Solutions to Homework 9:

- 1. Proof. (a) Assume that $f \circ f$ is injective, and let $a1, a2 \in A$ so that f(a1) = f(a2). To show that f is injective it suffices to show that a1 = a2. Since f(a1) = f(a2), we know that g(f(a1)) = g(f(a2)), and since $g \circ f$ is injective we have that a1 = a2. So, f is injective
 - (b) Now assume that $f \circ f$ is surjective and let $c \in A$. To prove that g is surjective it suffices to find $b \in A$ so that g(b) = c. Since $g \circ f$ is surjective, we know that there is $a \in A$ so that g(f(a)) = c. Now set b = f(a). Then g(b) = g(f(a)) = c as required.

So, f is surjective

2. Proof. $f: A \to B$ is a surjection and $Y \subseteq B$

Let $y_1 \in Y$

So we have $f^{-1}(y_1) = \{x_1 \in A | f(x_1) = y_1\}$

Now, $x_1 \in f^{-1}(y_1)$

So, $f(x_1) = y_1 \in Y$

This means, $x_1 \in f^{-1}(Y)$ and so, $f(x_1) \in f(f^{-1}(Y))$

Now $f(x_1) = y_1$ and so $y_1 \in f(f^{-1}(Y))$

But we know that $y_1 \in Y$

So, $Y = f(f^{-1}(Y))$

- 3. Proof. (a) Now we let f be surjective. So, let $A \in E$, and let $y \in F f(A)$, so $y \notin f(A)$. We need to prove that $y \in f(E A)$. Since f is surjective y = f(x) for some $x \in F$. Now, by definition of the image, if $x \in A$ then $f(x) \in f(A)$. Since we know, by assumption that $f(x) = y \notin f(A)$, it means that $x \notin A$. Hence $x \in E A$, so that $y \in f(E A)$. Therefore, $F f(A) \subseteq f(E A)$.
 - (b) Now, let $\forall A \in E, F f(A) \subseteq f(E A)$. We then take $A = \phi$ to get $F - f(\phi) \subseteq f(E - \phi)$ so $F \subseteq f(E)$. So now, let $y \in F$. We know that, we have $y \in f(E)$ and so y = f(x) for some $x \in E$. Hence f is surjective.

4. (a) In order to prove this we take three cases into consideration

Case 1:
$$z > 0$$

Let's take $x = z^2 + 1$ and $y = z^2$
 $z = x^2 - y^2$

$$z^2 = z^2 + 1 - z^2$$

 $z^2 = 1$
So $z > 0$ i.e it is positive

Case 2: z < 0

Let's take
$$x = z^2$$
 and $y = z^2 + 1$
 $z = x^2 - y^2$
 $z^2 = z^2 - z^2 - 1$
 $z^2 = -1$

So z < 0 i.e it is negative

Case 3:
$$z = 0$$

Let's take $x = z^2$ and $y = z^2$
 $z = x^2 - y^2$
 $z^2 = z^2 - z^2$
 $z^2 = 0$
So $z = 0$

(b)
$$g(\{0\}) = \{(x,y) \in \mathbb{R}^2 : g(x,y) = 0\}$$

 $g(x,y) = z = 0$
 $x^2 - y^2 = 0$
 $x^2 = y^2$
So, $(\pm x, \pm y)$
 $g^{-1}(\{0\}) = \{p \in \mathbb{R} : (\pm p, \pm p)\}$

- (c) Case 1: $0 \le c < 3$ $h^{-1}(\{c\}) = \phi$ as c is positive since $x^4 \ge 0$, therefore c will always be greater than 3. Case 2: $c \ge 3$ $h^{-1}(\{c\}) = c \in A : (c-3)^{1/4}$
- 5. Proof. $f: A \to B$ and $E, F \subseteq B$ Let $x \in f^{-1}(E - F)$ where $x \in A$ So, $f(x) \in E - F$ We can also write this as $f(x) \in E$ and $f(x) \notin F$ So, $x \in f^{-1}(E)$ and $x \notin f^{-1}(F)$ Which means, $x \in f^{-1}(E) - f^{-1}(F)$ Hence we have that $f^{-1}(E - F) = f^{-1}(E) - f^{-1}(F)$
- 6. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + ax + b$ where $a, b \in \mathbb{R}$ Injective:

For $x_1, x_2 \in \mathbb{R}$ assume that $f(x_1) = f(x_2)$

$$x_1^2 + ax_1 + b = x_2^2 + ax_2 + b (1)$$

$$x_1^2 + ax_1 = x_2^2 + ax_2 \tag{2}$$

$$x_1^2 + ax_1 + \frac{a^2}{4} - \frac{a^2}{4} = x_2^2 + ax_2 + \frac{a^2}{4} - \frac{a^2}{4}$$
 (3)

$$(x_1 + \frac{a}{2})^2 - \frac{a^2}{4} = (x_2 + \frac{a}{2})^2 - \frac{a^2}{4}$$
(4)

$$(x_1 + \frac{a}{2})^2 = (x_2 + \frac{a}{2})^2 \tag{5}$$

(6)

27745629

On simplifying this we get that x_1 is not always equal to x_2 i.e $x_1 \neq x_2$ Hence f is not injective.

Surjective:

Let f(x) = y and $y \in \mathbb{R}$

So for f(x)=y we know that

$$f(x) = (x + \frac{a}{2})^2 + (b - \frac{a^2}{4})$$

Now we know that $(x + \frac{a}{2})^2 \ge 0$ as squares are always positive so the minimum value f(x) can have is $(b - \frac{a^2}{4})$

Now let's say the value of y is $b-a^2$, so in that case

$$f(x) \ge b - a^2$$

In this case $b - a^2 \neq f(x), \forall x \in \mathbb{R}$

Hence f is not surjective

7. (a) Let $h(n) = |F| = 2^n$

We will try to prove this using induction

Base Case: n = 1

$$h(1) = 2^1 = 2$$

When n = 1, $f(a_1)$ can be mapped to $\{0, 1\}$ i.e two values and hence the base case holds true

Inductive Step: Let $h(k) = 2^k$ be true

So, for h(k+1) we have $A = \{a_1, a_2, ..., a_k, a_{k+1}\}$

We can write this as $A = \{a_1, a_2, ..., a_k\} \cup \{a_{k+1}\}$

Now we know that $f(a_{k+1})$ can be mapped to two values i.e $\{0,1\}$, and $h(k) = 2^k$ So F will have twice the number of elments as h(k) that is $h(k+1) = 2 \cdot 2^k = 2^k + 1$

Hence proved by induction hypothesis that $|F| = 2^n$

(b)
$$g(f) = \{a \in A : f() = 1\}$$

Proof. Injective:

We let $f_1, f_2 \in F$ and $g(f_1) = g(f_2)$

We can now divide it into cases since we map it to two values i.e 0 and 1 so,

i. Case 1: $f_1(x) = 0, \forall x \in A$

This means that $x \notin g(f_1)$ which means that $x \notin g(f_2)$ since they are equal. This further means that $f_2(x) = 0$

Hence $f_1 = f_2$

ii. Case 2: $f_1(x) = 1, \forall x \in A$

This means that $x \in g(f_1)$ which means that $x \in g(f_2)$ since they are equal. This further means that $f_2(x) = 1$

Hence $f_1 = f_2$

So, we can say that g is injective

Surjective:

Let X be any set from $\mathcal{P}(A)$.

We define a function $h: A \to \{0, 1\}$ as:

When $x \in A - X, h(a) = 0$

When $x \in X, h(a) = 1$

Now, consequently

 $g(h) = \{a \in A : h(a) = 1\} = \{a \in A : a \in X\} = a \in X = X.$

So, we can say that g is surjective.

- 8. Proof. We will prove this using strong induction that f(n) = n
 - (a) Base case: Let's take n = 1Since f(1) = 1 which also means $f(1) \le 1$ the base case holds true
 - (b) **Induction step:** Assume that f(k) = k for all $k \le n$ holds true. So, $f(n+1) \in \{1, 2, 3, ..., n+1\}$. Since f(k) = k and $k \ne n+1$ we have that f(n+1) = n+1

So, by strong induction we have that $f(n) = n, \forall n \in \mathbb{N}$