

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
31 March 2005 (31.03.2005)

PCT

(10) International Publication Number
WO 2005/028642 A2

(51) International Patent Classification⁷: C12N 5/06 (74) Agent: KENNEDYS PATENT AGENCY LIMITED; Floor 5, Queens House, 29 St Vincent Place, Glasgow G1 2DT (GB).

(21) International Application Number:
PCT/GB2004/003989

(22) International Filing Date:
20 September 2004 (20.09.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
GB0321978.9 19 September 2003 (19.09.2003) GB

(71) Applicant (for all designated States except US): INTEGRIN ADVANCED BIOSYSTEMS LTD [GB/GB]; Marine Resource Centre, Barcaldine, Oban, Argyll PA37 1SE (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MCKENZIE, John, Douglas [GB/GB]; Integrin Advanced Biosystems Ltd, Marine Resource Centre, Barcaldine, Oban, Argyll PA37 1SE (GB). MOSS, Claire [GB/GB]; Integrin Advanced Biosystems Ltd, Marine Resource Centre, Bacaldine, Oban, Argyll, PA37 1SE (GB). TUNNACLIFFE, Alan [GB/GB]; Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2005/028642 A2

(54) Title: NEW METHOD OF PRODUCING CELL CULTURES

(57) Abstract: A method for producing a cell culture line, and more specifically a method which allows the production of a non-insect invertebrate cell culture line by manipulating the expression of a gene or genes involved in cell cycle control.

1 New Method of Producing Cell Cultures

2

3 The present invention relates to a method for producing a
4 cell culture line, and more specifically a method which
5 allows the production of a non-insect invertebrate cell
6 culture line.

7

8 The routine maintenance of mammalian cell lines has
9 enabled huge advances to be made in the study of cell
10 signalling, and also in the production of medically
11 important compounds. Cell lines from other sources are
12 also now in regular use, which provide novel approaches
13 to compound production, as well their own specific
14 applications in research. In particular, insect cell
15 lines are available for this type of work, and have
16 several advantages over mammalian cell cultures in terms
17 of recombinant expression systems, as they are cheaper,
18 tolerant of variable cell culture conditions and have
19 high expression levels. This illustrates the benefits of
20 diversification in cell culture approaches.

21

22 Despite the advantages of having multiple in vitro based
23 systems for research and recombinant compound production,

1 cell cultures from invertebrates other than insects are
2 still not available. Primary cultures from sponges,
3 molluscs, crustaceans, echinoderms, ascidians and
4 nematodes have been established and differentiation has
5 been observed. However, few cultures have shown
6 sufficient proliferation to allow passaging of cell
7 lines, and techniques that have been employed in
8 mammalian and insect cells, such as viral transfection
9 and exact recreation of *in vivo* conditions, have not
10 successfully translated into non-insect invertebrate cell
11 cultures. This means the key goals of long-term
12 sustainability and reproducibility have not been
13 achieved, and remain major obstacles in the exploitation
14 and production of non-insect invertebrate cell cultures.
15

16 It can be seen that it would be extremely beneficial for
17 us to be able to provide a sustainable and reproducible
18 non-insect invertebrate cell culture.

19
20 It is an object of the present invention to provide an
21 improved method of producing cell cultures.

22
23 Throughout this document, RNAi should be taken to mean
24 RNA interference (which has alternatively been referred
25 to as post-transcriptional gene silencing).

26
27 According to a first aspect of the present invention,
28 there is provided a method of culturing cells, including
29 the step of inhibiting the expression of a gene or genes
30 involved in cell cycle control.

31
32 Preferably the gene or genes are blocked.

33

1 Preferably RNAi is used to block the expression of genes
2 involved in cell cycle control.

3

4 Preferably double stranded RNA is used to block the
5 expression of genes involved in cell cycle control.

6

7 Preferably the *retinoblastoma* (*Rb*) gene is blocked.

8

9 Optionally the *P53* gene is blocked.

10

11 A further option is that a number of cell cycle control
12 genes are blocked.

13

14 Alternatively, a gene equivalent to the *retinoblastoma*
15 (*Rb*) gene will be blocked.

16

17 Preferably the equivalent gene will encode the same
18 protein (allowing for genetic code redundancy).

19

20 Optionally the equivalent gene will encode for a protein
21 that has the same function as *retinoblastoma*.

22

23 A further option is that the equivalent gene will show
24 >35% sequence homology with the original blastoma gene.

25

26 Preferably the equivalent gene will show >99% homology.

27

28 Preferably the method further comprises the step of
29 immortalising the cells using transfection techniques.

30

31 Preferably the transfection technique used is the
32 inclusion of a gene sequence coding that native
33 telomerase reserve transcriptase enzyme (TERT).

1

2 In order to provide a better understanding of the present
3 invention, we will now describe embodiments by way of
4 example only, and with reference to the following
5 drawings, in which:

6

7 Figure 1 shows a schematic of the proposed approach; and

8

9 Figure 2 shows components of the Rb pathway (adapted from
10 Classon, M., Harlow, E. 2002. Nature Reviews 2: 910-917)

11

12 Nematode cells have been difficult to culture, although
13 there has been reports of primary cell culture systems
14 for *C. elegans* embryonic cells which, although unable to
15 divide, were able to differentiate into neurons and
16 muscle cells (Christensen et al 2002). The inventors in
17 the present case have been able to repeat the cell
18 isolation and culture procedures detailed in the study
19 using both *C. elegans* and *Aphelencus avenae*, suggesting
20 that it is a viable starting point for cell culture
21 manipulations. The inventor has also succeeded in
22 maintaining ascidian and echinoderm cells in vitro under
23 a number of different conditions with the same observed
24 results. That is, cells remain viable for several weeks
25 in vitro but there is no evidence of growth. This can
26 work as an initial point for the establishment and
27 maintenance of cell cultures.

28

29 Manipulation of the Cell Cycle

30 Once cell cultures are established, they can be
31 manipulated to promote proliferation. The lack of
32 identified native non-insect invertebrate viruses, lack
33 of obvious tumours and the low levels of proliferation in

1 dissociated cells means that approaches developed in
2 mammalian systems or insect systems are not easily
3 translated into non-insect invertebrates. In this case,
4 it has been found that RNAi can be used for the blocking
5 of gene expression to overcome some of the obstacles to
6 genetic manipulation of non-insect invertebrate cells.

7 RNAi is a conserved biological response to double
8 stranded RNA, and is known variously as RNA interference
9 (RNAi) or post-transcriptional gene silencing. Double
10 stranded RNA corresponding to a gene or a coding region
11 of interest is introduced into an organism, resulting in
12 the degradation of the corresponding mRNA.

13

14 RNA interference (RNAi) is a cellular mechanism to
15 regulate the expression of genes and the replication of
16 viruses. This mechanism is mediated by double-stranded
17 small interfering RNA molecules (siRNA). RNAi technology
18 is a comparatively recent discovery believed by
19 scientists to constitute an important aspect of a cell's
20 natural defensive mechanism against parasitic viruses.

21 Critically, the cell responds to a foreign (double
22 stranded) form of siRNA introduced into the cell by
23 destroying all internal mRNA with the same sequence as
24 the siRNA.

25

26 RNAi has been used extensively for gene expression
27 studies in *C. elegans*, and it has been found that double
28 stranded RNA can easily be taken up by whole animals from
29 the culture media or by feeding. This results in a
30 specific gene silencing effect. The effect has also been
31 demonstrated in *C. elegans*, *Drosophila* and *Anopheles* cell
32 cultures. In the preferred embodiment, the RNAi approach
33 will be based on the direct inhibition of cell cycle

1 control genes, rather than the stimulation of cell cycle,
2 as has been the case in all previous transfection
3 studies. This presents a novel method of inducing cell
4 cycle activity. The key cell cycle control gene
5 retinoblastoma (Rb) is the preferred target in this
6 embodiment. The Rb protein acts as the check point for
7 progression into "S" phase of the cell cycle and is
8 relatively well conserved.

9

10 The approach described by Caplen et al 2000 and
11 Christensen et al 2002 (Christensen, M., Estevez, A.,
12 Yin, XY., Fox, R., Morrison, R., McDonnell, M., Gleason,
13 C., Miller, DM., Strange, K. 2002. Neuron, 33: 503-514;
14 Caplen, NJ., Fleenor, J., Fire, A., Morgan, RA. 2000 Gene
15 252: 95-105) can be applied to primary cell cultures. In
16 the preferred embodiment, this will be to primary cell
17 cultures of non-insect invertebrates. A native gene
18 equivalent to *Rb* will be identified and confirmed by PCR
19 and sequencing. Gene equivalents include those genes
20 which show structural homology, those which show sequence
21 homology, those genes which encode for the same protein
22 but allow for genetic code redundancy, and those genes
23 which encode for proteins that have the same function as
24 retinoblastoma. Typically when considering structural or
25 sequence homology, we would be looking for homology in
26 the region of 25% to 99%.

27

28 Preferably it would be in the region of 50% to 99%.

29

30 Most preferably it would be in the region of 75% to 99%.

31

32 Once the target sequence has been identified, double
33 stranded RNA is designed to deactivate mRNAs encoding

1 native Rb like protein. The whole embryo and cell
2 culture approaches will be taken by incubating embryos or
3 cells with the specific double stranded RNA. If viable,
4 the embryos will also be dissociated to form primary
5 cultures. Consumption of effectiveness of the RNAi can
6 be measured by measurement of the mRNA levels of the
7 target gene using northern blotting or equivalent.

8

9 In alternative embodiments, RNAi can be carried out on
10 the P53 gene and other cell cycle control genes. As well
11 as being carried out individually, RNAi can be carried
12 out on multiple cell cycle control genes at the one time.

13

14 Expressing Genes Which Induce Cell Proliferation
15 Cells that have been stimulated to proliferate using the
16 RNAi approach may still be limited in a number of
17 divisions they can undergo. To produce cell lines for
18 long-term use, immortalisation of the cells using
19 transfection techniques may be required in certain cases.
20 One method for the promotion of cell division, which has
21 not yet been attempted in invertebrate cells, is the
22 enhanced expression of the telomerase reverse
23 transcriptase enzyme (TERT), an approach which has been
24 developed in mammalian cell culture systems, but is
25 typically not considered for invertebrate systems. The
26 TERT gene is highly conserved and it has been identified
27 in the species including *Arabidopsis thaliana*, *Giardia*
28 *lamblia* and *C. elegans*. Corresponding native TERT genes
29 will be identified from databases or by targeting
30 conserved regions using PCR and sequencing for whichever
31 target species is of interest (gene equivalents will be
32 considered as described previously). These can then be
33 used to design novel constructs for cell transfection.

1 Native promoters identified from the literature and
2 promoters shown to have cross species activity, such as
3 that of the *Drosophila hsp70*, will be used to build
4 vectors containing the native TERT sequence. If
5 possible, a reporter system (e.g., GFP), will also be
6 incorporated into the vector to confirm gene expression.

7

8 Although introduction of gene constructs has been
9 attempted in some invertebrates, using a mixture of
10 native and non-native promoters and pan-tropic viruses,
11 in this case non-viral methods of DNA introduction, such
12 as lipofection, injection or electroporation will be used
13 as they have no host-specific requirement and are less
14 likely to produce an immunological response.

15

16 Protocol details

17

18 Primary cultures of non-insect invertebrate tissues and
19 cells can be generated by excision of the target tissue
20 from the organisms, or collection of blood cells. If
21 necessary, tissue can be dissociated mechanically or
22 chemically to generate cell cultures. A range of culture
23 conditions using commercial and in-house media
24 formulations can be used.

25

26 Specific double-stranded RNA (dsRNA) for relevant gene
27 products (as indicated) can be generated by any currently
28 available protocols including *in vitro* transcription,
29 enzymic digestion of larger RNA molecules, direct
30 expression of siRNA molecules from a plasmid, synthetic
31 construction of siRNA.

32

1 The dsRNA may be introduced into the cells or tissues
2 under examination by several protocols including
3 incubation in the growth media, lipofection, injection,
4 use of plasmids which encode specific siRNAs which will
5 then be produced and processed inside the target cells =
6 DNA-directed RNAi (these plasmids may be introduced into
7 the target cells by lipofection, injection or
8 electroporation).

9

10 The success of the gene silencing can be assessed by RNA
11 extraction of the target cells and tissues, and then by
12 Northern blotting or Real-time RT-PCR. The use of
13 controls expressing a reporter system such as GFP may
14 indicate the success of the technique. Also, silencing of
15 housekeeping genes (for example those encoding actin) can
16 be investigated to check the specificity of the effect.

17 The success of the effect will also be monitored by
18 microscopic examination of the cells, cell counts,
19 assessment of metabolic activity and monitoring of cell
20 cycle activity (eg by bromodeoxyuridine incorporation),
21 to monitor cell growth and viability. Cultures showing
22 cell proliferation can be passaged and fresh dsRNA added.
23 Cells may be cryostored and resuscitated using standard
24 techniques.

25

26 Similarly, cell lines may be created by the expression of
27 a native telomerase reverse transcriptase enzyme. The
28 native gene encoding this enzyme in the target species
29 can be incorporated into a DNA vector, which includes a
30 promoter to enhance expression. Cultures can be created
31 as indicated above. DNA vectors can be introduced into
32 cells using lipofection, injection, electroporation or
33 any novel techniques. Gene expression can be monitored

1 using a gene reporter system such as GFP or luciferase,
2 and assessment of cell cycle activity as in point 5
3 above.

4

5 It can be seen that the methods described allow the
6 production of a non-insect invertebrate cell line.

1 CLAIMS

2

3 1. A method of culturing cells, including the step of
4 inhibiting the expression of a gene or genes
5 involved in cell cycle control.

6

7 2. A method of culturing cells, as claimed in Claim 1,
8 wherein the cells are non-insect invertebrate cells.

9

10 3. A method of culturing cells, as claimed in Claim 1
11 or 2, wherein the gene or genes are blocked.

12

13 4. A method of culturing cells, as claimed in any of
14 the previous claims, wherein RNAi is used to block
15 the expression of genes involved in cell cycle
16 control.

17

18 5. A method of culturing cells, as claimed in claims 1
19 to 3, wherein double stranded RNA is used to block
20 the expression of genes involved in cell cycle
21 control.

22

23 6. A method of culturing cells, as claimed in any of
24 the previous claims, wherein the *retinoblastoma* (*Rb*)
25 gene is blocked.

26

27 7. A method of culturing cells, as claimed in any of
28 the previous claims, wherein the *P53* gene is
29 blocked.

30

31 8. A method of culturing cells, as claimed in any of
32 the previous claims, wherein a number of cell cycle
33 control genes are blocked.

1

2 9. A method of culturing cells, as claimed in any of
3 the previous claims, wherein, a gene equivalent to
4 the retinoblastoma (Rb) gene will be blocked.

5

6 10. A method of culturing cells, as claimed in claim 9,
7 wherein the equivalent gene will encode the same
8 protein (allowing for genetic code redundancy).

9

10 11. A method of culturing cells, as claimed in claim 9
11 or 10, wherein the equivalent gene will encode for a
12 protein that has the same function as
13 retinoblastoma.

14

15 12. A method of culturing cells, as claimed in claims 9
16 to 11, wherein the equivalent gene will show >35%
17 sequence homology with the original blastoma gene.

18

19 13. A method of culturing cells, as claimed in claims 9
20 to 11, wherein the equivalent gene will show >99%
21 homology.

22

23 14. A method of culturing cells, as claimed in any of
24 the previous claims, wherein the method further
25 comprises the step of immortalising the cells using
26 transfection techniques.

27

28 15. A method of culturing cells, as claimed in Claim 14
29 wherein the transfection technique used is the
30 inclusion of a gene sequence coding that native
31 telomerase reserve transcriptase enzyme (TERT).

Schematic of proposed approach

FTE 1

Fig. 2