

Introduction

VE311 Electronic Circuits (Fall 2021)

Dr. Chang-Ching Tu

Instructor Short Biography

- ・ 台湾交通大学 (1998 2002) 电子工程学系 B.S.
- ・ 台湾交通大学 (2002 2004) 电子工程学系 M.S.
- University of Washington, Seattle (2006 2011)
 Electrical Engineering, Ph.D.
- UW MSE Postdoc (2011 2012)
- LumiSands, Inc. Co-Founder / CEO (2013 2017)
- NCTU Applied Chemistry Postdoc (2014 2017)
- UM-SJTU JI Assistant Professor (2017 2021)
- UM-SJTU JI Associate Professor (2021 –)

Textbook I for Diode and BJT

Richard C. Jaeger
Distinguished University Professor Emeritus
ECE Department
Auburn University

Travis N. Blalock
Visiting Associate Professor
ECE Department
University of Virginia

Textbook II for MOSFET

Behzad Razavi ECE Department UCLA

Lectures

Midterm Exam

- Diode
- Diode Circuit
- BJT
- BJT Circuit
- MOSFET
- MOSFET Single Stage Amplifiers
- MOSFET Differential Amplifiers
- Current Mirrors (If time allows)

Labs

Lab 1

Diode Circuit (Rectifier)

<u>Lab 2</u>

BJT Circuit (Single-stage amplifier)

Lab 3

MOSFET Circuit (Single-stage amplifier)

Lab 4

MOSFET Circuit (Differential pair amplifier + Feedback)

Grading Policy

- 8 × Assignments (with Pspice) (8%)
- 4 × Lab Reports (Proteus + Lab) (12%)
- 1 × Midterm Exam (34%)
- 1 × Final Exam (42%)
- 4 × Quizzes (4%)

IT Hardware Industry Ecosystem

Apple
HP
Sony
Huawei
Samsung

Apple Microsoft Google Amazon 腾讯 百度 阿里巴巴

Foxconn Huawei Samsung

Qualcomm Broadcom MediaTek NVIDIA Marvell Apple Intel Huawei (海思) Samsung

(Spice)

Layout (Cadence)

VE215: Introduction to Circuits

VE311: Electronic Circuits

VE312: Digital Integrated Circuits

VE411: Microwave Circuits I

VE413: Monolithic Amplifier Circuits

VE427: VLSI Design I

<u>VE320</u>: Introduction to Semiconductor Devices

VE421: Properties of Transistors

Top IC Design Companies

Table: 2019 Revenue Ranking of Top 10 IC Design Companies (Unit: Million USD)

Ranking	Company	2019 Revenue	2018 Revenue	YoY
1	Broadcom	17,246	18,547	-7.0%
2	Qualcomm	14,518	16,370	-11.3%
3	NVIDIA	10,125	11,163	-9.3%
4	MediaTek	7,962	7,882	1.0%
5	AMD	6,731	6,475	4.0%
6	Xilinx	C 1 3,236	2,868	12.8%
7	Marvell	2,708	2,823	-4.1%
8	Novatek	2,085	1,813	15.0%
9	Realtek	1,965	1,518	29.4%
10	Dialog	1,421	1,442	-1.5%
Top 10 Total		67,997	70,901	-4.1%

联发科

联詠 瑞昱

Source: TrendForce, March, 2020

Top IC Manufacturers

Table: Ranking of the Global Top 10 Foundries by Revenue, 1Q20 (Unit: Million USD)

	Ranking	Company	1Q20E	1Q19	YoY	M/S
台积电	1	TSMC	10,200	7,096	43.7%	54.1%
	2	Samsung	2,996	2,586	15.9%	15.9%
	3	GlobalFoundries	1,452	1,256	15.6%	7.7%
联电	4	UMC	1,397	1,057	32.2%	7.4%
中芯	5	SMIC	848	669	26.8%	4.5%
	6	TowerJazz	300	310	-3.3%	1.6%
	7	VIS	258	224	14.9%	1.4%
力晶	8	PSMC	251	178	41.2%	1.3%
华虹	9	Hua Hong	200	221	-9.4%	1.1%
	10	DB HiTek	158	139	13.8%	0.8%
	Top 10 Total		18,060	13,737	31.5%	95.7%

Source: TrendForce, March, 2020

Moore's Law

Moore's Law: The number of transistors on microchips doubles every two years Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Year in which the microchip was first introduced Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)

OurWorldinData.org - Research and data to make progress against the world's largest problems,

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Active vs Passive Components

Active Components

Passive Components

MOSFET BJT Diode

VE 311 VE 215

Linear vs Nonlinear Circuit

Linear Circuit

Nonlinear Circuit

Analog vs Digital

Analog Circuit in IC

IC Design Process

Hand calculations on paper, based on proper approximations.

VE 311

Pre-simulation: Schematic design and simulation on Spice.

Post-simulation: Layout drawing, simulation and design rule check on Cadence.

Tapeout: Layout design sent to IC manufacturers.