

Source: www.gsmworld.com

GSM History

- In early 1980s, there were many incompatible cellular systems in Europe
- Standardization activities started in 1982
 - Started as Groupe Special Mobile in the 1982 CEPT (Conference of European Posts and Telegraphs)
 - Changed to Global System for Mobile Communications
 - Administered by ETSI (European Telecommunications Standardization Institute) since 1989
- Commercially launched in 1992 in Europe (900 MHz)
 - Later systems: 1800 MHz (GSM 1800)
- Launched in the US in 1996 (PCS band, 1900 MHz)
- Pan-European standard but deployed globally

Objectives

- · Total mobility
 - Automatic roaming and handoff across many networks and countries
- Security
- Compatible with PSTN networks
 - ISDN
- Efficient use of frequency spectrum
- High speech quality
- Low terminal and service costs
 - Open interfaces (specifications documents more than 5000 pages)
- Broad speech and data services offerings

Services Offered by GSM

- Follows ITU-T definitions
- Tele Services
 - Telephony, Emergency
 - SMS
 - Data Services

_ ...

- Bearer Services
 - Digital data transport: 2.4, 4.8 and 9.6 kbps
- Supplementary Services
 - Call forwarding etc...

GSM Identifiers

- Mobile Subscriber ISDN Number (MSISDN)
 - Actual phone number (ITU's E.164)
 - Strict separation between subscriber identification (IMSI) and phone number (MSISDN)
 - Several MSISDNs can be assigned to a single IMSI (for service selection)
 - The mapping between MSISDN and IMSI is not public
- International Mobile Subscriber Identifier (IMSI)
 - Unique subscriber identification, stored in the SIM-card
- International Mobile Equipment Identifier (IMEI)
 - Unique identification number of the MS

7

GSM Identifiers - cont

- Temporary Mobile Subscriber Identity (TMSI)
 - Temporary assigned to the MS by the VLR unique within the VLR
 - LAI combined with TMSI uniquely identifies MS within the network
 - Eliminates the need to transmit subscriber identity
- Mobile Station Roaming Number (MSRN)
 - Unique local ISDN number used for mobile terminating calls
- Location Area Identity (LAI)
 - To identify a location area
 - For mobility management

GSM Network Elements PLMN (Public Land Mobile Network) PLMN contains the following elements: Subscriber Identity Module SIM Mobile station MSC Mobile Switching Center MS BTS Base transceiver station VLR Visitor location registry BSC Base station controller HLR Mobile location registry · TRAU Transcoding rate EIR Equipment Identification adaptation unit registry

Network Architecture

The Base Station Subsystem BSS

- Base Transceiver Station (BTS)
 - Radio frequency domain processing
 - Radio Resource Management
- Base Station Controller (BSC)
 - Control several BTSs
 - Interface with the MSC
 - Call processing & intra-BSC handover
- Transcoding and Rate Adaptation Unit (TRAU)
 - Conversion between PCM and GSM-codec output
 - Bit rate adaption of data channels

11

The Network Subsystem NSS

- The Mobile Switching Centre (MSC)
- Gateway Mobile Switching Centre (GMSC)
- The Home Location Register (HLR)
 - Subscriber identity and service profiles
- The Visitor Location Register (VLR)
 - Location information, security information
- The Equipment Identity Register (EIR)
- The Authentication Center (AuC)

RF Channels Characteristics

- Total allocation: 50 MHz
 - 25 MHz each direction
 - 200 kHz each carrier
 - 124 pairs of FDMA super channels
- Each FDMA super-channel has a data rate of 270 kbps
 - Provides 8 TDMA traffic channels
 - Voice communications use a Residually Excited Linear Predictive (RELP) vocoder - 13 kbps
- Total of 8 x 124 = 992 full duplex RF channels

Type of Bursts

Five different types of bursts

- Normal burst
 - Traffic and control payload
- Frequency correction burst
 - All zeroes sequence
- Synchronization burst
 - A special fixed sequence
- · Random access burst
 - Extended guard period of 68.25 bits (252 μs)
- Dummy burst

Slow Frequency Hoping

- In GSM, TDMA bursts can be optionally transmitted in a pre-calculated sequence of different frequencies
 - Algorithm pre-programmed in the mobile station
- If a TDMA burst happens to be in a deep fade, then next burst most probably will not be
 - Different carrier frequency have different fading characteristics
- Effective to avoid RF quality problems caused by fading

Control Channels

- Control channels fall into three categories:
 - 1. Broadcast: BCCH, FCCH, SCH
 - One way, from base to mobile
 - 2. Common Control: RACH, AGCH, PCH
 - One way, some from base to mobile and some from mobile to the base
 - 3. Dedicated: SDCCH, SACCG, FACCH
 - Two-way, stand-alone or embedded in the traffic channels
- All signaling channels share one carrier in a cell
 - the dedicated control channels may be transmitted on traffic carriers

23

Broadcast Channels

- Frequency Correction Channel (FCCH)
 - Carries information for frequency correction
- Synchronization Channel (SCH)
 - Carries information for frame synchronization and for identification of the BTS
- Broadcast Control Channel (BCCH)
 - Broadcasts general information on the BTS
 - Broadcasts cell-specific information, e.g. control channel organization, frequency hopping sequences, cell identification, etc.

Common Control Channels

- Paging Channel (PCH) downlink only
 - for paging purposes
- Random Access Channel (RACH) uplink only
 - used by any MS to request allocation of a signalling channel (SDCCH)
 - a slotted Aloha protocol is used, so collisions among MSs may happen
- Access Grant Channel (AGCH) downlink only
 - used to allocate a SDCCH or a TCH
- Notification Channel (NCH) downlink only
 - notify MS of voice group and voice broadcast calls (ASCI feature)

2

Dedicated Control Channels

- Stand Alone Dedicated Control Channel (SDCCH)
 - used for call setup (authentication, signaling, traffoc channel assignment), location updates and SMS
- Slow Associated Control Channel (SACCH)
 - always coupled with a SDCCH or TCH
 - for communicating measurement data and control parameters
- Fast Associated Control Channel (FACCH)
 - to response to increased signaling demand, e.g. during handover
 - bandwidth (bit slots) are stolen from the associated TCH (traffic data are preempted)

Traffic Channels

- GSM support two types of traffic channels
 - full rate (TCH/F): 22.8 kbps
 - half rate (TCH/H): 11.4 kbps
- Mapping to physical channel
 - full rate traffic channel 1 timeslot
 - half rate traffic channel 1 timeslot in alternating frames
- Full rate channel may carry
 - 13 kbps speech or data at 2.4, 4.8 or 9.6 kbps
- Half rate channel may carry
 - 6.5 kbps speech or data at 2.4 or 9.6 kbps

2

Control and Traffic Channels

- The carriers in a given cell are separated by Nx200 kHz
 - N is the frequency reuse cluster size (4 in GSM)
- The traffic carriers have 26-multi-frame structure
- The control carrier has 51-multi-frame structure
- The control carrier has higher energy than traffic carriers

Logical Channels Summary

- Traffic and Control (or Signaling)
- Two types of *traffic channels*: full rate and half-rate
- Control channels are divided into three groups
 - Broadcast (BCH)
 - point to multi-point
 - · downlink only
 - Common (CCH)
 - bi-directional
 - · shared by more than one MSs
 - Dedicated (DCH)
 - point-to-point
 - · bi-directional
 - · assigned to a particular MS

GSM Networking Features

- · Global roaming
 - Most operators support international roaming
 - Including roaming between different frequency bands
- Mobile Application Part (MAP) is the primary networking protocol
- Utilize Intelligent Network technologies
 - SS #7
 - SCP
 - CAMEL (Customized Applications for Mobile Enhanced Logic) in Phase 2+
- Open interfaces between network elements

GSM Signaling

- Network elements (e.g. MSC and HLR) exchange signaling information via messages
- On the NSS side, signaling messages are exchanged using *MAP* (*Mobility Application Part*) protocol
 - Between MSC, HLR, VLR, EIR and AuC
- MAP is built on top of SS #7 protocol suite
 - TCAP (Transaction Capability Application Part)
 - SCCP (Signaling Connection Control Part)
 - MTP (Message Transfer Part)
- GSM signaling is very messaging-intensive

GSM Network Layer

GSM network layer is divided into three sublayers

- Radio Resource Management (RR)
 - Manage RF channels
 - Establishment, maintenance and termination of RF connections
- Mobility Management (MM)
 - Location registration, location tracking and security processing
- Connection Management (CM)
 - Establishment, maintenance and termination of circuitswitched calls

43

Mobility Management

- Location registration and update
 - IMSI attach and detach
 - Location updates to keep MS's data in VLR and HLR current
- Location tracking
 - HLR and VLR
- Network security
 - via authentication triplets
- Handover

VLR - Visitor Location Register

- Each MS currently in the location area served by the VLR has an entry in the VLR database
- Major fields in the VLR database include
 - IMSI
 - TMSI
 - Current location area
 - Supplementary service information
 - Authentication triplets from HLR
 - HLR number

4:

Location Registration

- Required when the MS is about to receive network services (deregistration when about to leave)
- IMSI Attach power up
 - MS registers with the network using IMSI
 - A TMSI is assigned and is stored in the SIM-card
 - All subsequent network transactions use TMSI
- IMSI Detach
 - When the MS deems not to be in the Location Area, it is detached from the VLR
 - e.g. power down
- The HLR knows the current location of the MS
 - The VLR reports the location of the MS to the HLR

Location Update

- Required when MS enters a new Location Area
- Or initiated by the MS periodically timer based
- Update of entries in HLR and VLR
- Might lead to a change of the current VLR
- Two types of Location Update
 - Intra-VLR
 - Inter-VLR (MS's data in the old VLR is deleted)

Mobility Management Network Security

- Location registration and location update always requires authentication
- Each authentication transaction consumes one authentication triplet
- An MS's entry in the VLR contains a set of triplets for that particular MS
- When remaining triplets is below a certain threshold, the VLR requests a new set from the HLR

49

Network Security

- Access control and authentication
 - secret PIN (personal identification number)
 - challenge and response process
- Confidentiality of traffic
 - voice and signaling encrypted on the wireless link after successful authentication
- Anonymity
 - TMSI Temporary Mobile Subscriber Identity
 - encrypted signaling data

Ciphering Algorithms

- Three ciphering algorithms are specified in GSM
 - A3 for authentication
 - A5 for encryption
 - A8 for key generation

Call Processing Mobile Originating

- 1,2: connection request
- 3,4: security check
- 5-8: check resources
 - (free circuit)
- 9,10: set up call

GSM Handover

Three types:

1. Intra-BSC

- Old and new BTSs are controlled by the same BSC
- The MSC is not involved

2. Intra-MSC

- Old and new BTSs are attached to different BSCs
- The BSCs are attached to the same MSC

3. Inter-MSC

- Handover to a new MSC
- Serving MSC becomes anchor MSC
- IMT (Inter Machine Trunk) is required

59

GSM Handover Characteristics

- For an inter-MSC handover, the anchor MSC remains responsible of most call related functions
- Mobile Assisted Hand Over (MAHO)
 - During idle time slots, the MS scans the BCCH of up to 16 neighboring cells and forms a list of 6 candidates
 - This information is sent to the BSC and MSC at least once per second
- The MSC can initiate a handover for traffic balancing purposes

Short Message Services

- Ability to send and receive alphanumeric messages
 - up to 160 characters
 - store and forward
 - guaranteed delivery regardless state of the MS
 - can be stored in the SIM for later retrieval
- SM-SC (Short Message Service Center)
 - responsible for storing and relaying messages
 - transportation of messages to and from MSs using SM-TP (Short Message Transport Protocol)
 - outside of the scope of GSM specifications

6

GSM Phases

- Since the beginning, GSM was designed to be deployed in phases
- **Phase 1** until 1996
 - Standard tele-, bearer- and supplementary services
- Phase 2 replaced Phase 1 in 1997
 - Additional services, e.g. SMS
 - GSM 900 and DCS 1800 merger
 - Half Rate and Enhanced Full Rate vocoders

GSM Phases - cont

- **Phase 2+** yearly releases 1996 to 1999
 - More supplementary services
 - High Speed Circuit Switched Data (HSCSD) (14.4 Kbps and higher)
 - General Packet Radio Service (GPRS)
 - Advanced Speech Call Items (ASCI)
 - Expanded Service Platforms (CAMEL)
- Phase 3 Enhanced Data for GSM Evolution (EDGE)
 - Same TDMA frame structure but with 8-PSK modulation (3 bits/symbol)
 - High-speed wireless data services

63

ASCI

- Advanced Speech Call Items
- For Professional Mobile Radio (PMR) sectors, e.g.
 - police and fire departments
 - transportation companies
 - airports and railways (GSM-R)
- PMR requires special functions for
 - group communications
 - priority schemes (emergencies)

ASCI - cont

- The Advanced Speech Call Items:
 - Voice Broadcast Service (VBS)
 - Call to all users of a closed group within a Group Call Area
 - Voice Group Call Service (VGCS)
 - Call to all group members, originating from any user (semiduplex)
 - Enhanced Multi-Level Precedence and Pre-emption Service (eMLPP)
 - Definition of priority levels for critical missions and emergencies

GSM Status

- A run-away success!!
 - More than ½ billion of subscribers globally (Jun 2001)
- Many innovations for wireless communications systems
 - Networking technology is used as a base for 3G wireless systems (MAP)
 - SIM cards to provide personal mobility
- SMS service are becoming very popular
 - Billions of messages sent and received every month!!
- Evolving towards 3G
 - GPRS as the stepping stone (2.5G)

67

GSM Specifications

- 00 Series: Preamble
- 01 Series: GSM overview
- 02 Series: Service aspects
- 03 Series: Network architecture, call routing, performance objectives
- 04 Series: Interface and protocols between mobiles and BSS
- 05 Series: Physical layer on radio path: multiple access, channel coding, modulation, transmission

GSM Specifications

- 06 Series: Speech coding aspects
- 07 Series: Terminal adaptors for mobile stations
- 08 Series: Base station and MSC interface
- 09 Series: Interworking with PSTN and packet data networks
- 10 Series: Service interworking, short message service
- 11 Series: Equipment specification
- 12 Series: Operation and maintenance, tariffs, traffic administration

www.etsi.org

http://ccnga.uwaterloo.ca/~jscouria/GSM/gsmreport.html www.iec.org/online/tutorial/