

DM583

Data Mining

Overlapping Partitioning Clustering

Partition Matrix Revisited

- It is a matrix with k rows (no. of clusters) and N columns (no. of observations) in which entry μ_{ij} stands for the membership degree of the jth observation (\mathbf{x}_i) to the ith cluster (\mathbf{C}_i)
- In case of **hard** (**non-overlapping**) partitioning algorithms, each observation must belong to exactly one cluster, i.e:

$$\mu_{ij} \in \{0,1\}$$

$$\sum_{i} \mu_{ij} = 1 \quad \forall j$$

$$\mathbf{U}(\mathbf{X}) = \begin{bmatrix} \mu_{11} & \mu_{12} & \cdots & \mu_{1N} \\ \mu_{21} & \mu_{22} & \cdots & \mu_{2N} \\ \vdots & & \ddots & \vdots \\ \mu_{k1} & \mu_{k2} & \cdots & \mu_{kN} \end{bmatrix}$$
 clusters

Hard vs Overlapping Partitioning Clustering

- Partitioning algorithms such as k-means, k-medoids and others produce a non-overlapping partition of the data:
 - Each object fully belongs to exactly one cluster
 - Usually, we refer to this type of partition as Hard or Crisp
- However, many problems involve not clearly delineated clusters that cannot be properly represented in this way
- In other words, there are situations in which the data comprise categories that overlap each other at different levels
- For instance:

Overlapping Partitioning Clustering Algorithms

- Overlapping clustering algorithms exist that can cope with these situations
- They can be subdivided into three categories, depending on the type of partition that they produce:
 - Soft: Objects can (fully) belong to more than one cluster
 - Fuzzy: Objects can partially belong to multiple clusters
 - Cluster membership is a matter of degree (possibly null)
 - Probabilistic: There is uncertainty of a probabilistic nature on the association between objects and clusters
 - Cluster membership is interpreted as likelihood

Fuzzy and Probabilistic Partitions

■ Fuzzy Partition Matrix: real-valued membership values, $\mu_{ij} \in [0,1]$

$$\mathbf{U}(\mathbf{X}) = \begin{bmatrix} \mu_{11} & \mu_{12} & \cdots & \mu_{1N} \\ \mu_{21} & \mu_{22} & \cdots & \mu_{2N} \\ \vdots & & \ddots & \vdots \\ \mu_{k1} & \mu_{k2} & \cdots & \mu_{kN} \end{bmatrix}$$

- Probabilistic Partition Matrix: $\mu_{ij} \in [0,1]$ interpreted as probabilities
 - Therefore: $\sum_{i} (\mu_{ij}) = 1 \ \forall j$

Fuzzy and Probabilistic Partitions

Example (Fuzzy):

$$\mathbf{U}(\mathbf{X}) = \begin{bmatrix} 1 & 0.1 & 0.5 & 0.1 \\ 0 & 0.1 & 0.5 & 0.9 \end{bmatrix}$$

Example (Fuzzy / Probabilistic):

$$\mathbf{U}(\mathbf{X}) = \begin{bmatrix} 1 & 0.7 & 0.5 & 0.1 \\ 0 & 0.3 & 0.5 & 0.9 \end{bmatrix}$$

Model-Based Clustering

- In Model-Based Clustering we assume that a dataset is a sample from a population, then we make formal statistical assumptions about this population and use the sample to fit a parametric model
- The most well-known and commonly used model is the Gaussian Mixture Model (GMM), which assumes the data is drawn from a (multi-normal) mixture distribution
 - This is a <u>probabilistic model</u> for <u>overlapping partitioning clustering</u>

Model-Based Clustering

- GMM models can be fit using the <u>EM Algorithm</u>
- EM (Expectation Maximization) is a probabilistic modelling procedure based on the principle of Maximum Likelihood Estimation (MLE)

GMMs

 Gaussian Mixture Models are described by the following probability density function p:

$$p(\mathbf{x}_j) = \sum_{i=1}^k \pi_i \mathcal{N}(\mathbf{x}_j | \mathbf{v}_i, \mathbf{\Sigma}_i)$$

- x_j is a vector of n real-valued random variables (a data object in Rⁿ)
- \mathcal{N} is a multivariate Gaussian (same dimension as the objects)
 - v_i is the centre of the ith Gaussian (vector of same dimension as x_i)
 - Σ_i is the covariance matrix of the ith Gaussian
- π_i is the prior probability associated with the ith Gaussian
- k is the number of Gaussians

GMMs: 1-dimensional Example

A	51	В	62	В	64	Α	48	A	39	Α	51
A	43	A	47	Α	51	В	64	В	62	Α	48
В	62	A	52	Α	52	A	51	В	64	В	64
В	64	В	64	В	62	В	63	Α	52	Α	42
A	45	A	51	Α	49	A	43	В	63	Α	48
A	42	В	65	Α	48	В	65	В	64	Α	41
Α	46	A	48	В	62	В	66	A	48		
A	45	A	49	Α	43	В	65	В	64		
A	45	A	46	Α	40	A	46	Α	48		

Objects:

Model:

Witten & Frank, Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)

The following quantity plays a fundamental role when fitting GMMs with EM:

$$\mu_{ij} = rac{\pi_i \mathcal{N} ig(\mathbf{x}_j ig| \mathbf{v}_i, oldsymbol{\Sigma}_i ig)}{\sum\limits_{l=1}^k \pi_l \mathcal{N} ig(\mathbf{x}_j ig| \mathbf{v}_l, oldsymbol{\Sigma}_l ig)}$$

- μ_{ij} is the **posterior probability** that an observed value \mathbf{x}_j was generated by the ith cluster (i.e., by the ith multivariate Gaussian component)
 - ullet The probability associated with the ith component *conditioned* to $oldsymbol{x}_{j}$
 - It trivially follows from the Bayes theorem

- Another fundamental quantity (likelihood):
 - Given a sample (dataset) $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$ with N i.i.d. observations $\mathbf{x}_i \in \mathfrak{R}^n$, their joint distribution is:

•
$$p(\mathbf{X}) = p(\mathbf{x}_1 \& \mathbf{x}_2 \& \dots \& \mathbf{x}_N) = \prod_{j=1}^N p(\mathbf{x}_j) = \prod_{j=1}^N \sum_{l=1}^k \pi_l \mathcal{N}(\mathbf{x}_j | \mathbf{v}_l, \mathbf{\Sigma}_l)$$

- This is the likelihood that a sample **X** will be observed/drawn from the Gaussian mixture distribution in question, with parameters:
 - $\Sigma = {\Sigma_1, ..., \Sigma_k}, \mathbf{v} = {\mathbf{v}_1, ..., \mathbf{v}_k} \text{ and } \pi = {\pi_1, ..., \pi_k}$
 - For this reason, we also use the notation $p(\mathbf{X} \mid \pi, \Sigma, \mathbf{v})$
- For mathematical convenience, a log transformation is applied to replace products with sums, resulting in the log-likelihood function:

•
$$\ln(p(\mathbf{X} | \boldsymbol{\pi}, \boldsymbol{\Sigma}, \mathbf{v})) = \sum_{j=1}^{N} \ln(\sum_{l=1}^{k} \pi_{l} \mathcal{N}(\mathbf{x}_{j} | \mathbf{v}_{l}, \boldsymbol{\Sigma}_{l}))$$

- Maximising the likelihood (or, equivalently, the log-likelihood) can be seen as maximising the agreement/match between the sample and the model
- EM (Dempster et al., 1977) is an optimisation algorithm that aims to maximise the (log) likelihood function in 2 steps:
 - Step E (Expectation)
 - Evaluate the posterior probabilities μ_{ij} (i = 1, ..., k; j = 1, ..., N)
 - from the N observations $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$ and the current model, given by parameters $\Sigma = \{\Sigma_1, ..., \Sigma_k\}$, $\mathbf{v} = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$ and $\pi = \{\pi_1, ..., \pi_k\}$
 - Step M (Maximisation)
 - Adjust the model parameters to locally maximise the log-likelihood function

- Step E (Expectation):
 - Evaluate the posterior probabilities μ_{ij} (i = 1, ..., k; j = 1, ..., N)

$$\mu_{ij} = \frac{\pi_i \mathcal{N}(\mathbf{x}_j | \mathbf{v}_i, \mathbf{\Sigma}_i)}{\sum_{l=1}^k \pi_l \mathcal{N}(\mathbf{x}_j | \mathbf{v}_l, \mathbf{\Sigma}_l)}$$

$$\mathcal{N}(\mathbf{x}_{j} | \mathbf{v}_{i}, \mathbf{\Sigma}_{i}) = \frac{1}{(2\pi)^{n/2} \det(\mathbf{\Sigma}_{i})^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x}_{j} - \mathbf{v}_{i})^{T} \mathbf{\Sigma}_{i}^{-1} (\mathbf{x}_{j} - \mathbf{v}_{i})\right\}$$

- Step E (Expectation):
 - Evaluate the posterior probabilities μ_{ij} (i = 1, ..., k; j = 1, ..., N)

$$\mu_{ij} = \frac{\pi_i \mathcal{N}(\mathbf{x}_j | \mathbf{v}_i, \mathbf{\Sigma}_i)}{\sum_{l=1}^k \pi_l \mathcal{N}(\mathbf{x}_j | \mathbf{v}_l, \mathbf{\Sigma}_l)}$$

$$\mathcal{N}(\mathbf{x}_{j} | \mathbf{v}_{i}, \mathbf{\Sigma}_{i}) = \frac{1}{(2\pi)^{n/2} \det(\mathbf{\Sigma}_{i})^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x}_{j} - \mathbf{v}_{i})^{T} \mathbf{\Sigma}_{i}^{-1} (\mathbf{x}_{j} - \mathbf{v}_{i})\right\}$$

Mahalanobis distance (squared) from observation to cluster center

- Step M (Maximisation):
 - Adjust the model parameters

• Algorithm:

- Initialisation (e.g. via k-means)
 - prototypes \mathbf{v}_i = resulting k-means centroids
 - covariances Σ_i = sample covariance matrices of the resulting clusters
 - probabilities μ_{ii} (for N_i and π_i) = resulting (hard) partition matrix
- 2. Step E
- Step M
- 4. Evaluate Stopping Criterion
 - e.g. Log-likelihood function, no. iterations, ...
- 5. Stop or Return to Step 2

EM (GMMs) × k-Means

- EM provides much more information about the data
 - PDF model describing the distributions of clusters
 - Posterior probabilities for each observation
 - Outliers...
- It can model elongated, ellipsoidal clusters with arbitrary covariances
- However, this comes with a price:
 - GMMs have a much larger number of parameters to be fit (more data needed, etc.)
 - Computing the inverse of the covariance matrices Σ_i requires $O(n^3)$ time
 - There are variants and simplified versions that are more robust and/or faster (e.g., see MCLUST)
- k-means can be shown to be a particular limit of EM-GMM
 - Both are subject to local minima

EM-GMMs (Examples)

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Brazil.

Example (step-by-step)

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Brazil.

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Brazil.

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Brazil.

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Brazil.

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Brazil.

Exercise

Object ID	\boldsymbol{x}_1
1	-1.31
2	-0.43
3	0.34
4	3.57
5	2.76
6	0.30
7	9.06
8	4.45
9	2.87
10	4.42

- Manually perform EM in this dataset (n = 1, N = 10), with k = 2. Start from arbitrary/random clusters
- Illustrate the results graphically

MCLUST Framework [OPTIONAL]

TABLE 1. Parametrizations of the covariance matrix Σ_k in the Gaussian model and their geometric interpretation. The models shown here are those discussed in Banfield and Raftery [2].

Σ_k	Distribution	Volume	Shape	Orientation	Reference
λI	Spherical	Equal	Equal	NA	1, 2, 5, 20
$\lambda_k I$	Spherical	Variable	Equal	NA	2, 5
λDAD	Ellipsoidal	Equal	Equal	Equal	2, 5, 21, 22
$\lambda_k D_k A_k D_k$	Ellipsoidal	Variable	Variable	Variable	2, 5, 22
$\lambda D_k A D_k$	Ellipsoidal	Equal	Equal	Variable	1, 2, 5
$\lambda_k D_k A D_k$	Ellipsoidal	Variable	Equal	Variable	2, 5

- C. Fraley and Adrian E. Raftery "How many clusters? Which clustering method?
 Answers via model-based cluster analysis" The computer journal 41.8 (1998): 578-588
- C. Fraley and Adrian E. Raftery "MCLUST: Software for model-based cluster analysis" *Journal of classification* 16.2 (1999): 297-306.

References

- Höppner, F., Klawonn, F., Kruse, R., Runkler, T., Fuzzy Cluster Analysis, 1999
- Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithm, Plenum Press, 1981
- Bishop, C. M., Pattern Recognition and Machine Learning, Springer, 2006
- I. H. Witten and E. Frank, Data Mining: Practical Machine
 Learning Tools and Techniques, 2nd Edition, Morgan Kaufmann,
 2005
- Tan, P.-N., Steinbach, M., and Kumar, V., Introduction to Data Mining, Addison-Wesley, 2006