RV1126/RV1109 Linux SDK 快速入门

文档标识: RK-JC-YF-360

发布版本: V2.2.0

日期: 2021-05-01

文件密级:□绝密□秘密□内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2021 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

本文主要描述了RV1126/RV1109 Linux SDK的基本使用方法,旨在帮助开发者快速了解并使用RV1126/RV1109 SDK开发包。

产品版本

芯片名称	内核版本
RV1126/RV1109	Linux 4.19

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V0.0.1	CWW	2020-04- 28	初始版本
V0.0.2	CWW	2020-05- 09	更新5.1.2节RK IPCamera Tool界面
V0.0.3	CWW	2020-05- 20	编译环境添加libssl-dev和expect
V1.0.0	CWW	2020-05- 25	 更新第3节以及第4.4和4.5节 增加快速开机版本编译 增加5.4节
V1.1.0	CWW	2020-06- 08	 更新公司名称 更新文档排版 更新第2节
V1.2.0	НЈС	2020-06- 22	增加智能USB Camera产品章节
V1.2.1	CWW	2020-06- 29	1. 更新4.4章节 2. 增加编译环境安装fakeroot工具
V1.3.0	CWW	2020-07- 09	1. 增加模块目录以及文档说明 2. 增加编译不同板级配置
V1.3.1	CWW	2020-07- 15	1. 修正eMMC拼写
V1.4.0	CWW	2020-07- 16	1. 增加ISP工具RKISP2.x_Tuner说明 2. 增加开发工具说明 3. 增加板级配置选择说明
V1.4.1	CWW	2020-07- 17	1. 更新SDK编译说明章节
V1.5.0	CWW	2020-08- 07	1. 更新SDK板级配置和编译说明章节 2. 开发环境增加安装cmake
V1.6.0	LJH	2020-08- 22	1. 增加闸机和门禁类产品章节 2. 更新SDK编译说明
V1.6.1	CWW	2020-09- 07	1. 增加新开发板 RV1126_RV1109_IPC38_DEMO_V1.11_2020724LX
V1.7.0	CWW	2020-09- 16	1. 增加WiFi和升级相关文档说明 2. 增加编译配置说明 3. 更新开发环境软件依赖flex和bison 4. 增加获取SDK版本号 5. "SDK编译说明"章节增加介绍两种编译SDK的方法
V1.8.0	CWW	2020-09- 25	 编译环境添加liblz4-tool, libtool和keychain 更新文档 添加网络ADB调试方法

版本号	作者	修改日期	修改说明
V1.8.1	CWW	2020-10- 29	更新视频培训地址
V1.8.2	LJH	2020-11- 02	更新闸机和门禁类产品章节
V1.9.0	CWW	2020-11- 14	1. 更新spi nand/slc nand 板级配置和文档 2. 更新windows和Linux烧录工具版本要求
V1.9.1	CWW	2020-11- 22	增加spi nor板级配置
V1.9.2	CWW	2020-12- 02	1. 增加AB系统板级配置参考 2. 增加U-Boot使用tftp使用说明
V1.9.3	CWW	2020-12- 04	1. 增加GPIO使用注意事项 2. 增加开启人脸识别功能说明
V1.9.4	CWW	2020-12- 17	1. 增加38板SPI NAND AB系统板级参考 2. 增加SPI NOR烧录Firmware.img说明
V1.9.5	CWW	2020-12- 29	1. 优化排版 2. 删除一些不用的工程
V1.9.6	CWW	2020-12- 31	1. 增加uboot使用tftp更新loader分区
V1.9.7	CWW	2021-01- 08	1. 更新UBI文件系统镜像制作
V1.9.8	XZY	2021-02- 03	新增app/minigui_demo说明
V2.0.0	CWW	2021-02- 18	 增加Linux工具programmer_image_tool 更新Rootfs配置说明 更新app和external的编译方法 增加SDK的BSP包编译说明
V2.0.1	CWW	2021-03- 02	增加EVB板二维码的网盘地址
V2.1.0	CWW	2021-04- 27	1. 更新docs目录文档 2. 增加交叉编译工具说明 3. 增加应用开发建议
V2.2.0	CWW	2021-05- 01	1. 更新 <u>SDK 下载地址</u> 2. 更新排版 <u>开发环境搭建</u>

RV1126/RV1109 Linux SDK 快速入门

- 1. 开发环境搭建
- 2. SDK 配置框架说明
 - 2.1 SDK 目录说明
 - 2.2 RV1109/RV1126 模块代码目录说明
 - 2.3 RV1109/RV1126 开发相关文档
 - 2.3.1 目录docs和external的文档索引
 - 2.3.2 ISP Tuner工具以及文档路径
 - 2.3.3 SPI NAND/SLC NAND文档路径
 - 2.3.4 部分模块的培训视频地址
 - 2.4 RV1109/RV1126 开发相关工具
 - 2.4.1 Windows工具
 - 2.4.2 Linux工具
 - 2.5 SDK 配置框架图
- 3. SDK编译说明
 - 3.1 SDK下载地址
 - 3.1.1 SDK软件同步命令以及log
 - 3.1.1.1 SDK软件同步
 - 3.1.1.2 查看SDK版本
 - 3.1.1.3 为每个工程创建default分支
 - 3.2 交叉工具链说明
 - 3.3 选择不同板级配置
 - 3.3.1 SDK板级配置目录device/rockchip/rv1126 rv1109
 - 3.3.2 切换板级配置命令
 - 3.4 查看编译命令
 - 3.5 U-Boot编译
 - 3.5.1 U-Boot配置说明
 - 3.6 Kernel编译
 - 3.6.1 Kernel配置说明
 - 3.7 Recovery编译
 - 3.7.1 Recovery配置说明
 - 3.8 Rootfs编译
 - 3.8.1 Rootfs配置说明
 - 3.8.2 目录app和external里的工程编译方法
 - 3.9 编译BSP包
 - 3.10 固件打包
 - 3.11 全自动编译
- 4. 应用开发建议
- 5. 刷机说明
 - 5.1 EVB板正面示意图
 - 5.2 EVB板背面示意图
 - 5.3 EVB Sensor板背面示意图
 - 5.4 硬件接口功能表
 - 5.5 Windows 刷机说明
 - 5.6 Linux 刷机说明
- 6. EVB板功能说明以及注意事项
 - 6.1 GPIO电源设计注意事项
 - 6.2 如何访问3路RTSP和1路RTMP网络码流
 - 6.2.1 使用串口或ADB连上EVB板子获取设备IP地址
 - 6.2.2 使用RK IPCamera Tool获取设备IP地址
 - 6.2.3 访问网络码流
 - 6.3 如何通过网页访问设备信息
 - 6.4 如何测试人脸识别功能
 - 6.5 如何通过网络调试EVB板
 - 6.5.1 通过SSH登陆EVB板调试

- 6.5.2 通过SCP调试
- 6.5.3 通过网络ADB调试
- 6.6 SPI NAND/SLC NAND ubi文件系统镜像打包说明
 - 6.6.1 根文件系统打包说明
 - 6.6.2 oem和userdata分区的ubifs打包说明
- 6.7 U-Boot终端下tftp使用说明
 - 6.7.1 U-Boot配置以太网
 - 6.7.2 U-Boot的tftp下载说明
 - 6.7.2.1 eMMC通过tftp烧录loader的方法
 - 6.7.2.2 SPI NAND通过tftp烧录loader的方法
- 7. 智能USB Camera产品配置
 - 7.1 产品编译说明
 - 7.1.1 选择对应板级配置
 - 7.1.2 编译命令
 - 7.2 产品软件框架
 - 7.2.1 uvc app
 - 7.2.2 mediaserver
 - 7.2.3 其它
 - 7.3 功能说明
 - 7.3.1 如何显示USB Camera预览
 - 7.3.2 如何测试AI模型后处理
 - 7.3.3 如何测试EPTZ功能
- 8. 闸机和门禁类产品配置
 - 8.1 产品编译说明
 - 8.1.1 选择对应板级配置
 - 8.1.2 编译命令
 - 8.2 QFacialGate应用
 - 8.3 minigui demo应用
 - 8.4 其它说明

1. 开发环境搭建

Ubuntu 16.04系统: 编译环境搭建所依赖的软件包以及安装命令如下:

```
sudo apt-get install repo device-tree-compiler \
git-core u-boot-tools mtools \
parted libudev-dev libusb-1.0-0-dev \
python-linaro-image-tools linaro-image-tools \
autoconf autotools-dev libsigsegv2 m4 \
intltool libdrm-dev curl sed make binutils \
build-essential gcc g++ bash patch gzip gawk \
bzip2 perl tar cpio python unzip rsync \
file bc wget libncurses5 libqt4-dev libglib2.0-dev \
libgtk2.0-dev libglade2-dev cvs git \
mercurial openssh-client subversion asciidoc w3m \
dblatex graphviz python-matplotlib \
libc6:i386 libssl-dev expect fakeroot cmake flex \
bison liblz4-tool libtool keychain
```

Ubuntu 17.04系统: 除了上述软件包外还需如下依赖包:

```
sudo apt-get install lib32gcc-7-dev g++-7 libstdc++-7-dev
```

2. SDK 配置框架说明

2.1 SDK 目录说明

进入工程目录下有buildroot、app、kernel、u-boot、device、docs、external等目录。每个目录或其子目录会对应一个git工程,提交需要在各自的目录下进行。

- buildroot: 定制根文件系统。
- app: 存放上层应用程序。
- external: 相关库,包括音频、视频等。
- kernel: kernel代码。
- device/rockchip: 存放每个平台的一些编译和打包固件的脚本和预备文件。
- docs: 存放开发指导文件、平台支持列表、工具使用文档、Linux 开发指南等。
- prebuilts: 存放交叉编译工具链。
- rkbin: 存放固件和工具。
- rockdev: 存放编译输出固件。
- tools: 存放一些常用工具。
- u-boot: U-Boot代码。

2.2 RV1109/RV1126 模块代码目录说明

部分模块代码目录路径	模块功能描述
external/recovery	recovery和Rockchip升级代码
external/rkwifibt	Wi-Fi和BT
external/rk_pcba_test	PCBA测试代码
external/isp2-ipc	图像信号处理服务端
external/mpp	编解码代码
external/rkmedia	Rockchip 多媒体封装接口
external/camera_engine_rkaiq	图像处理算法模块
external/rknpu	NPU驱动
external/rockface	人脸识别代码
external/CallFunIpc	应用进程间通信代码
external/common_algorithm	音视频通用算法库
external/rknn-toolkit	模型转换、推理和性能评估的开发套件
app/libIPCProtocol	基于dbus,提供进程间通信的函数接口
app/mediaserver	提供多媒体服务的主应用(用于IPC应用开发参考或简单功能演示)
app/ipc-daemon	系统守护服务
app/dbserver	数据库服务
app/netserver	网络服务
app/storage_manager	存储管理服务
app/ipcweb-backend	web后端
app/librkdb	数据库接口
app/ipcweb-ng	web前端,采用Angular 8框架
app/minigui_demo	基于MiniGUI实现一个简单画图demo

2.3 RV1109/RV1126 开发相关文档

2.3.1 目录docs和external的文档索引


```
- Linux (Rockchip Linux系统通用文档,RV1126/RV1109平台可以参考)
        - ApplicationNote
        -- Camera
        -- Graphics
        ├─ Multimedia (编解码接口开发指南)
        --- Profile
        ├── Recovery (升级相关文档)
            - Rockchip_Developer_Guide_Linux_Upgrade CN.pdf
             Rockchip_Developer_Guide_Linux_Upgrade_EN.pdf
        ├── Security (加密相关文档)
        └── Wifibt (WiFi和蓝牙相关文档)
              ├─ AP模组RF测试文档
              ├── REALTEK模组RF测试文档
             L— WIFI性能测试PC工具
    - Others
        - Rockchip_User_Guide_Bug_System_CN.pdf
        L— Rockchip_User_Guide_SDK_Application_And_Synchronization_CN.pdf
    └─ RV1126 RV1109
        ├── ApplicationNote (Rockchip应用开发框架介绍、网页端开发指南)
            - Rockchip_Developer_Guide_Linux_Application_Framework_CN.pdf
            - Rockchip Developer Guide Linux Application Framework EN.pdf
            - Rockchip Instructions Linux CGI API CN.pdf
            - Rockchip Instructions Linux MediaServer CN.pdf
            — Rockchip_Instructions_Linux_MediaServer_EN.pdf
            - Rockchip Instructions Linux Web Configuration CN.pdf

    □ Rockchip_Instructions_Linux_Web_Configuration_EN.pdf

        ├── Camera (ISP开发指南)
            Camera_External_FAQ_v1.0.pdf
            - Rockchip Color Optimization Guide ISP2x V1.1.0.pdf
            — Rockchip_Development_Guide_ISP2x_CN_v1.2.0.pdf
            - Rockchip_Driver_Guide_ISP2x_CN v0.1.0.pdf
            - Rockchip Instruction Linux Appliction ISP20 CN.pdf
            - Rockchip IQ Tools Guide ISP2x CN v1.0.0.pdf
            - Rockchip RV1109 RV1126 Developer Guide Linux Ispserver CN.pdf
            ☐ Rockchip Tuning Guide ISP2x CN v1.0.0.pdf
        - Multimedia
            — Rockchip Developer Guide Linux RKMedia CN.pdf (多媒体接口开发指南)
        ├── Rockchip_RV1126_RV1109_EVB_User_Guide_V1.0_CN.pdf (硬件开发指南)
        - Rockchip RV1126 RV1109 EVB User Guide V1.0 EN.pdf
        - Rockchip RV1126 RV1109_Instruction_Linux_Separate_Building_EN.pdf
(独立编译U-Boot/Kernel/Rootfs说明文档)
        ─ Rockchip RV1126 RV1109 Linux SDK V1.1.1 20200711 CN.pdf (SDK发布说明)
        - Rockchip_RV1126_RV1109_Linux_SDK_V1.1.1 20200711 EN.pdf
        ├── Rockchip RV1126 RV1109 Quick Start Linux CN.pdf (快速开发指南)
        - Rockchip RV1126 RV1109 Quick Start Linux EN.pdf
        - RV1109 Multimedia Codec Benchmark v1.2.pdf
        - RV1126 Multimedia Codec Benchmark v1.1.pdf
        - RV1126 RV1109 Release Note.txt

    external

    — rknn-toolkit (模型转换、推理和性能评估的开发套件文档)
     L_ doc
```

```
| Rockchip_Developer_Guide_RKNN_Toolkit_Custom_OP_V1.3.2_CN.pdf
| Rockchip_Developer_Guide_RKNN_Toolkit_Custom_OP_V1.3.2_EN.pdf
| Rockchip_Quick_Start_RKNN_Toolkit_V1.3.2_CN.pdf
| Rockchip_Quick_Start_RKNN_Toolkit_V1.3.2_EN.pdf
| Rockchip_Trouble_Shooting_RKNN_Toolkit_V1.3.2_EN.pdf
| Rockchip_Trouble_Shooting_RKNN_Toolkit_V1.3.2_EN.pdf
| Rockchip_User_Guide_RKNN_Toolkit_V1.3.2_EN.pdf
| Rockchip_User_Guide_RKNN_Toolkit_V1.3.2_EN.pdf
| Rockchip_User_Guide_RKNN_Toolkit_V1.3.2_EN.pdf
| Rockchip_User_Guide_RKNN_Toolkit_Visualization_V1.3.2_EN.pdf
| Rockchip_User_Guide_RKNN_Toolkit_Visualization_V1.3.2_EN.pdf
| Rockchip_User_Guide_RKNN_API_V1.3.3_CN.pdf
| Rockchip_User_Guide_RKNN_API_V1.3.3_EN.pdf
```

2.3.2 ISP Tuner工具以及文档路径

文档路径:

```
external/camera_engine_rkaiq/rkisp2x_tuner/doc/Rockchip_IQ_Tools_Guide_ISP2x_v1.3.p df 工具路径:
```

external/camera_engine_rkaiq/rkisp2x_tuner/RKISP2.x_Tuner_v0.2.1_AIQ1.2.1.exe

ISP相关文档以及支持的sensor列表也可以在Redmine上获取 https://redmine.rock-chips.com/documents/53

2.3.3 SPI NAND/SLC NAND文档路径

文档路径:

docs/Linux/ApplicationNote/Rockchip_Developer_Guide_Linux_Nand_Flash_Open_Source_Sol
ution CN.pdf

2.3.4 部分模块的培训视频地址

• 多媒体RKMedia介绍

```
链接: https://pan.baidu.com/s/1Z4o2v2KL6eCKXgI2fMEcSA
提取码: vhk2
```

• RK NPU开发套件介绍及Q&A

```
链接: https://pan.baidu.com/s/10w7R_q857uVEXq-88Pu-1g
提取码: c661
```

• RV1126&RV1109摄像头驱动调试介绍

```
链接: https://pan.baidu.com/s/1rva6ZDj1x-T1rNcxV354KA
提取码: z4uh
```

• RV1126&RV1109 Linux SDK 快速开发指南

链接: https://pan.baidu.com/s/liXwOdXH0jIR3iGQc0gluow 提取码: t9o0

• RK ISP2 标定流程介绍

链接: https://pan.baidu.com/s/1tZloen4B4jII12w1R2hWfg 提取码: nrp3

• RK ISP2 基础模块的标定方法及工具使用

链接: https://pan.baidu.com/s/1L0zSxInjqTyqDBesg4RL1w

提取码: 8yc6

2.4 RV1109/RV1126 开发相关工具

2.4.1 Windows工具

工具说明文档: tools/windows/ToolsRelease.txt

工具名称	工具用途
RKDevTool	分立升级固件及整个update升级固件工具
FactoryTool	量产升级工具
SecureBootTool	固件签名工具
efuseTool	efuse烧写工具
RKDevInfoWriteTool	写号工具
SDDiskTool	SD卡镜像制作
SpiImageTools	eMMC烧录器固件制作工具(文档在FactoryTool工具里)
DriverAssitant	驱动安装工具
RKImageMaker	打包工具(打包成updata.img)
SpeakerPCBATool	音箱PCBA测试工具
RKDevTool_Release	固件烧录工具
ParameterTool	分区表修改工具
RK_IPCamera_Tool	IPC设备搜索工具

2.4.2 Linux工具

工具说明文档: tools/linux/ToolsRelease.txt

工具名称	工具用途
Linux_Pack_Firmware	固件打包工具(打包成updata.img)
Linux_Upgrade_Tool	烧录固件工具
Linux_SecureBoot	固件签名工具
Firmware_Merger	SPI NOR固件打包工具(生成的固件可以用于烧录器)
programmer_image_tool	打包SPI NOR/SPI NAND/SLC NAND/eMMC的烧录器固件

2.5 SDK 配置框架图

3. SDK编译说明

SDK的编译有2种方法:

- 一种是依赖整个SDK环境编译(本章节介绍的方法)
- 另一种是把U-Boot、Linux Kernel、Rootfs以及应用库独立出SDK来编译(具体方法参考文档: docs/RV1126_RV1109/Rockchip_RV1126_RV1109_Instruction_Linux_Separate_Building_EN.pdf)

3.1 SDK下载地址

```
repo init --repo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo \
    -u ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests \
    -b linux -m rv1126_rv1109_linux_release.xml
.repo/repo/repo sync -c -j4
```

3.1.1 SDK软件同步命令以及log

3.1.1.1 SDK软件同步

```
.repo/repo/repo sync -c -j4
repo: warning: Python 2 is no longer supported; Please upgrade to Python 3.6+.
repo: warning: Python 2 is no longer supported; Please upgrade to Python 3.6+.
Fetching projects: 100% (71/71), done.
info: A new version of repo is available

warning: project 'repo' branch 'stable' is not signed
warning: Skipped upgrade to unverified version
Checking out projects: 100% (71/71), done.
repo sync has finished successfully.
```

3.1.1.2 查看SDK版本

在SDK根目录执行命令:

```
realpath .repo/manifests/rv1126_rv1109_linux_release.xml

# 例如: 打印的版本号为v1.3.1

# 更新时间为2020-09-21

# /home/rv1109-
SDK/.repo/manifests/rv1126_rv1109_linux/rv1126_rv1109_linux_v1.3.1_20200921.xml
```

3.1.1.3 为每个工程创建default分支

```
.repo/repo/repo start default --all repo: warning: Python 2 is no longer supported; Please upgrade to Python 3.6+. repo: warning: Python 2 is no longer supported; Please upgrade to Python 3.6+. Starting default: 100% (71/71), done.
```

3.2 交叉工具链说明

SDK需要用到2个交叉工具链,如下:

目录	说明
prebuilts/gcc/linux-x86/arm/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf	用于文件系统和上层应用 编译
prebuilts/gcc/linux-x86/arm/gcc-linaro-6.3.1-2017.05-x86_64_arm-linux-gnueabihf	用于U-Boot和Linux内核编译

网盘地址: 链接: https://eyun.baidu.com/s/3eTwRktG 密码: yaCM

3.3 选择不同板级配置

3.3.1 SDK板级配置目录device/rockchip/rv1126_rv1109

板级配置	适用产品说明	存储介质	EVB板
BoardConfig-38x38-emmc.mk	通用IPC(产品是分立电源方案)	eMMC	TBD
BoardConfig-38x38-spi-nand.mk	通用IPC(产品是分立电源方案)	SPI NAND	RV1126_RV1109_38X38_SPI_DDR3P216DD6_V10_20200511LXF
BoardConfig-38x38-spi-nand.mk	通用IPC(产品是分立电源方案)	SPI NAND	RV1126_RV1109_IPC38_DEMO_V1.11_2020724LX
BoardConfig-38x38-spi-nand-ab.mk	通用IPC(产品是分立电源方案),启动方式是 AB系统	SPI NAND	RV1126_RV1109_IPC38_DEMO_V1.11_2020724LX
BoardConfig-robot.mk	扫地机类IPC	eMMC	RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630LXF
BoardConfig-tb-v12.mk	门锁、门铃、猫眼等带电池产品	eMMC	RV1126_RV1109_EVB_DDR3P216SD6_V12_20200515KYY
BoardConfig-tb-v13.mk	门锁、门铃、猫眼等带电池产品	eMMC	RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630LXF
BoardConfig-spi-nand.mk	通用IPC	SPI NAND	RV1126_RV1109_EVB_DDR3P216SD6_V12_20200515KYY
BoardConfig.mk	通用IPC	eMMC	RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630LXF
BoardConfig-ab-v13.mk	通用IPC,启动方式是AB系统	eMMC	RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630LXF
BoardConfig-v12.mk	通用IPC	eMMC	RV1126_RV1109_EVB_DDR3P216SD6_V12_20200515KYY
BoardConfig-slc-nand-v12.mk	通用IPC	SLC NAND	RV1126_RV1109_EVB_DDR3P216SD6_V12_20200515KYY
BoardConfig-v10-v11.mk	通用IPC	eMMC	RV1126_RV1109_EVB_DDR3P216SD6_V11_20200312LXF
BoardConfig-spi-nor-v12.mk	精简系统,只有基本码流预览	SPI NOR	RV1126_RV1109_EVB_DDR3P216SD6_V12_20200515KYY
BoardConfig-facial_gate.mk	门禁和闸机类产品	eMMC	RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630LXF
+++++++++++++++++++++++++++++++++++++++	++++++	+++++	

3.3.2 切换板级配置命令

方法1 ./build.sh 后面加上板级配置文件,例如:

选择通用IPC类产品的板级配置

./build.sh device/rockchip/rv1126_rv1109/BoardConfig.mk

选择门锁、门铃、猫眼等带电池产品的板级配置, 对应EVB板 RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630LXF

./build.sh device/rockchip/rv1126_rv1109/BoardConfig-tb-v13.mk

选择门禁和闸机类产品,对应EVB板RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630LXF

./build.sh device/rockchip/rv1126_rv1109/BoardConfig-facial_gate.mk

方法2

```
./build.sh lunch
processing board option: lunch
processing option: lunch

You're building on Linux
Lunch menu...pick a combo:
```

```
0. default BoardConfig.mk
1. BoardConfig-38x38-spi-nand.mk
2. BoardConfig-ab-v13.mk
3. BoardConfig-battery-ipc.mk
4. BoardConfig-facial gate.mk
5. BoardConfig-robot.mk
6. BoardConfig-sl.mk
7. BoardConfig-slc-nand-v12.mk
8. BoardConfig-spi-nand.mk
9. BoardConfig-spi-nor-tb-v13.mk
10. BoardConfig-spi-nor-v12.mk
11. BoardConfig-tb-v12.mk
12. BoardConfig-tb-v13.mk
13. BoardConfig-v10-v11.mk
14. BoardConfig-v12.mk
15. BoardConfig.mk
Which would you like? [0]:
switching to board: /home/rv1109/device/rockchip/rv1126_rv1109/BoardConfig.mk
```

3.4 查看编译命令

在根目录执行命令: ./build.sh -h|help

```
./build.sh help
Usage: build.sh [OPTIONS]
Available options:
BoardConfig*.mk -switch to specified board config
lunch
                 -list current SDK boards and switch to specified board config
uboot
                 -build uboot
spl
                 -build spl
                -build loader
loader
kernel
                 -build kernel
modules -build kernel modules

toolchain -build toolchain

rootfs -build default rootfs, currently build buildroot as default

buildroot -build buildroot rootfs
ramboot
                 -build ramboot image
-build debian9 stretch rootfs
debian
distro
                 -build debian10 buster rootfs
                 -build pcba
pcba
recovery
                -build recovery
all
                 -build uboot, kernel, rootfs, recovery image
             -clean uboot, kernel, rootfs, recovery
cleanall
firmware
                 -pack all the image we need to boot up system
updateimg
                 -pack update image
otapackage
                 -pack ab update otapackage image
                 -save images, patches, commands used to debug
save
                 -build all & firmware & updateimg & save
allsave
Default option is 'allsave'.
```

```
./build.sh -h kernel

###Current SDK Default [ kernel ] Build Command###

cd kernel

make ARCH=arm rv1126_defconfig

make ARCH=arm rv1126-evb-ddr3-v10.img -j12
```

3.5 U-Boot编译

```
### 查看U-Boot详细编译命令
./build.sh -h uboot

### U-Boot编译命令
./build.sh uboot
```

3.5.1 U-Boot配置说明

```
### 使用menuconfig配置U-Boot,选择需要的模块,最后保存退出。
### rv1126_defconfig 文件在目录 u-boot/configs
### 命令格式: make "RK_UBOOT_DEFCONFIG"_defconfig
### RK_UBOOT_DEFCONFIG 定义在./build.sh选择的BoardConfig*.mk
cd u-boot
make rv1126_defconfig
make menuconfig

### 保存配置到对应的文件rv1126_defconfig
make savedefconfig
cp defconfig configs/rv1126_defconfig
```

3.6 Kernel编译

```
### 查看Kernel详细编译命令
./build.sh -h kernel

### Kernel编译命令
./build.sh kernel
```

3.6.1 Kernel配置说明

```
### 例如 device/rockchip/rv1126_rv1109/BoardConfig.mk
./build.sh device/rockchip/rv1126_rv1109/BoardConfig.mk
cd kernel

### 命令格式: make ARCH=arm "RK_KERNEL_DEFCONFIG" "RK_KERNEL_DEFCONFIG_FRAGMENT"
### RK_KERNEL_DEFCONFIG 和RK_KERNEL_DEFCONFIG_FRAGMENT 都定义在./build.sh选择的
BoardConfig*.mk

### RK_KERNEL_DEFCONFIG_FRAGMENT 是可选项,具体看BoardConfig*.mk配置。
make ARCH=arm rv1126_defconfig
make ARCH=arm menuconfig

make ARCH=arm savedefconfig
cp defconfig arch/arm/configs/rv1126_defconfig
```

3.7 Recovery编译

```
### 查看Recovery详细编译命令
./build.sh -h recovery

### Recovery编译命令
./build.sh recovery
```

3.7.1 Recovery配置说明

```
### 1. 获取对应板级文件的recovery配置
./build.sh -h recovery
# ###Current SDK Default [ recovery ] Build Command###
  source envsetup.sh rockchip rv1126 rv1109 recovery
  device/rockchip/common/mk-ramdisk.sh recovery.img
rockchip_rv1126_rv1109_recovery
### 2. source 对应的recovery配置
source envsetup.sh rockchip rv1126 rv1109 recovery
### 3. 使用menuconfig配置recovery,选择需要的模块,最后保存退出。
### 比如: 去掉recovery的UI显示 BR2_PACKAGE_RECOVERY_NO_UI (查看
buildroot/package/rockchip/recovery/Config.in)
make menuconfig # 进入menuconfig后,按"/"进入查找模式,输入
BR2 PACKAGE RECOVERY NO UI
### 4. 保存到选择的recovery配置文件
### ./buildroot/configs/rockchip_rv1126_rv1109_recovery_defconfig
make savedefconfig
```

注: Recovery是非必需的功能,有些板级配置不会设置

3.8 Rootfs编译

```
### 查看Rootfs详细编译命令
./build.sh -h rootfs

### Rootfs编译和打包命令
./build.sh rootfs
```

3.8.1 Rootfs配置说明

```
### 1. 先在SDK根目录查看Board Config对应的rootfs是哪个配置
./build.sh -h rootfs
  ###Current SDK Default [ rootfs ] Build Command###
  source envsetup.sh rockchip rv1126 rv1109
### 2. source buildroot对应的defconfig
source envsetup.sh rockchip rv1126 rv1109
### 3. 使用menuconfig配置文件系统,选择需要的模块,最后保存退出。
### 例如: 要配置app/ipc-daemon这个工程
     a. 找到app/ipc-daemon对应的配置文件
###
          grep -lr "app/ipc-daemon" buildroot/package
         buildroot/package/rockchip/ipc-daemon/ipc-daemon.mk
          对应的配置文件: buildroot/package/rockchip/ipc-daemon/Config.in
###
###
###
      b. 获取配置名称BR2_PACKAGE_IPC_DAEMON
           查看buildroot/package/rockchip/ipc-daemon/Config.in
###
make menuconfig # 进入menuconfig后,按"/"进入查找模式,输入BR2 PACKAGE IPC DAEMON
### 4. 保存到rootfs配置文件
### ./buildroot/configs/rockchip rv1126 rv1109 defconfig
make savedefconfig
```

3.8.2 目录app和external里的工程编译方法

```
# SDK版本更新到v1.8.0
# 命令格式: ./build.sh app/<pkg1> app/<pkg2> external/<pkg3> ...
# <pkg1>,<pkg2>,<pkg3> 是app和external目录里的工程
# 例如编译external/mpp 和 app/mediaserver
./build.sh external/mpp app/mediaserver
```

注: SDK根目录app和external下的工程都是buildroot的package包,编译方法相同。

3.9 编译BSP包

SDK的BSP包只包含音视频编解码库、NPU库以及头文件。 注: BSP包不包含文件系统。

```
source envsetup.sh rockchip_rv1126_rv1109_libs

make -j12
```

编译BSP生成的目录 buildroot/output/rockchip_rv1126_rv1109_libs/BSP

```
tree buildroot/output/rockchip_rv1126_rv1109_libs/BSP/
buildroot/output/rockchip rv1126 rv1109 libs/BSP/
- example
  -- common
  - iqfiles
   librtsp
    - multi_audio_test
   - rknn_model
    -- stressTest
    └─ vqefiles
  - include
    - rga
     — rkaiq
    └── rkmedia
  - lib
  - npu
    - include
    --- ko
    └─ lib
```

3.10 固件打包

固件打包命令: ./mkfirmware.sh

固件目录: rockdev

3.11 全自动编译

进入工程根目录执行以下命令自动完成所有的编译:

```
./build.sh all # 只编译模块代码 (u-Boot, kernel, Rootfs, Recovery)
# 需要再执行./mkfirmware.sh 进行固件打包

./build.sh # 在./build.sh all基础上
# 1. 增加固件打包 ./mkfirmware.sh
# 2. update.img打包
# 3. 复制rockdev目录下的固件到IMAGE/***_RELEASE_TEST/IMAGES目录
# 4. 保存各个模块的补丁到IMAGE/***_RELEASE_TEST/PATCHES目录
# 注: ./build.sh 和 ./build.sh allsave 命令一样
```

4. 应用开发建议

使用SDK开发应用,建议参考 external/rkmedia/examples 例程进行开发。 app/mediaserver只是实现了简单的IPC功能,只作为演示用。

5. 刷机说明

5.1 EVB板正面示意图

5.2 EVB板背面示意图

5.3 EVB Sensor板背面示意图

扫描Sensor板背面的二维码或网页登陆地址 https://eyun.baidu.com/s/3nwlh7iL , 获取到EVB 板的使用指南。

文件名	
	视频教程
00	IPC-SDK-固件
	Docs
	Tools
00	快速启动固件
00	NPU评估固件

5.4 硬件接口功能表

序号	· 功能部分 要求		
Item.	Function Part	Requirement	
1	TF Card	正常识别TF Card	
2	USB Micro-B Port	可以认到ADB设备,可以下载固件	
3	USB Type-A Port	可以识别device设备,且功能正常	
4	USB camera input	正常识别USB camera	
5	the boat switch	表达托西岛岭》的10g中海,可以通过舰型开关支撑型打开式关	
6	12V power supply input	│直流适配器输入的12V电源,可以通过船型开关来控制打开或关 │ │闭 │	
7	KEY BAORD	所有按键功能正常	
8	CLASS D output	喇叭功能正常	
9	WI-FI/BT	AP6256模组功能正常	
10	RISC-V JTAG	++ (1 a 4) =) m) +)	
11	V7-JTAG	芯片验证调试	
12	TPYEC		
13	USB Micro-B Port	串口可以正常输入和输出	
14	以太网Ethernet	网络连接正常	
15	Zoom/ Iris Driver Interface	开发板预留Zoom/Focus/Iris连接座,方便客户进行CAMERA设备 调试开发。	
16	CIF camera	摄像头功能正常,CIF摄像头输入	
17	MIPI Camera 1	摄像头功能正常,默认MIPI摄像头输入	
18	MIPI Camera 2	摄像头功能正常,默认MIPI摄像头输入	
19	MIC-ARRAY	MIC陈列输入	
20	eMMC Flash	可以正常识别容量16GByte	
21	DDR DDR3	可识别到总容量8Gbit	
22	PMIC RK809-2	各路电源正常输出,电池电量检测准确	
23	CPU	RV1126_RV1109	
24 MIPI 屏 MIPI panel 屏幕图像显示正常			
25 BQ24171		双节电池充放电正常	
Bottom Layer			
		摄像头功能正常,BT1120 摄像头输入	
27			
28	SPI flash	验证SPI flash功能	
29	USB Micro-B Port	用于功耗测试	
30	Camera_LED 驱动输出	Warm up lamp drive	

5.5 Windows 刷机说明

SDK 提供 Windows 烧写工具(工具版本需要 V2.78 或以上),工具位于工程根目录:

如下图,编译生成相应的固件后,设备烧写需要进入 MASKROM 或 BootROM 烧写模式,连接好 USB 下载线后,按住按键"Update"不放并按下复位键"RESET"后松手,就能进入 MASKROM 模式,加载编译 生成固件的相应路径后,点击"执行"进行烧写,也可以按 "recovery" 按键不放并按下复位键 "RESET" 后 松手进入 loader 模式进行烧写,下面是 MASKROM 模式的分区偏移及烧写文件。(注意: Windows PC 需要在管理员权限运行工具才可执行)

烧录update.img方法:

SPI NOR的Firmware.img烧录方法:

注:

1. 除了MiniLoaderAll.bin和parameter.txt,实际需要烧录的分区根据rockdev/parameter.txt配置为准。

```
<SDK>/tools/windows/DriverAssitant_v4.91.zip
```

5.6 Linux 刷机说明

Linux 下的烧写工具位于 tools/linux 目录下(Linux_Upgrade_Tool 工具版本需要 V1.57 或以上),请确认你的板子连接到 MASKROM/loader rockusb。比如编译生成的固件在 rockdev 目录下,升级命令如下:

```
### 除了MiniLoaderAll.bin和parameter.txt,实际需要烧录的分区根据rockdev/parameter.txt配置为准。

sudo ./upgrade_tool ul rockdev/MiniLoaderAll.bin

sudo ./upgrade_tool di -p rockdev/parameter.txt

sudo ./upgrade_tool di -u rockdev/uboot.img

sudo ./upgrade_tool di -misc rockdev/misc.img

sudo ./upgrade_tool di -b rockdev/boot.img

sudo ./upgrade_tool di -recovery rockdev/recovery.img

sudo ./upgrade_tool di -oem rockdev/oem.img

sudo ./upgrade_tool di -rootfs rocdev/rootfs.img

sudo ./upgrade_tool di -userdata rockdev/userdata.img

sudo ./upgrade_tool rd
```

或升级整个 firmware 的 update.img 固件:

```
sudo ./upgrade_tool uf rockdev/update.img
```

SPI NOR升级整个 firmware 的 Firmware.img 固件:

```
sudo ./upgrade_tool db rockdev/MiniLoaderAll.bin
sudo ./upgrade_tool wl 0x0 rockdev/Firmware.img
sudo ./upgrade_tool rd
```

或在根目录, 机器在 MASKROM 状态运行如下升级:

```
./rkflash.sh
```

6. EVB板功能说明以及注意事项

6.1 GPIO电源设计注意事项

主控电源域的IO电平要与对接外设芯片的IO电平保持一致,还要注意软件的电压配置要跟硬件的电压一致,否则可能会导致GPIO的损坏。

注意

关于GPIO电源域IO电平匹配问题:

GPIO的电源域PMUIO0_VDD, PMUIO1_VDD, VCCIO1_VDD, VCCIO2_VDD, VCCIO3_VDD, VCCIO4_VDD, VCCIO5_VDD, VCCIO6_VDD, VCCIO7_VDD, 这些电源的电压要跟所接的外设的IO电平的电压保持一致,否则可能会导致GPIO的损坏。

还要注意软件的电压配置要跟硬件的电压一致; 比如硬件IO 电平接1.8V, 软件的电压配置也要相应的配成1.8V; 硬件IO 电平接3.3V, 软件的电压配置也要用3.3V, 否则也可能会导致GPIO的损坏。

6.2 如何访问3路RTSP和1路RTMP网络码流

EVB板支持如下功能:

- 支持3路RTSP和1路RTMP网络码流
- 支持本地屏幕1280x720显示
- 支持保存主码流到设备
- 支持网页端访问设备
- 支持人脸识别

使用网线接到EVB板的网口,上电开机。默认会自动获取IP地址。

6.2.1 使用串口或ADB连上EVB板子获取设备IP地址

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 02:E0:F9:16:7E:E9

inet addr:172.16.21.218 Bcast:172.16.21.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:199225 errors:0 dropped:2231 overruns:0 frame:0 TX packets:372371 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:20874811 (19.9 MiB) TX bytes:522220899 (498.0 MiB)

Interrupt:56

使用串口连接EVB板子的PC端配置如下:

波特率: 1500000

数据位: 8 停止位: 1 奇偶校验: none 流控: none

6.2.2 使用RK IPCamera Tool获取设备IP地址

安装SDK目录tools/windows/RK_IPCamera_Tool-V1.1.zip工具。打开工具,通过EVB板网口连接到电脑所在局域网,查看RK IPCamera Tool工具设备总数列表获取设备IP地址。

说明:

- 1. 点击"开启搜索",进行设备搜索
- 2. 选择一个设备
- 3. 取消自动获取IP, 改为静态IP
- 4. 设置静态IP
- 5. 设置IP
- 6. 打开预览

6.2.3 访问网络码流

使用支持RTSP或RTMP的播放器访问,例如(VLC播放器)。

RTSP访问地址:

- rtsp://设备IP地址/live/mainstream
- rtsp://设备IP地址/live/substream
- rtsp://设备IP地址/live/thirdstream

RTMP访问地址:

• rtmp://设备IP地址:1935/live/substream

6.3 如何通过网页访问设备信息

打开Web浏览器(推荐Chrome浏览器)访问地址:

```
http://设备IP地址
```

网页端详细的操作说明请参考SDK目录docs下的文档 Rockchip_Instructions_Linux_Web_Configuration_CN.pdf。

6.4 如何测试人脸识别功能

使用播放器访问RTSP主码流: rtsp://设备IP地址/live/mainstream

SDK的人脸识别功能默认没打开,需要通过网页"配置"-->"智能分析"打开,授权的测试时间是30~60分钟,授权失效后主码流预览会有"人脸算法软件未授权"提示,需要重启才能再测试。

6.5 如何通过网络调试EVB板

6.5.1 通过SSH登陆EVB板调试

接上以太网,通过第5.1.2节 <u>使用RK IPCamera Tool获取设备IP地址</u>获取EVB板IP地址。保证PC电脑可以ping通EVB板。

```
### 清除上次登陆信息(EVB板的IP地址192.168.1.159)
ssh-keygen -f "$HOME/.ssh/known_hosts" -R 192.168.1.159
### 使用SSH命令登陆
ssh root@192.168.1.159
### 输入默认密码: rockchip
```

6.5.2 通过SCP调试

```
### 从PC端上传文件test-file到EVB板的目录/userdata
scp test-file root@192.168.1.159:/userdata/
root@192.168.1.159's password:
### 输入默认密码: rockchip

### 下载EVB板上的文件/userdata/test-file下载到PC端
scp root@192.168.1.159:/userdata/test-file test-file
root@192.168.1.159's password:
### 输入默认密码: rockchip
```

6.5.3 通过网络ADB调试

```
### 获取EVB板的IP地址192.168.1.159
adb connect 192.168.1.159
adb devices
List of devices attached
192.168.1.159:5555 device

### adb登陆EVB板子调试
adb -s 192.168.1.159:5555 shell

### 从PC端上传文件test-file到EVB板的目录/userdata
adb -s 192.168.1.159:5555 push test-file /userdata/

### 下载EVB板上的文件/userdata/test-file下载到PC端
adb -s 192.168.1.159:5555 pull /userdata/test-file test-file
```

6.6 SPI NAND/SLC NAND ubi文件系统镜像打包说明

6.6.1 根文件系统打包说明

Nand Flash的文件系统使用的是ubifs,SDK默认的配置是Page Size 2KB,Block Size 128KB的Nand Flash。可以通过修改对应的板级配置: device/rockchip/rv1126 rv1109/BoardConfig***.mk

```
# Set ubifs page size, 2048(2KB) or 4096(4KB)
# Option.
export RK_UBI_PAGE_SIZE=2048

# Set ubifs block size, 0x20000(128KB) or 0x40000(256KB)
# Option.
export RK_UBI_BLOCK_SIZE=0x20000

# Set userdata partition size (byte) if define RK_USERDATA_DIR
# MUST, if userdata partition is grow partition.
export RK_USERDATA_PARTITION_SIZE=0x02760000

# Set oem partition size (byte)
# Option. if not set, it will get from parameter auto.
export RK_OEM_PARTITION_SIZE=0x6400000
```

默认文件系统是用ubifs,如果要改成squashfs,步骤如下:

• buildroot对buildroot/configs/rockchip rv1126 rv1109 spi nand defconfig打上如下补丁

```
diff --git a/configs/rockchip_rv1126_rv1109_spi_nand_defconfig
b/configs/rockchip_rv1126_rv1109_spi_nand_defconfig
index 5da9b25935..8af9226920 100644
--- a/configs/rockchip_rv1126_rv1109_spi_nand_defconfig
+++ b/configs/rockchip_rv1126_rv1109_spi_nand_defconfig
@@ -41,6 +41,8 @@ BR2_PACKAGE_RK_OEM=y
BR2_PACKAGE_RK_OEM_RESOURCE_DIR="$(TOPDIR)/../device/rockchip/oem/oem_ipc"
```

```
BR2_PACKAGE_RK_OEM_IMAGE_FILESYSTEM_TYPE="ubi"

BR2_PACKAGE_RK_OEM_IMAGE_PARTITION_SIZE=0x6400000

+BR2_PACKAGE_ROOTFS_UBI_USE_CUSTOM_FILESYSTEM=y

+BR2_PACKAGE_ROOTFS_UBI_CUSTOM_FILESYSTEM="squashfs"

BR2_PACKAGE_CAMERA_ENGINE_RKAIQ=y

BR2_PACKAGE_CAMERA_ENGINE_RKAIQ_IQFILE="os04a10_CMK-OT1607-FV1_M12-40IRC-4MP-F16.xml"

BR2_PACKAGE_IPC_DAEMON=y

@@ -79,4 +81,5 @@ BR2_PACKAGE_NGINX=y

BR2_PACKAGE_NGINX_HTTP_SSL_MODULE=y

BR2_PACKAGE_NGINX_HTTP_SSL_MODULE=y

BR2_PACKAGE_NGINX_DEBUG=y

BR2_PACKAGE_NGINX_RTMP=y

+BR2_TARGET_ROOTFS_SQUASHFS4_XZ=y

BR2_TARGET_ROOTFS_UBIFS_MAXLEBCNT=4096
```

• kernel dts的bootargs参数改成如下:

ubi.mtd=3 ubi.block=0,rootfs root=/dev/ubiblock0_0 rootfstype=squashfs /* UBI block 上挂载 SquashFS 文件系统 */

注: ubi.mtd=3 (3是rootfs在分区表的位置,第一个分区是0)。

6.6.2 oem和userdata分区的ubifs打包说明

SDK默认oem是在buildroot里打包成ubi镜像。 userdata分区默认不打包成镜像,系统启动后会自动格式化成ubifs。

如果在对应的BoardConfig.mk里配置RK_OEM_DIR(RK_OEM_BUILDIN_BUILDROOT不配置)或RK_USERDATA_DIR,那可以使用SDK根目录下 ./mkfirmware.sh 进行打包。 RK_OEM_DIR是对应 device/rockchip/oem/目录下自定义的目录。 RK_USERDATA_DIR则是对应device/rockchip/userdata/目录下自定义的目录。

详细的UBI文件系统镜像制作文

档: /docs/Linux/ApplicationNote/Rockchip_Developer_Guide_Linux_Nand_Flash_Open_Source_Solution_CN .pdf

6.7 U-Boot终端下tftp使用说明

6.7.1 U-Boot配置以太网

默认U-Boot代码支持的以太网phy是EVB板RTL8211F。U-Boot初始化以太网时,会先读取内核dtb的gmac 节点,如果没有获取到内核dtb,会使用U-Boot下的dtb初始化以太网phy。 所以如果板子上的phy不是 RTL8211F,则需要同步修改U-Boot的dtb的gmac节点。

以下是参考例子: 注: U-Boot的dts节点里有引用的其它节点(如: gpio2/rmiim1_pins/gmac_clk_m1_pins)都需要接上"u-boot,dm-pre-reloc;"

```
<2 RK PC5 2 &pcfg pull none>;
               } ;
                gmac clk m1 pins: gmac-clk-m1-pins {
                      rockchip,pins =
                                /* rgmii clk m1 */
                                <2 RK_PB7 2 &pcfg_pull_none>;
               };
        };
        sdmmc0 {
                sdmmc0 bus4: sdmmc0-bus4 {
diff --git a/arch/arm/dts/rv1126-u-boot.dtsi b/arch/arm/dts/rv1126-u-boot.dtsi
index 01547feff6..baf8509946 100644
--- a/arch/arm/dts/rv1126-u-boot.dtsi
+++ b/arch/arm/dts/rv1126-u-boot.dtsi
@@ -166,26 +166,37 @@
      status = "okay";
};
+&gpio2 {
+ u-boot, dm-pre-reloc;
      status = "okay";
+};
+&rmiim1 pins {
+ u-boot, dm-pre-reloc;
      status = "okay";
+};
+&gmac_clk_m1_pins{
+ u-boot, dm-pre-reloc;
      status = "okay";
+};
&gmac {
       u-boot, dm-pre-reloc;
      phy-mode = "rgmii";
      clock in out = "input";
      phy-mode = "rmii";
+
       clock in out = "output";
       snps,reset-gpio = <&gpio3 RK PAO GPIO ACTIVE LOW>;
       snps,reset-gpio = <&gpio2 RK PA5 GPIO ACTIVE LOW>;
        snps,reset-active-low;
        /* Reset time is 20ms, 100ms for rt18211f */
       snps, reset-delays-us = <0 20000 100000>;
        snps, reset-delays-us = <0 50000 50000>;
       assigned-clocks = <&cru CLK GMAC SRC>, <&cru CLK GMAC TX RX>, <&cru
CLK GMAC ETHERNET OUT>;
       assigned-clock-parents = <&cru CLK GMAC SRC M1>, <&cru RGMII MODE CLK>;
       assigned-clock-rates = <125000000>, <0>, <25000000>;
       assigned-clocks = <&cru CLK GMAC SRC>, <&cru CLK GMAC TX RX>;
       assigned-clock-rates = <50000000>;
       assigned-clock-parents = <&cru CLK GMAC SRC M1>, <&cru RMII MODE CLK>;
+
        pinctrl-names = "default";
       pinctrl-0 = <&rgmiim1 pins &clk out ethernetm1 pins>;
```

```
-
    tx_delay = <0x2a>;
-    rx_delay = <0x1a>;
+    pinctrl-0 = <&rmiim1_pins &gmac_clk_m1_pins>;

phy-handle = <&phy>;
status = "okay";
```

6.7.2 U-Boot的tftp下载说明

使用 sysmem_search 获取一块指定大小的内存地址,然后设置IP地址,最用使用tftp命令下载文件。

```
Hit key to stop autoboot('CTRL+C'): 0
=> <INTERRUPT>
=> <INTERRUPT>
=>
=> sysmem_search
sysmem_search - Search a available sysmem region
Usage:
sysmem_search <size in hex>
=> sysmem_search 0x6400000
Sysmem: Available region at address: 0x356f6cc0
=> setenv ipaddr 172.16.21.47
=> setenv serverip 172.16.21.199
=> tftp 0x356f6cc0 uboot.img
ethernet@ffc40000 Waiting for PHY auto negotiation to complete. done
Using ethernet@ffc40000 device
TFTP from server 172.16.21.199; our IP address is 172.16.21.47
Filename 'uboot.img'.
Load address: 0x356f6cc0
#########################
       139.6 KiB/s
done
Bytes transferred = 2228224 (220000 hex)
```

6.7.2.1 eMMC通过tftp烧录loader的方法

```
Net: eth0: ethernet@ffc40000
Hit key to stop autoboot('CTRL+C'): 0
=> <INTERRUPT>
                              idblock.bin build in uboot:
=> <INTERRUPT>
=> <INTERRUPT>
                                 ./make.sh rv1126
=>
=> setenv ipaddr 172.16.21.10
                                ./make.sh --idblock --spl
=> setenv serverip 172.16.21.199
=> sysmem_search 0x1000000
Sysmem: Available region at address: 0x3aaf6e80
=> tftp 0x3aaf6e80 idblock.bin
ethernet@ffc40000 Waiting for PHY auto negotiation to complete. done
Using ethernet@ffc40000 device
TFTP from server 172.16.21.199; our IP address is 172.16.21.10
Filename 'idblock.bin'.
Load address: 0x3aaf6e80
Loading: ############
        10.7 KiB/s
Bytes transferred = 167936 (29000 hex)
=>
                                       0x148 = 0x29000/0x200
=> mmc dev 0
switch to partitions #0, OK
mmc0(part 0) is current device
= mmc write 0x3aaf6e80 0x40 0x148
MMC write: dev # 0, block # 64, count 328 ... 328 blocks written: OK
      The loader partition offset on eMMC
=>
=>
```

6.7.2.2 SPI NAND通过tftp烧录loader的方法

```
=> <INTERRUPT>
                                                                                           build in uboot:
=> <INTERRUPT>
=> setenv serverip 172.16.21.10

=> sysmem_search 0x10000000 /molec cl
=> sysmem_search 0x1000000 / make_sh_-idblock --sp]
Sysmem: Available region at address: 0x3aaf6e80 | 0x3aaf6e80 | ox3aaf6e80 | ox3aaf6e80 | ox3aaf6e80 | ox3aaf6e80 | ox3aaf6e80 | ox3aaf6e80 | ox4aaf6e80 | ox4aaf6
                                                                                                                                                      -idblock --spl
 Using ethernet@ffc40000 device
TFTP from server 172.16.21.199; our IP address is 172.16.21.10 Filename 'idblock.bin'. Load address: 0x3aaf6e80
Loading: ###########
                            10.7 KiB/s
 done
Bytes transferred = 167936 (29000 hex)
                                                                                 spi nand loader partition offset
=> mtd list
List of MTD devices:
                                                                                 = first block offset
      - device: flash@0
                                                                                  = block size
      - parent: sfc@ffc9000
      - driver: spi_nand
         type: NAND flash
     - block size: 0x20000 bytes
        - min I/0: 0x800 bytes
      - 00B size: 64 byte
      - 00B available: 46 bytes
                                                                                                         spi nand loader partition
      - ECC strength: 8 bits
                                                                                                          size = 1MB - (block size)
      - ECC step size: 512 bytes
      - bitflip threshold: 8 bits
                                                                                                                  spi-nand0"
      =>
\Rightarrow mtd erase spi-nand0 0x20000 0xe0000
Erasing 0x00020000 ... 0x0000fffff (7 eraseblock(s)) 
=> mtd write pi-nand0 0x3aaf6e80 0x20000 0x29000
Writing 167936 byte(s) (82 page(s)) at offset 0x00020000
```

注: SLC NAND暂时不支持使用tftp下载idblock.bin的方式升级。

7. 智能USB Camera产品配置

智能USB Camera产品支持如下功能:

- 支持标准UVC Camera功能,最高支持4k预览(RV1126)
- 支持多种NN算法,包括人脸检测,人体姿态或骨骼检测,人脸关键点检测跟踪等,支持第三方算 法扩展
- 支持USB复合设备稳定传输(RNDIS/UAC/ADB等)
- 支持NN前处理和数据后处理通路
- 支持智能电视或PC等多种终端设备预览
- 支持EPTZ功能

7.1 产品编译说明

智能USB Camera产品编译配置基于公版SDK,采用单独的rv1126_rv1109_linux_ai_camera_release.xml代码清单管理更新。

7.1.1 选择对应板级配置

SDK下载地址:

```
repo init --repo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo \
    -u ssh://git@www.rockchip.com.cn/linux/rk/platform/manifests \
    -b linux -m rv1126_rv1109_linux_ai_camera_release.xml
```

芯片	板级配置 (目录 device/rockchip/rv1126_rv1109)	存储介 质	EVB板
RV1126/RV1109	BoardConfig-uvcc.mk	eMMC	RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630LXF

切换板级配置命令:

选择智能USB Camera版本的板级配置

./build.sh device/rockchip/rv1126 rv1109/BoardConfig-uvcc.mk

7.1.2 编译命令

智能USB Camera产品的编译命令同SDK,参考第三节SDK编译说明即可。

7.2 产品软件框架

总体结构如下:

其中,RV1109/RV1126端应用与源码程序对应关系如下:

1.main app 对应/app/smart_display_service: 负责RNDIS 服务端功能实现,命令处理,NN数据转发等操作;

2.AI app 对应/app/mediaserver: 负责将一路camera数据送到NPU做对应NN算法处理,通过共享内存机制传递给main app;

3.uvc app 对应/external/uvc app:: 负责UVC camera完整功能的实现和控制。

7.2.1 uvc_app

请参考:

```
<SDK>/external/uvc_app/doc/zh-cn/uvc_app.md
```

7.2.2 mediaserver

请参考:

```
<SDK>/docs/RV1126_RV1109/AppcationNote/Rockchip_Instructions_Linux_MediaServer_CN
.pdf
```

7.2.3 其它

其它linux应用框架或模块资料,请参考下列目录对应文档:

```
<SDK>/docs/RV1126_RV1109/ # 针对RV1126/RV1109平台
<SDK>/docs/Linux/ # 针对Rockchip Linux通用平台,仅供RV1126/RV1109参考
```

7.3 功能说明

7.3.1 如何显示USB Camera预览

使用USB线连接EVB的USB OTG口与上位机,如TV端或PC端USB host 口,上电开机。默认会自动启动UVC camera应用及RNDIS服务。使用串口连上EVB板子运行ifconfig usb0可获取预配置的RNDIS 虚拟网口IP地址。

```
RK $ ifconfig usb0
usb0 Link encap:Ethernet HWaddr 8E:F3:7D:36:13:34
inet addr:172.16.110.6 Bcast:172.16.255.255 Mask:255.255.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4884 errors:0 dropped:16 overruns:0 frame:0
TX packets:4843 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:257305 (251.2 KiB) TX bytes:787936 (769.4 KiB)
```

波特率: 1500000

数据位: 8 停止位: 1 奇偶校验: none 流控: none

Android智能电视使用RKAICameraTest应用或其他标准camera应用,PC端推荐使用如Amcap或Potplayer等第三方UVC camera应用,打开即可看到预览,切换格式或分辨率参考上位机上camera应用的设置菜单中功能切换即可。

7.3.2 如何测试AI模型后处理

在电视端打开RKAICameraTest应用,看到预览后点击RNDIS按钮连接RNDIS,成功后点击SETTINGS按钮选择"模型算法切换"选项,选择要使用的模型算法,默认为人脸检测算法,然后点击"AI后处理开关",当人脸在镜头前出现即可看到AI处理效果:

7.3.3 如何测试EPTZ功能

在电视端打开RKAICameraTest应用,看到预览后点击RNDIS按钮连接RNDIS,成功后点击SETTINGS按钮选择"EPTZ模式切换"选项,在倒计时完成后,再打开应用即可,此时在界面左上角会显示是EPTZ模型还是普通智能预览模式:

8. 闸机和门禁类产品配置

闸机和门禁类产品支持如下功能:

- 支持人脸检测,人脸特征点提取,人脸识别和活体检测
- 支持本地屏幕1280x720显示
- 支持网页端访问设备

8.1 产品编译说明

闸机和门禁类产品编译配置基于公版SDK,代码下载和开发环境配置请参考SDK。

8.1.1 选择对应板级配置

支持的板级配置	备注
device/rockchip/rv1126_rv1109/BoardConfig-facial_gate.mk	闸机和门禁类产品的板级配置

说明: 默认支持V13的EVB板,板上丝印是RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630LXF,如果客户的板子上丝印是RV1126_RV1109_EVB_DDR3P216SD6_V12_20200515KYY,请按如下修改device/rockchip/rv1126_rv1109/BoardConfig-facial_gate.mk

```
--- a/rv1126_rv1109/BoardConfig-facial_gate.mk
+++ b/rv1126_rv1109/BoardConfig-facial_gate.mk
@@ -11,7 +11,7 @@ export RK_KERNEL_DEFCONFIG=rv1126_defconfig
# Kernel defconfig fragment
export RK_KERNEL_DEFCONFIG_FRAGMENT=rv1126-facial-gate.config
# Kernel dts
-export RK_KERNEL_DTS=rv1109-evb-ddr3-v13-facial-gate
+export RK_KERNEL_DTS=rv1109-evb-ddr3-v12-facial-gate
# boot image type
export RK_BOOT_IMG=zboot.img
# kernel image path
```

切换板级配置命令:

```
### 选择闸机和门禁类产品的板级配置
```

./build.sh device/rockchip/rv1126_rv1109/BoardConfig-facial_gate.mk

8.1.2 编译命令

闸机和门禁类产品的编译命令,请参考第三章 SDK编译说明。

8.2 QFacialGate应用

QFacialGate 是闸机和门禁类产品主应用,默认开机自动运行,该应用选用QT做UI,通过Rkfacial库调用 RK自有算法rockface,实现人脸检测,人脸特征点提取,人脸识别,活体检测。

具体包含以下功能:

- 获取RGB摄像头图像数据做人脸识别,获取IR摄像头图像数据做活体检测。
- 使用SQLITE3作为数据库来存储人脸特征值和用户名。
- 实现用户注册,删除注册数据,人脸框跟踪及用户名显示等操作。
- 利用ALSA接口实现各流程语音播报功能。

8.3 minigui_demo应用

MiniGUI是一个轻量级GUI,适合Flash容量小、快速启动的产品。minigui_demo是基于MiniGUI实现的一个简单示例程序,实现透明显示部分区域功能。

```
buildroot使能BR2_PACKAGE_MINIGUI_DEMO选项,会自动选择MiniGUI应用的依赖库
BR2_PACKAGE_LIBPNG12
BR2_PACKAGE_MINIGUI_ENABLE_RGA
BR2_PACKAGE_MINIGUI_ENABLE_FREETYPE
BR2_PACKAGE_MINIGUI_ENABLE_PNG
编译后,板端执行需要手动执行minigui_demo
```

8.4 其它说明

- SDK中包含了RK自研算法rockface,但需要获取授权使用,如何获取授权请联系业务并参考 sdk/external/rockface/auth/README.md文档。SDK自带一个小时的测试模式,测试时间到后可以断电重启,重复测试。
- 闸机公版上使用RGB摄像头型号ov2718, IR摄像头型号gc2053
- 红外补光灯视角要达到90度, 电流要达到120ma
- 相关文档

QFacialGate介绍: app\QFacialGate\doc\Rockchip_Instruction_Linux_QFacialGate_CN.pdf Rkfacial库介绍: external\rkfacial\doc\Rockchip_Instruction_Rkfacial_CN.pdf Web后端开发框架:

 $docs \ NV1126_RV1109 \ Application Note \ Rockchip_Developer_Guide_Linux_Application_Framework_CN.$ pdf

Web网页端介绍:

 $docs \ \ NV1126_RV1109 \ \ Application Note \ \ \ \ Linux_Web_Configuration_CN.pdf$