

IPEIO - Probabilidades e Estatística

Ano Lectivo 2017/18

 $2^{\rm o}$ Teste - 9 de maio de 2018

Duração: 0h45

Nome completo:	
N.º aluno:	Curso:

Nas alíneas das perguntas 1–3 apenas uma das respostas está correta. Assinale a resposta com uma cruz no quadrado correspondente. Uma resposta incorreta desconta 0.1 valores e uma não resposta vale 0 valores.

- 1. Considere a amostra aleatória (X_1, X_2, \dots, X_n) de uma população com distribuição $N(2\mu; 1)$.
- (0.4) (a) O estimador $\hat{\mu} = \frac{\overline{X}}{2}$ é centrado para μ .
- (0.4) (b) Dada a amostra (0.5, 3.2, 1.8, 1.7, 2.8), uma estimativa pontual de μ resultante de $\hat{\mu} = \frac{\overline{X}}{2}$, é?
 - (A) 1 (B) 2 (C) 3 (D) 4 (E) Nenhuma das anteriores
 - 2. Considere-se uma população com distribuição normal de variância 36. Recolhida uma amostra de dimensão n=25 dessa população, obteve-se $\bar{x}=50$.
- (0.4) (a) O intervalo de 95% de confiança para o valor médio da população é (com valores arredondados a 3 casas decimais):
 - $\hbox{(A)} \] 48.026 \ ; \ 51.974 [\qquad \hbox{(B)} \] 47.648 \ ; \ 52.352 [\qquad \hbox{(C)} \] 47.947 \ ; \ 52.053 [\qquad \hbox{(D)} \] 47.523 \ ; \ 52.477 [\qquad] 47.$
- (0.4) (b) Qual deve ser a dimensão da amostra para que a amplitude do intervalo de 95% de confiança para o valor médio da população seja inferior a 2:
 - (A) n = 54 (B) n = 98 (C) n = 106 (D) n = 139 (E) Nenhuma das anteriores
 - 3. As classificações do 2º teste de IPEIO têm distribuição normal de valor médio desconhecido. Recolhida uma amostra de dimensão n=20, obteve-se s=1.5.
- (0.4) (a) Para o teste de hipóteses $H_0:\sigma\geq 2$ vs $H_1:\sigma<2$, a região de rejeição para um nível de 5% de significância é:
 - $\text{(A)} \ R_{0.05} =]30.143; +\infty[\qquad \text{(B)} \ R_{0.05} =]0; \\ 30.143[\qquad \text{(C)} \ R_{0.05} =]0; \\ 10.117[\qquad \text{(D)} \ R_{0.05} =]10.117; \\ +\infty[\qquad \text{(D)} \ R_{$
- (0.4) (b) Se num determinado teste de hipóteses a decisão é de rejeitar a hipótese nula para um nível de significância $\alpha = 5\%$, então também se rejeita a hipótese nula para um nível de significância $\alpha = 10\%$.

Resolva a questão seguinte no espaço disponível e indicando todos os passos e justificações.

4. Num determinado curso de àgua, pretende-se modelar a concentração Y de um certo poluente (em gr/m^3), em função da distância x à fonte poluidora, em Km. Para tal, registaram-se os dados relativos a 15 localizações.

Distância, x	1	2	3	4	6	8	10	12	14	16	18	20	22	25	30
Concentração, Y	53.4	46.2	48.6	43.5	44.8	42.0	41.4	37.6	39.2	33.2	34.4	29.0	26.1	24.2	15.2

Resolva as questões com base nos resultados do R:

Assumindo que existe uma relação linear entre as variáveis $x \in Y$:

- (0.4) (a) Escreva a expressão da reta de regressão linear estimada e comente a qualidade do ajustamento.
- (0.4) (b) Qual o valor estimado da variância dos erros do modelo de regressão linear simples?
- (0.4) (c) Qual prevê que seja a concentração de poluente a uma distância da fonte de poluição de 15Km? E a uma distância de 40Km?
- (0.4) (d) Teste para um nível de significância de 5%, a hipótese de o verdadeiro declive da recta de regressão ser nulo, indicando:
 - Hipóteses:
 - Decisão(justifique):

N.º aluno: _____ Curso:

IPEIO - Probabilidades e Estatística

Ano Lectivo 2017/18

 $2^{\rm o}$ Teste - 9 de maio de 2018

Duração: 0h45

Nome completo:			

Nas alíneas das perguntas 1–3 apenas uma das respostas está correta. Assinale a resposta com uma cruz no quadrado correspondente. Uma resposta incorreta desconta 0.1 valores e uma não resposta vale 0 valores.

- 1. Considere a amostra aleatória (X_1, X_2, \dots, X_n) de uma população com distribuição $N(4\mu; 16)$.
- (0.4) (a) O estimador $\hat{\mu} = \frac{\overline{X}}{4}$ é centrado para μ .
- (0.4) (b) Dada a amostra (2.0, 12.8, 7.2, 6.8, 11.2), uma estimativa pontual de μ resultante de $\hat{\mu} = \frac{\overline{X}}{4}$, é?
 - (A) 1 (B) 2 (C) 3 (D) 4 (E) Nenhuma das anteriores
 - 2. Considere-se uma população com distribuição normal de variância 25. Recolhida uma amostra de dimensão n=25 dessa população, obteve-se $\bar{x}=50$.
- (0.4) (a) O intervalo de 95% de confiança para o valor médio da população é (com valores arredondados a 3 casas decimais):
 - (A)]47.936; 52.064[(B)]48.289; 51.711[(C)]48.355; 51.645[(D)]48.040; 51.960[
- (0.4) (b) Qual deve ser a dimensão da amostra para que a amplitude do intervalo de 95% de confiança para o valor médio da população seja inferior a 2:
 - (A) n = 54 (B) n = 68 (C) n = 74 (D) n = 97 (E) Nenhuma das anteriores
 - 3. As classificações do 2º teste de IPEIO têm distribuição normal de valor médio desconhecido. Recolhida uma amostra de dimensão n=20, obteve-se s=3.5.
- (0.4) (a) Para o teste de hipóteses $H_0:\sigma\leq 3$ vs $H_1:\sigma>3$, a região de rejeição para um nível de 5% de significância é:
 - $\text{(A)} \ R_{0.05} =]30.143; +\infty[\qquad \text{(B)} \ R_{0.05} =]0; \\ 30.143[\qquad \text{(C)} \ R_{0.05} =]0; \\ 10.117[\qquad \text{(D)} \ R_{0.05} =]10.117; \\ +\infty[\qquad \text{(D)} \ R_{$
- (0.4) (b) Se num determinado teste de hipóteses a decisão é de não rejeitar a hipótese nula para um nível de significância $\alpha=5\%$, então também não se rejeita a hipótese nula para um nível de significância $\alpha=1\%$.

Resolva a questão seguinte no espaço disponível e indicando todos os passos e justificações.

4. Num determinado curso de àgua, pretende-se modelar a concentração Y de um certo poluente (em gr/m^3), em função da distância x à fonte poluidora, em Km. Para tal, registaram-se os dados relativos a 15 localizações.

Distância, x	1	2	3	4	6	8	10	12	14	16	18	20	22	25	30
Concentração, Y	53.4	46.2	48.6	43.5	44.8	42.0	41.4	37.6	39.2	33.2	34.4	29.0	26.1	24.2	15.2

Resolva as questões com base nos resultados do R:

Assumindo que existe uma relação linear entre as variáveis $x \in Y$:

- (0.4) (a) Escreva a expressão da reta de regressão linear estimada e comente a qualidade do ajustamento.
- (0.4) (b) Qual o valor estimado da variância dos erros do modelo de regressão linear simples?
- (0.4) (c) Qual prevê que seja a concentração de poluente a uma distância da fonte de poluição de 15Km? E a uma distância de 40Km?
- (0.4) (d) Teste para um nível de significância de 5%, a hipótese de o verdadeiro declive da recta de regressão ser nulo, indicando:
 - Hipóteses:
 - Decisão(justifique):