

Neural Networks and Deep Learning

CS5242

Wei WANG

National University of Singapore cs5242@comp.nus.edu.sg

Recap

AI, ML, and DL

• Topics: MLP, CNN, RNN

- Pre-requisite and workload
 - Run assignment 0
 - Understand house price prediction

Recap

- House price prediction
 - Sample (example): (one house, price) is a sample
 - Feature $x \in \mathbb{R}^m$: attributes used to represent the house, e.g. size, #floors
 - Ground-truth **label** y: the real price
 - Model: linear regression, $\tilde{y} = w^T x + b$, $w \in \mathbb{R}^m$, $b \in \mathbb{R}$
 - Parameters: w, b
 - **Prediction** \tilde{y} : the price predicted by our ML model
 - Loss function: objective for training the model.

•
$$J(w,b) = \frac{\sum_{\langle x,y \rangle \in S_{train}} L(x,y|w,b)}{|S_{train}|} = \frac{\sum_{i=1}^{n} L(x^{(i)},y^{(i)}|w,b)}{n}$$

- $L(x, y|w, b) = |\tilde{y} y|^2$
- Back-propagation and gradient descent

Training by gradient descent

Gradient descent (GD) algorithm for optimization

α

is called the learning rate, which controls the moving step length. It important for convergence. If it is large, w would oscillate around the optimal position. If it is small, it would take many iterations to reach the optimal position.

Initialize w as w0 Compute $\frac{\partial J}{\partial w0}$, negative;

Move w from w0 to the right by

$$w1 = w0 - \alpha \frac{\partial J}{\partial w0}$$

Compute $\frac{\partial J}{\partial w_1}$, negative;

Move w from w1 to the right by

$$w2 = w1 - \alpha \frac{\partial J}{\partial w1}$$

Compute $\frac{\partial J}{\partial w^2}$, positive

Move w from w2 to the left by $w3 = w2 - \alpha \frac{\partial J}{\partial w^2}$

Gradually decrease J and move w to the optimal position

Back-propagation

- Forward
- $X \in R^{m*n}$, $Y \in R^{1*n}$
- $V = w^T X$, $\in R^{1*n}$
- $\tilde{Y} = V + b$, $\in R^{1*n}$
- $E = \tilde{Y} Y$, $\in R^{1*n}$
- $L = E^2$, $\in R^{1*n}$
- $J = numpy.average(L) \in R^+$

Back-propagation^w

square

average

b

Backward

•
$$\frac{\partial J}{\partial L} = \left[\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \dots\right]$$
 , $\in R^{1*n}$ × : element-wise multiplication

•
$$\frac{\partial L}{\partial E} = \frac{\partial J}{\partial L} \times \frac{\partial L}{\partial E} = \frac{\partial J}{\partial L} \times 2E = 2E/n, \in \mathbb{R}^{1*n}$$

•
$$\frac{\partial J}{\partial \tilde{Y}} = \frac{\partial J}{\partial E} \times \frac{\partial E}{\partial \tilde{Y}} = \frac{\partial L}{\partial E} \times [1,1,1,\dots] = 2E/n , \in R^{1*n}$$

•
$$\frac{\partial J}{\partial b} = \frac{\partial J}{\partial \tilde{Y}} \cdot \frac{\partial \tilde{Y}}{\partial b} = \frac{\partial L}{\partial \tilde{Y}} \cdot [1,1,1,...]$$
 , $\in R$ (dot product)

•
$$\frac{\partial J}{\partial V} = \frac{\partial J}{\partial \tilde{Y}} \times \frac{\partial \tilde{Y}}{\partial V} = \frac{\partial L}{\partial \tilde{Y}} \times [1,1,1,\dots] = 2E/n, \in R^{1*n}$$

•
$$\frac{\partial J}{\partial w} = \left(\frac{\partial L}{\partial V}\frac{\partial V}{\partial w}\right)^T = X\left(\frac{\partial L}{\partial V}\right)^{T} \in \mathbb{R}^m$$
 (matrix-matrix product)

Element-wise multiplication? dot product? matrix product? transpose?

Shape check: for every node in the graph, its shape should be the same during forward and backward.

Gradient descent

http://ruder.io/optimizing-gradient-descent/

Loss contour

Data normalization

• The attributes of a house varies in scale

• Normalize the attributes into similar scale

Challenges of gradient descent

- Local optimum
- Saddle points

from: https://en.wikipedia.org/wiki/Saddle_point

Gradient descent (GD)

Stochastic gradient descent (SGD)

Mini-batch SGD

Mini-batch SGD with momentum

RMSProp

Adam

The Evolution of Gradient Descent

https://www.youtube.com/watch?v=nhqo0u1a6fw

Bias and variance

Training and testing

- Train a model over experience data (training samples); and then
- Deploy the model to do prediction for new data;

Training and testing performance

- Training
 - minimize the error over training data
- Testing
 - Fix the model parameters
 - Make predictions on unseen data samples (i.e. new data)
- Ideal case
 - Small training error and small testing error.

Underfitting

- For example,
 - $\tilde{y} = xw + b$
- The model is too simple to model the data
 - Low capacity/complexity

Overfitting

- Good performance on seen data, i.e. training data
- Bad performance on unseen data, i.e. test data
- $\bullet \ \hat{f}(x) = f(x) + \varepsilon$
- We learn the model $\hat{f}(x)$ over noisy data $f(x) + \varepsilon = y$
 - Small training error → the model fits the noise very well

• It may fail to fit the new data (not noise) → large test error

Train data

Test data

X

Underfitting and overfitting

Bias and variance

where
$$\mathrm{E}\big[(y-\hat{f}(x))^2\big]=\mathrm{Bias}\left[\hat{f}(x)\right]^2+\mathrm{Var}\big[\hat{f}(x)\big]+\sigma^2$$
 where
$$\mathrm{Bias}\big[\hat{f}(x)\big]=\mathrm{E}\big[\hat{f}(x)-f(x)\big]$$
 and
$$\mathrm{Var}\big[\hat{f}(x)\big]=\mathrm{E}\big[\hat{f}(x)^2\big]-\mathrm{E}\left[\hat{f}(x)\right]^2$$

https://ml.berkeley.edu/blog/2017/07/13/tutorial-4/

Bias and variance

• https://elitedatascience.com/bias-variance-tradeoff

All in one picture

Diagnosis of underfitting and overfitting

•
$$\tilde{y} = w_1 x + b$$

$$\bullet \ \tilde{y} = w_1 x + w_2 x^2 + b$$

$$\tilde{y} = w_1 x + w_2 x^2 + w_3 x^3 + b$$

$$\bullet \ \tilde{y} = w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + b$$

- Solution
 - Compare training error and testing error
 - Select the optimal capacity
- This process is like training a model over the test data

Diagnosis of underfitting and overfitting

Validation data

- Benchmark overfitting
 - ImageNet

Solutions for underfitting

- Increase model capacity
 - Capacity?
 - Use more features
 - Use complex models

•
$$\tilde{y} = w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5 + b$$

Solutions for overfitting

- Decrease the gap | training error test error |
 - Training data
 - See almost all cases although not every sample in the test data
 - Capacity
 - Regularization of the hypothesis space
 - Add prior or constraint to the functions.
 - L2
 - Dropout
 - Parameter sharing
 - Ensemble
 - Dropout
 - Early stopping

L2 regularization

- $min_{\theta}J(\theta)$
 - $min_{w,b}J(w,b) = \frac{\sum_{\langle x,y \rangle \in S_{train}} L(x,y|w,b)}{|S_{train}|} = \frac{\sum_{i=1}^{n} L(x^{(i)},y^{(i)}|w,b)}{n}$
- $min_{\theta}J(\theta) + \lambda |\theta|^2$
 - Partial derivative
 - derivate from both $J(\theta)$ and the regularization term
 - $\frac{\partial J}{\partial \theta} + 2\lambda \theta$
 - Plot $J(\theta) + \lambda |\theta|^2$ instead of $J(\theta)$
 - Real experience
 - https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full.prototxt#L14
 0

- Bias and variance
- https://www.youtube.com/watch?v=SjQyLhQIXSM

Reference

- [1] Goodfellow Ian, Bengio Yoshua, Courville Aaron. Deep learning. MIT Press. http://www.deeplearningbook.org. Chapter 5.
- https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-variants/
- https://elitedatascience.com/bias-variance-tradeoff
- Curse of dimensionality https://goo.gl/4UT253