FEUILLE D'EXERCICE 2

Exercice $1 - \{a, b\}$ notre alphabet

- 1. $a(a|b)^*$: mots commençant par a
- 2. $a^*|b^*$: mots n'ayant que des a ou que des b
- 3. $(b|ab)^*(a|\varepsilon)$ mots n'ayant pas 2 a consécutifs
- 4. $(aa|b)^*$: mots ayant des blocs de a de longueur paire
- 5. $(ab^*a|b)^*$: mots ayant un nombre pair de a

Exercice 2 – Expression régulières

- 1. $(\varepsilon|a|b)(\varepsilon|a|b)$
- 2. ((a|b)(a|b))*
- $3. \ a^*abb^*$
- 4. $(a^*b^*)|(b^*a^*)$
- 5. $b^*ab(ab|b)^*$

Exercice 3 – Automates

2. nombres:

Exercice 4 – Lemme de l'étoile :

- 1. Par l'absurde on applique le lemme de l'étoile au 3 cas :

On arrive à une absurditée pour les 3.

2. On va appliquer le lemme de l'étoile fort :

Suppposons que L soit reconnaissable. On prend $x=a^{N-1}ba^{N-1}$ On cherche tous les m de longueur $l\geq N$

On à 3 cas :

$$--\ m=a^{N-1}b$$

$$-- \ m = ba^{N-1}$$

$$- m = a^{n_1} b a^{n_2} \text{ avec } n_1 + n_2 \ge N - 1$$

Dans tous les cas on arrive à une absurditée.

3. On va appliquer le lemme sur la fin de $baba^2 \dots ba^N$ similaire ...

4. On prend n premier plus grand ou égale que N. On prend $a^n = a^{n_1} + a^{n_2} + a^{n_3}$ avec $n_2 \neq 0$ et $n_1 + n_2 + n_3 = n$ d'après le lemme de l'étoile on a $\forall k, a^{n_1} a^{kn_2} a^{n_3} \in L$.

Or
$$a^{n_1}a^{kn_2}a^{n_3} = a^{n_1}a^{n_3}a^{kn_2} = a^{n-n_2}a^{kn_2}$$
. On prend $k = n+1$ on obtient $a^{(n+1)n_2} \in L$.

Or
$$(n+1)(n_2)$$
 n'est pas premier.

Exercice 5 - Réduction

1. On sait que le complémentaire d'un langage reconnaissable est aussi reconnaissable.

Donc
$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{l_2}}$$
. Or l'uni
ion de deux langage est reconnaissable $(e_1|e_2)$

2. On prend $L' = a^*b^*$. On Suposse que L est reconnaissable donc on à $L \cap L'$ reconnaissable Or $\{a^nb^n|n \geq 0\}$ n'est pas reconnaissable donc L ne l'ai pas.

3. On a (Q, T, I, F) un automate qui reconnai L_B

on peut donc construire
$$(Q, T', I, F)$$
 avec $T' = \left\{ (p, a, q) | p \xrightarrow{f(a)} q \right\}$