项目介绍

这是一个电子科技大学软件学院本科阶段计算机体系结构学习&嵌入式开发的公开资料整理的项目。

学习资源分享

• 推荐的学习主线:

时间	内容
大一 上	C语言,STM32/51单片机开发入门
大一下	数据结构和算法, STM32裸板开发,Linux操作及使用,项目实战
大二 上	arm体系架构(嵌入式linux),STM32从裸板到应用,计算机组成原理,软件工程项目实战
大二下	C++, 实时操作系统RTOS, <u>操作系统</u> ,Linux系统编程,计算机网络,项目实战
大三 上	编译原理,Linux内核与驱动(<u>嵌入式linux</u>), <u>项目实战</u> , <u>找实习</u>
大三下	企业实习/教研室科研/海外交换

- 欢迎大家随时更新
- 参考阅读
 - 机器人工程师学习计划
 - 技术专精与广博的一些思考
 - 电子科技大学资源共享平台
 - 清华大学计算机系课程攻略
 - 浙江大学课程攻略共享计划
 - 中国科学技术大学课程资源
 - 上海交通大学课程资料分享

技能图谱

基础知识

作为一名软件学院的本科生,必须牢牢掌握以下计算机相关的知识:

技能点 名称	技能点内容
<u>编程语</u> 宣	<u>C语言</u> , <u>C++</u> , <u>Python</u>

技能点 名称	技能点内容
<u>算法和</u> 数据结 构	链表,栈,队列,字符串,二叉树,图,查找,排序,以及一些面试中经常考察的模板例如动态规划,滑动窗口,快慢指针,寻找第 K 个最大的元素等等
<u>软件工</u> 程	编写文档, 代码质量, 自动化测试, Code Review, 持续集成工具
<u>编译原</u> 理	编译器构造及各部分功能
<u>计算机</u> <u>体系结</u> <u>构</u>	CPU原型机, 总线, 存储,
<u>操作系</u> <u>统</u>	进程管理, 内存管理, 文件系统,
<u>计算机</u> <u>网络</u>	OSI五层模型, TCP/IP协议栈, Linux网络编程,

嵌入式方向

如果你对嵌入式方向有兴趣, 需要掌握以下技能:

技能点名称	技能点内容
开发平台	CPU: Intel x86 x64, ARM64
	MCU编程: C51, STM32
	FPGA
嵌入式开发软件	Keil uVision, STM32Cube, JTAG debugger, System Viewer
嵌入式Linux	Bootloader, Driver,
实时操作系统	uCOS, FreeRTOS, ROS (严格来说是ROS2)
外设	Timer, ADC / DAC, ROM / RAM, PWM, I/O / GPIO,
执行器	电机(步进, 无刷, 舵机,), 电调, FOC
传感器	陀螺仪, 加速度计, 超声波, 红外,
电子元件	电容, 电阻, 开关, 二极管, 晶振
通信协议	Bluetooth, Zigbee, Wifi, UART, TCP, UDP, I2C,
电路	PCB设计, 元件焊接
仪器	万用表, 示波器, 信号发生器, 逻辑分析仪,

借一张导师的经典老图,差不多就这个学习路线。

Real-Time System Lab

LIAO Yong

编程语言

C语言

书籍推荐:

名称	作者	介绍
<u>C语言程序设计现代</u> 方法	K. N. King	入门推荐读物,讲解清晰
C与指针	Kenneth A·Reek	进阶读物,"C语言三剑客"之一
C陷阱与缺陷	<u>凯尼格</u>	进阶读物,"C语言三剑客"之一,重点讲解C中的 注意事项
<u>C专家编程</u>	Peter van der Linden	进阶读物,"C语言三剑客"之一

资源推荐:

- C语言资源大全中文版
- The C build process

C++

书籍推荐阅读顺序:

阅读顺序	名称	作者	介绍
1	<u>C++ Primer</u>	[美] <u>Stanley B. Lippman</u> / [美] Josée Lajoie / [美] <u>Barbara E. Moo</u>	C++最经典教程

阅读顺序	名称	作者	介绍
2	Effective C++	梅耶 (Scott Meyers)	C++开发必读经典
3	STL源码剖析	<u>侯捷</u>	理解STL源码必读
4	<u>深度探索</u> <u>C++对象模型</u>	[美] Stanley B·Lippman	从编译器层面认识 C++对象模型

资源推荐:

- C++ 资源大全中文版
- <u>CppTemplateTutorial</u>

Java

• 面向对象程序设计——Java语言 - 翁恺

Python

• Python教程-廖雪峰

汇编 - X86

• 8086 assembly programming with emu8086

汇编 - ARM

• ARM Architecture Reference Manual, 2nd Edition

算法和数据结构

名称	作者	介绍
数据结构	邓俊辉	国内质量最高的数据结构课程,推荐在MOOC上跟学, <u>教材链接</u>

工具链

在大一上学完C语言之后,推荐自学一门课: MIT 的 <u>The Missing Semester of Your CS Education</u>,可以翻译为计算机科学课堂中学不到的知识。<u>B站链接</u>.

这门课会教你使用各种工具链,比如 在终端下Bash Shell 编程,VIM 编辑器,正则表达式,Git 版本控制,profiler, SSH 配置远程环境等等。灵活地使用工具链能极大地提高你的工作效率。

你可以考虑运用在这门课上学到的知识,在大一下的时候在 Github 上搭一个自己的博客。

版本控制: Git

• Git教程-廖雪峰

编译工具: Makelile

- Make 命令教程
- GCC and Make
- Managing projects with GNU Make

嵌入式开发软件

- Keil uVision
- STM32Cube
- jtag debugger

MCU编程

51单片机

• BY51DB开发板 51单片机代码

STM32

- 野火电子
- STM32F103C8 参考代码
- STM32F427 RoboMaster A板 BSP

学习指南

内核:多参考ARM Crotex M3/M4权威指南,结合《计算机组成原理》和《ARM处理器及应用》相关课程内容进行理解。需要了解的知识点有启动流程、中断流程、时钟树……

外设:对于MCU编程来说外设的学习主要分为以下步骤

- 1. 硬件构造,例如挂载到哪个时钟总线上,硬件上是否需要依托其他外设工作.....
- 2. 协议原理,搞清楚通信协议内容和规则,了解下通信的信号是怎么样的。
- 3. 寄存器功能,参考芯片《用户手册》详细了解外设相关寄存器功能,有多少个相关寄存器,每个寄存器是干什么用的,每一位又有什么用。
- 4. 代码模仿,去原子、野火这些地方找点样例代码,学习下代码结构,让外设工作起来需要哪些配置步骤。
- 5. 上手实践,自己去实现一套外设驱动,多尝试不同的配置不同的功能。

搞定这几个环节应该就能把相应的外设基本搞清楚,也能实现简单的功能了,接下来就是灵活应用,深入了解其中原理了。

嵌入式Linux

书籍推荐

名称	作者	介绍
LKD3	Robert Love	linux内核的设计与实现,非常经典的入门书籍。可帮助理解操作系统
ELDD	Sreekrishnan Venkateswaran	linux设备驱动详细解读,稍难,是linux设备驱动相 关的经典书籍。

名称	作者	介绍
Linux内核源代码情 景分析	毛德操 / 胡希明	浙大毛教授著作。基于2.4内核,对代码有详细解读。虽2.4版本较老,但如此详细的解读也值得一读。
The Design of the Unix Operating System	Maurice J. Bach	
Linux 内核揭秘		
<u>Linux Device</u> <u>Drivers, 3rd Edition</u>	Jonahan Corbet	

树莓派

- 树莓派新手入门教程
- 树莓派有什么好用的系统
- <u>树莓派NAS</u>
- <u>树莓派安装OpenCV</u>
-

NVIDIA Jetson

- CUDA on ARM入门教程
- Hello Al World
-

编译原理

名称	作者	介绍
15-411/611 Compiler Design - CMU	Jan Hoffmann	CMU的编译原理基础课程
自己动手写编译器	pandolia	实现一个简单的C编译器

软件工程

• 编写文档: <u>Doxygen</u>, <u>Sphinx</u>

• 代码质量:

。 C: <u>华为C语言编程规范</u>

C++: Google C++ Style Guide
Java: 阿里巴巴Java开发手册
Python: PEP8, isort, black, Pyre

• 自动化测试: Robot, pytest

• Code review: Gerrit

• 持续集成工具: Travis Cl

计算机体系结构

名称	作者	介绍
Computer Organization and	David A. Patterson / John	作者是图灵奖得主,提
Design, Fifth Edition	L. Hennessy	出RISC架构

计算机网络

名称	作者	介绍
计算机网络(第6版)	James F.Kurose / Keith W.Ross	

操作系统

名称	作者	介绍
清华大学操作系统课程 (2019)		清华OS实验室的操作系统课程,课件、实验作业的质量都 非常高

实时操作系统

名称	作者	介绍
μC/OS-III: The Real-Time Kernel for STM32	Jean J. Labrosse	经典实时操作系统, C语言编写
AliOS Things		国产实时操作系统,阿里巴巴面向物联 网领域开发
<u>TencentOS-tiny</u>		国产实时操作系统,腾讯面向物联网领 域开发
<u>Huawei-LiteOS</u>		鸿蒙操作系统物联网业务内核

项目实战

工作室往届的项目介绍:

名称	年级	介绍
Quadcopter	2015	基于STM32F411外设固件库的四轴keil5工程
基于Tensorflow的树莓派智能识别机器 人	2016	基于Tensorflow的树莓派智能识别机器人
Quadcopter	2017	基于STM32F401RE的四轴飞行器

名称	年级	介绍
<u>SkyEye</u>	2021	基于ROS的VSLAM四轴飞行器
<u>WuhuTakeOff</u>	2021	基于FreeRTOS的四轴飞行器

一些推荐参加的本科阶段的科技创新类项目 & 比赛:

名称	介绍
Google Summer of Code	每年3月份开始提交申请的proposal
数学建模	要自学一下matlab
Robomaster	
ACM	
嵌入式综合设计	在廖老师指导下做四轴飞行器

找实习

• 找工作室前辈内推

• 刷题: <u>Leetcode</u>, <u>牛课网</u>