Example 1. Let X be a zero-dimensional, compact L-space (hereditarally Lindeloff and non-separable). It is a fact that there exists a point-countable collection $\mathcal{U} = \{U_{\alpha} : \alpha < \omega_1\}$ of clopen sets in X, and it is also true that any point-finite subcollection of \mathcal{U} is countable.

Let $C = \{c_{\alpha} : \alpha < \omega_1\}$ be any uncountable subset of the Cantor space 2^{ω} . Let $X_s = X \times \{s\}$ for each $s \in 2^{<\omega}$, and $U_{\alpha,s} = U_{\alpha} \times \{s\}$.

Finally, let

$$\mathbb{X} = C \cup \bigcup_{s \in 2^{<\omega}} X_s$$

be a tree of $2^{<\omega}$ copies of X, and where

$$c_{\alpha} \cup \bigcup_{n < \omega} U_{\alpha, x_{\alpha} \upharpoonright n}$$

is an open set about each c_{α} .

Definition 2. Let $S \in [\omega_1]^{<\omega}$ and $m < \omega$. Define

$$K_{S} = \bigcup_{\alpha \in S} \left(c_{\alpha} \cup \left(\bigcup_{s < c_{\alpha}} U_{\alpha, s} \right) \right)$$
$$A = \{ z^{\smallfrown} \langle 1 \rangle : z \in 1^{<\omega} \}$$
$$K_{S}^{*} = K_{S} \setminus \bigcup_{s \in A} X_{s}$$

and

$$L_m = \bigcup_{s \in 2^{< m}} X_s$$

and observe that every compact set is dominated by $K_S^* \cup L_m$ for some S, m. Intuitively, K_S^* collects the branches of U_α converging up to c_α for each $\alpha \in S$ while avoiding copies X_s of X for each s in an antichain A, and L_m collects the copies X_s of X with |s| < m at the base of the tree.

Proposition 3. Without loss of generality, P always plays points in $\bigcup_{s\in 2^{<\omega}} X_s$.

Proposition 4. $K \uparrow LF_{K,P}(X)$.

Proof. In response to a point $\langle x, s \rangle$, K observes that there are only countably many α such that $U_{\alpha} \times \{s\}$ contains $\langle x, s \rangle$ (by point-countability of X). Enumerate these as α_n . K makes a promise that during round m, K will forbid some superset of $K_{\{\alpha_n:n\leq m\}}$. Finally, K also always forbids a superset of $L_{|s|+1}$.

Suppose P's moves clustered at some point. Since K forbade $L_{|s|+1}$ during each round, that point must be c_{α} for some α . P's play then must have included a subsequence of points $\langle x_0, s_0 \rangle, \langle x_1, s_1 \rangle, \langle x_2, s_2 \rangle \dots$ such that $x_n \in U_{\alpha}$ and $s_n \leq s_{n+1} \leq c_{\alpha}$. However, in response to $\langle x_0, s_0 \rangle$, K made a promise to eventually forbid a superset of $K_{\{\alpha\}}$, making every $\langle x_n, t_n \rangle$ illegal after that round.

Theorem 5. $K \gamma_{tact} LF_{K,P}(X)$.

Proof. This is actually a corollary of G's theorem in [?]. The following is a direct gametheoretic proof.

Suppose that $\sigma(\langle x,s\rangle)$ was a winning strategy for K and assume

$$\sigma(\langle x, s \rangle) = \bigcup_{|t| < |s|} \sigma(\langle x, t \rangle) = \sigma'(x, |s|)$$

Thus there exists some $f: \omega_1 \to \omega$ such that $\sigma'(x, f(\alpha))$ covers every neighborhood of c_{α} for all $x \in U_{\alpha}$. (If not, P wins by taking the α for which f is not defined, and may always play $\langle x, s \rangle$ in a neighborhood of c_{α} for which $\sigma'(x, |s|)$ doesn't cover a neighborhood of c_{α} .) Fix n for which $f(\alpha) = n$ for α in an uncountable set A.

Since the collection $\{U_{\alpha} : \alpha \in A\}$ is uncountable, it is not point-finite. Fix x so that x belongs to U_{α} for all α in an infinite $B \subseteq A$. Finally, consider $\sigma'(x, n)$. For each $\alpha \in B$, $\sigma'(x, f(\alpha)) = \sigma'(x, n)$ covers c_{α} . Since $\{c_{\alpha} : \alpha \in B\}$ is a closed infinite discrete set, we have a contradiction to the compactness of $\sigma'(x, n)$.

Theorem 6. $K \uparrow_{2\text{-}tact} LF_{K,P}(\mathbb{X})$.

Proof. Suppose $\sigma(\langle x, s \rangle, \langle y, t \rangle)$ was a winning 2-tactical strategy. We may define $S(x, y, n) \in [\omega_1]^{<\omega}$ (increasing on n) and $n < m(x, y, n) < \omega$ such that for each (x, y),

$$\bigcup_{s,t\in 2^{\leq n}} \sigma(\langle x,s\rangle,\langle y,t\rangle) \subseteq K_{S(x,y,n)}^* \cup L_{m(x,y,n)}$$

and so we assume

$$\sigma(\langle x, s \rangle, \langle y, t \rangle) = K^*_{S(x, y, \max(|s|, |t|))} \cup L_{m(x, y, \max(|s|, |t|))}$$

Select an arbitrary point $x' \in X$. We define a tactical strategy

$$\tau(x,s) = K^*_{S(x,x',m(x,x',|s|)+1)} \cup L_{m(x,x',m(x,x',|s|)+1)}$$

We complete the proof by showing τ is a winning tactical strategy (a contradiction).

Suppose

$$\langle x_0, s_0 \rangle, \langle x_1, s_1 \rangle, \langle x_2, s_2 \rangle, \dots$$

successfully countered τ by clustering at $c \in C$ (the strategy trivially prevents clustering elsewhere). Let $z_n = \langle 0, \dots, 0 \rangle$ with n zeros. We claim

$$\langle x_0, s_0 \rangle, \langle x', z_{m(x_0, x', |s_0|)} \cap \langle 1 \rangle \rangle, \langle x_1, s_1 \rangle, \langle x', z_{m(x_1, x', |s_1|)} \cap \langle 1 \rangle \rangle, \langle x_2, s_2 \rangle, \langle x', z_{m(x_2, x', |s_2|)} \cap \langle 1 \rangle \rangle, \dots$$

is a successful counter to σ .

We will need the fact that, as $\langle x_{i+1}, s_{i+1} \rangle$ was legal against τ :

$$|s_i| < m(x_i, x', |s_i|) + 1 = |z_{m(x_i, x', |s_i|)} \land \langle 1 \rangle|$$

$$< m(x_i, x', m(x_i, x', |s_i|) + 1) = m(x_i, x', |z_{m(x_i, x', |s_i|)} \land \langle 1 \rangle|) \le |s_{i+1}|$$

Note that $m(x, y, \max(|s|, |t|))$ is increasing throughout this play of the game versus σ :

$$\begin{split} m(x_{i}, x', \max(|s_{i}|, |z_{m(x_{i}, x', |s_{i}|)} \cap \langle 1 \rangle |)) \\ &= m(x_{i}, x', |z_{m(x_{i}, x', |s_{i}|)} \cap \langle 1 \rangle |) \\ &\leq |s_{i+1}| \\ &< m(x_{i+1}, x', |s_{i+1}|) \\ &= m(x_{i+1}, x', \max(|s_{i+1}|, |z_{m(x_{i}, x', |s_{i}|)} \cap \langle 1 \rangle |)) \\ &= |z_{m(x_{i+1}, x', |s_{i+1}|)} | \\ &< |z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle | \\ &< m(x_{i+1}, x', |z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle |) \\ &= m(x_{i+1}, x', \max(|s_{i+1}|, |z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle |)) \end{split}$$

We turn to showing that $\langle x', z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle \rangle$ is always a legal move. Since $z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle$ is on the antichain avoided by any K^* , the problem is reduced to showing that this move isn't forbidden by

$$L_{m(x_{i+1},x',\max(|s_{i+1}|,|z_{m(x_i,x',|s_i|)} \cap \langle 1 \rangle|))}$$

which we can see here:

$$m(x_{i+1},x',\max(|s_{i+1}|,|z_{m(x_i,x',|s_i|)} \cap \langle 1 \rangle |)) = m(x_{i+1},x',|s_{i+1}|) < |z_{m(x_{i+1},x',|s_{i+1}|)} \cap \langle 1 \rangle |$$

We can conclude by showing that $\langle x_{i+1}, s_{i+1} \rangle$ is always a legal move. We can see it avoids

$$L_{m(x_i,x',\max(|s_i|,|z_{m(x_i,x',|s_i|)} \cap \langle 1 \rangle|))}$$

since

$$m(x_i, x', \max(|s_i|, |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |)) = m(x_i, x', |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |) \le |s_{i+1}|$$

Since $\langle x_{i+1}, s_{i+1} \rangle$ was legal against τ , it avoided

$$K_{S(x_h,x',m(x_h,x',|s_h|)+1)}^* = K_{S(x_h,x',\max(|s_h|,|z_{m(x_h,x',|s_h|)} \cap \langle 1 \rangle|))}^*$$

for $h \leq i$. And when h < i, we see it avoids:

$$K_{S(x_{h+1},x',\max(|s_{h+1}|,|z_{m(x_h,x',|s_h|)} \cap \langle 1 \rangle |))}^* = K_{S(x_{h+1},x',|s_{h+1}|)}^*$$

$$\subseteq K_{S(x_{h+1},x',m(x_{h+1},x',|s_{h+1}|)+1)}^*$$

This concludes the proof.

Theorem 7. $K \gamma_{k\text{-}tact} LF_{K,P}(\mathbb{X})$.

Proof. The proof proceeds in parallel to the proof of $K \uparrow_{2\text{-tact}} LF_{K,P}(\mathbb{X})$.

Suppose $\sigma(\langle x_0, s_0 \rangle, \dots, \langle x_k, s_k \rangle)$ was a winning (k+1)-tactical strategy. We may define $S(x_0, \dots, x_k, n) \in [\omega_1]^{<\omega}$ (increasing on n) and $n < m(x_0, \dots, x_k, n) < \omega$ such that for each (x_0, \dots, x_k) ,

$$\bigcup_{s_0,\dots,s_k\in 2^{\leq n}} \sigma(\langle x_0,s_0\rangle,\dots,\langle x_k,s_k\rangle) \subseteq K_{S(x_0,\dots,x_k,n)}^* \cup L_{m(x_0,\dots,x_k,n)}$$

and so we assume

$$\sigma(\langle x_0, s_0 \rangle, \dots, \langle x_k, s_k \rangle) = K^*_{S(x_0, \dots, x_k, \max(|s_0|, \dots, |s_k|))} \cup L_{m(x_0, \dots, x_k, \max(|s_0|, \dots, |s_k|))}$$

Select an arbitrary point $x' \in X$. Let $M^0(x,n) = m(x,x',\ldots,x',n)$ and $M^{i+1}(x,n) = M^0(x,M^i(x,n)+1)$. We define a tactical strategy

$$\tau(x,s) = K^*_{S(x,x',\dots,x',M^{k-1}(x,|s|)+1)} \cup L_{m(x,x',\dots,x',M^{k-1}(x,|s|)+1)}$$

We complete the proof by showing τ is a winning tactical strategy (a contradiction).

Suppose

$$\langle x_0, s_0 \rangle, \langle x_1, s_1 \rangle, \langle x_2, s_2 \rangle, \dots$$

successfully countered τ by clustering at $c \in C$ (the strategy trivially prevents clustering elsewhere). Let $z_n = \langle 0, \dots, 0 \rangle$ with n zeros. We claim

$$\langle x_0, s_0 \rangle, \langle x', z_{M^0(x_0, |s_0|)} \cap \langle 1 \rangle \rangle, \langle x', z_{M^1(x_0, |s_0|)} \cap \langle 1 \rangle \rangle, \dots, \langle x', z_{M^{k-1}(x_0, |s_0|)} \cap \langle 1 \rangle \rangle,$$

$$\langle x_1, s_1 \rangle, \langle x', z_{M^0(x_1,|s_1|)} \cap \langle 1 \rangle \rangle, \langle x', z_{M^1(x_1,|s_1|)} \cap \langle 1 \rangle \rangle, \dots, \langle x', z_{M^{k-1}(x_1,|s_1|)} \cap \langle 1 \rangle \rangle, \dots$$

is a successful counter to σ .

We will need the fact that, as $\langle x_{i+1}, s_{i+1} \rangle$ was legal against τ :

$$|s_i| < M^0(x_i, |s_i|) + 1 = |z_{M^0(x_i, |s_i|)} \land \langle 1 \rangle| < M^0(x_i, M^0(x_i, |s_i|) + 1) + 1$$
$$= M^1(x_i, |s_i|) + 1 = |z_{M^1(x_i, |s_i|)} \land \langle 1 \rangle| < \dots < |z_{M^{k-1}(x_i, |s_i|)} \land \langle 1 \rangle|$$

$$= M^{k-1}(x_i, |s_i|) + 1 < m(x_i, x', \dots, x', M^{k-1}(x_i, |s_i|) + 1) \le |s_{i+1}|$$

Note that $m(x_0, \ldots, x_k, \max(|s_0|, \ldots, |s_k|))$ is increasing throughout this play of the game versus σ :

$$\begin{split} m(x_{i},x',\ldots,x',\max(|s_{i}|,|z_{M^{0}(x_{i},|s_{i}|)}^{\frown}\langle1\rangle|,\ldots,|z_{M^{k-1}(x_{i},|s_{i}|)}^{\frown}\langle1\rangle|))\\ &=m(x_{i},x',\ldots,x',|z_{M^{k-1}(x_{i},|s_{i}|)}^{\frown}\langle1\rangle|)\\ &=m(x_{i},x',\ldots,x',M^{k-1}(x_{i},|s_{i}|)+1)\\ &\leq |s_{i+1}|\\ &< M^{0}(x_{i+1},|s_{i+1}|)\\ &=m(x_{i+1},x',\ldots,x',|s_{i+1}|)\\ &=m(x_{i+1},x',\ldots,x',\max(|s_{i+1}|,|z_{M^{0}(x_{i},|s_{i}|)}^{\frown}\langle1\rangle|,\ldots,|z_{M^{k-1}(x_{i},|s_{i}|)}^{\frown}\langle1\rangle|))\\ &=|z_{m(x_{i+1},x',\ldots,x',|s_{i+1}|)}|\\ &=|z_{M^{0}(x_{i+1},|s_{i+1}|)}|\\ &<|z_{M^{0}(x_{i+1},|s_{i+1}|)}^{\frown}\langle1\rangle|\\ &< m(x_{i+1},x',\ldots,x',|z_{M^{0}(x_{i+1},|s_{i+1}|)}^{\frown}\langle1\rangle|)\\ &=m(x_{i+1},x',\ldots,x',\max(|s_{i+1}|,|z_{M^{0}(x_{i+1},|s_{i+1}|)}^{\frown}\langle1\rangle|,|z_{M^{1}(x_{i},|s_{i}|)}^{\frown}\langle1\rangle|,\ldots,|z_{M^{k-1}(x_{i},|s_{i}|)}^{\frown}\langle1\rangle|))\\ &\leq m(x_{i+1},x',\ldots,x',\max(|s_{i+1}|,|z_{M^{0}(x_{i+1},|s_{i+1}|)}^{\frown}\langle1\rangle|,\ldots,|z_{M^{k-1}(x_{i+1},|s_{i+1}|)}^{\frown}\langle1\rangle|))\\ &\leq m(x_{i+1},x',\ldots,x',\max(|s_{i+1}|,|z_{M^{0}(x_{i+1},|s_{i+1}|)}^{\frown}\langle1\rangle|,\ldots,|z_{M^{k-1}(x_{i+1},|s_{i+1}|)}^{\frown}\langle1\rangle|))) \end{split}$$

We turn to showing that $\langle x', z_{M^j(x_{i+1}, |s_{i+1}|)} \cap \langle 1 \rangle \rangle$ is always a legal move. Since $z_{M^j(x_{i+1}, |s_{i+1}|)} \cap \langle 1 \rangle$ is on the antichain avoided by any K^* , the problem is reduced to showing that this move isn't forbidden by

$$\begin{split} L_{m(x_{i+1},x',\dots,x',\max(|s_{i+1}|,|z_{M^0(x_{i+1},|s_{i+1}|)} \cap \langle 1 \rangle|,\dots,|z_{M^{j-1}(x_{i+1},|s_{i+1}|)} \cap \langle 1 \rangle|,|z_{M^j(x_i,|s_i|)} \cap \langle 1 \rangle|,\dots,|z_{M^k(x_i,|s_i|)} \cap \langle 1 \rangle|))} \\ &= L_{m(x_{i+1},x',\dots,x',|z_{M^{j-1}(x_{i+1},|s_{i+1}|)} \cap \langle 1 \rangle|)} \end{split}$$

which we can see here:

$$m(x_{i+1}, x', \dots, x', |z_{M^{j-1}(x_{i+1}, |s_{i+1}|)} \land \langle 1 \rangle |)$$

$$= m(x_{i+1}, x', \dots, x', M^{j-1}(x_{i+1}, |s_{i+1}|) + 1)$$

$$= M^{0}(x_{i+1}, M^{j-1}(x_{i+1}, |s_{i+1}|) + 1)$$

$$= M^{j}(x_{i+1}, s_{i+1})$$

$$<|z_{M^j(x_{i+1},|s_{i+1}|)}^{(1)}$$

We can conclude by showing that $\langle x_{i+1}, s_{i+1} \rangle$ is always a legal move. We can see it avoids

$$L_{m(x_i,x',...,x',\max(|s_i|,|z_{M^0(x_i,|s_i|)} ^\frown \langle 1 \rangle|,...,|z_{M^{k-1}(x_i,|s_i|)} ^\frown \langle 1 \rangle|))}$$

since

$$m(x_{i}, x', \dots, x', \max(|s_{i}|, |z_{M^{0}(x_{i}, |s_{i}|)} \land \langle 1 \rangle|, \dots, |z_{M^{k-1}(x_{i}, |s_{i}|)} \land \langle 1 \rangle|))$$

$$= m(x_{i}, x', \dots, x', |z_{M^{k-1}(x_{i}, |s_{i}|)} \land \langle 1 \rangle|)$$

$$= m(x_{i}, x', \dots, x', M^{k-1}(x_{i}, |s_{i}|) + 1)$$

$$\leq |s_{i+1}|$$

Since $\langle x_{i+1}, s_{i+1} \rangle$ was legal against τ , it avoided

$$\begin{split} K_{S(x_h,x',...,x',M^{k-1}(x_h,|s_h|)+1)}^* \\ = K_{S(x_h,x',...,x',\max(|s_h|,|z_{M^0(x_h,|s_h|)} ^\frown \langle 1 \rangle|,...,|z_{M^{k-1}(x_h,|s_h|)} ^\frown \langle 1 \rangle|))}^* \end{split}$$

for $h \leq i$. And when h < i, we see it avoids both:

$$\begin{split} K_{S(x_{h+1},x',\ldots,x',\max(|s_{h+1}|,|z_{M^0(x_{h+1},|s_{h+1}|)} \cap \langle 1 \rangle|,\ldots,|z_{M^{j-1}(x_{h+1},|s_{h+1}|)} \cap \langle 1 \rangle|,|z_{M^{j}(x_{h},|s_{h}|)} \cap \langle 1 \rangle|,\ldots,|z_{M^k(x_{h},|s_{h}|)} \cap \langle 1 \rangle|)) \\ &= K_{S(x_{h+1},x',\ldots,x',|z_{M^{j-1}(x_{h+1},|s_{h+1}|)} \cap \langle 1 \rangle|)} \\ &= K_{S(x_{h+1},x',\ldots,x',M^{j-1}(x_{h+1},|s_{h+1}|)+1)} \\ &\subseteq K_{S(x_{h+1},x',\ldots,x',M^{k-1}(x_{h+1},|s_{h+1}|)+1)}^* \end{split}$$

and:

$$\begin{split} K_{S(x_{h+1},x',\dots,x',\max(|s_{h+1}|,|z_{M^0(x_h,|s_h|)} ^\frown \langle 1 \rangle |,\dots,|z_{M^k(x_h,|s_h|)} ^\frown \langle 1 \rangle |))} \\ &= K_{S(x_{h+1},x',\dots,x',|s_{k+1}|)}^* \\ &\subseteq K_{S(x_{h+1},x',\dots,x',M^{k-1}(x_{h+1},|s_{h+1}|)+1)}^* \end{split}$$

This concludes the proof.