Metody Numeryczne - Projekt nr 2 Raport

Julia Przybytniowska (313523) styczeń 2022

Spis treści

1	Wprowadzenie	1
2	Opis matematyczny	1
3	Opis działania programu	2
4	Przykłady obliczeniowe	3
5	Podsumowanie	7

1 Wprowadzenie

Celem otrzymanego przeze mnie zadania było znalezienie rozwiązania układu równań Ax=B blokową metodą Crouta.

Zakładając, że
$$A \in \mathbb{R}^{(n\,x\,n)}$$
 jest macierzą o postaci : $\begin{pmatrix} A_{11} & A_{12} \\ -I & A_{22} \end{pmatrix}$, gdzie $A_{ij} \in \mathbb{R}^{(p\,x\,p)}$ oraz $n=2p$.

2 Opis matematyczny

Rozwiązanie rozpoczęłam od scalenia trzech danych macierzy w główną macierz A, a następnie przeszłam do analizy wykorzystywanej matody.

Blokowa metoda Crouta pozwoliła mi w prostszy sposób obliczyć rozwiazanie badanego równania. Opiera się ona na wyznaczeniu dwóch macierzy, których iloczyn jest toższamy z macierzą A. Wspomniane macierze mają postać:

L - macierz dolnotrójkatna, U - macierz górnotrójkatna z "jedynkami" na gównej przekątnej.

Wyznaczanie kolejnych elementów macierzy L i U, wykonywałam naprzemiennie. Najpierw wyznaczyłam pierwszą kolumnę macierzy L, następnie pierwszy wiersz macierzy U, a w następnym kroku czynności powtarzałam dla kolejnych kolumn macierzy L i wierszy U. Do obliczania kolejnych elementów macierzy wykorzystałam poniższe wzory:

(dla wszystkich $i \in \{1,\ 2,\ldots,\ n\}$)

$$l_{ji} = a_{ji} - \sum_{k=1}^{i-1} l_{jk} u_{ki}, \qquad (dlaj \in \{i, i+1, \dots, n\})$$
(1)

$$u_{ij} = \frac{1}{l_{ii}} (a_{ij} - \sum_{k=1}^{i-1} u_{kj} l_{ik}) \qquad (dlaj \in \{i+1, i+2, \dots, n\})$$
(2)

Może się zdarzyć przypadek, że na przykątnej macierzy L pojawi się wartość zero, wtedy metoda Crouta zawodzi i nie możemy wyznaczyć nastepnej kolumny z macierzy U.

Po ich wyznaczeniu mogłam zająć się wyznaczaniem rozwiazania układu równań dla danego B. Dzieki wcześniejszemu wyznaczeniu macierzy L i U przekształciłam równanie na dwa zależne od siebie równania:

$$Ax = B \Leftrightarrow LUx = B \Leftrightarrow (Ly = B \land Ux = y)$$

Zatem skorzystałam z równań:

(dla wszystkich $i \in \{1, ..., n\}, j \in \{1, ..., liczbaKolumnB\}$

$$y_{ij} = \frac{1}{l_{ii}} (b_{ij} - \sum_{k=1}^{i} y_{kj} l_{ik})$$
(3)

$$x_{ij} = y_{ij} - \sum_{k=i+1}^{n} x_{kj} u_{ik} \tag{4}$$

3 Opis działania programu

Program składa się z 3 funkcji:

- 1. "CreateMatrix" przyjmująca 3 argumenty:
 - (a) macierz A_{11}
 - (b) macierz A_{12}
 - (c) macierz A_{22}

Korzystając z wbudowanych w Matlab'a funkcji tworzy macierz A.

2. "Crout" - przyjmująca 1 argument - macierz A.

Funkcja za pomocą wzorów (1) i (2) wyznacza szukane macierze L i U.

- 3. "SolveEquation" przyjmuje 3 argumenty:
 - (a) L, U macierze wyznaczone przez funkcję "Crout"
 - (b) B macierz będąca cześcią równania

Funkcja wylicza za za pomocą równań (3) i (4) rozwiązanie badanego równania.

Ostatnim znaczącym plikiem w programie jest "Commands". W nim zadeklarowane są wszytkie dane i polecenia wywołujące funkcje w odpowiedniej kolejności, aby otrzymać szukany wynik. jest w nim również kod pozwalający na zbadanie poprawności przeprowadzonych obliczeń za pomocą wbudowanych narzędzi w Matlab.

4 Przykłady obliczeniowe

Dla każdego przykładu wypisałam wyliczone macierze L i U (aby pokazać że ich założenia są spełnione) oraz dwa rozwiazania (jedno wyliczone za pomocą metody Crouta, a drugie za pomocą wbudowanych funckji MATLAB'a).

Przy bardziej wymagających wyrażeniach załączyłam również macierz A, aby lepiej zobrazować jak przedstawiają się jej wartości.

Przykład 1:
$$A_{11} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 $A_{12} = \begin{pmatrix} 3 & 4 \\ 3 & 6 \end{pmatrix}$ $A_{22} = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$ $B = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$

Rozwiązanie za pomocą metody: Rozwiązanie za pomocą A\B:

Przykład 2:
$$A_{11} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \\ 7 & 8 & 9 \end{pmatrix}$$
 $A_{12} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ $A_{22} = \begin{pmatrix} 1 & 2 & 5 \\ 4 & 5 & 6 \\ 1 & 4 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 5 & 1 \\ 2 & 2 \\ 5 & 3 \\ 3 & 4 \\ 5 & 5 \\ 1 & 6 \end{pmatrix}$

Rozwiązanie	za pomocą metody:	Rozwiązanie za pomocą	A\B:
-3.8400	3.8800	-3.8400 3.8800	
3.3600	-3.1867	3.3600 -3.1867	
0.4800	-0.3600	0.4800 -0.3600	
3.6800	-4.7600	3.6800 -4.7600	
-0.3600	2.1867	-0.3600 2.1867	
-0.7600	1.6533	-0.7600 1.6533	

$$\mathbf{Przyklad 3:} \quad \mathbf{A}_{11} = \begin{pmatrix} 0.0462 & 0.3171 & 0.3816 & 0.4898 \\ 0.0971 & 0.9502 & 0.7655 & 0.4456 \\ 0.8235 & 0.0344 & 0.7952 & 0.6463 \\ 0.6948 & 0.4387 & 0.1869 & 0.7094 \end{pmatrix} \quad \mathbf{A}_{12} = \begin{pmatrix} 0.7547 & 0.1626 & 0.3404 & 0.2551 \\ 0.2760 & 0.1190 & 0.5853 & 0.5060 \\ 0.6797 & 0.4984 & 0.2238 & 0.6991 \\ 0.6551 & 0.9597 & 0.7513 & 0.8909 \end{pmatrix}$$

-0.2143

-0.2143

Przykład 4:
$$A_{11} = \begin{pmatrix} cos(1) & cos(2) & cos(3) \\ cos(0) & cos(1) & cos(0) \\ cos(2) & cos(2) & cos(2) \end{pmatrix}$$
 $A_{12} = \begin{pmatrix} sin(1) & sin(3) & sin(1) \\ sin(3) & sin(3) & sin(3) \\ sin(0) & sin(1) & sin(-1) \end{pmatrix}$

$$A_{22} = \begin{pmatrix} \tan(2) & \tan(3) & \tan(1) \\ \tan(-2) & \tan(-3) & \tan(-1) \\ \tan(0) & \tan(1) & \tan(1) \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 \\ 2 & 2 \\ 3 & 2 \\ 0 & 1 \\ 1 & 3 \\ 0 & 1 \end{pmatrix}$$

Macierz L:						Macierz U:					
0.5403	0	0	0	0	0	1.0000	-0.7702	-1.8323	1.5574	0.2612	1.5574
1.0000	1.3105	0	0	0	0	0	1.0000	2.1612	-1.0807	-0.0916	-1.0807
-0.4161	-0.7367	0.4134	0	0	0	0	0	1.0000	-0.3580	2.1349	-2.3933
-1.0000	-0.7702	-0.1677	-1.5200	0	0	0	0	0	1.0000	-0.2672	-1.2375
0	-1.0000	2.1612	1.8781	-4.0613	0	0	0	0	0	1.0000	-1.1963
0	0	-1.0000	-0.3580	3.5967	3.0236	0	0	0	0	0	1.0000

Rozwiązanie za pomocą metody: Rozwiązanie za pomocą A\B: 5.4210 4.1837 5.4210 4.1837 -6.4210 -8.1837 -6.4210 -8.1837 0.5188 2.2645 2.2645 0.5188 -3.6674 -2.2844 -3.6674 -2.2844 1.8302 1.8073 1.8073 1.8302 -1.4970 0.2888 -1.4970 0.2888

Przykład 5:
$$A_{11} = A_{22} = magic(5)$$
 $A_{12} = inv(magic(5))$ $B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}^T$

Macierz A:

17.0000 24.0000 1.0000 8.0000 15.0000 -0.0049 0.0512 -0.0354 0.0012 0.0034

7.0000 14.0000 23.0000 5.0000 16.0000 0.0431 -0.0373 -0.0046 0.0127 0.0015 4.0000 6.0000 13.0000 20.0000 22.0000 -0.0303 0.0031 0.0031 0.0031 0.0364 10.0000 12.0000 19.0000 21.0000 3.0000 0.0047 -0.0065 0.0108 0.0435 -0.0370 18.0000 25.0000 2.0000 9.0000 -0.0450 11.0000 0.0028 0.0050 0.0415 0.0111 -1.0000 0 0 0 0 17.0000 24.0000 1.0000 8.0000 15.0000 -1.0000 0 0 0 23.0000 5.0000 7.0000 14.0000 16.0000 0 0 -1.0000 0 0 4.0000 6.0000 13.0000 20.0000 22.0000 0 0 -1.000010.0000 12.0000 19.0000 21.0000 3.0000 0 0 -1.0000 11.0000 18.0000 25.0000 2.0000 9.0000

Macierz L:									
17.0000	0	0	0	0	0	0	0	0	0
23.0000	-27.4706	0	0	0	0	0	0	0	0
4.0000	0.3529	12.8373	0	0	0	0	0	0	0
10.0000	-2.1176	17.9764	-9.3786	0	0	0	0	0	0
11.0000	2.4706	24.8608	-38.0567	90.1734	0	0	0	0	0
-1.0000	1.4118	0.3490	0.1401	-0.3064	17.0033	0	0	0	0
0	-1.0000	-0.2056	0.1751	-0.1329	22.9984	-27.4554	0	0	0
0	0	-1.0000	1.4145	-3.2832	4.0003	0.3527	12.8399	0	0
0	0	0	-1.0000	3.3353	9.9995	-2.1128	17.9763	-9.3666	0
0	0	0	0	-1.0000	10.9988	2.4773	24.8626	-38.0493	90.3033
Macierz U:									
1.0000	1.4118	0.0588	0.4706	0.8824	-0.0003	0.0030	-0.0021	0.0001	0.0002
0	1.0000	-0.2056	-0.1156	0.1563	-0.0018	0.0039	-0.0016	-0.0004	0.0001
0	0	1.0000	1.4145	1.4345	-0.0022	-0.0008	0.0009	0.0002	0.0028
0	0	0	1.0000	3.3353	-0.0046	0.0015	-0.0012	-0.0040	0.0094
0	0	0	0	1.0000	-0.0012	0.0004	-0.0000	-0.0023	0.0033
0	0	0	0	0	1.0000	1.4114	0.0588	0.4705	0.8821
0	0	0	0	0	0	1.0000	-0.2057	-0.1158	0.1562
0	0	0	0	0	0	0	1.0000	1.4141	1.4343
0	0	0	0	0	0	0	0	1.0000	3.3391
0	0	0	0	0	0	0	0	0	1.0000

Rozwiązanie za pomocą metody:

Rozwiązanie za pomocą A\B:

on refinite by bounded motory.	Trout and a desire
0.0128	0.0128
0.0126	0.0126
0.1799	0.1799
0.0126	0.0126
0.0128	0.0128
0.0738	0.0738
0.0789	0.0789
-0.0865	-0.0865
0.0815	0.0815
0.0866	0.0866

Przykład 6:
$$A_{11} = \begin{pmatrix} log(3) & log(2) & log(3) \\ log(1) & log(4) & log(2) \\ log(10) & log(3) & log(6) \end{pmatrix} \qquad A_{12} = \begin{pmatrix} -log(3) & -log(2) & -log(3) \\ -log(1) & -log(4) & -log(2) \\ -log(10) & -log(3) & -log(6) \end{pmatrix}$$

$$A_{22} = \begin{pmatrix} sin(2) & sin(2) & sin(2) \\ sin(4) & sin(4) & sin(4) \\ sin(3) & sin(3) & sin(3) \end{pmatrix} \quad B = \begin{pmatrix} log(1) & log(2) & log(3) & log(4) & log(5) & log(6) \\ 1 & 2 & 3 & 4 & 5 & 6 \\ cos(1) & cos(2) & cos(3) & cos(4) & cos(5) & cos(6) \end{pmatrix}^{T}$$

Macierz A:					
1.0986	0.6931	1.0986	-1.0986	-0.6931	-1.0986
0	1.3863	0.6931	0	-1.3863	-0.6931
2.3026	1.0986	1.7918	-2.3026	-1.0986	-2.0794
-1.0000	0	0	0.9093	0.9093	0.9093
0	-1.0000	0	-0.7568	-0.7568	-0.7568
0	0	-1.0000	0.1411	0.1411	0.1411
Macierz L:					
1.0986	0	0	0	0	0
0	1.3863	0	0	0	0
2.3026	-0.3542	-0.3337	0	0	0
-1.0000	0.6309	0.6845	-0.0907	0	0
-1.0000	-1.0000	0.5000	-0.7568	-9.3438	0
0	-1.0000	-1.0000	0.1411	1.5559	-0.1415
0	0	-1.0000	0.1411	1.5559	-0.1415
Macierz U:					
1.0000	0.6309	1.0000	-1.0000	-0.6309	-1.0000
0	1.0000	0.5000	0	-1.0000	-0.5000
0	0	1.0000	0	0	-0.1380
0	0	0	1.0000	-10.0250	-3.5197
0	0	0	0	1.0000	0.4122
0	0	0	0	0	1.0000
Rozwiązanie	za pomocą	metody:	Rozwiąz	anie za por	mocą A\B:
-9.7754	-19.9010	10.1373	-9.7	754 -19.90	010 10.1373
5.3728	8.2343	-8.1769	5.3	728 8.23	343 -8.1769
-3.0937	-8.4678	0.5117	-3.0	937 -8.4	678 0.5117
-15.1913	-4.7288	40.3881	-15.1	913 -4.72	288 40.3881
0.6865	17.8737	14.7168	0.6	865 17.8	737 14.7168
5.2788	-30.6319	-44.6752	5.2	788 -30.63	319 -44.6752

5 Podsumowanie

Po porównaniu wyników uzyskanych za pomocą metody blokowej Crouta i za pomocą wbudowanych funkcji MATLAB można wnioskować, że program działa prawidłowo.

Badana metoda nie jest jednak niezawodna, gdyż w niektórych przypadkach macierze L i U nie były możliwe do wyznaczenia, a prawidłowe rozwiazanie równania istniało. Wynika to w przypadku, gdy na głównej przekątnej macierzy L wystąpiła wartość 0, przez którą nie jesteśmy w stanie podzielić w następnych wyliczeniach.