[2024-2025] группа 10 21 октября

Отборочная олимпиада

1. Все коэффициенты многочлена P(x) равны либо 0, либо 1, причём P(1) = 25. Может ли число 11 встретиться среди коэффициентов многочлена $P^2(x)$ хотя бы 16 раз?

Ответ: Не может.

Решение: Пусть $P(x)=x^{a_1}+x^{a_2}+...+x^{a_{25}}$, где $a_1>a_2>...>a_{25}$. Тогда в $P^2(x)$ коэффициент 11 мог получиться только у мономов вида x^{2a_i} , так как у остальных мономов коэффициент будет чётный. Если $a_j+a_k=2a_i$, где j< k, то $a_j>a_i>a_k$. Значит если при x^{2a_i} коэффициент 11, тогда есть пять различных чисел, больших a_i (т.е. $i\geqslant 6$) и пять различных чисел, меньших a_i (т.е. $i\leqslant 20$). То есть максимум при 15 мономах мог получиться коэффициент 11.

2. В каждой клетке квадрата 2024×2024 написали положительное число. В пяти клетках таблицы сидит по лягушке, которые мешают увидеть числа под ними. Андрей посчитал сумму всех чисел, которые он видит, и получил 2024. Затем все лягушки одновременно перепрыгнули на соседнюю по стороне клетку (все лягушки по прежнему в разных клетках), и число Андрея теперь стало равно 2024^2 . Потом лягушки снова прыгнули, а число изменилось на 2024^3 , и так далее: после каждого прыжка число Андрея увеличивалось в 2024 раз. Какое наибольшее число мог получить Андрей?

Ответ: 2024⁶.

Решение: *Оценка*: Назовём пять чисел, на которых изначально сидели лягушки, *роковыми*. Покажем, что после каждого прыжка лягушек, одно из роковых чисел, которое до этого ещё ни разу не было видно, станет видно. Тогда максимум прыжков могло быть сделано 5 штук, и оценка доказана. Пусть лягушки прыгнули k-ый раз. Тогда все числа, которые было видно изначально, в сумме дают не больше чем 2024, а каждое роковое число, которое уже было видно, будет не больше, чем 2024^k . Тогда сумма всех когда-либо видимых чисел будет максимум $2024 + 5 \cdot 2024^k < 2024^{k+1}$. Значит, одно из ранее невидимых роковых чисел стало видимым.

Пример: Пусть $k=\frac{2024}{2024^2-5}$. Тогда пусть изначально лягушки сидят в первых пяти клетках верхней строки и скрывают за собой числа (в таком порядке) $2024^2-2024+k$, 2024^3-2024^2+k , 2024^3-2024^3+k , 2024^5-2024^4+k , 2024^6-2024^5+k , в остальных клетках стоит число k и все лягушки каждый раз прыгают вправо. Легко видеть, что этот пример подходит.

3. В стране 100 городов, попарно соединенных дорогами, на каждой из которых введена положительная плата за проезд. Власти закрыли k дорог на ремонт, и в результате какие два города ни возьми, самый дешевый маршрут между ними либо вырос в цене, либо отсутствует вовсе. При каком наименьшем k такое могло произойти?

Ответ: При k = 99.

Решение: Оценка: Пусть закрыли < 99 дорог. Тогда рассмотрим граф, где вершины — города, рёбра — закрытые дороги. Тогда такой граф будет несвязным и его можно представить в виде двух множеств A и B между которыми нет рёбер. Рассмотрим самую дешёвую дорогу между A и B, пусть она соединяет города x и y, а её стоимость s. Тогда любой путь между x и y будет стоить хотя бы s (так как в какой-то момент переходит из A в B). Значит дорога из x в y — это самый дешёвый маршрут из x в y, но она не удалена. Противоречие.

Пример: Назовём один из городов *Бугульма*. Тогда пусть любая дорогая из Бугульмы стоит 1, а любые другие дороги стоят 1337^{2024} . Тогда после закрытия всех 99 дорог из Бугульмы стоимость любого маршрута (если он всё ещё есть между городами) увеличится.

4. Биссектрисы прямоугольного треугольника ABC с прямым углом при вершине B пересекаются в точке I. Перпендикуляр, опущенный из точки B на прямую IC, пересекает прямую IA в точке D, а перпендикуляр, опущенный из B на прямую IA, пересекает IC в точке E. Докажите, что центр описанной окружности треугольника IDE лежит на прямой AC.

Решение: Пусть $BD \cap AC = P$, $BE \cap AC = Q$, $BD \cap CI = R$, $BE \cap AI = S$ (на самом деле самый главный шаг решения это отметить точки P и Q). Так как у треугольников BAQ и BCP совпадают высоты и биссектрисы, то они равнобедренные, следовательно AS и CR — серединные перпендикуляры к отрезкам BQ и BP соответственно. Тогда в треугольнике BAP биссектриса угла A и серединный перпендикуляр к отрезку BP пересекаются в точке I, т.е. I — середина "меньшей" дуги BP в окружности BAP, в частности BAPI — вписанный. Аналогично BCQI — вписанный. Тогда $45^\circ = \angle IBC = IQP$, аналогично $\angle IPQ = 45^\circ$, а значит $\angle PIQ = 90^\circ$. Также $\angle AIC = 90^\circ + \frac{\angle ABC}{2} = 135^\circ$, т.е. $\angle RID = 45^\circ$, и тогда $\angle RDI = 45^\circ$. Аналогично $\angle IES = 45^\circ$. Ну тогда осталось заметить, что четырёхугольник IDPQ — вписанный ($\angle IQP = \angle IDR$), аналогично IEQP — вписанный, т.е. точки I, D, E, E, E, E, E0 лежат на одной окружности с диаметром E1 (E2 E3 E3 осталось заметрисанный, т.е. точки E3 осталось заметрисанный, т.е. точки E4 одной окружности с диаметром E4 (E4 E5 E5 одной окружности с диаметром E5 одной окружности с диаметром E4 одной окружности с диаметром E5 одной окружности с диаметром E4 одной окружности с диаметром E4 одной окружности с диаметром E5 одной окружности с диаметром E4 одной окружности с диаметром E5 одной окружности с диаметром E6 одной окружности с диаметром E6 одной окружности с диаметром E6 одной окружности с диаметром E7 одной окружности с диаметром E8 одной окружности с диаметром E9 одной

5. Барон Мюнхгаузен утверждает, что раскрасил все натуральные числа в три цвета, причём у любого натурального числа количества делителей двух любых цветов отличаются не более чем на 2. Могут ли его слова оказаться правдой?

Ответ: Могут.

Решение: Для каждого r = 0, 1, 2 покрасим в цвет с номером r все натуральные числа, в разложении которых на простые множители количество сомножителей (с учётом кратности) даёт остаток r при делении на 3. Иными словами, число n=1 $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ мы красим в цвет $\alpha_1 + \alpha_2 + \dots + \alpha_k \pmod{3}$. Проверим, что эта раскраска подходит. Пусть $a_{n,0}, a_{n,1}$ и $a_{n,2}$ — количества делителей n, у которых количество простых сомножителей даёт при делении на 3 остаток 0, 1 и 2 соответственно (т. е. количества делителей нулевого, первого и второго цвета). Докажем, что разность любых двух из этих чисел не превосходит 1. Доказательство мы проведём индукцией по количеству разных простых делителей n. Если количество простых делителей равно 0, то $n=1, a_{n,0}=1, a_{n,1}=0, a_{n,2}=0$. Пусть наше утверждение верно для некоторого n. Докажем его для числа $m = np^k$, где p — простое число, не делящее n. Разобьём все делители числа m на k+1 группу — обозначим эти группы G_0, \ldots, G_k . При каждом s от 0 до k группа G_s содержит делители, содержащие p ровно в s-й степени. Если $s \equiv 0 \pmod{3}$, группа G_s содержит $a_{n,0}$ делителей нулевого цвета, $a_{n,1}$ делителей первого цвета и $a_{n,2}$ второго цвета; если $s \equiv 1 \pmod 3$, то G_s содержит $a_{n,2}, a_{n,0}$ и $a_{n,1}$ делителей цветов 0, 1, 2 соответственно; наконец, если $s \equiv 2 \pmod{3}$, то G_s содержит соответственно $a_{n,1}, a_{n,2}$ и $a_{n,0}$ делителей. Как видно, объединение вида $G_k \cup G_{k+1} \cup G_{k+2}$ содержит поровну делителей всех трёх цветов. При $s \equiv 2 \pmod 3$ все группы разбиваются на такие тройки, и у числа т делителей всех трёх цветов поровну. Если $s \equiv 0 \pmod 3$, не распределённой по тройкам остаётся одна группа $-G_{\rm s}$, поэтому разности количеств делителей трёх цветов у числа числа m такие же, как у чисел $a_{n,0}, a_{n,1}$ и $a_{n,2}$. Наконец, если $s \equiv 1 \pmod{3}$, остаются не распределёнными две группы (G_{s-1} и G_s), которые содержат $a_{n,1} + a_{n,2}$ делителей нулевого цвета, $a_{n,2} + a_{n,0}$ первого и $a_{n,0} + a_{n,1}$ второго. Разности этих чисел снова такие же, как у чисел $a_{n,0}$, $a_{n,1}$ и $a_{n,2}$, т. е. не превосходят 1, что и требовалось доказать.