Creación de fórmulas matemáticas

Ana M. Martínez

Sistemas Inteligentes y Minería de Datos (SIMD) Departamento de Sistemas Informáticos - UCLM

Taller de edición de documentos en LATEX

- Conceptos básicos
- Elementos de las fórmulas matemáticas
- Matrices
- 4 Ecuaciones en varias líneas (eqnarray)
- Cambiando el formato
- Teoremas, demostraciones, etc.

- Conceptos básicos
- Elementos de las fórmulas matemáticas
- Matrices
- 4 Ecuaciones en varias líneas (eqnarray)
- Cambiando el formato
- 6 Teoremas, demostraciones, etc.

Modo matemático

- En LaTEX, para invocar el modo matemático existen varias opciones.
- Las instrucciones utilizadas son diferentes en función de si el texto matemático está dentro de un párrafo o en una línea independiente. Y el aspecto final de texto matemático también lo será.
- En modo matemático, La ignora todos los espacios; las letras aparecen en cursiva, y el espaciado entre los símbolos es automático.
 - Pueden modificarse con instrucciones especiales como:
 - \,, \quad, \qquad (aumentan)
 - \! (disminuye)

Texto matemático en un párrafo

Las fórmulas aparecen directamente en el texto.

Sintaxis

- \$<texto matemático>\$
- \(<texto matemático>\)
- \begin{math} <texto matemático> \end{math}

Texto matemático independiente del párrafo

Las expresiones complejas (o aquellas que queremos enfatizar) quedan mejor si se presentan **separadas del texto**.

Sintaxis Ecuaciones No Numeradas

```
$$<texto matemático>$$
\[<texto matemático>\]
\begin{displaymath}
  Texto de la ecuación
\end{displaymath}
```

Sintaxis Ecuaciones Numeradas

```
\begin{equation}
  Texto de la ecuación
\end{equation}
```

Para cambiar la forma de numerar las ecuaciones: redefinimos
 \theequation

Paquetes útiles

Los paquetes de la **AMS** (*American Mathematical Society*) son un excelente complemento a la edición de textos matemáticos propia de LAT_EX, ya que aportan macros que hacen que la apariencia de un documento sea mucho más profesional, artística y agradable. Estos paquetes pueden ser incluidos con la instrucción:

Sintaxis Ecuaciones Numeradas

\usepackage{amsmath, amssymb, latexsym}

También se puede usar mathtools en lugar de amsmath.

- Conceptos básicos
- Elementos de las fórmulas matemáticas
- Matrices
- 4 Ecuaciones en varias líneas (eqnarray)
- Cambiando el formato
- Teoremas, demostraciones, etc.

Símbolos

 LATEX puede escribir mucho símbolos matemáticos al lado de los cuales, de forma automática, coloca espacios en blanco de acuerdo a la función que realizan. Podemos encontrar los siguientes tipos de símbolos:

Ordinarios: cualquier letra lo es; no se deja espacio adicional: xRy

Relaciones: \leq \geq \approx

Binarios: + \pm \odot

 Las letras griegas minúsculas se introducen como \alpha, \beta, \gamma, ..., y las mayúsculas se introducen como \Gamma, \Delta, ...

¿Cómo incluir texto normal en modo matemático?

Sintaxis

\mbox{texto} o \textrm{texto}

Ejemplo

```
\[ x^{2} \geq 0
\mbox{ para todo }x\in\mathbf{R} \]
```

Más elementos I

```
Subíndices y superíndices: mediante y respectivamente.
```

Nota: Si el subíndice o el superíndice tienen más de un símbolo, éste debe agruparse entre llaves ${\ldots}$ Ej. a_{i} se obtiene con a_{ij} .

Raíces: \sqrt[n] para la raíz n-ésima: $\sqrt[3]{n}$.

Fracciones: $\{\text{frac}\{\text{numerador}\}\}$ {denominador} Ej. $\frac{n}{a}$

Binomiales: $\min\{n\}\{r\}$ Ej. $\binom{n}{r}$

Sumatorios:

\sum_{limite inferior}^{limite superior}.

Ej. $\sum_{n=1}^{\infty} \infty a_n$

Más elementos II

```
Integrales:
          \int_{limite inferior}^{limite superior}
          Ej. \int_a^b f(x) dx
Símbolos fantasma: \phantom{símbolos}.
Líneas y llaves horizontales: \overline{texto} y
          \underrline{texto}, y \overbrace{texto}
          y \underline{texto}
  Flechas: \rightarrow \Rightarrow \leftarrow
          \Leftarrow \longleftarrow
           \Longleftarrow
```

Puntos suspensivos

```
\lambda coloca los puntos en la línea base. Ej. ... \cdots los pone en la zona media. Ej. ... \vdots para puntos verticales. Ej. : \ddots para puntos en diagonal. Ej. ...
```

Funciones en español (babel)

```
        Funciones

        \sen
        \arcsen

        \tg
        \arctg

        \cotg
        \senh

        \cosec
        \tgh

        \lim
        \max

        \min
        \liminf

        \limsup
```

- Conceptos básicos
- Elementos de las fórmulas matemáticas
- Matrices
- Ecuaciones en varias líneas (eqnarray)
- Cambiando el formato
- 6 Teoremas, demostraciones, etc.

El entorno array

- Se utiliza para producir matrices y sus argumentos y opciones coinciden con las del entrono tabular que produce tablas de texto.
- Sólo puede utilizarse en modo matemático.

Sintaxis

```
\begin{array}[Posicion]{FormatoCol}
  Columna 1 & Columna 2 & ... & Columna n \\ \hline
  ...
  \end{array}
```

Los arrays se pueden anidar

Matrices

Se obtienen utilizando el entorno array junto con los delimitadores (...) y los comandos \left y \right que permiten ajustar el tamaño de los delimitadores.

Ejemplo

```
\begin{displaymath}
  X =
  \left( \begin{array}{ccc}
  x_{11} & x_{12} & \ldots \\
  x_{21} & x_{22} & \ldots \\
  \vdots & \vdots & \ddots
  \end{array} \right)
\end{displaymath}
```

Determinantes

Igual que las matrices pero cambiando el delimitador por $|\dots|$

```
Ejemplo
```

```
\begin{displaymath}
X =
  \left| \begin{array}{ccc}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \\
  \vdots & \vdots & \ddots
  \end{array} \right|
end{displaymath}
```

Otros usos de array

Puede utilizarse el delimitador invisible (el punto) para obtener, por ejemplo, definiciones que comprenden varios casos

```
Ejemplo
\begin{displaymath}
y = \left\{ \begin{array}{11}
a & \mbox{si } d>c\\
b+x & \mbox{si } d=c\\
1 & \mbox{si } d<c\\
end{array} \right.
\end{displaymath}</pre>
```

El entorno eqnarray* es idéntico salvo que no numera las ecuaciones.

- Conceptos básicos
- Elementos de las fórmulas matemáticas
- Matrices
- 4 Ecuaciones en varias líneas (eqnarray)
- Cambiando el formato
- Teoremas, demostraciones, etc.

Entorno eqnarray

Actúa como un array con tres columnas alineadas según {rcl}.

```
Sintaxis

\begin{eqnarray}

FormulaIzqda & Separador & FórmulaDcha \\

FormulaIzqda & Separador & FórmulaDcha \\
```

\end{eqnarray}

Ejemplo

```
\begin{eqnarray}
(a+b)\cdot (a-b) & = & \\
(a^2 -ab+ab-b^2) & = & a^2- b^2
\end{eqnarray}
```

Puede evitarse numerar alguna de las fórmulas con \nonumber.

- Conceptos básicos
- Elementos de las fórmulas matemáticas
- Matrices
- 4 Ecuaciones en varias líneas (eqnarray)
- Cambiando el formato
- 6 Teoremas, demostraciones, etc.

Tamaño delimitadores

 LATEX elige de modo automático el tamaño apropiado de un delimitador si utilizamos la orden \left delante del delimitador de apertura y \right delante del que cierra.

Ejemplo

```
\begin{displaymath}
  1 + \left( \frac{1}{ 1-x^{2} }
  \right) ^3
\end{displaymath}
```

- En algunos casos es necesario fijar de modo explícito el tamaño correcto del delimitador matemático. Para esto se pueden utilizar las instrucciones \big, \Big, \bigg y \Bigg como prefijos de la mayoría de los delimitadores.
- Nota: Las llaves, por ser caracteres reservados, se introducen con \ { y \ }.

Fórmulas largas

 Las fórmulas largas no se dividen automáticamente en líneas. Debemos encargarnos nosotros de decidir donde las partimos y cómo las mostramos.

Ejemplo

```
\begin{eqnarray}
\sin x & = & x -\frac{x^{3}}{3!}
+\frac{x^{5}}{5!}-{}
\nonumber\\
& & {}-\frac{x^{7}}{7!}+{}\cdots
\end{eqnarray}
```

Negrita en modo matemático

- El comando \mathbf afecta solamente a las letras del alfabeto ordinario, a los números y a las letras griegas mayúsculas no inclinadas.
- El paquete amsmath tiene la instrucción \boldsymbol con la que se obtienen los símbolos en negrilla, preservando el tipo de letra.

- Conceptos básicos
- Elementos de las fórmulas matemáticas
- Matrices
- 4 Ecuaciones en varias líneas (eqnarray)
- Cambiando el formato
- Teoremas, demostraciones, etc.

\newtheorem

LATEX permite definir entornos para componer "teoremas", "lemas", "definiciones", y estructuras similares mediante:

Sintaxis

\newtheorem{tipo}[<contador>]{<texto>}[<sección>]

- tipo palabra clave corta que se utiliza para identificar el teorema.
- texto nombre del teorema que aparecerá en el documento final.
- contador tipo de un teorema declarado previamente. El nuevo teorema se numerará con la misma secuencia que el ya existente (p.ej. Teorema 1, Proposición 2, ...).
- **sección** permite indicar la unidad de sección con la que se desea numerar el teorema (p.ej. Teorema 5.1, ...).

Uso de \newtheorem

 Tras ejecutar la instrucción \newtheorem en el preámbulo del documento, dentro del texto se puede usar la instrucción siguiente:

Sintaxis

Ejemplo

Ejemplo

```
% Definiciones para el documento.
% Preámbulo
\newtheorem{teor}{Teorema}
\newtheorem{prop}[teor]{Proposición}
% En el documento
\begin{teor}
  Esto es un teorema.
\end{teor}
\begin{prop}[Titulo]
  Esta proposición comparte el contador
  con el teorema anterior
\end{prop}
\begin{teor}
  Último teorema.
\end{teor}
```