

Chương 3 - Nội suy - Phương pháp tính chương 3 - Ngô Thu Lương

Phương pháp tính (Trường Đại học Bách khoa Hà Nội)

Chương III: NỘI SUY

- 1) Nội suy đa thức
- 2) Nội suy Spline bậc 3
- 3) Phương pháp bình phương tối thiểu

1.1) Nội suy đa thức theo Lagrange

a) Nội dung: Biết các giá trị $y_i = f(x_i)$ của hàm y = f(x) tại các điểm x_i theo bảng

x	x_0	x_1	x_2	••	••	x_{n-1}	x_n
y	У0	<i>y</i> ₁	<i>y</i> ₂			<i>y</i> _n –1	y_n

Tìm hàm lại hàm f(x)

Lời giải : Vô số hàm

Tìm f(x) = P(x) chỉ là đa thức bậc n

thỏa
$$P(x_i) = y_i$$

Lời giải là duy nhất

Các bước tìm đa thức P(x)

Bước 1: Thiết lập đa thức cơ sở Lagrange

$$L_{i}(x) = \prod_{k=0, k \neq i}^{n} \frac{(x - x_{k})}{(x_{i} - x_{k})}$$

Ví dụ:
$$L_0(x) =$$

$$= \frac{(x-x_1)...(x-x_{i-1})(x-x_i)..(x-x_n)}{(x_0-x_1)...(x_0-x_{i-1})(x_0-x_i)...(x_0-x_n)}$$

Bước 2: Công thức tính P(x)

$$P(x) = \sum_{i=0}^{n} y_i L_i(x) = i=0$$

$$y_0 L_0(x) + y_1 L_1(x) + ... + y_n L_n(x)$$

b) Sai số:

$$|f(x) - P(x)| \le \frac{M^{(n+1)}}{(n+1)!} |(x - x_0)(x - x_1)....(x - x_n)|$$

c) Nhận xét:

- *) Số mốc nội suy càng lớn thì sai số càng nhỏ, tuy nhiên bậc của đa thức sẽ lớn, tính toán sẽ dài.
- *)Sai số phụ thuộc vào $M^{(n+1)}$, thực tế không biết vì hàm f(x) chưa biết
- *) Đa thức nội suy P(x) là duy nhất

Ví du:

Tìm đa thức nội suy P(x) từ bảng số liệu

$$x_0 = -1$$
, $x_1 = 0$, $x_2 = 1$

$$y_0 = \frac{1}{3}$$
, $y_1 = 1$, $y_2 = 3$

Tính gần đúng giá trị của bảng tại x = 0.7

Giải: Ta tìm các đa thức Lagrange

$$L_0(x) = \frac{(x-0)(x-1)}{(-1-0)(-1-1)} = \frac{x^2 - x}{2}$$

$$L_1(x) = \frac{[x-(-1)](x-1)}{[0-(-1)](0-1)} = \frac{x^2 - 1}{-1}$$

$$L_2(x) = \frac{[x-(-1)](x-0)}{[1-(-1)](1-0)} = \frac{x^2 + x}{2}$$

$$P(x) = \frac{1}{3}L_0(x) + 1L_1(x) + 3L_2(x) = \frac{2x^2 + 4x + 3}{3}$$

$$P(0.7) = \frac{2.(0.7)^2 + 4.(0.7) + 3}{2} = 2.26$$

d) Tỷ sai phân

Tỷ sai phân bậc 0 của f tại x_0 : $f[x_0] = f(x_0)$

Tỷ sai phân bậc 1 của
$$f$$
 tại x_0, x_1 :

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$$

Tỷ sai phân bậc 2 của f tại x_0, x_1, x_2

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

Tương tự cho tỷ sai phân bậc cao hơn

e) Bảng tỷ sai phân

x	у	Tỷs/p bậc1	Tỷs/p bậc 2
-1	1/3		
0	1	2/3	2/3
1	3		

f) Nội suy Newton tiến theo bảng tỷ sai phân

Đa thức P(x) có thể tìm dưới dạng

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ...$$

.. + $a_n(x - x_0)(x - x_1)...(x - x_{n-1})$

$$a_0 = f[x_0]$$

 $a_1 = f[x_0, x_1]$
 $a_2 = f[x_0, x_1, x_2]$
 $a_k = f[x_0, x_1, x_2, ..., x_k]$
 $a_n = f[x_0, x_1, x_2, ..., x_n]$

x	у	Tỷs/p bậc1	Tỷs/p bậc 2
-1	1/3		
0	1	2/3	2/3
1	3		

$$P(x) = \frac{1}{3} + \frac{2}{3}(x+1) + \frac{2}{3}(x+1)(x-0) = \frac{2}{3}x^2 + \frac{4}{3}x + 1$$

g) Nội suy Newton lùi

$$P(x) = a_0 + a_1(x - x_n) + a_2(x - x_n)(x - x_{n-1}) + ...$$

... + $a_n(x - x_n)(x - x_{n-1})...(x - x_1)$

$$a_{0} = f[x_{n}]$$

$$a_{1} = f[x_{n}, x_{n-1}].$$

$$a_{2} = f[x_{n}, x_{n-1}, x_{n-2}]$$

$$a_{k} = f[x_{n}, x_{n-1}, ..., x_{n-k+1}, x_{n-k}]$$

$$a_{n} = f[x_{n}, x_{n-1}, ..., x_{n-k+1}, x_{n-k}]$$

-1	1/3		
		2/3	
0	1		2/3
		2	
1	3		

$$P(x) = 3 + 2(x-1) + \frac{2}{3}(x-1)(x-0)$$
$$= \frac{2}{3}x^2 + \frac{4}{3}x + 1$$

2) Nội suy Spline bậc 3

a) Nội dung: Cho bảng số liệu

x	x_0	x_1	x_2	••	••	x_{n-1}	x_n
у	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> 2	••		y_{n-1}	y_n

Tìm **một hàm** S(x) thỏa các điều kiện:

S(x): Đi qua các điểm đã cho trong bảng

S(x) là đa thức bậc 3 trên mỗi đoạn nhỏ $[x_j, x_{j+1}]$

(các đa thức này có các hệ số khác nhau)

Gọi $S_j(x)$ là đa thức trên mỗi đoạn nhỏ $[x_j, x_{j+1}]$ $S_j(x)$ thỏa các điều kiện :

a)
$$S_j(x_j) = y_j$$

 $S_j(x_{j+1}) = y_{j+1}$

b)
$$S'_j(x_{j+1}) = S'_{j+1}(x_{j+1})$$

c)
$$S_j''(x_{j+1}) = S_{j+1}''(x_{j+1})$$

d)
$$S_0^{\prime\prime}(x_0) = S_{n-1}^{\prime\prime}(x_n)$$

điều kiện biên tự nhiên

$$h_{j} = x_{j+1} - x_{j}$$

$$a_{j} = y_{j}$$

$$d_{j} = \frac{(c_{j+1} - c_{j})}{3h_{j}}$$

$$b_{j} = \frac{(a_{j+1} - a_{j})}{h_{j}} - \frac{h_{j}(c_{j+1} + 2c_{j})}{3}$$

Để tìm c_i ta giải từ hệ Ax = b

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & . & . & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & . & 0 \\ 0 & 0 & . & . & . & 0 \\ 0 & 0 & . & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x = \begin{bmatrix} c_0 \\ c_1 \\ \\ \\ c_{n-1} \\ \\ c_n \end{bmatrix} \quad B = \begin{bmatrix} \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \\ \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ \\ \\ 0 \end{bmatrix}$$

Ví dụ: Nội suy Spline bậc 3 của bảng

$$x_0 = 0$$
 $x_1 = 1$ $x_2 = 2$ $x_3 = 3$
 $y_0 = 0$ $y_1 = 1$ $y_2 = 4$ $y_3 = 0$
 $a_0 = y_0 = 0$ $a_1 = y_1 = 1$
 $a_2 = y_2 = 4$ $a_3 = y_3 = 0$

Các hệ số c_i tính theo hệ phương trình

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ -21 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ -6 \\ 0 \end{bmatrix}$$

$$b_0 = 0 \qquad b_1 = 3 \qquad b_2 = 0$$

$$d_0 = 1 \qquad d_1 = -3 \qquad d_2 = 2$$

Ta có hàm: S(x) =

$$\begin{cases} 1(x-0)^3 & 0 \le x \le 1 \\ 1+3(x-1)+3(x-1)^2-3(x-1)^3 & 1 \le x \le 2 \\ 4 & -6(x-2)^2+2(x-2)^3 & 2 \le x \le 3 \end{cases}$$

Spline với điều kiện biên ràng buộc

d)
$$S_0'(x_0) = f'(x_0), S_{n-1}'(x_n) = f'(x_n)$$

trong đó $f'(x_0)$, $f'(x_n)$ là các đại lượng cho trước

$$A = \begin{bmatrix} 2h_0 & h_0 & 0 & 0 & 0 & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & . & . & . & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & . & . & 0 \\ 0 & 0 & . & . & . & . & 0 \\ 0 & 0 & . & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & h_{n-1} & 2h_{n-1} \end{bmatrix}$$

$$B = \begin{bmatrix} \frac{3}{h_0}(a_1 - a_0) - 3f'(x_0) \\ \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \dots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 3f'(x_n) - \frac{3}{h_{n-1}}(a_n - a_{n-1}) \end{bmatrix}$$

Ví dụ:

Hàm S(x) Spline bậc 3 nội suy bảng số liệu

\mathcal{X}	3	5
y	2.5	6

với điều kiện biên ràng buộc:

$$S'(3) = f'(x_0) = 2$$
 ; $S'(5) = f'(x_n) = 0.25$

Tính giá trị của hàm S(x) tại điểm x = 4

3) Phương pháp bình phương tối thiểu

Nội dung: Từ bảng số liệu

x	x_1	x_2	:	 x_{n-1}	x_n
у	y_1	y_2	:	 y_{n-1}	y_n

tìm những hàm số có dạng biết trước

sao cho tổng bình phương độ lệch so với bảng số liệu đã cho là nhỏ nhất

$$y = af(x) + bg(x)$$

$$\begin{cases} a \sum_{i=1}^{n} f^{2}(x_{i}) + b \cdot \sum_{i=1}^{n} g(x_{i}) f(x_{i}) = \sum_{i=1}^{n} y_{i} \cdot f(x_{i}) \\ a \cdot \sum_{i=1}^{n} g(x_{i}) f(x_{i}) + b \sum_{i=1}^{n} g^{2}(x_{i}) = \sum_{i=1}^{n} y_{i} \cdot g(x_{i}) \\ y = a + b x \end{cases}$$

$$\begin{cases} a \cdot x_{i} + b \cdot \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} \\ a \cdot \sum_{i=1}^{n} x_{i} + b \cdot \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} y_{i} \cdot x_{i} \end{cases}$$

Ví dụ: Cho bảng số liệu sau

X	0.5	1.0	1.5	2.0
У	2.01	2.98	4.05	4.96

tìm công thức thực nghiệm dạng y = a + bx, theo phương pháp bình phương tối thiểu

$$y = a + bx = 1.02 + 1.984 x$$

Ví dụ: Cho bảng số liệu sau

X	1.0	2.0	3.0	4.0
У	2.01	4.98	10.05	16.96

tìm công thức thực nghiệm dạng $y = a + bx^2$, theo phương pháp bình phương tối thiểu

Cho bảng số liệu

X	0	1	2	3	4
У	2.0	2.2	3.5	4.2	5.3

Tìm hàm
$$y = a + \frac{b}{\sqrt{1+x}}$$

theo phương pháp bình phương tối thiểu của bảng trên.