# CHAPTER 1

# Project

By Christophe Prud'homme and Mourad Ismail

Chapter ref: [prudhomm-project]

# 1.1 Projects

# 1.1.1 Cooling of electronic components

This test case has been proposed by Annabelle Le-Hyaric<sup>1</sup> and Michel Fouquembergh<sup>2</sup> both from EADS IW.

We consider a 2D model representative of the neighboring of an electronic component submitted to a cooling air flow. It is described by four geometrical domains in  $\mathbb{R}^2$  named  $\Omega_i, i=1,2,3,4$ , see figure 1.1 on the following page. We suppose the velocity v is known in each domain — for instance in  $\Omega_4$  it is the solution of previous Navier-Stokes computations. — The temperature T of the domain  $\Omega = \bigcup_{i=1}^4 \Omega_i$  is then solution of heat transfer equation :

$$\rho C_i \left( \frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right) - \nabla \cdot (k_i \nabla T) = Q_i, \quad i = 1, 2, 3, 4$$
(1.1)

where t is the time and in each sub-domain  $\Omega_i$ ,  $\rho C_i$  is the volumic thermal capacity,  $k_i$  is thermal conductivity and  $Q_i$  is a volumic heat dissipated.

One should notice that the convection term in heat transfer equation may lead to spatial oscillations which can be overcome by Petrov-Galerkin type or continuous interior penalty stabilization techniques.

<sup>&</sup>lt;sup>1</sup>Anabelle.Le-Hyaric@eads.net

<sup>&</sup>lt;sup>2</sup>michel.fouquembergh@eads.net



Figure 1.1: Geometry of  $\Omega = \cup_{i=1}^4 \Omega_i$  with  $\partial \Omega = \cup_{i=1}^4 \Gamma_i$ 

Integrated circuits (ICS) (domains  $\Omega_1$  and  $\Omega_2$ ) are respectively soldered on PCB at  $\mathbf{x}\mathbf{1}=(e_{\text{PCB}},h_1)$  and  $\mathbf{x_2}=(e_{\text{PCB}},h_2)$ . They are considered as rectangles with width  $e_{\text{IC}}$  and height  $h_{\text{IC}}$ . The printed circuit board (PCB) is a rectangle  $\Omega_3$  of width  $e_{\text{PCB}}$  and height  $h_{\text{PCB}}$ . The air(AIR) is flowing along the PCB in domain  $\Omega_4$ . Speed in the air channel  $\Omega_4$  is supposed to have a parabolic profile function of x coordinate. Its expression is simplified as follows (notice that  $\mathbf{v}$  is normally solution of Navier-Stokes equations; the resulting temperature and velocity fields should be quite different from that simplified model), we have for all  $0 \le y \le h_{PCB}$ 

$$e_{Pcb} + e_{Ic} \le x \le e_{Pcb} + e_a, \quad \mathbf{v} = \frac{3}{2(e_a - e_{Ic})} D \left( 1 - \left( \frac{x - \left( \frac{e_a + e_{Ic}}{2} + e_{Pcb} \right)}{\frac{e_a - e_{Ic}}{2}} \right)^2 \right) f(t) \mathbf{y}$$

$$e_{Pcb} \le x \le e_{Pcb} + e_{Ic}, \quad \mathbf{v} = 0$$
(1.2)

where f is a function of time modelling the starting of the PCB ventilation, *i.e.* 

$$f(t) = 1 - \exp(-\frac{t}{3}),$$
 (1.3)

D is the air flow rate, see table 1.1 on page 5 and  $y = (0,1)^T$  is the unit vector along the y axis. A quick verification shows that

$$\int_{\Gamma_4 \cap \Omega_4} \mathbf{v} \cdot \mathbf{n} = \int_{\Gamma_4 \cap \Omega_4} v_y = D \tag{1.4}$$

The medium velocity  $\mathbf{v}_i = \mathbf{0}, i = 1, 2, 3$  in the solid domains  $\Omega_i, i = 1, 2, 3$ . ICS dissipate heat, we have respectively

$$Q_1 = Q(1 - \exp(-t)) \quad \text{in } \Omega_1$$

$$Q_2 = Q(1 - \exp(-t)) \quad \text{in } \Omega_2$$
(1.5)

where Q is defined in table 1.1 on page 5.

We shall denote  $\mathbf{n}_{|\Omega_i} = \mathbf{n}_i$  denotes the unit outward normal to  $\Omega_i$  and  $\mathbf{n}_{|\Omega_j} = \mathbf{n}_j$  denotes the unit outward normal to  $\Omega_j$ .

#### **Boundary conditions** We set

(i) on  $\Gamma_3 \cap \Omega_3$ , a zero flux (Neumann-like) condition

$$-k_3 \nabla T \cdot \mathbf{n}_3 = 0; \tag{1.6}$$

(ii) on  $\Gamma_3 \cap \Omega_4$ , a zero flux (Robin-like) condition

$$(-k_4 \nabla T + \rho C_4 T \mathbf{v}) \cdot \mathbf{n}_4 = 0; \tag{1.7}$$

(iii) on  $\Gamma_4$ ,  $(0 \le x \le e_{PCB} + e_a, y = 0)$  the temperature is set (Dirichlet condition)

$$T = T_0; (1.8)$$

(iv) between  $\Gamma_1$  and  $\Gamma_2$ , periodic conditions

$$T_{|\mathbf{x}=0} = T_{|\mathbf{x}=e_{Pcb}+e_a} -k_3 \nabla T \cdot \mathbf{n}_{3_{|\mathbf{x}=0}} = k_4 \nabla T \cdot \mathbf{n}_{4_{|\mathbf{x}=e_{Pcb}+e_a}};$$

$$(1.9)$$

(v) at interfaces between the ICs and PCB, there is a thermal contact conductance:

$$-k_1 \nabla T \cdot \mathbf{n}_1 - k_3 \nabla T \cdot \mathbf{n}_3 = r_{13} (T_{\partial \Omega_1} - T_{\partial \Omega_3}) -k_2 \nabla T \cdot \mathbf{n}_2 - k_3 \nabla T \cdot \mathbf{n}_3 = r_{23} (T_{\partial \Omega_2} - T_{\partial \Omega_3});$$

$$(1.10)$$

(vi) on other internal boundaries, the coontinuity of the heat flux and temperature, on  $\Gamma_{ij} = \Omega_i \cap \Omega_j \neq \emptyset$ 

$$T_i = T_j$$

$$k_i \nabla T \cdot \mathbf{n}_i = -k_i \nabla T \cdot \mathbf{n}_j.$$
(1.11)

**Initial condition** At t = 0s, we set  $T = T_0$ .

#### **Inputs**

The table 1.1 on the next page displays the various fixed and variables parameters of this test-case.

### **Outputs**

The outputs are (i) the mean temperature  $s_1(\mu)$  of the hottest IC

$$s_1(\mu) = \frac{1}{e_{\rm IC}h_{\rm IC}} \int_{\Omega_2} T \tag{1.12}$$

and (ii) mean temperature  $s_2(\mu)$  of the air at the outlet

$$s_2(\mu) = \frac{1}{e_a} \int_{\Omega_4 \cap \Gamma_2} T \tag{1.13}$$

both depends on the solution of (1.1) and are dependent on the parameter set  $\mu$ .

We need to monitor  $s_1(\mu)$  and  $s_2(\mu)$  because  $s_1(\mu)$  is the hottest part of the model and the IC can't have a temperature above 340K.  $s_2(\mu)$  is the outlet of the air and in an industrial system we can have others components behind this outlet. So the temperature of the air doesn't have to be high to not interfere the proper functioning of these.

| Name                                | Description          | Nominal Value      | Range                                  | Units                         |
|-------------------------------------|----------------------|--------------------|----------------------------------------|-------------------------------|
| Parameters                          |                      |                    |                                        |                               |
| $\overline{t}$                      | time                 |                    | [0, 1500]                              | s                             |
| Q                                   | heat source          | $10^{6}$           | $[0, 10^6]$                            | $W \cdot m^{-3}$              |
| IC Parameters                       |                      |                    |                                        |                               |
| $\overline{k_1 = k_2 = k_{\rm IC}}$ | thermal conductivity | 2                  | [0.2, 150]                             | $W \cdot m^{-1} \cdot K^{-1}$ |
| $r_{13} = r_{23} = r$               | thermal conductance  | 100                | $[10^{-1}, 10^2]$                      | $W \cdot m^{-2} \cdot K^{-1}$ |
| $ ho C_{ m IC}$                     | heat capacity        | $1.4 \cdot 10^{6}$ |                                        | $J \cdot m^{-3} \cdot K^{-1}$ |
| $e_{ m IC}$                         | thickness            | $2 \cdot 10^{-3}$  |                                        | m                             |
| $h_{\rm IC} = L_{\rm IC}$           | height               | $2 \cdot 10^{-2}$  |                                        | m                             |
| $h_1$                               | height               | $2 \cdot 10^{-2}$  |                                        | m                             |
| $h_2$                               | height               | $7 \cdot 10^{-2}$  |                                        | m                             |
| PCB Parameters                      |                      |                    |                                        |                               |
| $\overline{k_3 = k_{PCB}}$          | thermal conductivity | 0.2                |                                        | $W \cdot m^{-1} \cdot K^{-1}$ |
| $ ho C_3$                           | heat capacity        | $2\cdot 10^6$      |                                        | $J \cdot m^{-3} \cdot K^{-1}$ |
| $e_{PCB}$                           | thickness            | $2 \cdot 10^{-3}$  |                                        | m                             |
| $h_{\rm PCB}$                       | height               | $13\cdot 10^{-2}$  |                                        | m                             |
| Air Parameters                      |                      |                    |                                        |                               |
| $\overline{T_0}$                    | Inflow temperature   | 300                |                                        | K                             |
| $\overset{\circ}{D}$                | Inflow rate          | $7\cdot 10^{-3}$   | $[5 \cdot 10^{-4}, 10^{-2}]$           | $m^2 \cdot s^{-1}$            |
| $k_4$                               | thermal conductivity | $3 \cdot 10^{-2}$  | , ,                                    | $W\cdot m^{-1}\cdot K^{-1}$   |
| $ ho C_4$                           | heat capacity        | 1100               |                                        | $J \cdot m^{-3} \cdot K^{-1}$ |
| $e_a$                               | thickness            | $4\cdot 10^{-3}$   | $[2.5 \cdot 10^{-3}, 5 \cdot 10^{-2}]$ | m                             |
|                                     |                      |                    |                                        |                               |

Table 1.1: Table of fixed and variable parameters

## 1.1.2 Guidline for implementation

### Using the simplified model

For sake of simplicity we will suppose that the temperature is continuous everywhere in the domain  $\Omega$ . So, the thermal contact conductance (1.10) will be replaced by continuity conditions for heat flow and temperature. The periodic boundary conditions on  $\Gamma_1$  and  $\Gamma_2$  will be also replaced by zero flux conditions.

The problem in which we are interested will be now:

$$\rho C_i \left( \frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right) - \nabla \cdot (k_i \nabla T) = Q_i \text{ in } \Omega = \bigcup_{i=1}^4 \Omega_i, \quad i = 1, 2, 3, 4$$
(1.14)

subject to the following boundary conditions:

$$T = T_0 \quad \text{on} \quad \Gamma_4 \tag{1.15}$$

$$-k_3 \nabla T \cdot \mathbf{n}_3 = 0 \quad \text{on} \quad \Gamma_1 \cup \Gamma_{33} \tag{1.16}$$

$$-k_4 \nabla T \cdot \mathbf{n}_4 = 0 \quad \text{on} \quad \Gamma_2 \tag{1.17}$$

$$(-k_4\nabla T + \rho C_4 T \mathbf{v}) \cdot \mathbf{n}_4 = 0 \quad \text{on} \quad \Gamma_{34}$$
(1.18)

$$-k_i \nabla T \cdot \mathbf{n}_i = k_3 \nabla T \cdot \mathbf{n}_3$$
 on  $\Gamma_{3i}$ ,  $i = 1, 2$  (1.19)

$$-k_1 \nabla T \cdot \mathbf{n}_1 = k_4 \nabla T \cdot \mathbf{n}_4 \quad \text{on} \quad \gamma_{141} \cup \gamma_{144} \cup \gamma_{142}$$
 (1.20)

$$-k_2\nabla T \cdot \mathbf{n}_2 = k_4\nabla T \cdot \mathbf{n}_4 \quad \text{on} \quad \gamma_{242} \cup \gamma_{244} \cup \gamma_{243}$$
 (1.21)

In order to solve numerically this problem, we will follow these steps:

- (i) write the Variational Formulation of problem (1.14) with the boundary conditions (1.15), (1.16), (1.17), (1.18), (1.19), (1.20) and (1.21),
- (ii) create a mesh of the domain  $\Omega$  (figure 1.1) using Gmsh. Remember to take different references for each subdomain and for each part of the boundary (this step was already done in **PS2**. See appendix A.1 on page 10).
- (iii) Write the corresponding FreeFem++ application following these steps:
  - (a) Start by assuming that v = 0 and by omitting the time derivative.
  - (b) Take into account the advection term by using the formula (1.2). We assume that we are in a steady regime so the time variable t goes to infinity.
  - (c) Add the time derivative of the temperature T and discretize it using the explicit Euler scheme

$$\frac{\partial T}{\partial t} \simeq \frac{T^{n+1} - T^n}{\delta t},$$

where  $T^n$  is an approximation of T at time  $t^n = n\delta t$  and  $\delta t$  is the time step.

### **Using Navier-Stokes equations**

As mentioned above, the air flow is governed by the incompressible Navier-Stokes equations:

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} - \nu \Delta \mathbf{v} + \frac{1}{\rho_f} \nabla p = \mathbf{F} \quad \text{in } \Omega_4, \tag{1.22}$$

$$\nabla \cdot \mathbf{v} = 0 \quad \text{in } \Omega_4, \tag{1.23}$$

$$\mathbf{v} = 0 \quad \text{on } \partial\Omega_4.$$
 (1.24)

Where:

• v: the velocity field

• *p* : the pressure

ullet F : some external force. We could take  $\mathbf{F} = \left( egin{array}{c} 0 \\ T - T_0 \end{array} 
ight)$  for example

•  $\rho_f$ : the fluid density

•  $\nu$ : the cinematic viscosity. It is given by the ratio between the dynamic viscosity  $\eta$  and the density  $\rho_f$ .  $(\nu = \frac{\eta}{\rho_f})$ 

•  ${\bf v} = 0 \ {\bf in} \ \Omega_4 \ {\bf at} \ t = 0.$ 

As the velocity and the pressure are coupled, one can decouple them to resolve Navier-Stokes equations. To do this, we could use a projection scheme allowing to treat separately the viscous effect and the incompressibility constraint of the flow. More precisely, we consider a finite time interval [0,T] and we introduce the discretization  $t^n = n\delta t$  for  $0 \le n \le N$  where  $\delta t = \frac{T}{N}$  is the time step. Then, we introduce a sequence  $(\mathbf{v}^n)$  for the approximation of the velocity  $\mathbf{v}$  at time  $t^n$ .

Concerning the pressure p, we use  $(p^n)$  and an intermediate sequence  $(\psi^n)$ . We propose the following projection scheme (see [guermond:06] for more details).

$$\frac{\mathbf{v}^{n+1} - \mathbf{v}^n}{\delta t} - \nu \Delta \mathbf{v}^{n+1} + \frac{1}{\rho} \nabla \psi^n = \mathbf{G}^{n+1}, \quad \mathbf{v}^{n+1}|_{\partial \Omega_4} = 0$$
 (1.25)

$$\Delta \psi^{n+1} = \frac{\nabla \cdot \mathbf{v}^{n+1}}{\delta t}, \quad \frac{\partial \psi^{n+1}}{\partial \mathbf{n}}|_{\partial \Omega_4} = 0$$

$$p^{n+1} = \psi^{n+1} - \nu \nabla \cdot \mathbf{v}^{n+1}$$
(1.26)
$$(1.27)$$

$$p^{n+1} = \psi^{n+1} - \nu \nabla \cdot \mathbf{v}^{n+1} \tag{1.27}$$

where

$$\mathbf{G}^{n+1} = \mathbf{F}^{n+1} - \mathbf{v}^n \cdot \nabla \mathbf{v}^n \tag{1.28}$$