数据库系统概论 An Introduction to Database System

第二章 关系数据库

关系数据库简介

- ❖ 提出关系模型的是美国IBM公司的E.F.Codd
 - 1970年提出关系数据模型
 - E.F.Codd, "A Relational Model of Data for Large Shared Data Banks", 《Communication of the ACM》,1970
 - 之后,提出了关系代数和关系演算的概念
 - 1972年提出了关系的第一、第二、第三范式
 - 1974年提出了关系的BC范式

第二章 关系数据库

- 2.1 关系数据结构及形式化定义
- 2.2 关系操作
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

2.1 关系数据结构及形式化定义

***2.1.1** 关系

***2.1.2** 关系模式

❖ 2.1.3 关系数据库

2.1.1 关系

- ❖单一的数据结构----关系 现实世界的实体以及实体间的各种联系均用关系来表示
- ❖逻辑结构----二维表 从用户角度,关系模型中数据的逻辑结构是一张二维表
- *建立在集合代数的基础上

- 1. 域(Domain)
- 2. 笛卡尔积(Cartesian Product)
- 3. 关系(Relation)

1. 域(Domain)

- ❖域是一组具有相同数据类型的值的集合。例:
 - ▶整数
 - ➤实数
 - ▶介于某个取值范围的整数
 - ▶指定长度的字符串集合
 - ▶{'男', '女'}

2. 笛卡尔积(Cartesian Product)

*笛卡尔积

给定一组域 D_1 , D_2 , ..., D_n , <u>这些域中可以有相同</u>的。 D_1 , D_2 , ..., D_n 的笛卡尔积为: $D_1 \times D_2 \times ... \times D_n = \{ (d_1, d_2, ..., d_n) \mid d_i \in D_i, i = 1, 2, ..., n \}$

- 所有域的所有取值的一个组合
- 不能重复

笛卡尔积(续)

❖ 元组 (Tuple)

- 笛卡尔积中每一个元素(d_1 , d_2 , ..., d_n)叫作一个n元组(n-tuple)或简称元组(Tuple)
- (张清玫, 计算机专业, 李勇)、(张清玫, 计算机专业, 刘晨) 等都是元组

❖分量(Component)

- 笛卡尔积元素(d_1 , d_2 , ..., d_n)中的每一个值 d_i 叫作一个分量
- 张清玫、计算机专业、李勇、刘晨等都是分量

笛卡尔积(续)

- ❖ 基数 (Cardinal number): 集合中元素的个数
 - 若 D_i (i=1, 2, ..., n) 为有限集,其基数为 m_i (i=1, 2, ..., n) ,则 $D_1 \times D_2 \times ... \times D_n$ 的基数M为:

$$M = \prod_{i=1}^n m_i$$

- * 笛卡尔积的表示方法
 - 笛卡尔积可表示为一个二维表
 - 表中的每行对应一个元组,表中的每列对应一个域

表 2.1 D_1 , D_2 , D_3 的笛卡尔积

SUPERVISOR	SPECIALITY	POSTGRADUATE	
张清玫	计算机专业	李勇	
张清玫	计算机专业	刘晨	
张清玫	计算机专业	王敏	
张清玫	信息专业	李勇	
张清玫	信息专业	刘晨	
张清玫	信息专业	王敏	
刘逸	计算机专业	李勇	
刘逸	计算机专业	刘晨	
刘逸	计算机专业	王敏	
刘逸	信息专业	李勇	
刘逸	信息专业	刘晨	
刘逸	信息专业	王敏	

An Introduction to Database System

3. 关系(Relation)

1) 关系

 $D_1 \times D_2 \times ... \times D_n$ 的<u>子集</u>叫作在域 D_1 , D_2 ,..., D_n 上的 关系,表示为

$$R (D_1, D_2, ..., D_n)$$

- R: 关系名
- *n*: 关系的目或度(Degree)

❖ D1, D2, ..., Dn的笛卡尔积的某个子集才有实际含义

例: 表2.1 的笛卡尔积没有实际意义

取出有实际意义的元组来构造关系

关系: SAP(SUPERVISOR, SPECIALITY, POSTGRADUATE)

假设:导师与专业: 1:1, 导师与研究生: 1:n

主码: POSTGRADUATE (假设研究生不会重名)

SAP关系可以包含三个元组

{(张清玫,计算机专业,李勇),

(张清玫, 计算机专业, 刘晨),

(刘逸,信息专业,王敏) }

2) 元组

关系中的每个元素是关系中的元组,通常用**t**表示。

3) 单元关系与二元关系

当*n*=1时,称该关系为单元关系(Unary relation)

或一元关系

当*n*=2时,称该关系为二元关系(Binary relation)

4) 关系的表示

关系也是一个二维表,表的每行对应一个元组,表的每 列对应一个域

表 2.2 SAP 关系

SUPERVISOR	SPECIALITY	POSTGRADUATE
张清玫	信息专业	李勇
张清玫	信息专业	刘晨
刘逸	信息专业	王敏

5)属性

- 关系中不同列可以对应相同的域
- ■为了加以区分,必须对每列起一个名字,称为属性 (Attribute)
- \blacksquare n目关系必有n个属性

6) 码

候选码(Candidate key)

若关系中的某一属性组的值能唯一地标识一个元组,则称该 属性组为候选码

简单的情况: 候选码只包含一个属性

<u>全码(All-key)</u>

最极端的情况:关系模式的所有属性组是这个关系模式的候选码,称为全码(All-key)

码(续)

<u>主码</u>

若一个关系有多个候选码,则选定其中一个为**主码**(Primary key) 主属性

候选码的诸属性称为<u>主属性</u>(Prime attribute)

不包含在候选码中的属性称为<u>非主属性</u>(Non-Prime attribute)

或<u>非码属性</u>(Non-key attribute)

7) 三类关系

基本关系(基本表或基表)

实际存在的表,是实际存储数据的逻辑表示

-有实际数据,可持久化存储

查询表

查询结果对应的表

-有实际数据,不可持久化存储

视图表

由基本表或其他视图表导出的表(虚表)

-无实际存储数据

- 8)基本关系的性质
- ① 列是同质的(Homogeneous)
- ② 不同的列可出自同一个域
 - 其中的每一列称为一个属性
 - 不同的属性要给予不同的属性名
- ③ 列的顺序无所谓, 列的次序可以任意交换
- ④ 行的顺序无所谓, 行的次序可以任意交换
- ⑤任意两个元组的候选码不能相同

基本关系的性质(续)

⑥ 分量必须取原子值 这是规范条件中最基本的一条

表2.3 非规范化关系

SUPERVISOR	SPECIALITY	POSTGRADUATE		
		PG1	PG2	
张清玫	信息专业	李勇	刘晨	
刘逸	信息专业	王敏		小表

2.1 关系数据结构

- 2.1.1 关系
- 2.1.2 关系模式
- 2.1.3 关系数据库

2.1.2 关系模式

- 1. 什么是关系模式
- 2. 定义关系模式
- 3. 关系模式与关系

1. 什么是关系模式

- ❖关系模式(Relation Schema)是型
- *关系是值
- ◆关系模式是对关系的描述
 - 元组集合的结构 属性构成(属性的描述) 属性来自的域(域的描述) 属性与域之间的映象关系(属性与域的关系)
 - 完整性约束条件
 - 属性间的数据依赖关系集合

2. 定义关系模式

关系模式可以形式化地表示为:

R(U, D, DOM, F)

R 关系名

U 组成该关系的属性名集合

D 属性组U中属性所来自的域

DOM 属性向域的映象集合

F 属性间的数据依赖关系集合

定义关系模式(续)

例:

导师和研究生出自同一个域——人, 取不同的属性名,并在模式中定义属性向域的映象,即说明它们分别出自哪个域:

DOM (SUPERVISOR)

- = DOM (POSTGRADUATE)
- = PERSON

定义关系模式(续)

关系模式通常可以简记为

R(U) 或 $R(A_1, A_2, ..., A_n)$

- R: 关系名
- A_1 , A_2 , ..., A_n :属性名

注: 域名及属性向域的映象常常直接说明为属性的类型、

长度

3. 关系模式与关系

◆ <u>关系模式</u>

- ■对关系的描述
- ■静态的、稳定的

※ <u>关系</u>

- 关系模式在某一时刻的状态或内容
- ■动态的、随时间不断变化的
- * 关系模式和关系往往统称为关系(通过上下文加以区别)

2.1 关系数据结构

2.1.1 关系

2.1.2 关系模式

2.1.3 关系数据库

2.1.3 关系数据库

- *关系数据库
 - 在一个给定的应用领域中,所有关系的集合构成一个关系数据库
- * 关系数据库的型与值

2. 关系数据库的型与值

- ❖ <u>关系数据库的型:</u> 关系数据库模式 对关系数据库的描述。
- * 关系数据库模式包括
 - ■若干域的定义
 - ■在这些域上定义的若干关系模式
- ❖ <u>关系数据库的值:</u> 关系数据库模式在某一时刻对应 的关系的集合, 简称为关系数据库

第二章 关系数据库

- 2.1 关系模型概述
- 2.2 关系操作
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

2.2.1基本关系操作

- * 常用的关系操作
 - 查询: 选择、投影、并、差、笛卡尔积、连接、除、交
 - 数据更新:插入、删除、修改
 - 查询的表达能力是其中最主要的部分
 - 选择、投影、并、差、笛卡尔基是5种基本操作
- * 关系操作的特点
 - 集合操作方式:操作的对象和结果都是集合,也称一次一集合方式

2.2.2 关系数据库语言的分类

- * 关系代数语言
 - 用对关系的运算来表达查询要求
 - 代表: ISBL
- * 关系演算语言: 用谓词来表达查询要求
 - 元组关系演算语言
 - ▶谓词变元的基本对象是元组变量
 - ▶代表: APLHA, QUEL
 - 域关系演算语言
 - ▶谓词变元的基本对象是域变量
 - ▶代表: QBE
- ❖ 具有关系代数和关系演算双重特点的语言
 - 代表: SQL (Structured Query Language)

第二章 关系数据库

- 2.1 关系数据结构及形式化定义
- 2.2 关系操作
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

2.3 关系的完整性

- 2.3.1 关系的三类完整性约束
- 2.3.2 实体完整性
- 2.3.3 参照完整性
- 2.3.4 用户自定义的完整性

2.3.1 关系的三类完整性约束

*实体完整性和参照完整性:

关系模型必须满足的完整性约束条件

称为关系的两个不变性,应该由关系系统自动支持

❖用户定义的完整性:

应用领域需要遵循的约束条件,体现了具体领域中的语义约束

2.3 关系的完整性

- 2.3.1关系的三类完整性约束
- 2.3.2 实体完整性
- 2.3.3 参照完整性
- 2.3.4 用户定义的完整性

2.3.2 实体完整性

规则2.1 实体完整性规则(Entity Integrity)

若属性A是基本关系R的主属性,则属性A不能取空值例:

SAP(SUPERVISOR, SPECIALITY, POSTGRADUATE)
POSTGRADUATE:

主码(假设研究生不会重名)

不能取空值

实体完整性(续)

实体完整性规则的说明

- (1) 实体完整性规则是针对基本关系而言的。一个基本表通常对应现 实世界的一个实体集。
- (2) 现实世界中的实体是可区分的,即它们具有某种唯一性标识。
- (3) 关系模型中以主码作为唯一性标识。
- (4) 主码中的属性即主属性不能取空值。 主属性取空值,就说明存在某个不可标识的实体,即存在不可区 分的实体,这与第(2)点相矛盾,因此这个规则称为实体完整性。

2.3关系的完整性

- 2.3.1关系的三类完整性约束
- 2.3.2 实体完整性
- 2.3.3 参照完整性
- 2.3.4 用户定义的完整性

2.3.3 参照完整性

- 1. 关系间的引用
- 2. 外码
- 3. 参照完整性规则

1. 关系间的引用

※ 在关系模型中实体及实体间的联系都是用关系来描述的, 因此可能存在着关系与关系间的引用。

例1 学生实体、专业实体

学生。(<u>学号</u>,姓名,性别,专业号,年龄) 专业(<u>专业号</u>,专业名)

- ❖学生关系引用了专业关系的主码"专业号"。
- *学生关系中的"专业号"值必须是确实存在的专业的专业号,即专业关系中有该专业的记录。

 An Introduction to Database System

关系间的引用(续)

例2 学生、课程、学生与课程之间的多对多联系

学生(学号,姓名,性别,专业号,年龄)

课程(课程号,课程名,学分)

选修(学号,课程号,成绩)

关系间的引用(续)

例3 学生实体及其内部的一对多联系

学生(学号,姓名,性别,专业号,年龄,班长)

学号	姓名	性别	专业号	年龄	班长
801	张三	女	01	19	802
802	李四	男	01	20	
803	王五	男	01	20	802
804	赵六	女	02	20	805
805	钱七	男	02	19	

- ❖ "学号"是主码, "班长"是外码,它引用了本关系的"学号"
- ❖"班长"必须是确实存在的学生的学号

2. 外码(Foreign Key)

- *设F是基本关系R的一个或一组属性,但不是关系R的码。如果F与基本关系S的主码 K_s 相对应,则称F是基本关系R的外码
- ❖ 基本关系*R称*为参照关系(Referencing Relation)
- ❖ 基本关系*S称*为被参照关系(Referenced Relation) 或目标关系(Target Relation)

- ❖ [例1]: 学生关系的"专业号与专业关系的主码"专业号"相对应
 - "专业号"属性是学生关系的外码
 - 专业关系是被参照关系, 学生关系为参照关系

❖ [例2]:

选修关系的"学号"与学生关系的主码"学号"相对应 选修关系的"课程号"与课程关系的主码"课程号"相对应

- "学号"和"课程号"是选修关系的外码
- 学生关系和课程关系均为被参照关系
- 选修关系为参照关系

- ❖ [例3]: "班长"与本身的主码"学号"相对应
 - "班长"是外码
 - 学生关系既是参照关系也是被参照关系

- ❖ 关系*R*和*S*不一定是不同的关系
- ❖ 目标关系S的主码K_s和参照关系的外码F必须定义在同一个(或一组)域上
- ❖ 外码并不一定要与相应的主码同名 当外码与相应的主码属于不同关系时,往往取相同的名 字,以便于识别

3. 参照完整性规则

规则2.2 参照完整性规则

若属性(或属性组)F是基本关系R的外码它与基本关系S的主码 K_s 相对应(基本关系R和S不一定是不同的关系),则对于R中每个元组在F上的值必须为:

- 或者取空值(*F*的每个属性值均为空值)
- ■或者等于S中某个元组的主码值

参照完整性规则(续)

[例1]:

学生关系中每个元组的"专业号"属性只取两类值:

- (1) 空值,表示尚未给该学生分配专业
- (2) 非空值,这时该值必须是专业关系中某个元组的

"专业号"值,表示该学生不可能分配一个不存在的

专业

参照完整性规则(续)

〔例2〕:

选修(学号,课程号,成绩)

"学号"和"课程号"可能的取值:

- (1) 选修关系中的主属性,不能取空值
- (2) 只能取相应被参照关系中已经存在的主码值

参照完整性规则(续)

例3):

学生(学号,姓名,性别,专业号,年龄,班长)

"班长"属性值可以取两类值:

- (1) 空值,表示该学生所在班级尚未选出班长
- (2) 非空值,该值必须是本关系中某个元组的学号值

关系的完整性(续)

- 2.3.1关系的三类完整性约束
- 2.3.2 实体完整性
- 2.3.3 参照完整性
- 2.3.4 用户定义的完整性

2.3.4 用户定义的完整性

- ❖针对某一具体关系数据库的约束条件,反映某一具体应用所涉及的数据必须满足的语义要求
- ❖关系模型应提供定义和检验这类完整性的机制, 以便用统一的、系统的方法处理它们,而不要由 应用程序承担这一功能

用户定义的完整性(续)

例:

课程(课程号,课程名,学分)

- "课程号"属性必须取唯一值
- 非主属性"课程名"也不能取空值
- "学分"属性只能取值{1,2,3,4}

数据库系统概论 An Introduction to Database System

第二章 关系数据库(续)

第二章 关系数据库

- 2.1 关系模型概述
- 2.2 关系数据结构
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

2.4 关系代数

- ❖ 概述
- * 传统的集合运算
- * 专门的关系运算

概述

表2.4 关系代数运算符

运算	符	含义	运算	符	含义
集合运算符	- ∩ ×	并 差 交 笛卡尔积	比较运算符		大于等于 大于等于 小于等于 等于 不等于

概 述(续)

表2.4 关系代数运算符(续)

运算符	含义		运算符	含义	
专门的关系运算符	σ π ×	选择 投影 连接 除	逻辑运算符	「 < >	非与或

2.4 关系代数

- ❖ 概述
- * 传统的集合运算
- * 专门的关系运算

1. 并(Union)

◆R和S

- 具有相同的目n (即两个关系都有n个属性)
- 相应的属性取自同一个域(同质)

***** *R* ∪ *S*

■ 仍为n目关系,由属于R或属于S的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

并(续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	С
a_1	b_2	c_2
a_1	b_3	c_2

$R \cup S$		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
a_1	b_3	c_2

2. 差 (Difference)

- ◆R和S
 - 具有相同的目*n*
 - 相应的属性取自同一个域

- **♦** R S
 - 仍为n目关系,由属于R而不属于S的所有元组组成 $R-S=\{t|t\in R\land t\notin S\}$

差(续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	С
a_1	b_2	c_2
a_1	b_3	c_2
	b_2	

R-S		
A	В	C
a_1	b_1	c_1

3. 交(Intersection)

◆ R和S

- 具有相同的目*n*
- 相应的属性取自同一个域

◆ R∩S

■ 仍为n目关系,由既属于R又属于S的元组组成 $R \cap S = \{ t | t \in R \land t \in S \}$ $R \cap S = R - (R - S)$

交 (续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	С
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

$R \cap S$		
A	В	С
a_1	b_2	c_2
a_2	b_2	c_1

4. 笛卡尔积(Cartesian Product)

- ❖严格地讲应该是广义的笛卡尔积(Extended Cartesian Product)
- **❖**R: *n*目关系,*k*₁个元组
- ❖S: m目关系,k₂个元组
- ◆ R×S
 - 列: (*n*+*m*) 列元组的集合
 - 元组的前n列是关系R的一个元组
 - 后 m 列是关系 S 的一个元组
 - 行: $k_1 \times k_2$ 个元组
 - $R \times S = \{t_r t_s | t_r \in R \land t_s \in S\}$

交 (续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	С
a_1	h	
	b_2	c_2
a_1	b_2 b_3 b_2	c_2

$R \times S$					
R.A	R.B	R.C	S.A	S.B	S.C
a_1	b_1	c_1	a_1	b_2	c_2
a_1	b_1	c_1	a_1	b_3	c_2
a_1	b_1	c_1	a_2	b_2	c_1
a_1	b_2	c_2	a_1	b_2	c_2
a_1	b_2	c_2	a_1	b_3	c_2
a_1	b_2	c_2	a_2	b_2	c_1
a_2	b_2	c_1	a_1	b_2	c_2
a_2	b_2	c_1	a_1	b_3	c_2
a_2	b_2	c_1	a_2	b_2	c_1

2.4 关系代数

- ❖ 概述
- ❖ 传统的集合运算
- * 专门的关系运算

2.4.2 专门的关系运算

先引入几个记号

(1) $R, t \in R, t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

它的一个关系设为R

t∈R表示t是R的一个元组

t[A]则表示元组t中相应于属性 A_i 的一个分量

(2) A, t[A], \overline{A}

若 $A=\{A_{i1}, A_{i2}, ..., A_{ik}\}$, 其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 $A_1, A_2, ..., A_n$ 中的一部分,则A称为属性列或属性组。

 $t[A]=(t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 表示元组t在属性列A上诸分量的集合。

A则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩 余的属性组。

(3) $\widehat{t_r} t_s$

R为n目关系,S为m目关系。

 $t_r \in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。

 $t_{r}t_{s}$ 是一个n+m列的元组,前n个分量为R中的一个n元组,后m个分量为S中的一个m元组。

(4) 象集**Z**_x

给定一个关系R(X, Z),X和Z为属性组。

当*t*[X]=x时,x在R中的象集(Images Set)为:

 $\mathbf{Z}_{\mathbf{x}} = \{t[\mathbf{Z}] | t \in \mathbb{R}, t[\mathbf{X}] = \mathbf{x}\}$

它表示R中属性组X上取值为x的诸元组在Z上分量的集合

R

x_1	Z_1
x_1	Z_2
x_1	Z_3
x_2	Z_2
x_2	Z_3
x_3	Z_1
x_3	Z_3

❖x₁在R中的象集

$$Z_{x1} = \{Z1, Z2, Z3\},$$

❖x₂在R中的象集

$$Z_{x2} = \{Z2, Z3\},$$

 $*x_3$ 在R中的象集

$$Z_{x3} = \{Z1, Z3\}$$

象集举例

- ❖ 选择
- * 投影
- ❖ 连接
- 除

4) 学生-课程数据库: 学生关系Student、课程关系Course和选修关系SC

Student

 学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
200215121	李勇	男	20	CS
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

Course

 课程号	课程名	 先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL语言	6	4

SC

	课程号	成绩
Sno	Cno	Grade
200215121	1	92
200215121	2	85
200215121	3	88
200215122	2	90
200215122	3	80

1. 选择(Selection)

- ❖ 1) 选择又称为限制(Restriction)
- *2) 选择运算符的含义
 - 在关系R中选择满足给定条件的诸元组

$$\sigma_{\mathsf{F}}(R) = \{t | t \in R \land F(t) = '\bar{\mathbf{A}}'\}$$

- F: 选择条件是一个逻辑表达式,基本形式: $X_1 \Theta Y_1$
- *3) 选择运算是从是从行的角度进行的运算

选择(续)

[例1] 查询信息系(IS系)全体学生 $\sigma_{Sdept = 'IS'}$ (Student) 或 $\sigma_{5 = 'IS'}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
200215122	刘晨	女	19	IS
200215125	张立	男	19	IS

选择(续)

[例2] 查询年龄小于20岁的学生

 $\sigma_{\text{Sage} < 20}(\text{Student})$

或 $\sigma_{4<20}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

2. 投影(Projection)

- ❖1)投影运算符的含义
 - 从*R*中选择出若干属性列组成新的关系

$$\pi_A(R) = \{ t[A] \mid t \in R \}$$

A: R中的属性列

2. 投影(Projection)

◆2)投影操作主要是从列的角度进行运算

但投影之后不仅取消了原关系中的某些列,而且还可 能取消某些元组(避免重复行)

投影(续)

例3] 查询学生的姓名和所在系即求Student关系上学生姓名和所在系两个属性上的投影 π_{Sname, Sdept}(Student) 或 π_{2, 5}(Student)

IS

张立

投影(续)

[例4] 查询学生关系Student中都有哪些系 π_{Sdept}(Student)

结果:

Sdept

CS

IS

MA

3. 连接(Join)

- ❖ 1) 连接也称为θ连接
- * 2) 连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定条件的元组

$$R \bowtie_{A \theta B} S = \{ \widehat{t_{\mathbf{r}} t_{\mathbf{s}}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] \theta t_{\mathbf{s}}[B] \}$$

- \triangleright A和B: 分别为R和S上度数相等且可比的属性组
- ▶θ: 比较运算符
- 连接运算从R和S的广义笛卡尔积R×S中选取(R关系) 在A属性组上的值与(S关系)在B属性组上值满足比较关系的元组

- ❖3)两类常用连接运算
 - 等值连接(equijoin)
 -)什么是等值连接θ为"="的连接运算称为等值连接
 - ▶等值连接的含义

从关系*R*与*S*的广义笛卡尔积中选取*A、B*属性值相等的那些元组,即等值连接为:

$$R \bowtie S = \{ \widehat{t_{\mathbf{r}}t_{\mathbf{s}}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] = t_{\mathbf{s}}[B] \}$$

- 自然连接(natural join)
 - 自然连接是一种特殊的等值连接
 - ▶两个关系中进行比较的分量必须是相同的属性组(公共属性组)
 - ▶在结果中把重复的属性列去掉

$$R \cap S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$$

❖4)一般的连接操作是从**行**的角度进行运算。

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

❖ [例5]关系*R*和关系*S* 如下所示:

R		
A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

S	
В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

一般连接 $R \underset{c < E}{\bowtie} S$ 的结果如下:

 $R \bowtie S$ $C \leq E$

A	R.B	С	S.B	E
a_1	b_1	5	b_2	7
a_1	b_1	5	b_3	10
a_1	b_2	6	b_2	7
a_1	b_2	6	b_3	10
a_2	b_3	8	b_3	10

等值连接 $R \bowtie S$ 的结果如下:

A	R.B	С	S.B	E
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

自然连接 $R \bowtie S$ 的结果如下:

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2

*外连接

如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做外连接(OUTER JOIN)

❖ 左外连接

■ 如果只把左边关系R中要舍弃的元组保留就叫做左外连接(LEFT OUTER JOIN或LEFT JOIN)

❖ 右外连接

如果只把右边关系S中要舍弃的元组保留就叫做右外连接(RIGHT OUTER JOIN或RIGHT JOIN)

A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

S

В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

连接(续)

下图是例5中关系R和关系S的外连接

A	В	C	Е
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL
NULL	b_5	NULL	2

(a) 外连接

R				B					
A	В		С	2大+大/大士					
a_1	b_1		5		连接(续)				
a_1	b_2		6						
a_2	b_3		8	图(b)是关系 R 和关系 S 的左外连接					
a_2	b_4		12						
				A	В	C	E	A	Ì
S				a_1	b_1	5	3	a_1	ŀ
—	Т	E		a_1	b_2	6	7	a_1	ŀ
	+	E		a_2	b_3	8	10	a_2	ŀ
b_1		3		a_2	b_3	8	2	a_2	ŀ
b_2		7		a_2	b_4	12	NULL	NULL	ŀ
b_3		10							
b_3		2		(b) 左外连接 (d					
b_5		2						An Introduc	tior

E,图(c)是右外连接

В CЕ 5 3 b_1 b_2 6 b_3 8 10 b_3 8 NULL 2 b_5

c) 右外连接

An Introduction to Database System

4. 除(Division)

给定关系R(X, Y)和 $S(Y, \Delta)$,其中X,Y,Z为属性组。 R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。 R与S的除运算得到一个新的关系P(X),

P是R中满足下列条件的元组在 X 属性列上的投影:

元组在X上分量值x的象集 Y_x 包含S在Y上投影的集合,记作:

$$R \div S = \{ t_{r} [X] \mid t_{r} \in R \land \pi_{Y} (S) \subseteq Y_{X} \}$$

$$Y_x$$
: $R + X$ 上分量值为 x 的象集, $x = t_r[X]$

除(续)

❖2)除操作是同时从行和列角度进行运算

除(续)

[例6]设关系R、S分别为下图的(a)和(b), $R\div S$ 的结果为图(c)

R		
A	В	С
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	c_6
a_1	b_2	c_3
a_4	b_6	c_6
a_2	b_2	c_3
a_1	b_2	c_1
	(a)	

S		
В	С	D
b_1	c_2	d_1
b_2	c_1	d_1
b_2	c_3	d_2
	(b)	
$R \div S$		
A		
a_1		

(c)

分析

- * 在关系R中,A可以取四个值{a1,a2,a3,a4} a_1 的象集为 { (b_1, c_2) , (b_2, c_3) , (b_2, c_1) } a_2 的象集为 { (b_3, c_7) , (b_2, c_3) } a_3 的象集为 { (b_4, c_6) } a_4 的象集为 { (b_6, c_6) }
- **❖** S在(B, C)上的投影为 {(b1, c2), (b2, c1), (b2, c3)}
- * 只有 a_1 的象集包含了S在(B, C)属性组上的投影 所以 $R \div S = \{a_1\}$

5. 综合举例

以学生-课程数据库为例 (P56)

[例7] 查询至少选修1号课程和3号课程的学生号码

首先建立一个临时关系K:

Cno

1

3

然后求: **TT**_{Sno,Cno}(SC)÷*K*

❖ 例 7 续 π _{Sno,Cno} (SC)	Sno	Cno
	200215121	1
200215121象集{1,2,3} 200215122象集{2,3}	200215121	2
$K=\{1, 3\}$	200215121	3
于是: π _{Sno,Cno} (SC)÷ <i>K</i> ={200215121}	200215122	2
	200215122	3

[例 8] 查询选修了2号课程的学生的学号。

```
\pi_{Sno} (\sigma_{Cno='2'} (SC))
= { 200215121, 200215122}
```

[例9] 查询至少选修了一门其直接先行课为5号课程的 的学生姓名

$$\pi_{Sname}(\sigma_{Cpno='5'}(Course \bowtie SC \bowtie Student))$$

或

$$\pi_{\text{Sname}}(\sigma_{\text{Cpno='5'}}(\text{Course}) \bowtie \text{SC} \bowtie \pi_{\text{Sno, Sname}}(\text{Student}))$$

或

$$\pi_{\text{Sname}} (\pi_{\text{Sno}} (\sigma_{\text{Cpno='5'}} (\text{Course}) \bowtie \text{SC}) \bowtie \pi_{\text{Sno, Sname}} (\text{Student}))$$

[例10] 查询选修了全部课程的学生号码和姓名。

$$\pi_{\text{Sno, Cno}} \text{ (SC) } \div \pi_{\text{Cno}} \text{ (Course)} \bowtie \pi_{\text{Sno, Sname}} \text{ (Student)}$$

小结

- * 关系代数运算
 - 关系代数运算并、差、交、笛卡尔积、投影、选择、连接、除
 - 基本运算并、差、笛卡尔积、投影、选择
 - 交、连接、除 可以用5种基本运算来表达 引进它们并不增加语言的能力,但可以简化表达

- *关系代数表达式
 - 关系代数运算经有限次复合后形成的式子
- ◆典型关系代数语言
 - ISBL (Information System Base Language)
 - ➤由IBM United Kingdom研究中心研制
 - ➤用于PRTV (Peterlee Relational Test Vehicle) 实验系统

第二章 关系数据库

- 2.1 关系模型概述
- 2.2 关系数据结构
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

第二章 关系数据库

- 2.1 关系模型概述
- 2.2 关系数据结构
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

2.6 小结

- * 关系数据库系统是目前使用最广泛的数据库系统
- ❖ 关系数据库系统与非关系数据库系统的区别:
 - 关系系统只有"表"这一种数据结构;
 - 非关系数据库系统还有其他数据结构,以及对这些数据结构的操作

- *关系数据结构
 - 关系
 - 域
 - 笛卡尔积
 - 关系
 - 关系,属性,元组
 - 候选码, 主码, 主属性
 - 基本关系的性质
 - 关系模式
 - 关系数据库

- * 关系操作
 - 查询
 - ▶选择、投影、连接、除、并、交、差
 - 数据更新
 - ▶插入、删除、修改

- *关系的完整性约束
 - 实体完整性
 - ▶参照完整性
 - ▶外码
 - 用户定义的完整性

- *关系数据语言
 - 关系代数语言
 - 关系演算语言
 - ▶元组关系演算语言 ALPHA
 - ▶域关系演算语言 QBE

下课了。。。

休息一会儿。。。