Introduction to Algebraic Topology PSET 1

Nilay Kumar

Last updated: January 25, 2014

Proposition 1. If a space X is contractible then X is path-connected.

Proof. Take any $x, y \in X$. It suffices to show that there exists a continuous path $\gamma: I \to X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. Since X is contractible, the identity map Id_X is homotopic to a constant map. In other words, there exists a point $z \in X$ and a homotopy $f_t: X \times I \to X$ such that $f_0 = \mathrm{Id}_X$ and $f_1(p) = z$ for all $p \in X$. Now consider the path $f_t(x): I \to X$. Clearly $f_0(x) = x$ and $f_1(x) = z$. Similarly, for $f_t(y): I \to X$, we see that $f_0(y) = y$ and $f_1(y) = z$. Both of these paths $f_t(x), f_t(y)$ are continuous as they are simply restrictions of the full homotopy $f_t: X \times I \to X$. But given continuous paths from x to z and y to z, we can concatenate to obtain a path from x to y. This proves path-connectedness.

Proposition 2. Let X, Y, Z be topological spaces. Consider the maps

$$X \xrightarrow{f_0} Y \xrightarrow{g_0} Z$$

and suppose that $f_0 \simeq f_1$ and $g_0 \simeq g_1$. Then $g_0 \circ f_0 : X \to Z$ and $g_1 \circ f_1 : X \to Z$ are homotopic.

Proof. There must exist a homotopy $F: X \times I \to Y$ such that $F_0 = f_0$ and $F_1 = f_1$, as well as a homotopy $G: Y \times I \to Z$ such that $G_0 = g_0$ and $G_1 = g_1$. Now consider the composition $H: X \times I \to Z$ defined by $(x,t) \mapsto G_t(F_t(x))$. The composition H is continuous by virtue of the continuity of the homotopies F and G. Moreover, H satisfies $H_0 = g_0 \circ f_0$ and $H_1 = g_1 \circ f_1$, and hence H is a homotopy from $g_0 \circ f_0$ to $g_1 \circ f_1$.

Proposition 3. Construct an explicit deformation retraction of $\mathbb{R}^n - \{0\}$ onto S^{n-1} .

Proof. Consider the function $f:(\mathbb{R}^n-\{0\})\times I\to\mathbb{R}^n-\{0\}$ given by

$$f_t(x) = x - t\left(x - \frac{x}{|x|}\right).$$

It is clear that f is continuous. Moreover, at t = 0, we have $f_0(x) = x$ and hence $f_0 = \operatorname{Id}_{\mathbb{R}^n - \{0\}}$. At t = 1, on the other hand, we see that $f_1(x) = x/|x|$, which is on S^{n-1} and hence $f_1(\mathbb{R}^n - \{0\}) = S^{n-1}$ (f_1 obviously surjects onto S^{n-1}). Finally, note that $f_t|_{S^{n-1}} = \operatorname{Id}_{S^{n-1}}$ for all t because $f_t(x) = x - tx + tx = x$ if |x| = 1. This shows that f is indeed the desired deformation retract.

Proposition 4.

(a) The composition of homotopy equivalences $X \to Y$ and $Y \to Z$ is a homotopy equivalence $X \to Z$. Furthermore, homotopy equivalence is an equivalence relation.

- (b) The relation of homotopy among maps $X \to Y$ is an equivalence relation.
- (c) A map homotopic to a homotopy equivalence is a homotopy equivalence.

Proof.

(a) Let $X \simeq Y$ via $f: X \to Y$ and $g: Y \to X$ and $Y \simeq Z$ via $f': Y \to Z$ and $g': Z \to Y$. In other words, $g \circ f \simeq \operatorname{Id}_X$, $f \circ g \simeq \operatorname{Id}_Y$ and $g' \circ f' \simeq \operatorname{Id}_Y$, $f' \circ g' \simeq \operatorname{Id}_Z$. Note that

$$f' \circ f \circ g \circ g' \simeq f' \circ \operatorname{Id}_Y \circ g'$$

 $\simeq f' \circ g'$
 $\simeq \operatorname{Id}_Z$

and

$$g \circ g' \circ f' \circ f \simeq g \circ \operatorname{Id}_Y \circ f$$

 $\simeq g \circ f$
 $\simeq \operatorname{Id}_X$.

But this implies that $X \simeq Z$ via $f' \circ f : X \to Z$ and $g \circ g' : Z \to X$, as desired. This shows that homotopy equivalence is a transitive relation. In fact, homotopy equivalence is an equivalence relation because $X \simeq X$ by the identity map, and if $X \simeq Y$ via f, g, then $Y \simeq X$ simply by switching f, g.

- (b) Note first that any map $\phi: X \to Y$ is homotopic to itself by the constant homotopy $f: X \times I \to Y$ given by $(x,t) \mapsto \phi(x)$. Furthermore, if f_t is a homotopy from f_0 to f_1 , we can define a homotopy from f_1 to f_0 by simply taking f_{1-t} . Finally, let f_t be a homotopy from f_0 to f_1 and g_t be a homotopy from g_0 to g_1 , where $f_1 = g_0$. We can define a homotopy $h: X \times I \to Y$ from f_0 to g_1 by traversing the homotopy f_{2t} followed by g_{2t} . Hence the relation of homotopy among maps $X \to Y$ is an equivalence relation.
- (c) Let X, Y be topological spaces, with $X \simeq Y$ via $h: X \to Y$ and $h': Y \to X$. Let $f_0: X \to Y$ be a map homotopic to h, i.e. there exists a homotopy $f_t: X \times I \to Y$ between f_0 and $f_1 = h$. Then $f_0 \circ h' \simeq h \circ h' \simeq \operatorname{Id}_Y$ and $h' \circ f_0 \simeq h' \circ h \simeq \operatorname{Id}_X$ and hence f_0 provides a homotopy equivalence $X \simeq Y$.

Proposition 5. A retract of a contractible space is contractible.

Proof. Let X be a topological space and $r: X \to X$ be a retraction of X onto a subspace A. It suffices to show that A is contractible, i.e. that the identity map Id_A is homotopic to a constant map (on A). Using the contractibility of X, we find a homotopy $f: X \times I \to X$ such that $f_0 = \mathrm{Id}_X$ and $f_1(p) = z$ for some $z \in X$. Consider the composition $r \circ f: X \times I \to X$ restricted to A. It is clear that $r \circ f_0|_A = \mathrm{Id}_A$ and that $r \circ f_1|_A = r(z)$ is a constant map on A. As the composition (and restriction) $r \circ f|_A$ is continuous, this gives us a homotopy between Id_A and a constant map on A, proving that A is contractible.