Midterm review

Midterm Announcements

- Topics on midterm:
 - Beginning of the course through today's lecture
- Exam Coverage
 - Lecture 1-12
 - Discussion 1-6
 - HW 1-3
- You may bring one double-sided 8.5 x 11 study sheet, that you prepare
- Thursday 5/30:
 - No Lecture
 - Midterm 7-9 pm

Techniques/concepts

Algorithmic techniques

- Potential method
- Divide-and-Conquer + Master Theorem
- Dynamic Programming
- Greed + Induction/Exchange

Models of Computation:

- DFAs
- Turing machines + Church-Turing thesis
- Terminology: countable vs uncountable, language, (un)decidable

Techniques for proving undecidability

- Diagonalization/paradox
- Reduction

Reminder of problems + algorithms from class

- Potential method: GCD (Euclid)
- Divide-and-conquer: sorting (mergesort), closest pair, integer multiplication (Karatsuba)
- Dynamic programming: weighted task selection, LIS, LCS, knapsack, SSSP (Bellman-Ford), APSP (Floyd-Warshall)
- **Greedy:** unweighted task selection, MST (Kruskal)
- Countable vs uncountable sets: integers, rationals, reals, TMs, TM inputs, the set of all languages on a given alphabet
- Undecidable languages: LBARBER, LACC, LHALT

The Chomsky Hierarchy (1956)

"Regular, Language": Language decidable by some DFA

Some reference slides copied from past lectures

Potential Method

Intuitively, a **potential function argument** says: If I start with a <u>finite</u> amount of water in a <u>leaky</u> bucket, water eventually must stop leaking out.

Ingredients of the argument:

- 1. Define the "unit of time" e.g. one iteration of an algorithm
- 2. Define how we measure the amount of water in the bucket. This is the **potential function S**_i \leftarrow amount of water in bucket at timestep i
- 3. Prove that the S_o is <u>finite</u> and S_i can <u>never be negative</u>
- 4. Prove that the bucket "leaks quickly". I.e. that S_i decreases by <u>at least some fixed amount</u> per unit time.
- 5. Use this to upper bound the total number of units of time.

Divide and Conquer

Overview: Divide-and-Conquer Algorithms

Main Idea:

- 1. **Divide** the input into smaller sub-problems
- **2. Conquer:** solve each sub-problem recursively and combine their solutions

Designing the Algorithm + Proving Correctness: an "art"

• Depends on problem structure, ad-hoc, creative

Running time Analysis: "mechanical"

- Express runtime using a recurrence
- Can often solve using the "Master Theorem"

Integer Multiplication

- Problem: Given two n-bit numbers N_1 and N_2 , compute $N_1 \times N_2$
- Long Multiplication:
 - Reduce problem to n additions of 2n-bit numbers
 - Do each addition in O(n) time
- Runtime: O(n²) in total!
- Example: What is 59 x 42?

Another example of divide and conquer:

Integer Multiplication

Conquer:
$$x \cdot y = (x_L \cdot 10^{n/2} + x_R)(y_L \cdot 10^{n/2} + y_R)$$

= $x_L y_L \cdot 10^n + (x_L y_R + x_R y_L) \cdot 10^{n/2} + x_R y_R$

Recurrence:

Solving Recurrences

The Master Theorem

Formally: Consider the recurrence relation $T(n) = kT(n/b) + O(n^d)$, when k, b > 1. Then:

$$T(n) = \begin{cases} O(n^d) & \text{if } (k/b^d) < 1\\ O(n^d \log n) & \text{if } (k/b^d) = 1\\ O(n^{\log_b k}) & \text{if } (k/b^d) > 1 \end{cases}$$

$$T(1) = O(1)$$

(Earlier, Gauss used the same trick in a different context)

Karatsuba's idea!

 $O(n^2)$

Around 1956, the famous Soviet mathematician Andrey Kolmogorov conjectured that this is the best possible way to multiply two numbers together.

Just a few years later, Kolmogorov's conjecture was shown to be spectacularly wrong.

In 1960, Anatoly Karatsuba, a 23-year-old mathematics student in Russia, discovered a sneaky algebraic trick that reduces the number of multiplications needed.

We only need 3 recursive calls rather than 4!

Karatsuba's idea!

Divide:
$$x = \begin{bmatrix} x_L & x_R \\ y_L & y_R \end{bmatrix}$$

Conquer:
$$x \cdot y = x_L y_L \cdot 10^n + \frac{(x_L y_R + x_R y_L)}{(x_L + x_R)(y_L + y_R)} \cdot 10^{n/2} + x_R y_R$$

Recurrence $(x_L + x_R)(y_L + y_R) \cdot x_L y_L \cdot x_R y_R$

Formally: Consider the recurrence relation $T(n) = kT(n/b) + O(n^d)$, when $k, b > 1$. Then:

$$T(n) = \begin{cases} O(n^d) & \text{if } (k/b^d) < 1\\ O(n^d \log n) & \text{if } (k/b^d) = 1 \end{cases}$$

Dynamic Programming

Dynamic Programming

High Level Idea: Break a complex problem into smaller (easier) subproblems subject to:

- Principal of optimality (optimal substructure) –
 a substructure of an optimal structure is itself optimal
 Example: A subpath of any shortest path is itself a shortest path.
- 2. Overlapping sub-problems: "many" smaller subproblem are actually the "same" problem **Example:** When computing the Fibonacci sequence using the rule: $F_n = F_{n-1} + F_{n-2}$, "many" numbers are repeated.

С

The DP Recipe

- 1. Write recurrence usually the trickiest part
- 2. Size of table: How many dimensions? Range of each dimension?
- 3. What are the base cases?
- 4. To fill in a cell, which other cells do I look at? In which order do I fill the table?
- 5. Which cell(s) contain the final answer?
- 6. Running time = (size of table) (time to fill each entry)
- 7. To reconstruct the solution (instead of just its size) follow arrows from final answer to base case

LCS Recurrence

Part 1: Suppose the last character of S1 and S2 are the same i.e. S1[N] = S2[M]

Claim. There exists an optimal solution that matches S₁[N] and S₂[M]. Proof.

LCS Recurrence

Case 1: Suppose the last character of S1 and S2 are the same i.e. S1[N] = S2[M]

Claim. There exists an optimal solution that matches S1[N] and S2[M].

LCS Recurrence

Case 2: The last character of S1 and S2 are not the same

OPT doesn't have at least one of S1[N] and S2[M] ("lose it or lose it")

Full Recurrence for LCS

Base cases:

LCS(
$$S1[1..i]$$
, \emptyset) = 0 for all i
LCS(\emptyset , $S2[1..j]$) = 0 for all j

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0							
А	0							
С	0							

```
 LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 \qquad \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} \quad \text{otherwise}  Base cases:  LCS(S1[1..i], \emptyset) = 0 \quad \text{for all } i
```

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0						
А	0							
С	0							

```
 LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 \qquad \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} \quad \text{otherwise}  Base cases:  LCS(S1[1..i], \emptyset) = 0 \quad \text{for all } i
```

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0	1					
А	0							
С	0							

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0	1	1				
А	0							
С	0							

```
 LCS(S1[1..N], S2[1..M]) = Base cases: \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 & \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} & \text{otherwise} \\ \\ \\ DCS(S1[1..N], S2[1..M]) = 0 & \text{for all } i \\ DCS(S1[1..N], S2[1..M-1]) \} & \text{otherwise} \\ \\ DCS(S1[1..N], S2[1..M]) = 0 & \text{for all } i \\ DCS(S1[1..N], S2[1..M-1]) \} & \text{otherwise} \\ \\ DCS(S1[1..N], S2[1..M-1]) \} & \text{otherwise} \\ DCS(S1[1..N], S2[1..M-1]) \\ DCS(S1[1..N], S2[1..M], S2[1..M]) \\ DCS(S1[1..M], S2[1..M], S2[1..M]) \\ DCS(S1[1..M], S2[1..M], S2[1..M]) \\ DCS(S1[1..M], S2[1..M], S2[1..M]) \\ DCS(S1[1..M], S2[1..M], S2[1.
```

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0	1	1	1			
А	0							
С	0							

```
 LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 & \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} & \text{otherwise}  Base cases:  LCS(S1[1..i], \emptyset) = 0 \text{ for all } i
```

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0	1	1	1	1		
А	0							
С	0							

```
 LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 \qquad \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M-1]) \} \text{ otherwise}  Base cases:  LCS(S1[1..i], \emptyset) = 0 \text{ for all } i   LCS(\emptyset, S2[1..j]) = 0 \text{ for all } j
```

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0	1	1	1	1		
А	0	1						
С	0							

```
 LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 \qquad \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} \quad \text{otherwise}  Base cases:  LCS(S1[1..i], \emptyset) = 0 \quad \text{for all } i
```

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0	1	1	1	1		
А	0	1	1					
С	0							

```
 LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 \qquad \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} \quad \text{otherwise}  Base cases:  LCS(S1[1..i], \emptyset) = 0 \quad \text{for all } i
```

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0	1	1	1	1		
А	0	1	1	1				
С	0							

```
 LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 \qquad \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} \quad \text{otherwise}  Base cases:
```

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0	1	1	1	1		
А	0	1	1	1	2			
С	0							

```
 LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 & \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} & \text{otherwise}  Base cases:  LCS(S1[1..i], \emptyset) = 0 \text{ for all } i
```

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0	1	1	1	1		
А	0	1	1	1	2	2		
С	0	1	1					

```
 LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 & \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} & \text{otherwise}  Base cases:  LCS(S1[1..i], \emptyset) = 0 \text{ for all } i \\ LCS(\emptyset, S2[1..i]) = 0 \text{ for all } j \\ LCS(S1[1..N], S2[1..M-1]) \} & \text{otherwise}
```

S1 = GAC S2 = AGCAT								
	Ø	А	G	С	А	Т		
Ø	0	0	0	0	0	0		
G	0	0	1	1	1	1		
А	0	1	1	1	2	2		
С	0	1	1	2				

```
 LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 & \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} & \text{otherwise}  Base cases:  LCS(S1[1..i], \emptyset) = 0 & \text{for all } i \\ LCS(S1[1..N], S2[1..M]) \} & \text{otherwise}
```

S1 = GAC S2 = AGCAT										
	Ø	А	G	С	А	Т				
Ø	0	0	0	0	0	0				
G	0	0	1	1	1	1				
А	0	1	1	1	2	2				
С	0	1	1	2	2					

S1 = GAC S2 = AGCAT										
	Ø	А	G	С	А	Т				
Ø	0	0	0	0	0	0				
G	0	0	1	1	1	1				
А	0	1	1	1	2	2				
С	0	1	1	2	2	2				

$$LCS(S1[1..N], S2[1..M]) = \\ LCS(S1[1..N-1], S2[1..M-1]) + 1 & \text{if } S1[N] = S2[M] \\ max \{ LCS(S1[1..N-1], S2[1..M]), \\ LCS(S1[1..N], S2[1..M]) \} & \text{otherwise}$$
 Base cases:
$$LCS(S1[1..i], \emptyset) = 0 \text{ for all } i$$

Greedy algorithms

General strategy commonly used for analyzing greedy algorithms:

Proof by induction using an "exchange" argument

The idea: Show that we can transform any **optimal solution** into the **solution given by our algorithm** by **exchanging** each piece of it out one-by-one without increasing the cost.

Key part of proof: Exchange shows that my greedy choice is safe i.e. it is in some optimal solution.

Induction formalizes the idea that each successive choice is safe.

DFAs and Turing Machines

String notation

Alphabet: A nonempty finite set Σ of symbols.

 $\Sigma = \{0,1\}$ is a popular choice.

String: A finite sequence of 0 or more symbols.

(or "word")

The empty string is denoted ε .

For any $a \in \Sigma$:

a^k means k a's

a^{*} means ≥0 a's

a⁺ means ≥1 a's

 Σ^k means all strings over Σ of length k.

 Σ^* means **all** (finite) strings over Σ .

 Σ^+ means all nonempty (finite) strings over Σ

For any a,b $\in \Sigma$: a b means a OR b

Language: A collection of strings.

I.e. any subset $L \subseteq \Sigma^*$.

The empty language is denoted \emptyset .

DFA

Turing Machine

Undecidability

Undecidability and Reductions

Question: What are the possible outcomes of a TM M?

Answer: M either (i) accepts, (ii) rejects, or (iii) it "loops" (forever)

The language of a TM is the set of strings it accepts: $L(M) = \{x : M \text{ accepts } x\}$

Definition: A Turing Machine M decides a language L if it:

- 1. <u>accepts</u> every string in L, and
- rejects every string not in L (and never loops forever)

A language L is **decidable** if there is a TM that decides L. Otherwise L is **undecidable**.

Turing Reduction from A to B (denoted $A \leq T$ B):

"We can use a black-box decider for B as a subroutine to decide A."

What it implies:

- 1. If B is decidable then A is decidable.
- 2. Contrapositive: If A is undecidable then B is undecidable.

"Problem B is at least as hard as Problem A"

New technique: constructing new machines inside reductions

Another Undecidable Language: ε-Halting Problem

Input: Turing Machine M

Output: Does M halt when given input ε?

Language: Lε-HALT = {⟨M⟩: M halts on input ε}

This time we're only talking about a single input string, and yet it's still undecidable

Here's a reduction from L_{E-HALT} to LHALT, showing L_{E-HALT} is undecidable!

 $M_{\epsilon\text{-HALT}}(\langle M \rangle)$:

Run Mhalt((M), E)

If it accepts: accept

If it rejects: reject

Something is off...

Reduction from Lhalt to Lε-halt (i.e. Lhalt ≤τ Lε-halt)

We need to implement:

MHALT takes two inputs: (M), x

M halts on input $x \Rightarrow M_{HALT}$ accepts

M loops on input $x \Rightarrow M_{HALT}$ rejects

Suppose we have:

ME-HALT takes one input: (M')

M' halts on input $\varepsilon \Rightarrow M_{\varepsilon\text{-HALT}}$ accepts

M' loops on input $\varepsilon \Rightarrow M_{\varepsilon-HALT}$ rejects

We need to specify the pseudocode:

MHALT($\langle M \rangle$, x):

Run Mehalt ((M)) and answer as Mhalt

What's wrong with this?

Reduction from Lhalt to Lε-Halt (i.e. Lhalt ≤τ Lε-Halt)

We need to implement:

MHALT takes two inputs: (M), x

M halts on input $x \Rightarrow M_{HALT}$ accepts

M loops on input $x \Rightarrow M_{HALT}$ rejects

Suppose we have:

M_E-HALT takes one input: (M')

M' halts on input $\varepsilon \Rightarrow M_{\varepsilon\text{-HALT}}$ accepts

M' loops on input $\varepsilon \Rightarrow M_{\varepsilon-HALT}$ rejects

We need to specify the pseudocode:

MHALT($\langle M \rangle$, x):

 $M_x(w)$:

Run M(x) and answer as M does

Let M_x be a TM that ignores its input and runs M(x)

What is next ??

Note: We will not run Mx, we just constructed it.
Why can't we run Mx?

Key idea: Construct new machine

We "hardcode" string **x** into the "hardware" of the TM **M**x.

Reduction from Lhalt to Lε-Halt (i.e. Lhalt ≤τ Lε-Halt)

We need to implement:

MHALT takes two inputs: (M), x

M halts on input $x \Rightarrow M_{HALT}$ accepts

M loops on input $x \Rightarrow M_{HALT}$ rejects

Suppose we have:

ME-HALT takes one input: (M')

M' halts on input $\varepsilon \Rightarrow M_{\varepsilon-HALT}$ accepts

M' loops on input $\varepsilon \Rightarrow M_{\varepsilon-HALT}$ rejects

We need to specify the pseudocode:

MHALT($\langle M \rangle$, x):

 $M_x(w)$:

Run M(x) and answer as M

Let M_x be a TM that ignores its input and runs M(x)

What is next ??

We are allowed to use

 $M_{\epsilon\text{-HALT}}(\langle M' \rangle)$ as a subroutine, with the input of our choice

Reduction from Lhalt to Lε-Halt (i.e. Lhalt ≤τ Lε-Halt)

We need to implement:

MHALT takes two inputs: (M), x

M halts on input $x \Rightarrow M_{HALT}$ accepts

M loops on input $x \Rightarrow M_{HALT}$ rejects

Suppose we have:

M_E-HALT takes one input: (M')

M' halts on input $\varepsilon \Rightarrow M_{\varepsilon-HALT}$ accepts

M' loops on input $\varepsilon \Rightarrow M_{\varepsilon-HALT}$ rejects

We need to specify the pseudocode:

MHALT($\langle M \rangle$, x):

 $M_x(w)$:

Run M(x) and answer as M

Let M_x be a TM that ignores its input and runs M(x)

Run $M_{\epsilon\text{-HALT}}(\langle M_x \rangle)$ and answer as $M_{\epsilon\text{-HALT}}$

Analysis:

```
M halts on x \to M_x(w) halts for all w including w = \epsilon \to M_{\epsilon-halt}(M_x) accepts M loops on x \to M_x(w) loops for all w including w = \epsilon \to M_{\epsilon-halt}(M_x) rejects
```

Another Undecidable Language: Empty Language Problem

Input: Turing Machine M

Output: Does M accept any input string at all?

Language: $L_E = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$

This time we're only talking about no input string at all, and yet it's still undecidable

We need to implement:

Macc takes two inputs: $\langle M \rangle$, x M accepts input $x \Rightarrow M_{ACC}$ accepts

M rejects input $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

ME takes one input: (M')

 $L(M') = \emptyset \Rightarrow M_E \text{ accepts}$

 $L(M') \neq \emptyset \Rightarrow M_E \text{ rejects}$

We need to specify the pseudocode:

 $Macc(\langle M \rangle, x)$:

Run $M_{E}(\langle M \rangle)$ and answer as M_{ACC}

What's wrong with this?

We need to implement:

Macc takes two inputs: (M), x

M accepts input $x \Rightarrow M_{ACC}$ accepts

M rejects input $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

ME takes one input: (M')

 $L(M') = \emptyset \Rightarrow M_E \text{ accepts}$

 $L(M') \neq \emptyset \Rightarrow M_E \text{ rejects}$

We need to specify the pseudocode:

 $Macc(\langle M \rangle, x)$:

 $M_x(w)$:

Reject if $\mathbf{w} \neq \mathbf{x}$

else Run M(x) and answer as M does

Let M_x be a TM that rejects all inputs except x and runs M(x)

What is next ??

Note: We will not run Mx, we just constructed it.
Why can't we run Mx?

Key idea: Construct new machine

We "hardcode" string **x** into the "hardware" of the TM **M**x.

We need to implement:

```
Macc takes two inputs: (M), x
```

M accepts input $x \Rightarrow M_{ACC}$ accepts

M rejects input $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

ME takes one input: (M')

 $L(M') = \emptyset \Rightarrow M_E \text{ accepts}$

 $L(M') \neq \emptyset \Rightarrow M_E \text{ rejects}$

We need to specify the pseudocode: $M_{ACC}(\langle M \rangle, x)$:

```
M_x(w):
Reject if w \neq x
else Run M(x) and answer as M does
```

Let Mx be a TM that rejects all inputs except x and runs M(x)

What is next ??

We are allowed to use $M_E(\langle M' \rangle)$ as a subroutine, with the input of our choice

We need to implement:

Macc takes two inputs: (M), x

M accepts input $x \Rightarrow M_{ACC}$ accepts

M rejects input $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

ME takes one input: (M')

 $L(M') = \emptyset \Rightarrow M_E \text{ accepts}$

 $L(M') \neq \emptyset \Rightarrow M_E \text{ rejects}$

We need to specify the pseudocode:

 $Macc(\langle M \rangle, x)$:

 $M_x(w)$:

Reject if $\mathbf{w} \neq \mathbf{x}$

else Run M(x) and answer as M does

Let Mx be a TM that rejects all inputs except x and runs M(x)

Run $M_E(\langle M_x \rangle)$ and answer as the opposite of M_E

Analysis:

M accepts $x \to M_x(w)$ rejects all w except $w = x \to M_E(M_x)$ rejects M rejects $x \to M_x(w)$ rejects all w including $w = x \to M_E(M_x)$ accepts

Another Undecidable Language: Regular Language Problem

Input: Turing Machine M

Output: Does M accept a regular language?

Language: L_{REGULAR} = { <M> | M is a Turing machine and L(M) is a regular language}

This time we're talking about a regular language, and it's still undecidable

We need to implement:

Macc takes two inputs: $\langle M \rangle$, x M accepts input $x \Rightarrow M_{ACC}$ accepts

M rejects input $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

Mregular takes one input: $\langle M' \rangle$ L(M') is regular \Rightarrow Mregular accepts L(M') is not regular \Rightarrow Mregular rejects

We need to specify the pseudocode:

 $Macc(\langle M \rangle, x)$:

Run Mregular((M)) and answer as Macc

What's wrong with this?

We need to implement:

Macc takes two inputs: (M), x

M accepts input $x \Rightarrow M_{ACC}$ accepts

M rejects input $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

Mregular takes one input: (M')

L(M') is regular \Rightarrow Mregular accepts

L(M') is not regular ⇒ Mregular rejects

We need to specify the pseudocode:

 $Macc(\langle M \rangle, x)$:

 $M_x(w)$:

Accept if $\mathbf{w} = \mathbf{0}^n \mathbf{1}^n$

else Run M(x) and answer as M does

Let Mx be a TM that accepts all inputs 0^n1^n and runs M(x) otherwise

What is next??

Note: We will not run Mx, we just constructed it.
Why can't we run Mx?

Key idea: Construct new machine

We "hardcode" string **x** into the "hardware" of the TM **M**x.

We need to implement:

Macc takes two inputs: (M), x

M accepts input $X \Rightarrow M_{ACC}$ accepts

M rejects input $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

Mregular takes one input: (M')

L(M') is regular \Rightarrow Mregular accepts

L(M') is not regular ⇒ Mregular rejects

We need to specify the pseudocode: $Macc(\langle M \rangle, x)$:

 $M_x(w)$:

Accepts if $\mathbf{w} = \mathbf{0}^n \mathbf{1}^n$

else Runs M(x) and answer as M does

Let Mx be a TM that accepts all inputs 0^n1^n and runs M(x) otherwise

What is next ??

We are allowed to use $M_E(\langle M' \rangle)$ as a subroutine, with the input of our choice

We need to implement:

Macc takes two inputs: (M), x

M accepts input $x \Rightarrow M_{ACC}$ accepts

M rejects input $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

Mregular takes one input: (M')

L(M') is regular \Rightarrow Mregular accepts

L(M') is not regular \Rightarrow Mregular rejects

We need to specify the pseudocode: Macc((M), x):

 $M_x(w)$:

Accepts if $\mathbf{w} = \mathbf{0}^n \mathbf{1}^n$

else Runs M(x) and answer as M does

Let Mx be a TM that accepts all inputs 0^n1^n and runs M(x) otherwise Run M(x) and answer as M(x)

Analysis:

M accepts $x \to M_x(w)$ accepts all inputs $w \to M_{REGULAR}(M_x)$ accepts M rejects $x \to M_x(w)$ rejects all inputs except $\mathbf{w} = \mathbf{0}^n \mathbf{1}^n \to M_{REGULAR}(M_x)$ rejects