Rotation About Arbitrary Axis

Derivation for the rotation equation

In this section we will derive the equation to rotate a vector V about another vector R in 3D space. Vector V's projection on vector R is

We split V into two vector components V_{\parallel} and V_{\perp} that are parallel and perpendicular. dicular to R, respectively.

$$V = V_{\parallel} + V_{\perp} \tag{1}$$

$$V_{\parallel} = (V.R)R \tag{2}$$

$$V_{\parallel} = (V.R)R \tag{2}$$
$$V_{\perp} = V - (V.R)R \tag{3}$$

We can describe the rotation of V in the plane perpendicular to R

We can see when V is rotated about R by θ , the resulting vector is V'. Considering the vector projection of V' on R

$$V' = V'_{\parallel} + V'_{\perp} \tag{4}$$

Because $V'_{\parallel} = V_{\parallel}$

$$V' = V_{\parallel} + V_{\perp}' \tag{5}$$

Substituting V_{\parallel} from 2

$$V' = (V.R)R + V'_{\perp} \tag{6}$$

V and R are known quantities. $V'\perp$ can be calculated by observing that V_{\perp} and B and are two mutually perpendicular plane vectors. Along with R they describe a coordinate frame, $V\perp BR$ that can be used to compute V'_{\perp} . Since B is mutally perpendicular to $V'\perp$ and R, it can be expressed as

$$B = R \times V_{\perp} \tag{7}$$

Substituting V_{\perp} from 3

$$B = R \times (V - V_{\parallel}) \tag{8}$$

Since cross product distributes over vector subtraction and since V_{\parallel} and R are parallel

$$B = R \times V - R \times V_{\parallel} \tag{9}$$

$$B = R \times V - 0 \tag{10}$$

$$B = R \times V \tag{11}$$

Using V_{\perp} and B as basis vectors, V'_{\perp} can be written as

$$V'_{\perp} = V_{\perp} cos\theta + (R \times V) sin\theta \tag{12}$$

Substituting $V' \perp$ into the equation 6, we get the final equation for V' in terms of V and R

$$V' = (V.R)R + V_{\perp}cos\theta + (R \times V)sin\theta \tag{13}$$

$$V' = (V.R)R + (V - (V.R)R)\cos\theta + (R \times V)\sin\theta \tag{14}$$

Note

There are three terms in 14

$$T1 = (V.R)R \tag{15}$$

$$T2 = (V - (V.R)R)\cos\theta \tag{16}$$

$$T3 = (R \times V)sin\theta \tag{17}$$

Notice that T2 is actually $(V - T1)cos\theta$. We will be using these three terms in the derivation of the rotation matrix in the next section

Derivation for the rotation matrix

A column-major rotation matrix is of the form

$$\begin{bmatrix} B1 & B2 & B3 \end{bmatrix}$$

The columns B1,B2, and B3 are the coordinates of the basis vectors after rotation. To derive the rotation matrix for rotating V and producing V', we start with the basis vectors of the right-handed coordinate system

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

We first rotate these basis vectors using the rotation equation (12), and to form the rotation matrix, we add the rotated coordinates of the basis vectors to the rotation matrix

Rotation of X-axis

Substituting x-axis for V in 14, we can get the B1 vector after rotation. Instead of solving for V' in one-shot, for simplicity's sake we will solve the three terms T1, T2, and T3 separately and assemble the results

$$T1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix}$$
 (18)

$$T2 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} - \begin{bmatrix} 1\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} R_x\\R_y\\R_z \end{bmatrix} \begin{bmatrix} R_x\\R_y\\R_z \end{bmatrix} \cos\theta \tag{19}$$

$$T3 = \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} sin\theta \tag{20}$$

Solving for T1

$$T1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix}$$
 (21)

$$T1 = R_x \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \tag{22}$$

$$T1 = \begin{bmatrix} R_x^2 \\ R_x R_y \\ R_x R_z \end{bmatrix} \tag{23}$$

Solving for T2

$$T2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} sin\theta$$
 (24)

$$T2 = \begin{bmatrix} 1 - R_x^2 \\ -R_x R_y \\ -R_x R_z \end{bmatrix} \cos\theta \tag{25}$$

$$T2 = \begin{bmatrix} (1 - R_x^2)\cos\theta \\ -R_x R_y \cos\theta \\ -R_x R_z \cos\theta \end{bmatrix}$$
(26)

Solving for T3

$$T3 = \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} sin\theta \tag{27}$$

$$T3 = \begin{bmatrix} 0 \\ R_z \\ -R_y \end{bmatrix} sin\theta \tag{28}$$

$$T3 = \begin{bmatrix} 0 \\ R_z sin\theta \\ -R_y sin\theta \end{bmatrix}$$
 (29)

Summing the terms

$$V' = \begin{bmatrix} R_x^2 \\ R_x R_y \\ R_x R_z \end{bmatrix} + \begin{bmatrix} (1 - R_x^2) \cos \theta \\ -R_x R_y \cos \theta \\ -R_x R_z \cos \theta \end{bmatrix} + \begin{bmatrix} 0 \\ R_z \sin \theta \\ -R_y \sin \theta \end{bmatrix}$$
(30)

$$V' = \begin{bmatrix} R_x^2 + (1 - R_x^2)\cos\theta \\ R_x R_y - R_x R_y \cos\theta + R_z \sin\theta \\ R_x R_z - R_x R_z \cos\theta - R_y \sin\theta \end{bmatrix}$$

$$V' = \begin{bmatrix} R_x^2 (1 - \cos\theta) + \cos\theta \\ R_x R_y (1 - \cos\theta) + R_z \sin\theta \\ R_x R_z (1 - \cos\theta) - R_y \sin\theta \end{bmatrix}$$
(32)

$$V' = \begin{bmatrix} R_x^2(1 - \cos\theta) + \cos\theta \\ R_x R_y(1 - \cos\theta) + R_z \sin\theta \\ R_x R_z(1 - \cos\theta) - R_y \sin\theta \end{bmatrix}$$
(32)

Rotation of Y-axis

Terms T1, T2, and T3 for $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ is

$$T1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix}$$
(33)

$$T2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} - \begin{bmatrix} 0\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} R_x\\R_y\\R_z \end{bmatrix} \begin{bmatrix} R_x\\R_y\\R_z \end{bmatrix} \cos\theta \tag{34}$$

$$T3 = \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} sin\theta \tag{35}$$

Solving for T1

$$T1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix}$$
 (36)

$$T1 = R_y \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \tag{37}$$

$$T1 = \begin{bmatrix} R_x R_y \\ R_y^2 \\ R_y R_z \end{bmatrix}$$
 (38)

Solving for T2

$$T2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \cos\theta \tag{39}$$

$$T2 = \begin{bmatrix} -R_x R_y \\ (1 - R_y^2) \\ -R_y R_z \end{bmatrix} \cos\theta \tag{40}$$

$$T2 = \begin{bmatrix} -R_x R_y cos\theta \\ (1 - R_y^2) cos\theta \\ -R_y R_z cos\theta \end{bmatrix}$$

$$(41)$$

Solving for T3

$$T3 = \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} sin\theta \tag{42}$$

$$T3 = \begin{bmatrix} -R_z \\ 0 \\ R_x \end{bmatrix} sin\theta$$

$$T3 = \begin{bmatrix} -R_z sin\theta \\ 0 \\ R_x sin\theta \end{bmatrix}$$

$$(43)$$

$$T3 = \begin{bmatrix} -R_z sin\theta \\ 0 \\ R_x sin\theta \end{bmatrix} \tag{44}$$

Summing the terms

$$V' = \begin{bmatrix} R_x R_y \\ R_y^2 \\ R_y R_z \end{bmatrix} + \begin{bmatrix} -R_x R_y cos\theta \\ (1 - R_y^2) cos\theta \\ -R_y R_z cos\theta \end{bmatrix} \begin{bmatrix} -R_z sin\theta \\ 0 \\ R_x sin\theta \end{bmatrix} \begin{bmatrix} 0 \\ R_z sin\theta \\ -R_y sin\theta \end{bmatrix}$$
(45)

$$V' = \begin{bmatrix} R_x R_y - R_x R_y cos\theta - R_z sin\theta \\ R_y^2 + cos\theta - R_y^2 cos\theta \\ R_y R_z - R_z R_y cos\theta + R_x sin\theta \end{bmatrix}$$

$$(46)$$

$$V' = \begin{bmatrix} R_x R_y (1 - \cos\theta) - R_z \sin\theta \\ R_y^2 (1 - \cos\theta) + \cos\theta \\ R_y R_z (1 - \cos\theta) + R_x \sin\theta \end{bmatrix}$$
(47)

Rotation of Z-axis

Terms
$$T1, T2, and T3$$
 for $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is

$$T1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix}$$

$$(48)$$

$$T2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \cos\theta \tag{49}$$

$$T3 = \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} sin\theta \tag{50}$$

Solving for T1

$$T1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix}$$
 (51)

$$T1 = R_z \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \tag{52}$$

$$T1 = \begin{bmatrix} R_x R_z \\ R_y R_z \\ R_z R_z \end{bmatrix}$$
 (53)

Solving for T2

$$T2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \cos\theta \tag{54}$$

$$T2 = \begin{bmatrix} -R_x R_z \\ -R_y R_z \\ (1 - R_z^2) \end{bmatrix} \cos\theta \tag{55}$$

$$T2 = \begin{bmatrix} -R_x R_z cos\theta \\ -R_y R_z cos\theta \\ (1 - R_z^2) cos\theta \end{bmatrix}$$
(56)

Solving for T3

$$T3 = \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} sin\theta \tag{57}$$

$$T3 = \begin{bmatrix} R_y \\ -R_x \\ 0 \end{bmatrix} sin\theta \tag{58}$$

$$T3 = \begin{bmatrix} R_y sin\theta \\ -R_x sin\theta \\ 0 \end{bmatrix}$$
 (59)

Summing the terms

$$V' = \begin{bmatrix} R_x R_z \\ R_y R_z \\ R_z^2 \end{bmatrix} + \begin{bmatrix} -R_x R_z cos\theta \\ -R_y R_z cos\theta \\ (1 - R_z^2) cos\theta \end{bmatrix} \begin{bmatrix} R_y sin\theta \\ -R_x sin\theta \\ 0 \end{bmatrix}$$
(60)

$$V' = \begin{bmatrix} R_x R_z - R_x R_z cos\theta + R_y sin\theta \\ R_y R_z - R_y R_z cos\theta - R_x sin\theta \\ R_z^2 + (1 - R_z^2) cos\theta \end{bmatrix}$$
(61)

$$V' = \begin{bmatrix} R_x R_z - R_x R_z \cos\theta + R_y \sin\theta \\ R_y R_z - R_y R_z \cos\theta - R_x \sin\theta \\ R_z^2 + (1 - R_z^2) \cos\theta \end{bmatrix}$$

$$V' = \begin{bmatrix} R_x R_z (1 - \cos\theta) + R_y \sin\theta \\ R_y R_z (1 - \cos\theta) - R_x \sin\theta \\ R_z^2 (1 - \cos\theta) + \cos\theta \end{bmatrix}$$
(61)

Finally, assembling the three transformed basis vectors into the rotation matrix we get the matrix that transforms any arbitrary vector about a different arbitrary vector R

$$\begin{bmatrix} R_x^2(1-\cos\theta)+\cos\theta & R_xR_y(1-\cos\theta)-R_z\sin\theta R_xR_z(1-\cos\theta)+R_y\sin\theta \\ R_xR_y(1-\cos\theta)+R_z\sin\theta & R_y^2(1-\cos\theta)+\cos\theta & R_yR_z(1-\cos\theta)-R_x\sin\theta \\ R_xR_z(1-\cos\theta)-R_y\sin\theta R_yR_z(1-\cos\theta)+R_x\sin\theta & R_z^2(1-\cos\theta)+\cos\theta \end{bmatrix}$$
(63)