Unit 015 Matrix inverse laws

Slide 01: In this unit, we will see some laws involving the inverse of a matrix.

Slide 02: The first law is commonly known as the cancellation law, which you may find familiar with real numbers operation. If A is an invertible square matrix and AB_1 is equal to AB_2 , then we can conclude that B_1 is equal to B_2 .

(#)

To see this, note that since A is invertible, we can write down the matrix A^{-1} and by premultiplying the inverse of A on both sides of the equation,

(#)

we have IB_1 on the left and IB_2 on the right. This is essentially the conclusion that we want, which is $B_1 = B_2$.

(#)

In a similar manner, if A is an invertible matrix such that C_1A is equal to C_2A , then we must have $C_1 = C_2$.

(#)

Again, this conclusion can be obtained by post-multiplying A^{-1} on both sides of the equation,

(#)

which gives $C_1I = C_2I$ and the result follows.

Slide 03: Note that this ability to 'cancel A on both sides of the equation is usually not valid when A is not invertible.

(#)

For example, this simple 2×2 matrix has already been shown in an earlier unit, that it is singular.

(#)

With these two matrices B_1 and B_2 , we can check that even though AB_1 is equal to AB_2 , B_1 is clearly different from B_2 .

Slide 04: Let us define what is known as the transpose of a matrix. Suppose A is a $m \times n$ matrix with entries a_{ij} .

(#)

The transpose of \boldsymbol{A} , denoted by \boldsymbol{A}^T is a $n \times m$ matrix whose (i, j)-entry is actually a_{ji} . In other words, the (i, j)-entry in \boldsymbol{A}^T is the (j, i)-entry in \boldsymbol{A} .

(#)

Thus, if \boldsymbol{A} is a matrix with m rows and n columns, then \boldsymbol{A}^T will be a matrix with n rows and m columns.

Slide 05: For example, this matrix \mathbf{A} is 3×5 , its transpose would be 5×3 . You should note that to write down \mathbf{A}^T , you just need to write the rows of \mathbf{A} as columns. So the first row of \mathbf{A} becomes the first column of \mathbf{A}^T and so on.

(#)

What about this matrix \mathbf{B} ? Note that \mathbf{B} is a square matrix of order 5 thus its transpose will also be a square matrix of order 5.

(#)

In fact, when you write down the matrix B^T , you will have the following matrix and careful observation will reveal that B and B^T are actually the same matrix. You may recall that we have defined matrices with such a property in an earlier unit.

Slide 06: Symmetric matrices are square matrices with the property that every (i, j)-entry is the same as the (j, i)-entry. Now that we have learnt the definition of the transpose of matrix, we can now define a square matrix \boldsymbol{A} as symmetric if and only if \boldsymbol{A} and \boldsymbol{A}^T are the same.

Slide 07: Let us discuss some results on transpose. Suppose \boldsymbol{A} is a $m \times n$ matrix. (#)

It is clear that if we transpose A^T , we obtain back the matrix A.

(#)

The transpose of the sum of two matrices \boldsymbol{A} and \boldsymbol{B} is the sum of their respective transposes.

(#)

If we have a scalar multiple of A, the transpose can be done before or after multiplying a to the matrix. The result would be exactly identical.

(#)

If \boldsymbol{B} is a $n \times p$ matrix, then we can compute the product $\boldsymbol{A}\boldsymbol{B}$. The transpose of $\boldsymbol{A}\boldsymbol{B}$ is the product $\boldsymbol{B}^T\boldsymbol{A}^T$. So in other words, the transpose of a product is equal to the product of the respective transposes, but you must remember to reverse the order of writing the matrices. Thus when \boldsymbol{B} is postmultiplied to \boldsymbol{A} and the transpose is taken, the result is to have \boldsymbol{B}^T premultiplied to \boldsymbol{A}^T .

Slide 08: Let us see a few more results. The first one here states that if A is invertible, then for any non zero scalar c, cA is also invertible. In fact, the inverse of cA is $\frac{1}{c}A^{-1}$. To prove this result

(#)

We have a candidate for the inverse of $c\mathbf{A}$ which we will use to test by pre and post multiplying it to $c\mathbf{A}$. On the left, we pre-multiply $\frac{1}{c}\mathbf{A}^{-1}$ to $c\mathbf{A}$ while on the right, we post-multiply.

(#)

Since $\frac{1}{c}$ and c are both constants, we can take them out and compute their product seperately.

(#)

It is easy to see that in both cases, we are left with I, since both $A^{-1}A$ and AA^{-1} are both equal to I.

Slide 09: The next result states that if A is invertible, then A^T would be invertible and the inverse of A^T is the transpose of A^{-1} .

(#)

Again, we have a candidate to be tested, which is the transpose of A^{-1} . Let us pre and post multiply the transpose of A^{-1} to A^{T} , as shown here.

(#)

Using a property we saw earlier in this unit, the product of two transposes can be rewritten as the transpose of the product, with the order reversed. So we have $\mathbf{A}\mathbf{A}^{-1}$ on the left side and $\mathbf{A}^{-1}\mathbf{A}$ on the right.

(#)

In both cases, this results in I and we are done.

Slide 10: The next result states that if A is invertible, then A^{-1} is also invertible. In fact the pair of matrices are inverses of each other.

(#)

Once again, we can pre and post multiply the candidate, which is A to A^{-1} .

(#)

It is noted immediately that we have I for both cases.

Slide 11: Next, if A and B are both invertible matrices of the same size, then the product AB will also be invertible and the inverse of AB is $B^{-1}A^{-1}$. Note that this result means that the product of invertible matrices will result in another invertible matrix.

(#)

The candidate to be tested here is $B^{-1}A^{-1}$. We will pre and post multiply this candidate to AB.

(#)

Due to the commutative law for matrix multiplication, we can group the matrix products as follows. On the left, we have $A^{-1}A$ and on the right we have BB^{-1} .

(#)

This simplifies the expression on the left to be $B^{-1}IB$ and the expression on the right to be AIA^{-1} .

(#)

In both cases, it is easy to see that we have I as the result.

- Slide 12: As an extension to the previous result, if we have a collection of invertible matrices A_1 , A_2 , and so on till A_k , all of the same size, then the product of these matrices will be invertible whose inverse is precisely the product of their inverses, only with the order reversed.
- Slide 13: Let us now define the powers of invertible matrices. We have seen how A^n is defined in an earlier unit.

(#)

- If \mathbf{A} is an invertible square matrix, then by what we have established earlier, the matrix \mathbf{A}^n will also be invertible, whose inverse is simply the product of n copies of \mathbf{A}^{-1} . We thus define \mathbf{A}^{-n} to be the product of n copies of \mathbf{A}^{-1} .
- Slide 14: Consider the following example where A is a 2×2 matrix which is invertible. You can verify that the inverse of A, given here, is indeed the correct one.

(#)

The square of \boldsymbol{A} is computed as such.

(#)

By our definition A^{-2} is the product of A^{-1} with A^{-1} , which gives this matrix.

(#)

We can now verify that A^{-2} is indeed the inverse of A^2 .

Slide 15: Let us summarise this unit.

(#)

We established some laws involving the inverse of a matrix.

(#)

We defined what is called the transpose of a matrix and some related laws.

(#)

Lastly, we defined the inverse of the powers of an invertible matrix.