lija A um conjunto formedivel que exo austránio. Mostre que cuiste um conjunto composito formedivel CCA tal que:

f 1 = E. Rus posta: Por definição um conjunto é chamado finadevel, se ele é limitado e sua frontiera possei medida neda, então como ACRM é j-medirel logo DA possei medida nula. Então med. (DA) = O. Tomando a função carecterística para A: Ax: A-DR, onde: Ax: 1 , le x ∈ A — Vol(A) = PAx(x) dx

Vomando uma povilição P de A Sol que a soma dos blocos de Pare

viitor ciptam em A é monos do que E, então dados Bi..., Bx om

Rm com A CB1 U... UBX Jemos que: $\leq vol(B_i) \leq \epsilon$, and i=1,...,K, assim: $vol(A) = \int \int_X (x) dx \leq \epsilon vol(B_i) < \epsilon$ Mas dx = 1 M $x \in A$, untao $\int_A dx (x) dx = \int_A dx \le E \text{Vol}(B_i) < E$ Jetomorimos agoia um conjunto C CA, ande: A= CUOC.

Entas Tomamos a função característica de C.

Cx = C -> R, ande: Cx=11, de x e C

(O, MO E C

Temo com isso que se C CA, entas: Cx ≤ Ax. Entas: A= CUOC-s

ac= t-C $vol.(c) \leq vol(A) \leq \leq vol(Bi) < \epsilon.$ $\int C_X(x) dx \leq \int A_X(x) dx \leq \leq vol(Bi) < \epsilon.$ $\int_{A} \frac{c_{x}(x)dx}{c_{x}(x)dx} \leq \int_{A} \frac{c_{x}(x)dx}{c_{x}(x)dx} \leq \int_{A$

	$0 \leq \int C_{x}(x) dx \leq \leq vol(B_{i}) < \epsilon$
	A
Mas.	temos que it é j-medicel, logo med DA=0, então:
	Uel (int. A) = $\int A_x(x) dx$ e vel (int. A) = $\int A_x(x) dx = 0$ $\int A_x(x) dx + \int A_x(x) dx = \int I dx - \Delta \int A_x(x) dx = \int I dx < \leq vel(Bi) < \epsilon$ $= \int A_x(x) dx + \int A_x(x) dx = \int I dx - \Delta \int A_x(x) dx = \int I dx < \epsilon$
	=A A A A A
E Don!	semos que $\partial C = A - C - \Delta \int \partial C_{x}(x) dx \leq \int A_{x} (x) dx \leq E \ Ud(B_{i}) < E$
- Mas	es pontes rede tamém pertence a t, logo: Dex=1, se red,
NNA +	orque occa.
	es pontos $x \in \partial C$ também pertence $C + A$, lego: $\partial C_x = A$, $A \in A$, orque $\partial C \in A$. $\int \partial C_x (x) dx = \int 1 dx \leq \int A_x (x) dx \leq \leq Vol(B_i) < \epsilon$, então: $\int \partial C_x (x) dx = \int 1 dx \leq \int A_x (x) dx \leq \leq Vol(B_i) < \epsilon$, então:
	Jock (x) dx = Pldx ZE a portanto f-medivel, como dé f-ce f-medivel, entaro med QC = 0. 1 como DC á limitado, logo C á compacto.
	te for the most que CCA is
Assin	como DC é limitado, logo C é compacto.
	, , , , , , , , , , , , , , , , , , ,