

A solution manual by and for stupid student

Vector_Cat

Copyright $|\langle \neg \nabla \overline{c} \infty \rangle| 2013$ John Smith

PUBLISHED BY PUBLISHER

BOOK-WEBSITE.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

First printing, March 2013

Contents

1	lopological spaces	. 5
2	Fundamental groups	. 7
3	Covering spaces	. 9
4 4 .1	Elementary homotopy theory The mapping cylinder	11 11
5	Cofibrations and fibrations	13
6	Homotopy groups	15
7	Stable homotopy. Daulity	17
8	Cell complexes	19
9	Singular homology	21
10 10.1	Homology	23 23
11	Homological algebra	25
11.1	Diagrams	25
11.2	Exact sequences	25

11.3	Chain complex	25
11.4	Cochain complex	25
11.5	Natural chain maps and homotopies	25
11.6	Linear algebra of chain complexes	25
11.7	Tor and Ext	26
11.8	Universal coeffcients	26
11.9	The Künneth Formula	26
12	Cellular homology	27
13	Partition of unity in homotopy	29
1	More	
	Bibliography	33
	Articles	33
	Books	33

4. Elementary homotopy theory

4.1 The mapping cylinder

Definition 4.1.1 Given a continuous map $f: X \longrightarrow Y$ of topological spaces, one can define its **mapping cylinder** as a pushout (fibered coproduct)

Set-theoretically, the mapping cylinder is usually represented as the quotient space $(X \times I \coprod Y) / \sim$, where $f(x) \sim (x,0)$. We use Mf to denote it. (other notations are used including Mf, M_f and $\mathrm{Cyl}(f)$.)

Notice that it is Mf rather than $Y \times I$ that plays the role of pushout because the map r is not unique. Our only restriction on r is $r \circ j = id$, where $j : Mf \longrightarrow Y \times I$ is the map that restricts to $f \times id$ on $X \times I$ and restricts to i_0 on Y.

Another equivalent definition is used in tom Dieck.

In the following, we consider $X \coprod Y$ as subspace of Z(f) via the map J: J(x) = [(x,0)] and J(y) = [y]. Then we consider a homotopy commutative diagram

$$X \xrightarrow{f} Y$$

$$\alpha \downarrow \qquad \qquad \downarrow \beta$$

$$X' \xrightarrow{f'} Y',$$

where the diagram commutes up to a homotopy $\Psi : f' \circ \alpha \simeq \beta \circ f$.

10.1 The Axioms of Eilenberg and Steenrod

11. Homological algebra

- 11.1 Diagrams
- 11.2 Exact sequences
- 11.3 Chain complex
- 11.4 Cochain complex
- 11.5 Natural chain maps and homotopies
- 11.6 Linear algebra of chain complexes

Exercise?? 11.6.A Tensor product is compatible with chain homotopy. Let $s: f \simeq g: C \longrightarrow C'$ be a chain homotopy. Then $s \otimes id: f \otimes id \simeq g \otimes id: C \otimes D \longrightarrow C' \otimes D$ is a chain homotopy.

Proof. Know: $s\partial_C + \partial_{C'} s = f - g$

 $\underline{\text{Want:}} \ (s \otimes id_D) \partial_{C \otimes D} + \partial_{C' \otimes D} (s \otimes id_D) = f \otimes id_D - g \otimes id_D.$

 $C \otimes D$ is generated by pure tensors like $c'_n \otimes d_m$, therefore we can check the formula on element $c_n \otimes d_m \in C_n \otimes D_m$

$$(s \otimes id_D)\partial_{C \otimes D}(c_n \otimes d_m)$$

$$= (s \otimes id_D)(\partial_C c_n \otimes d_m + (-1)^n c_n \otimes \partial_D d_m)$$

$$= s \circ \partial_C c_n \otimes d_m + (-1)^n s c_n \otimes \partial_D d_m$$

and

$$\begin{aligned} &\partial_{C'\otimes D}(s\otimes id_D)(c_n\otimes d_m) \\ &= \partial_{C'\otimes D}(sc_n\otimes d_m) \\ &= \partial_{C's}c_n\otimes d_m + (-1)^{\deg(sc_n)}sc_n\otimes \partial_D d_m, \end{aligned}$$

where $deg(sc_n) = n - 1$. Then we have

$$(\partial_{C' \otimes D}(s \otimes id_D) + (s \otimes id_D)\partial_{C \otimes D})(c_n \otimes d_m)$$

$$= (s\partial_C + \partial_{C'}s)c_n \otimes d_m + 0$$

$$= (f \otimes id_D - g \otimes id_D)(c_n \otimes d_m)$$

We are done. Also we can generalize this statemnt to

Let $s: f \simeq g: C \longrightarrow C'$ and $t: p \simeq q: D \longrightarrow D'$ be chain homotopies. Then $s \otimes t: f \otimes p \simeq g \otimes q: C \otimes D \longrightarrow C' \otimes D'$ is a chain homotopy. We easily conclude by $s \otimes id$ and $id \otimes s$ are chain homotopy and composition of chain homotopies is a chain homotopy.

- 11.7 Tor and Ext
- 11.8 Universal coeffcients
- 11.9 The Künneth Formula

More

Articles Books