Московский физико-технический институт (госудраственный университет)

Лабораторная работа по квантовой физике

Изучение спектров атомов водорода и йода [2.2]

Талашкевич Даниил Александрович Группа Б01-008

Содержание

1	Анн	Аннотация								
	1.1	Теория	-							
	1.2	Описание установки	-							
2	Ход работы									
	2.1	- Градуировка	4							
		Спектр водорода								
3	Выв	ол	e							

1 Аннотация

В работе исследуются: сериальные закономерости в оптическом спектре водорода; спектр поглощения паров йода в видимой области.

1.1 Теория

Длины волн спектральных линий водородоподобного атома описываются формулой

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),\tag{1}$$

где $R=109677.6~{\rm cm}^{-1}$ — константа, называемая постоянной Ридберга, а m и n — целые числа. Мы будем изучать серию Бальмера, линии которой лежат в видимой области. Для неё n=2, а $m=3,4,5,6\ldots$ Первые четыре линии обозначаются соответственно $H_{\alpha},H_{\beta},H_{\gamma},H_{\delta}$. Для молекулы йода мы рассматриваем только нулевую серию, энергетическое положение линий поглощения определяется выражением

Рис. 1: Линии молекулы йода.

$$h\nu_{0,n_2} = (E_2 - E_1) + h\nu_2 \left(n_2 + \frac{1}{2}\right) - \frac{1}{2}h\nu_1.$$
(2)

1.2 Описание установки

Для наблюдения спектра водорода используется установка, изображённая на Рис. 2А. Источником света для наблюдения служит водородная трубка H-образной формы, в состав газа которой добавлены водные пары для увеличения яркости интересующих нас линий. Источник Л помещается на оптическую скамью вместе с конденсером K, так что свет концентрируется на входной щели 1. Далее через коллиматорный объектив 2 свет попадает на сложную спектральную призму, состояющую из призм Π_1 , Π_2 и Π_3 . Первые две призмы обладают большой дисперсией, а промежуточная Π_3 поворачивает лучи — такое устройство позволяет складывать дисперии Π_1 и Π_2 . После прохождения призмы свет попадает в зрительную трубу 4-5, объектив которой даёт изображение входной щели различных цветов.

Рис. 2: Установки для наблюдения линий А. водорода; Б. йода.

На Рис. 2Б изображена схема установки, используемой для наблюдения спектра йода. Спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания 1, питаемой от блока питания 2. Кювета 3 с кристаллами йода подогревается нихромовой спиралью, подключённой вместе с лампой накаливания к блоку питания. Линза 4 используется как конденсор. В результате подогрева кристаллы йода частично возгоняются, образуя пары с лёгкой фиолетовой окраской. Спектрометр 5 позволяет визуально наблюдать линии поглощения молекул йода на фоне сплошного спектра излучения лампы накаливания видимой области.

2 Ход работы

2.1 Градуировка

Снимем зависимость длины волны света от параметра θ барабана монохроматора. Погрешность $\sigma_{\theta} = 5^{\circ}$. Результаты занесем в таблицу:

Неон					
Линия	Угол θ °	Длина волны, Å			
1	2542	7032			
2	2518	6929			
3	2444	6717			
4	2436	6678			
5	2410	6599			
6	2386	6533			
7	2376	6507			
8	2338	6402			
9	2330	6383			
10	2310	6334			
11	2296	6305			
12	2284	6267			
13	2264	6217			
14	2244	6164			
15	2234	6143			
16	2214	6096			
17	2204	6074			
18	2186	6030			
19	2156	5976			
20	2146	5945			
21	2114	5882			
22	2098	5852			
23	1836	5401			
24	1800	5341			
25	1796	5331			

Ртуть					
Линия	Угол θ °	Длина волны, Å			
K1	2506	6907			
K2	2270	6234			
1	2068	5791			
2	2056	5770			
3	1876	5461			
4	1452	4916			
5	786	4358			
6	226	4047			

Таблица 1: Градуировка монохроматора

Построим график зависимости, профитировав функцию $\lambda(\theta)$ по дисперсионной формуле Гартмана:

$$\lambda = \lambda_0 + \frac{C}{\theta - \theta_0} \tag{3}$$

Рис. 3: Неон

Рис. 4: Ртуть

Рис. 5: Градуировка монохроматора

	Значение	Ошибка
$C[A \cdot 10^6]$	-6.19	0.13
θ_0 [°]	3863	3
$\lambda_0[A]$	2342	5

Таблица 2: константы для дисперсионной формулы Гертмана

2.2 Спектр водорода

Рассмотрим линии спектра водорода, опеределим их длины волн по градуировочной кривой и рассчитаем постоянную Ридберга для каждой линии.

Линия спектра	θ , °	λ, \mathring{A}	σ_{λ}	$\frac{1}{n^2} - \frac{1}{m^2}$	$\frac{1}{\lambda}$, $10^{-4}\mathring{A}^{-1}$	$\sigma_{\frac{1}{\lambda}}, 10^{-4} \mathring{A}^{-1}$	R, cm^{-1}
H_{α}	2396	6562	16	0.139	1.528	0.046	109757
H_{eta}	1405	4863	8	0.188	2.059	0.062	109680
H_{γ}	757	4339	6	0.21	2.3	0.069	109773
H_{δ}	338	4102	6	0.222	2.436	0.073	109736

Таблица 3: Определение линий спектра водорода

Построим график связи длины волны и номера перехода:

Рис. 6: Проверка формулы Бальмера

	Значение	Погрешность
b	0.0170	0.0053
a	10.9737	0.0105

Таблица 4: Фит рис. 6 функцией y = ax + b

Отсюда можно определить постоянную Ридберга

$$R = (109737 \pm 105) \text{ cm}^{-1} \tag{4}$$

3 Вывод

Мы изучили спектры в оптических спектрах водорода и йода, экспериментально проверили справедливость формулы Бальмера и нашли постоянную Ридберга, которая в пределах погрешность совпадает с табличной ($R=109677,6~{\rm cm}^{-1}$), и оценили энергии квантов возбужденного состояния молекулы, энергию диссоциации частиц и энергию электронного перехода.