Model building

To predict price of the land in some areas

```
1 import pandas as pd
```

² df

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Williams\nFPO AP 30153- 7653
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 9258, Box 8489\nAPO AA 42991-3352
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Tracy Garden Suite 076\nJoshualand, VA 01
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace\nFPO AE 73316
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 George Ridges Apt. 509\nEast Holly, NV 2

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype	
0	Avg. Area Income	5000 non-null	float64	
1	Avg. Area House Age	5000 non-null	float64	
2	Avg. Area Number of Rooms	5000 non-null	float64	
3	Avg. Area Number of Bedrooms	5000 non-null	float64	
4	Area Population	5000 non-null	float64	
5	Price	5000 non-null	float64	
6	Address	5000 non-null	object	

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

1 df.describe()

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

² import numpy as np

³ import matplotlib.pyplot as plt

⁴ import seaborn as sns

⁵ import sklearn

¹ df=pd.read_csv("10_USA_Housing.csv")

1 df.columns

▼ EDA

1 sns.pairplot(df)

1 sns.displot(df['Price'])

C:\Users\Gokul Jana\AppData\Local\Programs\Python\Python311\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layo self._figure.tight_layout(*args, **kwargs)
<seaborn.axisgrid.FacetGrid at 0x19c407e1e10>

- 1 sns.heatmap(df1.corr())

<Axes: >

▼ Train the model

1 coeff=pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])

2 coeff

	Co-efficient
Avg. Area Income	21.578049
Avg. Area House Age	165637.026941
Avg. Area Number of Rooms	120659.948816
Avg. Area Number of Bedrooms	1651.139054
Area Population	15.200744

¹ pred=lr.predict(x_test)

<matplotlib.collections.PathCollection at 0x19c457d5fd0>

1 lr.score(x_test,y_test)

0.9201330768038205

▼ Bottle

```
1 df2=pd.read_csv("E:/Datasets/9_bottle.csv")
```

2 df2

² plt.scatter(y_test,pred)

9:34 AIVI	Dayspractice (1).lpynb - Colaboratory														
2	1	3	054.0 056.0	HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	NaN	 NaN	10	NaN	NaN	
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	NaN	 NaN	19	NaN	NaN	
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	NaN	 NaN	20	NaN	NaN	I
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.74	 0.18	0	NaN	NaN	
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.74	 0.18	2	4.0	NaN	
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.46	 0.18	5	3.0	NaN	
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.74	 0.31	10	2.0	NaN	
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297	105.66	 0.61	15	1.0	NaN	
864863 rov	ws × 74 co	lumns													

```
1 df2.isna().sum()
```

```
Cst_Cnt
                           0
Btl_Cnt
                           0
Sta_ID
                           0
Depth_ID
                           0
Depthm
                           0
                      862779
TA1
TA2
                      864629
pH2
                      864853
pH1
                      864779
DIC Quality Comment
                      864808
Length: 74, dtype: int64
```

1 df2.columns

```
'R_NO2', 'R_NH4', 'R_CHLA', 'R_PHAEO', 'R_PRES', 'R_SAMP', 'DIC1', 'DIC2', 'TA1', 'TA2', 'pH2', 'pH1', 'DIC Quality Comment'],
           dtype='object')
1 df3=df2.drop(['DIC2', 'TA1', 'TA2', 'pH2', 'pH1', 'DIC Quality Comment'],axis=1)
1 df4=df3.drop(['BtlNum', 'T_qual', 'S_qual', 'O_qual', 'SThtaq', 'NH3uM', 'C14As1',
          'C14A1p', 'C14As2', 'C14A2p', 'DarkAs', 'DarkAp', 'MeanAs', 'MeanAp', 'IncTim', 'Lightp', 'R_NH4', 'R_SAMP', 'DIC1'],axis=1)
3
1 df4.isna().sum()
    Cst_Cnt
Btl_Cnt
                           0
                           0
    Sta_ID
                           0
    Depth_ID
                           0
    Depthm
                           0
    T_degC
                      10963
    Salnty
                      47354
    02m1_L
                     168662
                      52689
    STheta
                     203589
    02Sat
    Oxy_µmol/Kg
                     203595
    RecInd
                          0
                      10963
    T_prec
    S_prec
                      47354
    P_qual
                     191108
    02Satq
                     647066
    ChlorA
                     639591
    Chlqua
                     225697
    Phaeop
                     639592
                     225693
    Phaqua
    PO4uM
                     451546
    PO4q
                     413077
    SiO3uM
                     510772
                     353997
    Si03au
    NO2uM
                     527287
    NO2q
                     335389
    NO3uM
                     527460
    NO3q
                     334930
    NH3q
                      56564
    C14A1q
                      16258
    C14A2q
                      16240
    DarkAq
                      24423
    MeanAg
                      24424
    R_Depth
                          0
    R_TEMP
                      10963
    R_POTEMP
                      46047
    R_SALINITY
                      47354
    R_SIGMA
                      52856
    R_SVA
                      52771
    R_DYNHT
                      46657
    R 02
                     168662
    R 02Sat
                     198415
    R_SI03
                     510764
                     451538
    R P04
    R_N03
                     527452
                     527279
    R_N02
    R_CHLA
                     639587
    R_PHAEO
                     639588
    R_PRES
```

1 df4.describe()

dtype: int64

	Cst_Cnt	Btl_Cnt	Depthm	T_degC	Salnty	02m1_L	STheta	02Sat	Oxy_μm
count	864863.000000	864863.000000	864863.000000	853900.000000	817509.000000	696201.000000	812174.000000	661274.000000	661268.0
mean	17138.790958	432432.000000	226.831951	10.799677	33.840350	3.392468	25.819394	57.103779	148.8
std	10240.949817	249664.587269	316.050259	4.243825	0.461843	2.073256	1.167787	37.094137	90.1
min	1.000000	1.000000	0.000000	1.440000	28.431000	-0.010000	20.934000	-0.100000	-0.4
25%	8269.000000	216216.500000	46.000000	7.680000	33.488000	1.360000	24.965000	21.100000	60.9
50%	16848.000000	432432.000000	125.000000	10.060000	33.863000	3.440000	25.996000	54.400000	151.0
75%	26557.000000	648647.500000	300.000000	13.880000	34.196900	5.500000	26.646000	97.600000	240.3
max	34404.000000	864863.000000	5351.000000	31.140000	37.034000	11.130000	250.784000	214.100000	485.7
8 rows ×	47 columns								

1 df5=df4.iloc[0:5000,:] 2 df5

	Cst_Cnt	Bt1_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	02m1_L	STheta	02Sat	 R_DYNHT	R_02	R_02Sat	R_SI03	R_P0
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.50	33.440	NaN	25.649	NaN	 0.00	NaN	NaN	NaN	Na
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.46	33.440	NaN	25.656	NaN	 0.01	NaN	NaN	NaN	Na
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.46	33.437	NaN	25.654	NaN	 0.02	NaN	NaN	NaN	Na
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.45	33.420	NaN	25.643	NaN	 0.04	NaN	NaN	NaN	Na
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.45	33.421	NaN	25.643	NaN	 0.04	NaN	NaN	NaN	Na
4995	165	4996	092.0 098.0	19- 4904NS- HY-102- 1342- 09200980- 0099A-3	99	11.41	33.440	5.42	25.490	87.6	 0.28	5.42	87.6	NaN	Na
4996	165	4997	092.0 098.0	19- 4904NS- HY-102- 1342- 09200980- 0100A-7	100	11.36	33.444	5.39	25.502	87.0	 0.28	5.39	87.0	NaN	Na
4997	165	4998	092.0 098.0	19- 4904NS- HY-102- 1342-	125	10.16	33.555	4.59	25.800	72.2	 0.34	4.59	72.2	NaN	Na

¹ per=df5.isna().sum()/len(df5)*100

² per1=pd.DataFrame(per,df5.columns,)

³ per1

	0
Cst_Cnt	0.00
Btl_Cnt	0.00
Sta_ID	0.00
Depth_ID	0.00
Depthm	0.00
T_degC	0.40
Salnty	3.04
O2ml_L	43.80
STheta	3.34
O2Sat	45.74
Oxy_µmol/Kg	45.74
RecInd	0.00
T_prec	0.40
S_prec	3.04
P_qual	0.00
O2Satq	52.88
ChlorA	100.00
Chiqua	0.00
Phaeop	100.00
Phaqua	0.00
PO4uM	79.08
PO4q	20.92
SiO3uM	100.00
SiO3qu	0.00
NO2uM	100.00
NO2q	0.00
NO3uM	100.00
NO3q	0.00
NH3q	0.00
C14A1q	0.00
C14A2q	0.00

¹ pr=per1[per1[0]>75].index

² pr

```
dtype='object')
3 df6.isna().sum()/len(df5)*100
    Cst_Cnt
                   0.00
    Btl_Cnt
                   0.00
    Sta_ID
                   0.00
    Depth_ID
                   0.00
    Depthm
                   0.00
    T_degC
                   0.40
    Salnty
                   3.04
    02ml_L
                  43.80
    STheta
                   3.34
    02Sat
                  45.74
    \texttt{Oxy\_} \mu \texttt{mol/Kg}
                  45.74
                   0.00
    RecInd
                   0.40
    T_prec
    S_prec
                   3.04
    P_qual
                   0.00
    02Satq
                  52.88
    Chlqua
                   0.00
    Phaqua
                   0.00
    P04q
                  20.92
    SiO3qu
                   0.00
                   0.00
    NO2q
    NO3q
                   0.00
    NH3q
                   0.00
                   0.00
    C14A1q
    C14A2q
                   0.00
    DarkAq
                   0.00
    MeanAq
                   0.00
    R_Depth
                   0.00
    R_TEMP
                   0.40
    R POTEMP
                   4.50
    R SALINITY
                   3.04
    R SIGMA
                   5.62
    R_SVA
                   5.62
    R DYNHT
                   4.28
    R 02
                  43.80
    R_02Sat
                  46.20
    R_PRES
    dtype: float64
1 df6.fillna(df6["T_degC"].mean())
2 df6.fillna(df6["Salnty"].mean())
3 df6.fillna(df6["02ml_L"].mean())
4 df6.fillna(df6["STheta"].mean())
5 df6.fillna(df6["O2Sat"].median())
6 df6.fillna(df6["Oxy_\u00edmol/Kg"].mean())
7 df6.fillna(df6["T_prec"].mean())
8 df6.fillna(df6["S_prec"].mean())
9 df6.fillna(df6["02Satq"].mean())
10 df6.fillna(df6["P04q"].mean())
11 df6.fillna(df6["R_TEMP"].mean())
12 df6.fillna(df6["R_POTEMP"].mean())
13 df6.fillna(df6["R_SALINITY"].mean())
14 df6.fillna(df6["R_SIGMA"].mean())
15 df6.fillna(df6["R_SVA"].mean())
16 df6.fillna(df6["R_DYNHT"].mean())
17 df6.fillna(df6["R_02"].mean())
18 df6=df6.fillna(df6["R_O2Sat"].mean())
1 df6.isna().sum()
    Cst_Cnt
    Btl Cnt
                  0
    Sta ID
                  0
    Depth_ID
                  0
    Depthm
                  0
    T_degC
                  0
    Salnty
                  a
    02ml_L
                  0
    STheta
    02Sat
                  0
    Oxy_μmol/Kg
    RecInd
                  0
    T_prec
                  0
    S_prec
                  0
    P qual
                  0
    02Satq
                  a
    Chlqua
```

1 df7=df6.iloc[:10,:10]
2 sns.pairplot(df7)

C:\Users\Gokul Jana\AppData\Local\Programs\Python\Python311\Lib\site-packages\seab self._figure.tight_layout(*args, **kwargs)
<seaborn.axisgrid.PairGrid at 0x19c097e9950>

- 1 df6=df6.drop(["Sta_ID","Depth_ID"],axis=1)
- 2 sns.heatmap(df6.corr())


```
1 x=df6.drop(["R_02"],axis=1)
```

4.476419235288631e-13

- 1 coeff=pd.DataFrame(model1.coef_,x.columns,columns=["Coefficient"])
- 2 coeff

² y=df6["R_02"]

³ x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

⁴ model1=LinearRegression()

⁵ model1.fit(x_train,y_train)

⁶ model1.intercept_