

# Análisis exploratorio

#### ROBERTO MUÑOZ

ASTRÓNOMO Y DATA SCIENTIST

DIRECTOR CIENTÍFICO METRICARTS









## ¿Qué es el análisis exploratorio?

- El análisis exploratorio (exploratory data analysis o EDA) es una metodología diseñada para entender las características principales de un conjunto de datos (dataset).
- Objetivo: Explorar los dataset para lograr un entendimiento básico de sus datos y de las relaciones existentes entre las variables analizadas.

#### Visualizaciones



## Historia del análisis exploratorio

- El análisis exploratorio fue propuesto por el estadístico norteamericano John Tukey el año 1977.
- Tukey hizo notar que la Estadística de aquel entonces le daba mucho énfasis a los test de hipótesis estadísticos.
- Sugirió usar los datos para generar nuevos test de hipótesis y generar nuevos experimentos.

## John Tukey



Es mejor tener una respuesta aproximada a la pregunta correcta que una respuesta exacta a la pregunta equivocada

(John W. Tukey)

#### Tareas del EDA

- Principales tareas del análisis exploratorio
  - 1. Entendimiento de los datos
  - 2. Limpieza de los datos
  - 3. Transformación y manipulación de los datos
  - Preparación de los datos para su posterior análisis estadístico
  - El examen previo de los datos es un paso necesario

## Etapas del EDA

- 1. Preparar los datos para hacerlos accesibles
- 2. Realizar un análisis descriptivo y examen gráfico de la naturaleza de las **variables individuales**
- 3. Realizar un análisis descriptivo y examen gráfico de las **relaciones entre las variables** analizadas
- 4. Evaluar algunos supuestos básicos como normalidad
- Identificar casos atípicos (outliers) y evaluar impacto potencial
- 6. Evaluar el impacto potencial de datos ausentes (missing)

## 1. Preparación de los datos

- Definir método de entrada (teclado, archivo o web) y hacer datos accesibles a cualquier análisis estadístico.
- Aplicar operaciones sobre los datos
  - Combinar datasets
  - Seleccionar subconjunto
  - Transformar variables
  - Ordenar casos

#### 2. Análisis de variables individuales

- Hacer análisis estadístico gráfico y numérico de las variables del problema
- Armar un mapa de la información contenida en el dataset
- Dependiendo de escala de medida o tipo de datos, se sugieren ciertas visualizaciones y resúmenes descriptivos.

## Análisis de variables individuales

| Escala de medida          | Visualización                                                | Medidas de<br>localización | Medidas de<br>dispersión |
|---------------------------|--------------------------------------------------------------|----------------------------|--------------------------|
| Nominal<br>(cualitativa)  | Diagrama de barras<br>Diagrama de líneas<br>Gráfico de torta | Moda                       |                          |
| Ordinal<br>(cuantitativa) | Diagrama de cajas o<br>Boxplot                               | Mediana                    | Rango intercuartílico    |
| Intervalo                 | Histogramas<br>Polígono de frecuencias                       | Media                      | Desviación estándar      |
| Razón                     |                                                              | Media geométrica           | Coeficiente de variación |

#### Variables cualitativas

 Encuesta acerca del estado civil de clientes de supermercado

Tabla 2
Tabla de frecuencias del Estado Civil
Estado Civil

|          | Frecuencia | Porcentaje |
|----------|------------|------------|
| Soltero  | 77         | 19.2       |
| Casado   | 305        | 75.9       |
| Viudo    | 16         | 4.0        |
| Separado | 4          | 1.0        |
| Total    | 402        | 100.0      |



Figura 1: Diagrama de Sectores del Estado Civil

#### Variables cuantitativas

 Encuesta acerca del número de miembros del grupo familiar de clientes de supermercado

Tabla 4
Tabla de frecuencias del Número de Miembros que viven en casa

|          |         | Frecuencia | Porcentaje | Porcentaje<br>válido | Porcentaje<br>acumulado |
|----------|---------|------------|------------|----------------------|-------------------------|
| Válidos  | 0       | 1          | .2         | .3                   | .3                      |
|          | 1       | 30         | 7.5        | 7.5                  | 7.8                     |
|          | 2       | 91         | 22.6       | 22.8                 | 30.5                    |
|          | 3       | 87         | 21.6       | 21.8                 | 52.3                    |
|          | 4       | 129        | 32.1       | 32.3                 | 84.5                    |
|          | 5       | 43         | 10.7       | 10.8                 | 95.3                    |
|          | 6       | 12         | 3.0        | 3.0                  | 98.3                    |
|          | 7       | 7          | 1.7        | 1.8                  | 100.0                   |
|          | Total   | 400        | 99.5       | 100.0                |                         |
| Perdidos | Sistema | 2          | .5         |                      |                         |
| Total    |         | 402        | 100.0      |                      |                         |

Tabla 5 Estadísticos descriptivos de la variable Número de Miembros que viven en casa

#### Estadísticos

miembros que viven en casa

| Illielliblos que viveil ell casa |          |      |  |  |
|----------------------------------|----------|------|--|--|
| N                                | Válidos  | 400  |  |  |
|                                  | Perdidos | 2    |  |  |
| Media                            |          | 3.31 |  |  |
| Mediana                          | 3.00     |      |  |  |
| Moda                             |          | 4    |  |  |
| Desv. típ.                       | 1.33     |      |  |  |
| Asimetría                        | .234     |      |  |  |
| Error típ. de asin               | .122     |      |  |  |
| Curtosis                         | 107      |      |  |  |
| Error típ. de curtosis           |          | .243 |  |  |
| Mínimo                           | 0        |      |  |  |
| Máximo                           |          | 7    |  |  |
| Percentiles                      | 25       | 2.00 |  |  |
|                                  | 50       | 3.00 |  |  |
|                                  | 75       | 4.00 |  |  |

#### Variables cuantitativas



Figura 3: Diagrama de Barras del Número de Miembros que viven en casa



Figura 4: Tipología de las distribuciones de frecuencias agrupadas

#### 3. Análisis de relaciones entre variables

- Analizar la existencia de posibles relaciones entre las variables del dataset.
- En general se aplica análisis bidimensional (dos variables). Los casos típicos son,
  - Ambas variables son cualitativas
  - Ambas variables son cuantitativas
  - Una variable es cuantitativa y la otra cualitativa

#### Análisis de dos variables cuantitativas

- La distribución conjunta de dos variables puede expresarse gráficamente mediante un diagrama de dispersión queproporciona una buena descripción de la relación entre las dos variables.
- La relación entre las variables también puede expresarse de forma numérica. Una medida de la relación entre dos variables que resuma la información del gráfico de dispersión y que no dependa de las unidades de medida es el coeficiente de correlación lineal.

## Casos de heterogeneidad

 A) Hay un dato atípico o discordante con el resto, que modifica el signo de la correlación. Puede comprobarse que si el punto A no existiese, el coeficiente de correlación sería positivo, mientras que su presencia hace la correlación negativa.



Figura 22: Dos casos frecuentes de heterogeneidad

## Casos de heterogeneidad

 B) En este caso el gráfico indica que la relación entre las variables es distinta para los individuos del grupo A que para los del B y si calculamos un coeficiente de correlación para todos los datos obtendremos un valor muy pequeño.



Figura 22: Dos casos frecuentes de heterogeneidad