Student Information

Full Name : Mert Akça Id Number : 2171163

Answer 1

a.

Table 1: Rational Numbers					
	1	2	3	4	5
1	1/1	1/2	1/3	1/4	1/5
2	2/1	2/2	2/3	2/4	2/5
3	3/1	3/2	3/3	3/4	3/5
4	4/1	4/2	4/3	4/4	4/5
5	5/1	5/2	5/3	5/4	5/5

We can write set of rational numbers between (0,1) R = 1/2, 1/3, 2/3, 1/4, 1/5, 3/4, 2/5.... Because there is one-to-one correspondence between the elements of the set R and the set of natural numbers, set of rational numbers countable and infinite. If we multiply all the members with -1, we obtain the set of rational numbers in (-1, 0) which is also countable and infinite.

b.

c.

Answer 2

a.

b.

c.

Answer 3

a.

 w_1 is not in L(N)

b.

 w_2 is in L(N)

Answer 4

$$\operatorname{start} \longrightarrow \overbrace{q_0} \qquad \underbrace{(bab*bab*)*b((ab*b) \cup (e \cup ab*b)a*b)*(ab*) \cup (ab*b \cup e)a*} \qquad q_3$$

Answer 5

a.

b.

Answer 6

Answer 7

a.

Let w = aabbaa, which the number of a's is 4.

If we choose x = aa, y = bba, z = a, it becomes, $xy^iz = aa(bba)^ia$

Let $i=2, xy^2z=aabbabbaa$, the number of a's is 5 which does not meet the rule. Furthermore, the language cannot be a regular language