Ορισμός 0.0.1. Ένα $A \subseteq \mathbb{N}$ ονομάζεται προσθετική βάση των φυσικών αριθμών αν υπάρχει φυσικός s τέτοιος ώστε κάθε φυσικός αριθμός μπορεί να γραφτεί ως άθροισμα s το πολύ στοιχείων του συνόλου A.

Παραδείγματα:

- 1.Το σύνολο των άρτιων φυσικών αριθμών δεν είναι προσθετική βάση του $\mathbb N$ καθώς ένας περιττος δεν μπορεί να φραγτεί ως άθροισμα άρτιων.
 - $2. ext{To}$ σύνολο των περιττών φυσικών αριθμών ειναι προσθετική βάση των φυσικών για s=2.
- 3.Το θεώρημα του Lagrange λέει ότι το σύνολο των τέλειων τετραγώνων είναι προσθετική βάση του $\mathbb N$ για s=4 και η γενίκευση αυτού από τον Hilbert λέει ότι το σύνολο των k-οστών δυνάμεων είναι προσθετική βάση του $\mathbb N$ για κάθε k.
 - 4.Το σύνολο των πρώτων αριθμών είναι προσθετική βάση του $\mathbb N$ όπως απέδειξε ο Schnirelmann.
- 5.Το σύνολο $B = \{2^k : k \in \mathbb{N} \cup \{0\}\}$ δεν είναι προσθετική βάση των φυσικών αριθμών καθώς κάθε αριθμός της μορφής $2^k 1$ είναι άθροισμα το λιγότερο k αριθμών του συνόλου B.

Πρόταση 0.0.2. Έστω $A = \{a_1, a_2, \dots\}$ ένα σύνολο φυσικών αριθμών με $a_n < a_{n+1}$ για κάθε n στο \mathbb{N} . Αν υπάρχει πραγματικός αριθμός b > 1 τέτοιος ώστε τελικά να ισχύει $\frac{a_{n+1}}{a_n} \geq b$,τότε το σύνολο A δεν είναι προσθετική βάση των φυσικών αριθμών.

Aπόδειξη. Έστω πρός άτοπο ότι είναι προσθετική βάση των φυσικών. Από την υπόθεση υπαρχει n_0 τέτοιος ώστε για κάθε $n \geq n_0$ να ισχύει $\frac{a_{n+1}}{a_n} \geq b$ και συνεπώς έχουμε $a_{n+1} \geq ba_n$ για κάθε $n \geq n_0$. Έστω $P_k = \{n \in \mathbb{N} : a_k \leqslant n < a_{k+1}\}$. Για $k \geq n_0$ έχουμε

$$|P_k| = a_{k+1} - a_k \ge (b-1)a_k \ge (b-1)ba_{k-1} \ge \dots \ge (b-1)b^{k-n_0}a_{n_0} = f(k)$$

Καθώς το σύνολο A έχει υποτεθεί προσθετική βάση των φυσικών υπάρχει κάποιος s τέτοιος ώστε κάθε φυσικός αριθμός μπορεί να γραφτεί ως άθροισμα s το πολύ στοιχείων του συνόλου A. Άρα κάθε στοιχείο του συνόλου P_k γράφεται ως άθροισμα s το πολύ στοιχείων του A και μάλιστα μικρότερων του a_{k+1} . Έπεται ότι

$$|P_k| \leqslant \binom{k+s-1}{s} = \frac{(k+s-1)!}{(k-1)!s!} = \frac{(k+s-1)(k+s-2)\cdots(k+1)k}{s!} \leqslant \frac{(k+s)^s}{s!} = p(k)$$

όπου p(k) πολυώνυμο του k βαθμού s. Παρατηρούμε ότι

$$\lim_{k\to\infty}\frac{f(k)}{p(k)}=+\infty$$

και άρα μπορούμε να βρούμε l τέτοιον ώστε

$$|P_l| \leqslant p(l) < f(l) \leqslant |P_l|$$

το οποίο είναι αντίφαση.

Πρόταση 0.0.3. Έστω ένα σύνολο $A = (a_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ όπου $a_{n+1} > a_n$ για κάθε φυσικό αριθμό n. $A \nu$ το A είναι προσθετική βάση του \mathbb{N} τότε υπάρχει θετικός πραγματικός αριθμός M τέτοιος ώστε

 $\left| \frac{a_{n+1}}{a_n} \right| \leqslant M$

για κά $\theta \epsilon n$ φυσικό.

Aπόδειξη. Καθώς το A είναι προσθετική βάση υπάρχει φυσικός αριθμός s τέτοιος ώστε $sA=\mathbb{N}.$ Έστω προς άτοπο ότι η ακολουθία $\frac{a_{n+1}}{a_n}$ δεν είναι φραγμένη. Έπεται ότι μπορούμε να βρούμε n_0 τέτοιον ώστε

$$\frac{a_{n_0+1}}{a_{n_0}} > s+1$$

ή ισοδύναμα

$$a_{n_0+1} > (s+1)a_{n_0}$$
.

Από υπόθεση υπάρχουν φυσικοί αριθμοί n_1, n_2, \ldots, n_s τέτοιοι ώστε

$$a_{n_0+1} - 1 = a_{n_1} + a_{n_2} + \dots + a_{n_s}$$

με $a_{n_i} \in A$ για κάθε $i=1,2,\ldots,s$ και προφανώς $n_i \leqslant n_0$ για κάθε $i=1,2,\ldots,s$. Έτσι έχουμε

$$a_{n_0+1} = 1 + a_{n_1} + a_{n_2} + \dots + a_{n_s} \le 1 + sa_{n_0} \le (s+1)a_{n_0},$$

άτοπο.