Multiplier Circuits

Conventional and Approximate Designs

Dr. Hassaan Saadat
Dr. Darshana Jayasinghe
Prof. Sri Parameswaran

Lecture Outline

- Quick Recall
 - Number-representation in computers
 - Arithmetic circuits in computers
 - With the example of Half-adder, Full-adder and Ripple-carry adder
- Conventional Multiplier Circuits
- Approximate Arithmetic Units
 - What are they?
 - Why are they needed?
- Approximate log-based multipliers and its variants

Quick Recall: Number Representation in Computers

- Modern computer are digital circuits where each nodes can have ony two states
 - High/Low, or ON/OFF

 The mathematical binary number system is naturally suited for computers

Numbers are represented in binary format

Combination of ones and zeros – called bits

Quick Recall: Number Representation in Computers

Numbers are represented in binary format

Combination of ones and zeros – called bits

- Positional number system
 - Position of a bit determines its weight in the value of the number
 - Value of an unsigned N-bit number $d_{N-1}d_{N-2}\dots d_1d_0$

$$value(A_{us}) = \sum_{i=0}^{N-1} 2^i d_i$$

- Other representation exists: including for signed, fractional numbers
 - Beyond the scope of this lecture
 - Further resources for interested students
 - https://en.wikipedia.org/wiki/Computer number format
 - https://computing-concepts.cs.uri.edu/wiki/Data Representation For Computing
 - https://en.wikipedia.org/wiki/Signed_number_representations
 - https://www.stat.berkeley.edu/~nolan/stat133/Spr04/chapters/representations.pdf

- Digital logic circuits
 - Mimic the operations of mathematical binary number system

- Digital logic circuits
 - Mimic the operations of mathematical binary number system
- Consider binary addition of two bits
 - 4 possible cases

- Digital logic circuits
 - Mimic the operations of mathematical binary number system
- Consider binary addition of two bits
 - 4 possible cases

- Digital logic circuits
 - Mimic the operations of mathematical binary number system
- Consider binary addition of two bits
 - 4 possible cases

	0		0		1		1
+	0	+	1	+	0	+	1
0	0	0	1	0	1	1	0
С	S	С	S	С	S	С	S

- Digital logic circuits
 - Mimic the operations of mathematical binary number system
- Consider binary addition of two bits
 - 4 possible cases

Truth Table

Α	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- Digital logic circuits
 - Mimic the operations of mathematical binary number system
- Consider binary addition of two bits
 - 4 possible cases

Truth Table

Α	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- Similarly, consider addition of 3 bits
 - 8 possible cases

Truth Table

Cin	Α	В	С	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- Similarly, consider addition of 3 bits
 - 8 possible cases

Truth Table

Cin	Α	В	carry	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

What about addition of N-bit numbers?

What about addition of N-bit numbers?

What about addition of N-bit numbers?

Quick Recall: Arithmetic circuits

- Resource consumption and speed issues
- Logic Area:
 - Number of Gates/logic elements
 - In cases of FPGA, logic elements are CLB LUTs
 - https://www.xilinx.com/support/documentation/user_guides/ug4
 74 7Series CLB.pdf

- Speed:
 - For each logic element, its output appears after a certain delay
 - The speed of the circuit depends on the longest path of logic elements: called as the critical path

Lets analyse the 4-bit RCA circuit

- Logic area: (N-1) FA + 1 HA
- Delay: delay of (N-1) FA + delay of HA

Variations in the design

- Carry look-ahead adder
 - Improved critical path, more area
 - https://en.wikipedia.org/wiki/Carry-lookahead_adder
- Bit-serial adder
 - N cycles
 - RCA and CLA are called parallel adders
 - Smaller area and critical path
 - https://en.wikipedia.org/wiki/Serial binary adder

Multipliers

Binary Multiplication

Consider binary multiplication from high-school

Binary Multiplication

- Two steps:
 - Generate partial product
 - Add/Accumulate them

Binary multiplier Circuit

- Array multiplier
 - O(N²) area and delay complexity

Variations in the designs

- Wallace tree reduction
 - https://en.wikipedia.org/wiki/Wallace_tree

- Dadda tree reduction
 - https://en.wikipedia.org/wiki/Dadda_multiplier

Good News!!

- Modern ASIC/FPGA synthesis tools are smart
 - recognize the + * operators in Verilog/VHDL
 - build the circuit behind etc using available logic elements

- Division and Mod are not always supported
 - You may need IP-core
 - https://en.wikipedia.org/wiki/Semiconductor intellectual property core

Approximate Arithmetic

Use Ripple carry adder for understanding

Then move to approximate multipliers

Motivation for Approximate Arithmetic

- Multiplication/addition dominant operations in many applications
 - For example, Deep neural networks

 Their resource-consumption have direct impact on overall resource-consumption of the system

How can we improve it?

Motivation for Approximate Arithmetic

- RCA/CLA Adder?
- Array multipliers / Wallace / Dadda?
- Essentially all aim to be exact
 - correct for all possible binary input with no error

What if we can allow certain errors?

What if we can allow certain errors?

Another dimension in the design space

- New possibility of design points
- Gives us further margins for efficiency improvements

Error resilient applications

You might think errors are not good?

Error resilient applications

- You might think errors are not good?
- Some algorithms are inherently error resilient

- Reasons
 - Algorithm are designed to treat noisy inputs from sensors
 - Treat errors as noise and suppress them

Minimal impact on output results

Approximate Adder

• Lets understand this concept with a basic RCA adder

Approximate Adder

• Delay: 6 Full-adders

Approximate Adder

• Delay: 6 Full-adders

- Errorneous output for some input combinations (Max Error = 2³)
- Delay: 3 Full-adders → Twice as fast.. always !!

Approximate Arithmetic Units

- Resource-efficient approximate arithmetic units
 - Hardware logic design is modified
 - Simple and efficient design ↔ Erroneous output

- Primary aim when designing approximate arithmetic units
 - Small error for more resource-efficiency
 - A designs that can offer us the best trade-offs

Approximate Log-based Multipliers

- Multiplier circuits are more resource-hungry than adders
- Lets recall the log property
 - Log(AxB) = log(A) + log(B)
- So we can use

$$AxB = antilog (log(A) + log(B))$$

- Reduces to addition ©
- But, need to compute log and antilog 🕾
- Solution: compute log-antilog approximately !!
 - Results in approximate log based multiplier

Basic scheme

Mitchell's Multiplier (MA)

- 1. Approximate log of inputs
 - Integer part: Position of leading-one (k_1, k_2)
 - Fractional part: Rest of the bits (x_1, x_2)

Basic scheme

Mitchell's Multiplier (MA)

- 1. Approximate log of inputs
 - Integer part: Position of leading-one (k_1, k_2)
 - Fractional part: Rest of the bits (x_1, x_2)

$$k_1 = 11$$

 $x_1 = 0.011$

$$log (B_1) = k_1 + x_1$$

= 11.011

$$k_2 = 110$$

 $x_2 = 0.000010$

$$\log (B_2) = k_2 + x_2$$
= 110.000010

Basic scheme

Mitchell's Multiplier (MA)

- 1. Approximate log of inputs
 - Integer part: Position of leading-one (k_1, k_2)
 - Fractional part: Rest of the bits (x_1, x_2)
- 2. Add

$$log (B_1) = k_1 + x_1$$

= 11.011

$$log (B_2) = k_2 + x_2$$

 $\leq 110,000010$

• Basic scheme

Mitchell's Multiplier (MA)

1. Approximate log of inputs

- Integer part: Position of leading-one (k_1, k_2)
- Fractional part: Rest of the bits (x_1, x_2)
- 2. Add
- 3. Approximate antilog of the sum
 - Append 1 to the left of fractional part
 - Scale w.r.t the integer part

$$log (B_1) = k_1 + x_1$$
 $log (B_2) = k_2 + x_2$
= 11.011 = 110.000010

1001 .0110100

1.0110100

1011010000 = (720)₁₀ Accurate: 66x11 = (726)₁₀

Basic scheme

Mitchell's Multiplier (MA)

1. Approximate log of inputs

- Integer part: Position of leading-one (k_1, k_2)
- Fractional part: Rest of the bits (x_1, x_2)

2. Add

3. Approximate antilog of the sum

- Append 1 to the left of fractional part
- Scale w.r.t the integer part

Mathematically

$$approx_product = \begin{cases} 2^{k_1 + k_2} (1 + x_1 + x_2), & x_1 + x_2 < 1 \\ 2^{k_1 + k_2 + 1} (x_1 + x_2), & x_1 + x_2 \ge 1 \end{cases}$$

 k_1 , k_2 : position of leading-one in B_1 and B_2 x_1 and x_2 : fractional part of the log values

Based on the elementary log-multiplication property: $\log_b(AB) = \log_b A + \log_b B$

Mitchell's Multiplier (MA)

1. Approximate log of inputs

- Integer part: Position of leading-one (k_1, k_2)
- Fractional part: Rest of the bits (x_1, x_2)
- 2. Add

3. Approximate antilog of the sum

- Append 1 to the left of fractional part
- Scale w.r.t the integer part

Mathematically

$$approx_product = \begin{cases} 2^{k_1 + k_2} (1 + x_1 + x_2), & x_1 + x_2 < 1 \\ 2^{k_1 + k_2 + 1} (x_1 + x_2), & x_1 + x_2 \ge 1 \end{cases}$$

 k_1 , k_2 : position of leading-one in B_1 and B_2 x_1 and x_2 : fractional part of the log values

Problem in MA: High and Biased Error

- Error always has the same sign
 - Can we do error-correction with minimal overhead?
- Observations
 - 1. Error profile is replicated in every power-of-two (pair of k_1 and k_2)
 - 2. Error profile is scaled by $2^{k_1+k_2}$

Proposed Error Correction: Idea

• Compute mean of error within each interval (k_1 and k_2)

$$average_{error} = \frac{1}{(1-0)} \frac{1}{(1-0)} \int_{0}^{1} \int_{0}^{1} Error. dx_{2}. dx_{1} = \underline{(0.08333)} \left(\frac{2^{k_{1}+k_{2}}}{2^{k_{1}+k_{2}}} \right)$$

Add to the approximate product

$$apx_product = \begin{cases} 2^{k_1 + k_2} (1 + x_1 + x_2), & x_1 + x_2 < 1 \\ 2^{k_1 + k_2 + 1} (x_1 + x_2), & x_1 + x_2 \ge 1 \end{cases} + \underbrace{(0.08333)} \times 2^{k_1 + k_2}$$

Improved Design - MBM

- Key features
 - Needs only
 - A 7-bit adder
 - A 2x1 mux
 - Single error correction term
 - Independent of the value of *k*
 - Independent of integer size N

Results – 16-bit Multipliers

- Comparison with state-of-the-art approximate integer multipliers
- Grey line outlines optimal points
- MBM-t gives Pareto optimal points in all!!

Experiment Details:

- RTL synthesis using TSMC 45nm at 1GHz
- Error analysis using Monte Carlo simulations
 - Error metrics compared with accurate integer multiplier
 - Error Bias → Mean of Relative Errors
 - Mean Error → Mean of Absolute Relative Errors

Approximate Multiplier: REALM

Quick Overview and Results

REALM Overview

- Number of partitions M affects the error as well as the hardware cost
- M is an error-configuration knob

Partition each power-of-two-interval into MxM segments

Apply error-correction on each segment separately

REALM – Hardware design

REALM Results

REALM gives Pareto-optimal design points

References

- Hassaan Saadat, Haseeb Bokhari, Sri Parameswaran, "Minimally Biased Multipliers for Approximate Integer and Floating-Point Multiplication," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018. DOI: https://doi.org/10.1109/TCAD.2018.2857262
- Hassaan Saadat, Haris Javaid, Aleksandar Ignjatovic, Sri Parameswaran, "REALM: Reduced-Error Approximate Log-based Integer Multiplier," 2020 Design, Automation and Test in Europe Conference and Exhibition (DATE), 2020. DOI: https://doi.org/10.23919/DATE48585.2020.9116315

Questions

Can approximate multipliers be used in LWE cryptography?

 Can you come up with an approximation scheme better suited for this?

