

Analyzing Rutgers Google Scholar

Our Goal

Data Collection

Data Exploration

Modelling Data

Common Problems

Machine Chemistry Economy Data Mining

If students want to start their research journey, they probably may meet some the following problems:

- 1. They may not know which research areas could be connected.
- 2. They may not know which professors are in those research areas and could help them start their research journey.

- 1. We want to find which areas are often related together so that it can give students a common sense about possibly intersected areas.
- 2. Also, if students are interested about several research areas, we may also want to find out which professors at Rutgers are working on these areas so that students could know who they could contact to start their research.

Data Collection Overview

Data Exploration

Boxplot

Box Plot, max: 9

(Box Plot, upper fence: 7)

Box Plot. q3: 4)

(Box Plot, median: 3)

(Box Plot, q1: 2)

Valid different interests =

Valid total interests =

Valid Researchers =

Average Interest/Researcher ≈

Standard Deviation ≈

Maximum =

Minimum =

Summary:

- 2. Only a small amount of interests are popular among researchers.

Top Interests among Researchers:

1. Most researchers than 1 interests have more (commonly 2-4).

Data Exploration

Top 20 Frequently related Interests (Apriori Algorithm, minSup=3):

	support	itemsets	length
	33.0	(computer vision, Machine Learning)	
	17.0	(Machine Learning, Artificial Intelligence)	
528	11.0	(Molecular Biology, Biochemistry)	
	11.0	(computer vision, Deep Learning)	
	10.0	(Data Mining, Machine Learning)	
	9.0	(computer vision, Artificial Intelligence)	
		(Statistics, Machine Learning)	
		(Machine Learning, Deep Learning)	
		(Optimization, Machine Learning)	
577		(Molecular Biology, Microbiology)	
588	5.0	(computer vision, Robotics)	
571	5.0	(Machine Learning, Signal Processing)	
	5.0	(Machine Learning, Reinforcement Learning)	
	5.0	(Machine Learning, Natural Language Processing)	
564	5.0	(Information Retrieval, Machine Learning)	
	5.0	(Artificial Intelligence, Natural Language Pro	
	4.0	(Public Administration, Public Management)	
	4.0	(Drug Discovery, Pharmacology)	
	4.0	(Data Science, Machine Learning)	
	4.0	(gender, sexuality)	

```
support itemsets length
596 8.0 (Machine Learning, computer vision, Artificial... 3
598 6.0 (computer vision, Machine Learning, Deep Learn... 3
597 3.0 (Molecular Biology, Microbiology, Biochemistry) 3
```

Length = 3

Length = 2

Modeling Data

5 Classes

Input Interest

Connected Interest

Recommended Researcher

Prediction Model

Supervised Machine Learning Method (80% training, 20% test)

	-																			
	12	13	15	20	38	40	43	44	46	50	 624	629	630	717	804	850	869	1224	1657	class
Peter Meer	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	Computer Vision + Robotics/Deep Learning
tomasz imielinski	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	miscellaneous
Stephen K. Burley, M.D., D.Phil.	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	miscellaneous
Peter Smouse	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	miscellaneous
Sang-Wook Cheong	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	miscellaneous
Darrin M. York	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	miscellaneous
Dimitris N. Metaxas	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	Machine Learning + Computer Vision
Steven R Brant	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	miscellaneous
David Vanderbilt	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	miscellaneous
masayori inouye	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	miscellaneous
500																				

Add classified label to each data

Modeling Data

```
{'newone': ['Computer Vision + Robotics/Deep Learning',
  ['Peter Meer', 'Ayman Saleh', 'Yunhe Gao']],
 'newtwo': ['miscellaneous',
  ['tomasz imielinski', 'Stephen K. Burley, M.D., D.Phil.', 'Peter Smouse']],
 'newthree': ['miscellaneous',
  ['Sang-Wook Cheong', 'Peter Smouse', 'Rohit Aita']]}
                                       Prediction Model
                                                             Computer Vision + Robotics/Deep Learning
newone (computer vision)
           Researcher that may help: Peter Meer
                                                                       Ayman Saleh
                                                                                                 Yunhe Gao
                                                                   Prediction Model
newtwo (data mining + computational biology)
                                                                                         miscellaneous
```

Researcher that may help: Tomasz imielinski Stephen K... Peter Smouse

Acknowledgment

- 1. Crawler Tool: Scrapy
- 2. Third party packages: pandas, sklearn.decomposition, sklearn.cluster.AgglomerativeClustering, matplotlib, d3.js, pymysql, json, plotly, scipy, numpy, mlxtend, seaborn
- 3. All Used Data Comes From Google Scholar
- 4. References:
- [1] Apriori Algorithm Code: http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/
- [2] Boxplot Code: https://plotly.com/python/v3/basic-statistics/
- [3] Unsupervised Machine Learning (Cluster) Code: https://stackabuse.com/hierarchical-clustering-with-python-and-scikit-learn/
- [4] Supervised Machine Learning (KNN) Code: https://stackabuse.com/k-nearest-neighbors-algorithm-in-python-ang
- [5] Relation Graph Among Researchers: https://d3is.org/

Thanks For Watching!

Group 50: Junyan Dai _____ Feiyu Zheng