Machine Learning Handbook

Xinhe Liu

2018-2-28

Contents

L	Hig	gh-level Views	1	
1	Math Review			
	1.1	Linear Algebra	2	
	1.2	Probability	3	
		1.2.1 Important Distributions, Moment Generating Functions	4	
	1.3	Information Theory	4	
	1.4	Optimization Theory	5	
	1.5	Formal Logic	6	
2	Sta	Statistics		
	2.1	Concepts	7	
	2.2	Important Distributions	10	
	2.3	Theorems	12	
	2.4	Practice/Examples	12	
3	Cor	nputational Learning Theory	14	

II	Supervised Learning Models	15
4	Regression	16
	4.1 Linear Regressions	16
	4.1.1 Assumptions	16
	4.1.2 Interrataion	16
	4.1.3 Lasso-Least Absolute Shrinkage and Selection Operator	17
5	Logistic Regression and General Linear Model	18
6	Naive Bayesian	19
7	Tree Models and Ensemble Learning	20
II	I Unsupervised Learning Models	21
8	Clustering	22
9	Dimension Reduction	23
IV	Deep Learning and Enhanced Learning Theory	24
10	Multi-layer Perceptron	25
11	Multi-layer Perceptron	26
12	Multi-layer Perceptron	27

4	CONTENTS
13 Multi-layer Perceptron	28
14 Multi-layer Perceptron	29
15 Multi-layer Perceptron	30

Part I High-level Views

Math Review

1.1 Linear Algebra

Concepts:

- scalar, vector, matrix, tensor(n-rank tensor, matrix is a rank 2 tensor)
- Gaussian Elimination, rank
- p-norm

$$|X|_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$$

- inner product $\langle x_i, y_i \rangle$, outer product
- orthogonal dimension, basis, orthogonal basis
- linear transformation Ax = y
- eigenvalue, eigenvector $Ax = \lambda x$ (transformation and speed)
- vector space, linear space(with summation, scalar production), inner product space(inner product space)

3

1.2 Probability

Concepts:

- Classic Probability Model: Frequentist
- Bayesian Probability Theory
- Random variable, continuous RV, discrete RV, probability mass function, probability density function, cumulative density function
- Bernoulli distribution, Binomial distribution(n,p)

$$P(X = k) = \binom{N}{k} p^k (1 - p)^{(n-k)}$$

, Poisson distribution

$$P(X = k) = \lambda^k \frac{e^{-\lambda}}{k!}$$

• uniform distribution, exponential distribution

$$e^{-\frac{x}{\theta}}\theta$$
, $P(x>s+t|X>s)=P(x>t)$

- , normal distribution, t-distribution
- expectation, moments, variance, covariance, correlation coefficient

Theorems:

- Law of Total Probability
- Bayesian Theorem

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

P(H)-prior probability, P(D-H)-likelihood, P(H-D)-posterior probability,

1.2.1 Important Distributions, Moment Generating Functions

- 1. Normal Distribution, See next chapter
- 2. Bernoulli Distribution
- 3. Exponential Distribution $f_x(x,\theta) = \theta e^{-\theta x}$
- 4. Poisson Distribution

1.3 Information Theory

Concepts:

• Information

$$h(A) = -log_2 p(A)$$

(bit)

• (Information Source) Entropy

$$H(X) = -\sum_{i=1}^{n} p(a_i)log_2p(a_i) \le log_2n$$

Maximize under equal probability

• Conditional Entropy

$$H(Y|X) = -\sum_{i=1}^{n} p(x_i)H(Y|X = x_i) = -\sum_{i=1}^{n} p(x_i)\sum_{j=1}^{n} p(y_j|x_i)\log_2 p(y_j|x_i)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} p(x_i, y_j) log_2 p(y_j | x_i)$$

• Mutual Information/Information Gain

$$I(X;Y) = H(Y) - H(Y|X)$$

• Kullback-Leibler Divergence (K-L) Divergence

$$D_{KL}(P||Q) = \sum_{i=1}^{n} p(x_i) log_2 \frac{p(x_i)}{q(x_i)} \neq D_{KL}(Q||P)$$

$$D_{KL}(f, \hat{f})) = \int_{-\infty}^{\infty} log(\frac{f_X(x)}{\hat{f}(x)}) f_X(x) dx$$

Measures the Distance of two distributions. The optimal encoding of information has the same bits as the entropy. Measures the extra bits if the real distribution is q rather than p. (Using P to approximate Q) K-L divergence plays an important role in both information theory and MLE theory. MLE $\hat{\theta}$ is actually finding the closest K-L Distance approximation of $f(x; \theta)$ to sample distribution.

Theorems:

• The Maximum Entropy Principle. Without extra assumption, max entropy/equal probability has the minimum prediction risk.

1.4 Optimization Theory

- Objective function/Evaluation function, constrained/unconstrained optimizationFeasible Set, Optimal Solution, Optimal Value, Binding Constraints, Shadow Price, Infeasible Price, Infeasibility, Unboundedness
- Linear Programming
- Lagrange Multiplier

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$$

• Convex Set, Convex Function $f: S \to R$ is convex if and only if $\nabla^2 f(\mathbf{x})$ is positive semidefinite

Optimization Methods:

- Linear Search Method: Direction First, Step Size second
 - Gradient Descent: Batch Processing(Use all samples) vs
 Stochastic Gradient Descent(Use one sample)
 - Newton's Method: Use Curvature Information
- Trust Region: Step first, direction second. Find optimal direction of second-order approximation. If the descent size is too small, make step size smaller.
- Heuristics Method
 - Genetic Algorithm
 - Simulated Annealing
 - Partical Swarming/Ant Colony Algorithm

Theorems:

•

1.5 Formal Logic

Concepts

- Generative Expert System: Rule+Facts+Deduction Engine
- Godel's incompleteness theorems

Statistics

2.1 Concepts

- parameter(constant for probability model), statistic (model of sample data), data, sample, population
- point estimation, interval estimation, Confidence Interval ($P(L \le \theta \le U)$, notice: θ is not random, L, U is random! (We repeat constructing confidence interval a n times, α percent of the times, it will contain theta.
- Hypothesis test, type-I error(wrongly reject), type-II error(wrongly accept)

Estimator and Estimation

• Method of Moments: $E(X^k)$ based on LOLN. If We have p parameters, we can use p moments to form a system of equations to solve $\theta_1, ... \theta_p$

$$\sum_{i=1}^{n} X_i^j = E(X^j)$$

, for j = 1,...,p

• Maximum Likelihood Estimation. Multiply p.m.f/p.d.f since every sample is independent. Maximize the likelihood of finding samples. If $X_1, ... X_n \overset{i.i.d}{\sim} f_x(x, \theta)$,

$$l(\theta) = \prod_{i=1}^{n} f_{X_i} f_{x_i}(x_i; \theta), L(\theta) = log l(\theta)$$

$$\hat{\theta}_{MLE} = argmax_{\theta} f_x(x; \theta) = argmax_{\theta} L(\theta)$$

Analytical or Numerically solved.

$$\frac{\partial}{\partial \theta}[logL(\theta)] = 0, \frac{\partial^2}{\partial \theta^2}[logL(\theta)] < 0$$

, for multiple parameters, we need the Hessian matrix to be negative definite $x^t H x < 0, \forall x$

- Properties of MLE
 - 1. Invariance $\hat{\theta}$ is MLE of θ , then $q(\hat{\theta})$ is MLE of $q(\theta)$
 - 2. Consistency

$$P(\hat{\theta} - \theta) \to 0$$

as $n \to 0, \forall \epsilon > 0$ Under the conditions

- (a) $X_1, ... X_n \stackrel{i.i.d}{\sim} f_x(x|\theta)$
- (b) parameters are identifiable, $\theta \neq \theta', f_x(x|\theta) \neq f_x(x|\theta')$
- (c) densities $f_x(x|\theta)$ has common support(set of x with positive density/probability), $f_x(x|\theta)$ is differentiable at θ
- (d) parameter space Ω contains open set ω where true θ_0 is an interior point
- 3. Asymptotic Normality

$$\sqrt{n}(\hat{\theta}_{MLE} - \theta_0) \to N(0, I^{-1}(\theta_0))$$
$$I(\theta_0) = E(-(\frac{\partial}{\partial \theta}[\log f(x, \theta)])^2) = E(-\frac{\partial^2}{\partial \theta^2}[\log f(x, \theta)])$$

called the Fisher Information

$$\hat{\theta}_{MLE} \approx N(\theta_0, \frac{1}{nI(\theta_0)})$$

$$nI(\theta_0) = E(-\frac{\partial^2}{\partial \theta^2}logL(\theta))$$

2.1. CONCEPTS

9

So the Variance of MLE($1/E(-\frac{\partial^2}{\partial \theta^2}logL(\theta)))$ is the reciprocal of amount of curvature at MLE.

Usually, We can just use the observed Fisher Information (curvature near θ_{MLE}) instead. $(I(\theta_{MLE}))$ $\frac{1}{nI(\theta_0)}$ is called Cramer-Rao Lower Bound.

Under Multi-dimensional Case,

$$I(\theta_0)_{ij} == E(-\frac{\partial^2}{\partial \theta_i \partial \theta_j}[log f(x,\theta)])$$

 $Hessian \approx nI(\theta_0) \ Hessian^{-1} \approx nI(\theta_0)$ when we use numerical approach.

Under the above four conditions plus

- (a) $\forall x \in \chi$, $f_x(x|\theta)$ is three times differentiable with respect to θ , and third derivative is continuous at θ , and $\int f_x(x|\theta)dx$ can be differentiated three times under integral sign
- (b) $\forall \theta \in \Omega, \exists c, M(x)$ (both depends on θ_0) such that

$$\frac{\partial^3}{\partial \theta^3}[logf(x,\theta)] \leq M(x), \forall x \in \chi, \theta_0 - c < \theta < \theta_0 + c, E_{\theta_0}[M(x)] < \infty$$

• Δ -Method: $g(\hat{theta}_{MLE})$ is approximately

$$N(g(\theta), (g'(\theta))^2 \frac{1}{nI(\theta)})$$

if asymptotic normality is satisfied.

In Multivariate Case:

$$\hat{\theta} \sim N(\theta, \Sigma/n), \theta, \hat{\theta} \in R^{p}$$

$$g: R^{p} \to R^{m}$$

$$g(\hat{\theta}) \sim N(g(\theta), G\Sigma G^{T}/n)$$

$$G = \begin{pmatrix} \frac{\partial g_{1}(\theta)}{\partial \theta_{1}} & \dots & \frac{\partial g_{1}(\theta)}{\partial \theta_{p}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{m}(\theta)}{\partial \theta_{1}} & \dots & \frac{\partial g_{m}(\theta)}{\partial \theta_{p}} \end{pmatrix}$$

- Estimation criteria
 - Unbiased $E(\hat{\theta}) = \theta$

- Minimum Variance (MVUE, minimum variance unbiased estimator) $Var(\hat{\theta}) < Var(\theta')$
- Efficient
- Coherent

Model Selection

AIC - Akaike Information Criterion

By K-L Distance

$$D_{KL}(f,\hat{f})) = \int_{-\infty}^{\infty} log(\frac{f_X(x)}{f(\hat{x})}) f_X(x) dx$$
$$= const + \frac{1}{2} \int (-2log\hat{f}(x)) f(x) dx = const + AIC$$
$$A(f,\hat{f}) = -2logL(\theta) + 2p(\frac{n}{n-p+1})$$

2.2 Important Distributions

- 1. Normal Distribution, $X_1,...X_n \sim N(\mu, \sigma^2)$ then
 - (a) \bar{X} and s^2 are independent
 - (b) $\frac{\bar{X} \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$
 - (c) $\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$
 - (d) $\frac{\bar{X} \mu}{s/\sqrt{n}} = \frac{\frac{\bar{X} \mu}{\sigma/\sqrt{n}}}{\frac{(n-1)s^2}{\sigma^2} \frac{1}{\sqrt{n-1}}} \sim t_{n-1}$
- 2. Multi-variate normal distribution

$$f_x(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

- (a) $X_1,...X_n$ normal $\Leftarrow (X_1,...X_n)$ is multivariate normal. (Not equivalent)
- (b) $E(X) = \mu, Var(X) = \Sigma$

2.2. IMPORTANT DISTRIBUTIONS

11

- (c) Linear transformations $AX+b \sim N(A\mu+b,A\Sigma A^T)$ remain multivariate normal
- (d) Marginals are multivariate normal, each sub-vector is multivariate normal, the parameters are just sub-matrices.
- (e) All conditionals are multivariate normal
- 3. t-distribution: like normal distribution, but heavier tails
 - (a) $Z \sim N(0,1), Y \sim \chi^2_{\nu}$, Z, Y independent,

$$X = Z/\sqrt{Y/\nu} \sim t_{\nu}$$

- (b) pdf has polynomial tails (decays much slower than exponential ones)
- (c) $\nu = 1$, it is the **Cauchy Distribution**, with very heavy tails (no expectation)
- (d) The MCF not exist. $E(|X|^k) < \infty$ for $k < \nu$, $E(|X|^k) = \infty$ for $k > \nu$
- (e) $X \sim t_{\nu}, E(X) = 0, Var(X) = \frac{\nu}{\nu 2}$

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$

4. χ^2 distribution

$$f_x(x) = \frac{1}{(2^{k/2}\Gamma(k/2)}x^{\frac{k}{2}-1}e^{-\frac{x}{2}}, x \in [0, \infty) \sim Gamma(\frac{k}{2}, \frac{1}{2})$$

- (a) $E(X) = k, Var(X) = 2k, M_X(t) = (\frac{1}{1-2t})^{k/2}$
- (b) $X \sim N(0,1) \Rightarrow X^2 \sim \chi^2, X_1, ... X_n \sim N(0,1) i.i.d \Rightarrow \sum X_i^2 \sim \chi^2,$

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$

More Generalized Distributions

- 1. Generalized Error Distribution (symmetric)
- 2. Non-standard t-distribution (shift and scaling, heavy tailed, symmetric)
- 3. Theodossious skewed t-distribution
- 4. Theodossious skewed t-distribution plus shift

2.3 Theorems

- Law of Large Number
- Central Limit Theorem
- Bias/Variance decomposition (error = bias + variance + noise)

$$MSE(\mu(X)) = E[(Y - \hat{\mu}(X))^{2}] == E[(Y - f(x) + f(x) - \hat{\mu}(X))^{2}]$$

$$= E[(Y - f(x))^{2} + 2E[(Y - f(x))(f(x) - \hat{\mu}(X))] + E[(f(x) - \hat{\mu}(X))^{2}]$$

$$= E[(Y - f(x))^{2} + 2E[(Y - f(x))(f(x) - \hat{\mu}(X))] + (f(x) - \hat{\mu}(X))^{2}$$

$$= \sigma_{x}^{2} + Bias(\hat{\mu}(X))^{2} + Var(\hat{\mu}(X))$$

2.4 Practice/Examples

- 1. sample mean (\bar{X}) is unbiased. Sample variance $(\frac{1}{n-1}\sum_{i=1}^n x_i^n)$ is unbiased. But sample std is not unbiased. $SE(\bar{X}) = \frac{\sigma^2}{n}$
- 2. $\hat{Cov}(X.Y) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})(X_i \bar{Y})$ is unbiased
- 3. Distributions with Expectation not exist? (Cauchy)
- 4. Common Confidence Intervals:

$$μ: P(-t_{\alpha/2,n-1} \le \frac{\bar{X} - μ}{s/\sqrt{n}} \le t_{\alpha/2,n-1}) = 1 - α,$$
 $σ: P(a \le \frac{(n-1)s^2}{\sigma^2} \le b) = 1 - α$

- 5. Solve MLE/MOM for beta, exponential $(n/\sum X_i, \text{ normal})$
- 6. * prove Asymptotic Normality of MLE(hint: using Taylor Expansion for $\theta, \hat{\theta}$)
- 7. * Use t^{th} quantile to approximate c.d.f, what's the distribution? $(Y_n = \frac{1}{n} \sum I(X_i < x))$, a Bernoulli distribution with $p = F_x(x)$, $\sqrt{n}[Y_n(x) F_x(x)] \sim N(0, F(x)(1 F(x)))$.
- 8. $X_1, X_n \sim Binomial(n, p)$, What's the MLE for p and Fisher Information? ($\hat{p} = \frac{x_i}{n}, I(p) = 1/p(1-p), var(p) = \frac{p(1-p)}{n}$)
- 9. $(x_i, y_i) \sim N(\mu_i, \sigma^2)$, find MLE for $\sigma \left(\frac{1}{4N} \sum (x_i y_i)\right)$

10. How can you get N(0,1) random variables from U[0,1]? (Method1: Inverse Transformation, Method2; Use

Inverse Transformation, Method2; Use
$$SumZ_i^2 \sim \chi_k^2, k = 2, F^{-1}(u) = -2log(1-u),$$
 $R^2 \sim \chi^2, Z_1 = Rcos\theta, Z_2 = Rsin\theta, \theta \in [0, 2\pi]$

Computational Learning Theory

Part II Supervised Learning Models

Regression

4.1 Linear Regressions

4.1.1 Assumptions

Classic Assumptions for Statistics:

•

4.1.2 Interrataion

$$f(x) = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^n w_i x_i$$

$$\mathbf{w}* = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{y}$$

RSS Approach:

MLE Approach

Assuming noise is normal, maximize

$$p(\mathbf{x_1}, \mathbf{x_2}...\mathbf{x_n}|\mathbf{w}) = \prod_k \frac{1}{\sqrt{2\pi}\sigma} exp[-\frac{1}{2\sigma^2}(y_k - \mathbf{w_t}\mathbf{x_k})^2]$$

4.1.3 Lasso-Least Absolute Shrinkage and Selection Operator

$$min||y_k - \mathbf{w^T} \mathbf{x}_k||^2 + \lambda ||\mathbf{w}||_1$$

Logistic Regression and General Linear Model

Naive Bayesian

Tree Models and Ensemble Learning

Part III

Unsupervised Learning Models

Clustering

Dimension Reduction

Part IV

Deep Learning and Enhanced Learning Theory