Regressions- och tidsserieanalys Föreläsning 3 - Regression som sannolikhetsmodell

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- Regression som sannolikhetsmodell
- Konfidensintervall
- Hypotestest
- Prediktionsintervall

Repetition sannolikhetsmodeller

Underliggande populationsmodell:

$$X_1, \ldots, X_n \stackrel{\text{ober}}{\sim} N(\mu, \sigma^2), \quad \sigma^2 \text{ känd}$$

Medelvärdet

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

är en **estimator** för μ .

■ Väntevärdesriktig (rätt i genomsnitt över alla möjliga stickprov)

$$\mathbb{E}(\bar{X}) = \mu$$

Samplingfördelningen (hur medelvärdet varierar från stickprov till stickprov):

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Regression som sannolikhetsmodell

Underliggande populationsmodell f\u00f6r regression:

$$y = \alpha + \beta x + \varepsilon$$
, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$

Regression är en modell för den betingade fördelningen

$$y|x \sim N\left(\mu_{y|x}, \sigma_{\varepsilon}^2\right)$$

där det betingade väntevärdet för y nu beror på x genom regressionen

$$\mu_{y|x} = \alpha + \beta x$$

- \blacksquare α är interceptet i den underliggande populationen.
- β är lutningen på regressionslinjen i den underliggande populationen.

Regression som sannolikhetsmodell

- Stickprov/datamaterial med n observationspar $(y_1, x_1), \ldots (y_n, x_n)$.
- lacksquare Vanligt att anta oberoende feltermer arepsilon för alla observationer:

$$\varepsilon_1,\ldots,\varepsilon_n\stackrel{\mathrm{ober}}{\sim} N(0,\sigma_{\varepsilon}^2)$$

Modell för hela stickprovet

$$y_i = \alpha + \beta x_i + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{ober}}{\sim} N(0, \sigma_{\varepsilon}^2)$$

Regression som sannolikhetsmodell

Regression som modell för betingad fördelning

$$y|x \sim N\left(\mu_{y|x}, \sigma_{\varepsilon}^2\right)$$

$$\mu_{y|x} = \alpha + \beta x$$
 8000
$$\mu_{y|x} = \alpha + \beta x$$

$$\mu_{y|x=0.75}$$

$$\mu_{y$$

Simulera data

- \blacksquare Simulera regressionsdata med stickprovstorlek n:
 - **b** Bestäm populationens parametrar β_0 , β_1 och σ^2 .
 - ▶ Bestäm $x_1,...,x_n$ (som antas vara icke-slumpmässiga)
 - ▶ Simulera feltermer $\varepsilon_1, \ldots, \varepsilon_n$ från $N(0, \sigma^2)$.
 - ▶ Beräkna $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ för varje observation.

Samplingfördelning - minstakvadratskattningen

Minstakvadratestimatorerna

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$a = \bar{y} - b\bar{x}$$

$$s_e^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

Väntevärdesriktiga

$$\mathbb{E}(b) = \beta$$
$$\mathbb{E}(a) = \alpha$$

$$\mathbb{E}(s_e^2) = \sigma_{\varepsilon}^2$$

Samplingfördelning för b

Estimatorn för lutningskoefficienten

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

har **samplingvarians** (hur mycket varierar *b* över olika stickprov)

$$\sigma_b^2 = \frac{\sigma_\varepsilon^2}{\sum (x_i - \bar{x})^2}$$

lacksquare En estimator av den teoretiska samplingvariansen σ_b^2 är

$$s_b^2 = \frac{s_e^2}{\sum (x_i - \bar{x})^2}$$

- Se AJÅ för en motsvarande formel för att skatta samplingvariansen för a.
- Hälsobudgetdata

$$s_b^2 = \frac{4.467}{52.861} = 0.085$$
 $s_b \approx \sqrt{0.085} \approx 0.291$

Mattias Villani

Approximativt konfidensintervall för b

Approximativt 95% konfidensintervall för b för stora stickprov $(n \ge 30)$

$$[b-1.96 \cdot s_b, b+1.96 \cdot s_b]$$

Hälsobudgetdata

$$[1.038 - 1.96 \cdot 0.291, 1.038 + 1.96 \cdot 0.291] = [0.468, 1.608]$$

I 95% av alla stickprov från populationen täcker intervallet [0.468, 1.608] den sanna lutningen β .

Exakt konfidensintervall för b - student t

- För små n är normalapproximationen inte tillräckligt bra.
- Estimatorn b följer en t-fördelning med n-2 frihetsgrader.

$$\frac{b-\beta}{s_b} \sim t(n-2)$$

- lacksquare För $n o\infty$ blir t-fördelningen alltmer lik normalfördelningen.
- lacktriangleq t-fördelningen konvergerar mot normalfördelningen när $n o \infty$.

Exakt konfidensintervall för b - student t

Exakt 95% konfidensintervall för b

$$[b - t_{0.025}(n-2) \cdot s_b, b + t_{0.025}(n-2) \cdot s_b]$$

- $t_{0.025}(n-2)$ är det värde som har 0.025 (2.5%) sannolikhetsmassa till vänster om sig i t-fördelningen med n-2 frihetsgrader.
- TO BE CONTINUED!

