14-2 Stabilizer Codes

3-qubit bit-flip code

- $|\psi_L\rangle = \alpha |0_L\rangle + |1_L\rangle = \alpha |000\rangle + \beta |111\rangle$
- [3, 1] stabilizer code C(S) defined by stabilizer $S = \langle Z_1 Z_2, Z_2 Z_3 \rangle$.
- $|\psi_L\rangle$ is stabilized by S.
- 3 qubits, 2 generators \Rightarrow 3-2=1 encoded qubit (dimension=2)
- Let β_i = measurement result of g_i (generator), changing $1 \to 0$, $-1 \to 1$ $\underline{\beta = \beta_1 \beta_2}$ is the <u>error syndrome</u>.

With no error, $\beta = 00$.

• Suppose bit-flip error X_1 occurred.

$$g_1X_1 = -X_1g_1, \quad g_2X_1 = X_1g_2$$

 $g_1(X_1|\psi_L\rangle) = -X_1g_1|\psi_L\rangle = -(X_1|\psi_L\rangle)$
 $g_2(X_1|\psi_L\rangle) = X_1g_2|\psi_L\rangle = (X_1|\psi_L\rangle)$
 $\Rightarrow \quad \beta = 10$
 $X_2 \text{ error: } g_1X_2 = -X_2g_1, g_2X_2 = -X_2g_2 \quad \Rightarrow \quad \beta = 11$
 $X_3 \text{ error: } g_1X_3 = X_3g_1, g_2X_3 = -X_3g_2 \quad \Rightarrow \quad \beta = 01$

HW14-1 Find the stabilizer *S* for the Shor code

$$|0_L\rangle = \frac{1}{2\sqrt{2}}(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle),$$

$$|1_L\rangle = \frac{1}{2\sqrt{2}}(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle).$$

[7,4,3] Hamming code

parity check matrix
$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

codeword $x \xrightarrow{\text{error}} x' = x + e$

error syndrome $\beta = Hx' = He$ (3-bit string)

$$S = \langle g_1, g_2, g_3 \rangle = \langle Z_4 Z_5 Z_6 Z_7, Z_2 Z_3 Z_6 Z_7, Z_1 Z_3 Z_5 Z_7 \rangle$$

Single bit-flip error X_i anticommutes with at least one of the generators.

 β is given by the measurements of g_1, g_2, g_3 .

CSS (Calderbank-Shor-Steane) code

$$S = \langle g_1, ..., g_6 \rangle = \langle Z_4 Z_5 Z_6 Z_7, Z_2 Z_3 Z_6 Z_7, Z_1 Z_3 Z_5 Z_7, X_4 X_5 X_6 X_7, X_2 X_3 X_6 X_7, X_1 X_3 X_5 X_7 \rangle$$

Note that $[g_i, g_j] = 0$ for any i, j.

Single bit-flip error is detected and located by g_1 , g_2 , g_3 .

Single phase-flip error is detected and located by g_4 , g_5 , g_6 .