Automatic Hyper-parameter Tuning with Genetic Algorithms and Transfer Learning

Presenter: Eashan Singh, UCF CS/Math Undergrad

Motivation

- 1) Deep learning models are becoming increasingly intricate with unique topologies and improved model architectures. Fine-tuning hyper-parameters can become a very **time intensive** task and difficult to perform manually.
- 2) Research has shown **genetic algorithms**(GA) offer an alternative way to find optimality of parameters and for exploration of the hyperparameter search space.
- 3) Leveraging pre-trained models via **transfer learning** can potentially help improve model accuracy and prove an alternative for other resource-intensive deep learning techniques, making it more viable in a clinical environment.
- 4) This project also aims to improve the models generalizability via **data augmentation** techniques to increase the diversity and size of the dataset, with the goal is to improve model performance on unseen data.

Problem Statement

- This research aims to develop a deep learning model for brain tumor classification that combines transfer learning and genetic algorithms(GAs) for optimized hyper-parameter tuning.
 - Using the BraTS2020 Dataset
 - With a pre-trained CNN network like ResNet
- Hyper-parameters this paper will study:
 - Learning Rate
 - Batch Size
 - Number of Layers

Related Work

- Stanley and Miikkulainen introduced
 NeuroEvolution of Augmenting
 Topologies(NEAT) where they utilized a Genetic
 Algorithms for evolved network topology and
 connection weights for solving Reinforcement
 Learning problems. [1]
- The top image represents a genome to phenotype mapping example.
- The bottom image shows 2 examples of structural mutations: adding a connection(weight) and adding a node.

Related Work contd.

- NEAT exploited the properties of structure and history for incremental growth of network structures.
- The emphasis of this research was to show that genomes could grow in complexity as necessary and that optimizations of minimal structures helped to evolve networks with increasingly complex topologies.

Background: Genetic Algorithms

- Genetic Algorithms are a class of optimization algorithms which take inspiration from natural selection and survival of the fittest strategy.
- An initial population is made based off an encoding of candidate solutions and an elitism structure is used to select parent candidates for reproduction.
- Parents undergo crossover and mutation and child offspring become the parents of the next generation
- The algorithm runs until an optimal solution or stopping criteria is met.

Methodology

 A binary bit encoding will be made to represent the the hyper-parameters of the CNN model(chromosome candidate solution of the GA)

Encoding E<*learning rate, batch size, # of layers*>

- Initialize a population with N encodings E
- For **R** runs:
 - For **G** generations:
 - Evaluate the fitness of all candidate solutions(evaluating hyperparameters on the classification task)
 - Employ a **tournament selection** strategy to pick parents for reproduction
 - Perform **crossover**
 - Perform **mutation**
 - Offspring of generation **g** become population of generation **g+1**
- Run until stopping criterion is met or **R** runs.

Experimental Evaluation

Genetic Algorithm Tuning. In an attempt to optimize the parameters of our CNN, experimentation is required to find the ideal hyper-parameters of our genetic algorithm (GA). Testing will be required to find the following:

- 1. Population size
- 2. Mutation type (uniform random, gaussian, polynomial)
- 3. Mutation rates (0, 0.005, 0.01, 0.05)
- 4. Crossover type (single-point, two-point, blend, simplex, linear, simulated binary)
- 5. Crossover rates (0.01, 0.05, 0.1, 0.5, 0.9)
- 6. Selection strategy (tournament, rank, proportional)

Progress

- 1) [COMPLETED] Implement the generic SGA(standard genetic algorithm) infrastructure needed to run the experiment. Evaluated on:
 - a) Traveling Salesman Problem
 - b) Point Scattering Problem
- 2) [COMPLETED] Evaluate a baseline model(ResNet-18) on the given classification task. Tested also with basic data augmentations.
- 3) [IN-PROGRESS] Integrating the project specific encoding(slide 7.) with the SGA
- 4) [IN-PROGRESS] Running experiments with varied SGA hyper-parameters
- 5) [TO-DO] Re-run experiments for better model generalizability (data augmentations)
- 6) [TO-DO] Compare performance of the baseline classifier to the optimized hyper-parameters and draw conclusions.
- 7) Stretch Goal*: Compare the performance of hyper-parameter optimizations made by the SGA to other optimization techniques like Particle Swarm Optimization, Teaching Learning Based Optimization, and Differential Evolution.

Potential Roadblocks

- Computational overhead challenges
 - Number of functional evaluations = No. runs * No. generations * Size of population* No. epochs * No. evals per epoch
 - Quality of solutions very much dependent on population size
 - Larger models will require more computational overhead. May need to evaluate on smaller model architectures

References

[1] Stanley, Kenneth O., and Risto Miikkulainen. "Efficient reinforcement learning through evolving neural network topologies." *Proceedings of the 4th Annual Conference on genetic and evolutionary computation*. 2002.

[2]Maxfield, M. (2020, July 9). When genetic algorithms meet Artificial Intelligence. EEJournal. Retrieved April 18, 2023, from https://www.eejournal.com/article/when-genetic-algorithms-meet-artificial-intelligence/