1. Poslužitelj započinje sa strujanjem zvuka šaljući komade zvuka od 100 ms. Zvuk je enkodiran PCM načinom tako da je brzina uzorkovanja 20000 uzoraka/sek sa 65536 (65536 = 2^{16}) kvantizacijskih razina. U trenutku t_0 =0 pošiljatelj šalje prvi komad zvuka, koji pristiže u međuspremnik klijenta za reprodukciju zvuka u trenutku t_1 =47 ms. Nakon toga komadi od drugog do desetog pristižu u trenucima t_2 = 108 ms, t_3 = 130 ms, t_4 = 175 ms, t_5 = 241 ms, t_6 = 300 ms, t_7 = 310 ms, t_8 = 350 ms, t_9 = 411 ms, t_{10} = 462 ms. Veličina međuspremnika klijenta za reprodukciju zvuka je 50 KB, a reprodukcija započinje nakon što se međuspremnik popuni minimalno 30%. Koliko je početno reprodukcijsko kašnjenje?

R:

 $20000 \text{ uzoraka/sek} \times 16 \text{ bitova} = 320000 \text{ b/s} = 320 \text{ kb/s}$

Veličina komada je = $100 \text{ ms} \times 320 \text{ kb/s} = 0.1 \text{ s} \times 320 000 \text{ b/s} = 32 000 \text{ b} = 4 000 \text{ B}$

30% spremnika => $Q_p = 0.30 \times 50 \text{ KB} = 0.30 \times 51200 \text{ B} = 15360 \text{ B}$

Koliko je potrebno komada da se dostigne ili prijeđe granica Q_p ?

 $N \ge 15360 \text{ B} / 4000 \text{ B}$

$$N \ge 3.84 \implies N = 4$$

Kada pristigne četvrti komad, može se započeti s reprodukcijom. Početno reprodukcijsko kašnjenje je vrijeme koje protekne od primitaka prvog komada audia pa do početka njegove reprodukcije.

$$t_p = t_4 - t_1 = 175 \text{ ms} - 47 \text{ ms} = 128 \text{ ms}$$

Početno reprodukcijsko kašnjenje iznosi 128 ms.

2. Video s okvirom rezolucije 1920×1080 točkica (pixela), od kojih se za prikaz boje pojedine točkice koristi 2²⁴ kvantizacijskih razina, i 30 okvira u sekundi, enkodiran je s prosječnim faktorom sažimanja 1:86. Hoće li, pod pretpostavkom da je početno reprodukcijsko kašnjenje dovoljno veliko, doći do zamrzavanja slike pri reprodukciji ako je prosječna brzina punjenja međuspremnika aplikacije za reprodukciju videa

a)
$$\bar{x} = 10 \text{ Mb/s}$$

b)
$$\bar{x} = 30 \text{ Mb/s}$$

(**Napomene:** U međuspremniku aplikacije za reprodukciju videa, video se nalazi u sažetom enkodiranom obliku. U ovom videu nema audio kanala.)

Prije enkodiranja, video informacije se generiraju brzinom od $1920 \times 1080 \times 24 \times 30 = 1492992000 \text{ b/s} \approx 1.49 \text{ Gb/s}.$

Nakon enkodiranja to je prosječno 1.49 Gb/s \times 1/86 = 17.36 Mb/s.

Da bi se video mogao reproducirati bez zamrzavanja, minimalna prosječna brzina punjenja međuspremnika je 17.36 Mb/s

- a) $\bar{x} < 17.36 \text{ Mb/s} => \text{sigurno}$ će doći do zamrzavanja videa (osim u slučaju vrlo kratkog videa koji bi gotovo u cijelosti stao u međuspremnik prije početka reprodukcije)
- b) $\bar{x} \ge 17.36$ Mb/s => moguće je da neće doći za zamrzavanje slike pri reprodukciji, tj. u slučaju da je početno reprodukcijsko kašnjenje dovoljno veliko očekuje se neće biti zamrzavanja videa.

Napomena. Moguće bi bilo i da se u međuspremnik pohranjuje dekodirani video (bez kompresije), tada bi se uspoređivala brzina punjenja spremnika dekodiranim videom s brzinom reprodukcije 1.49 Gb/s.

3. U Internet telefoniji u kojoj se koristi adaptivno reprodukcijsko kašnjenje, prvi paket na početku perioda govora stigao je u trenutku $r_i = 10.598$ s, a vremenska oznaka tog paketa iznosi $t_i = 10.502$ s. Prije toga, procjena kašnjenja paketa je iznosila $d_{i-1} = 85$ ms, a devijacija kašnjenja 7.5 ms. Koje će se vrijeme reprodukcije odabrati, ako je $\alpha = 0.1$, $\beta = 0.2$, a K=4?

Procjena kašnjenja za i-ti paket

$$d_i = (1 - \alpha)d_{i-1} + \alpha(r_i - t_i)$$

$$d_i = 0.9 \times 85 \text{ ms} + 0.1 \times (10598 \text{ ms} - 10502 \text{ ms}) = 76.5 \text{ ms} + 9.6 \text{ ms} = 86.1 \text{ ms}$$

Procjena devijacije kašnjenja za i-ti paket

$$v_i = (1 - \beta)v_{i-1} + \beta |r_i - t_i - d_i| = 0.8 \times 7.5 \text{ ms} + 0.2 \times |10598 \text{ ms} - 10502 \text{ ms} - 86,1 \text{ ms} |$$

$$v_i = 6 \text{ ms} + 0.2 \times 9.9 \text{ ms} = 7.89 \text{ ms}$$

vrijeme-reprodukcije = $t_i + d_i + K \times v_i = 10502 \text{ ms} + 86,1 \text{ ms} + 4 \times 7.89 \text{ ms} = 31.56 \text{ ms} = 10619,66 \text{ ms}$ *vrijeme-reprodukcije* $\approx 10620 \text{ ms} = 10.620 \text{ s}$

- **4.** Kao FEC metoda kod prijenosa podataka u Internet telefoniji koristi se XOR metoda kod koje se nakon četiri komada (n = 4) umeće redundantni paket.
- a) odrediti sadržaj redundantnog paketa (5. paket) ako je sadržaj prva četiri paketa zadan tablicom

Redni broj paketa	Sadržaj paketa
1	1001001001010010
2	0110101011111101
3	0110000011010111
4	0000110000100011
5	

b) pristigli su paketi zadani tablicom. Rekonstruirajte sadržaj paketa koji nedostaju (praznine u tablici).

(Napomena. Prvi poslani paket ima redni broj 1)

Redni broj paketa	Sadržaj paketa
7	1001001001010010
8	0110101011111101
9	0110000011010111
10	0000110000100011
11	1011110001011011
12	
13	0100001011111101
14	0111101011010111
15	0000110000100011
16	1111000100011011

a) Rješenje

Redni broj paketa	Sadržaj paketa
1	1001001001010010
2	0110101011111101
3	0110000011010111
4	0000110000100011
5	1001010001011011

Sadržaj 5. paketa je **1001010001011011** (dobije se XOR operacijom nad bitovima prvih *n* paketa)

b) Rješenje

U prvu grupu spadaju paketi od 1 do 5,u drugu od 6 do 10, u treću od 11 do 15, itd. Za rekonstrukciju paketa s rednim brojem 12 provodi se XOR operacija nad ostalim paketima iz njegove grupe

Redni broj paketa	Sadržaj paketa
7	1001001001010010
8	0110101011111101
9	0110000011010111
10	0000110000100011
11	1011110001011011
12	1000100001010010
13	0100001011111101
14	0111101011010111
15	0000110000100011
16	1111000100011011

5. Pristigli su paketi s rednim brojevima i vremenskim oznakama kao u tablici. Odrediti koji paketi započinju period govora, ako svaki paket prenosi komad od 20 ms.

	Vremenska oznaka paketa
Redni broj paketa	(interpretirana u milisekundama)
563	15860 ms
564	15880 ms
566	15920 ms
567	16940 ms
568	16960 ms
569	16980 ms
570	19380 ms
571	19400 ms
572	19420 ms
575	19480 ms
576	19500 ms

Rješenje:Za period tišine, razlika vremenskih oznaka mora biti veća od 20 ms te redni brojevi uzastopni!

Redni broj paketa	Vremenska oznaka paketa (interpretirana u milisekundama)	Razlika veća od 20 ms, ali redni brojevi
563	15860 ms	nisu uzastopni!
564	15880 ms	
566	15920 ms	
567	16940 ms —	Razlika veća od 20 ms i uzastopni brojevi
568	16960 ms	
569	16980 ms	De l'Il en récord 20 mais not anni le citati
570	19380 ms	Razlika veća od 20 ms i uzastopni brojevi
571	19400 ms	
572	19420 ms	
575	19480 ms	
576	19500 ms	