21. La temperatura de ebullición del agua TB a distintas altitudes h se indica en la siguiente tabla. Determine una ecuación lineal en la forma TB = mh + b que se ajuste mejor a los datos. Utilice la ecuación para calcular la temperatura de ebullición a 5000 m. Haga un gráfico de los puntos y la ecuación.

h (pies)	-1.000	0	3.000	8.000	15.000	22.000	28.000
Temperatura (°F)	213.9	212	206.2	196.2	184,4	172,6	163.1

Los datos que tenemos son:

h [ft]	T [F]
-1000	213.9
0	212
3000	206.2
8000	196.2
15000	184.4
22000	172.6
28000	163.1

Con los datos proporcionados, nuestro objetivo es calcular la temperatura de ebullición del agua para diferentes altitudes, teniendo en cuenta que la presión atmosférica disminuye a medida que se incrementa la altura sobre el nivel del mar, lo que provoca una disminución en la temperatura de ebullición. Para este propósito, se procederá a realizar una interpolación basada en valores de referencia conocidos. Las altitudes a considerar son las siguientes:

- a)**5000 pies**: Se desea calcular la temperatura de ebullición a esta altura, que corresponde aproximadamente a 1524 metros sobre el nivel del mar. Esta es una altitud moderada, por lo que la temperatura de ebullición será menor que a nivel del mar, pero aún relativamente alta en comparación con altitudes mayores.
- b) **Altitud de la ciudad de La Paz (11,942 pies):** La Paz, Bolivia, es una de las capitales más altas del mundo, situada a 3640 metros sobre el nivel del mar. Debido a esta altitud considerablemente alta, la presión atmosférica es baja, lo que reduce significativamente la temperatura de ebullición del agua.
- c) **Altitud de la ciudad de El Alto (13,615 pies):** El Alto, también en Bolivia, está ubicado a una altitud de 4150 metros sobre el nivel del mar. Esta ciudad, aún más elevada que La Paz,

representa una de las mayores altitudes habitadas, lo que implica una menor presión atmosférica y, por tanto, una temperatura de ebullición aún más baja.

Para encontrar la temperatura de ebullición a estas altitudes, se utilizará una interpolación lineal basada en datos conocidos de altitudes y sus respectivas temperaturas de ebullición. La interpolación es un método matemático que permite estimar un valor desconocido dentro del rango de dos valores conocidos. En este caso, los valores de referencia serán las temperaturas de ebullición a diferentes altitudes previamente medidas o calculadas.

A continuación, se detallará el proceso de interpolación:

- 1. Se partirá de datos de referencia correspondientes a temperaturas de ebullición para altitudes específicas.
- 2. Con estos datos, se trazará una línea que relacione la altitud con la temperatura de ebullición.
- 3. Para las altitudes de 5000 pies, La Paz y El Alto, se calcularán las temperaturas de ebullición utilizando la fórmula de interpolación lineal.

Este enfoque permitirá obtener una estimación precisa de la temperatura de ebullición en cada caso, considerando los efectos de la altitud sobre la presión atmosférica y, por ende, sobre la temperatura a la que el agua hierve.

h(FT)	T(°F)			
-1000	213,9	Grado 1	Grado 2	Grado 3
0	212	-0,00193333	-8,33333E-09	2,30159E-12
3000	206,2	-0,002	2,61905E-08	
8000	196,2	-0,00168571		
15000	184,4			
22000	172,6			
28000	163,1			

Variable	prueba	LA PAZ	EL ALTO
x_m	1524	3640	4150
x_m	5000	11942	13615
y_c		87,71	84,5
y_real		189,88	184,1
	202,31	187,05	182,6
error		0,01490415	0,008147746
error%		1,490415	0,814774579

variable	valor		
a0	212		
a1	-0,001933333		
a2	-8,33E-09		
a3	2,30E-12		
VARIABLE	PRUEBA	LA PAZ	EL ALTO
x-x0	5000	11942	13615
x-x1	2000	8942	10615
x-x2	-3000	3942	5615
variable	prueba	LA PAZ	EL ALTO
el1	212	212	212
el2	-9,666666667	-23,08786667	-26,32233333
el3	-0,083333333	-0,088987803	-1,204360208
el4	0,069047619	-0,968848353	-1,867733281
solucion:	202,3190476	187,0534069	1.826.055.732

Finalmente, comparando los resultados con sus valores reales y obteniendo su error respectivo tenemos lo siguiente.

Variable	Valor real	Valor calculado	Error
Prueba	X	202.32	0.069
La Paz	189.88	187.05	0.015
El Alto	184.1	182.6	0.008

Utilizando los mismos valores, pero ahora mediante una interpolación de Lagrange tenemos los siguientes datos.

Variable	Valor real	Valor calculado	Error
Prueba	X	202.18	X
La Paz	189.88	188.99	0.004%
El Alto	184.1	186.34	0.012%

Conclusión:

Ambos métodos empleados para la interpolación de datos, tanto el de **Lagrange** como el de **Newton,** resultan adecuados y efectivos para la estimación de valores en función de un conjunto de datos discretos. No obstante, en este caso particular, el método de Lagrange ha demostrado ser más preciso en comparación con el de Newton, dado que los errores obtenidos utilizando Lagrange fueron ligeramente menores.

Es importante destacar que en ambos métodos se empleó únicamente un rango limitado de valores, lo cual fue suficiente para los fines prácticos del análisis. Sin embargo, es razonable suponer que, al utilizar el conjunto completo de datos disponibles, el método de Newton podría ofrecer un rendimiento superior, dado su comportamiento y eficiencia con mayores cantidades de datos.

En resumen, aunque para este caso específico el método de Lagrange resultó ser más adecuado debido a los errores observados, no se descarta que el método de Newton pueda superar en precisión si se utilizan todos los puntos de datos. Esto refuerza la idea de que la elección del método de interpolación depende tanto de las características del conjunto de datos como de la precisión requerida.