

طرق العد Counting Techniques

الإحصاء والاحتمالات (١٢٠١ إحص) الفصل الصيفي ٣٧٤ ١٨٨١ هـ

طرق العد

■ نستخدم طرق العد لإيجاد عدد عناصر مجموعة ما دون الحاجة إلى سرد عناصرها.

■ هذه الطرق تساعدنا أيضا في إيجاد عدد الطرق المختلفة والممكنة لإجراء أي تجربة وهذا بدوره يفيدنا كثيرا في دراسة علم الاحتمال.

■ هناك قاعدتان أساسيتان لطرق العد هما قاعدة الضرب وقاعدة الجمع

القواعد الأساسية لطرق العد _ قاعدة الضرب

إذا كان هناك عملية (أو تجربة) مكونة من عدد مقداره r من المراحل بحيث:

- المرحلة رقم ١ تتم بعدد قدره n₁ من الطرق المختلفة
- المرحلة رقم ٢ تتم بعدد قدره n₂ من الطرق المختلفة
 - وهکذا ۱۹۹۹
- المرحلة رقم r تتم بعدد قدره n_r من الطرق المختلفة فإن العملية ككل يمكن أجراؤها بعدد من الطرق المختلفة وقدره:

 $n = n_1 \times n_2 \times ... \times n_r$

ملاحظة:

في طريقة الضرب يتم إجراء جميع المراحل معاً لإتمام العملية.

القواعد الأساسية لطرق العد _ قاعدة الضرب

مثال:

بكم طريقة مختلفة يمكن أن يختار أحد الطلاب ثلاثة مقررات: الأول في الإحصاء والثاني في الرياضيات والثالث في الفيزياء إذا علم أن هناك (٣) مقررات مختلفة للإحصاء و (٢) مقررين مختلفين للرياضيات و (٢) مقررين مختلفين للفيزياء.

الحل:

العملية هي اختيار مقررات وهي مكونه من ثلاث مراحل: ٣

 $n_1 = 3$ المرحلة الأول = اختيار مقرر الإحصاء وعدد طرق هذه المرحلة يساوي

 $n_2 = 2$ المرحلة الثانية = اختيار مقرر الرياضيات وعدد طرق هذه المرحلة يساوي -

 $n_3 = 2$ المرحلة الثالثة = اختيار مقرر الفيزياء وعدد طرق هذه المرحلة يساوي -

وباستخدام قاعدة الضرب فإن عدد الطريق المختلفة لاختيار المقررات الثلاثة يساوي:

$$n = n_1 \times n_2 \times n_3$$

مختلفة مختلفة $1 \times 1 \times 1 \times 1 \times 1$ طریقة مختلفة

القواعد الأساسية لطرق العد _ قاعدة الضرب

ويمكن توضيح الحل للمثال السابق باستخدام ما يسمى بشكل الشجرة البيانية كما يلي:

القواعد الأساسية لطرق العد - قاعدة الجمع

إذا كان هناك عدد مقداره r من العمليات بحيث:

- المرحلة رقم ١ تتم بعدد قدره n₁ من الطرق المختلفة
- المرحلة رقم ٢ تتم بعدد قدره n₂ من الطرق المختلفة
 - وهكذا ۲۰۰۰
- المرحلة رقم r تتم بعدد قدره n_r من الطرق المختلفة

فإن عدد الطرق المختلفة لإجراء عملية واحدة فقط من هذه العمليات (العمليات متنافية) يساوي:

$$n = n_1 + n_2 + ... + n_r$$

ملاحظة:

في طريقة الجمع تكون العمليات متنافية ، أي أن إجراء إحدى العمليات ينفي (أو يمنع) إجراء العمليات الأخرى.

القواعد الأساسية لطرق العد - قاعدة الجمع

مثال:

بكم طريقة مختلفة يمكن أن يختار أحد الطلاب مقرراً واحداً فقط من الإحصاء أو الرياضيات أو الفيزياء إذا علم أن هناك (٣) مقررات مختلفين للإحصاء و (٢) مقررين مختلفين للفيزياء. الحل:

العملية الأول = اختيار مقرر الإحصاء وعدد طرق إجراء هذه العملية يساوي $n_1 = 3$ العملية الثانية = اختيار مقرر الرياضيات وعدد طرق إجراء هذه العملية يساوي $n_2 = 2$ العملية الثالثة = اختيار مقرر الفيزياء وعدد طرق إجراء هذه العملية يساوي $n_3 = 2$ وحيث أن العمليات متنافية و باستخدام قاعدة الجمع فإن عدد الطريق المختلفة لاختيار المقرر يساوي:

$$n = n_1 + n_2 + n_3$$
 طریقة مختلفة $V = V + V + V = n$

- التبديلة هي ترتيبة لعدة أشياء بأخذها كلها أو بعضها في كل مرة مع مراعاة الترتيب.
- عدد التباديل لمجموعة مكونة من n من الأشياء مأخوذاً r منها في كل مرة يساوي عدد الترتيبات المختلفة التي يمكن تكوينها من n من الأشياء بحيث تحوي كل ترتيبة على r من هذه الأشياء مع مراعاة الترتيب.

مثال:

۱ ـ كم عدد تباديل الحروف A, B, C بحيث تحوي كل ترتيبة على حرفين مختلفين؟ أو بعبارة أخرى بكم طريقة يمكن ترتيب حرفين من الحروف A, B, C ؟

٢- أوجد التباديل (التراتيب) المختلفة لحرفين من الحروف A, B, C
 الحل:

المرحلة الثانية المرحلة الأولى اختيار الحرف الثاني اختيار الحرف الأول

مكان الحرف الأول

عدد طرق اختيار الحرف الأول $n_1=3$

مكان الحرف الثاني

عدد طرق اختيار الحرف الثان*ي* n₂=2

• عدد التباديل للحروف A,B,C مأخوذاً حرفين في كل مرة يساوي ٣×٢= ٦ تباديل.

عدد تباديل n من الأشياء المختلفة مأخوذة r في كل مرة يرمز له بالرمز $_{n}P_{r}$ ويعطى بالمحيغة التالية:

$$_{n}P_{r} = n \times (n-1) \times (n-2) \times ... \times (n-r+1)$$

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

<u>ملاحظات:</u>

- $n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$ (يسمى مضروب العدد)
- 0! = 1
- $_{n}P_{r} = n \times (n-1) \times (n-2) \times ... \times (n-r+1)$

مثال

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

$${}_{5}P_{5} = 5! = 120$$

$${}_{5}P_{1} = 5$$

$${}_{7}P_{3} = \frac{7!}{(7-3)!} = \frac{7!}{4!} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} = \frac{5040}{24} = 210$$

$${}_{7}P_{3} = \frac{7!}{(7-3)!} = \frac{7!}{4!} = \frac{7 \times 6 \times 5 \times 4!}{4!} = 7 \times 6 \times 5 = 210$$

مثال:

باستخدام قانون التباديل أوجد عدد التباديل المختلفة لحرفين من الحروف A, B, C (أو بعبارة أخرى بكم طريقة يمكن ترتيب حرفين من الحروف A, B, C ?

الحل:

لدينا n=3 و عليه فإن عدد طرق ترتيب حرفين من الحروف A, B, C يساوي:

$$_{n}P_{r} = {}_{3}P_{2} = \frac{3!}{(3-2)!} = \frac{3!}{1!} = \frac{3 \times 2 \times 1}{1} = 6$$

مثال:

بكم طريقة يمكن أن نجلس ه طلاب على ه مقاعد في صف واحد؟ الحل:

المقعد الأول

المقعد الثاني

المقعد الثالث

المقعد الرابع

المقعد الخامس

عدد طرق اختیار عدد طرق اختیار عدد طرق اختیار عدد طرق اختیار

 $n_1 = 5$ $n_2 = 4$ $n_3 = 3$ $n_4 = 2$

الطالب الخامس الطالب الرابع الطالب الثالث الطالب الأالى الطالب الأول n₅=1

$$_{n}P_{r}=_{5}P_{5}=\frac{5!}{(5-0)!}=\frac{5!}{5!}=\frac{5\times4\times3\times2\times1}{1!}=120$$

مثال:

بكم طريقة يمكن أن نجلس ٥ طلاب على ٣ مقاعد في صف واحد؟ الحل:

المقعد الأول

المقعد الثاني

المقعد الثالث

الطالب الثالث الطالب الثاني الطالب الأول $n_1=5$ $n_2=4$ $n_3=3$

عدد طرق اختیار عدد طرق اختیار عدد طرق اختیار

$$_{n}P_{r}=_{5}P_{3}=\frac{5!}{(5-3)!}=\frac{5!}{2!}=\frac{5\times4\times3\times2!}{2!}=60$$

تطبيقات على التباديل

عملية السحب تتم بطريقتين مختلفتين: الأولى تسمى السحب بإرجاع (بإحلال أو بإعادة) والثانية تسمى السحب بدون إرجاع (بدون إحلال أو بدون إعادة).

١- السحب بإرجاع

٢- السحب بدون إرجاع

تطبيقات على التباديل - السحب بإرجاع

أولاً: السحب بإرجاع

إذا كان لدينا مجموعة مكونة من n من العناصر المختلفة وأردنا سحب r عنصر من هذه المجموعة بإرجاع (أي أن العنصر المسحوب يعاد مرة أخرى للمجموعة قبل سحب العنصر التالي) فإن عدد الطرق المختلفة التي يتم بها هذا السحب هو:

$$n \times n \times ... \times n = n^r$$

سحب العنصر رقم 1	سحب العنصر رقم 2	 سحب العنصر رقم I
Î	Î	 Î
n	n	n

تطبيقات على التباديل - السحب بإرجاع

مثال:

بكم طريقة يمكن سحب كرتين بإرجاع من صندوق يحتوي على كرة مختلفة؟ الحل:

> الصندوق الأول

الصندوق الثاني

عدد طرق سحب n₁=15

عدد طرق سحب الكرة الثانية الكرة الأولى n₂=15

عدد سحب كرتين بإرجاع من صندوق يحتوي على ١٥ كرة مختلفة يساوي:

$$n^r = 15^2 = 15 \times 15 = 225$$

تطبيقات على التباديل - السحب بدون إرجاع

ثانياً: السحب بدون إرجاع

• إذا كان لدينا مجموعة مكونة من n من العناصر المختلفة وأردنا سحب r عنصر من هذه المجموعة بدون إرجاع (أي أن العنصر المسحوب لا يعاد مرة أخرى للمجموعة قبل سحب العنصر التالي) فإن عدد الطرق المختلفة التي يتم بها هذا السحب هو:

$$_{n}P_{r} = n \times (n-1) \times (n-2) \times ... \times (n-r+1)$$

سحب العنصر رقم 1	سحب العنصر رقم 2	• • •	سحب العنصر رقم T
1	Î		Î
n	n-1		n-r+1

تطبيقات على التباديل ـ السحب بدون إرجاع

مثال:

بكم طريقة يمكن سحب كرتين بدون إرجاع من صندوق يحتوي على كرة مختلفة؟ الحل:

> الصندوق الصندوق الأول الثاني

عدد طرق سحب عدد طرق سحب الكرة الثانية الكرة الأولى n₁=15

n₂=14

عدد سحب كرتين بدون إرجاع من صندوق يحتوي على ١٥ كرة مختلفة يساوي:

$$_{n}P_{r} = {}_{15}P_{2} = \frac{15!}{(15-2)!} = \frac{15!}{13!} = \frac{15 \times 14 \times 13!}{13!} = 15 \times 14 = 210$$

التوفيقة (التوليفة) هي كل مجموعة يمكن اختيارها من مجموعة من عدة أشياء بأخذها كلها أو بعضها دون مراعاة الترتيب.

تيجة:

إذا كان لدينا مجموعة مكونة من n من العناصر المختلفة فإن عدد التوافيق التي يمكن تكوينها بحيث تحوي كل توفيقة على r عنصر يرمز له بالرمز $\binom{n}{r}$ أو بالرمز $\binom{n}{r}$ ويعطى بالصيغة التالية:

$$\binom{n}{r} = {}_{n}C_{r} = \frac{{}_{n}P_{r}}{r!} = \frac{n!}{r!(n-r)!}$$
; $r = 0, 1, ..., n$

<u>ملاحظات:</u>

$$\binom{n}{1} = n$$
 , $\binom{n}{n} = 1$, $\binom{n}{0} = 1$.

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \binom{n}{n-r} \qquad .7$$

مثال

$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3! \times 2!} = \frac{5 \times 4 \times 3!}{3! \times 2!} = 10$$

$$\binom{4}{0} = \frac{4!}{0!(4-0)!} = \frac{4!}{1 \times 4!} = \frac{4!}{4!} = 1$$

$$\binom{7}{7} = \frac{7!}{7!(7-7)!} = \frac{7!}{7! \times 0!} = \frac{7!}{7! \times 1} = 1$$

$$\binom{7}{1} = \frac{7!}{1!(7-1)!} = \frac{7!}{1 \times 6!} = \frac{7!}{6!} = \frac{7 \times 6!}{6!} = 7$$

مثال:

بكم طريقة يمكن اختيار حرفين (بدون مراعاة الترتيب) من مجموعة الحروف A, B, C ؟ الحل:

$$\binom{n}{r} = \binom{3}{2} = \frac{3!}{2!(3-2)!} = \frac{3!}{2! \times 1!} = 3$$

نلاحظ أن الاختيارات (التوافيق أو التواليف) الممكنة هي: {A,B}, {A,C}, {B,C}

إن التوفيقة أو التوليفة {A,B} هي نفس التوفيقة {B,A}

مثال:

بكم طريقة يمكن اختيار ثلاث طلاب من ٥ طلاب في رحلة بحرية ؟ الحل:

$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3! \times 2!} = \frac{5 \times 4 \times 3!}{3! \times 2!} = 10$$

إذا كان هناك n من الأشياء مكونة من r مجموعة بحيث:

- المجموعة رقم ١ مكونة من n_1 من العناصر والمتشابهة
 - المجموعة رقم ٢ مكونة من n₂ من العناصر والمتشابهة
 - **وهكذا ۲۰۰۰**
- المجموعة رقم r مكونة من n_r من العناصر والمتشابهة

وكان $n_r + \dots + n_2 + n_1 = n$ ، فإن عدد التباديل المختلفة الممكنة لهذه الأشياء يساوي:

$$\binom{n}{n_1, n_2, \cdots, n_r} = \frac{n!}{n_1! \ n_2! \cdots n_r!}$$

مثال

بكم طريقة يمكن ترتيب أحرف كلمة PROBABILITY؟ الحل:

P, R, O, B, B, A, I, I, L, T, Y عدد تباديل أو عدد طرق ترتيب أحرف كلمة PROBABILITY يساوي:

مثال

بكم طريقة يمكن ترتيب أحرف كلمة STATISTICS؟

S, S, S, T, T, T, A, I, I, C عدد تباديل أو عدد طرق ترتيب أحرف كلمة STATISTICS يساوي:

مثال

بكم طريقة يمكن توزيع 8 طلاب على النحو التالي: 4 طلاب لتخصص الإحصاء و 3 طلاب لتخصص الرياضيات و طالب واحد لتخصص الفيزياء.

<u>الحل :</u>

عدد الطرق لتوزيع الطلاب وفق الطريقة المذكورة يساوي:

$$\binom{8}{4,3,1} = \frac{8!}{4! \ 3! \ 1!} = 280$$