定理 4.6 任意のグラフ G に対して, $k(G) \le l(G) \le d(G)$ が成り立つ。

【証明】

- G が非連結グラフまたは自明グラフであるとき , $k(G) \le l(G) \le d(G)$ が成り立つ。 G が自明グラフでない連結グラフであるとき ,
- (1) 任意の頂点に接続するすべての辺の集合は辺切断集合になる。ゆえに, $I(G) \le d(G)$ が成り立つ。
- (2) 次に, $k(G) \le l(G)$ が成り立つことを証明する。
 - I(G)=1であるとき,G は切断辺を含む。よって,切断辺の端点はG の切断点であるので,k(G)=1。ゆえに, $k(G) \le I(G)$ が成り立つ。 $I(G) \ge 2$ であるとき,ある辺切断集合 $\{e_1,e_2,...,e_{I(G)}\}$ が存在し, e_1 は連結グラフ $G-\{e_2,...,e_{I(G)}\}$ の切断辺であると考えられる。u とv を e_1 に接続する二つの頂点とし,v $_i$ $(2 \le i \le I(G))$ を e_i に接続し,u $_i$ $_i$ と異なる頂点のうちの一つとすると, $G-\{v_2,...,v_{I(G)}\} \subseteq G-\{e_2,...,e_{I(G)}\}$ である。よって, $G-\{v,v_2,...,v_{I(G)}\} \subseteq G-\{e_1,e_2,...,e_{I(G)}\}$ である。 $G-\{e_1,e_2,...,e_{I(G)}\}$ が非連結または自明グラフであることから,頂点u を持つグラフ $G-\{v,v_2,...,v_{I(G)}\}$ も非連結または自明グラフになる。ゆえに,必ずI(G) よりもサイズの小さい点切断集合が存在する,つまりI(G) が成り立つ。
- (1)と(2)から,任意のグラフG に対して $\mathbf{k}(G) \le \mathbf{l}(G) \le \mathbf{d}(G)$ が成り立つことを得る。