Matrices semblables

Soient $n \in \mathbb{N}^*$, $A, B \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$ telles que $\underline{A = PBP^{-1}}$. Alors, on a :

	A	=	$P B P^{-1}$
Calcul algébrique	.2		
	A^2	=	$P B^2 P^{-1}$
si $k \in \mathbb{N}$	A^k	=	$P B^k P^{-1}$
$si f \in \mathbb{K}[X]$	f(A)	=	$P f(B) P^{-1}$
Nilpotence	A nilpotente	\iff	B nilpotente
si A est nilpotente	$\min \left\{ k \in \mathbb{N} \mid A^k = 0 \right\}$	=	$\min \left\{ k \in \mathbb{N} \mid B^k = 0 \right\}$
Inversibilité			
	$A \in \mathrm{GL}_n(\mathbb{K})$	\iff	$B \in \mathrm{GL}_n(\mathbb{K})$
si $A \in \mathrm{GL}_n(\mathbb{K})$	A^{-1}	=	$P B^{-1} P^{-1}$
Dimension			
	$\operatorname{rg}(A)$	=	$\operatorname{rg}(B)$
	$\dim \operatorname{Ker}(A)$	=	$\dim \operatorname{Ker}(B)$
Trace			(D)
	$\operatorname{tr}(A)$	=	$\operatorname{tr}(B)$
Images et noyaux	$\operatorname{Im}(A)$	=	$P \ \operatorname{Im}(B)$
	$\operatorname{Ker}(A)$	=	$P \operatorname{Ker}(B)$
Images et noyaux 2			
images et noyaux 2	$\operatorname{Im}(A)$	$\xrightarrow{u_{P}-1} \Rightarrow$	$\operatorname{Im}(B)$
	$\operatorname{Ker}(A)$	$\xrightarrow{u_{P^{-1}}}$	$\operatorname{Ker}(B)$
Déterminant	J-4/A)		1.4/ P)
	$\det(A)$	=	$\det(B)$
Réduction	$\operatorname{Sp}(A)$	=	$\operatorname{Sp}(B)$
si $\lambda \in \mathbb{K}$	$E_{\lambda}(A)$	=	$P E_{\lambda}(B)$
	$E_{\lambda}(A)$	$\xrightarrow{u_{P^{-1}}} \rightarrow$	$E_{\lambda}(B)$
	$\dim E_{\lambda}(A)$	=	$\dim E_{\lambda}(B)$
	$\chi_A(X)$	=	$\chi_B(X)$
Exponentielle	$\exp(A)$	=	$P \exp(B) P^{-1}$