Table des matières

1	Le j	phénomène de diffraction
	1.1	Rappels théorique
	1.2	Schéma de principe
	1.3	Liste du matériel
	1.4	Principe de l'expérience
	1.5	Tableau de mesures
		1.5.1 Expérience avec fente rectangulaire
		1.5.2 Expérience avec fente circulaire
	1.6	Calculs
		1.6.1 Expérience avec fente rectangulaire
		1.6.2 Expérience avec fente circulaire
	1.7	Conclusion
_	-	
2		phénomène d'interférence
	2.1	Rappels théorique
	2.2	Schéma de principe
	2.3	Liste du matériel
	2.4	Principe de l'expérience
	2.5	Tableau de mesures
	2.6	Calculs
		2.6.1 Calcul de l'écart entre les 2 fentes b
		2.6.2 Calcul de l'incertitude de b
	2.7	Conclusion
3	Les	réseaux de diffraction
•	3.1	Rappels théorique
	3.2	Schéma de principe
	3.3	Liste du matériel
	3.4	Principe de l'expérience
	3.5	Tableau de mesures
	5.5	3.5.1 500 fentes
		3.5.2 1400 fentes
	2.6	3.5.3 Nombre de fentes inconnu
	3.6	Calculs
		3.6.1 Calcul du θ
		3.6.2 Calcul du λ
		3.6.3 Calcul du nombre de fentes N
	3.7	Conclusion

Chapitre 1

Le phénomène de diffraction

1.1 Rappels théorique

1.2 Schéma de principe

1.3 Liste du matériel

- laser monochromatique
- mètre ruban
- dias à fente rectangulaire
- dias à fente circulaire
- porte dia
- écran de projection
- statif

1.4 Principe de l'expérience

1.5 Tableau de mesures

1.5.1 Expérience avec fente rectangulaire

n	D	$\Delta \mathbf{D}$	\mathbf{z}	$\Delta \mathbf{z}$	λ	$\Delta \lambda$
	[mm]	[mm]	[mm]	[mm]	[nm]	[nm]
4	5670	50		1		
5	5670	50		1		

1.5.2 Expérience avec fente circulaire

n	D	$\Delta \mathbf{D}$	\mathbf{z}	$\Delta \mathbf{z}$	\oslash	$\Delta \oslash$
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
4	5670	50	34	1	0,4	
5	5670	50	42	1	0,4	

1.6 Calculs

1.6.1 Expérience avec fente rectangulaire

Calcul de la longueur d'onde λ du rayon laser

$$\lambda = \frac{a.z_n}{n.D} \tag{1.1}$$

- a est la largeur de la fente
- D est la distance écran-dia
- n est ordre
- z est distance du minima

Calcul de l'incertitude de λ

$$\frac{\Delta\lambda}{\lambda} = \frac{\Delta\left(\frac{a.z_n}{n.D}\right)}{\frac{a.z_n}{n.D}} = \frac{\Delta D}{D} + \frac{\Delta z_n}{z_n}$$
(1.2)

$$\Delta \lambda = \left(\frac{\Delta D}{D} + \frac{\Delta z_n}{z_n}\right) . \lambda \tag{1.3}$$

$$\Delta \lambda = \left(\frac{50}{5670} + \frac{11}{11}\right)., , =$$

1.6.2 Expérience avec fente circulaire

Calcul de la longueur du diamètre de la fente

$$a = \frac{\lambda . n. D}{z_n} \tag{1.4}$$

Calcul de l'incertitude sur le diamètre de la fente

$$\frac{\Delta a}{a} = \frac{\Delta \left(\frac{\lambda \cdot n \cdot D}{z_n}\right)}{\frac{\lambda \cdot n \cdot D}{z_n}} = \frac{\Delta D}{D} + \frac{\Delta z_n}{z_n} + \frac{\Delta \lambda}{\lambda}$$
(1.5)

$$\Delta a = \left(\frac{\Delta D}{D} + \frac{\Delta z_n}{z_n} + \frac{\Delta \lambda}{\lambda}\right).a\tag{1.6}$$

1.7 Conclusion

Chapitre 2

Le phénomène d'interférence

2.1 Rappels théorique

2.2 Schéma de principe

2.3 Liste du matériel

- laser monochromatique
- mètre ruban
- dias à paires de fentes
- porte dia
- écran de projection
- statif

2.4 Principe de l'expérience

2.5 Tableau de mesures

n	D	$\Delta \mathbf{D}$	${f z}$	$\Delta \mathbf{z}$	b	$\Delta \mathbf{b}$	α
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
1	5670	50	3	1	0,59		$\frac{\pi}{2}$
2	5670	50	10	1	0,53		$\frac{3\pi}{2}$
3	5670	50	16	1	$0,\!55$		$\frac{5\pi}{2}$
4	5670	50	22	1	0,56		$\frac{7\pi}{2}$
5	5670	50	28	1	0,57		$\frac{9\pi}{2}$
6	5670	50	32	1	0,61		$\frac{1\overline{1}\pi}{2}$
7	5670	50	38	1	0,60		$\begin{array}{c} \pi \\ 23\pi \\ 25\pi \\ 27\pi \\ 2\pi \\ 21\pi \\ 23\pi \\ 15\pi \\ 15\pi \end{array}$
8	5670	50	44	1	0,60		$\frac{15\pi}{2}$

2.6 Calculs

Calcul réalisé pour la dernière ligne du tableau

2.6.1 Calcul de l'écart entre les 2 fentes b

$$\alpha = \frac{\pi . b. z_n}{\lambda . D} \to b = \frac{\alpha . \lambda . D}{\pi . z_n}$$

$$b = \frac{\frac{15\pi}{2} .622, 5.10^{-6}.5670}{\pi . 44} = 0,60mm$$
(2.1)

2.6.2 Calcul de l'incertitude de b

$$\frac{\Delta b}{b} = \frac{\Delta \left(\frac{\alpha.\lambda.D}{\pi.z_n}\right)}{\frac{\alpha.\lambda.D}{\pi.z_n}} = \frac{\Delta D}{D} + \frac{\Delta z_n}{z_n} + \frac{\Delta \lambda}{\lambda}$$
(2.2)

$$\Delta b = \left(\frac{\Delta D}{D} + \frac{\Delta z_n}{z_n} + \frac{\Delta \lambda}{\lambda}\right).b \tag{2.3}$$

$$\Delta b = \left(\frac{50}{5670} + \frac{1}{3} + \frac{\Delta \lambda}{622,5.10^{-6}}\right).0,60 =$$

2.7 Conclusion

Chapitre 3

Les réseaux de diffraction

- 3.1 Rappels théorique
- 3.2 Schéma de principe
- 3.3 Liste du matériel
- 3.4 Principe de l'expérience
- 3.5 Tableau de mesures

3.5.1 500 fentes

\mathbf{n}	D	$\Delta \mathbf{D}$	\mathbf{z}	$\Delta \mathbf{z}$	θ	$\Delta \theta$	λ	$\Delta \lambda$	γ
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[nm]	[nm]	[rad]
1	5670	50	183	1	1,85	0,03	645,2	10,8	π
2	5670	50	365	1	3,68	0,04	642,4	$21,\!35$	2π
3	5670	50	499	1	5,03	0,05	584,4	26,45	3π
4	5670	50	729	1	7,32	0,08	637,6	41,89	4π
5	5670	50	911	1	9,13	0,09	634,5	51,82	5π

3.5.2 1400 fentes

n	D	$\Delta \mathbf{D}$	${f z}$	$\Delta \mathbf{z}$	θ	$\Delta \theta$	λ	$\Delta \lambda$	γ
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[nm]	[nm]	[rad]
1	5670	50	45	1	0,45	0,01	565,1	2,5	π
2	5670	50	905	1	9,07	0,09	562,9	45,7	2π
3	5670	50	1378	1	13,66	0,13	562,8	68,3	3π

3.5.3 Nombre de fentes inconnu

n	D	$\Delta \mathbf{D}$	${f z}$	$\Delta \mathbf{z}$	θ	$\Delta \theta$	γ	N
	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[rad]	
1	5670	50	36	1	0,36	0,0	π	1009
2	5670	50	726	1	7,29	0,07	2π	1009
3	5670	50	1096	1	10,94	0,11	3π	1006

3.6 Calculs

Calcul réalisé pour la dernière ligne du tableau

3.6.1 Calcul du θ

$$\theta = tan^{-1} \left(\frac{z_n}{D}\right) \tag{3.1}$$

$$\Delta\theta = tan^{-1} \left(\frac{z_n}{D}\right) \tag{3.2}$$

$$\Delta\theta = \frac{\theta_{max} - \theta_{min}}{2} \tag{3.3}$$

$$\theta_{max} = tan^{-1} \left(\frac{z}{D} + \Delta \left(\frac{z}{D} \right) \right) \tag{3.4}$$

$$\theta_{min} = tan^{-1} \left(\frac{z}{D} - \Delta \left(\frac{z}{D} \right) \right) \tag{3.5}$$

$$\Delta\left(\frac{z}{D}\right) = \left(\frac{\Delta z}{z} + \frac{\Delta D}{D}\right) \cdot \frac{z}{D} \tag{3.6}$$

3.6.2 Calcul du λ

$$\lambda = \frac{\pi.d.sin(\theta)}{\gamma} \tag{3.7}$$

$$\Delta \lambda = \left(\frac{\sin(\theta_{max}) - \sin(\theta_{min})}{2}\right) . \lambda \tag{3.8}$$

3.6.3 Calcul du nombre de fentes N

$$d = \frac{1}{N} = \frac{n.\lambda}{\sin(\theta)} \tag{3.9}$$

$$N = \frac{\sin(\theta)}{n \cdot \lambda} \tag{3.10}$$

3.7 Conclusion