透镜成像

一、透镜

透镜的种类

- 凸透镜:中间厚,边缘薄
- 凹透镜:中间薄,边缘厚

图 1: 凸透镜和凹透镜

透镜的基本概念

- 主光轴:通过透镜的两个球面球心的直线,每个透镜都有一条主光轴。
- 光心:每个透镜主光轴上都有一个特殊点,它是透镜的中心,凡通过该点的光, 其传播方向不变,这个点叫光心,用字母"O"表示:
- 焦点: 凸透镜能使平行于主光轴的光会聚在一点, 这个点叫做焦点, 凸透镜两侧各有一个焦点, 且关于光心对称, 焦点用字母"F"表示;
- 虚焦点: 凹透镜能使平行于主光轴的光线透过凹透镜变得发散,且这些发散光 线的反向延长线相交于主光轴上的一点,这一点不是实际光线的会聚点,故称 为凹透镜的虚焦点;
- 焦距:焦点到光心的距离。透镜两侧焦距相等,焦距用字母"f"表示。
- 会聚作用: 光线经过凸透镜折射后, 折射光线比沿原入射光线方向更靠近主光轴, 使它的光束变窄。

图 2: 透镜对光的汇聚和发散

• 发散作用:光线经过凹透镜折射后,折射光线比沿原入射光线方向更远离主光轴,使它的光束变宽。

想一想:经过凸透镜折射后的光线一定是汇聚光线吗?经过凹透镜折射后的光线一定是发散光线吗?

关于凸透镜和凹透镜的特殊光线,见图 3所示

图 3: 透镜的三条特殊光线

二、透镜相关例题

- 1. 如图 4所示,在一块玻璃砖内,一束平行光恰好对着玻璃内铁柄状的空气泡射去,则光束通过空气泡后 _____?
- A. 仍然为平行光束

B. 变为发散光束

C. 变为汇聚光束

D. 无法确定

图 4: 玻璃中带有气泡

2. 如图 5所示,请分别指出四个图中使用了什么透镜?

图 5: 光线示意图

3. 小欣同学利用太阳光测量凸透镜的焦距,方法如图 6所示。他注意到让凸透镜正对阳光,但没有仔细调节纸片与透镜的距离,在纸片上的光斑并不是最小时,就测出了光斑到凸透镜中心的距离 L,那么,凸透镜的实际焦距()

A. 一定小于 L

B. 一定大于 L

C. 可能等于 L

D. 可能小于 L, 也可能大于 L

图 6: 示意图

4. 香水內通常含有酒精等易燃化学物质。如图 7所示的四瓶香水,瓶盖均为透明玻璃且形状各异。请问哪种放在车里最危险?

图 7: 四种香水瓶

三、凸透镜成像规律

凸透镜成像规律见图 8

想一想,如何从几何知识得出以上结论,并尝试证明凸透镜的成像公式,见图 10。试着证明凸透镜成像公式:

成实像:

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \tag{1}$$

图 8: 凸透镜成像规律

成虚像:

$$\frac{1}{u} - \frac{1}{v} = \frac{1}{f} \tag{2}$$

放大倍数:

$$n = \frac{v}{u} \tag{3}$$

一些推论: 若成实像, $u+v \ge 4f$, 证明如下:

$$(u-v)^{2} \geqslant 0$$

$$(u+v)^{2} \geqslant 4uv$$

$$u+v \geqslant \frac{4uv}{u+v}$$

$$u+v \geqslant \frac{4}{\frac{1}{u}+\frac{1}{v}}$$

$$u+v \geqslant 4f$$

$$(4)$$

当 u=v 时取等号。这个结论告诉我们,如果保持 u,v 的和不变并且大于 4f,然后

凸透镜成像规律表格

物的位置	像的位置		像的性质	应用
u= ∞	v=f	物	成一点	测焦距
(平行光)		像		
u>2f	f <v<2f< th=""><th>异</th><th>倒立缩小的实像</th><th>♥照相机</th></v<2f<>	异	倒立缩小的实像	♥照相机
u=2f	v=2f	侧	倒立等大的实像	测焦距
f <u<2f< th=""><th>v>2f</th><th></th><th>倒立放大的实像</th><th>❷投影仪</th></u<2f<>	v>2f		倒立放大的实像	❷投影仪
				幻灯机
u=f	V=∞		不成像	探照灯
u <f< th=""><th colspan="2">物像同侧</th><th>正立放大的虚像</th><th>☆放大镜</th></f<>	物像同侧		正立放大的虚像	☆放大镜

图 9: 凸透镜成像规律总结

图 10: 凸透镜成像

移动透镜在两者中间的位置,那么根据光路可逆的原理,一共可以成两次像,并且 $u_1 = v_2; u_2 = v_1$ 。

想一想,成虚像的情况下(放大镜),物体离开透镜越近,则像越大还是越小?尝试用几何知识作图说明。

四、凸透镜成像例题

- 5. 一凸透镜的焦距为 15cm,将点燃的蜡烛从离凸透镜 40cm 处沿主光轴移到 20cm 处的过程中,像的大小和像距的变化情况是 _____?
- A. 像变大,像距变大

B. 像变小, 像距变小

C. 像变大,像距变小

D. 像变小,像距变大

- 6. 在做凸透镜成像实验时,把物体从焦点沿主光轴向 2 倍焦距外移动的过程中 _____?
 - A. 像逐渐变大,像距逐渐变大
- B. 像逐渐变大,像距逐渐变小
- C. 像逐渐变小,像距逐渐变小
- D. 像逐渐变小,像距逐渐变大
- 7. 投影仪是教学中常用的仪器,如图 11所示是投影仪的结构图,在水平放置的凸透镜的正上方有一与水平面成 45°的平面镜,右边竖直放一屏幕,物体发出的光经过凸透镜和平面镜后,可在屏上成一清晰的像。某教师在使用投影仪时,发现屏幕上的画面太小,正确的调节方法有 _____?
- A. 减小投影仪与屏幕间的距离,下调凸透镜,减小凸透镜到物体间的距离
- B. 减小投影仪与屏幕间的距离,上调凸透镜,增大凸透镜到物体间的距离
- C. 增大投影仪与屏幕间的距离,下调凸透镜,减小凸透镜到物体间的距离
- D. 增大投影仪与屏幕间的距离,上调凸透镜,增大凸透镜到物体间的距离

图 11: 投影仪结构示意图

8. 在凸透镜主光轴上的一物点 *P*,物距大于焦距,如果对称地切除凸透镜中间很小一部分,如图 12所示,再把上、下半截凸透镜向原主光轴位置合拢,则成像情况与原来相比 ______?

A. 相同

- B. 成两个像,上半截凸透镜 A 成像点上移,下半截凸透镜 B 成像点下移
- C. 成两个像,上半截凸透镜 A 成像点下移,下半截凸透镜 B 成像点上移
- D. 不能成像

图 12: 凸透镜切除示意图

- 9. 如图 13所示,OO' 为凸透镜的主光轴,将点光源放在 A 点时,像在 B 点;将点光源放在 B 点时,像在 B 点。当将点光源放在 B 点时,像 B 点,
- A. 一定在 B 点成一个实像
- B. 一定在 A 点的左侧成一个虚像
- C. 可能在 $B \setminus C$ 之间成一个实像
- D. 可能在 C 点的右侧成一个虚像

图 13: 成像位置示意

10. 如图 14所示,F 为凸透镜的两个焦点,A'B' 为物体 AB 的像,则物体 AB 在

- A. 图中 I 区域,箭头水平向右
- B. 图中 II 区域,箭头水平向右
- C. 图中 II 区域,箭头方向向左斜上方
- D. 图中 I 区域,箭头方向向右斜上方

图 14: 成像位置示意

11. 如图所示,一点光源位于金属圆筒内部轴线上 A 点,圆筒轴线与凸透镜主光轴重合,光屏与圆筒轴线垂直且距离透镜足够远。此时,点光源正好在光屏上形成一个清晰的像。测出此时凸透镜与圆筒右端面的距离为 L; 向右移动凸透镜到适当位置,光屏上再次出现了清晰的像。由于光源位于圆筒的内部,无法直接测量出 A 点与筒右端面的距离 d,为了求出 d 的大小,在上述过程中还需要测量出的一个物理量是什么?如果用 N 来表示该物理量的大小,则可以得出 d 为多少?

图 15: 成像位置示意

12. 光源和光屏相距 0.9m 固定,将凸透镜放在它们之间某一位置时,屏上成一放大的像; 把凸透镜移到另一位置时,屏上成一缩小的像,若第一次像的长度是第二次像的长度的 4 倍,则凸透镜的焦距为多少?

五、作业

13. 如图所示,两端开口的圆简内嵌有一凸透镜,透镜主光轴恰好与圆简中轴线重合。为了测出该透镜的焦距以及透镜在圆筒内的位置,小李同学做如下实验: 在圆筒左侧凸透镜的主光轴上放置一点光源 S,在圆筒右侧垂直凸透镜的主光轴固定一光屏,点光源 S 与光屏的距离为 L。左右移动圆筒,当圆筒左端面距离点光源 S 为 a 时,恰好在光屏上成一个清晰的像;将圆简向右水平移动距离 b,光屏上又出现了一个清晰的像。则凸透镜和圆筒左端面的距离 x 是多少?该透镜的焦距 f 是多少?

图 16: 成像位置示意

- 14. 老奶奶用放大镜看报时,为了看到更大的清晰的像,她常常这样做 _____?
- A. 报与放大镜不动,眼睛离报远些
- B. 报与眼睛不动,放大镜离报远一些
- C. 报与放大镜不动,眼睛离报近一些
- D. 报与眼睛不动,放大镜离报近一些
- 15. 小明拿着一个直径比较大的实验用的放大镜,伸直手臂观看远处的物体,他可以看到物体的像,下面说法中正确的是_____

A. 射入眼中的光一定是由像发出的
B. 像一定是虚像
C. 像一定是倒立的
D. 像一定是放大的
16. 在农村放映电影,试镜头时,发现屏上的影像小了一点,应当怎样调整放映机_
—— A. 放映机离屏远一些,胶片离镜头远一些
B. 放映机离屏远一些, 胶片离镜头近一些
C. 放映机离屏近一些, 胶片离镜头远一些
D. 放映机离屏近一些, 胶片离镜头近一些
17. 某同学拍毕业合影后,想拍一张单身像。摄影师应采取的方法是
A. 使照相机靠近同学,同时镜头往后缩,离胶片近些
B. 使照相机靠近同学,同时镜头往前伸,离胶片远些
C. 使照相机远离同学,同时镜头往后缩,离胶片近些
D. 使照相机远离同学,同时镜头往前伸,离胶片远些
18. 用照相机拍摄水池底部的物体时,若保持照相机的位置不变,比较池中有水和
无水两种情况(假设两种情况下,人眼看到的物体等大),则有水时
A. 暗箱应略短一些,得到的像会略大些
B. 暗箱应略短一些,得到的像会略小些
C. 暗箱应略长一些,得到的像会略大些
D. 暗箱应略长一些,得到的像会略小些
19. 测绘人员绘制地图时,需要在空中的飞机上向地面照相,称为航空摄影,若使用
航空摄影照相机的镜头焦距为 50mm,则底片到镜头的距离为

A. 10mm 之内

B. 略小于 50mm

C. 略大于 50mm

D. 等于 50mm