Diseño amplificador RF de pequeña señal para máxima ganancia usando AWR

- Diseño de amplificadores de RF
 - Diseño para máxima ganancia
 - Caso unilateral
 - Caso bilateral
 - Estabilidad
 - Estabilización del transistor
 - Diseño para una ganancia específica
 - Diseño para bajo ruido
 - Redes de polarización
 - RF chokes

Referencias

- [1] Guillermo Gonzalez, *Microwave Transistor Amplifiers, Analysis and Design, 2nd ed.*; Prentice Hall, 1996.
- [2] Devendra K. Misra, Radio-Frequency and Microwave Communication Circuits; John Wiley & Sons Inc., 2001
- [3] Cornelis J. Kikkert, RF Electronics. Design and Simulation, James Cook University, Australia, 2013
- [4] Sören Peik, Amplifier Design for MG using MWO, 2016.

Condiciones necesarias y suficientes de estabilidad incondicional

$$|\Delta| = |S_{11}S_{22} - S_{12}S_{21}| < 1 \tag{1}$$

$$k = \frac{1 - \left| S_{11} \right|^2 - \left| S_{22} \right|^2 + \left| \Delta \right|^2}{2 \left| S_{12} S_{21} \right|} > 1 \tag{2}$$

Círculos de estabilidad de salida de Γ_L para $|\Gamma_{IN}|=1$

$$r_L = \left| \frac{S_{12} S_{21}}{\left| S_{22} \right|^2 - \left| \Delta \right|^2} \right| \tag{3}$$

$$C_{L} = \frac{\left(S_{22} - \Delta S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}$$
(4)

Círculos de estabilidad de salida de Γ_S para $|\Gamma_{OUT}| = 1$

$$r_{S} = \left| \frac{S_{12} S_{21}}{\left| S_{11} \right|^{2} - \left| \Delta \right|^{2}} \right| \tag{5}$$

$$C_{S} = \frac{\left(S_{11} - \Delta S_{22}^{*}\right)^{*}}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}} \tag{6}$$

Maximización de la ganancia

$$\Gamma_{in} = \frac{b_1}{a_1} = S_{11} + \frac{\Gamma_L S_{21} S_{12}}{1 - \Gamma_L S_{22}} \tag{7}$$

$$\Gamma_{out} = \frac{b_2}{a_2} = S_{22} + \frac{\Gamma_S S_{21} S_{12}}{1 - \Gamma_S S_{11}}$$
 (8)

Maximización de la ganancia

$$G_{S} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - \Gamma_{in}\Gamma_{S}|^{2}}, \qquad G_{0} = |S_{21}|^{2}, \qquad G_{L} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}}$$

Ganancia del transductor

$$G_T = G_S G_0 G_L \tag{9}$$

Diseño para máxima ganancia (adapt. conjugada)

- Dado un transistor, se fija la ganancia Go
- La ganancia total del amplificador se determina por Gs y GL
- La máxima ganancia está dada por

$$\Gamma_{in} = \Gamma_S^*, \tag{10}$$

$$\Gamma_{out} = \Gamma_L^*,$$
 (11)

Asumiendo adaptaciones sin pérdidas

$$G_{T \max} = \frac{1}{|1 - \Gamma_S|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2}$$
(12)

- Diseño de amplificadores de RF
 - Diseño para máxima ganancia
 - Caso unilateral
 - Caso bilateral
 - Estabilidad
 - Estabilización del transistor
 - Diseño para una ganancia específica
 - Diseño para bajo ruido
 - Redes de polarización
 - RF chokes

Diseño para máxima ganancia (adapt. conjugada)

- Dado un transistor, se fija la ganancia Go
- La ganancia total del amplificador se determina por Gs y GL
- La máxima ganancia está dada por

$$\Gamma_S^* = \Gamma_{in} = S_{11} \tag{13}$$

$$\Gamma_L^* = \Gamma_{out} = S_{22} \tag{14}$$

Asumiendo adaptaciones sin pérdidas

$$G_{T \max} = \frac{1}{\left|1 - S_{11}\right|^2} \left|S_{21}\right|^2 \frac{1}{\left|1 - S_{22}\right|^2}$$
 (15)

- Diseño de amplificadores de RF
 - Estabilidad
 - Estabilización del transistor
 - Diseño para máxima ganancia
 - Caso unilateral
 - Caso bilateral
 - Diseño para una ganancia específica
 - Diseño para bajo ruido
 - Redes de polarización
 - RF chokes

Máxima ganancia – caso bilateral

En el caso de un transistor bilateral, Γ_{in} es afectada por Γ_{out} y viseversa. Las ecuaciones son

$$\Gamma_S^* = \Gamma_{in} = S_{11} + \frac{\Gamma_L S_{21} S_{12}}{1 - \Gamma_L S_{22}}$$
 (16)

$$\Gamma_L^* = \Gamma_{out} = S_{22} + \frac{\Gamma_S S_{21} S_{12}}{1 - \Gamma_S S_{11}}$$
(17)

Máxima ganancia – caso bilateral

$$\Gamma_{S} = \Gamma_{MS} = \frac{B_{1} \pm \sqrt{B_{1}^{2} - 4|C_{1}|^{2}}}{2C_{1}}$$
(18)

$$\Gamma_{L} = \Gamma_{ML} = \frac{B_2 \pm \sqrt{B_2^2 - 4|C_2|^2}}{2C_2} \tag{19}$$

Donde B₁, C₁, B₂ y C₂ son

$$\Delta = S_{11}S_{22} - S_{12}S_{21}$$

$$B_{1} = 1 + \left| S_{11} \right|^{2} - \left| S_{22} \right|^{2} - \left| \Delta \right|^{2}$$
 (20)

$$B_2 = 1 + \left| S_{22} \right|^2 - \left| S_{11} \right|^2 - \left| \Delta \right|^2 \tag{21}$$

$$C_1 = S_{11} - S_{22}^* \Delta \tag{22}$$

$$C_2 = S_2 - S_{11}^* \Delta \tag{23}$$

Máxima ganancia – caso bilateral

$$G_{S} = \frac{1 - \left|\Gamma_{S}\right|^{2}}{\left|1 - \Gamma_{in}\Gamma_{S}\right|^{2}} = \frac{1 - \left|\Gamma_{S}\right|^{2}}{\left|1 - \Gamma_{S}^{*}\Gamma_{S}\right|^{2}} = \frac{1}{1 - \left|\Gamma_{S}\right|^{2}}$$
(24)

$$G_0 = |S_{21}|^2 \tag{25}$$

$$G_{L} = \frac{1 - \left| \Gamma_{L} \right|^{2}}{\left| 1 - S_{22} \Gamma_{L} \right|^{2}}$$
 (26)

Ejemplo. Especificaciones

BFP540

Low Noise Silicon Bipolar RF Transistor

- For highest gain and low noise amplifier
- Outstanding G_{ms} = 21.5 dB at 1.8 GHz
 Minimum noise figure NF_{min} = 0.9 dB at 1.8 GHz
- Pb-free (RoHS compliant) and halogen-free package with visible leads
- Qualification report according to AEC-Q101 available

Ejemplo. Especificaciones

- Transistor Infineon BPF540
- Diseño de máxima ganancia
- Frecuencia, 5GHz
- Punto de polarización VCE=2V, Ic=3mA

Ejemplo. AWR

Ejemplo. AWR

Ejemplo. AWR

Ejemplo Transistor Infineon BPF540

BPF540 a 5GHz, Vce=2V, Ic=3mA (50 Ω)			
F(GHz) S ₁₁	S ₁₂	S ₂₁	S22
5.0 0.6556∠126.9°	0.114∠7.7°	2.011∠22.5°	0.200∠ –138.1°

Ejemplo Transistor Infineon BPF540 Estabilidad

Ejemplo Transistor Infineon BPF540 Estabilidad

Ejemplo Transistor Infineon BPF540 Estabilidad

El transistor es incondicionalmente estable a la polarización y frecuencia seleccionada

Ejemplo Transistor Infineon BPF540 Ganancia sin adaptar

Ejemplo Cont.

$$\Gamma_S = \frac{B_1 \pm \sqrt{B_1^2 - 4|C_1|^2}}{2C_1} = 0.793 \angle -129^\circ$$

$$\Gamma_L = \frac{B_2 \pm \sqrt{B_2^2 - 4|C_2|^2}}{2C_2} = 0.553 \angle 114^\circ$$

Ejemplo Cont.

Ganancia del transductor

$$G_S = \frac{1}{1 - |\Gamma_S|^2} = 2.694 = 4.3dB$$

$$G_0 = |S_{21}|^2 = 4.044 = 6.07dB$$

$$G_L = \frac{1 - \left| \Gamma_L \right|^2}{\left| 1 - S_{22} \Gamma_L \right|^2} = 0.856 = -0.67 dB$$

$$G_T = 4.3dB + 6.07dB - 0.67dB = 9.7dB$$

Ejemplo. Cont.

$$\Gamma_S = 0.793 \angle -129^{\circ}$$

$$\Gamma_L = 0.553 \angle 114^{\circ}$$

Output matching Network

 $\Gamma_L = 0.553 \angle 114^{\circ}$

Ejemplo Cont.

Reemplazamos el capacitor por un open stub

