PAC-Bayesian Online Clustering

Le li, Benjamin Guedj, Sbastien Loustau

Mathis Linger, Selim Dekali

ENSAE

Table of contents

- 1. Notation
- 2. Sparcity Regret Bounds
- 3. Adaptative Sparcity Regret Bounds
- 4. The PACO algorithm
- 5. Numercial studies

- $(x_t)_{1:T}$: online dataset, where $x_t \in \mathbb{R}^d$
- K_t: nb of clusters
- $\hat{c}_t = (\hat{c}_{t,1}, \hat{c}_{t,2}, ... \hat{c}_{t,K_t})$: clusters location, depending on past information $(x_s)_{1:(t-1)}$ and $(\hat{c}_s)_{1:(t-1)}$
- When x_t is newly revealed, the instantaneous loss:

$$\ell(\hat{c}_t, x_t) = \min_{1 \leq k \leq K_t} |\hat{c}_{t,k} - x_t|_2^2$$

- $\mathscr{C} = \bigcup_{k=1}^{p}$
- q: discrete probability distribution on the set [1,p]:=1,..p for any $k \in [1,p]$, let π_k , the probability distribution on \mathbb{R}^{dk}
- For any $c\in\mathscr{C}$, we define $\pi(c)$, as $\pi(c)=\sum_{k\in[1,p]}q(k)\mathbb{1}_{\{c\in\mathbb{R}^{dk}\}}\pi_k(c)$

- $c \in \mathscr{C}$ a partition of $\mathbb{R}^d, \pi \in \mathbb{P}(\mathscr{C})$ a quasi prior over this set
- $\lambda > 0$: inverse temperature parameter
- At each time t, we observe x_t and a random partition $\hat{c}_{t+1} \in \mathscr{C}$ is sampled from the quasi-posterior:

$$d\hat{\rho}_{t+1} \propto \exp\left\{-\lambda S_t(c)\right\} d\pi(c)$$

Cumulative loss:

$$S_t(c) = S_{t-1}(c) + \ell(c, x_t) + \frac{\lambda}{2} \{\ell(c, x_t) - \ell(\hat{c}_t, x_t)\}^2$$

4

Sparcity Regret Bounds

Algo 1: The PAC-Bayesian online Clustering algorithm

- 1: Input parameters: $p > 0, \pi \in \mathscr{P}(\mathscr{C}), \lambda > 0$ and $S_0 = 0$
- 2: Initialization: Draw $\hat{c}_1 \sim \pi$
- 3: For $t \in [1, T-1]$:
- 4: Get the data x_t
- 5: Draw $\hat{c}_{t+1} \sim \hat{\rho}_{t+1}(c)$ where $d\hat{\rho}_{t+1} \propto \exp{\{-\lambda S_t(c)\}} d\pi(c)$, and $S_t(c) = S_{t-1}(c) + \ell(c, x_t) + \frac{\lambda}{2} \{\ell(c, x_t) \ell(\hat{c}_t, x_t)\}^2$
- 6: End for

Theorem 1:

For any $(x_t)_{1:T} \in \mathcal{R}^{dT}$, any quasi prior $\pi \in \mathcal{P}(\mathscr{C})$, any $\lambda > 0$,

the procedure described in Algo 1 satisfies:

$$\sum_{t=1}^{T} \mathbb{E}_{(\hat{\rho}_{1},\hat{\rho}_{2},\dots\hat{\rho}_{t})} \ell(\hat{c}_{t},x_{t}) \leq \inf_{\rho \in \mathscr{P}_{\pi}(\mathscr{C})} \left\{ \mathbb{E}_{c \sim \rho} \left[\sum_{t=1}^{T} \ell(c,x_{t}) \right] + \frac{\mathcal{K}(\rho,\pi)}{\lambda} + \frac{\lambda}{2} \mathbb{E}_{(\hat{\rho}_{1},\hat{\rho}_{2},\dots\hat{\rho}_{T})} \mathbb{E}_{c \sim \rho} \sum_{t=1}^{T} \left[\ell(c,x_{t}) - \ell(c,x_{t}) \right] \right\}$$

The regret bound could be refine when:

- $q(k) = \frac{\exp{-\eta k}}{\sum_{i=1}^{p} \exp{-\eta i}}$, with $\eta > 0$.
- $d\pi_k(c,R) = \left(\frac{\Gamma(\frac{d}{2}+1)}{\pi^{\frac{d}{2}}}\right) \frac{1}{(2R)^{dk}} \left\{\prod_{j=1}^k \mathbb{1}_{\{\mathbb{B}_d(2R)\}}(c_j)\right\} dc$

Corollary 1:

$$\begin{split} &\sum_{t=1}^{T} \mathbb{E}_{(\hat{\rho}_{1},\hat{\rho}_{2},\dots\hat{\rho}_{t})} \ell(\hat{c}_{t},x_{t}) \leq \\ &\inf_{k \in [1,p]} \left\{ \inf_{c \in \mathscr{C}(k,R)} \sum_{t=1}^{T} \ell(c,x_{t}) + \frac{dk}{2\lambda} \log \frac{8R^{2}\lambda T}{d=2} + \frac{\eta}{\lambda} k \right\} + \\ &\left(\frac{\log p}{\lambda} + \frac{d}{2\lambda} + \frac{\lambda T C_{1}^{2}}{2} \right) \end{split}$$

where
$$C_1 = (2R + max_{t=1..T}|x_t|_2)^2$$

The below calibration yields a sublinear remainder term: :

•
$$\lambda = \frac{d+2}{2\sqrt{T}R^2}$$

Corollary 2:

$$\begin{split} & \sum_{t=1}^{T} \mathbb{E}_{(\hat{\rho}_{1}, \hat{\rho}_{2}, \dots \hat{\rho}_{t})} \ell(\hat{c}_{t}, x_{t}) \leq \\ & \inf_{k \in [1, p]} \left\{ \inf_{c \in \mathscr{C}(k, R)} \sum_{t=1}^{T} \ell(c, x_{t}) + k \frac{dR^{2}}{d+2} \sqrt{T} \log 4 \sqrt{T} + k \frac{2R^{2} \eta}{d+2} \sqrt{T} \right\} + \\ & \left(\frac{2R^{2} \log p}{d+2} + \frac{dR^{2}}{d+2} + \frac{(d+2)C_{1}^{2}}{4R^{2}} \right) \sqrt{T} \end{split}$$

Hence, if there exist k^* , and $c^* \in \mathcal{C}(k^*, R)$, which achieve the infimum: $\sum_{t=1}^T \mathbb{E}_{(\hat{\rho}_1, \hat{\rho}_2, \dots \hat{\rho}_t)} \ell(\hat{c}_t, x_t) - \sum_{t=1}^T \ell(c^*, x_t) \leq J k^* \sqrt{T} \log T$

J: constant depending on d,R, $\log p$ and C_1^2

Then the regret of the expected cumulative loss is sublinear in T.

Adaptative Sparcity Regret

Bounds

Adaptative Sparcity Regret Bounds

T is usually unknown, prompting us to choose $\lambda=\lambda_t$

Algo 1: The adaptative PAC-Bayesian online Clustering algorithm

- 1: Input parameters: $p > 0, \pi \in \mathscr{P}(\mathscr{C}), (\lambda_t)_{0:T} > 0$ and $S_0 = 0$
- 2: Initialization: Draw $\hat{c}_1 \sim \pi$
- 3: For $t \in [1, T-1]$:
- 4: Get the data x_t
- 5: Draw $\hat{c}_{t+1} \sim \hat{\rho}_{t+1}(c)$ where $d\hat{\rho}_{t+1} \propto \exp\{-\lambda_t S_t(c)\} d\pi(c)$, and $S_t(c) = S_{t-1}(c) + \ell(c, x_t) + \frac{\lambda_{t-1}}{2} \{\ell(c, x_t) \ell(\hat{c}_t, x_t)\}^2$
- 6: End for

Adaptative Sparcity Regret Bounds

Theorem 2:

For any $(x_t)_{1:T} \in \mathcal{R}^{dT}$, any quasi prior $\pi \in \mathcal{P}(\mathcal{C})$, if $(\lambda_t)_{0:T}$ a non-increasing sequence of positive numbers,

the procedure described in Algo 2 satisfies:

$$\sum_{t=1}^{T} \mathbb{E}_{(\hat{\rho}_{1},\hat{\rho}_{2},\dots\hat{\rho}_{t})} \ell(\hat{c}_{t},x_{t}) \leq \inf_{\rho \in \mathscr{P}_{\pi}(\mathscr{C})} \left\{ \mathbb{E}_{c \sim \rho} \left[\sum_{t=1}^{T} \ell(c,x_{t}) \right] + \frac{\mathcal{K}(\rho,\pi)}{\lambda_{T}} + \mathbb{E}_{(\hat{\rho}_{1},\hat{\rho}_{2},\dots\hat{\rho}_{T})} \mathbb{E}_{c \sim \rho} \left[\sum_{t=1}^{T} \frac{\lambda_{t-1}}{2} \left[\ell(c,x_{t}) \right] \right] \right\}$$

Adaptative Sparcity Regret Bounds

keeping previous setting for q and π_k , with $\eta \geq 0$ and $R \geq \max_{t=1..T} |x_t|_2$ The below adaptative calibration for any $t \in [1,T]$ and $\lambda_0 = 1$:

•
$$\lambda_t = \frac{d+2}{2\sqrt{t}R^2}$$

Corollary 2:

Then the algorithm 2 satisfies:

$$\begin{split} & \sum_{t=1}^{T} \mathbb{E}_{(\hat{\rho}_{1},\hat{\rho}_{2},\dots\hat{\rho}_{t})} \ell(\hat{c}_{t},x_{t}) \leq \\ & \inf_{k \in [1,p]} \left\{ \inf_{c \in \mathscr{C}(k,R)} \sum_{t=1}^{T} \ell(c,x_{t}) + \frac{dkR^{2}}{d+2} \sqrt{T} \log 4\sqrt{T} + k \frac{2R^{2}\eta}{d+2} \sqrt{T} \right\} + \\ & \left(\frac{2R^{2} \log p}{d+2} + \frac{dR^{2}}{d+2} + \frac{(d+2)C_{1}^{2}}{2R^{2}} \right) \sqrt{T} \end{split}$$

The adaptative Algorithm 2 is supported by a sparcity regret bound with rate $\sqrt{T} \log T$.

- Since direct sampling from the quasi-posterior $\hat{\rho}_t$ is isually not possible, we will focus on a stochastic approximation, called PACO.
- Approximate $\hat{\rho}_t$ through MCMC, favoring local move.
- States of interest of the MC $(k^{(n)}, c^{(n)})_{0 \le n \le N}$, where $k^{(n)} \in [1, p]$ and $c^{(n)} \in \mathbb{R}^{dk^{(n)}}$
- At each iteration, from $(k^{(n)},c^{(n)})$ to proposal state (k',c')Hence $c^{(n)} \in \mathbb{R}^{dk^{(n)}}$, and $c' \in \mathbb{R}^{dk'}$ may be of different dimensions $(k' \neq k^{(n)})$

We create auxiliary vectors ν_1, ν_2 to compensate for dimensional difference (d_1, d_2) s.t. $dk^{(n)} + d_1 = dk' + d_2$

• Let $\rho_{k'}(., c_{k'}, \tau_{k'})$ denote the multivariate Student distribution on $\mathbb{R}^{dk'}$.

$$\begin{array}{l} \rho_{k'}(c,c_{k'},\tau_{k'}) = \prod_{j=1}^{k'} \left\{ C_{\tau_{k'}}^{-1} \left(1 + \frac{|c_j - c_{k',j}|_2^2}{6\tau_{k'}^2} \right)^{-\frac{3+d}{2}} \right\} dc, \\ \text{where } C_{\tau_{k'}}^{-1} \text{ is the normalizing constraint} \end{array}$$

- where $C_{\tau_{k'}}^{-1}$ is the normalizing constraint
- First a local move from $k^{(n)}$ to k' is proposed by choosing $k' \in [k^{(n)}-1,k^n+1]$ with probability $q(k^{(n)},.)$
- Next, choosing $d_1 = dk'$, $d_2 = dk^{(n)}$, we sample ν_1 from $\rho_{k'}$
- Finally, the pair (ν_2,c') is obtained by $(\nu_2,c')=g(\nu_1,c^{(n)})$, where $g:(x,y)\in\mathbb{R}^{dk'}x\mathbb{R}^{dk^{(n)}}\to(y,x)\in\mathbb{R}^{dk^{(n)}}x\mathbb{R}^{dk'}$

Algo 3: PACO

- 1: Initialization: (λ_t)
- 2: For $t \in [1, T-1]$:
- 3: Initialization: $(k^{(0)}, c^{(0)}) \in [1, p] \times \mathbb{R}^{dk^{(0)}}$
- 4: For $n \in [1, N-1]$:
- 5: Sample $k' \in [k^n 1, kn + 1]$ from $q(k^{(n)}, .) = 1/3$
- 6: Let $c' \leftarrow \text{standard } k\text{-means output.}$
- 7: Let $\tau' = 1/\sqrt{pt}$.
- 8: Sample $\nu_1 \sim \rho_{k'}(., c_{k'}, \tau_{k'})$.
- 9: Let $(\nu_2, c') = g((\nu_1, c^{(n)}).$
- 10: Accept the move $(k^{(n)}, c^{(n)}) = (k', c')$ with probability

$$\alpha\left[(k^{(n)},c^{(n)}),(k',c')\right]=\min\left\{1,\frac{\hat{\rho}_{\mathsf{t}}(c')q(k',k^{(n)})\rho_{k^{(n)}}(c^{(n)},c_{k^{(n)}},\tau_{k^{(n)}})}{\hat{\rho}_{\mathsf{t}}(c^{(n)})q(k^{(n)},k')\rho'(c',c_{k'},\tau_{k'})}\right\}$$

- 11: Else $(k^{n+1}, c^{n+1}) = (k^n, c^n)$
- 12: End for
- 13: Let $\hat{c}_t = c^{(N)}$.
- 14: End for

Numercial studies