Exercise Sheet 2

Exercise 1

We start by performing integration by parts on $f_n(x)$:

$$f_n(x) = \int_a^x f(t) \cos(nt) dt$$

$$= f(t) \frac{\sin(nt)}{n} \Big|_a^x - \int_a^x f'(t) \frac{\sin(nt)}{n} dt$$

$$= \frac{1}{n} \Big(f(x) \sin(nx) - f(a) \sin(na) - \int_a^x f'(t) \sin(nt) dt \Big).$$

Then, since we know that $f: I \to \mathbb{R}$ is a C^1 function, we know that there exists an $M \in \mathbb{R}$ such that $\sup_{x \in I} |f(x)| + |f'(x)| \le M$. Thus, we have that

$$|f_n(x)| \le \frac{1}{n} \left(2M + M \int_a^x |\sin(nt)| \ dt \right)$$

$$\le \frac{M}{n} \left(2 + b - a \right).$$

Now let $\epsilon > 0$, and let $n > \frac{M(2+b-a)}{\epsilon}$. Then we have that $|f_n(x)| \le \epsilon$. Thus, we see that the sequence of functions f_n converges uniformly to zero.

Exericse 2

Exercise 2.1

Assume for the sake of contradiction that f were not bounded but f_n is a sequence of functions that is uniformly bounded and converges uniformly to f. In particular, let us assume that for all $n \in \mathbb{N}$, $x \in \Omega$, we have that $|f_n(x)| \leq M$. Since f is unbounded, in particular there is an x_0 such that $f(x_0) > M + 1$.

Then, since we assumed that f_n converges uniformly, we also know that, for any $\epsilon \in \mathbb{R}$, there exists $n \in \mathbb{N}$,

$$|f_n(x_0) - f(x_0)| < \epsilon$$

Then, let $\epsilon = \frac{1}{2}$. But then this implies that, there exists $n \in \mathbb{N}$,

$$f_n(x_0) > M + \frac{1}{2}.$$

But this is a contradiction since we assumed that M was the uniform bound for $f_n(x)$.

Exercise 2.2

Let f be the limit of f_n and g be the limit of g_n . Now we show that $(f_n + g_n)(x)$ converges uniformly to f + g. Then, since f_n , g_n are uniformly convergent we have that there exists some N > 0 such that for all

n > N,

$$|f_n(x) - f(x)| < \frac{1}{2}\epsilon$$
$$|g_n(x) - g(x)| < \frac{1}{2}\epsilon$$

for any $\epsilon \in \mathbb{R}$, $x \in \Omega$. Now, we add the two inequalities above so that for all n > N,

$$|f_n(x) - f(x)| + |g_n(x) - g(x)| < \epsilon.$$

Using the triangle inequality, we have that

$$|f_n(x) + g_n(x) - (f(x) + g(x))| \le |f_n(x) - f(x)| + |g_n(x) - g(x)|.$$

But by our inequalities above, we now have that for all n > N,

$$|f_n(x) + g_n(x) - (f(x) + g(x))| \le \epsilon.$$

Thus, we have shown that $f_n + g_n$ is uniformly convergent and that in fact, $f_n + g_n$ uniformly converges to f+g.

Exercise 2.3

Let f be the limit of f_n and g be the limit of g_n . Then, we will show that fg is the uniform limit of f_ng_n . First we see that since f_n and g_n are both uniformly bounded, say by a constant $M \in \mathbb{R}$, we have that there exists some N_1 such that

$$f_n(x), g_n(x) \le M \quad \forall x \in \Omega, n > N_1$$

Then since f_n converges uniformly to f and g_n converges uniformly to g, we know that there is some N_2 such that for all $n > N_2$

$$|f_n(x) - f| < \frac{\epsilon}{2M}$$

 $|g_n(x) - g| < \frac{\epsilon}{2M}$

Then, by applying the triangle inequality, we have that

$$|f_n(x)g_n(x) - f(x)g(x)| \le |f_n(g_n - g)| + |(f_n - f)g)|$$

$$\le M \frac{\epsilon}{2M} + M \frac{\epsilon}{2M}$$

$$\le \epsilon,$$

for all $n > \max(N_1, N_2)$. Thus, we have shown that $f_n g_n$ converges uniformly to fg.

Exercise 2.4

Consider the sequences $f_n(x) = g_n(x) = x + \frac{1}{n}$. Then, we will prove that f_n (and thus g_n) uniformly converges to x, but that $(f_n g_n)(x) = x^2 + \frac{2x}{n} + \frac{1}{n^2}$ converges pointiwes to x^2 , but not uniformly to x^2 . First we show that f_n is uniformly convergent to x. To see this, consider

$$|f_n(x) - x| = \frac{1}{n}.$$

Then, for $\epsilon > 0$, consider $N > \frac{1}{\epsilon}$. Then, for any n > N, we have that $|f_n(x) - x| < \epsilon$ and thus, $x + \frac{1}{n}$ converges uniformly to x.

Next, we show that $f_n g_n$ is pointwise convergent to x^2 . To see this, consider some fixed x. Now,

$$|(f_n g_n)(x) - x^2| = \left| \frac{2x}{n} + \frac{1}{n^2} \right|$$

$$\leq \left| \frac{2x}{n} \right| + \left| \frac{1}{n^2} \right|.$$

Then, it is not hard to see that the limit of the right hand side in the inequality above is 0, allowing us to conclude that indeed, $f_n g_n$ converges pointwise to x^2 .

Finally, we show that $f_n g_n$ is not uniformly convergent. Assume for the sake of contradiction that $f_n g_n$ is uniformly convergent to x. Then, let $\epsilon < 1$. Since $f_n g_n$ is uniformly convergent, there must exist some N such that for all n > N,

$$\left| (f_n g_n)(x) - x^2 \right| = \left| \frac{2x}{n} + \frac{1}{n^2} \right| \le \epsilon.$$

Then, let n > N, x > n. But in this case,

$$|(f_ng_n)(x)-x^2|=\left|\frac{2x}{n}+\frac{1}{n^2}\right|>2>\epsilon.$$

Thus, we have a contradiction and indeed, $f_n g_n$ does not uniformly converge to x^2 .

Exercise 3

Exercise 3.1

First, notice that $(-1)^{2k}a_{2k} + (-1)^{2k+1}a_{2k+1} > 0$, and similarly $(-1)^{2k+1}a_{2k+1} + (-1)^{2k} < 0$. Thus, $(S_{2p})_{p\in\mathbb{N}} = a_0 + \sum_{i=1}^p (-a_{2i-1} + a_{2i})$ is monotonic decreasing and bounded above by a_0 . At the same time however, we see that $(S_{2p})_{p\in\mathbb{N}} = a_{2p} + \sum_{i=0}^{p-1} (a_{2i} - a_{2i+1})$ is bounded below by a_{2p} . Thus, since $a_n \ge 0$ for all n, we know that $(S_{2p}) \ge 0$ Thus, we know that $(S_{2p})_{p\in\mathbb{N}}$ is a monotonic and bounded sequence and thus, by monotonic convergence, is convergent. Now let S_1 be the limit of $(S_{2p})_{p\in\mathbb{N}}$.

To see that (S_{2p+1}) converges to the same limit, we can argue in a similar fashion as above to se that (S_{2p+1}) converges to some limit S_2 . Then, we argue that $S_1 = S_2$. To see this, it is sufficient to show that $S_{2p+1} - S_{2p}$ converges to zero. But $S_{2p+1} - S_{2p} = -a_{2p+1}$. Since we know that a_k converges to 0, there exists some N such that for all 2n + 1 > N, $a_{2p+1} < \epsilon$. Thus, we have shown that $S_{2p+1} - S_{2p}$ converges to 0, and thus, that $(S_{2p}), (S_{2p+1})$ have the same limit.

Exercise 3.2

If n = 2p is even,

$$|S - S_n| = |-a_{2p+1} + \sum_{i=p+1}^{\infty} (a_{2i} - a_{2i+1})|$$

 $\leq a_{2p+1} = a_{n+1}.$

If n = 2p + 1 is odd,

$$|S - S_n| = |a_{2p+2} + \sum_{i=p+1}^{\infty} (-a_{2i+1} + a_{2(i+1)})|$$

 $\leq a_{2p+2} = a_{n+1}.$

Exercise 4

Notice that because $\cos(nx) \le 1$, we have that $|f_n(x)| < \frac{1}{n^2}$. We know that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent. Thus, we have that $\sum f_n$ is normally convergent. Using Theorem 2.8, we have that $\sum f_n$ is also uniformly convergent. Then, since each f_n is also continuous, we know by $\sum_{i=1}^{n} f_i$ is also continuous for each f_n . Then, since $f = \sum_{i=1}^{\infty} f_i$ is the limit of a uniformly convergent series of continuous functions, using Corollary 2.4, it must also be continuous.

Exericse 5

Exercise 5.1

Fix x, then because we have that $\sum \frac{1}{n^2}$ converges, we know that there exists some N be such that $\sum_{n=p}^{q} \frac{1}{n^2} < \frac{\epsilon}{|x|+1}$ for all q > p > N. Then, we have

$$\left| \sum_{n=p}^{q} \frac{x}{n^2 + x^2} \right| < |x| \left| \sum_{n=p}^{q} \frac{1}{n^2} \right|$$

$$\leq \epsilon,$$

for n > N. This shows pointwise convergence using the Cauchy criterion.

Exercise 5.2

Consider x = p. Then, $\frac{x}{n^2 + x^2} = \frac{1}{\frac{n^2}{p} + p}$. For $p + 1 \le n \le 2p$, $\frac{1}{\frac{n^2}{p} + p} \ge \frac{1}{5p}$.

$$\sum_{n=p+1}^{2p} \frac{x}{n^2 + x^2} \ge p \cdot \frac{1}{5p} \ge \frac{1}{5}.$$

To see that this implies that the series is not uniformly convergent, assume for the sake of contradiction that it were uniformly convergent. Then for $\epsilon < \frac{1}{5}$, there must exist some N such that for all m > n > N, $\sum_{i=n}^{m} \frac{x}{i^2 + x^2} < \epsilon$. But then let n = p + 1 > N, and m = 2p. Then, by the work we have done above, $\sum_{n=p+1}^{2p} \frac{x}{n^2 + x^2} \ge \frac{1}{5} \ge \epsilon$, which is a contradiction.

Exercise 5.3

To see that the limit function $f = \sum_{n=1}^{\infty} \frac{x}{n^2 + x^2}$ is continuous, consider

$$|f(x) - f(y)| = \left| \sum_{n=1}^{\infty} \frac{x}{n^2 + x^2} - \sum_{n=1}^{\infty} \frac{y}{n^2 + y^2} \right|$$

$$\leq \sum_{n=1}^{\infty} \left| \frac{x}{n^2 + x^2} - \frac{y}{n^2 + y^2} \right|$$

$$\leq \sum_{n=1}^{\infty} \left| \frac{x - y}{n^2 + x^2} \right| + \sum_{n=1}^{\infty} \left| \frac{y}{n^2 + x^2} - \frac{x}{n^2 + y^2} \right| + \sum_{n=1}^{\infty} \left| \frac{x - y}{n^2 + y^2} \right|$$

$$\leq 2 \sum_{n=1}^{\infty} \left| \frac{x - y}{n^2} \right| + \sum_{n=1}^{\infty} \left| \frac{y n^2 + y^3 - x n^2 - x^3}{(n^2 + x^2)(n^2 + y^2)} \right|$$

$$\leq 3|x - y| \sum_{n=1}^{\infty} \frac{1}{n^2} + \sum_{n=1}^{\infty} |x - y| \frac{x^2 + x y + y^2}{(n^2 + x^2)(n^2 + y^2)}$$

$$\leq 5|x - y| \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Thus, for $|x-y| < \frac{\epsilon}{5} \sum_{n=1}^{\infty} \frac{1}{n^2}$, $|f(x) - f(y)| < \epsilon$.

Exercise 5.4

First we notice that for all $x \in \mathbb{R}$, $f_{n+1}(x) \leq f_n(x)$. Then, we can also see that

$$f_n(x) = \frac{x}{n^2 + x^2}$$
$$= \frac{1}{\frac{n^2}{x} + x}$$
$$\leq \frac{1}{2n}.$$

Where we used Cauchy-Schwartz in the last inequality. Therefore, we can apply Proposition 2.9 to conclude that indeed, $\sum (-1)^n f_n$ is uniformly convergent.

Exercise 6

Exercise 6.1

We first show that f_n converges pointwise. For any x, consider $n > \frac{1}{x}$. Then, by the definition of $f_n(x)$, $f_n(x) = 0$. This shows that $f_n(x)$ converges pointwise to 0.

Now we show that f_n does not converge uniformly to 0. First we note that for even n = 2k, let $x_n = \frac{1}{\frac{1}{2} + 2k}$. Then,

$$\sin^2\left(\frac{\pi}{x_n}\right) = \sin^2\left(\frac{\pi}{2} + 2\pi k\right) = 1.$$

Now, for the sake of contradiction, assume that f_n does converge uniformly to zero. Then, let $\epsilon = \frac{1}{2}$. Then, there exists some N such that $f_n(x) < \frac{1}{2}$ for all n > N and all $x \in \mathbb{R}$. However, we already showed that for any even n, we can find an x_n such that $f_n(x) = 1$. Thus, f_n cannot converge uniformly to 0.

Exercise 6.2

We show that $\sum |f_n(x)|$ converges pointwise to $\sin^2\left(\frac{\pi}{x}\right)$ for x > 0, and 0 for $x \le 0$. For any x < 0, $f_n(x) = 0$ for all n. Thus, we automatically have that $\sum |f_n|$ converges pointwise to zero for non-positive x.

Now we consider the case with x > 0. In this case, there is exactly one n such that $\frac{1}{n+1} \le x \le \frac{1}{n}$. Thus, let N(x) denote this n. Then, for each x > 0, for all n > N(x), $f_n(x) = \sin^2\left(\frac{\pi}{x}\right)$.

Now we show that the series $\sum f_n$ does not converge uniformly. To see this, we use the Cauchy Criterion for uniform convergence. Assume for the sake of contradiction that $\sum f_n$ converges uniformly. Then consider some $\epsilon < 1$. By uniform convergence we must have that there exists some N such that for all m > n > N,

$$\left| \sum_{i=n}^{m} f_i(x) \right| < \epsilon < 1 \quad \forall x \in \mathbb{R}$$

But then as we calculated before, for n = 2k even integer, $f_n(x_n) = 1$ where $x_n = \frac{1}{\frac{1}{2} + 2k}$. In particular, it's clear that $\sum_{i=1}^{j} f_i(x_n) = 0$ for j < 2k, $\sum_{i=1}^{j} f_i(x_{2k}) = 1$ for j > 2k. Then, for N < n < 2k < m,

$$\left| \sum_{i=n}^{m} f_i(x_{2k}) \right| = 1 > \epsilon$$

so we have a contradiction.

Exercise 7

We first note that expanding the term given in the hint yields

$$\sum_{n=1}^{q} \left(\sum_{k=1}^{n} a_k \right) (b_n - b_{n+1}) + \left(\sum_{n=1}^{q} a_n \right) b_{q+1} = \sum_{n=1}^{q} a_n b_n$$

Now, letting $f_n(x) = a_n$, $g_n(x) = b_n$ in the hint, we have that

$$\sum_{n=1}^{q} f_n(x)g_n(x) = \sum_{n=1}^{q} \left(\sum_{k=1}^{n} f_n(x)\right) (g_n - g_{n+1}) + \left(\sum_{n=1}^{q} f_n\right) g_{q+1}.$$

Now, to show that $\sum f_n g_n$ converges uniformly, we use the Cauchy condition for uniform convergence. Since we know that the partial sums $\sum_{n=1}^{N}$ are uniform bounded, we know that there exists an $M \in \mathbb{R}$ such

that $\sup_{N \in \mathbb{N}, x \in \Omega} \left| \sum_{n=1}^{N} f_n(x) \right| \leq M$. In what follows, assume that p < q. Consider

$$\left| \sum_{n=1}^{p} f_n(x) g_n(x) - \sum_{n=1}^{q} f_n(x) g_n(x) \right| = \left| \sum_{n=p}^{q} \left(\sum_{k=1}^{n} f_k(x) \right) (g_n(x) - g_{n+1}(x)) \right| + \left| \left(\sum_{n=1}^{p} f_n \right) g_{p+1} \right| + \left| \left(\sum_{n=1}^{q} f_n \right) g_{q+1} \right|$$

$$\leq \sum_{n=p}^{q} M |g_n(x) - g_{n+1}(x)| + M |g_{p+1}(x)| + M |g_{q+1}(x)|.$$

Then, since $g_n(x)$ is decreasing for all $x \in \Omega$, then

$$\left| \sum_{n=1}^{p} f_n(x) g_n(x) - \sum_{n=1}^{q} f_n(x) g_n(x) \right| \le M \sum_{n=p}^{q} (g_n(x) - g_{n+1}(x)) + M |g_{p+1}(x)| + M |g_{q+1}(x)|.$$

But then this is exactly a telescoping series, so we actually have that

$$\left| \sum_{n=1}^{p} f_n(x) g_n(x) - \sum_{n=1}^{q} f_n(x) g_n(x) \right| \le M(g_p(x) - g_{q+1}(x)) + M|g_{p+1}(x)| + M|g_{q+1}(x)|.$$

Then, since g_n converges uniformly to zero on Ω , so there exists some N such that for all n > N, $|g_n(x)| < \frac{\epsilon}{4M}$, so we finally have that, for all q > p > N,

$$\left| \sum_{n=1}^{p} f_n(x) g_n(x) - \sum_{n=1}^{q} f_n(x) g_n(x) \right| \le \epsilon,$$

and thus we can conclude that $\sum f_n g_n$ converges uniformly on Ω .

Proof of summation by parts.

$$\sum_{n=1}^{q} \left(\sum_{k=1}^{n} a_k \right) (b_n - b_{n+1}) + \left(\sum_{n=1}^{q} a_n \right) b_{q+1} = \sum_{n=1}^{q} a_n b_n. \tag{1}$$

For two given sequences (a_n) and (b_n) , with $n \in \mathbb{N}$. If we define $A_n = \sum_{k=1}^n a_k$, then we have for every n > 1, $a_n = A_n - A_{n-1}$ and

$$\sum_{n=1}^{q} a_n b_n = \sum_{n=1}^{q} (A_n - A_{n-1}) b_n$$

$$= \sum_{n=1}^{q} A_n b_n - \sum_{n=1}^{q-1} A_n b_{n+1} = \sum_{n=1}^{q} A_n b_n + A_q b_{q+1} = \sum_{n=1}^{q} \left(\sum_{k=1}^{n} a_k\right) (b_n - b_{n+1}) + \left(\sum_{n=1}^{q} a_n\right) b_{q+1}.$$

Exercise 8

Exercise 8.1

We use the notation $\phi_n(x) = \phi(x)$ to emphasize the relationship between ϕ and n. Given that $f_n(x)$ is continuous on [0, n], ϕ_n is also continuous on the same interval. For each ϕ_n . Then, by the Extreme Value Theorem, we know that ϕ_n must achieve a maximum and a minimum on [0, n]. Then, it suffices to check that the maximum is not either of the end points. To see this, we calculate that

$$\phi_n(0) = 0 \qquad \phi_n(n) = e^{-n}.$$

Then, it suffices to show that $\phi_n(n)$ is not a maximum. To see this, we can calculate that

$$\phi'_n(n) = -e^{-n} < 0.$$

Thus, there must be some $\alpha \in (0, n)$ such that $\phi_n(\alpha)$ is a maximum by the Extreme Value Theorem. Since α is on the interior and $\phi_n(\alpha)$ is a maximum value, we know also that $\phi'_n(\alpha) = 0$. To see that $\phi_n(x)$ is bounded below by 0, we reference exercise 8.2, where we prove that there is a unique critical point in the interval [0, n], which is a local maximum. The Extreme Value Theorem then tells us that the endpoints of [0, n] must contain the minima of $\phi_n(x)$, that is, that $\phi_n(x) \ge 0$.

Exercise 8.2

We can calculate directly that

$$\phi'_n(x) = -e^{-x} + \left(1 - \frac{x}{n}\right)^{n-1}.$$

Thus, since we know that $\phi'_n(\alpha) = 0$,

$$e^{-\alpha} = \left(1 - \frac{\alpha}{n}\right)^{n-1}$$
.

Substituting this into the equation for ϕ_n , we see that

$$\phi_n(\alpha) = e^{-\alpha} - \left(1 - \frac{\alpha}{n}\right)^n$$
$$= e^{-\alpha} \left(1 - \left(1 - \frac{\alpha}{n}\right)\right)$$
$$= \frac{\alpha}{n} e^{-\alpha}.$$

Then, since we know that xe^{-x} achieves a maximum value of e^{-1} at x = 1, we have here directly that

$$\phi_n(\alpha) < \frac{1}{ne}.$$

Exercise 8.3

We now consider $\epsilon > 0$. Then for $x \in [0, +\infty)$,

$$|e^{-x} - f_n(x)| = \sup(|\phi(x)|, e^{-n})$$

$$\leq \sup(|\phi(\alpha)|, e^{-n})$$

$$\leq \sup(\frac{1}{en}, e^{-n}).$$

Thus, for $N > \sup(\frac{1}{e\epsilon}, \ln \frac{1}{\epsilon})$, $|e^{-x} - f_n(x)| < \epsilon$ if n > N, which shows that $f_n(x)$ uniformly converges to e^{-x} .