MIPS Instruction'lar

Kodun:

```
assembly
KopyalaDüzenle
I1: ADDI $s0, $0, 10  # $s0 = 10
I2: ADDI $s1, $0, 5  # $s1 = 5
I3: SLL $s0, $s0, 4  # $s0 = $s0 << 4 = 160
I4: LW $s2, 0($s0)  # $s2 = Mem[160]
I5: ADD $s2, $s2, $s1  # $s2 = $s2 + $s1 (RAW hazard from LW)
I6: SW $s2, 4($s0)  # Mem[164] = $s2
```

Beklenen Hazard Durumu

RAW Data Hazard:

- I4 → I5 arasında var, çünkü:
 - o I4 bir LW (load), sonucu \$s2'ye yazar.
 - o I5 hemen ardından \$s2'yi okuyor.
 - o LW sonucu ancak MEM aşamasında elde edilir.
 - o Yani 15'i 1 clock cycle stall etmeliyiz.

Control Hazard (bu örnekte yok ama genelde olur):

• Jump ya da Branch olsaydı, iki komutu bubble yapmamız gerekirdi.

Clock Cycle Pipeline Tablosu

Clock	IF	ID	EX	MEM	WB	Açıklama
1	I 1					
2	I2	I 1				
3	I3	I2	I1			
4	I4	I3	I2	I1		
5	I5	I 4	I3	I2	I 1	I5 ID aşamasında ama \$s2 hazard
6	NOP	· 15	I 4	I3	I2	○ Stall! I5 ilerleyemez → Bubble
7	I6	NOP	I 5	I4	I3	I5 artık hazard yok → ilerler
8		I6	NOP	I5	I4	
9			I6	NOP	I5	
10				I6	NOP	
11					I6	

Beklenen Register Değerleri

Register Beklenen Değer Clock'tan Sonra Değişir

\$s0 160 I3 (Shift) sonrası

\$s1 5 I2 sonrası \$s2 Mem[160]+5 I5 sonrası

Hafıza Değişiklikleri

Address Beklenen Değer Açıklama