	İ	2.5.1;
HEHO	Zn 3 12	5 -99	0	-1	-1	-1 d.d	5 1dtd	2 0.6 1.6	ZN	301 HIS	424		İ	3.4.15.1;
EEHE	Zn 26	3 –99	-1	-1	-1	-1d.	4 1ec5	0 0.1 2.5	ZN	50 GLUI	3 10	b	İ	
EEEH	Zn -99 2	5 3	-1	-1	-1	-1d	4 1ec5	0 0.2 2.5	ZN	50 GLUI	3 36	.b	İ	
CCCC	Zn 5-9	9 5	-1	-1	-1	-1	4 1ed5	0 0.1 1.8	ZN	900 CYS	A 96		İ	1.14.13.39;
HEQ	Zn 38 -9	9 -1	-1	-1	-1	-1 e	4 1f83	1 0.5 2.0	ZN	500 HISA	A 229	.b.	Z	3.4.24.69;
НННН	Zn 11 -9	9 11	-1	-1	-1	-1 eded	4 1hwt	0 0.2 2.5	ZN	9 HISI	80		j	
DD	Zn -99 -	1 -1	-1	-1	-1	-1	4 1taf	0 0.4 2.0	ZN	2003 ASPA		.b	ZZ	
CC	Zn -99 -	1 -1	-1	-1	-1	-1	2 3eip		ZN	285 CYS			i	
HEHO	Zn 3 12	4 -99	-1	-1	-1	-1 d.d.	4 4cpa		ZN	1 HIS		.b	İ	3.4.17.1) CO
TODO	Na 1-9	9 1	-1	-1	-1	-1	5 1f80		NA	12 THR			i z	2.7.8.7;
													1	