

问题A. 几乎无环

输入文件:标准输入输出文件:标准输出时间限制:10秒内存限制:

512兆字节

若一个连通无向图既不含环,且所有简单环至少共享一个共同顶点,则称该图为近似无环图。

给定一个具有n个顶点的完全无向图G=(V,E)。每条边(i,j)具有权重 $w_{i,j}$ 。计算(f(G)为1表示G是近乎无环的,否则为0):

输入

第一行包含一个整数 T ($1 \le T \le 16$),表示测试用例的数量。每个测试用例的第一行包含一个整数 n ($1 \le n \le 16$)。

 $\leq <=$ 接下来的 $_{n}$ 行,每行包含 $_{n}$ 个整数。第i行中的第j个数表示 $_{v_{i,j}}$ < 10 $^{\wedge}$ 9 + 7)。保证满足: $_{w_{(i,j)}}$ < $w_{(i,i)}$ $_{n}$ $_{$

输出

对于每个测试用例,输出包含一个整数答案的单行。

标准输入	标准输出
2	7
3	120
0 1 2	
1 0 1	
2 1 0	
5	
0 1 0 1 1	
1 0 1 1 1	
0 1 0 1 0	
1 1 1 0 1	
1 1 0 1 0	

中国,2023年8月17日

问题B. 作业

输入文件: 标准输入 输出文件: 标准输出

时间限制: 2秒内内存限制:

512兆字节

给定两个长度 b_n 的序列a、b,以及 - 个尺寸为 $n \times n$ 的成本矩阵 $A \times n$ 。 矩阵A满足: $A_{i,j} \ge A_{i,j-1}$ 对于所有 $b \le n$, $l < j \le n$ 。你可以执行以下操作任意次数:

• 选取三个整数 l, r, x 满足 $1 \le l \le r \le n$ 且 $1 \le x \le n$,然后将 x 赋值给 a_i 对于所有索引在 l 和 r 之间(包含 l 和 r)。此操作的成本为 $A_{x,r-h-1}$ 。

对于所有 $i \in [0, k]$,求使 a = b 之间最多有 i 个位置不同的最小成本和。

输入

第一行包含一个整数 T ($1 \le T \le 10$),表示测试用例的数量。每个测试用例的第一行包含两个整数 n, k ($1 \le n \le 100$, $1 \le k \le 10$)。

第二行包含n个整数 $a_1, a_2, \cdots, a(n)$ ($1 \le a(i) \le n$),表示序列a。第三行包含n个整数b(1),b(2), \cdots ,b(n) ($1 \le b(i) \le n$),表示序列b。

输出

对于每个测试案例,输出包含k个整数的单行,表示答案。+1

标准输入	标准输出
1	7 3 1
5 2	
1 5 3 2 2	
2 4 5 4 2	
3 3 3 4 4	
2 2 3 4 5	
3 4 5 6 7	
1 1 1 2 4	
4 5 5 5 5	

问题c. 若干拓扑问题

输入文件:标准输入输出文件:标准输出时间限制:1秒内存限制:

创建以下问题后:

拓扑问题

给定一棵带有标签的根树,包含n个顶点和一个整数k。若置换a的长度为n 的置换 $_a$ 为良好置换,当且仅当对于每个具有父节点 par_i 的顶点 i ,满 \mathcal{L}_i a_i >

512兆字节

 a_{par_i} 且 $a_i \le a_{par_i} + k$ 。 求良好置换的数量。

现在,认为这个问题太简单了,你便构造了以下问题:

拓扑问题集

已知两个整数 n 和 k。对于所有不同的标记有根树 T(含 n 个顶点),求所有 T 的 \overline{A} 扑问题解之和,取模 $10^{-9}+7$ 。

请解决**多个拓扑问题**。

两棵标记有根树被视为不同,当且仅当它们的根节点不同,或其中一条边存在于一棵树中但不存在于另一棵树中。

输入

第一行包含一个整数 $T(1 \le T \le 10)$,表示测试用例的数量。每个测试用例仅包含一行,包含两个整数 n 和 k $(1 \le k \le n \le 10^6$)。

输出

对于每个测试用例,输出包含一个整数答案的单行。

标准输入	标准输出
3	2
22	120
51	354463397
114514 1919	

中国,2023年8月17日

问题 D. 你喜欢交互式问题吗?

输入文件:标准输入输出文件:标准输出时间限制:1 秒内存限制:

512兆字节

≤存在一个整数 x 满足 $1 \le x \le n$ 。你知道 n 但不知道 x。

 \leq 你可以进行如下猜测:随机选取一个满足 $1 \leq x \leq n$ 的整数 y (你的 y 可能与先前查询结果相同),系统将告知 x 是否满足 x < y、x > y 或 x = y。当存在唯一满足所有条件的 x 时,你将停止查询。

已知n,若x均匀随机选取,则期望查询次数是多少?

输入

第一行包含一个整数 $T(1 \le T \le 100)$,表示测试用例的数量。每个测试用例仅包含一行,其中包含一个整数 $n(1 \le n \le 10^9)$ 。

输出

对于每个测试用例,输出一个整数表示预期查询次数的模998244353值。严格而言,可证明该预期值可表示为不可约分数 p/q,其中满足 $q \not\equiv 0 \mod 998244353$,且存在唯一整数 r 满足 $0 \le r < 998244353$ 且 $eqr \equiv p \mod 998244353$ 。求此 $eqr \equiv p \mod 998244353$ 。

标准输入	标准输出
2	0
1	1
2	

中国,2023年8月17日

问题E. 等价性

输入文件: 标准输入 输出文件: 标准输出 时间限制: 3 秒内存限制: 512兆字节

给定两棵树 T_1 和 T_2 ,均含 n 个顶点。已知 T_1 中所有边的长度,每条边长均为非负数。

若存在一种方式。能为 T_2 上的每条边分配满足以下条件的数值,则包含 n 个节点的树 T 称为良好树:

• 对于满足 $1 \le i, j \le n$ 的任意一对点 i, j,且 $\mathbf{1} \le i, j \le n$,则点 i 和 j 在树 T 和树 T_2 上的距离相等。

您可以在 T_1 上执行以下操作:选取 T_1 上的任意一条边,将其长度替换为任意非负整数。

非负整数。

找出使 T₁ 成为良好图所需的最小操作次数。

输入

输入的第一行包含一个整数 $T(1 \le T \le 8600)$,表示测试用例的数量。每个测试用例的第一行包含一个整数 $n \ (2 \le n \le 10^6)$ 。

-第二行包含n 个整数 p_2 、 p_3 、···、 p_0 ≰ p_1 k p_2 p_3 .

权重为 va_{l(u)。}

-第四行包含n 个整数 $p^{'}$, $p^{'}$, \cdots , $p^{(')}$ **(** $\mathbf{E}^{p(')}$ **)** \leq \mathbf{n}),表示图 T(2) 上存在 \mathbf{n} 条边 \mathbf{n} 1,形式为 $(u,p^{(')})_{i}$ 以保证 **EX** \mathbf{I} $\mathbf{1}$ $\mathbf{10}^{(6)}$ 。

输出

对于每个测试案例,唯一一行包含一个整数表示答案。

标准输入	标准输出
1	1
5	
1 5 2 2	
0 2 3 1	
5 5 5 1	

中国,2023年8月17日

问题 F. 围栏

输入文件:标准输入输出文件:标准输出时间限制:3 秒内存限制:

512兆字节

一个村庄由n栋建筑组成。每栋建筑可表示为二维平面上的一个点。 \hat{g} i栋建筑的坐标为 (x_i, y_i) 。

村民计划在村庄周围搭建围栏,需满足以下要求:

- 围栏必须构成简单多边形;
- 所有建筑物均位于围栏内部(含边界);
- 作为村庄入口的第4栋建筑必须位于围栏上。

找出构成有效多边形所需围栏的最小总长度。

输入

第一行包含一个整数 $T(1 \le T \le 10^4)$,表示测试用例的数量。

每个测试用例的第一行包含两个整数 n 和 k ($3 \le n \le 2 \times 10^5$, $1 \le k \le n$),分别表示建筑物数量和入口数量。

以下每行包含两个整数 x_i , y_i ($|x_i|$, $|y_i| \le 10^6$),表示第 i 栋建筑的坐标。

对于每个测试案例,保证给定点互不相同,且至少存在三个点不共线。

所有测试用例中n的总和不超过 10° 。

输出

对于每个测试用例,在一行中输出一个实数,表示围栏的最小总长度(保留小数点后3位)。

标准输入	标准输出
1	8.828
5 3	
0 0	
0 2	
1 1	
2 0	
2 2	

中国,2023年8月17日

问题G. 创建2

输入文件: 标准输入 输出文件: 标准输出 时间限制: 1 秒内存限制: 512兆字节

对于由n个正整数组成的序列a,你可以多次执行以下操作:

_{选择满足} 1 < i < n 且 a_i > 1 的索引_i,将 a_i 减 1,并将 1 加到 a_{i-1}
a_{i+1}。

若*存在n个*正整数序列,使得对于每个 a_i ,均可通过多次 $(\overline{O(R(h))} \otimes P(h))$ 运算满足:= 2 $1 \leq i \leq n$,通过若干(可能为零)此类操作实现。

现在需要计算*满足*m个约束条件的良好序列数量,第i个约束可表示为 (x_i,y_i) 对,要求 $a_{(x_i)}=y_i$ 。可证明该解集是有限的。输出结果取模 $^{10^0}+7$ 。

输入

第一行包含一个整数 $T(1 \le T \le 10)$,表示测试用例的数量。

每个测试用例的第一行包含两个整数 $n, m (1 \le n \le 10^{18}, 0 \le m \le \min(n, 100))$ 。

后续m行各含两个整数。 第i行包含 x_i , y_i ($1 \le x_1 < x_2 < \cdots < x$) $1 \le y_i \le 10^9$).

输出

对于每个测试用例,输出一行,其中整数表示答案的10°模运算结果 +7.

标准输入	标准输出
3	1
31	2
22	158552999
52	
12	
51	
114514 0	

中国,2023年8月17日

问题 H. 异或子序列

输入文件: 标准输入 输出文件: 标准输出 时间限制: 3秒内存限制: 512兆字节

爱丽丝曾经有一个数列 a_1 , ···, a(n),但现在她已经忘记了这个数列。幸运的是,她注意到自己曾为该数列的每个非空子序列计算过异或和,并得到了 2^n-1 个结果,但这些结果的顺序已被打乱。

现在她希望你能帮助恢复这个序列。如果存在多个可能的序列,请告诉她**字典序最小的**那个序列,或者报告不存在正确的序列。

输入

第一行包含一个整数 $T(1 \le T \le 5000)$,表示测试用例的数量。每个测试用例的第一行包含一个整数 $n \ (1 \le n \le 18)$

0

下一行包含 2^{n} - 个严格小于 $2^{(30)$ 的非负整数,表示结果。保证所有测试用例中 2^{n} 的总和不超过 2^{20} 。

输出

对于每个测试用例,输出一行。若不存在正确序列,输出-1; 否则输出n个整数表示答案。

标准输入	标准输出
3	1 2 4
3	0 0 1
1 2 3 4 5 6 7	-1
3	
1 0 1 0 1 0 1	
3	
1 2 3 4 5 6 6	

中国,2023年8月17日

问题 I. 远离家乡

输入文件:标准输入输出文件:标准输出时间限制:4 秒内存限制:

你决定沿着一条笔直的道路搬家。道路上分布着*n*家商店,第i家商店距离道路最左侧的*距离为x_i*。

你需要购买₢种杂货。每种商品的购买成本等于你家到最近售卖该商品的商店的距离。总成本即各类商品成本之和。

请注意,即使您在同一家商店购买某些类型的食品杂货,仍需多次计算距离。

512兆字节

你需要选择一个地点建造房屋,以使总成本最小化。

输入

每个测试包含多个测试用例。第一行包含一个整数 T $(1 \le T \le 5)$,表示测试用例的数量。

对于每个测试用例,第一行包含两个整数 n 和 c $(1 \le n \le 10^5, 1 \le c \le 5 \cdot 10^5)$ 。

接下来的n行,每行包含两个*整数i_i和i_i* 首先是($\mathbf{1} \le x_i \le 10^9$, $t_i \ge 1$),表示*商店的*坐标和*商店*销售的食品种类数,随后*是i_i个*不同的*整数a_{i,1}*, $a_{i,2}$, \cdots , a(i,t) (i) ($1 \le a(i,j) \le c$),表示商店i销售的食品种类。保证 $1, 2, \cdots$, c在所有商店销售的种类中至少各出现一次。

 Σ **对于每个测试用例**,保证满足以下条件: $t_i \le 5^{\cdot 10^6}$.

输出

对于每个测试用例,输出一行整数,表示最小总成本。

标准输入	标准输出
1	7
4 4	
1 1 4	
5 1 4	
9 3 1 3 4	
2 2 2 3	

中国,2023年8月17日

问题」. 边界查询

输入文件: 标准输入 输出文件: 标准输出 时间限制: 2 秒内存限制:

512兆字节

给定一个由小写英文字母组成的 *长度为n 的字符串S*。若*S*的三个非空 *子串* s_1 、 s_2 、 s_3 的划分满足: s_1 是 s_1 的边界+ s_2 是 s_2 的边界+ $s(s_3)$ 是 s_3 的边_界,则该划分被视为良好_{划分}。若字符串 s 是 S 的子串,且存在 S 的良好划分 s (s_1) , (s_2) , (s_3) , 使得 s (s_2) 要 (s_3) 好 字 符 串 (s_3)

将字符串的值定义为其有效子串的数量。两个子串仅当起始位置不同或结束位置不同时才被视为不同。

给定一个由小写英文字母组成的长度为m的字符串T及q个查询。每个查询中给定两个整数l,r,你需要计算 $T[l\cdot\cdot\cdot r]$ 的f

输入

每个测试包含多个测试用例。第一行包含一个整数 T $(1 \le T \le 60)$,表示测试用例的数量。

每个测试用例的第一行包含三个整数 n, m, q ($3 \le n \le 10^6$), $1 \le m$, $q \le 10^6$)。第二行包含一个长度为 n 的字符串 S。

第三行包含一个长度为m的字符串T。

接下来的 q 行每行包含两个整数 l_i 和 r_i ,表示一个查询 (\mathbf{k} $l_i \leq r_i \leq m$)。保证所有测试用例的 $\begin{array}{ccc} \Sigma & \Sigma \\ n & m \\ & & \\ & & \\ & & \end{array}$

输出

对于每个查询,输出包含答案整数的单行。请勿输出尾随空格。

标准输入	标准输出
1	0
772	2
abacaba	
cabacab	
14	
37	

中国,2023年8月17日

问题 K. 狼人

输入文件:标准输入输出文件:标准输出时间限制:1 秒内存限制:

512兆字节

有n名玩家排成一列,m种身份卡。玩家编号为1~n。编号是公开的,即每个人都知道彼此的编号。

主持人将向每位玩家发放身份卡,但接收者不得查看自身身份。

所有人闭上双眼。主持人依次点名,将其他玩家身份卡(打乱顺序)展示给被点名者。该玩家需猜出身份后闭眼,其余玩家全 程保持闭目状态。

玩家在游戏开始前有充分讨论时间,需确保*至少[¹¹]* 次猜中。请协助制定策略。

m

输入

第一行包含一个整数 T,表示测试用例的数量。每个测试用例包含两个用空格分隔的

整数 n 和 m。

Σ 输入保证满足: ≱æ n, mⁿ≤ 2¾ 10⁶, mⁿ≤ 1.4× 10⁷。

输出

对于每个测试用例,输出n行,第p行表示玩家p的策略。

标准输入	标准输出
1	1 2
2 2	2 1

中国,2023年8月17日

问题 L. 数组均衡化

输入文件: 标准输入 输出文件: 标准输出 时间限制: 1 秒内存限制: 512兆字节

给定一个由 n 个整数组成的数组 a。

每次操作中,你可以选择一个正整数 x,使得 x 是数组的众模之一,然后将 a 数组中所有x的值加1。

若整数 x 在数组 a 中出现次数最多,则 x 是 ig数组的众数。需注意数组可能存在多个众数(例如 [2, 2, 1, 3, 3] 中 2 和 3 均为众数)。

判断是否可能通过若干次(可能为零次)此类操作,得到一个所有元素相等的数组。

输入

第一行包含一个整数 $T(1 \le T \le 100)$,表示测试用例的数量。每个测试用例的第一行包含一个整数 $n(1 \le n \le 10^6)$

0

 $\leq \leq T$ 一行包含n个整数。第i个数表示 a_i (1 $\leq a_{(i)} \leq 10^{\circ 6}$)。保证所有测试用例中n的总和r超过

2.10^6.

输出

对于每个测试用例,输出一个字符串。若可行则输出 YES,否则输出 NO。

标准输入	标准输出
3	YES
5	不
1 2 3 4 5	是
5	
4 4 1 4 4	
4	
2 2 2 2	