QUESTION (HD 1902): Given that * is a star operation of finite type. You call a *-finite *-ideal I homogeneous if I is contained in a unique maximal *-ideal in your paper with Dumitrescu in [JPAA, 214 (2010) 2087-2091] and you call I *-rigid if I is a finitely generated ideal that is contained in a unique maximal *-ideal in your Arxiv paper (I): https://arxiv.org/pdf/1712.06725.pdf. Are these the same concepts? Also in your Arxiv paper you call a maximal *-ideal M, potent if M contains a *-rigid ideal and in another Arxiv paper (II): https://arxiv.org/pdf/1802.08353.pdf you call M *-potent if M contains a *-homog ideal. Are they the same?

Answer: It appears that they are, in that they produce the same results.

One simple answer: [4] uses the same definition of *-homogeneous as that of *-rigid in [?], i.e. (I), and reproduces almost word to word the results stated in [3], i.e. (II). (Of course, minus in some cases the proofs crippled by an error in an earlier version of [5].) In any case I have decided to bury a possibility of a controversy. So, here goes my explanation. But first a simple lemma.

Lemma A. Let * be of finite character and let I be such that for some finitely generated ideal ideal J we have $I^* = J^*$ then there is a finitely generated ideal $K \subset I$ with $K^* = I^*$.

For let $J=(a_1,a_2,...,a_n)$ and note that $*=*_s$ and so $I^*=\cup\{F^*|0\neq F\subseteq I$ and F finitely generated $\}$. Now as $J\subseteq I^*$ we have $a_i\in F_i^*$ where F_i are the f.g. subideals of I described above. But then $K=\cup F_i$ is a f.g. ideal contained in I such that $J\subseteq K^*$ and hence $J^*\subseteq K^*\subseteq I^*$.

Note B. Lemma A has already been used in [6, Theorem 1.1], in the proof of $(1) \rightarrow (4)$.

Now my definition of a *-homog ideal, for a * of finite type, is: A *-ideal of finite type that is contained in a unique maximal *-ideal M, same as the homogeneous ideal in the JPAA paper you mention.

A more careful definition was forged by the authors of ([?] and) (I) that is to appear as [5, Definition 1.1], based on some very sketchy notes of mine the second author, as: Let * be a finite-type star operation on the domain R. Call a finitely generated ideal I of R *-rigid if it is contained in exactly one maximal *-ideal of R. (A v-ideal of finite type contained in a unique maximal t-ideal was called rigid in [?] also.)

My claim: Both definitions should get the same results. For if you take a homogeneous ideal I then I contains a finitely generated *-rigid ideal J with $J^* = I$ by Lemma A. Moreover if you take I to be *-rigid, then I^* is homogeneous contained in the unique maximal *-ideal containing I.

Also the test of the pie is in the eating. Let * be of finite type, I *-rigid and $J = I^*$ M(I) the unique maximal containing I. Claim $M(I) = \{x \in D | (x, I)^* \neq D\}$. For $I \subseteq M(I)$ and so $x \in M(I)$ implies $(x, I)^* \neq D$ because $(x, I) \subseteq M(I)$ and $(x, I)^* \neq D$ requires that (x.I) must be contained in the same maximal *-ideal of D that contains I. Now note that $(x, I)^* = (x, I^*)^*$ and consequently $M(I) = M(I^*) = M(J)$.

Consider on the other hand that H is homogeneous and let N(H) be the unique maximal *-ideal containing H and J a finitely generated ideal such that $H = (J)^*$. Then J is *-rigid because J^* and hence J is contained in a unique

maximal *-ideal.

Now let's go a bit further. I define a *-super homog ideal in (II) as: A nonzero integral *-ideal I of finite type is called *-super homogeneous (*-super homog) if (1) if each integral *-ideal of finite type containing I is *-invertible and (2) For every pair of proper integral *-ideals A, B of finite type containing I, $(A + B)^* \neq D$.

This definition works out to be: A * homog ideal I such that every *-homog ideal containing I is *-invertible.

Now the authors of (I) call *-super rigid a finitely generated ideal I such that every finitely generated integral ideal J containing I is *-invertible.

Let I be *-super homog then there is a f.g. ideal J contained in I such that $J^* = I$. I claim that J is *-super rigid. For if H is a finitely generated ideal containing J then H^* contains I and so must be *-invertible and that makes H *-invertible.

Next let I be a *-super rigid ideal. We claim that I^* is *-super homog. For if H is a *-homog ideal containing I^* then $H = (b_1, b_2, ..., b_n)^*$. But $H \supseteq L = (b_1, ..., b_n) + I$ is finitely generated containing I. Since I is *-super rigid, L is *-invertible. But as $H = L^*$ we conclude that H is *-invertible and so I^* is *-super homog.

I am thankful to Professor Evan Houston for straightening and earlier version. Incidentally, Evan raised the above question.

References

- D. D. Anderson, David F. Anderson & Muhammad Zafrullah, Completely integrally closed Prüfer v-multiplication domains, Comm. Algebra (2017) DOI: 10.1080/00927872.2017.1303502
- [2] D.D. Anderson, G.W. Chang, and M. Zafrullah, Integral domains of finite t-character, J. Algebra 396(2013), 169-183.
- [3] Dan D. Anderson and M. Zafrullah, on *-semi homogeneous domains, https://arxiv.org/pdf/1802.08353.pdf
- [4] _____, On **\B**-Semi-homogeneous Integral Domains. In: Badawi A., Coykendall J. (eds) Advances in Commutative Algebra. Trends in Mathematics. Birkhäuser, Singapore.
- [5] E. Houston and M. Zafrullah, *-Super potent domains. J. Comm. Algebra, to appear.
- [6] M. Zafrullah, Ascending chain conditions and star operations, Comm. Algebra 17(6)(1989) 1523-1533.