Curso de Verão de Álgebra Linear Parte 2 - Aula 06

Cleber Barreto dos Santos

07 de fevereiro de 2020

Relembrando:

Se $T:V\longrightarrow V$ é um operador linear em um espaço vetorial V de dimensão finita. Então existem polinômios irredutíveis p_1,p_2,\ldots,p_k distintos e inteiros positivos r_1,r_2,\ldots,r_k tais que

$$q_T(x) = p_1(x)^{r_1} p_2(x)^{r_2} \cdots p_k(x)^{r_k}.$$

O Teorema da Decomposição Primária afirma que se $W_j = \text{Ker}\left(p_j^{r_j}(T)\right)$ então

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_k.$$

Ainda mais, se $p_j(x) = x - \lambda_j$ para cada $j \in \{1, 2, ..., k\}$, temos que

$$q_T(x) = (x - \lambda_1)^{r_1} (x - \lambda_2)^{r_2} \cdots (x - \lambda_k)^{r_k}$$

e mostramos que o operador $D=\lambda_1 E_1+\lambda_2 E_2+\cdots \lambda_k E_k$ é diagonalizável, o operador $N=(T-\lambda_1 I)E_1+(T-\lambda_2 I)E_2+\cdots +(T-\lambda_k I)E_k$ é nilpotente e T=D+N.

Cada $N_j \doteq (T - \lambda_j I) E_j : W_j \longrightarrow W_j$ é um operador nilpotente e $(T - \lambda_j I) E_j = T - \lambda_j I$ em W_j .

O Teorema da Decomposição Cíclica afirma que podemos decompor

$$W_{j} = Z\left(v_{j,1}; N_{j}\right) \oplus Z\left(v_{j,2}; N_{j}\right) \oplus \cdots \oplus Z\left(v_{j,s_{j}}; N_{j}\right)$$

onde cada subespaço $Z\left(v_{j,t};N_{j}\right)$ é N_{j} -invariante (uma consequência disso é que cada $Z(v_{j,t};N_{j})$ é T-invariante) e $p_{v_{j,t}}$ é o polinômio N_{j} -anulador de $v_{j,t}$. Ainda mais, $p_{v_{j,t}}$ divide $q_{N_{j}}(x)=x^{r_{j}}$. Logo para algum $v_{j,t}$ tem-se que $p_{v_{j,m}}(x)=x^{r_{j}}$ para algum m e $p_{v_{j,t}}(x)=x^{s}$ com $s\leqslant r_{j}$.

Observe que para $Z(v_{i,t}; N_i)$ temos que $p_{v_{i,t}}(x) = x^{s(j,t)}$ temos que

$$\left[(T - \lambda_j I)|_{Z(v_{j,t})} \right]_{\mathcal{B}_{j,t}} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

e logo

$$\left[T|_{Z(v_{j,t})} \right]_{\mathcal{B}_{j,t}} = \begin{bmatrix} \lambda_j & 0 & 0 & \cdots & 0 & 0 \\ 1 & \lambda_j & 0 & \cdots & 0 & 0 \\ 0 & 1 & \lambda_j & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & \lambda_j \end{bmatrix} = J_{\lambda_j,n}.$$

Portanto como

$$V = W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$$

$$= Z(v_{1,1}; N_{1}) \oplus Z(v_{1,2}; N_{1}) \oplus \cdots \oplus Z(v_{1,s_{1}}; N_{1})$$

$$\oplus Z(v_{2,1}; N_{2}) \oplus Z(v_{2,2}; N_{2}) \oplus \cdots \oplus Z(v_{2,s_{2}}; N_{2}) \oplus \cdots$$

$$\oplus Z(v_{k,1}; N_{k}) \oplus Z(v_{k,2}; N_{k}) \oplus \cdots \oplus Z(v_{k,s_{k}}; N_{k})$$

obtemos uma decomposição na qual a matriz que representa T em determinada base é diagonal por blocos e os blocos presentes na diagonal são exatamente os blocos de Jordan $J_{\lambda_i,t}$.

Exemplo 1. Suponha que $p_T(x) = (x-1)^3(x-2)^2$. Logo $q_T(x) = (x-1)^{r_1}(x-2)^{r_2}$ com $r_1 \in \{1,2,3\}$ e $r_2 \in \{1,2\}$.

Por exemplo, se $q_T(x) = (x-1)(x-2)$ então

$$[T]_{\mathcal{B}} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 2 \\ & & & & 2 \end{bmatrix}.$$

Se $q_T(x) = (x-1)^2(x-2)$ então

$$[T]_{\mathcal{B}} = \begin{bmatrix} 1 & & & \\ 1 & 1 & & \\ & & 1 & \\ & & & 2 & \\ & & & & 2 \end{bmatrix}$$

Definição 2. Seja $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Seja V um \mathbb{K} -espaço vetorial. Um **produto interno** em V é uma função $\langle \cdot, \cdot \rangle : V \times V \longrightarrow \mathbb{K}$ tal que para quaisquer $u, v, w \in V$ e $\alpha \in \mathbb{K}$ temos que:

- (1) $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle;$
- (2) $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle;$
- (3) $\langle v, u \rangle = \overline{\langle u, v \rangle};$
- (4) $\langle v, v \rangle > 0 \text{ se } v \neq 0.$

Exemplo 3. Seja $V = \mathbb{K}^n$. O **produto interno canônico** é definido por $\langle (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \rangle = x_1 \overline{y_1} + x_2 \overline{y_2} + \dots + x_n \overline{y_n}$.

Exemplo 4. Se $V = \mathbb{R}^2$ a expressão

$$\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 - x_2 y_1 - x_1 y_2 + 4x_2 y_2$$

define um produto interno em \mathbb{R}^2 .

Exemplo 5. Seja $V = \mathcal{C}^0(\mathbb{R})$ o espaço das funções contínuas. Então $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$ define um produto interno em $V = \mathcal{C}^0(\mathbb{R})$.

Exemplo 6. Seja W um espaço vetorial com um produto interno $\langle \cdot, \cdot \rangle_W$. Sejam V um espaço vetorial e $T: V \longrightarrow W$ uma transformação linear. Então temos um produto interno $(\cdot, \cdot)_{V,T}: V \longrightarrow V$ dado por

$$(v_1, v_2)_{V,T} = \langle T(v_1), T(v_2) \rangle_W.$$

Definição 7. Um **espaço com produto interno** é um espaço vetorial com um produto interno fixado. Se esse espaço é real, o chamaremos de **Euclidiano**.

Definição 8. Seja $\langle \cdot, \cdot \rangle$ um produto interno no espaço vetorial V. Definimos a **norma com relação ao produto interno** por

$$||v|| \doteq \sqrt{\langle v, v \rangle}.$$

Teorema 9. Seja V um espaço com produto interno, então para vetores $u, v \in V$ e $\alpha \in \mathbb{K}$ temos que:

- (1) $\|\alpha u\| = |\alpha| \|u\|$;
- (2) ||u|| > 0 para cada $u \neq 0$;
- $(3) |\langle u, v \rangle| \leqslant ||u|| ||v||;$
- (4) $||u+v|| \leq ||u|| + ||v||$.

Demonstração. Os itens (1) e (2) são evidentes. Para o item (3) considere o vetor $w = v - \frac{\langle v, u \rangle}{\|u\|^2} u$. Como $\langle w, u \rangle = 0$ e $\langle w, w \rangle \geqslant 0$ segue o resultado. Para o item (4) basta calcular $\|u + v\|^2$.

Definição 10. Chamaremos a desigualdade do item (3) do teorema anterior de desigualdade de Cauchy-Schwarz.

Definição 11. Seja V um espaço vetorial.

- (1) se $u, v \in V$ dizemos que u é **ortogonal** a v se $\langle u, v \rangle = 0$;
- (2) o subconjunto $S \subseteq V$ não vazio é um conjunto **ortogonal** se todos os vetores de S são ortogonais entre si;
- (3) $S \subseteq V$ é um conjunto **ortonormal** se S é ortogonal e ||v|| = 1 para cada $v \in S$.

Exemplo 12. Se \mathcal{B} é a base canônica de \mathbb{K}^n , munido do produto interno canônico, então \mathcal{B} é um conjunto ortonormal em \mathbb{K}^n .

Exemplo 13. O conjunto $\{(x,y),(-y,x)\}$ é um subconjunto ortogonal em \mathbb{K}^2 .

Lema 14. Todo conjunto de vetores não-nulos é linearmente independente.

Teorema 15. Seja V um produto interno e sejam v_1, v_2, \ldots, v_m vetores linearmente independentes em V. Então podemos construir vetores ortogonais w_1, w_2, \ldots, w_m tais que os subespaços gerados por $\{v_1, v_2, \ldots, v_j\}$ e $\{w_1, w_2, \ldots, w_j\}$ coincidem.

Corolário 16. Todo espaço vetorial de dimensão finita possui base ortonormal.

Definição 17. Seja V um espaço vetorial e $S \subseteq V$ subconjunto. O **complemento ortogonal** de S é o conjunto

$$S^{\perp} = \{ v \in V \mid \langle v, s \rangle = 0, \ \forall s \in S \}.$$

Teorema 18. Seja $W \subseteq V$ subespaço vetorial de dimensão finita de um espaço V com produto interno. Defina:

$$E(w) = \sum_{j=1}^{m} \frac{\langle w, v_j \rangle}{\|v_j\|^2} v_j$$

sendo $\{v_1, v_2, \dots, v_m\}$ uma base ortogonal de W.

Exercícios - 07 de fevereiro de 2020

Exercício 1. Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$. Mostre que $\langle 0, v \rangle = 0$ para qualquer $v \in V$. Além disso, mostre que se $\langle v, w \rangle = 0$ para qualquer $w \in V$ então v = 0.

Exercício 2. Seja V um espaço vetorial. Mostre que a soma de dois produtos internos em V é ainda um produto interno. O conjunto formado pelos produtos internos em V é um subespaço vetorial de $\mathcal{L}(V \times V; \mathbb{K})$?

Exercício 3. Seja $V = \mathbb{K}^n$. Mostre que a função $\langle (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \rangle = x_1 \overline{y_1} + x_2 \overline{y_2} + \dots + x_n \overline{y_n}$

define um produto interno em \mathbb{K}^n .

Exercício 4. Seja $V = \mathbb{R}^2$. Mostre que a expressão

$$\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 - x_2 y_1 - x_1 y_2 + 4x_2 y_2$$

define um produto interno em \mathbb{R}^2 .

Exercício 5. Seja $V = \mathcal{C}^0(\mathbb{R})$. Mostre que a expressão

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

define um produto interno em $\mathcal{C}^0(\mathbb{R})$.

Exercício 6. Seja V um espaço com produto interno. A matriz do produto interno na base ordenada $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ é a matriz dada por

$$G = (G_{ij})$$
 onde $G_{ij} = \langle v_i, v_j \rangle$.

Mostre que G coincide com a o conjugado de sua matriz transposta.

Exercício 7. Seja W um subespaço vetorial do espaço vetorial com produto interno V e seja $E:V\longrightarrow V$ a projeção de V no subespaço W dada por

$$E(v) = \sum_{j=1}^{m} \frac{\langle w, v_j \rangle}{\|v_j\|^2} v_j$$

onde $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ é uma base de W. Mostre que $v - E(v) \in W^{\perp}$.

Exercício 8. Seja V um espaço vetorial com produto interno e seja W um subespaço de V. Mostre que a restrição do produto interno ao subespaço vetorial W define um produto interno em W.

Exercício 9. Seja V um espaço vetorial de dimensão finita. Suponha que o subespaço vetorial W de V possua um produto interno $\langle \cdot, \cdot \rangle_W$. Mostre que existe um produto interno $\langle \cdot, \cdot, \rangle_V$ em V para o qual $\langle w_1, w_2 \rangle_V = \langle w_1, w_2 \rangle_W$ para quaisquer $w_1, w_2 \in W$. O produto interno $\langle \cdot, \cdot, \rangle_V$ é único com relação a essa propriedade?

Exercício 10. Sejam V_1, V_2, \ldots, V_k espaços com produtos internos $\langle \cdot, \cdot \rangle_1, \langle \cdot, \cdot \rangle_2, \ldots, \langle \cdot, \cdot \rangle_k$ respectivamente. Mostre que a expressão $\sum_{j=1}^k \langle \cdot, \cdot \rangle_j$ define um produto interno no espaço vetorial $V = V_1 \times V_2 \times \cdots \times V_k$.

Exercício 11. Seja V um espaço vetorial com produto interno. Mostre que se $v,w\in V$ são vetores quaisquer temos que

$$||v+w||^2 + ||v-w||^2 = ||v||^2 + ||w||^2.$$

Exercício 12. Seja V um espaço vetorial de dimensão finita. Seja $T:V\longrightarrow V$ um operador linear em V cujo polinômio **característico** seja produto de fatores lineares distintos. Mostre que existem um produto interno em V e uma base \mathcal{B} de autovetores de T tais que \mathcal{B} é um conjunto ortonormal com relação a base \mathcal{B} .

Exercício 13. Sejam V um espaço vetorial com produto interno, W um subespaço vetorial de V e $E(v) = \sum_{j=1}^m \frac{\langle w, v_j \rangle}{\|v_j\|^2} v_j$ sendo $\{v_1, v_2, \dots, v_m\}$ uma base de W. Mostre que I - E é uma projeção de V em W^{\perp} . Mostre também que Ker(I - E) = W.

Exercício 14. Seja V um espaço vetorial com produto interno. Seja $\{v_1, v_2, \dots, v_m\}$ um conjunto ortogonal de vetores não-nulos em V. Mostre que se $v \in V$ então

$$\sum_{j=1}^{m} \frac{|\langle v, v_j \rangle|^2}{\|v_j\|^2} \leqslant \|v\|^2.$$

Exercício 15. Seja S um subconjunto do espaço vetorial V com produto interno. Mostre que $\mathsf{span}(S) \subseteq (S^{\perp})^{\perp}$.

Exercício 16. Seja V o espaço vetorial dos polinômios de grau menor ou igual a 3. Seja W o subespaço de V formado pelos polinômios pares. Considere o produto interno em V dado por

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt.$$

Encontre W^{\perp} .