

VAE-VDM: Representation Learning with Variational Diffusion Models

Egoitz Gonzalez, Diego Garcia Cerdas, Jacky Chu, Maks Kulicki

Motivation

- Diffusion-based models do not contain a module for capturing representations.
- Abstreiter et al. (2022) [1] proposed a method for representation learning using (conditional) score-based generative models.

Contribution

- We propose a probabilistic and fully-generative alternative using Variational Diffusion Models (VDM) [2].
- We explore its potential in terms of representation learning and data generation.

Limitations

- VAEs typically suffer from optimization challenges when using powerful decoders [3].
- We encountered *posterior collapse* during training.

Approach

1. VAE using VDM as decoder

• Derivation of Variational Lower Bound:

$$\mathcal{L}_{VAE'} = \mathbb{E}_{\mathbf{w} \sim q_{\phi}(\mathbf{w}|\mathbf{x})} \mathcal{L}_{ ext{VDM}} + D_{ ext{KL}}(q_{\phi}(\mathbf{w}|\mathbf{x})||p(\mathbf{w})).$$

• Architecture:

2. Research Questions

- Is the encoder learning a meaningful representation of the data?
- Is the representation useful for the diffusion-based model?

3. Experiments

- Less powerful VDM
 - More responsibility to the encoder
- Smaller encoder
 - Remove possible redundant parameters.
 - Analyze less meaningful encodings.
- Unregularized training
 - No collapse to the prior distribution.

Fully-Generative Setting

Guided Generation

Optimization Challenges

- Posterior collapse 😂
 - Encoder KL divergence falls to 0 for all experiments.

 Decoder VDM is powerful enough to model data distribution and ignores w.

Qualitative Results

- Sampling
 - Smallest VDM (MVDM) cannot model the data distribution properly.
 - However, adding an encoder does not show qualitative improvement.

MVDM + OE

- Latent space visualization (t-SNE)
 - MNIST (very simple)
 - KL regularization breaks structure.
 - Unregularized retains random init. structure.
 - CIFAR10 (more complex)
 - Unregularized: slowly learns meaningful structure.
- Reconstructions
 - Analyze the effect of w during guided generation.
 - w ignored due to posterior collapse.

Quantitative Results

- No benefit to the diffusion-based model added by the encoder.
- FID and BPD lower or equal.

Discussion

- Posterior collapse limits encoder utility during reconstruction and sampling.
- Dataset simplicity might be the culprit: experiments on more diverse CIFAR10 show promising results on encoder's capability to learn structure.
- Future work: investigating techniques to mitigate posterior collapse and formalising the importance of the interplay between the decoder's power, the encoder's capability, and the complexity of the dataset in VAE-based representation learning.

References

[1] Abstreiter, K., Mittal S., Bauer S., Schölkopf B., Mehrjou A. (2021). Diffusion-Based Representation Learning. [2] Kingma, D. P., Salimans, T., Poole B., Ho J. (2021). Variational Diffusion Models. [3] Wang, Y., Blei, D., & Cunningham, P. (2021). Posterior Collapse and Latent Variable Non-identifiability.

