Portas e Álgebra Booleana

CSI202 - Organização e Arquitetura de Computadores I

Prof. Eduardo Ribeiro UFOP-ICEA-DECSI

Bibliografia

Tecnologia para Construir Processadores e Memória

- → Um transistor é simplesmente um interruptor liga/desliga controlado por eletricidade
- → O circuito integrado (IC) combinou dezenas a centenas de transistores em um único chip.
- → VLSI, para integração em grande escalacircuit.
- → Silicon
- → Semiconductor

Tecnologia para Construir Processadores e Memória

- A fabricação de um chip começa com o silício, substância encontrada na areia.
- Como o silício não conduz bem a eletricidade, é chamado de semicondutor.
- Com um processo químico especial, é possível adicionar materiais ao silício que permitem que pequenas áreas se transformem em um dos três dispositivos:
 - Excelentes condutores de eletricidade (usando fio microscópico de cobre ou alumínio)
 - Excelentes isolantes de eletricidade (como revestimento de plástico ou vidro)
 - Áreas que podem conduzir ou isolar em condições especiais (como interruptor)

1.5 Tecnologia para Construir Processadores e Memória

→ lingote de cristal de silício

 Uma haste composta de um cristal de silício que tem entre 20 e 30 cm de diâmetro e cerca de 30 a 60 cm de comprimento.

→ Wafer

 Uma fatia de um lingote de silício não tem mais de 0,2 cm de espessura, usado para criar chips.

https://youtu.be/bor0qLifjz4

https://youtu.be/_VMYPLXnd7E

1.5 Tecnologia para Construir Processadores e Memória

Videos sobre construção de Chips

- https://www.youtube.com/watch?v=P-vZfYO-gel
- https://www.youtube.com/watch?v=Fxv3JoS1uY8
- https://www.youtube.com/watch?v=Q5paWn7bFg4

Portas e Álgebra Booleana

- Definição de portas.
- Tabela verdade.
- Representação de circuitos lógicos.

In	Out	
0	1	
1	0	

Portas Lógicas - AND

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

• https://nandgame.com

A	В	(A.B)'
0	0	1
0	1	1
1	0	1
1	1	0

Portas Lógicas - OR

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Portas Lógicas - XOR

Álgebra Booleana - Propriedades

- Lei da identidade:
 - \circ A + 0;
 - \circ A.1 = A
- Lei de zero e um:
 - \circ A+ 1=1
 - \circ A.0 = 0
- Lei inversa

 - \circ A.A' = 0

- Leis da comutatividade:
 - \circ A + B = B + A;
 - \circ A.B = B.A
- Lei da associatividade
 - $\bigcirc \quad A + (B+C) = (A+B) + C$
 - \circ A. (B.C) = (A.B).C
- Lei distribuitiva
 - \circ A. (B+C) = (A.B) + (A.C)
 - $\bigcirc \quad A+(B.C)=(A+B).(A+C)$

Álgebra Booleana - Propriedades

• Lei de DeMorgan:

$$\circ \quad (AB)' = A' + B'$$

$$\circ \quad (A+B)' = A' \cdot B'$$

A NAND gate is equivalent to an inversion followed by an OR

A NOR gate is equivalent to an inversion followed by an AND

As duas equações lógicas são equivalentes?

- (A.B.C') + (A.C.B') + (B.C.A')
- B.(A.C' + C.A')

- Considere a seguinte função F(A,B,C) =
 A*B*C+A*B'*(A'*C')' onde o símbolo' representa o
 complemento. Como soma de produtos, essa função
 pode ser simplificada da seguinte forma:
 - O (A) A*B*C+A*B'+A*B'*C
 - O (B) A*B*C
 - (C) A*B*C+A*B'*C'+A*B'*C
 - \circ (D) (A'+C')*(A'+B)
 - (E) A*C+A*B′

Considere o fragmento de PAL (Programmable Array Logic). O 'x' representa uma conexão ativa na matriz de portas AND. Qual a expressão lógica correspondente à saída O1?

- a) (ABD)'E + A(CD)' + B'CE'
- b) A'BDE' + ACD' + (BC)'E
- c) A(BD)'E + (AC)'D + BCE'
- d) AB'DE + AC'D + B'CE'
- e) ABDE' + A'CD'+ (BC)'E

- a) x.y
- b) a+b+c
- c) a.y.c'
- d) a'+ b'+ c'
- e) a.b.c

- Dica: Teorema de deMorgan com 3 entradas:
 - $\bigcirc A' + B' + C' = (ABC)'$
 - \circ A'.B'.C' = (A+B+C)'

- a) S = A(BC)'
- \bullet b) S = A + BC'
- \bullet c) S = AB + C'
- d) S = (ABC)'
- \bullet e) S = ABC'

• Dica: Teorema de deMorgan

Circuitos Combinacionais

State	S	R	Q	Q	Description
Set	1	0	0	1	Set Q' » 1
	1	1	0	1	no change
Reset	0	1	1	0	Reset Q' » 0
	1	1	1	0	no change
Invalid	0	0	1	1	Invalid Condition

