NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Serial No. N5261 NAFO SCR Doc. 06/38

SCIENTIFIC COUNCIL MEETING - JUNE 2006

An Assessment of American Plaice (Hippoglossoides platessoides) in NAFO Division 3M

by

R. Alpoim

Instituto Nacional de Investigação Agrária e das Pescas, INIAP/IPIMAR. Av. Brasília 1449-006 Lisboa, Portugal.

Abstract

The present assessment evaluates the status of the Division 3M American plaice stock. The catch at age matrix, EU survey abundance at age and the respective mean weights were updated. Both surveys and XSA estimated declines to very low values for abundance, biomass and SSB. Both F index (C/B ratio from the EU survey) and XSA fishing mortality were at a very low level in the last years. There are no changes in the perception of the stock status from last assessment (2004). This stock continues to be in a very poor condition, with only weak year-classes recruiting to SSB for the next five years at least. Although the level of catches is low since 1996, this stock has been kept at a very low level with no sign of recovery.

Introduction

Catch trends and TAC regulation

On Flemish Cap American plaice mainly occurs at depths shallower than 600 m.

In the early 1960s catches were relatively low with the exception of 1961. Catches were high between 1964 and 1966, with a peak in 1965 of 5 341 tons. Till the end of the 1960s catches remained at a low level within 80 tons and 150 tons, jumping to a higher 600-1 100 tons level on the early 1970s. Since 1974 this stock became regulated and catches ranged from 600 tons (1981) to 5 600 tons (1987). From 1986 to 1989 catches exceed the TAC. Catches declined to 275 tons in 1993, following the fast decline of the stock biomass and the 1992 reduction of the Spanish directed effort. Catch for 2005 was estimated to be 45 tons (Table 1 and Fig.1).

Since 1974 till 1993 a TAC of 2 000 tons has been in effect for this stock with the exception of 1978 (TAC of 4 000 tons). A reduction to 1 000 tons was agreed for 1994 and 1995, and finally a moratorium was agreed thereafter (Table 1 and Fig. 1).

In the recent year catches of 3M American plaice by Contracting Parties are mainly a by-catch of trawl fisheries directed to other species.

Survey data

The plan of stratification of the Flemish Cap (Bishop, 1994) used by the surveys is presented in Fig. 2.

In the 2002 assessment (Alpoim *et al.*, 2002 - SCR Doc. 02/62) and in the 2003 update (Alpoim, 2003 - SCR Doc. 03/44) of the status of the stock several historical survey data were analysed, this analysis is resume in Fig 3. Since 2003 only EU-Spain/Portugal survey was conducted. This was the only survey updated and used in this assessment.

EU-Spain/Portugal Survey (1988-2005) (González Troncoso *et al*, 2006 – SCR Doc. 06/16) (Vazquez and Cas as, *pers. comm.* 2006)

EU- Spain/Portugal conducted a random bottom trawl survey up to a depth of 730 metres (400 fathoms) on Flemish Cap since 1988. All surveys had a stratified design following NAFO specifications. The surveys were conducted in June-July of each year. Towing speed was around 3.5 knots. Trawling effective time is 35 min. The fishing gear used was a Lofoten gear with effective 30mm mesh size in the codend.

In June 2003 a new Spanish research vessel, the RV "Vizconde de Eza" (VE), replaced the RV "Cornide de Saavedra" (CS) that has carried out the whole EU survey series, with the exception of the years of 1989 and 1990. In order to preserve the full use of the 1988-02 survey indices available for several target species, the original time series needed to be converted to the new RV units.

During 2003 and 2004 Flemish Cap surveys, 130 pairs of parallel hauls (selected at random from the annual coverage of the bank) were performed simultaneously by the two vessels, at depths less than 730 m. Those pairs of parallel hauls were distributed over the swept area trying in one hand to maximize the sampled area and on the other to guarantee a large enough number of hauls with acceptable catches of all target species, namely the ones from severely depleted stocks (cod and American plaice). Both vessels were fishing with the same gear, a Lo foten trawl gear with 35mm mesh size at the codend, which remained unchanged throughout the series. With the comparative fishing trials concluded and the conversion factors estimated, the indices from R/V Cornide de Saavedra were transformed to the R/V Vizconde de Eza scale to make them comparable. The results of the calibration shown that the new RV Vizconde de Eza is 33% more efficient than the former RV Cornide de Saavedra as regards American plaice (González Troncoso and Casas, 2005). 1988-2002 data are transformed R/V Cornide de Saavedra data, 2003-2005 data are original from R/V Vizconde de Eza (Casas and González Troncoso, 2005).

The methodological aspects and results of the calibration are presented in SCR Doc. 05/29 (González Troncoso and Casas, 2005).

Biomass and abundance estimates

Estimates for biomass and abundance are presented in Table 2 and Fig. 3.

Length composition of the stock.

Length compositions from 1988 to 2005 were given by the EU survey (Vazquez and Casas, *pers. comm.* 2006). (Table 3)

Length weight relationships

Length weight relationships for the Div. 3M American plaice (1988-2005) were calculated with EU survey length/weight data from both males and females (Vazquez and Casas, *pers. comm.* 2006) and used in this assessment on an annual basis (Table 4).

Stock abundance-at-age

The EU survey series presents different age reading criteria due to changes in the age reader along the series. The series can be split in two periods: the first from 1988 to 1992 that follows the criteria of one age reader and a second period from 1993 to 2001 in which several age readers have a very good agreement between them. Some effort have been spent in order to revisit the otoliths from the former years under the present accepted criteria, but, due to the size of the otoliths collections from several years and to the deterioration of some sets due to the enhancing methods used before, this work is difficult to achieve. In order to have the same criteria for all the series a combined age length key from 1993 to 2001 was used backwards over 1988-1992.

The age-length keys used in 2003 and 2004 became from the sampling of the two RV (*Vizconde de Eza* and *Cornide Saavedra*) in order to have a more complete AL key.

Abundance-at-age of the stock is presented in Table 5.

Stock mean weights at age

The annual EU survey length weight relationships were used to calculate mean weights at age in the Div. 3M American plaice stock for the period 1988-2005 (Table 6). For assessment purposes, on the years/ages where weight at age data are missing, the average mean weights at age for all the period were used.

Maturity ogive

The criteria applied in this work was the same applied in previous years. The spawning stock biomass was calculated as 50% of age 5 and age 6 plus.

Commercial Data

Length composition of the commercial catch and by-catch

The length compositions presented in the 2004 Portuguese and Spanish Research Reports (Vargas *et al.*, 2005; Gonźalez *et al.*, 2005) were used to estimate the length composition of the 2004 total catch. The length composition presented in the 2005 Spanish Research Report (Gonźalez *et al.*, 2006) was used to estimate the length composition of the 2005 total catch. The length composition presented in the 2005 Russian national report (Vazkov *et al.*, 2006) was not used due to the very small number of fish sampled.

From these length distributions a mean weight in the catch was derived in order to transform the correspondent catch in weight into a catch number. Each mean weight was calculated as:

$$\overline{W} = \frac{\sum (N_{LC} * \overline{W}_{LC})}{\sum N_{LC}}$$

where N_{LC} is the number observed in length-class LC and \overline{W}_{LC} is the mean weight of the length-class LC. Mean weights at length were given by the length/weight relationships from the EU bottom trawl survey series.

The breakdown of the total catch is presented in Table 7. The commercial catch at length matrix (Alpoim and Ávila de Melo, 2004) was updated with the 2004 and 2005 data (Table 8).

Catch at age

The catch-at-age was given by the same age length keys already used to get survey abundance-at-age (Table 9).

Catch mean weights-at-age

The annual EU survey length weight relationships were used to calculate mean weights-at-age in the catch of 3M American plaice for the period 1988-2005 (Table 10). Missing weights were filled with the respective average catch mean weight-at-age for all the period. Average mean weight at age 1 from the stock was also assumed on the commercial catch for that age.

Partial recruitment vector

In order to generate an observed partial recruitment vector, an F index was first derived from the 1988-2005 ratios at each age between the sum of the annual permilles on the commercial catch and the correspondent sum of permilles for the EU survey abundance. Those indicators of F at age were then standardised to its highest value, recorded at age 12. Assuming a flat top recruitment curve this observed partial recruitment vector was adjusted to a general logistic curve (Table 11, Fig. 4). The expected values were used in the yield per recruit analysis.

Vectors used in yield-per-recruit analysis

An yield-per-recruit analysis was conducted incorporating the following sets of vectors (Table 12A), all of them considered to be representative, in terms of growth and maturity, of Div. 3M American plaice:

- 1) Mean weights at age in the commercial catch.
- 2) Mean weights at age in the stock.
- 3) Female maturity ogive at age.
- 4) Expected partial recruitment vector.
- 5) Natural mortality set at 0.2.

Assessment Results

Comments on trends on stock indicators.

The two former USSR-Russian survey series showed a decreasing trend in biomass and abundance between 1972 and 1993. The Russian surveys in 2001-2002 show very low estimates of biomass and abundance. From 1978 till 1985 Canadian series is stable, with survey biomass and abundance around 6 700 tons and 10 million fish. A continuous decline in abundance and biomass is observed since the beginning of EU survey. The 2000 abundance and biomass were the lowest of this series (1 606 tons and 2.1 millions fishes) and improved little since then. Results of the 1996 Canadian survey are comparable with the 1996 EU survey (Fig. 3) (Alpoim *et al.*, 2002 and Alpoim, 2003).

A proxy to fishing mortality has been giving by the ratio between catch and EU survey biomass for ages fully recruited to the fishery (ages 8-11). This index falls to 0.034 in 1993 and from 1994 till 2003 fluctuates around 0.09, since 2003 this index declined again being at a minimum in 2005 (0.011) (Table 13 and Fig. 6).

Age 14, corresponding to the 1991 year-class, was the best represented in the 2005 EU survey (Table 5). Since 1991, all the recruiting year-classes were poorly represented in the EU survey. Survey spawning biomass is declining as well since 1988 reaching a minimum in 2000 and remaining at a very low level in 2005.

Age 3 is the first age to appear in all the years of the EU survey series, so it was used to evaluate the stock/recruitment relationship. Only 15 points are available, showing very poor recruitment for an SSB less than 9 000 tons (Tab. 14, Fig. 7).

In Fig 8 it is plotted an EU survey index of stock reproductive potential, the log of the R/SSB ratio for each year-class and with both sexes included in spawning biomass. Before 1991, an average of 0.121 recruits at age 3 were produced per Kg of SSB, from 1991 till 2000 this average was reduced to only 0.011 recruits per Kg of SSB. The 2001 and 2002 mean (0.086 recruits per Kg of SSB) although is higher than the previous period didn't generated good recruitments due to the poor level of SSB (Fig.8). This recruitment failure seems not to be caused by the shrimp fishery developed in Flemish Cap since the beginning of 1990s, because estimation of by-catch gives a very low figures for American plaice (Kulka, 1999).

Yield-per-recruit analyses

An yield-per-recruit analysis was conducted, incorporating the sets of vectors already described. This analysis give a $F_{0.1} = 0.165$ and an $F_{max} = 0.365$ (Tab. 12, Fig. 5).

XSA

An XSA was performed using the Lowestoft VPA Suite (Darby and Flatman, 1994). The input files for XSA analysis are presented in Table 15. Natural mortality was assumed constant at 0.2. The month with a peak of spawning for Div. 3M American plaice is May (Serebryakov *et al.*, 1987) and was used to estimate of the proportion of F and M before spawning.

The ratios between annual catches and EU survey bottom biomass were considered to be a proxy of mean fishing mortalities from 1988 to 2005. The survey biomass can be considered representative of the mean annual biomass (EU survey is conducted around the middle of the year). The 2005 F index was multiplied by the observed PR to have a starting guess of F at age in the terminal year. In order to get the Fs for the last age through 1988-2005 the selection at age 15 was multiplied by the F index of each year. The rest of the data were already described above. Several XSA frameworks have been tested, and the adopted in this assessment has the following settings:

- No year weights were applied, due to the short time series.
- Age 12 was considered to be the first age at which q is independent of age.
- Terminal year survivor estimates not shrunk towards mean F.
- A shrink survivor estimates with a mean F for the 5 older true ages in 1990-1994 period was used.
- The Log (S.E.), for the F means to which the estimates are shrunk, was 1.0.
- The earliest year to be used for tuning the VPA was 1994.
- Minimun Log (S.E.) for the terminal population estimates derived from each fleet (Threshold se) was 0.5.

The XSA diagnostics and the plot of the log catchability residuals are presented in Table 16 and in Fig. 9. The XSA outputs are presented in Table 17 and in Fig. 10 and 11.

SSB-R Scatter plot based in the XSA results (Fig. 10) show also a very poor recruitment for an SSB less than 5 000 tons.

Biomass and spawning stock biomass show a steady decline in the recent years to very low levels. Since 1991 recruitment is kept at a very low level. The rate of exploitation decreased in recent years and is at a low level.

Conclusions

All results indicate that the stock suffered a continuous decline, even with catches kept at a low level since 1996. A general decrease is observed in the biomass and abundance estimated by the several surveys. The same trends are in the XSA results, ending at a very low biomass and SSB on the terminal year.

Indices from the EU survey and XSA indicates no sign of recruitment since 1991 with only weak year-classes expected to be recruited to the SSB within at least five years.

F estimates from the XSA and EU survey (age 8-11) decreased in recent years and is at present at a very low level.

Stock status

This stock continues to be in a very poor condition, with only weak year-classes expected to be recruit to the SSB on the next five years. Although the level of catches since 1996 is low, all the analysis indicates that this stock is kept at a very low level with no sign of recovery.

Acknowledgements

My thanks to A. Ávila de Melo (INIAP/IPIMAR), F. González (IEO) and J.C. Mahé (IFREMER) for their help in the framing and interpretation of the output of the XSA.

This study was supported by the European Commission (DG XIV), INIAP/IPIMAR, CSIC, IEO and AZTI.

References

Alpoim R., C. Darby and A. M. Ávila de Melo - 2002. An assessment of American Plaice (*Hippoglossoides platessoides*) in NAFO Division 3M. NAFO SCR Doc. 02/62. N4674. 37p.

Alpoim R. and A. M. Ávila de Melo - 2004. An assessment of American Plaice (*Hippoglossoides platessoides*) in NAFO Division 3M. NAFO SCR Doc. 04/50. N5003. 28p.

- Alpoim R. 2003. A stock status update of American Plaice (*Hippoglossoides platessoides*) in NAFO Division 3M. NAFO SCR Doc. 03/44. N4862. 12p.
- Bishop C. A. 1994. Revisions and additions to stratification schemes used during research vessel surveys in NAFO Subareas 2 and 3. NAFO SCR Doc 94/43. N2413, 23p.
- Casas, J. M. and D. González Troncoso 2005. Results from bottom trawl survey of Flemish Cap in July 2004. NAFO SCR Doc.05/35. N5121. 35p.
- Darby, C. and S. Flatman, 1994. Virtual population analysis: version 3.1 (Windows/Dos) user guide. *Info. Tech. Ser., MAFF Direct. Fish. Res.*, Lowestoff, (1): 85p.
- González Troncoso, D. and J. M. Casas 2005. Calculation of the Calibration Factors from the Comparative Experience between the R/V *Cornide de Saavedra* and the R/V *Vizconde de Eza* in Flemish Cap in 2003 and 2004. NAFO SCR Doc.05/29. N51125. 8p.
- González Troncoso, D., J. M. Casas, and F. Saborido-Rey 2006. Results from bottom trawl survey of Flemish Cap of July- August 2005. NAFO SCR Doc.06/16. N5231. 40p.
- Gonźalez, F., J. L. Del Rio, A. Váquez, H. Murua, E. Román, M. Casas and G. Ramilo 2006. Spanish research report for 2005. NAFO SCS Doc. 06/9. N5096. 26p.
- Gonźalez, F., J. L. Del Rio, Váquez, A., H. Murua, E. Román, M. Casas, P. Duran, and G. Ramilo 2005. Spanish research report for 2004. NAFO SCS Doc. 05/8. N5096. 26p.
- Kulka, D. W. 1999. Update on the By-catch in the shrimp fisheries in Davis Strait to Flemish Cap. NAFO SCR Doc. 99/96. N4168. 15p.
- Serebryakov V.P., A.V. Astafjeva and V.K. Aldonov, 1987. USSR Ichthyoplankton Investigations on Flemish Cap, 1978-83. NAFO Sci. Coun. Studies, 11. 7-21p
- Vargas J., R. Alpoim, E. Santos and A. M. Ávila de Melo 2005. Portuguese research report for 2004. NAFO SCS Doc. 05/6. N5086. 55p.
- Vaskov, A. A., K. V. Gorchinsky, T. M. Igashov and S. P. Melnikov 2006. Russian research report for 2005. NAFO SCS Doc. 06/7. N5223. 24p.

TABLE 1 - Nonimal catches (t) from 1960-2005, Stacfis estimates (t) from 1988-2005 and TAC (t) from 1974-2006 of American plaice from NAFO Division 3M.

						ninal catche					CE HOIII NAI O DIVI			•	
Year	Canada	Japan	USSR/SUN	Country Poland	E/ESP	E/GBR	E/PRT	E/DEU	Other	Total	Flatfishes (NS) Total	Yellowtailf. Total	GRAND TOTAL	STACFIS estimates	TAC
1960	-	-	-	-	-	-		-	-	0	316	0	316		
1961	-	-	-	-	-	-	-	-	-	0	2282	0	2282		
1962	14	-	-	-	-	-	-	-	-	14	707	0	721		
1963	-	-	51	108	-	20	-	-	-	179	0	0	179		
1964	-	-	1831	8	-	37	-	-	-	1876	0	0	1876		
1965	19	-	4964	216	-	83	-	-	2	5284	57	0	5341		
1966	-	-	4003	17	-	53	-	-	-	4073	0	0	4073		
1967	57	-	-	63	-	33	-	-	1	154	0	0	154		
1968	100	-	121	-	-	4	-	-	-	225	6	0	231		
1969	12	-	113	-	-	-	-	-	-	125	0	0	125		
1970	-	-	62	-	-	-	-	-	-	62	17	0	79		
1971	-	-	1079	-	-	-	-	-	-	1079	0	0	1079		
1972	-	-	665	8	17	65	-	-	106	861	0	0	861		
1973	68	-	312	39	-	85	-	-	-	504	3	127	634		
1974	211	-	1110	-	-	607	-	-	-	1928	3	12	1943		2000
1975	140	-	958	-	8	80	522	-	-	1708	5	31	1744		2000
1976	191	-	809	15	28	-	149	-	-	1192	0	137	1329		2000
1977	30	-	987	7	18	-	457	1	118	1618	0	10	1628		2000
1978	7	49	581	21	36	2	486	100	51	1333	3	0	1336		4000
1979	10	63	457	2	16	-	248	-	-	796	4	0	800		2000
1980	1	1	909	5	3	-	232	34	-	1185	64	0	1249		2000
1981	-	47	309	-	276	-	-	-	-	632	0	0	632		2000
1982	-	53	1002	-	17	-	-	-	-	1072	3	0	1075		2000
1983	-	9	1238	-	434	-	208	-	-	1889	3	0	1892		2000
1984	-	1	711	-	204	-	196	190	-	1302	1	0	1303		2000
1985	-	2	971	-	163	-	266	318	-	1720	0	0	1720		2000
1986	-	3	962	-	1048	-	1741	-	-	3754	0	3	3757		2000
1987	-	- 78	501 228	-	4137	-	969	-	- 6	5607	20	0 1	5627 2989	2800	2000
1988		402		-	1608	-	941	-	-	2861 3894	127	0	3966		2000
1989	-		88	-	2166	-	1238	-			72			3500	2000
1990	-	308 450	- 5	-	102	2	359	-	21 24	790 2082	38 3	94 1	922 2086	790	2000
1991		450 50	5	-	605		996	-						1600	2000
1992 1993	-	50 49	-	-	390 244	-	314 231	-	11 181	765 705	0 46	1 20	766 771	765 275	2000 2000
1993	-	49	-	-	3	-	251	-	-	254	0	84	338	669	1000
1994	_		-	-	125	-	118	-	-	243	14	0	257	1300	1000
1996	_	_	-	_	105	_	29	_	8	142	2	28	172	300	0
1990	-		-	-	56	-	52	-	-	108	0	0	108	208	0
1998	_	_	-	_	140	_	47	_	1	188	3	2	193	294	0
1999	-	-	4	-	220	-	18	-	1	243	5	0	248	255	0
2000	_	_	55	_	169	_	27	_	1	252	1	6	259	133	0
2000	_	_	14	_	89	_	162	_	3	268	24	135	427	149	0
2002 (1)	-	5	4	-	74	-	73	-	1	200 157	66	32	255	128	0
2002 (1)	_	3	7	_	75	_	28	_	17	130	0	15	145	131	0
2003 (1)	_	4	4	_	39	_	57	_	3	107	0	0	107	81	0
2005 (1)	_	-		_	58	_	11	_	14	83	0	3	86	45	0
2006											·	ŭ			Õ

^{(1) -} Provisional (2) - Recalculated from NAFO statistical data base using the FISHSTAT Plus program by FAO.

Fig.1 . American plaice in Div.3M: nominal catches and agreed TAC's

Fig. 2. Stratification scheme for stratified-randown ground fish surveys in Div 3M. (Bishop 1994).

Table 2 - EU - surve ys in Div. 3M from 1988-2005: estimates of biomass (t) and abund ance (000's) of A. plaice.

	Depth range	Area								Year										
Stratum	(m)	(sq. n. mi.)	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1 998	1999	20 00	2001	2002	2003	2004	2005
501	128 -1 46	342	1306	1000	505	1078	709	1079	661	2230	1462	381	156	372	345	1043	141	1292	1507	1038
502	148 -1 83	838	2845	3602	1375	2663	1714	1267	1199	1335	943	740	1 587	1810	976	835	1262	713	768	796
503	185 -2 56	628	1367	1118	1668	1247	631	444	325	252	168	495	284	97	21	93	75	17	427	101
504	185 -2 56	348	2199	461	817	320	557	572	853	489	268	203	343	53	100	85	128		395	359
505	185 -2 56	703	2599	3093	1830	1407	837	1291	1230	549	500	619	744	73	56	112	189	82	72	45
506	185 -2 56	496	479	1130	954	501	601	305	808	123	32	13	35	40	25	37	63	29	26	71
507	258 - 366	822	1174	531	837	389	639	319	316	249	72	83	47	19	15	28	52	30	84	31
508	258 - 366	646	417	164	263	251	727	487	171	132	56	123	165	3		45	43	14	55	175
509	258 - 366	314	103	163	343		373	205	20	500	55	36					1	9	77	18
510	258 - 366	951	2323	1491	2000	1308	1406	1459	2236	708	415	287	36	72	45	95	36	54	45	87
511	258 - 366	806	1186	1168	1316	401	372	292	303	109	68	32	29	37	23	27	59	29	69	35
512	367-549	670	9	19	45	17	11	15	33	12	32	7				4		11		
513	367-549	249	3		20					3										
514	367-549	602	8	8	7	389	29		24	15	4		4	9						
515	367-549	666	23	99	3	97	37	109	40	68	23	7	7					6		4
516	550 -7 31	634	5			4	9	12	5											
517	550 -7 31	216																		
518	550-731	210																		
519	550-731	414				15	4	5	3	11										
total bioma	SS		16046	14047	11983	10087	8656	7861	8227	6785	4098	3026	3 4 3 7	2585	16 06	2404	2049	2286	3525	2760
s.e.			1845	2048	1276	1180	954	1040	1373	1083	912	708	751	8 69	332	429	729	748	740	684
mea n catcl	hpertow (kg)		1 9.95	17.47	1 4.90	12.55	10.76	9.79	10.23	8.44	5.09	3.76	4.27	3.21	2.00	2.99	2.55	2.86	4.38	3.43
s.e.			2.29	2.55	1.59	1.47	1.19	1.29	1.71	1.35	1.13	8 8.0	0.93	1.08	0.41	0.53	0.91	0.93	0.92	0.85
total abund	a nce (000 's)		27410	2739 1	20946	17643	13728	11648	1 1247	9376	5658	3770	3 800	2672	21 32	3168	197 1	2769	4015	3326
	berper tow		34.09	34.01	26.05	21.79	17.05	14.47	13.96	11.66	7.02	4.69	4.73	3.32	2.65	3.94	2.45	3.44	4.99	4.14

Fig. 3A. American plaice in Div. 3M: trends in biomass in the surveys.

Fig. 3B. American plaice in Div. 3M: trends in abundance in the surveys.

Fig.3C. American plaice in Div. 3M: mean weight per tow in the surveys.

Fig.3D. American plaice in Div. 3M: mean number per tow in the surveys.

Table 3: Le	ength com	position (absolute fi	reque na es	s in '000) (of the 3M	am encan	plaice sto	CK, EU SU	rv ey 1 988	-2005.								Lawarth
Length group	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	Length group
4							7												4
6				20															6
8				20															8
10		41	8	27								7	8						10
12	68	14		46					8	8			7			7			12
14	555	14		48	48														14
16	1274	104	149	136	230		8	14	7	8						6	13		16
18	295	327	411	101	443	19	31	15	32	16			7	8			7	8	18
20	55	1205	146	77	253	37	33				16		8	31		7	22	8	20
22	166	2836	188	461	131	191	31		14		16		16			14	66	39	22
24	295	3199	391	828	272	565	44	45	38	30	8	8	8	8	9	13	109	24	24
26	575	1602	690	469	360	619	129	45	24	60	8	15	8	31	8	7	127	40	26
28	932	499	1301	456	392	360	297	113	68	44	45	31	44	54	32	27	73	48	28
30	1434	637	2964	782	452	657	729	212	111	30	15	8	31	23	24	72	69	149	30
32	2459	998	2836	1625	568	563	965	639	286	189	77	54	69	68	32	64	57	178	32
34	3019	2020	1600	2522	1105	595	864	663	352	181	219	121	133	200	73	129	122	138	34
36	3582	3495	1726	2749	2251	1302	1161	1292	757	426	413	256	250	365	109	336	403	250	36
38	2651	2627	1790	2269	2042	1397	1710	1688	1040	678	401	258	258	682	145	482	404	419	38
40	2740	1959	1427	1384	1576	1439	1511	1420	979	456	500	316	289	443	195	413	459	420	40
42	2873	1680	1282	787	1266	1178	594	930	594	321	379	209	250	265	106	376	455	370	42
44	2663	2017	1492	1020	630	936	708	472	356	295	375	205	130	172	96	136	263	227	44
46	788	1165	1318	883	604	705	803	451	232	216	339	218	221	138	189	123	134	139	46
48	467	527	763	582	602	349	729	405	312	285	285	327	156	177	289	136	197	177	48
50	203	191	291	184	331	397	419	468	233	317	330	260	133	211	310	206	344	203	50
52	162	164	101	117	120	236	273	279	104	153	235	271	76	187	233	142	412	261	52
54	72	47	46	28	40	62	117	183	66	29	90	60	21	98	77	45	208	109	54
56	55	15	21	14	7	24	76	31	34	21	44	35	7		44	21	54	104	56
58	28	6	6	7		16		6	6	7	6	6		6		8	20	16	58
60							0	6	6			6							60
62							6												62
64					0														64
66 Tatal	07440	07004	20040	17010	6	11010	11017	0076	FCFC	2770	2000	0070	0400	2466	1071	0700	4045	2220	66
Total	27410	27391	20946	17643	13728	11648	11247	9376	5658	3770	3800	2672	2132	3168	1971	2769	4015	3326	Total

40.0 40.8 40.7 41.7 43.3 44.3

41.6 41.8

45.8

41.8

42.5

42.3

36.6 34.3

36.4

36.6

37.5

38.6

Table 4: Length weight relationships of 3M American plaice.

Table 4. Length Weight	relationships of Sivi Aff	iei ica ii piaice.	
Year	а	b	n
1988	0.0048	3.2121	1211
1989	0.0055	3.1810	1192
1990	0.0043	3.2420	1314
1991	0.0043	3.2404	1032
1992	0.0048	3.2130	1296
1993	0.0030	3.3362	1036
1994	0.0029	3.3373	1065
1995	0.0027	3.3474	772
1996	0.0048	3.1978	571
1997	0.0046	3.2116	435
1998	0.0044	3.2260	442
1999	0.0043	3.2294	452
2000	0.0082	3.0444	411
2001	0.0044	3.2074	570
2002	0.0029	3.3242	225
2003	0.0044	3.2292	400
2004	0.0064	3.1222	602
2005	0.0043	3.2177	345

Table 5: Population abundance (000s) at age (yrs) of A plaice from surveys in Div. 3M during EU survey 1988-2005.

Year/age	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16+
1988	483	1339	1619	3955	3725	3423	5016	3004	1802	1157	669	418	230	358	138	74
1989	55	1827	6621	2682	2787	2544	3794	2548	1616	1089	672	429	221	332	117	57
1990	8	665	1581	5311	2456	1802	2785	2066	1427	995	648	432	242	337	128	62
1991	154	353	1628	2530	2796	1945	2645	1855	1283	879	575	378	186	262	91	83
1992	24	795	886	1210	1544	1682	2433	1642	1142	813	541	363	187	287	108	71
1993		27	1536	1082	775	447	4116	467	782	367	257	299	354	1065	32	42
1994	7	47	45	2134	1034	878	983	3425	322	654	224	221	252	519	490	9
1995		29	115	741	2127	1368	1377	913	1536	161	181	145	145	292	219	28
1996	8	39	116	260	585	1666	894	545	403	630	144	78	82	109	69	28
1997	8	16	110	25	122	419	1204	270	413	293	487	129	25	93	47	110
1998		25	31	47	72	266	622	903	526	356	301	288	88	113	57	105
1999	7		23	65	79	80	241	472	510	255	338	207	121	117	59	98
2000	16	25	7	84	106	153	119	153	392	427	231	185	74	56	46	59
2001		40	52	58	104	56	111	268	438	581	478	420	190	162	111	99
2002			32	65	17	89	66	126	159	190	297	221	249	142	131	187
2003	7	6	32	93	80	58	79	147	300	258	431	426	272	272	148	160
2004		117	280	73	79	107	105	127	246	316	285	598	426	404	327	525
2005		31	111	288	106	106	126	102	224	206	225	252	353	403	252	540

Total
27410
27391
20946
17643
13728
11648
11247
9376
5658
3770
3800
2672
2132
3168
1971
2769
4015
3326

Table 6 - Weights at age of the 3M American plaice stock (Kg) from EU surveys, 1988-2005.

Year/age	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16+
1988	0.027	0.048	0.152	0.338	0.495	0.620	0.721	0.786	0.801	0.820	0.876	0.959	1.201	1.208	1.537	1.742
1989	0.013	0.090	0.151	0.295	0.523	0.630	0.725	0.815	0.839	0.856	0.912	0.991	1.181	1.186	1.462	1.646
1990	0.010	0.062	0.189	0.312	0.425	0.564	0.709	0.829	0.857	0.893	0.956	1.029	1.179	1.200	1.412	1.578
1991	0.015	0.070	0.157	0.341	0.478	0.563	0.660	0.770	0.799	0.829	0.886	0.953	1.141	1.157	1.417	1.634
1992	0.029	0.063	0.158	0.315	0.516	0.616	0.684	0.758	0.807	0.832	0.910	1.000	1.182	1.190	1.408	1.712
1993		0.061	0.160	0.295	0.407	0.579	0.727	0.755	0.798	0.874	0.906	0.932	1.075	1.218	1.839	1.628
1994	0.001	0.062	0.162	0.316	0.490	0.568	0.650	0.808	0.954	0.917	1.025	1.025	1.271	1.228	1.540	1.895
1995		0.044	0.191	0.330	0.488	0.624	0.668	0.789	0.888	1.222	1.279	1.468	1.518	1.515	1.563	2.082
1996	0.017	0.055	0.190	0.332	0.469	0.589	0.708	0.823	0.929	0.864	1.081	1.390	1.307	1.519	1.649	1.777
1997	0.017	0.049	0.171	0.236	0.427	0.559	0.673	0.643	0.859	0.998	1.007	1.215	1.275	1.437	1.607	1.515
1998		0.090	0.174	0.260	0.384	0.514	0.652	0.778	0.826	1.027	1.239	1.322	1.501	1.513	1.606	1.650
1999	0.010		0.166	0.315	0.440	0.546	0.568	0.773	0.849	0.998	1.178	1.275	1.462	1.705	1.563	1.587
2000	0.016	0.091	0.115	0.245	0.409	0.522	0.614	0.673	0.756	0.748	0.848	0.939	1.222	1.177	1.295	1.386
2001		0.072	0.210	0.245	0.374	0.434	0.528	0.603	0.622	0.702	0.703	0.853	1.076	1.321	1.427	1.487
2002			0.191	0.287	0.398	0.444	0.668	0.757	0.711	0.871	1.098	1.151	1.298	1.415	1.486	1.524
2003	0.017	0.041	0.134	0.327	0.361	0.457	0.543	0.669	0.674	0.735	0.794	0.858	0.886	1.028	1.314	1.499
2004		0.110	0.182	0.307	0.457	0.565	0.594	0.691	0.710	0.754	0.785	0.837	0.999	1.092	1.240	1.490
2005		0.094	0.180	0.295	0.396	0.527	0.643	0.620	0.747	0.792	0.795	0.827	0.885	0.920	1.048	1.413
mean	0.016	0.069	0.169	0.299	0.441	0.551	0.652	0.741	0.801	0.874	0.960	1.057	1.203	1.279	1.467	1.625

Table 7: Criteria applied to convert total catches in weight to total catches in number, 2004-2005.

YEAR	TOTAL CATCH	BREAKDOWN TOTAL CATCH	LI	ENGTHS COMF	POSITION		Mean Weight	TOTAL CATCH IN
	(ton)	(ton)	Country	Source	Gear	Paper	(Kg)	NUMBER (000's)
2004	91.1	32.0	Spain	Commercial	OTB	scs 05/8	0.955	33.5
2004	2004 81.1	49.1	Portugal	Commercial	ОТВ	scs 05/6	0.788	62.3
2005	45	45	Spain	Commercial	ОТВ	scs 06/9	1.193	37.7
2005	40	0	Russia	Commercial	ОТВ	scs 06/7	0.108	0.0

Table & Length composition (absolute frequencies in '000) of the 3M American plaice catches, 1988-2005.

length group	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
16		19.3	0.8				0.7	3.0										
18		60.5	3.9				2.9	3.2										
20	6.9	126.5	2.0		5.3	1.8	3.3											
22	10.4	88.0	8.2	5.8	1.3	6.9	3.2						0.3	0.1			0.1	
24	65.6	35.8	10.4	6.6	1.4	14.3	4.8	9.7	5.1		0.2			0.2			0.1	
26	186.5	41.3	20.2	0.0	7.4	16.1	18.3	9.7	0.4		0.2		0.7	0.5	0.3	0.02		
28	345.3	131.2	43.2	23.2	23.7	17.1	30.6	24.3	10.0		0.5		9.4	3.0	1.1	0.1	1.3	
30	276.2	226.7	91.7	28.2	37.5	23.2	71.1	45.4	31.6		0.7		16.3	10.0	2.2	0.5	2.3	
32	303.9	365.4	131.9	109.7	36.7	23.0	94.4	136.9	63.4		1.8	5.2	21.5	18.1	5.1	2.5	4.2	
34	611.2	569.3	96.5	203.1	61.0	19.9	81.3	142.1	98.4	14.6	4.0	10.4	23.4	22.5	17.9	3.0	4.5	0.2
36	621.5	603.5	86.9	283.0	90.5	28.5	88.0	225.2	86.5	13.0	6.2	25.9	23.6	29.7	27.9	10.8	7.9	0.5
38	372.9	477.8	71.1	147.1	122.7	37.5	128.1	294.5	74.7	24.4	15.6	51.9	24.5	31.1	24.7	15.2	12.8	1.5
40	372.9	356.7	70.6	146.2	108.2	29.4	112.6	249.8	47.4	37.8	22.6	15.6	23.0	28.9	24.1	25. 1	12.8	3.9
42	473.1	696.1	82.1	147.7	57.1	34.6	44.9	166.2	47.2	22.8	17.8	20.8	17.1	22.2	22.9	22.1	9.8	3.6
44	397.1	630.2	125.0	320.8	67.8	32.6	55.2	86.1	23.3	8.1	44.0	36.3	12.9	18.1	12.8	5.5	12.3	1.5
46	158.8	405.0	132.8	295.7	79.8	25.6	63.3	84.6	14.1	17.2	36.5	31.1	11.6	14.3	10.7	16.0	7.1	2.7
48	76.0	97.4	73.9	120.1	86.9	23.0	59.4	78.4	12.7	33.5	30.9	46.7	9.8	12.6	9.8	10.9	6.0	5.4
50	62.2	68.0	30.3	106.6	63.2	22.0	35.4	94.0	8.4	24.4	37.8	25.9	6.5	6.5	6.4	14.8	6.5	8.0
52	72.5	35.8	9.6	9.1	33.1	12.7	24.3	58.5	2.8	16.3	36.1	10.4	6.9	3.6	5.4	6.9	5.6	6.6
54	34.5	27.5	6.7	3.0	10.3	3.8	10.8	40.2	0.6	4.1	5.3		8.0	1.5	1.9	3.0	2.4	3.4
56	17.3	13.8	3.4	0.004	5.4	1.6	7.4	7.2	0.3	1.7	4.4		0.4	0.5	0.2	0.2	0.2	0.5
58	3.5		8.0	0.002	4.8	0.7		1.5			0.03			0.1			0.04	
60					0.01	0.1		1.5						0.04				
62			0.1			0.001	0.6							0.1		1.0		
64														0.01				
Total ('000)	4468.2	5075.7	1102.2	1955.9	904.0	374.5	940.5	1762.1	527.0	218.0	264.8	280.2	208.7	223.8	173.5	137.5	95.8	37.7
nean length	37.9	38.7	39.5	41.6	41.8	39.6	39.5	40.8	37.9	44.6	46.7	43.9	39.3	40.3	41.3	44.1	42.8	48.4

Table 9.	Catch at an	e (0.00s)	of the 3M	American nl	aice 1988-20	05

Year/age	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16+	Total
1988		7	311	731	549	440	720	532	386	265	173	118	65	102	43	25	4468
1989		175	209	573	527	482	886	715	520	356	230	148	80	118	39	19	5076
1990		7	49	183	112	87	158	147	110	78	55	39	24	33	13	7	1102
1991		1	19	133	185	168	342	331	243	174	124	84	50	68	23	12	1956
1992		4	17	76	75	76	136	124	100	77	60	46	31	45	23	14	904
1993			47	42	26	11	112	13	24	12	9	11	15	49	2	2	375
1994		4	6	219	98	77	75	254	24	48	16	17	20	40	43	1	941
1995		6	24	167	458	235	231	155	250	31	35	30	30	58	45	7	1762
1996			13	60	101	173	63	41	23	34	6	3	3	3	2	0.4	527
1997					4	17	61	12	28	23	35	13	3	9	4	10	218
1998			0.3	1	2	7	28	57	36	31	32	33	8	14	7	10	265
1999				4	6	8	27	59	60	35	40	21	9	5	3	5	280
2000		0.2	0.1	19	25	25	12	13	33	35	17	13	6	3	3	4	209
2001			5	6	16	8	10	21	30	41	35	29	10	6	3	3	224
2002			1	8	4	17	13	21	22	23	24	17	12	4	3	5	174
2003			0.02	2	2	2	3	6	13	12	23	25	16	15	9	10	138
2004		0.1	1	2	3	3	4	4	8	10	8	16	10	9	7	9	96
2005				0	0	0	1	1	2	2	2	3	5	5	4	12	38

Table 10 - Mean weight at age of the 3M American plaice catch (Kg), 1988-2005.

Year/age	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16+
1988		0.097	0.200	0.312	0.449	0.572	0.684	0.762	0.790	0.823	0.886	0.981	1.215	1.271	1.590	1.736
1989		0.079	0.165	0.342	0.479	0.617	0.750	0.842	0.860	0.882	0.928	0.985	1.136	1.185	1.484	1.717
1990		0.072	0.191	0.320	0.424	0.558	0.738	0.889	0.924	0.963	1.031	1.095	1.223	1.262	1.481	1.618
1991		0.115	0.189	0.367	0.480	0.598	0.763	0.891	0.929	0.962	1.035	1.087	1.188	1.206	1.361	1.477
1992		0.086	0.210	0.327	0.487	0.606	0.723	0.855	0.919	0.966	1.074	1.169	1.373	1.381	1.574	1.666
1993			0.162	0.296	0.394	0.580	0.756	0.813	0.865	0.979	1.039	1.059	1.179	1.339	1.819	1.627
1994		0.061	0.155	0.314	0.487	0.562	0.653	0.824	0.969	0.954	1.068	1.065	1.318	1.289	1.561	1.895
1995		0.044	0.190	0.335	0.494	0.626	0.684	0.816	0.925	1.244	1.320	1.474	1.532	1.547	1.571	2.108
1996			0.225	0.331	0.425	0.535	0.671	0.733	0.852	0.825	1.002	1.302	1.202	1.385	1.539	1.333
1997					0.445	0.639	0.726	0.682	0.949	1.059	1.097	1.270	1.261	1.509	1.508	1.513
1998			0.185	0.269	0.396	0.554	0.776	0.889	0.950	1.140	1.337	1.380	1.461	1.509	1.589	1.613
1999				0.365	0.495	0.536	0.581	0.786	0.872	0.943	1.109	1.194	1.337	1.445	1.439	1.389
2000		0.115	0.115	0.268	0.359	0.444	0.566	0.637	0.706	0.692	0.782	0.891	1.225	1.140	1.290	1.389
2001			0.263	0.283	0.340	0.401	0.471	0.595	0.615	0.691	0.703	0.805	0.975	1.150	1.298	1.534
2002			0.231	0.341	0.398	0.436	0.622	0.692	0.658	0.734	0.813	0.850	0.992	1.349	1.378	1.470
2003			0.232	0.419	0.419	0.554	0.613	0.754	0.746	0.786	0.868	0.949	0.968	1.084	1.311	1.567
2004		0.125	0.242	0.331	0.432	0.539	0.554	0.704	0.716	0.788	0.795	0.815	0.926	0.998	1.100	1.333
2005				0.436	0.573	0.721	0.902	0.806	0.928	0.977	0.941	1.045	1.116	1. 181	1.292	1.442
mean		0.088	0.197	0.333	0.443	0.560	0.680	0.776	0.843	0.912	0.991	1.079	1.201	1.290	1.455	1.579

Table11: American plaice exploitaion pattern given by the generalized logit of the 1988-05 observed partial recruitment (See text).

Age	F at age index	Observed PR	Logit PR	Squared difference
1	0.000	0.000	0.010	0.000
2	0.178	0.156	0.142	0.000
3	0.447	0.393	0.459	0.004
4	0.967	0.849	0.738	0.012
5	1.054	0.926	0.890	0.001
6	0.958	0.841	0.956	0.013
7	0.941	0.826	0.983	0.024
8	1.079	0.948	0.993	0.002
9	1.100	0.966	0.997	0.001
10	1.130	0.992	0.999	0.000
11	1.130	0.992	1.000	0.000
12	1.139	1.000	1.000	0.000
13	1.045	0.918	1.000	0.007
14	1.069	0.939	1.000	0.004
15	1.009	0.886	1.000	0.013
16	1.090	0.957	1.000	0.002
	Mi	nimum sum of square	es	0.084

Curve parameters	а	b	т
	0.077	0.958	15.279

Table 12 A	A: Yield per r	<mark>ecruit parame</mark>	ters for 3M A	<mark>merican pla</mark>	<mark>aice.</mark>
Age	mean weig	ahts 1988-05	og mat (%)	PR 88-05	Ref. M
	stock	catch			I (CI. IVI
1	0.016	0.016	0.000	0.010	0.20
2	0.069	0.088	0.000	0.142	0.20
3	0.169	0.197	0.000	0.459	0.20
4	0.299	0.333	0.000	0.738	0.20
5	0.441	0.443	0.500	0.890	0.20
6	0.551	0.560	1.000	0.956	0.20
7	0.652	0.680	1.000	0.983	0.20
8	0.741	0.776	1.000	0.993	0.20
9	0.801	0.843	1.000	0.997	0.20
10	0.874	0.912	1.000	0.999	0.20
11	0.960	0.991	1.000	1.000	0.20
12	1.057	1.079	1.000	1.000	0.20
13	1.203	1.201	1.000	1.000	0.20
14	1.279	1.290	1.000	1.000	0.20
15	1.467	1.455	1.000	1.000	0.20
16+	1.625	1.579	1.000	1.000	0.20

Table 12 B: Yield per recruit results for 3M American plaice.											
	Ref F	В	Υ	SSB	Slope						
	0.000	2422	0	1974	2,059						
	0.000	2422	0	1974	1,578						
	0.035	1917	55	1478	930						
	0.070	1575	88	1145	570						
	0.105	1333	108	912	359						
	0.140	1154	120	742	229						
F0.1	0.165	1053	126	647	206						
	0.175	1019	128	615	146						
	0.210	912	133	517	92						
	0.245	827	137	439	55						
	0.280	758	139	377	30						
	0.315	700	140	327	11						
Fmax	0.365	632	140	269	0						
	0.385	609	140	250	-10						
	0.420	573	140	220	-16						
	0.455	541	139	195	-21						
	0.490	513	138	173	-24						
	0.525	489	138	155	-27						

Fig.5 - Yield, B and SSB per recruit curve for 3M American plaice

Table 13 - Trend of the 3M American plaice F index based in EU survey series (ages 8-11).

	Dadou III E o oc	m roy control (ago	5
Year	Catch (tons)	Survey (tons)	C/B
1988	1082	5338	0.203
1989	1576	4979	0.317
1990	364	4443	0.082
1991	817	3692	0.221
1992	336	3335	0.101
1993	53	1531	0.034
1994	295	3903	0.076
1995	443	2512	0.176
1996	84	1525	0.055
1997	97	1311	0.074
1998	163	1874	0.087
1999	176	1450	0.121
2000	69	915	0.076
2001	84	1178	0.072
2002	65	700	0.093
2003	44	833	0.053
2004	23	724	0.032
2005	6	573	0.011

Fig. 6. Trend of the 3M American plaice F index based in EU survey.

Table 14. Evolu	Table 14. Evolution of Recruit ('000) and SSB ('000 tons) EU survey index during the period 1988-2005.																	
Year Year	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
SSB	13.5	11.4	9.4	8.3	7.6	7.0	7.3	6.1	3.8	2.9	3.4	2.5	1.6	2.4	2.0	2.2	3.4	2.6
Age 3 recruits	1619	6621	1581	1628	886	1536	45	115	116	110	31	23	7	52	32	32	280	111

Fig. 7. SSB-Recruitment scatter plot based in EU survey series.

Fig. 8. Recruit at age 3 produced per kg of SSB index from EU indices.

Table 15: L	Table 15: Lowestoft XSA input files for 3M American plaice (2006 assessment)								AMERICAN PLAICE NAFO 3M LANDINGS tons						
AMERICAN 1		NAFO DIVI	SION 3M I	NDEX OF I	INPUT FILI	ES JUNE 2	2006			1 1988 1	2005 16				
pla3mlatxi pla3mcn.tx pla3mcwtx pla3mswtx pla3mmn.t pla3mmo.t pla3mpn.tx pla3mfo.txi pla3mfo.txi pla3mfo.txi pla3mfo.txi pla3mfo.txi	t ct ct xt xt t t xt t									5 2800.0 3500.0 790.0 1600.0 765.0 275.0 669.0 1300.0 300.0 208.0 294.0					
										255.0 133.0 149.0					
AMERICAN		NAFO 3M	CAT CH NU	IMBERS th	ousands					128.0 131.0					
1 1988 1 1	2 2005 16									81.1 45.0					
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	7.173 175.482 6.843 0.826 4.055 0.000 3.947 6.202 0.000 0.000 0.000 0.163 0.000 0.000	311.143 209.362 48.514 18.908 16.669 46.566 5.540 24.070 13.477 0.000 0.311 0.000 5.460 1.310 0.018	730.939 573.039 183.081 132.757 75.811 42.316 218.845 167.228 60.135 0.000 0.795 3.687 19.370 6.313 7.507	549.470 526.509 112.480 185.009 75.174 26.310 97.846 457.569 101.313 4.127 5.715 24.736 15.595 3.971 1.813	439.632 481.596 86.964 168.106 76.423 10.898 77.178 234.940 172.912 16.665 6.961 7.562 25.180 7.634 17.199 1.740	720 274 886.452 158.021 341.718 135.610 135.610 111.805 75.464 230.745 63.443 61.358 27.531 26.536 11.505 10.087 13.147	532,354 715,483 146,640 331,450 123,772 13,051 253,952 154,915 41,371 12,153 56,541 58,790 13,399 20,928 6,465	386.160 519.799 109.896 242.806 99.740 23.865 23.683 250.209 23.070 27.868 36.400 60.383 33.195 30.316 22.316 13.057	264.927 355.616 78.140 173.529 76.833 47.534 31.301 34.003 22.766 30.980 34.501 34.508 41.413 22.896 12.298	173.455 229.522 55.217 124.320 60.036 8.865 16.248 34.815 6.211 34.742 31.954 40.136 17.427 35.175 23.896 22.889	117. 634 147. 672 39. 041 84. 203 46. 126 10. 874 16. 864 29. 966 2.755 13. 361 32. 958 20. 555 13. 385 28. 772 16. 694 24. 817	64.944 80.390 24.185 49.967 31.165 14.948 20.150 29.784 3.395 2.599 7.613 9.220 5.704 10.327 12.272 15.526	102.356 117.524 33.081 67.842 48.678 39.615 58.238 2.958 8.714 4.569 3.081 5.885 3.689 15.103	42.774 38.517 13.221 22.925 1.740 42.826 45.446 1.545 3.649 6.838 3.244 2.956 3.041 3.027 8.891	24.999 18.755 6.859 11.569 14.216 2.265 0.830 6.630 0.411 9.932 10.197 5.283 3.939 2.790 4.771 10.150
0.000	0.061 0.000	1.466 0.000	1.742 0.058	2.988 0.235	3.077 0.407	4.142 0.927	4.227 0.626	8.421 1.871	9.758 2.474	8.405 1.950	15.530 2.846	10.408 5.218	9.371 5.262	7.340 4.246	8.877 11.595
AMERICAN	N PLAICE I	NAFO 3M	CATCHWI	EGHT AT	AGE kg										
1988	2005 16														
1 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016	0.097 0.079 0.072 0.115 0.086 0.081 0.061 0.048 0.088 0.088 0.088 0.115 0.088 0.088 0.088	0.200 0.165 0.191 0.189 0.210 0.162 0.155 0.197 0.185 0.197 0.185 0.263 0.232 0.242 0.197	0.312 0.342 0.320 0.367 0.327 0.296 0.314 0.333 0.269 0.268 0.283 0.341 0.419 0.331	0.449 0.479 0.424 0.480 0.487 0.394 0.495 0.495 0.396 0.495 0.359 0.340 0.396 0.495 0.495 0.359	0.572 0.617 0.558 0.598 0.606 0.580 0.562 0.639 0.554 0.535 0.444 0.401 0.401 0.554 0.554 0.535 0.721	0.684 0.750 0.738 0.763 0.723 0.756 0.653 0.684 0.671 0.726 0.776 0.581 0.566 0.471 0.662 0.613 0.554	0.762 0.842 0.889 0.891 0.855 0.813 0.824 0.813 0.682 0.889 0.786 0.637 0.595 0.692 0.754 0.704 0.806	0.790 0.860 0.924 0.919 0.865 0.969 0.925 0.852 0.949 0.950 0.872 0.706 0.615 0.615 0.6746 0.716	0.823 0.882 0.963 0.962 0.966 0.979 0.954 1.259 1.059 1.140 0.692 0.691 0.786 0.788 0.977	0.886 0.928 1.031 1.035 1.074 1.039 1.068 1.320 1.002 1.097 1.337 1.109 0.782 0.703 0.813 0.868 0.795	0.981 0.985 1.095 1.087 1.169 1.065 1.474 1.302 1.270 1.380 1.194 0.891 0.805 0.850 0.949 0.815	1215 1.136 1.223 1.188 1.373 1.179 1.318 1.532 1.202 1.261 1.461 1.431 1.225 0.975 0.992 0.968 0.926 1.116	1271 1.185 1.262 1.206 1.381 1.339 1.289 1.547 1.385 1.509 1.509 1.445 1.140 1.150 1.349 1.084 0.998 1.181	1.590 1.484 1.481 1.361 1.574 1.819 1.561 1.571 1.539 1.508 1.589 1.290 1.298 1.373 1.311 1.100	1.736 1.717 1.618 1.477 1.666 1.627 1.895 2.108 1.333 1.513 1.613 1.389 1.389 1.534 1.470 1.567 1.333
AMERICAN 1	N PLAICE I	NAFO 3M	STOCK WI	EIGHT AT A	AGE kg										
1988 1 1	2005 16														
0.027 0.013 0.010 0.015 0.029 0.016 0.001 0.017 0.017 0.016 0.010 0.016 0.016 0.016 0.017 0.016 0.016 0.016	0.048 0.090 0.062 0.070 0.063 0.061 0.062 0.044 0.055 0.049 0.090 0.091 0.072 0.069 0.041 0.110	0.152 0.151 0.189 0.157 0.158 0.160 0.162 0.191 0.171 0.174 0.166 0.115 0.210 0.191 0.191 0.182	0.338 0.295 0.312 0.341 0.315 0.295 0.316 0.330 0.332 0.236 0.245 0.245 0.245 0.327 0.307 0.295	0.495 0.523 0.425 0.478 0.516 0.407 0.490 0.427 0.384 0.440 0.409 0.374 0.398 0.361 0.457 0.396	0.620 0.630 0.564 0.563 0.616 0.579 0.568 0.624 0.589 0.559 0.514 0.522 0.434 0.444 0.457 0.565	0.721 0.725 0.709 0.660 0.684 0.727 0.650 0.668 0.708 0.673 0.652 0.568 0.614 0.528 0.668 0.543 0.594	0.786 0.815 0.829 0.770 0.758 0.755 0.808 0.789 0.823 0.643 0.773 0.673 0.603 0.755 0.609 0.691	0.801 0.839 0.857 0.799 0.807 0.798 0.954 0.859 0.859 0.859 0.622 0.711 0.674 0.710	0.820 0.856 0.893 0.829 0.874 0.917 1.222 0.864 0.998 1.027 0.998 0.748 0.702 0.871 0.754	0.876 0.912 0.956 0.886 0.910 0.906 1.025 1.279 1.081 1.007 1.239 1.178 0.848 0.703 1.098 0.794 0.785	0.959 0.991 1.029 0.953 1.000 0.932 1.025 1.468 1.390 1.215 1.322 1.275 0.939 0.853 1.151 0.858 0.837	1.201 1.181 1.179 1.141 1.182 1.075 1.271 1.518 1.307 1.275 1.501 1.462 1.222 1.076 0.886 0.999 0.885	1.208 1.186 1.200 1.157 1.190 1.218 1.228 1.515 1.519 1.437 1.513 1.705 1.177 1.321 1.415 1.028 1.092 0.920	1.537 1.462 1.412 1.417 1.408 1.839 1.540 1.607 1.606 1.563 1.295 1.427 1.486 1.314 1.240	1.742 1.646 1.578 1.634 1.712 1.628 1.895 2.082 1.777 1.515 1.650 1.386 1.487 1.524 1.499 1.490

Table 15: count. AMERICAN PLAICE NAFO 3M NATURAL MORTALITY 5 2005 1988 16 0.2 AMERICAN PLAICE NAFO 3M PROPORTION MATURE AT AGE 1 1988 6 2005 16 1 0.00 0.00 0.00 0.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 AMERICAN PLAICE NAFO 3M PROPORTION OF F BEFORE SPAWNING AMERICAN PLAICE NAFO 3M PROPORTION OF M BEFORE SPAWNING 1988 2005 1988 2005 1 3 16 16 0.42 0.42 AMERICAN PLAICE NAFO 3M F ON OLDEST AGE GROUP BY YEAR 1 1988 9 2005 16 1 5 0.180 0.281 0.073 0.196 0.089 0.030 0.067 0.156 0.066 0.077 0.067 0.064 0.083 0.029 0.010 AMERICAN PLAICE NAFO 3 M F AT AGE IN LAST YEAR 10 1988 2005 16 0.000 0.002 0.004 0.010 0.010 0.010 0.009 0.011 0.011 0.011 0.011 0.011 0.010 0.011 0.010 0.011 AMERICAN PLAICE NAFO 3M SURVEY TUNNING DATA ΕU

101															
U BOTTOM	∥ TRAWL	SURVEY													
1988	2005														
1	1	0.5	0.6												
1	15														
10555	483.2	1338.8	1618.6	3 955.0	3725.0	3423.3	5016.5	3 003.7	180 2.1	1156.9	6692	417.7	23 0.1	357.9	1 38.1
10555	55.0	18 26.7	6621.2	2681.7	2786.6	2544.4	3794.3	2547.7	161 5.7	1088.6	67 2.3	428.6	22 1.5	332.5	1 17.5
10555	7.6	6 65.1	1581.3	5311.4	2455.6	1802.2	2784.7	2066.0	1427.1	994.9	64 7.8	432.2	24 2.3	337.2	1 28.1
10555	153.6	353.2	1627.9	2530.3	2795.7	1944.8	2645.4	1 855.1	128 2.8	878.9	57 5.3	378.4	18 5.9	261.8	90.7
10555	23.5	795.4	885.5	1210.3	1544 .0	1681.7	2432.7	1642.2	114 1.8	813.1	54 1.5	362.9	187.2	286.8	1 08.4
10555	0.0	27.2	1535.5	1082.4	775.0	446.8	4115.8	467.5	781 .9	366.6	257.5	299.0	35 4.4	1064.7	32.2
10555	7.5	47.2	45.4	2 133.9	1033.6	878.2	983.2	3 425.5	321.8	654.2	224.2	221.4	25 2.0	519.2	4 90.4
10555	0.0	28.6	114.6	741.1	2127.1	1 367.6	1376.8	913.0	153 5.9	161.3	18 0.8	145.1	14 5.0	292.1	2 19.0
10555	8.0	39.1	115.9	259.7	585.5	1666.2	894.1	545.4	403.4	630.4	144.3	77.9	822	109.4	69.0
10555	8.1	16.1	110.0	24.9	122.4	418.8	1203.8	269.8	413.4	292.5	487.5	128.9	24.9	92.9	46.6
10555	0.0	24.7	31.5	46.5	71.9	266.5	622.2	902.6	525.8	355.8	30 1.0	288.5	8.8.0	113.4	56.7
10555	7.4	0.0	23.2	65.4	78.7	79.5	241.0	471.6	509.9	254.8	33 7.8	207.1	12 1.3	117.1	59.1
10555	15.6	25.1	6.8	84.2	105.7	153.0	118.7	153.5	391.6	427.0	23 1.1	185.0	74.0	55.6	46.3
10555	0.0	39.8	52.2	58.2	104.1	56.1	111.0	267.6	437 .9	580.7	47 8.5	419.8	18 9.9	161.6	1 11.4
10555	0.0	0.0	32.2	65.5	16.5	88.8	65.9	126.3	158.6	189.6	297.4	221.4	248.7	141.8	131.4
10555	7.1	6.2	31.6	93.3	79.8	58.2	79.3	147.4	299.7	258.0	43 1.4	425.5	27 1.9	272.2	1 48.0
10555	0.0	1 17.2	279.7	73.5	79.1	106.9	104.5	127.0	246.3	315.8	28 5.2	598.0	426.1	404.0	3 26.6
10555	0.0	31.5	111.4	287.8	106.3	105.9	125.9	101.5	224.4	206.4	22 5.1	251.5	35 3.0	403.2	2 52.3

Table 16: Extended Survivor Analysis diagnostics for 2006 (Lowestoft VPA Version 3.1)

AMERICAN PLAICE NAFO DIVISION 3M INDEX OF INPUT FILES JUNE 2006 CPUE data from file pla3mtun.txt $\,$

Catch data for 18 years. 1988 to 2005. Ages 1 to 16.

Fleet	First	Last	First	Last	Alpha	Beta
	year	year	age	age		
EU BOTTOM TRAWL SURV	1994	2005	1	15	0.5	0.6

Time series weights:

Tapered time weighting not applied

Catchability analysis:

Catchability independent of stock size for all ages Catchability independent of age for ages >= 12

 $Term\,inal\,\,population\,estim\,a\!t\,ion:$

Terminal year survivor estimates not shrunk towards mean F

Oldest age survivor estimates for the years 1988 to 1994 shrunk towards1.000 * the mean F of ages 10 - 14

S.E. of the mean to which the estimates are shrunk = 1.000

Minimum standard error for population estimates from each cohort age = .500

Individual fleet weighting not applied

Tuning converged after 77 iterations

Regression weights	1	1	1	1	1	1	1	1	1	1
Fishing mortalities										
Age	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	0.018	0.000	0.001	0.000	0.000	0.010	0.002	0.000	0.001	0.000
4	0.050	0.000	0.001	0.009	0.046	0.033	0.018	0.003	0.004	0.000
5	0.068	0.004	0.004	0.011	0.073	0.048	0.026	0.005	0.007	0.001
6	0.114	0.014	0.009	0.019	0.061	0.029	0.068	0.014	0.011	0.001
7 8	0. 069 0. 075	0.054 0.017	0. 029 0. 064	0.043 0.081	0.035 0.027	0.031 0.084	0.064 0.084	0.016 0.040	0.042 0.026	0.004 0.008
9	0.075	0.017	0.065	0.090	0.027	0.064	0.064	0.040	0.026	0.008
10	0. 004	0.083	0.003	0.080	0.068	0.079	0.120	0.009	0.068	0.015
11	0. 110	0.063	0. 160	0.080	0.053	0.099	0.079	0.090	0.082	0.026
12	0.036	0.157	0. 100	0.176	0.033	0.092	0.076	0.105	0.082	0.017
13	0.051	0.137	0. 219	0.147	0.062	0.116	0.066	0.105	0.057	0.036
13	0.057	0.043	0. 120	0.067	0.038	0.064	0.039	0.109	0.059	0.043
15	0.027	0.093	0. 209	0.122	0.090	0.048	0.049	0.124	0.071	0.031
.0	0. 02.	0.000	0. 200	0	0.000	0.0.0	0.0.0	o	0.01	0.00.
XSA population numbers (Thous	ands)									
YEAR \AGE	1	2	3	4	5	6	7	8	9	10
1996	871.0	1060.0	846.0	1370.0	1700.0	1780.0	1050.0	635.0	412.0	361.0
1997	865.0	713.0	866.0	680.0	1060.0	1300.0	1300.0	799.0	483.0	316.0
1998	394.0	708.0	584.0	709.0	557.0	868.0	1050.0	1010.0	643.0	370.0
1999	865.0	323.0	580.0	478.0	579.0	454.0	704.0	837.0	775.0	494.0
2000	1120.0	709.0	264.0	475.0	388.0	469.0	365.0	552.0	632.0	580.0
2001	847.0	920.0	580.0	216.0	371.0	295.0	361.0	289.0	440.0	487.0
2002	1900.0	694.0	753.0	470.0	171.0	290.0	235.0	287.0	217.0	333.0
2003	1640.0	1550.0	568.0	616.0	378.0	137.0	222.0	180.0	216.0	158.0
2004	1380.0	1340.0	1270.0	465.0	503.0	308.0	110.0	179.0	142.0	165.0
2005	0.0	1130.0	1100.0	1040.0	379.0	409.0	249.0	86.5	142.0	109.0
Estimated population abundance	at 1st Jan 20	06								
, ,	0.0	0.0	928.0	899.0	852.0	310.0	334.0	203.0	70.3	115.0
Taper weighted geometric mean	of the VPA po	opulations:								
	527.0	1500.0	1300.0	1130.0	931.0	805.0	689.0	562.0	477.0	373.0
Standard error of the weighted Lo	ng(VPA nonul:	ations) ·								
Statution of the worgined is	5. 017	0.809	0.827	0.860	0.869	0.859	0.887	0.875	0.787	0.723

Table 16: count.

XSA population numbers (Thou	sands)											
YEAR AGE	11	12	13	14	15							
1996	131.0	86.3	75.2	59.5	64.8							
1997	265.0	102.0	68.2	58.5	46.0							
1998	238.0	185.0	71.1	53.5	40.0							
1999	275.0	166.0	122.0	51.3	31.2							
2000	373.0	189.0	118.0	91.4	37.9							
2001	444.0	290.0	142.0	91.1	72.0							
2002	362.0	331.0	21 1.0	107.0	69.3							
2003	252.0	274.0	256.0	162.0	84.5							
2004	118.0	186.0	202.0	196.0	119.0							
2005	126.0	89.0	138.0	156.0	152.0							
Estimated population abundano	e at 1 et lan 20	20.6										
Estimated population abundant	86.6	102.0	70.3	108.0	123.0							
	00.0	102.0	7 0.5	100.0	125.0							
Tan ar weighted as am stric me a	n of the V/DA m	on ul atia nau										
Taper weighted geometric mea			47.5.0	4000	00.0							
	297.0	226.0	175.0	132.0	83.6							
Standard error of the weighted												
	0.6694	0.6402	0.6181	0.646	0.6683							
Log catch ability residuals.												
Fleet : EU BOTTOM TRAWL S	URV											
Age	1994	1995	1996	1997	1998	1999	20 00	20 01	2002	2003	2004	
1	-0.31	99.99	0.14	0.16	99.99	0.07	0.55	99.99	99.99	-0.61	99.99	
2	-0.2	-0.01	0.29	-0.2	0.23	99.99	0.25	0.44	99.99	-1.94	1.15	
3	-1.37	0.05	0.76	0.68	-0.18	-0.48	-0.91	0.34	-0.41	-0.15	1.23	
4	1.3	0.69	0.13	-1.55	-0.96	-0.22	0.06	0.47	-0.2	-0.12	-0.08	
5	0.83	1.34	0.42	-0.71	-0.59	-0.53	0.19	0.21	-0.87	-0.1	-0.39	
6	0.57	0.95	0.96	-0.16	-0.21	-0.77	-0.12	-0.68	-0.18	0.12	-0.09	
7	0.67	0.98	0.41	0.48	0.02	-0.52	-0.57	-0.63	-0.7	-0.49	0.5	
8	1.45	0.67	0.1	-0.87	0.13	-0.32	-1.06	0.18	-0.57	0.03	-0.12	
9	0.14	0.91	-0.1	-0.24	-0.28	-0.49	-0.56	-0.08	-0.37	0.25	0.47	
10	0.99	-0.28	0.42	-024	-0.19	-0.82	-0.47	0.03	-0.72	0.34	0.48	
11	0.02	0.08	-0.19	0.38	0	-0.02	-0.77	-0.19	-0.47	0.28	0.61	
12	80.0	-0.08	-0.48	-0.07	0.17	-0.1	-0.37	0.04	-0.77	0.1	0.83	
13	-0.09	0.12	-0.28	-1.38	-0.11	-0.35	-0.83	-0.06	-0.2	-0.3	0.38	
14	0.24	0.64	0.24	0.16	0.54	0.48	-0.87	0.22	-0.1	0.18	0.36	
15	0.02	-0.2	-0.32	-0.33	0.07	0.31	-0.15	0.06	0.27	0.23	0.65	
Mean log catchability and stand												
independent of year class streng	gth and consta	antw.r.t.tim	е									
•					_		-	•	•	4.0		
Age	1	2	3	4	5	6	7	8	9	10		
Mean Log q	-13.9843	-12.7383	-11.8942	-10.9171	-10.6096	-10.1184	-9.6861	-9.3629	- 9.037 1	-8.9522		
S.E(Log q)	0.4055	0.7853	0.7408	0.7425	0.6627	0.5639	0.5881	0.6777	0.4364	0.548		
Age	11	12	13	14	15							
Mean Log q	-8.8363	-8.7567	-8.7567	-8.7567	-8.7567							
S.E(Log q)	0.3762	0.44 18	0.5593	0.4658	0.294							
(0 1)												
Regression statistics:												
Ages with q independent of year	r class strengt	hand const	antw.r.t. tim	ne.								
A ge	Slope	t-v al ue	Intercept	RSquare	No Pts	Reg s.e	Mean Q					
1	-18.96	-1.866	* *** **	0	6	6.28	-13.98					
2	3.05	-0.913	24.56	0.02	10	2.42	-12.74					
3	0.92	0.213	11.5	0.44	12	0.72	-11.89					
4	0.7	1.615	9.61	0.74	12	0.48	-10.92					
5	0.65	2.865	9.16	0.87	12	0.33	-10.61					
6	0.71	2.415	9.01	0.87	12	0.33	-10.12					
7	0.75	1.605	8.82	0.81	12	0.41	-9.69					
8	0.94	0.264	9.15	0.63	12	0.66	-9.36					
9	1.34	-1.222	10.11	0.56	12	0.57	-9.04					
10	2.63	-2.329	14.34	0.17	12	1.22	-8.95					
11	1.95	-2.351	12.11	0.38	12	0.62	-8.84					
12	1.55	-0.661	9.67	0.41	12	0.62	-8.76					
13	0.68	1.447	7.65	0.67	12	0.33	-8.97					
14	0.97	0.149	8.41	0.68	12	0.41	-8.53					
15	0.97	0.227	8.58	88.0	12	0.29	-8.69					

2005 99.99 0 0.45 0.48 0.18 -0.39 -0.15 0.37 0.35 0.45 0.27 0.66 0.57 0.57

Table 16: count.

Terminal year survivor and F summaries :

And 4 Catabability agreets at your	4 4: da						
Age 1 Catchability constant w.r.t Year class = 2004	t. time and de	pendentor	nage				
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
1 1001	Survivors	s.e	s.e	Ratio		Weights	F
EU BOTTOM TRAWL SURV	1	0	0	0	0	0	0
Weighted prediction:							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
0	0	0	0	0	0		
Age 2 Catchability constant w.r.: Year class = 2003	t. time and de	pendent or	nage				
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
rieet	Survivors	s.e	s.e	Ratio	IN	Weights	F
EU BOTTOM TRAWL SURV	928	0.824	0	0	1	1	0
Weighted prediction:		****	-	-	•	•	-
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
928	0.82	0	1	0	0		
Age 3 Catchability constant w.r.:	t. time and de	pendent or	nage				
Year class = 2002							
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
ELL DOTTOM TD AVAIL SUDV	Survivors 899	s.e 0.374	s.e 0.514	Ratio	2	Weights 1	F 0
EU BOTTOM TRAWL SURV Weighted prediction:				1.38	3	ı	U
Survivors	Int	Ext s.e	N	Var Ratio	F		
at end of year 899	s.e 0.37	0.51	3	1.375	0		
Age 4 Catchability constant w.r.: Year class = 2001				1.07 0	Ü		
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
EU BOTTOM TRAWL SURV	852	0.455	0.935	2.06	3	1	0
Weighted prediction:							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e	0	Ratio	•		
852	0.45	0.94	3	2.056	0		
Age 5 Catchability constant w.r.: Year class = 2000	t. time and de	pendent or	nage				
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
EU BOTTOM TRAWL SURV	310	0.428	0.105	0.24	3	Ĭ	0.001
Weighted prediction:							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
310	0.43	0.1	3	0.245	0.001		
Age 6 Catchability constant w.r.: Year class = 1999	t. time and de	pendent or	n age				
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
1 1001	Survivors	s.e	s.e	Ratio	1 1	Weights	F
EU BOTTOM TRAWL SURV	334	0.269	0.193	0.72	6	1	0.001
Weighted prediction:			2	- · · · <u>-</u>	ŭ	•	
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
334	0.27	0.19	6	0.716	0.001		

Table 16: count.

Age 7 Catch ability constant w.r.	t. time and de	pendent or	nage				
Year class = 1998							
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
EU BOTTOM TRAWL SURV	203	0.246	0.069	0.28	7	1	0.004
Weighted prediction:							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
203	0.25	0.07	7	0.279	0.004		
Age 8 Catchability constant w.r. Year class = 1997	t. time and de	pendent or	n age				
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
ricet	Survivors	s.e	s.e	Ratio	11	Weights	F
EU BOTTOM TRAWL SURV	70	0.277	0.256	0.92	6	1	0.008
Weighted prediction:	70	0.211	0.200	0.52	U	'	0.000
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
70	0.28	0.26	6	0.922	0.008		
Age 9 Catchability constant w.r. Year class = 1996	t. time and de	pendent or	n age				
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
EU BOTTOM TRAWL SURV	115	0.211	0.104	0.49	9	1	0.015
Weighted prediction:							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
115	0.21	0.1	9	0.492	0.015		
Age 10 Catchability constant w. Year class = 1995	r.t. time and d	ependent o	on age				
Age 10 Catchability constant w. Year class = 1995 Fleet	r.t. time and d	ependent o	on age Ext	Var	N	Scaled	Estimated
Year class = 1995		·	•	Var Ratio	N	Scaled Weights	Estimated F
Year class = 1995	Estimated	Int	Ext		N 10		
Year class = 1995 Fleet	Estimated Survivors	Int s.e	Ext s.e	Ratio		Weights	F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV	Estimated Survivors	Int s.e	Ext s.e	Ratio		Weights	F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction :	Estimated Survivors 87	Int s.e 0.199	Ext s.e 0.143	Ratio 0.72	10 F	Weights	F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors	Estimated Survivors 87	Int s.e 0.199	Ext s.e 0.143	Ratio 0.72 Var	10	Weights	F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w.	Estimated Survivors 87 Int s.e 0.2	Int s.e 0.199 Ext s.e 0.14	Ext s.e 0.143 N	Ratio 0.72 Var Ratio	10 F	Weights	F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994	Estimated Survivors 87 Int s.e 0.2 r.t. time and d	Int s.e 0.199 Ext s.e 0.14 ependent o	Ext s.e 0.143 N 10	Ratio 0.72 Var Ratio 0.719	10 F 0.026	Weights 1	F 0.026
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w.	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated	Int s.e 0.199 Ext s.e 0.14 ependent of	Ext s.e 0.143 N 10 on age	Ratio 0.72 Var Ratio 0.719	10 F	Weights 1 Scaled	F 0.026
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e	Ext s.e 0.143 N 10 on age Ext s.e	Ratio 0.72 Var Ratio 0.719 Var Ratio	10 F 0.026 N	Weights 1 Scaled Weights	F 0.026 Estimated F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated	Int s.e 0.199 Ext s.e 0.14 ependent of	Ext s.e 0.143 N 10 on age	Ratio 0.72 Var Ratio 0.719	10 F 0.026	Weights 1 Scaled	F 0.026
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction:	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199	Ext s.e 0.143 N 10 on age Ext s.e 0.158	Ratio 0.72 Var Ratio 0.719 Var Ratio 0.79	10 F 0.026 N 10	Weights 1 Scaled Weights	F 0.026 Estimated F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102 Int	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199 Ext	Ext s.e 0.143 N 10 on age Ext s.e	Ratio 0.72 Var Ratio 0.719 Var Ratio 0.79 Var	10 F 0.026 N	Weights 1 Scaled Weights	F 0.026 Estimated F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102 Int s.e	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199 Ext s.e	Ext s.e 0.143 N 10 on age Ext s.e 0.158	Ratio 0.72 Var Ratio 0.719 Var Ratio 0.79 Var Ratio 0.79	10 F 0.026 N 10 F	Weights 1 Scaled Weights	F 0.026 Estimated F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102 Int	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199 Ext	Ext s.e 0.143 N 10 on age Ext s.e 0.158	Ratio 0.72 Var Ratio 0.719 Var Ratio 0.79 Var	10 F 0.026 N 10	Weights 1 Scaled Weights	F 0.026 Estimated F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 102 Age 12 Catchability constant w.	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102 Int s.e 0.2	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199 Ext s.e 0.16	Ext s.e 0.143 N 10 on age Ext s.e 0.158 N 10	Ratio 0.72 Var Ratio 0.719 Var Ratio 0.79 Var Ratio 0.79	10 F 0.026 N 10 F	Weights 1 Scaled Weights	F 0.026 Estimated F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 102	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102 Int s.e 0.2	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199 Ext s.e 0.16 ependent of	Ext s.e 0.143 N 10 on age Ext s.e 0.158 N 10	Var Ratio 0.719 Var Ratio 0.79 Var Ratio 0.792	10 F 0.026 N 10 F	Weights 1 Scaled Weights	F 0.026 Estimated F
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 102 Age 12 Catchability constant w. Year class = 1993	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102 Int s.e 0.2 r.t. time and d	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199 Ext s.e 0.16 ependent of	Ext s.e 0.143 N 10 on age Ext s.e 0.158 N 10 on age	Var Ratio 0.719 Var Ratio 0.79 Var Ratio 0.792	10 F 0.026 N 10 F 0.017	Weights 1 Scaled Weights 1	F 0.026 Estimated F 0.017
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 102 Age 12 Catchability constant w. Year class = 1993	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102 Int s.e 0.2 r.t. time and d	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199 Ext s.e 0.16 ependent of Int s.e	Ext s.e 0.143 N 10 on age Ext s.e 0.158 N 10 on age Ext s.e	Var Ratio 0.719 Var Ratio 0.79 Var Ratio 0.792 Var Ratio	10 F 0.026 N 10 F 0.017	Weights 1 Scaled Weights 1	F 0.026 Estimated F 0.017
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 102 Age 12 Catchability constant w. Year class = 1993 Fleet EU BOTTOM TRAWL SURV	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102 Int s.e 0.2 r.t. time and d	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199 Ext s.e 0.16 ependent of	Ext s.e 0.143 N 10 on age Ext s.e 0.158 N 10 on age	Var Ratio 0.719 Var Ratio 0.79 Var Ratio 0.792	10 F 0.026 N 10 F 0.017	Weights 1 Scaled Weights 1 Scaled Weights	F 0.026 Estimated F 0.017
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 102 Age 12 Catchability constant w. Year class = 1993 Fleet	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102 Int s.e 0.2 r.t. time and d	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199 Ext s.e 0.16 ependent of Int s.e	Ext s.e 0.143 N 10 on age Ext s.e 0.158 N 10 on age Ext s.e	Var Ratio 0.719 Var Ratio 0.79 Var Ratio 0.792 Var Ratio	10 F 0.026 N 10 F 0.017	Weights 1 Scaled Weights 1 Scaled Weights	F 0.026 Estimated F 0.017
Year class = 1995 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 87 Age 11 Catchability constant w. Year class = 1994 Fleet EU BOTTOM TRAWL SURV Weighted prediction: Survivors at end of year 102 Age 12 Catchability constant w. Year class = 1993 Fleet EU BOTTOM TRAWL SURV Weighted prediction:	Estimated Survivors 87 Int s.e 0.2 r.t. time and d Estimated Survivors 102 Int s.e 0.2 r.t. time and d Estimated Survivors 70	Int s.e 0.199 Ext s.e 0.14 ependent of Int s.e 0.199 Ext s.e 0.16 ependent of Int s.e 0.175	Ext s.e 0.143 N 10 on age Ext s.e 0.158 N 10 on age Ext s.e 0.158 S N 10 on age Ext s.e 0.185	Ratio 0.72 Var Ratio 0.719 Var Ratio 0.79 Var Ratio 0.79 Var Ratio 1.05	10 F 0.026 N 10 F 0.017	Weights 1 Scaled Weights 1 Scaled Weights	F 0.026 Estimated F 0.017

Table 16: count.

Age 13 Catchability constant w.r.t. time and age (fixed at the value for age) 12 Year class = 1992

1 Cai Class - 1332							
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
EU BOTTOM TRAWL SURV	108	0.178	0.17	0.96	12	1	0.043
Weighted prediction:							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
108	0.18	0.17	12	0.957	0.043		

Age 14 Catchability constant w.r.t. time and age (fixed at the value for age) 12 Year class = 1991

1 641 61433 - 1331							
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
EU BOTTOM TRAWL SURV	123	0.173	0.142	0.82	12	1	0.038
Weighted prediction:							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
123	0.17	0.14	12	0.823	0.038		

Age 15 Catchability constant w.r.t. time and age (fixed at the value for age) 12 Year class = 1990

Year class = 1990							
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
EU BOTTOM TRAWL SURV	120	0.169	0.167	0.99	12	1	0.031
F shrinkage mean	0	1				0	0
Weighted prediction:							
Survivors	Int	Ext	N	Var	F		
at end of year	s.e	s.e		Ratio			
120	0.17	0.17	12	0.992	0.031		

Fig.9. Log catchability residuals

Table 17: Extended	Survivor Analysis resul	Its.			
YEAR	RECRUITS Age 1 (Thousands)	TO TAL BIOMASS (Tonnes)	SPAWNING BIOMASS (Tonnes)	FBAR 3-13	FBAR 8-11
<mark>1988</mark>	3814	15012	10168	0.2429	0.2655
<mark>1989</mark>	<mark>3913</mark>	12003	<mark>7537</mark>	0.3855	0.4477
<mark>1990</mark>	<mark>4533</mark>	8370	5560	<mark>0.1097</mark>	0.1179
<mark>1991</mark>	<mark>6485</mark>	<mark>7627</mark>	<mark>4496</mark>	<mark>0.2791</mark>	0.4131
<mark>1992</mark>	<mark>4139</mark>	<mark>6834</mark>	<mark>4166</mark>	<mark>0.1619</mark>	0.2900
<mark>1993</mark>	<mark>2535</mark>	<mark>6332</mark>	3870	0.0442	0.0626
<mark>1994</mark>	<mark>1270</mark>	<mark>6906</mark>	4095	<mark>0.1183</mark>	0.1888
<mark>1995</mark>	<mark>1291</mark>	<mark>6637</mark>	<mark>3938</mark>	0.2498	0.3217
<mark>1996</mark>	<mark>871</mark>	<mark>5080</mark>	3549	0.0644	0.0756
<mark>1997</mark>	<mark>865</mark>	<mark>4482</mark>	<mark>3498</mark>	0.0541	0.0806
<mark>1998</mark>	394	<mark>4289</mark>	3397	0.0704	0.0965
<mark>1999</mark>	865	<mark>3908</mark>	<mark>3107</mark>	0.0675	0.1068
2000	<mark>1124</mark>	3004	<mark>2421</mark>	0.0510	0.0520
<mark>2001</mark>	847	<mark>2535</mark>	<mark>1968</mark>)	<mark>0.0640</mark>	0.0883
2002	<mark>1899</mark>	<mark>2846</mark>	<mark>2193</mark>	<mark>0.0600</mark>	<mark>0.0898</mark>
2003	<mark>1637</mark>	<mark>2154</mark>	<mark>1526</mark>)	<mark>0.0471</mark>	<mark>0.0764</mark>
<mark>2004</mark>	<mark>1384</mark>	<mark>2385</mark>	<mark>1551</mark>)	0.0423	<mark>0.0610</mark>
2005		2566	<mark>1711</mark>	0.0136	0.0163

Fig. 10. SSB-Recruitment scatter plot based in XSA results.

Fig. 11 A. Extended Survivor Analysis results for F (age 8-11)

Tfig. 11 B. Extended Survivor Analysis results for total biomass (tons)

Fig. 11 C: Extended Survivor Analysis results for spawning biomass (tons)

Fig.11 D: Extended Survivor Analysis results for recruits at age 1 ('000)