سكشر ريا في و الحر ٢

اع الم (عيد الأع)

" Elementary Pn "

FX-991ES Plus Two way power

الدالة اللوغاريسية []

F(Z) s Ln(Z)= Ln(r) + i (0 ± 2 nT)

* Evaluate

[] Ln(z) 5 Ln (V2 + i V6)

V 3 V2+6 = 5 V8

 $\theta = \tan^{1}\left(\frac{\sqrt{\delta}}{\sqrt{2}}\right) = \frac{\pi}{3}$

Ln(2) 5 Ln(V8) + i (= 2 nT)

 $\boxed{2}$ $\stackrel{i}{3}$ $\stackrel{i}{5}$ $\stackrel{i}{6}$ $\stackrel{i}{6}$

= Cos (Ln(3)) + i sin (Ln(3))

fr -- analytic

$$P(z) = (u_r + i V_r) = e^{i\theta} = -\frac{1}{r} = e^{i\theta}$$

$$= \frac{1}{r e^{i\theta}} \quad \text{where } r = z$$

$$P(z) = \frac{1}{r} = 4$$

$$\sin z = \frac{iz - iz}{e - e}$$

$$2i$$

$$e^{iz}$$

$$\sinh z = \frac{z - z}{e - e^{-z}}$$

$$Coshz = \frac{z - z}{2}$$

Cosh - sinh s1

sinh (A+B) = sinhA CoshB+ CoshA sinhB

Cosh (A+B) & Cosh A Cosh B+ sinh A sinh B

I show that: Isinzl2 5 sin x + sinhy

sol

sin(z) = sin(x+iy)

= sin(x) Cos(iy) + Cos(x) sin(iy)

s sin(x) * Coshy ++ Cos(x) sinh(y)

Isinzle = sinx coshy + cosx sinhy

A sec 6

$$Cshz = \frac{z}{e} + \frac{1}{2} = \frac{z}{2} + \frac{1}{2} = 1$$

$$\frac{z}{e-1+e^{-z}}=0$$

$$\frac{2}{e} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$

$$\frac{z}{e} = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$

$$z = \frac{1}{2} - i \frac{\sqrt{3}}{2}$$

$$z = \frac{1}{2} - i \frac{\sqrt{3}}{2}$$

$$z = 2 - i \frac{\sqrt{3}}{2$$

$$V = 1 (\Theta = \frac{T}{3})$$
 $Y = 1 (\Theta = 2T - \frac{T}{3})$

Z= dati) + i(= 12 ATT) Z=

$$Z_{1}=$$
 $L_{n(1)}+i\left(\frac{\pi}{3}\pm,2n\pi\right)$
 $Z_{2}=$ $L_{n(1)}+i\left(2\pi-\frac{\pi}{3}\pm2n\pi\right)$

$$z = \sinh \omega = \frac{e^{\omega} - e^{\omega}}{2}$$

$$-2z-e^{\omega}=0$$

$$W = 2Z \pm \sqrt{4z^2 + 4}$$
 $= Z \pm \sqrt{2} \pm 1$

$$w = Ln(z \pm \sqrt{z^2 + 1})$$

* axiom of complement:

II sugeno

$$C = \frac{1-a}{1+2a}$$

-1 < 2 < 00

0 < w < 00

* show that sugeno, Yager satisfied Complement axioms.

solution

ے الد کتور قال یکی انان تذبت اول شرطین.

دورر را ع

-3 Sugeno $C = \frac{1-a}{1+2a}$

Dc(0)=1 (c(1)50

Ø Let a < b → -a 7 - b

1-a71-b -= (1)

aえくbみ => 1+a2<1+b2

 $\frac{1}{1+a\lambda} - \frac{1}{1+b\lambda} = 0$

1-a 7 1-b 1+a2 7 1+b2

c(a) 7 c(b) #

18 sec 6

197 500

$$\tilde{A}_{0.4}$$
 $= \frac{0.995}{1} + \frac{0.979}{2} + \frac{0.8}{3}$

at
$$w = 0.5$$
 $C = (1 - a.5)^2$

at
$$w=1$$
 $C=(1-a)$

-> fuzzy unions (3-norms)

AUB

*axioms of union

[] S(1,1) s1, S(0,a) = a

25 s(a,b) = s(b,a)

3 a < à , b 2 b => (a,b) 2 s (à,b)

[4] s (s(a,b)), c) = s (a, s(b,c))

[Domb

 $s(a,b)s - \frac{1}{1+[(\frac{1}{a}-1)^{-2}+(\frac{1}{b}-1)^{-2}]^{\frac{1}{2}}}$

Dubois Prade

S(a,b) = a+b-ab-min(a,b,1-x)

max(1-a),1-b, x)

TIT Sec6

26 % 3 Yager s(aib) smin[1, (a + bw) w] 0 < w < x * show Domb satisfied union axioms. 5(1,1) 31 , 5(00) 5 S(0,a) 5 1+ ((-1,-2)-1/2 1+ 1/a-1 >> s(a,b) 5 s (b,a) 1+[(-1)-2]-1+[(-1)-2]-2 1+[(-1)-2]-2 1+[(-1)-2]-2 » a < ā

112 sec 6

$$(\frac{1}{a} - 1)^{2} < (\frac{1}{a} - 1)^{2} = 0$$

$$b < b$$

$$(\frac{1}{a} - 1)^{2} + (\frac{1}{b} - 1)^{-2} < (\frac{1}{b} - 1)^{-2} + (\frac{1}{b} - 1)^{-2}$$

$$[(\frac{1}{a} - 1)^{2} + (\frac{1}{b} - 1)^{-2}]^{\frac{1}{a}} = [(\frac{1}{a} - 1)^{2} + (\frac{1}{b} - 1)^{-2}]^{\frac{1}{a}}$$

$$1 + \frac{1}{b} = \frac{1}{b}$$

$$1 +$$

1131 Sec6

$$\frac{1}{1+|S|} = \frac{1}{8} \left(s(a_1b), c \right) = \frac{1}{1+\left[\left(\frac{1}{2}(a_1b) - 1\right)^{-2} + \left(\frac{1}{2}(a_1b)^{-1}\right)^{-2} + \left(\frac{1}{2}(a_1b$$

$$RHS = S(a, S(b,c))$$

$$= \frac{1}{1 + \left[\frac{1}{a} - \frac{1}{a}\right]^{2} + \left(\frac{1}{s(b,c)} - \frac{1}{a}\right]^{-\frac{1}{2}}}$$

$$= S(b,c) S = \frac{1}{1 + \left[\frac{1}{b} - \frac{1}{a}\right]^{2} + \left(\frac{1}{c} - \frac{1}{a}\right)^{-\frac{1}{2}}}$$

$$= \frac{1}{S(b,c)} S = \frac{1}{1 + \left[\frac{1}{b} - \frac{1}{a}\right]^{-\frac{1}{2}}} + \left(\frac{1}{c} - \frac{1}{a}\right)^{-\frac{1}{2}}$$

$$= \frac{1}{S(b,c)} S = \frac{1}{1 + \left[\frac{1}{b} - \frac{1}{a}\right]^{-\frac{1}{2}}} + \left(\frac{1}{c} - \frac{1}{a}\right)^{-\frac{1}{2}}}$$

$$= \frac{1}{S(b,c)} S(a,S(b,c)) S = \frac{1}{1 + \left[\frac{1}{a} - \frac{1}{a}\right]^{-\frac{1}{2}}} + \left(\frac{1}{b} - \frac{1}{a}\right)^{-\frac{1}{2}}}$$

$$= \frac{1}{1 + \left[\frac{1}{a} - \frac{1}{a}\right]^{-\frac{1}{2}}} + \left(\frac{1}{b} - \frac{1}{a}\right)^{-\frac{1}{2}}}$$

$$= \frac{1}{1 + \left[\frac{1}{a} - \frac{1}{a}\right]^{-\frac{1}{2}}} + \left(\frac{1}{b} - \frac{1}{a}\right)^{-\frac{1}{2}}}$$

$$= \frac{1}{1 + \left[\frac{1}{a} - \frac{1}{a}\right]^{-\frac{1}{2}}}$$

$$= \frac{1}{1 + \left[\frac{1}$$