

Computer Vision

Lecture 07: Real-time object detection pipeline

Final project

Real-time human box detection task

Final project

Will be noticed soon:

Mid-Presentation Video Submission: 11th Nov. 23:29

Mid-Presentation Video Watching + Q&A: 13th/15th Nov. Classes

Final Presentation Video Submission: 1st Dec. 23:29

Final Presentation video Watching + Q&A: 4th/6th Dec. Classes

Final Code+Data+Report Submission: 22th Dec. 23:29

Final project

1st/2nd/3rd prizes: X million won. Evaluated based on the leaderboard.

We will also summarize and submit the results upon approval.

Two-stage method

R-CNN

- Extract image regions
- 1 CNN per region (2000 CNNs)
- Classify region-based features

SPP-net & Fast R-CNN (the same forward pipeline)

- 1 CNN on the entire image
- Extract features from feature map regions
- Classify region-based features

System	Time	07 data	07 + 12 data
R-CNN	~ 50s	66.0	-
Fast R-CNN	~ 2s	66.9	70.0
Faster R-CNN	~ 198ms	69.9	73.2

Detection mAP on PASCAL VOC 2007 and 2012, with VGG-16 pre-trained on ImageNet Dataset

DETR-based method

Decoder Structure

1 stage algorithm

Two candidates for each grid, 20 classes:

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

Code for generating GTs

```
def encoder(self, boxes, labels):
       1 1 1
       boxes (tensor) [[x1,y1,x2,y2],[]]
       labels (tensor) [...]
       return 7x7x30
       1 1 1
       grid num = 7
       target = torch.zeros((grid num, grid num, 30))
       cell size = 1./grid num
       wh = boxes[:,2:]-boxes[:,:2]
       cxcy = (boxes[:,2:]+boxes[:,:2])/2
       for i in range(cxcy.size()[0]):
           cxcy sample = cxcy[i]
           ij = (cxcy sample/cell size).ceil()-1
           target[int(ij[1]), int(ij[0]), 4] = 1
           target[int(ij[1]), int(ij[0]), 9] = 1
           target[int(ij[1]), int(ij[0]), int(labels[i]) + 9] = 1
           xy = ij*cell size
           delta xy = (cxcy sample -xy)/cell size
           target[int(ij[1]), int(ij[0]), 2:4] = wh[i]
           target[int(ij[1]), int(ij[0]), :2] = delta xy
           target[int(ij[1]), int(ij[0]), 7:9] = wh[i]
           target[int(ij[1]), int(ij[0]), 5:7] = delta xy
       return
```

```
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class Loss(nn.Module):
    def init (self, feature size=7, num bboxes=2, num classes=20, lambda coord=5.0, lambda noobj=0.5):
        """ Constructor.
       Args:
            feature size: (int) size of input feature map (grid).
            num bboxes: (int) number of bboxes per each cell.
            num classes: (int) number of the object classes.
            lambda coord: (float) weight for bbox location/size losses.
            lambda noobj: (float) weight for no-objectness loss.
        11 11 11
        super(Loss, self). init ()
        self.S = feature size
        self.B = num bboxes
        self.C = num classes
        self.lambda coord = lambda coord
        self.lambda noobj = lambda noobj
```

```
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class Loss(nn.Module):
   def forward(self, pred tensor, target tensor):
        """ Compute loss for YOLO training.
        Args:
            pred tensor: (Tensor) predictions, sized [n batch, S, S, Bx5+C], 5=len([x, y, w, h, conf]).
            target tensor: (Tensor) targets, sized [n batch, S, S, Bx5+C].
        Returns:
            (Tensor): loss, sized [1, ].
        11 11 11
        # TODO: Romove redundant dimensions for some Tensors.
        S, B, C = self.S, self.B, self.C
       N = 5 * B + C # 5 = len([x, y, w, h, conf])
```

```
batch size = pred tensor.size(0)
coord mask = target tensor[:, :, 4] > 0
# mask for the cells which contain objects. [n batch, S, S]
noobj mask = target tensor[:, :, 4] == 0
# mask for the cells which do not contain objects. [n batch, S, S]
coord mask = coord mask.unsqueeze(-1).expand as(target tensor)
# [n batch, S, S] -> [n batch, S, S, N]
noobj mask = noobj mask.unsqueeze(-1).expand as(target tensor)
# [n batch, S, S] -> [n batch, S, S, N]
coord pred = pred tensor[coord mask].view(-1, N)
# pred tensor on the cells which contain objects. [n coord, N]
# n coord: number of the cells which contain objects.
bbox pred = coord pred[:, :5*B].contiguous().view(-1, 5)
\# [n coord x B, 5=len([x, y, w, h, conf])]
class pred = coord pred[:, 5*B:]
# [n coord, C]
coord target = target tensor[coord mask].view(-1, N)
# target tensor on the cells which contain objects. [n coord, N]
# n coord: number of the cells which contain objects.
bbox target = coord target[:, :5*B].contiguous().view(-1, 5)
\# [n coord x B, 5=len([x, y, w, h, conf])]
class target = coord target[:, 5*B:]
# [n coord, C]
```

```
# Compute loss for the cells with no object bbox.
noobj pred = pred tensor[noobj mask].view(-1, N)
# pred tensor on the cells which do not contain objects. [n noobj, N]
# n noobj: number of the cells which do not contain objects.
noobj target = target tensor[noobj mask].view(-1, N)
# target tensor on the cells which do not contain objects. [n noobj, N]
# n noobj: number of the cells which do not contain objects.
noobj conf mask = torch.cuda.ByteTensor(noobj pred.size()).fill (0) # [n noobj, N]
for b in range(B):
    noobj conf mask[:, 4 + b*5] = 1 # noobj conf mask[:, 4] = 1; noobj conf mask[:, 9] = 1
noobj pred conf = noobj pred[noobj conf mask] # [n noobj, 2=len([conf1, conf2])]
noobj target conf = noobj target[noobj conf mask] # [n noobj, 2=len([conf1, conf2])]
loss noobj = F.mse loss(noobj pred conf, noobj target conf, reduction='sum')
# Compute loss for the cells with objects.
coord response mask = torch.cuda.ByteTensor(bbox target.size()).fill (0) # [n coord x B, 5]
coord not response mask = torch.cuda.ByteTensor(bbox target.size()).fill (1) # [n coord x B, 5]
bbox target iou = torch.zeros(bbox target.size()).cuda()
\# [n coord x B, 5], only the last 1=(conf,) is used
```

```
# Choose the predicted bbox having the highest IoU for each target bbox.
        for i in range(0, bbox target.size(0), B):
            pred = bbox pred[i:i+B] # predicted bboxes at i-th cell, [B, 5=len([x, y, w, h, conf])]
            pred xyxy = Variable(torch.FloatTensor(pred.size())) # [B, 5=len([x1, y1, x2, y2, conf])]
            # Because (center x,center y)=pred[:, 2] and (w,h)=pred[:,2:4] are normalized for cell-
size and image-size respectively,
           # rescale (center x, center y) for the image-size to compute IoU correctly.
            pred xyxy[:, :2] = pred[:, :2]/float(S) - 0.5 * pred[:, 2:4]
            pred xyxy[:, 2:4] = pred[:, :2]/float(S) + 0.5 * pred[:, 2:4]
            target = bbox target[i]
            # target bbox at i-th cell.
            # Because target boxes contained by each cell are identical in current implementation,
           # enough to extract the first one.
            target = bbox target[i].view(-1, 5) # target bbox at i-th cell, [1, 5=len([x, y, w, h, conf])]
            target xyxy = Variable(torch.FloatTensor(target.size())) # [1, 5=len([x1, y1, x2, y2, conf])]
            # Because (center x,center y)=target[:, 2] and (w,h)=target[:,2:4] are normalized for cell-
size and image-size respectively,
           # rescale (center x, center y) for the image-size to compute IoU correctly.
            target xyxy[:, :2] = target[:, :2]/float(S) - 0.5 * target[:, 2:4]
            target xyxy[:, 2:4] = target[:, :2]/float(S) + 0.5 * target[:, 2:4]
```

```
iou = self.compute iou(pred xyxy[:, :4], target xyxy[:, :4]) # [B, 1]
            \max iou, \max index = iou.max(0)
            max index = max index.data.cuda()
            coord response mask[i+max index] = 1
            coord not response mask[i+max index] = 0
            # "we want the confidence score to equal the intersection over union (IOU) between the predict
ed box and the ground truth"
           # from the original paper of YOLO.
            bbox target iou[i+max index, torch.LongTensor([4]).cuda()] = (max_iou).data.cuda()
       bbox target iou = Variable(bbox target iou).cuda()
        # BBox location/size and objectness loss for the response bboxes.
       bbox pred response = bbox pred[coord response mask].view(-1, 5) # [n response, 5]
       bbox target response = bbox target[coord response mask].view(-1, 5)
        \# [n response, 5], only the first 4=(x, y, w, h) are used
        target iou = bbox target iou[coord response mask].view(-1, 5)
        # [n response, 5], only the last 1=(conf,) is used
```

```
loss_xy = F.mse_loss(bbox_pred_response[:, :2], bbox_target_response[:, :2], reduction='sum')
    loss_wh = F.mse_loss(torch.sqrt(bbox_pred_response[:, 2:4]), torch.sqrt(bbox_target_response[:, 2:
4]), reduction='sum')
    loss_obj = F.mse_loss(bbox_pred_response[:, 4], target_iou[:, 4], reduction='sum')

# Class probability loss for the cells which contain objects.
    loss_class = F.mse_loss(class_pred, class_target, reduction='sum')

# Total loss
    loss = self.lambda_coord * (loss_xy + loss_wh) + loss_obj + self.lambda_noobj * loss_noobj + loss_class

loss = loss / float(batch_size)

return loss
```

IoU calculation


```
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class Loss(nn.Module):
    def compute iou(self, bbox1, bbox2):
        """ Compute the IoU (Intersection over Union) of two set of bboxes, each bbox format: [x1, y1, x2,
y2].
        Args:
            bbox1: (Tensor) bounding bboxes, sized [N, 4].
            bbox2: (Tensor) bounding bboxes, sized [M, 4].
        Returns:
            (Tensor) IoU, sized [N, M].
        77 77 77
        N = bbox1.size(0)
        M = bbox2.size(0)
```

```
# Compute left-top coordinate of the intersections
lt = torch.max(
    bbox1[:, :2].unsqueeze(1).expand(N, M, 2), # [N, 2] -> [N, 1, 2] -> [N, M, 2]
    bbox2[:, :2].unsqueeze(0).expand(N, M, 2) # [M, 2] -> [1, M, 2] -> [N, M, 2]
# Conpute right-bottom coordinate of the intersections
rb = torch.min(
    bbox1[:, 2:].unsqueeze(1).expand(N, M, 2), \# [N, 2] -> [N, 1, 2] -> [N, M, 2]
   bbox2[:, 2:].unsqueeze(0).expand(N, M, 2) # [M, 2] -> [1, M, 2] -> [N, M, 2]
# Compute area of the intersections from the coordinates
wh = rb - lt \# width and height of the intersection, [N, M, 2]
wh[wh < 0] = 0 # clip at 0
inter = wh[:, :, 0] * wh[:, :, 1] # [N, M]
# Compute area of the bboxes
area1 = (bbox1[:, 2] - bbox1[:, 0]) * (bbox1[:, 3] - bbox1[:, 1]) # [N, ]
area2 = (bbox2[:, 2] - bbox2[:, 0]) * (bbox2[:, 3] - bbox2[:, 1]) # [M, ]
areal = areal.unsqueeze(1).expand as(inter) \# [N, ] -> [N, 1] -> [N, M]
area2 = area2.unsqueeze(0).expand as(inter) \# [M, ] -> [1, M] -> [N, M]
# Compute IoU from the areas
union = area1 + area2 - inter # [N, M, 2]
iou = inter / union  # [N, M, 2]
return iou
```

Non-maximal suppression

Non-maximal suppression

```
def nms(bboxes, scores, threshold=0.5):
    '''
    bboxes(tensor) [N, 4]
    scores(tensor) [N,]
    '''
    x1 = bboxes[:,0]
    y1 = bboxes[:,1]
    x2 = bboxes[:,2]
    y2 = bboxes[:,3]

areas = (x2-x1) * (y2-y1)
    _,order = scores.sort(0,descending=True)
    keep = []
```

Non-maximal suppression

```
while order.numel() > 0:
    i = order[0]
    keep.append(i)
    if order.numel() == 1:
        break
    xx1 = x1[order[1:]].clamp(min=x1[i])
    yy1 = y1[order[1:]].clamp(min=y1[i])
    xx2 = x2[order[1:]].clamp(max=x2[i])
    yy2 = y2[order[1:]].clamp(max=y2[i])
    w = (xx2-xx1).clamp(min=0)
    h = (yy2-yy1).clamp(min=0)
    inter = w*h
    ovr = inter / (areas[i] + areas[order[1:]] - inter)
    ids = (ovr<=threshold).nonzero().squeeze()</pre>
    if ids.numel() == 0:
        break
    order = order[ids+1]
return torch.LongTensor(keep)
```


Figure 4: Error Analysis: Fast R-CNN vs. YOLO These charts show the percentage of localization and background errors in the top N detections for various categories (N = # objects in that category).

- (1) High localization error
- (2) Low recall

Recall vs. Precision

Two measurements for evaluating the performance of the system. Recall: coverage of the GT, Precision: The correctness ratio among estimations.

Tradeoffs between recall vs. precision.

Low recall, may have high precision.

YoloV2

	YOLO								YOLOv2
batch norm?		✓	✓	✓	✓	✓	✓	✓	✓
hi-res classifier?			\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	✓
convolutional?				✓	✓	✓	✓	✓	✓
anchor boxes?				✓	✓				
new network?					✓	✓	✓	✓	✓
dimension priors?						✓	✓	✓	✓
location prediction?						✓	✓	✓	✓
passthrough?							\checkmark	✓	✓
multi-scale?								✓	✓
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

Batch normalization

Internal Covariate Shift:

Changes in the data distribution for each layer.

Applying the batch-normalization.

Batch normalization

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Figure 1: (a) The test accuracy of the MNIST network trained with and without Batch Normalization, vs. the number of training steps. Batch Normalization helps the network train faster and achieve higher accuracy. (b, c) The evolution of input distributions to a typical sigmoid, over the course of training, shown as $\{15, 50, 85\}$ th percentiles. Batch Normalization makes the distribution more stable and reduces the internal covariate shift.

Hi-res classifier/detection

- YOLOv1 trains the classifier network (VGG16) at 224x224 and increases the resolution to 448 for detection.
- YOLOv2 fine-tune the classification network at the full 448x448 resolution for 10 epochs on ImageNet.

Hi-res classifier/detection

Image classification pre-trained on ImageNet (VGG-16) using 224x224 images.

VGG-16 with 448x448 input images for detection.

Architectures based on VGG16 for YOLO v1

Convolutional

- Remove FC layers from YOLO.
- Eliminate a pooling layer to make the output of the network's convolutional layers higher resolution.

Anchor boxes

7x7x2=98 boxes in Yolo v1

13x13x5=845 bounding boxes in Yolo v2

Anchor boxes

	YOLO								YOLOv2
batch norm?		√	✓	✓	✓	✓	✓	✓	√
hi-res classifier?			✓	✓	✓	✓	✓	✓	✓
convolutional?				✓	✓	\checkmark	\checkmark	\checkmark	✓
anchor boxes?				✓	✓				
new network?					✓	✓	✓	✓	√
dimension priors?						\checkmark	✓	\checkmark	✓
location prediction?						\checkmark	✓	\checkmark	✓
passthrough?							✓	✓	✓
multi-scale?								✓	✓
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

mAP becomes less; while it raises the recall from 81% to 88%.

Dimension priors

 Run k-means clustering on training set bounding boxes to automatically find good priors.

Figure 2: Clustering box dimensions on VOC and COCO. We run k-means clustering on the dimensions of bounding boxes to get good priors for our model. The left image shows the average IOU we get with various choices for k. We find that k=5 gives a good tradeoff for recall vs. complexity of the model. The right image shows the relative centroids for VOC and COCO. Both sets of priors favor thinner, taller boxes while COCO has greater variation in size than VOC.

Location

$$b_x = \sigma(t_x) + c_x$$

$$b_y = \sigma(t_y) + c_y$$

$$b_w = p_w e^{t_w}$$

$$b_h = p_h e^{t_h}$$

$$Pr(\text{object}) * IOU(b, \text{object}) = \sigma(t_o)$$

Multi-scale training

- The original YOLO uses an input resolution 448x448.
- YOLOv2 uses the resolution to 416x416.
- Instead of fixing input image size, we change the network input every 10 batches. The possible input size is: {320, 352, ..., 608}.

New network

- Similar to VGG network, use 3x3 filters and double the channels after pooling step.
- Use batch normalization to stabilizing training.

-			
Туре	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1 × 1	7 × 7
Avgpool		Global	1000
Softmax		0.00	2000
bortilla			

Table 6: Darknet-19.

Multi-scale training

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288 × 288	2007+2012	69.0	91
YOLOv2 352×352	2007+2012	73.7	81
YOLOv2 416×416	2007+2012	76.8	67
$YOLOv2 480 \times 480$	2007+2012	77.8	59
YOLOv2 544×544	2007+2012	78.6	40

Passthrough layer

- Passthrough layer concatenates the higher resolution features with the low resolution features.
- This simple scheme improves the 1% performance increase.

YOLOv3

Figure 1. We adapt this figure from the Focal Loss paper [9]. YOLOv3 runs significantly faster than other detection methods with comparable performance. Times from either an M40 or Titan X, they are basically the same GPU.

Multi-scale

- YOLOv3 predicts boxes at 3 different scales:
- NxNx[3*(4+1+80)]-dimensional array is predicted for 4 bounding box offsets, 1 objectness prediction and 80 class predictions in 3 different scales.

Multi-scale

High resolution for small object

Predicted 3D tensor: Scale 3 52 Box1 Box2 Box3

Medium resolution for middle object

26×26×C

Low resolution for large object

13×13×C

DarkNet-53

 Powerful than Darknet-19 but still more efficient than ResNet-101 or ResNet-152.

Backbone	Top-1	Top-5	Bn Ops	BFLOP/s	FPS
Darknet-19 [15]	74.1	91.8	7.29	1246	171
ResNet-101[5]	77.1	93.7	19.7	1039	53
ResNet-152 [5]	77.6	93.8	29.4	1090	37
Darknet-53	77.2	93.8	18.7	1457	78

	Туре	Filters	Size	Output
	Convolutional	32	3 × 3	256 × 256
	Convolutional	64	$3 \times 3/2$	128 × 128
	Convolutional	32	1 x 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3/2$	64 × 64
	Convolutional	64	1 x 1	
2×	Convolutional	128	3×3	
	Residual			64 × 64
	Convolutional	256	$3 \times 3/2$	32 × 32
	Convolutional	128	1 x 1	
8×	Convolutional	256	3×3	
	Residual			32 × 32
,	Convolutional	512	$3 \times 3/2$	16 × 16
	Convolutional	256	1 x 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
,	Convolutional	1024		8 × 8
	Convolutional	512	1 × 1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			

Table 1. Darknet-53.

DETRs Beat YOLOs on Real-time Object Detection

Wenyu Lv, Yian Zhao, Shangliang Xu, Jinman Wei, Guanzhong Wang, Cheng Cui Yuning Du, Qingqing Dang, Yi Liu Baidu Inc.

{lvwenyu01, zhaoyian, xushangliang, wangguanzhong} @baidu.com

- Multi-scale features are helpful for improving the performance.
- However, it hinders the real-time speed.
- Encoder accounts for 49% of the overall GFLOPs,
 but contributes only 11% of the AP in Deformable DETR.

 Propose the efficient hybrid encoder: having attention-based intra-scale feature interaction (AIFI), cross-scale feature-fusion module (CCFM).

- IoU-aware query selection: produce high classification scores for features with high IoU scores.
- No need to enforce high classification scores for features with low IoU scores.

Model	Backbone	#Epochs	#Params (M)	GFLOPs	$FPS_{bs=1}$	AP ^{val}	\mathbf{AP}^{val}_{50}	\mathbf{AP}^{val}_{75}	\mathbf{AP}_S^{val}	\mathbf{AP}_{M}^{val}	\mathbf{AP}_L^{val}
Real-time Object Detectors											
YOLOv5-L[13]	-	300	46	109	54	49.0	67.3	-	-	-	-
YOLOv5-X[13]	-	300	86	205	43	50.7	68.9	-	-	-	-
PPYOLOE-L[41]	CSPRepResNet	300	52	110	94	51.4	68.9	55.6	31.4	55.3	66.1
PPYOLOE-X[41]	CSPRepResNet	300	98	206	60	52.3	69.9	56.5	33.3	56.3	66.4
YOLOv6-L[18]	-	300	59	150	99	52.8	70.3	57.7	34.4	58.1	70.1
YOLOv7-L[38]	-	300	36	104	55	51.2	69.7	55.5	35.2	55.9	66.7
YOLOv7-X[38]	-	300	71	189	45	52.9	71.1	57.4	36.9	57.7	68.6
YOLOv8-L[14]	-	-	43	165	71	52.9	69.8	57.5	35.3	58.3	69.8
YOLOv8-X[14]	-	-	68	257	50	53.9	71.0	58.7	35.7	59.3	70.7
End-to-end Object Detectors											
DETR-DC5 [5]	R50	500	41	187	-	43.3	63.1	45.9	22.5	47.3	61.1
DETR-DC5 [5]	R101	500	60	253	-	44.9	64.7	47.7	23.7	49.5	62.3
Anchor-DETR-DC5 [40]	R50	50	39	172	-	44.2	64.7	47.5	24.7	48.2	60.6
Anchor-DETR-DC5 [40]	R101	50	-	-	-	45.1	65.7	48.8	25.8	49.4	61.6
Conditional-DETR-DC5 [27]	R50	108	44	195	-	45.1	65.4	48.5	25.3	49.0	62.2
Conditional-DETR-DC5 [27]	R101	108	63	262	-	45.9	66.8	49.5	27.2	50.3	63.3
Efficient-DETR [43]	R50	36	35	210	-	45.1	63.1	49.1	28.3	48.4	59.0
Efficient-DETR [43]	R101	36	54	289	-	45.7	64.1	49.5	28.2	49.1	60.2
SMCA-DETR [9]	R50	108	40	152	-	45.6	65.5	49.1	25.9	49.3	62.6
SMCA-DETR [9]	R101	108	58	218	-	46.3	66.6	50.2	27.2	50.5	63.2
Deformable-DETR [49]	R50	50	40	173	-	46.2	65.2	50.0	28.8	49.2	61.7
DAB-Deformable-DETR [24]	R50	50	48	195	-	46.9	66.0	50.8	30.1	50.4	62.5
DN-Deformable-DETR [20]	R50	50	48	195	-	48.6	67.4	52.7	31.0	52.0	63.7
DAB-Deformable-DETR++ [20]	R50	50	47	-	-	48.7	67.2	53.0	31.4	51.6	63.9
DN-Deformable-DETR++ [20]	R50	50	47	-	-	49.5	67.6	53.8	31.3	52.6	65.4
DINO-Deformable-DETR [46]	R50	36	47	279	5	50.9	69.0	55.3	34.6	54.1	64.6
Real-time End-to-end Object Detector (ours)											
RT-DETR-R50	R50	72	42	136	108	53.1	71.3	57.7	34.8	58.0	70.0
RT-DETR-R101	R101	72	76	259	74	54.3	72.7	58.6	36.0	58.8	72.1
RT-DETR-L	HGNetv2	72	32	110	114	53.0	71.6	57.3	34.6	57.3	71.2
RT-DETR-X	HGNetv2	72	67	234	74	54.8	73.1	59.4	35.7	59.6	72.9

