Homework #1

Jonathan McFadden

TCSS - 580 : Winter 2018
Information Theory

Problem 2.3): Let \mathbb{P}^n be the set of all *n*-dimensional probability vectors, with elements $\vec{p} \in \mathbb{P}^n$ defined as $\vec{p} = (p_1, p_2, \dots, p_i, \dots, p_n)$ for $i \in \mathbb{Z}^+ \ni i \le n$. By the definition of a probability space, we must have

$$\vec{p} \cdot \vec{1} = \sum_{i=1}^{n} \{p_i\} = 1 , \quad \forall \vec{p} \in \mathbb{P}^n,$$
 (2.3-1)

where vector $\vec{1}$ is defined as $\vec{1} = (q_1, q_2, \dots, q_k, \dots, q_n) \in \mathbb{Z}^n$ with $q_k = 1, \forall k \in [1, n]$ (where the interval [1, n] is defined such that $[1, n] \subseteq \mathbb{Z}^+$). Furthermore, the definition of a probability space also requires that, for any $\vec{p} \in \mathbb{P}^n$, the elements of \vec{p} (the $p_i \in \vec{p}$ such that $i \in \mathbb{Z}^+ \ni i \leq n$) satisfy the condition

$$p_i \ge 0 \tag{2.3-2}$$

for all $i \in \mathbb{Z}^+ \ni i \leq n$.

The expression in 2.3-1 guarantees that the p_i of any $\vec{p} \in \mathbb{P}^n$ satisfy the bound $0 \le p_i \le 1$ where $i \in \mathbb{Z}^+ \ni i \le n$. Therefore, the relation

$$p_i \log_2[p_i] \ge 0 \tag{2.3-3}$$

holds for all p_i of any $\vec{p} \in \mathbb{P}^n$. Moreover, for the cases where $p_i = 0$ or $p_i = 1$, it is clear that the expression in 2.3-3 reduces to equality. Specifically, the realation $p_i \log_2 [p_i]$ becomes

$$p_i \log_2[p_i] = 0 (2.3-4)$$

for the case where $p_i = 0$ or $p_i = 1$. Moreover, the relation in 2.3-4 also represents the **smallest** possible value/result for the expression $p_i \log_2 [p_i]$. That is to say, that when $p_i = 0$ or $p_i = 1$, then $p_i \log_2 [p_i]$ is at a minimum.

The result in 2.3-1, makes it is clear that only **ONE** p_i in each $\vec{p} \in \mathbb{P}^n$ may have the value $p_i = 1$; therefore the probability vectors $\vec{p} \in \mathbb{P}^n$ which result in a minimum value for $p_i \log_2 [p_i]$ all have exactly one non-zero element with the non-zero element having a value of one. This implies that there are only n such probability vectors, \vec{p}^* within any \mathbb{P}^n . Furthermore, the value of $H(X) = \sum_{i=1}^n \{p_i \log_2 [p_i]\}$ for any such \vec{p}^* is also zero.

Problem 2.4 a): Recall the chain-rule for conditional entropies of X given Y,

$$H(X \mid Y) = H(X, Y) - H(Y)$$
 (2.4-1)

We apply the expression in 2.4-1 to the case of g(X) given X to obtain

$$H\left(g\left(X\right)\mid X\right) = H\left(g\left(X\right), X\right) - H\left(X\right) \tag{0.0.1}$$

by rearranging the expression in the previous result as follows,

$$H(g(X), X) = H(X) + H(g(X) | X)$$
 (2.4-2)

we obtain the desired result.

Problem 2.4 b): For any given value of X, we automatically know g(X). Therefore, the expression for H(g(X), X) in 2.4-2 becomes

$$H(g(X), X) = H(X)$$

which is the desired result.

<u>Problem 2.4 c):</u> Recalling the expression for the conditional entropy chain rule in 2.4-1 and using it for the case where X = X and Y = g(X) yields the result

$$H\left(X\mid g\left(X\right)\right) = H\left(X,g\left(X\right)\right) - H\left(g\left(X\right)\right)$$

rearranging the above expression yields

$$H(X, g(X)) = H(g(X)) + H(X \mid g(X))$$
 (2.4-3)

we obtain the desired result.

Problem 2.4 d): For any arbitrary function, g(X), of a random variable X, the entropy $H(X \mid g(X))$ satisfies the condition

$$H\left(X\mid g\left(X\right)\right)\geq0\tag{2.4-4}$$

for the case where g(X) is one-to-one, the relation in 2.4-4 simplifies to

$$H\left(X\mid g\left(X\right)\right)=0$$

Applying the relation in 2.4-4 to the expression in 2.4-3 yields

$$\begin{split} H\left(X,g\left(X\right)\right) &= H\left(g\left(X\right)\right) + H\left(X\mid g\left(X\right)\right) \\ &\geq H\left(g\left(X\right)\right) + H\left(X\mid g\left(X\right)\right) - H\left(X\mid g\left(X\right)\right) \\ &\geq H\left(g\left(X\right)\right) \end{split}$$

Problem 2.9 a): Let $\rho(X,Y)$ be a function which is defined according to

$$\rho(X,Y) = H(X \mid Y) + H(Y \mid X) \tag{2.9-1}$$

for all x and y. Since conditional probabilities are always non-zero (<u>for arbitrary X and Y we have $H(X \mid Y) \ge 0$), we can say that $H(X \mid Y)$ has the property</u>

$$H(X \mid Y) \ge 0$$

and that $H(Y \mid X)$ has the property

$$H(Y \mid X) \ge 0$$

Applying these properties of $H(X \mid Y) \ge 0$ and $H(Y \mid X) \ge 0$ to the expression in 2.9-1 yields

$$\rho(X,Y) = H(X \mid Y) + H(Y \mid X) \ge 0 \tag{2.9-2}$$

which indicates that $\rho(X,Y)$ satisfies the first property of a metric over all x and y. By its definition in 2.9-1, we can say that $\rho(X,Y)$ is symmetric; therefore, we can additionally say that $\rho(X,Y)$ satisfies the second condition of a metric over all x and y.

Now, consider three random variables, X, Y, and Z. Then write

$$\rho\left(X,Y\right) = H\left(X\mid Y\right) + H\left(Y\mid X\right) \tag{2.9-3}$$

and

$$\rho(Y, Z) = H(Y \mid Z) + H(Y \mid Z) \tag{2.9-4}$$

and

$$\rho(X,Z) = H(X \mid Z) + H(Z \mid X) \tag{2.9-5}$$

We now add the expression in 2.9-3 and 2.9-4 to obtain

$$H(X \mid Y) + H(Y \mid X) + H(Y \mid Z) + H(Z \mid Y)$$

$$\left[H(X \mid Y) + H(Y \mid Z)\right] + \left[H(Z \mid Y) + H(Y \mid X)\right]$$
(2.9-6)

By the chain rule for conditional entropies, we have $H(X \mid Y) + H(Y \mid Z) = H(X, Y \mid Z)$ and $H(Z \mid Y) + H(Y \mid X) = H(Z, Y \mid X)$ so the expression in 2.9-6 becomes

$$H(X, Y \mid Z) + H(Z, Y \mid X)$$

Again appling the chain rule for conditional entropies to the previous result, we have

$$\left[H\left(X\mid Z\right) +H\left(Y\mid X,Z\right) \right] +\left[H\left(Z\mid X\right) +H\left(Y\mid Z,X\right) \right]$$

Since conditional entropies are always greater or equal to zero, the $H(Y \mid X, Z)$ and $H(Y \mid Z, X)$ terms in the previous result satisfy $H(Y \mid X, Z) \ge 0$ and $H(Y \mid Z, X) \ge 0$. This allows us to rewrite the previous result as

$$\rho(X,Y) + \rho(Y,Z) = H(Y \mid Z) + H(Y \mid Z) + H(X \mid Y) + H(Y \mid X)$$

$$= \left[H(X \mid Z) + H(Y \mid X, Z)\right] + \left[H(Z \mid X) + H(Y \mid Z, X)\right]$$

$$\geq H(X \mid Z) + H(Z \mid X)$$

Using the definition from 2.9-5, the previous result becomes

$$\rho(X,Y) + \rho(Y,Z) = \left[H\left(X\mid Z\right) + H\left(Y\mid X,Z\right)\right] + \left[H\left(Z\mid X\right) + H\left(Y\mid Z,X\right)\right]$$

$$\geq H\left(X\mid Z\right) + H\left(Z\mid X\right)$$

$$\geq \rho(X,Z)$$

thereby indicating that $\rho(X,Y) + \rho(Y,Z) \ge \rho(X,Z)$ holds and, by extension, that the definition in 2.9-1 satisfies the fourth condition of a metric over all x and y.

Finally, we consider the case where X = Y via a one-to-one mapping. Since H(X,Y) = 0 iff X is a function of Y and H(Y,X) = 0 iff Y is a function of X, $\rho(X,Y)$ can only equal zero if and only if X = Y. This satisfies the third and only remaining condition of a metric over all x and y; therefore, for cases where X and Y are related by a one-to-one mapping, $\rho(X,Y)$ is a metric over all x and y.

Problem 2.9 b): Starting with the expression $I(X;Y) = H(X) - H(X \mid Y)$ we rearrange to obtain

$$H(X \mid Y) = H(X) - I(X;Y)$$
 (2.9-7)

We also obtain

$$H(Y \mid X) = H(Y) - I(Y; X)$$
 (2.9-8)

similarly. We now apply the expressions in 2.9-7 and 2.9-8 to the definition of $\rho(X,Y)$ in 2.9-1 to obtain the result

$$\rho(X,Y) = H(X \mid Y) + H(Y \mid X)$$

$$= H(X) - I(X;Y) + H(Y) - I(Y;X)$$

Noting that I(X;Y) = I(Y;X) the previous result can be simplied to the expression

$$\rho(X,Y) = H(X) - I(X;Y) + H(Y) - I(Y;X)$$

$$= H(X) - I(X;Y) + H(Y) - I(X;Y)$$

$$= H(X) + H(Y) - 2I(X;Y)$$
(2.9-9)

which proves the first line of the problem. Next, we note that I(X;Y) = H(X) + H(Y) - H(X,Y) and apply this relation to the expression in 2.9-9 so that we obtain

$$\rho(X,Y) = H(X) + H(Y) - 2I(X;Y)$$

$$= H(X) + H(Y) - I(X;Y) - I(X;Y)$$

$$= H(X) + H(Y) - I(X;Y) - [H(X) + H(Y) - H(X,Y)]$$

$$= H(X,Y) - I(X;Y)$$
(2.9-10)

as our result and proving the second line of the problem. Finally, we again note I(X;Y) = H(X) + H(Y) - H(X,Y) and then apply it to the expression in 2.9-10 to yield the result

$$\rho(X,Y) = H(X,Y) - I(X;Y)$$

$$= H(X,Y) - [H(X) + H(Y) - H(X,Y)]$$

$$= 2H(X,Y) - H(X) - H(Y)$$

which proves the third and final line of the problem.

Problem 2.10 a): Let X_1 and X_2 be discrete R.V.s having PMFs $p_1(\cdot)$ and $p_2(\cdot)$, respectively. Furthermore, let the alphabets of X_1 and X_2 be denoted as \mathcal{X}_1 and \mathcal{X}_2 , respectively. These alphabets are defined $\mathcal{X}_1 = \{1, 2, \dots, m\}$ and $\mathcal{X}_2 = \{m+1, \dots, n\}$, where $m, n \in \mathbb{Z}^+ nim < n$. Now define another R.V. X such that

$$X = \begin{cases} X_1, & \text{with probability} & \alpha \\ \\ X_2, & \text{with probability} & 1 - \alpha \end{cases}$$

In order to find H(X) in terms of $H(X_1)$, $H(X_2)$, and α , we must first define the function, of X, $\theta = f(X)$, as follows

$$f(X) = \begin{cases} 1, & \text{when } X = X_1 \\ \\ 2, & \text{when } X = X_2 \end{cases}$$

Noting that $H(X) = H(X, f(X)) = H(f(X)) + H(X \mid f(X))$, we can write

$$H(X) = H(X, f(X))$$

$$= H(f(X)) + H(X | f(X))$$

$$= H(f(X)) + f(f(X) = 1) H(X | f(X) = 1) + f(f(X) = 2) H(X | f(X) = 2)$$

$$= H(\alpha) + \alpha H(X_1) + (1 - \alpha) H(X_2)$$
(2.10-1)

which gives H(X) in terms of $H(X_1)$, $H(X_2)$, and α , where $H(\alpha)$ is the binary entropy function written, in terms of α , as $H(\alpha) = -\alpha \log_2 [\alpha] - (1 - \alpha) \log_2 [1 - \alpha]$.

Problem 2.10 b): Since the function $H(\alpha) = -\alpha \log_2 [\alpha] - (1 - \alpha) \log_2 [1 - \alpha]$ is greater than or equal to zero for all $\alpha \in [0, 1]$, we may rewrite the expression in 2.10-1 as

$$H(X) = H(\alpha) + \alpha H(X_1) + (1 - \alpha) H(X_2)$$

$$H(X) - H(\alpha) = \alpha H(X_1) + (1 - \alpha) H(X_2)$$

$$H(X) \le H(X_1) + H(X_2)$$
(2.10-2)

by also noting that $\alpha H(X_1) \leq H(X_1)$ and $(1 - \alpha) H(X_2) \leq H(X_2)$. Taking the expression in 2.10-2 to the power 2 gives

$$2^{H(X)} \le 2^{H(X_1) + H(X_2)} \tag{0.0.2}$$

We can interpret the expression in 0.0.2 as indicating that, while X_1 and X_2 may have disjoint alphabets, it is possible that some combinations of elements from these alphabets may yield identical entropies.

Problem 2.11 a): Starting with

$$\rho = 1 - \frac{H(X_2 \mid X_1)}{H(X_1)} \tag{2.11-1}$$

We obtain a common denominator and note that, since X_1 and X_2 are identically distributed, $H(X_1) = H(X_2)$ to yield the result

$$\begin{split} \rho &= 1 - \frac{H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)} \\ &= \frac{H\left(X_{1}\right) - H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)} \\ &= \frac{H\left(X_{2}\right) - H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)} \end{split}$$

Now, since $I(X_1; X_2) = H(X_1) - H(X_1 \mid X_2) = H(X_2) - H(X_2 \mid X_1)$, the previous result finally becomes

$$\rho = \frac{H(X_2) - H(X_2 \mid X_1)}{H(X_1)}$$

$$= \frac{I(X_2; X_1)}{H(X_1)} = \boxed{\frac{I(X_1; X_2)}{H(X_1)}}$$
(2.11-2)

since $I(X_2; X_1) = I(X_1; X_2)$, by the definition of mutual information.

Problem 2.11 b): Note that, by the definitions of both entropy and conditional entropy, the expressions

$$0 \le H(X_2 \mid X_1) \le (H(X_2) = H(X_1)) \tag{2.11-3}$$

and

$$0 \le H(X_1 \mid X_2) \le (H(X_1) = H(X_2)) \tag{2.11-4}$$

are both valid. Dividing 2.11-3 by $H(X_1)$ and 2.11-4 by $H(X_2)$, we obtain

$$0 \le \frac{H\left(X_2 \mid X_1\right)}{H\left(X_1\right)} \le 1$$

and

$$0 \le \frac{H\left(X_1 \mid X_2\right)}{H\left(X_2\right)} \le 1$$

Since these quantities are bounded by [0,1], the expression in 2.11-1 then implies that $0 \le \rho \le 1$.

Problem 2.11 c): Recalling the result in 2.11-2, it is clear that the only way for $\rho = 0$ to hold, is for $I(X_1; X_2) = 0$ to also hold. Since $I(X_1; X_2) = 0$ only holds for independent X_1 and X_2 , $\rho = 0$ can hold iff X_1 and X_2 are independent.

Problem 2.11 d):

Problem 2.24 a): Consider a choice of four unique objects and specify a specific, arbitrarily picked object to be "special". We can model this situation using two random variables X and Y. We define X to be the random variable describing whether the "special" object was picked, so $\mathcal{X} = \{0,1\}$ with X = 0 if the "special" object was picked and X = 1 otherwise. The entropy of this random variable, H(X), is the entropy we seek to find, namely H(1/4). Additionally, we define Y to be the random variable describing which of the three "non-special" items was picked, thus $\mathcal{Y} = \{0,1,2\}$. We define Y = 0 if the first "non-special" object was picked, Y = 1 for the second, and Y = 2 for the third.

We can also define a third random variable Z which describes choosing one of four unique objects, thus $\mathcal{Z} = \{0, 1, 2, 3\}$ and $\Pr[Z = z] = 1/4$ for all $z \in \mathcal{Z}$. Furthermore, we can equate Z = XY, thus we can say

$$H(Z) = H(X,Y)$$
$$= H(X) + H(Y \mid X)$$

by also using the chain rule $H(X,Y) = H(X) + H(Y \mid X)$. Without loss of generality, we also say that the "special" object is represented by Z = 0. That is to say that H(X) = H(1/4) = H(Z = 0).

We continue by appling the relation H(X) = H(1/4) to the previous result gives us

$$H(Z) = H(X) + H(Y \mid X)$$
$$= H(1/4) + H(Y \mid X)$$

which becomes

through some simple rearranging along with noting the definition of $H(Y \mid X)$ and the fact that Z = XY implies that p(z) = p(x, y). Now, since $\Pr[Z = z] = 1/4$ for all $z \in \mathcal{Z}$ we can compute the value of H(Z) to be

$$H(Z) = \sum_{i=1}^{4} \left\{ \frac{1}{4} \log_2 \left[\frac{1}{4} \right] \right\} = 2$$
 (2.24-2)

Moreover, we can also evaluate the summation over z in the second term of 2.24-1 to obtain

$$\sum_{\substack{z \\ z \neq 0}} \left\{ p\left(z\right) \left(\sum_{\substack{x,y \\ y \in \mathcal{Y}}} \left\{ p\left(y \mid x\right) \log_2 \left[p\left(y | x\right) \right] \right\} \right) \right\} = \frac{3}{4} \sum_{\substack{x,y \\ y \in \mathcal{Y}}} \left\{ p\left(y \mid x\right) \log_2 \left[p\left(y | x\right) \right] \right\}$$

Additionally, we can say that, when X = 1, p(y|x) = 1/3 for all $y \in \mathcal{Y}$. Therefore, we can evaluate the

summation over x and y in the previous result

$$\begin{split} \sum_{\substack{z \\ z \neq 0}} & \left\{ p\left(z\right) \left(\sum_{\substack{x,y \\ x = 1 \\ y \in \mathcal{Y}}} \left\{ p\left(y \mid x\right) \log_2 \left[p\left(y \mid x\right) \right] \right\} \right) \right\} = \frac{3}{4} \sum_{\substack{x,y \\ x = 1 \\ y \in \mathcal{Y}}} \left\{ p\left(y \mid x\right) \log_2 \left[p\left(y \mid x\right) \right] \right\} \\ & = \frac{3}{4} \left(\mathcal{B}\left(\frac{1}{\beta} \log_2 \left[\frac{1}{3} \right] \right) \right) \\ & = \frac{3}{4} \log_2 \left[\frac{1}{3} \right] \\ & = -\frac{3}{4} \log_2 \left[3 \right] \end{split} \tag{2.24-3}$$

We can now apply the values from 2.24-2 and 2.24-3 to the expression in 2.24-1 to obtain

$$H(1/4) = H(Z) + \sum_{\substack{z \\ z \neq 0}} \left\{ p(z) \left(\sum_{\substack{x,y \\ x = 1 \\ y \in \mathcal{Y}}} \left\{ p(y \mid x) \log_2 \left[p(y \mid x) \right] \right\} \right) \right\}$$

$$= 2 + \left(-\frac{3}{4} \log_2 [3] \right)$$

$$= 2 - \frac{3}{4} \log_2 [3] \approx 0.811278 \text{ bits}$$

as our result and final answer.

Problem 2.24 b): Let f(x) be an arbitrary function which maps $f: x \in \mathbb{R} \to y \in \mathbb{R}$ where $y = f(x) \in \mathbb{R}$ for $x, y \in \mathbb{R}$. The average value of any function such as f(x) over any interval covered by the function, $[a, b] \subseteq \mathbb{R} \ni a < b$, is defined according to the integral

$$\overline{f}\left(x \in [a, b]\right) = \frac{1}{b - a} \int_{a}^{b} f\left(x\right) \, dx$$

so that the average value can be determined by evaluating the integral expression.

Homework 1

When we consider the average entropy, $\overline{H}(p)$ of a system having uniform distribution, our bounds are clearly [0,1]. Thus, since $H(p) = -p \log_2 [p] - (1-p) \log_2 [1-p]$, the above integral expression for the average value of a function becomes

$$\overline{H}(p \in [0,1]) = \frac{1}{1-0} \int_0^1 H(p) dp$$

$$= \int_0^1 \left(-p \log_2[p] - (1-p) \log_2[1-p]\right) dp$$
(2.24-4)

Using Mathematica to evaluate the integral in 2.24-4, we obtain

$$\overline{H}(p \in [0, 1]) = \underbrace{\frac{1}{1 - 0} \int_{0}^{1} H(p) dp}_{0}$$

$$= \int_{0}^{1} \left(-p \log_{2}[p] - (1 - p) \log_{2}[1 - p] \right) dp$$

$$= \boxed{0.721}$$

Problem 2.29 a):

Problem 2.29 b):

Problem 2.29 c):

Problem 2.29 d):

Problem 2.31):

Problem 2.35):

Problem 2.42 a):

Problem 2.42 b):

Problem 2.42 c):

Problem 2.42 d):