See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/11516810

Generation of Ketenes from Acid Chlorides Using NaH/Crown Ether Shuttle-Deprotonation for Use in Asymmetric Catalysis

ARTICLE in ORGANIC LETTERS · MARCH 2002

Impact Factor: 6.36 · DOI: 10.1021/ol0172525 · Source: PubMed

CITATIONS

53

READS

33

5 AUTHORS, INCLUDING:

Andrew E Taggi

Dupont

37 PUBLICATIONS 2,011 CITATIONS

SEE PROFILE

Stefan France

Georgia Institute of Technology

48 PUBLICATIONS 1,507 CITATIONS

SEE PROFILE

Harald Wack

Dr. Wack Holding

25 PUBLICATIONS 1,251 CITATIONS

SEE PROFILE

Thomas Lectka

Johns Hopkins University

107 PUBLICATIONS **4,928** CITATIONS

SEE PROFILE

The Generation of Ketenes from Acid Chlorides Using NaH/Crown Ether Shuttle-Deprotonation for Use in Asymmetric Catalysis

Andrew E. Taggi, Harald Wack, Ahmed M. Hafez, Stefan France and Thomas Lectka*

Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218

lectka@jhunix.hcf.jhu.edu

Supporting Information

General. Unless otherwise stated, all reactions were carried out under strictly anhydrous, air-free conditions. All reagents used were commercially available from Aldrich and Acros. All solvents and acid chlorides were dried and distilled by standard methods. Catalysts **2**,¹ Imine **3**,² and 2,3,4,5,6,6-Hexachloro-2,4-cyclohexadien-1-one **5**³ were prepared according to literature procedure. ¹H and ¹³C NMR spectra were acquired on a Varian Unity Plus 400 MHz instrument in CDCl₃. The ¹H (400 MHz) and ¹³C (101 MHz) chemical shifts are given in parts per million () with respect to internal TMS standard or residual solvent peaks. FTIR spectra were recorded on a Bruker Vector 22 spectrometer and optical rotations were recorded on a Perkin Elmer 120 polarimeter at room temperature. Enantiomeric ratios were obtained using a Waters Millipore Model 510 head unit, a Waters Millipore Lambda-Max Model 481LC spectrophotometer, and a Hewlett Packard indegrator with a Regis Technologies (*R*, *R*)-Whelk-01 Chiral analytical HPLC column for **4** or a Chiracel AD analytical column for **6**.

Representative synthesis of β-lactams 4. To a suspension of NaH (0.062 g, 2.58 mmol), benzoylquinine (0.055 g, 0.13 mmol) and 15-crown-5 (0.028 g, 0.13 mmol) in toluene (5 mL) at -78° C⁴ was added hydrocinnamoyl chloride 1 (0.479 g, 2.83 mmol) in toluene (1 mL) over 3 min. The mixture was then stirred vigorously for 7 h. A solution of 3 (0.330 g, 1.29 mmol) in toluene (9 mL) was then added through a syringe pump over 1 h (0.16 mL/min) and the reaction was warmed to room temperature over 6 h. The reaction was then quenched with 1M HCl (3 mL) and washed three times with 10% Na₂CO₃ (10 mL). The combined aqueous layers were back extracted twice with Et₂O (10 mL) and the combined organic layers were then dried over MgSO₄, filtered and concentrated. The crude product was purified on a short plug of silica (15% EtOAc/hexanes) to yield 4 (0.290 g, 60%).

Cis-(3*R*,4*R*)-1-*p*-toluenesulfonyl-3-benzyl-4-ethoxycarbonylazetidinone (4a).⁵ White crystalline solid recrystallized from Et₂O/hexanes (major diastereomer): mp = 93° C; []_D = +14.2° (c = 0.0123, CHCl₃); ¹H NMR (CDCl₃) 7.94 (d, 2H), 7.38 (d, 2H), 7.2- 7.3 (m, 3H), 7.11 (d, 2H), 4.73 (d, 1H), 4.17 (m, 1H), 3.99 (m, 1H), 3.89 (m, 1H), 3.08 (dd, 1H), 2.83 (dd, 1H), 2.47 (s, 3H), 1.12 (t, 3H) ppm; ¹³C NMR (CDCl₃) 167.5, 164.2, 145.7, 136.3, 135.5, 129.9, 128.8, 128.5, 128.1, 127.1, 62.3, 56.8, 53.3, 30.6, 21.9, 13.9 ppm; IR (CHCl₃) 3020, 1802, 1746, 1523, 1476, 1425, 1372, 1217. Anal Calcd for C₂₀H₂₁NO₅S C, 62.0; H, 5.46; N, 3.62. Found C, 61.9; H, 5.45; N, 3.62.

Pracejus, H.; Maetje, H. J. Prakt. Chem. 1964, 24, 195-205.

² Tschaen, D. H.; Turos, E.; Weinreb, S. M. J. Org. Chem. **1984**, 49, 5058-5064.

³ Wack, H.; Taggi, A. E.; Hafez, A. M.; Drury, W. J., III; Lectka, T. J. Am. Chem. Soc. **2001**, 123, 1531-1532.

⁴ The optimal procedure for the formation of the corresponding ketene from acid chloride **1b** was 0° C for 1h. The reaction was then cooled to -78° C and the general procedure followed without any additional modifications.

The absolute configuration is assumed to be consistent with prior results; Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., III; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831-7832.

Determination of the enantiopurity of 4a. Due to difficulties with the separation of **4a** on chiral HPLC, it was converted to the N-benzoyl derivative **4c** to determine enantiopurity. A solution of SmI₂ (1.0 g, 2.58 mmol) in THF (0.04 M) was added to **4** at room temperature and stirred for 6 h. The reaction was quenched with brine and extracted four times with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated. Into a flask containing the crude residue were added *N*,*N*-dimethylaminopyridine (DMAP, 0.0063 g, 0.052 mmol) and CH₂Cl₂ (10 mL). To this solution cooled to 0° C were added Et₃N (0.157 g, 1.55 mmol) and benzoyl chloride (0.145 g, 1.03 mmol). The reaction was stirred overnight, then washed three times with 10% Na₂CO₃ and the combined organic layers were dried over MgSO₄, filtered and concentrated. The crude residue was subjected to column chromatography (7% EtOAc/hexane) to yield **4c** (0.113 g, 65% yield).

*Cis-(3R,4R)-*1-benzoyl-3-benzyl-4-ethoxycarbonylazetidinone (4c). White crystalline solid recrystallized from Et₂O/hexanes (major diastereomer): mp = 129-130° C; []_D = +7.2° (c = 0.008, CHCl₃); ¹H NMR (CDCl₃) 8.06 (d, 2H), 7.59 (m, 2H), 7.47 (m, 4H), 7.24 (m, 2H), 4.76 (d, 1H), 4.42 (m, 2H), 3.91 (m, 1H), 3.23 (m, 1H), 3.10 (m, 1H), 1.18 (t, 3H) ppm; ¹³C NMR (CDCl₃) 168.7, 167.5, 164.2, 133.5, 129.9, 128.9, 128.6, 128.5, 128.3, 127.2, 126.4, 61.9, 54.0, 53.3, 51.0, 13.9 ppm; IR (CHCl₃) 3030, 2963, 2929, 1799, 1745, 1680, 1262, 1098, 1016; HPLC (10% CH₂Cl₂/1% HOAc/hexanes, 1.0 mL/min) (R,R) = 57.2, (R,S) = 41.0, (S,R) = 68.8, (S,S) = 52.2 min. Anal Calcd for C₂₀H₁₀NO₄ C, 71.2; H, 5.68; N, 4.15. Found C, 71.1; H, 5.67; N, 4.16.

Cis-(3R,4R)-1-p-toluenesulfonyl-3-benzyloxy-4-ethoxycarbonylazetidinone (4b). White crystalline solid recrystallized from Et₂O/hexanes. All other data consistent with published report.⁶

Representative synthesis of α -haloesters 6. To a suspension of NaH (0.068 g, 2.7 mmol), benzoyl quinine (0.55 g, 0.13 mmol) and 15-crown-5 (0.028 g, 0.013 mmol) in THF (20 mL) at -78° C was added phenylacetyl chloride 1a (0.5 g, 2.7 mmol) in THF (1mL). A solution of 5 (0.407 g, 1.35 mmol) in THF (20mL) was then added through a syringe pump over 3 h and the reaction was allowed to warm to room temperature. The reaction was then quenched with 150 mL H₂O. The aqueous layer was extracted twice with 25 mL of diethylether and once with 20 mL of CH₂Cl₂. The combined organic layers were then dried over MgSO₄, filtered and concentrated. The crude product was purified on a short plug of silica (hexanes) to yield 6a (0.357 g, 63%).

(S)-2-Chloro-2-phenyl-acetic acid pentachlorophenyl ester (5a). White crystalline solid recrystallized from Et₂O/hexanes. All other data consistent with published report.³

(S)-2-Chloro-3-phenoxypropionic acid pentachlorophenyl ester (5b). White crystalline solid recrystallized from Et₂O/hexanes. All other data consistent with published report.³

⁶ Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., III; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831-7832.