IFOS-2016 -> Paper II

5)(d) Apply Lagrange's interpolation formula to find f(5) and f(6). given that f(1) = 2, f(2) = 4, f(3) = 8, f(7) = 128.

-> The Computational table,

$$\int_{0.5}^{1.5} \omega(x) = (x-1)(x-2)(x-3)(x-7) \left[-\frac{1}{6(x+1)} + \frac{4}{5(x-2)} - \frac{1}{(x-3)} + \frac{16}{15(x-7)} \right]$$

$$= \int_{0.5}^{1.5} \left[-\frac{5(x-2)(x-3)(x-7) + 24(x-1)(x-3)(x-7)}{-30(x-1)(x-2)(x-7) + 32(x-1)(x-2)(x-3)} \right]$$

$$= \frac{1}{30} \left[-\frac{5(x^3 - 12x^2 + 41x - 4^2) + 24(x^3 - 11x^2 + 31x - 21)}{-30(x^3 - 10x^2 + 23x - 14) + 32(x^3 - 6x^2 + 11x - 6)} \right]$$

$$= \frac{1}{30} \left[(-5 + 24 - 30 + 32)x^3 + (60 - 264 + 300 - 192)x^2 + (-205 + 744 - 690 + 352)x + 210 - 504 + 420 - 192} \right]$$

$$= \frac{1}{30} \left[21x^3 - 96x^2 + 201x - 66 \right]$$

$$= \frac{1}{30} \left[7x^3 - 32x^2 + 67x - 22 \right]$$

of
$$f(x) = \frac{1}{10} [7x^3 - 32x^2 + 67x - 22]$$

So $f(5) = \frac{1}{10} [7x^3 - 32x^2 + 67x - 22]$
 $= 38.8$

and $f(6) = \frac{1}{10} [7x^3 - (39x^36) + (67x^6) - 22]$
 $= 74$

There for $f(x) = \frac{1}{\sqrt{1-x^2}}$, $f(x) = 0.6$, $f(x) = 12$
 $f(x) = \frac{1}{\sqrt{1-x^2}}$, $f(x) = 0.6$, $f(x) = 12$
 $f(x) = \frac{1}{\sqrt{1-x^2}}$, $f(x) = 0.6$, $f(x) = 12$
 $f(x) = \frac{1}{\sqrt{1-x^2}}$, $f(x) = 0.6$, $f(x) = 0.05$
 $f(x) = \frac{1}{\sqrt{1-x^2}}$, $f(x) = 0.05$
 $f(x) = \frac{1}{\sqrt{$

7) (b) Find the cube root of 10 upto 5 significant figures by New ten-Raphson method.

 \Rightarrow let $\chi = \sqrt[3]{10} \Rightarrow \chi^3 = 10$ using Newton-Raphson Method to fox) = x2-10=0, we have the iteration formula as,

 $\chi_{n+1} = \chi_n - \frac{f(\chi_n)}{f'(\chi_n)}$ $= \chi_n - \frac{\chi_n^3 - 10}{3\chi_n^2} = \frac{2\chi_n^3 + 10}{3\chi_n^2}$

Taking xo=2, we have successive approximations,

-		χ_{n+1}
7	Xn	
\bigcirc	2	2.16667
,	2.16667	2.15450
1	2.15450	2.15443
2		2.15443
3	2.15443	
4		

3/10 = 2.1544, Corvect upto 5-significant figure.

7/(c) Use classical Fourth-order Runge-Kutta method with h=0.2 to calculate a solution at \$= 0.4 for the initial value problem $\frac{dy}{dx} = x + y^2$ with initial Condition y=1 when x=0.

For $y(0.2) \Rightarrow x_0 = 0$, $y_0 = 1$, $f(x,y) = x + y^2$ and h = 0.2

: $K_1 = hf(x_0, y_0) = 0.2 f(0,1) = 0.2$ $K_2 = h f(\chi_0 + \frac{h}{2}, \chi_0 + \frac{K_1}{2}) = 0.2 f(0.1, 1.1) = 0.262$

 $k_3 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}) = 0.2 f(0.1, 1.131) = 0.2758$

Ky=hf (xoth, Yotk3) = 0.2 f(0.2, 1.2758) = 0.3655

«. J=y(0.2)=J0+ { [K+2K2+2K3+K4] = 1+ 6 x 1.6411

=1.2735

ton 160.4) => x=0.2, 4=1.2735, h=0.2 $H = hf(x_1, H) = 0.2f(0.2, 1.2735) = 0.3644$ $K_2 = hf(x_1 + \frac{h}{2}, x_1 + \frac{h}{2}) = 0.2f(0.3, 1.4557) = 0.4838$ $K_3 = hf(\chi_1 + \frac{h}{2}, \chi_1 + \frac{k_2}{2}) = 0.2f(0.3, 1.5154) = 0.5193$ Ka=hf(x,+h,+,+K3)=0.2(0.4,1.7928)=0.7228 == d2= y(0.4)=4+ = [K1+2K2+2K3+K4] = 1.2735 + 5 × 3.0934 = 1.7891

... The solution at the point x=0.4 is 1.7891