Low-Dimensional Representation of Biological Sequence Data

Carter Tillquist

Department of Computer Science, University of Colorado Boulder IQ Biology Program, BioFrontiers Institute

10-th ACM BCB Conference Niagara Fall, NY

GitHub

 $\verb|https://github.com/riti4538/ACM-BCB-2019-Tutorial|$

Table of Contents

- Embeddings
- 2 Embedding Techniques
- Word2Vec
- Multilateration
- Conclusion

Part 1: Embeddings

- Sequence analysis often involves machine learning
- ullet Many algorithms assume features lie in \mathbb{R}^n

- Sequence analysis often involves machine learning
- Many algorithms assume features lie in \mathbb{R}^n
- Map symbolic data to this space
 - A naive mapping can imply unintended relationships

$$f(A) = 1$$
 $f(C) = 2$ $f(T) = 3$ $f(G) = 4$

• A map preserving relevant structure

$$f:X\hookrightarrow Y$$

• A map preserving relevant structure

$$f: X \hookrightarrow Y$$

• Usually, Y is a vector space (\mathbb{R}^n)

• A map preserving relevant structure

$$f: X \hookrightarrow Y$$

- Usually, Y is a vector space (\mathbb{R}^n)
- Wide variety of possibilities for X
 - Words, sentences, tweets, documents
 - Graphs, individual vertices
 - Images, videos
 - Audio
 - Time series
 - Multimodal
 - Sequence data

$$f: X \hookrightarrow Y$$

• If $u, v \in X$ are "similar", d(f(u), f(v)) is small

$$f: X \hookrightarrow Y$$

- If $u, v \in X$ are "similar", d(f(u), f(v)) is small
- Desirable properties
 - Define f efficiently
 - f(u) for $u \in X$ easy to compute
 - New observations are readily embeddable
 - Y low-dimensional

- Graph embeddings
 - Factorization approaches: Locally Linear Embedding (LLE), Laplacian Eigenmaps, Graph Factorization, Multidimensional Scaling (MDS)
 - Deep learning: Structural Deep Network Embedding (SDNE), Graph Convolutional Networks (GCN)
 - Metric dimension and multilateration

- Graph embeddings
 - Factorization approaches: Locally Linear Embedding (LLE), Laplacian Eigenmaps, Graph Factorization, Multidimensional Scaling (MDS)
 - Deep learning: Structural Deep Network Embedding (SDNE), Graph Convolutional Networks (GCN)
 - Metric dimension and multilateration
- 2Vec family
 - Text: Word2Vec, Sentence2Vec, Doc2Vec, Tweet2Vec, Emoji2Vec

- Graph embeddings
 - Factorization approaches: Locally Linear Embedding (LLE), Laplacian Eigenmaps, Graph Factorization, Multidimensional Scaling (MDS)
 - Deep learning: Structural Deep Network Embedding (SDNE), Graph Convolutional Networks (GCN)
 - Metric dimension and multilateration
- 2Vec family
 - Text: Word2Vec, Sentence2Vec, Doc2Vec, Tweet2Vec, Emoji2Vec
 - Graphs: DeepWalk, Node2Vec, Struc2Vec, Subgraph2Vec

- Graph embeddings
 - Factorization approaches: Locally Linear Embedding (LLE), Laplacian Eigenmaps, Graph Factorization, Multidimensional Scaling (MDS)
 - Deep learning: Structural Deep Network Embedding (SDNE), Graph Convolutional Networks (GCN)
 - Metric dimension and multilateration
- 2Vec family
 - Text: Word2Vec, Sentence2Vec, Doc2Vec, Tweet2Vec, Emoji2Vec
 - Graphs: DeepWalk, Node2Vec, Struc2Vec, Subgraph2Vec
 - Images: Image2Vec
 - Molecules: Mol2Vec
 - Biological sequences: BioVec

- d-dimensional representations
 - Assign each symbol (nucleotide) a vector
 - \bullet Iteratively build a curve in \mathbb{R}^2 [4, 14] or \mathbb{R}^3 [5, 11]

Figures from [14]

- *d*-dimensional representations
 - Assign each symbol (nucleotide) a vector
 - \bullet Iteratively build a curve in \mathbb{R}^2 [4, 14] or \mathbb{R}^3 [5, 11]

Figures from [14]

- d-dimensional representations
 - Assign each symbol (nucleotide) a vector
 - Iteratively build a curve in \mathbb{R}^2 [4, 14] or \mathbb{R}^3 [5, 11]
 - Chaos game representation [8]

Figure 3. CGR of Human Beta Globin Region on Chromosome 11 (HUMHBB) (73.357 bases).

- d-dimensional representations
 - Assign each symbol (nucleotide) a vector
 - Iteratively build a curve in \mathbb{R}^2 [4, 14] or \mathbb{R}^3 [5, 11]
 - Chaos game representation [8]
- k-mer count vectors
- Binary vectors
- Word2Vec/BioVec
- Multilateration

k-mer Count Vectors

Definition

A **k-mer** is a sequence of k characters from a given alphabet.

Definition

Using a sliding window of length k over a string S, **k-mer count vectors** record the number of occurrences of all $|\mathcal{A}|^k$ k-mers from an alphabet \mathcal{A} .

k-mer Count Vectors

Definition

A **k-mer** is a sequence of k characters from a given alphabet.

Definition

Using a sliding window of length k over a string S, **k-mer count vectors** record the number of occurrences of all $|\mathcal{A}|^k$ k-mers from an alphabet \mathcal{A} .

•
$$k = 2$$
, $S = AAATGGAC$

$$\#(AA) = 2$$

$$\#(GC)=0$$

k-mer Count Vectors

Definition

A **k-mer** is a sequence of k characters from a given alphabet.

Definition

Using a sliding window of length k over a string S, **k-mer count vectors** record the number of occurrences of all $|\mathcal{A}|^k$ k-mers from an alphabet \mathcal{A} .

•
$$k = 2$$
, $S = AAATGGAC$

$$\#(AA) = 2$$

$$\#(GC)=0$$

$$Y = (2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0)$$
, ordered lexicographically

$$\dim(Y) = |\mathcal{A}|^k = 16$$

Binary Vectors

Definition

Binary vectors indicate the presence or absence of each character in an alphabet A at each position in a string.

- Concatenate one-hot encodings for every character in a sequence
- S = AAATGGAC

Definition

Binary vectors indicate the presence or absence of each character in an alphabet \mathcal{A} at each position in a string.

- Concatenate one-hot encodings for every character in a sequence
- S = AAATGGAC

$$A \hookrightarrow (1,0,0,0)$$
 $C \hookrightarrow (0,1,0,0)$
 $G \hookrightarrow (0,0,1,0)$ $T \hookrightarrow (0,0,0,1)$
 $Y = (1,0,0,0,1,0,0,0,\dots,0,1,0,0)$
 $\dim(Y) = |A| \cdot |S| = 32$

Part 2: Word2Vec

Intuition

- Embed words in \mathbb{R}^n
- For two words w_1 and w_2 , $||f(w_1) f(w_2)||_2$ should be small when w_1 and w_2 are "similar"

Intuition

- Embed words in \mathbb{R}^n
- For two words w_1 and w_2 , $||f(w_1) f(w_2)||_2$ should be small when w_1 and w_2 are "similar"
- "Similarity" with respect to semantic meaning
- Words with similar contexts having similar meanings

Neural Networks

- Every edge has an associated weight
 - Learned through backpropagation
- Input values move along edges
- Nodes in hidden layers include an activation function
- A softmax is often applied to the output layer

Architecture

- Two architectures
 - Continuous skip-gram
 - Continuous bag-of-words (CBOW)

Skip-gram

Architecture

- Two architectures
 - Continuous skip-gram
 - Continuous bag-of-words (CBOW)
- Predict the words around w(t)

Skip-gram

Architecture

- Two architectures
 - Continuous skip-gram
 - Continuous bag-of-words (CBOW)
- Predict the words around w(t)
 - Difficult task
 - We want the weights between the input and hidden layers
 - n-dimensional representation of each word

Skip-gram

Assessing the Embedding

• Performance on downstream task

Assessing the Embedding

- Performance on downstream task
- Analogies as vector arithmetic

$$\overrightarrow{king} - \overrightarrow{mah} + \overrightarrow{womah} \approx \overrightarrow{queeh}$$

Assessing the Embedding

- Performance on downstream task
- Analogies as vector arithmetic

$$\overrightarrow{king} - \overrightarrow{mah} + \overrightarrow{womah} \approx \overrightarrow{queeh}$$

Male-Female

Verb tense

Country-Capital

https://www.tensorflow.org/tutorials/representation/word2vec

BioVec

- BioVec for biological sequences [1]
- ullet Embed peptide trimers in \mathbb{R}^{100}
- Project to two dimensions

BioVec

Biological Properties

Figure from [1]

BioVec

Lipschitz Number

$$M(u,v) := \frac{|f(u) - f(v)|}{d(u,v)}$$

Property	Lipschitz Number		
	protein-Space	The scrambled space	Ratio
Mass	0.3137	0.6605	0.4750
Volume	0.3742	0.6699	0.5586
Van Der Waal Volume	0.3629	0.6431	0.5643
Polarity	0.4757	1.2551	0.3790
Hydrophobicity	0.608	1.448	0.4203
Charge	0.8733	1.3620	0.6412
Average	0.50	1.01	0.51

Figure from [1]

- Measure the continuity of the embedding
- Embedding space is "smoother" than scrambled space

Word2Vec

More Details

- The dimension of the hidden layer is the embedding dimension
- Provide and predict one-hot encodings

Skip-gram

Word2Vec

More Details

- The dimension of the hidden layer is the embedding dimension
- Provide and predict one-hot encodings
- The network has many weights making training slow
 - Negative sampling focuses on updating the weights of a few negative examples
 - A hierarchical softmax uses a Huffman tree to reduce computation

Skip-gram

Word2Vec

More Details

- The dimension of the hidden layer is the embedding dimension
- Provide and predict one-hot encodings
- The network has many weights making training slow
 - Negative sampling focuses on updating the weights of a few negative examples
 - A hierarchical softmax uses a Huffman tree to reduce computation
- Words unobserved in training data can not be embedded

Word2Vec Examples

https://github.com/riti4538/ACM-BCB-2019-Tutorial

Multilateration

Part 3: Multilateration

Trilateration

Definitions

Definition (Resolving Set)

Given a graph G = (V, E), a subset of nodes R is resolving if for all $u, v \in V$ there is an $r \in R$ such that $d(u, r) \neq d(v, r)$.

Definitions

Definition (Metric Dimension)

The metric dimension of a graph G = (V, E), denoted $\beta(G)$, is the size of smallest resolving sets of G [6, 12].

Path Graphs

• $\beta(G) = 1$ if and only if G is a path

Complete Graphs

• $\beta(G) = (n-1)$ if and only if G is K_n

Embedding

- Given G = (V, E), pick a resolving set R
- ullet Represent $v \in V$ as the vector of distances to vertices in R

$$\Phi_R(v) = (d(v, r_1), d(v, r_2), \dots, d(v, r_{|R|}))$$

Embedding

- Given G = (V, E), pick a resolving set R
- Represent $v \in V$ as the vector of distances to vertices in R

$$\Phi_R(v) = (d(v, r_1), d(v, r_2), \dots, d(v, r_{|R|}))$$

- All vertices have a unique representation
- ullet Intuitively, nearby vertices in G will be close in the embedding

Embedding

Multilateration

$$D = \begin{bmatrix} 0 & 1 & 2 & 1 & 2 & 3 \\ 1 & 0 & 1 & 1 & 1 & 2 \\ 2 & 1 & 0 & 2 & 2 & 1 \\ 1 & 1 & 2 & 0 & 2 & 3 \\ 2 & 1 & 2 & 2 & 0 & 3 \\ 3 & 2 & 1 & 3 & 3 & 0 \end{bmatrix}$$

$$\mathsf{D}_R = \begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 2 & 0 \\ 1 & 2 \\ 2 & 2 \\ 3 & 1 \end{bmatrix}$$

Complexity

- Finding $\beta(G)$ is difficult, in fact NP-complete, for general G = (V, E) [3, 9]
 - A $O(|V|^3)$ approximation algorithm with approximation ratio $1 + (1 + o(1)) \ln |V|$ exists [7]
- Properties of $\beta(G)$ for specific families of graphs are known

Complexity

- Finding $\beta(G)$ is difficult, in fact NP-complete, for general G = (V, E) [3, 9]
 - A $O(|V|^3)$ approximation algorithm with approximation ratio $1 + (1 + o(1)) \ln |V|$ exists [7]
- ullet Properties of eta(G) for specific families of graphs are known
- $\beta(G_{n,p}) = O(\frac{-2\ln(n)}{\ln(p^2+(1-p)^2)})$ across many regimes of p [2]
- ullet eta(G) can be determined exactly in polynomial time for trees [6, 12]

 The Hamming distance counts mismatches between strings

- For $H_{k,a}$
 - V is the set of all k-mers from an alphabet of size a
 - $(u, v) \in E$ when strings u and v differ in exactly one position

 $H_{3,2}$

Hamming Graph Bound

Theorem (Tillquist and Lladser [13])

$$\beta(H_{k,a}) \leq \beta(H_{k+1,a}) \leq \beta(H_{k,a}) + \lfloor \frac{a}{2} \rfloor$$

Theorem (Tillquist and Lladser [13])

$$\beta(H_{k,a}) \leq \beta(H_{k+1,a}) \leq \beta(H_{k,a}) + \lfloor \frac{a}{2} \rfloor$$

- $H_{k,a}$ can be embedded in O(k)-dimensions
- The proof is constructive

$$D = \begin{array}{cccc} V_0 & V_1 & \cdots & V_{a-1} \\ V_0 & d & d+1 & \cdots & d+1 \\ V_1 & d+1 & d & \cdots & d+1 \\ \vdots & \vdots & \ddots & \vdots \\ d+1 & d+1 & \cdots & d \end{array}$$

 $H_{8,20}$

- Consider H_{8,20}
 - 25.6 billion vertices
 - More than six hundred quintillion entries in the distance matrix

 $H_{8,20}$

- Consider H_{8,20}
 - 25.6 billion vertices
 - More than six hundred quintillion entries in the distance matrix
- $\beta(H_{3,20}) \leq 32$ via ICH approximation
- $\beta(H_{8.20}) \le 82$ via construction
- 3-mer count vector: $20^3 = 8000$ dimensions (97.56 times bigger)
- Binary vectors: $20 \times 8 = 160$ dimensions (1.95 times bigger)

Metric Distortion of $H_{3,4}$

$$M(u, v) := \frac{d(u, v)}{||f(u) - f(v)||_2}$$

- $d(\cdot, \cdot)$ is the Hamming distance
- $f: \{A, C, G, T\}^3 \to \mathbb{R}^6$ is the embedding

Task

- Extract 20-mers from the *Drosophila melanogaster* genome
- Classify as being centered or not at exon start sites

Task

- Extract 20-mers from the *Drosophila melanogaster* genome
- Classify as being centered or not at exon start sites
- Data
 - ullet \sim 87 thousand positive examples
 - $\, \bullet \, \sim 87$ thousand negative examples drawn from the genome

Task

- Extract 20-mers from the *Drosophila melanogaster* genome
- Classify as being centered or not at exon start sites
- Data
 - ullet \sim 87 thousand positive examples
 - ullet \sim 87 thousand negative examples drawn from the genome
- Features
 - Metric dimension, multidimensional scaling, Node2Vec
 - 3-mer count and binary vectors

Metric Dimension Features

- Focus on 3-mers
 - Embed the nodes of $H_{3,4}$ in \mathbb{R}^6
 - Use a sliding window of length 3
 - 108 total features

Positive vs Negative Examples

Comparisons

Multilateration Example

https://github.com/riti4538/ACM-BCB-2019-Tutorial

Conclusion

- Embedding symbolic data in \mathbb{R}^n is often important for analysis
- Embeddings can be generated in many different ways
- The choice of embedding can affect the quality of an analysis

Acknowledgements

- M. Lladser (advisor)
- NSF IIS grant 1836914 (PI: Lladser)
- BioFrontiers Computing Core (NIH 1S10OD012300)
- IQ Biology (NSF IGERT grant 1144807)

References I

- ASGARI, E., AND MOFRAD, M. R.
 Continuous distributed representation of biological sequences for deep proteomics and genomics.
 PloS one 10, 11 (2015), e0141287.
- [2] BOLLOBAS, B., MITSCHE, D., AND PRALAT, P. Metric dimension for random graphs. The Electronic Journal of Combinatorics 20, 4 (2013).
- [3] GARY, M. R., AND JOHNSON, D. S. Computers and Intractability: A Guide to the Theory of NP-completeness. WH Freeman and Company, New York, 1979.
- A simple way to look at DNA.

 Journal of Theoretical Biology 119, 3 (1986), 319–328.

Gates, M. A.

[4]

References II

- [5] HAMORI, E., AND RUSKIN, J. H curves, a novel method of representation of nucleotide series especially suited for long DNA sequences. *Journal of Biological Chemistry 258*, 2 (1983), 1318–1327.
- [6] HARARY, F., AND MELTER, R. On the metric dimension of a graph. Ars Combinatoria 2, 1 (1976), 191–195.
- [7] HAUPTMANN, M., SCHMIED, R., AND VIEHMANN, C. Approximation complexity of metric dimension problem. Journal of Discrete Algorithms 14 (2012), 214–222.
- [8] JEFFREY, H. J. Chaos game representation of gene structure. Nucleic acids research 18, 8 (1990), 2163–2170.

References III

- [9] Khuller, S., Raghavachari, B., and Rosenfeld, A. Landmarks in graphs. Discrete Applied Mathematics 70, 3 (1996), 217–229.
- [10] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).
- [11] Randić, M., Vracko, M., Nandy, A., and Basak, S. C. On 3-d graphical representation of DNA primary sequences and their numerical characterization. Journal of chemical information and computer sciences 40, 5 (2000),
 - 1235-1244.
- [12] SLATER, P. J. Leaves of trees. Congressus Numerantium 14, 549-559 (1975), 37.

References IV

- [13] TILLQUIST, R. C., AND LLADSER, M. E. Low-dimensional representation of genomic sequences. Journal of mathematical biology, 1–29.
- [14] Yau, S. S.-T., Wang, J., Niknejad, A., Lu, C., Jin, N., and Ho, Y.-K.

DNA sequence representation without degeneracy.

Nucleic acids research 31, 12 (2003), 3078-3080.