ТЕМА 3. СОПРЯЖЕННОЕ ПРОСТРАНСТВО

Пусть X – нормированное векторное пространство.

Определение 1. Линейный оператор $f: X \to \mathbb{R}(\mathbb{C})$ называется линейным функционалом. Обозначим его как $f(x), x \in X$. Линейность f означает, что $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), x, y \in X$, $\alpha, \beta \in \mathbb{R}(\mathbb{C})$. Линейный функционал f называется ограниченным, если для некоторой константы C > 0 выполнено неравенство $|f(x)| \leq C ||x||_X$ сразу для всех $x \in X$. Наименьшая из констант C, совпадающая с числом $\sup |f(x)|$, где \sup берется по всем x с ||x|| = 1, называется нормой функционала и обозначается ||f||. Ограниченность функционала эквивалентна его непрерывности.

Рассмотрим множество линейных ограниченных функционалов, определенных на нормированном пространстве X, $\mathcal{B}(X, \mathbb{R})(\mathbb{C}^n)$. Это банахово пространство, так как пространство $\mathbb{R}^n(\mathbb{C}^n)$ банахово. Оно называется conpside enhism пространством к пространству X и обозначается X^* .

В банаховом пространстве X^* можно рассматривать два типа сходимости.

Определение 2. Последовательность $(f_n)_{n=1}^\infty\subset X^*$ сходится к $f\in X^*$

- cunbho, если $||f_n f|| \xrightarrow[n \to \infty]{} 0$;
- слабо, если $f_n(x) \xrightarrow[n \to \infty]{} f(x)$ для любого $x \in X$.

Примеры линейных ограниченных функционалов

 $\Pi p \, u \, m \, e \, p \, 1$. Пусть $X = \mathbb{R}^n$ с базисом e_1, \ldots, e_n . Возьмем $x \in \mathbb{R}^n$ и разложим его по базису $x = \sum_{k=1}^n x_k e_k$. Рассмотрим линейный функционал f на элементе x, тогда

$$f(x) = f\left(\sum_{k=1}^{n} x_k e_k\right) = \sum_{k=1}^{n} x_k f(e_k) = \sum_{k=1}^{n} x_k y_k = (x, y)_{\mathbb{R}^n},$$

где $y_k = f(e_k)$. $|f(x)| = |(x,y)| \leqslant ||y|| \cdot ||x||$. Значит $||f|| \leqslant ||y||$.

Таким образом, в пространстве \mathbb{R}^n каждый линейный функционал ограничен.

 $\prod p \, u \, M \, e \, p \, 2$. Пусть $X \in C[a,b]$. Рассмотрим функционал $f(x) = \sum_{k=1}^n C_k x(t_k)$, где t_k – система точек на отрезке [a,b]. Примером такого функционала являются конечные разности функции $x(t) \in C[a,b]$. Данный функционал ограничен. Действительно,

$$|f(x)| \le \sum_{k=1}^{n} |C_k||x(t_k)| \le \sum_{k=1}^{n} |C_k| \max_{a \le t \le b} |x(t)|, \quad ||f|| \le \sum_{k=1}^{n} |C_k|.$$

 $\Pi p u \, \mathsf{M} \, e \, p \, \mathcal{S}$. Определим на пространстве C[a,b] функционал вида

$$f(x) = \int_{a}^{b} a(t)x(t) dt,$$

где a(t) – непрерывная либо суммируемая на отрезке [a,b] функция. Примером такого функционала служат коэффициенты Фурье. Данный функционал линеен и ограничим, причем $\|f\| \leqslant \int\limits_a^b a(t) \,\mathrm{d}t.$

Множество линейных ограниченных функционалов, определенных на нормированном пространстве X называется conps женным пространством и обозначается X^* .

В банаховом пространстве X^* можно рассматривать два типа сходимости. Последовательность $(f_n) \subset X^*$ сходится к $f \in X^*$ сильно, если $||f_n - f|| \longrightarrow_{n \to \infty} 0$; слабо, если $f_n(x) \to f(x)$ для любого $x \in X$.

С помощью сопряженного пространства в пространстве X можно ввести новый тип сходимости. Говорят, что последовательность $(x_n) \subset X$ сходится к $x \in X^*$ справедливо $f(x_n) \to f(x)$ при $n \to \infty$.

Теорема 1. (Хана-Банаха). Пусть X – нормированное векторное пространство, X_0 – его подпространство, $f_0: X_0 \to \mathbb{C}$ – линейный ограниченный функционал. Тогда существует ограниченный функционал $f: X \to \mathbb{C}$, продолжающий f_0 , и при том такой, что

$$||f|| = ||f_0||.$$

Следствие 1 (об отделимости точек в X). Пусть X – нормированное пространство и $x_0 \in X$, $x_0 \neq 0$. Тогда существует такой линейный ограниченный функционал в пространстве X, что

- 1. ||f|| = 1;
- 2. $f(x_0) = ||x_0||$.

Следствие 2 (об отделимости точки от пространства). Пусть в нормированном пространстве X задано подпространство X_0 и элемент x_0 такой, что $\rho(x_0, X_0) = d > 0$. Тогда существует линейный ограниченный функционал $f \in X^*$, что

- 1. $f(x_0) = 1$;
- 2. f(x) = 0 для всех $x \in X_0$;
- 3. $||f|| = \frac{1}{d}$.

Следствие 3. Множество M всюду плотно в нормированном пространстве X тогда и только тогда, когда для любого функционала $f \in X^*$ такого, что f(x) = 0 для всех $x \in M$ следует, что f = 0, т. е. f(x) = 0, $x \in X$.

Cnedcmeue 4. Пусть $\{x_k\}_{k=1}^n$ – линейно-независимая система элементов в нормированном пространстве X. Тогда найдется система $\{f_e\}_{e=1}^n$ – линейных ограниченных функционалов на X такая, что

$$f_l(x_k) = \begin{cases} 1, k = l, \\ 0, k \neq l, k, l = 1, 2, \dots, n. \end{cases}$$

Определение 3. Система $\{x_k\}_{k=1}^n \subset X$ и система функционалов $\{f_l\}_{l=1}^n \subset X^*$ называется биортогональными, если

$$f_e(x_k) = \begin{cases} 1, l = k, 0, l \neq k, \\ k, l = 1, 2, \dots, n. \end{cases}$$

Следствие 5. Пусть $\{f_k\}_{k=1}^n \subset X^*$ – линейно независимая система линейных ограниченных функционалов. Тогда в X найдется система элементов $\{x_l\}_{l=1}^n$, биортогональная к ней.

Сопряженное пространство и его структура

Теорема 2. (Ф. Рисса). Пусть H – гильбертово пространство. Для любого линейного ограниченного функционала $f \in H^*$ существует единственный элемент $y \in H$ такой, что для всех $x \in H$

$$f(x) = (x,y)_H, \quad ||f||_{H^*} = ||y||_H.$$
 (1)

Замечание 1. В силу теоремы Рисса существует сохраняющее норму взаимно однозначное соответствие между H^* и H. Это позволяет отождествить пространства H и H^* .

Теорема 3. (Ф. Рисса). Каждый линейный ограниченный функционал в пространстве C[a,b] задается формулой

$$f(x) = \int_{a}^{b} x(t) \, \mathrm{d}g(t), \tag{2}$$

 $ede\ g(t) \in \bigvee [a,b]$. При этом

$$||f|| = \bigvee_{a}^{b} (g). \tag{3}$$

Замечание 2. Функция g по функционалу f определяется неоднозначно. Если же потребовать от g непрерывности слева и задать значение g(a) = 0, то g по f будет определяться однозначно.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u \, \textit{м} \, e \, p \, \textit{4}$. Доказать, что функционал

$$f(x) = \int_{-1}^{1} x(t) dt - x(0), \quad x(t) \in C[-1,1],$$

является ограниченным, найти его норму.

P е ш е н и е. B соответствии с определением функционал f является ограниченным, если существует постоянная C>0 такая, что:

$$|f(x)| \le C \cdot ||x||_{C[-1,1]}, \quad \forall x(t) \in C[-1,1].$$

Оценим норму |f(x)|.

$$|f(x)| = \left| \int_{-1}^{1} x(t) dt - x(0) \right| \le \int_{-1}^{1} |x(t)| dt + |x(0)| \le 2 \max_{t \in [-1,1]} |x(t)| + \max_{t \in [-1,1]} |x(t)| = 3 ||x||.$$

Таким образом, $||f|| \le 3$. С другой стороны, существует последовательность $x_n(t) \in C[-1,1]$, определяемая формулой

$$x_n(t) = \begin{cases} 1, t \in [-1, -1/n], \\ -2nt - 1, t \in [-1/n, 0], \\ 2nt - 1, t \in [0, 1/n], \\ 1, t \in [1/n, 1], \end{cases}$$

с $\|x_n(t)\| = 1$ такой, что

$$|f(x_n)| = \left| \int_{-1}^{-1/n} dt + \int_{-1/n}^{0} t dt + \int_{0}^{1/n} nt dt + \int_{1/n}^{1} dt + 1 \right| = 3 - 2/n \underset{n \to \infty}{\longrightarrow} 3.$$

Таким образом $3 - 1/n \leqslant ||f|| \leqslant 3$, и поэтому ||f|| = 3.

 $\Pi p u \, \text{м} \, e \, p \, 5$. Доказать, что функционал

$$f(x) = \int_{-1}^{0} t^3 x(t) dt - 2 \int_{0}^{1/2} t^2 x(t) dt, \quad x(t) \in L_{3/2}[-1,1],$$

является ограниченным, найти его норму.

Решение. Функционал f является ограниченным, если существует постоянная C>0 такая, что:

$$|f(x)| \le C \cdot ||x||_{L_{3/2}[-1,1]}, \quad \forall x(t) \in L_{3/2}[-1,1].$$

Оценим |f(x)|.

$$|f(x)| = \left| \int_{-1}^{0} t^3 x(t) dt - 2 \int_{0}^{1/2} t^2 x(t) dt \right| \le$$

$$\leqslant \int_{-1}^{1} |t^{3}\chi_{[-1,0]}(t)| |x(t)| dt + 2 \int_{-1}^{1} |t^{2}\chi_{[0,1/2]}(t)| |x(t)| dt =$$

$$= \int_{-1}^{1} (|t^{3}\chi_{[-1,0]}(t)| + 2|t^{2}\chi_{[0,1/2]}(t)|) |x(t)| dt \le$$

$$\le \left(\int_{-1}^{1} (|t^{3}\chi_{[-1,0]}(t)| + 2|t^{2}\chi_{[0,1/2]}(t)|)^{3} dt \right)^{1/3} \left(\int_{-1}^{1} |x(t)|^{3/2} dt \right)^{2/3} =$$

$$= c||x||_{L_{3/2}[-1,1]}.$$

Следовательно, $||f|| \le .$ С другой стороны, существует функция $x(t) \in L_{3/2}[-1,1]$, которая задается формулой

$$x(t) = \begin{cases} t^6, & t \in [-1,0], \\ -2t^{4/3}, & t \in [0,1], \end{cases}$$

для которой

$$||f|| \geqslant \frac{|f(x)|}{||x||_{L_{3/2}[-1,1]}} = c.$$

Таким образом, ||f|| = c.

 $\Pi p u m e p 6$. В соответствии с теоремой Рисса об общем виде линейного ограниченного функционала в гильбертовом пространстве H вычислите норму функционала в пространстве $L_2[-1,1]$:

$$f(x) = \int_{-1}^{1} x(t) dt - \int_{0}^{1/2} \frac{1}{t^{1/3}} x(\sqrt{t}) dt.$$

Решение. Согласно теореме Рисса существует единственная функция $y(t) \in H$, что $f(x) = (x,y)_H$ для любой функции $x(t) \in H$ и $||f|| = ||y||_H$, где в нашем случае $H = L_2[-1,1]$. Преобразуем выражение для функционала так, чтобы в конечном итоге получить формулу скалярного произведения в пространстве $L_2[-1,1]$. Предварительно во втором интеграле сделаем замену переменной.

$$\int_{0}^{1/2} \frac{1}{t^{1/3}} x \left(\sqrt{t} \right) dt = \begin{bmatrix} \sqrt{t} = \tau, \ t = \tau^{2}, \\ dt = 2\tau d\tau \end{bmatrix} = \int_{0}^{1/\sqrt{2}} \frac{1}{\tau^{3/2}} x (\tau) 2\tau d\tau = \int_{0}^{1/\sqrt{2}} \frac{1}{\tau^{3/2}} x (\tau) 2\tau d\tau = \int_{0}^{1/\sqrt{2}} \frac{1}{\tau^{3/2}} x (\tau) d\tau d\tau$$

$$= \int_{0}^{1/\sqrt{2}} 2\tau^{1/3}x(\tau) d\tau = \int_{-1}^{1} 2\tau^{1/3}\chi_{[0,1/\sqrt{2}]}(\tau)x(\tau) d\tau.$$

Тогда

$$f(x) = \int_{-1}^{1} x(t) dt - \int_{-1}^{1} 2t^{1/3} \chi_{[0,1/\sqrt{2}]}(t) x(t) dt =$$

$$= \int_{-1}^{1} \left(1 - 2t^{1/3} \chi_{[0,1/\sqrt{2}]}(t) \right) x(t) dt = (x,y)_{L_2[-1,1]}.$$

Следовательно,

$$y(t) = \begin{cases} 1, & t \in [-1,0), \\ 1 - 2t^{1/3}, & t \in [0, 1/\sqrt{2}], \\ 1, & t \in (1/\sqrt{2}, 1], \end{cases}$$

И

$$||f|| = ||y||_{L_{2}[-1,1]} = \left(\int_{-1}^{1} |y(t)|^{2} dt\right)^{1/2} =$$

$$= \left(\int_{-1}^{0} dt + \int_{1/\sqrt{2}}^{1} dt + \int_{0}^{1/\sqrt{2}} |1 - 2t^{1/3}|^{2} dt\right)^{1/2} =$$

$$= \left(2 - \frac{1}{\sqrt{2}} + \frac{6}{5} \left(\frac{1}{\sqrt{2}}\right)^{5/3}\right)^{1/2}.$$

 $\Pi p u m e p 7$. Вычислить норму функционала в гильбертовом пространстве l_2 по теореме Рисса, если

$$f(x) = \sum_{k=1}^{\infty} \frac{x_k}{k}, \quad x = (x_1, x_2, \ldots) \in l_2.$$

Решение. По теореме Рисса об общем виде линейного ограниченного функционала в гильбертовом пространстве существует единственный элемент $y=(y_1,y_2,\ldots)\in l_2$, такой, что $f(x)=(x,y)_{l_2}$ для любого элемента $x\in l_2$. Учитывая, что скалярное произведение в l_2 определяется по формуле $(x,y)=\sum_{k=1}^{\infty}x_ky_k$, заключаем, что $y=\left(1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{k},\ldots\right)$. Очевидно, что $y\in l_2$, тогда норма функционала $\|f\|=\|y\|_{l_2}$, т. е.

$$||y||_{l_2} = \left(\sum_{k=1}^{\infty} \left(\frac{1}{k}\right)^2\right)^{1/2} = \left(\sum_{k=1}^{\infty} \frac{1}{k^2}\right)^{1/2} = \frac{\pi}{\sqrt{6}}.$$

Следовательно, $||f|| = \frac{\pi}{\sqrt{6}}$.

 $\Pi p u \, \mathsf{M} \, e \, p \, 8$. Для $x \, (t) \in C[-1,1]$ положим

$$f(x) = \frac{x(1) + x(-1)}{2} + \int_{-1}^{1} tx(t) dt.$$

Доказать, что f – ограниченный линейный функционал. Найти такую функцию g(t) с ограниченным изменением на [-1,1], что $f(x)=\int_{-1}^1 x\left(t\right)\mathrm{d}g\left(t\right)$.

Решение. Исходя из определения ограниченности функционала, имеем

$$|f(x)| \leq \frac{1}{2} (|x(-1)| + |x(1)|) + \int_{-1}^{1} |t| |x(t)| dt \leq$$

$$\leq \frac{1}{2} (||x||_{C[-1,1]} + ||x||_{C[-1,1]}) +$$

$$+ ||x||_{C[-1,1]} \cdot \int_{-1}^{1} |t| dt = 2 ||x||_{C[-1,1]}, \quad ||f|| \leq 2.$$

Любой ограниченный линейный функционал f, заданный на всем пространстве C[-1,1], может быть представлен в виде интеграла Римана-Стилтьеса

$$f(x) = \int_{-1}^{1} x(t) \,\mathrm{d}g(t),$$

где g(t) – функция с ограниченным изменением на отрезке [-1,1]. При этом норма функционала f равна полному изменению функции g(t), которая является непрерывной слева и g(-1) = 0. В нашем случае

функция g(t) почти всюду на отрезке [-1,1] дифференцируема и ее производная g'(t)=t, кроме того она имеет скачок в точках t=-1 и t=1. Следовательно,

$$g(t) = \begin{cases} 0, & t = -1, \\ t^2, & -1 < t < 1, \\ 1, & t = 1. \end{cases}$$

и
$$\bigvee_{-1}^{1} g(t) = \sup_{k} \sum_{k} |g(t_k) - g(t_{k-1})| = 2.$$

 $\Pi p \, u \, m \, e \, p \, 9$. В евклидовом пространстве \mathbb{R}^2 с элементами $x \, (x_1, x_2)$ на подпространстве $L = \left\{ x \in \mathbb{R}^2 : \, 2x_1 - x_2 = 0 \right\}$ задан линейный функционал $f \, (x) = x_1$. Доказать, что существует единственное продолжение f на все \mathbb{R}^2 с сохранением нормы и найти это продолжение.

Решение. По теореме Хана – Банаха для всякого ограниченного линейного функционала f, заданного на подпространстве L, существует его продолжение на все X с сохранением нормы. Обозначим это продолжение через F(x). В пространстве \mathbb{R}^2 линейный ограниченный функционал имеет вид $F(x)=(x,y)=\alpha x_1+\beta x_2$, где $y=(\alpha,\beta)$. Тогда на подпространстве L, где $2x_1-x_2=0$, имеем $\alpha x_1+2\beta x_1=x_1$. Поскольку мы строим продолжение с сохранением нормы, то $\|F\|=\|f\|$. Вычислим соответствующие нормы. $\|F\|=\sqrt{\alpha^2+\beta^2}$ вычислена по теореме Рисса. Вычислим $\|f\|$. Поскольку в \mathbb{R}^2 задана евклидова норма, тогда на подпространстве L

$$||x|| = \sqrt{x_1^2 + x_2^2} = \sqrt{x_1^2 + 4x_1^2} = \sqrt{5} |x_1|,$$

a

$$|f(x)| = |x_1| = \frac{1}{\sqrt{5}} ||x||, \text{ T. e. } ||f|| = \frac{1}{\sqrt{5}}.$$

Итак, $\begin{cases} \alpha+2\beta=1,\\ \alpha^2+\beta^2=1/5 \end{cases}$. Решение системы единственно, причем $\alpha=1/5,\ \beta=2/5.$ Это означает, что продолжение единственно и $F\left(x\right)=1/5x_1+2/5x_2.$

 $\Pi p u M e p 10$. Для $x(t) \in L_2[-1,1]$ положим

$$f_n(x) = \int_{-1}^{1} x(t) \cos \pi nt \, dt.$$

- а) Доказать, что f_n ограниченный линейный функционал.
- б) Исследовать последовательность $\{f_n\}_{n=1}^{\infty}$ на сходимость.

Решение. Линейность функционала вытекает из линейности интеграла. По теореме Рисса

$$||f_n|| = ||\cos \pi nt||_{L_2[-1,1]} = \left(\int_{-1}^1 |\cos \pi nt|^2 dt\right)^{1/2} = 1.$$

Последовательность $f_n(x)$ представляет собой последовательность коэффициентов Фурье c_n при разложении четной функции в ряд по ортонормированной системе $\varphi_n(t) = \cos n\pi t$. По теореме о разложении в ряд Фурье имеем: $c_n \to 0$ при $n \to \infty$, поэтому $f_n(x)$ слабо сходится к нулю. Однако $f_n(x)$ не сходится к нулю сильно, так как $||f_n|| = 1$ и к нулю не стремится при $n \to \infty$.

Задание 1. Выяснить, задает ли следующая формула линейный ограниченный функционал. При положительном ответе вычислить норму f для $x(t) \in L_p[a,b], p \geqslant 1$.

1.1.
$$f(x) = \int_{0}^{1/2} t^{4/3}x(t^2) dt - \int_{1/4}^{1} tx(t) dt, \quad x(t) \in L_1[0,1];$$

1.2. $f(x) = \int_{0}^{1/2} t^5x(t^2) dt - \int_{-1}^{0} t^2x(t) dt, \quad x(t) \in L_3[-1,1];$
1.3. $f(x) = \int_{-1}^{-1/2} tx(t^3) dt - 2 \int_{0}^{1} x(\sqrt{t}) dt, \quad x(t) \in L_3[-1,1];$
1.4. $f(x) = \int_{0}^{1} t^4x(t^3) dt - \int_{-1}^{0} tx(\sqrt[3]{t}) dt, \quad x(t) \in L_{9/2}[-1,1];$
1.5. $f(x) = \int_{0}^{1/2} tx(\sqrt[3]{t}) dt - \int_{1/2}^{1} tx(t) dt, \quad x(t) \in L_{3/2}[0,1];$
1.6. $f(x) = \int_{0}^{1/3} \sqrt{t}x(t^2) dt, \quad x(t) \in L_{7/3}[0,2];$

1.7.
$$f(x) = \int_{0}^{1/2} \sqrt[3]{t}x \left(\sqrt[11]{t}\right) dt$$
, $x(t) \in L_{6/5}[-1,1]$;
1.8. $f(x) = \int_{0}^{1/2} t^{5/3}x \left(t^{2}\right) dt - \int_{1/2}^{1} tx \left(t\right) dt$, $x(t) \in L_{1}[0,1]$;
1.9. $f(x) = \int_{0}^{1/2} t^{4/3}x \left(t^{3}\right) dt - \int_{1/2}^{1} t^{2}x \left(t\right) dt$, $x(t) \in L_{3/2}[0,1]$;
1.10. $f(x) = \int_{0}^{1/2} tx \left(t^{2}\right) dt - \int_{0}^{1/2} tx \left(t^{2}\right) dt$, $x(t) \in L_{3/2}[0,1]$;
1.11. $f(x) = \int_{0}^{1/3} t^{1/3}x \left(\sqrt{t}\right) dt$, $x(t) \in L_{7/3}[0,1]$;
1.12. $f(x) = \int_{0}^{1} t^{2}x \left(\sqrt[3]{t}\right) dt - \int_{0}^{1} tx \left(\sqrt{t}\right) dt$, $x(t) \in L_{1}[-1,1]$;
1.13. $f(x) = \int_{0}^{1} t^{2}x \left(t^{3}\right) dt - \int_{0}^{1} tx \left(t\right) dt$, $x(t) \in L_{3/2}[-1,1]$;
1.14. $f(x) = \int_{0}^{1} tx \left(t\right) dt - \int_{0}^{1} t^{2}x \left(t\right) dt$, $x(t) \in L_{4}[-1,1]$;
1.15. $f(x) = \int_{0}^{1} tx \left(t^{2}\right) dt + \int_{1/2}^{1} t^{2}x \left(t\right) dt$, $x(t) \in L_{5/2}[-1,1]$.

Задание 2. Используя теорему Рисса об общем виде линейного ограниченного функционала в пространстве непрерывных на отрезке функций, найти норму функционала, если $x(t) \in C[-5,6]$.

2.1.
$$f(x) = x(-4) + 2x(-3) + \int_{-2}^{2} t^{2}x(t) dt + x(2) - 2x(4);$$

2.2. $f(x) = 3x(-3) + \int_{-2}^{1} t^{2}x(t) dt + 2x(1) - \int_{2}^{4} tx(t) dt - x(5);$
2.3. $f(x) = 2x(-5) - \int_{-3}^{3} tx(t) dt + 3x(1) + \int_{2}^{3} t^{2}x(t) dt - x(4);$
2.4. $f(x) = 3x(-4) - \int_{-3}^{3} t^{2}x(t) dt + 2x(0) - \int_{1}^{3} tx(t) dt + 5x(3);$
2.5. $f(x) = 4x(-4) + \int_{-4}^{2} tx(t) dt - 2x(-2) + \int_{1}^{2} t^{3}x(t) dt + x(2);$

2.6.
$$f(x) = x(-4) - \int_{-3}^{1} t^2 x(t) dt + 2x(1) + \int_{2}^{3} tx(t) dt - x(3);$$

2.7. $f(x) = 3x(-4) + \int_{-4}^{2} (t-1)^2 x(t) dt + x(2) - 7x(3);$
2.8. $f(x) = 5x(-4) + x(-3) + \int_{-3}^{1} t^2 x(t) dt - 2x(1) - x(3);$
2.9. $f(x) = 3x(-4) + x(-4) + \int_{-4}^{1} tx(t) dt + x(-2) + 4x(3);$
2.10. $f(x) = 2x(-4) + x(-3) + \int_{-2}^{1} tx(t) dt + 5x(1) - 2x(4);$
2.11. $f(x) = 3x(-4) + x(-3) + \int_{-3}^{1} tx(t) dt - 2x(1) - x(5);$
2.12. $f(x) = x(-4) - 2x(-2) + \int_{-2}^{1} t^2 x(t) dt - 3x(1) + 4x(5);$
2.13. $f(x) = x(-3) + 5x(-1) + \int_{-1}^{1} t^2 x(t) dt + 4x(1) - 2x(3);$
2.14. $f(x) = 2x(-4) + 4x(-2) + \int_{-2}^{2} t^2 x(t) dt + 5x(2) - 4x(4);$
2.15. $f(x) = 3x(-4) - 2x(-2) - \int_{-2}^{2} t^2 x(t) dt + 3x(1) - 4x(4).$

Задание 3. Используя теорему об общем виде линейного ограниченного функционала в гильбертовом пространстве, вычислить норму функционала в $L_2[-1,1]$.

3.1.
$$f(x) = \int_{-1}^{1} tx(t) dt - 2 \int_{0}^{1/2} t^{2}x(t^{2}) dt;$$

3.2. $f(x) = \int_{-1}^{1} (t-1)x(t) dt - 4 \int_{0}^{1/4} t^{6}x(t^{4}) dt;$
3.3. $f(x) = \int_{-1}^{1} tx(t) dt - 2 \int_{-1/2}^{1/2} t^{2}x(t) dt;$
3.4. $f(x) = \int_{-1}^{1} t^{2}x(t) dt - 3 \int_{-1/4}^{1/4} t^{6}x(\sqrt[3]{t}) dt;$

3.5.
$$f(x) = \int_{-1}^{1} (t+1)x(t) dt - 3 \int_{-1/2}^{1/2} t^2x(\sqrt[3]{t}) dt;$$

3.6. $f(x) = \int_{-1}^{1} (t^2+t)x(t) dt - 5 \int_{0}^{1/4} t^6x(\sqrt[5]{t}) dt;$
3.7. $f(x) = \int_{-1}^{1} tx(t) dt - 2 \int_{0}^{1/2} t^5x(t^2) dt;$
3.8. $f(x) = \int_{-1}^{1} (t^2-t)x(t) dt - 4 \int_{0}^{1/4} t^2x(t^4) dt;$
3.9. $f(x) = \int_{-1}^{1} t^2x(t) dt - \int_{0}^{1/4} t^6x(t^4) dt;$
3.10. $f(x) = \int_{-1}^{1} t^3x(t) dt - 5 \int_{-1/2}^{1/2} t^3x(\sqrt[3]{t}) dt;$
3.11. $f(x) = \int_{0}^{1} t^2x(t) dt - 2 \int_{0}^{1} t^6x(t^3) dt;$
3.12. $f(x) = \int_{0}^{1} t^2x(t) dt - 3 \int_{-1/2}^{1/2} t^4x(t^3) dt;$
3.13. $f(x) = 3 \int_{0}^{1} x(t) dt - 3 \int_{-1/2}^{1/2} t^4x(t^3) dt;$
3.14. $f(x) = \int_{0}^{1} t^{-1/3}x(t) dt - 9 \int_{-1}^{1} tx(\sqrt[3]{t}) dt;$
3.15. $f(x) = \int_{-1}^{1} t^3x(t^2) dt + 3 \int_{1/2}^{1} tx(\sqrt[4]{t}) dt.$

Задание 4. Вычислить норму функционала в гильбертовом пространстве l_2 , используя теорему Рисса.

$$4.1.f(x) = x_1 + x_2 - \sum_{k=1}^{\infty} \frac{x_k}{k}, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.2. f(x) = \sum_{k=1}^{\infty} \frac{2x_k}{k} + x_4 + 2x_7, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.3. f(x) = \sum_{k=1}^{\infty} 2^{-k+1}x_k + x_1 + 2x_2, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.4. f(x) = \sum_{k=1}^{\infty} 4^{-k}x_k - x_5 - x_{10}, \quad x(x_1, x_2, \dots) \in l_2;$$

4.5.
$$f(x) = x_2 - \sum_{k=1}^{20} x_{2k-1}, \quad x(x_1, x_2, \ldots) \in l_2;$$

4.6.
$$f(x) = \sum_{k=1}^{\infty} 4^{-k} x_{k^2} - x_1 - x_2, \quad x(x_1, x_2, \ldots) \in l_2;$$

4.7.
$$f(x) = x_1 + \sum_{k=3}^{\infty} \frac{x_{2k}}{2^k}, \quad x(x_1, x_2,...) \in l_2;$$

4.8.
$$f(x) = \sum_{k=1}^{100} \frac{x_k}{k} - 2 \sum_{k=200}^{300} x_k, \quad x(x_1, x_2, \ldots) \in l_2;$$

4.9.
$$f(x) = 2x_2 - 3x_3 + \sum_{k=5}^{10} \frac{x_k}{5^k}, \quad x(x_1, x_2, \ldots) \in l_2;$$

4.10.
$$f(x) = \sum_{k=1}^{\infty} \frac{x_{3k}}{3^k} - x_1 + 2x_2, \quad x(x_1, x_2, \ldots) \in l_2;$$

4.11.
$$f(x) = x_5 - 2x_1 + \sum_{k=1}^{10} \sqrt{k} \cdot x_k, \quad x(x_1, x_2, \ldots) \in l_2;$$

4.12.
$$f(x) = \sum_{k=1}^{5} \frac{x_k}{2^k} - \sum_{k=3}^{10} \frac{x_k}{k} + x_{10}, \quad x(x_1, x_2, \ldots) \in l_2;$$

4.13.
$$f(x) = \sum_{k=1}^{\infty} \frac{x_k}{2^k} - \sum_{k=3}^{20} kx_k + x_1, \quad x(x_1, x_2, \ldots) \in l_2;$$

4.14.
$$f(x) = x_1 - \sum_{k=1}^{20} \frac{x_{2k}}{4^k}, \quad x(x_1, x_2, \ldots) \in l_2;$$

4.15.
$$f(x) = \sum_{k=1}^{10} x_{k^2} - x_{101}, \quad x(x_1, x_2, \ldots) \in l_2.$$