# SSZX NOIP2021 模拟赛

 $(2021.10.16 8:00\sim12:30)$ 

# 一、题目概况

| 题目名称    | 画图        | 交换       | 步行       | 航行       |
|---------|-----------|----------|----------|----------|
| 题目类型    | 传统型       | 传统型      | 传统型      | 传统型      |
| 可执行文件名  | graph     | swap     | walk     | sail     |
| 输入文件名   | graph.in  | swap.in  | walk.in  | sail.in  |
| 输出文件名   | graph.out | swap.out | walk.out | sail.out |
| 每个测试点时限 | 1s        | 4s       | 2.5s     | 1s       |
| 内存限制    | 128MB     | 512MB    | 512MB    | 512MB    |
| 子任务数目   | 20        | 20       | 25       | 25       |

# 二、提交源程序文件名

| 对于 c++语言 | graph.cpp | swap.cpp | walk.cpp | sail.cpp |
|----------|-----------|----------|----------|----------|
|----------|-----------|----------|----------|----------|

## 三、编译命令

| 对于 C++ 语言 | -lm -02 -std=c++11 |
|-----------|--------------------|
|-----------|--------------------|

# 注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写;不需要建立子文件夹。
- 2. 在 windows 环境评测, 硬件环境: Inter\_i5 8G 内存。
- 3. C/C++ 中函数 main() 的返回值类型必须是 int, 程序正常结束时的返回值必须 是 0。
- 4. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 5. 程序可使用的栈内存空间限制与题目的内存限制一致。
- 6. 由于题目的输入和输出量普遍较大,请采用高效的读入和输出方式,例如 getchar(), putchar()。

# 1、画图 (graph.cpp)

## 【题目描述】

小A喜欢画画。

这天小 A 拿到了一幅 n 个点 m 条边的无向图, 他打算添加一些无向边使得这个图更加饱满。但是他也不希望破环这张图的美感, 因此他每次添加的边一定满足:

- 1. 这条边两个端点之间在添加之前不存在直接相连的边,即不能添加一条重边。
- 2. 在添加这条边之前,这条边的两个端点之间,存在两条简单路径,满足不同时经过起终点之外的所有点。简单路径指不重复经过点和边的路径。

尽管身为小 A 朋友的你并没有欣赏出这张图的美感, 小 A 还是希望你计算一下, 在可以重复任意次添加过程的情况下, 最终这张图最多能有多少条边。

# 【输入格式】

从文件 graph. in 读入数据。

第一行两个整数n,m,表示这张图的点和边的数量。

接下来m行,每行两个整数u,v(u≠v)表示一条从u到v的边,保证不存在重边。

# 【输出格式】

输出到文件 graph. out 中。

输出一行一个整数表示这张图边数的最大值。

## 【样例1输入】

- 5 5
- 1 2
- 2 3
- 1 4
- 3 4
- 1 5

### 【样例1输出】

7

## 【样例1解释】

由于 1, 2, 3 和 1, 4, 3 这两条路径,所以可以添加 1-3 这条边 由于 2, 1, 4 和 2, 3, 4 这两条路径,所以可以添加 2-4 这条边 可以发现其他的边不可能被添加了,因此加上原有的 5 条边,边数的最大值是 7 条。

# 【样例 2】

见选手目录下的 graph/ex\_graph2. in 与 graph/ex\_graph2. out

# 【样例3】

见选手目录下的 graph/ex\_graph3. in 与 graph/ex\_graph3. out

# 【数据范围】

保证对于所有测试点, $1 \le n, m \le 10^6, 2m \le n(n-1), 1 \le u, v \le n, u \ne v$ 输入的图不存在重边,自环。

| 测试点编号 | n ≤             | m ≤             | 特殊性质 |
|-------|-----------------|-----------------|------|
| 1     | 5               | 5               |      |
| 2     | 10              | 10              |      |
| 3     | 10              | 10 <sup>6</sup> | 无    |
| 4     | 40              | 40              |      |
| 5     | 40              | 10 <sup>6</sup> |      |
| 6     |                 | 200             | A    |
| 7     | 200             | 10 <sup>6</sup> | В    |
| 8     |                 | 10°             | 无    |
| 9     |                 | 2000            | A    |
| 10    | 2000            | 10 <sup>6</sup> | В    |
| 11    |                 | 10°             | 无    |
| 12    |                 | 10 <sup>5</sup> | A    |
| 13    | 10 <sup>5</sup> | 105             | 无    |
| 14    |                 |                 | В    |
| 15    |                 |                 | 无    |
| 16    |                 |                 | A    |
| 17    | 10 <sup>6</sup> | 106             | В    |
| 18    |                 |                 |      |
| 19    |                 |                 | 无    |
| 20    |                 |                 |      |

特殊性质 A: 图是连通的

特殊性质 B: 所有可能的边在输入中出现的概率相同

# 2、交换 (swap.cpp)

### 【题目描述】

小 B 忘记做作业了! 昨天的作业是对n个不同的数从小到大进行排序,然而小 B 作业本上的数依旧是乱序的。老师正在检查作业,还要检查m个同学就要到达小 B 这里了,检查每个同学的时间都是 $t/m + 10^{-100}$ 秒(t为本题时限)。

小 B 知道,自己的作业如果做的太差,一定能得到和老师谈心的好机会。不过好在,老师已经把答案写在了黑板上,因此这时小 B 的作业可以看成一个长度为n的排列 $a_1,a_2,...,a_n$ , $a_i$ 表示小 B 作业中第i位的数在n个数中是第 $a_i$ 小。而且老师也公布了评分的标准:按字典序评分。也就是说对于两种排序方式,分别为 $p_1,p_2,...,p_n$ 和 $q_1,q_2,...,q_n$ ,设 $x_0 = \min\{x|p_x \neq q_x\}$ ,那么第 $x_0$ 位较小的那个排序方式可以获得更高的分数。

由于数字很多,抄已经来不及了。于是小 B 打算使用交换的方式,在老师检查到每个同学的时候,小 B 都会观察出一个区间[ $\mathbf{l}$ , $\mathbf{r}$ ],在这个区间内交换两个数不会被老师察觉。小 B 眼疾手快,他观察老师和交换两个数的用时总和是 $\mathbf{10}^{-100}$ 秒。

小 B 希望每一次交换,他都能选取交换后得分最高,即字典序最小的交换方式。然而他 并不能在t秒中找出答案,于是他向同桌的你求助,希望你能告诉他每一步该如何交换。

# 【输入格式】

从文件 swap. in 读入数据。

第一行两个整数n,m表示序列长度和前面的同学数量。

第二行n个数, $a_1, a_2, ..., a_n$ ,表示小 B 作业中每一个数是第几小。

接下来m行,每行两个数l,r,表示小B观察出的可以交换的区间为[l,r]。

#### 【输出格式】

输出到文件 swap. out 中。

输出m行,每行1到2个整数,如果小 B 不进行交换(交换两个相同的位置)就是最优的,请输出-1,否则输出两个数u,v,满足 $l \le u < v \le r$ ,表示交换u,v两个位置是最优的。

#### 【样例1输入】

10 7

7 3 5 4 10 2 1 9 8 6

3 7

5 10

2 5

8 9

6 10

2 4

1 4

# 【样例1输出】

- 3 7
- 5 6
- 2 3
- 8 9
- 6 7
- -1
- 1 2

# 【样例1解释】

初始排列为7, 3, 5, 4, 10, 2, 1, 9, 8, 6

第一次交换[3,7]区间,交换3,7两个位置之后变为7,3,1,4,10,2,5,9,8,6

而如果采用其他可能的第一步交换方案,前两个位置仍然是7,3,第三个位置都> 1, 因此一定不优,所以交换3,7。后面的步骤结束后排列分别为:

- 7, 3, 1, 4, 2, 10, 5, 9, 8, 6
- 7, 1, 3, 4, 2, 10, 5, 9, 8, 6
- 7, 1, 3, 4, 2, 10, 5, 8, 9, 6
- 7, 1, 3, 4, 2, 5, 10, 8, 9, 6
- 7, 1, 3, 4, 2, 5, 10, 8, 9, 6
- 1, 7, 3, 4, 2, 5, 10, 8, 9, 6

值得注意的是,第六步交换, [2,4]区间中的数是1,3,4,已经处于最优状态,因此不交换是最优的,故输出-1。

# 【样例2】

见选手目录下swap/ex swap2. in与swap/ex swap2. out

# 【样例3】

见选手目录下swap/ex\_swap3. in与swap/ex\_swap3. out

# 【数据范围】

保证对于所有测试点, $1 \le n$ , $m \le 10^6$ , $a_1$ , $a_2$ ,..., $a_n$ 是1到n的一个排列, $1 \le l \le r \le n$ 

| 测试点编号 | $n, m \leq 10^{-7} \alpha_1, \alpha_2, \dots, \alpha_n \geq 1$ | 特殊性质       |  |
|-------|----------------------------------------------------------------|------------|--|
| 1     | 10                                                             |            |  |
| 2     | 50                                                             |            |  |
| 3     | 100                                                            |            |  |
| 4     | 100                                                            | 无          |  |
| 5     | 1000                                                           | <i>/</i> L |  |
| 6     | 1000                                                           |            |  |
| 7     | 5000                                                           |            |  |
| 8     | 5000                                                           |            |  |
| 9     | 5 × 10 <sup>4</sup>                                            | A          |  |
| 10    | 5 X 10                                                         | 无          |  |
| 11    |                                                                | В          |  |
| 12    | $3 \times 10^{5}$                                              | A          |  |
| 13    | 3 × 10                                                         | 无          |  |
| 14    |                                                                | <i>/</i> L |  |
| 15    |                                                                | A          |  |
| 16    | 10 <sup>6</sup>                                                | В          |  |
| 17    |                                                                |            |  |
| 18    |                                                                | 无          |  |
| 19    |                                                                | <i>)</i> L |  |
| 20    |                                                                |            |  |

特殊性质A:排列a的逆序对数≤100

特殊性质 B:排列和询问区间都在所有可能中等概率随机。

# 3、步行 (walk.cpp)

#### 【题目描述】

小C喜欢步行,只有缓慢的步行,小C才能沉浸于其中,享受旅途中那些美好的瞬间。

小C来到了一座新的城市生活,这座城市可以看成n个点,n-1条长度为1的无向边连接的连通图,也就是说这个城市的结构是一棵树。小C计划在这个城市旅行,他对这个城市的每一个节点都进行了初步的了解,并制定了一个旅行计划,他按照自己的兴趣等因素,为每一个节点设定了游览次数 $v_i$ ,表示他计划在第i个节点游览多少次。

在这之后,小C想要找出一个游览序列。游览序列是一个长度为 $S = \sum_i v_i$ 的序列,对于 $i \in [1,n]$ ,i在序列中出现 $v_i$ 次,设这个序列为A。确定序列后小C将会沿着 $A_1$ , $A_2$ ,…, $A_8$ 的顺序步行游览,每次从一个点走最短路径到下一个点,并最终从 $A_8$ 返回 $A_1$ ,游览序列中相邻的两位以及 $A_8$ , $A_1$ 可以相同,这个时候小C的步行距离为0。小C喜欢步行,因此他希望他的总步行距离尽可能长。

小C发现这一座城市还会时常发生交通管制事件,在这样的情况下,一条原有的道路会无法通行,还会有一条临时道路出现,管制过程中这座城市依旧连通。小C会告诉你m次这样的事件,希望你告诉他在这m种管制情况下,他的最长步行距离分别是多少。然而小C的信息也有可能是错的,例如无法通行的道路不存在,或者管制后的城市不连通,这时你需要告诉他这条信息是错误的。

## 【输入格式】

从文件walk.in读入数据。

第一行两个整数n,m,表示城市的点数与小C提供的事件数。

第二行n个数, $v_1, v_2, ..., v_n$ 表示每个点的游览次数。

 $x_1, y_1$ 之间的道路,并临时添加 $x_2, y_2$ 之间的道路。

接下来n-1行,每行两个整数u,v表示一条连接u,v的道路,保证这些道路构成一棵树。接下来m行,每行四个整数 $x_1,y_1,x_2,y_2$ 依次表示小C的每一条信息,这条信息为管制

# 【输出格式】

输出到文件walk.out中

由于输出量可能较大,对于错误的信息,我们认为问题的答案是**0**,最后请输出所有问题答案的异或和,即c++中的运算"^"。

# 【样例1输入】

6 4

1 1 4 5 1 4

1 2

2 3

1 4

4 5

4 6

1 2 1 3

1 4 2 6

1 4 2 4

1 6 3 6

## 【样例1输出】

38

# 【样例1解释】

初始的城市,如图1:



第一次询问中,如图2,去掉1,2边连接1,3边,此时答案为34,一种最优的游览序列是1,5,2,6,3,4,6,4,3,4,6,4,3,6,3,4。

第二次询问中,如图3,去掉1,4边连接2,6边,此时答案为36,一种最优的游览序列是1,6,5,6,2,6,4,6,3,4,3,4,3,4。

第三次询问中,如图4,去掉1,4边连接2,4边,此时答案为32,一种最优的游览序列是1,4,4,4,5,2,6,3,6,3,6,3,6,3,4。

第四次询问中,由于1,6边在原图中并不存在,因此小C的信息错误,答案为0四次答案34,36,32,0的异或和为38,故输出38。

# 【样例2】

见选手目录下walk/ex\_walk2. in与walk/ex\_walk2. out

### 【样例3】

见选手目录下walk/ex\_walk3. in与walk/ex\_walk3. out 该样例满足数据范围中特殊性质A

# 【样例4】

见选手目录下walk/ex\_walk4.in与walk/ex\_walk4.out 该样例满足数据范围中特殊性质B

# 【样例5】

见选手目录下walk/ex\_walk5. in与walk/ex\_walk5. out 该样例满足数据范围中特殊性质C

# 【样例6】

见选手目录下walk/ex\_walk6. in与walk/ex\_walk6. out

# 【数据范围】

保证对于所有的测试点, $1 \le n \le 3 \times 10^5, 1 \le m \le 1.5 \times 10^6, 1 \le v_i \le 10^8$ 。 设 $S = \sum_i v_i, \, \text{则}1 \le S \le 10^{12}$ 。

 $1 \le u, v \le n$ ,所有n - 1条道路构成一棵树。

 $1 \le x_1, y_1, x_2, y_2 \le n$ ,请注意本题并不保证 $x_1 \ne y_1$ 以及 $x_2 \ne y_2$ 。

| 测试点编号 | $n \leq n$ , 旧社总本 | $m \leq$            | S ≤              | 特殊性质 |
|-------|-------------------|---------------------|------------------|------|
| 1     |                   | 5                   |                  |      |
| 2     | 10                |                     | 10               |      |
| 3     | 2                 | 20                  | 100              |      |
| 4     | Ę,                | 50                  | 100              |      |
| 5     | 10                | 00                  | 10 <sup>12</sup> | 无    |
| 6     | 50                | 00                  | 10               |      |
| 7     |                   | 1000                |                  |      |
| 8     | 30                | 000                 |                  |      |
| 9     | 50                | 000                 |                  |      |
| 10    | F >               | 104                 |                  | A    |
| 11    | $5 \times 10^4$   |                     |                  | 无    |
| 12    | 10 <sup>5</sup>   |                     |                  | В    |
| 13    |                   |                     |                  | 无    |
| 14    | $3 \times 10^5$   |                     | A                | A    |
| 15    |                   |                     | 1012             | В    |
| 16    |                   |                     |                  | С    |
| 17    |                   |                     |                  | 无    |
| 18    |                   | $7 \times 10^{5}$   |                  | С    |
| 19    |                   | / X 10°             |                  | 无    |
| 20    |                   |                     |                  | A    |
| 21    | 2 × 105           |                     |                  | В    |
| 22    | $3 \times 10^5$   | 15 × 106            |                  | С    |
| 23    |                   | $1.5 \times 10^{6}$ | 10               |      |
| 24    |                   |                     | 10 <sup>12</sup> | 无    |
| 25    |                   |                     | 10-2             |      |

特殊性质 $A: \forall_{2 \leq i \leq n} i = \lfloor i/2 \rfloor$ 之间存在边。

特殊性质B:每个点的度数不超过2 特殊性质C: $\{x_1,y_1\} \cap \{x_2,y_2\} \neq \emptyset$ 

# 4、航行 (sail.cpp)

#### 【题目描述】

小D迷失在了茫茫的大海,这片海的形态十分特殊,海在南北方向无限延伸,宽度可视为无限,而东西方向的宽度为n,因此可以把这片海分成从西到东n个区域。如下图:



图5: n = 4时的一个例子

小D已经漂流太久了,他只想快点上岸,因此小D的船在南北方向的速度可以忽略不计了。小D拥有这片海的记录,通过查阅资料,他得知对于从西往东第i片海,每个时刻有 $p_i$ %的概率刮起东风,另外的时刻则是西风。

具体来说,小D第0个时刻初始速度为0,接下来每一个时刻,设小D所在位置为x,速度是v(以向右为正方向),首先如果这个时刻位置x吹东风,那么v减少1,否则v增加1,然后x变为x+v。如果在一个时刻结束后x<1或者x>n那么视为在这个时刻上岸了,上岸之后就会停止漂流。例如在图5中,如果小D第i个时刻在位置3速度为1,那么有 $p_3$ %吹东风,速度v变为0,而x就仍为3,有( $100-p_3$ )%概率吹西风,这时v变为2,x就变为5,那么小D就在第i个时刻上岸,结束了漂流。

现在小D想让你计算一下他上岸的期望时间,由于小D并不知道他在海的哪个位置,于是他想让你对于每个位置都计算答案。由于时间可能很长,你只需要告诉小D答案 mod 998244353的值。可以证明答案如果存在,一定是一个有理数,设之为 $\frac{P}{Q}$ ,那么你的输出ans应该满足 $0 \le ans < 998244353, ans <math>\times Q \equiv P \ mod$  998244353。特别的如果小D期望下需要无限的时间才能上岸,输出-1

### 【输入格式】

第一行一个整数n。

第二行n个整数,表示 $p_1, p_2, ..., p_n$ 表示每个位置吹东风的概率。

#### 【输出格式】

一行n个整数,表示每个位置的答案。

# 【样例1输入】

2

50 50

# 【样例1输出】

2 2

## 【样例1解释】

不难发现两个位置在静止状态下上岸的期望时间应该是相同的,设为x。

如果在第一个位置吹东风,那么直接上岸,如果吹西风则会到达第二个位置。此时如果再吹西风则上岸,吹东风就会留在2,且速度减到0,还需要x时间上岸。因此有:

$$x = \frac{1}{2} + 2 \times \frac{1}{4} + \frac{1}{4}(x+2)$$
,  $A = 2$ 

# 【样例2输入】

5

100 100 0 100 0

# 【样例2输出】

 $1 \ 2 \ -1 \ -1 \ 1$ 

# 【样例2解释】

不难发现起始位置确定的情况下,小D的行动轨迹已经确定:

1起始: 1-上岸

2起始: 2-1-上岸

3起始,4起始:在3,4之间循环

5起始: 5-上岸

### 【样例3】

见选手目录下sail/ex\_sail3.in与sail/ex\_sail3.out 该样例满足数据范围中特殊性质A

### 【样例4】

见选手目录下sail/ex\_sail4.in与sail/ex\_sail4.out 该样例满足数据范围中特殊性质B

# 【样例5】

见选手目录下sail/ex sail5. in与sail/ex sail5. out

# 【数据范围】

保证对于所有测试点, $1 \le n \le 500, 0 \le p_i \le 100$ 

| 测试点编号 | $n \le$ | 特殊性质 |
|-------|---------|------|
| 1     | 1       |      |
| 2     | 2       | Δ.   |
| 3     | 3       | A    |
| 4     | 4       |      |
| 5     | 5       | В    |
| 6     | 10      |      |
| 7     | 10      |      |
| 8     | 15      | A    |
| 9     | 15      |      |
| 10    | 00      |      |
| 11    | 20      | 无    |
| 12    | 30      | A    |
| 13    |         | 无    |
| 14    | 40      | В    |
| 15    |         | A    |
| 16    |         | 无    |
| 17    | 80      | A    |
| 18    | 100     | 无    |
| 19    | 150     | В    |
| 20    | 200     | A    |
| 21    | 250     | 无    |
| 22    | 300     | В    |
| 23    | 350     | A    |
| 24    | 400     |      |
| 25    | 500     | 无    |

特殊性质 $A: p_i$ 在所有可行的值中等概率随机。

特殊性质 $B: p_i \in \{0,100\}$