Mathématiques – Terminale spécialité

Corrigés des exercices

Table des matières

1	Compléments sur la dérivation	2
2	Suites et récurrence	19

1 Compléments sur la dérivation

Exercice 1 La fonction f est définie sur l'intervalle [-2;6] par

$$f(x) = 0,5x^2 - 2x - 4.$$

Pour tout $x \in \mathbb{R}$:

$$f'(x) = 0.5 \times 2x - 2 \times 1 - 0 = x - 2.$$

La dérivée est du premier degré, donc pour obtenir le tableau de signe, il faut résoudre une équation, puis regarder le signe de *a* :

$$x-2=0$$

$$x-\cancel{2}+\cancel{2}=0+2$$

$$x=2.$$

a=1 (puisque x-2 signifie $\frac{1}{2}x-2$), a est \oplus donc le signe est de la forme $\boxed{-\varphi+}$

On en déduit le tableau de signe de f' et le tableau de variations de f:

x	-2	2	6
f'(x)	_	0	+
f(x)	2	-6	2

Pour compléter l'extrémité des flèches, on calcule :

- $f(-2) = 0.5 \times (-2)^2 2 \times (-2) 4 = 2$
- $f(2) = 0.5 \times 2^2 2 \times 2 4 = -6$
- $f(6) = 0.5 \times 6^2 2 \times 6 4 = 2$

On peut aussi faire un tableau de valeurs à la calculatrice.

Remarque: La courbe représentative est une parabole, dont le sommet *S* a pour coordonnées (2; -6).

Exercice 2 On considère un segment [AB] de longueur 4 et un point mobile M pouvant se déplacer librement sur ce segment.

$$A \xrightarrow{M} A \xrightarrow{I}$$

On note x la longueur du segment [AM] et f(x) le produit des longueurs $AM \times BM$.

1.
$$BM = AB - AM = 4 - x$$
, donc

$$f(x) = AM \times BM$$

$$= x \times (4 - x)$$

$$= x \times 4 + x \times (-x)$$

$$= 4x - x^{2}.$$

2

2. Le produit des longueurs $AM \times BM$ est donné par f(x), donc maximiser ce produit revient à maximiser la fonction f. On étudie donc les variations : pour tout $x \in [0;4]$,

$$f'(x) = 4 \times 1 - 2x = -2x + 4.$$

On résout :

$$-2x+4=0$$

$$-2x+4-4=0-4$$

$$\frac{-2x}{-2}=\frac{-4}{-2}$$

$$x=2.$$

a = -2, a est Θ donc le signe est de la forme $|+ \varphi -$

On obtient le tableau de signe de f' et le tableau de variations de f:

Il n'est pas utile ici de compléter l'extrémité des flèches : tout ce qui nous intéresse, c'est la valeur de x pour laquelle f atteint son maximum.

Conclusion: f atteint son maximum lorsque x = 2, donc le produit $AM \times BM$ est maximal lorsque x = 2; c'est-à-dire quand M est le milieu de [AB].

Remarque: Cet exemple est celui qu'a choisi Fermat vers 1637 pour exposer sa méthode de l'adégalité – ancêtre de la dérivation – pour déterminer le maximum et le minimum d'une fonction.

Exercice 3 La fonction g est définie sur \mathbb{R} par

$$g(x) = 0.5x^3 + 0.75x^2 - 3x - 1.$$

Pour tout $x \in \mathbb{R}$:

$$g'(x) = 0.5 \times 3x^2 + 0.75 \times 2x - 3 \times 1 - 0 = 1.5x^2 + 1.5x - 3.$$

La dérivée est du second degré, donc on utilise la méthode de la classe de première :

- a = 1, 5, b = 1, 5, c = -3.
- le discriminant est $\Delta = b^2 4ac = 1,5^2 4 \times 1,5 \times (-3) = 20,25$.
- $\Delta > 0$, donc il y a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1, 5 - \sqrt{20, 25}}{2 \times 1, 5} = \frac{-1, 5 - 4, 5}{3} = \frac{-6}{3} = -2,$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1, 5 + \sqrt{20, 25}}{2 \times 1, 5} = \frac{-1, 5 + 4, 5}{3} = \frac{3}{3} = 1.$$

3

 $a = 1.5 \ a \text{ est} \oplus \text{donc le signe est de la forme} + \phi - \phi +$

x	$-\infty$		-2		1		+∞
g'(x)		+	0	_	0	+	
g(x)			, ⁴ -		-2.75	/	<i></i>

- $g(-2) = 0.5 \times (-2)^3 + 0.75 \times (-2)^2 3 \times (-2) 1 = 4$ $g(1) = 0.5 \times 1^3 + 0.75 \times 1^2 3 \times 1 1 = -2.75$

Remarque: Voici à quoi ressemble la courbe représentative :

Exercice 4 La fonction h est définie sur $[1; +\infty]$ par

$$h(x) = (x-6)\sqrt{x}$$
.

On utilise la formule pour la dérivée d'un produit avec

$$u(x) = x - 6 \qquad , \qquad v(x) = \sqrt{x},$$

$$u'(x) = 1 \qquad , \qquad v'(x) = \frac{1}{2\sqrt{x}}.$$

On obtient, pour tout $x \in [1; +\infty[$:

$$h'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= 1 \times \sqrt{x} + (x - 6) \times \frac{1}{2\sqrt{x}}$$

$$= \frac{\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} + \frac{x - 6}{2\sqrt{x}}$$

$$= \frac{2x}{2\sqrt{x}} + \frac{x - 6}{2\sqrt{x}}$$

$$= \frac{3x - 6}{2\sqrt{x}}.$$
(rappel: $\sqrt{x} \times \sqrt{x} = \sqrt{x^2} = x$)

• On résout rapidement :

$$3x - 6 = 0 \iff 3x = 6 \iff x = \frac{6}{3} = 2.$$

- Dans 3x 6, $a = 3 \oplus$, donc $\varphi +$
- $2\sqrt{x}$ est strictement positif pour tout $x \in [1; +\infty[$.

On a donc le tableau:

x	1		2		$+\infty$
3x-6		-	0	+	
$2\sqrt{x}$		+		+	
h'(x)		-	0	+	
h(x)	-5		$-4\sqrt{2}$	/	<i>></i> *

- $h(1) = (1-6) \times \sqrt{1} = -5 \times 1 = -5$; $h(2) = (2-6) \times \sqrt{2} = -4\sqrt{2}$.

Exercice 5 La fonction f est définie sur [1;4] par $f(x) = x + \frac{4}{x} - 3$. On note $\mathscr C$ sa courbe représentative, A, B, C les points de $\mathscr C$ d'abscisses respectives 1, 2, 4; et T_A , T_B , T_C les tangentes à $\mathscr C$ en ces points.

1. Pour dériver, le plus simple est de réécrire f(x) sous la forme

$$f(x) = x + 4 \times \frac{1}{x} - 3.$$

On obtient alors, pour tout $x \in [1;4]$:

$$f'(x) = 1 + 4 \times \left(-\frac{1}{x^2}\right) - 0$$

$$= 1 - \frac{4}{x^2}$$

$$= \frac{x^2}{x^2} - \frac{4}{x^2}$$

$$= \frac{x^2 - 4}{x^2}$$

- 2. Les racines de $x^2 4$ sont évidentes : ce sont $x_1 = -2$ et $x_2 = 2$. Seule la deuxième est dans l'intervalle [1;4].
 - x^2 est strictement positif pour tout $x \in [1;4]$.

On obtient donc le tableau:

x	1		2		4
$x^2 - 4$		-	0	+	
x^2		+		+	
f'(x)		-	0	+	
f(x)	2		1		_* 2

Le signe de $x^2 - 4$ sur $]-\infty; +\infty[$ est de la forme $\boxed{+ \varphi - \varphi + \varphi}$ Mais comme on travaille sur l'intervalle [1;4], il ne reste plus que la partie droite $\boxed{- \varphi + \varphi}$ On calcule les valeurs aux extrémités des flèches :

• $f(1) = 1 + \frac{4}{1} - 3 = 2$;
• $f(2) = 2 + \frac{4}{2} - 3 = 1$;
• $f(4) = 4 + \frac{4}{4} - 3 = 2$.

3. On rappelle que la tangente à la courbe en un point d'abscisse *a* a pour équation

$$y = f'(a)(x - a) + f(a).$$

Appliquons cette formule avec a = 1 – puisque le point A a pour abscisse 1:

f(1) = 2 (déjà calculé) et $f'(1) = \frac{1^2 - 4}{1^2} = \frac{-3}{1} = -3$, donc l'équation de T_A est

$$y = f'(1)(x-1) + f(1)$$

$$y = -3(x-1) + 2$$

$$y = -3x + 3 + 2$$

$$y = -3x + 5$$
.

Le point A a pour coordonnées (1;2), puisque f(1) = 2; la tangente T_A passe donc par ce point. Pour la tracer, il faut placer un deuxième point (c'est une droite); ce que l'on peut faire de trois façons différentes :

- (a) L'ordonnée à l'origine est 5 (puisque T_A : y = -3x+5), donc T_A passe par le point de coordonnées (0;5).
- (b) Le coefficient directeur de T_A est -3 (puisque T_A : y = -3x + 5), donc en partant de A, il suffit d'avancer de 1 carreau en abscisse et de descendre de 3 carreaux en ordonnée – T_A passe donc par le point de coordonnées (2; –1).
- (c) On calcule un deuxième point avec la formule : par exemple, si x = 2, $y = -3 \times 2 + 5 = -1$. On obtient le point de coordonnées (2; -1) (le même qu'avec la méthode (b)) et on trace la tangente.
- 4. f(2) = 1 et $f'(2) = \frac{2^2 4}{2^2} = \frac{0}{4} = 0$, donc l'équation de T_B est

$$y = f'(2)(x-2) + f(2)$$

$$y = 0(x-1) + 1$$

5

$$y = 1$$
.

Le coefficient directeur étant égal à 0, la tangente T_B est horizontale.

• f(4) = 2 et $f'(4) = \frac{4^2 - 4}{4^2} = \frac{12}{16} = 0,75$, donc l'équation de T_C est

$$y = f'(4)(x-4) + f(4)$$

$$y = 0,75(x-4) + 2$$

$$y = 0,75x - 3 + 2$$

$$y = 0,75x - 1.$$

On trace la tangente T_C par la même méthode que T_A (le plus simple et le plus précis est d'utiliser l'ordonnée à l'origine).

5. On place les points *A*, *B*, *C*, on trace les trois tangentes et on construit la courbe de la fonction *f* (en bleu) en s'appuyant sur ces tangentes.

Exercice 6 La fonction i est définie sur \mathbb{R} par

$$i(x) = \frac{2x}{x^2 + 1}.$$

1. On utilise la formule pour la dérivée d'un quotient avec

$$u(x) = 2x$$
 , $v(x) = x^2 + 1$, $u'(x) = 2x$, $v'(x) = 2x$.

On obtient, pour tout $x \in \mathbb{R}$:

$$i'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{(v(x))^2}$$

$$= \frac{2 \times (x^2 + 1) - 2x \times 2x}{(x^2 + 1)^2}$$

$$= \frac{2x^2 + 2 - 4x^2}{(x^2 + 1)^2}$$

$$= \frac{-2x^2 + 2}{(x^2 + 1)^2}.$$

2. • Les racines de $-2x^2 + 2$ sont assez évidentes :

$$-2x^2 + 2 = 0 \iff 2 = 2x^2 \iff 1 = x^2 \iff (x = 1 \text{ ou } x = -1).$$

• $(x^2 + 1)^2$ est strictement positif pour tout réel x.

On obtient donc le tableau:

x	$-\infty$		-1		1		+∞
$-2x^2 + 2$		_	0	+	0	-	
$(x^2+1)^2$		+		+		+	
i'(x)		_	0	+	0	-	
<i>i</i> (<i>x</i>)			-1		, ¹ \		`

3. (a) $i(0) = \frac{2 \times 0}{0^2 + 1} = \frac{0}{1} = 0$ et $i'(0) = \frac{-2 \times 0^2 + 2}{(0^2 + 1)^2} = \frac{2}{1} = 2$, donc l'équation de (T) est

$$y = f'(0)(x-0) + f(0)$$

$$y = 2x + 0$$

$$y = 2x$$
.

(b) Pour étudier les positions relatives de (C): $y = \frac{2x}{x^2+1}$ et (T): y = 2x, on étudie **le signe de la différence**:

$$\frac{2x}{x^2+1}-2x.$$

- Pour les valeurs de x pour lesquelles cette différence vaut 0, les deux courbes se coupent;
- pour les valeurs de x pour lesquelles cette différence est strictement positive, (C) est au-dessus de (T);
- pour les valeurs de x pour lesquelles cette différence est strictement négative, (C) est en-dessous de (T).

On commence par calculer la différence :

$$\frac{2x}{x^2+1} - 2x = \frac{2x}{x^2+1} - \frac{2x(x^2+1)}{x^2+1}$$
$$= \frac{2x}{x^2+1} - \frac{2x^3+2x}{x^2+1}$$
$$= \frac{2x - 2x^3 - 2x}{x^2+1}$$
$$= \frac{-2x^3}{x^2+1}.$$

x	-∞	0	+∞
$-2x^{3}$	+	0	-
$\left(x^2+1\right)^2$	+		+
$\frac{-2x^3}{x^2+1}$	+	0	-
Positions relatives des courbes	(C) au-dessus de (T)	S e c o u p e n t	(C) en-dessous de (T)

Pour compléter le tableau de signe :

- -2x³ = 0 lorsque x = 0;
 -2x³ est ⊕ lorsque x est strictement positif;
 -2x³ est ⊕ lorsque x est strictement négatif;
 (x²+1)² est strictement positif pour tout réel x.

4.

Exercice 7 La distance (en m) parcourue au temps t (en s) par une pierre en chute libre est $d(t) = 5t^2$. On lance cette pierre d'une hauteur de 20 m.

1. La pierre arrive au sol quand elle a parcouru 20 m. Il faut donc résoudre l'équation $5t^2 = 20$:

$$5t^2 = 20 \iff t^2 = \frac{20}{5} \iff t^2 = 4 \iff \left(t = 2 \text{ ou } \underbrace{t = -2}_{\text{impossible}}\right)$$

Conclusion : la pierre arrive au sol après 2 s.

2. On construit la courbe à partir d'un tableau de valeurs (avec un pas de 0,4 par exemple).

t	0	0,4	0,8	1,2	1,6	2
d(t)	0	0,8	3,2	7,2	12,8	20

Pour obtenir ce tableau, on utilise la calculatrice (bien sûr, on met des x à la place des t):

NUMWORKS Calculatrices collège TI graphiques **CASIO** graphiques x s'obtient avec les touches s'obtient avec la touche alpha x X, θ, T s'obtient avec la touche MENU puis choisir TABLE x, t, θ, n • Fonctions EXE puis choi-EXE sir Fonctions EXE f(x)• $Y_1:5X^2$ EXE MODE • $f(x)=5x^2$ EXE • $Y_1 = 5X^2$ EXE • F5 (on choisit donc SET) 4: TABLE ou 4: Tableau 2nde déf table • Start :0 EXE • choisir Tableau EXE puis • $f(X)=5X^2$ EXE • End:2 EXE Régler l'intervalle EXE • DébTable=0 EXE (si on demande g(X)=, ne • Step :0.4 EXE rien rentr<u>er</u>) X début 0 EXE • PasTable=0.4 EXE • Début?0 EXE 2 EXE ou • X fin EXIT ∆Tbl=0.4 EXE • Fin?2 EXE 0.4 EXE F6 Pas (on choisit donc • Pas? 0,4 EXE choisir Valider 2nde table TABLE) distance (en m) 16 12 8 4

8.0

1.2

1.6

0.4

temps (en s)

2.0

3. La vitesse de la pierre au moment de l'impact au sol est d'(2).

Or $d'(t) = 5 \times 2t = 10t$, donc $d'(2) = 10 \times 2 = 20$. Ainsi la vitesse au moment de l'impact est de 20 m/s.

Remarques:

- cette vitesse instantanée est le coefficient directeur de la tangente au point A d'abscisse 2 (en rouge).
- la « vraie formule » (valable en l'absence de frottements) est $d(t) = 4.9t^2$. Dans l'exercice, on a pris 5 au lieu de 4,9 pour simplifier les calculs.

Exercice 8 Dans cet exercice, on utilise deux propriétés du cours :

- la dérivée de $x \mapsto e^{ax+b}$ est $x \mapsto ae^{ax+b}$;
- une exponentielle est strictement positive.

Pour tout $x \in \mathbb{R}$:

$$f(x) = e^{0.5x+1}$$

 $f'(x) = \underbrace{0.5}_{\oplus} \underbrace{e^{0.5x+1}}_{\oplus}$

Pour tout $x \in \mathbb{R}$:

Pour tout $x \in \mathbb{R}$:

Pour tout $x \in \mathbb{R}$:

$$i(x) = e^{-1x+1}$$
 $i'(x) = \underbrace{-1}_{0} e^{-1x+1}$

i' < 0 donc i strictement décrois-

f' > 0 donc f strictement croissante sur \mathbb{R} .

h' > 0 donc h strictement croissante sur \mathbb{R} .

À titre d'illustration, on a tracé les courbes des quatre fonctions. Elles ont toutes une allure très similaire, à deux différences près :

- elles montent lorsque a > 0, elles descendent lorsque a < 0;
- plus |a| est grand, plus la pente de la partie inclinée est forte.

Exercice 9 La fonction f est définie sur l'intervalle [0;4] par

$$f(x) = (-2x+1)e^{-x}$$
.

1. On utilise la formule pour la dérivée d'un produit avec

$$u(x) = -2x + 1$$
$$u'(x) = -2$$

$$\nu(x) = e^{-x}.$$

$$v'(w) = e^{-\lambda}$$

On obtient, pour tout $x \in [0;4]$:

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= -2 \times e^{-x} + (-2x+1) \times (-e^{-x})$$

$$= -2 \times e^{-x} + (-2x) \times (-e^{-x}) + 1 \times (-e^{-x})$$

$$= -2 \times e^{-x} + 2x \times e^{-x} - 1 \times e^{-x}$$

$$= (-2+2x-1) e^{-x}$$

$$= (2x-3) e^{-x}.$$

9

2. On étudie le signe de f' et on en déduit les variations de f:

- $2x-3=0 \iff 2x=3 \iff x=\frac{3}{2} \iff x=1,5$;
- e^{-x} est \oplus pour tout réel x.

x	0		1.5		4
2x-3		-	0	+	
e-x		+		+	
f'(x)		-	0	+	
f(x)	1		$-2e^{-1,5}$		-7e ⁻⁴

•
$$f(0) = (-2 \times 0 + 1) \times \underbrace{e^{-0}}_{=1} = 1 \times 1 = 1$$

• $f(1,5) = (-2 \times 1,5 + 1) \times e^{-1,5} = -2e^{-1,5} \approx -0,45$
• $f(4) = (-2 \times 4 + 1) \times e^{-4} = -7e^{-4} \approx -0,13$

•
$$f(1,5) = (-2 \times 1, 5 + 1) \times e^{-1,5} = -2e^{-1,5} \approx -0.45$$

•
$$f(4) = (-2 \times 4 + 1) \times e^{-4} = -7e^{-4} \approx -0.13$$

Exercice 10 La fonction g est définie sur \mathbb{R} par $g(x) = e^x - x - 1$.

Pour tout $x \in \mathbb{R}$:

$$g'(x) = e^x - 1 - 0 = e^x - 1.$$

On résout l'équation :

$$e^x - 1 = 0 \iff e^x = 1 \iff x = 0.$$

∧On a utilisé la propriété : le seul nombre dont l'exponentielle est égale à 1 est 0.

Pour avoir les signes dans chaque case du tableau, on remplace par des valeurs de x:

• pour l'intervalle $]-\infty;0[$, on prend (par exemple) x=-1et on calcule avec la calculatrice :

$$g'(-1) = e^{-1} - 1 \approx -0.63$$
 Θ

• pour l'intervalle $]0; +\infty[$, on prend (par exemple) x = 1et on calcule avec la calculatrice:

$$g'(1) = e^1 - 1 \approx 3,72$$
 \oplus

$$g(0) = e^{0} - 0 - 1 = 1 - 1 = 0.$$

Remarque: Le minimum de g est 0, donc $g(x) \ge 0$ pour tout réel x; autrement dit $e^x - x - 1 \ge 0$. Cette inégalité se réécrit

$$e^x \ge x + 1$$
.

On obtiendra ce résultat par une autre méthode dans l'exercice 18 (utilisation de la convexité). Cette inégalité sera utilisée plus tard dans l'année, pour démontrer des résultats sur les limites.

Exercice 11

$$\frac{e^8}{e^2 \times e^1 \times e^3} = \frac{e^8}{e^{2+1+3}} = \frac{e^8}{e^6} = e^{8-6} = e^2$$
$$\frac{e \times e^2}{\left(e^2\right)^2} = \frac{e^1 \times e^2}{e^{2 \times 2}} = \frac{e^{1+2}}{e^4} = e^{3-4} = e^{-1}$$
$$\left(e^2\right)^3 \times e^{-5} = e^{2 \times 3} \times e^{-5} = e^{6-5} = e^1$$

Exercice 12 Dans chaque cas, on note $\mathcal S$ l'ensemble des solutions.

1.

$$e^x = -3$$

Impossible, car une exponentielle est strictement positive

$$\mathcal{S} = \emptyset$$

2.

3. L'équation $e^{2x} + 2e^x = 3$ se réécrit

$$(e^x)^2 + 2e^x - 3 = 0.$$

Pour résoudre, il est astucieux de noter $X = e^x$; l'équation se réécrit alors sous la forme

$$X^2 + 2X - 3 = 0.$$

On résout avec la méthode de la classe de première :

- a = 1, b = 2, c = -3.
- le discriminant est $\Delta = b^2 4ac = 2^2 4 \times 1 \times (-3) = 16$.
- $\Delta > 0$, donc il y a deux racines :

$$X_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - \sqrt{16}}{2 \times 1} = \frac{-2 - 4}{2} = \frac{-6}{2} = -3,$$

$$X_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2 + \sqrt{16}}{2 \times 1} = \frac{-2 + 4}{2} = \frac{2}{2} = 1.$$

On a posé $X = e^x$, donc il y a deux possibilités :

$$e^x = -3$$
 ou $e^x = 1$.

La première équation n'a pas de solution, car une exponentielle est strictement positive; la deuxième équation a une seule solution : x = 0.

Conclusion : L'unique solution de l'équation $e^{2x} + 2e^x = 3$ est x = 0 :

$$\mathcal{S} = \{0\}.$$

Exercice 13 On utilisera la propriété : pour tout nombre réel x,

$$e^x \times e^{-x} = 1$$
.

1. D'après l'identité remarquable $(a+b)^2 = a^2 + 2ab + b^2$:

$$(e^x + e^{-x})^2 = (e^x)^2 + 2 \times \underbrace{e^x \times e^{-x}}_{=1} + (e^{-x})^2 = e^{2x} + 2 + e^{-2x}.$$

2. On multiplie le numérateur et le dénominateur par e^x :

$$\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{(e^{x} - e^{-x}) \times e^{x}}{(e^{x} + e^{-x}) \times e^{x}}$$

$$= \frac{e^{x} \times e^{x} - e^{-x} \times e^{x}}{e^{x} \times e^{x} - e^{-x} \times e^{x}}$$

$$= \frac{e^{x+x} - e^{-x+x}}{e^{x+x} + e^{-x+x}}$$

$$= \frac{e^{2x} - e^{0}}{e^{2x} + e^{0}}$$

$$= \frac{e^{2x} - 1}{e^{2x} + 1}.$$

Exercice 14 1. La fonction f est de la forme $f(x) = e^{u(x)}$, avec

$$u(x) = -x^2, \qquad u'(x) = -2x.$$

On a donc, pour tout $x \in \mathbb{R}$:

$$f'(x) = u'(x) \times e^{u(x)} = -2xe^{-x^2}$$
.

2. La fonction h est de la forme $h(x) = (u(x))^n$, avec

$$u(x) = -4x + 1,$$
 $u'(x) = -4,$ $n = 3.$

On a donc, pour tout $x \in \mathbb{R}$:

$$h'(x) = n \times u'(x) \times (u(x))^{n-1} = 3 \times (-4) \times (-4x+1)^{3-1} = -12(-4x+1)^2$$
.

3. La fonction i est de la forme $i(x) = e^{u(x)}$, avec

$$u(x) = 5x - 9,$$
 $u'(x) = 5.$

On a donc, pour tout $x \in \mathbb{R}$:

$$i'(x) = u'(x) \times e^{u(x)} = 5e^{5x-9}$$
.

4. La fonction j est de la forme $j(x) = (u(x))^n$, avec

$$u(x) = x^2 - 3x$$
, $u'(x) = 2x - 3$, $n = 5$.

On a donc, pour tout $x \in \mathbb{R}$:

$$j'(x) = n \times u'(x) \times (u(x))^{n-1} = 5 \times (2x - 3) \times (x^2 - 3x)^{5-1} = (10x - 15) \times (x^2 - 3x)^4.$$

5. L'énoncé nous donne

$$k(x) = \sqrt{x^2 - x + 2}.$$

Il faut se méfier : on ne peut calculer la racine carrée d'un nombre que si celui-ci est positif; et on ne peut dériver une fonction de la forme \sqrt{u} que lorsqu'elle est strictement positive. Intéressons-nous donc au signe de $x^2 - x + 2$:

Le discriminant est $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times 2 = -7$. Il s'ensuit qu'il n'y a pas de racine, et que $x^2 - x + 2$ est strictement positif sur \mathbb{R} . La fonction k est donc bien définie sur \mathbb{R} , mais aussi dérivable.

Elle est de la forme $k(x) = \sqrt{u(x)}$, avec

$$u(x) = x^2 - x + 2,$$
 $u'(x) = 2x - 1.$

On a donc, pour tout $x \in \mathbb{R}$:

$$k'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{2x - 1}{2\sqrt{x^2 - x + 2}}.$$

Remarque informelle: On a déjà vu les dérivées suivantes dans le cours de première :

$$(x^n)' = nx^{n-1}$$
$$(e^x)' = e^x$$
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

Les trois nouvelles formules du cours de terminale peuvent se réécrire

$$(u^n)' = nu^{n-1} \times u'$$

$$(e^u)' = e^u \times u'$$

$$(\sqrt{u})' = \frac{1}{2\sqrt{u}} \times u'$$

On voit qu'il suffit de remplacer x par u, et de multiplier par u'.

Exercice 15 1. Pour tout $x \in \mathbb{R}$:

$$f(x) = x^2$$
$$f'(x) = 2x$$

$$f''(x) = 2.$$

Conclusion : f'' est strictement positive, donc f est convexe sur \mathbb{R} .

On peut aussi présenter les choses avec un tableau de signe :

x	-∞	+∞
f''(x) = 2	+	
Convexité	f convexe	

2. Pour tout $x \in \mathbb{R}$:

$$g(x) = x^3$$

$$g'(x) = 3x^2$$

$$g''(x) = 6x.$$

Cette fois, le tableau de signe est fortement recommandé :

x	-∞	0		+∞
g''(x) = 6x	_	0	+	
Convexité	g concave	t i n f l e x i o n	g convexe	

Conclusion:

• g est concave sur $]-\infty;0]$;

- g est convexe sur $[0; +\infty[$;
- le point de coordonnées (0;0) est un point d'inflexion.

3. Pour tout $x \in \mathbb{R}$:

$$h(x) = e^{x}$$

$$h'(x) = e^{x}$$

$$h''(x) = e^{x}$$

Conclusion : h'' est strictement positive, donc h est convexe sur \mathbb{R} (cette fois, on se passe du tableau de signes).

Exercice 16 La fonction g est définie sur l'intervalle [-1;3] par

$$g(x) = -0.5x^3 + 2x^2 - 2x.$$

1. Pour tout $x \in [-1;3]$:

$$g'(x) = -0.5 \times 3x^2 + 2 \times 2x - 2 \times 1 = -1.5x^2 + 4x - 2.$$

La dérivée est du second degré, donc on utilise la méthode de la classe de première :

- a = -1, 5, b = 4, c = -2.
- le discriminant est $\Delta = b^2 4ac = 4^2 4 \times (-1, 5) \times (-2) = 4$.
- $\Delta > 0$, donc il y a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - \sqrt{4}}{2 \times (-1,5)} = \frac{-4 - 2}{-3} = \frac{-6}{-3} = 2,$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + \sqrt{4}}{2 \times (-1,5)} = \frac{-4 + 2}{-3} = \frac{-2}{-3} = \frac{2}{3}.$$

a = -1.5 a est Θ donc le signe est de la forme |- + + -

x	-1		$\frac{2}{3}$		2		3
g'(x)		_	0	+	0	_	
<i>g</i> (<i>x</i>)	3.5	\	$-\frac{16}{27}$, 0		-1.5

•
$$g(-1) = -0.5 \times (-1)^3 + 2 \times (-1)^2 - 2 \times (-1) = 3.5$$

•
$$g(-1) = -0.5 \times (-1)^3 + 2 \times (-1)^2 - 2 \times (-1) = 3.5$$

• $g(\frac{2}{3}) = -0.5 \times (\frac{2}{3})^3 + 2 \times (\frac{2}{3})^2 - 2 \times (\frac{2}{3}) = -\frac{16}{27}$
• $g(2) = -0.5 \times 2^3 + 2 \times 2^2 - 2 \times 2 = 0$
• $g(3) = -0.5 \times 3^3 + 2 \times 3^2 - 2 \times 3 = -1.5$

•
$$g(2) = -0.5 \times 2^3 + 2 \times 2^2 - 2 \times 2 = 0$$

•
$$g(3) = -0.5 \times 3^3 + 2 \times 3^2 - 2 \times 3 = -1.5$$

2. Pour tout $x \in [-1;3]$:

$$g''(x) = -1,5 \times 2x + 4 \times 1 - 0 = -3x + 4.$$

On étudie le signe de g'':

$$-3x + 4 = 0 \iff -3x = -4 \iff x = \frac{-4}{-3} = \frac{4}{3}.$$

x	-1	$\frac{4}{3}$		3
-3x+4	+	0	-	
Convexité	g convexe	t i n f l e x i i o n	g concave	

 $g\left(\frac{4}{3}\right) = [\cdots] = -\frac{8}{27}$, donc le point de coordonnées $\left(\frac{4}{3}; -\frac{8}{27}\right)$ est un point d'inflexion (noté I sur la figure ci-dessous).

3.

Exercice 17 La fonction h est définie sur l'intervalle [-1;4] par

$$h(x) = (2x+3)e^{-x}$$
.

On calcule les dérivées première et seconde :

1. **Dérivée première.** On utilise la formule pour la dérivée d'un produit avec

$$u(x) = 2x + 3$$
 , $v(x) = e^{-x}$, $u'(x) = 2$, $v'(x) = -e^{-x}$

On obtient, pour tout $x \in [-1;4]$:

$$h'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= 2 \times e^{-x} + (2x+3) \times (-e^{-x})$$

$$= 2 \times e^{-x} + 2x \times (-e^{-x}) + 3 \times (-e^{-x})$$

$$= 2 \times e^{-x} - 2x \times e^{-x} - 3 \times e^{-x}$$

$$= (2 - 2x - 3) e^{-x}$$

$$= (-2x - 1) e^{-x}.$$

2. **Dérivée seconde.** On utilise la formule pour la dérivée d'un produit avec

$$u(x) = -2x - 1$$
 , $v(x) = e^{-x}$, $u'(x) = -e^{-x}$.

On obtient, pour tout $x \in [-1; 4]$:

$$h''(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= -2 \times e^{-x} + (-2x - 1) \times (-e^{-x})$$

$$= -2 \times e^{-x} + (-2x) \times (-e^{-x}) + (-1) \times (-e^{-x})$$

$$= -2 \times e^{-x} + 2x \times e^{-x} + 1 \times e^{-x}$$

$$= (-2 + 2x + 1) e^{-x}$$

$$= (2x - 1) e^{-x}.$$

On étudie le signe de la dérivée seconde :

$$h''(x) = (2x-1)e^{-x}$$
.

- $2x-1=0 \iff 2x=1 \iff x=\frac{1}{2}$.
- e^{-x} est \oplus pour tout $x \in [-1; 4]$.

On a donc le tableau:

x	-1	$\frac{1}{2}$		4
2x-1	_	0	+	
e^{-x}	+		+	
h''(x)	_	0	+	
Convexité	<i>h</i> concave	P t i n f l e x i o n	<i>h</i> convexe	

Exercice 18 On note \mathscr{C} la courbe de la fonction exponentielle et T sa tangente au point A(0;1).

1. On pose $f(x) = e^x$ pour tout $x \in \mathbb{R}$. On sait que $f'(x) = e^x$ pour tout $x \in \mathbb{R}$, donc

$$f(0) = f'(0) = e^0 = 1.$$

L'équation de la tangente T est donc

$$y = f'(0)(x-0) + f(0)$$

y = 1(x-0) + 1
y = x + 1

2. On a déjà vu dans un exercice précédent que la fonction exponentielle était convexe sur \mathbb{R} . D'après le théorème 8 du cours, la courbe \mathscr{C} est au-dessus de toutes ses tangentes; elle est donc en particulier au-dessus de T. Il s'ensuit que

$$e^x \ge x + 1$$

pour tout $x \in \mathbb{R}$.

Remarque: On a déjà démontré ce résultat par une étude de fonction, dans l'exercice 10.

Exercice 19 1. Si $u(x) = x^2$ et v(x) = 4x + 1, alors

$$v \circ u(x) = v(u(x)) = v(x^2) = 4x^2 + 1.$$

2. Si u(x) = x + 2 et $v(x) = x^3 - 3x$, alors

$$v \circ u(x) = v(u(x)) = v(x+2) = (x+2)^3 - 3(x+2).$$

3. Si u(x) = x - 4 et $v(x) = \sqrt{x}$, alors

$$v \circ u(x) = v(u(x)) = v(x-4) = \sqrt{x-4}$$
.

4. Si u(x) = 2x + 3 et $v(x) = e^x$, alors

$$v \circ u(x) = v(u(x)) = v(2x+3) = e^{2x+3}$$
.

Exercice 20 1. Sachant que $v \circ u(x) = \sqrt{x^2 + 1}$, on peut prendre

$$u(x) = x^2 + 1$$
 , $v(x) = \sqrt{x}$.

2. Sachant que $v \circ u(x) = (x-3)^2 + 5(x-3) + 1$, on peut prendre

$$u(x) = x - 3$$
 , $v(x) = x^2 + 5x + 1$.

3. Sachant que $v \circ u(x) = e^{3x-1}$, on peut prendre

$$u(x) = 3x - 1$$
 , $v(x) = e^x$.

Remarque: Il y a une infinité de choix possibles. Par exemple, pour le deuxième, on pourrait prendre

$$u(x) = (x-3)^2 + 5(x-3)$$
 , $v(x) = x+1$;

ou encore

$$u(x) = (x-3)^2 + 5(x-3) + 1$$
 , $v(x) = x$;

etc.

Exercice 21 On considère dans un repère orthonormé la parabole $P: y = x^2$ et le point A(3;0).

1. Soit m un réel et soit M le point de P d'abscisse m. L'ordonnée de M est m^2 , donc

$$AM = \sqrt{(x_M - x_A)^2 + (y_M - y_A)^2}$$
$$= \sqrt{(m-3)^2 + (m^2 - 0)^2}$$
$$= \sqrt{m^2 - 2 \times m \times 3 + 3^2 + m^4}$$
$$= \sqrt{m^4 + m^2 - 6m + 9}.$$

On remarque que AM = f(m), où f est la fonction définie dans la question suivante. De ce fait, trouver le point M pour lequel la longueur AM est minimale revient à trouver la valeur de x pour laquelle f atteint son minimum. Nous y reviendrons dans la question f.

2. On pose $f(x) = \sqrt{x^4 + x^2 - 6x + 9}$ pour tout $x \in \mathbb{R}$. La fonction f est de la forme $f(x) = \sqrt{u(x)}$, avec

$$u(x) = x^4 + x^2 - 6x + 9,$$
 $u'(x) = 4x^3 + 2x - 6.$

On a donc, pour tout $x \in \mathbb{R}$:

$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{4x^3 + 2x - 6}{2\sqrt{x^4 + x^2 - 6x + 9}} = \frac{2(2x^3 + x - 3)}{2\sqrt{x^4 + x^2 - 6x + 9}} = \frac{2x^3 + x - 3}{\sqrt{x^4 + x^2 - 6x + 9}}.$$

Pour démontrer la formule de l'énoncé, on développe :

$$(x-1)(2x^2+2x+3) = x \times 2x^2 + x \times 2x + x \times 3 - 1 \times 2x^2 - 1 \times 2x - 1 \times 3 = 2x^3 + 2x^2 + 3x - 2x^2 - 2x - 3 = 2x^3 + x - 3$$

On retombe sur le numérateur obtenu précédemment; on a donc bien

$$f'(x) = \frac{(x-1)(2x^2 + 2x + 3)}{\sqrt{x^4 + x^2 - 6x + 9}}.$$

Pour construire le tableau de variations de la fonction f, il faut étudier le signe de $2x^2 + 2x + 3$. Son discriminant est $\Delta = 2^2 - 4 \times 2 \times 3 = -20$, donc il n'y a pas de racine et $2x^2 + 2x + 3$ est strictement positif pour tout réel x. On peut donc compléter le tableau :

x	$-\infty$	1		+∞
x - 1	_	0	+	
$2x^2 + 2x + 3$	+	;	+	
$\sqrt{x^4 + x^2 - 6x + 9}$	+		+	
f'(x)	-	0	+	
f(x)				/

- 3. La fonction f atteint son minimum pour x = 1, donc la longueur AM est minimale lorsque m = 1. Autrement dit, le point de P le plus proche de A est le point M(1;1).
 - La tangente (T) à la parabole P au point M a pour équation

$$y = g'(1)(x-1) + g(1),$$

avec $g(x) = x^2 - \text{donc } g'(x) = 2x$, et $g'(1) = 2 \times 1 = 2$. On a ainsi

$$(T): y = g'(1)(x-1) + g(1)$$
$$y = 2(x-1) + 1$$
$$y = 2x - 1.$$

• Pour prouver que (AM) est perpendiculaire à (T), on utilise le produit scalaire : (T) passe par M(1;1) et par N(2;3) (puisque $2 \times 2 - 1 = 3$), donc elle est dirigée par le vecteur $\overrightarrow{MN} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Par ailleurs $\overrightarrow{AM} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, donc

$$\overrightarrow{MN} \cdot \overrightarrow{AM} = 1 \times (-2) + 2 \times 1 = 0.$$

Les droites (T) et (AM) sont donc bien perpendiculaires.

2 Suites et récurrence

Exercice 22 On calcule trois ou quatre termes, suivant le cas – suffisamment pour « avoir compris le principe ».

1. Pour tout $n \in \mathbb{N}$: $u_n = \frac{n^2 - 1}{n + 2}$.

$$u_0 = \frac{0^2 - 1}{0 + 2} = -\frac{1}{2}$$

$$u_1 = \frac{1^2 - 1}{1 + 2} = \frac{0}{3} = 0$$

$$u_2 = \frac{2^2 - 1}{2 + 2} = \frac{3}{4}$$

19

2. Pour tout $n \in \mathbb{N}^*$: $v_n = \frac{(-1)^n}{n}$. \wedge On « démarre » à n = 1, puisqu'on ne peut pas diviser par 0.

$$v_1 = \frac{(-1)^1}{1} = \frac{-1}{1} = -1$$

$$v_2 = \frac{(-1)^2}{2} = \frac{1}{2}$$

$$v_3 = \frac{(-1)^3}{3} = \frac{-1}{3} = -\frac{1}{3}$$

$$v_4 = \frac{(-1)^4}{4} = \frac{1}{4}$$

Les termes sont alternativement positifs et négatifs. On dit que la suite est alternée.

3. $u_0 = 3$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = 2u_n - 1$$
.

On prend
$$n = 0$$
: On prend $n = 1$: On prend $n = 2$: On prend $n = 3$:
$$u_{0+1} = 2u_0 - 1 \qquad u_{1+1} = 2u_1 - 1 \qquad u_{2+1} = 2u_2 - 1 \qquad u_{3+1} = 2u_3 - 1$$
$$u_1 = 2 \times 3 - 1 \qquad u_2 = 2 \times 5 - 1 \qquad u_3 = 2 \times 9 - 1 \qquad u_4 = 2 \times 17 - 1$$
$$u_1 = 5 \qquad u_2 = 9 \qquad u_3 = 17 \qquad u_4 = 33$$

4. $v_0 = -1$ et $v_{n+1} = v_n + n$ pour tout $n \in \mathbb{N}$.

On prend
$$n = 0$$
: On prend $n = 1$: On prend $n = 2$: On prend $n = 3$:
$$v_{0+1} = v_0 + 0 \\ v_1 = -1 + 0 \\ v_1 = -1$$
 On prend $n = 2$:
$$v_{2+1} = v_2 + 2 \\ v_2 = -1 + 1 \\ v_2 = 0$$

$$v_3 = 0 + 2 \\ v_3 = 2$$
 On prend $n = 3$:
$$v_{3+1} = v_3 + 3 \\ v_4 = 2 + 3 \\ v_4 = 5$$

Exercice 23 1. Pour diminuer un nombre de 8 %, il faut le multiplier par 0,92, car 100 % – 8 % = 92 % = 0,92. On peut donc compléter le schéma :

Conclusion:

$$v_0 = 10$$
; $v_1 = 9.2$; $v_2 = 8.464$.

La suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison q=0,92.

2. La masse d'iode 131 après 10 jours est

$$v_{10} = v_0 \times q^{10} = 10 \times 0.92^{10} \approx 4.3 \ \mu g.$$

3. On part de 10 μ g d'iode 131, donc il s'agit de déterminer à partir de quand il en restera moins de 5 μ g. Pour cela, on fait un tableau de valeurs avec la calculatrice, en rentrant la formule

$$Y = 10 * 0.92^{X}$$

(on peut aussi utiliser le mode suite ou le mode tableur, suivant les modèles).

Après quelques essais ¹, on obtient :

^{1.} On ne peut pas savoir en démarrant jusqu'à quelle valeur de n il faut aller; il faut donc faire des essais. Lorsque nous connaîtrons le logarithme népérien, nous pourrons donner une méthode plus efficace; et nous pourrons même donner une formule : la demi-vie est $-\frac{\ln 2}{\ln 0.92}$.

n	8	9
ν_n	5,13	4,72

Conclusion : la demi-vie de l'iode 131 est de 8 jours et quelques.

Exercice 24 1. 100 % - 15 % = 85 % = 0.85, donc pour diminuer un nombre de 15 %, il faut le multiplier par 0.85. Ainsi, dans le schéma ci-dessous, l'intensité lumineuse est-elle multipliée par 0.85 à chaque nouvelle plaque :

Remarque : Le lumen est une unité de mesure du flux lumineux, utilisée notamment pour indiquer la capacité d'éclairement des ampoules électriques.

2. La suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison q=0,85, donc pour tout $n\in\mathbb{N}$:

$$v_n = v_0 \times q^n = 12 \times 0.85^n.$$

3. Comme on part de 12 lm, il s'agit de savoir le nombre de plaques nécessaires pour que l'intensité lumineuse soit inférieure à 0,12 lm (puisque 12 ÷ 100 = 0,12).

Comme dans l'exercice précédent, on rentre la formule

$$Y = 12 * 0.85^{X}$$

dans le mode fonction de la calculatrice, puis on fait des essais. On obtient :

n	28	29
ν_n	0,13	0,11

Conclusion: il faut superposer au moins 29 plaques pour que l'intensité lumineuse soit divisée par 100.

Exercice 25 Une suite ν est définie par ν_0 = 4 et la relation de récurrence

$$v_{n+1} = 2v_n + 2$$

pour tout entier naturel n.

1.

$$v_0 = 4$$

$$v_1 = 2 \times 4 + 2 = 10$$

$$v_2 = 2 \times 10 + 2 = 22$$
.

2. Avec un schéma:

Les résultats en rouge (6 et 12) sont différents, donc u n'est pas arithmétique.

Les résultats en vert (2,5 et 2,2) sont différents, donc u n'est pas géométrique.

Calculs utiles:

$$10-4=6$$
, $22-10=12$.

$$10 \div 4 = 2, 5,$$

 $22 \div 10 = 2, 2.$

puo Scometrique.

Exercice 26 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=2$ et la relation de récurrence

$$u_{n+1} = 3u_n - 1$$

pour tout $n \in \mathbb{N}$.

1.

$$u_0 = 2$$

 $u_1 = 3 \times 2 - 1 = 5$
 $u_2 = 3 \times 5 - 1 = 14$

2. On pose $v_n = u_n - 0.5$ pour tout entier naturel n.

$$v_0 = u_0 - 0.5 = 2 - 0.5 = 1.5$$

 $v_1 = u_1 - 0.5 = 5 - 0.5 = 4.5$
 $v_2 = u_2 - 0.5 = 14 - 0.5 = 13.5$

3. Pour tout $n \in \mathbb{N}$:

$$v_{n+1} = u_{n+1} - 0.5$$
 (déf. de $(v_n)_{n \in \mathbb{N}}$)
 $= (3u_n - 1) - 0.5$ (rel. réc. pour $(u_n)_{n \in \mathbb{N}}$)
 $= 3u_n - 1.5$ (calcul)
 $= 3\left(u_n - \frac{1.5}{3}\right)$ (factorisation)
 $= 3(u_n - 0.5)$ (calcul)
 $= 3v_n$ (déf. de $(v_n)_{n \in \mathbb{N}}$)

Conclusion : pour tout $n \in \mathbb{N}$, $v_{n+1} = 3v_n$, donc $(v_n)_{n \in \mathbb{N}}$ est géométrique de raison q = 3.

Remarque : L'étude d'une suite arithmético-géométrique $(u_{n+1} = au_n + b, \text{ avec } a \neq 1)$ se ramène toujours à celle d'une suite géométrique $(v_n)_{n \in \mathbb{N}}$. Pour prouver que $(v_n)_{n \in \mathbb{N}}$ est géométrique, la méthode est toujours celle que nous venons de donner. À la quatrième ligne de calcul, c'est a qu'il faut mettre en facteur (ici, on a mis 3 en facteur).

4. La suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison q=3, et $v_0=u_0-0.5=2-0.5=1.5$, donc pour tout $n\in\mathbb{N}$:

$$v_n = v_0 \times q^n = 1, 5 \times 3^n.$$

5. Enfin $v_n = u_n - 1.5$ donc

$$u_n = v_n + 1, 5 = 1, 5 \times 3^n + 0, 5.$$

Exercice 27 1. On complète le schéma ci-dessous pour calculer les termes u_1 et u_2 . Les sommes écrites dans chaque case sont les sommes restant à rembourser aux dates indiquées.

Pour passer d'un terme de la suite au terme suivant, on multiplie par 1,02 (ajout des intérêts) puis on retranche 300 (remboursement mensuel). On peut donc continuer plus rapidement :

$$u_3 = 9798 \times 1,02 - 300 = 9693,96$$
 (somme à rembourser le 01/04/20),
 $u_4 = 9693,96 \times 1,02 - 300 = 9587,84$ (somme à rembourser le 01/05/20).

2. Pour tout $n \in \mathbb{N}$:

$$u_{n+1} = 1,02u_n - 300.$$

3. Pour tout $n \in \mathbb{N}$:

$$\begin{split} \nu_{n+1} &= u_{n+1} - 15000 & (\text{d\'ef. de } (\nu_n)_{n \in \mathbb{N}}) \\ &= (1,02u_n - 300) - 15000 \text{ (rel. r\'ec. pour } (u_n)_{n \in \mathbb{N}}) \\ &= 1,02u_n - 15300 & (\text{calcul}) \\ &= 1,02 \left(u_n - \frac{15300}{1,02} \right) & (\text{factorisation}) \\ &= 1,02(u_n - 15000) & (\text{calcul}) \\ &= 1,02\nu_n & (\text{d\'ef. de } (\nu_n)_{n \in \mathbb{N}}) \end{split}$$

Conclusion : pour tout $n \in \mathbb{N}$, $v_{n+1} = 1,02v_n$, donc $(v_n)_{n \in \mathbb{N}}$ est géométrique de raison q = 1,02.

4. La suite $(v_n)_{n \in \mathbb{N}}$ est géométrique de raison q = 1,02, et $v_0 = u_0 - 15000 = 10000 - 15000 = -5000$, donc pour tout $n \in \mathbb{N}$:

$$v_n = v_0 \times q^n = -5000 \times 1,02^n$$
.

Enfin $v_n = u_n - 15000$ donc

$$u_n = v_n + 15000 = -5000 \times 1,02^n + 15000.$$

5. Déterminer la durée du crédit revient à savoir quand la somme restant à rembourser est nulle. En réalité, au bout d'un moment, elle est négative, comme on le voit avec un tableau de valeurs :

n	55	56
u_n	141,34	-155,83

À la fin du 55e fois, il reste 141,35 € à rembourser; et si on rembourse 300 € au début du 56e mois, la banque nous devra 155,83 €.

Conclusion:

- le crédit dure 56 mois;
- on rembourse 56 fois 300 €, mais à la fin on a dépassé de 155,83 € ce que l'on devait à la banque;
- la somme totale remboursée est donc

$$56 \times 300 - 155,83 = 16664,17 \in$$
;

• le « coût du crédit » est la différence entre ce que l'on a remboursé et ce que la banque nous a prêté :

Coût du crédit = Somme remboursée - Somme empruntée = 16664,17 - 10000 = 6664,17 €.

Exercice 28 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=0$ et pour tout $n\in\mathbb{N}$:

$$u_{n+1} = 2u_n + 1$$
.

Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$u_n = 2^n - 1$$
.

• **Initialisation.** On prouve que \mathcal{P}_0 est vraie.

$$\begin{array}{ll} u_0 & = 0 \\ 2^0 - 1 & = 1 - 1 = 0 \end{array} \right\} \Longrightarrow \mathcal{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathcal{P}_k soit vraie. On a donc

$$u_k = 2^k - 1.$$

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} = 2^{k+1} - 1.$$

On part de

$$u_k = 2^k - 1$$
.

On a alors:

$$u_{k+1} = 2u_k + 1$$
 (rel. réc. pour $(u_n)_{n \in \mathbb{N}}$)
 $= 2\left(2^k - 1\right) + 1$ (H.R.)
 $= 2 \times 2^k - 2 + 1$ (on développe)
 $= 2^{k+1} - 1$ (calcul).

La propriété \mathcal{P}_{k+1} est donc vraie.

• Conclusion. \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.