Chapitre 1 Série d'exercices de TD

Présenté par :

H. BENKAOUHA

Bureau 222, Département Informatique, USTHB hbenkaouha@usthb.dz

haroun.benkaouha@gmail.com

H. BENKAOUHA

Exercice 1

• Donner la représentation matricielle (matrice d'adjacence) du graphe suivant :

- Trouvez les degrés extérieurs et intérieurs et degrés de chacun des sommets.
- Donner le représentation sous forme de listes LS et PS.

H. BENKAOUHA

Exercice 2

- La direction d'une entreprise est composée de 7 personnes : *Ahmed, Ali, Bachir, Djamel, Kamel, Youcef* et *Zoheir.* Chacune de ces personnes influence un certain nombre de ses collègues dans la direction selon le tableau :
 - Ahmed influence Ali, Bachir, Djamel, Kamel, Youcef
 - Ali " personne
 - Bachir " Ali
 - Djamel " Ali, Bachir, Kamel, Zoheir
 - Kamel " Ali, Bachir
 - Youcef " Ali, Bachir, Djamel, Kamel, Zoheir
 - Zoheir " Ali, Bachir, Kamel
- Donner la matrice d'adjacence correspondante, ainsi que les demi-degrés intérieurs et extérieurs des sommets.
- Etudier les propriétés suivantes du graphe : simple, complet, régulier, symétrique, antisymétrique, transitif, biparti.

BENKAOUHA :

Exercice 3

- Soit G = (X,E) un graphe non-orienté tel que |X| = n.
- 1. Montrez que le nombre de sommets de degré impair est toujours pair.
- On suppose que G est simple. Sachant que : $\forall x \in X, d_G(x) \le n-1$,
- 2. Montrer qu'il ne peut y avoir dans *G* à la fois un sommet de degré 0 et un sommet de *degré n-1*,
- 3. Montrer qu'il existe *deux* (2) sommets ayant le même degré dans *G.*

ENKAOUHA

Exercice 4

- Soit le graphe simple G=(X,E) d'ordre |X| = n et de taille |E| = m
- Soient x un sommet de X et e une arrête de E.
 Que représente chacun des graphes suivants et quel est l'ordre et quelle est la taille de chacun :
- G
- $G \{x\}$

 $G - \{e\}$

_

H. BENKAOUHA

Exercice 5

- On s'intéresse aux graphes 3-réguliers.
- Construisez de tels graphes ayant :
 - 4 sommets,
 - 5 sommets.
 - 6 sommets,
 - 7 sommets.
- · Qu'en déduisez-vous? Prouvez-le!

Exercice 6

- Un *n-cube* (*hypercube* de dimension *n*) est un graphe dont :
 - les sommets représentent les éléments de $\{0,1\}^n$
 - deux sommets sont adjacents ssi les n-uples correspondants diffèrent d'exactement une composante.
- 1. Donner le nombre de sommets.
- 2. Donner le nombre d'arêtes.

H. BENKAOUHA

Exercice 7

- Soit *G*=(*X*,*U*) un graphe d'ordre n, le nombre d'arcs est désigné par *m*.
- Soient δ(G) et Δ(G) respectivement les degrés minimum et maximum du graphe G
- · Montrer que:

$$\delta(G) \leq \frac{2m}{n} \leq \Delta(G)$$

H. BENKAOUHA

Exercice 7 – Solution (1/2)

• Par défintion, on a $\forall x \in X$:

$$d_G(x) \leq \Delta(G)$$
 et $d_G(x) \geq \delta(G)$

$$\Rightarrow \delta(G) \leq d_G(x) \leq \Delta(G)$$

⇒Ceci est valable pour :

Enseignant: Dr. H. BENKAOUHA

 \Rightarrow On additionne les n double-inégalités :

$$\underbrace{\delta(G) + \dots + \delta(G)}_{n \text{ fois}} \leq d_G(x_1) + \dots + d_G(x_n) \leq \underbrace{\Delta(G) + \dots + \Delta(G)}_{n \text{ fois}}$$

9 F

Exercice 7 – Solution (2/2)

⇒ $n.\delta(G) \le 2m \le n.$ $\Delta(G)$ (formule des degrés) ⇒ $\delta(G) \le 2m$ / $n \le \Delta(G)$ (On a divisé par n, car n>0)

$$\delta(G) \leq \frac{2m}{n} \leq \Delta(G)$$

H. BENKAOUHA

Exercice 8

- Une société doit transporter par camions les animaux A₁, ..., A₆, depuis un entrepôt vers un
- Pour des raisons de sécurité, certains animaux ne peuvent pas être transportés ensemble :
- A₁ et A₂, A₁ et A₄, A₂ et A₃, A₂ et A₅, A₃ et A₄, A₅ et A₆.
- Modéliser le problème, en définissant les sommets et les arêtes du graphe et déterminer le nombre minimum de camions nécessaires.

H. BENKAOUHA

Exercice 8 – Solution (1/3)

- On modélise le problème par un graphe non orienté G=(X, E)
- Chaque animal A_i sera représenté par un sommet i∈X.
- Les arêtes vont représenter la relation « ne peuvent pas être mis ensemble ».
- $\{i,j\} \in E$ correspond à les animaux A_i et A_j « ne peuvent pas être mis ensemble ».

Exercice 8 – Solution (2/3)

- 2 animaux ne pouvant pas être mis ensemble, sont reliés dans *G* et donc auront 2 couleurs différentes et nécessitent 2 camions
- k animaux ne pouvant pas être mis ensemble, sont reliés dans G et donc auront k couleurs différentes et nécessitent k camions
- Donc il s'agit d'un problème de coloration et le nombre minimal de camions correspond au nombre chromatique

NKAOUHA

Exercice 8 – Solution (3/3)

· Appliquons l'algorithme de Welsh & Powell

Sommet x ∈X	$d_G(x)$	Couleur $\varphi(x)$
1	2	
2	3	1
3	2	
4	2	
5	2	
6	1	

· Nous avons besoin de 2 camions au minimum

H. BENKAOUHA

Exercice 8 – Solution (3/3)

• Appliquons l'algorithme de Welsh & Powell

Sommet x ∈X	$d_G(x)$	Couleur $\varphi(x)$
1	2	2
2	3	1
3	2	
4	2	
5	2	
6	1	

· Nous avons besoin de 2 camions au minimum

H. BENKAOUHA

Exercice 8 – Solution (3/3)

• Appliquons l'algorithme de Welsh & Powell

Sommet x ∈X	$d_G(x)$	Couleur $\varphi(x)$
1	2	2
2	3	1
3	2	2
4	2	
5	2	
6	1	

• Nous avons besoin de 2 camions au minimum

H. BENKAOUHA

Exercice 8 – Solution (3/3)

• Appliquons l'algorithme de Welsh & Powell

Sommet x ∈X	$d_G(x)$	Couleur $\varphi(x)$
1	2	2
2	3	1
3	2	2
4	2	1
5	2	
6	1	

· Nous avons besoin de 2 camions au minimum

Exercice 8 – Solution (3/3)

• Appliquons l'algorithme de Welsh & Powell

Sommet x ∈X	$mmet x \in X$ $d_G(x)$ Couleur $\varphi(x)$	
1	2	2
2	3	1
3	2	2
4	2	1
5	2	2
6	1	

· Nous avons besoin de 2 camions au minimum

Exercice 8 – Solution (3/3)

• Appliquons l'algorithme de Welsh & Powell

Sommet x ∈X	$d_G(x)$	Couleur $\varphi(x)$
1	2	2
2	3	1
3	2	2
4	2	1
5	2	2
6	1	1

• Nous avons besoin de 2 camions au minimum

Exercice 9

- On veut organiser un examen comportant, outre les matières communes, 6 matières d'options :
 - Français (F),
 - Anglais (A),
 - Mécanique (M), Dessin industriel (D).
 - Internet (I).
- Sport (S);
- Les profils des candidats à options multiples sont : F,A,M D,S I,S I,M
- Quel est le nombre maximum d'épreuves qu'on peut mettre en parallèle?
- Une épreuve occupe une demi-journée ; quel est le temps minimal nécessaire pour ces options?

Exercice 9 – Solution (1/5)

- On modélise le problème sous forme d'un graphe non orienté G=(X, E)
- · Chaque sommet représente une matière.
- Chaque arête représente la relation « ne peuvent pas être mises en parallèle » c'est-à-dire « ont des étudiants en commun »

Comment trouver les stables ? nbr de sommet d'un stable = nbr chromatique ?

Exercice 9 – Solution (2/5)

- Nombre maximal de matières qu'on eut mettre en parallèle :
- 2 matières en parallèle \Rightarrow 2 sommets non reliés ⇒ Stable de 2 éléments
- k matières en parallèle $\Rightarrow k$ sommets non reliés \Rightarrow Stable de k éléments
- Revient à chercher le plus grand stable dans G.

Exercice 9 – Solution (3/5)

- Soit S={A, I, D} un stable de 3 éléments
- C'est le plus grand stable (A)
- Donc, on peut mettre

Au maximum 3 matières En parallèle.

Exercice 9 – Solution (4/5)

- · La durée minimal des examens :
- 2 créneaux ⇒ 2 matières qui ont des candidats en commun ⇒ 2 sommets reliés ⇒ 2 couleurs
- k créneaux ⇒ k matières qui ont des candidats en commun ⇒ k sommets reliés ⇒ k couleurs
- Revient à chercher le nombre chromatique de G.

BENKAOUHA

Exercice 8 – Solution (5/5) • Appliquons l'algorithme de Welsh & Powell Sommet $x \in X \mid d_c(x) \mid$ Couleur $\varphi(x)$

-	C . Y	163	0 1 6
l	Sommet <i>x ∈X</i>	$d_G(x)$	Couleur $\varphi(x)$
	A	2	
ľ	D	1	
Ī	F	2	
Ī	I	2	
ľ	M	3	1
	S	2	
			H. BEN

Exercice 8 – Solution (5/5)

• Appliquons l'algorithme de Welsh & Powell

Exercice 8 – Solution (5/5)

· Appliquons l'algorithme de Welsh & Powell

Sommet x ∈X	$d_G(x)$	Couleur $\varphi(x)$
A	2	2
D	1	2
F	2	3
I	2	2
M	3	1
S	2	

- Nous avons besoin de 3 ccréneaux
- =3 demi-journées = 1.5 journées

Exercice 10

- Dans un groupe de personnes est tel que :
 - Chaque personne est membre d'exactement deux (2) associations,
 - Chaque association comprend exactement trois (3) membres
 - Deux (2) associations quelconques ont toujours exactement un (1) membre en commun.
- 1. Combien y a-t-il de personnes?
- 2. Combien y a-t-il d'associations?

Exercice 10 - Solution

- On modélise le problème sous forme d'un graphe non orienté G=(X, E)
- Chaque sommet $x \in X$ représente une association
- Chaque arête $e=\{x,y\} \in E$ représente une personne qui est membre des deux association x
- Chaque association comprend exactement 3 personnes $\Rightarrow \forall x \in X, d_G(x) = 3$

Exercice 10 - Solution

- Deux associations quelconques ont exactement un membre commun \Rightarrow n'importe quels 2 sommets sont reliés par exactement une arête \Rightarrow *G* complet est simple
- *G* complet simple 3-régulier $\Rightarrow K_4$
- Il y a 4 sommets et 6 arêtes
- Il y a 6 personnes et 4 associations

Exercice 11

- Montrez que dans un groupe de six (6) personnes, il y en a nécessairement :
 - trois (3) qui se connaissent mutuellement 011
 - trois (3) qui ne se connaissent pas.
- On suppose que si A connaît B, B connaît également A.
- · Cela est-il nécessairement vrai dans un groupe de cinq (5) personnes.

Exercice 11 – Solution (1/5)

- On modélise le problème par un graphe non orienté *G*=(*X*, *E*)
- Chaque personne *i* sera représentée par un sommet *i*∈*X*.
- Les arêtes vont représenter la relation « se connaissent ».
- {i, j} ∈E correspond à : les personnes i et j « se connaissent ».

NKAOUHA

Exercice 11 – Solution (2/5)

- Il consiste à montrer que contient une clique de 3 éléments ou un stable de 3 éléments.
- Le graphe *G* est simple car :
 - la relation i et i se connaissent n'a pas de sens (Pas de boucles)
 - Si i et j se connaissent, ça sera représenté par une seule arête (Pas d'arêtes parallèles)
- $G \text{ simple} \Rightarrow 0 \le d_G(x) \le 5$
- Pour un sommet quelconque, nous avons deux cas :
 - $-d_G(x) \in \{0, 1, 2\}$
 - $\, d_G(x) \in \{3,\,4,\,5\}$

. BENKAOUHA

Exercice 11 – Solution (3/5)

- $1^{\text{er}} \cos (d_G(x) \in \{0, 1, 2\})$
- Il y a au moins 3 sommets qui ne sont pas reliés avec x.
- · On a 2 possibilités:
 - Soit ces 3 sommets sont reliés complètement entre eux et ils forment une clique de 3 éléments.
 - Soit il y a au moins deux sommets non reliés entre eux et ils forment avec x un stable de 3 éléments.

NKAOUHA

Exercice 11 – Solution (4/5)

- $2^{\text{èmè}} \cos (d_G(x) \in \{3, 4, 5\})$
- Il y a au moins 3 sommets qui sont reliés avec x.
- On a 2 possibilités :
 - Soit ces 3 sommets ne sont pas du tout reliés entre eux et ils forment une stable de 3 éléments.
 - Soit il y a au moins deux sommets reliés entre eux et ils forment avec x une clique de 3 éléments.

AOUHA

Exercice 11 - Solution (5/5)

- Pour 5 sommets, ça ne marche pas toujours.
- Prenons l'exemple d'un graphe simple d'ordre 5 qui est 2-régulier.

- Plus grande clique : 2 éléments
- Plus grand stable : 2 éléments

H. BENKAOUHA

Exercice 12

- Soit G = (X, E) un graphe :
 - non orienté simple,
 - d'ordre n,
 - k-régulier.
- Dans quelles conditions G est isomorphe à son complémentaire G.

Exercice 12 - Solution (1/3)

- G et \overline{G} isomorphes Alors :
- G = (X, E)
 - non orienté simple,
 - d'ordre n,
 - k-régulier.
- $\overline{G} = (X, E')$
 - non orienté simple,
 - d'ordre n,
 - *k*-régulier.

H. BENKAOUHA

Exercice 12 – Solution (2/3)

- $\Rightarrow \forall x \in X$,
 - $-d_G(x)=k$
 - $-d_{\bar{a}}(x)=k$
- Vu que G est simple, on sait que chaque sommet x dans le complément est relié à tous les sommets (n) sauf lui-même (-1) et les sommets auxquels il était relié dans G (- $d_G(x)$)
 - $-d_{\bar{c}}(x)=n-1-d_{\bar{c}}(x).$

H. BENKAOUHA

KAOUHA 4

Exercice 12 – Solution (3/3)

• ⇒

k=n-1-k.

- \Rightarrow n=2k +1, c'est-à-dire le graphe doit être d'ordre impair
- \Rightarrow k = (n-1)/2, c'est-à-dire les degrés des sommets doivent être égaux à la partie entière de la moitié de n.