

University of Stuttgart

Cluster of Excellence in Data-integrated Simulation Science

Project Coordinator: Dr. Paul-Christian Bürkner Independent Junior Research Group for Bayesian Statistics Intuitive Joint Priors for Bayesian Multilevel Models
The R2D2M2 prior

Javier Aguilar PN6

Multilevel Models

Grouped data

$$\mu_n = \sum_{i=1}^p x_{ni} b_i + \sum_{i=1}^p x_{ni} \left(\sum_{g \in G_i} u_{ig_{j[n]}} \right)$$
 $y_n \sim N(\mu_n, \sigma)$

- *b_i* Overall coefficients
- u_{igi} Varying coefficients

Common Inference Setting

Weakly informative priors

$$b_i \sim N(0,1), \quad \sigma \sim E(1)$$

Effect on proportion of explained variance

An intuitive joint prior on R^2

Specify a prior on \mathbb{R}^2 and decompose the **explained variance** via a *Dirichlet Decomposition* (R2D2)

R² Dirichlet Decomposition Multilevel Models: R2-D2-M2 prior

 $R^2 \sim B(\mu, \varphi), \phi \sim \text{Dirichlet}(\alpha), b_i \sim N(0, \lambda_i), u_{ig} \sim N(0, \lambda_{ig}), \sigma \sim p(\sigma)$

Properties

Marginal Priors

Implied shrinkage

Experiments

Simulation Based Calibration

General Multilevel Model Simulation

Posterior shrinkage

Out-of-sample Predictive Performance

Posterior coverage and Credibility Intervals

Conclusions

- Our model is well calibrated.
- Prior specification over the whole set of coefficients presents advantages.
- Out-of-sample predictive performance is related to shrinkage.
- Errors are properly controlled.

