机器学习-点集分类

韩琳 hanlin3309@163.com

Abstract

该报告使用Decision Trees, AdaBoost + DecisionTrees, SVM方法对月亮形状数据集进行分类,并且对于SVM方法尝试了三种核函数,最终Decision Trees, AdaBoost + DecisionTrees, SVM (rbf Kernel)得到较准确的分类结果, SVM (linear Kernel)、SVM (poly Kernel)分类结果不佳,体现了Decision Trees, SVM (rbf Kernel)两种方法在处理非线性数据时具有较好的效果

Introduction

二分类是模式识别的基础任务,广泛用于医疗诊断、欺诈检测等。Decision Trees, AdaBoost + DecisionTrees, SVM等算法是常见的二分类解决算法,决策树易于解释, AdaBoost提升分类性能, 非线性核函数的SVM擅长处理高维数据, 三者各有优势。

Methodology

—.Decision Tree

决策树是一种流行且功能强大的工具,用于机器学习和数据挖掘,用于分类和回归任务。它是一个树状结构模型,其中内部节点表示对属性的测试,分支表示这些测试的结果,叶节点表示决策 结果或类标签。从根到叶的路径表示分类规则或回归路径。

1.核心概念

1.信息熵公式

信息熵(Entropy)是信息论中用来度量信息不确定性或混乱程度的一个指标,由香农(Claude Shannon)提出,其公式为:

$$H(X) = -\sum_{i=1}^n p(x_i) \log_b p(x_i)$$

1.1各项含义

- H(X): 随机变量 X 的信息熵,表示 X 的平均不确定性。
- $p(x_i)$: 随机变量 X 取值 x_i 的概率。
- \log_b : 对数函数的底数,常用底数有:
 - 。 b=2: 单位为比特 (bits) 。
 - 。 b=e: 单位为纳特 (nats)。
 - 。 b=10: 单位为哈特莱 (hartleys) 。
- n: 随机变量 X 可能取的不同值的个数。

1.2.公式解读

1. 概率 $p(x_i)$ 的作用:

每个可能取值的概率决定了该值对整体不确定性的贡献。

2. 对数 \log_b 的作用:

计算信息量(Information Content),即某个值的"信息价值"。概率越低的信息,包含的信息量越高。

3. 负号的作用:

保证信息熵是非负值,因为 $\log_b(p(x_i))$ 是负值(当 $0 < p(x_i) < 1$ 时)。

1.3.特殊情况

1. 完全确定性:

如果
$$X$$
 总是取同一个值(如 $p(x_1)=1, p(x_2)=0,\ldots$),那么信息熵为 0: $H(X)=-(1\cdot\log_b 1+0\cdot\log_b 0+\ldots)=0$ 表示没有不确定性。

2. 完全不确定性(均匀分布):

如果
$$X$$
 的每个值出现的概率相等(如 $p(x_i)=\frac{1}{n}$),信息熵最大: $H(X)=-\sum_{i=1}^n\frac{1}{n}\log_b\frac{1}{n}$

1.4.示例

假设X是一个抛硬币实验的结果:

• X有两个可能取值:正面 (Head)和反面 (Tail)。

• $p(\text{Head}) = 0.5, \ p(\text{Tail}) = 0.5$

信息熵为:

$$H(X) = -(0.5 \cdot \log_2 0.5 + 0.5 \cdot \log_2 0.5) = -(0.5 \cdot -1 + 0.5 \cdot -1) = 1$$
 比特(bits)

2.节点类型:

- 根节点 (Root Node): 树的起点,包含整个数据集,并根据某一特征进行首次分裂。
- 内部节点 (Internal Node): 非叶子节点,表示进一步的分裂。
- 叶子节点 (Leaf Node): 最终的分类或预测结果。

3.分裂规则:

决策树的构建基于某种分裂规则,这些规则衡量每个特征的分裂效果。常用指标包括:

• **信息增益 (Information Gain)** : 基于熵 (Entropy) , 用于衡量分裂前后数据的不确 定性变化。

$$IG = \operatorname{Entropy}(D) - \sum_{i=1}^{k} \frac{|D_i|}{|D|} \cdot \operatorname{Entropy}(D_i)$$

• 基尼指数 (Gini Index): 衡量数据集的不纯度,基尼指数越小,分裂效果越好。

$$Gini(D) = 1 - \sum_{i=1}^C p_i^2$$

1. 停止条件:

- 达到预设的最大深度。
- 。 当前节点的样本数量不足。
- 所有特征均无法进一步分裂。
- 。 信息增益或基尼指数小于阈值。

2. 剪枝 (Pruning):

为了防止过拟合,对树进行剪枝。分为两种:

- **预剪枝 (Pre-Pruning)** : 在构建过程中提前终止生长。
- 。 后剪枝 (Post-Pruning): 生成完全树后, 通过验证集调整剪枝。

2.算法流程

1. 选择特征分裂点:

根据信息增益或基尼指数选择最优特征及分裂点。

2. 递归分裂:

将数据划分到各子节点,对每个子节点重复步骤1,直到满足停止条件。

3. 生成叶子节点:

对于无法进一步分裂的节点,将其转换为叶子节点,输出分类结果(分类问题)或预测值(回归问题)。

```
# 决策树分类器

dt_clf = DecisionTreeClassifier(random_state=42)

dt_clf.fit(X_train, y_train)

dt_pred = dt_clf.predict(X_test)

print("Decision Tree Performance:")

print(classification_report(y_test, dt_pred))

print("Accuracy:", accuracy_score(y_test, dt_pred))

# 绘制决策树结果

plot_predictions(X_test, y_test, dt_pred, 'Decision Tree Predictions')
```

3.实验结果

本实验调用**sklearn**库中的 **DecisionTreeClassifier**方法,选取random_state=42的随机等价划分保证结果的可重复性并且控制随即结果,训练结果在测试集上的Accuracy达到0.94

Decision	Tree	Performance:			
		precision	recall	f1-score	support
	0.0	0.95	0.92	0.94	250
	1.0	0.93	0.96	0.94	250
accur	racy			0.94	500
macro	avg	0.94	0.94	0.94	500
weighted	avg	0.94	0.94	0.94	500
Accuracy	: 0.9	4			

Decision Tree Predictions

■.Decision Trees+AdaBoost

AdaBoost (Adaptive Boosting) 是一种经典的 Boosting 集成学习方法,它通过**多轮训练弱分类器(如决策树)**,将它们组合成一个强分类器。

- 弱分类器 (Weak Learner): 通常是深度为1的决策树,称为"决策树桩" (Decision Stump)。
- 核心思想:每一轮根据前一轮的分类错误调整样本权重,使分类器关注被错误分类的样本。

1、AdaBoost 算法流程 (以二分类为例)

给定训练集:

$$(x_1, y_1), \dots, (x_n, y_n), \quad y_i \in \{-1, +1\}$$

初始化样本权重:

$$w_i^{(1)}=rac{1}{n}, \quad i=1,2,\ldots,n$$

对m=1到M(总轮数):

1. 训练弱分类器 $G_m(x)$, 最小化加权错误率:

$$arepsilon_m = \sum_{i=1}^n w_i^{(m)} \cdot \mathbb{I}(G_m(x_i)
eq y_i)$$

2. 计算弱分类器的权重(反映其重要性):

$$lpha_m = rac{1}{2} \mathrm{ln} \left(rac{1 - arepsilon_m}{arepsilon_m}
ight)$$

3. 更新样本权重:

$$w_i^{(m+1)} = w_i^{(m)} \cdot \exp\left(-lpha_m y_i G_m(x_i)
ight)$$

然后对 $w_i^{(m+1)}$ 做归一化。

4、最终强分类器

将多个弱分类器加权组合形成最终分类器:

$$F(x) = \sum_{m=1}^M lpha_m G_m(x)$$

最终预测结果为:

$$\hat{y} = \operatorname{sign}(F(x))$$

2、与普通决策树的对比

特征	决策树 (单棵)	AdaBoost (集成)
模型复杂度	单一模型,易过拟合	多个弱模型组合, 更鲁棒
偏差	偏差小但方差大	可降低偏差与方差
可解释性	可解释性强	可解释性下降
训练方式	一次训练完成	多轮迭代训练

3.实验结果

```
# AdaBoost + 决策树分类器
ab_clf =
AdaBoostClassifier(estimator=DecisionTreeClassifier(random_state=40),
n_estimators=50, random_state=42)
ab_clf.fit(X_train, y_train)
ab_pred = ab_clf.predict(X_test)
print("\nAdaBoost + Decision Tree Performance:")
print(classification_report(y_test, ab_pred))
print("Accuracy:", accuracy_score(y_test, ab_pred))
plot_predictions(X_test, y_test, ab_pred, 'AdaBoost Predictions')
```

本实验调用**sklearn**库中的 **AdaBoostClassifier**方法,选取random_state=40的随机等价划分子决策树,选用选取random_state=42划分Adaboost本身,保证结果的可重复性并且控制随即结果,n_estimators取50表示使用50个决策树进行集成,训练结果在测试集上的Accuracy达到0.944,准确率略微高于Decision Trees,效果提升不明显

AdaBoost + Decision Tree Performance:							
	precision	recall	f1-score	support			
0.0	0.97	0.92	0.94	250			
1.0	0.92	0.97	0.95	250			
accuracy			0.94	500			
macro avg	0.95	0.94	0.94	500			
weighted avg	0.95	0.94	0.94	500			
Accuracy: 0.944							

AdaBoost Predictions

三.SVM

支持向量机(Support Vector Machine, SVM) 是一种经典的有监督机器学习算法,主要用于分类和回归任务。其核心思想是通过在特征空间中寻找一个最大化间隔的超平面,将不同类别的数据点分开,从而实现对新样本的高效分类。

1、基本概念与思想

1.1 分类问题的目标

给定训练集:

$$(x_i,y_i), \quad i=1,2,\ldots,n, \quad x_i\in \mathbb{R}^d, \ y_i\in \{-1,+1\}$$

目标是构建一个最优超平面来最大程度地区分类别。

1.2 超平面定义

$$w^T x + b = 0$$

2、线性可分 SVM (Hard Margin)

2.1 分类约束条件

$$y_i(w^Tx_i+b) \geq 1$$

2.2 间隔定义

几何间隔为:

$$\gamma = rac{2}{\|w\|}$$

2.3 优化目标

$$egin{aligned} \min_{w,b} & rac{1}{2} \|w\|^2 \ ext{s.t.} & y_i(w^Tx_i+b) \geq 1, \quad orall i \end{aligned}$$

3、线性不可分 SVM (Soft Margin)

引入松弛变量 ξ_i 以允许部分误分类:

$$y_i(w^Tx_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$$

优化问题变为:

$$egin{aligned} \min_{w,b,\xi} & rac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \ ext{s.t.} & y_i(w^T x_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0 \end{aligned}$$

4、核技巧 (Kernel Trick)

利用核函数将数据映射到高维特征空间:

$$K(x_i,x_j) = \phi(x_i)^T \phi(x_j)$$

常用核函数:

• 线性核: $K(x, x') = x^T x'$

• 多项式核: $K(x,x') = (x^Tx' + c)^d$

• RBF 核(高斯核): $K(x,x')=\exp\left(-rac{\|x-x'\|^2}{2\sigma^2}
ight)$

• Sigmoid 核: $K(x,x') = anhig(lpha x^T x' + cig)$

5、对偶问题 (Dual Problem)

对偶形式如下:

$$egin{aligned} \max_{lpha} \sum_{i=1}^n lpha_i - rac{1}{2} \sum_{i,j=1}^n lpha_i lpha_j y_i y_j K(x_i, x_j) \ & ext{s.t.} \quad 0 \leq lpha_i \leq C, \ \sum_{i=1}^n lpha_i y_i = 0 \end{aligned}$$

决策函数:

$$f(x) = ext{sign}\left(\sum_{i=1}^n lpha_i y_i K(x_i,x) + b
ight)$$

6、SVM的回归形式 (SVR)

SVR 优化目标如下:

$$egin{aligned} \min_{w,b} & rac{1}{2} \|w\|^2 + C \sum (\xi_i + \xi_i^*) \ ext{s.t.} & \begin{cases} y_i - w^T x_i - b \leq \epsilon + \xi_i \ w^T x_i + b - y_i \leq \epsilon + \xi_i^* \ \xi_i, \xi_i^* \geq 0 \end{cases} \end{aligned}$$

7.实验结果

```
# SVM 分类器 (线性核)
svm linear = SVC(kernel='linear', random state=42)
svm linear.fit(X train, y train)
svm linear pred = svm linear.predict(X test)
print("\nSVM (Linear Kernel) Performance:")
print(classification report(y test, svm linear pred))
print("Accuracy:", accuracy_score(y_test, svm_linear_pred))
plot_predictions(X_test, y_test, svm_linear_pred, 'SVM (linear Kernel)
Predictions')
# SVM 分类器(多项式核)
#多个degree值的多项式核SVM分类器
svm poly = SVC(kernel='poly', degree=3, random state=42)
svm poly.fit(X train, y train)
svm poly pred = svm poly.predict(X test)
print("\nSVM (Polynomial Kernel) Performance:")
print(classification_report(y_test, svm_poly_pred))
```

```
print("Accuracy:", accuracy_score(y_test, svm_poly_pred))
plot_predictions(X_test, y_test, svm_poly_pred, 'SVM (poly Kernel)
Predictions')

# SVM 分类器 (RBF核)
svm_rbf = SVC(kernel='rbf', random_state=42)
svm_rbf.fit(X_train, y_train)
svm_rbf_pred = svm_rbf.predict(X_test)
print("\nSVM (RBF Kernel) Performance:")
print(classification_report(y_test, svm_rbf_pred))
print("Accuracy:", accuracy_score(y_test, svm_rbf_pred))
plot_predictions(X_test, y_test, svm_poly_pred, 'SVM (rbf Kernel)
Predictions')
```

本实验调用**sklearn**库中的 **SVM**方法,选取random_state=42,并且使用linear、poly、rbf三种核函数,其中poly核函数调用了3次多项式进行拟合,得到三个核函数的预测结果,其中rbf 核函数准确率最高,poly核函数其次,linear核函数方法准确率最低

linear kernel

SVM (Linear Kernel) Performance:							
	precision	recall	f1-score	support			
0.0	0.67	0.66	0.66	250			
1.0	0.66	0.67	0.67	250			
accuracy			0.67	500			
macro avg	0.67	0.67	0.67	500			
weighted avg	0.67	0.67	0.67	500			
Accuracy: 0.666							

SVM (linear Kernel) Predictions

• poly kernel

SVM (Polynomi	al Kernel) precision		e: f1-score	support	
0.0 1.0	0.79 0.93	0.95 0.74	0.86 0.83	250 250	
accuracy			0.85	500	
macro avg weighted avg	0.86 0.86	0.85 0.85	0.84 0.84	500 500	
Accuracy: 0.8	46				

SVM (poly Kernel) Predictions

• rbf kernel

SVM (RBF Kern	el) Performa	nce:		
	precision	recall	f1-score	support
	0.00	0.06	0.07	250
0.0	0.98	0.96	0.97	250
1.0	0.96	0.98	0.97	250
accuracy			0.97	500
macro avg	0.97	0.97	0.97	500
weighted avg	0.97	0.97	0.97	500
4 0 0	70			

Accuracy: 0.972

SVM (rbf Kernel) Predictions

Conclusions

本实验使用的几种分类方法中,Decision Trees, AdaBoost + DecisionTrees,RBF SVM分类 准确率达到了0.94以上,其中RBF SVM方法分类效果最好,这体现了**高斯核SVM**在处理非线性数据二分类时的优势,能够在超平面高维度将数据准确划分,**多项式核方法以及线性核方法**准确率不佳,体现了这两种核函数在处理简单非线性数据时的局限性,启示我使用SVM方法时要根据数据的先验特征选取适合的核函数方法核参数,**决策树**算法在处理非线性问题时也同样体现出较好的性能,**AdaBoost** 通过集成弱决策树,在非线性拟合和泛化能力上优于单决策树。若数据接近线性,线性核 SVM 足够高效;若存在复杂非线性,高斯核 SVM 和集成方法(如 AdaBoost)更优。

方法	非线性拟合 能力	泛化能力	参数复杂度	噪声 鲁棒 性	决策边 界特性	适用数据 类型
高斯核 SVM	最强(无限 维)	强(间隔 最大化)	低 (2参 数)	强	连续平 滑曲面	复杂非线 性数据
AdaBoost 决 策树	较强(集成 分裂)	较强(降 低方差)	中(基学习 器参数)	中等	集成阶 梯边界	中等非线 性数据
决策树	中等(单棵 分裂)	弱(易过 拟合)	低(剪枝参 数)	नुन	单棵阶 梯边界	简单非线 性数据
多项式核 SVM	有限(固定 多项式)	弱(高次 过拟合)	高 (3参数)	弱	固定多 项式曲 面	明确多项 式关系数 据
线性核 SVM	无 (仅线 性)	中等 (依 赖 C)	最低 (1参 数)	中等	线性超 平面	严格线性 可分数据