

Dual Mode Microphone with High SNR Digital Output (Bottom Port)

DESCRIPTION

The ZTS6872S is a high quality, low cost, low power digital output bottom-ported omni-directional MEMS microphone. ZTS6872S consists of a MEMS microphone element and a preamplifier. ZTS6872S has a high SNR and

flat wideband frequency response, resulting in natural sound with high intelligibility. Due to built-in filter, ZTS6872S shows high immunity to EMI.

The ZTS6872S is available in a thin 3.50mm \times 2.65mm \times 0.98mm surface-mount package. It is reflow solder compatible with no sensitivity degradation. The ZTS6872S is halide free.

APPLICATIONS

- Mobile telephones
- PDAs
- Digital video cameras
- Portable media devices with audio input

ORDERING INFORMATION

PART	RoHS	Ship, Quantity
ZTS6872S	Yes	Tape and Reel, 5.2K

FEATURES

- 3.50mm×2.65mm×0.98mm surface-mount package
- Stable sensitivity over power supply range of 1.60V-3.60V
- SNR of 65dB(A)
- Sensitivity of -26dB FS
- Multi Chip Module (MCM) Package

Pins Configuration and Description

Bottom View

Isometric Views of ZTS6872S Microphone Package

Typical Applications

Label	Select	Drives Data After	High-Z After
Data_H	High	Rising Clock Edge	Falling Clock Edge
Data_L	Low (default)	Falling Clock Edge	Rising Clock Edge

Absolute Maximum Ratings

CLOCK to Ground0.3V to +6.0V
SELECT, V _{DD} , DATA to Ground –0.3V to +6.0V
Input Current ±5mA
Data Output Short Circuit Indefinite to Ground or $V_{\mathtt{DD}}$
Operating Temperature Range40°C to +100°C
Storage Temperature Range40°C to +100°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electro-Static Discharge Sensitivity

This integrated circuit can be damaged by ESD.

It is recommended that all integrated circuits be handled with proper precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure.

Pins Description

Pin	Symbol	Description
1	DATA	Output.
2	SELECT	Select.
3	GND	Ground
4	CLOCK	Clock.
5	VDD	Power Supply (V _{DD}).

Microphone Block Diagram

Microphone State Diagram

Specifications

 $(T_A = +15^{\circ}C + 25^{\circ}C, V_{DD} = +1.8V, f_{clock} = 3.072MHz, R.H. = 60\%^{\sim}70\%$, no load, unless otherwise noted.)

PARAMETER	Symbol	TEST C	ONDITIO	NS	MIN	TYP	MAX	UNIT
Supply Voltage (Note 1)	V_{DD}				1.60		3.60	V
Clock Frequency	Fclock				1		4.8	MHz
Current Consumption (Note 1,6)	I _{DD}					600	700	μΑ
Standby Current (Sleep Mode) (Note 5,6)	I _{STANDBY}	f _{clock}	< 250KH	Z		50		μΑ
Directivity						Omni-dir	ectional	
Sensitivity (Note 1)	S	94dB 9	SPL @ 1k	Ήz	-27	-26	-25	dB FS
Signal to Noise Ratio	SNR	94dB SPL @	1KHz, A-	weighted		65		dB(A)
Total Harmonic Distortion	THD		SPL @ 1 SPL @ 1				10	% %
Power Supply Rejection Ratio	PSRR	1KHz, 200m\	√Vp-p,	V _{DD} =1.8V		60	10	dB
Power Supply Rejection	PSR	square wave 217Hz, 100m	V Vp-p,	V _{DD} =1.8V		60 -80		dB dB FS
	1	square wave				-80		
Polarity		Increasing			In	creasing d	ensity of 1's	1
Fall-Asleep Time (Note 2,3)		$V_{DD} = On, f_{clock} < 1KHz$					10	ms
Wake-Up Time (Note 2,4)		$V_{DD} = On, f_{clock} \ge 1MHz$					10	ms
Short Circuit Output Current	I _{SC}	Grounde	ed outpu	t pin		1	10	mA
Output Load	C _{LOAD}						100	pF
Data Format						1/2 cycl		1
Clock Duty Cycle					40		60	%
Clock Rise Time	t _{cr}						10	ns
Clock Fall Time	t _{ct}						10	ns
Logic Input/Output Low	V_{IOL}	I _{ou}	t = 1mA		-0.3		$0.35 \times V_{DD}$	V
Logic Input/Output High	V_{IOH}		t = 1mA		$0.65 \times V_{DD}$		V _{DD} +0.3	V
		CLK = 3.072MHz	Data Trans	1.8	26		82	
Delay Time for Valid Data	t _{dv}	Oscilloscop e:	High	3.3	20		80	ns
		APx525 (probe Cin	Data Tran	1.8	25		80	
		= 24pF)	Low	3.3	21		81	
		CLK = 3.072MHz,	Data Trans	1.8	0		25	
Delay Time for High Z	t _{dz}	Oscilloscop e:	High	3.3	0		24	ns
,	-uz	APx525	Data Trans	1.8	0		26	
		(probe Cin = 24pF)	Low	3.3	0		25	
Settling time	t _s			1.8V 3.3V		2.65	5.5	ms
Charles Tim		Powered Dov	wn	1.8V		2.65	5.5	
Startup Time		→Active Mo	de	3.3V		2.45	5.3	ms

 $(T_A = +15^{\circ}C^{\sim} + 25^{\circ}C, V_{DD} = 3.3V, f_{clock} = 768KHz, R.H. = 60\%^{\sim}70\%, no load, unless otherwise noted.)$

PARAMETER	Symbol	TEST C	ONDITIC	NS	MIN	TYP	MAX	UNIT
Supply Voltage (Note 1)	V_{DD}				1.60		3.60	V
Clock Frequency	Fclock				100		800	KHz
Current Consumption (Note 1,6)	I _{DD}					260	300	μΑ
Standby Current (Sleep Mode) (Note 5,6)	I _{STANDBY}	f _{clock}	< 250KH	Z		50		μΑ
Directivity						Omni-dir	ectional	
Sensitivity (Note 1)	S	94dB \$	SPL @ 1k	Hz	-27	-26	-25	dB FS
Signal to Noise Ratio	SNR	94dB SPL @	1KHz, A-	weighted		65		dB(A)
Total Harmania Dictortion	TUD	114dB	SPL @ 1	KHz			1	%
Total Harmonic Distortion	THD	120dB	SPL @ 1	KHz			10	%
Power Supply Rejection Ratio	PSRR	1KHz, 200m\	√ Vp-p,	V _{DD} =1.8V		60		dB
rower supply rejection ratio	FJNN	square wave	on V_{DD}	$V_{DD} = 3.3V$		60		dB
Power Supply Rejection	PSR	217Hz, 100m		V _{DD} =1.8V		-80		dB FS
,		square wave		$V_{DD} = 3.3V$		-80		
Polarity		Increasing			In	creasing de	ensity of 1's	
Fall-Asleep Time (Note 2,3)		$V_{DD} = Or$					10	ms
Wake-Up Time (Note 2,4)		$V_{DD} = On$	$f_{clock} \ge 1$.MHz			10	ms
Short Circuit Output Current	I _{SC}	Grounde	ed outpu	t pin		1	10	mA
Output Load	C _{LOAD}						100	pF
Data Format						1/2 cycl	e PDM	
Clock Duty Cycle					40		60	%
Clock Rise Time	t_{cr}						10	ns
Clock Fall Time	t _{ct}						10	ns
Logic Input/Output Low	V_{IOL}	I _{ou}	_t = 1mA		-0.3		0.35×V _{DD}	V
Logic Input/Output High	V_{IOH}	I _{ou}	_t = 1mA		$0.65 \times V_{DD}$		V _{DD} +0.3	V
		CLK = 3.072MHz	Data Trans	1.8	26		82	
Delay Time for Valid Data	t _{dv}	Oscilloscop e:	High	3.3	20		80	ns
		APx525	Data	1.8	25		80	
		(probe Cin = 24pF)	Tran Low	3.3	21		81	
		CLK = 3.072MHz,	Data Trans	1.8	0		25	
Delay Time for High Z	t _{dz}	Oscilloscop e:	High	3.3	0		24	ns
, .	uz	APx525 (probe Cin	Data Trans	1.8	0		26	
		= 24pF)	Low	3.3	0		25	
Settling time	t _s			1.8V 3.3V		2.65	5.5	ms
Startun Timo		Powered Do	wn	1.8V		2.65	5.5	mc
Startup Time		→Active Mo	de	3.3V		2.45	5.3	ms

Note 1: 100% tested.

Note 2: Valid microphone states are: Power Down Mode (mic off), Sleep Mode (low current, no output, fast start-up), and Active Mode (normal operation).

Note 3: Time from f_{clock} < 1KHz to sleep current specification is met when transitioning from Active to Sleep Mode.

Note 4: Time from $f_{clock} \ge 1 \text{MHz}$ to all applicable specifications when transitioning from Sleep to Active Mode.

Note 5: $\Delta I_{DD} = 0.5 \times V_{DD} \times C_{LOAD} \times f_{clock}$

Timing Diagram

Typical Performance Characteristics

Reliability Specifications

The microphone sensitivity after stress must deviate by no more than ±3dB from the initial value.

1 Heat Test Operational	Temperature: 125±3 °C
1. Heat Test, Operational	Duration: 1000 hours
2 Cold Test Operational	Voltage: Applied Temperature: -40±3°C
2. Cold Test, Operational	Duration: 1000 hours
2 11 17 1 11 2 11 1	Voltage: Applied
3. Heat Test, Non-Operational	Temperature: 125±3°C
	Duration: 1000 hours
	Voltage: Not Applied
4. Cold Test, Non-Operational	Temperature: -40±3°C
	Duration:1000 hours
	Voltage: Not Applied
5. Thermal Shock Test, Non-Operational	Temperature: -40±3°C and 125±3°C
	Duration: 30 minutes each, during 5
	minutes ramp, 256 cycles
	Voltage: Not applied
6. Temperature humidity storage	Temperature: 85±3°C
	Humidity: 85±3%RH
	Duration: 1000 hours
	Temperature: 65±3°C
	Humidity: 95±3%RH
	Duration: 168 hours
7. Free Fall Test 1.5m	Placed inside test fixture and dropped on
	concrete from height 1.5m.
	4 times by each surface and corner
8. Vibration	4 cycles of 20 to 2000 Hz sinusoidal sweep
	with 20G peak acceleration lasting 12
	minutes in X, Y, and Z directions
9. Mechanical Shock	5 pulses of 10000g in each of the \pm X, \pm Y,
	and $\pm Z$ directions
10. Electrostatic Discharge Test	Capacitance: 150pF
	Resistance: 330Ω
	Duration: 10 times
	Air Discharge: Level 4(+/-15kV)
	Direct contact discharge: Level 4 (+/-8kV)
11. Human Body Mode	\pm 2000 Volt
12. Charged-Device Model	±250 Volt
13. Reflow	5 reflow cycles with peak temperature of
-	260°C
14. Solderability	$245\pm5^{\circ}\text{C}$,5sec, 95% Tin on pad surface
<u>'</u>	•
15. Tumble test	300 tumbles from a height of 1m onto a steel
46 1140	base.
16. HAST	Temperature: 130±3°C
	Humidity: 85±3%RH
	Duration: 96 hours
	Voltage: Applied
17. Air Blow	0.45MPa, distance 3cm, time 10s

MECHANICAL SPECIFICATIOPNS

ITEM	DIMENSION	TOLERANCE	UNITS
Length (L)	3.50	±0.10	mm
Width (W)	2.65	±0.10	mm
Height (H)	0.98	±0.10	mm
Acoustic Port (AP)	Ø0.325	±0.05	mm

RECOMMENDED CUSTOMER LAND PATTERN

The recommended PCB land pattern for the ZTS6872S should have a 1:1 ratio to the solder pads on the microphone package. Care should be taken to avoid applying solder paste to the sound hole in PCB. The dimensions of suggested solder paste pattern refer to the land pattern.

PCB Land Pattern Layout (Dimensions Shown in mm).

Suggested Solder Paste Stencil Pattern Layout.

Copyright © ZillTek Technology Corp.

SOLDER FLOW PROFILE

The reflow profile specified in this section describes expected maximum heat exposure of components during the reflow process of NMP product PWBs. Temperature is measured on top of component. All components have to tolerate at least this profile five times (5x) without affecting electrical performance, mechanical performance or reliability.

Pb-free and Sn63/Pb37 reflow profile requirements for soldering heat resistance:

Parameter		Reference	Pb-Free	Sn63/Pb37
Average Ram	np Rate	T _L to T _P	1.25°C/sec max	1.25 °C /sec max
	Minimum Temperature	T _{SMIN}	100°C	100 °C
Prehear	Maximum Temperature	T _{SMAX}	200°C	150 °C
	Time	T _{SMIN} to T _{SMAX}	60sec to 120sec	60sec to 120sec
Ramp-Up Rat	te	T _{SMAX} to T _L	1.25°C/sec	1.25 °C /sec
Time Mainta	ined Above Liquidous	t _L	60sec to 150sec	60sec to 150sec
Liquidous Te	mperature	T _L	217°C	183 °C
Peak Temper	ature	T _P	260°C +0°C/-5°C	215 °C +3 °C /-3 °C
Time Within	+5°C of Actual Peak Temperature	t _P	20 sec to 30 sec	20 sec to 30 sec
Ramp-Down	Rate	T _{peak}	6°C/sec max	6 °C /sec max
Time +25°C	(t _{25OC}) to Peak Temperature		8 min max	6 min max

PACKAGING

Unit: mm

Symbol	Spec.
K1	-
Po	4.0 ± 0.10
P1	8.0 ± 0.10
P2	2.0 ± 0.05
D _o	1.55 ± 0.05
D1	1.50 (MIN)
E	1.75 ± 0.10
F	5.50 ± 0.05
10P ₀	40.0 ± 0.10
W	12.0 ± 0.20
Т	0.30 ± 0.05

Notice:

- $1 \cdot 10$ Sprocket hole pitch cumulative tolerance is ± 0.1 mm.
- $\mathbf{2}\cdot \mathbf{Pocket}$ position relative to sprocket hole measured as true position of pocket not pocket hole.
- $3 \cdot A_0 \& B_0$ measured on a place 0.3mm above the bottom of the pocket to top surface of the carrier.
- $4\cdot K_{\text{O}}$ measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- $5 \cdot \text{Carrier camber shall be not that 1mm per 100mm through a length of 250mm.}$

Part NO.	Reel Diameter	Quantity Per Reel	Quantity Per Inner Box	Quantity Per Outer Box
ZTS6872S	13"	5200	5200	46800

Dimensions for Inner Box

Unit: mm

L	W	Н
335	339	45

Dimensions for Outer Box

Unit: mm

L	W	Н
445	360	372