Индивидуальная практическая работа №1 по дисциплине «Дискретная математика»

Тема: Элементы комбинаторики.

Методические указания по выбору варианта и оформлению. Задания и варианты.

Индивидуальная практическая работа (ИПР) №1 включает в себя три задания.

Требования по выбору варианта такие же, как в КР№1.

Для Заданий 1 и 2 требования по оформлению такие же, как в КР№1.

В Задании 3 требуется написать программу, реализующую решение задачи в соответствии с вариантом задания. Выбор языка программирования остается на усмотрение студента. Отчет по Заданию 3 оформляется в текстовом редакторе Word.

Отчет по Заданию 3 должен содержать:

- титульный лист с обязательным указанием фамилии, имени, отчества, группы и номера зачетной книжки студента,
- постановку задачи в соответствии с вариантом,
- краткое описание выбранного алгоритма для решения задачи,
- программный код,
- тестовые примеры выполнения программы (не менее трёх), каждый из которых должен сопровождаться скриншотом с результатами ввода исходных данных и скриншотом с результатами работы программы.

<u>Задание 1.</u> Сколькими способами из колоды в 36 карт можно выбрать неупорядоченный набор из 4-х карт так, чтобы в этом наборе было бы в точности:

1	1 король, 2 дамы, 1 пиковая карта	16	2 черных карты, 1 карта червей, 1 туз
2	1 крестовая карта, 2 дамы, нет червей	17	2 короля, 2 бубновых карты
3	хотя бы 3 крестовые карты, 1 туз	18	1 король, 1 дама, 1 крестовая карта
4	3 дамы, 2 крестовые карты	19	2 крестовых карты, 1 бубновая, 1 дама
5	1 бубновая карта, 2 крестовых, 1 дама	20	1 бубновая карта, 2 дамы, нет червей
6	2 бубновые, 2 крестовые карты, 1 туз	21	2 бубновых карты, 2 дамы, 1 валет
7	по крайней мере 3 пиковые карты, 1 дама	22	2 туза, не меньше 2 пиковых карт
8	2 карты черной масти, 2 дамы	23	2 карты красной масти, 2 туза
9	1 туз, 1 валет, 1 карта красной масти	24	2 дамы, 1 бубновая карта, 1 пиковая карта
10	3 туза, 3 карты черной масти	25	1 валет, нет дам, 3 черные карты
11	1 дама, 1 карта пик, 2 крестовых карты	26	2 туза, по крайней мере 3 красные карты
12	2 дамы, 2 туза, 1 карта пиковой масти	27	валет и дама чёрной масти, не более 1 туза
13	дама и король одной масти, 1 пиковая карта	28	1 туз, 2 дамы, не больше 2 карт красной масти
14	1 король, 2 дамы, 1 карта красной масти	29	2 крестовые карты, хотя бы 2 туза
15	не меньше трех красных карт, 2 туза	30	2 дамы, 1 король, нет червей

Задание 2. Дано множество А (см. таблицу ниже).

Для каждого пункта, указанного ниже, нужно найти количество объектов, а также получить сами соответствующие объекты.

- 1) Сколькими способами из множества А можно выбрать 2 различные цифры?
- 2) Сколько различных трехзначных чисел можно записать из цифр, входящих в множество А (цифры в записи числа могут повторяться)?
- 3) Сколько различных трехзначных чётных (нечётных) чисел можно записать из цифр, входящих в множество А (цифры в записи числа могут повторяться)?
- 4) Сколько различных трехзначных чисел можно записать из цифр, входящих в множество А (все цифры в записи числа различны)?
- 5) Сколько различных трехзначных чётных (нечётных) чисел можно записать из цифр, входящих в множество А (все цифры в записи числа различны)?

Nº	Α										
1	{0, 1, 2, 4}	6	{0, 1, 5, 9}	11	$\{0, 3, 6, 7\}$	16	$\{0, 2, 7, 9\}$	21	$\{0, 2, 5, 7\}$	26	$\{0, 3, 5, 8\}$
2	{0, 1, 2, 7}	7	{0, 5, 6, 9}	12	$\{0, 4, 5, 6\}$	17	$\{0, 2, 5, 6\}$	22	{0, 6, 7, 8}	27	{0, 3, 6, 9}
3	$\{0, 3, 5, 7\}$	8	{0, 1, 6, 8}	13	$\{0, 2, 3, 8\}$	18	{0, 6, 7, 9}	23	{0, 3, 8, 9}	28	{0, 2, 5, 9}
4	$\{0, 2, 3, 6\}$	9	$\{0, 3, 7, 8\}$	14	{0, 1, 7, 9}	19	{0, 1, 8, 9}	24	{0, 4, 6, 9}	29	{0, 3, 5, 6}
5	{0, 5, 6, 8}	10	$\{0, 1, 3, 4\}$	15	{0, 5, 7, 9}	20	{0, 7, 8, 9}	25	{0, 1, 5, 6}	30	{0, 2, 7, 8}

<u>Задание 3.</u> Написать программу для получения из заданных элементов (см. таблицу ниже) всех сочетаний заданной длины k с повторениями элементов.

Nº	Набор элементов	Nº	Набор элементов	Nº	Набор элементов
1	aaaa b cc d	11	a bbbb c dd	21	a bbbb cc d
2	aaa bbb c d	12	a bbb cc dd	22	aa b cc ddd
3	aaa bb c dd	13	a bb ccc dd	23	aa bb cc dd
4	aaa b cc dd	14	a bb cc ddd	24	aa b cccc d
5	aa bbbb c d	15	a b cc dddd	25	aa bbb cc d
6	aa bbb c dd	16	a bb c dddd	26	aaa b c ddd
7	aa bb ccc d	17	a b cccc dd	27	aaa b ccc d
8	aa bb c ddd	18	a bbb c ddd	28	aaa bb cc d
9	aa b ccc dd	19	a bb cccc d	29	aaaa b c dd
10	aa b c dddd	20	a bbb ccc d	30	aaaa bb c d

Пример того, как могут выглядеть входные и выходные данные программы.

Входные данные:

Элементы: a b d f f g g

k: 3

Выходные данные:

Сочетания:

abd, abf, abg, adf, adg, aff, afg, agg, bdf, bdg, bff, bfg, bgg, dff, dfg, dgg, ffg, fgg