AAE 339: Aerospace Propulsion

HW 10: Gas Generator Cycles & Space Missions

Dr. Anderson

School of Aeronautical and Astronautical
Purdue University

Tomoki Koike Friday April 24th, 2020

Problem 1

In this problem you will learn a bit about gas generator cycles, and use CEA to make performance calculations. We will use the RS-68, the core engine on the Delta IV as an example, using information from Sutton's textbook. For more information on the Delta IV, see the User's Manual (https://www.ulalaunch.com/docs/default-source/rockets/delta-iv-user%27s-guide.pdf). Since the available information is not comprehensive (and maybe not even accurate), we will have to make some assumptions. There are a number of sources of information on the RS-68 on the internet, please feel free to learn more about the RS-68 and its actual operation. This is a long problem statement – be sure to read through it completely and carefully before you begin.

The RS-68 is a gas generator cycle engine produced by Aerojet Rocketdyne that was notable during its development as being "designed to cost," e.g., see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.7767&rep=rep1&type=pdf
Information needed to complete this problem can be found in Figure 6-10 on page 28 of Lecture 24 and Table 11.2 below, both from Sutton. Shown on page 28 of the notes is a schematic of the the RS-68, from the paper cited above, that shows this engine uses a single gas generator to drive the ox and fuel turbopumps.

TABLE 11-2. Comparison of Rocket Engines Using Liquid Oxygen and Liquid Hydrogen Propellants^a

Engine Designation, Engine Cycle, Manuf. or Country (Year Qualified)	Vehicle	Thrust in Vacuum, kN (lbf)	Specific Impulse in Vacuum (sec)	Chamber Pressure, bar (psia)	Mixture Ratio	Nozzle Area Ratio	Engine Mass (dry), kg
SSME, staged combustion, Pratt & Whitney Rocketdyne (1998)	Space Shuttle	2183 (490,850)	452.5	196 (2747)	6.0	68.8	3400
	(3 required)						
RS-68, gas generator, Pratt & Whitney Rocketdyne (2000)	Delta	3313 (745,000)	410	97.2 (1410)	6.0	21.5	6800
LE-5A, Expander bleed, MHI, Japan, (1991)	HII	121.5 (27,320)	452	37.2 (540)	5.0	130	255
LE-7, staged combustion, MHI, Japan (1992)	HII	1080 (242,800)	445.6	122 (1769)	6.0	52	1720
Vulcain, gas generator, SEP (circa 1996)	Ariane 5 2 nd stage	1120 (251,840)	433	112 (1624)	5.35	45	1585
HM-7, gas generator, SEP, France (1986)	Ariane 1,2,3,4 3rd stage	62.7 (14,100)	444.2	36.2 (525)	5.1	45	155
RL 10-A3, expander, Pratt & Whitney Rocketdyne (1965)	Various upper stages	73.4 (16,500)	444.4	32.75 (475)	5.0	61	132
RL 10-B2, same as above (1998)	same as	110 (24,750)	466.5	44.12 (640)	6.0	375	275
YF 73, China (circa 1981)	Long March 3rd stage	44,147 (10,000)	420	26.28 (381)	5.0	40	236
YF 75 (2 required), China (circa 1991)	same	78.45 (17,600)	440	36.7 (532)	5.0	80	550

Propellants are LOX and LH2. In gas generator cycle engines, a few percent of the total propellant flows goes through a gas generator (a combustor that operates at high ϕ low O/F) to produce warm gas that is used to do work on the turbine. The spinning turbine rotates a shaft to

drive pumps that do work on the propellants, pushing them to a high pressure so they can be injected into the main chamber.

You will see from the schematic and Figure 6-10 that there are three nozzles – one is used to exhaust products from the oxidizer turbopump assembly (TPA), one is used to exhaust products from the fuel TPA, and the big one is obviously the main chamber nozzle. Each one generates thrust. Figure 6-10 also indicates how much thrust is generated from the engine and the thrust chamber, and their respective values of specific impulse. The difference between engine thrust and the thrust chamber thrust is the amount of thrust that comes from the TPA exhaust.

a) assume the engine and thrust chamber operate at 100% efficiency and use the values for I_{sp} and thrust from Figure 6-10 in the notes to calculate flowrate through the engine, through the thrust chamber, and through the gas generator for both sea level and vacuum conditions. Using the vacuum condition numbers, use a mass balance to calculate the O/F in the gas generator.

 $\begin{tabular}{ll} FIGURE 6-10. Simplified view of the RS-68 rocket engine with a gas generator cycle. For engine data see Table 10-3. (Courtesy of Pratt & Whitney, Rocketdyne.) \end{tabular}$

We are given	Isp, Tc = 363 sec , Isp, E4 = 357 sec
•	Ivac, To = 415 sec , Ivac, EG = 409 sec
TC	-1
:=Thrust Chamber	F _{51,Tc} = 640,700 H = 2.8500 MN
EG := Engine	Frac, Tc = 732, 400 H = 3.2579 MN
	F S (, EG = 656,000 lbt = 2,9180 MN
GG := Gas Generator	Frec, FG = 751,000 lbt = 3,3406 MN
	7 = 100 % = 1

	 	
	te, in is computed	
	2.9180	MN
Engine at S	Sex Level: Mi= 79 Isp, EG = 2.9(80 (9.81 M/s2)	357 s)
	m, = 833, 2069 +8/s	
	m, 035,200 (VS	
Similarly,		
Engine at Vac	culum: m2 = 632,5952 19/5	
Thrust Chambe	or at Sea Level: $\dot{m}_3 = 800.3231 \frac{kg}{s}$	
Thrust Chamber	r at Vacuum: m4 = 800,2349 kgs	
THURST CHAMPER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Tl		
Then,		
Gas Generator	at See level:	
las	5 = m1 - m3 = 32,8838 KVs	
Į į	5 - 11 - 113 - 32, 8838 143	
Gas Generator	- at Vacuum:	
hi	6 = m m_ = 32,3603 Fgs	
Y	6 - 10.1	
	(2) () () () ()	
since, we know	(0/F)EG=6.0 \$ (0/F)TC = 6.74	
nd that	may .	
0/F	$= = \frac{m_{ox}}{m_{f}}$ for vacuum condition	
Fan (0/E) =	$\Rightarrow 60 = \frac{\dot{m}_{0X,EG}}{\dot{m}_{1,EG}}$	
OF COPPE	m ₊ , E6	
	: mox, E& + mf, E& = m2	
	$6.0 = \frac{\dot{m}_2 - \dot{m}_{f,EG}}{\dot{m}_{f,EG}}$ $\dot{m}_{f,EG} = \frac{\dot{m}_2}{7} = 118.9422$	
	in a second	
	· (+, = a	
	misc = m2 = 118,9422 68	
	m 712 / 62 / 69/	
	moxEG = 713.6530 68/s	
h (MOX, TC My - my, TC	
for (%)Tc ⇒	$6.74 = \frac{\dot{m}_{0x,Tc}}{\dot{m}_{f,Tc}} = \frac{\dot{m}_{\psi} - \dot{m}_{f,Tc}}{\dot{m}_{f,Tc}}$ $\dot{m}_{f,Tc} = \frac{\dot{m}_{\psi}}{7.74} = \frac{103.3895}{3.3895}$	
	my my	
		;
	MORITE = 696,8454 to/s	

Now, since	& Mox, TC +	mox, aa =	mox, Ea
	mox, Tc +	m [*] †, ag =	m³, Fa
_	→ Mox, GG	= 16.8076	+0/5
	my, aa	= /5.5526	FB/s
Thus,	(%) _{GG} =	Mox, GG	16.8076 F85
	C/F/GG -	Mf, ag	= 15.5526 to
	(0/E)ca =	10807	

Now, let's assume that the performance values on the figure are "delivered" values that take efficiency into account. Including Table 11-2 above, we have all the data necessary $(O/F, p_{0t}, \varepsilon)$ to use CEA to calculate ideal (1-D equilibrium) performance for the thrust chamber.

b) calculate ideal performance at sea level and vacuum conditions for the thrust chamber, and calculate an overall thrust efficiency $\eta_{ERE} = I_{sp,del}/I_{sp,ideal}$. Since $I_{sp} = c^*c_f$, $\eta_{ERE} = \eta_{c^*}$ η_{cf} . Assume a thrust coefficient efficiency $\eta_{cf} = 0.98$ and calculate c^* efficiency. Taking these inefficiencies into account, calculate the actual flow through the thrust chamber, the throat area of the thrust chamber, and the exit area of the thrust chamber nozzle.

	C* act = 7c* · C*ideal = 2056.8 m/s
	Cf, act = Mcf · Cf, ideal = 1.7314
Then,	$\dot{M}_{act} = \frac{\frac{1}{3} F_{sl,Tc}^{T} + \frac{2}{3} F_{vac,Tc}^{T}}{C_{f,act}^{*}}$
	mac1 = 876.6713 tos
Next,	At = C*act · Moct
	A1 = (2056.8 m/s)(876.6713 ta/s) (97.2 tar)
	A+ = 0. 1855 m2
finally,	$\varepsilon = \frac{Ae}{A+} \iff Ae = Ai\varepsilon$
	Ae = (0.1855 m²)(21.5)

We want to know more about the turbomachinery. In part a, you calculated the thrust generated by the turbine exhaust, and the flowrates going through the gas generator that feeds each turbine. Now let's do a simplified analysis of the pump work using values from part a.

c) assume the gas generator operates at the same pressure as the thrust chamber, and that its c^* efficiency is 100%. Also, since the RS-68 uses the same propellants as the SSME, assume the RS-68 tank conditions are the same that were given in the notes for the SSME. Use CEA to calculate the gas generator c^* and the properties of the gas (T, MW, c_p , γ) that is used to drive the turbines.

The R-68 has a single gas generator that provides warm gas to drive two separate turbines.

Assume the flowrate to each turbine is proportional to the power requirement of the pump it drives. Refer to the slides on turbopumps in Lecture 25 for pump equations.

d) Neglect pressure losses from the pump outlet to the thrust chamber, and calculate the amount of work required to pump each propellant from tank conditions to the TCA. Assume that the pump and turbine efficiencies are the same as those given for the high pressure SSME turbopumps on page 42 of Lecture 24. Calculate the pressure and temperature of the gas at the exit of each turbine. Neglect the tank head and calculate the net positive suction head (NPSH) for each pump.

Security and the second of the			62	НРОТР	
	Turbopump Figure Reference	LPOTP 6-7	HPFTP 6-5	Main 9	Boost
Fuel Preburner Preburner Main Conduction Charteer Oxidizer Turbopump Conduction Charteer	Pump: Fluid Inlet density, lb/ft ³ Total inlet pressure, psia Total discharge pressure, psia Pump developed head, ft Flow rate, lb/s Volumetric flow at inlet, gpm Shaft speed, rpm Efficiency, % Shaft power, bhp Turbine ^a : Fluid Inlet total pressure, psia Isentropic velocity ratio Pressure ratio, T-T Inlet temperature, 'R Discharge temperature, 'R Flow rate, lb/s Horsepower Shaft speed, rpm Efficiency, %	LOX 71.03 100.0 408.8 625.9 890.3 5,626 4,961 68.6 1,476 LOX 3.961 408.8 0.465 191.3 189.7 176.9 1,476 4,961 63.1	LH ₂ 4.32 250 6,024.8 168,920 148.5 15,436 33,974 77.3 58,970 Hot gas 4,933 3,376 0.356 1.461 1835.9 1698.3 145.6 58,972 33,974 79.6	LOX 70.28 374.8 4,129.8 7,591 1,067 6,814 27,039 67.3 21,882 Hot gas 4,924 3,286 0.286 1.498 1430 1314.9 60.6 23,212 27,039 78.1	LOX 70.28 4,031 6,952.2 5,934 101.2 594.7 27,039 82.5 1,330

Pensities) LH2
$$P_F = 4.32 \frac{16}{47} = 69.20 \frac{49}{103}$$

LOX $P_{OX} = 70.28 \frac{16}{47} = 1125.78 \frac{49}{103}$

Ppf = mt, E& WfP, req
PP+ = (118.9422 +8/s) Wfp, req
Prf = 21.153 MW
Mass flow for each turbine
proportional to required power
mag, 7 = mag (PPf PPox) mag @ vacuum condition
higg, + = (32,3603 kg/s) (Pp+ Ppox)
maa, + = 23.0795 tos
mag, ox = mag - mag, t
maa, ox = 9,2809 tos
Pressure and Temperatures at
each exit of turbine
Since PT = Pp (turbine Power) = (pump power)
Ppf = MGG, + 7/FT CPGG (T, + - T2+)
where $Cp = 9.6167 \times 10^3 \text{ Fg-k} \rightarrow \text{from (C)}$ $T_{14} = T_{66} = 1051.6 \text{ k}$
T2f = Tag - PPF MEGIT PPT CRAG
T2+ = 900.4687 K

Then from isentropic relations
P2+ = P1+ (T2+) 866-1
where $P_{11} = P_{F2} = P_{01} = 97.2 \times 10^{5} P_{01}$ $\delta_{66} = 1.3517 \cdot \cdot \cdot (c)$
P24 = 5.3542 MPa
Similarly,
$p_{pox} - m_{66,0x} p_{ot} C_{p,66} (T_{10x} - T_{20x})$ where $T_{(0x)} = T_{(f)} = T_{06} = 1051.6 \text{ K}$
Tox = Tiox - Prox Tox - Tox - Prox Tox - Tox - Prox Tox - Tox - Prox Tox -
Trox = 897.5660 F
$P_{20X} = P_{10X} \left(\frac{T_{20X}}{T_{10X}} \right)^{\delta_{16}G_{1}} \delta_{16G_{2}-1}$
P20x = 5,2882 MPa

	the Net Positive
Such	ion Head
NPSH	$I = \frac{1}{g} \left(\frac{P_5}{e} + g_2 - \frac{P_{VAP}}{e} \right)$
where	Z = negligible
	PS,F = PF1 = 2-06843×105Pa
	P=10x = Pox(= 6.89476 ×105 Pm
	propellants are
	Prap, f = latin = 101325 Pa } stored in
	Prop. ox = late = 101325 pa) normal boiling
	Pr= 69.20 thm3
	Pox = 1125. 78 +3/m3
	(PS,F PURP,+)
NPSHF	= \frac{1}{g} \left(\frac{Ps,F}{PF} - \frac{Pvapet}{PF} \right)
	1
	206843 Pa-10/325 Pa 9.81 W/s= 69.20 +8/w3
	= 155. 4359 m
	Prapasa
NPSHOX	= \frac{1}{g} \left(\frac{Ps,ox}{lox} - \frac{Pvap,ox}{lox} \right)
	= 53.2557 m

Problem 2

Using a Hohmann transfer (two tangent burns), calculate the ΔV required to move a global positioning satellite (GPS) from a circular orbit that is 300 km above the Earth surface, to a coplanar circular orbit with an altitude of 20,000 km.

Orbit | — Transfer Orbit

Orbit |
$$V_{01} = \sqrt{\frac{M_{\odot}}{r_{1}}} = \sqrt{\frac{M_{\odot}}{R_{\odot}} + h_{1}}$$
 $V_{01} = \sqrt{\frac{3.466029 \times 10^{44} \text{ m}^{2} \text{ s}^{-2}}{6576.1 + m} + 300 + m} = 7.7258 \times 10^{3} \text{ m/s}$
 $V_{01} = 7.7258 \text{ km/s}$

Periges of Transfer Orbit

 $V_{71} = \sqrt{\frac{\mu_{\odot}}{r_{1}}} - \frac{1}{\alpha}$
 $V_{71} = 9.7601 \text{ km/s}$
 $\Delta V_{11} = V_{11} - V_{01} = 9.7601 - 7.7258 = 2.0343 \text{ km/s}$

Transfer Orbit \rightarrow Orbit 2

Apogee of Transfer Orbit

 $V_{72} = 2.4709 \text{ km/s}$
 $V_{72} = 2.4709 \text{ km/s}$

Orbit 2: $V_{02} = \sqrt{\frac{\mu_{\odot}}{r_{1}}}$
 $V_{02} = 3.8673 \text{ km/s}$
 $\Delta V_{03} = 3.8673 \text{ km/s}$
 $\Delta V_{14} = 2.0343 + 1.4164 \text{ km/s}$
 $\Delta V_{14} = 2.0343 + 1.4164 \text{ km/s}$

Problem 3

In HW 9 Problem 2, we used the Atlas V users guide to determine the minimal Atlas V configuration that could be used to launch 4500 kg into a GTO. It was suggested that you should use the Atlas 401 for this mission, even though its use would require that the spacecraft supply an additional $\Delta V \sim 300$ m/s. I suggested the 401 because it does not use a solid rocket booster (SRB) and the calculations for mass properties and performance are relatively simple compared to the 411, for instance. In this problem the SRB is included in the calculations.

The users guide has limited data on the SRB. Mass and performance data can be found at the website https://www.spacelaunchreport.com/atlas5.html. Although solid motors can have a tailored thrust history, for this problem assume the *flowrate is constant*. Estimate the average specific impulse same as for the core booster, $I_{sp,ay} = 1/3 I_{sp,sg} + 2/3 I_{sp,vgc}$.

a) Calculate the propellant mass fraction of the SRB, and compare it with your calculation of the core stage λ from Problem 2.

The data sheet shows that the solid rockets have a burn time of 90 s, and are separated from the core while the core booster engine continues to provide thrust.

b) Calculate the velocity of the Atlas V 411 at the end of the SRB burn (after it is burned out, but before it is jettisoned), the velocity of the rocket at the end of the core Stage 1 burn, GLOW, F, and F/W at take-off.

Table 2.6-1: Atlas V 400/500 Series and HLV Performance Capabilities Summary

Orbit		400 S	eries				500 S	eries			HLV
Type	Number of Solid Rocket Boosters										
(∆V to	0	1	2	3	0	1	2	3	4	5	N/A
GSO)				Payl	oad Syste	ms Weig	ht (PSW),	kg (lb)			
GTO	4,750	5,950	6,890	7,700	3,775	5,250	6,475	7,475	8,290	8,900	13,000
(1804 m/s)	(10,470)	(13,110)	(15,180)	(16,970)	(8,320)	(11,570)	(14,270)	(16,470)	(18,270)	(19,620)	(28,660)
GTO	3,460	4,450	5,210	5,860	2,690	3,900	4,880	5,690	6,280	6,860	
(1500 m/s)	(7,620)	(9,810)	(11,480)	(12,910)	(5,930)	(8,590)	(10,750)	(12,540)	(13,840)	(15,120)	
GSO							2,632	3,192	3,630	3,904	6,454
							(5,802)	(7,037)	(8,003)	(8,608)	(14,229)
LEO	9,797*	12,150*	14,067*	15,718*	8,123	10,986	13,490	15,575	17,443	18,814	29,400*
I =28.5	(21,598)	(26,787)	(31,012)	(34,653)	(17,908)	(24,221)	(29,741)	(34,337)	(38,456)	(41,478)	(64,816)*
deg											
LEO	7,724	8,905	10,290 *	11,704 *	6,424	8,719	10,758	12,473	14,019	15,179	
Sun-sync	(17,028)	(19,633)	(22,687)	(25,803)	(14,163)	(19,223)	(23,717)	(27,498)	(30,908)	(33,464)	

Atlas V 400 Series

- All Performance is SEC
- · Quoted Performance is with 4-m EPF
- Atlas V 500 Series and HLV
- All Performance is SEC
- Quoted Performance is with 5-m Short PLF
- HLV LEO Performance is DEC
- HLV Quoted Performance is with 5-m Long PLF

* For 400 series, PSW above 9,072 kg (20,000 lb) may require mission-unique accommodations. For 500 series and HLV, PSW above 19,051 kg (42,000 lb) may require mission-unique accommodations.

Notes

GTO (1804 m/s): ≥185 x <mark>35,786 k</mark>m (≥ 100 x 19,323 nmi), Inclination = <mark>27.0 de</mark>g, Argument of Perigee = 180 deg, CCAFS

GTO (1500 m/s): Apogee Height = 35,786 km (19,323 nmi), Argument of Perigee = 180 deg, CCAFS

GSO: 35,786 km Circular (19,323 nmi Circular), Inclination = 0 deg, CCAFS

LEO 28.5 deg: 200 km (108 nmi) Circular, CCAFS

LEO Sun-sync: 200 km (108 nmi) Circular, VAFB

GCS: Guidance Commanded Shutdown, 2.33 sigma for CCAFS, and for VAFB

From the provided mebsite in the instructions we obtain the following data

Vehicle Components

	SRBs (Aerojet)
Diameter (m)	1.55 m
Length (m)	17.7 m
Propellant Mass (tons)	42.63 t
Total Mass (tons)	46.26 t
Engine	AJ-62
Engine Manufacturer	Aerojet
Fuel	НТРВ
Oxidizer	НТРВ
Thrust (sea level, tonnes)	172.2t = /532 =N
Thrust (vac (avg) tonnes)	126.98 t = 1130 EN
ISP (sea level, sec)	245 s
ISP (vac sec)	275 s
Burn Time (sec)	90 s
No. Engines	1

(a)	Since	mp, spB = 42.63 × 103 kg
		mtot, sps = 46,26 × 103 +9
		2 SPB = MP,SPB M. tot, SPB
		2-5HB = 0.9215
	Tl.,) .	of the core stages computed in the 9 problem 2
	are as	
	Q,C	21= 0-4310
		2, = 0.8159
	The SRB	has a greater propellant muss fraction than the
	2nd stag	e but is smaller than the 1st stage.
(L)	ا منطا	CDD 11 and and 111 co to the sale by the
(1)		SPB the take off mass is increased by the the SPB
1	m = (= (= 1 sp1)	sc = (3827×103 N (311-35)(9.81 M/s-)) = /253,2 K/s
	. (118)	50 (3(1-35)(1.01 13)
	Initial n	nuss (at takeoff)
		1
		Mpl = 4500 kg
		Mp. = 20830 kg
		Minz = 2243+2458 = 470 kg Mp = 181-7+947+962 = 2090-7 kg
		$m_{\rm Pl} = 284089 \text{ kg}$
		Mini = 21054 kg
		Mp, spB = 42.63 × 103 +9
		Min, SPB = Mtot, SPB - mp, SPB = 3630 Fg
	\Rightarrow	Mi = (sum of all masses above)
		mi = 383520 kg

Muss	after	SPB	turns ou	rt (bu	n before	jettise	oned)
			90 s				
	mj =	- h	_ mp,	.srb -	m ₁ 大spB		
()	Mas= -	Mp,si	B _ 4	12.63×(0	s kg	473.66	(67 F85)
\	are	大好	L\$	90 s		1	
	, mf	= m	i – Mp	/SPB -	m, 大sep		
	И	4 =	2281	o F	đ		
Now, we	compu	te th	ne Isp	from	the th	rust o	f the
1 st stag							
	F 5	21 =	3827	AN LN	SL, SPB	- 1532	EN EN
	l va	دا	7/82	FIN	Frac, spe	, = 1100	FI
Faryl	= 1	FT	+ = F	۲ هد ا	4.00	t37MN),
FT AGE	LB 2	1,26	40 MN				
1 007/.	,,,,						
Isp -	for p	arulle	el igni	tion (spb 4	⁵⁹ 51	rage)
			Fausi	+ f	T Lug, SPB		
	-avg =		m, +	- ĥ,		- " -	j l
	~ T.		12 211				
	-arg =	. 3	3.3 (6	ıs			

Therefore	
AlV SPB+1 = g Tang lu mi	
1 VSPB+1 = 1.597 Km/s	
After, SRB is jettisoned the remaining propel	lanz
of stage lis	
mp, = mp, - m, tspB	
mp, = [71300 kg	
new initial muss is	
m: = mp1 + mp1 + min1 + m12 + mp1 + min1	
m; = 224480 Fg	
$m_f' = m_a' - m_{Pl} = 53176 + g$	
Avend - go Iong (Pu (mg))	
-: Iaval = Faval	
mig buc	
s. Alverd = 4.6411 tm/s	
Mtot = Mp1 + Min1 + Mp2 + Min2 + M12 + MpL	
+ Mtot, SPB	
GLOW = M; g. = 3.7624 MN	

an d	F = FT + FT avg, sps
	F = 4.0437 MN + 1.2640 MN F = 5.3077 MN
Thus	FW = GLOW
	F/W = 5.3077 MN 3.7624 MN
	F/w = 1-4107

Appendix

MATLAB CODE

```
AAE 339 HW 10
clear all; close all; clc;
% Global constants
R_e = 6378.1e3; \% [m]
G = 6.6740831e-11; % [m3kg-1s-2]
M = 5.9724e24; \% [kg]
mu_e = G*M_e;
g = 9.81;
P1 (a)
% Specific impulse [s]
Isp_TC = 363;
Ivac TC = 415;
Isp EG = 357;
Ivac EG = 409;
% Thrusts [N]
FT sl TC = 1bf2newtons(640700);
FT vac TC = 1bf2newtons(732400);
FT_sl_EG = lbf2newtons(656000);
FT vac EG = lbf2newtons(751000);
% Efficiency
eta = 1;
% Create array for convenience
arr = [Isp_EG, Ivac_EG, FT_sl_EG, FT_vac_EG;
       Isp_TC, Ivac_TC, FT_sl_TC, FT_vac_TC];
T = array2table(arr, "RowNames", { 'EG',
'TC'}, "VariableNames", {'Isp', 'Ivac', 'slThrust', 'vacThrust'});
T.slMdot = T.slThrust./T.Isp/g/eta;
T.vacMdot = T.vacThrust./T.Ivac/g/eta;
T.slMdot("GG") = T.slMdot(1) - T.slMdot(2);
T.vacMdot("GG") = T.vacMdot(1) - T.vacMdot(2);
T.slThrust("GG") = T.slThrust(1) - T.slThrust(2);
T.vacThrust("GG") = T.vacThrust(1) - T.vacThrust(2);
mdot1 = T.slMdot("EG");
mdot2 = T.vacMdot("EG");
mdot3 = T.slMdot("TC");
mdot4 = T.vacMdot("TC");
mdot5 = T.slMdot("GG");
mdot6 = T.vacMdot("GG");
% Mixture ratio
phi EG = 6.0;
phi_TC = 6.74;
mdot_f_EG = mdot2/(1 + phi_EG);
```

```
mdot_ox_EG = mdot_f_EG*phi_EG;
mdot_f_TC = mdot4/(1 + phi_TC);
mdot_ox_TC = mdot_f_TC*phi_TC;
mdot_ox_GG = mdot_ox_EG - mdot_ox_TC;
mdot f GG = mdot f EG - mdot f TC;
phi_GG = mdot_ox_GG/mdot_f_GG;
(b)
% CEA results
Isp_CEA = 3982.6;
Isp_ideal = Isp_CEA/g;
Ivac CEA = 4241.8;
Ivac_ideal = Ivac_CEA/g;
cstar_ideal = 2254.3;
cf_ideal = 1.7667;
% Overall effficiency
eta_ERE = Isp_TC/Isp_ideal;
eta_cf = 0.98;
eta_cstar = eta_ERE/eta_cf;
% act values
cstar act = eta cstar*cstar ideal;
cf_act = eta_cf*cf_ideal;
FT_act = 1/3*FT_sl_TC + 2/3*FT_vac_TC; % [N]
P0t = 97.2e5; % [Pa]
epsilon = 21.5;
mdot_act = FT_act/cstar_act/cf_act;
At = cstar_act*mdot_act/P0t;
Ae = At*epsilon;
(c)
Cp\_GG = 7.6187e3; % [J/kg/K]
gamma\_GG = 1.3517;
T_GG = 1051.6; %[K]
Cctar\_GG = 2130.4;
(d)
% Pressures
P_f2 = P0t;
P ox2 = P0t;
P_{f1} = 2.06843e5;
P ox1 = 6.89476e5;
% Efficiencies
eta_FTP = 0.773;
eta_FT = 0.796;
eta_OTP = 0.673;
eta_OT = 0.781;
% Densities
```

```
rho F = 69.20;
rho_ox = 1125.78;
% Work required
w_FP_req = (P_f2 - P_f1)/rho_F/eta_FTP;
w_OP_req = (P_ox2 - P_ox1)/rho_ox/eta_OTP;
% Pump power
P_p_ox = mdot_ox_EG*w_OP_req;
P p f = mdot f EG*w FP req;
% Mass flow for each turbine
mdot GG = mdot6;
mdot_GG_f = mdot_GG*P_p_f/(P_p_f + P_p_ox);
mdot_GG_ox = mdot_GG*P_p_ox/(P_p_f + P_p_ox);
% Pressure and temperatures
T2f = T_GG - P_p_f/mdot_GG_f/eta_FT/Cp_GG;
P2f = P_from_isentropic_relation(P0t,T2f,T_GG,gamma_GG,"num");
T2ox = T_GG - P_p_ox/mdot_GG_ox/eta_OT/Cp_GG
P2ox = P_from_isentropic_relation(P0t,T2ox,T_GG,gamma_GG,"num")
% NPSH
Pvap f = 101325;
Pvap_ox = Pvap_f;
% fuel
NPSH F = (P f1 - Pvap f)/g/rho F
% oxidizer
NPSH_ox = (P_ox1 - Pvap_ox)/g/rho_ox
P2
% Given properties
h1 = 300e3;
h2 = 20000e3;
r1 = Re + h1;
r2 = Re + h2;
a = mean([r1 r2]);
% Anonymous function for circular velocity
circ_v = @(r)   sqrt(mu_e/r);
% Anonymous function for elliptic velocity
ellip_v = @(r,a) sqrt(mu_e*(2/r - 1/a));
% Orbit 1 -> Transfer orbit
Vo1 = circ v(r1);
Vt1 = ellip_v(r1,a);
dv1 = Vt1 - Vo1;
% Transfer orbit -> orbit 2
Vt2 = ellip_v(r2,a);
Vo2 = circ_v(r2);
```

```
dv2 = Vo2 - Vt2;
% Delta v required
dv_req = dv1 + dv2;
P3 (a)
% Given properties of the SRB
m_p_SRB = 42.63e3; % [kg]
m_tot_SRB = 46.26e3; % [kg]
m_in_SRB = m_tot_SRB - m_p_SRB; % [kg]
FT_sl_SRB = 1532e3; % [N]
FT_vac_SRB = 1130e3; % [N]
% Propellant mass fraction of SRB
lambda_SRB = m_p_SRB/m_tot_SRB;
(b)
% Atlas V 401 masses [kg]
m_p_2 = 20830;
m p 1 = 284089;
m in 2 = 4701;
m_in_1 = 21054;
m \text{ mid} = 2090.7;
m_pl = 4500;
% Isp
% First stage
Isp1 = 311.3;
Ivac1 = 337.8;
FT_SL_1 = 3827e3;
FT_vac_1 = 4152e3;
% Time for SRB to burn out
t_SRB = 90; % [s]
% Velocity after SRB burns out
% Mass and mass flow
m i = m pl + m mid + m in 1 + m in 2 + m p 1 + m p 2 + m tot SRB
mdot_SRB = m_p_SRB/t_SRB;
mdot1 = FT_SL_1/Isp1/g
m_f = m_i - m_p SRB - mdot1*t_SRB
% Isp
% First stage thrust
FT_sl_1 = 3827e3;
FT_{vac_1} = 4152e3;
FT_avg_1 = 1/3*FT_sl_1 + 2/3*FT_vac_1
FT_avg_SRB = 1/3*FT_sl_SRB + 2/3*FT_vac_SRB
% Total thrust
FT_sl = FT_sl_1 + FT_sl_SRB
FT_vac = FT_vac_1 + FT_vac_SRB
```

```
Iavg_tilde = (FT_avg_1 + FT_avg_SRB)/(mdot1 + mdot_SRB)/g
dv_SRB_1 = rocket_eqn(Iavg_tilde,m_i,m_f)
m p 1 new = m p 1 - mdot1*t SRB
m_i_new = m_pl + m_mid + m_in_1 + m_in_2 + m_p_1_new + m_p_2
m_f_new = m_i_new - m_p_1_new
Iavg1 = FT avg 1/mdot1/g
dv_end1 = rocket_eqn(Iavg1,m_i_new,m_f_new)
GLOW = m_i*g
F = FT_avg_1 + FT_avg_SRB
FW = F/GLOW
Functions
function dv = rocket_eqn(Isp,m1,m2)
    g = 9.81;
    dv = g*Isp*log(m1/m2);
end
function P2 = P_from_isentropic_relation(P1, T2, T1, gamma, type)
    % type => type you want to find
    if type == "num"
        P2 = P1 * (T2 / T1)^{gamma} / (gamma - 1));
    elseif type == "den"
        P2 = P1 * (T2 / T1)^{-gamma / (gamma - 1));
    else
        disp("You can only enter num or den for type.")
    end
end
```

CEA RESULTS

Problem 1 (b)

```
********************
**
       NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004
                BY BONNIE MCBRIDE AND SANFORD GORDON
     REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996
******************
### CEA analysis performed on Wed 22-Apr-2020 22:15:56
# Problem Type: "Rocket" (Infinite Area Combustor)
prob case=1111 1727 ro equilibrium
# Pressure (1 value):
p, bar = 97.2
# Supersonic Area Ratio (1 value):
supar= 21.5
# Oxidizer/Fuel Wt. ratio (1 value):
o/f = 6.74
# You selected the following fuels and oxidizers:
fuel H2(L)
                   mole=100.0000
oxid 02(L)
                    mole=100.0000
# You selected these options for output:
# short version of output
output short
# Proportions of any products will be expressed as Mole Fractions.
# Heat will be expressed as siunits
output siunits
# Input prepared by this script:prepareInputFile.cgi
### IMPORTANT: The following line is the end of your CEA input file!
end
            THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM
         COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR
Pin = 1409.8 PSIA
```

CASE = 1111						
REACTANT					ENERGY KJ/KG-MOL	K
FUEL H2 (I OXIDANT O2 (I			100.00	00000	-9012.000 -12979.000	20.270
O/F= 6.74000 1.177549	%FUEL= 12.	919897	R,EQ.RATIC	= 1.1775	49 PHI,EQ.RAT	IO=
Pinf/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG) (K)	97.200 3604.05 3 4.7378 0 2. -930.79 -2 -2982.36 -3 -61190.1 -5	1.7306 56.165 418.64 9211 0 020.24 942.99 9179.6	187.02 0.51972 1935.94 5.0356-2 -8861.46 -9893.54 -41230.2			
M, (1/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/(KG)(K) GAMMAs SON VEL,M/SEC MACH NUMBER	-1.03360 -1 1.5813 9.3254	.02815 1.5142 8.8498	-1.00022 1.0068 3.2335			
PERFORMANCE PARA	AMETERS					
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		0.6548	21.500 2254.3 1.7667 4241.8 3982.6			
MOLE FRACTIONS						
*H HO2 *H2 H2O H2O2 *O *OH	0.00009 0 0.18209 0 0.70545 0 0.00002 0 0.00617 0 0.06486 0	.02737 .00005 .17545 .73138 .00001 .00457 .05381 .00736	0.00056 0.00000 0.15060 0.84853 0.00000 0.00000 0.00032 0.00000			
* THERMODYNAMI	C PROPERTIES	FITTED	то 20000.к			

Problem 1 (c)

```
*******************
       NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004
               BY BONNIE MCBRIDE AND SANFORD GORDON
    REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996
************************
### CEA analysis performed on Wed 22-Apr-2020 22:27:24
# Problem Type: "Rocket" (Infinite Area Combustor)
# Pressure (1 value):
p,bar= 97.2
# Supersonic Area Ratio (1 value):
supar= 21.5
# Oxidizer/Fuel Wt. ratio (1 value):
o/f = 1.0807
# You selected the following fuels and oxidizers:
reac
fuel H2(L)
                  mole=100.0000
oxid 02(L)
                  mole=100.0000
# You selected these options for output:
# short version of output
output short
# Proportions of any products will be expressed as Mole Fractions.
# Heat will be expressed as siunits
output siunits
# Input prepared by this script:prepareInputFile.cgi
### IMPORTANT: The following line is the end of your CEA input file!
end
           THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM
         COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR
Pin = 1409.8 PSIA
CASE = 1111
```

REAG	CTANT	MOLES	KJ/KG-MOL	K
FUEL H2(1 OXIDANT O2(1		100.0000000 100.0000000	-9012.000 -12979.000	
O/F= 1.08070 7.344020	%FUEL= 48.06074	9 R,EQ.RATIO= 7.3	44020 PHI,EQ.RA	TIO=
T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG	CHAMBER THROAT 1.0000 1.871 97.200 51.94 1051.16 891.2 4.6648 0 2.9402 -2359.23 -3563.2 -4442.91 -5329.8 -37975.1 -33760. 33.8824 33.882	3 290.67 4 0.33440 3 295.75 0 6.0615-2 2 -8487.57 8 -9039.25 2 -18508.4		
(dLV/dLP)t (dLV/dLT)p Cp, KJ/(KG)(K) GAMMAs SON VEL,M/SEC MACH NUMBER	4.194 4.19 4.194 4.19 -1.00000 -1.0000 1.0000 1.000 7.6187 7.442 1.3517 1.363 1678.2 1551. 0.000 1.00	0 -1.08934 0 2.6024 1 61.2218 1 1.1325 8 790.4		
PERFORMANCE PARA Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC	1.000 2130. 0.728 2690.	0 21.500 4 2130.4 4 1.6433 2 3658.5 8 3501.0		
MOLE FRACTIONS				
*H2 H2O H2O(L)	0.86383			
* THERMODYNAMIC	C PROPERTIES FITT	ED TO 20000.K		