Q1: Are lake and terrestrial primary productivity coherent?

Jonathan Walter, Grace Wilkinson, Rachel Fleck, Michael Pace 4/17/2019

This document organizes for openness and reproducibility analyses of the temporal coherence of interannual variation in lake primary productivity with terrestrial primary productivity in the landscape surrounding the lake.

Data import

```
Data produced in 'ms1_prep.Rmd' are loaded.
load("~/Box Sync/NSF EAGER Synchrony/Data/RData files/ms1_analysis_inprogress1_v10873_2.RData")
any(sapply(analysislakes$lakedata, function(x){any(is.infinite(x))}))
## [1] FALSE
any(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))
## [1] TRUE
which(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))
## 7545 7790 7970 8271
     70
          72
               76
                    77
analysislakes$lakeinfo[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))})),]
        lagoslakeid
##
                            gnis_name nhd_lat nhd_long lake_area_ha
## 7445
               7545
                           Alton Pond 41.44294 -71.71835
                                                              17.843701
               7790
                        Watchaug Pond 41.38381 -71.69161
## 7689
                                                            232.391660
## 7867
               7970
                          Yawgoo Pond 41.51113 -71.57300
                                                              60.724131
## 8165
               8271 Meadow Brook Pond 41.44110 -71.69034
                                                              9.808244
##
        lake_perim_meters nhd_ftype nhd_fcode hu4_zoneid hu12_zoneid
## 7445
                 3746.121
                                 390
                                         39004
                                                   HU4_10
                                                           HU12_16347
## 7689
                 8397.096
                                 390
                                                   HU4_10
                                         39010
                                                           HU12_17513
## 7867
                 3195.857
                                 390
                                         39010
                                                   HU4 10
                                                           HU12_17512
## 8165
                 2030.864
                                 390
                                         39004
                                                   HU4_10
                                                           HU12_17513
##
        state_zoneid elevation_m start
## 7445
             State_8
                         14.3702
                                  1989 2010
## 7689
             State_8
                         11.1300
                                  1989 2010
## 7867
             State_8
                         36.1000
                                  1989 2010
## 8165
                         16.2900
                                  1989 2010
             State_8
# image(accndvi)
# points(lakepts.prj[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))})),])
dbuff[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))]
```

[1] 2500.000 4939.589 2500.000 2500.000

```
analysislakes$lakeinfo<-analysislakes$lakeinfo[!sapply(analysislakes$lakedata, function(x){any(is.na(x)
analysislakes$lakedata<-analysislakes$lakedata[!sapply(analysislakes$lakedata, function(x){any(is.na(x)
analysislakes$lakeinfo$tslength<-analysislakes$lakeinfo$end-analysislakes$lakeinfo$start+1
# analysislakes$lakedata<-analysislakes$lakedata[!analysislakes$lakeinfo$tslength < 20]
\# analysis lakes \ lake in fo \ -analysis lakes \ lake in fo \ lake in fo \ ts length \ 20, \ 1
source("~/GitHub/AquaTerrSynch/AnalysisCode/bandtest_coh.R")
tsranges < -rbind(c(2,4),c(4,Inf),c(2,Inf))
coh.chlaXaccndvi<-NULL
#coh.chlaXmaxndvi<-NULL
for(lind in 1:length(analysislakes$lakedata)){
   lakedat.ii<-cleandat(analysislakes$lakedata[[lind]], as.numeric(colnames(analysislakes$lakedata[[lind
   chlaXaccndvi<-coh(lakedat.ii[1,], lakedat.ii[2,], as.numeric(colnames(analysislakes$lakedata[[lind]])
                                      norm="powall", sigmethod="fast", nrand=10000)
   chlaXmaxndvi<-coh(lakedat.ii[1,], lakedat.ii[3,], as.numeric(colnames(analysislakes$lakedata[[lind]]
                                         norm="powall", sigmethod="fast", nrand=10000)
   for(rind in 1:nrow(tsranges)){
        chlaXaccndvi<-bandtest.coh(chlaXaccndvi, tsranges[rind,])</pre>
        #chlaXmaxndvi<-bandtest.coh(chlaXmaxndvi, tsranges[rind,])</pre>
   coh.chlaXaccndvi<-rbind(coh.chlaXaccndvi, c(t(as.matrix(chlaXaccndvi$bandp[,3:5]))))</pre>
   coh.chlaXmaxndvi<-rbind(coh.chlaXmaxndvi, c(t(as.matrix(chlaXmaxndvi$bandp[,3:5]))))
}
coh.chlaXaccndvi<-as.data.frame(coh.chlaXaccndvi)</pre>
#coh.chlaXmaxndvi<-as.data.frame(coh.chlaXmaxndvi)</pre>
colnames(coh.chlaXaccndvi)<-paste0("accndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",
\#colnames(coh.chlaXmaxndvi) < -paste0("maxndvi", c("p.ts1", "phi.ts1", "coh.ts1", "p.ts2", "phi.ts2", "coh.ts2", "coh.t
coh.chlaXaccndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
\#coh.\,chlaX maxndvi\$lagoslakeid <-analysislakes\$lakeinfo\$lagoslakeid
#looking for especially coherent lakes did not return easy-to-interpret examples. Proceeding with simul
tmax=50
res=0.1
tt=seq(1,tmax,res)
p1<-2
sig1<-sin(seq(0,2*pi*tmax/p1,length.out=length(tt)))</pre>
sig2<-sin(seq(0,2*pi*tmax/p2,length.out=length(tt)))</pre>
comb1 < -sig1 + 0.7 * sig2 + 3.5
comb2 < -sig1 + -0.7 * sig2
laymat<-matrix(1,nrow=2,ncol=3)</pre>
```

```
laymat[2,]<-2:4
sig3 < -sig2[tt < = 20]
sig4 < -sig3 * 0.9
sig5 < -sin(seq(-pi/2, 2*pi*20/p2-(pi/2), length.out=length(tt[tt<=20])))
sig6 < -sig3 * -1
tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1 CoherenceSpatialVariation/fig1 pedagogical.tif", uni
     res=300, width=6.5, height=4)
layout(laymat)
par(mar=c(1.5,1.5,2,1.5), mgp=c(1,1,0), oma=c(2,2,0,0))
plot(NA,NA,ylim=c(-2,5.2),xlim=range(tt), xlab="", ylab="", xaxt="n",yaxt="n")
lines(tt,comb1,lwd=2)
lines(tt,comb2,lwd=2,col="red")
axis(1, at=c(0,10,20,30,40,50), labels=NA)
axis(2, at=c(-1,1.5,4), labels=NA)
mtext("Timescale specific relationship",3,line=0.25)
text(0.4,4.9,"a)",cex=1.2)
plot(NA,NA,ylim=c(-1,1),xlim=c(0,20),xaxt="n",yaxt="n",xlab="",ylab="")
axis(1, at=c(0,10,20), labels=NA)
axis(2, at=c(-1,0,1), labels=NA)
lines(tt[tt<=20],sig3,lwd=2)
lines(tt[tt<=20],sig4,lwd=2,col="red")</pre>
mtext(expression(paste(phi," = 0")))
text(1,0.9,"b)",cex=1.2)
plot(NA,NA,ylim=c(-1,1),xlim=c(0,20),xaxt="n",yaxt="n",xlab="",ylab="")
axis(1, at=c(0,10,20), labels=NA)
axis(2, at=c(-1,0,1), labels=NA)
lines(tt[tt<=20],sig3,lwd=2)</pre>
lines(tt[tt<=20],sig5,lwd=2,col="red")</pre>
mtext(expression(paste(phi," = ",pi,"/2")))
text(1,0.9,"c)",cex=1.2)
plot(NA,NA,ylim=c(-1,1),xlim=c(0,20),xaxt="n",yaxt="n",xlab="",ylab="")
axis(1, at=c(0,10,20), labels=NA)
axis(2, at=c(-1,0,1), labels=NA)
lines(tt[tt<=20],sig3,lwd=2)</pre>
lines(tt[tt<=20],sig6,lwd=2,col="red")</pre>
mtext(expression(paste(phi," = ",pi)))
text(1,0.9,"d)",cex=1.2)
mtext("Time", 1, outer=T)
mtext("Signal", 2, outer=T)
dev.off()
## pdf
```

3

##

hist(coh.chlaXaccndvi\$accndvicoh.ts1, main="Accumulated NDVI, short timescales", xlab="Coherence", ylab

Accumulated NDVI, short timescales

#hist(coh.chlaXmaxndvi\$maxndvicoh.ts1, main="Maximum NDVI, short timescales", xlab="Coherence", ylab="F
quantile(coh.chlaXaccndvi\$accndvicoh.ts1)

```
## 0% 25% 50% 75% 100%
## 0.06293777 0.26880179 0.36586451 0.49214074 0.92134749

#quantile(coh.chlaXmaxndvi$maxndvicoh.ts1)

alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts1<alpha)/nrow(coh.chlaXaccndvi)
```

[1] 0.06870229

#sum(coh.chlaXmaxndvi\$maxndvip.ts1<alpha)/nrow(coh.chlaXmaxndvi)</pre>

print(cbind(coh.chlaXaccndvi\$lagoslakeid, coh.chlaXaccndvi\$accndvip.ts1)[coh.chlaXaccndvi\$accndvi\$accndvi

```
[,1]
                      [,2]
   [1,]
          2851 0.03249675
##
   [2,]
          3370 0.00009999
          6075 0.04199580
   [3,]
   [4,]
          6547 0.00809919
   [5,]
          7523 0.02039796
##
   [6,] 28836 0.00679932
   [7,] 72641 0.00629937
    [8,] 133500 0.02809719
   [9,]
          4909 0.03279672
```

```
print(cbind(coh.chlaXaccndvi$lagoslakeid, coh.chlaXaccndvi$accndvip.ts2)[coh.chlaXaccndvi$accndvip.ts2<
##
           [,1]
                      [,2]
##
   [1,]
           3370 0.01429857
##
   [2,]
           3834 0.00849915
##
   [3,]
           4243 0.00009999
##
   [4,]
           4416 0.01069893
   [5,]
           4434 0.02659734
##
##
   [6,]
           5895 0.02249775
##
    [7,]
           6199 0.03799620
##
   [8,]
           7523 0.02549745
  [9,]
           8369 0.03119688
## [10,] 39489 0.04539546
## [11,] 115040 0.00779922
## [12,] 133500 0.02279772
## [13,] 14815 0.00349965
## [14,] 102115 0.00289971
           5463 0.03079692
## [15,]
cor(coh.chlaXaccndvi$accndvicoh.ts1,coh.chlaXaccndvi$accndvicoh.ts2)
## [1] 0.02535991
# print(coh.chlaXaccndvi$accndviphi.ts1[coh.chlaXaccndvi$accndvip.ts1<alpha]/pi) #only pattern is that
# print(coh.chlaXmaxndvi$maxndviphi.ts1[coh.chlaXmaxndvi$maxndvip.ts1<alpha]/pi)
phicls<-c(-1,-.75,-0.25,0.25,0.75,1)
\# hist (coh.chlaXaccndvi\$accndviphi.ts1[coh.chlaXaccndvi\$accndvip.ts1<0.2]/pi, \#main="Accumulated NDVI, s
rose(coh.chlaXaccndvi$accndviphi.ts1[coh.chlaXaccndvi$accndvip.ts1<0.3], unit="radian",
```

coh.chlaXaccndvi\$accndviphi.ts1[coh.chlaXaccndvi\$accndvip.ts1 <

breaks=seq(0,2*pi,length.out=16))

#hist(coh.chlaXmaxndvi\$maxndviphi.ts1[coh.chlaXmaxndvi\$maxndvip.ts1<0.2]/pi, main="Maximum NDVI, short #long timescales
hist(coh.chlaXaccndvi\$accndvicoh.ts2, main="Accumulated NDVI, long timescales", xlab="Coherence", ylab=

Accumulated NDVI, long timescales


```
#hist(coh.chlaXmaxndvi$maxndvicoh.ts2, main="Maximum NDVI, long timescales", xlab="Coherence", ylab="Fr
quantile(coh.chlaXaccndvi$accndvicoh.ts2)
##
           0%
                     25%
                                50%
                                            75%
                                                      100%
## 0.07654579 0.37832224 0.53015425 0.73194394 0.95309993
#quantile(coh.chlaXmaxndvi$maxndvicoh.ts2)
alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts2<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.1145038
#sum(coh.chlaXmaxndvi$maxndvip.ts2<alpha)/nrow(coh.chlaXmaxndvi)</pre>
print(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<alpha]/pi)</pre>
  [1] 0.73992662 -0.90124264 0.53888310 0.27521830 -0.95606597
        0.52712388 -0.68599147 -0.91773670 -0.29662433 -0.40541240
## [11] -0.22793834 -0.04840174 -0.57269988 -0.52827164 0.88106993
#print(coh.chlaXmaxndvi$maxndviphi.ts2[coh.chlaXmaxndvi$maxndvip.ts2<alpha]/pi)</pre>
# hist(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<0.2]/pi, main="Accumulated NDVI, l
rose(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<0.3], unit="radian",
     breaks=seq(0,2*pi,length.out=16))
```

coh.chlaXaccndvi\$accndviphi.ts2[coh.chlaXaccndvi\$accndvip.ts2 <


```
#hist(coh.chlaXmaxndvi$maxndviphi.ts1[coh.chlaXmaxndvi$maxndvicoh.ts2>0.6]/pi, main="Maximum NDVI, shor
tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig2_distributions_2019103
     res=300, width=6.5, height=6.5)
par(mar=c(3,3,2,1),mgp=c(1.7,0.5,0),mfrow=c(2,2),cex.main=0.9)
hist(coh.chlaXaccndvi$accndvicoh.ts1, main="Short timescale coherence", xlab="Coherence", ylab="Frequen
text(par()$usr[1]+.05,0.95*par()$usr[4],"a)")
hist(coh.chlaXaccndvi$accndvicoh.ts2, main="Long timescale coherence", xlab="Coherence", ylab="Frequenc
text(par()$usr[1]+.05,0.95*par()$usr[4],"b)")
par(mar=c(1,1,2,1))
rose(coh.chlaXaccndvi$accndviphi.ts1[coh.chlaXaccndvi$accndvip.ts1<0.3], unit="radian", col="lightgrey"</pre>
     breaks=c(0,pi/4,pi/2,3*pi/4,pi,5*pi/4,3*pi/2,7*pi/4,2*pi), main="Short timescale phases",
       at=c(0,pi/4,pi/2,3*pi/4,pi,-3*pi/4,-pi/2,-pi/4))
text(0.9*par()$usr[1],0.95*par()$usr[4],"c)")
rose(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<0.3], unit="radian", col="lightgrey"
     breaks=c(0,pi/4,pi/2,3*pi/4,pi,5*pi/4,3*pi/2,7*pi/4,2*pi), main="Long timescale phases",
     at=c(0,pi/4,pi/2,3*pi/4,pi,-3*pi/4,-pi/2,-pi/4))
text(0.9*par()$usr[1],0.95*par()$usr[4],"d)")
dev.off()
## pdf
##
states<-readOGR("~/Box Sync/NSF EAGER Synchrony/Data/statesp020.shp")</pre>
## OGR data source with driver: ESRI Shapefile
## Source: "/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/statesp020.shp", layer: "statesp020
## with 2895 features
```

Integer64 fields read as strings: STATESP020 DAY_ADM YEAR_ADM

It has 9 fields

```
getstates<-c("Minnesota", "Iowa", "Wisconsin", "Illinois", "Missouri", "Michigan", "Indiana", "Ohio", ".
lagosstates<-states[states@data$STATE %in% getstates,]

plot(lagosstates, main="Lakes selected for analysis")
points(analysislakes$lakeinfo$nhd_long, analysislakes$lakeinfo$nhd_lat, pch=16, cex=1, col="blue")</pre>
```

Lakes selected for analysis


```
cohplotdata<-left_join(analysislakes$lakeinfo, coh.chlaXaccndvi, by="lagoslakeid")
pal<-viridis(100)
par(mar=c(1,0,2,0))
plot(lagosstates, main="Lakes by short timescale coherence")
par()$usr</pre>
```

```
## [1] -98.49241 -65.70056 35.45947 49.92124
```

points(cohplotdata\$nhd_long, cohplotdata\$nhd_lat, pch=16, cex=1, col=pal[round(cohplotdata\$accndvicoh.t
colorbar.plot(x=mean(par("usr")[1:2]),y=par("usr")[3],strip=1:100,col=pal,horizontal = T)

Lakes by short timescale coherence

plot(lagosstates, main="Lakes by long timescale coherence")
points(cohplotdata\$nhd_long, cohplotdata\$nhd_lat, pch=16, cex=1, col=pal[round(cohplotdata\$accndvicoh.t
colorbar.plot(x=mean(par("usr")[1:2]),y=par("usr")[3],strip=1:100,col=pal,horizontal = T)

Lakes by long timescale coherence


```
laymat=matrix(1,nrow=2,ncol=13)
laymat[2,]<-2
laymat[,13]<-3
tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig3_coherencemap.tif", un
     res=300, width=6.5, height=7.5)
layout(laymat)
par(mar=c(0,0,1.5,0))
plot(lagosstates, main="Short timescale coherence")
points(cohplotdata$nhd_long, cohplotdata$nhd_lat, pch=16, cex=1.5, col=pal[round(cohplotdata$accndvicoh
text(0.99*par()$usr[1],0.99*par()$usr[4],"a)",cex=1.5)
plot(lagosstates, main="Long timescale coherence")
points(cohplotdata$nhd_long, cohplotdata$nhd_lat, pch=16, cex=1.5, col=pal[round(cohplotdata$accndvicoh
text(0.99*par()$usr[1],0.99*par()$usr[4],"b)",cex=1.5)
par(mar=c(5,1,5,1))
image(matrix(1:100,nrow=1),col=pal,xaxt="n",yaxt="n")
axis(2,at=seq(0,1,0.2))
dev.off()
## pdf
##
dt<-lagosne_load("1.087.3")
```

```
dt.conn<-dt$buffer500m.conn
dt.conn<-dt.conn[,!grepl("sum_lengthm",colnames(dt.conn))]</pre>
dt.conn<-dt.conn[,colnames(dt.conn)!="buffer500m_nhdid"]
dt.chag<-dt$hu12.chag
dt.chag<-dt.chag[,!grepl("_min",colnames(dt.chag))]</pre>
dt.chag<-dt.chag[,!grepl(" max",colnames(dt.chag))]</pre>
dt.chag<-dt.chag[,!grepl("_ha",colnames(dt.chag))]</pre>
dt.chag<-dt.chag[,!colnames(dt.chag)=="borderhu12s"]</pre>
dt.chag$hu12_dep_no3_tavg_mean<-rowMeans(dt.chag[,grepl("hu12_dep_no3",colnames(dt.chag)) &
                                                     grepl("_mean",colnames(dt.chag))])
dt.chag$hu12_dep_no3_tavg_std<-rowMeans(dt.chag[,grepl("hu12_dep_no3",colnames(dt.chag)) &
                                                     grepl("_std",colnames(dt.chag))])
dt.chag$hu12_dep_so4_tavg_mean<-rowMeans(dt.chag[,grepl("hu12_dep_so4",colnames(dt.chag]) &
                                                      grepl("_mean", colnames(dt.chag))])
dt.chag$hu12_dep_so4_tavg_std<-rowMeans(dt.chag[,grepl("hu12_dep_so4",colnames(dt.chag)) &
                                                      grepl("_std", colnames(dt.chag))])
dt.chag$hu12_dep_totaln_tavg_mean<-rowMeans(dt.chag[,grep1("hu12_dep_totaln",colnames(dt.chag)) &
                                                         grepl("_mean", colnames(dt.chag))])
dt.chag$hu12_dep_totaln_tavg_std<-rowMeans(dt.chag[,grepl("hu12_dep_totaln",colnames(dt.chag)) &
                                                         grepl("_std", colnames(dt.chag))])
dt.chag(-dt.chag[,!(grepl("hu12_dep",colnames(dt.chag))) & grepl("_19",colnames(dt.chag)))]
dt.chag<-dt.chag[,!(grepl("hu12_dep",colnames(dt.chag)) & grepl("_20",colnames(dt.chag)))]
dt.chag<-dt.chag[,!(grepl("_std",colnames(dt.chag)))]</pre>
dt.chag<-dt.chag[,!grepl("surficialgeology",colnames(dt.chag))]</pre>
dt.geo<-dt$lakes.geo
dt.geo<-dt$lakes.geo[,!colnames(dt.geo) %in% c("state_zoneid","iws_zoneid","edu_zoneid","county_zoneid"
dt.geo<-dt.geo[,!grepl("_count",colnames(dt.geo))]</pre>
dt.lulc<-dt$hu12.lulc
dt.lulc<-dt.lulc[,!grepl("_ha_",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,!grepl("_nlcd1992_",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,!grep1("_nlcd2006_",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,!grepl("_nlcd2001_",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,colnames(dt.lulc)!="hu12_damdensity_pointsperha"]
dt.lulc<-dt.lulc[,colnames(dt.lulc)!="hu12_damdensity_pointcount"]</pre>
dt.lulc<-dt.lulc[,colnames(dt.lulc)!="hu12_roaddensity_sum_lengthm"]</pre>
dt.lulc<-dt.lulc[,!grepl("_min",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,!grepl("_max",colnames(dt.lulc))]</pre>
dt.lulc<-dt.lulc[,!grepl("_std",colnames(dt.lulc))]</pre>
depth<-lagosne_select(table="lakes_limno", vars=c("lagoslakeid", "maxdepth"))</pre>
depth<-depth[depth$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,] #use max depth because it's mo
#qrowing season Chlorophyll-a
chla<-lagosne_select(table="epi_nutr", vars=c("lagoslakeid","samplemonth","chla"))</pre>
chla<-chla[chla$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,]
gs.chla<-chla[chla$samplemonth %in% 5:9,]
avg.chla<-aggregate(chla ~ lagoslakeid, data=gs.chla, FUN=mean, na.rm=T)
```

```
#Chlorophyll-a TSI class
\#TSI(CHL) = 9.81 ln(CHL) + 30.6
tsi.chl<-data.frame(lagoslakeid=avg.chla$lagoslakeid, tsi=9.81 * log(avg.chla$chla) + 30.6)
tsi.chl$tsi.cat<-rep("lake",nrow(tsi.chl))</pre>
tsi.chl$tsi.cat[tsi.chl$tsi < 40]<-"oligotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=40 & tsi.chl$tsi < 50]<-"mesotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=50 & tsi.chl$tsi < 70]<-"eutrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >= 70] <-"hypereutrophic"
#CV of terrestrial NDVI
cv.accndvi<-NULL
for(lake in 1:length(analysislakes$lakedata)){
  tmp<-analysislakes$lakedata[[lake]] [rownames(analysislakes$lakedata[[lake]])=="avhrrdata",]</pre>
 cv.accndvi<-c(cv.accndvi, sd(tmp)/mean(tmp))</pre>
 # rm(tmp)
}
cv.accndvi<-data.frame(lagoslakeid=as.numeric(names(analysislakes$lakedata)), cv.accndvi=cv.accndvi)
#shoreline development ratio
sdev<-analysislakes$lakeinfo$lake_perim_meters/(2*sqrt(pi*analysislakes$lakeinfo$lake_area_ha*10000))
shoredev<-data.frame(lagoslakeid=analysislakes$lakeinfo$lagoslakeid,shoredev=sdev)</pre>
preds<-analysislakes$lakeinfo[,colnames(analysislakes$lakeinfo) %in% c("lagoslakeid", "end", "start")]
preds$tslength<-preds$end-preds$start + 1</pre>
preds<-left_join(preds, dt.geo, by="lagoslakeid")</pre>
preds<-left_join(preds, dt.conn, by="lagoslakeid")</pre>
preds<-left_join(preds, dt.chag, by="hu12_zoneid")</pre>
preds<-left_join(preds, dt.lulc, by="hu12_zoneid")</pre>
preds<-left_join(preds, avg.chla, by="lagoslakeid")</pre>
preds<-left_join(preds, cv.accndvi, by="lagoslakeid")</pre>
preds<-left_join(preds, depth, by="lagoslakeid")</pre>
preds<-left_join(preds, shoredev, by="lagoslakeid")</pre>
#remove any variables that don't vary in this dataset
# for(nn in 1:ncol(preds)){
  print(colnames(preds)[nn])
   print(unique(preds[,nn]))
# }
preds<-preds[,!colnames(preds) %in% c("hu12_surficialgeology_beach_pct",</pre>
                                        "hu12_surficialgeology_colluv_pct",
                                        "hu12_surficialgeology_grus_pct",
                                        "hu12_surficialgeology_other_pct",
                                        "hu12_surficialgeology_solif_pct",
                                        "hu12_surficialgeology_till_oth_pct",
                                        "hu12_nlcd2011_pct_0")]
# modvars.conn<-left_join(pred.conn, coh.chlaXaccndvi, by="lagoslakeid")
# modvars.chag<-left_join(pred.chag, coh.chlaXaccndvi, by="lagoslakeid")</pre>
```

```
#huc2 and huc4 watershed codes
huc_codes<-read.csv("~/GitHub/AquaTerrSynch/AnalysisCode/match_huc_codes.csv", colClasses = 'character'
#state info
states<-lagosne_select(table="state", vars=c("state_zoneid", "state_name"))</pre>
for(nn in 1:ncol(preds)){
  if(is.factor(preds[,nn])){
    preds[,nn]<-factor(preds[,nn])</pre>
}
rfdat.cohst<-left_join(coh.chlaXaccndvi[,c(10,3)], preds)
## Joining, by = "lagoslakeid"
rfdat.cohst<-rfdat.cohst[,!colnames(rfdat.cohst) %in% c("lagoslakeid", "start", "end", "lakes_nhdid", "hu12
rfdat.cohst<-rfdat.cohst[,!grepl("borderhu12s",colnames(rfdat.cohst))]</pre>
for(nn in 1:ncol(rfdat.cohst)){
  if(is.character(rfdat.cohst[,nn])){
    rfdat.cohst[,nn]<-as.factor(rfdat.cohst[,nn])</pre>
  }
}
cf.cohst<-party::cforest(accndvicoh.ts1 ~ ., data=rfdat.cohst, controls=cforest_control(ntree=50000,min
varimp.coh.st<-varimp(cf.cohst)</pre>
print(varimp.coh.st[order(varimp.coh.st, decreasing=T)][1:10])
##
                                        cv.accndvi
##
                                      0.0005710355
##
                                        hu8 zoneid
##
                                     0.0005568739
##
                        hu12_dep_totaln_tavg_mean
##
                                      0.0004949402
##
                             hu12_nlcd2011_pct_90
##
                                      0.0001939783
##
                             hu12_nlcd2011_pct_95
##
                                      0.0001609831
##
   wlconnections_scrubshrubwetlands_shoreline_km
                                      0.0001473959
##
##
          wlconnections_allwetlands_shoreline_km
##
                                      0.0001400305
##
                                  hu12_slope_mean
##
                                     0.0001274735
##
                                    hu12_tri_mean
##
                                      0.0001274102
##
     wlconnections_forestedwetlands_shoreline_km
##
                                     0.0000901705
#hist(predcoh.st)
#hist(modvars.accndvi$accndvicoh.ts1)
```

```
predcoh.st<-predict(cf.cohst, newdata=rfdat.cohst,type="response")</pre>
# plot(predcoh.st, rfdat.cohst$accndvicoh.ts1, xlab="predicted", ylab="empirical", main="Coherence, sho
       xlim=c(0,1), ylim=c(0,1))
# abline(a=0,b=1)
cor.test(predcoh.st,rfdat.cohst$accndvicoh.ts1)
##
    Pearson's product-moment correlation
##
##
## data: predcoh.st and rfdat.cohst$accndvicoh.ts1
## t = 17.438, df = 129, p-value < 2.2e-16
\ensuremath{\mbox{\#\#}} alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   0.7782621 0.8826028
## sample estimates:
##
         cor
## 0.8379308
lwgt<-preds$tslength/mean(preds$tslength)</pre>
gam.cohst<-gam(accndvicoh.ts1 ~ hu8_zoneid + s(cv.accndvi) + s(hu12_dep_totaln_tavg_mean) +
               s(hu12_nlcd2011_pct_90) + s(wlconnections_scrubshrubwetlands_shoreline_km), data=rfdat.c
gam.check(gam.cohst)
```

esiduals

deviance residuals -0.4 -0.2 0.0 0.2 0.4 theoretical quantiles

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values

linear predictor


```
##
## Method: GCV Optimizer: magic
## Smoothing parameter selection converged after 15 iterations.
## The RMS GCV score gradient at convergence was 4.447258e-08 .
## The Hessian was positive definite.
```

```
## Model rank = 101 / 101
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
                                                      k' edf k-index p-value
## s(cv.accndvi)
                                                                 0.97
                                                                          0.32
                                                    9.00 1.00
## s(hu12_dep_totaln_tavg_mean)
                                                                          0.79
                                                    9.00 1.00
                                                                  1.09
## s(hu12_nlcd2011_pct_90)
                                                    9.00 1.00
                                                                 1.16
                                                                          0.96
## s(wlconnections_scrubshrubwetlands_shoreline_km) 9.00 1.45
                                                                  0.90
                                                                          0.14
concurvity(gam.cohst)
            para s(cv.accndvi) s(hu12_dep_totaln_tavg_mean)
## worst
                     0.9780469
               1
                                                  0.9995309
## observed
               1
                     0.7757388
                                                  0.9743131
## estimate
                     0.6615465
                                                  0.9589468
##
            s(hu12_nlcd2011_pct_90)
                          0.9936800
## worst
                          0.9675487
## observed
## estimate
                          0.9220433
##
            s(wlconnections_scrubshrubwetlands_shoreline_km)
## worst
                                                   1.0000000
## observed
                                                   0.9488984
## estimate
                                                   0.9741744
summary(gam.cohst)
## Family: gaussian
## Link function: identity
## Formula:
## accndvicoh.ts1 ~ hu8_zoneid + s(cv.accndvi) + s(hu12_dep_totaln_tavg_mean) +
##
       s(hu12_nlcd2011_pct_90) + s(wlconnections_scrubshrubwetlands_shoreline_km)
##
## Parametric coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      0.57612
                                 0.18972
                                           3.037 0.00355 **
## hu8_zoneidHU8_13 -0.31582
                                 0.22944
                                         -1.376 0.17383
## hu8_zoneidHU8_141 -0.26463
                                 0.21346 -1.240 0.21994
## hu8 zoneidHU8 142 -0.32628
                                 0.28855 -1.131 0.26269
## hu8_zoneidHU8_143 -0.26387
                                         -1.454 0.15131
                                 0.18153
## hu8_zoneidHU8_160 -0.39395
                                 0.23444
                                          -1.680 0.09812 .
## hu8_zoneidHU8_161 -0.28358
                                 0.17450 -1.625 0.10942
## hu8 zoneidHU8 163 -0.34553
                                 0.19179
                                          -1.802 0.07666
## hu8_zoneidHU8_164 -0.22037
                                 0.27533
                                         -0.800 0.42667
## hu8 zoneidHU8 165 -0.19884
                                         -0.825 0.41267
                                 0.24103
## hu8 zoneidHU8 167 0.07213
                                 0.23228
                                           0.311 0.75723
## hu8 zoneidHU8 168 -0.36755
                                 0.23811 -1.544 0.12799
## hu8_zoneidHU8_169 0.05673
                                 0.26060
                                           0.218 0.82843
## hu8_zoneidHU8_170 -0.08418
                                 0.21860
                                         -0.385 0.70155
## hu8_zoneidHU8_173 -0.34463
                                 0.26824
                                         -1.285 0.20384
## hu8_zoneidHU8_177 -0.28252
                                 0.30374
                                          -0.930 0.35606
## hu8_zoneidHU8_181 -0.29777
                                 0.30503 -0.976 0.33292
```

```
## hu8_zoneidHU8_186 -0.09077
                                           -0.305
                                                   0.76167
                                  0.29792
                                           -0.522
## hu8_zoneidHU8_204 -0.11262
                                  0.21556
                                                   0.60330
## hu8 zoneidHU8 23 -0.21810
                                  0.24453
                                           -0.892
                                                   0.37602
## hu8_zoneidHU8_24 -0.32460
                                           -1.260
                                  0.25769
                                                   0.21272
## hu8_zoneidHU8_256 -0.08987
                                  0.22557
                                           -0.398
                                                   0.69177
## hu8 zoneidHU8 325 -0.32064
                                  0.21407
                                           -1.498
                                                   0.13947
## hu8 zoneidHU8 331 -0.42798
                                  0.28454
                                           -1.504
                                                   0.13783
## hu8_zoneidHU8_335 -0.23998
                                  0.21111
                                           -1.137
                                                   0.26019
## hu8_zoneidHU8_343 -0.05678
                                  0.24185
                                           -0.235
                                                   0.81521
## hu8_zoneidHU8_346 -0.46909
                                  0.25742
                                           -1.822
                                                   0.07344
## hu8_zoneidHU8_350 -0.07386
                                  0.27018
                                           -0.273
                                                   0.78551
## hu8_zoneidHU8_370 -0.05145
                                  0.26575
                                           -0.194
                                                   0.84713
## hu8_zoneidHU8_382 -0.46263
                                  0.25876
                                           -1.788
                                                   0.07888
                                  0.27108
## hu8_zoneidHU8_39 -0.31752
                                           -1.171
                                                   0.24613
## hu8_zoneidHU8_40 -0.32863
                                  0.25241
                                           -1.302
                                                   0.19795
## hu8_zoneidHU8_428 -0.29904
                                  0.25225
                                           -1.185
                                                   0.24054
## hu8_zoneidHU8_429 0.11952
                                  0.26411
                                            0.453
                                                   0.65253
## hu8 zoneidHU8 431 -0.13000
                                  0.28765
                                           -0.452
                                                   0.65296
## hu8_zoneidHU8_434 -0.17999
                                  0.27648
                                           -0.651
                                                   0.51754
## hu8_zoneidHU8_435 -0.11599
                                  0.26584
                                           -0.436
                                                   0.66420
## hu8_zoneidHU8_436 -0.16016
                                  0.29807
                                           -0.537
                                                   0.59304
## hu8_zoneidHU8_437 -0.12289
                                  0.29031
                                           -0.423
                                                   0.67361
## hu8 zoneidHU8 440 -0.25422
                                  0.29411
                                           -0.864
                                                   0.39086
## hu8 zoneidHU8 449 -0.22700
                                  0.25417
                                           -0.893
                                                   0.37539
## hu8 zoneidHU8 452 -0.21039
                                  0.27126
                                           -0.776
                                                   0.44104
## hu8_zoneidHU8_453 -0.01747
                                  0.22225
                                           -0.079
                                                   0.93762
## hu8_zoneidHU8_456 -0.27408
                                  0.30541
                                           -0.897
                                                   0.37311
                                           -0.448
## hu8_zoneidHU8_481 -0.12556
                                  0.28008
                                                   0.65557
## hu8_zoneidHU8_484 -0.15192
                                  0.28386
                                           -0.535
                                                   0.59451
## hu8_zoneidHU8_49 -0.18768
                                           -0.871
                                  0.21553
                                                   0.38736
## hu8_zoneidHU8_491 -0.09295
                                  0.34902
                                           -0.266
                                                   0.79091
## hu8_zoneidHU8_492 0.10630
                                  0.23600
                                            0.450
                                                   0.65403
## hu8_zoneidHU8_493 -0.22129
                                  0.26424
                                           -0.837
                                                   0.40568
## hu8_zoneidHU8_494 0.16612
                                            0.680
                                  0.24442
                                                   0.49936
## hu8_zoneidHU8_495 -0.10559
                                           -0.377
                                  0.28001
                                                   0.70745
## hu8_zoneidHU8_501 0.24662
                                  0.28517
                                            0.865
                                                   0.39062
## hu8 zoneidHU8 507 -0.27632
                                  0.25440
                                           -1.086
                                                   0.28178
## hu8_zoneidHU8_51
                    -0.02442
                                  0.29340
                                           -0.083
                                                   0.93394
## hu8_zoneidHU8_59
                     -0.21609
                                  0.21188
                                           -1.020
                                                   0.31191
## hu8_zoneidHU8_61
                     -0.22569
                                           -0.905
                                  0.24927
                                                   0.36891
## hu8_zoneidHU8_73
                     -0.17293
                                  0.25320
                                           -0.683
                                                   0.49728
## hu8_zoneidHU8_74
                     -0.20872
                                  0.26599
                                           -0.785
                                                   0.43574
## hu8 zoneidHU8 75
                     -0.08026
                                  0.27814
                                           -0.289
                                                   0.77393
## hu8_zoneidHU8_76
                     -0.12414
                                  0.34001
                                           -0.365
                                                   0.71633
## hu8_zoneidHU8_81
                     -0.24739
                                  0.25407
                                           -0.974
                                                   0.33414
## hu8_zoneidHU8_83
                     -0.29364
                                  0.29416
                                           -0.998
                                                   0.32221
## hu8_zoneidHU8_84
                     -0.18936
                                  0.27444
                                           -0.690
                                                   0.49290
## hu8_zoneidHU8_96
                      0.07335
                                  0.26107
                                            0.281
                                                   0.77971
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
##
                                                        edf Ref.df
## s(cv.accndvi)
                                                      1.000 1.000 0.410
```

```
## s(hu12_dep_totaln_tavg_mean)
                                                        1.000 1.000 1.505
## s(hu12_nlcd2011_pct_90)
                                                        1.000 1.000 0.646
## s(wlconnections_scrubshrubwetlands_shoreline_km) 1.447 1.702 0.525
##
                                                        p-value
## s(cv.accndvi)
                                                          0.525
## s(hu12_dep_totaln_tavg_mean)
                                                          0.225
## s(hu12_nlcd2011_pct_90)
                                                          0.425
                                                          0.456
## s(wlconnections_scrubshrubwetlands_shoreline_km)
##
## R-sq.(adj) = 0.0965
                           Deviance explained =
## GCV = 0.056948 Scale est. = 0.02629
plot(rfdat.cohst$accndvicoh.ts1, predict(gam.cohst, rfdat.cohst))
                                                                       0
      0.7
                                                                    0
                                                           0
predict(gam.cohst, rfdat.cohst)
                                                                    000
      9
      Ŋ
                                                                                       0
              0
                                                                     0
      0.4
               0
      က
                0
      o.
```

rfdat.cohst\$accndvicoh.ts1

0.4

0.6

8.0

O O O O

0.2

0

o.

##

##

```
rfdat.cohlt<-left_join(coh.chlaXaccndvi[,c(10,6)], preds)
## Joining, by = "lagoslakeid"
rfdat.cohlt<-rfdat.cohlt[,!colnames(rfdat.cohlt) %in% c("lagoslakeid", "start", "end", "lakes_nhdid", "hu12
rfdat.cohlt<-rfdat.cohlt[,!grepl("borderhu12s",colnames(rfdat.cohlt))]</pre>
for(nn in 1:ncol(rfdat.cohlt)){
  if(is.character(rfdat.cohlt[,nn])){
    rfdat.cohlt[,nn]<-as.factor(rfdat.cohlt[,nn])</pre>
  }
}
cf.cohlt<-party::cforest(accndvicoh.ts2 ~ ., data=rfdat.cohlt, controls=cforest_control(ntree=50000,min
varimp.coh.lt<-varimp(cf.cohlt)</pre>
print(varimp.coh.lt[order(varimp.coh.lt, decreasing=T)][1:10])
```

hu8_zoneid

1.203560e-03

```
##
                             hu12_nlcd2011_pct_52
##
                                      9.442723e-04
##
                                        cv.accndvi
                                      4.297765e-04
##
##
      wlconnections_forestedwetlands_shoreline_km
##
                                      1.483532e-04
   hu12_prism_ppt_30yr_normal_800mm2_annual_mean
##
##
                                      1.395582e-04
## wlconnections_allwetlands_contributing_area_ha
##
                                      1.272004e-04
##
                             hu12_nlcd2011_pct_95
##
                                      1.247903e-04
##
                           hu12_dep_so4_tavg_mean
                                      8.831864e-05
##
##
           wlconnections_allwetlands_shoreline_km
##
                                      8.766973e-05
##
                    hu12_groundwaterrecharge_mean
##
                                      5.901385e-05
#hist(predcoh.st)
#hist(modvars.accndvi$accndvicoh.ts1)
predcoh.lt<-predict(cf.cohlt, newdata=rfdat.cohlt,type="response")</pre>
# plot(predcoh.lt, rfdat.cohlt$accndvicoh.ts2, xlab="predicted", ylab="empirical", main="Coherence, lon
       xlim=c(0,1), ylim=c(0,1))
# abline(a=0,b=1)
cor.test(predcoh.lt,rfdat.cohlt$accndvicoh.ts2)
##
##
   Pearson's product-moment correlation
## data: predcoh.lt and rfdat.cohlt$accndvicoh.ts2
## t = 16.476, df = 129, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7589904 0.8717455
## sample estimates:
##
         cor
## 0.8233297
lwgt<-preds$tslength/mean(preds$tslength)</pre>
gam.cohlt<-gam(accndvicoh.ts2 ~ hu8_zoneid + s(hu12_nlcd2011_pct_52) + s(cv.accndvi) +
                 s(wlconnections_allwetlands_contributing_area_ha) +
                 s(wlconnections_forestedwetlands_shoreline_km), data=rfdat.cohlt, gamma=1, weights=lwg
gam.check(gam.cohlt)
```

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values

##


```
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 14 iterations.
## The RMS GCV score gradient at convergence was 3.147617e-08.
## The Hessian was positive definite.
## Model rank = 101 / 101
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
##
                                                       k'
                                                           edf k-index
## s(hu12_nlcd2011_pct_52)
                                                     9.00 1.00
                                                                  0.98
                                                                  0.97
## s(cv.accndvi)
                                                     9.00 1.00
## s(wlconnections_allwetlands_contributing_area_ha) 9.00 2.94
                                                                  0.88
## s(wlconnections_forestedwetlands_shoreline_km)
                                                     9.00 1.00
                                                                  0.87
                                                     p-value
## s(hu12_nlcd2011_pct_52)
                                                       0.330
## s(cv.accndvi)
                                                       0.315
## s(wlconnections_allwetlands_contributing_area_ha)
                                                       0.115
## s(wlconnections_forestedwetlands_shoreline_km)
                                                       0.045 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
concurvity(gam.cohlt)
```

```
## worst
                                                    1.0000000
## observed
                                                    0.9993585
## estimate
                                                    0.9973873
##
            s(wlconnections_forestedwetlands_shoreline_km)
## worst
                                                 1.0000000
                                                 0.9991374
## observed
## estimate
                                                 0.9989994
summary(gam.cohlt)
## Family: gaussian
## Link function: identity
##
## Formula:
  accndvicoh.ts2 ~ hu8_zoneid + s(hu12_nlcd2011_pct_52) + s(cv.accndvi) +
       s(wlconnections_allwetlands_contributing_area_ha) + s(wlconnections_forestedwetlands_shoreline_k
##
## Parametric coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
                      0.459483
                                0.199384
                                            2.305 0.02479 *
## (Intercept)
## hu8_zoneidHU8_13
                     0.154205
                                 0.216467
                                            0.712 0.47909
## hu8_zoneidHU8_141 -0.108910
                                0.221421 -0.492 0.62467
## hu8_zoneidHU8_142 0.263643
                                0.279154
                                           0.944 0.34886
## hu8_zoneidHU8_143 -0.090400
                                0.221025
                                          -0.409 0.68404
## hu8_zoneidHU8_160 0.235402
                                 0.279808
                                           0.841 0.40363
## hu8_zoneidHU8_161 -0.040268
                                0.204648
                                          -0.197 0.84470
## hu8 zoneidHU8 163 0.029075
                                 0.224731
                                           0.129 0.89751
## hu8_zoneidHU8_164 -0.288622
                                 0.278342
                                          -1.037 0.30407
## hu8_zoneidHU8_165 0.065517
                                           0.216
                                 0.302669
                                                  0.82939
## hu8_zoneidHU8_167 -0.165512
                                 0.238266
                                          -0.695 0.49004
## hu8_zoneidHU8_168 -0.061557
                                          -0.224 0.82360
                                 0.274895
## hu8_zoneidHU8_169 0.127621
                                 0.239817
                                           0.532 0.59665
## hu8_zoneidHU8_170 0.019899
                                 0.213293
                                           0.093 0.92599
## hu8_zoneidHU8_173 0.243513
                                           0.878 0.38362
                                 0.277382
## hu8_zoneidHU8_177 -0.256173
                                 0.281080
                                          -0.911 0.36586
## hu8_zoneidHU8_181 -0.239423
                                          -0.776
                                 0.308515
                                                  0.44087
## hu8_zoneidHU8_186 -0.318734
                                 0.277026 -1.151 0.25463
## hu8_zoneidHU8_204 0.193240
                                 0.251171
                                           0.769 0.44480
                                           0.731 0.46751
## hu8_zoneidHU8_23
                     0.206390
                                 0.282204
## hu8_zoneidHU8_24
                     0.300875
                                 0.280716
                                           1.072 0.28824
## hu8_zoneidHU8_256 -0.488772
                                          -1.580 0.11953
                                 0.309339
## hu8_zoneidHU8_325 -0.122465
                                 0.208448
                                          -0.588 0.55914
## hu8_zoneidHU8_331 0.123107
                                 0.293160
                                           0.420 0.67609
## hu8 zoneidHU8 335 -0.028978
                                 0.208582
                                           -0.139
                                                  0.88999
                                 0.207320 -1.359 0.17932
## hu8_zoneidHU8_343 -0.281800
## hu8_zoneidHU8_346 -0.148742
                                          -0.547 0.58676
                                 0.272133
## hu8_zoneidHU8_350 0.023331
                                           0.086 0.93174
                                 0.271195
## hu8_zoneidHU8_370 -0.686644
                                 0.471030
                                           -1.458
                                                  0.15030
## hu8_zoneidHU8_382 0.223720
                                 0.279294
                                           0.801 0.42639
## hu8_zoneidHU8_39
                                           0.909 0.36696
                     0.248929
                                 0.273765
## hu8_zoneidHU8_40 -0.001363
                                 0.273519
                                           -0.005
                                                  0.99604
## hu8_zoneidHU8_428 -0.008345
                                 0.235863
                                          -0.035
                                                  0.97190
## hu8_zoneidHU8_429 -0.007849
                                 0.266903
                                          -0.029 0.97664
```

1.311 0.19506

0.281212

hu8_zoneidHU8_431 0.368631

```
## hu8 zoneidHU8 434 -0.163704
                                 0.276096
                                           -0.593
                                                  0.55553
                                                  0.08252
## hu8_zoneidHU8_435 -0.470122
                                 0.266090
                                           -1.767
## hu8 zoneidHU8 436 0.249541
                                 0.273622
                                            0.912 0.36554
## hu8_zoneidHU8_437 -0.058549
                                           -0.211
                                 0.277020
                                                   0.83335
## hu8_zoneidHU8_440 0.274181
                                 0.282282
                                            0.971
                                                   0.33543
## hu8 zoneidHU8 449 -0.347526
                                 0.326131
                                           -1.066 0.29101
## hu8 zoneidHU8 452 -0.315904
                                 0.266983
                                           -1.183
                                                   0.24154
## hu8_zoneidHU8_453 -0.101221
                                 0.221395
                                           -0.457
                                                   0.64924
## hu8 zoneidHU8 456 5.599102
                                 1.740011
                                            3.218
                                                   0.00211 **
## hu8_zoneidHU8_481 -0.294839
                                 0.267284
                                           -1.103
                                                   0.27454
## hu8_zoneidHU8_484
                      1.780125
                                 0.552400
                                            3.223 0.00209
## hu8_zoneidHU8_49
                      0.044751
                                 0.245059
                                            0.183
                                                  0.85574
## hu8_zoneidHU8_491
                      2.414507
                                            2.295
                                 1.052197
                                                  0.02538 *
## hu8_zoneidHU8_492
                      0.013972
                                 0.241681
                                            0.058 0.95410
                                            0.479
## hu8_zoneidHU8_493
                      0.151808
                                 0.317070
                                                   0.63389
## hu8_zoneidHU8_494
                      0.169272
                                 0.234965
                                            0.720
                                                   0.47416
## hu8_zoneidHU8_495
                      4.843348
                                            3.200 0.00223 **
                                 1.513325
## hu8 zoneidHU8 501 -0.211336
                                 0.270369
                                           -0.782 0.43759
## hu8_zoneidHU8_507
                      0.129229
                                            0.483 0.63121
                                 0.267792
## hu8 zoneidHU8 51
                     -0.224977
                                 0.273152
                                           -0.824 0.41352
## hu8_zoneidHU8_59
                    -0.109449
                                 0.228821
                                           -0.478 0.63422
                                            0.778 0.43990
## hu8_zoneidHU8_61
                      0.173809
                                 0.223491
## hu8 zoneidHU8 73
                      0.016568
                                            0.060
                                                   0.95255
                                 0.277245
## hu8 zoneidHU8 74
                     -0.204799
                                 0.270273
                                           -0.758
                                                   0.45166
## hu8 zoneidHU8 75
                      0.138522
                                 0.258448
                                            0.536 0.59402
## hu8_zoneidHU8_76
                      0.131873
                                 0.310906
                                            0.424
                                                  0.67302
## hu8_zoneidHU8_81
                     -0.331164
                                 0.291764
                                           -1.135
                                                   0.26102
                                           -1.194
## hu8_zoneidHU8_83
                     -0.326157
                                 0.273137
                                                   0.23729
## hu8_zoneidHU8_84
                     -0.138984
                                 0.270699
                                           -0.513 0.60960
## hu8_zoneidHU8_96
                      0.255229
                                 0.275005
                                            0.928
                                                  0.35720
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                                                      edf Ref.df
## s(hu12_nlcd2011_pct_52)
                                                     1.00 1.000
                                                                  3.040
## s(cv.accndvi)
                                                     1.00
                                                          1.000
## s(wlconnections_allwetlands_contributing_area_ha) 2.94
                                                          3.421 4.536
## s(wlconnections_forestedwetlands_shoreline_km)
                                                     1.00 1.000 10.106
##
                                                     p-value
## s(hu12_nlcd2011_pct_52)
                                                     0.08643
## s(cv.accndvi)
                                                     0.24391
## s(wlconnections_allwetlands_contributing_area_ha) 0.00763 **
## s(wlconnections_forestedwetlands_shoreline_km)
                                                     0.00234 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.305
                         Deviance explained = 68.5%
## GCV = 0.081122 Scale est. = 0.036511 n = 129
plot(rfdat.cohlt$accndvicoh.ts2, predict(gam.cohlt, rfdat.cohlt))
```


rfdat.phist<-left_join(coh.chlaXaccndvi[,c(10,2)], preds) ## Joining, by = "lagoslakeid" rfdat.phist<-rfdat.phist[,!colnames(rfdat.phist) %in% c("lagoslakeid", "start", "end", "lakes_nhdid", "hu12_zoneid", "tslength", "county rfdat.phist<-rfdat.phist[,!grepl("borderhu12s",colnames(rfdat.phist))]</pre> rfdat.phist<-rfdat.phist[coh.chlaXaccndvi\$accndvip.ts1<0.3,] for(nn in 1:ncol(rfdat.phist)){ if(is.character(rfdat.phist[,nn])){ rfdat.phist[,nn]<-as.factor(rfdat.phist[,nn])</pre> } } cf.phist<-party::cforest(cos(accndviphi.ts1) ~ ., data=rfdat.phist,</pre> controls=cforest_control(ntree=50000,mincriterion = 0.9,mtry=3)) varimp.phi.st<-varimp(cf.phist)</pre> print(varimp.phi.st[order(varimp.phi.st, decreasing=T)][1:10]) ## wlconnections_openwaterwetlands_shoreline_km ## 0.0033487759 ## buffer500m_streamdensity_headwaters_density_mperha 0.0032202533 ## ## chla ## 0.0020374995 ## hu12_nlcd2011_pct_21 ## 0.0018605382 wlconnections_openwaterwetlands_contributing_area_

buffer500m_streamdensity_streams_density_mperha

0.0018041944

##

##

```
0.0016664426
##
##
                                                                                             hu12_dep_no3_tavg_mean
                                                                                                                           0.0003453840
##
##
                                                                                                  hu12_nlcd2011_pct_22
                                                                                                                           0.0003389173
##
##
                                                                 hu12_roaddensity_density_mperha
##
                                                                                                                           0.0003335029
                     wlconnections_allwetlands_contributing_area_ha
##
##
                                                                                                                           0.0001936666
predphi.st<-predict(cf.phist, newdata=rfdat.phist,type="response")</pre>
cor.test(predphi.st,cos(rfdat.phist$accndviphi.ts1))
##
           Pearson's product-moment correlation
##
##
## data: predphi.st and cos(rfdat.phist$accndviphi.ts1)
## t = 10.234, df = 37, p-value = 2.431e-12
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7466154 0.9244186
## sample estimates:
                           cor
## 0.8596296
lwgt<-preds$tslength[coh.chlaXaccndvi$accndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslength[coh.chlaXaccndvip.ts1<0.3]/mean(preds$tslen
gam.phist<-gam(cos(accndviphi.ts1) ~ s(wlconnections_openwaterwetlands_shoreline_km) +</pre>
                                                   s(buffer500m_streamdensity_headwaters_density_mperha) +
                                                   s(buffer500m streamdensity streams density mperha),
                                            data=rfdat.phist, gamma=1, weights=lwgt)
gam.check(gam.phist)
```

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values

0.50

0.59

```
##
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 19 iterations.
## The RMS GCV score gradient at convergence was 3.737094e-08.
## The Hessian was positive definite.
## Model rank = 28 / 28
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
##
                                                          k' edf k-index
## s(wlconnections_openwaterwetlands_shoreline_km)
                                                           9
                                                               1
                                                                    1.08
## s(buffer500m_streamdensity_headwaters_density_mperha)
                                                               1
                                                                    1.03
## s(buffer500m_streamdensity_streams_density_mperha)
                                                               1
                                                                    1.08
                                                          p-value
## s(wlconnections_openwaterwetlands_shoreline_km)
                                                             0.62
```

s(buffer500m_streamdensity_headwaters_density_mperha)

s(buffer500m_streamdensity_streams_density_mperha)

concurvity(gam.phist)

```
##
                    para s(wlconnections_openwaterwetlands_shoreline_km)
            1.188255e-15
## worst
                                                                 0.9998076
## observed 1.188255e-15
                                                                 0.4282308
## estimate 1.188255e-15
                                                                 0.3699462
            s(buffer500m_streamdensity_headwaters_density_mperha)
##
## worst
                                                          1.0000000
## observed
                                                          0.9976951
  estimate
                                                          0.9953973
            s(buffer500m_streamdensity_streams_density_mperha)
##
```

```
1.000000
## worst
## observed
                                                         0.944058
## estimate
                                                         0.905371
summary(gam.phist)
##
## Family: gaussian
## Link function: identity
##
## Formula:
   cos(accndviphi.ts1) ~ s(wlconnections_openwaterwetlands_shoreline_km) +
##
       s(buffer500m_streamdensity_headwaters_density_mperha) + s(buffer500m_streamdensity_streams_densi
##
  Parametric coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
   (Intercept)
                 0.1619
                             0.1133
                                       1.429
##
## Approximate significance of smooth terms:
                                                            edf Ref.df
##
## s(wlconnections_openwaterwetlands_shoreline_km)
                                                              1
                                                                     1 1.611
                                                                     1 0.034
## s(buffer500m_streamdensity_headwaters_density_mperha)
                                                              1
## s(buffer500m_streamdensity_streams_density_mperha)
                                                              1
                                                                     1 0.100
##
                                                            p-value
                                                              0.213
## s(wlconnections_openwaterwetlands_shoreline_km)
## s(buffer500m_streamdensity_headwaters_density_mperha)
                                                              0.855
## s(buffer500m_streamdensity_streams_density_mperha)
                                                              0.754
## R-sq.(adj) = 0.0512
                           Deviance explained = 12.8%
## GCV = 0.5431 Scale est. = 0.48593
                                          n = 38
plot(cos(rfdat.phist$accndviphi.ts1), predict(gam.phist, rfdat.phist))
                                                                             0
predict(gam.phist, rfdat.phist)
      S
                                               0
                                            0
                                 0
              0
                                                                             0
                             0
      0.0
                                                                      00
                    0
                                          0
      -0.5
            -1.0
                              -0.5
                                                0.0
                                                                  0.5
                                                                                    1.0
                                 cos(rfdat.phist$accndviphi.ts1)
```

```
rfdat.philt<-left_join(coh.chlaXaccndvi[,c(10,5)], preds)
## Joining, by = "lagoslakeid"
rfdat.philt<-rfdat.philt[,!colnames(rfdat.philt) %in%</pre>
                            c("lagoslakeid", "start", "end", "lakes_nhdid", "hu12_zoneid", "tslength", "county
rfdat.philt<-rfdat.philt[,!grep1("borderhu12s",colnames(rfdat.philt))]</pre>
rfdat.philt<-rfdat.philt[coh.chlaXaccndvisaccndvip.ts2<0.3,]
for(nn in 1:ncol(rfdat.philt)){
  if(is.character(rfdat.philt[,nn])){
    rfdat.philt[,nn]<-as.factor(rfdat.philt[,nn])
 }
}
cf.philt<-party::cforest(cos(accndviphi.ts2) ~ ., data=rfdat.philt,</pre>
                          controls=cforest control(ntree=50000,mincriterion = 0.9,mtry=3))
varimp.phi.lt<-varimp(cf.philt)</pre>
print(varimp.phi.lt[order(varimp.phi.lt, decreasing=T)][1:10])
##
                                             hu4_zoneid
##
                                            0.011753488
##
                                             hu6_zoneid
##
                                            0.009020676
##
                                       hu12_slope_mean
                                            0.007476076
##
##
                                         hu12 tri mean
                                            0.007014192
##
                                  hu12_nlcd2011_pct_90
##
##
                                            0.004850795
##
                                  hu12_nlcd2011_pct_41
##
                                            0.004511979
##
                             hu12_dep_totaln_tavg_mean
##
                                            0.004094007
##
   buffer500m_streamdensity_headwaters_density_mperha
##
                                            0.004016839
##
                                             hu8_zoneid
##
                                            0.003994655
##
      buffer500m_streamdensity_streams_density_mperha
##
                                            0.002823475
predphi.lt<-predict(cf.philt, newdata=rfdat.philt,type="response")</pre>
cor.test(predphi.lt,cos(rfdat.philt$accndviphi.ts2))
##
##
   Pearson's product-moment correlation
##
## data: predphi.lt and cos(rfdat.philt$accndviphi.ts2)
## t = 10.401, df = 43, p-value = 2.579e-13
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7348649 0.9128035
## sample estimates:
```

```
##
        cor
## 0.845926
lwgt<-preds$tslength[coh.chlaXaccndvi$accndvip.ts2<0.3]/mean(preds$tslength[coh.chlaXaccndvip.taccndvip.t
gam.philt<-gam(cos(accndviphi.ts2) ~ hu4_zoneid + s(hu12_slope_mean) +</pre>
                  s(hu12_nlcd2011_pct_41),
                data=rfdat.philt, gamma=1, weights=lwgt)
gam.check(gam.philt)
                                                              Resids vs. linear pred.
deviance residuals
     1.0
                                                      1.0
                                                 esiduals
     2
     ġ.
          -1.0
                 -0.5
                         0.0
                                0.5
                                       1.0
                                                                 -0.5
                                                                          0.0
                                                         -1.0
                                                                                  0.5
                                                                                          1.0
                 theoretical quantiles
                                                                    linear predictor
            Histogram of residuals
                                                           Response vs. Fitted Values
     30
Frequency
                                                 Response
                                                                            0
                                                      o.
     5
                                                                      @@ ~
        -1.0
              -0.5
                     0.0
                            0.5
                                  1.0
                                        1.5
                                                                 -0.5
                                                                          0.0
                                                                                  0.5
                                                         -1.0
                                                                                          1.0
                      Residuals
                                                                     Fitted Values
##
                  Optimizer: magic
## Method: GCV
## Smoothing parameter selection converged after 15 iterations.
## The RMS GCV score gradient at convergence was 6.449737e-08 .
## The Hessian was positive definite.
## Model rank = 40 / 40
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
##
                             k' edf k-index p-value
```

· · · · · · · · · · · · · · · · · · ·				
##		para	s(hu12_slope_mean)	s(hu12_nlcd2011_pct_41)
##	worst	0.984192	0.9819486	0.9818135
##	${\tt observed}$	0.984192	0.8987787	0.8624219
##	estimate	0.984192	0.8822897	0.8418742

1.21

1.16

9

9

s(hu12_slope_mean)

concurvity(gam.philt)

s(hu12_nlcd2011_pct_41)

0.90

0.84

```
summary(gam.philt)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## cos(accndviphi.ts2) ~ hu4_zoneid + s(hu12_slope_mean) + s(hu12_nlcd2011_pct_41)
## Parametric coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  -0.651351 0.349285 -1.865 0.07624 .
## hu4_zoneidHU4_16 1.417506 0.614320
                                       2.307 0.03131 *
## hu4_zoneidHU4_18 1.312060 0.624254
                                       2.102 0.04781 *
## hu4_zoneidHU4_25 0.516108 0.426450
                                       1.210 0.23963
## hu4_zoneidHU4_27 0.464429 0.605579
                                       0.767 0.45167
## hu4_zoneidHU4_29
                  1.870058 0.500044
                                       3.740 0.00121 **
## hu4_zoneidHU4_30 1.295962 0.493991
                                       2.623 0.01588 *
## hu4_zoneidHU4_32 0.277325 0.432565
                                       0.641 0.52838
## hu4_zoneidHU4_33 0.340073 0.425823
                                       0.799 0.43345
## hu4_zoneidHU4_35 1.438875 0.606217
                                       2.374 0.02724 *
## hu4_zoneidHU4_36 1.232482 0.611728
                                       2.015 0.05691
## hu4_zoneidHU4_4 -0.003587 0.462749 -0.008 0.99389
                   0.650996 0.500521
## hu4_zoneidHU4_5
                                       1.301 0.20748
## hu4_zoneidHU4_51 1.252175 0.607479
                                       2.061 0.05188 .
## hu4 zoneidHU4 54 1.844177 0.588426
                                       3.134 0.00501 **
## hu4_zoneidHU4_60 0.783300 0.423913
                                       1.848 0.07877 .
## hu4_zoneidHU4_63 -0.142882 0.582825 -0.245 0.80872
## hu4_zoneidHU4_64 0.100078 0.586574
                                       0.171 0.86616
## hu4_zoneidHU4_65 0.804693
                             0.571655
                                       1.408 0.17386
## hu4_zoneidHU4_67 0.441239
                             0.737271
                                       0.598 0.55592
## hu4_zoneidHU4_7 -0.739634
                             0.584041 -1.266 0.21923
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
##
                        edf Ref.df
                                       F p-value
## s(hu12 slope mean)
                          1
                                 1 12.442 0.00191 **
## s(hu12_nlcd2011_pct_41)
                          1
                                 1 7.458 0.01235 *
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Deviance explained = 74.5%

plot(cos(rfdat.philt\$accndviphi.ts2), predict(gam.philt, rfdat.philt))

##

R-sq.(adj) = 0.465

GCV = 0.49152 Scale est. = 0.22938

plot(gam.cohst, main="coherence, short")

coherence, short

coherence, short

coherence, long

coherence, long

cos(phase), short

buffer500m_streamdensity_headwaters_density_mperha

cos(phase), short

cos(phase), long

print(varimp.coh.st[order(varimp.coh.st, decreasing=T)][1:10])

cv.accndvi ## 0.0005710355

```
##
                                       hu8_zoneid
                                     0.0005568739
##
##
                       hu12_dep_totaln_tavg_mean
                                     0.0004949402
##
##
                             hu12_nlcd2011_pct_90
##
                                     0.0001939783
##
                             hu12_nlcd2011_pct_95
##
                                     0.0001609831
##
   wlconnections_scrubshrubwetlands_shoreline_km
##
                                     0.0001473959
##
          wlconnections_allwetlands_shoreline_km
##
                                     0.0001400305
##
                                  hu12_slope_mean
##
                                     0.0001274735
##
                                    hu12_tri_mean
##
                                     0.0001274102
##
     wlconnections_forestedwetlands_shoreline_km
##
                                     0.0000901705
ltxt.st<-c("HUC-8 sub-basin", "cv(NDVI)", "total N deposition", "% glaciofluvial outwash", "% woody wetland
           "shrub wetlands shoreline", "% herbaceous wetlands", "topographic roughness", "slope", "wetlands
print(varimp.coh.lt[order(varimp.coh.lt, decreasing=T)][1:10])
                                        hu8_zoneid
##
                                      1.203560e-03
##
                              hu12_nlcd2011_pct_52
##
                                      9.442723e-04
##
                                        cv.accndvi
##
                                      4.297765e-04
##
      wlconnections_forestedwetlands_shoreline_km
##
                                      1.483532e-04
##
    hu12_prism_ppt_30yr_normal_800mm2_annual_mean
                                      1.395582e-04
##
   wlconnections_allwetlands_contributing_area_ha
                                      1.272004e-04
##
                              hu12_nlcd2011_pct_95
                                      1.247903e-04
##
##
                            hu12_dep_so4_tavg_mean
                                      8.831864e-05
##
           wlconnections_allwetlands_shoreline_km
##
                                      8.766973e-05
##
                    hu12_groundwaterrecharge_mean
##
                                      5.901385e-05
ltxt.lt<-c("HUC-8 sub-basin","% shrub/scrub","cv(NDVI)","% alluvial soils","% solution residuum",
           "all wetlands contrib. area", "% till & loam", "annual precipitation", "% ice-contact depositiv
           "groundwater recharge")
print(varimp.phi.st[order(varimp.phi.st, decreasing = T)][1:10])
##
         wlconnections_openwaterwetlands_shoreline_km
##
                                           0.0033487759
  buffer500m_streamdensity_headwaters_density_mperha
```

##

0.0032202533

```
##
                                          0.0020374995
##
                                  hu12_nlcd2011_pct_21
                                          0.0018605382
##
##
   wlconnections_openwaterwetlands_contributing_area_
                                          0.0018041944
##
      buffer500m_streamdensity_streams_density_mperha
##
##
                                          0.0016664426
##
                                hu12_dep_no3_tavg_mean
##
                                          0.0003453840
##
                                  hu12_nlcd2011_pct_22
##
                                          0.0003389173
##
                      hu12_roaddensity_density_mperha
##
                                          0.0003335029
##
       wlconnections_allwetlands_contributing_area_ha
##
                                          0.0001936666
ltxt.phist<-c("open wetlands shoreline", "headwaters density", "% alluvial soils", "stream density", "mean
              "% developed open space", "open wetlands contrib. area", "all wetlands contrib. area",
              "nitrate deposition", "max depth")
print(varimp.phi.lt[order(varimp.phi.lt, decreasing = T)][1:10])
##
                                            hu4_zoneid
                                           0.011753488
##
                                            hu6_zoneid
##
##
                                           0.009020676
##
                                       hu12 slope mean
##
                                           0.007476076
##
                                         hu12_tri_mean
##
                                           0.007014192
##
                                  hu12_nlcd2011_pct_90
                                           0.004850795
##
##
                                  hu12_nlcd2011_pct_41
##
                                           0.004511979
##
                             hu12_dep_totaln_tavg_mean
##
                                           0.004094007
   buffer500m_streamdensity_headwaters_density_mperha
##
                                           0.004016839
##
                                            hu8 zoneid
##
                                           0.003994655
##
      buffer500m_streamdensity_streams_density_mperha
                                           0.002823475
##
ltxt.philt<-c("HUC-4 subregion", "HUC-6 basin", "topographic roughness", "slope", "% woody wetlands", "% dec
               "HUC-8 sub-basin", "total N deposition", "headwaters density", "stream density")
#tiff("~/Box Sync/NSF EAGER Synchrony/Manuscripts/1_CoherenceSpatialVariation/fig4_varimp_top10.tif",un
par(mfrow=c(2,2), mar=c(5,11,1,1), cex.main=0.9, cex.axis=0.9)
barplot(rev(varimp.coh.st[order(varimp.coh.st, decreasing=T)][1:10]),names.arg=rev(ltxt.st),las=2,main=
barplot(rev(varimp.coh.lt[order(varimp.coh.lt, decreasing=T)][1:10]),names.arg=rev(ltxt.lt),las=2,main=
```

chla

##

```
barplot(rev(varimp.phi.st[order(varimp.phi.st, decreasing=T)][1:10]),names.arg=rev(ltxt.phist),las=2,ma
barplot(rev(varimp.phi.lt[order(varimp.phi.lt, decreasing=T)][1:10]),names.arg=rev(ltxt.philt),las=2,ma
                                                   Short timescale coher.
                                                                                                                                                      Long timescale coher.
               HUC-8 sub-basin
                                                                                                                   HUC-8 sub-basin
                               cv(NDVI)
                                                                                                                          % shrub/scrub
                 total N deposition
                                                                                                                                   cv(NDVI)
       % glaciofluvial outwash
                                                                                                                          % alluviàl soils
                                                                                                                % solution residuum
               % woody wetlands
    shrub wetlands shoreline
                                                                                                        all wetlands contrib. area
       % herbaceous wetlands
                                                                                                                              % till & loam
       topographic roughness
                                                                                                                 annual precipitation
                                     slope
                                                                                                      % ice-contact depositives
               wetlands shoreline
                                                                                                             groundwater recharge
                                                         e-04
                                                                                                                                                                         0.0006
                                                                                                                                                                               0.0008
                                                   0e+00
                                                                       3e - 04
                                                                2e-04
                                                                             4e-04
                                                                                                                                                                   0.0004
                                                                                                                                                                                      0.0010
                                                                                                                                                                                            0.001
                                                   Short timescale phase
                                                                                                                                                      Long timescale phase
                                                                                                                    HUC-4 subregion
HUC-6 basin
     open wetlands shoreline
              headwaters density
                      % alluvial soils
                                                                                                           topographic roughness
                      stream density
                                                                                                                                         slope
              mean chlorophyll-á
                                                                                                                   % woody wetlands
                                                                                                                  % deciduous forest
    % developed open space
                                                                                                                   HUC-8 sub-basin
open wetlands contrib. area
    all wetlands contrib. area
                                                                                                                     total N deposition
                 nitrate deposition
                                                                                                                 headwaters density
                             max depth
                                                                                                                         stream density
                                                             .0010
                                                                   .0015
                                                                                                                                                            .002
                                                                                                                                                                         900.0
                                                                                                                                                                                0.008
                                                                         .0020
                                                                                                                                                                   0.004
                                                                                                                                                                                      .010
#dev.off()
mar1 < -c(3, 1.5, 0.5, 1)
\#mar2 < -c(2.5, 1.5, 1, 1)
fudge=1/40
\#tiff("\sim/Box\ Sync/NSF\ EAGER\ Synchrony/Manuscripts/1\_CoherenceSpatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits.tif",units="monospatialVariation/fig5\_gamfits",units="monospatialVariation/fig5\_gamfits",units="monospatialVar
par(mfrow=c(4,5), mgp=c(1.5,0.5,0), oma=c(0,2.5,0,0), mar=mar1)
plot(NA,NA,xlab="HUC-8 sub-basin",xlim=c(0,1),ylim=c(0,1))
plot(gam.cohst,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="cv(NDVI)",ylab="short coherence")
plot(gam.cohst,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="total N deposition",ylab="")
plot(gam.cohst,select=3,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% glaciofluvial outwash",ylab="")
plot(gam.cohst,select=4,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% woody wetlands",ylab="")
plot(gam.phist,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="open wetlands shoreline",ylab="short
plot(gam.phist,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="headwaters density",ylab="")
plot(gam.phist,select=3,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% alluvial soils",ylab="")
plot.new()
plot.new()
```

plot(gam.cohlt,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% shrub/scrub",ylab="long coherence")

plot(NA,NA,xlab="HUC-8 sub-basin",xlim=c(0,1),ylim=c(0,1))

```
plot(gam.cohlt,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="cv(NDVI)",ylab="")
plot(gam.cohlt,select=3,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% alluvial soils",ylab="")
plot(gam.cohlt,select=4,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% solution residuum",ylab="")
plot(NA,NA,xlab="HUC-4 subregion",xlim=c(0,1),ylim=c(0,1),ylab="long phase")
plot(gam.philt,select=1,residuals=T,rug=FALSE,shade=T,cex=2,xlab="topographic roughness",ylab="")
plot(gam.philt,select=2,residuals=T,rug=FALSE,shade=T,cex=2,xlab="% woody wetlands",ylab="")
mtext("Partial residuals",2,outer=T,line=1.2,cex=0.8)
mtext("cos(long phase)",2,at=1/8+fudge,outer=T,line=0,cex=0.7)
mtext("long coherence)",2,at=1/8+1/4+fudge,outer=T,line=0,cex=0.7)
mtext("cos(short phase)",2,at=1/8+2/4+fudge,outer=T,line=0,cex=0.7)
mtext("short coherence",2,at=1/8+3/4+fudge,outer=T,line=0,cex=0.7)
#dev.off()
   short coherence
    9.0
                        0.0
                        9
                                                                9
                                                                                   9
            0.4
       0.0
                 0.8
                             0.10
                                     0.20
                                              3.5
                                                  4.5
                                                       5.5
                                                           6.5
                                                                     10
                                                                           30
                                                                                          5
                                                                                             10
                                                                                                15
       HUC-8 sub-basin
                               cv(NDVI)
                                               total N deposition
                                                                 % glaciofluvial outwash
                                                                                      % woody wetlands
  cos(short phase)
                                            0
                        0
Partial residuals
             4
                6
                                   20
                                                  10 20 30
                   8
                               10
     open wetlands shoreline
                           headwaters density
                                                 % alluvial soils
  long coherence)
    9.0
                        0
                                            0
                                                                0
                                                                                    0
            0.4
                              2
                                 4 6
                                                 0.10
                                                         0.20
       0.0
                 0.8
                                                                        2000
                                                                                         20 40
                                                                               4000
       HUC-8 sub-basin
                                                   cv(NDVI)
                                                                    % alluvial soils
                                                                                      % solution residuum
                             % shrub/scrub
  cos(long phase)
    9.0
       0.0
            0.4
                 0.8
                                  6
                                     8
                                        10
                                               Ó
                                                   20
                                                       40
```

% woody wetlands

HUC-4 subregion

topographic roughness