BEST AVAILABLE COPY

日本国特許庁 JAPAN PATENT OFFICE

REC'D **18 NOV 2004**WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年10月 2日

出 願 番 号

人

特願2003-344895

Application Number: [ST. 10/C]:

[JP2003-344895]

出 願
Applicant(s):

浜松ホトニクス株式会社

PRIORITY DOCUMEN I SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH

RULE 17.1(a) OR (b)

2004年11月 5日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願 【整理番号】 2003-0395

【提出日】平成15年10月 2日【あて先】特許庁長官殿【国際特許分類】H01L 31/10H04N 1/19

【発明者】

【住所又は居所】 静岡県浜松市市野町1126番地の1 浜松ホトニクス株式会社

内

【氏名】 水野 誠一郎

【発明者】

【住所又は居所】 静岡県浜松市市野町1126番地の1 浜松ホトニクス株式会社

内

【氏名】 杉山 行信

【特許出願人】

【識別番号】 000236436

【氏名又は名称】 浜松ホトニクス株式会社

【代理人】

【識別番号】 100088155

【弁理士】

【氏名又は名称】 長谷川 芳樹

【選任した代理人】

【識別番号】 100092657

【弁理士】

【氏名又は名称】 寺崎 史朗

【選任した代理人】

【識別番号】 100124291

【弁理士】

【氏名又は名称】 石田 悟

【選任した代理人】

【識別番号】 100110582

【弁理士】

【氏名又は名称】 柴田 昌聰

【手数料の表示】

【予納台帳番号】 014708 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

入射光強度に応じた量の電荷を発生するフォトダイオードと、ゲート端子に形成された 寄生容量部に蓄積されている電荷の量に応じた電圧値を出力する増幅用トランジスタと、 前記フォトダイオードで発生した電荷を前記増幅用トランジスタのゲート端子へ転送する 転送用トランジスタと、前記寄生容量部の電荷を初期化する放電用トランジスタと、前記 増幅用トランジスタから出力される電圧値を選択的に出力する選択用トランジスタとを含 む画素部と、

前記画素部の前記選択用トランジスタから出力される電圧値を読み出して、この電圧値 に応じた第1電圧値を出力する第1画素データ読出部と、

前記画素部の前記放電用トランジスタに接続された第1端と、前記画素部の前記増幅用トランジスタのゲート端子の電荷を初期化する為のバイアス電位を入力する第2端と、第3端とを有し、前記第1端と前記第2端との間または前記第1端と前記第3端との間を電気的に接続する接続切替部と、

前記接続切替部の前記第3端に入力端子が接続され、前記寄生容量部の容量値より大きい容量値を有する容量素子を含み、前記接続切替部の前記第3端から前記入力端子に流入した電荷を前記容量素子に蓄積して、その蓄積した電荷の量に応じた第2電圧値を出力する第2画素データ読出部と、

を備えることを特徴とする光検出装置。

【請求項2】

前記第2画素データ読出部に含まれる前記容量素子の容量値が、前記寄生容量部の容量値の2^K倍(ただし、Kは1以上の整数)である、ことを特徴とする請求項1記載の光検出装置。

【請求項3】

前記画素部に含まれる前記フォトダイオードが、第1導電型の第1半導体領域上に第2 導電型の第2半導体領域を有し、この第2半導体領域上に第1導電型の第3半導体領域を 有し、前記第1半導体領域と前記第2半導体領域とがpn接合を形成しており、前記第2 半導体領域と前記第3半導体領域とがpn接合を形成している、ことを特徴とする請求項 1記載の光検出装置。

【請求項4】

前記画素部が、前記フォトダイオードと前記転送用トランジスタとの間に設けられ飽和 領域で用いられる遮断用トランジスタを更に含む、ことを特徴とする請求項1記載の光検 出装置。

【請求項5】

複数個の前記画素部が2次元配列されていることを特徴とする請求項1記載の光検出装置。

【請求項6】

前記第2画素データ読出部が、2次元配列された前記画素部の列毎に1個の前記容量素子を有する、ことを特徴とする請求項5記載の光検出装置。

【請求項7】

前記第1画素データ読出部が或る行の前記画素部からの出力電圧値を処理する期間に、 前記第2画素データ読出部が該行の前記画素部からの出力電荷を処理する、ことを特徴と する請求項5記載の光検出装置。

【請求項8】

前記第1画素データ読出部が或る行の前記画素部からの出力電圧値を処理する期間に、 前記第2画素データ読出部が他の行の前記画素部からの出力電荷を処理する、ことを特徴 とする請求項5記載の光検出装置。

【請求項9】

前記第1画素データ読出部から出力される第1電圧値を入力してA/D変換し、この第1電圧値に応じた第1デジタル値を出力するとともに、前記第2画素データ読出部から出

力される第2電圧値を入力してA/D変換し、この第2電圧値に応じた第2デジタル値を 出力するA/D変換部を更に備える、ことを特徴とする請求項1記載の光検出装置。

【請求項10】

前記A/D変換部から出力される第1デジタル値および第2デジタル値を入力し、前記第1電圧値,前記第2電圧値,前記第1デジタル値および前記第2デジタル値のうちの何れかと基準値とを大小比較した結果に基づいて、前記第1デジタル値および前記第2デジタル値のうち一方を選択して出力する選択出力部を更に備える、ことを特徴とする請求項9記載の光検出装置。

【請求項11】

前記第1画素データ読出部から出力される第1電圧値と前記第2画素データ読出部から出力される第2電圧値とを入力し、前記第1電圧値および前記第2電圧値のうちの何れかと基準値とを大小比較した結果に基づいて、前記第1電圧値および前記第2電圧値のうち一方を選択して出力する選択出力部を更に備える、ことを特徴とする請求項1記載の光検出装置。

【請求項12】

前記選択出力部から出力される電圧値を入力してA/D変換し、この電圧値に応じたデジタル値を出力するA/D変換部を更に備える、ことを特徴とする請求項11記載の光検出装置。

【請求項13】

前記第2画素データ読出部が、前記容量素子に対して並列的に設けられた対数圧縮回路 を更に含み、前記接続切替部の前記第3端から前記入力端子に流入した電荷を前記対数圧 縮回路に入力して、その入力した電荷の流入量の対数値に応じた第3電圧値を出力する、 ことを特徴とする請求項1記載の光検出装置。

【請求項14】

前記第1画素データ読出部から出力される第1電圧値を入力してA/D変換し、この第1電圧値に応じた第1デジタル値を出力するとともに、前記第2画素データ読出部から出力される第2電圧値および第3電圧値を入力してA/D変換し、この第2電圧値に応じた第2デジタル値および第3電圧値に応じた第3デジタル値を出力するA/D変換部を更に備える、ことを特徴とする請求項13記載の光検出装置。

【請求項15】

前記A/D変換部から出力される第1デジタル値,第2デジタル値および第3デジタル値を入力し、前記第1電圧値,前記第2電圧値,前記第3電圧値,前記第1デジタル値,前記第2デジタル値および前記第3デジタル値のうちの何れかと基準値とを大小比較した結果に基づいて、前記第1デジタル値,前記第2デジタル値および前記第3デジタル値のうちの何れか1つを選択して出力する選択出力部を更に備える、ことを特徴とする請求項14記載の光検出装置。

【請求項16】

前記第1画素データ読出部から出力される第1電圧値と前記第2画素データ読出部から出力される第2電圧値および第3電圧値とを入力し、前記第1電圧値,前記第2電圧値および前記第3電圧値のうちの何れかと基準値とを大小比較した結果に基づいて、前記第1電圧値,前記第2電圧値および前記第3電圧値のうちの何れか1つを選択して出力する選択出力部を更に備える、ことを特徴とする請求項13記載の光検出装置。

【請求項17】

前記選択出力部から出力される電圧値を入力してA/D変換し、この電圧値に応じたデジタル値を出力するA/D変換部を更に備える、ことを特徴とする請求項16記載の光検出装置。

【書類名】明細書

【発明の名称】光検出装置

【技術分野】

[0001]

本発明は、フォトダイオードを含むアクティブピクセル型の画素部を有する光検出装置 に関するものである。

【背景技術】

[0002]

光検出装置として、CMOS技術を用いたものが知られており、また、その中でもアクティブピクセル方式のものが知られている(例えば特許文献1を参照)。アクティブピクセル方式の光検出装置は、入射光強度に応じた量の電荷を発生するフォトダイオードを含むアクティブピクセル型の画素部を有していて、画素部において光入射に応じてフォトダイオードで発生した電荷を、トランジスタからなるソースフォロワ回路を経て電荷-電圧変換するものであり、高感度かつ低ノイズで光検出を行なうことができる。

[0003]

画素部内においてフォトダイオードで発生した電荷を蓄積する寄生容量部の容量値を C_f とし、その電荷の量を C_f とすると、電荷-電圧変換により得られる出力電圧値Vは「 V_f 0」なる式で表される。この式から判るように、寄生容量部の容量値 C_f を小さくすることで、光検出の感度を高くすることができる。

[0004]

一方、出力電圧値Vは、使用可能な電源電圧範囲および回路系の制約により、数V程度が上限である。このことから、寄生容量部に蓄積され得る電荷の量Qにも上限がある。

[0005]

仮に、この寄生容量部に蓄積され得る電荷の量Qの上限値(飽和電荷量)を大きくするには、寄生容量部の容量値 C_f を大きくするか、または、電源電圧値を大きくすることが考えられる。しかし、寄生容量部の容量値 C_f を大きくするには、微細CMOSプロセスにより製造せざるを得ないことから、電源電圧値を小さくせざるを得ないこととなり、結局、飽和電荷量を大きくすることはできない。また、寄生容量部の容量値 C_f を大きくすると、せっかくの高感度という利点が失われてしまう。

【特許文献1】特開平11-274454号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

以上のように、従来の光検出装置は、高感度で光検出をすることができるものの、飽和 電荷量の制約に因り、光検出のダイナミックレンジが低いという欠点を有している。

[0007]

本発明は、上記問題点を解消する為になされたものであり、高感度かつ高ダイナミック レンジで光検出をすることができる光検出装置を提供することを目的とする。

【課題を解決するための手段】

[0008]

本発明に係る光検出装置は、(1) 入射光強度に応じた量の電荷を発生するフォトダイオードと、ゲート端子に形成された寄生容量部に蓄積されている電荷の量に応じた電圧値を出力する増幅用トランジスタと、フォトダイオードで発生した電荷を増幅用トランジスタのゲート端子へ転送する転送用トランジスタと、寄生容量部の電荷を初期化する放電用トランジスタと、増幅用トランジスタから出力される電圧値を選択的に出力する選択用トランジスタとを含む画素部と、(2) 画素部の選択用トランジスタから出力される電圧値を読み出して、この電圧値に応じた第1電圧値を出力する第1画素データ読出部と、(3) 画素部の放電用トランジスタに接続された第1端と、画素部の増幅用トランジスタのゲート端子の電荷を初期化する為のバイアス電位を入力する第2端と、第3端とを有し、第1端と第2端との間または第1端と第3端との間を電気的に接続する接続切替部と、(4) 接続切

替部の第3端に入力端子が接続され、寄生容量部の容量値より大きい容量値を有する容量素子を含み、接続切替部の第3端から入力端子に流入した電荷を容量素子に蓄積して、その蓄積した電荷の量に応じた第2電圧値を出力する第2画素データ読出部と、を備えることを特徴とする。

[0009]

この光検出装置では、画素部に光が入射すると、その画素部に含まれるフォトダイオードで入射光強度に応じた量の電荷が発生し、その電荷は転送用トランジスタを経て寄生容量部に蓄積される。寄生容量部に蓄積された電荷の量に応じた電圧値が、増幅用トランジスタおよび選択用トランジスタを経て画素部から出力され、第1画素データ読出部により読み出される。そして、この読み出された電圧値に応じた第1電圧値が第1画素データ読出部から出力される。この第1電圧値は、画素部の寄生容量部が飽和していないとき、すなわち、画素部への入射光の強度が比較的小さいときに、その入射光強度を高感度で検出した結果を高精度に表す。

[0010]

また、画素部に含まれるフォトダイオードで発生した電荷は、放電用トランジスタを経て画素部から出力され、接続切替手段を経て第2画素データ読出部に入力する。第2画素データ読出部では、流入した電荷が容量素子に蓄積されて、その蓄積された電荷の量に応じた第2電圧値が出力される。ここで、第2画素データ読出部に含まれる容量素子の容量値は、画素部に含まれる寄生容量部の容量値より大きい。このことから、この第2電圧値は、画素部の寄生容量部が飽和しているとき、すなわち、画素部への入射光の強度が比較的大きいときにも、その入射光強度を検出した結果を高精度に表す。

[0011]

したがって、この光検出装置によれば、第1画素データ読出部から出力された第1電圧値と第2画素データ読出部から出力された第2電圧値とに基づいて、高感度かつ高ダイナミックレンジで光検出をすることができる。

[0012]

ここで、第2画素データ読出部に含まれる容量素子の容量値が、寄生容量部の容量値の 2^K 倍(ただし、Kは1以上の整数)であるのが好適である。この場合には、画素部の寄生容量部が飽和していないとき、第2画素データ読出部から出力された第2電圧値は、第1画素データ読出部から出力された第1電圧値の 2^K 倍となり得る。そして、例えば、画素部の寄生容量部が飽和しているか否かの判定、第1電圧値および第2電圧値のうちからの何れか一方の選択、第1電圧値および第2電圧値の双方または何れか一方のA/D変換、等の後処理が容易となる。

[0013]

本発明に係る光検出装置は、画素部に含まれるフォトダイオードが、第1導電型の第1半導体領域上に第2導電型の第2半導体領域を有し、この第2半導体領域上に第1導電型の第3半導体領域を有し、第1半導体領域と第2半導体領域とがpn接合を形成しており、第2半導体領域と第3半導体領域とがpn接合を形成しているのが好適である。このようにフォトダイオードが埋込型のものである場合には、さらに高感度の光検出をすることができる。なお、第1導電型および第2導電型のうち一方はn型を意味し、他方はp型を意味する。

[0014]

本発明に係る光検出装置は、画素部が、フォトダイオードと転送用トランジスタとの間に設けられ飽和領域で用いられる遮断用トランジスタを更に含むのが好適である。この場合にも、さらに高感度の光検出をすることができる。

[0015]

本発明に係る光検出装置は、複数個の画素部が2次元配列されているのが好適であり、 この場合には、2次元画像を撮像することができる。

[0016]

また、第2画素データ読出部は、2次元配列された画素部の全てに対して1個の容量素

子を有していてもよいが、列毎に1個の容量素子を有するのが好適である。後者の場合には、1つの行にある各画素部に含まれるフォトダイオードで発生した電荷は、同時に、該画素部の放電用トランジスタを経て出力され、接続切替手段を経て第2画素データ読出部に入力し、列毎に設けられた対応する容量素子に蓄積され得る。したがって、高速に撮像をすることができる。

[0017]

また、第1 画素データ読出部が或る行の画素部からの出力電圧値を処理する期間に、第2 画素データ読出部が該行の画素部からの出力電荷を処理するのが好適である。或いは、第1 画素データ読出部が或る行の画素部からの出力電圧値を処理する期間に、第2 画素データ読出部が他の行の画素部からの出力電荷を処理するのが好適である。このように第1 画素データ読出部および第2 画素データ読出部が並列的に動作する場合には、フレームレートを低下させることなく撮像をすることができる。

[0018]

本発明に係る光検出装置は、第1画素データ読出部から出力される第1電圧値を入力してA/D変換し、この第1電圧値に応じた第1デジタル値を出力するとともに、第2画素データ読出部から出力される第2電圧値を入力してA/D変換し、この第2電圧値に応じた第2デジタル値を出力するA/D変換部を更に備えるのが好適である。また、このA/D変換部から出力される第1デジタル値および第2デジタル値を入力し、第1電圧値、第2電圧値、第1デジタル値および第2デジタル値のうちの何れかと基準値とを大小比較した結果に基づいて、第1デジタル値および第2デジタル値のうち一方を選択して出力する選択出力部を更に備えるのが好適である。

[0019]

この場合には、A/D変換部により、第1 画素データ読出部から出力される第1 電圧値がA/D変換されて、この第1 電圧値に応じた第1 デジタル値が出力され、また、第2 画素データ読出部から出力される第2 電圧値がA/D変換されて、この第2 電圧値に応じた第2 デジタル値が出力される。そして、選択出力部により、第1 電圧値,第2 電圧値,第1 デジタル値および第2 デジタル値のうちの何れかと基準値とを大小比較した結果に基づいて、第1 デジタル値および第2 デジタル値のうち一方が選択されて出力される。

[0020]

或いは、本発明に係る光検出装置は、第1画素データ読出部から出力される第1電圧値と第2画素データ読出部から出力される第2電圧値とを入力し、第1電圧値および第2電圧値のうちの何れかと基準値とを大小比較した結果に基づいて、第1電圧値および第2電圧値のうち一方を選択して出力する選択出力部を更に備えるのが好適である。また、この選択出力部から出力される電圧値を入力してA/D変換し、この電圧値に応じたデジタル値を出力するA/D変換部を更に備えるのが好適である。

[0021]

この場合には、選択出力部により、第1電圧値および第2電圧値のうちの何れかと基準値とを大小比較した結果に基づいて、第1電圧値および第2電圧値のうち一方が選択されて出力される。そして、A/D変換部により、この選択出力部から出力される電圧値がA./D変換されて、この電圧値に応じたデジタル値が出力される。

[0022]

本発明に係る光検出装置は、第2画素データ読出部が、容量素子に対して並列的に設けられた対数圧縮回路を更に含み、接続切替部の第3端から入力端子に流入した電荷を対数圧縮回路に入力して、その入力した電荷の流入量の対数値に応じた第3電圧値を出力するのが好適である。この場合には、第2画素データ読出部からは、画素部に含まれるフォトダイオードで発生した電荷の量に応じた第2電圧値が出力されるだけでなく、その電荷の流入量の対数値に応じた第3電圧値が対数圧縮回路から出力される。したがって、第1画素データ読出部から出力された第1電圧値と第2画素データ読出部から出力された第2電圧値および第3電圧値とに基づいて、高感度かつ更なる高ダイナミックレンジで光検出をすることができる。

このように第2画素データ読出部が対数圧縮回路をも含む場合には、第1画素データ読出部から出力される第1電圧値を入力してA/D変換し、この第1電圧値に応じた第1デジタル値を出力するとともに、第2画素データ読出部から出力される第2電圧値および第3電圧値を入力してA/D変換し、この第2電圧値に応じた第2デジタル値および第3電圧値に応じた第3デジタル値を出力するA/D変換部を更に備えるのが好適である。また、A/D変換部から出力される第1デジタル値,第2デジタル値および第3デジタル値を入力し、第1電圧値,第2電圧値,第3電圧値,第1デジタル値および第3デジタル値および第3デジタル値のうちの何れかと基準値とを大小比較した結果に基づいて、第1デジタル値,第2デジタル値および第3デジタル値のうちの何れか1つを選択して出力する選択出力部を更に備えるのが好適である。

[0024]

或いは、第1画素データ読出部から出力される第1電圧値と第2画素データ読出部から出力される第2電圧値および第3電圧値とを入力し、第1電圧値,第2電圧値および第3電圧値のうちの何れかと基準値とを大小比較した結果に基づいて、第1電圧値,第2電圧値および第3電圧値のうちの何れか1つを選択して出力する選択出力部を更に備えるのが好適である。また、選択出力部から出力される電圧値を入力してA/D変換し、この電圧値に応じたデジタル値を出力するA/D変換部を更に備えるのが好適である。

【発明の効果】

[0025]

本発明によれば、高感度かつ高ダイナミックレンジで光検出をすることができる。 【発明を実施するための最良の形態】

[0026]

以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、MおよびNそれぞれは2以上の整数であり、特に明示しない限りは、mは1以上M以下の任意の整数であり、nは1以上N以下の任意の整数である。

[0027]

(第1実施形態)

先ず、第1実施形態に係る光検出装置1の全体構成の概要について図1および図2を用いて説明する。

[0028]

図1は、第1実施形態に係る光検出装置1の概略構成図である。図2は、第1実施形態に係る光検出装置1の光検出部10の構成図である。これらの図に示される光検出装置1は、光検出部10、第1画素データ読出部20、第2画素データ読出部30、データ出力部40、タイミング制御部50およびスイッチSW1~SWNを有する。これらは、共通の半導体基板上に形成されているのが好適であり、その場合の基板上の配置が図示のとおりであるのが好適である。なお、タイミング制御部50は、この光検出装置1の全体の動作を制御するものであるが、複数の部分に分割されて互いに離れて基板上に配置されていてもよい。

[0029]

光検出部10は、M行N列に2次元配列された $M \times N$ 個の画素部 P_m , n を有する。各画素部 P_m , n は第m行第n列に位置する。各画素部 P_m , n は、共通の構成を有しており、フォトダイオードを含むアクティブピクセル型のものであり、該フォトダイオードに入射した光の強度に応じた電圧値を配線 L_1 , n へ出力する。各配線 L_1 , n は、第n列にあるM個の画素部 P_1 , n ~ P_M , n それぞれの出力端に共通に接続されている。また、各配線 L_2 , n は、第n列にあるM個の画素部 P_1 , n ~ P_M , n それぞれの他の端子に共通に接続されている。

[0030]

第1画素データ読出部20は、N本の配線L1,1~L1,Nと接続されており、各画素 出証特2004-3099880

部 $P_{m,n}$ から配線 $L_{1,n}$ へ出力される電圧値を入力して、所定の処理を行なった後に、画素データを表す第1電圧値 $V_{1,m,n}$ を順次に出力する。各電圧値 $V_{1,m,n}$ は、画素 部 $P_{m,n}$ へ入射する光の強度に応じた値である。特に、この第1電圧値 $V_{1,m,n}$ は、画素部 $P_{m,n}$ の寄生容量部が飽和していないとき、すなわち、画素部 $P_{m,n}$ への入射光の強度が比較的小さいときに、その入射光強度を高感度で検出した結果を高精度に表す。

【0031】 第2画素データ読出部30は、スイッチ $SW_1 \sim SW_N$ を介してN本の配線 $L_{2,1} \sim L_{2,N}$ と接続されており、各画素部 $P_{m,n}$ から配線 $L_{2,n}$ へ出力されスイッチ SW_n を経て流入する電荷を入力し、その電荷を容量素子に蓄積して、その容量素子に蓄積した電荷の量に応じた第2電圧値 $V_{2,m,n}$ を順次に出力する。この第2画素データ読出部30に含まれる容量素子の容量値は、画素部 $P_{m,n}$ に含まれる寄生容量部の容量値より大きい。各電圧値 $V_{2,m,n}$ は、画素部 $P_{m,n}$ へ入射する光の強度に応じた値である。また、この第2電圧値 $V_{2,m,n}$ は、画素部 $P_{m,n}$ の寄生容量部が飽和しているとき、すなわち、画素部 $P_{m,n}$ への入射光の強度が比較的大きいときにも、その入射光強度を検出した結果を高精度に表す。

[0032]

データ出力部40は、第1画素データ読出部20から出力される第1電圧値 $V_{1,m,n}$ と、第2画素データ読出部30から出力される第2電圧値 $V_{2,m,n}$ とを入力し、所定の処理を行なってデジタル値 $D_{m,n}$ を出力する。各デジタル値 $D_{m,n}$ は、第1電圧値 $V_{1,m,n}$ および第2電圧値 $V_{2,m,n}$ の何れか一方がA/D変換された結果の値であり、画素部 $P_{m,n}$ へ入射する光の強度を表す。

[0033]

タイミング制御部50は、光検出部10、第1画素データ読出部20、第2画素データ読出部30、データ出力部40およびスイッチ $SW_1 \sim SW_N$ それぞれの動作を制御する。タイミング制御部50は、例えばシフトレジスタ回路により所定のタイミングで各種の制御信号を発生させて、これらの制御信号を光検出部10、第1画素データ読出部20、第2画素データ読出部30、データ出力部40およびスイッチ $SW_1 \sim SW_N$ それぞれへ送出する。なお、図1および図2では、制御信号を送る為の配線の図示が一部省略されている。

[0034]

次に、第1実施形態に係る光検出装置1の光検出部10および第1画素データ読出部20の構成について図3および図4を用いて説明する。

[0035]

[0036]

2つの電圧フォロワ回路 F_1 , F_2 それぞれは、共通の構成を有しており、増幅器の反転入力端子と出力端子とが互いに直接に接続されており、高入力インピーダンスおよび低出力インピーダンスを有し、理想的には増幅率 1 の増幅回路である。一方の電圧フォロワ回路 F_1 は、N個の電圧保持部 $H_1 \sim H_N$ それぞれから順次に出力される一方の電圧保持部 $H_1 \sim H_N$ それぞれから順次に出力される他方の電圧値 $V_{n,1}$ を非反転入力端子に入力する。他方の電圧値 $V_{n,2}$ を非反転入力端子に入力する。

[0037]

[0038]

図4は、第1実施形態に係る光検出装置1の画素部 $P_{m,n}$ 、電圧保持部 H_n およびスイッチ SW_n それぞれの回路図である。この図では簡便の為に1つの画素部 $P_{m,n}$ 、1つの電圧保持部 H_n および1つのスイッチ SW_n が代表して示されている。

[0039]

各画素部 $P_{m,n}$ は、入射光強度に応じた量の電荷を発生するフォトダイオードPD、ゲート端子に形成された寄生容量部に蓄積されている電荷の量に応じた電圧値を出力する増幅用トランジスタ T_1 、フォトダイオードPDで発生した電荷を増幅用トランジスタ T_1 のゲート端子へ転送する為の転送用トランジスタ T_2 、増幅用トランジスタ T_1 のゲート端子に形成された寄生容量部の電荷を初期化する為の放電用トランジスタ T_3 、および、増幅用トランジスタ T_1 から出力される電圧値を外部の配線 $L_{1,n}$ へ出力する為の選択用トランジスタ T_4 を含む。

[0040]

フォトダイオードPDは、そのアノード端子が接地電位とされている。増幅用トランジスタ T_1 は、そのゲート端子に寄生容量部が形成されていて、そのドレイン端子がバイアス電位とされている。転送用トランジスタ T_2 は、そのドレイン端子が増幅用トランジスタ T_1 のゲート端子に接続され、そのソース端子がフォトダイオードPDのカソード端子に接続されている。放電用トランジスタ T_3 は、そのソース端子が増幅用トランジスタ T_1 のゲート端子に接続され、そのドレイン端子がスイッチS W_n と接続されている。選択用トランジスタ T_4 は、そのソース端子が増幅用トランジスタ T_1 のソース端子と接続され、そのドレイン端子が配線 $L_{1,n}$ と接続されている。また、この配線 $L_{1,n}$ には定電流源が接続されている。増幅用トランジスタ T_1 および選択用トランジスタ T_4 は、ソースフォロワ回路を構成している。

[0041]

なお、定電流源は列毎に配線 $L_{1,n}$ に接続されて設けられていてもよい。また、例えば、各配線 $L_{1,n}$ と第1 画素データ読出部 2 0 との間にスイッチを設けて、これらのスイッチを順次に閉じることで、第m行のN個の画素部 $P_{m,1} \sim P_{m,N}$ それぞれから出力される電圧値を第1 画素データ読出部 2 0 が順次に読み出す場合には、これらのスイッチと第1 画素データ読出部 2 0 との間の配線に定電流源が1 つだけ設けられていてもよい。

[0042]

転送用トランジスタ T_2 は、そのゲート端子に転送制御信号 S_{trans} を入力し、その転送制御信号 S_{trans} がハイレベルであるときに、フォトダイオードPDで発生した電荷を増幅用トランジスタ T_1 のゲート端子に形成されている寄生容量部へ転送する。放電用トランジスタ T_3 は、そのゲート端子に第m行放電制御信号 $S_{reset,m}$ を入力し、その第m行放電制御信号 $S_{reset,m}$ がハイレベルであるときに、増幅用トランジスタ T_1 のゲート端子とスイッチ SW_n との間を低抵抗にする。選択用トランジスタ T_4 は、そのゲート端子に第m行選択制御信号 $S_{select,m}$ を入力し、その第m行選択制御信号 $S_{select,m}$ がハイレベルであるときに、増幅用トランジスタ T_1 から出力される電圧値を外部の配線 L_1 の出力する。

[0043]

このように構成される各画素部 $P_{m,n}$ は、転送制御信号 S_{trans} がローレベルであって 第m行放電制御信号 $S_{reset,m}$ がハイレベルとなり、バイアス電位 V_{bias} がスイッチ S_{n} を経て放電用トランジスタ S_{n} に入力すると、増幅用トランジスタ S_{n} のゲート端子の

寄生容量部の電荷が初期化され、第m行選択制御信号 $S_{select,m}$ がハイレベルであれば、その初期化状態にある増幅用トランジスタ T_1 から出力される電圧値(暗信号成分)が選択用トランジスタ T_4 を経て配線 $L_{1,n}$ に出力される。一方、第m行放電制御信号 $S_{reset,m}$ がローレベルであって、転送制御信号 S_{trans} および第m行選択制御信号 $S_{select,m}$ ぞれぞれがハイレベルであれば、フォトダイオード P D で発生した電荷は増幅用トランジスタ T_1 のゲート端子に入力して、その電荷の量に応じて増幅用トランジスタ T_1 から出力される電圧値(明信号成分)が選択用トランジスタ T_4 を経て配線 $L_{1,n}$ に出力される。

[0044]

電圧保持部 H_n は、第1保持部 $H_{n,1}$ および第2保持部 $H_{n,2}$ を含む。第1保持部 $H_{n,1}$ および第2保持部 $H_{n,2}$ それぞれは、互いに同様の構成であり、第n列にあるM個の画素部 $P_{1,n} \sim P_{M,n}$ それぞれの選択用トランジスタ T_4 から順次に出力される電圧値を入力して保持することができ、また、その保持している電圧値を出力することができる。

[0045]

第1保持部 $H_{n,1}$ は、トランジスタ $T_{1,1}$ 、トランジスタ $T_{1,2}$ および容量素子 C_1 を含む。容量素子 C_1 の一端は接地電位とされ、容量素子 C_1 の他端は、トランジスタ $T_{1,1}$ のドレイン端子およびトランジスタ $T_{1,2}$ のソース端子それぞれと接続されている。トランジスタ $T_{1,1}$ のソース端子は、配線 $L_{1,n}$ を介して画素部 $P_{m,n}$ の選択用トランジスタ T_{4} と接続されている。トランジスタ $T_{1,2}$ のドレイン端子は、電圧フォロワ回路 F_{1} と接続されている。このように構成される第1保持部 $H_{n,1}$ は、トランジスタ $T_{1,n}$ のゲート端子に入力する第1入力制御信号 $S_{input,1}$ がハイレベルであるときに、配線 $L_{1,n}$ を介して接続されている画素部 $P_{m,n}$ から出力される電圧値を容量素子 C_{1} に保持させ、トランジスタ $T_{1,2}$ のゲート端子に入力する出力制御信号 $S_{output,n}$ がハイレベルであるときに、容量素子 C_{1} に保持されている電圧値 $V_{n,1}$ を電圧フォロワ回路 $V_{n,1}$ を電圧

[0046]

第 2 保持部 $H_{n,2}$ は、トランジスタ $T_{2,1}$ 、トランジスタ $T_{2,2}$ および容量素子 C_{2} を含む。容量素子 C_{2} の一端は接地電位とされ、容量素子 C_{2} の他端は、トランジスタ $T_{2,1}$ のドレイン端子およびトランジスタ $T_{2,2}$ のソース端子それぞれと接続されている。トランジスタ $T_{2,1}$ のソース端子は、配線 $L_{1,n}$ を介して画素部 $P_{m,n}$ の選択用トランジスタ T_{4} と接続されている。トランジスタ $T_{2,2}$ のドレイン端子は、電圧フォロワ回路 F_{2} と接続されている。このように構成される第 2 保持部 $H_{n,2}$ は、トランジスタ $T_{2,1}$ のゲート端子に入力する第 2 入力制御信号 $S_{input,2}$ がハイレベルであるときに、配線 $L_{1,n}$ を介して接続されている画素部 $P_{m,n}$ から出力される電圧値を容量素子 C_{2} に保持させ、トランジスタ $T_{2,2}$ のゲート端子に入力する出力制御信号 $S_{output,n}$ がハイレベルであるときに、容量素子 C_{2} に保持されている電圧値 $V_{n,2}$ を電圧フォロワ回路 $V_{n,2}$ を記述 $V_{n,2}$ を電圧フォロワ回路 $V_{n,2}$ を電圧フォロワ回路 $V_{n,2}$ を可能 $V_{n,2}$ を電圧フォロワ回路 $V_{n,2}$ を電圧フォロワ回路 $V_{n,2}$ を電圧フォロワ回路 $V_{n,2}$ を可能 $V_{n,2}$ を電圧フォロワ回路 $V_{n,2}$ を記述 $V_{n,2}$ を電圧フォロワ回路 $V_{n,2}$ を電圧フォロワ回路 $V_{n,2}$ を電圧 $V_{n,2}$ を電 $V_$

[0047]

第1保持部 $H_{n,1}$ および第2保持部 $H_{n,2}$ それぞれは、互いに異なるタイミングで動作する。例えば、第1保持部 $H_{n,1}$ は、配線 $L_{1,n}$ を介して接続されている画素部 P_m , n において転送制御信号 S_{trans} がローレベルであって第m行放電制御信号 $S_{select,m}$ および第m行選択制御信号 $S_{select,m}$ それぞれがハイレベルであるときに増幅用トランジスタ T_1 から出力される電圧値(暗信号成分) $V_{n,1}$ を入力して保持する。一方、第2保持部 $H_{n,2}$ は、配線 $L_{1,n}$ を介して接続されている画素部 $P_{m,n}$ において第m行放電制御信号 $S_{reset,m}$ がローレベルであって転送制御信号 S_{trans} および第m行選択制御信号 $S_{select,m}$ それぞれがハイレベルであるときに増幅用トランジスタ T_1 から出力される電圧値(明信号成分) $V_{n,2}$ を入力して保持する。

[0048]

なお、転送制御信号 Strans、第m行放電制御信号 Sreset,m 、第m行選択制御信号 Ss

elect, m 、第1入力制御信号 Sinput, 1 、第2入力制御信号 Sinput, 2 および第 n 列出力制御信号 Soutput, n それぞれは、タイミング制御部50から出力される。

[0049]

次に、第1実施形態に係る光検出装置1の第2画素データ読出部30の構成について図5および図6を用いて説明する。

[0050]

図 5 は、第 1 実施形態に係る光検出装置 1 の第 2 画素データ読出部 3 0 の構成図である。第 2 画素データ読出部 3 0 は、N個の積分回路 3 1 1 ~ 3 1 1 および N個のスイッチ 3 1 1 ~ 3 1 1 を有する。各積分回路 3 1 1 1 1 次 共通の構成を有していて、スイッチ 3 1 1 1 ~ 3 1 1 ~ 3 1 1 ~ 3 1 1 ~ 3 1 1 ~ 3 1 1 ~ 3 1 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 ② 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 1 ~ 3 ~ 3 个 3

[0051]

図 6 は、第 1 実施形態に係る光検出装置 1 の画素部 $P_{m,n}$ 、積分回路 3 1_n およびスイッチ S W_n それぞれの回路図である。この図では簡便の為に 1 つの画素部 $P_{m,n}$ 、 1 つの積分回路 3 1_n および 1 つのスイッチ S W_n が代表して示されている。

[0052]

[0053]

各スイッチSWnは、画素部Pm,nの放電用トランジスタT3のドレイン端子に接続された第1端と、画素部Pm,nの増幅用トランジスタT1のゲート端子の電荷を初期化する為のバイアス電位 V_{bias} と接続される第2端と、積分回路31nの入力端子と接続された第3端とを有する。そして、スイッチSWnは、第1端と第2端との間または第1端と第3端との間を電気的に接続する接続切替部として作用する。スイッチSWnの第1端と第2端との間が電気的に接続されているときには、バイアス電位 V_{bias} は、スイッチSWnを経て、画素部 $P_{m,n}$ の放電用トランジスタ T_3 に供給される。一方、スイッチSWnの第1端と第3端との間が電気的に接続されているときには、画素部 $P_{m,n}$ のフォトダイオードPDで発生した電荷は、放電用トランジスタ T_3 およびスイッチSWnを経て、積分回路31nの入力端子へ移動する。

[0054]

なお、スイッチSW,SWn,SW1,n それぞれの開閉動作を制御する為の制御信号は、タイミング制御部50から出力される。また、スイッチSWn は、第1端と第2端との間および第1端と第3端との間の何れもが電気的に接続されない状態もある。

[0055]

次に、第1実施形態に係る光検出装置1のデータ出力部40の構成について図7および 図8を用いて説明する。

[0056]

図7は、第1実施形態に係る光検出装置1のデータ出力部40の1構成例を示す図である。この図に示されるデータ出力部40は、A/D変換回路41 $_1$, 41 $_2$ および選択出力部42を有する。A/D変換回路41 $_1$ は、第1画素データ読出部20から出力される第1電圧値 $V_{1,m,n}$ を入力してA/D変換し、この第1電圧値 $V_{1,m,n}$ に応じた第1

デジタル値 $D_{1,m,n}$ を出力する。A/D変換回路 4 1 2 は、第 2 画素データ読出部 3 0 から出力される第 2 電圧値 $V_{2,m,n}$ を入力してA/D変換し、この第 2 電圧値 $V_{2,m,n}$ に応じた第 2 デジタル値 $D_{2,m,n}$ を出力する。

[0057]

なお、各積分回路 31n の容量素子 C の容量値が画素部 Pm,n の寄生容量部の容量値の 2^K 倍であることに対応して、A/D 変換回路 41n への入力電圧値が或る値 V であるときの第 1 デジタル値と、A/D 変換回路 41n への入力電圧値が $V/2^K$ であるときの第 2 デジタル値とは、互いに等しい。

[0058]

選択出力部 42 は、これら第1 デジタル値 $D_{1,m,n}$ および第2 デジタル値 $D_{2,m,n}$ を入力し、第1 デジタル値 $D_{1,m,n}$ と基準値とを大小比較した結果に基づいて第1 デジタル値 $D_{1,m,n}$ および第2 デジタル値 $D_{2,m,n}$ のうち一方を選択し、その選択した値をデジタル値 $D_{m,n}$ として出力する。

[0059]

具体的には、基準値は、第1画素データ読出部20から出力される第1電圧値の飽和値に対応するデジタル値、または、これより幾らか小さいデジタル値、に設定される。つまり、第1デジタル値 $D_{1,m,n}$ と基準値とを大小比較することで、画素部 $P_{m,n}$ の寄生容量部が飽和しているか否かが判定され得る。そして、選択出力部42は、第1デジタル値 $D_{1,m,n}$ が基準値より小さいときには、第1デジタル値 $D_{1,m,n}$ が基準値より小さいときには、第1デジタル値 $D_{1,m,n}$ が基準値以上であるときには、第2デジタル値 $D_{2,m,n}$ をデジタル値 $D_{m,n}$ として出力する。

[0060]

なお、第1デジタル値 $D_{1,m,n}$ と基準値とを大小比較するのでは無く、第2デジタル値 $D_{2,m,n}$ と基準値とを大小比較してもよいし、また、第1電圧値 $V_{1,m,n}$ または第2電圧値 $V_{2,m,n}$ と基準値とを大小比較してもよい。これら何れの場合にも、基準値は、画素部 $P_{m,n}$ の寄生容量部が飽和しているか否かを判定し得る値に設定される。

[0061]

このように、画素部 $P_{m,n}$ の寄生容量部が飽和していないとき、すなわち、画素部 $P_{m,n}$ への入射光の強度が比較的小さいときには、第1デジタル値 $D_{1,m,n}$ (すなわち、画素部 $P_{m,n}$ の選択用トランジスタ T_4 から出力されて第1 画素データ20により読み出された第1 電圧値 $V_{1,m,n}$ のA/D変換結果)がデータ出力部40からデジタル値 $D_{m,n}$ として出力されるので、高感度で光検出が可能である。一方、画素部 $P_{m,n}$ の寄生容量部が飽和しているとき(または、飽和寸前の状態であるとき)、すなわち、画素部 $P_{m,n}$ への入射光の強度が比較的大きいときには、第2 デジタル値 $D_{2,m,n}$ (すなわち、画素部 $P_{m,n}$ の放電用トランジスタ T_3 から出力されて第2 画素データ30 により読み出された第2 電圧値 $V_{2,m,n}$ のA/D変換結果)がデータ出力部40からデジタル値 $D_{m,n}$ として出力されるので、高ダイナミックレンジで光検出が可能である。したがって、第1 実施形態に係る光検出装置1 は、高感度かつ高ダイナミックレンジで撮像をすることができる。

[0062]

図8は、第1実施形態に係る光検出装置1のデータ出力部40の他の構成例を示す図である。この図に示されるデータ出力部40は、選択出力部43およびA/D変換回路44を有する。選択出力部43は、第1画素データ読出部20から出力される第1電圧値V1,m,n と第2画素データ読出部30から出力される第2電圧値V2,m,n とを入力し、第1電圧値V1,m,n と基準値とを大小比較した結果に基づいて、第1電圧値V1,m,n および第2電圧値V2,m,n のうち一方を選択して出力する。

[0063]

具体的には、基準値は、第1画素データ読出部20から出力される第1電圧値の飽和値、または、これより幾らか小さい値、に設定される。つまり、第1電圧値V1,m,nと基準値とを大小比較することで、画素部Pm,nの寄生容量部が飽和しているか否かが判定

[0064]

なお、第1電圧値 $V_{1,m,n}$ と基準値とを大小比較するのでは無く、第2電圧値 $V_{2,m,n}$ と基準値とを大小比較してもよい。この場合にも、基準値は、画素部 $P_{m,n}$ の寄生容量部が飽和しているか否かを判定し得る値に設定される。

[0065]

A/D変換回路 4 4 は、選択出力部 4 3 から出力される電圧値を入力してA/D変換し、この電圧値に応じたデジタル値 $D_{m,n}$ を出力する。なお、各積分回路 3 1_n の容量素子 C の容量値が画素部 $P_{m,n}$ の寄生容量部の容量値の 2^K 倍であることに対応して、 A/D変換回路 4 4 は、第 1 画素データ読出部 2 0 から出力される第 1 電圧値 $V_{1,m,n}$ を A/D変換する場合には、そのA/D変換により得られたデジタル値をデジタル値 $D_{m,n}$ として出力し、その一方、第 2 画素データ読出部 3 0 から出力される第 2 電圧値 $V_{2,m,n}$ を A/D変換する場合には、そのA/D変換により得られたデジタル値を K ビットだけ上位にシフトしたものをデジタル値 $D_{m,n}$ として出力する。

[0066]

このように、画素部 $P_{m,n}$ の寄生容量部が飽和していないとき、すなわち、画素部 $P_{m,n}$ への入射光の強度が比較的小さいときには、画素部 $P_{m,n}$ の選択用トランジスタ T_4 から出力されて第1 画素データ20により読み出された第1 電圧値 $V_{1,m,n}$ のA/D変換結果がデータ出力部40からデジタル値 $D_{m,n}$ として出力されるので、高感度で光検出が可能である。一方、画素部 $P_{m,n}$ の寄生容量部が飽和しているとき(または、飽和寸前の状態であるとき)、すなわち、画素部 $P_{m,n}$ への入射光の強度が比較的大きいときには、画素部 $P_{m,n}$ の放電用トランジスタ T_3 から出力されて第2 画素データ30により読み出された第2 電圧値 $V_{2,m,n}$ のA/D変換結果がデータ出力部40からデジタル値 $D_{m,n}$ として出力されるので、高ダイナミックレンジで光検出が可能である。したがって、第1 実施形態に係る光検出装置1 は、高感度かつ高ダイナミックレンジで撮像をすることができる。

[0067]

次に、第1実施形態に係る光検出装置1の画素部Pm,nの構成について図9および図10を用いて説明する。

[0068]

図 9 は、第 1 実施形態に係る光検出装置 1 の画素部 $P_{m,n}$ の構成図である。この図において、フォトダイオード P D および転送用トランジスタ T_2 については半導体の断面図として示され、残部は回路図として示されている。この図に示されるように、フォトダイオード P D は、埋込型のものであって、p 領域 1 0 1 と、このp 領域 1 0 1 の上のp 領域 1 0 2 と、このp 領域 1 0 2 と、このp 領域 1 0 2 と、このp 領域 1 0 2 とは p p 存合を形成しており、p で 領域 1 0 2 と p 中 領域 1 0 3 とも p p 有 で の一部は 1 で で で で で で のことの 1 で のことの 1 で で

[0069]

転送用トランジスタT2は、p領域101の上のn領域104と、n 領域102のうち半導体層表面に達している部分と、これらの間の領域であって絶縁層105上に形成されたゲート電極106と、を含んで構成される。n領域104は、増幅用トランジスタT1のゲート端子と電気的に接続され、放電用トランジスタT3のソース端子と電気的に接続されている。p領域101とn領域104とは、pn接合を形成しており、画素部Pm,n内においてフォトダイオードPDで発生した電荷を蓄積する寄生容量部を構成している。

[0070]

このようにフォトダイオードPDが埋込型のものである場合には、リーク電流の発生が 出証特2004-3099880

抑制される。また、フォトダイオードPDで発生した電荷を寄生容量部へ転送する期間に、フォトダイオードPDの逆バイアス電圧を大きくすることで、フォトダイオードPDのpn接合部における空乏層を完全なものとして、フォトダイオードPDの接合容量値を殆ど零にすることができるので、フォトダイオードPDで発生した電荷を殆ど完全に寄生容量部へ転送することができる。したがって、フォトダイオードPDが埋込型のものである場合には、光検出のS/N比向上および高感度化に有効である。

[0071]

図10は、第1実施形態に係る光検出装置1の画素部 $P_{m,n}$ の他の構成を示す回路図である。この図に示される画素部 $P_{m,n}$ は、図4および図6で示された構成に加えて遮断用トランジスタ T_5 を更に備えている。遮断用トランジスタ T_5 は、フォトダイオードPDと転送用トランジスタ T_2 との間に設けられていて、飽和領域で動作し得るような電圧値がゲート端子に印加される。これにより、この画素部 $P_{m,n}$ では、フォトダイオードPDの接合容量が増幅用トランジスタ T_1 のゲート端子の電位に与える影響が抑制される。したがって、この場合にも、光検出のS/N比向上および高感度化に有効である。

[0072]

次に、第1実施形態に係る光検出装置1の動作例について説明する。図11は、第1実施形態に係る光検出装置1の動作例を説明するタイミングチャートである。この図は、第1行の各画素部 $P_{1,n}$ および第2行の各画素部 $P_{2,n}$ それぞれのデータを読み出す時間範囲を示している。

[0073]

この図には、上から順に、各画素部 $P_{m,n}$ の放電用トランジスタ T_3 のゲート端子に入力する第m行放電制御信号 $S_{reset,m}$ 、各画素部 $P_{m,n}$ の転送用トランジスタ T_2 のゲート端子に入力する転送制御信号 S_{trans} 、第1行の画素部 $P_{1,n}$ の選択用トランジスタ T_4 のゲート端子に入力する第1行選択制御信号 $S_{select,1}$ 、および、第2行の画素部 $P_{2,n}$ の選択用トランジスタ T_4 のゲート端子に入力する第2行選択制御信号 $S_{select,2}$ 、それぞれが示されている。

[0074]

続いて、各電圧保持部 H_n の第1保持部 $H_{n,1}$ のトランジスタ $T_{1,1}$ のゲート端子に入力する第1入力制御信号 $S_{input,1}$ 、各電圧保持部 H_n の第2保持部 $H_{n,2}$ のトランジスタ $T_{2,1}$ のゲート端子に入力する第2入力制御信号 $S_{input,2}$ 、第1列の電圧保持部 H_1 のトランジスタ $T_{1,2}$ および $T_{2,2}$ それぞれのゲート端子に入力する第1列出力制御信号 $S_{output,1}$ 、第N列の電圧保持部 H_N のトランジスタ $T_{1,2}$ および $T_{2,2}$ それぞれのゲート端子に入力する第N列出力制御信号 $S_{output,N}$ 、および、第1画素データ読出部 20から出力される第1電圧値 $V_{1,m,n}$ 、それぞれが示されている。

[0075]

更に続いて、各スイッチSWnのバイアス電位 V_{bias} 供給動作、各スイッチSWnの電荷転送動作、各積分回路 31nのスイッチSWの開閉、第1列のスイッチSW1.1の開閉、第1列のスイッチSW1.1の開閉、第1列のスイッチSW1.1の開閉、第1回素データ読出部 10から出力される第10 電圧値11の により、データ出力部 11のから出力されるデジタル値11のにより、データ出力部 11のから出力されるデジタル値11のにより、それぞれが示されている。

[0076]

時刻 t 1 0 前において、各画素部 P m , n に入力している放電制御信号 S reset, m 、転送制御信号 S trans および第 n 行選択制御信号 S select, n それぞれはローレベルである。また、第 1 画素データ読出部 2 0 の各電圧保持部 H n に入力している第 1 入力制御信号 S input, 1 , 第 2 入力制御信号 S input, 2 および第 n 列出力制御信号 S output, n それぞれもローレベルである。

[0077]

[0078]

第1画素データ読出部 20の各電圧保持部 H_n において、第1入力制御信号 $S_{input,1}$ は、放電制御信号 $S_{reset,m}$ がローレベルに転じる時刻 t_{11} から、転送制御信号 $S_{transtrain}$ がハイレベルに転じる時刻 t_{12} までの、間にある一定期間だけハイレベルとなる。これにより、この間に画素部 $P_{1,n}$ から配線 $L_{1,n}$ に出力される電圧値(暗信号成分)は、電圧保持部 H_n の第1保持部 $H_{n,1}$ により保持される。

[0079]

また、第1画素データ読出部 20の各電圧保持部 H_n において、第2入力制御信号 S_{in} put, 2 は、転送制御信号 S_{trans} がハイレベルである時刻 t_{12} から時刻 t_{13} までの間の一定期間だけハイレベルとなる。これにより、この間に画素部 $P_{1,n}$ から配線 $D_{1,n}$ に出力される電圧値(明信号成分)は、電圧保持部 $D_{1,n}$ の第2保持部 $D_{1,n}$ により保持される。

[0080]

[0081]

続いて、時刻 t_{20} から時刻 t_{30} までの間に第 2 行の各画素部 $P_{2,n}$ のデータの読み出しが行なわれる。画素部 $P_{2,n}$ において、放電制御信号 $S_{reset,m}$ は、時刻 t_{20} にハイレベルに転じて、時刻 t_{20} より後の時刻 t_{21} にローレベルに転じる。転送制御信号 S_{trans} は、時刻 t_{21} より後の時刻 t_{22} にハイレベルに転じて、時刻 t_{22} より後の時刻 t_{23} にローレベルに転じる。第 2 行選択制御信号 $S_{select,2}$ は、時刻 t_{20} にハイレベルに転じる。スイッチ S_{max} は、時刻 t_{20} から時刻 t_{21} までの間にバイアス電位 V_{bias} を各画素部 $P_{m,n}$ に供給する。

[0082]

第1画素データ読出部 20の各電圧保持部 H_n において、第1入力制御信号 $S_{input,1}$ は、放電制御信号 $S_{reset,m}$ がローレベルに転じる時刻 t_2 1 から、転送制御信号 S_{trans} がハイレベルに転じる時刻 t_2 2 までの、間にある一定期間だけハイレベルとなる。これにより、この間に画素部 $P_{2,n}$ から配線 $L_{1,n}$ に出力される電圧値(暗信号成分)は、電圧保持部 H_n の第1保持部 $H_{n,1}$ により保持される。

[0083]

また、第1画素データ読出部20の各電圧保持部 H_n において、第2入力制御信号 S_{in} put, 2は、転送制御信号 S_{trans} がハイレベルである時刻 t_2 2から時刻 t_2 3までの間の一定期間だけハイレベルとなる。これにより、この間に画素部 $P_{2,n}$ から配線 $L_{1,n}$ に出力される電圧値(明信号成分)は、電圧保持部 H_n の第2保持部 $H_{n,2}$ により保持される。

[0085]

以降も同様にして第1画素データ読出部20により順次に各行の画素部 $P_{m,n}$ のデータが読み出されていく。このようにして、第1画素データ読出部20により、第1行~第M行それぞれについて順次に、各行のN個の画素部 $P_{m,1}\sim P_{m,N}$ それぞれに入射した光の強度に応じた第1電圧値 $V_{1,m,1}\sim V_{1,m,N}$ が順次に出力される。また、この第1画素データ読出部20による第1電圧値 $V_{1,m,n}$ の読み出しと並列的に、第2画素データ読出部30による第2電圧値 $V_{2,m,n}$ の読み出しが以下のように行なわれる。

[0086]

[0087]

[0088]

[0089]

[0090]

続いて、時刻 t_2 4 から時刻 t_2 5 までの期間に、第1 画素データ読出部 2 0 により読み出された第 2 行の画素部 P_2 , n についての第 1 電圧値 V_1 , v_2 , v_3 がデータ出力部 4 0 に順次に入力するとともに、第 2 画素データ読出部 3 0 により読み出された第 2 行の画素部 P_2 , v_3 についての第 2 電圧値 v_3 , v_3 がデータ出力部 4 0 に順次に入力して、第 1 電圧値 v_3 , v_4 または第 2 電圧値 v_3 , v_4 がデータ出力部 4 0 から順次に出力される。

[0091]

以降も同様にして、第1行〜第M行それぞれについて順次に、各行のN個の画素部 P_m , $_1 \sim P_m$, $_N$ それぞれに入射した光の強度に応じたデジタル値 D_m , $_1 \sim D_m$, $_N$ がデータ出力部 $_1 \sim D_m$, $_2 \sim D_m$, $_1 \sim D_m$, $_2 \sim D_m$, $_2 \sim D_m$, $_3 \sim D_m$, $_4 \sim D_$

[0092]

なお、上記の動作例では、第1画素データ読出部20が第m行の画素部P $_{m,n}$ からの出力電圧値を処理する期間に、第2画素データ読出部30が第m行の画素部P $_{m,n}$ からの出力電荷を処理するものであった。しかし、第1画素データ読出部20が或る行の画素部P $_{m,n}$ からの出力電圧値を処理する期間に、第2画素データ読出部30が他の行の画素部P $_{m,n}$ からの出力電荷を処理するようにしてもよい。例えば、第1画素データ読出部20が第(m+1)行の画素部P $_{m,n}$ からの出力電圧値を処理する期間に、第2画素データ読出部30が第m行の画素部P $_{m,n}$ からの出力電荷を処理するようにしてもよい。何れの場合にも、第1画素データ読出部および第2画素データ読出部が並列的に動作する場合には、フレームレートを低下させることなく撮像をすることができる。ただし、後者の場合には、第m行の画素部P $_{m,n}$ へ入力される第m行放電制御信号 $_{m,n}$ とでは、第 $_{m,n}$ を低下させることなく撮像をすることができる。ただし、後者の場合には、第 $_{m,n}$ の画素部P $_{m,n}$ の画素部P $_{m,n}$ についての第1電圧値 $_{m,n}$ 1、第 $_{m,n}$ 1、第 $_{m,n}$ 1 についての第2電圧値 $_{m,n}$ 2、第 $_{m,n}$ 1 についての第2電圧値 $_{m,n,n}$ 2、第 $_{m,n}$ 2 回素データ読出部30から出力されるまで記憶される。

[0093]

(第2実施形態)

次に、第2実施形態に係る光検出装置2について説明する。図12は、第2実施形態に係る光検出装置2の概略構成図である。既述した第1実施形態に係る光検出装置1と比較すると、この第2実施形態に係る光検出装置2は、第2画素データ読出部30に替えて第2画素データ読出部30Aを備える点、データ出力部40に替えてデータ出力部40Aを備える点、および、タイミング制御部50に替えてタイミング制御部50Aを備える点、

で相違する。

[0094]

第2実施形態では、第2画素データ読出部30Aは、データ出力部40Aに対して、第2電圧値V2,m,nを出力するだけでなく、第3電圧値V3,m,nをも出力する。第2電圧値V2,m,nは、既述したように、画素部Pm,n内のフォトダイオードPDで発生した電荷の量に対して線形関係にある値である。一方、第3電圧値V3,m,nは、後述するように、画素部Pm,n内のフォトダイオードPDで発生して第2画素データ読出部30Aがら出力される第2電圧値V2,m,nおよび第3電圧値V3,m,nは、互いに異なるタイミングで出力されて、共通の配線を経てデータ出力部40Aへ入力してもよい。また、第2画素データ読出部30Aから出力される第2電圧値V2,m,nおよび第3電圧値V3,m,nは、互いに異なる配線を経てデータ出力部40Aへ入力してもよい。

[0095]

図13は、第2実施形態に係る光検出装置2の第2画素データ読出部30Aの構成図である。図5に示された第1実施形態における第2画素データ読出部30の構成と比較すると、この図13に示される第2実施形態における第2画素データ読出部30Aは、積分回路31nに対して並列的に設けられた対数圧縮回路32nを更に含む点で相違する。

[0096]

図14は、第2実施形態に係る光検出装置2の画素部 $P_{m,n}$ 、積分回路 31_n 、対数圧縮回路 32_n およびスイッチ SW_n それぞれの回路図である。対数圧縮回路 32_n は、積分回路 31_n の容量素子Cに対して並列的に設けられている。対数圧縮回路 32_n は、トランジスタ T_{32} およびスイッチ SW_{32} を有している。トランジスタ T_{32} のソース端子は、スイッチ SW_{32} を介して増幅器Aの入力端子と接続されている。トランジスタ T_{32} のドレイン端子は、トランジスタ T_{32} のゲート端子と直接に接続され、また、増幅器Aの出力端子とも接続されている。この対数圧縮回路 32_n は、スイッチ SW_n から流入した電荷を入力して、その入力した電荷の流入量の対数値に応じた第3電圧値 V_3 , m,n を出力することができる。

[0097]

[0098]

 $V_{3,m,n} = (k T/q) \ln(I sh/I) \qquad \cdots (1)$

このように、本実施形態では、第2画素データ読出部30Aは、画素部 $P_{m,n}$ 内のフォトダイオードPDで生じて積分回路3 1_n 内の容量素子Cに蓄積された電荷の量に応じた第2電圧値 $V_{2,m,n}$ を積分回路3 1_n から出力するだけでなく、その電荷の量の対数値に応じた第3電圧値 $V_{3,m,n}$ を対数圧縮回路3 2_n から出力する。また、第2画素データ読出部30Aは、第2電圧値 $V_{2,m,n}$ および第3電圧値 $V_{3,m,n}$ を、データ出力部40Aへ至る共通の配線へ互いに異なるタイミングで出力する。

100991

次に、第2実施形態に係る光検出装置2のデータ出力部40Aの構成について図15および図16を用いて説明する。

[0100]

図15は、第2実施形態に係る光検出装置2のデータ出力部40Aの1構成例を示す図

[0101]

選択出力部 42は、これら第 1 デジタル値 $D_{1,m,n}$, 第 2 デジタル値 $D_{2,m,n}$ および第 3 デジタル値 $D_{3,m,n}$ を入力し、第 1 デジタル値 $D_{1,m,n}$ と基準値とを大小比較した結果に基づいて、第 1 デジタル値 $D_{1,m,n}$, 第 2 デジタル値 $D_{2,m,n}$ および第 3 デジタル値 $D_{3,m,n}$ のうちの何れか 1 つを選択し、その選択した値をデジタル値 $D_{m,n}$ として出力する。なお、第 1 デジタル値 $D_{1,m,n}$ と基準値とを大小比較するのでは無く、第 2 デジタル値 $D_{2,m,n}$ または第 3 デジタル値 $D_{3,m,n}$ と基準値とを大小比較してもよいし、また、第 1 電圧値 $V_{1,m,n}$, 第 2 電圧値 $V_{2,m,n}$ および第 3 電圧値 $V_{3,m,n}$ の何れかと基準値とを大小比較してもよい。基準値としては、画素部 $P_{m,n}$ の寄生容量部が飽和しているか否かを判定し得る第 1 基準値、および、積分回路 1 1 の容量素子 1 で の 1 で 1 の 1 で

[0102]

そして、画素部 $P_{m,n}$ の寄生容量部が飽和していないとき、すなわち、画素部 $P_{m,n}$ への入射光の強度が比較的小さいときには、第1デジタル値 $D_{1,m,n}$ (すなわち、画素部 $P_{m,n}$ の選択用トランジスタ T_4 から出力されて第1画素データ20により読み出された第1電圧値 $V_{1,m,n}$ のA/D変換結果)がデータ出力部40Aからデジタル値 D_m のとして出力されるので、高感度で光検出が可能である。

[0103]

また、画素部 $P_{m,n}$ の寄生容量部が飽和しているとき(または、飽和寸前の状態であるとき)であって、積分回路 31_n の容量素子Cが飽和していないときには、第2 デジタル値 $D_{2,m,n}$ (すなわち、画素部 $P_{m,n}$ の放電用トランジスタ T_3 から出力されて第2 画素データ 30 Aの積分回路 31_n により読み出された第2 電圧値 $V_{2,m,n}$ のA/D変換結果)がデータ出力部 40 Aからデジタル値 $D_{m,n}$ として出力されるので、高ダイナミックレンジで光検出が可能である。

[0104]

[0105]

図16は、第2実施形態に係る光検出装置2のデータ出力部40Aの他の構成例を示す図である。この図に示されるデータ出力部40Aは、図8に示されたものと略同様の構成であって、選択出力部43およびA/D変換回路44を有する。ただし、第2実施形態では、選択出力部43は、第1画素データ読出部20から出力される第1電圧値V1.m.nを入力するとともに、第2画素データ読出部30Aから出力される第2電圧値V2.m.n および第3電圧値V3,m.n を入力して、第1電圧値V1,m.n と基準値とを大小比較した結果に基づいて、第1電圧値V1,m.n 第2電圧値V2,m.n および第3電圧値V3,m.n のうちの何れか1つを選択して出力する。なお、第1電圧値V1,m.n と基準値とを大小比較するのでは無く、第2電圧値V2,m.n または第3電圧値V3,m.n と基準値とを大小比較するのでは無く、第2電圧値V2,m.n または第3電圧値V3,m.n と基準値とを大小比較してもよい。基準値としては、画素部Pm.n の寄生容量部が飽和している

か否かを判定し得る第1基準値、および、積分回路31nの容量素子Cが飽和しているか 否かを判定し得る第2基準値、の2つが用いられる。

[0106]

そして、画素部 $P_{m,n}$ の寄生容量部が飽和していないとき、すなわち、画素部 $P_{m,n}$ への入射光の強度が比較的小さいときには、画素部 $P_{m,n}$ の選択用トランジスタ T_4 から出力されて第1画素データ20により読み出された第1電圧値 $V_{1,m,n}$ のA/D変換結果がデータ出力部40Aからデジタル値 $D_{m,n}$ として出力されるので、高感度で光検出が可能である。

[0107]

また、画素部 $P_{m,n}$ の寄生容量部が飽和しているとき(または、飽和寸前の状態であるとき)であって、積分回路 31_n の容量素子Cが飽和していないときには、画素部 $P_{m,n}$ の放電用トランジスタ T_3 から出力されて第 2 画素データ 30_n の積分回路 31_n により読み出された第 2 電圧値 $V_{2,m,n}$ のA/D変換結果がデータ出力部 40_n Aからデジタル値 $D_{m,n}$ として出力されるので、高ダイナミックレンジで光検出が可能である。

[0108]

[0109]

次に、第2実施形態に係る光検出装置 2 の動作例について説明する。図17は、第2実施形態に係る光検出装置 2 の動作例を説明するタイミングチャートである。この図は、第1行の各画素部 $P_{1,n}$ のデータを読み出す時間範囲を示している。図11に示された第1実施形態の場合のタイミングチャートと比較すると、この図17に示される第2実施形態の場合のタイミングチャートでは、各積分回路 31_n のスイッチ S Wの開閉に続いて、各対数圧縮回路 32_n のスイッチ S W 32_n の開閉、第1列のスイッチ S W 32_n の開閉、第1列のスイッチ S W 32_n の開閉、第2 画素データ読出部 30_n A から出力される第2 電圧値 30_n V 30_n の開閉、第2 画素データ読出部 30_n を 30_n を 30_n を 30_n を 30_n を 30_n で 30_n を 30_n を 3

[0110]

[0111]

[0112]

[0113]

以降も同様にして、第1行~第M行それぞれについて順次に、各行のN個の画素部P $_{n}$ 1~ $_{n}$ 10年出力される。ここで、画素部 $_{n}$ 1。の寄生容量部が飽和していないとき、すなわち、画素部 $_{n}$ 1。への入射光の強度が比較的小さいときには、第1電圧値 $_{n}$ 1、 $_{n}$ 1。の寄生容量部が飽和しているときであって、積分回路 $_{n}$ 1 の容量素子が飽和していないときには、第2電圧値 $_{n}$ 2、 $_{n}$ 1 がA/D変換された結果がデジタル値D $_{n}$ 1 をして出力される。さらに、積分回路 $_{n}$ 1 の容量素子が飽和しているとき、すなわち、画素部 $_{n}$ 1 への入射光の強度が比較的大きいときには、第3電圧値 $_{n}$ 2、 $_{n}$ 3、 $_{n}$ 4 の方、過素部 $_{n}$ 6 での入射光の強度が比較的大きいときには、第3電圧値 $_{n}$ 7 をして出力される。したがって、第2実施形態に係る光検出装置2は、高感度かつ更なる高ダイナミックレンジで入射光強度を検出することができる。

【図面の簡単な説明】

[0114]

- 【図1】第1実施形態に係る光検出装置1の概略構成図である。
- 【図2】第1実施形態に係る光検出装置1の光検出部10の構成図である。
- 【図3】第1実施形態に係る光検出装置1の第1画素データ読出部20の構成図である。
- 【図4】第1実施形態に係る光検出装置1の画素部Pm,n、電圧保持部HnおよびスイッチSWnそれぞれの回路図である。
- 【図5】第1実施形態に係る光検出装置1の第2画素データ読出部30の構成図である。
- 【図 6 】第 1 実施形態に係る光検出装置 1 の画素部 P m , n 、積分回路 3 1 n およびスイッチ S W n それぞれの回路図である。
- 【図7】第1実施形態に係る光検出装置1のデータ出力部40の1構成例を示す図である。
- 【図8】第1実施形態に係る光検出装置1のデータ出力部40の他の構成例を示す図である。
- 【図9】第1実施形態に係る光検出装置1の画素部 P m , n の構成図である。
- 【図10】第1実施形態に係る光検出装置1の画素部Pm,nの他の構成を示す回路 図である。
- 【図11】第1実施形態に係る光検出装置1の動作例を説明するタイミングチャート である。
- 【図12】第2実施形態に係る光検出装置2の概略構成図である。
- 【図13】第2実施形態に係る光検出装置2の第2画素データ読出部30Aの構成図

である。

【図14】第2実施形態に係る光検出装置2の画素部Pm, π 、積分回路31π 、対 数圧縮回路32 n およびスイッチSWn それぞれの回路図である。

【図15】第2実施形態に係る光検出装置2のデータ出力部40Aの1構成例を示す 図である。

【図16】第2実施形態に係る光検出装置2のデータ出力部40Aの他の構成例を示 す図である。

【図17】第2実施形態に係る光検出装置2の動作例を説明するタイミングチャート である。

【符号の説明】

[0115]

1, 2…光検出装置、10…光検出部、20…第1画素データ読出部、30, 30A… 第2画素データ読出部、40,40A…データ出力部、50,50A…タイミング制御部

【書類名】図面 【図1】

【図2】

【図3】

【図5】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

-40A

【図17】

【書類名】要約書

【要約】

【課題】 高感度かつ高ダイナミックレンジで光検出をすることができる光検出装置を提供する。

【解決手段】 光検出部 10内のアクティブピクセル型の画素部に光が入射すると、その画素部に含まれるフォトダイオードで電荷が発生し、その電荷の量に応じた電圧値が選択用トランジスタを経て画素部から出力され、第 1 画素データ読出部 20 により第 1 電圧値 $V_{1,m,n}$ として読み出される。画素部に含まれるフォトダイオードで発生した電荷は、放電用トランジスタを経て画素部から出力され、スイッチ S W_n を経て第 2 画素データ読出部 30 に入力し、その流入した電荷が容量素子に蓄積されて、その蓄積された電荷の量に応じた電圧値が第 2 画素データ読出部 30 から第 2 電圧値 $V_{2,m,n}$ として出力される。第 2 画素データ読出部 30 内の容量素子の容量値は、画素部に含まれる寄生容量部の容量値より大きい。

【選択図】 図2

特願2003-344895

出願人履歴情報

識別番号

[000236436]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

住 所 氏 名

静岡県浜松市市野町1126番地の1

浜松ホトニクス株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

△ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.