

IIC2223 - Teoría de Autómatas y Lenguajes Formales

Ayudantía 11

Franco Bruña y Dante Pinto 3 de Diciembre, 2021

Pregunta 1

Para cada uno de los siguientes FSA, escriba su definición y entregue una breve explicación de su utilidad.

- DFA.
- NFA y ε -NFA.
- Transductor.
- Autómata de un patrón.
- k-DFA y Lazy Autómata.
- PDA y PDA alternativo.
- k-PDT.
- Bottom-up PDA.
- Autómata característico.

Pregunta 2

Decimos que $\alpha \in (V \cup \Sigma)^*$ es una right-sentential form si $S \stackrel{*}{\underset{rm}{\Longrightarrow}} \alpha$. Es decir, son todas las palabras (de variables o terminales) que produce una gramática con derivaciones por la derecha.

2.1

Considerando la gramática $S \to 0S1 \mid 01$, indica cuál es el handle de cada una de las siguientes right-sentential forms:

- 1. 000111
- $2. \ 00S11$

2.2

Repita lo mismo del 2.1 para $S \to SS + |SS*|$ a y las siguientes right-sentential forms:

- 1. SSS + a * +
- 2. SS + a * a +
- 3. aaa * a + +

2.3

Haga, paso por paso, el bottom-up parsing para las siguientes palabras y gramáticas:

- 1. 000111 usando la gramática de 2.1.
- 2. aaa * a + + usando la gramática de 2.2.

Pregunta 3

Para cada gramática libre de contexto \mathcal{G} a continuación, encuentre la determinización $\det[\mathcal{G}]$ de su autómata característico char $[\mathcal{G}]$:

- 1. $S \rightarrow SS \mid a \mid b$
- 2. $S \rightarrow (L) \mid a$
 - $L \to LS \mid S$

Pregunta 4

Sea \mathcal{G} una gramática libre de contexto y char $[\mathcal{G}]$ su autómata característico.

- 1. Demuestre que existe \mathcal{G} tal que $\mathcal{L}(\mathcal{G})$ es un lenguaje finito y $\mathcal{L}(\operatorname{char}[\mathcal{G}])$ es un lenguaje infinito.
- 2. Demuestre que existe \mathcal{G} tal que $\mathcal{L}(\mathcal{G})$ es un lenguaje infinito y $\mathcal{L}(\operatorname{char}[\mathcal{G}])$ es un lenguaje finito.