Real-Time Atmospheric Cloud Rendering System

Parker Ford, Kelvin Sung University of Washington Bothell, Computing and Software Systems 10/02/2024

Introduction

- Rendering realistic appearing clouds is difficult due to their detailed shapes and complicated light interactions.
- Others work in the field includes:
 - Particle based methods
 - Textured billboarding methods

Particle Based Example [3]:

Texture Billboard Example [4]:

Our Approach

- Our approach has two subprocess:
 - Modeling (defining the cloud volume)
 - Rendering (generating images of cloud volume)
- Modeling approach is based on the work of Schneider
- Rendering approach is based on Fong's volumetric rendering equation.

Modeling Method

- We use the following 3 lookup textures:
 - Cloud Coverage: Cloud density based on world coordinate
 - Cloud Type: Cloud type based on world coordinate
 - Height Gradient: Density based on altitude and cloud type

Coverage Map

Type Map

Dimensional Profile

Cloud Nosie 3D Textures

• 3D noise is used to add cloud-like variations in density

Cloud Density

Fong's Radiance Equation

$$L(c,-v) = Tr(c,p)L_o(p,v) + \int_{t=0}^{||p-c||} Tr(c,c-vt)L_{scat}(c-vt,v)\sigma_s dt$$

Volumetric Render

Multiple Scattering Approximation

$$L(c,-v) = Tr(c,p)L_o(p,v) + \int_{t=0}^{||p-c||} Tr(c,c-vt)L_{scat}(c-vt,v)\sigma_s dt$$

$$L(c,-v) = Tr(c,p)L_o(p,v) + \int_{t=0}^{||p-c||} Tr(c,c-vt)L_{mult}(c-vt,v)\sigma_s dt$$

Multiple Scattering Approximation

Single Scattering Equation

$$L_{scat}(x, v) = p(v, l)e^{-\tau}$$

Wrenninge's Multiple Scattering Equation [6]

$$L_{mult}(x, v) = \sum_{i=0}^{N-1} L_i(x, v)$$
$$L_i(x, v) = b^i p(v, l) e^{-a^i \tau}$$
$$0 \le a < 1$$
$$0 \le b < 1$$

Multiple Scattering

Phase Functions

Jendersie & d'Eon's Phase Function [7]:

$$p(\theta, \alpha, g_{hg}, g_d, w) = (1 - w) p_{hg}(\theta, g_{hg}) + w p_d(\theta, \alpha, g_d)$$

Parameters based on diameter:

$$g_{hg}(20) = 0.9881$$

$$g_d(20) = 0.5567$$

$$\alpha(20) = 21.9955$$

$$w(20) = 0.4824$$

Phase Function

Unified Temporal Anti Aliasing

- Temporal Anti Aliasing refers to the combination of frames over the time domain.
- We accomplish this using a sliding window approach

Pixel Area TAA

• Each pixel sample position begins at its blue noise offset, then is shifted according to pre-compute N-Rooks offsets

Volumetric TAA

- Each segment is split into smaller frame segments.
- Each frame samples within its corresponding frame segment.

Improved Scattering Integration

Temporal Anti-Aliasing

Conclusion

- Our system:
 - Captures cloud's complex shapes and lighting interactions
 - Dynamically responds to environment
 - Runs in real time
- We provide:
 - A starting off point for further research into real time cloud rendering
 - A novel Unified Temporal Anti Aliasing strategy
- Code publicly available at: https://github.com/parker-ford/Real-Time-Atmospheric-Cloud-Rendering-System

Real-Time Atmospheric Cloud Rendering System

SIBGRAPI 2024

Thank you!

Questions?