DESIGNAND ANALYSIS OF ALGORITHMS

CS 4120/5120 STRASSEN'S ALGORITHM

IBONUSI 5-MIN CHALLENGE

- Pop-up 6 bonus points.
- One attempt
- Closes 5 minutes after class starts
 - Section 1001/5001 closes @ 2:35pm
 - Section 1002/5002 closes @ 3:35pm

AGENDA

- Review matrix multiplication
- Strassen's algorithm

SQUARE MATRIX MULTIPLICATION 2-BY-2

• Given two 2-by-2 matrices. Compute their dot product $C = A \cdot B$.

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, C = A \cdot B = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

- Entry C_{ij} is calculated as $\sum_{k=1}^{2} A_{ik} B_{kj}$
- To calculate one entry of the resulting matrix.
 - _____ additions and _____ multiplications are involved.

SQUARE MATRIX MULTIPLICATION 3-BY-3

• Given two 3-by-3 matrices. Compute their dot product $C = A \cdot B$.

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{pmatrix}, C = A \cdot B = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}$$

- Entry C_{ij} is calculated as $\sum_{k=1}^{3} A_{ik} B_{kj}$
- To calculate one entry C_{ij} .
 - _____ additions and _____ multiplications are involved.

SQUARE MATRIX MULTIPLICATION n-BY-n

• Given two n-by-n matrices. Compute their dot product $C = A \cdot B$.

$$A = \begin{pmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{pmatrix}, B = \begin{pmatrix} B_{11} & \cdots & B_{1n} \\ \vdots & \ddots & \vdots \\ B_{n1} & \cdots & B_{nn} \end{pmatrix}, C = A \cdot B = \begin{pmatrix} C_{11} & \cdots & C_{1n} \\ \vdots & \ddots & \vdots \\ C_{n1} & \cdots & C_{nn} \end{pmatrix}$$

- Entry C_{ij} is calculated as $\sum_{k=1}^{n} A_{ik} B_{kj}$
- To calculate **one** entry C_{ij} .
 - _____ additions and _____ multiplications are involved.

SQUARE MATRIX MULTIPLICATION GENERALIZATION

- Compute $C = A \cdot B$, where A and B are n-by-n matrices.
 - To compute one entry of C,

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

- n-1 additions and n multiplications are involved.
- There are $\underline{n^2}$ entries in C.
- There are total $\underline{n^2(n-1)}$ additions and $\underline{n^2 \cdot n = n^3}$ multiplications being involved in computing $C = A \cdot B$.

TRADITIONAL SQUARE-MATRIX-MULTIPLICATION

- Complete the Cost and Time columns.
 - If you prefer Σ , you may use the following notation for the **Time** column.
 - $\Sigma 1 + 1$ for line 3
 - $\Sigma(\Sigma 1 + 1)$ for line 4
 - $\Sigma\Sigma 1$ for line 5
 - $\Sigma\Sigma(\Sigma1+1)$ for line 6
 - $\Sigma\Sigma\Sigma$ 1 for line 7

SQUARE-MATRIX-MULTIPLY (A, B)		Cost	Time
I	n = A.rows	Θ(1)	1
2	Let C be a new $n \times n$ matrix	Θ(1)	1
3	for $i = 1$ to n	Θ(1)	n+1
4	for $j = 1$ to n	Θ(1)	n(n+1)
5	$c_{ij} = 0$	Θ(1)	$n \cdot \mathbf{n}$
6	for $k = 1$ to n	Θ(1)	$n \cdot \mathbf{n} \cdot (\mathbf{n+1})$
7	$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$	Θ(1)	$n \cdot \mathbf{n} \cdot \mathbf{n}$
8	return C	0(1)	1

TRADITIONAL SQUARE-MATRIX-MULTIPLICATION

• The running time function T(n) =

•	The	bound	of 7	(n)	=
---	-----	-------	------	-----	---

- For an asymptotically positive polynomial p(n) of degree n, we have $p(n) = \Theta(n^d)$.

SQUARE-MATRIX-MULTIPLY (A, B)		Cost	Time
ı	n = A.rows	Θ(1)	1
2	Let C be a new $n \times n$ matrix	Θ(1)	1
3	for $i = 1$ to n	Θ(1)	n+1
4	for $j = 1$ to n	Θ(1)	n(n+1)
5	$c_{ij} = 0$	Θ(1)	$n \cdot n$
6	for $k = 1$ to n	Θ(1)	$n \cdot n \cdot (n+1)$
7	$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$	Θ(1)	$n \cdot n \cdot n$
8	return C	Θ(1)	1

SQUARE-MATRIX-MULTIPLICATION A DIVIDE-AND-CONQUER APPROACH

• Divide the input $n \times n$ matrices into four $\frac{n}{2} \times \frac{n}{2}$ sub-matrices.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{n-1} & a_{n} \\ a_{21} & A_{1}^{a_{12}} & \cdots & a_{2}^{a_{1}} A_{12} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & A_{21,2}^{a_{n-1,2}} & \cdots & a_{n-1,n} \\ a_{n,1} & A_{21,2}^{a_{12}} & \cdots & a_{n-1,n} \\ a_{n,n-2} & a_{n,n} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{n} \\ b_{21} & B_{12}^{b_{12}} & \cdots & b_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n-1,1} & B_{21,2}^{b_{n-1,2}} & \cdots & b_{n-1,n} \\ b_{n,1} & B_{21,2}^{b_{12}} & \cdots & b_{n,n-2}^{b_{n-1,n}} \end{pmatrix}$$

SQUARE-MATRIX-MULTIPLICATION A DIVIDE-AND-CONQUER APPROACH

• Conquer $\frac{n}{2} \times \frac{n}{2}$ sub-matrix multiplication.

$$A = \begin{pmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{n-1} & a_{n} \\ a_{21} & A_{1}^{a_{12}} & \cdots & a_{2}^{a_{1}} A_{12} & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & A_{21,2}^{a_{n-1,2}} & \cdots & a_{n,n-2}^{a_{n-1,2}} & a_{n-1,n} \\ a_{n,n} & a_{n,n-2}^{a_{21}} & a_{nn} \end{pmatrix}, B = \begin{pmatrix} \begin{bmatrix} b_{11} & B_{12} & \cdots & b_{n} & b_{n} \\ b_{21} & B_{12}^{b_{12}} & \cdots & b_{2,R} & b_{12} & b_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{n-1,1} & B_{n-1,2}^{b_{n-1,2}} & \cdots & b_{n-R-2}^{b_{n-1,n}} & b_{n-1,n} \\ b_{n,n} & B_{22}^{b_{21}} & \cdots & b_{n,n-2}^{b_{n-1,n}} \end{pmatrix}$$

Following the matrix-mult. rules

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

$$egin{array}{|c|c|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array}$$

SQUARE-MATRIX-MULTIPLICATION A DIVIDE-AND-CONQUER APPROACH

- Combine the resulting $\frac{n}{2} \times \frac{n}{2}$ sub-matrices into ONE matrix.
 - Put the sub-matrix at the corresponding position in the original matrix.

$$C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{n-1} & c_n \\ c_{21} & C_1 & c_{22} & \cdots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n-1,1} & C_{n-1,2} & \cdots & c_{n-1,n} \\ c_{n,1} & c_{2,1} & \cdots & c_{n-1,n} \\ c_{n,1} & c_{2,1} & \cdots & c_{n-1,n} \\ c_{n,1} & c_{n,1} & \cdots & c_{n,n-1,2} & \cdots \\ c_{n,n-1,2} & \cdots & c_{n,n-1,2$$

DIVIDE-AND-CONQUER SQUARE-MATRIX-MULTIPLICATION

 Complete the Cost and Time columns.

SQ	SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)		Time
I	n = A.rows	Θ(1)	1
2	Let C be a new $n \times n$ matrix	Θ(1)	1
	if $n == 1$	Θ(1)	base
	$c_{11} = a_{11} \cdot b_{11}$	Θ(1)	base
	else partition A, B , and C in 4 equal parts	Θ(1)	1
	$C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11}) + \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{12}, B_{21})$	$2T\left(\frac{n}{2}\right) + \Theta(n^2)$	1
	$C_{-2} = \text{SOLIARE-MATRIX-MILITIPLY-RECLIRSIVE}(A_{-1}, B_{-2}) +$		
3	SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})	$2T\left(\frac{n}{2}\right) + \Theta(n^2)$	1
4	$C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE} (A_{21}, B_{11}) + \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE} (A_{22}, B_{21})$	$2T\left(\frac{n}{2}\right) + \Theta(n^2)$	1
5	$C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE} (A_{21}, B_{12}) + \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE} (A_{22}, B_{22})$	$2T\left(\frac{n}{2}\right) + \Theta(n^2)$	1
8	return C	Θ(1)	1

DIVIDE-AND-CONQUER SQUARE-MATRIX-MULTIPLICATION

• The running time function T(n)

SQ	UARE-MATRIX-MULTIPLY-RECURSIVE (A, B)	Cost	Time
I	n = A.rows	Θ(1)	1
2	Let C be a new $n \times n$ matrix	Θ(1)	1
	if $n == 1$	Θ(1)	base
	$c_{11} = a_{11} \cdot b_{11}$	Θ(1)	base
	else partition A, B , and C in 4 equal parts	Θ(1)	1
	$C_{11} = SQUARE-MATRIX-MULTIPLY-RECURSIVE(A_{11}, B_{11}) +$	$2T\left(\frac{n}{2}\right) + \Theta(n^2)$	1
	SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})	$\binom{2}{2}$	1
3	$C_{12} = SQUARE-MATRIX-MULTIPLY-RECURSIVE(A_{11}, B_{12}) +$	$2T\left(\frac{n}{2}\right) + \Theta(n^2)$	1
	SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})	$\left(\frac{2}{2}\right) + 6(n)$	_
4	$C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE } (A_{21}, B_{11}) + C_{21} = C_{21} + C_{21} +$	$2T\left(\frac{n}{2}\right) + \Theta(n^2)$	1
"	SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})	$\left(\frac{2}{2}\right) + O(n^{2})$	1
5	$C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE } (A_{21}, B_{12}) +$	$2T\binom{n}{1}+O(n^2)$	1
	SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})	$2T\left(\frac{n}{2}\right) + \Theta(n^2) 1$	
8	return C	Θ(1)	1

SQUARE-MATRIX-MULTIPLY-RECURSIVE

- Tolerate sloppiness
- The recursive running time of the SQUARE-MATRIX-MULTIPLY-RECURSIVE algorithm is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 8T\left(\frac{n}{2}\right) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

• The function $T(n) = \Theta(n^3)$.

STRASSEN'S ALGORITHM SQUARE-MATRIX-MULTIPLICATION

- A divide-and-conquer approach
- Trade one submatrix multiplication for several new additions.

STRASSEN'S ALGORITHM SQUARE-MATRIX-MULTIPLICATION

• Divide the input $n \times n$ matrices into four $\frac{n}{2} \times \frac{n}{2}$ sub-matrices.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{n-1} & a_n \\ a_{21} & A_1 a_{12} & \cdots & a_2 A_{12} & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & A_{2i1,2}^{a_{n-1,2}} & \cdots & a_{n,n-2} a_{n-1,n} \\ a_{n,n} & A_{2i1,2}^{a_{12}} & \cdots & a_{n,n-2} a_{n-1,n} \\ a_{n,n-2} & a_{n,n-2} & a_{nn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{n} & b_{n} \\ b_{21} & B_1 b_{12} & \cdots & b_{2,n} & b_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{n-1,1} & B_{2i1,2}^{b_{n-1,2}} & \cdots & b_{n-1,n} \\ b_{n,n} & B_{22}^{b_{12}} & \cdots & b_{n,n-2} a_{22} b_{nn} \end{pmatrix}$$

STRASSEN'S ALGORITHM SQUARE-MATRIX-MULTIPLICATION

- Conquer the subproblems by
 - **Step I**: Creating 10 more matrices S_i .

$$S_1 = B_{12} - B_{22}$$
, $S_6 = B_{11} + B_{22}$,
 $S_2 = A_{11} + A_{12}$, $S_7 = A_{12} - A_{22}$,
 $S_3 = A_{21} + A_{22}$, $S_8 = B_{21} + B_{22}$,
 $S_4 = B_{21} - B_{11}$, $S_9 = A_{11} - A_{21}$,
 $S_5 = A_{11} + A_{22}$, $S_{10} = B_{11} + B_{12}$.

- Each matrix S_i is either a matrix addition or a subtraction on two $\frac{n}{2} \times \frac{n}{2}$ matrices.
- The running time of this step is $10(n/2)^2 = 10 \cdot (n^2/4)$ and bounded by $\Theta(n^2)$.

STRASSEN'S ALGORITHM SQUARE-MATRIX-MULTIPLICATION

- Conquer the subproblems by
 - **Step 3**: Adds and subtracts the P_i to construct the four $\frac{n}{2}$ -by- $\frac{n}{2}$ submatrices of the product C as shown on the right.

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

- For **Step 3**, there are <u>8</u> additions/subtractions on $\frac{n}{2}$ -by- $\frac{n}{2}$ matrices, with the running time of each addition/subtraction being tightly bounded by $\Theta(n^2)$.
- We can say that the asymptotic tight bound of this step is $8 \cdot \Theta(n^2) = \Theta(n^2)$.

STRASSEN'S ALGORITHM SQUARE-MATRIX-MULTIPLICATION

• **Combine** C_{11} , C_{12} , C_{21} , C_{22} as one output.

$$C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{n-1} & c_n \\ c_{21} & C_{1}^{c_{22}} & \cdots & c_{2,n}^{c_{2,n}} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n-1,1} & c_{n-1,2}^{c_{n-1,2}} & \cdots & c_{n,n-1}^{c_{n-1,n}} & c_{n-1,n} \\ c_{n,1} & c_{2,1}^{c_{21}} & \cdots & c_{n,n-1}^{c_{n-1,n}} & c_{n,n-1}^{c_{n-1,n}} \end{pmatrix}$$

STRASSEN'S ALGORITHM TIME COMPLEXITY

- The recursive running time of Strassen's algorithm
 - Divide: Partitioning. $\Rightarrow \Theta(1)$.
 - Conquer
 - Create 10 matrices S_i by adding/subtracting the submatrices. $\Rightarrow \Theta(n^2)$.
 - Recursively multiply seven times to create matrices P_i . $\Rightarrow 7T(n/2) + \Theta(n^2)$.
 - Adding and subtracting P_i to get the submatrices of $C. \Rightarrow \Theta(n^2)$

• Running time
$$T(n) = \begin{cases} 1, & n = 1 \\ \frac{7}{T} \left(\frac{n}{2}\right) + \Theta(n^2), & n > 1 \end{cases}$$
. We shall see $T(n) = \Theta\left(n^{\log 7}\right) < \Theta(n^3)$.

NEXT UP SOLVING RECURRENCE

REFERENCE