

Synthesis, Optical and Electrochemical Properties of Rubicene Derivatives

IPRIME Presentation

Speaker: Zhuoran Zhang

Advisor: Prof. Christopher J. Douglas

Department of Chemistry

05/31/2017

IPRIME

General Research Interest in Acene-based Molecules

Cyclopenta-fused Polycyclic Aromatic Hydrocarbons (CP-PAH)

Fullerene subunit — buckyball vs. planar

4n+2

Electron acceptor stabilized at "charged state"

Electron
donor
$$4n+2$$

$$9$$

$$4n+2$$

Electron-deficient without EWG

Synthetic Methods toward Five-membered Ring Formation

Plunkett's work:

In this work:

- (1) Smet, M.; Van Dijk, J.; Dehaen, W. Synlett, **1999**, *4*, 495–497.
- (2) Wood, J. D.; Jellison, J. L.; Finke, A. D.; Wang, L.; Plunkett, K. N. J. Am. Chem. Soc., 2012, 134, 15783–15789.
- (3) Mohebbi, A. R.; Wudl, F. Chem. Eur. J., 2011, 17, 2642-2646.

Synthesis of Half-rubicene Unit

Вŗ

> Standard reaction

Diversification

Synthesis of Diaryl[g,s]rubicene

Ar Group	ير ا	Z OBu	CF ₃	22	`\$\{\s\}	×× (S)
Rubicene Yield	83%	89%	42%	94%	97%	92%

- e-rich substrates work well, e-poor substrates give moderate conversion
- Ene-yne + alkyne
- Compatible with heterocycles

Absorption and Emission Spectra of Diaryl[g,s]rubicenes

Wavelength (nm)

Absorption and Emission Spectra of Diaryl[g,s]rubicenes

-2.5

-2.0

-1.5

Potential (V vs. Fc^{+/}Fc)

Electrochemical Properties

tetracene	- 5.18	-2.61	2.57
perylene	-5.34	-2.55	2.79

-1.0

-0.5

0.0

Acknowledgements

- ➤ Prof. Christopher J. Douglas
- Shengyang Wang and Dr. Yong Guan for substrate synthesis
- ➤ Haynes group for optical characterization
- > Buhlmann group for cyclic voltammetry experiments
- ➤ All Douglas group members

