BIOMENG 261

TISSUE AND BIOMOLECULAR ENGINEERING

Oliver Maclaren oliver.maclaren@auckland.ac.nz

MODULE OVERVIEW

Reaction kinetics and systems biology (Oliver Maclaren)

[11 lectures/3 tutorials/2 labs]

- 1. Basic principles: modelling with reaction kinetics [4 lectures]
 - Conservation, directional and constitutive principles. Mass action. Enzyme kinetics. Enzyme regulation. Mathematical/graphical tools for analysis and fitting.
- 2. Systems biology I: signalling and metabolic systems [2 lectures]

Overview of systems biology. Modelling signalling systems using reaction kinetics. Introduction to parameter estimation. Modelling metabolic systems using reaction kinetics. Flux balance analysis and constraint-based methods.

- 3. Systems biology II: genetic systems [3 lectures]
 - Modelling genes and gene regulation using reaction kinetics. Gene regulatory networks, transcriptomics and analysis of microarray data.

COURSE

- Reaction kinetics and systems of reactions (weeks 1-4)
- Biological engineering laboratory techniques (weeks 5-10)
- Ethics in biomedical engineering practice and research (weeks 11-12)

PEOPLE

Oliver Maclaren oliver.maclaren@auckland.ac.nz

Vinod Suresh v.suresh@auckland.ac.nz

David Cumin d.cumin@auckland.ac.nz

And: Xiaohang (Helen) Fu xfu697@aucklanduni.ac.nz Teaching assistant

ASSESSMENT

Coursework: 60%, Exam: 40%

- Module 1 Coursework:
 - Computer lasb/assignments (2 x 2.5%)
 - Test (5%)
- Module 2 Coursework:
 - Lab assessments (6 labs, 35%)
 - Test (5%)
- Module 3 Coursework:
 - Assignment (10%)

SCHEDULE

Module 1 (4 weeks)

- Lectures: Monday (3pm), Tuesday (3pm), Wednesday (4pm)
 - All in 201N-211
- Tutorials: Thursday (optional; do sheets in own time, can ask questions, discuss in tutorial)
- Labs: Friday, weeks 2 and 3 only. Will form basis of computer assignments.

REFERENCES

No course book...but see Canvas handout for recommended resources.

MOTIVATION

...understanding, simulating, analysing, creating...biological systems using mathematics, computation and experimentation

Biology is hard! (Arguably) more difficult than traditional engineering, physics etc.

Why? *Complexity!* Molecules, Genes, Proteins, Cells, Tissues, Organs, Organisms...

MOTIVATION

How do we integrate all this and understand such complex systems?

Modelling, simulation, data analysis, experiments...etc.

Trade-offs are key: prediction vs understanding, fit vs complexity, reduction vs emergence, theory vs experiment etc

LECTURE 1 BASIC PRINCIPLES OF REACTION MODELLING

- Conservation, directional, constitutive principles
- Reactions and their graphical representations
- Units and dimensions
- Reversible/irreversible reactions

BASIC PHYSICAL PRINCIPLES FOR UNDERSTANDING BIOLOGICAL SYSTEMS

Conservation: energy, mass, momementum

Directional: entropy increases, *free energy decreases*

Constitutive: the 'law' of mass action (reaction rates proportional to chances of collisions)

BASIC PHYSICAL PRINCIPLES FOR UNDERSTANDING BIOLOGICAL SYSTEMS

Conservation: possible

Directional: probable

Constitutive: actual

REACTIONS

A surprising number of biological phenomena can be considered as *built up from simple reactions of the form*

i.e.

$$A + B \longrightarrow C$$

This module will largely focus on setting up, modelling, computing and analysing systems built up from such reactions using physical principles

GRAPHICAL REPRESENTATIONS

Chemical/stoichiometric equation: $A + B \rightarrow C$

Reaction graph:

Petri-net representation:

EXAMPLE

Steps

- Conservation of mass
- Constitutive equation ('law of mass action') for rate

LAW OF MASS ACTION

A 'law' in the way Newton's law of cooling, Hooke's law of elasticity, Ohm's law etc are 'laws' (i.e. not really!)

the rate of a chemical reaction is directly proportional to the product of all of the concentrations (or chemical activities in general) of the reactants

Can be motivated 'microscopically' or 'mechanistically' by collision theory.

MORE EXAMPLES

Example 1:

$$A+A \xrightarrow{k} C$$

Example 2:

$$aA+bB \xrightarrow{k} C$$

ORDER OF A REACTION

The partial order of a (mass-action-based) reaction for a given substance is the exponent (power) to which it is raised in the rate law.

The overall order of a (mass-action-based) reaction is the sum of the exponents of all the reactants in the rate law.

Q: What are the orders for the previous two examples?

COMPLICATIONS

- Units and dimensions
- Reversible/irreversible reactions

AMOUNTS VS CONCENTRATIONS

- Amounts (or numbers or masses etc) are conserved.
 - Dimensions: amount, number, etc
 - Units: moles, mol
- Concentrations are not, unless volume is constant.
- Dimensions: amount per volume
 - Units: Molar, M = mol/L

Example.

REVERSIBLE VS IRREVERSIBLE REACTIONS

Microscopically: all reactions are *reversible* (bidirectional)

Macroscopically: some more likely to occur than others (effectively unidirectional)

Remember: possible is not the same as probable

Example, including determining equilibrium constants K_{eq} for reactions

EQUILIBRIUM VS STEADY STATE

- Equilibrium: forward and backward components of a single reaction balanced
- Steady state: concentrations constant in time
 - multiple reactions into a particular compartment balance each other; may be unbalanced elsewhere