

# EXPERIMENTOS PRÁTICOS DE CONTROLE ADAPTATIVO NA GRADUAÇÃO

Antonio A. R. Coelho<sup>1</sup>, Otacílio M. Almeida<sup>2</sup>, José E. S. Santos<sup>3</sup> e Rodrigo R. Sumar<sup>4</sup>

Universidade Federal de Santa Catarina
Departamento de Automação e Sistemas
C.P. 476 - 88040900 - Florianópolis - SC

aarc@lcmi.ufsc.br <sup>1</sup> - otacilio@lcmi.ufsc.br <sup>2</sup> - santos@lcmi.ufsc.br <sup>3</sup> - sumar@lcmi.ufsc.br <sup>4</sup>

Resumo. As controvérsias e os aspectos emergentes do ensino de algoritmos de controle adaptativos baseiam-se nas suposições de que oferecem uma melhor dinâmica para plantas não-lineares, aliado ao fato de que tornam-se uma realidade na indústria. Este artigo aborda a relevância dos experimentos práticos no ensino de controle adaptativo na graduação. Os principais tópicos de ensino são: identificação de sistemas e análise e projeto de controladores adaptativos. Três algoritmos de controle adaptativos são aplicados em um processo prático não-linear. Este conjunto de experimentos vem sendo aplicado no Curso de Controle Adaptativo de Graduação do Departamento de Automação e Sistemas da UFSC. As metodologias de projeto de controle são: alocação de pólos, variância mínima e preditivo, enquanto que o processo testado é o "fan-and-plate".

Palavras-chave: Educação, Ensino prático, Controle adaptativo, Identificação, Controle preditivo.

## 1. INTRODUÇÃO

A educação em engenharia prática deve ser realizada com equipamentos técnicos e computadores. Somente experimentos por simulação não são suficientes. Os exercícios práticos devem estar organizados e sincronizados com as aulas e exercícios teóricos. Entre os objetivos dos trabalhos práticos tem-se: i) adquirir experiências por repetição e implementação utilizando-se experimentos e instalações atrativas; ii) balancear o treinamento teórico e prático; iii) envolver os estudantes em atividades de grupo no desenvolvimento de atividades práticas; iv) aplicar o conhecimento adquirido nas aulas teóricas em laboratório [1].

Neste artigo, discute-se três projetos de controle adaptativos e aplicados em um processo prático não-linear. Este conjunto de experimentos vem sendo aplicado no Curso de Controle Adaptativo do Departamento de Automação e Sistemas da *UFSC* para assistir estudantes de graduação e pós-graduação. As metodologias de projeto são: alocação de pólos, (*PA*), variância mínima generalizada (*GMV*) e preditivo generalizado (*GPC*). O processo "fan-and-plate" é utilizado. As principais razões que justificam o aprendizado das idéias de controladores adaptativos são: i) um controlador *PID* (proporcional+integral+derivativo) tem comportamento inadequado no rastreamento de referências e rejeição a perturbações quando a planta controlada apresenta complexidades (nem todos os processos industriais podem ser controlados com malhas *PID*); ii) eficientes plataformas computacionais e vários ambientes computacionais têm possibilitado a aplicação de técnicas de controle avançadas; iii) a maioria dos cursos de controle adaptativo é estabelecido por simulação; iv) os aspectos de projeto de controle adaptativo no ensino e quando aplicados em processo práticos são importantes para melhorar o aprendizado/conhecimento dos alunos e motivação do uso de metodologias adaptativas como tecnologias emergentes para aplicação na indústria [2, 3].

Este artigo está organizado como segue. A descrição do processo "fan-and-plate" e a detecção da característica não-linear são apresentadas na seção 2. Aspectos da identificação da planta "fan-dan-plate" tais como determinação da ordem e estimação dos parâmetros são descritas na seção 3. Na seção 4 desenvolve-se o projeto dos quatro controladores adaptativo. Nas seções 5 e 6 são apresentados os resultados experimentais e as conclusões, respectivamente.

#### 2. PROCESSO EXPERIMENTAL

Primeiro experimento: Teste para identificar o comportamento não-linear em malha aberta

## 2.1. Descrição do processo

Uma interessante e bem conhecida planta de laboratório presente em diversas universidades para atividades de ensino e pesquisa é o "fan-and-plate" (Fig. 1). O problema do controle é regular o ângulo de deflexão da placa (variável controlada) atuando sobre a voltagem de entrada do motor *DC* (variável manipulada).



Figura 1 - Protótipo físico do "fan-and-plate".

# 2.2. Característica não-lineares do processo

O procedimento de Thomson, et al. [4] é adotado para indicar se a relação entre a entrada e a saída é linear ou não-linear. Assim, a partir de um ponto de operação nominal  $[u_0(t), y_0(t)]$ , aplica-se uma mudança degrau no sinal de entrada  $(u_0(t)+\Delta u_1)$  no processo e arquiva-se o sinal de saída  $y_1(t)$ . Retorna-se a planta ao ponto de operação nominal e aplica-se uma segunda mudança degrau  $(u_0(t)+\Delta u_2)$  no processo, onde a nova mudança degrau  $\Delta u_2$  é  $\rho$  vezes maior que  $\Delta u_1$ , e arquiva-se o sinal de saída  $y_2(t)$ , isto é,

$$\Delta u_2 = \rho[\Delta u_1] \tag{1}$$

A seguir, remove-se o ponto de operação nominal  $y_0$  de cada resposta e calcula-se

$$\omega = \frac{y_2(t) - y_0}{y_1(t) - y_0} \tag{2}$$

Se a constante  $\omega$  é e igual a  $\rho$ , então o sistema é linear. Utilizando-se os parâmetros  $(u_o, y_o)=(2, 0.87)$ ,  $(u_o+\Delta u_I, y_I)=(3, 1.66)$  e  $(u_o+\Delta u_2, y_2)=(4, 4.50)$ , como o resultado de mudanças ao degrau na entrada e arquivando-se as respostas, os valores de  $\rho$  e  $\omega$  são:  $\rho=2$ ,  $\omega=4.59$ . Portanto, observa-se um comportamento não-linear para o processo "fan-and-plate".

# 3. IDENTIFICAÇÃO DO PROCESSO

## Segundo experimento: identificação da estrutura do modelo: ordem e parâmetros

Esta seção mostra os aspectos de identificação (determinação da ordem e dos parâmetros do modelo) de modo a auxiliar no projeto dos controladores. Além disto, para garantir um desempenho satisfatório nas fases transitória e de regime quando da implementação dos controladores adaptativos, que utilizam a abordagem auto-ajustável, é necessário utilizar um estimador "on-line" que assegure um modelo adequado para a aplicação particular, garantindo estabilidade em malha fechada.

# 3.1. Determinação da ordem da planta

A razão do determinante, conforme proposto por Unbehauen [5], é utilizado para a seleção da ordem e é calculado por

$$h^{T}(n) = [u(t-1) \quad y(t-1)... \quad u(t-n) \quad y(t-n)]$$
 (3)

$$H(h,n) = \frac{1}{N} \sum_{t=n+1}^{N+n} h(n)h^{T}(n)$$
(4)

$$DR(n) = \frac{\det H(h, n)}{\det H(h, n+1)} \tag{5}$$

Como a matriz informação, H(h,n), é função da ordem do modelo (n), então, se a ordem do modelo selecionado é maior que o real, a matriz informação torna-se singular. Portanto, quando a razão entre os determinantes mostra um aumento significativo, a ordem identificada representa, aproximadamente, a ordem real do processo. Pela inspeção da Fig. 2 justifica-se um modelo de segunda ordem para o processo "fan-and-plate".



Figura 2 - Seleção da ordem do processo.

Logo, o processo pode ser representado pela seguinte função discreta

$$G_p(q^{-1}) = \frac{q^{-1}(b_0 + b_1 q^{-1})}{1 + a_1 q^{-1} + a_2 q^{-2}}$$
(6)

## 3.2. Identificação via mínimos quadrados recursivo

O método de estimação dos mínimos quadrados recursivo (MQR) é um dos mais populares e comumente utilizado em esquemas de identificação de parâmetros. O MQR utiliza na estimação o vetores de parâmetros e medidas,  $\theta$  e  $\phi$ , respectivamente, onde

$$\theta^{T} = [a_{1}, \dots, a_{2}, b_{0}, b_{1}] \tag{7}$$

$$\phi^{T}(t) = [-y(t-1), -y(t-2), u(t-1), \dots, u(t-2)]$$
(8)

$$y(t) = \phi^{T}(t)\theta + \mathcal{E}(t) \tag{9}$$

$$\hat{\mathbf{y}}(t) = \boldsymbol{\phi}^{T}(t)\,\hat{\boldsymbol{\theta}}(t) \tag{10}$$

e sendo  $\varepsilon(t)$  o ruído que é estatisticamente independente dos sinais de entrada e saída. O estimador MQR minimiza a função custo representada por

$$J_{RLS}(N) = \frac{1}{N} \sum_{t=1}^{N} \lambda^{N-t} [y(t) - \hat{y}(t)]^2$$
 (11)

onde N é o número de amostras da experimentação. As equações que implementam o algoritmo MQR são

$$\hat{\theta}(t) = \hat{\theta}(t-1) + K(t)[y(t) - \hat{y}(t)] \tag{12}$$

$$K(t) = P(t-1)\phi^{T}(t) / [\lambda + \phi^{T}(t)P(t-1)\phi(t)]$$

$$\tag{13}$$

$$P(t) = \lambda^{-1} \{ P(t-1) - [\{ P(t-1)\phi(t)\phi^{T}(t)P(t-1)/(\lambda + \phi^{T}(t)P(t-1)\phi(t)) \} \}$$
(14)

De modo a evitar variações excessivas na magnitude do sinal de controle nos experimentos práticos, um modelo matemático foi estimado via mínimos quadrados recursivo, Eq. (15). Assim, o modelo utilizado na implementação do controle (fases inicial, transitória e regime) é representado por

$$G_{p}(q^{-1}) = \frac{0.1388q^{-1} + 1.1597q^{-2}}{1 + 0.2663q^{-1} + 0.2085q^{-2}}$$
(15)

#### 4. PROJETO DE CONTROLE

Terceiro experimento: métodos de projeto de controle

Na concepção de projeto adaptativo do tipo auto-ajustável existem algoritmos indiretos e diretos. No primeiro caso os parâmetros da planta são identificados onde a lei de controle é calculada. Por outro lado, no direto, identifica-se diretamente os parâmetros da lei de controle. Neste artigo, o algoritmo de controle direto baseia-se nos projetos *PA* e *GMV*, enquanto que na abordagem indireta tem-se o projeto *GPC*.

## 4.1. Controle por alocação de pólos

O objetivo da técnica de controle por alocação de pólos é ajustar a dinâmica em malha fechada do sistema de controle realimentado em um comportamento previamente especificado pelo operador. A estrutura geral (*RST*) de uma lei de controle realimentada discreta é dada por

$$R(z^{-1})\Delta u(t) + S(z^{-1})y(t) + T(z^{-1})y_t(t) = 0$$
(16)

Considerando-se  $S(z^{-1}) = T(z^{-1})$ , a Eq. (16) torna-se

$$\Delta u(t) = \frac{(1 + s_1 z^{-1} + \dots + s_{ns} z^{-ns})}{(r_0 + r_1 z^{-1} + \dots + r_{nr} z^{-nr})} (y_r(t) - y(t))$$
(17)

onde  $y_r(t)$  é a referência, y(t) é a saída, u(t) é a entrada e  $\Delta u(t) = u(t) - u(t-1)$ . Os polinômios  $R(z^{-1})$  e  $S(z^{-1})$  devem ser obtidos pelo algoritmo MQR (abordagem direta) utilizando os sinais de entrada e saída. Admite-se que, para a lei de controle da Eq. (17), o sistema em malha fechada é representado por

$$\frac{y(t)}{y_r(t)} = \frac{B_m(z^{-1})}{A_m(z^{-1})} \tag{18}$$

onde os polinômios  $B_m(z^{-1})$  e  $A_m(z^{-1})$  ajustam o comportamento transitório, determinam o comportamento de rastreamento desejado em malha fechada e são da forma

$$B_m(z^{-1}) = b_{m1}z^{-1} + \dots + b_{mnbm}z^{-nbm}$$
(19)

$$A_m(z^{-1}) = 1 + a_{m1}z^{-1} + \ldots + a_{mnam}z^{-nam}$$
(20)

Os parâmetros do controlador, Eq. (17), são desconhecidos e para o projeto de controle direto devem ser estimados em tempo real. De modo a obter uma equação adequada na estimação, a Eq. (18) é substituída em (17). Após algumas manipulações matemáticas é possível escrever

$$S(z^{-1})[A_m - B_m]Y(z^{-1}) = R(z^{-1})B_m\Delta U(z^{-1})$$
(21)

Introduzindo valores filtrados para a entrada,  $\overline{u}(t)$ , e a saída,  $\overline{y}(t)$ , tem-se

$$\overline{Y}(z^{-1}) = (A_m - B_m)Y(z^{-1}) \tag{22}$$

$$\overline{U}(z^{-1}) = B_m \Delta U(z^{-1}) \tag{23}$$

e a correspondência entre os sinais auxiliares é dada por

$$S(z^{-1})\overline{y}(t) = R(z^{-1})\overline{u}(t) + \xi(t)$$
(24)

onde a perturbação  $\xi(t)$  representa a imprecisão nas medidas ou um desbalanceamento na ordem do modelo do sistema [6].

#### 4.2. Controle *GMV*

O controle de variância mínima generalizada é uma generalização do controle de variância mínima, cuja função custo a ser minimizada para cálculo da lei de controle é

$$J = \varepsilon[\phi^2(t+k)] \tag{25}$$

onde  $\phi$  corresponde a uma pseudo-saída da forma

$$\theta(t+k) = \nabla y(t+k) + \Gamma u(t) - \Lambda y_r(t) \tag{26}$$

O modelo do sistema a ser considerado é

$$A(z^{-1})y(t) = z^{-k}B(z^{-1})u(t) + Cv(t)$$
(27)

tal que v(t) corresponde à parcela devido a incertezas paramétricas, estruturais ou medida no sistema. A lei de controle GMV é calculada por

$$u(t) = \frac{-Sy(t) + Ty_r(t)}{R} \tag{28}$$

onde S e F são obtidos a partir da identidade polinomial

$$AF + z^{-k}S = \nabla C \tag{29}$$

 $\nabla$ ,  $\Gamma$  e  $\Lambda$  são parâmetros de projeto e  $R=BF+\Gamma C$  e  $T=\Lambda C$ . A ordem dos polinômios depende da ordem do modelo do processo. É importante mencionar que a partir do projeto original GMV podem ser obtidas outras estratégias de controle particulares. Embora a lei de controle GMV obedeça a estrutura RST posicional, um offset nulo é garantido se  $\Gamma(1)=0$ .

#### 4.3. Controle GPC

As estratégias de controle preditivo tem recebido muita atenção na literatura de controle de processos e tem tido aceitação industrial [7]. A popularidade destas técnicas de controle deve-se ao fato de oferecem um adequado desempenho, são simples de entender e formular e, podem acomodar restrições na entrada/saída do processo. O sucesso industrial dos controladores preditivos é atestado pela variedade de controladores preditivos comerciais nas indústrias de processamento químico. Seborg [8] e Henson [9] reportaram uma vasta aplicabilidade mundial de controladores preditivos em refinarias de óleo e plantas petroquímicas. A seguir, apresenta-se o projeto para sintetizar o controle preditivo baseado em Crisalle [10].

Controladores preditivos são usualmente implementados pela execução em cada período de amostragem de um problema de otimização envolvendo a seleção de controles futuros que minimizam o funcional quadrático

$$J(N_{y}, N_{u}) = \sum_{j=1}^{N_{y}} y_{r}(t+j) - y(t+j/t)^{2} + \lambda \sum_{j=0}^{N_{u}} \Delta u(t+j)^{2}$$
(30)

onde  $\{y_i(t+j)\}$  é a seqüência de valores futuros para a referência,  $\{y(t+j/t)\}$  é a seqüência de valores futuros da previsão da saída,  $\{\Delta u(t+j)\}$  é a seqüência incremental de controles futuros,  $\lambda$  é uma ponderação que penaliza a energia de controle, e os parâmetros Ny e Nu são os horizontes de saída e controle, respectivamente. O algoritmo que encontra a lei de controle ótima minimiza a Eq. (30) pela diferenciação do funcional, equacionando a derivada a zero e, então, resolvendo para o valor ótimo de entrada u(t).

De acordo com a estrutura de controle RST, o projeto do controle preditivo final conduz as seguintes equações

$$R(z^{-1}) = z^{n} \left[ 1 + z^{-1} \sum_{j=1}^{Ny} k_{j} \Gamma_{j}(z^{-1}) \right] (1 - z^{-1})$$

$$S(z^{-1}) = z^{n} \left[ \sum_{j=1}^{Ny} k_{j} F_{j}(z^{-1}) \right]$$

$$T(z^{-1}) = \left[ \sum_{j=1}^{Ny} k_{j} z^{j} \right]$$

onde os operadores de projeto  $F_j(z^{-1})$  e  $\Gamma_j(z^{-1})$ , e os coeficientes  $k_j$ ,  $j=1, 2,...,N_y$  são determinados a partir do modelo nominal da planta, conforme o seguinte procedimento. Primeiro, considerar o modelo nominal da planta da forma

$$A(z^{-1})y(t) = z^{-1}B(z^{-1})u(t)$$
(31)

Para obter os operadores de projeto  $F_j(z^{-1})$ , que são polinômios de projeto de grau n (a ordem da planta), resolver o seguinte conjunto de equações

$$E_{j}(z^{-1})\Delta A(z^{-1}) + z^{-j}F_{j}(z^{-1}) = 1$$
(32)

para j=1,2,...,Ny os quais conduzem aos polinômios intermediários  $E_j(z^{-1})$  de grau (j-1). O segundo conjunto de operadores de projeto, os polinômios  $\Gamma_j(z^{-1})$  de grau (nb-1), são obtidos pela decomposição do produto  $E_j(z^{-1})B_j(z^{-1})$  na forma

$$E_{j}(z^{-1})B(z^{-1}) = G(z^{-1}) + z^{-j}\Gamma_{j}(z^{-1})$$

onde os polinômios  $G_j(z^{-1})$ , de grau (j-1), são conhecidos como os polinômios dinâmicos e são caracterizados de fato como os elementos da resposta ao degrau da planta, equação (31). Note que os polinômios  $\Gamma_j(z^{-1})$  são identicamente zero se nb=0. Adicionalmente, os coeficientes do polinômio dinâmico são utilizados para definir os elementos não-zero da matriz de Toeplitz,  $G_{Nu}$ , conhecidos como a matriz dinâmica truncada, que contém somente Nu colunas. Finalmente, os coeficientes  $k_j$ , j=1, 2,...,  $N_y$  são obtidos como as componentes de vetor ganho  $K^T=[k_1 \ k_2 \ ... \ k_{Ny}]$ , calculados da equação

$$K^{T} = [1 \ 0 \dots 0] [G_{Nu}^{T} G_{Nu} + \lambda I]^{-1} G_{Nu}^{T}$$

e a lei de controle aplicada é  $u(t) = u(t-1) + K(Y_r - Y^{OL})$ 

onde

$$(Y_r)^T = [yr(t+1) \ yr(t+2) \ \dots \ yr(t+Ny)]$$
  
 $(Y^{OL})^T = [y^{OL}(t+1) \ \dots \ y^{OL}(t+Ny)]$ 

O vetor  $Y^{OL}$  efetivamente descreve como o sistema responderia no modo de controle em malha aberta. Quando novas medidas tornam-se disponíveis, um novo problema de otimização é formulado cuja solução proporciona a nova ação de controle.

#### 5. RESULTADOS EXPERIMENTAIS

Quarto experimento: avaliações servo e regulação dos controladores auto-ajustáveis

A seguir, os ensaios práticos para os comportamentos servo (500 amostras) e regulatório (300 amostras) nos projetos de controle adaptativos auto-ajustáveis são apresentados. O período de amostragem é 300 mseg e os parâmetros iniciais para o algoritmo MQR são:  $a_1=a_2=b_1=b_2=0.1$  (GMV, GPC) e,  $a_1=-0.51$  e  $b_1=-0.41$  (PA). O traço inicial da matriz de covariância é:  $10I_{2x2}$  para o algoritmo PA,  $1000I_{4x4}$  para o controlador GMV e,  $500I_{4x4}$  para o GPC. Os parâmetros de sintonia dos algoritmos de controle adaptativos auto-ajustáveis são:

• *PA*:  $a_{m1}$ =-1.4,  $a_{m2}$ =0.49; *GMV*:  $\Gamma_0$ =10; *GPC*:  $\Gamma$ =10,  $H_v$ =5,  $H_u$ =2.

#### 5.1. Experimento de controle servo

No experimento servo o processo é submetido a mudanças na referência para avaliar a capacidade de rastreamento. Inicialmente, a referência é fixada em 2 *volts*, depois alterada para 3.5 *volts* (entre as amostras 151 e 300) e, finalmente, 2.5 *volts* (entre as amostras 301 e 500). As Figs. 3-5 ilustram a saída, referência e ação de controle para cada estratégia de controle.



Figura 3 – Comportamento servo via controle PA.



Figura 4 – Comportamento servo via controle *GMV*.



Figura 5 – Comportamento servo via controle GPC.

# 5.2. Experimento de controle regulatório

No segundo experimento uma referência fixa de 3.5 volts é utilizada e perturbações de carga são aplicadas no processo de modo a verificar a capacidade dos algoritmos de controle para rejeição de perturbações. A magnitude da perturbação é +0.5 volts, adicionada a partir da amostra 100. Outra perturbação constante, de magnitude -0.5 volts, é aplicada a partir da amostra 200, e mantida até o final do experimento. As Figs. 6-8 ilustram o desempenho dos diferentes controladores e processo.



Figura 6 - Comportamento regulatório via controle PA.



Figura 7 – Comportamento regulatório via controle *GMV*.



Figura 8 – Comportamento regulatório via controle GPC.

# 6. CONCLUSÃO

Pela necessidade de aplicar os fundamentos teóricos de controle adaptativo nos currículos de engenharia, foi mostrado uma seqüência de metodologias de projeto de controle e atividades experimentais para os estudantes

interessados na teoria e aplicação dos controladores adaptativos. Adicionalmente, este artigo apresentou um conjunto de experimentos projetados para o ensino de controle adaptativo a partir do ponto de vista prático.

A seleção desta emergente tecnologia de controle e algumas vezes pelas opiniões contraditórias sobre os algoritmos de controle adaptativos baseia-se na hipótese de que podem oferecer um melhor desempenho para processos complexos e por tornarem-se uma realidade na indústria de controle de processos. O curso proposto vem sendo aplicado com sucesso na *UFSC*, permitindo aos estudantes aprenderem os fundamentos de malhas de controle adaptativas e, ao mesmo tempo, se familiarizarem com o efeito da sintonização de cada algoritmo de controle adaptativo na dinâmica de malha fechada.

O Laboratório de Controle de Processos do Departamento de Automação e Sistemas da *UFSC* vem desenvolvendo e atualizando plantas didáticas de baixo custo para suportar os estudantes com atividades práticas nas diversas disciplinas do Curso de Engenharia de Controle e Automação Industrial (http:\\lcp.das.ufsc.br)

#### 7. REFERÊNCIAS

- [1] D.S. Bernstein, Control Experiments and What I Learned From Them: A Personal Journey. *IEEE Control Systems*, **18**, 1998, pp. 81-87.
- [2] N.A. Kheir, K.J. Åström, D. Auslander, K.C. Cheok, G.F. Franklin, M. Masten and M. Rabins, Control System Engineering Education. *Automatica*, **32**, 1996, pp. 147-166.
- [3] V.J. VanDoren, Model-Predictive Controller Solves Complex Problems. *Control Engineering International*, March, 1998, pp. 112.
- [4] M. Thomson, S.P. Schooling and M. Soufian, The Practical Application of a Nonlinear Identification Methodology. *Control Engineering Practice*, **4**, 1996, pp. 295-306.
- [5] H. Unbehauen and B. Göhring, Tests for Determining Model Order in Parameter Estimation. *Automatica*, **10**, 1974, pp. 233-244.
- [6] N.M. Filatov, U. Keuchel and H. Unbehauen, Dual Control for an Unstable Mechanical Plant. *IEEE Control Systems*, **16**, 1996, pp. 31-37.
- [7] D.W. Clarke, C. Mohtadi and P.S. Tuffs, Generalized Predictive Control Part I The Basic Algorithm Part II Extensions and Interpretations. *Automatica*, **23**, 1987, pp. 137-160.
- [8] D. E. Seborg, "A Perspective on Advanced Strategies for Process Control," *Modeling, Identification and Control*, vol. 15, 1994, pp. 179-189.
- [9] M. A. Henson, "Nonlinear Model Predictiv Control: Current Status and Future Directions," *Computers and Chemical Engineering*, vol. 23, 1998, pp. 187-202.
- [10] O. D. Crisalle, D. E. Seborg and D. A. Mellichamp, "Theoretical Analysis of Long-Range Predictive Controllers," *American Control Conference*, Pittsburg, PA (1989).
- [11] K. Furuta, VSS Type Self-Tuning Control. *IEEE Trans. on Ind. Electronics*, **40**, 1993, pp. 37-44.
- [12] W. Wang and R. Henriksen, (1992). Direct Adaptive Generalized Predictive Control. *Proc. of American Control Conference*, Chicago, USA, 2402-2406.
- [13] D.W. Clarke and P. Gathwrop, Self-Tuning Controller. *Proc. of the IEE*, **122**, 1975, pp. 929-934.