STA 235 - Prediction II: Classification and Regression Trees (CART)

Spring 2021

McCombs School of Business, UT Austin

Some reminders

Prediction Project has been posted

Remember: Teams of two (max)

Two tasks: Binary outcome (classification) and continuous outcome (regression)

Need to use two (2) different methods for each

Make sure you read the instructions!

Where we've been...

- Talking about bias vs variance trade-off.
- Model selection and regularization: Stepwise selection, Ridge and Lasso regression.
- K-nearest neighbors

... and where we're going.

- Continue on our **prediction** journey:
 - Decision Trees: Classification and Regression Trees (CART)
- Participation: Activity in R.

Trees, trees everywhere!

Let's start with a simple example

Remember our Disney+ example?

Predict who will cancel their subscription

We have some **information**:

- city: Whether the customer lives in a big city or not
- female: Whether the customer is female or not
- age: Customer's age (in years)
- logins: Number of logins to the platform in the past week.
- mandalorian: Whether the person has watched the Mandalorian or not.
- unsubscribe: Whether they canceled their subscription or not.

The prediction task: Classification

- Our outcome is binary, so this is a classification task.
- Let's start looking at two variables:

City & Mandalorian

Which one do you think is a better predictor?

Let's look at the data!

City vs. Mandalorian

```
disney <- read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/Claudisney.train <- disney %>% dplyr::filter(train==1)

#Whole data
table(disney.train %>% dplyr::select(unsubscribe))
table(disney.train %>% dplyr::select(city, mandalorian))
```

Subscribers	V/\$	Hngu	hecrihere
2002CHDEI2	٧5	OH5u	N2011NG12

Unsubscribe	Freq
0	2900
1	2100

2x2 Frequency table

	Mandalorian				
City	No Yes				
0	212	500			
1	1253	3035			

City vs. Mandalorian

	Subscribers			Unsubscribers		
Mandalorian			Mandalorian			
City	0	1	City	0	1	
0	173	155	0	39	345	
1	1067	1505	1	186	1530	

Let's split by city first...

Subscribers		Unsubscribers				
Mandalorian				Mandalorian		
City	0	1		City	0	1
0	173	155		0	39	345
1	1067	1505		1	186	1530

2900 S 2100 U

Let's split by city first...

Subscribers			Unsubscribers			
Mandalorian				Mandalorian		
City	0	1		City	0	1
0	173	155		0	39	345
1	1067	1505		1	186	1530

Let's split by city first...

Subscribers		Unsubscribers				
Mandalorian			Mandalorian			
City	0	1		City	0	1
0	173	155		0	39	345
1	1067	1505		1	186	1530

$$Pr[Correct \mid city = 0] = ?$$

$$\Pr[\text{Correct} \mid \text{city} = 0] = (\frac{328}{328 + 384})^2 + (\frac{384}{328 + 384})^2$$

$$\Pr[\text{Correct} \mid \text{city} = 0] = 0.503$$

$$\Pr[ext{Correct} \mid ext{city} = 1] = (rac{2572}{2572 + 1716})^2 + (rac{1716}{2572 + 1716})^2$$
 $\Pr[ext{Correct} \mid ext{city} = 1] = 0.52$

$$\begin{aligned} \Pr[\text{Correct}| = & \Pr[\text{Correct}| \text{city} = 0] \times \Pr[\text{city} = 0] + \\ & \Pr[\text{Correct} \mid \text{city} = 1] \times \Pr[\text{city} = 1] = \\ = & 0.5 \times \frac{328 + 324}{5000} + 0.52 \times \frac{2572 + 1716}{5000} = \\ = & 0.518 \end{aligned}$$

And we can do the same for mandalorian

$$\begin{aligned} \Pr[\text{Correct}| = & \Pr[\text{Correct}| \text{mandlr} = 0] \times \Pr[\text{mandlr} = 0] + \\ & \Pr[\text{Correct} \mid \text{mandlr} = 1] \times \Pr[\text{mandlr} = 1] = \\ = & 0.74 \times \frac{1240 + 225}{5000} + 0.502 \times \frac{1660 + 1875}{5000} = \\ = & 0.572 \end{aligned}$$

Poll Time!

Which variable would you choose for prediction?

Choosing predictors

• From the previous exercise, we can see that **using mandalorian yields a higher accuracy** (0.57 vs. 0.52)

But we have more variables

How do we choose?

Decision Trees

- Main idea → flowchart!
- We will stratify (or segment) the predictor space into regions (ISLR, Ch. 8).
- Similar to KNN, we assign the **mean** or **mode** of the training obs in the region.

Main advantages

Simple interpretation

Main disadvantages

Overfitting

Structure of Decision Trees

Structure:

- Root node
- Internal nodes
- Leaves

Classification Trees

Classification Tree

- Outcome is **categorical** (e.g. binary)
- ullet Previous example: Chose splitting variable based on $\Pr(\operatorname{Correct})$
- What if we just assigned **based on the proportion in each leave?** (i.e. similar to KNN)

Let's go back to our drawing

2900 S 2100 U

- $Pr[U \mid Leaf 1] = 0.15$
- $Pr[U \mid Leaf 2] = 0.53$

Let's go back to our drawing

2900 S 2100 U

- $Pr[U \mid Leaf 1] = 0.15$
- $Pr[U \mid Leaf 2] = 0.53$

Classification error: 42%

Measures for accuracy

• The classification error rate is **not very sensitive for tree-growing**.

Poll time!

What is the main problem if our measure is not very sensitive for tree-growing?

Measures for accuracy

- The classification error rate is not very sensitive for tree-growing.
- Another measure is called Gini index:
 - Total variance across classes:

$$G = \sum_{k=1}^K {\hat p}_{mk} (1 - {\hat p}_{mk})$$

where \hat{p}_{mk} is the proportion of training obs in region m for class k.

In our previous example: `

$$G_{mandalorian=0} = \frac{1240}{1240 + 225} (1 - \frac{1240}{1240 + 225}) + \frac{225}{1240 + 225} (1 - \frac{225}{1240 + 225}) = 0.26$$

Poll time!

According to the Gini Index, is it better or worse to have a high p_{mk} ?

$$G = \sum_{k=1}^K {\hat p}_{mk} (1 - {\hat p}_{mk})$$

Ok, but how about including other variables?

Let's see how to do it in R!

```
library(rpart)
d.train <- disney.train %>% dplyr::select(mandalorian, city, unsubscribe)
set.seed(100)
m1 <- rpart(unsubscribe ~., data = d.train, method = "class", cp=-1)</pre>
```

Let's see how to do it in R!

```
library(rpart)
d.train <- disney.train %>% dplyr::select(mandalorian, city, unsubscribe)
set.seed(100)
m1 <- rpart(unsubscribe ~., data = d.train, method = "class", cp=-1)</pre>
```

Let's see how to do it in R!

```
library(rpart)
d.train <- disney.train %>% dplyr::select(mandalorian, city, unsubscribe)
set.seed(100)
m1 <- rpart(unsubscribe ~., data = d.train, method = "class", cp=-1)</pre>
```

Fully-grown tree

Poll time!

What do you think the percentages in the leaves represent?

Some parameters that might be important

- **cp**: Complexity parameter
 - Split must decrease the overall lack of fit by a factor of cp, or is not attempted.
 - Parameter for pruning the tree.
 - Higher cp, smaller the tree!

Some parameters that might be important

• minsplit: Min. number of obs in a node to attempt a split.

If we set minsplit to 1500...

If we don't set cp...

If we don't set cp...

m3\$cptable

```
## CP nsplit rel error xerror xstd
## 1 0.102381     0 1.0000000 1.00000000 0.01661898
## 2 0.000000     1 0.897619 0.9328571 0.01643695
## 3 -1.000000     3 0.897619 0.9328571 0.01643695
```

```
## CP nsplit rel error xerror xstd
## 1 0.102381 0 1.000000 1.000000 0.01661898
## 2 0.010000 1 0.897619 0.897619 0.01631851
```

How can we use this for selecting the size of our tree?

Basic Algorithm

- 1) Start at the root node
- 2) Split the parent node at covariate x_i to minimize the sum of child node impurities
 - 3) Assign training samples to new child nodes
- 4) Stop if leaves are pure or early stopping criteria is satisfied, else repeat step (1) and (2) for each new child nodes

Now it's your turn!

Instructions

- Using the code provided on the course's website:
 - Fit a classification tree using all the covariates

Interpret the tree. What is the optimal size?

What's the best cp?

Results

Regression Trees

Regression Trees

- Outcome is **continuous**
- Very similar to what we have seen with **classification trees**:
 - Predicted outcome is the **mean outcome for the leaf/region**.

In R is basically the same

Let's incorporate cross-validation!

```
library(caret)
set.seed(100)

mcv <- train(
  logins ~. - unsubscribe, data = disney.train
  method = "rpart",
  trControl = trainControl("cv", number = 10),
  tuneLength = 50
  )

plot(mcv)</pre>
```


Let's incorporate cross-validation!

```
library(caret)
set.seed(100)

tuneGrid <- expand.grid(cp = seq(0, 0.1, 0.005))

mcv <- train(
   logins ~. - unsubscribe, data = disney.train
   method = "rpart",
   trControl = trainControl("cv", number = 10),
   tuneGrid = tuneGrid
   )

plot(mcv)</pre>
```


Plot the tree

mcv\$finalModel

```
## n= 5000
##
## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 5000 66387.3700 4.806800
## 2) mandalorian>=0.5 3535 24633.5000 2.973409
## 4) city< 0.5 500 517.1580 0.322000 *
## 5) city>=0.5 3035 20022.2800 3.410214 *
## 3) mandalorian< 0.5 1465 1200.0180 9.230717
## 6) city< 0.5 212 132.2028 8.061321 *
## 7) city>=0.5 1253 728.8571 9.428571 *
```

Poll time!

What would the predicted value be for a customer who hasn't watched The Mandalorian and lives in a city?

mcv\$finalModel

```
## n= 5000
##
## node), split, n, deviance, yval
##  * denotes terminal node
##
## 1) root 5000 66387.3700 4.806800
## 2) mandalorian>=0.5 3535 24633.5000 2.973409
## 4) city< 0.5 500 517.1580 0.322000 *
## 5) city>=0.5 3035 20022.2800 3.410214 *
## 3) mandalorian< 0.5 1465 1200.0180 9.230717
## 6) city< 0.5 212 132.2028 8.061321 *
## 7) city>=0.5 1253 728.8571 9.428571 *
```

Remember that we care about predictions outside our training sample

• For predicting unsubscribe

```
disney.test <- disney %>% dplyr::filter(train=:
mclass <- train(
  factor(unsubscribe) ~., data = disney.train,
  method = "rpart",
  trControl = trainControl("cv", number = 10),
  tuneLength = 50
  )

pred.class <- mclass %>% predict(disney.test)
mean(pred.class==disney.test$unsubscribe)
```

For predicting logins:

```
pred.reg <- mcv %>% predict(disney.test)

RMSE(pred.reg, disney.test$logins)

## [1] 2.099631
```

Main takeaways of decision trees

Main advantages:

- Easy to interpret and explain (you can plot them!)
- Mirrors human decision-making.
- Can handle qualitative predictors (without need for dummies).

Main disadvantages:

- Accuracy not as high as other methods
- Very sensitive to training data (e.g. overfitting)

Next class

Use of decision trees as building blocks for **more** powerful prediction methods!

- Bagging
- Random Forests
- Boosting

References

- James, G. et al. (2013). "Introduction to Statistical Learning with Applications in R". Springer. Chapter 8.
- Ritvik Kharkar. (2019). "Decision Trees". Video materials from ritvikmath (YouTube).
- Starmer, J.. (2018). "Decision Trees". Video materials from StatQuest (YouTube).
- STDHA. (2018). "CART Model: Decision Tree Essentials"