PLSC 504 – Fall 2020 Endogenous Selection and Potential Outcomes

September 16, 2020

Sample Selection In Theory

- Challenge: Inference to a Population from a Non-Random Sample
- Widespread Problem...
 - Heckman's wage equations...
 - Self-selection (e.g., into groups)
 - Surveys: "Screening" questions (sometimes...)
- Parallels in Missing Data, Causal/Counterfactual Inference

Sample Selection Basics

$$Y_{1i}^* = \mathbf{X}_i \boldsymbol{\beta} + u_{1i}$$

 $Y_{2i}^* = \mathbf{Z}_i \gamma + u_{2i}$

$$Y_{1i} = \begin{cases} Y_{1i}^* \text{ if } Y_{2i}^* > 0\\ \text{missing if } Y_{2i}^* \leq 0 \end{cases}$$

- Y_{2i}^* unobserved (except for sign);
- X_i observed iff Y_{1i} is observed;
- **Z**_i observed in every case.

Sample Selection Basics

$$\begin{aligned} \Pr(Y_{2i}^* \leq 0 | \mathbf{X}, \mathbf{Z}) &= \Pr(u_{2i} \leq -\mathbf{Z}_i \gamma) \\ &= 1 - \Pr(u_{2i} \geq -\mathbf{Z}_i \gamma) \\ &= 1 - \Pr(-u_{2i} \leq \mathbf{Z}_i \gamma) \\ &= 1 - \int_{-\infty}^{\mathbf{Z}_i \gamma} f(u_2) du_2 \\ &= 1 - F_{u_2}(\mathbf{Z}_i \gamma) \end{aligned}$$

Sample Selection Basics

Define:

$$D_i = \begin{cases} 1 & \text{if } Y_{1i} \text{ is observed.} \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\Pr(D_i=1)=F_{u_2}(\mathbf{Z}_i\gamma).$$

An Assumption

Assume:

$$\{u_1, u_2\} \sim \mathcal{BVN}(0, 0, \sigma_1^2, 1, \sigma_{12})$$

Means

$$Pr(D_i = 1 | \mathbf{Z}_i, \mathbf{X}_i) = \Phi(\mathbf{Z}_i \gamma).$$

Define: $\rho = \operatorname{corr}(u_1, u_2)$.

Selection Bias

What we get:

$$\mathrm{E}(\mathsf{Y}_{1i}|\mathsf{X}_i,\mathsf{Z}_i,D_i=1) = \mathsf{X}_ieta +
ho\sigma_1\left[rac{\phi(\mathsf{Z}_i\gamma)}{\Phi(\mathsf{Z}_i\gamma)}
ight]$$

Without conditioning on **Z**:

$$\mathrm{E}(Y_{1i}|\mathbf{X}_i,D_i=1) = \mathbf{X}_i \boldsymbol{eta} + \mathrm{E}\left\{
ho\sigma_1\left[rac{\phi(\mathbf{Z}_i\gamma)}{\Phi(\mathbf{Z}_i\gamma)}
ight]\middle|\mathbf{X}_i
ight\}$$

Truncation Bias

Sample Selection Bias

Selection Bias: Substantive Effects

- Specification Error (unless $\rho = 0$)
- Indeterminate bias in $\hat{oldsymbol{eta}}$
- Including **Z**_i will not generally* remove the bias
- Bias remains even if inference is limited to the "selected" group. (This point is made nicely in Berk (1983)...)

^{*...}unless sample selection is completely deterministic (i.e., determined by X, Z) (Heckman & Robb 1985).

E(Y) Under Selection

Conditional Density:

$$h(Y|\mathbf{X},\mathbf{Z},\boldsymbol{\beta},\gamma,\sigma_1,\rho) = \frac{\phi\left(\frac{Y_{1i}-\mathbf{X}_{i}\boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1\Phi(\mathbf{Z}_{i}\gamma)} \cdot \Phi\left[\frac{\frac{\rho(Y_{1i}-\mathbf{X}_{i}\boldsymbol{\beta})}{\sigma_1} + \mathbf{Z}_{i}\gamma}{\sqrt{1-\rho^2}}\right]$$

Note: $\rho = 0$ yields

$$h(Y|\mathbf{X}, \mathbf{Z}, \boldsymbol{\beta}, \gamma, \sigma_1, \rho = 0) = \frac{\phi\left(\frac{Y_{1i} - \mathbf{X}_{i}\boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1 \Phi(\mathbf{Z}_{i}\gamma)} \cdot \Phi\left[\frac{0 + \mathbf{Z}_{i}\gamma}{1}\right]$$
$$= \frac{\phi\left(\frac{Y_{1i} - \mathbf{X}_{i}\boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1}.$$

Likelihood Under Selection

$$\begin{split} \ln L(\boldsymbol{\beta}, \gamma, \sigma_1, \rho | Y_1) &= \sum_{i=1}^N (1 - D_i) \ln[1 - \Phi(\mathbf{Z}_i \gamma)] \\ &+ \sum_{i=1}^N D_i \ln[\Phi(\mathbf{Z}_i \gamma)] \\ &+ \sum_{i=1}^N D_i \ln\left\{\frac{\phi\left(\frac{Y_{1i} - \mathbf{X}_i \boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1 \Phi(\mathbf{Z}_i \gamma)} \cdot \Phi\left[\frac{\frac{\rho(Y_{1i} - \mathbf{X}_i \boldsymbol{\beta})}{\sigma_1} + \mathbf{Z}_i \gamma}{\sqrt{1 - \rho^2}}\right]\right\} \end{split}$$

Estimation

- MLE (above)
- Or, reconsider:

$$\mathsf{E}(Y_{1i}|\mathbf{X}_i,\mathbf{Z}_i,D_i=1) = \mathbf{X}_i\boldsymbol{\beta} + \rho\sigma_1 \left[\frac{\phi(\mathbf{Z}_i\boldsymbol{\gamma})}{\Phi(\mathbf{Z}_i\boldsymbol{\gamma})}\right]$$

- Note that $\Phi(\mathbf{Z}_i \gamma) = \Pr(D_i = 1)$
- Suggests a two-step approach...

Heckman's Two-Step Estimator

1. Estimate $\hat{\gamma}$ from

$$Pr(D_i = 1) = \Phi(\mathbf{Z}_i \gamma)$$

and calculate the estimated inverse Mills' ratio:

$$\hat{\lambda}_i = rac{\phi(\mathbf{Z}_i \hat{\gamma})}{\Phi(-\mathbf{Z}_i \hat{\gamma})}$$

2. Estimate β , $\theta (\equiv \rho \sigma_1)$ as:

$$Y_{1i} = \mathbf{X}_i \boldsymbol{\beta} + \theta \hat{\lambda}_i + u_{1i}$$

What exactly is an "inverse Mills' ratio," anyway?

A Few Things...

- Since $\sigma_1 > 0$, $\hat{\theta} = 0 \implies \rho = 0$
- Two-step approach:
 - Is "LIML" ...
 - Consistent for $\hat{\beta}$, but
 - Inconsistent estimating $\widehat{\mathbf{V}}(\widehat{\beta})$; so
 - Standard errors require correction (e.g., bootstrap)
 - Can yield $\hat{\rho} \notin [-1,1]$ (because $\hat{\rho} = \hat{\theta}/\hat{\sigma}_1$)
 - Sensitive to prediction of D_i (better prediction = better precision)

Identification, etc.

- If $\mathbf{X}=\mathbf{Z}$, then $\boldsymbol{\beta}, \gamma, \rho$ (formally) identified by nonlinearity of $\Phi(\cdot)$
- (Much) better: ≥ one covariate in **Z** not in **X**
- But...
 - Factors causing Y_1 also (often) cause D
 - ⇒ X, Z highly correlated
 - ...just makes things worse (Stolzenberg and Relles 1997)

Some Practical Things

- In practice, few people use two-step anymore,
- Sensitive to joint normality of $\{u_i, u_2\}$,
- Very sensitive to model specification...
- Key issue: endogeneity of selection...

Example: SCOTUS Amicus Briefs

- LnAmici = ln(# of briefs filed)
- For this to be defined, Amici > 0...
- Covariates:
 - Year -1900
 - USPartic: 1 if U.S. participated, 0 otherwise
 - SCscore: SCOTUS "Segal-Cover" liberalism score
 - MultipleLegal: 1 if multiple legal issues, 0 otherwise
 - SGAmicus: 1 if SG filed a brief, 0 otherwise

SCOTUS Decisions, 1953-1985

>	summary(SCOT	US)						
ID		Do	Docket		Amici		LnAmici	
	Min. : 9207	64 Lengt	h:7156		Min. :	0.0000	Min.	:0.000
	1st Qu.:37903	59 Class	:charact	er	1st Qu.:	0.0000	1st (Qu.:0.000
	Median:41005	19 Mode	:charact	er	Median :	0.0000	Media	an:0.693
	Mean :41161	16			Mean :	0.8425	Mean	:0.757
	3rd Qu.:44606	24			3rd Qu.:	1.0000	3rd (Qu.:1.386
	Max. :47810	50			Max. :	39.0000	Max.	:3.664
							NA's	:5146
	Year	USPa	rtic	F	'edPetit		FedResp	p
	Min. :53.00	Min.	:0.0000	Min.	:0.00	00 Mi	1. :1	.000
	1st Qu.:65.00	1st Qu.	:0.0000	1st	Qu.:0.00	000 1s1	Qu.:3	.000
	Median :73.00	Median	:0.0000	Medi	an :0.00	00 Me	dian :3	.000
	Mean :71.93	Mean	:0.3707	Mean	:0.17			
	3rd Qu.:80.00	3rd Qu.	:1.0000	3rd	Qu.:0.00	00 3r	1 Qu.:3	.000
	Max. :86.00	Max.	:1.0000	Max.	:1.00	000 Max	c. :3	.000
	SGAmicus	SC	score		Multiple		se.	lect
	Min. :0.000	000 Min.	:-0.224	44	Min. :	0.000	Min.	:0.0000
	1st Qu.:0.000	000 1st 0	u.:-0.124	44	1st Qu.:	0.000	1st Qu	.:0.0000
	Median:0.000	00 Media	ın:-0.017	78	Median :	0.000	Median	:0.0000
	Mean :0.078	68 Mean	: 0.132	50	Mean :	0.149	Mean	:0.2809
	3rd Qu.:0.000	00 3rd 0	u.: 0.476	67	3rd Qu.:	0.000	3rd Qu	.:1.0000
	Max. :1.000	000 Max.	: 0.662	22	Max. :	1.000	Max.	:1.0000

Histogram of LnAmici

Estimates: OLS

```
> summary(OLS)
Residuals:
   Min
          10 Median
                         30
                               Max
-1.2328 -0.5837 -0.1223 0.4614 3.0901
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.737133 0.314843 -2.341 0.0193 *
Year
           USPartic -0.174420 0.034968 -4.988 6.62e-07 ***
MultipleLegal 0.199667 0.038331 5.209 2.09e-07 ***
SCscore
            -0.159575 0.117648 -1.356
                                       0.1751
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.7275 on 2005 degrees of freedom
 (5151 observations deleted due to missingness)
Multiple R-squared: 0.1003, Adjusted R-squared: 0.09854
```

F-statistic: 55.9 on 4 and 2005 DF, p-value: < 2.2e-16

> OLS<-lm(LnAmici~Year+USPartic+MultipleLegal+SCscore,data=SCOTUS)

Estimates: Probit (Selection)

```
> SCOTUS$D<-SCOTUS$Amici>0
> probit<-glm(D~Year+USPartic+SCscore+MultipleLegal,data=SCOTUS,
 family=binomial(link="probit"))
> summary(probit)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.558970 0.273964 -9.341 < 2e-16 ***
Year
           USPartic -0.164948 0.034408 -4.794 1.64e-06 ***
SCscore -0.089525 0.103323 -0.866 0.386
MultipleLegal 0.565585 0.043171 13.101 < 2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 8498.3 on 7155 degrees of freedom
Residual deviance: 8025.2 on 7151 degrees of freedom
  (5 observations deleted due to missingness)
AIC: 8035.2
```

Estimates: Two-Step ("By-Hand")

```
> SCOTUS$IMR<-((1/sqrt(2*pi))*exp(-((probit$linear.predictors)^2/2))) /
 pnorm(probit$linear.predictors)
> OLS.2step<-lm(LnAmici~Year+USPartic+MultipleLegal+SCscore+IMR,data=SCOTUS)
> summary(OLS.2step)
Call:
lm(formula = LnAmici ~ Year + USPartic + MultipleLegal + SCscore +
   IMR. data = Dav17)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                       3.58519 -2.253 0.02434 *
(Intercept) -8.07914
            Year
           -0.50500 0.16456 -3.069 0.00218 **
USPartic
MultipleLegal 1.28738 0.53048 2.427 0.01532 *
SCscore
           -0.33374 0.14490 -2.303 0.02137 *
TMR
             2.75326 1.33926 2.056 0.03993 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.7269 on 2004 degrees of freedom
 (5146 observations deleted due to missingness)
Multiple R-squared: 0.1022, Adjusted R-squared: 0.09999
F-statistic: 45.64 on 5 and 2004 DF, p-value: < 2.2e-16
```

OLS vs. (Two-Step) Heckman $\hat{\beta}$ s

Estimates: Two-Step (Bad Specification)

```
> heckman2S<-heckit(D~Year+USPartic+SCscore+MultipleLegal, LnAmici~Year+USPartic
+SCscore+MultipleLegal,data=SCOTUS,method="2step")
> summary(heckman2S)
______
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
7156 observations (5146 censored and 2010 observed) and 13 free parameters (df = 7144)
Probit selection equation:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.558971 0.275385 -9.292 < 2e-16 ***
Year
           USPartic -0.164948 0.034366 -4.800 1.62e-06 ***
SCscore -0.089524 0.103873 -0.862
                                        0.389
MultipleLegal 0.565585 0.043298 13.063 < 2e-16 ***
Outcome equation:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.07914 4.56334 -1.770 0.0767 .
Year
           0.07478 0.03499 2.137 0.0326 *
USPartic -0.50500 0.21993 -2.296 0.0217 *
          -0.33374 0.25058 -1.332 0.1829
SCscore
MultipleLegal 1.28738 0.67647 1.903 0.0571 .
Multiple R-Squared:0.1022, Adjusted R-Squared:0.1
Error terms:
            Estimate Std. Error t value Pr(>|t|)
invMillsRatio
              2.753
                        1.668
                                1.65
                                      0.0989 .
sigma
             2.447
                           NΑ
                                  NΑ
                                          NΑ
                                  NA
                                          NΑ
rho
             1.125
                           NΑ
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```


Estimates: MLE (Bad Specification)

```
> heckmanML<-heckit(D~Year+USPartic+SCscore+MultipleLegal,
                   LnAmici~Year+USPartic+SCscore+MultipleLegal,
                   data=SCOTUS.method="m1")
> summary(heckmanML)
Tobit 2 model (sample selection model)
Maximum Likelihood estimation
Newton-Raphson maximisation, 4 iterations
Return code 3: Last step could not find a value above the current.
Boundary of parameter space?
Consider switching to a more robust optimisation method temporarily.
Log-Likelihood: -6424.647
7156 observations (5146 censored and 2010 observed)
12 free parameters (df = 7144)
```

Estimates: MLE (Poor Specification)

```
Probit selection equation:
            Estimate Std. error t value Pr(> t)
(Intercept)
           -2.559549 0.331857 -7.713 1.23e-14 ***
Year
           0.026862 0.004367
                              6.151 7.72e-10 ***
USPartic
          SCscore
          -0.090504 0.125536 -0.721 0.470946
MultipleLegal 0.566437 0.058852 9.625 < 2e-16 ***
Outcome equation:
           Estimate Std. error t value Pr(> t)
(Intercept) -8.06266
                     0.88402 -9.120 < 2e-16 ***
           Year
IISPartic
       -0.49013 0.10103 -4.851 1.23e-06 ***
SCscore
         -0.29510 0.34156 -0.864
                                   0.388
                   0.10607 11.885 < 2e-16 ***
MultipleLegal 1.26060
Error terms:
    Estimate Std. error t value Pr(> t)
sigma 2.11218
                  NΑ
                         NΑ
                                NΑ
     0.99993
              0.00742 134.8 <2e-16 ***
rho
---
Signif. codes:
0 *** 0.001 ** 0.01 * 0.05 . 0.1
______
Warning messages:
1: In sqrt(diag(vc)) : NaNs produced
2: In sqrt(diag(vc)) : NaNs produced
```

Estimates: MLE ("Better" Specification)

Estimates: MLE ("Better" Specification)

```
Probit selection equation:
             Estimate Std. error t value Pr(> t)
(Intercept) -2.670268 0.289236 -9.232 < 2e-16 ***
Year
            0.024971 0.003804 6.565 5.21e-11 ***
           0.080486 0.036022 2.234 0.0255 *
USPartic
SCscore
           -0.091135 0.109363 -0.833 0.4047
MultipleLegal 0.518324 0.045625 11.361 < 2e-16 ***
SGAmicus
          2.167694 0.082758 26.193 < 2e-16 ***
Outcome equation:
             Estimate Std. error t value Pr(> t)
(Intercept) -0.177121 0.326280 -0.543 0.587233
Year
           0.015413 0.004188 3.681 0.000233 ***
USPartic -0.104100 0.036572 -2.846 0.004421 **
SCscore -0.167759 0.117178 -1.432 0.152242
MultipleLegal 0.130377 0.039958 3.263 0.001103 **
Error terms:
     Estimate Std. error t value Pr(> t)
sigma 0.73923 0.01270 58.199 < 2e-16 ***
rho -0.29103 0.04419 -6.586 4.53e-11 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Extensions: "Probit-Probit"

- Selection + binary second stage ($Y_i \in \{0,1\}$) (a/k/a "Heckit").
- Assume errors are bivariate standard Normal [so, $\{u_1, u_2 \sim \mathcal{BVN}(0, 0, 1, 1, \rho) \equiv \Phi_2(\cdot)\}$
- Log-Likelihood:

$$\begin{array}{ll} \ln \textit{L}(\boldsymbol{\beta}, \boldsymbol{\gamma}, \sigma_1, \boldsymbol{\rho} | \textit{Y}_1) &= & \displaystyle \sum_{\textit{Y}_{1i} = 1, \textit{D}_i = 1} \ln[\Phi_2(\textbf{X}_i \boldsymbol{\beta}, \textbf{Z}_i \boldsymbol{\gamma}, \boldsymbol{\rho})] \\ &+ \sum_{\textit{Y}_{1i} = 0, \textit{D}_i = 1} \ln[\Phi_2(-\textbf{X}_i \boldsymbol{\beta}, \textbf{Z}_i \boldsymbol{\gamma}, -\boldsymbol{\rho})] \\ &+ \sum_{\textit{D}_i = 0} \ln \Phi(-\textbf{Z}_i \boldsymbol{\gamma}) \end{array}$$

More Extensions

- Different outcome stages:
 - Poisson (Greene 1995)
 - Durations (Boehmke et al. 2006)
 - Count/binary/ordinal (Mirand and Rabe-Hesketh 2005)
- Selection stage is ordered (Chiburis & Lokshin 2007)
- Multiple-stage models (not much... work in finance + Signorino and others)

Sample Selection: Software

- R (selection and heckit in sampleSelection package)
 - Binary selection
 - Continuous/binary outcomes
 - Also tobit, etc. models

Stata

- heckman (binary-continuous model)
- heckprob (binary-binary model)
- oheckman (ordered-continuous)
- dursel (binary-duration model)
- gllamm (various multilevel models w/selection)

Further Readings: References

Articles by Heckman (1974, 1976, 1979).

Breen, Richard. 1996. Regression Models for Censored, Sample Selected, or Truncated Data. Thousand Oaks, CA: Sage.

Stolzenberg, Ross M. and Daniel A. Relles. 1997. "Tools for Intuition about Sample Selection Bias and Its Correction." <u>American Sociological Review</u> 62:494-507.

Vella, Francis. 1998. "Estimating Models with Sample Selection Bias: A Survey." The Journal of Human Resources 33:127-169.

Winship, Christopher and Robert D. Mare. 1992. "Models for Sample Selection Bias." Annual Review of Sociology 18:327-350.

Further Readings: Applications

- Berinsky, Adam J. 1999. "The Two Faces of Public Opinion." American Journal of Political Science 43:1209-1230.
- Blanton, Shannon Lindsey. 2000. "Promoting Human Rights and Democracy in the Developing World: U.S. Rhetoric versus U.S. Arms Exports." American Journal of Political Science 44:123-131.
- Hart, David M. 2001. "Why Do Some Firms Give? Why Do Some Give a Lot?: High-Tech PACs, 1977-1996." *The Journal of Politics* 63:1230-1249.
- Jensen, Nathan M. 2003. "Democratic Governance and Multinational Corporations: Political Regimes and Inflows of Foreign Direct Investment." International Organization 57:587-616.
- Jo, Hyeran. 2008. "Taming the Selection Bias: An Application to Compliance with International Agreements." 2008 Visions in Methodology conference, Columbus, OH.
- Nooruddin, Irfan. 2002. "Modeling Selection Bias in Studies of Sanctions Efficacy." International Interactions 28: 57-74.
- Timpone, Richard J. 1998. "Structure, Behavior and Voter Turnout in the United States." American Political Science Review 92: 145-158.
- Vance, Colin, and Nolan Ritter. 2014. "Is Peace a Missing Value or a Zero? On Selection Models in Political Science." Journal of Peace Research 51:528-540.
- Von Stein, Jana. 2005. "Do Treaties Constrain or Screen? Selection Bias and Treaty Compliance." American Political Science Review 99:611-622.

Potential Outcomes and Counterfactual Inference

Causation

The goal: Making causal inferences from observational data.

- Establish and measure the *causal* relationship between variables in a non-experimental setting.
- The fundamental problem of causal inference:

It is impossible to observe the causal effect of a treatment / predictor on a single unit.

- Specific challenges:
 - · Confounding
 - · Selection bias
 - · Heterogenous treatment effects

Causation and Counterfactuals

Causal statements imply counterfactual reasoning.

- "If the cause(s) had been different, the outcome(s) would be different, too."
- Conditioning, probabilistic and causal:

Probabilistic conditioning	Causal conditioning
Pr(Y X=x)	Pr[Y do(X=x)]
Factual	Counterfactual
Select a sub-population	Generate a new population
Predicts passive observation	Predicts active manipulation
Calculate from full DAG*	Calculate from surgically-altered DAG*
Always identifiable when X and Y	Not always identifiable even when
are observable	X and Y are observable

^{*}See below. Source: Swiped from Shalizi, "Advanced Data Analysis from an Elementary Point of View", Table 23.1.

- Causality (typically) implies / requires:
 - · Temporal ordering
 - · Mechanism
 - Correlation

The Counterfactual Paradigm

Notation

- *N* observations indexed by i, $i \in \{1, 2, ...N\}$
- Outcome variable Y
- Interest: the effect on Y of a treatment variable W:
 - · $W_i = 1 \leftrightarrow \text{observation } i \text{ is "treated"}$
 - · $W_i = 0 \leftrightarrow \text{observation } i \text{ is "control"}$

Potential Outcomes

- Y_{0i} = the value of Y_i if $W_i = 0$
- Y_{1i} = the value of Y_i if $W_i = 1$
- $\delta_i = (Y_{1i} Y_{0i}) = \text{the treatment effect of } W$

Treatment Effects

The average treatment effect (ATE) is just:

$$\begin{aligned} \mathsf{ATE} &\equiv \bar{\delta} &=& \mathsf{E}(Y_{1i} - Y_{0i}) \\ &=& \frac{1}{N} \sum_{i=1}^{N} Y_{1i} - Y_{0i}. \end{aligned}$$

BUT we observe only Y_i :

$$Y_i = \begin{cases} Y_{0i} & \text{if } W_i = 0, \\ Y_{1i} & \text{if } W_i = 1. \end{cases}$$

or (equivalently)

$$Y_i = W_i Y_{1i} + (1 - W_i) Y_{0i}.$$

Estimating Treatment Effects

Key to estimating treatment effects: **Assignment mechanism for** W.

Neyman/Rubin/Holland: Treat inability to observed Y_{0i} / Y_{1i} as a missing data problem.

[press "pause"]

Missing Data Review

Notation:

$$\mathbf{X}_{i} \cup \{\mathbf{W}_{i}, \mathbf{Z}_{i}\}$$

 \mathbf{W}_i have some missing values, \mathbf{Z}_i are "complete"

$$R_{ik} = \begin{cases} 1 & \text{if } W_{ik} \text{ is missing,} \\ 0 & \text{otherwise.} \end{cases}$$

$$\pi_{ik} = \Pr(R_{ik} = 1)$$

Missing Data (continued)

Rubin's flavors of missingness:

• Missing completely at random ("MCAR") (= "ignorable"):

$$R \perp \{Z, W\}$$

Missing at random ("MAR") (conditionally "ignorable"):

$$\mathbf{R} \perp \mathbf{W} | \mathbf{Z}$$

• Anything else is "informatively" (or "non-ignorably") missing.

Estimating Treatment Effects

Key to estimating treatment effects: **Assignment mechanism for** W.

Neyman/Rubin/Holland: Treat inability to observed Y_{0i} / Y_{1i} as a missing data problem.

• If the "missingness" due to the value of W_i is orthogonal to the values of Y, then it is ignorable. Formally:

$$\Pr(W_i|\mathbf{X}_i, Y_{0i}, Y_{1i}) = \Pr(W_i|\mathbf{X}_i)$$

- If that "missingness" is non-orthogonal, then it is not ignorable, and can lead to bias in estimation
- Non-ignorable assignment of *W* requires understanding the mechanism by which that assignment occurs

One more thing: the stable unit-treatment value assumption ("SUTVA")

- Requires that there be two and only two possible values of Y
 for each observation i...
- "the observation (of Y_i) on one unit should be unaffected by the particular assignment of treatments to the other units."
- the "assumption of no interference between units," meaning:
 - · Values of Y for any two i, j ($i \neq j$) observations do not depend on each other
 - Treatment effects are homogenous within categories defined by

Treatment Effects Under Randomization of W

If W_i is assigned randomly, then:

$$Pr(W_i) \perp Y_{0i}, Y_{1i}$$

and so:

$$Pr(W_i|Y_{0i}, Y_{1i}) = Pr(W_i) \forall Y_{0i}, Y_{1i}.$$

This means that the "missing" data on Y_0/Y_1 are <u>ignorable</u> (here, in the special case where the \mathbf{X}_i on which W_i depends is <u>null</u>). This in turn means that:

$$f(Y_{0i}|W_i=0)=f(Y_{0i}|W_i=1)=f(Y_i|W_i=0)=f(Y_i|W_i=1)$$

and

$$f(Y_{1i}|W_i=0)=f(Y_{1i}|W_i=1)=f(Y_i|W_i=0)=f(Y_i|W_i=1)$$

Randomized W (continued)

Implication: Y_{0i} and Y_{1i} are (not identical but) exchangeable...

This in turn means that:

$$E(Y_{0i}|W_i) = E(Y_{1i}|W_i)$$

and so

$$\widehat{ATE} = E(Y_i|W_i = 1) - E(Y_i|W_i = 0)$$

= $\bar{Y}_{W=1} - \bar{Y}_{W=0}$.

will be an unbiased estimate of the ATE.

Observational Data: W Depends on X

Formally,

$$Y_{0i}, Y_{1i} \perp W_i | \mathbf{X}_i$$
.

Here,

- **X** are *known confounders* that (stochastically) determine the value of W_i ,
- Conditioning on **X** is necessary to achieve exchangeability.

So long as W is entirely due to \mathbf{X} , we can condition:

$$f(Y_{1i}|\mathbf{X}_i, W_i = 1) = f(Y_{1i}|\mathbf{X}_i, W_i = 0) = f(Y_i|\mathbf{X}_i, W_i)$$

and similarly for Y_{0i} .

W Depends on X (continued)

Estimands:

• the average treatment effect for the treated (ATT):

$$ATT = E(Y_{1i}|W_i = 1) - E(Y_{0i}|W_i = 1).$$

• the average treatment effect for the controls (ATC):

$$ATC = E(Y_{1i}|W_i = 0) - E(Y_{0i}|W_i = 0).$$

Corresponding estimates:

$$\widehat{\mathsf{ATT}} = \mathsf{E}\{[\mathsf{E}(Y_i|\mathbf{X}_i,W_i=1) - \mathsf{E}(Y_i|\mathbf{X}_i,W_i=0)]|W_i=1\}.$$

and

$$\widehat{\mathsf{ATC}} = \mathsf{E}\{[\mathsf{E}(Y_i|\mathbf{X}_i,W_i=1) - \mathsf{E}(Y_i|\mathbf{X}_i,W_i=0)]|W_i=0\}.$$

Note that in both cases the expectation of the whole term is conditioned on W_i .

Confounding

Confounding occurs when one or more observed or unobserved factors X affect the causal relationship between W and Y.

Formally, confounding requires that:

- $Cov(X, W) \neq 0$ (the confounder is associated with the "treatment")
- $Cov(X, Y) \neq 0$ (the confounder is associated with the outcome)
- X does not "lie on the path" between W and Z (that is, X is not affected by either W or Y).

Digression: DAGs

<u>Directed acyclic graphs</u> (DAGs) are a tool for visualizing and interpreting structural/causal phenomena.

- DAGs comprise:
 - · Nodes (typically, variables / phenomena) and
 - · Edges (or lines; typically, relationships/causal paths).
- Directed means each edge is unidirectional.
- Acyclical means exactly what it suggests: If a graph has a "feedback loop," it is not a DAG.
- Read more at the Wikipedia page, or at this useful page.

Know your DAG

DAGs and Confounding

$$W \longrightarrow Y \longleftarrow X$$
No Confounding

Confounding Bias: Some Toy Examples

i	W_i	Y_{0i}	Y_{1i}	$Y_{1i} - Y_{01}$	Y_i	$(\bar{Y} W=1)-(\bar{Y} W=0)$	
1	0	8	(10)	(2)	8	-	
2	0	10	(12)	(2)	10	-	
3	0	12	(14)	(2)	12	-	
4	1	(8)	10	(2)	10	-	
5	1	(10)	12	(2)	12	-	
6	1	(12)	14	(2)	14	-	
Mean _{obs}	-	10	12	-	11	2	
Mean _{all}	-	(10)	(12)	(2)	-	<u>-</u>	

$$t = -1.22$$
, $p = 0.14$

Confounding Bias: Some Toy Examples

				(, -)	, -	(· · · = = -)
i	W_i	Y_{0i}	Y_{1i}	$Y_{1i} - Y_{01}$	Y_i	$(\bar{Y} W=1)-(\bar{Y} W=0)$
1	0	8	(10)	(2)	8	-
2	0	8	(10)	(2)	8	-
3	0	10	(12)	(2)	10	-
4	1	(10)	12	(2)	12	-
5	1	(12)	14	(2)	14	-
6	1	(12)	14	(2)	14	-
Mean _{obs}	-	8.67	13.33	-	11	4.67
Mean _{all}	-	(10)	(12)	(2)	-	-

$$t = -4.95$$
, $p < 0.001$

Confounding Bias: Some Toy Examples

Example Three: Cov(W, Y) < 0 (ATE=2)

						· /
i	W_i	Y_{0i}	Y_{1i}	$Y_{1i} - Y_{01}$	Y_i	$(\bar{Y} W=1)-(\bar{Y} W=0)$
1	0	12	(14)	(2)	12	-
2	0	12	(14)	(2)	12	-
3	0	10	(12)	(2)	10	-
4	1	(10)	12	(2)	12	-
5	1	(8)	10	(2)	10	-
6	1	(8)	10	(2)	10	-
Mean _{obs}	-	11.33	10.67	-	11	-0.67
Mean _{all}	-	(10)	(12)	(2)	-	-

$$t = 0.71, p = 0.74$$

Next time: How to make causal(-ish) inferences from observational data...