Mobile and wireless networks

Guy Pujolle

University Pierre et Marie Curie – Paris VI

Connected devices

Source IDC

Cellular revenue

Worldwide Cellular Infrastructure Revenue by Technology, 2005-2015

Mobile and wireless networks

Mobile and wireless networks

Radio spectrum

Capacity gap

Offloading

LTE -3G + (3GPP release 8) -2008

- Long Term Evolution 3G+
 - OFDMA instead of CDMA
 - IP-based except telephony
 - On the market 2009/2010
 - 100 countries in 2014
 - Peak rate :
 - 50 Mbps uplink (with 20 MHz)
 - 100 Mbps downlink (with 20 MHz)

LTE-3G super+ (3GPP release 9) - 2009

- Femtocell
- machine to machine (M2M)
- Public safety warning (Tsunami, etc.)
- Green agenda (optimization of the E-Node-B)

LTE-A (3GPP release 10) – 2012

- LTE-A = 4G
- Full native IP
 - ToIP
- MU-MIMO (up to 4 antennas)
- Smart antenna (software radio)
- Directive antenna (beamforming)
- Cognitive radio
- Relay and mesh networks
- "Green" properties
- Femtocell

4G+ Release 11 - 2013

- LTE- Advanced
- Introduction of service-oriented mobile networks
- Heterogeneous networks (HetNet)
- Coordinated Multi-Point operation (CoMP)

- In-device Co-existence (IDC)
 - Interference between bands due to distortion of the signal

4G Release 12 – 2015

- Improvements of Spectral Efficiency
- LTE Carrier Aggregation
- Multi Access
- Machine-Type Communications (MTC)
- Interworking between Mobile Operators
- Continuity of Data Sessions to Local Networks
- Telepresence

4G Release 13 2017

- 4G extension
- Virtualization
- LTE-U (Unlicensed)

5G Release 14 2020

- Internet of Things
- C-RAN (Cloud RAN)
- Full virtualisation
- Low bit-cost
- High spectral and energy efficiency

LTE

Pourquoi LTE

- □ La 3G/3G+ arrive à saturation
 - Tsunami vidéo (Youtube)
 - •86.000 heures de vidéo téléchargées chaque jour
 - •Plus de 4 milliards vues vidéo par jour
 - LTE augmente le débit et la capacité pour les services IP
 - Nouveau spectre
- Pas de "killer application" pour l'adoption du LTE
 - Internet/ FTP
 - Video/audio streaming, TV
 - Services temps réels : jeux en ligne, VoIP
 - Complément des solutions de cloud computing
 - Alléger les services de retransmission vidéo (de caméras de surveillance)
- Une meilleure qualité des communications en forte mobilité
- Des terminaux moins complexes avec une meilleure autonomie

Spécifications techniques du LTE

Débit max descendant
■ 100 Mbps
Débit max ascendant
50 Mbits/s
Antennes MIMO (Multiple Input Multiple Output)
Large gamme de fréquences définie par ITU-R (International Telecommunication Union-
Radio)
Bande passante variable
• 1,4 MHz à 20 MHz en LTE
Tailles de cellules jusqu'à 50 km
Latence faible de 20 ms vs 50-60ms for HSPA+
Uniquement le mode unicast dans la Rel 8, le broadcast est introduit dans la Rel10

Fréquences LTE

Un client avec un terminal dual band 1800/2600 MHz (307 terminaux sur le marché) peut être utilisé dans 57 pays (81% des pays où le LTE est commercialisé)

Interaction Wi-Fi LTE

- Extention de couverture
- Offloading
- © Comportement classique du handover WiFi : Connexion manuelle au hotspot
 - recherche et sélection de réseau accessible, saisie des crédentiels via une interface web
 - => Automatiser le handover : EAP-SIM

Passpoint (Next Generation Hotspot)

- ☐ Hotspot 2.0 Phase 1 Passpoint (finalisée en Juin 2012)
 - Rendre le handover vers le wifi automatique
 - Accès au réseau de façon simplifiée: l'équipement mobile sera authentifié automatiquement avec ses crédentiels comme une carte SIM (EAP-SIM ou EAP-TLS)
 - Sécurité: la communication avec le point d'accès est chiffrée avec WPA2-Entreprise, ce qui donne un niveau équivalent avec de qui se fait sur les mobiles.
- Avec la release 1, le terminal passe en mode wifi dès que ce type de connexion est disponible
 - Possibilité de dégradation de performances
- ☐ Wi-Fi Phase 2 Passpoint
 - Améliorer la sélection du type d'accès selon
 - Les caractéristiques du lien radio
 - La charge courante, les plages horaires
 - Les paramètres d'abonnements
 - Les services

4G and Wi-Fi convergence

Lack of radio resource

NGH: Next generation hotspot or Hotspot 2.0 NGH enables operators to continuously monitor and manage "cellular-like" service over Wi-Fi IEEE 802.11u and EAP- (SIM, AKA, TLS,...)

The global management and control

Passpoint solution

Équipement terminal

Passpoint terminal equipment:

- ANQP (Network Query Protocol)

Legacy Access Point:

- IEEE 802.1x
- Generic Advertisement Service

Controller

- EAP-SIM, EAP-AKA, and EAP-TLS
- Account opening
- Resource allocation as a function of the application
- AP management

Evolution to increase capacity

Spectrum utilization

Cognitive radio

Beamforming – MU-MIMO - SDMA

