

Exploiting the Advantages of Differential Feeds for Compact Antennas

Stanislav Licul, Nathan Cummings, Jeremy Marks, Warren
Stutzman
Maxtena, Inc.

Antenna Systems Conference Austin, Texas September 25-26, 2008

MAXTENA Presentation Overview

- 1. Introduction Differential vs. Single-Ended Interface
- 2. Quadrifilar Antenna Geometry and Free **Space Radiation Characteristics**
- 3. Radiation Characteristics Integrated
- 4. Radiation Characteristics Integrated/Hand and Body Effects
- 5. Conclusions

1. Differential vs. Single-Ended Interface

- Conventional antenna design employs differential feeds for antennas operating in open areas. The dipole antenna is a good example.
- When a ground plane is present, single ended operation is used. Examples are monopole and microstrip antennas.

However, there are several disadvantages to single-ended feeds:

- The currents on the ground plane lead to:
 - Reduced isolation
 - Variable performance due to presence of human operator, including increased loss and detuning
 - Longer integration process

MAXTENA Differential vs. Single-Ended

Advantages of antennas with inherent balanced inputs:

- Low ground plane currents, providing:
 - Stable and better performance in the presence of components and an operator
 - Easier integration process
- Lower part count: no need for single-ended to differential conversion
- Can be driven directly by differential active devices at appropriate impedance level

MAXTENA Antenna Geometry Details

Differential Design:

Diameter: 10 mm

Height: 20 mm

Dielectric constant (er):~20

LTCC Balun

0.9 dB Insertion Loss

Single-Ended Design:

Diameter: 10 mm

Height: ~20 mm

Dielectric constant (er):~40

Integrated Balun

with coaxial feed

Differential

MAXTENA 2. Realized Gain and Bandwidth

- 21MHz vs. 6 MHz Bandwidth
- Differential tested with 0.9 dB insertion loss LTCC Balun

MAXTENA Elevation Pattern x-z plane

Differential

MAXTENA Elevation Pattern y-z plane

Differential

MAXTENA Azimuth Pattern x-y plane

Differential

2-D Contour Plot

Differential

Axial Ratio vs. Theta

Differential

Axial Ratio vs. Frequency/Axial Ratio Bandwidth

Differential

Antenna Filtering

Differential

Free Field Conclusions

	Single-Ended	Differential with LTCC Balun
Realized Gain	-2.3	-2.0
Axial Ratio Bandwidth (-3dB) [MHz]	4 MHz	150 MHz
Axial Ratio	Greater than 4 dB	Less than 2 dB
RHCP vs. LHCP Rejection	10 dB	20 dB
Bandwidth (-1, dB) [MHz]	6	21

MAXTENA 3. Radiation Characteristics

Measurement co-ordinate system 0=0°

θ=180°

Integrated

9/15/2008

Differential

(WA 1020-1

9/15/2008 2:25pm

Single-Ended

Test Board Dimensions:

Length: 120 mm

Height: 60 mm

MAXTENA Elevation Pattern x-z plane

Differential

MAXTENA Elevation Pattern y-z plane

Differential

Elevation Plot vs θ , y-z plane, $\phi = 90$ 90_0 120 -20 30 -30 210 330 270

MAXTENA Azimuth Pattern x-y plane

Differential

Azimuth Plot vs ϕ , x-y plane, $\theta = 90$ RHCP - LHCP G_{total} -20 150 -30/ 180 210 240 270

2-D Contour Plot

Differential

Axial Ratio vs. Theta

Differential

Axial Ratio vs. Frequency/Axial Ratio Bandwidth

Differential

MAXTENA Integrated Conclusions

	Single-Ended	Differential with LTCC Balun
Realized Gain	2.3	-0.7
Efficiency Free Field [%]	49	31
Axial Ratio (<6 dB)	~30 MHz	~120 MHz
RHCP vs. LHCP Rejection	~5 dB	~10 dB
Bandwidth (-1 dB) [MHz]	16	24

Maxtena, Inc.

4. Radiation Characteristics Integrated including Hand and Body

MAXTENA Elevation Pattern x-z plane

Differential

Elevation Plot vs θ, x-z plane, φ = 0 900 120 -40 RHCP LHCP G total

MAXTENA Elevation Pattern y-z plane

Differential

Elevation Plot vs θ , y-z plane, $\phi = 90$ 90_0 120 -10 60 RHCP LHCP G_{total} 30 210 270

MAXTENA Azimuth Pattern x-y plane

Differential

Azimuth Plot vs ϕ , x-y plane, $\theta = 90$ RHCP - LHCP G_{total} -20 180 210 240 270

2-D Contour Plot

Differential

MAXTENA Axial Ratio vs. Theta

Differential

Axial Ratio vs. Frequency/Axial Ratio Bandwidth

Differential

MAXTENA Integrated-Hand and Body/ Conclusions

	Single-Ended	Differential with LTCC Balun
Realized Gain	0.8	0.4
Efficiency Free Field [%]	23	22
Bandwidth (-1 dB) [MHz]	16	32
Hand/Body Detuning Shift	2 MHz	6 MHz

5. Conclusions

5. Conclusions

*5. Conclusions

- M1575CQA with 50% hand overlap performs the same as the single ended antenna with 0% hand overlap.
- Differential interface antenna shows higher human body immunity.
- This direct evaluation concludes that the differential interface antenna has higher gain, better human body immunity and outstanding performance compared to single ended antennas.