Theory of Statistical Learning Part II

Damien Garreau

Université Côte d'Azur

Outline

1. Linear predictors

Linear classification Linear regression Ridge regression Polynomial regression Logistic regression Support vector machines

2. Kernel methods

Positive semi-definite kernels Reproducing kernel Hilbert spaces More examples The kernel trick and applications The representer theorem Kernel ridge regression

3. Tree-based classifiers

Partition rules Random forests

4. Boosting

1. Linear predictors

1.1. Linear classification

Linear functions

- $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$
- ► thus $x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,d})^{\top}$
- we consider no bias term (otherwise *affine*):

$$\{h: x \mapsto w^{\top}x, w \in \mathbb{R}^d\}$$
.

Reminder: given two vectors $u, v \in \mathbb{R}^d$,

$$\langle u, v \rangle = u^{\top} v = \sum_{i=1}^{d} u_i v_i .$$

- **b** binary classification: 0-1 loss, $\mathcal{Y} = \{-1, +1\}$
- ▶ **Important:** compose h with $\phi : \mathbb{R} \to \mathcal{Y}$ (typically the sign)

The sign function

Figure: the sign function

Halfspaces

▶ thus our function class is

$$\mathcal{H} = \{ x \mapsto \operatorname{sign}(w^{\top} x), w \in \mathbb{R}^d \}.$$

ightharpoonup gives label +1 to vector pointing in the same direction as w

VC dimension of halfspaces

Proposition: the VC dimension of halfspaces in dimension d is exactly d + 1.

Consequence: \mathcal{H} is PAC learnable with sample complexity

$$\Omega\left(rac{d+\log(1/\delta)}{arepsilon}
ight)$$
 .

Linearly separable data

- ▶ Important assumption: data is linearly separable
- ▶ that is, there is a $w^* \in \mathbb{R}^d$ such that

$$y_i = \operatorname{sign}(\langle w^*, x_i \rangle) \quad \forall 1 \leq i \leq n.$$

Linear programming

Empirical risk minimization: recall that we are looking for w such that

$$\hat{\mathcal{R}}_{S}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_{i} \neq \operatorname{sign}(w^{\top} x_{i})}$$

is minimal

- Question: how to solve this?
- we want $y_i = \operatorname{sign}(w^\top x_i)$ for all $1 \le i \le n$
- equivalent formulation: $y_i \langle w, x_i \rangle > 0$
- \blacktriangleright we know that there is a vector that satisfies this condition (w^*)
- let us set $\gamma = \min_i \{ y_i \langle w^*, x_i \rangle \}$ and $\overline{w} = w^* / \gamma$
- we have shown that there is a vector such that $y_i\langle \overline{w}, x_i \rangle \geq 1$ for any $1 \leq i \leq n$ (and it is an ERM)

Linear programming, ctd.

▶ define the matrix $A \in \mathbb{R}^{n \times d}$ such that

$$A_{i,j}=y_ix_{i,j}.$$

- ► Intuition: observations × labels
- ightharpoonup remember that we have the ± 1 label convention
- ightharpoonup define $v=(1,\ldots,1)^{\top}\in\mathbb{R}^n$
- ▶ then we can rewrite the above problem as

maximize
$$\langle u, w \rangle$$
 subject to $Aw \leq v$.

- ▶ we call this sort of problems linear programs¹
- ▶ solvers readily available, e.g., scipy.optimize.linprog if you use Python

¹Boyd, Vandenberghe, Convex optimization, Cambridge University Press, 2004

The perceptron

- ▶ another possibility: the perceptron²
- ▶ **Idea:** iterative algorithm that constructs $w^{(1)}, w^{(2)}, \dots, w^{(T)}$
- update rule: at each step, find i that is misclassified and set

$$w^{(t+1)} = w^{(t)} + y_i x_i$$
.

- Question: why does it work?
- pushes w in the right direction:

$$y_i\langle w^{(t+1)}, x_i\rangle = y_i\langle w^{(t)} + y_ix_i, x_i\rangle = y_i\langle w^{(t)}, x_i\rangle + \|x_i\|^2$$

remember, we want $y_i \langle w, x_i \rangle > 0$ for all i

²Rosenblatt, The perceptron, a perceiving and recognizing automaton, tech report, 1957

1.2. Linear regression

Least squares

► regression ⇒ squared-loss function

$$\ell(y,y')=(y-y')^2.$$

still looking at linear functions:

$$\mathcal{H} = \{h : x \mapsto \langle w, x \rangle \text{ s.t. } w \in \mathbb{R}^d\}.$$

empirical risk in this context:

$$\hat{\mathcal{R}}_{\mathcal{S}}(h) = \frac{1}{n} \sum_{i=1}^{n} (w^{\top} x_i - y_i)^2 = F(w).$$

- also called mean squared error
- empirical risk minimization: we want to minimize $w \mapsto F(w)$ with respect to $w \in \mathbb{R}^d$
- F is a convex, smooth function

Least squares, ctd.

let us compute the gradient of *F*:

$$\frac{\partial F}{\partial w_j}(w) = \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_j} (w^\top x_i - y_i)^2
= \frac{1}{n} \sum_{i=1}^n 2 \cdot \frac{\partial}{\partial w_j} (w^\top x_i - y_i) \cdot (w^\top x_i - y_i)
= \frac{1}{n} \sum_{i=1}^n 2 \cdot \frac{\partial}{\partial w_j} (\cdots + w_j x_{i,j} + \cdots - y_i) \cdot (w^\top x_i - y_i)
\frac{\partial F}{\partial w_j}(w) = \frac{2}{n} \sum_{i=1}^n x_{i,j} \cdot (w^\top x_i - y_i).$$

Least squares, ctd.

- it is more convenient to write $\nabla F(w) = 0$ in matrix notation
- ▶ define $X \in \mathbb{R}^{n \times d}$ the matrix such that line i of X is observation x_i
- \blacktriangleright one can check that, for any $1 \le j, k \le d$,

$$(X^{\top}X)_{j,k} = \sum_{i=1}^{n} x_{i,j} x_{i,k}.$$

► thus

$$(X^{\top}Xw)_{j} = \sum_{k=1}^{d} (X^{\top}X)_{j,k} w_{k}$$
$$= \sum_{k=1}^{d} \sum_{i=1}^{n} x_{i,j}x_{i,k} w_{k}$$
$$= \sum_{i=1}^{n} x_{i,j}w^{\top}x_{i}.$$

Least squares, ctd.

thus, if we define

$$A = X^ op X = \sum_{i=1}^n x_i x_i^ op \in \mathbb{R}^{d imes d}$$
 and $b = X^ op y = \sum_{i=1}^n y_i x_i \in \mathbb{R}^d$,

solving $\nabla F(w) = 0$ is equivalent to solving

$$Aw = b$$
.

▶ if *A* is invertible, straightforward:

$$\hat{w} = A^{-1}b$$

- ightharpoonup computational cost: $\mathcal{O}\left(d^3\right)$ (inversion is actually a bit less)
- what happens when A is not invertible?

Singular value decomposition

▶ since *A* is symmetric, it has an eigendecomposition

$$A = VDV^{\top}$$
,

with $D \in \mathbb{R}^d$ diagonal and V orthonormal

▶ define *D*⁺ such that

$$D_{i,i}^+=0$$
 if $D_{i,i}=0$ and $D_{i,i}^+=rac{1}{D_{i,i}}$ otherwise.

- ightharpoonup define $A^+ = VD^+V^\top$
- ▶ then we set

$$\hat{w}=A^+b.$$

Singular value decomposition, ctd.

- why did we do that?
- \triangleright let v_i denote the *i*th column of V, then

$$A\hat{w} = AA^+b$$
 (definition of \hat{w})
 $= VDV^\top VD^+V^\top b$ (definition of A^+)
 $= VDD^+V^\top b$ (V is orthonormal)
 $A\hat{w} = \sum_{i:D_{i,i}\neq 0} v_i v_i^\top b$.

- ▶ in definitive, $A\hat{w}$ is the projection of b onto the span of v_i such that $D_{i,i} \neq 0$
- ▶ since the span of these v_i is the span of the x_i and b is in the linear span of the x_i , we have $A\hat{w} = b$
- ▶ cost of SVD: $\mathcal{O}(dn^2)$ if d > n (SVD of X)

Exercise

Exercise: Of course, one does not have to use the squared loss. Instead, we may prefer to use

$$\ell(y,y')=|y-y'|.$$

1. show that, for any $v \in \mathbb{R}^d$,

$$\|v\|_1 = \min_z \mathbf{1}^\top z$$
 subject to $z \ge |v|$.

- 2. deduce that ERM with the absolute value loss function is equivalent to minimizing the linear function $\sum_{i=1}^{n} s_i$, where the s_i satisfy linear constraints
- 3. write this as a linear program, that is, find $A \in \mathbb{R}^{2n \times (n+d)}$, $v \in \mathbb{R}^{d+n}$, and $b \in \mathbb{R}^{2n}$ such that the problem can be written

minimize
$$c^{\top}v$$
 subject to $Av \leq b$.

Correction of the exercise

- 1. We have $|v| \geq |v|$ and $\mathbf{1}^{\top} |v| = ||v||_1$.
- 2. In that case, the empirical risk can be written

$$\hat{\mathcal{R}}_S(w) = \frac{1}{n} \sum_{i=1}^n \left| y_i - w^\top x_i \right| .$$

We deduce the result from question 1.

3. One possibility is to define $v = (w_1, \dots, w_d, s_1, \dots, s_n)^{\top} \in \mathbb{R}^{n+d}$, $c = (0, \dots, 0, 1, \dots, 1)^{\top} \in \mathbb{R}^{d+n}$, $b = (y_1, \dots, y_n, -y_1, \dots, -y_n)^{\top} \in \mathbb{R}^{2n}$, and

$$A = \begin{pmatrix} X & -I_n \\ -X & -I_n \end{pmatrix} \in \mathbb{R}^{2n \times (n+d)},$$

with $X \in \mathbb{R}^{n \times d}$ the matrix whose lines are the x_i s and I_n the identity matrix.

Recap

- ▶ What happens when we invoke sklearn.linear_model.LinearRegression with default parameters?
- ightharpoonup fit_intercept is True ightharpoonup assumes that the data is not centered (our maths are not totally accurate)
- ightharpoonup normalize is False ightharpoonup we are responsible for the normalization of our data
- behind the scenes, calls scipy.linalg.lstsq when fitting, which itself calls LAPACK (Linear Algebra PACKage)³
- ► LAPACK is coded in Fortran90

³http://www.netlib.org/lapack/

1.3. Ridge regression

Ridge regression

same hypothesis class: linear functions

$$\mathcal{H} = \{ h : x \mapsto w^{\top} x, w \in \mathbb{R}^d \}$$

squared loss:

$$\ell(y,y')=(y-y')^2.$$

▶ **Idea:** regularization:

minimize
$$\left\{\frac{1}{n}\sum_{i=1}^{n}(y_i - w^{\top}x_i)^2 + \lambda \|w\|^2\right\}$$
,

with $\|u\|^2 = u_1^2 + \cdots + u_d^2$ and $\lambda > 0$ a regularization parameter

Exercise

Exercise: Let $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$ be n given training samples. For any $w \in \mathbb{R}^d$, set

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2 + \lambda \|w\|^2.$$

Notice that F is a convex smooth function.

1. show that the minimizer \hat{w} satisfies

$$(X^{\top}X + n\lambda I_d) w = X^{\top}y.$$

2. show that $X^{\top}X + n\lambda I_d$ is an invertible matrix

Correction of the exercise

1. Let $1 \le j \le d$ and let us compute $\partial_i F$:

$$\frac{\partial F}{\partial w_j}(w) = \frac{\partial}{\partial w_j} \left(\frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i)^2 \right) + \frac{\partial}{\partial w_j} (\lambda (w_1^2 + \cdots w_d^2))$$
$$= \frac{2}{n} \sum_{i=1}^n x_{i,j} \cdot (w^\top x_i - y_i) + 2\lambda w_j,$$

where we used the derivation for the least squares. We deduce the result by setting to zero and multiplying by n.

Correction of the exercise, ctd.

2. By contradiction, suppose that $X^{\top}X + n\lambda I_d$ is not invertible. Then

$$\det\left(X^{\top}X+n\lambda I_{d}\right)=0.$$

In other words, $-n\lambda$ is an eigenvalue of $X^\top X$. Since $X^\top X$ is a symmetric matrix, its spectrum is $\subseteq \mathbb{R}$. Moreover, it is positive definite, thus all eigenvalues are non-negative. Since $\lambda > 0$, we deduce that $-n\lambda$ cannot be an eigenvalue of $X^\top X$ and we can conclude.

Recap

- ▶ What happens when we invoke sklearn.linear_model.Ridge with default settings?
- ▶ alpha = $1 \rightarrow \lambda = 1/n$ with our notation, barely any regularization if n large
- ▶ fit_intercept is True → does not consider centered data (so our analysis is not entirely accurate)
- ightharpoonup normalize is False ightharpoonup we decide whether we normalize our data
- ▶ solver is auto → sklearn will decide how to solve the minimization problem depending on the size of the data: the solution could be not exact!
- ightharpoonup tol tolerance threshold on the residuals

1.4. Polynomial regression

Polynomial regression

- linear regression is a powerful tool, especially because we can transform the inputs in a non-linear fashion
- **Example:** polynomial regression in \mathbb{R}
- ▶ inputs $x_1, \ldots, x_n \in \mathbb{R}$
- define the mapping $\phi(x) = (1, x, x^2, \dots, x^p)^{\top}$
- then

$$\langle w, \phi(x) \rangle = w_0 + w_1 x + w_2 x^2 + \cdots + w_p x^p,$$

- and we can find the best coefficients by linear regression
- lacktriangle numpy.polyfit ightarrow very handy when we want to fit univariate data

Polynomial regression, ctd.

- **Example:** data = degree three polynomial + Gaussian noise with small variance
- ▶ fit a degree 3 polynomial:

Remark: in practice, we do not know the degree of the polynomial!

Polynomial regression, ctd.

- typical case of under / overfitting:
 - when degree too low, poor fit
 - ▶ when degree too high, wiggly function $(n+1 \Rightarrow \text{interpolation})$

1.5. Logistic regression

Logistic regression

- ightharpoonup classification with $\mathcal{Y} = \{0, 1\}$
- ▶ however, we predict the probability of belonging to class 1
- hypothesis class:

$$\mathcal{H} = \{ x \mapsto \phi(\langle w, x \rangle), w \in \mathbb{R}^d \},\,$$

with ϕ the *logistic function* (aka *sigmoid* function)

$$\phi(z) = \frac{1}{1 + \mathrm{e}^{-z}} \,.$$

- ▶ Intuition: squeeze the score between 0 and 1 to transform it into a probability
- $ightharpoonup \mathbb{P}(y=1\,|\,x) = \phi(w^{ op}x) \text{ and } \mathbb{P}(y=0\,|\,x) = 1 \phi(w^{ op}x)$

Logistic function

Figure: the logistic function $\phi: t \mapsto 1/(1 + e^{-t})$.

Logistic loss

- ▶ **Next:** we need to define a loss function
- \blacktriangleright for any y, y', we define the *logistic loss*:

$$\ell(y, y') = -(1 - y) \log(1 - y') - y \log y'.$$

Logistic regression

- ▶ finally, logistic regression = empirical risk minimization with the logistic loss
- ▶ that is, minimize for $w \in \mathbb{R}^d$

$$\hat{\mathcal{R}}_{\mathcal{S}}(w) = \sum_{i=1}^{n} \left\{ -(1-y_i) \log(1-\phi(w^{\top}x_i)) - y_i \log \phi(w^{\top}x_i) \right\}.$$

- Remark (i): we can show that this is equivalent to maximum likelihood for a certain prior distribution
- ► Remark (ii): complicated to optimize (see exercise)

Logistic regression in dimension 1

Example: in dimension one:

Logistic regression in dimension 2

Example: in dimension two:

Exercise

Exercise: Recall that we defined the logistic loss by

$$\ell(y, y') = -(1 - y) \log(1 - y') - y \log y'$$
.

1. Show that ERM with the logistic loss is equivalent to minimizing

$$F(w) = \sum_{i=1}^{n} \log(1 + \exp(-\tilde{y}_i \langle w, x_i \rangle)),$$

where $\tilde{y}_i = \text{sign}(y_i - 0.5)$. Deduce that $\hat{\mathcal{R}}$ is a convex function of w.

- 2. Compute the gradient of $\hat{\mathcal{R}}$ with respect to w. Hint: show that $\phi'(z) = \phi(z)(1 \phi(z))$.
- 3. Can you solve $\nabla \hat{\mathcal{R}}(w) = 0$? If not, propose a strategy for finding a good w.

Correction of the exercise

1. Let us set $1 \le i \le n$. We write

$$egin{aligned} \ell(y_i,\phi(w^ op x_i)) &= -(1-y_i)\log(1-\phi(w^ op x_i)) - y_i\log\phi(w^ op x_i) \ &= -(1-y_i)\lograc{\mathrm{e}^{-w^ op x_i}}{1+\mathrm{e}^{-w^ op x_i}} - y_i\lograc{1}{1+\mathrm{e}^{-w^ op x_i}} \ &= -(1-y_i)\log\mathrm{e}^{-w^ op x_i} + \log(1+\mathrm{e}^{-w^ op x_i}) \,. \end{aligned}$$

If $y_i = 0$, the last display equals

$$\log(1 + \exp(w^{\top}x_i)),$$

if $y_i = 1$, it is

$$\log(1 + \exp(-w^{\top}x_i))$$
.

One can check directly that $x \mapsto \log(1 + e^{-x})$ is convex. By composition, F is a sum of convex functions, thus convex.

Correction of the exercise, ctd.

2. Let $1 \le j \le d$. We write

$$\begin{split} \frac{\partial \hat{\mathcal{R}}(w)}{\partial w_j} &= -\sum_{i=1}^n \frac{\partial}{\partial w_j} \left\{ (1 - y_i) \log(1 - \phi(w^\top x_i)) + y_i \log \phi(w^\top x_i) \right\} \\ &= -\sum_{i=1}^n \left\{ \frac{-(1 - y_i)}{1 - \phi(w^\top x_i)} + \frac{y_i}{\phi(w^\top x_i)} \right\} \frac{\partial}{\partial w_j} \phi(w^\top x_i) \\ &= -\sum_{i=1}^n \left\{ \frac{-(1 - y_i)}{1 - \phi(w^\top x_i)} + \frac{y_i}{\phi(w^\top x_i)} \right\} \phi(w^\top x_i) (1 - \phi(w^\top x_i)) x_{i,j} \\ \frac{\partial \hat{\mathcal{R}}(w)}{\partial w_j} &= -\sum_{i=1}^n \left(y_i - \phi(w^\top x_i) \right) x_{i,j} \,. \end{split}$$

3. It does not seem possible to solve $\nabla F(w) = 0$ in closed-form, one has to use gradient descent.

Recap

- What happens when we call sklearn.linear_model.LogisticRegression?
- lacktriangle penalty is $\ell_2 o$ there is regularization by default! (not much though, C=1)
- ▶ fit_intercept is True → again, our maths are not entirely accurate
- \triangleright solver is liblinear \rightarrow since there is no closed-form, a solver will be used
- liblinear uses coordinate descent
- will default soon to lbfgs (limited memory Broyden-Fletcher- -Goldfarb-Shanno)
- do not worry too much about the solvers, just change if you see that it is not converging

1.6. Support vector machines

Support vector machines

- ▶ classification with $x_1, ..., x_n \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$
- **Recall:** linearly separable means that there exist (w, b) such that

$$\forall i \in [n], \quad y_i(w^\top x_i + b) > 0.$$

- ▶ Remark: all halfspaces satisfying this condition are empirical risk minimizers
- Question: which one should we pick?

Some intuition

▶ **Idea:** choose the one with maximum *margin*

▶ Intuitively, we would prefer the red line instead of the blue one

Margins

Definition: The margin of a hyperplane with respect to a training set is defined as the minimal distance between a point in the training set and the hyperplane.

- ► Hard-SVM⁴ = minimizing empirical risk and choosing the max margin hyperplane
- Question: how to put this in equation?
- ▶ first, we need to express the distance between a point and a hyperplane:

Lemma: Assume that ||w|| = 1. Then the distance between x and the hyperplane defined by (w, b) is given by $|w^{\top}x + b|$.

 $^{^4}$ Boser, Guyon, Vapnik, *A training algorithm for optimal margin classifiers*, 5th workshop on computational learning theory, 1992

Proof of the lemma

we want to compute

$$\min\{||x - v|| \quad \text{s.t.} \quad w^{\top}v + b = 0\}.$$

ightharpoonup take $v = x - (w^{\top}x + b)w$:

$$w^{\top}v + b = w^{\top}x - (w^{\top}x + b) \|w\|^2 + b = 0$$

since ||w|| = 1.

moreover,

$$||x - v|| = |w^{T}x + b| ||w|| = |w^{T}x + b|.$$

- for now, we have a point v on the hyperplane with distance $|w^Tx + b|$
- let us show that any other point has a larger distance

Proof of the lemma, ctd.

let u such that $w^{\top}u + b = 0$, then

$$||x - u||^{2} = ||x - v + v - u||^{2}$$

$$= ||x - v||^{2} + ||v - u||^{2} + 2(x - v)^{T}(v - u)$$

$$\geq ||x - v||^{2} + 2(x - v)^{T}(v - u)$$

$$= ||x - v||^{2} + 2(w^{T}x + b)w^{T}(v - u)$$

▶ notice that $w^{\top}v = w^{\top}u = -b$, therefore

$$||x - u||^2 \ge ||x - v||^2$$
.

Hard-SVM rule

- **Consequence of the lemma:** the closest point in the training set has distance $\min_i |w^\top x_i + b|$ to the hyperplane
- we can rewrite the hard-SVM rule as

$$(\hat{w}, \hat{b}) \in \underset{(w,b),\|w\|=1}{\operatorname{arg\,max}} \min_{i} \left| w^{\top} x_i + b \right| \quad \text{s.t.} \quad y_i(w^{\top} x_i + b) > 0 \quad \forall i \,.$$

- ▶ **Intuition:** x_i on the right side of the hyperplane if y_i and $w^\top x_i + b$ have the same sign
- in the separable case, it is possible to show that an equivalent formulation is

$$(\hat{w}, \hat{b}) \in \underset{(w,b),||w||=1}{\operatorname{arg max}} \min_{i} y_i(w^{\top}x_i + b).$$

Hard-SVM as quadratic programming

▶ as in the first linear example, possible to reframe as a standard optimization problem

Lemma: Let (w_0, b_0) be the solution of the following QP:

$$(w_0, b_0) \in \operatorname*{arg\,min} \|w\|^2 \quad \text{s.t.} \quad y_i(w^\top x_i + b) \geq 1 \quad \forall i.$$

Then $\hat{w} = w_0 / \|w_0\|$ and $\hat{b} = b_0 / \|w_0\|$ satisfy the Hard-SVM rule.

▶ QP = quadratic programming: objective is a quadratic function and the constraints are linear inequalities

Proof of the lemma

- \blacktriangleright let (w, b) be a solution of the Hard-SVM rule
- define the achieved margin by

$$\gamma = \min_{i} y_i(w^{\top} x_i + b).$$

b by definition, for all $1 \le i \le n$, we have

$$y_i(w^\top x_i + b) \geq \gamma$$
,

that is

$$y_i\left(\left(\frac{w}{\gamma}\right)^{\top}x_i+\frac{b}{\gamma}\right)\geq 1.$$

• thus $(w/\gamma, b/\gamma)$ satisfies the condition of the QP

Proof of the lemma, ctd.

in particular,

$$\|w_0\| \leq \left\|\frac{w}{\gamma}\right\| = \frac{1}{\gamma}.$$

ightharpoonup as a consequence, for all $1 \le i \le n$,

$$y_i(\hat{w}^{\top}x_i+\widehat{b})=rac{1}{\|w_0\|}\cdot y_i(w_0^{\top}x_i+b_0)\geq rac{1}{\|w_0\|}\geq \gamma.$$

lacktriangle since $\|\hat{w}\|=1$, we have shown that (\hat{w},\hat{b}) is a solution of the Hard-SVM rule

The homogeneous case

ightharpoonup if we set b=0, Hard-SVM rule becomes

$$minimize_w ||w||^2$$
 s.t. $\forall 1 \leq i \leq n, \quad y_i w^\top x_i \geq 1$.

▶ in that case, the solution w_0 is *supported* by the examples exactly at distance $1/\|w_0\|$ from the hyperplane

Theorem (Fritz John): Let
$$I:=\{i \text{ s.t. } |w_0^\top x_i|=1\}$$
. Then there exists coefficients α_i , $i\in I$, such that
$$w_0=\sum_{i\in I}\alpha_ix_i\,.$$

▶ the $\{x_i, i \in I\}$ are called *support vectors*, hence the name

Soft-SVM

- linearly separable assumption is quite restrictive
- condition in the QP:

$$\forall 1 \leq i \leq n, \qquad y_i(w^\top x_i + b) \geq 1.$$

- Natural relaxation: allow this constraint to be violated for some points in the dataset
- \blacktriangleright we introduce slack variables ξ_1, \dots, ξ_n and replace the constraint by

$$\forall 1 \leq i \leq n, \qquad y_i(w^\top x_i + b) \geq 1 - \xi_i.$$

Intuition: the ξ_i encode by how much the constraint is violated

Soft-SVM, ctd.

- **Key idea:** minimize jointly ||w|| and the average of the ξ_i
- namely, the Soft-SVM rule is

$$\mathsf{minimize}_{w,b,\xi} \left\{ \lambda \left\| w \right\|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i \right\} \quad \mathsf{s.t.} \quad \forall 1 \leq i \leq n, \quad y_i(w^\top x_i + b) \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \,,$$

where $\lambda > 0$ is a fixed hyperparameter

Soft-SVM as regularized ERM

recall the definition of the *hinge loss*:

$$\ell(y,y') = \max\{0,1-yy'\}.$$

we have the remarkable result:

Lemma: Consider

$$(\hat{w}, \widehat{b}) \in \operatorname*{arg\,min}_{(w,b)} \left\{ \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^{ op} x_i + b) + \lambda \left\| w \right\|^2
ight\}.$$

Then (\hat{w}, \hat{b}) satisfies the Soft-SVM rule.

Proof of the lemma

recall that we want to minimize

$$\lambda \|w\|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i$$

subject to

$$\forall 1 \leq i \leq n$$
, $y_i(w^\top x_i + b) \geq 1 - \xi_i$ and $\xi_i \geq 0$.

- ightharpoonup fix w, b and let us try and minimize in ξ
- let us fix some i: since $\xi_i \geq 0$, the best assignment would be $\xi_i = 0$ if $y_i(w^\top x_i + b) \geq 1$, and $1 y_i(w^\top x_i + b)$ otherwise
- in other words,

$$\forall 1 \leq i \leq n, \quad \xi_i = \max\{0, 1 - y_i(w^\top x_i + b)\} = \ell(y_i, w^\top x_i + b).$$

Recap

- scikit-learn implementation: sklearn.svm.LinearSVC
- ▶ then a solver is called, similarly to the logistic regression case
- ightharpoonup default is ℓ_2 regularization (as we have seen)
- regularization is given by C = 1 ($C = 1/\lambda$, beware!)
- we will see an extension of SVM when we look into kernel methods

2. Kernel methods

2.1. Positive semi-definite kernels

Representation of the data

- ▶ What we have seen so far: linear classification / linear regression
- works well if the data is linearly separable
- Problem: that is not always the case!
- what if we could transport the data to another space where it is well-behaved?
- ▶ for instance a very high-dimensional space
- ▶ first we define a *kernel*

Positive semi-definite kernels

Definition: a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a positive definite kernel if k(x,x') = k(x',x) for any $x,x' \in \mathcal{X}$, and

$$\forall x_1,\ldots,x_n \in \mathcal{X}, \forall c_1,\ldots,c_n \in \mathbb{R}, \quad \sum_{i=1}^n \sum_{j=1}^n c_i c_j k(x_i,x_j) \geq 0.$$

- ▶ unlike the name suggests, k has no reason to be positive
- in other words, the Gram matrix $K = (k(x_i, x_j)_{i,j=1}^n)$ is positive definite for any input data x_1, \ldots, x_n
- kernel methods take this K as input
- **Remark:** this is *costly*, $\mathcal{O}\left(n^2\right)$ whatever we do, with possible dependency in the dimensionality of the data

Fundamental example

- ightharpoonup suppose that $\mathcal{X} = \mathbb{R}$
- ▶ then k(x, y) := xy is a positive definite kernel
- **Why?** first, we check that k(x, y) = k(y, x)
- ightharpoonup second, let $n \geq 1, x_1, \ldots, x_n \in \mathbb{R}^d$, and $c_1, \ldots, c_n \in \mathbb{R}$, then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j x_i x_j$$

$$= \left(\sum_{i=1}^{n} c_i x_i\right)^2$$

$$\geq 0.$$

Fundamental example, ctd.

- we can extend this example:
- ightharpoonup suppose that $\mathcal{X} = \mathbb{R}^d$
- ▶ let $n \ge 1$, $x_1, ..., x_n \in \mathbb{R}^d$, and $c_1, ..., c_n \in \mathbb{R}$, then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j x_i^{\top} x_j$$

$$= \left\| \sum_{i=1}^{n} c_i x_i \right\|^2$$

$$> 0.$$

- \triangleright $k(x, y) := x^{\top}y$ is usually called the **linear kernel**
- ▶ Intuition: kernels are a generalization of inner product

Other examples

Polynomial kernel:

$$\mathcal{X} = \mathbb{R}^d$$
, $k(x, y) = (x^{\top}y + c)^k$.

min kernel:

$$\mathcal{X} = \mathbb{R}, \qquad k(x,y) = \min(x,y).$$

Gaussian kernel:

$$\mathcal{X} = \mathbb{R}^d, \qquad k(x,y) = \exp\left(\frac{-\left\|x - y\right\|^2}{2\nu^2}\right).$$

Exponential kernel:

$$\mathcal{X} = \mathbb{R}^d, \qquad k(x,y) = \exp\left(\frac{-\|x-y\|}{2\nu}\right).$$

...

Choosing the bandwidth

- lacktriangle Gaussian and Laplace kernel: one has to choose the bandwidth parameter u
- lacktriangle indeed, if u is too large with respect to the typical value of $\|x_i x_j\|$, then $K \approx I_n$
- lacktriangle in the other direction, if u is too small, then $K \approx \mathbf{1} \mathbf{1}^{\top}$
- both cases are degenerate: whatever we do with K is not going to work very well
- ▶ one possible solution: median heuristic⁵

$$\nu = \mathsf{Med}\{\|x_i - x_j\|, \quad 1 \le i, j \le n\}.$$

- preferable to the mean (too sensitive to extreme values)
- we can pick other quantiles

⁵Garreau, Jitkrittum, Kanagawa, *Large sample analysis of the median heuristic*, 2017

Exercise

Exercise: Show that the following functions are positive definite kernels:

1.
$$\mathcal{X} = \mathbb{N}$$
, $k(x,y) = 2^{x+y}$

2.
$$\mathcal{X} = \mathbb{R}$$
, $k(x,y) = \cos(x-y)$

3.
$$\mathcal{X} = \mathbb{R}^d$$
, $k(x, y) = (x^{\top} y)^2$

Correction of the exercise

1. let $x_1, \ldots, x_n \in \mathbb{N}$ and $c_1, \ldots, c_n \in \mathbb{R}$, then

$$\sum_{i=1}^n \sum_{j=1}^n c_i c_j 2^{x_i + x_j} = \left(\sum_{i=1}^n c_i 2^{x_i}\right) \ge 0.$$

2. let $x_1, \ldots, x_n \in \mathbb{N}$ and $c_1, \ldots, c_n \in \mathbb{R}$, then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \cos(x_i - x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \left(\cos x_i \cos x_j + \sin x_i \sin x_j\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \cos x_i \cos x_j + \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \sin x_i \sin x_j$$

$$= \left(\sum_{i=1}^{n} c_i \cos x_i\right)^2 + \left(\sum_{i=1}^{n} c_i \sin x_i\right)^2.$$

Correction of the exercise, ctd.

3. let $x, y \in \mathbb{R}^d$:

$$(x^{\top}y)^{2} = \operatorname{trace}(x^{\top}yx^{\top}y)$$
$$= \operatorname{trace}(y^{\top}xx^{\top}y)$$
$$= \operatorname{trace}(xx^{\top}yy^{\top}).$$

We recognize the inner product between matrices.

Important remark

- recall the linear kernel: as in the exercise, all we used were properties of inner product
- ▶ let $\Phi: \mathcal{X} \to \mathcal{H}$ be some mapping, \mathcal{H} a Hilbert space with scalar product $\langle \cdot, \cdot \rangle$
- ▶ then $k(x, y) = \langle \Phi(x), \Phi(y) \rangle$ is positive definite:

$$\sum_{i=1}^n \sum_{j=1}^n c_i c_j \langle \Phi(x), \Phi(y) \rangle = \left\| \sum_{i=1}^n c_i \Phi(x_i) \right\|^2 \geq 0,$$

by linearity of the inner product.

Kernel as inner products

▶ Remarkable fact: the converse statement is true!

Theorem (Aronszajn, 1950): For any kernel k on \mathcal{X} , there exists a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ and a mapping $\phi : \mathcal{X} \to \mathcal{H}$ such that

$$\forall x, y \in \mathcal{X}, \qquad k(x, y) = \langle \Phi(x), \Phi(y) \rangle.$$

- ▶ **Reminder:** Hilbert space = inner product + *complete* for the associated norm (Cauchy sequences converge in \mathcal{H})
- not so important for us, needed for good convergence properties
- ▶ Consequence: we can think of any kernel as a dot product in the feature space

Proof in the finite case

- ▶ assume that $\mathcal{X} = \{x_1, \dots, x_N\}$ is finite of size N
- ▶ any kernel k is entirely defined by the $N \times N$ positive semi-definite matrix $K := (k(x_i, x_j))_{i,j=1}^N$
- we can diagonalize K in an orthonormal basis (u_1, \ldots, u_N) with associated (non-negative) eigenvalues $\lambda_1, \ldots, \lambda_N$
- then we write

$$egin{aligned} k(x_i,x_j) &= \left(\sum_{\ell=1}^N \lambda_\ell u_\ell u_\ell^{ op}
ight)_{i,j} \ &= \sum_{\ell=1}^N \lambda_\ell (u_\ell)_i (u_\ell)_j = \left\langle \Phi(x_i), \Phi(x_j)
ight
angle, \end{aligned}$$

with

$$\Phi(x_i) := \left(\sqrt{\lambda_1}(u_1)_i \cdots \sqrt{\lambda_n}(u_N)_i\right)^\top.$$

2.2. Reproducing kernel Hilbert spaces

Function spaces

- ▶ among all spaces in the previous statement, one of them has interesting properties
- in particular, it is a space of functions
- ▶ i.e., we can map each point $x \in \mathcal{X}$ to a function $\Phi(x) = k_x \in \mathcal{H}$
- **Example:** $\mathcal{X} = \mathbb{R}$, we map each x to the function $t \mapsto xt$
- ightharpoonup ightharpoonup space of linear functions
- more complicated in general...

RKHS

Definition: let \mathcal{X} be a set and \mathcal{H} be a function space forming a Hilbert space with inner product $\langle \cdot, \cdot \rangle$. The function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *reproducing kernel* of \mathcal{H} if

- $ightharpoonup \mathcal{H}$ contains all functions of the form $k_x: t \mapsto k(x,t)$
- ▶ for every $x \in \mathcal{X}$ and $f \in \mathcal{H}$, the *reproducing property* holds:

$$f(x) = \langle f, k_x \rangle$$
.

ightharpoonup if a reproducing kernel exists, then ${\cal H}$ is called a reproducing kernel Hilbert space (RKHS)

Equivalent definition

Theorem: the Hilbert space $\mathcal{H} \subseteq \mathbb{R}^{\mathcal{X}}$ is a RKHS if, and only if, for any $x \in \mathcal{X}$, the mapping $f \mapsto f(x)$ is continuous.

▶ *Proof:* \Rightarrow if a reproducing kernel k exists, then

$$|f(x)| = |\langle f, k_x \rangle| \le ||f|| \cdot ||k_x||$$

by Cauchy-Schwarz.

- we see that $||k_x||^2 = \langle k_x, k_x \rangle = k(x, x)$, thus $|f(x)| \leq ||f|| \cdot k(x, x)^{1/2}$
- ▶ thus $f \mapsto f(x)$ is continuous.
- ► ← Riesz theorem.

Important properties

Theorem (uniqueness): if \mathcal{H} is a RKHS, then it has a unique reproducing kernel. Conversely, a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ can be the reproducing kernel of at most one RKHS.

this is why we talk about the RKHS associated to k

Theorem: a function $k : \mathcal{X} \times \mathcal{X}$ is positive definite if, and only if, it is a reproducing kernel.

showing that a kernel is positive definite is enough to get Φ and $\mathcal H$ with the reproducing property "for free"

Example

Example: polynomial kernel of degree 2:

$$k(x,y) = (x^{\top}y)^2.$$

according to the exercise,

$$k(x,y) = \langle xx^{\top}, yy^{\top} \rangle_F$$
,

we have proven that k is positive definite

- Question: what is the RKHS?
- \triangleright we know that $\mathcal H$ contains all the functions

$$f(x) = \sum_{i} a_{i} k(x_{i}, x) = \sum_{i} a_{i} \langle x_{i} x_{i}^{\top}, x x^{\top} \rangle = \langle \sum_{i} a_{i} x_{i} x_{i}^{\top}, x x^{\top} \rangle$$

Example, ctd.

- \triangleright spectral theorem: any symmetric matrix can be decomposed as $\sum_i a_i x_i x_i^{\top}$
- candidate RKHS: set a quadratic functions

$$f_{S}(x) = \langle S, xx^{\top} \rangle = x^{\top} Sx,$$

with S symmetric matrix of size $d \times d$

ightharpoonup inner product on \mathcal{H} :

$$\langle f_S, f_{S'} \rangle = \langle S, S' \rangle_F$$
.

- ightharpoonup we can check that \mathcal{H} is a Hilbert space (isomorphic to $\mathcal{S}^{d\times d}$)
- ▶ finally, we check the reproducing property

2.3. More examples

Elementary properties

Proposition: Let $k_i: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a (potentially infinite) family of p.d. kernels. Then

- for any $\lambda_1, \ldots, \lambda_p \geq 0$, the sum $\sum_{i=1}^p \lambda_i k_i$ is positive definite
- ▶ for any $a_1, \ldots, a_p \in \mathbb{N}$, the product $k_1^{a_1} \cdots k_p^{a_p}$ is positive definite
- ightharpoonup if it exists, the limit $k = \lim_{p \to +\infty} k_p$ is positive definite

Moreover, let \mathcal{X}_i be a sequence of sets and k_i positive kernels on each \mathcal{X}_i . Then

$$k((x_1,\ldots,x_p),(y_1,\ldots,y_p)) := \prod_{i=1}^p k_i(x_i,y_i)$$

and

$$k((x_1,\ldots,x_p),(y_1,\ldots,y_p)) := \sum_{i=1}^p k_i(x_i,y_i)$$

are positive definite kernels.

Taking the exponential

Theorem: if k is a positive definite kernel, then e^k as well.

Proof: we write

$$e^{k(x,y)} = \lim_{n \to +\infty} \sum_{p=0}^{n} \frac{k(x,y)^{p}}{p!},$$

then reason step by step.

- ▶ by the product property, $k(x, y)^p$ is a kernel for any $p \ge 0$
- ▶ as a positive linear combination of kernels, $\sum_{p=0}^{n} \frac{k(x,y)^{p}}{p!}$ is a kernel for all $n \ge 1$
- ightharpoonup finally, e^k is a kernel as a limit of kernels.

Exercise

Exercise: show that the Gaussian kernel k is positive definite, that is,

$$k(x,y) := \exp\left(\frac{-\|x-y\|^2}{2\nu^2}\right),\,$$

where $\nu > 0$ is a fixed bandwidth parameter. Hint: decompose the squared norm and use the propeerties.

Correction of the exercise

first recall that

$$||x - y||^2 = ||x||^2 - 2x^{\mathsf{T}}y + ||y||^2$$
.

we split the kernel in two parts:

$$k(x, y) = e^{-\|x\|^2 - \|y\|^2} \cdot \exp(2x^{\top}y)$$
.

- ▶ the first part is a kernel (scalar product of two feature maps)
- the second part as well (exponential of a kernel)
- since the product of kernels is a kernel, we can conclude.