一個簡單的控制系統通常包含這三層

輸入層

Input, 這一層常見的設備是 各種感測器, 甚至是按鈕開關都算是

資料處理層

Process, 這一層常見的設備是各種微處理器控制板。 (Arduino, Micro:bit, Raspberry pi 或是專用系統) 處理並分系各種 Input 傳來的資料 然後對輸出層的東西發出控制訊號

輸出控制層

Output,接受控制器的命令做出反應, 例如開關燈

輸入層 (各種感測器)

資料處理層 (處理各種 sensor 的輸入)

輸入層 (人體紅外感測器)

資料處理層 (處理 sensor 是否有偵測到人)

輸出層 (LED 燈條)

應用範例

如果發現房間沒人, 就自動關燈

如果發現門口有人要進來 打開燈

輸入層 (門窗開關感測器)

資料處理層 (處理 sensor 是否有偵測到開關動作)

輸出層 (蜂鳴器)

應用範例

如果發現窗戶被打開了 就發出聲響

輸入層 (溫溼度感測器)

資料處理層 (接受 sensor 目前偵測到的溫濕度資料)

輸出層(電扇)

應用範例

(這個可以給小朋友回答)

這樣的系統可以產生 什麼控制行為

答案參考: 如果溫度太高, 就開電風扇 但是一個能夠完整運作的控制系統,通常不會只單靠單一的感測器。

通常需要很多感測器當輸入,共同"合理的"完成一件事情。

以剛剛的"如果發現門口有人要進來就打開燈照明"為例。 如果事情發生在白天呢?白天根本不需要開燈, 所以你還需要有其他感測器的幫忙...

應用範例

如果發現房間沒人, 就自動關燈

如果發現門口有人要進來 打開燈

資料處理層 (接收sensor 是否有偵測到人? 目前的環境光強度)

輸出層 (LED 燈條)

應用範例

如果發現門口有人要進來 打開燈

正確的行為應該是:

如果發現門口有人要進來 而且目前環境很暗 就打開燈

而這樣的邏輯, 就是你需要在資料料處理層中 替控制器寫控制程式的部分 但是,一個控制系統要被稱為 "Smart" 需要有什麼特質?

以剛剛的例子,如果溫度太高就開電扇,但是目前房間裡面沒有人呢?

- 一個被稱為 Smart 的系統,應該要能夠感知到人的存在
- 一個無法感知道人存在的系統,只能算是個工業控制系統。

應用範例

(這個可以給小朋友回答)

這樣的系統可以產生 什麼控制行為

答案参考: 如果溫度太高, 就開電風扇

輸入層 (溫溼度感測器)

資料處理層 (接受 sensor 目前偵測到的溫濕度資料)

輸出層(電扇)

(給小朋友回答)

需要再加入哪一種感測器?

答案參考: 人體紅外線感測器

光照強度感測器

物聯網時代來臨

現在我們有一個可以感知人存在的智慧系統,那如果把網路加進來,會發生什麼事情?

輸入層

資料處理層

輸出控制層

網路層

網路不屬於輸入層或是輸出層,比較像是一個"通道" 透過這個通道,我們可以收到從網路端來的指令 或是把資料從家裡面丟到網路上

輸入層

資料處理層

輸出控制層

網路層

收到從網路端來的指令:

例如,夏天你人在外面,快到家的時候,預先打開冷氣機

把資料從家裡面丟到網路上:

例如,夏天你人在外面,快到家的時候,預先打開冷氣機

實作需求

- 如果在房間偵測到人,而且天色太暗,打開房間的燈
- 如果在房間偵測到人,而且溫度太高,打開電扇
- 如果房間沒有人,關閉電扇和燈

輸入層

光照度感測器

溫溼度感測器

資料處理層

Arduino 控制板

輸出控制層

Demo 示範方式

- 顯展示房間的模型,介紹裡面有三種感測器
 - 人體紅外線感測器: 當感測到人的時候, 就會發出訊號
 - 光照度感測器: 當天色太暗或太亮時,可以讀到對應的數據
 - 溫溼度感測器:可以讀到當前環境的溫濕度
- 介紹房間裡的輸出
 - LED 燈用來當作照明示範
 - 風扇當作各種能開關的電器
- 介紹控制板
 - 使用 Arduino

• 開始測試示範(你需要很多隻手,所以房間做大一點 XD)

• (示範一)

- 首先手遮住人體紅外線感測器,表示有人進讓房間 (前兩個示範,這隻手手都不能移開)
- 接著用手壓著溫濕度感測器,提高它的溫度,如果溫度到達設定的閥值,馬達就會驅使電扇轉動。
- 把溫度感測器吹涼 XD,馬達就會停止轉動

• (示範二)

- 用手遮住光感應器,燈會立刻打開。
- 手移開光就熄滅

• (示範三)

- 手壓溫度感測器讓風扇轉
- 手遮光感應器讓燈亮
- 移開人體紅外線感測器的那隻手(表示人離開房間)
- 等待幾秒鐘之後,光會熄滅,風扇會停止

Ps: 人體紅外線感測器會偵測人體(包含手) 所以最好安置紅外線感測器的位置能遠離其他感測器,以免偵測到其他手 最後,你可以提到當網路進入智慧宅裡之後可能應用

例如:

假如場景是一個養老院,如果可以感知到有沒有人在房間, 就可以知道老人當天是否都在房間裡面?

如果可以偵測人是否有進出浴室、當進入浴室太久時間後都沒有出來、就可以觸發警告系統、請人前去查看。

最後可以提到科技帶來的缺點

所有的科技都可能會衍伸出缺點 當我們把資料透過網路傳送出去時,可以即時分析,即時反應。

但如果資料沒有做好加密或是安全認證,就會有侵犯隱私權的問題

例如: 在夏天如果一個家庭的溫度感測器數據外流,拿到這樣的資料,你可以得到甚麼資訊?

AM 08:00, 室內溫度 20 度 C AM 09:00, 室內溫度 25 度 C AM 10:00, 室內溫度 28度 C AM 11:00, 室內溫度 24 度 C AM 12:00, 室內溫度 24 度 C PM 01:00, 室內溫度 28 度 C

•••

PM 5:00, 室內溫度 27 度 C PM 6:00, 室內溫度 28 度 C PM 7:00, 室內溫度 23 度 C PM 8:00, 室內溫度 24 度 C

參考答案:

AM11 點的時候有人在家開了冷氣

PM1 點之後可能家裡沒人

PM7 點的時候回到家裡

如果你是小偷看到這樣的資料...