Zusammenfassung Algebr. Topologie

© M Tim Baumann, http://timbaumann.info/uni-spicker

Def. Ein affines n-Simplex ist die konvexe Hülle von n+1 affin unabhängigen Punkten $p_0,...,p_{n+1} \in \mathbb{R}^N$. Die konvexe Hülle von einer Teilmenge dieser Eckpunkte wird Seite genannt. Das Standard-n-Simplex Δ_n ist das von den n+1 Standard-Basisvektoren im \mathbb{R}^{n+1} aufgespannte Simplex.

Def. Ein (endlicher) **geometrischer Simplizialkomplex** ist eine (endliche) Menge S endlich vieler affiner Simplizes im \mathbb{R}^N , sodass:

- Ist $K \in \mathcal{S}$ und $T \subset K$ eine Seite von K, dann ist auch $T \in \mathcal{S}$.
- Für alle $K_1, K_2 \in \mathcal{S}$ ist $K_1 \cap K_2$ entweder eine Seite von K_1 und K_2 oder leer.

Def. Ein geometrischer Simplizialkomplex mit einer Totalordnung auf der Menge der Eckpunkte heißt **geordnet**.

Notation. Ein *n*-Simplex mit Eckpunkten $v_0,...,v_n$ in einem geordneten geom. Simplizialkomplex wird mit $\langle v_0,...,v_n\rangle$ bezeichnet, falls $v_0 < v_1 < ... < v_n$.

Notation. $S_n := \{ \sigma \in S \mid \sigma \text{ ist geordneter } n\text{-Simplex} \}$

Def. Eine simpliziale *n*-Kette in einem geordneten geom. Simplizialkomplex ist eine endliche formale Linearkombination

$$\sum_{\sigma \in \mathcal{S}_n} \lambda_{\sigma} \cdot \sigma,$$

wobei $\lambda_{\sigma} \in \mathbb{Z}$. Die Menge solcher Linearkombinationen ist $C_n(\mathcal{S})$. Sie ist die freie abelsche Gruppen über der Menge der Simplizes.

Bemerkung. $C_n(\mathcal{S})$ ist eine Gruppe.

Def. Der Rand eines orientierten n-Simplex $\langle v_0, ..., v_n \rangle \in \mathcal{S}$ ist

$$\delta\langle v_0,...,v_n\rangle := \sum_{i=0}^n (-1)^i \langle v_0,...,\hat{v_i},...,v_n\rangle.$$

Durch lineare Fortsetzung erhalten wir einen Gruppenhomo $\partial_n: C_n(\mathcal{S}) \to C_{n-1}(\mathcal{S}).$

Def. Ein Kettenkomplex C_{\bullet} ist eine Folge $(C_n)_{n \in \mathbb{N}}$ und Gruppenhomomorphismen $\partial_n : C_n \to C_{n-1}$ mit der Eigenschaft $\partial_{n-1} \circ \partial_n = 0$.

Def. Sei C_{\bullet} ein Kettenkomplex.

- $Z_n(C_{\bullet}) := \ker \partial_n \subset C_n(C_{\bullet})$ heißt Gruppe der n-Zykel,
- $B_n(C_{\bullet}) := \operatorname{im} \partial_{n+1} \subset Z_n(C_{\bullet})$ heißt Gruppe der *n*-Ränder,
- $H_n(C_{\bullet}) := Z_n(C_{\bullet})/B_n(C_{\bullet})$ heißt n-te Homologiegruppe.

Prop. Für $n \ge 1$ gilt $\partial_{n-1} \circ \partial_n = 0$. Die simplizialen n-Ketten bilden also einen Kettenkomplex.

Def. Ein singuläres n-Simplex in einem topologischen Raum X ist eine stetige Abbildung $\sigma: \Delta^n \to X$. Wir bezeichnen mit $\Delta_n(X)$ die Menge der singulären n-Simplizes in X und mit $C_n(X)$ die freie abelsche Gruppe über $\Delta_n(X)$. Wir definieren

$$\partial_n: C_n(X) \to C_{n-1}(X), \quad \sigma \mapsto \sum_{i=0}^n (-1)^i \sigma_{\langle e_o, \dots, \hat{e_i}, \dots, e_n \rangle}.$$

Analog zu oben gilt $\partial_{n-1} \circ \partial_n = 0$, man erhält also einen Komplex $C_{\bullet}(X)$ der singulären Ketten in X. Die Homologie dieses Komplexes bezeichnet man mit $H_n(X)$.

Def. Eine Kettenabbildung zwischen Kettenkomplexen C_{\bullet} und D_{\bullet} ist eine Familie $(f_n: C_n \to D_n)_{n \in \mathbb{N}}$ von Gruppenhomomorphismen, welche mit dem Differential verträglich sind, d. h.

$$\forall n \in \mathbb{N} : \partial_n^{(D)} \circ f_n = f_{n-1} \circ \partial_n^{(C)}$$

Aus einer solchen Abbildung erhält man wiederum eine Abbildung $H_n(f): H_n(C_{\bullet}) \to H_n(C_{\bullet})$ für alle $n \in \mathbb{N}$. Somit definiert H_n einen Funktor von der Kategorie der Kettenkomplexe in die Kategorie der abelschen Gruppen.

Def. Für eine Abbildung $f:X\to Y$ von topologischen Räumen erhalten wir eine Abbildung $f_*:C_\bullet(X)\to C_\bullet(Y)$ definiert durch $f_*(\sigma):=f\circ\sigma$ für ein n-Simplex $\sigma:\Delta_n\to X$. Die Zuordnung $f\mapsto f_*$ erfüllt die Funktiorialitätsaxiome. Somit definiert H_n für alle $n\in\mathbb{N}$ einen Funktor $\operatorname{Top}\to\operatorname{\mathbf{AbGrp}}.$

Korollar. Homöomorphe Räume haben isomorphe singuläre Homologiegruppen.

Prop. Sei $\pi_0(X)$ die Menge der Wegekomponenten von X. Die Inklusionen $A \hookrightarrow X$ (für $A \in \pi_0(X)$) induzieren einen Isomorphismus

$$\bigoplus_{A \in \pi_0(X)} H_*(A) \cong H_*(X).$$

Prop. Sei $X \neq \emptyset$ wegzusammenhängend. Dann ist $H_0(X) \cong \mathbb{Z}$.

Def. Eine Kettenhomotopie zw. Kettenabb. $\phi_*, \psi_* : C_{\bullet} \to D_{\bullet}$ ist eine Folge von Homomorphismen $P_n : C_n \to D_{n+1}$ mit

$$\forall n \in \mathbb{N} : \partial_{n+1} \circ P_n + P_{n-1} \circ \partial_n = \phi_n - \psi_n.$$

Prop. Seien $\phi_*, \psi_* : C_{\bullet} \to D_{\bullet}$ kettenhomotop. Dann gilt

$$H_*(\phi_*) = H_*(\psi_*) : H(C_{\bullet}) \to H(D_{\bullet}).$$

Satz. Seien $f, g: X \to Y$ homotope Abbildungen. Dann sind $f_*, g_*: X_{\bullet} \to Y_{\bullet}$ kettenhomotop.

Korollar. • Seien $f, g: X \to Y$ homotope Abbildungen. Dann gilt

$$f_* = g_* : H_*(X) \to H_*(Y).$$

 Homotopieäquivalente Räume haben isomorphe Homologiegruppen.