Prédiction de la demande en électricité

Nassima Rahmani

- Jeu de données : Consommations mensuelles :série chronologique Données effet de température : DJU
- •Correction des données de consommations mensuelles : régression linéaire
- Décomposition des données mensuelles corrigées avec la méthode des moyennes mobiles
- •Prévision de la consommation :

Modèle Holt-Winters Processus SARIMA

Jeu de données

	Mois	Consommation totale	Temp
0	2012-01-01	51086	333.6
1	2012-02-01	54476	439.2
2	2012-03-01	43156	201.0
3	2012-04-01	40176	210.4
4	2012-05-01	35257	58.4

Données mensuelles :

de 01-2012 à 07-2021

Corriger la consommation de l'effet de température

La régression linéaire :

•
$$Y = a + b^* X$$

Y: consommation totale

X:DJU

Coefficient de corrélation (détermination) : R² =0,94 Consommation corrigée = Consommation totale - b*DJU

Correction de la consommation de l'effet de la température

Décomposition de la série chronolgique corrigée méthode des moyennes mobiles

A tout instant t on a la série chronologique Xt :

$$X_t = T_t + S_t + \varepsilon_t$$

Avec T_t la tendance, S_t la saisonnalité et E_t:le bruit

L'enjeu est de trouver une moyenne mobile qui laisse la tendance invariante, qui absorbe la saisonnalité et qui réduit le résidu :

 $MT_t=Tt$

 $MS_t=0$

Mε_t "faible"

La stationnarité des consommations mensuelles corrigées

Prévision de la consommation

Modèle Holt_Winters ou triple lissage exponentiel :

prévision de série chronologique univariée

Dans les méthodes de prévision par lissage exponentiel ,une prédiction est une somme pondérée d'observations passées et le modèle utilise explicitement un poids décroissant exponentiellement pour les observations passées.Plus l'observation est récente, plus le poids associé est élevé.

Xt est approximable au voisinage de T par aT+(t-T)bT+ST

Alpha: facteur de lissage pour le niveau.

Beta: facteur de Lissage pour la tendance.

Gamma: facteur de lissage pour la saisonnalité

Processus stochastique : Modèle SARIMA

Seasonal autoregressive integrated moving average:

stationnarisation:différenciation
vérification des modèles potentiels,
choix définitif d'un modèle,
prévision à l'aide du modèle choisi,
analyse a posteriori de la prévision.

SARTMAX Results

	SARIMAX RESULTS											
			=======	========				========	=:			
	Dep. Varia				_	No. Observation			1:			
	Model:	SARI	MAX(1, 1,			Log Likelihood		-1009.				
	Date:			Tue, 26 0	ct 2021	AIC		2027.	3:			
	Time:			0	8:56:49	BIC		2038.	2(
	Sample:			01-	01-2012	HQIC		2031.	7(
	- 07-01-2021											
	Covariance	Type:			opg							
	========			=======	=======							
		coef	std err	z	P> z	[0.025	0.975]					
	ar.L1	-0.1784	0.045	-3.960	0.000	-0.267	-0.090					
	ar.S.L12	0.9245	0.073	12.588	0.000	0.781	1.068					
	ma.S.L12	-0.7959	0.114	-6.972	0.000	-1.020	-0.572					
	sigma2	2.594e+06	1.02e-08	2.55e+14	0.000	2.59e+06	2.59e+06					
	========			=======	=======			====				
	Ljung-Box (L1) (Q):			4.99	Jarque-Bera (JB):			0.57				
Prob(Q):			0.03	Prob(JB):			0.75					
	Heteroskedasticity (H):			0.43	Skew:			-0.12				
Prob(H) (two-sided):			0.01	Kurtosis:			2.74					
	========		=======	========	=======	=========	=======:	====				

Conclusion

Une série chronologique a trois composantes :

Une tendance ,une saisonnalité et un bruit

On peut décomposer la série avec la méthode des moyennes mobiles

On peut faire des prévisions sur les valeurs futures de la série :

Le triple lissage exponentiel (Holt-Winters) prévisions à court terme

Processus stochastique: SARIMA