Esercizi Termologia - Dilatazioni

(se non indicato, usare i coefficienti di dilatazione riportati nelle dispense).

1) T è un tubo fisso nel punto A. Dall'altra parte appoggia su un tondino S di diametro $2,0\,mm$. Dal punto A al punto d'appoggio ci sono $93,5\,cm$. Il tubo ha la temperatura di $17^{\circ}C$. Se nel tubo si fa passare vapore acqueo $(98^{\circ}C)$ l'indice legato al tondino ruota di 50° . Calcolare il coefficiente di dilatazione del tubo

(Nota: S è libero di muoversi sull'appoggio).

$$\left[23\cdot10^{-6}\frac{1}{{}^{\circ}C}\right]$$

 $[25,3^{\circ}C]$

- 3) Una stanga di vetro $\left(\alpha_{\text{vetro}}=3,2\cdot 10^{-6}\frac{1}{^{\circ}C}\right)$ e un regolo (righello) di ottone graduato a $0^{\circ}C$ sono lunghi $1000,00\,mm$. Che lunghezza avrà la stanga di vetro "misurata" con il regolo di ottone se entrambi sono portati a $100^{\circ}C$?
- 4) Alla temperatura di $20,0^{\circ}C$ un tubo di alluminio ha il diametro esterno di 12,00cm, mentre un anello di acciaio ha il diametro interno di 12,05cm. A che temperatura devono essere riscaldati entrambi affinché l'anello non scorra più sul tubo? [$366^{\circ}C$]
- 5) Un lingotto d'oro $\left(\alpha_{\text{Au}} = 14, 3 \cdot 10^{-6} \frac{1}{^{\circ}C}\right)$ ha la massa di $25,000 \, kg$; la sua densità, alla temperatura di $20,0^{\circ}C$, è di $19,29 \, \frac{kg}{dm^3}$. Calcolare la variazione relativa della sua densità se si porta il lingotto a $40,0^{\circ}C$. $\left[-0,086\%\right]$
- 6) Un serbatoio di un'auto ha la capienza di $55,0\,dm^3$. Alla temperatura di $15,2^{\circ}C$ esso è pieno al 99,0%.
 - a) Calcolare fino a che temperatura può riscaldarsi prima di traboccare.
 - b) Di quanto cambia la risposta alla domanda a) se si tiene conto anche della dilatazione del serbatoio $\left(\alpha=12,0\cdot10^{-6}\frac{1}{\circ C}\right)$?