WS#1 EEG und Ganganalyse

GAMMA Workshop – Kiel 2024

Julius Welzel

What to expect today:

How can I record **EEG**, **EMG**, **MoCap**, **video**, ... in a **synchronized** manner?

How to use **EEG**

How do I interpret my "mobile" EEG data?

How can I record EEG, EMG, MoCap, video, ... in a synchronized manner?

Part 1- How to synchronize recordings

LabStreamingLayer (LSL)

LSL distribution comprises:

- Core Library: liblsl and language interfaces (C, C++, Python, Java, MATLAB).
- Platform: General-purpose and cross-platform (Windows, Linux, macOS, Android).
- Architecture: Supports x86, amd64, and arm.

The most common way to use LSL is to use one or more applications to stream data from one or more devices (e.g., EEG and Eye Tracker) over the local network and record the with the LabRecorder.

Steps to use LSL:

- Create LSL outlet
- 2. Fetch data from device
- 3. Push data to LSL outlet

Example Matlab Code

```
1 %% instantiate the library
 2 disp('Loading library...');
 3 lib = lsl_loadlib();
 4
 5 % make a new stream outlet
 6 disp('Creating a new streaminfo...');
 7 info = lsl_streaminfo(lib, 'DelSys', 'EMG', 8, 100, 'cf_float32'); % 8 channels, 100 Hz, float32
9 % initiate DelSys Trigno wireless EMG SDK
10
   DelsysInput = tcpip(HOST IP,50041); % HOST IP is the IP address of the computer running the Delsys SDK, 50041
12 DelsysInput.InputBufferSize = 6400; % Buffer size for the input stream
13
14 disp('Opening an outlet...');
   outlet = lsl outlet(info);
16
17 % send data into the outlet, sample by sample
18 disp('Now transmitting data...');
19 while true
       % get data from device
20
       tmp data = fread(DelsysInput,bytesReady); % read data from device (8 channel EMG)
22
       % push data to LSL outlet
23
       outlet.push sample(tmp data); % push data to LSL outlet
24
25 end
```


EMG

Why is subsecond presicion important?

A step delay trials sorted by adaptation step size

What to expect today:

How can I record **EEG**, **EMG**, **MoCap**, **video**, ... in a **synchronized** manner?

How to use **EEG**

How do I interpret my **"mobile" EEG** data?

How to use EEG

What to expect today:

How can I record **EEG**, **EMG**, **MoCap**, **video**, ... in a **synchronized** manner?

How to use **EEG**

How do I interpret my "mobile" EEG data?

How do linterpret my "mobile" EEG data?

Why is EEG so interesting?

Dynamical Feedback Control: Motor Cortex as an Optimal Feedback Controller Based on Neural Dynamics | Versteeg ea., bioarXiv, 2022

M1 as main feedback controller in motor control

What about artifacts?

FIGURE 11 Grand mean source estimation of the gait ERP before (a) and after (b) artifact attenuation displayed on the default cortex used by Brainstorm. Borders of the region of interest are contoured

ICA components

How to assess neural correlates of gait

Gait events

heel strike

left

left

right heel strike

LHS

LTO

RHS

toe-off

Time (% gait cycle)

EEG & walking

Organise your data

{							
			•••				
0,98839607	0,155737146	0,800206213	0,633481382	0,752698206	0,852943441		
0,98417512	0,507944361	0,1180168	0,796692478	0,175376468	0,488659533		
0,966026984	0,196283834	0,711044406	0,338944328	0,719445195	0,438488392		
0,054555716	0,791513927	0,587116733	0,466957774	0,975446368	0,048053341		
0,577995093	0,045616941	0,04903375	0,940889749	0,153318421	0,668360752		
0,076633595	0,258720111	0,547534792	0,282283781	0,27890791	0,232620594		
0,694520294	0,191824943	0,843726573	0,397571025	0,88542996	0,895276224		
J,26345511	0,092292015	0,008668652	0,930514317	0,690193606	0,809881135		

```
"SamplingFrequency": 60,
"SamplingFrequencyEffective": 60.19,
"TaskName": "BIDS Motion fictive example",
"TrackingSystemName": "imu1",
"TaskDescription": "walking and talking",
"MotionChannelCount": 6,
"SubjectArtefactDescription": "n/a",
"TrackedPointsCount": 2,
"ACCELChannelCount": 3,
"GYROChannelCount": 3,
"Manufacturer": "BWSensing",
"ManufacturersModelName": "BW-imu600",
}
```

onset	duration	trial_type
2.45	0.1	heel_strike
3.81	0.1	heel_strike
4.95	0.1	heel_strike
6.11	0.1	heel_strike
7.24	0.1	heel_strike

	name	component	type	tracked_point	units	placement
ı	imu1_rf_acc_x	х	ACCEL	rf	m/s ²	right_foot
ı	imu1_rf_acc_y	У	ACCEL	rf	m/s ²	right _foot
ı	imu1_rf_acc_z	z	ACCEL	rf	m/s^2	right _foot
	imu1_rf_gyro_x	X	GYRO	rf	rad/s	right _foot
	imu1_rf_gyro_y	У	GYRO	rf	rad/s	right _foot
	imu1_rf_gyro_z	Z	GYRO	rf	rad/s	right _foot

Thank you for listening (3)