Тема 1. Классическая вероятностная модель

Определим ряд понятий классической вероятностной модели с равновозможными исходами. Элементарное событие ω описывает исход эксперимента с непредсказуемым результатом. Множество всевозможных исходов $\Omega = \{\omega\}$ называется пространство элементарных событий. Любое подмножество А множества Ω называется (просто) событием (рис. 1).

Вероятность события A, обозначаемая через P(A), определяется как отношение числа исходов, входящих во множество A (благоприятных исходов), к общему числу исходов в пространстве Ω :

$$P(A) = |A|/|\Omega|$$
.

В частности, каждое элементарное событие ω имеет вероятность

$$P(\omega) = 1/|\Omega|$$
.

Таким образом, вычисление P(A) сводится к подсчету |A|, который осуществляется комбинаторными методами.

Дополнением к событию A называется множество \overline{A} , состоящее из исходов, не вошедших в A. Согласно определению вероятности верно равенство

$$\mathbf{P}(\overline{\mathbf{A}}) = \frac{|\Omega| - |\mathbf{A}|}{|\Omega|} = 1 - \mathbf{P}(\mathbf{A}).$$

Пример 1. В шляпе лежат 9 бумажек с надписями 1, 2, ..., 9. Наудачу вынимают одну из бумажек. Какова вероятность, что число на вынутой бумажке будет нацело делиться на 3 или на 4?

Здесь
$$\omega$$
 — число от 1 до 9, Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {3, 4, 6, 8, 9}, $P(A)$ = $|A| / |\Omega|$ = 5/9.

Пример 2. Одновременно бросают 2 игральные кости (кубика). С какой вероятностью 6 очков выпадет хотя бы на одной из костей?

Здесь $\omega = (i, j)$, где i и j — числа от 1 до 6. Число всевозможных исходов $|\Omega| = 6 \cdot 6 = 36$ (рис 2).

1,1	1,2	1,3	1,4	1,5	1,6
2, 1	2,2	2, 3	2,4	2,5	2,6
3, 1	3,2	3,3	3,4	3,5	3,6
4, 1	4,2	4, 3	4,4	4,5	4,6
5, 1	5,2	5, 3	5,4	5,5	5,6
6, 1	6,2	6, 3	6,4	6,5	6,6

Рис. 2

Из рисунка видим, что имеется ровно 11 исходов, содержащихся в событии A, поэтому P(A) = 11/36.

Домашнее задание

Если третьей буквой вашей фамилии является:

А, Б, В, Г, Д, Е, Ё, то «своими» являются задачи 1.1 и 1.5 (вариант 1); **Ж, З, И, Й, К, Л, М,** то «своими» являются задачи 1.2 и 1.6 (вариант 2);

H, O, П, Р, то «своими» являются задачи 1.3 и 1.7 (вариант 3);

С, Т, У, Ф, Х, Ц, Ч, Ш, Щ, Ъ, Ы, Ь, Э, Ю, Я, то «своими» являются задачи 1.4 и 1.8 (вариант 4).

Решать надо ТОЛЬКО «свои» задачи! Если задача содержит пункты а) и б), то только «свой» пункт.

Если «своя» задача уже решена на семинаре, то вместо неё можно решать задачу с номером 5 – N, где N — номер варианта. Если и задача с номером 5 – N тоже была решена на семинаре, то вместо первой «своей» задачи можно решать задачу с номером 9 – N. Дополнительно можно решать задачу с номером 9, но она будет засчитана лишь в том случае, если правильно решены обе «свои» задачи.

- 1.1) В слове: а) МАША; б) МАМА смешали буквы и затем выложили их в случайном порядке (все перестановки букв равновероятны). Какова вероятность, что получится то же самое слово?
- 1.2) Написано 3 письма и к ним подписано 3 конверта. Затем письма в случайном порядке были вложены в конверты и отправлены по почте. Какова вероятность того, что по назначению:
- а) не попадёт ни одно письмо;
- б) попадёт ровно одно письмо?
- 1.3) Монетка подбрасывается 5 раз. С какой вероятностью «герб» выпадет:
- а) ровно 1 раз;
- б) не более 1 раза?
- 1.4) В связке 6 ключей, из которых только один подходит к замку. Ключи испытываются в случайном порядке. Не подошедшие ключи откладываются. Найти вероятность, что для открытия замка потребуется:
- а) не менее пяти попыток;
- б) не более трёх попыток?
- 1.5) Игральную кость бросают 4 раза. Найти вероятность (и сравнить её с 1/2), что среди выпавших цифр окажется:
- а) ровно одна шестёрка;
- б) хотя бы одна шестёрка. (Указание. В пункте б) найдите сначала $P(\overline{A})$.)
- 1.6) В условиях задачи 1.5 найти вероятность, что:
- а) цифры будут идти в убывающем порядке;
- б) все четыре выпавшие цифры разные.
- 1.7) В очередь в случайном порядке становятся 5 человек: А, В, С, D, Е. Найти вероятность, что:
- а) А будет стоять рядом с В (до или после него);
- б) А будет стоять раньше В и раньше С.
- 1.8) В шляпе лежат 100 бумажек с надписями 1, 2, ..., 100. Наудачу вынимают одну из бумажек, смотрят на число и возвращают обратно. После этого бумажки перемешивают и опыт повторяют. Какова вероятность, что сумма чисел на двух вынутых бумажках окажется:
- а) больше 160; б) меньше или равно 50?
- 1.9)* Из множества $\{1, 2, ..., n\}$ наудачу с возвращением выбираются числа K и L. Найти предел вероятности $\mathbf{P}(K^2 + L^2 < n^2)$ при $n \to \infty$.