

${f D}$ epartamento de ${f F}$ ísica e ${f M}$ atemática

EXAME DE ANÁLISE MATEMÁTICA II

 $2\,4\,/\,0\,6\,/\,1\,0\ \, > \ \, D\,u\,r\,a\,\varsigma\,\tilde{a}\,o\,{:}\,2\,h\,3\,0\,{+}\,3\,0\,m$

Nota: A resolução completa dos exercícios inclui a justificação do raciocínio utilizado.

Exame da Época Normal – Teste B

1. Considere as funções $f(x,y) = x^2 + y^2$, $g(x,y) = \sqrt{f(x,y)}$, h(x,y) e j(x,y) campos escalares dados sob a forma dos algoritmos seguintes:

- [1.0] (a) Determine o domínio da função h e represente-o geometricamente. O domínio é fechado? Justifique.
- [2.0] **(b)** Trace um esboço da superfície definida por z = h(x, y).
- [3.0] (c) Das alíneas seguintes resolva apenas <u>duas</u>
 Qual o valor lógico das seguintes afirmações? Justifique a sua resposta.
 - (i) $C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 16\}$ é uma curva de nível comum às quatro funções.
 - (ii) O vector $[x,5,\sqrt{7}]$ define parametricamente a equação da recta tangente à curva de intersecção da superfície z=h(x,y) com o plano y=5 no ponto $P(0,5,\sqrt{7})$.
 - (iii) As funções f e g têm um ponto critico em (0,0) e um mínimo absoluto em (0,0,0) .
 - (iv) A função j é contínua nos pontos do $cord\~ao$ de soldadura definido por $C = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \le 16\}$.
 - (v) As funções $h \in j$ são simétricas.
- [3.0] (d) Das alíneas seguintes resolva apenas <u>duas</u>
 - (i) Mostre que, se o potencial em qualquer ponto do plano xOy for dado por V = f(x,y), então a taxa de variação do potencial em P(1,1) segundo a direcção e sentido do vector $\vec{u} = \mathbf{i} + \mathbf{j}$ é positiva, sendo mínima na direcção e sentido do vector $\vec{v} = -\vec{u}$.
 - (ii) Supondo que o potencial em qualquer ponto do plano xOy é dado por V = f(x,y), utilizando diferenciais, obtenha uma aproximação da diferença de potencial entre os pontos (1,1) e $(\frac{3}{2},\frac{3}{2})$.
 - $\text{(iii) Mostre que, se } z = g(x+1,y-1) \wedge x = -1 + \cos\theta \wedge y = 1 + \sin\theta \text{ , então } \left(\frac{\partial z}{\partial x}\right)^2 \\ + \left(\frac{\partial z}{\partial y}\right)^2 \\ + \left(\frac{dz}{d\theta}\right)^2 \\ = 1 \ .$
 - (iv) Determine a equação do plano tangente à superfície definida por z=2-g(x+1,y-1) se $(x+1)^2+(y-1)^2\leq 4$, no ponto $P\left(0,0,2-\sqrt{2}\right)$.
- [2.0] (e) Resolva apenas <u>uma</u> das alíneas seguintes
 - (i) Mostre, utilizando o integral duplo, que a área da superfície cónica z=g(x,y) se $x^2+y^2\leq 16$ é igual a $A(S)=\pi rm=16\sqrt{2}\pi$, em que r é o raio da curva de nível mais larga e m a medida da hipotenusa do triângulo que se obtém por projecção da superfície no plano yOz ou xOz.
 - (ii) Determine o valor de $I = \int_0^{\sqrt{32}} \int_0^{2\pi} \rho d\theta d\rho \int_0^4 \int_0^{2\pi} \rho d\theta d\rho$ e interprete geometricamente o resultado obtido. Estabeleça, invertendo a ordem de integração, um integral que lhe permitiria obter o mesmo resultado de I.

- 2. Numa das tendas da Feira Aquiliana 2010 existiam piões com a forma da figura 1, de densidade constante $\rho(x, y, z) = 1$, compostos por três partes:
 - Cone de raio r=4 e altura h=4; Segmento de esfera de raio $r=\sqrt{32}$; Cilindro de raio e altura 1.

Figura 1

[3.0] (a) Associando os conjuntos seguintes a dois sistemas de coordenadas 3D, mostre que o sólido é definido por $S = S_1 \cup S_2 \cup S_3$, onde:

$$\begin{split} S_1 \cup S_2 &= \left\{ (R,\theta,\varphi) : 0 \leq R \leq \sqrt{32} \wedge 0 \leq \theta \leq 2\pi \wedge 0 \leq \varphi \leq \frac{\pi}{4} \right\} \\ S_3 &= \left\{ (\rho,\theta,z) : 0 \leq \rho \leq 1 \wedge 0 \leq \theta \leq 2\pi \wedge \sqrt{32} \leq z \leq \sqrt{32} + 1 \right\} \end{split}$$

- [3.0] (b) Calcule o volume e a massa do sólido.
- [3.0] (c) Das alíneas seguintes resolva apenas duas
 - (i) Prove, usando coordenadas cilíndricas, que o volume de um cone de raio r e altura h é igual a $\frac{1}{3}\pi r^2 h$.
 - (ii) Mostre, que em coordenadas cartesianas o sólido com forma igual à do pião é definido por:

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : \left(x^2 + y^2 \le 16 \land \sqrt{x^2 + y^2} \le z \le \sqrt{32 - x^2 - y^2} \right) \lor \left(x^2 + y^2 \le 1 \land \sqrt{32} \le z \le \sqrt{32} + 1 \right) \right\}$$

(iii) Qual das rotinas seguintes, implementadas em Maple, traduz correctamente a transformação de coordenadas cartesianas para esféricas? Justifique.

TransformaCoords01 := proc(x, y, z)

local R,
$$\theta$$
, ϕ ;

 $R := \operatorname{sqrt}\left(x^2 + y^2 + z^2\right)$;

if $(x \neq 0)$ then $\theta := \arctan\left(\frac{y}{x}\right)$;

elif $(y = 0)$ then $\theta := 0$;

elif $(y > 0)$ then $\theta := \frac{\pi}{2}$;

else $\theta := -\frac{\pi}{2}$;

end if;

if $(R = 0)$ then $\phi := 0$; else $\phi := \arccos\left(\frac{z}{R}\right)$;

end if;

return $[R, \theta, \phi]$;

end proc;

TransformaCoords02 := proc(x, y, z)

local R,
$$\theta$$
, ϕ ;

 $R := -\operatorname{sqrt}\left(x^2 + y^2 + z^2\right)$;

if $(x \neq 0)$ then $\theta := \operatorname{arctan}\left(\frac{y}{x}\right)$;

elif $(y = 0)$ then $\theta := 0$;

elif $(y > 0)$ then $\theta := -\frac{\pi}{2}$;

else $\theta := \frac{\pi}{2}$;

end if;

if $(R = 0)$ then $\phi := 0$; else $\phi := \operatorname{arccos}\left(\frac{z}{R}\right)$;

end if;

return $[R, \theta, \phi]$;

end proc;