Timing Issues in Multi-level Logic Optimization

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Module 1

Objectives:

- Timing verification:
- Delay modeling
- Critical paths
- The false path problem

Timing verification and optimization

Verification:

- Check that a circuit runs at speed
 - ♦ Satisfies I/O delay constraints
 - **♦** Satisfies cycle-time constraints

Optimization:

- Minimum delay
 - ♦ (subject to *area* constraints)
- Minimum area
 - ♦ Subject to *delay* constraints

Delay modeling

- Gate delay modeling:
 - Straightforward for bound networks
 - Approximations for unbound networks
- Network delay modeling:
 - Compute signal propagation
 - **♦ Topological methods**
 - ♦ Logic/topological methods (false paths)

Gate delay modeling unbound networks

- **◆** Virtual gates:
 - Logical expressions
- **◆**Stage delay model:
 - Unit delay per vertex
- Refined models:
 - Depending on fanout

Network delay modeling

- lacktriangle For each vertex v_i
- ightharpoonup Propagation *delay d_i*:
 - I/O propagation delays are usually zero
- lacktriangle Data-ready time t_i :
 - Input data-ready time denote when inputs are available
 - Computed elsewhere by forward traversal
 - $t_i = d_i + \max_j t_j$ s.t. $(v_j, v_i) \in E$

Propagation delays:

• $d_g = 3$; $d_h = 8$; $d_m = 1$; $d_k = 10$; $d_l = 3$

•
$$d_n = 5$$
; $d_p = 2$; $d_o = 2$; $d_x = 2$; $d_y = 3$

Network delay modeling

- lacktriangle For each vertex v_i :
- ◆Required data-ready time t_i
 - Specified at the primary outputs
 - Computed elsewhere by backward traversal
 - $\underline{t}_i = \min_j \underline{t}_j d_j \text{ s.t. } (v_i, v_j) \in E$
- \bullet Slack s_i :
 - Difference between required and actual data-ready times $s_i = \underline{t}_i t_i$

◆Required data-ready times:

• $\underline{t}_x = 25$ and $\underline{t}_y = 25$

•
$$s_x = 2$$
; $s_y = 0$

$$\bullet$$
 $\underline{t}_m = 25 - 2 = 23$; $s_m = 23 - 21 = 2$

$$\bullet$$
 $\underline{t}_q = 25 - 2 = 22$; $s_q = 22 - 22 = 0$

$$\bullet$$
 $\underline{t}_1 = \min \{23 - 1; 22 - 2\} = 20; s_1 = 20 - 20 = 0$

$$\bullet$$
 $\underline{t}_b = 23 - 1 = 22$; $s_b = 22 - 11 = 11$

$$\bullet$$
 $\underline{t}_k = 20 - 3 = 17$; $s_k = 17 - 13 = 4$

$$\bullet$$
 $\underline{t}_p = 20 - 3 = 17$; $s_p = 17 - 17 = 0$

$$\bullet$$
 $\underline{t}_n = 17 - 2 = 15$; $s_n = 15 - 15 = 0$

$$\bullet$$
 $\underline{t}_b = 15 - 5 = 10$; $s_b = 10 - 10 = 0$

$$\bullet$$
 \underline{t}_g = min {22 - 11;17 - 10; 17 - 2} = 7; s_g = 7 - 3 = 4

$$\bullet$$
 $\underline{t}_a = 7 - 3 = 4$; $s_a = 4 - 0 = 4$

Topological critical path

Assume topologic computation of :

- Data-ready by forward traversal
- Required data-ready by backward traversal

◆ Topological critical path :

- Input/output path with zero slacks
- Any increase in the vertex propagation delay affects the output data-ready time
- ◆A topological critical path may be *false*:
 - No event can propagate along that path

- **◆**All gates have unit delay
- ◆All inputs ready at time 0
- ♦ Longest topological path : $(v_a, v_c, v_d, v_y, v_z)$:
 - Path delay: 4 units
- lacktriangle Critical true path: (v_a, v_c, v_d, v_y) :
 - Path delay: 3 units

Sensitizable paths

Sensitizable paths

- ◆Path:
 - Ordered set of vertices
- ◆Inputs to a vertex:
 - Direct predecessors
- **◆**Side-inputs of a vertex:
 - Inputs not on the path

Dynamic sensitization condition

- **◆** Path: $P = (v_{xo}, v_{x1}, ..., v_{xm})$
- ◆An event propagates along *P if :*

$$\partial f_{xi} / \partial x_{i-1} = 1$$
, $i = 1, 2, ..., m$

- **◆**Remarks:
 - Boolean differences are function of the side-inputs and values on the side-inputs may change
 - Boolean differences must be true at the time that the event propagates

- ightharpoonup Path: $(v_a, v_c, v_d, v_y, v_z)$
 - $\partial f_y / \partial d = e = 1$ at time 2
 - $\partial f_x / \partial y = e' = 1$ at time 3
- ◆ Not dynamically sensitizable because e settles at time 1

Static sensitization

- **◆**Simpler, weaker model
- ◆We neglect the requirement on when the Boolean differences must be true to propagate an event
- ◆There is an assignment of primary inputs c such that:

$$\partial f_{xi}(c) / \partial x_{i-1} = 1$$
 i=1,2, ..., m

◆ May lead to underestimate delays

◆Not statically sensitizable

- **◆All gates have unit delay**
- **◆**Topological critical paths:
 - $\{(V_a, V_d, V_g, V_o); (V_b, V_d, V_g, V_o)\}$
 - Path delay: 3
 - Not statically sensitizable
- **◆**Other path:
 - (*V_a*, *V_e*, *V_o*)
 - Path delay: 2
- **◆**Assume:
 - c = 0 and a, b dropping from 1 to 0
 - Event propagates to output !!!

Modes for delay computation

Transition mode:

- Variables assumed to hold previous values
 - **♦** Model circuit node capacitances
- Two test vectors are needed

♦ Floating mode:

- Circuit is assumed to be memoryless
 - ♦ Variables have unknown value until set by input test vector
- Need only one test vector

Modes for delay computation

- ◆ Floating mode delay computation is simpler than transition mode computation
- ◆ Floating mode is a pessimistic approach
- **♦** *Floating mode* is more robust:
 - Transition mode may not have the monotone speed-up property

Monotone speed-up property

- Propagation delays are upper bounds:
 - What happens if gates are faster than expected?
- We must insure that speeding-up a gate does not slowdown the circuit:
 - Topological critical paths are robust
 - What about dynamically sensitizable paths in transition mode?

◆ Propagation delay: 2 units

◆ Shaded gate: 3 units and 1 unit

Static co-sensitization

◆Assumption:

- Circuit modeled by AND, OR, INV gates
- INV are irrelevant to the analysis
- Floating mode

Controlling values:

- 0 for AND gate
- 1 for OR gate
- Gate has controlled value

Static co-sensitization

- ◆ Path: $P = (v_{xo}, v_{x1},, v_{xm})$
- ◆A vector *statically co-sensitizes* a path to 1 (or to 0) if :
 - $x_m = 1$ (or 0) and
 - v_{xi-1} has a controlling value whenever v_{xi} has a controlled value
- **◆**Necessary condition for a path to be true

False path detection test

- **◆** For all input vectors, one of the following is true:
 - (1) A gate is controlled and
 - ♦ the path provides a non-controlling value
 - ◆ a side-input provides a controlling value
 - (2) A gate is controlled and
 - ◆ The path and a side-input have controlling values
 - **♦** The side-input presents the controlling value first
 - (3) A gate is not controlled and
 - **♦** A side-input presents the non-controlling value last

- ightharpoonupPath: $(v_a, v_c, v_d, v_y, v_z)$
- **♦** For a = 0, b = 0:
 - Condition (1) occurs at the OR gate
- ♦ For a = 0, b = 1:
 - Condition (2) occurs at the AND gate
- ♦ For a = 1, b = 0:
 - Condition (2) occurs at the OR gate
- ♦ For a = 1, b = 1:
 - Condition (1) occurs at the AND gate
 - (c) Giovanni De Micheli

Important problems

- ◆Check if circuit works at speed t :
 - Verify that all true paths are faster than <u>t</u>
 - Show that all paths slower than <u>t</u> are false
- Compute groups of false paths
- **◆**Compute critical true path:
 - Binary search for values of t
 - Show that all paths slower that <u>t</u> are false

Module 2

Objectives:

- Algorithms for timing optimization
- Favorable logic transformations

Algorithms for delay minimization

◆Alternate:

- Critical path computation
- Logic transformation on critical vertices
- **◆**Consider *quasi critical paths*:
 - Paths with near-critical delay
 - Small slacks

Algorithms for delay minimization

```
◆REDUCE_DELAY (G_n(V,E), ε){
repeat {
```

- Compute critical paths and critical delay τ
- Set output required data-ready times to τ
- Compute slacks
- U = vertex subset with slack lower than ε
- W = select vertices in U
- Apply transformations to vertices W
- } until (no transformation can reduce τ)

Transformation for delay reduction

- Reduce propagation delay
- Reduce dependencies from critical inputs
- **◆** Favorable transformation:
 - Reduces local data-ready time
 - Any data-ready time increase at other vertices is bounded by the local slack

- Unit gate delay
- **◆**Transformation:
 - Elimination
- **◆**Always favorable
- **◆**Obtain several area/delay trade-off points

- ♦ Iteration 1: eliminate v_p , v_q . (No literal increase)
- ♦ Iteration 2: eliminate v_{μ} . (No literal increase)
- ♦ Iteration 3: eliminate v_r , v_s , v_t . (Literal increase)

More refined delay models

Elimination:

- Reduces one stage
- Yields more complex and slower gates
- May slow other paths

◆Substitution:

- Adds one dependency
- Loads and slows a gate
- May slow other paths

Speed-up algorithm

- Determine a subnetwork W of depth d
- Collapse subnetwork by elimination
- **◆** Duplicate vertices with successors outside *W*:
 - Record area penalty
- ◆Resynthesize W by timing-driven decomposition
- Heuristics:
 - Choice of W
 - Monitor area penalty and potential speed-up

- ◆ NAND delay = 2
 INV delay = 1
- ♦ All input data-ready are 0, except = t_d = 3

Minimal-area synthesis under delay constraints

- Start from timing-feasible network
- ◆ Minimize area while preserving timing feasibility:
 - Use area optimization algorithms
 - Monitor delays and slacks
 - Reject transformations yielding negative slacks

Making a network timing feasible

◆Naive approach:

- Mark vertices with negative slacks
- Apply transformations to marked vertices

◆Redefined approach:

- Transform multiple I/O delay constraints into single constraint by delay padding
- Apply algorithms for CP minimization
- Stop when constraints are satisfied

$\underline{\text{Example}}_{t} = [2332]^{T}$

Summary

- Timing optimization is crucial for achieving competitive logic design
- **◆**Timing optimization problems are hard:
 - Detection of critical paths
 - **♦** Elimination of false paths
 - Network transformations