Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

На проективной прямой имеется естественное антиголоморфное отображение — комплексное сопряжение $\sigma: z\mapsto \bar{z}$. (Отображение кривых называется антиголоморфным, если в локальных комплексных координатах оно комплексно сопряжено голоморфному отображению, т.е. представляется рядом от переменной \bar{z} .) Это отображение не является голоморфным, является инволюцией, $\sigma^2=\mathrm{id}$, и играет ключевую роль при изучении вещественных кривых. Неподвижные точки этого отображения образуют вещественную проективную прямую $\mathbb{R}P^1\subset\mathbb{C}P^1$.

На проективной прямой имеется естественное антиголоморфное отображение — комплексное сопряжение $\sigma: z \mapsto \bar{z}$. (Отображение кривых называется антиголоморфным, если в локальных комплексных координатах оно комплексно сопряжено голоморфному отображению, т.е. представляется рядом от переменной \bar{z} .) Это отображение не является голоморфным, является инволюцией, $\sigma^2=\mathrm{id}$, и играет ключевую роль при изучении вещественных кривых. Неподвижные точки этого отображения образуют вещественную проективную прямую $\mathbb{R}P^1\subset \mathbb{C}P^1$.

Definition

Вещественной алгебраической кривой называется пара (C,η) , где C — комплексная алгебраическая кривая, $\eta:C\to C$ — антиголоморфная инволюция, $\eta^2=\mathrm{id}$. Неподвижные точки отображения η называются вещественными точками кривой (C,η) .

На проективной прямой имеется естественное антиголоморфное отображение — комплексное сопряжение $\sigma: z\mapsto \bar{z}$. (Отображение кривых называется *антиголоморфным*, если в локальных комплексных координатах оно комплексно сопряжено голоморфному отображению, т.е. представляется рядом от переменной \bar{z} .) Это отображение не является голоморфным, является инволюцией, $\sigma^2=\mathrm{id}$, и играет ключевую роль при изучении вещественных кривых. Неподвижные точки этого отображения образуют *вещественную проективную прямую* $\mathbb{R}P^1\subset\mathbb{C}P^1$.

Definition

Вещественной алгебраической кривой называется пара (C,η) , где C — комплексная алгебраическая кривая, $\eta:C\to C$ — антиголоморфная инволюция, $\eta^2=\mathrm{id}$. Неподвижные точки отображения η называются вещественными точками кривой (C,η) .

Упражнение. Почему отображение $z\mapsto \bar{z}$ неголоморфно?

На проективной прямой имеется естественное антиголоморфное отображение — комплексное сопряжение $\sigma: z \mapsto \bar{z}$. (Отображение кривых называется антиголоморфным, если в локальных комплексных координатах оно комплексно сопряжено голоморфному отображению, т.е. представляется рядом от переменной \bar{z} .) Это отображение не является голоморфным, является инволюцией, $\sigma^2=\mathrm{id}$, и играет ключевую роль при изучении вещественных кривых. Неподвижные точки этого отображения образуют вещественную проективную прямую $\mathbb{R}P^1\subset \mathbb{C}P^1$.

Definition

Вещественной алгебраической кривой называется пара (C,η) , где C — комплексная алгебраическая кривая, $\eta:C\to C$ — антиголоморфная инволюция, $\eta^2=\mathrm{id}$. Неподвижные точки отображения η называются вещественными точками кривой (C,η) .

Упражнение. Почему отображение $z \mapsto \bar{z}$ неголоморфно? **Упражнение.** Придумайте антиголоморфную инволюцию проективной прямой $\mathbb{C}P^1$, не имеющую неподвижных точек.

Типичным примером вещественной алгебраической кривой служит гладкая плоская комплексная кривая, заданная однородным полиномиальным уравнением с вещественными коэффициентами. Отображение η индуцируется отображением комплексной проективной плоскости в себя $(x:y:z)\mapsto (\bar x:\bar y:\bar z)$; это отображение переводит кривую в себя, поскольку при вещественном a выполняется равенство $ax^iy^jz^k=a\bar x^i\bar y^j\bar z^k$ для любых целых неотрицательных i,j,k.

Типичным примером вещественной алгебраической кривой служит гладкая плоская комплексная кривая, заданная однородным полиномиальным уравнением с вещественными коэффициентами. Отображение η индуцируется отображением комплексной проективной плоскости в себя $(x:y:z)\mapsto (\bar x:\bar y:\bar z)$; это отображение переводит кривую в себя, поскольку при вещественном а выполняется равенство $\overline{ax^iy^jz^k} = a\bar{x}^i\bar{y}^j\bar{z}^k$ для любых целых неотрицательных i,j,k. Множество вещественных точек такой кривой образует вещественную кривую пересечение исходной комплексной кривой с вещественной проективной плоскостью $\mathbb{R}P^2\subset \mathbb{C}P^2$. Эта вещественная кривая может оказаться пустой, как, например, в случае кривой $x^2 + y^2 + z^2 = 0$. Однако кривая нечетной степени обязательно является непустой (поскольку вещественный многочлен нечетной степени обязательно имеет вещественный корень).

В окрестности каждой неподвижной точки антиголоморфной инволюции $\eta:C\to C$ эта инволюция приводится в подходящей голоморфной координате z к виду $z\mapsto \bar{z}$. Поэтому множество неподвижных точек инволюции — гладкое вещественно одномерное подмногообразие в C. Это подмногообразие компактно, поэтому оно состоит из конечного числа окружностей.

В окрестности каждой неподвижной точки антиголоморфной инволюции $\eta:C\to C$ эта инволюция приводится в подходящей голоморфной координате z к виду $z\mapsto \bar{z}$. Поэтому множество неподвижных точек инволюции — гладкое вещественно одномерное подмногообразие в C. Это подмногообразие компактно, поэтому оно состоит из конечного числа окружностей.

Theorem (Harnack's curve theorem, Неравенство Харнака)

Множество неподвижных точек антиголоморфной инволюции на вещественной алгебраической кривой рода g имеет не более g+1 компонент связности.

В окрестности каждой неподвижной точки антиголоморфной инволюции $\eta:C\to C$ эта инволюция приводится в подходящей голоморфной координате z к виду $z\mapsto \bar{z}$. Поэтому множество неподвижных точек инволюции — гладкое вещественно одномерное подмногообразие в C. Это подмногообразие компактно, поэтому оно состоит из конечного числа окружностей.

Theorem (Harnack's curve theorem, Неравенство Харнака)

Множество неподвижных точек антиголоморфной инволюции на вещественной алгебраической кривой рода g имеет не более g+1 компонент связности.

Доказательство. Пусть (C,η) — вещественная алгебраическая кривая рода g. Тогда факторповерхность C/η — поверхность с краем, эйлерова характеристика которой равна $\chi(C)/2=(2-2g)/2=1-g$. Поэтому эта поверхность не может иметь больше g+1 компонент края, и это количество реализуемо лишь если факторповерхность C/η является сферой с g+1 дырками.

В окрестности каждой неподвижной точки антиголоморфной инволюции $\eta:C\to C$ эта инволюция приводится в подходящей голоморфной координате z к виду $z\mapsto \bar{z}$. Поэтому множество неподвижных точек инволюции — гладкое вещественно одномерное подмногообразие в C. Это подмногообразие компактно, поэтому оно состоит из конечного числа окружностей.

Theorem (Harnack's curve theorem, Неравенство Харнака)

Множество неподвижных точек антиголоморфной инволюции на вещественной алгебраической кривой рода g имеет не более g+1 компонент связности.

Доказательство. Пусть (C,η) — вещественная алгебраическая кривая рода g. Тогда факторповерхность C/η — поверхность с краем, эйлерова характеристика которой равна $\chi(C)/2=(2-2g)/2=1-g$. Поэтому эта поверхность не может иметь больше g+1 компонент края, и это количество реализуемо лишь если факторповерхность C/η является сферой с g+1 дырками.

Вещественная кривая рода g, множество вещественных точек которой имеет g+1 компонент связности, называется M-кривой.

Definition

Вещественная кривая (C,η) называется *разделяющей*, если множество ее вещественных точек $C^{\mathbb{R}} \subset C$ разбивает ее на две компоненты связности. В противном случае она называется *неразделяющей*.

Definition

Вещественная кривая (C,η) называется *разделяющей*, если множество ее вещественных точек $C^{\mathbb{R}} \subset C$ разбивает ее на две компоненты связности. В противном случае она называется *неразделяющей*.

Упражнение. Докажите, что всякая *М*-кривая является разделяющей.

Definition

Вещественная кривая (C, η) называется *разделяющей*, если множество ее вещественных точек $C^{\mathbb{R}} \subset C$ разбивает ее на две компоненты связности. В противном случае она называется *неразделяющей*.

Упражнение. Докажите, что всякая M-кривая является разделяющей. **Упражнение.** Докажите, что факторповерхность C/η вещественной алгебраической кривой (C,η) ориентируема тогда и только тогда, когда кривая (C,η) разделяющая.

Definition

Вещественная кривая (C, η) называется *разделяющей*, если множество ее вещественных точек $C^{\mathbb{R}} \subset C$ разбивает ее на две компоненты связности. В противном случае она называется *неразделяющей*.

Упражнение. Докажите, что всякая M-кривая является разделяющей. **Упражнение.** Докажите, что факторповерхность C/η вещественной алгебраической кривой (C,η) ориентируема тогда и только тогда, когда кривая (C,η) разделяющая. **Упражнение.** Пусть вещественная часть плоской вещественной кубики имеет одну компоненту связности. Является ли эта кубика разделяющей?

Definition

Вещественная кривая (C, η) называется *разделяющей*, если множество ее вещественных точек $C^{\mathbb{R}} \subset C$ разбивает ее на две компоненты связности. В противном случае она называется *неразделяющей*.

Упражнение. Докажите, что всякая M-кривая является разделяющей.

Упражнение. Докажите, что факторповерхность C/η вещественной алгебраической кривой (C,η) ориентируема тогда и только тогда, когда кривая (C,η) разделяющая.

Упражнение. Пусть вещественная часть плоской вещественной кубики имеет одну компоненту связности. Является ли эта кубика разделяющей?

Упражнение. Докажите, что количество компонент связности вещественной части $C^{\mathbb{R}}$ вещественной разделяющей кривой (C,η) рода g имеет ту же четность, что и g+1.

Антиголоморфная инволюция η вещественной алгебраической кривой (C,η) переводит в себя каждый замкнутый контур вещественной части кривой C. Однако на C есть и другие η -инвариантные контуры.

Антиголоморфная инволюция η вещественной алгебраической кривой (C,η) переводит в себя каждый замкнутый контур вещественной части кривой C. Однако на C есть и другие η -инвариантные контуры.

Упражнение. Найдите на $\mathbb{C}P^1$ контур, инвариантный относительно антиголоморфной инволюции $z\mapsto -1/\bar{z}$.

Антиголоморфная инволюция η вещественной алгебраической кривой (C,η) переводит в себя каждый замкнутый контур вещественной части кривой C. Однако на C есть и другие η -инвариантные контуры.

Упражнение. Найдите на $\mathbb{C}P^1$ контур, инвариантный относительно антиголоморфной инволюции $z\mapsto -1/\bar{z}$.

Theorem

На всякой вещественной кривой рода g существует разделяющий набор из g+1 попарно непересекающихся инвариантных контуров.

Антиголоморфная инволюция η вещественной алгебраической кривой (C,η) переводит в себя каждый замкнутый контур вещественной части кривой C. Однако на C есть и другие η -инвариантные контуры.

Упражнение. Найдите на $\mathbb{C}P^1$ контур, инвариантный относительно антиголоморфной инволюции $z\mapsto -1/\bar{z}$.

Theorem

На всякой вещественной кривой рода g существует разделяющий набор из g+1 попарно непересекающихся инвариантных контуров.

Замечание. Таких наборов (рассматривающихся с точностью до гомотопической эквивалентности) бесконечно много.

Definition

Голоморфное отображение $f:(C_1,\eta_1) \to (C_2,\eta_2)$ вещественных кривых называется вещественным, если $\eta_2 \circ f = f \circ \eta_1$. Вещественной мероморфной функцией на вещественной кривой (C,η) называется ее вещественное отображение $(C,\eta) \to (\mathbb{C}P^1,\sigma)$ в комплексную проективную прямую со стандартной антиголоморфной инволюцией — комплексным сопряжением.

Definition

Голоморфное отображение $f:(C_1,\eta_1) \to (C_2,\eta_2)$ вещественных кривых называется вещественным, если $\eta_2 \circ f = f \circ \eta_1$. Вещественной мероморфной функцией на вещественной кривой (C,η) называется ее вещественное отображение $(C,\eta) \to (\mathbb{C}P^1,\sigma)$ в комплексную проективную прямую со стандартной антиголоморфной инволюцией — комплексным сопряжением.

Упражнение. Докажите, что всякая вещественная мероморфная функция $(\mathbb{C}P^1,\sigma) \to (\mathbb{C}P^1,\sigma)$ задается рациональной функцией с вещественными коэффициентами.

Definition

Голоморфное отображение $f:(C_1,\eta_1) \to (C_2,\eta_2)$ вещественных кривых называется вещественным, если $\eta_2 \circ f = f \circ \eta_1$. Вещественной мероморфной функцией на вещественной кривой (C,η) называется ее вещественное отображение $(C,\eta) \to (\mathbb{C}P^1,\sigma)$ в комплексную проективную прямую со стандартной антиголоморфной инволюцией — комплексным сопряжением.

Упражнение. Докажите, что всякая вещественная мероморфная функция $(\mathbb{C}P^1,\sigma) \to (\mathbb{C}P^1,\sigma)$ задается рациональной функцией с вещественными коэффициентами.

Упражнение. Опишите все вещественные мероморфные функции $(\mathbb{C}P^1,\eta) \to (\mathbb{C}P^1,\sigma)$, где $\eta: \mathbb{C}P^1 \to \mathbb{C}P^1$ — антиголоморфная инволюция, имеющая вид $z \mapsto -1/\bar{z}$.

Definition

Голоморфное отображение $f:(C_1,\eta_1) \to (C_2,\eta_2)$ вещественных кривых называется вещественным, если $\eta_2 \circ f = f \circ \eta_1$. Вещественной мероморфной функцией на вещественной кривой (C,η) называется ее вещественное отображение $(C,\eta) \to (\mathbb{C}P^1,\sigma)$ в комплексную проективную прямую со стандартной антиголоморфной инволюцией — комплексным сопряжением.

Упражнение. Докажите, что всякая вещественная мероморфная функция $(\mathbb{C}P^1,\sigma) \to (\mathbb{C}P^1,\sigma)$ задается рациональной функцией с вещественными коэффициентами.

Упражнение. Опишите все вещественные мероморфные функции $(\mathbb{C}P^1, \eta) \to (\mathbb{C}P^1, \sigma)$, где $\eta: \mathbb{C}P^1 \to \mathbb{C}P^1$ — антиголоморфная инволюция, имеющая вид $z \mapsto -1/\bar{z}$.

Упражнение. Всякую голоморфную функцию можно задать набором ее критических значений и монодромией вокруг каждого из этих значений. Какие ограничения накладываются на эти данные для вещественных функций?

Простая замкнутая кривая на вещественной проективной плоскости $\mathbb{R}P^2$ может принадлежать к одному из двух типов:

- односторонняя кривая кривая C, дополнение $\mathbb{R}P^2 \setminus C$ к которой гомеоморфно диску;
- *овал* (двусторонняя кривая) кривая, разбивающая проективную плоскость на две компоненты связности, одна из которых гомеоморфна диску, вторая ленте Мебиуса.

Прямая в вещественной проективной плоскости является односторонней кривой.

Простая замкнутая кривая на вещественной проективной плоскости $\mathbb{R}P^2$ может принадлежать к одному из двух типов:

- односторонняя кривая кривая C, дополнение $\mathbb{R}P^2\setminus C$ к которой гомеоморфно диску;
- *овал* (двусторонняя кривая) кривая, разбивающая проективную плоскость на две компоненты связности, одна из которых гомеоморфна диску, вторая ленте Мебиуса.

Прямая в вещественной проективной плоскости является односторонней кривой. Кубическая вещественная M-кривая состоит из одной односторонней компоненты и одного овала.

Простая замкнутая кривая на вещественной проективной плоскости $\mathbb{R}P^2$ может принадлежать к одному из двух типов:

- односторонняя кривая кривая C, дополнение $\mathbb{R}P^2\setminus C$ к которой гомеоморфно диску;
- *овал* (двусторонняя кривая) кривая, разбивающая проективную плоскость на две компоненты связности, одна из которых гомеоморфна диску, вторая ленте Мебиуса.

Прямая в вещественной проективной плоскости является односторонней кривой. Кубическая вещественная M-кривая состоит из одной односторонней компоненты и одного овала.

Вещественная M-квартика состоит из 4 овалов.

Простая замкнутая кривая на вещественной проективной плоскости $\mathbb{R}P^2$ может принадлежать к одному из двух типов:

- односторонняя кривая кривая C, дополнение $\mathbb{R}P^2\setminus C$ к которой гомеоморфно диску;
- *овал* (двусторонняя кривая) кривая, разбивающая проективную плоскость на две компоненты связности, одна из которых гомеоморфна диску, вторая ленте Мебиуса.

Прямая в вещественной проективной плоскости является односторонней кривой. Кубическая вещественная M-кривая состоит из одной односторонней компоненты и одного овала.

Вещественная M-квартика состоит из 4 овалов.

Упражнение. Могут ли овалы M-квартики лежать один внутри другого?

Lemma

Всякая гладкая плоская вещественная кривая нечетной степени содержит ровно одну одностороннюю компоненту связности. Все компоненты связности гладкой плоской вещественной кривой четной степени — овалы.

Доказательство.

Lemma

Всякая гладкая плоская вещественная кривая нечетной степени содержит ровно одну одностороннюю компоненту связности. Все компоненты связности гладкой плоской вещественной кривой четной степени — овалы.

Доказательство.

Любые две односторонние кривые на проективной плоскости пересекаются, поэтому у гладкой кривой не может быть больше одной такой компоненты.

Lemma

Всякая гладкая плоская вещественная кривая нечетной степени содержит ровно одну одностороннюю компоненту связности. Все компоненты связности гладкой плоской вещественной кривой четной степени — овалы.

Доказательство.

Любые две односторонние кривые на проективной плоскости пересекаются, поэтому у гладкой кривой не может быть больше одной такой компоненты.

Прямая общего положения пересекает одностороннюю кривую в нечетном числе точек, а всякий овал — в четном числе точек. Количество точек пересечения общей вещественной прямой с вещественной частью плоской вещественной кривой имеет ту же четность, что и степень кривой.

Плоская алгебраическая кривая степени 6 имеет род (6-1)(6-2)/2=10, поэтому у плоской вещественной M-кривой степени шесть 11 компонент связности. Алгебраическая часть 16-й проблемы Гильберта состоит в описании всех возможных взаимных расположений компонент связности такой кривой на вещественной проективной плоскости. Гильберт утверждал, что среди 11 овалов есть один, содержащий внутри себя еще один, и еще 9 простых овалов вне него, либо наоборот. Д.А.Гудков обнаружил еще один случай: овал, внутри и снаружи которого находится по 5 простых овалов, и доказал, что других возможностей нет.

Плоская алгебраическая кривая степени 6 имеет род (6-1)(6-2)/2=10, поэтому у плоской вещественной M-кривой степени шесть 11 компонент связности. Алгебраическая часть 16-й проблемы Гильберта состоит в описании всех возможных взаимных расположений компонент связности такой кривой на вещественной проективной плоскости. Гильберт утверждал, что среди 11 овалов есть один, содержащий внутри себя еще один, и еще 9 простых овалов вне него, либо наоборот. Д.А.Гудков обнаружил еще один случай: овал, внутри и снаружи которого находится по 5 простых овалов, и доказал, что других возможностей нет.

Вопрос о возможных конфигурациях овалов для плоских M-кривых степени 8 и выше до сих пор открыт.

Овалам кривой четной степени можно приписать знаки. Овалам, не содержащимся в других овалах, приписывается знак +. Овалам, непосредственно содержащимся в овале, имеющим знак +, знак -, овалам, непосредственно содержащимся в овалах со знаком +, и т.д. Обозначим через p количество положительных овалов, через n— количество отрицательных. Например, три возможные конфигурации овалов вещественных плоских M-кривых степени 6 дают наборы значений p = 10, n = 1, p = 6, n = 5, p = 2, n = 9.

Овалам кривой четной степени можно приписать знаки. Овалам, не содержащимся в других овалах, приписывается знак +. Овалам, непосредственно содержащимся в овале, имеющим знак +, знак -, овалам, непосредственно содержащимся в овалах со знаком +, и т.д. Обозначим через p количество положительных овалов, через n — количество отрицательных. Например, три возможные конфигурации овалов вещественных плоских M-кривых степени 6 дают наборы значений p = 10, n = 1, p = 6, n = 5, p = 2, n = 9.

Theorem (сравнение Гудкова, доказано В.И.Арнольдом, 1971, и В.А.Рохлиным, 1972)

Для плоской вещественной M-кривой четной степени 2k выполняется сравнение

$$p - n \equiv k^2 \mod 8$$
.

Лекция 10. 16-я проблема Гильберта: сравнение Рохлина