

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτφολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληφοφοφικής και Υπολογιστών

Αλγόριθμοι και Πολυπλοκότητα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης

4η Σειρά Γραπτών Ασκήσεων - Ημ/νία Παράδοσης 6/3/2014

Άσκηση 1: Επιβεβαίωση και Αναπροσαρμογή Συντομότερων Μονοπατιών

Θεωρούμε ένα (ισχυρά συνεκτικό) κατευθυνόμενο γράφημα G(V,E,w) με n κορυφές, m ακμές, και (ενδεχομένως αρνητικά) μήκη w στις ακμές. Συμβολίζουμε με d(u,v) την απόσταση των κορυφών u και v στο G.

- (α) Δίνονται n αφιθμοί δ_1,\ldots,δ_n , όπου κάθε δ_k (υποτίθεται ότι) ισούται με την απόσταση v_1-v_k στο G. Να διατυπώσετε αλγόφιθμο γραμμικού χρόνου που ελέγχει αν τα δ_1,\ldots,δ_n πράγματι ανταποκρίνονται στις αποστάσεις των κορυφών από την v_1 , δηλαδή αν για κάθε $v_k\in V$, ισχύει ότι $\delta_k=d(v_1,v_k)$. Αν αυτό αληθεύει, ο αλγόφιθμός σας πρέπει να υπολογίζει και να επιστρέφει ένα Δέντρο Συντομότερων Μονοπατιών με ρίζα τη v_1 .
- (β) Υποθέτουμε ότι έχουμε υπολογίσει τις αποστάσεις $d(v_i,v_j)$ μεταξύ κάθε (διατεταγμένου) ζεύγους κορυφών $(v_i,v_j)\in V\times V$. Στη συνέχεια, το μήκος μιας ακμής e=(x,y) μειώνεται σε w'(x,y)< w(x,y). Να διατυπώσετε αλγόριθμο με χρόνο εκτέλεσης $O(n^2)$ που αναπροσαρμόζει τις αποστάσεις μεταξύ όλων των κορυφών (εφόσον βέβαια η μείωση δεν δημιουργεί κύκλο αρνητικού μήκους!).
- (γ) Τι αλλάζει, σε σχέση με το (β), αν το μήκος μιας ακμής e=(x,y) αυξηθεί σε w'(x,y)>w(x,y); Μπορείτε να επεκτείνετε τον αλγόριθμο του (β) σε αυτή την περίπτωση; Αν ναι, να περιγράψετε την επέκταση του αλγορίθμου, αν όχι, να εξηγήσετε συνοπτικά τις βασικές διαφορές / δυσκολίες.

Άσκηση 2: Σύστημα Ανισοτήτων

Έστω x_1,\ldots,x_n ακέφαιες μεταβλητές. Θεωφούμε ένα σύστημα S αποτελούμενο από m ανισότητες της μοφφής $x_i-x_j\leq b_{ij}$, για κάποια $1\leq i,j\leq n$, όπου τα b_{ij} είναι ακέφαιοι αφιθμοί. Το S είναι ικανοποιήσιμο αν υπάφχουν ακέφαιες τιμές για τις μεταβλητές x_1,\ldots,x_n που ικανοποιούν όλες τις ανισότητες του S.

- (α) Να διατυπώσετε ένα κριτήριο για το αν το S είναι ικανοποιήσιμο (και να αποδείξετε την ορθότητα του κριτηρίου σας). Με βάση αυτό το κριτήριο, να διατυπώσετε έναν αποδοτικό αλγόριθμο που διαπιστώνει αν το S είναι ικανοποιήσιμο ή όχι. Ποια είναι η υπολογιστική πολυπλοκότητα του αλγορίθμου σας;
- (β) Να συμπληφώσετε τον αλγόριθμο του (α) ώστε αν το σύστημα S είναι ικανοποιήσιμο, να υπολογίζει αποδεκτές τιμές για τις μεταβλητές x_1, \ldots, x_n , διαφορετικά να υπολογίζει ένα ελάχιστο (ως προς το πλήθος ανισοτήτων) υποσύστημα S' που δεν είναι ικανοποιήσιμο. Ποια είναι η υπολογιστική πολυπλοκότητα του αλγορίθμου σας στις δύο περιπτώσεις;
- (γ) Θεωφούμε ότι κάθε ανισότητα $x_i x_j \leq b_{ij}$ συνοδεύεται από ένα θετικό ακέφαιο βάφος w_{ij} . Να διατυπώσετε αλγόφιθμο που αν το σύστημα S δεν είναι ικανοποιήσιμο, υπολογίζει ένα ελάχιστου συνολικού βάφους υποσύστημα S' που δεν είναι ικανοποιήσιμο. Ποια είναι η υπολογιστική πολυπλοκότητα του αλγοφίθμου σας;
- (δ) Να διατυπώσετε το πρόβλημα του (γ) ως πρόβλημα απόφασης, και να αποφανθείτε αν αυτό ανήκει στην κλάση **P** ή είναι **NP**-πλήρες. Να αιτιολογήσετε κατάλληλα τον ισχυρισμό σας.

Ασκηση 3: Επιβεβαίωση και Αναπροσαρμογή Μέγιστης Ροής

Θεωφούμε ένα (κατευθυνόμενο) s-t δίκτυο G(V,E,c) με n κοφυφές, m ακμές, και (θετικές) ακέφαιες χωρητικότητες c στις ακμές.

- (α) Δίνεται μια φοή f που (υποτίθεται ότι) αποτελεί μια μέγιστη φοή στο G. Να διατυπώσετε αλγόριθμο γραμμικού χρόνου που ελέγχει αν η f αποτελεί πράγματι μια μέγιστη φοή στο G. Να αιτιολογήσετε την ορθότητα και την υπολογιστική πολυπλοκότητα του αλγορίθμου σας.
- (β) Έστω ότι η f αποτελεί μια μέγιστη φοή στο G, αλλά ανακαλύπτουμε ότι η πραγματική χωρητικότητα μια ακμής e είναι μικρότερη κατά k μονάδες, $1 \le k \le c_e$, από τη χωρητικότητα c_e που είχαμε θεωρήσει αρχικά. Να διατυπώσετε έναν αποδοτικό αλγόριθμο που (εφόσον χρειάζεται) τροποποιεί την f σε μία μέγιστη φοή f' για το δίκτυο G' που προκύπτει από το G θέτοντας $c'_e = c_e k$. Ο χρόνος εκτέλεσης του αλγορίθμου σας πρέπει να είναι σημαντικά μικρότερος από τον χρόνο υπολογισμού μιας μέγιστης ροής εξ' αρχής.
- (γ) Λόγω μιας φυσικής καταστροφής στο t, πρέπει να διακόψουμε τη λειτουργία του δικτύου. Επειδή όμως η πλήρης διακοπή της ροής από το s στο t για σημαντικό χρονικό διάστημα θα προκαλούσε την καταστροφή των αγωγών ακμών του δικτύου, πρέπει να διατηρήσουμε μια ελάχιστη ροή ℓ_e σε κάθε ακμή e. Θέλουμε λοιπόν να υπολογίσουμε την ελάχιστη ροή g για την οποία ισχύει ότι $c_e \geq g_e \geq \ell_e$ σε κάθε ακμή e. Να διατυπώσετε έναν αποδοτικό αλγόριθμο που με είσοδο ένα s-t δίκτυο $G(V,E,c,\ell)$, όπου c_e είναι η μέγιστη και ℓ_e είναι η ελάχιστη ροή που επιτρέπουμε σε κάθε ακμή, υπολογίζει μια ελάχιστη s-t ροή g. Αν σας διευκολύνει, μπορείτε να θεωρήσετε ως δεδομένη τη μέγιστη ροή f στο αρχικό δίκτυο G(V,E,c) και ότι $f_e \geq \ell_e$ σε κάθε ακμή e. Να προσπαθήσετε να βελτιστοποιήσετε την υπολογιστική πολυπλοκότητα του αλγορίθμου σας. Να διατυπώσετε συνοπτικά το επιχείρημα που εξασφαλίζει ότι ο αλγόριθμός σας υπολογίζει πράγματι μια ελάχιστη s-t ροή.

Άσκηση 4: Αναγωγές και ΝΡ-Πληφότητα

Να δείξετε ότι τα παρακάτω προβλήματα είναι ΝΡ-Πλήρη:

3-Διαμέριση (3-Partition)

 $Είσοδος: Σύνολο <math>A = \{w_1, \ldots, w_n\}$ με n θετιχούς απέραιους. Θεωρούμε ότι το συνολιχό άθροισμα $w(A) = \sum_{i \in A} w_i$ των στοιχείων του A είναι πολλαπλάσιο του 3.

Ερώτηση: Υπάρχει διαμέριση του <math>A σε σύνολα A_1, A_2, A_3 ώστε $w(A_1) = w(A_2) = w(A_3);$

Συνδετικό Δέντρο Περιορισμένο ως προς τα Φύλλα

Είσοδος: Μη κατευθυνόμενο συνεκτικό γράφημα G(V,E) και μη κενό σύνολο κορυφών $L\subset V$. Ερώτηση: Υπάρχει υπάρχει συνδετικό δέντρο (spanning tree) T του G τέτοιο ώστε το σύνολο των φύλλων του T να είναι υποσύνολο του L;

Σύνολο Κορυφών Ανάδρασης - Κατευθυνόμενο Γράφημα (Feedback Vertex Set - Directed)

Είσοδος: Κατευθυνόμενο γράφημα G(V, E) και φυσικός αριθμός k.

Ερώτηση: Υπάρχει στο <math>G σύνολο πορυφών ανάδρασης $S \subseteq V$ με k ή λιγότερες πορυφές;

Ένα σύνολο πορυφών $S\subseteq V$ ενός γραφήματος G(V,E) ονομάζεται σύνολο πορυφών ανάδρασης (feedback vertex set) αν το γράφημα που προπύπτει από την αφαίρεση των πορυφών του S (και όλων των ακμών που προσπίπτουν σε κάποια από αυτές) δεν έχει κύκλο.

Συντομότερο Μονοπάτι με Περιορισμούς (Constraint Shortest Path)

Είσοδος: Κατευθυνόμενο γράφημα G(V,E,m,t), όπου κάθε ακμή e έχει ένα ακέραιο κόστος διέλευσης $m(e)\geq 0$ και έναν ακέραιο χρόνο διέλευσης $t(e)\geq 0$, δύο κορυφές $a,b\in V$, και δύο ακέραιοι $M,T\geq 0$.

Ερώτηση: Υπάρχει <math>a-b μονοπάτι στο G με συνολικό κόστος διέλευσης μικρότερο ή ίσο του M και συνολικό χρόνο διέλευσης μικρότερο ή ίσο του T.