© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°06

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

Partie I – Deux suites

On définit deux suites d'entiers (a_n) et (b_n) en posant $\begin{cases} a_0 = 1 \\ b_0 = 0 \end{cases}$ et

$$\forall n \in \mathbb{N}, \begin{cases} a_{n+1} = a_n + 2b_n \\ b_{n+1} = a_n + b_n \end{cases}$$

- **1.** Prouver avec soin que $\forall n \in \mathbb{N}, b_n \geq n$.
- **2.** Etablir que $\forall n \in \mathbb{N}, \ a_n^2 2b_n^2 = (-1)^n$.
- **3.** Montrer que

$$\forall n \in \mathbb{N}^*, \left| \frac{a_n}{b_n} - \sqrt{2} \right| \le \frac{1}{b_n^2}$$

- **4.** En déduire que la suite $\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}^*}$ converge vers $\sqrt{2}$.
- 5. Montrer que les suites (a_n) et (b_n) suivent la même relation de récurrence homogène d'ordre deux à coefficients constants.
- **6.** En déduire les termes généraux des suites (a_n) et (b_n) .
- 7. A l'aide d'équivalents de a_n et b_n , retrouver le résultat de la question 4.
- **8.** Montrer que $\frac{a_n}{b_n} \sqrt{2} \sim 2\sqrt{2} \left(2\sqrt{2} 3\right)^n$.

Partie II - Algorithme de Babylone

On définit une suite (u_n) en posant $u_0 = 2$ et $u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n}$ pour tout $n \in \mathbb{N}$.

- **9.** Montrer que la suite (u_n) est strictement positive.
- **10.** Montrer que la suite (u_n) est minorée par $\sqrt{2}$.
- 11. Déterminer le sens de variation de la suite (u_n) .

12. En déduire la convergence et la limite de la suite (u_n) .

On pose
$$v_n = \frac{u_n - \sqrt{2}}{u_n + \sqrt{2}}$$
 pour $n \in \mathbb{N}$.

- 13. Montrer que $v_{n+1} = v_n^2$ pour tout $n \in \mathbb{N}$ et en déduire une expression de v_n en fonction de n.
- **14.** En déduire qu'il existe une constante $K \in [0, 1[$ telle que $u_n \sqrt{2} = \mathcal{O}(K^{2^n})$.
- **15.** Laquelle des deux suites $\left(\frac{a_n}{b_n}\right)$ et (u_n) converge le plus rapidement vers $\sqrt{2}$? Justifier.

© Laurent Garcin MP Dumont d'Urville

Exercice 1 **

On pose $f(x) = x + \ln(x)$ pour $x \in \mathbb{R}_+^*$.

- **1.** Montrer que f est une bijection de \mathbb{R}_+^* sur \mathbb{R} .
- 2. Que peut-on dire du sens de variation de sa bijection réciproque f^{-1} ainsi que des limites de f^{-1} en $-\infty$ et en $+\infty$?
- **3.** Montrer que pour tout $n \in \mathbb{N}$, l'équation f(x) = n admet une unique solution sur \mathbb{R}_+^* . On notera x_n cette unique solution.
- **4.** Montrer que la suite (x_n) est croissante.
- **5.** Déterminer la limite de (x_n) en $+\infty$.
- **6.** Montrer que $x_n \sim_{n \to +\infty} n$.
- 7. Déterminer la limite de la suite de terme général $x_{n+1} x_n$.
- **8.** On pose $u_n = \frac{n x_n}{\ln(n)}$ pour $n \in \mathbb{N} \setminus \{0, 1\}$.
 - a. Montrer que

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \ u_n - 1 = \frac{\ln(x_n/n)}{\ln(n)}$$

- **b.** Déterminer la limite de (u_n) .
- c. Montrer que

$$1-u_n \sim \frac{1}{n \to +\infty}$$

9. En déduire que

$$x_n = n - \ln(n) + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$

Exercice 2 ★★★

On considère la fonction $f: x \in \mathbb{R}_+ \mapsto 1 - \sqrt{x}$ ainsi que la suite $(u_n)_{n \in \mathbb{N}}$ telle que $u_0 = \frac{1}{4}$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.

- 1. Montrer que pour tout $x \in [0,1]$, $f(x) \in [0,1]$.
- **2.** Montrer que $u_n \in [0,1]$ pour tout $n \in \mathbb{N}$.
- **3.** Déterminer le sens de variation de f et de $f \circ f$ sur [0, 1].
- **4.** Montrer que f possède un unique point fixe α sur [0,1] et déterminer celui-ci.
- **5.** Montrer que $u_0 \le \alpha$.
- **6.** Montrer que pour tout $n \in \mathbb{N}$, $u_{2n} \leq \alpha$.
- 7. Montrer que $u_0 \le u_2$. En déduire que la suite $(u_{2n})_{n \in \mathbb{N}}$ est croissante puis qu'elle converge.
- **8.** Montrer que les points fixes de $f \circ f$ sur [0,1] sont $0, \alpha$ et 1.
- **9.** En déduire la limite de la suite $(u_{2n})_{n\in\mathbb{N}}$, puis la convergence et la limite de la suite $(u_{2n+1})_{n\in\mathbb{N}}$ et enfin la convergence et la limite de la suite $(u_n)_{n\in\mathbb{N}}$.