1. Proof that a polynomial with $k \in \mathbb{N}$ nonzero coefficients has no more than 2k-1 different real roots. Show that the estimate is sharp, i.e. for every k construct a polynomial with k nonzero coefficients that has exactly 2k-1 real roots.

Let a_1, a_2, \ldots be a sequence of nonzero numbers. We say that two consequent terms a_i and a_{i+1} make a sign change if $a_i \cdot a_{i+1} < 0$. The number of sign changes in an arbitrary sequence is defined as the number of sign changes in its subsequence consisting of all nonzero terms.

- 2. Prove that the number of sign changes in a sequence a_0, a_1, \ldots, a_n is even (odd) if $a_0 \cdot a_n > 0$ (< 0).
- 3. (Descartes' rule of signs) Let $p \in \mathbb{R}[x]$. By C(p) we denote the number of sign changes in the sequence of coefficients of p(x). Prove that
 - (a) the number of positive roots of p(x) and C(p) have the same parity;
 - (b) the number of positive roots of p(x) is less than or equal to C(p).
- 4. Let $a_0 \neq 0$, $a_n \neq 0$ and 2m subsequent coefficients of a polynomial $p(x) = a_0 + a_1x + \ldots + a_nx^n$ be zero. Prove that p(x) has at least 2m imaginary roots.

Let $p(x) \in \mathbb{R}[x]$ be a polynomial without multiply real roots. The sequence of polynomials $p_0(x), p_1(x), \ldots, p_n(x)$ is called *Sturm sequence* of p(x) if it possesses the following properties:

- a) $\deg p_0(x) > \deg p_1(x) > \ldots > \deg p_n(x);$
- b) $p_0(x) = p(x)$ and $p_1(x) = p'(x)$;
- c) if $p_i(x_0) = 0$ for some $x_0 \in \mathbb{R}$ then $p_{i-1}(x_0)p_{i+1}(x) < 0$;
- d) the last polynomial $p_n(x)$ doesn't have real roots.

For given x_0 by $S(x_0)$ we denote the number of sign changes in the sequence $p_0(x_0), p_1(x_0), \ldots, p_n(x_0)$.

5. Prove that the number of roots of p(x) on a interval (a, b) (we do not exclude the cases $a = -\infty$ or $b = +\infty$) is equal to S(a) - S(b).

Now let us construct the Sturm sequence for a polynomial p(x). We already know that $p_0(x) = p(x)$ and $p_1(x) = p'(x)$. To construct $p_{k+1}(x)$ from $p_k(x)$ and $p_{k-1}(x)$, divide the latter by the former and take the reminder with the opposite sign: $p_{k-1}(x) = q(x)p_k(x) - p_{k+1}(x)$.

6. Prove the constructed sequence $p_0(x)$, $p_1(x)$, ..., $p_n(x)$ is a Sturm sequence for the polynomial p(x).

HOMEWORK

7. Let $\lambda_1 < \lambda_2 < \ldots < \lambda_n \in \mathbb{R}$. Prove that the number of sign changes in a sequence a_1, a_2, \ldots, a_n is greater than or equal to the number of roots of the quasi-polynomial $a_1e^{\lambda_1x} + a_2e^{\lambda_2x} + \ldots + a_ne^{\lambda_nx}$, and both these numbers have the same parity.