IST 5535 Schedule (Spring 2021)

Tentative Course Outline

The following is a general plan for the course; Deviations may be necessary.

1. Introduction to Machine Learning [Ch 1-2]

Overview of machine learning; scales of measurement; assessing model accuracy.

2. Getting Started with R

R platform, R Markdown, data structures, functions, control structures.

3. Linear Regression [Ch 3]

Linear regression; other considerations of regression model.

4. Classification [Ch 4]

Logistic regression; linear discriminant analysis; quadratic discriminant analysis.

5. Resampling Methods [Ch 5]

Cross-validation; bootstrap.

6. Linear Model Selection and Regularization [Ch 6]

Subset selection; shrinkage methods.

7. Tree-Based Methods [Ch 8]

Regression and classification trees; ensemble learning and random forests; support vector machines; neural nets.

8. Support Vector Machines [Ch 9]

Support vector classifiers; support vector machines.

9. Unsupervised Machine Learning [Ch 10]

Principal component analysis; clustering; customer segmentation; association rules; market basket analysis.

10. Neural Networks and Deep Learning (if time allows)

Neural nets; Keras; deep learning for text analytics.

Tentative Schedule

Zoom meeting time: TuTh 12:30 PM – 1:45 PM Note: Deviations may be necessary according to class progress

Week	Topic	Due
W1: Jan 19, 21	Course Introduction; 1. Intro to Machine Learning	Form project group Due Jan 21
W2: Jan 26, 28	2. Getting Started with R Topic Presentation #1 (Jan 28): LaValle, Lesser, Shockley, Hopkins and Kruschwitz [1]	
W3: Feb 2, 4	3. Linear Regression Topic Presentation #2 (Feb 4): Domingos [2]	
W4: Feb 9, 11	4. Classification Topic Presentation #3 (Feb 11): Ngai, Xiu and Chau [3]	
W5: Feb 16, 18	5. Resampling Methods	
W6: Feb 23, 25	5. Resampling Methods	
W7: Mar 2, 4	6. Linear Model Selection and Regularization	
W8: Mar 9	No class on Mar 11 (Spring Recess)	Exam 1: Mar 9
W9: Mar 16, 18	7. Tree-Based Methods Topic Presentation #4 (Feb 18): Ballings and Van den Poel [4]	Project Deliverable 1 Due Mar 19
W10: Mar 23, 25	No class (Spring Break)	
W11: Mar 30, Apr 1	8. Support Vector Machines Topic Presentation #5 (Apr 1): Veganzones and Séverin [5]	
W12: Apr 6, 8	9. Unsupervised Machine Learning	
W13: Apr 13, 15	9. Unsupervised Machine Learning	Exam 2 on Apr 15
W14: Apr 20, 22	10. Neural Networks and Deep Learning	
W15: Apr 27; 29	10. Neural Networks and Deep Learning Topic Presentation #6 (Jan 29):Du, Liu and Hu [6]	
W16: May 4, 6	Wrap-up; Student Presentation	Project Deliverable 2: May 3
W17: May 11, 13	No Class	

Topic Presentations

Instructions:

- 1. Each presentation will be 15 minutes. Prepare an appropriate number of sides (neither too few nor too many).
- 2. Topic presentations by students need to cover at least the assigned paper(s). Find other relevant papers or resources to supplement your presentation whenever necessary.

Assigned Papers:

- [1] LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N., "Big data, analytics and the path from insights to value". MIT Sloan Management Review, 2011, pp. 21-32.
- [2] Domingos, P., "A few useful things to know about machine learning". Communications of the ACM, 2012, pp. 78-87.
- [3] Ngai, E.W.T., Xiu, L., Chau, D.C.K., "Application of data mining techniques in customer relationship management: A literature review and classification". Expert Systems with Applications, 2009, pp. 2592-2602.
- [4] Ballings, M., Van den Poel, D., "Customer event history for churn prediction: How long is long enough?". Expert Systems with Applications, 2012, pp. 13517-13522.
- [5] Veganzones, D., Séverin, E., "An investigation of bankruptcy prediction in imbalanced datasets". Decision Support Systems, 2018, pp. 111-124.
- [6] Du, M., Liu, N., Hu, X., "Techniques for interpretable machine learning". Communications of the ACM, 2019, pp. 68-77.