Introducción a Búsqueda

Jorge Baier

Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile Santiago, Chile

Objetivos

- Introducir los problemas de búsqueda
- Conocer los elementos que componen un Mundo Determinístico con un agente
- Comprender el algoritmo de búsqueda genérica

Búsqueda

- Todo problema en el que es necesario *encontrar* una solución es un problema de búsqueda.
- Un algoritmo se dice *de búsqueda* se mueve a través de un espacio de búsqueda para encontrar una solución.
- Se usa un algoritmo de búsqueda en problemas en donde no se tiene una solución algorítmica.
- Posibles ejemplos: planificar un viaje, jugar ajedrez, resolver un puzle.

Diferencias con Programación en Lógica

- Muchos problemas de búsqueda se pueden modelar usando programación en lógica.
- Sin embargo las herramientas que veremos en este capítulo tienen mejor rendimiento en una familia muy amplia de problemas.
- La programación en lógica es una técnica muy buena para resolver problemas altamente combinatoriales, pero su rendimiento es bajo en los (importantes) problemas que veremos en este capítulo

Ejemplos

Un solo agente:

- Generación de lenguaje
- Cubo Rubik, Puzle de $(n^2 1)$
- Sudoku, Atomix
- Navegación de Robots, Planificación de Movimientos
- Razonamiento Hipotético
- Verificación de Software

Múltiples agentes:

- Damas, Ajedrez, Go, ...
- Bridge, Poker, ...
- Backgammon

Mundos Determinísticos, con Un Agente

- Un espacio de estados S.
- Un conjunto \mathcal{A} de operadores. Un operador $a \in \mathcal{A}$ es una función *parcial*

$$a: \mathcal{S} \mapsto \mathcal{S}$$
.

■ Por cada estado, un conjunto $A(s) \subseteq A$ de *operadores* aplicables en s. Si $a \in A(s)$, entonces a(s) está definida. Definimos

$$Succ(s) = \{a(s) \mid a \in A(s)\}$$

- Una función de costo $c: A \to \mathbb{R}^+$.
- Un estado inicial s_{init}.
- Un conjunto de estados finales G.

Solución a un Problema de Búsqueda

■ Una secuencia de operadores $o_0o_1...o_n$ es aplicable en s_0 ssi $s_{i+1} = o_i(s_i)$ está definido, para todo $i \in \{0,...,n\}$.

■ Una secuencia aplicable de operadores $o_0o_1...o_n$ es una solución al problema ssi cuando $s_{i+1} = o_i(s_i)$, para todo $i \in \{0, ..., n\}$, $s_{n+1} \in G$.

Búsqueda Genérica

El siguiente es un algoritmo de búsqueda genérico.

Input: Un problema de búsqueda (S, A, s_{init}, G)

Output: Un nodo objetivo

- Open es un contenedor vacío
- Closed es un conjunto vacío
- 3 Inserta s_{init} a Open
- q parent(s_{init}) = null
- **5** while $Open \neq \emptyset$
- 6 $u \leftarrow \text{Extraer}(Open)$
- 7 Inserta u en Closed
- **8 for each** $v \in Succ(u) \setminus (Open \cup Closed)$
- parent(v) = u
- if $v \in G$ return v
- Inserta v a Open

Objetivos

- Introducir los problemas de búsqueda
- Conocer los elementos que componen un Mundo Determinístico con un agente
- Comprender el algoritmo de búsqueda genérica

