

Variabel Kompleks (VARKOM)

Pertemuan 7 : Limit, Kontinuitas, dan Turunan Fungsi Kompleks Oleh : Team Dosen Varkom S1-TT

Versi 02: Agustus 2018

Faculty of Electrical Engineering, Telkom University

Tujuan Perkuliahan

Tujuan perkuliahan ini adalah mahasiswa dapat memahami tentang konsep limit, kontinuitas, dan turunan pada fungsi kompleks.

Daftar Isi

1 Catatan Awal

2 Limit

3 Turunan

Catatan Awal

- Konsep limit, kontinuitas, dan turunan pada fungsi kompleks f(z) adalah perluasan dari konsep serupa pada fungsi riil.
- 2 Dengan demikian, jika variabel kompleks *z* diganti dengan variabel riil *x*, maka semua aturan limit, kontinuitas, dan turunan yang sudah ada pada fungsi riil terpenuhi.

Review: Limit pada fungsi riil

1 Pada fungsi riil f(x), $\lim_{x\to a} f(x)$ bernilai L atau

$$\lim_{x_0\to a} f(x) = L$$

jika terdapat $\epsilon > 0$ dan $\delta > 0$ sedemikian sehingga

$$|f(x) - L| \le \epsilon$$

untuk

$$|x - a| \le \delta$$

Review: Limit pada fungsi riil

Ilustrasi Limit:

$$|f(x) - L| \le \epsilon$$

$$|x - a| \le \delta$$

Pada ilustrasi di atas, limit fungsi f(x) di x=a ada dan bernilai L , karena untuk interval $|x-a| \le \delta$, terdapat pasangan interval $|f(x)-L| < \epsilon$.

Review: Limit pada fungsi riil

Fungsi sepotong-sepotong:
$$f(x) = \begin{cases} x & \text{untuk} \quad x < 0 \\ x + 1 & \text{untuk} \quad x \ge 3 \end{cases}$$

Tidak memiliki limit di x=3, karena tidak ada ϵ yang memenuhi $|f(x)-L| \leq \epsilon$ untuk $|x-3| \leq \delta$.

Review Limit Fungsi Riil

• dari definisi sebelumnya, agar $\lim_{x\to a} f(x)$ ada dan bernilai L maka

$$\lim_{x\to a^{-}} f(x) = \lim_{x\to a^{+}} f(x) = L$$

- 2 Meski $\lim_{x\to a} f(x) = L$, namun f(a) tidak mesti sama dengan L.
- 3 Jika $\lim_{x\to a} f(x) = L$, dan f(a) = L maka f(z) dikatakan kontinyu di a.
- 4 Jika $\lim_{x\to a} f(x) = L$, namun $f(a) \neq L$ maka f(z) dikatakan memiliki limit di a namun tidak kontinyu di a.

Mana yang memiliki limit dan kontinyu di x=2?

untuk x > 2

untuk $x \ge 2$

Fungsi Kompleks

Jawab:

- (A) limit ada dengan nilai 3, kontinyu
- (B) limit ada dengan nilai 3, kontinyu
- (C) limit ada dengan nilai 3, tidak kontinyu
- (D) limit tidak ada, dan tentu tidak kontinyu.

Limit Fungsi Kompleks

Konsep limit pada fungsi kompleks (f(z)) diperluas dari limit pada fungsi riil f(x) sebagai:

1 Pada fungsi kompleks f(z), $\lim_{z\to z_0} f(z)$ bernilai L atau

$$\lim_{z\to z_0} f(x) = L$$

jika terdapat $\epsilon>0$ dan $\delta>0$ sedemikian sehingga jika ada ϵ yang memenuhi $|f(z)-L|\leq \epsilon$, maka ter

Limit Fungsi Kompleks

Ilustrasi:

 $|z-z_0| \leq \delta$ adalah disk dengan pusat di z_0 dan jari-jari δ

 $|f(z) - L| \le \epsilon$ adalah disk dengan pusat di L dan jari-jari ϵ

Limit Fungsi Kompleks

1 Pada fungsi riil: $\lim_{x\to a} f(x)$ ada dan bernilai L maka

$$\lim_{x\to a^{-}} f(x) = \lim_{x\to a^{+}} f(x) = L$$

nilai limit pada z₀ didekati dari semua arah ada dan sama nilainya yaitu L.

2 Pada fungsi kompleks $\lim_{z\to z_0} f(z)$ ada dan bernilai L maka

- 3 Meski $\lim_{z\to z_0} f(z) = L$, namun $f(z_0)$ tidak mesti sama dengan L.
- 4 Jika $\lim_{z\to z_0} f(z) = L$, dan f(a) = L maka f(z) dikatakan kontinyu di z_0 .
- **5** Jika $\lim_{z\to z_0} f(z) = L$, namun $f(a) \neq L$ maka f(z) dikatakan memiliki limit di a namun tidak kontinyu di a.

Turunan pada fungsi kompleks

1 Pada fungsi riil f(x), turunan didefinisikan

$$\frac{df(x)}{d(x)} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

2 Pada fungsi kompleks f(z) turunan didefinisikan serupa:

$$\frac{df(z)}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

3 Interpretasi fisis turunan pada fungsi riil adalah gradien

Turunan pada fungsi kompleks

- **1 Contoh**: tentukan $\frac{df(z)}{dz}$ untuk f(z) = 2z
- 2 Jawab :

$$\frac{d f(z)}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$
$$= \lim_{\Delta z \to 0} \frac{2(z + \Delta z) - 2z}{\Delta z}$$
$$= 2$$

3 Jika variabel kompleks z diganti dengan variabel riil x, maka kita peroleh turunan f(x)=2x adalah 2.

Turunan pada fungsi kompleks

- **1** Contoh lain: tentukan $\frac{df(z)}{dz}$ untuk $f(z) = z^2$
- 2 Jawab :

$$\frac{d f(z)}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(z^2 + 2z\Delta z + (\Delta z)^2) - z^2}{\Delta z}$$

$$= \lim_{\Delta z \to 0} 2z + \Delta z$$

$$= 2z$$

- **1** Contoh lain lagi¹: tentukan $\frac{df(z)}{dz}$ untuk $f(z) = e^z$
- 2 Jawab :

$$\frac{d f(z)}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \dots$$

$$= \dots$$

$$= \dots$$

$$= \dots$$

¹**Petunjuk**: gunakan identitas : $e^{\Delta z} = 1 + \Delta z + \frac{\Delta z^2}{2!} + \frac{\Delta z^3}{3!} + \cdots$

Daftar Turunan

Fungsi Riil

f(x)	f'(x)
С	0
x ⁿ	nx^{n-1}
ln(x)	$\frac{1}{x}$
e^{x}	e ^x
sin(x)	$\cos(x)$
$\cos(x)$	$\sin(x)$
tan(x)	$sec^{2}(x)$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$
arctan(x)	$\frac{1}{1+x^2}$

Fungsi Kompleks

f(z)	f'(z)
С	0
z ⁿ	$n z^{n-1}$
ln(z)	$\frac{1}{z}$
e ^z	e ^z
$\sin(z)$	$\cos(z)$
$\cos(z)$	$\sin(z)$
tan(z)	$sec^{2}(z)$
arcsin(z)	$\frac{1}{\sqrt{1-z^2}}$
arccos(z)	$-\frac{1}{\sqrt{1-z^2}}$
arctan(z)	$\frac{1}{1+z^2}$

Aturan penurunan pada fungsi riil berlaku pada fungsi kompleks: Jika f(z) dan g(z) adalah dua fungsi kompleks, maka :

- **1** Penjumlahan : $\frac{d}{dz}(f(z) + g(x)) = f'(z) + g'(z)$
- 2 Perkalian skalar : $\frac{d}{dz}(kf(z)) = kf'(z)$
- 3 Aturan rantai : $\frac{d}{dz}(f(g(z))) = f'(g(z))g'(z)$
- 4 Aturan perkalian : $\frac{d}{dz} [f(z) g(z)] = f'(z) g(z) + g'(z) f(z)$
- **6** Aturan pembagian : $\frac{d}{dz} \frac{f(z)}{g(z)} = \frac{f'(z)g(z) g'(z)f(z)}{g^2(z)}$

Contoh

- Tentukan f'(z) pada z = i untuk fungsi $f(z) = z e^z$
- **Jawab**: $f(z) = z e^z$, gunakan aturan perkalian pada turunan:

$$f'(z) = \frac{df(z)}{dz} = z\frac{d(e^z)}{dz} + e^z\frac{d(z)}{dz}$$
$$= ze^z + e^z$$

z=i, maka

$$f'(z) = ie^{i} + e^{i} = i(\cos 1 + i \sin 1) + (\cos 1 + i \sin 1)$$
$$= i(0, 54 + i0, 84) + (0, 54 + i0, 84)$$
$$= (-0.84 + 0.54) + i(0, 54 + 0, 84) = -0.3 + i1, 38$$

Contoh lain:

- Tentukan f'(z) pada untuk fungsi $f(z) = \frac{z}{e^z}$
- Jawab: · · ·

- Tentukan f'(z) pada untuk fungsi $f(z) = z^2 + z \cos(2z)$
- Jawab: · · ·

Latihan

 Suatu fungsi kompleks dinyatakan sebagai fungsi sepotong-sepotong:

$$f(z) = \begin{cases} \frac{z+1}{z+1} & \text{untuk} \quad z \neq 1\\ 2 & \text{untuk} \quad z=1 \end{cases}$$

apakah f(z) kontinyu di z=1?

- Tentukan turunan dari fungsi berikut:
 - 1 $f(z) = 2 + iz + z^2$
 - 2 $f(z) = (z + i) \ln(z)$
 - **3** $f(z) = (z^2 + 2i) \arctan(z)$