

# Recipe Site Traffic

Zean Ni Zhehan



#### **Contents Table**

- 1. Background
- 2. Goals
- 3. Project Summary
- 4. Key Findings & Results
- 5. Conclusion & Recommendation





# Background



# 01

#### Online recipes

Tasty Bytes, an online recipe startup features new recipes on their homepage website every day

# 02

#### **Traffic boost**

On days that they feature a popular recipe, traffic increases by as much as 40%

# 03

#### Challenge

However, it is difficult to predict ahead of time which recipes have high traffic

# 04

#### **Traffic**

A typical binary classification problem

#### **Background**





Predict whether a recipe will receive a high traffic based on the data collected from previously published recipes. The criterion for success was the correct classification of **75%** of the recipes.





| RangeIndex: 947 entries, 0 to 946       |              |                |         |
|-----------------------------------------|--------------|----------------|---------|
| Data columns (total 8 columns):         |              |                |         |
| #                                       | Column       | Non-Null Count | Dtype   |
|                                         |              |                |         |
| 0                                       | recipe       | 947 non-null   | int64   |
| 1                                       | calories     | 895 non-null   | float64 |
| 2                                       | carbohydrate | 895 non-null   | float64 |
| 3                                       | sugar        | 895 non-null   | float64 |
| 4                                       | protein      | 895 non-null   | float64 |
| 5                                       | category     | 947 non-null   | object  |
| 6                                       | servings     | 947 non-null   | object  |
| 7                                       | high_traffic | 947 non-null   | int64   |
| dtypes: float64(4), int64(2), object(2) |              |                |         |
| memory usage: 59.3+ KB                  |              |                |         |

```
No of missing values in calories is: 52
No of missing values in carbohydrate is: 52
No of missing values in sugar is: 52
No of missing values in protein is: 52
```











#### **Statistical Test**

```
calories: t = -2.29, p = 0.0225
carbohydrate: t = -2.42, p = 0.0156
sugar: t = 2.22, p = 0.0269
protein: t = -1.35, p = 0.1761
```

#### **Statistical Test**

```
contingency_table = pd.crosstab(df['category'], df['high_traffic'])
   chi2, p, dof, expected = chi2_contingency(contingency_table)
   chi2, p
(320.22296286253834, 8.182067546493786e-63)
   contingency table = pd.crosstab(df['servings'], df['high traffic'])
   chi2, p, dof, expected = chi2 contingency(contingency table)
   chi2, p
(2.7369889309788054, 0.4339779666711946)
```



# **Feature Engineering**



health?



**Complex?** 





#### **Logistic Reg**

confussion matrix: [[ 45 32]

[ 11 102]]

accuarcy: 0.7736842105263158 precision: 0.7611940298507462 recall: 0.9026548672566371 f1: 0.8259109311740891

# **Modeling**



#### **Random Forest**

confussion matrix: [[ 45 32]

[ 11 102]]

accuarcy: 0.7736842105263158 precision: 0.7611940298507462 recall: 0.9026548672566371

f1: 0.8259109311740891



#### **DNN**

confussion matrix: [[42 35]

[16 97]]

accuarcy: 0.7315789473684211 precision: 0.7348484848484849 recall: 0.8584070796460177 f1: 0.7918367346938775





# Thanks!

