Unstructured adaptive mesh generation and sparse matrix storage applied to Stokes flow around cylinders

Cameron Bracken¹

E521 May 1, 2008

Project Goals

- 1. Solve the 2D Steady Stokes equations via finite elements
- 2. Investigate the placement of cylindrical obstructions in the flow field
- 3. Adaptively generate the finite element mesh
- 4. Utilize sparse matrix storage

Stokes equations - Simplification Start with the NS equations:

$$\rho \mathbf{V}_t - \mu \nabla^2 \mathbf{V} + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} + \nabla p = 0$$

Stokes equations - Simplification Start with the NS equations:

$$\rho \mathbf{V}_t - \mu \nabla^2 \mathbf{V} + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} + \nabla p = 0$$

Assume steady,

$$\mu \nabla^2 \mathbf{V} + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} + \nabla p = 0$$

Start with the NS equations:

$$\rho \mathbf{V}_t - \mu \nabla^2 \mathbf{V} + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} + \nabla p = 0$$

Assume steady,

$$\mu \nabla^2 \mathbf{V} + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} + \nabla p = 0$$

Assume irrotational flow,

$$\nu \nabla^2 \mathbf{V} + \nabla p = 0 \tag{1}$$

And we arrive at the **Stokes equations**.

Start with the NS equations:

$$\rho \mathbf{V}_t - \mu \nabla^2 \mathbf{V} + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} + \nabla p = 0$$

Assume steady,

$$\mu \nabla^2 \mathbf{V} + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} + \nabla p = 0$$

Assume irrotational flow,

$$\nu \nabla^2 \mathbf{V} + \nabla \rho = 0 \tag{1}$$

And we arrive at the Stokes equations.

And for the continuity equation, assume incompressible,

Start with the NS equations:

$$\rho \mathbf{V}_t - \mu \nabla^2 \mathbf{V} + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} + \nabla p = 0$$

Assume steady,

$$\mu \nabla^2 \mathbf{V} + \rho (\mathbf{V} \cdot \nabla) \mathbf{V} + \nabla p = 0$$

Assume irrotational flow,

$$\nu \nabla^2 \mathbf{V} + \nabla \rho = 0 \tag{1}$$

And we arrive at the **Stokes equations**.

And for the continuity equation, assume incompressible,

$$\nabla \cdot \mathbf{V} = 0 \tag{2}$$

We have enough information to describe any **very** viscous and/or slow moving fluid ($RE \ll 1$,creeping flow).

Formal Problem Statement

Scalar Equations:

$$-\nu \frac{\partial^2 u}{\partial x^2} - \nu \frac{\partial^2 u}{\partial y^2} + \frac{\partial p}{\partial x} = 0$$
$$-\nu \frac{\partial^2 v}{\partial x^2} - \nu \frac{\partial^2 v}{\partial y^2} + \frac{\partial p}{\partial y} = 0$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Formal Problem Statement

Scalar Equations:

$$-\nu \frac{\partial^2 u}{\partial x^2} - \nu \frac{\partial^2 u}{\partial y^2} + \frac{\partial p}{\partial x} = 0$$
$$-\nu \frac{\partial^2 v}{\partial x^2} - \nu \frac{\partial^2 v}{\partial y^2} + \frac{\partial p}{\partial y} = 0$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Basis Functions

Linear Pressure Element.

How, you ask, do we generate a mesh which accommodates holes and adaptively refines itself?

Quadratic Velocity Element.

(Mesh Generation)

Generate Sparse Set of Initial Nodes

► Typically we take some measure of the solution gradient as an indicator of elemental error.

- ► Typically we take some measure of the solution gradient as an indicator of elemental error.
- ► These measures are called "a posteriori" (after the fact) estimates because we must solve the problem before we get an estimate of error.

- ► Typically we take some measure of the solution gradient as an indicator of elemental error.
- ► These measures are called "a posteriori" (after the fact) estimates because we must solve the problem before we get an estimate of error.
- \blacktriangleright For the Stokes equations we have three indicators: u, v, p.

- ► Typically we take some measure of the solution gradient as an indicator of elemental error.
- ► These measures are called "a posteriori" (after the fact) estimates because we must solve the problem before we get an estimate of error.
- ▶ For the Stokes equations we have three indicators: u, v, p.

Let θ^e be the indicator for an element e with vertex nodes i, j, k:

- ► Typically we take some measure of the solution gradient as an indicator of elemental error.
- ► These measures are called "a posteriori" (after the fact) estimates because we must solve the problem before we get an estimate of error.
- ▶ For the Stokes equations we have three indicators: u, v, p.

Let θ^e be the indicator for an element e with vertex nodes i, j, k:

$$E_e = \frac{({\sf Maximum\ nodal\ value} - {\sf Minimum\ Nodal\ Value})_e}{{\sf Average\ difference\ in\ max\ and\ min\ nodal\ values\ over\ all\ elements}}$$

$$E_{e} = \frac{\max\left(\theta_{i}^{e}, \theta_{j}^{e}, \theta_{k}^{e}\right) - \min\left(\theta_{i}^{e}, \theta_{j}^{e}, \theta_{k}^{e}\right)}{\frac{1}{nele}\sum_{n=1}^{nele}\left[\max\left(\theta_{i}^{n}, \theta_{j}^{n}, \theta_{k}^{n}\right) - \min\left(\theta_{i}^{n}, \theta_{j}^{n}, \theta_{k}^{n}\right)\right]}$$

Simulation Model Results - Verification

Simulation Model Results - Verification

1 Obstruction

5 Obstructions

13 obstructions

Additional Verification

[TQ Education and Training Ltd.]

Meshing Results

Pressure Horizontal velocity

Vertical velocity

Initial Mesh

Pressure Horizontal velocity

Vertical velocity

Pressure

Horizontal velocity

Vertical velocity

Pressure Horizontal velocity

Vertical velocity

Done

Pressure

Horizontal velocity

Vertical velocity

Done

Pressure Horizontal velocity Vertical velocity

•

Pressure Horizontal velocity Vertical velocity

Meshing Results 5 Hole

Meshing Results 5 Hole

Horizontal velocity as error indicator

Vertical velocity as error indicator

Meshing Results 13 Holes

Vertical velocity as error indicator

Horizontal velocity as error indicator

Computation Time Results - Sparse vs. Dense Solvers

Computation Time Results - Sparse vs. Dense Solvers

Sparseness

Computation Time

Conclusions

- ► Reproduced well know flow patterns around cylinders at very low Reynolds numbers.
- Implemented unstructured adaptive meshing algorithm.
 - ► Pressure performed well as an error indicator
 - ▶ Different Error indicators produced very different meshes.
- ► Sparse matrix storage and equation solver drastically reduced solution time.