#### 一、算法建模

算法建模基于 matlab 软件进行代码设计,参考 fft.m 文件。

建模过程说明如下:

1. FFT 蝶形计算原理

基-2 DIT FFT 算法的核心是蝶形计算单元:

X(k) = A + W \* B

X(k+N/2) = A - W \* B

其中:

- A和B是输入数据点
- W 是旋转因子(复数)
- X(k)和 X(k+N/2)是输出数据点
- 2. 建模关键步骤
  - 1. 位反转重排输入:
    - 。 对输入序列进行位反转排序
    - o 例如:索引 1(00000001)变为 128(10000000)
  - 2. 分级蝶形计算:
    - o 对于 8 级计算(log<sub>2</sub>256=8)
    - 每级计算 256/2=128 个蝶形运算
    - 。 旋转因子角度:  $\theta = -2\pi k/2^m$ , 其中 m 为当前级数
  - 3. 定点数处理:
    - o 使用 Q24.8 格式 (32 位, 24 位整数+8 位小数)
    - o 乘法结果保留双精度(64位),然后截断为32位
    - 。 模拟硬件中的量化误差
- 3. 模型验证方法
  - 1. 测试信号生成:
    - 50Hz + 120Hz 正弦波复合信号
    - 。 采样率 1000Hz
  - 2. 三种实现比较:
    - MATLAB 内置 FFT (参考)
    - o 浮点模型 FFT
    - o 定点模型 FFT (Q24.8)
  - 3. 性能指标:
    - 。 频谱幅度对比
    - 。 误差幅度分析

#### 公众号: 数字芯片阿龙

#### 建模对比结果如下:

- 图 1 为测试信号
- 图 2 为使用 matlab 内置 fft 函数的计算结果
- 图 3 浮点建模计算结果
- 图 4 定点建模计算结果
- 图 5 浮点模型误差
- 图 6 定点模型误差



## 二、架构设计

#### 项目架构图



IDEL:初始状态 LOAD:輸入数据加载中 CALC:蝶形计算进行中 UNLOAD:輸出数据发送中

#### 三、RTL 设计

## input\_crtl.v

该模块负责接收 AXIS 接口的输入数据,并对其位反转后加载至双口 RAM。



| Port name     | Direction | Type   | Description       |
|---------------|-----------|--------|-------------------|
| clk           | input     |        | 时钟                |
| rst_n         | input     |        | 复位                |
| s_axis_tvalid | input     |        | AXIS 的 Valid 信号   |
| s_axis_tdata  | input     | [63:0] | AXIS 输入数据         |
| s_axis_tlast  | input     |        | AXIS 最后一个输入数据标志信号 |
| s_axis_tready | output    |        | AXIS 的 Ready 信号   |
| in_x1_addr    | input     | [7:0]  | 第一地址              |
| in_x2_addr    | input     | [7:0]  | 第二地址              |
| out_x1        | output    | [63:0] | 第一数据              |
| out_x2        | output    | [63:0] | 第二数据              |

# addr\_ctrl.v

该模块为地址生成器,基于2步(Radix-2)索引算法寻址。同时负责 twiddle 的寻址。



| Port name    | Direction | Туре  | Description |
|--------------|-----------|-------|-------------|
| N            | Parameter |       | FFT 计算点数    |
| clk          | input     |       | 时钟          |
| rst_n        | input     |       | 复位          |
| calc_start   | input     |       | 计算开始标志      |
| bfly_valid   | input     |       | 计算结果有效      |
| calc_done    | output    |       | 计算结束标志      |
| idx1         | output    | [7:0] | 第一地址        |
| idx2         | output    | [7:0] | 第二地址        |
| twiddle_addr | output    | [7:0] | 旋转因子地址      |

# butterfly\_unit.v

该模块负责进行蝶形计算。



| Port name  | Direction | Туре   | Description |
|------------|-----------|--------|-------------|
| clk        | input     |        | 时钟          |
| rst_n      | input     |        | 复位          |
| calc_start | input     |        | 计算开始标志      |
| idx1       | input     | [7:0]  | 第一地址        |
| idx2       | input     | [7:0]  | 第二地址        |
| in_x1      | input     | [63:0] | 第一数据        |
| in_x2      | input     | [63:0] | 第一数据        |
| twiddle    | input     | [63:0] | 旋转因子        |
| out_x1_reg | output    | [63:0] | 计算后的第一数据    |
| out_x2_reg | output    | [63:0] | 计算后的第二数据    |
| out_idx1   | output    | [7:0]  | 输出第一地址      |
| out_idx2   | output    | [7:0]  | 输出第二地址      |
| out_valid  | output    |        | 输出有效标志      |

#### 公众号:数字芯片阿龙

# $twiddle\_rom.v$

该模块负责存储旋转因子。



| Port name | Direction | Туре   | Description |
|-----------|-----------|--------|-------------|
| clk       | input     |        | 时钟          |
| addr      | input     | [7:0]  | 地址          |
| data      | output    | [63:0] | 旋转因子        |

## $output\_crtl.v$

该模块负责将计算结果缓存后以 AXIS 接口形式发送。



| Port name     | Direction | Type   | Description       |
|---------------|-----------|--------|-------------------|
| clk           | input     |        | 时钟                |
| rst_n         | input     |        | 复位                |
| out_x1        | input     | [63:0] | 计算后的第一数据          |
| out_x2        | input     | [63:0] | 计算后的第二数据          |
| out_idx1      | input     | [7:0]  | 第一地址              |
| out_idx2      | input     | [7:0]  | 第二地址              |
| calc_start    | input     |        | 计算开始标志            |
| in_valid      | input     |        | 计算数据有效            |
| unload_start  | input     |        | 发送开始标志            |
| unload_done   | output    |        | 发送完成标志            |
| m_axis_tready | input     |        | AXIS 的 Ready 信号   |
| m_axis_tvalid | output    |        | AXIS 的 Valid 信号   |
| m_axis_tdata  | output    | [63:0] | AXIS 输入数据         |
| m_axis_tlast  | output    |        | AXIS 最后一个输入数据标志信号 |

| 四、UVM 验证<br>待更新 |  |
|-----------------|--|
| 待更新             |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |