4. Equazioni lineari del secondo ordine a coefficienti costanti omogenee

$$y'' + 2by' + cy = 0$$

Si considera l'equazione

$$\lambda^2 + 2b\lambda + c = 0$$

detta equazione caratteristica.

A seconda del valore del discriminante

$$\Delta = b^2 - c$$

l'equazione caratteristica ha due radici reali (distinte o coincidenti) o due radici complesse coniugate alle quali resta associato l'integrale generale dell'equazione differenziale.

Nella tabella seguente sono riassunti i tre casi possibili:

$\Delta = b^2 - c$	radici dell'equazione caratteristica	Integrale generale
$\Delta > 0$	$ \alpha = -b + \sqrt{\Delta} $ $ \beta = -b - \sqrt{\Delta} $	$y = Ae^{\alpha x} + Be^{\beta x}$
$\Delta = 0$	$\mu = -b$	$y = (A + Bx)e^{\mu x}$
Δ < 0	$\alpha = \gamma - i\omega \qquad \beta = \gamma + i\omega$ $(\gamma = -b \omega = \sqrt{-\Delta})$	$y = Ae^{\gamma x}sin(\omega x + \varphi)$ Oppure $y = c_1 e^{\gamma x}cos(\omega x) + c_2 e^{\gamma x}sin(\omega x)$

Esercizi

Determinare l'integrale generale delle seguenti equazioni differenziali:

a)
$$\Delta > 0$$

1.
$$y'' + 4y' + 3y = 0$$
 2. $y'' - 16y = 0$

$$2.v'' - 16v = 0$$

$$3.y'' - 14y' + 33y = 0$$

$$3.y'' - 14y' + 33y = 0 4.y'' + 3y' - 28y = 0$$

5.
$$y'' - y' - 2y = 0$$

5.
$$y'' - y' - 2y = 0$$
 6. $y'' - 4y' + 3y = 0$

7.
$$4y'' - 8y' + 3y = 0$$
 8. $y'' - y' - 12y = 0$

8.
$$v'' - v' - 12v = 0$$

b)
$$\Delta = 0$$

9.
$$y'' + 8y' + 16y = 0$$

11.
$$4y'' - 12y' + 9y = 0$$

$$13.v'' - 12v' + 36v = 0$$

15.
$$36y'' - 12y' + y = 0$$

9.
$$y'' + 8y' + 16y = 0$$
 10. $9y'' - 6y' + y = 0$

11.
$$4y'' - 12y' + 9y = 0$$
 12. $y'' - 2\sqrt{2}y' + 2y = 0$

13.
$$y'' - 12y' + 36y = 0$$
 14. $y'' + 4\sqrt{3}y' + 12y = 0$

15.
$$36y'' - 12y' + y = 0$$
 16. $y'' + 2\sqrt{5}y' + 5y = 0$

c)
$$\Delta < 0$$

17.
$$y'' + y = 0$$

19.
$$y'' - 4y' + 7y = 0$$
 20. $y'' + 4y = 0$

21.
$$16y'' - 8y' + 10y = 0$$
 22. $y'' + 16y = 0$

23.
$$v'' + 2v' + 10v = 0$$

25.
$$y'' + 2y' + 2y = 0$$

18.
$$y'' - 2y' + 2y = 0$$

20.
$$v'' + 4v = 0$$

22.
$$y'' + 16y = 0$$

23.
$$y'' + 2y' + 10y = 0$$
 24. $y'' + 4y' + 29y = 0$

Problemi di Cauchy-misti

26.
$$\begin{cases} y'' + 6y' - 7y = 0 \\ y(0) = 1, \ y'(0) = -1 \end{cases}$$

28.
$$\begin{cases} y'' + y' + y = 0 \\ y(0) = 1, \ y'(0) = 1 \end{cases}$$

26.
$$\begin{cases} y'' + 6y' - 7y = 0 \\ y(0) = 1, \ y'(0) = -1 \end{cases}$$
 27.
$$\begin{cases} y'' + y' = 0 \\ y(0) = -2, \ y'(0) = 1 \end{cases}$$

29.
$$\begin{cases} y'' + 6y' + 9y = 0 \\ y(0) = 1, \ y'(0) = 4 \end{cases}$$

Soluzioni

a)
$$\Delta > 0$$

1. S.
$$y = c_1 e^{-x} + c_2 e^{-3x}$$

4. S.
$$y = c_1 e^{-7x} + c_2 e^{4x}$$

7. S.
$$y = Ae^{\frac{x}{2}} + Be^{\frac{3x}{2}}$$
;

2. S.
$$v = c_1 e^{-4x} + c_2 e^{4x}$$

2. S.
$$y = c_1 e^{-4x} + c_2 e^{4x}$$
 3. S. $y = c_1 e^{3x} + c_2 e^{11x}$

5. S.
$$y = Ae^{-x} + Be^{2x}$$
; **6. S.** $y = Ae^{x} + Be^{3x}$;

3. S.
$$y = c_1 e^{3x} + c_2 e^{11x}$$

6. S.
$$v = Ae^x + Be^{3x}$$

8. S.
$$y = Ae^{-3x} + Be^{4x}$$
;

L. Mereu – A. Nanni Equazioni differenziali

b)
$$\Delta = 0$$

9. S.
$$y = (A + Bx)e^{-4x}$$
; **10. S.** $y = (A + Bx)e^{\frac{x}{3}}$; **11. S.** $y = (A + Bx)e^{\frac{3x}{2}}$;

12. S.
$$y = (A + Bx)e^{\sqrt{2}x}$$
; **13. S.** $y = c_1e^{6x} + c_2xe^{6x}$ **14. S.** $y = c_1e^{-2\sqrt{3}x} + c_2xe^{-2\sqrt{3}x}$

15. S.
$$y = c_1 e^{\frac{1}{6}x} + c_2 x e^{\frac{1}{6}x}$$
; **16.** S. $y = c_1 e^{-\sqrt{5}x} + c_2 x e^{-\sqrt{5}x}$

c) Δ < 0

17. S.
$$y = Asin(x + \varphi)$$
; **18.** S. $y = Ae^x sin(x + \varphi)$; **19.** S. $y = Ae^{2x} sin(3x + \varphi)$;

20. S.
$$y = Asin(2x + \varphi);$$
 21. S. $y = Ae^{\frac{x}{4}}sin(\frac{3}{4}x + \varphi);$ **22. S.** $y = c_1cos(4x) + c_2sin(4x)$

23.S.
$$y = c_1 e^{-x} cos(3x) + c_2 e^{-x} sin(3x)$$
 24. S. $y = c_1 e^{-2x} cos(5x) + c_2 e^{-2x} sin(5x)$

25. S.
$$y = c_1 e^{-x} cos(x) + c_2 e^{-x} sin(x)$$

Problemi di Cauchy-misti

26. S.
$$y(x) = \frac{1}{4}(3e^x + e^{-7})$$
; **27. S.** $y(x) = -1 - e^{-x}$;

28.S.
$$y(x) = 2e^{-\frac{x}{2}}sin\left(\frac{\sqrt{3}}{2}x + \frac{\pi}{6}\right);$$
 29.S. $y(x) = (1 + 7x)e^{-3x}$