

A collaborative project with Hancock High School, Kiln, MS

Stennis Space Center Salinity Drifter Project

Maria Kalcic, CSC Mark Turowski, Jacobs Tech. Callie Hall, NASA

Background

- Salinity is an important property of coastal waters:
 - The amount of salinity in coastal waters determines the types of vegetation and habitats for many species of birds, mammals, fish and shellfish.
 - Salinity changes can result from rising sea level, subsidence, storm surge, and erosion.
 - Changes in salinity can result in loss of vegetation, habitats and spawning grounds, as well as coastal erosion.

Habitat Switching Algorithm

Habitat Switching Module

Habitat switching between marsh types depends on salinity and inundation. The module simulates shifts in vegetative community type given long-term shifts in salinity and inundation due to restoration projects.

Switches at 1-year time step

Year 0 habitat	Inter- mediate marsh	Brackish marsh	Saline marsh
Fresh marsh	s > 2.5		
Inter- mediate marsh	1 <s≤6 ⇒</s≤6 	s > 6	
Brackish marsh	s ≤ 6	6 < s ≤ 15 and pfl ≤ 85%	s > 15 or s > 6 and pfl > 85%

Excerpt from table in Visser et al. 1

s=average salinity (ppt) over the time step; pfl=average percentage inundation over the time step

¹ Visser, J.M., C. Kaiser, and A.B. Owens. 2008. Forecasting 50-years of Habitat Switching in Coastal Louisiana: No Increased Action & Preliminary Draft Master Plan, Vol. IV, Chapter 4. In Coastal Louisiana Ecosystem Assessment & Restoration (CLEAR) Program: A tool to support coastal restoration., edited by R. R. Twilley. Baton Rouge.

Salinity Estimates from Landsat For Sabine Calcasieu Basin

In-situ samples used to derive model of salinity from Landsat image.

Legend

Analyst approximation

<VALUE>

Fresh (negatives)

Land

0 - 4.5 Fresh

4.5 - 9.5 Oligohaline

9.5 - 12.5 Mesohaline

12.5 - 17.5 Polyhaline

> 17.5 Euhaline

Variables: NDVI, McFeeters, Julian Day

 $R^2 = 0.84$

N = 42 (dropped 6 outliers)

Dark Object Subtraction

Percent of time inundated in 2006

Landsat Estimates of Persistent Flooding and Salinity as Potential Inputs to Habitat Switching Module

Habitat Switching Module

Year 0 habitat	Inter- mediate marsh	Brackish marsh	Saline marsh
Fresh marsh	s > 2.5	Example: if salinity is greater than 2.5 ppt for one year, fresh marsh vegetation will change	
Inter- mediate marsh	1 < s ≤ 6	to intermedia vegetation	•
Brackish marsh	s ≤ 6	6 < s ≤ 15 and pfl ≤ 85%	s > 15 or s > 6 and pfl > 85%

s=average salinity (ppt) over the time step; pfl=average percentage inundation over the time step

Habitat switching between marsh types depends on salinity and inundation. The module simulates shifts in vegetative community type given long-term shifts in salinity and inundation due to restoration projects.

Salinity Data

- Salinity modeling requires ground truth salinity, which is scarce
- The NASA Office of the Center Director for Stennis Space
 Center funded a pilot project to design a low-cost salinity
 measuring system that high-school students could build and monitor.
- The salinity values are fed to NASA's website via a cellular modem and the internet for use by NASA scientists.

Prototyping the System

Arduino

Battery Charger

Cellular modem and GPS

System as packaged for field tests

PVC casing

Solar panel

Salinity Probe and Casing

Opening for water flow

Tip of salinity probe is exposed to water through small opening.

Cellular antenna used to transmit data

Cellular antenna

Solar panel

Preparing to launch

Left: Mark Turowski, design engineer with Jacobs Technology, prepares to launch the buoy.

Right top: Solar panel is mounted vertically to collect solar reflections off the water (specular reflection). Solar power is used to charge the battery.

Right bottom: Weight is affixed to bottom to help keep unit in upright position.

System is launched in the Pearl River at Stennis Space Center

System is lowered into the water from the pier; it is tethered with fishing line.

System floating in the river. GPS antenna and solar panel are visible

Data are transmitted to Twitter by cell phone modem every 15 minutes

Twitter / turows16

Contents: date time latitude longitude conductivity temperature (C)

turows16: 161110,164835.000,3020.9080N,08938.4532W,2307.3521,19.9276

Today, November 16, 2010, 31 minutes ago 🔷

turows16: 161110,164835.000,3020.9080N,08938.4532W,2307.3521,19.9276

turows16: 161110,163351.470,3020.9089N,08938.4524W,2330.9580,19.8509

Today, November 16, 2010, 45 minutes ago 🧇

turows16: 161110,163351.470,3020.9089N,08938.4524W,2330.9580,19.8509

turows16: 161110,161909.000,3020.9074N,08938.4517W,2214.1279,19.6975

Today, November 16, 2010, 1 hour ago 🥎

turows16: 161110,161909.000,3020.9074N,08938.4517W,2214.1279,19.6975

turows16: 161110,160433.381,3020.9068N,08938.4524W,2214.1279,19.6208

Today, November 16, 2010, 1 hour ago 🔷

turows16: 161110,160433.381,3020.9068N,08938.4524W,2214.1279,19.6208

Google Spreadsheet is used to import the data from the Twitter feed and to compute salinity (from conductivity) and display charts of salinity and temperature.

Results are uploaded to NASA's Applied Science and Technology Project Office Webpage

Webpage to be inserted here