Problem 6.6:1. On [a,b], let α be a strictly increasing function and f a continuous function, and for $x \in [a,b]$ define $F(x) = \int_a^x f(t) d\alpha(t)$. Show that for all $x \in [a,b]$, $\frac{dF(x)}{d\alpha(x)} = f(x)$, where the left-hand side is defined as $\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)}$, and the equality includes the assertion that the limit exists.

Proof. First, we note that because $f \in \Re(\alpha)$ on [a, b]

$$F(x) - F(t) = \int_{a}^{x} f(s)d\alpha(s) - \int_{a}^{t} f(s)d\alpha(s) = \int_{t}^{x} f(x)d\alpha(s)$$

For all partitions P,

$$\int_t^x f(s) d\alpha(s) \leq \sum_{x_i \in P} M_i \Delta \alpha_i \leq \left(\sup_{s \in [x,t]} f(s) \right) \sum_{x_i \in P} \Delta \alpha_i = \left(\sup_{s \in [x,t]} f(s) \right) (\alpha(x) - \alpha(t))$$

Since $\alpha(x)$ is strictly increasing, $\alpha(x) - \alpha(t) > 0$ when $x \neq t$, so

$$\frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le \sup_{s \in [x,t]} f(s)$$

Taking the limit as t approaches x on both sides gives

$$\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le \lim_{t \to x} \sup_{s \in [x,t]} f(s)$$

Lemma 0.0.1.

$$\lim_{t \to x} \sup_{s \in [x,t]} f(s) = f(x)$$

Proof. Let x_n be an arbitrary sequence such that $\forall n \in \mathbb{N}, x_n > x$ and $\lim_{n \to \infty} x_n = x$. Since $[x, x_n]$ is a closed, bounded interval on \mathbb{R} and f is continuous, there exists a sequence of points $p_n \in [x, x_n]$ such that $f(p_n) = \sup_{s \in [x, x_n]} f(s)$. $x_n \to x$ implies $p_n \to x$ by the Squeeze Theorem, and the continuity of f implies that $f(p_n) \to f(x)$.

Thus

$$\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le f(x)$$

The analogous result for the lower integral and the Squeeze Theorem complete the proof.

Problem 6.6:2.

(a). Show that if f is continuous, then

$$\int_{t=a}^{b} \left(\int_{s=a}^{t} f(s)ds \right) dt = \int_{t=a}^{b} (b-t)f(t)dt$$

Proof. Let $x \in [a, b]$. Define $P(x) = \int_{t=a}^{x} \left(\int_{s=a}^{t} f(s) ds \right) dt$ and $Q(x) = \int_{t=a}^{x} (x - t) f(t) dt$.

f(t) being continuous on [a,b] implies that it is Riemann-integrable. This implies that $f^*(t) = \int_{s=a}^t f(s)ds$ is continuous, and that P(x) is continuous and differentiable. Similarly, (b-t)f(t) is continuous on [a,b], so Q(x) is continuous and differentiable.

By the Fundamental Theorem of Calculus,

$$P'(x) = \int_{s=a}^{x} f(s)ds$$

For Q(x), since t and tf(t) are Riemann-integrable,

$$Q(x) = x \int_{t=a}^{x} f(t)dt - \int_{t=a}^{x} tf(t)dt$$

x is trivially differentiable. Since t and tf(t) are continuous,

$$Q'(x) = \int_{t-a}^{x} f(t)dt + xf(x) - xf(x) = \int_{t-a}^{x} f(t)dt$$

Thus, P'(x) = Q'(x). Integrating both sides from a to c, then setting c = b, produces the desired result.

(c). Show that the result of Part (a) continues to hold if f is merely assumed Riemann-integrable, but not necessarily continuous.

Proof. P(x) has the same derivative as in Part (a), as the derivation only assumed that P(x) is Riemann-integrable. Similarly, for $x_0 \in [a, b]$ where $f(x_0)$ is continuous, the above derivations hold for Q(x).

Let x_0 be a point where $f(x_0)$ is discontinuous. First, we will prove two lemmas.

Lemma 0.0.2. If f(x) is bounded, then $(x-x_0)f(x)$ is continuous at x_0 .

Proof. Let $M = \sup |f(x)|$. Then $(x - x_0)f(x) \le |(x - x_0)f(x)| \le |(x - x_0)|M$, which can be made arbitrarily small.

Lemma 0.0.3. If f(x) is continuous, then $(x-x_0)f(x)$ is differentiable at x_0 with derivative $f(x_0)$.

Proof. By the definition of differentiability,

$$\lim_{x \to x_0} \frac{(x - x_0)f(x) - (x_0 - x_0)f(x_0)}{x - x_0} = \lim_{x \to x_0} f(x) = f(x_0)$$

by continuity.

We can rewrite Q(x) as

$$Q(x) = \int_{t=a}^{x} ((x - x_0) + (x_0 - t))f(t)dt = (x - x_0) \int_{t=a}^{x} f(t)dt + \int_{t=a}^{x} (x_0 - t)f(t)dt$$

because the sub-functions are trivially Riemann-integrable. $\int_{t=a}^{x} f(t)$ is a continuous function, so by Lemma $0.0.3~(x-x_0)\int_{t=a}^{x} f(t)dt$ is differentiable at $x=x_0$ with derivative $\int_{t=a}^{x_0} f(t)dt$. Similarly, f(t) is bounded because it is Riemann-integrable, so by Lemma $0.0.2~(x_0-t)f(t)$ is continuous at $t=x_0$. Therefore $\int_{t=a}^{x} (x_0-t)f(t)dt$ is differentiable at $x=x_0$, with derivative 0.

Therefore, Q(x) is differentiable at $x = x_0$, and $Q'(x_0) = \int_{t=a}^{x} f(t)dt$. The proof then follows using the same logic as in Part (a).