NG D N BÀI T P TOÁN R I R C

CH NG I: C S LOGIC.

câu g).

- 1/a) p(x) úng $\Leftrightarrow x \in [-2,4]$; p(x) sai $\Leftrightarrow x \in (-\infty,-2) \cup (4,+\infty)$; q(x) úng $\Leftrightarrow x \in (-\infty,-1) \cup (2,+\infty)$; q(x) sai $\Leftrightarrow x \in [-1,2]$. To suy ra chân troc a các votot ngo ng voi giá troth coc a bion x. b) T ng t a). $\dot{y}(x^2 - 3x + 10) > 0. \forall x \in \mathbf{R}.$
- 2/b) Ta có th vi t A = " $(3a+1) \neq 0$ và $(2a-5)(3a+1)^{-1} > 0$ " r i suy ra \overline{A} .
 - c) và d) ý mi n xác nh c a bi u th c r i th hi n A t ng t nh trong b). T ó suy ra A.
 - e), f), g), h) và i) A nêu ra các t 1 và dùng m t trong các d u <, >, =, \leq , \geq . T ó suy ra \overline{A} .
 - j), k), l), m) và n) A nêu ra các s 1 ng và dùng m t trong các d u <, >, =, \leq , \geq . T ó suy ra \overline{A} .
 - kéo theo p) Không ai mu n = m i ng i không mu n q) C 1 p = m i ng i trong 1 p
 - s) Các c u th = m i c u th t) \rightarrow x) Các t n i u có ngh a là "và" y) H = m i ng i trong s h
 - z),α) Chúng tôi = m i ng i trong chúng tôi ; các anh y, nhóm bác s, nhóm k s chiut ng t
- e) $\overline{p} \wedge \overline{q}$. f) $\overline{p} \vee \overline{q} \vee \overline{r} \vee \overline{s}$. $3/a) p \vee q$. b) $\overline{p} \vee \overline{q}$. c) $p \vee q \vee r$. d) $p \wedge r$.
- 4/a) \rightarrow h) và j) Dùng các lu t logic bi n i t ng ng v trái thành v ph i. i) Chi u (⇒): dùng qui t c suy di n tam o n lu n ; Chi u (⇐): hi n nhiên
- $5/a) \rightarrow g$) Dùng các lu t logic bi n i thành 1. h), i) và j) Dùng các lu t logic bi n i thành O. a), c), f) và g) Có th dùng các qui t c suy di n ch ng minh h ng úng.
- 6/a) và b) L n 1 t gán $\gamma = \forall$ và $\gamma = \exists$ (m i câu xét 2 m nh A₁ và A₂). c), d), e), f) và g) L n l t gán $(\gamma = \forall, \delta = \forall), (\gamma = \forall, \delta = \exists), (\gamma = \exists, \delta = \forall), (\gamma = \exists, \delta = \exists) [4 \text{ m nh}].$ ý \forall a ∈ **R**, \exists ! a' ∈ **Z** th a a' ≤ a < a' + 1. Ký hi u a' = [a] và g i a' là ph n nguyên c a a.
- 7/ a) x | y ngh a là "x là c s c a y". e) $\dot{y} \forall y \in \mathbf{Q}, 2^y + 2^{-y} \ge 2$ (Cauchy). f) A sai.
- $8/a) \rightarrow j$) Dùng gi thi t qui n p y u. k) và l) Dùng gi thi t qui n p m nh.
- e) và f) Gi i thích b t ng th c ph (d dàng) tr c khi ch ng minh b t ng th c chính.
- g) T gi i thích $\forall n \ge 0, 2^{-1} \le (2^n + 1)^{-1} + (2^n + 2)^{-1} + (2^n + 3)^{-1} + \dots + (2^n + 2^n)^{-1} < 1$ (*) và dùng b t ng th c ph (*) ch ng minh b t ng th c chính.
- $(3^{k+1} + 7^{k+1} 2) = [7(3^k + 7^k 2) 4(3^k + 3)], \forall k \ge 0.$
- ý \forall n ≥ 0, 2 | (3.7 n 3) và có thoch ng minh troc ti p (không con qui no p).
- $t = 2^{3^k}$ và b = 1 thì $(2^{3^{k+1}} + 1) = a^3 + b^3 = (a + b)[(a + b)^2 3ab]$ và gi i thích $3^{k+2} | (2^{3^{k+1}} + 1)$.
- k) Ta có $(a^{o} + a^{-o}) = 2 \in \mathbb{Z}$ và $(a^{1} + a^{-1}) \in \mathbb{Z}$ (*). Xét $k \ge 1$ và gi s $(a^{n} + a^{-n}) \in \mathbb{Z}$ $\forall n = 1,..., k$ (**). $\hat{y}(a^{k+1} + a^{-k-1}) = (a^k + a^{-k})(a^1 + a^{-1}) - (a^{k-1} + a^{1-k})r \text{ i dùng (*) và (**).}$
- $l) \ Th \quad \ n=0 \ v \grave{a} \ n=1. \ X \acute{e}t \ k \geq 1 \ v \grave{a} \ gi \quad s \quad \ a_n=(\sqrt{5})^{-1}(\alpha^n-\beta^n) \ \ \forall n=0,1,..., \ k \ (*).$ $\acute{y} \ a_{k+1} = a_k + a_{k-1} = (\sqrt{5})^{-1} (\alpha^k + \alpha^{k-1} - \beta^{k-1} - \beta^k) \qquad suy \ ra \ a_{k+1} = (\sqrt{5})^{-1} (\alpha^{k+1} - \beta^{k+1}) \ .$
- 9/, 11/ và 12/ Dùng nh ngh a c a l ng t (n u có), các qui t c suy di n ph i h p v i các lu t logic.
- 10/ Ch n các ph n ví d (b ng cách gán cho m i bi n m nh chân tr 1 ho c 0 tùy ý) sao cho a), b), f) M t v úng và m t v sai. c) và e) V trái sai. d) V trái úng. $g) \rightarrow n) V$ trái úng, v ph i sai.

CH NGII: T P H P VÀ ÁNH X.

- $\begin{array}{l} \textbf{1}/\,C: m \in \{0,\pm 1\} \ v\grave{a} \ n \in \{1,2,3,4,5,6\}. \quad D: ch \ c \ n \ ch \ n \ n \in \{0,1,2,\ldots,11\} \ v\grave{a} \ tính \ tr \ c \ ti \ p \ các \ ph \ n \ t \ . \\ E: \forall n \in \{5,6,7,8\}, \ t\grave{n}m \ m \ th \ a \ 2^{-1} < (m/n) < 1. \quad F: x\acute{e}t \ nghi \ m \ nguy\^{e}n \ c \ a \ (x+5)(x-2)(x+4)^{-1} \leq 0. \\ G: |x| \geq 4 \ v\grave{a} \ |x| \leq \sqrt{3} \ + \sqrt{2} \ < 4. \end{array}$
- 2/ Bi u di n A và B trên tr c x'Ox xác nh k t qu các phép toán t p h p bù, giao, h i và hi u.
- 3/ Rút g n b ng các phép toán t p h p a) $A \cup B$. b) $B \setminus A$. c) $\overline{A} \cup \overline{B} \cup \overline{C}$. d) B. e) $\overline{A} \cup \overline{B} \cup \overline{C} \cup \overline{D}$.
- 4/ Dùng các phép toán t p h p bi n i v này thành v kia.
- 5/ Dùng các phép toán t p h p rút g n các v tr c khi ch ng minh các bao hàm th c.
- 7/ a),b) và c) Ch ng minh " $(x,y) \in v$ trái $\Leftrightarrow (x,y) \in v$ ph i ". e) và f) Ch ng minh " $(x,y) \in v$ trái $\Rightarrow (x,y) \in v$ ph i ".
- **8**/ a) Xét f(1). b) Xét $f(\ln 3)$. c) Xét f(0). d) Xét f(0). e) Có $a \in [1,3]$ mà f(a) = 0. f) $f(1/1) \neq f(2/2)$.
- 9/ a) f(2) = f(1/2) và $f(x) \le (1/2)$, $\forall x \in X$. b) f'(x) > 0 và $f(x) = (x + 3)^2 - 12 \ge -12$, $\forall x \in X$. c) f(1) = f(3) và f(X) = Y. d) $\forall x, t \in X$, $(f(x) = f(t) \Rightarrow x = t)$ và $f(X) = Y \setminus \{2\}$.
 - e) $f(0) = f(2\pi)$ và $f(x) = 2\sin(x + \pi/3)$, $\forall x \in X$ that f(X) = Y.
- 12/ a) $\forall y \in (-1,0)$, phong trình f(x) = y có nghi m duy như trên X là x = y/(1+y) = y/(1-|y|). $\forall y \in [0,1)$, phong trình f(x) = y có nghi m duy như trên X là x = y/(1-y) = y/(1-|y|).
 - b) $\forall y \in \mathbf{R}$, ph ng trình $g(x) = y \iff e^{2x} + (1 y) e^x 3 = 0 \iff t^2 + (1 y) t 3 = 0 \text{ v i } t = e^x > 0$. Nh v y $\forall y \in \mathbf{R}$, ph ng trình g(x) = y có nghi m duy nh t trên \mathbf{R} là

$$x = \ln \left\{ 2^{-1} \left[y - 1 + \sqrt{(y-1)^2 + 12} \right] \right\}.$$

- c) $\forall y \in [5,7)$, ph $\text{ng trình } h(x) = y \iff 3x^2 yx + 2 = 0 \text{ có nghi m duy nh t trên } [1,2)$ là $x = x_1 = 6^{-1}(y + \sqrt{y^2 24})$ vì $\sqrt{y^2 24} \in [1,5)$ [lo i nghi m $x_2 = 6^{-1}(y \sqrt{y^2 24}) \in (0,1)$].
- f) Xét $\phi: (0,3] \to (1,4]$ v i $\phi(x) = x+1$ $\forall x \in (0,3]$. ϕ là song ánh và $\phi^{-1}(x) = x-1$ $\forall x \in (1,4]$. Xét $\psi: (1,4] \to (2,4^{-1}.17]$ v i $\psi(x) = x+x^{-1}$ $\forall x \in (1,4]$. Ta có $r = \psi_o$ ϕ . Ta ki m tra ψ là song ánh có r là song ánh và $r^{-1} = \phi^{-1}{}_o \psi^{-1}$. $\forall y \in (2,4^{-1}.17]$, ph ng trình $\psi(x) = y \Leftrightarrow x^2 yx + 1 = 0$ có nghi m duy nh t trên (1,4] là $x = x_1 = 2^{-1}(y + \sqrt{y^2 4})$ vì $\sqrt{y^2 4} \in (0,15/4]$ [lo i nghi m $x_2 = (1/x_1) \in [4,1)$].
- g) Gi i các ph ng trình ánh x , ta có $u = p_o g$, $v = g_o f^{-1}$ và $w = f_o g_o p^{-1}$.

<u>CH NG III :</u> PH NG PHÁP M.

- 1/ Dùng $|X \cup Y| = |X| + |Y| |X \cap Y|$ 1 n l t cho $(X = A, Y = B \cup C), (X = B, Y = C)$ và $(X = A \cap B, Y = A \cap C)$.
- 2/b) \circ Y = B \cup H v i H tùy \circ \subset (E \ A), Z = (D \ A) \cup K v i K tùy \circ \subset A, T = (A \ B) \cup L v i L tùy \circ \subset (E \ A) và W = P \cup C v i P tùy \circ \subset A.
- $\textbf{3/}\ N = abcdef\ v\ i\ b,\, c,\, d,\, e \in \{\ 0,\, 1,\dots,\, 9\},\, f \in \{\ 0,\, 2,\, 4,\, 6,\, 8\ \},\, a,\, b,\, c,\, d,\, e,\, f\ khác\ nhau \ \ \ \hat{o}i\ m\ t.$
 - a) Tr $\ \$ ng h $\ p$ 1 (N $\$ là s $\ \$ nguyên d $\ \ \$ ng) thì $\ a\in\{1,2,...,9\}$: dùng nguyên lý nhân và nguyên lý c $\ \$ ng.

- * Khi f = 0:9 cách ch n a, 8 cách ch n b, 7 cách ch n c, 6 cách ch n d và 5 cách ch n e.
- * Khi $f \in \{2,4,6,8\}$: $0 \in \{b,c,d,e\}$ nên ta có the gians b = 0 (3 trongh phon phon la cho cùng kat qual): 4 cách chan f, 8 cách chan a, 7 cách chan c, 6 cách chan d và 5 cách chan e.
- b) Tr ngh p 2 (N $là dãy s nguyên <math>\geq 0$) thì $a \in \{0,1,2,...,9\}$: làm t ng t nh tr <math>ngh p 1.
- **4/** b) $A = \{3\} \cup A' \ v \ i \ | A' | = 4 \ và A' \subset \{4,5,...,10\}$: \acute{y} s t ph p A = s t ph p A'.
 - c) Xét minA = 3, minA = 2 hay minA = 1 : m i tr ng h p t ng t nh b) r i dùng nguyên lý c ng.
 - d) Cách 1 : ph i h p k t qu a) và c) ; Cách 2 : $x \in minA = 4$, minA = 5 hay minA = 6 : t mgt mgt
- **5**/ a) Tr ng h p n = 2k ch n (A₁ = {1,3,...,(2k 1)}, A₂ = {2,4,...,2k} có | A₁ | = k): k t qu là $|\wp(A) \setminus \wp(A_1)| = |\wp(A)| \setminus |\wp(A_1)|$.
 - b) Tr $ngh pn = (2k+1) 1 (A_1 = \{1,3,...,(2k-1),(2k+1)\} có |A_1| = k+1) : t ngt nh a).$
- 6/ $\Omega = \{A \subset S \mid A \mid = 5\}$ và $\Delta = \{A \subset S \mid A \mid = 5 \text{ và } 7 \in A\}$. Ta có $|\Omega| = 4 |\Delta|$ là m t ph ng trình theo ns $n \ge 7$ mà ta c n gi i. Vi c tính $|\Delta|$ làm t ng t nh b) c a bài 4.
- 7/ $S_1 = \{1, 3, ..., 15\}, S_2 = \{2, 4, ..., 14\}$ có $|S_1| = 8$ và $|S_2| = 7$.
 - a) m s t p A th a $\emptyset \neq A \subset S_1$ b) $A = A_1 \cup A_2$ v i $A_1 \subset S_1$, $|A_1| = 3$ và $A_2 \subset S_2$: nguyên lý nhân
 - c) Nh b) thêm $|A_2| = 5$: nguyên lý nhân d) Nh b) thêm $|A_2| = 5.6$ hay 7: nguyên lý nhân và c ng
- **8/** a) Ch c n xác nh i h c Anh v n : s cách chia $C_n^1 + C_n^2 + ... + C_n^{n-1} = 2^n 2$.
 - b) Ch c n xác nh i nh (có không quá 2⁻¹n sinh viên):
 - * Khi n = 2k ch n : s cách chia $C_n^1 + C_n^2 + ... + C_n^k = 2^{n-1} 1 + 2^{-1}C_n^k$.
 - * Khi n = (2k + 1) 1 : s cách chia là $C_n^1 + C_n^2 + ... + C_n^k = 2^{n-1} 1$
- 9/ Dùng t h p, nguyên lý nhân và nguyên lý c ng : a) 6 nam và 6 n . b) (8 + 4) hay (9 + 3) hay (10 + 2). c) (5 + 7) hay (4 + 8) hay (3 + 9) hay (2 + 10 d) (2 + 10) hay (4 + 8) hay (6 + 6) hay (8 + 4) hay (10 + 2).
- 10/ Ch quan tâm s xu t hi n các bit 1 : dùng t h p và nguyên lý c ng a) ch n 3 trong 8. b) có t 4 n 8 bit 1. c) có t 0 n 5 bit 1. d) có t 3 n 5 bit 1.
- 11/ Xem vi c chia bút l n l t cho 4 ng i chính là 4 vi c liên ti p : dùng t h p và nguyên lý nhân.
- **12/** b) $t = u, y^3 = v, z^2 = w \text{ và } t^3 = h. \text{ Ta tìm } h \text{ s } c \text{ a } u^3 v^3 w^2 h \text{ trong khai tri } n (2u v 3w + 4h)^9.$
- 13/b) n. c) n(n-4) [m i c nh c a a giác liên k t v i (n-4) nh không li n k] d) Dùng a), b) và c).
- 14/ Nhóm ng i x p g n nhau (nhóm nam, nhóm n , nhóm ng nghi p) xem nh là "m t ng i" x p hàng v i các ng i khác. Dùng phép hoán v (i n i và i ngo i), nguyên lý c ng và nguyên lý nhân a) 6!5! b) 6!6! c) 5!7! d) 2.5!6! e) dùng nguyên lý bù tr ph i h p b),c) và d). f) 3!6!7!8!
- 15/ Ghi s th t cho các gh t 1 n 10 (theo chi u kim ng h).
 - Dùng phép hoán v (i n i và i ngo i), nguyên lý c ng và nguyên lý nhân.
 - b) Có 10 cách chia thành 2 khu : m t khu cho 5 nam ng i g n nhau, m t khu cho 5 n ng i g n nhau.
 - c) Có 2 cách chia thành 5 khu :m i khu g m 2 gh liên ti p dành cho m t c p v ch ng ng i g n nhau.
- 16/ b),c),d) T ng t bài 14. e), f) Tính tr c v trí u và cu i hàng r i tính ti p các v trí còn l i. 17/ Dùng phép hoán v l p. Ý t ng nh bài 16 nh ng không có hoán v i n i.

- **18**/ → **21**/ Dùng t h p l p, phép i bi n và phép l y bù a v tr ng h p các bi n nguyên ≥ 0 . N u là b t ph ng trình thì t o thêm m t n gi nguyên ≥ 0 chuy n v d ng ph ng trình.
- 22/ ây là 2 vi c ng th i. Dùng phép i bi n a v tr ng h p các bi n nguyên ≥ 0 r i áp d ng nguyên lý nhân và t h p l p.
- 23/ ây là 2 vi c liên ti p. Dùng phép i bi n a v tr $ng h p các bi n nguyên \ge 0 r i áp d ng nguyên lý nhân, t h p và t h p l p.$
- 24/ ây là 2 vi c ng th i. Dùng nguyên lý nhân, hoán v 1 p, ch nh h p, t h p l p và nguyên lý c ng.
- 25/ Dùng nguyên lý Dirichlet. To 13 ô. a các s h ng c a A vào các ô và m i ô nh n không quá 2 s (ô 1 ch nh n 1 hay 25; ô 2 ch nh n 2 hay 24; ...; ô 12 ch nh n 12 hay 14; ô 13 ch nh n 13)
- **26**/ Dùng nguyên lý Dirichlet. To 10 ô. a các s h ng c a A vào các ô (ô 1 ch nh n t 1^2 n $2^2 1$; ô 2 ch nh n t 2^2 n $3^2 1$; ...; ô 9 ch nh n t 9^2 n $10^2 1$; ô 10 ch nh n 10^2)
- **27**/ Dùng nguyên lý Dirichlet. Chia tam giác u c nh 3 thành 9 tam giác u nh c nh 1. ý r ng hai i m b t k trong m t tam giác nh có kho ng cách không quá 1.
- 28/ Dùng nguyên lý Dirichlet. Có 3 d ng 1 ch h c (2 bu i, 3 bu i, 4 bu i). S 1 ch h c có th có < 782.
- **29**/ a) Xóa s 1. Khi ó 24 s còn l i trên ng tròn chia thành 8 nhóm r i nhau (m i nhóm g m 3 s g n nhau). T ng c a 8 nhóm này = $(2 + 3 + ... + 25) > (40 \times 8)$.
 - b) Xóa s 25. Khi ó 24 s còn 1 i trên ng tròn chia thành 8 nhóm r i nhau (m i nhóm g m 3 s g n nhau). T ng c a 8 nhóm này = $(1 + 2 + ... + 24) < (38 \times 8)$.
- **30**/ Dùng nguyên lý Dirichlet. A có ít nh t là $(C_6^1 + C_6^2 + ... + C_6^5)$ t p h p con khác \emptyset có ≤ 5 ph n t . T ng các s h ng trong m i t p con ó có giá tr n m trong kho ng t 0 n (10 + 11 + ... + 14).

CH NG IV: H TH C QUI.

- $\begin{array}{ll} \textbf{1/}\ a)\ a_n = 2(-3)^n,\ \forall n \geq 0. \\ d)\ a_n = 3(2^n) 2(3^n),\ \forall n \geq 0. \end{array} \qquad \qquad \begin{array}{ll} b)\ a_n = -5(8^{n-1}),\ \forall n \geq 1. \\ e)\ a_n = 3(2^n) + 4(-2)^n,\ \forall n \geq 2. \\ e)\ a_n = (4-n)2^n,\ \forall n \geq 1. \end{array}$
- $\begin{array}{lll} \textbf{2/} \ a) \ a_n = 9n-3, \ \forall n \geq 0. \\ \ d) \ a_n = (5n-n^2-7)(-4)^n, \ \forall n \geq 0. \end{array} \qquad \begin{array}{ll} b) \ a_n = 3^n-5(-2)^n, \ \forall n \geq 1. \\ \ e) \ a_n = 7(3^n)+2(1-n), \ \forall n \geq 2. \\ \ e) \ a_n = 5^n+3, \ \forall n \geq 3. \end{array}$
- $\begin{array}{lll} \textbf{3/} \ a) \ a_n = 2(3^n) 3(2^n) + 2, \ \forall n \geq 0. \\ d) \ a_n = (4-2n)(-1)^n 3^n, \ \forall n \geq 0. \\ f) \ a_n = 3n^2 + 5n n^4 4n^3 2, \ \forall n \geq 2. \end{array}$
- $\begin{aligned} &\textbf{4/} \text{ a) } S_1 = 1, \, S_{n+1} = S_n + (n+1)^3, \, \forall n \geq 1 \quad \text{và} \quad S_n = 4^{-1} n^2 (n+1)^2, \, \forall n \geq 1. \\ &\text{b) } S_1 = 1, \, S_{n+1} = S_n + (n+1)^4, \, \forall n \geq 1 \quad \text{và} \quad S_n = 30^{-1} n (n+1) (6 n^3 + 9 n^2 + n 1), \, \forall n \geq 1. \\ &\text{c) } S_1 = -1, \, S_{n+1} = S_n + (-1)^{n+1} (n+1)^4, \, \forall n \geq 1 \quad \text{và} \quad S_n = 2^{-1} (-1)^n n (n^3 + 2 n^2 1), \, \forall n \geq 1. \\ &\text{d) } S_o = 2, \, S_{n+1} = S_n + (n+2) (n+3) \, 2^{n+1}, \, \forall n \geq 0 \quad \text{và} \quad S_n = 2[\, 2^n \, (n^2 + n + 2) 1 \,], \, \forall n \geq 0. \\ &\text{e) } S_o = -1, \, S_{n+1} = S_n + (2n+1) (-3)^{n+1}, \, \forall n \geq 0 \quad \text{và} \quad S_n = 8^{-1} [\, 3 (-3)^n \, (4n-1) 5 \,], \, \forall n \geq 0. \\ &\text{f) } S_1 = -3, \, S_{n+1} = S_n + (-1)^{n+1} (n+1) (n^2 + 3), \, \forall n \geq 1 \quad \text{và} \end{aligned}$

6/ $a_{2000} = 7.10^9$, $a_{n+1} = (1 + 3.10^{-2})a_n$, $\forall n \ge 2000$ và $a_n = 7.10^9(1 + 3.10^{-2})^{n-2000}$, $\forall n \ge 2000$.

$$7/\ a_1=3,\ a_2=8,\ a_{n+2}=2a_{n+1}+2a_n,\ \forall n\geq 1 \ \text{ và }\ a_n=\frac{(\sqrt{3}+2)}{2\sqrt{3}}(1+\sqrt{3})^n+\frac{(\sqrt{3}-2)}{2\sqrt{3}}(1-\sqrt{3})^n\ ,\ \forall n\geq 1.$$

 $(\ X\acute{e}t\ A_{n+2} = u_1u_2...u_n\ u_{n+1}u_{n+2}\ \ trong\ hai\ tr\quad \ ng\ h\ \ p\ \ u_{n+2}\ = a\ \ hay\ \ u_{n+2}\ \neq a\).$

$$8/ \ a_2 = 1, \ a_3 = 3, \ a_{n+2} = a_{n+1} + a_n + 2, \ \forall n \ge 2 \ \ v\grave{a} \ \ a_n = \frac{(\sqrt{5} - 3)}{2\sqrt{5}} (\frac{1 - \sqrt{5}}{2})^n + \frac{(\sqrt{5} + 3)}{2\sqrt{5}} (\frac{1 + \sqrt{5}}{2})^n - 2,$$

$$\forall n \ge 2. \ (X\acute{e}t \ A_{n+2} = u_1u_2...u_n \ u_{n+1}u_{n+2} \ \ trong \ ba \ tr \quad ng \ h \ p$$

$$[u_{n+2} = 2] \ hay \ [u_{n+2} = 1 = u_{n+1}] \ hay \ [u_{n+2} = 1 \ v\grave{a} \ u_{n+1} = 2] \).$$

9/ Ch ng minh b ng cách qui n p (dùng gi thi t qui n p m nh) theo $n \ge 2$.

CH NGV: T P H P S NGUYÊN.

1/ V i a, b ∈ **Z**, ta có (ab = 1 \Leftrightarrow a = b = ±1) và [ab = -2 \Leftrightarrow (a = 1, b = -2) ho c (a = -1, b = 2) ho c (a = 2, b = -1) ho c (a = -2, b = 1)].

2/ a)
$$\forall$$
x ∈ [1, +∞), \exists ! k ∈ **N***, k ≤ x < (k + 1).

b)
$$\forall x \in [1, +\infty), \exists ! q \in \mathbb{N}, q^2 \le x < (q+1)^2.$$

3/ Ch ng minh qui n p theo $n \ge 2$. $\forall a, b, c, d \in \mathbb{Z}$, $\circ (a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2$.

4/a)
$$\acute{y} \ y \neq -1 \ v\grave{a} \ x = -1 + \frac{1}{y+1}$$
. b) $\acute{y} \ y \neq 1 \ v\grave{a} \ x = 1 + \frac{1}{y-1}$.

c) ý $y \ge 0$ và $x \ge 0$. Xét x = 0 và x = 1. Khi $x \ge 2$ thì $(3^x - 1) \div 4 \iff x$ ch n.

5/ Có r, $s \in \mathbb{Z}$ $k = 2r + 1 = 3s \pm 1$ thì s = 2t ($t \in \mathbb{Z}$) và suy ra k. ý $t(3t \pm 1)$ là s ch n.

- **6/** a) và b) Vi t n = 3m + r v i $m \in \mathbb{N}$, r = 0, 1, 2 thì $(2^n \pm 1) = 2^r (2^{3m} 1) + (2^r \pm 1)$ v i $7 \mid (2^{3m} 1)$ vì $7 = (2^3 1)$. Do ó ch c n xét $(2^r \pm 1)$ vói r = 0, 1, 2.
 - c) N u n ch n $(n = 2m \ v \ i \ m \in \mathbb{N})$ thì xét ch s t n cùng c a $(9^n + 1) = (81^m + 1)$. N u n l $(n = 2m + 1 \ v \ i \ m \in \mathbb{N})$ thì phân tích $(9^n + 1)$ thành d ng (9 + 1)t v i $t \in \mathbb{N}$ và xét tính ch n l c a t.
 - d) Vi t k = 11t + r v i $t \in \mathbb{Z}$ và $r \in \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$. Ta có $11 | (k^2 + 3k + 5) \iff 11 | (r^2 + 3r + 5) \iff r = 4$.
 - e) N u $121 | (k^2 + 3k + 5)$ thì $11 | (k^2 + 3k + 5)$ và k = 11t + 4 v i $t \in \mathbb{Z}$ (do $121 = 11^2$). Lúc ó $121 | [(11t + 4)^2 + 3(11t + 4) + 5]$ và ta có i u vô lý.
- 7/ a) (\Rightarrow) : d dàng. Ta xét (\Leftarrow) : Khi p = 3, vi t a = 3r + u và 3s + v v i r, s \in **Z** và u, v \in {0, \pm 1}. Khi p = 7, vi t a = 7r + u và b = 7s + v v i r, s \in **Z** và u, v \in {0, \pm 1, \pm 2, \pm 3}.

Khi p = 11, vi t a = 11r + u và b = 11s + v v i $r, s \in \mathbf{Z}$ và $u, v \in \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$. Khi p = 19, vi t a = 19r + u và b = 19s + v v i $r, s \in \mathbf{Z}$ và $u, v \in \{k \in \mathbf{Z} / | k | \le 9\}$. ý $p \mid (a^2 + b^2) \iff p \mid (u^2 + v^2) \iff u = v = 0$.

- 9/a) Xét m ch n và m 1. Xét s d c a 2 v khi chia cho 4. Dùng 8/.
 - b) Xét m = 4t + r v i $t \in \mathbb{Z}$ và r = 0, 1, 2, 3. Xét s d c a hai v khi chia cho 8. Dùng 8/.
- 11/(\Leftarrow): D dàng. Ta xét (\Rightarrow): t d = (m, n) = [m, n] thì d | m và m | d. T ng t cho n.
- 12/a) Dùng các nh ngh a c a quan h ⊂ và quan h c s .
 - b) Ch ng minh hai v ch a nhau. Dùng nh ngh a c a (r, s) và [r, s]. c) Áp d ng b) nhi u l n.
- **13**/ Ch n c th r, $s \in \mathbb{Z}$ th a r(21k+4) + s(14k+3) = 1. T ng t , ta c ng có (12k+1, -30k-2) = (6k-4, 7-10k) = (4-15k, 5-20k) = 1. T ó có các k t qu liên quan.
- 14/ ý trong 3 s nguyên l liên ti p, có úng m t s chia h t cho 3.
 - a) p 1 \geq 3. N u p = 3 thì úng. Xét p 1 \geq 5. Ta có (p + 2) 1 và 3 | (p + 2).
 - b) p 1 \geq 3. N u p = 3 thì úng. Xét p 1 \geq 5. N u (8p + 1) c ng nguyên t thì 3 | (8p + 3).
 - c) N u p = 2 thì úng. Xét p l \geq 5. N u (10p + 1) c ng nguyên t thì (20p + 2) và (20p + 5) không chia h t cho 3, ngh a là 3 | (20p + 3).
- **15/** a) \acute{y} $n^4 + 4k^4 = (n^2 + 2k^2)^2 (2nk)^2$ và phân tích $n^4 + 4k^4$ thành tích c a 2 s nguyên > 1.
 - b) N u n có m t c s nguyên t $p \ge 3$ thì p l và t n = tp v i $t \in \mathbb{N}^*$. Lúc ó $(2^n + 1) = [(2^t)^p + 1] = (2^t + 1) [(2^t)^{p-1} (2^t)^{p-2} + ... + 1]$ v i $1 < (2^t + 1) < (2^n + 1)$
- 16/ $\oint p | x \text{ hay } p | y$. Ta xét tr ng h p p | x (tr ng h p p | y làm t ng t). t x = pt (t \in \mathbb{Z}) thì y \neq p và t = 1 + $\frac{p}{v-p}$.
- 17/a) Xét khi p k và khi p không chia h t k.
 - b) $p! = m! (p m)! C_p^m$ nên $p \mid [m! (p m)! C_p^m]$. $\acute{y} (p, k) = 1$ khi $k \in \{1, 2, ..., t\}$ trong \acute{o} $t = \max\{m, (p m)\}$.
 - c) N u p=2 thì hi n nhiên. Xét $p\geq 3$ thì p 1 và chia Euclide p=30q+r v i r l , $1\leq r<30$. N u r=9, 15, 21, 25 ho c 27 thì p không là s nguyên t .
- **18**/ a) $\acute{y} \forall k \in \{2, 3, ..., p\}, (q, k) = 1.$
 - b) Xét $k \in A$ thì k 1 nên các c s nguyên t > 0 c a k u 1 . N u m i c s nguyên t > 0 c a k u có d ng (4t+1) v i $t \in \mathbf{N}$ thì $k \notin A$. Áp d ng a).
- 19/ a) Xét d = (a, b) = 1. $t u = (a + b, a b), v = (a + b, ab) và <math>w = (a + b, a^2 + b^2)$. Ta có $u \mid 2a \ và \ u \mid 2b$.. N $u u 1 \ thì \ u \mid a \ và \ u \mid b$, ngh a là u = 1. N u u ch n thì <math>u = 2u' v i $u' \mid a \ và \ u' \mid b$, ngh a là $u' = 1 \ và \ u = 2$.

Ta có v | (a + b) và (v | a hay v | b) nên (v | a và v | b), ngh a là v = 1.

Ta có $w | (a+b)^2 và w | (a^2+b^2)$ nên w | 2ab. N u w | 1 thì w | (a+b) và w | ab, ngh a là w = 1.

N u u ch n thì w = 2w' v i w' (a + b) và w' ab, ngh a là <math>w' = 1 và w = 2.

b) Xét d = (a, b) = p nguyên t . t u = (a + b, a - b), v = (a + b, ab) và $w = (a + b, a^2 + b^2)$. Vi t a = pa' và b = pb' v i (a', b') = 1.

u = p(a' + b', a' - b') = p hay 2p.

v = pv' v i v' = (a' + b', pa'b'). Ta có v' = 1 [n u p không chia h t (a' + b')] và v' = p [n u p chia h t (a' + b')], ngh a là v = p ho c p^2 .

w = pw' v i v' = $(a' + b', p[a'^2 + b'^2])$. Ta có v' = 1 ho c 2 [n u p không chia h t (a' + b')] và v' = p ho c 2p [n u p chia h t (a' + b')], ngh a là v = p ho c 2p ho c p^2 ho c $2p^2$.

- 20/ a) Ta th y b | x và a | y nên x = tb và y = ta ($t \in \mathbb{Z}$).
 - b) Vi t a = da' và b = db' v i (a', b') = 1. ý $xa = yb \Leftrightarrow xa' = yb'$ và áp d ng a).
 - c) \dot{y} (x-r)a = (y-s)b r i áp d ng b).
 - d) Dùng thu t toán tìm (a, b) và tìm $r, s \in \mathbb{Z}$ than ra + sb = (a, b) riáp d ng c).
- 21/ ý d ng t ng quát c a các c s d ng c a n.
- **22/** b) Các s c n tìm có d ng $2^x 3^y 5^z 7^t 11^r 13^s 37^u$ v i $3 \le x \le 14$, $4 \le y \le 9$, $7 \le y \le 8$, $0 \le t \le 10$, $2 \le r \le 3$, $0 \le s \le 5$ và $2 \le u \le 10$. Dùng nguyên lý nhân m.
 - c) Phân tích 1.166.400.000 thành tích các thas nguyên t và làm t ng t nh b).
- 23/ Phân tích 25! thành tích các thas nguyên t.
- **24**/ V i p là s nguyên t > 0, xét s l ng c s d ng c a p $(n \in \mathbb{N})$.
- **25/** a) (\Rightarrow) : hi n nhiên. Xét (\Leftarrow) : Vi t $\sqrt[n]{m} = \frac{r}{s}$ [d ng t i gi n v i $r \in \mathbb{Z}$, $s \in \mathbb{N}^*$ và (r, s) = 1]. Ta có $ms^n = r^n$. N u $s \ge 2$ thì s có c s nguyên t > 0 là p và (p, r) = 1. T ó suy ra mâu thu n.
 - b) N u $\sqrt{m} \in \mathbf{Q}$ thì $\sqrt{m} \in \mathbf{N}$ (do a)). Phân tích \sqrt{m} thành tích các thas nguyên t và i chi u v i gi thi t thy mâu thu n.

CH NG VI: QUAN H TRÊN CÁC T P H P.

- 1/ Li t kê t p h p $\Re = \{ (x,y) \in S^2 / x \Re y \}$ r i xét các tính ch t ph n x , ix ng, ph n x ng và truy n. a) +-+- b) -+-+ c) ---+ d) -+-- e) +-+- f) ---- (+: $c\acute{o}$; -: $kh\^{o}ng \ c\acute{o}$).
- 2/ Xét các tính ch $\,$ t ph $\,$ n $\,$ x $\,$, i $\,$ x $\,$ ng, ph $\,$ n $\,$ x $\,$ ng và truy $\,$ n $\,$ c $\,$ a $\,$ \Re $\,$:

$$a) + --- b) ---- c) --+ d) +--+ e) -+-- f) --+- (+: c\'o ; -: kh\'o ng c\'o).$$

- 3/e) $x \Re y \Leftrightarrow \sin x = \sin y \Leftrightarrow (x = y + k2\pi \text{ hay } x = \pi y + k2\pi \text{ v i } k \in \mathbf{Z}).$
- **4/** a) [a] = { $x \in \mathbb{R} / (x a)(x + a + 3) = 0$ }. Bi n lu n s ph n t c a [a] (là 1 hay 2) tùy theo a $\in \mathbb{R}$. b) T ng t a).
 - c) Tr $ng h p(-) : [a] = \{ x \in \mathbf{R} / (x a)(x^2 + ax + a^2 + 12) = 0 \} = \{ a \}, \forall a \in \mathbf{R}.$ Tr $ng h p(+) : [a] = \{ x \in \mathbf{R} / (x - a)(x^2 + ax + a^2 - 12) = 0 \}.$ Bi $n lu n s ph n t c a [a] (là 1, 2 hay 3) tùy theo <math>a \in \mathbf{R}.$
 - $d) \; [\; a\;] = \{\; x \in \mathbf{R} \; / \; (x-a)(ax+7) = 0 \; \}. \; \text{Bi } \; n \; \text{lu } \; n \; s \; \; \text{ph } \; n \; t \; \; c \; \; a \; [\; a\;] \; (\; l\grave{a}\; 1 \; \; \text{hay } \; 2\;) \; t\grave{u}y \; \text{theo } a \in \mathbf{R}.$
 - e) [a] = { $x \in \mathbb{R} / (x a)(ax 4) = 0$ }. Bi n lu n s ph n t c a [a] (là 1 hay 2) tùy theo $a \in \mathbb{R}$.
 - f) [a] = { $x \in \mathbb{R} / (\cos^2 x \cos^2 a)(\sin ax + 2) = 0$ } = { $x \in \mathbb{R} / \cos 2x = \cos 2a$ } có nh ng ph n t nào?
- **5**/ a) \Re có 14 c p.

b) $C_6^1 C_5^2 C_3^3$.

c)
$$C_6^1 C_5^2 C_3^3 + C_6^2 C_4^2 C_2^2 + C_6^1 C_5^1 C_4^4$$
.

- 6/ a) toàn ph n, có min và max.
 - c) bán ph n, có max và các ph n t t i ti u.
 - e) bán ph n, có các ph n t t i ti u và các ph n t t i i.
- b) bán ph n, có min và các ph n t t i i. d) bán ph n, có min và max.
 - f) toàn ph n, có min và max.

7/Litkê 12 ph nt caS.

8/a) Có 7 tr ng h p khác nhau.

b) Có 4 tr ng h p khác nhau.

10/ b) và d) Ch n th t toàn ph n m i không trùng v i th t \leq thông th ng trên S.

c) Ch n th t toàn ph n m i không trùng v i th t \geq thông th ng trên S.

CH NG VII: HÀM BOOLE.

1/ Dùng các lu t c a hàm Boole nhân ra d ng a th c, rút g n và nâng b c các n th c.

- 2/a) 8 t bào 1 n lo i 1 ô, 1 phép ph, 1 công th c a th c t i ti u.
 - b) 5 t bào l n (2 t bào l n lo i 4 ô, còn l i là lo i 2 ô), 1 phép ph, 1 công th c a th c t i ti u.
 - c) 4 t bào l n lo i 4 ô, 2 phép ph t i ti u, 2 công th c a th c t i ti u.
 - d) 5 t bào 1 n (1 t bào 1 n lo i 4 ô, còn 1 i là lo i 2 ô), 2 phép ph t i ti u,1 công th c a th c t i ti u.
 - e) 6 t bào 1 n lo i 2 ô, 3 phép ph t i ti u, 3 công th c a th c t i ti u.
 - f) 6 t bào l n (5 t bào l n lo i 4 ô, còn l i là lo i 2 ô), 2 phép ph t i ti u, 1 công th c a th c t i ti u.
 - g) 7 t bào 1 n (2 t bào 1 n lo i 4 ô, còn 1 i là lo i 2 ô), 4 phép ph t i ti u,1 công th c a th c t i ti u.
 - h) 8 t bào 1 n (5 t bào 1 n lo i 4 ô, còn 1 i là lo i 2 ô), 5 phép ph t i ti u,1 công th c a th c t i ti u.

D a vào m i ô c a S = Kar(f) hay \overline{S} , ta vi t c d ng n i r i chính t c c a f và \overline{f} .

- 3/ a) $S = Kar(f) = \{ (1,1), (1,2), (1,3), (2,3), (3,2), (4,2), (4,3), (4,4) \}$ và S có S t bào S có S có S t bào S có S t bào S có S có S t bào S có S có
 - (1 t bào l n lo i 4 ô, còn l i là lo i 2 ô), 1 phép ph , 1 công th c a th c t i ti u.
 - b) $S = Kar(f) = \{ (1,1), (1,2), (1,3), (2,2), (2,3), (3,2), (3,3), (4,1), (4,4) \}$ và S có S than S constants S consta

 - h) $S = Kar(f) = \{ (1,2), (1,4), (2,1), (2,4), (3,1), (3,3), (4,1), (4,2), (4,3), (4,4) \}$ và S có S t bào S có S có S t bào S có có S có S

D a vào m i ô c a S = Kar(f), ta vi t c d ng n i r i chính t c c a f và \overline{f} . 4/ Ch n m t công th c a th c t i ti u c a f v m ng các c ng t ng h p f.

5/ a) Có t t c $2^6 = 64$ vector Boole. Có $C_6^2 = 15$ vector Boole có úng 2 bi n nh n giá tr 1. S hàm Boole c n tính là $2^{64-15} = 2^{49}$.

- b) Có $C_6^2 + C_6^3 + ... + C_6^6 = 2^6 (C_6^0 + C_6^1) = 57$ vector Bool có ít nh t 2 bi n nh n giá tr 1. S hàm Bool c n tính là $2^{64-57} = 2^7 = 128$.
- c) S hàm Bool c n tính = s hàm Bool c a $F_5 = 2^{2^5} = 2^{32}$.
- d) S hàm Bool c n tính = s hàm Bool c a $F_3 = 2^{2^3} = 2^8 = 256$.
