Цель работы

Изучение алгоритма Евклида нахождения НОД и его вариаций. Реализовать рассмотренные алгоритмы программно.

Теоретические сведения

Наибольший общий делитель

Наибольший общий делитель (НОД) – это число, которое делит без остатка два числа и делится само без остатка на любой другой делитель данных двух чисел. Проще говоря, это самое большое число, на которое можно без остатка разделить два числа, для которых ищется НОД.

Алгоритм Евклида

Алгоритм Евклида – это алгоритм нахождения наибольшего общего делителя (НОД) пары целых чисел.

Алгоритм Евклида

```
Вход. Целые числа a, b; 0 < b < a.
```

```
Выход. d = HOД(a, b).
```

- 1. Положить $r_0 = a$, $r_1 = b$, i = 1.
- 2. Найти остаток r_{i+1} от деления r_{i-1} на r_i .
- 3. Если $r_{i+1}=0$ то положить $d=r_i$ иначе i=i+1 и вернуться на шаг 2.
- 4. Результат: *d*.

Бинарный алгоритм Евклида

Бинарный алгоритм Евклида — метод нахождения наибольшего общего делителя двух целых чисел. Возможно, алгоритм был известен еще в Китае 1-го века, но опубликован был лишь в 1967 году израильским физиком и программистом Джозефом Стайном. Он основан на использовании следующих свойств НОД:

- HOД(2m, 2n) = 2 HOД(m, n),
- НОД(2m, 2n + 1) = НОД(m, 2n + 1),
- НОД(-m, n) = НОД(m, n)

Вход. Целые числа $a, b; 0 < b \le a$.

```
Выход. d = HOД(a, b).
```

- 1. Положить q = 1.
- 2. Пока оба числа a и b четные, выполнять a=a/2, b=b/2, g=2g до получения хотя бы одного нечетного значения a или b.
- 3. Положить u = a, v = b.
- 4. Пока $u \neq 0$, выполнять следующие действия.

- \circ Пока u четное, полагать u=u/2.
- \circ Пока v четное, полагать v=v/2.
- \circ При $u \geq v$ положить u = u v. В противном случае положить v = v u.
- 5. Положить d = gv.
- 6. Результат: d

Расширенный алгоритм Евклида

В то время как "обычный" алгоритм Евклида просто находит наибольший общий делитель двух чисел a и b , расширенный алгоритм Евклида находит помимо НОД также коэффициенты x и y такие, что:

$$ext{HOД}(a,b) = a \cdot x + b \cdot y$$

Т.е. он находит коэффициенты, с помощью которых НОД двух чисел выражается через сами эти числа.

Вход. Целые числа $a,b;0 < b \leqslant a$.

Выход: d = HOД(a,b); такие целые числа x,y, что ax + by = d.

- 1. Положить $r_0=a, r_1=b, x_0=1, x_1=0, y_0=0, y_1=1, i=1$
- 2. Разделить с остатком r_{i-1} на r_i :

$$r_{i-1} = q_i * r_i + r_i + 1$$

3. Если $r_{i+1} = 0$:

то положить
$$d=r_i$$
, $x=x_i$, $y=y_i$ иначе $x_{i+1}=(x_{i-1}\hbox{-} q_i\cdot x_i,$ $y_{i+1}=y_{i-1}\hbox{-} q_i\cdot y_i,$ $i=i+1$ и вернуться на шаг 2.

4. Результат: d, x, y.

Расширенный бинарный алгоритм Евклида

Вход. Целые числа: $a, b; 0 < b \leqslant a$.

Выход. d = HOД(a, b).

- 1. Положить g = 1.
- 2. Пока оба числа а и b четные, выполнять:

$$a = a/2$$
, $b = b/2$, $q = 2q$

до получения хотя бы одного нечетного значения a или b.

- 3. Положить: u=a, v=b, A=1, B=0, C=0, D=1.
- 4. Пока $u \neq 0$ выполнять следующие действия
 - 4.1. Пока u четное:

4.1.1. Положить
$$u = u/2$$
.

4.1.2. Если оба числа A и B четные,

$$\circ$$
 то положить $A = A/2, B = B/2$

$$\circ$$
 иначе $A = (A+b)/2, B = (B-a)/2$

4.2. Пока v четное:

4.2.1. Положить
$$v = v/2$$
.

4.2.2. Если оба числа C и D четные,

$$\circ$$
 то положить $C = C/2, D = D/2$

```
\circ иначе C=(C+b)/2, D=(D-a)/2 4.3 При u\geqslant v \circ положить u=u-v, A=A-C, B=B-D \circ иначе v=v-u, C=C-A, D=D-B. 5. Положить d=gv, x=C, y=D.
```

Выполнение работы

Реализация алгоритмов на языке Python

```
# Алгоритм Евклида
def evklid(a,b):
    while a != 0 and b != 0:
        if a >= b:
            a %= b
        else:
            b %= a
    return a or b
# Бинарный алгоритм Евклида
def binary_evklid(a,b):
    q = 1
    while(a % 2 == 0 and b % 2 == 0):
        a = a/2
        b = b/2
        g = 2*g
    u,v = a,b
    while u != 0:
        if u % 2 == 0:
            u = u/2
        if v % 2 == 0:
            v = v/2
        if u >= v:
            u = u - v
        else:
            v = v - u
    d = q*v
    return d
# Расширенный алгоритм Евклида
def evklid_extended(a, b):
    if a == 0:
        return (b, 0, 1)
        div, x, y = evklid_extended(b % a, a)
    return (div, y - (b // a) * x, x)
# Расширенный бинарный алгоритм Евклида
def evklid_binary_extended(a, b):
    q = 1
    while (a \% 2 == 0 \text{ and } b \% 2 == 0):
        a = a / 2
        b = b / 2
        g = 2 * g
```

```
u = a
    v = b
    A = 1
    B = 0
    C = 0
   D = 1
   while u != 0:
        if u % 2 == 0:
            u = u/2
            if A % 2 == 0 and B % 2 ==0:
                A = A/2
                B = B/2
            else:
                A = (A+b)/2
                B = (B-a)/2
        if v % 2 == 0:
            v = v / 2
            if C\%2==0 and D\%2==0:
               C = C/2
                D = D/2
            else:
                C = (C+b)/2
                D = (D-a)/2
        if u>=v:
            u = u - v
            A = A - C
            B = B - D
        else:
           v = v - u
            C = C - A
            D = D - B
   d = g*v
   x = C
    y = D
    return (d,x,y)
def zapusk(a, b):
    print("Алгоритм Евклида: ", evklid(a,b))
    print("Бинарный алгоритм Евклида: ", binary_evklid(a,b))
    print("Расширенный алгоритм Евклида: ", evklid_extended(a,b))
    print("Расширенный бинарный алгоритм Евклида: ",
evklid_binary_extended(a,b))
def main():
    a = int(input("Введите числа a: "))
    b = int(input("Введите число b: "))
    if a > b and b > 0:
        zapusk(a, b)
    elif a \le b and a > 0:
        a, b = b, a
        zapusk(a, b)
    else:
        print("Введены не коректные данные.")
```

Контрольный пример

Ввод [2]: main()

Введите числа а: 50 Введите число b: 130 Алгоритм Евклида: 10

Бинарный алгоритм Евклида: 10.0

Расширенный алгоритм Евклида: (10, 2, -5) Расширенный бинарный алгоритм Евклида: (10.0, -13.0, 34.0)

Выводы

Изучили алгоритм Евклида, и его варианты. Реализовали алгоритмы програмно.

Список литературы

- 1. Алгоритм Евклида нахождение наибольшего общего делителя
- 2. Бинарный алгоритм вычисления НОД
- 3. Расширенный алгоритм Евклида
- 4. Расширенный алгоритм Евклида