Programming Abstractions

Week 8-2: MiniScheme D and E and Lexical Bindings

What can MiniScheme do at this point?

MiniScheme C has numbers

MiniScheme C has pre-defined variables

MiniScheme C has procedure calls to built-in procedures

MiniScheme D: Conditionals

Booleans in MiniScheme

In Scheme: #t and #f

In MiniScheme: True and False

You'll need to add symbols True and False to init-env

Bind them to 'True and 'False

New special form: if

We need a new data type for the if-then-else expression

- ite-exp
- ite-exp?
- ite-exp-cond
- ite-exp-then
- ite-exp-else

The parser

MiniScheme D

```
(define (parse input)
  (cond [(number? input) (lit-exp input)]
        [(symbol? input) (var-exp input)]
        [(list? input)
         (cond [(empty? input) (error ...)]
               [(eq? (first input) 'if)
                (if (= (length input) 4)
                    (ite-exp ...)
                    (error ...))]
               [else (app-exp ...)])]
        [else (error 'parse "Invalid syntax ~s" input)]))
```

Parsing if-then-else expressions

If-then-else expressions are recursive

► E.g., $EXP \rightarrow (if EXP EXP EXP)$

When parsing an if-then-else expression, you want to parse the sub expressions using parse

The input to parse will look like '(if (lt? x 1) (+ y 100) z)

The condition is (second input)

The then-branch is (third input)

The else-branch is (fourth input)

Evaluating ite-exp

```
Parse tree is recursive: (parse '(if x 10 20))

'(ite-exp (var-exp x) (lit-exp 10) (lit-exp 20))
```

When evaluating, you should call eval-exp recursively

- First, call it on the conditional expression
 - If the condition is False or 0, call it on the last expression
 - Otherwise, call it on the middle expression

What value does MiniScheme return for this expression assuming that x is bound to 23 and y is bound to 42?

- A. 25
- B. 37
- C. It's an error because (- y x) is a number

Can you evaluate all parts of the ite-exp?

What would happen if you instead called eval-exp on all three parts of the expression before deciding which one to return?

Think about recursive procedures using if

Primitive procedures returning booleans

Numeric procedures

- number?
- eqv? like Scheme's eqv? so that it works with True and False
- ▶ 1t? like Scheme's <</p>
- ▶ gt? like Scheme's >
- ▶ lte? like Scheme's <=</p>
- gte? like Scheme's >=

List procedures

- null?
- ► list?

For previous primitive procedures, we had a line like [(eq? op '+) (apply + args)] in apply-primitive-op.

Will [(eq? op 'lt?) (apply < args)] work for our less than procedure?</pre>

- A. It will work because < is Racket's less than
- B. It won't work because 1t? is Racket's less than

- C. It won't work because < takes two arguments and apply allows any number of arguments
- D. It won't work because < returns #t or #f which aren't supported in MiniScheme

MiniScheme E: let expressions

Let expressions

To evaluate this, we need to extend the current environment with bindings for x, y, and z and then evaluate body in the extended environment

Extending environments

(env list-of-symbols list-of-values previous-environment)

Recall that the env constructor requires

- a list of symbols
- a list of values
- a previous environment

The parser doesn't know anything about environments but we can create a let-exp data type that stores

- the binding symbols
- the parsed binding values
- the parsed body

Parsing let expressions

```
(let ([x (+ 3 4)] [y 5] [z (foo 8)])
body)
```

The binding list is (second input) where input is the whole let expression

The symbols are (map first binding-list)

The binding expressions are (map second binding-list)

How can we parse each of these expressions?

The body is simply (third input) which we can parse

Evaluating let expressions

Evaluating a let expressions just takes a little more work

Evaluate each of the binding expressions in the let-exp

- Bind the symbols to these values by extending the current environment
- Evaluate the body of the let expression using the extended environment

What about let*?

Recall that in Scheme, let* acts like let except that variables declared earlier in the let-binding list can be used for later values

```
      (define (foo x y)
      (define (bar x y)

      (let ([x (+ x y)]
      (let* ([x (+ x y)]

      [y (+ x y)])
      [y (+ x y)])

      (displayln x)
      (displayln x)

      (displayln y)))
      (displayln y)))
```

(foo 1 100) prints 101 twice

(bar 1 100) prints 101 and then 201

How could we implement let* in MiniScheme?

Lexical Binding

Variable usage

There are two ways a variable can be used in a program:

- As a declaration
- As a "reference" or use of the variable

Scheme has two kinds of variable declarations

- the bindings of a let-expression and
- the parameters of a lambda-expression

Scope of a declaration

The scope of a declaration is the portion of the expression or program to which that declaration applies

Lexical binding

- Scope of a variable is determined by textual layout of the program
- C, Java, Scheme/Racket use lexical binding

Dynamic binding

- Scope of a variable is determined by most recent runtime declaration
- Bash and classic Lisp use dynamic binding

Java example

```
What is the scope of y in this Java program?
Could we print y instead of x in the last line?
public static void main(String[] args) {
    int x;
    x = 1;
    while (x < 10) {
         int y = x;
         System.out.println(y);
         x += 1;
    System.out.println(x);
```

Scope in Scheme

Scope of variables bound (declared) in a let is the body of the let Scope of parameters in a λ is the body of the λ

Shadowing bindings

Shadowing: Declaring a new variable with the same name as an existing variable in an enclosing scope

We say that the inner binding for x shadows the outer binding for x

Determining the appropriate binding

Start at the use of a variable

Search the enclosing regions starting with the innermost and working outward looking for a binding (declaration) of the variable

The first binding you find is the appropriate binding

If there are no such bindings, we say the variable is free

Contour diagrams

Draw the boundaries of the regions in which variable bindings are in effect

$$(\lambda (x))$$
 $(\lambda (y))$
 $((\lambda (x)(xy))x))$

The body of a let or a lambda expression determines a contour

Each variable refers to the innermost declaration outside its contour

Lexical depth

The lexical depth of a variable reference is 1 less than the number of contours crossed between the reference and the declaration it refers to

```
(λ (x)
(λ (y)
((λ (x) (x y)) x))
```

```
In (x y)
```

- x has lexical depth 0
- y has lexical depth 1

The other x has lexical depth 1

What is the lexical depth of m in the expression (* $m \times$) in this procedure?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

Lexical addresses

(depth, position)

We can use the lexical depth of a variable along with the 0-based position of the variable in its declaration to come up with a *lexical address* of the variable

Lexical addresses are essentially pointers to where the variable can be found on the run-time stack; can eliminate names