

Termodinámica (FIS1523) Sustancias puras y sus fases

Felipe Isaule felipe.isaule@uc.cl

Miércoles 2 de Abril de 2025

Clase 9: Sustancias puras y sus fases

- Sustancias puras.
- Fases de la materia.
- Cambios de fase.

- Bibliografía recomendada:
- → Cengel (3.1, 3.2, 3.3).

Clase 9: Sustancias puras y sus fases

- Sustancias puras.
- Fases de la materia.
- Cambios de fase.

Sustancias puras

- Una sustancia pura es una sustancia que tiene composición química fija.
 - <u>Ejemplos</u>: Agua, nitrógeno, helio.
- Una sustancia pura puede estar compuesta por **uno o más** elementos o **compuestos químicos**.
- Sin embargo, la sustancia debe ser homogénea.
- El aire usualmente se considera una sustancia pura, pero no siempre. En este curso se considera que sí lo es.

 *En estricto rigor el aire exhibe algunas características de sustancia pura.

El nitrógeno y el aire gaseoso son sustancias puras.

Sustancias puras

• Una mezcla de dos o más fases de una sustancia pura sigue siendo una mientras la composición química se mantenga.

Una mezcla de agua líquida y gaseosa es una sustancia pura, pero una mezcla de aire líquido y gaseoso no lo es.

Clase 9: Sustancias puras y sus fases

- Sustancias puras.
- Fases de la materia.
- Cambios de fase.

Fases de una sustancia pura

- Las **fases** o **estados de la materia** corresponden a las formas en que existe la materia.
- Son determinadas por el comportamiento micróscopico de las partículas y sus interacciones.
- Por experiencia cotidiana, las sustancias puras pueder encontrarse principalmente en tres fases:
 - Sólida.
 - Líquida.
 - Gaseosa.

Hielo

Agua líquida

Vapor de agua

Sólidos, líquidos, y gases

- En un **sólido** las partículas se encuentran **fijas en una red**, aunque pueden vibrar. Los enlaces no se rompen.
- En un **líquido** las partículas pueden **trasladarse y girar libremente**. Enlaces se rompen y forman constantemente.
- En un gas no hay orden y las partículas se mueven al azar, colisionándo entre sí. No hay enlaces.

Disposición de los átomos en diferentes fases: *a*) las moléculas están en posiciones relativamente fijas en un sólido, *b*) grupos de moléculas se apartan entre sí en la fase líquida y *c*) las moléculas se mueven al azar en la fase gaseosa.

Plasmas

- Una cuarta fase observable en la vida cotidiana es la plasmática.
- Es un estado similar al gaseoso caracterizado por una alta presencia de **partículas cargadas** (iones o electrones).
- Se puede entender como un gas ionizado.

 Es el estado más abundante de materia ordinaria en el Universo.

Plasmas

 Los plasmas son usualmente considerados el cuarto estado de la materia.

Otros estados extremos

- Existen otros estados de la materia que son alcanzados en condiciones extremas:
 - Condensados de Bose-Einstein ("5^{to} estado de la materia")
 - Materia neutrónica.
 - Plasmas de quark-gluones.

Condensado de Bose-Einstein de átomos ultrafríos

Estrellas de neutrones

Baryon Chemical Potential μ_B

Diagrama de fase de QCD

Otros estados extremos

CIENCIA - Publicado en 'Nature'

La NASA logra generar el quinto estado de la materia en el espacio

AMADO HERRERO @AmadoHerrero París

Actualizado Jueves, 11 junio 2020 - 11:00

Ver 10 comentarios

La microgravedad de la Estación Espacial Internacional permite a los científicos explorar una forma de materia exótica conocida como condensado de Bose-Einstein

Pruebas en tierra de Cold Atom Lab, con el que se realizó el experimento en el

Sub-fases de la materia

- Las sustancias pueden tener una sub-fase dentro de la fase principal (alotropía).
- <u>Ejemplo</u>: El carbono sólido tiene distintos alótropos, como el grafito, el diamante, el grafeno, entre otros.

 En este curso sólo estudiaremos sólidos, líquidos, y gases (especialmente los últimos dos).

• De la experiencia cotidiana, sabemos que las sustancias pueden cambiar de fase al cambiar la temperatura.

- Al aumentar la temperatura las partículas aumentan su energía cinética.
- Lo anterior rompe los enlaces y provoca las transiciones de fase.

• Durante el cambio de fase la temperatura se mantiene constante y coexisten ambas fases.

Líquido comprimido y saturado

- Un **líquido comprimido** o **subsaturado** es aquel que **no está a punto de evaporarse**.
 - → Al transferirle calor al líquido su volumen aumenta pero sigue siendo un líquido.

A 1 atm y 20 °C, el agua existe en la fase líquida (*líquido comprimido*).

A 1 atm de presión y 100 °C, el agua existe como un líquido que está listo para evaporarse (*líquido saturado*).

- Un líquido saturado es aquel que está a punto de evaporarse.
 - → Al transferirle calor al líquido comienza a cambiar a un gas.

Vapor saturado y sobrecalentado

- Durante el **proceso de evaporación** la **temperatura** se mantiene **constante**.
- Además, se forma una mezcla saturada de líquido-vapor.

A 1 atm de presión, la temperatura permanece constante en 100 °C hasta que se evapora la última gota de líquido (*vapor saturado*).

A medida que se transfiere más calor, parte del líquido saturado se evapora (mezcla saturada de líquido-vapor).

- Un vapor saturado es aquel que está a punto de condensarse.
 - → Justo al terminar el proceso de evaporación se tiene un vapor saturado.

Vapor saturado y sobrecalentado

- Un vapor sobrecalentado es aquel que no está a punto de condensarse.
 - Al transferirle calor al vapor su volumen aumenta aún más.

Conforme se transfiere más calor, la temperatura del vapor empieza a aumentar (*vapor sobrecalentado*).

Volumen específico: $\nu = 1/\rho$.

- Ya enunciamos que aumentos de temperatura provocan cambios de fase debido al aumento de la energía cinética.
- Sin embargo, la **temperatura** en que ocurre un **cambio de fase depende de la presión**.
- Intuitivamente, a menor presión es más fácil que las partículas escapen.

Temperatura y presión de saturación

• A una presión determinada, la temperatura a la que una sustancia pura cambia de fase se llama temperatura de saturación, $T_{\rm sat}$.

Variación, con la altitud, de la presión atmosférica estándar y la temperatura de ebullición (saturación) del agua

Altura, m	Presión atmosférica, kPa	Temperatura de ebulli- ción, °C
0	101.33	100.0
1 000	89.55	96.5
2 000	79.50	93.3
5 000	54.05	83.3
10 000	26.50	66.3
20 000	5.53	34.7

Temperatura y presión de saturación

• A una temperatura determinada, la presión a la que una sustancia pura cambia de fase se llama presión de saturación, $P_{\rm sat}$.

Presión de saturación (ebullición) del agua a distintas temperaturas

Temperatura, <i>T,</i> °C	Presión de saturación, P _{sat} , kPa
-10	0.26
-5	0.40
0	0.61
5	0.87
10	1.23
15	1.71
20	2.34
25	3.17
30	4.25
40	7.39
50	12.35
100	101.4
150	476.2
200	1 555
250	3 976
300	8 588

Temperatura y presión de saturación

 Resulta claro que la temperatura y presión de saturación dependen entre sí:

$$T_{\rm sat} = f(P_{\rm sat}).$$

• Experimentalmente, e incluso de la vida cotidiana, sabemos que la **temperatura** $T_{\rm sat}$ **aumenta** con la **presión** $P_{\rm sat}$.

Olla a presión.

Curva de saturación líquido-vapor del agua.

Resumen

- Hemos definido lo que es una sustancia pura.
- Revisamos distintos estados de la materia, incluyendo los sólidos, líquidos, y gases.
- Comenzamos a estudiar los cambios de fase.
- Próxima clase:
 - → Diagramas de propiedades.