

EVENT PROBABILITIES

Why

If we have some outcomes and a distribution, we can construct a function which assigns probabilities to events.

Definition

The *probability of an event* is the sum of the probabilities of the outcomes in the event. The *event probability function* is the correspondence assigning events to their probabilities.

Notation

Let A be a set of outcomes and p a distribution on A. Let $B \subset A$ be an event. Let $\mathbf{P} : 2^A \to \mathbf{R}$ be the event probability function, which is defined by

$$\mathbf{P}(B) = \sum_{b \in B} p(b).$$

The event probability function \mathbf{P} depends on the outcomes A and the distribution p. We sometimes indicate this dependence by writing $\mathbf{P}_{A,p}$.

Properties

Prop. 1. Let P be the event probability function of the distribution $p: A \to [0, 1]$.¹

1.
$$P(B) \ge 0$$
 for all $B \subset A$

¹Future editions will include an account.

- 2. P(A) = 1
- 3. $\mathbf{P}(B \cup C) = \mathbf{P}(B) + \mathbf{P}(C)$ for $B, C \subset A$ and $B \cap C = \emptyset$.

