Elliptic Curves, Complex Tori, Modular Forms, and $\ell\text{-adic}$ Galois Representations

Benjamin Church

October 22, 2019

Contents

1	Groups	2
2	Fields	3
3	Galois Theory	3
4	Complex Analysis 4.1 Holomorphic Functions	3
	4.2 Meromorphic Functions	5

1 Groups

Definition: A group G is a set with a binary operation \circ which satisfies,

- 1. associativity, $x \circ (y \circ z) = (x \circ y) \circ z$
- 2. there exists an identity $e \in G$ such that $e \circ g = g \circ e = g$ for any $g \in G$
- 3. for each $g \in G$ there exists an inverse $g^{-1} \in G$ such that $g \circ g^{-1} = g^{-1} \circ g = e$

Example 1.1. The following are groups,

- 1. the integers \mathbb{Z} with addition +
- 2. the nonzero rational numbers \mathbb{Q}^{\times} with multiplication \cdot
- 3. invertable matrices with matrix multiplication
- 4. the permutations of a set with composition of functions

Definition: We say that (G, \circ) is abelian if \circ is commutative, $x \circ y = y \circ x$. In this case we usually write x + y for the binary operation, 0 for e and -x for x^{-1} in analogy with the case of integers.

Definition: A group G is *finitely generated* if there exists a finite set $S \subset G$ such that every element in $g \in G$ can be expressed as a finite combination of elements of S (and the inverses of elements in S) i.e. $g = s_1 \circ \cdots \circ s_n$ for $s_1, \ldots, s_n \in S \cup S^{-1}$ where $S^{-1} = \{s^{-1} \mid s \in S\}$.

Example 1.2. The following are groups,

- 1. the integers \mathbb{Z} are generated by one element, namely 1 so finitely generated.
- 2. the nonzero rational numbers \mathbb{Q}^{\times} with multiplication \cdot are not finitely generated since there are infinitely many prime numbers
- 3. invertable matrices with matrix multiplication are not finitely generated because they contain diagonal matrices with \mathbb{Q}^{\times} entries and these special matrices cannot be finitely generated by the above reason
- 4. the permutations of a finite are finite in number and thus are obviously finitely generated.

Remark 1.1. Notice that the notion of begin finitely generated is vacuous for finite groups.

Definition: A group that will be very important for us is the modular group $SL_2(\mathbb{Z})$ is defined the group of matrices with integer coefficients and determinant one,

$$\mathrm{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z} \text{ and } ad - bc = 1 \right\}$$

Proposition 1.3. The modular group is finitely generated with two generators,

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Proof. Excercise for you.

Remark 1.2. If we have a group G and a subgroup $H \subset G$ we would like a way to construct a smaller group by "sending H to zero." We acomplish this by quotienting. However, we can only do this under the technical condition that the subgroup be normal.

Definition: Let $H \subset G$ be a normal subgroup (meaning that $gHg^{-1} \subset G$ for any $g \in G$) then we define,

$$G/H = \{gH \mid g \in G\}$$

We call these sets gH cosets of H. Then they form a group via $g_1H \cdot g_2H = g_1g_2H$, one can show that this operation is well-defined exactly when H is normal in G. We define the index of H in G to be the size of this group, [G:H] = |G/H|.

Example 1.4. Modular arithmetic modulo n, taking the numbers $0, 1, \ldots, n-1$ and adding via "clock arithmetic" where n maps back around to n is accomplished via taking the subgroup of multiples of n in the integers $n\mathbb{Z} \subset \mathbb{Z}$ and quotienting to get $\mathbb{Z}/n\mathbb{Z}$. This group has n elements so we say $[\mathbb{Z} : n\mathbb{Z}] = n$.

(QUOTIENT GROUPS, MODULAR ARITHMETIC)

2 Fields

Remark 2.1. A field is an object that has the same algebraic structure as the rational numbers \mathbb{Q} or the real numbers \mathbb{R} or the complex numbers \mathbb{C} . It is a structure were we can add, subtract, multiply, and divide. In fields we can consider polynomials and if they have solutions. We will now give a formal definition.

Definition: (FIELD)

3 Galois Theory

(DO GALOIS THEORY)

4 Complex Analysis

4.1 Holomorphic Functions

Definition: A subset $\Omega \subset \mathbb{C}$ is a domain if Ω is open and connected.

Definition: A map $f: \Omega \to \mathbb{C}$ is holomorphic at $z \in \Omega$ if the limit,

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

exists. The map f is holomorphic on Ω if it is holomorphic at each $z \in \Omega$.

Definition: We say a map $f: \mathbb{C} \to \mathbb{C}$ is *entire* if it is holomorphic on all of \mathbb{C} .

Proposition 4.1. Let $f: \Omega \to \mathbb{C}$ be holomorphic at $z \in \Omega$. Then we may write f as a function of two real variables as, f(x,y) = f(x+iy). This done,

$$f'(z) = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$$

and thus.

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0$$

Definition:

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left[\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right] \quad \text{and} \quad \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left[\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right]$$

Therefore, if f is holomorphic then

$$\frac{\partial f}{\partial z} = f'(z)$$
 and $\frac{\partial f}{\partial \bar{z}} = 0$

Remark 4.1. If we write $f: \Omega \to \mathbb{C}$ in real form i.e. as a function $F: \mathbb{R}^2 \to \mathbb{R}^2$ with F(x,y) = (A(x,y), B(x,y)) and f(x+iy) = A(x,y) + iB(x,y) then,

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left[\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right] = \frac{1}{2} \left[\frac{\partial A}{\partial x} + i \frac{\partial B}{\partial x} + i \frac{\partial A}{\partial y} - \frac{\partial B}{\partial y} \right]$$

Therefore,

$$\frac{\partial f}{\partial \bar{z}} = 0 \iff \frac{\partial A}{\partial x} = \frac{\partial B}{\partial y} \text{ and } \frac{\partial B}{\partial x} = -\frac{\partial A}{\partial y}$$

These are known as the Cauchy-Riemann equations. We will see that satisfying these equations along with some weak regularity is necessary and sufficient for a function to be holomorphic.

Theorem 4.2. Let Ω be a domain and $f:\Omega\to\mathbb{C}$. Then the following are equivalent,

- 1. $f: \Omega \to \mathbb{C}$ is holomorphic.
- 2. f is differentiable with continuous derivative and,

$$\frac{\partial f}{\partial \bar{z}} = 0$$

3. around the boundary of any disc $D \subset \Omega$ we have,

$$\oint_{\partial D} f(z) \, \mathrm{d}z = 0$$

Theorem 4.3. Let Ω be a domain and $f:\Omega\to\mathbb{C}$. Then the following are equivalent,

- 1. $f: \Omega \to \mathbb{C}$ is holomorphic.
- 2. $f \in \mathcal{C}^1(\Omega)$ and

$$\frac{\partial f}{\partial \bar{z}} = 0$$

3. $f \in \mathcal{C}^{1}(\Omega)$ and for $D \subseteq \Omega$ with piecewise $\mathcal{C}^{1}(\Omega)$ boundary we have

$$\oint_{\partial D} f(z) \, \mathrm{d}z = 0$$

4. $\forall B_r(w) \subseteq \Omega$ we have,

$$f(z) = \frac{1}{2\pi i} \oint_{\partial B_r(w)} \frac{f(\zeta)}{\zeta - z} \,\mathrm{d}\zeta$$

for all $z \in B_r(w)$.

5. f is complex analytic: $\forall w \in \Omega : \exists r > 0$ such that whenever |z - w| < r we have,

$$f(z) = \sum_{n=0}^{\infty} a_n (x - w)^n$$

Theorem 4.4 (Cauchy). Let $f:\Omega\to\mathbb{C}$ be holomorphic, for any disc $D\subset\Omega$ and $w\in D^\circ$ we have,

$$f^{(n)}(w) = \frac{n!}{2\pi i} \oint_{\partial D} \frac{f(z)}{(z-w)^{n+1}} dz$$

In particular, the coefficients of the series expansion about w are,

$$a_n = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(z)}{(z-w)^{n+1}} \, \mathrm{d}z$$

Lemma 4.5. For any $z_0 \in \Omega$, either $f \equiv 0$ in a neighborhood of z_0 or we can express $f = (z-z_0)^n u(z)$ for u(z) holomorphic and $u(z) \neq 0$.

Proof. In a neighborhood of z_0 , we can write,

$$f(z) = \sum_{n=0}^{\infty} n_n (z - z_0)^n$$

Either $c_n = 0$ for each n so f = 0 or $c_N \neq 0$ for some n and $c_n - 0$ for n < N. Therefore,

$$f(z) = \sum_{n \ge N}^{\infty} c_n (z - z_0)^n = (z - z_0)^N \left(\sum_{m=0}^{\infty} c_{N+m} (z - z_0)^m \right) = (z - z_0)^N u(z)$$

Furthermore, $u(z_0) = c_N \neq 0$ so there exists a neighborhood of z_0 on which $n(z) \neq 0$.

Proposition 4.6. Let $f: \Omega \to \mathbb{C}$ be holomorphic (and not identically zero) then the set of zeros, $f^{-1}(0)$ is discrete.

Proof. Let f vanish at z_0 . If f were identically zero on some open neighborhood of z_0 then f would be identically zero on Ω . Thus, by the lemma, we can write $f = (z - z_0)^n u(z)$ on some open neighborhood U of z_0 where u(z) is nonvanishing on U. Furthermore, $(z - z_0)^n$ vanishes exactly at z_0 so we have $f^{-1}(0) \cap U = \{z_0\}$ implying that $f^{-1}(0)$ is discrete.

Corollary 4.7. Let f be a nonconstant holomorphic function. Then on any bounded set f has finitely many zeros.

Theorem 4.8 (Liouville). Every bounded entire¹ function is constant.

Proof. Let $f: \mathbb{C} \to \mathbb{C}$ be entire and bounded everywhere by M. Take $w \in \mathbb{C}$ and let C be a circle arround z with radius R. Then applying the Cauchy integral formula,

$$f'(w) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-w)^2} dz = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(w + Re^{i\theta})}{R^2 e^{2i\theta}} R d\theta$$

Therefore,

$$|f'(w)| = \frac{1}{2\pi} \left| \oint_C \frac{f(z)}{(z-w)^2} \, \mathrm{d}z \right| \le \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(w+Re^{i\theta})|}{R^2} R \, \mathrm{d}\theta \le \frac{1}{2\pi} \int_0^{2\pi} \frac{M}{R} \, \mathrm{d}\theta = \frac{M}{R}$$

which goes to zero in the limit $R \to \infty$. Since R is arbitrarily large, f'(w) = 0 so f is constant since it has zero derivative everywhere.

4.2 Meromorphic Functions

Definition: A function $f: \Omega \to \mathbb{C}$ is meromorphic if, near any $z_0 \in \Omega$, it can be written as,

$$f(z) = \sum_{n \ge -N} c_n (z - z_0)^n$$

We call N the order of the pole (assuming that $c_n \neq 0$) and c_{-1} the residue at z_0 . This expansion shows that f must have isolated poles and zeros.

Theorem 4.9. Meromorphic functions $h: \Omega \to \mathbb{C}$ are exactly ratios of holomorphic functions,

$$h(z) = \frac{f(z)}{g(z)}$$

Since g is holomorphic it has isolated zeros and thus h has isolated poles.

 $^{^{1}}$ holomorphic on the entire complex plane

Theorem 4.10 (Residue). Let $f: \Omega \to \mathbb{C}$ be meromorphic and $D \subset \overline{D} \subset \Omega$ be a domain in Ω with piecewise smooth boundary ∂D such that no poles of g lie on ∂D . Then,

$$\oint_{\partial D} f(z) dz = 2\pi i \sum_{p \in D} \operatorname{Res}_{p} f$$

Proof. We can deform the path ∂D to a sum of small circles of radius r surrounding each pole. Since f is holomorphic on the region D minus these circles the two integrals along these paths (whose difference is the integral over the boundary) are equal. Thus,

$$\oint_{\partial D} f(z) dz - 2\pi i \sum_{p \in D} \operatorname{Res}_{p} f = \sum_{p \in D} \left[\oint_{\partial B_{r}(p)} f(p+z) dz - 2\pi i \operatorname{Res}_{p} f \right]$$

$$= \sum_{p \in D} \left[\int_{0}^{2\pi} i \left(f(p+re^{i\theta}) re^{i\theta} - \operatorname{Res}_{p} f \right) d\theta \right]$$

However,

$$\operatorname{Res}_p f = \lim_{z \to p} (z - p) f(z) = \lim_{h \to 0} f(p + h) h$$

and thus, for each $\epsilon > 0$ we can choose some δ such that $r < \delta$ implies that,

$$|f(z+rr^{i\theta})re^{i\theta} - \operatorname{Res}_p f| < \epsilon$$

Therefore,

$$\left| \oint_{\partial D} f(z) \, dz - 2\pi i \sum_{p \in D} \operatorname{Res}_{p} f \right| \leq \sum_{p \in D} \left[\int_{0}^{2\pi} \left| f(p + re^{i\theta}) re^{i\theta} - \operatorname{Res}_{p} g \right| d\theta \right]$$

$$\leq \sum_{p \in D} \int_{0}^{2\pi} \epsilon = 2\pi N \epsilon$$

where N is the number of poles. Since ϵ is arbitrary,

$$\oint_{\partial D} f(z) \, \mathrm{d}z = 2\pi i \sum_{p \in D} \mathrm{Res}_p f$$

Theorem 4.11. Let $f: \Omega \to \mathbb{C}$ be meromorphic and $D \subset \overline{D} \subset \Omega$ be a domain in Ω with piecewise smooth boundary ∂D such that no poles of g lie on ∂D . Then,

$$\frac{1}{2\pi i} \oint_{\partial D} \frac{f'(z)}{f(z)} dz = (\# \text{ of zeros}) - (\# \text{ of poles})$$

Proof. At each point $p \in D$ we can expand,

$$f(z) = (z - p)^N u(z)$$

where u is holomorphic and nonvanishing. Therefore,

$$\frac{f'(z)}{f(z)} = \frac{\mathrm{d}}{\mathrm{d}z} \log f(z) = \frac{\mathrm{d}}{\mathrm{d}z} \left[(z - p)^N u(z) \right] = \frac{N}{x - p} + \frac{u'(z)}{u(z)}$$

Thus when f has either a zero (N > 0) or a pole (N < 0) the logarithmic derivative has residue,

$$\operatorname{Res}_p\left(\frac{f'}{f}\right) = N$$

Therefore the result holds by the residue theorem.

Corollary 4.12. Let $f: \Omega \to \mathbb{C}$ be holomorphic take $w \in \mathbb{C}$, then the number of solutions in D to the equation f(z) - w = 0 is equal to,

$$\#\{z \in D \mid f(z) = w\} = \oint_{\partial D} \frac{f'(z)}{f(z) - w} dz$$

Proof. Since f-w is holomorphic on Ω is has no poles. Therefore, the only residues are from roots of f-w i.e. solutions to f(z)-w=0. As above, the integral of the logarithmic derivative counts the number of such poles.