Classification Model on Census Income dataset

Submitted by:- Ambarish Singh

Problem Statement

 Predict Whether income of individual exceeds \$50K/year or not based on attributes given

Task Performed:-

- 1. Data Ingestion
- 2. Handle the null values
- 3. Replace column_name
- 4. Seperate categorical and Numerical Features
- 5. Univariate Analysis
- 6. Bivariate Analysis
- 7. Handle the outliers
- 8. Seperate Dependent and Independent features
- 9. Label encoding of categorical features

- 10. Test Accuracy using:
 - Decision Tree Classifier
 - Hyper-parameter tunning on Decision Tree
 - Random Forest Classifier
 - Hyper-parameter tunning on Random Forest Classifier
 - Bagging Classifier using SVC
 - Random Forest Classifier
 - Voting Classifier using Logistic Regression , Random forest classifier, GuassianNB
 - Extra Tree Classifier
 - · Hyper-parameter tunning on Extra Tree Classifier
- 11. Make final report showing accuracy of all models
- 12. Store the best model in pickle file

Attribute Information

- 1. age: continuous.
- 2. workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- 3. fnlwgt: continuous.
- 4. education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st 4th, 10th, Doctorate, 5th-6th, Preschool.
- 5. education-num: continuous.
- 6. marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- 7. occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- 8. relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- 9. race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- 10. sex: Female, Male.
- 11. capital-gain: continuous.
- 12. capital-loss: continuous.
- 13. hours-per-week: continuous.
- 14. native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

Description:-

As the problem of inequality of income has become very prominent over the years, governments of different countries have been trying to address the problem so as to improve the economic stability of a nation.

In this study, Machine Learning Classification techniques is used in order to predict whether a person's yearly income falls in the income category of either greater than 50K Dollars or less then equal to 50K Dollars category based on a certain set of attributes. An analysis of this kind helps to figure out which individual attributes are necessary in improving an individual's income so that focus can be put on those specific factors so as to level up the income of individuals.

In [1]:

```
1 ## Comment
2 ## Observations
```

Import required libraries

In [2]:

```
1 ## Data Analysing
   import pandas as pd
  import numpy as np
3
4
5 ## Graphical analysis
6 import matplotlib.pyplot as plt
7 %matplotlib inline
  import seaborn as sns
   from warnings import filterwarnings
   filterwarnings('ignore')
10
11
12 | ## for model building
   from sklearn.preprocessing import LabelEncoder
13
14 | from sklearn.model selection import train test split, GridSearchCV
  from sklearn.tree import DecisionTreeClassifier
16
   from sklearn.metrics import accuracy score
   from sklearn.ensemble import RandomForestClassifier
17
18 from sklearn.svm import SVC
   from sklearn.ensemble import BaggingClassifier
19
   from sklearn.datasets import make classification
20
  from sklearn.linear_model import LogisticRegression
21
   from sklearn.naive bayes import GaussianNB
22
   from sklearn.ensemble import RandomForestClassifier,VotingClassifier
23
24
25
```

Data Ingestion

In [3]:

```
1 ## Loading Dataset
2 df= pd.read_csv(r"adult.csv")
3 df
```

Out[3]:

	age	workclass	fnlwgt	education	education.num	marital.status	00
0	90	?	77053	HS-grad	9	Widowed	
1	82	Private	132870	HS-grad	9	Widowed	n
2	66	?	186061	Some- college	10	Widowed	
3	54	Private	140359	7th-8th	4	Divorced	
4	41	Private	264663	Some- college	10	Separated	
32556	22	Private	310152	Some- college	10	Never-married	F
32557	27	Private	257302	Assoc- acdm	12	Married-civ- spouse	
32558	40	Private	154374	HS-grad	9	Married-civ- spouse	
32559	58	Private	151910	HS-grad	9	Widowed	
32560	22	Private	201490	HS-grad	9	Never-married	

32561 rows × 15 columns

In [5]:

```
1 ## Checking Shapes of a Dataset
2 df.shape
```

Out[5]:

(32561, 15)

Check how many class in income feature

```
In [6]:

1 ## Checking unique value in 'income' feature.
2 df['income'].unique()

Out[6]:
array(['<=50K', '>50K'], dtype=object)
```

Convert classes in income feature to 0 and 1

```
In [7]:

1  ## Converting Classes of Income Feature to 0 and 1.
2  df['income'] = df['income'].map({"<=50K": 0,">50K":1})

In [8]:

1  ## Again Checking the unique Value of 'Income' Feature.
2  df['income'].unique()

Out[8]:
array([0, 1], dtype=int64)
```

Check special symbols in data

In [9]:

```
## Checking if any special symbols are present in a dataset or not.
df[df['workclass'] == "?"][:5]
```

Out[9]:

	age	workclass	fnlwgt	education	education.num	marital.status	occu
0	90	?	77053	HS-grad	9	Widowed	
2	66	?	186061	Some- college	10	Widowed	
14	51	?	172175	Doctorate	16	Never-married	
24	61	?	135285	HS-grad	9	Married-civ- spouse	
44	71	?	100820	HS-grad	9	Married-civ- spouse	

Replace special symbol with np.nan

In [10]:

```
## Replacing Special Symbol with np.nan
df.replace("?",np.NAN,inplace = True)
```

Checking the null values

In [11]:

```
1 ## Checking total null value present in a dataset
2 df.isnull().sum()
```

Out[11]:

```
0
age
workclass
                   1836
fnlwgt
education
                      0
education.num
                      0
marital.status
occupation
                   1843
relationship
                      0
race
                      0
sex
capital.gain
                      0
capital.loss
                      0
hours.per.week
                      0
native.country
                    583
income
dtype: int64
```

Note

- If the feature is categorical feature then we have to use bfill
- bfill replaces NaN with forward & backward values

In [12]:

```
# replacing NaN with forward & backward values

df['workclass'] = df['workclass'].fillna(method = 'bfill')

df['occupation'] = df['occupation'].fillna(method = 'bfill')

df['native.country'] = df['native.country'].fillna(method = 'pad')
```

Checking the null values again

In [13]:

```
1 ## Again Checking total null value present in a dataset or not.
2 df.isnull().sum()
```

Out[13]:

```
0
age
workclass
                   0
fnlwgt
                   0
education
education.num
                   0
marital.status
occupation
                   0
relationship
                   0
                   0
race
                   0
sex
capital.gain
                   0
capital.loss
                   0
hours.per.week
                   0
native.country
                   0
income
dtype: int64
```

Observation

• Now, here is No Null Value present

Replace columns names

In [14]:

```
## Replacing Column name for better understanding.
   df.rename(columns= {
 2
        'education.num' : "education_num",
 3
        "marital.status" : "marital_status",
4
        "capital.gain" : "capital_gain",
 5
        "capital.loss" : "capital loss",
 6
        "hours.per.week" : "hours_per_week",
 7
 8
        "native.country" : "native country"
 9
   },inplace= True)
10
```

```
In [15]:
```

```
1 ## Checking All Columns name present in a dataset.
2 df.columns
```

Out[15]:

Seperate categorical and numerical features

In [16]:

```
## Seperate categorical and numerical features from a dataset.
categorical_fea = [col for col in df.columns if df[col].dtype == object
numerical_fea = [col for col in df.columns if df[col].dtype != object]
```

In [17]:

```
1 ## Checking all Categorical Features present in a dataset
2 categorical_fea
```

Out[17]:

```
['workclass',
  'education',
  'marital_status',
  'occupation',
  'relationship',
  'race',
  'sex',
  'native_country']
```

In [18]:

```
1 ## ## Checking all Numerical Features present in a dataset
2 numerical_fea
```

Out[18]:

```
['age',
 'fnlwgt',
 'education_num',
 'capital_gain',
 'capital_loss',
 'hours_per_week',
 'income']
```

Univariate Analysis

In [19]:

```
## Ploting Univariate Analysis of Numerical Features:-
plt.figure(figsize=(15,20), facecolor='green')
plt.suptitle('Univariate Analysis of Numerical Features',fontweight = "
for i in range(0, len(numerical_fea)):
    plt.subplot(5, 3, i+1)
    sns.kdeplot(x=df[numerical_fea[i]],shade = True, color='r',data=df)
    plt.xlabel(numerical_fea[i],fontsize = 15)
    plt.tight_layout()
```


Observations

- Age is aprroximately normally distributed.
- Final weight, capital loss & capital gain are heavily right skewed.

Bivariate Analysis

In [20]:

```
## Ploting Bi-variate Analysis w.r.t Target column as 'income'

plt.figure(figsize=(15,20), facecolor='blue')

plt.suptitle('Bi-variate Analysis', fontsize=20, fontweight='bold', alp

for i in range(0, len(numerical_fea)):

   plt.subplot(5, 3, i+1)

   sns.barplot(y=numerical_fea [i], x='income', data = df,palette ="roplt.tight_layout()
```


Check distribution and outliers together

• Plot 2 Graphs Together

In [21]:

```
## Ploting two graphs for checking Distribution and Outlier Togrther.
 1
   for fea in numerical_fea:
 2
       plt.figure(figsize = (14,4), facecolor='pink')
 3
       plt.subplot(121)
 4
       sns.kdeplot(x=df[fea],shade = True, color='r',data=df)
 5
       plt.title("Distribution of {}".format(fea),fontweight = 'bold' )
 6
 7
       plt.subplot(122)
 8
       sns.boxplot(x= fea,data = df[numerical_fea])
 9
       plt.title("Boxplot of {}".format(fea),fontweight = 'bold' )
10
       plt.show()
11
```


Handling the outliers

In [22]:

```
## Handling the outliers
 1
 2
 3
   df1 = df.copy()
   feature_to_use = ["fnlwgt",'age','hours_per_week']
4
 5
   for i in range(len(feature to use)):
 6
        IQR = df1[feature_to_use[i]].quantile(0.75) - df1[feature_to_use[i]
 7
        Lower Limit = df1[feature to use[i]].quantile(0.25) - (1.5*IQR)
 8
       UPPER_LIMIT = df1[feature_to_use[i]].quantile(0.75) + (1.5*IQR)
 9
       df1[feature_to_use[i]]= np.where(df1[feature_to_use[i]]>UPPER_LIMIT
10
                                     np.where(df1[feature_to_use[i]]<Lower_L
11
12
13
14
   for fea in feature to use:
15
        plt.figure(figsize = (14,4), facecolor='pink')
16
        plt.subplot(121)
        sns.boxplot(x = fea, data = df)
17
        plt.title("Boxplot of {} before handling outliers".format(fea),font
18
19
20
        plt.subplot(122)
        sns.boxplot(x = fea, data = df1)
21
        plt.title("Boxplot of {} After handling outliers".format(fea),fontw
22
        plt.show()
23
```


Seperate independent and dependent Feature

In [23]:

```
## Creating Independent and Dependent Feature from dataset
x = df1.drop('income', axis = 1)
y = df1['income']
```

In [24]:

```
1 ## Checking top 5 Rows of a dataset
2 x.head()
```

Out[24]:

	age	workclass	fnlwgt	education	education_num	marital_status	осс
0	78.0	Private	77053.0	HS-grad	9	Widowed	me
1	78.0	Private	132870.0	HS-grad	9	Widowed	me
2	66.0	Private	186061.0	Some- college	10	Widowed	N C
3	54.0	Private	140359.0	7th-8th	4	Divorced	N C
4	41.0	Private	264663.0	Some- college	10	Separated	;
4							•

```
In [25]:
```

```
1 ## Checking all Target_y value from dataset
2 y
```

Out[25]:

```
0
          0
1
          0
2
          0
3
          0
4
          0
32556
          0
32557
32558
          1
32559
          0
32560
Name: income, Length: 32561, dtype: int64
```

In [26]:

```
1 ## Checking shapes of both x and y value.
2 x.shape , y.shape
```

Out[26]:

```
((32561, 14), (32561,))
```

Label encoding on the categorical features

- If the data of feature is continous or discrete (numbers) then we dont have to do anything and we can directly standardize and train the model
- But when the data is categorical (string) then we have to perform encoding, it means convert it to 0 or 1, then only we can train the model

In [27]:

```
## Importing labelEncoder
from sklearn.preprocessing import LabelEncoder
labelencoder_x = LabelEncoder()
```

In [28]:

```
## Fitting Label Encoding in all categorical Feature.
x[categorical_fea] = x[categorical_fea].apply(LabelEncoder().fit_transf
```

In [29]:

```
1 ## cheking top 5 rows of dataset.
2 x.head()
```

Out[29]:

	age	workclass	fnlwgt	education	education_num	marital_status	occ
0	78.0	3	77053.0	11	9	6	
1	78.0	3	132870.0	11	9	6	
2	66.0	3	186061.0	15	10	6	
3	54.0	3	140359.0	5	4	0	
4	41.0	3	264663.0	15	10	5	
4							•

In [30]:

```
1 ## Checking top 5 rows of dataset.
2 y .head()
```

Out[30]:

Name: income, dtype: int64

Train-Test Split

In [31]:

```
## Importing Train_test_Split and GridSearchCV library
from sklearn.model_selection import train_test_split,GridSearchCV
x_train , x_test , y_train , y_test = train_test_split(x,y,test_size=0.
```

In [32]:

- 1 ## Checking both shapes of x and y training dataset
- 2 x_train.shape,y_train.shape

Out[32]:

((21815, 14), (21815,))

In [33]:

- 1 ## Checking both shapes of x and y training dataset
- 2 x_test.shape,y_test.shape

Out[33]:

((10746, 14), (10746,))

MODEL Building

Decision Tree

In [34]:

1 report = []

```
In [35]:
 1 ## Importing Decision Tree Classifier
    from sklearn.tree import DecisionTreeClassifier
   model = DecisionTreeClassifier()
In [36]:
   ## fitting of Decision TRee Classifier model for Training dataset
 2 model.fit(x train,y train)
Out[36]:
▼ DecisionTreeClassifier
DecisionTreeClassifier()
In [37]:
   ## checking Model score for Decision_TRee_Classifier model for Testing
 2 model.score(x test,y test)
Out[37]:
0.811930020472734
In [38]:
 1 ## Model Prediction for decision tree classifier.
   dt pred = model.predict(x test)
In [41]:
 1 | ## Importing accuracy score library
 2 from sklearn.metrics import accuracy score
```

```
## Importing accuracy_score library
from sklearn.metrics import accuracy_score
d_acc = accuracy_score(y_test,dt_pred)
report.append(['Decision Tree',d_acc])
d_acc
```

Out[41]:

0.811930020472734

Hyperparameter Tunning of decision Tree with GridSearchCV

```
In [42]:
```

```
## Selecting Hyperparameter Tuninng for gridSearchCV
grid_param = {
    'criterion':['gini','entropy'],
    'max_depth': range(2,32,1),
    'min_samples_leaf': range(1,10,1),
    'min_samples_split': range(2,10,1),
    'splitter':['best','random']
}
```

In [43]:

```
1 dt_grid=GridSearchCV(estimator=model, param_grid= grid_param, cv = 3, n
```

In [45]:

```
1 ## Fitting decision_tree_classifier Model in training dataset
2 dt_grid.fit(x_train,y_train)
```

Out[45]:

```
► GridSearchCV
► estimator: DecisionTreeClassifier
► DecisionTreeClassifier
```

In [46]:

```
## choosing best Hyperparameter Tuining for Decision_Tree_Classifier.
dt_grid.best_params_
```

Out[46]:

```
{'criterion': 'gini',
 'max_depth': 8,
 'min_samples_leaf': 9,
 'min_samples_split': 8,
 'splitter': 'best'}
```

In [47]:

In [48]:

```
## Fitting best Hyperparameter for Decision_tree_Classifier
dt_best_para.fit(x_train,y_train)
```

Out[48]:

```
DecisionTreeClassifier

DecisionTreeClassifier(criterion='entropy', max_depth=8, min
_samples_leaf=3)
```

In [49]:

```
1 ## Prediction
2 dt_best_para_pred2 = dt_best_para.predict(x_test)
```

In [50]:

```
print("Accuracy Before Hyper-parameter tunning:",accuracy_score(y_test,
print("Accuracy after Hyper-parameter tunning:",accuracy_score(y_test,d)
```

Accuracy Before Hyper-parameter tunning: 0.811930020472734 Accuracy after Hyper-parameter tunning: 0.8535268937278988

In [51]:

```
hd_acc = accuracy_score(y_test,dt_best_para_pred2)
report.append(['Decision Tree Hyperparameter tunned',hd_acc])
```

Random Forest Classifier

In [52]:

```
## Importing RandomForestClassifier model
from sklearn.ensemble import RandomForestClassifier
f_model = RandomForestClassifier()
```

```
In [53]:
```

```
1 ## Fitting RandomForestClassifier model in training dataset
2 rf_model.fit(x_train,y_train)
```

Out[53]:

```
RandomForestClassifier
RandomForestClassifier()
```

In [54]:

```
1 ## Prediction
2 y_pred_rf = rf_model.predict(x_test)
```

In [55]:

```
# Before Hyper-parameter tunning

rf_acc = accuracy_score(y_test,y_pred_rf)

report.append(['Random Forest',rf_acc])

accuracy_score(y_test,y_pred_rf)
```

Out[55]:

0.8566908617159873

Hyperparameter Tunning of Random Forest Classifier with RandomizedSearchCV

In [56]:

```
1 Ran_param = {
2    "max_depth" : [5,8,15,None,10],
3    'max_features' : [3,'auto'],
4    'min_samples_split' : [2,8,15,20],
5    'n_estimators' : [50,100,200,500]
6 }
```

```
In [57]:
```

In [58]:

```
1 random.fit(x_train,y_train)
```

Fitting 3 folds for each of 100 candidates, totalling 300 fits

Out[58]:

```
► RandomizedSearchCV
► estimator: RandomForestClassifier
► RandomForestClassifier
```

In [60]:

```
1 random.best_params_,random.best_estimator_
```

Out[60]:

In [61]:

```
In [62]:
```

```
1 random.best params.fit(x train,y train)
```

Out[62]:

```
RandomForestClassifier

RandomForestClassifier(max_features=3, min_samples_split=15,
n_estimators=50)
```

In [63]:

```
1 y_pred_rf_bestpara = random.best_params.predict(x_test)
```

In [64]:

```
print("Accuracy Before Hyper-parameter tunning:",accuracy_score(y_test,
print("Accuracy after Hyper-parameter tunning:",accuracy_score(y_test,d)
```

Accuracy Before Hyper-parameter tunning: 0.811930020472734 Accuracy after Hyper-parameter tunning: 0.8535268937278988

In [95]:

```
hd_acc = accuracy_score(y_test,y_pred_rf_bestpara)
report.append(['Random Forest Hypertunned',hd_acc])
accuracy_score(y_test,y_pred_rf_bestpara)
```

Out[95]:

0.8606923506420994

Bagging Classifier using SVC

In [66]:

```
from sklearn.svm import SVC
from sklearn.ensemble import BaggingClassifier
from sklearn.datasets import make_classification

model_bag_svc = BaggingClassifier(base_estimator=SVC(), n_estimators =
```

```
In [67]:
```

```
1 model_bag_svc.fit(x_train,y_train)
```

Out[67]:

```
BaggingClassifierbase_estimator: SVCSVC
```

In [88]:

```
1 y_pred_bag = model_bag_svc.predict(x_test)
```

In [89]:

```
bg_acc = accuracy_score(y_test, y_pred_bag)
report.append(['Bagging Classifier using SVC',bg_acc])
accuracy_score(y_test, y_pred_bag)
```

Out[89]:

0.7949934859482598

Voting Classifier

In [72]:

```
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier, VotingClassifier

clf1 = LogisticRegression(multi_class= 'multinomial',random_state=1)
clf2 =RandomForestClassifier(n_estimators= 50, random_state=1)
clf3 = GaussianNB()
eclf1 = VotingClassifier(estimators= [('lr',clf1),('rf',clf2),('gnb',cl
```

In [73]:

```
1 eclf1.fit(x_train,y_train)
```

Out[73]:

In [74]:

```
1 y_pred_votting = eclf1.predict(x_test)
```

In [75]:

```
vc_acc = accuracy_score(y_test,y_pred_votting)
report.append(['Voting Classifier',vc_acc])
accuracy_score(y_test,y_pred_votting)
```

Out[75]:

0.8106272101246975

Extra Tree Classifier

In [76]:

```
from sklearn.ensemble import ExtraTreesClassifier
et_model = ExtraTreesClassifier()
```

In [77]:

```
1 et_model.fit(x_train,y_train)
```

Out[77]:

```
* ExtraTreesClassifier
ExtraTreesClassifier()
```

```
In [78]:
```

```
1 y_pred_et = et_model.predict(x_test)
```

In [79]:

```
1 et_acc = accuracy_score(y_test,y_pred_et)
2 report.append(['Extra Trees Classifier', et_acc])
3 accuracy_score(y_test,y_pred_et)
```

Out[79]:

0.8417085427135679

Hyperparameter tunning of ET_model by RandomSearchCV

In [80]:

```
1 Ran_param = {
2    "max_depth" : [5,8,15,None,10],
3    'max_features' : [3,'auto'],
4    'min_samples_split' : [2,8,15,20],
5    'n_estimators' : [50,100,200,500]
6 }
```

In [81]:

```
In [82]:
    random.fit(x train,y train)
Fitting 3 folds for each of 100 candidates, totalling 300 fit
S
Out[82]:
         RandomizedSearchCV
 ▶ estimator: ExtraTreesClassifier
       ▶ ExtraTreesClassifier
In [83]:
 1 random.best params ,random.best estimator
Out[83]:
({'n_estimators': 500,
  'min_samples_split': 15,
  'max_features': 3,
  'max_depth': None},
 ExtraTreesClassifier(max features=3, min samples split=15, n
_estimators=500))
In [84]:
    et_best_para = ExtraTreesClassifier(max_depth= None, max_features= 3 ,
                             n estimators=500)
 2
```

In [85]:

```
1 et_best_para.fit(x_train,y_train)
```

Out[85]:

```
ExtraTreesClassifier

ExtraTreesClassifier(max_features=3, min_samples_split=15, n
_estimators=500)
```

```
In [86]:
    y pred et = et best para.predict(x test)
In [87]:
 1 et_acc_ht = accuracy_score(y_test,y_pred_et)
 2 report.append(['Extra Tress Classifier Hypertuned', et_acc_ht])
   accuracy score(y test,y pred et)
Out[87]:
0.8563186301879769
In [96]:
 1 report
Out[96]:
[['Decision Tree', 0.811930020472734],
 ['Decision Tree', 0.811930020472734],
 ['Decision Tree Hyperparameter tunned', 0.8535268937278988],
 ['Random Forest', 0.8566908617159873],
 ['Random Forest Hypertunned', 0.8535268937278988],
 ['Voting Classifier', 0.8106272101246975],
 ['Extra Trees Classifier', 0.8417085427135679],
 ['Extra Tress Classifier Hypertuned', 0.8563186301879769],
 ['Bagging Classifier using SVC', 0.7949934859482598],
 ['Random Forest Hypertunned', 0.8606923506420994]]
In [97]:
    i report = pd.DataFrame(report, columns = ['Classifier', 'Accuracy'])
```

In [98]:

```
1 i_report.sort_values(by = "Accuracy",ascending = False)
```

Out[98]:

	Classifier	Accuracy
9	Random Forest Hypertunned	0.860692
3	Random Forest	0.856691
7	Extra Tress Classifier Hypertuned	0.856319
2	Decision Tree Hyperparameter tunned	0.853527
4	Random Forest Hypertunned	0.853527
6	Extra Trees Classifier	0.841709
0	Decision Tree	0.811930
1	Decision Tree	0.811930
5	Voting Classifier	0.810627
8	Bagging Classifier using SVC	0.794993

Summary

• Random Forest Hypertunned gives the best accuracy

Store the Best model (Random Forest Hypertunned) in a pickle file

In [101]:

```
import pickle
pickle.dump(y_pred_rf_bestpara, open('randomforest_hupertuned.sav','wb'
```

THANK YOU

In []:

1