Combinatorial Problem Solving (CPS)

2016-17 Spring Term. Final Exam: 2 hours

Publication of grades: 20/06

Revision of exams: 23/06 (office 113, Ω building, under request by e-mail: erodri@cs.upc.edu)

1. (3 pts.) Let x, y be variables with finite domains $D_x, D_y \subseteq \mathbb{Z}$. Let $C_1(x, y)$ and $C_2(x, y)$ be two constraints.

- (a) (1.5 pts.) If at least one of C_1 , C_2 is arc-consistent, is it true that the constraint C_3 defined as $C_3(x,y) \equiv C_1(x,y) \vee C_2(x,y)$ is arc-consistent?
 - If the answer is positive, prove so. If the answer is negative, give a counterexample.
- (b) (1.5 pts.) If C_1 and C_2 are both arc-consistent, is it true that the constraint C_4 defined as $C_4(x,y) \equiv C_1(x,y) \wedge C_2(x,y)$ is arc-consistent?

If the answer is positive, prove so. If the answer is negative, give a counterexample.

2. (3 pts.) Let P_0 be a (minimization) linear program over 0-1 variables $x=(x_1,...,x_n)$ with cost function c^Tx . Consider the following simplification of the branch-and-bound procedure for finding the minimum cost of P_0 :

```
S := \{P_0\}
    UB := \infty
    while (S \neq \emptyset) {
        P := choose\_from(S);
        S := S - \{P\}
        \beta := basic\_solution\_of\_optimal\_basis\_of(LP(P))
        if (\beta \neq \bot \land c^T \beta < UB) {
            if (\forall x_i \ \beta(x_i) \in \{0,1\})
                UB := c^T \beta
            else {
10
                x_j := choose\_from(\{ x_i \mid 0 < \beta(x_i) < 1 \})
11
                S := S \cup \{P \land x_j = 0\} \cup \{P \land x_j = 1\}
    } } }
   return UB
```

where:

- function *choose_from*(·) returns an element of a given set;
- function $LP(\cdot)$ returns the linear programming relaxation of a given 0-1 linear program;
- function $basic_solution_of_optimal_basis_of$ (·) calls the simplex algorithm on a given (real) linear program and returns the basic solution of an optimal basis (\bot if infeasible or unbounded)
- (a) (0.5 pts.) Can the linear programming relaxation LP(P) at line 6 be an unbounded linear program? Justify your answer.
- (b) (0.5 pts.) Does the branch-and-bound procedure terminate? Justify your answer.
- (c) (2 pts.) At any iteration of the loop, the value of variable UB is an upper bound on the minimum cost of P_0 . Explain the changes you would make to the above pseudo-code so that it also maintained a variable LB giving a lower bound on the minimum cost of P_0 .

 Note: The grade will depend on how accurate the lower bounds are.

3. (4 pts.) Let us consider $n = p \times q$ Boolean variables

Let $X = \{x_{(i,j)} \mid 0 \le i < p, 0 \le j < q\}$. The product encoding of the At-Most-One constraint

$$\mathrm{AMO}(X) \equiv \sum_{0 \leq i < p, \ 0 \leq j < q} x_{(i,j)} \leq 1$$

is defined as follows. Let us introduce auxiliary variables $R = \{r_0, \dots, r_{p-1}\}$ and $C = \{c_0, \dots, c_{q-1}\}$ and the following set of clauses:

$$\{ \neg x_{(i,j)} \lor r_i, \neg x_{(i,j)} \lor c_j \mid 0 \le i < p, 0 \le j < q \}$$

together with the clauses resulting from encoding AMO(R) and AMO(C) (recursively, or with another encoding for AMO constraints).

- (a) (2 pts.) Show that, if the encodings used for AMO(R) and AMO(C) are consistent, then the product encoding is consistent.
- (b) (2 pts.) Show that, if the encodings used for AMO(R) and AMO(C) are arc-consistent, then the product encoding is arc-consistent.