Hanjue Pan

University of California, Santa Cruz

May 22, 2022

- 1 Category
- 2 Functors
- 3 Natural Transformation
- 4 Yoneda lemma and its application
- 6 Reference

- Category
- 2 Functors
- 3 Natural Transformation
- 4 Yoneda lemma and its application
- **5** Reference

Definition of a locally small category

Definition A *locally small category* \mathcal{C} is a mathematical structure consisting of

- a class of *objects*, denoted by $\mathrm{Ob}(\mathcal{C})$,
- for any two objects $X, Y \in Ob(\mathcal{C})$, a set $Hom_{\mathcal{C}}(X, Y)$ is the set of all *morphisms* from X to Y, also denoted as $\mathcal{C}(X, Y)$
- and for any three objects $X, Y, Z \in Ob(\mathcal{C})$, a map

$$\operatorname{Hom}_{\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(X,Z),$$

 $(g,f) \mapsto g \circ f$

called composition.

satisfying the following axioms:

(i) Associativity of composition: For all $W, X, Y, Z \in Ob(\mathcal{C})$ and all $f \in \operatorname{Hom}_{\mathcal{C}}(W, X)$, $g \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$, $h \in \operatorname{Hom}_{\mathcal{C}}(Y, Z)$, one has

$$(h \circ g) \circ f = h \circ (g \circ f)$$

(ii) For every $X \in Ob(\mathcal{C})$ there exist a morphism id_X (called the identity morphism of X), with the property that for all $W, Y \in Ob(\mathcal{C})$ and all $f \in Hom_{\mathcal{C}}(W, X)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$, one has

$$id_X \circ f = f$$
 and $g \circ id_X = g$

Opposite category

Category

Definition Let C be a category. Its *opposite* category C^{op} has the same objects as C and for objects X and Y of C^{op} , one sets

$$Hom_{\mathcal{C}^{op}}(X,Y) := Hom_{\mathcal{C}}(Y,X).$$

A morphism $f: Y \to X$ is denoted by $f^{op}: X \to Y$, if considered in the category \mathcal{C}^{op} . The composition of morphism $g^{op}: W \to Y$ and $f^{op}: Y \to X$ in the category \mathcal{C}^{op} is defined by

$$f^{op} \circ g^{op} := (g \circ f)^{op}$$

For objects W, X and Y of C^{op} .

- 1. Category of sets (Set): Objects are the sets; morphism are the function between two sets; composition law is the usual composition of the functions.
- 2. Category of groups (**Gr**): Objects are the groups; morphism are the group homomorphism; composition law is the usual composition of the functions.
- 3. Category of rings (Ri): Objects are the rings; morphism are the ring homomorphism; composition law is the usual composition of the functions.

- 2 Functors
- 3 Natural Transformation
- 4 Yoneda lemma and its application
- **5** Reference

Definition of a functor

Category

Definition A functor $F: \mathcal{C} \to \mathcal{D}$ between two categories \mathcal{C} and \mathcal{D} consist of

- a function $F: \mathrm{Ob}(\mathcal{C}) \to \mathrm{Ob}(\mathcal{D})$ and
- for any two object C, C' of C, a function

$$F: \operatorname{Hom}_{\mathcal{C}}(C, C') \to \operatorname{Hom}_{\mathcal{D}}(F(C), F(C'))$$

such that

- (i) for any two composable morphisms $f:C\to C'$ and $g:C'\to C''$ in C, one has $F(g\circ f)=F(g)\circ F(f)$, and,
- (ii) for any object C of C, one has $F(id_C) = id_{F(C)}$.

Examples of functor

1. Let C be a category and let c be an object in C. For an object x in C define $F_c(x) := Hom_C(c, x)$, and for a morphism $f: x \to y$ in C define

$$F_c(f) := Hom_{\mathcal{C}}(c, x) \rightarrow Hom_{\mathcal{C}}(c, y), \quad g \mapsto f \circ g$$

The functor $F_c: C \to \mathbf{Set}$ is called the covariant functor represented by the object c.

$$F_c: C \longrightarrow \mathbf{Set}$$
 $x \longmapsto Hom_C(c,x)$
 $f \downarrow \qquad \qquad \downarrow f_*$
 $y \longmapsto Hom_C(c,y)$

Remark: F_c also donate as C(c, -)

Yoneda lemma and its application

2. Let \mathcal{C} be a category and let c be an object in \mathcal{C} . For an object x in C define $F^c(x) := Hom_C(x, c)$, and for a morphism $f \in Hom_{\mathcal{C}^{op}}(x, y)$, define

$$F^{c}(f) := Hom_{\mathcal{C}}(y, c) \rightarrow Hom_{\mathcal{C}}(x, c), \quad g \mapsto g \circ f$$

The functor $F^c: \mathbb{C}^{op} \to \mathbf{Set}$ is called the contravariant functor represented by the object c.

$$F^c: C^{op} \longrightarrow \mathbf{Set}$$
 $x \longmapsto Hom_C(x, c)$
 $f \downarrow \qquad \qquad \uparrow^{f^*}$
 $y \longmapsto Hom_C(y, c)$

Remark: F^c also donate as C(-,c)

- 1 Category
- 2 Functors
- 3 Natural Transformation
- 4 Yoneda lemma and its application
- **5** Reference

Definiton of the natural transformation

Definition Let $F, G : \mathcal{C} \to \mathcal{D}$ be two functors between categories \mathcal{C} and \mathcal{D} . A natural transformation between F and G is a family $\phi = (\phi_C)_{C \in Ob(\mathcal{C})}$ of morphisms $\phi_C \in Hom_{\mathcal{D}}(F(C), G(C))$ such that, for any morphism $f \in Hom_{\mathcal{C}}(C, C')$, the diagram

$$F(C) \xrightarrow{\phi_C} G(C)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(C') \xrightarrow{\phi_{C'}} G(C')$$

commutes, i.e., $G(f) \circ \phi_C = \phi_{C'} \circ F(f)$.

Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Show that $(id_{F(C)})_{C \in Ob(C)}$ is a natural transformation from F to F. It is called the identity natural transformation from F to F and it is denoted by $id_F: F \to F$.

Proof: For any $f \in Hom_{\mathcal{C}}(C, C')$, $C, C' \in Ob(\mathcal{C})$. The following diagram commute

$$F(C) \xrightarrow{id_{F(C)}} F(C)$$

$$F(f) \downarrow \qquad \qquad \downarrow^{F(f)}$$

$$F(C') \xrightarrow{id_{F(C')}} F(C')$$

since $F(f) \circ id_{F(C)} = F(f) = id_{F(C')} \circ F(f)$.

- 1 Category
- 2 Functors
- 3 Natural Transformation
- 4 Yoneda lemma and its application

Yoneda Lemma Application in linear algebra

5 Reference

- 1 Category
- 2 Functors
- 3 Natural Transformation
- 4 Yoneda lemma and its application Yoneda Lemma Application in linear algebra
- 6 Reference

Yoneda lemma

Category

For any functor $F: \mathcal{C} \longrightarrow \mathbf{Set}$, whose domain \mathcal{C} is locally small and any object $c \in \mathcal{C}$, there is a bijection

$$Hom(\mathcal{C}(c,-),F)\cong Fc$$

that associates a natural transformation $\alpha: \mathcal{C}(c,-) \Longrightarrow F$ to the element $\alpha_c(1_c) \in Fc$. Moreover, this correspondence is natural in both c and F.

- 4 Yoneda lemma and its application

Application in linear algebra

The category of **Mat** has

- Non-negative integers $0, 1, \ldots, k, m, n, \ldots$ as objects.
- Matrices as morphisms: An arrow(morphism) m ← n is an m × n matrix A
- The composition is defined by matrix multiplication. (e.g.The composite of a $k \times m$ and a $m \times n$ matrix defined by $k \times n$ matrix.)

Category of Mat Cont.

• The identity arrow $n \leftarrow n$ is given by the identity matrix

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

For any arrow $m \leftarrow n$

$$I_m(m \leftarrow n) = (m \leftarrow n)I_n = (m \leftarrow n)$$

Matrix multiplication is an associative operation

The K-column functor $h_k: \mathbf{Mat} \longrightarrow \mathbf{Set}$ is defined by

• For all $n \in \mathbb{N}_0$, there exist $h_k(n)$ such that is a set of matrices have k columes and n rows

$$h_k(n) = \{n \times k \text{ matrices}\} = \{n \stackrel{C}{\leftarrow} k\}$$

• For a matrix $m \stackrel{A}{\leftarrow} n$ the function $h_k(m) \stackrel{A \times -}{\leftarrow} h_k(n)$ is given by left multiplication

$$\left(m \stackrel{AC}{\longleftarrow} k\right) = \left(m \stackrel{A}{\longleftarrow} n\right) \times \left(n \stackrel{C}{\longleftarrow} k\right)$$

Remark: One can easily verify this is a functor from Mat to Set by using the definition of functor we introduced earlier.

A natural transformation $h_k \xrightarrow{\alpha} h_i$ is given by a family of function $h_k(n) \xrightarrow{\alpha_n} h_j(n)$ for each $n \in \mathbb{N}_0$ so that for each matrix $m \xleftarrow{A} n$ the following diagram commutes:

$$h_k(n) \xrightarrow{\alpha_n} h_j(n)$$
 $A \times - \downarrow \qquad \qquad \downarrow A \times h_k(m) \xrightarrow{\alpha_m} h_j(m)$

In other words, α is a naturally-defined operation on column functors.

Here is a natural transformation $h_k \xrightarrow{\pi} h_{k-1}$ that delete the k^{th} column. We can verify the naturality for matrix $m \xleftarrow{A} n$. Observe the following square commute:

$$m \xleftarrow{(AC_1|AC_2|\dots|AC_k)} k \xleftarrow{\qquad \qquad } n \xleftarrow{(C_1|C_2|\dots|C_k)} k$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$m \xleftarrow{(AC_1|AC_2|\dots|AC_{k-1})} k - 1 = m \xleftarrow{A(C_1|C_2|\dots|C_{k-1})} k - 1 \xleftarrow{\qquad \qquad } n \xleftarrow{(C_1|C_2|\dots|C_{k-1})} k - 1$$

Unnatural column operation

The operation $h_k \xrightarrow{f} h_{k+1}$ that appends a column of ones is not natural. For matrix $m \xleftarrow{A} n$. Observe the following square is not commute:

$$m \xleftarrow{(AC_1|AC_2|\dots|AC_k)} k \longleftarrow n \xleftarrow{(C_1|C_2|\dots|C_k)} k$$

$$\downarrow \qquad \qquad \downarrow$$

$$m \xleftarrow{(AC_1|AC_2|\dots|AC_k|1)} k + 1 \neq m \xleftarrow{A(C_1|C_2|\dots|C_k|1)} k + 1 \longleftarrow n \xleftarrow{(C_1|C_2|\dots|C_k|1)} k + 1$$

Challenge

Challenge: Can we classify all naturally-defined column operations that transform matrices with k columns into matrices with jcolumes?

Answer: Yes, by Yoneda lemma!

Yoneda lemma in Mat

- 1. Every naturally defined column operation $h_k \xrightarrow{\alpha} h_j$ is uniquely determined by a single $k \times j$ matrix.
- 2. This $k \times j$ matrix, $k \xleftarrow{\alpha_k(I_k)}{j}$ j is obtained by applying the column operation $h_k(k) \xrightarrow{\alpha_k} h_j(k)$ to the identity matrix $k \xleftarrow{I_k} k$
- 3. The column operation $h_k(n) \xrightarrow{\alpha_n} h_j(n)$ is then defined by right multiplication by matrix $k \xleftarrow{\alpha_k(l_k)} j$

$$\alpha_n(C) := \left(n \xleftarrow{C} k\right) \times \left(k \xleftarrow{\alpha_k(I_k)} j\right)$$

The operation $h_k \xrightarrow{\sigma} h_k$ that swaps the first two columns is a natural column operation. And it is defined by right multiplication by the matrix

$$\sigma_k(I_k) = egin{pmatrix} 0 & 1 & \dots & 0 \ 1 & 0 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & \dots & 0 & 1 \end{pmatrix}$$

Scalar operations on column functors

The operation $h_k \xrightarrow{\alpha} h_k$ that multiplies the first column by a scalar is a natural column operation. And it is defined by right multiplication by the matrix

$$\alpha_k(I_k) = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

Addition operations on column functors

The operation $h_k \xrightarrow{\mu} h_k$ that adds the second column to the first column is a natural column operation. And it is defined by right multiplication by the matrix

$$\mu_k(I_k) = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

Conclusion

Conclusion: Yoneda lemma tells us: Every naturally-defined column operation $h_k \stackrel{\alpha}{\to} h_j$ is given by right multiplication by the matrix $k \stackrel{\alpha_k(I_k)}{\longleftarrow} j$ obtained by applying the column operation α_k to the identity matrix $k \stackrel{I_k}{\longleftarrow} k$.

- Category
- 2 Functors
- 3 Natural Transformation
- 4 Yoneda lemma and its application
- **5** Reference

Reference:

- i Reading material: Math 200 lecture note written by Prof. Robert Boltje
- ii Book: Category Theory In Context by Emily Riehl
- iii ACT 2020 Tutorial: The Yoneda lemma in the category of matrices (by Emily Riehl) Link
- iv Beamer template: Link

Special Thanks to:

Jennifer Guerrero, Deewang Bhamidipati, Vaibhav Sutrave, and everyone who helped.

