- 1. Allgemeine Grundlagen
- 2. Spezielle Grundlagen
- 3. Vorversuche
- 4. Versuche

- 1. Allgemeine Grundlagen
- 2. Spezielle Grundlagen
- 3. Vorversuche
- 4. Versuche

- 1. Allgemeine Grundlagen
- 2. Spezielle Grundlagen
- 3. Vorversuche
- 4. Versuche

- 1. Allgemeine Grundlagen
- 2. Spezielle Grundlagen
- 3. Vorversuche
- 4. Versuche

ALLGEMEINE GRUNDLAGEN SPEZIELLE GRUNDLAGEN VORVERSUCHE EINLEITUNG

VERSUCHE

Grundlagen: Von-Neumann-Architektur

Grundlagen: Von-Neumann-Architektur

- John von Neumann (geboren als Johann von Neumann), 1903-1957

Grundlagen: Von-Neumann-Architektur

- John von Neumann (geboren als Johann von Neumann), 1903-1957

EINLEITUNG

- Baugruppen: CPU, Busse, Speicher, Ein-/Ausgabebausteine

EINLEITUNG

- Baugruppen: CPU, Busse, Speicher, Ein-/Ausgabebausteine
- Zahlendarstellung in der Regel binär

- Baugruppen: CPU, Busse, Speicher, Ein-/Ausgabebausteine
- Zahlendarstellung in der Regel binär
- Universalität (Architektur unabhängig von Anwendung, Programmierbarkeit)

- Baugruppen: CPU, Busse, Speicher, Ein-/Ausgabebausteine
- Zahlendarstellung in der Regel binär
- Universalität (Architektur unabhängig von Anwendung, Programmierbarkeit)
- Speicher (Daten und Programm, Adressierung)

Grundlagen: Harvard-Architektur

Grundlagen: Harvard-Architektur

- von Howard Aiken an der Universität Harvard konstruierte "Mark I" (1937, 1939-44)

Grundlagen: Harvard-Architektur

- von Howard Aiken an der Universität Harvard konstruierte "Mark I" (1937, 1939-44)

Grundlagen: Harvard-Architektur

- von Howard Aiken an der Universität Harvard konstruierte "Mark I" (1937, 1939-44)

DEP: Architektur Gesamtsystem

Verarbeitung von Maschinenbefehlen:

Verarbeitung von Maschinenbefehlen:

ALLGEMEINE GRUNDLAGEN

Laden/Speichern RAM

Verarbeitung von Maschinenbefehlen:

- Laden/Speichern RAM
- Ein-/Ausgabe

Verarbeitung von Maschinenbefehlen:

- Laden/Speichern RAM
- Ein-/Ausgabe
- Rechenoperationen

Verarbeitung von Maschinenbefehlen:

- Laden/Speichern RAM
- Ein-/Ausgabe
- Rechenoperationen
- Bedingte/unbedingte Programmverzweigungen

DEP: Instruktionssatz

DEP: Instruktionssatz

_ 5	Sede	ezimalcode	Befehlskürzel		Funktion	beeinflusste Flags					
<i>F</i>	Spei 80 80 80 80 88	chertransferl xx zz xx yy	oefehle STA STAX LDA LDAI	xx zz xx yy	Speichere Inhalt von A an Adresse xx Speichere Inhalt von A an Adresse xx, die an Adresse zz steht Lade A mit Inhalt an Adresse xx Lade A mit Konstante yy	Z Z					
1 3	Spru 28 8 80 88	ingbefehle dd dd xx dd	BCS BEQ JMP JMPI	dd dd xx dd	Wenn Carry-Flag gesetzt: PCR:=dd Wenn Zero-Flag gesetzt: PCR:=dd Setze PCR auf den Inhalt an Adresse xx Setze PCR auf dd						
5	Ein-/ 50 90	/Ausgabe-Be xx xx	fehle IN OUT	XX XX	Lade A mit Inhalt an Portadresse xx Schreibe Inhalt von A an Portadresse xx	Z					
Rechenwerksbefehle (Speicher)											
4	11 12 13 14	XX XX XX XX XX XX	ADD OR SBC XOR ADC AND SETF	XX XX XX XX XX XX XX	Addiere A zu Inhalt von xx Bitweises Oder von A und [xx] A := A - [xx] - C Bitweises ExOder von A und [xx] A := A + [xx] + C Bitweises Und von A und [xx] Setze C und Z entsprechend Bit 6 und 7 von [xx] und behalte A unverändert bei	C und Z Z C und Z Z C und Z Z C und Z					
F	Rech	nenwerksbef	ehle (Imn	nediate	, also konstanter Operand)						
4	I9 IA IB IC	yy yy yy yy yy yy	ADDI ORI SBCI XORI ADCI ANDI SETFI	yy yy yy yy yy yy	Addiere A zu yy Bitweises Oder von A und yy A := A - yy - C Bitweises ExOder von A und yy A := A + yy + C Bitweises Und von A und yy Setze C und Z entsprechend Bit 6 und 7 von yy	C und Z Z C und Z Z C und Z Z C und Z Z C und Z					
				,,	und behalte A unverändert bei						

(*: Vorschlag)

Dekodertabelle

Dekodertabelle

																				1				
Inst.	Instruction Word										CCR MSR		IWR	OPR	Mux	Mux	AccR	CCR	PCR	RAM	ROM	ĪŌ	R/W	Alu-
	ST	LD	BCS	BEQ	IMM	Al2	Al1	AI0	Z	С	out	in			AB	PC								Ор
	_	_	_	_	_	_	_	_	_	_	0	1	1	0	1	0	0	0	1	1	0	1	1	-
	_	_	-	_	_	_	_	_	_	_	1	2	0	1	1	0	0	0	1	1	0	1	1	_
STA	1	0	0	0	0	0	0	0	_	_	2	0	0	0	0	_	0	0	0	0	1	1	0	_
STAX	1	0	1	0	0	0	0	0	_	_	2													
	1	0	1	0	0	0	0	0	_	_	3													
LDA	0	1	0	0	0	0	0	0	_	_	2													
	0	1	0	0	0	0	0	0	_	_	3													
LDAI	0	1	0	0	1	0	0	0	_	_	2													
BCS	0	0	1	0	1	0	0	0	_	0	2													
	0	0	1	0	1	0	0	0	_	1	2													
BEQ	0	0	0	1	1	0	0	0	0	_	2													
	0	0	0	1	1	0	0	0	1	_	2													
JMP	0	0	1	1	0	0	0	0	_	_	2													
	0	0	1	1	0	0	0	0	_	_	3													
JMPI	0	0	1	1	1	0	0	0	-	_	2													
IN	0	1	0	1	0	0	0	0	_	_	2													
	0	1	0	1	0	0	0	0	_	_	3													
OUT	1	0	0	1	0	0	0	0	_	_	2													
Alu	0	1	0	0	0	а	b	С	_	_	2													
	0	1	0	0	0	а	b	С	_	_	3													
Alul	0	1	0	0	1	а	b	С	_	_	2													
																					•			

Vorversuche

Vorversuche

Vorbereitungsaufgabe: Vorbereitung der DEP-CPU-Entwicklung

- 1. Machen Sie sich durch Studium des Theorieteils mit der Architektur und dem Befehlssatz der DEP-CPU vertraut.
- 2. Ergänzen Sie die Decodertabelle.
- 3. Entwerfen Sie zur Übung den Inkrementer "Inc + 1" (falls noch nicht in Versuch 5 geschehen) mit möglichst geringem Ressourcen-Verbrauch. Sie können die von Ihnen bereits entwickelten Blöcke "Halbaddierer" und "Volladdierer" wiederverwenden. Erstellen Sie den Entwurf zunächst auf Papier.

Versuche

Versuche

Praktikumsaufgabe: Entwicklung und Test der DEP-CPU

- 1. Machen Sie sich durch Studium der Unterlagen (im Praktikumsraum vorhanden) mit dem FPGA-Board und der Software "Quartus II" vertraut.
- 2. Entwerfen und testen Sie den gesamten Prozessor. Beginnen Sie zur Übung zweckmäßig mit dem Inkrementer "Inc + 1", erstellen Sie danach die weiteren kleinen Baugruppen (Multiplexer, Register) sofern dies noch nicht in Versuch 5 geschehen ist. Dann können Sie sich die ALU vornehmen und schließlich den Decoder. Sie erhalten als Basis wieder eine Projektdatei von Ihrem Tutor.
 - Erstellen Sie Ihre CPU dabei nur innerhalb der "CPU"-Schematic-Datei bzw. in darin eingefügten Blöcken (= Dateien).
- 3. Zum Test können Sie wieder den Simulator in der Entwicklungsumgebung "Quartus II" verwenden. Sollte Ihr Design im Simulator fehlerfrei sein, nicht jedoch auf dem FPGA-Board laufen, so achten Sie auf die Einstellung "Timing"-Simulation im "Simulator-Tool" (siehe Quartus-Kurzbeschreibung). Diese Simulation ist zuverlässiger als die einfache "Functional"-Simulation.
- 4. Um die Funktionsfähigkeit Ihres Prozessors nachzuweisen, wird Ihnen von Ihrem Tutor ein Beispielprogramm vorgegeben, welches fehlerfrei abgearbeitet werden muss.

EINLEITUNG

5. Schreiben Sie ein Assembler-Programm, das – ähnlich der Modelleisenbahn-Automaten-Aufgabe aus dem letzten Versuch – einen Zug mit *drei* Waggons zum Entkuppler zieht und dann nacheinander die Waggons abkuppelt und auf die Gleise 1 bis 3 verteilt.

Sie können über einen IN-Befehl an Adresse 80 (hexadezimal) die Reed-Kontakte abfragen und über einen OUT-Befehl (gleiche Adresse) Fahrstrom, Fahrtrichtung, den Entkuppler und die Weiche steuern. Lesen Sie hierzu nochmals die Beschreibung zum letzten Versuch.

Die Bits sind folgendermaßen angeordnet:

D7	D6	D5	D4	D3	D2	D1	D0
res.	res.	R345	R5	R4	R3	R2	R1

Lesen

D7	D6	D5	D4	D3	D2	D1	D0	
res.	res.	res.	W2	W1	ENTK	RICH	FS	

Schreiben

(res. = reserviert: Sowohl "High" als auch "Low" möglich)

6. Fragen Sie zum Erstellen und Übersetzen des Assembler-Programms Ihren Tutor. Er wird das Programm auch prüfen und mit Ihnen zusammen die Kompilierung Ihrer CPU und Konfiguration des FPGA-Boards vornehmen.

- 7. Bauen Sie die Eisenbahn in Absprache mit dem Tutor auf und testen Sie Ihr Programm.
- 8. Welche Modifikationen sind beim Entwurf einer 16-Bit CPU im Blockschaltbild der 8-Bit CPU bei Beibehaltung des 8-Bit Datenbusses und des Instruktionssatzes notwendigerweise vorzunehmen? Geben Sie sinnvolle Ergänzungen des Instruktionssatzes und die dafür benötigten Erweiterungen der zuvor modifizierten CPU-Stuktur an.

Inst.	st. Instruction Word									CR	MSR	MSR	IWR	OPR	Mux	Mux	AccR	CCR	PCR	¬RAM	¬ROM	¬IO	R/¬W	Alu-
	ST	LD	BCS	BEQ	IMM	Al2	Al1	AlO	Z	С	out	in			AB	PC								Ор
	_	_	_	_	_	_	_	_	_	-	0	1	1	0	1	0	0	0	1	1	0	1	1	_
	_	_	_	_	ı	_	_	_	_	-	1	2	0	1	1	0	0	0	1	1	0	1	1	_
STA	1	0	0	0	0	0	0	0	_	-	2	0	0	0	0	_	0	0	0	0	1	1	0	_
STAX	1	0	1	0	0	0	0	0		-	2													
	1	0	1	0	0	0	0	0	-	-	3													
LDA	0	1	0	0	0	0	0	0	_	-	2													
	0	1	0	0	0	0	0	0	_	_	3													
LDAI	0	1	0	0	1	0	0	0	_	-	2													
BCS	0	0	1	0	1	0	0	0	_	0	2													
	0	0	1	0	1	0	0	0	_	1	2													
BEQ	0	0	0	1	1	0	0	0	0	_	2													
	0	0	0	1	1	0	0	0	1	_	2													
JMP	0	0	1	1	0	0	0	0	_	_	2													
	0	0	1	1	0	0	0	0	_	_	3													
JMPI	0	0	1	1	1	0	0	0	_	_	2													
IN	0	1	0	1	0	0	0	0	_	_	2													
	0	1	0	1	0	0	0	0	_	_	3													
OUT	1	0	0	1	0	0	0	0	_	_	2													
Alu	0	1	0	0	0	а	b	С	_	-	2													
	0	1	0	0	0	а	b	С	_	_	3													
Alul	0	1	0	0	1	а	b	С	_	-	2													