

6

Equilibrium

Chemical Equilibrium

Consider a reversible reaction,

$$aA + bB \xrightarrow{r_f} cC + dD$$

At Equilibrium State

Rate of forward reaction (r_f) = rate of backward reaction (r_b) So, at equilibrium,

$$K_{C} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} = \frac{K_{f}}{K_{b}}$$

In terms of active mass

$$K_{p} = \frac{\left[P_{C}\right]^{c}\left[P_{D}\right]^{d}}{\left[P_{A}\right]^{a}\left[P_{B}\right]^{b}}$$

In terms of partial pressure

$$K_{X} = \frac{[X_{C}]^{c}[X_{D}]^{d}}{[X_{A}]^{a}[X_{B}]^{b}}$$

In terms of mole fraction

$$\boldsymbol{K}_{\boldsymbol{P}} = \boldsymbol{K}_{\boldsymbol{C}}(\boldsymbol{R}\boldsymbol{T})^{\Delta n_g} = \boldsymbol{K}_{\boldsymbol{X}}\boldsymbol{P}^{\Delta n_g}$$

While determining Δn_g take only gaseous species.

The active mass of solid & pure liquid is a constant quantity (unity) because it is an intensive property.

Graphs

Unit of Equilibrium constant

$$K_C = (\text{mol } L^{-1})^{\Delta n}g; K_p = (\text{atm})^{\Delta n}g$$

Application of K_C or K_P

- ❖ More is the value of K_P or K_C more is the extent of reaction.
- * Stability of reactant increases when value of K decreases.
- * Stability of Product increases when value of K increase.

Characteristics of Equilibrium Constant

Predicting the direction of reaction: Reaction Quotient (Q) is expressed in the same way as for equilibrium constant, except that the concentrations may not necessarily be at equilibrium.

In general for the reversible reaction:

$$aA + bB \rightleftharpoons cC + dD$$

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

$$Q = \frac{[P_C]^c [P_D]^d}{[P_A]^a [P_B]^b}$$
 (in terms of pressure)

If $Q = K_{eq}$ then system is in equilibrium

If $Q > K_{eq}$ then system proceed in backward direction to attain equilibrium.

If $Q < K_{eq}$ then system proceed in forward direction to attain equilibrium.

Degree of dissociation (α)

 $\alpha = \frac{\text{No. of moles of reactant dissociated}}{\text{No. of mole of reactant present initially}}$

Le-chatelier's Principle

If a system at equilibrium is subjected to a change of any one of the factors such as concentration, pressure or temperature then the equilibrium is shifted in such a way as to nullify the effect of change.

Le-Chatelier's principle is applicable for both chemical and physical equilibrium.

Chemical Equilibrium

Effect d	lue to change in	$\Delta \mathbf{n}_{\mathbf{g}} = 0$ $\mathbf{A} \stackrel{\mathbf{g}}{\longleftarrow} \mathbf{B}$	$\Delta n_g > 0$ $A \rightleftharpoons 2B$	$\Delta \mathbf{n}_{\mathbf{g}} < 0$ $2\mathbf{A} \rightleftharpoons \mathbf{B}$
Concentration	(i) ↑ [A]	Forward direction	Forward direction	Forward direction
	(ii) ↓ [A]	Backward direction	Backward direction	Backward direction
Pressure	(i) ↑ in pressure	Unchanged	Backward direction	Forward direction
	(ii) ↓ in pressure	Unchanged	Forward direction	Backward direction
Temperature	(i) ↑ in Endothermic	Forward direction	Forward direction	Forward direction
	(ii) ↑ in Exothermic	Backward direction	Backward direction	Backward direction
Dissociation	(i) ↑ in pressure	Unchanged	Dissociation	Dissociation
	(ii) ↑ in volume	Unchanged	Decreases Dissociation Increases	Increases Dissociation Decreases
Mixing of inert gas	(i) at constant P	Unchanged	Dissociation	Dissociation
	(ii) at constant V	Unchanged	Increases Unchanged	Decreases Unchanged

Relationship between Equilibrium Constant K, Reaction Quotient Q and Gibbs Energy G

 $\Delta G = \Delta G^{\circ} + RT \ln Q ...(i)$ where, $\Delta G^{\circ} = Standard$ free energy difference between the products and reactant, T = Absolute temperature in kelvin, R = Universal gas constant.

At equilibrium, when $\Delta G = 0$ and $Q = K_c$, then equation (i) becomes

$$0 = \Delta G^{\circ} + RT \, \ln \, K_{_{C}} \quad \text{or} \quad \Delta G^{\circ} = -RT \, \ln \, K_{_{C}} \quad \text{or} \quad \ln \, K_{_{C}} = (-\Delta G^{\circ}/RT)$$

Case I: If $\Delta G^{\circ} < 0$, then $(-\Delta G^{\circ}/RT)$ is positive, i.e., $e^{(-\Delta G^{\circ}/RT)} > 1$ hence $K_c > 1$, which implies a spontaneous reaction, i.e., the reaction proceeds in the forward reaction.

Case II: If $\Delta G^{\circ} > 0$, then $(-\Delta G^{\circ}/RT)$ is negative, i.e., $e^{(-\Delta G^{\circ}/RT)} < 1$, hence $K_c < 1$, which implies a non-spontaneous reaction or the reaction proceeds in the forward direction to a very small extent i.e., only a very small quantity of product is formed.

Ionic Equilibrium

Strong Weak HClO ₄ HClO ₃ H	
HClO ₄ HClO ₂ I	Sti
HI HClO ₂ HBr HClO I H ₂ SO ₄ H ₃ PO ₄ HCl H ₃ PO ₂ I HNO ₃ H ₂ S Al org	I_2CO ₃ Group- except- H_2SO ₃ NaOH KOH HCN RbOH I_3BO ₃ Group- except word and Magnetic acid alic acid Sr(OH) Ba(OH

BASE	
Strong	Weak
Group-1 hydroxide except-LiOH NaOH KOH RbOH Group-2 hydroxide except Be(OH) ₂ and Mg(OH) ₂ **Ca(OH) ₂ Sr(OH) ₂ Ba(OH) ₂	All other bases like NH ₄ OH Zn(OH) ₂ Al(OH) ₃ Fe(OH) ₃ Cu(OH) ₂ etc.

Acid Base Theories (Arrhenius Concept)			
Acid	Base		
Which produce H ⁺ ion in aqueous solution. e.g. HCl, H ₂ SO ₄ ,	Which produce OH- ion in aqueous solution. e.g. NaOH,		
HClO ₄ , H ₃ PO ₄ , CH ₃ COOH but H ₃ BO ₃ is not an Arrhenius acid.	$Mg(OH)_2$, $Ba(OH)_2$		
Major Limitation: Defined only in water solvent.			

-2 **P**

Bronsted – Lowry Concept

Acid: Which gives H⁺ in any solvent.

Base: Which accepts H⁺ in any solvent

$$\begin{array}{c|c} & & & \\ HCl + NH_3 & & Cl^- + & NH_4^+ \\ Acid & Base & Conjugate \\ & & Acid & \\ & & & \\ \end{array}$$

Major Limitation: Does not explain acidic behaviour of aprotic

acids e.g. SO₂, CO₂, AlCl₃, SiCl₄

- ❖ To find conjugate base of any Acid → Remove one H⁺
- To find conjugate acid of any Base add one H^+
- ❖ Water is Amphiprotic solvent (can accept as well as lose H^+) $H_2O \rightleftharpoons H^+ + OH^-$

$$H_2O + H^+ \rightleftharpoons H_3O^+$$

	Lewis Theory			
Acid		Base		
Types of Lewis Acid		Types of Lewis Base		
Lewis acid is an electron pair acceptor.		Lewis base is an electron pair donor.		
1.	Having Incomplete octet: BF ₃ , BCl ₃ , B(OH) ₃ , AlCl ₃ etc.	1.	Neutral molecule having lone pair $\ddot{N}H_3$, $R-\ddot{N}H_2$, $R_2-\ddot{N}H$, $H-\ddot{O}-H$, $R-\ddot{O}-R$ etc.	
2.	Having vacant d-orbitals: SF ₄ , SF ₆ , SnCl ₂ , SnCl ₄ etc.	2. Anions: O ²⁻ , SO ₄ ²⁻ , CO ₃ ²⁻ , Cl ⁻ , Br ⁻ , I ⁻ , CH ₃ COO ⁻ etc.		
3.	CO, SO ₂ , SO ₃ etc. acids are not Bronsted		* All the Lewis bases are Bronsted bases but all the Lewis acids are not Bronsted acids.	
4.			All Arrhenius acids are Bronsted acid but it is not so for bases.	

OstwalD's Dilution Law			
OSTWALD'S DILUTION LAW (Only for weak electrolytes) $\alpha \propto \sqrt{\text{dilution}} \text{dilution} \uparrow \Rightarrow \alpha \uparrow$ Explanation of water $H_2O \rightleftharpoons H^+ + OH^ K_w = \text{Ionic product of water}$ $pK_w = pH + pOH$ $K_w = \text{dissociation constant of water}$ $K = \frac{K_w}{[H_2O]} [\because [H_2O] = 55.5]$	FOR PURE WATER 1. [H ⁺] = [OH ⁻] 2. pH = pOH 3. (pH) _{pure water} = $\frac{pK_w}{2}$ + pH of an acidic solution is always less than pH of pure water. + pH of a basic solution is always greater than pH of pure water.		

Hydrolysis of Salts

Salt	Hydrolysis	Resulting solution	Hydrolysis constant (K _h)	Degree of hydrolysis (h)	рН
Weak acid and Strong base	Anionic	Alkaline pH > 7	$k_{\rm w}/k_{\rm a}$	$h = \sqrt{\frac{K_h}{C}}$	$pH = \frac{1}{2}[pK_{w} + pK_{a} + \log C]$
Strong acid and Weak base	Cationic	Acidic pH < 7	k_w/k_b	$h = \sqrt{\frac{K_h}{C}}$	$pH = \frac{1}{2}[pK_w - pK_b - \log C]$
Weak acid and Weak base	Anionic and Cationic both	Neutral, pH = 7 $(If K_a = K_b)$	$k_w/(k_a \cdot k_b)$	$h = \sqrt{K_h}$	$pH = \frac{1}{2}[pK_w + pK_a - pK_b]$

Buffer Solutions

The solutions which resist change in pH on dilution or with the addition of small amounts of acid or alkali are called **buffer solutions**.

Buffers are classified into two categories:

- Simple buffers: These are the solutions of salts of weak acid and weak base. For example, CH₃COONH₄ (ammonium acetate).
- Mixed buffers: These are the mixtures of two solutions.
 These are further of two types:
 - + Acidic buffers: These are the solutions of mixtures of weak acid and salt of this weak acid with strong base. For example, CH₃COOH + CH₃COONa. They have pH value lesser than 7.
 - + **Basic buffers:** These are the solutions of mixtures of weak base and salt of this weak base with strong acid. For example, NH₄OH + NH₄Cl. They have the pH value more than 7.
- * pH of an acidic buffer:

$$pH = pK_a + log \frac{[Salt]}{[Acid]} = pK_a + log \frac{[Conjugate base]}{[Acid]}$$

* pH of a basic buffer:

$$pOH = pK_b + log \frac{[Salt]}{[Base]} = pK_b + log \frac{[Conjugate acid]}{[Base]}$$

No. of moles of acid or base added

Buffer capacity = ______ per litre of buffer Change in pH

The range of pH over which the buffer solutions remain effective is called **buffer range**.

Buffer Buffer range in pH

Acidic $pK_a \pm 1$ Basic $(pK_w - pK_b) \pm 1$

Solubility (s) & Solubility Product (K_{sp})

Solubility

The maximum amount of solute that can be dissolved in a particular amount of solvent at a given temperature is called solubility(s). It is generally expressed in molarity.

$$AgCl(s) \rightleftharpoons AgCl(aq) \rightarrow Ag^+ + Cl^-$$
dissolution dissociation

Solubility Product (K_{sp})

$$AgCl \rightleftharpoons Ag^+ + Cl^-$$

$$K_{sn} = [Ag^{+}][Cl^{-}]$$

K_{sn} depends only on temperature.

Expressions of
$$K_{sp}: A_x B_y \rightleftharpoons xA^{y+} + yB^{x-}$$

General form
$$K_{sp} = [A^{y+}]^x [B^{x-}]^y$$

In terms of 'S':
$$K_{sp} = (xS)^x (yS)^y = x^x \cdot y^y \cdot S^{(x+y)}$$

Ionic Product [Q_{sp}]

$$\boldsymbol{A}_{\boldsymbol{x}}\boldsymbol{B}_{\boldsymbol{y}} \boldsymbol{\rightleftharpoons} \boldsymbol{x}\boldsymbol{A}^{\boldsymbol{y}+} + \boldsymbol{y}\boldsymbol{B}^{\boldsymbol{x}-} \, ; \, \boldsymbol{Q}_{\boldsymbol{sp}}[\boldsymbol{A}^{\boldsymbol{y}+}]^{\boldsymbol{x}} \, [\boldsymbol{B}^{\boldsymbol{x}-}]^{\boldsymbol{y}}$$

In $Q_{\rm sp}$ the concentration taken are at any time but in $K_{\rm sp}$ the concentration are at equilibrium time/saturation time.

Application

- 1. If $Q_{sp} \le K_{sp}$ [unsaturated]
- 2. If $Q_{sp} = K_{sp}$ [saturated]
- 3. If $Q_{sp} > K_{sp}$ [super saturated/ppt. will form]

Effect of Common Ion

Presence of common ion decreases the solubility but has no effect on K_{sn} as it depends only on temperature.

Effect of Odd Ion

Presence of odd ion increases the solubility but has no effect on $K_{\rm sp}$.

Acid-base Titration			
Type of titration	pH range of titration	Suitable indicators	
SA/SB	3-11	All indicators (MeOH, HPh etc.)	
SA/WB	3-7	Methyl orange (MeOH) and methyl red	
WA/SB	7-11	Phenolphthalein (HPh)	
WA/WB	6.5-7.5	Phenol red	

Key Tips

- Buffer capacity = $\frac{\text{No. of moles of acid/base added per litre}}{\text{change in pH of buffer solution}}$
- ❖ Maximum buffer action when [salt] = [acid]
- * pH of Amphiprotic species: (NaHPO₄, NaHCO₃) which can donate as well as accept H⁺; pH = $\frac{pKa_1 + pKa_2}{2}$