Time Series and Business Forecasting

To – Prof. Yamini Ma'am By – Nitish Sou

About Dataset

- Dongsi is a residential district in Dongcheng, Beijing
- Population :8,22,000 (as of 2018)
- Our dataset (source: UCI) contains the data relating to air quality from March 1st, 2013 to February 28th, 2017
- Total No of observations: 35064

Description of Dataset

No: row number

year: year of data in this row

month: month of data in this row

day: day of data in this row hour: hour of data in this row

PM2.5: PM2.5 concentration (ug/m^3) (Independent)

PM10: PM10 concentration (ug/m^3) (Independent)

SO2: SO2 concentration (ug/m^3) (Independent)

NO2: NO2 concentration (ug/m^3) (Independent)

CO: CO concentration (ug/m^3) (Independent)

O3: O3 concentration (ug/m^3) (Independent)

TEMP: temperature (degree Celsius) (**Dependent**)

ous:	30,004			
vars:	29			16 Aug 2021 18:18
size: 4 ,8	303,768			
	storage	display	value	
variable name		format	label	variable label
- Variable Hame	cype	TOTMAC	IdDCI	variable label
no	long	%8.0g		No
year	int	%8.0g		
month	byte	%8.0g		
day	byte	%8.0g		
hour	byte	%8.0g		
pm25	str5	%9s		PM2.5
pm10	str5	89s		PM10
so2	str8	%9s		SO2
no2	str8	%9s		NO2
co	str5	%9s		co
03	str8	%9s		03
temp	str12	%12s		TEMP
pres	str11	%11s		PRES
dewp	str5	%9s		DEWP
rain	str4	%9s		RAIN
wd	str3	%9s		
wspm	str4	%9s		WSPM
station	str6	%9s		
pm25_n	float	%9.0g		
pm10_n	float	%9.0g		
so2_n	float	%9.0g		
no2_n	float	%9.0g		
co_n	float	%9.0g		
03_n	float	%9.0g		
temp_n	float	%9.0g		
pres_n	float	%9.0g		
dewp_n	float	%9.0g		
rain_n	float	%9.0g		
wspm_n	float	%9.0g		
		940		

Temp

Observation: Temperature is showing seasonal variation with time.

Temp vs PM2.5

Observation: As PM2.5 rises, temperature falls. This shows that the relationship between PM2.5 and Temperature is negatively correlated.

Temp vs SO2

Observation: As SO2 rises, temperature falls. This shows that the relationship between SO2 and Temperature is negatively correlated.

Temp vs NO2

Observation: The data doesn't show any significant change. Therefore there is no correlation between temperature and NO2.

Temp vs 03

Observation: Similarly, for a section of the data, as O3 rises, temperature rises. This shows the relationship between temperature and O3 is highly positively correlated for a certain section.

Auto Correlation

Observation: Temperature Variable is heavily Autocorrelated, since all the lag values have autocorrelations beyond the confidence level region of 95%.

As correlation is above grey area, it is statistically significant.

Auto Correlation Table

Observations:

- Correlation drops to lowest (0.832) at 12th lag.
- Correlation again rises to highest point (0.9553) at 24th lag.
- Correlation drops to lowest (0.8152) at **36th lag**.

Simple Regression model

 $\begin{aligned} \mathbf{Temp_t} &= \alpha + \pmb{\beta}_1 \mathsf{PM2.5_t} + \pmb{\beta}_2 \, \mathsf{PM10_t} + \\ \pmb{\beta}_3 \mathsf{SO}_{2\mathsf{t}} + \pmb{\beta}_4 \mathsf{NO}_{2\mathsf{t}} + \pmb{\beta}_5 \mathsf{CO}_{\mathsf{t}} + \pmb{\beta}_6 \mathsf{O}_{3\mathsf{t}} + \\ \mu \end{aligned}$

Observation: On seeing the P-value of all the independent variables, we find that all the variables are significant at 5% level of significance.

R-squared is 0.565

. regress TEME	PM25 PM10 SO	2 NO2 CO O	3				
Source	SS	df	MS	Numk	er of obs	=	1,461
				- F(6,	1454)	=	314.67
Model	98041.6871	6	16340.2812	2 Prok) > F	=	0.0000
Residual	75504.4924	1,454	51.9288118	8 R-sc	quared	=	0.5649
				- Adj	R-squared	=	0.5631
Total	173546.179	1,460	118.867246	5 Root	MSE	=	7.2062
TEMP	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
PM25	.0311779	.0071316	4.37	0.000	.017188	7	.0451672
PM10	0132851	.0061558	-2.16	0.031	025360	3	0012098
SO2	1825716	.0122183	-14.94	0.000	206538	9	1586044
NO2	.0805904	.0103486	7.79	0.000	.060290	5	.1008902
CO	0017569	.0003306	-5.31	0.000	002405	4	0011084
03	.176298	.0055322	31.87	0.000	.165446	1	.1871499
_cons	3.894377	.6183003	6.30	0.000	2.68152	2	5.107233

Detecting autocorrelation using Durbin Watson, Q-Statistic, Breusch-Godfrey LM test

Observation: Highly positively correlated

P-Value is 0 therefore rejecting H₀

dwstat

Durbin-Watson d-statistic(7, 1461) = .5203704

. estat bgodfrey									
Breusch-Godfrey LM test for autocorrelation									
lags(p)	chi2	df	Prob > chi2						
1	1 845.496 1 0.0000								
-	HO: no seria	l correlation							

Portmanteau test for white noise

Portmanteau (Q) statistic = 11739.4846
Prob > chi2(40) = 0.0000

Autoregressive Model

 $\begin{aligned} \mathsf{Temp}_{\mathsf{t}} &= \alpha + \boldsymbol{\beta}_{1} \mathsf{PM2.5}_{\mathsf{t}} + \boldsymbol{\beta}_{2} \mathsf{PM10}_{\mathsf{t}} + \boldsymbol{\beta}_{3} \mathsf{SO}_{2\mathsf{t}} + \\ \boldsymbol{\beta}_{4} \mathsf{NO}_{2\mathsf{t}} + \boldsymbol{\beta}_{5} \mathsf{CO}_{\mathsf{t}} + \boldsymbol{\beta}_{6} \mathsf{O}_{3\mathsf{t}} + \boldsymbol{\beta}_{7} \mathsf{Temp}_{\mathsf{t-1}} + \mu \end{aligned}$

R squared increased from 0.56 to 0.96

Coefficient of lagged Temp is 0.9

On seeing the P- value of all the independent variables, we find that except PM10, all the variables are significant at 5% level of significance.

. regress TEM	PM25 PM10 SO	2 NO2 CO O	3 L.TEMP				
Source	SS	df	MS		umber of obs	=	-,
	167024 007		02000 603		(7, 1452)	=	
Model Residual	167234.207 6159.62522	7 1, 4 52	23890.601 4.24216613		rob > F -squared	=	
Residual	6159.62522	1,452	4.24216613		-squared dj R-squared	_	
Total	173393.832	1,459	118.844299		oot MSE	=	
TEMP	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
PM25	.0048367	.0020488	2.36	0.01	8 .0008178	3	.0088556
PM10	.0001048	.0017629	0.06	0.95	30033534	4	.0035629
SO2	0095908	.0037457	-2.56	0.01	10169382	2	0022433
NO2	.011491	.0030069	3.82	0.00	0 .0055926	5	.0173894
CO	0002846	.0000952	-2.99	0.00	30004713	3	0000978
03	.0184477	.0020077	9.19	0.00	0 .0145094	4	.0223859
TEMP							
L1.	.9319525	.0073011	127.65	0.00	0 .9176308	2	.9462743
ш.	. 5515525	.0075011	127.05	0.00			. 5402745
_cons	5888481	.1802433	-3.27	0.00	19424132	2	2352831

Detecting autocorrelation using Durbin Watson, Q-Statistic, Breusch-Godfrev I M test

Observations: Highly positively correlated.

P-Value is 0 therefore rejecting H₀.

. estat durbin	. estat durbinait									
Durbin's alternative test for autocorrelation										
lags(p)	chi2	df	Prob > chi2							
1	1.851	1	0.1737							
HO: no serial correlation										

. estat bgodfrey										
Breusch-Godfrey LM test for autocorrelation										
lags(p)	chi2	df	Prob > chi2							
1	1.860	1	0.1726							
	H0: no serial correlation									

Prais – Winsten and Cochrane – Orcutt regression

Observations: Since p-values of NO2 is greater than 0.05, it is not significant.

model

On seeing transformed Durbin Watson Statistic, we can conclude that there is no autocorrelation.

. prais TEMP	PM25 PM10 SO2	NO2 O3, co	rc				
Iteration 0:	rho = 0.0000						
Iteration 1:	rho = 0.7392						
Iteration 2:	rho = 0.9722						
Iteration 3:	rho = 0.9798						
Iteration 4:	rho = 0.9798						
Iteration 5:	rho = 0.9798						
Cochrane-Orcu	itt AR(1) regre	ssion i	terated es	timat	es		
Source	SS	df	MS	N	Number of obs		1,460
					(5, 1454)		36.74
Model	750.268361	5	150.05367	2 E	Prob > F	=	0.0000
Residual	5937.64238	1,454	4.0836605	1 F	R-squared	=	0.1122
				- I	Adj R-squared	=	0.1091
Total	6687.91074	1,459	4.5839004	4 F	Root MSE	=	2.0208
TEMP	Coef.	Std. Err.	t	P> t	: [95% Co	nf.	Interval]
PM25	0050339	.0021359	-2.36	0.01	.009223	7	000844
PM10	.0072812	.0018916	3.85	0.00	.003570	7	.0109917
802	012828	.00444	-2.89	0.00	021537	5	0041185
NO2	.0047643	.0037435	1.27	0.20	00257	9	.0121075
03	.0257456	.0021443	12.01	0.00	.021539	4	.0299518
_cons	12.17396	2.625702	4.64	0.00	7.02339	4	17.32453
rho	.9797976						
Durbin-Watson	statistic (or	iginal)	0.518768				
Durbin-Watson	statistic (tr	ansformed)	2.135747				

Solution to Problem

To solve this problem, in the places where values were not available we have inserted the average of all the values of the variable so that mean does not gets disturbed.

No	У	/ear	month	day	hour	PM2.5	PM10	SO2	NO	2	СО	03	TEMP	PRES	DEWP	RAIN
	1	2013	3	1	0	9	g)	3	17	300	89	-0.5	1024.5	-21.4	(
	2	2013	3	1	1	4	4	ļ.	3	16	300	88	-0.7	1025.1	-22.1	(
	3	2013	3	1	2	7		7		17	300	60	-1.2	1025.3	-24.6	(
	4	2013	3	1	3	3		3	5	18			-1.4	1026.2	-25.5	(
	5	2013	3	1	4	3	3	3	7		200	84	-1.9	1027.1	-24.5	(
	6	2013	3	1	5	4	4	l.	9	25	300	78	-2.4	1027.5	-21.3	(
	7	2013	3	1	6	5	į	5	10	29	400	67	-2.5	1028.2	-20.4	. (
	8	2013	3	1	7	3	(6	12	40	400	52	-1.4	1029.5	-20.4	. (
	9	2013	3	1	8	3	(6	12	41	500	54	-0.3	1030.4	-21.2	(
	10	2013	3	1	9	3	(6	9	31	400	69	0.4	1030.5	-23.3	(
	11	2013	3	1	10	3	(5	7	19	300	82	1.4	1030.2	-22.5	(
	12	2013	3	1	11	6	(6	7	19	400	83	2.9	1029.8	-22.9	(
	13	2013	3	1	12	3	(6	6	18	300	86	4	1028.6	-21.2	(
	14	2013	3	1	13	3	(6	5	16	300	91	5	1027.8	-21.2	(
	15	2013	3	1	14	3	(5	5	16	300	92	6.2	1027.6	-22.2	(
	16	2013	3	1	15	3	10)	5	17	300	92	6	1027.7	-21.3	(
	17	2013	3	1	16	9	17	,	6	19	300	91	5.6	1027.7	-20.7	(
	18	2013	3	1	17	9	22	2	9	21	400	87	4.4	1028.2	-20.9	(
	19	2013	3	1	18	11	23	3	8	28	400	79	3.2	1029.4	-20.3	(
	20	2013	3	1	19	13	17	7	12	42	600	63	3	1030.1	-19.7	(
>	PI	RSA_Data	_Dongsi_2	20130301-	20170	+							: [
dy (d	? Acces	sibility: Unav	/ailable									Average: 1	8.53110661	Count: 3440	2 Sum: 637	488.5984

7 Day Moving Average

The moving average for time period is the arithmetic mean of the most recent observations where equal weights are assigned to each observation.

The objective of doing moving average is to smooth out the temperature date over time. In this graph, we can see the seasonal variation with time in 7 day lag.

30 Day Moving Average

The longer the period for the moving average, the greater the lag.

Different periods are chosen to calculate moving average based on the objective.

Short-term moving average used for short-term analysis. This graph again shows seasonality and a similar trend as observed before.

120 Day Moving Average

Here we have done 120 day moving average for long-term analysis.

Over the long-term also, seasonality in our data can be observed.

Through this we can see the impacts of random and short-term fluctuations of the variables on the temperature over a specific period of time.

Single Exponential Smooth

Exponential smoothening puts more emphasis on the recent data points. It uses weighted average calculations.

Observation: The value optimal exponential coefficient is 0.87 which shows that it tracks the data closely by giving more weight to the recent data.

Double Exponential Smoothing

This graph shows Temp after double exponential smoothing. It is used for forecasting the time series when the data has a linear trend and no seasonal pattern. It is a special case

of holt's exponential smooth where alpha=beta

Observation: The value optimal exponential coefficient is 0.27 which shows that it tracks the data closely by giving less weight to the recent data.


```
. tssmooth dexponential dewma = TEMP
computing optimal double-exponential coefficient (0,1)
optimal double-exponential coefficient = 0.2791
sum-of-squared residuals = 9390.7927
root mean squared error = 2.5352805
```

Comparison Graph

Observation: The graph shows comparison of 100 day moving average, single exponential and double exponential.

Blue solid line shows 100 day moving average, red line shows single exponential and green line shows double exponential.

Holt Winter (without seasonal component) smoothing optimal parameter

```
tssmooth hwinters hw = TEMP
computing optimal weights
Iteration 0:
               penalized RSS = -10387.423
Iteration 1:
               penalized RSS = -7446.7538
Iteration 2:
               penalized RSS = -7009.369
Iteration 3:
               penalized RSS = -7006.6979
Iteration 4:
               penalized RSS = -7006.1287
Iteration 5:
               penalized RSS = -7005.2612
Iteration 6:
               penalized RSS = -7005.2607
Iteration 7:
               penalized RSS = -7005.2607
                                            (backed up)
Iteration 8:
               penalized RSS = -7005.2607
                                            (backed up)
Iteration 9:
               penalized RSS = -7005.2607
                                            (backed up)
Iteration 10:
               penalized RSS = -7005.2607
                                            (backed up)
Iteration 11:
              penalized RSS = -7005.2607
                                            (backed up)
Iteration 12:
               penalized RSS = -7005.2607
                                            (backed up)
Iteration 13:
              penalized RSS = -7005.2607
                                            (backed up)
Iteration 14:
              penalized RSS = -7005.2607
                                            (backed up)
Iteration 15: penalized RSS = -7005.2607
                                            (backed up)
Iteration 16:
               penalized RSS = -7005.2607
                                            (backed up)
Iteration 17: penalized RSS = -7005.2607
                                            (backed up)
Iteration 18:
              penalized RSS = -7005.2607
                                            (backed up)
Iteration 19:
              penalized RSS = -7005.2607
                                            (backed up)
               penalized RSS = -7005.2607
Iteration 20:
                                            (backed up)
Iteration 21: penalized RSS = -7005.2607
                                            (backed up)
Iteration 22:
               penalized RSS = -7005.2607
                                            (backed up)
Iteration 23: penalized RSS = -7005.2607
                                            (backed up)
Iteration 24:
              penalized RSS = -7005.2607
                                            (backed up)
Iteration 25: penalized RSS = -7005.2607
                                            (backed up)
Iteration 26: penalized RSS = -7005.2607
                                            (backed up)
```

Holt-Winters (with seasonal component) with optimal parameters

Holt Winters smoothing technique is used to handle the problem of seasonality.

```
tssmooth shwinters shw = TEMP
computing optimal weights
              penalized RSS = -1010720.4 (not concave)
Iteration 0:
Iteration 1: penalized RSS = -887140.03
Iteration 2: penalized RSS = -640577.62
Iteration 3: penalized RSS = -613598.14
Iteration 4: penalized RSS = -605571.59
Iteration 5: penalized RSS = -604615.51
Iteration 6: penalized RSS = -604596.24
Iteration 7: penalized RSS = -604596.19
Optimal weights:
                             alpha = 0.5023
                             beta = 0.4970
                             qamma = 0.5004
penalized sum-of-squared residuals = 604596.2
          sum-of-squared residuals = 604596.2
          root mean squared error = 20.34265
```


Stationarity

Conditions For Stationarity:

- Constant Mean
- Constant Variance
- No Seasonality

Our data set has constant mean, constant variance but there is seasonality in our data hence our data is not stationary.

Auto Correlation and Correlogram

For stationary time series, values degrade to zero quickly whereas in non-stationary, values degrade more slowly. For our data, Autocorrelation plot indicates strong persistence and slow degradation, so this implies that series is not stationary. But we can't rely entirely on correlogram

					-1	0	1	-1	0.	1
LAG	AC	PAC	Q	Prob>Q	[Auto	correl	ation]	[Part	ial Auto	cor]
1	0.9938	0.9942	34614	0.0000		1			1	_
2	0.9819	-0.5239	68401	0.0000		-		516		
3	0.9657	-0.1372	1.0e+05	0.0000		-			-	
4	0.9467	-0.0383	1.3e+05	0.0000			_			
5	0.9261	0.0410	1.6e+05							
6	0.9054	0.0711	1.9e+05	0.0000			_			
7	0.8857	0.1013	2.2e+05	20 C						
8	0.8681	0.1084	2.5e+05							
9	0.8534	0.1148	2.7e+05							
10	0.8424	0.1176	3.0e+05							
11	0.8352	0.0940	3.2e+05				-			
12	0.8320	0.1032	3.4e+05							
13	0.8327	0.1066	3.7e+05							
14 15	0.8374	0.1255	3.9e+05							
16	0.8456	0.1371	4.2e+05 4.4e+05				-00			
17	0.8713	0.1531	4.7e+05							
18	0.8871	0.1138	5.0e+05			10	- 3		100	
19	0.9036	0.1071	5.3e+05							
20	0.9197	0.0880	5.6e+05							
21	0.9341	0.0519	5.9e+05							
22	0.9457	0.0132	6.2e+05							
23	0.9531	-0.0534	6.5e+05							
24	0.9553	-0.1143	6.8e+05							
25	0.9516	-0.1628	7.1e+05						12.0	
26	0.9427	-0.0460	7.5e+05	0.0000		-				
27	0.9297	-0.0043	7.8e+05	0.0000		-				
27	0.9297	-0.0043	7.8e+05	0.000)	-				
28	0.9139	0.0180	8.0e+05	0.000	0	-				
29	0.8965	0.0113	8.3e+05	0.000)	-				
30	0.8787	0.0034	8.6e+05	0.000	0	-		8:		
31	0.8615	0.0026	8.9e+05	0.000)	-				
32	0.8461	0.0079	9.1e+05	0.000	0	-				
33	0.8333	0.0109	9.4e+05	0.000	0	1				
34	0.8237	0.0113	9.6e+05							
35	0.8176	0.0127	9.8e+05			L				
36	0.8152	0.0049	1.0e+06							
37	0.8164	0.0082	1.0e+06				- 2			
38	0.8212	0.0082	1.1e+06							
39	0.8294	0.0361	1.1e+06				_			
40	0.8407	0.0517	1.1e+06	0.000)	-				

Dickey Fuller Test for Stationarity (Unit root Differences)

Critical Value for our test statistic is more than the critical values at 99%, 95% and 90% Significance level.

Also P- value is less than any significance level. We **reject** the null hypothesis.

Thus, the series exhibits Stationarity.

This is because our data is strongly autocorrelated. Hence we'll use augmenteddickey fuller test which removes autocorrelation from the series.

$$H_0 = Unit \ root \ is \ present$$

 $H_a = No \ Unit \ root \ (Stationarity)$

. dfuller	TEMP			
Dickey-Ful	ller test for unit	Number of obs	= 1460	
		Inte	erpolated Dickey-Ful	ler ———
	Test	1% Critical	5% Critical	10% Critical
	Statistic	Value	Value	Value
Z(t)	-3.868	-3.430	-2.860	-2.570
	approximate p-valu	e for Z(t) = 0.00 2	23	

Dickey Fuller Test for Stationarity (3 lagged differences)

Critical Value for our test statistic is less than the critical values at 99%, 95% and 90% Significance level.

Also P- value is more than any significance level. We **fail to reject** the null hypothesis.

Thus, the series does not exhibits Stationarity.

. dfuller TEM	P, lags(3) tre	end regress								
Augmented Dick	Augmented Dickey-Fuller test for unit root Number of obs = 1457									
		Interpolated Dickey-Fuller								
	Test	1% Crit	ical	5% Cri	tical 10	% Critical				
	Statistic	Valı	ie	Va	lue	Value				
Z(t)	-2.515	-3	. 960	-	3.410	-3.120				
D.TEMP	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]				
TEMP										
L1.	0126761	.0050411	-2.51	0.012	0225646	0027875				
LD.	1052628	.0261065	-4.03	0.000	1564734	0540522				
L2D.	2508423		-9.92			2012503				
L3D.	1237733		-4.77		174681	0728657				
_trend	0000841		-0.65							
_cons	.2372249	.1352288	1.75	0.080	02804	.5024898				

Augmented Dickey Fuller Test for Stationarity

Critical Value for our test statistic is less than the critical values at 99%, 95% and 90% Significance level.

Also P- value is more than any significance level. We **fail to reject** the null hypothesis.

Thus, the series does not exhibits Stationarity.

```
H_0 = Unit \ root \ is \ present, \ alpha = 1
H_a = No \ Unit \ root \ (Stationarity)
```

```
dfuller TEMP, lags(3) trend
                                                  Number of obs =
Augmented Dickey-Fuller test for unit root
                                                                         1457
                                        - Interpolated Dickey-Fuller —
                              1% Critical
                                                 5% Critical
                                                                 10% Critical
                 Test
              Statistic
                                  Value
                                                    Value
                                                                      Value
Z(t)
                  -2.515
                                   -3.960
                                                      -3.410
                                                                        -3.120
MacKinnon approximate p-value for Z(t) = 0.3207
```

Augmented Dickey Fuller Test for Stationarity

Critical Value for our test statistic is less than the critical values at 99%, 95% and 90% Significance level.

Also P- value is more than any significance level. We **fail to reject** the null hypothesis.

Thus, the series does not exhibits Stationarity.

Dickey-Fuller Generalized least square test for unit root

$$H_0 = Unit \ root \ is \ present$$

 $H_a = No \ Unit \ root \ (Stationarity)$

Observations: From the data we can see that the null hypothesis at 5% level cannot be rejected, not even at 10% significance level from Lag 2 Onwards.

For Lag 1, Null can be rejected at 5% and 10% & For Lag 2, Null can be rejected at 10%.

. dfgls TEM	1P				
DF-GLS for	TEMD			Number	r of obs = 1437
	chosen by Schwert			Numbe.	r 01 0DS - 1437
maxiag - 23	chosen by schwert	criterion			
	DF-GLS tau	1% Critical	5%	Critical	10% Critical
[lags]	Test Statistic	Value		Value	Value
[2490]	1000 200023020	,4246		74240	
23	-1.761	-3.480		-2.829	-2.543
22	-1.656	-3.480		-2.830	-2.544
21	-1.649	-3.480		-2.831	-2.545
20	-1.625	-3.480		-2.832	-2.546
19	-1.623	-3.480		-2.834	-2.547
18	-1.580	-3.480		-2.835	-2.548
17	-1.571	-3.480		-2.836	-2.549
16	-1.481	-3.480		-2.837	-2.550
15	-1.463	-3.480		-2.838	-2.551
14	-1.388	-3.480		-2.839	-2.552
13	-1.436	-3.480		-2.840	-2.553
12	-1.443	-3.480		-2.841	-2.554
11	-1.463	-3.480		-2.842	-2.555
10	-1.423	-3.480		-2.843	-2.556
9	-1.532	-3.480		-2.844	-2.556
1					
400 0	0 0 04 - 44	. 46 0000 P-			
123 Saturo	lay October 8 21:44	:46 2022 Pa	ge 4		
	1 475	2 402		0.045	0.557
8	-1.475	-3.480		-2.845	-2.557
7	-1.543	-3.480		-2.846	-2.558
6	-1.564	-3.480		-2.847	-2.559
5	-1.603	-3.480		-2.848	-2.560
4	-1.697	-3.480		-2.848	-2.561
3 2	-1.979	-3.480		-2.849	-2.562
1	-2.256 -2.910	-3.480		-2.850	-2.562
1	-2.910	-3.480		-2.851	-2.563
Ont Inc (N-	- Donnon a +\ - 0	9+h DMCD	0 012206		
	y-Perron seq t) = 2:				
	1.445134 at lag 1				
HIN HAIC -	1.42/000 at 189 1	O WICH KEISE	2.024003		

Phillips-Perron Test for unit root

As we can observe from the data, P- value is 0. So, we fail to reject the null hypothesis and conclude that there is unit root and that the series in not stationary.

 $H_0 = Unit \ root \ is \ present$ $H_a = No \ Unit \ root \ (Stationarity)$

. pperron TEM	P, regress					
Phillips-Perro	on test for ur	nit root			er of obs = y-West lags =	
			— Inte	rpolated I	Dickey-Fuller	
Test				5% Critical 10		
	Statistic	Val	ue	Va]	lue	Value
Z(rho) Z(t)	-14.685 -2.793		.700 .430	_	1.100 2.860	-11.300 -2.570
MacKinnon app	roximate p-val	lue for Z(t)	= 0.0593	3		
TEMP	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
TEMP L1.	.9801153	.0051412	190.64	0.000	. 9700303	.9902003
_cons	.2783334	.0898775	3.10	0.002	.1020304	. 4546363

KPSS

```
H_0 = Stationary

H_a = Non - Stationary

(Difference stationary)
```

The KPSS test is based on linear regression. It breaks up a series into three parts: a deterministic trend (βt), a random walk (rt), and a stationary error (εt).

Since, the Test statistic is more than the Critical value at 1% at all lags, we reject the null hypothesis of Stationarity.

```
kpss TEMP
KPSS test for TEMP
Maxlag = 7 chosen by Schwert criterion
Autocovariances weighted by Bartlett kernel
Critical values for HO: TEMP is trend stationary
10%: 0.119 5%: 0.146 2.5%: 0.176 1%: 0.216
             Test statistic
Lag order
                2.48
                1.25
                 .84
                .634
                .509
                .426
                .366
                .321
```

Correction of non-stationarity

After differencing, we have created a new variable Temp 1 and run the test.

From the graph, we can see that the data exhibits stationarity now as there is constant mean, constant variance, and no seasonality.
All the three conditions are satisfied

Dickey Fuller Test for Stationarity

Observations: With the trend term, we can see a slight difference in our results but it doesn't signify a trend. P- value is 0.0000, therefore we can reject the null hypothesis and stationarity has been resolved.

. dfuller tem	pr, rags (o, c.					
Augmented Dic	key-Fuller te	st for unit	root	Numb	er of obs =	145
			— Inte	rpolated	Dickey-Fuller	
	Test	1% Critical		5% Critical 1		0% Critica
	Statistic	Val	.ue	Value		Value
Z(t)	-26.998	-3	3.960	-3.410		-3.12
MacKinnon app	roximate p-va	lue for Z(t)	= 0.000	0		
					[95% Conf.	Interval
					[95% Conf.	Interval
O.temp1		Std. Err.			[95% Conf.	
D.temp1 temp1	Coef.	Std. Err.	t	P> t		-1.58399
D.temp1 temp1 L1.	Coef.	Std. Err.	t -27.00	P> t 0.000	-1.832202	-1.58399 .679143
D.temp1 temp1 L1. LD.	Coef1.708098 .5781724	Std. Err063267	-27.00 11.23 7.41 5.48	P> t 0.000 0.000	-1.832202 .4772015	-1.58399 .679143 .361365
D.temp1 temp1 L1. LD. L2D.	Coef1.708098 .5781724 .2856943	.063267 .0514737 .0385762	-27.00 11.23 7.41	P> t 0.000 0.000 0.000	-1.832202 .4772015 .2100231 .0910901	-1.58399 .679143 .361365 .192762

ARIMA MODEL

Conditions for determining p (number of lags) and q (moving average order) using acf and pacf

For ARIMA (p,d,0):

- ❖ The ACF is decaying and/or it follows a sine wave pattern.
- There are abnormal spikes in PACF at a certain lag (lag p), but none after that lag (lag p).

For ARIMA (0,d,q):

- The PACF is decaying and/or it follows a sine wave pattern.
- There are abnormal spikes in ACF at a certain lag (lag q), but none after that lag (lag q)

Determining p (number of lags) and q (moving average order) using acf and pacf in our model:

- ✓ P is 3 (we can observe 3 spikes in partial autocorrelation function graph)
- ✓ Q is 1 (we can observe 1 spikes in autocorrelation function graph)

. corr	gram temp1					
					-1 0 1	1 0
LAG	AC	PAC	Q	Prob>Q	-1 0 1 [Autocorrelation]	-1 0 [Partial Autocor]
1	-0.0623	-0.0623	5.6722	0.0172		
2	-0.0623	-0.0623	91.512	0.0172		
3	-0.0846	-0.1282	102	0.0000		
1	-0.0505	-0.1417	105.74	0.0000		
5	0.0287	-0.0527	106.94	0.0000		
5	0.0416	-0.0268	109.48	0.0000		
	0.0122	-0.0135	109.7	0.0000		
3	-0.0358	-0.0424	111.59	0.0000		
)	0.0307	0.0316	112.97	0.0000		
.0	-0.0517	-0.0643	116.9	0.0000		
1	0.0214	0.0225	117.58	0.0000		
.2	0.0139	-0.0105	117.86	0.0000		
L3	-0.0071	-0.0013	117.94	0.0000		
4	-0.0166	-0.0242	118.35	0.0000		
.5	0.0387	0.0398	120.56	0.0000		
6	0.0059	0.0038	120.61	0.0000		
7	0.0216	0.0489	121.3	0.0000		
8	-0.0080	0.0066	121.39	0.0000		
9	-0.0159	0.0209	121.76	0.0000		
0	-0.0046	-0.0005	121.79	0.0000		
1	0.0036	0.0119	121.81	0.0000		
2	0.0062	0.0030	121.87	0.0000		
3	0.0397	0.0539	124.22	0.0000		
4	0.0159	0.0287	124.59	0.0000		
5	-0.0379	0.0014	126.72	0.0000		
б	-0.0083	0.0050	126.83	0.0000		
27	0.0183	0.0269	127.33	0.0000		
:8	0.0421	0.0492	129.97	0.0000		
9	0.0236	0.0498	130.8	0.0000		
30	-0.0185	0.0178	131.31	0.0000		
31	0.0020	0.0429	131.31	0.0000		
2	0.0238	0.0456	132.16	0.0000		
3	0.0535	0.0939	136.44	0.0000		
34	-0.0253	0.0183	137.39	0.0000		
5	0.0159	0.0744	137.77	0.0000		
6	-0.0232	0.0074	138.58	0.0000		
7	-0.0210	0.0162	139.24	0.0000		
8	0.0307	0.0323	140.66	0.0000		
39	0.0309	0.0468	142.09	0.0000		
0	0.0085	0.0325	142.2	0.0000		

Dickey Fuller Test for Stationarity

Observations: With the trend term, we can see a slight difference in our results but it doesn't signify a trend. P- value is 0.0000, therefore we can reject the null hypothesis and stationarity has been resolved.

. dfuller temp	p1, lags(3) t	rend regress	s					
Augmented Dicl	key-Fuller te:	st for unit	root	Numb	er of obs	= 1456		
			— Inte	terpolated Dickey-Fuller				
	Test	1% Crit	ical	5% Cri	tical 1	0% Critical		
	Statistic	Val	.ue	Va	lue	Value		
Z(t)	-26.998	-3	3.960	-	3.410	-3.120		
MacKinnon appi D.temp1	-				[95% Conf	. Interval		
temp1								
L1.	-1.708098	.063267	-27.00	0.000	-1.832202	-1.583993		
LD.	.5781724	.0514737	11.23	0.000	.4772015	.679143		
L2D.	.2856943	.0385762	7.41	0.000	.2100231	.361365		
L3D.	.1419264	.0259157	5.48	0.000	.0910901	.192762		
_trend	0000581	.0001272	-0.46	0.648	0003077	.0001914		
_cons	.0463977	.1073341	0.43	0.666	164149	.2569444		

ARIMA MODEL 1 (1,1,3)

ARIMA regress: Sample: 3/3/2 Log likelihood	2013 - 2/28/20	017		Wald ch	of obs i2(4) chi2	=	1083.02
D.temp1	Coef.	OPG Std. Err.	Z	P> z	[95%	Conf.	Interval]
temp1cons	0000419	.0000897	-0.47	0.640	0002	2176	.0001338
ARMA ar	1091495	.0248034	-4.40	0.000	1577	1632	0605358
L2. L3.	2578427 1284922	.0255704 .0273979	-10.08 -4.69		3079 1821		
ma L1.	-1	.034016	-29.40	0.000	-1.06	667	9333299
/sigma	2.063495						
Note: The test confider	t of the variance interval :				d, and t	he tw	o-sided

. estat ic

Akaike's information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 1,459 . -3131.268 5 6272.536 6298.964

Note: N=Obs used in calculating BIC; see [R] BIC note.

For ARIMA(1,1,3)

AIC: 6272.536

BIC: 6298.964

From this we can observe that AR at L1, L2 and L3 are statistically significant in the model and when we put q,i.e, moving average as we see that MA is statistically significant.

ARIMA MODEL 2 (1,1,2)

ARIMA regress:	ion						
Sample: 3/3/	2013 - 2/28/2	017		Number	of obs	=	1459
				Wald ch	i2(3)	=	99.82
Log likelihoo	d = -3143.315			Prob >	chi2	=	0.0000
		OPG					
D.temp1	Coef.	Std. Err.	Z	P> z	[95%	Conf.	<pre>Interval]</pre>
temp1							
_cons	000043	.0001027	-0.42	0.676	0002	2443	.0001583
ARMA							
ar							
L1.	0773074	.0238815	-3.24	0.001	124	L142	0305006
L2.	2472733	.0257632	-9.60	0.000	297	7682	1967783
ma							
L1.	-1	40.68776	-0.02	0.980	-80.74	1655	78.74655
/sigma	2.080792	42.32981	0.05	0.480		0	85.0457
Note: The test	 t of the variance interval :	_			d, and t	the tw	o-sided

estat ic	estat ic											
kaike's infor	kaike's information criterion and Bayesian information criterion											
	т											
Model	Obs	ll(null)	ll(model)	df	AIC	BIC						
	1,459		-3143.315	5	6296.63	6323.057						
	Note: N=Obs	used in (calculating	BIC; see [R] BIC note	(•						

For ARIMA(1,1,2)

• AIC: 6296.63

BIC: 6323.057

From this we can observe that AR at L1 and L2 are statistically significant in the model and when we put q,i.e, moving average as we see that MA is statistically non-significant

ARIMA MODEL 3 (1,1,1)

regressi	ion						
3/3/2	2013 - 2/28/20	017		Number	of obs	=	1459
				Wald ch	.i2(2)	=	6.45
celihood	d = -3189.186			Prob >	chi2	=	0.0397
		OPG					
temp1	Coef.	Std. Err.	Z	P> z	[95%	Conf.	<pre>Interval]</pre>
_cons	000043	.0001309	-0.33	0.743	000	2994	.0002135
ar							
L1.	0617421	.02433	-2.54	0.011	10	9428	0140562
ma							
L1.	-1	551.8482	-0.00	0.999	-1082	. 603	1080.603
/sigma	2.147692	592.5972	0.00	0.499		0	1163.617
	temp1 _cons ar L1. ma L1.	ar L10617421 ma L11	3/3/2013 - 2/28/2017 Relihood = -3189.186 Templ	3/3/2013 - 2/28/2017 Relihood = -3189.186 Templ	3/3/2013 - 2/28/2017 Number Wald ch	3/3/2013 - 2/28/2017 Number of obsequence Number of obsequence	3/3/2013 - 2/28/2017 Number of obs = Wald chi2(2) = Prob > chi2 =

Akaike's information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 1,459 . -3189.186 4 6386.372 6407.514

Note: N=Obs used in calculating BIC; see [R] BIC note.

For ARIMA(1,1,1)

• AIC: 6386.372

BIC: 6407.514

From this we can observe that AR at L1 is statistically significant even at 5% and 10% confidence but non-significant at 1% confidence interval in the model and when we put q,i.e, moving average as we see that MA is statistically non-significant

Summary for all three ARIMA models-

From this we can observe that AR at L1 is statistically significant in all the three models whereas when we put q, i.e, moving average as 1, 2 respectively, we see that ma is not statistically significant and if q is 3, ma is statistically significant.

We can see that the model 1 (ARIMA 1,1,3) has the lowest bic and aic and hence it is the best model.

```
Portmanteau test for white noise

Portmanteau (Q) statistic = 111.5856
Prob > chi2(8) = 0.0000
```

. wntestq temp1, lag(24)

Portmanteau test for white noise

Portmanteau (Q) statistic = 124.5925 Prob > chi2(24) = 0.0000 . wntestq temp1, lag(16)

Portmanteau test for white noise

Portmanteau (Q) statistic = 120.6087 Prob > chi2(16) = 0.0000

Determining lags

varsoc TEMP PM10 SO2 NO2 CO O3 PM25

Selection-order criteria

Sample: 3/5/2013 - 2/28/2017 Number of obs = 1457

1	ag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
	0	-51428.5 -46756.7	9343.7				70.6047 64.259		
	2	-46611.9	289.61	49	0.000	1.7e+19	64.1275	64.2696	64.5083
		-46503.3 -46437.9							
	7	40437.3	130.02	40	0.000	1.56715	04.0232"	04.2313	04.7333

Endogenous: TEMP PM10 SO2 NO2 CO O3 PM25

Exogenous: _cons

The LR, AIC and FPE have chosen a model with four lags, whereas SBIC and HQIC have selected a model with three and two lags respectively.

We will consider 4 lags for the following tests.

Johansen test for cointegration

. vecran	k TEMP PI	M10 SO2 NO2 C	O O3 PM25, la	ag (4)							
		Johans	en tests for	cointegrati	on						
1	Trend: constant Number of										
Sample:	3/5/201	3 - 2/28/2017				Lags =	4				
					5%						
maximum				trace	critical						
rank	parms	$_{ m LL}$	eigenvalue	statistic	value						
0	154	-1997.8357		149.3540	124.24						
1	167	-1975.9786	0.48435	105.6399	94.15						
2	178	-1956.6199	0.44380	66.9224*	68.52						
3	187	-1939.2922	0.40849	32.2671	47.21						
4	194	-1932.5083	0.18582	18.6992	29.68						
5	199	-1926.6669	0.16223	7.0165	15.41						
6	202	-1923.2226	0.09911	0.1278	3.76						
7	203	-1923.1587	0.00193								

We cannot reject the null hypothesis at rank 2 and conclude that there are 2 cointegration equations.

Fitting VECMs with Johansen's normalization

. vec TEMP PM10 S	02 NO2 CO	O3 PM25,	lag(4) ran	nk (2)						
Vector error-correction model										
Sample: 3/5/2013	=	•								
AIC = 64.33474										
Log likelihood =	-46689.86			HQIC		=	64.57558			
Det(Sigma_ml) =	1.61e+19			SBIC		=	64.98029			
Equation	Parms	RMSE	R-sq	chi2	P>chi2					
D TEMP	24	1.95638	0.1819	318.4951	0.0000					
D PM10	24	65.3272	0.2767	547.929	0.0000					
D SO2	24	13.8399	0.2840	568.0612	0.0000					
D NO2	24	20.4393	0.2630	511.0171	0.0000					
D_CO	24	762.524	0.2312	430.6819	0.0000					
D 03	24	23.685	0.2205	405.0371	0.0000					
 D_PM25	24	59.5877	0.2719	534.734	0.0000					

Having determined that there exists cointegrating equation, we now want to estimate the parameter of cointegrating VECM for these series by using vec.

	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
D TEMP						
ce1						
L1.	0123632	.0073438	-1.68	0.092	0267568	.0020304
ce2						
L1.	0011737	.0007787	-1.51	0.132	0026999	.0003525
TEMP						
LD.	0857526	.0279187	-3.07	0.002	1404722	031033
L2D.	2622206	.0275326	-9.52	0.000	3161835	2082578
L3D.	1017516	.0272369	-3.74	0.000	1551349	0483684
PM10						
LD.	0020178	.0020466	-0.99	0.324	0060291	.0019935
L2D.	0001975	.0020076	-0.10	0.922	0041323	.0037373
L3D.	0069459	.0019613	-3.54	0.000	01079	0031018
S02						
LD.	.0106315	.004948	2.15	0.032	.0009337	.0203293
L2D.	.001537	.0049007	0.31	0.754	0080681	.0111422
L3D.	.0010929	.0046989	0.23	0.816	0081167	.0103025
NO2						
LD.	.0182775	.0039627	4.61	0.000	.0105107	.0260443
L2D.	.0025712	.0040525	0.63	0.526	0053716	.010514
L3D.	.0136983	.0040028	3.42	0.001	.005853	.0215436
СО						

Fitting VECMs with Johansen's normalization

Cointegrating equations								
Equation	Parms	chi2	P>chi2					
_ce1 _ce2	5 5	317.8175 224.9736	0.0000					

We fit a VECM with 2 cointegrating equations and 5 lags.

From the table on the right with the restrictions imposed we can

beta-hat=1 v-hat= -101.8777

The output indicates that the model fits well and the coefficients in the cointegrating equation are statistically significant, as are the adjustment parameters.

Ident:	ification	n: beta is ex	xactly ident	ified			
		Johansen 1	normalizatio	n restri	ctions im	nposed	
	beta	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
ce1							
_	TEMP	1					
	PM10	-2.78e-17					
	SO2	0765576	.1765959	-0.43	0.665	4226792	.269564
	NO2	3843875	.148734	-2.58	0.010	6759008	0928741
	CO	.0106437	.0048309	2.20	0.028	.0011754	.0201121
	03	8150983	.0798111	-10.21	0.000	9715252	6586714
	PM25	7285311	.0770657	-9.45	0.000	8795772	577485
	_cons	101.8777				•	
ce2							
	TEMP	-8.88e-16					
	PM10	1					
	SO2	3.985261	1.645981	2.42	0.015	.7591983	7.211324
	NO2	3.169608	1.386291	2.29	0.022	. 4525272	5.886689
	CO	0741367	.0450267	-1.65	0.100	1623874	.014114
	03	5.041204	.7438881	6.78	0.000	3.58321	6.499198
	PM25	5.588243	.7182994	7.78	0.000	4.180402	6.996084
	_cons	-1009.207		•	•		

Predicting the cointegrating equations and graphing them

Cointegration Equation 1

Cointegration Equation 2

Testing for serial correlation in the residuals

At all lags, reject the null hypothesis as the value is not more than 0.01, 0.05 or 0.1. Therefore there is autocorrelation.

. veclmar, mlag(4)

Lagrange-multiplier test

lag	chi2	df	Prob > chi2
1 2 3 4	259.2926 300.4627 374.2985 383.5111	49 49 49	0.00000 0.00000 0.00000 0.00000

HO: no autocorrelation at lag order

Forecasting with VECMs

We use fcast compute to obtain dynamic forecasts of the levels and fcast graph to graph these dynamic forecasts, along with their asymptotic confidence intervals.

As for temperature we cannot see any gradual change, rather it seems consistant.

Thank you