Galois Groups as Tree Automorphisms

1 Definitions

1.1 Trees in a Ring

Definition 1.1. Let R be a ring. A **tree** in R sequence of pairs $((\mathcal{R}_n, f_n))_{n \in \mathbb{N}}$ where $(\mathcal{R}_n)_{n \in \mathbb{N}}$ is a sequence of pairwise disjoint subsets of R and where $(f_n)_{n \in \mathbb{N}}$ is a sequence of polynomials in R[X] such that f_n restricts to a d_n -to-1 map from \mathcal{R}_n to \mathcal{R}_{n-1} for each $n \geq 2$ where $d_n = \deg(f_n)$.

Remark 1. To clean notation further, we often write "let (\mathcal{R}_n, f_n) be a tree in R" to mean "let $((\mathcal{R}_n, f_n))_{n \in \mathbb{N}}$ be a tree in R".

Definition 1.2. Let R be a ring, let (\mathcal{R}_n, f_n) be a tree in R, and let G be a subgroup of $\operatorname{Aut}(R)$, the group of all automorphisms of R. We say (\mathcal{R}_n, f_n) is an G-tree in R if for each $n \in \mathbb{N}$ the following two conditions are satisfied:

- 1. If $\sigma \in G$, then $\sigma f_n = f_n \sigma$.
- 2. The natural action of *G* on *R* restricts to a transitive action of *G* on \mathcal{R}_n for each $n \in \mathbb{N}$.

1.2 Galois Trees

Theorem 1.1. Let K be a field, let \overline{K} be an algebraic closure of K, and let $G = \operatorname{Gal}(\overline{K}/K)$. Suppose (f_n) be a sequence of polynomials in K[X] such that

$$f_{[n]} := f_1 \circ f_2 \circ \cdots \circ f_n$$

is separable and irreducible over K for each $n \in \mathbb{N}$. Let \mathcal{R}_n be the set of roots of $f_{[n]}$ in \overline{K} . Then (\mathcal{R}_n, f_n) is a G-tree in \overline{K} .

Proof. Let d_n denote the degree of f_n . We need to show that f_n restricts to a d_n -to-1 map from \mathcal{R}_n to \mathcal{R}_{n-1} . To see that it does, let $\alpha \in \mathcal{R}_{n-1}$. Then note that $f_n - \alpha$ is separable since $f_n - \alpha \mid f_{[n]}$ and $f_{[n]}$ is separable. In particular, there are d_n distinct β 's in \overline{K} such that $f_n(\beta) = \alpha$; moreover each such β belongs to \mathcal{R}_n since

$$f_{[n]}(\beta) = (f_{[n-1]} \circ f_n)(\beta)$$
$$= f_{[n-1]}(f_n(\beta))$$
$$= f_{[n-1]}(\alpha)$$
$$= 0.$$

It follows that (\mathcal{R}_n, f_n) is a tree in \overline{K} . To see that it is a G-tree, note that if $\sigma \in G$, then $\sigma f_n = f_n \sigma$ since σ fixes the coefficients of f_n . Also note that the action of G on \overline{K} restricts to a transitive action on \mathcal{R}_n since $f_{[n]}$ is irreducible.

Example 1.1. Let p be a prime and let G be the absolute Galois group of \mathbb{Q} . Let f_1 be the pth cyclotomic polynomial and let $f_n = X^p$ for each $n \geq 2$. Note that $f_{[n]}$ is the p^n th cyclotomic polynomial. In particular, each $f_{[n]}$ is separable and irreducible over \mathbb{Q} . Thus if we set \mathcal{R}_n to be the set of primitive p^n th roots of unity in \mathbb{C} , then Theorem (1.1) implies (\mathcal{R}_n, f_n) is a G-tree in $\overline{\mathbb{Q}}$.

1.2.1 Galois Trees coming from p-Eisenstein Polynomials

Lemma 1.2. Let R be a ring and let $\mathfrak p$ be a prime ideal of R. Suppose that f and g be monic $\mathfrak p$ -Eistenstein polynomials in R[X] of degrees m and n respectively. If $m \geq 2$, then the composite $f \circ g$ is a monic $\mathfrak p$ -Eisenstein polynomial.

Proof. Write

$$f(X) = X^m + a_{m-1}X^{m-1} \cdots + a_0$$
 and $g(X) = X^n + b_{n-1}X^{n-1} \cdots + b_0$

where $a_i, b_j \in R$ for each $0 \le i \le m-1$ and $0 \le j \le n-1$. Then f and g being \mathfrak{p} -Eisteinstein means $a_i, b_j \in \mathfrak{p}$ for all i, j and $a_0, b_0 \notin \mathfrak{p}^2$. The composite $f \circ g$ is given by

$$(f \circ g)(X) = f(g(X))$$

$$= g(X)^{m} + \sum_{i=1}^{m-1} a_{i}g(X)^{i}$$

$$= (X^{n} + b_{n-1}X^{n-1} \cdots + b_{0})^{m} + \sum_{i=1}^{m-1} a_{i}(X^{n} + b_{n-1}X^{n-1} \cdots + b_{0})^{i} + a_{0}$$

$$\equiv X^{mn} + b_{0}^{m} + a_{m-1}b_{0}^{m-1} + \cdots + a_{0} \mod \mathfrak{p}^{2}$$

$$\equiv X^{mn} + a_{0} \mod \mathfrak{p}^{2}$$

where we used the fact that $m \ge 2$ to obtain the last line. Clearly we also have $f \circ g \equiv X^{mn} \mod \mathfrak{p}$, and thus it follows that $f \circ g$ is \mathfrak{p} -Eisenstein.

Example 1.2. Let K be a number field, let \mathfrak{p} be a prime ideal of \mathcal{O}_K , and let (f_n) be a sequence of monic \mathfrak{p} -Eistenstein polynomials in $\mathcal{O}_K[X]$ such that $d_n \geq 2$ for all $n \in \mathbb{N}$ where $d_n = \deg f_n$. Then by Lemma (1.2), each $f_{[n]}$ is a monic \mathfrak{p} -Eisenstein polynomial in $\mathcal{O}_K[X]$. In particular, each $f_{[n]}$ is irreducible over K; hence separable as well since K is perfect. Setting \mathcal{R}_n to be the set of roots of $f_{[n]}$ for each $n \in \mathbb{N}$, we see that (\mathcal{R}_n, f_n) is a G-tree in $\overline{\mathbb{Q}}$ by Theorem (1.1).