Examen parcial de Física - Electrònica i ones

Model A

11 de gener de 2021

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara.

$$(\varepsilon_0 = 8.854 \, 10^{-12} \, C \, V^{-1} m^{-1}), \, \mu_0 = 4\pi \, 10^{-7} \, T \, m/A, \, c = 3 \cdot 10^8 \, \text{m/s}, \, h = 6.625 \cdot 10^{-34} \, \text{Js})$$

T1) Per quin dels següents valors de R_2 no conduirà el díode Zener en el circuit de la figura?

b) Per qualsevol valor de
$$R_2$$

c)
$$3.5 \text{ k}\Omega$$

- d) $2.5 \text{ k}\Omega$
- T2) L'esquema CMOS següent correspòn a la funció lògica:

a)
$$C \cdot (D + A \cdot B)$$

b)
$$\overline{C \cdot (D + A \cdot B)}$$

c)
$$C + D \cdot (A + B)$$

d)
$$\overline{C + D \cdot (A + B)}$$

T3) Un raig de llum incideix sobre una de les cares d'un prisma de vidre de base quadrada i amb índex de refracció $n_V = 1.41$, com es veu a la figura. Quin és l'angle entre el raig reflectit i l'eix x? (Assumim un índex de refracció unitat per l'aire).

$$c)$$
 90°

$$d)$$
 45°

T4) El camp magnètic d'una ona electromagnètica és $\vec{B}(z,t) = B_0 \cos(kz + \omega t) \hat{i}$. Quina és l'expressió del camp elèctric?

a)
$$\vec{E}(z,t) = (B_0 c) \cos(kz - \omega t)\hat{j}$$
 b) $\vec{E}(z,t) = (B_0 c) \cos(kz + \omega t)\hat{j}$ c) $\vec{E}(z,t) = (B_0 c) \cos(kz + \omega t)\hat{k}$ d) Cap de les anteriors

b)
$$\vec{E}(z,t) = (B_0 c) \cos(kz + \omega t)\hat{j}$$

c)
$$\vec{E}(z,t) = (B_0 c) \cos(kz + \omega t)\hat{k}$$

- **T5)** Una ona electromagnètica monocromàtica, de longitud d'ona 2 cm i $2.66 \cdot 10^{-3} \text{ W/m}^2$ d'intensitat, incideix sobre una superfície perpendicular a la direcció de propagació d'àrea 5 cm². Calculeu el nombre de fotons que impacten amb la superfície en un temps de 10 s.

a)
$$5.1 \cdot 10^{18}$$

b)
$$1.3 \cdot 10^{20}$$

c)
$$5.1 \cdot 10^{20}$$

d)
$$1.3 \cdot 10^{18}$$

Examen parcial de Física - Electrònica i ones 11 de gener de 2021

Model B

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara.

Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

$$(\varepsilon_0 = 8.854 \, 10^{-12} \, C \, V^{-1} m^{-1} \, , \, \mu_0 = 4\pi \, 10^{-7} \, T \, m/A \, , \, c = 3 \cdot 10^8 \, \, \text{m/s} \, , \, h = 6.625 \cdot 10^{-34} \, \, \text{Js} \,)$$

T1) Un raig de llum incideix sobre una de les cares d'un prisma de vidre de base quadrada i amb índex de refracció $n_V = 1.41$, com es veu a la figura. Quin és l'angle entre el raig reflectit i l'eix x? (Assumim un índex de refracció unitat per l'aire).

a) 30°

b) 0°

c) 90°

- d) 45°
- **T2)** Per quin dels següents valors de R_2 no conduirà el díode Zener en el circuit de la figura?

- a) $3.5 \text{ k}\Omega$
- b) $4.5 \text{ k}\Omega$
- c) $2.5 \text{ k}\Omega$
- d) Per qualsevol valor de R_2
- **T3)** El camp magnètic d'una ona electromagnètica és $\vec{B}(z,t) = B_0 \cos(kz + \omega t) \hat{i}$. Quina és l'expressió del camp elèctric?

a)
$$\vec{E}(z,t) = (B_0 c) \cos(kz + \omega t)\hat{j}$$
 b) $\vec{E}(z,t) = (B_0 c) \cos(kz + \omega t)\hat{k}$
c) $\vec{E}(z,t) = (B_0 c) \cos(kz - \omega t)\hat{j}$ d) Cap de les anteriors

b)
$$\vec{E}(z,t) = (B_0 c) \cos(kz + \omega t)\hat{k}$$

c)
$$\vec{E}(z,t) = (B_0 c) \cos(kz - \omega t)\hat{j}$$

- **T4)** Una ona electromagnètica monocromàtica, de longitud d'ona 2 cm i $2.66\cdot 10^{-3}~\mathrm{W/m^2}$ d'intensitat, incideix sobre una superfície perpendicular a la direcció de propagació d'àrea 5 cm². Calculeu el nombre de fotons que impacten amb la superfície en un temps de 10 s.
 - a) $1.3 \cdot 10^{18}$

b) $5.1 \cdot 10^{18}$

c) $1.3 \cdot 10^{20}$

- d) $5.1 \cdot 10^{20}$
- T5) L'esquema CMOS següent correspòn a la funció lògica:

b)
$$\overline{C \cdot (D + A \cdot B)}$$

c)
$$C + D \cdot (A + B)$$

d)
$$C \cdot (D + A \cdot B)$$

Cognoms i Nom:

Codi

Examen de Física - Electrònica i ones 11 de gener de 2021

Problema: 50% de l'examen

Considereu el circuit de la figura següent, on els paràmetres característics del transistor són $\beta = 200 \,\mu\text{A}/\text{V}^2$ i $V_T = 1.5 \,\text{V}$, el valor de la resistència és $R_1 = 1 \text{k}\Omega$, i la tensió de referència és $V_0 = 5 \,\text{V}$.

- a) Trobeu el valor de sortida V_{OUT} corresponent a $V_G = 5$ V. En quin règim treballa el transistor?
- b) Determineu el valor de la tensió de porta V_G que sitúa el transistor just en el canvi de règim de treball entre saturació i òhmica. En quin règim treballa el transistor si V_G supera aquest valor?
- c) Si amb $V_G = 5 \,\mathrm{V}$, fem $R_1 = 25 \mathrm{k}\Omega$ i ens diuen que en aquestes condicions el transistor està en zona òhmica i que (si volem) podem negligir el terme quadràtic en l'equació de la intensitat: trobeu la intensitat que circula pel transistor i la tensió de sortida V_{OUT} . El resultat trobat està d'acord amb l'afirmació que la zona de treball és la òhmica?

COMENCEU LA RESOLUCIÓ DEL PROBLEMA EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	d	b
T2)	d	c
T3)	a	a
T4)	b	a
T5)	d	a

Resolució del Model A

T1) El Zener no conduirà si $R_2 \cdot (20/(3+R_2)) < 10$, d'on surt que $R_2 < 3 \text{ k}\Omega$

T2) La xarxa pull-down formada per els transistors NMOS permet el pas de corrent en els casos descrits per l'expressió lògica $C+D\cdot(A+B)$. En aquests casos (i només en aquests, per la complementarietat de les xarxes pull-down i pull-up) , $V_{OUT}=0$. Aquesta funció correspòn a $\overline{C+D\cdot(A+B)}$.

T3) Donat que es tracta d'una reflexió el raig reflectit forma el mateix angle amb l'eix d'incidència que el raig incident, que en aquest cas és de 45° . Com l'eix d'incidència ja té una inclinació de 45° , aixó fa que el raig reflectit sigui paral·lel a l'eix x, i per tant l'angle entre tots dos és 0, tal i com es veu a la figura.

T4) D'acord amb l'expressió del camp magnètic, l'ona es propaga cap a les z negatives. Per tant, el vector unitari que indica la direcció de propagació és $\hat{u} = -\hat{k}$. Considerant que $\vec{E} = c(\vec{B} \times \hat{u})$ s'obté el resultat indicat b).

T5) En general tenim que la potència total a través d'una superfície S val P= I·S, i l'energia corresponent en un temps t val E =P·t = I·S·t. Al mateix temps tenim que com l'energia d'un fotó és $E_1 = h \cdot f$, aquesta energia es pot expressat també com $E = N \cdot h \cdot f$. Igualant les dues expressions de l'energia tindrem $E = I \cdot S \cdot t = N \cdot h \cdot f$. El nombre de fotons serà doncs $N = (I \cdot S \cdot t)/(h \cdot f) = 1.3 \cdot 10^{18}$ fotons.

Resolució del Problema

a) Suposarem primer que el transistor treballa en saturació. En aquest cas s'obté

$$I_{DS} = \frac{1}{2}\beta(V_{GS} - V_T)^2 = \frac{1}{2}200 \cdot 10^{-6} (5 - 1.5)^2 = 1.225 \,\text{mA}$$

i per tant

$$V_{OUT} = 5 - R_1 I_{DS} = 5 - 1000 \, 1.225 \cdot 10^{-3} = 3.775 \, \text{V}$$
.

La condició de saturació $V_{GS} - V_T < V_{DS}$ se satisfà, ja que 3.5 < 3.775

b) El canvi de règim de treball entre saturació i òhmica es produeix just quan $V_{DS} = V_{GS} - V_T$. Mirant l'etapa de sortida del circuit, obtenim

$$5 - R_1 I_{DS} = V_{DS}$$
,

i fent servir l'expressió del corrent en saturació

$$I_{DS} = \frac{1}{2}\beta(V_{GS} - V_T)^2$$

i substituint a l'equació anterior amb $V_{DS} = V_{GS} - V_T$ a la part dreta, obtenim

$$5 - R_1 \frac{1}{2} \beta (V_{GS} - V_T)^2 = V_{GS} - V_T .$$

Anemonant ara $V_{GT} = V_{GS} - V_T$ i substituint els valor coneguts, arribem a l'equació

$$5 - 0.1V_{GT}^2 = V_{GT}$$

que té dues solucions, $V_{GT}^a=3.66\,\mathrm{V}$ i $V_{GT}^b=-13.66\,\mathrm{V}$. La segona solució no té sentit donat que ha de ser $V_{GS}-V_T>0$, de forma que la solució que cercàvem és la primera. A partir d'aquí obtenim $V_{GS}=3.66+1.5=5.16\,\mathrm{V}$.

Finalment, si augmentem el valor de V_{GS} , el corrent de saturació augmenta i per tant la tensió V_{DS} donada per la primera de les equacions disminueix. Això fa que $V_{GS} - V_T > V_{DS}$ i per tant el transistor passa a treballar en règim òhmic.

c) Amb $R_1 = 25 k\Omega$ i suposant que estem en zona òhmica, la intensitat que circula pel transistor verificarà simultàniament les dues equacions:

$$I_D = \frac{5 - V_{out}}{R_1}$$
 $I_D = \beta \left(V_{GT} V_{DS} - V_{DS}^2 / 2 \right)$

Si negligim el terme quadràtic en $V_{DS}=V_{out}$, igualant les dues expressions i substituint valors trobem $5-V_{out}=25000\,(200\,10^{-6})\,3.5\,V_{out}=17.5\,V_{out}$, d'on resulta $V_{out}=0.27\,\mathrm{V}$, i substituint a l'equació anterior trobem $I_D=189\,\mu A$. La condició de zona òhmica se satisfà: $V_{GT}>V_{DS}\,(V_{GT}=3.5\,\mathrm{V})$, i $V_{DS}=V_{out}=0.27\,\mathrm{V})$.

(Si mantenim el terme quadràtic en V_{DS} , de nou igualant les dues expressions i substituint valors arribem a $5-18.5\,V_{out}+2.5\,V_{out}^2=0$, que té les dues solucions $V_{out}=7.1\,\mathrm{V}$ i $V_{out}=0.28\,\mathrm{V}$, la primera de les quals cal descartar perquè no verifica la condició de zona òhmica ($V_{GT}=3.5\,V$, i $V_{DS}=V_{out}=7.1\,\mathrm{V}$). La segona sí que la verifica ($V_{GT}=3.5\,V$, i $V_{DS}=0.28\,\mathrm{V}$). En aquest cas trobem igualment $I_D=189\,\mu A$).

En definitiva, $V_{out} = 0.28 \,\mathrm{V}$, $I_D = 189 \,\mu A$, amb el transistor treballant efectivament en zona òhmica.