# CHEM2100J Chapter 05&06 RC

Zeng Haoxuan

UM-SJTU Joint Institute zenghaoxuan@sjtu.edu.cn

October 17, 2023

## Table of Contents

- Gas
- 2 Intermolecular Interactions
- 3 Liquid
- Solid

- Gas
- 2 Intermolecular Interactions
- 3 Liquid
- 4 Solid

## Units of Pressure

- SI Unit
  - ightharpoonup pascal(Pa): 1 Pa = 1 kg·m<sup>-1</sup>·s<sup>-2</sup>
- Alternative Units
  - $ightharpoonup 1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa}$
  - $ightharpoonup 1 \, \text{bar} = 10^5 \, \text{Pa}$
  - ▶ 1 mmHg  $\approx$  1 torr  $=\frac{1}{760}$  atm

## Ideal Gas Law

- Ideal Gas Law
  - ▶ pV=nRT
  - ► R=8.314 J·K<sup>-1</sup>·mol<sup>-1</sup>
- Molar Volume and Gas Density
  - $V_m = \frac{V}{R} = \frac{RT}{P}$
- Remark
  - ▶ Ideal gas no molecule volume, no intermolecular forces
  - ▶ Ideal gas law is a limiting law reliable at low pressures and high temperatures



## Standard Conditions

- Standard Ambient Temperature and Pressure(SATP)
  - ▶ 25 °C (298.15 K), 1 bar,  $V_m$ =24.79 L·mol<sup>-1</sup>
- Standard Temperature and Pressure(STP)
  - ▶ 0 °C (273.15 K), 1 atm,  $V_m$ =22.41 L·mol<sup>-1</sup>

## Mixtures of Gases

- Dalton's Law of Partial Pressures
  - ▶ mole fraction  $x_i = \frac{n_i}{n_1 + n_2 + ... + n_N}$
  - ightharpoonup partial pressure  $p_i = x_i p_{total}$
- Remark
  - ► The partial pressure of an ideal gas is the pressure that it would exert if alone in the container
  - ► The total pressure of a mixture of gases is the sum of the partial pressures

## Kinetic Model of Gases

#### Assumptions

- ▶ A gas is in continuous random motion
- Gas molecules are infinitesimally small
- ▶ Molecules move in straight line until collision
- ▶ Molecules do not influence one another except during collisions
- ► The collisions are elastic
- Root Mean Square Speed
  - $ightharpoonup v_{rms} = \sqrt{\frac{3RT}{M}}$
  - $\langle E_k \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{1}{2} m v_{rms}^2$  average kinetic energy of molecules is proportional to  $v_{rms}^2$



## Diffusion & Effusion

- Diffusion
  - ▶ The gradual dispersal of one substance through another substance
- Effusion
  - ► The escape of a gas through a small hole into a vacuum region of lower pressure
- Graham's Law of Effusion
  - ▶ Rate of effusion  $\propto \sqrt{\frac{T}{M}}$



# Maxwell Distribution of Speeds

• 
$$\Delta N = Nf(v)\Delta v$$
 with  $f(v) = 4\pi (\frac{M}{2\pi RT})^{\frac{3}{2}}v^2e^{-\frac{Mv^2}{2RT}}$ 

- Most probable speed:  $v_p = \sqrt{\frac{2RT}{M}}$
- Root mean square speed  $v_{rms} = \sqrt{rac{3RT}{M}}$





## Real Gases

#### Compression factor

$$Z = \frac{V_m^{real}}{V_m^{ideal}}$$

- At high pressures, repulsions are dominant, Z > 1
- ullet At low pressures, attractions are dominant, Z < 1

#### van der Waals Equation

$$(P + \frac{an^2}{V^2})(V - nb) = nRT$$

- a: attractions between gas molecules; intermolecular force↑ ⇒ a↑
- b: volumes of gas molecules; molecular size  $\uparrow \Rightarrow b \uparrow$



Gas

2 Intermolecular Interactions

- 3 Liquid
- Solid

#### Intermolecular Interactions

- Origin of Intermolecular Forces
  - ► Coulomb interaction  $E_p = \frac{q_1 q_2}{4\pi\epsilon_0 r}$
- Classifications
  - Chemical bonds(ionic bonds, covalent bonds)
  - ► Hydrogen bonding(H-X···H,X=N,O,F)
  - Ion-dipole(hydration)
  - wan der Waals forces(dipole-dipole, dipole-induced-dipole, London)
- Strength Order
  - Chemical bonds > hydrogen bonding > ion-dipole > wan der Waals forces

#### Some Pattern

- London Interactions
  - ▶ Size $\uparrow \Rightarrow$  polarisability $\uparrow \Rightarrow$  London forces $\uparrow$
  - ightharpoonup Contact points $\uparrow \Rightarrow$  London forces $\uparrow$ (Rod-like > Spherical shaped)
- Intermolecular forces↑ ⇒ melting and boiling point↑
  - ▶ All types of intermolecular interactions needs to be considered for the total intermolecular force.

#### Exercise

Compare the melting and boiling point of the following molecules:  $H_2$ , Ne. CO, HF

#### Exercise

Experiment has shown that F-H-F hydrogen bond is much stronger than O-H-O hydrogen bond. But at 0  $^{\circ}$ C water is solid while HF is liquid. Explain the seemingly contradictory phenomenon.

TABLE 3F.1 The Interactions Between Ions and Molecules\*

 $-\alpha_1\alpha_2/r^6$ 

# Summary

| Type of interaction | $E_{ m p}$ dependence | Typical energy $E_{\rm p}/({\rm kJ\cdot mol}^{-1})$ | Interacting species        |
|---------------------|-----------------------|-----------------------------------------------------|----------------------------|
| ion-ion             | $- z ^{2}/r$          | 250                                                 | ions                       |
| ion-dipole          | $- z \mu/r^2$         | 15                                                  | ions and polar molecules   |
| dipole-dipole       | $-\mu_1\mu_2/r^3$     | 2                                                   | stationary polar molecules |

0.3

20

rotating polar molecules

molecules, at least one must be polar

all types of molecules and ions

molecules containing an N-H, O-H, or F-H bond

dipole-induced-dipole

London (dispersion)<sup>†</sup>

hydrogen bonding<sup>‡</sup>

- Gas
- 2 Intermolecular Interactions
- 3 Liquid
- 4 Solid



# Viscosity & Surface Tension

- Viscosity
  - ▶ The viscosity of a liquid is its resistance to flow
  - ▶ Molecular interaction  $\uparrow \Rightarrow \text{viscosity} \uparrow \Rightarrow \text{more sluggish it flows}$
- Surface Tension
  - ▶ The surface tension is a net inward pull
  - ▶ Adhesion: forces that bind a substance to a surface
  - ▶ Cohesion: forces that bind the molecules of a substance together
  - ► Concave: adhesion > cohesion; Convex: cohesion > adhesion

- Gas
- 2 Intermolecular Interactions
- 3 Liquid
- Solid



## Classification

- Crystalline Solids & Amorphous Solids
  - ► Crystalline solids: long-range order; fixed melting point
  - ▶ Amorphous solids: short-range order; non-fixed melting point
- Classifications of Crystalline Solids
  - Molecular solids van der Waals forces
  - ► Network solids covalent bonds
  - Metallic solids metallic bonds
  - lonic solids ionic bonds

## Unit Cells

- All crystal structure are derived form the 14 Bravais lattices
- The atoms in a unit cell are counted by determining what fraction of each atom resides within the cell



## Coordinate Number

- Metallic Solids
  - ▶ The number of nearest neighbors of each atom
- Ionic Solids
  - $\blacktriangleright \text{ For } A_x B_y, \ x \cdot n_a = y \cdot n_b$
  - $\triangleright$   $n_a$  the number of the closest cations to a anion.
  - $\triangleright$   $n_b$  the number of the closest anions to a cation.

## Closed-Packed Structure

In closed-packed structure, octahedral hole: tetrahedral hole= 1: 2



## Solid

#### Exercise

The unit cell of ZnS is given as follows. Find the coordination numbers of S and Zn. Also, what type of holes does  $S^{2-}$  ions fit in?



#### Reference

- Atkins, P. (2016) *Chemical principles: The quest for insight*. New York: W H Freeman.
- Prof. Milias Liu, Lecture Slides. 23FA VC210
- ZHOU Jieshen, RC Slides, 22FA VC210
- SU Zixun, RC Slides, 22FA VC210

# Thanks!

