Introduction to structural equation modeling and mixed models in

Day 7

Oksana Buzhdygan

oksana.buzh@fu-berlin.de

Day 7 – Part 1

Outline

- binary (yes/no, failure/success, dead/alive, male/female),
- nominal (site 1, site 2, site 3)
- ordinal levels (small < medium < large; yang < middle < old).

- binary (yes/no, failure/success, dead/alive, male/female),
- nominal (site 1, site 2, site 3)
- ordinal levels (small < medium < large; yang < middle < old).

- binary (yes/no, failure/success, dead/alive, male/female),
- nominal (site 1, site 2, site 3)
- ordinal levels (small < medium < large; yang < middle < old).

- binary (yes/no, failure/success, dead/alive, male/female),
- nominal (site 1, site 2, site 3)
- ordinal levels (small < medium < large; yang < middle < old).

X_2	
Species	
spec1	
spec1	
spec2	
spec1	
spec2	

$\mathbf{x_2}$	
Species	
spec1	
spec1	
spec2	
spec1	
spec2	

^ 2	
Species	
spec1	
spec1	
spec2	
spec1	
spec2	

spec1	spec2
1	0
1	0
0	1
1	0
0	1

X ₂	
Species	
spec1	
spec1	
spec2	
spec1	
spec2	

spec1	spec2	
1	0	
1	0	
0	1	
1	0	
0	1	

Approaches when we have Exogenous Categorical Variables:

- 1) for nominal, binary, or ordinal variables, create separate dummy variables for each factor levels (treat them as absent "0" or present "1").
 - The key: for the factor with k levels use k-1 dummy variables (to avoid singularity)
- 2) for binary variables, set the values as 0 or 1 and model as numeric (yields a single coefficient).
- 3) for ordinal variables, set the values depending on the order of the factor, e.g., small = 1 < medium = 2 < large = 3, and then model as numeric (yields a single coefficient).
- 4) Use piecewiseSEM

Biocontrol agents of crop-pests (aphids)

Lacewing larva

Parasitic wasp

Intercropping with repellent plants

150 experimental microcosms

```
# Read and check the data
aphid_data <- read_csv("Data/Aphid data.csv")</pre>
> str(aphid data)
spc_tbl_ [150 x 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ aphid : num [1:150] 14.9 35.6 43.8 2.1 36.7 ...
                                                                        binary variable
$ host plant: num [1:150] 38.8 40.7 46.9 35.2 50.9 ...
 $ garlic ef : chr [1:150] "present" "absent" "absent" "present" ...
                                                                          nominal variable
 $ enemy : chr [1:150] "predator" "predator" "no enemy" "parasite" ...
```

```
# Create dummy variables----
# convert "enemy" in 3 binary dummy variables
# and convert garlic ef into 1 binary variable called garlic
aphid data <- aphid data %>%
  mutate (n = 1) %
  pivot wider (names from = enemy, values from = n,
                          values fill = list(n = 0)) %>% # convert "enemy"
  mutate(garlic = case when(garlic ef == "present" ~ 1, # convert " garlic_ef"
                             garlic ef == "absent" ~ 0))
```

```
$ aphid : num [1:150] 14.9 35.6 43.8 2.1 36.7 ...
$ host plant: num [1:150] 38.8 40.7 46.9 35.2 50.9 ...
$ garlic_ef : chr [1:150] "present" "absent" "absent" "present"
                                                                   (0/1) - dummy
$ garlic : num [1:150] 1 0 0 1 0 1 1 1 0 0 ...
                                                                   variable for
$ predator : num [1:150] 1 1 0 0 0 0 1 0 1 0 ...
                                                                   binary
$ no enemy : num [1:150] 0 0 1 0 1 1 0 0 0 0 ...
                                                                   dummy
$ parasite : num [1:150] 0 0 0 1 0 0 0 1 0 1 ...
                                                                   variables
                                                                   created for
                                                                   each factor
                                                                   level from the
                                                                   nominal
                                                                   variable
```

```
# specify and fit the model in lavaan
sem_mod <- ' aphid ~ host_plant + garlic + predator + parasite
host_plant ~ garlic
'
Only 2 out of 3
dummy variables
are included</pre>
```



```
#Check the assumptions:
# Normality of residuals
mod1 <- lm(aphid ~ host plant + garlic + predator + parasite, aphid data)</pre>
car::vif(mod1) # check for correlation among predictors
>
host plant
           garlic predator parasite
 1.061508 1.066580 1.343933 1.355159
mod2 <- lm(host_plant ~ garlic, aphid_data)</pre>
```

Categorical Exogenous Variable

```
par(mfrow=c(2,2))
plot(mod1)
plot(mod2)
par(mfrow=c(1,1))
```



```
# Normality of data
library(MVN)
mvn(aphid_data %>%
    select(-enemy_cat, -garlic_ef, -no_enemy),
    mvnTest="mardia", univariateTest="SW")
```

Recap: Protocol for violated assumptions of covariance-based SEM

Violated assumptions	Steps for Corrections
Non-normality of	Data transformation: e.g. log, square root
Residuals	Local estimation with GLM: package piecewiseSEM
Data are not	MLM estimation with robust SE & test statistic: library(lavaan) # Always report results for 'robust' test statistics sem(, estimator="MLM", se="robust" #or test="Satorra-Bentler")
multivariate normal	Bootstapping: # Always report results for 'robust' test statistics library(lavaan) sem(, test="bollen.stine", se="bootstrap)
Missing data	Full information maximum likelihood: library(lavaan) sem(, missing="fiml") #for normal data sem(, missing="fiml", estimator="MLR")#for non-normal data
Positive definite S matrix	Check for multicolinearity in each single regression model: library(car) vif(m2) # vif \le 2 (no collinearity)
Dependant samples (hierarchical)	Local estimation with LMM or GLMM: package piecewiseSEM
Not sufficient sample size	Local estimation: package piecewiseSEM

```
# specify and fit the model in lavaan
sem_mod <- ' aphid ~ host_plant + garlic + predator +
parasite
host_plant ~ garlic
'</pre>
```



```
# specify and fit the model in lavaan
sem mod <- ' aphid ~ host_plant + garlic + predator +</pre>
parasite
host plant ~ garlic
fit <- sem(sem mod,</pre>
           test="Satorra-Bentler", data=aphid data)
summary(fit, standardize = T, rsq=T, fit.measures=TRUE)
```

Example

> summary(fit, standardize = T, rsq=T, fit.measures=TRUE)		
Model Test User Model:		
	Standard	Scaled
Test Statistic	1.658	1.655
Degrees of freedom	2	2
P-value (Chi-square)	0.436	0.437
Scaling correction factor		1.002
Satorra-Bentler correction		
Robust Comparative Fit Index (CFI)		1.000
RMSEA	0.000	0.000
90 Percent confidence interval - upper	0.153	0.153
P-value H_0: RMSEA <= 0.050	0.558	0.559
SRMR	0.025	0.025

How to present fit statistics?

$$\chi^2$$
 = 1.65, DF=2, n=150, p = 0.43

RMSEA=0,
(CI = 0, 0.15),
$$p_{RMSEA}$$
=0.55,

```
> summary(fit, standardize = T, rsq=T, fit.measures=TRUE)
•••
Regressions:
                          Std.Err z-value P(>|z|) Std.lv Std.all
                 Estimate
 aphid ~
   host plant
                  0.408
                          0.041
                                  9.925
                                            0.000 0.408
                                                           0.534
                 -8.506 1.437 -5.921
                                            0.000 - 8.506
                                                            -0.321
   garlic
   predator
                 -11.372 1.707 -6.663
                                            0.000
                                                  -11.372
                                                            -0.405
                 -7.375 1.712 -4.309
                                           0.000
                                                            -0.262
   parasite
                                                   -7.375
 host plant ~
                   -7.570
                            2.769
                                   -2.734
                                            0.006
                                                   -7.570
                                                            -0.218
   garlic
Variances:
                 Estimate
                          Std.Err
                                  z-value P(>|z|)
                                                  Std.lv
                                                           Std.all
                  72.753
                          8.401 8.660
                                            0.000 72.753
                                                            0.414
  .aphid
                           33.191
                                    8.660
                                           0.000
                                                  287.445
                                                            0.953
  .host plant
                  287.445
R-Square:
                 Estimate
                   0.586
   aphid
   host plant
                   0.047
```



```
# calculate indirect effects
sem mod <- ' aphid ~ a1*host plant + a2*garlic + predator + parasite
           host plant ~ a3*garlic
                # define indirect and total effect
                direct := a2
                indirect := a3*a1
                total := direct + indirect
fit <- sem(sem mod, data=aphid data)</pre>
summary(fit, standardize = T, rsq = T, fit.measures=T)
>
Defined Parameters:
                 Estimate Std.Err z-value P(>|z|) Std.lv Std.all
   direct
                -8.506 1.437 -5.921 0.000 -8.506 -0.321
   indirect -3.086 1.171 -2.636 0.008 -3.086 -0.116
          -11.592 1.800 -6.439 0.000 -11.592
                                                            -0.437
   total
```


Approaches when we have Endogenous Categorical Variables:

- 1) for binary and ordinal variables use the argument 'ordered' in *lavaan* with fitting function 'sem'
- 2) for nominal variables (i.e., levels are not ordered) use the factor levels to construct a composite variable.

- Normal distribution means continuous data
- Ordinal data can not be assumed normal

Solution: to use the threshold models

- Normal distribution means continuous data
- Ordinal data can not be assumed normal

Solution: to use the threshold models

Threshold, for instance t1 is a match beetwing the probability of y=1 and actual percent that the observed data =1.

- Normal distribution means continuous data
- Ordinal data can not be assumed normal

Solution: to use the threshold models

- Normal distribution means continuous data
- Ordinal data can not be assumed normal

Solution: to use the threshold models

Estimation not via ML but via (diagonally) weighted least squares (D)WLS

$$F_{WLS} = (s - \sigma)^{\mathsf{T}} \mathbf{W}^{-1} (s - \sigma)$$

Human activities affect fish communities in ponds

120 ponds

Categorical Endogenous Variable

```
# Read and check the data
fish_data <- read_csv("Data/Fish_data.csv")</pre>
str(fish data)
sem mod2 <- ' inv fish ~ HII</pre>
                 native fish ~ plant div + HII
                plant div ~ HII
                 native fish ~~ inv fish
fit2 <- sem(sem mod2, data=fish data,</pre>
                       ordered = c("inv fish"))
summary(fit2, standardize = T, rsq = T)
```


Categorical Endogenous Variable

# Read and check the data			
Estimator	DWLS		
Optimization method	NLMINB		
Number of model parameters	10		
Number of observations	120		
Model Test User Model:			
	Standard	Scaled	
Test Statistic	0.022	0.022	
Degrees of freedom	1	1	
P-value (Chi-square)	0.882	0.882	
Scaling correction factor		1.000	
Shift parameter		0.000	
simple second-order correction			
Parameter Estimates:			
Standard errors	Robust.sem		

Categorical Endogenous Variable

Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	1.000	Scaled 1.000 1.098	robust RMSA and other f measures are not calculated in DWLS
Robust Comparative Fit Index (CFI) Robust Tucker-Lewis Index (TLI)		NA NA	Use standard measures
 RMSEA	0.000	0.000	
90 Percent confidence interval - lower	0.000		
90 Percent confidence interval - upper	0.121	0.121	
P-value H 0: RMSEA <= 0.050	0.898	0.898	
P-value H_0: RMSEA >= 0.080	0.081	0.081	
Robust RMSEA		NA	
 SRMR	0.007	0.007	

Regressions:			_				
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
inv_fish ~							
HII	0.308	0.128	2.411	0.016	0.308	0.268	
native_fish ~							
plant_div	0.475	0.059	7.994	0.000	0.475	0.576	
HII	-1.186	0.424	-2.797	0.005	-1.186	-0.210	
plant_div ~							
HII	-1.785	0.695	-2.569	0.010	-1.785	-0.261	
Covariances:							
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
.inv_fish ~~							
.native_fish	-1.466	0.572	-2.561	0.010	-1.466	-0.383	
Thresholds:							
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
inv fish t1	0.567	0.288	1.969	0.049	0.567	0.546	
_							
R-Square:							
	Estimate						
inv fish	0.072						
native fish							
—	0.068						
<u></u>							

Protocol for treating categorical variables in SEM

Categorical Variables	Exogenous Categorical Variables	Endogenous Categorical Variables	
Binary variables yes/no;	1. Set the values as 0 or 1 and model as numeric (yields a single path coefficient).	<pre>library(lavaan) sem(, ordered=c("categ_varibl")) • Take care that the levels of your variable</pre>	
presence/absence; failure/success; dead/alive; male/female	 Create separate dummy variables for each factor levels with values 0, 1 each. Rule: for the factor with k levels use k-1 dummy variables (to avoid singularity). Use package piecewiseSEM 	have the correct order (e.g. small < medium < large) • DWMS estimator is used, which corrects for non-normal data and for ordered data.	
	1. Set the values depending on the order of the factor, e.g., small = 1 < medium = 2 < large = 3, and then model as numeric.	• Report 'robust' test statistics for χ^2 . But report 'scaled' RMSA, CFI, SRMR; as no clear suggestions exist regarding the application	
Ordinal variables: small < medium < large;	2. Create separate dummy variables for each factor levels with values 0, 1 each.	of these fit indices for non-ML estimators. library (piecewiseSEM)	
yang < middle < old	Rule : for the factor with k levels use k-1 dummy variables (to avoid singularity).	Endogenous categorical variables are not implemented in piecewiseSEM. Treat binary	
	3. Use package piecewiseSEM	and ordinal variables as numerical (follow step 1 shown for 'Endogenous Categorical Variables')	
Nominal variables study sites (e.g., site 1, site 2, site	1. Create separate dummy variables for each factor levels with values 0, 1 each. Rule : for the factor with k levels use k-1 dummy variables (to avoid singularity).	Use the factor levels to construct a composite variable.	
3); countries; sampling campaigns	2. Use package piecewiseSEM	Nominal endogenous categorical variables are not implemented in piecewiseSEM	

Effects of land use on arthropod food webs in grasslands

Food webs

Net sampling of arthropods in grasslands

235 grasslands

Food-web length

"1 level": only herbivores and decomposers,

"2 levels": carnivores present in addition to level 1,

"3 levels": omnivores present in addition to level 1 and level 2.

Grazing intensity

("low", "medium", or "high")

Effects of land use on food webs in grasslands

Effects of land use on food webs in grasslands

Effects of land use on food webs in grasslands

46

- 1. Specify the following model in lavaan
 - For this, <u>if needed</u>, recode the categorical variables in a way appropriate for the analysis

Effects of land use on food webs in grasslands

Grazing

47

- 1. Specify the following model in lavaan
 - For this, <u>if needed</u>, recode the categorical variables in a way appropriate for the analysis

Latent Variables in SEM

Latent Variables in SEM

- What are Latent Variables? Why to use them?
- Multi-indicator Latent Variables
- Fitting Latent Variables

(Confirmatory Factor Analysis)

Latent Variables in SEM

- What are Latent Variables? Why to use them?
- Multi-indicator Latent Variables
- Fitting Latent Variables

(Confirmatory Factor Analysis)

Latent – hypothetical, hidden

- a variable that is unmeasured, but is hypothesized to exist
- scientific concept that is not directly observed, but is hypothetical construct
- can be approximated using observable indicators

Specification operators in 'lavaan'

formula type	operator	meaning
Regression	~	"regressed on"
Correlation	~~	"correlated with"
Intercept	~ 1	"estimates intercept"
Latent variable	=~	"is measured by"
Composite	<~	"is caused by"

Path Diagram Notations:

The error in the measurement of \mathbf{x} b $\boldsymbol{\eta}$

$$\mathbf{x} = \lambda_{x} \boldsymbol{\eta} + \boldsymbol{\delta}_{x}$$

$$\mathbf{x} = \lambda_{x} \boldsymbol{\eta} + \boldsymbol{\delta}_{x}$$
$$\boldsymbol{\eta} \sim N(0, SD(\boldsymbol{\eta}))$$
$$\boldsymbol{\delta} \sim N(0, SD(\boldsymbol{\delta}))$$

$$\mathbf{x} = \lambda_{x} \boldsymbol{\eta} + \boldsymbol{\delta}_{x}$$

 $\eta \sim N(0, SD(\eta))$

$$\delta \sim N(0, SD(\delta))$$

$$VAR(x) = \lambda_x^2 VAR(\eta) + VAR(\delta)$$

How much variance does the LV explain?

$$\frac{\lambda_x^2 \text{VAR}(\boldsymbol{\eta})}{\lambda_x^2 \text{VAR}(\boldsymbol{\eta}) + \text{VAR}(\boldsymbol{\delta})}$$

Raw scale coefficient: matches observed (co)variances to parameters $VAR(\delta)$ and $VAR(\eta)$

We explain the data well if:

$$VAR(x) = VAR(\eta) + VAR(\delta)$$

What is the scale/unit of our LV?
 It needs to be defined to get the regression weights.

$$DF = t_{max} - t = -1$$

Model is not identified

$$t \leq t_{max}$$
 $t_{max} = \frac{s(s+1)}{2} = 1$
 $s = 1 \text{ known}$
 $t = 2 \text{ unknowns}$

Rules for LV models:

- Scaling of LV
- Non-negative DF

We need at least:

- 3 indicators for a single LV
- 2 indicators per LV for models with multiple (correlated) LVs

Latent **Exogenous** Variable

Latent **Endogenous** Variable

Measurement model

(solely relates indicators to latent variables)

Latent Variables

Latent Variables

 Be sure that the latent variable reflects the actual properties captured by the indicator variables!

Why use Latent Variables?

- Allows estimating complex and multifaceted concepts
- Reduces random error in construct (latent variable)

random error in dependent variables

→ less precisely measured estimates

random error in independent variables

→ underestimated regression coefficients

Latent Variables in SEM

- What are Latent Variables? Why to use them?
- Multi-indicator Latent Variables
- Fitting Latent Variables

(Confirmatory Factor Analysis)

- Indicators may have causal links
- Indicators may covary for other reasons

Latent variable η represents shared information of observed indicators x

As Theoretical Constructs

Repeated Measurements

Multi-sampling

Why use Latent Variables with Multiple Indicators?

- Allows estimating complex and multifaceted concepts
- Reduces random error in construct (latent variable)
- Better accuracy in measurement of relationships due to shared variation between observed indicators.

Outline

Latent Variables in SEM

- What are Latent Variables? Why to use them?
- Multi-indicator Latent Variables
- Fitting Latent Variables

Rules for LV models:

- Scaling of LV
- Non-negative DF

$$DF = -1$$

$$t \leq t_{max}$$

$$t_{max} = \frac{s(s+1)}{2} = 3$$

$$s = 2$$
 knowns

$$t = 4$$
 unknowns

Rules for LV models:

- Scaling of LV
- Non-negative DF

We need at least:

- 3 indicators for a single LV
- 2 indicators per LV for models with multiple (correlated) LVs

$$s = 3$$
 knowns

$$t = 6$$
 unknowns

$$\mathbf{DF} = t_{max} - t = \mathbf{0}$$

- 1) Evaluate the latent relationships among variables (Confirmatory Factor Analysis).
 - Do our indicators make a Good Latent Variable?

2) Use Latent Variables as a Response or a Predictor

Population-based ecological restoration

Aim: understand the performance of transplanted plants as a function of their dissimilarity to local conditions


```
# Read and check the data
travis <- read.csv(" Travis_data.csv")</pre>
```

Travis, S. E., & Grace, J. B. (2010). Predicting performance for ecological restoration: a case study using Spartina alterniflora. Ecological Applications, 20(1), 192-204.

- Collected individuals of the salt marsh plant *Spartina* alterniflora eight clones each from 23 populations
- Transplanted individuals and measured their performance relative to local populations.
- Performance was approximated with stem density, the number of infloresences, clone diameter, leaf height, and leaf width

- Evaluate the latent relationships among variables (Confirmatory Factor Analysis).
 - Do our indicators make a Good Latent Variable?

A first step is to analyze the "measurement model" using CFA.

```
# Read and check the data
travis <- read_csv("Travis_data.csv")
str(travis)
# correlations
cor(travis[, 4:8])</pre>
```



```
> round(cor(travis[, 4:8]),2)
         stems infls clonediam leafht leafwdth
                                        0.65
stems
         1.00 0.83
                         0.93
                                0.73
     0.83 1.00
                                0.69
infls
                         0.81
                                        0.60
clonediam 0.93 0.81
                         1.00
                                0.77
                                        0.73
                                        0.97
leafht
         0.73 0.69
                     0.77
                                1.00
leafwdth
         0.65 0.60
                     0.73
                                0.97
                                        1.00
```

Exercise

```
stem
# specify the model
                                                                                   density
cfa mod <- '
                                                                                  number of
                                                                                 infloresences
performance =~ stems + infls + clonediam + leafht + leafwdth
                                                                                                          Performance
                                                                                   clone
                                                                                  diameter
# fit the model
                                                                                    leaf
                                                                                   height
cfa fit <- sem(cfa mod, travis)</pre>
                                                                                    leaf
                                                                                   width
```

```
Warning message:
In lav_object_post_check(object):
lavaan WARNING: some estimated ov variances are negative
```

Exercise

> summary(cfa_fit)	
lavaan 0.6-9 ended normally after 82 iterations	
Estimator	ML
Optimization method	NLMINB
Number of model parameters	10
Number of observations	23
Model Test User Model:	
Test statistic	51.106
Degrees of freedom	5
P-value (Chi-square)	0.000


```
> modindices (cfa fit)
        lhs op
                    rhs
                            mi
                               epc sepc.lv sepc.all sepc.nox
                  infls 10.470
                               11.784 11.784
12
                                                 0.677
                                                         0.677
      stems ~~
      stems ~~ clonediam 17.152 112.521 112.521 0.871
                                                        0.871
13
                 leafht 0.693 -7.889 -7.889 -0.517
                                                        -0.517
14
      stems ~~
               leafwdth 2.214 -1.836 -1.836
15
      stems ~~
                                                -0.346
                                                        -0.346
16
      infls ~~ clonediam 8.773 11.092
                                      11.092 0.621
                                                        0.621
17
      infls ~~
                 leafht 0.062
                               -0.312
                                      -0.312
                                                -0.148
                                                        -0.148
      infls ~~ leafwdth 2.906 -0.281
                                      -0.281
                                              -0.383
                                                        -0.383
18
  clonediam ~~
                                                        -1.357
                leafht 4.028 -21.233 -21.233
                                                -1.357
                                -0.261
                                                        -0.048
  clonediam ~~ leafwdth 0.037
                                      -0.261 \quad -0.048
     leafht ~~ leafwdth 37.862
                               17.177
                                      17.177
21
                                                26.752
                                                        26.752
```



```
cfa_mod2 <- '
performance =~ stems + infls + clonediam + leafht + leafwdth
leafht ~~ leafwdth
'
cfa_fit2 <- sem(cfa_mod2, travis)
summary(cfa_fit2)</pre>
```


Exercise

Estimator	ML
Optimization method	NLMINB
Number of model parameters	11
Number of observations	23
Model Test User Model:	
Test statistic	7.410
Degrees of freedom	4
P-value (Chi-square)	0.116

```
. . .
Latent Variables:
                  Estimate Std.Err z-value P(>|z|)
 performance =~
   stems
                     1.000
                     0.117
                            0.016
                                               0.000
   infls
                                      7.173
   clonediam
                     1.086
                            0.096
                                     11.319
                                               0.000
                    0.697
                           0.127
                                      5.509
                                               0.000
   leafht
                            0.018
   leafwdth
                    0.082
                                      4.529
                                               0.000
Covariances:
                  Estimate Std.Err z-value P(>|z|)
 .leafht ~~
   .leafwdth
                    10.831
                              3.432
                                      3.156
                                               0.002
```



```
SEM latent mod <- '
           # latent
performance =~ stems + infls + clonediam + leafht + leafwdth
           # structural paths
performance ~ geneticdist
            # correlated errors
leafht ~~ leafwdth
SEM latent fit <- sem(SEM latent mod , travis)</pre>
summary(SEM latent fit, standardize = T, rsq = T, fit.measures=T)
```

Exercise

Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	12	
Number of observations	23	
Model Test User Model:		
Test statistic	12.237	
Degrees of freedom	8	
P-value (Chi-square)	0.141	

Latent Variables:							
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
performance =~							
stems	1.000				15.555	0.962	
infls	0.117	0.017	6.929	0.000	1.822	0.853	
clonediam	1.106	0.096	11.508	0.000	17.199	0.969	
leafht	0.711	0.127	5.601	0.000	11.066	0.785	
leafwdth	0.084	0.018	4.650	0.000	1.308	0.718	
Regressions:							
6	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
performance ~ geneticdist	-51.673	11.365	-4.547	0.000	-3.322	-0.708	
Covariances:	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
.leafht ~~ .leafwdth	10.416	3.312	3.145	0.002	10.416	0.940	

```
library(lavaanPlot)
lavaanPlot(model = SEM latent fit,
           coefs = TRUE, stand=TRUE,
           # graph options = list(layout = "circo"),
           # stars = 'regress', # shows stars for regr coef
           digits = 2)
                                                                     geneticdist
                                                                         -0.71
                                                                    performance
                                                                    0.85 0.97
                                                              0.96
                                                                                          0.72
                                                           infls
                                                                     clonediam
                                                                                               leafwdth
                                                                                    leafht.
                                               stems
```

Day 7 Task 2

Human Impact Intensity

Macroinvertebrate body size

Body size traits

Body mass Body volume Body length Body width

```
# Read and check the data
read.csv(" Bodysize_data.csv")
```

Day 5 Task 2

Day 5 Task 2

- 1. Perform the confirmatory factor analysis for the latent variable "body size"
- 2. Use the results from step 1 and perform the SEM by adding human impact variable
- 3. Fill in Standardized Coeficients and R² for the model, add the fit indices
- 4. Think about how to interpret the results