Salmon Permits for 2017

All data is taken from the permit_records and harvest_records sheets in the original excel document. First we'll check counts:

mailing	count
0	17006
1	3269
2	2041
9	7268
total	29584

[1] 29978.89

So we have 7663 estimated non-respondents with mailing = 9. Note: There are 9 permits that have mailing status = 9 and have harvest reported.

Next, to get w_hat, I found the proportion of those with mailing = 1 or 2 that reported fishing. I did this overall, not by fishery.

$$\frac{\text{w_hat}}{0.6928437}$$

For all of those that had mailing = 2 and reported their harvest, I found the average number of salmon taken at each fishery.

```
## # A tibble: 6 x 5
##
     species `FISH CREEK` KASILOF
                                      KENAI
                                             UNKNOWN
##
     <chr>>
                      <dbl>
                              <dbl>
                                      <dbl>
                                                <dbl>
## 1 chum
                   0.00217 0.0620
                                     0.0508 0.000544
## 2 coho
                   0.0149 0.0351
                                     0.0408 0.00163
## 3 flounder
                   0
                            0.0323
                                     0.0902 0.00299
## 4 king
                            0.00462
                                     0.0391 0.000815
                            0.140
## 5 pink
                                     0.335
                                            0.00408
                   0.0149
## 6 red
                   0.199
                            4.01
                                    10.9
                                            0.211
```

Then I multipled that dataframe by the estimated number of nonrespondents that fished (w_hat*7268) resulting in:

##		FISH CREEK	KASILOF	KENAI	UNKNOWN
##	chum	11.54485	329.02822	269.8609	2.886212
##	coho	79.37084	186.16070	216.4659	8.658637
##	flounder	0.00000	171.72964	479.1113	15.874168
##	king	0.00000	24.53281	207.8073	4.329319
##	pink	79.37084	741.75660	1780.7931	21.646593
##	red	1057.79686	21311.79268	58046.0616	1122.736641

Then we add the above dataframe to the known totals below to get total estimated harvest:

##		FISH	CREEK	KASILOF	KENAI	UNKNOWN
##	chum		54	1013	832	10
##	coho		281	611	728	41
##	flounder		1	745	2347	41

king 1 132 1195 19 ## pink 273 2900 7930 105 ## red 4896 100142 296662 4757

Just about a match. Need to account for vendor issue, and count blank reports as non-respondents.