

University of Colorado Boulder

Spring 2019

Logistic Regression

Lecture 25: Classification and

CSCI 3022: Intro to Data Science

Tony Wong

Announcements and reminders

- Practicum is due 11:59 PM on Friday 3 May
- Tony is out of town, so he won't have office hours this week. Available by email/Piazza!
- FCQs available until Monday: <u>colorado.campuslabs.com/courseeval</u>

Previously on CSCI 3022...

Given data $(x_{i1}, x_{i2}, ..., x_{ip}, y_i)$, for i = 1, 2, ..., n, fit a MLR model of the form

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip} + \epsilon_i$$
, where each $\epsilon_i \sim N(0, \sigma^2)$

After learning weights (coefficients), if we want to make a prediction about a new data point:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \ldots + \hat{\beta}_p x_p$$

Regression as prediction

So far, we've learned about various forms of regression

We've viewed regression in terms of learning a relationship between one or more features and a response:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip} + \epsilon_i$$

We also talked about using regression as a way to make **predictions**

Based on our previous experience, it might be tempting to use linear regression as a classifier

Example: CSCI 3022 comes full circle -- back to the *Titanic* data!

	age	outcome			age	outcome
0	25	survived	Recode outcomes as y = {0, 1}	0	25	0
1	30	survived		1	30	0
2	35	survived		2	35	0
3	40	survived		3	40	0
4	45	died		4	45	1
5	50	died		5	50	1
6	55	died		6	55	1
7	60	died		7	60	1

Let's try using linear regression to take feature x = Age and predict the response y = Outcome

Example: S'pose you want to predict whether a passenger on the Titanic survived or not, based on passenger Age as the sole feature

Example: S'pose you want to predict whether a passenger on the Titanic survived or not, based on passenger Age as the sole feature

Model input: single feature, $x_1 = age$

Output: prediction, $y = \{0, 1\} = \{survived, died\}$

Example: S'pose you want to predict whether a passenger on the Titanic survived or not, based on passenger Age as the sole feature

Model input: single feature, $x_1 = age$

Output: prediction, $y = \{0, 1\} = \{survived, died\}$

Question: How should we model the relationship between feature and response?

8

Example: Model input: single feature, $x_1 = age$

Idea: Linear regression $y = \beta_0 + \beta_1 x_1$

Example: Model input: single feature, $x_1 = age$

Idea: Piecewise function $y = \begin{cases} 1 & \text{if } x_1 > \text{some threshold} \\ 0 & \text{otherwise} \end{cases}$

Example: Model input: single feature, $x_1 = age$

Idea: Need something that behaves more like a **probability**...

given the age

Example: Model input: single feature, $x_1 = age$

Idea: Need something that behaves more like a **probability**...

Example: Model input: single feature, $x_1 = age$

WHOA! That thing is perfect! What kind of sorcery is this?

The sigmoid function

$$sigm(z) = \frac{1}{1 + e^{-z}}$$
if $z = 0$

$$sigm(0) = \frac{1}{1 + \bar{e}^{0}} = \frac{1}{2}$$

- Behaves like a probability
- Distinguishes between points
- Really smooth

Has **awesome** properties: $\operatorname{sigm}(z) = \frac{1}{1 + e^{-z}}$ Has **awesome** properties: $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5 & z \to 0 \\ \text{fin} & \text{fin} \end{cases}$ $\begin{cases} A_5$ 0.50 0.25 0.00 -15

Logistic regression

when does my model = 0.5
$$\frac{1}{1+e^{-(\beta_0 + \beta_1 x)}} = \frac{1}{2}$$

The model:
$$p(y=1 \mid x) = \operatorname{sigm}(\beta_0 + \beta_1 x)$$
 $2 = 1 + e^{-(\beta_0 + \beta_1 x)}$ $3 = 1 + e^{-(\beta_0 + \beta_1 x)}$ $4 = 1 + e^{-(\beta_0 + \beta_1 x)}$ $5 = 1 + e^{-(\beta_0 + \beta_1 x)$

$$\rightarrow$$
 Learn weights β_0 and β_1 from the data

$$\rightarrow$$
 Learn weights ρ_0 and ρ_1 from the data

15

Our inevitable path to **logistic regression** and the **sigmoid function** began with our insistence on modeling the relationship between features and the response as a legit **probability**.

It turns out that through some basic algebra, we can arrive at an interpretation of logistic regression that is very regression-like

But first we have to put on our gambling hats and talk about odds

In statistics, the **odds** of an event is the ratio of the probability that the event occurs, divided by the probability that the event does not occur, and then generally flipped to get a value bigger than 1

Example 1: If
$$p = 0.75$$
, then odds = $\frac{.75}{1 - .75} = \frac{.75}{.25} = 3$

We would say that the odds are 3 to 1 in favors

Example 2: If
$$p = 0.1$$
, then odds = $\frac{0.1}{1-0.1} = \frac{0.1}{0.9} = \frac{1}{9}$

We would say that the odds are ______ q___ l__ agars/

In logistic regression, we model
$$p = p(y=1 \mid x) = \text{sigm}(\beta_0 + \beta_1 x) = \frac{1}{1 + e^{-1}(P_0 + \beta_1 x)}$$

What if we calculate the $\bullet dds$ that y=1, given the data x?

$$\operatorname{odds} = \frac{p}{1 - p} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \times)}}$$

$$= \frac{1}{1 + e^{-(\beta_0 + \beta_1 \times)}}$$

Taking the natural log of both sides, we get:

$$\log(\text{odds}) = \beta_0 + \beta_1 x$$

→ We *have* been doing linear regression all along, but for the *log-odds* instead of probability!

Let's look at that coefficient β_1 : odds = $\exp(\beta_0 + \beta_1 x)$

With a unit increase in x, we get: odds = $\exp(\beta_0 + \beta_1(x+1))$

So we have a new interpretation of the Logistic Regression weight β_1 :

Taking the natural log of both sides, we get:

$$log(odds) = \beta_0 + \beta_1 x$$

→ We *have* been doing linear regression all along, but for the *log-odds* instead of probability!

Let's look at that coefficient β_1 : odds = $\exp(\beta_0 + \beta_1 x)$

With a unit increase in x, we get: odds = $\exp(\beta_0 + \beta_1(x+1))$

So we have a new interpretation of the Logistic Regression weight β_1 :

Taking the natural log of both sides, we get:

$$log(odds) = \beta_0 + \beta_1 x$$

→ We *have* been doing linear regression all along, but for the *log-odds* instead of probability!

Let's look at that coefficient β_1 : odds = $\exp(\beta_0 + \beta_1 x)$

$$= e^{\beta_0 + \beta_1 (x+1)} = e^{\beta_0 + \beta_1 x} + \beta_1 = e^{\beta_0 + \beta_1 x} e^{\beta_1}$$

So we have a new interpretation of the Logistic Regression weight β_1 :

Logistic Regression with many features

The LogReg model with a single feature looks like: $p(y=1 \mid x) = sigm(\beta_0 + \beta_1 x)$

But in real life we typically have many features

Example:

- Predict the probability of precipitation
- **Features:** temperature, pressure, humidity, wind speed, whether it rained yesterday...

Multiple features LogReg model:

$$p(y=1 \mid x) = sigm(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p)}}$$

Logistic Regression with many features

Multiple features LogReg model:

$$p(y=1 | x) = sigm(\beta_0 + \beta_1 x_1 + \beta_2 x_2)$$

Predict: y = 1 = storm y = 0 = no storm

Features: x_1 = temperature

Logistic Regression with many features Above He deersoon boundary prehick storm

Multiple features LogReg model:

$$p(y=1 | x) = sigm(\beta_0 + \beta_1 x_1 + \beta_2 x_2)$$

Predict:
$$y = 1 = storm$$
 $y = 0 = no storm$

Features: x_1 = temperature x_2 = humidity

Below the decision boundary

predict no storm

The Decision Boundary

The decision boundary is the line/surface that separate predictions into Class 0 and Class 1

For a 2-feature model, it is described by:

$$p(y=1 \mid x) = sigm(\beta_0 + \beta_1 x_1 + \beta_2 x_2) = 0.5$$

Which is just a line in 2D space:

$$\frac{1}{1+c^{-(\beta_{0}+\beta_{1}x+\beta_{2}x_{2})}} = \frac{1}{2}$$

$$\beta_{0}+\beta_{1}x_{1}+\beta_{2}x_{2} = 0$$

$$\Rightarrow x_{2} = -\frac{\beta_{1}x_{2}}{\beta_{2}} - \frac{\beta_{0}}{\beta_{1}}$$

Neat property of the sigmoid function

The Sigmoid function has some nice differential properties that we'll explore next time.

The most important of these is that...

If
$$f(z) = \operatorname{sigm}(z)$$
,
then $f'(z) = \operatorname{sigm}(z)(1 - \operatorname{sigm}(z))$

What just happened?!

- ... logistic regression just happened!
- → a *binary classification* algorithm
- \rightarrow Probability of thing with features (x₁, x₂, ...) being in class 1 is:

$$p(y=1 \mid x) = sigm(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...)$$

→ Can incorporate all kinds of features!

