Project Euler #228: Minkowski Sums

This problem is a programming version of Problem 228 from projecteuler.net

Let S_n be the regular n-sided polygon – or shape – whose vertices v_k ($k=1,2,\ldots,n$) have coordinates:

$$x_k = \cos\left(rac{(2k-1)\pi}{n}
ight)$$

$$y_k = \sin\left(rac{(2k-1)\pi}{n}
ight)$$

Each S_n is to be interpreted as a filled shape consisting of all points on the perimeter and in the interior.

The Minkowski sum, S+T, of two shapes S and T is the result of adding every point in S to every point in T, where point addition is performed coordinate-wise: (u, v) + (x, y) = (u + x, v + y).

For example, the sum of S_3 and S_4 is the six-sided shape shown in pink below:

Given two integers L and R, how many sides does the Minkowski sum $\sum_{i=L}^R S_i$ have?

Input Format

The first line of each test file contains a single integer q which is the number of queries. Each of the next q lines contains two space-separated integers, L and R.

Constraints

- $1 < q < 10^4$
- 3 < L < R.
- The sum of R over all queries $\leq 4 imes 10^{10}$.

Output Format

Print the answer to each query in a new line.

Sample Input 0

```
1
3 4
```

Sample Output 0

6

Explanation 0

The figure in the problem description shows $S_3 + S_4$. We can see that the number of sides of that shape is $\bf 6$.

Sample Input 1

```
1
4 5
```

Sample Output 1

8

Explanation 1

Sample Input 2

```
1
3 5
```

Sample Output 2

