Automated Chest X-Ray Diagnostics

Francesco Giammaria

Stefano Gusmeroli

Edoardo Peretti

Matteo Savino

Alessio Tranchida

This is us

Matteo Savino

Stefano Gusmeroli

Alessio Tranchida

Edoardo Peretti

Francesco Giammaria

DATA PRESENTATION

DATA PRESENTATION

More than 60,000 patients

More than 180,000 images

14 pathologies

Deep Convolutional Neural Network (CNN)

Embeddings

Embeddings (189116 x 931)

•	input_data.Path	X2	X3	X4	X5	X6	X8 ‡
1	CheXpert-v1.0-small/tra	5.044617e-08	0.009756592	0.005829324	0.13361263	0.6152759	0
2	CheXpert-v1.0-small/tra	0.000000e+00	0.008479902	0.005943561	0.10519153	0.6668760	0
3	CheXpert-v1.0-small/tra	0.000000e+00	0.009295503	0.007226741	0.10922829	0.5146037	0
4	CheXpert-v1.0-small/tra	0.000000e+00	0.008557481	0.006199519	0.09658385	0.8638877	0
5	CheXpert-v1.0-small/tra	6.659148e-06	0.004773823	0.005670027	0.14989142	0.5566312	0
6	CheXpert-v1.0-small/tra	0.000000e+00	0.009678223	0.006153073	0.13729700	0.5397011	0
7	CheXpert-v1.0-small/tra	0.000000e+00	0.008135295	0.005715157	0.05424061	0.3945267	0
8	CheXpert-v1.0-small/tra	0.000000e+00	0.009958112	0.006867255	0.07581601	0.9344040	0
9	CheXpert-v1.0-small/tra	5.897515e-06	0.007355212	0.006465926	0.17092736	0.5021766	0 - 10

14 pathologies

Labels

Radiologic Consultation Report

*	Cardiomegaly ‡	Lung.Opacity ‡	Edema ‡
1	0	1	1
2	0	1	0
3	0	1	0
4	0	U	0
5	0	1	U
6	1	1	0
7	0	1	0
8	1	1	1
9	0	1	0
10	U	1	0

Guidelines

Embeddings Analysis

Treatment of Uncertainties

Pathologies Relationships

GRAPHICAL REPRESENTATION

t-SNE (t-distibuted stochastic neighbor embedding)

t-SNE

12 Pleural.Effusion negative

12 Pleural.Effusion positive

CLASSIFICATION MODELS

DIMENSIONALITY REDUCTION — PCA

LOGISTIC REGRESSION

- Bagging Model

RANDOM FOREST

- 100 trees
- features random selection
- Quality of split: Gini index

Treatment of Uncertanties

Uncertain values can be:

- Discarded (p = -1)
- All assigned to 0 (p = 0)
- All assigned to 1 (p = 1)
- Assigned to 1 with probability p

(Logit Models for different uncertainties)

ASSOCIATIONS

Conditional Models

LUNG.OPACITY -> EDEMA

EDEMA

X345	X346	X347	X348	X349	X350	X351	X352	X353	Lung.Opacity
0.005	0.034	0.94	0.56	0.23	0.66	0.26	0.001	0.569	1
0.567	0.734	0.005	0.745	0.234	0.657	0.678	0.392	0.004	1
0.178	0.167	0.001	0.070	0.788	0.167	0.281	0.192	0.182	0
0.121	0.431	0.379	0.781	0.112	0.011	0.087	0.965	0.289	0
0.078	0.256	0.389	0.719	0.001	0.781	0.228	0.118	0.801	1

Corrected Labels

Edema		Lung. Opacity	Cardiomegaly
		u	1
0		u	1
0		0	1
		0	0
1		1	1

Edema	Lung. Opacity	Cardiomegaly
1		1
0	u	1
0	0	1
1		0
1	1	1

Conditional models:

increase in AUC up to 10÷20%, e.g. Cardiomegaly and Edema

Corrected labels: further increase of 1.5%

RANDOM FOREST

Lung.Opacity:

U = 0

U = 1

U = corrected

Bagging

- Bagging: sample with replacement (bootstrap) + aggregation
- Ensemble model with bootstrapped training sets
- At each iteration <u>uncertainties are</u>
 <u>resampled</u>

CONCLUSION

CONCLUSION

- Conditional models are very useful
- Corrected labels are helpful
- Treatment of uncertainties (because uncertainties << observations)</p>
- Bagging for logistic regression

THANK YOU

We look forward to answer your question!!!

If you want, join us at the following link:

https://github.com/edpere/CheXpert-analysis

CheXpert competition: https://stanfordmlgroup.github.io/competitions/chexpert/
Bibliography:

- Interpreting chest X-rays via CNNs that exploit disease dependencies and uncertainty labels, Hieu H. Pham, Tung T. Le, Dat Q. Tran, Dat T. Ngo, Ha Q. Nguyen 2019
- CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison, Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, et al.

Lasso

- We looked for the optimal hyperparameter α using the **validation set**
- In the end we do not see great improvements

Conclusions

- Conditional models are very useful
- ✓ Corrected labels can be helpful
- Treatment of uncertainties (because of big dataset)
- Bagging for logistic regression
- Regularization (e.g. lasso) (no overfitting)