Particles That GO

敖先威

Faster than Light

1. Introduction

Einstein 寫說: "velocities greater than that of light "have no possibility of existence." 事實上應該是 it is impossible to make a body go from less than C to C. 相對論本身並不禁止超光速粒子 "Tachyon"的存在。我們知道:目前已知的粒子依速度可分為兩類Class I一速度恆小於C,即一般之粒子Class II—速度恆等於C,例如photon,

neutrino

基於對稱性的追求,我們忍不住要猜想,是否有第三類存在?即Class Ⅲ一速度恆大於C 首先①我們看看相對論告訴我們些什麼?

$$P = \frac{m_0 V}{\sqrt{1 - \frac{V^1}{C^0}}} \dots (2)$$

由(1), (2)消去 V 得 E'-P'C'=mo'C'.....(3)
(3) 式對任何 observer 爲 invariance, 因爲 mo'C'
爲一常數,若由(1)(2)消去mo得

$$\frac{\mathbf{V}}{\mathbf{C}} = \frac{\dot{\mathbf{P}}\dot{\mathbf{C}}}{\mathbf{E}} \qquad (4)$$

由(3)(4)兩式很清楚的可以看出 若V>C

即 mo'<0, mo為imaginary!

2. Objections to "Tachyons"

(a) Imaginary proper mass $m_0 = i \mu$, μ real

若把 proper mass 當作一個常數,則此常數 爲虛數並無不可,雖然少見,但並非沒有,例如在 量子力學中導出 harmonic plane wave Ψ(x)∞ exp(i(kx-wt))
即在Acos(kx-wt)+Bsin(kx-wt) 中 B為
imaginary.再說在Tachyon時, proper mass
並不可直接量出,因為所有的 observer均為Class
I,而且可量出之物理量,E,P均為實數了

$$E = \frac{\mu C^2}{\sqrt{\frac{V^2}{C^2} - 1}}$$
(5)

(b) Negative energy

 $E^{2}-P_{x}^{2}C^{2}=m_{0}^{2}C^{4}$

Class I—藍線,∴mo²>0,但僅在上半部 即E>0為Lorensz transformation的範圍。

Class II — mo²=0 ,即虚線

Class III—mo <0

即紅線

但它包括了正負的能量! 考慮兩個 observer 相對 速度 u

- ∴ | PC |>E , 總能找 U使E '<0 此問題之解決可和以下(c)合併討論
 - (c) Time reverse

for observer 0
$$\frac{\triangle x}{\triangle t} = \frac{|x_1 - x_1|}{t_1 - t_1} > C$$
,

 $\triangle t = t_1 - t_1 > 0$

對 observer O' 相對速度 u

$$\triangle_{\mathbf{X}^1} = (\triangle_{\mathbf{X}} - \mathbf{U} \triangle_{\mathbf{t}}) \gamma$$

$$\triangle_t^1 = (\triangle_t - \frac{U \triangle_x}{C^2}) \gamma \qquad \triangle_x = U \triangle_t$$
$$= \triangle_t \left(1 - \frac{U^2}{C^2}\right) \gamma$$

放若選擇 UV> C' 時 △t'爲負

值得注意的是"負能量"和"時光倒流"的條件相

同! 即
$$\frac{E^{i}}{E} = \gamma \left(1 - \frac{PU}{E}\right)$$
 from (7)
$$= \gamma \left(1 - \frac{UV}{C^{i}}\right)$$
 from (4)

(或直接由Minkowski diagram看出條件,如下

解決(b)(c)可用所謂 "reinterpretation principle" 因為不同的 observer must agree on the identity of the physical laws but not on the description of specific events.

例如: 在O systen, source S₁在 x₁=0, t₁=0 放出一個Tachyon 以速度U>C,而在 x₁, t₁(t₁> t₁)至 sink S₁(被吸收)

$$\frac{S_1}{(x_1,t_1)} \rightarrow \frac{S_2}{(x_2,t_2)}$$

在 O^1 system 看來此 Tachvon 帶負能量,且 $t_1' < t_1'$,即他認爲是 S_2 在 (x_1', t_1') 放出一帶 下能量之 Tachvon 而在 (x_1', t_1') 被 S_1 吸收。

(d) Infinite energy source

考慮—個E=0之Tachyon和某—Class I particle 彈性碰撞,碰撞後此Tachyon之能量E'=—E1則Class I particle得到E1,但E'可爲任意負值,且能量愈低愈可能穩定,故Class I particle可獲得任意大的能量!

事實上用 reinterpretation principle 爲 E=E,之 Tachyon 和 E=0之 Tachyon 先 後向 Class I particle 撞去,然後消失了, 而 E,不可能∞(除非V=C)

3. Example: Analysis of Causal Anomalies Produced with Tachyons

observer 1 with Unprimed coordinates at rest at origin

observer 2 with primed coordinater at the point (x_0 , 0, 0) at t=0

and moving with velocity U in x-direction

$$\begin{cases} x' = \gamma (x - x_0 - Ut), \\ t' = \gamma (t - Ux + Ux_0), \\ x = x_0 + \gamma (x' + Ut'), \\ t = \gamma (t' + Ux') \end{cases}$$

在t=0 時 observer 1 放出 tachyon(1) 速度Vi 給 O.

在
$$t = \frac{X_0}{V_1 - U}$$
 時 O_1 收到,位置 $X = \frac{X_0^2 V_1}{V_1 - U}$

此事件對O: 之時間為 $t' = \gamma Ux$

當O·收到後立刻放出 1 tachyon(2)以速度—V· 給 O·

O. 認為 在
$$t^1 = \frac{X_0}{\gamma(V_1 - U)} + \frac{X_0 V_1}{\gamma(V_1 - U)(V_2 - U)}$$

時 O. 收到此時O.之位置為

$$X^{1} = \frac{-X_{0} V_{1} V_{2}}{\gamma (V_{1} - V) (V_{2} - V)}$$

代入
$$t_{\mathbf{F}} = \gamma (t^{1} + Ux^{1})$$

$$= \frac{X_{0}}{V_{1} - U} + \frac{X_{0} V_{1}}{(V_{1} - U)(V_{1} - U)}$$

$$= \frac{X_{0} U V_{1} V_{2}}{(V_{1} - U)(V_{2} - U)}$$

$$= \frac{X_{0} (V_{1} + V_{2} - U - UV_{1} V_{2})}{(V_{1} - U)(V_{2} - U)}$$

sym. with V1, V1

$$= \frac{X_0}{(V_1 - U)(V_2 - U)} (V_1 - U + V_2(1 - UV_1))$$

$$= \frac{X_0}{(V_1 U)(V_2 - U)} (V_1 - U + V_2(1 - \frac{UV_1}{C^2}))$$

in usual unit

故若
$$1-\frac{UV_1}{C^*} > 0$$
 則 $t_r > 0$ normal

if
$$V_1=V_2=\infty$$
, $t_F=-UX_0$ ($t_F=\frac{UX_0}{C^2}$)

即 tachyon(2) emitted by O. 將發生在O. 放出 tachyon(1)之前!有人就想:如果O.收到(先)後不發出Tachyon(1)則O. 並未發出tachyon (2)但 O1 卻收到了! 豈不矛盾?

若利用 reinterpretation principle 解釋,則對 O. 而言 Tachyon (1)帶負能量故他認為是他發給O. 的,即先後他共放出 2 個 Tachyon,同樣對O. 而 言 Tachyon(2)為負能量,故他認為是他發出的,即 他亦放出 2 個 Tachyon圖解如下:

如此看來二人都認為自己發出 2個 Tachon,對方收到。(這和特殊相對論中的彼此都認為對方的鐘 走的較慢類似)

如果雙方當初約好的收到 a 號時放出 Tachyon,但 結果誰也沒有收到卻都認為是自己放出了 2個 Tachyon,到底怎麽厄事?要討論這個問題,我們先 看看如何"收到信號"?

我們假定 detector 是一個處在 ground state 之 atom(at rest)則若吸收一個 Tachyon後 跳至 excited state (同時爲滿足 momentum conserved 而開始運動)圖示如下:

我們所以選擇ground state是要排除放出Tachyon之可能性(對使用此 detector之 observer 而言)。 顯然在此情形下,此 detector 無法偵測到其他 observer 所放出之Tachyon,(若 $\frac{UV}{C^2}$ >1),

即只能吸收 $\frac{UV}{C^*}$ < 1, 之 Tachyon, 亦即對兩個 observer 而言 energy 會 change sign 的都無 法量到。

為了要適合一般情形,不受上述條件限制,我 們可用 excited state 之 atom 作 detector,如 下圖:

但是如此一來,detector 會產生 spontaneous emission of Tachyon 也就無法區別到底是放出一個E>0之Tachyon,還是吸收了一個E<0之Tachyon。 事實上在此情況此 observer 很自然的作了前一種選擇,因此因果矛盾並不能推翻Tachyon 的存在。

4. Experiments to deatect Tachyons

講完了以上種種,大有呼之欲出的樣子,但無 論如何,要看實驗的結果而定。下面我們介紹二個 實驗,一爲值測 charged Tachyon 的方法,一爲 值測 neutral Tachyon 的方法。

(A) Cerenkov Radiation Method

此為 1968 年在 Princeton所作的。我們知道若一個 charged particle 在介質中的速度超過光在此介質中的速度,就會產生 Cerenkov Radiation,既然 Tachyon 天生快於先速,則在眞空中也會產生 Cerenkov Radiation,此實驗之構想如下:

- (a)若Tachyon 存在則必有產生的方法, pair production 不失為可能的方法。
- (b)鉛塊是防止γ ray 直接進入 detector, 且使 γ ray 在鉛塊中產生 pair production, t⁺ 和 t⁻
- (c) detector 中爲真空,排除其他high energy 產生 Cerenkov Radiation的可能。
- (d)電場供應 t+所 損失的能量。因為根據計算⑥ 既使原來 t+ 之能量很大,經過不到 1/10 cm ,能量就降到1e.V 以下不在可見光範圍(在 可見光至少要2e.V左右,若入=6000A,

 $\frac{hc}{\lambda} = \frac{6.6 \times 10^{-3.4} \times 3 \times 10^{-3}}{6 \times 10^{-7} \times 1.6 \times 10^{-1.8}} = 2 \text{ e.V}$)更不易

測得,因 photomultiplier 不能用。而且我們可調整電場的強度⑦使平衡狀態在可見光區,如此就方便多了。

結果:未測到任何 radiation

(B) Missing Mass Method

此大約在1969-年在Columbia 所作的,此與high energy 中轉找neutral particle 的方法相似。主要是作大量的有關某種基本粒子反應的實驗,或收集有關此方面實驗的資料(bubble chamber 軌跡)

- (a)由反應軌跡,計算 energy 和 momentum,等 找不 conserved 的情形 (即有 neutral particle產生,到底產生幾個也不知道)
- (b)計算 case(a)的 E'-p'c', E, P 均為missing 之值,若只產生一個 neutral particle 則此 值在每一相同反應都是一樣,但若不只一個則 此值就不同,與方向有關,那麼此值在多次反 應中的 distribution 應在一個 range 內 smooth 分布,不會有 peak 產生。
- (c)若在某一反應中產生一個Tachyon 則此 "missing mass square" = E'-P'C'是負 値,但若產生二個以上,則可能正也可能負。 分析了將近6000張 hydrogen bubble chambe 有關下列反應的照片

 $K^- + P^+ \rightarrow \lambda^0 + X^0$, $\lambda^0 \rightarrow P^+ + \pi^-$ 結果圖示如下:

居然負値也有! .再仔細檢討可能的誤差

- ①K⁻ me son 被 Captured 時是否靜止?因爲計算時是假定他靜止。
- ②若 λ ° 的方向與 K- 的方向接近則容易產生觀差,將正的算成負的,故將小於 60 度的 event排除經過上述修正後,前圖 101 events只剩下 23 events 在此 23 events 重新量missing E,P 計算結果

E'-P'C' 均爲0(誤差範圍內)或正如下圖

即無法顯示Tachyon 存在 且種種跡象顯示X°即可能爲π°)

5. Conclusion

到目前爲止,我們並沒有證明 Tachyon 的存在,只是討論他的存在並不違反 Special Relativity 和物理上的定理,以及他可能具有的性質,但實驗結果都是 Negative!

也有人用其他的Model 討論Tachyon, 例如用 Quantum Mechanics 來討論(G. Feinberg, Phys, Rev. 159, 1089(1967)同樣無法推翻 Tachyon 存在的可能性。

當然還有許多值得探討的二例如Tachyon-Tachyon的 interaction, ⑨ General Relativity Model 的討論,………等等

補述

- ①確定我使用的Modle: (a) Classical Mechanics
 (b) Special Relativity (即已假定了all observers are Class I)
- ②又例如描述 nuclear particles 和 nuclei的 interaction 所用的Complex potential 表示 種 absorption
- ③能量爲負的! 找E' < 0 方法有下列三種(a)固定E,P 找U(b)亦可固定U找P,E。因E'--P'C'=--U'C'