regardless a variable an square. odel, while , or 92.7% ace) to the

e selection, rfitting the lizes us for comparing

nt, a logical del always of squares of squares addition of be careful se. Furtherean square,

(3.28)

sion coeffi-

be deleted

(3.29)

hypothesis arginal test or variables x_i given the

.1. Suppose en that the

The main diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$ corresponding to β_2 is $C_{22} = 0.00000123$, so the *t* statistic (3.29) becomes

$$t_0 = \frac{\hat{\beta}_2}{\sqrt{\hat{\sigma}^2 C_{22}}} = \frac{0.01438}{\sqrt{(10.6239)(0.00000123)}} = 3.98$$

Since $t_{0.025,22} = 2.074$, we reject H_0 : $\beta_2 = 0$ and conclude that the regressor x_2 (distance) contributes significantly to the model given that x_1 (cases) is also in the model. This test is also provided in the Minitab output (Table 3.4), and the P value reported is 0.001.

We may also directly determine the contribution to the regression sum of squares of a regressor, for example, x_j , given that other regressors $x_1(i \neq j)$ are included in the model by using the **extra-sum-of-squares method**. This procedure can also be used to investigate the contribution of a **subset** of the regressor variables to the model.

Consider the regression model with k regressors

$$y = X\beta + \varepsilon$$

where y is $n \times 1$, X is $n \times p$, β is $p \times 1$, ε is $n \times 1$, and p = k + 1. We would like to determine if some subset of r < k regressors contributes significantly to the regression model. Let the vector of regression coefficients be partitioned as follows:

$$\boldsymbol{\beta} = \left[\frac{\boldsymbol{\beta}_1}{\boldsymbol{\beta}_2}\right]$$

where β_1 is $(p-r) \times 1$ and β_2 is $r \times 1$. We wish to test the hypotheses

$$H_0: \boldsymbol{\beta}_2 = \mathbf{0}, \quad H_1: \boldsymbol{\beta}_2 \neq \mathbf{0}$$
 (3.30)

The model may be written as

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$$
 (3.31)

where the $n \times (p-r)$ matrix \mathbf{X}_1 represents the columns of \mathbf{X} associated with $\boldsymbol{\beta}_1$ and the $n \times r$ matrix \mathbf{X}_2 represents the columns of \mathbf{X} associated with $\boldsymbol{\beta}_2$. This is called the full model.

For the full model, we know that $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$. The regression sum of squares for this model is

$$SS_{\mathbb{R}}(\boldsymbol{\beta}) = \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} (p \text{ degrees of freedom})$$

and

$$MS_{Res} = \frac{\mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}}{n-p}$$

To find the contribution of the terms in β_2 to the regression, fit the model assume that the null hypothesis H_0 : $\beta_2 = 0$ is true. This **reduced model** is

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{\varepsilon} \tag{3.3}$$

The least-squares estimator of β_1 in the reduced model is $\hat{\beta}_1 = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{y}$. regression sum of squares is

$$SS_{R}(\boldsymbol{\beta}_{1}) = \hat{\boldsymbol{\beta}}_{1}' \mathbf{X}_{1}' \mathbf{y} (p - r \text{ degrees of freedom})$$
 (3.3)

The regression sum of squares due to β_2 given that β_1 is already in the model is

$$SS_{R}(\boldsymbol{\beta}_{2}|\boldsymbol{\beta}_{1}) = SS_{R}(\boldsymbol{\beta}) - SS_{R}(\boldsymbol{\beta}_{1})$$
(3.3)

with p - (p - r) = r degrees of freedom. This sum of squares is called the **extra** of squares due to β_2 because it measures the increase in the regression sum squares that results from adding the regressors $x_{k-r+1}, x_{k-r+2}, \ldots, x_k$ to a model that already contains $x_1, x_2, \ldots, x_{k-r}$. Now $SS_R(\beta_2 | \beta_1)$ is independent of MS_{Res} , and the hypothesis $\beta_2 = 0$ may be tested by the statistic

$$F_0 = \frac{SS_R(\beta_2|\beta_1)/r}{MS_{Res}}$$
(3.35)

If $\beta_2 \neq 0$, then F_0 follows a noncentral F distribution with a noncentrality parameter of

$$\lambda = \frac{1}{\sigma^2} \beta_2' \mathbf{X}_2' \left[\mathbf{I} - \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \right] \mathbf{X}_2 \beta_2$$

This result is quite important. If there is multicollinearity in the data, there are situations where β_2 is markedly nonzero, but this test actually has almost no power (ability to indicate this difference) because of a near-collinear relationship between X_1 and X_2 . In this situation, λ is nearly zero even though β_2 is truly important. The relationship also points out that the maximal power for this test occurs when X_1 and X_2 , are orthogonal to one another. By orthogonal we mean that $X_2'X_1 = 0$.

If $F_0 > F_{\alpha,r,n-p}$, we reject H_0 , concluding that at least one of the parameters in β is not zero, and consequently at least one of the regressors $x_{k-r+1}, x_{k-r+2}, \ldots, x_k$ in X contribute significantly to the regression model. Some authors call the test in (3.35 a **partial F test** because it measures the contribution of the regressors in X_2 giver that the other regressors in X_1 are in the model. To illustrate the usefulness of this procedure, consider the model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

The sums of squares

$$SS_R(\beta_1|\beta_0,\beta_2,\beta_3)$$
, $SS_R(\beta_2|\beta_0,\beta_1,\beta_3)$, $SS_R(\beta_3|\beta_0,\beta_1,\beta_2)$