Hilbert's Nullstellensatz

Yvan Ngumeteh

Emma Ahrens

7. Mai 2018

- 1 Abstract
- 2 Einleitung

3 Hyperebenen

Satz 1 (Hilbert's Nullstellensatz für Hyperebenen). Sei k algebraisch abgeschlossen, $f \in k[X_1, \ldots, X_n]$ nicht konstant und $\emptyset \neq H_f \subseteq k^n$ die korrespondierende Hyperebene. Wir können f schreiben als $f = f_1^{n_1} \cdots f_r^{n_r}$ mit f_1, \ldots, f_r irreduzibel und paarweise teilerfremd. Dann ist

$$H_f = H_{f_1} \cup \cdots \cup H_{f_r} und \mathbf{I}(H_f) = (f_1 \cdots f_r).$$

Insbesondere gilt, falls f irreduzibel ist, dass $\mathbf{I}(H_f) = (f)$.

4 Schwache Form

Definition 2 (Algebraische Elemente). Sei A eine k-Algebra. Dann heißt die Menge $a_1, \ldots, a_m \in A$ algebraisch unabhängig, falls kein Polynom $0 \neq F \in k[X_1, \ldots, X_m]$ existiert mit $F(a_1, \ldots, a_m) = 0$.

Im Folgenden sind A und B kommmutative Ringe mit Eins und $A \subseteq B$.

Definition 3 (Ganze Elemente). Wir nennen $b \in B$ ganz über A, wenn es Elemente $a_1, \ldots, a_n \in A$ gibt mit

$$b^{n} + a_{n-1}b^{n-1} + \dots + a_{1}b + a_{0} = 0$$

für ein $n \in \mathbb{N}$. Außerdem heißt B ganz über A, wenn jedes Element aus B ganz über A ist.

Lemma 4. Sei $b \in B$. Dann ist äquivalent:

- 1. b ist ganz über A
- 2. Der von b erzeugte Teilring $A[b] \subseteq B$ ist ein endlich erzeugter A-Modul.
- 3. Es existiert ein Teilring $C \subseteq B$ mit $A[b] \subseteq C$ und C ist ein endlich erzeugter A-Modul.

Beweis. $(1 \Rightarrow 2)$: Es ist $A[b] = \{f(b) \mid f \in A[X]\}$ und da b ganz ist, existiert ein Polynom $0 \neq g \in A[X]$ mit g(b) = 0 und $Grad(g) = n \geq 1$. Da A[X] ein euklidischer Ring ist, können wir jedes $f \in A[X]$ schreiben als f = qg + r mit $q, r \in A[X]$ und Grad(r) < n. Also f(b) = q(b) * g(b) + r(b) = r(b) und f ist eine A-Linearkombination von $1, b, b^2, \ldots, b^{n-1}$, also ist A[b] endlich erzeugt.

 $(2 \Rightarrow 3)$: Setze C := A[b], dann ist C ein Teilring von B und die Aussage folgt.

 $(3 \Rightarrow 1)$: Seien $c_1, \ldots, c_n \in C$ mit $C = \sum_{i=1}^n Ac_i$. Es gilt $b \in A[b] \subseteq C$, also auch $bc_i \in C$ und es existieren die $a_{ij} \in A$ mit $bc_i = \sum_{j=1}^n a_{ij}c_i$. Sei $M \in A^{n \times n}$ eine Matrix mit $(M)_{i,j} = a_{ij}$ für alle $i, j \in \underline{n}$ und $v \in A^n$ der Vektor mit $v_i = c_i$ wie oben. Dann entsprechen die obigen Gleichungen dem Gleichungssystem

$$Mv = bv \Leftrightarrow (M - I_n)v = 0.$$

Die Cramersche Regel besagt, dass $v_i = \frac{Det((M-I_n)_i)}{Det(M-I_n)} \Leftrightarrow v_i Det(M-I_n) = Det((M-I_n)_i)$, wobei in die Matrix $(M-I_n)_i$ in unserem Fall nur Nullen in der i-ten Spalte stehen. Also gilt

$$Det(M - I_n)_i = 0 \Rightarrow v_i Det(M - I_n) = 0.$$

Wir müssen noch zeigen, dass daraus $Det(M-I_n)=0$ folgt, denn dann können wir die Determinante ausschreiben und $1,b,\ldots$ wird linear abhängig über A, also ist b ganz über A.

Es ist $1 \in C$, also existiert eine Linearkombination $1 = \sum_{i=1}^{n} a_i c_i \Leftrightarrow Det(M - I_n) = \sum_{i=1}^{n} a_i c_i Det(M - I_n) = 0$. Also gilt $Det(M - I_n) = 0$ und die Behauptung folgt.

Korollar 5. Seien A, B kommutative Ringe mit $A \subseteq B$.

- 1. Falls $B = A[b_1, \ldots, b_n]$, wobei jedes $b_i \in B$ ganz über $A[b_1, \ldots, b_{i-1}]$ ist, dann ist B endlich erzeugter A-Modul und ganz über A.
- 2. Die Menge $\overline{A}_B := \{b \in B \mid b \text{ ganz ""uber } A\}$ ist ein Teilring von B und heißt ganzer Abschluss von A in B.
- 3. Sei $C \subseteq B$ ein Teilring mit $A \subseteq C$. Falls C ganz ist über A und B ganz ist über C, dann ist auch B ganz über A.
- 4. Falls B ein Körper ist und ganz über A, dann ist A auch ein Körper.

Beweis. 1. Beweis durch Induktion über $n \in \mathbb{N}$.

n=1: Sei $B_n=B_1=A[b_1]$ und b_1 ganz über A. Dann folgt mit Lemma 4, dass $A[b_1]$ ein endlich erzeugter A-Modul ist und $A[b_1]$ ganz über A ist.

Angenommen die Behauptung gilt für ein beliebiges, aber festes $n \in \mathbb{N}$.

- $n \to n+1$: Sei $B_{n+1} = A[b_1, \dots, b_{n+1}]$ und b_i ganz über B_{i-1} für jedes $i \in \underline{n+1}$. Nach Induktionsvoraussetzung wissen wir, dass B_n endlich erzeugter A-Modul und ganz über A ist. Außerdem ist b_{n+1} ganz über B_n und damit auch $B_n[b_{n+1}] \cong B_{n+1}$ endlich erzeugter A-Modul und B_{n+1} ganz über A.
- 2. Zu zeigen ist nach dem Unterringkriterium, dass für $b, b' \in \overline{A}_B$ auch $bb', b b' \in \overline{A}_B$ und $1 \in \overline{A}_B$. Die 1 ist offensichtlich ganz über A, also gilt $1 \in \overline{A}_B$. Es sind b, b' ganz in A, also auch b' ganz in A[b], also folgt mit (1), dass alle Elemente aus A[b, b'] ganz über A sind, also insbesondere bb' und b b'. Also ist \overline{A}_B ein Unterring von B.
- 3. B ist ganz über C, also gilt für ein $b \in B$, dass $b^m + c_{m-1}b^{m-1} + \ldots + c_0 = 0$ mit $m \ge 1, c_i \in C$. Da c_0, \ldots, c_{m-1} ganz sind in A, ist (1) anwendbar und $A[c_0, \ldots, c_{m-1}]$ ist endlich erzeugter A-Modul und ganz über A. Außerdem ist b ganz über $A[c_0, \ldots, c_{m-1}]$ und mit nochmaliger Anwendung folgt, dass auch $C' := A[c_0, \ldots, c_{m-1}, b]$ endlich erzeugter A-Modul und ganz über A ist. Also $A[b] \subseteq C' \subseteq B$ und mit Lemma 4 folgt, dass b ganz ist über A.
- 4. A ist ein Ring, also müssen wir zeigen, dass $A*=A-\{0\}$ ist. Sei $a\in A\subseteq B$. Dann existiert $b\in B$ mit ab=1. b ist ganz in A, also existieren $a_i\in A$ und $m\geq 1$ mit

$$b^{m} + a_{m-1}b^{m-1} + \dots + a_{0} = 0$$

$$\Leftrightarrow b^{m}a^{m-1} + a_{m-1}b^{m-1}a^{m-1} + \dots + a_{0}a^{m-1} = 0$$

$$\Leftrightarrow b = -(a_{m-1}b^{m-1}a^{m-1} + \dots + a_{0}a^{m-1}) \in A.$$

Also ist A ein Körper.

Lemma 6. Sei $M \subseteq \mathbb{N}_0^n$ und $N(\alpha) = \sum_{i=0}^{n-1} \alpha_{n-i} r^i$ für ein $r \in \mathbb{N}$, das größer ist als jede Komponente jedes Elements aus M. Dann gilt für $\alpha, \alpha' \in M_n$ und $\alpha \neq \alpha'$, dass $N(\alpha) \neq N(\alpha')$.

Eine k-Algebra ist im Folgenden immer eine kommutative, assoziative k-Algebra mit Eins.

Beweis. Wir führen eine Induktion über $n \in \mathbb{N}$.

Sei n = 1 und $\alpha, \alpha' \in M_n$ mit $\alpha \neq \alpha'$ und $N(\alpha) = N(\alpha')$. Dann folgt

$$\sum_{i=0}^{n-1} \alpha_{n-i} r^i = \sum_{i=0}^{n-1} \alpha'_{n-i} r^i$$
$$\Leftrightarrow \alpha_1 = \alpha'_1.$$

Das ist ein Widerspruch, also $N(\alpha) \neq N(\alpha')$.

Sei n > 1 mit $\alpha \neq \alpha'$ und $N(\alpha) = N(\alpha')$. Falls $\alpha_n = \alpha'_n$, betrachten wir $\beta = (\alpha_1, \dots, \alpha_{n-1})$ und $\beta' = (\alpha'_1, \dots, \alpha'_{n-1})$. Sonst folgt

$$\sum_{i=1}^{n-1} \alpha_{n-i} r^{i} = \sum_{i=0}^{n-1} \alpha'_{n-i} r^{i}$$

$$\Leftrightarrow \alpha_{0} + \sum_{i=1}^{n-1} \alpha_{n-i} r^{i} = \alpha'_{0} + \sum_{i=0}^{n-1} \alpha'_{n-i} r^{i}$$

$$\Leftrightarrow \sum_{i=1}^{n-1} \alpha_{n-i} r^{i} - \sum_{i=1}^{n-1} \alpha'_{n-i} r^{i} = \alpha'_{0} - \alpha_{0}$$

$$\Leftrightarrow (\sum_{i=1}^{n-1} \alpha_{n-i} r^{i-1} - \sum_{i=1}^{n-1} \alpha'_{n-i} r^{i-1}) r = \alpha'_{0} - \alpha_{0}$$

Es ist $r > |\alpha'_0 - \alpha_0| > 0$ nach Voraussetzung, aber $r \mid \alpha'_0 - \alpha_0$. Also haben wir einen Widerspruch und damit folgt insgesamt per Induktion die Behauptung.

Satz 7 (Noetherscher Normalisierungssatz). Sei A eine endlich erzeugte k-Algebra. Dann existieren algebraisch unabhängige Elemente $a_1, \ldots, a_d \in A$, so dass A ganz ist über dem Teilring $k[a_1, \ldots, a_d]$.

Beweis. Da A eine endlich erzeugte k-Algebra ist, existieren a_1, \ldots, a_n mit $A = k[a_1, \ldots, a_n]$. Wir führen nun eine Induktion über $n \in \mathbb{N}$.

Sei n = 0. Dann ist A = k und die Behauptung folgt.

Sei nun n > 0. Angenommen a_1, \ldots, a_n sind algebraisch unabhängig, dann ist A auch ganz über $k[a_1, \ldots, a_n]$ und die Behauptung folgt. Wir nehmen also an, dass a_1, \ldots, a_n nicht algebraisch unabhängig sind. Dann existiert ein nichtkonstantes Polynom $F \in k[X_1, \ldots, X_n]$ mit $F(a_1, \ldots, a_n) = 0$. Im Folgenden zeigen wir, dass (ggf. nach Umnummerierung) a_n ganz über $k[a_1, \ldots, a_{n-1}]$ ist, wir das Problem also auf a_1, \ldots, a_{n-1} zurückführen können.

Da F nicht konstant ist, hat F ohne Beschränkung der Allgemeinheit (bzw. nach Umnummerierung) irgendwo die Variable X_n . Außerdem ist

$$F = \sum_{\alpha \in \mathbb{N}_0^n} a_{\alpha} X^{\alpha} \text{ mit } a_{\alpha} \in k.$$

Wir definieren $N(\alpha) = \sum_{i=0}^{n-1} \alpha_{n-i} r^i$ für $\alpha \in \mathbb{N}_0^n$. Dabei wählen wir ein $r \in \mathbb{N}$, das größer ist als jede Komponente jedes $\alpha \in \mathbb{N}_0^n$ aus F mit $a_\alpha \neq 0$. Dann folgt mit Lemma 6, dass $N(\alpha) \neq N(\alpha')$ für $\alpha, \alpha' \in \mathbb{N}_0^n$ und $\alpha \neq \alpha'$. Setzen wir nun $r_i := r^{n-i}$ und $Y_i := X_i - X_n^{r_i}$ für $i \in \underline{n-1}$. Dann gilt für ein Monom X^α , dass

$$X^{\alpha} = X_1^{\alpha_1} \cdots X_n^{\alpha_n}$$

$$= (Y_1 + X_n^{r_1})^{\alpha_1} \cdots (Y_{n-1} + X_n^{r_{n-1}})^{\alpha_{n-1}} X_n^{\alpha_n}$$

$$= X_n^{r_1 \alpha_1 + \dots + r_{n-1} \alpha_{n-1} + \alpha_n} + \sum_{i=0}^{N-1} h_i X_n^i$$

$$= X_n^{N(\alpha)} + \sum_{i=0}^{N(\alpha)-1} h_i X_n^i$$

mit $h_i \in k[Y_1, \ldots, Y_{n-1}]$. Sei $N = \max\{N(\alpha) \mid a_\alpha \neq 0\}$, dann kann man F schreiben als

$$\tilde{F} = \lambda X_n^N + \sum_{i=0}^{N-1} h_i X_n^i.$$

Setzen wir num $y_i := a_i - a_n^{r_i}$ für $i \in \underline{n-1}$. Dann ist $R := k[y_1, \ldots, y_{n-1}] \subseteq A$ ein Teilring von A. Sei außerdem $g := \tilde{F}(y_1, \ldots, y_{n-1}, X_n) \in R[X_n]$. Es ist $g \neq 0$ und $g(a_n) = 0$. Also liefert $\frac{1}{\lambda}g$ die ganze Abhängigkeit von a_n in R.

Die Elemente y_1, \ldots, y_{n-1} sind ganz über R, also auch a_1, \ldots, a_{n-1} , da $a_i = y_i + a_n^{r_i}$ für $i \in \underline{n-1}$. Also ist mit Korollar 5(1) A ganz über R. Falls a_1, \ldots, a_{n-1} algebraisch ist, folgt die Behauptung direkt, sonst per Induktion.

Lemma 8. Sei A ein Körper, $R = k[a_1, \ldots, a_n]$ ein Ring mit $a_1, \ldots, a_n \in A$ algebraisch unabhängig in k und A ganz über R. Dann ist R ein Körper und d = 0.

Beweis. Nach Korollar 5 (4) ist R ein Körper. Angenommen d > 0. Da R ein Körper ist, existiert ein Element $e_1 \in k$ mit $e_1a_1 = 1$, also gilt $e_1a_1 - 1 = 0$ und a_1 ist nicht algebraisch unabhängig in k. Also folgt d = 0.

Satz 9 (Schwache Form von Hilbert's Nullstellensatz). Sei k algebraisch abgeschlossen. Dann sind die maximalen Ideale in $k[X_1, \ldots, X_n]$ genau die Ideale der Form $(X_1 - v_1, \ldots, X_n - v_n)$ mit $v_i \in k$. Allgemeiner gilt, falls A eine beliebige k-Algebra ist, dass $A/I \cong k$ für jedes maximale Ideal I in A.

Beweis. Wir betrachten $k[X_1, \ldots, X_n]$ und das Ideal $I = (X_1 - v_i, \ldots, X_n - v_n)$. I ist maximal, weil $k[X_1, \ldots, X_n]/I \cong k$.

Andersrum sei I ein maximales Ideal und $A := k[X_1, \ldots, X_n]/I$. Dann ist A ein Körper und also auch eine endlich erzeugte k-Algebra. Also existieren algebraisch unabhängige $a_1, \ldots, a_d \in A$, so dass der Körper A nach Satz 7 ganz über $R := k[a_1, \ldots, a_d]$ ist. Nach Lemma 8 ist d = 0. Also folgt R = k und R = k und R = k und algebraische Erweiterung von R = k. Damit existieren für alle R = k mit R = k und R = k. Damit existieren für alle R = k mit R = k.

Korollar 10 (Umformulierung der schwachen Form von Hilbert's Nullstellensatz). Sei k algebraisch abgeschlossen und I ein Ideal aus dem Polynomring $R := k[X_1, \ldots, X_n]$ mit $I \neq R$. Dann ist die V V(I) nicht leer.

Beweis. Nach Satz 9 existiert ein maximales Ideal M mit $I \subseteq M \subseteq R$ und $M = (X_1 - v_1, \dots, X_n - v_n)$ für ein $v \in k^n$. Also ist $v \in V(M)$. Aus vorherigen Vorträgen wissen wir, dass aus $I \subseteq M$ folgt, dass $V(M) \subseteq V(I)$. Da $v \in V(M)$, gilt also auch $v \in V(I)$ und $V(I) \neq \emptyset$.

- 5 Normale Form
- 6 Starke Form
- 7 Anwendung