

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Фундаментальные науки»

КАФЕДРА «Прикладная математика»

ДОМАШНЕЕ ЗАДАНИЕ ПО ПРЕДМЕТУ:

МЕТОДЫ ЧИСЛЕННОГО РЕШЕНИЯ <u>ЗАДАЧ ЛИНЕЙНОЙ АЛГЕБРЫ</u> Вариант №3

Выполнил: студент группы ФН2-32М Матвеев Михаил

Проверил:

Родин А. С.

Содержание

1	Пос	станови	ка домашнего задания	2
2	Зад	ача №	1	3
	2.1	Постаі	новка задачи	3
	2.2	Приме	еняемые методы	4
		2.2.1	Преобразования Хаусхолдера	4
	2.3	Резуль	ьтаты расчётов	8
	2.4	Код ре	ешения	9
3	Зад	ача №	2	10
	3.1	1 Постановка задачи		
	3.2 Применяемые методы			
		3.2.1	Базовый итерационный QR-алгоритм	11
		3.2.2	Приведение матрицы к форме Хессенберга методом Хаус-	
			холдера	12
		3.2.3	Итерационный QR-алгоритм со сдвигом	13
		3.2.4	Метод Гивенса для неявного QR - алгоритма со сдвигом .	14
		3.2.5	Неявный QR-алгоритм со сдвигом	15
	3.3	.3 Результаты расчётов		16
	3.4	Код решения		17
4	Вы	воды		18

1 Постановка домашнего задания

Нужно сформировать матрицу размером 10х10 по следующему принципу. В качестве базовой матрицы берется известная матрица, которая получается после дискретизации одномерного оператора Лапласа методом конечных разностей или методом конечных элементов на равномерной сетке:

$$A_0 = \begin{pmatrix} 2 & -1 & 0 & 0 & \cdots & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & \cdots & \cdots & \cdots & 0 \\ & & & \ddots & & & & \\ 0 & \cdots & \cdots & \cdots & \cdots & -1 & 2 & -1 & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 2 & -1 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 & 2 & -1 \end{pmatrix}$$

Для данной матрицы известны аналитические формулы для собственных значений (n=10):

$$\lambda_j^0 = 2(1 - \cos(\frac{\pi j}{n+1})), \quad j = 1, \dots, n$$
 (1)

и компонент собственных векторов (вектора имеют 2-норму равную 1):

$$z_j^0(k) = \sqrt{\frac{2}{n+1}} \sin(\frac{\pi j k}{n+1}), \quad k = 1, \dots, n$$
 (2)

Итоговая матрица получается по формулам:

$$A = A_0 + \delta A,$$

$$\delta A_{ij} = \begin{cases} \frac{c}{i+j}, & i \neq j \\ 0 & i = j \end{cases},$$
$$c = \frac{N_{var}}{N_{var} + 1} \varepsilon,$$

где N_{var} - номер варианта (совпадает с номером студента в списке в журнале группы), ε - параметр, значение которого задаётся далее.

2 Задача №1

2.1 Постановка задачи

Взять матрицу A для значения $\varepsilon=0.1$, убрать последний столбец и сформировать из первых 9 столбцов матрицу \hat{A} размера 10х9. Решить линейную задачу наименьших квадратов для вектора невязки

$$r = \hat{A}x - b,$$

где вектор b размерности 10x1 нужно получить по следующему алгоритму: выбрать вектор x_0 размерности 9x1 и для него вычислить $b = \hat{A}x_0$.

Для решения поставленной задачи использовать QR разложение: для вариантов с четным номером использовать соответствующий алгоритм, основанный на методе вращений Гивенса, для вариантов с нечетным номером – алгоритм, основанный на методе отражений Хаусхолдера. После получения решения сделать оценку величины $\frac{\|x-x_0\|_2}{\|x_0\|_2}.$

2.2 Применяемые методы

2.2.1 Преобразования Хаусхолдера

Преобразованием Хаусхолдера (или отражением) называется матрица вида

$$P = I - 2uu^T, (3)$$

где вектор u называется вектором Хаусхолдера, а его норма $\|u\|_2=1$. Матрица P симметрична и ортогональна, она называется отражением, потому что вектор Px является отражением вектора x относительно плоскости, проходящей через 0 перпендикулярно к u.

Пусть дан вектор x. Тогда легко найти отражение $P=I-2uu^T$, аннулирующее в векторе x все компоненты, кроме первой: $Px=[c,0,\dots,0]^T=c\cdot e_1$. Это можно сделать следующим образом. Имеем $Px=x-2u(u^Tx)=c\cdot e_1$, поэтому $u=\frac{1}{2(u^Tx)}(x-ce_1)$, т.е. u есть линейная комбинация векторов x и e_1 . Так как $\|x\|_2=\|Px\|_2=|c|$, то u должен быть параллелен вектору $\tilde{u}=x\pm\|x\|_2e_1$, откуда $u=\frac{\tilde{u}}{\|\tilde{u}\|_2}$. Воспользуемся формулой $\tilde{u}=x+sgn(x_1)e_1$, так как в этом случае не будет взаимного сокращения при вычислении первой компоненты в \tilde{u} . Итак, имеем

$$\tilde{u} = \begin{bmatrix} x_1 + sgn(x_1) \cdot ||x||_2 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad u = \frac{\tilde{u}}{\|\tilde{u}\|_2}$$

Мы будем записывать данное преобразование как u = house(x). После вычисления вектора Хаусхолдера получим отражение Хаусхолдера по формуле (3). Далее умножаем матрицу, которую мы и хотим разложить на матрицы Q и R, на матрицу P слева. Данное действие аннулирует поддиагональные элементы матрицы A. Приведём общий алгоритм QR - разложения, основанный на использовании отражений.

```
input : Матрица A[m x n]
output: Матрицы R и Q

1 m, n = A.shape;
2 Q = np.identity(m);
3 R = np.copy(A);
4 for i in range(min(m, n)): u = house(A[i:, i]);
5 P = I - 2uu<sup>T</sup>;
6 A = P @ A;
7 Q = Q @ P;
```

Обсудим некоторые детали реализации метода. Для хранения матрицы P_i достаточно запомнить лишь вектор u_i . Эта информация может храниться в столбце i матрицы A_i . Таким образом, QR - разложение может быть записано на место матрицы A, причём P_i хранится в виде вектора u_i в поддиагональных позициях столбца i матрицы A. Так как диагональные позиции заняты элементами R_{ii} , нужно создать дополнительный массив для хранения первых элементов векторов u_i .

Так как мы решаем задачу наименьших квадратов $min \|Ax - b\|_2$ с помощью разложения A = QR, решение мы получаем, решая систему уравнений

$$x = R^{-1}Q^Tb.$$

В случае неявного QR-разложения (когда Q хранится в факторизованной форме P_1, \dots, P_{n-1} , а P_i хранится в виде вектора u_i в поддиагональных позициях столбца i матрицы A) нужно вычислить вектор Q^Tb . Это делается следующим образом $Q^Tb = P_nP_{n-1}\cdots P_1b$, поэтому b нужно последовательно умножать на P_1, P_2, \dots, P_n :

Описание алгоритмов

Обычный метод for i in range(n): (цикл по строкам)

- 1. подготавливаем матрицу P_i (единичная матрица размера m x m, где m количество строк);
- 2. в начале каждой итерации выбираем столбец матрицы А (не весь столбец, а элемент на диагонали и элементы под диагональю) в качестве вектора х;
- 3. применяем к вектору х метод house для получения вектора Хаусхолдера размера m i;
- 4. вычитаем из матрицы A внешнее произведение двух векторов для получения матрицы P' размера m i x m i;
- 5. добавляем матрицу P' в матрицу P_i ;
- 6. перемножаем матрицы P_i и R для получения матрицы A_i , у которой обнуляются поддиагональные элементы;
- 7. домножаем матрицу Q на матрицу P_i (для получения в конце итоговой матрицы Q);

end for

Эффективный метод for i in range(n): (цикл по строкам)

- 1. в начале каждой итерации выбираем столбец матрицы A (не весь столбец, а элемент на диагонали и элементы под диагональю) в качестве вектора x;
- 2. применяем к вектору x метод house для получения вектора Xаусхолдера размера m i;
- 3. вычитаем из матрицы А внешнее произведение двух векторов;
- 4. записываем вектор и в поддиагональные элементы матрицы A кроме первого элемента вектора u;
- 5. записываем первый элемент вектора и в отдельный вектор;

end for

```
import numpy as np
from math import sqrt, hypot
def house(x):
     u_{tilde} = np.copy(x)
     u\_tilde\left[\begin{smallmatrix}0\end{smallmatrix}\right] \; +\!\!=\; np.\,sign\left(x\left[\begin{smallmatrix}0\end{smallmatrix}\right]\right) \; *\; np.\,lin\,alg.\,norm\left(x\right)
     return u tilde / np.linalg.norm(u tilde)
def qr householder(A):
     m, n = A.shape
     Q = np.identity(m)
     R = np.copy(A)
     for i in range(n):
          P_i = np.identity(m)
          x = R[i:, i]
          u = house(x)
          P_{streak} = np.identity(m - i) - 2 * np.outer(u, u)
          P i[i:, i:] = np.copy(P streak)
          R = P i @ R
          Q = Q @ P i
     return Q[:, :n], R[:n, :]
def qr_householder_effective(A):
     \operatorname{curr}_{A} = \operatorname{np.copy}(A)
     list_first_elements = []
     m, n = A.shape
     for i in range(n):
          x = curr A[i:, i]
          u = house(x)
          \operatorname{curr}_A[i:m, i:n] = 2 * \operatorname{np.outer}(u, \operatorname{np.matmul}(u, \operatorname{curr}_A[i:m, i:n]))
          curr_A[i + 1:m, i] = u[1:]
           list_first_elements.append(u[0])
     return curr A, list first elements
```

- 1. np.identity создание двумерного массива, у которого элементы на главной диагонали единицы, остальные элементы нули;
- 2. np.outer внешнее произведение двух векторов;
- 3. np.linalg.norm евклидова норма вектора;

2.3 Результаты расчётов

Был взят случайный вектор

$$x_0 = [0.6401, 0.2454, 0.5507, 0.3099, 0.5663, 0.7639, 0.9395, 0.1872, 0.2075]$$

Полученное решение совпадает с начальным условием, величина относительной погрешности $\frac{\|x-x_0\|_2}{\|x_0\|_2}=5.0357e^{-16}.$

2.4 Код решения

```
def construct_delta_A(N_var, eps):
    par = 10
    delta A = []
    c = N var * eps / (N var + 1)
    for i in range (par):
        temp = []
        for j in range(par):
             temp.append(0 \ if \ i == j \ else \ c \ / \ (i \ + j \,))
        delta A.append(temp)
    delta A = construct delta A(N var, eps)
    A = A_0 + delta_A
    amnt deletable cols = 1
    list_deletable_cols = [9 - i \text{ for } i \text{ in } range(amnt_deletable_cols)]
    A_{hat} = np.delete(A, list_deletable_cols, axis = 1)
    x = 0 = np.random.rand(10 - amnt deletable cols)
    b = A_hat @ x_0
    Q, R = qr householder(A hat)
    assert ((Q @ R - A hat) < 1e-6).all(), "QR_decomposition_is_wrong"
    x = np.linalg.inv(R) @ Q.T @ b
    value estimation = np.linalg.norm(x - x 0) / np.linalg.norm(x 0)
    b = effective = np.copy(b)
```

- 1. amnt deletable cols количество удаляемых столбцов
- 2. assert проверка на верное QR разложение

3 Задача №2

3.1 Постановка задачи

Для матрицы A найти все ее собственные значения $(\lambda_j, j=1,\ldots,10)$ и собственные вектора $(z_j$, с 2-нормой равной 1) с помощью неявного QR-алгоритма со сдвигом для трех вариантов: $\varepsilon=10^{-1},10^{-3},10^{-6}$.

По итогам расчетов нужно сделать сводную таблицу, в которой указать следующие величины: $\left|\lambda_j-\lambda_j^0\right|$ и $\left\|z_j-z_j^0\right\|$ для $j=1,\dots,10.$

3.2 Применяемые методы

3.2.1 Базовый итерационный QR-алгоритм

Описание алгоритма Пока не будет выполнено условие критерия сходимости:

- 1. выполняем QR разложение $A_i = Q_i R_i$;
- 2. производим умножение $A_{i+1} = R_i Q_i$;

Критерий сходимости - "Пока матрица A не станет достаточно близка к верхней треугольной матрице по своей структуре".

```
def basic_qr(A):
    curr_A = np.copy(A)
    amnt_iters = 0
    while True:
        amnt_iters += 1
        Q, R = qr_householder(curr_A)
        curr_A = np.dot(R, Q)
        if np.allclose(curr_A, np.triu(curr_A)) or amnt_iters > 400:
        break
```

3.2.2 Приведение матрицы к форме Хессенберга методом Хаусхолдера

Дана квадратная симметричная матрица размера $n \times n$; for i in range(n-2):

- 1. подготавливаем матрицу Q (единичная матрица размера $n \times n$);
- 2. в начале каждой итерации выбираем столбец матрицы A (не весь столбец, а элементы под первой диагональю) в качестве вектора x;
- 3. применяем к вектору x метод house для получения вектора Хаусхолдера размера n i 2 x n i 2;
- 4. вычитаем из единичной матрицы внешнее произведение двух векторов для получения матрицы P' размера n i $2 \times n$ i 2;
- 5. добавляем матрицу P' в матрицу Q;
- 6. домножаем матрицу $A = QAQ^T$;

end for

```
def hessenberg_householder(A):
    m, n = A.shape
    curr_A = np.copy(A)
    for i in range(n - 2):
        Q = np.identity(m)
        x = curr_A[i + 1:, i]
        u = house(x)
        P = np.identity(m - i - 1) - 2 * np.outer(u, u)
        Q[i + 1:, i + 1:] = np.copy(P)
        curr_A = Q @ curr_A @ Q.T
```

3.2.3 Итерационный QR-алгоритм со сдвигом

Описание алгоритма Приводим матрицу к форме Хессенберга до начала основного итерационного процесса;

```
for i in range(n, 0, -1):
```

Пока не будет выполнено условие критерия сходимости:

- 1. в качестве сдвига выбираем самый правый нижний элемент матрицы $\sigma = A_{i,i}$;
- 2. выполняем QR разложение $A_i \sigma E = Q_i R_i$;
- 3. производим умножение $A_{i+1} = R_i Q_i + \sigma E$;
- если выполняется условие критерия сходимости, то правый нижний элемент матрицы принимается за собственное значение, сохраняется, а матрица размера A[i, i] лишается самой нижней строки и самого правого столбца;

endfor

Критерий сходимости - "Пока самая нижняя строка матрицы A (за исключением правого элемента) и самый правый столбец (за исключением нижнего элемента) не станут близки к нулю".

```
amnt iters = 0
for i in range (n, 0, -1):
      lc_it = 0
      if curr_A.size == 1:
             list_eigenval.append(curr_A[0, 0])
             break
      while True:
             sigma = curr_A[-1, -1]
            Q, R = qr_householder(curr_A - sigma * np.identity(i))
             \operatorname{curr}_A = \operatorname{np.dot}(R, Q) + \operatorname{sigma} * \operatorname{np.identity}(i)
             lc it += 1
             cond = lambda elem: np. allclose (elem, np. zeros (i - 1))
              \  \, \textbf{if} \  \, \text{cond} \, (\, \text{curr\_A} \, [\, -1 \, , \ : -1 \, ]) \  \, \textbf{and} \  \, \text{cond} \, (\, \text{curr\_A} \, [\, : -1 \, , \  \, -1 \, ]) \  \, \textbf{or} \  \, \text{lc\_it} \  \, > \  \, 50 \, ; \\ 
                   amnt_iters += lc_it
                   list\_eigenval.append(curr\_A[-1, -1])
                   \operatorname{curr}_A = \operatorname{np.copy}(\operatorname{curr}_A[:-1, :-1])
                   break
```

3.2.4 Метод Гивенса для неявного QR - алгоритма со сдвигом

Описание алгоритма for i in range(n - 1):

- 1. подготавливаем единичную матрицу Q размера n x n;
- 2. в качестве сдвига выбираем самый правый нижний элемент матрицы $\sigma = A_{i,i}$;
- 3. вычисляем

$$c = \frac{A_{i,i} - \sigma}{\sqrt{(A_{i,i} - \sigma)^2 + A_{i+1,i}}} \quad s = \frac{A_{i+1,i}}{\sqrt{(A_{i,i} - \sigma)^2 + A_{i+1,i}}};$$

4. вводим матрицу

$$\begin{pmatrix} c & s \\ -s & c \end{pmatrix}$$

в матрицу Q на позиции [i,i] - [i+1,i+1];

5. домножаем матрицу $A = Q^T A Q$;

endfor

```
def implicit_givens(A):
    m, n = A.shape
    curr_A = np.copy(A)
    for i in range(n - 1):
        sigma = curr_A[-1, -1]
        Q = np.identity(m)
        b = hypot(curr_A[i, i] - sigma, curr_A[i + 1, i])
        c = (curr_A[i, i] - sigma) / b
        s = curr_A[i + 1, i] / b
        Q[i, i] = Q[i + 1, i + 1] = c
        Q[i + 1, i], Q[i, i + 1] = s, -s
        curr_A = Q.T @ curr_A @ Q
```

3.2.5 Неявный QR-алгоритм со сдвигом

Описание алгоритма Приводим матрицу к форме Хессенберга до начала основного итерационного процесса;

```
for i in range(n, 0, -1):
```

Пока не будет выполнено условие критерия сходимости:

- применяем к матрице Q метод Гивенса, описанный ранее;
- если выполняется условие критерия сходимости, то правый нижний элемент матрицы принимается за собственное значение, сохраняется, а матрица размера $A_{i,i}$ лишается самой нижней строки и самого правого столбца;

endfor

Критерий сходимости - "Пока самая нижняя строка матрицы A (за исключением правого элемента) и самый правый столбец (за исключением нижнего элемента) не станут близки к нулю".

3.3 Результаты расчётов

Были проведены расчёты для трёх параметров $\varepsilon - [1e-1, 1e-3, 1e-6],$ выведем четыре таблицы результатов:

- таблица количества итераций, в которой самая первая строка самое первое найденное собственное значение, и так далее по порядку;
- отсортированная таблица количества итераций, в которой самая первая строка минимальное собственное значение, и далее по возрастанию;
- ullet таблица $|\lambda_j \lambda_j^0|$, где в качестве λ_j^0 берётся (1);
- ullet таблица $\|z_j-z_j^0\|$ для $j=1,\ldots,10$, где в качестве z_j^0 берётся (2);

Таблица 1: Таблица итераций

	1e-01	1e-03	1e-06
0	6	8	14
1	2	2	1
2	5	3	3
3	3	3	2
4	5	4	2
5	2	3	3
6	2	3	4
7	2	2	2
8	2	2	2
9	1	1	1

Таблица 2: Таблица итераций (отсортированная по возрастанию)

	1e-01	1e-03	1e-06
0	5	3	3
1	2	4	2
2	2	3	$\begin{array}{c} 2\\ 3\\ 2 \end{array}$
3	2	2	2
4	1	1	1
5	2	2	2
6	3	3	4
7	5	3	2
8	2	2	1
9	6	8	14

Таблица 3: Таблица абсолютных погрешностей для собственных значений

	1e-01	1e-03	1e-06
0	7.103e-02	7.995e-04	8.003e-07
1	1.961e-02	1.689e-04	1.687e-07
2	1.887e-02	1.503e-04	1.500e-07
3	5.989e-04	1.782e-05	1.792e-08
4	9.211e-03	9.795e-05	9.800e-08
5	2.016e-02	1.985e-04	1.985e-07
6	2.391e-02	2.370e-04	2.370e-07
7	2.411e-02	2.427e-04	2.427e-07
8	1.937e-02	1.986e-04	1.987e-07
9	1.216e-02	1.262e-04	1.262e-07

Таблица 4: Таблица норм разностей для собственных векторов

	1e-01	1e-03	1e-06
0	1.776e-01	1.545e-03	1.543e-06
1	1.762e-01	1.500e-03	1.495e-06
2	1.041e-01	9.317e-04	9.306e-07
3	4.239e-02	3.703e-04	3.780e-07
4	3.038e-02	2.838e-04	2.836e-07
5	3.631e-02	3.567e-04	3.542e-07
6	4.926e-02	4.896e-04	4.896e-07
7	5.655e-02	5.748e-04	5.123e-07
8	5.583e-02	5.841e-04	5.843e-07
9	3.866e-02	4.129e-04	4.245e-07

3.4 Код решения

```
for curr_eps in eps:
    temp_eigenvec = []
    A = A_0 + construct_delta_A(N_var, curr_eps)
    curr_eigenvalues, list_iters = implicit_shifting_qr(A)

diff_eigenvalues = abs(np.sort(curr_eigenvalues) - eigenvalue_0)
    eigenval_results.append([f"{i:.3e}" for i in diff_eigenvalues])

iters_results_sorted.append(list_iters[np.argsort(curr_eigenvalues)])
    iters_results.append(list_iters)
```

4 Выводы

Были решены поставленные задачи с помощью методов Хаусхолдера и Гивенса, программы были написаны на языке Python. Все алгоритмы кода были предоставлены с кратким описанием действий.

Решение первой задачи показало, что после QR разложения ответ совпадает с изначально заданным x_0 , что показано оценкой $\frac{\|x-x_0\|_2}{\|x_0\|_2}$.

Решение второй задачи показало, что собственные значения, как и собственные вектора, при уменьшении значения ϵ становятся ближе к известным аналитическим собственным значениям и векторам.