

COMP20008 Elements of Data Processing

Semester 2 2018

Lecture 5: Recommender Systems

Plan today

- · Complete section on outlier detection
- Recommender systems and collaborative filtering
- Types of similarity for imputation of missing values
 - Item-Item
 - · User-User
 - · Matrix factorisation
- Question to consider during lecture: Are we doing cleaning or prediction?

Recommender systems: missing data

• Movie Recommender systems

Person		Batman	Jurassic World		The Revenan t	Lego Movie	Selma	
James	3	2	-	-	-	1	-	
John	-	-	1	2	-	-	-	
Jill	1	-	-	3	2	1	-	

Users and movies

Each user only rates a few movies (say 1%)

Netflix wants to predict the missing ratings for each user

Netflix

Amazon.com: Customers who bought this item also bought

The Revenant: A Novel of Revenge • Michael Punke 1,250 Paporback

Ready Player One: A Nove
Finest Cline
9,210
Paperhack

Allen Eskens
1,896
Paperback

The 5th Wave: The Fir Book of the 5th Wave Series > Rick Yancey 2,008 Paperback

- "75% of what people watch is from some sort of recommendation" (Netflix)
- "If I have 3 million customers on the web, I should have 3 million stores on the web." (Amazon CEO)

Other examples of recommender systems

How it works

- IMDb
- · Online dating
- Twitter: "Who to Follow", what to retweet
- Spotify, youtube: music recommendation
- LinkedIn/Facebook: who to add as a contact, jobs of interest, news of interest
- Tourist attraction apps
- University subjects \dots ? Subject discussion forums \dots ?

- •Each user has a profile
- •Users rate items
 - Explicitly: Give a score
 - Implicitly: web usage mining
 - Time spent in viewing the item
 - Navigation path
 - Etc...
- •System does the rest, How?

Collaborative filtering

- Collaborative Filtering: Make predictions about a user's missing data according to the behaviour of many other users
 - Look at users collective behavior
 - Look at the active user history
 - Combine!

Collaborative filtering: A framework

The task:

Q1: Find Unknown ratings? Q2: Which items should we recommend to this user?

Unknown function f: U x I → R

THE UNIVERSITY OF MELBOURNE

Collaborative filtering approaches

- · User based methods
 - Identify like-minded users
- · Item based methods
 - Identify similar items
- · Model (matrix) based methods
 - Solve an optimization problem and identify latent factors

THE UNIVERSITY OF
MELBOURNE

Ratings of items by users: Fill in cell ????

		Item1	Item2	I tems Item3	Item4	Item5	Item6
	User1	17	-	20	18	17	18.5
	User2	8	-	????	17	14	17.5
	User3	-	-	17	18	18.5	17.5
	User4	-	-	-	18	17.5	18
	User5	17	-	18	19	15.5	-
ร	User6	-	-	17.5	-	16	-
Users	User7	15	17.5	-	17	-	17
\supset	User8	18	-	-	-	17	16.5
	User9	18	17	-	-	18.5	17
	User10	19	17	-	-	-	16.5
	User11	17	18.5	19	19	-	-
	User12	14	19	17	-	-	15.5
	User13	-	16	-	-	17	-
	User14	20	18.5	-	18	-	18

How to measure similarity? Method 1

$$SIM(U1, U2) =$$

$$((17-8)^2 + (18.1 - 14.1)^2 + (20 - 14.1)^2 + (18 - 17)^2 + (17 - 14)^2 + (18.5 - 17.5)^2$$

- Compute mean value for User1's missing values (18.1)
- Compute mean value for User2's missing values (14.1)
- Compute squared Euclidean distance between resulting vectors

THE UNIVERSITY OF MELBOURNE

How to measure similarity? Method 2

User1 17 - 20 18 17 18.5 User2 8 - 17 14 17.5

$$Sim(User1, User2) = \frac{6}{6-2}((17-8)^2 + (18-17)^2 + (17-14)^2 + (18.5-17.5)^2$$

- •Compute squared Euclidean distance between vectors, summing only pairs without missing values
- •2 out of the 6 pairs have at least one missing value
- •Scale the result, according to percentage of pairs with a missing value

Practice example

User1 12 2.5 20 - 17 - 3.5 User2 13 - 17 14 17.5 4.5

Using Method 2, SIM(User1,User2)=?

SIM(User1,User2) =
$$\frac{7}{3}$$
(|12 - 13|² + |17 - 14|² + |3.5 - 4.5|²)
= $\frac{7}{3}$ (1 + 9 + 1) = 25.66

User-user similarity: Other measures

THE UNIVERSITY OF MELBOURNE

Selecting neighbors and making prediction

- Instead of Euclidean distance can also use other measures to assess similarity, e.g.
 - Correlation (we will look at later in subject)
 - Cosine similarity (angle between user profile vectors)

- At runtime
 - Need to select users to compare to
 - Could choose the top-k most similar users
 - Combining: Prediction of rating is the (weighted) average of the values from the top-k similar users
- · Can make more efficient by computing clusters of users offline
 - At runtime find nearest cluster and use the centre of the cluster as the rating prediction
 - Faster (more scalable) but a little less accurate

User-user similarity

User-user similarity

User based methods summary

- · Achieve good quality in practice
- The more processing we push offline, the better the method scale
- · However:
 - User preference is dynamic
 - · High update frequency of offline-calculated information
 - No recommendation for new users
 - · We don't know much about them yet

Item based methods: Intuition

- · Search for similarities among items
- All computations can be done offline
- · Item-Item similarity is more stable than user-user similarity
 - No need for frequent updates:

Item based methods

- Same as in user-user similarity but on item vectors
 - Find similar items to the one whose rating is missing
 - E.g. For item $\mathbf{i}_{\mathbf{i}}$ compute its similarity to each other item $\mathbf{i}_{\mathbf{i}}$

Item based methods

- Offline phase. For each item
 - Determine its k-most similar items
 - Can use same type of similarity as for user-based
- Online phase:
 - Predict rating r_{aj} for a given user-item pair as a weighted sum over k-most similar items that they rated

$$r_{aj} = \frac{\sum_{i \in \text{k-similar items}} sim(i,j) \times r_{ai}}{\sum_{\text{\ink-similar items}} sim(i,j)}$$

ltem j

THE UNIVERSITY OF MELBOURNE Practice example											
Users	Titanic	Batman	Inception	Superman	The Martian	Jurassic World					
Michelle	2.5		3	3.5	2.5	3					
Tom	3	3.5		5	3	3.5					
Lao	2.5	3		3.5		4					
Chan		3.5	3	4	2.5						
Mary		4	2	3	2	3					
Tim	3	4	?	5	3.5	3					
John		4.5		4	1						

Item *j*: Inception User *a*: Tim

Offline phase: we calculate k-most similar items for item j. Let's say k=3.

Similarity	Titanic	Batman	Superman	The Martian	Jurassic World
Inception- Method 1	1.06	3.28	3.95	2.04	2.02
Inception- Method 2	3.5	7.22	3.5	1.65	3.5

THE UNIVERSITY OF MELBOURNE Practice example cont.									
Users	Titanic	Batman	Incept	ion Superm	an The Martian	Jurassic World			
Michelle	2.5		3	3.5	2.5	3			
Tom	3	3.5		5	3	3.5			
Lao	2.5	3		3.5		4			
Chan		3.5	3	4	2.5				
Mary		4	2	3	2	3			
Tim	3	4	?	5	3.5	3			
John		4.5		4	1				
$\begin{array}{ll} \text{Item } j \text{: Inception} \\ \text{User } a \text{: Tim} \end{array} \qquad r_{aj} = \frac{\sum_{i \in \text{k-similar items}} sim(i,j) \times r_{ai}}{\sum_{i \in \text{k-similar items}} sim(i,j)} \\ \end{array}$									
	rity Supe	erman	The Martian	Jurassic World					
	Sim (i, j	·) ;	3.5	1.65	3.5				
Online phase: $3.5 \times 5 + 1.65 \times 3.5 + 3.5 \times 3$									

3.5 + 1.65 + 3.5

THE UNIVERSITY OF
MELBOURNE

Matrix based techniques

- Treat the User-Item Rating table R as a matrix
 - Use matrix factorisation of this Rating Table

	THE UNIVE		Matrix based techniques: Rating table R					
		Item1	Item2	Items Item3	Item4	Item5	Item6	
	User1	17	-	20	18	17	18.5	
	User2	8	-	-	17	14	17.5	
	User3	-	-	17	18	18.5	17.5	
	User4	-	-	-	18	17.5	18	
	User5	17	-	18	19	15.5	-	
ပ္ပ	User6	-	-	17.5	-	16	-	
Users	User7	15	17.5	-	17	-	17	
Š	User8	18	-	-	-	17	16.5	
	User9	18	17	-	-	18.5	17	
	User10	19	17	-	-	-	16.5	
	User11	17	18.5	19	19	-	-	
	User12	14	19	17	-	-	15.5	
	User13	-	16	-	-	17	-	
	User14	20	18.5	-	18	-	18	

 We are familiar with factorisation of numbers 15=3*5 99=3*33 1000=10*100

We can also do approximate factorisation $17 \approx 6*2.8$ (RHS= 16.8, an error of 0.2) $167 \approx 17*9.8$ (RHD=166.6, an error of 0.4)

Given a matrix R, we can find matrices U and V such that when U and V are multiplied together

$$R\approx UV$$

- •R is $m \times n$, U is $m \times k$ and V is $k \times n$
 - · k is the "number of latent factors"

For example, suppose
$$R = \begin{bmatrix} 5 & 2 & 3 & 6 \\ 4 & 4 & 6 & 11 \\ 3 & 19 & 2 & 7 \\ 3 & 8.5 & 4 & 2 \end{bmatrix}$$

Example: m=4, n=4, k=2

We can compute the error (squared distance between R and UV). The smaller it is, the better the fit of the factorisation.

$$(5 - 3.22769)^2 + (2 - 2.05196)^2 + (3 - 3.61758)^2 + \dots$$

 $(4 - 1.83534)^2 + (2 - 3.72973)^2$

How to factorise

- Details of how to compute the matrix factorisation are beyond the scope of our study.
- Intuitively, factorisation algorithms search over lots of choices for U and V, with the aim of making the error as low as possible
- If there are missing values in R, ignore these when computing the error.

Factorisation and missing values

5 - - 3	- 4 19 8.5	- 6 2 -	6 11 7	\approx	-0.0474	1.50482	$\begin{bmatrix} 1.07179 \\ 2.01538 \end{bmatrix}$	4.42771 1.18272	-0.13516 1.67926	0.60378 3.08647	
				=	7.13025 7.19512	8.65430 4.00394 18.97488 8.48338	$5.98995 \\ 2.00210$	$10.96899 \\ 6.98942$			

 $Error = (5 - 4.95572)^2 + (6 - 6.02008)^2 + (4 - 4.00394)^2 + (6 - 5.98995)^2 + \dots$

The product of the two factors U and V, has no missing values. We can use this to predict our missed entries. E.g. R_{12} =8.65430

Using k=2 for factorisation

				Items			
		Item1	Item2	Item3	Item4	Item5	Item6
	User1	17	-	20	18	17	18.5
	User2	8	-	13.48	17	14	17.5
	User3	-	-	17	18	18.5	17.5
	User4	-	-	-	18	17.5	18
	User5	17	-	18	19	15.5	-
S	User6	-	-	17.5	-	16	-
Users	User7	15	17.5	-	17	-	17
\supset	User8	18	-	-	-	17	16.5
	User9	18	17	-	-	18.5	17
	User10	19	17	-	-	-	16.5
	User11	17	18.5	19	19	-	-
	User12	14	19	17	-	-	15.5
	User13	-	16	-	-	17	-
	User14	20	18.5	-	18	-	18

- Real answer for (User 2, Item 3) is 13.5
 - Matrix technique predicts 13.48. Low error for this cell.
- Real answer for (User 13, Item 1) is 17.
 - Matrix technique predicts 15.3. Error is a little higher for this cell.
- In general, the prediction error varies across the cells, but taking all missing cells as a whole, the method aims to make predictions with low average error

Commerical Recommender Systems

- Commercial recommender systems (Netflix, Amazon) use variations of matrix factorisation.
- In 2009, Netflix offered a prize of \$USD 1,000,000 in a competition to see which algorithms were most effective for predicting user-movie ratings.
 - Anonymised training data released to public: 100 million ratings by 480k users of 17.8k movies
 - Won by "BellKor's Pragmatic Chaos" team
- A follow up competition was cancelled due to privacy concerns
 ... [We will elaborate when we get to topic on privacy]

Other issues

- THE UNIVERSITY OF MELBOURNE
- References

- Many challenging issues in deployment of recommendations
 - Interpretability of recommendations?
 - How to be fair to rare items?
 - How to avoid only recommending popular items?
 - How to handle new users?

- See
 - Matrix Factorization Techniques for Recommender Systems.
 Koren, Bell and Volinsky. IEEE Xplore, Vol 42, 2009.
 Available on the LMS in Week 3 section.
- Some slides based on "Data Mining Concepts and Techniques", Han et al, 2nd edition 2006.