2.3. Probabilities

Lecture based on https://github.com/gwthomas/math4ml (Garrett Thomas, 2018)

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

Probabilities

Why probabilities?

- Inferences from data are intrinsically uncertain.
- Probability theory: model uncertainty instead of ignoring it!
- Applications in Statistics, Machine Learning, Data Mining, Pattern Recognition, etc.
- Goal of this part of the course
 - Basic probability theory
 - estimation
 - probabilistic modeling

Probabilities 31.04.2020

Basics in Probability Sample space

Suppose we have some sort of randomized experiment (e.g. a coin toss, die roll) that has a fixed set of possible **outcomes** ω . This set is called the **sample space** and denoted Ω .

- We define probabilities for some **events**, which are subsets of Ω .
- The set of events is denoted \mathcal{F} .
- The **complement** of the event A is another event, $A^{c} = \Omega \setminus A$.

Probabilities 31.04.2020

Then we can define a **probability measure** $P:\mathcal{F} \rightarrow [0,1]$ which must satisfy

(1) Countable additivity: for any countable collection of disjoint sets $\{A_i\} \subseteq \mathcal{F}$,

$$P\bigg(\bigcup_{i} A_{i}\bigg) = \sum_{i} P(A_{i})$$

 $\begin{array}{|c|c|}\hline A & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$

The triple (Ω, \mathcal{F}, P) is called a **probability space**.

Proposition

Let A be an event.

Then

- $P(A^c) = 1 P(A).$
- \bigcirc If A is an event and $A \subseteq B$, then $P(A) \le P(B)$.

Proof.

- ① Using the countable additivity of P, we have $P(A) + P(A^c) = P(A \dot{\cup} A^c) = P(\Omega) = 1$
- ff suppose $A \in \mathcal{F}$ and $A \subseteq B$. Then $P(B) = P(A \cup (B \setminus A)) = P(A) + P(B \setminus A) > P(A)$.
- m the middle inequality follows from (ii) since $\varnothing\subseteq A\subseteq\Omega$.

We also have $P(\varnothing)=P(\varnothing\dot\cup\varnothing)=P(\varnothing)+P(\varnothing)$ by countable additivity, which shows $P(\varnothing)=0$.

Proposition

The key is to break the events up into their various overlapping and non-overlapping parts.

$$\begin{split} P(A \cup B) &= P((A \cap B) \ \dot{\cup} \ (A \setminus B) \ \dot{\cup} \ (B \setminus A)) \\ &= P(A \cap B) + P(A \setminus B) + P(B \setminus A) \\ &= P(A \cap B) + P(A) - P(A \cap B) + P(B) - P(A \cap B) \\ &= P(A) + P(B) - P(A \cap B) \end{split}$$

6

Probabilities 31 04 2020

Basics in Probability

Conditional Probability and Chain Rule

 \bullet The conditional probability of event A given that event B has occurred is written P(A|B) and defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

assuming P(B) > 0.

• Another very useful tool, the **chain rule**, follows from this definition:

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

.

Basics in Probability Bayes' rule

Taking the equality from above one step further, we arrive at the simple but crucial **Bayes' rule**:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

It is sometimes beneficial to omit the normalizing constant and write

$$P(A|B) \propto P(A)P(B|A)$$

Under this formulation, P(A) is often referred to as the **prior**, P(A|B) as the **posterior**, and P(B|A) as the **likelihood**. In the context of machine learning, we can use Bayes' rule to update our "beliefs" (e.g. values of our model parameters) given some data that we've observed.

8 Probabilities 31.04.202