

Languages and Machines

L4: Finite State Machines (Part 2)

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and Al University of Groningen, Groningen, the Netherlands

Languages and Their Machines

Regular → Finite State Machines (FSMs)

Context-free
→ Pushdown Machines

Context-sensitive
→ Linearly-bounded Machines

Semi-decidable ↔ Turing Machines

Three Machines for Regular Languages

Regular Languages

• Built from \emptyset , $\{\epsilon\}$, and $\{a_i\}$ (for every $a_i \in \Sigma$) by applications of union, concatenation, and Kleene star operators

Finite State Machines (FSMs)

- 1. Deterministic FSMs (DFSMs)
- 2. Nondeterministic FSMs (NFSMs)
- 3. Nondeterministic FSMs with ϵ -transitions (N ϵ FSMs)

The Three Machines are Equivalent

Previous Lecture:

- Every DFSM can be regarded as an equivalent NFSM, and
- Every NFSM can be regarded as an equivalent N∈FSM.

Thus, DFSMs \rightsquigarrow N ϵ FSMs.

Also:

• For every regexp there is an $N(\epsilon)FSM$.

The Three Machines are Equivalent

Previous Lecture:

- Every DFSM can be regarded as an equivalent NFSM, and
- Every NFSM can be regarded as an equivalent N∈FSM.

Thus, DFSMs \rightsquigarrow N ϵ FSMs.

Also:

• For every regexp there is an $N(\epsilon)FSM$.

Today:

 $N\epsilon FSMs \rightsquigarrow DFSMs$.

- Every $N(\epsilon)FSM$ is equivalent to a DFSM (possibly larger).
- Given an $N(\epsilon)$ FSM M, we will determine a regexp for L(M)

Overview

From NFSMs to DFSMs

From N∈FSMs to DFSMs

The regular expression for a machine

From NFSMs to DFSMs: Idea

Let $L = \{x \in \{0, 1\}^* \mid x \text{ has suffix '01'}\}.$

An NFSM N that recognizes L:

We will see how to transform N into the equivalent DFSM D:

From NFSMs to DFSMs: Idea

Let $L = \{x \in \{0, 1\}^* \mid x \text{ has suffix '01'}\}.$

An NFSM N that recognizes L:

We will see how to transform N into the equivalent DFSM D:

Here equivalence means L(N) = L(D) = L.

Suppose given an NFSM $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$. The DSFM D is defined as

$$D=\left(\,Q_D,\Sigma,\delta_D,\{\,q_0\},F_D
ight)$$

Suppose given an NFSM $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$. The DSFM D is defined as

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

where:

▶ $Q_D = \mathcal{P}(Q_N)$, i.e., the set of all subsets of Q_N

Suppose given an NFSM $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$. The DSFM D is defined as

$$D=\left(\,Q_D,\Sigma,\delta_D,\{\,q_0\},F_D
ight)$$

- ▶ $Q_D = \mathcal{P}(Q_N)$, i.e., the set of all subsets of Q_N
- lacktriangle The input alphabet Σ is the same for the two machines

Suppose given an NFSM $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$. The DSFM D is defined as

$$D=\left(\,Q_D,\Sigma,\delta_D,\{\,q_0\},F_D
ight)$$

- $ightharpoonup Q_D = \mathcal{P}(Q_N)$, i.e., the set of all subsets of Q_N
- lacktriangle The input alphabet Σ is the same for the two machines
- lacktriangleright The start state of D is the singleton with the start state of N

Suppose given an NFSM $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$. The DSFM D is defined as

$$D=\left(\,Q_D,\Sigma,\delta_D,\{\,q_0\},F_D
ight)$$

- ▶ $Q_D = \mathcal{P}(Q_N)$, i.e., the set of all subsets of Q_N
- ightharpoonup The input alphabet Σ is the same for the two machines
- ightharpoonup The start state of D is the singleton with the start state of N
- $\blacktriangleright \ \ F_D = \{S \subseteq Q_N \, | \, S \cap F_N \neq \emptyset \}$

Suppose given an NFSM $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$. The DSFM D is defined as

$$D=\left(\,Q_D,\Sigma,\delta_D,\{\,q_0\},F_D
ight)$$

- ▶ $Q_D = \mathcal{P}(Q_N)$, i.e., the set of all subsets of Q_N
- ightharpoonup The input alphabet Σ is the same for the two machines
- ightharpoonup The start state of D is the singleton with the start state of N
- $\blacktriangleright \ F_D = \{S \subseteq Q_N \,|\, S \cap F_N \neq \emptyset\}$
- ▶ For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q\in S} \delta_N(q,\,a)$$

Suppose given an NFSM $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$. The DSFM D is defined as

$$D=\left(\,Q_D,\Sigma,\delta_D,\{\,q_0\},F_D
ight)$$

where:

- ▶ $Q_D = \mathcal{P}(Q_N)$, i.e., the set of all subsets of Q_N
- ightharpoonup The input alphabet Σ is the same for the two machines
- ightharpoonup The start state of D is the singleton with the start state of N
- $\blacktriangleright \ F_D = \{ S \subseteq Q_N \, | \, S \cap F_N \neq \emptyset \}$
- ▶ For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,a) = igcup_{q \in S} \delta_N(q,a)$$

Intuition: For every $q \in S$, we check the states that N goes to from q on input a, and then take the union of all those states.

Example 1

An NFSM for $L = \{x \in \{0,1\}^* \mid x \text{ has suffix '01'}\}$:

Example 1

An NFSM for $L = \{x \in \{0,1\}^* \mid x \text{ has suffix '01'}\}$:

Notice: From p we go to two different states (p and q) by reading 0.

Example 1

An NFSM for $L = \{x \in \{0, 1\}^* \mid x \text{ has suffix '01'}\}$:

Notice: From p we go to two different states (p and q) by reading 0. Let's transform it into the DFSM:

Outline

From NFSMs to DFSMs

From N∈FSMs to DFSMs

The regular expression for a machine

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

δ_D	0	1
Ø	Ø	Ø

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

δ_D	0	1
Ø	Ø	Ø
$ ightarrow \{p\}$	$\{p,q\}$	$\{p\}$

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

δ_D	0	1
Ø	Ø	Ø
$ ightarrow \{p\}$	$\{p,q\}$	$\{p\}$
$\{q\}$	Ø	$\{r\}$

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

δ_D	0	1
Ø	Ø	Ø
$\rightarrow \{p\}$	$\{p,q\}$	$\{p\}$
$\{q\}$	Ø	$\{r\}$
*{r}	Ø	Ø

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

δ_D	0	1
Ø	Ø	Ø
$\rightarrow \{p\}$	$\{p,q\}$	$\{p\}$
$\{q\}$	Ø	$\{r\}$
$*\{r\}$	Ø	Ø
$\{p,q\}$	$\{p,q\}\cup\emptyset$	$\{p\}\cup\{r\}$

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

δ_D	0	1
Ø	Ø	Ø
$\rightarrow \{p\}$	$\{p,q\}$	$\{p\}$
$\{q\}$	Ø	$\{r\}$
$*\{r\}$	Ø	Ø
$\{p,q\}$	$\{p,q\}\cup\emptyset$	$\{p\} \cup \{r\}$
$ *\{p,r\} $	$\mid \{p,q\} \cup \emptyset$	$\mid \{p\} \cup \emptyset$

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

δ_D	0	1
Ø	Ø	Ø
$ ightarrow \{p\}$	$\{p,q\}$	$\{p\}$
$\{q\}$	Ø	$\{r\}$
$*\{r\}$	Ø	Ø
$\{p,q\}$	$\set{p,q}\cup\emptyset$	$\{p\} \cup \{r\}$
$*\{p,r\}$	$\set{p,q}\cup\emptyset$	$\set{p}\cup\emptyset$
$*\{q,r\}$	$ \emptyset \cup \emptyset $	$\mid \{r\} \cup \emptyset$

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

δ_D	0	1
Ø	Ø	Ø
$\rightarrow \{p\}$	$\{p,q\}$	$\{p\}$
$\{q\}$	Ø	$\{r\}$
$*\{r\}$	Ø	Ø
$\{p,q\}$	$\set{p,q}\cup\emptyset$	$\mid \{p\} \cup \{r\}$
$*\{p,r\}$	$\set{p,q}\cup\emptyset$	$\mid \{p\} \cup \emptyset$
$*\{q,r\}$	$\emptyset \cup \emptyset$	$\mid \{r\} \cup \emptyset$
$*\{p,q,r\}$	$\set{p,q} \cup \emptyset \cup \emptyset$	$ig \{p\}\cup\{r\}\cup\emptyset$

Recall: For each $S \subseteq Q_N$ and for each a in Σ ,

$$\delta_D(S,\,a) = igcup_{q \in S} \delta_N(q,\,a)$$

To compute $\delta_D(S, a)$, for every $q \in S$: we see what states q_1, \ldots, q_k N goes to from q on input a, and take their union $\{q_1, \ldots, q_k\}$.

In our example:

δ_D	0	1
Ø	Ø	Ø
$ o \{p\}$	$\{p,q\}$	{ <i>p</i> }
$\{q\}$	Ø	$\{r\}$
$*\{r\}$	Ø	Ø
$\{p,q\}$	$\{p,q\}\cup\emptyset$	$\{p\} \cup \{r\}$
$*\{p,r\}$	$\set{p,q}\cup\emptyset$	$\mid \{p\} \cup \emptyset$
$*\{q,r\}$	$\emptyset \cup \emptyset$	$\{r\} \cup \emptyset$
$*\{p,q,r\}$	$\{p,q\}\cup\emptyset\cup\emptyset$	$\{p\} \cup \{r\} \cup \emptyset$

!!

!! !!

Not all States are Reachable

States in gray are inaccessible from the starting state $\{p\}$:

Not all States are Reachable

Hence, by erasing inaccessible states, we obtain:

Note: The resulting DFSM has the same number of states as the given NFSM (3) but has more transitions (6 vs 4).

Outline

From NFSMs to DFSMs

From N∈FSMs to DFSMs

The regular expression for a machine

If the machine is an $N_{\varepsilon}FSM$, then the general idea of the subset construction is as just discussed. We just need an additional notion.

Give a set of states S, its ϵ -closure is the set of states that can be reached from S via zero or more ϵ -transitions.

If the machine is an $N_{\epsilon}FSM$, then the general idea of the subset construction is as just discussed. We just need an additional notion.

Give a set of states S, its ϵ -closure is the set of states that can be reached from S via zero or more ϵ -transitions.

Example:

If the machine is an $N_{\epsilon}FSM$, then the general idea of the subset construction is as just discussed. We just need an additional notion.

Give a set of states S, its ϵ -closure is the set of states that can be reached from S via zero or more ϵ -transitions.

Example:

	ϵ -closure
$\{q_1\}$	$\{q_1, q_3, q_5\}$
$\{q_2\}$	$\{q_2, q_3, q_5\}$
$\{q_3\}$	$\{q_3, q_5\}$
$\{q_4\}$	$\set{q_4,q_5}$
$\{q_5\}$	$\{q_5\}$
$\{q_6\}$	$\{q_6\}$

From N∈FSMs to DFSMs - Recipe

To transform an NeFSM N into a DFSM D:

- 1. Compute the ϵ -closure of N's start state (as a singleton). The resulting set is D's start state.
- 2. For every state S of D (a set of states of N) and every $a \in \Sigma$, construct a new state: the set of states reachable from some $q \in S$ by an a-transition followed by zero or more ϵ -transitions. (That is, this step concerns computing $a\epsilon^*$.)
- Recurse until no new states are created.

Let's transform the N∈FSM

Let's transform the N∈FSM

into the DFSM

The Two-Table Method (cf. Ex. 3.7)

The Two-Table Method (cf. Ex. 3.7)

First table:

	a	ϵ^*
$ ightarrow \{q_1\}$	$\{q_2\}$	$\{q_1, q_3, q_5\}$
$\{q_2\}$	Ø	$\{q_2, q_3, q_5\}$
$\{q_3\}$	$\{q_4\}$	$\{q_3,q_5\}$
$\set{q_4}$	Ø	$\set{q_4,q_5}$
$\set{q_5}$	$\{q_6\}$	$\set{q_5}$
$*\{q_6\}$	Ø	$\{q_6\}$

The Two-Table Method (cf. Ex. 3.7)

First table:

	a	ϵ^*
$ ightarrow \{q_1\}$	$\{q_2\}$	$\{q_1, q_3, q_5\}$
$\{q_2\}$	Ø	$\{q_2, q_3, q_5\}$
$\{q_3\}$	$\{q_4\}$	$\{q_3,q_5\}$
$\{q_4\}$	Ø	$\set{q_4,q_5}$
$\{q_5\}$	$\{q_6\}$	$\set{q_5}$
*{ q ₆ }	Ø	$\{q_6\}$

Second table:

δ_D	$a\epsilon^*$
$\rightarrow \{\mathit{q}_{1},\mathit{q}_{3},\mathit{q}_{5}\}$	$\{q_2, q_3, q_5\} \cup \{q_4, q_5\} \cup \{q_6\} = \{q_2, q_3, q_4, q_5, q_6\}$
$*{q_2, q_3, q_4, q_5, q_6}$	$\emptyset \cup \{\mathit{q}_4, \mathit{q}_5\} \cup \emptyset \cup \{\mathit{q}_6\} \cup \emptyset = \{\mathit{q}_4, \mathit{q}_5, \mathit{q}_6\}$
$*\{q_4, q_5, q_6\}$	$\emptyset \cup \set{q_6} \cup \emptyset = \set{q_6}$
$*\{q_6\}$	Ø

First table:

	ϵ^*	a	b	С
$ ightarrow \{q_0\}$	$\{q_0\}$	$\{q_0, q_1, q_2\}$	Ø	Ø
$*\{q_1\}$	$\{q_1\}$	Ø	$\{q_1\}$	Ø
$\{q_2\}$	$\{q_1,q_2\}$	Ø	Ø	$\{q_2\}$

Second table:

δ_D	$a\epsilon^*$	$b\epsilon^*$	$c\epsilon^*$
$\to \{q_0\}$	$\{q_0, q_1, q_2\}$	Ø	Ø
$*\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$	$\set{q_1}$	$\{q_1,q_2\}$
$*\{q_1\}$	Ø	$\set{q_1}$	Ø
$*\{q_1,q_2\}$	Ø	$\set{q_1}$	$\{q_1,q_2\}$
Ø	Ø	Ø	Ø

The transition randition q_D (we take or q_n).				n.
δ_D	а	b	С	d
$\to *\{0, 1, 3, 5\}$	$\{2, 4, 6\}$	Ø	Ø	Ø

	<i>L</i>	(110)
δ_D	а	b	С	d
$ o *\{0, 1, 3, 5\}$	{2, 4, 6}	Ø	Ø	Ø
$\{2, 4, 6\}$	Ø	$\{1, 5\}$	{3,5}	{5}

		· \	-	. 10 /
δ_D	a	b	С	d
$ o *\{0, 1, 3, 5\}$	${2,4,6}$	Ø	Ø	Ø
$\{2, 4, 6\}$	Ø	$\{1, 5\}$	{3,5}	{5}
Ø	Ø	Ø	Ø	Ø

		· \	-	1107
δ_D	а	b	С	d
$ o *\{0, 1, 3, 5\}$	$\{2, 4, 6\}$	Ø	Ø	Ø
$\{2, 4, 6\}$	Ø	$\{1, 5\}$	{3,5}	{5}
Ø	Ø	Ø	Ø	Ø
*{5}	{6}	Ø	Ø	Ø

D (n D n D).				
δ_D	а	b	С	d
$ o *\{0, 1, 3, 5\}$	${2,4,6}$	Ø	Ø	Ø
$\{2, 4, 6\}$	Ø	$\{1, 5\}$	${3,5}$	{5}
Ø	Ø	Ø	Ø	Ø
*{5}	{6}	Ø	Ø	Ø
$*\{1,5\}$	$\{2, 6\}$	Ø	Ø	Ø

T_D (it started in T_D).				
δ_D	а	b	С	d
$\longrightarrow *\{0,1,3,5\}$	${2,4,6}$	Ø	Ø	Ø
$\{2, 4, 6\}$	Ø	$\{1, 5\}$	{3,5}	{5}
Ø	Ø	Ø	Ø	Ø
*{5}	{6}	Ø	Ø	Ø
$*\{1,5\}$	$\{2, 6\}$	Ø	Ø	Ø
*{3,5}	$\{4,6\}$	Ø	Ø	Ø

The transition function \mathfrak{I}_D (it stands for \mathfrak{I}_n).					
δ_D	а	b	С	d	
$\rightarrow *\{0,1,3,5\}$	$\{2, 4, 6\}$	Ø	Ø	Ø	
$\{2, 4, 6\}$	Ø	$\{1, 5\}$	${3,5}$	{5}	
Ø	Ø	Ø	Ø	Ø	
*{5}	{6}	Ø	Ø	Ø	
*{1,5}	$\{2, 6\}$	Ø	Ø	Ø	
*{3,5}	$\{4,6\}$	Ø	Ø	Ø	
{6}	Ø	Ø	Ø	{5}	

T_{μ}							
δ_D	а	b	С	d			
$\to *\{0, 1, 3, 5\}$	${2,4,6}$	Ø	Ø	Ø			
$\{2, 4, 6\}$	Ø	$\{1, 5\}$	{3,5}	{5}			
Ø	Ø	Ø	Ø	Ø			
*{5}	{6}	Ø	Ø	Ø			
*{1,5}	$\{2, 6\}$	Ø	Ø	Ø			
*{3,5}	$\{4, 6\}$	Ø	Ø	Ø			
{6}	Ø	Ø	Ø	{5}			
$\{2, 6\}$	Ø	$\{1,5\}$	Ø	{5}			

T_{μ}						
δ_D	a	b	С	d		
$\to *\{0, 1, 3, 5\}$	${2,4,6}$	Ø	Ø	Ø		
$\{2, 4, 6\}$	Ø	$\{1, 5\}$	${3,5}$	{5}		
Ø	Ø	Ø	Ø	Ø		
*{5}	{6}	Ø	Ø	Ø		
*{1,5}	$\{2, 6\}$	Ø	Ø	Ø		
*{3,5}	$\{4, 6\}$	Ø	Ø	Ø		
{6}	Ø	Ø	Ø	{5}		
$\{2, 6\}$	Ø	$\{1, 5\}$	Ø	{5}		
$\{4, 6\}$	Ø	Ø	{3,5}	Ø		

	D (1/11)				
δ_D	a	b	С	d	
$ o *\{0, 1, 3, 5\}$	${2,4,6}$	Ø	Ø	Ø	
$\{2, 4, 6\}$	Ø	$\{1, 5\}$	${3,5}$	{5}	
Ø	Ø	Ø	Ø	Ø	
*{5}	{6}	Ø	Ø	Ø	
*{1,5}	$\{2, 6\}$	Ø	Ø	Ø	
*{3,5}	$\{4, 6\}$	Ø	Ø	Ø	
{6}	Ø	Ø	Ø	{5}	
$\{2,6\}$	Ø	$\{1, 5\}$	Ø	{5}	
$\{4, 6\}$	Ø	Ø	${3,5}$	Ø	

Up to here

- Every DFSM can be regarded as an equivalent N∈FSM
- Every N∈FSM can be transformed into an equivalent DFSM
- ⇒ The languages accepted by DFSMs or N∈FSMs are equal This is the class of the languages accepted by FSMs

Outline

From NFSMs to DFSMs

From N∈FSMs to DFSMs

The regular expression for a machine

A regular expression for a machine

Machines in **normal form**:

- the start state q_0 has no incoming arrows
- q_f is the only accepting state, and has no outgoing arrows.

States different from q_0 and q_f are called **internal nodes**.

Intuition: The state diagram of the machine seen as a **directed graph**, with edges labelled by regular expressions.

- Initially, an edge's label is the finite set of the symbols at the edge.
- One by one, we eliminate the internal nodes of the graph.
- When all internal nodes are eliminated, there is only one remaining edge, namely from $q_0 \rightarrow q_f$.
- The label of the last edge is the resulting regular expression.

$$W = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}.$$

We first bring the machine to normal form.

$$W = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}.$$

We added state q_7 . Next we will remove q_3 .

 $W = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$

We removed q_3 . Note: $(ac)^n = a(ca)^{n-1}c$ Next we will remove q_4 .

$$W = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$$

We removed q_4 . Next we will remove q_6 .

$$W = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$$

We removed q_6 . Next we will remove q_2 .

We removed q_2 . Next we will remove q_1 .

$$W = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$$

We removed q_1 . Finally, we will remove q_5 .

$$W = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$$
 \longrightarrow q_0 $((ac)^* | (ab)^*) (ad)^*$ q_7

We are done!

Taking Stock

We may then conclude:

- A language is regular iff it is described by a regular expression
- A language is regular iff it is described by a regular grammar
- A language is regular iff it is described by a DFSM
- ▶ A language is regular iff it is described by a $N(\epsilon)FSM$

Next Lecture

- Closure properties of regular languages
- The pumping lemma for regular languages