Aufgabe 9 (BCH Codes)

Gegeben sei das binäre Polynom $f(D) = D^4 + D^3 + D^2 + D + 1$.

- a) Geben Sie alle Elemente des mit f(D) erzeugten Galois-Feldes $GF(2^4)$ als Polynome in D an. Wie sind die beiden Basis-Rechenoperationen "+" und "·" im $GF(2^4)$ definiert?
- b) Zeigen Sie, dass das Element $\gamma=\alpha^2+1$ ein primitives Element im gegebenen $GF(2^4)$ ist und vervollständigen Sie die umseitige Tabelle mit der Darstellung der Elemente des $GF(2^4)$ als Potenzen des primitiven Element $\gamma=\alpha^2+1$ und der korrespondierenden Darstellung als Polynom in α .
- c) Bestimmen Sie für das durch diese Tabelle beschriebene $GF(2^4)$ die Minimalpolynome $m_1(D), m_2(D), m_3(D)$ und $m_4(D),$ d.h. die Minimalpolynome der Elemente $\gamma, \gamma^2, \gamma^3$ und γ^4 .
- d) Berechnen Sie mit Hilfe der in Aufgabenteil c) berechneten Minimalpolynome das Generatorpolynom eines 2-Fehler-korrigierenden BCH-Codes mit der Codewortlänge N=15. Geben Sie den Parameter K und die Coderate R an.

Mit Hilfe des Polynoms $f(D)=D^4+D^3+D^2+D+1$ erzeugtes, erweitertes Galois-Feld $GF(2^4)$, dargestellt bezüglich des primitiven Elements $\gamma=\alpha^2+1$ und der jeweils korrespondierenden Polynomform bezüglich des Elements α

i	$\gamma^i \operatorname{mod} f(\alpha) = (\alpha^2 + 1) \operatorname{mod} f(\alpha)$	i	$\gamma^i \mod f(\alpha) = (\alpha^2 + 1) \mod f(\alpha)$
0	1	8	$\alpha + 1$
1	$\alpha^2 + 1$	9	
2		10	$\alpha^3 + \alpha^2 + 1$
3		11	$\alpha^2 + \alpha + 1$
4	$\alpha^3 + 1$	12	
5	$\alpha^3 + \alpha^2$	13	$\alpha^3 + \alpha + 1$
6		14	$\alpha^2 + \alpha$
7	$\alpha^3 + \alpha$	15	1