MATH 262: Homework #3

Jesse Farmer

27 January 2005

1. For the following topologies on \mathbb{R} determine which of the others it contains. The standard topology, \mathbb{R}_K , the finite complement topology, the upper-limit topology, and the topology generated by the basis $(-\infty, a)$ for $a \in \mathbb{R}$.

Denote these topologies as $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4, \mathcal{T}_5$, respectively.

 \mathcal{T}_1 contains \mathcal{T}_3 since any finite set is closed in \mathcal{T}_1 and hence the complement is open. \mathcal{T}_1 also contains \mathcal{T}_5 since every basis element of \mathcal{T}_5 is also a basis element of \mathcal{T}_1 .

 \mathcal{T}_2 contains \mathcal{T}_1 since every basis element of the latter is also a basis element of the former. From above, it also contains \mathcal{T}_3 and \mathcal{T}_5 .

 \mathcal{T}_3 contains none of the other topologies.

 \mathcal{T}_4 contains \mathcal{T}_1 , and hence contains \mathcal{T}_3 and \mathcal{T}_5 . \mathcal{T}_4 also contains \mathcal{T}_2 since

$$\mathbb{R} \setminus K = (-\infty, 0] \cup \bigcup_{n \in \mathbb{Z}_+} \left(\frac{1}{n+1}, \frac{1}{n} \right) \cup (1, \infty)$$

is open in \mathcal{T}_4 . Any set open set U in \mathcal{T}_2 is already open in \mathcal{T}_1 and hence open in \mathcal{T}_4 , or is of the form $U \setminus K$ where U is open in the standard topology. In either case, since \mathcal{T}_4 contains both \mathcal{T}_1 and $\mathbb{R} \setminus K$, U is open in \mathcal{T}_4 .

Finally \mathcal{T}_5 contains none of the other topologies.

- 2. If T and T' are topologies on X and T' is strictly finer than T, what can you say about the corresponding subspace topologies on the subset Y of X?
 - Let $\mathfrak{T} \subset \mathfrak{T}'$ and denote the subspace topology inherited by Y from \mathfrak{T} and \mathfrak{T} as \mathfrak{T}_Y and \mathfrak{T}_Y' , respectively. Then if $Y \cap U \in \mathfrak{T}_Y$, $Y \cap U \in \mathfrak{T}_Y'$ since $U \in \mathfrak{T} \subset \mathfrak{T}'$. It need not be strictly finer, however. Consider, for example, the standard topology on \mathbb{R} and \mathbb{R}_l restricted to the interval [0,1].
- 3. If L is a straight line in the plane, describe the topology L inherits as a subspace of $\mathbb{R}_l \times \mathbb{R}$ and as a subspace of $\mathbb{R}_l \times \mathbb{R}_l$.

In the first case, either L is vertical or it is not. If it is then the subspace topology on L is simply the standard topology on \mathbb{R} . If L is not vertical then the topology is the lower-limit topology, since in this case L can intersect the closed edge of the basis "rectangle" $[a,b)\times(c,d)$ for some a,b,c,d.

1

In the seconds case, either L has positive slope or is vertical, or L has negative slope. In the first case the topology is again the lower-limit topology since L will only intersect at most one of the closed edges. If L has negative slope then the topology is the discrete topology since for any $(x, y) \in L$, $[x, x + 1) \times [y, y + 1)$ is a basis element containing (x, y). If every point is open, then the topology is necessarily the discrete topology.

4. Let I = [0, 1]. Compare the product topology on $I \times I$, the dictionary order topology on $I \times I$, and the topology I inherits as a subspace of $\mathbb{R} \times \mathbb{R}$ in the dictionary order topology.

Denote these topologies as \mathcal{T}_p , \mathcal{T}_o , and \mathcal{T}_s , respectively, and note that \mathcal{T}_p is the same as the subspace topology of $I \times I$ when \mathbb{R}^2 is given the topology induced by the usual metric, i.e., the l^2 norm. We will denote the pair (x, y) by $x \times y$ to avoid ambiguity.

We claim that $\mathfrak{T}_p \subsetneq \mathfrak{T}_s$. Let $x \times y \in U \times B$, where $U \times V$ is a basis element of \mathfrak{T}_p . Then $x \times y \in \{x\} \times V \subset U \times V$ and $\{x\} \times V$ is a basis element of \mathfrak{T}_s , hence $\mathfrak{T}_p \subset \mathfrak{T}_s$. $\{1/2\} \times [0,1]$ is an element of \mathfrak{T}_s not contained in \mathfrak{T}_p , so the inclusion is proper.

We claim that $\mathcal{T}_o \subsetneq \mathcal{T}_s$. Every basis element of \mathcal{T}_o is in \mathcal{T}_s , but, for example $\{1/2\} \times (0,1]$ is not in \mathcal{T}_o since there is no basis element of the form $\{1/2\} \times (a,b)$ containing it as $b \leq 1$ by necessity.

We claim that \mathcal{T}_p and \mathcal{T}_o are not comparable. As in the first case, $\{1/2\} \times (0,1) \in \mathcal{T}_o$ but is not in \mathcal{T}_p . Next consider \mathcal{T}_p and \mathcal{T}_o neighborhoods around some point on the top edge of the box, e.g., $1/2 \times 1$. Then any \mathcal{T}_o neighborhood contains points of the form $x \times 0$ where x > 1/2, but it is easy to see that the open ball of radius 1/2 around $1/2 \times 1$ intersected with $I \times I$, which is open in \mathcal{T}_p , contains no such point.

- 5. Let A, B be subsets of a space X, and $\{A_{\alpha}\}$ a family of subsets in X. Prove the following:
 - (a) If $A \subset B$ then $\bar{A} \subset \bar{B}$. $x \in \overline{A \cup B}$ if and only if every neighborhood U of x intersects $A \cup B$, i.e., $(A \cup B) \cap U \neq \emptyset$. But $(A \cup B) \cap U = (A \cap U) \cup (B \cap U)$, so that U intersects A or U intersects B. This is the case if and only if $x \in \bar{A} \cup \bar{B}$.
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$. As above, $x \in \overline{A \cup B}$ if and only if every neighborhood U of x intersects $A \cap B$, i.e., $A \cap B \cap U \neq \emptyset$. But $A \cap B \cap U = (A \cap U) \cap (B \cap U)$, so that both $A \cap U$ and $B \cap U$ must be nonempty. This is the case if and only if $x \in \overline{A} \cap \overline{B}$.
 - (c) $\bigcup \bar{A}_{\alpha} \subset \overline{\bigcup A_{\alpha}}$. If $x \in \bigcup \bar{A}_{\alpha}$ then every neighborhood U of x intersects some A_{α} . This means that for any neighborhood U, $U \cap \bigcup \bar{A}_{\alpha} = \bigcup \bar{A}_{\alpha} \cap U \neq \emptyset$, i.e., $x \in \overline{\bigcup A_{\alpha}}$.
- 6. Criticize the following proof that $\overline{\bigcup A_{\alpha}} \subset \bigcup \overline{A_{\alpha}}$. If $\{A_{\alpha}\}$ is a collection of sets in X and if $x \in \overline{\bigcup A_{\alpha}}$ then every neighborhood of U intersects $\bigcup A_{\alpha}$. Thus U must intersect some A_{α} , so that x must belong to the closure of some A_{α} . Therefore $x \in \bigcup \overline{A_{\alpha}}$.

This proof assumes that there exists an α such that for any neighborhood U, $U \cap A_{\alpha} \neq \emptyset$, whereas it is actually the case that for every neighborhood there is *some* A_{α} such that $U \cap A_{\alpha} \neq \emptyset$. As an example, consider $\mathbb{Q} \subset \mathbb{R}$ with the usual topology. The union of all the singletons in \mathbb{Q} is \mathbb{Q} , whose closure is \mathbb{R} . But the union of the closure of each singleton is just \mathbb{Q} , since points are closed in the usual topology.

7. Show that X is Hausdorff if and only if $\triangle = \{x \times x \mid x \in X\}$ is closed in $X \times X$.

Assume \triangle is closed, then $(X \times X) \setminus \triangle$ is open, i.e., for any $(x,y) \in (X \times X) \setminus \triangle$ there exists a basis element $U \times V$, where U and V are open in X, such that $(x,y) \in U \times V$. But $U \cap V = \emptyset$, since if $x \in U \cap V$ then $(x,x) \in U \times V$, i.e., $U \times V$ intersects \triangle . Hence $x \in U$, $y \in V$, and $U \cap V = \emptyset$, and X is Hausdorff.

Similarly, assume X is Hausdorff. Then for any distinct $x, y \in X$ there exist disjoint neighborhoods U, V of x and y, respectively. Then (x, y) is in some basis element for $X \times X$, namely, $U \times V$. Since U and V are disjoint, $(U \times V) \setminus \triangle = \emptyset$, and therefore $(X \times X) \setminus \triangle$ is open, i.e., \triangle is closed.

- 8. Let X and X' denote a single set in the two topologies T and T', respectively. Let $i: X' \to X$ be the identity function.
 - (a) Show that i is continuous if and only if \mathfrak{T}' is finer than \mathfrak{T} . Assume i is continuous and let $U \in \mathfrak{T}$. Then $U = i(U) = i^{-1}(U) \in \mathfrak{T}'$ and hence \mathfrak{T}' is finer than \mathfrak{T} . Assume \mathfrak{T}' is finer than \mathfrak{T} and let $U \in T$. Then $U = i(U) = i^{-1}(U) \in \mathfrak{T} \subset \mathfrak{T}'$ and hence i is continuous.
 - (b) Show that i is a homeomorphism if and only if $\mathfrak{T}' = \mathfrak{T}$. i is a homeomorphism if and only if it is bijective, continuous, and has a continuous inverse. Since $i^{-1} = i$, from the previous part, we have i is a homeomorphism if and only if \mathfrak{T}' is finer than \mathfrak{T} and \mathfrak{T} is finer than \mathfrak{T}' , i.e., if and only if $\mathfrak{T}' = \mathfrak{T}$.
- 9. Find a function $f: \mathbb{R} \to \mathbb{R}$ that is continuous at precisely one point. Define

$$f(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

The density of the rationals in the irrationals and vice versa guarantees that this function is continuous at nowhere except x = 0.

- 10. Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous.
 - (a) Show that the set $\{x \mid f(x) \leq g(x)\}$ is closed in X. First, a small lemma: every order topology is Hausdorff. Let $x,y \in X$ be distinct where X has the order topology. Then either there is some third element $a \in X$ with x < a < y, in which case the basis elements $(-\infty, a)$ and (a, ∞) are disjoint neighborhoods containing x and y, respectively. If there is no such element then $(-\infty, y)$ and (x, ∞) are disjoint basis elements containing x and y, respectively. Either way, X is Hausdorff. Let $x \in X$ be such that f(x) > g(x). Then, since Y is Hausdorff, there exist disjoint neighborhoods U and V of f(x) and g(x). Since these neighborhoods are disjoint and Y has the order topology, then every element of U is greater than every element of V, as there is one element of U, f(x), greater than one element of V, g(x). Furthermore, the continuity of f implies that $W = f^{-1}(U) \cap f^{-1}(V)$ is an open neighborhood of $x \in X$ such that f(w) > g(w) for all $w \in W$. Hence $\{x \mid f(x) > g(x)\}$ is open in X, and therefore $\{x \mid f(x) \leq g(x)\}$ is closed in X.
 - (b) Show that $h(x) = \min\{f(x), g(x)\}$ is continuous. Let $A = \{x \mid f(x) \leq g(x)\}$ and $B = \{x \mid f(x) \geq g(x)\}$. By the previous part both of these are closed, and $A \cap B$ is precisely the set where f = g. From Theorem 18.3 (the pasting lemma) it follows that h is continuous on $A \cup B = X$.

11. Let $A \subset X$ and $f : A \to Y$ continuous, where Y is Hausdorff. Show that any continuous extension of f to \bar{A} is unique.

Let $f, g: Z \to Y$ be any two continuous functions and Y be Hausdorff. Then the set

$$C = \{x \in Z \mid f(x) = g(x)\}\$$

is closed. This follows from the fact that $x \in X \setminus C$ then there exist disjoint neighborhoods U, V of f(x) and g(x) respectively, and $x \in f^{-1}(U) \cup f^{-1}(V)$, i.e., $X \setminus C$ is open.

Let g, g' be two continuous extensions of f to \bar{A} , where $f: A \to Y$ is continuous. Then C from above is closed, using $Z = \bar{A}$. But this set contains A and hence contains \bar{A} , since \bar{A} is by definition the smallest closed set containing A. Hence g and g' agree on \bar{A} .