Prove that the language: L = $\{a^mb^nc^m\mid m,n\geq 1\}$ is not a regular language.

Step 1: Assumption of Regularity

We will prove this by contradiction. So, assume L is regular.

Step 2: Apply Pumping Lemma

Since L is regular, there exists a pumping length m such that for any string w in L with $|w| \ge m$, we can split w into three parts: w = xyzSuch that,

- 1. $|xy| \le m$ (the pumping occurs within the first m characters)
- 2. $|y| \ge 1$ (the y section is non-empty)
- 3. $xy^iz \in L$ for all $i \ge 0$ (after i repetitions of y, the string belongs to L)

Step 3: Choose a String in L

Let's choose the string $w = a^m b^n c^m$ where $n \ge 1$. The choice of w ensures that the length is at least m; thus, this satisfies the conditions of the Pumping Lemma.

Step 4: Split w = xyz

Given that the first m characters of the string are a and $|xy| \le m$, we know xy consists of only a's

Thus, we can split w = xyz such that

- 1. $|xy| \le m$ (xy consists only of a's)
- $2.|y| \ge 1$ (y contains at least one a)

Thus, we set the following:

$$\bullet x = a^s$$

$$\bullet$$
 y = a^t

•
$$z = a^{m-s-t}b^nc^m$$

Step 5: Pumping the y Term

Using the Pumping Lemma, we know $xy^iz \in L$.

Since $y = a^t$, if we set i = 2, we get that

$$w' = xy^2z = a^s a^{2t} a^{m-s-t} b^n c^m = a^{m+t} b^n c^m$$

Now, the number of a's is m + t, and the number of c's remains m.

Step 6: Contradiction

The new string w' has more a's than c's (m + t > m). However, every valid string in L must have exactly the same number of a's and c's as defined by L = { $a^m b^n c^m \mid m,n \ge 1$ }

Since $w' \notin L$, we have contradicted the Pumping Lemma assumption. $\Rightarrow \Leftarrow$

Step 7: Conclusion

Since our Pumping Lemma assumption that L is regular led to a contradiction, L cannot be a regular language. Therefore, L is not regular.