Anders: гомотопічна бібліотека

${ m Makcum}$ ${ m Coxallbku}{ m i}^1$

 1 Інститут математики «Групоїд Інфініті» 26листопада 2023

Анотація

Тут представлена базова гомотопічна бібліотека мови **Anders** для курсу «Теорія типів», яка сумісна з позначеннями, що використовуються в підручнику НоТТ. Серед принципів, які покладені в основу бібліотеки, головними є: лаконічность, академічність, педагогічність. Кожна сторінка має на меті повністю висвітлити компоненти типу, використовуючи тільки ті типи, що були викладені попередньо, кожне визначення повинно містити як математичну нотацію так і код верифікатора та бути вичерпним посібником користувача мови програмування **Anders** та її базової бібліотеки. Загалом передбачається, що бібліотека повинна відповідати підручнику НоТТ, та бути його практичним досліднидницьким артефактом.

Ключові слова: Теорія типів, формалізація математики

Теорія типів

Теорія типів — це універсальна мова програмування чистої математики (для доведення теорем), яка може містити довільну кількість консистентних аксіом, впорядкованих у вигляді псевдо-ізоморфізмів: 1) сигнатури типу або формації; 2) функції епсоde, способи конструювання елементів типу або конструкція; 3) функції decode, залежні елімінатори принципу індукції типу або елімінація; 4) рівняння бета правила або обчислювальності; 5) рівняння ета правила або унікальності. Таке визначення було дано Мартіном-Льофом, від чого теорія типів носить його ім'я МLТТ.

Головна мотивація гомотопічної теорії — надати обчислювальну семантику гомотопічним типам та СW-комплексам. Головна ідея гомотопічної теорії [1] полягає в поєднанні просторів функцій, просторів контекстів і просторів шляхів таким чином, що вони утворюють фібраційну рівність яка збігається (доводиться в самій теорії) з простором шляхів.

Завдяки відсутності ета-правила у рівності, не кожні два доведення одного простору шляхів дорівнюють між собою, отже простір шляхів утворює багатовимірну структуру інфініті-групоїда.

Основи

Перша частина базової бібліотеки — модальні унівалентні МLTT основи, що розділені на три групи. Перша група містить класичні типи MLTT системи описані Мартіном-Льофом, які присутні у мовах **Per** та **Anders**. Друга група містить унівалентні ідентифікаційні системи мови **Anders**. Третя група містить модальності мови **Anders**, які використовуються в диференціальній геометріїї та в теорії гомотопій. Основи пропонують фундаментальний базис який використовується для формалізації сучасної математики в таких системах доведення теорем як: Coq, Agda, Lean.

- Фібраційні
- Унівалентні
- Модальні

Математики

Друга частина базової бібліотеки **Anders** містить формалізації математичних теорій з різних галузей математики: аналіз, алгебра, геометрія, теорія гомотопій, теорія категорій.

Слухачам курсу (10) пропонується застосувати теорію типів для доведення початкового але нетривіального результу, який є відкритою проблемою в теорії типів для однеї із математик, що є курсами на кафедрі чистої математики (КМ-111):

- Функціональний аналіз
- Гомологічна алгебра
- Диференціальна геометрія
- Теорія гомотопій
- Теорія категорій

Програми

Третя частини базової бібліотеки, присутня у мовах **Per** та **Anders**, присвячена прикладам з промислового програмування в області автоматизації підприємств та інформаційних технологій, а саме для специфікації програмних інтерфейсів.

- Формалізація двонаправленого тракту
- Формалізація графічного веб інтерфейсу
- Формалізація бази даних з єдиним простором ключів
- Формалізація реляційної бази даних
- Формалізація системи управління процесами

Філософії

З сучасників формальною філософією в НоТТ загалом займається Девіт Корфілд, а формалізацією свідомості як окремий предмет вивчають Хенк Барендрехт та Горо Като. Формальна теорія природніх мов теж формалізується за допомогою МІТТ, а основні теореми доводять в НоТТ. В четвертій частині базової бібліотеки **Anders** наводяться приклади програм, які маніфестують висловлювання і теореми з формальної філософії про пустотність всіх феноменів та синтаксис, морфологію і семантику природньої української мови.

- Формалізація Мадг'яміки
- Формалізація української мови в кванторах

Структура верифікатора

На відміну від одноаксіоматичного верифікатора **Henk**, який містить тільки один індексований всесвіт U_i , рівність за визначенням для примітивів єдиного П-типу, та функція верифікації **type**, верифікатори **Per** і **Anders** містять додатково Σ -тип для контекстів та телескопів, більш деталізовану функцію типізації τ , та багато інших досніпових модулів, крім П-типу, але які теж підпорядковуються системі типів Мартіна-Льофа.

Космос \mathbb{N} -індексованих всесвітів ω

В теорії типів всі сигнатури всіх типів живуть в ієрархіях всесвітів індексованих натуральними числами. Множина таких ієрархій називається космосом. В імплементаціях $\mathbb N$ завжди реалізовано як Big Integer. Верифікатор **Anders** має наступний космос $\omega = \{\mathbf U_i, \mathbf V_i\}$.

Рівність $=_{def}$ з точністю до α - β конверсій

Рівність за визначенням двох термів означає, що за допомогою серії альфа та бета перетворень можна довести що терми дорівнюють посимвольно. Саме ця функція повинна бути імплементована для всіх типів у верифікаторі. Програми, які доводять рівність двох термів в теорії самого верифікатора за допомогою =-тип чи інших ідентифікаційних систем, як ≡-типи чи інші, називаються пропозиціональними рівностями.

Функція верифікації au

Головна функція верифікації розпадається на систему взаємозалежних функцій $\tau = \{\text{infer}, \text{app}, \text{check}, \text{act}, \text{conv}, \text{eval}\}$, які повинні бути імплементовані для кожного типу, вбудованого в верифікатор.

Контексти та телескопи Σ

В теорії типів контексти, як алгебраїчні послідовності які містять сигнатури, які теж у свою чергу складаються з послідовністей пар, що складаються з імені змінної та її типу, визначаються Σ -типами.

Досніпові модулі ∫ вбудованих типів

Кожен досніповий модуль повинен бути представлений у вигляді п'яти синтаксичних примітивів: 1) формації; 2) конструкції; 3) елімінації; 4) обчислювальності; 5) унікальності. Ці примітиви повинні бути узгоджені в сенсі Мартіна-Льофа та представлені у цій статті, як документація на бібліотеку верифікатора, як у тому числі дає формальне визначення примітивам в конкретній теорії $\int = \{\Pi, \Sigma, =, \mathbf{W}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{Path}, \mathbf{Glue}\}.$

1 Простори функцій

 Π -тип — це простір, що містить залежні функції, кодомен яких залежить від значення з домену. Так як всі розшарування домену присутні повністю в кожній функції з простору, Π -тип також називається залежним добутком, так як фунція визначена на всьому просторі домена.

Простори залежних функції використовуються в теорії типів для моделювання різних математичних конструкцій, об'єктів, типів, просторів, а також їхніх відображень: залежних функцій, неперервниї відображень, етальних відображень, розшарувань, квантора узанальнення ∀, імплікації, тощо.

1.1 Формація

Визначення 1.1 (П-формація, залежний добуток). П-типи репрезентують спосіб створення просторів залежних функцій $f: \Pi(x:A), B(x)$ в певному всесвіті U_i , з доменом в A і кодоменом в сім'ї функцій $B: A \to U_i$ над A.

$$\Pi: U =_{def} \prod_{x:A} B(x).$$

$$\begin{array}{lll} \text{def Pi } (A : U) & (B : A \rightarrow U) : U \\ := \Pi & (x : A), B(x) \end{array}$$

1.2 Конструкція

Визначення 1.2 (λ -функція). Лямбда конструктор визначає нову лямбда функцію в просторі залежних функцій, вона ще називається лямбда абстракцією і позначається як $\lambda x.b(x)$ або $x \mapsto b(x)$.

$$\lambda(x:A) \to b(x): \Pi(A,B) =_{def}$$

$$\prod_{A:U} \prod_{B:A \to U} \prod_{a:A} \prod_{b:B(a)} \lambda x.b.$$

def lambda (A: U) (B: A
$$\rightarrow$$
 U) (b: Pi A B)
: Pi A B := λ (x : A), b(x)

def lam (A B: U) (f: A
$$\rightarrow$$
 B)
: A \rightarrow B := λ (x : A), f(x)

Коли кодомен не залежить від значеення з домену функції $f:A\to B$ розглядаються в контексті System F_ω , залежний випадок розглядається в Systen P_ω aбо Calculus of Construction (CoC).

1.3 Елімінація

Визначення 1.3 (Принцип індукції). Якшо предикат виконується для лямбда функції тоді існує функція з простору функцій в простіп предикатів.

def
$$\Pi$$
-ind (A : U) (B : A \rightarrow U) (C : Pi A B \rightarrow U) (g: Π (x: Pi A B), C x) : Π (p: Pi A B), C p := λ (p: Pi A B), g(p)

Визначення 1.3.1 (λ -аплікація). Застосування функції до аргументів редукує терм використовуючи рекурсивну підстановку аргументів в тіло функції.

$$f \ a : B(a) =_{def} \prod_{A:U} \prod_{B:A \to U} \prod_{a:A} \prod_{f:\prod_{a:A} B(a)} f(a).$$

def apply (A: U) (B: A
$$\rightarrow$$
 U) (f: Pi A B) (a: A) : B a := f(a) def app (A B: U) (f: A \rightarrow B) (x: A): B := f(x)

Визначення 1.3.2 (Композиція функцій).

$$def \circ^{T} (x y z: U) : U$$
:= $(y \to z) \to (x \to y) \to (x \to z)$

1.4 Обчислювальність

Теорема 1.4 (Обчислювальність Π_{β}). β -правило показує, що композиція \limsup о арр може бути скорочена (fused).

$$f(a) =_{B(a)} (\lambda(x : A) \to f(a))(a).$$

def
$$\Pi$$
- β (A : U) (B : A \rightarrow U) (a : A) (f : Pi A B)
: Path (B a) (apply A B (lambda A B f) a) (f a)
:= idp (B a) (f a)

1.5 Унікальність

Теорема 1.5 (Унікальність Π_{η}). η -правило показує, що композиація арр о lam можу бути скоронеча (fused).

$$f =_{(x:A)\to B(a)} (\lambda(y:A)\to f(y)).$$

2 Простори контекстів

 Σ -тип — це простір, що містить залежні пари, де тип другого елемента залежить від значення першого елемента. Оскільки в кожній визначеній парі присутня лише одна точка домену волокна, — тип також є залежною сумою, де основа волокна є непересічним об'єднанням.

Простори залежних пар використовуються в теорії типів для моделювання декартових добутків, непересічних сум, розшарувань, векторних просторів, телескопів, лінз, контекстів, об'єктів, алгебр, квантору існування \exists , тощо.

2.1 Формація

Визначення 2.1 (Σ -формація, залежна сума). Тип залежної суми індексований типом A в сенсу кодобутку або диз'юнктивної суми, де тільки одне волокно кодомену B(x) присутнє в парі.

$$\Sigma: U =_{def} \sum_{x:A} B(x).$$

$$\begin{array}{lll} def & Sigma & (A:\ U) & (B:\ A \rightarrow U) & :\ U \\ := & \Sigma & (x:\ A) \; , \; B(x) \end{array}$$

2.2 Конструкція

Визначення 2.2 (Залежна пара). Конструктор залежної пари — це спосіб визначення індексованої пари над типом A елементу кодобутку або диз'юнктивного об'єднання.

$$\mathbf{pair}: \Sigma(A,B) =_{def}$$

$$\prod_{A:U} \prod_{B:A \to U} \prod_{a:A} \prod_{b:B(a)} (a,b).$$

2.3 Елімінація

Визначення 2.3 (Проекції). Залежні проекції $pr_1: \Sigma(A,B) \to A$ і $pr_2: \Pi_{x:\Sigma(A,B)}B(pr_1(x))$ є деконструкторами пари.

$$\begin{split} \mathbf{pr}_1 : \prod_{A:U} \prod_{B:A \to U} \prod_{x:\Sigma(A,B)} A \\ =_{def} .1 =_{def} (a,b) \mapsto a. \\ \mathbf{pr}_2 : \prod_{A:U} \prod_{B:A \to U} \prod_{x:\Sigma(A,B)} B(x.1) \\ =_{def} .2 =_{def} (a,b) \mapsto b. \end{split}$$

def pr₁ (A: U) (B: A
$$\rightarrow$$
 U) (x: Sigma A B) : A := x.1 def pr₂ (A: U) (B: A \rightarrow U) (x: Sigma A B) : B (pr₁ A B x) := x.2

Якшо ви хочете доступитися до глибокого (>1) поля в сігма-типі — ви повинні використати серію елімінаторів .2, яка закінчується елімінатором .1.

Визначення 2.3.1 (Принцип індукції Σ). Каже, що предикат, який виконується для двох проекцій, він виконується також і для всього простору пар.

```
def \Sigma-ind (A : U) (B : A \rightarrow U)

(C : \Pi (s: \Sigma (x: A), B x), U)

(g: \Pi (x: A) (y: B x), C (x,y))

(p: \Sigma (x: A), B x) : C p := g p.1 p.2
```

2.4 Обчислювальність

Визначення **2.4** (Σ -обчислювальність).

def
$$\Sigma - \beta_1$$
 (A : U) (B : A \rightarrow U) (a : A) (b : B a)
: Path A a (pr₁ A B (a, b)) := idp A a
def $\Sigma - \beta_2$ (A : U) (B : A \rightarrow U) (a : A) (b : B a)
: Path (B a) b (pr₂ A B (a, b)) := idp (B a) b

2.5 Унікальність

Визначення 2.5 (Σ -унікальність).

```
def \Sigma-\eta (A : U) (B : A \rightarrow U) (p : Sigma A B) 
 : Path (Sigma A B) p (pr<sub>1</sub> A B p, pr<sub>2</sub> A B p) 
 := idp (Sigma A B) p
```

3 Ідентифікаційні простори

=-тип — це індуктивна родина функій індексована елементами x,y:A, які містять доведення того факту, що ці елементи рівні між собою x=y.

3.1 Формація

Definition 3.1 (=-формація, родина залежних функцій). Індуктивна родина $Id_V: A \to A \to V$ з доменом і кодоменом у всесвіті V представляє елементи, що містять доведення факту, що індексовані x,y:A елменти рівні між собою.

$$=: U =_{def} \prod_{A:V} \prod_{x,y:A} \mathbf{Id}_V(A,x,y).$$

$$\begin{array}{lll} \text{def} & \text{IdV} & (A\colon\thinspace V) & (x\ y\colon\thinspace A) \\ \colon & V \ := \ \text{Id} & A\ x\ y \end{array}$$