Machine Learning for Breast Cancer Diagnosis

A Proof of Concept

Ravinder Singh Sumit Ananad Akshay Kumar

Introduction

- Machine learning is branch of Data Science which incorporates a large set of statistical techniques.
- These techniques enable data scientists to create a model which can learn from past data and detect patterns from massive, noisy and complex data sets.
- Researchers use machine learning for cancer prediction and prognosis.
- Machine learning allows inferences or decisions that otherwise cannot be made using conventional statistical methodologies.
- With a robustly validated machine learning model, chances of right diagnosis improve.
- It specially helps in interpretation of results for borderline cases.

Breast Cancer: An overview

- The most common cancer in women worldwide.
- The principle cause of death from cancer among women globally.
- Early detection is the most effective way to reduce breast cancer deaths.
- Early diagnosis requires an accurate and reliable procedure to distinguish between benign breast tumors from malignant ones
- Breast Cancer Types three types of breast tumors: Benign breast tumors, In-situ cancers, and Invasive cancers.
- The majority of breast tumors detected by mammography are benign.
- They are non-cancerous growths and cannot spread outside of the breast to other organs.
- In some cases, it is difficult to distinguish certain benign masses from malignant lesions with mammography.
- If the malignant cells have not gone through the basal membrane but is completely contained in the lobule or the ducts, the cancer is called in-situ or noninvasive.
- If the cancer has broken through the basal membrane and spread into the surrounding tissue, it is called invasive.
- This analysis assists in differentiating between benign and malignant tumors.

Data Source:

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Breast Cancer Wisconsin (Diagnostic) D

Download: Data Folder, Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	569	Area:
Attribute Characteristics:	Real	Number of Attributes:	32	Date D
Associated Tasks:	Classification	Missing Values?	No	Numbe

- **Citation**: This breast cancer databases was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg.
- Reference: O. L. Mangasarian and W. H. Wolberg: "Cancer diagnosis via linear programming", SIAM News, Volume 23, Number 5, September 1990, pp 1 & 18.
- William H. Wolberg and O.L. Mangasarian: "Multisurface method of pattern separation for medical diagnosis applied to breast cytology", Proceedings of the National Academy of Sciences, U.S.A., Volume 87, December 1990, pp 9193-9196.
- O. L. Mangasarian, R. Setiono, and W.H. Wolberg: "Pattern recognition via linear programming: Theory and application to medical diagnosis", in: "Large-scale numerical optimization", Thomas F. Coleman and Yuying Li, editors, SIAM Publications, Philadelphia 1990, pp 22-30.
- K. P. Bennett & O. L. Mangasarian: "Robust linear programming discrimination of two linearly inseparable sets", Optimization Methods and Software 1, 1992, 23-34 (Gordon & Breach Science Publishers).

Loading the dataset dictionary

```
In [2]: from sklearn.datasets import load breast cancer
        data = load breast cancer()
In [3]: data.keys()
Out[3]: dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])
In [4]: data.target_names
Out[4]: array(['malignant', 'benign'],
              dtype="<U9")
```

Data Description

```
print(data.DESCR)
[5]:
     Breast Cancer Wisconsin (Diagnostic) Database
     Notes
     Data Set Characteristics:
         :Number of Instances: 569
         :Number of Attributes: 30 numeric, predictive attributes and the class
         :Attribute Information:
             - radius (mean of distances from center to points on the perimeter)
             - texture (standard deviation of gray-scale values)
             - perimeter
             - area

    smoothness (local variation in radius lengths)

    compactness (perimeter^2 / area - 1.0)

             - concavity (severity of concave portions of the contour)
             - concave points (number of concave portions of the contour)

    symmetry

             - fractal dimension ("coastline approximation" - 1)
```

:Summary Statistics:

	===== Min	===== Max
radius (mean):	6.981	28.11
texture (mean):	9.71	39.28
perimeter (mean):	43.79	188.5
area (mean):	143.5	2501.0
smoothness (mean):	0.053	0.163
compactness (mean):	0.019	0.345
concavity (mean):	0.0	0.427
concave points (mean):	0.0	0.201
symmetry (mean):	0.106	0.304
fractal dimension (mean):	0.05	0.097
radius (standard error):	0.112	2.873
texture (standard error):	0.36	4.885
perimeter (standard error):	0.757	21.98
area (standard error):	6.802	542.2
smoothness (standard error):	0.002	0.031
compactness (standard error):	0.002	0.135
concavity (standard error):	0.0	0.396
concave points (standard error):	0.0	0.053
symmetry (standard error):	0.008	0.079
fractal dimension (standard error):	0.001	0.03

```
radius (standard error):
                                     0.112 2.873
texture (standard error):
                                    0.36 4.885
perimeter (standard error):
                                    0.757 21.98
area (standard error):
                                    6.802 542.2
smoothness (standard error):
                                    0.002 0.031
compactness (standard error):
                                    0.002 0.135
concavity (standard error):
                                    0.0 0.396
concave points (standard error):
                                    0.0 0.053
symmetry (standard error):
                                    0.008 0.079
fractal dimension (standard error):
                                    0.001 0.03
radius (worst):
                                     7.93 36.04
texture (worst):
                                     12.02 49.54
perimeter (worst):
                                     50.41 251.2
area (worst):
                                    185.2 4254.0
smoothness (worst):
                                     0.071 0.223
compactness (worst):
                                     0.027 1.058
concavity (worst):
                                    0.0 1.252
concave points (worst):
                                    0.0 0.291
symmetry (worst):
                                    0.156 0.664
fractal dimension (worst):
                                    0.055 0.208
```

How this Data was collected

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in:

[K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

Data Structure Used: DataFrame

In [8]: df.head()

Out[8]:

13	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710
	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430

Warnings

- area error is highly correlated with perimeter error (ρ = 0.93766) Rejected
- concave points error has 13/2.3% zeros
- concavity error has 13 / 2.3% zeros zeros
- mean area is highly correlated with mean perimeter (ρ = 0.98651) Rejected
- mean concave points is highly correlated with mean concavity (p = 0.92139) Rejected
- mean concavity has 13 / 2.3% zeros
- mean perimeter is highly correlated with mean radius (ρ = 0.99786) Rejected
- perimeter error is highly correlated with radius error (ρ = 0.97279) Rejected
- worst area is highly correlated with worst perimeter (ρ = 0.97758) Rejected
- worst concave points is highly correlated with mean concave points (p = 0.91016) Rejected
- worst concavity has 13/2.3% zeros
- worst perimeter is highly correlated with worst radius ($\rho = 0.99371$) Rejected
- worst radius is highly correlated with mean area (ρ = 0.96275) Rejected
- worst texture is highly correlated with mean texture (ρ = 0.91204) Rejected

Algorithm Used: Logistic Regression

False Positive (Type I Error)

Calculate two rates

1. Accuracy Rate = Correct / Total AR = 85/100 = 85%