Assignment -2

Data Visualization and Preprocessing

Assignment Date	19 September 2022
Student Name	LOKESH.P
Student Roll Number	211419104151
Maximum Marks	2 Marks

Question-1:

Download the dataset:

Question-2:

Load the dataset.

Solution:

import pandas as pd
df=pd.read_csv('/content/Churn_Modelling.csv')

In [1]:	import pandas as pd															
In [3]:	df=pd.	f=pd.read_csv('/content/Churn_Modelling.csv')														
In [4]:	df															
Out[4]:	R	owNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	-1	0	1	112542.58	C	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0	
	1444		7.44			***					***		W.	W.		
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0,00	2	1	0	96270.64	0	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0	
	9997	9998	15584532	Līu	709	France	Female	36	7	0.00	1	0	1	42085.58	1	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1	
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0	

Question-3:

Perform Below Visualizations.

1)Univariate Analysis

Solution:

```
import matplotlib.pyplot as plt import
numpy as np
df_ex_0=df.loc[df['Exited']==0]
df_ex_1=df.loc[df['Exited']==1]
plt.plot(df_ex_0['Balance'],np.zeros_like(df_ex_0['Balance']),color='green'
) plt.xlabel('Balance') plt.show()
```


2)Bi - Variate Analysis

Solution:

import seaborn as sns
sns.FacetGrid(df,hue='Exited',size=5).map(plt.scatter,'CreditScore','Balance').add_legend()

1)Multivariate Analysis

Solution:

sns.pairplot(df,hue='Exited',height=5)

Question-4:

Perform descriptive statistics on the dataset.

Solution: df.describe(include='all')

Descriptive Statistics

Question-5:

Handle the Missing values.

Solution:

df.isnull().sum()

Question-6:

Find the outliers and replace the outliers

Solution:

```
import seaborn as sns
sns.boxplot(df['Balance']
)
```


Question-7:

Check for Categorical columns and perform encoding.

Solution:

from sklearn.preprocessing import LabelEncoder from
collections import Counter as count le=LabelEncoder()
df['Geography']=le.fit_transform(df['Geography'])
df['Gender']=le.fit_transform(df['Gender'])
df['Surname']=le.fit_transform(df['Surname'])

	ding													
	m sklearn.pro m collection													
le=	le=LabelEncoder()													
df['Geography'] 'Gender']=le 'Surname']=l	fit_transf	orm(df['G	ender'])	'])									
df														
	RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	
95	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	
2	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	
3		45727000	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	
	5	15737888					-	***			***		***	
3		15/3/888	***		***		***							
3			1999	771	0	1	39	5	0.00	2	1	0	96270.64	
3 4 	9996							5	0.00 57369.61	2	1	0	96270.64 101699.77	
3 4 9995	 9996 9997	15606229	1999	771	0	1	39	5			-			
3 4 9995 9996	9996 9997 9998	15606229 15569892	1999 1336	771 516	0	1	39 35 36	5 10 7	57369.61	1	1	1	101699.77	

Question-8:

Split the data into dependent and independent variables.

Solution:

x=df.iloc[:,0:13] y=df['Exited']

```
Dependent and Independent variables

In [20]: x=df.iloc[:,0:13]

In [21]: y=df['Exited']
```

Question-9:

Scale the independent variables

Solution: from sklearn.preprocessing import StandardScaler sc=StandardScaler() sc_xtrain=sc.fit_transform(xtrain) sc_xtest=sc.transform(xtest)

Question-10:

Testing and training data

Solution: from sklearn.model_selection import train_test_split

xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=10)