Project Design Phase Proposed Solution Template

Date	29 June 2025		
Team ID	LTVIP2025TMID420XX (replace with your		
	actual ID)		
Project Name	TrafficTelligence: Advanced Traffic Volume		
	Estimation with Machine Learning		
Maximum Marks	2 Marks		

Proposed Solution Template: Project team shall fill the following information in the proposed solution template.

S.No.	Parameter	Description		
1	Problem Statement	Real-time traffic congestion is		
		difficult to predict and		
		manage, causing delays,		
		accidents, and urban		
		inefficiencies. Existing tools		
		lack ML-based forecasting.		
2	Idea / Solution Description	A Flask-based system that		
		accepts time, weather, and		
		location data and predicts		
		traffic volume using trained		
		ML models, visualized on an		
		interactive map.		
3	Novelty / Uniqueness	Predictive traffic estimation		
		(not just current), map-based		
		visualization, integration of		
		weather + time, offline		
		potential, and live location		
		use.		
4	Social Impact / Customer	Reduces congestion, aids		
	Satisfaction	commuters, helps urban		
		planners, empowers smarter		
<u> </u>	B. Carrie Market / Branch	navigation.		
5	Business Model / Revenue	Freemium model for		
	Model	navigation apps, APIs for		
		government bodies, B2B		
		partnerships with		
		transport/logistics.		
6	Scalability of the Solution	Supports map-based		
		visualization using Leaflet.js,		
		enabling scaling to large		
		urban regions with clustered		
		or region-wise predictions.		