선형회귀분석

종속변수와 하나 이상의 독립변수간의 선형 관계를 모델링하는 방법

- 독립변수가 하나인 경우 단순 선형회귀
- 독립변수가 여러개인 경우 다중선형회귀

선형회귀분석 4가지 가정

- 1) 독립변수-종속변수의 선형성
- 2) 오차의 정규성 --> shapiro-wilk검정
- 3) 오차의 등분산성
- 4) 오차의 독립성 --> 더빈왓슨검정

다순 선형회귀분석

```
import seaborn as sns
import pandas as pd
df = sns.load_dataset('iris')
df.head()
```

_						
→		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

```
# 독립변수 : petal_length, 종속변수 : sepal_length 회귀분석 시행
```

```
#1.선형성 확인
```

절댓값 크기가 0.7이상 -> 강한 상관관계 / 0.2~0.4이하면 약한 상관관계 / 0.2 이하면 상관관계 없다. df[['petal_length','sepal_length']].corr()

```
<del>_</del>
                    petal_length sepal_length
                                           0.871754
      petal_length
                          1.000000
```

```
sepal_length
                         0.871754
                                         1.000000
X= df[['petal_length']]
y= df['sepal_length']
```

```
from statsmodels.formula.api import ols
Ir = ols('sepal_length ~ petal_length', data = df).fit()
```

```
# 회귀계수
Ir.params
```

4.306603 Intercept petal_length 0.408922 dtype: float64

```
# 예측
```

y_pred = Ir.predict(X)

y_pred **→** 0 4.879095 4.879095 2 4.838202 3 4.919987 4.879095 6.432999 145

6.351215

6.432999

146

147

24. 5. 28. 오전 12:59

148 6.514784 149 6.392107

Length: 150, dtype: float64

평가 (mse, rmse) # 숫자가 작을수록 좋음 res = y-y_pred mse = (res**2).sum() / len(y) import numpy as np rmse = np.sqrt(mse)

Ir.summary()

 $\overline{\Rightarrow}$

OLS Regression Results

Dep. Variable: sepal_length R-squared: 0.760 Adj. R-squared: 0.758 Model: OLS Method: F-statistic: Least Squares 468.6 Date: Tue, 21 May 2024 Prob (F-statistic): 1.04e-47 Time: 08:14:07 Log-Likelihood: -77.020 No. Observations: 150 AIC: 158.0 Df Residuals: 148 BIC: 1641

Df Model: 1 **Covariance Type:** nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 Intercept
 4.3066
 0.078
 54.939
 0.000
 4.152
 4.462

 petal_length
 0.4089
 0.019
 21.646
 0.000
 0.372
 0.446

 Omnibus:
 0.207
 Durbin-Watson:
 1.867

 Prob(Omnibus):
 0.902
 Jarque-Bera (JB):
 0.346

 Skew:
 0.069
 Prob(JB):
 0.841

 Kurtosis:
 2.809
 Cond. No.
 10.3

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 $\#sepal_length = 4.3066 + petal_length * 0.4089$

> 다중회귀분석

필요 가정

- 독립변수와 종속변수간의 선형성
- 오차의 정규성 --> shapiro.
- 오차의 독립성 --> durbin_watson
- 오차의 등분산성 --> bartlett
- 다중공선성 위배 X --> variance_inflation_factor

[] 나, 숨겨진 셀 8개

> sklearn 사용

[] 🕽 숨겨진 셀 8개

확장된 선형회귀 (릿지,라쏘, 엘라스틱넷)

목적: 과적합 방지, 변수선택, 차원 축소

- 릿지: L2 정규화 -> 회귀 계수의 제곱의 합에 패널티(alpha)를 적용
- 라쏘: L1 정규화 -> 회귀 계수의 절대값의 합에 패널티(alpha)를 적용
- 엘라스틱 넷 : L1과 L2 정규화 두 개 조합 -> 릿지와 라쏘의 장점을 결합하여, L1 패널티(alpha)로 변수 선택과 L2 패널티로 계수 축소를 동시에 수행

패널티(alpha)

알파가 크면 패널티를 강하게 적용하기 때문에 과적합을 막을 수 있지만

너무 커지면 과소적합의 가능성이 존재. 따라서 최적의 알파를 찾아야함 -> "그리드 서치 알고리즘"

그리드 서치(GridSerchCV)

주어진 하이퍼파라미터 목록의 조합을 모두 탐색하여 최적의 파라미터를 찾는 알고리즘

```
from sklearn.linear_model import Ridge, Lasso, ElasticNet
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import GridSearchCV
#릿지
ridge = Ridge()
parameter = {'alpha' : (0.01, 0.2, 0.7, 1.5)}
ridge_regressor = GridSearchCV(ridge, parameter, scoring = 'r2')
ridge_regressor.fit(X_train, y_train)
#최적 파라미터 출력 및 성능
print(f"Best parameter Ridge : {ridge_regressor.best_params_}")
print(f"Best score Ridge : {ridge_regressor.best_score_}")
     Best parameter Ridge : {'alpha': 0.01}
     Best score Ridge: 0.8286498244963101
# 라쏘
lasso = Lasso()
lasso_regressor = GridSearchCV(lasso, parameter,scoring = 'r2')
lasso_regressor.fit(X_train,y_train)
#최적 파라미터 출력 및 성능
print(f"Best parameter Lasso : {lasso_regressor.best_params_}")
print(f"Best score Lasso : {lasso_regressor.best_score_}")
⇒ Best parameter Lasso : {'alpha': 0.01}
     Best score Lasso : 0.814156502671422
# 엘라스틱넷
    'alpha' : [0.01,0.1,0.5],
    'I1_ratio' : [0.1,0.5, 0.7,1]
elastic net = ElasticNet()
elastic_net_regressor = GridSearchCV(elastic_net, parameters, scoring= 'r2')
elastic_net_regressor.fit(X_train,y_train)
print(f"Best parameter Elastic : {elastic_net_regressor.best_params_}")
print(f"Best score Elastic : {elastic_net_regressor.best_score_}")
     Best parameter Elastic : {'alpha': 0.5, 'l1_ratio': 1}
     Best score Elastic : 0.6324542917848802
```

SVM(Support Vector Machine)를 통한 회귀

데이터들 간 가장 가까이 있도록 만드는 선을 찾고, 예측 오차가 허용 범위 이내로 들어오게 해서 예측을 시행

• kernel : linear, rbf 등

median_income

```
import pandas as pd
df = pd.read_csv('./sample_data/california_housing_train.csv')
df.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 17000 entries, 0 to 16999
     Data columns (total 9 columns):
      # Column
                             Non-Null Count Dtype
      0
                              17000 non-null
         Longitude
                                             float64
          latitude
                              17000 non-null
                                             float64
          housing_median_age 17000 non-null
                                             float64
          total_rooms
                              17000 non-null
                                             float64
          total_bedrooms
                              17000 non-null
                                             float64
          population
                              17000 non-null
          households
                              17000 non-null
                                             float64
                              17000 non-null
```

median_house_value 17000 non-null float64

24. 5. 28. 오전 12:59

dtypes: float64(9) memory usage: 1.2 MB

#median_hose_value 예측 df.head()

y = df['median_house_value']

X =df.drop('median_house_value', axis = 1)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train,y_test = train_test_split(X,y,test_size = 0.3, random_state = 42)
X_train

₹		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income
	9173	-119.03	35.32	12.0	2721.0	549.0	1294.0	523.0	2.5575
	16528	-122.66	39.03	27.0	1446.0	329.0	594.0	255.0	1.1650
	4819	-118.09	33.94	33.0	1976.0	404.0	1379.0	395.0	3.8542
	6818	-118.30	34.06	20.0	1782.0	896.0	1749.0	823.0	2.2094
	7717	-118.38	34.07	16.0	4814.0	1381.0	1897.0	1209.0	3.3725
								•••	
	11284	-121.13	37.74	21.0	2376.0	475.0	1175.0	441.0	3.6016
	11964	-121.38	38.62	41.0	774.0	144.0	356.0	150.0	3.5625
	5390	-118.15	33.91	38.0	901.0	205.0	760.0	208.0	2.9643
	860	-117.07	32.56	9.0	3648.0	895.0	3293.0	840.0	3.0992
	15795	-122.41	37.75	52.0	2452.0	623.0	1932.0	549.0	2.3903

11900 rows × 8 columns

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train_sc = pd.DataFrame(sc.fit_transform(X_train), columns = X_train.columns)

X_test_sc = pd.DataFrame(sc.transform(X_test), columns = X_train.columns)

X_test_sc

₹

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income
0	-0.648904	1.000668	-1.565599	0.995477	0.891252	0.863894	1.086240	-0.140764
1	0.712317	-0.711972	1.848829	0.044641	-0.277535	-0.240187	-0.225916	2.218276
2	-0.240040	0.631000	-1.009762	0.481499	0.466452	0.866428	0.503632	-0.698127
3	1.071320	-0.754086	-1.565599	1.275374	0.802068	1.332727	0.918675	0.191534
4	0.652483	-0.777483	1.848829	-0.595450	-0.455905	-0.247789	-0.359967	-1.218458
•••								
5095	1.046389	-0.735369	0.340128	-0.573675	-0.627233	-0.467423	-0.702829	-0.578726
5096	0.069102	0.448505	-1.089167	-0.577304	-0.549783	-0.144731	-0.496596	-1.096027
5097	-0.429514	-0.318907	1.134181	-0.282890	-0.460599	-0.629614	-0.494019	-0.096054
5098	0.712317	-0.871070	1.610613	0.067323	0.351451	-0.115165	0.377315	-0.299652
5099	1.210932	-1.371760	1.213586	-0.900752	-0.756316	-0.480094	-0.746654	-1.008905

5100 rows × 8 columns

```
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error
svm_regressor = SVR(kernel ='rbf')
svm_regressor.fit(X_train_sc, y_train)
₹
     ▼ SVR
      SVR()
y_pred_train = svm_regressor.predict(X_train_sc)
mse_train = mean_squared_error(y_train, y_pred_train)
print('Train MSE : ',mse_train)
y_pred_test = svm_regressor.predict(X_test_sc)
mse_test = mean_squared_error(y_test, y_pred_test)
print('Test MSE : ',mse_test)
    Train MSE: 13971430770.149454
Test MSE: 14777723073.742445
from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
'gamma' : [0.02,0.1,0.3]}]
svm_grid = GridSearchCV(SVR(), param_grid, cv = 5)
svm_grid.fit(X_train_sc, y_train)
# 최적 파라미터 출력
print('최적 파라미터 : ', svm_grid.best_params_)
y_pred_test = svm_grid.best_estimator_.predict(X_test_sc)
mse_test = mean_squared_error(y_test, y_pred_test)
print('after_gird_MSE : ', mse_test)
→ 최적 파라미터 : {'C': 30, 'kernel': 'linear'}
     after_gird_MSE: 6585221450.626026
14777723073.742445 - 6585221450.626026
→ 8192501623.116419
```

의사결정나무를 통한 회귀

- 데이터를 분할해서 예측을 수행
- 각 분할된 영역에서 목표변수 평균값을 사용해서 예측
- 하이퍼파라미터 조정을 통해 최적 모델을 구축할 수 있음

장점

- 데이터 비선형관계를 잘 모델링 할 수 있음
- 트리 구조가 직관적이고 이해가 쉬움
- 스케일링과 같은 전처리 필요 X

단점

• 트리의 깊이가 너무 깊을 때는 훈련데이터에 과적합 가능성 존재

```
import seaborn as sns
mpg = sns.load_dataset('mpg')
mpg.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 398 entries, 0 to 397
     Data columns (total 9 columns):
                        Non-Null Count Dtype
      # Column
      0
          mpg
                        398 non-null
                                         float64
          cylinders
                        398 non-null
                                        int64
          displacement
                        398 non-null
                                         float64
          horsepower
                        392 non-null
                                        float64
                        398 non-null
                                        int64
```

```
5 acceleration 398 non-null
                                    float64
                                    int64
 6 model_year 398 non-null
                   398 non-null
7 origin
                                    object
8 name 398 non-null objectdypes: float64(4), int64(3), object(2)
                                   object
memory usage: 28.1+ KB
```

mpg.head()

→		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
	0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
	1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
	2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
	3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
	4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

mpg.dropna(inplace = True)

mpg.info()

```
<class 'pandas.core.frame.DataFrame'>
     Index: 392 entries, 0 to 397
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype				
0	mpg	392 non-null	float64				
1	cylinders	392 non-null	int64				
2	displacement	392 non-null	float64				
3	horsepower	392 non-null	float64				
4	weight	392 non-null	int64				
5	acceleration	392 non-null	float64				
6	model_year	392 non-null	int64				
7	origin	392 non-null	object				
8	name	392 non-null	object				
dtypes: float64(4), int64(3), object(2)							
memory usage: 30.6+ KB							

mpg1 = mpg.drop('name',axis = 1)mpg1 = pd.get_dummies(mpg1, columns = ['origin']) mpg1.info()

<class 'pandas.core.frame.DataFrame'>
Index: 392 entries, 0 to 397

Data #	columns (total Column	10 columns): Non-Null Count	Dtype			
0	mpg	392 non-null	float64			
1	cylinders	392 non-null	int64			
2	displacement	392 non-null	float64			
3	horsepower	392 non-null	float64			
4	weight	392 non-null	int64			
5	acceleration	392 non-null	float64			
6	model_year	392 non-null	int64			
7	origin_europe	392 non-null	bool			
8	origin_japan	392 non-null	bool			
9	origin_usa	392 non-null	bool			
dtypes: bool(3), float64(4), int64(3)						
memory usage: 25.6 KB						

```
X = mpg1.drop('mpg', axis = 1)
y = mpg1['mpg']
У
```

```
0
       18.0
       15.0
2
       18.0
3
       16.0
       17.0
393
       27.0
       44.0
394
395
396
       28.0
397
       31.0
Name: mpg, Length: 392, dtype: float64
```

코딩을 시작하거나 AI로 코드를 <u>생성</u>하세요.

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train,y_test = train_test_split(X,y,test_size = 0.2, random_state = 1)

from sklearn.tree import DecisionTreeRegressor
dt = DecisionTreeRegressor(max_depth = 10, random_state = 1, criterion = 'squared_error')
dt.fit(X_train, y_train)
print(dt.score(X_test, y_test))

$\iffsize 0.7793050599320761$

from sklearn.metrics import mean_squared_error
import numpy as np

y_test_pred = dt.predict(X_test)
print('dicision tree MSE', mean_squared_error(y_test, y_test_pred))
print('dicision tree RMSE', np.sqrt(mean_squared_error(y_test, y_test_pred)))

dicision tree MSE 15.299075387496774
dicision tree RMSE 3.911403250432864
```