Deterministic Finite Automata

E linguaggi regolari Simulatore http://www.jflap.org/

Deterministic Finite Automaton (DFA)

testa

Configurazione iniziale

Input Tape

a b b a

Stato iniziale

Analizzare l'Input

Input finito

accettato

Un caso rigettato

Input finito

Un altro caso rigettato

Linguaggio accettato: $L = \{abba\}$

Per accettare una stringa:

Devono essere esaminati tutti i caratteri di Input e l'ultimo stato è uno stato finale

Per rigettare una stringa:

Tutti i caratteri di input sono stati esaminati E non si è raggiunto uno stato finale

Un altro esempio

Language Accepted: $L = \{a^nb : n \ge 0\}$

Un altro esempio

Alfabeto:
$$\Sigma = \{1\}$$

Linguaggio accettato:

$$EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even}\}$$

= $\{\lambda, 11, 1111, 111111, ...\}$

Definizione formale

un automa deterministico formale(DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: insieme degli stati

 Σ : alfabeto di input $\lambda \not\in \Sigma$

 δ : funzione di transizione

 q_0 : stato iniziale

F: insieme degli stati di accettazione (finale)

Insieme degli stati Q

esempio

Alfabeto di input Σ

 $\lambda \notin \Sigma$: l'alfabeto di input non contene λ

Stato iniziale q_0

esempio

Insieme stati finali

 $F\subseteq Q$

esempio

Funzione di transizione

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q, x) = q'$$

Descrive il risultato della Transizione dallo stato 9 Con simbolo x

esempio:

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Tavola di transizione per

symbols

states	δ	а	Ь
	q_0	q_1	<i>q</i> ₅
	q_1	9 5	9 2
	<i>q</i> ₂	q_5	q ₃
	q_3	<i>q</i> ₄	<i>q</i> ₅
	q_4	q ₅	<i>q</i> ₅
	q ₅	q ₅	q ₅

Funzione estesa di transizione

$$\delta^*: \mathbf{Q} \times \Sigma^* \to \mathbf{Q}$$

$$\delta^*(q,w)=q'$$

Descrive lo stato che risulta dopo aver Esaminata la stringa W a partire dallo stato \mathcal{G}

esempio:
$$\delta^*(q_0,ab) = q_2$$

$$\delta^*(q_0,abbbaa) = q_5$$

$$\delta^*(q_1,bba)=q_4$$

Caso speciale:

Per ogni stato q

$$\delta^*(q,\lambda)=q$$

$$\delta^*(q,w)=q'$$

Implica che vi è un cammino di transizione

$$W = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$Q \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} Q'$$

Alcuni stati possono essere ripeturi

Complessità costante sull'input

Deterministic Finite Automaton (DFA)

U(automa, input)=automa(input)

symbols

states	δ	а	Ь
	q_0	q_1	q ₅
	q_1	9 5	<i>q</i> ₂
	<i>q</i> ₂	q_5	<i>q</i> ₃
	q_3	<i>q</i> ₄	q ₅
	q_4	q ₅	q ₅
	<i>q</i> ₅	q ₅	9 5

U(automa, input)=automa(input)

Linguaggio accettato da un DFA

```
Linguaggio di un DFA: M
È denotato come L(M)
```

E contiene tutte le stringhe

Accettate da M

```
Un linguaggio L' È accettato (o riconosciuto) Da un DFA M se L(M) = L'
```

Per un DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Il linguaggio accettato da M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

$$q_0 \qquad \qquad q' \in F$$

Linguaggio rifiutato da M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \delta^*(q_0, w) \notin F \}$$

DFA esempi

$$\Sigma = \{a,b\}$$

$$L(M) = \{ \}$$

Linguaggio vuoto

$$L(M) = \Sigma^*$$

Tutte le stringhe

$$\Sigma = \{a,b\}$$

$$L(M) = \{\lambda\}$$

Linguaggio che riconosce le Stringa vuota L(M) = { tutte le stringhe binarie che contengono la sottostringa 001}

$L(M) = \{ \text{ tutte le stringhe binarie che non } Contengono 001 \}$

$$L(M) = \left\{awa : w \in \left\{a,b\right\}^*\right\}$$

$$q_0 \qquad q_2 \qquad q_3$$

$$q_4 \qquad q_4$$

$$a.b$$

Linguaggi regolari

Definizione:

Un linguaggio L è regolare se esiste un DFA M che lo accetta (L(M) = L)

I linguaggi accettati da tutti i DFA formano la famiglia dei linguaggi regolari

Esempi di linguaggi regolari:

```
\{abba\} \{\lambda, ab, abba\}
\{a^n b : n \ge 0\} \{awa : w \in \{a,b\}^*\}
{ tutte stringhe \{a,b\}^* con prefisso ab}
{ all binary strings without substring 001}
\{x:x\in\{1\}^* \text{ and } x \text{ is even}\}
\{\} \{\lambda\} \{a,b\}^*
```

Abbiamo visto in precedenza gli automi regolari che li definiscono

Esitono linguaggi che non sono regolari:

$$L=\{a^nb^n:n\geq 0\}$$

ADDITION =
$$\{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

Non esiste nessun DFA che accetta Questo linguaggio (vedremo più avanti)