Варианты заданий для самостоятельной работы

Составить блох-схему и написать программу для выполнения следующих заданий.

Задание 7.1. Вычислить для своего варианта значение функции F. При получении в знаменателе нуля дать соостветствующее сообщение

Варианты заданий

рарианты задании	
1) $F = \frac{\min(x, y) + 0.5}{(\max(x, y))^2 - \sin z}$	2) $F = \frac{\min(x, y, z) + x}{(\max(x, z))^2 + y}$
	$(\max(x,z)) + y$
3) $F = \max(x, y) + y$	$\min_{z \in E} \min(z, \max(x, y))$
3) $F = \frac{\max(x, y) + y}{(\min(x, y, z))^2 + yx}$	4) $F = \frac{\min(z, \max(x, y))}{x^2 + z}$
$\max(x^2, y^2, xz) + x$	$\min(x, y+z)$
5) $F = \frac{\max(x^2, y^2, xz) + x}{(\min(x, y))^2 - y}$	6) $F = \frac{\min(x, y+z)}{(\max(x^2, y) + z^3)}$
$\max(x^2, y^2, x - y) + x$	$\min(x,(x+y)^2) + 0.5$
7) $F = \frac{\max(x^2, y^2, x - y) + x}{(\min(x, y))^2 + y^4}$	8) $F = \frac{\min(x, (x+y)^2) + 0.5}{x^2 + \max(y^3, x)}$
9) $F = \frac{\max(x+z,\min(x,y))}{x^2}$	$\min(x, \max(x + yz))^2$
x^2	10) $F = \frac{\min(x, \max(x + yz))^2}{x^2 + z^2}$
$11) F = \frac{\min(x, y+z)}{\cdot}$	$\min(x, y - x)$
$\frac{11) T}{\max(x, y) + \sin z}$	12) $F = \frac{\min(x, y - x)}{\max(yz, x^2) + \cos 2x^3}$
13) $F = \frac{\max(x^2, y^2, x - y) + x}{(\min(x, y))^2 + y^4}$	14) $F = \frac{\min(x^2, y+z)}{x^2 + \max(z^3, xy)}$
$\frac{13) \ \Gamma - \frac{1}{(\min(x,y))^2 + y^4}}{(\min(x,y))^2 + y^4}$	
$\max(x+y,\max(x,zy))$	$\max(x^3, y^2, xy) + x$
$15) F = \frac{\max(x+y,\max(x,zy))}{xe^2}$	16) $F = \frac{\max(x^3, y^2, xy) + x}{(\min(x, yz))^2 - y}$
17) $F = \frac{x(\max(x+z, zy))}{(z-z)^2}$	18) $F = \frac{\min(x, \max(x+z, y))^2}{x^3 + z^2}$
$\min(x,y) + x^2$	
$10) F = x^3 + \max(z^2, y)$	$\max(x, y + z) + e^{xz}$
19) $F = \frac{x^3 + \max(z^2, y)}{(\max(x, z))^2 - y}$	20) $F = \frac{\max(x, y+z) + e^{xz}}{\min(x^2, y) + z^3}$
$\min(x^2, z^4, xy) + x$	$\min(x, y + z) + e^{x}$
21) $F = \frac{\min(x^2, z^4, xy) + x}{(\max(x, y))^2 - y}$	22) $F = \frac{\min(x, y+z) + e^{x}}{\max(x^{2}, y) + z^{3}}$
$\max(x^2, y^2) + \cos 4z^2$	
23) $F = \frac{\max(x^2, y^2) + \cos 4z^2}{\min(x, y) + x^2}$	24) $F = \frac{(\min(x, y))^2 - y}{x^2 + \max(z^3, x)}$
25) $F = \frac{\min(x, y + 2x)}{\sqrt{3}}$	26) $F = \frac{\min(x, y - z)}{\max(yz, x^2) + \cos 2x^2}$
$\max(y,x) + \sqrt[3]{x}$	$\frac{20) T - \frac{1}{\max(yz, x^2) + \cos 2x^2}}{\cos 2x^2}$
27) $F = \frac{\max(x^3, z^2) + \cos 4y^2}{\sqrt{1-x^2}}$	28) $F = \frac{(\min(x, y))^4 + 2e^x}{x^3 + \max(z^2, x)}$
$\min(y, yz) + \sqrt{x}$	$\frac{26) \ r}{x^3 + \max(z^2, x)}$
29) $F = \frac{\max(xz, \min(y, z))}{x^2 + \sin zy}$	30) $F = \max(x, \max(y, z))^4$
$x^2 + \sin zy$	30) $F = \frac{\max(x, \max(y, z))^4}{\sin 2y + xe^2}$

Задание 8.2. Определить для своего варианта номер N области, в которой

находиться точка M(x,y) с заданными координатами. Границы области относить к области с наибольшим номером

