

Data driven Process Optimization in the Beverage Industry based on Machine Learning

Consortium:

Supported by

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Project Overview and Insights

ARIC Brown Bag Session, 22.02.2022

Institut für Produktionssysteme (IPS)

- Gegründet 2012
- Forschung im Bereich Industrial Engineering und Gestaltung von Produktionssystemen seit den 1980er Jahren durch die Vorgängerlehrstühle LFV und APS
- Aktuell ca. 40 wissenschaftliche und techn. Mitarbeiter
- Enge Kooperation mit dem RIF Institut für Forschung und Transfer sowie der University of Technology Sydney ♣uts

RIF Institut für Forschung und Transfer e.V.

- Gegründet 1990 als An-Institut der TU Dortmund
- Gründungsmitglied der Johannes Rau Forschungsgesellschaft und ZUSE Gemeinschaft
- Ca. 130 wissenschaftliche und technische Mitarbeiter
- Enge Kooperation der Abteilung Produktionssysteme mit dem IPS

Prof. Dr.-Ing. Dr.-Ing.

Jochen Deuse Ralph Richter

Project scope of DaPro

Limits of Lean and descriptive statistics demand for new approaches for data-driven improvement

- Increasing social and economic factors lead to the need for using available resources as efficiently as possible
- Problem: Biochemical processes with complex combination of different influencing variables
- Classical improvement tools (Lean/Six Sigma) limit simultaneous analysis to a maximum of 2 to 3 factors

Problem

- Many breweries collect huge data on processing and results in separate systems, but don't use their potential
- Machine Learning (ML) help analyzing large amounts of data with multivariate influencing variables, but is still in its earliest stages in the beverage industry
 - DIY tools and guidelines for breweries to use of ML for data-driven process optimization

Project scope of DaPro

What kind of use cases are of interest?

[RapidMiner]

Project scope of DaPro

Interview Study on ML Use Cases in Beverage Industry

Descriptive: What happend?

- Inbound quality control
- Laboratory reports, quality inspection
- Energy reporting and controlling
- Filling reports
- Logistics reports
- Order reports: recipe and equipment parameters
- Numerous other reports
- Analysis of the consumption of raw materials, energy and water
- Comparability between tanks

• ...

Diagnostic: Why did it happen?

- Laboratory: Root cause analyses of taste variations
- Root cause analyses of specification limits violations
- Analysis of the duration of the milling process and correlation with malt quantity
- Analysis of defects causes
- Fast and direct identification of fault causes
- Customer satisfaction
- Causes of gushing
- ...

Predictive: What will happen?

- Sales forecasting, e.g. on the basis of weather data
- Predictive maintenance
- Line balancing in filling: faster than simulation for complex problems
- Empties return forecasting
- Standing and throughput times for trucks
- Proactive supply chain control and buffer management
- Avoiding peak loads
- Predicting lautering time
- Predicting malt yield
- Predicting filter throughut

Prescriptive: How do I react?

- Fuzzy control of filtration processes
- Adaptive control of fermentation processes
- Automated and throughput optimised control of the filtration process
- Use of predicted parameters for proactive process control (e.g. automatic control in the lauter tun)
-

[RIF/DaPro 2020]

Supported by:

for Economic Affairs

and Energy

on the basis of a decision by the German Bundestag

Overview of Project Outcomes

Fields of Actions

Overview of Project Outcomes

Tools and Methods for applying Machine Learning in Beverage Industry

Competence Development and Implementation Strategy

Overview of Project Outcomes

Use Cases

Energie- und Medienversorgung / Kältetechnik

Overview of Project Outcomes

Use Cases

Energie- und Medienversorgung / Kältetechnik

Overview

- More efficient and sustainable usage of malt in the brewery
- Target KPI (label): Malt Yield [%]
- Result: Prediction accuracy/RMSE: 0.88 ± 0.7 % error
- Benefits:
 - Prediction suitable for outlier detection.
 - Result available before production starts
- Challenges:
 - Silo Mapping (Resource deliveries to brew batches)

- Data timeframe 06.10.2019 02.02.2021
- Process data: Production Line 3 (SCADA)
- Beer style: Pilsner Lager
 - Malt batches:
 Quantities and Malt Quality parameters (LIMS)
- Silo levels

Overview

Utilities/power supply

Results: Overview of real vs. predicted malt yield

Time-resolved yield predictions compared to deviation of measurement data

Deployment

Situation in filling lines

- Limited space, almost no stocks
- Time critical part of production the filling department
- The filling machine is the bottleneck
- V-Arrangement
- We are trying to get away from a planned to a predictive maintenance

Why is the filler stopping?

- Shards in machine, bottles get stuck / are falling down
- Synchronization problems, engine failures
- Looking at amperages of the involves engines
- Trying to find unusual patterns and assign them to specific problems

What do we need?

- Syskrons Edge Device "ReadyKit"
- Connection to up to 10 machines
- Reading the PLC raw data
- Transfers data to AWS Cloud Platform to develop and train algorithms
- Deployment of ML models on "ReadyKit"
- Processing data in time to predict failures, machine stops

Architecture

Cyber-Physical Brewing Lab

ML2KMU

- Kompetenzentwicklung für produzierende KMU
- Workshop im Labor
- Data Science zum anfassen

Platform 1

- Domänenwissen
- Reale Use Cases
- Unterstützung in Aufbau und Betrieb des Labors

Universitäre Lehre

- Lehrveranstaltung "Industrial Data Science"
- Data Science in Theorie und Praxis für Studierende

Platform 2

UTS Sydney

- Aufbau physischen und Digitalen Zwillings an UTS
- Aufbau eines internat. Forschungsnetzwerks

Takeaways

Key Learnings and Call for Action

- Be aware of your data quality as it determines limits and possibilities of data analysis!
- Start low and gain hands-on-experience on your data and IT systems!
- Build interdisciplinary teams und embed ML in your organizational structure!

- Within the DaPro project, ML helped to:
 - Use the resource malt more sustainable by predicting the yield and analysing multivariate influencing variables of malt mixtures and process parameters
 - Predict lautering times on the basis of malt analyses
 - Carry out multivariate, holistic analyses of the filtration process by using NIR sensor data
 - Identify causes of filler-revant stops and prevent downtimes in filling systems through anomaly detection
 - Optimise recipes based on ML and customer feedback in Cyber Physical Brewing Lab of RIF
 - Develop ML competencies in the brewerys in order to be able to carry out future projects independently
- > 50 other use cases were identified and not worked on yet!

Help us to validate the Reference Architecture!
 https://forms.office.com/r/UHdE9eC00U

