Moment Invariants based object Recogniti on for Different Pose and Appearances in Real Scenes

Authors: Swati Nigam, Kaushik Deb, Ashish Khare

Published in: Informatics, Electronics & Vision (ICIEV), 2013 International Conference

Presented By: Shayhan Ameen Chowdhury

Outline

- → Goal
- → Introduction
- → Two-Dimensional Geometric Transformations
- Shape based object recognition
- Moment Invariants
- The Proposed Approach
- → Results
- Comparison with other methods
- → Measures for different recognition methods
- → Conclusion

Goal

→ A new approach had been proposed for shape based recognition of object(Human) in real world.

Goal (Cont..)

Introduction

→ With the emergence of computer vision application object recognition in real scenes has become an active research area.

Two-Dimensional Geometric Transformations

→ Basic Transformations

- **→** Translation
- → Rotation
- Scaling

Translation

→ Moves objects without deformation

Translation

→ Translation transformation

$$x' = x + t_x$$
$$y' = y + t_y$$

Rotation

Rotation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Scaling

Scaling

$$x' = x \cdot s_x$$
$$y' = y \cdot s_y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

Shape based object recognition

- Shape based object recognition
 - Boundary based object recognition
 - → Region based object recognition

Boundary based object recognition

→ At which point the image brightness / intensity changes sharply

Boundary based object recognition

Region based object recognition

→ This method takes a set of seeds as input along with the i mage. The seeds mark each of the objects to be segment ed.

Region based object recognition

- Seed Pixel
- † Direction of Growth

(a) Start of Growing a Region

- Grown Pixels
- Pixels Being Considered

(b) Growing Process After a Few Iterations

Boundary / Region

→ The boundary base approach depend of information achi eved from boundary pixel only. But region base approach h retrieve information from both boundary and internal pixel.

Moment(cont.)

→ A moment is defined as a force multiplied by the per pendicular distance from the line of action of the for ce to the pivot

Moment

Moment = Force x Distance

The math of moments

→ In pure math, the nth order moment about the point c is d efined as:

$$\mu_n = \int_{-\infty}^{+\infty} (x - c)^n f(x) dx$$

→ We're interested in images – they have two dimensions. So we need two independent variables. So the formula b ecomes:

$$\mu_{mn} = \iint (x - c_x)^m (y - c_y)^n f(x, y) dx dy$$

→ The Moment of an M X N image f(x,y) can be defined a s

$$m_{pq} = \sum_{x=0}^{x=M-1} \sum_{y=0}^{y=N-1} (x)^p (y)^q f(x,y)$$

Calculating area

*
$$m_{00} = \sum_{x=0}^{x=M-1} \sum_{y=0}^{y=N-1} (x)^0 (y)^0 f(x,y)$$

$$m_{00} = \sum_{x=0}^{x=M-1} \sum_{y=0}^{y=N-1} f(x, y)$$

Centroid

- * Centroid= $(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}})$
- \rightarrow Consider the m₁₀ first moment:
- $\bullet \quad \text{Sum}_{\mathbf{x}=} \sum \sum x f(x,y)$
- Centroid= $(\frac{sum_x}{m_{00}}, \frac{sum_y}{m_{00}})$

Translation invariance

$$\mu_{pq} = \iint (x - \bar{x})^p (y - \bar{y})^q f(x, y) dx dy$$

- → Where
- $\rightarrow \bar{x} = \frac{m_{10}}{m_{00}}$
- $\rightarrow \bar{y} = \frac{m_{01}}{m_{00}}$

Translation invariance(Cont.)

Scale invariance

 \rightarrow f'(x,y): new image scaled by λ

$$f'(x,y) = f(\frac{x}{\lambda}, \frac{y}{\lambda})$$

$$\rightarrow x' = \frac{x}{\lambda}$$
 $y' = \frac{y}{\lambda}$

$$y' = \frac{y}{\lambda}$$

$$dx = \lambda dx$$

$$dx=\lambda dx'$$
 $dy=\lambda dy'$

Scale invariance(Cont..)

$$\mu'_{pq} = \iint (x)^{p} (y)^{q} f(\frac{x}{\lambda}, \frac{y}{\lambda}) dx dy$$

$$= \iint (\lambda x')^{p} (\lambda y')^{q} f(x', y') \lambda^{2} dx' dy'$$

$$= \lambda^{p} \lambda^{q} \lambda^{2} \iint (x')^{p} (y')^{q} f(x', y') dx' dy'$$

$$= \lambda^{(p+q+2)} \mu_{pq}$$

Scale invariance(Cont..)

Concept: Set total area to 1

$$\mu'_{00} = \lambda^2 \mu_{00} = 1$$

$$\lambda = \frac{1}{\sqrt{\mu_{00}}} = \mu_{00}^{-\frac{1}{2}}$$

- Scaling invariant modes:

Moment Invariants

- → The seven moment invariants are defined in terms of nor malized central moment of order 3.
- $M1 = (\eta 20 + \eta 02)$
- $M2 = (\eta 20 \eta 02)^2 + (4 \eta 11)^2$
- $M3 = (\eta 30 3\eta 12)^2 + (3\eta 21 \eta 03)^2$
- $M4 = (\eta 30 + \eta 12)^2 + (\eta 21 + \eta 03)^2$
- $M5 = (\eta 30 3\eta 12) (\eta 30 + \eta 12) [(\eta 30 + \eta 12)^2 3(\eta 21 + \eta 03)^2] +$
- \rightarrow 3($\eta 21 \eta 03$) ($\eta 21 + \eta 03$)[3($\eta 30 + \eta 12$)² ($\eta 21 + \eta 03$)²](6)
- $M6 = (\eta 20 + \eta 02)[(\eta 30 + \eta 12)^2 (\eta 21 + \eta 03)^2] + 4 \eta 11 (\eta 30 + \eta 12)^2 (\eta 21 + \eta 03)^2] + 4 \eta 11 (\eta 30 + \eta 12)^2 (\eta 21 + \eta 03)^2 + 4 \eta 11 (\eta 30 + \eta 12)^2 (\eta 21 + \eta 03)^2 + 4 \eta 11 (\eta 30 + \eta 12)^2 (\eta 30 + \eta 12)$
- \rightarrow $\eta 12)^2 (\eta 21 + \eta 03)^2$
- $M7 = 3(\eta 21 \eta 03) (\eta 30 + \eta 12) [(\eta 30 + \eta 12)^2 3(\eta 21 + \eta 03)^2] -$
- $\bullet \quad [3(\eta 30 + \eta 12)^2 (\eta 21 + \eta 03)^2]$

The Proposed Approach

- → Representation of objects in real scenes
 Representation is 2D gray function
- → Preprocessing of Images
 Image normalized to 256 X 256 pixel
- Feature Vector Calculation
 We use the set of moment invariants for computing feature vectors
- Classification
 - → Calculated feature vectors are supplied into linear support vect or machine (SVM).

Result

Figure 3. Accuracy of positive images for different methods (in %)

Figure 4. Accuracy of negative images for different methods (in %)

Figure 5. Average accuracy of images for different methods (in %)

Figure 6. Recall value of different methods

Figure 7. Precision value of different methods

Figure 8. Efficiency of different methods (in seconds)

Measures for different recognition methods

Methods	Pos	Neg	Avg	R	P	E
	Acc	Acc	Acc			
1st Order Moment	0	100	50	0	0	10.19
2 nd Order Moment	20	100	60	20	10	10.61
3 rd Order Moment	26	100	63	26	13	11.90
4 th Order Moment	40	94	67	40	20	12.21
5 th Order Moment	40	92	66	40	20	12.59
6 th Order Moment	46	88	67	46	23	11.95
7 th Order Moment	44	80	62	44	22	12.27
8 th Order Moment	48	78	63	48	24	11.99
9th Order Moment	50	76	63	50	25	11.90
10 th Order Moment	50	74	62	50	25	12.22
Orthogonal Moment	96	4	50	96	48	23.29
Legendre Moment	0	100	50	0	0	17.54
Zernike Moment	0	100	50	0	0	14.91
Fourier Descriptors	98	0	39	98	49	14.72
HOG Detector	2	100	51	2	1	78.9
SIFT Detector	50	58	54	50	25	72.4
Proposed	96	74	85	96	48	14.14
Method						

Conclusion

→ This paper describe the development and demonstration of a new moment invariant approach for object recogniti on in real world. The invariance nature of moment invariants against linear transformation made it suitable for recognition of object of different pose and appearances. It a chieved an average accuracy of 85% which is better then other methods.

Thank you all

