roblem 1 (1). For the map $\phi(x) = x\sin(x)$ of the real line to itself, what are the regular value	s?
roof.	
roblem 2 (3). For the map $\phi(x,y) = \sin(x^2 + y^2)$ of the plane to the line, what are the regulations?	ar
roof.	
roblem 3 (5). Let $\gamma : \mathbb{R} \to \mathbb{R}^2$ be a smooth curve in the plane. Let K be the set of all $r \in \mathbb{R}$ that the circle of radius r about the origin is tangent to the curve γ at some point. Show the has empty interior in \mathbb{R} .	
roof.	
roblem 4 (6). If C is a circle embedded smoothly in \mathbb{R}^4 , show that there exists a three-dimension perplane H such that the orthogonal projection of C to H is an embedding.	al
roof.	