CES-27: Processamento Distribuído

PLANO DE AULAS

2º SEMESTRE DE 2019 Prof Hirata e Prof Juliana

Ementa: Introdução a sistemas distribuídos. Linguagens de programação distribuída. Anéis lógicos. Rotulação de tempo e relógios lógicos. Transações em bancos de dados distribuídos. Computações difusas. Detecção de "deadlocks" em sistemas distribuídos. Algoritmos de consenso. Algoritmos para evitar inanição.

Objetivo geral: Estudo teórico e prático de algoritmos de programação distribuída.

Objetivos específicos:

- Conhecimento de estratégias de algoritmos distribuídos baseados em rótulo de tempo, anéis lógicos e disseminação (eventos).
- Conhecimento de técnicas para transações distribuídas, exclusão mútua, detecção de deadlock, garantia de consenso e justiça distribuídos e capacidade para identificar a estratégia ideal para uma determinada técnica.
- Capacidade para programar que usam as estratégias para resolver os problemas devido à distribuição em processos.

Carga horária semanal: 2-0-1-4

Cronograma 1 bimestre

Semana	Tópicos
1ª Semana	Apresentação da disciplina (Prof Hirata)
	1 – Introduction to Distributed Systems (Prof Hirata)
	Alunos:
	- registrar no Google Classroom: CES27_2019
	(Class code z9j2w4)
	- instalar Go no seu computador
	- providenciar acesso a internet do ITA
2ª Semana	2 - Logical Clock (Prof Juliana)
	Go Language (Prof Juliana)
	Atividade 1 – Lab Logical Clock
	Alunos: Ideal é fazer o tutorial Go
3ª Semana	3 - Leader Election (Prof Hirata)
4ª Semana	4 - Mutual Exclusion (Prof Juliana)
	Atividade 2 – Lab Mutual Exclusion - Ricart-Agrawala
5ª Semana	5 - Deadlock Detection (Prof Hirata)
6ª Semana	6 - MapReduce (Prof Juliana)
	Atividade 3 – Lab MapReduce
7ª Semana	7 - Blockchain (Prof Hirata e Prof Juliana)

Cronograma 2 bimestre

Semana	Tópicos
1ª Semana	Explicar como será o projeto final (Prof Hirata e Prof Juliana) <u>Atividade 4</u> : Preparar a apresentação da proposta do projeto
2ª Semana	8 - Distributed Database (Prof Hirata)
3ª Semana	9 - Termination Detection (Prof Juliana) <u>Alunos</u> : Apresentação da proposta de projeto (10min por grupo)
4ª Semana	10 - Consensus and Agreement (Prof Juliana) – Paxos e Raft Atividade 5: Atividade sobre Paxos e/ou Raft
5ª Semana	11 - Byzantine General Problem (Prof Hirata)
6ª Semana	12 - Dinning Philosophers (Prof Hirata)
7 ^a Semana	Prova Bimestre 2
8ª Semana	Aula para se dedicar ao projeto <u>Alunos</u> : Cada grupo vai apresentar para um professor o andamento do trabalho (protótipo, ppt e artigo) para discussão de melhorias.
1ª Semana Exames	Alunos: Apresentação do projeto (20min por grupo)
2ª Semana Exames	Alunos: Entrega do artigo do projeto Prova Exame (em caso de baixo rendimento na disciplina)

AVALIAÇÃO

- Cada bimestre: 1 prova individual (60%) + atividades (40%)
- Atividades individuais (preferencialmente) como: exercício em sala, pesquisa por referências adicionais, leitura de artigo científico, implementações em linguagem Go.
 Os pesos serão definidos no final pelos professores de acordo com a dificuldade relativa das atividades. Tudo será entregue via GoogleClassroom.
- Exame: projeto em grupo
- Prova Exame: Se (média dos bimestre >= 6.5) então exame = projeto
 Else exame = 60% prova exame + 40% projeto

BIBLIOGRAFIA

- TANEMBAUM, A. S. Distributed Systems: Principles and Paradigms. 2nd ed. Prentice Hall, 2006.
- COULORIS, G. DOLIMORE, J. and KINDBERG, T. Distributed Systems: Concepts and Design.Addison Wesley, 4th edition 2006.
- RAYNAL, M. Distributed algorithms and protocols. John Wiley, 1988.
- SINGHAL, M.; SHIVARATRI N.G. Advanced Concepts in Operating Systems McGraw-Hill, New York, NY, 1994.

BIBLIOGRAFIA COMPLEMENTAR

- Kshemkalyani, A. D., and Singhal, M. Distributed Computing: Principles, Algorithms, and Systems. Cambridge University Press, 2008
- Fokkink, W. Distributed Algorithms: An Intuitive Approach. MIT Press, 2013