Analyse | CM: 10

Par Lorenzo

21 novembre 2024

0.0.1 Fonction continue sur un segment

Théorème 0.1. Soit f une fonction continue sur un segment (un intervalle fermé et borné). Alors f est bornée et atteint ses bornes.

Autrement dit, si $f:[a,b] \to \mathbb{R}$ alors f([a,b]) = [m,M] avec $m = \min_{x \in [a,b]} f(x)$ et $M = \max_{x \in [a,b]} f(x)$

Démonstration 0.1.

Par un intervalle I, on sait d'apres le TVI que f(I) est un intervalle. Montrons que $m = \inf(f(I))$ et $M = \sup(f(I))$ puis que m et M appartiennent à f(I).

Vérifions que f est bornée. Supposons que f n'est pas majorée, c'est à dire $\forall A > 0, \exists x_0 \in I, f(x_0) > A$, ou $\lim_{x \to x_0} f(x) = +\infty$. Mais f est continue, donc $\lim_{x \to x_0} f(x) = f(x_0) < +\infty$, Absurde.

** skip du cas minorée.

Donc f est bornée, l'ensemble f(I) est borné et admet une borne supérieure M et une borne inférieure m.

Vérifions que $M \in f(I)$. Supposons que $M \notin f(I)$, c'est à dire que $\forall x \in I, f(x) < M$. On étudie $g(x) = \frac{1}{M - f(x)}$ qui est bien définie car $f(x) \neq M$, et g est bornée.

Par définition de la borne supérieure, il existe une suite $(u_n)_{n\in\mathbb{N}}$ qui converge vers M avec $\forall n \in \mathbb{N}, u_n \in f(I)$, D'apres le TVI, il existe une suite $(c_n)_{n\in\mathbb{N}}$ de I tel que $u_n = f(C_n) \to_{n\to+\infty} M$.

 $Mais\ g(c_n) = \frac{1}{M - f(c_n)} \to_{n \to +\infty} +\infty \ ce \ qui \ contredit \ le \ fait \ que \ g \ est \ born\'ee.$ $Finalement\ M \in f(I)$

0.0.2 Suite définie par une fonction

Soit f une fonction continue. On définit une suite récurrente $(u_n)_{n\in\mathbb{N}}$ par $\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = f(u_n) \end{cases}$ c'est à dire $u_1 = f(u_0), u_2 = f(u_1) = f(f(u_0)) = f \circ f(u_0)$

Théorème 0.2. Si f est continue, et si la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l, alors l est le point fixe de f, autrement dit f(l) = l

Démonstration 0.2.

 $u_{n+1} = f(u_n)$ qui donne quand $n \to +\infty$ alors l = f(l)

Propriétés 0.1.

Si f est continue et croissante sur [a, b], alors la suite $(u_n)_{n\in\mathbb{N}}$ est monotone et converge vers l = f(l).

Si f est continue et décroissante sur [a, b], alors la sous-suite (u_{2n}) converge vers une limite l_1 solution de $l_1 = f \circ f(l_1)$ et la sous suite (u_{2n+1}) converge vers une limite l_2 solution de $l_2 = f \circ f(l_2)$.

Démonstration 0.3.

**Voir TD

0.1Théorème de la bijection

0.1.1Injection, surjection et bijection

Définition 0.1. Soit f une fonction de A dans B, deux partie de \mathbb{R} , $f:A\subset\mathbb{R}\to B\subset\mathbb{R}$.

f est injective $si \ \forall x, x' \in A, f(x) = f(x') \implies x = x'$

f est **sujrective** $si \ \forall y \in B, \exists x \in A, y = f(x)$

f est **bijective** si f est injective et sujrective, c'est à dire $\forall y \in B, \exists ! x \in A, y = f(x)$

Théorème 0.3. Si $f: A \to B$ est bijective, alors il existe une application $g: B \to A$ telle que $f \circ g = Id_B$ et $g \circ f = Id_A$.

On note $g = f^{-1}$ l'application **réciproque** de f (qui est aussi une bijection).

0.1.2Fonctions monotones

Théorème 0.4. Soit $f: I \to \mathbb{R}$, où I est un intervalle de \mathbb{R} , continue et strictement monotone. Alors

f est une bijection de l'intervalle I dans l'intervalle f(I).

La fonction réciproque $f^{-1}: f(I) \to I$ est continue et strictement monotone avec le même sens de variation que f.

Démonstration 0.4.

Supposons que f strictement croissante.

Soit
$$x \neq x'$$
 avec $f(x) = f(x')$ alors
$$\begin{cases} soit \ x < x' \ et \ f(x) < f(x') \\ soit \ x > x' \ et \ f(x) > f(x') \end{cases}$$
Car f strictement croissante, ce qui contredit le fait que $f(x) = f(x')$. Finalement

x = x'

De plus, il est surjective car l'image d'un intervalle par une fonction continue est un intervalle $f(I) = \{y = f(x); x \in I\}.$

On conclut que f est injective et sujrective alors elle est bijective.

0.2 Fonctions usuelles inverses

0.2.1 Logarithme et exponentielle

Définition 0.2. Il existe une unique fonction notée $ln:]0,+\infty[\to\mathbb{R}\ tell\ que$

$$ln(a \times b) = ln(a) + ln(b)$$

$$ln(\frac{1}{a}) = -ln(a)$$

$$ln(a^n) = n \times ln(a)$$

On appelle cette fonction logarithme népérien caractérisée par ln(e) = 1. On définit le logarithme de e à base a comme log_a comme $log_a(x) = \frac{ln(x)}{ln(a)}$ ou log(a) = 1

Propriétés 0.2.

La fonction ln est continue et strictement croissante sur $]0, +\infty[$ avec $\forall x > 0, (ln(x))' = \frac{1}{r}$, elle définit une bijection de $]0, +\infty[$ dans \mathbb{R}

$$\lim_{x\to 0^+} \ln(x) = -\infty \ et \lim_{x\to +\infty} \ln(x) = +\infty$$

$$ln(1) = 0$$

Définition 0.3. La fonction réciproque du logarithme népérien s'appelle exponentielle notée exp(x) ou $e^x : \mathbb{R} \to]0, +\infty[$

Propriétés 0.3.

En écrivant $f \circ f^{-1} = Id_{\mathbb{R}}$ et $f^{-1} \circ f = Id_{]0,+\infty[}$, il vient

$$\forall x \in \mathbb{R}, ln(exp(x)) = x \ et \ \forall y \in]0, +\infty[, exp(ln(y)) = y$$

$$exp(a+b) = exp(a)exp(b)$$

 $exp: \mathbb{R} \to]0, +\infty[$ est continue et strictement croissante.

Définition 0.4. On appelle la fonction puissance de a > 0 comme $a^x = exp(xln(a))$