Figure 1: Comparison of testing accuracies from logistic regression, BSVRB^{v1} with m=1 lower-level problem, and BSVRB^{v1} with m=100 lower-level problems on various noise level of dataset a8a

Table 1: Testing accuracies and standard deviation over 3 runs with different random seeds from logistic regression, BSVRB with m=1 lower-level problem, and BSVRB with m=100 lower-level problems on various noise level of dataset a8a. Noise level represents the proportion of training sample labels that are flipped. 70% of the positive samples are removed from training data except for noise level 0*, which means no label noise and no data imbalance.

Noise Level	Logistic Regression	$BSVRB^{v1}(m=1)$	$BSVRB^{v1}(m=100)$
0*	0.8528 ± 0.0005	0.8526 ± 0.0002	$0.8509 {\pm} 0.0011$
0	0.8442 ± 0.0009	0.8426 ± 0.0016	$\boldsymbol{0.8477} \pm \! 0.0013$
0.1	0.8285 ± 0.0034	0.8303 ± 0.0100	$0.8400 \!\pm\! 0.0025$
0.2	0.8250 ± 0.0066	$0.8185 {\pm} 0.0090$	0.8388 ± 0.0024
0.3	0.7929 ± 0.0081	0.8118 ± 0.0047	$0.8239 \pm \! 0.0015$
0.4	0.7715 ± 0.0025	0.7749 ± 0.0079	$0.8051 {\pm} 0.0013$