

Swetha D S

Department of Science and Humanities

CLASS-8

PROBLEMS ON DIAGONALIZATION OF A MATRIX

Diagonalization of a matrix

1. Find the matrix A behave Eigen values are 2,5 and Eigen vectors ale [1] 4[1]. Ans: $S = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow \overline{S}' = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} & A = \begin{bmatrix} 2 & 0 \\ 0 & S \end{bmatrix}$ $A = S N S' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}$

Diagonalization of a matrix

diagonalising makricus.

Ard:
$$|P- \overline{X}| = 0$$
 \Rightarrow $|I-\overline{X}| = 0$

Ard: $|P-\overline{X}| = 0$

$$\frac{(1-\lambda)^{2}-1}{(1-\lambda)^{2}-1} - 1 \frac{1}{(1-\lambda)^{2}-1} + 1 \frac{1}{(1-(1-\lambda)^{2})} = 0$$

$$\Rightarrow \lambda^{2}(\lambda-3) = 0$$

$$\Rightarrow \lambda = 0,0,3 \Rightarrow \text{ Fight Values}$$

Diagonalization of a matrix

$$2 + 4 + (1 - 3) = 0$$

$$2 + 4 + (1 - 3) = 0$$

$$3 + 4 + (1 - 3) = 0$$

Case 1:- When
$$y = 0$$
 => $x+y+3=0$
 $x+y+3=0$

$$\chi = -y - 3$$
. Let $y = k_1 \ k_1 = k_2 = k_1$. $\chi = -k_1 - k_2 = k_1 = k_2 = k_2 = k_2 = k_1 = k_2 = k_1 = k_2 = k_1 = k_2 = k_2 = k_2 = k_1 = k_2 =$

Diagonalization of a matrix

Case 21. When
$$7=3$$

$$-2x+y+2=0$$

$$2+y-22=0$$

$$3$$

THANK YOU

SWETHA D S

Department of Science and Humanities