الجمعورية الجزائرية الحيمتراطية الذعبية

الحيوان الوطني للامتعانات والمسابقات * دورة جوان 2008 * المدة :03 ساعات و 30 د

وزارة التربية الوطنية امتحان بكالوريا التطيم الثانوي الشعبة: العلوم التجريبية

اختبار في مادة الرياضيات

عَلَى المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول (04,5 نقط)

المعادلة : \mathbb{C} المعادلة : \mathbb{C} المعادلة :

$$z^2 - (1+2i)z - 1 + i = 0$$

 $|z_1| < |z_2|$: حيث z_1 و z_2 نرمز للحلين بـ

. بين أن
$$\left(\frac{z_1}{z_2}\right)^{2008}$$
 عدد حقيقي

لتكن B ، A و C ، B ، A التكن C و B ، A التكن C و B ، C المستوي التي لاحقاتها C على الترتيب C ، C . C . C . C . C . C .

$$Z = \frac{z_2 - 1}{z_1 - 1}$$
: ليكن Z العدد المركب حيث :

 $e^{i(\theta_1+\theta_2)}=e^{i\theta_1} imes e^{i\theta_2}$: و من الخاصية $e^{i\theta}=\cos\theta+i\sin\theta$ انطلاقا من التعريف

. برهن أن
$$\theta_2$$
 و أن $e^{-i\theta_1}$ = $e^{i(\theta_1-\theta_2)}$ و أن $e^{-i\theta}$ = $e^{-i\theta}$ عداد حقيقية $e^{-i\theta}$

ب) أكتب Z على الشكل الأسى .

A هي صورة النقطة B بتشابه مباشر مركزه C هي صورة النقطة والمتشابه مباشر مركزه C بطلب تعيين زاويته و نسبته.

التمرين الثاني (04 نقط)

الفضاء منسوب إلى معلم متعامد و متجانس $\left(O;ec{i},ec{j},ec{k}
ight)$ نعتبر المستوى $\left(P
ight)$ الذي معادلته :

$$x + 2y - z + 7 = 0$$

. C(-1,-2,2) g B(3,2,0) g A(2,0,1)

(ABC) و B ، A و C ليست على استقامية ، ثم بين أن المعادلة الديكارتية للمستوى y+2z-2=0

(ABC) متعامدان ، ثم عين تمثيلا وسيطيا للمستقيم (ABC) متعامدان ، ثم عين تمثيلا وسيطيا للمستقيم (ABC) مستقيم تقاطع (P)

 (Δ) ب - احسب المسافة بين النقطة A و المستقيم

 $1+\alpha+\beta\neq 0$ عددان حقیقیان یحققان β,α حیث β,α عددان حقیقیان یحققان $\alpha+\beta\neq 0$ عددان حقیقیان یحققان $\alpha+\beta\neq 0$ عین α حتی تنتمی النقطة $\alpha+\beta\neq 0$ المستقیم $\alpha+\beta\neq 0$ المستقیم $\alpha+\beta\neq 0$ عین $\alpha+$

التمرين الثالث (05 نقط)

المعادلة ذات المجهول z التالية: \mathbb{C} المعادلة ذات المجهول z

$$z^2 + iz - 2 - 6i = 0$$

B و A النقطتين ($O; \vec{u}, \vec{v}$) النقطتين A و B اللتين 2. z_B و z_B على الترتيب حيث z_B

$$z_B = -2 - 2i$$
 $e^{-2} = 2 + i$

 $\cdot [AB]$ عين z_{ω} ذات القطر α مركز الدائرة z_{ω}

$$z_c = rac{4-i}{1+i}$$
 حيث z_c النقطة ذات اللاحقة z_c حيث C النكن C

C المنكل الجبري ثم أثبت أن النقطة C تنتمى إلى الدائرة الكرة z_c

و الذي $M_0(z_0)$ و الذي θ و الذي $M_0(z_0)$ و الذي مركزه و الذي $M_0(z_0)$ و الذي التشابه المباشر z'- $z_0=ke^{i\theta}\left(z-z_0
ight)$: هي M'(z') النقطة M(z) النقطة

. $z' + \frac{1}{2}i = 2e^{i\frac{\pi}{3}}\left(z + \frac{1}{2}i\right)$: عين الطبيعة و العناصر المميزة للتحويل S المعرف بـ - تطبيق : عين الطبيعة و العناصر المميزة المتحويل عند المعرف بـ - تطبيق : عين الطبيعة و العناصر المميزة المتحويل S

التمرين الرابع (07 نقط)

المنحنى (C) المقابل هو التمثيل البياني للدالة العددية g المعرفة على المجال $[-1;+\infty[$ كما يأتي : $g(x) = x^3 + 3x^2 + 3x - 1$

g(0) و حدّد g(0) و و المارة g(0) و المارة الدالة و حدّد المارة الدالة و حدّد المارة المارة

- $g(\alpha)=0$: علل وجود عدد حقيقي α من المجال $0,\frac{1}{2}$ يحقق
 - \cdot]-1;+ ∞ [على المجال g(x) ج) استنتج إشارة

: يما يأتي : الدالة العددية المعرفة على المجال $-1;+\infty$ بما يأتي f-2

$$f(x) = \frac{x^3 + 3x^2 + 3x + 2}{(x+1)^2}$$

 \cdot $\left(O; ec{i}, ec{j}
ight)$ متعامد (Γ) و ليكن البياني في معلم البياني في معامد

 $f'(x) = \frac{g(x)}{(x+1)^3}$:]-1;+ ∞ [المجال x من المجال عدد حقيقي x من المجال عدد عقيقي أ

حيث ' f هي الدالة المشتقة للدالة f .

- ب) عیّن دون حساب $\lim_{x \to \alpha} \frac{f(x) f(\alpha)}{r \alpha}$ و فسر النتیجة بیانیا.
- ج) احسب : $\lim_{x \to +\infty} \left[f(x) (x+1) \right]$ و فسر النتيجتين بيانيا .
 - د) شكّل جدول تغيرات الدالة f

$$\alpha \simeq 0.26$$
 نأخذ - 3

- \cdot 10-2 إلى مدور f(lpha) عين مدور
 - (Γ) ارسم المنحنى
- و عددان حقیقیان. $f(x) = x + a + \frac{b}{(x+1)^2}$ علی الشکل : $f(x) = a + a + \frac{b}{(x+1)^2}$
 - F(1)=2 : والتي تحقق f الدالة الأصلية للدالة f على المجال f عين f الدالة الأصلية للدالة fبالتو فيق 1/1 4-3.-11

التمرين الأول (03 نقط)

لكل سؤال من الأسئلة التالية جواب واحد صحيح فقط . عين الجواب الصحيح معللا اختيارك. نعتبر في الفضاء المنسوب إلى معلم متعامد ومتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ النقط:

$$D(3,2,1) \cdot C(-2,0,-2) \cdot B(4,1,0) \cdot A(1,3,-1)$$

x-3z-4=0 الذي معادلته: (P) الذي

$$(ABD)$$
 (3 ج (ABC) (2 ج (BCD) (1 ج (BCD) (1 هو: المستوى (1 المستوى (2 ج (BCD)) المستوى

(2) شعاع ناظمي للمستوي (P) هو

$$\vec{n}_3(2,0,-1)$$
 (3 τ ' $\vec{n}_2(-2,0,6)$ (2 τ ' $\vec{n}_1(1,2,1)$ (1 τ

(P) المسافة بين النقطة (P) هي المستوى

$$\frac{2\sqrt{10}}{5}$$
 (3 ϵ , $\frac{\sqrt{10}}{10}$ (2 ϵ , $\frac{\sqrt{10}}{5}$ (1 ϵ

التمرين الثاني (05 نقط)

: يلي عددية معرفة كما يلي (u_n)

 $u_{n+1} = \frac{2}{3}u_n + 2$: n example 2 such that $u_0 = \frac{5}{2}$

الممثل (d) الممثل y=x معادلته y=x الممثل (Δ) المستقيم (Δ) المستقيم (Δ) الممثل الممثل $f(x)=\frac{2}{3}x+2$ بيد المعرفة على \mathbb{R} بيد المعرفة على المعرف

 u_4 و u_3, u_2, u_1, u_0 : باستعمال الرسم السابق، مثل على حامل محور الفواصل و بدون حساب الحدود u_3, u_2, u_1, u_0 و تقاربها. - ضع تخمينا حول اتجاه تغير المتتالية (u_n) و تقاربها.

 $u_n \le 6$: n عدد طبیعی أ- برهن بالتراجع أنه من أجل كل عدد طبیعي (2

ب - تحقق أن (u_n) متزايدة .

. حال (u_n) متقاربة ? برر إجابتك - ج

 $v_n = u_n - 6$: n نضع من أجل كل عدد طبيعى (3

أ – اثبت أن (v_n) متتالية هندسية يطلب تعيين أساسها و حدها الأول.

 $\lim_{n\to\infty} u_n$ به استنتج بارهٔ u_n بدلالهٔ استنتج

الصفحة 4/3

د

الذي

التمرين الثالث (04 نقط)

$$f(x) = \frac{x+2}{-x+4}$$
 المعرّفة على المجال $I = [1,2]$ بالعبارة: $f(x) = \frac{x+2}{-x+4}$

I بين أن الدالة f متزايدة تماما على أ

f(x) ، I من المجال f(x) ، عدد حقیقی x من المجال f(x) ، المجال f(x)

2) هي المتتالية العددية المعرقة على \mathbb{N} كما يأتي:

$$u_{n+1} = f(u_n)$$
 $u_0 = \frac{3}{2}$

 u_n ، u_n ، u_n ، u_n ، u_n عدد طبیعی u_n ، u_n ینتمی إلی u_n . u_n انجاه تغیر المتتالیة u_n ، ثم استنتج أنها متقاربة.

 $u_n = 1 + \frac{1}{\left(\frac{3}{2}\right)^n + 1}$: n عين النهاية : n

التمرين الرابع (07,5 نقط)

: المعرفة على المجال $[-2,+\infty[$ كما يأتي x المعرفة على المجال $[-2,+\infty[$ كما يأتي -1 f(x)=(ax+b)

حیث a و b عددان حقیقیان.

 C_f المنحنى الممثل للدالة f في معلم متعامد و متجانس $C_f(C_f)$ وحدة الطول $C_f(C_f)$ المنحنى الممثل للدالة $C_f(C_f)$ في معلم متعامد و $C_f(C_f)$ و معامل توجيه المماس عين قيمتي $C_f(C_f)$ و معامل توجيه المماس عند $C_f(C_f)$ يساوي $C_f(C_f)$.

: كما يلي g المعرفة على المجال g المتغير الحقيقي g المتغير الحقيقي g المعرفة على المجال g المتغير g المتغير g المعرفة على المجال g المتغير الحقيقي g المعرفة على المجال g المتغير الحقيقي g المتغير الحقيقي g المعرفة على المجال g المتغير الحقيقي g المتغير المتغير المتغير المتغير g المتغير المتغير g المتغير المتغير g الم

و (C_g) تمثيلها البياني في نفس المعلم السابق.

 $\lim_{u\to -\infty}ue^u=0$ بين أن $\lim_{x\to +\infty}g\left(x\right)=1$ و فسر هذه النتيجة بيانيا. (نذكّر أن

ب) ادرس تغيرات الدالة g ، ثم أنشئ جدول تغيراتها.

ج) بيّن أن المنحنى $\left(C_{g}
ight)$ يقبل نقطة انعطاف I يطلب تعيين احداثييها.

 \cdot I عند النقطة المماس للمنحنى C_g عند النقطة

 $\cdot (C_g)$ ارسم

و) H الدالة العددية المعرفة على $]-2,+\infty$ كما يأتي: $H(x)=(lpha x+eta)e^{-x}$ حيث lpha و eta عددان حقيقيان $x\mapsto g(x)-1$ عين lpha و eta بحيث تكون H دالة أصلية للدالة g(x)-1

استنتج الدالة الأصلية للدالة g و التي تتعدم عند القيمة 0.

الله الدالة المعرفة على المجال $-2,+\infty$ كما يأتي: k الدالة المعرفة على المجال التكن الدالة المعرفة على المجال التكن المعرفة على المحال التكن المعرفة على المحال التكن التكن المحال التكن التك

$$k(x) = g(x^2)$$

باستعمال مشتَّقة دالة مركبة ، عين اتجاه تغير الدالة k ثم شكل جدول تغيراتها .

	بكالوريا جو العلا	جية و سلم التنقيط المادة: الرياضيات الشعبة: العلوم التجريبية	لإجابه النمود
المجموع	مجزأة	الموضوع الأول عناصر الإجابة	محاور الموضوع
		تمرین (1) (04.5 نقاط)	عداد
		$\Delta = 1 - 1$	ركبة
:	0,25×2	$z_2 = 1 + i e z_1 = i$	
	0,5	بیان آن $\left(\frac{z_1}{z_2}\right)^{2008}$ عدد حقیقی	
04,5		$\left(\frac{1}{z_2}\right) = \left(\frac{1}{z_2}\right)$	
	0,5	$e^{-i heta}=rac{1}{e^{i heta}}$ البرهان على أن $-1-2$	
	0,5	$rac{e^{i heta_1}}{e^{i heta_2}}=e^{i(heta_1- heta_2)}$ البرهان على أن	
	0.252	$\rho^{i\frac{\pi}{2}}$	
	0,25×2	$Z = \frac{e^{i\frac{\pi}{2}}}{\sqrt{2}e^{i\frac{3\pi}{4}}}$ و منه $Z = \frac{i}{-1+i}$ ب	
	0,25	$Z = \frac{\sqrt{2}}{2}e^{-i\frac{\pi}{4}}$ و بالتالي	
	025	$Z = \frac{\sqrt{2}}{2} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right)$: Z الشكل المثلثي لـ $Z = \frac{\sqrt{2}}{2} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right)$	
	025	<u> </u>	
	0,5+0,5	$arg(Z) = (\overline{AB}, \overline{AC})$ $ Z = \frac{AC}{AB}$	
	0,5	$rac{\sqrt{2}}{2}$ هي صورة B بالتشابه المباشر الذي مركزه A و نسبته C	
		$\left(-\frac{\pi}{4}\right)$ و زاویته	
		تمرین (2) : 04 نقاط	بندسة
	0,5	التحقق أن النقط A ، B و C ليست على استقامية -1	ضائية
	ŕ	y+2z-2=0 : (ABC)	
	0,75	طريقة : علما أن النقط A ، B و C ليست على استقامية يكفي	
		إثبات أن احداثياتها تحقق المعادلة .	
	0.5	أو أي طريقة أخرى صحيحة.	
	0,5	$(P) \perp (ABC)$ التحقق أن $i-2$	
04		$\begin{cases} x = 5t - 11 \\ x = 2t + 2 \end{cases} $	
	0,75	$\begin{cases} y=-2t+2 & (t\in\mathbb{R}): (\Delta) \ z=t \end{cases}$ تمثیل وسیطی لے	
	0,25	(P) ، (P) ، (Δ) ، (Δ) ، (Δ) ، (Δ) ب- المسافة بين	
	0,25	$\frac{4\sqrt{6}}{3}$ هي (P) المسافة بين A و (P)	

مجزأة المجموع		موذجية و سلم التنقيط المادة : الرياضيات الشعبة : العلوم التجريبيه عناصر الإجابة		
C	J.	عاصر الإجاب	محاور الموضوع	
	0,5	G تاينايا / ايجاد احداثيات -3		
	0,5	$\alpha = -\frac{4}{7}$ و ایجاد $G \in (\Delta)$ و فضع $G \in (\Delta)$		
		7 3 U e (A)		
		تقبل أي طريقة صحيحة التمرين الثالث: 04 نقاط		
	0,5	· ·	متتاليات	
		$f'(x) = \frac{6}{(-x+4)^2} > 0 \qquad (i-1)$	•	
	0,75	$f(1) \le f(x) \le f(2)$ افن $1 \le x \le 2$ ب $1 \le x \le 2$ ب $1 \le f(x) \le 1$ ای آن $1 \le f(x) \le 1$ متزایدة علی $1 \le f(x) \le 1$		
		$1 \le f(x) \le 2$ آي ان $f \le f(x)$		
	0,25 0,25×2	$u_0 \in I $ (1 – 2		
	0,25×2	$u_{n+1} \in I$ فإن $u_n \in I$ (اعتمادا على 1 – ب		
	0,25	(4)		
04	0.25	$u_{n+1} - u_n = f(u_n) - u_n = \frac{u_n^2 - 3u_n + 2}{-u_n + 4}$		
	0,25	" "		
		$u_{n+1} - u_n = \frac{(u_n - 1)(u_n - 2)}{-u_n + 4}$		
	0,25	$u_{n+1}-u_n^{\prime\prime}\langle 0:$ ينتمي إلى I فإن u_n فإن ينتمي الى		
	0,25 0,75	بع الم u_n متقاربة لأنها متناقصة و محدودة من الأسفل (u_n) متقاربة لأنها متناقصة و		
	0,75	i - 3) التحقق + البرهان		
		$\lim_{n\to+\infty}u_n=1 \ (\mathbf{y})$		
	0,25×2	التمرين الرابع (07,5 نقط)		
	0,25	f'(-1) = -e 9 $f(-1) = 1$ $a = b = -1$		
	0,25	$\lim_{x \to +\infty} g(x) = 1 (i (2)$		
	0,25	$(+\infty)$ عند (C_g) عند $y=1$ هو مقارب للمنحنى $y=1$		
	0,25	$[-2,+\infty[$ ب) و قابلة للاشتقاق على $[-2,+\infty[$		
7,5	0,25×2	$g'(x)$ اشارة $g'(x) = xe^{-x}$		
	0,5	جدول التغيرات		
	0,25×4	$g''(x) = (1-x)e^{-x}$ (ε		
		g''(x) + 0 -		
		r(1,1,2)		
	0,25	$I\left(1,1-\frac{2}{e}\right)$ $g(1)=1-\frac{2}{e}$ $y=\frac{1}{e}x+1-\frac{3}{e}$: I معادلة المماس في		
	,	$y = \frac{1}{x+1} - \frac{3}{x+1} = \frac{1}{x+1} = \frac{3}{x+1} = $		
	0,5	e e e	- .	

6/2424.011

44	العلا	-					ة النموذجية و س	
المجمو	مجزاة			بة	عناصر الإجاب		٤	حاور وضوع
	2×0,25				$\beta = 2$ $\alpha =$	α و β ، 1:	و) تعیین	
	0,25	G(0) = 0	0 $G(x) =$	$=\overline{(x+2)e}$	-x + x + c : g	دالة الأصلية للدالة	استنتاج الد	
	0,25					C = -	-2	
	0,25	شتقاق	ين قابلتين للإ	ا مركب دالته	لأنها $\left[-2,+\infty\right[$	لة للإشتقاق على		
	0,5			wave-	_	k'(x) = 2	i	
Ì	1 1	$\frac{x}{(x^2)^2}$			0		+∞	
	0,5	$g'(x^2)$		+		+		
	. UgS	2x			0	+		
	, 	k'(x)			0	+		
	1 1					$k\left(-2\right) = 1 - 3$	5e ⁻⁴	
	0,25×3					k(0) = 0		
	; }					$\lim_{x \to +\infty} k(x) = 1$	1	
					· ·		جدول التغي	
	0.27	$\begin{vmatrix} x \\ k'(x) \end{vmatrix}$	-2		0	+	+∞	
	0,25	k'(x)			<u> </u>	+,		
	1	k(x)	k(-2) –		→ 0 <i>-</i>		→ 1	
	1				U			
	ì							
	Ì							
	Ì							
	İ							
	Ì							
	į					,		
	1	ļ						
	1	<u> </u>						
	1	-						
	i e							
	1	1				1		

20

الصفحة 6/3

المجموع	مجزأة	الموضوع الثاتي عناصر الإجابة	محاور الموضوع
		التمرين الأول : 03 نقط	هندسة
03	5×0,25	(P) المستوى (P) المستوى (P,B,A) المستوى انتماء النقط	، لفضائية
		(ABC) بينما (P) لا ينتمي إلى (P) . إذن المستوى	
00	4×0,25	n'(1,0,-3) نبحث عن الشعاع المرتبط خطيا مع الشعاع (2)	
	4^0,25	$\overline{n'}$ لیس مرتبطا خطیا مع $\overline{n_2}$ ، $\overline{n'}$ مرتبط خطیا مع $\overline{n_1}$	
		\overline{n}' لیس مرتبطا خطیا مع \overline{n}	
	0,75	المسافة بين النقطة D و المستوي (P) هي (3)	
		$d = \frac{ 1 \times 3 - 0 \times 2 - 3 \times 1 - 4 }{\sqrt{1^2 + 0^2 + (-3)^2}} = \frac{2\sqrt{10}}{5}$	
		$\sqrt{1^2 + 0^2 + (-3)^2} $ 5	
	0,25×2	التمرين الثاني: (05 نقط)	
	0,5	(Δ) و (d) و (d)	
	0,25×2	u_4 $= u_3, u_2, u_1, u_0$: u_4 $= u_3, u_2, u_1, u_0$ $= u_3, u_2, u_1, u_0$	
	0,25	جــ وضع التخمين (u_n) متتالية متزايدة و متقاربة نحو 6.	
	,	$u_0 \le 6$ و منه $u_0 = \frac{1}{2}$: البرهان بالتراجع $u_0 = \frac{1}{2}$	
0=	0,50	$u_{n+1} \leq 6$ نفرض $u_n \leq 6$ و نثبت أن $u_n \leq 6$	
05	0,25	$u_{n+1} - u_n = -\frac{1}{3}u_n + 2$	
	0,23	ن من متدارة متذاردة : نحسب :	
	0,25	$u_{n+1} - u_n = \frac{1}{3}(6 - u_n) \ge 0$	
	0,25×2	جر (u_n) متتالية متقاربة لكونها متزايدة و محدودة من الأعلى (u_n)	
		(a_n)	
	0,50	$v_{n+1} = \frac{2}{3}v_n$ (1-3)	
	0,25×2	.	
		$v_0=-rac{7}{2}$ و $q=rac{2}{3}$ متتالیة هندسیة أساسها	
	0,25	$7(2)^n$	
	0,25	$v_n = -\frac{7}{2} \left(\frac{2}{3}\right)^n \qquad (\downarrow)$	
	, , ,	$u_n = -\frac{7}{2} \left(\frac{2}{3}\right)^n + 6$	
	0,25		
		$\lim_{n \to +\infty} u_n = 6 \qquad \left(\lim_{n \to +\infty} v_n = 0\right)$	
	0,25	التمرين الثالث: 05 نقاط	المتتاليات
	0,25×3	$\Delta = 7 + 24i$ (1) $\delta_1 = 4 + 3i$, $\delta_2 = -\delta_1$: هما $\Delta = 7 + 24i$ (1) الجذران التربيعيان لـ Δ هما	العددية
	0,25×2	$z_1 = 2 + i$, $z_2 = -2 - 2i$ الحلان هما	

جوان 088 مة	بكالوريا العلا	موذجية و سلم التنقيط المادة: الرياضيات الشعبة: العلوم التجريبية	<u> </u>
المجموع	مجزاة	عناصر الإجابة	محاور الموضوع
	0,5	$z_{\omega} = \frac{z_A + z_B}{2} = \frac{-i}{2} \tag{2}$	
	0,5	$z_C = \frac{3}{2} - \frac{5}{2}i$ (3)	
05	0,5	$\left\ \overline{\omega c}\right\ = \left z_C - z_\omega\right = \frac{5}{2} = \frac{1}{2} \left\ \overline{AB}\right\ : $ $\qquad \qquad C \in (\Gamma)$	
	0,5×2	$z'-z_0=ke^{i\theta}\left(z-z_0 ight)$: إثبات العبارة ((4	
	0,25×4	$k=2$ هو التشابه المباشر الذي مركزه $\omega\left(-\frac{1}{2}i\right)$ ، نسبته s	
		$\theta = \frac{\pi}{3}$ و زاویته	
		التمرين الرابع: (07 نقاط)	اسة
		$\begin{vmatrix} x & 1 \end{vmatrix}$	رات
		$\begin{vmatrix} x & -1 & 0 & \frac{1}{2} & +\infty \end{vmatrix}$	
	0,25×3	g(x)	
		-2	
	0,25	g (ب) g مستمرة و متزايدة تماما على $\left[0,\frac{1}{2}\right]$ و	ة عددية
	0,25	$g(\alpha) = 0$ حیث $\left[0, \frac{1}{2}\right]$ حیث $g(0) \times g\left(\frac{1}{2}\right) < 0$	
] 2[نغير حقيقي
	0,5	x -1 α $+\infty$.
		g(x) - 0 +	
	0,25	$f'(x) = 1 - \frac{2(x+1)}{(x+1)^4} $ (1) (2)	
	0,25	$f'(x) = \frac{g(x)}{(x+1)^3}$	
07	0,25×3	ب $f'(\alpha) = \frac{g(\alpha)}{(x+1)^3}$ و منه $\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha} = f'(\alpha)$ و منه	
		$\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha} = 0$	
	0,25	$x \to \alpha$ $x - \alpha$ يقبل عند النقطة $(\alpha, f(\alpha))$ مماساً يوازي حامل محور الفواصل.	
	0,25×2	$x=-1$ بقبل مستقیما مقاربا $f(x)=+\infty$ جـ با جا جا با بقبل مستقیما مقاربا	
		1,1	—

6/532001

12

وزا

<u>-I</u>

-1

.2

.3

II L

3

4

1