

Sky High Savings: Predicting Indian Airfare Trends

By Lupe Covarrubias

The Problem

- Prices influenced by seasonality, demand, destinations, and competitor pricing.
- Overpaying due to unpredictable fare fluctuations.

What factors might affect airfare?

- Route
- Arrival time
- First Class
- Airline

- Duration
- Day of the week
- Planned vs Lastminute Booking

How can we help?

Objective: Build a predictive model to highlight costdriving factors and help raise customer satisfaction through saving money.

Empower millions of travelers and enhance travel platforms with accurate airfare prediction tools.

Data Overview

- Dataset sourced from Kaggle, containing ~445k rows and 13 columns.
- Initial cleaning included:

Splitting the Date_of_journey column into year, month, and day (year was dropped since data spanned only 3 months).

Removing
duplicates based
on flight_code,
Destination, Fare,
Arrival,
Duration_in_hours,
and other features.

Initial Observations

- Dataset was predominantly categorical with limited continuous features (e.g., Fare).
- Categorical features had 3-7 values each, critical for creating dummy variables later.

Aggregation by Fare revealed:

Ahmedabad as the most expensive destination.

The longest flights were also to Ahmedabad.

Preliminary Insights

- Outliers in airfare data were observed due to natural variability.
- Fare distribution showed bimodal behavior with a right skew (Figure 1).
- Median was chosen as the key metric for further analysis to handle skewness effectively.

Figure 1

Key Metrics and Initial Observations

- Median Fare = 13,362 rupees < mean = 22,920 rupees
- Median chosen as it is robust to outliers.
- No correlation between numerical features (e.g., Duration_in_hours, Day, Days_left) and airfare.
- Focus shifted to categorical features (e.g., Class, Airlines).

Initial Exploration

- Only Vistara and Air India offered premium classes (e.g., Business, First Class).
- Combined all noneconomy values into a single "Premium" category (Figure 2).

Frequency Patterns from EDA

- Common Travel Day: Mondays for most airlines
- Frequent Class: Economy for most airlines; Vistara's frequent class is Premium.
- Popular Flight Times:
 - Arrivals After 6 PM, due to fullday travel.
 - Departures Noon to midnight, aligning with travelers' schedules.

- Stops: One-stop flights dominate; nonstop flights are rare for smaller airlines.
- Fare Insights by Route:
 - Ahmedabad to Mumbai Most expensive, ₹18,712.
 - Bangalore to Delhi Cheapest
 ₹10,338, frequently operated by budget airline AirAsia.

Fare Trends

- Fare vs. Booking Category:
 - Last-minute bookings Most expensive
 - Planned bookings Cheapest
 - Short-notice bookings Most frequent, driven by business travel or emergencies

Key Takeaway:

 Median analysis highlighted critical factors like route, booking category, travel time, and flight type, setting the stage for further exploration through visualizations.

• Other Trends:

- Travel Days: Sunday (most expensive), Thursday (cheapest).
- Departure Times: Before 6 AM (cheapest), 6 AM-Noon (most expensive).
- Stops Impact: More stops = higher fares.
- End of Month Flights: Higher demand leads to higher fares.

Visualized Patterns

Flight Class vs. Fare (Figure 3):

- Premium fares exhibit a higher range and median compared to Economy fares.
- Economy fares are concentrated at lower price points, reflecting affordability and demand.

Airlines and Median Fare (Figure 4):

- Highest fares Vistara and Air India
- Lowest fares Akasa Air, AirAsia,
 Alliance Air, and Star Air

- Significant features driving fares: Class, Route, Airline, Journey_day, Departure/Arrival times, and Total_stops.
- Last-minute bookings: Highest fares.
- Newly created features (e.g., Route, Part_of_the_month) and existing ones hold strong predictive potential.

Figure 3

Figure 4

Preprocessing

- Predominantly categorical with limited continuous features (e.g., Fare).
 - 3-7 values per feature, critical for creating dummy variables later.
- Methods used to reduce multicollinearity
 - 63 dimensions total
- All binary variables, no need for scaling

Preliminary Modeling

- Dummy Regressor: median = 13,379 rupees for baseline performance.
- Model Performance:
 - Negative R-squared value (-0.2195,
 -0.2172) indicate poor performance
- Evaluation Metrics:
 - MAE: Average error of ~14,289 rupees.
 - MSE: Extremely high due to outliers (506460343, 508088827)
 - RMSE: (~22,505, ~22,541) rupees.

- Key Insight: Similar metrics for train and test data suggest good generalization, with the model learning underlying patterns.
- Conclusion: The dummy regressor highlights the data's complexity, suggesting the need for a more advanced model with additional features and hyperparameter tuning for improved performance.

Linear Regression Model

- Performance Metrics:
 - R-squared: ~56% for train and test sets.
 - Train MAE: 9424 | Test MAE: 9431.
- GridSearch CV identified the best K as 68 (all features), still explaining 56% of the variation.

- Key Features Identified:
 - Premium Class: Strong pos. impact
 - Routes from Kolkata: Pos.
 - Non-Stop Flights: Neg. impact

Conclusion: While the model provides decent performance, more complex models with advanced hyperparameter tuning are better suited for this dataset.

Gradient Boosting Regressor Model

- Performance Metrics:
 - R-squared: 0.60, improved to 0.66 after hyperparameter tuning.
 - Outperforming the linear regression model.
 - Train MAE: 8151 | Test MAE: 8176.
- Advantages:
 - Handles complex datasets and robust to outliers.

Conclusion: Gradient Boosting Regressor shows strong potential and better performance, with opportunities for further improvement through fine-tuning.

- Random Search CV used for efficient hyperparameter tuning due to large search space.
- Key Features Identified:
 - Class_Premium: Strong pos. impact on airfare.
 - Total_stops_non-stop: Neg. airfare.
 - Airline_Vistara: Pos. feature
 - Booking_Category_Planned: Neg. feature

Histogram Gradient Boosting Regressor Model

- Performance Metrics:
 - Basic HGBR model (no tuning): R² =
 0.64 (better than the simple GBR model).
 - Tuned HGBR model (Random Search
 CV): R² = 0.65.
 - Train MAE: 7514 | Test MAE: 7558.
- Advantages:
 - Chosen for its efficiency with highdimensional categorical data and reduced computation time.

- Class_Premium (inc. price).
- Total_stops_Non-stop (dec. price).
- Route_Delhi_to_Kolka ta and Total_stops_2+stop.

Conclusion: Outperformed the GBR model; selected as the final model.

Figure 6

Model Selection

- Selected Model: Histogram Gradient Boosting Regressor (HGBR)
- Best predictive power for airfare.
- Good correlation between actual and predicted values.
- Scatter increases as fare values rise, indicating higher prediction errors for expensive fares.
- Underprediction for fares above 80,000 rupees.
- Noticeable outliers due to data noise and model limitations.

Figure 7

Conclusion

- Business Impact:
 - Helps optimize pricing strategies and target premium customers.
 - Consistent train/test
 metrics reduce the risk of
 pricing errors during
 high-demand periods.

- Areas for Improvement:
 - Advanced feature engineering (e.g., OrdinalEncoder).
 - Experiment with alternative models (XGBoost, LightGBM).
 - Explore log transformations to improve predictions for higher fare ranges.
 - Focusing strictly on economy

Conclusion:

HGBR provides a solid foundation for fare prediction but could benefit from further enhancements to increase accuracy and customer trust.

