Aalto University

Problem set 1

Department of Mathematics and Systems Analysis MS-C1541 — Metric spaces, 2022-2023/III

K Kytölä & T Kelomäki

Exercise sessions: 12.-13.1.2023 Hand-in due: Tue 17.1.2023 at 23:59

Topic: Sets, functions, real numbers

Written solutions to the exercises marked with symbol \triangle are to be returned in My-Courses. Each exercise is graded on a scale 0-3. The deadline for returning solutions to problem set 1 is Tue 17.1.2023 at 23:59.

Exercise 1 (Images and preimages of unions and intersections). Let X and Y be sets and $f: X \to Y$ a function.

(a) Show that for any $C, D \subset Y$, the preimages satisfy

$$f^{-1}[C \cup D] = f^{-1}[C] \cup f^{-1}[D].$$

(b) Show that for any $C, D \subset Y$, the preimages satisfy

$$f^{-1}[C \cap D] = f^{-1}[C] \cap f^{-1}[D].$$

(c) Show that for any $A, B \subset X$, the images satisfy

$$f[A \cup B] = f[A] \cup f[B].$$

(d) Give an example in which for the images of subsets $A, B \subset X$ we have

$$f[A \cap B] \neq f[A] \cap f[B].$$

<u>Hint</u>: In parts (a)-(c) it is possible to argue by a chain of equivalent conditions $x \in left \ hand \ side \ set \iff \cdots \iff x \in right \ hand \ side \ set.$

Exercise 2 (Non-zero limit implies members are eventually non-zero).

(a) Suppose that $(a_n)_{n\in\mathbb{N}}$ is a sequence of real numbers which tends to a limit

$$\lim_{n\to\infty} a_n = 1.$$

Show that there exists some $N \in \mathbb{N}$ such that $a_n > \frac{1}{2}$ for all $n \geq N$.

(b) Suppose that $(b_n)_{n\in\mathbb{N}}$ is a sequence of real numbers which tends to a non-zero limit

$$\beta = \lim_{n \to \infty} b_n \neq 0.$$

Show that there exists some $M \in \mathbb{N}$ such that $b_n \neq 0$ for all $n \geq M$.

Exercise 3 (Calculating limits of sequences).

Calculate the limits of the real-number sequences $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$, where

$$a_n = \frac{3n+4}{5n+6}$$
 and $b_n = \frac{(1+2n)(1+3n)e^{-n}}{n^3e^{-2n}+n^2e^{-n}}$ for $n \in \mathbb{N}$.

You may use known properties of limits and limits that are well-known from earlier courses.

- Exercise 4 (A variant of a formulation of the completeness axiom). Recall that one of the formulations of the completeness axiom of real numbers is:
 - (C2) Every increasing real number sequence $(a_n)_{n\in\mathbb{N}}$ which is bounded from above has a limit $\lim_{n\to\infty} a_n \in \mathbb{R}$.

Consider the statement

(C2') Every decreasing real number sequence $(b_n)_{n\in\mathbb{N}}$ which is bounded from below has a limit $\lim_{n\to\infty} b_n \in \mathbb{R}$.

Prove that (C2) implies (C2').

<u>Hint</u>: Given a sequence $(b_n)_{n\in\mathbb{N}}$ as above, what can be said about the numbers $-b_n$ for $n\in\mathbb{N}$?

Exercise 5 (A point in the Cantor set).

For a fixed $n \in \mathbb{N}$ and any $b_1, \ldots, b_n \in \{0, 1\}$, consider the closed interval of length $\frac{1}{3^n}$ whose left endpoint is $\sum_{j=1}^n \frac{2b_j}{3^j} = \frac{2b_1}{3} + \frac{2b_2}{9} + \frac{2b_3}{27} + \cdots + \frac{2b_n}{3^n}$. Let $C_n \subset \mathbb{R}$ be the union of these 2^n intervals (see figure below)

$$C_n = \bigcup_{b_1, \dots, b_n \in \{0,1\}} \left[\sum_{j=1}^n \frac{2 \, b_j}{3^j} \,, \, \sum_{j=1}^n \frac{2 \, b_j}{3^j} + \frac{1}{3^n} \right].$$

The Cantor set $C \subset \mathbb{R}$ is the intersection of these sets over all $n \in \mathbb{N}$,

$$C = \bigcap_{n \in \mathbb{N}} C_n.$$

Show that $\frac{3}{4} \in C$.

<u>Hint</u>: To get started, it helps to note that $\frac{3}{4} = \sum_{k=0}^{\infty} \frac{2}{3^{1+2k}}$ (use geometric series), which can be written as an infinite series $\sum_{j=1}^{\infty} \frac{2b_j}{3^j}$ for a suitably chosen sequence b_1, b_2, b_3, \ldots of zeros and ones.

