第 21 章

計量空間上の変換

体 ℂ 上の計量空間において、内積を保つ線形変換をユニタリ変換という

★ def - ユニタリ変換

体 $\mathbb C$ 上の計量空間 V における線形変換 f がユニタリ変換であるとは、任意の u, $v \in V$ に対し、

$$(f(\boldsymbol{u}), f(\boldsymbol{v})) = (\boldsymbol{u}, \boldsymbol{v})$$

が成り立つことである

体 ℝ 上のユニタリ変換は、直交変換と呼ばれる

ユニタリ変換の表現行列

ユニタリ行列の性質である theorem 20.5「ユニタリ行列の特徴づけとしての内積不変性」より、

$$(A\boldsymbol{u}, A\boldsymbol{v}) = (\boldsymbol{u}, \boldsymbol{v})$$

が成り立つため、ユニタリ変換の表現行列はユニタリ行列であることがわかる

♣ theorem - ユニタリ変換とユニタリ行列表現

計量空間上の線形変換 f がユニタリ変換であることと、f の表現行列 A がユニタリ行列であることは同値である

このことから、ユニタリ行列の性質は、ユニタリ変換の性質として言い換えることができる

ユニタリ変換とノルム

theorem 20.6「ユニタリ行列の特徴づけとしてのノルム不変性」から、

ユニタリ変換はベクトルの長さを変えない変換

でもあることがわかる

♣ theorem - ユニタリ変換とノルム保存性

計量空間 V における線形変換を f がユニタリ変換であることと、任意の $\mathbf{v} \in V$ に対し

 $||f(\boldsymbol{v})|| = ||\boldsymbol{v}||$

が成り立つことは同値である

エルミート変換

★ def - エルミート変換

体 \mathbb{C} 上の計量空間 V における線形空間 f がエルミート変換であるとは、任意の $\boldsymbol{u},\,\boldsymbol{v}\in V$ に対し、

$$(f(\boldsymbol{u}), \boldsymbol{v}) = (\boldsymbol{u}, f(\boldsymbol{v}))$$

が成り立つことである

体 ℝ 上のエルミート変換は、<mark>対称変換</mark>と呼ばれる

随伴写像

[Todo 1:]

随伴変換

[Todo 2:]

正規変換

[Todo 3:]

Zebra Notes

Type	Number
todo	3