# UNIVERSIDAD TECNICA ESTATAL DE QUEVEDO FACULTAD DE CIENCIAS DE LA INGENIERIA



## TEMA:

EDIFICACIONES SISMORRESISTENTES EN COLUNMAS DE ACERO O MIXTAS.

## **AUTORES:**

BARBA SANCHEZ LISSETH ROSAURA
CRUZ PONCE WALTER LEANDRO
GONZALEZ RUEDA CHRISTEL ARIANA
RIVERA CUENCA DIANA ALEJANDRA

## **CARRERA:**

**ARQUITECTURA** 

## **CURSO:**

1ER SEMESTRE PARALELO "B"

## **DOCENTE:**

ING. GLEISTON CICERON GUERRERO ULLOA

## **ASIGNATURA:**

FUNDAMENTOS DE REDACCION CIENTIFICA

**QUEVEDO - ECUADOR** 

#### Resumen

En el presente artículo, se aplica la optimización estructural de edificaciones sismoresistentes, en las cuales, dichas edificaciones tendrán columnas compuestas de acero y
concreto. Por ende, se procederá a investigar y analizar diversos documentos
investigativos, que ayudarán a profundizar sobre los materiales como el acero y el
hormigón que se usan para dichas edificaciones antisísmicas, los cuales son una solución
para abordar los desafíos sísmicos en zonas susceptibles a los terremotos.

Palabras claves

Sismo-resistentes, antisísmicas, edificaciones, estructural.

#### **Abstract**

In this article, the structural optimization of earthquake-resistant buildings is applied, in which said buildings will have columns composed of steel and concrete. Therefore, various investigative documents will be investigated and analyzed, which will help to delve deeper into the materials such as steel and concrete that are used for said antiseismic buildings, which are a solution to address seismic challenges in areas susceptible to earthquakes.

**Key words** 

Seismic-resistant, anti-seismic, buildings, structural.

#### Introducción

El enfoque actual de las edificaciones sismorresistentes se basa en un análisis estructural. ¿Cuál es el enfoque que pueden dar las construcciones sismorresistentes en el tema estructural? y ¿Qué incorporan las edificaciones sismorresistentes? Elementos compuestos de acero y hormigón en una estructura, y el enfoque que se realizará en cada edificación serán base para realizar la investigación. En base a lo investigado, este manuscrito toma como enfoque evaluar la rentabilidad y la capacidad de resistencia sísmica de edificaciones. Siendo que, las edificaciones puedan poseer varios pisos con columnas hechas de acero y concreto (Papavasileiou & Charmpis, 2020).

La solución a presentar en la investigación. Se enfoca en revisar los mejores materiales para las construcciones sismorresistentes. Las columnas de edificios altos tienen cargas axiales (son aquellas capaces de resistir una fuerza en la misma dirección que el eje) elevadas. En los niveles más bajos. Estas columnas deben mantener su capacidad de carga axial durante un terremoto en áreas de alta sismicidad. Las construcciones elaboradas o compuesta de acero y hormigón ofrecen importantes ventajas para su uso. Por ejemplo, el sistema principal de resistencia lateral en estructuras de construcción sometidas a cargas sísmicas. Estos sistemas incluyen vigas de acero con tubos de acero relleno de concreto (CFT). Columnas de vigas de concreto reforzado de acero (es decir, secciones de acero revestidas o SRC). Marcos arriostrados que tienen columnas de tubos de acero rellenas de hormigón; y una variedad de sistemas de paredes compuestos e híbridos (Hajjar, 2002).

Como antecedente se tiene el terremoto vivido en Ecuador el 16 de abril del 2016. Debido a edificaciones sin bases sismorresistentes. Se sufrieron pérdidas materiales como humanas. Por ello, en la investigación se hablan sobre los materiales y estructuras adecuadas para evitar catástrofes. Siendo así, una opción viable. Aplicar de manera rigurosa elementos de pared compuestos de acero y hormigón (SC). Se componen de una sección central completa de hormigón grueso combinada

con placas frontales de acero delgadas. El elemento generalmente no tiene refuerzo plano convencional (es decir, barras horizontales o verticales) ni refuerzo de corte convencional (es decir, estribos o barras con cabeza en T). Las placas de revestimiento de acero se conectan al núcleo a través de anclajes de perno que están regularmente espaciados. En ocasiones, se utilizan tirantes transversales para unir las dos placas frontales de acero y ayudar a reforzar el corte (Vecchio & McQuade, 2011).

En la investigación presente. Se propone un análisis profundo a los mejores materiales para realizar edificaciones sismorresistentes. Las edificaciones sismo-resistentes con columnas hechas de acero o mixtas. Se diseñan para reducir los daños estructurales y salvaguardar la seguridad de las personas durante un terremoto. Para crear una respuesta estructural efectiva a los eventos sísmicos. Es necesario combinar materiales y prestar atención a detalles como: las columnas y las paredes.

#### Trabajos relacionados

#### **Edificaciones sismo-resistentes**

En la presente investigación se quiere dar a conocer si realmente las edificaciones sismorresistentes ayudan a evitar desastres a grandes escalas en caso de terremotos. Por lo tanto, para despejar esta incógnita se ha realizará una comparación de trabajos que han sido estudiados a profundidad sobre casos vividos en Chile y Turquía. A continuación, se procede a presentar dicha información comparativa.

Se tiene como finalidad establecer la importancia de realizar edificaciones sismorresistentes. A la vez informar sobre la resistencia que puede llegar a tener el acero y el hormigón en construcciones.

Tanto Bruneau como Sharon, le dan un énfasis a los materiales que son mejores para la

construcción de edificaciones sismorresistentes. Se enfocan en la correcta implementación a la hora de la construcción.

Dicen que los materiales como el acero y hormigón son más recomendados al momento de construir. También, dependerá de los detalles y la respuesta de cada material al momento de fundirlo. La buena compactación e implementación hará que sea sostenible en momento de un sismo.

El estudio realizado deja como evidencia. Que el hormigón armado de muros estructúrales no sufren casi daños estructurales por sus buenas bases. Así mismo, las vigas y columnas realizadas con concreto no se presentaron débiles.

Para evitar debilidad en las estructuras. Se debe implementar mayor atención a los detalles de fundimiento junto a una buena práctica y técnica. Evitando la mala ejecución de los materiales cuando se construye se obtiene una buena proporción estructural con mayor rigidez (Bruneau, 2002), (Sharon L. Wood, 1991).

En conclusión, Bruneau y Sharon resaltan la importancia de usar materiales y prácticas de construcción adecuadas. Generando mayor eficacia a momento de construir edificaciones sismorresistentes. Puesto que, la calidad de la construcción y la atención a los detalles son factores cruciales para la resistencia y recuperación sísmica. Cómo resultado de esto se garantiza la seguridad y durabilidad de las edificaciones en condiciones adversas como los terremotos.

#### Metodología

Esta investigación propone una metodología para el desarrollo de materiales sismorresistentes. Esto se logra, adaptando un enfoque para el análisis del diseño de los materiales. La prevención que estos sufran colapsos junto a los alineamientos de fundición son los rasgos básicos de los materiales. A pesar de disponer varios sistemas que implican combinaciones de vigas, núcleos basculantes rígidos, tirantes restringidos por pandeo. La mayoría de estos han pasado por pruebas de experimentos y análisis. Rara vez se han examinado como parte integrales de edificaciones. (Mark & Carl, 2012)

Las edificaciones no se pueden volver a centrar idealmente a menos que se diseñen y

detallen específicamente para CP y PERR.

Las estructuras son marcos especiales resistentes a terremotos. La idea fundamental detrás de esta investigación es encontrar los materiales adecuados para la construcción. Tanto la resistencia como rigidez se tomará en cuenta al momento de investigar. En estructuras, la magnitud y la forma de distribución de los materiales afectan a la rigidez. El mejor compuesto a usar para fortalecer las vigas y columnas es la unión de acero y hormigón. Así actuará de manera resistente ante un sismo de alta escala.

La metodología propuesta se introduce en el desarrollo de materiales que sean resistentes a terremotos. Como componentes de resistencia lateral de estructuras resistentes como vigas y columnas (Grigorian et al., 2019).

.

#### Protocolo

La investigación que se presenta, explora y analiza algunas prácticas, técnicas y materiales que son indispensables e importantes al momento de construir edificaciones sismorresistentes.

Este protocolo tiene como objetivo examinar ventajas, desventajas, prácticas, que se llevará a cabo mediante una exhausta investigación, en la cual recopilaremos datos y se analizarán aquellos datos para extraer la información necesaria.

La importancia del estudio que se está realizando, radica en conocer sobre el diseño y construcción de edificaciones sismorresitentes, en base a esto, sabremos los materiales, técnicas y prácticas que darán eficacia y seguridad a las edificaciones.

Para la tabla de extracción de datos, usaremos las siguientes preguntas:

- 1. ¿Cuáles son las ventajas de usar columnas de acero en edificaciones?
- 2. ¿Cómo afecta la combinación de acero y otros materiales en las construcciones sismorresistentes?
- 3. ¿Cómo influye la ubicación geográfica en el diseño de la construcción?
- 4. ¿Cuáles son las innovaciones más recientes y cómo reaccionan ante sismos?
- 5. ¿Existen casos en los que se prefiere usar columnas mixtas en lugar de columnas de acero para edificaciones sismorresistentes?

#### Hipótesis

Esta hipótesis se basará en la idea de que las columnas mixtas de acero combinen propiedades favorables de ambos materiales, como la alta resistencia y durabilidad del acero y la gran rigidez y estabilidad del concreto-aceros. Es por ello, que se espera que las columnas mixtas de acero demuestren mayores capacidades de absorción de energía y menor vulnerabilidad a daños estructurales durante eventos sismológicos.

Corroborar esta hipótesis requiere un estudio experimental o numérico que compare la resistencia y la vulnerabilidad de estructuras con columnas mixtas de acero y columnas tradicionales de acero bajo cargas sismológicas. Además, es importante considerar otros factores que influyen en la resistencia sismorresistente, como la geometría y la calidad de construcción de las columnas.

## Tabla de extracción de datos

| Referencias                                                                 | Titu<br>lo                             | Tip<br>o de<br>Doc<br>um<br>ent<br>o | A<br>ñ<br>o | Vent<br>ajas                                                                                                                          | Efec<br>tos<br>de<br>com<br>bina<br>ción<br>de<br>mat<br>erial<br>es                                                                                                   | Pref<br>eren<br>cia<br>de<br>mat<br>erial                                                                | Inno<br>vaci<br>ones<br>recie<br>ntes       | Ubic<br>ació<br>n<br>geog<br>ráfic<br>a | Estudi<br>ante/R<br>evisión                |
|-----------------------------------------------------------------------------|----------------------------------------|--------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------------|
| https://www.icevirtuallibr<br>ary.com/doi/abs/10.1680/<br>stbu.2003.156.1.3 | Struc<br>tures<br>and<br>build<br>ings | Jour                                 | 2 0 0 3 3   | Las colum nas de acero son aplica das de maner a más frecue nte ya que tienen la ventaj a de dar una mayor resiste ncia ante sismo s. | La comb inaci ón de los mater iales como son el acero y las mezc las mixta s, requi eren de inves tigaci ón para así, brind arles la confi anza neces aria a los ingen | En este caso, se prefie re usar el acero que es un acero estruc tural que tendr á una resist encia alta. | El acero estruc tural de alta resiste ncia. | Sin infor mació n.                      | Rivera<br>Cuenca<br>Diana<br>Alejandr<br>a |

| miza je estáti | https://doi.org/10.1016/j.j<br>obe.2019.100988 | Earth quak e-resist ant build ings with steel or com posit e colu mns: Com parat ive asses smen t using struc tural opti miza tion | Journal | 2 0 2 0 | Ayud an a resisti r accio nes sísmic as, depen diend o de las estruc turas que incorp orarán ambo s tipos de eleme ntos. | ieros para usar un nuev o mater ial de mane ra segur a y eficie nte.  Las accio nes sísmi cas se tiene n en cuent a a travé s de restri ccion es de defle xión latera l evalu adas medi ante anális is de empu je estáti | En dicho docu ment o se establ ece que el acero es su mater ial de prefer encia para const rucci ones sísmi cas. | Sin dicha infor mació n. | Sin dicha infor mació n. | Rivera<br>Cuenca<br>Diana<br>Alejandr<br>a |
|----------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------------------------|
|----------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------------------------|

| https://link.springer.com/<br>article/10.1617/s11527-<br>006-9129-5 | The effect of Steel fibres on the earth quakeresist ant design of reinforced concretestructures | Jour | 2<br>0<br>0<br>6 | Al realiz ar el anális is, el comp ortam iento satisfa ce los requis itos de rendi mient o actual es en cuant o a resiste ncia y ductili dad. | lineal . Ade más, se deter mina n y evalú an los perío dos funda ment ales de los edific ios óptim amen te diseñ ados.  Sin dicha infor maci ón. | Horm igón arma do (CR) diseñ adas según el Euroc ódigo 8 | Horm igón armad o (CR) | Sin dicha infor mació n. | Rivera<br>Cuenca<br>Diana<br>Alejandr<br>a |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------|--------------------------------------------|
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|--------------------------|--------------------------------------------|

| httms://doi.org/10.1016/;;                     | Forth  | Jour | 2                                      | Se      | Sin   | Una           | Se      | La     | Rivera   |
|------------------------------------------------|--------|------|----------------------------------------|---------|-------|---------------|---------|--------|----------|
| https://doi.org/10.1016/j.j<br>obe.2021.102334 | Earth  |      | $\begin{vmatrix} 2 \\ 0 \end{vmatrix}$ |         | infor |               |         | ubica  |          |
| 006.2021.102334                                | quak   | nal  | 2                                      | caract  |       | tecno         | propo   |        | Cuenca   |
|                                                | e-     |      |                                        | erizan  | maci  | logía         | nen     | ción   | Diana    |
|                                                | resist |      | 1                                      | por     | ón.   | basad         | tres    | tambi  | Alejandr |
|                                                | ant    |      |                                        | una     |       | a en          | tecnol  | én     | a        |
|                                                | CLT    |      |                                        | alta    |       | el uso        | ogías   | llegar |          |
|                                                | build  |      |                                        | resiste |       | de            | para    | á a    |          |
|                                                | ings   |      |                                        | ncia    |       | tirant        | transf  | ser    |          |
|                                                | stiffe |      |                                        | en el   |       | es de         | erir    | clave  |          |
|                                                | ned    |      |                                        | plano   |       | acero         | fuerza  | funda  |          |
|                                                | with   |      |                                        | у       |       | resist        | s de    | menta  |          |
|                                                | verti  |      |                                        | rigide  |       | entes         | los     | l ya   |          |
|                                                | cal    |      |                                        | Z.      |       | у             | panel   | que    |          |
|                                                | steel  |      |                                        |         |       | rígido        | es de   | eso    |          |
|                                                | ties   |      |                                        |         |       | s             | CLT     | nos    |          |
|                                                |        |      |                                        |         |       | puede         | a los   | ayuda  |          |
|                                                |        |      |                                        |         |       | reduc         | tirante | rá a   |          |
|                                                |        |      |                                        |         |       | ir la         | s: el   | saber  |          |
|                                                |        |      |                                        |         |       | capac         | uso     | cómo   |          |
|                                                |        |      |                                        |         |       | idad          | de      | será   |          |
|                                                |        |      |                                        |         |       | disipa        | placas  | el     |          |
|                                                |        |      |                                        |         |       | tiva          | clava   | funci  |          |
|                                                |        |      |                                        |         |       | de la         | das,    | onam   |          |
|                                                |        |      |                                        |         |       | estruc        | de,     | iento  |          |
|                                                |        |      |                                        |         |       | tura,         |         | de los |          |
|                                                |        |      |                                        |         |       | en            | conec   | mater  |          |
|                                                |        |      |                                        |         |       |               | tores   | iales. |          |
|                                                |        |      |                                        |         |       | comp<br>araci | atorni  | raics. |          |
|                                                |        |      |                                        |         |       | ón            | llados  |        |          |
|                                                |        |      |                                        |         |       |               | 0       |        |          |
|                                                |        |      |                                        |         |       | con           | direct  |        |          |
|                                                |        |      |                                        |         |       | el uso        | ament   |        |          |
|                                                |        |      |                                        |         |       | de            | e por   |        |          |
|                                                |        |      |                                        |         |       | placa         | conta   |        |          |
|                                                |        |      |                                        |         |       | S             | cto     |        |          |
|                                                |        |      |                                        |         |       | clava         | con     |        |          |
|                                                |        |      |                                        |         |       | das o         | una     |        |          |
|                                                |        |      |                                        |         |       | las           | placa   |        |          |
|                                                |        |      |                                        |         |       | conex         | grues   |        |          |
|                                                |        |      |                                        |         |       | iones         | a en    |        |          |
|                                                |        |      |                                        |         |       | disipa        | la      |        |          |
|                                                |        |      |                                        |         |       | tivas         | parte   |        |          |
|                                                |        |      |                                        |         |       |               | superi  |        |          |
|                                                |        |      |                                        |         |       |               | or de   |        |          |
|                                                |        |      |                                        |         |       |               | la      |        |          |
|                                                |        |      |                                        |         |       |               | pared   |        |          |
|                                                |        |      |                                        |         |       |               | de      |        |          |
|                                                |        |      |                                        |         |       |               | cada    |        |          |
|                                                |        |      |                                        |         |       |               | piso.   |        |          |
|                                                |        |      |                                        | 1       | 1     |               | F       |        |          |

| 1 //1: //0.4046/9         | т    | т .  |   |         | α.    | T.T.   | O 1     | С      | D:       |
|---------------------------|------|------|---|---------|-------|--------|---------|--------|----------|
| https://doi.org/10.1016/S | Inn  | Jour | 2 | Aume    | Sin   | Horm   | Se ha   | Se     | Rivera   |
| 0141-0296(00)00023-7      | ovat | nal  | 0 | ntar el | infor | igón   | desarr  | mostr  | Cuenca   |
|                           | ion  |      | 0 | amort   | maci  | es el  | ollado  | ó un   | Diana    |
|                           | in   |      | 1 | iguam   | ón.   | mater  | una     | interé | Alejandr |
|                           | eart |      |   | iento   |       | ial    | estrat  | S      | a        |
|                           | hqu  |      |   | del     |       | que    | egia    | activo |          |
|                           | ake  |      |   | sistem  |       | encab  | de      | por    |          |
|                           | resi |      |   | a       |       | eza y  | diseñ   | los    |          |
|                           | stan |      |   | hacie   |       | el     | О       | terre  |          |
|                           | t    |      |   | ndo     |       | mater  | altern  | motos  |          |
|                           | con  |      |   | uso     |       | ial de | ativa   | ingles |          |
|                           | cret |      |   | de      |       | prefer | basad   | es,    |          |
|                           | e    |      |   | comp    |       | encia  | a en    | del    |          |
|                           | stru |      |   | onent   |       | de     | obser   | sur de |          |
|                           | ctur |      |   | es      |       | dicha  | vacio   | Europ  |          |
|                           | e    |      |   | secun   |       | infor  | nes     | a,     |          |
|                           | desi |      |   | darios  |       | maci   | fenom   | japon  |          |
|                           | gn   |      |   |         |       | ón     | enoló   | eses y |          |
|                           | phil |      |   |         |       | extraí | gicas   | ameri  |          |
|                           | oso  |      |   |         |       | da.    | del     | canos  |          |
|                           | phie |      |   |         |       |        | comp    |        |          |
|                           | s; a |      |   |         |       |        | ortam   |        |          |
|                           | cent |      |   |         |       |        | iento   |        |          |
|                           | ury  |      |   |         |       |        | de los  |        |          |
|                           | of   |      |   |         |       |        | edifici |        |          |
|                           | pro  |      |   |         |       |        | os, ya  |        |          |
|                           | gres |      |   |         |       |        | sea en  |        |          |
|                           | S    |      |   |         |       |        | terre   |        |          |
|                           | sinc |      |   |         |       |        | motos   |        |          |
|                           | e    |      |   |         |       |        | reales  |        |          |
|                           | Hen  |      |   |         |       |        | o en    |        |          |
|                           | nebi |      |   |         |       |        | prueb   |        |          |
|                           | que' |      |   |         |       |        | as      |        |          |
|                           | S    |      |   |         |       |        | físicas |        |          |
|                           | pate |      |   |         |       |        |         |        |          |
|                           | nt   |      |   |         |       |        | •       |        |          |
|                           |      |      |   |         |       |        |         |        |          |
|                           |      |      |   |         |       |        |         |        |          |

| 1.0                         | С.    | т.   |   | G.    | т.     | T.T.   | T:I     | т.     | D.       |
|-----------------------------|-------|------|---|-------|--------|--------|---------|--------|----------|
| https://doi.org/10.1016/j.j | Seis  | Jour | 2 | Sin   | Las    | Uno    | El      | Los    | Rivera   |
| <u>csr.2022.107172</u>      | mic   | nal  | 0 | infor | estru  | de los | níquel  | terre  | Cuenca   |
|                             | resil |      | 2 | mació | ctura  | siste  | -       | motos  | Diana    |
|                             | ient  |      | 2 | n.    | s de   | mas    | titanio | de     | Alejandr |
|                             | stee  |      |   |       | acero  | más    | (NiTi)  | North  | a        |
|                             | 1     |      |   |       | sísmi  | popul  | SMA     | ridge  |          |
|                             | stru  |      |   |       | cas    | ares   | es una  | de     |          |
|                             | ctur  |      |   |       | resili | es el  | clase   | 1994   |          |
|                             | es:   |      |   |       | entes, | marc   | única   | у      |          |
|                             | A     |      |   |       | que    | 0      | de      | Kobe   |          |
|                             | revi  |      |   |       | pued   | arrios | metal   | de     |          |
|                             | ew    |      |   |       | en     | trado  | es      | 1995   |          |
|                             | of    |      |   |       | resta  | de     | capac   | desafi |          |
|                             | rese  |      |   |       | blece  | acero  | es de   | aron   |          |
|                             | arch  |      |   |       | rse y  | con    | recup   | la     |          |
|                             | ,     |      |   |       | reutil | balan  | erar    | perce  |          |
|                             | prac  |      |   |       | izarse | ceo    | grand   | pción  |          |
|                             | tice, |      |   |       | rápid  | contr  | es      | arraig |          |
|                             | chal  |      |   |       | amen   | olado  | defor   | ada    |          |
|                             | leng  |      |   |       | te     | (CRS   | macio   | de     |          |
|                             | es    |      |   |       | despu  | BF).   | nes de  | que    |          |
|                             | and   |      |   |       | és de  |        | forma   | las    |          |
|                             | opp   |      |   |       | un     |        | espon   | estruc |          |
|                             | ortu  |      |   |       | fuerte |        | tánea.  | turas  |          |
|                             | niti  |      |   |       | terre  |        |         | de     |          |
|                             | es    |      |   |       | moto.  |        |         | acero  |          |
|                             |       |      |   |       |        |        |         | tienen |          |
|                             |       |      |   |       |        |        |         | un     |          |
|                             |       |      |   |       |        |        |         | comp   |          |
|                             |       |      |   |       |        |        |         | ortam  |          |
|                             |       |      |   |       |        |        |         | iento  |          |
|                             |       |      |   |       |        |        |         | sísmi  |          |
|                             |       |      |   |       |        |        |         | co     |          |
|                             |       |      |   |       |        |        |         | inher  |          |
|                             |       |      |   |       |        |        |         | entem  |          |
|                             |       |      |   |       |        |        |         | ente   |          |
|                             |       |      |   |       |        |        |         | excel  |          |
|                             |       |      |   |       |        |        |         | ente.  |          |
|                             |       |      |   |       |        |        |         | ente.  |          |

| https://cdnsciencepub.com/doi/abs/10.1139/109-089 | Res pon se of eart hqu akeresi stan t rein forc edcon cret e buil din gs to blas t load ing. | Jour | 2 0 0 9 9 | Sin infor mació n. | Combinad os con capac idade s gráfic as activ as/pa sivas para facilit ar un diseñ o segur o, confi able y óptim o. | El diseñ o sismo rresis tente de edific ios de hormi gón arma do. | La tecnol ogía KBES ayuda a los ingeni eros que se ocupa n de proble mas de diseñ o sísmic o utiliza n métod os de códig o simpli ficado s, como el métod o estátic o lateral | Sin infor mació n. | Rivera<br>Cuenca<br>Diana<br>Alejandr<br>a |
|---------------------------------------------------|----------------------------------------------------------------------------------------------|------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------|

|                                                   |                                                                                 |         |         |                                                                                                                                                                                        |                    |                   | equiv<br>alente                                                                          |                                                                                       |                                            |
|---------------------------------------------------|---------------------------------------------------------------------------------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------|
| https://doi.org/10.1016/S<br>1405-7743(15)30013-5 | Ana lysi s of the Eart hqu ake- Res ista nt Des ign App roac h for Buil din gs. | Journal | 2 0 1 4 | El desarr ollo de nuevo s códig os para estruc turas sismo rresist entes ha permi tido garant izar un mejor comp ortam iento de las edific acion es, cuand o son somet idas a sism os. | Sin infor maci ón. | Sin informaci ón. | Se ha desarr ollado sus propi os códig os sísmic os basad os en su experi encia y leyes. | Se analiz a el enfoq ue de los códig os de diseñ o de edific ios en Estad os Unid os. | Rivera<br>Cuenca<br>Diana<br>Alejandr<br>a |

| https://doi.org/10.3390/m<br>a13081919 | Opt<br>ima<br>1 | Jour<br>nal | 2 0 2 | Consi<br>ste en<br>propo | La<br>secci<br>ón de                                                                                                                                     | Horm<br>igón<br>arma | Sin<br>infor<br>mació | Sin<br>infor<br>mació | Rivera<br>Cuenca<br>Diana |
|----------------------------------------|-----------------|-------------|-------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------|---------------------------|
|                                        |                 |             |       |                          | secci ón de concr eto y el refue rzo de acero debe n dime nsion arse de modo que el mom ento flecto r de diseñ o de la regla colu mna fuerte -viga débil |                      |                       |                       |                           |
|                                        |                 |             |       | r-<br>fuerza             | fuerte<br>-viga                                                                                                                                          |                      |                       |                       |                           |
|                                        |                 |             |       |                          | diseñ o del anális is para la situac ión de diseñ o                                                                                                      |                      |                       |                       |                           |

|  |  | sísmi |  |  |
|--|--|-------|--|--|
|  |  | co.   |  |  |
|  |  |       |  |  |
|  |  |       |  |  |
|  |  |       |  |  |
|  |  |       |  |  |
|  |  |       |  |  |
|  |  |       |  |  |
|  |  |       |  |  |
|  |  |       |  |  |
|  |  |       |  |  |
|  |  |       |  |  |

| (Srihari            | Study on           | Jour        |          | En este                  | La                  | En este             | Se realizó           | Estos              | Barb         |
|---------------------|--------------------|-------------|----------|--------------------------|---------------------|---------------------|----------------------|--------------------|--------------|
| et al.,             | axial              | nal         | 20       | estudio,                 | combinació          | caso el             | el estudio           | tienen             | a            |
| 2023)               | behaviour          |             | 23       | los                      | n de acero y        | material            | de                   | grandes            | Sanc         |
|                     | of                 |             |          | resultados               | hormigón            | de                  | elementos<br>finitos | influenci          | hez<br>Lisse |
|                     | concrete<br>filled |             |          | muestran<br>que los      | en las<br>columnas, | prefere<br>ncia     | utilizando           | as en<br>Industria | th           |
|                     | steel              |             |          | tubos de                 | ayuda en            | son las             | Abaqus               | S,                 | Rosa         |
|                     | tubular            |             |          | acero de                 | una                 | column              | para                 | edificios          | ura          |
|                     | columns            |             |          | hormigón                 | excelente           | as de               | analizar             | de gran            |              |
|                     |                    |             |          | han                      | ductilidad.         | tubos               | las                  | altura,            |              |
|                     |                    |             |          | obtenido                 |                     | de                  | columnas             | puentes            |              |
|                     |                    |             |          | una amplia               |                     | acero<br>rellenas   | compuesta            | y otras            |              |
|                     |                    |             |          | aceptación<br>en lo que  |                     | de                  | S.                   | estructur<br>as.   |              |
|                     |                    |             |          | compete a                |                     | hormig              |                      | as.                |              |
|                     |                    |             |          | la                       |                     | ón.                 |                      |                    |              |
|                     |                    |             |          | construcci               |                     |                     |                      |                    |              |
|                     |                    |             |          | ón de                    |                     |                     |                      |                    |              |
|                     |                    |             |          | edificios<br>debido a    |                     |                     |                      |                    |              |
|                     |                    |             |          | su                       |                     |                     |                      |                    |              |
|                     |                    |             |          | capacidad                |                     |                     |                      |                    |              |
|                     |                    |             |          | de soportar              |                     |                     |                      |                    |              |
|                     |                    |             |          | cargas                   |                     |                     |                      |                    |              |
| (X7.1. '1           | Б .                | <b>T</b>    | 20       | axiales.                 | El                  | a                   | TT                   | Г                  | D 1          |
| (Velrajku<br>mar et | Experim ental and  | Jour<br>nal | 20<br>23 | En este<br>análisis se   | El<br>comportami    | Se<br>determi       | Una<br>columna       | Es<br>popular      | Barb<br>a    |
| al., 2023)          | theoretic          | man         | 23       | determina                | ento axial          | nó que              | de acero             | en el              | Sanc         |
| , /                 | al                 |             |          | que las                  | de una              | el                  | revestida            | sector de          | hez          |
|                     | investiga          |             |          | ventajas                 | columna de          | estudio             | de                   | la                 | Lisse        |
|                     | tion of            |             |          | principales              | tubo de             | de                  | hormigón,            | construc           | th           |
|                     | concrete           |             |          | de estas,<br>son su alta | acero<br>relleno de | prefere<br>ncia fue | utilizando           | ción.              | Rosa         |
|                     | filled             |             |          | resistencia,             | hormigón            | de una              | nanomater iales.     |                    | ura          |
|                     | and                |             |          | ductilidad               | utilizando          | column              | iaics.               |                    |              |
|                     | encased            |             |          | y su                     | fibra de            | a de                |                      |                    |              |
|                     | steel              |             |          | resistencia              | acero.              | tubos               |                      |                    |              |
|                     | column             |             |          | al fuego.                |                     | de                  |                      |                    |              |
|                     | under              |             |          |                          |                     | acero<br>de         |                      |                    |              |
|                     | compres<br>sion    |             |          |                          |                     | doble               |                      |                    |              |
|                     | loading            |             |          |                          |                     | capa                |                      |                    |              |
|                     | Todding            |             |          |                          |                     | sometid             |                      |                    |              |
|                     |                    |             |          |                          |                     | a a                 |                      |                    |              |
|                     |                    |             |          |                          |                     | carga<br>axial.     |                      |                    |              |
| (Ding et            | Study on           | Jour        | 20       | En este                  | Los estribos        | Los                 | En esta              |                    | Barb         |
| al.,                | restraint          | nal         | 24       | estudio                  | mejoraron           | estribos            | investigaci          | Sin                | a            |
| 2024)               | coefficie          |             |          | unas sus                 | significativa       | mejorar             | ón se llevó          | informac           | Sanc         |
|                     | nt of the          |             |          | ventajas es              | mente las           | on de               | a cabo la            | ión                | hez          |
|                     | stirrups-          |             |          | el bajo                  | propiedades         | manera              | innovación           |                    | Lisse        |
|                     | stiffened          |             |          | consumo<br>de            | mecánicas<br>de las | más<br>efectiva     | de la<br>comprensi   |                    | th<br>Rosa   |
|                     | square             |             |          | hormigón                 | columnas            | electiva            | ón axial en          |                    | ura          |
|                     | concrete           |             |          | y acero.                 | con grandes         | rendimi             | probetas             |                    |              |

|                            | filled<br>double-<br>skin<br>steel<br>tube<br>axial<br>compres<br>sion stub<br>columns                        |             |          |                                                                                                                                                                                                | relaciones huecas, rigidez, la capacidad de carga y la ductilidad, a medida que aumenta la relación de estribo.                               | ento<br>general<br>de las<br>column<br>as. | con una hueca superior de 0.5 y las proporcion es de estribo en la rigidez.          |                                                                                        |                                                        |
|----------------------------|---------------------------------------------------------------------------------------------------------------|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|
| (Gao et al., 2024)         | Seismic performa nce of T-shaped CFST column to U-shaped steel composit e beam joints                         | Jour<br>nal | 20<br>24 | En este estudio las vigas compuesta s de acero y hormigón en forma de U tienes las ventajas de una alta capacidad de carga y sustentabil idad, resistente al fuego y una construcci ón rápida. | Se realizó una combinació n de tubos de acero rellenas de hormigón con columnas las cuales no quedaron expuestas las columnas en el interior. | La viga<br>compue<br>sta de<br>acero.      | La unión<br>de la placa<br>del anillo<br>exterior<br>entre<br>columnas<br>y la viga. | Sin<br>informac<br>ión                                                                 | Barb<br>a<br>Sanc<br>hez<br>Lisse<br>th<br>Rosa<br>ura |
| (Jiang et al., 2024)       | Design method of axial compres sion stability for cross-section corrugat ed plate steel special-shaped column | Jour<br>nal | 20 24    | Ayuda a obtener un momento de inercia y estabilidad general.                                                                                                                                   | Hormigón<br>armado y<br>tubos de<br>acero.                                                                                                    | Column as de acero.                        | Las placas<br>corrugadas<br>, ellas<br>ayudan en<br>el ahorro<br>de materia.         | Su<br>aplicació<br>n<br>específic<br>a es en<br>industria<br>s de<br>construc<br>ción. | Barb<br>a<br>Sanc<br>hez<br>Lisse<br>th                |
| (Zhang<br>et al.,<br>2024) | Seismic<br>behaviou<br>r of                                                                                   | jour<br>nal | 20<br>24 | Emerge un alto rendimient                                                                                                                                                                      | Elementos<br>estructurale<br>s compuesto                                                                                                      | Tubos<br>de<br>acero.                      | Se estudió<br>el<br>comporta                                                         | Sin<br>informac                                                                        | Barb<br>a<br>Sanc                                      |

|                                                              | FRP-concrete -steel double- tube columns with shear studs: Experim ental study and numeric al modellin g                                                                |             |          | o con alta<br>resistencia<br>y notables<br>característi<br>cas                                                                                                                 | por dos<br>tubos<br>relleno de<br>hormigón.                                                                   |                                    | miento<br>sísmico de<br>columnas<br>de doble<br>tubo de<br>hormigón<br>y acero.                           | ión<br>dicha.          | hez<br>Lisse<br>th                      |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------|
| (Isleem et al., 2024)                                        | Parametri c investigat ion of rectangul ar CFRP- confined concrete columns reinforce d by inner elliptical Steel tubes uding finite element and machine learning models | Jour<br>nal | 20<br>24 | En este estudio las columnas realizadas de hormigón confinado con polímero reforzado con fibra de carbono, con la ventaja de mejorar la fuerza, la durabilida d y resistencia. | El hormigón confinado con polímero reforzado con fibra la cual es utilizada para la durabilidad del hormigón. | Hormig<br>ón<br>confina<br>do.     | Las estructuras confinadas y el tubo interno de acero.                                                    | Sin dicha informac ión | Barb<br>a<br>Sanc<br>hez<br>Lisse<br>th |
| (Bakhsha<br>yesh<br>Eghbali<br>&<br>Andamn<br>ejad,<br>2023) | Structura l performa nce of rigid shear connecto rs in concrete encased steel                                                                                           | Jour<br>nal | 20 23    | Las columnas compuesta s de acero revestido de hormigón logran el comporta miento compuesto                                                                                    | En este caso, la combinació n se da entre el hormigón y el acero.                                             | Hormig<br>ón<br>armado<br>y acero. | Los<br>conectores<br>de cortante<br>atornillado<br>s<br>deconstrui<br>bles en<br>vigas<br>compuesta<br>s. | Sin<br>Informa<br>ción | Barb<br>a<br>Sanc<br>hez<br>Lisse<br>th |

|                                                                       | composit<br>e<br>columns                                                                                                    |             |       | de aquellas columnas.                                                                                                      |                                                                                                                                   |                                                                                                                      |                                                                                                                                                                                          |                         |                                                         |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|-------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|
| (Tao et al., 2023)                                                    | Analysis and design of axially loaded ring-beam joints connecti ng steel tubed-RC column and RC beams                       | Jour<br>nal | 20 23 | En este estudio se dispone una unión de vigas anulares de hormigón, el cual tiene como ventaja la resistencia y capacidad. | Se dio a cabo un estudio de los efectos y resistencia del hormigón, el límite elástico del tubo de hacer, el espesor y su altura. | Las column as tubulare s de acero rellenas de hormig ón.                                                             | La unión de vigas, la zona de unión con tubos de acero externo, la zona de unión con una viga de anillo y unión de tubo de acero central.                                                | Sin<br>informac<br>ión  | Barb<br>a<br>Sanc<br>hez<br>Lisse<br>th                 |
| http://dx.d<br>oi.org/10.4<br>067/S0718<br>-<br>507320140<br>00200001 | Criterios para el refuerzo de estructur as metálica s: Rehab ilitación del "Círculo de Bellas Artes" y la "Casa Encendi da" | Journal     | 2014  | modo en que presenta un mejor comportamiento, aumentando además la rigidez y la masa del conjunto. De                      | En la combinación de materiales con el acero se puede obtener más resistencia y también más rapidez en el proyecto.               | En este caso se prefiere usar el acero ya que tiene alta relación de resisten cia lo que permite que sea más ligera. | Mejora la resistenci a, durabili dad, eficiencia y sostenibil idad.                                                                                                                      | Sin<br>informac<br>ion. | Gonz<br>ález<br>Rued<br>a<br>Chris<br>tel<br>Arian<br>a |
| http://dx.d<br>oi.org/10.4<br>067/S0718<br>=<br>507320160<br>00200001 |                                                                                                                             | Journa<br>I | 2016  | conceptos<br>exitosos de<br>gestión con<br>cero pérdidas                                                                   | Se obtiene<br>más<br>flexibilidad<br>en el diseño<br>por la<br>ductabilidad<br>del acero.                                         | Se prefiere el acero ya que este con este material se obtiene n cero pérdidas .                                      | Los rápidos cambios debido a la naturaleza dinámica en terreno y los cambios de calidad de los factores críticos requieren de un nuevo modelo para conseguir procesos con cero pérdidas. | Sin informac ion.       | Gonzal<br>ez<br>Rueda<br>Christel<br>Ariana             |

|                                     |         |             |                                                                                                                                                                                                                                   | Los materiales                                                                                                                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                |                        |                                             |
|-------------------------------------|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|
|                                     | ión     | Journa<br>l | ventajas la reducción del tiempo y el costo de la construcción, la mejora de la calidad y la precisión de los componentes , la reducción de la contaminación y el ruido en el sitio de construcción y la mejora de la seguridad y | son trasladados a obra y en ella se prepara e instala el moldaje, se prepara el fierro y se arma la enfierradura, luego se coloca y afianza en su posición definitiva, después se instalan y nivelan las placas o pernos y luego se procede al vaciado del hormigón según la | Se utiliza el acero ya que mejoras en cuanto a productivi dad, sostenibili dad y tecnología . Además de abordar el impacto del aumento de la velocidad de la obra | La estructura metálica transmite las cargas principalme nte de forma puntual a través de pilares por lo que no se justifica diseñar con zapatas corridas o losas de fundación. | Sin<br>informaci<br>ón | Gonzal<br>ez<br>Rueda<br>Christel<br>Ariana |
| <u>507320100</u><br><u>00100006</u> | ción de | Journa<br>l | Con las variables que representaro n mayor disminución en días de manera individual se generaron nuevos escenarios con combinacion es de las mismas; así se obtienen mayores beneficios en el escenario de materiales siempre     | segundo tramo las variables que representaron mayor disminución en días de manera individual se generaron nuevos escenarios con combinacione s de las mismas; así se obtienen mayores                                                                                        | rapidez que se obtiene, después del vaciado, se genera un tiempo de espera de 1 día para ejecutar el desencofr ado y aumentar nuevamen te la cantidad de          | ac alca                                                                                                                                                                        | Sin información.       | Gonzal<br>ez<br>Rueda<br>Christel<br>Ariana |

|                                                                |       |             | 1                                    |                                                       |                                                                                                      |                                                                                                                                                                                                                             |           |                                             |
|----------------------------------------------------------------|-------|-------------|--------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|
| http://dx.doi.org/10.4<br>067/S0718<br>= 507320140<br>00300005 | Desem | Journa<br>l | distorsión<br>de entrepiso<br>que el | materiales<br>como son el<br>acero y otro<br>material | rapidez del trabajo y también se obtiene menos distorsi on cuando se trata de la sismorr esistenc ia | Con ensayos en mesa vibratoria se estudió el desempeño sísmico de tres modelos estructurales: un pórtico sin disipadores de energía y dos pórticos con dos tipos de placas ranuradas de acero y se obtuvo mayor resistencia | informaci | Gonzal<br>ez<br>Rueda<br>Christel<br>Ariana |

#### Resultados

La investigación realizada nos revela que las edificaciones que tienen columnas de acero son las más aceptables para los ingenieros ya que se muestran con mayor resistencia ante terremotos indicando de esta manera una disminución notable de los daños estructurales, dando a conocer la eficiencia que tiene en las edificaciones destacando su adaptabilidad ante sismos de diversas magnitudes. Sin embargo, también se puede destacar que las columnas mixtas presentan un buen desempeño.

Estos resultados obtenidos respaldan la eficiencia de la implementación de columnas de acero en edificaciones que vayan a ser sismorresistentes ya que este material ayuda a mejorar la resistencia sísmica en las construcciones

## Bibliografía

- Bruneau, M. (2002). Building damage from the Marmara, Turkey earthquake of August 17, 1999. *revista de sismología*, 6, 357–377. doi:https://doi.org/10.1023/A:1020035425531
- Sharon L. Wood, M. (1991). Performance of Reinforced Concrete Buildings during the 1985 Chile Earthquake: Implications for the Design of Structural Walls. *Sage Journals*, 7(4), 607 638. doi:https://doi.org/10.1193/1.1585645
- Grigorian, M., Moghadam, A. S., Mohammadi, H., & Kamizi, M. (2019). Methodology for developing earthquake-resilient structures. *The Structural Design of Tall and Special Buildings*, 28(2), e1571. https://doi.org/10.1002/TAL.1571
- Grigorian, M., & Grigorian, C. E. (2012). An Introduction to the Methodology of Earthquake Resistant Structures of Uniform Response. *Buildings 2012, Vol. 2, Pages 107-125*, 2(2), 107–125. https://doi.org/10.3390/BUILDINGS2020107
- Hajjar, J. F. (2002). Composite steel and concrete structural systems for seismic engineering. *Journal of Constructional Steel Research*, 58(5–8), 703–723. https://doi.org/10.1016/S0143-974X(01)00093-1
- Papavasileiou, G. S., & Charmpis, D. C. (2020). Earthquake-resistant buildings with steel or composite columns: Comparative assessment using structural optimization. *Journal of Building Engineering*, 27, 100988. https://doi.org/10.1016/J.JOBE.2019.100988
- Vecchio, F. J., & McQuade, I. (2011). Towards improved modeling of steel-concrete composite wall elements. *Nuclear Engineering and Design*, 241(8), 2629–2642. https://doi.org/10.1016/J.NUCENGDES.2011.04.006
- (Bakhshayesh Eghbali & Andamnejad, 2023; Ding et al., 2024; Gao et al., 2024; Isleem et al., 2024; Jiang et al., 2024; Srihari et al., 2023; Tao et al., 2023; Velrajkumar et al., 2023; Zhang et al., 2024)
- Bakhshayesh Eghbali, N., & Andamnejad, P. (2023). Structural performance of rigid shear connectors in concrete encased steel composite columns. *Structures*, *54*, 348–368. https://doi.org/10.1016/J.ISTRUC.2023.05.040
- Ding, F., Lu, D., Lai, Z., & Liu, X. (2024). Study on restraint coefficient of the stirrups-stiffened square concrete filled double-skin steel tube axial compression stub columns. *Structures*, 60, 105847. https://doi.org/10.1016/J.ISTRUC.2023.105847
- Fang, C., Wang, W., Qiu, C., Hu, S., MacRae, G. A., & Eatherton, M. R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. *Journal of Constructional Steel Research*, 191, 107172. https://doi.org/10.1016/J.JCSR.2022.107172
- Foraboschi, P. (2020). Optimal Design of Seismic Resistant RC Columns. *Materials* 2020, *Vol.* 13, *Page* 1919, 13(8), 1919. https://doi.org/10.3390/MA13081919
- Gao, S., Chen, R., Yang, J., Guo, L., & Deng, L. (2024). Seismic performance of T-shaped CFST column to U-shaped steel composite beam joints. *Thin-Walled Structures*, 195, 111443. https://doi.org/10.1016/J.TWS.2023.111443
- Isleem, H. F., Zewudie, B. B., Bahrami, A., Kumar, R., Xingchong, W., & Samui, P. (2024). Parametric investigation of rectangular CFRP-confined concrete columns reinforced by inner elliptical steel tubes using finite element and machine learning models. *Heliyon*, 10(2), e23666. https://doi.org/10.1016/J.HELIYON.2023.E23666
- Jiang, Z. qin, Niu, Z. yao, Zhang, A. L., & Liu, X. chun. (2024). Design method of axial compression stability for cross-section corrugated plate steel special-shaped column. *Thin-Walled Structures*, 194, 111243. https://doi.org/10.1016/J.TWS.2023.111243
- Julián, C., Hugo, H.-B., & Astrid, R.-F. (2014). Analysis of the Earthquake-Resistant Design Approach for Buildings in Mexico. *Ingeniería, Investigación y Tecnología*, 15(1), 151–162. https://doi.org/10.1016/S1405-

- 7743(15)30013-5
- Kotsovos, G., Zeris, C., & Kotsovos, M. (2007). The effect of steel fibres on the earthquake-resistant design of reinforced concrete structures. *Materials and Structures/Materiaux et Constructions*, 40(2), 175–188. https://doi.org/10.1617/S11527-006-9129-5/METRICS
- Pacchioli, S., Pozza, L., Trutalli, D., & Polastri, A. (2021). Earthquake-resistant CLT buildings stiffened with vertical steel ties. *Journal of Building Engineering*, 40, 102334. https://doi.org/10.1016/J.JOBE.2021.102334
- Papavasileiou, G. S., & Charmpis, D. C. (2020). Earthquake-resistant buildings with steel or composite columns: Comparative assessment using structural optimization. *Journal of Building Engineering*, 27, 100988. https://doi.org/10.1016/J.JOBE.2019.100988
- Saatcioglu, M., Ozbakkaloglu, T., Naumoski, N., & Lloyd, A. (2009). Response of earthquake-resistant reinforced-concrete buildings to blast loadingThis article is one of a selection of papers published in the Special Issue on Blast Engineering. *Https://Doi.Org/10.1139/L09-089*, *36*(8), 1378–1390. https://doi.org/10.1139/L09-089
- Smith, K. G. (2001). Innovation in earthquake resistant concrete structure design philosophies; a century of progress since Hennebique's patent. *Engineering Structures*, 23(1), 72–81. https://doi.org/10.1016/S0141-0296(00)00023-7
- Srihari, J. R., Sharmila, S., & Praveen Kumar, S. (2023). Study on axial behaviour of concrete filled steel tubular columns. *Materials Today: Proceedings*. https://doi.org/10.1016/J.MATPR.2023.07.112
- Tao, Y., Yan, B., Gan, D., & Zhao, Y. (2023). Analysis and design of axially loaded ring-beam joints connecting steel tubed-RC column and RC beams. *Structures*, *57*, 105304. https://doi.org/10.1016/J.ISTRUC.2023.105304
- Uy, B. (2015). High-strength steel–concrete composite columns for buildings. *Https://Doi.Org/10.1680/Stbu.2003.156.1.3*, *156*(1), 3–14. https://doi.org/10.1680/STBU.2003.156.1.3
- Velrajkumar, G., Mohan, A., Gopalakrishnan, R., & Haritha, S. (2023). Experimental and theoretical investigation of concrete filled and encased steel column under compression loading. *Materials Today: Proceedings*. https://doi.org/10.1016/J.MATPR.2023.08.130
- Zhang, B., Lin, S., Zhang, S., Lu, X., & Yu, T. (2024). Seismic behaviour of FRP-concrete-steel double-tube columns with shear studs: Experimental study and numerical modelling. *Engineering Structures*, *302*, 117339. https://doi.org/10.1016/J.ENGSTRUCT.2023.1