

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV RADIOELEKTRONIKY

DEPARTMENT OF RADIO ELECTRONICS

IOT MONITORING OVZDUŠÍ

IOT AIR MONITORING

SEMESTRÁLNÍ PRÁCE

SEMESTRAL THESIS

AUTOR PRÁCE

AUTHOR

Martin Kousal

VEDOUCÍ PRÁCE

SUPERVISOR

doc. Ing. Tomáš Frýza, Ph.D.

BRNO 2021

Semestrální práce

bakalářský studijní program Elektronika a komunikační technologie

Ústav radioelektroniky

Student: Martin Kousal ID: 221063

Ročník: 3 Akademický rok: 2021/22

NÁZEV TÉMATU:

IoT monitoring ovzduší

POKYNY PRO VYPRACOVÁNÍ:

Cílem práce je sestavit systém, který bude schopen měřit kvalitativní parametry ovzduší, bezdrátově odesílat a zpracovávat na některém z dostupných serverů pro IoT, např. ThingSpeak, ubidots, Cayenne, aj. Vytvořené zařízení bude použito pro měření v reálných prostředích jako je domácnost, škola, venkovní prostředí a povedou ke sledování míry znečištění životního prostředí. Dílčím cílem je ucelený návrh hardwarové a softwarové platformy, která bude dostupná přes internet všem zájemcům o neprofesionální měření a umožní tak vytvoření rozsáhlé monitorovací sítě.

BPC/BKC-SEP:

Prostudujte dostupné koncepce využívající senzory plynů, prachových částic a doplňte je o měření jiných veličin jako je úroveň hluku, světelný smog, UV záření apod. Prostudujte možnosti řídícího prvku měřicí jednotky např. AVR, Raspberry Pi, STM32, ESP, aj. a zvolte ideální variantu. Prostudujte vhodné komunikační rozhraní pro přenos dat na server. Vyberte veškeré komponenty, navrhněte blokové schéma zařízení, sestavte obvodové zapojení, DPS a realizujte jej. Při návrhu dbejte na nízkou spotřebu finálního zařízení.

BPC/BKC-BAP:

Zařízení zkompletujte, oživte, naprogramujte obslužné firmwary a zprovozněte sběr dat. Na serveru provádějte výpočty základních statistik, jako týdenní přehled hodnot, min./max., střední hodnota, filtrování chybných dat, aktuální rozptylové podmínky, aj. Zveřejněte veškeré podklady pro výrobu zařízení i měřená data.

Pozn.:

Výhodou je základní znalost programování v prostředí Matlab a C.

DOPORUČENÁ LITERATURA:

[1] Air Pollution Detector. Instructables circuits [online]. Autodesk, 2018 [cit. 2021-5-24]. Dostupné z: https://www.instructables.com/Air-Pollution-Detector/

[2] Analyzing Weather Data from an Arduino-based weather station. MathWorks [online]. 2019 [cit. 2021-5-24]. Dostupné z: https://www.mathworks.com/matlabcentral/fileexchange/47049-analyzing-weather-data-from-anarduino-based-weather-station

Termín zadání: 20.9.2021 Termín odevzdání: 16.12.2021

Vedoucí práce: doc. Ing. Tomáš Frýza, Ph.D.

ABSTRAKT

Abstrakt práce v originálním jazyce

KLÍČOVÁ SLOVA

Klíčová slova v originálním jazyce

ABSTRACT

Překlad abstraktu (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

KEYWORDS

Překlad klíčových slov (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

Vysázeno pomocí balíčku thesis verze 4.07; http://latex.feec.vutbr.cz

Prohlášení autora o původnosti díla

Martin Kousal

VUT ID autora:	221063
Typ práce:	Semestrální práce
Akademický rok:	2021/22
Téma závěrečné práce:	IoT monitoring ovzduší
cí/ho závěrečné práce a s použitím o které jsou všechny citovány v práci a u Jako autor uvedené závěrečné práce d závěrečné práce jsem neporušil autor nedovoleným způsobem do cizích aut a jsem si plně vědom následků poruše kona č. 121/2000 Sb., o právu autorsl a o změně některých zákonů (autorsl	sem vypracoval samostatně pod vedením vedoudborné literatury a dalších informačních zdrojů, uvedeny v seznamu literatury na konci práce. Iále prohlašuji, že v souvislosti s vytvořením této ská práva třetích osob, zejména jsem nezasáhl corských práv osobnostních a/nebo majetkových ní ustanovení §11 a následujících autorského zákém, o právech souvisejících s právem autorským ký zákon), ve znění pozdějších předpisů, včetně lývajících z ustanovení části druhé, hlavy VI. díl 4
Brno	podpis autora*
	poupis autora

Jméno a příjmení autora:

^{*}Autor podepisuje pouze v tištěné verzi.

PODĚKOVÁNÍ
Rád bych poděkoval vedoucímu bakalářské/diplomové/disertační práce panu Ing. XXX YYY, Ph.D. za odborné vedení, konzultace, trpělivost a podnětné návrhy k práci.

Obsah

Ú	vod			21
1	Teo	retická	á část	23
	1.1	Měřen	ıí oxidu uhelnatého	. 23
		1.1.1	Optický senzor	. 23
		1.1.2	Elektrochemický senzor	. 23
		1.1.3	Polovodičový senzor	. 24
	1.2	Měřen	í koncentrace prachových částic	. 24
	1.3	Měřen	ú intenzity osvětlení	. 25
		1.3.1	Fotodiody	. 25
		1.3.2	Fototranzistory	. 26
	1.4	Měřen	ní UV záření	. 26
		1.4.1	UVA záření	. 26
		1.4.2	UVB záření	. 26
		1.4.3	UVC záření	. 26
	1.5	Měřen	ıí teploty	. 27
		1.5.1	Kovové senzory	. 27
		1.5.2	Termočlánky	. 27
		1.5.3	Polovodičové senzory	. 27
	1.6	Měřen	uí atmosférického tlaku	. 28
		1.6.1	Piezoelektrické senzory	. 28
		1.6.2	MEMS senzory	
	1.7	Měřen	ú vzdušné vlhkosti	
	1.8	IoT sí	tě	. 29
		1.8.1	LoRa	. 30
		1.8.2	LoRaWAN	. 30
		1.8.3	Sigfox	
		1.8.4	NB-IoT	
2	Náv	rh zař	fízení	33
	2.1	Výběr	senzorů	. 33
		2.1.1	Senzor koncentrace prachových částic	. 33
3	Výs	ledky	studentské práce	35
	3.1	Progra	amové řešení	. 35
	3.2	Výsled	lky měření	. 35
		3.2.1	Etiam quis quam	. 35

Zá	věr	39
Li	teratura	41
\mathbf{Se}	znam symbolů a zkratek	43
\mathbf{Se}	znam příloh	45
A	Některé příkazy balíčku thesis A.1 Příkazy pro sazbu veličin a jednotek	
В	A.2 Příkazy pro sazbu symbolů	49
\mathbf{C}	Příklad sazby zdrojových kódů C.1 Balíček listings	51 51
D	Obsah elektronické přílohy	55

Seznam obrázků

1.1	Blokové schéma senzoru prachových částic PM1003. [1]	25
1.2	MEMS kapacitní senzor tlaku. [2]	29
1.3	Ukázka průběhu rozprostřeného spektra v čase	30
1.4	Typické zapojení LoRaWAN sítě. [3]	31
B.1	Alenčino zrcadlo	49

Seznam tabulek

2.1	Porovnání vybraných parametrů senzorů koncentrace prachových částic	33
A.1	Přehled příkazů	47

Seznam výpisů

C.1	Ukázka sazby zkratek	51
C.2	Příklad Schur-Cohnova testu stability v prostředí Matlab	52
C.3	Příklad implementace první kanonické formy v jazyce C	53

Úvod

V dnešní době jsou sítě IoT téměř na každém kroku. Proto se snaží i velcí výrobci domácí elektroniky implementovat tuto konektivitu do svých zařízení. Většinou se jedná o uzavřený ekosystém senzorů, které spolu komunikují pomocí sítě využívající bezlicenční pásma a přenáší data na server, kde se dále zpracovávají a vyhodnocují. Lze je tedy dnes najít i v běžné domácnosti, kde se mohou zapojit do chytré domácnosti, či mnohem častěji v průmyslu při automatizaci výrobních procesů.

V komerčním prostředí nejsou zatím dostupná žádná zařízení, která by umožňovala monitorovat kvalitu ovzduší v domácích podmínkách. Lze nalézt mnoho profesionálních zařízení, které jsou určeny na měření jedné konkrétní veličiny (např. koncentrace prachových částic), avšak takové zařízení stojí tisíce korun. Cílem této práce je tedy navrhnout, oživit a naprogramovat zařízení, které umožní monitorovat a vyhodnocovat základní veličiny o kvalitě ovzduší.

Základní myšlenkou IoT sítí a zařízení do nich připojených je velice nízká spotřeba, díky čemuž dokáží vydržet v provozu na baterie i několik let. Nízké spotřeby je dosaženo nejen vybranými senzory a řídícím mikroprocesorem, ale hlavně díky nízkým nárokům na počet přenesených dat a vysílací výkon. Celé zařízení tedy bude navrhováno s ohledem na výslednou spotřebu při zachování uspokojivé přesnosti měření a také ceně použitých komponent.

Výsledky měření budou přenášeny do databáze, odkud se mohou používat pro vykreslování do grafů či pro následné zpracování ve formě rychlých přehledů (např. průměrné denní hodnoty). Tyto výsledky budou předávány uživateli skrze webovou službu, takže si je bude moci zobrazit v podstatě na jakémkoli zařízení, které je připojeno k internetu.

1 Teoretická část

V teoretické části práce se zaměřím na teoretické principy, na kterých pracují senzory pro monitoring ovzduší. Převážná část z použitých senzorů využívá nepřímý způsob měření námi požadovaných veličin, kde se většinou změna dané veličiny projeví na senzoru změnou odporu a tím i napětí či proudu jím protékajícím.

1.1 Měření oxidu uhelnatého

Oxid uhelnatý je jedovatý plyn bez chuti a zápachu. Vzniká nejčastěji při nedokonalém hoření převážně pevných paliv ale i plynů, proto je třeba jeho hodnotu hlídat. Udává se, že zhruba od 100 ppm je u většiny lidí přítomen nějaký ze symptomů otravy tímto plynem (bolest hlavy, únava, nevolnost).

1.1.1 Optický senzor

Oxid uhelnatý lze měřit více způsoby. Nejpřesnější možností je optický senzor využívající infračervené světlo. Tento typ senzoru je založen na základě měření rozdílu intenzity infračerveného záření o dané vlnové délce. Přiváděný plyn je osvětlován infračerveným zářením, které je přítomnými molekulami oxidu pohlcováno a poté je přes reflexní vrstvu odraženo zpět do snímače, kde je umístěn pyrodetektor, který převádí intenzitu tohoto světla na elektrický signál. Se vzrůstající koncentrací klesá intenzita světla dopadajícího na povrch pyrodetektoru. Tento princip měření je nejpřesnější, podává stabilní výsledky a má dlouhou životnost. Bohužel je velice drahý a tak jej není možné použít v domácích zařízeních.

1.1.2 Elektrochemický senzor

Tento druh senzor pracuje na principu měření proudu vznikajícího reakcí sledovaného plynu s elektrolytem, který je obsažen uvnitř senzoru. Při konstrukci takovéhoto senzoru je třeba zvolit elektrody a elektrolyt tak, aby na jedné z elektrod docházelo k chemické reakci, která vyvolá změnu proudu. Tato změna je poté následně zesílena do měřitelné podoby a odpovídá koncentraci oxidu uhelnatého. Bohužel díky nutnosti chemické reakce několika přítomných látek není tento druh senzoru možné zkonstruovat pro dlouhou životnost. Spolu s tímto neduhem je zde také časová nestálost podávaných výsledků kvůli ubývání elektrolytu a opotřebení měřících elektrod. Životnost takového senzoru je tedy maximálně v řádu několika málo roků.

1.1.3 Polovodičový senzor

Poslední a zároveň nejlevnější možností měření koncentrace oxidu uhelnatého je použití polovodičových senzorů. Polovodičový přechod u těchto senzorů je vyroben tak, aby se při přítomnosti sledovaného plynu změnila jeho vodivost. Na základě této změny jsme poté schopni změřit napětí a proud na přechodu, čímž můžeme určit koncentraci CO. Nevýhodou těchto systémů je ovšem jejich relativní nepřesnost a hlavně nelineární průběh měřeného signálu. Jsou ovšem díky své ceně snadno použitelné a dostupné v komerčně prodávaných detektorech do domácností a pro laická měření. Pro exaktní měření je ovšem nutná jejich častější kalibrace vůči známé koncentraci měřeného plynu.

1.2 Měření koncentrace prachových částic

Prachové částice je možné rozdělit do několika kategorií podle jejich velikosti. Často se lze setkat s pojmem např. PM2.5, což je zkratka z anglického particulate matter (pevné částice) a číslo, které udává maximální velikost těchto částic v μm. Nejčastěji se měří částice do velikosti 10 μm, 2.5 μm a 1 μm. Částice o velikosti 10 μm nejsou pro lidský organismus příliš škodlivé, lidské tělo jich většinu dokáže zachytit již při vstupu do dýchacích cest. Problém nastává při vyšší koncentraci částic o velikosti 2.5 μm. Zde již tělo nemá přirozenou obranu a dostávají se tak přímo do plic. Částice menší než 0.5 μm jsou schopny proniknout až do krevního řečiště.

Nejčastěji se v praxi měří koncentrace částic o velikosti 10 μm a 2.5 μm. Všechna zařízení pro měření těchto částic fungují na principu pohlcování či odrážení světelného paprsku. Pro měření je tedy potřeba zdroj světla a detektor světelného paprsku. Jako zdroj se používají LED nebo stále častěji laser. Princip měření tedy spočívá v osvícení vzorku vzduchu daným paprskem světla, který se o prachové částice ve vzorku rozptýlí nebo pohltí. Množství dopadeného světla je tedy nepřímo úměrné koncentraci prachových částic v daném vzorku. V principu jsme schopni měřit tak malé částice, jak přesný zdroj světla (šířka paprsku) jsme schopni vyrobit a také jej potom detekovat.

Dříve používané LED mají nevýhodu v tom, že vyzařují široký paprsek světla, který nejsme schopni jednoduše soustředit do jednoho bodu. Lze využít optickou soustavu pro zaostření takového paprsku světla, ovšem v daném prašném prostředí by docházelo k častému opotřebení a zaprášení čoček, které by poté ztrácely své vlastnosti a měření by bylo nemožné. Z těchto důvodů je v dnešní době více používanější laser, jelikož jsme schopni vytvořit paprsek o dané vlnové délce, výkonové hustotě a velikosti.

Poslední součástí těchto detektorů je mechanismus, kterým se do senzoru dostává

Obr. 1.1: Blokové schéma senzoru prachových částic PM1003. [1]

čerstvý vzorek vzduchu. Nejjednodušší je využití malého ventilátoru, který bude do prostoru senzoru vhánět čerstvý vzduch z okolí. Nevýhodou takového řešení je hlučnost senzoru a také možnost zanášení senzoru nečistotami z okolí. Proto se objevují i senzory, které mají tento ventilátor nahrazeny topným elementem (nejčastěji výkonový rezistor), kterým protéká proud a ohřívá vzduch okolo. Ten pak díky rozdílné hustotě teplého a studeného vzduchu začne stoupat vzhůru a unáší s sebou prachové částice do měřeného prostoru. Zde je ovšem třeba dávat pozor na konstrukci takového senzoru a na výrobcem předepsané požadavky na montáž, jelikož jej nelze umístit téměř libovolně v prostoru, jako tomu může být u senzoru s ventilátorem.

1.3 Měření intenzity osvětlení

Intenzita osvětlení se měří na základě fotoefektu. To znamená, že při dopadu elektromagnetického záření na látku dojde k uvolnění elektronů z této látky a naopak k pohlcení fotonů. Nejčastěji se pro tento jev používají polovodiče.

1.3.1 Fotodiody

Prvním z používaných typů senzorů jsou fotodiody. U nich se využívá vnitřního fotoelektrického jevu, který je pro polovodiče typický. Dopadem fotonů na PN přechod fotodiody dochází ke zvyšování procházejícího proudu diodou. Tento proud jsme schopni následně měřit a vyhodnocovat. Fotodiody mají výhodu v jejich rychlé odezvě na skokovou změnu a citlivosti.

1.3.2 Fototranzistory

Dalším často používaným prvkem pro měření intenzity osvětlení jsou fototranzistory. Zde se využívá nejčastěji tranzistor NPN, který má volnou bázi. Při výrobě jsou konstruovány tak, aby dopadající fotony dopadly do oblasti kolektoru a způsobily tak zvýšení protékajícího proudu tranzistorem. Díky tomu, že se díky fotonům řídí proud do báze tranzistoru, tak je tranzistor na světlo více citlivější než fotodioda. Nevýhodou fototranzistoru je shora omezené spektrum detekovaného světla a jeho pomalá reakce.

1.4 Měření UV záření

Měření UV záření probíhá v principu úplně stejně, jako měření intenzity osvětlení. Jediným podstatným rozdílem je vlnová délka záření, na které jsou dané senzitivní součástky nejvíce citlivé.

1.4.1 UVA záření

UVA záření je nejčastěji se vyskytující záření, které má rozsah vlnových délek mezi 315 µm do 400 µm. Toto záření je zcela běžně přítomné všude kolem nás, jelikož dokáže projít zemskou atmosférou. Při běžném kontaktu s tímto zářením nám nehrozí žádné zdravotní problémy, ale nedoporučuje se trvalejší vystavení tomuto záření. Běžně se také využívá při procesech luminiscence či různých světelných efektech. Lidské oko jako takové jej není schopné vnímat, narozdíl od některých zvířat.

1.4.2 UVB záření

Dalším z UV záření, se kterým se můžeme setkat, je UVB záření s vlnovou délkou od 280 μm do 315 μm. Toto záření je pro živé organismy zhoubné, jelikož dokáže rozkládat bílkoviny. Při dopadu do lidského oka dokáže způsobit oslepnutí, neblahý efekt má též na rostliny, u kterých dokáže ovlivnit fotosyntézu a také způsobit jejich úhyn.

1.4.3 UVC záření

Posledním z těchto záření je UVC záření, které je se svou vlnovou délkou menší než 280 µm nejtvrdším z těchto záření. Při kontaktu s kyslíkem začíná vznikat ozon a je silně karcinogenní pro všechny živé organismy. Díky své krátké vlnové délce dokáže proniknout relativně hluboko do všech organických materiálu a je tak velice nebezpečné.

1.5 Měření teploty

Teplota je základní veličinou, která se dá ve spojitosti s ovzduším měřit. Pro tento účel se často používají materiály, které spolu s měnící se teplotou mění svůj odpor. Dvě nejčastější skupiny těchto materiálů jsou kovy a polovodiče. Kovy mají většinou kladný teplotní koeficient odporu, což znamená, že se vzrůstající teplotou roste i jejich odpor. Naopak druhou často používanou skupinou materiálů jsou polovodiče, které mají negativní teplotní koeficient, a tak jejich odpor s rostoucí teplotou klesá.

1.5.1 Kovové senzory

Pro potřeby obecného měření lze využít odporové senzory vyrobené z kovů. Vyznačují se poměrně vyrovnanou charakteristikou a také vysokým teplotním rozsahem. Tyto senzory se dále dělí na NTC a PTC, podle toho, jestli mají negativní teplotní koeficient, nebo pozitivní. Například platinové teplotní čidlo je možné použít pro velký rozsah teplot, od zhruba $-200\,^{\circ}$ C do zhruba $800\,^{\circ}$ C. Mezi jejich hlavní výhody patří již zmíněná linearita a odolnost při vysokých teplotách. Nevýhodami jsou nutnost přesného zpracování signálu díky menší citlivosti a také jejich tepelná kapacita, díky které nejsou schopny rychle reagovat na změnu teploty.

1.5.2 Termočlánky

Další z možností měření, založené na kovech, jsou termočlánky. Ty pracují na základě Seebeckova jevu, kde při spojení dvou různých kovů dochází při změně teploty k vygenerování malého napětí, které jsme schopni po zesílení dále měřit. Jejich velkou výhodou jsou malé rozměry a odolnost i při relativně vysokých teplotách (tisíce °). Jsou tedy vhodné do aplikací, kde je potřeba velký rozsah teplot a zároveň jsme limitováni maximálními rozměry.

1.5.3 Polovodičové senzory

Polovodiče obecně jsou závislé na teplotě, takže je lze použít pro měření teploty. Jejich charakteristika ovšem většinou není lineární a závisí na Shockleyho rovnicí (1.1).

$$I_A = I_S \cdot (e^{\frac{U_A}{n \cdot \frac{k \cdot T}{q}}} - 1) \tag{1.1}$$

Nejvíce lineární a zároveň časově stálou závislost na teplotě má varikap, pro orientační měření (např. sepnutí aktivního chlazení) lze použít i diodu či tranzistor, který se umístí na společný chladič s výkonovými prvky a následně lze díky změně proudu jimi procházejícím řídit následnou logiku.

Díky stále dokonalejším výrobním procesům pro integrované obvody lze integrovat teplotní senzory přímo na čip. Přímo na tomto čipu tak může být nejen teplotní senzor, ale i např. operační zesilovač či řídící čip pro digitální komunikační rozhraní.

1.6 Měření atmosférického tlaku

Pro měření atmosférického tlaku se nejčastěji používá měřidel založených na principu vytlačování kapaliny do předem známého prostoru se stupnicí vlivem působící síly. Takováto měřidla jsou v meteorologii stále hojně používána díky jejich jednoduchosti a velmi vysoké přesnosti. Ovšem takováto měřidla se hodí jen pro ruční odečítání, jelikož je nelze nijak zautomatizovat.

1.6.1 Piezoelektrické senzory

Jednou z možností, jak vyrobit elektronický senzor na měření tlaku, je využít piezoelektrického jevu. Tento jev se vyskytuje nejčastěji v krystalech křemíku, kde při působení síly (v tomto případě atmosférického tlaku) je díky mírné deformaci krystalu vygenerováno velice malé napětí, které úměrné aplikované síle. Toto napětí jsme schopni po adekvátním zesílení jednoduše změřit a pokud známe strukturu použitého krystalu, tak i zpětně přepočítat na původní působící tlak.

1.6.2 MEMS senzory

V dnešní době jsou velice rozšířené tzv. MEMS senzory. Jsou založeny na principu spojení mikro-mechanického principu s elektrickým principem. Nejčastěji je pro měření tlaku při tomto principu využíváno vlastností kondenzátorů či piezoelektrického efektu.

Při využití principu kondenzátoru je jedna z elektrod pevně spojená s pouzdrem, a následně je druhá elektroda upevněna nad tuto první, tím vznikne kondenzátor, jak je vidět na obrázku 1.2. Druhá elektroda je mechanicky vyrobena tak, aby měla přístup k okolnímu prostoru a mohl na ni tudíž působit okolní atmosférický tlak. Díky jeho působení se začne prohýbat a přibližovat druhé elektrodě, čímž se mění celková kapacita tohoto kondenzátoru a tu jsme schopni následně měřit a na jejím základě určit působící atmosférický tlak.

1.7 Měření vzdušné vlhkosti

Vzdušná vlhkost je přítomná všude okolo nás, a je definována jako množství nasycení vzduchu vodními parami. Sledovat tuto veličinu je důležité jednak pro člověka, ale

Obr. 1.2: MEMS kapacitní senzor tlaku. [2]

i kvůli elektronice a jiným strojům. Pokud si vezmeme teplotu 0° a malou vlhkost, bude to pro nás mnohem příjemnější, než stejná teplota a vlhkost téměř 100%. Pro elektroniku a stroje je poté vlhkost důležitá kvůli jejímu správnému fungování, případně můžou při vysoké vlhkosti začít vodní páry kondenzovat a způsobit zkrat či při dlouhodobém působení výrazně urychlit oxidaci materiálů.

Její měření se většinou realizuje pomocí součástek založených na principu kondenzátorů. Taková součástka má dvě pevné elektrody, na kterých jsme schopni měřit napětí a také dielektrikum, které je realizováno pomocí mateirálu, který je schopen absorbovat molekuly vody. Tímto způsobem jsme tedy schopni ovlivnit výslednou kapacitu daného kondenzátoru. Při nasycení dielektrika vodními parami se změní kapacita, což jsme schopni změřit a vyhodnocovat. Toto nasycení je poté úměrné vodním parám obsaženým v měřeném prostředí. Běžně se jako dielektrikum používají plasty či polymery s dielektrickou konstantou 2 až 15.

1.8 loT sítě

Tyto sítě jsou uzpůsobeny pro přenos relativně krátkých datových zpráv na velmi velké vzdálenosti a to vše při zachování nízké spotřeby. Dosah je většinou určen podle nosného kmitočtu, na kterém přenos funguje, podle dostupné šířky pásma pro náš přenos a také vhodně zvolenou modulací. Tyto sítě se většinou nazývají jedním sdruženým pojmem LPWAN (Low Power Wide Area Network). Do této kategorie se řadí technologie LoRa, Sigfox a NB-IoT. První dvě zmíněné pracují v bezlicenčním pásmu, kdežto poslední využívá licenční pásmo. Bezlicenční pásma jsou u nás regulovány ČTÚ¹ a jejich omezení zpravidla spočívá v maximálním vyzářeném výkonu a také klíčovacím poměru, ten určuje, jaké maximální procento daného času smíme použít pro vysílání. V následujících částech práce se budu věnovat jednotlivým sítím

¹Český telekomunikační úřad https://www.ctu.cz/

Obr. 1.3: Ukázka průběhu rozprostřeného spektra v čase.

podrobněji.

1.8.1 LoRa

LoRa (Long Range) je fyzická vrstva, kterou využívá síť LoRaWAN a jak již bylo zmíněno, je určena pro provoz v bezlicenčním ISM pásmu 868 MHz. Tato vrstva samotná je využitelná pro komunikaci mezi dvěma zařízeními bez existence jakékoli sítě. Mnohem častěji ale narazíme na zapojení všech komunikujících zařízení do jednotné sítě, která všechna zařízení sdružuje a umožňuje tak pokrytí mnohem většího území. LoRa využívá CSS modulaci (Chirp Spread Spectrum), která umožňuje zvýšení dosahu oproti například FSK modulaci. Využívá se rozptrostřeného pásma pro šíření signálu, což jej činí odolným proti rušení. Protože je využito těchto rozprostřených frekvencí, tak je signál i odolný vůči vícecestnému šíření. Na obrázku 1.3 je vidět příklad průběhu amplitudy rozloženého spektra v závislosti na čase.

1.8.2 LoRaWAN

LoRaWAN definuje princip komunikační sítě a také použitý protokol, pro svou komunikaci využívá již víše zmíněnou fyzickou vrstvu LoRa. Nejčastěji se využívá zapojení sítě do hvězdy, což umožňuje jednoduše škálovat dostupnost sítě. Pro běh sítě je třeba server, který bude zpracovávat všechny příchozí zprávy a následně na ně reagovat, dále jsou třeba jednotlivé tzv. gateway, což jsou zařízení, na které se připojují koncoví klienti (naše IoT zařízení). Ná obrázku 1.4 je vidět příklad zapojení takovéto sítě. Je patrné, že koncová zařízení nemají pevně přiřazenou gateway na

Obr. 1.4: Typické zapojení LoRaWAN sítě. [3]

kterou se mají připojit, ale vysílají signál, který následně může přijmout libovolný počet těchto bran. Server, který tyto přijaté zprávy zpracvovává, tak musí filtrovat případné duplicitně přijaté zprávy. Tím, že zařízení vysílá zprávu "do neznáma" a nemusí řešit přihlašování k přístupovému bodu, případně do sítě, tak se tím zkracuje doba potřebná k vysílání a vede to k další úspoře energie.

V dnešní době je čím dál tím víc nutné zajistit bezpečnost takto přenášených zpráv. U LoRaWAN je využit šifrovací algoritmus AES, kdy je po celou dobu přenosu zprávy od koncového zařízení až na aplikační server, který data zpracovává, jím zpráva zašifrována.

Pro připojení zařízení lze využít existující komerčně nabízené sítě od např. Českých Radiokomunikací² nebo open source sítě provozované komunitou, kde nejznámější je TTN (The Things Network)³. I v této komunitní síti však platí omezení, pokud chceme sít využívat zdarma. Jsme limitování na maximální vysílací čas 30 s pro uplink a maximálně 10 zpráv na downlink pro jednu node (zařízení) na den [4]. Hlavný výhodou však je možnost přiadt vlastní gateway a poskytovat tak připojení nejen pro sebe, ale i pro ostatní uživatele v okolí.

1.8.3 **Sigfox**

Sít Sigfox pochází z Francie a je docela podobná technologii LoRaWAN. Je opět určená pro malý přenos dat ze sledovaných zařízení skrze nelicencované frekvenční pásmo. Oproti LoRaWAN má ovšem nevýhody a to, že je třeba za přenos zpráv platit poskytovateli a provozovateli sítě. Sít totiž u nás spravuje jediný poskytovatel, ke kterému se musíme zaregistrovat a on nám poté poskytne připojení a přenos zpráv

²https://www.cra.cz/pripojeni-k-iot-siti-lorawan

³https://www.thethingsnetwork.org/

skrze jeho sít. Výhoda tohoto řešení může být v mnohem větším pokrytí daného území a odpadnutí nutnosti řešit vlastní gateway či server na zpracování přijatých dat.

Přenos u nás probíhá v pásmu 868 MHz se šířkou spektra 192 kHz, kde každý kanál má přiřazenou šířku 100 Hz. Vysílání zpráv probíhá na třech kanálech s drobným časovým odstupem, čímž se zvyšuje šance na zachycení takto vyslané zprávy. Pokrytí na našem území je zajištěno ve spojení s operátorem T-Mobile, čímž dosáhli umístění gateway na strategická místa. Dle jejich webových stránek uvádí pokrytí území ČR 94% [5].

1.8.4 NB-IoT

Síť NB-IoT je LPWAN síť, kde její standardy definuje partnerský projekt 3GPP[6]. I u tohoto typu sítě je opět snaha minimalizovat velikosti posílaných zpráv, mít co největší dosah a to vše za udržení minimálních energetických nároků. Díky tomu, že lze síť provozovat na již existující infrastruktuře LTE vysílačů, je zde možnost velmi rychlé implementace a její nasazení na velké oblasti, stačí totiž softwarová aktualizace vysílačů. U nás tuto síť provozuje mobilní operátor Vodafone právě v pásmu LTE. Síť NB-IoT využívá pouze 200 kHz pásmo a tak může existovat vedle již existujících sítích pro mobilní telefony. V důsledku použití licencovaného pásma nejsme omezeni na vysílací čas a také je možné vysílat mírně vyšším výkonem, než v bezlicenčním pásmu ISM. Je však nutné mít podporovaný modul od operátora a vlastnit jeho SIM kartu pro připojení do sítě. Bohužel momentálně není možné získat tyto SIM karty pro nekomerční využití, nabízí je totiž jen firemním zákazníkům.

Do budoucna mají tyto sítě velký potenciál právě díky jejich rychlému nasazení a využití stávajících sítí. Jsou energeticky méně náročné něž mobilní datové komunikace přes GSM či LTE avšak dosahují relativně velkých rychlostí až stovky kHz s $^{-1}$.

2 Návrh zařízení

Tato kapitola se bude zabývat návrhem hardwaru celého zařízení. Jedním z hlavních požadavků je nízká spotřeba, kterou bude třeba zohlednit při vybírání použitých senzorů, řídícího mikroprocesoru, komunikačního modulu a ostatních obvodových komponent.

2.1 Výběr senzorů

Celé zařízení bude schopno měřit koncentraci prachových částic, koncentraci oxidu uhelnatého, intenzitu osvětlení, intenzitu UV záření, teplotu, atmosférický tlak a relativní vlhkost. V následujících částech tedy bude popsán výběr z dostupných senzorů.

2.1.1 Senzor koncentrace prachových částic

Na trhu je dostupných hned několik senzorů na měření koncentrace prachových částic. Jak již bylo zmíněno v teoretickém úvodu, budu vybírat senzor, který tuto koncentraci určuje na zákkladě osvícení daného vzorku vzduchu a následně měření odraženého světla. Nyní vyvstává otázka, jestli zvolit senzor, který bude vzorek vzduchu vhánět do měřícího prostoru nuceně pomocí ventilátoru nebo jen za využití stoupání teplého vzduchu nahoru. V tabulce 2.1 jsou uvedeny senzory, které jsou relativně cenově přijatelné a daly by se využít.

Název	Rozlišení	Přesnost	Proud	Čas čtení
PMS5003	$1\mathrm{\mu gm^{-3}}$	$0 - 100$ μg m $^{-3}$: ± 10 μg	100 mA	$10\mathrm{s}$
1 M55005	ı μg m	$100 - 500 \mu \mathrm{g m^{-3}} : \pm 10 \%$	100 IIIA	10.5
PM1003	$1\mathrm{\mu gm^{-3}}$	$0 - 100 \mu \mathrm{g m^{-3}} : \pm 30 \mu \mathrm{g}$	$90\mathrm{mA}$	$30\mathrm{s}$
1 W11005	ı μg m	$100 - 500 \mu \mathrm{g m^{-3}} : \pm 30 \%$	90 IIIA	30.5
PM1006	neuvedeno	$0-100 \mu { m g}{ m m}^{-3}{:}\pm 20\mu { m g}$	30 m A	8 s
1 W11000	neuvedeno	$100 - 500 \mu \mathrm{g m^{-3}} : \pm 20 \%$	50 IIIA	
GP2Y1010AU0F	záleží na ADC	záleží na ADC	$20\mathrm{mA}$	1 s

Tab. 2.1: Porovnání vybraných parametrů senzorů koncentrace prachových částic

3 Výsledky studentské práce

Praktická část a výsledky studentské práce vhodně rozdělené do částí.

3.1 Programové řešení

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nulla pulvinar eleifend sem. Integer in sapien. Etiam sapien elit, consequat eget, tristique non, venenatis quis, ante. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit. Aliquam erat volutpat. Nullam faucibus mi quis velit [?].

3.2 Výsledky měření

Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. Fusce tellus. Morbi scelerisque luctus velit. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Quisque porta. Fusce suscipit libero eget elit. Nulla non lectus sed nisl molestie malesuada. Phasellus faucibus molestie nisl. Integer vulputate sem a nibh rutrum consequat. Proin mattis lacinia justo. Phasellus et lorem id felis nonummy placerat. Etiam ligula pede, sagittis quis, interdum ultricies, scelerisque eu. Cras elementum. Aenean placerat. Donec ipsum massa, ullamcorper in, auctor et, scelerisque sed, est. Aliquam ante. Integer imperdiet lectus quis justo. Vivamus ac leo pretium faucibus. Nullam faucibus mi quis velit.

3.2.1 Etiam quis quam

Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Aliquam erat volutpat. Lorem ipsum dolor sit amet, consectetuer adipiscing elit [?, ?]. Nunc auctor. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Maecenas lorem. Maecenas libero. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Nullam rhoncus aliquam metus.

Integer rutrum orci vestibulum

Integer rutrum, orci vestibulum ullamcorper ultricies, lacus quam ultricies odio, vitae placerat pede sem sit amet enim. Ut enim ad minim veniam, quis nostrud

exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. Nullam eget nisl. Nunc auctor. Etiam dui sem, fermentum vitae, sagittis id, malesuada in, quam. Fusce dui leo, imperdiet in, aliquam sit amet, feugiat eu, orci. Curabitur vitae diam non enim vestibulum interdum. Aliquam erat volutpat. Pellentesque sapien. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit.

Eger rutrum orci westibulum

Fusce dui leo, imperdiet in, aliquam sit amet, feugiat eu, orci. Maecenas aliquet accumsan leo. Aliquam ornare wisi eu metus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam erat volutpat. Donec iaculis gravida nulla. Sed elit dui, pellentesque a, faucibus vel, interdum nec, diam. Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae. Nulla non arcu lacinia neque faucibus fringilla. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit. Praesent vitae arcu tempor neque lacinia pretium [?, ?, ?].

Aliquam erat volutpat. Quisque porta. Integer imperdiet lectus quis justo. Nullam justo enim, consectetuer nec, ullamcorper ac, vestibulum in, elit. Nullam faucibus mi quis velit. Fusce tellus. Fusce consectetuer risus a nunc. Cras pede libero, dapibus nec, pretium sit amet, tempor quis. Morbi imperdiet, mauris ac auctor dictum, nisl ligula egestas nulla, et sollicitudin sem purus in lacus [?, ?, ?]. Mauris elementum mauris vitae tortor. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Quisque porta. Integer vulputate sem a nibh rutrum consequat. Nulla pulvinar eleifend sem. Praesent id justo in neque elementum ultrices [?].

Fusce suscipit libero eget elit. Integer vulputate sem a nibh rutrum consequat. Aliquam erat volutpat. Etiam neque. Nulla turpis magna, cursus sit amet, suscipit a, interdum id, felis. Nullam rhoncus aliquam metus. Etiam dui sem, fermentum vitae, sagittis id, malesuada in, quam. Nunc auctor. Nunc dapibus tortor vel mi dapibus sollicitudin. Praesent in mauris eu tortor porttitor accumsan. Nulla non arcu lacinia neque faucibus fringilla. Nullam lectus justo, vulputate eget mollis sed, tempor sed magna. Maecenas lorem. Aenean placerat. Donec vitae arcu. Maecenas lorem. Donec iaculis gravida nulla. Nulla non lectus sed nisl molestie malesuada.

Duis pulvinar. Nulla est. Duis condimentum augue id magna semper rutrum. Integer pellentesque quam vel velit. Aliquam ante. Nulla quis diam. Proin mattis lacinia justo. Aenean fermentum risus id tortor. Nunc auctor. Nullam justo enim, consectetuer nec, ullamcorper ac, vestibulum in, elit. In dapibus augue non sapien.

Etiam bibendum elit eget erat. In sem justo, commodo ut, suscipit at, pharetra vitae, orci. Maecenas libero.

Nulla non lectus sed nisl molestie malesuada. Donec vitae arcu. Aenean fermentum risus id tortor. Praesent in mauris eu tortor porttitor accumsan. Nulla pulvinar eleifend sem. Duis viverra diam non justo. Integer imperdiet lectus quis justo. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In rutrum. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Nulla non lectus sed nisl molestie malesuada. Aliquam erat volutpat. Mauris tincidunt sem sed arcu. Duis bibendum, lectus ut viverra rhoncus, dolor nunc faucibus libero, eget facilisis enim ipsum id lacus. Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. In enim a arcu imperdiet malesuada. Nulla non lectus sed nisl molestie malesuada. Proin mattis lacinia justo.

Aliquam in lorem sit amet leo accumsan lacinia. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Duis sapien nunc, commodo et, interdum suscipit, sollicitudin et, dolor. Suspendisse sagittis ultrices augue. Nullam lectus justo, vulputate eget mollis sed, tempor sed magna. In convallis. Praesent id justo in neque elementum ultrices. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.

Pellentesque pretium lectus id turpis. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Curabitur ligula sapien, pulvinar a vestibulum quis, facilisis vel sapien. Praesent dapibus. Sed elit dui, pellentesque a, faucibus vel, interdum nec, diam. Duis viverra diam non justo. Duis ante orci, molestie vitae vehicula venenatis, tincidunt ac pede. Phasellus rhoncus. Maecenas fermentum, sem in pharetra pellentesque, velit turpis volutpat ante, in pharetra metus odio a lectus. Proin pede metus, vulputate nec, fermentum fringilla, vehicula vitae, justo. Fusce aliquam vestibulum ipsum. Nullam at arcu a est sollicitudin euismod.

Závěr

Shrnutí studentské práce.

Literatura

- [1] Cubic. Infrared LEDModule*Particle* Sensor[online]. 2018 [cit. 18. listopadu 2021]. Dostupné na: <http:// 9b54c437a0e032d4eb32-010f1da83de0c62ea8c11f5612b46edb.r27.cf3. rackcdn.com/Cubic PM1003 DS.pdf>.
- [2] AVNET. MEMS pressure sensors [online]. 2021 [cit. 10. listopadu 2021]. Dostupné na: https://www.avnet.com/wps/portal/abacus/solutions/technologies/sensors/pressure-sensors/core-technologies/mems/.
- [3] LORA ALLIANCE. A technical overview of LoRa® and LoRaWANTM [online]. listopad 2020 [cit. 19. listopadu 2021]. Dostupné na: https://lora-alliance.org/wp-content/uploads/2020/11/what-is-lorawan.pdf.
- [4] THE THINGS INDUSTRIES. Duty Cycle [online]. 2021 [cit. 20. listopadu 2021]. Dostupné na: https://www.thethingsnetwork.org/docs/lorawan/duty-cycle/#fair-use-policy.
- [5] SIGFOX. Sigfox.cz Connecting things [online]. 2021 [cit. 20. listopadu 2021]. Dostupné na: https://sigfox.cz/cs.
- [6] 3GPP. 3GPP [online]. 2021 [cit. 20. listopadu 2021]. Dostupné na: https://www.3gpp.org/.

Seznam symbolů a zkratek

Šířka levého sloupce Seznamu symbolů a zkratek je určena šířkou

parametru prostředí acronym (viz řádek 1 výpisu zdrojáku na str. 51)

KolikMista pouze ukázka vyhrazeného místa

DSP číslicové zpracování signálů – Digital Signal Processing

 $f_{\rm vz}$ vzorkovací kmitočet

Seznam příloh

A	Některé příkazy balíčku thesis	47
	A.1 Příkazy pro sazbu veličin a jednotek	47
	A.2 Příkazy pro sazbu symbolů	47
В	Druhá příloha	49
\mathbf{C}	Příklad sazby zdrojových kódů	51
	C.1 Balíček listings	51
D	Obsah elektronické přílohy	55

A Některé příkazy balíčku thesis

A.1 Příkazy pro sazbu veličin a jednotek

Tab. A.1: Přehled příkazů pro matematické prostředí

Příkaz	Příklad	Zdroj příkladu	Význam
	$\beta_{\rm max}$	<pre>\$\beta_\textind{max}\$</pre>	textový index
	U_{in}	<pre>\$\const{U}_\textind{in}\$</pre>	konstantní veličina
	$u_{ m in}$	<pre>\$\var{u}_\textind{in}\$</pre>	proměnná veličina
	$u_{ m in}$	<pre>\$\complex{u}_\textind{in}\$</pre>	komplexní veličina
	y	<pre>\$\vect{y}\$</pre>	vektor
	Z	$\infty \$	matice
	kV	$\$ \unit{kV}\$ $\check{c}i$ \unit{kV}	jednotka

A.2 Příkazy pro sazbu symbolů

- \E, \eul sazba Eulerova čísla: e,
- \J, \jmag, \I, \imag sazba imaginární jednotky: j, i,
- \dif sazba diferenciálu: d,
- \sinc sazba funkce: sinc,
- \mikro sazba symbolu mikro stojatým písmem¹: μ,
- \uppi sazba symbolu π (stojaté řecké pí, na rozdíl od \pi, což sází π).

Všechny symboly jsou určeny pro matematický mód, vyjma \mikro, jenž je použitelný rovněž v textovém módu.

¹znak pochází z balíčku textcomp

B Druhá příloha

Obr. B.1: Zlepšené Wilsonovo proudové zrcadlo.

Pro sazbu vektorových obrázků přímo v ĽTĘXu je možné doporučit balíček TikZ. Příklady sazby je možné najít na TĘXample. Pro vyzkoušení je možné použít programy QTikz nebo TikzEdt.

C Příklad sazby zdrojových kódů

C.1 Balíček listings

Pro vysázení zdrojových souborů je možné použít balíček listings. Balíček zavádí nové prostředí lstlisting pro sazbu zdrojových kódů, jako například:

```
\section{Balíček lstlistings}
Pro vysázení zdrojových souborů je možné použít
  balíček \href{https://www.ctan.org/pkg/listings}%
  {\texttt{listings}}.
Balíček zavádí nové prostředí \texttt{lstlisting} pro
  sazbu zdrojových kódů.
```

Podporuje množství programovacích jazyků. Kód k vysázení může být načítán přímo ze zdrojových souborů. Umožňuje vkládat čísla řádků nebo vypisovat jen vybrané úseky kódu. Např.:

Zkratky jsou sázeny v prostředí acronym:

6 \begin{acronym}[KolikMista]

Sířka textu volitelného parametru KolikMista udává šířku prvního sloupce se zkratkami. Proto by měla být zadávána nejdelší zkratka nebo symbol. Příklad definice zkratky f_{vz} je na výpisu C.1.

Výpis C.1: Ukázka sazby zkratek

```
21 \acro{symfvz}  % název
22 [\ensuremath{f_\textind{vz}}]  % symbol
23 {vzorkovací kmitočet}  % popis
```

Ukončení seznamu je provedeno ukončením prostředí:

26 \end{acronym}

Poznámka k výpisům s použitím volby jazyka czech nebo slovak:

Pokud Váš zdrojový kód obsahuje znak spojovníku -, pak překlad může skončit chybou. Ta je způsobená tím, že znak - je v českém nebo slovenském nastavení balíčku babel tzv. aktivním znakem. Přepněte znak - na neaktivní příkazem \shorthandoff{-} těsně před výpisem a hned za ním jej vratte na aktivní příkazem \shorthandon{-}. Podobně jako to je ukázáno ve zdrojovém kódu šablony.

Výpis C.2: Příklad Schur-Cohnova testu stability v prostředí Matlab.

```
%% Priklad testovani stability filtru
1
2
  % koeficienty polynomu ve jmenovateli
4 \mid a = [5, 11.2, 5.44, -0.384, -2.3552, -1.2288];
  disp( 'Polynom:'); disp(poly2str( a, 'z'))
7 | disp('Kontrola⊔pomoci⊔korenu⊔polynomu:');
  zx = roots( a);
  if ( all( abs( zx) < 1))
      disp('System i je i stabilni')
10
  else
11
      disp('Systemujeunestabilniunebounaumeziustability');
12
  end
13
14
15 disp('u'); disp('KontrolaupomociuSchur-Cohn:');
16 ma = zeros( length(a)-1,length(a));
17 \mid ma(1,:) = a/a(1);
  for(k = 1:length(a)-2)
18
      aa = ma(k, 1: end - k + 1);
19
      bb = fliplr( aa);
20
      ma(k+1,1:end-k+1) = (aa-aa(end)*bb)/(1-aa(end)^2);
21
  end
22
23
  if( all( abs( diag( ma.'))))
24
      disp('System _ je _ stabilni')
25
26
  else
      disp('System je nestabilni nebo na mezi stability');
27
  end
28
```

Výpis C.3: Příklad implementace první kanonické formy v jazyce C.

```
// první kanonická forma
                                                                    1
                                                                    2
short fxdf2t( short coef[][5], short sample)
                                                                    3
{
  static int v1[SECTIONS] = {0,0}, v2[SECTIONS] = {0,0};
                                                                    4
  int x, y, accu;
                                                                    5
                                                                    6
  short k;
                                                                    7
  x = sample;
                                                                    8
  \underline{for}(k = 0; k < SECTIONS; k++){
                                                                    9
    accu = v1[k] >> 1;
                                                                    10
    y = _sadd(accu, _smpy(coef[k][0], x));
                                                                    11
    y = _sshl(y, 1) >> 16;
                                                                    12
                                                                    13
    accu = v2[k] >> 1;
                                                                    14
    accu = _sadd( accu, _smpy( coef[k][1], x));
                                                                    15
    accu = _sadd( accu, _smpy( coef[k][2], y));
                                                                    16
    v1[k] = _sshl( accu, 1);
                                                                    17
                                                                    18
    accu = \_smpy(coef[k][3], x);
                                                                    19
    accu = _sadd( accu, _smpy( coef[k][4], y));
                                                                    20
    v2[k] = _sshl(accu, 1);
                                                                    21
                                                                    22
                                                                    23
    x = y;
                                                                    24
                                                                    25
  return( y);
                                                                    26
}
```

D Obsah elektronické přílohy

Elektronická příloha je často nedílnou součástí semestrální nebo závěrečné práce. Vkládá se do informačního systému VUT v Brně ve vhodném formátu (ZIP, PDF...).

Nezapomeňte uvést, co čtenář v této příloze najde. Je vhodné okomentovat obsah každého adresáře, specifikovat, který soubor obsahuje důležitá nastavení, který soubor je určen ke spuštění, uvést nastavení kompilátoru atd. Také je dobře napsat, v jaké verzi software byl kód testován (např. Matlab 2018b). Pokud bylo cílem práce vytvořit hardwarové zařízení, musí elektronická příloha obsahovat veškeré podklady pro výrobu (např. soubory s návrhem DPS v Eagle).

Pokud je souborů hodně a jsou organizovány ve více složkách, je možné pro výpis adresářové struktury použít balíček dirtree.

/kořenový adresář přiloženého archivu
logologa školy a fakulty
BUT_abbreviation_color_PANTONE_EN.pdf
BUT_color_PANTONE_EN.pdf
FEEC_abbreviation_color_PANTONE_EN.pdf
FEKT_zkratka_barevne_PANTONE_CZ.pdf
UTKO_color_PANTONE_CZ.pdf
UTKO_color_PANTONE_EN.pdf
VUT_barevne_PANTONE_CZ.pdf
VUT_symbol_barevne_PANTONE_CZ.pdf
VUT_zkratka_barevne_PANTONE_CZ.pdf
obrazkyostatní obrázky
soucastky.png
spoje.png
ZlepseneWilsonovoZrcadloNPN.png
ZlepseneWilsonovoZrcadloPNP.png
pdf pdf stránky generované informačním systémem
student-desky.pdf
student-titulka.pdf
student-zadani.pdf
text zdrojové textové soubory
literatura.tex
prilohy.tex
reseni.tex
uvod.tex
vysledky.tex
zaver.tex
zkratky.tex
sablona-obhaj.texhlavní soubor pro sazbu prezentace k obhajobě
sablona-prace.texhlavní soubor pro sazbu kvalifikační práce
thesis.stybalíček pro sazbu kvalifikačních prací