DM de Noël

Exercice 1. Soit

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \\ -1 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix}$$

- 1. Calculer B^T .
- 2. Calculer -2A
- 3. Calculer $-2A + B^T$

Correction 1.

$$B^{T} = \begin{pmatrix} 0 & 2 \\ 2 & 2 \\ 1 & 1 \end{pmatrix} \quad -2A = \begin{pmatrix} -4 & -2 \\ 0 & -4 \\ 2 & 0 \end{pmatrix} \quad \text{et } -2A + B^{T} = \begin{pmatrix} -4 & 0 \\ 2 & -2 \\ 3 & 1 \end{pmatrix}$$

Exercice 2. Soit

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix}$$

- 1. Calculer A^2 .
- 2. Calculer si cela est possible AB et BA

Correction 2. $A^2 = \begin{pmatrix} 4 & 4 \\ 0 & 4 \end{pmatrix} AB = \begin{pmatrix} 2 & 6 & 3 \\ 4 & 4 & 2 \end{pmatrix} BA$ n'est pas possible.

Exercice 3. Soit

$$B = \left(\begin{array}{rrr} 0 & 2 & -1 \\ -2 & 0 & 1 \end{array}\right)$$

1. Calculer BB^T puis B^TB

Correction 3.
$$BB^T = \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix}$$
 et $BB^T = \begin{pmatrix} 4 & 0 & -2 \\ 0 & 4 & -2 \\ -2 & -2 & 2 \end{pmatrix}$

Exercice 4. Soit

$$J = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

- 1. Calculer J^2 et J^3
- 2. Montrer que pour tout $n \in \mathbb{N}$,

$$J^{n} = \begin{pmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{pmatrix}$$

Correction 4.
$$J^2 = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix} = 3J$$

$$J^3 = (J^2)J = (3J)J = 3J^2 = 3(3J) = 9J = \begin{pmatrix} 9 & 9 & 9 \\ 9 & 9 & 9 \\ 9 & 9 & 9 \end{pmatrix}$$

La question 2 se fait par récurrence.

Exercice 5. Soit

$$A = \begin{pmatrix} 2 & 1 \\ 0 & -3 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix}$$

- 1. Calculer l'inverse de A et B si cela est possible.
- 2. Déterminer A^n . Question trop difficile sans indications... A remplacer par : montrer par récurrence que

$$A^{n} = \begin{pmatrix} 2^{n} & \frac{1}{5}2^{n} - \frac{1}{5}(-3)^{n} \\ 0 & (-3)^{n} \end{pmatrix}$$

Correction 5. $A^{-1}=\begin{pmatrix} \frac{1}{2} & \frac{-1}{6} \\ 0 & \frac{1}{3} \end{pmatrix}$ B n'admet pas d'inverse (ce n'est pas une matrice carrée).

Soit *P*, la proposition
$$P(n)$$
: $A^n = \begin{pmatrix} 2^n & \frac{1}{5}2^n - \frac{1}{5}(-3)^n \\ 0 & (-3)^n \end{pmatrix}$

Initialisation P(1) est vraie. En effet on a d'une part :

$$A^1 = A = \left(\begin{array}{cc} 2 & 1\\ 0 & -3 \end{array}\right)$$

et d'autre part :

$$\begin{pmatrix} 2^1 & \frac{1}{5}2^1 - \frac{1}{5}(-3)^1 \\ 0 & (-3)^1 \end{pmatrix} = \begin{pmatrix} 2 & \frac{2}{5} + \frac{3}{5} \\ 0 & -3 \end{pmatrix} = A$$

Heredité On suppose qu'il existe n tel que P(n) soit vraie. On a donc $A^n = \begin{pmatrix} 2^n & \frac{1}{5}2^n - \frac{1}{5}(-3)^n \\ 0 & (-3)^n \end{pmatrix}$

Ainsi

$$A^{n+1} = A^n A = \begin{pmatrix} 2^n & \frac{1}{5}2^n - \frac{1}{5}(-3)^n \\ 0 & (-3)^n \end{pmatrix} \times \begin{pmatrix} 2 & 1 \\ 0 & -3 \end{pmatrix}$$

On effectue le calcul du produit et on obtient :

$$A^{n+1} = \begin{pmatrix} 2 \times 2^n & 2(\frac{1}{5}2^n - \frac{1}{5}(-3)^n) + (-3)^n \\ 0 & (-3) \times (-3)^n \end{pmatrix}$$

Les coefficients diagonaux se calculent simplement et donnent : 2^{n+1} et $(-3)^{n+1}$. Le coefficient en haut à droite de la matrice se simplifie de la manière suivante :

$$2(\frac{1}{5}2^{n} - \frac{1}{5}(-3)^{n}) + (-3)^{n} = \frac{2}{5}2^{n} - \frac{2}{5}(-3)^{n} + (-3)^{n}$$

$$= \frac{1}{5}2^{n+1} + (-\frac{2}{5} + 1)(-3)^{n}$$

$$= \frac{1}{5}2^{n+1} + (\frac{3}{5})(-3)^{n}$$

$$= \frac{1}{5}2^{n+1} - (\frac{-3}{5})(-3)^{n}$$

$$= \frac{1}{5}2^{n+1} - (\frac{1}{5})(-3)^{n+1}$$

Ainsi

$$A^{n+1} = \begin{pmatrix} 2^{n+1} & \frac{1}{5}2^{n+1} - \frac{1}{5}(-3)^{n+1} \\ 0 & (-3)^{n+1} \end{pmatrix}$$

et la propriété P(n+1) est donc vraie.

Conclusion Par principe de récurrence, pour tout $n \in \mathbb{N}$:

$$A^{n} = \begin{pmatrix} 2^{n} & \frac{1}{5}2^{n} - \frac{1}{5}(-3)^{n} \\ 0 & (-3)^{n} \end{pmatrix}$$

Exercice 6. Soit A une matrice et P une matrice inversible.

- 1. A-t-on $(AP)^2 = A^2P^2$?
- 2. Montrer qu'on a en revanche :

$$(P^{-1}AP)^2 = P^{-1}A^2P$$

3. Puis par récurrence que pour tout $n \in \mathbb{N}$

$$(P^{-1}AP)^n = P^{-1}A^nP$$

Correction 6.

- 1. Aucune raison que cela ce passe comme ca. $(AP)^2 = (AP)(AP) = APAP$. Mais comme en général on n'a pas AP = PA on ne peut rien dire de plus.
- 2. On utilise le fait que $PP^{-1} = \text{Id}$ et $\text{Id} \times A = A$

$$(P^{-1}AP)^{2} = (P^{-1}AP)(P^{-1}AP)$$

$$= (P^{-1}A(PP^{-1})AP)$$

$$= (P^{-1}AIdAP)$$

$$= (P^{-1}AAP)$$

$$= (P^{-1}A^{2}P)$$

On pose P(n): $(P^{-1}AP)^n = P^{-1}A^nP$

Initialisation Pour n = 0 et n = 1 c'est trivial. Pour n = 2 c'ets la question précédente.

Hérédité On suppose qu'il existe $n \in \mathbb{N}$ tel que P(n) soit vraie. On a alors

$$(P^{-1}AP)^{n+1} = (P^{-1}AP)^n(P^{-1}AP)$$

et donc par Hypothése de récurrence :

$$(P^{-1}AP)^{n+1} = (P^{-1}A^nP)(P^{-1}AP)$$

$$= (P^{-1}A^nPP^{-1}AP)$$

$$= (P^{-1}A^n \operatorname{Id} AP)$$

$$= (P^{-1}A^nAP)$$

$$= (P^{-1}A^{n+1}P)$$

Conclusion P(n) est vraie pour tout n.

Exercice 7. Soit

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 1 \end{pmatrix} \quad \text{et} \quad A = \begin{pmatrix} 0 & -1 & 1 \\ 4 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$

- 1. Calculer P^{-1}
- 2. Calculer $P^{-1}AP$

Correction 7. Par la méthode du pivot de Gauss on obtient :

$$P^{-1} = \left(\begin{array}{ccc} 2 & 1 & -1 \\ -1 & -1 & 1 \\ -2 & 0 & 1 \end{array}\right)$$

Le calcul donne:

$$P^{-1}AP = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

Exercice 8. Soit

$$A_x = \left(\begin{array}{ccc} 0 & 2 & x \\ 0 & 2 & 1 \\ 2 & 2 & 1 \end{array}\right)$$

- 1. Calculer le rang de A_x en fonction de x.
- 2. Donner l'inverse de A_x quand cela a un sens.

Correction 8. Si x = 1, A_x est de rang 2, sinon A_x est de rang 3 Si $x \neq 1$, A_x admet un inverse qui vaut :

$$A_x^{-1} = \frac{1}{2(1-x)} \begin{pmatrix} 0 & (x-1) & (1-x) \\ 1 & -x & 0 \\ -2 & 2 & 0 \end{pmatrix}$$

(Pour calculer l'inverse de A_x il faut faire un pivot de Gauss avec la « matrice augmentée » (celle où on met A_x à gauche et l'identité à droite)

Exercice 9. Soit

$$A_{\lambda} = \left(\begin{array}{cc} 1 - \lambda & 2\\ 0 & 2 - \lambda \end{array}\right)$$

- 1. Calculer le rang de A_{λ} en fonction de λ .
- 2. Donner l'inverse de A_{λ} quand cela a un sens.

Correction 9. Si $\lambda 2$ ou si $\lambda = 1$ le rang vaut 1. Sinon le rang vaut 2 Si $\lambda \notin \{1,2\}$ alors

$$A_{\lambda}^{-1} = \begin{pmatrix} \frac{1}{1-\lambda} & -\frac{2}{(1-\lambda)(2-\lambda)} \\ 0 & \frac{1}{2-\lambda} \end{pmatrix}$$

Exercice 10. Soit A la matrice

$$A = \left(\begin{array}{ccc} 0 & -1 & 1\\ 4 & 1 & -2\\ 2 & -2 & 1 \end{array}\right)$$

- 1. Résoudre le système $AX=\lambda X$ d'inconnue $X=\begin{pmatrix}x\\y\\z\end{pmatrix}$ où λ est un paramètre réel
- 2. Soit $e_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, et $e_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Calculer Ae_1, Ae_2 et Ae_3 .
- 3. Montrer par récurrence que $A^n e_1 = e_1$.
- 4. Donner de même la valeur de $A^n e_2$ et $A^n e_3$.
- 5. Soit $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 1 \end{pmatrix}$

Montrer que P est inversible et calculer son inverse.

- 6. Soit $D = P^{-1}AP$. Calculerr D.
- 7. Montrer par récurrence que $D^n = P^{-1}A^nP$
- 8. En déduire la valeur de A^n .

9. Soit $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ les suites définies par : $x_0=1,y_0=1$ et $z_0=1$ et pour tout $n\in\mathbb{N}$:

$$\begin{cases} x_{n+1} = -y_n + z_n \\ y_{n+1} = 4x_n + y_n - 2z_n \\ z_{n+1} = 2x_n - 2x_n + z_n \end{cases}$$

Soit
$$X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$$

Montrer que $X_{n+1} = AX_n$.

10. Montrer par récurrence que pour tout $n \in \mathbb{N}$,

$$X_n = A^n X_0$$

11. En déduire le terme général de $(x_n)_{n\in\mathbb{N}}$ en fonction de n.

Correction 10.

1.
$$AX = \lambda X \iff$$

$$\begin{cases}
-y & +z = \lambda x \\
4x & +y & -2z = \lambda y \\
2x & -2y & +z = \lambda z
\end{cases} \iff$$

$$\begin{cases}
-\lambda x & -y & +z = 0 \\
4x & +(1-\lambda)y & -2z = 0 \\
2x & -2y & +(1-\lambda)z = 0
\end{cases}$$

Ensuite on échelonne le système (Après beaucoup de fautes de calculs) on obtient :

$$\iff \begin{cases} 2x & -2y & +(1-\lambda)z = 0\\ 0 & +(5-\lambda)y & (-4+2\lambda)z = 0\\ 0 & (-\lambda-1)y & +\frac{1}{2}(2-\lambda-\lambda^2)z = 0 \end{cases}$$

$$\iff \begin{cases} 2x & -2y & +(1-\lambda)z = 0\\ 0 & +(5-\lambda)y & 2(\lambda-2)z = 0\\ 0 & -(\lambda+1)y & -\frac{1}{2}(\lambda+1)(\lambda-2)z = 0 \end{cases}$$

$$\iff \begin{cases} 2x & +(1-\lambda)z & -2y = 0\\ 0 & +2(\lambda-2)z & +(5-\lambda)y = 0\\ 0 & -\frac{1}{2}(\lambda+1)(\lambda-2)z & -(\lambda+1)y = 0 \end{cases}$$

et enfin $L_3 \leftarrow L_3 + \frac{1}{4}(\lambda + 1)L_2$ donne :

$$\iff \begin{cases} 2x + (1-\lambda)z & -2y = 0\\ 0 + 2(\lambda - 2)z + (5-\lambda)y = 0\\ 0 & 0 & \frac{1}{4}(-\lambda^2 + 1)y = 0 \end{cases}$$

$$\iff \begin{cases} 2x + (1-\lambda)z & -2y = 0\\ 0 + 2(\lambda - 2)z + (5-\lambda)y = 0\\ 0 & 0 & (-\lambda + 1)(\lambda + 1)y = 0 \end{cases}$$

Donc si $\lambda - 2 \neq 0$ et $(-\lambda + 1)(\lambda + 1) \neq 0$, le système est de rang 3. Il admet une unique solution à savoir $S = \{(0,0,0)\}$

Si $\lambda = 1$ Le système équivaut à

$$\begin{cases} 2x & -2y = 0 \\ 0 & -2z & 4y = 0 \\ 0 & 0 & 0 = 0 \end{cases}$$

Il est échelonné de rang 2. Les solutions sont de la forme :

$$\mathcal{S} = \{ (y, y, 2y) \, y \in \mathbb{R} \}$$

Si $\lambda = 2$ Le système équivaut à

$$\begin{cases} 2x & -z & -2y = 0 \\ 0 & 3y = 0 \\ 0 & 0 & -3y = 0 \end{cases} \iff \begin{cases} 2x & -z & -2y = 0 \\ 0 & 3y = 0 \\ 0 & 0 & 0 = 0 \end{cases}$$

Il est échelonné de rang 2. Les solutions sont de la forme :

$$\mathcal{S} = \{(2x, 0, x) \, x \in \mathbb{R}\}$$

Si $\lambda = -1$ Le système équivaut à

$$\begin{cases} 2x & +2z & -2y = 0 \\ 0 & -6z & 6y = 0 \\ 0 & 0 & 0 = 0 \end{cases} \iff \begin{cases} 2x & +2z & -2y = 0 \\ 0 & z & = y \end{cases}$$

Il est échelonné de rang 2. Les solutions sont de la forme :

$$\mathcal{S} = \{(0, y, y) | y \in \mathbb{R}\}$$

- 2. $Ae_1 = e_1$, $Ae_2 = 2e_2$ et $Ae_3 = -e_3$
- 3. C'est vrai pour n=1. On suppose que le résultat est vrai pour un certain entier $n\in\mathbb{N}$, on a alors $A^{n+1}e_1=AA^ne_1=Ae_1$ par HR. Puis $Ae_1=e_1$ d'après la question précédente. On a alors $A^{n+1}e_1=e_1$. Par récurrence le résultat est vrai pour tout $n\in\mathbb{N}$
- 4. $A^n = 2^n e_2$ et $A^n e_3 = (-1)^n e_3$
- 5. cf ex 8

$$P^{-1} = \left(\begin{array}{ccc} 2 & 1 & -1 \\ -1 & -1 & 1 \\ -2 & 0 & 1 \end{array}\right)$$

6. cf ex 8
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

7. cf ex 6

8. $A^n = PD^nP^{-1}$ Or $D^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & (-1)^n \end{pmatrix}$ (ca ne marche QUE pour les matrices diagonales)

Donc

$$A^{n} = \begin{pmatrix} 2 - 2^{n} & 1 - 2^{n} & -1 + 2^{n} \\ 2 - 2(-1)^{n} & 1 & -1 + (-1)^{n} \\ 4 - 2^{n+1} - 2(-1)^{n} & 2 - 2^{n+1} & -2 + 2^{n+1} + (-1)^{n} \end{pmatrix}$$

9.
$$X_{n+1} = \begin{pmatrix} x_{n+1} \\ y_{n+1} \\ z_{n+1} \end{pmatrix}$$
 et $AX_n = A = \begin{pmatrix} 0 & -1 & 1 \\ 4 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix} = \begin{pmatrix} -y_n + z_n \\ 4x_n + y_n - 2z_n \\ 2x_n - 2y_n + z_n \end{pmatrix}$

Ce qui est bien le système vérifiée par les suites $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}, (z_n)_{n\in\mathbb{N}}$.

- 10. C'est vrai pour n=0 ($A^0=\mathrm{Id}$) C'est aussi vrai pour n=1 (calcul) On suppose le résultat vrai pour UN $n\in\mathbb{N}$ On a alors : $X_n=A^nX_0$ et donc $AX_n=A^{n+1}X_0$. Or d'après la question précédente $AX_n=X_{n+1}$. La propriété est donc héréditaire et donc vraie pour tout $n\in\mathbb{N}$.
- 11. On fait le calcul de A^nX_0 grace au résultat trouvé à la question 8. On obtient

$$x_n = 2 - 2^n + 1 - 2^n - 1 + 2^n = 2 - 2^n$$