- Find an MST on edge-weighted, connected, undirected graphs
- Greedily select edges one by one and add to a growing sub-graph
- Grows a tree from a single vertex

- 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph
- 2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and add that vertex to the tree
- 3. Repeat step 2 (until all vertices are in the tree)

- Given graph G = (V, E)
- Start with 2 sets of vertices: 'innies' & 'outies'
 - 'Innies' are visited nodes (initially empty)
 - Outies' are not yet visited (initially V)
- Select first innie arbitrarily (root of MST)
- Repeat until no more outies
 - Choose outie (v') with smallest distance from <u>any</u> innie
 - Move v' from outies to innies
- Implementation issue: use linear search or PQ?

Prim: Data structures

- A vector of classes or structures
- For each vertex *v*, record:
 - $-k_v$: Has v been visited? (initially **false** for all $v \in V$)
 - $-d_v$: What is the minimal edge weight to v? (initially ∞ for all $v \in V$, except $v_r = 0$)
 - $-p_{v}$: What vertex precedes (is parent of) v? (initially **unknown** for all $v \in V$)

Set starting point d, to 0.

Loop v times (until every k_v is true):

- 1. From the set of vertices for which k_v is false, select the vertex v having the smallest tentative distance d_v .
- 2. Set k_v to true.
- 3. For each vertex w adjacent to v for which k_w is false, test whether d_w is greater than distance(v,w). If it is, set d_w to distance(v,w) and set p_w to v.

Implementing Prim's

- Implement in the <u>order listed</u>:
 - 1: Loop over <u>all</u> vertices: find smallest false k_v
 - -2: Mark k_{ν} as true
 - 3: Loop over all vertices: update false neighbors of k_v
- Common Mistake: Set the first vertex to true outside the loop
- Reordering this can result in a simple algorithm that simply doesn't work

Complexity – Linear Search

Loop v times: ______ times

- 1. From the set of vertices for which k_v is false, select the vertex v having the smallest tentative distance d_v .
- 2. Set k_v to true. O(1)
- 3. For each vertex w adjacent to v for which k_w is false, test whether d_w is greater than distance(v,w). If it is, set d_w to distance(v,w) and set p_w to v.

Most at this vertex: O(|V|). Cost of each: O(1).

Prim's (Heap) Algorithm

```
Algorithm Prims_Heaps(G, s_0)

//Initialize

n = |V|

create_table(n) //stores k,d,p

create_pq() //empty heap

table[s_0].d = 0

table[s_0].d = 0
```

Prim's (Heap) Algorithm

```
while (!pq.isempty)
                                                             O(E)
 v_0 = getMin() //heap top() & pop()
                                                             O(\log E)
 if (!table[v₀].k) //not known
                                                            O(1)
                                                            O(1)
  table[v_0].k = true
                                                            O(1 + E/V)
  for each v_i \in Adj[v_0]
                                                            O(1)
    if (!table[v<sub>i</sub>].k)
     distance = weight(v_0, v_i)
                                                            O(1)
                                                            O(1)
      if (distance < table[v<sub>i</sub>].d)
       table[v_i].d = distance
                                                            O(1)
                                                            O(1)
       table[v_i].p = v_0
                                                            O(\log E)
       insert pq(distance, v<sub>i</sub>)
```

Complexity – Heaps

Repeat until the PQ is empty: times

- 1. From the set of vertices for which k_v is false, select the vertex v having the smallest tentative distance d_v .
- 2. Set k_v to true. O(1)
- 3. For each vertex w adjacent to v for which k_w is false, test whether d_w is greater than distance(v,w). If it is, set d_w to distance(v,w) and set p_w to v.

Most at this vertex: O(|V|). Cost of each: $O(\log |E|)$. Note: Visits every edge once (over all iterations) = O(|E|).

Prim's: Complexity Summary

- O(V²) for the simplest nested-loop implementation
- O(E log E) with heaps
 - Is this always faster?
 - Think about the complexity of the PQ version for dense versus sparse graphs