Lecture 11: Pose Estimation Problems AER1513: State Estimation

Timothy D. Barfoot

University of Toronto

Copyright © 2023

Outline

Lecture 11: Pose Estimation Problems
Motivation and Setup
Point-Cloud Alignment
Point-Cloud Tracking
Pose-Graph Relaxation

Motivation

- in the last lecture, we learned how to perturb rotations and poses using ideas from matrix Lie groups
- this lead to practical methods to perform optimization and represent uncertainty for rotations and poses
- we now want to use these ideas to adapt our state estimation algorithms to work with rotations and poses

General Setup

Problems to Consider

 there are two different problems we could consider with our general setup

point-cloud alignment: in this problem, we have two point-clouds, one expressed in the stationary frame and one in the moving frame (at a single time) and we want to know the pose change between the two frames by aligning the point-clouds

point-cloud tracking: in this problem, we want to estimate the pose of the moving frame with respect to the stationary frame over a longer period of time using one of the estimators from the first part of the course

Point-cloud alignment

- we will consider just a single time
- match a point-cloud in the moving frame to one in the stationary frame to get the pose

Point-cloud alignment

- we have two point-clouds, one expressed in the stationary frame and one in the moving frame (at a single time)
- we will use some simplified notation to avoid repeating sub- and super-scripts:

$$\mathbf{y}_j = \mathbf{r}_{v_k}^{p_j v_k}, \quad \mathbf{p}_j = \mathbf{r}_i^{p_j i}, \quad \mathbf{r} = \mathbf{r}_i^{v_k i}, \quad \mathbf{C} = \mathbf{C}_{v_k i}$$
 (1)

- also, we define

$$\mathbf{y} = \frac{1}{w} \sum_{j=1}^{M} w_j \mathbf{y}_j, \quad \mathbf{p} = \frac{1}{w} \sum_{j=1}^{M} w_j \mathbf{p}_j, \quad w = \sum_{j=1}^{M} w_j$$
 (2)

where the w_i are scalar weights for each point

Optimization problem

– we define an error term for each point:

$$\mathbf{e}_j = \mathbf{y}_j - \mathbf{C}(\mathbf{p}_j - \mathbf{r}) \tag{3}$$

 our estimation problem is then to globally minimize the cost function,

$$J(\mathbf{C}, \mathbf{r}) = \frac{1}{2} \sum_{j=1}^{M} w_j \mathbf{e}_j^T \mathbf{e}_j = \frac{1}{2} \sum_{j=1}^{M} w_j \left(\mathbf{y}_j - \mathbf{C}(\mathbf{p}_j - \mathbf{r}) \right)^T \left(\mathbf{y}_j - \mathbf{C}(\mathbf{p}_j - \mathbf{r}) \right)$$

subject to $C \in SO(3)$ (i.e., $CC^T = 1$ and $\det C = 1$)

 it turns out that it is possible to carry out this optimization in a one-shot (non-iterative) manner

Change of variables

- we will make a change of variables for the translation parameter:

$$\mathbf{d} = \mathbf{r} + \mathbf{C}^T \mathbf{y} - \mathbf{p} \tag{5}$$

which is easy to isolate for ${f r}$ if all the other quantities are known

- in this case, we can rewrite our cost function as

$$J(\mathbf{C}, \mathbf{d}) = \underbrace{\frac{1}{2} \sum_{j=1}^{M} w_j \left((\mathbf{y}_j - \mathbf{y}) - \mathbf{C}(\mathbf{p}_j - \mathbf{p}) \right)^T \left((\mathbf{y}_j - \mathbf{y}) - \mathbf{C}(\mathbf{p}_j - \mathbf{p}) \right)}_{\text{depends only on } \mathbf{C}} + \underbrace{\frac{1}{2} \mathbf{d}^T \mathbf{d}}_{\text{depends only on } \mathbf{d}}$$
(6)

which is the sum of two positive-definite terms, the first depending only on ${\bf C}$ and the second only on ${\bf d}$

Start to optimize

– we can minimize the term depending on ${\bf d}$ by taking ${\bf d}={\bf 0}$, which in turn implies that

$$\mathbf{r} = \mathbf{p} - \mathbf{C}^T \mathbf{y} \tag{7}$$

– if we multiply out each smaller term within the term that depends on ${f C}$, only one part actually depends on ${f C}$

$$((\mathbf{y}_{j} - \mathbf{y}) - \mathbf{C}(\mathbf{p}_{j} - \mathbf{p}))^{T} ((\mathbf{y}_{j} - \mathbf{y}) - \mathbf{C}(\mathbf{p}_{j} - \mathbf{p}))$$

$$= \underbrace{(\mathbf{y}_{j} - \mathbf{y})^{T} (\mathbf{y}_{j} - \mathbf{y})}_{\text{independent of } \mathbf{C}} - 2 \underbrace{((\mathbf{y}_{j} - \mathbf{y})^{T} \mathbf{C}(\mathbf{p}_{j} - \mathbf{p}))}_{\text{tr}(\mathbf{C}(\mathbf{p}_{j} - \mathbf{p})(\mathbf{y}_{j} - \mathbf{y})^{T})} + \underbrace{(\mathbf{p}_{j} - \mathbf{p})^{T} (\mathbf{p}_{j} - \mathbf{p})}_{\text{independent of } \mathbf{C}}$$

- we can therefore replace the C term with

$$-\mathsf{tr}\left(\mathbf{C}\mathbf{W}^{T}\right), \quad \mathbf{W} = \frac{1}{w} \sum_{j=1}^{M} w_{j} (\mathbf{y}_{j} - \mathbf{y}) (\mathbf{p}_{j} - \mathbf{p})^{T}$$
(9)

Introduce constraints

– we can define a new cost function that we seek to minimize with respect to ${f C}$ as

$$J(\mathbf{C}, \mathbf{\Lambda}, \gamma) = -\mathrm{tr}(\mathbf{C}\mathbf{W}^T) + \underbrace{\mathrm{tr}\left(\mathbf{\Lambda}(\mathbf{C}\mathbf{C}^T - \mathbf{1})\right) + \gamma(\det\mathbf{C} - 1)}_{\text{Lagrange multiplier terms}}$$

where Λ and γ are Lagrange multipliers associated with the two terms on the right; these are used to ensure that the resulting $\mathbf{C} \in SO(3)$

- note, when $\mathbf{CC}^T = \mathbf{1}$ and $\det \mathbf{C} = 1$, these terms have no effect on the resulting cost
- it is also worth noting that Λ is symmetric since we only need to enforce six orthogonality constraints
- this new cost function will be minimized by the same ${f C}$ as our original one

Optimize

- taking the derivative of $J(\mathbf{C}, \mathbf{\Lambda}, \gamma)$ with respect to \mathbf{C} , $\mathbf{\Lambda}$, and γ , we have

$$\frac{\partial J}{\partial \mathbf{C}} = -\mathbf{W} + 2\mathbf{\Lambda}\mathbf{C} + \gamma \underbrace{\det \mathbf{C}}_{\mathbf{C}} \underbrace{\mathbf{C}^{-T}}_{\mathbf{C}} = -\mathbf{W} + \mathbf{L}\mathbf{C}$$
(11a)

$$\frac{\partial J}{\partial \mathbf{\Lambda}} = \mathbf{C}\mathbf{C}^T - \mathbf{1}$$

$$\frac{\partial J}{\partial \gamma} = \det \mathbf{C} - 1$$
(11b)

$$\frac{\partial J}{\partial \gamma} = \det \mathbf{C} - 1 \tag{11c}$$

where we have lumped together the Lagrange multipliers as

$$\mathbf{L} = 2\mathbf{\Lambda} + \gamma \mathbf{1} \tag{12}$$

setting the first equation to zero, we find that

$$LC = W \tag{13}$$

Easy case

– if we could assume that ${\bf W}>0$, we could postmultiply (13) by itself transposed to find

$$\mathbf{L}\underbrace{\mathbf{C}\mathbf{C}^{T}}_{\mathbf{1}}\mathbf{L}^{T} = \mathbf{W}\mathbf{W}^{T} \tag{14}$$

- since ${f L}$ is symmetric, we have that

$$\mathbf{L} = (\mathbf{W}\mathbf{W}^T)^{\frac{1}{2}} \tag{15}$$

which we see involves a matrix square-root

- substituting this back into (13), the optimal rotation is

$$\mathbf{C} = \left(\mathbf{W}\mathbf{W}^T\right)^{-\frac{1}{2}}\mathbf{W} \tag{16}$$

- we are essentially projecting \mathbf{W} onto SO(3)

Hard case

- if we cannot assume that $\mathbf{W}>0$, things get complicated quickly
- the details are a bit messy, but it is still possible to work out the optimal rotation
- start by doing a singular value decomposition (SVD) on W

$$\mathbf{W} = \mathbf{U}\mathbf{D}\mathbf{V}^T \tag{17}$$

- the optimal rotation is then

$$\mathbf{C} = \mathbf{U} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det \mathbf{U} \det \mathbf{V} \end{bmatrix} \mathbf{V}^T$$
 (18)

- the main reason this approach is necessary is to ensure that $\det \mathbf{C} = 1$ instead of -1

Another approach using transformation matrices

- we can also use an iterative scheme to accomplish the same point-cloud alignment objective
- this is more inline with our general method of carrying out state estimation with rotations and poses
- we will again use some simplified notation to avoid repeating suband super-scripts:

$$\mathbf{y}_{j} = \begin{bmatrix} \mathbf{y}_{j} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{v_{k}}^{p_{j}v_{k}} \\ 1 \end{bmatrix}, \quad \mathbf{p}_{j} = \begin{bmatrix} \mathbf{p}_{j} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{i}^{p_{j}i} \\ 1 \end{bmatrix},$$

$$\mathbf{T} = \mathbf{T}_{v_{k}i} = \begin{bmatrix} \mathbf{C}_{v_{k}i} & -\mathbf{C}_{v_{k}i}\mathbf{r}_{i}^{v_{k}i} \\ \mathbf{0}^{T} & 1 \end{bmatrix}$$
(19)

Optimization problem

- we define our error term for each point as

$$\mathbf{e}_j = \boldsymbol{y}_j - \mathbf{T}\boldsymbol{p}_j \tag{20}$$

and our objective function as

$$J(\mathbf{T}) = \frac{1}{2} \sum_{j=1}^{M} w_j \mathbf{e}_j^T \mathbf{e}_j = \frac{1}{2} \sum_{j=1}^{M} w_j \left(\mathbf{y}_j - \mathbf{T} \mathbf{p}_j \right)^T \left(\mathbf{y}_j - \mathbf{T} \mathbf{p}_j \right)$$
(21)

where $w_j > 0$ are the usual scalar weights

– we seek to minimize J with respect to $\mathbf{T} \in SE(3)$

Avoiding constraints

– we use our SE(3)-sensitive perturbation scheme,

$$\mathbf{T} = \exp\left(\epsilon^{\wedge}\right) \mathbf{T}_{\mathrm{op}} \approx \left(1 + \epsilon^{\wedge}\right) \mathbf{T}_{\mathrm{op}}$$
 (22)

where $T_{\rm op}$ is some initial guess (i.e., operating point of our linearization) and ϵ is a small perturbation to that guess

- inserting this into the objective function we then have

$$J(\mathbf{T}) \approx \frac{1}{2} \sum_{j=1}^{M} w_j \left((\boldsymbol{y}_j - \boldsymbol{z}_j) - \boldsymbol{z}_j^{\odot} \boldsymbol{\epsilon} \right)^T \left((\boldsymbol{y}_j - \boldsymbol{z}_j) - \boldsymbol{z}_j^{\odot} \boldsymbol{\epsilon} \right)$$
(23)

where $oldsymbol{z}_j = \mathbf{T}_{\mathrm{op}} oldsymbol{p}_j$ and we have used that

$$\epsilon^{\wedge} z_j = z_j^{\odot} \epsilon$$
 (24)

Optimize

- our objective function is now exactly quadratic in ϵ and therefore we can carry out a simple, unconstrained optimization for ϵ
- taking the derivative we find

$$\frac{\partial J}{\partial \boldsymbol{\epsilon}^{T}} = -\sum_{j=1}^{M} w_{j} \boldsymbol{z}_{j}^{\odot^{T}} \left((\boldsymbol{y}_{j} - \boldsymbol{z}_{j}) - \boldsymbol{z}_{j}^{\odot} \boldsymbol{\epsilon} \right)$$
(25)

– setting this to zero, we have the following system of equations for the optimal ϵ^* :

$$\left(\frac{1}{w}\sum_{j=1}^{M}w_{j}\boldsymbol{z}_{j}^{\odot^{T}}\boldsymbol{z}_{j}^{\odot}\right)\boldsymbol{\epsilon}^{\star} = \frac{1}{w}\sum_{j=1}^{M}w_{j}\boldsymbol{z}_{j}^{\odot^{T}}(\boldsymbol{y}_{j} - \boldsymbol{z}_{j})$$
(26)

Improving efficiency

- to improve efficiency, we can write the left-hand side as

$$\frac{1}{w} \sum_{j=1}^{M} w_j \mathbf{z}_j^{\odot^T} \mathbf{z}_j^{\odot} = \underbrace{\mathbf{\mathcal{T}}_{\text{op}}^{-T}}_{>0} \underbrace{\left(\frac{1}{w} \sum_{j=1}^{M} w_j \mathbf{p}_j^{\odot^T} \mathbf{p}_j^{\odot}\right)}_{\mathcal{M}} \underbrace{\mathbf{\mathcal{T}}_{\text{op}}^{-1}}_{>0}$$
(27)

where

$$\mathcal{T}_{\mathrm{op}} = \mathsf{Ad}(\mathbf{T}_{\mathrm{op}}), \quad \mathcal{M} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ -\mathbf{p}^{\wedge} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{p}^{\wedge} \\ \mathbf{0} & \mathbf{1} \end{bmatrix},$$

$$w = \sum_{j=1}^{M} w_{j}, \quad \mathbf{p} = \frac{1}{w} \sum_{j=1}^{M} w_{j} \mathbf{p}_{j}, \quad \mathbf{I} = -\frac{1}{w} \sum_{j=1}^{M} w_{j} (\mathbf{p}_{j} - \mathbf{p})^{\wedge} (\mathbf{p}_{j} - \mathbf{p})^{\wedge}$$

– the 6×6 matrix, \mathcal{M} , has the form of a generalized mass matrix with the weights as surrogates for masses; it is only a function of the points in the stationary frame and is therefore a constant

Improving efficiency

looking to the right-hand side we can show

$$\mathbf{a} = \frac{1}{w} \sum_{j=1}^{M} w_j \mathbf{z}_j^{\odot^T} (\mathbf{y}_j - \mathbf{z}_j) = \begin{bmatrix} \mathbf{y} - \mathbf{C}_{\text{op}} (\mathbf{p} - \mathbf{r}_{\text{op}}) \\ \mathbf{b} - \mathbf{y}^{\wedge} \mathbf{C}_{\text{op}} (\mathbf{p} - \mathbf{r}_{\text{op}}) \end{bmatrix}$$
(29)

where

$$\mathbf{b} = \left[\operatorname{tr} \left(\mathbf{1}_{i}^{\wedge} \mathbf{C}_{\mathrm{op}} \mathbf{W}^{T} \right) \right]_{i}, \quad \mathbf{T}_{\mathrm{op}} = \begin{bmatrix} \mathbf{C}_{\mathrm{op}} & -\mathbf{C}_{\mathrm{op}} \mathbf{r}_{\mathrm{op}} \\ \mathbf{0}^{T} & 1 \end{bmatrix}, \quad (30)$$

$$\mathbf{W} = \frac{1}{w} \sum_{j=1}^{M} w_j (\mathbf{y}_j - \mathbf{y}) (\mathbf{p}_j - \mathbf{p})^T, \quad \mathbf{y} = \frac{1}{w} \sum_{j=1}^{M} w_j \mathbf{y}_j$$
(31)

- both \mathbf{W} and \mathbf{y} we have seen before and can be computed in advance from the points and then used at each iteration

Improving efficiency

 using these efficient forms, we can write the solution for the optimal update down in closed form:

$$\epsilon^* = \mathcal{T}_{\text{op}} \mathcal{M}^{-1} \mathcal{T}_{\text{op}}^T \mathbf{a}$$
 (32)

- once computed, we simply update our operating point,

$$\mathbf{T}_{\mathrm{op}} \leftarrow \exp\left(\boldsymbol{\epsilon}^{\star^{\wedge}}\right) \, \mathbf{T}_{\mathrm{op}}$$
 (33)

and iterate the procedure to convergence

- note, applying the optimal perturbation through the exponential map ensures that T_{op} remains in SE(3) at each iteration
- we can see that our iterative optimization of ${\bf T}$ is exactly in the form of a Gauss-Newton style estimator, but adapted to work with SE(3)

Point-cloud tracking

- now we want to consider a longer interval of time
- this is essentially a localization problem; the stationary point-cloud is our map

Problem setup

- the state we want to estimate is the entire trajectory of poses:

$$\mathbf{x} = \left\{ \mathbf{T}_0, \mathbf{T}_1, \dots, \mathbf{T}_K \right\}, \quad \mathbf{T}_k = \mathbf{T}_{v_k i} = \begin{bmatrix} \mathbf{C}_{v_k i} & -\mathbf{C}_{v_k i} \mathbf{r}_i^{v_k i} \\ \mathbf{0}^T & 1 \end{bmatrix}$$
(34)

the inputs (including the initial state) are

$$\mathbf{v} = \left\{ \check{\mathbf{T}}_0, \boldsymbol{\varpi}_1, \boldsymbol{\varpi}_2, \dots, \boldsymbol{\varpi}_K \right\} \tag{35}$$

where ϖ_k is a body-fixed six-degree-of-freedom velocity

- the measurements are

$$\mathbf{y} = \{\mathbf{y}_{11}, \dots, \mathbf{y}_{M1}, \dots, \mathbf{y}_{1K}, \dots \mathbf{y}_{MK}\}$$
(36)

where $\mathbf{y}_{jk} = \mathbf{r}_{v_k}^{p_j v_k}$ is the observation of point P_j at time k

Motion model

in continuous time our motion model is

$$\dot{\mathbf{T}} = \boldsymbol{\varpi}^{\wedge} \mathbf{T} \tag{37}$$

where the quantities involved are perturbed by process noise according to

$$\mathbf{T} = \exp\left(\delta \boldsymbol{\xi}^{\wedge}\right) \bar{\mathbf{T}} \tag{38a}$$

$$\overline{\omega} = \overline{\omega} + \delta \overline{\omega}$$
(38b)

– we can separate these into nominal and perturbation kinematics:

nominal kinematics:
$$\dot{\bar{\mathbf{T}}} = \bar{\boldsymbol{\varpi}}^{\wedge} \bar{\mathbf{T}}$$
 (39a)

perturbation kinematics:
$$\delta \dot{\boldsymbol{\xi}} = \bar{\boldsymbol{\varpi}}^{\perp} \delta \boldsymbol{\xi} + \delta \boldsymbol{\varpi}$$
 (39b)

Motion model

 if we assume quantities remain constant between discrete times, then we can write

nominal kinematics:
$$\bar{\mathbf{T}}_k = \underbrace{\exp\left(\Delta t_k \bar{\boldsymbol{\varpi}}_k^{\wedge}\right)}_{\boldsymbol{\Xi}_k} \bar{\mathbf{T}}_{k-1}$$
 (40a) perturbation kinematics: $\delta \boldsymbol{\xi}_k = \underbrace{\exp\left(\Delta t_k \bar{\boldsymbol{\varpi}}_k^{\wedge}\right)}_{\mathrm{Ad}(\boldsymbol{\Xi}_k)} \delta \boldsymbol{\xi}_{k-1} + \mathbf{w}_k$ (40b)

with $\Delta t_k = t_k - t_{k-1}$ for the nominal and perturbation kinematics in discrete time

- the process noise is now $\mathbf{w}_k = \mathcal{N}(\mathbf{0}, \mathbf{Q}_k)$

Measurement model

– our 3×1 measurement model can be compactly written as

$$\mathbf{y}_{jk} = \mathbf{D}^T \, \mathbf{T}_k \mathbf{p}_j + \mathbf{n}_{jk} \tag{41}$$

where the position of the known points on the moving vehicle are expressed in 4×1 homogeneous coordinates,

$$\mathbf{p}_{j} = \begin{bmatrix} \mathbf{r}_{i}^{p_{j}i} \\ 1 \end{bmatrix}, \quad \mathbf{D}^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(42)

where \mathbf{D}^T is a projection matrix used to ensure the measurements are indeed 3×1 by removing the 1 on the bottom row

- we have also now included, $\mathbf{n}_{jk} \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{jk})$, which is Gaussian measurement noise

Measurement model

- we linearize the measurement model using our perturbations:

$$\mathbf{T}_k = \exp\left(\delta \boldsymbol{\xi}_k^{\wedge}\right) \bar{\mathbf{T}}_k \tag{43a}$$

$$\mathbf{y}_{jk} = \bar{\mathbf{y}}_{jk} + \delta \mathbf{y}_{jk} \tag{43b}$$

substituting these in we have

$$\bar{\mathbf{y}}_{jk} + \delta \mathbf{y}_{jk} = \mathbf{D}^T \left(\exp \left(\delta \boldsymbol{\xi}_k^{\wedge} \right) \bar{\mathbf{T}}_k \right) \mathbf{p}_j + \mathbf{n}_{jk}$$
 (44)

 subtracting off the nominal solution (i.e., the operating point in our linearization),

$$\bar{\mathbf{y}}_{jk} = \mathbf{D}^T \, \bar{\mathbf{T}}_k \mathbf{p}_j \tag{45}$$

we are left with

$$\delta \mathbf{y}_{jk} \approx \mathbf{D}^T \left(\bar{\mathbf{T}}_k \mathbf{p}_j \right)^{\odot} \delta \boldsymbol{\xi}_k + \mathbf{n}_{jk}$$
 (46)

EKF point-cloud tracking

- we now work out the details of carrying out point-cloud tracking using the extended Kalman filter, starting with the prediction step
- predicting the mean forwards in time is not difficult in the case of the EKF; we simply pass our prior estimate and latest input through the nominal kinematics model:

$$\check{\mathbf{T}}_{k} = \underbrace{\exp\left(\Delta t_{k} \,\boldsymbol{\varpi}_{k}^{\wedge}\right)}_{\boldsymbol{\Xi}_{k}} \hat{\mathbf{T}}_{k-1} \tag{47}$$

EKF prediction step

- to predict the covariance of the estimate,

$$\check{\mathbf{P}}_{k} = E\left[\delta\check{\boldsymbol{\xi}}_{k}\delta\check{\boldsymbol{\xi}}_{k}^{T}\right] \tag{48}$$

we require the perturbation kinematics model,

$$\delta \dot{\boldsymbol{\xi}}_{k} = \underbrace{\exp\left(\Delta t_{k} \boldsymbol{\varpi}_{k}^{\lambda}\right)}_{\mathbf{F}_{k-1} = \mathsf{Ad}(\boldsymbol{\Xi}_{k})} \delta \hat{\boldsymbol{\xi}}_{k-1} + \mathbf{w}_{k}$$
(49)

 thus, in this case the coefficient matrix of the linearized motion model is

$$\mathbf{F}_{k-1} = \exp\left(\Delta t_k \,\boldsymbol{\varpi}_k^{\lambda}\right) \tag{50}$$

which depends only on the input due to our convenient choice of representing uncertainty via the exponential map

- the covariance prediction proceeds in the usual EKF manner as

$$\check{\mathbf{P}}_k = \mathbf{F}_{k-1} \hat{\mathbf{P}}_{k-1} \mathbf{F}_{k-1}^T + \mathbf{Q}_k \tag{51}$$

EKF correction step

- looking back to the perturbation measurement model,

$$\delta \mathbf{y}_{jk} = \underbrace{\mathbf{D}^T \left(\check{\mathbf{T}}_k \mathbf{p}_j\right)^{\odot}}_{\mathbf{G}_{jk}} \delta \check{\boldsymbol{\xi}}_k + \mathbf{n}_{jk}$$
 (52)

we see that the coefficient matrix of the linearized measurement model is

$$\mathbf{G}_{jk} = \mathbf{D}^T \left(\check{\mathbf{T}}_k \mathbf{p}_j \right)^{\odot} \tag{53}$$

which is evaluated at the predicted mean pose, $\hat{\mathbf{T}}_k$

 ${\mathord{\text{--}}}$ to handle the case in which there are M observations of points on the vehicle, we can stack the quantities as follows:

$$\mathbf{y}_{k} = \begin{bmatrix} \mathbf{y}_{1k} \\ \vdots \\ \mathbf{y}_{Mk} \end{bmatrix}, \quad \mathbf{G}_{k} = \begin{bmatrix} \mathbf{G}_{1k} \\ \vdots \\ \mathbf{G}_{Mk} \end{bmatrix}, \quad \mathbf{R}_{k} = \operatorname{diag}(\mathbf{R}_{1k}, \dots, \mathbf{R}_{Mk}) \quad (54)$$

EKF correction step

 the Kalman gain and covariance update equations are then unchanged from the generic case:

$$\mathbf{K}_{k} = \check{\mathbf{P}}_{k} \mathbf{G}_{k}^{T} \left(\mathbf{G}_{k} \check{\mathbf{P}}_{k} \mathbf{G}_{k}^{T} + \mathbf{R}_{k} \right)^{-1}$$
 (55a)

$$\hat{\mathbf{P}}_k = (\mathbf{1} - \mathbf{K}_k \mathbf{G}_k) \, \check{\mathbf{P}}_k$$
 (55b)

 note, we must be careful to interpret the EKF corrective equations properly since

$$\hat{\mathbf{P}}_k = E\left[\delta\hat{\boldsymbol{\xi}}_k \delta\hat{\boldsymbol{\xi}}_k^T\right] \tag{56}$$

EKF correction step

- for the mean update we rearrange the equation as follows:

$$\epsilon_{k} = \underbrace{\ln\left(\hat{\mathbf{T}}_{k}\check{\mathbf{T}}_{k}^{-1}\right)^{\vee}}_{\text{update}} = \mathbf{K}_{k}\underbrace{\left(\mathbf{y}_{k} - \check{\mathbf{y}}_{k}\right)}_{\text{innovation}}$$
(57)

where ϵ_k is the difference of the corrected and predicted means and $\check{\mathbf{y}}_k$ is the measurement model evaluated at the predicted mean:

$$\dot{\mathbf{y}}_k = \begin{bmatrix} \dot{\mathbf{y}}_{1k} \\ \vdots \\ \dot{\mathbf{y}}_{Mk} \end{bmatrix}, \qquad \dot{\mathbf{y}}_{jk} = \mathbf{D}^T \, \dot{\mathbf{T}}_k \mathbf{p}_j \tag{58}$$

– we apply the mean correction, ϵ_k , according to

$$\hat{\mathbf{T}}_k = \exp\left(\boldsymbol{\epsilon}_k^{\wedge}\right) \check{\mathbf{T}}_k \tag{59}$$

which ensures the mean stays in SE(3)

EKF summary

putting all the pieces together, the EKF equations are

- we have essentially modified the EKF so that all the mean calculations occur in SE(3), the Lie group, and all of the covariance calculations occur in $\mathfrak{se}(3)$, the Lie algebra
- as usual, we must initialize the filter at the first timestep using $\check{\mathbf{T}}_0$

Batch MAP

- we can also set up point-cloud tracking as a batch MAP estimation problem for state $\mathbf{x} = \{\mathbf{T}_0, \dots, \mathbf{T}_K\}$
- as usual, we begin by defining an error term for each of our inputs and measurements
- for the inputs, $\check{\mathbf{T}}_0$ and $\boldsymbol{\varpi}_k$, we have

$$\mathbf{e}_{v,k}(\mathbf{x}) = \begin{cases} \ln \left(\check{\mathbf{T}}_0 \mathbf{T}_0^{-1} \right)^{\vee} & k = 0 \\ \ln \left(\mathbf{\Xi}_k \mathbf{T}_{k-1} \mathbf{T}_k^{-1} \right)^{\vee} & k = 1 \dots K \end{cases}$$
 (61)

where $\mathbf{\Xi}_k = \exp\left(\Delta t_k \, \boldsymbol{\varpi}_k^{\wedge}\right)$

– for the measurements, \mathbf{y}_{jk} , we have

$$\mathbf{e}_{y,jk}(\mathbf{x}) = \mathbf{y}_{jk} - \mathbf{D}^T \mathbf{T}_k \mathbf{p}_j \tag{62}$$

Error analysis

- next, we examine the noise properties of these errors so that we know how much to weight them by in our objective function
- taking the Bayesian point of view, we consider that the true pose variables are drawn from the prior so that

$$\mathbf{T}_k = \exp\left(\delta \boldsymbol{\xi}_k^{\wedge}\right) \check{\mathbf{T}}_k \tag{63}$$

where $\delta oldsymbol{\xi}_k \sim \mathcal{N}\left(\mathbf{0}, \check{\mathbf{P}}_k
ight)$

- for the first input (initial state) error, we have

$$\mathbf{e}_{v,0}(\mathbf{x}) = \ln \left(\check{\mathbf{T}}_0 \mathbf{T}_0^{-1} \right)^{\vee} = \ln \left(\check{\mathbf{T}}_0 \check{\mathbf{T}}_0^{-1} \exp \left(-\delta \boldsymbol{\xi}_0^{\wedge} \right) \right)^{\vee} = -\delta \boldsymbol{\xi}_0 \quad (64)$$

so that

$$\mathbf{e}_{v,0}(\mathbf{x}) \sim \mathcal{N}\left(\mathbf{0}, \check{\mathbf{P}}_{0}\right)$$
 (65)

Error analysis

- for the later input errors, we have

$$\mathbf{e}_{v,k}(\mathbf{x}) = \ln \left(\mathbf{\Xi}_{k} \mathbf{T}_{k-1} \mathbf{T}_{k}^{-1} \right)^{\vee}$$

$$= \ln \left(\mathbf{\Xi}_{k} \exp \left(\delta \boldsymbol{\xi}_{k-1}^{\wedge} \right) \check{\mathbf{T}}_{k-1} \check{\mathbf{T}}_{k}^{-1} \exp \left(-\delta \boldsymbol{\xi}_{k}^{\wedge} \right) \right)^{\vee}$$

$$= \ln \left(\underbrace{\mathbf{\Xi}_{k} \check{\mathbf{T}}_{k-1} \check{\mathbf{T}}_{k}^{-1}}_{1} \exp \left(\left(\mathsf{Ad}(\mathbf{\Xi}_{k}) \delta \boldsymbol{\xi}_{k-1} \right)^{\wedge} \right) \exp \left(-\delta \boldsymbol{\xi}_{k}^{\wedge} \right) \right)^{\vee}$$

$$\approx \mathsf{Ad}(\mathbf{\Xi}_{k}) \delta \boldsymbol{\xi}_{k-1} - \delta \boldsymbol{\xi}_{k}$$

$$= -\mathbf{w}_{k}$$
(66)

so that

$$\mathbf{e}_{v,k}(\mathbf{x}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_k\right)$$
 (67)

Error analysis

 for the measurement model, we consider that the measurements are generated by evaluating the noise-free versions (based on the true pose variables) and then corrupted by noise so that

$$\mathbf{e}_{y,jk}(\mathbf{x}) = \mathbf{y}_{jk} - \mathbf{D}^T \mathbf{T}_k \mathbf{p}_j = \mathbf{n}_{jk}$$
 (68)

so that

$$\mathbf{e}_{y,jk}(\mathbf{x}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{jk}\right)$$
 (69)

Objective function

- we can now construct the squared-error terms:

$$J_{v,k}(\mathbf{x}) = \begin{cases} \frac{1}{2} \mathbf{e}_{v,0}(\mathbf{x})^T \check{\mathbf{P}}_0^{-1} \mathbf{e}_{v,0}(\mathbf{x}) & k = 0\\ \frac{1}{2} \mathbf{e}_{v,k}(\mathbf{x})^T \mathbf{Q}_k^{-1} \mathbf{e}_{v,k}(\mathbf{x}) & k = 1 \dots K \end{cases}$$

$$J_{y,k}(\mathbf{x}) = \frac{1}{2} \mathbf{e}_{y,k}(\mathbf{x})^T \mathbf{R}_k^{-1} \mathbf{e}_{y,k}(\mathbf{x})$$
(70a)

where we have stacked the M point quantities together:

$$\mathbf{e}_{y,k}(\mathbf{x}) = \begin{bmatrix} \mathbf{e}_{y,1k}(\mathbf{x}) \\ \vdots \\ \mathbf{e}_{y,Mk}(\mathbf{x}) \end{bmatrix}, \qquad \mathbf{R}_k = \mathsf{diag}\left(\mathbf{R}_{1k}, \dots, \mathbf{R}_{Mk}\right)$$
(71)

the overall objective function that we will seek to minimize is then

$$J(\mathbf{x}) = \sum_{k=0}^{K} \left(J_{v,k}(\mathbf{x}) + J_{y,k}(\mathbf{x}) \right)$$
(72)

- it is fairly straightforward to linearize our error terms (in order to carry out Gauss-Newton optimization) just as we earlier linearized our motion and observation models
- we will linearize about an operating point for each pose, $\mathbf{T}_{\mathrm{op},k}$, which we can think of as our current trajectory guess that will be iteratively improved
- thus, we will take

$$\mathbf{T}_k = \exp\left(\boldsymbol{\epsilon}_k^{\wedge}\right) \mathbf{T}_{\mathrm{op},k} \tag{73}$$

where ϵ_k will be the perturbation to the current guess that we seek to optimize at each iteration

- we will use the shorthand

$$\mathbf{x}_{\text{op}} = \{\mathbf{T}_{\text{op},1}, \mathbf{T}_{\text{op},2}, \dots, \mathbf{T}_{\text{op},K}\}$$
(74)

for the operating point of the entire trajectory

- for the first input error, we have

$$\mathbf{e}_{v,0}(\mathbf{x}) = \ln\left(\check{\mathbf{T}}_0\mathbf{T}_0^{-1}\right)^{\vee} = \ln\left(\underbrace{\check{\mathbf{T}}_0\mathbf{T}_{\mathrm{op},0}^{-1}}_{\exp(\mathbf{e}_{v,0}(\mathbf{x}_{\mathrm{op}})^{\wedge})} \exp\left(-\boldsymbol{\epsilon}_0^{\wedge}\right)\right)^{\vee}$$

$$\approx \mathbf{e}_{v,0}(\mathbf{x}_{\mathrm{op}}) - \underbrace{\mathcal{J}(-\mathbf{e}_{v,0}(\mathbf{x}_{\mathrm{op}}))^{-1}}_{\mathbf{E}_0}\boldsymbol{\epsilon}_0 \quad (75)$$

where $e_{v,0}(\mathbf{x}_{op}) = \ln \left(\check{\mathbf{T}}_0 \mathbf{T}_{op,0}^{-1}\right)^{\vee}$ is the error evaluated at the operating point

– note, we have used a version of the BCH formula to arrive at the approximation on the right (i.e., assumes the perturbation is small), but this approximation will get better as ϵ_0 goes to zero, which will happen as the Gauss-Newton algorithm converges

- for the later input errors, we have

$$\begin{split} \mathbf{e}_{v,k}(\mathbf{x}) &= \ln \left(\mathbf{\Xi}_{k} \mathbf{T}_{k-1} \mathbf{T}_{k}^{-1} \right)^{\vee} \\ &= \ln \left(\mathbf{\Xi}_{k} \exp \left(\boldsymbol{\epsilon}_{k-1}^{\wedge} \right) \mathbf{T}_{\mathrm{op},k-1} \mathbf{T}_{\mathrm{op},k}^{-1} \exp \left(-\boldsymbol{\epsilon}_{k}^{\wedge} \right) \right)^{\vee} \\ &= \ln \left(\mathbf{\Xi}_{k} \mathbf{T}_{\mathrm{op},k-1} \mathbf{T}_{\mathrm{op},k}^{-1} \exp \left(\left(\mathsf{Ad} \left(\mathbf{T}_{\mathrm{op},k} \mathbf{T}_{\mathrm{op},k-1}^{-1} \right) \boldsymbol{\epsilon}_{k-1} \right)^{\wedge} \right) \\ &\times \exp \left(-\boldsymbol{\epsilon}_{k}^{\wedge} \right) \right)^{\vee} \\ &\approx \mathbf{e}_{v,k}(\mathbf{x}_{\mathrm{op}}) + \underbrace{\boldsymbol{\mathcal{J}}(-\mathbf{e}_{v,k}(\mathbf{x}_{\mathrm{op}}))^{-1} \mathsf{Ad} \left(\mathbf{T}_{\mathrm{op},k} \mathbf{T}_{\mathrm{op},k-1}^{-1} \right) \boldsymbol{\epsilon}_{k-1}}_{\mathbf{F}_{k-1}} \\ &- \underbrace{\boldsymbol{\mathcal{J}}(-\mathbf{e}_{v,k}(\mathbf{x}_{\mathrm{op}}))^{-1} \boldsymbol{\epsilon}_{k}}_{\mathbf{E}_{k}} \end{split} \tag{76} \end{split}$$
 where $\mathbf{e}_{v,k}(\mathbf{x}_{\mathrm{op}}) = \ln \left(\mathbf{\Xi}_{k} \mathbf{T}_{\mathrm{op},k-1} \mathbf{T}_{\mathrm{op},k}^{-1} \right)^{\vee}$ is the error evaluated at

the operating point

- for the measurement errors, we have

$$\mathbf{e}_{y,jk}(\mathbf{x}) = \mathbf{y}_{jk} - \mathbf{D}^{T} \mathbf{T}_{k} \mathbf{p}_{j}$$

$$= \mathbf{y}_{jk} - \mathbf{D}^{T} \exp\left(\boldsymbol{\epsilon}_{k}^{\wedge}\right) \mathbf{T}_{\mathrm{op},k} \mathbf{p}_{j}$$

$$\approx \mathbf{y}_{jk} - \mathbf{D}^{T} \left(\mathbf{1} + \boldsymbol{\epsilon}_{k}^{\wedge}\right) \mathbf{T}_{\mathrm{op},k} \mathbf{p}_{j}$$

$$= \underbrace{\mathbf{y}_{jk} - \mathbf{D}^{T} \mathbf{T}_{\mathrm{op},k} \mathbf{p}_{j}}_{\mathbf{e}_{y,jk}(\mathbf{x}_{\mathrm{op}})} - \underbrace{\left(\mathbf{D}^{T} \left(\mathbf{T}_{\mathrm{op},k} \mathbf{p}_{j}\right)^{\odot}\right)}_{\mathbf{G}_{jk}} \boldsymbol{\epsilon}_{k}$$
(77)

– we can stack all of the point measurement errors at time \boldsymbol{k} together so that

$$\mathbf{e}_{y,k}(\mathbf{x}) \approx \mathbf{e}_{y,k}(\mathbf{x}_{\mathrm{op}}) - \mathbf{G}_k \boldsymbol{\epsilon}_k$$
 (78)

$$\mathbf{e}_{y,k}(\mathbf{x}) = \begin{bmatrix} \mathbf{e}_{y,1k}(\mathbf{x}) \\ \vdots \\ \mathbf{e}_{y,Mk}(\mathbf{x}) \end{bmatrix}, \quad \mathbf{e}_{y,k}(\mathbf{x}_{op}) = \begin{bmatrix} \mathbf{e}_{y,1k}(\mathbf{x}_{op}) \\ \vdots \\ \mathbf{e}_{y,Mk}(\mathbf{x}_{op}) \end{bmatrix}, \quad \mathbf{G}_k = \begin{bmatrix} \mathbf{G}_{1k} \\ \vdots \\ \mathbf{G}_{Mk} \end{bmatrix}$$
(79)

Gauss-Newton update

 to set up the Gauss-Newton update, we define the following stacked quantities:

$$\delta \mathbf{x} = \begin{bmatrix} \epsilon_{0} \\ -\mathbf{F}_{0} & \mathbf{E}_{1} \\ -\mathbf{F}_{0} & \mathbf{E}_{1} \\ & -\mathbf{F}_{1} & \vdots \\ & & \ddots & \mathbf{E}_{K-1} \\ & & & -\mathbf{F}_{K-1} & \mathbf{E}_{K} \end{bmatrix}, \quad \mathbf{H} = \begin{bmatrix} \mathbf{E}_{0} & \mathbf{E}_{1} \\ & -\mathbf{F}_{0} & \mathbf{E}_{1} \\ & & \ddots & \mathbf{E}_{K-1} \\ & & & -\mathbf{F}_{K-1} & \mathbf{E}_{K} \\ & & & & \mathbf{G}_{2} \end{bmatrix}, \quad \mathbf{e}(\mathbf{x}_{op}) = \begin{bmatrix} \mathbf{e}_{v,0}(\mathbf{x}_{op}) \\ \mathbf{e}_{v,1}(\mathbf{x}_{op}) \\ & \vdots \\ \mathbf{e}_{v,K-1}(\mathbf{x}_{op}) \\ & \mathbf{e}_{v,K}(\mathbf{x}_{op}) \\ & \mathbf{e}_{y,K}(\mathbf{x}_{op}) \\ & \vdots \\ & \mathbf{e}_{y,K}(\mathbf{x}_{op}) \end{bmatrix}$$

and

$$\mathbf{W} = \operatorname{diag}\left(\check{\mathbf{P}}_{0}, \mathbf{Q}_{1}, \dots, \mathbf{Q}_{K}, \mathbf{R}_{0}, \mathbf{R}_{1}, \dots, \mathbf{R}_{K}\right) \tag{81}$$

which are identical to the matrices in the nonlinear version

Gauss-Newton update

– the quadratic (in terms of the perturbation, $\delta {\bf x}$) approximation to the objective function is then

$$J(\mathbf{x}) \approx J(\mathbf{x}_{\text{op}}) - \mathbf{b}^T \delta \mathbf{x} + \frac{1}{2} \delta \mathbf{x}^T \mathbf{A} \delta \mathbf{x}$$
 (82)

where

$$\mathbf{A} = \underbrace{\mathbf{H}^T \mathbf{W}^{-1} \mathbf{H}}_{\text{block-tridiagonal}}, \quad \mathbf{b} = \mathbf{H}^T \mathbf{W}^{-1} \mathbf{e}(\mathbf{x}_{\text{op}})$$
(83)

– minimizing with respect to $\delta \mathbf{x}$, we have

$$\mathbf{A}\,\delta\mathbf{x}^{\star} = \mathbf{b} \tag{84}$$

for the optimal perturbation,
$$\delta \mathbf{x}^{\star} = \begin{bmatrix} \boldsymbol{\epsilon}_0^{\star} \\ \boldsymbol{\epsilon}_1^{\star} \\ \vdots \\ \boldsymbol{\epsilon}^{\star} \end{bmatrix} \tag{85}$$

Gauss-Newton update

 once we have the optimal perturbation, we update our operating point through the original perturbation scheme,

$$\mathbf{T}_{\mathrm{op},k} \leftarrow \exp\left(\boldsymbol{\epsilon}_{k}^{\star^{\wedge}}\right) \mathbf{T}_{\mathrm{op},k}$$
 (86)

which ensures that $T_{op,k}$ stays in SE(3)

- we then iterate the entire scheme to convergence
- once again, the main concept that we have used to derive this Gauss-Newton optimization problem involving pose variables is to compute the update in the Lie algebra, $\mathfrak{se}(3)$, but store the mean in the Lie group, SE(3)

Pose-graph relaxation

- another interesting problem involving the estimation of pose variables is pose-graph relaxation
- pseudomeasurements are provided in terms of relative pose changes that are not necessarily consistent around loops
- the goal is to express the pose-graph consistently in the initial frame (see the book for details)

