IEMS 5780 / IERG 4080 Building and Deploying Scalable Machine Learning Services

Lecture 5 - Recommender Systems

Albert Au Yeung 4th October, 2018

Agender

- Introduction
- Content-based Recommendation Systems
- Collaborative Filtering
 - User-based Neighbourhood Model
 - o Item-based Neighbourhood Model
 - Matrix Factorization
- Recommendation as Classification

- We make a lot of **decisions** every day
 - Transportation
 - Restaurant reservation
 - Hotel reservation
 - Music
 - Movies
- We usually rely on some suggestions or recommendations
 - Family and friends
 - Supervisors, teachers, seniors
 - Experts
 - The general public (word-of-mouth)

Recommender Systems

What are the factors that affect our decisions?

- Our own **preferences** (of the content, the characteristics, the price, etc.)
- What do **most people like**? (which is the blockbuster movie recently?)
- What do people around us like? (friends and family)
- What do people **similar to us** like?

Example: Mobile App User Demographics

Gender (Male)					Age (33–100)				
Coef	Share	n	App name	Coef	Share	n	App name		
0.81	85 %	150	ESPN	0.53	80 %	42	Great Clips Online Check-in		
0.73	80 %	142	Geek - Smarter Shopping	0.48	53 %	1687	Email		
0.63	78 %	277	Tinder	0.46	58 %	318	New Words With Friends		
0.59	80 %	172	Fallout Shelter	0.44	80 %	65	BINGO Blitz		
0.56	86 %	106	WatchESPN	0.43	60 %	380	iHeartRadio - Music & Radio		
0.52	72 %	190	Clash of Clans	0.41	54 %	197	Field Agent		
0.52	97 %	41	Grindr - Gay chat, meet & date	0.40	55 %	690	Lookout Security & Antivirus		
0.49	84 %	96	Yahoo Fantasy Football & More	0.40	92 %	41	DoubleUCasino		
Gender (Female)					Age (18–32)				
-1.03	76 %	736	Pinterest	-1.17	78 %	1066	Snapchat		
-0.73	84 %	182	Etsy	-0.52	59 %	113	Perk Word Search		
-0.61	97 %	79	Period Tracker	-0.49	64 %	88	Summoners War		
-0.54	96 %	58	Period Calendar / Tracker	-0.46	59 %	98	Clash of Kings		
-0.50	76 %	346	Cartwheel by Target	-0.45	86 %	90	iFunny:)		
-0.49	66 %	258	Wish - Shopping Made Fun	-0.45	81 %	158	GroupMe		
-0.49	74 %	325	Checkout 51 - Grocery Coupons	-0.42	80 %	68	GIPHY for Messenger		
-0.45	74 %	178	Photo Grid - Collage Maker	-0.42	80 %	183	Vine		

Ref: You Are What Apps You Use: Demographic Prediction Based on User's Apps

Example: Mobile App User Demographics

Married (Married)					Income (≥ \$50K)				
Coef	Share	n	App name	Coef	Share	n	App name		
0.55	67 %	200	Zillow Real Estate & Rentals	0.58	75 %	141	Fitbit		
0.44	67 %	622	Walmart	0.45	66 %	205	LinkedIn		
0.44	60 %	823	Pinterest	0.41	65 %	41	com.ws.dm		
0.44	74 %	39	Gospel Library	0.37	52 %	141	LG Android QuickMemo+		
0.40	59 %	91	USAA Mobile	0.37	58 %	191	Redbox		
0.40	80 %	63	ClassDojo	0.36	72 %	22	Like Parent		
0.38	60 %	123	ESPN	0.34	66 %	63	Peel Smart Remote		
0.37	82 %	28	Deer Hunter 2014	0.34	61 %	220	Yelp		
Married (Single)					Income (≤ \$40 K)				
-0.89	70 %	810	Snapchat	-0.43	66 %	136	Job Search		
-0.78	89 %	114	POF Free Dating App	-0.43	63 %	97	Security policy updates		
-0.73	85 %	219	Tinder	-0.37	78 %	23	Solitaire		
-0.66	98 %	69	OkCupid Dating	-0.35	67 %	79	Prize Claw 2		
-0.48	72 %	269	Tumblr	-0.34	72 %	51	ScreenPay- Get Paid to Unloc		
-0.42	72 %	205	SoundCloud - Music & Audio	-0.33	78 %	56	MeetMe		
-0.41	65 %	331	Uber	-0.33	62 %	77	Foursquare		
-0.41	89 %	69	MeetMe	-0.32	56 %	73	Microsoft Word		

Ref: You Are What Apps You Use: Demographic Prediction Based on User's Apps

- There are **many** items out there for us to choose
 - Tens of thousands of movies and song sf More than 1 million apps in the Android and iPhone app stores
 - Millions of books published every year
- We need more efficient way to **filter information**, and identify items **most relevant** to us
- On the other hand, producers also want to provide consumers things that they really want (targetted marketing)

Mobile Apps

Movies

(https://stephenfollows.com/how-many-films-are-released-each-year/)

Solution: Recommender Systems

- Use computers and algorithms to process the huge amount of inforamtion and do the filtering for us
- Analyse the tastes and preferences of different people
- Analyse the **characteristics** of different items/products
- Generate **personalized** recommendation based on users' **past activities** and **feedback**
- Systems performing the above tasks are referred to as recommender systems / recommendation systems

Examples of Recommender Systems

- Music recommendation
- Suggested connections in social networks
- Recommended items in ecommerce Websites
- Recommended travel destinations and accommodations

• ...

Common Strategies

Popularity

o Recommend items most people like

• Item Similarity

Recommend items that are similar to what the user has already shown interest

User Similarity

 Recommend items that are preferred by users who are similar the the target user in some ways

Diversity

o Recommend items that are **least known** to the uuser

The Long Tail

 $\frac{https://www.forbes.com/sites/robinlewis/2016/05/31/the-long-tail-theory-can-be-reality-for-traditional-megabrands/#2b77afbc6372$

Assumptions

- Every user has his/her own interests / tastes / preferences
- Each user's preferences can be represented as a summary of what he/she has seen/read/watched/liked in the past
- A user will prefer something he or she is interested in
- We can compare the **content** or **characteristics** of the items
- Recommend items that are similar to what the user has consumed before

Two Steps

- 1. Learn user **preferences** (what does the user like?)
- 2. Find items that **match** these preferences

Problems

- 1. How do we **learn** user preferences?
- 2. How do we **represent** user interests?
- 3. How do we **represent** items?
- 4. How to measure **similarity**?

Similarity-based

• Steps

- Define features to represent the items (e.g. bag-of-words, author, publish date/time, etc.)
- Construct **user profile** by the items liked by the user (e.g. average of feature vectors)
- Calculate **similarity** between user profile and the new items
- Return a ranked list of items
- What is important here is the user profile
 - How can we **represent** a user?
 - A user may have **multiple interests**, or his/her interests may **change over time**

Limitations of Content-based Methods

- Content (including meta-data) might not be available or enough in some domains
- It is difficult to represent some items by their 'content' (e.g. movies, books, music)
- Content-based methods tend to return very similar items

What is Collaborative Filtering (CF)?

• From Wikipedia:

In the newer, narrower sense, collaborative filtering is a method of making automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating). The underlying assumption of the collaborative filtering approach is that if a person A has the same opinion as a person B on an issue, A is more likely to have B's opinion on a different issue than that of a randomly chosen person.

Basic Idea

- Instead of relying on the content of the items, we can analyse people's tastes and preferences
- Each person is NOT totally different from another
- There are different **kinds** of people, for example:
 - People who like action movies
 - People who read literature
 - People who like spicy food
- By grouping **similar users**, we can recommend similar items to similar users
- This does not require a lot of information about the users and items themselves

Two Types of Collaborative Filtering

1. Memory-based

- Directly use ratings from similar users or items
- Also called **neighbourhood-based** methods

2. Model-based

- o Mathematical models are used to represent users, items and their relations
- E.g. **matrix factorization**, Bayesian networks, probabilistic models

User-item Interaction

• In the following discussion, we assume that a user may **rate** an item on a **1 to 5** scale

Memory-based Collaborative Filtering

Neighbourhood

What is neighbourhood?

- Consider again the **vector space model**
- Users and items can be represented as **vectors** in a high dimensional space
- More similar items/users will appear **closer** to each other

Neighbourhood Models

Two Types of Neighbourhood Models

1. User-based

- We consider **similar users**
- The neighbourhood of a user consists of users who like similar items

2. Item-based

- We consider **similar items**
- The neighbourhood of an item consists of items that are preferred by similar users

User-based Collaborative Filtering

- **Task**: Predict the **extent** to which user u likes item i
- Procedures:
 - \circ We have user u, and item i
 - \circ Find a set of users who are similar to u and have rated i
 - \circ Get the **average rating** on i given by this set of users
 - Do this for all items, come up with a ranking based on the predict rating

User-based Collaborative Filtering

- In doing **user-based CF**, we made the following **assumptions**:
 - If users had similar tastes in the past, they should have similar tastes in the future
 - User preferences remain **stable and consistent** over time
- Furthermore, we need to define similarity
- Similarity
 - Should reflect how close the tastes and preferences of two users are
 - Similar users should assign similar ratings to the same set of items

Similarity - Pearson Correlation

• One way of computing similarity between two users is to use the **pearson correlation**

Similarity - Pearson Correlation

- *x*, *y*: users
- $r_{x,i}$: rating assigned to i by x
- I: the set of items rated by both x and y
- sim(x,y) has a value between -1 and 1

$$sim(x,y) = \frac{\sum_{i \in I} (r_{x,i} - \overline{r_x})(r_{y,i} - \overline{r_y})}{\sqrt{\sum_{i \in I} (r_{x,i} - \overline{r_x})^2} \sqrt{\sum_{i \in I} (r_{y,i} - \overline{r_y})^2}}$$

Similarity - Pearson Correlation

In Python, you can easily compute the correlation using the sctpy module's pearsonr function

```
>>> from scipy.stats import pearsonr
>>> a = [5,2,1,4,3,1]
>>> b = [1,5,4,2,1,2]
>>> pearsonr(a,b)
(-0.59628479399994383, 0.21157899460007421)
>>>
>> a = [5,2,1,4,3,1]
>>> b = [4,3,1,5,4,2]
>>> pearsonr(a,b)
(0.85978530414910515, 0.028111919656069226)
>>>
```

Predicting Ratings

- How to **predict** a user's rating for an item?
- Use the equation below:

Similarity between x and u

Deviation from mean of ratings of user u

$$\operatorname{pred}(x,i) = \overline{r_x} + \frac{\sum_{u \in U} \operatorname{sim}(x,u) \times (r_{u,i} - \overline{r_u})}{\sum_{u \in U} \operatorname{sim}(x,u)}$$

Normalization

Example: see l5-user-based-cf.ipynb

Limitations

- Data sparsity
 - When there are a lot of users and items, very few overlap between users
- Does not scale
 - When there are 10 million users, how can you generate all their neighbourhoods?
- Two users may have similar taste in one domain but very different taste in another

Item-based Collaborative Filtering

Procedures

- We have user u and item i
- Find a set of **items**, which are
 - \circ rated by u
 - \circ given **similar ratings** as i by other users
- ullet Get the **average rating** of this set of items given by u
- ullet Use that as the predicted rating of i by u

Item-based Collaborative Filtering

- In doing **item-based CF**, we made the following **assumptions**:
 - If two items are given similar ratings by the users, they should have similar characteristics
- Consider movies:
 - Movies of the same genre, by the same director, or feature the same actor/actress will be assigned similar ratings
- Ref: Amazon.com Recommendations: Item-to-Item Collaborative Filtering

Predicting Ratings

ullet One way to implement item-based CF is to compute a **weighted combination of ratings** given by u to other items

Similarity between two items

Rating given by the user to other items

$$pred(u, j) = \frac{\sum_{i \in I} sim(j, i) \times r_{u, i}}{\sum_{i \in I} sim(j, i)}$$

Normalization

Neighbourhood-based Collaborative Filtering

- Neighbourhood and recommended items are usually calculated offline
- In order to reduce the amount of computation needed, the size of the neighbourhood is usually limited
- Previous research shows that a neighbourhood size of **20-50** is quite enough
- Ref: <u>Empirical Analysis of Design Choices in Neighborhood-based Collaborative Filtering</u>
 <u>Algorithms</u>, Herlocker et al., 2002.

Food for Thought

TED Talk How Algorithms Shape Our World

TEDGlobal 2011, By Kevin Slavin

http://www.ted.com/talks/kevin slavin how algorithms shape our world.html

Model-based Collaborative Filtering

Model-based Collaborative Filtering

- What we have discussed so far are called memory-based collaborative filtering
- We have not trained any model that can be used to describe the relationship between inputs and outputs
- Memory-based models are easy to implement, but usually are NOT very accurate and NOT scalable
- Instead, we can consider a machine learning approach to the task of recommendation:
 - Create a model that explains how ratings are generated, or how items are ranked
 - Use past data to **train/optimize** the parameters of the model

Model-based Collaborative Filtering

We can roughly categorize model-based CF into two types:

• Matrix Factorization Approach

- Assume that there are latent factors that determine how users rate items
- Decompose the user-item matrix using matrix factorization techniques

Classification Approach

- Consider the task of recommendation as a classification problem
- For each given pair of user and item, we determine whether the user will be interested in the item (binary classification)
- Can take into account contextual information and implicit feedbacks

To be continued

End of Lecture 5