criterion performance measurements

overview

want to understand this report?

Matrix Composition/10x10/WHNF - 10x10

 OLS regression
 $124 \mu s$ $125 \mu s$ $127 \mu s$
 R^2 goodness-of-fit
 0.998 0.999 0.999

 Mean execution time
 $124 \mu s$ $125 \mu s$ $126 \mu s$

 Standard deviation
 $2.38 \mu s$ $3.00 \mu s$ $3.87 \mu s$

Outlying measurements have moderate (19.5%) effect on estimated standard deviation.

Matrix Composition/10x10/NF - 10x10

lower bound estimate upper bound

 OLS regression
 135 μs
 144 μs
 156 μs

 R² goodness-of-fit
 0.919
 0.960
 0.985

 Mean execution time
 145 μs
 153 μs
 167 μs

 Standard deviation
 23.7 μs
 36.5 μs
 53.6 μs

Outlying measurements have severe (96.1%) effect on estimated standard deviation.

Matrix Composition/100x100/WHNF - 100x100

OLS regression 117 ms 132 ms 149 ms R^2 goodness-of-fit 0.970 0.985 0.999 Mean execution time 113 ms 119 ms 126 ms Standard deviation 6.39 ms 9.78 ms 16.2 ms

Outlying measurements have moderate (23.2%) effect on estimated standard deviation.

Matrix Composition/100x100/NF - 100x100

 OLS regression
 111 ms
 122 ms
 131 ms

 R² goodness-of-fit
 0.987
 0.995
 0.999

 Mean execution time
 111 ms
 118 ms
 122 ms

 Standard deviation
 5.37 ms
 8.15 ms
 11.1 ms

2/8/20, 7:20 PM

Outlying measurements have moderate (22.5%) effect on estimated standard deviation.

Matrix Composition/200x200/WHNF - 200x200

 OLS regression
 752 ms
 917 ms
 1.02 s

 R² goodness-of-fit
 0.992
 0.995
 1.000

 Mean execution time
 978 ms
 1.04 s
 1.09 s

 Standard deviation
 22.4 ms
 61.8 ms
 84.8 ms

Outlying measurements have moderate (18.7%) effect on estimated standard deviation.

Matrix Composition/200x200/NF - 200x200

Outlying measurements have moderate (18.8%) effect on estimated standard deviation.

Matrix vs List - `select`/Distribution `select` - 100+100 / 100x100/List Distribution - Applicative version

lower bound estimate upper bound 2.30 s 2.35 s 2.37 s OLS regression

R2 goodness-of-fit 1.000 1 000 1.000 Mean execution time 2.34 s 2.35 s 2.36 s Standard deviation 12.4 ms 16.7 ms

Outlying measurements have moderate (18.7%) effect on estimated standard deviation.

Matrix vs List - `select`/Distribution `select` - 100+100 / 100x100/Matrix Distribution - Applicative version

OLS regression 1.61 ms 1.70 ms 1.79 ms R2 goodness-of-fit 0.939 0.965 1.79 ms 1.97 ms Mean execution time 1.64 ms

Standard deviation 394 µs **502 μs** 659 μs

Outlying measurements have severe (94.7%) effect on estimated standard deviation.

Matrix vs List - `select`/Distribution `select` - 100+100 / 100x100/Matrix Distribution - Selective version

2/8/20, 7:20 PM 4 of 7

lower bound estimate upper bound

R2 goodness-of-fit0.9110.9470.968Mean execution time $825 \mu s$ $904 \mu s$ 1.01 m sStandard deviation $234 \mu s$ $318 \mu s$ $427 \mu s$

Outlying measurements have severe (98.5%) effect on estimated standard deviation.

Matrix vs List - `select`/Matrix `select` - 100x(100+100) / 100x100/Applicative version

Outlying measurements have moderate (13.9%) effect on estimated standard deviation.

Matrix vs List - `select`/Matrix `select` - 100x(100+100) / 100x100/Selective version

Outlying measurements have slight (9.9%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

- The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
- The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

- OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the mean estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
- R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
- Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

colophon

This report was created using the <u>criterion</u> benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.

7 of 7