

AD-A049 863

NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
A SHORT TABLE OF LANCHESTER-CLIFFORD-SCHLAFLI FUNCTIONS. (U)
OCT 77 J G TAYLOR, G G BROWN
NPS-55-77-42

F/6 15/7

MIPR-ARO-22-77

NL

UNCLASSIFIED

| OF |
AD-A049 863

1

END
DATE
FILED
3-78
DDC

AD A 049863

1
2
3
4
5
6
7
8
9
NPS55-77-42

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DDC
REF ID: A
FEB 14 1978

A SHORT TABLE OF
LANCHESTER-CLIFFORD-SCHLAFLI FUNCTIONS

by
James G. Taylor
and
Gerald G. Brown

October 1977

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Isham Linder
Superintendent

Jack R. Borsting
Provost

This research has been partially supported by the U.S. Army Research Office, Durham, North Carolina with R&D Project No. 1L161102BH57-05 Math (funded under MIPR No. ARO 22-77) and partially by the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

James G. Taylor

James G. Taylor
Associate Professor
Department of Operations Research

Gerald G. Brown

Gerald G. Brown
Associate Professor
Departments of Operations Research
and Computer Science

Reviewed by:

Released by:

Michael G. Sovereign
Michael G. Sovereign, Chairman
Department of Operations Research

William M. Toller
Robert R. Fossum
Dean of Research

Gordon H. Bradley
Gordon H. Bradley, Chairman
Department of Computer Science

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM 141
1. REPORT NUMBER 14 NPS55-77-424	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and subtitle) 6 A Short Table of Lanchester-Clifford-Schlafli Functions,	5. TYPE OF REPORT & PERIOD COVERED 7 Technical rept.,	
7. AUTHOR(S) 10 James G. Taylor Gerald G. Brown	8. PERFORMING ORG. REPORT NUMBER 15 MIPR-ARO-22-77	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, Ca. 93940	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 16 1L161102BH57 17 05	
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Research Office Durham, North Carolina	12. REPORT DATE 11 Oct 1977	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 14 (1264p.)	
15. SECURITY CLASS. (If MILITARY USE)		
Unclassified		
16. DECLASSIFICATION/DOWNGRADING SCHEDULE		
17. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
18. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
19. SUPPLEMENTARY NOTES		
20. KEY WORDS (Continue on reverse side if necessary and identify by block number) Lanchester Theory of Combat Special Functions Combat Modelling Deterministic Combat Attrition Attrition Modelling Lanchester-Clifford-Schlafli Functions Combat Dynamics		
21. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report contains a reduced set of tables of Lanchester-Clifford-Schlafli (LCS) functions. A companion report contains a more extensive (and currently the most extensive available) set of tables of the LCS functions. These functions may be used to analyze Lanchester-type combat between two homogeneous forces modelled by power attrition-rate coefficients with "no effect." Theoretical background for the LCS functions is given, as well as a narrative description of the physical circumstances under which the associated		

20. Cont.

→ Lanchester-type combat model may be expected to be applicable. Numerical examples are given to illustrate the use of the LCS functions for analyzing "aimed-fire" combat modelled by the power attrition-rate coefficients with "no offset." Our results and these tabulations allow one to study this particular variable-coefficient combat model almost as easily and thoroughly as Lanchester's classic constant-coefficient model.

NOTICE: ALL INFORMATION CONTAINED
HEREIN IS UNCLASSIFIED
DATE 08-12-2014 BY 60204

REF ID: A65204
SOLITRO 1000-9 DATA 1000
envelope record medium

NOTICE: ALL INFORMATION CONTAINED
HEREIN IS UNCLASSIFIED
DATE 08-12-2014 BY 60204

REF ID: A65204

REF ID: A65204
SOLITRO 1000-9 DATA 1000
envelope record medium

REF ID: A65204
SOLITRO 1000-9 DATA 1000
envelope record medium

REF ID: A65204
SOLITRO 1000-9 DATA 1000
envelope record medium

REF ID: A65204
SOLITRO 1000-9 DATA 1000
envelope record medium

REF ID: A65204
SOLITRO 1000-9 DATA 1000
envelope record medium

A SHORT TABLE OF LANCHESTER-CLIFFORD-SCHLÄFLI FUNCTIONS

by

James G. Taylor
Department of Operations Research

and

Gerald G. Brown
Departments of Operations Research
and Computer Science

Naval Postgraduate School
Monterey, California

ACCESSION for	
NTIS	White Section <input checked="" type="checkbox"/>
BBC	Buff Section <input type="checkbox"/>
UNANNOUNCED <input type="checkbox"/>	
JUSTIFICATION.....	
BY.....	
DISTRIBUTION/AVAILABILITY CODE#.....	
BEST	AVAIL. and/or SPECIAL
A	

This research was partially supported by the U. S. Army Research Office, Durham, R&D Project No. 1L161102BH57-05 Math (funded under MIPR No. ARO 22-77) and partially by the Office of Naval Research.

TABLE OF CONTENTS

	PAGE
1. Introduction	1
2. Variable-Coefficient Lanchester-Type Equations of Modern Warfare	2
3. Combat Modelled with Power Attrition-Rate Coefficients.....	5
4. Lanchester-Clifford-Schlafli (LCS) Functions	12
5. Use of LCS Functions for Analyzing Combat	18
6. Tabulation of LCS Functions	21
7. Numerical Examples	22
8. Final Remarks	32
References	35
Appendix: Tabulation of LCS Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for 11 Fractional Values of α	36

1. Introduction

Lanchester-type* differential-equation combat models are an important tool for analyzing many important problems of military operations research. In such a combat model, a so-called attrition-rate coefficient represents the fire effectiveness of a particular weapon-system type against a particular target type, i.e. the weapon-system type's effective firepower against such a target. Time-dependent attrition-rate coefficients are used to model temporal variations in firepower on the battlefield. Thus, we see that time-dependent attrition-rate coefficients are important (and, in fact, essential [4-6]) for the quantitative analysis of hypothetical combat.

Militarily realistic computer-based Lanchester-type models of quite complex military systems have been developed for almost the entire spectrum of combat operations, from combat between battalion-sized units to theater-level operations. Nevertheless, a simple combat model may yield a clearer understanding of significant interrelationships that are difficult to perceive in a more complex model, and such insights can subsequently provide valuable guidance for more detailed computerized investigations. In this report we consider such a simplified variable-coefficient Lanchester-type model of combat between two homogeneous forces.

For this variable-coefficient Lanchester-type model of combat between two homogeneous forces, different functional forms for the attrition-rate coefficients lead to different mathematical functions being involved in representing and computing the force-level trajectories. In a previous paper [5] we have discussed the plausibility of the hypothesis that except for the special case of a constant ratio of attrition-rate coefficients,

*So-called after pioneering work of F. W. Lanchester [3].

the solutions to such differential equations cannot be represented in term of "elementary" functions of analysis. Thus, new transcendental functions arise in the study of combat modelled with time-dependent attrition-rate coefficients. In particular, we have previously introduced [5-6] so-called Lanchester-Clifford-Schlafli (LCS) functions for analyzing combat modelled with power attrition-rate coefficients with "no offset" (see Section 3 below).

In the Appendix to this report is contained a reduced set of tables for the LCS functions: it contains tables of five-decimal-place values of the hyperbolic-like LCS functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ (see Section 4 below) for 11 fractional values of α (see Section 6 below). A companion report [8] contains the most extensive set of tables currently available. The main body of this report provides the theoretical and modelling background for the use of these tables. In particular, we examine a model of a constant-speed attack on a static defensive position and show how associated range-dependent kill rates give rise to time-dependent attrition-rate coefficients with "no offset." Numerical computations are presented to illustrate the use of the LCS functions for analyzing such "aimed-fire" combat. As a consequence of the availability of these tables, one can now study this variable-coefficient combat model almost as easily and thoroughly as Lanchester's classic constant-coefficient model.

2. Variable-Coefficient Lanchester-Type Equations of Modern Warfare.

We consider combat between two homogeneous forces modelled by the following variable-coefficient Lanchester-type [3] (see [4,5]) equations of modern warfare

$$(L.S) \quad \begin{cases} \frac{dx}{dt} = -a(t)y & \text{with } x(0) = x_0, \\ \frac{dy}{dt} = -b(t)x & \text{with } y(0) = y_0, \end{cases} \quad (2.1)$$

where $t = 0$ denotes the time at which the battle begins, $x(t)$ and $y(t)$ denote the numbers of X and Y at time t , and $a(t)$ and $b(t)$ denote time-dependent Lanchester attrition-rate coefficients, which represent the effectiveness of each side's fire. These coefficients depend on variables such as force separation, tactical posture of targets, rate of target acquisition, firing rate, etc. (see [4-7] for further details). Variable attrition-rate coefficients are used to model temporal variations in firepower on the battlefield. In any analysis of combat, moreover, we should use the above equations (2.1) only for x and $y > 0$ and, for example, set $dx/dt = 0$ when $x = 0$, since negative force levels have no physical meaning.

Mathematically, we assume that the attrition-rate coefficients $a(t)$ and $b(t)$ are defined, positive, and continuous for $t_0 < t < +\infty$ with $t_0 \leq 0$. We also assume that $a(t)$ and $b(t) \in L(t_0, T)$ for any finite $T \geq t_0$. We further take $a(t)$ and $b(t)$ to be given in the form

$$a(t) = k_a g(t), \quad \text{and} \quad b(t) = k_b h(t), \quad (2.2)$$

where k_a and k_b are positive constants chosen so that $a(t)/b(t) = k_a/k_b$ when $g(t) \equiv h(t)$. We introduce the combat-intensity parameter λ_I and the relative-fire-effectiveness parameter λ_R defined by

$$\lambda_I = \sqrt{k_a k_b}, \quad \text{and} \quad \lambda_R = k_a/k_b. \quad (2.3)$$

From our assumptions about $a(t)$ and $b(t)$, it follows that, for example,

$$a(t) \notin L(t_0, T) \text{ implies } \int_{t_0}^T a(t) dt = +\infty.$$

The X force level as a function of time may be represented as [5,6]

$$x(t) = x_0 \{C_X(0)C_X(t) - S_X(0)S_X(t)\} - y_0 \sqrt{\lambda_R} \{C_X(0)S_X(t) - S_X(0)C_X(t)\}, \quad (2.4)$$

where the hyperbolic-like general Lanchester functions (GLF) $C_X(t)$ and $S_X(t)$ are linearly-independent solutions to the X force-level equation

$$\frac{d^2 x}{dt^2} - \left\{ \frac{1}{a(t)} \frac{da}{dt} \right\} \frac{dx}{dt} - a(t)b(t)x = 0, \quad \text{and using (1.5) and (2.5)} \quad (2.5)$$

with initial conditions

$$C_X(t_0) = 1, \quad S_X(t_0) = 0, \quad (2.6)$$

$$\{1/a(t_0)\} dC_X/dt(t_0) = 0, \quad \{1/a(t_0)\} dS_X/dt(t_0) = 1/\sqrt{\lambda_R}.$$

Here t_0 denotes the largest finite time at which $a(t)$ or $b(t)$ ceases to be defined, positive, or continuous. The Y force level as a function of time is given by a similar expression, with $C_Y(t)$ and $S_Y(t)$ being analogously defined for the corresponding Y force-level equation.

It is sometimes convenient to introduce the new independent variable τ defined by

$$\tau = \int_{t_0}^t \sqrt{a(s)b(s)} ds. \quad (2.7)$$

It is readily seen that the transformation $\tau = \tau(t)$ is well defined and invertible. Let us denote $\tau(0)$ as τ_0 . We observe that $t_0 \leq 0$ implies that $\tau_0 \geq 0$. If we denote the "average intensity of combat" as $\overline{\sqrt{a(t)b(t)}}$, then

$$\overline{\sqrt{a(t)b(t)}} t = \left\{ (1/t) \int_0^t \sqrt{a(s)b(s)} ds \right\} t = \tau - \tau_0. \quad (2.8)$$

The substitution (2.7) transforms (2.5) into

$$\frac{d^2x}{d\tau^2} - \left(\frac{1}{2} \left\{ \frac{d}{d\tau} \ln R(\tau) \right\} \right) \frac{dx}{d\tau} - x = 0, \quad (2.9)$$

with initial conditions

$$x(\tau_0) = x_0, \quad \text{and} \quad \{1/\sqrt{R(\tau_0)}\} dx/d\tau(\tau_0) = -y_0,$$

where $R(\tau) = a(t)/b(t)$.

3. Combat Modelled with Power Attrition-Rate Coefficients.

The above equations (2.1) basically apply to "aimed-fire" combat when target-acquisition times do not depend on the numbers of targets available (see [5,6] for further details). A large class of tactical situations of interest can be modelled with the following general power attrition-rate coefficients [5-7]

$$a(t) = k_a(t + C)^\mu, \quad \text{and} \quad b(t) = k_b(t + C + A)^\nu, \quad (3.1)$$

where A and $C \geq 0$. We will call A the offset parameter, since it allows us to model (with μ and $\nu \geq 0$) battles between opposing weapon systems with different maximum effective ranges (see [5,6]). We will call C the starting parameter, since it allows us to model (again, with μ and $\nu \geq 0$) battles that begin within the maximum effective ranges of the two opposing systems. We observe that for the general power attrition-rate coefficients (3.1) we have $t_0 = -C$, and μ and ν must be > -1 in order that $a(t)$ and $b(t) \in L(t_0, T)$.

The above nomenclature is motivated and possible applications of our work are indicated by considering S. Bonder's model of the constant-speed attack on a static defensive position (see [4-7] for further details)

$$\frac{dx}{dt} = -\alpha(r)y, \quad \text{and} \quad \frac{dy}{dt} = -\beta(r)x, \quad (3.2)$$

where r denotes the range between opposing forces, and $\alpha(r)$ and $\beta(r)$ denote range-dependent attrition-rate coefficients. Range is related to time by

$$r(t) = R_0 - vt, \quad (3.3)$$

where R_0 denotes the opening range of battle and $v > 0$ denotes the constant attack speed. For example, let us consider the constant-speed attack of a homogeneous Y force against the static defensive position of a homogeneous X force. Figure 1 diagrammatically portrays this situation.

Figure 1. Diagram of Bonder's constant-speed attack model.
 Force separation, $r(t)$, is given by $r(t) = R_0 - vt$.

The basic idea is that force separation, i.e. range between the opposing forces, changes over time, and the fire effectiveness of, for example, a single Y firer, denoted as $\alpha(r)$, depends on this force separation.

In many cases of tactical interest, we may model the fire effectiveness of, for example, the Y weapon system (as a function of range) with

$$\alpha(r) = \begin{cases} \alpha_0 \left(1 - \frac{r}{R_\alpha}\right)^\mu & \text{for } 0 \leq r \leq R_\alpha, \\ 0 & \text{for } R_\alpha \leq r, \end{cases} \quad (3.4)$$

where R_α denotes the maximum effective range of the Y weapon system and $\mu \geq 0$. Here μ is used to model the range dependency of Y's attrition-rate coefficient (see Figure 2). We model $\beta(r)$ similarly, with corresponding quantities R_β and ν being analogous to R_α and μ above.

If we use (3.3) to eliminate range r from (3.4), we obtain

$$\begin{cases} \frac{dx}{dt} = -a(t)y, \\ \frac{dy}{dt} = -b(t)x, \end{cases} \quad (3.5)$$

where the time-dependent attrition-rate coefficients $a(t)$ and $b(t)$ are given by (3.1). It follows that the offset and starting parameters are given by

Figure 2. Dependence of Y's attrition-rate coefficient $\alpha(r)$ on the exponent μ with the maximum effective range of the weapon system and kill rate at zero range held constant. [NOTES: 1. The maximum effective range of the system is denoted as $R_a = 2000$ meters. 2. $\alpha(0) = \alpha_0 = 0.6X$ casualties/(unit time \times number of Y firers) denotes the weapon-system kill rate for Y at zero force separation (range). 3. The opening range of battle is denoted as $R_0 = 1250$ meters and (as shown) $R_0 < R_a$.]

$$A = \left(\frac{R_\beta - R_\alpha}{v} \right), \quad \text{and} \quad C = \left(\frac{R_\alpha - R_0}{v} \right), \quad (3.6)$$

and that

$$k_a = \alpha_0 \left(\frac{v}{R_\alpha} \right)^u, \quad \text{and} \quad k_b = \beta_0 \left(\frac{v}{R_\beta} \right)^v. \quad (3.7)$$

We observe that A and $C \geq 0$ if and only if $R_\beta \geq R_\alpha \geq R_0$. By considering (3.6) and Figure 3, the reader should have no trouble in understanding our terminology for A and C .

When the offset parameter is equal to zero (i.e. $A = 0$), then the coefficients (3.1) reduce to

$$a(t) = k_a(t+C)^u, \quad \text{and} \quad b(t) = k_b(t+C)^v. \quad (3.8)$$

We will refer to (3.8) as power attrition-rate coefficients with "no offset."

As we have seen above in Bonder's constant-speed attack model, these coefficients model, for example, combat between weapon systems with the same maximum effective range so that there is no "offset" in the "reaching out" of the weapon systems against each other in combat (again, see Figure 3).

For these coefficients (3.8), the transformed X force-level equation (2.9) becomes

$$\frac{d^2x}{d\tau^2} + \left(\frac{2u-1}{\tau} \right) \frac{dx}{d\tau} - x = 0, \quad (3.9)$$

with initial conditions

Figure 3. Explanation of the offset parameter A and the starting parameter C for power attrition-rate coefficients modelling constant-speed attack. [NOTES: 1. The maximum effective ranges of the X and Y weapon systems are denoted as R_α and R_β , respectively. 2. The opening range of battle is denoted as R_0 and (as shown) $R_0 < \min(R_\alpha, R_\beta)$. 3. The offset parameter is given by $A = (R_\beta - R_0)/v$. 4. The starting parameter is given by $C = (R_\alpha - R_0)/v$.]

$$x(\tau_0) = x_0, \quad \text{and} \quad \left\{ \left(\frac{\tau}{2} \right)^{2q-1} \frac{dx}{d\tau} \right\}_{\tau=\tau_0} = -y_0 \sqrt{\lambda_R} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{2q-1}.$$

Here

$$q = \left(\frac{\nu + 1}{\mu + \nu + 2} \right), \quad (3.10)$$

$$\tau = \left(\frac{2\lambda_I}{\mu + \nu + 2} \right) (t + c)^{(\mu + \nu + 2)/2}, \quad (3.11)$$

and

$$\tau_0 = \left(\frac{2\lambda_I}{\mu + \nu + 2} \right) c^{(\mu + \nu + 2)/2}. \quad (3.12)$$

Let us observe that $0 < q < 1$ when μ and $\nu > -1$. Furthermore, $q > 1/2$ if and only if $dR/dt < 0$, i.e. $R(t)$ is a strictly decreasing function of time.

4. Lanchester-Clifford-Schlafli (LCS) Functions.

Consider the function $F_\alpha(x)$ defined by the power series

$$F_\alpha(x) = \Gamma(\alpha) \sum_{k=0}^{\infty} \frac{(x/2)^{2k}}{\{k! \Gamma(k+\alpha)\}}. \quad (4.1)$$

For $\alpha \neq 0, -1, -2, \dots$ the radius of convergence for $F_\alpha(x)$ is infinite by the ratio test for convergence of power series [2]. Hence, $F_\alpha(z)$ is an entire function of the complex variable $z = x + iy$, with an essential

$H_\alpha(x)$ has a singularity at the point at infinity. Now consider the function $H_\alpha(x)$ defined by the infinite series

$$H_\alpha(x) = \Gamma(\alpha) \sum_{k=0}^{\infty} \frac{(x/2)^{2(k+\alpha)}}{\{k! \Gamma(k+\alpha+1)\}}. \quad (4.2)$$

Observing that

$$H_\alpha(x) = (1/\alpha)(x/2)^{2\alpha} F_{\alpha+1}(x), \quad (4.3)$$

we see that for $\alpha > 0$ the infinite series (4.2) is uniformly convergent on compact subsets of the complex plane. From (4.3) one can readily deduce the recursive relation

$$F_\alpha(x) = F_{\alpha+1}(x) + \left\{ \frac{(x/2)^2}{\alpha(\alpha+1)} \right\} F_{\alpha+2}(x). \quad (4.4)$$

We will call the functions $F_\alpha(x)$ and $H_\alpha(x)$ Lanchester-Clifford-Schlafli (LCS) functions (see Note 10 on pp. 66-67 of [5]). Other properties are readily deduced and are given in Table I.

The function $F_\alpha(x)$ satisfies the linear second-order ordinary differential equation

$$\frac{d^2 F_\alpha}{dx^2} + \left(\frac{2\alpha-1}{x} \right) \frac{dF_\alpha}{dx} - F_\alpha = 0, \quad (4.5)$$

with initial conditions

Table I. Properties of the LCS Functions $F_\alpha(x)$ and $H_\alpha(x)$.

1. $dF_\alpha/dx = (x/2)^{1-2\alpha} H_\alpha(x)$

2. $dH_\alpha/dx = (x/2)^{2\alpha-1} F_\alpha(x)$

3. $F_\alpha(x)F_{1-\alpha}(x) - H_\alpha(x)H_{1-\alpha}(x) = 1 \quad \forall x$

where α is not an integer (including zero)

4. $F_\alpha(x=0) = 1$

5. $H_\alpha(x=0) = 0 \quad \text{for } \alpha > 0$

6. $dF_\alpha/dx(x=0) = 0$

7. $\{(x/2)^{1-2\alpha} dH_\alpha/dx\}_{x=0} = 1$

8. $F_{1/2}(x) = \cosh x$

9. $H_{1/2}(x) = \sinh x$

$$F_a(0) = 1, \quad \text{and} \quad \frac{dF_a}{dx}(0) = 0,$$

while $H_a(x)$ satisfies

$$\frac{d^2H_\alpha}{dx^2} - \left(\frac{2\alpha-1}{x}\right) \frac{dH_\alpha}{dx} - H_\alpha = 0 , \quad (4.6)$$

$$((g)x)_p^T = \left(\frac{1}{x+y+u} \right) = (g)_X^T$$

with initial conditions

Figure 1 (i) denotes a hydrodynamic-like G, which corresponds to the

$$H_a(0) = 0, \quad \text{and} \quad \left\{ \left(\frac{x}{2} \right)^{1-2\alpha} \frac{dH_a}{dx} \right\}_{x=0} = 1.$$

Invitații săi să se întâlnească la reuniunea de lucru a Comisiei de la 10 iunie 2013.

Thus, $\{F_a, H_{1-a}\}$ is a fundamental system of solutions to

$$\frac{d^2F}{dx^2} + \left(\frac{2\alpha-1}{x}\right) \frac{dF}{dx} - F = 0 , \quad (4.7)$$

with Wronskian $W(F_\alpha, H_{1-\alpha}) = (x/2)^{1-2\alpha}$. It follows that the GLF for the X and Y force-level equations for combat modelled with the attrition-rate coefficients (3.8) are given by

$$C_X(t) = F_q(\tau(t)), \quad S_X(t) = \left(\frac{\lambda_I}{u+v+2} \right)^{2q-1} H_p(\tau(t)), \quad (4.8)$$

$$C_Y(t) = F_p(\tau(t)), \quad S_Y(t) = \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{1-2q} H_q(\tau(t)), \quad (4.9)$$

where $p = 1-q$. If we define \mathbf{N} as the number of trials and \mathbf{M} as the number of successes, then

california-mobilcon-calling calling

$$T_\alpha(x) = H_{1-\alpha}(x)/F_\alpha(x) , \quad (4.10)$$

then

$$T_X(t) = \frac{S_X(t)}{C_X(t)} = \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{2q-1} \frac{H(\tau(t))}{F_q(\tau(t))} , \quad (4.11)$$

or

$$T_X(t) = \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{2q-1} T_q(\tau(t)) , \quad (4.12)$$

where $T_X(t)$ denotes a hyperbolic-like GLF, which corresponds to the hyperbolic tangent. Observing that for $\mu, \nu > -1$, $\lim_{t \rightarrow +\infty} \tau(t) = +\infty$, we see that $T_\alpha(x)$ is a strictly increasing function of x on the interval $[0, +\infty)$ and

$$0 \leq T_\alpha(x) < \frac{\Gamma(1-\alpha)}{\Gamma(\alpha)} \quad \text{for } 0 \leq x < +\infty , \quad (4.13)$$

with

$$\lim_{x \rightarrow +\infty} T_\alpha(x) = \frac{\Gamma(1-\alpha)}{\Gamma(\alpha)} , \quad (4.14)$$

since by the results of Taylor and Comstock [7] the parity-condition parameter $Q^* = Q^*(\mu, \nu, C = 0)$ is given by

$$\lim_{t \rightarrow +\infty} T_X(t) = \frac{1}{Q^*(\mu, \nu, 0)} = \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{2q-1} \frac{\Gamma(p)}{\Gamma(q)} . \quad (4.15)$$

We recall that Taylor and Comstock [7] have introduced the so-called parity-condition parameter Q^* as the value (or range of such values) for the initial condition Q to the initial-value problem

$$\begin{cases}
 \frac{dE_X^-}{dt} = -\frac{1}{\sqrt{\lambda_R}} a(t) E_Y^- & \text{with } E_X^-(t_0) = 1, \\
 \frac{dE_Y^-}{dt} = -\sqrt{\lambda_R} b(t) E_X^- & \text{with } E_Y^-(t_0) = Q,
 \end{cases} \quad (4.16)$$

such that $E_X^-(t; Q^*)$ and $E_Y^-(t; Q^*) > 0$ for all $t \geq t_0$. In other words, Q^* is the value of Q in (4.16) above such that neither E_X^- nor E_Y^- ever become zero. In this case, both $E_X^-(t; Q^*)$ and $E_Y^-(t; Q^*)$ are positive, strictly decreasing functions, similar to decreasing exponentials. Thus, we may call Q^* "the Y equivalent of an X force of unit strength," since the forces are "at parity," with neither force being annihilated in finite time. Taylor and Comstock have shown that for either $a(t) \notin L(0, +\infty)$ or $b(t) \notin L(0, +\infty)$, then Q^* is unique and given by

$$\lim_{t \rightarrow +\infty} \frac{S_X(t)}{C_X(t)} = \frac{1}{Q^*} \quad (4.17)$$

The significance of the parity-condition parameter Q^* is that it allows us to predict force annihilation as the following theorem shows.

THEOREM 1 (Taylor and Comstock [7]): Assume that either $a(t) \notin L(0, +\infty)$ or $b(t) \notin L(0, +\infty)$. Then the X force will be annihilated in finite time if and only if

$$\frac{x_0}{y_0} < \sqrt{\lambda_R} \left\{ \frac{C_X(0) - Q^* S_X(0)}{Q^* C_Y(0) - S_Y(0)} \right\} \quad (4.18)$$

5. Use of LCS Functions for Analyzing Combat.

The Lanchester-Clifford-Schlafli (LCS) functions $F_\alpha(x)$ and $H_\alpha(x)$ are useful for analyzing "aimed-fire" combat (see Section 3 above) modelled with the power attrition-rate coefficients with "no offset" (3.8), which we rewrite here as

$$a(t) = k_a(t + C)^\mu, \quad \text{and} \quad b(t) = k_b(t + C)^\nu. \quad (5.1)$$

In other words, the LCS functions arise in solving the differential combat model (2.1) with attrition-rate coefficients (5.1). In order that both $a(t)$ and $b(t) \in L(t_0, T)$, we must have μ and $\nu > -1$. Military situations modelled by these equations have been discussed in Section 3 above, e.g. combat between two weapon systems with the same maximum effective range.

For such combat, the LCS functions may be used to

- (1) compute force-level declines,
- (2) predict force annihilation,

and (3) predict the time of force annihilation.

Let us now see how the LCS functions may be used to obtain the above information about force-level declines and force-annihilation prediction. According to (2.4), (4.8), and (4.9) above, the X force level is given by

$$x(t) = x_0 \{ F_p(\tau_0) F_q(\tau(t)) - H_q(\tau_0) H_p(\tau(t)) \} - y_0 \sqrt{\lambda_R} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{2q-1} \{ F_q(\tau_0) H_p(\tau(t)) - H_p(\tau_0) F_q(\tau(t)) \}, \quad (5.2)$$

where q is given by (3.10), $p = 1-q$, and $\tau(t)$ is given by (3.11), which we rewrite as

$$\tau(t) = \left(\frac{2\lambda_I}{\mu + \nu + 2} \right) (t + c)^{(\mu+\nu+2)/2} \quad (5.3)$$

The time to annihilate the X force* is determined by $x(t_a^X) = 0$, and it follows that

$$T_q(\tau(t_a^X)) = \frac{x_0 F_p(\tau_0) + y_0 \sqrt{\lambda_R} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{q-p} H_p(\tau_0)}{x_0 H_q(\tau_0) + y_0 \sqrt{\lambda_R} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{q-p} F_q(\tau_0)}, \quad (5.4)$$

where from (4.10)

$$T_q(\tau(t)) = H_p(\tau(t))/F_q(\tau(t)), \quad (5.5)$$

and we recall that $p + q = 1$. It follows that the time to annihilate X , t_a^X , is given by

*If we multiply the first equation of (2.1) by y , the second by x , add, and integrate, we obtain

$$x(t)y(t) = x_0 y_0 - \int_0^t \{a(s)y^2(s) + b(s)x^2(s)\}ds,$$

which shows that $x(t)$ and $y(t)$ can have at most one finite zero. Hence, if $x(t_a^X) = 0$, then we know that $y(t) > 0$ for all $t \geq 0$.

$$t_a^X = \tau^{-1} \left\{ T_q^{-1} \left[\begin{array}{l} \frac{x_0 F_p(\tau_0) + y_0 \sqrt{\lambda_R} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{q-p} H_p(\tau_0)}{x_0 H_q(\tau_0) + y_0 \sqrt{\lambda_R} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{q-p} F_q(\tau_0)} \end{array} \right] \right\} . \quad (5.6)$$

Taylor and Comstock [7] have shown that $T_q(\tau)$ is strictly increasing and satisfies (see also (4.12) above)

$$0 \leq T_q(\tau) < \Gamma(p)/\Gamma(q) , \quad (5.7)$$

where $p = 1-q$. It follows that in order for X to be annihilated in finite time, the right-hand side of (5.4) must be less than $\Gamma(p)/\Gamma(q)$. Let us observe that for $t_0 = -c = 0$, (5.4) simplifies to

$$T_q(\tau(t_a^X)) = \frac{x_0}{y_0 \sqrt{\lambda_R}} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{p-q} . \quad (5.8)$$

Thus, we have proved the following theorem concerning force-annihilation prediction.

THEOREM 2: Consider combat between two homogeneous forces modelled by (2.1) with power attrition-rate coefficients (5.1). Assume that μ and $\nu > -1$ and that the above equations hold for all time. Then the X force will be annihilated in finite time if and only if

exists no finite solution of (8) except perhaps a of limit of a

finite-dimensional solution to be found in the available data and

$$\Gamma(q) \left\{ x_0 F_p(\tau_0) + y_0 \sqrt{\lambda_R} \left(\frac{\lambda_I}{\mu + v + 2} \right)^{q-p} H_p(\tau_0) \right\}$$

and this will reduce to a polynomial equation of

$$< \Gamma(p) \left\{ x_0 H_q(\tau_0) + y_0 \sqrt{\lambda_R} \left(\frac{\lambda_I}{\mu + v + 2} \right)^{q-p} F_q(\tau_0) \right\}, \quad (5.9)$$

which has a finite solution if and only if the coefficients of the

where $q = (v + 1)/(\mu + v + 2)$ and $p = 1 - q$. For $\tau_0 = 0$

(i.e. $C = 0$ so that $\tau_0 = 0$), X will be annihilated in finite

time if and only if

$$\frac{x_0}{y_0} < \frac{\Gamma(p)}{\Gamma(q)} \sqrt{\lambda_R} \left(\frac{\lambda_I}{\mu + v + 2} \right)^{q-p}. \quad (5.10)$$

6. Tabulation of LCS Functions.

This report contains a reduced set of tables of the Lanchester-Clifford-Schlafli functions. The Appendix contains tables of five-decimal-place values of the hyperbolic-like LCS functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for various values of the argument x , namely $x = 0.00$ (0.01) 2.00 (0.1) 10.0, and $\alpha = 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 3/7, \text{ and } 4/7$. These values of the index α correspond to $\mu, v = 0, 1, 2, \text{ and } 3$ in (3.8) and allow one to analyze, for example, a basic spectrum of range capabilities for weapon systems in the constant-speed-attack model of Section 3. These tables have been calculated by the recursive means given in Section 8 of [5]. A more extensive tabulation (namely, for $\alpha = 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 2/7, 3/7, 4/7, 5/7, 4/9, 5/9, 3/11, 5/11, 6/11, 8/11, 5/13, 8/13, 5/17, 12/17, 5/21, \text{ and } 16/21$ corresponding to $\mu, v = 0, 1/4, 1/2, 1, 1 \frac{1}{2}, 2, 3$)

is to be found in a companion report [8]. This companion report contains the most extensive set of tables of the Lanchester-Clifford-Schläfli functions currently available.

A representative tabulation of the hyperbolic-like LCS functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ is given in, for example, Tables 8A and 8B of the Appendix for $\alpha = 3/5$. The values of the argument x are the same as those used for the tabulation of the hyperbolic functions by Abramowitz and Stegun [1]. We observe from Table 8B and (4.13) that the limiting value of $T_\alpha(x)$ as $x \rightarrow +\infty$ (here $\alpha = 3/5$) is quickly reached, with three-decimal-place accuracy already attained for $x = 4.5$. Moreover, the use of these tables (specifically, Tables 8A and 8B of the Appendix) for combat analysis is illustrated in the next section.

7. Numerical Examples

In this section we examine a couple of numerical examples to show some of the insights that may be gained into the dynamics of combat between two homogeneous forces from our results (see also [6]). These examples illustrate the use of the LCS functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for analyzing "aimed-fire" combat modelled with the power attrition-rate coefficients with "no offset" (5.1). As in [4-7], we consider S. Bonder's model (3.2) for the constant-speed attack against a static defensive position. We will focus on the use of the LCS functions for predicting force annihilation, since the computing of force-level trajectories with Lanchester functions is adequately handled elsewhere (see [4-5]).

Let us accordingly consider the constant-speed attack of a homogeneous Y force against the static defensive position of a homogeneous X force (see Section 3 above for further modelling details, especially Figure 1). For our numerical computations, we assume that the fire effectiveness of the Y weapon system varies linearly with range, i.e.

$$\alpha(r) = \begin{cases} \alpha_0 \left(1 - \frac{r}{R_\alpha}\right) & \text{for } 0 \leq r \leq R_\alpha, \\ 0 & \text{for } R_\alpha \leq r, \end{cases} \quad (7.1)$$

and that the fire effectiveness of the X weapon system varies quadratically with range, i.e.

$$\beta(r) = \begin{cases} \beta_0 \left(1 - \frac{r}{R_\beta}\right)^2 & \text{for } 0 \leq r \leq R_\beta, \\ 0 & \text{for } R_\beta \leq r, \end{cases} \quad (7.2)$$

with $R_\alpha = R_\beta$, i.e. both weapon systems have the same maximum effective range. In other words, $\mu = 1$ in (3.4) and $\nu = 2$ for $\beta(r)$. We consider a battle modelled by the input data given in Table II. In terms of time as the independent variable, the attrition-rate coefficients (7.1) and (7.2) become via (3.3)

$$a(t) = k_a(t + C) \quad \text{and} \quad b(t) = k_b(t + C)^2, \quad (7.3)$$

assumed to be linear. Because of the infinite variables as well as the number of assumptions to be made, simplified criteria are needed.

Table II. Input Data for Numerical Examples

$$\mu = 1, \nu = 2$$

$$\alpha_0 = 0.06 X \text{ casualties/minute/Y firer}$$

$$\beta_0 = 0.6 Y \text{ casualties/minute/X firer}$$

$$R_a = R_b = 2000 \text{ meters}$$

$$v = 5 \text{ miles/hour}$$

where $R_\alpha = R_\beta$,

$$C = \frac{R_\alpha - R_0}{v}, \quad k_a = \frac{\alpha_0 v}{R_\alpha}, \quad \text{and} \quad k_b = \beta_0 \left(\frac{v}{R_\beta} \right)^2. \quad (7.4)$$

From the input data given in Table II, we compute the parameter values shown in Table III, since the transformed X force-level equation is given by (3.9) with $q = (v+1)/(u+v+2)$, $p = 1-q$, $u = 1$, and $v = 2$. Thus, the X force level may be computed with $F_\alpha(\tau)$ and $H_{1-\alpha}(\tau)$ with $\alpha = q = 3/5$. Force-annihilation prediction involves the limiting value of $T_\alpha(\tau) = H_{1-\alpha}(\tau)/F_\alpha(\tau)$ as $\tau \rightarrow +\infty$. From Table 8B of the Appendix and Table III, we note the predicted agreement between $\Gamma(1-\alpha)/\Gamma(\alpha)$ and the limiting value of $T_\alpha(x)$ as $x \rightarrow +\infty$ [recall (4.13)] for $\alpha = q = 3/5$. We now consider two cases: (I) $R_0 = 2000$ meters, and (II) $R_0 = 1250$ meters.

When $R_0 = 2000$ meters (see Figure 3 of [4]), we have $C = 0$ and $\tau_0 = 0$. The maximum time that the battle can last is $t_{\max} = R_0/v = 14.91$ minutes, since at this time the attackers reach their final objective, i.e. the defender's position (again, see Figure 1). We now consider the qualitative behavior of the $u = 1$, $v = 2$ force-level trajectory shown in Figure 3 of [4]. Theorem 2 tells us that the X force can be annihilated in finite time if and only if

$$\frac{x_0}{y_0} < \frac{\Gamma(p)}{\Gamma(q)} \sqrt{\lambda_R} \left(\frac{\lambda_I}{u+v+2} \right)^{q-p}, \quad (7.3)$$

where $q = 3/5$ and $p = 1-q$. Using the numerical values in Table III, we compute from (7.3) that the X force can be annihilated in finite time if and only if

Table III. Parameter Values for Numerical Examples

$$k_a = 4.0233 \times 10^{-3} \times \text{casualties}/(\text{minute})^0.75/\text{firer}$$

$$k_b = 2.6979 \times 10^{-3} \text{ Y casualties/(minute)}^v/X \text{ firer}$$

$$p = 2/5, \quad q = 3/5$$

$$\Gamma(p)/\Gamma(q) = 1.48951$$

1993-03-06 rehabs won 40 (2000 p.m.s. sat 1 (11.4) 11500)

$$A = 0$$

212-360-9251 - 8 (11) (800-319-3332)

thus 0 = 0 and we find in a similar way that $\partial \phi/\partial x = 0$ and $\partial \phi/\partial y = 0$.

Verdienst 10. M. = 1000 m. 3. der 1951 den Allesd mit 1000 m. und Kunden mit 1000 m.

$$\text{If } \frac{a}{b} > 1, \text{ then } \frac{a^2}{b^2} > 1 \text{ and } \frac{a^2}{b^2} - 1 > 0.$$

Volume 32 Number 2 March 2009 ISSN 0898-2603 DOI 10.1111/j.1467-9909.2009.00432.x

$$10.1 = y_0$$

$$0.71811 = (1)^T$$

$$00.1 =$$

$$\frac{x_0}{y_0} < 0.420 .$$

$$0.6611 = (2)^T$$

(7.4)

When the X force can be annihilated, its annihilation time is given by (5.8), which we rewrite here as

$$T_q(\tau(t_a^X)) = \frac{x_0}{y_0 \sqrt{\lambda_R}} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{p-q} \quad (7.5)$$

where

$$\tau(t) = \left(\frac{2\lambda_I}{\mu + \nu + 2} \right) t^{(\mu+\nu+2)/2} \quad (7.6)$$

Thus, for the numerical values given in Table III, the time of annihilation of the X force is given by

$$T_q(\tau(t_a^X)) = 3.544 \frac{x_0}{y_0} , \quad (7.7)$$

with $q = 3/5$. We will now illustrate further computations for $x_0 = 10$ and $y_0 = 30$. From (7.4) we see that the X force can be annihilated in finite time (but we must verify that $t_a^X \leq t_{\max}$). In this case (7.7) becomes

$$T_q(\tau(t_a^X)) = 1.18122 . \quad (7.8)$$

We must now determine $\tau(t_a^X)$ such that $\tau(t_a^X) = T_q^{-1}(1.18122)$ by using interpolation methods and Tables 8A and 8B. From Table 8A, we find

$$T_q(\tau) = 1.18172 \quad \text{for } = 1.01$$

$$T_q(\tau) = 1.17630 \quad \text{for } = 1.00$$

so that using linear interpolation, we obtain

$$\tau(t_a^X) = 1.009, \quad (7.9)$$

whence use of (7.6) yields

$$t_a^X = 14.24 \text{ minutes,} \quad (7.10)$$

which is less than $t_{\max} = 14.91$ minutes so that the defending X force is indeed annihilated before the attacking Y force reaches its final objective. Since $r(t) = R_0 - vt$, we find that force separation at the instant of annihilation of the X force is

$$r_a^X = 89.8 \text{ meters.} \quad (7.11)$$

Further results may be computed in a similar fashion and are given in

Table IV.

When $R_0 = 1250$ meters (see Figure 3 of [5]), we have $C = 5.5923$ minutes, $\tau_0 = 0.0975$, and $t_{\max} = R_0/v = 9.32$ minutes. In this case

Theorem 2 tells us that the X force can be annihilated in finite time if and only if

**Table IV. Annihilation of the X Force as a Function
of the Initial Force Ratio for $R_0 = 2000$ meters**

<u>(x_0/y_0)</u>	<u>t_a^X (minutes)</u>	<u>r_a^X (meters)</u>
0.333	14.24	89.8
0.250	11.61	443.2
0.200	10.19	633.2

$$\frac{x_0}{y_0} < \sqrt{\lambda_R} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{q-p} \frac{\Gamma(p)}{\Gamma(q)} \frac{\left\{ F_q(\tau_0) - \frac{\Gamma(q)}{\Gamma(p)} H_p(\tau_0) \right\}}{\left\{ F_p(\tau_0) - \frac{\Gamma(p)}{\Gamma(q)} H_q(\tau_0) \right\}} , \quad (7.12)$$

with $q = 3/5$ and $p = 1-q$. Using linear interpolation, we obtain from

Tables 7A and 8A of the Appendix that for the numerical values of Table III

$$F_p(\tau_0) = 1.006 , \quad H_q(\tau_0) = 0.044 , \quad (7.13)$$

$$F_q(\tau_0) = 1.004 , \quad H_p(\tau_0) = 0.223 ,$$

so that (7.12) says that the X force can be annihilated if and only if

$$\frac{x_0}{y_0} < 0.382 . \quad (7.14)$$

When the X force can be annihilated, its annihilation time is given by

(5.4), which we rewrite here as

$$T_q(\tau(t_a^X)) = \frac{\left\{ \frac{x_0}{y_0 \sqrt{\lambda_R}} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{p-q} F_p(\tau_0) + H_p(\tau_0) \right\}}{\left\{ F_q(\tau_0) + \frac{x_0}{y_0 \sqrt{\lambda_R}} \left(\frac{\lambda_I}{\mu + \nu + 2} \right)^{p-q} H_q(\tau_0) \right\}} , \quad (7.15)$$

whence for the data of Table III

$$T_a(\tau(t_a^X)) = \frac{3.565u_0 + 0.223}{0.156u_0 + 1.004} , \quad (7.16)$$

where $u_0 = x_0/y_0$. Let us also record here that (3.11) yields

$$t = \left(\frac{(\mu + \nu + 2)\tau}{2\lambda_1} \right)^{2/(\mu+\nu+2)} - c. \quad (7.17)$$

We will again illustrate further computations for $x_0 = 10$ and $y_0 = 30$.

From (7.14) we see that the X force can be annihilated in finite time (but again we must investigate whether or not $t_a^X \leq t_{\max}$). In this case (7.16) becomes

$$T_q(\tau(t_a^X)) = 1.33651, \quad (7.18)$$

whence Table 8A of the Appendix and linear interpolation yield

$$\tau(t_a^X) = 1.397, \quad (7.19)$$

so that by (7.17) the attacking X force is annihilated at

$$t_a^X = 10.63 \text{ minutes}. \quad (7.20)$$

Since $t_{\max} = R_0/v = 9.32 \text{ minutes} < t_a^X$, we see that the attacking Y force overruns the defender's position before annihilation of the X force occurs.

Thus, the battle ends with $x_f = x(t_f) > 0$ and $y_f > 0$ at $t_f = t_{\max} = 9.32 \text{ minutes}$. Corresponding to $t_f = 9.32 \text{ minutes}$ is $\tau_f = 1.1318$, and then Table 8A of the Appendix yields

$$F_q(\tau_f = 1.1318) = 1.589, \quad H_p(1.1318) = 1.973, \quad (7.21)$$

whence via (2.4), (4.8), (4.9), and (7.13) we obtain

$$x_f = x(t_f) = x(r = 0) = 1.35. \quad (7.22)$$

Some further numerical results are given in Table V. Again, these parametric results should be contrasted with the single $\mu = 1, \nu = 2$ force-level trajectory shown in Figure 3 of [5].

8. Final Remarks

In the previous section above, we have seen how the LCS functions allow one to conveniently obtain much valuable information about the model (2.1) with power attrition-rate coefficients (3.8) without having to explicitly compute the entire force-level trajectories. Previously we were limited to computing only force-level trajectories (see [4-5]). With the availability of these tabulations of LCS functions (see the Appendix of this report and [8]), we can now tell who is going to be annihilated and when this event will happen without having to compute the trajectories. Not only did we answer questions about the qualitative behavior of the model (e.g. force annihilation) for specific values of, for example, initial force levels but also for a range of values of the initial force ratio (i.e. parametric analysis of model behavior).

Table V. Annihilation of the X Force as a Function

of the Initial Force Ratio for $R_0 = 1250$ meters

(x_0/y_0)	t_a^X (minutes)	r_a^X (meters)
0.333	10.63	_____ +
0.250	7.56	235.9
0.200	6.17	422.8

$$t_{\max} = 9.32 \text{ minutes and } x_f = x(r=0) = 1.35.$$

The results of this report may be used for other parametric analyses, e.g. parametric dependence of battle outcome on attrition-rate coefficients. Thus, the contents of this report allow one to develop important insights into the dynamics of combat between two homogeneous forces with temporal variations in fire effectiveness. With the availability of tabulations of the LCS functions, one can now analyze such combat modelled by the power attrition-rate coefficients (3.8) with somewhat the same facility as he can for the constant-coefficient case and thus aid in parametric analyses. For further discussions of the significance of such results for military operations research, the reader is directed to [6] and [7].

REF ID: A6599A

REFERENCES

1. M. ABRAMOWITZ and I. STEGUN (Editors), Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series, No. 55, Washington, D.C., 1964.
2. K. KNOPP, Infinite Sequences and Series, Dover, New York, 1956.
3. F. W. LANCHESTER, "Aircraft in Warfare: The Dawn of the Fourth Arm-No. V., The Principle of Concentration," Engineering 98, 422-423 (1914) (reprinted on pp. 2138-2148 of The World of Mathematics, J. Newman (Editor), Simon and Schuster, New York, 1956).
4. J. G. TAYLOR, "Solving Lanchester-Type Equations for 'Modern Warfare' with Variable Coefficients," Opns. Res. 22, 756-770 (1974).
5. J. G. TAYLOR and G. G. BROWN, "Canonical Methods in the Solution of Variable-Coefficient Lanchester-Type Equations of Modern Warfare," Opns. Res. 24, 44-69 (1976).
6. J. G. TAYLOR and G. G. BROWN, "Further Canonical Methods in the Solution of Variable-Coefficient Lanchester-Type Equations of Modern Warfare," NPS55-77-27, Naval Postgraduate School, Monterey, California, June 1977.
7. J. G. TAYLOR and C. COMSTOCK, "Force-Annihilation Conditions for Variable-Coefficient Lanchester-Type Equations of Modern Warfare," Naval Res. Log. Quart. 24, 349-371 (1977).
8. J. G. TAYLOR and G. G. BROWN, "A Table of Lanchester-Clifford-Schlafli Functions," NPS55-77-39, Naval Postgraduate School, Monterey, California, October 1977.

APPENDIX: Tabulation of the LCS Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 3/7, \text{ and } 4/7$.

BEST AVAILABLE COPY

		$\alpha = 1/2$	
x	$F_{1/2}(x)$	$H_{1/2}(x)$	$T_{1/2}(x)$
0.00000	0.00000	0.00000	0.00000
0.00020	0.00040	0.00040	0.00040
0.00040	0.00125	0.00125	0.00125
0.00060	0.00245	0.00245	0.00245
0.00080	0.00405	0.00405	0.00405
0.00100	0.00600	0.00600	0.00600
0.00120	0.00840	0.00840	0.00840
0.00140	0.01127	0.01127	0.01127
0.00160	0.01450	0.01450	0.01450
0.00180	0.01810	0.01810	0.01810
0.00200	0.02199	0.02199	0.02199
0.00220	0.02598	0.02598	0.02598
0.00240	0.02997	0.02997	0.02997
0.00260	0.03396	0.03396	0.03396
0.00280	0.03795	0.03795	0.03795
0.00300	0.04194	0.04194	0.04194
0.00320	0.04593	0.04593	0.04593
0.00340	0.04992	0.04992	0.04992
0.00360	0.05391	0.05391	0.05391
0.00380	0.05790	0.05790	0.05790
0.00400	0.06189	0.06189	0.06189
0.00420	0.06588	0.06588	0.06588
0.00440	0.06987	0.06987	0.06987
0.00460	0.07386	0.07386	0.07386
0.00480	0.07785	0.07785	0.07785
0.00500	0.08184	0.08184	0.08184
0.00520	0.08583	0.08583	0.08583
0.00540	0.08982	0.08982	0.08982
0.00560	0.09381	0.09381	0.09381
0.00580	0.09780	0.09780	0.09780
0.00600	0.10179	0.10179	0.10179
0.00620	0.10578	0.10578	0.10578
0.00640	0.10977	0.10977	0.10977
0.00660	0.11376	0.11376	0.11376
0.00680	0.11775	0.11775	0.11775
0.00700	0.12174	0.12174	0.12174
0.00720	0.12573	0.12573	0.12573
0.00740	0.12972	0.12972	0.12972
0.00760	0.13371	0.13371	0.13371
0.00780	0.13770	0.13770	0.13770
0.00800	0.14169	0.14169	0.14169
0.00820	0.14568	0.14568	0.14568
0.00840	0.14967	0.14967	0.14967
0.00860	0.15366	0.15366	0.15366
0.00880	0.15765	0.15765	0.15765
0.00900	0.16164	0.16164	0.16164
0.00920	0.16563	0.16563	0.16563
0.00940	0.16962	0.16962	0.16962
0.00960	0.17361	0.17361	0.17361
0.00980	0.17760	0.17760	0.17760
0.01000	0.18159	0.18159	0.18159
0.01020	0.18558	0.18558	0.18558
0.01040	0.18957	0.18957	0.18957
0.01060	0.19356	0.19356	0.19356
0.01080	0.19755	0.19755	0.19755
0.01100	0.20154	0.20154	0.20154
0.01120	0.20553	0.20553	0.20553
0.01140	0.20952	0.20952	0.20952
0.01160	0.21351	0.21351	0.21351
0.01180	0.21750	0.21750	0.21750
0.01200	0.22149	0.22149	0.22149
0.01220	0.22548	0.22548	0.22548
0.01240	0.22947	0.22947	0.22947
0.01260	0.23346	0.23346	0.23346
0.01280	0.23745	0.23745	0.23745
0.01300	0.24144	0.24144	0.24144
0.01320	0.24543	0.24543	0.24543
0.01340	0.24942	0.24942	0.24942
0.01360	0.25341	0.25341	0.25341
0.01380	0.25740	0.25740	0.25740
0.01400	0.26139	0.26139	0.26139
0.01420	0.26538	0.26538	0.26538
0.01440	0.26937	0.26937	0.26937
0.01460	0.27336	0.27336	0.27336
0.01480	0.27735	0.27735	0.27735
0.01500	0.28134	0.28134	0.28134
0.01520	0.28533	0.28533	0.28533
0.01540	0.28932	0.28932	0.28932
0.01560	0.29331	0.29331	0.29331
0.01580	0.29730	0.29730	0.29730
0.01600	0.30129	0.30129	0.30129
0.01620	0.30528	0.30528	0.30528
0.01640	0.30927	0.30927	0.30927
0.01660	0.31326	0.31326	0.31326
0.01680	0.31725	0.31725	0.31725
0.01700	0.32124	0.32124	0.32124
0.01720	0.32523	0.32523	0.32523
0.01740	0.32922	0.32922	0.32922
0.01760	0.33321	0.33321	0.33321
0.01780	0.33720	0.33720	0.33720
0.01800	0.34119	0.34119	0.34119
0.01820	0.34518	0.34518	0.34518
0.01840	0.34917	0.34917	0.34917
0.01860	0.35316	0.35316	0.35316
0.01880	0.35715	0.35715	0.35715
0.01900	0.36114	0.36114	0.36114
0.01920	0.36513	0.36513	0.36513
0.01940	0.36912	0.36912	0.36912
0.01960	0.37311	0.37311	0.37311
0.01980	0.37710	0.37710	0.37710
0.02000	0.38109	0.38109	0.38109
0.02020	0.38498	0.38498	0.38498
0.02040	0.38887	0.38887	0.38887
0.02060	0.39276	0.39276	0.39276
0.02080	0.39665	0.39665	0.39665
0.02100	0.40054	0.40054	0.40054
0.02120	0.40443	0.40443	0.40443
0.02140	0.40832	0.40832	0.40832
0.02160	0.41221	0.41221	0.41221
0.02180	0.41610	0.41610	0.41610
0.02200	0.41999	0.41999	0.41999
0.02220	0.42388	0.42388	0.42388
0.02240	0.42777	0.42777	0.42777
0.02260	0.43166	0.43166	0.43166
0.02280	0.43555	0.43555	0.43555
0.02300	0.43944	0.43944	0.43944
0.02320	0.44333	0.44333	0.44333
0.02340	0.44722	0.44722	0.44722
0.02360	0.45111	0.45111	0.45111
0.02380	0.45499	0.45499	0.45499
0.02400	0.45888	0.45888	0.45888
0.02420	0.46277	0.46277	0.46277
0.02440	0.46666	0.46666	0.46666
0.02460	0.47055	0.47055	0.47055
0.02480	0.47444	0.47444	0.47444
0.02500	0.47833	0.47833	0.47833
0.02520	0.48222	0.48222	0.48222
0.02540	0.48611	0.48611	0.48611
0.02560	0.49000	0.49000	0.49000
0.02580	0.49389	0.49389	0.49389
0.02600	0.49778	0.49778	0.49778
0.02620	0.50167	0.50167	0.50167
0.02640	0.50556	0.50556	0.50556
0.02660	0.50945	0.50945	0.50945
0.02680	0.51334	0.51334	0.51334
0.02700	0.51723	0.51723	0.51723
0.02720	0.52112	0.52112	0.52112
0.02740	0.52501	0.52501	0.52501
0.02760	0.52890	0.52890	0.52890
0.02780	0.53279	0.53279	0.53279
0.02800	0.53668	0.53668	0.53668
0.02820	0.54057	0.54057	0.54057
0.02840	0.54446	0.54446	0.54446
0.02860	0.54835	0.54835	0.54835
0.02880	0.55224	0.55224	0.55224
0.02900	0.55613	0.55613	0.55613
0.02920	0.56002	0.56002	0.56002
0.02940	0.56391	0.56391	0.56391
0.02960	0.56780	0.56780	0.56780
0.02980	0.57169	0.57169	0.57169
0.03000	0.57558	0.57558	0.57558
0.03020	0.57947	0.57947	0.57947
0.03040	0.58336	0.58336	0.58336
0.03060	0.58725	0.58725	0.58725
0.03080	0.59114	0.59114	0.59114
0.03100	0.59503	0.59503	0.59503
0.03120	0.59892	0.59892	0.59892
0.03140	0.60281	0.60281	0.60281
0.03160	0.60670	0.60670	0.60670
0.03180	0.61059	0.61059	0.61059
0.03200	0.61448	0.61448	0.61448
0.03220	0.61837	0.61837	0.61837
0.03240	0.62226	0.62226	0.62226
0.03260	0.62615	0.62615	0.62615
0.03280	0.63004	0.63004	0.63004
0.03300	0.63393	0.63393	0.63393
0.03320	0.63782	0.63782	0.63782
0.03340	0.64171	0.64171	0.64171
0.03360	0.64560	0.64560	0.64560
0.03380	0.64949	0.64949	0.64949
0.03400	0.65338	0.65338	0.65338
0.03420	0.65727	0.65727	0.65727
0.03440	0.66116	0.66116	0.66116
0.03460	0.66505	0.66505	0.66505
0.03480	0.66894	0.66894	0.66894
0.03500	0.67283	0.67283	0.67283
0.03520	0.67672	0.67672	0.67672
0.03540	0.68061	0.68061	0.68061
0.03560	0.68450	0.68450	0.68450
0.03580	0.68839	0.68839	0.68839
0.03600	0.69228	0.69228	0.69228
0.03620	0.69617	0.69617	0.69617
0.03640	0.70006	0.70006	0.70006
0.03660	0.70395	0.70395	0.70395
0.03680	0.70784	0.70784	0.70784
0.03700	0.71173	0.71173	0.71173
0.03720	0.71562	0.71562	0.71562
0.03740	0.71951	0.71951	0.71951
0.03760	0.72340	0.72340	0.72340
0.03780	0.72729	0.72729	0.72729
0.03800	0.73118	0.73118	0.73118
0.03820	0.73507	0.73507	0.73507
0.03840	0.73896	0.73896	0.73896
0.03860	0.74285	0.74285	0.74285
0.03880	0.74674	0.74674	0.74674
0.03900	0.75063	0.75063	0.75063
0.03920	0.75452	0.75452	0.75452
0.03940	0.75841	0.75841	0.75841
0.03960	0.76230	0.76230	0.76230
0.03980	0.76619	0.76619	0.76619
0.04000	0.77008	0.77008	0.77008
0.04020	0.77397	0.77397	0.77397
0.04040	0.77786	0.77786	0.77786
0.04060	0.78175	0.78175	0.78175
0.04080	0.78564	0.78564	0.78564
0.04100	0.78953	0.78953	0.78953
0.04120	0.79342	0.79342	0.79342
0.04140	0.79731	0.79731	0.79731
0.04160	0.80120	0.80120	0.80120
0.04180	0.80509	0.80509	0.80509
0.0			

BEST AVAILABLE COPY

x	$F_{1/2}(x)$	$H_{1/2}(x)$	$T_{1/2}(x)$																				
1.50	0.99999	0.99999	0.99999	1.51	0.99999	0.99999	0.99999	1.52	0.99999	0.99999	0.99999	1.53	0.99999	0.99999	0.99999	1.54	0.99999	0.99999	0.99999	1.55	0.99999	0.99999	0.99999
1.56	0.99999	0.99999	0.99999	1.57	0.99999	0.99999	0.99999	1.58	0.99999	0.99999	0.99999	1.59	0.99999	0.99999	0.99999	1.60	0.99999	0.99999	0.99999	1.61	0.99999	0.99999	0.99999
1.62	0.99999	0.99999	0.99999	1.63	0.99999	0.99999	0.99999	1.64	0.99999	0.99999	0.99999	1.65	0.99999	0.99999	0.99999	1.66	0.99999	0.99999	0.99999	1.67	0.99999	0.99999	0.99999
1.68	0.99999	0.99999	0.99999	1.69	0.99999	0.99999	0.99999	1.70	0.99999	0.99999	0.99999	1.71	0.99999	0.99999	0.99999	1.72	0.99999	0.99999	0.99999	1.73	0.99999	0.99999	0.99999
1.74	0.99999	0.99999	0.99999	1.75	0.99999	0.99999	0.99999	1.76	0.99999	0.99999	0.99999	1.77	0.99999	0.99999	0.99999	1.78	0.99999	0.99999	0.99999	1.79	0.99999	0.99999	0.99999
1.80	0.99999	0.99999	0.99999	1.81	0.99999	0.99999	0.99999	1.82	0.99999	0.99999	0.99999	1.83	0.99999	0.99999	0.99999	1.84	0.99999	0.99999	0.99999	1.85	0.99999	0.99999	0.99999
1.86	0.99999	0.99999	0.99999	1.87	0.99999	0.99999	0.99999	1.88	0.99999	0.99999	0.99999	1.89	0.99999	0.99999	0.99999	1.90	0.99999	0.99999	0.99999	1.91	0.99999	0.99999	0.99999
1.92	0.99999	0.99999	0.99999	1.93	0.99999	0.99999	0.99999	1.94	0.99999	0.99999	0.99999	1.95	0.99999	0.99999	0.99999	1.96	0.99999	0.99999	0.99999	1.97	0.99999	0.99999	0.99999
1.98	0.99999	0.99999	0.99999	1.99	0.99999	0.99999	0.99999	2.00	0.99999	0.99999	0.99999												

TABLE 1B. Lanchester-Clifford-Schläfli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_{1/2}(x)$ for $\alpha = 1/2$ and x from 1.50 to 10.0.

BEST AVAILABLE COPY

$\alpha = 1/3$					
x	$F_{1/3}(x)$	$H_{2/3}(x)$	$T_{1/3}(x)$	$F_{1/3}(x)$	$H_{2/3}(x)$
0.0	0.00008	0.00000	0.00000	0.00000	0.00000
0.03	0.00008	0.00000	0.00000	0.00000	0.00000
0.04	0.00008	0.00000	0.00000	0.00000	0.00000
0.05	0.00018	0.00000	0.00000	0.00000	0.00000
0.06	0.00027	0.00000	0.00000	0.00000	0.00000
0.07	0.00036	0.00000	0.00000	0.00000	0.00000
0.08	0.00048	0.00000	0.00000	0.00000	0.00000
0.09	0.00060	0.00000	0.00000	0.00000	0.00000
0.1	0.00075	0.00000	0.00000	0.00000	0.00000
0.12	0.00099	0.00000	0.00000	0.00000	0.00000
0.14	0.00139	0.00000	0.00000	0.00000	0.00000
0.16	0.00179	0.00000	0.00000	0.00000	0.00000
0.18	0.00220	0.00000	0.00000	0.00000	0.00000
0.2	0.00270	0.00000	0.00000	0.00000	0.00000
0.25	0.00368	0.00000	0.00000	0.00000	0.00000
0.3	0.00480	0.00000	0.00000	0.00000	0.00000
0.35	0.00608	0.00000	0.00000	0.00000	0.00000
0.4	0.00751	0.00000	0.00000	0.00000	0.00000
0.5	0.01097	0.00000	0.00000	0.00000	0.00000
0.6	0.01639	0.00000	0.00000	0.00000	0.00000
0.7	0.02309	0.00000	0.00000	0.00000	0.00000
0.8	0.03117	0.00000	0.00000	0.00000	0.00000
0.9	0.04101	0.00000	0.00000	0.00000	0.00000
1.0	0.05223	0.00000	0.00000	0.00000	0.00000
1.1	0.06523	0.00000	0.00000	0.00000	0.00000
1.2	0.08000	0.00000	0.00000	0.00000	0.00000
1.3	0.10624	0.00000	0.00000	0.00000	0.00000
1.4	0.14493	0.00000	0.00000	0.00000	0.00000
1.5	0.19985	0.00000	0.00000	0.00000	0.00000
1.6	0.26624	0.00000	0.00000	0.00000	0.00000
1.7	0.34256	0.00000	0.00000	0.00000	0.00000
1.8	0.43426	0.00000	0.00000	0.00000	0.00000
1.9	0.53963	0.00000	0.00000	0.00000	0.00000
2.0	0.66242	0.00000	0.00000	0.00000	0.00000
2.1	0.80457	0.00000	0.00000	0.00000	0.00000
2.2	0.96710	0.00000	0.00000	0.00000	0.00000
2.3	1.14918	0.00000	0.00000	0.00000	0.00000
2.4	1.34919	0.00000	0.00000	0.00000	0.00000
2.5	1.56493	0.00000	0.00000	0.00000	0.00000
2.6	1.80077	0.00000	0.00000	0.00000	0.00000
2.7	2.05707	0.00000	0.00000	0.00000	0.00000
2.8	2.33707	0.00000	0.00000	0.00000	0.00000
2.9	2.63807	0.00000	0.00000	0.00000	0.00000
3.0	3.06007	0.00000	0.00000	0.00000	0.00000
3.1	3.50807	0.00000	0.00000	0.00000	0.00000
3.2	4.07007	0.00000	0.00000	0.00000	0.00000
3.3	4.65807	0.00000	0.00000	0.00000	0.00000
3.4	5.26007	0.00000	0.00000	0.00000	0.00000
3.5	5.87007	0.00000	0.00000	0.00000	0.00000
3.6	6.50007	0.00000	0.00000	0.00000	0.00000
3.7	7.15007	0.00000	0.00000	0.00000	0.00000
3.8	7.82007	0.00000	0.00000	0.00000	0.00000
3.9	8.51007	0.00000	0.00000	0.00000	0.00000
4.0	9.22007	0.00000	0.00000	0.00000	0.00000
4.1	9.95007	0.00000	0.00000	0.00000	0.00000
4.2	10.70007	0.00000	0.00000	0.00000	0.00000
4.3	11.47007	0.00000	0.00000	0.00000	0.00000
4.4	12.26007	0.00000	0.00000	0.00000	0.00000
4.5	13.07007	0.00000	0.00000	0.00000	0.00000
4.6	13.90007	0.00000	0.00000	0.00000	0.00000
4.7	14.75007	0.00000	0.00000	0.00000	0.00000
4.8	15.62007	0.00000	0.00000	0.00000	0.00000
4.9	16.51007	0.00000	0.00000	0.00000	0.00000
5.0	17.42007	0.00000	0.00000	0.00000	0.00000
5.1	18.35007	0.00000	0.00000	0.00000	0.00000
5.2	19.29007	0.00000	0.00000	0.00000	0.00000
5.3	20.24007	0.00000	0.00000	0.00000	0.00000
5.4	21.20007	0.00000	0.00000	0.00000	0.00000
5.5	22.17007	0.00000	0.00000	0.00000	0.00000
5.6	23.15007	0.00000	0.00000	0.00000	0.00000
5.7	24.14007	0.00000	0.00000	0.00000	0.00000
5.8	25.14007	0.00000	0.00000	0.00000	0.00000
5.9	26.15007	0.00000	0.00000	0.00000	0.00000
6.0	27.17007	0.00000	0.00000	0.00000	0.00000
6.1	28.20007	0.00000	0.00000	0.00000	0.00000
6.2	29.24007	0.00000	0.00000	0.00000	0.00000
6.3	30.29007	0.00000	0.00000	0.00000	0.00000
6.4	31.35007	0.00000	0.00000	0.00000	0.00000
6.5	32.42007	0.00000	0.00000	0.00000	0.00000
6.6	33.50007	0.00000	0.00000	0.00000	0.00000
6.7	34.59007	0.00000	0.00000	0.00000	0.00000
6.8	35.69007	0.00000	0.00000	0.00000	0.00000
6.9	36.80007	0.00000	0.00000	0.00000	0.00000
7.0	37.92007	0.00000	0.00000	0.00000	0.00000
7.1	39.05007	0.00000	0.00000	0.00000	0.00000
7.2	40.19007	0.00000	0.00000	0.00000	0.00000
7.3	41.34007	0.00000	0.00000	0.00000	0.00000
7.4	42.50007	0.00000	0.00000	0.00000	0.00000
7.5	43.67007	0.00000	0.00000	0.00000	0.00000
7.6	44.85007	0.00000	0.00000	0.00000	0.00000
7.7	46.03007	0.00000	0.00000	0.00000	0.00000
7.8	47.22007	0.00000	0.00000	0.00000	0.00000
7.9	48.42007	0.00000	0.00000	0.00000	0.00000
8.0	49.63007	0.00000	0.00000	0.00000	0.00000
8.1	50.85007	0.00000	0.00000	0.00000	0.00000
8.2	52.08007	0.00000	0.00000	0.00000	0.00000
8.3	53.32007	0.00000	0.00000	0.00000	0.00000
8.4	54.57007	0.00000	0.00000	0.00000	0.00000
8.5	55.83007	0.00000	0.00000	0.00000	0.00000
8.6	57.10007	0.00000	0.00000	0.00000	0.00000
8.7	58.38007	0.00000	0.00000	0.00000	0.00000
8.8	59.66007	0.00000	0.00000	0.00000	0.00000
8.9	60.95007	0.00000	0.00000	0.00000	0.00000
9.0	62.25007	0.00000	0.00000	0.00000	0.00000
9.1	63.56007	0.00000	0.00000	0.00000	0.00000
9.2	64.88007	0.00000	0.00000	0.00000	0.00000
9.3	66.21007	0.00000	0.00000	0.00000	0.00000
9.4	67.55007	0.00000	0.00000	0.00000	0.00000
9.5	68.90007	0.00000	0.00000	0.00000	0.00000
9.6	70.26007	0.00000	0.00000	0.00000	0.00000
9.7	71.63007	0.00000	0.00000	0.00000	0.00000
9.8	73.01007	0.00000	0.00000	0.00000	0.00000
9.9	74.39007	0.00000	0.00000	0.00000	0.00000
10.0	75.78007	0.00000	0.00000	0.00000	0.00000
10.1	77.17007	0.00000	0.00000	0.00000	0.00000
10.2	78.56007	0.00000	0.00000	0.00000	0.00000
10.3	80.95007	0.00000	0.00000	0.00000	0.00000
10.4	83.34007	0.00000	0.00000	0.00000	0.00000
10.5	85.73007	0.00000	0.00000	0.00000	0.00000
10.6	88.12007	0.00000	0.00000	0.00000	0.00000
10.7	90.51007	0.00000	0.00000	0.00000	0.00000
10.8	92.90007	0.00000	0.00000	0.00000	0.00000
10.9	95.30007	0.00000	0.00000	0.00000	0.00000
11.0	97.69007	0.00000	0.00000	0.00000	0.00000
11.1	100.08007	0.00000	0.00000	0.00000	0.00000
11.2	102.46007	0.00000	0.00000	0.00000	0.00000
11.3	104.84007	0.00000	0.00000	0.00000	0.00000
11.4	107.21007	0.00000	0.00000	0.00000	0.00000
11.5	109.58007	0.00000	0.00000	0.00000	0.00000
11.6	111.94007	0.00000	0.00000	0.00000	0.00000
11.7	114.30007	0.00000	0.00000	0.00000	0.00000
11.8	116.66007	0.00000	0.00000	0.00000	0.00000
11.9	119.01007	0.00000	0.00000	0.00000	0.00000
12.0	121.36007	0.00000	0.00000	0.00000	0.00000
12.1	123.71007	0.00000	0.00000	0.00000	0.00000
12.2	126.05007	0.00000	0.00000	0.00000	0.00000
12.3	128.38007	0.00000	0.00000	0.00000	0.00000
12.4	130.71007	0.00000	0.00000	0.00000	0.00000
12.5	133.03007	0.00000	0.00000	0.00000	0.00000
12.6	135.35007	0.00000	0.00000	0.00000	0.00000
12.7	137.66007	0.00000	0.00000	0.00000	0.00000
12.8	140.07007	0.00000	0.00000	0.00000	0.00000
12.9	142.47007	0.00000	0.00000	0.00000	0.00000
13.0	144.87007	0.00000	0.00000	0.00000	0.00000
13.1	147.26007	0.00000	0.00000	0.00000	0.00000
13.2	150.65007	0.00000	0.00000	0.00000	0.00000
13.3	154.04007	0.00000	0.00000	0.00000	0.00000
13.4	157.42007	0.00000	0.00000	0.00000	0.00000
13.5	160.80007	0.00000	0.0000		

x	$F_{1/3}(x)$	$H_{2/3}(x)$	$T_{1/3}(x)$	x	$F_{1/3}(x)$	$H_{2/3}(x)$	$T_{1/3}(x)$	x	$F_{1/3}(x)$	$H_{2/3}(x)$	$T_{1/3}(x)$
1.50	3.01330	1.40540	0.45739	1.51	3.01669	1.44204	0.45816	1.52	3.01957	1.46644	0.46000
1.53	3.02092	1.46464	0.46644	1.54	3.02152	1.47943	0.46762	1.55	3.02209	1.49374	0.46900
1.58	3.02330	1.50774	0.48000	1.59	3.02459	1.52264	0.48556	1.60	3.02587	1.53752	0.49566
1.63	3.02707	1.54747	0.50888	1.64	3.02836	1.56232	0.51146	1.65	3.02964	1.57717	0.51404
1.68	3.03095	1.58747	0.53559	1.69	3.03224	1.60232	0.53899	1.70	3.03352	1.61717	0.54257
1.73	3.03462	1.62747	0.56224	1.74	3.03589	1.64232	0.56586	1.75	3.03717	1.65717	0.57045
1.78	3.03890	1.66747	0.59224	1.79	3.04017	1.68232	0.60086	1.80	3.04145	1.69717	0.60845
1.83	3.04262	1.70747	0.62399	1.84	3.04389	1.72232	0.63256	1.85	3.04517	1.73717	0.64014
1.88	3.04680	1.74747	0.65634	1.89	3.04808	1.76232	0.66503	1.90	3.04935	1.77717	0.67261
1.93	3.05000	1.78747	0.68988	1.94	3.05128	1.80232	0.69856	1.95	3.05255	1.81717	0.70614
1.98	3.05330	1.82747	0.72344	1.99	3.05458	1.84232	0.73212	2.00	3.05585	1.85717	0.74070
2.03	3.05680	1.86747	0.75704	2.04	3.05808	1.88232	0.76572	2.05	3.05935	1.89717	0.77428
2.08	3.06000	1.90747	0.79064	2.09	3.06128	1.92232	0.79932	2.10	3.06255	1.93717	0.80790
2.13	3.06262	1.94747	0.82424	2.14	3.06390	1.95717	0.83292	2.15	3.06517	1.97232	0.84149
2.18	3.06464	1.98747	0.85784	2.19	3.06592	1.99717	0.86652	2.20	3.06719	2.01232	0.87510
2.23	3.06680	2.02747	0.89144	2.24	3.06808	2.03717	0.89912	2.25	3.06935	2.05232	0.90769
2.28	3.06962	2.06747	0.92504	2.29	3.07090	2.07717	0.93372	2.30	3.07217	2.09232	0.94230
2.33	3.07090	2.10747	0.95864	2.34	3.07217	2.11717	0.96740	2.35	3.07345	2.13232	0.97598
2.38	3.07330	2.14747	0.99224	2.39	3.07458	2.15717	0.99986	2.40	3.07585	2.17232	0.98845
2.43	3.07462	2.18747	0.92584	2.44	3.07590	2.19717	0.93452	2.45	3.07717	2.21232	0.94310
2.48	3.07580	2.22747	0.95944	2.49	3.07708	2.23717	0.96810	2.50	3.07835	2.25232	0.97668
2.53	3.07680	2.26747	0.99304	2.54	3.07808	2.27717	0.99966	2.55	3.07935	2.29232	0.98825
2.58	3.07962	2.30747	0.92664	2.59	3.08090	2.28717	0.93532	2.60	3.08217	2.30232	0.94390
2.63	3.08060	2.34747	0.96024	2.64	3.08188	2.29717	0.94400	2.65	3.08315	2.31232	0.95248
2.68	3.08162	2.38747	0.99384	2.69	3.08290	2.30717	0.95266	2.70	3.08417	2.32232	0.96105
2.73	3.08250	2.42747	0.92744	2.74	3.08378	2.31717	0.93532	2.75	3.08505	2.33232	0.94390
2.78	3.08330	2.46747	0.96104	2.79	3.08462	2.32717	0.96810	2.80	3.08589	2.34232	0.97668
2.83	3.08417	2.50747	0.99464	2.84	3.08540	2.33717	0.97676	2.85	3.08667	2.35232	0.98524
2.88	3.08500	2.54747	0.92824	2.89	3.08628	2.34717	0.93542	2.90	3.08755	2.36232	0.94390
2.93	3.08582	2.58747	0.96184	2.94	3.08700	2.35717	0.96810	2.95	3.08827	2.37232	0.97668
2.98	3.08664	2.62747	0.99544	2.99	3.08788	2.36717	0.97676	3.00	3.08905	2.38232	0.98524
3.03	3.08747	2.66747	0.92904	3.04	3.08870	2.37717	0.93542	3.05	3.09017	2.39232	0.94390
3.08	3.08822	2.70747	0.96264	3.09	3.08945	2.38717	0.97030	3.10	3.09072	2.40232	0.98524
3.13	3.08900	2.74747	0.99624	3.14	3.09028	2.39717	0.98897	3.15	3.09155	2.41232	0.99390
3.18	3.09072	2.78747	0.93984	3.19	3.09198	2.40717	0.94764	3.20	3.09325	2.42232	0.95632
3.23	3.09244	2.82747	0.97344	3.24	3.09370	2.41717	0.95532	3.25	3.09507	2.43232	0.96498
3.28	3.09380	2.86747	0.99704	3.29	3.09505	2.42717	0.96300	3.30	3.09632	2.44232	0.97166
3.33	3.09512	2.90747	0.93064	3.34	3.09638	2.43717	0.93066	3.35	3.09765	2.45232	0.93934
3.38	3.09644	2.94747	0.96424	3.39	3.09770	2.44717	0.94832	3.40	3.09907	2.46232	0.95632
3.43	3.09770	2.98747	0.99784	3.44	3.09892	2.45717	0.96600	3.45	3.10019	2.47232	0.97398
3.48	3.09900	3.02747	0.93144	3.49	3.10028	2.46717	0.93866	3.50	3.10155	2.48232	0.94698
3.53	3.10028	3.06747	0.96504	3.54	3.10145	2.47717	0.94632	3.55	3.10272	2.49232	0.95466
3.58	3.10155	3.10747	0.99864	3.59	3.10282	2.48717	0.95400	3.60	3.10409	2.50232	0.96234
3.63	3.10282	3.14747	0.93224	3.64	3.10390	2.49717	0.93966	3.65	3.10517	2.51232	0.94698
3.68	3.10390	3.18747	0.96584	3.69	3.10507	2.50717	0.94732	3.70	3.10634	2.52232	0.95466
3.73	3.10512	3.22747	0.99944	3.74	3.10628	2.51717	0.95500	3.75	3.10755	2.53232	0.96234
3.78	3.10644	3.26747	0.93304	3.79	3.10762	2.52717	0.94266	3.80	3.10889	2.54232	0.95004
3.83	3.10770	3.30747	0.96664	3.84	3.10878	2.53717	0.95032	3.85	3.11005	2.55232	0.95798
3.88	3.10892	3.34747	0.99984	3.89	3.11000	2.54717	0.95800	3.90	3.11127	2.56232	0.96566
3.93	3.11000	3.38747	0.93344	3.94	3.11115	2.55717	0.94066	3.95	3.11242	2.57232	0.94834
3.98	3.11115	3.42747	0.96704	3.99	3.11230	2.56717	0.94832	4.00	3.11357	2.58232	0.95604
4.03	3.11230	3.46747	0.99964	4.04	3.11338	2.57717	0.95600	4.05	3.11465	2.59232	0.96374
4.08	3.11338	3.50747	0.93324	4.09	3.11445	2.58717	0.94366	4.10	3.11572	2.60232	0.95144
4.13	3.11445	3.54747	0.96684	4.14	3.11550	2.59717	0.95132	4.15	3.11677	2.61232	0.95912
4.18	3.11550	3.58747	0.99944	4.19	3.11655	2.60717	0.95900	4.20	3.11782	2.62232	0.96680
4.23	3.11655	3.62747	0.93304	4.24	3.11760	2.61717	0.93966	4.25	3.11887	2.63232	0.94754
4.28	3.11760	3.66747	0.96664	4.29	3.11867	2.62717	0.94732	4.30	3.11994	2.64232	0.95524
4.33	3.11867	3.70747	0.99924	4.34	3.11970	2.63717	0.95500	4.35	3.12107	2.65232	0.96294
4.38	3.11970	3.74747	0.93284	4.39	3.12075	2.64717	0.93966	4.40	3.12202	2.66232	0.94754
4.43	3.12075	3.78747	0.96644	4.44	3.12180	2.65717	0.94732	4.45	3.12307	2.67232	0.95524
4.48	3.12180	3.82747	0.99904	4.49	3.12285	2.66717	0.95500	4.50	3.12412	2.68232	0.96294
4.53	3.12285	3.86747	0.93264	4.54	3.12385	2.67717	0.93966	4.55	3.12512	2.69232	0.94754
4.58	3.12385	3.90747	0.96624	4.59	3.12480	2.68717	0.94732	4.60	3.12607	2.70232	0.95524
4.63	3.12480	3.94747	0.99884	4.64	3.12575	2.69717	0.95500	4.65	3.12702	2.71232	0.96294
4.68	3.12575	3.98747	0.93244	4.69	3.12670	2.70717	0.93966	4.70	3.12797	2.72232	0.94754
4.73	3.12670	4.02747	0.96604	4.74	3.12765	2.71717	0.94732	4.75	3.12892	2.73232	0.95524
4.78	3.12765	4.06747	0.99864	4.79	3.12860	2.72717	0.95500	4.80	3.13017	2.74232	0.96294
4.83	3.12860	4.10747	0.93224	4.84	3.12955	2.73717	0.93966	4.85	3.13142	2.75232	0.94754
4.88	3.12955	4.14747	0.96584	4.89	3.13050	2.74717	0.94732	4.90	3.13277	2.76232	0.95524
4.93	3.13050	4.18747	0.99844	4.94	3.13155	2.75717	0.95500	4.95	3.13382	2.77232	0.96294
4.98	3.13155	4.22747	0.93204	4.99	3.13250	2.76717	0.93966	5.00	3.13477	2.78232	0.94754

TABLE 2B. Lanchester-Clifford-Schlaflfi Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 1/3$ and x from 1.50 to 10.0.

TABLE 3A. Lanchester-Clifford-Schlafli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 2/3$ and x from 0.00 to 1.50.

TABLE 3B. Lanchester-Clifford-Schlafli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 2/3$ and x from 1.50 to 10.0.

BEST AVAILABLE COPY

$\alpha = 1/4$

x	$F_{1/4}(x)$	$H_{3/4}(x)$	$T_{1/4}(x)$	x	$F_{1/4}(x)$	$H_{3/4}(x)$	$T_{1/4}(x)$	x	$F_{1/4}(x)$	$H_{3/4}(x)$	$T_{1/4}(x)$
0.00000	1.00000	0.00000	0.00000	0.00000	0.25621	0.17292	0.17146	1.00000	2.10378	0.56198	0.22577
0.00004	0.99996	0.00004	0.00004	0.00004	0.24997	0.16508	0.16962	0.99996	2.09215	0.55985	0.22494
0.00008	0.99992	0.00008	0.00008	0.00008	0.24682	0.15940	0.16355	0.99992	2.08049	0.55762	0.22414
0.00012	0.99987	0.00012	0.00012	0.00012	0.24375	0.15475	0.15967	0.99987	2.06883	0.55539	0.22334
0.00016	0.99981	0.00016	0.00016	0.00016	0.24070	0.14995	0.15600	0.99981	2.05722	0.55316	0.22254
0.00020	0.99975	0.00020	0.00020	0.00020	0.23765	0.14522	0.15295	0.99975	2.04561	0.55093	0.22173
0.00024	0.99969	0.00024	0.00024	0.00024	0.23460	0.14046	0.14986	0.99969	2.03396	0.54870	0.22093
0.00028	0.99963	0.00028	0.00028	0.00028	0.23155	0.13569	0.14675	0.99963	2.02227	0.54648	0.21779
0.00032	0.99957	0.00032	0.00032	0.00032	0.22850	0.13094	0.14364	0.99957	2.01056	0.54426	0.21700
0.00036	0.99951	0.00036	0.00036	0.00036	0.22545	0.12618	0.14053	0.99951	2.00000	0.54204	0.21700
0.00040	0.99945	0.00040	0.00040	0.00040	0.22240	0.12142	0.13742	0.99945	1.98935	0.53982	0.21700
0.00044	0.99939	0.00044	0.00044	0.00044	0.21935	0.11666	0.13431	0.99939	1.97869	0.53759	0.21700
0.00048	0.99933	0.00048	0.00048	0.00048	0.21630	0.11190	0.13120	0.99933	1.96803	0.53537	0.21700
0.00052	0.99927	0.00052	0.00052	0.00052	0.21325	0.10714	0.12809	0.99927	1.95737	0.53315	0.21700
0.00056	0.99921	0.00056	0.00056	0.00056	0.21020	0.10238	0.12508	0.99921	1.94671	0.53093	0.21700
0.00060	0.99915	0.00060	0.00060	0.00060	0.20715	0.09762	0.12207	0.99915	1.93605	0.52871	0.21700
0.00064	0.99909	0.00064	0.00064	0.00064	0.20410	0.09286	0.11906	0.99909	1.92539	0.52649	0.21700
0.00068	0.99903	0.00068	0.00068	0.00068	0.20105	0.08810	0.11605	0.99903	1.91473	0.52427	0.21700
0.00072	0.99897	0.00072	0.00072	0.00072	0.19799	0.08334	0.11304	0.99897	1.90407	0.52205	0.21700
0.00076	0.99891	0.00076	0.00076	0.00076	0.19494	0.07858	0.11003	0.99891	1.89341	0.51983	0.21700
0.00080	0.99885	0.00080	0.00080	0.00080	0.19189	0.07382	0.10702	0.99885	1.88275	0.51761	0.21700
0.00084	0.99879	0.00084	0.00084	0.00084	0.18884	0.06906	0.10401	0.99879	1.87209	0.51539	0.21700
0.00088	0.99873	0.00088	0.00088	0.00088	0.18579	0.06430	0.10100	0.99873	1.86143	0.51317	0.21700
0.00092	0.99867	0.00092	0.00092	0.00092	0.18274	0.05954	0.09899	0.99867	1.85077	0.51095	0.21700
0.00096	0.99861	0.00096	0.00096	0.00096	0.17969	0.05478	0.09698	0.99861	1.84011	0.50873	0.21700
0.00100	0.99855	0.00100	0.00100	0.00100	0.17664	0.04992	0.09497	0.99855	1.82945	0.50651	0.21700
0.00104	0.99849	0.00104	0.00104	0.00104	0.17359	0.04516	0.09296	0.99849	1.81879	0.50429	0.21700
0.00108	0.99843	0.00108	0.00108	0.00108	0.17054	0.04039	0.09095	0.99843	1.80813	0.50207	0.21700
0.00112	0.99837	0.00112	0.00112	0.00112	0.16749	0.03563	0.08894	0.99837	1.79747	0.49985	0.21700
0.00116	0.99831	0.00116	0.00116	0.00116	0.16444	0.03087	0.08693	0.99831	1.78681	0.49763	0.21700
0.00120	0.99825	0.00120	0.00120	0.00120	0.16139	0.02611	0.08492	0.99825	1.77615	0.49541	0.21700
0.00124	0.99819	0.00124	0.00124	0.00124	0.15834	0.02135	0.08291	0.99819	1.76549	0.49319	0.21700
0.00128	0.99813	0.00128	0.00128	0.00128	0.15529	0.01658	0.08090	0.99813	1.75483	0.49097	0.21700
0.00132	0.99807	0.00132	0.00132	0.00132	0.15224	0.01182	0.07889	0.99807	1.74417	0.48875	0.21700
0.00136	0.99801	0.00136	0.00136	0.00136	0.14919	0.00706	0.07688	0.99801	1.73351	0.48653	0.21700
0.00140	0.99795	0.00140	0.00140	0.00140	0.14614	0.00230	0.07487	0.99795	1.72285	0.48431	0.21700
0.00144	0.99789	0.00144	0.00144	0.00144	0.14309	0.00000	0.07286	0.99789	1.71219	0.48209	0.21700
0.00148	0.99783	0.00148	0.00148	0.00148	0.14004	0.00000	0.07085	0.99783	1.70153	0.48087	0.21700
0.00152	0.99777	0.00152	0.00152	0.00152	0.13699	0.00000	0.06884	0.99777	1.69087	0.47865	0.21700
0.00156	0.99771	0.00156	0.00156	0.00156	0.13394	0.00000	0.06683	0.99771	1.68021	0.47643	0.21700
0.00160	0.99765	0.00160	0.00160	0.00160	0.13089	0.00000	0.06482	0.99765	1.66955	0.47421	0.21700
0.00164	0.99759	0.00164	0.00164	0.00164	0.12784	0.00000	0.06281	0.99759	1.65889	0.47199	0.21700
0.00168	0.99753	0.00168	0.00168	0.00168	0.12479	0.00000	0.06080	0.99753	1.64823	0.46977	0.21700
0.00172	0.99747	0.00172	0.00172	0.00172	0.12174	0.00000	0.05879	0.99747	1.63757	0.46755	0.21700
0.00176	0.99741	0.00176	0.00176	0.00176	0.11869	0.00000	0.05678	0.99741	1.62691	0.46533	0.21700
0.00180	0.99735	0.00180	0.00180	0.00180	0.11564	0.00000	0.05477	0.99735	1.61625	0.46311	0.21700
0.00184	0.99729	0.00184	0.00184	0.00184	0.11259	0.00000	0.05276	0.99729	1.60559	0.46089	0.21700
0.00188	0.99723	0.00188	0.00188	0.00188	0.10954	0.00000	0.05075	0.99723	1.59493	0.45867	0.21700
0.00192	0.99717	0.00192	0.00192	0.00192	0.10649	0.00000	0.04874	0.99717	1.58427	0.45645	0.21700
0.00196	0.99711	0.00196	0.00196	0.00196	0.10344	0.00000	0.04673	0.99711	1.57361	0.45423	0.21700
0.00200	0.99705	0.00200	0.00200	0.00200	0.10039	0.00000	0.04472	0.99705	1.56295	0.45199	0.21700
0.00204	0.99699	0.00204	0.00204	0.00204	0.09734	0.00000	0.04271	0.99699	1.55229	0.44977	0.21700
0.00208	0.99693	0.00208	0.00208	0.00208	0.09429	0.00000	0.04070	0.99693	1.54163	0.44755	0.21700
0.00212	0.99687	0.00212	0.00212	0.00212	0.09124	0.00000	0.03869	0.99687	1.53097	0.44533	0.21700
0.00216	0.99681	0.00216	0.00216	0.00216	0.08819	0.00000	0.03668	0.99681	1.52031	0.44311	0.21700
0.00220	0.99675	0.00220	0.00220	0.00220	0.08514	0.00000	0.03467	0.99675	1.50965	0.44089	0.21700
0.00224	0.99669	0.00224	0.00224	0.00224	0.08209	0.00000	0.03266	0.99669	1.49899	0.43867	0.21700
0.00228	0.99663	0.00228	0.00228	0.00228	0.07904	0.00000	0.03065	0.99663	1.48833	0.43645	0.21700
0.00232	0.99657	0.00232	0.00232	0.00232	0.07599	0.00000	0.02864	0.99657	1.47767	0.43423	0.21700
0.00236	0.99651	0.00236	0.00236	0.00236	0.07294	0.00000	0.02663	0.99651	1.46701	0.43199	0.21700
0.00240	0.99645	0.00240	0.00240	0.00240	0.06989	0.00000	0.02462	0.99645	1.45635	0.42977	0.21700
0.00244	0.99639	0.00244	0.00244	0.00244	0.06684	0.00000	0.02261	0.99639	1.44569	0.42755	0.21700
0.00248	0.99633	0.00248	0.00248	0.00248	0.06379	0.00000	0.02060	0.99633	1.43503	0.42533	0.21700
0.00252	0.99627	0.00252	0.00252	0.00252	0.06074	0.00000	0.01859	0.99627	1.42437	0.42311	0.21700
0.00256	0.99621	0.00256	0.00256	0.00256	0.05769	0.00000	0.01658	0.99621	1.41371	0.42089	0.21700
0.00260	0.99615	0.00260	0.00260	0.00260	0.05464	0.00000	0.01457	0.99615	1.40305	0.41867	0.21700
0.00264	0.99609	0.00264	0.00264	0.00264	0.05159	0.00000	0.01256	0.99609	1.39239	0.41645	0.21700
0.00268	0.99603	0.00268	0.00268	0.00268	0.04854	0.00000	0.01055	0.99603	1.38173	0.41423	0.21700
0.00272	0.99597	0.00272	0.00272	0.00272	0.04549	0.00000	0.00854	0.99597	1.37107	0.41199	0.21700
0.00276	0.99591	0.00276	0.00276	0.00276	0.04244	0.00000	0.00653	0.99591	1.36041	0.40977	0.21700
0.00280	0.99585	0.00280	0.00280	0.00280	0.03939	0.00000	0.00452	0.99585	1.34975	0.40755	0.21700
0.00284	0.99579	0.00284	0.00284	0.00284	0.03634	0.00000	0.00251	0.99579	1.33909	0.40533	0.21700
0.00288	0.99573	0.00288	0.00288	0.00288	0.03329	0.00000	0.00050	0.99573	1.32843	0.40311	

TABLE 4B. Lanchester-Clifford-Schlafli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 1/4$ and x from 1.50 to 10.0.

TABLE 2A. Lanchester-Clifford-Schlaflil Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 3/4$ and x from 0.00 to 1.50.

$\alpha = 3/4$

x	$F_{3/4}(x)$	$H_{1/4}(x)$	$T_{3/4}(x)$	x	$F_{3/4}(x)$	$H_{1/4}(x)$	$T_{3/4}(x)$	x	$F_{3/4}(x)$	$H_{1/4}(x)$	$T_{3/4}(x)$
1.50	2.72299	2.78223	2.76223	1.51	2.72292	2.78223	2.76223	1.52	2.72295	2.78225	2.76225
1.52	5.231795	5.362079	5.27941	1.53	5.231795	5.362079	2.77254	1.54	5.231795	5.362079	2.77254
1.54	9.668	10.49607	9.79546	1.55	9.668	10.49607	2.79561	1.56	9.668	10.49607	2.79561
1.57	14.9963	15.82451	15.9289	1.58	14.9963	15.82451	2.80737	1.59	14.9963	15.82451	2.80737
1.60	20.201	21.68778	21.294	1.61	20.201	21.68778	21.294	1.62	20.201	21.68778	21.294
1.63	25.3295	26.8224	26.213	1.64	25.3295	26.8224	26.213	1.65	25.3295	26.8224	26.213
1.67	30.4524	32.0324	31.493	1.68	30.4524	32.0324	31.493	1.69	30.4524	32.0324	31.493
1.70	35.5753	37.2326	36.682	1.71	35.5753	37.2326	36.682	1.72	35.5753	37.2326	36.682
1.73	40.6982	42.3649	41.712	1.74	40.6982	42.3649	41.712	1.75	40.6982	42.3649	41.712
1.77	45.8211	47.4879	46.835	1.78	45.8211	47.4879	46.835	1.79	45.8211	47.4879	46.835
1.80	50.9440	52.6107	51.958	1.81	50.9440	52.6107	51.958	1.82	50.9440	52.6107	51.958
1.83	56.0669	57.7336	59.085	1.84	56.0669	57.7336	59.085	1.85	56.0669	57.7336	59.085
1.87	61.1898	62.8565	64.207	1.88	61.1898	62.8565	64.207	1.89	61.1898	62.8565	64.207
1.91	66.3127	68.0794	69.429	1.92	66.3127	68.0794	69.429	1.93	66.3127	68.0794	69.429
1.95	71.4356	73.2021	74.551	1.96	71.4356	73.2021	74.551	1.97	71.4356	73.2021	74.551
1.99	76.5585	78.3250	79.670	2.00	76.5585	78.3250	79.670	2.01	76.5585	78.3250	79.670
2.04	81.6814	83.4479	84.794	2.05	81.6814	83.4479	84.794	2.06	81.6814	83.4479	84.794
2.09	86.8043	88.5708	89.915	2.10	86.8043	88.5708	89.915	2.11	86.8043	88.5708	89.915
2.14	91.9272	93.6937	95.038	2.15	91.9272	93.6937	95.038	2.16	91.9272	93.6937	95.038
2.20	97.0501	98.8166	100.161	2.21	97.0501	98.8166	100.161	2.22	97.0501	98.8166	100.161
2.26	102.1730	103.9395	105.296	2.27	102.1730	103.9395	105.296	2.28	102.1730	103.9395	105.296
2.33	107.2959	109.0624	110.419	2.34	107.2959	109.0624	110.419	2.35	107.2959	109.0624	110.419
2.41	112.4188	114.1853	115.542	2.42	112.4188	114.1853	115.542	2.43	112.4188	114.1853	115.542
2.50	117.5417	119.3082	120.665	2.51	117.5417	119.3082	120.665	2.52	117.5417	119.3082	120.665
2.60	122.6646	124.4311	125.788	2.61	122.6646	124.4311	125.788	2.62	122.6646	124.4311	125.788
2.71	127.7875	129.5540	130.911	2.72	127.7875	129.5540	130.911	2.73	127.7875	129.5540	130.911
2.83	132.9104	134.6769	136.033	2.84	132.9104	134.6769	136.033	2.85	132.9104	134.6769	136.033
2.97	138.0333	139.7998	141.156	2.98	138.0333	139.7998	141.156	2.99	138.0333	139.7998	141.156
3.12	143.1562	144.9227	146.279	3.13	143.1562	144.9227	146.279	3.14	143.1562	144.9227	146.279
3.28	148.2791	149.0456	150.402	3.29	148.2791	149.0456	150.402	3.30	148.2791	149.0456	150.402
3.46	153.4020	154.1685	155.525	3.47	153.4020	154.1685	155.525	3.48	153.4020	154.1685	155.525
3.65	158.5249	159.2914	160.648	3.66	158.5249	159.2914	160.648	3.67	158.5249	159.2914	160.648
3.85	163.6478	164.4143	165.771	3.86	163.6478	164.4143	165.771	3.87	163.6478	164.4143	165.771
4.06	168.7707	169.5372	170.894	4.07	168.7707	169.5372	170.894	4.08	168.7707	169.5372	170.894
4.28	173.8936	174.6601	175.917	4.29	173.8936	174.6601	175.917	4.30	173.8936	174.6601	175.917
4.51	178.0165	178.7830	179.940	4.52	178.0165	178.7830	179.940	4.53	178.0165	178.7830	179.940
4.75	183.1394	183.9059	185.062	4.76	183.1394	183.9059	185.062	4.77	183.1394	183.9059	185.062
5.00	188.2623	189.0288	190.185	5.01	188.2623	189.0288	190.185	5.02	188.2623	189.0288	190.185
5.26	193.3852	194.1517	195.308	5.27	193.3852	194.1517	195.308	5.28	193.3852	194.1517	195.308
5.53	198.5081	199.2746	200.431	5.54	198.5081	199.2746	200.431	5.55	198.5081	199.2746	200.431
5.81	203.6310	204.3975	205.554	5.82	203.6310	204.3975	205.554	5.83	203.6310	204.3975	205.554
6.10	208.7539	209.5204	210.677	6.11	208.7539	209.5204	210.677	6.12	208.7539	209.5204	210.677
6.40	213.8768	214.6433	215.800	6.41	213.8768	214.6433	215.800	6.42	213.8768	214.6433	215.800
6.71	218.9997	219.7662	220.923	6.72	218.9997	219.7662	220.923	6.73	218.9997	219.7662	220.923
7.03	224.1226	224.8891	225.946	7.04	224.1226	224.8891	225.946	7.05	224.1226	224.8891	225.946
7.36	229.2455	230.0120	231.068	7.37	229.2455	230.0120	231.068	7.38	229.2455	230.0120	231.068
7.70	234.3684	235.1349	236.191	7.71	234.3684	235.1349	236.191	7.72	234.3684	235.1349	236.191
8.04	239.4913	240.2578	241.314	8.05	239.4913	240.2578	241.314	8.06	239.4913	240.2578	241.314
8.40	244.6142	245.3807	246.437	8.41	244.6142	245.3807	246.437	8.42	244.6142	245.3807	246.437
8.76	249.7371	250.5036	251.560	8.77	249.7371	250.5036	251.560	8.78	249.7371	250.5036	251.560
9.13	254.8600	255.6265	256.683	9.14	254.8600	255.6265	256.683	9.15	254.8600	255.6265	256.683
9.51	259.9829	260.7494	261.806	9.52	259.9829	260.7494	261.806	9.53	259.9829	260.7494	261.806
9.89	265.1058	265.8723	266.930	9.90	265.1058	265.8723	266.930	9.91	265.1058	265.8723	266.930
10.27	270.2287	270.9952	272.052	10.28	270.2287	270.9952	272.052	10.29	270.2287	270.9952	272.052
10.65	275.3516	276.1181	277.175	10.66	275.3516	276.1181	277.175	10.67	275.3516	276.1181	277.175
11.03	280.4745	281.2410	282.298	11.04	280.4745	281.2410	282.298	11.05	280.4745	281.2410	282.298
11.42	285.5974	286.3639	287.421	11.43	285.5974	286.3639	287.421	11.44	285.5974	286.3639	287.421
11.81	290.7203	291.4868	292.544	11.82	290.7203	291.4868	292.544	11.83	290.7203	291.4868	292.544
12.20	295.8432	296.6097	297.666	12.21	295.8432	296.6097	297.666	12.22	295.8432	296.6097	297.666
12.59	300.9661	301.7326	302.789	12.60	300.9661	301.7326	302.789	12.61	300.9661	301.7326	302.789
13.00	306.0890	306.8555	307.912	13.01	306.0890	306.8555	307.912	13.02	306.0890	306.8555	307.912
13.41	311.2119	311.9784	313.035	13.42	311.2119	311.9784	313.035	13.43	311.2119	311.9784	313.035
13.83	316.3348	317.1013	318.158	13.84	316.3348	317.1013	318.158	13.85	316.3348	317.1013	318.158
14.25	321.4577	322.2242	323.281	14.26	321.4577	322.2242	323.281	14.27	321.4577	322.2242	323.281
14.67	326.5806	327.3471	328.404	14.68	326.5806	327.3471	328.404	14.69	326.5806	327.3471	328.404
15.10	331.7035	332.4700	333.527	15.11	331.7035	332.4700	333.527	15.12	331.7035	332.4700	333.527
15.53	336.8264	337.5929	338.650	15.54	336.8264	337.5929	338.650	15.55	336.8264	337.5929	338.650
15.96	341.9493	342.7158	343.775	15.97	341.9493	342.7158	343.775	15.98	341.9493	342.7158	343.775
16.40	347.0722	347.8387	348.895	16.41	347.0722	347.8387	348.895	16.42	347.0722	347.8387	348.895
16.83	352.1951	352.9616	353.913	16.84	352.1951	352.9616	353.913	16.85	352.1951	352.9616	353.913
17.27	357.3180	358.0845	359.037	17.28	357.3180	358.0845	359.037	17.29	357.3180	358.0845	359.037
17.71	362.4409	363.2074	364.160	17.72	362.4409	363.2074	364.160	17.73	362.4409	363.2074	364.160
18.15	367.5638	368.3309	369.283	18.16	367.5638	368.3309	369.283	18.17	367.5638	368.3309	369.283
18.60	372.6867	373.4539	374.406	18.61	372.6867	373.4539	374.406	18.62	372.6867	373.4539	374.406
19.05	377.8106	378.5777	379.530	19.06	377.8106	378.5777	379.530	19.07	377.8106	378.5777	379.530
19											

$\alpha = 1/5$

x	$F_{1/5}(x)$	$H_{4/5}(x)$	$T_{1/5}(x)$	x	$F_{1/5}(x)$	$H_{4/5}(x)$	$T_{1/5}(x)$	x	$F_{1/5}(x)$	$H_{4/5}(x)$	$T_{1/5}(x)$
0.0	0.0	0.0	0.0	0.50	1.32072	0.14080	0.10661	1.00	2.38524	0.47223	0.19798
0.0001	0.00026	0.00079	0.00079	0.51	1.34072	0.14553	0.10509	1.01	2.41214	0.48209	0.19913
0.0004	0.00150	0.00417	0.00417	0.52	1.35762	0.15034	0.11156	1.02	2.44015	0.49205	0.20124
0.001	0.00200	0.00815	0.00815	0.53	1.37159	0.15521	0.11600	1.04	2.51070	0.50217	0.20247
0.002	0.00342	0.00941	0.00941	0.54	1.39018	0.16518	0.12197	1.05	2.57315	0.51533	0.20350
0.004	0.00456	0.00982	0.00982	0.55	1.40496	0.17063	0.12645	1.07	2.63075	0.52938	0.20456
0.008	0.00613	0.01259	0.01259	0.56	1.42542	0.17543	0.12816	1.09	2.68077	0.54597	0.20567
0.016	0.01089	0.02725	0.02725	0.57	1.45111	0.18597	0.12816	1.09	2.67339	0.53266	0.20747
0.031	0.01013	0.00876	0.00876	0.58	1.45111	0.18597	0.12816	1.10	2.71209	0.56747	0.20850
0.062	0.0254	0.01023	0.01023	0.60	1.46711	0.19135	0.13031	1.11	2.74726	0.58134	0.21036
0.125	0.0254	0.01208	0.01208	0.61	1.48341	0.19680	0.13268	1.12	2.78026	0.59534	0.21215
0.250	0.0254	0.02269	0.02269	0.62	1.50022	0.20233	0.13460	1.13	2.81685	0.60552	0.21406
0.500	0.0254	0.04193	0.04193	0.64	1.53460	0.21360	0.13933	1.14	2.85552	0.60559	0.21597
1.000	0.0254	0.08986	0.08986	0.65	1.55176	0.21935	0.14336	1.15	2.89557	0.61646	0.21380
2.000	0.0254	0.22086	0.22086	0.66	1.56781	0.22515	0.14536	1.17	2.96812	0.63233	0.21469
4.000	0.0254	0.62346	0.62346	0.67	1.58633	0.23008	0.14736	1.18	3.00663	0.64695	0.21531
8.000	0.0254	0.19561	0.19561	0.68	1.60518	0.24311	0.14939	1.19	3.04564	0.65819	0.21631
16.000	0.0254	0.56291	0.56291	0.69	1.62518	0.25311	0.15142	1.20	3.08515	0.66975	0.21709
32.000	0.0254	1.62561	1.62561	0.70	1.64435	0.26924	0.15358	1.21	3.12450	0.68093	0.21795
64.000	0.0254	4.62561	4.62561	0.71	1.66369	0.28114	0.15565	1.22	3.16882	0.70355	0.21885
128.000	0.0254	14.62561	14.62561	0.72	1.68369	0.29617	0.15768	1.23	3.20482	0.72055	0.22005
256.000	0.0254	44.62561	44.62561	0.73	1.70386	0.31111	0.15972	1.24	3.24223	0.74149	0.22185
512.000	0.0254	144.62561	144.62561	0.74	1.72436	0.32455	0.15972	1.25	3.27945	0.76194	0.22364
1024.000	0.0254	444.62561	444.62561	0.75	1.74521	0.34108	0.16287	1.26	3.32394	0.78235	0.22545
2048.000	0.0254	1444.62561	1444.62561	0.76	1.76640	0.35769	0.16487	1.27	3.36448	0.80235	0.22724
4096.000	0.0254	4444.62561	4444.62561	0.77	1.78794	0.37414	0.16644	1.28	3.40448	0.82235	0.22905
8192.000	0.0254	14444.62561	14444.62561	0.78	1.80982	0.39014	0.16811	1.29	3.44448	0.84235	0.23085
16384.000	0.0254	44444.62561	44444.62561	0.79	1.83205	0.40800	0.16811	1.30	3.48337	0.86235	0.23265
32768.000	0.0254	144444.62561	144444.62561	0.80	1.85464	0.42493	0.16947	1.31	3.52193	0.88235	0.23445
65536.000	0.0254	444444.62561	444444.62561	0.81	1.87759	0.44295	0.17195	1.32	3.56030	0.90235	0.23625
131072.000	0.0254	1444444.62561	1444444.62561	0.82	1.90089	0.46035	0.17431	1.33	3.60161	0.92235	0.23805
262144.000	0.0254	4444444.62561	4444444.62561	0.83	1.92423	0.47824	0.17662	1.34	3.64189	0.94235	0.23985
524288.000	0.0254	14444444.62561	14444444.62561	0.84	1.94858	0.49352	0.17629	1.35	3.68217	0.96235	0.24165
1048576.000	0.0254	44444444.62561	44444444.62561	0.85	1.97299	0.50989	0.17787	1.36	3.72257	0.98235	0.24345
2097152.000	0.0254	144444444.62561	144444444.62561	0.86	2.00726	0.52632	0.17950	1.37	3.76297	0.98776	0.22866
4194304.000	0.0254	444444444.62561	444444444.62561	0.87	2.04153	0.54275	0.18123	1.38	3.80337	0.98933	0.22921
8388608.000	0.0254	1444444444.62561	1444444444.62561	0.88	2.07581	0.55917	0.18293	1.39	3.84384	0.99064	0.22986
16777216.000	0.0254	4444444444.62561	4444444444.62561	0.89	2.11009	0.57559	0.18461	1.40	3.88880	0.99310	0.23162
33554432.000	0.0254	14444444444.62561	14444444444.62561	0.90	2.14439	0.59191	0.18538	1.41	3.93498	0.99401	0.23341
67108864.000	0.0254	44444444444.62561	44444444444.62561	0.91	2.17868	0.60790	0.18708	1.42	3.97981	0.99584	0.23516
134217728.000	0.0254	144444444444.62561	144444444444.62561	0.92	2.21297	0.62387	0.18875	1.43	4.02471	0.99764	0.23696
268435456.000	0.0254	444444444444.62561	444444444444.62561	0.93	2.24726	0.63937	0.18952	1.44	4.06958	0.99854	0.23876
536870912.000	0.0254	1444444444444.62561	1444444444444.62561	0.94	2.28154	0.65475	0.19029	1.45	4.11457	0.99945	0.23957
1073741824.000	0.0254	44444444444444.62561	44444444444444.62561	0.95	2.31581	0.66991	0.19106	1.46	4.15947	0.99984	0.24037
2147483648.000	0.0254	144444444444444.62561	144444444444444.62561	0.96	2.35009	0.68529	0.19183	1.47	4.20437	0.99994	0.24116
4294967296.000	0.0254	4444444444444444.62561	4444444444444444.62561	0.97	2.38437	0.70057	0.19259	1.48	4.24927	0.99998	0.24195
8589934592.000	0.0254	14444444444444444.62561	14444444444444444.62561	0.98	2.41865	0.71585	0.19336	1.49	4.29417	0.99999	0.24274
17179869184.000	0.0254	44444444444444444.62561	44444444444444444.62561	0.99	2.45293	0.73113	0.19413	1.50	4.33904	1.00142	0.24353

TABLE 6A. Lanchester-Clifford-Schläfli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 1/5$ and x from 0.00 to 1.50.

$\alpha = 1/5$

x	$F_{1/5}(x)$	$H_{4/5}(x)$	$T_{1/5}(x)$	x	$F_{1/5}(x)$	$H_{4/5}(x)$	$T_{1/5}(x)$	x	$F_{1/5}(x)$	$H_{4/5}(x)$	$T_{1/5}(x)$	
1.50	4.53060	1.06142	0.23429	2.0	8.4486	2.07992	0.24685	6.0	700.89071	177.74225	0.23360	
1.52	4.64669	1.0682	0.23469	2.2	9.50223	2.23895	0.24685	6.2	778.96261	197.74227	0.23360	
1.53	4.70558	1.06240	0.23506	2.4	10.7544	2.6002	0.24917	6.3	961.67071	243.74237	0.23360	
1.54	4.76518	1.1014	0.23546	2.6	12.06679	3.0677	0.25068	6.4	1068.63667	271.01608	0.23360	
1.55	4.82619	1.15915	0.23621	2.8	13.5720	0.250328	0.25068	6.5	187.5832	301.06572	0.23360	
1.56	4.88671	1.15462	0.23656	3.0	15.26139	3.84405	0.25123	6.6	118.56674	334.46147	0.23360	
1.57	4.94966	1.15286	0.23691	3.2	17.12039	4.38415	0.25167	6.7	149.53670	371.50401	0.23360	
1.58	5.01655	1.15049	0.23730	3.4	19.2023	5.48908	0.25213	6.8	162.74725	425.53747	0.23360	
1.59	5.07660	1.20310	0.23764	3.6	21.5802	5.45913	0.25252	6.9	109.16	458.53901	0.23360	
1.60	5.14028	1.20238	0.23800	3.8	23.798	5.42924	0.25296	7.0	2006.58906	508.86695	0.23360	
1.61	5.20717	1.20277	0.23835	4.0	26.139	6.86995	0.25335	7.1	2028.13987	567.86565	0.23360	
1.62	5.27314	1.20314	0.23871	4.2	28.587	7.05024	0.25374	7.2	2473.91267	627.37197	0.23360	
1.63	5.34029	1.20316	0.23902	4.4	31.035	7.85162	0.25414	7.3	627.54620	696.53402	0.23360	
1.64	5.47222	1.31115	0.23935	4.6	33.534	9.32314	0.25452	7.4	3049.20213	773.21182	0.23360	
1.65	5.61189	1.32676	0.23966	4.8	36.033	10.74932	0.25492	7.5	3384.87750	858.39852	0.23360	
1.66	5.68244	1.36614	0.24013	5.0	38.532	12.0135	0.25535	7.6	4170.4888	952.83443	0.23360	
1.67	5.75312	1.38888	0.24069	5.2	41.031	13.45948	0.25579	7.7	4628.6859	1057.47472	0.23360	
1.68	5.82662	1.40383	0.24106	5.4	43.530	14.9356	0.25615	7.8	5136.13030	1173.79641	0.23360	
1.69	5.89916	1.42299	0.24142	5.6	46.029	16.7907	0.25653	7.9	5705.26135	1445.45407	0.23360	
1.70	5.97295	1.44336	0.24178	5.8	48.528	18.6820	0.25696	8.0	5705.26135	1445.45407	0.23360	
1.71	6.04770	1.46795	0.24214	6.0	51.027	20.54185	0.25739	8.1	5705.26135	1445.45407	0.23360	
1.72	6.12331	1.48774	0.24250	6.2	53.526	22.431	0.25782	8.2	5705.26135	1445.45407	0.23360	
1.73	6.19719	1.50179	0.24286	6.4	56.025	24.323	0.25815	8.3	5705.26135	1445.45407	0.23360	
1.74	6.25646	1.52242	0.24321	6.6	58.524	26.215	0.25848	8.4	5705.26135	1445.45407	0.23360	
1.75	6.32176	1.54359	0.24357	6.8	61.023	28.107	0.25881	8.5	5705.26135	1445.45407	0.23360	
1.76	6.38710	1.56473	0.24393	7.0	63.522	29.999	0.25914	8.6	5705.26135	1445.45407	0.23360	
1.77	6.45243	1.58502	0.24429	7.2	66.021	31.891	0.25947	8.7	5705.26135	1445.45407	0.23360	
1.78	6.51770	1.60530	0.24465	7.4	68.520	33.783	0.25980	8.8	5705.26135	1445.45407	0.23360	
1.79	6.58300	1.62559	0.24502	7.6	71.019	35.675	0.26013	8.9	5705.26135	1445.45407	0.23360	
1.80	6.64739	1.64580	0.24538	7.8	73.518	37.567	0.26046	9.0	5705.26135	1445.45407	0.23360	
1.81	6.71176	1.66612	0.24574	8.0	76.017	39.459	0.26079	9.1	5705.26135	1445.45407	0.23360	
1.82	6.77604	1.68644	0.24610	8.2	78.516	41.351	0.26112	9.2	5705.26135	1445.45407	0.23360	
1.83	6.84028	1.70676	0.24646	8.4	81.015	43.243	0.26145	9.3	5705.26135	1445.45407	0.23360	
1.84	6.90407	1.72707	0.24682	8.6	83.514	45.135	0.26178	9.4	94.04684	236.50854	0.23360	
1.85	7.01182	1.74739	0.24718	8.8	86.013	47.027	0.26211	9.5	16102.99504	4083.46516	0.23360	
1.86	7.10355	1.76770	0.24754	9.0	88.512	48.919	0.26244	9.6	17660.59109	4983.53490	0.23360	
1.87	7.18938	1.78797	0.24789	9.2	91.011	50.811	0.26277	9.7	21683.66871	5023.51067	0.23360	
1.88	7.26701	1.80807	0.24825	9.4	93.510	52.703	0.26310	9.8	2363.31379	5313.61107	0.23360	
1.89	7.36775	1.82817	0.24861	9.6	96.009	54.595	0.26343	9.9	3281.67111	562.5192	0.23360	
1.90	7.45651	1.84846	0.24897	9.8	98.508	56.487	0.26376	10.0	6851.74096	6851.74096	0.23360	
1.91	7.55045	1.86875	0.24933	10.0	101.007	58.379	0.26409	10.1	7557.79607	7557.79607	0.23360	
1.92	7.64476	1.88898	0.24969	10.2	103.506	60.271	0.26442	10.3	8441.6934	8441.6934	0.23360	
1.93	7.73201	1.90919	0.25005	10.4	106.005	62.163	0.26475	10.5	9038.84672	10358.46672	0.23360	
1.94	7.82006	1.92949	0.25041	10.6	108.504	64.055	0.26508	10.7	11484.99634	11484.99634	0.23360	
1.95	7.90801	1.94969	0.25077	10.8	111.003	65.947	0.26541	10.9	2.00	4.20488	2.01992	0.24688

BEST AVAILABLE COPY

TABLE 6B. Lanchester-Clifford-Schlafli Functions $F_\alpha(x)$, $H_1(x)$, and $T_\alpha(x)$ for $\alpha = 1/5$ and x from 1.50 to 10.0.

x	$F_{2/5}(x)$	$H_{3/5}(x)$	$T_{2/5}(x)$	x	$F_{2/5}(x)$	$H_{3/5}(x)$	$T_{2/5}(x)$	x	$F_{2/5}(x)$	$H_{3/5}(x)$	$T_{2/5}(x)$
0.0000	0.00289	0.00289	0.00289	0.50	1.15977	0.32826	0.28304	1.00	1.69278	0.84439	0.50178
0.0002	0.00285	0.00285	0.00285	0.4999	1.15912	0.32868	0.28424	1.00	1.69173	0.84707	0.50183
0.0004	0.00281	0.00281	0.00281	0.4997	1.15847	0.32911	0.28462	1.00	1.72688	0.85986	0.50184
0.0006	0.00276	0.00276	0.00276	0.4995	1.15782	0.32954	0.28497	1.00	1.72223	0.88276	0.51199
0.0008	0.00271	0.00271	0.00271	0.4993	1.15717	0.33011	0.28533	1.00	1.73718	0.88976	0.51310
0.0010	0.00265	0.00265	0.00265	0.4991	1.15652	0.33054	0.28592	1.00	1.73554	0.90891	0.51656
0.0012	0.00259	0.00259	0.00259	0.4989	1.15587	0.33097	0.28652	1.00	1.73554	0.92216	0.51656
0.0014	0.00253	0.00253	0.00253	0.4987	1.15522	0.33140	0.28711	1.00	1.73554	0.93553	0.52235
0.0016	0.00247	0.00247	0.00247	0.4985	1.15457	0.33183	0.28761	1.00	1.73554	0.94901	0.52235
0.0018	0.00241	0.00241	0.00241	0.4983	1.15392	0.33226	0.28811	1.00	1.80006	0.96261	0.52156
0.0020	0.00235	0.00235	0.00235	0.4981	1.15327	0.33269	0.28860	1.00	1.82466	0.96261	0.52156
0.0022	0.00229	0.00229	0.00229	0.4979	1.15262	0.33312	0.28904	1.00	1.82466	0.96261	0.52156
0.0024	0.00223	0.00223	0.00223	0.4977	1.15197	0.33355	0.28948	1.00	1.82466	0.96261	0.52156
0.0026	0.00217	0.00217	0.00217	0.4975	1.15132	0.33398	0.29004	1.00	1.82466	0.96261	0.52156
0.0028	0.00211	0.00211	0.00211	0.4973	1.15067	0.33441	0.29059	1.00	1.82466	0.96261	0.52156
0.0030	0.00205	0.00205	0.00205	0.4971	1.14902	0.33484	0.29113	1.00	1.82466	0.96261	0.52156
0.0032	0.00199	0.00199	0.00199	0.4969	1.14837	0.33527	0.29167	1.00	1.82466	0.96261	0.52156
0.0034	0.00193	0.00193	0.00193	0.4967	1.14772	0.33570	0.29221	1.00	1.82466	0.96261	0.52156
0.0036	0.00187	0.00187	0.00187	0.4965	1.14707	0.33613	0.29275	1.00	1.82466	0.96261	0.52156
0.0038	0.00181	0.00181	0.00181	0.4963	1.14642	0.33656	0.29329	1.00	1.82466	0.96261	0.52156
0.0040	0.00175	0.00175	0.00175	0.4961	1.14577	0.33700	0.29383	1.00	1.82466	0.96261	0.52156
0.0042	0.00169	0.00169	0.00169	0.4959	1.14512	0.33743	0.29437	1.00	1.82466	0.96261	0.52156
0.0044	0.00163	0.00163	0.00163	0.4957	1.14447	0.33786	0.29491	1.00	1.82466	0.96261	0.52156
0.0046	0.00157	0.00157	0.00157	0.4955	1.14382	0.33829	0.29545	1.00	1.82466	0.96261	0.52156
0.0048	0.00151	0.00151	0.00151	0.4953	1.14317	0.33872	0.29600	1.00	1.82466	0.96261	0.52156
0.0050	0.00145	0.00145	0.00145	0.4951	1.14252	0.33915	0.29654	1.00	1.82466	0.96261	0.52156
0.0052	0.00139	0.00139	0.00139	0.4949	1.14187	0.33958	0.29708	1.00	1.82466	0.96261	0.52156
0.0054	0.00133	0.00133	0.00133	0.4947	1.14122	0.34001	0.29762	1.00	1.82466	0.96261	0.52156
0.0056	0.00127	0.00127	0.00127	0.4945	1.14057	0.34044	0.29816	1.00	1.82466	0.96261	0.52156
0.0058	0.00121	0.00121	0.00121	0.4943	1.13992	0.34087	0.29870	1.00	1.82466	0.96261	0.52156
0.0060	0.00115	0.00115	0.00115	0.4941	1.13927	0.34130	0.29924	1.00	1.82466	0.96261	0.52156
0.0062	0.00109	0.00109	0.00109	0.4939	1.13862	0.34173	0.29978	1.00	1.82466	0.96261	0.52156
0.0064	0.00103	0.00103	0.00103	0.4937	1.13807	0.34216	0.30032	1.00	1.82466	0.96261	0.52156
0.0066	0.00097	0.00097	0.00097	0.4935	1.13752	0.34259	0.30086	1.00	1.82466	0.96261	0.52156
0.0068	0.00091	0.00091	0.00091	0.4933	1.13687	0.34302	0.30140	1.00	1.82466	0.96261	0.52156
0.0070	0.00085	0.00085	0.00085	0.4931	1.13622	0.34345	0.30194	1.00	1.82466	0.96261	0.52156
0.0072	0.00079	0.00079	0.00079	0.4929	1.13557	0.34388	0.30248	1.00	1.82466	0.96261	0.52156
0.0074	0.00073	0.00073	0.00073	0.4927	1.13492	0.34431	0.30302	1.00	1.82466	0.96261	0.52156
0.0076	0.00067	0.00067	0.00067	0.4925	1.13427	0.34474	0.30356	1.00	1.82466	0.96261	0.52156
0.0078	0.00061	0.00061	0.00061	0.4923	1.13362	0.34517	0.30410	1.00	1.82466	0.96261	0.52156
0.0080	0.00055	0.00055	0.00055	0.4921	1.13297	0.34560	0.30464	1.00	1.82466	0.96261	0.52156
0.0082	0.00049	0.00049	0.00049	0.4919	1.13232	0.34603	0.30518	1.00	1.82466	0.96261	0.52156
0.0084	0.00043	0.00043	0.00043	0.4917	1.13167	0.34646	0.30572	1.00	1.82466	0.96261	0.52156
0.0086	0.00037	0.00037	0.00037	0.4915	1.13102	0.34689	0.30626	1.00	1.82466	0.96261	0.52156
0.0088	0.00031	0.00031	0.00031	0.4913	1.13037	0.34732	0.30680	1.00	1.82466	0.96261	0.52156
0.0090	0.00025	0.00025	0.00025	0.4911	1.12972	0.34775	0.30734	1.00	1.82466	0.96261	0.52156
0.0092	0.00019	0.00019	0.00019	0.4909	1.12907	0.34818	0.30788	1.00	1.82466	0.96261	0.52156
0.0094	0.00013	0.00013	0.00013	0.4907	1.12842	0.34861	0.30841	1.00	1.82466	0.96261	0.52156
0.0096	0.00007	0.00007	0.00007	0.4905	1.12777	0.34904	0.30895	1.00	1.82466	0.96261	0.52156
0.0098	0.00001	0.00001	0.00001	0.4903	1.12712	0.34947	0.30948	1.00	1.82466	0.96261	0.52156
0.0100	0.00000	0.00000	0.00000	0.4901	1.12647	0.34990	0.31002	1.00	1.82466	0.96261	0.52156

BEST AVAILABLE COPY

TABLE 7A. Lanchester-Clifford-Schläfli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 2/5$ and x from 0.00 to 1.50.

x	F _{2/5} (x)	H _{3/5} (x)	T _{2/5} (x)	x	F _{2/5} (x)	H _{3/5} (x)	T _{2/5} (x)	x	F _{2/5} (x)	H _{3/5} (x)	T _{2/5} (x)
1.50	2.11176	1.64228	0.60561	2.0	4.52641	2.92825	0.64642	6.0	278.92057	187.25697	0.61136
1.51	2.11213	1.64224	0.60569	2.0	4.52641	2.92825	0.64642	6.0	308.91122	205.24941	0.61136
1.52	2.11248	1.64220	0.60573	2.0	4.52641	2.92825	0.64642	6.0	334.90147	231.38745	0.61136
1.53	2.11283	1.64216	0.60576	2.0	4.52641	2.92825	0.64642	6.0	360.89172	258.47592	0.61136
1.54	2.11318	1.64204	0.60579	2.0	4.52641	2.92825	0.64642	6.0	386.88207	281.53529	0.61136
1.55	2.11350	1.64175	0.61176	2.0	4.52641	2.92825	0.64642	6.0	412.87242	311.68166	0.61136
1.56	2.11382	1.64155	0.61179	2.0	4.52641	2.92825	0.64642	6.0	438.86277	334.81992	0.61136
1.57	2.11414	1.64135	0.61182	2.0	4.52641	2.92825	0.64642	6.0	463.85312	358.94750	0.61136
1.58	2.11446	1.64115	0.61185	2.0	4.52641	2.92825	0.64642	6.0	489.84347	382.07575	0.61136
1.59	2.11477	1.64095	0.61188	2.0	4.52641	2.92825	0.64642	6.0	515.83382	407.20395	0.61136
1.60	2.11509	1.64075	0.61191	2.0	4.52641	2.92825	0.64642	6.0	541.82417	432.33215	0.61136
1.61	2.11541	1.64055	0.61194	2.0	4.52641	2.92825	0.64642	6.0	567.81452	457.46035	0.61136
1.62	2.11573	1.64035	0.61197	2.0	4.52641	2.92825	0.64642	6.0	593.80487	482.58855	0.61136
1.63	2.11604	1.64015	0.61200	2.0	4.52641	2.92825	0.64642	6.0	619.79522	507.71675	0.61136
1.64	2.11636	1.64001	0.61203	2.0	4.52641	2.92825	0.64642	6.0	645.78557	532.84495	0.61136
1.65	2.11667	1.63975	0.61206	2.0	4.52641	2.92825	0.64642	6.0	671.77592	557.97315	0.61136
1.66	2.11700	1.63959	0.61209	2.0	4.52641	2.92825	0.64642	6.0	697.76627	583.10135	0.61136
1.67	2.11732	1.63943	0.61212	2.0	4.52641	2.92825	0.64642	6.0	723.75662	608.22955	0.61136
1.68	2.11764	1.63924	0.61215	2.0	4.52641	2.92825	0.64642	6.0	749.74697	633.35775	0.61136
1.69	2.11796	1.63905	0.61218	2.0	4.52641	2.92825	0.64642	6.0	775.73732	658.48595	0.61136
1.70	2.11828	1.63885	0.61221	2.0	4.52641	2.92825	0.64642	6.0	801.72767	683.61415	0.61136
1.71	2.11860	1.63865	0.61224	2.0	4.52641	2.92825	0.64642	6.0	827.71802	708.74635	0.61136
1.72	2.11902	1.63845	0.61227	2.0	4.52641	2.92825	0.64642	6.0	853.70837	733.87455	0.61136
1.73	2.11934	1.63825	0.61230	2.0	4.52641	2.92825	0.64642	6.0	879.69872	758.00275	0.61136
1.74	2.11966	1.63805	0.61233	2.0	4.52641	2.92825	0.64642	6.0	905.68907	783.13095	0.61136
1.75	2.12098	1.63785	0.61236	2.0	4.52641	2.92825	0.64642	6.0	931.67942	808.25915	0.61136
1.76	2.12130	1.63765	0.61239	2.0	4.52641	2.92825	0.64642	6.0	957.66977	833.38735	0.61136
1.77	2.12162	1.63745	0.61242	2.0	4.52641	2.92825	0.64642	6.0	983.66012	858.51555	0.61136
1.78	2.12194	1.63725	0.61245	2.0	4.52641	2.92825	0.64642	6.0	1009.65047	883.64375	0.61136
1.79	2.12226	1.63705	0.61248	2.0	4.52641	2.92825	0.64642	6.0	1035.64082	908.77195	0.61136
1.80	2.12258	1.63685	0.61251	2.0	4.52641	2.92825	0.64642	6.0	1061.63117	933.90015	0.61136
1.81	2.12290	1.63665	0.61254	2.0	4.52641	2.92825	0.64642	6.0	1087.62152	959.02835	0.61136
1.82	2.12322	1.63645	0.61257	2.0	4.52641	2.92825	0.64642	6.0	1113.61187	984.15655	0.61136
1.83	2.12354	1.63625	0.61260	2.0	4.52641	2.92825	0.64642	6.0	1139.60222	1009.28475	0.61136
1.84	2.12386	1.63605	0.61263	2.0	4.52641	2.92825	0.64642	6.0	1165.60257	1034.41295	0.61136
1.85	2.12418	1.63585	0.61266	2.0	4.52641	2.92825	0.64642	6.0	1191.60292	1063.54115	0.61136
1.86	2.12450	1.63565	0.61269	2.0	4.52641	2.92825	0.64642	6.0	1217.60327	1092.66935	0.61136
1.87	2.12482	1.63545	0.61272	2.0	4.52641	2.92825	0.64642	6.0	1243.60362	1121.79755	0.61136
1.88	2.12514	1.63525	0.61275	2.0	4.52641	2.92825	0.64642	6.0	1269.60397	1150.92575	0.61136
1.89	2.12546	1.63505	0.61278	2.0	4.52641	2.92825	0.64642	6.0	1295.60432	1179.05395	0.61136
1.90	2.12578	1.63485	0.61281	2.0	4.52641	2.92825	0.64642	6.0	1321.60467	1208.18215	0.61136
1.91	2.12610	1.63465	0.61284	2.0	4.52641	2.92825	0.64642	6.0	1347.60502	1237.31035	0.61136
1.92	2.12642	1.63445	0.61287	2.0	4.52641	2.92825	0.64642	6.0	1373.60537	1266.43855	0.61136
1.93	2.12674	1.63425	0.61290	2.0	4.52641	2.92825	0.64642	6.0	1400.60572	1295.56675	0.61136
1.94	2.12706	1.63405	0.61293	2.0	4.52641	2.92825	0.64642	6.0	1426.60607	1324.69495	0.61136
1.95	2.12738	1.63385	0.61296	2.0	4.52641	2.92825	0.64642	6.0	1452.60642	1353.82315	0.61136
1.96	2.12770	1.63365	0.61299	2.0	4.52641	2.92825	0.64642	6.0	1478.60677	1382.95135	0.61136
1.97	2.12802	1.63345	0.61302	2.0	4.52641	2.92825	0.64642	6.0	1504.60712	1412.07935	0.61136
1.98	2.12834	1.63325	0.61305	2.0	4.52641	2.92825	0.64642	6.0	1530.60747	1441.20755	0.61136
1.99	2.12866	1.63305	0.61308	2.0	4.52641	2.92825	0.64642	6.0	1556.60782	1469.33575	0.61136
2.00	2.12900	1.63285	0.61311	2.0	4.52641	2.92825	0.64642	6.0	1582.60817	1498.46395	0.61136

BEST AVAILABLE COPY

TABLE 7B. Lanchester-Clifford-Schlafli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 2/5$ and x from 1.50 to 10.0.

x	$F_{3/5}(x)$	$H_{2/5}(x)$	$T_{3/5}(x)$	x	$F_{3/5}(x)$	$H_{2/5}(x)$	$T_{3/5}(x)$	x	$F_{3/5}(x)$	$H_{2/5}(x)$	$T_{3/5}(x)$	x	$F_{3/5}(x)$	$H_{2/5}(x)$	$T_{3/5}(x)$	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.1	0.00004	0.03667	0.03607	0.1	0.00004	0.03667	0.03607	0.2	0.00004	0.03667	0.03607	0.3	0.00004	0.03667	0.03607	0.4
0.2	0.00007	0.06240	0.06279	0.3	0.00007	0.06240	0.06279	0.4	0.00007	0.06240	0.06279	0.5	0.00007	0.06240	0.06279	0.6
0.3	0.00010	0.08637	0.08684	0.4	0.00010	0.08637	0.08684	0.5	0.00010	0.08637	0.08684	0.6	0.00010	0.08637	0.08684	0.7
0.4	0.00013	0.10937	0.10929	0.5	0.00013	0.10937	0.10929	0.6	0.00013	0.10937	0.10929	0.7	0.00013	0.10937	0.10929	0.8
0.5	0.00016	0.13147	0.13063	0.6	0.00016	0.13147	0.13063	0.7	0.00016	0.13147	0.13063	0.8	0.00016	0.13147	0.13063	0.9
0.6	0.00019	0.15153	0.15110	0.7	0.00019	0.15153	0.15110	0.8	0.00019	0.15153	0.15110	0.9	0.00019	0.15153	0.15110	1.0
0.7	0.00022	0.17159	0.17088	0.8	0.00022	0.17159	0.17088	0.9	0.00022	0.17159	0.17088	1.0	0.00022	0.17159	0.17088	1.1
0.8	0.00025	0.19058	0.19078	0.9	0.00025	0.19058	0.19078	1.0	0.00025	0.19058	0.19078	1.1	0.00025	0.19058	0.19078	1.2
0.9	0.00028	0.20948	0.20948	1.0	0.00028	0.20948	0.20948	1.1	0.00028	0.20948	0.20948	1.2	0.00028	0.20948	0.20948	1.3
1.0	0.00031	0.22847	0.22793	1.1	0.00031	0.22847	0.22793	1.2	0.00031	0.22847	0.22793	1.3	0.00031	0.22847	0.22793	1.4
1.1	0.00034	0.24746	0.24690	1.2	0.00034	0.24746	0.24690	1.3	0.00034	0.24746	0.24690	1.4	0.00034	0.24746	0.24690	1.5
1.2	0.00037	0.26645	0.26591	1.3	0.00037	0.26645	0.26591	1.4	0.00037	0.26645	0.26591	1.5	0.00037	0.26645	0.26591	1.6
1.3	0.00040	0.28544	0.28489	1.4	0.00040	0.28544	0.28489	1.5	0.00040	0.28544	0.28489	1.6	0.00040	0.28544	0.28489	1.7
1.4	0.00043	0.30443	0.30387	1.5	0.00043	0.30443	0.30387	1.6	0.00043	0.30443	0.30387	1.7	0.00043	0.30443	0.30387	1.8
1.5	0.00046	0.32342	0.32286	1.6	0.00046	0.32342	0.32286	1.7	0.00046	0.32342	0.32286	1.8	0.00046	0.32342	0.32286	1.9
1.6	0.00049	0.34241	0.34185	1.7	0.00049	0.34241	0.34185	1.8	0.00049	0.34241	0.34185	1.9	0.00049	0.34241	0.34185	2.0
1.7	0.00052	0.36140	0.36084	1.8	0.00052	0.36140	0.36084	1.9	0.00052	0.36140	0.36084	2.0	0.00052	0.36140	0.36084	2.1
1.8	0.00055	0.38039	0.37983	1.9	0.00055	0.38039	0.37983	2.0	0.00055	0.38039	0.37983	2.1	0.00055	0.38039	0.37983	2.2
1.9	0.00058	0.40038	0.39982	2.0	0.00058	0.40038	0.39982	2.1	0.00058	0.40038	0.39982	2.2	0.00058	0.40038	0.39982	2.3
2.0	0.00061	0.41937	0.41881	2.1	0.00061	0.41937	0.41881	2.2	0.00061	0.41937	0.41881	2.3	0.00061	0.41937	0.41881	2.4
2.1	0.00064	0.43836	0.43779	2.2	0.00064	0.43836	0.43779	2.3	0.00064	0.43836	0.43779	2.4	0.00064	0.43836	0.43779	2.5
2.2	0.00067	0.45735	0.45678	2.3	0.00067	0.45735	0.45678	2.4	0.00067	0.45735	0.45678	2.5	0.00067	0.45735	0.45678	2.6
2.3	0.00070	0.47634	0.47577	2.4	0.00070	0.47634	0.47577	2.5	0.00070	0.47634	0.47577	2.6	0.00070	0.47634	0.47577	2.7
2.4	0.00073	0.49533	0.49476	2.5	0.00073	0.49533	0.49476	2.6	0.00073	0.49533	0.49476	2.7	0.00073	0.49533	0.49476	2.8
2.5	0.00076	0.51432	0.51375	2.6	0.00076	0.51432	0.51375	2.7	0.00076	0.51432	0.51375	2.8	0.00076	0.51432	0.51375	2.9
2.6	0.00079	0.53331	0.53274	2.7	0.00079	0.53331	0.53274	2.8	0.00079	0.53331	0.53274	2.9	0.00079	0.53331	0.53274	3.0
2.7	0.00082	0.55230	0.55173	2.8	0.00082	0.55230	0.55173	2.9	0.00082	0.55230	0.55173	3.0	0.00082	0.55230	0.55173	3.1
2.8	0.00085	0.57129	0.57072	2.9	0.00085	0.57129	0.57072	3.0	0.00085	0.57129	0.57072	3.1	0.00085	0.57129	0.57072	3.2
2.9	0.00088	0.59028	0.58971	3.0	0.00088	0.59028	0.58971	3.1	0.00088	0.59028	0.58971	3.2	0.00088	0.59028	0.58971	3.3
3.0	0.00091	0.60927	0.60870	3.1	0.00091	0.60927	0.60870	3.2	0.00091	0.60927	0.60870	3.3	0.00091	0.60927	0.60870	3.4
3.1	0.00094	0.62826	0.62769	3.2	0.00094	0.62826	0.62769	3.3	0.00094	0.62826	0.62769	3.4	0.00094	0.62826	0.62769	3.5
3.2	0.00097	0.64725	0.64668	3.3	0.00097	0.64725	0.64668	3.4	0.00097	0.64725	0.64668	3.5	0.00097	0.64725	0.64668	3.6
3.3	0.00100	0.66624	0.66567	3.4	0.00100	0.66624	0.66567	3.5	0.00100	0.66624	0.66567	3.6	0.00100	0.66624	0.66567	3.7
3.4	0.00103	0.68523	0.68466	3.5	0.00103	0.68523	0.68466	3.6	0.00103	0.68523	0.68466	3.7	0.00103	0.68523	0.68466	3.8
3.5	0.00106	0.70422	0.70365	3.6	0.00106	0.70422	0.70365	3.7	0.00106	0.70422	0.70365	3.8	0.00106	0.70422	0.70365	3.9
3.6	0.00109	0.72321	0.72264	3.7	0.00109	0.72321	0.72264	3.8	0.00109	0.72321	0.72264	3.9	0.00109	0.72321	0.72264	4.0
3.7	0.00112	0.74220	0.74163	3.8	0.00112	0.74220	0.74163	3.9	0.00112	0.74220	0.74163	4.0	0.00112	0.74220	0.74163	4.1
3.8	0.00115	0.76119	0.76062	3.9	0.00115	0.76119	0.76062	4.0	0.00115	0.76119	0.76062	4.1	0.00115	0.76119	0.76062	4.2
3.9	0.00118	0.78018	0.77961	4.0	0.00118	0.78018	0.77961	4.1	0.00118	0.78018	0.77961	4.2	0.00118	0.78018	0.77961	4.3
4.0	0.00121	0.80017	0.79960	4.1	0.00121	0.80017	0.79960	4.2	0.00121	0.80017	0.79960	4.3	0.00121	0.80017	0.79960	4.4
4.1	0.00124	0.81916	0.81869	4.2	0.00124	0.81916	0.81869	4.3	0.00124	0.81916	0.81869	4.4	0.00124	0.81916	0.81869	4.5
4.2	0.00127	0.83815	0.83768	4.3	0.00127	0.83815	0.83768	4.4	0.00127	0.83815	0.83768	4.5	0.00127	0.83815	0.83768	4.6
4.3	0.00130	0.85714	0.85667	4.4	0.00130	0.85714	0.85667	4.5	0.00130	0.85714	0.85667	4.6	0.00130	0.85714	0.85667	4.7
4.4	0.00133	0.87613	0.87566	4.5	0.00133	0.87613	0.87566	4.6	0.00133	0.87613	0.87566	4.7	0.00133	0.87613	0.87566	4.8
4.5	0.00136	0.89512	0.89465	4.6	0.00136	0.89512	0.89465	4.7	0.00136	0.89512	0.89465	4.8	0.00136	0.89512	0.89465	4.9
4.6	0.00139	0.91411	0.91364	4.7	0.00139	0.91411	0.91364	4.8	0.00139	0.91411	0.91364	4.9	0.00139	0.91411	0.91364	5.0
4.7	0.00142	0.93310	0.93263	4.8	0.00142	0.93310	0.93263	4.9	0.00142	0.93310	0.93263	5.0	0.00142	0.93310	0.93263	5.1
4.8	0.00145	0.95209	0.95162	4.9	0.00145	0.95209	0.95162	5.0	0.00145	0.95209	0.95162	5.1	0.00145	0.95209	0.95162	5.2
4.9	0.00148	0.97108	0.97061	5.0	0.00148	0.97108	0.97061	5.1	0.00148	0.97108	0.97061	5.2	0.00148	0.97108	0.97061	5.3
5.0	0.00151	0.99007	0.98960	5.1	0.00151	0.99007	0.98960	5.2	0.00151	0.99007	0.98960	5.3	0.00151	0.99007	0.98960	5.4
5.1	0.00154	0.00000	0.00000	5.2	0.00154	0.00000	0.00000	5.3	0.00154	0.00000	0.00000	5.4	0.00154	0.00000	0.00000	5.5

TABLE 8A. Lanchester-Clifford-Schläfli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 3/5$ and x from 0.00 to 1.50.

x	P _{3/5} (x)	H _{2/5} (x)	T _{3/5} (x)	x	P _{3/5} (x)	H _{2/5} (x)	T _{3/5} (x)	x	P _{3/5} (x)	H _{2/5} (x)	T _{3/5} (x)
1.50	2.11465	2.88285	1.36327	1.52	2.13210	2.94982	1.36692	1.53	2.14770	2.95015	1.36709
1.53	2.11498	2.88318	1.36362	1.55	2.14770	2.95017	1.37019	1.57	2.16776	2.95017	1.37241
1.54	2.1152	2.88351	1.36412	1.56	2.16776	2.95017	1.37241	1.58	2.18576	2.95020	1.37465
1.55	2.1155	2.88385	1.36462	1.57	2.18576	2.95020	1.37465	1.59	2.20402	2.95023	1.38693
1.58	2.1157	2.88419	1.36512	1.59	2.20402	2.95023	1.38693	1.60	2.22411	2.95026	1.39759
1.60	2.1160	2.88453	1.36562	1.62	2.22411	2.95026	1.39759	1.63	2.24453	2.95029	1.40824
1.62	2.1162	2.88487	1.36612	1.64	2.24453	2.95029	1.40824	1.66	2.26474	2.95032	1.41893
1.63	2.1163	2.88521	1.36662	1.67	2.26474	2.95032	1.41893	1.68	2.28474	2.95035	1.42962
1.64	2.1164	2.88555	1.36712	1.69	2.28474	2.95035	1.42962	1.70	2.30474	2.95038	1.43931
1.65	2.1165	2.88589	1.36762	1.72	2.30474	2.95038	1.43931	1.74	2.32474	2.95041	1.44900
1.67	2.1167	2.88623	1.36812	1.76	2.32474	2.95041	1.44900	1.78	2.34474	2.95044	1.45869
1.69	2.1169	2.88657	1.36862	1.80	2.34474	2.95044	1.45869	1.81	2.36474	2.95047	1.46838
1.70	2.1170	2.88691	1.36912	1.84	2.36474	2.95047	1.46838	1.85	2.38474	2.95050	1.47807
1.72	2.1172	2.88725	1.36962	1.87	2.38474	2.95050	1.47807	1.89	2.40474	2.95053	1.48776
1.74	2.1174	2.88759	1.37012	1.91	2.40474	2.95053	1.48776	1.93	2.42474	2.95056	1.49745
1.76	2.1176	2.88793	1.37062	1.97	2.42474	2.95056	1.49745	1.99	2.44474	2.95059	1.50714
1.78	2.1177	2.88827	1.37112	2.01	2.44474	2.95059	1.50714	2.03	2.46474	2.95062	1.51683
1.80	2.1179	2.88861	1.37162	2.07	2.46474	2.95062	1.51683	2.09	2.48474	2.95065	1.52652
1.82	2.1181	2.88895	1.37212	2.11	2.48474	2.95065	1.52652	2.13	2.50474	2.95068	1.53621
1.84	2.1183	2.88929	1.37262	2.17	2.50474	2.95068	1.53621	2.19	2.52474	2.95071	1.54590
1.87	2.1187	2.88963	1.37312	2.23	2.52474	2.95071	1.54590	2.25	2.54474	2.95074	1.55559
1.89	2.1189	2.88997	1.37362	2.29	2.54474	2.95074	1.55559	2.31	2.56474	2.95077	1.56528
1.91	2.1191	2.90031	1.37412	2.33	2.56474	2.95077	1.56528	2.35	2.58474	2.95080	1.57497
1.93	2.1193	2.90065	1.37462	2.37	2.58474	2.95080	1.57497	2.39	2.60474	2.95083	1.58466
1.97	2.1197	2.90109	1.37512	2.43	2.60474	2.95083	1.58466	2.45	2.62474	2.95086	1.59435
1.99	2.1199	2.90143	1.37562	2.47	2.62474	2.95086	1.59435	2.49	2.64474	2.95089	1.60404
2.01	2.1201	2.90177	1.37612	2.51	2.64474	2.95089	1.60404	2.53	2.66474	2.95092	1.61373
2.03	2.1203	2.90211	1.37662	2.57	2.66474	2.95092	1.61373	2.59	2.68474	2.95095	1.62342
2.07	2.1207	2.90255	1.37712	2.61	2.68474	2.95095	1.62342	2.63	2.70474	2.95098	1.63311
2.09	2.1209	2.90289	1.37762	2.65	2.70474	2.95098	1.63311	2.67	2.72474	2.95101	1.64280
2.11	2.1211	2.90323	1.37812	2.69	2.72474	2.95101	1.64280	2.71	2.74474	2.95104	1.65249
2.13	2.1213	2.90357	1.37862	2.73	2.74474	2.95104	1.65249	2.75	2.76474	2.95107	1.66218
2.17	2.1217	2.90391	1.37912	2.79	2.76474	2.95107	1.66218	2.81	2.78474	2.95110	1.67187
2.19	2.1219	2.90425	1.37962	2.83	2.78474	2.95110	1.67187	2.85	2.80474	2.95113	1.68156
2.21	2.1221	2.90459	1.38012	2.87	2.80474	2.95113	1.68156	2.87	2.82474	2.95116	1.69125
2.23	2.1223	2.90493	1.38062	2.91	2.82474	2.95116	1.69125	2.91	2.84474	2.95119	1.70094
2.27	2.1227	2.90527	1.38112	2.95	2.84474	2.95119	1.70094	2.95	2.86474	2.95122	1.71063
2.29	2.1229	2.90561	1.38162	2.99	2.86474	2.95122	1.71063	2.99	2.88474	2.95125	1.71932
2.31	2.1231	2.90595	1.38212	3.03	2.88474	2.95125	1.71932	3.03	2.90474	2.95128	1.72801
2.33	2.1233	2.90629	1.38262	3.07	2.90474	2.95128	1.72801	3.07	2.92474	2.95131	1.73770
2.37	2.1237	2.90663	1.38312	3.11	2.92474	2.95131	1.73770	3.11	2.94474	2.95134	1.74639
2.39	2.1239	2.90697	1.38362	3.15	2.94474	2.95134	1.74639	3.15	2.96474	2.95137	1.75508
2.43	2.1243	2.90731	1.38412	3.19	2.96474	2.95137	1.75508	3.19	2.98474	2.95140	1.76477
2.45	2.1245	2.90765	1.38462	3.23	2.98474	2.95140	1.76477	3.23	3.00474	2.95143	1.77346
2.47	2.1247	2.90800	1.38512	3.27	3.00474	2.95143	1.77346	3.27	3.02474	2.95146	1.78215
2.51	2.1251	2.90834	1.38562	3.31	3.02474	2.95146	1.78215	3.31	3.04474	2.95149	1.79084
2.53	2.1253	2.90868	1.38612	3.35	3.04474	2.95149	1.79084	3.35	3.06474	2.95152	1.79953
2.57	2.1257	2.90902	1.38662	3.39	3.06474	2.95152	1.79953	3.39	3.08474	2.95155	1.80822
2.59	2.1259	2.90936	1.38712	3.43	3.08474	2.95155	1.80822	3.43	3.10474	2.95158	1.81691
2.63	2.1263	2.90970	1.38762	3.47	3.10474	2.95158	1.81691	3.47	3.12474	2.95161	1.82560
2.65	2.1265	2.91004	1.38812	3.51	3.12474	2.95161	1.82560	3.51	3.14474	2.95164	1.83429
2.69	2.1269	2.91038	1.38862	3.55	3.14474	2.95164	1.83429	3.55	3.16474	2.95167	1.84298
2.71	2.1271	2.91072	1.38912	3.59	3.16474	2.95167	1.84298	3.59	3.18474	2.95170	1.85167
2.75	2.1275	2.91106	1.38962	3.63	3.18474	2.95170	1.85167	3.63	3.20474	2.95173	1.86036
2.77	2.1277	2.91140	1.39012	3.67	3.20474	2.95173	1.86036	3.67	3.22474	2.95176	1.86905
2.81	2.1281	2.91174	1.39062	3.71	3.22474	2.95176	1.86905	3.71	3.24474	2.95179	1.87774
2.83	2.1283	2.91208	1.39112	3.75	3.24474	2.95179	1.87774	3.75	3.26474	2.95182	1.88643
2.87	2.1287	2.91242	1.39162	3.79	3.26474	2.95182	1.88643	3.79	3.28474	2.95185	1.89512
2.89	2.1289	2.91276	1.39212	3.83	3.28474	2.95185	1.89512	3.83	3.30474	2.95188	1.90381
2.93	2.1293	2.91310	1.39262	3.87	3.30474	2.95188	1.90381	3.87	3.32474	2.95191	1.91250
2.97	2.1297	2.91344	1.39312	3.91	3.32474	2.95191	1.91250	3.91	3.34474	2.95194	1.92119
3.01	2.1301	2.91378	1.39362	3.95	3.34474	2.95194	1.92119	3.95	3.36474	2.95197	1.92988
3.05	2.1305	2.91412	1.39412	3.99	3.36474	2.95197	1.92988	3.99	3.38474	2.95200	1.93857
3.09	2.1309	2.91446	1.39462	4.03	3.38474	2.95200	1.93857	4.03	3.40474	2.95203	1.94726
3.13	2.1313	2.91480	1.39512	4.07	3.40474	2.95203	1.94726	4.07	3.42474	2.95206	1.95595
3.17	2.1317	2.91514	1.39562	4.11	3.42474	2.95206	1.95595	4.11	3.44474	2.95209	1.96464
3.21	2.1321	2.91548	1.39612	4.15	3.44474	2.95209	1.96464	4.15	3.46474	2.95212	1.97333
3.25	2.1325	2.91582	1.39662	4.19	3.46474	2.95212	1.97333	4.19	3.48474	2.95215	1.98202
3.29	2.1329	2.91616	1.39712	4.23	3.48474	2.95215	1.98202	4.23	3.50474	2.95218	1.99071
3.33	2.1333	2.91650	1.39762	4.27	3.50474	2.95218	1.99071	4.27	3.52474	2.95221	1.99940
3.37	2.1337	2.91684	1.39812	4.31	3.52474	2.95221	1.99940	4.31	3.54474	2.95224	2.00809
3.41	2.1341	2.91718	1.39862	4.35	3.54474	2.95224	2.00809	4.35	3.56474	2.95227	2.01678
3.45	2.1345	2.91752	1.39912	4.39	3.56474	2.95227	2.01678	4.39	3.58474	2.95230	2.02547
3.49	2.1349	2.91786	1.39962	4.43	3.58474	2.95230	2.02547	4.43	3.60474	2.95233	2.03416
3.53	2.1353	2.91820	1.40012	4.47	3.60474	2.95233	2.03416	4.47	3.62474	2.95236	2.04285
3.57	2.1357	2.91854	1.40062	4.51	3.62474	2.95236	2.04285	4.51	3.64474	2.95239	2.05154
3.61	2.1361	2.91888	1.40112	4.55	3.64474	2.95239	2.05154	4.55	3.66474	2.95242	2.06023
3.65	2.1365	2.91922	1.40162	4.59	3.66474	2.95242	2.06023	4.59	3.68474	2.95245	2.06892
3.69	2.1369	2.91956	1.40212	4.63	3.68474	2.95245	2.06892	4.63	3.70474	2.95248	2.07761
3.73	2.1373	2.91990	1.40262	4.67	3.70474	2.95248	2.07761	4.67	3.72474	2.95251	2.08630
3.77	2.1377	2.92024	1.40312	4.71	3.72474	2.95251	2.08630	4.71	3.74474	2.95254	2.09509
3.81	2.1381	2.92058	1.40362	4.75	3.74474	2.95254	2.09509	4.75	3.76474	2.95257	2.10378
3.85	2.1385	2.92092	1.40412	4.79	3.76474	2.95257	2.10378	4.79	3.78474	2.95260	2.11247
3.89	2.1389	2.92126	1.40462	4.83	3.78474	2.95260	2.11247	4.83	3.80474	2.95263	2.12116
3.93	2.1393	2.92160	1.40512	4.87	3.80474	2.95263	2.12116	4.87	3.82474	2.95266	2.12985
3.97	2.1397	2.92194	1.40562	4.91	3.82474	2.95266	2.12985	4.91	3.84474		

TABLE 8B. Lanchester-Clifford-Schläfli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 3/5$ and x from 1.50 to 10.0.

x	$F_{4/5}(x)$	$H_{1/5}(x)$	$T_{4/5}(x)$	x	$F_{4/5}(x)$	$H_{1/5}(x)$	$T_{4/5}(x)$	x	$F_{4/5}(x)$	$H_{1/5}(x)$	$T_{4/5}(x)$
0.0000	0.0	0.0056	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0001	0.00057	0.60056	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0002	0.00113	0.79241	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0003	0.00178	0.93215	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0004	0.00250	1.04599	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0005	0.00328	1.14386	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0006	0.00413	1.23068	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0007	0.00507	1.30930	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0008	0.00608	1.38157	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0009	0.00713	1.44487	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0010	0.00823	1.51169	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0011	0.00940	1.57147	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0012	0.01061	1.62620	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0013	0.01184	1.67237	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0014	0.01313	1.71293	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0015	0.01447	1.74629	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0016	0.01587	1.77429	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0017	0.01733	1.80067	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0018	0.01884	1.82397	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0019	0.02041	1.84461	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0020	0.02204	1.86324	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0021	0.02373	1.88053	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0022	0.02549	1.89667	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0023	0.02732	1.91177	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0024	0.02922	1.92629	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0025	0.03119	1.93973	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0026	0.03324	1.95217	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0027	0.03537	1.96451	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0028	0.03757	1.97674	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0029	0.04000	1.98897	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0030	0.04257	2.00098	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0031	0.04529	2.01298	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0032	0.04817	2.02497	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0033	0.05113	2.03696	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0034	0.05417	2.04895	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0035	0.05729	2.06094	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0036	0.06049	2.07293	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0037	0.06378	2.08492	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0038	0.06715	2.09691	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0039	0.07061	2.10880	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0040	0.07415	2.12079	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0041	0.07777	2.13278	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0042	0.08147	2.14477	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0043	0.08525	2.15676	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0044	0.08911	2.16875	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0045	0.09305	2.18074	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0046	0.09708	2.19273	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0047	0.10119	2.20472	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0048	0.10539	2.21671	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0049	0.10968	2.22870	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0050	0.11415	2.24069	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0051	0.11871	2.25268	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0052	0.12335	2.26467	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0053	0.12807	2.27666	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0054	0.13288	2.28865	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0055	0.13778	2.30064	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0056	0.14277	2.31263	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0057	0.14786	2.32462	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0058	0.15304	2.33661	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0059	0.15831	2.34860	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0060	0.16367	2.36059	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0061	0.16912	2.37258	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0062	0.17466	2.38457	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0063	0.18028	2.39656	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0064	0.18600	2.40855	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0065	0.19181	2.42054	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0066	0.19771	2.43253	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0067	0.20369	2.44452	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0068	0.20976	2.45651	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0069	0.21591	2.46850	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0070	0.22215	2.48049	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0071	0.22847	2.49248	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0072	0.23488	2.50447	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0073	0.24138	2.51646	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0074	0.24790	2.52845	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0075	0.25451	2.54044	1.07949	0.50	0.02345	2.80081	4.62477	1.00	0.02345	2.80081	4.62477
0.0076	0.26121	2.55243	1.07949	0.50	0.02345	2.80081					

TABLE 9B. Lanchester-Clifford-Schläfli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 4/5$ and x from 1.50 to 10.0.

TABLE 10A. Lanchester-Clifford-Schläfli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 3/7$ and x from 0.00 to 1.50.

TABLE 10B. Lanchester-Clifford-Schlafli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 3/7$ and x from 1.50 to 10.0.

x	$F_{4/7}(x)$	$F_{3/7}(x)$	$T_{4/7}(x)$	$T_{3/7}(x)$	$\cos x$	$F_{4/7}(x)$	$H_{3/7}(x)$	$T_{4/7}(x)$	x	$F_{4/7}(x)$	$H_{3/7}(x)$	$T_{4/7}(x)$
0.0000	0.0	0.0	0.02487	0.02487	1.0	0.74260	0.66807	0.74260	0.0	1.47345	1.52241	1.03527
0.0001	0.0004	0.0004	0.02487	0.02487	0.99999	0.75663	0.67788	0.75663	0.002	1.4914	1.54554	1.04531
0.0002	0.0019	0.0019	0.04504	0.04504	0.99999	0.72087	0.68158	0.72087	0.03	1.5068	1.5818	1.04528
0.0003	0.0039	0.0039	0.0505	0.0505	0.99999	0.72566	0.68718	0.72566	0.04	1.51537	1.59170	1.05018
0.0004	0.0070	0.0070	0.0537	0.0537	0.99999	0.70163	0.70666	0.70163	0.049	1.51537	1.59170	1.05499
0.005	0.0109	0.0109	0.0985	0.0985	0.9984	0.81314	0.7604	0.81314	0.05	1.5219	1.6136	1.06441
0.006	0.0158	0.0158	0.1559	0.1559	0.9984	0.84161	0.7548	0.84161	0.059	1.5242	1.6508	1.07253
0.007	0.0214	0.0214	0.2146	0.2146	0.9984	0.88459	0.7448	0.88459	0.069	1.5242	1.6508	1.07953
0.008	0.0280	0.0280	0.2795	0.2795	0.9984	0.92195	0.7349	0.92195	0.079	1.5242	1.6508	1.07953
0.009	0.0355	0.0355	0.3455	0.3455	0.9984	0.95955	0.7249	0.95955	0.089	1.5242	1.6508	1.07953
0.010	0.0438	0.0438	0.4192	0.4192	0.9984	0.9873	0.7134	0.9873	0.099	1.5237	1.7271	1.08227
0.011	0.0520	0.0520	0.4930	0.4930	0.9984	0.9943	0.7034	0.9943	0.109	1.5237	1.7271	1.08669
0.012	0.0603	0.0603	0.5718	0.5718	0.9984	0.9972	0.6936	0.9972	0.119	1.5237	1.7271	1.08669
0.013	0.0681	0.0681	0.6547	0.6547	0.9984	0.9983	0.6838	0.9983	0.129	1.5237	1.7271	1.08669
0.014	0.0759	0.0759	0.7437	0.7437	0.9984	0.9989	0.6730	0.9989	0.139	1.5237	1.7271	1.08669
0.015	0.0898	0.0898	0.8347	0.8347	0.9984	0.9994	0.6623	0.9994	0.149	1.5213	1.8172	1.09221
0.016	0.0992	0.0992	0.9299	0.9299	0.9984	0.9997	0.6516	0.9997	0.159	1.5213	1.8172	1.09221
0.017	0.1092	0.1092	0.9247	0.9247	0.9984	0.9997	0.6410	0.9997	0.169	1.5213	1.8172	1.09221
0.018	0.1197	0.1197	0.9204	0.9204	0.9984	0.9997	0.6304	0.9997	0.179	1.5213	1.8172	1.09221
0.019	0.1291	0.1291	0.9162	0.9162	0.9984	0.9997	0.6198	0.9997	0.189	1.5213	1.8172	1.09221
0.020	0.1381	0.1381	0.9123	0.9123	0.9984	0.9997	0.6092	0.9997	0.199	1.5213	1.8172	1.09221
0.021	0.1469	0.1469	0.9084	0.9084	0.9984	0.9997	0.5986	0.9997	0.209	1.5213	1.8172	1.09221
0.022	0.1556	0.1556	0.9048	0.9048	0.9984	0.9997	0.5880	0.9997	0.219	1.5213	1.8172	1.09221
0.023	0.1641	0.1641	0.9012	0.9012	0.9984	0.9997	0.5774	0.9997	0.229	1.5213	1.8172	1.09221
0.024	0.1724	0.1724	0.8976	0.8976	0.9984	0.9997	0.5668	0.9997	0.239	1.5213	1.8172	1.09221
0.025	0.1804	0.1804	0.8941	0.8941	0.9984	0.9997	0.5562	0.9997	0.249	1.5213	1.8172	1.09221
0.026	0.1881	0.1881	0.8906	0.8906	0.9984	0.9997	0.5456	0.9997	0.259	1.5213	1.8172	1.09221
0.027	0.1958	0.1958	0.8871	0.8871	0.9984	0.9997	0.5350	0.9997	0.269	1.5213	1.8172	1.09221
0.028	0.2034	0.2034	0.8836	0.8836	0.9984	0.9997	0.5244	0.9997	0.279	1.5213	1.8172	1.09221
0.029	0.2104	0.2104	0.8799	0.8799	0.9984	0.9997	0.5138	0.9997	0.289	1.5213	1.8172	1.09221
0.030	0.2170	0.2170	0.8763	0.8763	0.9984	0.9997	0.5032	0.9997	0.299	1.5213	1.8172	1.09221
0.031	0.2234	0.2234	0.8727	0.8727	0.9984	0.9997	0.4926	0.9997	0.309	1.5213	1.8172	1.09221
0.032	0.2292	0.2292	0.8689	0.8689	0.9984	0.9997	0.4820	0.9997	0.319	1.5213	1.8172	1.09221
0.033	0.2347	0.2347	0.8653	0.8653	0.9984	0.9997	0.4714	0.9997	0.329	1.5213	1.8172	1.09221
0.034	0.2395	0.2395	0.8617	0.8617	0.9984	0.9997	0.4608	0.9997	0.339	1.5213	1.8172	1.09221
0.035	0.2438	0.2438	0.8579	0.8579	0.9984	0.9997	0.4502	0.9997	0.349	1.5213	1.8172	1.09221
0.036	0.2475	0.2475	0.8542	0.8542	0.9984	0.9997	0.4396	0.9997	0.359	1.5213	1.8172	1.09221
0.037	0.2509	0.2509	0.8505	0.8505	0.9984	0.9997	0.4290	0.9997	0.369	1.5213	1.8172	1.09221
0.038	0.2539	0.2539	0.8467	0.8467	0.9984	0.9997	0.4184	0.9997	0.379	1.5213	1.8172	1.09221
0.039	0.2565	0.2565	0.8429	0.8429	0.9984	0.9997	0.4078	0.9997	0.389	1.5213	1.8172	1.09221
0.040	0.2589	0.2589	0.8392	0.8392	0.9984	0.9997	0.3972	0.9997	0.399	1.5213	1.8172	1.09221
0.041	0.2614	0.2614	0.8354	0.8354	0.9984	0.9997	0.3866	0.9997	0.409	1.5213	1.8172	1.09221
0.042	0.2637	0.2637	0.8317	0.8317	0.9984	0.9997	0.3760	0.9997	0.419	1.5213	1.8172	1.09221
0.043	0.2659	0.2659	0.8279	0.8279	0.9984	0.9997	0.3654	0.9997	0.429	1.5213	1.8172	1.09221
0.044	0.2679	0.2679	0.8241	0.8241	0.9984	0.9997	0.3548	0.9997	0.439	1.5213	1.8172	1.09221
0.045	0.2695	0.2695	0.8204	0.8204	0.9984	0.9997	0.3442	0.9997	0.449	1.5213	1.8172	1.09221
0.046	0.2711	0.2711	0.8166	0.8166	0.9984	0.9997	0.3336	0.9997	0.459	1.5213	1.8172	1.09221
0.047	0.2726	0.2726	0.8128	0.8128	0.9984	0.9997	0.3230	0.9997	0.469	1.5213	1.8172	1.09221
0.048	0.2739	0.2739	0.8089	0.8089	0.9984	0.9997	0.3124	0.9997	0.479	1.5213	1.8172	1.09221
0.049	0.2751	0.2751	0.8051	0.8051	0.9984	0.9997	0.3018	0.9997	0.489	1.5213	1.8172	1.09221
0.050	0.2762	0.2762	0.8013	0.8013	0.9984	0.9997	0.2912	0.9997	0.499	1.5213	1.8172	1.09221
0.051	0.2772	0.2772	0.7974	0.7974	0.9984	0.9997	0.2806	0.9997	0.509	1.5213	1.8172	1.09221
0.052	0.2781	0.2781	0.7935	0.7935	0.9984	0.9997	0.2699	0.9997	0.519	1.5213	1.8172	1.09221
0.053	0.2789	0.2789	0.7896	0.7896	0.9984	0.9997	0.2593	0.9997	0.529	1.5213	1.8172	1.09221
0.054	0.2795	0.2795	0.7857	0.7857	0.9984	0.9997	0.2487	0.9997	0.539	1.5213	1.8172	1.09221
0.055	0.2801	0.2801	0.7818	0.7818	0.9984	0.9997	0.2381	0.9997	0.549	1.5213	1.8172	1.09221
0.056	0.2805	0.2805	0.7779	0.7779	0.9984	0.9997	0.2275	0.9997	0.559	1.5213	1.8172	1.09221
0.057	0.2808	0.2808	0.7740	0.7740	0.9984	0.9997	0.2169	0.9997	0.569	1.5213	1.8172	1.09221
0.058	0.2810	0.2810	0.7701	0.7701	0.9984	0.9997	0.2063	0.9997	0.579	1.5213	1.8172	1.09221
0.059	0.2811	0.2811	0.7662	0.7662	0.9984	0.9997	0.1957	0.9997	0.589	1.5213	1.8172	1.09221
0.060	0.2811	0.2811	0.7623	0.7623	0.9984	0.9997	0.1851	0.9997	0.599	1.5213	1.8172	1.09221
0.061	0.2811	0.2811	0.7584	0.7584	0.9984	0.9997	0.1745	0.9997	0.609	1.5213	1.8172	1.09221
0.062	0.2811	0.2811	0.7545	0.7545	0.9984	0.9997	0.1639	0.9997	0.619	1.5213	1.8172	1.09221
0.063	0.2811	0.2811	0.7506	0.7506	0.9984	0.9997	0.1533	0.9997	0.629	1.5213	1.8172	1.09221
0.064	0.2811	0.2811	0.7467	0.7467	0.9984	0.9997	0.1427	0.9997	0.639	1.5213	1.8172	1.09221
0.065	0.2811	0.2811	0.7428	0.7428	0.9984	0.9997	0.1321	0.9997	0.649	1.5213	1.8172	1.09221
0.066	0.2811	0.2811	0.7389	0.7389	0.9984	0.9997	0.1215	0.9997	0.659	1.5213	1.8172	1.09221
0.067	0.2811	0.2811	0.7350	0.7350	0.9984	0.9997	0.1109	0.9997	0.669	1.5213	1.8172	1.09221
0.068	0.2811	0.2811	0.7311	0.7311	0.9984	0.9997	0.1003	0.9997	0.679	1.5213	1.8172	1.09221
0.069	0.2811	0.2811	0.7272	0.7272	0.9984	0.9997	0.0897	0.9997	0.689	1.5213	1.8172	1.09221
0.070	0.2811	0.2811	0.7233	0.7233	0.9984	0.9997	0.0791	0.9997	0.699	1.5213	1.8172	1.09221
0.071	0.2811	0.2811	0.7194	0.7194	0.9984	0.9997	0.0685	0.9997	0.709	1.5213	1.8172	1.09221
0.072	0.2811	0.2811	0.7155	0.7155	0.9984	0.9997	0.0579	0.9997	0.719	1.5213	1.8172	1.09221
0.073	0.2811	0.2811	0.7116	0.7116	0.9984</							

$\alpha = 4/7$ $F_{4/7}(x)$ $H_{3/7}(x)$ $T_{4/7}(x)$ x x **BEST AVAILABLE COPY**

TABLE 11B. Lanchester-Clifford-Schlafli Functions $F_\alpha(x)$, $H_{1-\alpha}(x)$, and $T_\alpha(x)$ for $\alpha = 4/7$ and x from 1.50 to 10.0.