FOLLOW Sets FOLLOW Sets Objectives Objectives

Objectives

FOLLOW Sets

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign DEPARTMENT OF COMPUTER SCIENCE

▶ Compute the FOLLOW sets for the nonterminal symbols of a grammar.

FOLLOW Sets Objectives FOLLOW Sets Objectives Examples

<ロト 4回 ト 4 重 ト 4 重 ト ■ 9 9 0 0

Examples

FOLLOW Sets

• Given a non terminal symbol S, what terminal symbols could come after strings that are derived from S?

The algorithm:

- 1. Put \$ in FOLLOW(S), where S is the start symbol. \$ represents the "end of input."
- 2. If there is a production $X \to \alpha Y \beta$, then add $FIRST(\beta)$ (but not ϵ) to FOLLOW(Y).
- 3. If there is a production $X \to \alpha Y$, or if there is a production $X \to \alpha Y \beta$, where $\epsilon \in FIRST(\beta)$ then add FOLLOW(X) to FOLLOW(Y).

Diagram

- 1. If there is a production $X \to \alpha Y \beta$, then add $FIRST(\beta)$ (but not ϵ) to FOLLOW(Y).
- 2. If there is a production $X \to \alpha Y$, or if there is a production $X \to \alpha Y \beta$, where $\epsilon \in FIRST(\beta)$ then add FOLLOW(X) to FOLLOW(Y).

FOLLOW Sets FOLLOW Sets Objectives Examples Objectives Examples

Small Examples

Example 1

 $S \rightarrow x A y$ FOLLOW set of A is $\{y\}$.

Example 3

 $B \rightarrow C E D$ $FIRST(D) = \{a, b\}$ FOLLOW set of D is $\{y\}$. FOLLOW set of E is $\{a,b\}$.

Example 2

 $A \rightarrow q B$ FOLLOW set of B is also $\{y\}$.

Example 4

 $B \rightarrow C E D$ $FIRST(D) = \{a, b, \epsilon\}$ FOLLOW set of D is $\{y\}$. FOLLOW set of E is $\{a,b,y\}$.

FOLLOW Set Example

Grammar

 $S \rightarrow \text{if } E \text{ then } S$; $S \rightarrow \mathtt{print}\, E$; $E \rightarrow E + E$ $E \rightarrow P \text{ id } P$ $P \rightarrow *P$ $P
ightarrow \epsilon$

Result S={ **\$**} E={} P={}

Action

Make a chart, add \$ to S.

Examples

Objectives

FOLLOW Sets

<□▶ <□▶ < ≣≯ < ≣≯

Examples

FOLLOW Set Example

Grammar

 $P \rightarrow \epsilon$

Objectives

 $S \rightarrow \text{if } E \text{ then } S ; \Leftarrow$ $S \rightarrow \mathtt{print}\, E;$ $E \rightarrow E + E$ $E \rightarrow P \text{ id } P$ $P \rightarrow *P$

Result

S={\$, ;} E={ then} P={}

FOLLOW Sets

FOLLOW Set Example

Grammar

 $S \rightarrow \text{if } E \text{ then } S$; $S \rightarrow \text{print } E; \Leftarrow$ $E \rightarrow E + E \Leftarrow$ $E \rightarrow P \text{ id } P$ $P \rightarrow *P$ $P \rightarrow \epsilon$

Result S={\$,;} E={then, ;, +} P={}

Action

Check productions: add then to FOLLOW(E), and ; to FOLLOW(S).

Action

Check productions: add; and + to FOLLOW(E).

FOLLOW Sets FOLLOW Sets Objectives Examples Objectives Examples

FOLLOW Set Example

Grammar

 $S \rightarrow \text{if } E \text{ then } S$; $S \rightarrow \mathtt{print}\, E$; $E \rightarrow E + E$ $E \rightarrow P \text{ id } P \Leftarrow$ $P \rightarrow *P$ $P o \epsilon$

Result

```
S={$,;}
E={then, ;, +}
P={ id}
```

Action

Objectives

Check productions: add id to FOLLOW(P).

FOLLOW Set Example

Grammar

 $S \rightarrow \text{if } E \text{ then } S$; $S \rightarrow \text{print } E$; $E \rightarrow E + E$ $E \rightarrow P \text{ id } P \Leftarrow$ $P \rightarrow *P$ $P \rightarrow \epsilon$

Result S={\$,;} E={then, ;, +} P={id, then, ;, +}

4□▶ 4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 Q ○

Examples

Action

Check endings: P ends this rule, so add FOLLOW(E) to FOLLOW(P).

Examples

FOLLOW Set Example

Grammar

 $S \rightarrow \text{if } E \text{ then } S$; $S \rightarrow \mathtt{print}\, E$; $E \rightarrow E + E$ $E \rightarrow P \text{ id } P$ $P \rightarrow *P$ $P o \epsilon$

Result

S={\$,;} E={then, ;, +} P={id, then, ;, +}

FOLLOW Sets

Another FOLLOW Set Example

Grammar

 $S \rightarrow Ax$ $S \rightarrow By$ $S \rightarrow z$ $A \rightarrow 1CB$ $A \rightarrow 2B$

 $B \rightarrow 3B$ $B \rightarrow C$ $C \rightarrow 4$ $C o \epsilon$

Result

FOLLOW Sets

A={} $B = \{\}$ C={}

Action

Done.

$S = \{ \$ \}$

Action

Create a table, and add \$ to FOLLOW(S).

Another FOLLOW Set Example

Grammar $S \rightarrow Ax$ $S \rightarrow By$ $S \rightarrow z \Leftarrow$ $A \rightarrow 1CB$ $A \rightarrow 2B$ $B \rightarrow 3B \Leftarrow$ $B \rightarrow C$ *C* → 4 **⇐** $C \rightarrow \epsilon \Leftarrow$

Action

These productions add nothing. TURTURE TER E 990

Result

 $S = \{ \$ \}$

 $A=\{x\}$

 $B = \{y\}$

C={}

Another FOLLOW Set Example

FOLLOW Sets FOLLOW Sets Objectives Objectives Examples Examples

Another FOLLOW Set Example

Grammar

 $S \rightarrow Ax$

 $S \rightarrow By$

 $S \rightarrow z$

 $A \rightarrow 1CB \Leftarrow$

 $A \rightarrow 2B \Leftarrow$

 $B \rightarrow 3B$

 $B \rightarrow C$

 $C \rightarrow 4$

 $C \rightarrow \epsilon$

Action

Add FOLLOW(A) to FOLLOW(B).

Objectives FOLLOW Sets Examples

> Result $S = { \$ }$

> > $A=\{x\}$

 $B = \{x, y\}$

 $C=\{x, y, 3, 4\}$

Result

 $S = \{ \$ \}$

 $A=\{x\}$

 $B = \{ x, y \}$

 $C={3, 4}$

Another FOLLOW Set Example

Grammar

 $S \rightarrow Ax$

 $S \rightarrow By$

 $S \rightarrow z$

 $A \rightarrow 1CB$

A
ightarrow 2B

 $B \rightarrow 3B$

 $B \rightarrow C \Leftarrow$

 $C \rightarrow 4$

 $C \rightarrow \epsilon$

Action

Add FOLLOW(B) to FOLLOW(C). Now we're done.

Another FOLLOW Set Example

Grammar

 $S \rightarrow Ax$

 $S \rightarrow By$

 $S \rightarrow z$

 $A \rightarrow 1CB \Leftarrow$

 $A \rightarrow 2B$

B o 3B

 $B \rightarrow C$

 $C \rightarrow 4$

 $C o \epsilon$

Result

 $S = \{ \$ \}$

 $A=\{x\}$

 $B = \{x, y\}$

 $C = \{ x, 3, 4 \}$

Action

B can become ϵ , so add FOLLOW(A) to FOLLOW(C).