EMBARCADERO CONFERENCE

@mbarcadero*

CPU vs GPU

Progressivamente os sistemas operacionais, jogos, aplicações que requerem um paralelismo massivo, dentre outras cargas de trabalho, exigem cada vez mais do hardware, e para isso temos dois componentes essenciais:

- → CPU: unidade de processamento central, comumente referida como o cérebro do computador, pois executa os comandos e processos necessários para o seu computador e para o sistema operacional.
- → GPU: Popularmente como placa de vídeo, também é uma unidade de processamento como a CPU, composto por muitos núcleos menores, especializados em operações gráficas.

CPU vs GPU

Progressivamente os sistemas operacionais, jogos, aplicações que requerem um paralelismo massivo, dentre outras cargas de trabalho, exigem cada vez mais do hardware, e para isso temos dois componentes essenciais, CPUs (Central Processing Units, unidades de processamento central) e GPUs (Graphics Processing Units, unidades de processamento gráfico).

CPU: Trata-se de uma unidade de processamento, tornando-se um componente essencial para a computação. Comumente referida como o cérebro do computador, pois executa os comandos e processos necessários para o seu computador e para o sistema operacional.

GPU: Usualmente conhecida popularmente como placa de vídeo, também é uma unidade de processamento como a CPU, composto por muitos núcleos menores e mais especializados. Essencialmente voltado para para atividades gráficas como jogos, softwares de edição de vídeo, modelagem tridimensional ou exibição de vídeos.

Demonstração de renderização utilizando CPU (35 FPS)

Demonstração de renderização utilizando GPU (97 FPS)

Shaders

Programas específicos escritos para a GPU que determinam a cor de cada pixel, com base na coordenada do pixel, algum algoritmo e/ou uniforms (dados ou imagens de entrada) fornecidas ao shader.

O shader é chamado uma vez para cada pixel.

Shaders

Shaders são programas simples que descrevem o devido tratamento tanto de um vértice quanto de um pixel, ou seja, são um conjunto de instruções para o processamento de efeitos de renderização de uma imagem. No que diz respeito aos games, os shaders deixam o visual mais realista e detalhado, com efeitos de iluminação, reflexo e mais. Podemos ver no exemplo à baixo:

SKSL (Skia Shading Language)

SKSL é uma linguagem de programação de alto nível utilizada na criação de shaders, sua sintaxe é baseada na linguagem GLSL, que por sua vez é baseada na linguagem C.

Apesar de possuir sintaxe semelhante ao GLSL, possui diferenças e restrições consideráveis, tais restrições se devem ao tipo de tarefa a que foi destinada e a limitação dos backends suportados.

Embora as limitações pareçam uma fraqueza, são ao mesmo tempo o que torna o SKSL poderoso, pois, com o mesmo código (SKSL) é possível executar em todos os backends suportados, seja OpenGL, Vulkan, Metal, DirectX, em todas as plataformas, diminuindo o custo com suporte, manutenção, desenvolvimento.

Aplicação no Delphi

Utilizamos os shaders no FMX o tempo todo, muitas vezes sem perceber, um exemplo é ao usar FMX Effects. Abaixo temos o exemplo de shapes utilizando efeitos de sombreamento.

