Geometry Homework 1

B96201044 黃上恩, B98901182 時丕勳, K0020100x 劉士瑋

September 19, 2011

Problem 3 (P7: 4). Let $\alpha:(0,\pi)\to\mathbf{R}^2$ be given by

$$lpha(t) = \left(\sin t, \cos t + \log an rac{t}{2}
ight)$$
 ,

where t is the angle that the y axis makes with the vector $\alpha(t)$. The trace of α is called the tractrix (Fig. 1-9). Show that

- (a) α is a differentiable parametrized curve, regular except at $t=\pi/2$.
- (b) The length of the segment of the tangent of the tractrix between the point of tangency and the y axis is constantly equal to 1.

Proof.

(a) Let $x(t) = \sin t$, $y(t) = \cos t + \log \tan \frac{t}{2}$, then

$$x'(t)=\cos t; \;\; y'(t)=-\sin t+rac{1}{\sin t}.$$

It's trivial that both x'(t) and y'(t) are infinitely differentiable in $(0,\pi)$, so α is a differentiable parametrized curve.

$$x'(t)=0, y'(t)=0 \Longleftrightarrow t=\frac{\pi}{2}$$
, so α is regular except at $t=\pi/2$.

(b) The intersection of y axis and the tangent of the tractrix is $\left(0,y(t)-\frac{y'(t)}{x'(t)}x(t)\right)$. The length of the segment of the tangent of the tractrix between the point of tangency and the y axis is $\sqrt{x(t)^2+\left(\frac{y'(t)}{x'(t)}x(t)\right)^2}$

$$egin{aligned} x(t)^2 + \left(rac{y'(t)}{x'(t)}x(t)
ight)^2 &= \sin^2 t \left(1 + \left(rac{y'(t)}{x'(t)}
ight)^2
ight) \ &= \sin^2 t \left(1 + \left(rac{-\sin t + rac{1}{\sin t}}{\cos t}
ight)^2
ight) \ &= \sin^2 t \left(1 + \left(rac{1 - \sin^2 t}{\sin t \cos t}
ight)^2
ight) \ &= \sin^2 t \left(rac{1}{\sin^2 t}
ight) \ &= 1 \end{aligned}$$

So the length of the segment of the tangent of the tractrix between the point of tangency and the y axis $=\sqrt{x(t)^2+\left(\frac{y'(t)}{x'(t)}x(t)\right)^2}=1.$

Problem 5 (P47: 6). Let $\alpha(s), s \in [0, l]$ be a closed convex plane curve positively oriented. The curve

$$\beta(s) = \alpha(s) - rn(s),$$

where r is a positive constant and n is the normal vector, is called a parallel curve to α (Fig. 1-37). Show that

- (a) Length of $\beta = length$ of $\alpha + 2\pi r$.
- $(b) \ \ A(\beta) = A(\alpha) + rl + \pi r^2.$

(c)
$$\kappa_{\beta}(s) = \kappa_{\alpha}(s)/(1 + r\kappa_{\alpha}(s))$$
.

For (a)-(c), $A(\cdot)$ denotes the area bounded by the corresponding curve, and κ_{α} , κ_{β} are the curvatures of α and β , respectively.

Problem 8 (Curvature is a geometric object I.). X(s) = (x(s), y(s)), where s is the arc-length parameter.

$$M=\left[egin{array}{ccc} a_{11} & a_{12} \ a_{21} & a_{22} \end{array},
ight]M^t=M^{-1}, \emph{i.e.} \,\,\,M\,\,\,\emph{is orthogonal}.$$

Let $ar{X}(s)=M\cdot\left[egin{array}{c} x(s) \ y(s) \end{array}
ight]+\left[egin{array}{c} lpha \ eta \end{array}
ight]$, $lpha,eta\in\mathbf{R}$. What is the relation between $\kappa_X(s)$ and $\kappa_{ar{X}}(s)$?

 \square

Problem 9 (Curvature is a geometric object II.). X(t) = (x(t), y(t)) be a regular curve. Let

$$\kappa(x(t),y(t)) \equiv \kappa(t) = rac{\left|egin{array}{cc} x' & y' \ x'' & y'' \end{array}
ight|}{(x'^2+y'^2)^{rac{3}{2}}}$$

Let Y(u) = X(t(u)), $t'(u) \neq 0$. Discuss the relation of $\kappa(x(t), y(t))$ and $\kappa(x(t(u)), y(t(u)))$ at the corresponding points.

Problem 10. Let F(x,y) = c defines a plane curve. Prove that the curvature of the curve satisfies

$$|\kappa| = \left| egin{array}{c|c} F_y, & -F_x \end{array}
ight] \left[egin{array}{c|c} F_{xx} & F_{xy} \ F_{xy} & F_{yy} \end{array}
ight] \left[egin{array}{c|c} F_y \ -F_x \end{array}
ight] \ (F_x^2 + F_y^2)^{rac{3}{2}} \end{array}
ight.$$

Where $F_x^2 + F_y^2 \neq 0$.

Proof. Let α be a point in the plane such that $F(\alpha)=c$. Consider the circle of curvature passing through α . If we observed the intersection of two line respectively perpendicular to the lines tangent to F=c and passing respectively through α and another point $\alpha'\in F=c$, the intersection approaphes the centre of the circle o as $\alpha'\to \alpha$. Thus,

$$|lpha'-lpha|=r\sin heta$$

, where θ is the angle between the vectors $o - \alpha$ and $o - \alpha'$. By the formula of exterior product,

$$\sin heta = rac{|(o-lpha) imes(o-lpha')|}{|o-lpha||o-lpha'|}$$

Let n denote $\nabla F/|\nabla F|$ rotated counterclockwise by $\pi/2$. Since $\alpha'-\alpha$ is perpendicular to $\frac{\nabla F(\alpha)}{|\nabla F(\alpha)|}$, and since $o-\alpha$ and $o-\alpha'$ are respectively

parallel to
$$\frac{\nabla F(\alpha)}{|\nabla F(\alpha)|}$$
 and $\frac{\nabla F(\alpha')}{|\nabla F(\alpha')|}$, we obtained

П