Метод резолюций

Ищем доказательство в исчислении предикатов

Хотим научиться проверять доказуемость формул исчисления предикатов. В общем случае невозможно, но человек как-то справляется? Может, для каких-то частных случаев мы сможем предложить метод?

По теореме о полноте можем рассматривать (\models) вместо (\vdash). Напомним: $\models \alpha$, если для всех $M = \langle D, F, P, E \rangle$ выполнено $M \models \alpha$. Нам мешает:

- 1. бесконечное множество предметных множеств D и оценок;
- 2. бесконечный перебор для кванторов;

Будем последовательно упрощать задачу:

- 1. упростим формулу;
- 2. заменим произвольное D на рекурсивно-перечислимое, устроенное некоторым фиксированным образом;
- 3. научимся по этому перечислимому D искать доказательство / противоречие.

Компактность

Определение

Пространство X компактно, если из любого его открытого покрытия U можно выделить конечное подпокрытие:

$$X=\cup U$$
, существует $V\subseteq U$, что $|V| и $X=\cup V$.$

Пример

(0,1) не компактен. Например, $U=\{(arepsilon/2,arepsilon)\mid arepsilon\in (0,1)\}$. Пусть $V\subset U$ и $|V|<\aleph_0$. Тогда $\min\{a\mid (a,b)\in V\}>0$.

Пример

[0,1] компактен. Выберем U и покажем, что в нём есть подпокрытие. Рассмотрим все подотрезки вида [a,x] где a < x, имеющие конечное покрытие. Несложно показать, что $\max x = 1$.

Теорема Гёделя о компактности

Теорема

Если Γ — некоторое семейство формул, то Γ имеет модель тогда и только тогда, когда любое его конечное подмножество имеет модель.

Сколемизация. Упрощаем формулу.

- 1. Предварённая форма (поверхностные кванторы): $\psi := Qx_1.Qx_2...Qx_n.\varphi(x_1,...,x_n)$
- 2. Для упрощения предполагаем, что кванторы чередуются. Это не сильно уменьшает общность. Например, если $D=\mathbb{N}$, то $(\forall x. \forall y. \varphi(x,y)) \leftrightarrow (\forall p. \varphi(\mathsf{plog}_2(p),\mathsf{plog}_3(p))$
- 3. Убрать кванторы существования: $\zeta = \exists x_1. \forall x_2. \exists x_3. \forall x_4 \dots \exists x_{n-1}. \forall x_n. \varphi(x_1, \dots, x_n)$ Заменим x_{2k+1} функцией Сколема: $e_{2k+1}(x_2, x_4, \dots, x_{2k})$.
 - Получим: $\eta = \forall x_2. \forall x_4 \dots \forall x_n. \varphi(e_1, x_2, e_3(x_2), \dots, e_{n-1}(x_2, x_4, \dots, x_{n-2}), x_n)$ Очевидно, что $\vdash \zeta$ эквивалентно $\models \zeta$ эквивалентно $\models \eta$ и $\vdash \eta$.
- Очевидно, что $\vdash \zeta$ эквивалентно $\models \zeta$ эквивалентно $\models \eta$ и $\vdash \eta$
- 4. ДНФ:

$$\forall x_2. \forall x_4... \forall x_n. \bigwedge_c \left(\bigvee_{i=\overline{1,d(c)}} (\neg) P_i(\theta_i) \right)$$

Эрбранов универсум

Определение

```
Пусть H_0(\varphi) — все константы в формуле \varphi (либо особая константа a, если констант в \varphi нет) H_1(\varphi) - H_0(\varphi) и все функции от значений H_0(\varphi) (как строки) H_2(\varphi) - H_1(\varphi) и все функции от значений H_1(\varphi) (как строки) H = \bigcup H_n(\varphi) — основные термы.
```

Пример

```
P(a) \lor Q(f(b)):
H_0 = \{a, b\}
H_1 = \{a, b, f(a), f(b)\}
H_2 = \{a, b, f(a), f(b), f(f(a)), f(f(b))\}
...
H = \{f^{(n)}(x) \mid n \in \mathbb{N}_0, x \in \{a, b\}\}
```

Выполнимость

Теорема

Формула выполнима тогда и только тогда, когда она выполнима на Эрбрановом универсуме.

Доказательство.

 (\Rightarrow) Пусть $M \models \forall \overline{x}. \varphi$. Тогда построим отображение eval : $H \to M$ (смысл названия вдохновлён языками программирования: eval("f(f(b))") перейдёт в f(f(b)), где f и b — из M). Предикатам дадим согласованную оценку: $P_H(t_1,\ldots,t_n) = P_M(h(t_1),\ldots,h(t_n))$. Очевидно, любая формула сохранит своё значение, кванторы всеобщности по меньшему множеству также останутся истинными. (\Leftarrow) Очевидно.

Противоречивость

Определение

Система дизъюнктов $\{\delta_1,\ldots,\delta_n\}$ противоречива, если для каждой интерпретации M найдётся δ_k и такой набор $d_1\ldots d_v$, что $[\![\delta_k]\!]^{x_1:=d_1,\ldots,x_v:=d_v}=\mathcal{I}$.

Теорема

Система дизъюнктов противоречива, если она невыполнима на Эрбрановом универсуме.

Доказательство.

Контрапозиция теоремы о выполнимости + разбор определения.

Основные примеры

Определение

Дизъюнкт с подставленными основными термами вместо переменных называется основным примером. Системой основных примеров назовём множество основных примеров опровержимых дизъюнктов:

Если $M \not\models \delta_k$ для некоторой эрбрановской интерпретации, то возьмём все возможные основные примеры δ_k .

Теорема

Система дизъюнктов S противоречива тогда и только тогда, когда система всевозможных основных примеров E противоречива

Доказательство.

Для некоторой эрбрановой интерпретации дизъюнкт δ_k опровергается тогда и только тогда, когда соответствующая ему подстановка в E опровергается.

Теорема Эрбрана

Теорема (Эрбрана)

Система дизъюнктов S противоречива тогда и только тогда, когда существует конечное противоречивое множество основных примеров системы дизъюнктов S

Доказательство.

- (\Leftarrow) Пусть $\delta_1[\overline{\mathbf{x}}:=\overline{\theta}],\ldots,\delta_k[\overline{\mathbf{x}}:=\overline{\theta}]$ противоречивое множество примеров дизъюнктов. Тогда интерпретация $\overline{\theta}$ опровергает хотя бы один из δ_k и система противоречива.
- (\Rightarrow) Если S противоречива, то значит, множество основных примеров S противоречиво (по теореме о выполнимости Эрбранова универсума). Тогда по теореме компактности в нём найдётся конечное противоречивое подмножество.

Правило резолюции (исчисление высказываний)

Пусть даны два дизъюнкта, $\alpha_1 \vee \beta$ и $\alpha_2 \vee \neg \beta$. Тогда следующее правило вывода называется правилом резолюции:

$$\frac{\alpha_1 \vee \beta \qquad \alpha_2 \vee \neg \beta}{\alpha_1 \vee \alpha_2}$$

Теорема

Система дизъюнктов противоречива, если в процессе всевозможного применения правила резолюции будет построено явное противоречие, т.е. найдено два противоречивых дизъюнкта: β и $\neg \beta$.

Алгебраические термы

Определение

Алгебраический терм

$$\theta := x | (f(\theta_1, \ldots, \theta_n))$$

где x-переменная, $f(\theta_1,\ldots,\theta_n)-$ применение функции. Напомним, что константы — нульместные функциональные символы, собственно переменные будем обозначать последними буквами латинского алфавита.

Определение

Система уравнений в алгебраических термах
$$\left\{egin{align*} & heta_1 = \sigma_1 \\ \vdots \\ & heta_n = \sigma_n \end{array}\right.$$
 где $heta_i$ и σ_i — термы

Уравнение в алгебраических термах

Определение

 $\{x_i\}=X-$ множество переменных, $\{ heta_i\}=T-$ множество термов.

Определение

Подстановка—отображение вида: $\pi_0: X \to T$, тождественное почти везде. $\pi_0(x)$ может быть либо $\pi_0(x) = \theta_i$, либо $\pi_0(x) = x$.

Доопределим $\pi: \mathcal{T} \to \mathcal{T}$, где

- 1. $\pi(x) = \pi_0(x)$
- 2. $\pi(f(\theta_1,\ldots,\theta_k))=f(\pi(\theta_1),\ldots,\pi(\theta_k))$

Определение

Решить уравнение в алгебраических термах—найти такую наиболее общую подстановку π , что $\pi(\theta_1) = \pi(\theta_2)$. Наиболее общая подстановка — такая, для которой другие подстановки являются её частными случаями.

Задача унификации

Определение

Пусть даны формулы α и β . Тогда решением задачи унификации будет такая наиболее общая подстановка $\pi = \mathcal{U}[\alpha, \beta]$, что $\pi(\alpha) = \pi(\beta)$. Также, η назовём наиболее общим унификатором.

Пример

• Формулы P(a,g(b)) и P(c,d) не имеют унификатора (мы считаем, что a,b,c,d — нульместные функции, af — одноместная функция).

Правило резолюции для исчисления предикатов

Определение

Пусть σ_1 и σ_2 — подстановки, заменяющие переменные в формуле на свежие. Тогда правило резолюции выглядит так:

$$\frac{\alpha_1 \vee \beta_1 \quad \alpha_2 \vee \neg \beta_2}{\pi(\sigma_1(\alpha_1) \vee \sigma_2(\alpha_2))} \ \pi = \mathcal{U}[\sigma_1(\beta_1), \sigma_2(\beta_2)]$$

 σ_1 и σ_2 разделяют переменные у дизъюнктов, чтобы π не осуществила лишние замены, ведь $\vdash (\forall x. P(x) \& Q(x)) \leftrightarrow (\forall x. P(x)) \& (\forall x. Q(x))$, но $\not\vdash (\forall x. P(x) \lor Q(x)) \rightarrow (\forall x. P(x)) \lor (\forall x. Q(x))$.

Пример

$$rac{Q(x)ee P(x) - P(a)ee T(x)}{Q(a)ee T(x'')}$$
 подстановки: $\sigma_1(x) = x', \sigma_2(x) = x'', \pi(x') = a$

Метод резолюции

Ищем $\vdash \alpha$.

- 1. найдём опровержение $\neg \alpha$.
- 2. перестроим $\neg \alpha$ в ДНФ.
- 3. будем применять правило резолюции, пока получаем новые дизъюнкты и пока не найдём явное противоречие (дизъюнкты вида β и $\neg \beta$).

Если противоречие нашлось, значит, $\vdash \neg \neg \alpha$. Если нет — значит, $\vdash \neg \alpha$. Процесс может не закончиться.

SMT-решатели

Обычно требуется не логическое исчисление само по себе, а теория первого порядка. То есть, «Satisfability Modulo Theory», «выполнимость в теории» — вместо SAT, выполнимости.

lacktriangle Иногда можно вложить теорию в логическое исчисление, даже в исчисление высказываний: $\overline{S_2S_1S_0}=\overline{A_1A_0}+\overline{B_1B_0}$

$$S_0 = A_0 \oplus B_0$$
 $C_0 = A_0 \& B_0$
 $S_1 = A_1 \oplus B_1 \oplus C_0$ $C_1 = (A_1 \& B_1) \lor (A_1 \& C_0) \lor (B_1 \& C_0)$
 $S_2 = C_1$

А можно что-то добавить прямо на уровень унификации / резолюции:
 Например, можем зафиксировать арифметические функции — и производить вычисления в правиле резолюции вместе с унификацией.

Тогда противоречие в $\{x=1+3+1, \neg x=5\}$ можно найти за один шаг.