Identifying Fraud

An ML Approach

Executive Summary

Objective - to quantify how an ML approach can help identify fraudulent transactions for the Fraud Team to analyse

Data - ~900 (0.7%) confirmed fraud cases in 120k transactions over 12 months

Key Findings

- ML approach can identify suspect fraud transactions
 - Limitations: fraud team capacity able to process 400 suspected transactions a month)
 - Best results show ability to capture about ½ (67%) of fraudulent transactions
 - Alternatives: At increased fraud team capacity of $1.5x \Rightarrow ca 77\%$, $2x \Rightarrow ca 82\%$
- Basic analytics show hotspots of fraud
 - 1 / 11 transactions in country code 840
 - 1/30 transactions in merchant code 5735

Results - Experiment summary

The following experiments have been run

-	Metric:	Maximise	recall	under	budget	constraint
---	---------	----------	--------	-------	--------	------------

- Models: XGBoost, LightGBM, GBM
- Use 3 different data frames:
 - Pipe 1: One-hot encoding of top categories in data (ca 150 features)
 - Pipe 2: Adding top features based on account and lagging transactions (ca 200 features
 - Pipe 3: Like 2 with more features, top features covering ca 90% of data (ca 500 features
- Downsampling of data to balance labelling. 3 random draws of downsampling performed
- Three ratios considered between neg/pos labels: 1:1, 2:1, 3:1
- Three budget scenarios: capacity 400/600/800 per month (test data set is equivalent to 3 months of transaction data)
- 'Select' models use most relevant features based on model feature importance
- Best results achieved around (best models highlighted in red)
 - Ca 67% for 1x Budget
 - Ca 77% at 1.5x Budget
 - Ca 83% at 2x Budget
- Next steps:
 - Consider a voting model approach
 - Consider additional features while using the 'Select' approaches

	Pipe	Pipelir	ne 1		Pipelir	ne 2		Pipelir	ne 3	
	Label Ratio	1:1	2:1	3:1	1:1	2:1	3:1	1:1	2:1	3:1
Budget 1.5x budget	Model									
	GBM	0.691	0.707	0.763	0.690	0.722	0.751	0.696	0.745	0.763
	LGBM	0.696	0.710	0.739	0.678	0.729	0.723	0.681	0.724	0.729
	LGBM-Select	0.678	0.707	0.718	0.663	0.717	0.711	0.671	0.731	0.724
	XGB	0.686	0.720	0.730	0.686	0.738	0.732	0.695	0.734	0.738
	XGB-Select	0.672	0.714	0.718	0.681	0.731	0.729	0.690	0.734	0.735
1x budget	GBM	0.556	0.598	0.647	0.548	0.635	0.650	0.577	0.619	0.637
	LGBM	0.568	0.632	0.653	0.543	0.641	0.660	0.552	0.643	0.653
	LGBM-Select	0.552	0.612	0.616	0.530	0.636	0.638	0.538	0.647	0.661
	XGB	0.562	0.623	0.668	0.580	0.646	0.648	0.594	0.618	0.647
	XGB-Select	0.559	0.602	0.635	0.573	0.628	0.636	0.590	0.621	0.648
2x budget	GBM	0.770	0.793	0.819	0.758	0.803	0.795	0.770	0.806	0.831
	LGBM	0.761	0.770	0.795	0.732	0.775	0.764	0.729	0.777	0.767
	LGBM-Select	0.757	0.760	0.778	0.736	0.769	0.752	0.733	0.771	0.762
	XGB	0.760	0.778	0.796	0.750	0.780	0.766	0.755	0.785	0.780
	XGB-Select	0.753	0.771	0.770	0.737	0.801	0.771	0.749	0.786	0.784

Appendix: Modelling approach

¦Step	¦Actions/Choices	Reference (function names)
Data prep/Data	Initial data clean up included minor replacements of missing values or '' Total % of fraud establishes a baseline and highlights the need to downsample Statistics drawn on each feature, eg % fraud by country etc help find outlier cases	summary_stats build_clean_df
Feature Engineering	In addition to one hot encoding Engineering features based on: - Transaction history, ie previous transaction country, merchant zip, time since previous, etc - Account profile: size of typical transactions, country of typical transactions, etc	rfeat_cat_freq account_features add_prev_transaction
Data set splits	25% held out as test data - this is approximately 3 months of data and can this way be used to compare against the 'budget' of 400 transactions to be reviewed per month Rest downsampled to 1:1 / 2:1 / 3:1 proportion to positive labels. Results should be an average against multiple downsampling exercises	Run_big_loop in main file
Model choices	LightGBM, XGBoost, GBM - selected for the comparison as tend to be most performant across a large number of cases Linear models considered just as baselines but not included as performance much worse Deep NNs not considered as the data set of positive cases is small	 Run_big_loop in main file
Hyperparameter tuning	See next page	Run_hyperparameters in main file
Feature Importance	Can be done by aggregating tree estimators or methods such as LIME, or SHAP. Here simply used SelectFromModel method from sklearn which leverages the models' build-in feature importance tooling	<u> </u>
Evaluation	Recall on the highest probability predictions under budget constraint Alternative budget scenarios supplied as multiples 1.5x and 2x Evaluation on entire test set (25%) equivalent to ca 3 monts (3/12) of data hence budget = 1200	

Appendix: Results - Hyperparameter choice

Hyperparameter tuning on single dimensions.

Aim to get best precision as number of recommendations is fixed (ie 400 per month) therefore highest precision will give the most accurate results. This is a heuristic and mostly holds assuming fairly flat effects on recall

Overall results fairly flat. Slight improvement with increase of estimators and learning rate

