Partial Differential Equations, 2nd Edition, L.C.Evans Chapter 9 Nonvariational Techniques

Yung-Hsiang Huang*

2017.04.17

1. Proof.

2. Proof. Given $\alpha, \beta \in \mathbb{R}$. Consider the 1-periodic function $f(x) = \alpha \chi_{(0,\frac{1}{2})}(x) + \beta \chi_{(\frac{1}{2},1)}(x)$ and $f_n(x) = f(nx)$. Then $f_n \rightharpoonup \frac{1}{2}(\alpha + \beta)$ as $n \to \infty$, see Exercise 8.1(b).

Similarly, $a(f(x)) = a(\alpha)\chi_{(0,\frac{1}{2})}(x) + a(\beta)\chi_{(\frac{1}{2},1)}(x)$ and hence $a(f_n) \rightharpoonup \frac{1}{2}(a(\alpha) + a(\beta))$. By assumption, $\frac{1}{2}(a(\alpha) + a(\beta)) = a(\frac{\alpha + \beta}{2})$ for any α, β . In particular, $a(0) = \frac{1}{2}(a(x) + a(-x))$ and hence b(x) := a(x) - a(0) is a continuous odd function. Note that b(0) = 0 and $b(x + y) = \frac{1}{2}(b(2x) + b(2y))$ for all x, y. Therefore, $b(m) = \frac{1}{2}mb(2)$ for all $m \in \mathbb{N} \cup \{0\}$, and by the oddity, the above is true for all $m \in \mathbb{Z}$. Thus, $b(r) = \frac{b(2)}{2}r$ for all $r \in \mathbb{Q}$. By continuity, $b(z) = \frac{b(2)}{2}z$ for all $z \in \mathbb{R}$, that is, $a(z) = \frac{a(2) - a(0)}{2}z + a(0)$.

Remark 1. I see the following result from Brezis [2, Exercise 4.20]:

Assume $|\Omega| < \infty$. Let $p, q \in [1, \infty)$ amd $a : \mathbb{R} \to \mathbb{R}$ be a continuous function such that

$$|a(t)| \le C\{|t|^{p/q} + 1\}.$$

Consider the map $A: L^p(\Omega) \to L^q(\Omega)$ defined by A(u)(x) = a(u(x)). Then A is continuous from $L^p(\Omega)$ strong into $L^q(\Omega)$ strong.

Proof. By the Growth condition and $|\Omega| < \infty$, the map A is well-defined.

Given $u \in L^p$. Let $\{u_n\}$ be a sequence that converges to u in L^p . Given a subsequence $\{u_{n_k}\}$ of $\{u_n\}$. Then there is a further subsequence $\{u_{n_{k_m}}\}$ converges to u a.e. and $|u_{n_{k_m}}| \leq v$ a.e. for some $v \in L^p$. So $|u| \leq v$ a.e.,too.

^{*}Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw

Hence $|a(u_{n_{k_m}}) - a(u)|^q \le C^q(|u_{n_{k_m}}|^{p/q} + |u|^{p/q} + 2)^q \le C^q 3^q (2v^p + 2^q) \in L^1(\Omega)$ for all m. By LDCT and continuity of $a, A(u_{n_{k_m}}) \to A(u)$ in L^q . Since every subsequence of $A(u_n)$ contains a subsubsequence that converges to $A(u), A(u_n) \to A(u)$ in L^q .

3. (Penalty method, related to Exercise 14 in Chapter 8.)

Remark 2. See also, D.Kinderlehrer and G.Stampacchia, An Introduction to Variational Inequalities and Their Applications, Chapter 4.

4.
$$Proof.$$

5. Proof. Define a map T on $H_0^1(\Omega)$ by T(v) = w, where $w \in H_0^1(\Omega) \cap H^2(\Omega)$ satisfies $-\Delta w = f - b(Dv)$ in Ω with zero Dirichlet boundary condition. Note that such w exists by Riesz's representation theorem, the fact that $b(Dv) \in L^2(\Omega)$ (since $|b(Dv)| \leq |b(0)| + \text{Lip}(b)|Dv|$ and Ω is bounded,) and global regularity theorem. To complete the proof, it suffices to show T is a contraction map if Lip(b) is small enough.

Given $v_1, v_2 \in H_0^1(\Omega)$. We note that, by Poincaré inequality,

$$||T(v_1) - T(v_2)||_{H^1}^2 \le C(\Omega)^2 ||D[T(v_1) - T(v_2)]||_{L^2}^2 = C(\Omega)^2 \int_{\Omega} (\Delta[T(v_2) - T(v_1)]) (T(v_1) - T(v_2))$$

$$= C(\Omega)^2 \int_{\Omega} (b(Dv_2) - b(Dv_1)) (T(v_1) - T(v_2)) \le C(\Omega)^2 ||b(Dv_1) - b(Dv_2)||_2 ||T(v_1) - T(v_2)||_2$$

$$< C(\Omega)^2 \mathbf{Lip}(b) ||v_1 - v_2||_{H^1} ||T(v_1) - T(v_2)||_{H^1}.$$

Therefore, $T: H_0^1 \to H_0^1$ is a contraction map if $\mathbf{Lip}(b)$ is small enough.

6.
$$Proof.$$

7.
$$Proof.$$

8. (Noncompact families of solutions) (a) Assume $n \geq 3$. Find a constant c such that

$$u(x) = c(1+|x|^2)^{\frac{2-n}{2}}$$

solves Yamabe's equation

$$-\Delta u = cu^{\frac{n+2}{n-2}} \text{ in } \mathbb{R}^n$$

(b) Check that for each $\lambda > 0$,

$$u_{\lambda}(x) := \left(\frac{\lambda}{\lambda^2 + |x|^2}\right)^{\frac{n-2}{2}}$$

is also a solution.

(c) Show that

$$\|u_{\lambda}\|_{L^{\frac{n+2}{n-2}}(\mathbb{R}^n)} = \|u\|_{L^{\frac{n+2}{n-2}}(\mathbb{R}^n)}, \|Du_{\lambda}\|_{L^2(\mathbb{R}^n)} = \|Du\|_{L^2(\mathbb{R}^n)}$$

for each λ and thus that $\{u_{\lambda}\}_{{\lambda}>0}$ is not precompact in $L^{\frac{n+2}{n-2}}(\mathbb{R}^n)$.

Remark 3. Compare with Exercise 6 of Chapter 4. Also see Ni-Ding's and Ambrosetti-Azorero-Peral's papers [4, 3, 1].

Proof. (a) c = n(n-2). (b) Directly. (c) (note that $u \in L^2$ iff n > 3) The norm equalities are obviously. The non-precompactness in L^{2^*} is due to $u_{\lambda}(x) \to 0$ as $\lambda \to \infty$ for each fixed x. \square

9. I think (b) is correct if we change $n-2 \to n$.

Proof. (a) Direct differentiation and multiply the PDE by u_t .

(b)The left hand side =

$$\begin{split} & \int_{\mathbb{R}^n} -|x|^2 u_t^2 - 2(x \cdot Du) u_t \, dx = \int_{\mathbb{R}^n} -|x|^2 u_t^2 - 2(x \cdot Du) (\Delta u + f(u)) \, dx \\ & = \int_{\mathbb{R}^n} -|x|^2 u_t^2 + \left(\operatorname{div}(x|Du|^2) - n|Du|^2 \right) - 2x \cdot D(F(u)) \, dx = \int_{\mathbb{R}^n} -|x|^2 u_t^2 - n|Du|^2 + 2nF(u) \, dx. \end{split}$$

10. Proof.

11. *Proof.*

12. *Proof.* □

13. Proof.

14. *Proof.*

References

[1] A Ambrosetti, J Garcia Azorero, and I Peral. Perturbation of $\Delta u + u^{(n+2)/(n-2)} = 0$, the scalar curvature problem in \mathbb{R}^n , and related topics. Journal of Functional Analysis, 165(1):117–149, 1999.

- [2] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media, 2010.
- [3] Wei-Yue Ding, Wei-Ming Ni, et al. On the elliptic equation $\Delta u + ku^{(n+2)/(n-2)} = 0$ and related topics. Duke mathematical journal, 52(2):485–506, 1985.
- [4] W-M Ni. On the elliptic equation $\Delta u + k(x)u^{(n+2)/(n-2)} = 0$, its generalization, and applications in geometry. *Indiana Univ. Math. J.*, 31:493–529, 1982.