CS1340: DISCRETE STRUCTURES II

QUIZ I

Instructions

- Answer all the questions
- Total Marks: 15 marks Max time: 1 hour 25 minutes.
- (1) We defined a permutation of a set of distinct objects as an ordered arrangement of these objects. In algebra, there is an equivalent definition for permutation: a permutation of a set S is defined as a bijection from S to itself. For example, consider the set $S = \{1, 2, 3\}$ and we can represent the permutation (3, 2, 1) as a bijective function, $\alpha: S \to S$, $\alpha(1) = 3$, $\alpha(2) = 2$, $\alpha(3) = 1$.

Prove that if n is odd then for any permutation α of the set $\{1, 2, ..., n\}$ the product $P(\alpha) = (1 - \alpha(1))(2 - \alpha(2))...(n - \alpha(n))$ is necessarily even.

(10 marks)

Answer: Suppose that n = 2m + 1. Let $Odd = \{i : \pi(i) \text{ is odd}\}$. The size of Odd is m + 1. There are only m even integers in $1, 2, \ldots, n$. So there must be at least one $i \in Odd$ such that i is odd – Pigeon Hole Principle. Then $\pi(i) - i$ is even.

(2) Show that $\mathbb{N} \times \mathbb{N}$ is countably infinite. You can assume that \mathbb{N} does not contain 0.

Hint: Define a function that maps $(n,m) \in \mathbb{N} \times \mathbb{N}$ to $2^{n-1}(2m-1)$.

(5 marks)

Answer: Show that $\phi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $(n,m) \mapsto 2^{n-1}(2m-1)$ is bijective. To prove One-one (injective): Assume that $\phi(n_1, m_1) = \phi(n_2, m_2)$, i.e. $2^{n_1-1}(2m_1-1) = 2^{n_2-1}(2m_2-1)$. Since $2m_1-1$ and $2m_2-1$ are odd, the powers of 2 are equal, $2^{n_1-1} = 2^{n_2-1}$. This implies $n_1 = n_2$. And this forces $m_1 = m_2$.

To prove onto (surjectivity): We can factorize any $x \in \mathbb{N}$ such that it is a unique product of primes (Fundamental Theorem of Arithmetic). Let $x = p_1^{i_1} p_2^{i_2} \cdots p_k^{i_k}$, where p_i s are distinct primes and $i_j \in \mathbb{N} \cup \{0\}$. Lets collect all the powers of 2. There is only one even prime, w.l.o.g. let us assume $p_1 = 2$. Then $p_2^{i_2} \cdots p_k^{i_k}$ are a product of odd primes and can be written as

2 QUIZ I

(2l-1) for some $l \in \mathbb{N}$. Thus we have $x = 2^{i_1}(2l-1)$. Thus x is the image of $\phi(i,l)$ and ϕ is surjective.

Since we have a bijective function from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$, $\mathbb{N} \times \mathbb{N}$ is countably infinite.

March 1, 2019; Dept of CSE, IIT Hyderabad