Last time

- Circuit analysis using:
 - Superposition
 - Ohms Law, Kirchoff's voltage law, Kirchoff's current law
 - Nodal analysis
 - Mesh analysis
- This time
 - AC circuits

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

6.1

6.3

Generalized Thevenin/Norton Analysis

- Pick a good breaking point in the circuit (cannot split a dependent source and its control variable). Example of a good break point: Remove the load resistor and
 - Remove the load resistor and Compute the open circuit voltage, $V_{\rm OC}$.
- 2. Short the load and Compute the short circuit current, $I_{\rm SC}$.
- 3. Compute the Thevenin equivalent resistance, R_{Th} . $R_{Th} = (V_{OC}) / (I_{SC})$.

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

6.2

Replace the complex network with the equivalent circuit:

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

How to Apply Superposition

- To find the contribution due to an individual independent source, zero out all the other independent sources in the circuit.
 - Voltage source ⇒ short circuit.
 - Current source ⇒ open circuit.
- Solve the resulting circuit using your favorite technique(s).
- Add the contributions from the individual sources together.

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

Nodal Analysis

- Six steps:
 - 1. Chose one node as the reference node
 - 2. Label any nodes with known voltages
 - 3. Label remaining nodes V_1 , V_2 , etc. (you will solve for these)
 - 4. Postulate currents into each unknown node and apply Kirchhoff's current law to each unknown node
 - 5. Apply Ohms law to the current for each node & solve the resulting simultaneous equations for unknown voltages
 - 6. If necessary calculate required currents

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

6.5

Want to know the currents through R_2 , R_4 and R_6

Can be solved using:

- 1) Ohms law $\Rightarrow I_2 = 7.22 \text{ mA}, I_4 = 5.25 \text{ mA}, I_6 = 5.25 \text{ mA} \sqrt{}$
- 2) Nodal analysis \Rightarrow $I_2=7.22 \text{ mA}, I_4=5.25 \text{ mA}, I_6=5.25 \text{ mA} \sqrt{}$
- 3) Mesh analysis

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

This time

- Circuit analysis using:
 - Superposition
 - Ohms Law, Kirchoff's voltage law, Kirchoff's current law
 - Nodal analysis
 - Mesh analysis
- This time
 - AC circuits

Neil Storev. Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

Mesh Analysis

- Five steps:
 - 1. Identify the meshes and assign a clockwise-flowing current to each. Label these l_1 , l_2 , etc.
 - 2. Assign unknown voltages for each loop anti parallel to I_{loop}
 - 3. Apply Kirchhoff's voltage law to each mesh
 - 4. Solve the simultaneous equations to determine the currents I_1 , I_2 , etc.
 - 5. Use these values to obtain voltages if required

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

3.9

Voltages from Mesh Currents

$$I_1$$

$$V_R = I_1 R$$

$$V_R = (I_1 - I_2) R$$

 $\textit{Note Sign Convention:} \quad I_1 \text{ is anti-parallel to } V_R \Rightarrow V_{R1} = \ I_1 \cdot R$

 I_2 parallel to $V_R \Rightarrow V_{R2} = -I_2 \cdot R$

total voltage is the sum $V_R = (I_1 - I_2) \cdot R$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Mesh analysis

KVL around each mesh gives

 $V_S - V1 - V2 = 0$

 $V^{3} - V^{3} - V^{4} = 0$

V2 - V3 - V4 = 0V4 - V5 - V6 = 0 And want to apply Ohms law to each

3.10

voltage drop

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

$$V4 - V5 - V6 = 0$$

Using Ohms law gives

$$111V - (R_1 \cdot I_1) - R_2 \cdot (I_1 - I_2) = 0$$

 $R_{2} \cdot (I_{1} - I_{2}) - R_{3} \cdot I_{2} - R_{4} \cdot (I_{2} - I_{3}) = 0$ $R_{4} \cdot (I_{2} - I_{3}) - R_{5} \cdot I_{3} - R_{6} \cdot I_{3} = 0$

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

Solving Simultaneous Circuit Equations

- these equations can be expressed as $\begin{bmatrix} -(R_1+R_2) & R_2 & 0 \\ R_2 & -(R_2+R_3+R_4) & R_4 \\ 0 & R_4 & -(R_4+R_5+R_6) \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} -111V \\ 0 \\ 0 \end{bmatrix}$ - This yields $I_1 = 17.73$ mA, $I_2 = 10.51$ mA and $I_3 = 5.25$ mA
- But remember

• Net Current through $R_2 = I_1 - I_2 = 7.22$ mA
• Net Current through $R_4 = I_2 - I_3 = 5.25$ mA
• Net Current through $R_6 = I_3 = 5.25$ mA
• Net Current through $R_6 = I_3 = 5.25$ mA

Want to know the currents through R₂, R₄ and R₆

Can be solved using:

- 1) Ohms law \Rightarrow $I_2=7.22 \text{ mA}, I_4=5.25 \text{ mA}, I_6=5.25 \text{ mA}\sqrt{}$
- 2) Nodal analysis \Rightarrow I₂=7.22 mA, I₄=5.25 mA, I₆ = 5.25 mA $\sqrt{}$
- 3) Mesh analysis $\Rightarrow I_2 = 7.22 \text{ mA}, I_4 = 5.25 \text{ mA}, I_6 = 5.25 \text{ mA}, \frac{1}{3.17}$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Example 3.8 from book (continued) - first assign loops currents and label voltages for each current loop $R_{d} = 70 \Omega$ V_{d} V_{d} $R_{g} = 100 \Omega$ $R_{g} = 100 \Omega$ Note, book has assigned voltages for I_{1} first, then I_{3} and finally I_{2} . Neil Storey, Electronics: A Systems Approach, 5° Edition © Pearson Education Limited 2013

Advantages of Nodal Analysis

- Solves directly for node voltages.
- Current sources are easy to deal with.
- Voltage sources are either very easy or somewhat difficult.
- Works best for circuits with few nodes.
- Works for any circuit.

Neil Storey. Electronics: A Systems Approach. 5th Edition @ Pearson Education Limited 2013

Advantages of Mesh Analysis

- Solves directly for some currents.
- Voltage sources are easy.
- Current sources are either very easy or somewhat difficult.
- Works best for circuits with few meshes.

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

6.20

Disadvantages of Mesh Analysis

- Some currents must be computed from loop currents.
- Does not work with non-planar circuits.
- Choosing the right mesh may be difficult.
- FYI: PSpice uses a nodal analysis approach

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

6.21

ELECTRONICS

Further Study

- The Further Study section at the end of Chapter 3 investigates the choice of circuit analysis techniques.
- A circuit is presented which could be analysed in a number of ways.
- Have a look and see which you think is best, then watch the video.

Neil Storey. Electronics: A Systems Approach. 5th Edition @ Pearson Education Limited 2013

6.23

Choice of Techniques

- How do we choose the right technique?
 - nodal and mesh analysis will work in a wide range of situations but are not necessarily the simplest methods
 - no simple rules
 - often involves looking at the circuit and seeing which technique seems appropriate

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

6.22

Key Points

- An electric current is a flow of charge
- A voltage source produces an e.m.f. which can cause a current to flow
- Current in a conductor is directly proportional to voltage
- At any instant the sum of the currents into a node is zero
- At any instant the sum of the voltages around a loop is zero
- Any two terminal network of resistors and energy sources can be replaced by a Thévenin or Norton equivalent circuit
- Nodal and mesh analysis provide systematic methods of applying Kirchhoff's laws

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Introduction

 From earlier knowledge (or reading revision chapters: we know that

$$v = V_p \sin(\omega t + \phi)$$

 V_n is the **peak voltage** where

 ω is the angular frequency

 ϕ is the phase angle

• Since $\omega = 2\pi f$ it follows that the period T is given by

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

6.26

Voltage and Current

· Consider the voltages across a resistor, an inductor and a capacitor, with a current of

$$i = I_P \sin(\omega t)$$

- Resistors
 - from Ohm's law we know

$$v_R = iR$$

- therefore if $i = I_n \sin(\omega t)$

$$v_R = I_P R \sin(\omega t)$$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Voltage and Current

- Inductors in an inductor $v_L = L \frac{di}{dt}$
 - therefore if $i = I_p \sin(\omega t)$

$$V_L = L \frac{d(I_P \sin(\omega t))}{dt} = \omega L \cdot I_P \cos(\omega t)$$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Voltage and Current

- Inductors in an inductor $v_L = L \frac{C}{C}$
 - therefore if $i = I_p \sin(\omega t)$

$$V_L = L \frac{d(I_P \sin(\omega t))}{dt} = \omega L \cdot I_P \cos(\omega t) = \omega L \cdot I_P \sin(\omega t + 90^\circ)$$

leil Storey, Flectronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

Voltage and Current

- Inductors in an inductor $v_L = L \frac{di}{dt}$
 - therefore if $i = I_p \sin(\omega t)$

$$V_{L} = L \frac{d(I_{P} \sin(\omega t))}{dt} = \omega L \cdot I_{P} \cos(\omega t) = \omega L \cdot I_{P} \sin(\omega t + 90^{\circ})$$

- Capacitors in a capacitor $v_C = \frac{1}{C} \int i \cdot dt$
 - therefore if $i = I_p \sin(\omega t)$

$$V_C = \frac{1}{C} \int I_P \sin(\omega t) = -\frac{I_P}{\omega C} \cos(\omega t)$$

Neil Storev. Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Voltage and Current

- Inductors in an inductor $v_L = L \frac{di}{dt}$
 - therefore if $i = I_p \sin(\omega t)$

 v_L peaks before i

6.30

$$V_L = L \frac{d(I_P \sin(\omega t))}{dt} = \omega L \cdot I_P \cos(\omega t) = \omega L \cdot I_P \sin(\omega t + 90^\circ)$$

- Capacitors in a capacitor $v_c = \frac{1}{C} \int i \cdot dt$
 - therefore if $i = I_p \sin(\omega t)$

 v_C peaks after i

$$V_C = \frac{1}{C} \int I_P \sin(\omega t) = -\frac{I_P}{\omega C} \cos(\omega t) = \frac{I_P}{\omega C} \sin(\omega t - 90^\circ)$$

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

Reactance of Inductors and Capacitors

6.34

- Let us ignore, for the moment the phase angle and consider the magnitudes of the voltages and currents
- Let us compare the peak voltage and peak current
- Resistance

$$\frac{\text{Peak value of voltage}}{\text{Peak value of current}} = \frac{\text{Peak value of } (I_P \text{Rsin}(\omega t))}{\text{Peak value of } (I_P \text{sin}(\omega t))} = \frac{I_P R}{I_P} = R$$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Inductance

 $\frac{\text{Peak value of voltage}}{\text{Peak value of current}} = \frac{\text{Peak value of } (\omega L \cdot I_{\rho} \text{cos}(\omega t))}{\text{Peak value of } (I_{\rho} \text{sin}(\omega t))} = \frac{\omega L \cdot I_{\rho}}{I_{\rho}} = \omega L$

Capacitance

 $\frac{\text{Peak value of voltage}}{\text{Peak value of current}} = \frac{\text{Peak value of } (-\frac{I_p}{\omega C} \cos(\omega t))}{\text{Peak value of } (I_p \sin(\omega t))} = \frac{\frac{I_p}{\omega C}}{I_p} = \frac{1}{\omega C}$

Neil Storev, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

- The ratio of voltage to current is a measure of how the component opposes the flow of electricity
- In a resistor this is termed its resistance
- In inductors and capacitors it is termed its reactance
- Reactance is given the symbol X
- Therefore

Reactance of an inductor, $X_L = \omega L$

Reactance of a capacitor, $X_C = \frac{1}{\omega C}$

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

6.36

- Since reactance represents the ratio of voltage to current it has units of ohms
- The reactance of a component can be used in much the same way as resistance:
 - for an inductor

$$V = I X_I$$

- for a capacitor

$$V = I X_C$$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Example – see Example 6.3 from course text

A sinusoidal voltage of 5 V peak and 100 Hz is applied across an inductor of 25 mH. What will be the peak current?

At this frequency, the reactance of the inductor is given by

$$X_L = \omega L = 2\pi f L = 2 \times \pi \times 100 \times 25 \times 10^{-3} = 15.7 \Omega$$

Therefore

$$I_L = \frac{V_L}{X_L} = \frac{5}{15.7} = 318 \,\text{mA peak}$$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

6.38

Phasor Diagrams

6.37

- Sinusoidal signals are characterised by their magnitude, their frequency and their phase
- In many circuits the frequency is fixed (perhaps at the frequency of the AC supply) and we are interested in only magnitude and phase
- In such cases we often use phasor diagrams which represent magnitude and phase within a single diagram

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

6.39

Examples of phasor diagrams $v_L \propto \sin(\omega t + 90^\circ)$ (a) here L represents the magnitude and ϕ the phase of a sinusoidal signal (b) shows the voltages v_c ∝sin(ωt-90°) across a resistor, an inductor and a (a) capacitor for the same sinusoidal current 6.40 Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Impedance

6.47

- In circuits containing only resistive elements the current is related to the applied voltage by the resistance of the arrangement
- In circuits containing reactive, as well as resistive elements, the current is related to the applied voltage by the impedance, Z of the arrangement
 - this reflects not only the magnitude of the current but also its phase
 - impedance can be used in reactive circuits in a similar manner to the way resistance is used in resistive circuits

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

6.49

• From the phasor diagram it is clear that that the magnitude of the voltage across the arrangement V is

$$V = \sqrt{V_R^2 + V_L^2}$$

$$= \sqrt{(IR)^2 + (IX_L)^2}$$

$$= I\sqrt{R^2 + X_L^2}$$

$$= IZ$$

where $Z = \sqrt{R^2 + X_I^2}$

• Z is the magnitude of the impedance, so $Z = |\mathbf{Z}|$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

• From the phasor diagram the phase angle of the impedance is given by

$$\phi = \tan^{-1} \frac{V_L}{V_R} = \tan^{-1} \frac{IX_L}{IR} = \tan^{-1} \frac{X_L}{R}$$

- This circuit contains an inductor but a similar analysis can be done for circuits containing capacitors
- In general

$$Z = \sqrt{R^2 + X^2}$$

$$\phi = \tan^{-1} \frac{X}{R}$$

Sign from diagram

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

6.50

 A graphical representation of impedance X_L 6.51 Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Complex Notation

- Phasor diagrams are similar to Argand Diagrams used in complex mathematics
- We can also represent impedance using complex notation where
- Resistors:
- Inductors: $\mathbf{Z_L} = \mathbf{j}X_L = \mathbf{j}\omega L$ Capacitors: $\mathbf{Z_C} = -\mathbf{j}X_C = -\mathbf{j}\frac{1}{\omega C} = \frac{1}{\mathbf{j}\omega C}$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

6.53

6.55

Graphical representation of complex impedance

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

- Series and parallel combinations of impedances
 - impedances combine in the same way as resistors

6.54

6.56

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

- Manipulating complex impedances
 - complex impedances can be added, subtracted, multiplied and divided in the same way as other complex quantities
 - they can also be expressed in a range of forms such as the rectangular, polar and exponential forms
 - if you are unfamiliar with the manipulation of complex quantities (or would like a little revision on this topic) see Appendix D of the course text which gives a tutorial on this subject

Neil Storey. Electronics: A Systems Approach. 5th Edition @ Pearson Education Limited 2013

■ Example – see Example 6.7 in the course text

Determine the complex impedance of this circuit at a frequency of 50 Hz

At 50Hz, the angular frequency $\omega = 2\pi f = 2 \times \pi \times 50 = 314 \text{ rad/s}$

Therefore

$$\mathbf{Z} = \mathbf{Z}_{\mathbf{C}} + \mathbf{Z}_{\mathbf{R}} + \mathbf{Z}_{\mathbf{L}} = R + j(X_{L} - X_{C}) = R + j(\omega L - \frac{1}{\omega C})$$

$$= 200 + j(314 \times 400 \times 10^{-3} - \frac{1}{314 \times 50 \times 10^{-6}})$$

$$= 200 + j62 \text{ ohms}$$

Neil Storey, Electronics: A Systems Approach, 5th Edition @ Pearson Education Limited 2013

Key Points

- A sinusoidal voltage waveform can be described by the equation $v = V_p \sin(\omega t + \phi)$
- The voltage across a resistor is in phase with the current, the voltage across an inductor leads the current by 90°, and the voltage across a capacitor lags the current by 90°
- The reactance of an inductor $X_L = \omega L$
- The reactance of a capacitor $X_C = 1/\omega C$
- The relationship between current and voltage in circuits containing reactance can be described by its impedance
- The use of impedance is simplified by the use of complex notation

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013