

Peer-to-Peer Networks 05 Pastry

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

Pastry

- Peter Druschel
 - Rice University, Houston, Texas
 - now head of Max-Planck-Institute for Computer Science, Saarbrücken/ Kaiserslautern
- Antony Rowstron
 - Microsoft Research, Cambridge, GB
- Developed in Cambridge (Microsoft Research)
- Pastry
 - Scalable, decentralized object location and routing for large scale peer-to-peernetwork
- PAST
 - A large-scale, persistent peer-to-peer storage utility
- Two names one P2P network
 - PAST is an application for Pastry enabling the full P2P data storage functionality
 - We concentrate on Pastry

Pastry Overview

- Each peer has a 128-bit ID: nodeID
 - unique and uniformly distributed
 - e.g. use cryptographic function applied to IP-address
- Routing
 - Keys are matched to {0,1}¹²⁸
 - According to a metric messages are distributed to the neighbor next to the target
- Routing table has
 O(2^b(log n)/b) + ℓ entries
 - n: number of peers
 - ℓ: configuration parameter
 - b: word length
 - typical: b= 4 (base 16),
 ℓ = 16
 - message delivery is guaranteed as long as less than ℓ/2 neighbored peers fail
- Inserting a peer and finding a key needs O((log n)/b) messages

Routing Table

- Nodeld presented in base 2^b
 - e.g. NodeID: 65A0BA13
- For each prefix p and letter x ∈ {0,..,2^b-1} add an peer of form px* to the routing table of NodeID, e.g.
 - b=4, 2^{b} =16
 - 15 entries for 0*,1*, .. F*
 - 15 entries for 60*, 61*,... 6F*
 - ...
 - if no peer of the form exists, then the entry remains empty
- Choose next neighbor according to a distance metric
 - metric results from the RTT (round trip time)
- In addition choose ℓ neighbors
 - ℓ/2 with next higher ID
 - ℓ/2 with next lower ID

0	1	2	3	4	5		7	8	9	a	b	c	d	e	f
x	x	x	x	x	x	_	x	x	x	x	x	x	x	x	x
6	6	6	6	6		6	6	6	6	6	6	6	6	6	6
0	1	2	3	4		6	7	8	9	$\begin{vmatrix} a \\ a \end{vmatrix}$	$ _{b}^{o}$	$\begin{vmatrix} \mathbf{c} \\ \mathbf{c} \end{vmatrix}$	$\begin{vmatrix} \boldsymbol{a} \\ \boldsymbol{d} \end{vmatrix}$	e	f
x	x	x	x	x		x	x	x	x	x	x	x	x	x	x
			_									_			
6	6	6	6	6	6	6	6	6	6		6	6	6	6	6
5	5	5	5	5	5	5	5	5	5		5	5	5	5	5
0	1	2	3	4	5	6	7	8	9		b	c	d	e	f
x	x	x	x	\boldsymbol{x}	x	x	\boldsymbol{x}	x	x	_	x	x	x	x	x
_	_	+	+											<u> </u>	+
6		6	6	6	6	6	6	6	6	6	6	6	6	6	6
5		5	5	5	5	5	5	5	5	5	5	5	5	5	5
a		a	a	a	a	a	a	a	a	a	a	a	a	a	a
0		2	3	4	5	6	7	8	9	a	b	c	d	e	f
x		x	\boldsymbol{x}	\boldsymbol{x}	x	x	x	x	x	x	x	x	x	x	x

Routing Table

- Example b=2
- Routing Table
 - For each prefix p and letter x ∈ {0,...,2^b-1} add an peer of form px* to the routing table of NodeID
- In addition choose ℓ neighors
 - ℓ/2 with next higher ID
 - d2 with next lower ID
- Observation
 - The leaf-set alone can be used to find a target
- Theorem
 - With high probability there are at most O(2^b (log n)/b) entries in each routing table

Routing Table

Theorem

- With high probability there are at most O(2^b (log n)/b) entries in each routing table

Proof

- The probability that a peer gets the same m-digit prefix is
- The probability that a m-digit prefix is unused is

$$(1 - 2^{-bm})^n \le e^{-n/2^{bm}}$$

- For m=c (log n)/b we get

$$e^{-n/2^{bm}} \le e^{-n/2^{c \log n}} \le e^{-n/n^c} \le e^{-n^{c-1}}$$

- With (extremely) high probability there is no peer with the same prefix of length $(1+\epsilon)(\log n)/b$
- Hence we have $(1+\epsilon)(\log n)/b$ rows with 2b-1 entries each

0	1	2	3	4	5		7	8	9	a	b	c	d	e	f
x	\boldsymbol{x}	x	\boldsymbol{x}	\boldsymbol{x}	x		\boldsymbol{x}	x	x	\boldsymbol{x}	x	x	x	\boldsymbol{x}	\boldsymbol{x}
	_		_								\vdash		_	_	_
6	6	6	6	6		6	6	6	6	6	6	6	6	6	6
0	1	2	3	4		6	7	8	9	a	b	c	d	e	f
x	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}		x	\boldsymbol{x}	x	x	x	x	x	x	\boldsymbol{x}	\boldsymbol{x}
		_	—								+	+	_		
6	6	6	6	6	6	6	6	6	6		6	6	6	6	6
5	5	5	5	5	5	5	5	5	5		5	5	5	5	5
0	1	2	3	4	5	6	7	8	9		b	c	d	e	f
x	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	x	x	x	\boldsymbol{x}	x	x		\boldsymbol{x}	x	x	\boldsymbol{x}	x
		_	_	_	\vdash								\vdash	_	
6		6	6	6	6	6	6	6	6	6	6	6	6	6	6
5		5	5	5	5	5	5	5	5	5	5	5	5	5	5
a		a	a	a	a	a	a	a	a	a	a	a	a	a	a
0		2	3	4	5	6	7	8	9	a	b	c	d	e	f
x		\boldsymbol{x}	\boldsymbol{x}	x	x	x	x	x	x	x	x	x	x	\boldsymbol{x}	\boldsymbol{x}

$$\leq e^{-n/n^c} \leq e^{-n^{c-1}}$$

A Peer Enters

- New node x sends message to the not z with the longest common prefix p
- x receives
 - routing table of z
 - leaf set of z
- z updates leaf-set
- x informs informiert ℓ -leaf set
- x informs peers in routing table
 - with same prefix p (if $\ell/2 < 2^b$)
- Numbor of messages for adding a pee
 - ℓ messages to the leaf-set
 - expected (2^b ℓ/2) messages to nodes with common prefix
 - one message to z with answer

When the Entry-Operation Errs

- Inheriting the next neighbor routing table does not allows work perfectly
- Example
 - If no peer with 1* exists then all other peers have to point to the new node
 - Inserting 11
 - 03 knows from its routing table
 - 22,33
 - 00,01,02
 - 02 knows from the leaf-set
 - 01,02,20,21
- 11 cannot add all necessary links to the routing tables

necessary entries in leaf set

Missing Entries in the Routing Table

- Assume the entry R^j is missing at peer D
 - j-th row and i-th column of the routing table
- This is noticed if message of a peer with such a prefix is received
- This may also happen if a peer leaves the network
- Contact peers in the same row
 - if they know a peer this address is copied
- If this fails then perform routing to the missing link

Lookup

- Compute the target ID using the hash function
- If the address is within the ℓleaf set
 - the message is sent directly
 - or it discovers that the target is missing
- Else use the address in the routing table to forward the mesage
- If this fails take best fit from all addresses

Lookup in Detail

	L:	<i>ℓ</i> -leafset	(1) if $(L_{-\lfloor L /2 \rfloor} \le D \le L_{\lfloor L /2 \rfloor})$ {
	R:	routing table	(2) $//D$ is within range of our leaf set
•	M:	nodes in the vicinity of D (according to RTT)	 (3) forward to L_i, s.th. D - L_i is minimal; (4) } else { (5) // use the routing table
	D:	key	(6) Let $l = shl(D, A)$;
	A:	nodeID of current peer	(7) if $(R_l^{D_l} \neq null)$ {
	R ⁱ _l :	j-th row and i-th column of the routing table	(8) forward to $R_l^{D_l}$; (9) } (10) else {
	L _i :	numbering of the leaf set	(11) // rare case
	D _i :	i-th digit of key D	(12) forward to $T \in L \cup R \cup M$, s.th. (13) $shl(T, D) > l$,
•	shl(A):	length of the larges common prefix of A and D (shared header length)	(13) $shl(T, D) \ge l,$ (14) $ T - D < A - D $ (15) } (16) }
		•	(10) J

Routing — Discussion

- If the Routing-Table is correct
 - routing needs O((log n)/b) messages
- As long as the leaf-set is correct
 - routing needs O(n/l) messages
 - unrealistic worst case since even damaged routing tables allow dramatic speedup
- Routing does not use the real distances
 - M is used only if errors in the routing table occur
 - using locality improvements are possible
- Thus, Pastry uses heuristics for improving the lookup time
 - these are applied to the last, most expensive, hops

Localization of the k Nearest Peers

- Leaf-set peers are not near, e.g.
 - New Zealand, California, India, ...
- TCP protocol measures latency
 - latencies (RTT) can define a metric
 - this forms the foundation for finding the nearest peers
- All methods of Pastry are based on heuristics
 - i.e. no rigorous (mathematical) proof of efficiency
- Assumption: metric is Euclidean

Locality in the Routing Table

- Assumption
 - When a peer is inserted the peers contacts a near peer
 - All peers have optimized routing tables
- But:
 - The first contact is not necessary near according to the node-ID
- 1st step
 - Copy entries of the first row of the routing table of P
 - good approximation because of the triangle inequality (metric)
- 2nd step
 - Contact fitting peer p' of p with the same first letter
 - Again the entries are relatively close
- Repeat these steps until all entries are updated

Locality in the Routing Table

- In the best case
 - each entry in the routing table is optimal w.r.t. distance metric
 - this does not lead to the shortest path
- There is hope for short lookup times
 - with the length of the common prefix the latency metric grows exponentially
 - the last hops are the most expensive ones
 - here the leaf-set entries help

Localization of Near Nodes

- Node-ID metric and latency metric are not compatible
- If data is replicated on k peers then peers with similar Node-ID might be missed
- Here, a heuristic is used
- Experiments validate this approach

Experimental Results — Scalability

- Parameter b=4, I=16, M=32
- In this experiment the hop distance grows logarithmically with the number of nodes
- The analysis predictsO(log n)
- Fits well

Experimental Results Distribution of Hops

- Parameter b=4, I=16, M=32, n = 100,000
- Result
 - deviation from the expected hop distance is extremely small
- Analysis predicts difference with extremely small probability
 - fits well

Experimental Results — Latency

- Parameter b=4, I=16, M=3
- Compared to the shortest path astonishingly small
 - seems to be constant

Critical View at the Experiments

- Experiments were performed in a well-behaving simulation environment
- With b=4, L=16 the number of links is quite large
 - The factor $2^b/b = 4$ influences the experiment
 - Example n= 100 000
 - 2b/b log n = 4 log n > 60 links in routing table
 - In addition we have 16 links in the leaf-set and 32 in M
- Compared to other protocols like Chord the degree is rather large
- Assumption of Euclidean metric is rather arbitrary

Peer-to-Peer Networks 05 Pastry

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg