WHAT IS CLAIMED IS:

1	1. A system for forming a cardiac muscle construct, comprising:
2	a substrate; and
3	cardiac cells provided on the substrate in the absence of a scaffold,
4	the cardiac cells cultured in vitro under conditions to allow the cells to become
5	confluent and detach from the substrate to form a three-dimensional cardiac muscle
6	construct.
1	2. The system according to claim 1, wherein the cardiac cells self-
2	organize to form the three-dimensional cardiac muscle construct.
1	3. The system according to claim 1, wherein the cardiac cells include
2	cardiac myocytes.
1	4. The system according to claim 1, wherein the cardiac cells include
2	fibroblasts.
1	5. The system according to claim 1, wherein the cardiac muscle
2	construct is spontaneously contractile.
1	6. The system according to claim 1, wherein the cardiac muscle
2	construct is responsive to electrical stimuli.
1	7. The system according to claim 1, wherein the cardiac muscle
2	construct is responsive to chemical stimuli.
1	8. The system according to claim 1, wherein the cardiac muscle
2	construct is resistant to fatigue.
1	9. The system according to claim 1, further comprising at least two
2	anchors secured to the substrate in spaced relationship with at least some of the
	cardiac cells in contact with and attachable to the anchors.

1	10. The system according to claim 9, wherein the anchors include
2	silk suture segments coated with cell adhesion molecules.
1 2	11. The system according to claim 10, wherein the cell adhesion molecules include laminin.
1 2	12. The system according to claim 1, wherein the substrate is coated with cell adhesion molecules.
1 2	13. The system according to claim 12, wherein the cell adhesion molecules include laminin.
1 2	14. The system according to claim 13, wherein the concentration of laminin is about 0.4 to 2.0 $\mu g/cm^2$.
3 4	15. The system according to claim 1, wherein the cardiac muscle construct is substantially cylindrical.
1 2	16. The system according to claim 1, further comprising skeletal muscle cells cultured in combination with the cardiac cells.
1 2 3 4	17. A method for forming a cardiac muscle construct, comprising: providing a scaffold-free substrate; providing cardiac cells on the substrate; and culturing the cardiac cells <i>in vitro</i> under conditions to allow the cells
5 6	to become confluent and detach from the substrate to form a three-dimensional cardiac muscle construct.
1 2	18. The method according to claim 17, wherein providing cardiac cells includes providing cardiac myocytes.
1	19. The method according to claim 17, wherein providing cardiac cells includes providing fibroblasts.

1	20. The method according to claim 17, further comprising eliciting
2	a response of the cardiac muscle construct to electrical stimuli.
1	21. The system according to claim 17, further comprising eliciting
2	a response of the cardiac muscle construct to chemical stimuli.
1	22. The method according to claim 17, further comprising securing
2	at least two anchors to the substrate in spaced relationship with at least some of the
3	cardiac cells in contact with the and attachable to the anchors.
1	23. The method according to claim 22, wherein the anchors include
2	silk suture segments coated with cell adhesion molecules.
1	24. The method according to claim 23, wherein the cell adhesion
2	molecules include laminin.
1	25. The method according to claim 17, further comprising coating
2	the substrate with cell adhesion molecules.
1	26. The method according to claim 25, wherein the cell adhesion
2	molecules include laminin.
1	27. The method according to claim 26, wherein the concentration of
2	laminin is about 0.4 to 2.0 μ g/cm ² .
1	28. The method according to claim 17, further comprising measuring
2	a functional property of the cardiac muscle construct and using the measured
3	property as feedback to control the formation of the cardiac muscle construct.
1	29. The method according to claim 17, further comprising culturing
2	skeletal muscle cells in combination with the cardiac cells.

1	30. The method according to claim 17, further including implanting
2	the cardiac muscle construct in a suitable recipient.
1	31. The method according to claim 17, further including wrapping
2	an acellularized aorta with a layer of cardiac cells.
1	32. A cardiac muscle construct, comprising:
2	cardiac myocytes provided on a scaffold-free substrate, the cardiac
3	myocytes cultured in vitro under conditions to allow the myocytes to self-organize
4	and become a confluent monolayer, the monolayer detaching from the substrate to
5	form a three-dimensional cardiac muscle construct.
1	33. The cardiac muscle construct according to claim 32, further
2	comprising fibroblasts provided in combination with the cardiac myocytes.
1	24. The soulies were less against according to aloing 22 withousin the
1	34. The cardiac muscle construct according to claim 32, wherein the
2	construct is spontaneously contractile.
1	35. The cardiac muscle construct according to claim 32, wherein the
2	construct is responsive to electrical stimuli.
1	36. The cardiac muscle construct according to claim 32, wherein the
2	construct is responsive to chemical stimuli.
1	37. The cardiac muscle construct according to claim 32, wherein the
2	construct is resistant to fatigue.
1	29. The could assess according to alaim 22 whomein the
1	38. The cardiac muscle construct according to claim 32, wherein the
2	construct includes adherens junctions formed between the cardiac myocytes.
1	39. The cardiac muscle construct according to claim 32, wherein the
2	construct includes gap junctions between the cardiac myocytes.

- 1 40. The cardiac muscle construct according to claim 32, wherein the
- 2 cardiac muscle construct is substantially cylindrical.