Floating point

Jinyang Li

Some are based on Tiger Wang's slides

Representing Real Numbers using bits

Representing Numbers in bits

What we have studied

Representing Numbers in bits

Today: How to represent fractional numbers?

Representing real numbers: decimal

Representing real numbers: decimal

```
Real Numbers Decimal Representation (Expansion)  11 / 2 \qquad (5.5)_{10} \\ 1 / 3 \qquad (0.3333333...)_{10} \\ \sqrt{2} \qquad (1.4128...)_{10}
```

$$(5.5)_{10} = 5 * 10^{0} + 5 * 10^{-1}$$

 $(0.3333333...)_{10} = 3 * 10^{-1} + 3 * 10^{-2} + 3 * 10^{-3} + ...$
 $(1.4128...)_{10} = 1 * 10^{0} + 4 * 10^{-1} + 1 * 10^{-2} + 2 * 10^{-3} + ...$

Representing real numbers: decimal

Real Numbers Decimal Representation (Expansion)
$$11/2 \qquad (5.5)_{10} \\ 1/3 \qquad (0.3333333...)_{10} \\ \sqrt{2} \qquad (1.4128...)_{10} \\ (5.5)_{10} = 5 * 10^0 + 5 * 10^{-1} \\ (0.3333333...)_{10} = 3 * 10^{-1} + 3 * 10^{-2} + 3 * 10^{-3} + ... \\ (1.4128...)_{10} = 1 * 10^0 + 4 * 10^{-1} + 1 * 10^{-2} + 2 * 10^{-3} + ... \\ r_{10} = (d_m d_{m-1}...d_1 d_0 • d_{-1} d_{-2}...d_{-n})_{10} \\ = \sum_{m=0}^{\infty} 10^i \times d_i$$

$$(5.5)_{10} = 4 + 1 + 1 / 2$$

= 1 * 2² + 0 * 2¹ + 1 * 2⁰ + 1 * 2⁻¹

$$(5.5)_{10} = 4 + 1 + 1 / 2$$

= 1 * 2² + 0 * 2¹ + 1 * 2⁰ + 1 * 2⁻¹
= (101.1)₂

$$(5.5)_{10} = 4 + 1 + 1 / 2$$

= 1 * 2² + 0 * 2¹ + 1 * 2⁰ + 1 * 2⁻¹
= (101.1)₂

$$(0.333333...)_{10} = 1/4 + 1/16 + 1/64 + ...$$

= $(0.01010101...)_2$

$$r_{10} = (d_{m}d_{m-1}d_{1}d_{0} \cdot d_{-1}d_{-2}...d_{-n})_{10}$$

$$= (b_{p}b_{p-1}b_{1}b_{0} \cdot b_{-1}b_{-2}...b_{-q})_{2}$$

$$\begin{array}{c} 2^{p} \\ 2^{p-1} \\ \\ b_{p}b_{p-1} \cdots b_{1}b_{0} \cdot b_{-1}b_{-2} \cdots b_{-q} \\ \\ 1/2 \\ 1/4 \end{array} = \sum_{i=-q}^{p} 2^{i} \times b_{i}$$

Exercise

Binary Expansion 10.011₂ Formula

Decimal

$$2^{-3} + 2^{-4} + 2^{-6}$$

$$2^{-1} + 2^{-2} + 2^{-3} + 2^{-4}$$

Exercise

Binary Expansion	Formula	Decimal
10.011 ₂	$2^1 + 2^{-2} + 2^{-3}$	2.375 ₁₀
0.001101 ₂	$2^{-3} + 2^{-4} + 2^{-6}$	0.203125 ₁₀
0.1111 ₂	$2^{-1} + 2^{-2} + 2^{-3} + 2^{-4}$	0.9375 ₁₀

How to represent real numbers in fixed # of bits?

Naive idea: Fixed point

 $(10.011)_2$

0 00000000000010

011000000000000

Problems of Fixed Point

Limited range and precision: e.g., 32 bits

- Largest number: 2¹⁵ (011...111)₂
- Highest precision: 2-16

→ Rarely used (No built-in hardware support)

The idea

- Limitation of fixed point notation:
 - Represents evenly spaced fractional numbers
 - → hard tradeoff between high precision and high magnitude
- How about un-even spacing between numbers?

Floating Point: decimal

Based on the normalized scientific notation

$$r_{10} = \pm M * 10^{E}$$
, where 1 <= M < 10

M: significant (mantissa), E: exponent

Normalized form cannot represent 0!

Floating Point: decimal

Example:

$$365.25 = 3.6525 * 10^{2}$$

$$0.0123 = 1.23 * 10^{-2}$$

Decimal point **floats** to the position immediately after the first nonzero digit.

Floating Point: binary

Binary (normalized) scientific notation:

$$r_{10} = \pm M * 2^{E}$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_n)_2$

M: significant, E: exponent

$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

Exercises

The scientific notation of $(10.25)_{10}$ is ?

Exercises

The scientific notation of $(10.25)_{10}$ is ?

$$(10.25)_{10} = (1010.01)_2 = (1.01001)_2 * 2^3$$

How to represent a binary scientific notation in fixed # of bits?

$$r_{10} = \pm M * 2^{E}$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_n)_2$

M: significant, E: exponent

31 30 23 22 0 s exp (E) sig (M)

$$(1.b_1b_2b_3...b_n)_2$$

How to represent a binary scientific notation in fixed # of bits?

$$r_{10} = \pm M * 2^{E}$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_{23})_2$

M: significant, E: exponent

31 30 23 22 0

s exp (E) fraction (F)

$$(b_1b_2b_3...b_{23})_2$$

How to represent a binary scientific notation in fixed # of bits?

$$r_{10} = \pm M * 2^{E}$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_{23})_2$

M: significant, E: exponent

31 30 23 22 0

0 0000 0010 0110 0000 0000 0000 0000

$$(b_1b_2b_3...b_{23})_2$$

$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

Exercise

What's the normalized representation of $(71)_{10}$ and $(10.25)_{10}$

Exercise

What's the normalized representation of $(71)_{10}$ and $(10.25)_{10}$

$$(10.25)_{10} = (1010.01)_2 = (1.01001)_2 * 2^3$$

0 0000 0011 0100 1000 0000 0000 0000

$$(71)_{10} = (1000111)_2 = (1.000111)_2 * 2^6$$

31 30 23 22 0

0 0000 0110 0001 1100 0000 0000 0000 000

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

Largest positive number?

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

Largest positive number?

$$(1.11)_2 * 2^7 = 224$$

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

Largest positive number: 224

Smallest positive number?

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

Largest positive number: 224

Smallest positive number: 1

_5	4	2 1	
S	exp (E)	frac	: (F)

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

Positive number: 1 to 224

Negative number: -224 to -1

No more bit patterns left to represent numbers (-1, 1)

Questions

How to represent

- 1. numbers close or equal to 0?
- 2. special cases:
 - the result of dividing by 0, e.g. 1/0?

 $\infty*0$

Lots of different implementations around 1950s!

IEEE Floating Point Standard

IEEE p754
A standard for binary
floating point representation

Prof. William Kahan University of California at Berkeley Turing Award (1989)

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The Only Book Focuses On IEEE Floating Point Standard

Numerical Computing with IEEE Floating Point Arithmetic

Including One Theorem, One Rule of Thumb, and One Hundred and One Exercises

Michael L. Overton

Courant Institute of Mathematical Sciences

New York University

hardware. This degree of altruism was so astonishing that MATLAB's creator Cleve Moler used to advise foreign visitors not to miss the country's two most awesome spectacles: the Grand Canyon, and meetings of IEEE p754."

https://cs.nyu.edu/overton/NumericalComputing/protected/NumericalComputingSIAM.pdf With you nyu netid/password. You can also search the pdf with google.

What we have learnt so far

normalized representation of floating point

- how to represent numbers in range (-1,1)
- how to represent special cases? e.g. ∞

Goals of IEEE Standard

- Consistent representation of floating point numbers
- Correctly rounded floating point operations, using several rounding modes.
- Consistent treatment of exceptional situations such as division by zero

Restrictions on Normalized Representation

$$r_{10} = \pm M * 2^{E} M = (1.b_{0}b_{1}b_{2}b_{3}...b_{n})_{2}$$

31 30 23 22 0

s exp (E) fraction (F)

 $(b_0b_1b_2b_3...b_n)_2$

E can not be $(1111 \ 1111)_2$ or $(0000 \ 0000)_0$

 $E_{\text{max}} = ?$ 254, (1111 1110)₂

 $E_{min} = ? 1, (0000 0001)_2$

Exponential Bias

$$r_{10} = \pm M * 2^{E}, M = (1.b_{0}b_{1}b_{2}b_{3}...b_{n})_{2}$$

To represent (-1,1), we must allow negative exponent.

- How to represent negative E?
 - 2's complement
 - use bias

31 30 23 22 0

s exp (E) + 127 fraction (F)

Bias: 127 $(b_0b_1b_2b_3...b_n)_2$

IEEE normalized representation

$$r_{10} = \pm M * 2^{E}, M = (1.b_{0}b_{1}b_{2}b_{3}...b_{n})_{2}$$

31 30 23 22 0

s exp(E) + 127 fraction (F)

 $(b_0b_1b_2b_3...b_n)_2$

Bias: 127

 $E_{max} = 254 - 127 = 127$ Smallest positive number 2⁻¹²⁶

 $E_{min} = 1 - 127 = -126$ Negative number with smallest absolute value: -2^{-126}

Questions

Q1. Why using bias?

Q2. Why is **bias** 127?

Questions

Q1. Why using **bias** instead of 2's complement?

Answer: easier circuitry for comparison.

Questions

Q2. Why is bias 127?

A2. Balance positive exponents (magnitude) and negative exponents (precision)

Toy 6-bit Floating Point

5	4	2	1	0
S	exp (E) -	+ 3	frac (F)	

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

- bias: 3

Smallest positive number?

Toy 6-bit Floating Point

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

bias: 3

Smallest positive number: 0.25

Smallest number >0.25?

0 0 0 1	0 0
---------	-----

$$(1.00)_2 * 2^{-2} = 0.25$$

$$(1.01)_2 * 2^{-2} = 0.25 + 0.0625$$

Toy 6-bit Floating Point

_5	4	2	1 0
S		exp (E) + 3	frac (F)

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

bias: 3

represent values which are close and equal to 0

IEEE denormalized representation

$$r_{10} = \pm M * 2^{E}$$

Normalized Encoding:

31 30 23 22

S	exp (E) + 127	fraction (F)

$$1 \le M \le 2$$
, $M = (1.F)_2$

Denormalized Encoding:

31 30 23 22 0

s 0000 0000 fraction (F)

$$E = 1 - Bias = -126$$
 $0 \le M \le 1, M = (0.F)_2$

Zeros

+0.0

0	0000 0000	0000 0000 0000 0000 000

-0.0

1 0000 0000 0000 0000 0	000 0000 0000 000
-------------------------	-------------------

Examples

 $(0.1)_2 * 2^{-126}$

0	0000 0000	1000 0000 0000 0000 0000
0	0000 0000	1000 0000 0000 0000 0000 000

 $-(0.010101)_2 * 2^{-126}$

1	0000 0000	0101 0100 0000 0000 0000 000
---	-----------	------------------------------

Special Values

Special Value's Encoding:

31 30 23 22 0

S	1111 1111	fraction (F)

values	sign	frac
+∞	0	all zeros
- ∞	1	all zeros
NaN	any	non-zero

Exercises

representation	E	M	V
0100 1001 0101 0000 0000 0000 0000 0000			
			2.5 * 2 ⁻¹²⁷
			-1.25 * 2 ⁻¹¹¹
1111 1111 1111 1111 0000 0000 0000 0000			
1111 1111 1000 0000 0000 0000 0000 0000			
			1.5 * 2 ⁻¹²⁷

Exercises

representation	E	M	V
0100 1001 0101 0000 0000 0000 0000 0000	146 – 127 = 19	(1.101) ₂ = 1.625	1.625 * 2 ¹⁹
0000 0000 1010 0000 0000 0000 0000 0000	1 – 127 = -126	(1.01) ₂ = 1.25	$2.5 * 2^{-127}$ = $(1.01)_2 * 2^{-126}$
1000 1000 0010 0000 0000 0000 0000 0000	16 – 127 = -111	(1.01) ₂ = 1.125	-1.25 * 2 ⁻¹¹¹
1111 1111 1111 1111 0000 0000 0000	-	-	Nan
1111 1111 1000 0000 0000 0000 0000 0000	-	-	- ∞
0000 0000 0110 0000 0000 0000 0000 0000	-126	(0.11) ₂	$(0.11)_2 * 2^{-126}$ = 1.5 * 2 ⁻¹²⁷

Distribution of Representable Values

Adjacent floats have adjacent bit representation

Distribution of Representable Values: toy 6-bit FP

exponent: 3 bits

- fraction: 2 bits

bias: 3

Smallest number greater than 0? Largest number?

Single, double precision

```
s exp (bias:127) frac

1 8-bits 23-bits
```

float
$$f = 0.1$$
;
double $d = 0.1$;

smallest positive: $(0.00...1)_2 * 2^{-126}$

largest positive: $(1.1...1)_2 * 2^{127}$

```
s exp (bias:1023) frac
```

1 11-bits 52-bits

smallest positive: $(0.00....1)_2 * 2^{-1022}$

largest positive: $(1.1...1)_{2}$ * 2^{1023}

Floating point operations

- Addition, subtraction, multiplication, division etc.
- How does CPU know if a bit pattern is to be interpreted as IEEE float point or integer?


```
float x = 1e2;
float y = 2.0;
float d = x + y;
```


Floating point caveats

- Invalid operation: 0/0, sqrt(-1), ∞+∞
- Divide by zero: x/0→∞
- Overflows: result too big to fit
- Underflows: 0 < result < smallest denormalized value
- Inexact: round it!

Why divide by zero = ∞ ?

- Allow a calculation to continue and produce a valid result
- Example:

If R1 or R2 is 0, overall resistance should be 0

Floating point addition

- Commutative? yes. x+y == y+x
- Associative? (x+y)+z = x + (y+z)?
 - Overflow:

```
(3.14+1e10)-1e10 = 0
3.14+(1e10-1e10) = 3.14
```

- Rounding
- Every number has an additive inverse?
 - Yes except for ∞ and NaN
- Monoticity? $a \ge b \Rightarrow a+c \ge b+c$?

Floating point multiplication

- Commutative? yes. x* y == y*x
- Associative? (x*y)*z = x * (y*z)?
 - Overflow:
 - (1e21*1e21) *1e-21= inf,
 - 1e21*(1e21*1e-21) = 1e21
 - Rounding
- Distributive? (x+y)*z = x*z + y*z?
 - 1e21*(1e21-1e21) = 0.0,
 - 1e21*1e21 1e21*1e21 = NaN
- Monoticity? $a \ge b \Rightarrow a^*c \ge b^*c$?

Floating point in the real world

- Using floating point to measure distances in games
- Precision diminishes as distance gets larger

FP value	Length	FP precision	Precision size
1	1 meter	1.19E-07	Virus
100	100 meter	7.63E-06	red blood cell
10 000	10 km	0.000977	toenail thickness
1000 000	.16x earth radius	0.0625	credit card width

Table source: Random ASCII

Floating point trouble

Comparing floats for equality is a bad idea!

```
float f = 0.1;
while (f != 1.0) {
f += 0.1;
}
```

```
f is 0.200000030
f is 0.300000119
f is 0.4000000060
f is 0.5000000000
f is 0.6000000238
f is 0.700000477
f is 0.800000715
f is 0.9000000954
f is 1.000001192
f is 1.1000001431
f is 1.2000001669
```

Floating point trouble

Never count using floating points

```
count = 0;
for (float f = 0.0; f < 1.0; f += 0.1) {
    count++;
}</pre>
```

Floating point summary

- Floating points are tricky
 - Precision diminishes as magnitude grows
 - overflow, rounding error
- Many real world disasters due to FP trickiness
 - Patriot Missile failed to intercept due to rounding error (1991)
 - Ariane 5 explosion due to overflow in converting from double to int (1996)