

| invention and if an allocation procedure is to be triggered, which resources, links, users and/or services to select for the allocation.

VW
5/28/10
Page 21, amend the paragraph beginning at line 21 and continuing to page 22, line 12 as follows:

| For increasing the understanding of the invention, an exemplified allocation scenario will now be described for a UMTS system with reference to Fig. 5. In this example the resource of interest are the downlink carrier power (total downlink power). This should merely been seen as a typical resource example. In general, the principles of the invention can be utilized also in the power management on the uplink. This may be especially important in a scenario with multi-RABs on the uplink, because this increases the probability for services with different QoS requirements to be handled at the same time. The same principle could also be used also when it comes to other resources, such as the uplink interference measured by the system. However, most of the actions that the system can take to reduce the uplink interference require handshaking with the mobile user equipment. As a consequence, the difference in the execution times of the available allocation procedures (typically channel switch and handover to another carrier or to another system) is smaller. This means that the quantitative gain would be somewhat less.

Page 23, amend the paragraph beginning at line 5 as follows:

| According to the invention and the discussion in connection with Fig. 2, the allocation system triggers execution of fast and slow resource allocation procedures depending on the level of the fast and slow resource utilization measure, respectively. Fast (slow) measure should be interpreted as the resource utilization measure associated with the fast (slow) resource class. In