Feature Selection (Embedded Methods)

- **▼** Calculates feature importance during model building itself.
- ✓ More efficient than wrapper methods (do not require retraining multiple models).
- More accurate than filter methods (because they consider feature importance in the context of the model).
- Work well with high-dimensional datasets.

if you have **coef_** or **feature_importance_** in your algorithm, you can use it as embedded technique.

coef_:

- LR
- LR
- Ridge
- Lasso
- ElasticNet

feature_importance_ (Tree based algorithms)

- Decision tree
- Random Forest
- Gradient Boosting

Regularized Models

- Regularized linear models are linear models that include a penalty term in the loss function during training.
- The penalty term discourages the learning of a too complex model, which can help prevent overfitting.

Summary of Embedded Methods:

- Lasso (L1 regularization): Shrinks coefficients and removes irrelevant features.
 (MOSTLY USED)
 - it keeps the important features and makes coef_ =0 for other ones
- **Ridge** (L2 regularization): Reduces the impact of correlated features but doesn't drop any features.
- ElasticNet: A combination of Lasso and Ridge.
- **Tree-based methods**: Feature importance from decision trees, random forests, and gradient boosting methods.

Ridge And Lasso Regression

- · Prevents overfitting
- Regularization introduces a penalty term to the loss function during model training. This penalty discourages large coefficients and helps produce simpler, more generalizable models.

Ridge Regression

- Ridge (L2 Regularization):
 - Adds a penalty term equal to the sum of squared coefficients
 - No Feature Selection: Shrinks coefficients but rarely sets them to zero.

Objective Function

$$ext{Cost} = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^p eta_j^2$$

- $\sum_{i=1}^n (y_i \hat{y}_i)^2$: Ordinary Least Squares (OLS) loss (sum of squared residuals).
- $\lambda \sum_{i=1}^{p} \beta_{i}^{2}$: L2 penalty term (shrinks coefficients toward zero).
- Known as L2 Regularization because you multiply by square

• Due to this, the Slope decreases

pass

Feature Selection using LASSO

from sklearn import datasets import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/npradaschnor/Pima-Indi
ans-Diabetes-Dataset/master/diabetes.csv')

df.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

• We want to find out which features are important in above data set.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(df.iloc[:,0:-1],df.iloc[:,-1],test_siz e=0.2,random_state=1)

df.iloc[:, 0:-1] / df.iloc[:, :-1]

- df.iloc[:, ...] means "select all rows."
- 0:-1 refers to the column selection.
 - o is the index of the first column.
 - 1 is the index of the last column.
 - The slice 0:-1 means "select all columns from the first column up to, but excluding, the last column."

df.iloc[:, -1]

- df.iloc[:, ...] means "select all rows."
- 1 refers to the index of the last column.
- In essence, df.iloc[:, -1] selects the last column of the DataFrame.

X_train.shape

Outcome: (614, 8)

Scale the data:

```
from sklearn.preprocessing import StandardScaler

cols = X_train.columns

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

X_train_scaled = pd.DataFrame(X_train_scaled,columns=cols)

X_test_scaled = pd.DataFrame(X_test_scaled,columns=cols)
```

Apply Lasso:

```
from sklearn.linear_model import Lasso
lasso = Lasso(alpha=0.01)
lasso.fit(X_train_scaled, y_train)
```

• Alpha → 0.01 to 0.1

import matplotlib.pyplot as plt import numpy as np

x = pd.Series(np.abs(lasso.coef_),index=cols)

x.sort_values(ascending=False).plot(kind='bar')

- glucose is the most important attribute
- 2nd is BMI

• If you increase alpha to 0.1

• It makes unimportant features zero

Tree Based Models

from pandas.core.common import random_state from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier

```
dt = DecisionTreeClassifier()
rf = RandomForestClassifier()

#dt.fit(X_train,y_train)
rf.fit(X_train,y_train)
```

rf.feature_importances_

Output:

array([0.08635461, 0.25644277, 0.09021031, 0.06965868, 0.07414166, 0.16670238, 0.12745014, 0.12903945])

x = pd.Series(np.abs(rf.feature_importances_),index=cols)

x.sort_values(ascending=False).plot(kind='bar')

Transformer- SelectFromModel

from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()

from sklearn.feature_selection import SelectFromModel

sfm = SelectFromModel(model, threshold='0.1')

threshold='0.1 → columns with feature importance less than 0.1 will be eliminated

You can use → 'mean', 'median'

'mean' = You calculate feature importance of all the columns and keep the ones above mean.

sfm.get_support(indices=True)

Output:

array([1, 2, 5, 6, 7], dtype=int64)

sfm.feature_names_in_[sfm.get_support(indices=True)]

Output:

array(['Glucose', 'BloodPressure', 'BMI', 'DiabetesPedigreeFunction', 'Age'], dtype=object)

Transform:

X_train_trans = sfm.transform(X_train)

X_train_trans = pd.DataFrame(X_train_trans,columns=sfm.feature_names_in_ [sfm.get_support(indices=True)])

X_train_trans

	Glucose	BloodPressure	вмі	DiabetesPedigreeFunction	Age
0	145.0	80.0	37.9	0.637	40.0
1	129.0	62.0	41.2	0.441	38.0
2	102.0	74.0	37.2	0.204	45.0
3	120.0	78.0	25.0	0.409	64.0
4	120.0	76.0	39.7	0.215	29.0

Recursive Feature Elimination

- You eliminate the feature with least importance
- You repeat this eliminating features one by one

df = pd.read_csv('https://gist.githubusercontent.com/curran/a08a1080b8834
4b0c8a7/raw/0e7a9b0a5d22642a06d3d5b9bcbad9890c8ee534/iris.csv')
df.head()

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

```
X = df.iloc[:,0:-1]
y = df.iloc[:,-1]
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
# Load iris dataset
url = "https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/ra
w/0e7a9b0a5d22642a06d3d5b9bcbad9890c8ee534/iris.csv"
df = pd.read_csv(url)
# Separate features and target variable
X = df.drop("species", axis=1)
y = df["species"]
# Initialize RandomForestClassifier
model = RandomForestClassifier()
# Initialize RFE
rfe = RFE(estimator=model, n_features_to_select=1)
# Fit RFE
rfe.fit(X, y)
```

```
# Print the ranking
ranking = rfe.ranking_
print("Feature ranking:")
for i, feature in enumerate(X.columns):
  print(f"{feature}: {ranking[i]}")
```

Output:

Feature ranking: sepal_length: 3 sepal_width: 4 petal_length: 1 petal_width: 2

Embedded Methods: Pros

- Accurate: Captures feature relationships, improving prediction.
- **Efficient:** Integrates selection into training, saving computation.
- **Regularized:** Reduces overfitting by penalizing less important features.

Embedded Methods: Cons

- Model-Dependent: Features selected are specific to the model.
- **Complex:** Interpretation can be challenging, especially with regularization.
- Hyperparameter-Sensitive: Performance relies on proper tuning.
- Unstable: Feature selection can vary with data changes.