

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

900 528

NWC TP 6662

The Asymptotic Behavior of an Exponential-Type Series

by William O. Alltop Research Department

and

Charles S. Kenney Information Systems Group

OCTOBER 1985

MAIAL WEAPONS CENTER CHIRA LAKE, CA 99056-6001

Approved for public release; distribution is unlimited.

IL FILE COPY

Naval Weapons Center

FOREWORD

This report describes mathematical properties of a function arising in a laser backscattering study. The work was performed at the Naval Weapons Center, China Lake, Calif., during 1985 under Program Element 61152N, Task Area ZR000-01-01, Work Unit 138070.

The report has been reviewed for technical accuracy by D. T. Gillespie.

The authors wish to acknowledge several helpful discussions with H. N. Browne, Jr., D. T. Gillespie, and J. M. Martin of NWC.

Approved by

E. B. ROYCE, Head

K. A. DICKERSON

Research Department

Capt., USN

23 September 1985

Commander

Released for publication by B. W. HAYS Technical Director

NWC Technical Publication 6662

Published by	•	•	•	•	•		•		•	•	•		•	•		T	ech	nic	al i	Inf	OTT	nation I	Departmen:
Collation .				•	•	•		•														Cover	, 4 leaves
First printing																							30 copies

CARLEST TALL	ACCICIC A TIMAL	150	TILLE	0 4 . 11
SECURITY CO	ASSIFICATION	UF	IMIS	PAGE

	SSIFICATION OF	ING FAUL	REPORT DOCUM	MENITATION	DAGE				
1a REPORT SE	CURITY CLASS	IFICATION	REPORT DOCUM	16 RESTRICTIVE					
UNCLASS	SIFIED								
2a SECURITY	CLASSIFICATIO	N AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT A Statement: approved for public release;					
2b DECLASSIF	ICATION / DOW	NGRADING SCHE	DULE		is unlimited.	•			
4 PERFORMIN	G ORGANIZAT	ION REPORT NUM	MBER(S)	5 MONITORING	ORGANIZATION	REPORT NUMBER	(5)		
NWC TP	6662								
6a. NAME OF	PERFORMING	ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORG	ANIZATION			
Naval We	apons Center		, , , , , , , , , , , , , , , , , , , ,						
6c ADDRESS	City, State, and	d ZIP Code)		7b. ADDRESS (Ci	ity, State, and Zl	P Code)			
China La	ke, CA 93555	5-6001							
Ra NAME OF	FUNDING / SPO	NSORING	8b. OFFICE SYMBOL	9 PROCHEEMEN	IT INSTRUMENT	IDENTIFICATION N	LIMBER		
ORGANIZA	TION		(If applicable)	7. THOCOREWIEN	TO HEAT OFFICE AT	DETERMICATION IN	CHIBER		
	apons Center City, State, and			10 SOURCE OF	FUNDING NUMBI	ERS			
	-			PROGRAM ELEMENT NO	PROJECT	TASK	WORK UN		
China La	ke, CA 93555	5-6001		61152N	NO	NO. ZR000-01-01	NO 13807		
13a. TYPE OF Fir 16 SUPPLEME 17 FIELD		FROM_	18. SUBJECT TERMS (se if necessary a	nd identify by blo	6		
12 01 Laser Backs				atter, Convex Functions, Exponential Series					
19 ABSTRACT indepe	(U) The liming of the ckscattering of	e other two. T of sharp laser	function of three varia he function is a genera pulses in an infinite clo evaluation of the asympt	lization of an i oud of isotropic	nfinite series a scatterers. Con	rising in the ca nvexity of the	lculation function		
indepe of ba in a p	(U) The liming of the ckscattering of the charticular region (CON/AVAILAB	e other two. Tof sharp laser on enables the	he function is a genera pulses in an infinite clo evaluation of the asympt	lization of an i oud of isotropic totic behavior wi 21 ABSTRACT SI Und	nfinite series a scatterers. Col ithout extensive ECURITY CLASSIF	rising in the ca nvexity of the algebraic manip	lculation function ulations.		
indepe of ba in a p	(U) The liming of the ckscattering of the carticular regional control of the carticular region of the carticular region of the carticular region of the carticular responsible william O.	e other two. Tof sharp laser on enables the LITY OF ABSTRACED SAME A INDIVIDUAL Alltop	he function is a genera pulses in an infinite cloevaluation of the asympton	lization of an i oud of isotropic totic behavior wi 21 ABSTRACT S Unc 22b TELEPHONE 619-939-303	nfinite series a scatterers. Colithout extensive ECURITY CLASSIFiclassified (Include Area Cod	rising in the ca nvexity of the algebraic manip	lculation function ulations.		

1. INTRODUCTION

The purpose of this report is to show that

$$\lim_{x \to \infty} \left[e^{-x} E(x, \alpha) \right] = 1 \quad \text{for } -1 \le \alpha \le 1$$
 (1)

where

$$E(x,\alpha) = \sum_{k=0}^{\infty} \left(\frac{k+1}{x}\right)^{\alpha} \frac{x^k}{k!} \quad \text{for } x > 0 \text{ and all } \alpha$$

More specifically, we will show that

$$e^{x} + \alpha \le E(x,\alpha) \le e^{x} + \frac{\alpha}{x}e^{x}$$
 for $0 \le \alpha \le 1$ (2)

and

$$e^{x} + \frac{\alpha}{r} e^{x} \le E(x,\alpha) \le e^{x} + \alpha \quad \text{for } -1 \le \alpha \le 0$$
 (3)

As a corollary to Equation 1 we have

$$\lim_{x \to \infty} \left[x^{-\frac{1}{2}} e^{-x} S(x) \right] = 1$$
 (4)

where

$$S(x) \equiv \sum_{k=0}^{\infty} (k+1)^{\frac{1}{2}} \frac{x^k}{k!} = x^{\frac{1}{2}} E(x, \frac{1}{2})$$

Indeed it was an investigation of the asymptotic behavior of S(x) that led to this study.

The series S(x) arose in a calculation of time-dependent backscattering of sharp laser pulses in an infinite cloud of isotropic scatterers (Reference 1). More specifically, letting x denote the time (suitably nondimensionalized) after pulse emission, it turns out that the intensity of the total backscattered signal at times x >> 1 is approximately proportional to $x^{-2}e^{-\alpha x} S(x)$ where $\alpha \ge 1$. A sensible interpretation of this result evidently requires a knowledge of the behavior of S(x) for large x. The limit (Equation 4) implies that the backscattered intensity at times x >> 1 is proportional to $x^{-3/2}e^{-(\alpha - 1)\alpha}$.

In Section 2 we prove Equations 2 and 3 by considering $E(x,\alpha)$ as a function of α for fixed x > 0. This turns out to be a convex function which is easily evaluated at $\alpha = -1$, 0 and 1. These values together with the convexity property yield Equations 2 and 3.

In Section 3 we prove the slightly improved inequality

$$E(x,\frac{1}{2}) \leq (1+x^{-1})^{\frac{1}{2}}e^{x}$$

This results from manipulating the series for $(E(x,\frac{1}{2}))^2$.

In Section 4 $E(x,\alpha)$ is generalized by the addition of one parameter, and the corresponding generalizations of Equations 1 through 3 are proved. Throughout it will be assumed that x > 0.

2. BOUNDS FOR $E(x,\alpha)$

For all a and fixed x > 0, the series representation for E(x,a) can be differentiated term by term with respect to a due to uniform convergence.

$$E'(x,\alpha) = \sum_{k=0}^{\infty} \left(\frac{k+1}{x}\right)^{\alpha} \ln\left(\frac{k+1}{x}\right) \frac{x^k}{k!}$$

$$E''(x,\alpha) = \sum_{k=0}^{\infty} \left(\frac{k+1}{x}\right)^{\alpha} \left[\ln\left(\frac{k+1}{x}\right)\right]^{2} \frac{x^{k}}{k!}$$

 $E(x,\alpha)$ is a convex function of a since $E''(x,\alpha) > 0$ for all α . It is easy to show that E(x,-1) = e' - 1 and E(x,0) = e'. The following steps show the less obvious evaluation of E(x,1):

$$E(x,1) = \sum_{k=0}^{\infty} \left(\frac{k+1}{x}\right) \frac{x^k}{k!}$$

$$= \frac{1}{x} + \sum_{k=1}^{\infty} \left(1 + \frac{1}{k}\right) \frac{x^{k-1}}{(k-1)!}$$

$$= \frac{1}{x} + \sum_{k=1}^{\infty} \frac{x^{k-1}}{(k-1)!} + \frac{1}{x} \sum_{k=1}^{\infty} \frac{x^k}{k!}$$

$$= \frac{1}{x} + e^x + \frac{1}{x} (e^x - 1)$$

$$= e^x + \frac{1}{x}e^x$$

For fixed x we have points P(-1), P(0), and P(1) on the curve E = E(x,a) in the aE-plane:

$$P(-1) = (-1, e'-1)$$

$$P(0) = (0,e^{x})$$

$$P(1) = (1,e' + e'/x)$$

Letting L_k denote the line joining P(k-1) and P(k) for k=0,1, we obtain the following equations for L_k :

$$L_0$$
: $E = e' + \alpha$

$$L_1$$
: $E = e' + \alpha e'/x$

Since E(x,a) is convex and the three points P(k) lie on the curve E=E(x,a), the curve must lie between L_0 and L_1 in the interval $-1 \le a \le 1$. This proves Equations 2 and 3.

3. AN IMPROVED UPPER BOUND

For the case $\alpha = \frac{1}{2}$, the upper bound in Equation 2 can be slightly improved by computing $(E(x,\frac{1}{2}))^2$.

$$(E(x,\frac{1}{2}))^{2} = \sum_{k=0}^{\infty} \sum_{r=0}^{k} \left(\frac{r+1}{x}\right)^{\frac{1}{2}} \frac{x^{r}}{r!} \left(\frac{k-r+1}{x}\right)^{\frac{1}{2}} \frac{x^{k-r}}{(k-r)!}$$

$$= \sum_{k=0}^{\infty} \frac{x^{k-1}}{k!} \sum_{r=0}^{k} {k \choose r} [(r+1)(k-r+1)]^{\frac{1}{2}}$$

For $0 \le r \le k$,

$$(r+1)(k-r+1) \le \left(\frac{k+2}{2}\right)^2$$

with equality holding for r = k/2. Therefore,

	_	
INDINA		1
(1881)A	CIED	J
1.	_ /	•

Acces	ion For	1						
	CRA&I	N.						
DTIC TAB								
JUSTINGTON								
Ву								
Dist ibution/								
Availability Codes								
Dist	Avail and Special	l or						
A-1								

$$\left(E(x,\frac{1}{2})\right)^{2} < \sum_{k=0}^{\infty} \frac{x^{k-1}}{k!} \left(\frac{k+2}{2}\right) \sum_{r=0}^{k} {k \choose r}$$

$$= \sum_{k=0}^{\infty} \frac{x^{k-1}}{k!} \left(\frac{k+2}{2}\right) 2^{k} = \sum_{k=0}^{\infty} \frac{(2x)^{k-1}}{k!} (k+2)$$

$$= \frac{1}{x} + \sum_{k=1}^{\infty} \frac{(2x)^{k-1}}{(k-1)!} + \frac{1}{x} \sum_{k=1}^{\infty} \frac{(2x)^{k}}{k!}$$

$$= \frac{1}{x} + e^{2x} + \frac{1}{x} (e^{2x} - 1) = (1 + \frac{1}{x}) e^{2x}$$

It follows that

$$E(x,\frac{1}{2}) \le \left(1 + \frac{1}{x}\right)^{\frac{1}{2}} e^x < \left(1 + \frac{1}{2x}\right) e^x$$

4. A GENERALIZATION

Let $E_{A}(x,a)$ be defined by

$$E_A(x,\alpha) = \sum_{k=0}^{\infty} \left(\frac{k+A}{x}\right)^{\alpha} \frac{x^k}{k!}$$

for $A \ge 1$ and all α , so that $E(x,\alpha) = E_{\alpha}(x,\alpha)$.

For fixed A and x, $E_A(x,\alpha)$ is a convex function of α , assuming the following values at $\alpha=-1$, 0, and 1:

$$E_A(x,-1) = e^x - F_A(x)$$

 $E_A(x,0) = e^x$
 $E_A(x,1) = e^x + Ae^x/x$

where

$$F_A(x) = (A-1) \sum_{k=0}^{\infty} \left(\frac{1}{k+A-1} \right) \frac{x^k}{k!}$$

Defining the three points P(-1), P(0), P(1) and the lines L_n and L_1 as in Section 2, we have the following equations:

$$L_0: E = e^x + \alpha F_A(x)$$

$$L_1: E = e^x + \alpha A e^x/x$$

The curve $E = E_A(x,\alpha)$ is bounded by L_0 and L_1 in the αE -plane. It follows, as in Section 2, that

$$e^x + \alpha F_A(x) \le E_A(x,\alpha) \le e^x + \frac{\alpha A}{x} e^x$$
 for $0 \le \alpha \le 1$

$$e^x + \frac{\alpha A}{x} e^x \le E_A(x, \alpha) \le e^x + \alpha F_A(x)$$
 for $-1 \le \alpha \le 0$

and

$$\lim_{x\to\infty} \left| e^{-x} E_A(x,\alpha) \right| = 1 \text{ for } -1 \le \alpha \le 1 \text{ and } A \ge 1$$

We also obtain the following bound for $F_{A}(x)$:

$$F_A(x) \le \frac{A}{x} e^x \text{ for } A \ge 1$$

REFERENCE

D. T. Gillespie. "A Calculation of n-Scattered Lidar Returns for Large n in an Idealized Cloud,"
 J. Opt. Soc. Am. A. (to be published).

FILMED

1-86

DTIC