ITCS 531: Logic 1 - Semantics for propositional formulas

Rob Egrot

The logic of mathematical proofs

- Formal mathematical arguments:
 - Start with assumptions (axioms).
 - Sequence of logical deductions.
 - Desired conclusion.
- ► This axiom-theorem-proof style dates back to the Ancient Greeks, e.g. Euclid (around 300 BCE).
- This neat picture of mathematics does not really correspond to how mathematicians actually work as.
- Mathematicians use a lot of informal intuition.
- ► The modern style of being very explicit about assumptions and definitions started in the late 19th century.

The evolution of rigour

- ► As mathematics became more advanced, mathematicians started proving contradictory things (e.g. in calculus).
- ► To resolve this, mathematicians became very precise.
- By doing this they were able to see that the contradictions often came from people starting from different assumptions.
- ▶ Imre Lakatos' book *proofs and refutations* explores this.
- ► The formal style is not how mathematicians *think*, but it is important to communication.
- It also helps prevent logic errors in mathematical reasoning.
- In practice: Think informally, write formally.
 - Often this is taken too far!

The role of formal logic

- ▶ It is debatable whether the formal style captures the true essence of mathematics.
- But, mathematics should be, in principle, capable of being expressed as a formal procession of axioms and deductions.
- I.e., mathematics can be treated as a formal system.
- So we can use mathematical reasoning on mathematics!
- Mathematics about mathematics (metamathematics).
 - Spoiler: This leads to the development of computers, which we will study next semester.
- Computers also behave very much like formal systems...

Applying logic

- ▶ But, before we can understand the role of formal logic in:
 - ▶ The theory of computation.
 - Analysis of the difficulty of computation problems.
 - Understanding the behaviour of software.
 - Etc.
- We need to understand the basics.
- That is what this course is about.

What is logic anyway?

- To properly describe mathematical and computational ideas symbolically we will need a complex language.
- We will get to this later in the course.
- First, we can think about the abstract structure of logical arguments with a relatively simple formal system.
- ▶ The Ancient Greeks thought a lot about this.
- ► For example, Aristotle gave the following example of a logical deduction:
 - 1. All humans are mortal.
 - 2. All Greeks are human.
 - 3. Therefore, all Greeks are mortal.

The syllogism

- Aristotle's argument again:
 - 1. All humans are mortal.
 - 2. All Greeks are human.
 - 3. Therefore, all Greeks are mortal.
- ► This is an example of something call a *syllogism*.
- ► The conclusion here is true in reality, but also, it *has* to be true if the assumptions are true:
 - 1. All X have property Y.
 - 2. Z is X.
 - 3. Therefore, Z has property Y.
- Medieval Christian scholars studied syllogisms in great detail.
- But for us syllogisms are not enough.

Propositional logic

- ► For our formal system of propositional logic we need three things:
 - Basic propositions (AKA propositional variables), $\{p_0, p_1, p_2, \ldots\}$. Abstract true/false statements.
 - ▶ Logical connectives $\{\land, \lor, \neg, \rightarrow, \leftrightarrow\}$.
 - \wedge : $p \wedge q$ is supposed to mean "p and q".
 - \vee : $p \vee q$ is supposed to mean "p or q".
 - \neg : $\neg p$ is supposed to mean "not p".
 - ightarrow: p
 ightarrow q is supposed to mean "p implies q" specifically, material implication.
 - \leftrightarrow : $p \leftrightarrow q$ for mutual implication.
 - Brackets (and). We use these to delimit formulas.

Giving meaning to propositional statements

If we assign meaning to some of the basic propositions we can combine them into new statements using the logical connectives and brackets.

Example 1

- Let $a, b, c \in \mathbb{N}$, and suppose p means "a|b", q means "a|(b+c)", and r means "a|c".
- ▶ Then $(p \land q) \rightarrow r$ means "If a divides b, and a divides (b + c), then a divides c".
- ▶ This statement is true, which we proved in the number theory class.

Another example

Example 2

- ▶ Again let $a, b, c \in \mathbb{N}$.
- ▶ Suppose p means "a|b", q means "a|c", and r means "a|bc".
- ▶ Then $(p \land q) \leftrightarrow r$ means "a divides b, and a divides b, if and only if a divides bc".
- ► This is not true (why?).
- ► The 'only if' part is true, but the 'if' part is not (though it looks similar to a true statement).

What is a 'formula'?

Not every string we can make using basic propositions and logical connectives makes sense.

Example 3

 $(p \to \land q) \lor \neg r$ doesn't make sense, whatever meaning we give to p, q and r. It's not true or false, it just doesn't mean anything.

- ▶ A well-formed formula (WFF) is a string in propositional logic that is capable of making sense.
- A recursive definition:
 - Individual basic proposition symbols are well-formed formulas.
 - ▶ If ϕ is well-formed then $\neg \phi$ is well-formed.
 - If ϕ and ψ are well-formed then $(\phi * \psi)$ is well-formed for all $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.
 - Everything else is not well-formed.
 - (We sometimes cheat with the brackets).

Subformulas

- In propositional logic we often refer to well-formed formulas as just *formulas*, and sometimes as *sentences*.
- ▶ If ϕ is a formula, then a **subformula** of ϕ is a substring of ϕ that is also a sentence (i.e. can be obtained by our recursive construction).
- ▶ E.g. $(p \land q)$ is a subformula of $(p \land q) \rightarrow r$, and so is e.g. r.
- \blacktriangleright We consider ϕ to be a subformula of itself.
- We define the **length** of a sentence ϕ to be the number of logical connectives that occur in ϕ .
- ▶ E.g. if $\phi = \neg((p \lor q) \land q)$ then the length of ϕ is 3.

When is a sentence true?

- Every basic proposition must be either true or false, and cannot be both.
- The same applies to sentences.
- Whether a sentence is true or false is depends only on the true/false values of the basic propositions it is built from.
- This truth value can be calculated recursively from the truth values of the basic propositions.
- ▶ We use **truth tables** to represent the recursion rules.

Truth tables

Using truth tables

Example 4

р	q	r	$p \wedge q$	$(p \land q) \rightarrow r$
Т	Т	Т	Т	Т
Τ	Т	F	Т	F
Τ	F	Т	F	T
Τ	F	F	F	Т
F	Т	Т	F	Т
F	Т	F	F	Т
F	F	Т	F	Т
F	F	F	F	Т

Implication

- ▶ Truth table for \rightarrow gives the *material conditional*.
 - $ightharpoonup \phi
 ightarrow \psi$ is true whenever ϕ is false or ψ is true.
- ► Contrast with *subjunctive implication*:
 - E.g: "if I dropped it, then it would break".
 - ▶ Should be true for a chicken egg, false for a tennis ball.
 - According to material implication, this is true for tennis balls and eggs if I don't drop them!
- Consider also indicative implication:
 - ► E.g. suppose a student likes yoghurt, studies hard and does well in her exams.
 - "studied hard so did well in her exams" is probably true.
 - "likes yoghurt so did well in her exams" is probably false.
 - I.e. the first part should be relevant to the second part.
 - Material conditional says both are true.
- ▶ So, material implication is not appropriate for everything.
- But it is good for formal systems.
 - ▶ I.e. if ϕ is false then $\phi \rightarrow \psi$ makes no claim, so is true.

Satisfaction

- Setting every propositional variable to be either true or false is making a truth assignment (or just assignment).
- ▶ If a sentence is true under some assignment we say it is satisfied by that assignment.
- A sentence is satisfiable if there is some assignment that satisfies it.
 - ▶ I.e. if there is a way we can interpret each basic proposition as true or false so that the whole thing becomes true.
- If Γ is a set of sentences, then we say Γ is satisfiable if there is an assignment that satisfies every sentence in Γ .

Tautologies and contradictions

- A sentence that is satisfied by every assignment is called a tautology.
 - ▶ I.e. a tautology is something that is always true.
 - ▶ E.g. $p \lor \neg p$ (a proposition must be either true or false).
 - Warning: in some logic systems this is not something we can assume! (see the next class).
 - lacktriangle We sometimes use the symbol op to denote a tautology.
- A sentence that is not satisfiable is called a contradiction.
 - ▶ I.e. a contradiction can never be true.
 - ▶ E.g. $p \land \neg p$ (a proposition cannot be both true and false at the same time).
 - lacktriangle We sometimes use the symbol ot to denote a contradiction.
- ▶ If ϕ is a tautology then $\neg \phi$ is a contradiction, and vice versa.

Logical implication

- ▶ Given ϕ and ψ , we say that ϕ **logically implies** ψ if whenever an assignment satisfies ϕ , it also satisfies ψ .
- We also say ψ is a **logical consequence** of ϕ .
- We write $\phi \models \psi$.
- ▶ This is another way of saying that $\phi \rightarrow \psi$ is true.
- We say that ϕ and ψ are **logically equivalent** if each is a logical consequence of the other.
- ▶ In this case we write $\phi \models = |\psi|$.

Theories

- We can also do this with sets of sentences.
- ▶ If Γ is a set of sentences and ψ is a sentence, then ψ is a logical consequence of Γ if, whenever an assignment satisfies ϕ for all $\phi \in \Gamma$, it also satisfies ψ .
- ► We write $\Gamma \models \psi$.
- We sometimes call a set of sentences a **theory**, and then we might say that ψ is a consequence of the theory Γ.
- We want to be able to say things like "the fact that the set of primes is infinite is a consequence of the theory of numbers".
- A theory can be empty (i.e. have no members).
- ▶ We write $\models \phi$ if ϕ follows from the empty theory, i.e. if ϕ is a tautology.

A simple theory example

- Let Γ be the theory $\{p \land \neg q, q \lor r\}$.
- ▶ Then $r \land p$ is a logical consequence of Γ (i.e. $\Gamma \models p \land r$).

p	q	r	$p \wedge \neg q$	$q \lor r$	$r \wedge p$
Т	Т	Т	F	Т	Т
Т	T	F	F	Τ	F
Τ	F	Т	Т	T	T
Т	F	F	Т	F	F
F	Т	Т	F	T	F
F	Т	F	F	T	F
F	F	Т	F	T	F
F	F	F	F	F	F

- ► There is only one assignment that makes both $p \land \neg q$ and $q \lor r$ true, and that is p = r = T, q = F.
- $ightharpoonup r \wedge p$ is also true with this assignment.
- So, every assignment that makes everything in Γ true must also make $r \wedge p$ true, which means $\Gamma \models r \wedge p$.

Avoiding truth tables

- We could also work this out without writing out the whole truth table.
 - E.g. we might notice just by looking at the formulas that $p \land \neg q$ being true means p is true and q is false.
 - ▶ Then $q \lor r$ can only be true if r is true.
 - ▶ Which means $r \land p$ must be true too.
- For complicated formulas, writing out a truth table is quite a lot of effort.
- So it's usually a good idea to look at the formulas first and see if you can find a quick argument for why one thing logically implies another.
- But, if you get stuck, the option of working out the truth table is always there.

Eliminating \rightarrow

- ▶ The set $\{\land, \lor, \neg, \rightarrow, \leftrightarrow\}$ is bigger than we need.
- ▶ We can use truth tables to check that some of the connectives can be reproduced using combinations of different ones.

Lemma 5

If ϕ and ψ are sentences, then $\neg \phi \lor \psi \models = |\phi \to \psi$.

Proof.

ϕ	ψ	$\phi \to \psi$	$\neg \phi \lor \psi$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	T
F	F	Т	Т

We can see that the last two columns are the same.

Why is this important?

- ▶ What this means is that whenever $\phi \to \psi$ appears in a formula, we could replace it with $\neg \phi \lor \psi$ without changing the truth value of the formula.
- In other words, we don't really need the connective →, because for every formula involving → there's an equivalent one where it does not appear.
- ► This might be intuitively obvious, but we will provide proof now, as the proof method will be very important.

The formal version

Corollary 6

If ϕ is a sentence, then there is a sentence ϕ' where the symbol \rightarrow does not occur, and with $\phi \models = |\phi'|$.

Proof.

- ▶ We induct on the length of ϕ .
- **>** Base case: n = 0, so ϕ is a basic proposition. Define $\phi = \phi'$.
- ▶ Inductive step: suppose true for length n, and let ϕ have length n+1. There are three cases:
 - 1. $\phi = \neg \psi$ for some ψ .
 - ψ has length \emph{n} , so there is ψ' that does not contain ' \rightarrow ' and with $\psi \models = |\psi'|$.
 - ▶ Define $\phi' = \neg \psi'$ to complete the proof, as, since $\psi \models \exists \psi'$ we must have $\neg \psi \models \exists \neg \psi'$, and $\phi = \neg \psi$.
 - 2. $\phi = \psi_1 * \psi_2$ for some $* \in \{\land, \lor, \leftrightarrow\}$.
 - 3. $\phi = \psi_1 \to \psi_2$.
 - ▶ By Lemma 5 we can define $\phi' = \neg \psi_1' \lor \psi_2'$.

Functional completeness

▶ A set of connectives defined by truth tables, S, is **functionally complete** if every formula that can be constructed from $\{\land,\lor,\neg,\rightarrow,\leftrightarrow\}$ is logically equivalent to one constructed from S.

Proposition 7

 $\{\wedge, \vee, \neg, \leftrightarrow\}$ is functionally complete.

Proof.

This is what we showed in corollary 6.

- ▶ The proof of corollary 6 generalizes to other connectives.
- ▶ If any sentence containing a particular connective is equivalent to another not containing it, then we still have a functionally complete set of connectives if we eliminate it.
- We will see in the exercises that $\{\land, \neg\}$ is functionally complete, and the same is true for $\{\lor, \neg\}$.