Querying Relations - Division

pm jat @ daiict

Supply Parts Database

- Suppliers(sid, sname, city)
- Parts(pid, pname, color)
- Supplies(sid, pid, cost)

suppliers

sid [PK] integer	sname character var	city character varying
101	ABC	Mumbai
102	PQR	Delhi
103	XYZ	Ahmedabad

supplies

sid	pid	cost
101	1	100
102	1	120
101	3	160
103	2	210
102	2	220
102	3	150
102	4	400
102	5	500

parts

10 0.1. 00		
pid	pname	color
1	PART-1	RED
2	PART-2	GREEN
3	PART-3	RED
4	PART-4	BLUE
5	PART-5	GREEN

Division operation

- Following are example queries that require division
 - Supply-Parts database: Suppliers that supply all parts
 - Company database: List employees who work on all projects controlled by dno=4.
- The division is typically required when you want to find entities that are interacting with all entities of a given set.
- It is not supported in SQL implementations .. can be represented using other operations ... bit complex

Division- definition

Given two relations; r(x,y), s(y)

r ÷ s gives all distinct values of x from r that are associated with all values of y in s.

• Note that original relations may not be division compatible and required to brought down. As shown here! $\Pi_{\text{sid,pid}}$ (Supplies) div π_{pid} (Parts)

<u>List employees who work on all projects controlled</u> by dno=4

- PNOs controlled by dno = 4 $p4 \leftarrow \pi_{PNO} (\sigma_{DNO=4} (PROJECTS))$
- Have ENO, PNO project of WORKS on relation- $\mathbf{r1} \leftarrow \pi_{ENO, PNO}$ (WORKS_ON)
- ENO of employees works on PNOs in p4: r1 div p4

pname	plocation	dno
ProductX	Bangalore	5
ProductY	Sigapore	5
ProductZ	Houston	5
Computerization	London	4
Reorganization	Houston	1
SentAnalysis	London	4
	ProductX ProductY ProductZ Computerization Reorganization	ProductX Bangalore ProductY Sigapore ProductZ Houston Computerization London Reorganization Houston

eno	pno	hours
101	1	32.5
101	2	7.5
104	3	40
103	1	20
103	2	20
102	2	10
102	3	10
102	10	10
102	20	10
102	1	32.5
108	30	30
108	10	10
107	10	35
107	30	5
106	30	20
106	20	15
105	20	

pno	pname	plocation	dno
1	ProductX	Bangalore	5
2	ProductY	Sigapore	5
3	ProductZ	Houston	5
10	Computerization	London	4
20	Reorganization	Houston	1
30	SentAnalysis	London	4

pno smallint
10
30

eno	pno	hours
101	1	32.5
101	2	7.5
104	3	40
103	1	20
103	2	20
102	2	10
102	3	10
102	10	10
102	20	10
102	1	32.5
108	30	30
108	10	10
107	10	35
107	30	5
106	30	20
106	20	15
105	20	

ssn numeric(9,0)	pno smallint
101	2
101	3
101	10
101	20
101	1
102	30
102	20
103	30
103	10
104	3
105	1
105	2
106	10
106	30
107	1
107	2
108	20

01-02-2

Division – computation

Х	У	
101	1	
102	1	
101	3	
103	2	
102	2	
101	2	

5

У	
1	
2	

- One of the two approaches for computing R div S is as follows:
- Suppose XR is a set having the distinct values of X from R, that is $\Pi_{x}(R)$
- For division, we need to determine x in XR that are associated with all elements y in S
- Let us assume all x are associated with all y; if so $XR \times S$ would be equal to R. Isn't it?
- If x in $XR \neq R$, then not all x are associated with all y
- Then $\Pi_x(XR-R)$ would be set having x that are not associated with all y, and $XR-\Pi_x(XR-R)$ would have x that are associated with all y

Division – computation

- Computation of r DIV s
- Note the compatibility of R and S
- Compute following and observe the result –

$$r1 \leftarrow \Pi_{x}(r) \times s = ?$$

$$r2 \leftarrow r1 - r = ?$$

$$r2x \leftarrow \Pi_{x}(r2) = ?$$

$$r3 \leftarrow \Pi_{x}(r) - r2x = ?$$

R

Х	У
101	1
102	1
101	3
103	2
102	2
101	2

S

У
1
2

Division – computation

Compute following and observe the result –

$$r1 \leftarrow \Pi_{x}(r) \times s = ?$$

$$r2 \leftarrow r1 - r = ?$$

$$r2x \leftarrow \Pi_{x}(r2) = ?$$

$$r3 \leftarrow \Pi_{x}(r) - r2x = ?$$

All possible combinations $r1 \leftarrow \pi_x(R) \times S$ x values with "incomplete combinations", $r2x \leftarrow \pi_x(r1-R)$ and result - $\pi_x(R)$ -r2x

$$\pi_{\mathsf{x}}(\mathsf{R})$$
- $\pi_{\mathsf{x}}((\pi_{\mathsf{x}}(\mathsf{R}) \times \mathsf{S}) - \mathsf{R})$

SQL Solution

R(x,y) DIV S(y) be expressed as

```
SELECT DISTINCT x FROM R
WHERE x NOT IN (
SELECT x FROM (

( All possible; i.e. S x π<sub>x</sub>(R) )

MINUS
( Actual R )
)
```

R

X	У
101	1
102	1
101	3
103	2
102	2
101	2

у 1

SELECT x that are

NOT IN

Division in SQL

"Suppliers that supply all parts"

```
SELECT sid FROM Supplies1
WHERE sid NOT IN (
SELECT sid FROM (
```

supplies1

SID	PID	
101	1	
102	1	
101	3	
103	2	
102	2	
101	2	

part1

PID	
1	
2	

(All possible sid, pid combinations)
 MINUS
(Actual sid, pid pairs from Supplies1)

 $\pi_{SID}(SUPPLIES1) - \pi_{SID}((\pi_{SID}(SUPPLIES1) \times PARTS1) - SUPPLIES1)$

Division in SQL

"Suppliers that supply all parts"

```
SELECT sid FROM supplies1
WHERE sid not in (
SELECT sid FROM (
```

supplies1

SID	PID
101	1
102	1
101	3
103	2
102	2
101	2

part1

•		
	PID	
	1	
	2	

(SELECT * FROM (select distinct sid from supplies1) as sp cross join part1

```
EXCEPT
(SELECT * FROM supplies1)
AS r
```

 $\pi_{SID}(SUPPLIES1) - \pi_{SID}((\pi_{SID}(SUPPLIES1) \times PARTS1) - SUPPLIES1)$

Division in SQL

"Suppliers that supply all parts"

```
SELECT * FROM suppliers
WHERE sid not in (
SELECT sid FROM (
```

supplies

sid		pid		cost	
	101		1		100
	102		1		120
	101		3		160
	103		2		210
	102		2		220
	102		3		150
	102		4		400
	102		5		500

sid [PK] integer	sname character vary	city character varying
101	ABC	Mumbai
102	PQR	Delhi
103	XYZ	Ahmedabad

parts

pid	pname	color
1	PART-1	RED
2	PART-2	GREEN
3	PART-3	RED
4	PART-4	BLUE
5	PART-5	GREEN

(SELECT sid, pid FROM (select pid from parts) as p cross join (select distinct sid from supplies) as sp)

```
EXCEPT
```

(SELECT sid, pid FROM supplies)

```
) AS r
```

 $\Pi_{\text{sid,pid}}$ (Supplies) div π_{pid} (Parts)

Division in SQL (example #2)

List employees who work on all projects controlled by dno=4

```
SELECT * FROM EMPLOYEE

WHERE eno NOT IN (

SELECT eno FROM (

( All possible eno, pno (of dno=4) combinations)

MINUS

( Actual eno, pno pairs from WORKS_ON )
);
```


Division in SQL (example #2)

List employees who work on all projects controlled by dno=4

```
SELECT * FROM employee AS e

WHERE eno NOT IN (

SELECT eno FROM (

(SELECT eno, pno FROM (select pno from project where dno=4) as p

cross join (select distinct eno from works_on) as w)

EXCEPT

(SELECT eno, pno FROM works_on)

) AS r
```

pno	pname	plocation	dno
1	ProductX	Bangalore	5
2	ProductY	Sigapore	5
3	ProductZ	Houston	5
10	Computerization	London	4
20	Reorganization	Houston	1
30	SentAnalysis	London	4

eno	pno	hours
101	1	32.5
101	2	7.5
104	3	40
103	1	20
103	2	20
102	2	10
102	3	10
102	10	10
102	20	10
102	1	32.5
108	30	30
108	10	10
107	10	35
107	30	5
106	30	20
106	20	15
105	20	

Division in SQL Solution (Another Strategy)

R(x,y) DIV S(y) be expressed as

```
SELECT DISTINCT x FROM R
WHERE empty-set (
   ( all y, i.e. S )
    MINUS
   ( y that are associate with the x)
);
```

_
L
- '

X	У
101	1
102	1
101	3
103	2
102	2
101	2

5
У
1
2

Division in SQL Solution (Another Strategy)

"Suppliers that supply all parts"

```
SELECT suppliers
WHERE empty-set (
    ( All Parts )
    MINUS
    ( Parts Supplied by the Supplier )
);
```


Division in SQL Solution (Another Strategy)

"Suppliers that supply all parts" SELECT * FROM suppliers as s WHERE NOT EXISTS ((SELECT p.pid FROM parts as p) EXCEPT

For division correlated query seems simpler to write but may expensive to execute

(SELECT sp.pid FROM supplies sp WHERE sp.sid = s.sid)

sid	pid	cost
101	1	100
102	1	120
101	3	160
103	2	210
102	2	220
102	3	150
102	4	400
102	5	500

supplies

parts

pid	pname	color
1	PART-1	RED
2	PART-2	GREEN
3	PART-3	RED
4	PART-4	BLUE
5	PART-5	GREEN

suppliers

sid [PK] integer	sname character vary	city character varying
101	ABC	Mumbai
102	PQR	Delhi
103	XYZ	Ahmedabad

);

Division Example #2 (using s

<u>List employees who work on all projects controlled</u> by dno=4

```
SELECT employee
WHERE empty-set (
    (all PNOs controlled by dno=4, i.e. p4)
    MINUS
    (PNOs on which the employee works)
);
```

pno	pname	plocation	dno
1	ProductX	Bangalore	5
2	ProductY	Sigapore	5
3	ProductZ	Houston	5
10	Computerization	London	4
20	Reorganization	Houston	1
30	SentAnalysis	London	4

eno	pno	hours
101	1	32.5
101	2	7.5
104	3	40
103	1	20
103	2	20
102	2	10
102	3	10
102	10	10
102	20	10
102	1	32.5
108	30	30
108	10	10
107	10	35
107	30	5
106	30	20
106	20	15
105	20	

List employees who work on all projects controlled by dno=4

```
SELECT * FROM employee AS e

WHERE NOT EXISTS (

(SELECT pno FROM project WHERE dno = 4)

EXCEPT

(SELECT pno FROM works_on AS w WHERE w.eno = e.eno)
);
```


Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

```
r1 \leftarrow \sigma_{\text{iname='PMJ'}} (instructor)
r2 \leftarrow \sigma_{\text{acadyr} >= 2007 \text{ and acadyr} <= 2011} (offers)
r3 \leftarrow r1 * r2 * registers
r4 \leftarrow \Pi_{\text{sid,course,acadyear,semester}} (r3)
r5 \leftarrow \Pi_{\text{course,acadyear,semester}} (r3)
result \leftarrow r4 div r5
```


Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

```
[Using Strategy#1]
   SELECT Students
   WHERE sid NOT IN (
       (All possible combination of sid, cno, yr, sem for PMJ and during specified acad-
         years)
         MINUS
       (actual combination of sid, cno, yr, sem in registers for PMJ and during specified
         acad-years)
   );
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

[Using Strategy#1]

```
SELECT * FROM student AS s
WHERE studentid NOT IN (
  SELECT studentid FROM (
    SELECT studentid, courseno, acadyear, semester from
       ((select courseno, acadyear, semester FROM offers NATURAL JOIN instructor
       WHERE instructorname = 'P M Jat' AND acadyear >= 2007 AND acadyear <= 2011) as co
         CROSS JOIN (select distinct studentid from registers) as sr)
        EXCEPT
         (SELECT studentid, courseno, acadyear, semester FROM
            registers WHERE acadyear >= 2007 AND acadyear <= 2011)
   as r
```


Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

```
[Using Strategy#2]
    SELECT Students
    WHERE empty-set (
        ( All courses by PMJ and during specified acad-years)
            MINUS
        ( Courses taken by the StudID during specified acad-years)
        );
```


Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

More queries requiring DIVISION

- Retrieve the names of employees, who work on all the projects that 'John Smith' works
- List supplier who supply all 'Red' Parts
- List all customers who bought all items for category=3