NFA - Formal Definition

• A Non Deterministic Finite State Automata M is a **5 tuple**.

 $M=(Q,\Sigma,\delta,q_o,F)$

Where

• Q - is a finite set of states

 \sum – is a finite set of input alphabets

 q_o - initial state. It belongs to set Q.

F - set of final states/ accept states. It is subset of Q.

 δ – It is transition function or mapping from set \mathbf{Q} and $\mathbf{\Sigma}$ to power set of $Q(2^{Q})$.

It maps a given state p and input symbol a to zero or more next state i.e subset of Q. It can be specified using a state transition function, table or diagram.

• Symbolically $8: Q \times \Sigma -> 2^Q$

DFA vs NFA Comparison

DFA

- In DFA, for every possible state and input alphabet (q,a) combination there is a transition to next state p.
- In DFA, there is a **unique transition** from a state and input alphabet (q,a)
 combination to some state p.
- Every DFA is also an NFA

NFA

- In NFA, for **every possible state and input alphabet**(q,a) combination there may not be a transition to next state. [No Transition]
- In NFA, there may be multiple transitions from a state and input alphabet (q,a) combination to states p1,p2,...
 - Every NFA is not a DFA

NFA Examples

State Transition Diagram

State Transition Function δ(A,a)={A,B} δ(A,b)=Φ δ(B,a)= Φ δ(B,b)={B,C} δ(C,a)= Φ δ(C,b)= Φ

$$S(A,a)=\{A,B\}$$

$$(A,b)=\Phi$$

$$(B,a)=0$$

$$(B,b)=B$$

$$S(C,a) = \Phi$$

State Transition Table

\$	ಹ	p
$\rightarrow A$	{A.B}	Ф
В	Ф	{B,C}
	Ф	Ф

NFA Working

State Transition Diagram

State Transition Function δ(A,a)={A,B} δ(A,b)=Φ δ(B,a)= Φ δ(B,b)={B,C} δ(C,a)= Φ δ(C,b)= Φ

$$\delta(A,a) = \{A,B\}$$

$$(A,b)=\emptyset$$

$$(B,a)=\emptyset$$

$$(B,b)=\{B,$$

$$S(C,a) = \Phi$$

$$S(C,b) = \Phi$$

Acceptance of String w

A string w is said to be accepted by NFA M if NFA M reaches a final state after reading input string w one symbol at a time through at least one computation path.

Symbolically

 (q_o, w) |-* (q, ϵ) where $q \epsilon F$ for some computation path

Language accepted by NFA M

- $(q_o, w)|-*(q, \varepsilon)$ and $q \varepsilon F$ (final/accept state) **for** The language accepted by NFA M is defined as set of all strings w belonging to Σ^* such that some computation path of M
- $L(M)=\{w \in \Sigma^* \mid (q_o, w)|-*(q, \varepsilon) \land q \varepsilon F$ for some computation path of M}

NFA Examples I

State Transition Diagram

 $L(M)=\{w \in \{a.b\}^* | w \text{ ends with 'a'}\}$

NFA Examples II

State Transition Diagram

 $L(M)=\{w \in \{a.b\}^* | w \text{ starts with 'a'}\}$

NFA Examples III

State Transition Diagram

 $L(M)=\{w \in \{a.b\}^* | w \text{ contains 'a'}\}$

NFA Examples IV

a,b State Transition Diagram M ಡ A

 $L(M)=\{w \in \{a.b\}^* | w \text{ begins with 'ab'}\}$

NFA Examples V

 $L(M)=\{w \in \{a.b\}^* | second symbol of w from LHS is 'a'\}$

NFA Examples VI

 $L(M)=\{w \in \{a.b\}^* | second symbol of w from RHS is 'a'\}$

NFA Examples VII

State Transition Diagram

$$L(M)=\{w \in \{a.b\}^* | |w|=2\}$$

NFA Examples VIII

State Transition Diagram

$$L(M)=\{w \in \{a.b\}^* | |w|>=2\}$$

NFA Examples IX

State Transition Diagram

$$L(M)=\{w \in \{a.b\}^* | |w| <=2\}$$

NFA Examples X

 $L(M)=\{w \in \{0,1\}^* | w \text{ ends with '00' or '11'} \}$