Data Structure: Heap

Yongjun Park
Hanyang University

priority queue (heap)

- the element to be deleted is the one with the highest (or lowest) priority
- priority queue Q supports
 - insert (x, Q)
 - y = pop(Q) (=deleteMin(Q) or deleteMax(Q))
- priority queue is used for scheduling

binary (min) heap

a min heap is a complete binary tree and partially ordered tree in which the key value in each node is no larger than the key values in its children

complete tree

every level of tree is completely filled, with the exception of the bottom level, which is filled from left to right

binary (min) heap

- partially ordered tree
 - the key of each internal node is less than or equal to the keys of its children
 - the smallest element should be at the root

binary heap

binary heap can be stored in array since it is a complete tree

- left_child(i) = 2i (when 2i <= n)</pre>
- right_child(i) = 2i + 1 (when 2i+1 <=n)</pre>
- parent(i) = floor(i/2) (when i>=2)

binary heap


```
struct HeapStruct
{
  int Capacity; // max heap capacity
  int Size; // current heap size
  ElementType *Elements;
};
```

insertion

insertion of 14

x = 14

i=11heap[floor(i/2)] $\leq X$? i=5heap[floor(i/2)] $\leq X$?

i=2heap[floor(i/2)] $\leq X$?

insertion

the complexity of the insertion function is O(log₂n)

DeleteMin: a possible way?

DeleteMin: what if?

DeleteMin

- choose the smaller one between H->Elements[LChild] and H->Elements[RChild]
- choose the smaller one between LastElement and H->Elements[Child]

DeleteMin

```
ElementType DeleteMin( PriorityQueue H )
    int i, Child;
    ElementType MinElement, LastElement;
    MinElement = H->Elements[ 1 ];
    LastElement = H->Elements[ H->Size-- ];
    /*percolating down*/
    for( i = 1; i*2 <= H->Size; i = Child )
        Child = i * 2;
        if( Child != H->Size && H->Elements[ Child + 1 ] < H->Elements[ Child ] )
            Child++;
       if( LastElement > H->Elements[ Child ] )
            H->Elements[ i ] = H->Elements[ Child ];
       else
            break:
    H->Elements[ i ] = LastElement;
    return MinElement;
     the complexity of the deletion function is O(log<sub>2</sub>n)
```

BuildHeap

- Build a Heap containing n keys takes $O(n \log n)$ with consecutive insertions
- But it can take O(n) if they are already in array.
- Starting with the lowest non-leaf node, working back towards root, perform percolatingdown on each node of the tree.

BuildHeap

Let's assume that the tree is complete:

There is one key at level 0, which might sift down *h* levels.

There are two keys at level 1, which might sift down h-1 levels

There are four keys at level 2, which might sift down h-2 levels

...

$$S = h + 2(h - 1) + 4(h - 2) + \dots + 2^{h-1}(1)$$

$$2S = 2h + 4(h - 1) + 8(h - 2) + \dots + 2^{h-1}(2) + 2^{h}(1)$$

$$2S - S = -h + (2 + 4 + \dots + 2^{h-1}) + 2^{h}$$

$$= -h - 1 + (1 + 2 + 4 + \dots + 2^{h-1}) + 2^{h}$$

$$= 2^{h} + 2^{h} - (h + 2) = 2 \cdot 2^{h} - h - 2$$

$$= 2 \cdot 2^{\log n} - \log n - 2 \le 2n$$

heap sort

- building a binary heap of n elements: O(n)
- DeleteMin operation n times: O(n log n)
- need extra space to save the sorted list: use the last cell in the previous heap

heap sort (by increasing order with max heap)

