(19) SU (11) 1601330 A 1

(51)5 E 21 B 29/10

ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ ПРИ ГНИТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4446602/23-03

(22) 25.04.88.

(46) 23.10.90. Бюл. № 39

(71) Всесоюзный, научно- исследователь-

ский институт буровой техники

(72) А.А. Цыбин, В.В. Торопынин,

А.Н.Гладких, С.П.Тарасов

н А.В.Праневский

(53) 622.245.4 (088.8)

(56) Авторское свидетельство СССР № 1035192, кл. Е 21 В 33/10, 1981...

АВТОРСКОЕ СВИДЕТЕЛЬСТВО СССР
В 114184, КЛ. Е 21 В 29/10, 1983.
(54) СПОСОБ УСТАНОВКИ ПЛАСТЫРЯ В ИНТЕРВАЛЕ НЕГЕРМЕТИЧНОСТИ. ОБСАДНОЙ КОЛОННЫ

(57) Изобретение относится к нефтедобывающей промышленности и предназначено для ремонта обсадных колони и изоляции обводинвшихся продуктивных ыластов в зоне перфоряции. Цель - обеспечение экономии материала пластыри. На трубах спускают гидравль стие лакеры с уплотнительными элементами и установленный на них пластырь. Затен верхний торец выжнего уплотнительного эленента гидравлического пакера разнещают напротив инжней гранцы интервала негерметичности. Дляну пластыря вычисляют по натенатической формуле, Производят запакеровку уплотнительных элементов пакера в концевых участках пластыря н расширение пластыря по всей длине путен создания избыточного давления в уппотнительных эленентах пакеров и в нежпакерной зоне. Такое расположевие пластыря обеспечивает сохранность. его и обсадной колониы в интервале, ослабленном отверстиями. 4 ил.

Изобретение относится к нефтедобывающей промышленности, а именно к способам ремонта обсадных колони, а также изоляции обводнившихся продуктивных пластов в зоне перфорации.

Целью изобретения является обеспечение экономии материала гластыря.

На фиг. 1 изображен пакер сдвоенный гидравлический (ПРС) с установленным на нем пластырем в транспортном положени:; на фиг. 2 - то же, при запакеровке его уплотнительных элементов на пластыре; на фиг. 3 - то же, при прижатии концегых участков пластырг к обсадной колонне; на фиг. 4 то же, при завершении прижатия концевых участков и деформировании среднего участка пластыря до касания с внутренней поверхностью обсадной колонны.

Способ установки пластыря в интервале негериетичности обсадной колонны реализуется следующим образом.

На гидравлический пакер, включаювий верхний I и инжини 2 уплотительные элементы, между которыми размещен диференциальный клапан 3, устанавливается металлический пластырь 4, который фиксируется на пакере упорами 5 и 6. Расстоявие нежду уплотнительными элементами I и 2 устанавливается в зависимости от длины пластыря, определенного по зависимости, и обеспече-

... SU 1601330

ния долиого эккрытия уплотнительных элементов 1 и 2 концевым участками шластыря.

Дляна пластыря выбирается в соответствии со следующей зависимостью

$$1 = 1_0 + 2(1_{\frac{1}{2}} + \frac{P \cdot 1(1-2\mu)}{B \cdot (C^2-1)})$$

где L - дина пластыря, н;

1, - дина интервала негернетичнос-10 ти обсадной колоны, и;

1 д.) — дина уплотнительного элеменга гидравлического пакера, м;

 Р.— давление в гидравлических пакерах при прижатии концевых участков пластыря, МПа;

1 - расстоявие от устья скважны до верхней границы интервала негерматичности обсадной колонам, н;

 В - модуль упругости натериала труб, на которых производится спуск пластыря, МПа;

 С - отношение наружного днаметра к внутреннему труб, на которых производится спуск пластыря;

 и - коэфициант Пуассона магернала труб, на которых производятся спуск пластыря.

Пакер с пластырен 4 спускается на насосно-конпрессорных трубах (не по-. казавы) в обсадную колонну 7 к интервалу 10 негерметичности, ослабленному: отверстиями В. Нижний уплотнительный элемент 2 устанавливают так, чтобы во верхний торец был напротив инжией границы интервала 1 . При этом расстояние между жижим торцом верхлего уп-. лотинтельного элемента 1 и верхней границы интервала 1, составит величи-Р. 1 (1-24) и учитывающую B. (C 1) • удлинение изсосно-компрессорных труб · при установе пластыря. Соэдают в паке- 45. ре избыточное давление порядка 2-3 МПа и запакеронывают уппотинтеные элененты 1 и 2 в концевых участках пластыря 4 (фиг. 2). Повышают давление в пакере и расширяют его сначала уплотвительными элементами 1 и 2 соответствующие концевые участки пластыря (фиг. 3). После чего открывается дифференциальным клапан 3, предварительно настроенный на запанное давление, н рабочей ж акостью расширяют среднюю часть пластыря. Давление в пакере повышают до расчетного Рд., сбеспечивающего прижатие концевых участков плас-

тыри давлением Рк, при том средняя часть пластыря в инт рвале 1 с дефорнируется расчетным давлением P₂«Р₄ до жасания с внутр ни й поверхностью обсадной колоны для исключения наррузок на интервал la (фиг. 4). В процессе ўстановки пластырь 4 внесте с пакерон перенещвется относительно интервала 1, обсадной колонны на величину а/2, но благодаря выбору длины пластыря и соответствующей его ориентации перед установкой относительно иминей границы интервала 1; концевые участки пластыря, прижатые к обсадной колоние, будут находиться вие интервала 1. на равном расстоявим а/2 от соответствукцих его гранци. Такое расположение пластыря обеспечит сохранность его и обсадной колоны в интервала, ослабленном отверстиями.

ориула изобр . Способ установки пласты и интервале негерметичносты обсадной колонны, виличающий спуск на трубах гидравлических пакеров с уплотнительнымі элементамі и установленного на них пластыря, запакеровку уплотнительных эленентов пакера в концевых участках пластыря и расширение пластыря по всей длине путем создания избыточного давления в уплотнительных элементах пакеров и в межпакерной зоне, о т л и чарни слтен, что, сцелью обеспечения экономии материала пластыря, после спуска пластыря верхный торец вижнего уплотинтельного элемента : гидравлического пакера размещают напротив инжией границы интервала негеристичности, в длину пластыря выбирают в соответствии со следующей зави-

$$L=1,+2(1_{y,3}+\frac{P\cdot 1(j-2\mu)}{E\cdot (C^2-1)})$$

где L - длина пластыря, и;

1, - длина интервала негерметичности обсадной колоны, м;

1 4.9 - длина уплотнительного элемент та гидравлического пакера, и;

 Р - давление в гидравлических пакерах при прижатии концевых участков пластыря, МПа;

1 - расстояние от устья скважны до верхней границы интервала не герметичности обсадной колоны, н;

Е - модуль упругости материала

труб, на которых производится спуск пластыря, МПа; - отношение наружного диаметра к внутреннему труб, на которых

производится спуск пластыря; 4 - коэффициент Пуассона материала труб, на которых производится спуск пластыря,

Que 2

Редактор В.Бугренкова

Составитель И.Левкоева Техред Л.Сердюкова

Корректор И.Муска

Jakas 3257

. Тираж 469 .

Подписное

ВНИМПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раумская наб., д. 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101

[state seal]

Union of Soviet Socialist Republics

USSR State Committee
on Inventions and Discoveries of the State
Committee on Science and Technology

(19) \underline{SU} (11) $\underline{16}$

(11) **1601330** A1

(51)5 E 21 B 29/10

SPECIFICATION OF INVENTOR'S CERTIFICATE

(21) 4446602/23-03

(22) 25 April 1988

(46) 23 Oct 1990, Bulletin No. 39

(71) All-Union Scientific Research
Institute of Drilling Technology
(72) A. A. Tsybin, V. V. Toropynin, A. N.
Gladkikh, S. P. Tarasov, and A. V.
Pranevskiy

(53) 622.245.4 (088.8)

(56) USSR Inventor's Certificate No. 1035192, cl. E 21 B 33/10 (1981).

USSR Inventor's Certificate No. 1141184, cl. E 21 B 29/10 (1983). (54) A METHOD FOR PLACING A PATCH IN A LEAKY INTERVAL OF CASING

(57) The invention relates to the oil production industry and is designed for repair of casings and

[vertically along right margin]

(19) **SU**

(11) 1601330 A1

isolation of water-invaded producing formations in the perforation zone. The aim is to provide economical use of patch material. Hydraulic packers with packing elements and a patch mounted thereon are lowered on pipes. Then the upper end of the lower packing element of the hydraulic packer is positioned opposite the lower boundary of the leaky interval. The length of the patch is calculated using a mathematical formula. The packing elements of the packer are set on the terminal portions of the patch. and the patch is expanded over the entire length by creating excess pressure in the packing elements of the packers and in the interpacker zone. Such a disposition of the patch ensures that it and the casing are maintained in the interval weakened by holes. 4 drawings.

The invention relates to the oil production industry, and specifically to methods for casing repair and also isolation of water-invaded producing formations in the perforation zone.

The aim of the invention is to provide economical use of patch material.

Fig. 1 shows a hydraulic straddle packer with patch mounted thereon in the run-in position; Fig. 2 shows the same, while its packing elements are being set on the patch; Fig. 3 shows the same, while the terminal portions of the patch are being squeezed against the casing; Fig. 4 shows the same, on completion of squeezing of the terminal

portions and deformation of the middle portion of the patch until it touches the inner surface of the casing.

The method for placing the patch in a leaky interval of casing is carried out as follows.

Metal patch 4, which is secured in the packer by stops 5 and 6, is mounted on a hydraulic packer including upper 1 and lower 2 packing elements, between which is disposed differential valve 3. The distance between packing elements 1 and 2 is established depending on the length of the patch, determined according to an equation, and the condition that

packing elements 1 and 2 be completely covered by the terminal portions of the patch.

The length of the patch is selected according to the following equation:

$$L = I_0 + 2 \left(I_{po} + \frac{P \cdot I(1 - 2\mu)}{E \cdot (C^2 - 1)} \right),$$

where L is the length of the patch, m;

 l_0 is the length of the leaky interval of casing, m;

lpe is the length of the packing element of the hydraulic packer, m;

 \dot{P} is the pressure in the hydraulic packers while squeezing the terminal portions of the patch, MPa;

l is the distance from the wellhead to the upper boundary of the leaky interval of casing, m;

E is the elasticity modulus of the material of the pipes on which the patch is lowered, MPa;

C is the ratio of the outer diameter to the inner diameter of the pipes on which the patch is lowered;

μ is Poisson's ratio for the material of the pipes on which the patch is lowered.

The packer with patch 4 is lowered on the tubing (not shown) into casing 7 to the leaky interval l_0 of the casing that is weakened by holes 8. Lower packing element 2 is placed so that its upper end is opposite the lower boundary of the interval l_0 . Here the distance between the lower end of the upper packing element 1 and the upper boundary of interval l_0

is the quantity a, equal to $2\frac{P \cdot l(1-2\mu)}{E \cdot (C^2-1)}$, taking into account the elongation of the tubing

during placement of the patch. Excess pressure on the order of 2-3 MPa is created in the packer, and packing elements 1 and 2 are set in the terminal portions of patch 4 (Fig. 2). The pressure in the packer is raised and the corresponding terminal portions of the patch are first expanded by packing elements 1 and 2 (Fig. 3). After this, differential valve 3, which has been preset to the specified pressure, is opened and the middle portion of the patch is expanded by the working fluid. The pressure in the packer is raised to the calculated P_1 ensuring that the terminal portions of the patch are squeezed

4

by pressure P_t , where the middle portion of the patch in the interval l_0 is deformed by the calculated pressure $P_2 \ll P_1$ until it touches the inner surface of the casing, to eliminate loading on interval l_0 (Fig. 4). During placement, patch 4 together with the packer is moved relative to the interval l_0 of the casing by a distance a/2, but owing to the choice of patch length and its corresponding orientation before placement relative to lower boundary of interval l_0 , the terminal portions of the patch, squeezed against the casing, will be located beyond interval l_0 at equal distances of a/2 from its corresponding boundaries. Such a disposition of the patch ensures that it is maintained in the casing in the interval weakened by holes.

Claim

A method for placing a patch in a leaky interval of casing, including lowering on pipes hydraulic packers with packing elements and a patch mounted thereon, setting the packing elements of the packer in the terminal portions of the patch, and expansion of the patch over the entire length by creating excess pressure in the packing elements of the packers and in the interpacker zone, distinguished by the fact that, with the aim of making economical use of the patch material, after lowering the patch, the upper end of the lower packing element of the hydraulic packer is positioned opposite the lower boundary of the leaky interval, and the length of the patch is selected according to the following equation:

$$L = I_0 + 2 \left(I_{pp} + \frac{P \cdot I(1 - 2\mu)}{E \cdot (C^2 - 1)} \right),$$

where L is the length of the patch, m;

lo is the length of the leaky interval of casing, m;

 $l_{\rm pe}$ is the length of the packing element of the hydraulic packer, m;

 \hat{P} is the pressure in the hydraulic packers while squeezing the terminal portions of the patch, MPa;

l is the distance from the wellhead to the upper boundary of the leaky interval of casing, m;

E is the elasticity modulus of the material

of the pipes on which the patch is lowered, MPa;

C is the ratio of the outer diameter to the inner diameter of the pipes on which

6

the patch is lowered;

 μ is Poisson's ratio for the material of the pipes on which the patch is lowered.

[figures under columns 5 and 6]

[see Russian original for figure]

[see Russian original for figure]

 $l_{\rm p.e.}$

а

 l_0

*l*p.e.

Fig. 1

Fig. 2

[see Russian original for figure]

[see Russian original for figure]

 P_{t}

a/2

 l_0

a/2

Fig. 3

Fig. 4

Editor V. Bugrenkova

Compiler I. Levkoeva Tech. Editor L. Serdyukova

Proofreader I. Muska

Order 3257

Run 469

Subscription edition

All-Union Scientific Research Institute of Patent Information and Technical and Economic Research of the USSR State Committee on Inventions and Discoveries of the State Committee on Science and Technology [VNIIPI]

4/5 Raushkaya nab., Zh-35, Moscow 113035

"Patent" Printing Production Plant, Uzhgorod, 101 ul. Gagarina

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following Patents and Abstracts from Russian to English:

ATLANTA BOSTON BRUSSELS CHICAGO DALLAS DETROIT FRANKFURT HOUSTON LONDON LOS ANGELES MIAMI MINNEAPOLIS 'NEW YORK PARIS PHILADELPHIA SAN DIEGO SAN FRANCISCO SEATTLE WASHINGTON, DC	Patent 1786241 A1 Patent 989038 Abstract 976019 Patent 959878 Abstract 909114
	Patent 907220 Patent 894169 Patent 1041671 A Patent 1804543 A3
	Patent 1686123 A1 Patent 1677225 A1 Patent 1698413 A1 Patent 1432190 A1 Patent 1430498 A1 Patent 1250637 A1 Patent 1051222 A Patent 1086118 A Patent 1749267 A1
	Patent 1730429 A1 Patent 1686125 A1 Patent 1677248 A1 Patent 1663180 A1 Patent 1663179 A2 Patent 1601330 A1 Patent SU 1295799 A Patent 1002514

PAGE 2 AFFIDAVIT CONTINUED (Russian to English Patent/Abstract Translations)

Kim Stewart

TransPerfect Translations, Inc.

3600 One Houston Center

1221 McKinney

Houston, TX 77010

Sworn to before me this 9th day of October 2001.

Signature, Notary Public

OFFICIAL SEAL MARIA A. SERNA NOTARY PUBLIC

Stamp, Notary Public

Harris County

Houston, TX