From a practical point of view, Proposition 25.6 shows us how to homogenize an affine map to turn it into a linear map between the two homogenized spaces. Assume that E and F are of finite dimension, that $(a_0, (u_1, \ldots, u_n))$ is an affine frame of E with origin a_0 , and $(b_0, (v_1, \ldots, v_m))$ is an affine frame of F with origin b_0 . Then, with respect to the two bases (u_1, \ldots, u_n, a_0) in \widehat{E} and (v_1, \ldots, v_m, b_0) in \widehat{F} , a linear map $h: \widehat{E} \to \widehat{F}$ is given by an $(m+1) \times (n+1)$ matrix A. Assume that this linear map h is equal to the homogenized version \widehat{f} of an affine map f. Since

$$\widehat{f}(u + \lambda a) = \overrightarrow{f}(u) + \lambda f(a),$$

and since over the basis (u_1, \ldots, u_n, a_0) in \widehat{E} , points are represented by vectors whose last coordinate is 1 and vectors are represented by vectors whose last coordinate is 0, the following properties hold.

1. The last row of the matrix $A = M(\widehat{f})$ with respect to the given bases is

$$(0,0,\ldots,0,1)$$

with n occurrences of 0.

2. The last column of A contains the coordinates

$$(\mu_1, \ldots, \mu_m, 1)$$

of $f(a_0)$ with respect to the basis (v_1, \ldots, v_m, b_0) .

3. The submatrix of A obtained by deleting the last row and the last column is the matrix of the linear map \overrightarrow{f} with respect to the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m) ,

Finally, since

$$f(a_0 + u) = \widehat{f}(u + \widehat{a}_0),$$

given any $x \in E$ and $y \in F$ with coordinates $(x_1, \ldots, x_n, 1)$ and $(y_1, \ldots, y_m, 1)$, for $X = (x_1, \ldots, x_n, 1)^{\top}$ and $Y = (y_1, \ldots, y_m, 1)^{\top}$, we have y = f(x) iff

$$Y = AX$$
.

For example, consider the following affine map $f \colon \mathbb{A}^2 \to \mathbb{A}^2$ defined as follows:

$$y_1 = ax_1 + bx_2 + \mu_1,$$

 $y_2 = cx_1 + dx_2 + \mu_2.$

The matrix of \widehat{f} is

$$\begin{pmatrix} a & b & \mu_1 \\ c & d & \mu_2 \\ 0 & 0 & 1 \end{pmatrix},$$