$$c(t) := \begin{cases} t + i \sin t & \text{ für } -3\pi \leqslant t \leqslant 0, \\ -t + i \sin t & \text{ für } 0 \leqslant t \leqslant 3\pi. \end{cases}$$

Skizzieren Sie c und bestimmen Sie ihre Umlaufzahlen $\nu(c;a)$ um alle Punkte $a\in\mathbb{C}$, die sie nicht durchläuft. Für welche dieser Punkte a ist c in der punktierten Ebene $\mathbb{C}-\{a\}$ nicht nullhomotop?

(ii) Es bezeichne $\zeta:=e^{2\pi i/5}$. Betrachten Sie eine polygonale Schleife c mit Ecken 1, ζ^2 , ζ^4 , ζ , ζ^3 und 1. Sie durchläuft einmal das Pentagramm mit Ecken in den fünften Einheitswurzeln. Bestimmen Sie die Umlaufzahlen $\nu(c;a)$ für alle Punkte $a\in\mathbb{C}$ nicht auf dem Pentagramm. Für welche dieser Punkte a ist c in der punktierten Ebene $\mathbb{C}-\{a\}$ nicht nullhomotop?

2i)
$$c = (t \mapsto t + i \sin t) \times (t \mapsto -t + i \sin t)$$

$$= (c - 3\pi \cdot 0) \rightarrow c \quad 1$$

$$= (c - 3\pi \cdot 0) \rightarrow c \quad 1$$

$$= (c - 3\pi \cdot 0) \rightarrow c \quad 1$$

$$= (t \mapsto t - i \sin t)$$

$$= (t \mapsto t + i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i \sin t)$$

$$= (t \mapsto t - i \sin t) \times (t \mapsto t - i$$

$$\begin{array}{c} (\mathbb{R}) \\ (\mathbb{R}) \\ (\mathbb{R}) \\ (\mathbb{R}) \end{array}$$

 $c: [-\pi,\pi] \longrightarrow \mathbb{C}$

$$\phi: [0,1] \xrightarrow{\cong} [0,1],$$

$$\phi: [0,1] \xrightarrow{\cong} [0,1],$$

$$\phi(0) = 0,$$

$$\phi(1) = 1$$

$$H(s,t) = -\frac{\pi}{2}.$$

$$H(s,t) = -\frac{\pi}{2} \implies C(t) + \frac{\pi}{2} = 0 \implies V$$

(iii) Die Schleifen $c_1, c_2 : [0, 1] \to \mathbb{C}$ seien definiert durch

$$c_1(t) = -c_2(t) = 1 - e^{it}$$

für $0 \le t \le 2\pi$. Skizzieren Sie die zusammengesetzte Schleife $c_1 \cdot c_2$ und bestimmen Sie ihre Umlaufzahlen um alle Punkte in \mathbb{C} , die sie nicht durchläuft.

Dieselbe Frage für die ("Kommutator"-)Schleife $c_1
ildot c_2 \cdot c_1^{-1} \cdot c_2^{-1}$. In welchen punktierten Ebenen $\mathbb{C} - \{a\}$ für Punkte $a \in \mathbb{C}$, die sie nicht durchläuft, ist sie nullhomotop?

$$c_{2} = 0$$

$$c_{2} = 0$$

$$c_{2} = 0$$

$$c_{2} = 0$$

$$c_{3} = 0$$

$$c_{4} = 0$$

$$c_{5} = 0$$

$$c_{7} = 0$$

 $\overline{3}$. (i) Sei $U \subset \mathbb{C}$ ein einfach zusammenhängendes Gebiet. Zeigen Sie: Jede harmonische Funktion $u: \mathbb{Q} \to \mathbb{R}$ ist der Realteil einer holomorphen Funktion $f: \mathbb{Q} \to \mathbb{C}$ und diese ist eindeutig bis auf additive (imaginäre) Konstante.

Zur Erinnerung: Eine zweimal differenzierbare Funktion auf $\mathbb{C} \cong \mathbb{R}^2$ heißt harmonisch, falls sie im Kern des Laplace-Operators $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ liegt. Hinweis: Verwenden Sie Aufgabe 4 von Blatt 2 für die Eindeutigkeit. Betrachten Sie

dann die 1-Form

$$\alpha := -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy.$$

Endutigheit: Augusumen
$$f, \tilde{f}: \mathcal{U} \longrightarrow \mathbb{C}$$
 dwleswoph $\mathcal{U} = \mathcal{U} = \mathcal{U}$

$$\Rightarrow$$
 i $(f-\tilde{f}): \mathcal{U} \longrightarrow \mathbb{R}$ belowerple, also howtest

$$\Rightarrow f - \tilde{f} = i\lambda, \lambda \in \mathbb{R}$$
Henz:

$$\alpha = -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy$$

$$\alpha$$
 ist geschlosen: $d\alpha = \frac{\partial}{\partial y} \left(-\frac{\partial y}{\partial y} \right) dy \wedge dx + \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right) dx \wedge dy =$

$$= \left(\frac{J_u}{J_{4^2}} + \frac{J_{4}^2}{J_{x^2}}\right) dx \wedge dy = 0$$

$$\Delta u = 0$$

(ii) Zeigen Sie: Die Funktion $u: \mathbb{C}^* \to \mathbb{R}, z \mapsto \log |z|$ ist harmonisch, aber *nicht* der Realteil einer holomorphen Funktion auf \mathbb{C}^* .

Hinweis: $\log |z|$ ist lokal der Realteil eines Zweiges des komplexen Logarithmus.

n hornouisch:
$$u(x+iy) := log \sqrt{x^2 + y^2}$$

$$\frac{\partial u}{\partial x} = \frac{1}{2} \frac{1}{x^2 + y^2} 2x = \frac{i}{2} \frac{1}{x^2 + y^2}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{-x^2 + y^2}{(x^2 + y^2)^2}, \quad \frac{\partial^2 u}{\partial y^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

$$Du = \frac{1}{(x^2 + y^2)^2} \left(-x^2 + y^2 + x^2 - y^2 \right) = 0$$

Augunommen,
$$f: \mathbb{C}^{\times} \longrightarrow \mathbb{C}$$
 ist labour phonomen, $f: \mathbb{C}^{\times} \longrightarrow \mathbb{C}$ therefore $\mathbb{C}^{\times} \cong \mathbb{C} \longrightarrow \mathbb{C}$ the $\mathbb{C}^{\times} \cong \mathbb{C} \longrightarrow \mathbb{C}$ therefore $\mathbb{C}^{\times} \cong \mathbb{C} \longrightarrow \mathbb{C}$ the $\mathbb{C}^{\times} \cong \mathbb{C}$ the \mathbb{C}^{\times

Re
$$(\log(x)) = \log|x|$$

Re $(\log(x)) = \log|x|$

Re $(\log(x)) = \log(x)$

String fortsetation and CX (durch f+id)

- 4. Ziel dieser Aufgabe ist zu zeigen, daß die Kommutator-Schleife $c_1 \cdot c_2 \cdot c_1^{-1} \cdot c_2^{-1}$ aus Aufgabe 2(iii) in der zweifach punktierten Ebene $\mathbb{C} \{-1,1\}$ nicht nullhomotop ist.
 - (i) Logarithmisches Anheben von Wegen. Für jeden Weg $c:[0,T]\to\mathbb{C}^*$ mit c(0)=1existiert ein eindeutiger nach \mathbb{C} "angehobener" Weg $\tilde{c}:[0,T]\to\mathbb{C}$ mit

$$e \times \rho$$
: $f \longrightarrow f^{\times}$ $e^{\tilde{c}} = c$

 $e^{c(t)} = \rho \log |_{v} \circ c(t)$

und $\tilde{c}(0) = 0$, nämlich der Weg definiert durch

$$\tilde{c}(t) = \int_{c|_{[0,t]}} \frac{dz}{z}.$$

(ii) Logarithmisches Anheben von Homotopien. Sind zwei Wege $c_1,c_2:[0,T]\to \mathbb{C}^*$ mit Anfangspunkt 1 und gleichem Endpunkt $c_1(T)=c_2(T)$ homotop durch eine Homotopie $H:[0,T]\times[0,1]\to\mathbb{C}^*$, so haben die angehobenen Wege $\tilde{c}_1,\tilde{c}_2:[0,T]\to\mathbb{C}$ mit Anfangspunkt 0 auch gleiche Endpunkte und sind homotop durch eine Homotopie $\tilde{H}:[0,T]\times[0,1]\to\mathbb{C}$ mit

$$e^{\tilde{H}} = H$$
.

(i)
$$F_c: [0,T] \rightarrow C^{\times}$$
 Potential lays C_7 (oth. $\forall t \in [0,T]$ $\exists E \ni 0$ \exists offene Ungelogy V von $C(\exists t-E,t+E \in T \cap T \cap T)$)

It is not sent additive Konstente; $C(0) = 0$
 $C(t) = \int_{C} dt = F_c(t) - F_c(0)$

Stelies (be Stellight)

in Energy and V
 $E = \log_{C} c$

Eindutightet:
$$\tilde{\mathcal{E}}$$
, $\tilde{\mathcal{E}}$ via den

 $\exp\left(\tilde{\mathcal{E}}\right) = \exp\left(\tilde{\mathcal{E}}\right)$ $\in \mathbb{Z}$
 \Rightarrow $\forall t : \tilde{\mathcal{E}} = \tilde{\mathcal{E}} + 2\pi i \text{ full}$
 \Rightarrow $\text{left}) = \text{least}$,

 Sthightet $\tilde{\mathcal{E}}\left(0\right) = \tilde{\mathcal{C}}\left(0\right)$
 \Rightarrow $\text{left}) = 0$.

(ii) $H(t,s) = \int_{H(\cdot,s)} \frac{dt}{2}$
 $H(\cdot,s) = \int_{H(\cdot,s)} \frac{dt}{2} = \int_{H(\cdot,s)} \frac{dt}{2} = H(\cdot,s)$.

 $H(\tau,s) = \int_{H(\cdot,s)} \frac{d\tau}{2} = \int_{H(\cdot,s)} \frac{d\tau}{2} = H(\cdot,s)$
 $H(\cdot,s) = \int_{H(\cdot,s)} \frac{d\tau}{2} = \int_{H(\cdot,s)} \frac{d\tau}{2} = H(\cdot,s)$

Stehglist var $H: (?)$

Sei $(t,s) \in T_0,T_0 \times T_0,T_0$
 $\exists \mathcal{E}_{s,t} > 0 \quad V_{s,t} \quad \text{offer mit}$
 $H(\cdot,s) = \int_{T_s} \frac{d\tau}{2} = \int_{T_s} \frac{d\tau}{2}$

H stering => H-1(V) offene Ungley var (t,s) Fr ist ein Poterhal auf V > H (H-1(V) o 36-8,4+8[xto,1]) Veyery ion (s,t) $\mathcal{U}_{\mathbf{x}_t}$ [0,T] x [0,1] Boupalit => ion H wind van andlich vielen V_{s,t} werdecht was winde Rotentiale F_{V_{s,t}} champatiel = FVst H Ust $F_{V_{S,t}} H |_{\mathcal{U}_{S,t} \cap \mathcal{U}_{S',t'}}$ $= F_{V_{S',t'}} H |_{\mathcal{U}_{S,t} \cap \mathcal{U}_{S',t}}$ ist stelig,

ist stelig,