Water Quality Classification

CIND820: Big Data Analytics Project

Project by: Ann Sam ann.sam@ryerson.ca Student #501160843

Supervisor: Dr. Ceni Baboglu

Spring-Summer 2022

Why classify water?

- Basic necessity for all human life
- Process of water testing is time consuming: water collection and laboratory testing
- Costly

Can machine learning improve the process of water classification?

Predicting Water Potability

- Can we predict water potability?
- Which machine learning algorithms can yield the most efficient and accurate results?
- Can the parameters within the ML algorithms be tuned to yield the best results?
- Are the parameters within the dataset affective in water quality prediction?
- Should there be other parameters to consider?
- How confident are we in our findings?

The Dataset

https://www.kaggle.com/datasets/adityakadiwal/water-potability/

Approach Process

EDA: Visual Analyses

EDA: Visual Analyses

Missing Values

 The majority of the parameters have a Gaussian distribution therefore it was safe to replace missing values with the mean value

Outlier Detection

Class Imbalance

• Up-sampling the minority class to balance the data for training to prevent bias to the majority class

Principle Component Analysis

• Exploring dimensionality reduction using **PCA** tells us that all the variables are independent from each other and further confirms our previous observations from the heatmap.

Algorithm Comparison 1st Iteration

	Model	Accuracy	Precision	Recall	F1 Score
3	Random Forest	0.843264	0.827676	0.852151	0.839735
2	Decision Tree	0.753886	0.698690	0.860215	0.771084
5	XGBoost	0.676166	0.654822	0.693548	0.673629
4	Support Vector	0.660622	0.632212	0.706989	0.667513
1	KNN Regression	0.643782	0.620347	0.672043	0.645161
0	Logistic Regression	0.500000	0.483645	0.556452	0.517500

Performance of Models -- First Iteration

Algorithm Comparison 2nd Iteration

	Model	Accuracy	Precision	Recall	F1 Score
4	Support Vector	0.838083	0.853868	0.801075	0.826630
3	Random Forest	0.834197	0.808081	0.860215	0.833333
5	XGBoost	0.812176	0.763341	0.884409	0.819427
1	KNN Regression	0.775907	0.722595	0.868280	0.788767
2	Decision Tree	0.765544	0.714607	0.854839	0.778458
0	Logistic Regression	0.497409	0.481132	0.548387	0.512563

Performance of Models -- Second Iteration

Model Evaluation

	Model	2nd Iteration	1st Iteration	Difference in Accuracy
0	Logistic Regression	49.74%	50.00%	-0.26%
1	KNN Regression	77.59%	64.38%	13.21%
2	Decision Tree	76.55%	75.39%	1.17%
3	Random Forest	83.42%	84.33%	-0.91%
4	Support Vector	83.81%	66.06%	17.75%
5	XGBoost	81.22%	67.62%	13.60%

Cross Validation

K-Fold CV

Algorithm	Mean Accuracy Score	Standard Deviation	
Random Forest	85.28 %	1.84 %	
SVM	87.98 %	1.91 %	
XGBoost	80.73 %	1.77%	

ROC AUC: **0.8368** CV ROC AUC: **0.8674**

Interpretation & Recommendations

- After 2nd iteration and hyper-tunning parameters, SVM performed with the greatest accuracy 84.33%
- After k-Fold cross validation, SVM's accuracy increased to 87.98%

- Increasing parameters: coliforms and heavy metals
- Explore deeper machine learning such as ANN (artificial neural network)

Conclusions

- Can we predict water potability?
- Which machine learning algorithms can yield the most efficient and accurate results?
- Can the parameters within the ML algorithms be tuned to yield the best results?
- Are the parameters within the dataset affective in water quality prediction?
- Should there be other parameters to consider?
- How confident are we in our findings?

- ✓ Using ML it is possible to predict water potability
- ✓ Support Vector Machine Classifier best performance 87.98% accuracy
- ✓ Hyper-tunning did increased accuracy in modeling for most of the algorithms
- ✓ The parameters within the dataset were affective in prediction although had low correlation
- ✓ Through research from other studies, additional attributes such as coliform and heavy metals should be included
- ✓ Confident in our findings but room for improvement

