

Ch. 3 : Récursivité / Diviser pour régner

Récursivité

Récursivité

Récursivité

Observée fréquemment

dans la nature chou romanesco, nautiles

en maths
 fractales, flocon de Koch
 éponge de Menger

en informatique
 algorithmes
 structures de données arborescentes

Proche de la notion de *suite définie par récurrence* en maths :

$$\begin{cases} u_0 = 2 & D\'{e}finition du cas de base \\ u_{n+1} = 2u_n + 3 & D\'{e}finition du cas g\'{e}n\'{e}ral \end{cases}$$

- Une fonction récursive est une fonction qui s'appelle elle-même, sur des entrées plus petites
 - ⇒ Intérêt : écrire plus facilement certaines fonctions
 - ⇒ Pourquoi sur des entrées plus petites?
 - ⇒ Ne jamais oublier le cas de base / condition d'arrêt!
- Exemple : la fonction *factorielle* définie sur \mathbb{N} :

$$\begin{cases} 0! = 1 \\ n! = n \times (n-1)! \end{cases}$$

Implémentation en Python :

```
def factorielle(n):
    if n == 0:
        return 1
    else:
        return n * factorielle(n-1)

print(factorielle(3)) --> 6
print(factorielle(5)) --> 120
print(factorielle(1)) --> 1
print(factorielle(0)) --> 1
print(factorielle(-1)) --> Boucle infinie !!!
```

Comment corriger l'erreur simplement ?

Remarque: cette version sans 'else' est aussi valide:

```
def factorielle(n):
    if n == 0:  # condition d'arrêt / cas de base
        return 1

    return n * factorielle(n-1)  # cas général
```

⚠ La condition d'arrêt doit toujours être testée <u>avant</u> l'appel récursif! Comparez avec le code suivant :

```
def factorielle(n):
    return n * factorielle(n-1)  # cas général

    if n == 0:  # condition d'arrêt / cas de base
        return 1
```

⇒ Plus sûr de laisser le cas général dans le 'else'

Principe : calcul de factorielle(3)

1 6

Pile des appels

return 1

Chaque appel récursif produit un nouveau contexte d'exécution qui lui est propre :

- L'adresse mémoire de la fonction appelante
- État de la mémoire
- Valeur des paramètres, des variables

La pile sert à sauvegarder temporairement les contextes d'exécution des appels précédents

- Elle est gérée automatiquement par le système d'exploitation
- Elle a une capacité limitée et peut déborder si on fait trop d'appels!
 - ⇒ cf. erreur avec factorielle(-1)

Le site pythontutor.com permet de visualiser ce fonctionnement de manière interactive <u>Exemple de la factorielle</u>

On peut visualiser la pile des appels avec le débuggeur de VS Code (ou tout autre éditeur) :

```
def factorielle(n):
> VARIABLES
                                                        1
                                                                  if n == 0:
                                                         2
 ESPION
                                                                       return 1

✓ PILE DES APPELS

                              EN PAUSE SUR BREAKPOINT
                                                                  else:
   factorielle
                           rec1_factorielle1.py 5:1
                                                    ▣
                                                                       return n * factorielle(n-1)
   factorielle
                           rec1_factorielle1.py 5:1
   factorielle
                           rec1_factorielle1.py 5:1
                                                              print(factorielle(3))
   <module>
                           rec1_factorielle1.py 7:1
                                                        8
```


Récursions terminale et non terminale

• Une fonction récursive est terminale si l'appel récursif est la seule instruction dans le return :

```
def recursionTerminale(n):
    // ...
    return recursionTerminale(n - 1)
```

Une fonction récursive est non terminale sinon :

```
def recursionNonTerminale(n):
    // ...
    return n + recursionNonTerminale(n - 1)
```

Exemple : la fonction factorielle précédente était non terminale

Récursions terminale et non terminale

Exemple : la fonction factorielle précédente était non terminale

⇒ on peut la transformer simplement en fonction récursive terminale :

```
def factorielle(n, resultat):
    if n == 0:
        return resultat
    else:
        return factorielle(n-1, n * resultat)

factorielle(3,1) # -> 6
```

Avantage: on n'a plus besoin de stocker tous les résultats intermédiaires sur la pile

Récursion non terminale

6

Récursion terminale

CPE LYON 2023

Itératif vs. récursif

Toute fonction récursive peut être transformée en fonction itérative (et réciproquement)

Récursif → Itératif

Demande de gérer manuellement et explicitement une pile

Itératif → Récursif

L'itération peut être remplacée facilement par une récursion terminale

Itératif vs. récursif

Transformation d'une fonction récursive en fonction itération

```
def function non recursive(inputs):
   CALL, HANDLE = 0, 1
   call_stack = [(CALL, inputs)]
   return stack = []
   while call stack:
       action, data = call_stack.pop()
       if action == CALL:
           ... # 4
           call_stack.append((HANDLE, some_data)) # 3
           call_stack.append((CALL, some other data)) # 2
           return_stack.append(some_other_data) # 1
           call stack.append((CALL, some data)) # 1
       else: # HANDLE
           pop items from return stack
           use them to calculate something
           and push that something to return_stack
   return return_stack[-1] # return top value from the return_stack
```

Pile des appels Pile des valeurs de retour

L'ordre des HANDLE / CALL peut varier selon l'algo.

C'est ici qu'on "consomme" les valeurs de la pile de retour

Itératif vs. récursif

Toute fonction récursive peut être transformée en fonction itérative (et réciproquement)

- ✓ Avantages du récursif
 - Fonctions plus lisibles et plus élégantes une fois écrites (ex. Tours de Hanoï)
 - Plus naturel dans les algorithmes qui font intervenir du backtracking ou du diviser pour régner
 - Pile d'exécution gérée automatiquement
- X Inconvénients du récursif
 - Plus difficile à appréhender quand on n'a pas l'habitude
 - Temps d'exécution plus élevé (gestion des appels de fonction et des contextes d'exécution)
 - Dans certains cas, la pile système peut être trop petite

Technique algorithmique consistant à :

- 1. Diviser : découper un problème initial en sous-problèmes
- 2. Régner : résoudre les sous-problèmes (récursivement, ou directement s'ils sont assez petits)
- 3. Combiner : calculer une solution au problème initial à partir des solutions des sous-problèmes

☐ Intérêts :

- Permet de résoudre simplement des problèmes difficiles (ex. : tours de Hanoï)
- Entraîne souvent une meilleure complexité algorithmique
- Facilement parallélisable
- Moins sujet aux problèmes d'arrondis sur les calculs

Exemple: recherche du maximum dans le tableau non trié [17, 11, 33, 25, 18, 6]

Algorithmes basés sur le principe Diviser pour régner :

- Multiplication de grands entiers : <u>algorithme de Karatsuba</u> $(O(n^{1,585}) \text{ vs } O(n^2))$
- Multiplication de matrices : <u>algorithme de Strassen</u> $(O(n^{2,807}) \text{ vs } O(n^3))$
- Recherche des <u>deux points les plus proches</u> dans un ensemble de points $(O(n \log n) \text{ vs } O(n^2))$
- Tri fusion (cf. suite du cours)
- Tri rapide (cf. suite du cours)
- Transformée de Fourier rapide (FFT)

Comment calculer la complexité d'un algorithme récursif / Diviser pour régner ?

Complexité des algorithmes récursifs

Un premier exemple

Reprenons le problème de la recherche du maximum dans un tableau non trié

- On a un algorithme itératif trivial, de complexité $\Theta(n)$
- On a un algorithme récursif, décrit précédemment. Est-il meilleur que l'algorithme itératif?

Description de l'algorithme récursif :

- cas de base (le tableau contient 1 seul ou 2 éléments) : on retourne le maximum
- cas général : on découpe récursivement le problème en deux sous-problèmes de taille identique
- combinaison des résultats : recherche du maximum de deux éléments

En résumé, si on note T(n) la complexité en temps de cet algorithme :

$$T(n) = \begin{cases} \Theta(1) & \text{si } n \leq 2 \\ 2T(n/2) + \Theta(1) & \text{si } n > 2 \end{cases}$$

$$\Theta(1) : \text{coût de la comparaison de deux éléments}$$

$$\Theta(1) : \text{coût du découpage} + \text{coût de la combinaison}$$

En toute rigueur, dans le cas général, $T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(1)$

Forme générale

Pour de nombreux algorithmes de type Divide and Conquer, le nombre d'opérations effectuées s'écrit selon une équation de récurrence du type T(n) = aT(n/b) + f(n) où :

- $a \ge 1$: nombre de sous-problèmes dans lesquels le problème est divisé à chaque itération
- n/b (avec b > 1): taille de chaque sous-problème
- f(n) est une fonction *positive* : nombre d'opérations pour subdiviser et recombiner les solutions des sous-problèmes

Mais il existe également des algorithmes de type Divide and Conquer dont la complexité s'écrit sous une forme différente

Forme générale

Exemples:

- un algorithme peut découper un problème en sous-problèmes de tailles différentes, par exemple 2/3 vs. 1/3 ; si les étapes de division / recombinaison prennent un temps linéaire, la complexité d'un tel algorithme est $T(n) = T(2n/3) + T(n/3) + \Theta(n)$
- les sous-problèmes ne sont pas nécessairement une fraction constante de la taille du problème original : une version récursive de la *recherche séquentielle* pourrait créer un sous-problème contenant systématiquement un élément de moins que le problème précédent : la complexité de cet algorithme est donc $T(n) = T(n-1) + \Theta(1)$ (exercice)
- On pourrait imaginer un algorithme de complexité $T(n) = 2^n T(n/2) + (2 \cos n)$

Comment résoudre ces relations de récurrence pour obtenir une expression asymptotique O(...)?

1ère méthode : itération

Exemple: Recherche du maximum dans un tableau non trié: $T(n) = 2T(n/2) + \Theta(1)$

D'après cette relation, on a :
$$T(n) = 2T(n/2) + k$$
 (k est une constante)
$$= 2\left(2\left(T(n/4) + k\right)\right) + k$$

$$= 4T(n/4) + 3k$$

$$= 8T(n/8) + 7k$$

$$= ...$$

$$= 2^{i}T\left(n/2^{i}\right) + \left(2^{i} - 1\right) \times k \qquad \text{(où } i = \log_{2} n\text{)}$$

$$= 2^{\log_{2} n} T\left(n/2^{\log_{2} n}\right) + \left(2^{\log_{2} n} - 1\right) \times k$$

$$= n \times T(1) + (n-1) \times k$$

Or T(1) = T(2) = k' (constante). Donc :

$$T(n) = n \times k' + (n-1) \times k = \Theta(n)$$

Exemple: Recherche du maximum dans un tableau non trié: T(n) = 2T(n/2) + k

Exemple: Recherche du maximum dans un tableau non trié: T(n) = 2T(n/2) + k

Exemple: Recherche du maximum dans un tableau non trié: T(n) = 2T(n/2) + k

Exemple: Recherche du maximum dans un tableau non trié: T(n) = 2T(n/2) + k

Exemple : Recherche du maximum dans un tableau non trié : T(n) = 2T(n/2) + k

Quelle est la somme de travail à chaque niveau?

Exemple: Recherche du maximum dans un tableau non trié: T(n) = 2T(n/2) + k

Au total, on a donc : $k + 2k + 4k + 8k + \dots + 2^{\log_2(n) - 1}k + 2^{\log_2 n} \cdot k'$

$$= k(1 + 2 + 4 + 8 + \dots + 2^{\log_2(n)-1}) + n \cdot k'$$

La somme $1+2+4+8+\cdots+2^{\log_2(n)-1}$ est la somme des $\log_2 n$ premiers termes de la suite (u_n) définie par $u_n=2\times u_{n-1}$ et $u_0=1$; il s'agit donc d'une suite *géométrique* (chaque terme est obtenu en multipliant le précédent par une constante), de premier terme 1 et de raison 2.

Par conséquent, cette somme est égale à $1 \times \frac{1-2^{\log_2 n}}{1-2} = 2^{\log_2 n} - 1 = n-1$ (cf. fiche révisions)

On retrouve donc le résultat de la $1^{\text{ère}}$ méthode : $T(n) = (n-1) \cdot k + n \cdot k' = \Theta(n)$

3ème méthode : substitution

2 étapes :

- 1. Estimer la forme de la solution (pas de recette miracle : expérience, intuition...)
- 2. Substituer cette solution dans la relation pour des valeurs plus petites (hypothèse de récurrence) pour trouver les constantes, et vérifier que la solution convient

Exemple : estimer une borne sup. du temps d'exécution pour la recherche du maximum dans un tableau non trié

- à chaque subdivision, les sous-problèmes deviennent 2x plus petits
- \Rightarrow combien de subdivisions en tout ? $\log n$
- Au final, $2^{\log n}$ cas de base, chacun prenant un temps constant
- \Rightarrow on peut donc faire l'hypothèse que T(n) = O(n)

3^{ème} méthode : substitution

Hypothèse : T(n) = O(n), i.e. $T(n) \le cn$ pour un c > 0

Récurrence : On suppose l'hyp. vraie $\forall m < n$; en particulier, pour m = n/2, $T(n/2) \le \frac{cn}{2}$.

Par substitution, T(n) = 2T(n/2) + k

$$\leq \frac{2cn}{2} + k$$

$$= cn + k$$

$$= 0(n)$$

Raisonnement faux !!!

Où est l'erreur?

 \Rightarrow on n'a pas prouvé *exactement* notre hypothèse de départ, qui était $T(n) \le cn$!

3^{ème} méthode : substitution

Astuce : il faut modifier légèrement notre hypothèse !

Hypothèse : $T(n) \le cn - d$, avec c > 0 et $d \ge 0$

Récurrence : On suppose l'hyp. vraie $\forall m < n$; en particulier, pour m = n/2, $T(n/2) \le \frac{cn}{2} - d$

Par substitution,
$$T(n) = 2T(n/2) + k$$

$$\leq 2\left(\frac{cn}{2} - d\right) + k$$

$$= cn - 2d + k$$

$$\leq cn - d \qquad \forall d \geq k$$

$$= O(n)$$

3^{ème} méthode : substitution

⚠ Raisonnement par récurrence : ne pas oublier le cas de base !

 \Rightarrow on doit vérifier que le/s cas de base satisfait/ont la relation trouvée i.e. trouver le n_0 t.q. la relation est satisfaite pour tout $n \ge n_0$

Les cas de base sont ici : T(1) = T(2) = k'

- \Rightarrow II faut prouver que $T(1) = k' \le c d$ et $T(2) = k' \le 2c d$
- \Rightarrow II suffit donc de prendre $c \ge d + k'$

Nous venons donc de prouver que

$$\forall n \geq 1, \exists c > 0, T(n) \leq cn - d \text{ (où } d \text{ est une constante)}$$

$$\mathsf{Donc}\, T(n) = O(n)$$

(Et non $T(n) = \Theta(n)$, ici!)

4ème méthode: Master Theorem

Méthode générale pour résoudre directement *des* récurrences de la forme T(n) = aT(n/b) + f(n) (on suppose que pour les cas de base, $T(n) = \Theta(1)$)

Représentation graphique :

4^{ème} méthode: Master Theorem

D'où vient le terme $\Theta(n^{\log_b a})$?

 \bigcirc A chaque niveau, le nombre de branches est multiplié par a, et il existe $\log_b n$ niveaux dans l'arbre

 \Rightarrow l'arbre possède donc $a^{\log_b n}$ feuilles (nœuds au dernier niveau de l'arbre). Or

$$a^{\log_b n} = n^{\log_b a}$$
 (exercice)

Les feuilles correspondent aux cas de base de l'algorithme; or, par hypothèse du Master Theorem, $T(n) = \Theta(1)$ pour les cas de base. Donc le temps de calcul total au niveau des feuilles est $\Theta(n^{\log_b a})$.

4^{ème} méthode: Master Theorem

Intuitivement, le Master Theorem compare la fonction f(n) (i.e. le temps passé à subdiviser un problème en sous-problèmes puis fusionner les sous-solutions) et le nombre de feuilles de l'arbre $n^{\log_b a}$ pour savoir quelle partie requiert le plus de temps d'exécution :

Master Theorem : soit une récurrence de la forme ci-dessus. Alors :

- 1. $\operatorname{si} f(n) = O(n^c)$ avec $\operatorname{c} < \log_b a$, alors $T(n) = \Theta(n^{\log_b a})$
- 2. $\operatorname{si} f(n) = \Theta(n^c)$, avec $c = \log_b a$, alors $T(n) = \Theta(n^c \log n)$
- 3. $\operatorname{si} f(n) = \Omega(n^c)$ avec $c > \log_b a$, et $\operatorname{si} af(n/b) \le kf(n)$ avec k < 1 une constante et n suffisamment grand (critère de « régularité »), alors $T(n) = \Theta(f(n))$

Rem.: on peut raffiner le 2nd cas:

2. $\operatorname{si} f(n) = \Theta(n^c \log^k n)$, avec $c = \log_b a$ et k > -1, alors $T(n) = \Theta(n^c \log^{k+1} n)$

41

4^{ème} méthode: Master Theorem

- Exemple 1 (recherche du maximum dans un tableau non trié) : T(n) = 2T(n/2) + 1lci, a = 2, b = 2 d'où $n^{\log_b a} = n^{\log_2 2} = n$; de plus, $f(n) = 1 = O(n^0)$
- \Rightarrow on peut appliquer le cas 1 du MT : $T(n) = \Theta(n)$
- Exemple 2: T(n) = T(2n/3) + 1Ici, a = 1, b = 3/2 d'où $n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$; de plus, $f(n) = 1 = \Theta(n^{\log_b a})$ \Rightarrow on peut appliquer le cas 2 du MT: $T(n) = \Theta(\log n)$
- Exemple $3: T(n) = 3T(n/4) + n \log n$ Ici, a = 3, b = 4 d'où $n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$; de plus, $f(n) = n \log n = \Omega(n^1)$ et 1 > 0,793 vérifions la condition de régularité :

pour n suffisamment grand, $af(n/b) = 3(n/4) \log(n/4) \le 3/4 n \log n = cf(n)$ avec c = 3/4 \Rightarrow on peut appliquer le cas 3 du MT : $T(n) = \Theta(n \log n)$

https://www.nayuki.io/page/master-theorem-solver-javascript

