

Week1

CH14 - 합성곱 신경망을 사용한 컴퓨터 비전

14.1 시각 피질 구조

14.2 합성곱 층

14.2.1 필터

14.2.2 여러 가지 특성 맵 쌓기

14.2.3 텐서플로 구현

14.2.4 메모리 요구 사항

14.3 풀링 층

14.3.1 텐서플로 구현

14.4 CNN 구조

14.4.1 LeNet-5

14.4.2 AlexNet

14.4.3 GoogLeNet

14.4.4 VGGNet

14.4.5 ReNet

14.4.6 Xception

14.4.7 SENet

14.5 케라스를 사용해 ReNet-34 CNN 구현하기

14.6 케라스에서 제공하는 사전훈련된 모델 사용하기

14.7 사전훈련된 모델을 사용한 전이 학습

14.8 분류와 위치 추정

14.9 객체 탐지

14.9.1 완전 합성곱 신경망

14.10 시맨틱 분할

14.11 연습문제

CH14 - 합성곱 신경망을 사용한 컴퓨터 비전

이미지 인식 분야에 사용

- 객체 탐지
- 시멘틱 분할

14.1 시각 피질 구조

시각 피질이 국부 수용장을 가진다

- → 뉴런들이 시야의 일부 범위 안에 있는 시각 자극에만 반응한다
- 서로 겹칠 수 있어서 합치면 전체 시야
- 수평선의 이미지에만 반응
- 다른 각도의 선분에 반응(동일한 수용장을 가지고 있지만 다른 각도의 선분에 반응)
- 큰 수용장을 가져가 저수준 패턴이 조합된 더 복잡한 패턴에 반응
- ⇒ 고수준 뉴런이 이웃한 저수준 뉴런의 출력에 기반한다 ~ 합성곱 신경망(CNN)
- LeNet-5

14.2 합성곱 층

입력층 → 합성곱 층 1 → 합성곱 층 2

- 입력 → 저수준 특성에 집중 → 고수준 특성으로 조합
- 계층적 구조

- 각 층이 2D로 표현(압력과 연결이 쉬움)
- 제로 패딩 (= 높이와 너비픞 이정 층과 같게 하기 위해 입력의 주위에 0을 추가하는 것)
- 스트라이드 (= 한 수용장과 다음 수용장 사이 간격) 차원 축소를 통해 모델 복잡성 ↓

14.2.1 필터

뉴런의 가중치 = 수용장 크기의 작은 이미지

- 필터 (= 합성곱 커널)
 - 1. 가중치를 사용한 대표 수직선 → 입력 이미지 네트워크에 주입
 - 2. 가중치를 사용한 대표 수평선 → 입력 이미지 네트워크에 주입
 - → 모든 뉴런에 같은 수평선 필터와 편향을 적용 → **수평 필터 이미지 ~ 특성 맵 2**
 - ✓ 특성 맵: 필터를 가장 크게 활성화시키는 이미지의 영역 강조 (자동으로 됨)

14.2.2 여러 가지 특성 맵 쌓기

여러 가지 필터를 가지고 하나의 필터마다 하나의 특성 맵 출력

- → 3D로 표현하는 것이 더 정확
- 각 특성 맵의 픽셀 = 하나의 뉴런
- 하나의 특성 맵 모든 뉴런이 같은 파라미터 공유(= 동일한 가중치 & 편향)
- 다른 특성 맵 다른 파라미터
- 한 뉴런의 수용장은 이전 층에 있는 모든 특성 맵에 걸쳐 확장
 = 합성곱 층이 입력에 여러 필터 적용 → 입력의 여러 특성 감지

입력 이미지

- 컬러 채널 RGB 세 개의 채널
- 흑백 채널 하나의 채널
- 매우 많은 채널 가시광선 외 적외선과 같은 다른 빛의 파장(ex. 위성 이미지)

14.2.3 텐서플로 구현

입력 이미지: 3D [높이, 너비, 채널]

미니배치 크기: 4D [미니배치 크기, 높이, 너비, 채널]

```
# 샘플 이미지 로드
china = load_sample_image("china.jpg") / 255
flower = load_sample_image("flower.jpg") / 255
images = np.array([china, flower])
batch_size, height, width, channels = images.shape

# 필터 2개 생성
filters = np.zeros(shape=(7, 7, channels, 2), dtype=np.float32)
filters[:, 3, :, 0] = 1 # 수직선
filters[3, :, :, 1] = 1 # 수평선

outputs = tf.nn.conv2d(images, filters, strides=1, padding="SAME")

plt.imshow(outputs[0, :, :, 1], cmap="gray") # 첫 번째 이미지의 두 번째 특성맵 그리기
plt.show()
```

- padding의 옵션은 두 가지
 - VALID: 제로 패딩을 사용하지 않아 입력 이미지의 아래와 오른쪽 행과 열이 무시될 수 있음
 출력 뉴런의 크기 = 입력 뉴런의 수를 스트라이드로 나누고 나머지는 버림

∘ SAME: 제로 패딩 사용 (출력 뉴런의 크기 = 입력 뉴런의 수를 스트라이드로 나누어올림 한 것)

14.2.4 메모리 요구 사항

많은 양의 RAM을 필요로 함

메모리 부족으로 훈련에 실패한다면,

- 미니배치 크기를 줄이거나
- 스트라이드를 이용해 차원을 줄이거나 몇 개의 층 제거
- 32비트 대신 16비트 부동소수 사용
- 여러 장치에 CNN 분산

14.3 풀링 층

✓ 계산량, 메모리 사용량, 파라미터 수를 줄이기 위해 입력 이미지의 부표본(=축소본)을 만드는 것 합성곱 층과 비슷하지만 풀링 뉴런은 가중치가 없음

→ 합산 함수를 사용해 입력 값을 더하는 것이 전부

최대 풀링 층: 각 수용장의 가장 큰 입력값이 전달되고 나머지는 버려짐

<장점>

- 이동에 대한 불변성
- 회전, 확대, 축소에 대한 불변성
- → 예측이 작은 부분에서 영향을 받지 않는 분류 작업에 유용

<단점>

- 파괴적
- 불변성이 필요하지 않은 경우(ex. 시맨틱 분할 → **등변성**이 목표)

14.3.1 텐서플로 구현

 $\max_pool = keras.layers.MaxPool2D(pool_size=2)$ # valid padding 사용

평균 풀링 층 - AvgPool2D : 최댓값이 아닌 평균을 계산하는 것

- → 최댓값을 계산하는 것보다 정보 손실이 적음
- → 최대 풀링 층이 더 좋은 성능을 보임 의미 없는 것은 모두 제거하고 큰 특징만 유지 ~ 명확한 신호로 작업 가능 연산 비용이 더 적음 (더 뛰어난 이동 불변성)

깊이 방향 풀링 층: 회전에 상관없이 동일한 출력을 만드는 것

- → 두께, 밝기, 왜곡, 색상 등 어떤 것에 대해서고 불변성 학습 가능
- → 케라스에서 층을 제공 X

전역 평균 풀링 층 - GlobalAvgPool2D : 각 특성 맵의 평균을 계산

→ 각 샘플의 특성 맵마다 하나의 숫자를 출력 파괴적이나 출력층에 유용

14.4 CNN 구조

MNIST 데이터셋 문제

```
# 92%의 성능
model = keras.models.Sequential([
    keras.layers.Conv2D(filters=64, kernel_size=7, activation='relu', padding="SAME", input_shape=[28, 28, 1]),
    keras.layers.MaxPooling2D(pool_size=2),
    keras.layers.Conv2D(128, 3, activation='relu', padding="SAME"),
    keras.layers.Conv2D(128, 3, activation='relu', padding="SAME"),
    keras.layers.MaxPooling2D(pool_size=2),
    keras.layers.Conv2D(256, 3, activation='relu', padding="SAME"),
    keras.layers.Conv2D(256, 3, activation='relu', padding="SAME"),
    keras.layers.MaxPooling2D(pool_size=2),
                                #1D 배열 기대 - 펼치기
    keras.layers.Flatten(),
    keras.layers.Dense(units=128, activation='relu'),
    keras.layers.Dropout(0.5), #과대적합 감소
    keras.layers.Dense(units=64, activation='relu'),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(units=10, activation='softmax'),
])
```

14.4.1 LeNet-5

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeNet-5 구조

14.4.2 AlexNet

Week1

처음으로 합성곱 층 위에 풀링 층을 쌓지 않고 바로 합성곱 층끼리 쌓음

과대적합을 줄이기 위해

- 첫 번째 훈련 동안 F9, F10에 드롭아웃 50% 적용
- 데이터 증식 수행
 훈련 이미지를 랜덤하게 여러 간격으로 이동하거나 수평으로 뒤집고 조명을 바꾸는 식
 진짜 같은 훈련 샘플을 인공적으로 생성

경쟁적 정규화 단계 사용: Local Response Normalization

가장 강하게 활성화 된 뉴런이 다른 특성 맵에 있는 같은 위치의 뉴런 억제

- 특성 맵을 각기 다른 것과 구분
- 더 넓은 시각에서 특징 탐색
- → <u>일반화 성능 향상</u>

14.4.3 GoogLeNet

인셉션 모듈 - 효과적으로 파라미터 사용

인셉션 모듈이 1 x 1 커널 합성곱 층을 가지는 이유

- 깊이 차원을 따라 놓인 패턴을 잡을 수 있음
- 병목 층의 역학 담당(입력보다 더 적은 특성 맵 출력 차원 축소 의미)
 연산 비용, 파라미터 개수 ↓ 훈련 속도, 성능 ↑
- 합성곱 층의 쌍이 한 개의 강력한 합성곱 층처럼 작동
 더 복잡한 패턴 감지 가능
 두 개의 층을 가진 신경망으로 이미지를 훑는 것

Inception-v1

14.4.4 VGGNet

단순, 고전적 구조

합성곱 층 → 풀링 층 → 합성곱 층 → 풀링 층

14.4.5 ReNet

잔차 네트워크

극도로 깊은 CNN 구조 - <u>더 적은 파라미터로 더 깊은 네트워크 모델 구성</u>을 트렌드로...

스킵 연결(= 숏컷 연결): 어떤 층에 주입되는 신호가 상위 층의 출력에도 더해지는 것

왼쪽) h(x)를 모델링 // 오른쪽) 스킵 연결 추가로 f(x) = h(x) - x 학습

잔차 유닛: 스킵 연결을 가진 작은 신경망

단순한 구조(드롭 아웃층 제외)

GoogLeNet과 똑같이 시작해 똑같이 종료함 (다만, 단순한 잔차 유닛을 중간 중간 깊게 쌓음)

- ReNet-34
- ReNet-152

14.4.6 Xception

Inception-v4 GoogLeNet 과 ReNet의 아이디어를 합친 것

인셉션 모듈은 깊이별 분리 합성곱 층으로 대체

공간상의 패턴: ex. 타원 형태

채널 사이의 패턴: ex. 눈+코+입 = 얼굴

보통 합성곱 층은 공간 패턴과 채널 사이의 패턴을 동시에 잡기 위해 필터 사용

→ **분리 합성곱 층**은 공간 패턴과 채널 사이의 패턴을 분리하여 모델링 할 수 있다고 가정

14.4.7 SENet

- 인셉션 네트워크 확장 버전: SE Inception
- ResNet 확장한 버전: SE ResNet

원래 구조에 있는 모든 유닛에 SE 블록 추가

- 깊이 차원에서 분석
- 특성 맵을 보정(입, 코 관찰 → 눈 기대)
- 3개 층으로 구성(전역 평균 풀링 층 ReLU를 사용하는 밀집 은닉층 시그모이드를 사용하는 밀집 출력층)

14.5 케라스를 사용해 ReNet-34 CNN 구현하기

```
#특성맵의 크기와 깊이가 바뀔 때 스킵 연결 함수 구현
class ResidualUnit(keras.layers.Layer):
   def __init__(self, filters, strides=1, activation="relu", **kwargs):
       super().__init__(**kwargs)
       self.activation = keras.activations.get(activation)
       self.main_layers = [
           keras.layers.Conv2D(filters, 3, strides=strides,
                               padding="same", use_bias=False),
           keras.layers.BatchNormalization(),
           self.activation,
           keras.layers.Conv2D(filters, 3, strides=1,
                               padding="same", use_bias=False),
           keras.layers.BatchNormalization()]
       self.skip_layers = []
       if strides > 1:
           self.skip_layers = [
               keras.layers.Conv2D(filters, 1, strides=strides,
                                   padding="same", use_bias=False),
               keras.layers.BatchNormalization()]
#두 출력을 더하여 활성화 함수 적용
   def call(self, inputs):
       Z = inputs
       for layer in self.main_layers:
           Z = layer(Z)
       skip_Z = inputs
       for layer in self.skip_layers:
           skip_Z = layer(skip_Z)
       return self.activation(Z + skip_Z)
```

14.6 케라스에서 제공하는 사전훈련된 모델 사용하기

keras.applications 에서 제공하는 사전훈련된 모델을 사용한다

```
#모델 로드
model = keras.applications.resnet50.ResNet50(weights="imagenet")
#이미지 크기 변경
images_resized = tf.image.resize(images, [224, 224])
#모델 전처리
inputs = keras.applications.resnet50.preprocess_input(images_resized * 255)
Y_proba = model.predict(inputs)
#결과 출력
>>> top_K = keras.applications.resnet50.decode_predictions(Y_proba, top=3)
>>> for image_index in range(len(images)):
       print("Image #{}".format(image_index))
       for class_id, name, y_proba in top_K[image_index]:
           print(" {} - {:12s} {:.2f}%".format(class_id, name, y_proba * 100))
       print()
Image #0
 n03877845 - palace
                         43.39%
 n02825657 - bell_cote 43.07%
 n03781244 - monastery
                        11.70%
Image #1
                         53.96%
 n04522168 - vase
 n07930864 - cup
                         9.52%
 n11939491 - daisy
                         4.97%
#성능이 꽤 괜찮음
```

14.7 사전훈련된 모델을 사용한 전이 학습

충분하지 않은 훈련 데이터로 이미지 분류기를 훈련하고 싶다

→ 사전훈련된 모델의 하위층 사용

14.8 분류와 위치 추정

물체의 위치를 추정 - 회귀 작업

바운딩 박스를 예측 = 물체 중심의 수평/수직 좌표, 높이, 너비 예측

레이블을 만드는 것은 어려움

- 오픈 소스 이미지 레이블 도구 검색 & 사용
- 크라우드소싱 플랫폼 고려
- → 모델이 바운딩 박스를 얼마나 잘 예측해 내는지의 지표: loU

14.9 객체 탐지

객체 탐지: 하나의 이미지에서 여러 물체를 분류하고 위치를 추정하는 작업

• 슬라이딩 방식 : 쉽지만 중복이 일어남 불필요한 바운딩 박스 삭제 필요 → NMS(non-max suppression) 완전 합성곱 신경망 사용 !

14.9.1 완전 합성곱 신경망

완전 합성곱 신경망(FCN): 빠르게 이미지에 슬라이딩시킬 수 있는 방법

✓ CNN 맨 위 밀집 층을 합성곱 층으로 바꿀 수 있다밀집 층의 유닛 수 = 합성곱 층의 필터 수

밀집 층의 입력 특성 맵 크기 = 합성곱 층의 필터 크기

!! 특정 입력 크기 이미지 처리 → 어떤 크기의 이미지도 처리

→ FCN은 전체 이미지를 딱 한번 처리한다. ~ YOLO

가장 최신 YOLO: YOLOv3

- 격자 셀마다 5개의 바운딩 박스 출력
- 격자 셀에 대한 상대 좌표 예측
- 신경망 훈련 전, 앵커 박스(= 사전 바운딩 박스)라고 부르는 5개의 대표 바운딩 박스 크기 찾기
- 네트워크가 다른 이미지를 사용하여 훈련

<mAP>

mAP(= mean average precision) : 객체 탐지에서 사용하는 평가 지표

재현율 ↑ 정밀도 ↑ 영역 포함 - 특히, <u>재현율 값이 낮을 때</u>

최소 00% 재현율에서의 최대 정밀도 - 평균 → 평균 정밀도(AP)
 각 클래스의 AP를 계산 - 평균 AP 계산 → mAP

객체 시스템에서는,

정확한 클래스 탐지 - 잘못된 위치 → 올바른 예측 X

- IOU 임계점 정의
- mAP@IOU 임계점

14.10 시맨틱 분할

시맨틱 분할: 각 픽셀은 속한 객체에서 클래스로 분류

- 클래스가 같은 물체는 구별 X
- 점진적으로 위치 정보 소실 (1 이상의 스트라이드를 사용하는 층 때문)
 - 1. CNN을 FCN으로 변환
 - 2. CNN이 입력 이미지에 적용하는 전체 스트라이드 계산(ex. 32) (1보다 큰 스트라이드를 모두 더하기)
 - 3. 32배만큼 작은 특성 맵 출력
- → 해상도를 32배로 늘리기 = **업샘플링 층** 하나 추가

🔥 업샘플링 방법

- 전치 합성곱 층 사용
 - 1. 이미지에 빈 행과 열을 삽입
 - 2. 일반적인 합성곱 수행 (부분 스트라이드를 사용하는 일반 합성곱)

↓ 떨어지는 정확도 개선

- 아래쪽 층부터 스킵 연결 추가
 - 1. 2배로 출력 이미지 업샘플링 → 해상도를 2배로 키우기
 - 2. 이 결과를 16배로 늘려 업샘플링
 - → 풀링층에서 잃은 일부 공간 정보 복원
 - → 해상도를 증가시는 방법 : **초해상도**

인스턴스 분할: 동일한 클래스 물체를 개별적으로 구분하여 표시

14.11 연습문제