Notes on the function gsw_Turner_Rsubrho(SA, CT, p) which evaluates the Turner angle and the Stability Ratio

This function, $\mathbf{gsw_Turner_Rsubrho}(SA,CT,p)$, evaluates the Turner angle Tu and the Stability Ratio R_{ρ} of the water column using the 48-term expression for density, $\hat{\rho}(S_A,\Theta,p)$. This 48-term rational function expression for density is discussed in appendix A.30 and appendix K of the TEOS-10 Manual (IOC $\mathit{et al.}$ (2010)). For dynamical oceanography we may take the 48-term rational function expression for density as essentially reflecting the full accuracy of TEOS-10.

This function **gsw_Turner_Rsubrho**(SA,CT,p) evaluates the expressions in Eqns. (3.15.1) and (3.16.1) of the TEOS-10 Manual (IOC *et al.* (2010)) (see also McDougall *et al.* (1988)).

References

IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from http://www.TEOS-10.org

McDougall, T. J., S. A. Thorpe and C. H. Gibson, 1988: Small-scale turbulence and mixing in the ocean: A glossary, in *Small-scale turbulence and mixing in the ocean*, edited by J. C. J. Nihoul and B. M. Jamart, Elsevier, Amsterdam. 3-9.

Here follows sections 3.15 and 3.16 of the TEOS-10 Manual (IOC et al. (2010)).

3.15 Stability ratio

The stability ratio R_{ρ} is the ratio of the vertical contribution from Conservative Temperature to that from Absolute Salinity to the static stability N^2 of the water column. From (3.10.1) above we find

$$R_{\rho} = \frac{\alpha^{\Theta}\Theta_{z}}{\beta^{\Theta}(S_{A})_{z}} . \tag{3.15.1}$$

The stability ratio R_{ρ} is available in the GSW Oceanographic Toolbox from the function **gsw_Turner_Rsubrho**.

3.16 Turner angle

The Turner angle Tu, named after J. Stewart Turner, is defined as the four-quadrant arctangent (Ruddick (1983) and McDougall $et\ al.$ (1988), particularly their Figure 1)

$$Tu = \tan^{-1} \left(\alpha^{\Theta} \Theta_z + \beta^{\Theta} \left(S_A \right)_z, \ \alpha^{\Theta} \Theta_z - \beta^{\Theta} \left(S_A \right)_z \right), \tag{3.16.1}$$

where the first of the two arguments of the arctangent function is the "y"-argument and the second one the "x"-argument, this being the common order of these arguments in Fortran and MATLAB. The Turner angle Tu is quoted in degrees of rotation. Turner angles between 45° and 90° represent the "salt-finger" regime of double-diffusive convection, with the strongest activity near 90°. Turner angles between -45° and -90° represent the "diffusive" regime of double-diffusive convection, with the strongest activity near -90° . Turner angles between -45° and 45° represent regions where the stratification is stably stratified in both Θ and $S_{\rm A}$. Turner angles greater than 90° or less than -90° characterize a statically unstable water column in which $N^2 < 0$. As a check on the calculation of the Turner angle, note that $R_{\rho} = -\tan(Tu + 45^{\circ})$. The Turner angle and the stability ratio are available in the GSW Oceanographic Toolbox from the function ${\bf gsw_Turner_Rsubrho}$.

The figure below, from McDougall *et al.* (1988), illustrates the Turner angle on a diagram whose axes should be $(\beta^{\Theta}(S_A)_z, \alpha^{\Theta}\Theta_z)$.

References

McDougall, T. J., S. A. Thorpe and C. H. Gibson, 1988: Small-scale turbulence and mixing in the ocean: A glossary, in *Small-scale turbulence and mixing in the ocean*, edited by J. C. J. Nihoul and B. M. Jamart, Elsevier, Amsterdam. 3-9.

Ruddick, B., 1983: A practical indicator of the stability of the water column to double-diffusive activity. *Deep-Sea Res.*, **30**, 1105–1107.