Assembly language programming By xorpd

BASIC ASSEMBLY

Addressing rules of thumb

Objectives

We will study some rules of thumb to verify our address calculations.

Understanding addressing

Addressing can become tricky.

- Example:
 - □ add dl,byte [esi + edi]
 - What is esi, and what is edi?

Years

□ Let's consider years first.

- □ Let's look at the two years 1992 and 2014.
 - It doesn't make sense to add those two numbers.
 - We could subtract them though, and get a meaningful result.
 - The amount of years that has passed between 1992 and 2014.
- We could add 5 years to the year 2014, to get the year 2019.

Years (Cont.)

- We make the following distinction:
 - There are "years", and there are "intervals".
 - Years are **big** numbers. (Generally)
 - Intervals are **small** numbers.
- **Examples:**
 - The year 1992 is of type "year".
 - The quantity 5 years is of type "interval".
- **Arithmetic:**
 - year + interval = year

 - interval + interval = interval [3 + 5 = 8]
 - year + year is meaningless.
 - \square year year = interval.
- [1995 + 6 = 2001]

 - [1992 + 2014 is meaningless]
 - [2012 2005 = 7]

Addressing

- Address arithmetic:
 - We distinct between big numbers and small numbers.
 - Addresses are **big** numbers.
 - Offsets are small numbers.
- Address arithmetic rules of thumb:
 - □ big + small = big
 - \square small + small = small
 - big + big is meaningless.
 - \Box big big = small.

Example (1)

- my_pnt is a "big number". (Address)
- PNT.y is a "small number". (offset)
- my_pnt + PNT.y is a "big number". (Address)
- my_pnt + my_pnt is meaningless.

Example (2)

- □ add dl,byte [esi + edi]
 - esi + edi is an address (A big number).
 - Hence one of esi, edi must be a big number, and the other number must be a small number.
 - We could find out which is which from the rest of the code.
 - It can't be that both esi and edi are addresses. (big+ big is meaningless)
 - It can't be that both esi and edi are small numbers (small + small = small).

Summary

- Use the rules of thumb to verify your address arithmetic:
 - big + small = big
 - \square small + small = small
 - big + big is meaningless.
 - \Box big big = small.
- □ For every number related to addressing, ask yourself:
 - Is this a big or a small number?
- Remember that these are just rules of thumb.