Programmierung

Abgabe: 3. Mai 2019

Autor Eins 1701 Autor Zwei 74656

Inhaltsverzeichnis

Aufgabe I													1
Aufgabe I.1	 	 											1
Aufgabe I.2	 	 		•						•			2
Aufgabe III													3
Aufgabe III.1 .	 	 											3
Aufgabe III.2.	 	 											3
Aufgabe III.3.	 	 											4

Aufgabe I

Aufgabe I.1

A)

	S_2
$S_2 \to\!\! A.S_2$	$A.S_2$
$A \rightarrow B$	$B.S_2$
$B \rightarrow p$	$p.S_2$
$S_2 \to \!\! A.S_2$	$p.A.S_2$
$A \rightarrow B$	$p.B.S_2$
$B \rightarrow q$	$p.q.S_2$
$S_2 \rightarrow A$.	p.q.A.
$A \to\!\! B:-B$	p.q.B:-B.
$B \rightarrow r$	p.q.r:-B.
$B \rightarrow q$	p.q.r:-q.

Der Ausdruck wird akzeptiert.

$$\begin{split} \mathcal{W}(p.q.r:-q) = & \mathcal{W}(p.q.) \cup \{r\} \\ = & \mathcal{W}(p.) \cup q \cup \{r\} \\ = & \{p\} \cup \{q\} \cup \{r\} \\ = & \{p,q,r\} \end{split}$$

B)

$$S_2 \rightarrow A.S_2 \qquad \qquad A.S_2 \\ A \rightarrow B : -B \qquad \qquad B : -B.S_2 \\ B \rightarrow q \qquad \qquad q : -B - S_2 \\ B \rightarrow p \qquad \qquad q : -p.S_2$$

$$\begin{split} S_2 \to & A. & q:-p.A. \\ A \to & B:-B & q:-p.B:-B. \\ B \to & p & q:-p.p:-B. \\ B \to & q:-p.p:-q. \end{split}$$

Der Ausdruck wird akzeptiert.

$$\begin{split} \mathcal{W}(q:-p.p:-q.) &= \mathcal{W}(q:-p.) \\ &= \emptyset \end{split}$$

C)

	S_2
$S_2 \to\!\! A.S_2$	$A.S_2$
$A \to\!\! B:-B$	$B:-B.S_2$
$B \rightarrow q$	$q:-B.S_2$
$B \rightarrow p$	$q:-p.S_2$
$S_2 \rightarrow A$.	q:-p.A.
$A \rightarrow B$	q:-p.B.
$B \rightarrow p$	q:-p.p.

Der Ausdruck wird Akzeptiert.

$$\begin{split} \mathcal{W}(q:-p.p.) &= \mathcal{W}(q:-p.) \cup \{p\} \\ &= \emptyset \cup \{p\} \\ &= \{p\} \end{split}$$

D)

Der Ausdruck wird nicht Akzeptiert, da »t« kein Symbol des Alphabetes ist.

Aufgabe I.2

Sei $\mathcal S$ eine Sprache und $\mathcal P$ ein Programm.

Zu zeigen:

$$\mathcal P$$
 ist semantisch korrekt bzgl. $\mathcal S\Rightarrow\mathcal P$ ist syntaktisch korrekt $\Leftrightarrow \qquad \mathcal P$ ist syntaktisch Falsch $\Rightarrow\mathcal P$ ist semantisch falsch (entspricht Def.)
$$qed$$

c)

Seien \mathcal{A}_1 und \mathcal{A}_2 zwei Ausdrücke in einer Sprache und es gelte:

$$\mathcal{W}(\mathcal{A}_1) \neq \mathcal{W}(\mathcal{A}_2) \Rightarrow \mathcal{A}_1 \neq \mathcal{A}_2$$
 dann gilt auch:
$$\mathcal{A}_1 = \mathcal{A}_2 \Rightarrow \mathcal{W}(\mathcal{A}_1) = \mathcal{W}(\mathcal{A}_2)$$

$$qed$$

Aufgabe III

Aufgabe III.1

 $G = (\{S,A,B\},\{a,b\},P,S\}$ mit den Produktionsregeln P:

$$S \to\!\! A$$

$$S \to\!\! B$$

$$A \rightarrow aAb$$

$$A \to\!\! AA$$

$$A\to\!\! a$$

$$B\to\!\!\varepsilon$$

$$B \rightarrow Bb$$

Aufgabe III.2

$$S_1=(\{b\}|S_2)$$

$$S_2 = [[S_2] a [S_2] b [S_2]] \\$$

Aufgabe III.3

Abbildung 1: Regel ${\cal S}_1$

Abbildung 2: Regel ${\cal S}_2$