

MCZA017-13 Processamento de Linguagem Natural

Normalização de texto: Palavras e stopwords

Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br

2Q-2019

Bibliografia

Daniel Jurafsky & James H. Martin.

Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition. Pearson/Prentice Hall.

Stanford University

University of Colorado, Boulder

Bibliografia – Capítulo 2

Speech and Language Processing (3rd ed. draft)

Dan Jurafsky and James H. Martin

		Chapter	Slides	Relation to 2nd ed.
	1:	Introduction		[Ch. 1 in 2nd ed.]
1	2:	Regular Expressions, Text Normalization, and Edit Distance	Text [pptx] [pdf] Edit Distance [pptx] [pdf]	[Ch. 2 and parts of Ch. 3 in 2nd ed.]
	3:	Finite State Transducers		
	4 :	Language Modeling with N-Grams	LM [pptx] [pdf]	[Ch. 4 in 2nd ed.]
	5:	Spelling Correction and the Noisy Channel	Spelling [pptx] [pdf]	[expanded from pieces in Ch. 5 in 2nd ed.]
	6:	Naive Bayes Classification and Sentiment	NB [<u>pptx]</u> [<u>pdf]</u> Sentiment [<u>pptx]</u> [<u>pdf]</u>	[new in this edition]
	7:	<u>Logistic Regression</u>		
	8:	Neural Nets and Neural Language Models		
	9:	<u>Hidden Markov Models</u>		[Ch. 6 in 2nd ed.]
	9b:	Neural Sequence Modeling: RNNs and LSTMs		
	10:	Part-of-Speech Tagging		[Ch. 5 in 2nd ed.]
	11:	Formal Grammars of English		[Ch. 12 in 2nd ed.]
		Syntactic Parsing		[Ch. 13 in 2nd ed.]
	13:	Statistical Parsing		[Ch. 14 in 2nd ed.]
	14:	<u>Dependency Parsing</u>		[new in this edition]
		Vector Semantics	Vector [pptx] [pdf]	[expanded from parts of Ch. 19 and 20 in 2nd ed.]
	16:	Semantics with Dense Vectors	Dense Vector [pptx] [pdf]	[new in this edition]
	17:	Computing with Word Senses: WSD and WordNet	Intro, Sim [pptx] [pdf] WSD [pptx] [pdf]	[expanded from parts of Ch. 19 and 20 in 2nd ed.]
	18:	Lexicons for Sentiment and Affect Extraction	SentLex [pptx] [pdf]	[new in this edition]

Da aula anterior... Expressões Regulares

Teste de avaliação em aula (questão 6) •

6. Selecionar todas as cadeias com duas palavras repetidas consecutivas.

Exemplo: No seguinte fragmento, apenas os trechos sublinhados devem ser identificados.

Esperar menos menos não significa desistir desistir. Antes se surpreender, do que, que se decepcionar. Clarice Lispector

 $b(\w+)\W+\1$

Grupos

Cada sub-expressão entre parênteses em uma ER é um grupo:

- Grupo 0: O casamento inteiro.
- Grupo 1: O primeiro casamento entre parênteses.
 - → Numeração de esquerda para direita.

```
REGULAR EXPRESSION

i / ((\w+)\.(\w+))@\1

TEST STRING

joao.costa@email.com
joao.costa@joao.costa.com
joao.costa@joao.com
joao.costa@joao.com
joao.costa@costa.com
```

```
Full match 67-83 `joao.costa@costa`
Group 1. 67-77 `joao.costa`
Group 2. 67-71 `joao`
Group 3. 72-77 `costa`
```

Grupos

REGULAR EXPRESSION

```
/ ((\w+)\.(\w+))@\2
```

TEST STRING

```
joao.costa@email.com
joao.costa@joao.costa.com
joao.costa@joao.com
joao.costa@costa.com
```

REGULAR EXPRESSION

```
/ ((\w+)\.(\w+))@\3
```

TEST STRING

```
joao.costa@email.com
joao.costa@joao.costa.com
joao.costa@joao.com
joao.costa@costa.com
```

Full match
Group 1. 67-83 `joao.costa@costa`
Group 2. 67-71 `joao`
Group 3. 72-77 `costa`

ER para palavras

Any alphanumeric or underscore

ER para palavras

ER para palavras em português

Tabela ASCII estendida -

https://www.ascii-code.com

[-'a-zA-ZÀ-ÖØ-öø-ÿ]

190	276	BE	10111110	3/4
191	277	BF	10111111	ż
192	300	C0	11000000	À
193	301	C1	11000001	Á
194	302	C2	11000010	Â
195	303	C3	11000011	Ā
196	304	C4	11000100	Ä
197	305	C5	11000101	Å
198	306	C6	11000110	Æ
199	307	C7	11000111	Ç
200	310	C8	11001000	È
201	311	C9	11001001	É
202	312	CA	11001010	Ê
203	313	СВ	11001011	Ë
204	314	CC	11001100	ì
205	315	CD	11001101	ĺ
206	316	CE	11001110	î
207	317	CF	11001111	Ϊ
208	320	D0	11010000	Đ
209	321	D1	11010001	Ñ
210	322	D2	11010010	Ò
211	323	D3	11010011	Ó
212	324	D4	11010100	Ô
213	325	D5	11010101	Õ
214	326	D6	11010110	Ö
215	327	D7	11010111	×
216	330	D8	11011000	Ø
217	331	D9	11011001	Ù
218	332	DA	11011010	Ú
219	333	DB	11011011	Û
220	334	DC	11011100	Ü

220	334	DC	11011100	Ü
221	335	DD	11011101	Ý
222	336	DE	11011110	Þ
223	337	DF	11011111	ß
224	340	E0	11100000	à
225	341	E1	11100001	á
226	342	E2	11100010	â
227	343	E3	11100011	ā
228	344	E4	11100100	ä
229	345	E5	11100101	å
230	346	E6	11100110	æ
231	347	E7	11100111	ç
232	350	E8	11101000	è
233	351	E9	11101001	é
234	352	EA	11101010	ê
235	353	EB	11101011	ë
236	354	EC	11101100	ì
237	355	ED	11101101	ĺ
238	356	EE	11101110	î
239	357	EF	11101111	Ï
240	360	F0	11110000	ð
241	361	F1	11110001	ñ
242	362	F2	11110010	Ò
243	363	F3	11110011	Ó
244	364	F4	11110100	ô
245	365	F5	11110101	ō
246	366	F6	11110110	Ö
247	367	F7	11110111	÷
248	370	F8	11111000	Ø
249	371	F9	11111001	ù
250	372	FA	11111010	ú
				-

251	373	FB	11111011	û
252	374	FC	11111100	ü
253	375	FD	11111101	ý
254	376	FE	11111110	þ
255	377	FF	11111111	ÿ

Palavras (tokenização)

Quantas palavras temos na seguinte frase?

Extremamente adaptável, pode ocorrer em ambientes altamente alterados pelo ser humano.

Quantas palavras temos na seguinte frase?

Extremamente adaptável, pode ocorrer em ambientes altamente alterados pelo ser humano.

- 11 palavras.
- 13 palavras se considerarmos também os sinais de pontuação.

Na frase:

```
Muito longo para os que lamentam, muito curto para os que festejam
```

- Quantas palavras existem?
- Quantas palavras diferentes existem?

Na frase:

```
Muito longo para os que lamentam, muito curto para os que festejam
```

- Quantas palavras existem? 12
- Quantas palavras diferentes existem? 8

Na frase:

Muito longo para os que lamentam, muito curto para os que festejam

- Quantas palavras existem? 12 (tokens)
- Quantas palavras diferentes existem? 8 (tipo/vocabulário)

Corpus	Tokens = N	$\mathbf{Types} = V $
Shakespeare	884 thousand	31 thousand
Brown corpus	1 million	38 thousand
Switchboard telephone conversations	2.4 million	20 thousand
COCA	440 million	2 million
Google N-grams	1 trillion	13 million

Na frase:

Muito longo para os que lamentam, muito curto para os que festejam

- Quantas palavras existem? 12 (tokens)
- Quantas palavras diferentes existem? 8 (tipo/vocabulário)

Coletânea sobre um determinado

assı	ınto	•
Plural:	cor	por

Corpus	Tokens = N Types = V	
Shakespeare	884 thousand 31 thousand	
Brown corpus	1 million 38 thousand	
Switchboard telephone conversations	2.4 million 20 thousand	
COCA	440 million 2 million	
Google N-grams	1 trillion 13 million	

Corpus textual - Corpora textuais

No contexto de PLN, um **corpus** é um conjunto de documentos (ou de frases) geralmente anotados e utilizados para:

- Aprendizado (análise)
- Validação (verificação)

https://en.wikipedia.org/wiki/List_of_text_corpora https://www.corpusdoportugues.org/x.asp

Created by Mark Davies, BYU. Funded by the US National Endowment for the Humanities (2004, 2015). Part of the BYU collection of corpora.

	Corpus	Size	Created	More info
1	Genre / Historical	45 million words	2006	Info
2	Web / Dialects	1 billion words	2016	Info
NEW	WordAndPhrase	Top 40,000 words	2017	Info

Português como lingua oficial

País ♦	População (est. 2014) ^[1] ♦
Brasil	205.749.746
Moçambique	24.692.144
Angola	24.300.000 ^[2]
Portugal	10.813.834
Guiné-Bissau	1.693.398
Timor-Leste	1.201.542
Guiné Equatorial	722.254
Macau	587.914
Cabo Verde	538.535
São Tomé e Príncipe	190.428
Total	267.396.837

Análise empírica (evidências): Lei de Herdan (1960), Lei de Heaps (1978)

N = Tokens (e.g., palavras na coleção)

Crescimento de um vocabulário

$$|V| = kN^{\beta}$$

$$0 < \beta < 1$$

Corpus	Tokens = N	Types = $ V $
Shakespeare	884 thousand	31 thousand
Brown corpus	1 million	38 thousand
Switchboard telephone conversations	2.4 million	20 thousand
COCA	440 million	2 million
Google N-grams	1 trillion	13 million

No caso do texto: Capivara |V|=133, N=192

(ver programa na página da disciplina)

Palavras: Prática em python

Machado de Assis (1839-1908) Crônicas reunidas na coleção "A semana".

Escreveu em praticamente todos os gêneros literários, sendo poeta, romancista, cronista, dramaturgo, contista, folhetinista, jornalista e crítico literário.


```
$ python palavras1.py A-Semana-Machado-de-Assis.txt
...
que
é
tempo
Quantidade de palavras: 267618
```

```
import sys
                                 import re
      3
                                 #regex = r''[-'a-zA-Z\dot{A}-\ddot{O}Ø-\ddot{O}Ø-\ddot{V}]+'' # raw string
      4
                                 regex = r''[-'a-zA-Z\dot{A}-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O}O-\ddot{O
      5
      6
      7
                                  if __name __ == '__main _':
      8
                                                            fileName = sys.argv[1]
      9
10
                                                            document = open(fileName,'r')
11
12
                                                            content = document.read()
13
                                                            # document.read() # devolve o conteudo do arquivo 'fileName'
14
                                                            # document.readline() # devolve a seguinte linha do arquivo 'fileName'
15
                                                            # document.readlines() # devolve uma lista de linhas do arquivo 'fileName'
16
17
18
                                                            words = re.findall(regex, content)
19
                                                             for w in words:
20
                                                                                       print (w)
21
                                                            print (f"Quantidade de palavras: {len(words)}")
22
```

```
$ python palavras1.py A-Semana-Machado-de-Assis.txt
pobre-diabo
recorreu
a
esse
meio
para
almoçar
                    que
um
                    não
dia
                    escrevi
Se
                    nada
tal
foi
                    vão
façam
                    almoçar
de
                    também
conta
                    que
                    tempo
                    Quantidade de palavras: 267618
```

```
import sys
     import re
 3
     regex = r''[-'a-zA-Z\dot{A}-\ddot{O}\ddot{O}-\ddot{O}\ddot{O}-\ddot{V}O-9]+'' # raw string
 4
 5
     if __name__ == '__main__':
 6
         fileName = sys.argv[1]
 8
         # leitura do documento
 9
         document = open(fileName,'r')
10
         content = document.read()
11
12
         # identificacao de palavras
13
         words
                      = re.findall(regex, content)
14
         frequencies = dict([])
15
16
         # quantidade de vezes no documento
17
          for w in words:
18
              w = w.lower()
19
              if w not in frequencies:
20
                  frequencies[w] = 0
21
              frequencies[w] += 1
22
         print (f"Tokens: {len(words)}, Vocabulario: {len(frequencies)}")
23
24
         # imprimir as 20 palavras mais frequentes
25
         fs = sorted(frequencies, key=frequencies.get, reverse=True)
26
          for i in range(0,20):
27
              print (f"--> {frequencies[fs[i]]} {fs[i]}")
28
```

```
$ python palavras2.py A-Semana-Machado-de-Assis.txt
Tokens: 267618, Vocabulario: 25374
--> 11053 que
--> 9875 a
--> 9767 de
--> 8236 o
--> 7525 e
--> 5519 não
--> 4018 é
--> 3476 do
--> 3465 os
--> 3352 um
--> 3203 da
--> 2862 se
--> 2421 as
--> 2237 em
--> 2054 uma
--> 2024 \text{ com}
--> 2019 mas
--> 1811 para
--> 1756 por
--> 1456 ao
```


Palavras: Algumas considerações não triviais

Considerações não triviais

Quantas palavras?

- Total de R\$10,45
- Para valores superiores a 45.455,67
- www.ufabc.edu.br
- UFABC
- Livre-docente
- Homem-Máquina
- D'água
- U.F.A.B.C.
- C.M.C.C.
- Ph.D.
- Sant'Anna
- L'ensemble
- Lebensversicherungsgesellschaftsangestellter
- 莎拉波娃现在居住在美国东南部的佛罗里达

Palavras (primeiro programa)

```
Total
de
10
45
Para
valores
superiores
45
455
67
WWW
ufabc
edu
br
UFABC
Livre-docente
Homem-Máquina
D'água
В
Ph
Sant'Anna
L'ensemble
Lebensversicherungsgesellschaftsangestellter
```

Frequências (segundo programa)

```
Tokens: 34, Vocabulario: 28
4 c
2 a
2 ufabc
2 45
 1 para
 1 455
 1 r
 1 homem-máquina
 1 67
 1 d'água
 1 lebensversicherungsgesellschaftsangestellter
1 livre-docente
1 br
1 superiores
1 edu
1 sant'anna
1 total
```

Algoritmo: Maximum Mathing

- É requerido um dicionário.
- Busca gulosa.

Input: 他特别喜欢北京烤鸭

Output: 他 特别 喜欢 北京烤鸭

Input: wecanonlyseeashortdistanceahead

Output: we canon 1 y see ash ort distance ahead

Os algoritmos de segmentação mais sofisticados usam modelos estatísticos (aprendizado supervisionado).

Palavras com pouco sentido semântico: stopword / stoplist

Em muitos contextos:

Uma *stopword* pode ser considerada uma **palavra irrelevante** para análise (artigos, preposições).

a ao aos aquela aquelas aquele aqueles aqui aquilo as até aí com como da das de dela delas dele deles depois do dos dá e ela elas ele eles em entre era eram essa essas esse esses esta estamos estas estava estavam este esteja estejam estejamos estes esteve estive estivemos estiver estivera estiveram estiverem estivermos estivesse estivessem estivéramos estivéssemos estou está estávamos estão eu foi fomos for fora foram forem formos fosse fossem fui fôramos fôssemos haja hajam hajamos havemos hei houve houvemos houver houvera houveram houverei houverem houveremos houveria houveriam houvermos houverá houverão houveríamos houvesse houvessem houvéramos houvéssemos há hão isso isto já lhe lhes lá mais mas me mesmo meu meus minha minhas muito na nas nem no nos nossa nossas nosso nossos num numa não nós o os ou para pela pelas pelo pelos por pra qual quando que quem se seja sejam sejamos sem serei seremos seria seriam será serão seríamos seu seus somos sou sua suas são só também te tem temos tenha tenham tenhamos tenho terei teremos teria teriam terá terão teríamos teu teus teve tinha tinham tive tivemos tiver tivera tiveram tiverem tivermos tivesse tivessem tivéramos tivéssemos tu tua tuas tá tém tínhamos um uma vai você vocês vos vou à às é éramos

```
import sys
     import re
 2
 3
     regex = r''[-'a-zA-Z\dot{A}-\ddot{O}\ddot{O}-\ddot{O}\ddot{O}-\ddot{O}\ddot{O}-\ddot{O}]+'' # raw string
 4
 5
     if __name__ == '__main__':
 6
         fileName = sys.argv[1]
 7
 8
         # leitura das stopwords
 9
         stopwordsPTfile = open("stopwords-pt.txt",'r')
10
         stopwords
                           = set([])
11
         for s in stopwordsPTfile.readlines():
12
              stopwords.add(s.strip().lower())
13
14
         # leitura do documento
15
         document = open(fileName,'r')
16
         content = document.read()
17
18
         # identificacao de palavras
19
                       = re.findall(regex, content)
20
         words
         frequencies = dict([])
21
22
         # quantidade de vezes no documento
23
24
         for w in words:
25
              w = w.lower()
              if w not in stopwords:
26
                  if w not in frequencies:
27
                       frequencies[w] = 0
28
                  frequencies[w] += 1
29
         print (f"Tokens: {len(words)}, Vocabulario: {len(frequencies)}")
30
31
32
         # imprimir as 20 palavras mais frequentes
         fs = sorted(frequencies, key=frequencies.get, reverse=True)
33
         for i in range(0,20):
34
              print (f"--> {frequencies[fs[i]]} {fs[i]}")
35
```

```
$ python palavras2.py A-Semana-Machado-de-Assis.txt
Tokens: 267618, Vocabulario: 25374
--> 11053 que
--> 9875 a
--> 9767 de
                  $ python palavras3.py A-Semana-Machado-de-Assis.txt
--> 8236 o
                  Tokens: 267618, Vocabulario: 25182
--> 7525 e
                  --> 703 ser
--> 5519 não
                  --> 629 ainda
--> 4018 é
                  --> 564 tudo
--> 3476 do
                  --> 526 pode
--> 3465 os
                  --> 475 outro
--> 3352 um
                  --> 471 homem
--> 3203 da
                  --> 455 todos
--> 2862 se
                  --> 454 assim
--> 2421 as
                  --> 437 outra
--> 2237 em
                  --> 420 outros
--> 2054 uma
                  --> 409 grande
--> 2024 com
                  --> 385 dois
--> 2019 mas
                  --> 384 coisa
--> 1811 para
                  --> 375 tempo
--> 1756 por
                  --> 367 dia
--> 1456 ao
                  --> 361 bem
                  --> 360 menos
                  --> 353 vez
                  --> 339 porque
                  --> 334 onde
```

Palavras com pouco sentido semântico?

- As stopwords/stoplists podem ser eliminadas antes ou depois do processamento/leitura do texto.
- Devemos avaliar seu uso para cada aplicação.

Quais das seguintes frases seriam mais informativas?

Rio de Janeiro	Rio Janeiro
Internet das coisas	Internet coisas
Viagem para casa	Viagem casa
Vitamina a	Vitamina

Muitas aplicações (e.g., motores de busca) não usam stopwords.

Palavras com pouco sentido semântico?

View issue TOC Volume 61, Issue 1 January 2010 Pages 200–203

Abstract

In this brief communication, we evaluate the use of two stopword lists for the English language (one comprising 571 words and another with 9) and compare them with a search approach accounting for all word forms. We show that through implementing the original Okapi form or certain ones derived from the *Divergence from Randomness* (DFR) paradigm, significantly lower performance levels may result when using short or no stopword lists. For other DFR models and a revised Okapi implementation, performance differences between approaches using short or long stopword lists or no list at all are usually not statistically significant. Similar conclusions can be drawn when using other natural languages such as French, Hindi, or Persian.

O tamanho da lista de stopwords pode reduzir a efetividade em uma busca, por exemplo.

Stop word / stop list ~1960

Esses termos foram já discutidos desde aprox. 1960:

- Luhn, H.P. (1959). Keyword in Context Index for Technical Literature (KWIC Index), Yorktown Heights, NY: IBM, Report RC 127.
- Parkins, P.V. (1963). Approaches to vocabulary management in permuted title indexing of Biological Abstracts. In Automation and Scientific Communication Part 1, Proceedings of The 26th Annual Meeting of the American Documentation Institute (pp. 27–28), Washington, DC: ADI.
- Fischer, M. (1966). The KWIC index concept: A retrospective view. American Documentation, 17, 57–70.

Normalizando as palavras

Normalizando as palavras

\$ python palavras3.py A-Semana-Machado-de-Assis.txt

```
475 outro
437 outra
420 outros
258 outras
471 homem
310 homens
145 próprio
128 própria
 65 próprios
 41 próprias
 43 alegria
 25 alegres
 24 alegre
```

Normalizando as palavras

 Em textos da língua portuguesa temos diferentes palavras flexionadas em gênero, número ou grau, além de inúmeros tempos verbais distintos.

Trabalhor Trabalhadora

Degrau Degraus

Amigo Amigão

- A "normalização de palavras" pode ser entendida como a redução ou a simplificação de palavras.
- Duas técnicas mais imporantes
 - Stemming
 - Lemmatization

Stemming

- O processo de stemming consiste em reduzir a palavra à sua raiz (sem levar em conta a classe gramatical)
 - amig : amigo, amiga, amigão
 - gat : gato, gata, gatos, gatas
- Stemming geralmente refere-se a um processo de heurística que corta as extremidades das palavras inclui frequentemente a remoção de afixos derivacionais.
 - → Pode ser representado por um conjunto de regras que dependem da linguagem.

Stemming

for for examp**le** exampl compressed compress and and compression compress are ar both both accepted accept as as equival**ent** equival to to compress compress.

Stemming

Existem diferentes algoritmos

- Sample text: Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation
- Lovins stemmer: such an analys can reve featur that ar not eas vis from th vari in th individu gen and can lead to a pictur of expres that is mor biolog transpar and acces to interpres
- Porter stemmer: such an analysi can reveal featur that ar not easili visibl from the variat in the individu gene and can lead to a pictur of express that is more biolog transpar and access to interpret
- Paice stemmer: such an analys can rev feat that are not easy vis from the vary in the individ gen and can lead to a pict of express that is mor biolog transp and access to interpret

Lemmatisation

- O processo de lemmatisation consiste aplicar uma técnicas para deflexionar as palavras (retira a conjugação verbal, caso seja um verbo, e altera os substantivos e os adjetivos para o singular masculino, de maneira a reduzir a palavra até sua forma de dicionário)
 - amigo : amigo, amiga, amigão
 - gato: gato, gata, gatos, gatas
 - ter : tinha, tenho, tiver, tem
- Lemmatisation geralmente usa um dicionário de palavras (a heurística é mais sofisticada).

Recuperação de Informação - IR

- Um vocabulário menor pode levar a um melhor desempenho na busca.
- As operações de stemming e lemmatization são operações comuns e iniciais utilizadas em sistemas de recuperação de informação:
 - Busca: Stemming?
 - Tradução: Lemmatisation?

Sobre o resumo da aula de hoje

Resumo

A disciplina de Processamento de Linguagem Natura O curso tem diversas referências bibliográficas, mas deverão entregar resumos de 250 a 500 palavras à re: intervalos dos conceitos serão os seguintes: A - se a 1 linguagem Python, estrutura de dados e PLN. Pois al qual abrange linguagem para programação, isto é, nã linguística computacional e está relacionada ao aprer sistema de resposta que tem resultados muito preciso Wolpfram Apha, Google Assistant, Amazon Alexia, funcionamento da linguagem humana, já o segundo t mais complexos de resolver. Pois problemas com est um IA- Complete seria desenvolver uma aplicação q A aula começou com a apresentação do professor Jes estão crescendo de forma exponencial, a cada dois ar processamento de discurso e Aplicações. Foi passado 30% da disciplina. Também teremos uma prova teóri seguinte forma: A para notas >=9, B: notas <9 e >= 7 de Inteligência Artificial e Linguistica, definido com em inglês) está muito mais associada a linguagem na de busca semântica no WolframAlpha. PLN está rela entender um texto significa reconhecer seu contexto, microsoft. IA-Complete é um problema extremamen Introdução Sala do Professor: 517-A, torre 2 Bibliog relatorio 2 - 3 páginas - 25/07 \- Mini relatório 3 - 5 ¡ nosso codigo e fonte de dados devem ser disponil Linguagem Natural: Linguagens faladas/escritas por sintática 6\. pesquisas Exemplo Comando ```wc``` no retornar uma data específica. Isso funciona também (resposta. Perguntas mais complexas Como por exem atuais Os sistemas clássicos usaram termos simples I associado com: 1\. Linguistica computacionaç 2\. Tecomo tratar computadores tão inteligentes como pess 03/06/2019 A primeira aula de PLN (Processamento intuito de ser um material de referência de estudo, tar terá um valor equivalente a 40% da nota final. 3 – O dividida em 4 etapas: 1 – Mini relatório, com uma pá Apresentação oral, que será uma apresentação ao pro entendimento de linguagem natural (falada ou escrita chaves, cuja dificuldade é menor e é a tecnologia ma algoritmo, AI-Complete é usado, segundo MIT e Sta construção de um sistema que pode enxergar da mesi

Processamento de Linguagem Natural (PLN) tem relação relação com Compiladores, prova de teoremas, modelos linguagem humana é difícil de entender, uma sentença p humano, assim este problema não é resolvido somente c um projeto que consiste de relatórios e apresentação, val Na aula do dia 03/06, segunda-feira, o professor iniciou grupo e apresentado no final do quadrimestre, e que dev mencionou que o processamento de linguagem natural é desenvolvimento), exemplos de processamento de linguárea de inteligência artificial que são considerados os ma Resumo 1 Forma de avaliação A avaliação na disciplina computadores capazes de entender a linguagem natural. sintática e semântica. Assim, PLN se relaciona com com que exigem Inteligência Artificial para resolução, como analogia aos problemas NP-complete (complexidade cor Paulo Alexander Simões RA: 11084915 Resumo - PLN Ou seja, problemas que requerem este nível de solução r criação de soluções para estes problemas compexos, é no não foram formalisados. Um dos maiores desafios para 1 serem corrigidas. Deve-se desenvolver em tal solução di Processamento de Linguagem Natural (PLN) é uma subhumana, tanto escrita como falada, ou para construção d modernos, sendo necessária a intervenção humana para a máquina, interação humano-computador e inteligência a que podemos citar são: uso de reconhecimento de voz pa A primeira aula teve caráter introdutório tanto da estrutu que mais vale) e apresentação (que completa a nota dos essa inicialmente não estruturada para análise computaci entendimento da linguagem humana; outro focado no de como humanos?". Se uma máquina tivesse a capacidade sfnuie e fieaj eEIUFE iunes eNIE eONWE p noqeo fewi In Stuart C. Shapiro (Ed.), Encyclopedia of Artificial Int Resumo aula 01 Processamento de Linguagem Natural é amplo, com um vocabulário léxico complexo com const exigem operações ainda muito complexas. O entendimei Nesta aula fomos introduzidos a disciplina e pegamos in deverá ser entregue um resumo em até 48h após cada au algoritmo descrito juntamente de um relatório. A primeira aula foi uma apresentação e introdução sobre

cresce exponencialmente, com algumas previsões para o

Resumo 3 - Tidia

- Deadline (daqui a ~48h)
 - Aprox. 250-500 palavras. Apenas texto.
 - Dia: 12/jun, até às 23h50.