DECISION MAKING AND SCENARIOS MODULE 2.4 – Evaluating Projects

Example: New Production Machine

Professor Robert Holthausen Professor Richard Lambert

Example - New Production Machine

- A company is considering purchasing a new machine that saves costs on the production of a product they sell. The machine costs \$200 million and it would save \$50 million in production costs in each of the next 5 years. The division manager expects to be able to sell the machine after 5 years for \$20 million. Assume, for simplicity that there are no working capital effects associated with the new machine and that revenues are unaffected.
- Ignoring taxes, should the machine be purchased if the discount rate is 10%

NPV =
$$-200 + (50/1.1 + 50/1.1^2 + 50/1.1^3 + 50/1.1^4 + 50/1.1^5) + (20/1.1^5) = 1.96 million$$

Accept the project

What if the tax rate is 40%. Then what happens?

 How does the initial investment change with taxes?

It doesn't. The initial investment is still -\$200.
Remember, in this case the initial investment is a capitalized cost and the after-tax outflow remains the same.

What are the annual cash flows for years 1 through 5 with taxes?
 (Assume depreciation is on a straight-line basis with a zero estimated salvage value.)

	Tax Return Cash Flows
Annual cash savings	\$ 50
Annual depreciation (\$200/5)	(40)
Annual effect on taxable income	10
Tax rate	40%

Net effect of taxes	4 ·····→ (4)
	•••••
Annual Cash Flows	<u>\$46</u>

 What is the salvage value at the end of Year 5 with taxes?

	Tax Return	Cash Flows
Original cost of project	\$ 200	
Accumulated depreciation	(200)	
Tax basis (book value for tax purposes	-0-	
Proceeds from sale	20	\$ 20
Gain on sale Tax rate	20 40%	
Net effect of taxes	8	(8)
Net Salvage Value		\$ 12 ————————————————————————————————————

Therefore...

NPV =
$$-\$200 + (\$46/1.1 + 46/1.1^2 + 46/1.1^3 + 46/1.1^4 + 46/1.1^5) + (\$12/1.1^5)$$

= $-\$18.17$ million

New Production Machine – Alternative Scenario

 Let us suppose that the accumulated depreciation was only \$150 at the end of year 5?

	Tax Return	Cash Flows
Original cost of project	\$ 200	
Accumulated depreciation	(150)	
Tax basis (book value for tax purposes	-50-)	
Proceeds from sale	20	\$ 20
Loss on sale Tax rate	(30) 40%	
Net effect of taxes	(12) *****	····· 12
Net Salvage Value		\$ 32

New Production Machine – Alternative Scenario

 But if you change the accumulated depreciation by year 5, that has to change the annual cash flows for years 1 through 5 because of the different amount of depreciation

	Tax Return Cash Flows
Net annual cash savings	\$ 50
Annual depreciation	(30)
Annual effect on taxable income Tax rate	20 40%
Net effect of taxes	8 (8)
Net Annual Cash Flows	<u>\$42</u>

What will happen to the NPV? Will it go up or down?

NPV =
$$-\$200 + (\$42/1.1 + 42/1.1^2 + 42/1.1^3 + 42/1.1^4 + 42/1.1^5) + (\$32/1.1^5)$$

= $-\$20.92$ million

ONLINE