Mathematical Statistics - Assignment 6

Philip Warton

November 4, 2020

Problem 4.8

Suppose that Y has a density function

$$f(y) = \begin{cases} ky(1-y), & 0 \le y \le 1\\ 0, & \text{otherwise} \end{cases}$$

(a)

Find some $k \in \mathbb{R}$ such that f(y) is a probability density function. Notice that $\forall y \in [0,1], \quad y(1-y) > 0$. This indicates that $k \geq 0$. The integral $\int_{-\infty}^{0} f(y)dy + \int_{1}^{\infty} f(y)dy = 0$ since we know that the function is constantly zero on these open intervals. Then $P(-\infty,\infty) = P(0 \leq X \leq 1) = \int_{0}^{1} f(y)dy$. Thus we want to find some k such that $\int_{0}^{1} ky(y-1)dy = 1$. Let us use rules of algebra and integration to derive the following

$$1 = \int_0^1 ky(1-y)dy$$
$$= k \int_0^1 y - y^2 dy$$
$$= k \left(\frac{y^2}{2} - \frac{y^3}{3}\right)\Big|_0^1$$
$$= \frac{k}{6}$$

Since we must have $\frac{k}{6} = 1$, of course our answer will be k = 6.

(b)-(e)

Compute various probabilities using this value of k and the normalized density function f(y). First we must find $P(.4 \le Y \le 1)$.

$$\begin{split} P(.4 \leq Y \leq 1) &= \int_{0.4}^{1} 6y(1-y)dy \\ &= 6 \int_{.4}^{1} y - y^{2}dy \\ &= 6 \left[\frac{y^{2}}{2} - \frac{y^{3}}{3} \right]_{.4}^{1} \\ &= 6 \left[\frac{1}{6} - \left(\frac{2}{25} - \frac{2^{3}}{(3)5^{3}} \right) \right] \\ &= .648 \end{split}$$

The next probability to compute is $P(.4 \le Y < 1)$. However, this probability will be the same as the one we just computed because $P(.4 \le Y \le 1) = P(.4 \le Y < 1) + P(Y = 1)$. Since $P(Y = 1) = \int_{1}^{1} f(y) dy = 0$, both probabilities must be equal.

To compute $P(Y \le .4 | Y \le .8)$ by definition the probability equals

$$\frac{P(Y \leq .4 \text{ and } Y \leq .8)}{P(Y \leq .8)}$$

The probability in the numberator will simply be $P(Y \le .4)$ since this event is a subset of $Y \le .8$. Since the probability $P(.4 \le Y \le 1)$ is already known, $P(Y \le .4) = 1 - P(Y > .4) = 1 - P(.4 \le Y \le 1) = .352$. For the denominator, the integral must be computed.

$$6\int_0^{.8} f(y)dy = 6\left[\frac{y^2}{2} - \frac{y^3}{3}\right]_0^{.8} = 6\left[\frac{4^2}{(2)5^2} - \frac{4^3}{(3)5^3}\right] = .896$$

Knowing both the numerator and denominator we say $P(Y \le .4 | Y \le .8) = \frac{.352}{.896} = .393$.

Problem 4.14

Problem 4.18

Problem 4.28

Problem 4.32

Problem 4.40

Problem 4.48

Problem 4.50