1. Моделирование фокусировки в ОКТ для однородных сред Параметры фокусировки:

Конфигурация 1

Радиус пучка на линзе: 1 мм — Стор Радиус пучка в перетяжке: 7 мкм — Куза

🚽 Рокусное расстояние линзы: 40 мм

Расстояние от линзы до поверхности: 40 мм, 30 мм, 20 мм, 10 мм, 5 мм, 1 мм

Радиус приемной площадки линзы: 12 мм

Угол приема: 18 градусов

Конфигурация 2 (опционально)

Радиус пучка на линзе: 1 мм

Радиус пучка в перетяжке: 0 мкм

Фокусное расстояние линзы: 40 мм

Расстояние от линзы до поверхности: 40 мм, 30 мм, 20 мм, 10 мм, 5 мм, 1 мм

Радиус приемной площадки линзы: 12 мм

Угол приема: 18 градусов

l coh = Fuxu] - Mupme gro

Изображения рассчитываются для однородной среды, по 50-100 А-сканов в каждом.

Если у вас конфигурация такова, что фотоны всегда стартуют с границы верхнего слоя соответственно, нужно брать двухслойную среду, верхний слой – воздух, толщина определяется расстоянием от линзы до поверхности, нижний слой – среда. И времена пробега нужно смотреть, ибо они будут довольно большие из-за большой толщины воздушного слоя.

Оптические параметры сред приведены в таблице ниже, коэффициент поглощения равен нулю.

1		Scat. coeff. μ_s (mm ⁻¹)	Anisotropy g	Reduced scat. coeff. μ _s ' (mm ⁻¹)	N
V -	1	4.36	0.47	2.31	1,33
	2	2.18	0.47	1.15	
	3	1.09	0.47	0.58	
	4	2.26	0.22	1.78	
	5	1.13	0.22	0.84	
	6	0.56	0.22	0.43	

2. Исследование структуры сигнала при зондировании структурированным излучением

Необходимо рассчитать распределение фотонов по максимально достигнутым длинам в детекторах на поверхности среды, расположенных перпендикулярно направлению изменения интенсивность зондирующего излучения. Можно взять просто распределение в центральном сечении. Таким образом, на выходе должен получиться двумерный массив от координаты и максимальной достигнутой глубины.

Параметры зондирующего излучения:

Полосы (рис. 1):

- 1. w = 0.1 mm, p = w + 0.1 mm, w + 0.2 mm, ..., w + 1 mm

2. w = 0.1, ... 0.5 MM p = 2w

Рис. 1. Схематичное описание сетки зондирующего излучения

Синусоида:

Интенсивность распределена по закону 1+cos(wx) где w = 0.2, ... 1 мм

