个人项目 - 圆周率计算

骆煦芳(v-xifluo)

选取算法

我选取了2种算法计算圆周率:

1. Gauss

$$\pi = 48 \times \arctan \frac{1}{18} + 32 \times \arctan \frac{1}{57} - 20 \times \arctan \frac{1}{239}$$

2. Stomer

$$\pi = 24 \times \arctan \frac{1}{8} + 8 \times \arctan \frac{1}{57} + 4 \times \arctan \frac{1}{239}$$

两种算法的计算结果可互为验证。

算法结果

对 2 个算法的时间结果进行了分析:

1. Gauss

# of digits	Time (ms)
10000	1359
20000	4594
30000	9859
40000	16938
50000	26172

2. Stomer

# of digits	Time (ms)
10000	1516
20000	5296
30000	11297
40000	19640
50000	29844

可以发现

- 1. 两种算法的时间增长随着计算位数的增大而变得越来越快;
- 2. Gauss 算法较好于 Stomer 算法;
- 3. Gauss 算法的优势随着计算位数的增大而变大。