Teop. 17.4)

Действительная и мнимая части аналитической в области $\mathcal{D} \subset \mathbb{C}$ функции имеют в этой области непрерывные частные производные всей порядков .

• Для производной арифметической функции f(z) = U(x, y) + i V(x, y) существуют различные формулы.

$$f'(z) = U'_x + i V'_x = V'_y + i V'_x = U'_x - i U'_y = V'_y - i U'_y$$
 (17.5)

Но формула f'(z) в свою очередь

дифференцируема (как сумма некоторого сходящегося степенного ряда), и,

значит, непрерывна в \mathcal{D} . Отсюда вытекает непрерывность всех частных производных первого порядка для функций U и V.

Рассматривая на основ. (17.5) аналогичные представления для f''(x), f'''(x) и т.д., приходим к требуемому.

Напомним, что вещественная функция $\varphi(x, y)$, называется <u>гармонической</u> в некоторой области, если в этой области она имеет непрерывные частные производные до второго порядка включительно и удовлетворяет всюду в $\mathcal D$ уравнению Лапласа :

$$\triangle \varphi = \varphi_{x^2}'' + \varphi_{y^2}'' \equiv \mathbf{0}.$$

Как следствие из теоремы 17.4 получим следующее свойство:

Teop . 17.5)

Действительная и мнимая части аналитической в области $\mathcal{D} \subset \mathbb{C}$ функции f = U + i V являются гармоническими в этой области функциями.

∢В данном случае функции U(x, y) и V(x, y) имеют в области \mathcal{D} непрерывные частные производные второго порядка и удовлетворяют условиям (C - R):

$$\begin{cases}
U_X' = V_X' \\
U_Y' = -V_X'
\end{cases}$$

Дифференцируется здесь 1 – ое равенство по x, а 2 – ое по y, и складывая их почленно, получим, что $\triangle U \equiv 0$. Аналогично, дифференцируется 1 – ое равенство по y, а 2 – ое по x, и вычитая их почленно,

имеем: $\triangle U \equiv \emptyset$.

<u>Теор. 17.6</u>) (<u>Дж. Мореры</u>)

Пусть f(z) — непрерывная в области

$$\mathcal{D}\subset\mathbb{C}$$
 функция и интеграл $\oint f\left(z
ight)\;d\;z\;$ = 0,

то любой замкнутый спрямляемой кривой $\mathcal{L} \subset \mathcal{D}$. Тогда f — аналитическая в \mathcal{D} функция.

◆В данном случае на основании теоремы 15.2 функция

$$F(z) = \int_{z_0}^{z} f(t) dt$$
.

является аналитической в \mathcal{D} и, кроме того, F'(z) = f(z). Но производная аналитической функции также является аналитической, т.е. f(z) — аналитическая в \mathcal{D} функция.

Эта теорема является в некотором смысле обратной интегральной теореме Коши для односвязной области. Разница лишь в том, что область \mathcal{D} в теореме Мореры может быть многосвязной, а на f накладывается условие

непрерывности. Это условие существенно.

Пример 17.1 Пусть
$$f(z) = \left\{ \begin{array}{ll} \mathbf{0}, & z \in \mathbb{C} \setminus \{\mathbb{Z}_{\mathbf{0}}\} & \square \\ \mathbf{1}, & z = z_{\mathbf{0}} & \square \end{array} \right.$$

Тогда $\oint f(z) \; dz = 0$ по любой замкнутой спрямляемой

кривой $\mathcal{L} \subset \mathcal{D}$. Но f(z) не является аналогичной в \mathcal{D} , ибо она не является тоже непрерывной (в т. z_0).

Teop. 17.7)

(К. Вейерштрасса о равномерно сходящихся рядах аналитических функций)

Пусть члены ряда
$$\sum_{k=1}^{\infty} f_k(z) \ (f(z) = \infty)$$
 —

аналитический в области $\mathcal{D} \subset \mathbb{C}$ функции, а сам ряд сходится равномерно на любом компакте из области \mathcal{D} . Тогда:

- $oxed{1}$ сумма ряда $oldsymbol{f}\left(oldsymbol{z}
 ight)$ является аналитической в $oldsymbol{\mathcal{D}}$ функций.
- 2 ряд можно почленно дифференцировать любое число раз

$$f^{(n)}(z) = \sum_{k=1}^{\infty} f_k^{(n)}(z)$$
, $z \in \mathcal{D}(n = 1, 2, ...)$.