Faculty of Information and Communication Technology ICT First Years and Foundation Unit

Tshwane University of Technology We empower people	SUMMATIVE ASSESSMENT PAPER 2 (Intervention) Computational Mathematics and Discrete Mathematics (Extended) (Year 1)								
I declare that I am familiar with, and will abide to the			С	OHF05	D & C	SMF06	SD		
Examination rules of Tshwane University of Technology	Sumn	native	y 2022 Assess 20 min	sment	Co-E	Examin	MS Sed er: C Co D Mase	oetzee)
	Total: Full M	92 larks:		21	Num		Class I	-ist	
					GRU	JUP			
Signature	Stude	nt Nu	mber						
. 2 3									
	Surna	me						Initia	ls

This paper consists of 21 pages

INSTRUCTIONS AND INFORMATION

- **Answer ALL** the questions.
- Read ALL the questions carefully.
- Non-programmable calculators are allowed.
- No pencil work will be marked, use a black/blue pen.
- Answers must be rounded to **2 decimals** (if not specified).
- All **exponents** in final answers must be **positive**.
- Show all your calculations!

	Questions	True	False
1.1	All composite numbers are counting numbers.	X 1/2	
1.2	Prime numbers include negative whole numbers		X 1/2
1.3	The first factor of a given number is 1, and the last factor is the number itself.	X 1/2	
1.4	5 is a factor but not a multiple of 5.		X 1/2
1.5	Prime numbers have one or more factors.		X 1/2
1.6	$\frac{5}{7}$ is rational.	X 1/2	
1.7	9 + (7 + 3) = (9 + 7) + 9 represent the Commutative Law of addition.		X 1/2
1.8	When doing calculations, multiplication must always be done before division.		X 1/2
1.9	Given $2x + 3y + 3 = 0$ the y-intercept ordered pair is $(0, 3)$		X 1/2
1.10	The gradient of a vertical line is undefined.	X ½	

	Space for rough work
ļ	

Show all your calculations (include units where applicable)

2.1 Lindiwe sells muffins during the school break. On Friday, she sold $\frac{5}{7}$ of the muffins that she baked. She had only 10 muffins left. How many muffins did she bake?

2

Solution:

 $35 muffins \frac{1}{2}$

Two neon lights are switched on at the same time. One flashes every 2.2 60 seconds and the other one every 140 seconds. In how many seconds will they flash together?

Solution:

$$60 = 2^2 \times 3 \times 5$$

$$140 = 2^2 \times 5 \times 7$$

 $LCM = 2^2 \times 3 \times 5 \times 7 = 420 seconds$

2.3	The price of an item is R34.50 after adding a 15% VAT. What was the original
	price of the item?

2

Solution:

2.4 Bongiwe offers free Mathematics extra classes to grade 10 students as part of her community project. She travels a certain distance to offer these classes at three schools. She travels a fifth of the distance to reach the first school. She travels two-thirds of the remaining distance to reach the second school. What fraction of the distance is remaining to reach the last school?

Solution:

first school:
$$1 - \frac{1}{5} = \frac{4}{5}$$
 $\frac{1}{2}$

second school: $\frac{4}{5} \times \frac{2}{3} = \frac{8}{15}$ $\frac{1}{2}$

Fraction let f to reach last school: $\frac{4}{5} - \frac{8}{15} = \frac{4}{15}$

It takes Lerato and Thabo 15 hours to develop a mobile application. How many 2.5 people must they add to finish the same type of mobile application in 10 hours?

2

Solution:

People	hours
2	15
x	10

$$\frac{x}{2} = \frac{15}{10}$$

$$10x = 30$$

$$x = 3 hours$$

Show all your calculations **3.1** Convert 7265₈ to binary and Hexadecimal numbers. 2 **Convert to Binary:** 2 6 <u>111</u> 010 110 101 1/2 $7265_8 = 111010110101_2$ $\frac{1}{2}$ **Convert to Hexadecimal:** 1110 1011 0101 14 11 1/2 $7265_8 = EB5_{16}$ $\frac{1}{2}$ 3.2 Calculate the product of 1011012 and 1102. 21/2 Solution: 101101 x 110 1/2 000000 1/2 +101101_ 1/2 1011010 1/2 +101101__ 1/2 100001110 **3.3** The following numbers are represented in sign and size code using 7 bits: 2 0100101₂ and 1100101₂ Convert the numbers to decimal. Solution: $1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 37$ $0100101_2 = 37_{10}$ $\frac{1}{2}$ $1100101_2 = -37_{10}$ \frac{\frac{1}{2}}{2}

[10]

QUESTION 4 [18]

Show your calculation.

4.1 Christopher is mowed the lawn of his garden. On Monday he mowed $\frac{2}{7}$ of the lawn and on Tuesday he mowed $\frac{1}{3}$ of the lawn. If 400 square metres is left to be mowed, what is the total area of the lawn? (Use an equation to solve the problem)

4

 $let\ x\ be\ Lerato's\ monthly\ allowance$

$$x - \frac{2}{7}x - \frac{1}{3}x = 400$$

$$21x - 21(\frac{2}{7}x) - 21(\frac{1}{3}x) = 21(400)$$

$$21x - 6x - 7x = 8400$$

$$8x = 8400$$

$$x = 1050 \text{ square metres}$$

6

4.2 A clothing shop sells designer shirts and unknown brand shirts. Sandra bought 3 designer shirts and 4 unknown brand shirts for R304.00. Nelson bought one designer shirt and one unknown brand shirt for R90.00. Calculate the price of one designer shirt and the price of one unknown brand shirt. (Use equation(s) to solve the problem)

let x be the price of a designer shirt

 $let\ y\ be\ the\ price\ of\ unknown\ brand\ shirt$

$$3x + 4y = 304 \dots (1)$$

$$x + y = 90 \dots (2)$$

$$from (2)$$

$$x = 90 - y \dots (3)$$

$$sub (3) into (1)$$

$$3(90 - y) + 4y = 304$$

$$270 - 3y + 4y = 304$$

y = 304 - 270

Price o	f	designer	shirt is	s R56.00	
1 1 100 0	•	acotgicoi		, 1100.00	

Price of unknown brand shirt is R34.00.

4.3 Calculate the value of k if 2y + x = 5 and 3kx + y = 4 are perpendicular.

4

Solution:

$$2y + x = 5$$

$$y = -\frac{x}{2} + \frac{5}{2}$$

$$y = -3kx + 4 \qquad \checkmark$$

$perpendicular\ lines\ gradient\ product\ is\ equal\ to-1$

$$-\frac{1}{2} \times -3k = -1$$

$$k = -\frac{2}{3}$$

4.4 Simplify:

4

$$\frac{xy + 3x - 2y - 6}{(x - 2)^2} + \frac{y}{2 - x}$$

Solution:

$$\frac{x(y+3)-2(y+3)}{(x-2)^2} - \frac{y}{x-2}$$

$$\frac{(y+3)(x-2)}{(x-2)(x-2)} - \frac{y}{x-2}$$

$$\frac{(y+3)}{x-2} - \frac{y}{x-2}$$

$$\frac{(y+3)-y}{x-2}$$

$$\frac{3}{x-2}$$

Show all your calculations.

5.1 Michael is building a deck chair by placing strips of wood on an existing frame. He calculates that he will need 25 strips on the chair.

3

(Picture shows concept only NOT the correct number of strips)

5.1.1	If he cuts the wood into 0.8 m strips, what is the total length of wood needed?	(1)
	Solution: $25 \times 0.8 = 20m$	
5.1.2	If the wood comes in 500 cm lengths, how many lengths will be needed?	(1)
	Solution:	
	cm m 100 1 x 20	
	$x = 2000 cm$ $\frac{1}{2}$ therefore: $\frac{2000}{500} = 4 strips$ $\frac{1}{2}$	
5.1.3	If the dimension of each length of wood is 5 cm x 2 cm x 3 m, what is the total volume (in cubic metres) of wood needed?	(1)
	Solution:	
	$V = 4(0.05 \times 0.02 \times 3)$ $\frac{1}{2}$	
	$V = 0.012m^3 \frac{1}{2}$	

3

Solution:

$$d_{J} + d_{J} = 220$$

$$s_{K}t_{K} + s_{J}t_{J} = 220$$

$$40t + (40 + 10)(t - 1) = 220$$

$$40t + 50t - 50 = 220$$

$$90t = 270$$

$$t = 3 hours$$

therefore: 07:00 + 3 hours = 10:00

Space for rough work

6.1 The data below shows the number of cars that passed through a toll gate over a period of 40 days.

55	70	57	73	55	59	64	72
60	48	58	54	69	51	63	78
75	64	65	57	71	78	76	62
49	66	62	76	61	63	63	76
52	76	71	61	53	56	67	71

6.1.1	Calculate the average number of cars that pass through the toll gate per day.	(1)
	$mean = \frac{55 + 70 + \dots + 67 + 71}{40}$	
	$mean = \frac{2557}{40}$ $\frac{1}{2}$	
	$mean = 63.93 \frac{1}{2}$	
6.1.2	If the standard deviation is 8.62, between which numbers do	(2)
	99% of the dataset lie?	
	$63.93 + (3 \times 8.62) = 89.79$	
	$63.93 - (3 \times 8.62) = 38.07$	
	95% of the number of cars are between 38.07 and 89.79	
6.1.3	Calculate the range of the dataset.	(1)
		()
	range = largest - smallest	
	$range = 78 - 48 = 30 \qquad \checkmark$	
6.1.4	Calculate the class interval if you must present the dataset in 10	(1)
	classes.	()
	range	
	$class\ interval = rac{range}{number\ of\ classes}$	
	class interval = $\frac{30}{10}$ $\frac{1}{2}$	
	$class\ interval = 3 \qquad \frac{1}{2}$	

71/2

	Histogram		ie represent the above d	atabot.	(1)
6.1.6		of data was captured	d during this study?		(1½)
	Indicate the	e 3 correct descript	tions with an 'X'		
		Numerical	X 1/2		
		Categorical			
		Discrete	X ½		
		Continuous			
		Nominal			
		Ordinal			
		Qualitative			
		Quantitative	X ½		
	1				
75% of	the learners	use the learning ma	anagement system.		
		ace and rearrang ma			
6.2.1			,		(1)
		ne size of the	All learners at school	1/2	(1)
	What is the population	ne size of the	T	1 1/2	(1)
	What is the population What is the sample?	ne size of the	All learners at school 250 ½	1/2	
6.2.1	What is the population What is the sample?	ne size of the n? ne size of the	All learners at school 250 ½ ed?	1 1/2	(1)
6.2.1	What is the population What is the sample?	ne size of the n? ne size of the of sampling was use	All learners at school 250 1/2 ed? tions with an 'X'	1/2	
6.2.1	What is the population What is the sample?	ne size of the n? ne size of the of sampling was use e 2 correct descript	All learners at school 250 ½ ed?	1/2	
6.2.1	What is the population What is the sample?	ne size of the n? ne size of the of sampling was use e 2 correct descript Probability Non-Probability	All learners at school 250 1/2 ed? tions with an 'X'	1/2	
6.2.1	What is the population What is the sample?	ne size of the n? ne size of the of sampling was use e 2 correct descript	All learners at school 250 1/2 ed? tions with an 'X'	1/2	
6.2.1	What is the population What is the sample?	ne size of the n? ne size of the of sampling was use e 2 correct descript Probability Non-Probability Cluster	All learners at school 250 1/2 ed? tions with an 'X'	1 1/2	
6.2.1	What is the population What is the sample?	ne size of the n? ne size of the of sampling was use e 2 correct descript Probability Non-Probability Cluster Stratified	All learners at school 250 ½ ed? tions with an 'X'	1 1/2	
6.2.1	What is the population What is the sample?	ne size of the n? ne size of the of sampling was use e 2 correct descript Probability Non-Probability Cluster Stratified Systematic	All learners at school 250 1/2 ed? tions with an 'X'	1 1/2	
6.2.1	What is the population What is the sample?	ne size of the n? ne size of the of sampling was use e 2 correct descript Probability Non-Probability Cluster Stratified Systematic Simple Random	All learners at school 250 ½ ed? tions with an 'X'	1 1/2	

Data was collected about the number of students who attended the STUDYTHON daily from Monday to Sunday. The graph below represents the number of students who attended the STUDYTHON from Monday to Sunday.

6.3.1	Is this an example of a histogram or a bar graph?	1/2
	Bar graph ½	
6.3.2	What is the percentage of the students who attended the STUDYTHON on Tuesday?	1/2
	$\frac{32}{224} \times 100 = 14.29 \%$ ½	
6.3.3	Which other type of graph can be used to represent this data?	1/2
	Pie Chart ½	
6.3.4	What is the percentage difference between the LEAST number of students and the MOST number of students?	1
	Percentage change = $\frac{40-22}{22} \times 100 = 81.82\%$	

21/2

7.1.1 7.1.2 7.1.3	List subsets of set B that have zero elements. List subsets of set B that have one element (singleton subsets of set A List subsets of set B that have two elements?	{a}, {b}, {0}	(1/2)
7.1.3	element (singleton subsets of set A	(a, b), {a, c},	(1/2)
Comple			(1/2)
Comple			
	ete the following table:		
	Set Builder Notation	Enumeration Meth (Roster Method	
	$\{2x x\in\mathbb{N}_0,x\leq 4\}\qquad \frac{1/2}{2}$	{0, 2, 4, 6, 8}	
	$\{2x + 1 x \in \mathbb{N}, 1 \le 2x + 1 < 7\} $	3,5} ¹ / ₂	
Given t	Let W represent animals Let M represent animals W Turtles Whal	that are mammals M Dog	

Answer the following questions:

	Question	Answer	
7.3.1	$n(W \cap M)$	1	(1/2)
7.3.2	$n(P(W \cap M))=$	2	(1/2)

7.3.3 Use a binary table to determine all possible subsets of set M.

(4)

	nbers	ary Num	Bin	Decimal	
Subsets	Whale	Dog	Lion	Numbers	
{} ½	0	0	0	0	
{ Whale} 1/2	1	0	0	1	
$\{Dog\}$ $\frac{1}{2}$	0	1	0	2	
$\{Dog, Whale\}$ $\frac{1}{2}$	1	1	0	3	
$\{Lion\}$ $\frac{1}{2}$	0	0	1	4	
$\{Lion, Whale\}$ $\frac{1}{2}$	1	0	1	5	
{ $Lion, Dog$ } $\frac{1}{2}$	0	1	1	6	
{Lion, Dog, Whale} 1/2	1	1	1	7	

7.4 The head of department of a school has surveyed 160 students about their favourite subject. Of the 160 students:

21/2

- 110 favour Math,
- 125 favour Physics,
- 5 neither favour Math nor Physics.

Let *M* be the set of students whofavour Maths.

Let P be the set of students who favour in Physics.

Draw a Venn Diagram that represents the number of students.

7.5	Consider the f	ollowing sets:			1					
	$A = \{a, e, i, o, u\}, \qquad B = \{y, e, a, r\} \ and \ C = \{d, a, t, e\}.$									
	List the followi	ng sets:								
	$B-C$ $\{y,r\}$ $\frac{1}{2}$									
	<i>A</i> Δ C	$\{i, o, u, d, t\}$ $\frac{1}{2}$								
7.6	Let H and J be $If n(H - J)$:	e finite sets: $= 50 \text{ and } n(H \cup J) = 80 \text{ ar}$	$nd \ n(J-H)=20$), determine	n(H) 5					
	Solution:			√						
	1	$n(H \cup J) = n(H - J) + n(H \cup J)$		•						
	$80 = 50 + n(H \cap J) + 20$ $n(H \cap J) = 80 - 70$									
		$n(H\cap J)=1$	0							
		therefore: $n(H) = n(H \cap$	n(J) + n(H-J)	✓						
		n(H)=10+50	= 60							
7.7	$If B = \{2,4\} a$	$nd C = \{1, 2, 3, 4, 5, 6\}, Sta$	te if the following	g is true or fals	e. 2					
		Statement	True	False						
		$B \subset C$	X 1/2							
		$C \subseteq B$		X 1/2						
		$B\supset C$		X ½						
		$C \supseteq B$	X ½							

QUESTION 8 [13]

	Translate the following sentences in a well-formed symbolic form:							
	Sente	ence	Symbolic form					
	Lerato likes to sho Nandi does not lik online.	•	L ∧~ N	(1/2)				
	If Lerato does not online, then Nand online.	•	$\sim L \longrightarrow N$	(1/2)				
	Translate the formed symbolic form into words:							
8.1.2	Translate the forme	d symbolic form i	nto words:		(1)			
8.1.2	Translate the forme Symbolic form	d symbolic form i			(1)			
8.1.2		-	ence d Nandi do not	(1/2)	(1)			
8.1.2	Symbolic form	Sent	ence d Nandi do not ine. shop online if di does not	(1/2)	(1)			

8.2	Given th	e following argument:		2				
		James has a better chance of winning the race since						
	he is faster and stronger. Identify the premise and the conclusion from the above argument. Premise: He is faster and stronger. ✓							
	Conclusion:							
		James has a better chance of winning the race.						
8.3	Given th	e propositions defined as follows:		8				
	L: Louis mark the papers. M: Marlene add the marks. T: Tumelo capture the marks.							
	8.3.1 Translate the following sentence in a well-formed symbolic form: if Louis mark the papers and Tumelo capture the marks, Marlene add the marks.							
		$(L \wedge T) \longrightarrow M$						
	8.3.2	Complete the truth table (on the next page) for the following statement:	(6)					
		$[L \vee \sim L] \longleftrightarrow [\sim (\sim M \wedge \sim T) \longrightarrow (M \vee T)]$						
	8.3.3	Is the above statement is a tautology, a contradiction or contingency? Explain your answer.	(1)					
		Tautology. Because the last column only consist of T's. ✓						

Complete the Truth Table (Question 8.3.2) for $[L \vee \sim L] \longleftrightarrow [\sim (\sim M \wedge \sim T) \longrightarrow (M \vee T)]$

L	M	T	~ L	~ M	~ T	$L \lor \sim L$	$\sim M \wedge \sim T$	$\sim (\sim M \land \sim T)$	$M \vee T$	$\sim (\sim M \land \sim T) \longrightarrow (M \lor T)$	$[L \vee \sim L] \longleftrightarrow [(\sim M \wedge \sim T) \longrightarrow \sim (M \vee T)]$
Т	Т	Т	F	F	F	_	F	Т	Τ	Τ	Т
Т	Т	F	F	F	Т	Т	F	Т	Т	Т	Т
Т	F	Т	F	Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	T	Т	F	F	Т	Т
F	Т	Т	Т	F	F	T	F	Т	Т	Т	Т
F	Т	F	Т	F	Т	T	F	Т	Т	Т	Т
F	F	Т	Т	Т	F	T	F	Т	Т	Т	Т
F	F	F	Т	Т	Т	T	Т	F	F	Т	Т
M			ation colum	(1 m: nn)	ark	√	✓	√	√	✓	✓

Space for rough work

Copyright reserved