WORKSHOP DE RECRUTAMENTO

Eletrónica

Eletrónica

LED a Brilhar

O que é um Arduino Nano?

O que é um díodo?

O que é um LED ?

O que é uma BreadBoard?

O que é uma BreadBoard?

Será que dá?

Dar...
dar dá...
Dá para rebentar com o
LED !!

O que está em falta?

Cor do led	Faixa de tensão	Corrente máxima
Vermelho	1,8 V - 2,0 V	20 mA
Amarelo	1,8 V - 2,0 V	20 mA
Laranja	1,8 V - 2,0 V	20 mA
Verde	2,0 V - 2,5 V	20 mA
Azul	2,5 V - 3,0 V	20 mA
Branco	2,5 V - 3,0 V	20 mA

Resistências

$$R = \frac{U}{I}$$

Resistências

Leis de Kirchhoff

KCL

KVL

Logo...

$$I_{Led} = I_{Ard} = I_{Re} = 14 \text{ mA}$$

$$U_{ard} = U_{LED} + U_{Re} \Leftrightarrow$$

$$\Leftrightarrow U_{Re} = 3.1 \text{ V}$$

$$R_{Re} = \frac{3.1 V}{1.4 m \Lambda} = 221 \Omega$$

Ponto da Situação

Programar

https://www.arduino.cc/reference/en/

IDE

```
sketch_dec07a | Arduino 1.8.3
File Edit Sketch Tools Help
                                                                                       Ø.
  sketch_dec07a
void setup() {
 // put your setup code here, to run once:
void loop() {
 // put your main code here, to run repeatedly:
```

Sintaxe

Colocar ; no fim de cada instrução

$$z = x + y$$
;

Comentários:

- /* comentário comentário comentário */ Case sensitive

- // comentário

Estrutura do Código

```
void setup() {
    // put your setup code here, to run once;
}
void loop() {
    // put your main code here, to run repeatedly;
}
```

Digital vs Analog

Digital I/O

pinMode()

digitalRead()

digitalWrite()

pinMode

Descrição:

Configura um pin para ser ou input ou output.

Sintaxe:

pinMode(pin, mode)

Parâmetros:

pin: número do pin que se quer configurar mode: INPUT, OUTPUT ou INPUT PULLUP

Devolve

nada

PullUp

Interruptores

digitalRead

```
Descrição:
    Lê um valor de pin especifico

Sintaxe:
    digitalRead(pin)

Parâmetros.
    pin: número do pin que se quer ler

Devolve:
```

HIGH ou LOW

digitalWrite

```
Descrição:
```

Escreve High ou Low num pino

Sintaxe:

digitalWrite(pin, value)

Parâmetros:

pin: número do pin em que se quer escrever

value: HIGH ou LOW

Devolve:

nada

delay

```
Descrição:
     Pausa o programar por um certo número de milissegundos
Sintaxe:
     delay(ms)
Parâmetros:
     ms: número de milissegundos
Devolve:
     nada
```

Código em Arduíno

Código em Arduíno

```
int led = 12:
           //Pin que vamos usar
int tempo = 1000;
                            //Tempo de delay
/*Em alternativa recomenda-se a utilização de macros
#define led 12
#define tempo 1000 */
void setup() {
     pinMode(led,OUTPUT);
void loop() {
    digitalWrite(led, HIGH);
    delay(tempo); //1000 \text{ ms} = 1 \text{ s}
    digitalWrite(led, LOW);
    delay(tempo);
```

Ponto da Situação

O que é o PWM

analogWrite

Descrição:

Escreve um valor analógico num pin

Sintaxe:

analogWrite(pin, value)

Parâmetros:

pin: número do pin em que se quer escrever

value: ciclo de trabalho, entre 0 e 255

Devolve:

nada

Código em Arduíno

```
int led = 11;
                           //Pin que vamos usar
int brilho = 255;
int direcao = -1:
void setup() {
     pinMode(led,OUTPUT);
void loop() {
     analogWrite(led, brilho);
     delay(2);
     brilho = brilho + direcao;
     if(brilho<=0 || brilho >= 255){
           direcao = -direcao;
```

Resultado final

Mais coisas

analogRead

Descrição:

Lê um valor analógico num pin.

Sintaxe:

analogRead(pin)

Parâmetros:

pin: número do pin que se quer ler

Devolve:

Um valor entre 0 e 1023

Mais coisas

```
int led = 11, ldr = 40, lim = 100;
void setup() {
     pinMode(led,OUTPUT);
     pinMode(ldr,INPUT);
void loop() {
     int input = analogRead(ldr);
     if (input > lim) {
           digitalWrite(led, HIGH);
     }else{
           digitalWrite(led, LOW);
```

Comunicação Serial

Mais coisas

```
int led = 11, res = A0, brilho;
void setup() {
     pinMode(led,OUTPUT);
     pinMode(res,INPUT);
     Serial.begin(9600);
void loop() {
     brilho=analogRead(res);
     analogWrite(led,brilho/4);
     Serial.println(brilho);
```

Módulos

Aplicação de um modulo

Projeto

Outras peças

Outras peças

