Taller No °3 Algoritmos genéticos

1. EJERCICIOS

1.1. Problema 1

Encontrar, usando el método de AGs, la raíz real del polinomio P(x) = 5x5-3x4-x3-5x2-x-3 en el intervalo [0.5 1], usando números reales, una población de 100 listas, un solo tipo de cruce y selección por clasificación. Dibuje un cuadro de aptitud contra generación.

El desarrollo de este punto se encuentra en el siguiente enlace: https://github.com/YeisonVR/Trabajos-IA-y-MR/tree/main

1.2. Problema 2

Suponga que tiene una lista de 15 alimentos con número de calorías, gramos de proteína, gramos de grasa y gramos de carbohidratos. Suponga que un individuo debe consumir determinada cantidad de calorías, proteínas, grasa y carbohidratos. Genere una dieta para ese individuo.

El desarrollo de este punto se encuentra en el siguiente enlace: https://github.com/YeisonVR/Trabajos-IA-y-MR/tree/main

1.3. Problema 3

Una empresa proveedora de energía eléctrica dispone de cuatro plantas de generación para satisfacer la demanda diaria de energía eléctrica en Cali, Bogotá, Medellín y Barranquilla. Cada una puede generar 3, 6, 5 y 4 GW al día respectivamente. Las necesidades de Cali, Bogotá, Medellín y Barranquilla son de 4, 3, 5 y 3 GW al día respectivamente. Los costos por el transporte de energía por cada GW entre plantas y ciudades se dan en la siguiente tabla:

	Cali	Bogotá	Medellín	Barranq.
Planta C	1	4	3	6
Planta B	4	1	4	5
Planta M	3	4	1	4
Planta B	6	5	4	1

Los costos del KW-H por generador se dan en la siguiente tabla:

Generador	\$ KW-H
Planta C	680
Planta B	720
Planta M	660
Planta D	750

Encontrar usando AGs el mejor despacho de energía minimizando los costos de transporte y generación.

El desarrollo de este punto se encuentra en el siguiente enlace:

https://github.com/YeisonVR/Trabajos-IA-y-MR/tree/main

Para el caso del programa CiudadesV1 la generación de población y las iteraciones se define previamente, mientras que en el código CiudadesV2 se realiza de forma aleatoria y se define mejor la función algoritmo genético para obtener una solución. La forma de leer la respuesta es mediante un vector de 4 posiciones cada una correspondiente a una ciudad diferente y las plantas representadas por números desde el 0 al 3 en el orden C, B, M y D. De forma que el vector [0, 2, 2, 2] indica que La ciudad de Cali es alimentada por la planta C, la ciudad de Bogotá, Medellin y Barranquilla son alimentadas por la planta M.

1.4. Problema 4

En el siguiente enlace se encuentra un programa Python para la solución del TSP (Traveling Salesman Problem):

https://github.com/rocreguant/personal_blog/blob/main/Genetic_Algorithm_Python_ Example/Traveling_Salesman_Problem.ipynb

Estúdielo y úselo como laboratorio, usando diferentes tipos de selección y diferente número de generaciones. Imprima las gráficas correspondientes.

El desarrollo de este punto se encuentra en el siguiente enlace:

https://github.com/YeisonVR/Trabajos-IA-y-MR/tree/main

Referencias

[1] Goldberg, David: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, 1ª edición, 1989, ISBN 978-0201157673.