OBJECTIVE

- 1. APPLYING RANDOM FOREST WITH BOW VECTORIZATION
 - FINDING THE BEST HYPERPARAMETER USING GRIDSEARCHCV WITH TRAIN DATA AND CROSS-VALIDATION DATA BY PLOTTING THE RESLUTS OF VAROIUS TRAIN DATA AND CROSS VALIDATION DATA
 - USING THE APROPRIATE VALUE OF HYPERPARAMETER, TESTING ACCURACY ON TEST DATA USING F1-SCORE
 - PLOTTING THE CONFUSION MATRIX TO GET THE PRECISOIN ,RECALL VALUE WITH HELP OF HEATMAP
 - PRINTING THE TOP 30 MOST IMPORTANT FEATURES

```
In [0]: from sklearn.model_selection import train_test_split  #importin
  g the necessary libraries
  from sklearn.model_selection import RandomizedSearchCV
  from sklearn.datasets import *
  from sklearn import naive_bayes
  from sklearn.feature_extraction.text import CountVectorizer
  from sklearn.feature_extraction.text import TfidfVectorizer
  import numpy as np
  import pandas as pd
  from sklearn import *
  import warnings
  warnings.filterwarnings("ignore")
  from sklearn.ensemble import RandomForestClassifier
```

In [20]: from google.colab import drive
 drive.mount('/content/gdrive')#geeting the content from the google driv
 e

Drive already mounted at /content/gdrive; to attempt to forcibly remoun
t, call drive.mount("/content/gdrive", force_remount=True).

```
In [0]: final_processed_data=pd.read csv("gdrive/My Drive/final new data.csv")#
         loading the preprocessed data with 100k points into dataframe
In [22]: # getting the counts of 0 and 1 in "SCORE" column to know whether it is
          unbalanced data or not
         count of 1=0
         count of 0=0
         for i in final processed data['Score']:
            if i==1:
             count of 1+=1
            else:
             count of 0+=1
         print(count of 1)
         print(count of 0)
         #it is an imbalanced dataset
         88521
         11479
In [0]: #spliiting the data into train and test data
         x train,x test,y train,y test=model selection.train test split(final pr
         ocessed data['CleanedText'].values,final processed data['Score'].values
         ,test size=0.3,shuffle=False)
In [92]: vectorizer=CountVectorizer(min df=2)#building the vertorizer with word
          counts equal and more then 2
         train bow=vectorizer.fit transform(x train)#fitting the model on traini
         ng data
         print(train bow.shape)
         (70000, 16382)
In [93]: test bow=vectorizer.transform(x test)#fitting the bow model on test dat
         print("shape of x test after bow vectorization ",test bow.shape)
         shape of x_test after bow vectorization (30000, 16382)
```

```
In [0]:
In [94]: #biudling the model
         #using time series split method for cross-validation score
         from sklearn.model selection import TimeSeriesSplit
         tscv = TimeSeriesSplit(n splits=5)
         rf=RandomForestClassifier(criterion='gini',class weight={1:.5,0:.5})
         tuned parameters=[{'max depth':[61,64,68,73,77,80],'n estimators':[21,3
         0,35,40,45,50]}]
         #applying the model of decision tree and using gridsearchev to find the
          best hyper parameter
         %time
         from sklearn.model selection import GridSearchCV
         model = GridSearchCV(rf, tuned parameters, scoring = 'f1', cv=tscv,n jo
         bs=-1)#building the gridsearchcv model
         CPU times: user 4 μs, sys: 0 ns, total: 4 μs
         Wall time: 7.87 µs
In [95]: %time
         model.fit(train bow, y train)#fiitting the training data
         CPU times: user 18.7 s, sys: 208 ms, total: 18.9 s
         Wall time: 25min 2s
Out[95]: GridSearchCV(cv=TimeSeriesSplit(max train size=None, n splits=5),
                error score='raise-deprecating',
                estimator=RandomForestClassifier(bootstrap=True, class weight=
         {1: 0.5, 0: 0.5},
                     criterion='gini', max depth=None, max features='auto',
                     max leaf nodes=None, min impurity decrease=0.0,
                     min impurity split=None, min samples leaf=1,
                     min samples split=2, min weight fraction leaf=0.0,
                     n estimators='warn', n jobs=None, oob score=False,
                     random state=None, verbose=0, warm start=False),
                fit params=None, iid='warn', n jobs=-1,
                param grid=[{'max depth': [61, 64, 68, 73, 77, 80], 'n estimator
         s': [21, 30, 35, 40, 45, 50]}],
```

pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
scoring='f1', verbose=0)

In [96]: print(model.best_estimator_)#printing the best_estimator

In [106]: print(model.score(test_bow,y_test))#checking the score on test_Data

0.9380587825900744

In [107]: results=pd.DataFrame(model.cv_results_)# getting varoius cv_scores and
 train_scores various values of hyperparameter given as parameter and s
 toring it in a dataframe
 results#printing the dataframe

Out[107]:

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
0	7.693781	0.126196	0.943111	0.970668	61
1	10.929001	0.169017	0.942684	0.969995	61

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
2	12.851338	0.198344	0.942826	0.970563	61
3	14.822200	0.223285	0.942867	0.970194	61
4	16.404032	0.246995	0.942496	0.970630	61
5	18.451207	0.272454	0.942391	0.970166	61
6	8.061914	0.127674	0.942987	0.971677	64
7	11.573845	0.175007	0.942734	0.971318	64
8	13.473842	0.201682	0.942827	0.972150	64

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
9	15.423412	0.228173	0.943077	0.972066	64
10	17.217195	0.250988	0.942758	0.971803	64
11	19.453093	0.278592	0.942536	0.971756	64
12	8.525478	0.132627	0.943196	0.973631	68
13	12.238119	0.175908	0.943114	0.973612	68
14	14.318984	0.208440	0.943126	0.973527	68
15	16.243402	0.234396	0.943139	0.973558	68

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
16	18.247492	0.260157	0.943030	0.973599	68
17	20.666725	0.288669	0.942924	0.973688	68
18	9.186626	0.135550	0.943606	0.975151	73
19	13.311219	0.186319	0.943350	0.975634	73
20	15.180538	0.211716	0.943150	0.975475	73
21	17.508943	0.241048	0.943122	0.976006	73
22	19.411326	0.268782	0.943314	0.975545	73

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
23	21.840919	0.297235	0.943257	0.975653	73
24	9.778775	0.141616	0.943868	0.977652	77
25	13.969068	0.193177	0.943720	0.977494	77
26	16.430060	0.223109	0.944037	0.977108	77
27	18.301833	0.246289	0.943744	0.977534	77
28	20.481514	0.276714	0.943328	0.976954	77
29	22.827447	0.306357	0.943203	0.977366	77

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
30	9.886808	0.141406	0.944000	0.978311	80
31	14.167045	0.194468	0.943674	0.977792	80
32	16.406874	0.221186	0.943401	0.978075	80
33	18.961226	0.253323	0.943534	0.978649	80
34	21.339856	0.281226	0.943406	0.978393	80
35	22.205270	0.291927	0.943865	0.978379	80

36 rows × 22 columns

```
In [0]: results=results.round(decimals=2)# rounding off to 2 decimal places
results['cv_error_score']=100-results['mean_test_score']# generating a
    new colum for getting cv_Errorscores and using it in pivottable
```

PLOTTING THE HEATMAP WITH HYPERPARAMETERS FOR CV_ERROR SCORE

param_n_estimators	21	30	35	40	45	50
param_max_depth						
61	5.69	5.73	5.72	5.71	5.75	5.76
64	5.70	5.73	5.72	5.69	5.72	5.75
68	5.68	5.69	5.69	5.69	5.70	5.71
73	5.64	5.66	5.68	5.69	5.67	5.67
77	5.61	5.63	5.60	5.63	5.67	5.68
80	5.60	5.63	5.66	5.65	5.66	5.61

In [114]: print(model.best_estimator_)#printing the best_estimator

FROM THE ABOVE HEATMAPS RESULTS FOR CV DATA, WE FOUND THAT BEST HYPERPARAMETERS AS MAX_DEPTH=77 AND MIN_SAMPLE_SPLIT=35

PLOTTING THE ROC CURVE FOR GETTING AUC SCORE

```
In [116]: rf=RandomForestClassifier(criterion='gini', class weight={1:.5,0:.5}, max
          depth=77 ,n estimators=35)
          rf.fit(train bow,y train)#fitting the model
          probs = rf.predict proba(test bow)
          preds = probs[:,1]
          fpr, tpr, threshold = metrics.roc curve(y test, preds)
          roc auc = metrics.auc(fpr, tpr)
          import matplotlib.pyplot as plt
          plt.title('Receiver Operating Characteristic')
          plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc auc)
          plt.legend(loc = 'best')
          plt.plot([0, 1], [0, 1], 'r--')
          plt.xlim([0, 1])
          plt.ylim([0, 1])
          plt.ylabel('True Positive Rate')
          plt.xlabel('False Positive Rate')
          plt.show()
```



```
y'
'would' 'receiv' 'refund' 'horribl' 'return' 'worst' 'best' 'threw'
'terribl' 'love' 'aw' 'great' 'disappoint']
```

REPRESENTING TOP IMPORTANT FEATURES USING WORDCLOUD LIBRARY

TESTING OUR MODEL ON TEST DATA AND CHECKING ITS PRECISION, RECALL, F1_FCORE

```
In [121]: #Testing Accuracy on Test data
import seaborn as sns #importing seaborn as sns
from sklearn.metrics import *#importing varoius metrics from sklearn
#building the model
y_pred = rf.predict(test_bow)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*1
00))#printing accuracy
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
```

```
#printing precision score
          print("Recall on test set: %0.3f"%(recall score(y test, y pred))) #prin
          ting recall
          print("F1-Score on test set: %0.3f"%(f1 score(y test, y pred)))
          print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
          df cm = pd.DataFrame(confusion matrix(y test, y_pred), range(2),range(2)
          )) #generating the heatmap for confusion matrix
          sns.set(font scale=1.4)#for label size
          sns.heatmap(df cm, annot=True,annot kws={"size": 16}, fmt='q',cmap="YlG
          nBu")
          Accuracy on test set: 88.440%
          Precision on test set: 0.884
          Recall on test set: 1.000
          F1-Score on test set: 0.938
          Confusion Matrix of test set:
           [ [TN FP]
           [FN TP] ]
Out[121]: <matplotlib.axes. subplots.AxesSubplot at 0x7f7d023aa550>
```


BOW VECTORIZATION FOR RANDOM FOREST IS COMPLETED

OBJECTIVE

- 1. APPLYING GBDT WITH BOW VECTORIZATION
 - FINDING THE BEST HYPERPARAMETER USING GRIDSEARCHCV WITH TRAIN DATA AND CROSS-VALIDATION DATA BY PLOTTING THE RESLUTS OF VAROIUS TRAIN DATA AND CROSS VALIDATION DATA
 - USING THE APROPRIATE VALUE OF HYPERPARAMETER, TESTING ACCURACY ON TEST DATA USING F1-SCORE
 - PLOTTING THE CONFUSION MATRIX TO GET THE PRECISOIN ,RECALL VALUE WITH HELP OF HEATMAP

PRINTING THE TOP 30 MOST IMPORTANT FEATURES

```
In [79]: from xgboost import XGBClassifier
         #biudling the model
         #using time series split method for cross-validation score
         from sklearn.model selection import TimeSeriesSplit
         tscv = TimeSeriesSplit(n splits=5)
         xg=XGBClassifier(n jobs=-1)
         tuned parameters=[{'max depth':[11,15,20,24,27,30],'n estimators':[21,3
         0,35,40,45,50]}]
         #applying the model of decision tree and using gridsearchev to find the
          best hyper parameter
         %time
         from sklearn.model selection import GridSearchCV
         model = GridSearchCV(xq, tuned parameters, scoring = 'f1', cv=tscv,n jo
         bs=-1)#building the gridsearchcv model
         CPU times: user 4 μs, sys: 0 ns, total: 4 μs
         Wall time: 7.87 µs
In [81]: %time
         model.fit(train bow, y train)#fiitting the training data
         CPU times: user 1min 37s, sys: 379 ms, total: 1min 38s
         Wall time: 46min 2s
Out[81]: GridSearchCV(cv=TimeSeriesSplit(max train size=None, n splits=5),
                error score='raise-deprecating',
                estimator=XGBClassifier(base score=0.5, booster='gbtree', colsam
         ple bylevel=1,
                colsample bytree=1, gamma=0, learning rate=0.1, max delta step=
         Θ,
                max depth=3, min child weight=1, missing=None, n estimators=100,
                n jobs=-1, nthread=None, objective='binary:logistic',
                random state=0, reg alpha=0, reg lambda=1, scale pos weight=1,
                seed=None, silent=True, subsample=1),
                fit params=None, iid='warn', n jobs=-1,
                param grid=[{'max depth': [11, 15, 20, 24, 27, 30], 'n estimator
         s': [21, 30, 35, 40, 45, 50]}],
```

pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
scoring='f1', verbose=0)

In [82]: print(model.best_estimator_)#printing the best_estimator

Out[83]:

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
0	8.378044	0.223508	0.945871	0.957951	11
1	11.744793	0.234820	0.946986	0.960688	11
2	13.630929	0.243391	0.947529	0.962423	11

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
3	15.404321	0.254485	0.948213	0.963805	11
4	17.146619	0.261241	0.948735	0.965392	11
5	19.081864	0.270164	0.949192	0.967105	11
6	11.781351	0.240545	0.947026	0.963850	15
7	16.268544	0.254496	0.948179	0.967263	15
8	18.858186	0.269509	0.948571	0.969465	15
9	21.280204	0.278331	0.949295	0.971127	15

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
10	24.122753	0.291332	0.949752	0.973010	15
11	26.368965	0.303199	0.950301	0.974599	15
12	15.796100	0.258495	0.947925	0.970377	20
13	22.099479	0.278792	0.948880	0.974037	20
14	25.815812	0.296917	0.949754	0.976184	20
15	29.185396	0.311018	0.950857	0.977981	20
16	32.608864	0.330868	0.951227	0.979562	20

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
17	36.093679	0.347879	0.951690	0.980947	20
18	19.114895	0.268711	0.948154	0.973932	24
19	26.965733	0.301868	0.949403	0.978179	24
20	31.717748	0.318615	0.950061	0.979911	24
21	35.838385	0.337649	0.950983	0.981705	24
22	39.751508	0.354716	0.951516	0.983142	24
23	43.892469	0.376672	0.951935	0.984425	24

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
24	21.777656	0.279111	0.948460	0.976372	27
25	30.553274	0.310690	0.949773	0.980333	27
26	35.477301	0.333657	0.950606	0.982152	27
27	40.452885	0.357649	0.951335	0.983875	27
28	45.264877	0.379433	0.952002	0.985435	27
29	49.976577	0.401949	0.952426	0.986562	27
30	24.410512	0.281754	0.948172	0.978369	30

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
31	33.874339	0.324059	0.949829	0.982440	30
32	39.416312	0.350812	0.950284	0.984381	30
33	44.859274	0.370497	0.951061	0.985891	30
34	50.118966	0.398341	0.951202	0.987295	30
35	51.189381	0.393930	0.951405	0.988397	30

36 rows × 22 columns

```
In [0]: results['mean_test_score']=results['mean_test_score']*100
    results=results.round(decimals=2)
    results['cv_error_score']=100-results['mean_test_score']
```

PLOTTING THE HEATMAP WITH HYPERPARAMETERS FOR CV_ERROR SCORE

Out[85]:

param_n_estimators	21	30	35	40	45	50
param_max_depth						
11	5.41	5.30	5.25	5.18	5.13	5.08
15	5.30	5.18	5.14	5.07	5.02	4.97
20	5.21	5.11	5.02	4.91	4.88	4.83
24	5.18	5.06	4.99	4.90	4.85	4.81
27	5.15	5.02	4.94	4.87	4.80	4.76
30	5.18	5.02	4.97	4.89	4.88	4.86

```
In [86]: import seaborn as sns
sns.heatmap(test_score_heatmap,annot=True,annot_kws={"size": 15}, fmt=
'g',linewidths=.3)
```

Out[86]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7d02f90a20>

In [87]: print(model.best_estimator_)#printing the best_estimator

FROM THE ABOVE HEATMAPS RESULTS FOR CV DATA, WE FOUND THAT BEST HYPERPARAMETERS AS MAX_DEPTH=27 AND N ESTIMATORS=50

PLOTTING THE ROC CURVE FOR GETTING AUC SCORE

```
In [131]: xg=XGBClassifier(n jobs=-1,max depth=27 ,n estimators=50)
          xg.fit(train bow,y train)#fitting the model
          probs = xg.predict proba(test bow)
          preds = probs[:,1]
          fpr, tpr, threshold = metrics.roc curve(y test, preds)
          roc auc = metrics.auc(fpr, tpr)
          import matplotlib.pyplot as plt
          plt.title('Receiver Operating Characteristic')
          plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc auc)
          plt.legend(loc = 'best')
          plt.plot([0, 1], [0, 1], 'r--')
          plt.xlim([0, 1])
          plt.ylim([0, 1])
          plt.ylabel('True Positive Rate')
          plt.xlabel('False Positive Rate')
          plt.show()
```



```
y'
'would' 'receiv' 'refund' 'horribl' 'return' 'worst' 'best' 'threw'
'terribl' 'love' 'aw' 'great' 'disappoint']
```

REPRESENTING TOP IMPORTANT FEATURES USING WORDCLOUD LIBRARY


```
In [133]: y_pred = xg.predict(test_bow)
    print("Accuracy on test set: %0.3f%"%(accuracy_score(y_test, y_pred)*1
    00))#printing accuracy
    print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
    #printing precision score
    print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred))) #printing recall
    print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
    print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
    df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
    #generating the heatmap for confusion matrix
    sns.set(font_scale=1.4)#for label size
    sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g',cmap="YlG nBu")
```

Accuracy on test set: 90.103%
Precision on test set: 0.907
Recall on test set: 0.988
F1-Score on test set: 0.946
Confusion Matrix of test set:
[[TN FP]
[FN TP]]

Out[133]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7d023f4908>

