Импорт библиотек

In [172]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
import xgboost
from sklearn.model selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_auc_score
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold
%matplotlib inline
```

Загрузка данных

In [2]:

```
# !unzip World_Airports_Data.zip
```

In [3]:

```
data = pd.read_csv("airports.csv")
```

In [4]:

data.head()

Out[4]:

	id	ident	type	name	latitude_deg	longitude_deg	elevation_ft	continent	i
0	6523	00A	heliport	Total Rf Heliport	40.070801	-74.933601	11.0	NaN	
1	323361	00AA	small_airport	Aero B Ranch Airport	38.704022 -101.473911 3435.0		NaN		
2	6524	00AK	small_airport	Lowell Field	59.947733	-151.692524	450.0	NaN	
3	6525	00AL	small_airport	Epps Airpark	34.864799	-86.770302	820.0	NaN	
4	506791	00AN	small_airport	Katmai Lodge Airport	59.093287	-156.456699	80.0	NaN	
4								•	,

In [5]:

data.shape

Out[5]:

(75606, 18)

Данные взяты отсюда: https://www.kaggle.com/datasets/danishjmeo/world-airports-data (https://www.kaggle.com/datasets/danishjmeo/world-airports-data)

Открытый набор данных из "Open data @ourAirports" об аэропортах мира и прогнозах о задержках рейсов и маршрутах движения.

Официальная страница датасета: https://ourairports.com/help/data-dictionary.html)

Там же находится подробное описание всех колонок.

Краткое описание колонок:

- id id
- ident идентификационный номер. Название зависит от наличия ICAO и местного кода
- type тип
- name название
- latitude_deg широта в десятичных градусах
- longitude_deg долгота в десятичных градусах
- elevation_ft высота над уровнем моря в футах
- continent континент (аббревиатура)
- iso_country страна (аббревиатура)
- iso_region регион
- municipality город
- scheduled_service осуществляется регулярное авиасообщение
- gps_code код GPS
- iata_code Трёхбуквенный код iata
- local_code местный код
- home_link сайт

- wikipedia_link страница на википедии
- keywords ключевые слова

Для удобства создадим отдельный DataFrame с описанием колонок

In [6]:

```
column_descriptions = ["id", "идентификационный номер. То же самое, что и id, но в измен "название", "широта в градусах", "долгота в градусах", "высота на "континент (аббревиатура)", "страна (аббревиатура)", "регион", "г "регулярные рейсы по расписанию", "код GPS", "код iata", "локальн "страница на википедии", "ключевые слова"]
```

In [7]:

```
data.columns
```

Out[7]:

```
In [8]:
```

```
pd.DataFrame(columns=["Описание"], index = data.columns, data=column_descriptions)
```

Out[8]:

_	Описание
id	id
ident	идентификационный номер. То же самое, что и id
type	тип
name	название
latitude_deg	широта в градусах
longitude_deg	долгота в градусах
elevation_ft	высота над уровнем моря
continent	континент (аббревиатура)
iso_country	страна (аббревиатура)
iso_region	регион
municipality	город
scheduled_service	регулярные рейсы по расписанию
gps_code	код GPS
iata_code	код iata
local_code	локальный код
home_link	сайт
wikipedia_link	страница на википедии
keywords	ключевые слова

Предварительная обработка данных

```
In [9]:
```

```
data[data["continent"] == "NA"]
Out[9]:
  id ident type name latitude_deg longitude_deg elevation_ft continent iso_country isc
```

Похоже, Pandas неправильно обработал название континента Северной Америки. Проверяю, так ли это

```
In [10]:
```

```
data.continent.unique()
Out[10]:
```

```
array([nan, 'OC', 'AF', 'AN', 'EU', 'AS', 'SA'], dtype=object)
```

```
In [11]:
data.groupby("continent")["iso_country"].nunique()
Out[11]:
continent
ΑF
      59
       3
AN
AS
      57
EU
      53
OC
      26
      14
SA
Name: iso_country, dtype: int64
In [12]:
data["continent"].value_counts()
Out[12]:
AS
      11010
      10306
SA
       9781
EU
ΑF
       3971
OC
       3889
AN
         43
Name: continent, dtype: int64
In [13]:
data["continent"].isna().sum()
Out[13]:
36606
In [14]:
data[data["continent"].isna() == True]["iso country"].unique()
Out[14]:
array(['US', 'PR', 'CO', 'AG', 'AI', 'MX', 'AW', 'GL', 'GB', 'BM', 'BQ',
       'BS', 'BZ', 'CA', 'CR', 'CU', 'PA', 'DO', 'GT', 'GP', 'HN', 'HT',
       'JM', 'KN', 'KY', 'PM', 'TC', 'GD', 'NI', 'MQ', 'SV', 'MF',
       'VE', 'BB', 'DM', 'BL', 'LC', 'CW', 'SX', 'VG', 'MS', 'TT', 'VC'],
      dtype=object)
Обрабатывать вручную все страны слишком долго, поэтому с помощью ChatGPT проверю
принадлежность стран к континентам
US - Соединенные Штаты Америки (NA - North America)
PR - Пуэрто-Рико (NA - North America)
CO - Колумбия (SA - South America)
AG - Антигуа и Барбуда (NA - North America)
AI - Ангилья (NA - North America)
MX - Мексика (NA - North America)
```

AW - Apyбa (SA - South America)

- GL Гренландия (NA North America)
- GB Великобритания (EU Europe)
- ВМ Бермудские острова (NA North America)
- BQ Бонайре, Синт-Эстатиус и Саба (SA South America)
- CA Канада (NA North America)
- BS Багамы (NA North America)
- BZ Белиз (NA North America)
- CR Коста-Рика (NA North America)
- CU Kyбa (NA North America)
- PA Панама (NA North America)
- DO Доминиканская Республика (NA North America)
- GT Гватемала (NA North America)
- GP Гваделупа (NA North America)
- HN Гондурас (NA North America)
- HT Гаити (NA North America)
- JM Ямайка (NA North America)
- KN Сент-Китс и Невис (NA North America)
- KY Каймановы острова (NA North America)
- PM Сен-Пьер и Микелон (NA North America)
- TC Теркс и Кайкос (NA North America)
- GD Гренада (NA North America)
- NI Никарагуа (NA North America)
- MQ Мартиника (NA North America)
- SV Сальвадор (NA North America)
- MF Сен-Мартен (NA North America)
- VI Виргинские острова США (NA North America)
- VE Венесуэла (SA South America)
- BB Барбадос (NA North America)
- DM Доминика (NA North America)
- BL Сен-Бартелеми (NA North America)
- LC Сент-Люсия (NA North America)
- CW Кюрасао (SA South America)
- SX Синт-Мартен (NA North America)
- VG Британские Виргинские острова (NA North America)

In [15]:

```
country_continent = {
    'US': 'NA',
    'PR': 'NA',
    'CO': 'SA',
    'AG': 'NA',
    'AI': 'NA',
    'MX': 'NA',
    'AW': 'SA',
    'GL': 'NA',
    'GB': 'EU',
    'BM': 'NA',
    'BQ': 'SA',
    'CA': 'NA',
    'BS': 'NA',
    'BZ': 'NA',
    'CR': 'NA',
    'CU': 'NA',
    'PA': 'NA',
    'DO': 'NA',
    'GT': 'NA',
    'GP': 'NA',
    'HN': 'NA',
    'HT': 'NA',
    'JM': 'NA',
    'KN': 'NA',
    'KY': 'NA',
    'PM': 'NA',
    'TC': 'NA',
    'GD': 'NA',
    'NI': 'NA',
    'MQ': 'NA',
    'SV': 'NA',
    'MF': 'NA',
    'VI': 'NA',
    'VE': 'SA',
    'BB': 'NA',
    'DM': 'NA',
    'BL': 'NA',
    'LC': 'NA',
    'CW': 'SA',
    'SX': 'NA',
    'VG': 'NA'
}
```

In [16]:

```
data.head()
```

Out[16]:

	id	ident	type	name	latitude_deg	longitude_deg	elevation_ft	continent	i
0	6523	00A	heliport	Total Rf Heliport	40.070801	-74.933601	11.0	NaN	_
1	323361	00AA	small_airport	Aero B Ranch Airport	38.704022	-101.473911	3435.0	NaN	
2	6524	00AK	small_airport	Lowell Field	59.947733	-151.692524	450.0	NaN	
3	6525	00AL	small_airport	Epps Airpark	34.864799	-86.770302	820.0	NaN	
4	506791	00AN	small_airport	Katmai Lodge Airport	59.093287	-156.456699	80.0	NaN	
4								•	

In [17]:

data["continent"] = data['continent'].fillna(data['iso_country'].map(country_continent))

In [18]:

```
data.continent
```

Out[18]:

NA 1 NA 2 NA 3 NA NA 75601 EU 75602 ΑF 75603 NA 75604 NA 75605 AS

Name: continent, Length: 75606, dtype: object

In [19]:

```
data.continent.isnull().sum()
```

Out[19]:

11

```
In [20]:
```

```
data[data["continent"].isna() == True]["iso_country"].unique()
Out[20]:
array(['MS', 'TT', 'VC'], dtype=object)
```

Похоже, ChatGPT сопоставил материки не всем странам. Ничего страшного, дополнительным запросом был получен обновлённый словарь

In [21]:

```
country_continent = {
    'US': 'NA',
    'PR': 'NA',
    'CO': 'SA',
    'AG': 'NA',
    'AI': 'NA',
    'MX': 'NA',
    'AW': 'SA',
    'GL': 'NA',
    'GB': 'EU',
    'BM': 'NA',
    'BQ': 'SA',
    'CA': 'NA',
    'BS': 'NA',
    'BZ': 'NA',
    'CR': 'NA',
    'CU': 'NA',
    'PA': 'NA',
    'DO': 'NA',
    'GT': 'NA',
    'GP': 'NA',
    'HN': 'NA',
    'HT': 'NA',
    'JM': 'NA',
    'KN': 'NA',
    'KY': 'NA',
    'PM': 'NA',
    'TC': 'NA',
    'GD': 'NA',
    'NI': 'NA',
    'MQ': 'NA',
    'SV': 'NA',
    'MF': 'NA',
    'VI': 'NA',
    'VE': 'SA',
    'BB': 'NA',
    'DM': 'NA',
    'BL': 'NA',
    'LC': 'NA',
    'CW': 'SA',
    'SX': 'NA',
    'VG': 'NA',
    'MS': 'NA',
    'TT': 'NA',
    'VC': 'NA'
}
```

In [22]:

```
data["continent"] = data['continent'].fillna(data['iso_country'].map(country_continent))
```

In [23]:

```
data.continent.isnull().sum()
```

Out[23]:

0

Отлично, я избавился от отсутствующих значений в одном из столбцов

In [24]:

```
data.head()
```

Out[24]:

	id	ident	type	name	latitude_deg	longitude_deg	elevation_ft	continent	i
0	6523	00A	heliport	Total Rf Heliport	40.070801	-74.933601	11.0	NA	
1	323361	00AA	small_airport	Aero B Ranch Airport	38.704022	-101.473911	3435.0	NA	
2	6524	00AK	small_airport	Lowell Field	59.947733	-151.692524	450.0	NA	
3	6525	00AL	small_airport	Epps Airpark	34.864799	-86.770302	820.0	NA	
4	506791	00AN	small_airport	Katmai Lodge Airport	59.093287	-156.456699	80.0	NA	
4								>	

In [25]:

data.isnull().sum()

Out[25]:

id	0
ident	0
type	0
name	0
latitude_deg	0
<pre>longitude_deg</pre>	0
elevation_ft	14253
continent	0
iso_country	259
iso_region	0
municipality	4969
scheduled_service	0
gps_code	34388
iata_code	66734
local_code	42997
home_link	71989
wikipedia_link	64666
keywords	58836
dtype: int64	

```
In [26]:
```

```
data.iloc[:, 6:].info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 75606 entries, 0 to 75605
Data columns (total 12 columns):
     Column
                        Non-Null Count
 #
                                        Dtype
                        -----
                        61353 non-null float64
 0
     elevation_ft
 1
     continent
                        75606 non-null object
 2
     iso country
                        75347 non-null
                                        object
                        75606 non-null
 3
     iso_region
                                        object
 4
     municipality
                        70637 non-null
                                        object
 5
     scheduled_service 75606 non-null
                                        object
                                        object
 6
     gps_code
                        41218 non-null
 7
     iata_code
                        8872 non-null
                                        object
 8
     local_code
                        32609 non-null object
 9
     home link
                        3617 non-null
                                        object
 10
     wikipedia_link
                        10940 non-null
                                        object
                        16770 non-null
 11
     keywords
                                        object
dtypes: float64(1), object(11)
memory usage: 6.9+ MB
Считаю процент ненулевых данных по столбцам:
In [27]:
{k: "%.3f" %(v / data.shape[0]) for k, v in data.notnull().sum().to_dict().items() if v
Out[27]:
{ 'elevation_ft': '0.811',
 'iso_country': '0.997'
 'municipality': '0.934',
 'gps_code': '0.545',
 'iata_code': '0.117',
 'local_code': '0.431',
 'home_link': '0.048',
 'wikipedia link': '0.145',
 'keywords': '0.222'}
In [28]:
useless_columns = ["gps_code", "iata_code", "local_code", "home_link", "wikipedia_link"
In [29]:
data = data.drop(useless_columns, axis=1)
```

```
In [30]:
```

```
data.isnull().sum()
Out[30]:
id
                          0
ident
                          0
type
                          0
                          0
name
latitude_deg
                          0
longitude_deg
                          0
elevation_ft
                      14253
continent
                          0
iso_country
                        259
iso_region
                          0
                       4969
municipality
scheduled_service
                          0
dtype: int64
```

In [31]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 75606 entries, 0 to 75605
Data columns (total 12 columns):

#	Column	Non-Nu	ıll Count	Dtype
0	id	75606	non-null	int64
1	ident	75606	non-null	object
2	type	75606	non-null	object
3	name	75606	non-null	object
4	latitude_deg	75606	non-null	float64
5	<pre>longitude_deg</pre>	75606	non-null	float64
6	elevation_ft	61353	non-null	float64
7	continent	75606	non-null	object
8	iso_country	75347	non-null	object
9	iso_region	75606	non-null	object
10	municipality	70637	non-null	object
11	scheduled_service	75606	non-null	object
dtyp	es: float64(3), int	64(1),	object(8)	

Так нулевых значений стало заметно меньше

memory usage: 6.9+ MB

Оставшиеся пропуски можно заполнить средним значением в случае количественной переменной elevation_ft и модой в остальных случаях

```
In [32]:
```

```
data["elevation_ft"] = data["elevation_ft"].fillna(data["elevation_ft"].mean())
```

```
In [33]:

data["iso_country"] = data["iso_country"].fillna(data["iso_country"].mode()[0])

In [34]:
```

```
data["municipality"] = data["municipality"].fillna(data["municipality"].mode()[0])
```

In [35]:

```
data.isnull().sum()
```

Out[35]:

id 0 ident 0 type 0 name 0 latitude_deg longitude_deg 0 elevation_ft 0 continent 0 iso_country 0 iso_region 0 municipality 0 scheduled service 0 dtype: int64

Таким образом, я лишился недостающих значений

Также было решено избавиться от признака "id". Из второго идентификационного признака "ident" можно извлечь хотя бы какую-то информацию, так как он содержит определённые паттерны, когда "id" полностью состоит из цифр без закономерностей. К тому же, в структуре таблицы Pandas уже есть числовая идентификация

```
In [36]:
```

```
data = data.drop("id", axis=1)
```

Также потребуется изменить значения признака "scheduled_service" с "yes" и "no" на 0 и 1

```
In [37]:
```

```
data["scheduled_service"] = data["scheduled_service"].replace({"no": 0, "yes": 1})
```

In [38]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 75606 entries, 0 to 75605
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	ident	75606 non-null	object
1	type	75606 non-null	object
2	name	75606 non-null	object
3	latitude_deg	75606 non-null	float64
4	longitude_deg	75606 non-null	float64
5	elevation_ft	75606 non-null	float64
6	continent	75606 non-null	object
7	iso_country	75606 non-null	object
8	iso_region	75606 non-null	object
9	municipality	75606 non-null	object
10	scheduled_service	75606 non-null	int64
	67 (64/2)		

dtypes: float64(3), int64(1), object(7)

memory usage: 6.3+ MB

In [39]:

data.nunique()

Out[39]:

ident	75606
type	7
name	71561
latitude_deg	74379
longitude_deg	74650
elevation_ft	6211
continent	7
iso_country	244
iso_region	2883
municipality	33963
scheduled_service	2
dtypo: int61	

dtype: int64

In [40]:

data.head()

Out[40]:

	ident	type	name	latitude_deg	longitude_deg	elevation_ft	continent	iso_count
0	00A	heliport	Total Rf Heliport	40.070801	-74.933601	11.0	NA	ι
1	00AA	small_airport	Aero B Ranch Airport	38.704022	-101.473911	3435.0	NA	ι
2	00AK	small_airport	Lowell Field	59.947733	-151.692524	450.0	NA	ι
3	00AL	small_airport	Epps Airpark	34.864799	-86.770302	820.0	NA	ι
4	00AN	small_airport	Katmai Lodge Airport	59.093287	-156.456699	80.0	NA	ι
4								•

Получилось следующее:

Качественные признаки: ident, name, municipality

Категориальные признаки: type, continent, iso country, iso region, scheduled service

Количественные признаки: latitude_deg, longitude_deg, elevation_ft

One Hot Encoding для преобразования категориальных признаков в числовые лучше сделать после анализа для удобства восприятия

Статистический анализ данных

По количественным данным выведем распространённые статистические характеристики

In [41]:

```
data[["latitude_deg", "longitude_deg", "elevation_ft"]].describe()
```

Out[41]:

	latitude_deg	longitude_deg	elevation_ft
count	75606.000000	75606.000000	75606.000000
mean	25.668021	-28.716193	1303.355516
std	26.243138	86.298564	1507.670952
min	-90.000000	-179.876999	-1266.000000
25%	11.920085	-94.126930	310.000000
50%	35.120061	-69.713506	1001.000000
75%	42.660076	24.363960	1303.355516
max	82.750000	179.975700	17372.000000

По текстовым признакам показатели несколько другие

In [42]:

```
data.describe(include="object")
```

Out[42]:

	ident	type	name	continent	iso_country	iso_region	municipality
count	75606	75606	75606	75606	75606	75606	75606
unique	75606	7	71561	7	244	2883	33963
top	00A	small_airport	Centre Hospitalier Heliport	NA	US	US-TX	Osaka
freq	1	39549	83	36548	30503	3649	5388

По классифицирующим признакам выведу гистограммы

In [43]:

```
fig = plt.figure(figsize=(15, 6))
plt.hist(data.type, rwidth=0.8, alpha=0.75)
plt.title("Типы аэропортов")
plt.plot()
```

Out[43]:

[]

In [44]:

```
fig = plt.figure(figsize=(15, 6))
plt.hist(data.continent, rwidth=0.8, color="green", alpha=0.75)
plt.title("Континенты")
plt.plot()
```

Out[44]:

[]

In [45]:

```
fig = plt.figure(figsize=(15, 6))
data.scheduled_service.value_counts().plot.bar(color="red", alpha=0.75)
plt.title("Регулярные рейсы по расписанию")
plt.plot()
```

Out[45]:

[]

По признакам iso_country и iso_region выведу топ-10 популярных значений, так как в них слишком много уникальных записей

```
In [46]:
data[["iso_country"]].value_counts().to_frame().head(10)
Out[46]:
               0
iso_country
        US
            30503
       BR
             6704
        JP
             3407
       CA
             3033
       ΑU
             2557
       MX
             2261
       RU
             1545
        KR
             1400
       GB
             1374
        DE
             1033
In [47]:
data[["iso_region"]].value_counts().to_frame().head(10)
Out[47]:
             0
iso_region
    US-TX 3649
    US-CA 2321
    US-FL 1220
    BR-SP 1208
  GB-ENG 1123
     US-IL 1067
    US-AK 1043
    BR-MT 1037
```

По широте и долготе можно посмотреть преобладающие области расположения аэропортов

US-PA 1010

970

US-AZ

In [48]:

```
data.plot.scatter(x="longitude_deg", y="latitude_deg", s=0.01)
plt.title("Расположение аэропортов")
plt.plot()
```

Out[48]:

[]

Получилась карта мира, и можно сделать вывод, что преобладающая часть аэропортов находится в Северной и Южной Америках, а также в Европе

Но гораздо удобнее это сделать в приложении Google Earth Pro. В силу того, что данные изменились, лучше использовать изначальный набор данных

In [49]:

data.head()

Out[49]:

	ident	type	name	latitude_deg	longitude_deg	elevation_ft	continent	iso_count
0	00A	heliport	Total Rf Heliport	40.070801	-74.933601	11.0	NA	ι
1	00AA	small_airport	Aero B Ranch Airport	38.704022	-101.473911	3435.0	NA	ι
2	00AK	small_airport	Lowell Field	59.947733	-151.692524	450.0	NA	ι
3	00AL	small_airport	Epps Airpark	34.864799	-86.770302	820.0	NA	ι
4	00AN	small_airport	Katmai Lodge Airport	59.093287	-156.456699	80.0	NA	ι
4								•

Гипотезы

Проверим несколько гипотез:

1) Наличие регулярных рейсов по расписанию должно зависеть от типа аэропорта. Скорее всего, у больших аэропортов вероятность выше

In [50]:

data.groupby('type').mean()["scheduled_service"].to_frame().sort_values(by="scheduled_se

Out[50]:

scheduled_service

type	
large_airport	0.982759
medium_airport	0.587085
seaplane_base	0.031386
small_airport	0.021391
heliport	0.005253
closed	0.001824
balloonport	0.000000

Действительно, у больших и средних аэропортов вероятность наличия регулярных рейсов сильно выше, чем у остальных

Отображу типы аэропортов на графике:

In [51]:

```
fig = plt.figure(figsize=(15, 6))
data.groupby('type').mean()["scheduled_service"].plot.bar(width=0.95, color="orange", al
plt.title("Среднее значение наличия регулярных рейсов по типам аэропортов")
plt.show()
```


2) Возможно, географическое расположение (в десятичных градусах по широте и долготе) также влияет на наличие регулярных рейсов.

In [52]:

```
data[["latitude_deg", "longitude_deg", "scheduled_service"]].corr()
```

Out[52]:

	latitude_deg	longitude_deg	scheduled_service
latitude_deg	1.000000	-0.238167	-0.019870
longitude_deg	-0.238167	1.000000	0.121825
scheduled_service	-0.019870	0.121825	1.000000

Рассчитаю корреляцию между широтой, долготой и наличием регулярных рейсов

In [53]:

```
fig = plt.figure(figsize=(15, 6))
sns.heatmap(data[["latitude_deg", "longitude_deg", "scheduled_service"]].corr(), annot=T
plt.plot()
```

Out[53]:

[]

Как видно из графика, на наличие регулярного авиасообщения больше всего влияет долгота аэропорта. Но зависимость не сильно большая

3) Должна быть зависимость между широтой и долготой местоположения аэропортов. Данная информация может рассказать о географических особенностях расположения аэропортов, а также о том, в каких областях расположено больше всего аэропортов с наличием регулярных рейсов

In [54]:

```
data[["latitude_deg", "longitude_deg"]].corr()
```

Out[54]:

	latitude_deg	longitude_deg
latitude_deg	1.000000	-0.238167
longitude_deg	-0.238167	1.000000

Нужно посмотреть на разброс значений данных признаков

In [55]:

```
fig = plt.figure(figsize=(15, 6))
sns.kdeplot(data['latitude_deg'], color="b")
sns.kdeplot(data['longitude_deg'], color="r")
plt.title("Разброс значений широты и долготы аэропортов")
plt.show()
```


Как было показано ранее, можно выделить определённые области на карте по координатам, в которых у аэропортов больше вероятность иметь регулярные рейсы

In [56]:

```
data[data["scheduled_service"] == 1].plot.scatter(x="longitude_deg", y="latitude_deg", s plt.title("Расположение аэропортов") plt.plot()
```

Out[56]:

[]

Размер точек был изменён для большей наглядности. Можно заметить несколько крупных областей с преобладанием аэропортов, у которых есть регулярные рейсы

4) На основании зависимости широты и долготы, а также зависимости наличия регулярных рейсов от типа аэропорта, можно предположить гипотезу о зависимости типа аэропорта от его географического положения

In [57]:

```
data.groupby('type').mean()[["latitude_deg", "longitude_deg"]]
```

Out[57]:

latitude_deg longitude_deg

type		
balloonport	35.383294	-42.773620
closed	35.031782	-54.439127
heliport	28.438109	-7.869993
large_airport	27.482761	11.589782
medium_airport	26.799939	4.203048
seaplane_base	44.058645	-83.513378
small_airport	21.152467	-34.898489

Выведу сначала график зависимости:

In [58]:

```
fig = plt.figure(figsize=(15, 6))
data.groupby('type').mean()[["latitude_deg", "longitude_deg"]].plot.bar(width=0.95, colo
plt.title("Зависимость типа аэропортов от географического расположения")
plt.show()
```

<Figure size 1080x432 with 0 Axes>

И графики координат по типам аэропортов:

In [59]:

```
colors= iter(["brown", "green", "red", "blue", "indigo", "orange", "fuchsia"])
for t in data["type"].unique().tolist():
    fig = plt.figure(figsize=(15, 6))
    plt.scatter(data=data[data["type"] == t], x="longitude_deg", y="latitude_deg", color
    plt.title(t)
    plt.xlabel("longitude_deg")
    plt.ylabel("latitude_deg")
    plt.show()
```


На картах можно увидеть, где каких типов аэропортов больше всего

Не помешает вывести гистограмму распределения типов аэропортов:

In [60]:

```
fig = plt.figure(figsize=(15, 6))
data["type"].hist(width=0.5, color="orange", alpha=0.75)
plt.title("Распространённость разных типов аэропортов")
plt.grid(False, axis="x")
plt.show()
```


Выходит, больше всего распространены маленькие аэропорты; меньше средние, закрытые и вертолётные площадки; больших аэропортов и баз гидросамолётов заметно меньше; а площадок запуска воздушных шаров практически нет

5) Ещё можно предположить, что наличие регулярных рейсов зависит от материка, страны и региона.

Выделю новые наборы данных:

In [61]:

```
data.groupby('continent').mean()["scheduled_service"].sort_values(ascending=False).to_fr
```

Out[61]:

scheduled_service

continent	
AS	0.114260
AF	0.110803
ОС	0.109283
EU	0.068595
SA	0.037730
NA	0.029085
AN	0.023256

In [62]:

```
data.groupby('iso_country').mean()["scheduled_service"].sort_values(ascending=False).to_
```

Out[62]:

scheduled_service

1.0
1.0
1.0
1.0
1.0
0.0
0.0
0.0
0.0
0.0

244 rows × 1 columns

In [63]:

data.groupby('iso_region').mean()["scheduled_service"].sort_values(ascending=False).to_f

Out[63]:

scheduled_service

iso_region	
TH-64	1.0
MN-071	1.0
MN-047	1.0
MN-059	1.0
SC-14	1.0
LR-NI	0.0
LR-MY	0.0
LR-LO	0.0
LR-GK	0.0
ZW-MW	0.0

2883 rows × 1 columns

Сначала выведу диаграмму зависимости данного признака от материка, на котором расположен аэропорт:

In [64]:

```
fig = plt.figure(figsize=(15, 6))
data.groupby('continent').mean()["scheduled_service"].plot.bar(width=0.95, color="black"
plt.title("Наличие регулярных рейсов по континентам")
plt.show()
```


Заметно выделяются Африка, Азия, Австралия и Океания; за ними Европа. Стоит заметить, что в использованных данных Австралия и Океания относятся к признаку "Материки", хотя на самом деле являются частью Света.

In [65]:

```
data[data.scheduled_service == True].iso_country.value_counts().to_frame().head(15).plot plt.title("Наличие регулярных рейсов по странам") plt.figure()
```

Out[65]:

<Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

На первом месте США, после идут Канада, Китай и другие

И в подобном виде отображу регионы:

In [66]:

```
data[data.scheduled_service == True].iso_region.value_counts().to_frame().head(15).plot.plt.title("Наличие регулярных рейсов по регионам")
plt.figure()

◆
```

Out[66]:

<Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

Преобладают штаты Аляска США и Квинсленд Австралии

6) Ранее я оставил столбец ident для выделения новых признаков. Попробую добавить к набору данных столбец длины ident и посмотреть корреляцию с наличием регулярных рейсов

In [67]:

```
len_ident_list = [len(id) for id in data.ident]
```

In [68]:

```
data.insert(loc=len(data.columns), column='len_ident', value=len_ident_list)
```

In [69]:

data.head()

Out[69]:

	ident	type	name	latitude_deg	longitude_deg	elevation_ft	continent	iso_count
0	00A	heliport	Total Rf Heliport	40.070801	-74.933601	11.0	NA	ι
1	00AA	small_airport	Aero B Ranch Airport	38.704022	-101.473911	3435.0	NA	ι
2	00AK	small_airport	Lowell Field	59.947733	-151.692524	450.0	NA	ι
3	00AL	small_airport	Epps Airpark	34.864799	-86.770302	820.0	NA	ι
4	00AN	small_airport	Katmai Lodge Airport	59.093287	-156.456699	80.0	NA	ι
4								•

In [70]:

```
fig = plt.figure(figsize=(15, 6))
sns.heatmap(data[["len_ident", "scheduled_service"]].corr(), annot=True, fmt='.1g', cmap
plt.title('Матрица корреляции признаков "len_ident" и "scheduled_service"')
plt.plot()
```

Out[70]:

[]

Как видно на тепловой карте, существует некоторая зависимость, сравнимая с корреляцией между долготой и наличием регулярных рейсов. Новый признак можно оставить

Машинное обучение

In [71]:

data.head()

Out[71]:

	ident	type	name	latitude_deg	longitude_deg	elevation_ft	continent	iso_count
0	00A	heliport	Total Rf Heliport	40.070801	-74.933601	11.0	NA	ι
1	00AA	small_airport	Aero B Ranch Airport	38.704022	-101.473911	3435.0	NA	ι
2	00AK	small_airport	Lowell Field	59.947733	-151.692524	450.0	NA	ι
3	00AL	small_airport	Epps Airpark	34.864799	-86.770302	820.0	NA	ι
4	00AN	small_airport	Katmai Lodge Airport	59.093287	-156.456699	80.0	NA	ι
4								•

Путём тестов было выявлено, что набор данных слишком большой для используемого компьютера. К тому же, в нём содержатся числа с плавающей точкой высокой точности. Необходимо уменьшить объём всех записей и избавиться от характеристики "municipality".

In [85]:

data.shape

Out[85]:

(75606, 12)

Это я сделаю прямо в ходе разделения данных на 2 части с функцией train_test_split

Для начала нужно разделить датасет на тренировочные и тестовые данные. С помощью тренировочных данных будет проводиться обучение моделей, а с помощью тестовых - тестироваться их точность

In [120]:

```
train_data, test_data = train_test_split(data, train_size=0.4, random_state=1)
train_data.reset_index(inplace=True)
test_data.reset_index(inplace=True)
```

```
In [121]:
test_data, extra_data = train_test_split(test_data, train_size=0.2, random_state=1)
In [122]:
train_data.shape
Out[122]:
(30242, 13)
In [123]:
test_data.shape
Out[123]:
(9072, 13)
Такой объём подойдёт
In [124]:
y_train = train_data.scheduled_service
y_test = test_data.scheduled_service
DictVectorizer:
In [125]:
useful_features = ['type', 'continent', 'iso_country', 'iso_region',
                    'latitude_deg', 'longitude_deg', 'elevation_ft', 'len_ident']
train_dicts = train_data[useful_features].to_dict(orient='records')
test_dicts = test_data[useful_features].to_dict(orient='records')
dv = DictVectorizer(sparse=False)
X_train = dv.fit_transform(train_dicts)
X_test = dv.transform(test_dicts)
In [129]:
X_train.shape
Out[129]:
(30242, 2462)
In [130]:
X_test.shape
Out[130]:
(9072, 2462)
```

Произведу нормирование данных для ускорения обучения

In [157]:

```
scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Попробую обучить 3 разных алгоритма: логистическую регрессию, случайный лес и XGBoost.

In [295]:

```
model = LogisticRegression(max_iter=100)
model.fit(X_train, y_train)
```

c:\Users\grigo\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\linear_model_logistic.py:814: ConvergenceWarning: lbfgs failed to c
onverge (status=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown i
n:

https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
ikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
c-regression)

n_iter_i = _check_optimize_result(

Out[295]:

LogisticRegression()

Напишу специальную функцию для отображения метрик:

In [245]:

```
def print metrics(input model):
   y_train_prediction = input_model.predict(X_train)
   y_test_prediction = input_model.predict(X_test)
   print('Train MSE: %.3f' % mean_squared_error(y_train, y_train_prediction))
   print('Test MSE: %.3f' % mean_squared_error(y_test, y_test_prediction))
    print('Train MAE: %.3f' % mean_absolute_error(y_train, y_train_prediction))
   print('Test MAE: %.3f' % mean_absolute_error(y_test, y_test_prediction))
   CM = confusion_matrix(y_test, y_test_prediction)
   ax= plt.subplot()
   sns.heatmap(CM, annot=True, fmt="g", cmap="YlGnBu")
   ax.set_xlabel('Предсказанные значения')
   ax.set_ylabel('Действительные значения')
   ax.set_title('Матрица ошибок')
   ax.xaxis.set_ticklabels(['False', 'True'])
   ax.yaxis.set_ticklabels(['False', 'True'])
   plt.plot()
   TN = CM[0][0]
   FN = CM[1][0]
   TP = CM[1][1]
   FP = CM[0][1]
   accuracy = (TP + TN) / (TP + TN + FP + FN)
   precision = TP / (TP + FP)
   recall = TP / (TP + FN)
   print("accuracy: %.2f" % (accuracy))
   print("precision: %.2f" % (precision))
   print("recall: %.2f" % (recall))
    print("roc auc score: %.2f" % roc auc score(y train, y train prediction))
```

MSE - среднеквадратичное значение ошибки.

MAE - абсолютное (то есть, ризница между действительным и предсказанным значением) значение ошибки.

Метрика ассuracy отвечает за общий процент правильных ответов.

Precison показывает точность определения положительных ответов.

Recall отвечает за то, насколько полно модель охватывает положительные ответы.

Roc_auc_score показывает процент площади правильных ответов, а именно то, насколько модель точно различает 2 класса. При настройке гиперпараметров я буду использовать именно эту метрику.

In [296]:

print_metrics(model)

Train MSE: 0.039
Test MSE: 0.037
Train MAE: 0.039
Test MAE: 0.037
accuracy: 0.96
precision: 0.65
recall: 0.63

roc_auc_score: 0.81

Даже с учётом относительно небольшого объёма данных и модели с маленьким количеством итераций результат впечатляет

Попробую обучить RandomForestClassifier:

In [297]:

```
model = RandomForestClassifier(n_estimators=10, random_state=1)
model.fit(X_train, y_train)
```

Out[297]:

RandomForestClassifier(n_estimators=10, random_state=1)

In [298]:

print_metrics(model)

Train MSE: 0.004
Test MSE: 0.033
Train MAE: 0.004
Test MAE: 0.033
accuracy: 0.97
precision: 0.71
recall: 0.61

roc auc score: 0.97

Результат значительно лучше

Теперь обучу XGBoost:

In [247]:

```
model = xgboost.XGBClassifier(n_estimators=100, random_state=1)
model.fit(X_train, y_train)
```

Out[247]:

In [248]:

print_metrics(model)

Train MSE: 0.019
Test MSE: 0.033
Train MAE: 0.019
Test MAE: 0.033
accuracy: 0.97
precision: 0.70
recall: 0.63

roc_auc_score: 0.89

Алгоритм XGBoost требует слишком много ресурсов. К тому же, предыдущие модели справились лучше. Эффективнее будет подобрать параметры для RandomForestClassifier, ведь он показал наилучший результат.

Настройка гиперпараметров выбранной модели

In [254]:

cv = StratifiedKFold(5, random state=1, shuffle=True)

In [275]:

```
def search(X, y, model, param_name, grid):
    parameters = {param_name: grid}

    CV_model = GridSearchCV(estimator=model, param_grid=parameters, cv=cv, scoring="roc_CV_model.fit(X, y)
    means = CV_model.cv_results_["mean_test_score"]
    error = CV_model.cv_results_["std_test_score"]

plt.figure(figsize=(15, 8))
    plt.title("Bыбор параметра " + param_name)

plt.plot(grid, means, label="mean values of score")
    plt.fill_between(grid, means - 2 * error, means + 2 * error, color="green", label="0 plt.legend(loc="upper left")
    plt.xlabel("Параметр")
    plt.ylabel("roc-auc")
    plt.grid()
    plt.show()
```

Подберу оптимальное значение количества деревьев в лесу алгоритма

Ограничу количество записей для обучения 1000, чтобы не тратить слишком много времени

In [310]:

Получилось, что значение 100 наиболее оптимально

Настрою таким же образом параметр максимальной глубины "max_depth"

Чтобы не ждать слишком долго, ограничу размер тренировочных данных

In [311]:

Максимальной глубины 30 должно хватить

Теперь очередь параметра min_samples_leaf, отвечающего за минимальное число образцов в каждом из листов дерева алгоритма

In [314]:

Лучше оставить стандартное значение 1

Теперь осталось обучить финальную модель и проверить её метрики

In [315]:

```
model = RandomForestClassifier(n_estimators=100, max_depth=30, random_state=1, n_jobs=-1
model.fit(X_train, y_train)
```

Out[315]:

RandomForestClassifier(max_depth=30, n_jobs=-1, random_state=1)

In [316]:

print_metrics(model)

Train MSE: 0.032
Test MSE: 0.040
Train MAE: 0.032
Test MAE: 0.040
accuracy: 0.96
precision: 0.83
recall: 0.28

roc_auc_score: 0.73

Сравним метрики всех моделей:

Для логистической регрессии:

Train MSE: 0.039
Test MSE: 0.037
Train MAE: 0.039
Test MAE: 0.037
accuracy: 0.96
precision: 0.65
recall: 0.63

• roc_auc_score: 0.81

Для случайного леса до настройки гиперпараметров:

Train MSE: 0.004
Test MSE: 0.033
Train MAE: 0.004
Test MAE: 0.033
accuracy: 0.97

precision: 0.71recall: 0.61

• roc_auc_score: 0.97

Для XGBoost:

• Train MSE: 0.019

Test MSE: 0.033
Train MAE: 0.019
Test MAE: 0.033
accuracy: 0.97
precision: 0.70
recall: 0.63

• roc_auc_score: 0.89

Для настроенного случайного леса:

Train MSE: 0.032
Test MSE: 0.040
Train MAE: 0.032
Test MAE: 0.040
accuracy: 0.96
precision: 0.83
recall: 0.28

• roc auc score: 0.73

Получается, что настройка алгоритма случайного леса лишь незначительно увеличила значения метрики precision, в то же время остальные показатели сильно ухудшилось. Возможно, модель переобучилась. Нужно попробовать обучить модель со 100 деревьями, без указания максимальной глубины. Если метрики станут ещё хуже, значит, модель подвержена переобучению

In [317]:

```
model = RandomForestClassifier(n_estimators=100, random_state=1, n_jobs=-1)
model.fit(X_train, y_train)
```

Out[317]:

RandomForestClassifier(n_jobs=-1, random_state=1)

In [320]:

```
y_test_prediction = model.predict(X_test)
```

In [318]:

print_metrics(model)

Train MSE: 0.000 Test MSE: 0.035 Train MAE: 0.000 Test MAE: 0.035 accuracy: 0.97 precision: 0.68 recall: 0.62

roc_auc_score: 1.00

In [321]:

```
roc_auc_score(y_test, y_test_prediction)
```

Out[321]:

0.8002562452181727

Показатели мало отличаются от модели с количеством деревьев 10. Но теперь она действительно переобучилась, так как roc_auc_score на тренировочных данных стал равен единице. Решающим фактором, какую из двух моделей выбрать, станет roc_auc_score на тестовых данных

In [323]:

```
model = RandomForestClassifier(n_estimators=10, random_state=1, n_jobs=-1)
model.fit(X_train, y_train)
y_test_prediction = model.predict(X_test)
roc_auc_score(y_test, y_test_prediction)
```

Out[323]:

0.7980459784073936

Всё-таки, результат улучшился, но разница слишком мала. Для более тщательной настройки моделей на таких больших данных необходимо много оперативной памяти, мощный процессор, а также такой алгоритм поиска гиперпараметров, при котором несколько параметров будут выбираться одновременно, чтобы исключить ухудшение качества метрик