\mathbf{II}

X = X

XICHEN LI

$$\mathbf{X}$$
 \mathbf{X}

202111140061 2024/03/29

1

 $\mathbf{2}$

 $X \lambda_{\min}$ X V

$$\lambda_{\min} = \frac{hc}{eV} = \frac{1.24 \times 10^3}{V} \,\text{nm} \tag{1}$$

Χ

- U X λ_{\min} X λ_{\max} ;
- U I X λ_{\min} λ_{\max}
- Z X λ_{\min} λ_{\max} ;
- $I = k IZV^2$ $X \qquad X \qquad \qquad V$

 $h\nu = E_{n_2} - E_{n_1}$ K K L K X \mathbb{K}_{α} X : 1 2

- X
- ; $Z \qquad X \qquad \quad 20 \; \mathrm{kV}$ ullet $V_{
 m th}$ $V_{
 m th}$ X
- \bullet U $V_{
 m th}$ X U I $V_{
 m th}$

$$I = k I(V - V_{\rm th})^m \tag{2}$$

K m = 1.5,L m = 2

2.2 X

X

• X

 $\Delta \lambda = \frac{h}{m_e c} (1 - \cos 2\theta)$ (3)

X X X X X X

Figure 1: X

Figure 1 X $\delta=2d\sin\theta$ δ X λ n $2d\sin\theta=n\lambda, \quad n\in\mathbb{Z}$ (4) $n \qquad (\ref{eq:continuous})$

2.3 X

X X , Figure 2 X X $\theta: 2\theta$

Figure 2: X

3

1.

X
$$U=35$$
 kV $I=1.00$ mA (COUPLED) $\beta_{\rm min}=2^\circ, \beta_{\rm max}=25^\circ, \quad \Delta\beta=0.1^\circ$ "SCAN"

2. X X $U=15~\rm{kV}~I=1~\rm{mA}~\beta_{\rm{min}}=2^{\circ}, \beta_{\rm{max}}=10^{\circ}$ $5~\rm{kV}$ $35~\rm{kV}$

3. X X
$$U=35~\rm{kV},\,I=0.4~\rm{mA}, \beta_{\rm min}=6^{\circ}, \beta_{\rm max}=7.5^{\circ}~0.1~\rm{mA}$$
 1 mA

4

4.1

Figure 3
$$\beta: 2^{\circ} \sim 25^{\circ}$$
 $U = 35 \text{kV}$ (??) $(d = 0.282 \text{nm})$ X

$$\lambda_1 = 0.061 \,\mathrm{nm} \tag{5}$$

$$\lambda_2 = 0.069 \,\mathrm{nm} \tag{6}$$

Table 1: X ,U = 35 kV

n	1		2		3	
$\theta/^{\circ}$	6	6.9	12.6	14.2	19.3	21.9
λ_1/nm	0.059		0.062		0.062	
λ_2/nm		0.068		0.069		0.070
$\overline{\lambda}_1/\mathrm{nm}$	0.061					
$\overline{\lambda}_2/\mathrm{nm}$	0.069					

Figure 3: 35, 30, 25, 20, 15 kV β

I=1 mA $15\sim 35 \text{ kV}$

• Figure 3 U X λ_{\min} ;

• X ;

• $\Delta\beta = 0.1^{\circ}$

4.2 $V_{\rm th}$

Figure 4 $U>20~{\rm kV}$ $U=20~{\rm kV}$ () $V_{\rm th}=20~{\rm kV}$

$$T=10~\mathrm{s}$$
 ()
$$\theta=7.2^{\circ}$$

Figure 4: 22, 21, 20.5, 20.4, 20.3, 20.2, 20.1, 20, 19.9 kV β

4.3 Duane-Hunt

Duane-Hunt (??) (??) $\lambda_{\min}(\quad U:15\sim35\text{ kV}) \quad \lambda_{\dim},\lambda_{\log} \qquad \qquad U=15\text{kV}$

Table 2: Duane-Hunt

U/kV	15	20	25	30	35
$\theta/^{\circ}$	8.4	6.1	4.7	3.7	2.8
$\lambda_{ m brg}/{ m nm}$	0.082	0.060	0.046	0.036	0.028
$\lambda_{ m dh}/ m nm$	0.083	0.062	0.050	0.041	0.035

 λ_{\min}

Figure 5: Duane-Hunt λ_{\min}

Figure 5 Python scipy.stats linregress

$$\lambda_{\rm dh} = 0.892 \lambda_{\rm brg} + 0.009 (\,\rm nm), \qquad R^2 = 0.9993901058$$
 :Duane-Hunt

Figure 6: λ_{\min} X U

(??)
$$\lambda_{\min} X U$$

$$\lambda_{\min} = \frac{1.2559 \text{ kV}}{U} - 0.0007 (\text{nm}), \qquad R^2 = 0.9991820854$$
(8)

$$\lambda_{\min} - 1/U$$
 $k = 1.2559 \text{ kV} \cdot \text{nm}, \quad c$ e

$$h = \frac{ek}{c} = 6.7119 \times 10^{-34} \text{ J} \cdot \text{s}$$
 (9)

 $h_{\rm re} = 6.62607015 \times 10^{-34} \,\mathrm{J\cdot s} \qquad \delta = 1.29\%$

• $\Delta\beta = 0.1^{\circ}$

•

4.4 X X

Figure 7: 1, 0.8, 0.6, 0.4 mA β

Figure 7

- U = 35 kV I X
- β λ X

5