

90% Confidence Level Upper Bound

Overview of Feldman & Cousins

Jason

09-05-2024

Outline

- 1. Confidence Interval (CI)
- 2. Bayesian

Confidence Interval (CI)

- Goal: estimate parameter μ whose true value is μ_t
- •
- •

- •
- •

CI Definition

Confidence Interval (CI)

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .

•

•

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$

•

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement

•

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement
 - $\mu_u = \mu_u(x_0)$: upper bound associated w/ this $1^{\rm st}$ measurement

•

CI Definition

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement
 - $\mu_u = \mu_u(x_0)$: upper bound associated w/ this 1st measurement
- Repeat experiment; get outcome $x_1 \to \text{construct} [\mu_l(x_1), \mu_u(x_1)]$

CI Definition

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; suppose the first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement
 - $\mu_u = \mu_u(x_0)$: upper bound associated w/ this 1st measurement
- Repeat experiment; get outcome $x_1 \to \text{construct} [\mu_l(x_1), \mu_u(x_1)]$
- More experiments; get a bunch of intervals. *i.e.* we get a set

$$C \equiv \{ [\mu_l(x_0), \mu_u(x_0)], [\mu_l(x_1), \mu_u(x_1)], [\mu_l(x_2), \mu_u(x_2)] ... \}$$

ullet The set C has the property that

$$P([\mu_l, \mu_u] \ni \mu) = \alpha \quad \forall \text{ allowed } \mu$$

•

• The set C has the property that

$$P([\mu_l, \mu_u] \ni \mu) = \alpha \quad \forall \text{ allowed } \mu$$

- In words:
 - pick a *fixed* value of μ ; say we pick the truth μ_t .
 - **>**
 - **>**
- •

• The set C has the property that

$$P([\mu_l, \mu_u] \ni \mu) = \alpha \quad \forall \text{ allowed } \mu$$

- In words:
 - pick a *fixed* value of μ ; say we pick the truth μ_t .
 - of the members in C, a fraction α would cover μ_t .

CI Definition

• The set C has the property that

$$P([\mu_l, \mu_u] \ni \mu) = \alpha \quad \forall \text{ allowed } \mu$$

- In words:
 - pick a *fixed* value of μ ; say we pick the truth μ_t .
 - of the members in C, a fraction α would cover μ_t .
 - others won't.

CI Definition

• The set C has the property that

$$P([\mu_l, \mu_u] \ni \mu) = \alpha \quad \forall \text{ allowed } \mu$$

- In words:
 - pick a *fixed* value of μ ; say we pick the truth μ_t .
 - of the members in C, a fraction α would cover μ_t .
 - others won't.
- The members of C are called *confidence intervals*.

Confidence Interval (CI)

- Consider probability $\Pr(x|\mu)$
- •

•

Confidence Interval (CI)

- Consider probability $\Pr(x|\mu)$
- Take an example $\mu = 4$, consider $\Pr(x|\mu = 4)$

•

Confidence Interval (CI)

- Consider probability $\Pr(x|\mu)$
- Take an example $\mu = 4$, consider $\Pr(x|\mu = 4)$
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.

Confidence Interval (CI)

- Consider probability $\Pr(x|\mu)$
- Take an example $\mu = 4$, consider $\Pr(x|\mu = 4)$
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.
- that is,

$$\Pr(x \in [x_l, x_u] | \mu = 4) = 80\%$$

- Consider probability $\Pr(x|\mu)$
- Take an example $\mu = 4$, consider $\Pr(x|\mu = 4)$
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.
- that is,

$$\Pr(x \in [x_l, x_u] | \mu = 4) = 80\%$$

- Consider probability $\Pr(x|\mu)$
- Take an example $\mu = 4$, consider $\Pr(x|\mu = 4)$
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.
- that is,

$$\Pr(x \in [x_l, x_u] | \mu = 4) = 80\%$$

- Take another value μ , say $\mu = 5$
- Get another acceptance region $[x_l, x_u]$ associated with this value

$$\Pr(x \in [x_l, x_u] | \mu = 5) = 80\%$$

- Do this many times.
- Get confidence belt.

- Take another value μ , say $\mu = 5$
- Get another acceptance region $[x_l, x_u]$ associated with this value

$$\Pr(x \in [x_l, x_u] | \mu = 5) = 80\%$$

- Do this many times.
- Get confidence belt.

- Take another value μ , say $\mu = 5$
- Get another acceptance region $[x_l, x_u]$ associated with this value

$$\Pr(x \in [x_l, x_u] | \mu = 5) = 80\%$$

- Do this many times.
- Get confidence belt.

suppose this is μ_{true}

Confidence Interval (CI)

- Make a measurement, get result x_0
- The probability of x_0 falling in the region is 80%, by construction

- Make a measurement, get result x_0
- The probability of x_0 falling in the region is 80%, by construction
- The confidence interval $[\mu_l, \mu_u]$ from this experiment is the vertical intersection.

- Make a measurement, get result x_0
- The probability of x_0 falling in the region is 80%, by construction
- The confidence interval $[\mu_l, \mu_u]$ from this experiment is the vertical intersection.

- Make some more measurements
- Get some more confidence intervals.
- Have a set

$$C = \{\operatorname{CI}_1, \operatorname{CI}_2, \operatorname{CI}_3, \operatorname{CI}_4, \operatorname{CI}_5\}$$

• 80% of this set would cover the true value, μ_t .

Bayesian

• Expect an average of λ counts per hour, with $\lambda \in \mathbb{R} \geq 0$

•

Poisson Distribution

- Expect an average of λ counts per hour, with $\lambda \in \mathbb{R} \geq 0$
- Probability of getting $n \in \mathbb{N}$ counts per hour?

Poisson Distribution

- Expect an average of λ counts per hour, with $\lambda \in \mathbb{R} \geq 0$
- Probability of getting $n \in \mathbb{N}$ counts per hour?
- Poisson Distribution:

$$\Pr(n|\lambda) = \frac{e^{-\lambda}\lambda^n}{n!}$$

Poisson Distribution

- Expect an average of λ counts per hour, with $\lambda \in \mathbb{R} \geq 0$
- Probability of getting $n \in \mathbb{N}$ counts per hour?
- Poisson Distribution:

$$\Pr(n|\lambda) = \frac{e^{-\lambda}\lambda^n}{n!}$$

Example:

Bayes Theorem

• The problem is that the parameter λ is what we want to figure out.

•

Bayes Theorem

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.

•

Bayes Theorem

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ
- Bayes Theorem

$$\frac{\Pr(\lambda \mid n)}{\Pr(n)} = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)}$$
Posterior

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ
- Bayes Theorem Likelihood $\frac{e^{-\lambda}\lambda^n}{n!}$

$$\frac{\Pr(\lambda \mid n)}{\Pr(n)} = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)}$$
Posterior

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ
- Bayes Theorem

• Evidence is typically just a normalization and ignored. Let's call it 1:)

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)}$$

- •
- •
- •

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \longleftarrow prior$$

• If we specify a prior, we get the posterior.

•

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \longleftarrow prior$$

- If we specify a prior, we get the posterior.
- "uniform prior" $Pr(\lambda) = 1$

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \longleftarrow prior$$

- If we specify a prior, we get the posterior.
- "uniform prior" $\Pr(\lambda) = 1 \Longrightarrow \Pr(\lambda \mid n) = \Pr(n \mid \lambda)$

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \leftarrow prior$$

- If we specify a prior, we get the posterior.
- "uniform prior" $\Pr(\lambda) = 1 \Longrightarrow \Pr(\lambda \mid n) = \Pr(n \mid \lambda)$
- Suppose we measure n=0 event, then the posterior is

$$\Pr(\lambda \mid n = 0) = \Pr(n = 0 | \lambda) = \frac{e^{-\lambda} \cdot \lambda^n}{n!} = e^{-\lambda}$$

• Want an upper bound on λ

- Want an upper bound on λ
- A choice: find a λ_{\max} such that

$$\int_0^{\lambda_{\max}} ext{Posterior} = 90\%$$

- Want an upper bound on λ
- A choice: find a λ_{max} such that

$$\int_{0}^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

$$\Rightarrow \int_{0}^{\lambda_{\text{max}}} e^{-\lambda} = 0.9$$

$$\Rightarrow \lambda_{\text{max}} = \ln(10) \approx 2.3$$

- Want an upper bound on λ
- A choice: find a λ_{max} such that

$$\int_{0}^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

$$\Rightarrow \int_{0}^{\lambda_{\text{max}}} e^{-\lambda} = 0.9$$

$$\Rightarrow \lambda_{\text{max}} = \ln(10) \approx 2.3$$

- Want an upper bound on λ
- A choice: find a λ_{max} such that

$$\int_{0}^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

$$\Rightarrow \int_{0}^{\lambda_{\text{max}}} e^{-\lambda} = 0.9$$

$$\Rightarrow \lambda_{\text{max}} = \ln(10) \approx 2.3$$

• so we "estemate with 90% confidence that $\lambda \leq 2.3$ " base on a non-detection.

- Let μ denote the unknown parameter we wish to estimate.
- Let x_0 denote the outcome of a single measurement.
- Assume that we know how the measurement outcome depends on the parameter, $x=x(\mu)$.
 - *e.g.* if the neutrino flux is very small, then oftentimes a measurement reports a non-detection.
 - In other words, we know the *likelihood*, $P(x_0|\mu)$.
- From the Bayesian perspective, we can flip things around and say that the parameter is a function of the measurement, $P(\mu|x_0)$, provided that we state our prior beliefs about the parameter, $P(\mu)$.