3D Scanning and Motion Capturing Stereo Reconstruction

Motivation and Idea

Various Applications

3D models of human organs for surgical planning

Reconstruct historical architectures

Reconstruct environment for robots navigation

Various Applications

Reconstruction of Notre Dame

Our Idea

3D Model

Related Work

Choose Datasets

TUM Intrinsic3D Bricks RGBD

BRICKS

bricks-preview.jpg

Data Provided

- Color and depth images
- Color and depth camera intrinsics
- Camera pose matrix
- Multiview of single object

Choose Datasets

Kitti Stereo 2015

Stereo Evaluation 2015

Data Provided

- disparity maps
- color images
- camera distortion coefficient
- camera extrinsic
- images of different scenarios

Dataset Comparisons

TUM Intrinsic3D

Pros

- No need to consider camera distortion
- Able to apply ICP
- Provide ground truth depth

Cons

No ground truth disparity

Kitti Stereo 2015

- camera parameters canbe easily load
- Ground truth disparity data can be directly used for evaluation

 Images of a single scenario not sufficient

Libraries

Eigen

Computer vision algorithms

Matrix compute

FLANN

Ceres Solver

Nearest neighbor search

Non-linear optimization

Reconstruction Pipeline

Camera parameters

Image Pairs Estimated camera position/fundamental matrix **Undistortion and** Mesh **Key point detection Sparse Matching** Depth **Disparity Rectified Feature Key points** Map Map images matches Image Dense **Triangulation** rectification **Feature** Matching descriptor match

Methods

Sparse Matching

Key Point Detector

Key point detector and feature descriptor

Dataset Name	Measurements	brisk	orb	shi-tomasi	sift	surf	fast
TUM Intrinsic Dataset	Average rotation error	0.0616	0.1241	0.1053	0.1014	0.0838	0.0619
	Abnormal fundamental matrix number	20	40	33	33	27	20
	Average translation error	0.9993	0.9998	0.9993	0.9994	0.9993	0.9994
	time to process 10 pairs images/s	22.5254	57.269	62.391	430.32	44.541	670.31
KITTI Raw Dataset	Average rotation error	0.0125	0.0318	0.0097	0.0078		0.0111
	Abnormal fundamental matrix number	0	0	0	0		0
	Average translation error	0.7645	1.03877	0.5479	0.5403		0.6106

Performance of different methods on two datasets, using RANSAC as fundamental matrix calculation method and FLANN as descriptor matching method

translation error is too high in all methods, so we use ground truth translation for further steps

Fundamental Matrix Calculation

Fundamental matrix estimation

Evaluating sparse matching method

Fundamental matrix estimation

Dataset Name	Measurements	RANSAC	LMEDS	7 Point	8 Point
	Average rotation error	0.0616	0.1813	0.1813	0.0296
TUM Intrinsic Dataset	Abnormal fundamental matrix number	20	60	60	9
	Average translation error	0.9993	0.9998	0.9998	0.9995
	Average rotation error	0.0125	0.0055	0.0055	0.0199
KITTI Raw Dataset	Abnormal fundamental matrix number	0	0	0	0
	Average translation error	0.7645	0.5275	0.5275	0.9225

Performance of different methods on two datasets, using BRISK as key point detector and feature descriptor and FLANN as descriptor matching method

translation error is too high in all methods, so we use ground truth translation for further steps

Image Rectification

Image Rectification

Fundamental Matrix

Epipolar Lines

Dense Matching

Reconstruction Pipeline

- Fundamental Matrix
- Essential Matrix
- Translation Matrix
- Rotation Matrix

Calculate Disparity

Block Matching

- Once correspondences are on parallel epipolar lines, we can scan the left image line by line
- Need to find "similar" pixels in the right image
- Individual pixels are hard to match, so let's take a "block" of flattened pixels of size **K×K**
- Subtract the difference in x-axis to get disparity

Block Matching

- How do we quantify "similar"?
- Consider two $\mathbf{K} \times \mathbf{K}$ windows of pixels flattened to vectors \mathbf{W}_L , \mathbf{W}_R
- Sum of absolute differences (SAD):

$$SAD(x, y, d) = ||\mathbf{w}_{L}(x, y) - \mathbf{w}_{R}(x - d, y)||$$

Semi-global Block Matching

- "Global" because it considers information available in the whole image
- Does so by considering the neighbouring pixels in multiple directions to calculate the disparity
- Again, we take a "block" of size **K×K**, and consider 8 directions around it
- The direction with the min. aggregated matching cost is used to calculate the disparity

Semi-global Block Matching

- Uses Birchfield-Tomasi dissimilarity to find "similar" pixels
- For left and right images, with x_l and x_r columns along the same scanline, we can define symmetric functions:

- Here I^(hat) and I^(hat) are the linear interpolation functions of the left and right image intensity I₁ and I₂
- The min. of the symmetric functions gives the dissimilarity value

 Now D is the dissimilarity value, and R is the regularisation term computed from neighbouring pixels. Total disparity is:

Generated Disparity Map without Post Filtering

TUM Dataset

KITTI Raw

Generated Disparity Map with Post Filtering

BM

TUM Dataset

KITTI Raw

Dense Matching Method

Error =
$$\frac{\text{count}(d_{ij} - d'_{ij} > 3px \& d_{ij} - d'_{ij} > 0.05)}{\text{total valid pixels}}$$

Dense Matching Method

the comparison is between the ground truth depth map and the calculated depth map

Dense Matching Method

the comparison is between the ground truth disparity map and the calculated disparity map

3D Model Generation

Disparity map to point cloud

Disparity map to 3D model

Disparity Map

3D Model

TUM Dataset

KITTI Raw

Generated Mesh (TUM Intrinsic3D)

Generated Point Cloud (KITTI)

Conclusion & Discussion

Conclusion

- 1.Implemented stereo reconstruction pipeline
- 2. Key steps such as calibration, keypoint calculation, and 3D model construction
- 3.Results show the ease and efficiency of reconstructing 3D models from stereo images
- 4. Generated 3D models have potential applications in scene understanding, object

recognition, and navigation

Discussion

- 1. The project serves as a starting point for further research and development
- 2. Possibility of incorporating ICP methods and other data for improved 3D models
- 3. Potential for exploring new applications in fields such as robotics and autonomous vehicles
- 4. Opportunity to improve the accuracy and robustness of 3D models
- 5. Possibility of integrating new algorithms and techniques for enhanced performance