National Institute of Science Education And Research

FIRST SEMESTER, 2021-22 MidSemester Examination

P401

Classical Mechanics II

(Time allowed: TWO hours)

NOTE: Answer **All** questions. Examination is closed books and closed notes. Total number of points is 120. Be precise and to the point.

- 1. (a) For a rigid body composed of N particles, show that the number of degrees of freedom, in general, is 6. Give an example of a rigid body where this number is smaller than 6. Show that if the internal forces between the particles are central forces then internal forces don't do any work.
 - (b) For the case of symmetric top, derive the **conjugate momenta**, Hamiltonian and EOM using the Euler-Lagrange equations for the Lagrangian

$$L = \frac{I_1}{2} \left(\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2 \right) + \frac{I_3}{2} \left(\dot{\psi} + \dot{\phi} \cos \theta \right)^2 - Mgl \cos \theta \tag{1}$$

Consider a special case when $\dot{\theta} = 0$ always i.e. $\theta = \theta_0$. Find the conditions for the solution to exist in this case and interpret them. Distinguish between the cases $\theta_0 > \frac{\pi}{2}$ and $\theta_0 < \frac{\pi}{2}$

- 2. (a) Consider a particle with charge e moving with velocity \vec{v} in a constant, uniform magnetic field \vec{B} with interaction Lagrangian $L_i = e\vec{v} \cdot \vec{A}$. Using the gauge in which the vector potential \vec{A} is given in terms of position vector \vec{r} by $\vec{A} = -\frac{1}{2}\vec{r} \times \vec{B}$, show that in a rotating frame, the total Lagrangian can be reduced to that of a simple harmonic oscillator.
 - (b) Find the eigenvalues corresponding to 2×2 matrix A satisfying $AA^T = I$ and DetA = 1.
 - (c) Find the equation of motion for a scalar field ϕ with the Lagrangian density

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial_{\nu} \phi \eta^{\mu\nu} - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4$$
 (2)

Here m, λ are constants and $\eta_{\mu\nu}$ is the Minkwoski metric.

- **3.** Please answer following questions.
 - (a) Consider the motion of a torque-free symmetric top from the space-fixed frame. Show that angular momentum vector \vec{L} , angular velocity vector $\vec{\omega}$ and the vector corresponding to the body z-axis (symmetry axis) \hat{e}_3 lie in a plane. Show that $\vec{\omega}$ and \hat{e}_3 precess around the angular momentum vector.
 - (b) If $A(\hat{n}, \Phi)$ is a fixed-axis rotation matrix and if R is some other rotation, show that $RA(\hat{n}, \Phi)R^T = A(R\hat{n}, \Phi)$, where R^T is the transpose of rotation R. If needed, you can use the axis-angle representation $A = I + N \sin \Phi + N^2(1 \cos \Phi)$ where $N_{ij} = -\epsilon_{ijk}n_k$ is the dual of axis direction n_k .
 - (c) Find the moment of inertia for a solid sphere of radius R and mass M with centre at the origin.