

COUPE ANIMATH

Mardi 6 juin 2017

Corrigé

Exercice 1. N.B. Dans cet exercice, et uniquement celui-ci, on demande une réponse sans justification.

Soit m > n > p trois nombres (entiers positifs) premiers tels que m + n + p = 74 et m - n - p = 44. Déterminer m, n et p.

(Un nombre premier est un entier strictement plus grand que un, et dont les seuls diviseurs sont un et lui-même.)

Solution de l'exercice 1 On trouve m=59, n=13 et p=2. Donnons quand même une justification. On a 2m=(m+n+p)+(m-n-p)=74+44=118, donc m=59. Il vient n+p=74-59=15. Comme n+p est impair, l'un des deux nombres est pair. Or, l'unique nombre premier pair est 2, donc p=2 et n=13.

Exercice 2. Montrer que si n est un nombre entier à cinq chiffres, et m le nombre obtenu en renversant l'ordre des chiffres (par exemple si n=34170 alors m=07143), alors l'écriture de n+m comporte au moins un chiffre pair.

<u>Solution de l'exercice 2</u> On suppose que n+m ne comporte que des chiffres impairs, et on montre que l'on aboutit à une absurdité.

Notons abcde l'écriture décimale de n. Comme le chiffre des unités de n+m est impair, a+e doit être impair.

Si a+e<10, alors il n'y a pas de retenue dans les dizaines, donc b+d est impair. Pour que le chiffre des centaines soit impair, il faut qu'il y ait une retenue, donc $b+d\geqslant 10$. Il y a donc une retenue dans la colonne des dix milliers, donc le chiffre des dix milliers a la même parité que a+e+1 qui est pair, ce qui est absurde.

Si $a+e\geqslant 10$ alors il y a une retenue dans la colonne des dizaines, donc b+d est pair. De plus, comme il y a une retenue dans la colonne des centaines (même raisonnement que ci-dessus), on a $b+d+1\geqslant 10$. Comme b+d est pair, nécessairement $b+d\geqslant 10$ donc il y a une retenue dans la colonne des dix milliers, ce qui aboutit comme ci-dessus à une absurdité.

Exercice 3. Soit ABC un triangle tel que $\widehat{BAC}=60^\circ$. La médiatrice de [AC] coupe (AB) en P, et la médiatrice de [AB] coupe (AC) en Q. Montrer que PQ=BC.

Solution de l'exercice 3

Par définition de la médiatrice, le triangle ACP est isocèle en A. Comme $\widehat{PAC} = \widehat{BAC} = 60^\circ$, il est équilatéral. De même, le triangle ABQ est équilatéral. On a donc AP = AC et AQ = AB. Soit s la symétrie axiale dont l'axe est la bissectrice de \widehat{BAC} . On a donc s(C) = P et s(B) = Q, donc [PQ] est le symétrique de [BC], d'où PQ = BC.

 $E_{xercice}$ 4. On donne cinq nombres dans l'ordre croissant, qui sont les longueurs des côtés d'un quadrilatère (non croisé, mais non nécessairement convexe, c'est-à-dire qu'une diagonale n'est pas nécessairement à l'intérieur du polygone) et d'une de ses diagonales D. Ces nombres sont 3, 5, 7, 13 et 19. Quelle peut être la longueur de la diagonale D?

Solution de l'exercice 4 On peut reformuler le problème : notons a,b,c,d les longueurs des côtés du quadrilatère, et e la longueur de la diagonale qui sépare d'une part les côtés de longueur a et b, d'autre part les côtés de longueur d et e. Il faut et il suffit que les triplets (a,b,e) et (c,d,e) vérifient l'inégalité triangulaire.

Si e=3 ou e=5, le triplet contenant 19 ne conviendra pas car 19-3>13 et 19-5>13 : le côté de longueur 19 est trop grand.

Si e=13, il faut simultanément a+b>13 et c+d>19. Or si a ou b=19, alors $c+d\le 5+7<13$, de même si c ou d=19. Donc on ne peut avoir e=13. On vérifie qu'il en va de même pour e=19. Reste donc e=7. On peut alors avoir a=3,b=5,c=13,d=19 par exemple.

Exercice 5. On a écrit un nombre au tableau. À chaque étape, on lui ajoute le plus grand de ses chiffres (par exemple, si on a écrit 142, le nombre suivant sera 146). Quel est le plus grand nombre possible de nombres impairs que l'on peut écrire consécutivement en procédant de la sorte ?

<u>Solution de l'exercice 5</u> La réponse est 5. Supposons qu'on parte d'un nombre impair n. On note n_i le i-ème nombre écrit avec $n_1=n$. Soient aussi c_i et d_i le plus grand chiffre et le chiffre des unités de n_i . Si c_1 est impair, alors $n_2=n_1+c_1$ est pair, et on n'a écrit qu'un seul nombre impair. Notons aussi que c_1 ne peut pas être égal à 0.

Si $c_1 = 2$, alors $d_1 = 1$. On a $n_2 = n_1 + 2$, donc $c_2 = 3$ et $d_2 = 3$, puis $n_3 = n_2 + 3$ est pair. Le troisiéme nombre écrit est donc pair.

Si $c_1 = 4$, alors d_1 peut valoir 1 ou 3. Si $d_1 = 1$, alors $n_2 = n_1 + 4$ donc $c_2 = 5$ et $d_2 = 5$, donc $n_3 = n_2 + 5$ est pair. Si $d_1 = 3$, alors $n_2 = n_1 + 4$ donc $c_2 = 7$ et $d_2 = 7$, donc $n_3 = n_2 + 7$ est pair.

Si $c_1=6$, alors d_1 peut valoir 1, 3 ou 5. Dans les deux premiers cas, on obtient n_3 pair comme précédemment. Si $d_1=5$, alors $n_2=n_1+6$ donc $d_2=1$. De plus, le plus grand chiffre soit reste le même $(c_2=6)$, soit augmente de 1 $(c_2=7)$. Dans le second cas, $n_3=n_2+7$ est pair. Dans le premier, $n_3=n_2+6$ donc $d_3=7$ et $c_3=7$ donc $n_4=n_3+7$ est pair. Si $c_1=8$, alors d_1 peut valoir 1, 3, 5 ou 7.

- si $d_1 = 1$, on obtient $c_2 = d_2 = 9$ donc n_3 est pair.
- si $d_1 = 3$, alors $d_2 = 1$ et c_2 peut valoir 8 ou 9. Dans le second cas n_3 est pair, et dans le premier on est ramené au cas précédent (c = 8, d = 1) donc n_4 est pair.
- si $d_1 = 5$, alors $d_2 = 3$ et c_2 peut valoir 8 ou 9. Dans le second cas n_3 est pair, et dans le premier on est ramené au cas précédent (c = 8, d = 3) donc n_4 ou n_5 est pair.
- si $d_1 = 7$, alors $d_2 = 5$ et c_2 peut valoir 8 ou 9. Dans le second cas n_3 est pair, et dans le premier on est ramené au cas précédent (c = 8, d = 5) donc n_4 ou n_5 ou n_6 est pair.

Il est donc impossible d'écrire successivement 6 entiers impairs. Par ailleurs, si on commence par 807, on écrira successivement 807, 815, 823, 831 et 839, donc on peut écrire successivement 5 entiers impairs.

Exercice 6. Déterminer tous les entiers $n \ge 2$ tels que pour tout entier $d \ge 2$, si d est un diviseur de n alors d-1 est un diviseur de n-1.

<u>Solution de l'exercice 6</u> Si n est un nombre premier, alors d = n est l'unique diviseur ≥ 2 de n, donc n convient.

Si $n = p^2$ est le carré d'un nombre premier, alors d = p ou d = n. Or, p - 1 divise $p^2 - 1 = (p - 1)(p + 1)$ et n - 1 divise n - 1, donc n convient.

Réciproquement, supposons que n ne soit ni un nombre premier, ni le carré d'un nombre premier. Soit a le plus petit diviseur ≥ 2 de n. Alors n=ab avec $1 < a \leq b < n$. Comme n n'est pas le carré d'un nombre premier, on a a < b (puisque a est un nombre premier).

Comme b-1 est un diviseur de n-1, on peut écrire n-1=k(b-1) pour un certain entier k, donc k(b-1)=ab-1=(b-1)a+a-1, ce qui implique que a-1=(b-1)(k-a) est un multiple de b-1. Comme a-1>0, on a $a-1\geq b-1$, ce qui contredit que a< b.

Conclusion : les entiers qui conviennent sont les nombres premiers et les carrés des nombres premiers.

 $\mathcal{E}_{xercice}$ 7. Un stage de mathématiques contient exactement un million d'élèves, certains d'entre eux étant amis (si A est un ami de B, alors B est un ami de A).

- a) On suppose que chaque élève a au plus deux amis. Montrer qu'il est possible d'aligner les élèves de telle manière que si deux élèves sont amis, il y a au plus 2017 élèves entre eux.
- b) On suppose maintenant que chaque élève a au plus trois amis. Montrer que ce n'est plus forcément possible.

<u>Solution de l'exercice 7</u> Numérotons les élèves de 1 à 1000000. On place l'élève 1 tout à droite, en position 1. Si l'élève 1 a un ou deux amis, on les place en positions 2 et éventuellement 3. Puis on place en position 4 et 5 les seconds amis de 2 et 3 s'ils existent, et ainsi de suite. À chaque étape, on a au plus 2 élèves à placer. On ne peut s'arrêter que dans 3 cas :

- On a placé tous les élèves, auquel cas on a gagné.
- Les deux élèves placés à l'étape précédente sont amis,, auquel cas on place un nouvel élève à la première place disponible et on recommence.
- Les élèves placés à l'étape précédente n'ont pas d'ami supplémentaire n'ont pas d'autres amis, auquel cas on place un nouvel élève à la première place disponible et on recommence.

Ainsi, on peut même placer les élèves de telle manière qu'entre deux amis il y a au plus 1 élève ! Si chaque élève a trois amis, cela ne marche plus. En effet, supposons que les relations d'amitié soient décrites par un arbre binaire complet de hauteur 18 (voir schéma ci-dessous, où on n'a représenté que les quatre premiers étages). C'est possible car $2^{19} < 1000000$.

Alors l'élève A a deux amis, appelons-les B et C qui doivent chacun être à distance au plus 2018 de A. Les deux amis de B et de C doivent chacun être à distance au plus 2018 de B ou de C, donc à distance au plus 2×2018 de A. Ainsi, tous les élèves qui sont connectés à A dans l'arbre (il y en a $2^{19} - 1 > 500000$) doivent être à distance au plus $19 \times 2018 < 40000$ de A. Cependant, au maximum $2 \times 40000 = 80000$ élèves peuvent être aussi proches de A, donc on ne peut pas placer les élèves.