```
In [1]:
import numpy as np
```

import pandas as pd
import matplotlib.pyplot as plt

%matplotlib inline import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.impute import SimpleImputer

from scipy.stats import zscore

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import confusion_matrix,accuracy_score

 $\textbf{from sklearn.decomposition import} \ \texttt{PCA}$

from sklearn import metrics

from sklearn.model selection import KFold

from sklearn.model_selection import cross_val_score

In [2]:

```
veh= pd.read_csv("vehicle-1.csv") # Loading the dataset.
```

In [3]:

veh.shape # shape od the dataset.

Out[3]:

(846, 19)

In [4]:

veh.head() # to get a general idea of data.

Out[4]:

	compactness	circularity	distance_circularity	radius_ratio	pr.axis_aspect_ratio	max.length_aspect_ratio	scatter_ratio	elongatednes
0	95	48.0	83.0	178.0	72.0	10	162.0	42.
1	91	41.0	84.0	141.0	57.0	9	149.0	45.
2	104	50.0	106.0	209.0	66.0	10	207.0	32.
3	93	41.0	82.0	159.0	63.0	9	144.0	46.
4	85	44.0	70.0	205.0	103.0	52	149.0	45.
4								Þ

In [5]:

veh.info() #Identifying datatype of each columns.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 846 entries, 0 to 845
Data columns (total 19 columns):

Daca	cordinis (cocar is cordinis).		
#	Column	Non-Null Count	Dtype
0	compactness	846 non-null	int64
1	circularity	841 non-null	float64
2	distance_circularity	842 non-null	float64
3	radius_ratio	840 non-null	float64
4	pr.axis_aspect_ratio	844 non-null	float64
5	max.length_aspect_ratio	846 non-null	int64
6	scatter_ratio	845 non-null	float64
7	elongatedness	845 non-null	float64
8	pr.axis_rectangularity	843 non-null	float64
9	max.length_rectangularity	846 non-null	int64
10	scaled_variance	843 non-null	float64
11	scaled_variance.1	844 non-null	float64
12	scaled_radius_of_gyration	844 non-null	float64

```
13 scaled_radius_of_gyration.1 842 non-null float64
 14 skewness about
                                   840 non-null float64
 15 skewness_about.1
                                   845 non-null float64
16 skewness_about.2
17 hollows_ratio
18 class
                                   845 non-null float64
846 non-null int64
                                    846 non-null
                                                     object
dtypes: float64(14), int64(4), object(1)
```

memory usage: 125.7+ KB

In [6]:

veh.describe()

Out[6]:

	compactness	circularity	distance_circularity	radius_ratio	pr.axis_aspect_ratio	max.length_aspect_ratio	scatter_ratio	elongate
count	846.000000	841.000000	842.000000	840.000000	844.000000	846.000000	845.000000	845.0
mean	93.678487	44.828775	82.110451	168.888095	61.678910	8.567376	168.901775	40.9
std	8.234474	6.152172	15.778292	33.520198	7.891463	4.601217	33.214848	7.8
min	73.000000	33.000000	40.000000	104.000000	47.000000	2.000000	112.000000	26.0
25%	87.000000	40.000000	70.000000	141.000000	57.000000	7.000000	147.000000	33.0
50%	93.000000	44.000000	80.000000	167.000000	61.000000	8.000000	157.000000	43.0
75%	100.000000	49.000000	98.000000	195.000000	65.000000	10.000000	198.000000	46.0
max	119.000000	59.000000	112.000000	333.000000	138.000000	55.000000	265.000000	61.0
4								Þ

In [7]:

veh.isnull().values.any() # To check if there are null values.

Out[7]:

True

In [8]:

```
labelencoder = LabelEncoder()
veh['class_dup'] = labelencoder.fit_transform(veh['class'])
veh
```

Out[8]:

	compactness	circularity	distance_circularity	radius_ratio	pr.axis_aspect_ratio	max.length_aspect_ratio	scatter_ratio	elongatedne
0	95	48.0	83.0	178.0	72.0	10	162.0	4
1	91	41.0	84.0	141.0	57.0	9	149.0	4
2	104	50.0	106.0	209.0	66.0	10	207.0	3
3	93	41.0	82.0	159.0	63.0	9	144.0	4
4	85	44.0	70.0	205.0	103.0	52	149.0	4
841	93	39.0	87.0	183.0	64.0	8	169.0	4
842	89	46.0	84.0	163.0	66.0	11	159.0	4
843	106	54.0	101.0	222.0	67.0	12	222.0	3
844	86	36.0	78.0	146.0	58.0	7	135.0	5
845	85	36.0	66.0	123.0	55.0	5	120.0	5

846 rows × 20 columns

F

In [9]:

```
veh.mean()
```

Out[9]:

```
93.678487
compactness
circularity
                               44.828775
distance_circularity
                               82.110451
radius ratio
                             168.888095
pr.axis_aspect_ratio
                              61.678910
max.length_aspect_ratio
                               8.567376
scatter ratio
                              168.901775
                              40.933728
elongatedness
pr.axis rectangularity
                              20.582444
                            147.998818
max.length rectangularity
scaled_variance
                              188.631079
scaled variance.1
                              439.494076
scaled_radius_of_gyration
                             174.709716
scaled_radius_of_gyration.1
                              72.447743
skewness about
                               6.364286
{\tt skewness\_about.1}
                              12.602367
skewness_about.2
                              188.919527
hollows ratio
                              195.632388
class_dup
                               0.977541
dtype: float64
```

In [10]:

```
veh.drop("class",axis=1,inplace=True)
```

In [11]:

```
meanFiller = lambda x: x.fillna(x.mean())
veh = veh.apply(meanFiller,axis=0)
```

In the above step null values were replaced with means values of there respective columns \ and the class clomn was dropped.

Univariate Analysis

In [12]:

```
sns.distplot(veh["compactness"])
```

Out[12]:

<matplotlib.axes. subplots.AxesSubplot at 0x240748e5588>

In [13]:

```
sns.distplot(veh["circularity"])
```

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x2407500d588>

In [14]:

```
sns.distplot(veh["distance_circularity"])
```

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x240750fbf48>

In [15]:

```
sns.distplot(veh["radius_ratio"])
```

Out[15]:

<matplotlib.axes. subplots.AxesSubplot at 0x240751b9c08>

In [16]:

```
sns.distplot(veh["pr.axis_aspect_ratio"])
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x24075254048>

In [17]:

```
sns.distplot(veh["max.length_aspect_ratio"])
```

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x240753568c8>

In [18]:

```
sns.distplot(veh["scatter_ratio"])
```

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x2407533d808>

In [19]:

sns.distplot(veh["elongatedness"])

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x240754d54c8>

In [20]:

sns.distplot(veh["pr.axis_rectangularity"])

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x24075564d48>

In [21]:

sns.distplot(veh["scaled_variance"])

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0x240754de708>

In [22]:

```
sns.distplot(veh["scaled_variance.1"])
```

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x240756a1a48>

In [23]:

```
sns.distplot(veh["scaled_radius_of_gyration"])
```

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x2407572b048>

In [24]:

```
sns.distplot(veh["scaled_radius_of_gyration.1"])
```

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x240757c42c8>

In [25]:

```
sns.distplot(veh["skewness_about"])
```

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x2407581a908>

In [26]:

```
sns.distplot(veh["skewness_about.1"])
```

Out[26]:

<matplotlib.axes._subplots.AxesSubplot at 0x2407593d6c8>

In [27]:

```
sns.distplot(veh["skewness_about.2"])
```

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x240769aa088>

In [28]:

```
sns.distplot(veh["hollows_ratio"])
```

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0x24076a33688>

Bivariate Analysis

In [29]:

sns.pairplot(veh,hue='class_dup',diag_kind='kde')

Out[29]:

<seaborn.axisgrid.PairGrid at 0x24076a21888>

Correlation table

In [30]:

core=veh.corr()
veh.corr()

Out[30]:

	compactness	circularity	distance_circularity	radius_ratio	pr.axis_aspect_ratio	max.length_aspect_ratio
compactness	1.000000	0.685421	0.789909	0.689840	0.091704	0.148249
circularity	0.685421	1.000000	0.793016	0.620967	0.153362	0.251208
distance_circularity	0.789909	0.793016	1.000000	0.767079	0.158397	0.264550
radius_ratio	0.689840	0.620967	0.767079	1.000000	0.663559	0.450036
pr.axis_aspect_ratio	0.091704	0.153362	0.158397	0.663559	1.000000	0.648704
max.length_aspect_ratio	0.148249	0.251208	0.264550	0.450036	0.648704	1.000000
scatter_ratio	0.812235	0.848207	0.904400	0.734228	0.103715	0.165967
elongatedness	-0.788643	-0.821901	-0.911435	-0.789795	-0.183264	-0.180041
pr.axis_rectangularity	0.813636	0.844972	0.893128	0.708285	0.079395	0.161592
max.length_rectangularity	0.676143	0.961943	0.774669	0.569205	0.127128	0.305943
scaled_variance	0.762770	0.796822	0.861980	0.794041	0.273414	0.318955
scaled_variance.1	0.815901	0.838525	0.887328	0.720150	0.089620	0.143713
scaled_radius_of_gyration	0.585156	0.926888	0.705953	0.536536	0.122111	0.189704
scaled_radius_of_gyration.1	-0.250071	0.052642	-0.225852	-0.180819	0.152776	0.295574
skewness_about	0.235687	0.144394	0.113813	0.048720	-0.058481	0.015439
skewness_about.1	0.157387	-0.011851	0.265553	0.173832	-0.032134	0.043489
skewness_about.2	0.298526	-0.105645	0.145563	0.382129	0.239849	-0.026180
hollows_ratio	0.365552	0.045318	0.332095	0.471262	0.267724	0.143919
class_dup	-0.033796	-0.159804	-0.064902	-0.182270	-0.098318	0.207619
4						<u>)</u>

Correlation Heatmap

```
In [31]:
```

```
plt.figure(figsize = (21,15))
sns.heatmap(core,annot=True)
```

Out[31]:

From the bivariate analysis, correlation table and correlation heatmap.\ The columns the is of least significance to target variable was found.

Preprocessing Data for analysis

```
In [32]:
```

```
veh.drop("compactness",axis=1,inplace=True)
veh.drop("distance_circularity",axis=1,inplace=True)
veh.drop("pr.axis_aspect_ratio",axis=1,inplace=True)
veh.drop("max.length_rectangularity",axis=1,inplace=True)
veh.drop("scatter_ratio",axis=1,inplace=True)
veh.drop("pr.axis_rectangularity",axis=1,inplace=True)
veh.drop("skewness_about.2",axis=1,inplace=True)
```

```
In [33]:
```

```
X= veh.drop(["class_dup"],axis=1,)
Y= veh[["class_dup"]]
```

In [34]:

```
XScaled = X.apply(zscore)
```

Splitting the data into test,train

```
In [35]:
x_train, x_test, y_train, y_test = train_test_split(XScaled, Y, test_size=0.3, random_state=7)
SVM Analysis
In [36]:
clf = SVC(C= .1, kernel='linear', gamma= 1)
In [37]:
clf.fit(x train , y train.values.ravel())
Out[37]:
SVC(C=0.1, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma=1, kernel='linear',
    max iter=-1, probability=False, random state=None, shrinking=True,
    tol=0.001, verbose=False)
In [38]:
y pred = clf.predict(x test)
In [39]:
print("Accuracy:",accuracy_score(y_test, y_pred))
Accuracy: 0.8582677165354331
In [40]:
clf = SVC(C= .1, kernel='rbf', gamma= 1)
clf.fit(x train , y train.values.ravel())
Out[40]:
SVC(C=0.1, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision function shape='ovr', degree=3, gamma=1, kernel='rbf', max iter=-1,
    probability=False, random_state=None, shrinking=True, tol=0.001,
    verbose=False)
In [41]:
y pred = clf.predict(x test)
In [42]:
print("Accuracy:",accuracy_score(y_test, y_pred))
Accuracy: 0.531496062992126
In [43]:
clf = SVC(C= .1, kernel='poly', gamma= 1)
clf.fit(x_train , y_train.values.ravel())
Out[43]:
SVC(C=0.1, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma=1, kernel='poly',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
```

tol=0.001, verbose=False)

In [44]:

```
y_pred = clf.predict(x_test)
print("Accuracy:",accuracy_score(y_test, y_pred))
```

Accuracy: 0.9133858267716536

In [45]:

```
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
```

Confusion Matrix:
[[55 7 4]
[3 120 4]
[1 3 57]]

In [46]:

```
knnm=metrics.confusion_matrix(y_test,y_pred)
knn_m = pd.DataFrame(knnm, index = [i for i in ["2","1","0"]],columns = [i for i in ["Predict
2","Predict 1","Predict 0"]])
plt.figure(figsize = (7,5))
sns.heatmap(knn_m, annot=True)
```

Out[46]:

<matplotlib.axes._subplots.AxesSubplot at 0x2400405fa88>

In [47]:

```
print("Classification Report")
print(metrics.classification_report(y_test,y_pred, labels=[2,1, 0]))
```

Classification Report precision

	precision	recall	f1-score	support
2	0.88	0.93	0.90	61
1	0.92	0.94	0.93	127
0	0.93	0.83	0.88	66
accuracy			0.91	254
macro avg	0.91	0.90	0.91	254
weighted avg	0.91	0.91	0.91	254

In [48]:

```
clf = SVC(C= .1, kernel='sigmoid', gamma= 1)
clf.fit(x_train , y_train.values.ravel())
```

```
Out[48]:
SVC(C=0.1, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma=1, kernel='sigmoid',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)

In [49]:

y_pred = clf.predict(x_test)
print("Accuracy:",accuracy_score(y_test, y_pred))

Accuracy: 0.5236220472440944
```

• The highest model accuracy is when the algorithm is running in a polynomial kernel.

After trying the SVM algorithm in the different kernels. Following inference was made:-

- The highest accuracy score was 91.
- Confusion matrix and classification reports were found for the same.

K-fold and cross-validation

```
In [50]:
```

```
kfold = KFold(n_splits=10, random_state=7, shuffle=True)
clf= SVC(C= .1, kernel='poly', gamma= 1)
model=clf.fit(x_train , y_train.values.ravel())
results = cross_val_score(model, XScaled, Y.values.ravel() , cv=kfold)
print(results)
print("Accuracy: %.3f%% (%.3f%%)" % (results.mean()*100.0, results.std()*100.0))

[0.94117647 0.91764706 0.90588235 0.95294118 0.96470588 0.83529412
0.92857143 0.85714286 0.86904762 0.91666667]
Accuracy: 90.891% (4.039%)
```

After using K-fold validation.

• The range of accuracy of the model was from 86% to 94% at a 95% confidence level.

Identifying Eigen vectors using PCA

```
In [51]:
```

```
covMatrix = np.cov(XScaled,rowvar=False)
print(covMatrix)
0.83951746
 0.5371705 -0.1810333
                0.04877731 0.17403799 0.47181974]
0.14388275
 0.18992805 0.29592367 0.01545721 0.04354026 0.14408905]
 [-0.82287347 \ -0.79072934 \ -0.18025396 \ \ 1.00118343 \ -0.93782312 \ -0.95620413 ] 
 -0.76693543 0.10360323 -0.05205875 -0.18591103 -0.21697531]
         0.79498064 0.31933203 -0.93782312 1.00118343
[ 0.7977645
 0.77989661 0.11243163 0.03604752 0.19549063 0.08669654]
[ 0.83951746  0.72100219  0.14388275  -0.95620413  0.94814159  1.00118343
 [ 0.92798524  0.5371705  0.18992805 -0.76693543  0.77989661  0.79701241
 1.00118343 0.19166642 0.16656805 -0.05603902 -0.1182971 ]
```

In [52]:

```
pca = PCA(n_components=6)
pca.fit(XScaled)
```

Out [52]:

PCA(copy=True, iterated_power='auto', n_components=6, random_state=None, svd solver='auto', tol=0.0, whiten=False)

In [53]:

```
print (pca.explained_variance_)
```

[5.18662721 2.05550394 1.17384819 1.05528084 0.88494564 0.32133759]

In [54]:

```
plt.bar(list(range(1,7)),pca.explained_variance_ratio_,alpha=0.5, align='center')
plt.ylabel('Variation explained')
plt.xlabel('eigen Value')
plt.show()
```


In [55]:

```
pca3 = PCA(n_components=6)
pca3.fit(XScaled)
print(pca3.components_)
print(pca3.explained_variance_ratio_)
Xpca3 = pca3.transform(XScaled)
```

- - -

```
In [56]:
```

```
Xpca3
```

Out[56]:

In [57]:

Xpca3.shape

Out[57]:

(846, 6)

In [58]:

sns.pairplot(pd.DataFrame(Xpca3))

Out[58]:

<seaborn.axisgrid.PairGrid at 0x240050e1c48>


```
In [59]:
```

```
x train, x test, y train, y test = train test split(Xpca3, Y, test size=0.3, random state=7)
```

SVM Analysis using the eigen vectors

print("Accuracy:",accuracy_score(y_test, y_pred))

```
In [60]:
clf = SVC(C= .1, kernel='linear', gamma= 1)
In [61]:
clf.fit(x_train , y_train.values.ravel())
Out[61]:
SVC(C=0.1, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma=1, kernel='linear',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
In [62]:
y_pred = clf.predict(x_test)
In [63]:
print("Accuracy:",accuracy score(y test, y pred))
Accuracy: 0.8110236220472441
In [64]:
clf = SVC(C= .1, kernel='rbf', gamma= 1)
clf.fit(x train , y train.values.ravel())
y pred = clf.predict(x test)
print("Accuracy:",accuracy_score(y_test, y_pred))
Accuracy: 0.5511811023622047
In [65]:
clf = SVC(C= .1, kernel='poly', gamma= 1)
clf.fit(x train , y train.values.ravel())
y pred = clf.predict(x test)
```

Accuracy: 0.8346456692913385

```
print("Confusion Matrix:\n", confusion matrix(y test, y pred))
```

```
Confusion Matrix:

[[ 42 20 4]

[ 6 116 5]

[ 1 6 54]]
```

In [67]:

```
knnm=metrics.confusion_matrix(y_test,y_pred)
knn_m = pd.DataFrame(knnm, index = [i for i in ["2","1","0"]],columns = [i for i in
["Predict2","Predict 1","Predict 0"]])
plt.figure(figsize = (7,5))
sns.heatmap(knn_m, annot=True)
```

Out[67]:

<matplotlib.axes. subplots.AxesSubplot at 0x2400c2d8848>

In [68]:

```
print("Classification Report")
print(metrics.classification_report(y_test,y_pred, labels=[2,1, 0]))
```

Classification Report

	precision	recall	f1-score	support
2 1 0	0.86 0.82 0.86	0.89	0.87 0.86	61 127
U	0.00	0.64	0.73	66
accuracy			0.83	254
macro avg	0.84	0.81	0.82	254
weighted avg	0.84	0.83	0.83	254

In [69]:

```
clf = SVC(C= .1, kernel='sigmoid', gamma= 1)
clf.fit(x_train , y_train.values.ravel())
y_pred = clf.predict(x_test)
print("Accuracy:",accuracy_score(y_test, y_pred))
```

Accuracy: 0.5118110236220472

After running the SVM model with eigenvectors in different kernels. The following was inferred.

- The maximum accuracy was again found in the polynomial kernel.
- The accuracy of this model was 83.
- A drop of around 6% was found but this expected as the columns are reduced

K-fold validadtion with PCA value

```
In [70]:
```

```
kfold = KFold(n_splits=10, random_state=7,shuffle=True)
clf= SVC(C= .1, kernel='poly', gamma= 1)
model=clf.fit(x_train , y_train.values.ravel())
results = cross_val_score(model, Xpca3, Y.values.ravel() , cv=kfold)
print(results)
print("Accuracy: %.3f%% (%.3f%%)" % (results.mean()*100.0, results.std()*100.0))
[0.85882353 0.87058824 0.81176471 0.84705882 0.84705882 0.75294118
```

```
[0.85882353 0.87058824 0.81176471 0.84705882 0.84705882 0.75294118 0.80952381 0.82142857 0.82142857 0.89285714]
Accuracy: 83.335% (3.706%)
```

After using K-fold validation with eigen vectors.

• The range of accuracy of the model was from 80% to 87% at 95% confidence level.

Even after only selecting six column that covered 95% of data using PCA.

- The accuracy dropped from 91 to 83
- This is result was within the expected region.