Al in Industry Project – City of London accidents Causal Analysis

Federico Faccioli, Aaron Stephan Salazar Jaramillo, Mohammed Oubia

The dataset

- We decided to analyze a dataset including accidents in the Greater City of London (year 2019)
- Dataset downloaded from TfL Transport for London website https://api.tfl.gov.uk
- Every entry represents an accident, for each accident we have the following features: id, Lat, Lon, Location, Date, Severity, Borough, Casualties, Vehicles

\$type	id	lat	lon	location	date	severity	borough	casualties	vehicles
0 Tfl.Api.Presentation.Entities.AccidentStats.Ac	345979	51.570865	-0.231959	On Edgware Road Near The Junction With north C	2019-01- 04T21:22:00Z	Slight	Barnet	[{'\$type': 'Tfl.Api.Presentation.Entities.Acci	[{'\$type': 'Tfl.Api.Presentation.Entities.Acci
1 Tfl.Api.Presentation.Entities.AccidentStats.Ac	345980	51.603859	-0.187240	On Willow Way Near The Junction With Long Lane	2019-01- 04T23:33:00Z	Slight	Barnet	[{'\$type': 'Tfl.Api.Presentation.Entities.Acci	[{'\$type': 'Tfl.Api.Presentation.Entities.Acci
2 Tfl.Api.Presentation.Entities.AccidentStats.Ac	345981	51.512198	-0.153122	On north Audley Street Near The Junction With	2019-01- 04T22:15:00Z	Slight	City of Westminster	[{'\$type': 'Tfl.Api.Presentation.Entities.Acci	[{'\$type': 'Tfl.Api.Presentation.Entities.Acci
3 Tfl.Api.Presentation.Entities.AccidentStats.Ac	345982	51.431480	-0.016083	On Bromley Road Near The Junction With Daneswo	2019-01- 04T18:00:00Z	Slight	Lewisham	[{'\$type': 'Tfl.Api.Presentation.Entities.Acci	[{'\$type': 'Tfl.Api.Presentation.Entities.Acci
4 Tfl.Api.Presentation.Entities.AccidentStats.Ac	345983	51.473487	0.145202	On Belmont Road Near The Junction With Bedonwe	2019-01- 04T20:45:00Z	Slight	Bexley	[{'\$type': 'Tfl.Api.Presentation.Entities.Acci	[{'\$type': 'Tfl.Api.Presentation.Entities.Acci

Goal of the project

- Analyzing what are the causes that determine the severity of an accident
- "Severity" becomes our target variable
- Chosen approach:
 - 1. Preprocess the data
 - 2. Analyzing features
 - 3. Finding a good classification model
 - 4. Analyzing feature importance
 - 5. SHAP analysis
 - 6. EXTRA: Project work (by Mohammed Oubia, Aaron Salazar)

Preprocessing

- To obtain better results, we need to preprocess the dataset a bit:
 - Dropping unused features (Location)
 - Extracting useful features (Time_of_Day, Month)
 - Mapping some features to cardinal indicator (Severity, Day_of_the_week, Month)
 - Mapping some features to One-Hot-Encoding (Boroughs, Time of Day)
 - Reorganizing Vehicles and Casualties
- We will only be focusing on the causes of the accidents, dropping the features relating to the aftermath of the accidents (Vehicles involved and Casualties)

	id	lat	lon	severity	borough_Barking and Dagenham	borough_Barnet	borough_Bexley	borough_Brent	borough_Bromley	borough_Camden	 Car	Heavy_Vehicles
0	345906	51.511963	-0.028211	0	0	0	0	0	0	0	2	0
1	345907	51.371636	-0.117621	0	0	0	0	0	0	0	2	0
2	345908	51.514951	-0.072747	0	0	0	0	0	0	0	0	0
3	345909	51.519173	-0.262356	0	0	0	0	0	0	0	1	0
4	345910	51.565743	-0.136308	0	0	0	0	0	0	0	1	0

Motorcycle	Other	Pedalcycle	casualty_age_0- 23	casualty_age_24- 30	casualty_age_31- 38	casualty_age_39- 50	casualty_age_50+
0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0
1	0	1	0	1	0	0	0
0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0

The model: discarded approaches

CatBoost

- No manual encoding of variables and can handle categorical values. For example, time_of_day and boroughs.
- Built in feature importance to analyze how the model handles prediction.
- Demonstrated too much bias towards a single class and opened the door to using balancing approaches.

LGBM

- Similar to CatBoost, provides memory efficiency, and is looked at for large datasets as a good option.
- Uses optimal split for categorical features: Can learn inside of categories when to match them together
- Demonstrated being an over complex solution to our problem and did not provide good results.

The model: XGBoost

- We decided to go with XGBoost, state-of-the-art model for what concerns Gradient Boosting techniques
- We did some trials to find the perfect model configuration:
 - XGBoost directly applied to our dataset
 - XGBoost with Sample Weights
 - XGBoost with Sample Weights and ADASYN resampling (applied GridSearch to find best hyperparameter configuration)
- For each trial, computed Classification Report and AUC score to evaluate the model performances
- Printing Feature Importance and Permutation Importance of features for each model

The models – Confusion Matrices

XGBoost w/ Sample Weights

AUC score = 0.80

XGBoost w/ Sample Weights and

ADASYN (GridSearch)
AUC score =0.92

Default XGBoost

AUC score = 0.79

Permutation Importance and Feature Importance for the best model Hyperparameters: {'learning_rate': 0.3, 'max_depth': 25, 'subsample': 0.8}

Our model reflects reality

Risk Level

- Looking at the Permutation Importance graph, we can see that Borough variables have a very low relevance
- Splitting Borough in so many variables wasn't a good choice.
- Trying a different approach: redefining the boroughs as risk areas
 - Every borough will be assigned a risk level, from 0 (low) to 2 (high)
 - Risk_score = 0.3 * borough_tot_accidents + 0.7 * borough_avg_severity
- Defining the new dataframe and rerunning the classification model

SHAP analysis

- To have more detailed analysis on how each feature influences the target variable, we used SHAP
- To visualize results we used a **SHAP dot plot**
- This allowed us to have a clearer view on each category and interpret our data

SHAP Analysis

Conclusion & Future Enhancements

- Location remains to be the most important feature, spread across the three categories.
- Time_of_day_afternoon also has a great importance, given it's one of the most trafficked time periods
- Model understands when and where of accidents, especially when identifying non-Fatal or light cases
- Future enhancements:
 - Improve on the behavior of risk_level_encoded: the number of accidents it's still too relevant compared to the severity
 - Drawing a heatmap on London based on the feature could be great for visualizing results

Project Work

Mohammed Oubia, Aaron Stephan Salazar Jaramillo

Extra-project work

- Accident Location Visualization with a Map.
- LASSO (L1 Regularization) used to select most relevant and Reduced dimensionality Removed redundant/noisy features.
- **XGBoost classifier** trained on LASSO-selected features with class-balanced ADASYN resampling.
- **SHAP** (SHapley Additive exPlanations).

Map Visualization

LASSO+XGBOOST Analysis

SHAP Analysis

Thanks for the attention