Diffraction of Radiation

 A process in which a parallel beam of radiation is bent as it passes by a sharp barrier or through a narrow opening.

Where crest meets crest or trough meets trough, we have constructive interference. Crest plus trough cause destructive interference – Constructive makes bright bands, destructive makes dark bands (ex; grating)

Refraction

 As a consequence of a difference in velocity of the radiation in the two media (ex; prism)

Scattering

- 물질 투과 시 물질의 입자에서 모든 방향으로 복사선이 재방 출되는 현상
- Rayleigh scattering
 - Particles smaller than the wavelength of the radiation
 - Intensity = $(\lambda)^{-4}$ (particle sizes) $(\alpha)^2$

- Raman scattering
 - Frequency changes

Absorption Spectra

- Plot of Absorbance vs. ν or λ
 - Is called absorption spectrum
- Just as in emission spectra in atom,
 - ion or molecule can absorb radiation if energy matches separation between two energy states

Emission Spectra

- Plot of emission intensity vs. ν or λ
- · How to excite particles
 - Electron or sub-particle collision (X-ray)
 - Spark, flame, or heat (UV, VIS, IR)
 - EMW (for fluorescence)
 - Exothermic reaction (for chemiluminscence)

Energy-level diagrams for (a) a sodium atom showing the source of a line spectrum and (b) a simple molecule showing the source of a band spectrum.

Line spectrum

- Usually Atomic Transition
- linewidth 약 1/10000 Å
- 흥분, 들뜸, 여기 (1-10 ns 후) 방출

Band spectra

- · Small molecules or radicals
- Fast vibrational relaxation (1–10 fs)
- From Electronic excited but vibrationaly relaxed states

Relaxation Process

- Why?
 - Lifetime of excited state is short (fs to ms)
 - relaxational processes
- Process Types

Nonradiative relaxation

- return excited species to ground state by many small collisional relaxations
- Results tiny temperature rise of surrounding species

Radiative Relaxation

- Excited by EMW, relaxed at lower energy with EMW
- Monitored at 90° of excitation light
- Example: Fluorescence from a series of organic semiconductor materials

Fluorescence (FL) and phosphorescence (PL)

Resonance fluorescence

- produces emission at same energy/frequency/wavelength as absorption
- common for atoms (no V or R levels)

Non-resonance fluorescence

- produces emission at lower energy (lower frequency/longer wavelength) than absorption (Stokes shift)
- common in molecules
- vibrational relaxation occurs before fluorescence

Phosphorescence

- Produced by long-lived electronic state (up to hours)
- Selection rule forbidden process (triplet to singlet)

TABLE 6-2 Major Classes of Spectrochemical Methods

Class	Radiant Power Measured	Concentration Relationship	Type of Methods
Emission	Emitted, $P_{\rm e}$	$P_{\rm e} = kc$	Atomic emission
Luminescence	Luminescent, P_1	$P_1 = kc$	Atomic and molecular fluorescence, phosphorescence, and chemiluminescence
Scattering	Scattered, $P_{\rm sc}$	$P_{\rm sc} = kc$	Raman scattering, turbidimetry, and particle sizing
Absorption	Incident, P_0 , and transmitted, P	$-\log\frac{P}{P_0} = kc$	Atomic and molecular absorption