Artificial Intelligence

Uncertainty

Wen-Huang Cheng (鄭文皇)

National Taiwan University

wenhuang@csie.ntu.edu.tw

Al Weekly

Let's Think Outside the Box!

Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation

Shanshan Zhong*, Zhongzhan Huang*, Shanghua Gao, Wushao Wen, Liang Lin, Marinka Zitnik, Pan Zhou

https://zhongshsh.github.io/CLoT/

Al Weekly

你可真会抢镜 @ You sure know how to steal the spotlight.

突然发现野餐地点是墓地 @ Just realized the picnic spot is a graveyard all of a sudden.

又到了给主人买饭的时间 @ It's time to grab some food for the owner again.

宇宙旅行前的最后祈祷 The final prayer before a journey through the cosmos.

被狗咬了,但只能吃热狗泄愤 @ Got bit by a dog, but all I can do is vent my frustration by eating a hot dog.

情侣车出门约会 @ Couple's car heading out for a date

Al Weekly

今天是情人节...... @ Today is Valentine's Day...

抹茶奥利奥 @ Matcha Oreo

你是不是在外面有狗了?! @ Is there another dog in your life?!

狗界最好的演唱会! @ The ultimate dog concert!

如果我这么做的时候,会被别 人误会成小偷吗? @ Would people mistake me for

a thief if I do this?

我今天有作业要交,可 以借我一下吗?

@ I have an assignment due today. Can I borrow yours for a bit?

This Lecture – Agenda

■ Bayer's Net

- Representation
- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Uncertainty

10 Day Weather - Sanli, Taipei

As of 2:17 pm CST

Review of Probability Theory

Probability theory is the study of uncertainty.

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - \blacksquare P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes *beliefs to be updated*

Inference by Enumeration

General case:

■ We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Review: Inference by Enumeration

■ P(W)?

P(W | winter)? →W is query variable, S is evidence variable, T is hidden variable

$$P(\text{sun}|\text{winter}) = 0.25 (0.10 + 0.15)$$

$$P(rain|winter) = 0.25 (0.05 + 0.20)$$

P(sun|winter) = 0.5

P(rain|winter) = 0.5

Season Temperature Weather

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

■ P(W | winter, hot)?

Inference by Enumeration

General case:

 $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ $All \ \textit{variables}$ ■ Evidence variables: ■ Query* variable:

■ Hidden variables:

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\rightarrow \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y) \qquad \Leftrightarrow \qquad P(x|y) = \frac{P(x,y)}{P(y)}$$

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Example:

P(W)

R	Р
sun	8.0
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D,W)

D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box: "one of the great statistical minds of the 20th century"

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Independence

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $X \perp \!\!\! \perp Y$
- Independence is a simplifying *modeling assumption*
 - *Empirical* joint distributions: at best "close" to independent
 - What could we assume for {Traffic, Toothache}?

Example: Independence?

$$P_1(T,W) := P(T)P(W)$$

$P_1(T,W)$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)
-----	---

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.4

$$P_2(T,W) = P(T)P(W)$$

$$P_2(T,W)$$

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Conditional Independence

Conditional Independence

■ P(Toothache, Cavity, Catch)

Catch is conditionally independent of Toothache given Cavity:

■ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:

■ P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

■ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- Xis conditionally independent of Ygiven Z

$$X \perp \!\!\! \perp Y | Z$$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

Bayes' Nets

- Representation
- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Bayes'Nets: Big Picture

Bayes'nets models help us express conditional independence assumptions

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

if independence

$P(X_2)$		
Ι	0.5	
Τ	0.5	

$P(X_n)$		
Н	0.5	
Т	0.5	

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence" between variables

Bayesian Networks

Example: Coin Flips

N independent coin flips

■ No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

■ Model 2: rain causes traffic

