ST5202: Applied Regression Analysis

Department of Statistics and Applied Probability National University of Singapore

> 19-Feb-2018 Lecture 6

Announcement

- Assignment #3 released. Due by 5th of March.
- Midterm will cover from lecture 1 to lecture 6.
- Midterm scheduled on 12th of March.
- Last day to make a request for a make-up midterm is 26th of February (official document needed).

Mid review & Multiple regression II (Chapter 7)

Outline

- Mid review
- Multiple regression II
 - Model diagnostics
 - (Partial) F-tests, extra sum of squares (coefficients of partial determination)

Testing $\beta_1 = 0$ in SLR: three approaches

- Approach 1: t-test: sampling distribution approach
- Approach 2:
 F-test: Analysis of Variance (ANOVA) approach
- Approach 3: General linear test approach

Test β 's in SLR using t test

• Test $\beta_0 = 0$ or $\beta_1 = 0$ can be derived from respectively

$$\frac{b_0-\beta_0}{s\{b_0\}}\sim t(n-2), \ \frac{b_1-\beta_1}{s\{b_1\}}\sim t(n-2)$$

- Under each H_0 , we have $\frac{b_0}{s\{b_0\}} \sim t(n-2)$, and $\frac{b_1}{s\{b_1\}} \sim t(n-2)$ respectively. Here, both $s\{b_0\}$ and $s\{b_1\}$ should be calculated from sample.
- Test statistics and the decision rules are as follows:

For
$$T^* = \frac{b_0}{s\{b_0\}}$$
, or $T^* = \frac{b_1}{s\{b_1\}}$
 $|T^*| \leq t(1 - \alpha/2; n - 2)$, accept H_0
 $|T^*| > t(1 - \alpha/2; n - 2)$, reject H_0

Absolute values make the test two-sided

Test β 's in SLR using t test–R code

> # fit a linear model with the lm command:

```
> mod = lm(GPA \sim ACT)
> summary(mod)
Call:
lm(formula = GPA ~ ACT)
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.11405 0.32089 6.588 1.30e-09 ***
ACT
             0.03883 0.01277 3.040 0.00292 **
Residual standard error: 0.6231 on 118 degrees of freedom
Multiple R-squared: 0.07262, Adjusted R-squared: 0.06476
```

F-statistic: 9.24 on 1 and 118 DF, p-value: 0.002917

ANOVA table

• We collect the above ANOVA analysis as a table as follows

Source	SS	df	MS	F	p-value(s)
Regression	SSR	1	MSR	F*	$P(F(1, n-2) \geq f^*)$
Error	SSE	n-2	MSE		
Total	SSTO	n-1			

where f^* denotes the computed value of F^* from the sample

• One of the important role of the above ANOVA table is to test $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$

Analysis of Variance (ANOVA) approach

- Total sum of squares (SSTO): $\sum_{i=1}^{n} (Y_i \bar{Y})^2$
 - independent of X_i : lose 1 df, so that df is n-1
- Error sum of squares (SSE):

$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2$$

- lose 2 df, so that the df is n-2
- Regression sums of squares (SSR):

$$\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 = b_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

- df is 1
- SSTO = SSR + SSE

Coefficient of Determinant

- SSTO: a measure of uncertainty of Y when X is not taken into account
- SSE: a measure of uncertainty of Y when X is taken into account
- coefficient of determination $R^2 = \frac{SSR}{SSTO} = 1 \frac{SSE}{SSTO}$: reduction of uncertainty of Y due to considering X
- $0 \le R^2 \le 1$

Analysis of Variance (ANOVA) approach-R code

> anova(mod)
Analysis of Variance Table

Response: GPA

Df Sum Sq Mean Sq F value Pr(>F)

ACT 1 3.588 3.5878 9.2402 0.002917 **

Residuals 118 45.818 0.3883

Source	SS	df	MS	F	p-value(s)
Regression	SSR	2-1	MSR	$F^* = \frac{MSR}{MSE}$	$P(F(1, n-2) \ge 9.2402)$
Error	SSE	120 - 2	MSE	WISE	
Total	SSTO	120 - 1			

t test is equivalent to F test

- $t(m)^2$, and F(1, m) have the same distribution.
- $t^* = \frac{b_1}{s\{b_1\}} = \frac{b_1}{\sqrt{MSE}/\sqrt{\sum_{i=1}^n (X_i \bar{X})^2}}$
- $t^{*2} = f^*$, the computed value of F^*
- F* is the ratio MSR/MSE in anova (Cochran's theorem)

ACT

Coefficients:

mod <- lm(GPA~ACT, data=gpa)</pre>

t test is equivalent to F test–R code

Estimate Std. Error t value Pr(>|t|)

13 / 58

Residual standard error: 0.6231 on 118 degrees of freedom

```
Multiple R-squared: 0.07262, Adjusted R-squared: 0.06476
F-statistic: 9.24 on 1 and 118 DF, p-value: 0.002917

Analysis of Variance Table
Response: GPA

Df Sum Sq Mean Sq F value Pr(>F)

ACT 1 3.588 3.5878 9.2402 0.002917 **
Residuals 118 45.818 0.3883
```

(Intercept) 2.11405 0.32089 6.588 1.3e-09 ***

General linear test approach

- Full model: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, $i = 1, \dots, n$ • SSE(F): $\sum_{i=1}^n (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2$
- Reduced model (under $H_0: \beta_1 = 0$): $Y_i = \beta_0 + \epsilon_i$, $i = 1, \dots, n$ • SSE(R): $\sum_{i=1}^{n} (Y_i - \bar{Y})^2$
- $SSE(R) \geq SSE(F)$
- The idea: if the full model is better than reduced model, then $\frac{SSE(R)-SSE(F)}{SSE(F)}$ tends to be significantly large \rightarrow another F test

General linear test approach—R code

```
> mod1 <- lm(GPA~ACT, data=gpa)</pre>
> mod2 <- lm(GPA~-ACT, data=gpa)</pre>
> anova(mod1)
> anova(mod2)
Analysis of Variance Table
Response: GPA
           Df Sum Sq Mean Sq F value Pr(>F)
ACT
       1 3.588 3.5878 9.2402 0.002917 **
Residuals 118 45.818 0.3883
Analysis of Variance Table
Response: GPA
           Df Sum Sq Mean Sq F value Pr(>F)
Residuals 119 49.405 0.41517
```

General linear test approach-R code

```
> anova(mod2,mod1)
Analysis of Variance Table

Model 1: GPA ~ -ACT
Model 2: GPA ~ ACT
   Res.Df   RSS Df Sum of Sq    F   Pr(>F)
1    119 49.405
2   118 45.818 1   3.5878 9.2402 0.002917 **
---
```

$$F^* = \frac{\left(SSE(R) - SSE(F)\right)/(df_R - df_F)}{SSE(F)/df_F} = \frac{\frac{49.818 - 49.405}{119 - 118}}{\frac{45.818}{118}} = 9.24$$

Note: for the case of SLR, when testing $\beta_1 = 0$, it happens that SSE(R) = SSTO. $F^* = \frac{(SSTO - SSE)/(df_R - df_F)}{SSE/df_F} = \frac{MSR}{MSE} = F^*$ identical to F statistic in 'original' anova

ANOVA table for multiple linear model

Source	SS	df	MS	F	p-value(s)
Regression	SSR= $\mathbf{Y}'\left(\mathbf{H} - \frac{1}{n}\mathbf{J}\right)\mathbf{Y}$	p-1	$MSR = \frac{SSR}{p-1}$	$F^* = \frac{MSR}{MSE}$	$P(F(p-1, n-p) \ge f^*)$
Error	$SSE=\mathbf{Y'}(\mathbf{I}-\mathbf{H})\mathbf{\hat{Y}}$	n-p	$MSE = \frac{SSE}{n-p}$		
Total	$SSTO = Y' \left(I - \frac{1}{n} J \right) Y$	n-1			

where f^* is computed value of F^* from the sample.

• One of the important role of the above ANOVA table is to test $H_0: \beta_1 = \cdots = \beta_{p-1} = 0$ versus $H_a:$ at least one $\beta_k \neq 0$ $(k = 1, \cdots, p-1)$

Multivariate data example

	Popularion	Income	Illiteracy	Life Evn	Murder	HS Grad	Erner	Lres	Density
Alabama	3615	3624	2.1	69.05	15.1	41.3	20	50708	71.2905261
Almako	365	6315	1.5	69.31	11.3	66.7	152	566432	0.6443845
Arizona	2212	4530	1.8	70.55	7.8	58.1	1.5	113417	19,5032491
Arkansas	2110	3378	1.9	70.66	10.1	39.9	65	51945	40.6198864
California	21198	5114	1.1	71.71	10.3	62.6	20	156361	135.5708904
Colorado	2541	4884	0.7	72.06	6.8	63.9	166	103766	24.4877898
Connecticut	3100	5348	1.1	72.48	3.1	56.0	139	4862	637,5976964
Delaware	579	4809	0.9	70.06	6.2	54.6	103	1982	292,1291625
Florida	8277	4815	1.3	70.66	10.7	52.6	11	54090	153.0227399
Georgia	4931	4091	2.0	68.54	13.9	40.6	60	58073	84.9103714
Hawaii	868	4963	1.9	73.60	6.2	61.9	0	6425	135.0972763
Idaho	813	4119	0.6	71.87	5.3	59.5	126	82677	9.8334482
Illinois	11197	5107	0.9	70.14	10.3	52.6	127	55748	200.8502547
Indiana	5313	4458	0.7	70.88	7.1	52.9	122	36097	147.1867468
Iowa	2861	4628	0.5	72.56	2.3	59.0	140	55941	51.1431687
Kansas	2280	4669	0.6	72.58	4.5	59.9	114	81787	27.8772910
Kentucky	3387	3712	1.6	70.10	10.6	38.5	95	39650	85.4224464
Louisiana	3806	3545	2.8	68.76	13.2	42.2	12	44930	84.7095482
Maine	1058	3694	0.7	70.39	2.7	54.7	161	30920	34.2173351
Maryland	1122	5299	0.9	70.22	8.5	52.3	101		116.7121932
Massachusetts	5814	4755	1.1	71.83	3.3	58.5	103	7826	742.9082545
Nichigan	9111	4751	0.9	70.63	11.1	52.8	125	56817	160.3569354
Minnesota	3921	4675	0.6	72.96	2.3	57.6	160	79289	49.4520047
Mississippi	2341	3098	2.4	68.09	12.5	41.0	50	47296	49.4967862
Missouri	4767	4254	0.8	70.69	9.3	40.0	108	68995	69.0919632
Montana	746	4347	0.6	70.56	5.0	59.2		145587	5.1240839
Nebraska	1544	4508	0.6	72.60	2.9	59.3	139	76483	20.1874926
Nevada	590	5149	0.5	69.03	11.5	65.2		109889	5.3690542
New Hampshire	812	4281	0.7	71.23	3.3	57.6	174	9027	89.9523651
New Jersey	7333	5237	1.1	70.93	5.2	52.5	115	7521	
New Mexico	1144	3601	2.2	70.32	9.7	55.2		121412	9.4224624
New York	18076	4903	1.4	70.55	10.9	52.7	82		377.9139052
North Carolina		3875	1.8	69.21	11.1	38.5	80	48798 69273	
North Dakota	637	5087 4561	8.0	72.78	1.4	50.3	186		9.1955019
Ohio	10735					53.2	124		
Oklahoma	2715	3983	1.1	71.42	6.4	51.6	82	68782	39.4725364
Oregon	2284 11860	4660 4449	1.0	72.13	6.1	60.0 50.2	126	96184	23.7461532
Pennsylvania Bhode Island	11860	4558	1.0	70.13	2.4	46.4	126	1049	
South Carolina		3635	2.3	67.96	11.6	37.8	65	30225	93.1679074
South Carolina South Dakota	2816	4167	0.5	72.08	11.6	53.3	172	75955	8 9658350
Tennessee	4173	3821	1.7	70.11	11.0	41.8	70		100.9727062
Texas	12237	4188	2.2	70.11	12.2	47.4		262134	46.6822312
Utah	1203	4022	0.6	72.90	4.5	67.3	137	82096	14.6535763
Vermont	472	3907	0.6	71.64	5.5	57.1	168	9267	50.9334197
Virginia	4981	4701	1.4	70.08	9.5	97.8	255		125.2136752
Washington	3559	4864	0.6	71.72	4.3	63.5	32	66570	53.4625207
West Virginia	1799	3617	1.4	69.40	6.7	41.6	100	24070	74.7403407
Winconnin	4589	4468	0.7	72.48	3.0	54.5	149	54464	84.2574912
Wisconsin	376	4566	0.6	70.29	6.9	62.9	173	97203	3.8681934
nyumang	376	4000	0.0	.0.29	6.9	02.9	1/3	2,203	0.0051934

- Life expectancy does have a bivariate relationship with a lot of the other variables
- But many of those variables are also related to each other
- Multiple regression allows us to tear all of this apart and investigate the relationship in a "purer" (but not exactly pure) form.

R code

Begin by throwing all the predictors into a linear model

```
> model1 = lm(Life.Exp ~ Population + Income + Illiteracy + Murder + HS.Grad + Frost + Area
+ Density, data=st)
> summary(model1)
Call:
lm(formula = Life.Exp ~ Population + Income + Illiteracv + Murder +
   HS.Grad + Frost + Area + Density, data = st)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.995e+01 1.843e+00 37.956 < 2e-16
Population 6.480e-05 3.001e-05 2.159
                                        0.0367
          2.701e-04 3.087e-04 0.875
                                        0.3867
Income
Illiteracy 3.029e-01 4.024e-01 0.753
                                        0.4559
Murder
         -3.286e-01 4.941e-02 -6.652 5.12e-08
HS. Grad
          4.291e-02 2.332e-02 1.840 0.0730
       -4.580e-03 3.189e-03 -1.436
                                        0.1585
Frost
       -1.558e-06 1.914e-06 -0.814
                                        0.4205
Area
          -1.105e-03 7.312e-04 -1.511
                                        0.1385
Density
Residual standard error: 0.7337 on 41 degrees of freedom
Multiple R-squared: 0.7501,
                             Adjusted R-squared: 0.7013
F-statistic: 15.38 on 8 and 41 DF, p-value: 3.787e-10
```

 Higher populations are related to increased life expectancy and higher murder rates are strongly related to decreased life expectancy; not 4 D > 4 A > 4 B > 4 B > seeing too much beyond that.

ANOVA at a glance but not too helpful

```
> summarv.aov(model1)
           Df Sum Sq Mean Sq F value
                                       Pr(>F)
               0.4089 0.4089 0.7597
Population
                                     0.388493
Income
            1 11.5946 11.5946 21.5413 3.528e-05
            1 19.4207 19.4207 36.0811 4.232e-07
Illiteracy
Murder
            1 27.4288 27.4288 50.9591 1.051e-08
HS.Grad
            1 4.0989 4.0989 7.6152 0.008612
           1 2.0488 2.0488 3.8063 0.057916
Frost
         1 0.0011 0.0011 0.0020 0.964381
Area
Density 1 1.2288 1.2288 2.2830 0.138472
           41 22.0683 0.5383
Residuals
```

- This is a bit different from the ANOVA table we had (will explain later)
- Now we need to start winnowing down our model to a minimal adequate one. The least significant slope is that for "Area", so let's toss out "Area" first.

Comparing two models

```
> model2 = update(model1, .~.-Area)
> summarv(model2)
Call:
lm(formula = Life.Exp ~ Population + Income + Illiteracy + Murder +
   HS.Grad + Frost + Density, data = st)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.094e+01 1.378e+00 51.488 < 2e-16
Population 6.249e-05 2.976e-05 2.100 0.0418
Income 1.485e-04 2.690e-04 0.552 0.5840
Illiteracy 1.452e-01 3.512e-01 0.413 0.6814
Murder -3.319e-01 4.904e-02 -6.768 3.12e-08
HS.Grad 3.746e-02 2.225e-02 1.684 0.0996
Frost -5.533e-03 2.955e-03 -1.873 0.0681
Density -7.995e-04 6.251e-04 -1.279 0.2079
Residual standard error: 0.7307 on 42 degrees of freedom
Multiple R-squared: 0.746,
                             Adjusted R-squared: 0.7037
F-statistic: 17.63 on 7 and 42 DF, p-value: 1.173e-10
```

 reduce our model to a point where all the remaining predictors are significant, and we want to do this by throwing out one predictor at a time. "Area" goes out first.

Comparing two models-continued

- We have seen this comparison before. Where?
- Removing "Area" had no significant effect on the model (p=0.4205). Compare the p-value to that for "Area" in the first summary table above.
- Does the order in anova(model1, model2) matter here?
- Notice that removing "Area" has cost us very little in terms of R-squared, and the adjusted R-squared actually went up, due to there being fewer predictors.

What goes out next? Illiteracy

```
> model3 = update(model2, .~.-Illiteracy)
> summarv(model3)
Call:
lm(formula = Life.Exp ~ Population + Income + Murder + HS.Grad +
   Frost + Density, data = st)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.131e+01 1.042e+00 68.420 < 2e-16
Population 5.811e-05 2.753e-05 2.110 0.0407
Income 1.324e-04 2.636e-04 0.502 0.6181
Murder -3.208e-01 4.054e-02 -7.912 6.32e-10
HS.Grad
          3.499e-02 2.122e-02 1.649 0.1065
Frost -6.191e-03 2.465e-03 -2.512 0.0158
Density -7.324e-04 5.978e-04 -1.225 0.2272
Residual standard error: 0.7236 on 43 degrees of freedom
Multiple R-squared: 0.745. Adjusted R-squared: 0.7094
F-statistic: 20.94 on 6 and 43 DF, p-value: 2.632e-11
```

- Things are starting to change a bit. R-squared went down again, as it will always do when a predictor is removed, but once more adjusted R-squared increased.
- Now "Frost" becomes a significant predictor of life expectancy.

What goes out next? Income

```
> model4 = update(model3, .~.-Income)
> summary(model4)
Call:
lm(formula = Life.Exp ~ Population + Murder + HS.Grad + Frost +
   Density, data = st)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.142e+01 1.011e+00 70.665 < 2e-16
Population 6.083e-05 2.676e-05 2.273 0.02796
Murder -3.160e-01 3.910e-02 -8.083 3.07e-10
HS.Grad 4.233e-02 1.525e-02 2.776 0.00805
Frost -5.999e-03 2.414e-03 -2.485 0.01682
Density -5.864e-04 5.178e-04 -1.132 0.26360
Residual standard error: 0.7174 on 44 degrees of freedom
Multiple R-squared: 0.7435, Adjusted R-squared: 0.7144
F-statistic: 25.51 on 5 and 44 DF, p-value: 5.524e-12
```

 R-squared went down hardly at all. Adjusted R-squared went up. "Income" will be kicked out.

Now all the predictors are significant expect "Density"

```
> model5 = update(model4, .~.-Density)
> summary(model5)
Call:
lm(formula = Life.Exp ~ Population + Murder + HS.Grad + Frost.
   data = st)
Residuals:
    Min
              10 Median
                                      Max
-1.47095 -0.53464 -0.03701 0.57621 1.50683
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.103e+01 9.529e-01 74.542 < 2e-16
Population 5.014e-05 2.512e-05 1.996 0.05201
Murder
         -3.001e-01 3.661e-02 -8.199 1.77e-10
HS. Grad
          4.658e-02 1.483e-02 3.142 0.00297
Frost -5.943e-03 2.421e-03 -2.455 0.01802
Residual standard error: 0.7197 on 45 degrees of freedom
Multiple R-squared: 0.736.
                             Adjusted R-squared: 0.7126
F-statistic: 31.37 on 4 and 45 DF, p-value: 1.696e-12
```

 Adjusted R-squared slipped a bit this time, but not significantly. How can we tell it?

Dropping "Density"

```
> anova(model5, model4)
Analysis of Variance Table

Model 1: Life.Exp ~ Population + Murder + HS.Grad + Frost
Model 2: Life.Exp ~ Population + Murder + HS.Grad + Frost + Density
Res.Df RSS Df Sum of Sq F Pr(>F)
1 45 23.308
2 44 22.648 1 0.66005 1.2823 0.2636
```

- So, letting "Density" out is fine
- So far, we have (implicitly by not saying otherwise) set our alpha level at 0.05, so now population must be out.
- This could have a substantial effect on the model, as the slope for "Population" is very nearly significant.

One way to find out

• We have reached the one of the minimal adequate models (may not be unique).

Multiple regression II

Model diagnostics and other issues in multiple linear regressions

Portrait studio example–R code

Residual standard error: 11.01 on 18 degrees of freedom Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075 F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10

Y: sales in a community
 X₁: the number of persons aged 16 or younger in the community

 X_2 : per capita personal income in the community $\longrightarrow \bigcirc$

Portrait studio example-R code

• Y: sales in a community

 X_1 : the number of persons aged 16 or younger in the community

 X_2 : per capita personal income in the community

Portrait studio example-R code

```
Getting the 90% prediction intervals (Bonferroni) at both
X_1 = 65.4, \overline{X_2} = 17.6 and X_1 = 53.1, X_2 = 17.7
xh1 \leftarrow data.frame(cbind(X1 = 65.4, X2 = 17.6))
xh2 \leftarrow data.frame(cbind(X1 = 53.1, X2 = 17.7))
xh \leftarrow rbind(xh1,xh2)
< xh
    X1 X2
1 65.4 17.6
2 53.1 17.7
> predict(mod, xh, interval="predict", level=0.95)
        fit
            lwr
                            upr
1 191,1039 167,2589 214,9490
2 174,1494 149,0867 199,2121
```

Diagnostics and remedial measures

- Scatter plot matrix
- Residual plots: just as before
 - Against time or some other sequence to check error dependency
 - Against each X variable for potential nonlinear relationship and nonconstancy of error variances
 - Against omitted variables (including the interaction terms). Interaction terms will be discussed in more detail in Ch. 8
- Correlation Test for Normality (same as simple linear regression)
- Brown-Forsythe Test, and Breush-Pagan test for constancy of error variance
- F test for lack of fit (need to have a "replicate" observation matching all $X_{i1}, \dots, X_{i,p-1}$)
- Box-Cox transformations (same as in simple linear regression)

Portrait studio example-scatter plot

Portrait studio example-residual plot plot

Portrait studio example-residual plot plot

Diagnostic tests

- Constant variance
 - Brown-Forsythe test, and Breusch-Pagan test
- F-test of lack of fit:
 - "Compare local means to prediction with linear model at different X-levels"

Note: here we need repeated Y_{ij} 's at a combination of predictors $(X_{j1}, \dots, X_{j,p-1})$

• Test statistic:

$$F^* = \frac{SSE(R) - SSE(F)}{df_R - df_F} \cdot \frac{df_F}{SSE(F)}$$

$$= \frac{SSE - SSPE}{c - p} \cdot \frac{n - c}{SSPE}$$

$$= \frac{MSLF}{MSPF} \sim F(c - p, n - c) \text{ under } H_0$$

Portrait studio example-residual against the interaction

- Model: $E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 * X_2$
- Interaction term: $\beta_3 X_1 * X_2$ Due to this term, the effect of X_1 varies depending on the level of X_2 (vice verso also holds)

No systematic pattern \rightarrow NO interaction effects reflected by the model term $\beta_3 X_1 * X_2$ appear to be present

Portrait studio example: checking if the interaction term is necessary $(H_0: \beta_3 = 0)$

• Reduced model: $E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2$

• Full model:
$$E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 * X_2 \mod 1 <- \lim(Y \sim X1+X2) \mod 2 <- \lim(Y \sim X1 + X2 + X1:X2) \mod 2 \pmod 1, \mod 2$$

Analysis of Variance Table

```
Model 1: Y ~ X1 + X2

Model 2: Y ~ X1 + X2 + X1:X2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 2180.9

2 17 2172.5 1 8.4336 0.066 0.8003
```

Small F values mean that we do not have have enough evidence to reject

the
$$H_0: \beta_3=0$$
.

Extra sum of squares and partial F-tests

• Testing whether subsets of the regression coefficients are equal to zero in multiple regression model with $E\{Y\} = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1}$

• Example of such a test:

$$H_0: E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

 $H_a: E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5$
with additional predictor variables X_3 , X_4 , and X_5 .
It can be $X_3 = X_1 X_2$, $X_4 = X_1^2$, $X_5 = X_2^2$

You can test this with a general linear test approach, with

$$F^* = \frac{SSE(R) - SSE(F)}{df_R - df_F} \cdot \frac{df_F}{SSE(F)}$$

 The F—test is called a partial F—test and the difference SSE(R)-SSE(F) is called an extra sum of squares

Extra sum of squares, a bit more notation

• For model with p-1 predictor variables:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1} + \epsilon$$

write ANOVA as

$$SSTO = SSR(X_1, X_2, \dots, X_{p-1}) + SSE(X_1, X_2, \dots, X_{p-1})$$

to make clear which model the SSR and SSE are referring to (i.e., which variables are included in the model)

- Note that
 - SSTO does not depend on which predictor variables were included in the model!
 - SSE can never increase if more predictor variables are added to the model; e.g., $SSE(X_1, X_2) \leq SSE(X_2)$

Extra sum of squares, a bit more notation-continued

 SSTO = SSE + SSR for each model.
 Therefore, SSR can never decrease if more predictor variables are added to the model:

e.g.,
$$SSR(X_1, X_2) \geq SSR(X_1)$$

• We would like to decompose SSR to measure marginal reduction in error sum of squares when an extra variable is added to the model: e.g., $SSR(X_2|X_1)$

Extra sum of squares, a bit more notation-continued

• For a model with two predictor variables, the extra sum of squares when adding X_2 to the model with X_1 in it, is defined as:

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2),$$

= $SSR(X_1, X_2) - SSR(X_1)$

which is the increase (reduction) in the regression (error) sum of squares when adding X_2 to the model when X_1 is already included

- Is $SSR(X_2|X_1) = SSR(X_1|X_2)$?
- The degrees of freedom of an extra sum of squares is
 - the difference in the degrees of freedom of its SSE's (or similarly of its SSR's)
 - the number of predictors that is added to the model

Decomposing SSR in ANOVA

General definition for two sets S and R of predictor variables:

$$SSR(X_S|X_R) = SSR(X_S, X_R) - SSR(X_R)$$

- E.g., for $S = \{2,3\}$ and $R = \{1\}$, $SSR(X_2, X_3 | X_1) = SSR(X_1, X_2, X_3) SSR(X_1)$, for $S = \{3\}$ and $R = \{1,2\}$, $SSR(X_3 | X_1, X_2) = SSR(X_1, X_2, X_3) SSR(X_1, X_2)$
- It follows from the definition of the extra sum of squares that (verify it!)

$$SSR(X_1, X_2, \dots, X_{p-1})$$
= $SSR(X_1) + SSR(X_2|X_1) + SSR(X_3|X_1, X_2) + \dots + SSR(X_{p-1}|X_1, \dots, X_{p-2})$

This can be used to decompose SSR in ANOVA table

ANOVA for portrait studio data (Ch. 6.9)

• "anova" command in R for multiple regression model gives the break-down of SSR in $SSR(X_1)$, $SSR(X_2|X_1)$, and so on.

Body fat example

- body fat percentage (Y)
- triceps skin fold thickness (X_1)
- thigh circumference (X_2)
- midarm circumference (X_3)

Subject	Triceps Skinfold Thickness X ₁₁	Thigh Circumference X ₁₂	Midarm Circumference X ₁₃	Body Fat
1	19.5	43.1	29.1	11.9
2	24.7	49.8	28.2	22.8
3	30.7	51.9	37.0	18.7
18	30.2	58.6	24.6	25.4
19	22.7	48.2	27.1	14.8
20	25.2	51.0	27.5	21.1

Body fat example

- Regression on X_1
- Regression on X_2

(a) Regression of Y on X_1 $\hat{Y} = -1.496 + .8572X_1$			
Source of Variation	SS	df	MS
Regression	352.27	1	352.27
Error .	143.12	18	7.95
Total	495.39	19	
Variable	Estimated Regression Coefficient	Estimated Standard Deviation	,.
X ₁	$b_1 = .8572$	$s\{b_1\} = .1288$	6.66

(b) Regression of Y on X_2 $\hat{Y} = -23.634 + .8565 X_2$			
Source of Variation	SS	df	MS
Regression	381.97	1	381.97
Error	113.42	18	6.30
Total	495.39	19	
Variable	Estimated Regression Coefficient	Estimated Standard Deviation	t.
X ₂	$b_2 = .8565$	$s\{b_2\} = .1100$	7.79

Body fat example

- Regression on X_1, X_2
- Regression on X_1, X_2, X_3

(c) Regression of Y on X_1 and X_2 $\hat{Y} = -19.174 + .2224X_1 + .6594X_2$				
Source of Variation	SS	df	MS	
Regression Error	385.44 109.95	2 17	192.72 6.47	
Total	495.39	19		
Variable	Estimated Regression Coefficient	Estimated Standard Deviation	t*	
X ₁ X ₂	$b_1 = .2224$ $b_2 = .6594$	$s\{b_1\} = .3034$ $s\{b_2\} = .2912$.73 2.26	
	(d) Regression of Y or $\hat{Y} = 117.08 + 4.334X_1 - 4.334X_1 + 4.334X_2 + 4.334X_1 + 4.334X_2 + 4.334X_2 + 4.334X_1 + 4.334X_2 + 4.3$			
Source of Variation	SS	df	MS	
Regression	396.98	3	132.33	
Error Total	98.41 495.39	16 19	6.15	
iotai	Estimated	Estimated		
Variable	Regression Coefficient	Standard Deviation	t*	
X1	$b_1 = 4.334$	$s\{b_1\} = 3.016$	1.44	
X ₂ X ₃	$b_2 = -2.857 b_3 = -2.186$	$s(b_2) = 2.582$ $s(b_3) = 1.596$	-1.11 -1.37	

Body fat example

• p! different partitions

ANOVA Table

Source of Variation	SS	df	MS
Regression	$SSR(X_1, X_2, X_3)$	3	$MSR(X_1, X_2, X_3)$
X1	$SSR(X_1)$	1	$MSR(X_1)$
$X_2 X_1$	$SSR(X_2 X_1)$	1	$MSR(X_2 X_1)$
$X_3 X_1, X_2$	$SSR(X_3 X_1,X_2)$	1	$MSR(X_3 X_1,X_2)$
Error	$SSE(X_1, X_2, X_3)$	n-4	$MSE(X_1, X_2, X_3)$
Total	SSTO	n-1	

Partial F-tests, for one predictor variable

• Test $\beta_k = 0$ with general linear test approach: Reduced model

$$E\{Y\} = eta_0 + \sum_{j
eq k} eta_j X_j$$
 versus full model $E\{Y\} = eta_0 + \sum_j eta_j X_j$

Partial F-statistic:

$$F^* = \frac{SSE(R) - SSE(F)}{1} / \frac{SSE(F)}{n - p}$$
$$= \frac{SSR(X_k|X_{-k})}{SSE(X_1, \dots, X_{p-1})/(n - p)}$$
$$\sim F(1, n - p) \text{ under } H_0$$

• Comparison with t-test $\beta_k = 0$: $F^* = (t^*)^2$

General liner test in R

- Use anova to carry out F-test from general linear model approach
- Put in the reduced model first, then the full model

```
anova(mod1, mod12)
Analysis of Variance Table

Model 1: Y ~ X1

Model 2: Y ~ X1 + X2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 19 2824.40

2 18 2180.93 1 643.48 5.3108 0.03332 *
```

Body fat example-continued

Body fat: can X₃ (midarm circumference) be dropped from the model?

Source of Variation	SS	df	MS
Regression	396.98	3	132.33
X1	352.27	1	352.27
$X_2 X_1$	33.17	1	33.17
$X_3 X_1, X_2$	11.54	1	11.54
Error	98.41	16	6.15
Total	495.39	19	

$$F^* = \frac{SSR(X_3|X_1, X_2)}{1} \div \frac{SSE(X_1, X_2, X_3)}{n - 4}$$
$$= \frac{11.54}{1} \div \frac{98.41}{16} = 1.88$$

- For $\alpha = 0.01$, we require F(0.99; 1, 16) = 8.53
- We observe $F^* = 1.88$, so we conclude H_0 , $\beta_3 = 0$.

Partial F-tests, for a subset of predictor variables

- Test if several regression coefficients are zero: Test $H_0: \beta_k = 0$ for any $k \in S$, (with S a set of indices, e.g., $S = \{3,4,5\}$) versus $H_a: \exists k \in S$, with $\beta_k \neq 0$,
- Partial F-statistic (with \tilde{S} the number of elements in S):

$$F^* = \frac{SSR(X_S|X_{-S})/\tilde{S}}{SSE(X_1, \dots, X_{p-1})/(n-p)}$$

 $\sim F(\tilde{S}, n-p) \text{ under } H_0$

R-squared continued

- Coeff. of multiple determination $R^2 = SSR/SSTO$; the proportionate reduction in variation in Y associated with the predictor variables X_1, \dots, X_{p-1}
- Coeff of partial determination

$$R_{Y2|1}^2 = \frac{SSE(X_1) - SSE(X_1, X_2)}{SSE(X_1)} = SSR(X_2|X_1)/SSE(X_1);$$

the proportionate reduction in variation in Y remaining after X_1 was included in the model, gained by also including the predictor variable X_2 (relative marginal reduction)

• Generally for subsets *S* and *R*:

$$R_{YS|R}^2 = \frac{SSE(X_R) - SSE(X_S, X_R)}{SSE(X_R)} = SSR(X_S|X_R)/SSE(X_R),$$

the proportionate reduction in variation in Y remaining after X_j , $j \in R$ were included in the model, gained by also including the predictor variables X_j , $j \in S$

Portrait studio example (Ch. 6.9)

• How much information does X_2 (average disposable income in a city) add to estimating $E\{Y\}$ (the expected sales of the portrait studio) given X_1 (number of persons < 16) was already included in the model?

```
Analysis of Variance Table for Y"X1+X2

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 23371.8 23371.8 192.8962 4.64e-11 ***

X2 1 643.5 643.5 5.3108 0.03332 *

Residuals 18 2180.9 121.2

Analysis of Variance Table for Y ~ X1

X1 1 23371.8 23371.8 157.22 1.229e-10 ***

Residuals 19 2824.4 148.7
```

• $SSR(X_2|X_1)=643$, $SSE(X_1)=2824$, thus $R^2_{Y2|1}=0.23$: 23% of variation in Y, remaining after including X_1 is "explained" by X_2

Body fat example-cont'd

Source of Variation	55	df	MS
Regression	396.98	3	132.33
X1	352.27	1	352.27
$X_2 X_1$	33.17	1	33.17
$X_3 X_1, X_2$	11.54	1	11.54
Error	98.41	16	6.15
Total	495.39	19	

•
$$R_{Y2|1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)} = \frac{33.17}{143.12} = .232$$

•
$$R_{Y3|12}^2 = \frac{SSR(X_3|X_1,X_2)}{SSE(X_1,X_2)} = \frac{11.54}{109.95} = 0.105$$

•
$$R_{Y1|2}^2 = \frac{SSR(X_1|X_2)}{SSE(X_2)} = \frac{3.47}{113.42} = 0.031$$

- Adding X_2 to the model containing X_1 , SSE would be reduced by 23.2%; SSE would be reduced by 10.5% if X_3 is added given X_1 and X_2 in the model.
- How about a model already contains X_2 ?

Another way to get $R_{Y2|1}^2$ when $E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2$

- Fit 3 models:
 - Model (a): $Y \sim X_1$, denote residuals by $e(Y|X_1)$
 - Model (b): $X_2 \sim X_1$, denote residuals by $e(X_2|X_1)$
 - Model (c): $e(Y|X_1) \sim e(X_2|X_1)$
- In (c) we are modeling the part of Y that is not explained by X_1 , with the part of X_2 that is not explained by X_1
- In model (c):
 - The regression coefficient for $e_i(X_2|X_1)$ is the regression coefficient of X_2 in model $Y \sim X_1 + X_2$
 - $SSR = SSR(X_2|X_1)$
 - R^2 for model (c) = $R^2_{Y2|1}$
- Plot of $e_i(Y|X_i)$ against $e_i(X_2|X_1)$ is called the added variable plot (for the effect of X_2 on Y, after controlling for X_1)