

POLITECHNIKA POZNAŃSKA

Algorytmy z powracaniem

Wiktor Dzidziul - 160214

Tomasz Dwóżnik - 160243

June 7, 2024

1 Obserwacje związane z działaniem obu algorytmów w zależności od nasycenia grafu

1.1 Cykl Eulera

Niskie nasycenie (0-30%): Przy niskim nasyceniu, graf ma mało krawędzi. Jest mała szansa, że graf będzie spełniał warunek konieczny dla posiadania cyklu Eulera, czyli wszystkie wierzchołki muszą mieć parzyste stopnie. W takim przypadku, algorytm najczęściej zwróci, że cykl Eulera nie istnieje.

Średnie nasycenie (30-70%): W miarę wzrostu nasycenia, liczba krawędzi w grafie rośnie, co zwiększa prawdopodobieństwo, że więcej wierzchołków będzie miało parzyste stopnie. W tym zakresie można spodziewać się, że algorytm częściej znajdzie cykl Eulera.

Wysokie nasycenie (70-100%): Przy wysokim nasyceniu, większość wierzchołków prawdopodobnie będzie miała parzyste stopnie, a graf będzie bliski pełnemu grafowi. W takim przypadku, cykl Eulera będzie występował prawie zawsze, a algorytm skutecznie znajdzie taki cykl.

1.2 Cykl Hamiltona

Niskie nasycenie (0-30%): Przy niskim nasyceniu, istnieje mała szansa na znalezienie cyklu Hamiltona, ponieważ graf nie będzie wystarczająco spójny. W takim przypadku, algorytm najczęściej nie znajdzie cyklu Hamiltona.

Średnie nasycenie (30-70%): W miarę wzrostu nasycenia, graf staje się bardziej spójny, co zwiększa prawdopodobieństwo istnienia cyklu Hamiltona. Algorytm może być w stanie znaleźć cykl Hamiltona w coraz większej liczbie przypadków.

Wysokie nasycenie (70-100%): Przy wysokim nasyceniu, graf jest prawie pełnym grafem, co oznacza, że prawdopodobieństwo znalezienia cyklu Hamiltona jest bardzo wysokie. Algorytm najczęściej znajdzie cykl Hamiltona w takim grafie.

2 Reprezentacja grafu - macierz sąsiedztwa

Dzięki takiej reprezentacji macierz zajmuje tylko $O(V^2)$ pamięci, co jest efektywne w porównaniu do innych reprezentacji, takich jak listy sąsiedztwa, które mogą wymagać więcej pamięci dla tych samych danych. Ponadto, macierz sąsiedztwa zapewnia stały czas dostępu do informacji o krawędziach między wierzchołkami, co jest przydatne w wielu algorytmach grafowych. Prosta implementacja operacji dodawania i usuwania krawędzi również przemawia za użyciem macierzy sąsiedztwa.

3 Wizualizacja grafów

3.1 Hamilton (saturation - 30%)

3.2 Hamilton (saturation - 70%)

3.3 Nie Hamilton (saturation - 50%)

4 Wykresy

4.1 Cykl Eulera Hamiltonowski

4.2 Cykl Hamiltona Hamiltonowski

4.3 Cykl Hamiltona nie-Hamiltonowski

5 Podsumowanie

Cykl Eulera: Istnienie cyklu Eulera jest silnie związane z parzystością stopni wierzchołków. Przy wyższym nasyceniu, warunek ten jest łatwiej spełniany, dlatego cykle Eulera są częściej znajdowane.

Cykl Hamiltona: Istnienie cyklu Hamiltona zależy od spójności i gęstości grafu. Wyższe nasycenie zwiększa spójność grafu, co z kolei zwiększa szansę na znalezienie cyklu Hamiltona.

Oba algorytmy mają większą skuteczność w znajdowaniu odpowiednich cykli w grafach o wyższym nasyceniu.

Pomiary dla wierzchołków grafu niehamiltonowskiego w szukaniu grafu hamiltona wykonaliśmy dla nieco mniejszych danych ze względu na wykładniczo rosnącą złożoność obliczeniową, to znaczy na przedziale [11;18]. Szacowany czas dla 19 wierzchołków to 12 godzin.

Spis treści

1	Obserwacje związane z działaniem obu algorytmów w zależności od nasycer grafu	nia 1
	1.1 Cykl Eulera	_
	1.2 Cykl Hamiltona	. 1
2	Reprezentacja grafu - macierz sąsiedztwa	1
3	Wizualizacja grafów	2
	3.1 Hamilton (saturation - 30%)	. 2
	3.2 Hamilton (saturation - 70%)	
	3.3 Nie Hamilton (saturation - 50%)	
4	Wykresy	3
	4.1 Cykl Eulera Hamiltonowski	. 3
	4.2 Cykl Hamiltona Hamiltonowski	. 3
	4.3 Cykl Hamiltona nie-Hamiltonowski	
5	Podsumowanie	4