Introduction

Based on apparent properties, Robert Boyle classified the substance into acids and bases.

Acids	Bases
1. Sour to taste	Bitter to taste
2. Turn blue litmus to red	Turn red litmus to blue
3. Neutralize bases	Neutralize acids
4. Liberate H ₂ gas on reaction with metals	They are soapy to touch
5. Aqueous solutions are good conductors	Aqueous solutions are good conductors
6. They decompose metal carbonates and bicarbo-nates to liberate CO ₂	

 According to Lavoiser all acids must contain oxygen. But dray proved that all acids must contain Hydrogen but not oxygen.

Eg: HCl, HBr, HI, HF etc,.

- The chemical behaviour of acids and bases is explained by following three theories.
 - 1) Arrhenius theory
 - 2) Bransted lowery theory
 - 3) Hewis theory

Arrhenius theory of acids – bases : The basis for this theory is the Arrhenius theory of electrolytic dissociation.

• **Acids**: Which gives H[®] ions in aqueous solution.

Eg: HCl, H₂SO₄, HNO₃

• **Bases**: Which give OH[®] ions in aqueous solutions Eg: NaOH, KOH, etc,.

• **Salt**: Which neither gives H[⊕] nor OH[□] ions when ionised in water.

• **Neutralisation**: It is the reaction of acid and base to form salt and water.

It is the reaction of H^{\oplus} ions with OH^{\blacksquare} ions to form H_2O .

$$HCI + NaOH \rightarrow NaCI + H_2O$$
 (or)

$$H^{\oplus} + OH^{2} \rightarrow PH_{2}O$$

Ionization of Arrhenius acids (HX):

$$HX = H^{\oplus} + X^{?}$$

$$K_{a} = \frac{[H^{\oplus}][X^{-}]}{[HX]}$$

• Ionization of Arrhenius base (MOH):

$$MOH = M^{\oplus} + OH^{?}$$

$$K_b = \frac{[M^{\oplus}][OH^-]}{[MOH]}$$

Degree of ionisation (2) =

 $K_a \rightarrow acid ionisation constant$ (or)

acid dissociation constant

 $K_b \rightarrow base ionisation constant$ (or) base dissociation constant

 $\square \rightarrow$ It is the fraction of the substance which is ionised.

Strength of acids and bases:

The strength of acid or base will depend on the extent of ionisation.

• **Strong acids**: Which ionise completely even at moderate concentrations.

Strong acids have

- 1. higher K_a value
- 2. lower P^{Ka} value
- 3. percentage of ionisation is all most 100%
- 4. Degree of ionisation all most equal to 1 Eg: HClO₄, HI, HBr, H₂SO₄, HCl, HNO₃

Weak acids: Which ionise partially even at moderate concentrations, weak acids have,

- 1. lower Ka value
- 2. higher p^{K_b} value
- 3. percentage of ionisation much less than 100%
- 4. Degree of ionisation less than 1

Eg: All organic acids, H₂CO₃, HCN, H₃PO₄ etc.

Strong bases: Which ionise completely even at moderate concentration.

Strong base have.

- 1. higher K_b value
- 2. lower PKb value
- 3. percentage of ionisation is all most 100% is
- 4. Degree of ionisations all most equal to 1

Eg: Hydroxides of IA and II A except Mg, Be

Weak bases: Which ionise partially even at moderate concentrations weak bases have,

- 1. lower Kb value
- 2. higher P^{Kb} value
- 3. percentage of ionisation is much less than 100%
- 4. Degree of ionisation is much less than 1 Eg: Al(OH)₃, NH₄OH, Fe(OH)₃ etc.

Comparison of strength of acids and bases:

If two acids are at same concentrations

$$\frac{strengthofacid_1}{strengthofacid_2} = \frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$$

If two bases are at same concentrations

$$\frac{strengthofbase_1}{strengthofbase_2} = \frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{b_1}}{K_{b_2}}}$$

Ostwald's law of dilution:

The degree of ionisation of a substance (weak electrolyte) is inversely proportional to square root of its molar concentration (or) directly proportional to square root of its dilution.

$$\alpha \propto \frac{1}{\sqrt{C}}; \alpha = \sqrt{\frac{K}{C}}$$

• Basicity or protocity: Number of H^{\oplus} ions given by one molecule of acid.

Eg : Eg Base HCl 1
$$H_2SO_4$$
 2 H_3PO_4 3

Ionisation of polyprotic acid :

Polyprotic acid will ioinise in step wise. The first step ionisation occurs to large extent than the later step ionisations.

$$H_2SO_4 \implies HSO_4^- + H^{\oplus} \quad K_1$$
 $HSO_4^- \implies H^{\oplus} + SO \quad _4^{2-} \quad K_2$
over all $K_a = K_1 \times K_2$
 $K_1 > K_2$

 Acidity (or) Hydroxicity of base: It is the number of OH⁻ ions given by one molecule of base

NaOH
$$\rightarrow 1$$

Ca(OH)₂ $\rightarrow 2$
Al(OH)₃ $\rightarrow 3$

• These polyhydroxy bases also ionizes step wise as those of acids.

Draw backs of Arrhenius theory:

1) It is limited to aqueous medium.

Eg: aq. HCl is acid but HCl gas is not acid

2) It fails to explain acidic nature of non metallic oxides.

Eg: CO₂, SO₂, SO₃ etc⁻

- 3) It fails to explain basic nature of substances like NH₃, PH₃, NH₂ NH₂.
- 4) It fails to explain acidic nature of non protonic acids like BF₃, AlCl₃ etc.,
- 5) It fails to explain the nature of salts like CuSO₄ aq. Al₂(SO₄)₃ aq. On the litmus paper (blue \rightarrow red)
- 6) It fails to explain the stability of H^{\oplus} which is a mere proton $[H^{\oplus}$ ion actually exits as H_3O^{\oplus} or $H_9O_4^+$]

• Modified Arrhenius theory:

This modified theory will explain the nature of some more acids and bases.

• Acid: Which increase the concentration of H_3O^{\oplus} by interacting with solvent.

Eg: CO₂, SO₂

$$CO_2 + 2H_2O \Longrightarrow HCO_3^- + H_3O^{\oplus}$$

• Base: Which increases the concentration of OH lions by interacting with solvent.

Eg: $NH_3 + H_2O \implies NH_4^{\oplus} + OH^-$