BANCO DE QUESTÕES - MATEMÁTICA A 11.º ANO

*Além das AE

DOMÍNIO: Trigonometria e funções trigonométricas

 $\mathbf{1}^*$. Considera o triângulo [PQR] e as medidas apresentadas na figura ao lado.

O comprimento do lado [QR] é:

(C) 5

(B) $\sqrt{19}$

(D) $\sqrt{34}$

2*. Considera um triângulo cujos lados medem 3, 5 e 7 unidades, respetivamente.

Qual é a amplitude do ângulo interno formado pelos lados de medidas 3 e 5?

(A) 100°

(C) 120°

(B) 110°

(D) 130°

 3^* . Na figura ao lado, está representado o triângulo [ABC], inscrito numa circunferência de centro no ponto O e raio $4\,\mathrm{cm}$.

Sabe-se que $B\hat{A}C = 80^{\circ}$ e $AC = 120^{\circ}$.

Apresenta o resultado em cm², arredondado às centésimas.

4. Na figura ao lado, o triângulo $\begin{bmatrix} ABC \end{bmatrix}$ é retângulo em B e o ponto D pertence ao lado $\begin{bmatrix} AB \end{bmatrix}$.

Sabe-se ainda que $\overline{AD} = 2 \text{ cm}$, $B\hat{A}C = 40^{\circ} \text{ e } B\hat{D}C = 60^{\circ}$.

Determina \overline{BD} , com aproximação às centésimas.

5. A figura seguinte é uma fotografia de um edifício, em que se representou o triângulo [ABC], que esquematiza a estrutura triangular do telhado.

As medidas apresentadas no esquema são reais e tem-se:

- $\overline{AB} = 11,5 \,\mathrm{m}$;
- $\overline{AC} = 4.1 \,\mathrm{m}$;
- $B\hat{A}C = 27^{\circ}$.
- **5.1** Verifica que, com arredondamento às décimas, $\overline{BC} \approx 8.1 \text{ m}$.
- **5.2** Determina $A\hat{C}B$, arredondado às unidades de grau.

6. Na figura ao lado, está representado um pentágono regular, $\left[ABCDE\right]$, inscrito numa circunferência com centro no ponto O.

Qual é o transformado do ponto E por uma rotação associada a um ângulo de amplitude -432° ?

(C) C

(D) *D*

7. Para um certo número real α , tem-se, num dado referencial o.n. do plano, $\tan \alpha < 0 \ e \cos \alpha < 0$.

A que quadrante pertence o lado extremidade do ângulo de amplitude lpha ?

(A) 1.º

(B) 2.°

(C) 3.º

(D) 4.º

- **8.** Sendo α a amplitude de um ângulo do 4.º quadrante e $\tan^2 \alpha = \frac{16}{9}$, então o valor de $\sin \alpha$ é:

- (A) $\frac{4}{5}$ (B) $\frac{3}{5}$ (C) $-\frac{3}{5}$
- **9.** Seja β a amplitude de um ângulo do 2.° quadrante tal que $\cos \beta = -\frac{2}{3}$.

Qual das seguintes igualdades é verdadeira?

(A)
$$\cos(\beta + \pi) = -\frac{2}{3}$$

(C)
$$\cos(\beta - \pi) = -\frac{2}{3}$$

(B)
$$\sin\left(\beta + \frac{\pi}{2}\right) = -\frac{2}{3}$$

(D)
$$\sin\left(\beta - \frac{\pi}{2}\right) = -\frac{2}{3}$$

- **10.** Seja $\alpha \in \left[\pi, \frac{3\pi}{2}\right]$. Determina o sinal da expressão $\frac{\sin \alpha \times \cos \alpha}{\sin \alpha + \cos \alpha}$.
- 11. Considera uma circunferência de raio r e seja c o comprimento de um arco dessa circunferência.

Mostra que a amplitude desse arco é dada por $\frac{c}{r}$.

12. Seja f a função, de domínio $\left[-\pi, \pi\right]$, definida por $f(x) = 2\cos\left(\frac{\pi}{3} + x\right) - 1$.

Determina:

- **12.1** os zeros de f;
- **12.2** as coordenadas dos pontos de interseção do gráfico de *f* com a reta de equação y = -2;
- **12.3** o período fundamental da função g definida, em \square , por f(x).

13. Uma bicicleta tem rodas com $60~\mathrm{cm}$ de diâmetro. Durante um passeio, numa estrada plana, um pequeno prego fixou-se numa das rodas, ficando a sua cabeça na superfície do pneu.

Na figura ao lado:

• a circunferência representa essa roda;

• o ponto *P* representa a cabeça do prego;

• θ é a amplitude do ângulo orientado com lados extremidade $\dot{O}Q$ e $\dot{O}P$.

Seja d a distância, em $_{\mathbf{cm}}$, da cabeça do prego à estrada, em função de θ , durante uma volta completa da roda.

13.1 Mostra que
$$d(\theta) = 30(1+\sin\theta)$$
, com $\theta \in [0,2\pi]$.

13.2 Determina a distância, em CM, da cabeça do prego à estrada, quando $\theta = \frac{7\pi}{6}$.

13.3 Resolve a equação $d(\theta) = 45$ e interpreta-a no contexto do problema.

13.4 Supõe que, após o prego se ter fixado na roda, a bicicleta percorreu 106,5 metros até que o furo foi detetado.

Qual foi a amplitude da rotação efetuada pela cabeça do prego em torno do centro da roda?

Apresenta o resultado em radianos, e considera que a roda não derrapou e que rodou no sentido positivo.

14. Na figura ao lado, está representado um quadrilátero, $\begin{bmatrix} ABCD \end{bmatrix}$, inscrito numa circunferência de raio 1. O centro da circunferência, O, é o ponto de interseção das diagonais do quadrilátero.

 α é a amplitude do ângulo BDC, com $0 < \alpha < \frac{\pi}{2}$.

14.2 Mostra que a área, A, do retângulo, em função de α é dada por

$$A(\alpha) = 4 \times \sin \alpha \times \cos \alpha$$

14.3 Sabe-se que a área máxima do retângulo que se pode obter variando o valor de $\,lpha\,$ é $\,2.$

Determina o valor de α para o qual a área do retângulo é máxima e interpreta geometricamente o resultado.

Na tua resolução, aplica a fórmula trigonométrica $2 \times \sin \alpha \times \cos \alpha = \sin (2\alpha)$.

15. Resolve, em $\left[-\frac{\pi}{4}, \frac{3\pi}{2} \right]$, a equação:

$$2\cos\left(\frac{\pi}{2} + x\right) \times \sin\left(\pi + x\right) = 1$$

16. Na figura ao lado, estão representados, em referencial o.n. do plano de origem O:

- a circunferência trigonométrica;
- o lado extermidade $\dot{O}\!A$ de um ângulo de amplitude θ .

Sabe-se que a abcissa do ponto $A \in -\frac{2}{3}$.

Determina o valor exato da expressão:

$$\cos(\pi+\theta)-\sin(\theta-\pi)+\tan(-\theta)$$

DOMÍNIO: Geometria analítica

- 1. Considera, num referencial o.n. do plano, a reta que passa nos pontos de coordenadas $(3,-\sqrt{3})$ e $(2,1-\sqrt{3})$. A inclinação dessa reta é:
 - (A) 30°
- **(B)** 45°
- (C) 135°
- **(D)** 150°
- **2.** Considera o cubo [ABCDEFGH], representado na figura, cuja aresta mede a unidades (a > 0).

Qual é o valor de $\overrightarrow{AH} \cdot \overrightarrow{CH}$?

- **(A)** $-\sqrt{3}a^2$
- (C) a²
- **(B)** $-a^2$
- **(D)** $\sqrt{3}a^2$

3. Considera, num referencial o.n. do plano, a reta r definida por $y = \sqrt{3}x - 1$ e a reta s definida por $(x,y) = (1,\sqrt{3}) + k(\sqrt{3},-1), k \in \square$.

Qual é a amplitude do ângulo formado pelas retas r e s ?

- (A) 0°
- **(B)** 30°
- **(C)** 60°
- **(D)** 90°
- **4.** Na figura ao lado, está representado, em referencial o.n. Oxy, o quadrado [PQRS], inscrito numa circunferência. As coordenadas dos vértices P, Q e R são, respetivamente, (-4,0), (0,-2) e (2,2).

- **4.1** Determina a área do quadrado $\lceil PQRS \rceil$.
- **4.2** Determina as coordenadas do vértice S .
- **4.3** Determina o produto escalar $\overrightarrow{PR} \cdot \overrightarrow{RQ}$.
- **4.4** Determina a equação reduzida da mediatriz do segmento de reta [PQ].
- 4.5 Determina, aplicando condições vetoriais, a equação reduzida da circunferência.
- **4.6** Determina a equação reduzida da reta tangente à circunferência no ponto P.
- **4.7** Determina um valor aproximado às décimas de grau da amplitude do ângulo formado pela reta PQ e pela reta definida pela equação $(x,y)=(2,4)+k(2,1), k\in \square$.

5. Na figura ao lado, estão representadas, em referencial o.n. do plano, uma circunferência de centro na origem e a reta de equação $y=-\sqrt{3}x+4$, tangente à circunferencia.

5.1 Determina a inclinação da reta.

5.2 Determina o raio da circunferência.

6. Na figura ao lado, está representado, em referencial o.n. do espaço, o prisma reto [ABCDEFGH], de bases quadradas paralelas ao plano xOy. As coordenadas dos vértices A, B e G são, respetivamente, (3,0,0), (3,6,0) e (-3,6,12).

6.1 Determina o produto escalar $\overrightarrow{AG} \cdot \overrightarrow{BG}$.

6.2 Determina uma equação vetorial da reta DF.

6.3 Identifica o conjunto de pontos P do espaço tais que $\overrightarrow{PA} \cdot \overrightarrow{PE} = 0$ e define-o por meio de uma condição cartesiana.

6.4 Determina um valor aproximado às décimas de grau da amplitude do ângulo formado pela reta AG e pela reta definida pela equação $(x,y,z)=(3,0,0)+k(0,6,3), k\in\square$.

7. Na figura, está representado o parelelepípedo reto [ABCDEFGH]. Fixado um determinado um referencial o.n *Oxyz*, tem-se:

$$A(0,3,2)$$
, $B(1,-3,-1)$, $G(4,-21,36)$ e $H(-2,-22,36)$.

7.2 Define, por uma equação vetorial, a reta AF.

7.3 Determina as coordenadas dos vértices C, D, E e F.

7.4 Determina uma condição que defina a esfera cuja superfície contém os vértices do paralelepípedo.

7.5 Identifica o conjunto de pontos P do espaço tais que $\overrightarrow{GB} \cdot \overrightarrow{BP} = 0$ e define-o por meio de uma condição cartesiana.

8. Considera, num referencial o.n. do espaço, os plano definidos pelas seguintes equações:

$$x + y + z = 1$$
 e $-x - y - z = 1$

A interseção dos dois planos é:

- (A) o conjunto vazio.
- (B) um ponto.
- (C) uma reta.
- (D) um plano.
- 9. Considera, num referencial o.n. do espaço, o plano α definido por $y=\sqrt{3}x-1$ e a reta r definida por $(x,y,z)=\left(1,\sqrt{3},0\right)+k\left(\sqrt{3},-1,0\right),\ k\in\square$.

Qual das afirmações é verdadeira?

- (A) A reta r é paralela ao plano α .
- **(B)** A reta r está contida no plano α .
- (C) A reta r é perpendicular ao plano α .
- **(D)** A reta r é concorrente, mas não perpendicular ao plano α .
- **10.** Considera o cubo [ABCDEFGH], de aresta 1, representado na figura.

Fixa-se, na figura, um referencial ortonormado do espaço, com origem no ponto A, com unidade de comprimento igual à aresta do cubo, tal que B está contido no semieixo positivo das ordenadas, D está contido no semieixo negativo das abcissas e F está contido no semieixo positivo das cotas.

Determina, relativamente a esse referencial, a equação cartesiana do plano ADH na forma ax + by + cz = d.

11. Na figura ao lado, está representado, em referencial o.n. do espaço, o prisma reto [ABCDEFGH], de bases quadradas paralelas ao plano xOy. As coordenadas dos vértices A, B e G são, respetivamente, (3,0,0), (3,6,0) e (-3,6,12).

- 11.1* Obtém uma equação vetorial do plano AFG.
- **11.2** Determina uma equação cartesiana do plano que contém o ponto F e é perpendicular à reta DF.
- **11.3** Seja α o plano que contém reta BC e que passa no ponto de coordenadas (0, -6, 20).

Determina as coordenadas do ponto de interseção do plano α com o eixo O_z .

DOMÍNIO: Sucessões

- **1.** Considera a sucessão (a_n) de termo geral $a_n = \frac{1}{2n+1}$.
 - **1.1** Calcula a_2 .
 - **1.2** Mostra que $\frac{1}{31}$ é termo da sucessão (a_n) e identifica a respetiva ordem.
 - **1.3** Estuda (a_n) quanto à monotonia.
 - **1.4** Justifica que $(a_{\scriptscriptstyle n})$ não é uma progressão aritmética nem uma progressão geométrica.
 - **1.5** A sucessão (a_n) é convergente? E limitada? Justifica as tuas respostas.
- **2.** Justifica que a expressão $\frac{1}{n-1}$ não pode ser o termo geral de uma sucessão.
- **3.** Na figura seguinte, estão representados os três primeiros termos de uma sucessão de construções geométricas.

Tal como a figura sugere:

- a primeira construção é um semicírculo de raio 1;
- cada construção, a partir da segunda, é constituída pelo dobro dos semicírculos, com metade do raio, do que a construção anterior.
- **3.1** Para cada $n \in \square$, seja u_n o número de semicírculos da construção de ordem n .
 - **a.** Justifica que a sucessão (u_n) é um sucessão monótona.
 - **b.** Apresenta o termo geral de (u_n) .
 - c. Determina o número de semicírculos da décima construção.
- **3.2** Para cada $n \in \square$, seja v_n a área sombreada da construção de ordem n.
 - **a.** Justifica que a sucessão (v_n) é definida por $v_n = \frac{\pi}{2^n}$.
 - **b.** Calcula $\lim (v_n)$ e interpreta o resultado no contexto da situação.
 - **c.** Justifica que a sucessão (v_n) é limitada.

- **3.3** Para cada $n \in \square$, seja w_n o perímetro da construção de ordem n.
 - **a.** Calcula os dois primeiros termos de (w_n) .
 - **b.** Obtém o termo geral de (w_n) e conclui que (w_n) é uma sucessão constante.
- **4.** Uma das lendas a respeito da origem do jogo de xadrez conta que o jogo foi criado por um jovem inventor para entreter um rei da Índia. O rei ficou maravilhado e quis recompensar o jovem. Perguntou-lhe que presente desejava e a resposta foi surpreendente. O jovem pediu:
 - 1 grão de trigo pela 1.ª casa do tabuleiro;
 - 2 grãos de trigo pela 2.ª casa;
 - 4 grãos de trigo pela 3.ª casa;
 - 8 grãos de trigo pela 4.ª casa;
 - e assim sucessivamente.

4.2 Parece que não foi possível ao rei cumprir a promessa, dado que, para tal, não chegava sequer toda a produção mundial de trigo da altura.

Calcula o número de grãos de trigo que o rei teria de oferecer ao jovem para cumprir a recompensa.

Apresenta o resultado em notação científica, na forma $a \times 10^b$, com a arredondado às centésimas e b inteiro.

5. Considera a sucessão (u_n) definida por recorrência como se segue:

$$\begin{cases} u_1 = 5 \\ u_{n+1} = 3u_n, & \text{para } n \ge 2 \end{cases}$$

- **5.1** Determina o terceiro termo da sucessão (u_n) .
- **5.2** Apresenta o termo geral da sucessão (u_n) .
- **5.3** (u_n) é uma sucessão limitada? Justifica a tua resposta.

- **6.** Considera a sucessão (v_n) de termo geral $v_n = -2n-3$.
 - **6.1** Define (v_n) por recorrência.
 - **6.2** Justifica que (v_n) é uma progressão aritmética e identifica a respetiva razão.
- **7*.** Prova, por indução matemática, que: $\forall n \in \square$, $7^n 1$ é múltiplo de 3.
- **8.** Seja (w_n) a sucessão definida por $w_n = \frac{2n}{3n+1}$. Mostra, por definição, que $w_n \to \frac{2}{3}$.

DOMÍNIO: Funções reais de variável real

1. Seja f a função real de variável real definida por $f(x) = 1 - x^2$.

Qual das seguintes expressões define uma sucessão (u_n) tal que $\lim f(u_n) = -3$?

(A)
$$u_n = \frac{-3}{n}$$

(C)
$$u_n = \frac{-3n}{n+1}$$

(B)
$$u_n = -\frac{2}{n}$$

(D)
$$u_n = \frac{-2n}{n+1}$$

2. Na figura, está representado o gráfico de uma função g de domínio [-1,4].

Qual das seguintes proposições é verdadeira?

(C)
$$\lim g(u_n) = 1$$

(B)
$$\lim g(u_n) = 2$$

2.2 Qual das seguintes proposições é verdadeira?

(A)
$$\lim_{x \to 1} g(x) = 3$$

(C)
$$\lim_{x\to 1} g(x) = 1$$

(B)
$$\lim_{x \to 1} g(x) = 2$$

(D) Não existe
$$\lim_{x\to 1} g(x)$$

2.3 Qual das seguintes proposições é verdadeira?

(A)
$$\lim_{x \to 1^{-}} g(x) = 1$$

(C)
$$\lim_{x \to 1^{+}} g(x) = 2$$

(B)
$$\lim_{x \to 1^{-}} g(x) = 2$$

(D)
$$\lim_{x \to 1^+} g(x) = 1$$

3. Seja f a função real de variável real definida por $f(x) = \sqrt{4-x^2}$ e seja g a função cujo gráfico se representa na figura ao lado.

3.1* Qual é o domínio da função $f \circ g$?

(A)
$$[-2,2]$$

(C)
$$[-2,0] \cup [3,4]$$

(B)
$$[-2,4]$$

3.2* Qual é o contradomínio da função $g \circ f$?

3.3 Qual é o valor de $\lim_{x\to 2} (f \times g)(x)$?

(A)
$$-3\sqrt{2}$$

(D)
$$3\sqrt{2}$$

3.4* Qual dos seguintes limites existe?

$$(A) \lim_{x \to 1} (f \circ g)(x)$$

(C)
$$\lim_{x\to -2} (g\circ f)(x)$$

(B)
$$\lim_{x\to 2} (f\circ g)(x)$$

(D)
$$\lim_{x\to 4} (g\circ f)(x)$$

4. Sejam f a função polinomial definida por $f(x) = x^2 - x - 2$ e g a função, de domínio

$$\Box \setminus \{1\}$$
, definida por $g(x) = \frac{1}{x-1}$.

4.1 Qual das seguintes afirmações é verdadeira?

(A)
$$\lim_{x \to 1^{-}} (f \times g)(x) = -\infty$$

(A)
$$\lim_{x \to 1^{-}} (f \times g)(x) = -\infty$$
 (C) $\lim_{x \to 1^{-}} \left(\frac{g}{f}\right)(x) = +\infty$

(B)
$$\lim_{x \to 1^+} (f \times g)(x) = +\infty$$

(B)
$$\lim_{x \to 1^+} (f \times g)(x) = +\infty$$
 (D) $\lim_{x \to 1^+} \left(\frac{f}{g}\right)(x) = -\infty$

4.2 Quantas assíntotas verticais tem o gráfico da função $\frac{f}{g}$?

- **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 3

4.3 Quantas assíntotas verticais tem o gráfico da função $\frac{g}{f}$?

- **(A)** 0
- **(B)** 1
- (C) 2
- **(D)** 3

5. Na figura, está representada graficamente, em referencial o.n., a função racional f definida por uma expressão do tipo $y = a + \frac{b}{r-c} (a,b,c \in \square)$.

5.1 Quais são os valores de a e c?

(A)
$$a = 3$$
 e $c = -1$

(C)
$$a = 3$$
 e $c = 1$

(B)
$$a = 1$$
 e $c = 3$

(D)
$$a = -1$$
 e $c = 3$

5.2 Qual é o valor de b, sabendo-se que f(0) = 4?

(A)
$$-1$$

5.3 Seja g a função, real de variável real, definida por g(x) = f(x-2).

Quais das seguintes equações definem as assíntotas ao gráfico da gunção g?

(A)
$$y = 3 e x = -3$$

(C)
$$y = 1 e x = -1$$

(B)
$$y = 3 e x = 1$$

(D)
$$y = 1$$
 e $x = -1$

6. No referencial o.n. da figura, estão representados parte do gráfico da função g e a reta r, secante ao gráfico de g nos pontos de abcissas 1 e 3.

Sabe-se que:

•
$$g(0) = -1$$
 e $g(1) = 3$.

6.1 0 valor de $\operatorname{tmv}_{g,[0,1]}$ é:

(c)
$$\frac{1}{4}$$

(B)
$$-\frac{1}{4}$$

6.2 O valor de g(3) é:

(A)
$$3 + \frac{2\sqrt{3}}{3}$$
 (B) $3 + 2\sqrt{3}$ (C) $3 + \sqrt{2}$ (D) $3 + \frac{2\sqrt{2}}{3}$

(B)
$$3+2\sqrt{3}$$

(c)
$$3+\sqrt{2}$$

(D)
$$3 + \frac{2\sqrt{2}}{3}$$

 \overline{x}

7*. Seja g a função definida, em \Box , para cada valor de $k \ge -1$, por:

$$f(x) = \begin{cases} \frac{1-x^2}{x^2+3x+2} & \text{se } x > -1\\ \sqrt{k-x} & \text{se } x \le -1 \end{cases}$$

Qual é o valor de k para o qual f é contínua em x = -1?

- **(A)** 0
- **(B)** 2
- **(C)** 3
- **(D)** 8

8. No referencial o.n. da figura, estão representados parte do gráfico da função h e a reta r, tangente ao gráfico de h no ponto de abcissa 1.

A reta r interseta o eixo Ox no ponto de abcissa 1 e o eixo Oy no ponto de ordenada -1.

- **8.1** O valor de $\lim_{x\to 1} \frac{h(x)-h(1)}{x-1}$ é:
- (A) -1
- **(B)** 0
- **(C)** 1
- **(D)** 2

- **8.2** Sabe-se que h é uma função quadrática com zeros 0 e 1.
- **8.2.1*** Qual é a solução da equação h'(x) = 0?
- **(A)** 0
- (B) $\frac{1}{4}$ (C) $\frac{1}{2}$
- **(D)** 1

8.2.2 Qual das seguintes é uma expressão analítica de *h* ?

(A)
$$\frac{1}{2}x(x+1)$$
 (B) $x(x+1)$ (C) $\frac{1}{2}x(x-1)$ (D) $x(x-1)$

(C)
$$\frac{1}{2}x(x-1)$$

(D)
$$x(x-1)$$

9*. Seja g uma função, de domínio \Box +, cujo gráfico tem uma assíntota de equação y = -1. Qual das seguintes expressões pode definir a função derivada de g?

(A)
$$g'(x) = \frac{1-x}{x+1}$$

(C)
$$g'(x) = 1 - x$$

(B)
$$g'(x) = -\frac{1}{(x+1)^2}$$
 (D) $g'(x) = (1+x)^2$

(D)
$$g'(x) = (1+x)^2$$

10. Considera a função $f:[0,+\infty[\to[-1,+\infty[$, definida por $f(x)=3\sqrt{x}-1$.

10.1* Em qual das opções estão representadas partes dos gráficos de f e f^{-1} ?

(A)

(B)

(C)

(D)

10.2 Na figura, estão representados parte do gráfico da função f e o trapézio retângulo [ABCD].

Sabe-se que:

- ullet o ponto E é o ponto do gráfico de f que pertence ao eixo das ordenadas;
- \bullet os pontos E, B e C pertencem à mesma reta horizontal;
- \bullet os pontos $A\,$ e $\,D\,$ pertencem ao gráfico de $f\,$ e têm abcissas $\,2\,$ e $\,8$, respetivamente.

Determina a área do trapézio [ABCD].

Apresenta o valor pedido na forma $a\sqrt{b}$, com $a \neq 0$.

11. Na figura, estão representadas parte do gráfico da função polinomial do 3.º grau, h, e a reta de equação y = -12.

Sabe-se que:

- -2, 1 e 3 são os zeros de h;
- os pontos A, B e C pertencem ao gráfico de h e à reta de equação y = -12;

(C)
$$]-\infty,-4]\cup[-1,1]$$

(B)
$$]-\infty,0]\cup[3,5]$$

(B)
$$]-\infty,0]\cup[3,5]$$
 (D) $[-2,1]\cup[3,+\infty[$

11.2 Mostra que
$$h(x) = -\frac{3}{2}x^3 + 3x^2 + \frac{15}{2}x - 9$$
.

domínio [-3,2], cujo gráfico se apresenta ao lado.

(A)
$$-1$$

(C)
$$2-\sqrt{3}$$

12.2 Determina o domínio da função
$$\left(\frac{g}{f}\right)$$
.

-1 O

Apresenta a tua resposta utilizando a notação de intervalos de números reais.

12.3 Determina as coordenadas do(s) ponto(s) de interseção do gráfico de g com o gráfico de g^{-1} .

- **13.** Uma certa quantidade de um ácido, *a* , em litros, foi adicionada a 2 litros de água.
 - **13.1** Mostra que a percentagem, *p* , de ácido presente na solução é dada, pela expressão

$$p(a) = \frac{100a}{2+a}$$
 (a>0).

- **13.2** Determina a percentagem de ácido na solução, se forem adicionados 5 dL do mesmo aos 2 litros de água.
- **13.3** Determina, recorrendo às capacidades gráficas da calculadora, a quantidade de ácido adicionado aos 2 litros de água para que a percentagem deste na solução seja 67%.

Na tua resposta:

- equaciona o problema;
- reproduz, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que te permite(m) resolver a equação;
- apresenta o resultado em decilitros, arredondado às unidades.
- **14.** Um certo tanque pode ser enchido por duas torneiras de caudal constante. Utilizando apenas uma das torneiras, o tanque fica cheio ao fim de 10 horas. Utilizando apenas a outra torneira, o tanque fica cheio ao fim de t horas.

Considera agora que as duas torneiras são utilizadas em simultâneo.

14.1 Mostra que o número de horas, h, necessárias para que o tanque fique cheio é dado, em função de t, por:

$$h(t) = \frac{10t}{10+t} \quad (t > 0)$$

- **14.2** Determina o número de horas necessárias para que o tanque fique cheio, considerando t = 10. Interpreta o resultado obtido.
- **14.3** Determina $\lim_{t\to 0} h(t)$ e $\lim_{t\to +\infty} h(t)$. Interpreta os resultados obtidos.
- **14.4** Determina *t* de modo que o tempo necessário ao enchimento do tanque, com as duas torneiras, seja 2 horas.

15. Calcula os seguintes limites, começando por identificar, caso exista, o tipo de indeterminação.

15.1
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 1}{x^3 - 1}$$

15.4
$$\lim_{x \to -1^-} \frac{x-1}{\sqrt{x^2-1}}$$

15.2
$$\lim_{x \to -\infty} \frac{x-1}{\sqrt{x^2-1}}$$

15.5
$$\lim_{x \to -2^{-}} \frac{\sqrt{x^4 - 8x^2 + 16}}{|x + 2|}$$

15.3
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^3 - 1}$$

15.6
$$\lim_{x \to +\infty} \left(\sqrt{x-1} - \sqrt{x^2 - 1} \right)$$

16*. Determina o conjunto de pontos de continuidade de cada uma das seguintes funções reais de variável real.

16.1
$$f(x) = \frac{x-3}{\sqrt{3-x^2}}$$

16.2
$$g(x) = \begin{cases} \frac{3x+3}{\sqrt{x^2-1}} & \text{se } x < -1 \lor x > 1 \\ 3x+3 & \text{se } -1 \le x \le 1 \end{cases}$$

17*. Estuda as seguinte funções quanto à existência de assíntotas ao seu gráfico. Caso existam, escreve as respetivas equações.

17.1
$$f(x) = \frac{2x^3 - 10x}{x^2 + 3}$$

17.2
$$g(x) = \frac{3x^2 - 1}{2 - x}$$

18*. Seja f uma função diferenciável no intervalo [-1, 1] tal que:

- $\bullet \quad f(1) = 3$
- $\forall x \in]-1,1[,-2 < f'(x) < 4$

Determina os possíveis valores de f(-1).

Sugestão: Utiliza o teorema de Lagrange, aplicado à função f , no intervalo $\begin{bmatrix} -1,1 \end{bmatrix}$.

19*. Seja g a função, real de variável real, definida por $g(x) = -x^4 + 18x^2 + 19$.

Determina os intervalos de monotonia da função g e identifica os respetivos extremos relativos e absolutos, caso existam.

20*. Seja *g* a função real de variável real definida por $f(x) = \frac{2x^3 - 10x}{x^2 + 3}$.

Determina os intervalos de monotonia da função f e identifica os respetivos extremos relativos e absolutos, caso existam.

21*. Sejam f e g funções, de domínio \square , tais que:

- *f* é par;
- $\bullet \quad \lim_{x \to +\infty} \frac{f(x)}{x} = -2$
- $\lim_{x \to -\infty} (f(x) 2x) = 1;$
- $\bullet \quad g(x) = 2f(x).$

Verifica que o gráfico de g tem uma assíntota oblíqua em $-\infty$ e indica a respetiva equação reduzida.

22*. Um pintor pretende utilizar uma tela retangular para fazer uma pintura, de forma também retangular, com 2400 cm² de área, com margens brancas em toda à volta. A largura das margens superior e inferior deverá ser 3 cm e a das margens laterais deverá ser 2 cm.

Determina a área mínima da tela a utilizar pelo pintor.

Apresenta o valor pedido em cm².

DOMÍNIO: Estatística

- **1.** Registaram-se as idades, a 2 de setembro de 2018, dos alunos de um escola secundária. Verificou-se que a idade média era 16,41 anos e o desvio padrão era, aproximadamente, 1,37 anos.
 - **1.1** No dia 2 de setembro de 2020, a média e o valor aproximado do desvio padrão das idades deste grupo de alunos será, respetivamente:

1.2 A tabela seguinte é referente à idade dos alunos no dia 2 de setembro de 2018.

Idade (anos)	14	15	16	17	18	19	20
Frequência relativa (%)	7%	а	28%	24%	14%	b	2%

Determina $a \in b$.

2. Para fazer o controlo de qualidade de uma empresa que comercializa morangos, selecionou-se uma amostra de caixas de morangos e registou-se a massa, em gramas, das mesmas.

2.1 O percentil 30 localiza-se na classe:

2.2 Determina o valor aproximado da mediana.

- **3.** Considera a amostra $(x_1, x_2, ..., x_{300})$. O 3.º quartil desta amostra é:
 - (A) $\frac{x_{75} + x_{76}}{2}$

(C) x_{226}

(B) x_{225}

- **(D)** $\frac{x_{225} + x_{226}}{2}$
- **4.** Os gráficos de barras seguintes são relativos às classificações obtidas por um grupo de alunos, no final do 2.º período.

Em ambas as disciplinas, a média das classificações foi igual a 13 valores. Em qual das disciplinas foi maior o desvio padrão das classificações? Justifica a tua resposta.

5. Nos referenciais seguintes, estão representadas três nuvens de pontos.

Faz corresponder a cada nuvem de pontos um dos seguintes coeficientes de correlação linear:

$$r_1 = 0.86$$

$$r_2 = -0.39$$

$$r_3 = -0.89$$

6. Na tabela seguinte, apresentam-se os dados relativos ao número de horas de estudo de sete alunos para um teste de Matemática e à classificação obtida por cada um.

Tempo de estudo (horas)	3	1	5	10	6	8	9
Classificação (valores)	7	4	7	14	10	12	16

- **6.1** Representa, num referencial ortonormado do plano, a nuvem de pontos desta amostra.
- **6.2** Recorrendo a uma calculadora, obtém o coeficiente de correlação linear desta amostra. Apresenta esse valor arredondado às centésimas.

Classifica a associação linear entre as variáveis estatísticas.

6.3 Recorrendo a uma calculadora, determina a equação reduzida da reta de mínimos quadrados relativa a esta amostra.

Utiliza essa equação para obteres uma estimativa da classificação obtida por um aluno que tenha estudado 7 horas. Apresenta o resultado arredondado às unidades.

7. Numa experiência para determinar a densidade de uma substância, em g/cm³, fizeram-se medições da massa, em gramas, e do volume, em cm³, de amostras dessa substância. Na tabela seguinte apresentam-se os resultados dessas medições.

Massa (g)	11	19	26	45	57
Volume (cm³)	51	107	153	224	295

Obtém uma estimativa para o volume, em $\,\mathrm{cm^3}$, arredondado às unidades, de uma amostra desta substância com 35 gramas de massa.

Na tua resolução, começa por determinar, recorrendo a uma calculadora, a equação reduzida da reta de mínimos quadrados relativa a este conjunto de dados. Considera coeficientes da equação arredondados com, pelo menos, três casas decimais.

SOLUÇÕES

Trigonometria e funções trigonométricas

1. (B)

2. (C)

3. 17,54 cm²

4. 1,88cm

5.2 140°

6. (D)

7. (B)

8. (D)

9. (B)

10. Negativo.

12.1 $-\frac{2\pi}{3}$ e 0.

12.2 $\left(\frac{\pi}{3}, -2\right)$ e $(\pi, -2)$.

12.3 2π

13.2 15cm

13.3 $\theta = \frac{\pi}{6} \lor \theta = \frac{5\pi}{6}$; a cabeça do prego

está a 45 centímetros da estrada para

 $\theta = \frac{\pi}{6} e \theta = \frac{5\pi}{6}$.

13.4 355 rad

14.1 Qualquer um dos seus ângulos internos está inscrito numa semicircunferência, logo o quadrilátero tem os ângulos internos retos e, portanto, é um retângulo.

14.3 $\alpha = \frac{\pi}{4}$; o quadrilátero para o qual se

obtém a área máxima é um quadrado.

15.
$$S = \left\{ -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4} \right\}$$

16.
$$\frac{5\sqrt{5}}{6} + \frac{2}{3}$$

Geometria analítica

4.2
$$(-2,4)$$

4.4
$$y = 2x + 3$$

4.5
$$(x+1)^2 + (y-1)^2 = 10$$

4.6
$$y = -3x - 12$$

6.2 Por exemplo,

$$(x, y, z) = (-3, 0, 0) + k(0, 0, 12), k \in \square$$
.

6.3 Superfície esférica de diâmetro [AE];

$$(x-3)^2 + y^2 + (z-6)^2 = 36.$$

7.1
$$x-6y-3z=-1$$

7.2 Por exemplo:

$$(x, y, z) = (0,3,2) + k(3,-18,37)$$

$$(k \in \square)$$

7.3
$$C(-5,-4,-1)$$
, $D(-6,2,2)$,

$$E(-3,-16,39)$$
 e $F(3,-15,39)$.

7.4
$$(x+1)^2 + (y+\frac{19}{2})^2 + (z-19)^2 = \frac{1785}{4}$$

7.5 Plano tangente à superfície esférica de centro no ponto G e raio \overline{BG} , no ponto B; 3x-18y+37z=20.

8. (D)

9. (C)

10.
$$-y + z = 0$$

11.1 Por exemplo:

$$P = A + s\overrightarrow{AF} + t\overrightarrow{GF} \quad (s, t \in \Box) \Leftrightarrow (x, y, z) = (3, 0, 0) + s(0, 6, 12) + c(0, 0, 0, 12) + c(0, 0, 12) + c(0$$

11.2
$$6(x-3)+6(y-6)+12(y-12)=0$$

(ou equivalente)

Sucessões

1.1
$$a_2 = \frac{1}{5}$$

1.2
$$\frac{1}{2n+1} = \frac{1}{31} \Leftrightarrow n = 15$$
.

Trata-se do 15.º termo.

1.3
$$a_{n+1} - a_n = -\frac{2}{(2n+3)(2n+1)} < 0$$
;

portanto, para qualquer número natural n , $a_{n+1} < a_n$, pelo que a sucessão é monótona decrescente.

1.4
$$a_{{\scriptscriptstyle n+1}} - a_{{\scriptscriptstyle n}} \, \, {\rm e} \, \, \frac{a_{{\scriptscriptstyle n+1}}}{a_{{\scriptscriptstyle n}}} \,$$
 não são constantes. (Em

alternativa, pode verificar-se que não existe razão aditiva nem multiplicativa entre três termos consecutivos.)

- **1.5** $\lim(a_n) = 0$. A sucessão é convergente e, portanto, limitada.
- 2. $\frac{1}{n-1}$ não está definido para n=1, pelo que não pode definir uma função de domínio \square .
- 3.1
- a. O número de semicírculos é crescente.
- **b.** $u_n = 2^{n-1}$
- **c.** 512

3.2

a.
$$v_n = \frac{\pi \times \left(\frac{1}{2^{n-1}}\right)^2}{2} \times 2^{n-1} = \frac{\pi}{2^n}$$

- **b.** $\lim(v_n) = 0$. A área sombreada da construção tende para zero quando o número de círculos tende para $+\infty$.
- c. Por exemplo, $\forall n \in \square$, $0 < v_n \le \frac{\pi}{2}$. (Em alternativa, pode referir-se que a sucessão é convergente.)
- 3.3
- **a.** $w_1 = w_2 = 2 + \pi$
- **b.** $w_n = 2 + \pi$, pelo que a sucessão é constante.
- **4.1** O quociente entre quaisquer dois termos consecutivos é constante (2).

4.2
$$2^{64} - 1 \approx 1,85 \times 10^{19}$$

5.1
$$u_3 = 45$$

5.2
$$u_n = 5 \times 3^{n-1}$$

- **5.3** $u_n \rightarrow +\infty$; logo, a sucessão não é limitada.
- 6.1

$$\begin{cases} v_1 = -5 \\ v_{n+1} = v_n - 2, & \text{para } n \ge 2 \end{cases}$$

6.2
$$\forall n \in \square$$
, $v_{n+1} - v_n = -2$; $r = -2$.

Funções reais de variável real

4	(D)
1	1 I N N

9. (B)

10.2
$$27\sqrt{2}$$

11.3
$$x_B = \frac{3 - \sqrt{17}}{2}$$
; $x_C = \frac{3 + \sqrt{17}}{2}$

$$12.2 \left\lceil \frac{1}{2}, 2 \right\rceil$$

- **13.1** A quantidade de ácido presente na solução é a litros; a solução tem 2+a litros; assim, a percentagem de ácido é dada por $\frac{a}{2+a} \times 100$, ou seja, $p(a) = \frac{100a}{2+a}$.
- **13.2** 20%
- 13.3 A quantidade de ácido adicionado aos 2 litros de água para que a percentagem deste na solução seja 67% é a solução da equação $\frac{100a}{2+a} = 67$.

A quantidade de ácido adicionado é aproximadamente 41 dL.

14.1 Sendo V o volume do tanque, as torneiras têm caudais $\frac{V}{10}$ e $\frac{V}{t}$; em simultâneo, demoram

$$V/\left(\frac{V}{10} + \frac{V}{t}\right)$$
 horas a encher o tanque; assim, tem-se $h(t) = \frac{10t}{10+t}$.

14.2 5 horas; para t = 10, as duas torneiras têm o mesmo caudal, logo, em simultâneo, demoram metade do tempo que cada uma demoraria isoladamente.

14.3 $\lim_{t\to a} h(t) = 0$ – corresponde à situação em que o caudal da 2.ª torneira tenderia para infinito, o que conduziria a um tempo de enchimento a tender para zero, quer se usasse apenas esta torneira $(t \rightarrow 0)$ ou as duas em simultânio $(h(t) \rightarrow 0)$;

 $\lim_{t\to +\infty} h(t) = 10$ – corresponde à situação em que apenas a 1.ª torneira está a encher o tanque, já que a 2.ª torneira demoraria um tempo tendencialmente infinito, ou seja, estaria fechada.

14.4 t = 2,5 horas

15.1
$$\frac{\infty}{\infty}$$
; 0

15.2
$$\frac{\infty}{\infty}$$
; -1 **15.3** $\frac{0}{0}$; 1

15.3
$$\frac{0}{0}$$
; 1

15.5
$$\frac{0}{0}$$
; 4

15.6
$$\infty$$
- ∞ ; - ∞

16.1 f é contínua em $-\sqrt{3}$, $\sqrt{3}$ (no seu domínio).

16.2 g é contínua em $\square \setminus \{1\}$.

17.1 O gráfico de f tem uma assíntota oblíqua de equação y = 2x (em $-\infty$ e $+\infty$).

17.2 O gráfico de g tem uma assíntota vertical (bilateral) de equação x=2 e uma assíntota oblíqua de equação y = -3x - 6 (em $-\infty$ e $+\infty$).

18.
$$-5 < f(-1) < 7$$

19. g é crescente em $]-\infty, -3]$ e em [0,3]; g é decrescente em [-3,0] e em $[3,+\infty[$; g(-3) = g(3) = 100 é o máximo absoluto (também relativo) de g e g(0) = 19 é um mínimo relativo de g.

20. f é crescente em $]-\infty,-1]$ e em $[1,+\infty[$; g é decrescente em [-1,1]; f(-1)=2 é um máximo relativo de f e f(1) = -2 é um mínimo relativo de f.

21.
$$\lim_{x \to -\infty} \frac{g(x)}{x} = 4$$
; $\lim_{x \to -\infty} (g(x) - 4x) = 2$. Equação da assíntota: $y = 4x + 2$.

22. 2904 cm²

Estatística

1.1 (D)

1.2 a = 20%; b = 5%.

2.1 (B)

2.2 493 gramas.

3. (D)

4. Na disciplina de Geometria Descritiva. O desvio padrão mede a variabilidade dos dados em relação à média, e nesta disciplina existe uma maior dispersão das classificações em relação à média. De facto, os desvios à média são, em média, maiores (em valor absoluto) na disciplina de Geometria Descritiva.

5. (II) -
$$r_1 = 0.86$$
; (I) - $r_2 = -0.39$; (III) - $r_3 = -0.89$

6.1

6.2 $r \approx 0.95$. A associação linear é positiva e forte.

6.3 Sendo y a classificação, em valores, e x o tempo de estudo, em horas, a equação reduzida da reta de mínimos quadrados é: y = 1,25x + 2,5.

A estimativa pedida é 11 valores.

7. Equação reduzida da reta de mínimos quadrados: y = 5,030x + 7,056

Estimativa pedida: 183 cm³