ZADANIE 1: PROBLEM $1 \mid r_i \mid \sum w_i U_i$

- 1 maszyna
- n zadań do wykonania $J_1,, J_n$
- każde zadanie J_j opisane jest czasem trwania p_j , momentem gotowości r_j , oczekiwanym terminem zakończenia wykonywania d_i i wagą w_i
- należy ustalić kolejność wykonania zadań na maszynie (C_j oznacza moment zakończenia wykonywania zadania J_j w uszeregowaniu) minimalizując łączną ważoną liczbę zadań spóźnionych $\sum_{j=1}^n w_j U_j$, gdzie U_j dla zadania J_i wynosi 1 jeśli $C_i > d_i$ oraz 0 jeśli $C_i \le d_i$
- zadania wykonywane są bez przerwań
- zadanie nie może rozpocząć się przed swoim momentem gotowości $r_i \le C_i p_i$

PLIK WEJŚCIOWY

```
n
p_1 r_1 d_1 w_1
p_2 r_2 d_2 w_2
...
p_n r_n d_n w_n
```

(liczby rozdzielone spacjami, wszystkie wartości to liczby całkowite)

PLIK WYNIKOWY

$$\sum w_j U_j$$
 $J_{(1)} \ J_{(2)} \ ... \ J_{(n)}$

(w pierwszej linii wartość kryterium, w kolejnej linii sekwencja zadań, czyli sekwencje numerów zadań rozdzielonych spacjami; numeracja zadań powinna odpowiadać kolejności ich występowania w pliku wejściowym)

Testowy plik wynikowy dla liczby zadań n powinien zawierać $\sum w_j U_j = 0$ oraz uporządkowane rosnąco indeksy wszystkich zadań.