Marci M. McBride CSE 122 HW3 Part 1

1. Find the running time T(n) of:

Cost	#
C1	n-6
C2	n-7

$$T(n) = C1(n-6)+C2(n-7)$$

 $T(n) = n(C1+C2)-6C1-7C2$

2. Find the running time T(n) of:

Cost	#	
C1	1	
C2	1	
C3	1	

$$T(n) = C1+C2+C3$$

$$T(n) = 1$$

However since there is a break statement technically T(n) = c.

3. Find the running time T(n) of:

```
for k = 1 to n - 1
    max = a[k]
    for j = k + 1 to n
        a[j] = a[j] * max
a[k] = a[j]
```

Cost	#
C1	n
C2	n-1
C3	[(n(n+1)/2]-1
C4	n(n-1)/2
C5	n-1

$$T(n) = C1(n)+C2(n-1)+C3([(n(n+1)/2]-1)+C4(n(n-1)/2)+C5(n-1)$$

 $T(n) = C1n+C2n-C2+C3((n^2+n)/2)-C3+C4(n^2-n)/2+C5n-C5$
 $T(n) = n(C1+C2+C5)+(C3+C4)((n^2+n)/2)-C2-C5-C3$

4. Make sure to show your work for this problem on how you came up with the count for each line. Find the running time T(n) of:

```
for i = 1 to n
  for j = 1 to i
    for k = 1 to j
        x = i * j * k
```

line	#
C1	n+1
C2	$(n^2+3n)/2$
C3	(¾) (n (1+n))+(1/12)(n (1+n) (1+2 n))
C4	(1/12)(n (1+n) (1+2 n)) +(1/4) (n (1+n))

Hmmm show our work... ill give it a try

Thinnin show our work in give it a try		
C1	C2	
((n-1)+1)+1	Sum of i=1 to n	
((n)+1)	Of i+1	
	= N(n+1)/2 + n	
	$=(n^2+3n)/2$	
C3	C4	
Sum from I =1 to n of the sum of j=1	Sum from I =1 to n of the sum of	
to I of j +1	j=1 to I of j	
=i(i+1)/2+i	=i(i+1)/2	
$=(i^2+3i)/2$	$=(i^2+i)/2$	

 $T(n) = C1(n+1) + C2((n^2+3n)/2) + C3((\frac{3}{4})(n(1+n))+(1/12)(n(1+n)(1+2n)) + C4(1/12)(n(1+n)(1+2n)) + (1/4)(n(1+n))$

5. Define f(n) = o(g(n)) to mean that $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$

Show that $\log n = o(n^\epsilon)$ for any $\epsilon > 1$. Hint: use l'Hospital's Rule. Show your work and type your answer.

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = \lim_{n \to +\infty} \frac{\lim_{n \to +\infty} \frac{\lim_{n \to +\infty} \frac{\lim_{n \to +\infty} \frac{\lim_{n \to +\infty} 1}{n}}{(\log n)/(n^{\epsilon})} = \lim_{n \to +\infty} \frac{\lim_{n \to +\infty} 1}{n} = 0$$

$$\lim_{n \to +\infty} 1/n^{\epsilon} = 0$$

$$\lim_{n \to +\infty} 1/n^{\epsilon} = 0$$

$$\lim_{n \to +\infty} 1/n^{\epsilon} = 0$$