Updatable proofs for hard languages Draft, September 30, 2019

Michał Zając

Clearmatics

Definition 1 (Decisionally hard language). We call language \mathcal{L} decisionally hard if for all λ and PPT algorithm \mathcal{D}

$$|\Pr[\mathcal{D}(x) = 1 \mid x \in \mathcal{L}] - \Pr[\mathcal{D}(x) = 1 \mid x \notin \mathcal{L}]| \le \mathsf{negl}(\lambda)$$
.

Given NP decisional hard language \mathcal{L} we define \mathbf{R} its corresponding relation if $x \in \mathcal{L}$ iff there exists w such that $(x, w) \in \mathbf{R}$.

We skip in this draft full formal definition of zero knowledge system, see e.g. [Gro06], and recall only on the updatable knowledge soundness property as defined in [?].

Definition 2 (Updatable knowledge soundness).

Definition 3 (Fully updatable proof system). We call a zero-knowledge proof system NIZK fully updatable if it is updatable-sound and equipped with an efficiently computable function updateProof that given an instance π , proof π_0 valid for an SRS srs₀, updated SRS srs_n, and proofs of correct updates $\{\rho_i\}_{i=0}^n$ returns proof π_n , such that $V(\operatorname{srs}_n, \{\rho_i\}_{i=0}^n, x, \pi_n)$ accepts.

Theorem 1. Let \mathcal{L} be a decisionally hard NP language and \mathbf{R} its corresponding instance-witness relation. Then there exists no fully updatable zero-knowledge proof system for \mathbf{R} .

Proof. We proceed by contradiction. Let NIZK be such a zk proof system, we build an algorithm \mathcal{D} that on input x decides whether x belongs to \mathcal{L} with non-negligible advantage.

First, \mathcal{D} sets up SRS update oracle U- \mathcal{O}_s and queries it on the setup intent getting SRS srs₀ and proof ρ of its correctness. Since \mathcal{D} runs U- \mathcal{O}_s internally, she learns a trapdoor td₀ corresponding to srs₀ and is able to produce a simulated proof π_0 for x. Second, \mathcal{D} runs a PPT algorithm \mathcal{A} that is given srs₀, $\{\rho_0\}$ and access to U- \mathcal{O}_s . In the end, the SRS is srs_n, for some natural n, and the sequence of update correctness proofs $\{\rho_i\}_{i=0}^n$. Since NIZK is fully updatable, verifier V(srs_n, $\{\rho\}_{i=0}^n$, x, updateProof(srs_n, $\{\rho\}_{i=0}^n$, π_0)) accepts for $x \notin \mathcal{L}$ with negligible probability only.

References

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Xuejia Lai and Kefei Chen, editors, ASI-ACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Heidelberg, December 2006. doi:10.1007/11935230_29. 1