The FLP Theorem

Jacopo Notarstefano
jacopo.notarstefano [at] gmail.com

Failures in Distributed Computing

The Distributed Consensus Problem

Definition

Consensus Protocol

Message System

Partial correctness

Definition (Partial correctness)

A consensus protocol is **partially correct** if:

- No accessible configuration has more than one decision value.
- ② For each $v \in \{0,1\}$, some accessible configuration has decision value v.

Total correctness in spite of one fault

A process p is **nonfaulty** in run if it takes infinitely many steps, otherwise it is **faulty**.

A run is **admissible** if at most one process is faulty and all messages sent to nonfaulty processes are eventually received.

A run is **deciding** if some process reaches a decision state.

Definition (Total correctness in spite of one fault)

A consensus protocol P is **totaly correct in spite of one fault** if it is partially correct and every admissibile run is deciding.

Main result

Theorem (Fischer, Lynch, Paterson 1985)

No consensus protocol is totally correct in spite of one fault.

A configuration is **bivalent** if it has two decision values. It is instead 0-**valent** or 1-**valent** according to the corresponding decision value.

Proof (sketch).

Given an initial bivalent configuration, we construct an admissible run that at each stage results in a bivalent configuration.

Lemma 1

Lemma 2

Lemma 3

Proof of main result