TP 02-7-d Graficar y obtener la ecuación cartesiana

d)
$$\overrightarrow{\Phi}_4$$
: $[0, 2\pi] \times [0, H] \rightarrow \mathbb{R}^3 / \overrightarrow{\Phi}_4(u, v) = (\cos u, \sin u, v)$

$$\begin{cases} x = x(u, v) = \cos(u) \\ y = y(u, v) = \sin(v) \\ z = z(u, v) = v \end{cases}$$

Obsérvese que las componentes x y y, corresponden a la circunferencia $x^2 + y^2 = 1$, en el plano coordenado xy, es decir, z = 0.

La componente z = v, podría interpretarse como una altura,

Entonces $\overrightarrow{\Phi}_4$, en una primera aproximación intuitiva, sería en \mathbb{R}^3 , el cilindro $x^2 + y^2 = 1$, desde z = 0 hasta z = H.

Veamos en detalle, cuál es el gráfico de $\overrightarrow{\Phi}_4$ para el dominio dado $[0, 2\pi] \times [0, H]$

Si dejamos libre a u y fijo v, resulta lo siguiente:

 $u \in [0, 2\pi]$ para cada $v(fijo) \in [0, H]$, la ecuación

 $\vec{\alpha}(u) = \left(\cos(u), \ sen(u), \ \underbrace{v}_{cte}\right)$, corresponde a una circunferencia horizontal paralela al plano

coordenado xy, o al plano z=0, de radio1, ubicada con respecto a z, entre $0 \le z \le H$, más precisamente en z=H.

Si ahora dejamos libre a v y fijo u, resulta lo siguiente:

 $v \in [0, H]$ para cada $u(fijo) \in [0,2\pi]$, la ecuación

 $\vec{\beta}(v) = \left(\underbrace{\cos(u)}_{cte}, \underbrace{sen(u)}_{cte}, v\right)$, corresponde a un segmento de recta vertical, paralelo al eje z, desde

z = 0 hasta z = H

Combinando ambos gráficos, se vería como muestra la siguiente figura

Finalmente, la parametrización dada corresponde al siguiente cilindro

$$\begin{cases} x^2 + y^2 = 1\\ 0 \le z \le H \end{cases}$$

Acompaña a estas explicaciones, el siguiente archivo de geogebra:

TP 02_7_d.ggb