EE263 Autumn 2015 S. Boyd and S. Lall

Singular Value Decomposition

Geometry of linear maps

every matrix $A \in \mathbb{R}^{m \times n}$ maps the unit ball in \mathbb{R}^n to an ellipsoid in \mathbb{R}^m

$$S = \left\{ x \in \mathbb{R}^n \mid ||x|| \le 1 \right\} \qquad AS = \left\{ Ax \mid x \in S \right\}$$

Singular values and singular vectors

- ightharpoonup first, assume $A \in \mathbb{R}^{m \times n}$ is skinny and full rank
- ▶ the numbers $\sigma_1, \ldots, \sigma_n > 0$ are called the *singular values* of A
- ▶ the vectors $u_1, ..., u_n$ are called the *left* or *output singular vectors* of A. These are *unit vectors* along the principal semiaxes of AS
- ▶ the vectors v_1, \ldots, v_n are called the *right* or *input singular vectors* of A. These map to the principal semiaxes, so that

$$Av_i = \sigma_i u_i$$

Thin singular value decomposition

$$Av_i = \sigma_i u_i$$
 for $1 \le i \le n$

For $A \in \mathbb{R}^{m \times n}$ with $\operatorname{Rank}(A) = n$, let

$$U = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_n \end{bmatrix} \qquad V = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$

the above equation is $AV=U\Sigma$ and since V is orthogonal

$$A = U\Sigma V^{\mathsf{T}}$$

called the *thin SVD* of A

Thin SVD

For $A \in \mathbb{R}^{m \times n}$ with $\mathbf{Rank}(A) = r$, the *thin SVD* is

$$A = U\Sigma V^{\mathsf{T}} = \sum_{i=1}^{r} \sigma_i u_i v_i^{\mathsf{T}}$$

$$A \qquad U \qquad \Sigma \qquad V^{\mathsf{T}}$$

here

- $V \in \mathbb{R}^{m \times r}$ has orthonormal columns,
- $\triangleright \ \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r), \text{ where } \sigma_1 \geq \dots \geq \sigma_r > 0$
- $V \in \mathbb{R}^{n \times r}$ has orthonormal columns

SVD and eigenvectors

$$\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A} = (\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathsf{T}})^{\mathsf{T}}(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathsf{T}}) = \boldsymbol{V}\boldsymbol{\Sigma}^{2}\boldsymbol{V}^{\mathsf{T}}$$

hence:

- $lackbox{} v_i$ are eigenvectors of $A^\mathsf{T} A$ (corresponding to nonzero eigenvalues)
- $\qquad \qquad \boldsymbol{\sigma}_i = \sqrt{\lambda_i(A^\mathsf{T}A)} \text{ (and } \lambda_i(A^\mathsf{T}A) = 0 \text{ for } i > r \text{)}$
- $||A|| = \sigma_1$

SVD and eigenvectors

similarly,

$$AA^{\mathsf{T}} = (U\Sigma V^{\mathsf{T}})(U\Sigma V^{\mathsf{T}})^{\mathsf{T}} = U\Sigma^{2}U^{\mathsf{T}}$$

hence:

- $ightharpoonup u_i$ are eigenvectors of AA^{T} (corresponding to nonzero eigenvalues)
- $lackbox{} \sigma_i = \sqrt{\lambda_i(AA^\mathsf{T})} \ ext{(and } \lambda_i(AA^\mathsf{T}) = 0 \ ext{for } i > r ext{)}$

SVD and range

$$A = U\Sigma V^{\mathsf{T}}$$

- ▶ $u_1, ... u_r$ are orthonormal basis for range(A)
- $ightharpoonup v_1, \dots v_r$ are orthonormal basis for $\mathbf{null}(A)^{\perp}$

Interpretations

linear mapping y = Ax can be decomposed as

- ightharpoonup compute coefficients of x along input directions v_1, \ldots, v_r
- ightharpoonup scale coefficients by σ_i
- ightharpoonup reconstitute along output directions u_1, \ldots, u_r

difference with eigenvalue decomposition for symmetric A: input and output directions are $\ensuremath{\textit{different}}$

Gain

- $lackbox{} v_1$ is most sensitive (highest gain) input direction
- $lackbox{} u_1$ is highest gain output direction
- $Av_1 = \sigma_1 u_1$

Gain

SVD gives clearer picture of gain as function of input/output directions example: consider $A \in \mathbb{R}^{4 \times 4}$ with $\Sigma = \operatorname{diag}(10, \ 7, \ 0.1, \ 0.05)$

- ▶ input components along directions v_1 and v_2 are amplified (by about 10) and come out mostly along plane spanned by u_1 , u_2
- \blacktriangleright input components along directions v_3 and v_4 are attenuated (by about 10)
- ▶ ||Ax||/||x|| can range between 10 and 0.05
- ▶ A is nonsingular
- ▶ for some applications you might say A is *effectively* rank 2

Example: SVD and control

we want to choose x so that $Ax = y_{des}$.

- ightharpoonup right singular vector v_i is mapped to left singular vector u_i , amplified by σ_i
- lacktriangleright σ_i measures the actuator authority in the direction $u_i \in \mathbb{R}^m$
- $ightharpoonup r < m \implies$ no control authority in directions u_{r+1}, \ldots, u_m
- ▶ if A is fat and full rank, then the ellipsoid is

$$E = \left\{ y \in \mathbb{R}^m \mid y^{\mathsf{T}} (AA^{\mathsf{T}})^{-1} y \le 1 \right\}$$

because

$$AA^{\mathsf{T}} = U\Sigma V^{\mathsf{T}} V\Sigma U^{\mathsf{T}} = U\Sigma^{2} U^{\mathsf{T}}$$

Example: Forces applied to a rigid body

apply forces via thrusters x_i in specific directions

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 0 & -1 \\ 0 & 0.5 & -0.5 \end{bmatrix}$$

- ▶ total force on body y = Ax,
- $ightharpoonup x_i$ is power (in W) supplied to thruster i
- $ightharpoonup ||a_i||$ is *efficiency* of thruster
- ▶ most efficient direction we can apply thrust is given by long axis
- $\sigma_1 = 1.4668, \ \sigma_2 = 0.5904$

General pseudo-inverse

if $A \neq 0$ has SVD $A = U\Sigma V^{\mathsf{T}}$, the *pseudo-inverse* or *Moore-Penrose inverse* of A is

$$A^{\dagger} = V \Sigma^{-1} U^{\mathsf{T}}$$

▶ if A is skinny and full rank,

$$A^{\dagger} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$$

gives the least-squares approximate solution $x_{\mathrm{ls}} = A^\dagger y$

▶ if A is fat and full rank,

$$A^{\dagger} = A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1}$$

gives the least-norm solution $x_{\rm ln}=A^{\dagger}y$

General pseudo-inverse

$$X_{\mathrm{ls}} = \{ \ z \mid \|Az - y\| = \min_{w} \ \|Aw - y\| \ \}$$

is set of least-squares approximate solutions

 $x_{\rm pinv}=A^\dagger y\in X_{\rm ls}$ has minimum norm on $X_{\rm ls}$, $\it i.e.$, $x_{\rm pinv}$ is the minimum-norm, least-squares approximate solution

Pseudo-inverse via regularization

for $\mu > 0$, let x_{μ} be (unique) minimizer of

$$||Ax - y||^2 + \mu ||x||^2$$

i.e.,

$$x_{\mu} = \left(A^{\mathsf{T}}A + \mu I\right)^{-1} A^{\mathsf{T}} y$$

here, $A^{\mathsf{T}}A + \mu I > 0$ and so is invertible

then we have $\lim_{\mu \to 0} x_\mu = A^\dagger y$

in fact, we have
$$\lim_{\mu \to 0} \left(A^\mathsf{T} A + \mu I\right)^{-1} A^\mathsf{T} = A^\dagger$$
 (check this!)

Full SVD

SVD of $A \in \mathbb{R}^{m \times n}$ with $\operatorname{Rank}(A) = r$

$$A = U_1 \Sigma_1 V_1^{\mathsf{T}} = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1^{\mathsf{T}} \\ \vdots \\ v_r^{\mathsf{T}} \end{bmatrix}$$

Add extra columns to U and V, and add zero rows/cols to Σ_1

Full SVD

- ▶ find $U_2 \in \mathbb{R}^{m \times (m-r)}$ such that $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \in \mathbb{R}^{m \times m}$ is orthogonal
- ▶ find $V_2 \in \mathbb{R}^{n \times (n-r)}$ such that $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \in \mathbb{R}^{n \times n}$ is orthogonal
- ▶ add zero rows/cols to Σ_1 to form $\Sigma \in \mathbb{R}^{m \times n}$

$$\Sigma = \left[\begin{array}{c|c} \Sigma_1 & 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{array} \right]$$

then the full SVD is

$$A = U_1 \Sigma_1 V_1^{\mathsf{T}} = \left[\begin{array}{c|c} U_1 & 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{array} \right] \left[\begin{array}{c|c} V_1^{\mathsf{T}} \\ \hline V_2^{\mathsf{T}} \end{array} \right]$$

which is $A = U\Sigma V^{\mathsf{T}}$

example: SVD

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 4 & 2 \end{bmatrix}$$

SVD is

$$A = \begin{bmatrix} -0.319 & 0.915 & -0.248 \\ -0.542 & -0.391 & -0.744 \\ -0.778 & -0.103 & 0.620 \end{bmatrix} \begin{bmatrix} 5.747 & 0 \\ 0 & 1.403 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -0.880 & -0.476 \\ -0.476 & 0.880 \end{bmatrix}$$

Image of unit ball under linear transformation

full SVD:

$$A = U\Sigma V^{\mathsf{T}}$$

gives interretation of y = Ax:

- ightharpoonup rotate (by V^{T})
- ▶ stretch along axes by σ_i ($\sigma_i = 0$ for i > r)
- ightharpoonup zero-pad (if m > n) or truncate (if m < n) to get m-vector
- ▶ rotate (by U)

Image of unit ball under A

 $\{Ax \mid ||x|| \leq 1\}$ is *ellipsoid* with principal axes $\sigma_i u_i$.

Sensitivity of linear equations to data error

consider y=Ax, $A\in\mathbb{R}^{n\times n}$ invertible; of course $x=A^{-1}y$ suppose we have an error or noise in $y,\ i.e.,\ y$ becomes $y+\delta y$ then x becomes $x+\delta x$ with $\delta x=A^{-1}\delta y$ hence we have $\|\delta x\|=\|A^{-1}\delta y\|\leq \|A^{-1}\|\|\delta y\|$

if $||A^{-1}||$ is large,

- ightharpoonup small errors in y can lead to large errors in x
- can't solve for x given y (with small errors)
- ▶ hence, A can be considered singular in practice

Relative error analysis

a more refined analysis uses *relative* instead of *absolute* errors in x and y since y=Ax, we also have $\|y\|\leq \|A\|\|x\|$, hence

$$\frac{\|\delta x\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|\delta y\|}{\|y\|}$$

So we define the *condition number* of *A*:

$$\kappa(A) = ||A|| ||A^{-1}|| = \sigma_{\max}(A) / \sigma_{\min}(A)$$

Relative error analysis

we have:

relative error in solution $x \leq \text{condition number} \cdot \text{relative error}$ in data y

or, in terms of # bits of guaranteed accuracy:

bits accuracy in solution $\approx \#$ bits accuracy in data $-\log_2 \kappa$

we say

- ightharpoonup A is well conditioned if κ is small
- lackbox A is poorly conditioned if κ is large

(definition of 'small' and 'large' depend on application)

same analysis holds for least-squares approximate solutions with A nonsquare, $\kappa = \sigma_{\max}(A)/\sigma_{\min}(A)$

Low rank approximations

suppose
$$A \in \mathbb{R}^{m \times n}$$
, $\operatorname{Rank}(A) = r$, with SVD $A = U \Sigma V^{\mathsf{T}} = \sum_{i=1}^r \sigma_i u_i v_i^{\mathsf{T}}$

we seek matrix $\hat{A},~ {\bf Rank}(\hat{A}) \leq p < r, \text{ s.t. } \hat{A} \approx A \text{ in the sense that } \|A - \hat{A}\| \text{ is minimized}$

solution: optimal rank p approximator is

$$\hat{A} = \sum_{i=1}^{p} \sigma_i u_i v_i^{\mathsf{T}}$$

- ▶ hence $||A \hat{A}|| = \left\|\sum_{i=p+1}^r \sigma_i u_i v_i^\mathsf{T}\right\| = \sigma_{p+1}$
- ▶ interpretation: SVD dyads $u_i v_i^{\mathsf{T}}$ are ranked in order of 'importance'; take p to get rank p approximant

Proof: Low rank approximations

suppose
$${\bf Rank}(B) \le p$$
 then ${\bf dim} \, {\bf null}(B) \ge n-p$ also, ${\bf dim} \, {\bf span}\{v_1,\dots,v_{p+1}\} = p+1$

hence, the two subspaces intersect, i.e., there is a unit vector $z \in \mathbb{R}^n$ s.t.

$$Bz=0, \qquad z\in \mathrm{span}\{v_1,\ldots,v_{p+1}\}$$

$$(A-B)z=Az=\sum_{i=1}^{p+1}\sigma_iu_iv_i^\mathsf{T}z$$

$$\|(A - B)z\|^2 = \sum_{i=1}^{p+1} \sigma_i^2 (v_i^\mathsf{T} z)^2 \ge \sigma_{p+1}^2 \|z\|^2$$

hence $||A - B|| \ge \sigma_{p+1} = ||A - \hat{A}||$

Distance to singularity

another interpretation of σ_i :

$$\sigma_i = \min\{ \ \|A - B\| \mid \mathsf{Rank}(B) \leq i - 1 \ \}$$

i.e., the distance (measured by matrix norm) to the nearest rank i-1 matrix for example, if $A \in \mathbb{R}^{n \times n}$, $\sigma_n = \sigma_{\min}$ is distance to nearest singular matrix hence, small σ_{\min} means A is near to a singular matrix

Application: model simplification

suppose y = Ax + v, where

 $ightharpoonup A \in \mathbb{R}^{100 imes 30}$ has singular values

$$10, 7, 2, 0.5, 0.01, \dots, 0.0001$$

- ightharpoonup ||x|| is on the order of 1
- \blacktriangleright unknown error or noise v has norm on the order of 0.1

then the terms $\sigma_i u_i v_i^\mathsf{T} x$, for $i=5,\ldots,30$, are substantially smaller than the noise term v

simplified model:

$$y = \sum_{i=1}^{4} \sigma_i u_i v_i^\mathsf{T} x + v$$

Example: Low rank approximation

$$A = \begin{bmatrix} 11.08 & 6.82 & 1.76 & -6.82 \\ 2.50 & -1.01 & -2.60 & 1.19 \\ -4.88 & -5.07 & -3.21 & 5.20 \\ -0.49 & 1.52 & 2.07 & -1.66 \\ -14.04 & -12.40 & -6.66 & 12.65 \\ 0.27 & -8.51 & -10.19 & 9.15 \\ 9.53 & -9.84 & -17.00 & 11.00 \\ -12.01 & 3.64 & 11.10 & -4.48 \end{bmatrix}$$

$$\approx \begin{bmatrix} \frac{-0.25}{0.07} & \frac{0.45}{0.11} & \frac{0.62}{0.08} & \frac{0.33}{0.046} & \frac{0.05}{0.03} & \frac{-0.19}{0.04} & \frac{0.01}{0.01} \\ \frac{0.01}{0.08} & -0.02 & \frac{0.20}{0.05} & \frac{0.06}{0.06} & \frac{0.07}{0.08} & \frac{0.01}{0.08} & \frac{0.06}{0.02} & \frac{0.02}{0.08} & \frac{0}{0.00} \\ \frac{0.05}{0.09} & -0.05 & \frac{0.14}{0.09} & -0.06 & \frac{0.02}{0.09} & \frac{0.03}{0.09} & \frac{0.00}{0.09} \\ \frac{0.04}{0.09} & \frac{0.03}{0.09} & \frac{0.21}{0.01} & -0.14 & \frac{0.03}{0.09} & \frac{0.01}{0.09} & \frac{0.01}{0.09} \\ \frac{0.05}{0.09} & -0.33 & \frac{0.21}{0.21} & -0.14 & -0.03 & -0.00 & \frac{0.02}{0.08} & \frac{0.18}{0.09} \\ \frac{0.05}{0.09} & -0.33 & \frac{0.21}{0.21} & -0.14 & \frac{0.03}{0.09} & \frac{0.01}{0.09} & \frac{0.01}{0.09} \\ \frac{0.07}{0.09} & -0.15 & \frac{0.45}{0.09} & \frac{0.01}{0.09} & \frac{0.01}{0.09} & \frac{0.01}{0.09} \\ \frac{0.07}{0.09} & -0.55 & \frac{0.03}{0.09} & \frac{0.55}{0.09} & -0.36 & \frac{0.18}{0.09} \\ \frac{0.07}{0.09} & -0.55 & \frac{0.03}{0.09} & \frac{0.05}{0.09} & \frac{0.01}{0.09} \\ \frac{0.09}{0.09} & \frac{0.00}{0.09} & \frac{0.00}{0.09} \\ \frac{0.09}{0.09} & \frac{0.00}{0.09} & \frac{0.00$$

Example: Low rank approximation

$$A = \begin{bmatrix} 11.08 & 6.82 & 1.76 & -6.82 \\ 2.50 & -1.01 & -2.60 & 1.19 \\ -4.88 & -5.07 & -3.21 & 5.20 \\ -0.49 & 1.52 & 2.07 & -1.66 \\ -14.04 & -12.40 & -6.66 & 12.65 \\ 0.27 & -8.51 & -10.19 & 9.15 \\ 9.53 & -9.84 & -17.00 & 11.00 \\ -12.01 & 3.64 & 11.10 & -4.48 \end{bmatrix}$$

$$A_{\rm approx} = \begin{bmatrix} 11.08 & 6.83 & 1.77 & -6.81 \\ 2.50 & -1.00 & -2.60 & 1.19 \\ -4.88 & -5.07 & -3.21 & 5.21 \\ -0.49 & 1.52 & 2.07 & -1.66 \\ -14.04 & -12.40 & -6.66 & 12.65 \\ 0.27 & -8.51 & -10.19 & 9.15 \\ 9.53 & -9.84 & -17.00 & 11.00 \\ -12.01 & 3.64 & 11.10 & -4.47 \end{bmatrix}$$

here $||A - A_{\mathsf{approx}}|| \le \sigma_3 \approx 0.02$