

What is claimed is:

1. A compound of formula

wherein

A_0 , A_1 and A_2 are each independently of the other a bond or a C_1 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl and C_1 - C_3 haloalkyl;

A_3 is a C_1 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl and C_1 - C_3 haloalkyl;

D is CH or N;

X_1 and X_2 are each independently of the other fluorine, chlorine or bromine;

R_1 , R_2 and R_3 are each independently of the others H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, $-S(=O)-C_1-C_6$ alkyl, $-S(O)_2-C_1-C_6$ alkyl, C_1-C_6 alkoxycarbonyl or C_3-C_6 haloalkynyloxy; the substituents R_3 being independent of one another when m is 2;

R_4 is H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkenyl-
oxy, C_2 - C_6 haloalkenyl-
oxy, C_2 - C_6 alkynyloxy, $-S(=O)-C_1-C_6$ alkyl, $-S(=O)_2-C_1-C_6$ alkyl or C_1-C_6 alkoxycarbonyl; the substituents R_4 being independent of one another when k is greater than 1; or $N(R_5)_2$ wherein the two substituents R_5 are independent of one another;

R_5 is H, CN, OH, C_1-C_6 alkyl, C_3-C_8 cycloalkyl, C_3-C_8 cycloalkyl- C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_1-C_6 alkoxy, C_1-C_6 haloalkoxy, C_2-C_6 alkenyloxy, C_2-C_6 haloalkenyloxy, C_2-C_6 alkynyloxy, $-C(=O)R_8$, $-C(=S)R_8$, phenyl, benzyl; or phenyl or benzyl each of which is substituted in the aromatic ring by from one to five identical or different substituents selected from the group consisting of halogen, C_1-C_6 alkyl, halo- C_1-C_6 alkyl, C_1-C_6 alkoxy, halo- C_1-C_6 alkoxy, hydroxy, cyano and nitro;

or the two substituents R₅ together form a four- to eight-membered, straight-chain or branched alkylene bridge wherein a CH₂ group may have been replaced by O, S or NR₉, and the alkylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁-C₆alkyl and C₁-C₃haloalkyl;

W is O, NR₆, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₇- or -NR₇-C(=O)-;

T is a bond, O, NH, NR₆, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₇- or -NR₇-C(=O)-;

Q is O, NR₆, S, SO or SO₂;

Y is O, NR₆, S, SO or SO₂;

R₆ and R₇ are independently of each other H, C₁-C₆alkyl, C₁-C₃haloalkyl, C₁-C₆alkyl-carbonyl, C₁-C₃haloalkylcarbonyl, C₁-C₆alkoxyalkyl, C₃-C₈cycloalkyl or benzyl;

R₈ is C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₂-C₆alkynyloxy, C₃-C₈cycloalkyl, phenyl, benzyl; or phenyl or benzyl each of which is unsubstituted or substituted by from one to three identical or different substituents selected from halogen, CN, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxycarbonyl, C₁-C₃haloalkoxycarbonyl and C₂-C₆haloalkenyloxy;

R₉ is H, C₁-C₆alkyl, C₁-C₃haloalkyl, C₁-C₆alkylcarbonyl, C₁-C₆haloalkylcarbonyl, C₁-C₆alkoxyalkyl, C₃-C₈cycloalkyl or benzyl;

k is 1, 2 or 3 when D is nitrogen; or is 1, 2, 3 or 4 when D is CH;

m is 1 or 2;

E is heteroaryl which is unsubstituted or substituted - depending upon the substitutions possible on the ring - by from one to four identical or different substituents selected from R₁₀;

R₁₀ is halogen, CN, NO₂, OH, SH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₃-C₆alkynyl, C₃-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆haloalkoxy, C₁-C₆haloalkoxy-C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₂-C₆alkenyloxy-C₁-C₆alkyl, C₂-C₆haloalkenyloxy-C₁-C₆alkyl, C₃-C₆alkynyl, C₃-C₆haloalkynyl, C₃-C₈cycloalkoxy, C₃-C₈cycloalkyl-C₁-C₆alkoxy, C₃-C₈cycloalkoxy-C₁-C₆alkyl, C₃-C₈cycloalkoxy-C₁-C₆alkoxy, C₃-C₈cycloalkyl-C₁-C₆alkyl, C₁-C₆alkylcarbonyl-C₁-C₆alkyl,

C₁-C₆alkoxycarbonyl-C₁-C₆alkyl, C₁-C₆alkylthio, C₂-C₆alkenylthio, C₃-C₆alkynylthio, C₃-C₆cycloalkylthio, C₃-C₆cycloalkyl-C₁-C₆alkylthio, C₂-C₆haloalkenylthio, C₁-C₆haloalkylthio, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂, C₁-C₆alkylcarbonylamino, C₁-C₆haloalkylcarbonylamino, C₁-C₆alkoxycarbonylamino, C₁-C₆alkylaminocarbonylamino, -SO-C₁-C₆alkyl, -SO-halo-C₁-C₆alkyl, -SO₂-C₁-C₆alkyl, -SO₂-halo-C₁-C₆alkyl, -C(=O)R₁₁, phenyl or benzyl; wherein the phenyl and benzyl radicals may be unsubstituted or may carry independently of each other one to three substituents selected from the group consisting of halogen, OH, SH, CN, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₂-C₆alkynyloxy, -S(=O)-C₁-C₆alkyl, -S(O)₂-C₁-C₆alkyl, C₁-C₆alkoxycarbonyl and C₂-C₆haloalkenyloxy; and

R₁₁ is H, OH, C₁-C₆alkyl, C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₃-C₈cycloalkoxy, C₃-C₈cycloalkyl-C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₂-C₆alkynyloxy, C₂-C₆haloalkynyloxy, NH₂, NH-C₁-C₆alkyl, -N(C₁-C₆alkyl)₂, NH-phenyl, NH-benzyl, phenoxy or benzyloxy;

and, where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form.

2. A compound according to claim 1 of formula (I) in free form.

3. A compound according to either claim 1 or claim 2 of formula (I), wherein X₁ and X₂ are chlorine or bromine.

4. A pesticidal composition which comprises as active ingredient at least one compound according to claim 1 of formula (I), in free form or in agrochemically acceptable salt form, and at least one adjuvant.

5. A process for the preparation of a composition as described in claim 4, which comprises intimately mixing the active ingredient with the adjuvant(s).

6. A method of controlling pests, which comprises applying a pesticidal composition as described in claim 4 to the pests or to the locus thereof.

7. Use of a compound according to any one of claims 1 to 3 of formula (I), in free form or, where applicable, in agrochemically acceptable salt form, in the preparation of a composition as described in claim 4.