CPE111 Discrete Mathematics for Computer Engineers

Discrete Mathematics /= Calculus (Continuous Mathematics)

We consider sets, logic, Boolean algebra, counting number, Relations, graphs, trees, etc.

Course Description

• Provide a foundation of discrete mathematics for computer engineers. See more detail in the course syllabus.

Expected learning outcome

- Understand the fundamental of discrete mathematics.
- Able to apply the knowledge from this course to solve related problems
- Able to work in group and present in both oral and written forms.

Tentative Class Schedule

Weeks	Topics	Text References					
1, 2	Basic of Logic, Sets and Functions	Ch. 1-2					
	Numbering System		Ch. 4				
3	Boolean Algebra	_					
4	Introduction to Complexity of Algor	rithms	Ch. 3				
5-6	Mathematical Reasoning	Ch. 5					
	- Mathematical Induction						
	- Recursive Definition & Algorithm	S					
6-7	Counting		Ch. 6				
	- Basics of Counting						
- Pigeonhole Principle							
	- Permutations & Combinations						
8-9	Midterm Examination						

Weeks	Topics	Text References			
10	Advanced Counting	Ch. 8			
	- Recurrence Relations				
	- Divide & Conquer				
	- Inclusion & Exclusion				
11	Discrete Probability	Ch. 7			
12	Relations	Ch. 9			
	- Relations and Their Properti	ies			
	- Closures of Relations				
	- Equivalence Relations				
13-14	Graphs and Trees	Ch. 10-11			
	- Graph Terminology & Conn	ectivity			
	- Introduction to Trees				
15	Finite State Machine, context-free grammar, and Turing machine				
16	Final Examination				

Textbook:

Kenneth H. Rosen, Discrete Mathematic and Its Applications, 2019, 8th Edition, McGraw-Hill.

Course Grade:

Midterm Exam	30%
Final Exam	30%
Quizzes	15%
Project	10%
Homework and Assignment	10%
Class Participation	5%

Goals of this Course

- 1. Study and apply mathematical reasoning and logic
- 2. Understand basic principles of Boolean algebra, mathematical reasoning, set, counting, discrete probability, relations, graphs and trees.
- 3. Create foundation for other related topics:
 - Data structure Database theory Digital system design
 - Computer Network Computer security

Topics:

- 1.1 Propositional Logic
- 1.2 Applications of Propositional Logic
- 1.3 Propositional Equivalences
- 1.4 Predicates and Quantifiers
- 1.6 Rules of Interference
- 1.8 Introduction to Proofs

- Logic is the foundation of all mathematical reasoning.
- Logic can be applied to
 - The design of computer systems
 - System specification
 - Programming languages
- Proofs are methods to verify
 - Mathematical statement/argument
 - Computer program if it produces correct outputs for all possible input cases

1.1 Propositional Logic

Proposition: A proposition is a statement that is either true or false, but not both.

Ex:	1	Bangkok is the capital of Thailand	
	2	1+2 = 4	
	3	What time is it?	
	4	a+b=z	
	5	Wait a minute	

1.1 Propositional Logic

Proposition: A proposition is a statement that is either true or false, but not both.

Ex:	1	Bangkok is the capital of Thailand	True
	2	1+2 = 4	False
	3	What time is it?	Not Proposition
	4	a + b = z	Not Proposition
	5	Wait a minute	Not Proposition

DEFINITIONS 1-6:

1. Let P be a proposition then $\sim P = negation \ of \ p$

Let *P* and *Q* be propositions:

- 2. "P and Q" = $P \wedge Q = Conjunction$ of P and Q
- 3. "P or Q" = P v Q = Disjunction of P and Q
- 4. " $P \oplus Q$ " = Exclusive Or of P and Q
- 5. "P \rightarrow Q" = Implication of P and Q, where P = hypothesis, Q = conclusion
- 6. "P \longleftrightarrow Q" = Biconditional P and Q

The truth table for many propositions

р	q	p∧q	p∨q	p⊕q	p→q	p↔q
Т	Т					
Т	F					
F	Т					
F	F					

Logic and Bit Operations

A bit has two possible values: 0 (zero) and 1(one)

A Boolean Variable: False and True

<u>DEFINITION 7:</u> A *bit string* is a sequence of zero or more bits.

The length of the string is the number of bits in the string.

Ex: 10101001101 is a bit string of length _____

Ex: What are the values of the corresponding propositions

when A = 1, B = 0? A and B, A or B, A xor B, A \longrightarrow B, A \longleftrightarrow B

Ex: What are the values of the corresponding propositions

when
$$A = 10110$$
, $B = 01110$?

1) A and B

2) A or B

3) A xor B

Precedence of Logical Operators

Operator	Precedence
NOT ~	1
AND ^ OR ∨	2 3
IFTHEN \rightarrow IFAND ONLY IF \leftrightarrow	4 5

Express the following operations using parenthesis.

Ex1. A
A
 B \vee C \rightarrow D A E

Ex2.
$$A \lor \sim B \land C \to D \lor E$$

$$A \vee B \wedge C = A \vee (B \wedge C)$$

Ex3. C
$$^{\land}$$
 \sim A \vee B \leftrightarrow \sim D

Precedence of Logical Operators

Operator	Precedence
NOT ~	1
AND ^ OR ∨	2 3
IFTHEN \rightarrow IFAND ONLY IF \leftrightarrow	4 5

Ex1. A
$$^{\land}$$
 B \vee C \rightarrow D $^{\land}$ E = ((A $^{\land}$ B) \vee C) \rightarrow (D $^{\land}$ E)

Ex2.
$$A \lor \sim B \land C \to D \lor E = (A \lor ((\sim B) \land C) \to (D \lor E)$$

Ex3.
$$C \land \neg A \lor B \leftrightarrow \neg D = ((C \land (\neg A)) \lor B) \leftrightarrow (\neg D)$$

1.2 Applications of Propositional Logic

Logic Circuits

FIGURE 2 A combinatorial circuit.

FIGURE 3 The circuit for $(p \vee \neg r) \wedge (\neg p \vee (q \vee \neg r))$.

CPE 111 Discrete Mathematics

Figure for Exercise 41. CPE 111 Discrete Mathematics

1.3 Propositional Equivalences

Tautology vs Contradiction vs Contingency

DEFINITION 1: A compound proposition that is always true is called a *Tautology*.

A compound proposition that is always false is called a *Contradiction*.

A proposition that is neither a *Tautology* nor a *Contradiction* is called a *Contingency*.

Ex1:

P	~ P	P v ~ P	P ^ ~ P
T	F	T	F
F	T	T	F

(Tautology) (Contradiction)

Logical Equivalences

DEFINITION 2: The propositions P and Q are called **logically** equivalent, if $P \longleftrightarrow Q$ is a tautology. The notation $P \equiv Q$ denotes that P and Q are logically equivalent.

Ex2: Show that $\sim (P \vee Q) \equiv (\sim P \wedge \sim Q)$

P	Q	P v Q	~(P v Q)	~P	~ Q	~P ^ ~Q
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

Ex 3: Proof that ($\sim P \vee Q$) and ($P \longrightarrow Q$) are logically equivalent

Using a truth table

<u>Ex 4</u>: Proof that $(P \lor (Q \land R))$ and $((P \lor Q) \land (P \lor R))$ are logically equivalent

Р	Q	R	PvQ	PvR	QvR	Pv(Q^R)	(PvQ)^(PvR)
Т	Т	Т	Т	Т	Т	T	Т
Т	Т	F	Т	Т			
Т	F	Т	Т	Т			
Т	F	F	Т	Т			
F	Т	Т	Т	Т			
F	Т	F	Т				
F	F	Т	F				
F	F	F	F				

Table of Logical Equivalences

Equivalence	Name
$\mathbf{P} \wedge \mathbf{T} \equiv \mathbf{P}$	Identity laws
$\mathbf{P} \mathbf{v} \mathbf{F} \equiv \mathbf{P}$	
$P V T \equiv T$	Domination laws
$\mathbf{P} \wedge \mathbf{F} \equiv \mathbf{F}$	
$P v P \equiv P$	Idempotent laws
$\mathbf{P} \wedge \mathbf{P} \equiv \mathbf{P}$	
$\sim (\sim) \mathbf{P} \equiv \mathbf{P}$	Double Negative laws
$P v Q \equiv Q v P$	Commutative laws
$\mathbf{P} \wedge \mathbf{Q} \equiv \mathbf{Q} \wedge \mathbf{P}$	

Equivalence	Name
$(P v Q) v R \equiv P v (Q v R)$	Associative laws
$(P \land Q) \land R \equiv P \land (Q \land R)$	
$Pv(Q^R) \equiv (PvQ)^R(PvR)$	Distributive laws
$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	
$\sim (P \land Q) \equiv \sim P \lor \sim Q$	De Morgan's laws
$\sim (P \vee Q) \equiv \sim P \wedge \sim Q$	

CPE 111 Discrete Mathematics

Other Equivalence Forms

$$P \circ \sim P \equiv T$$

$$P \wedge \sim P \equiv F$$

$$(P \longrightarrow Q) \equiv (\sim P \circ Q)$$

$$\sim (P_1 \wedge P_2 \wedge P_3 \wedge \cdots \wedge P_n) \equiv (\sim P_1 \circ \sim P_2 \circ \cdots \circ \sim P_n)$$

$$\sim (P_1 \circ P_2 \circ P_3 \circ \cdots \circ P_n) \equiv (\sim P_1 \wedge \sim P_2 \wedge \cdots \wedge \sim P_n)$$

Examples:
$$\sim (A \land B \land C) = (\sim A) \lor (\sim B) \lor (\sim C)$$

 $\sim (A \lor B \lor C) = \sim A \lor \sim B \lor \sim C$
 $A \rightarrow (\sim B) = ((\sim A) \lor (\sim B))$

1.4 Predicates and Quantifiers

Predicate: A property that the subject of the statement can have

$$X = Subject$$
 "> 3" = Predicate

IF
$$P(X) = X > 3$$

$$P = Predicate ">3", x = Variable$$

P(x) = value of the propositional function P at x

Ex 1 Let P(x) denote the statement "x > 3". What are the truth values of P(2) and P(3)?

Both are FALSE

Ex 2 Let Q(x,y) denote the statement "x = y + 3" What are the truth values of Q(1, 2) and Q(3, 0)?

Q(1, 2) is FALSE and Q(3, 0) is TRUE

 $P(x_1,x_2,x_3,...,x_n)$ is the value of the propositional functional P on the n-tuple $(x_1,x_2,x_3,...,x_n)$ and P is also called a *predicate*.

QUANTIFIERS

<u>DEFINITION 1:</u> The universal quantification of P(x) is the proposition.

"P(x) is true for all values of x in the universe of discourse"

$$\forall x P(x) = \text{``for all } x P(x)\text{'`}$$

Ex: Let P(x): "x < 2"

What is the truth value of the quantification $\forall x P(x)$, when the universe of discourse is the set of real numbers?

False

<u>DEFINITION 2:</u> The existential quantification of P(x) is the proposition.

"There exists an element x in the universe of discourse such that P(x) is true"

 \exists x = there is at least one x, such that P(x) is true

Ex: Let P(x): x > 3

 $\exists xP(x) = ?$: when x is a set of real numbers.

Ex: Let Q(x) : x = x+1

 $\exists xQ(x) = ?$: when x is a set of real numbers.

Precedence of Quantifiers

- * The quantifiers \forall and \exists have higher precedence than all the logical operators.
- * For example, $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
- * $\forall x (P(x) \lor Q(x))$ means something different.
- * Unfortunately, often people write $\forall x \ P(x) \ \lor Q(x)$ when they mean $\forall x \ (P(x) \lor Q(x))$.

Negating Quantified Expressions

* Consider $\forall x J(x)$

"Every student in your class has taken a course in Java." Here J(x) is "x has taken a course in Java" and the domain is students in your class.

* Negating the original statement gives "It is not the case that every student in your class has taken Java." This implies that "There is a student in your class who has not taken Java."

Symbolically $\neg \forall x J(x)$ and $\exists x \neg J(x)$ are equivalent.

Negating Quantified Expressions (continued)

* Now Consider $\exists x J(x)$

"There is a student in this class who has taken a course in Java."

Where J(x) is "x has taken a course in Java."

* Negating the original statement gives "It is not the case that there is a student in this class who has taken Java." This implies that "Every student in this class has not taken Java" Symbolically $\neg \exists x \ J(x)$ and $\forall x \ \neg J(x)$ are equivalent.

De Morgan's Laws for Quantifiers

* The rules for negating quantifiers are:

TABLE 2 De Morgan's Laws for Quantifiers.				
Negation	Equivalent Statement	When Is Negation True?	When False?	
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.	
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .	

* The reasoning in the table shows that:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

* These are important. You will use these.

Translation from English to Logic

Examples:

1. "Some student in this class has visited Mexico."

Solution: Let M(x) denote "x has visited Mexico" and S(x) denote "x is a student in this class," and U be all people.

$$\exists x \ (S(x) \land M(x))$$

2. "Every student in this class has visited Canada or Mexico."

Solution: Add C(x) denoting "x has visited Canada."

$$\forall x (S(x) \rightarrow (M(x) \lor C(x)))$$

System Specification Example

- * Predicate logic is used for specifying properties that systems must satisfy.
- * For example, translate into predicate logic:
 - "Every mail message larger than one megabyte will be compressed."
 - "If a user is active, at least one network link will be available."
- * Decide on predicates and domains (left implicit here) for the variables:
 - Let L(m, y) be "Mail message m is larger than y megabytes."
 - Let C(m) denote "Mail message m will be compressed."
 - Let A(u) represent "User u is active."
 - Let S(n, x) represent "Network link n is in state x.
- * Now we have:

$$\forall m(L(m,1) \to C(m))$$

$$\exists u \, A(u) \to \exists n \, S(n, available)$$

Lewis Carroll Example

Charles Lutwidge Dodgson (AKA Lewis Caroll) (1832-1898)

- * The first two are called *premises* and the third is called the *conclusion*.
 - 1. "All lions are fierce."
 - 2. "Some lions do not drink coffee."
 - 3. "Some fierce creatures do not drink coffee."
- * Here is one way to translate these statements to predicate logic. Let P(x), Q(x), and R(x) be the propositional functions "x is a lion," "x is fierce," and "x drinks coffee," respectively.
 - 1. $\forall x (P(x) \rightarrow Q(x))$
 - 2. $\exists x (P(x) \land \neg R(x))$
 - 3. $\exists x (Q(x) \land \neg R(x))$
- * Later we will see how to prove that the conclusion follows from the premises.

 CPE 111 Discrete Mathematics

1.5 Nested Quantifiers

* Nested quantifiers are often necessary to express the meaning of sentences in English as well as important concepts in computer science and mathematics.

Example: "Every real number has an inverse" is

$$\forall x \, \exists y (x + y = 0)$$

where the domains of x and y are the real numbers.

* We can also think of nested propositional functions:

$$\forall x \ \exists y(x+y=0)$$
 can be viewed as $\forall x \ Q(x)$ where $Q(x)$ is $\exists y \ P(x, y)$ where $P(x, y)$ is $(x+y=0)$

Order of Quantifiers

Examples:

1. Let P(x, y) be the statement "x + y = y + x." Assume that U is the real numbers. Then $\forall x \ \forall y \ P(x, y)$ and $\forall y \ \forall x \ P(x, y)$ have the same truth value.

Let Q(x, y) be the statement "x + y = 0." Assume that U is the real numbers. Then $\forall x \exists y P(x, y)$ is true, but $\exists y \ \forall x \ P(x, y)$ is false.

Questions on Order of Quantifiers

Example 2: Let *U* be the real numbers,

Define
$$P(x, y) : x / y = 1$$

What is the truth value of the following:

1. $\forall x \forall y P(x,y)$

Answer: False

2. $\forall x \exists y P(x,y)$

Answer: True

 $\exists x \forall y P(x,y)$

Answer: False

4. $\exists x \exists y P(x,y)$

Answer: True

Quantifications of Two Variables

Statement	When True?	When False
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x, y) is true for every pair x , y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y P(x,y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x,y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x,y)$ $\exists y \exists x P(x,y)$ CPE 111 Discrete 1	There is a pair x , y for which $P(x, y)$ is true. Mathematics	P(x, y) is false for every pair x , y

Translating Nested Quantifiers into English

Example 1: Translate the statement

$$\forall x \ (C(x) \lor \exists y \ (C(y) \land F(x, y)))$$

where C(x) is "x has a computer," and F(x, y) is "x and y are friends," and the domain for both x and y consists of all students in your school.

Solution: Every student in your school has a computer or has a friend who has a computer.

Example 2: Translate the statement

$$\exists x \ \forall y \ \forall z ((F(x, y) \land F(x, z) \land (y \neq z)) \rightarrow \neg F(y, z))$$

Solution: Some students have friends, and none of those friends are also friends with each other.

Translating Mathematical Statements into Predicate Logic

Example: Translate "The sum of two positive integers is always positive" into a logical expression.

Solution:

- 1. Rewrite the statement to make the implied quantifiers and domains explicit:
 - "For every two integers, if these integers are both positive, then the sum of these integers is positive."
- 2. Introduce the variables *x* and *y*, and specify the domain, to obtain:
 - "For all positive integers x and y, x + y is positive."
- 3. The result is:

$$\forall x \ \forall \ y \ ((x > 0) \land (y > 0) \longrightarrow (x + y > 0))$$

where the domain of both variables consists of all integers CPE 111 Discrete Mathematics

Translating English into Logical Expressions Example

Example: Use quantifiers to express the statement "There is a woman who has taken a flight on every airline in the world."

Solution:

- 1. Let P(w, f) be "w has taken f" and Q(f, a) be "f is a flight on a".
- 2. The domain of w is all women, the domain of f is all flights, and the domain of a is all airlines.
- 3. Then the statement can be expressed as:

$$\exists w \ \forall a \ \exists f \ (P(w, f) \land Q(f, a))$$

PROPERTY OF QUANTIFIERS

 $\forall x \forall y (x + y = y + x)$: when x is a set of real numbers.

 $\forall x \exists y (x + y = 0)$: when x is a set of real numbers.

 $\forall x \forall y \forall z [x + (y + z)] = [(x + y) + z]$: Associative law, when x,y,z are sets of real numbers.