Qsys on Quartus 15.0 Tutorial for lab_bonus_SW

提供: 董子維、楊其昇

整理: 鍾杰、楊仲萱

打開Qsys (Tool → Qsys)

到Device Family選擇Cyclone IV

搜尋Avalon ALTPLL, 雙擊新增

Frequency of inclk0 input = 50MHz

Output clock frequency = 25MHz

按 Finish 可在右側看到新增的 ALTPLL

搜尋 UART → UART (RS-232 Serial Port) → Finish

雙擊 New Component

Name = SW_Wrapper Display Name = SW_Wrapper

File → Add File 新增 SW_Core.sv 和 SW_Wrapper.sv

將 SW_Wrapper 改成 Top level file (1/2)

將 SW_Wrapper 改成 Top level file (2/2)

Analyze Synthesis File → Close

選 Signal Interface

雙擊 Add interface → clock_sink 雙擊 Add interface → reset_sink

avm_clk 拖曳至 clock_sink下方 avm_rst 拖曳至 reset_sink下方

將 clock_sink 的 Type 改成 Clock Input

將 avm_clk 的 Signal Type 改成 clk

將 reset_sink 的 Type 改成 Reset Input

將 avm_rst 的 Signal Type 改成 reset

將 reset_sink 的 associate clock 改成 clock_sink

將 avalon_master_0 的 associate clock 改成 clock_sink 將 avalon_master_0 的 associate reset 改成 reset_sink

Finish → Yes, save 將搜尋列字串清空可見 SW_Wrapper 在 New Component 底下

雙擊 SW_Wrapper -> Finish

Ledit Module - Qsys - sw. gsys.gsys* (C:\Users\dclab\Desktop\DCLab SW\test v1\sw. gsys.gsys)

File Edit System Generate View Tools Help

請照圖例接線(下面 Message 内紅字會不見)

雙擊 external_connection 的 Export 欄位, Enter

點 s1 的 base 欄位 → s1 被反白選取 System → Assign Base

Generate → Generate... → 將 Output Directory 的最後一層改成 sw_qsys

Generate → Save 檔案名稱改成 sw_qsys.qsys,儲存,完畢後按 Close

回到 Quartus 視窗 → Assignment → Settings

完成後可以見到 Files 内多出 sw_qsys.v 和 sw_qsys.qip

檢查 DE2_115.sv 内使用 sw_qsys 和 sw_qsys.v port 相同

Appendix: Compile (Windows)

- 装置管理員→連接埠 (COM和LPT)→Prolific USB-to-Serial Common Port (COM?)
 - 1) 若沒有發現類似的裝置, 則需要安裝對應型號的驅動程式
 - 2) COM?即為OS指派的port代號

Appendix: Compile (Windows)

- 2. 按下FPGA上的KEY[0] (做reset)
- 3. \$> python test_rs232.py COM?, ?從步驟1.可以得知

```
Microsoft Windows [版本 10.0.19044.1645]
(c) Microsoft Corporation. 著作權所有,並保留一切權利。

C:\Users\dclab>cd C:\Users\dclab\Desktop\DCLab_SW\test_vl\pc_python

C:\Users\dclab\Desktop\DCLab_SW\test_vl\pc_python>python test_rs232.py COM3
```

Appendix: Compile (Windows)

- 4. 若要測試不同的testing data檔,則將 test_rs232.py 內的 fp_pat = open()以及 fp_gold = open()的檔案路徑改成新生成的檔案路徑
- 5. 執行後,會顯示有無通過所有測資
- 6. 經驗法則
 - 1) Compile時間過短或使用的logic elements數量過少,就算compile successful也可能出錯
 - 2) 重新 qsys 的話,可以將 qsys 這個資料夾砍掉直接重來
 - 3) Critical warning: Timing requirement not met代表 qsys 無法滿足timing的要求。有時候可能導 致每一次compile的結果不盡相同