파이썬으로 배우는 알고리즘 기초 Chap 3. 통적계획

3.4

经批問 超過 温档

③ 3.4 연쇄 행렬 곱셈

- 연쇄 행렬 곱셈 문제
 - 주어진 n개의 연쇄 행렬을 곱하는 최적의 순서를 구하시오.
 - n개의 연쇄 행렬 곱셈: $A_1 \times A_2 \times \cdots \times A_n$
 - 행렬 곱셈은 결합 법칙이 성립: $(A_x \times A_y) \times A_z = A_x \times (A_y \times A_z)$
 - 하지만, 행렬 곱셈의 순서에 따라서 각 원소의 곱셈 횟수가 달라짐
 - 각 원소의 곱셈 횟수가 가장 작아지도록 하는 곱셈 순서가 최적의 순서
 - 연쇄 행렬 곱셈 문제는 최적화 문제
 - 원소의 곱셈 횟수를 최소화하는 행렬 곱셈의 순서 찾기

- 연쇄 행렬 곱셈 문제의 이해
 - 2 × 3 행렬과 3 × 4 행렬을 곱하면 2 × 4 행렬이 나옴
 - Algorithm 1.4: **언소를 곱하는 횟수는** 2 × 3 × 4 = 24

- 일반적으로, $i \times k$ 행렬과 $k \times j$ 행렬을 곱하면 $i \times j$ 행렬이 나옴
 - 원소 곱셈의 횟수: $i \times k \times j$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 & 9 & 1 \\ 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 29 & 35 & 41 & 38 \\ 74 & 89 & 104 & 83 \end{bmatrix}$$

- 연쇄 행렬 곱셈: 단순무식하게 풀기(Brute-Force Approach)
 - 모든 경우의 수에 대해서 계산해 보고 최적의 순서를 선택

• 연쇄 행렬 곱셈에서 가능한 경우의 수는?

- 카탈란 수:
$$C(n) = \frac{1}{n+1} {2n \choose n} \sim \frac{4^n}{n^{3/2} \sqrt{\pi}}$$

- 연쇄 행렬 곱셈이 가지는 경우의 $\phi = C(n-1)$
 - n개의 항에 괄호를 씌우는 모든 경우의 수 $(n = 1, 2, 3, \cdots)$

$$A \times B \times C \times D$$

(20 × 2) (2 × 30) (30 × 12) (12 × 8)

• 연쇄 행렬이 4개일 경우 다섯가지 경우의 수가 존재

- -A(B(CD)) = 3,680
- -(AB)(CD) = 8,880
- A((BC)D) = 1,232
- -((AB)C)D = 10,320
- (A(BC))D = 3,120

- 연쇄 행렬 곱셈 문제의 엄밀한 정의
 - n개의 연쇄 행렬 곱셈: $A_1 \times A_2 \times \cdots \times A_n$
 - A_{k-1} 의 행의 개수와 A_k 의 열의 개수가 같아야 함
 - d_k 를 행렬 A_k 의 행의 개수로 정함 $(1 \le k \le n)$
 - d_{k-1} 은 행렬 A_k 의 열의 개수, A_{k-1} 의 행의 개수임
 - d_0 는 A_1 의 열의 개수

- 연쇄 행렬 곱셈: 동적계획(Dynamic Programming)
 - 1단계: 재귀 관계식을 찾는다.
 - M: 연쇄 행렬을 곱하는데 필요한 곱셈의 최소 회수 행렬
 - M[i][j]: A_i 에서 A_j 까지 행렬을 곱하는데 필요한 곱셈의 최소 회수 $(1 \le i \le j \le n)$
 - 목표: $A_i \cdots A_j$ 행렬을 $(A_i \cdots A_k)(A_{k+1} \cdots A_j)$ 로 분할하는 재귀 관계식 찾기

- 2단계: 상향식 방법으로 해답을 구한다.
 - 초기화: M[i][i] = 0 (주대각선을 0으로)
 - 최종 목표:*M*[1][*n*].
 - 상향식 계산: 대각선 1번, 대각선 2번, …, 대각선 n-1번

- 연쇄 행렬 곱셈의 재귀 관계식 구하기
 - 분할정복(Divide-and-Conquer)
 - n개의 행렬을 두 개의 최적 부분행렬의 곱으로 분할
 - 예를 들어, $A_1A_2A_3A_4A_5A_6$ 은 다음과 같이 분할 가능
 - 각 분할의 곱셈 횟수:
 - 각 부분행렬의 곱셈 횟수 + 두 행렬의 곱셈 횟수
 - $M[1][k] + M[k+1][6] + d_0d_kd_6$
 - 최적 분할:
 - $M[1][6] = \min_{i \le k \le j-1} (M[1][k] + M[k+1][6] + d_0 d_k d_6)$

 $(A_1)(A_2A_3A_4A_5A_6)$: k=1 $(A_1A_2)(A_3A_4A_5A_6)$: k=2 $(A_1A_2A_3)(A_4A_5A_6)$: k=3 $(A_1A_2A_3A_4)(A_5A_6)$: k=4

 $(A_1A_2A_3A_4A_5)(A_6)$: k = 5

A_1	×	A_2	×	A_3	×	A_4	×	A_5	×	A_6
(5×2)		(2×3)		(3×4)		(4×6)		(6×7)		(7×8)
d_0 d_1		d_2		d_3		d_4		d_5		d_6

M	1	2	3	4	5	6
1	0					
2		0				
3			0			
4				0		392
5					0	
6						0

A₄A₅A₆의 계산

-
$$(A_4A_5)A_6$$
: $d_3d_4d_5 + d_3d_5d_6 = 392$

-
$$A_4(A_5A_6)$$
: $d_4d_5d_6 + d_3d_4d_6 = 528$

•
$$M[4][6] = \min(392,528) = 392$$

■ 연쇄 행렬 곱셈의 재귀 관계식

- For $1 \le i \le j \le n$,
 - if i = j, M[i][j] = 0
 - if $i < j, M[i][j] = \min_{i \le k \le j-1} (M[i][k] + M[k+1][j] + d_{i-1}d_kd_j)$

M	1	2	3	4	5	6	
1	0	30	64	132			diagonal 5
2		0		72			 diagonal 4
3			0	72			diagonal 3
4				0			 diagonal 2
5		[4] = 13		[2][4] 4	0		 diagonal 1
6	— m	M[1]	[2] + M	$[2][4] + d_0$ $[3][4] + d_0$ $[4][4] + d_0$	d_2d_4 ,	0	main diagonal

주니은TV@Youtube 자세히 보면 유익한 코딩 채널

Algorithm 3.6: Chained Matrix Multiplication

```
def minmult (d):
    n = len(d) - 1
    M = [[-1] * (n + 1) for _ in range(n + 1)]
    P = [[-1] * (n + 1) for _ in range(n + 1)]
    for i in range(1, n + 1):
        M[i][i] = 0
    for diagonal in range(1, n):
        for i in range(1, n - diagonal + 1):
            j = i + diagonal
            M[i][j], P[i][j] = minimum(M, d, i, j)
    return M, P
```


주니온TV@Youtube 자세히 보면 유익한 코딩 채널

Algorithm 3.6: Chained Matrix Multiplication

```
def minimum (M, d, i, j):
   minValue = INF
   minK = 0
   for k in range(i, j):
        value = M[i][k] + M[k + 1][j]
        value += d[i - 1] * d[k] * d[j]
        if (minValue > value):
            minValue = value
            minK = k
    return minValue, minK
```


- 그러면... 곱셈 순서는 어떻게 출력하지?
 - P[i][j] = k 이면 $(A_i \cdots A_k)(A_{k+1} \cdots A_j)$ 로 분할
 - 재귀 호출: 분할정복!

_		•	•		_	_			
P	1	2	3	4	5	6			
1		1	1	1	1	1	•	P[1][6] = 1: P[1][1] & P[2][6]	$\bullet (A_1 A_2 A_3 A_4 A_5 A_6)$
2			2	3	4	5	•	P[2][6] = 5: P[2][5] & P[6][6]	$\bullet (A_1)(A_2A_3A_4A_5A_6)$
3				3	4	5	•	P[2][5] = 4: P[2][4] & P[5][5]	$\bullet (A_1) \big((A_2 A_3 A_4 A_5) A_6 \big)$
4					4	5	•	P[2][4] = 3: P[2][3] & P[4][4]	$\bullet (A_1) \left(\left((A_2 A_3 A_4) A_5 \right) A_6 \right)$
5						5	•	P[2][3] = 2: P[2][2] & P[3][3]	$\bullet (A_1) \left(\left(((A_2 A_3) A_4) A_5 \right) A_6 \right)$
6									

주니온TV@Youtube 자세히 보면 유익한 코딩 채널

Algorithm 3.7: Print Optimal Order

```
def order (P, i, j):
    if (i == j):
        print('A%d'%(i), end='')
    else:
        k = P[i][j]
        print('(', end = '')
        order(P, i, k)
        order(P, k + 1, j)
        print(')', end = '')
```



```
INF = 999
d = [5, 2, 3, 4, 6, 7, 8]
M, P = minmult(d)
print('M = ')
for i in range(1, len(M)):
    print(M[i][1:])
print('P = ')
for i in range(1, len(P)):
    print(P[i][1:])
print('minimum order: ', end = '')
order(P, 1, len(d) - 1)
```



```
[0, 30, 64, 132, 226, 348]
[-1, 0, 24, 72, 156, 268]
[-1, -1, 0, 72, 198, 366]
[-1, -1, -1, 0, 168, 392]
[-1, -1, -1, -1, 0, 336]
[-1, -1, -1, -1, -1, 0]
[-1, 1, 1, 1, 1, 1]
[-1, -1, 2, 3, 4, 5]
[-1, -1, -1, 3, 4, 5]
[-1, -1, -1, -1, 4, 5]
[-1, -1, -1, -1, 5]
[-1, -1, -1, -1, -1, -1]
minimum order: (A1((((A2A3)A4)A5)A6))
```


주니온TV@Youtube

자세히 보면 유익한 코딩 채널

https://bit.ly/2JXXGqz

- 여러분의 구독과 좋아요는 강의제작에 큰 힘이 됩니다.
- 강의자료 및 소스코드: 구글 드라이브에서 다운로드 (다운로드 주소는 영상 하단 설명란 참고)

https://bit.ly/3fN0q8t