4.1 Worked Out Exercises

Exercise 4.1 Determine whether the relation $R = \{(1,3), (3,5), (5,3), (5,7)\}$ on the set $\{1,3,5,7\}$ is reflexive, symmetric, or transitive.

Solution Let $R = \{(1,3), (3,5), (5,3), (5,7)\}$ be a relation on the set $\{1,3,5,7\}$.

We need to check whether the relation is reflexive, symmetric, and transitive.

1. **Reflexive:** A relation R on a set is reflexive if for every element x in the set, the pair (x, x) is in R.

The set is $\{1, 3, 5, 7\}$, so we need to check if (1, 1), (3, 3), (5, 5), (7, 7) are all in R.

None of these pairs are in R, so the relation is **not reflexive**.

2. **Symmetric:** A relation R is symmetric if for every pair (x, y) in R, the pair (y, x) must also be in R.

Checking the pairs:

$$(1,3) \in R \quad \Rightarrow \quad (3,1) \notin R$$

$$(3,5) \in R \quad \Rightarrow \quad (5,3) \in R$$

$$(5,3) \in R \quad \Rightarrow \quad (3,5) \in R$$

$$(5,7) \in R \quad \Rightarrow \quad (7,5) \notin R$$

Since (1,3) and (5,7) do not have their symmetric pairs in R, the relation is **not symmetric**.

3. **Transitive:** A relation R is transitive if whenever $(x, y) \in R$ and $(y, z) \in R$, we have $(x, z) \in R$. Checking the pairs:

$$(1,3) \in R \text{ and } (3,5) \in R \implies (1,5) \notin R$$

$$(3,5) \in R \text{ and } (5,3) \in R \quad \Rightarrow \quad (3,3) \notin R$$

$$(5,3) \in R \text{ and } (3,5) \in R \implies (5,5) \notin R$$

$$(5,7) \in R$$
 and $(7,x) \notin R \implies No$ further pair to check.

Since (1,5), (3,3), and (5,5) are not in R, the relation is **not transitive**.

Hence, the relation $R = \{(1,3), (3,5), (5,3), (5,7)\}$ is neither reflexive, symmetric, nor transitive.

Exercise 4.2 On the set \mathbb{Z} of integers, define a binary relation R by aRb if and only if a-b is divisible by 7. Show that R is an equivalence relation.

Solution To show that R is an equivalence relation, we need to check three properties: reflexivity, symmetry, and transitivity.

(i) **Reflexive:** A relation R is reflexive if for all $a \in \mathbb{Z}$, aRa.

For any integer a, we have:

$$a - a = 0$$
 and 0 is divisible by 7.

Therefore, aRa for all $a \in \mathbb{Z}$, and R is reflexive.

(ii) **Symmetric:** A relation R is symmetric if whenever aRb, we also have bRa.

Suppose aRb, i.e., a - b is divisible by 7, i.e., a - b = 7k for some integer k. Then:

$$b-a = -(a-b) = -7k = 7(-k).$$

Since -k is an integer, b-a is divisible by 7, so bRa. Therefore, R is symmetric.

(iii) **Transitive:** A relation R is transitive if whenever aRb and bRc, we also have aRc. Suppose aRb and bRc, i.e., $a - b = 7k_1$ and $b - c = 7k_2$ for some integers k_1 and k_2 . Then:

$$a-c = (a-b) + (b-c) = 7k_1 + 7k_2 = 7(k_1 + k_2).$$

Since $k_1 + k_2$ is an integer, a - c is divisible by 7, so aRc. Therefore, R is transitive.

Since R is reflexive, symmetric, and transitive, we conclude that R is an equivalence relation on \mathbb{Z} .

Exercise 4.3 A relation ρ on the set of integers \mathbb{Z} is defined by $\rho = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } |a - b| \leq 5\}$. Is the relation reflexive, symmetric, and transitive?

Solution We are given a relation ρ on \mathbb{Z} defined by:

$$\rho = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } |a - b| \le 5\}.$$

We need to determine whether the relation is reflexive, symmetric, and transitive.

(i) **Reflexive:** A relation ρ is reflexive if for all $a \in \mathbb{Z}$, $(a, a) \in \rho$. For any integer a, we have:

$$|a-a|=0 \quad and \quad 0 \le 5.$$

Since |a-a|=0, the pair (a,a) is always in ρ . Thus, the relation is **reflexive**.

(ii) **Symmetric:** A relation ρ is symmetric if whenever $(a,b) \in \rho$, we also have $(b,a) \in \rho$. Suppose $(a,b) \in \rho$, which means $|a-b| \leq 5$. We also have:

$$|b-a|=|a-b|$$
 (since absolute value is symmetric).

Therefore, if $(a,b) \in \rho$, then $(b,a) \in \rho$ as well. Thus, the relation is **symmetric**.

(iii) **Transitive:** A relation ρ is transitive if whenever $(a,b) \in \rho$ and $(b,c) \in \rho$, we also have $(a,c) \in \rho$.

Suppose $(a,b) \in \rho$ and $(b,c) \in \rho$. This means:

$$|a-b| \le 5$$
 and $|b-c| \le 5$.

To check if the relation is transitive, we need to determine if $(a, c) \in \rho$, i.e., if $|a - c| \le 5$. By the triangle inequality:

$$|a-c| < |a-b| + |b-c| < 5+5 = 10.$$

This shows that |a-c| can be at most 10, but for (a,c) to be in ρ , we need $|a-c| \leq 5$. Therefore, the relation is **not transitive**, as the inequality $|a-c| \leq 5$ is not guaranteed.

Thus, the relation ρ is reflexive and symmetric, but it is not transitive.

Exercise 4.4 The relation $R = \{(x, y) : x, y \in \mathbb{Z}, x \neq y\}$ is defined on \mathbb{Z} . What properties does the relation R have?

Solution We are given a relation R on \mathbb{Z} , defined by:

$$R = \{(x, y) : x, y \in \mathbb{Z}, \ x \neq y\}.$$

That is, R consists of all pairs of integers (x, y) where $x \neq y$.

We need to determine what properties this relation has, namely, whether it is reflexive, symmetric, and transitive.

- (i) Reflexive: A relation R is reflexive if for all $x \in \mathbb{Z}$, the pair $(x, x) \in R$. In this case, R consists of pairs where $x \neq y$. Since (x, x) would require x = x, which contradicts the condition $x \neq y$, no pair of the form (x, x) can be in R. Therefore, the relation R is not reflexive.
- (ii) Symmetric: A relation R is symmetric if whenever $(x,y) \in R$, we also have $(y,x) \in R$. Suppose $(x,y) \in R$, which means $x \neq y$. We want to check if (y,x) is also in R. Since $y \neq x$ is the same as $x \neq y$, it follows that $(y,x) \in R$ whenever $(x,y) \in R$. Therefore, the relation R is symmetric.
- (iii) **Transitive:** A relation R is transitive if whenever $(x,y) \in R$ and $(y,z) \in R$, we also have $(x,z) \in R$.

Suppose $(x, y) \in R$ and $(y, z) \in R$. This means that $x \neq y$ and $y \neq z$. To check if $(x, z) \in R$, we need to determine if $x \neq z$.

However, $x \neq y$ and $y \neq z$ do not guarantee that $x \neq z$. For example, if x = 1, y = 2, and z = 1, then $x \neq y$ and $y \neq z$, but x = z, meaning $(x, z) \notin R$.

Therefore, the relation R is **not transitive**.

Thus, the relation R is symmetric but not reflexive or transitive.

Exercise 4.5 If $B = \{-3, -2, -1, 0, 1\}$ and $g : B \to \mathbb{R}$ is defined as $g(x) = x^2 - 1$, then g(B) = Solution The function $g : B \to \mathbb{R}$ is defined by:

$$g(x) = x^2 - 1$$
 for all $x \in B$.

We are tasked with finding the set g(B), which is the image of the set B under the function g. That is, we need to compute the set of values g(x) for each element $x \in B$.

We compute g(x) for each element of $B = \{-3, -2, -1, 0, 1\}$:

$$g(-3) = (-3)^{2} - 1 = 9 - 1 = 8,$$

$$g(-2) = (-2)^{2} - 1 = 4 - 1 = 3,$$

$$g(-1) = (-1)^{2} - 1 = 1 - 1 = 0,$$

$$g(0) = 0^{2} - 1 = 0 - 1 = -1,$$

$$g(1) = 1^{2} - 1 = 1 - 1 = 0.$$

Therefore, the image of B under g is:

$$g(B) = \{8, 3, 0, -1\}.$$

- **Exercise 4.6** Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 5x + 9, for $x \in \mathbb{R}$, is bijective. **Solution** To show that the function $f : \mathbb{R} \to \mathbb{R}$, defined by f(x) = 5x + 9, is bijective, we need to prove that it is both **injective** and **surjective**.
 - (i) Injective: A function f is injective (or one-to-one) if for all $x_1, x_2 \in \mathbb{R}$, $f(x_1) = f(x_2)$ implies that $x_1 = x_2$.

Assume that $f(x_1) = f(x_2)$. Then:

$$5x_1 + 9 = 5x_2 + 9.$$

Subtracting 9 from both sides gives:

$$5x_1 = 5x_2$$
.

Dividing both sides by 5:

$$x_1 = x_2$$
.

Therefore, f is injective.

(ii) Surjective: A function f is surjective (or onto) if for every $y \in \mathbb{R}$, there exists an $x \in \mathbb{R}$ such that f(x) = y.

Let $y \in \mathbb{R}$. We need to find $x \in \mathbb{R}$ such that f(x) = y, i.e., 5x + 9 = y. Solving for x:

$$5x = y - 9,$$
$$x = \frac{y - 9}{5}.$$

Since y is any real number, we can always find such an $x \in \mathbb{R}$. Therefore, f is surjective.

Since f is both injective and surjective, *we conclude that f is bijective*.

Exercise 4.7 If $f, g : \mathbb{R} \to \mathbb{R}$ where f(x) = ax + b, $g(x) = 1 - x + x^2$, and $(g \circ f)(x) = 9x^2 - 9x + 3$, find the values of a and b.

Solution We are given the functions:

$$f(x) = ax + b$$
, $g(x) = 1 - x + x^2$,

and the composition of the functions:

$$(g \circ f)(x) = 9x^2 - 9x + 3.$$

We need to find the values of a and b.

The composition $(g \circ f)(x)$ *is defined as:*

$$(q \circ f)(x) = q(f(x)).$$

Substituting the expression for f(x) = ax + b into g(x), we get:

$$g(f(x)) = g(ax + b) = 1 - (ax + b) + (ax + b)^{2}.$$

Now, simplify the expression for q(ax + b):

$$g(ax + b) = 1 - (ax + b) + (ax + b)^{2}.$$

Expanding the terms:

$$1 - ax - b + (ax + b)^{2} = 1 - ax - b + (a^{2}x^{2} + 2abx + b^{2}).$$

So, we have:

$$g(ax + b) = a^2x^2 + 2abx + b^2 - ax - b + 1.$$

Simplifying further:

$$g(ax + b) = a^2x^2 + (2ab - a)x + (b^2 - b + 1).$$

We are given that:

$$g(f(x)) = 9x^2 - 9x + 3.$$

Now, compare the two expressions for g(f(x)):

$$a^2x^2 + (2ab - a)x + (b^2 - b + 1) = 9x^2 - 9x + 3.$$

By comparing the coefficients of like powers of x, we get the following system of equations: - For the x^2 -term: $a^2 = 9$, - For the x-term: 2ab - a = -9, - For the constant term: $b^2 - b + 1 = 3$.

Solve each equation: (1). From $a^2 = 9$, we get two possible values for a:

$$a = 3$$
 or $a = -3$.

(2). From $b^2 - b + 1 = 3$, simplify to:

$$b^2 - b - 2 = 0$$
.

Factoring the quadratic equation:

$$(b-2)(b+1) = 0.$$

Thus, b = 2 or b = -1.

- (3). Now, substitute these values of a and b into the equation 2ab a = -9 and check which pair satisfies the equation.
 - For a = 3 and b = 2:

$$2(3)(2) - 3 = 12 - 3 = 9$$
 (not -9).

- For a = 3 and b = -1:

$$2(3)(-1) - 3 = -6 - 3 = -9$$
 (this is correct).

- For a = -3 and b = 2:

$$2(-3)(2) - (-3) = -12 + 3 = -9$$
 (this is correct).

- For a = -3 and b = -1:

$$2(-3)(-1) - (-3) = 6 + 3 = 9$$
 (not -9).

Thus, the possible pairs (a, b) are (3, -1) and (-3, 2).