Laboratory Portion

This part of the event involves the titration of an unknown acid with the strong base NaOH. The identity of the acid is irrelevant. Think of the acid as HA, with A being an ion with a negative one charge. Use the procedure outlined below to collect the data necessary to complete the questions that follow.

Procedure

- 1. Use the graduated cylinder provided to measure 5.0 mL of the weak acid into the small reaction
- 2. Use one end of the piece of litmus paper to measure the initial pH of the weak acid.
- 3. Add 1 or 2 drops of phenolphthalein to the reaction flask.
- 4. Begin to titrate the weak acid with the provided NaOH. Add the NaOH drop-by-drop, carefully counting the number of drops required to cause the phenolphthalein to change color. Swirl the contents of the reaction flask as you add the drops of NaOH.

5. Measure the pH at the stoichiometric point using the other end of the piece of litmus paper.						
nitial pH =	Final pH =	Number of drops added =				
ns/Calculations. Use signific	cant figures to round answers	s. Answers should include un	its and labels.			
Determine the concentration	າ of the hydrogen ions in the i	nitial acid solution.	(3 pts.)			
	n of 0.400 moles/liter, determ	nine the concentration of the i				
olution. 20 drops = 1 mil			(3 pts.)			
	nitial pH =	nitial pH = Final pH = ns/Calculations. Use significant figures to round answers Determine the concentration of the hydrogen ions in the i	nitial pH = Final pH = Number of drops added = ns/Calculations. Use significant figures to round answers. Answers should include un betermine the concentration of the hydrogen ions in the initial acid solution.			

Determine the value of the acid dissociation constant, K _a , for this acid.	(3 pts.)	
Sketch the approximate titration curve for this titration on the graph below. You wi		
, рН		

5. Identify this acid as a strong or a weak acid. List at least two reasons for yo									
	A.	Acid Strength (circle one):	STRONG	WEAK	(3 pts.)				
	В.	List and explain at least two reasons for your selection of acid strength.							
		1.							
	_								
		2.							