

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

A61K 7/09, C11D 1/00

(11) International Publication Number:

WO 00/25731

K //00, C11D 1/00

(43) International Publication Date:

11 May 2000 (11.05.00)

(21) International Application Number:

PCT/EP99/07981

A1

(22) International Filing Date:

21 October 1999 (21.10.99)

(30) Priority Data:

60/106,634

2 November 1998 (02.11.98) US

(71) Applicant (for all designated States except US): CIBA SPE-CIALTY CHEMICALS HOLDING INC. [CH/CH]; Klybeckstrasse 141, CH-4057 Basel (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HÜGLIN, Dietmar [DE/DE]; Dorfstrasse 3, D-79591 Eimeldingen (DE). EHLIS, Thomas [DE/DE]; Ferdinand-Weiss-Strasse 30, D-79106 Freiburg (DE). KRAMER, Erich [AT/CH]; Jägerstrasse 10, CH-4058 Basel (CH). LUPIA, Joseph, Anthony [US/US]; 8511 Quail Creek Drive, Colfax, NC 27235 (US).

(74) Common Representative: CIBA SPECIALTY CHEMICALS
HOLDING INC.; Patentabteilung, Klybeckstrasse 141,
CH-4057 Basel (CH).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: STABILISATION OF BODY-CARE AND HOUSEHOLD PRODUCTS

(57) Abstract

A description is given of the use of phenolic antioxidants of formulae (1) and/or (2) and/or (3) for stabilising body-care and household products.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

							approactions under an
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Ammenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	*	Republic of Macedonia	TR	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Turkey
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Trinidad and Tobago
BR	Brazil	IL	Israel	MR	Mauritania	UG	Ukraine
BY	Belarus	IS	Iceland	MW	Malawi	US	Uganda
CA	Canada	IT	Italy	MX	Mexico	UZ	United States of America Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Viet Nam
CH	Switzerland	KG	Kyrgyzstan	NO	Norway		Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	ZW	Zimbabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	น	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE			
EE	Estonia	LR	Liberia	SE SG	Sweden		
		LK	Liberia	30	Singapore		

WO 00/25731

Stabilisation of body-care and household products

The present invention relates to the use of phenolic antioxidants for stabilising body-care and household products.

-1-

The product trend of recent years towards increasingly using natural substances based on oil and fat in cosmetic formulations and household products also increases the problem of the oxidative degradation of fats and oils, resulting in rancidity. Natural oils or unsaturated fatty acids are hardly ever absent from emulsions. Oxidative changes may sometimes produce reactive metabolites, for example ketones, aldehydes, acids, epoxides and lipoper-oxides.

As a result there is on the one hand an undesirable change in the smell of the products and on the other hand substances may be obtained which may alter the skin tolerance. The uncontrolled formation of free radicals on the skin contributes primarily to the initiation and progression of a multitude of pathophysical modulations, for example inflammation, cancerogenesis and the like.

However, oxidative degradation processes are not only found in the case of natural substances based on oil and fat. They are also found in a number of other cosmetic ingredients, such as fragrances and odoriferous substances, vitamins, colourants and the like.

To prevent oxidative degradation processes (photooxidation, autooxidation), so-called anti-oxidants (AO) are therefore used in cosmetic and food products. These antioxidants may be classified into compounds which prevent oxidation (complex formers, reducing agents and the like) and into compounds which interrupt the free radical chain reactions, for example butylated hydroxytoluene (BHT), butylated hydroxyanisol (BHA), gallates, such as propylgallate (PG), or t-butylhydroquinone (TBHQ). However, the latter compounds often do not meet the requirements with respect to pH stability as well as to light and temperature stability.

Surprisingly, it has been found that certain phenolic antioxidants meet these requirements.

Accordingly, this invention relates to the use of phenolic antioxidants of formula

(1)
$$\begin{array}{c|c} R_2 & \hline \\ HO & \hline \\ (R_1)_a & \end{array}$$
 (Q) $\begin{array}{c} C & \hline \\ C & \hline \\ \end{array}$ (T) $\begin{array}{c} C & \hline \\ \end{array}$; and/or

(2)
$$R_2$$
 CH_3 CH_3 CH_3 ; and/or $(R_1)_a$

(3)
$$R_2$$
 H H H_3 H_4 H_5

wherein in formulae (1), (2) and (3)

A STANDARD WITH MINISTER CONTROL OF THE CONTROL OF

- R₁ is hydrogen; C₁-C₂₂alkyl; C₁-C₂₂alkylthio; C₅-C₇cycloalkyl; phenyl; C₇-C₉phenylalkyl; or SO₃M;
- R_2 is C_1 - C_{22} alkyl; C_5 - C_7 cycloalkyl; phenyl; or C_7 - C_9 phenylalkyl;

Q is -C_mH_{2m}-; -CH- ; -C_mH_{2m}-NH; a radical of formula
$$C_mH_{2m+1}$$

(1a)
$$R_2$$
 $(R_1)_a$;

WO 00/25731

T is $-C_nH_{2n}$ -; $-(CH_2)_n$ -O- CH_2 -; $-C_nH_{2n}$ -NH---C---; or a radical of

V is -O-; or -NH-;

a is 0; 1; or 2;

2,

b, c and d are each independently of one another 0; or 1;

e is an integer from 1 to 4;

f is an integer from 1 to 3; and

m, n and p are each independently of one another an integer from 1 to 3;

if e = 1, then

 R_3 is hydrogen; M; C_1 - C_{22} alkyl; C_5 - C_7 cycloalkyl; C_1 - C_{22} alkylthio; C_2 - C_{18} alkenyl; C_1 - C_{18} -

(1e)
$$-C = \begin{bmatrix} O & H_3C & CH_3 \\ O & N-CH_3 \\ C & CH_3 \end{bmatrix}$$
; or (1f) $R_2 = R_1$

M is alkali; ammonium;

if e = 2, then

 R_3 is a direct bond; -CH₂-; —CH—(CH₂)_p—CH₃ ; -O-; or -S-;

if

e = 3, then

R₃ is the radical of formula (1g)

$$R_4$$
 ; (1h) R_4

(1i)
$$CH-(CH_2)_p-CH-$$
; or (1k)

if

e = 4, then

R₃ is -C ; or a direct bond;

R₄ and R₅ are each independently of the other hydrogen; or C₁-C₂₂alkyl; for stabilising body-care and household products.

C₁-C₂₂Alkyl is straight-chain or branched alkyl radicals, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, amyl, isoamyl or tert-amyl, heptyl, octyl, isooctyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl or eicosyl.

C₁-C₂₂Alkylthio is straight-chain or branched alkylthio radicals, such as methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, sec-butylthio, tert-butylthio, amylthio, heptylthio, octylthio, isooctylthio, nonylthio, decylthio, undecylthio, dodecylthio, tetradecylthio, pentadecylthio, hexadecylthio, heptadecylthio, octadecylthio or eicosylthio.

C₂-C₁₈Alkenyl is, for example, allyl, methallyl, isopropenyl, 2-butenyl, 3-butenyl, isobutenyl, n-penta-2,4-dienyl, 3-methyl-but-2-enyl, n-oct-2-enyl, n-dodec-2-enyl, isododecenyl, n-dodec-2-enyl or n-octadec-4-enyl.

 $C_5\text{-}C_7Cycloalkyl$ is cyclopentyl, cycloheptyl or, preferably, cyclohexyl.

C₇-C₉Phenylalkyl is phenylpropyl, phenylethyl and, preferably, benzyl.

It is preferred to use antioxidants of formula (1), wherein

Q is -C_mH_{2m}- and, preferably, a methylene or ethylene radical, and

m has the meaning given in formula (1).

V in formula (1) is preferably -O-.

Particularly interesting compounds of formula (1) are those, wherein R₁ and R₂ are each independently of the other C₁-C₁₈alkyl and, in particular, C₁-C₅alkyl.

Other important compounds of formula (1) are those, wherein a is 1.

Very particularly interesting compounds are those of formula

(2)
$$\begin{bmatrix} R_2 \\ HO - Q)_b & C - V \\ (R_1)_a \end{bmatrix} = \begin{bmatrix} O \\ C - V \end{bmatrix}_C + \begin{bmatrix}$$

wherein

R₁ and R₂ are each independently of the other C₁-C₅alkyl,

a is 1 or 2; and

R₃, Q, V, T, b, c, d and e have the meanings cited for formula (1).

Preferred compounds are those of formula (1), wherein R_1 and R_2 are the tert-butyl radical; and

a is 1.

It is also preferred to use antioxidants of formula

(3)
$$\begin{bmatrix} R_{2} & O & O \\ HO & Q - C - O - T \\ (R_{1})_{a} & Q - C - O - T \end{bmatrix}_{2}$$

wherein

R₁ and R₂ are each independently of the other C₁-C₅alkyl;

Q is
$$-C_mH_{2m}$$
; or $-C_mH_{2m}$ -NH-;

 R_3 is a direct bond; -O-; -S-; -CH₂-; or -CH----;

a is 1 or 2;

m is 1 to 5; and

T has the meaning cited in formula (1).

Interesting compounds of formula (1) are those, wherein

Q is ethylene; or —CH—

R₃ is a direct bond; and

R₁, R₂, T and a have the meanings given in formula (3).

Likewise preferred are compounds of formula

wherein

Q is $-C_mH_{2m}$ -;

T is $-C_nH_{2n}$ -;

R₁ and R₂ are each independently of the other C₁-C₅alkyl;

 R_3 is the radical of formula (1g); (1h); (1i); or (1k); m and n are each independently of the other 1 to 3;

a is 1 or 2; and

b and d are each independently of the other 0 or 1.

Other antioxidants which are preferably used conform to formula

wherein

A is a radical of formula

 R_1 , R_2 and R_3 are each independently of one another C_1 - C_5 alkyl; and m is 1 to 3.

Other preferred antioxidants are those of formula

wherein

B is a radical of formula

(6a)
$$HO$$
 $C_mH_{\overline{2m}}$
 $C-V-C_nH_{\overline{2n}}$

 R_1 and R_2 are each independently of the other $C_1\text{-}C_5$ alkyl;

V is -O-; or -NH-;

a is 1; or 2;

m is 1 to 3; and

n is 0 to 3.

Examples of antioxidants used according to this invention are listed in Table 1:

Table 1:	
compound of formula	
(7)	OH OH CH ₃
(8)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table 1:	
compound of formula	
(9)	H CH ₃
(10)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
(11)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
(12)	но

The state of the s

16 PK 150

Table 1:	
compound of formula	
(13)	H_3C CH_3 $R = -CH_2$ OH
(14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(15)	H ₃ C - C - CH ₂ O - CH ₂
(16)	OH OH CH ₃ n = 1-3

一下 御本 で

Table 1:	
compound of formula	
(17)	OH OH CH ₃ CH ₃
(18)	OH S-C ₈ H ₁₇
(19)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
(20)	OH NH NH NS-C ₈ -S

を記れるのが

- 4	
- 5	
٠.	
-	
- (
÷	
-5	
52	
-	
-	
- 5	

Table 1:	
compound of formula	
(21)	HO C_4H_9 C_5 C_5 C_5 C_6 C_7
(22)	HO C O C 16H 33
	× 122
(23)	но
(24)	O O O O O O O O O O

Table 1:	
compound of formula	
(25)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
(26)	$\begin{array}{c c} & & & & & & & \\ \hline \\ HO & & & & & \\ \hline \\ & & & & \\ \end{array}$
(27)	HO H ₃ C H ₃ C OH
(28)	HO————————————————————————————————————
(29)	OH OH

Toble 4:	
Table 1:	
compound of formula	
(30)	HO $(CH_2)_2$ NH SO_3M $M = H, Na$
(31)	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$
(32)	HO (CH ₂) ₂ O-C ₁₈ H ₃₇
(33)	HO CH ₂

The second secon

A STATE OF THE STA

The phenolic antioxidants of formulae (1), (2) and (3) can be used as individual compounds or as mixtures of several individual compounds.

The antioxidants used according to this invention have pronounced reactivity and can therefore be advantageously used at low temperatures. They furthermore have good hydrolytic stability, in particular in alkaline medium. Owing to their good solubility, they can be easily incorporated into the respective formulations.

The phenolic antioxidants of formulae (1), (2) and (3) can also be used together with tocopherol and/or tocopherol acetate.

The phenolic antioxidants of formulae (1), (2) and (3) can furthermore also be used together with light stabilisers.

Suitable light stabilisers are, for example, sterically hindered amines.

These include preferably a 2,2,6,6-tetraalkylpiperidine derivative containing at least one group of formula

(34)
$$G$$
-CH₂ G -CH₃ G -CH₂ G -CH₃ G -CH₂ G -CH₃ G -CH₃

wherein G, G_1 and G_2 are each independently of one another hydrogen or methyl, preferably hydrogen.

Examples of tetraalkylpiperidine derivatives which can be used according to this invention are to be found in EP-A-356677, pages 3-17, paragraphs a) to f). The cited paragraphs of this EP-A are regarded as part of the present description. It is particularly useful to employ the following tetraalkylpiperidine derivatives:

bis(2,2,6,6-tetramethylpiperidin-4-yl)sebacate, bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate, bis(1,2,2,6,6-pentamethylpiperidin-4-yl)sebacate, bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate, n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonic acid-bis(1,2,2,6,6-pentamethylpiperidyl)ester, the condensate of 1-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-

N 257 W

(36)
$$H_{3}C \xrightarrow{NH} CH_{3} H_{3}C \xrightarrow{NH} CH_{3} CH_{3}$$

wherein m has a value of 5-50.

(39)
$$\begin{array}{c|c} & OH \\ O \\ \hline \\ O \\ \hline \\ CH_2 \\ CH_2 \\ (CH_2)_9 \end{array}$$

R = H or CH₃

or

医糖二烷 医甲状腺炎

 $R = H \text{ or } CH_3$

It is also possible to use the inventive antioxidants of formulae (1), (2) and (3) together with benzotriazoles of formula

In formula (42),

 R_6 is C_1 - C_{12} alkyl; C_1 - C_5 alkoxy; C_1 - C_5 alkoxycarbonyl, C_5 - C_7 cycloalkyl; C_6 - C_{10} aryl; aralkyl;

 R_{θ} is hydrogen; C_1 - C_5 alkyl; C_1 - C_5 alkoxy; halogen, preferably CI; or hydroxy R_{θ} and R_{10} are each independently of the other hydrogen; or C_1 - C_5 alkyl;

m is 1 or 2;

n is 0 or 1;

if m = 1, then

R₇ is hydrogen; unsubstituted or phenyl-substituted C₁-C₁₂alkyl; C₆-C₁₀aryl;

Α

В

if m = 2, then

R₇ is a direct bond; -(CH₂)_p-; and

p is 1 to 3.

The inventive antioxidants of formulae (1), (2) and (3) can also be used together with hydroxyphenyltriazine compounds of formula

$$(43) \qquad \bigcup_{L_1O} OH \qquad N \qquad \bigcup_{L_2} \qquad \bigcup_{L_3} \qquad \bigcup_{L_4} \qquad \bigcup_{L_4} \qquad \bigcup_{L_4O} \qquad$$

wherein

L₁ is C₁-C₂₂alkyl, C₂-C₂₂alkenyl or C₅-C₇cycloalkyl;

L2 and L6 are each independently of the other H, OH, halogen, C1-C22alkyl, halomethyl;

L₃, L₅ and L₇ are each independently of one another H, OH, OL₁, halogen, C₁-C₂₂alkyl, halomethyl;

L₄ is H, OH, OL₁, halogen, C₁-C₂₂alkyl, phenyl, halomethyl;

L₁₂ is C₁-C₂₂alkyl, phenyl C₁-C₅alkyl, C₅-C₇cycloalkyl, OL₁ or, preferably a group of formula

$$\begin{array}{c} L_6 \\ L_2 \\ L_3 \end{array} ; \text{and}$$

j is 0, 1, 2 or 3.

If L-substituents are defined as alkyl or alkenyl, or if they are aromatic or aliphatic ring systems, then these contain within the scope of the cited meanings usually 1 to 50 carbon atoms and can be interrupted once or several times by O, S, NR', SO₂, CO, phenylene,

cyclohexylene, COO, OCO, -(SiR $_p$ R $_q$ O)- and/or substituted once or several times by OH, OR', NR'R", halogen, -CN, alkenyl, phenyl, -SiR $_p$ R $_q$ R $_r$ or COOH, where R' and R" are each independently of the other H, alkyl, alkenyl or acyl, and R $_p$, R $_q$ and R $_r$ are each independently of the other H, alkyl, alkenyl, phenyl, alkoxy, acyl or acyloxy.

The above groups can also carry further substituents. Dimers or polymers are also possible.

Preferred 2-hydroxyphenyltriazines of this class are, for example, those of formulae

$$(44) \qquad \begin{array}{c|c} & & & \\ & \downarrow \\ \\ & \downarrow \\ \\ & \downarrow \\ &$$

wherein in formula (44)

n is 1 or 2, and

 L_1 , where n = 1, is alkyl or alkyl which is interrupted by one or several O and/or substituted by one or several of the radicals OH, glycidyloxy, alkenoxy, COOH, COOR^e, O-CO-R^f; or alkenyl, cycloalkyl; phenylalkyl which is unsubstituted or substituted by OH, CI or CH₃; COR^g; SO_2 -R^h; CH_2 CH(OH)-R^j; where

R^e is alkyl; alkenyl; hydroxyalkyl; alkyl or hydroxyalkyl which is interrupted by one or several O; cycloalkyl; benzyl; alkylphenyl; phenyl; phenylalkyl; furfuryl; or CH₂CH(OH)-Rⁱ;

R^f, R^g are each independently of the other alkyl, alkenyl or phenyl;

Rh is alkyl, aryl or alkylaryl;

Rⁱ is aralkyl or CH₂ORk;

Rk is cyclohexyl, phenyl, tolyl, benzyl; and

L₁, where n = 2, is alkylene; alkenylene; xylylene; alkylene or hydroxyalkylene which is interrupted by one or several -O-; hydroxyalkylene;

L2 and L'2 are each independently of the other H, alkyl or OH;

 L_4 and L_4' are each independently of the other H, alkyl, OH, alkoxy, halogen and, where n = 1, OL_1 ;

L₃ and L'₃ are each independently of the other H, alkyl or halogen.

 L_1 , L_2 , L_3 , L_3 , L_4 , L_4 can within the scope of the cited meanings carry additional substituents, for example an ethylenically unsaturated polymerisable group. Dimers or polymers are also possible.

Examples of such compounds are, inter alia,

- 2,4,6-tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazine,
- 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine,
- 2,4-bis(2-hydroxy-4-propyloxyphenyl)-6-(2,4-dimethylphenyl)-1,3,5-triazine,
- 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis(4-methylphenyl)-1,3,5-triazine,
- 2-(2-hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine,
- 2-[2-hydroxy-4-(2-hydroxy-3-butyloxypropyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine,
- 2-[2-hydroxy-4-(2-hydroxy-3-octyloxypropyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine,
- 2-[2-hydroxy-4-(2-hydroxy-3-tridecyloxy-propyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine; and compounds of the following formulae:

OH N N L ₂	,		
	<u>L</u> 2	L	<u>L</u> 3
C ₆ H ₁₇	CH₃	CH ₃	Н
CH ₂ CH(OH)CH(C ₂ H ₅)-C ₄ H ₉ (n)	CH ₃	CH ₃	Н
Н	CH ₃	CH ₃	Н
CH₂CH₂OH	Н	Н	Н
C ₆ H ₁₃	Н	Н	Н
C ₁₈ H ₃₇	CH₃	CH₃	o-CH₃
	Н	Н	Н
CH(OH)-C₅H₁₁(n)	CH₃	CH ₃	o-CH₃
C ₈ H ₁₇	Н	CI	Н
CH(CH₃)-COO-C₂H₅	CH ₃	CH₃	o-CH₃
CH₂CH(OCOCH₃)CH(C₂H₅)-C₄H₀(n)	Н	Н	Н
CH₂CH(OH)CH(C₂H₅)-C₄H₀(n)	Н	Н	Н
CH ₂ CH ₂ -O-CO-C(CH ₃) ₃	— <u>—</u>	Н	Н
Н	Н	Н	Н
(CH ₂) ₁₀ COO-C ₂ H ₅	Н	CI	Н
(CH₂)₅COOH	Н	Н	Н
CH₂CH(C₂H₅)-C₄H₃(n)	Н	Н.	Н.
CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n)	Н	Н	t-C₄H ₉ H
CH₂CH(OH)CH₂-O-C₄H₀(n)	Н	Н	OCH ₃ H
(CH ₂) ₃ -Si(CH ₃) ₃	Н	Н	H
cyclohexyl	1		
CH ₂ CH(OH)CH ₂ -O-2-butyl/2-pentyl (mixture)			
CH₂CH(OH)CH₂-O-C₄H₀(n)			
	L ₁ C ₈ H ₁₇ CH ₂ CH(OH)CH(C ₂ H ₅)-C ₄ H ₉ (n) H CH ₂ CH ₂ OH C ₆ H ₁₃ C ₁₈ H ₃₇ CH ₂ CH(OH)CH ₂ O-C ₄ H ₉ (n) CH(OH)-C ₅ H ₁₁ (n) C ₈ H ₁₇ CH(CH ₃)-COO-C ₂ H ₅ CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) CH ₂ CH(OH)CH(C ₂ H ₅)-C ₄ H ₉ (n) CH ₂ CH ₂ O-CO-C(CH ₃) ₃ H (CH ₂) ₁₀ COO-C ₂ H ₅ (CH ₂) ₅ COOH CH ₂ CH(C ₂ H ₅)-C ₄ H ₉ (n) CH ₂ CH(C ₂ H ₅)-C ₄ H ₉ (n) CH ₂ CH(C ₂ H ₅)-C ₄ H ₉ (n) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) (CH ₂) ₃ -Si(CH ₃) ₃ cyclohexyl CH ₂ CH(OH)CH ₂ -O-2-butyl/2-pentyl (m	L ₁ L ₂ C ₈ H ₁₇ CH ₃ CH ₂ CH(OH)CH(C ₂ H ₅)-C ₄ H ₉ (n) CH ₃ H CH ₂ CH ₂ OH H C ₈ H ₁₃ H C ₁₆ H ₃₇ CH ₃ CH ₂ CH(OH)CH ₂ O-C ₄ H ₉ (n) H CH(OH)-C ₅ H ₁₁ (n) CH ₃ C ₈ H ₁₇ H CH(CH ₃)-COO-C ₂ H ₅ CH ₃ CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) H CH ₂ CH ₂ O-CO-C ₂ CH ₅ CH ₃ CH ₂ CH(OH)CH ₂ CO-C ₄ H ₉ (n) H CH ₂ CH ₂ CH ₂ CO-CO-C ₂ CH ₅ CH ₃ CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) H CH ₂ CH ₂ CO-CO-C ₄ CH ₅ H CH ₂ CH ₂ CO-CO-C ₄ CH ₅ H CH ₂ CH ₂ CO-CO-C ₄ CH ₅ H CH ₂ CH ₂ CO-CO-C ₄ CH ₅ H CH ₂ CH ₄ CH ₅ COOH H CH ₂ CH(C ₂ H ₅)-C ₄ H ₉ (n) H CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) H CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) H CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) H CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) H CH ₂ CH(OH)CH ₂ -O-C ₄ C-C ₄ H ₉ (n) H	L ₁ O L ₂ L ₂ L ₄ C ₆ H ₁₇ CH ₃ CH ₃ CH ₂ CH(OH)CH(C ₂ H ₅)-C ₄ H ₉ (n) H CH ₂ CH ₂ OH H C ₆ H ₁₃ CH ₃ CH ₃ CH ₂ CH ₂ OH H C ₁₆ H ₃₇ CH ₃ CH ₃ CH ₃ CH ₂ CH(OH)CH ₂ O-C ₄ H ₉ (n) H CH(OH)-C ₅ H ₁₁ (n) CH ₃ CH ₃ CH ₄ CH(CH ₃)-COO-C ₂ H ₅ CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) H CH ₂ CH(OH)CH ₂ O-C-C(CH ₃) ₃ H CH ₂ CH(OH)CH(C ₂ H ₅)-C ₄ H ₉ (n) H CH ₂ CH ₂ O-CO-C ₂ CH ₅ CH ₂ CH ₂ O-CO-C ₂ CH ₅ CH ₂ CH ₂ O-CO-C ₄ CH ₉ (n) H CH ₂ CH ₂ O-CO-C ₄ CH ₉ (n) H CH ₂ CH ₂ CH ₂ COO-C ₂ CH ₅ CH ₂ CH ₂ COOH H CH ₂ CH ₂ COOH CH ₂ D ₃ COOH H CH ₂ CH ₂ COOH CH ₂ D ₃ COOH CH ₂ CH(C ₂ H ₃)-C ₄ H ₉ (n) CH ₂ CH(C ₂ H ₃)-C ₄ H ₉ (n) CH ₂ CH(COH)CH ₂ -O-C ₄ H ₉ (n) CH ₂ CH(OH)CH ₂ -O-C ₄ D ₅ CH ₂ CH(OH

Control of the Control

1 300 000

(72) (CH ₂) ₁₀ COO-C ₂ H ₅ (73) C ₄ H ₉ (74) CH ₂ CH(OH)CH(C ₂ H ₅)-C ₄ H ₉ (n) (75) CH(C ₃ H ₇) ₂ (76) cyclopentyl (77) C(CH ₃) ₂ -COO-C ₂ H ₅ (78) CH(CH ₃)-COO-C ₂ H ₅ (79) (CH ₂) ₅ -CH ₃ (80) CH ₃ OCH ₃ (81) CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) OCH ₂ CH ₂ OC ₂ H ₅ (82) CH ₂ CH ₂ CH ₂ -O-CO-C ₂ H ₅ OCH ₃ (83) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₃ (84) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (85) CH ₂	OH N N L ₃					
(72) (CH ₂) ₁₀ COO-C ₂ H ₅ (73) C ₄ H ₉ (74) CH ₂ CH(OH)CH(C ₂ H ₅)-C ₄ H ₉ (n) (75) CH(C ₃ H ₇) ₂ (76) cyclopentyl (77) C(CH ₃) ₂ -COO-C ₂ H ₅ (78) CH(CH ₃)-COO-C ₂ H ₅ (79) (CH ₂) ₅ -CH ₃ (80) CH ₃ OCH ₃ (81) CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) OCH ₂ CH ₂ OC ₂ H ₅ (82) CH ₂ CH ₂ CO-CO-C ₂ H ₅ OCH ₃ (83) CH ₂ CH(OH)CH ₂ -O-CO-C ₂ H ₅ OCH ₃ (84) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₃ (85) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (85) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (86) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (87)		<u>L</u> 1		La	La	L ₃
(74) CH ₂ CH(OH)CH(C ₂ H ₅)-C ₄ H ₉ (n) (75) CH(C ₃ H ₇) ₂ (76) cyclopentyl (77) C(CH ₃) ₂ -COO-C ₂ H ₅ (78) CH(CH ₃)-COO-C ₂ H ₅ (79) (CH ₂) ₅ -CH ₃ (80) CH ₃ OCH ₃ (81) CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) OCH ₂ CH ₂ OC ₂ H ₅ (82) CH ₂ CH ₂ CO-CO-C ₂ H ₅ OCH ₃ (83) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₃ (84) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (85) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (86) iso-C ₈ H ₃₈		(CH₂) ₁₀ C	OO-C₂H₅		<u></u>	-
(75) CH(C ₃ H ₇) ₂ (76) cyclopentyl (77) C(CH ₃) ₂ -COO-C ₂ H ₅ (78) CH(CH ₃)-COO-C ₂ H ₅ (79) (CH ₂) ₅ -CH ₃ (80) CH ₃ OCH ₃ (81) CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) OCH ₂ CH ₂ OC ₂ H ₅ (82) CH ₂ CH ₂ CO-CO-C ₂ H ₅ OCH ₃ (83) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₃ (84) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (85) CH ₂ CH ₂ CH ₂ CO-CO-C ₄ H ₉ (n) OCH ₃ (86) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (87)	(73)	C ₄	H ₉	·		
(76)	(74)					
(77) C(CH ₃) ₂ -COO-C ₂ H ₅ (78) CH(CH ₃)-COO-C ₂ H ₅ (79) (CH ₂) ₅ -CH ₃ (80) CH ₃ OCH ₃ (81) CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) OCH ₂ CH ₂ OC ₂ H ₅ (82) CH ₂ CH ₂ CO-CO-C ₂ H ₅ OCH ₃ (83) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₃ (84) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (85) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (86) iso-C ₈ H ₃₈ (87)	(75)					
(78) CH(CH ₃)-COO-C ₂ H ₅ (79) (CH ₂) ₅ -CH ₃ (80) CH ₃ OCH ₃ (81) CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) OCH ₂ CH ₂ OC ₂ H ₅ (82) CH ₂ CH ₂ CO-CO-C ₂ H ₅ OCH ₃ (83) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₃ (84) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (85) -CH ₂ -CH ₂ -CH ₁ n-C ₁₂ H ₂₅ (86) iso-C8H ₃ 8	(76)	cyclopentyl				
(79) (CH ₂) ₅ -CH ₃ (80) CH ₃ OCH ₃ (81) CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) OCH ₂ CH ₂ OC ₂ H ₅ (82) CH ₂ CH ₂ CH ₂ -O-CO-C ₂ H ₅ OCH ₃ (83) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₃ (84) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (85) -CH ₂ -CH ₂ -CH ₁ OCH ₃ (86) iso-C ₈ H ₃₈	(77)	C(CH ₃) ₂ -COO-C ₂ H ₅				
(80) CH ₃ OCH ₃ (81) CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) OCH ₂ CH ₂ OC ₂ H ₅ (82) CH ₂ CH ₂ CH ₂ -O-CO-C ₂ H ₅ OCH ₃ (83) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₃ (84) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (85) -CH ₂ -CH ₂ -CH n-C ₁₂ H ₂₅ (86) iso-C ₈ H ₃₈	(78)	CH(CH₃)-COO-C₂H₅				
(81) CH ₂ CH(OCOCH ₃)CH(C ₂ H ₅)-C ₄ H ₉ (n) OCH ₂ CH ₂ OC ₂ H ₅ (82) CH ₂ CH ₂ -O-CO-C ₂ H ₅ OCH ₃ (83) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) CH ₃ (84) CH ₂ CH(OH)CH ₂ -O-C ₄ H ₉ (n) OCH ₃ (85) -CH ₂ -CH ₂ -CH n-C ₁₂ H ₂₅ (86) iso-C ₈ H ₃₈ (87)	(79)	(CH ₂) ₅ -CH ₃				
$(82) \qquad CH_{2}CH_{2}CH_{2}-O-CO-C_{2}H_{5} \qquad OCH_{3}$ $(83) \qquad CH_{2}CH(OH)CH_{2}-O-C_{4}H_{9}(n) \qquad CH_{3}$ $(84) \qquad CH_{2}CH(OH)CH_{2}-O-C_{4}H_{9}(n) \qquad OCH_{3}$ $(85) \qquad -CH_{2}-CH_{2}-CH_{2}-CH_{2}$ $(86) \qquad iso-C_{8}H_{3}R_{2}$ $(87) \qquad -CH_{2}-CH_{2}-CH_{2}-CH_{2}$	(80)	CH₃ OCH₃				
(83) $CH_2CH(OH)CH_2-O-C_4H_9(n)$ CH_3 (84) $CH_2CH(OH)CH_2-O-C_4H_9(n)$ OCH_3 (85) $-CH_2-CH_2-CH_2-CH_{n-C_{12}H_{25}}$ (86) $iso-C_8H_{38}$ (87) $-CH_2-CH_2-CH_2-CH_3$	(81)	$CH_2CH(OCOCH_3)CH(C_2H_5)-C_4H_9(n)$ $OCH_2CH_2OC_2H_5$				
(84) $CH_2CH(OH)CH_2-O-C_4H_9(n)$ OCH_3 (85) $-CH_2-CH_2-CH$ $n-C_{10}H_{21}$ $n-C_{10}H_{25}$ (86) iso-C ₈ H ₃₈ (87) $-CH_2-CH_2-CH$	(82)	CH₂CH₂CH₂-O-CO-C₂H₅		OCH ₃		
(85) $ -CH_{2}-CH_{2}-CH \\ n-C_{12}H_{25} $ (86) $ iso-C_{8}H_{38} $ (87) $ -CH_{2}-CH_{2}-CH $	(83)	CH₂CH(OH)CH₂-O-C₄H₃(n) CH₃				
(85) -CH ₂ -CH ₂ -CH n-C ₁₂ H ₂₅ (86) iso-C ₈ H ₃₈ (87) -CH ₂ -CH ₂ -CH	(84)	CH₂CH(OH)CH₂-O-C₄H₃(n)		OCH ₃		
n-C ₆ H ₁₃ (87) —CH ₂ -CH ₂ -CH	(85)					
(87) —CH₂-CH₂-CH	(86)	iso-C ₈ H ₃₈				
n-Octyl	(87)	CH ₂ -CH ₂ -с́H				
(88) n-C ₁₈ H ₃₇	(88)	n-C ₁₈ H ₃₇				
(89) 2-ethylhexyl	(89)	2-ethylhexyl				

AND THE PROPERTY OF THE PARTY O

1708 S MUST

Abbreviations used in the above formulae:

i = isomeric mixture; n = straight-chain radical; t = tertiary radical; o-, m-, p- designate the position of the radical relative to the triazine ring.

Examples of benzotriazole compounds which may be used in accordance with this invention:

In addition, the inventive antioxidants of formulae (1), (2) and (3) can also be used together with complex formers, in particular nitrogen-containing complex formers, for example ethylenediaminetetracetic acid (EDTA), nitrilotriacetic acid (NTA), β -alaninediacetic acid (EDETA) or ethylenediaminedisuccinic acid (EDDS).

Other suitable complex formers conform to formula

$$(96) \qquad \qquad \bigcup_{Q_2}^{Q_1} \qquad \qquad Q_3$$

wherein

 Q_1 , is $Carb_1$; $Carb_2$; or a radical of formula $-(CH_2)_{m_1}$ -OH

Q₂ is hydrogen or Carb₂; and

 Q_3 is Carb₃; an amino acid radical; or a radical of formula (96a) -N

wherein $Carb_1$, $Carb_2$ and $Carb_3$ are each independently of one another the radical of a C_1 - C_8 mono- or dicarboxylic acid; and

 m_1 is 1 to 5.

Particularly preferred compounds are those of formula (96), wherein

 Q_1 is a monocarboxylic acid; or a radical of formula (96b) -(CH₂)_{m-1}OH;

Q₂ is hydrogen or a monocarboxylic acid; and

Q₃ is formula (96b); or a monocarboxylic acid.

Particularly interesting complex formers are those of formula (96), wherein Carb₂ and Carb₃ are each independently of the other the radical of formula

$$(96c) - [(CH2)]_{n_1} - COOH$$
,

wherein

n₁ is 0 to 5.

Complex formers which are important in practice are those conforming to formula

or to formula

Nitrilotriacetic acid (NTA) is also suitable for use.

Other examples of complex formers which may be used according to this invention are aminetrimethylenephosphoric acid (ATMP) conforming to formula

serinediacetic acid (SDA) conforming to formula

asparaginediacetic acid conforming to formula

methylglycinediacetic acid (MGDA) conforming to formula

Other suitable complex formers are polyanionically-derived natural polysaccharides, for example containing phosphate, phosphonate or methylphosphonate groups, such as chitin derivatives, e.g. sulfochitin, carboxymethylchitin, phosphochitin, chitosan derivatives, for example sulfochitosan, carboxymethylchitosan or, very particularly preferably, phosphochitosan, which conform to formula

wherein

R₁₁ is hydrogen or a radical of formula

(103a)
$$X_1 - O - P = O ;$$

 $O - X_2$

R₁₂ is a radical of formula (1a);

 $\rm X_1$ and $\rm X_2$ are each independently of the other hydrogen, $\rm C_1\text{-}C_5$ alkyl or an alkali ion or ammonium ion; and

n is 10 to 4000.

The antioxidants of formulae (1), (2) and (3) as well as mixtures of these compounds with light stabilisers or complex formers are particularly suitable for stabilising body-care products, in particular used for skin-care products, bath and shower additives, preparations containing fragrances and odoriferous substances, hair-care products, dentifrices, deodorising and antiperspirant preparations, decorative preparations, light protection formulations and preparations containing active ingredients.

Suitable skin-care products are, in particular, body oils, body lotions, body gels, treatment creams, skin protection ointments, shaving preparations, such as shaving foams or gels, skin powders, such as baby powder, moisturising gels, moisturising sprays, revitalising body sprays, cellulite gels and peeling preparations.

Preparations containing fragrances and odoriferous substances are in particular scents, perfumes, toilet waters and shaving lotions (aftershave preparations).

Suitable hair-care products are, for example, shampoos for humans and animals, in particular dogs, hair conditioners, products for styling and treating hair, perming agents, hair sprays and lacquers, hair gels, hair fixatives and hair dyeing or bleaching agents.

Suitable dentifrices are in particular tooth creams, toothpastes, mouth-washes, mouth rinses, anti-plaque preparations and cleaning agents for dentures.

Suitable decorative preparations are in particular lipsticks, nail varnishes, eye shadows, mascaras, dry and moist make-up, rouge, powders, depilatory agents and suntan lotions.

Suitable cosmetic formulations containing active ingredients are in particular hormone preparations, vitamin preparations, vegetable extract preparations and antibacterial preparations. The cited body-care products can be in the form of creams, ointments, pastes, foams, gels, lotions, powders, make-ups, sprays, sticks or aerosols. They preferably contain the antioxidants of formulae (1) and/or (2) and/or (3) and, optionally, the above light stabilisers in the oil phase or in the aqueous or aqueous/alcoholic phase.

This invention therefore also relates to a body-care product containing at least one phenolic antioxidant of formula (1) and/or (2) and/or (3).

The antioxidant(s) are usually present in the novel body-care product in a concentration of 50 to 1000 ppm.

Creams are oil-in-water emulsions containing more than 50 % of water. The oil-containing base used therein is usually mainly fatty alcohols, for example lauryl, cetyl or stearyl alcohol, fatty acids, for example palmitic or stearic acid, liquid to solid waxes, for example isopropyl-myristate or beeswax and/or hydrocarbon compounds, such as paraffin oil. Suitable emulsifiers are surfactants having primarily hydrophilic properties, such as the corresponding non-ionic emulsifiers, for example fatty acid esters of polyalcohols of ethylene oxide adducts, such as polyglycerol fatty acid ester or polyoxyethylenesorbitan fatty acid ether (Tween trademarks); polyoxyethylene fatty alcohol ether or their esters or the corresponding ionic emulsifiers, such as the alkali metal salts of fatty alcohol sulfonates, sodium cetyl sulfate or sodium stearyl sulfate, which are usually used together with fatty alcohols, such as cetyl alcohol or stearyl alcohol. In addition, creams contain agents which reduce water loss during evaporation, for example polyalcohols, such as glycerol, sorbitol, propylene glycol, and/or polyethylene glycols.

Ointments are water-in-oil emulsions which contain up to 70 %, preferably not more than 20 to 50 %, of water or of an aqueous phase. The oil-containing phase contains predominantly hydrocarbons, such as paraffin oil and/or solid paraffin which preferably contains hydroxy compounds, for example fatty alcohol or their esters, such as cetyl alcohol or wool wax for improving the water absorption. Emulsifiers are corresponding lipophilic substances, such as sorbitan fatty acid ester. In addition, the ointments contain moisturisers such as polyalcohols, for example glycerol, propylene glycol, sorbitol and/or polyethylene glycol as well as preservatives.

Rich creams are anhydrous formulations and are produced on the basis of hydrocarbon compounds, such as paraffin, natural or partially synthetic fats, for example coconut fatty acid triglycerides or, preferably, hardened oils and glycerol partial fatty acid esters.

Pastes are creams and ointments containing powdered ingredients which absorb secretions, for example metal oxides, such as titanium dioxide or zinc oxide, and also tallow and/or aluminium silicates which bind the moisture or the absorbed secretion.

Foams are liquid oil-in-water emulsions in aerosol form. Hydrocarbon compounds are used, inter alia, for the oil-containing phase, for example paraffin oil, fatty alcohols, such as cetyl alcohol, fatty acid esters, such as isopropylmyristate and/or waxes. Suitable emulsifiers are, inter alia, mixtures of emulsifiers having predominantly hydrophilic properties, for example polyoxyethylenesorbitan fatty acid ester, and also emulsifiers having predominantly lipophilic properties, for example sorbitan fatty acid ester. Commercially available additives are usually additionally employed, for example preservatives.

Gels are, in particular, aqueous solutions or suspensions of active substances in which gel formers are dispersed or swelled, in particular cellulose ethers, such as methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose or vegetable hydrocolloids, for example sodium alginate, tragacanth or gum arabic. The gels preferably additionally contain also polyalcohols, such as propylene glycol or glycerol as moisturisers and wetting agents, such as polyoxyethylenesobitan fatty acid ester. The gels furthermore contain commercially available preservatives, such as benzyl alcohol, phenethyl alcohol, phenoxyethanol and the like.

The following Table lists typical examples of body-care products of this invention and their ingredients:

Body-care product

Ingredients

moisturising cream

vegetable oil, emulsifier, thickener, perfume, water, antioxidant

shampoo

surfactant, emulsifier, preservatives, perfume, antioxidant

toothpaste

cleaning agent, thickener, sweetener, flavour, colourant,

antioxidant, water

lip-care stick

vegetable oil, wax, TiO2, antioxidant

The novel body-care products have high stability towards colour changes and chemical degradation of the ingredients present in these products. This is to be attributed to the effectiveness, colour stability, ease of incorporation and hydrolytic stability of the antioxidants used.

The phenolic antioxidants are also used in household cleaning and treatment agents, for example in liquid scouring agents, glass detergents, neutral cleaners (all-purpose cleaners), acid household cleaners (bath), WC cleaners, preferably in washing, rinsing and dishwashing agents, clear rinsing agents, dishwasher detergents, shoe polishes, polishing waxes, floor detergents and polishes, metal, glass and ceramic cleaners, textile-care agents, agents for removing rust, colour and stains (stain remover salt), furniture and multipurpose polishes and leather dressing agents (leather sprays).

Typical examples of novel household cleaning and treating agents are:

Household cleaners/household treating agents	Ingredients
detergent concentrate	surfactant mixture, ethanol, antioxidant, water

shoe polish wax, wax emulsifier, antioxidant, water, preservative

wax-containing floor emulsifier, wax, sodium chloride, antioxidant, water, cleaning agent preservative

The antioxidant(s) are usually incorporated by dissolution in an oil phase or alcoholic or water phase, where required at elevated temperature. Details can be found in the Examples.

The phenolic antioxidants of formulae (1), (2) and (3) also have pronounced antimicrobial action.

The following Examples illustrate the invention.

Preparation of stabilised formulations of body-care products

Example 1a: Preparation of a moisturiser cream

<u>Phase</u>	Ingredients	(w/w) %
Α	passionflower oil	8
	glyceryl dioleate	4
	dicapryl ether	4
	isopropylisostearate	4
	antioxidant of formula (31)	0.05
В	water, demin.	ad. 100
	EDTA	0.1
С	carbomer	0.15
D	sodium hydroxide	10%
		0.20
E	perfume; preservative	q.s.

Preparation: The components (A) are thoroughly mixed in a homogeniser for 10 min at 75-80°C. The water (B), likewise heated to 75-80°C beforehand, is slowly added and the mixture is homogenised for 1 min. The mixture is cooled, with stirring, to 40°C and then (C) and (E) are added and the mixture is homogenised for 1 min. Subsequently, (D) is added and the mixture is homogenised for 1/2 min and cooled, with stirring, to room temperature.

Alternatively to the antioxidant of the formulae (31) the following antioxidants can be applied (0.05 %):

Example 1b: antioxidant of the formula (7)
Example 1c: antioxidant of the formula (32)
Example 1d: antioxidant of the formula (33)

Example 2: Preparation of a toilet water (w/w) %

Ingredients	(w/w) %
ethanol, 96%	60
d-limonene	5
cedrene	1.5

citronellol	0.5
savin	0.5
antioxidant of formula (29)	80.0
UV absorber of formula (91)	0.1
S,S-EDDS	0.005
colourant (D&C Yellow No.5)	0.02
water	ad. 100

<u>Preparation</u>: The components are thoroughly mixed in the cited sequence at 50°C, a clear homogeneous solution being obtained.

Example 3: Preparation of a hair styling spray

Ingredients	<u>(w/w) %</u>
alcohol, anhydrous	96.21
octylacrylamide/acrylate/butylaminoethylmethacrylate copolymer	2.52
hydroxypropyl cellulose	0.51
aminomethylpropanol (95%)	0.46
antioxidant of formula (33)	0.05
benzophenone-4	0.05
perfume oil	0.20

<u>Preparation</u>: The hydroxypropyl cellulose is first predissolved in half of the alcohol (Vortex mixer) and is charged with the aminomethylpropanol. The other components - with the exception of the acrylate resin - are dissolved in alcohol and this solution is added, with stirring, to the hydroxypropyl cellulose. Subsequently, the acrylate resin is added and stirred until completely dissolved.

Example 4: Preparation of a shampoo for greasy hair

Ingredients	(w/w) %
sodium myreth sulfate	50.00
TEA abietoyl collagen hydrolysate	3.50
laureth-3	3.00
colourant (D&C Red No. 33)	0.20
antioxidant of formula (29)	0.05

UV absorber of formula (92)	0.15
phosphonomethylchitosan, sodium salt	0.01
perfume oil	0.10
water	ad. 100

<u>Preparation</u>: The components are mixed, with stirring, at room temperature until they are completely dissolved. The pH is 6.5.

Preparation of stabilised household products

Example 5: Preparation of a leather dressing and cleaning agent

<u>Ingredients</u>	(w/w) %
synthetic soap (Zetesap 813)	7.85
glycerol	6.00
anionic surfactant (Lumorol 4192; Mulsifan RT 13)	22.00
Vaseline	11.00
paraffin 52/54	20.00
talcum	2.00
orange terpene	4.00
antioxidant of formula (33)	0.02
water	27.13

<u>Preparation</u>: The antioxidant is predissolved in the terpene. The components are then stirred in the cited sequence at about 65°C until homogeneous. The mixture is then cooled to room temperature.

Example 6: Preparation of a glass detergent

Ingredients	(w/w) %
anionic / amphoteric surfactants (Lumorol RK)	0.7
butyl glycol	5.0
isopropanol	20.0
d-limonene	4.00
antioxidant of formula (32)	0.02
water, demin.	ad. 100

<u>Preparation</u>: The antioxidant is predissolved in the terpene. The components are then dissolved in the cited sequence until a clear homogeneous mixture is obtained.

What is claimed is:

1. Use of phenolic antioxidants of formulae

(1)
$$HO$$
 $(Q)_b$
 C
 $(CH_3)_a$
 CH_3
 CH_3
 CH_4
 CH_5
 $CH_$

(2) CH_3 CH_3 CH_3 ; and/or $(R_1)_a$

(a₂) an antioxidant of formula

wherein in formulae (1), (2) and (3)

R₁ is hydrogen; C₁-C₂₂alkyl; C₁-C₂₂alkylthio; C₅-C₇cycloalkyl; phenyl; C₇-C₉phenylalkyl; or SO₃M;

R₂ is C₁-C₂₂alkyl; C₅-C₇cycloalkyl; phenyl; or C₇-C₉phenylalkyl;

Q is $-C_mH_{2m^-}$; $-C_H$; $-C_mH_{2m}$ -NH; a radical of formula C_mH_{2m+1}

$$\label{eq:total_control_of_the_control} \begin{tabular}{ll} O & & & & \\ | & & \\ T & is -C_nH_{2n}-; -(CH_2)_n-O-CH_2-; & -C_nH_{2n}-NH--C-- & ; or a radical of \\ \end{tabular}$$

V is -O-; or -NH-;

a is 0; 1; or 2;

b, c and d are each independently of one another 0; or 1;

- e is an integer from 1 to 4;
- f is an integer from 1 to 3; and

m, n and p are each independently of one another an integer from 1 to 3;

if e = 1, then

 R_3 is M; hydrogen; C_1 - C_{22} alkyl; C_5 - C_7 cycloalkyl; C_1 - C_{22} alkylthio; C_2 - C_{18} alkenyl; C_1 - C_{18} -

phenylalkyl; a radical of formula (1d)
$$-V - \bigvee_{N = -N} ^{N = -N} N$$
;
$$S - C_p H_{2p+1}$$
;
$$S - C_p H_{2p+1}$$

(1e)
$$-C_pH_{2p+1}$$
 C_pH_{2p+1} C_pH_{3} C_pH_{2p+1} C_pH_{3} $C_pH_$

M is alkali; ammonium;

if e = 2, then

$$R_3$$
 is a direct bond; $-CH_2$ -; $-CH$ - $(CH_2)_p$ - CH_3 ; $-O$ -; or $-S$ -;

if

e = 3, then

$$R_3$$
 is the radical of formula (1g) ; (1h) R_4 ;

(1i)
$$CH-(CH_2)_p$$
 CH ; or (1k) CH

if

e = 4, then

$$R_3$$
 is $-C$ —; or a direct bond;

 R_4 and R_5 are each independently of the other hydrogen; or C_1 - C_{22} alkyl; for stabilising body-care and household products.

2. Use according to claim 1, wherein in formula (1)

Q is $-C_mH_{2m}$,

wherein

m has the meaning cited in claim (1).

- 3. Use according to either claim 1 or claim 2, wherein
- Q is a methylene or ethylene radical.
- 4. Use according to any one of claims 1 to 3, wherein

V is -O-.

5. Use according to any one of claims 1 to 4, wherein

 R_1 and R_2 are each independently of the other C_1 - C_{18} alkyl.

6. Use according to claim 5, wherein

R₁ and R₂ are each independently of the other C₁-C₅alkyl.

- 7. Use according to either claim 1, claim 5 or claim 6, wherein
- a is 1.
- 8. Use according to claim 1, which comprises using an antioxidant of formula

(2)
$$\begin{array}{c|c} R_2 & & \\ \hline & &$$

wherein

R₁ and R₂ are each independently of the other C₁-C₅alkyl,

- a is 1 or 2; and
- R₃, Q, V, T, b, c, d and e have the meanings cited in claim 1.
- 9. A composition according to claim 8, wherein
- R_1 and R_2 are the tert-butyl radical; and
- a is 1.
- 10. Use according to claim 1, which comprises using an antioxidant of formula

(3)
$$\begin{bmatrix} R_2 & O \\ HO & Q - C - O - T \end{bmatrix} R_3$$

wherein

 R_1 and R_2 are each independently of the other $C_1\text{-}C_5\text{-alkyl}$;

$$Q \quad \text{ is -C}_m H_{2m} \text{--; or } \quad \text{-C}_m H_{2m} \text{--NH} - \quad ;$$

 R_3 is a direct bond; -O-; -S-; -CH₂-; or $\frac{\text{CH}_3}{\text{-CH}-}$;

- a is 1 or 2;
- m is 1 to 5; and
- T has the meaning cited in claim 1.
- 11. Use according to claim 10, wherein the antioxidant is a compound of formula (3), wherein

R₃ is a direct bond; and

R₁, R₂, T and a have the meaning given in claim 10.

12. Use according to claim 1, wherein the antioxidant is the compound of formula

(4)
$$\begin{bmatrix} R_{2} & 0 & 0 \\ | & Q_{b} & C - O - (T)_{d} \\ | & (R_{1})_{a} & 3 \end{bmatrix}_{3}$$

wherein

Q is $-C_mH_{2m}$ -;

T is $-C_nH_{2n}$ -;

R₁ and R₂ are each independently of the other C₁-C₅-alkyl;

 R_3 is the radical of formula (1g); (1h); (1i); or (1k);

m and n are each independently of the other 1 to 3;

a is 1 or 2; and

b and d are each independently of the other 0 or 1.

13. Use according to claim 12, wherein the antioxidant is a compound of formula

wherein

A is a radical of formula

(5a)
$$HO$$
 R_1
 $C_mH_{\overline{2m}}$

 R_{1} , R_{2} and R_{3} are each independently of one another C_{1} - C_{5} alkyl; and m is 1 to 3.

14. Use according to claim 12, wherein the antioxidant is a compound of formula

wherein

B is a radical of formula

(6a)
$$HO$$
 $C_mH_{\overline{2m}}$
 $C_mH_{\overline{2m}}$

R₁ and R₂ are each independently of the other C₁-C₅alkyl;

V is -O-; or -NH-;

a is 1; or 2;

m is 1 to 3; and

n is 0 to 3.

- 15. Use according to any one of claims 1 to 14, which comprises using the phenolic antioxidants of formulae (1), (2) and (3) as individual compounds or as a mixture of several individual compounds.
- 16. Use according to any one of claims 1 to 15, which comprises using the antioxidant or the sum of the antioxidants in a concentration of 50 to 1000 ppm.
- 17. Use according to any one of claims 1 to 16, which comprises using the antioxidants together with tocopherol and/or tocopherol acetate.
- 18. Use according to any one of claims 1 to 17, which comprises using the phenolic antioxidants together with light stabilisers.
- 19. Use according to claim 18, wherein the light stabilisers used are sterically hindered amines.

20. Use according to claim 18, wherein the light stabilisers used are benzotriazoles of formula

wherein

 R_6 is C_1-C_{12} alkyl; C_1-C_5 alkoxy; C_1-C_5 alkoxycarbonyl; C_5-C_7 cycloalkyl; C_6-C_{10} aryl; aralkyl;

R₈ and R₉ are each independently of the other hydrogen; or C₁-C₅alkyl;

m is 1 or 2;

n is 0 or 1;

if m = 1,

R₇ is hydrogen; unsubstituted or phenyl-substituted C₁-C₁₂alkyl; C₆-C₁₀aryl;

if n = 2,

R₂ is a direct bond; -(CH₂)_p-; and

p is 1 to 3.

21. Use according to claim 18, wherein the light stabilisers used are 2-hydroxyphenyltriazines of formula

$$(41) \qquad \bigcup_{L_{1}O} \bigcup_{(L_{7})_{i}} \bigcup_{l_{2}} \bigcup_{L_{3}} \bigcup_{L_{4}} \bigcup_{l_{4}} \bigcup_{l_{5}} \bigcup_{l_{5}}$$

wherein

L₁ is C₁-C₂₂alkyl, C₂-C₂₂alkenyl or C₅-C₇cycloalkyl;

L₂ and L₆ are each independently of the other H, OH, halogen, C₁-C₂₂alkyl, halomethyl;

 L_3 , L_5 and L_7 are each independently of one another H, OH, OL, halogen, C_1 - C_{22} alkyl, halomethyl;

 L_4 is H, OH, OL₁, halogen, C_1 - C_{22} alkyl, phenyl, halomethyl;

 L_{12} is C_1 - C_{22} alkyl, phenyl C_1 - C_5 alkyl, C_5 - C_7 cycloalkyl, OL_1 or, preferably, a group of formula

$$\begin{array}{c} L_6 \\ L_2 \\ L_3 \end{array}; \text{ and }$$

j is 0, 1, 2 or 3.

- 22. Use of the phenolic antioxidant according to claim 1 in body-care products for the skin and its adnexa.
- 23. Use according to claim 22, wherein the body-care products are selected from skin-care products, bath and shower additives, preparations containing fragrances and odoriferous substances, hair-care products, dentifrices, deodorising and antiperspirant preparations, decorative preparations, light protection formulations and preparations containing active ingredients.

- 24. Use according to claim 23, wherein the skin-care products are selected from body oils, body lotions, body gels, treatment creams, skin protection ointments, shaving preparations and skin powders.
- 25. Use according to claim 23, wherein the preparations containing fragrances and olfactory substances are selected from scents, perfumes, toilet waters and shaving lotions.
- 26. Use according to claim 23, wherein the hair-care products are selected from shampoos, hair conditioners, agents for styling and treating hair, perming agents, hair sprays and lacquers and hair dyeing or bleaching agents.
- 27. Use according to claim 23, wherein the decorative preparations are selected from lipsticks, nail varnishes, eye shadows, mascaras, dry and moist make-up, rouge, powders, depilatory agents and suntan lotions.
- 28. Use according to claim 23, wherein the active ingredient-containing cosmetic formulations are selected from hormone preparations, vitamin preparations, vegetable extract preparations and antibacterial preparations.
- 29. Use of the phenolic antioxidant according to claim 1 in household cleaning and treating agents.
- 30. Use according to claim 29, wherein the household cleaning and treating agents are selected from washing, rinsing and dishwashing agents, shoe polishes, polishing waxes, floor detergents and polishes, metal, glass and ceramic cleaners, textile care agents, agents for removing rust, colour and stains (stain remover salt), furniture and multipurpose polishes.
- 31. A body-care product, which comprises at least one phenolic antioxidant according to claim 1.
- 32. A household cleaning and treating agent, which comprises a phenolic antioxidant according to claim 1.

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61K7/00 C110 According to international Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61K C11D C08K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, exerch terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X EP 0 283 252 A (PROCTER & GAMBLE LTD ;PROCTER & GAMBLE (US)) 1-16,18, 19,29, 21 September 1988 (1988-09-21) 30,32 page 3, line 38 -page 5, line 16 claims 1-21 X US 3 356 612 A (D.B.GUNTHRIE) 1-3,5-9. 5 December 1967 (1967-12-05) 15-17, 29,30,32 column 12, line 1 -column 13, line 35 column 18, line 3 - line 33 US 4 900 469 A (CARTY DANIEL T ET AL) X 1-3,5-8, 13 February 1990 (1990-02-13) 15,16, 29,30,32 column 14, line 42 -column 15, line 56 column 20, line 43 - line 44 claims 1-18 X Further documents are listed in the continuation of box C. Patent family members are flated in annex. * Special categories of cited documents: "T" later document published after the international fiting date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to fling date "L" document which may throw doubts on priority ctalm(e) or which is ched to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person sidiled in the art. *O* document referring to an oral disclosure, use, exhibition or other meen *Pe document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 6 March 2000 14/03/2000 Name and mailing address of the ISA **Authorized officer** Europeen Patient Office, P.B. 5818 Patientiaan 2 NL - 2280 HV Rijewijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Stienon, P

INTERNATIONAL SEARCH REPORT

Intra. and Application No
PCT/EP 99/07981

C.(Continue	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	FC1/EF 99/0/981
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 13, 30 November 1998 (1998-11-30) & JP 10 204479 A (LION CORP), 4 August 1998 (1998-08-04) abstract	1-3,5-9, 29,30,32
X	WO 97 27839 A (COLGATE PALMOLIVE CO) 7 August 1997 (1997-08-07)	1-9,15, 16,22, 23,26, 29-32
.,	abstract; claims 1-26	
X	EP 0 287 342 A (KURITA WATER IND LTD) 19 October 1988 (1988-10-19)	1-3,5-9, 15,16, 22,23, 25,31
	abstract; claims 1-9	
X	DE 196 16 570 A (BASF AG) 30 October 1997 (1997-10-30)	1-3,5-9, 13,15, 16,29, 30,32
	claims 1-12	30,32
X	WO 96 03481 A (PROCTER & GAMBLE) 8 February 1996 (1996-02-08)	1-6, 8-10,15, 16,18, 20,29,
	claims 1-10	30,32
X	GB 1 456 199 A (BEECHAM GROUP LTD) 17 November 1976 (1976-11-17)	1,5,6,8, 15-17, 22,23,31
	claims 1-5	22,23,31
A	EP 0 453 396 A (CIBA GEIGY AG) 23 October 1991 (1991-10-23) claims 1-27	·
A	US 5 688 995 A (LUTHER HELMUT ET AL) 18 November 1997 (1997–11–18) column 17, line 14 – line 16; claims 1–8	
A	WO 94 07946 A (CIBA GEIGY AG ;HOFFMANN KURT (DE); HERBST HEINZ (DE); PFAENDNER RU) 14 April 1994 (1994-04-14) claims 1-30	
A	EP 0 263 524 A (BASF AG) 13 April 1988 (1988-04-13) claims 1-3	
	-/	
ļ		

INTERNATIONAL SEARCH REPORT

PCT/EP 99/07981

(Continu	etion) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP 99/07981
electory °	Citation of document, with indication, where appropriate, of the relevant passages	
	Troping an inning hostelles	Relevant to claim No.
A .	EP 0 342 483 A (ETHYL CORP) 23 November 1989 (1989-11-23) claims 1-10	
4	EP 0 415 887 A (CIBA GEIGY AG) 6 March 1991 (1991-03-06) claims 1-13	
·	US 5 614 572 A (NESVADBA PETER ET AL) 25 March 1997 (1997-03-25) claims 1-16	
	GB 2 286 774 A (CIBA GEIGY AG) 30 August 1995 (1995-08-30) claims 1-49	
		
-		
İ		
	continuation of second wheel) (buty 1922)	

HILLMINGHOUGH DEARCH REPURI

information on patent family members

Inte. onal Application No PCT/EP 99/07981

	document search report		Publication date		atent family nember(s)		Publication date
EP 02	83252	A	21-09-1988	AT	8135	6 T	15-10-1992
				CA	130283		09-06-1992
				DE	387514		12-11-199
				DK	14668		18-09-1988
				ES	204510		16-01-1994
				FI	88125		18-09-1988
				GR	300590		07-06-1993
				JP	6400019		05-01-1989
				KR	950384		20-04-199!
				MX	17217		07-12-199
				TR	2437		20-09-199
			•	ÜS	485314		01-08-1989
				AT	10224		15-03-1994
				DE	388811		07-04-1994
				ĎĒ	388811		04-08-1994
				EP	032021		14-06-1989
				ËS	206169		16-12-1994
					200109		10-12-199
US 33	56612 	A	05-12-1967	US	338217	B A	07-05-1968
US 49	00469	A	13-02-1990	US	476430	2 A	16-08-198
				AU	59009		26-10-1989
				AU	757978		28-04-1988
				CA	133714		03-10-199
				DE	378261		17-12-1992
				EĞ	1830		30-10-1992
			•	ĒP	026504		27-04-1988
				ËS	205354		01-08-1994
				JP	252333		07-08-1990
				JP	6311029		14-05-1988
				MX	17019		11-08-1993
				TR	2397		11-01-199
JP 10	204479	A	04-08-1998	NONE			
WO 97	27839	A	07-08-1997	AU	70824	2 R	29-07-1999
				AU	175579		22-08-1997
				BR	970722		20-07-1999
				CA	224478		07-08-199
				CN	121261		31-03-1999
				EP	087759		18-11-199
				PL	32801		04-01-1999
				US	584387		01-12-199
				US	584067		24-11-199
				US	582120		
				ZA	970069		13-10-1998
					3/0009	D 14	28-07-199
EP 02	87342	A	19-10-1988	JP	102586		27-01-1989
				JP	184717		07-06-1994
				JP	506407		13-09-1993
				DE	387551		03-12-199
				US	488077	4 A	14-11-199
			00 10 1007	WO	974119	7 A	06-11-199
 DE 19	616570	A	30-10-1997	ĦU	7/4117		
DE 19	616570	A	30-10-1997	EP	090283		24-03-199
DE 19		A 	30-10-1997 			0 A	

HILEMIATIONAL SEARCH REFURI

enformation on patent family members

Inter and Application No PCT/EP 99/07981

			PCT/EP 99/07981			
Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
WO 9603481 A			EP	0773982 A	21-05-1007	
			JP	10504609 T	21-05-1997	
			US	_	06-05-1998	
			US		29-12-1998	
				5723435 A	03-03-1998	
			US	5763387 A	09-06-1998	
GB 1456199	A	17-11-1976	AU	6277273 A	22-05-1975	
			BE	807616 A	21-05-1974	
			DE	2358121 A	30-05-1974	
		•	JP	49093545 A	05-09-1974	
			ZA	7308723 A	25-09-1974	
EP 0453396	A	23-10-1991	CA	2039405 A	01-10, 1001	
			CS	9100882 A	01-10-1991	
			DE		15-10-1991	
			ES		25-01-1996	
				2081458 T	01-03-1996	
			HK	1004566 A	27-11-1998	
			JP	6093217 A	05-04-1994	
			KR	168054 B	15-01-1999	
			MX	171974 B	25-11-1993	
			SK	279724 B	11-02-1999	
			US	5106891 A	21-04-1992	
US 5688995	A	18-11-1997	AU	712153 B	29_10_1000	
			AU	5235796 A	28-10-1999	
			BR	9602339 A	28-11-1996	
			EP		01-09-1998	
			JP	0743309 A	20-11-1996	
				8337574 A	24-12-1996	
			NZ 	286600 A	28-07-1998	
WO 9407946	A	14-04-1994	AU	686110 B	05-02-1998	
			AU	4816693 A	26-04-1994	
			BR	9307106 A	25-05-1999	
•			CA	2143754 A	14-04-1994	
			CN	1084528 A	30-03-1994	
			EP	0662101 A	12-07-1995	
			JP	8501814 T	27-02-1996	
			MX	9305877 A	31-03-1994	
			ÜS	5643985 A		
			US	5804623 A	01-07-1997	
			ŽĀ	9307075 A	08-09-1998 25-03-1994	
EP 0263524	A	13-04-1988	DE	2624501 4		
	•••	10 04 1300		3634531 A	14-04-1988	
			AT	103310 T	15-04-1994	
			DE	3789414 D	28-04-1994	
			ES	2061464 T	16-12-1994	
			JP	63105060 A	10-05-1988	
			US	4806580 A	21-02-1989	
	A	23-11-1989	US	4870214 A	26-09-1989	
EP 0342483			CA	1312881 A		
EP 0342483				2017143 A	19-01-1993 22-01-1990	
EP 0342483			.10		77-01-1000	
EP 0342483			JP JP			
	A	05_02_100=	JP	2683100 B	26-11-1997	
	A	06-03-1991	JP CA	2683100 B 2024217 A		
	Α	06-03-1991	JP CA DE	2683100 B 2024217 A 59007379 D	26-11-1997	
EP 0342483 EP 0415887	A	06-03-1991	JP CA	2683100 B 2024217 A	26-11-1997 	

Form PCT/IBA/210 (patent ternity errnex) (July 1992)

Charles of the same of the same

information on patent family members

Inter and Application No PCT/EP 99/07981

Patent document cited in search report		t	Publication date		Patent family member(s)	Publication date
EP	0415887	A	<u> </u>	JP	3204872 A	06-09-1991
				KR	151398 B	15-10-1998
				SK	425690 A	10-03-1999
				US	5175312 A	29-12-1992
US	5614572	A	25-03-1997	AT	177740 T	15-04-1999
				BR	9403592 A	16~05-1995
				CA	2132134 A	18-03-1995
				CN	1106032 A	02-08-1995
				CZ	9402261 A	12-04-1995
				DE	59407946 D	22-04-1999
				EP	0644190 A	22-03-1995
				ES	2130385 T	01-07-1999
				JP	7247278 A	26-09-1995
				SK	110394 A	07-06-1995
				US	5693829 A	02-12-1997
				US	5807505 A	15-09-1998
				ZA	9407184 A	17-03-1995
GB	2286774	A	30-08-1995	AT	188374 T	15-01-2000
				AU	700081 B	17-12-1998
				AU	1665395 A	11-09-1995
				BR	9506935 A	09-09-1997
				DE	69514330 D	10-02-2000
				WO	9522959 A	31-08-1995
				EP	0746305 A	11-12-1996
				JP	9509421 T	22-09-1997
				US	5869030 A	09-02-1999
				ZA	9501459 A	23-08-1995

THIS PAGE BLANK (USPTO)