Les calculatrices sont autorisées

Dans tout le problème l'ensemble C des nombres complexes est considéré comme le plan affine euclidien muni de son repère orthonormé canonique (0,1,i) (où $i^2=-1$).

- On notera K l'ensemble des triplets (α, β, γ) de \mathbf{R}^3 constitués de trois réels positifs ou nuls tels que $\alpha + \beta + \gamma = 1$.
- Si $(a,b,c) \in \mathbb{C}^3$, on notera \widehat{abc} le "triangle plein" défini par :

$$\widehat{abc} = \{ \alpha \, a + \beta \, b + \gamma \, c \, / \, (\alpha, \beta, \gamma) \in K \}.$$

Dans tout le problème on notera $\tau_0,\,\tau_1$ et τ les triangles pleins définis par :

$$\tau_0 = \widehat{-10}i$$
.

$$\tau_1 = \widehat{01i}$$
.
 $\tau = \widehat{-11i}$.

• On notera également ϕ_0 et ϕ_1 les applications de \mathbf{C} dans \mathbf{C} définies par (en notant \overline{z} le conjugué du nombre complexe z):

$$\phi_0(z) = \frac{1+i}{2}\overline{z} + \frac{-1+i}{2} \text{ et } \phi_1(z) = \frac{1-i}{2}\overline{z} + \frac{1+i}{2}.$$

- La notation $\{0,1\}^{\mathbf{N}^*}$ désignera l'ensemble des suites $(r_n)_{n\geq 1}$ d'entiers naturels tels que $r_n \in \{0,1\}$ pour tout entier naturel non nul n.
- La norme de la convergence uniforme sur le **C**-espace vectoriel des applications continues de [0,1] dans **C** est notée $|| ||_{\infty}$.
- La partie entière du réel x est notée [x]. Si n est un entier naturel on posera, pour tout réel x et tout entier naturel non nul n:

$$r_n(x) = [2^n x] - 2[2^{n-1} x].$$

- On notera $\mathbf{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ l'ensemble des rationnels de la forme $\frac{k}{2^n}$ où $k \in \mathbf{Z}$ et $n \in \mathbf{N}$.
- On rappelle enfin que, si $(X_n)_{n\geq 1}$ est une famille de parties de **C** indexées sur \mathbf{N}^* , on a :

$$\bigcap_{n>1} X_n = \{ z \in \mathbf{C} / \forall n \in \mathbf{N}^*, \ z \in X_n \}$$

L'objectif du problème est la construction d'une application f continue de [0,1] dans ${\bf C}$ dont l'image f([0,1]) est le triangle plein τ et l'étude de quelques unes de ses propriétés.

Partie I - Préliminaires géométriques

I.A -

- I.A.1) Établir que $\tau = \tau_0 \cup \tau_1$.
- I.A.2) Représenter sur une même figure τ_0 , τ_1 , τ .

I.A.3)

a) Soit $a \in \mathbf{C}$ et $\theta \in \mathbf{R}$. Prouver que l'image z' du complexe z par la réflexion dont l'axe est la droite passant par a et dirigée par $e^{i\theta}$ vérifie la relation :

$$z' - a = e^{2i\theta} \overline{(z - a)}$$

- b) Établir une relation analogue à celle de la question précédente entre un complexe z et son image z' par l'homothétie de centre a et de rapport $\rho > 0$.
- c) Démontrer que ϕ_0 est la composée d'une réflexion dont on précisera l'axe et d'une homothétie de rapport strictement positif à préciser et dont le centre appartient à l'axe de la réflexion. Prouver une propriété analogue pour ϕ_1 . Ces décompositions sont-elles uniques?
- I.A.4) Que vaut l'image d'un triangle plein \widehat{abc} par ϕ_0 et par ϕ_1 ? Déterminer $\phi_0(\tau)$ et $\phi_1(\tau)$.
- I.B (Diamètre d'un triangle plein)

I.B.1)

- a) Démontrer que K est un compact de \mathbf{R}^3 pour sa topologie usuelle.
- b) Démontrer que K est convexe c'est à dire que, pour tout réel $t \in [0,1]$ et tout couple (u,v) d'éléments de K, tu+(1-t)v appartient à K.
- c) Établir que, si $(a,b,c)\in {\bf C}^3,$ \widehat{abc} est un compact convexe de ${\bf C}$ muni de sa topologie usuelle.
- d) Avec les mêmes notations prouver l'existence de :

$$\delta(\widehat{abc}) = \max\{|z' - z| / (z, z') \in \widehat{abc}^2\}$$

I.B.2)

a) Démontrer que, si l'on fixe $z \in \mathbf{C}$ et $(a, b, c) \in \mathbf{C}^3$

$$\max\{|z' - z| / z' \in \widehat{abc}\} = \max(|z - a|, |z - b|, |z - c|).$$

b) En déduire une expression simple de $\delta(\widehat{abc})$.

MATHÉMATIQUES I Filière MP

I.B.3) Soit $(r_n)_{n\geq 1}$ un élément de $\{0,1\}^{\mathbf{N}^*}$. Pour chaque entier naturel non nul n, on note $\tilde{\tau}_n = \phi_{r_1} \circ \phi_{r_2} \circ \cdots \circ \phi_{r_n}(\tau)$.

Montrer que $\bigcap_{n\geq 1} \tilde{\tau}_n$ est réduit à un seul point appartenant à τ .

Partie II - Construction de l'application f

II - Dans la suite on note \mathcal{E} l'ensemble des applications g continues de [0,1] dans \mathbf{C} telles que g(0)=-1 et g(1)=1. Si $g\in\mathcal{E}$, on note Tg l'application de [0,1] dans \mathbf{C} définie par :

$$Tg(x) = \phi_0(g(2x))$$
 si $x \in \left[0, \frac{1}{2}\right]$ et $Tg(x) = \phi_1(g(2x-1))$ si $x \in \left[\frac{1}{2}, 1\right]$.

- II.1) Déterminer l'unique élément f_0 de \mathcal{E} qui soit affine.
- II.2) Montrer que $Tg \in \mathcal{E}$ pour tout $g \in \mathcal{E}$.
- II.3) Soient g_1 et g_2 deux éléments de \mathcal{E} . Prouver que :

$$||Tg_2 - Tg_1||_{\infty} = \frac{1}{\sqrt{2}}||g_2 - g_1||_{\infty}.$$

- II.4) On définit maintenant une suite $(f_n)_{n \in \mathbb{N}}$ d'éléments de \mathcal{E} en choisissant f_0 affine comme ci-dessus et $f_{n+1} = Tf_n$ pour tout entier naturel n.
- a) Prouver que la suite (f_n) converge uniformément sur [0,1] vers une fonction $f \in \mathcal{E}$.
- b) Prouver que Tf = f.
- c) Prouver que, pour tout $x \in [0, 1]$, $f(x) = -\overline{f(1-x)}$ et interpréter géométriquement cette relation.

Partie III - Propriétés de f

III.A - Image de f

III.A.1) Soit $(r_n)_{n>1} \in \{0,1\}^{\mathbf{N}^*}$

- a) Montrer que la série de terme général $\frac{r_n}{2^n}$ converge et que sa somme x appartient à [0,1].
- b) En posant pour tout entier naturel $p, x_p = \sum_{n=1}^{\infty} \frac{r_{n+p}}{2^n}$, prouver la relation :

$$f(x) = \phi_{r_1} \circ \phi_{r_2} \circ \dots \phi_{r_p}(f(x_p))$$

pour tout entier naturel non nul p.

- III.A.2) Inversement, soit $x \in [0, 1]$.
- a) Établir que, pour tout entier naturel non nul $n, r_n(x) \in \{0, 1\}$.
- b) Montrer que, pour tout entier naturel non nul N et tout réel $x \in [0,1]$:

$$\frac{[2^N x]}{2^N} = \sum_{n=1}^N \frac{r_n(x)}{2^n}$$
 puis $x = \sum_{n=1}^\infty \frac{r_n(x)}{2^n}$.

- c) Montrer que si, en outre, $x \in \mathbf{Z}\left[\frac{1}{2}\right]$ alors il existe $N \in \mathbf{N}$ tel que $r_n(x) = 0$ pour tout entier naturel n > N.
- d) Calculer $f\left(\frac{1}{2}\right)$ et $f\left(\frac{1}{4}\right)$. Reconnaître $\phi_0 \circ \phi_0$ et en déduire $f\left(\frac{1}{2^k}\right)$ pour tout $k \in \mathbb{N}$.

III.A.3)

- a) Montrer que $f\left([0,1]\cap \mathbf{Z}\left[\frac{1}{2}\right]\right)\subset \tau.$
- b) Montrer que $f([0,1]) \subset \tau$.
- III.A.4) Inversement, soit $z \in \tau$.
- a) Montrer qu'on peut définir deux suites $(z_n)_{n\geq 0}$ et $(r_n)_{n\geq 1}$ de la manière suivante :
- $z_0 = z$ et, si $n \ge 1$:
- si $z_{n-1} \in \tau_0$ alors $r_n = 0$ et $z_n = (\phi_0)^{-1}(z_{n-1})$
- sinon $r_n = 1$ et $z_n = (\phi_1)^{-1}(z_{n-1})$.

Prouver que, pour tout entier $n \in \mathbb{N}$, z_n appartient τ .

- b) Prouver que $f\left(\sum_{n=1}^{\infty} \frac{r_n}{2^n}\right) = z$ (on pourra exprimer z en fonction de z_n et des ϕ_{r_i}).
- c) Ecrire une fonction qui prend en argument un complexe z (que l'on supposera dans τ) et un réel ϵ et qui renvoie une valeur approchée à ϵ près d'un antécédent de z.

III.A.5)

- a) Prouver que f n'est pas injective (on pourra utiliser la relation $f(1-x) = -\overline{f(x)}$).
- b) Plus généralement montrer qu'il n'existe aucune bijection continue de [0,1] sur τ (on pourra utiliser un argument de connexité par arcs).

III.A.6)

- a) Pour $(i,j) \in \{0,1\}^2$, déterminer l'expression complexe de $\phi_i \circ \phi_j$, la reconnaître, préciser son point fixe et l'image de τ . Faire un dessin.
- b) Soient r_1, r_2, \ldots, r_p des éléments de $\{0, 1\}$. Prouver que $\phi = \phi_{r_1} \circ \phi_{r_2} \circ \cdots \circ \phi_{r_p}$ possède un unique point fixe que l'on ne cherchera pas nécessairement à exprimer simplement.
- c) Exhiber, à l'aide de l'application f, un point fixe de ϕ .

MATHÉMATIQUES I Filière MP

d) Montrer que l'ensemble X des complexes z qui sont point fixe de la composée d'un nombre fini d'applications ϕ_0 et ϕ_1 est dense dans τ .

III.B - Dérivabilité de f

III.B.1) Supposons que f soit dérivable sur [0, 1].

Soient $x \in [0,1]$, $(\alpha_n)_{n\geq 1}$ et $(\beta_n)_{n\geq 1}$ deux suites d'élements de [0,1], convergentes vers x et telles que $\alpha_n \leq x \leq \beta_n$ et $\alpha_n < \beta_n$ pour tout n.

Montrer que la suite de terme général $\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}$ converge vers f'(x).

III.B.2) Soit $x \in [0, 1]$

a) Si $x \in [0, 1[$, en choisissant :

$$\alpha_n = \frac{r_1(x)}{2} + \dots + \frac{r_n(x)}{2^n} \text{ et } \beta_n = \alpha_n + \sum_{k=n+1}^{\infty} \frac{1}{2^k},$$

prouver que f n'est pas dérivable en x.

b) Prouver que f n'est pas dérivable en 1.

• • • FIN • • •