RA Math Test: Exercise 1 & Exercise 2

YILONG LIU

May 2025

1 Exercise 1, Question 1: An unbiased estimator of the variance of i.i.d random variables

Let $(Y_i)_{1 \leq i \leq n}$ be n i.i.d random variables. Let $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ denote the average of these variables. Let Y be a random variable with the same distribution as the Y_i s. The goal of the exercise is to show that $\frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$ is an unbiased estimator of V(Y), the variance of the Y_i s.

- (1) Show that $\frac{1}{n-1} \sum_{i=1}^{n} (Y_i \bar{Y})^2 = \frac{1}{n-1} \sum_{i=1}^{n} Y_i^2 \frac{n}{n-1} (\bar{Y})^2$.
- (2) Use the result in question 1) to prove that $E\left(\frac{1}{n-1}\sum_{i=1}^{n}(Y_i-\bar{Y})^2\right)=V(Y)$.

1.1 Question (1) Solution

We can expand the left hand side equation and have:

$$\frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i^2 - 2Y_i \bar{Y} + \bar{Y}^2)$$

$$= \frac{1}{n-1} (\sum_{i=1}^{n} Y_i^2) - \frac{2}{n-1} \bar{Y} (\sum_{i=1}^{n} Y_i) + \frac{n}{n-1} \bar{Y}^2$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} Y_i^2 - \frac{2}{n-1} \bar{Y} n \bar{Y} + \frac{n}{n-1} \bar{Y}^2$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} Y_i^2 - \frac{n}{n-1} \bar{Y}^2$$

1.2 Quesiton (2) Solution

According to the result in question (1), we have the following:

$$\begin{split} E[\frac{1}{n-1}\sum_{i=1}^{n}(Y_{i}-\bar{Y})^{2}] &= E[\frac{1}{n-1}\sum_{i=1}^{n}Y_{i}^{2}-\frac{n}{n-1}(\bar{Y})^{2}] \\ &= \frac{1}{n-1}E[\sum_{i=1}^{n}Y_{i}^{2}] - \frac{n}{n-1}E[\bar{Y}^{2}] \\ &= E[\frac{1}{n-1}\sum_{i=1}^{n}Y_{i}^{2}] - E[\frac{n}{n-1}\bar{Y}^{2}] \\ &= E[Y^{2}] - E^{2}[Y] \end{split}$$

Note: As $\frac{1}{n-1}\sum_{i=1}^{n}Y_{i}^{2}$ is the unbiased estimator of $E[Y^{2}]$.

2 Exercise 1, Question 2: A super consistent estimator

Assume you observe an iid sample of n random variables $(Y_i)_{1 \leq i \leq n}$ following the uniform distribution on $[0, \theta]$, where θ is an unknown strictly positive real number we would like to estimate. Let Y be a random variable with the same distribution as the Y_i s.

- (1) Compute E(Y). Write θ as a function of E(Y).
- (2) Use question a) to propose an estimator $\hat{\theta}_{MM}$ for θ using the method of moments (reminder: that method amounts to replacing expectations by sample means).
- (3) Show that $\hat{\theta}_{MM}$ is an asymptotically normal estimator of θ , and show that its asymptotic variance is 4V(Y).

Consider the following alternative estimator for θ : $\hat{\theta}_{ML} = \max_{1 \leq i \leq n} \{Y_i\}$.

- (4) Why does using $\hat{\theta}_{ML}$ to estimate θ sounds like a natural idea?
- (5) Show that

$$P(\hat{\theta}_{ML} \le x) = \begin{cases} 0 & \text{if } x < 0\\ \left(\frac{x}{\theta}\right)^n & \text{if } x \in [0, \theta]\\ 1 & \text{if } x > \theta \end{cases}$$

(6) Use the result in question (5) to show that $n\left(\frac{\theta - \hat{\theta}_{ML}}{\theta}\right) \xrightarrow{d} U$, where U follows an exponential distribution with parameter 1. *Hint:* to prove this, you need to use the definition of convergence in distribution in your lecture

notes. Also, use the fact that the cdf of an exponential distribution with parameter 1 is

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 - \exp(-x) & \text{if } x \ge 0 \end{cases}$$

- (7) Which estimator is the best: $\hat{\theta}_{MM}$, or $\hat{\theta}_{ML}$?
- (8) Illustrate this through a Monte-Carlo study. Draw 1000 iid realizations of variables following a uniform distribution on [0,1] in Stata (you need to use the "uniform()" command), compute $\hat{\theta}_{MM}$ and $\hat{\theta}_{ML}$. What is the value of θ in this example? Which estimator is the closest to θ ?
- (9) For any $q \in (0,1)$, let t_q denote the q^{th} quantile of the $\exp(1)$ distribution: $t_q = F^{-1}(q)$. Show that

$$IC(\alpha) = \left[\hat{\theta}_{ML}, \hat{\theta}_{ML} + \hat{\theta}_{ML} \frac{t_{1-\alpha}}{n}\right]$$

is a confidence interval for θ with asymptotic coverage $1-\alpha$. You should use the result from the previous question and the Slutsky lemma. You can use without proving it the fact that $\hat{\theta}_{ML} \stackrel{P}{\longrightarrow} \theta$ (actually, that directly follows from the fact $\hat{\theta}_{ML}$ is an n-consistent estimator of θ).

2.1 Question (1) Solution

By definition:

$$E[Y] = \int_0^\theta y \cdot f(y) dy$$

As it is uniform distribution: $f(y) = \frac{1}{\theta}$ Then we have the follows:

$$E[Y] = \int_0^\theta \frac{y}{\theta} dy$$
$$= \frac{1}{2\theta} \cdot y^2 \Big|_0^\theta$$
$$= \frac{\theta}{2}$$

Therefore, $E[Y] = \frac{\theta}{2}, \ \theta = 2E[Y].$

2.2 Question (2) Solution

From (1), $\theta = 2E[Y]$, we propose that the estimator $\hat{\theta}_{MM}$ for θ to be:

$$\hat{\theta}_{MM} = \frac{2}{n} \sum_{i=1}^{n} Y_i$$

based on n random variables $(Y_i)_{1 \leq i \leq n}$.

2.3 Question (3) Solution

From (1), $\theta = 2E[Y]$, we propose that the estimator $\hat{\theta}_{MM}$ for θ to be:

$$\hat{\theta}_{MM} = \frac{2}{n} \sum_{i=1}^{n} Y_i$$

based on n random variables $(Y_i)_{1 \le i \le n}$. By the Central Limit Theorem, we have:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}-E[Y]\right) \xrightarrow{d} \mathcal{N}(0,V(Y))$$

which implies that

$$\sqrt{n}(\hat{\theta}_{MM} - \theta) = \sqrt{n}\left(2\bar{Y} - 2E[Y]\right) = 2\sqrt{n}(\bar{Y} - E[Y]) \xrightarrow{d} \mathcal{N}(0, 4V(Y)).$$

Therefore, $\hat{\theta}_{MM}$ is an asymptotically normal estimator of θ , and its asymptotic variance is 4V(Y).

2.4 Question (4) Solution

It is because that the random variables $(Y_i)_{1 \leq i \leq n}$ follows a uniform distribution on $[0,\theta]$. Therefore for any i such that $1 \leq i \leq n$, we have $Y_i \in [0,\theta]$, and it is then a natural idea to assume the key parameter $\hat{\theta}_{ML} = \max_{1 \leq i \leq n} Y_i$.

2.5 Question (5) Solution

By definition, $P(\hat{\theta}_{ML} \leq x) = P(\max_{1 \leq i \leq n} \{Y_i\} \leq x)$, then: if x < 0, then the probability is 0 as $Y_i \in [0, \theta]$ for any i. if $x \in [0, \theta]$, then:

$$P(\max_{1 \le i \le n} \{Y_i\} \le x) = \prod_{i=1}^n P(Y_i \le x)$$

$$= \prod_{i=1}^n F(X)$$

$$= \left(\frac{x-0}{\theta-0}\right)^n$$

$$= \left(\frac{x}{\theta}\right)^n$$

if $x > \theta$, then the probability is 1 as $Y_i \in [0, \theta]$ for any i.

2.6 Question (6) Solution

According to the description, we have the following:

$$n\left(\frac{\theta - \hat{\theta}_{ML}}{\theta}\right) = n\left(1 - \frac{\hat{\theta}_{ML}}{\theta}\right)$$

Then, we have:

$$F\left(n\left(1-\frac{\hat{\theta}}{\theta}\right) < x\right) = F\left(\frac{\hat{\theta}}{\theta} > 1 - \frac{x}{n}\right)$$
$$= 1 - F\left(\frac{\hat{\theta}}{\theta} < 1 - \frac{x}{n}\right)$$
$$= 1 - \left(1 - \frac{x}{n}\right)^n$$

Therefore,

$$\lim_{n \to \infty} F(x) = \lim_{n \to \infty} \left[1 - \left(1 - \frac{x}{n} \right)^n \right]$$

$$= 1 - \lim_{n \to \infty} \left(1 - \frac{x}{n} \right)^n$$

$$= 1 - \lim_{n \to \infty} \exp \left[n \ln \left(1 - \frac{x}{n} \right) \right]$$

$$= 1 - \lim_{h \to 0} \exp \left[\frac{-x \ln(1+h)}{h} \right]$$

$$= 1 - \exp(-x)$$

Note: $h = \frac{-x}{n}$

2.7 Question (7) and (8) Solution

To evaluate which estimator is better, we consider their performance across 1000 simulations:

Estimator	Mean Estimate	Standard Deviation	$\operatorname{Min}-\operatorname{Max}$
$\hat{ heta}_{MM}$	1.000846	0.0177101	0.9523674 - 1.052426
$\hat{ heta}_{ML}$	0.998992	0.0009990	0.9935493 - 0.9999998

Although both estimators are consistent, their statistical properties differ:

- The method of moments estimator $\hat{\theta}_{MM}$ is unbiased and its average estimate is closer to the true value $\theta = 1$.
- The maximum likelihood estimator $\hat{\theta}_{ML}$ is biased (slightly underestimates θ on average), but it has a much smaller variance.

Therefore, in terms of bias, $\hat{\theta}_{MM}$ performs better. In terms of efficiency (i.e., lower variance), $\hat{\theta}_{ML}$ is superior.

The choice of the "best" estimator depends on the criterion:

- If minimizing mean squared error (bias² + variance), $\hat{\theta}_{ML}$ is preferred because its variance is much smaller.
- If unbiasedness is prioritized, then $\hat{\theta}_{MM}$ is preferred.

Overall, for large n, the bias of $\hat{\theta}_{ML}$ becomes negligible, and its lower variance makes it the better estimator in most practical contexts.

We draw a sample of size n = 1000 from the uniform distribution on [0, 1] using Stata's 'uniform()' command.

The true value of the parameter is:

$$\theta = 1$$
.

From the Stata output of one simulation:

$$\hat{\theta}_{MM} = 0.98998555, \quad \hat{\theta}_{ML} = 0.99975073.$$

In this sample, $\hat{\theta}_{ML}$ is closer to the true value $\theta = 1$ than $\hat{\theta}_{MM}$. This aligns with the simulation results in (6), which show that although $\hat{\theta}_{MM}$ is on average closer to θ , its individual estimates fluctuate more due to higher variance. $\hat{\theta}_{ML}$, while slightly biased, tends to provide estimates with much lower dispersion.

2.8 Question (9) Solution

For any $q \in (0,1)$, let t_q denote the q^{th} quantile of the $\exp(1)$ distribution, i.e. $t_q = F^{-1}(q)$. From question (6), we have shown that

$$n\left(\frac{\theta - \hat{\theta}_{ML}}{\theta}\right) \xrightarrow{d} \operatorname{Exp}(1),$$

which implies that

$$P\left(n\left(\frac{\theta-\hat{\theta}_{ML}}{\theta}\right) \le t_{1-\alpha}\right) \to 1-\alpha.$$

This is equivalent to:

$$P\left(\theta \leq \hat{\theta}_{ML} + \hat{\theta}_{ML} \cdot \frac{t_{1-\alpha}}{n}\right) \to 1 - \alpha.$$

Hence, the asymptotic $(1 - \alpha)$ confidence interval for θ is given by:

$$IC(\alpha) = \left[\hat{\theta}_{ML}, \ \hat{\theta}_{ML} + \hat{\theta}_{ML} \cdot \frac{t_{1-\alpha}}{n}\right].$$

This result follows by applying the convergence in distribution from (7) and the Slutsky lemma. Note that $\hat{\theta}_{ML} \xrightarrow{p} \theta$ since $\hat{\theta}_{ML}$ is an *n*-consistent estimator.

3 Exercise 1, Question 3

Assume you observe two sequences of random variables $(U_n)_{n\in\mathbb{N}}$ and $(V_n)_{n\in\mathbb{N}}$. Assume that $U_n \xrightarrow{P} l$ and $V_n \xrightarrow{P} l'$, where l and l' are two real numbers.

1. Use the continuous mapping theorem to prove that $U_n \times V_n \xrightarrow{P} l \times l'$.

- 2. Use the Slutsky lemma to prove that $U_n \times V_n \xrightarrow{P} l \times l'$. You need to use the two following facts:
 - 1. If $X_n \xrightarrow{P} X$, then $X_n \xrightarrow{d} X$ (convergence in probability implies convergence in distribution)
 - 2. If $X_n \xrightarrow{d} x$ and x is a real number, then $X_n \xrightarrow{P} x$ (convergence in distribution **towards a real number** implies convergence in probability towards that real number)

3.1 Question (1) Solution

To prove that $U_n \times V_n \xrightarrow{P} l \times l'$ using the *continuous mapping theorem*, define the continuous function g(x,y) = xy on \mathbb{R}^2 . Since $U_n \xrightarrow{P} l$ and $V_n \xrightarrow{P} l'$, we have:

$$(U_n, V_n) \xrightarrow{P} (l, l').$$

Then, by the continuous mapping theorem:

$$g(U_n, V_n) = U_n \cdot V_n \xrightarrow{P} g(l, l') = l \cdot l'.$$

3.2 Question (2) Solution

To prove the same result using the Slutsky lemma, we proceed in steps:

• Since $U_n \xrightarrow{P} l$ and $V_n \xrightarrow{P} l'$, from Fact 1, we know that:

$$U_n \xrightarrow{d} l$$
, $V_n \xrightarrow{d} l'$.

• Then, using the known result that if $X_n \xrightarrow{d} x$ and $Y_n \xrightarrow{d} y$ with $x, y \in \mathbb{R}$, then $X_n Y_n \xrightarrow{d} xy$, we get:

$$U_n V_n \xrightarrow{d} ll'$$
.

• Now, since ll' is a real number, we apply Fact 2:

$$U_n V_n \xrightarrow{P} ll'$$
.

Asymptotic variance of the estimator of the variance of iid random variables. Let $(Y_i)_{1 \leq i \leq n}$ be an iid sample of n random variables with a 4th moment and with a strictly positive variance. Let Y denote a random variable with the same distribution as the Y_i s. Let $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$, and let $\bar{Y}^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2$. Let $\hat{V}(Y) = \bar{Y}^2 - (\bar{Y})^2$ be an estimator of V(Y).

4 Exercise 2 Question 1

Show that

$$\sqrt{n}\left(\left(\frac{\overline{Y^2}}{\overline{Y}}\right) - \left(\frac{E(Y^2)}{E(Y)}\right)\right) \xrightarrow{d} \mathcal{N}(0, V_0),$$

where

$$V_0 = \begin{pmatrix} V(Y^2) & \cos(Y^2, Y) \\ \cos(Y^2, Y) & V(Y) \end{pmatrix}.$$

4.1 Question 1 Solution

This result follows directly from the multivariate Central Limit Theorem (CLT), which states that for a vector of sample means of i.i.d. variables with finite second moments, the scaled difference between the sample means and their expectations converges in distribution to a multivariate normal distribution. Let $X_i = (Y_i^2, Y_i)'$ be a 2-dimensional random vector. Then by the multivariate CLT,

$$\sqrt{n}\left(\left(\frac{\overline{Y^2}}{\overline{Y}}\right) - \left(\frac{E(Y^2)}{E(Y)}\right)\right) \xrightarrow{d} \mathcal{N}(0, V_0),$$

where V_0 is the covariance matrix of X_i .

5 Exercise 2, Question 2

Use the previous question and a well-known theorem to prove that

$$\sqrt{n}\left(\widehat{V}(Y) - V(Y)\right) \xrightarrow{d} \mathcal{N}(0, V_1),$$

where

$$V_1 = (1, -2E(Y))V_0(1, -2E(Y))'.$$

5.1 Question 2 Solution

We know that the sample variance is defined as:

$$\widehat{V}(Y) = \overline{Y^2} - \overline{Y}^2$$
 and $V(Y) = E(Y^2) - (E(Y))^2$

Define the function $g(a,b)=a-b^2$. This is a differentiable function from $\mathbb{R}^2 \to \mathbb{R}$. By the delta method, since

$$\sqrt{n} \left(\frac{\overline{Y^2} - E(Y^2)}{\overline{Y} - E(Y)} \right) \xrightarrow{d} \mathcal{N}(0, V_0),$$

we apply the delta method with gradient $\nabla g(a,b)=(1,-2b)$. Evaluated at $(a,b)=(E(Y^2),E(Y))$, this becomes (1,-2E(Y)). Hence,

$$\sqrt{n}\left(\widehat{V}(Y) - V(Y)\right) \xrightarrow{d} \mathcal{N}\left(0, (1, -2E(Y))V_0(1, -2E(Y))'\right),$$

which proves the result.

6 Exercise 2, Question 3

In this question, we focus on the special case where the Y_i s are binary random variables. To alleviate the notation, let p = E(Y). We have V(Y) = p(1-p). Moreover, in this special case $\widehat{V}(Y) = \overline{Y}(1-\overline{Y})$.

- (a) Use the results from questions 1 and 2 to prove that $V_1 = p(1-p)(1-2p)^2$.
- (b) For $p = \frac{1}{2}$, $p(1-p) = \frac{1}{4}$, and $p(1-p)(1-2p)^2 = 0$. Therefore, if $p = \frac{1}{2}$, what is the asymptotic distribution of $\sqrt{n}\left(\overline{Y}(1-\overline{Y}) \frac{1}{4}\right)$?
- (c) Show that $n\left(\overline{Y}(1-\overline{Y})-\frac{1}{4}\right)=\left(\sqrt{n}\left(\overline{Y}-\frac{1}{2}\right)\right)^2$, and use this equality to derive the asymptotic distribution of $n\left(\overline{Y}(1-\overline{Y})-\frac{1}{4}\right)$.
- (d) The previous questions show that the asymptotic distribution of $\sqrt{n} \left(\widehat{V}(Y) V(Y) \right)$ depends on the value of p, which is unknown. Then, how could you build a confidence interval for V(Y)?

6.1 Question (a) Solution

From question 2, we know that the asymptotic variance is given by:

$$V_1 = (1, -2E(Y))V_0(1, -2E(Y))'$$

In the binary case, $Y_i \in \{0, 1\}$:

$$E(Y) = p$$
, $E(Y^2) = E(Y) = p$, $\Rightarrow V(Y) = p(1-p)$

$$V(Y^2) = p(1-p), \quad cov(Y^2, Y) = cov(Y, Y) = V(Y) = p(1-p)$$

So the matrix V_0 becomes:

$$V_0 = \begin{pmatrix} p(1-p) & p(1-p) \\ p(1-p) & p(1-p) \end{pmatrix}$$

Now compute:

$$V_1 = \begin{pmatrix} 1 & -2p \end{pmatrix} \begin{pmatrix} p(1-p) & p(1-p) \\ p(1-p) & p(1-p) \end{pmatrix} \begin{pmatrix} 1 \\ -2p \end{pmatrix}$$

Performing the matrix multiplication:

$$(1, -2p) (p(1-p)(1-2p) + (-2p)p(1-p)) = p(1-p)(1-2p)^{2}$$

6.2 Question (b) Solution

When $p = \frac{1}{2}$:

$$p(1-p) = \frac{1}{4}, \quad (1-2p)^2 = 0$$

From part (a), $V_1 = p(1-p)(1-2p)^2 = 0$, so the asymptotic variance is zero. Therefore:

$$\sqrt{n}\left(\overline{Y}(1-\overline{Y})-\frac{1}{4}\right) \xrightarrow{P} 0$$

That is, the difference converges to zero faster than $1/\sqrt{n}$ — the asymptotic distribution is degenerate at 0.

6.3 Question (c) Solution

We expand:

$$\overline{Y}(1-\overline{Y}) = \overline{Y} - \overline{Y}^2 = \frac{1}{4} + \left(\overline{Y} - \frac{1}{2}\right) - \left(\overline{Y} - \frac{1}{2}\right)^2$$

This simplifies to:

$$\overline{Y}(1-\overline{Y}) - \frac{1}{4} = -\left(\overline{Y} - \frac{1}{2}\right)^2 \Rightarrow n\left(\overline{Y}(1-\overline{Y}) - \frac{1}{4}\right) = -n\left(\overline{Y} - \frac{1}{2}\right)^2 = -\left(\sqrt{n}\left(\overline{Y} - \frac{1}{2}\right)\right)^2 = -\left(\sqrt{n}\left(\overline{Y} - \frac{1}$$

From the Central Limit Theorem:

$$\sqrt{n}\left(\overline{Y} - \frac{1}{2}\right) \xrightarrow{d} \mathcal{N}(0, \frac{1}{4}) \Rightarrow \left(\sqrt{n}\left(\overline{Y} - \frac{1}{2}\right)\right)^2 \xrightarrow{d} \frac{1}{4}\chi_1^2$$

Thus:

$$n\left(\overline{Y}(1-\overline{Y})-\frac{1}{4}\right) \xrightarrow{d} -\frac{1}{4}\chi_1^2$$

6.4 Question (d) Solution

The asymptotic distribution of $\sqrt{n}(\widehat{V}(Y)-V(Y))$ depends on p, which is unknown. Since

$$V_1 = p(1-p)(1-2p)^2 = V(Y)(1-2p)^2$$

we can estimate p by \overline{Y} and substitute it into the asymptotic variance expression. Therefore, an approximate $(1-\alpha)$ confidence interval for V(Y) is:

$$\left[\widehat{V}(Y) \pm z_{1-\alpha/2} \cdot \frac{\sqrt{\widehat{V}(Y)}|1 - 2\overline{Y}|}{\sqrt{n}}\right]$$

where $z_{1-\alpha/2}$ is the standard normal quantile.