- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)													(N	ome)				ume	i ma	trice					

A	В	С	D	\mathbf{E}	

1	0000
2	
3	0000
4	0000
5	0000
6	
7	
8	
9	
10	0000

1. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A: N.A. B: $\{0, N.E., e, N.E.\}$ C: $\{-1/e, -1/e, e, e.\}$ D: $\{0, N.E., +\infty, N.E.\}$ E: $\{1/e, N.E., 1, 1\}$

2. Se $z\in\mathbb{C}$ è tale che $z^2=i$ allora l'argomento di z è uguale a A: 1 o $\pi/2$ B: $\pi/4$ o $5\pi/4$ C: 0 o π D: N.A. E: 1 o $\pi/3$

3. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: 1 B: N.E. C: N.A. D: $-\infty$ E: 0

4. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a

A: N.A. B: $\frac{\pi}{6}$ C: 0 D: -1 E: $\frac{\sqrt{3}}{2}$

5. Il polinomio di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $f(x) = cos(x^2)$ vale

A: 1 + x B: $1 + \cos(x) \frac{x^4}{4!}$ C: $1 - \frac{x^2}{2}$ D: N.A. E: $1 - \frac{x^4}{2}$

6. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.A. B: (0,1) C: $(1,\pi/2)$ D: $(-1,\pi)$ E: N.E.

7. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 - x^2$ è

A: N.A. B: surgettiva C: monotona crescente D: iniettiva E: sempre non negativa

8. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è

A: N.A. B:
$$1 - \frac{\cos^2(t)}{2}$$
 C: $2 - \frac{t^2}{2}\cos(t)$ D: $1 + \sin(t) + (\cos(t))$ E: $\sin(2t)$

9. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A:
$$|q| < 2$$
 B: $|q| < 1$ C: $0 < q < 1$ D: N.A. E: $-2 < q < 0$

10. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A: 0 B:
$$1 - \sqrt{2}/2$$
 C: $1 + \sqrt{2}/2$ D: $\frac{\sqrt{3}}{2}$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)										_			(No	me)			(N	ume	ro di	ma	trice	ola)					

1	00000
2	
3	
4	
5	
6	
7	
8	00000
9	
10	

- 1. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 x^2$ è

 A: surgettiva B: N.A. C: sempre non negativa D: monotona crescente E: iniettiva
- 2. Il polinomio di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $f(x) = cos(x^2)$ vale A: $1 + cos(x) \frac{x^4}{4!}$ B: N.A. C: $1 \frac{x^2}{2}$ D: 1 + x E: $1 \frac{x^4}{2}$
- 3. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: $-\infty$ B: 0 C: N.A. D: N.E. E: 1

4. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A:
$$1 - \sqrt{2}/2$$
 B: $1 + \sqrt{2}/2$ C: $\frac{\sqrt{3}}{2}$ D: N.A. E: 0

5. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a

A:
$$\frac{\sqrt{3}}{2}$$
 B: -1 C: N.A. D: 0 E: $\frac{\pi}{6}$

6. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A: N.A. B:
$$-2 < q < 0$$
 C: $|q| < 1$ D: $0 < q < 1$ E: $|q| < 2$

- 7. Se $z \in \mathbb{C}$ è tale che $z^2 = i$ allora l'argomento di z è uguale a A: $\pi/4$ o $5\pi/4$ B: 1 o $\pi/3$ C: N.A. D: 0 o π E: 1 o $\pi/2$
- 8. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è A: $\sin(2t)$ B: $1 \frac{\cos^2(t)}{2}$ C: $2 \frac{t^2}{2}\cos(t)$ D: N.A. E: $1 + \sin(t) + (\cos(t))$
- 9. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A:
$$\{0, N.E., +\infty, N.E.\}$$
 B: $\{0, N.E., e, N.E.\}$ C: N.A. D: $\{1/e, N.E., 1, 1\}$ E: $\{-1/e, -1/e, e, e.\}$

10. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A:
$$(0,1)$$
 B: N.E. C: $(1,\pi/2)$ D: N.A. E: $(-1,\pi)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)										_			(No	me)			(N	ume	ro di	ma	trice	ola)					

A	В	С	D	\mathbf{E}	

1	0000
2	00000
3	0000
4	0000
5	0000
6	00000
7	
8	
9	0000
10	0000

1. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a

A:
$$\frac{\sqrt{3}}{2}$$
 B: $\frac{\pi}{6}$ C: -1 D: N.A. E: 0

2. Se $z \in \mathbb{C}$ è tale che $z^2 = i$ allora l'argomento di z è uguale a

A:
$$1 \circ \pi/2$$
 B: $1 \circ \pi/3$ C: $0 \circ \pi$ D: N.A. E: $\pi/4 \circ 5\pi/4$

3. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A:
$$|q| < 1$$
 B: N.A. C: $|q| < 2$ D: $0 < q < 1$ E: $-2 < q < 0$

4. Il polinomio di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $f(x) = cos(x^2)$ vale A: 1 + x B: $1 - \frac{x^2}{2}$ C: $1 + cos(x)\frac{x^4}{4!}$ D: N.A. E: $1 - \frac{x^4}{2}$

5. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è

A:
$$1 - \frac{\cos^2(t)}{2}$$
 B: N.A. C: $\sin(2t)$ D: $1 + \sin(t) + (\cos(t))$ E: $2 - \frac{t^2}{2}\cos(t)$

6. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.A. B:
$$(0,1)$$
 C: N.E. D: $(-1,\pi)$ E: $(1,\pi/2)$

7. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A:
$$\frac{\sqrt{3}}{2}$$
 B: N.A. C: $1 - \sqrt{2}/2$ D: 0 E: $1 + \sqrt{2}/2$

8. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 - x^2$ è

A: surgettiva B: N.A. C: iniettiva D: sempre non negativa E: monotona crescente

9. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: 0 B:
$$-\infty$$
 C: N.A. D: N.E. E: 1

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A:
$$\{-1/e, -1/e, e, e.\}$$
 B: $\{0, N.E., e, N.E.\}$ C: $\{1/e, N.E., 1, 1\}$ D: $\{0, N.E., +\infty, N.E.\}$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)										_			(No	me)			(N	ume	ro di	ma	trice	ola)					

A	В	С	D	\mathbf{E}	

1	00000
2	
3	
4	
5	
6	
7	
8	00000
9	
10	

1. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: N.E. B: 1 C: N.A. D: 0 E: $-\infty$

2. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A: |q| < 2 B: 0 < q < 1 C: |q| < 1 D: -2 < q < 0 E: N.A.

3. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 - x^2$ è

A: iniettiva B: monotona crescente C: surgettiva D: N.A. E: sempre non negativa

4. Se $z \in \mathbb{C}$ è tale che $z^2=i$ allora l'argomento di z è uguale a A: $\pi/4$ o $5\pi/4$ B: 1 o $\pi/3$ C: N.A. D: 0 o π E: 1 o $\pi/2$

5. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.A. B: N.E. C: (0,1) D: $(1,\pi/2)$ E: $(-1,\pi)$

6. Il polinomio di Taylor di grado 4 relativo al punto $x_0=0$ della funzione $f(x)=\cos(x^2)$ vale A: $1+\cos(x)\frac{x^4}{4!}$ B: 1+x C: N.A. D: $1-\frac{x^2}{2}$ E: $1-\frac{x^4}{2}$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A:
$$\{-1/e, -1/e, e, e.\}$$
 B: $\{0, N.E., e, N.E.\}$ C: $\{0, N.E., +\infty, N.E.\}$ D: N.A. E: $\{1/e, N.E., 1, 1\}$

8. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a

A: N.A. B: 0 C:
$$\frac{\pi}{6}$$
 D: -1 E: $\frac{\sqrt{3}}{2}$

9. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è

A:
$$1 + \sin(t) + (\cos(t))$$
 B: $\sin(2t)$ C: N.A. D: $2 - \frac{t^2}{2}\cos(t)$ E: $1 - \frac{\cos^2(t)}{2}$

10. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A: $\frac{\sqrt{3}}{2}$ B: 0 C: $1 - \sqrt{2}/2$ D: $1 + \sqrt{2}/2$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)													(No	me)			•	(N	ume	ro d	i ma	trice	ola)				

A	В	С	D	Ε	

1	
2	00000
3	
4	
5	
6	0000
7	00000
8	
9	
10	00000

1. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è

A:
$$\sin(2t)$$
 B: N.A. C: $1 + \sin(t) + (\cos(t))$ D: $1 - \frac{\cos^2(t)}{2}$ E: $2 - \frac{t^2}{2}\cos(t)$

2. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: 1 B: N.E. C: 0 D: $-\infty$ E: N.A.

- 3. Se $z \in \mathbb{C}$ è tale che $z^2 = i$ allora l'argomento di z è uguale a A: $\pi/4$ o $5\pi/4$ B: 0 o π C: 1 o $\pi/2$ D: N.A. E: 1 o $\pi/3$
- 4. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 x^2$ è

 A: iniettiva B: sempre non negativa C: surgettiva D: monotona crescente E: N.A.
- 5. Il polinomio di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $f(x) = cos(x^2)$ vale A: $1 \frac{x^2}{2}$ B: $1 + cos(x)\frac{x^4}{4!}$ C: $1 \frac{x^4}{2}$ D: N.A. E: 1 + x
- 6. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a A: 0 B: N.A. C: -1 D: $\frac{\pi}{6}$ E: $\frac{\sqrt{3}}{2}$
- 7. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.A. B:
$$(0,1)$$
 C: $(1,\pi/2)$ D: $(-1,\pi)$ E: N.E.

8. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A: 0 B:
$$\frac{\sqrt{3}}{2}$$
 C: N.A. D: $1 + \sqrt{2}/2$ E: $1 - \sqrt{2}/2$

9. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A: N.A. B:
$$0 < q < 1$$
 C: $|q| < 1$ D: $|q| < 2$ E: $-2 < q < 0$

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A:
$$\{0, N.E., +\infty, N.E.\}$$
 B: $\{0, N.E., e, N.E.\}$ C: N.A. D: $\{1/e, N.E., 1, 1\}$ E: $\{-1/e, -1/e, e, e.\}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)													(No	me)			(N	ume	ro d	i ma	trice	ola)			

 $\mathrm{CODICE} = 759754$

1	0000
2	
3	0000
4	0000
5	0000
6	
7	
8	
9	
10	0000

1. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: 1 B: $-\infty$ C: N.E. D: N.A. E: 0

2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 - x^2$ è

A: iniettiva B: monotona crescente C: sempre non negativa D: surgettiva E: N.A.

3. Se $z \in \mathbb{C}$ è tale che $z^2 = i$ allora l'argomento di z è uguale a A: N.A. B: 0 o π C: $\pi/4$ o $5\pi/4$ D: 1 o $\pi/3$ E: 1 o $\pi/2$

4. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A: |q| < 2 B: |q| < 1 C: 0 < q < 1 D: N.A. E: -2 < q < 0

5. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A: 0 B:
$$1 - \sqrt{2}/2$$
 C: $1 + \sqrt{2}/2$ D: $\frac{\sqrt{3}}{2}$ E: N.A.

6. Il polinomio di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $f(x) = cos(x^2)$ vale A: $1 - \frac{x^4}{2}$ B: N.A. C: $1 + cos(x)\frac{x^4}{4!}$ D: 1 + x E: $1 - \frac{x^2}{2}$

7. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.E. B: N.A. C: (0,1) D: $(-1,\pi)$ E: $(1,\pi/2)$

8. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a A: $\frac{\pi}{6}$ B: -1 C: N.A. D: 0 E: $\frac{\sqrt{3}}{2}$

9. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A:
$$\{1/e, N.E., 1, 1\}$$
 B: $\{-1/e, -1/e, e, e.\}$ C: $\{0, N.E., e, N.E.\}$ D: N.A. E: $\{0, N.E., +\infty, N.E.\}$

10. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è

A:
$$1 + \sin(t) + (\cos(t))$$
 B: $1 - \frac{\cos^2(t)}{2}$ C: $\sin(2t)$ D: N.A. E: $2 - \frac{t^2}{2}\cos(t)$

19 febbraio 2009

((Cognome)	(Nome)	(Numero di matricola)

CODICE = 165593

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

19 febbraio 2009

																							L				
(Cognome)											_			(N	ome)			_		ume	i ma	trice	ola)				

CODICE = 313194

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

19 febbraio 2009

(Cognome)													(N	ome)				ume	i ma	trice					

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

19 febbraio 2009

(Cognome)								_			(N	ome)			_	ume	i ma	trice	ola)							

CODICE = 118579

A B C D E

1	
2	
3	
4	
5	$lackbox{0}$
6	
7	
8	
9	
10	

19 febbraio 2009

(Cognome)	(Nome)	(Numero di matricola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

19 febbraio 2009

(Cognome)								_			(N	ome)			_	ume	i ma	trice	ola)							

 $\mathrm{CODICE} = 759754$

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

19 febbraio 2009

PARTE B

1. Determinare l'immagine della funzione

$$f(x) = \arcsin\left(\frac{x^2 - 1}{x^2 + 1}\right)$$
 $x \ge 0$.

Studiare al variare di $\lambda \in \mathbb{R}$ il numero di soluzioni dell'equazione $f(x) = \lambda$.

2. Risolvere il problema di Cauchy

$$\begin{cases} y^{(IV)}(t) + y^{(III)}(t) = 1 + e^t \\ y(0) = 0. \\ y'(0) = 0 \\ y''(0) = 0 \\ y'''(0) = 0. \end{cases}$$

3. Studiare la convergenza dell'integrale

$$\int_{2}^{+\infty} \frac{1}{(x-1)(x^2+1)} \, dx$$

ed eventualmente calcolarne il valore.

4. Dimostrare che la somma di due funzioni crescenti (non necessariamente derivabili) è una funzione crescente. Cosa si può dire della differenza di due funzioni crescenti? tale differenza è una funzione monotona?