Hong Kong Mathematics Olympiad (2001 - 2002) Final Event 1 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 在右圖中,ABCD 是一邊長為 10 cm 的正方形,AEB、FED 及 FBC 為直綫, ΔAED 的面積比 ΔFEB 的面積大 10 cm²。若 ΔDFB 的面積為 P cm²,求 P 的值。

In the following figure, ABCD is a square of length 10 cm. AEB, FED and FBC are straight lines. The area of ΔAED is larger than that of ΔFEB by 10 cm². If the area of ΔDFB is $P \text{ cm}^2$, find the value of P.

P =

2. 一件工程,甲單獨需時 90 天完成,而乙則需時 Q 天。若甲、乙二人合做只需 P 天完成,求 Q 的值。

Workman A needs 90 days to finish a task independently while workman B needs Q days for the same task. If they only need P days to finish the task when working together, find the value of Q.

3. 在右圖中,AB//CD,梯形 ABCD 的面積為 R cm²。 已知 ΔABE 和 ΔCDE 的面積分別為 Q cm² 和 4Q cm²,求 R 的值。

In the following figure, AB // CD, the area of trapezium ABCD is $R \text{ cm}^2$. Given that the areas of $\triangle ABE$ and $\triangle CDE$ are $Q \text{ cm}^2$ and $4Q \text{ cm}^2$ respectively, find the value of R.

R =

4. 在右圖中,O 為圓心,HJ和 IK 為圓的直徑以及 $\angle HKI = S^{\circ}$ 。

已知 $\angle HKI + \angle HOI + \angle HJI = \frac{1}{4}R^{\circ}$,求S的值。

In the following figure, O is the centre of the circle, HJ and IK are diameters and $\angle HKI = S^{\circ}$.

Given that $\angle HKI + \angle HOI + \angle HJI = \frac{1}{4}R^{\circ}$,

find the value of S.

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Bonus

+ score

Total score

Team No.

Time

Min.

Sec.

http://www.hkedcity.net/ihouse/fh7878

Final Events (Individual)

Hong Kong Mathematics Olympiad (2001 - 2002) Final Event 2 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1.	已知 $P = \frac{1}{1 \times 2}$	$+\frac{1}{2\times3}$	$+\frac{1}{3\times4}+\cdot$	$\cdots + \frac{1}{99 \times 100}$,求 P 的值。	
		_			$\frac{1}{\times 100}$, find the v	value of P .

$$P =$$

2. 己知
$$99Q = P \times (1 + \frac{99}{100} + \frac{99^2}{100^2} + \frac{99^3}{100^3} + ...)$$
,求 Q 的值。

Given that $99Q = P \times (1 + \frac{99}{100} + \frac{99^2}{100^2} + \frac{99^3}{100^3} + ...)$,find the value of Q .

$$Q =$$

3. 已知 x 及 R 為實數。若對所有 x , $\frac{2x^2+2Rx+R}{4x^2+6x+3} \le Q$,求 R 的最大值。 Given that x and R are real numbers and $\frac{2x^2+2Rx+R}{4x^2+6x+3} \le Q$ for all x, find the maximum value of R .

$$R =$$

4. 已知 $S = \log_{144} \sqrt[R]{2} + \log_{144} \sqrt[2R]{R}$,求 S 的值。 Given that $S = \log_{144} \sqrt[R]{2} + \log_{144} \sqrt[2R]{R}$, find the value of S.

$$S =$$

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed =

+ Bonus score

Total score

Team No.

Time

Min.

Sec.

Hong Kong Mathematics Olympiad (2001 - 2002) Final Event 3 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 將一長方形紙摺出以下的圖形。若 $\triangle ABC$ 的面積是原長方形紙面積的 $\frac{1}{3}$,求 P 的值。 A rectangular piece of paper is folded into the following figure. If the area of $\triangle ABC$ is $\frac{1}{3}$ of the area of the original rectangular piece of paper, find the value of P.

2. 已知 $\frac{P}{2}(4^x+4^{-x})-35(2^x+2^{-x})+62=0$ 。若 Q 是此方程的正整數解,求 Q 的值。 If Q is the positive integral solution of the equation $\frac{P}{2}(4^x+4^{-x})-35(2^x+2^{-x})+62=0, \text{ find the value of } Q.$

$$R =$$

Let [a] be the largest integer not greater than a. For example, [2.5] = 2.

If $R = [\sqrt{1}] + [\sqrt{2}] + \dots + [\sqrt{99Q}]$, find the value of R.

4. 一個凸多邊形,除了內角 A 以外,其他內角的和是 $4R^{\circ}$ 。若 $\angle A = S^{\circ}$,求 S 的值。 In a convex polygon, other than the interior angle A, the sum of all the remaining interior angles is equal to $4R^{\circ}$. If $\angle A = S^{\circ}$, find the value of S.

Hong Kong Mathematics Olympiad (2001 - 2002) Final Event 4 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 已知 $f(x) = (x^2 + x - 2)^{2002} + 3$ 及 $f\left(\frac{\sqrt{5}}{2} - \frac{1}{2}\right) = P$,求P的值。

Given that $f(x) = (x^2 + x - 2)^{2002} + 3$ and $f\left(\frac{\sqrt{5}}{2} - \frac{1}{2}\right) = P$, find the value of P.

 在下圖中,ABCD為一長方形。E和 F分別是AB和BC上的點。三角形 AED、EBF和FCD的面積分別為 P、3和5。若ΔEFD的面積為Q, 求Q的值。

In the following figure, ABCD is a rectangle. E and F are points on AB and BC respectively. The areas of triangles AED, EBF and FCD are P, 3 and 5 respectively. If the area of ΔEFD is Q, find the value of Q.

Q =

3. 已知 x 和 y 為雨正整數。若不等式 $x^2 + y^2 \le Q$ 的解(x, y)的數目為 R,求 R 的值。 It is given that x and y are positive integers.

If the number of solutions (x, y) of the inequality $x^2 + y^2 \le Q$ is R, find the value of R.

4. 已知 α 和 β 是方程 $x^2-ax+a-R=0$ 的兩個根,其中 a 為實數。 若 $(\alpha+1)^2+(\beta+1)^2$ 的最小值為 S,求 S 的值。

It is given that α and β are roots of the equation $x^2 - ax + a - R = 0$, where a is real. If the minimum value of $(\alpha+1)^2 + (\beta+1)^2$ is S, find the value of S.

$$S =$$

FOR OFFICIAL USE

Score for accuracy

Mult. factor for speed

+ Bonus score

Total score

Team No.

Time

Min.

Sec.

http://www.hkedcity.net/ihouse/fh7878

Final Events (Individual)

Hong Kong Mathematics Olympiad (2001 - 2002) Final Event 1 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 假設曲綫 $x^2 + 3y^2 = 12$ 及直綫 mx + y = 16 只相交於一點。若 $a = m^2$,求 a 的值。 Assume that the curve $x^2 + 3y^2 = 12$ and the straight line mx + y = 16 intersect at only one point. If $a = m^2$, find the value of a.

2. 已知 x + y = 1 及 $x^2 + y^2 = 2 \circ 若 x^3 + y^3 = b$,求 b 的值 \circ It is given that x + y = 1 and $x^2 + y^2 = 2$. If $x^3 + y^3 = b$, find the value of b.

3. 在右圖中,AC = AD = AE = ED = DB 及 $\angle BEC = c^{\circ}$ 。已知 $\angle BDC = 26^{\circ}$ 及 $\angle ADB = 46^{\circ}$,求 c 的值。

In the following figure, AC = AD = AE = ED = DB and $\angle BEC = c^{\circ}$.

Given that $\angle BDC = 26^{\circ}$ and $\angle ADB = 46^{\circ}$, find the value of c.

4. 已知 $4\cos^4\theta + 5\sin^2\theta - 4 = 0$,其中 $0^\circ < \theta < 360^\circ$ 。若 θ 的最大值為 d,求 d 的值。 It is given that $4\cos^4\theta + 5\sin^2\theta - 4 = 0$, where $0^\circ < \theta < 360^\circ$. If the maximum value of θ is d, find the value of d.

Hong Kong Mathematics Olympiad (2001 - 2002) Final Event 2 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

已知三角形三邊的長分別為6、8和10。若這三角形的面積為 a, 求 a 的值。 It is given that the lengths of the sides of a triangle are 6, 8, and 10. If the area of the triangle is a, find the value of a.

已知 $f\left(x+\frac{1}{x}\right)=x^3+\frac{1}{x^3}$ 。若 f(4)=b,求 b 的值。 Given that $f\left(x+\frac{1}{x}\right)=x^3+\frac{1}{x^3}$ and f(4)=b, find the value of b.

已知 $2002^2 - 2001^2 + 2000^2 - 1999^2 + ... + 4^2 - 3^2 + 2^2 - 1^2 = c$,求 c 的值。 3. Given that $2002^2 - 2001^2 + 2000^2 - 1999^2 + ... + 4^2 - 3^2 + 2^2 - 1^2 = c$. find the value of c.

PQRS 為一正方形, PTU 為一等腰三角形及 P 4. $\angle TPU = 30^{\circ} \circ T \otimes U$ 分別為 $QR \otimes RS$ 上的 點。 ΔPTU 之面積為1。 若正方形 PQRS 之面積為 d ,求 d 的值。 PQRS is a square, PTU is an isosceles triangle, and $\angle TPU = 30^{\circ}$. Points T and U lie on OR and RS respectively. The area of $\triangle PTU$ is 1. If the area of PQRS is d, find the value of d.

FOR OFFICIAL USE					
Score for accuracy	× Mult. factor for speed	=	Team No.		
	+	Bonus score	Time		
	Total	score		Min.	Sec.
http://www.hkedcity	.net/ihouse/fh7878	L		Final E	Events (Group)

Hong Kong Mathematics Olympiad (2001 - 2002) Final Event 3 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

若 $\frac{2002^3 + 4 \times 2002^2 + 6006}{2002^2 + 2002} = a$, 求 a 的值。

a =

- If $\frac{2002^3 + 4 \times 2002^2 + 6006}{2002^2 + 2002} = a$, find the value of a.
- 已知x和y為兩實數且滿足關係 $y = \frac{x}{2x-1}$ 。若 $\frac{1}{x^2} + \frac{1}{y^2}$ 的最小值為b,求b的值。 b =2.

It is given that the real numbers x and y satisfy the relation $y = \frac{x}{2x-1}$.

If the minimum value of $\frac{1}{x^2} + \frac{1}{v^2}$ is b, find the value of b.

從50個正整數1,2,3,...,50中任意抽兩個不同的數。 3. 已知兩數之和不少於50。若抽取這兩數共有c種取法,求c的值。 Suppose two different numbers are chosen randomly from the 50 positive integers $1, 2, 3, \dots, 50$, and the sum of these two numbers is not less than 50. If the number of ways of choosing these two numbers is c, find the value of c.

c =

已知 $x-y=1+\sqrt{5}$, $y-z=1-\sqrt{5}$ 。若 $x^2+y^2+z^2-xy-yz-zx=d$, 求 d 的值。 4. Given that $x - y = 1 + \sqrt{5}$, $y - z = 1 - \sqrt{5}$. If $x^2 + y^2 + z^2 - xy - yz - zx = d$, find the value of d.

d =

FOR OFFICIAL USE

Score for accuracy Mult. factor for speed

Team No.

Bonus score

Time

Total score

Min.

Sec.

Hong Kong Mathematics Olympiad (2001 - 2002) Final Event 4 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. \ddot{a} 是 2002 的所有正因數之和,求 a 的值。 If a is the sum of all the positive factors of 2002, find the value of a.

$$b =$$

- It is given that x > 0, y > 0 and $\sqrt{x}(\sqrt{x} + \sqrt{y}) = 3\sqrt{y}(\sqrt{x} + 5\sqrt{y})$. If $b = \frac{2x + \sqrt{xy} + 3y}{x + \sqrt{xy} - y}$, find the value of b.
- 3. 若方程 ||x-2|-1|=c 只有 3 個整數解,求 c 的值。 Given that the equation ||x-2|-1|=c=c has only 3 integral solutions, find the value of c.

If *d* is the positive real root of the equation $\frac{1}{2} \left\{ \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} x^2 + 2 \right) + 2 \right] + 2 \right\} = 2$, find the value of *d*.

FOR OFFICIAL USE

Score for accuracy

Mult. factor for speed

+ Bonus score

Total score

Team No.

Time

Min.

Sec.