Equationele Logica beknopt

Syntax

Signatuur (S, Σ)

S Verzameling soortnamen.

 Σ Verzameling functiesymbolen met types over S.

Termen $Ter_{\Sigma}(X)$ over (S, Σ)

 (S, Σ) Signatuur.

X Verzameling variabelen met types uit S.

De verzameling $Ter_{\Sigma}(X)$ van termen met vrije variabelen uit X is inductief gedefinieerd als volgt waarbij steeds de types gerespecteerd worden:

- $f \in \Sigma$ en $t_1, \ldots, t_n \in Ter_{\Sigma}(X) \Rightarrow f(t_1, \ldots, t_n) \in Ter_{\Sigma}(X)$
- $x \in Ter_{\Sigma}(X)$ voor alle $x \in X$

Specificatie $((S, \Sigma), E)$

 (S, Σ) Signatuur.

Verzameling vergelijkingen $l_i = r_i$ met l_i en r_i termen uit $Ter_{\Sigma}(X)$.

Substitutie $\bar{\theta}: Ter_{\Sigma}(X) \to Ter_{\Sigma}(X)$

 $\theta: X \to Ter_{\Sigma}(X)$ Substitutie van termen voor variabelen.

 $\bar{\theta}: Ter_{\Sigma}(X) \to Ter_{\Sigma}(X)$ Uitbreiding op termen.

Gegeven een substitutie θ wordt de uitbreiding daarvan inductief gedefinieerd als:

$$\bar{\theta}(x) = \theta(x)$$

$$\bar{\theta}(f(t_1, \dots, t_n)) = f(\bar{\theta}(t_1), \dots, \bar{\theta}(t_n))$$

Semantiek

 Σ -algebra $\mathfrak{A} = (A, I)$

 (S, Σ) Signatuur.

A Drager, S-soortig.

I Interpretatie.

Voor iedere $f \in \Sigma$ geeft I(f) een interpretatie $f_{\mathfrak{A}}$ op de drager, waarbij steeds alle typen kloppen.

Assignment $\bar{\theta}: Ter_{\Sigma}(X) \to A$

 $\mathfrak{A}=(A,I) \hspace{1cm} \Sigma\text{-algebra}.$

 $\underline{\theta}: X \to A \qquad \qquad \text{Assignment van } a \in A \text{ aan } x \in X.$

 $\bar{\theta}: Ter_{\Sigma}(X) \to A$ Uitbreiding op termen.

Gegeven een assignment θ wordt de uitbreiding daarvan inductief gedefinieerd als:

$$\bar{\theta}(x) = \theta(x)$$

$$\bar{\theta}(f(t_1, \dots, t_n)) = f_{\mathfrak{A}}(\bar{\theta}(t_1), \dots, \bar{\theta}(t_n))$$

Waarheid $\mathfrak{A} \models t_1 = t_2$

 $t_1=t_2$ is waar in $\mathfrak A$ wanneer $\bar{\theta}(t_1)=\bar{\theta}(t_2)$ voor iedere assignment θ . Voor een verzameling vergelijkingen E zeggen we dat $\mathfrak A\models E$ wanneer $\mathfrak A\models t_1=t_2$ voor alle $t_1=t_2$ in E.

Semantisch gevolg $E \models t_1 = t_2$

 $t_1 = t_2$ volgt semantisch uit E wanneer $\mathfrak{A} \models t_1 = t_2$ voor iedere algebra \mathfrak{A} met $\mathfrak{A} \models E$.

Equationele logica

Afleidbaarheid $E \vdash t_1 = t_2$

De verzameling vergelijkingen afleidbaar uit E is inductief gedefinieerd:

- als $t_1 = t_2 \in E$ (het is een axioma), dan $E \vdash t_1 = t_2$,
- $E \vdash t = t$ voor alle t (reflexiviteit).
- als $E \vdash t_1 = t_2$, dan $E \vdash t_2 = t_1$ (symmetrie),
- als $E \vdash t_1 = t_2$ en $E \vdash t_2 = t_3$, dan $E \vdash t_1 = t_3$ (transitiviteit),
- als $E \vdash t_i = u_i \text{ voor } i = 1 \dots n$, dan $f(t_i, \dots, t_n) = f(u_1, \dots, u_n)$ (congruentie),
- als $E \vdash t_1 = t_2$, dan $E \vdash \bar{\theta}(t_1) = \bar{\theta}(t_2)$ voor alle substituties θ .

Volledigheid van \vdash

Correctheid $E \vdash t_1 = t_2 \implies E \models t_1 = t_2.$ Volledigheid $E \models t_1 = t_2 \implies E \vdash t_1 = t_2.$

Modellen

Model \mathfrak{A} voor $((S, \Sigma), E)$

Een Σ -algebra \mathfrak{A} is een model voor de specificatie $((S, \Sigma), E)$ wanneer $\mathfrak{A} \models E$.

Initiële modellen

 $((S, \Sigma), E)$ Specificatie.

 $\mathfrak{A} = (A, I)$ Model voor $((S, \Sigma), E)$.

Een element $a \in A$ is junk wanneer het niet de interpretatie is van een gesloten term. Gesloten termen t_1 en t_2 vormen confusion wanneer $\mathfrak{A} \models t_1 = t_2$ terwijl $E \not\models t_1 = t_2$. Een model is initieel wanneer het geen junk en geen confusion bevat.

Termmodel $\mathfrak{Ter}_{\Sigma}/{\sim}$

Gegeven een specificatie $((S, \Sigma), E)$ bestaat het termmodel $\mathfrak{Ter}_{\Sigma}/\sim$ uit

- $\bullet \,$ drager $Ter_{\Sigma}/{\sim}$ van equivalentieklassen [t] van termen $t \in Ter_{\Sigma}$,
- voor alle $f \in \Sigma$, een interpretatie $f_{\mathfrak{Terr}} \sim ([t_1], \ldots, [t_n]) \equiv [f(t_1, \ldots, t_2)]$.

Hierbij is de equivalentieklasse [t] van t gedefinieerd als $\{u \in Ter_{\Sigma} \mid E \vdash t = u\}$. Het termmodel $\mathfrak{Ter}_{\Sigma}/\sim$ is initieel voor $((S,\Sigma),E)$.

Isomorfie

Homomorfisme ϕ van $\mathfrak A$ naar $\mathfrak B$

 $\mathfrak{A} = (A, I_{\mathfrak{A}})$ en $\mathfrak{B} = (B, I_{\mathfrak{B}})$ Σ -algebra's.

 $\phi: A \to B$ Afbeelding van A naar B.

De afbeelding ϕ is een homomorfisme van $\mathfrak A$ naar $\mathfrak B$ wanneer

$$\phi(f_{\mathfrak{A}}(a_1,\ldots,a_n)) \equiv f_{\mathfrak{B}}(\phi(a_1,\ldots,a_n))$$

voor alle $f \in \Sigma$ en alle $a_i \in A$ (types respecterend).

Isomorfie \cong

Een bijectief homomorfisme van $\mathfrak A$ naar $\mathfrak B$ is een isomorfisme. Als er een isomorfisme bestaat tussen twee algebra's $\mathfrak A$ en $\mathfrak B$ noemen we ze isomorf ($\mathfrak A \cong \mathfrak B$). Alle initiële modellen van een specificatie zijn isomorf.

Martijn Vermaat (mvermaat@cs.vu.nl), maart 2008.

Gebaseerd op het dictaat Equationele specificatie van datatypen.