Lecture 22:

Domain-specific programming on graphs

Parallel Computer Architecture and Programming CMU 15-418/15-618, Fall 2023

Today's topic: analyzing big graphs

- Many modern applications:
 - Web search results, recommender systems, influence determination, advertising, anomaly detection, etc.
- Public dataset examples:

Today's topic: analyzing big graphs

Emerging interests in machine learning on graphs

We plan to design a DSL for computing on graphs.

Where might we begin?

What abstractions do we need?

Whenever I'm trying to assess the importance of a new programming system, I ask two questions:

- "What tasks/problems does the system take off the hands of the programmer?
 - (are these problems challenging or tedious enough that I feel the system is adding sufficient value for me to want to use it?)"
- "What problems does the system leave as the responsibility for the programmer?"
 - (likely because the programmer is better at these tasks)

Halide:

Programmer's responsibility:

- Describing image processing algorithm as pipeline of operations on images
- Describing the schedule for executing the pipeline (e.g., "block this loop, "parallelize this loop", "fuse these stages")

Halide system's responsibility:

- Implementing the schedule using mechanisms available on the target machine (spawning pthreads, allocating temp buffers, emitting vector instructions, loop indexing code)

Programming system design questions:

- What are the fundamental operations we want to be easy to express and efficient to execute?
- What are the key optimizations performed by the best implementations of these operations?
 - high-level abstractions should not prevent these
 - maybe even allow system to perform them for the application

Example graph computation: Page Rank

Page Rank: iterative graph algorithm

Graph nodes = web pages

Graph edges = links between pages

GraphLab

- A system for describing <u>iterative</u> computations on graphs
- Implemented as a C++ runtime
- Runs on shared memory machines or distributed across clusters
 - GraphLab runtime takes responsibility for scheduling work in parallel, partitioning graphs across clusters of machines, communication between master, etc.

GraphLab programs: state

- The graph: G = (V, E)
 - Application defines data blocks on each vertex and directed edge
 - D_v = data associated with vertex v
 - $D_{u \rightarrow v}$ = data associated with directed edge $u \rightarrow v$
- Read-only global data
 - Can think of this as per-graph data, rather than per vertex or per-edge data)

GraphLab operations: the vertex program

- Defines per-vertex operations on the vertex's local neighborhood
- Neighborhood (aka "scope") of vertex:
 - The current vertex
 - Adjacent edges
 - Adjacent vertices

vertex or edge data "in scope" of red vertex
 (graph data that can be accessed when executing a vertex program at the current (red) vertex)

Gather-Apply Scatter (GAS)

■ Gather: accumulate information from neighbors $a_u = \sum_{v \in Nhrs} d_{v \to v}$

Gather-Apply Scatter (GAS)

- Gather: accumulate information from neighbors
- Apply: update the value of the central vertex

 $d_u^{new} = update(d_u, a_u)$

Gather-Apply Scatter (GAS)

- Gather: accumulate information from neighbors $a_u = \sum_{v \in Nbrs} d_{v \to v}$
- Apply: update the value of the central vertex $d_u^{new} = update(d_u, a_u)$
- Scatter: use the new value of the central vertex to update the data on adjacent edges

Simple example: PageRank *

$$R[i] = \frac{1 - \alpha}{N} + \alpha \sum_{\substack{j \text{ links to } i}} \frac{R[j]}{\text{Outlinks}[j]}$$

```
PageRank_vertex_program(vertex i) {
    // (Gather phase) compute the sum of my neighbors rank
    double sum = 0;
    foreach(vertex j : in_neighbors(i)) {
        sum = sum + j.rank / num_out_neighbors(j);
    }
    // (Apply phase) Update my rank (i)
    i.rank = (1-0.85)/num_graph_vertices() + 0.85*sum;
}
```

Programming in GraphLab amounts to defining how to update graph state at each vertex. The system takes responsibility for scheduling and parallelization.

GraphLab: data access

- The application's vertex program executes per-vertex
- The vertex program defines:
 - What adjacent edges are inputs to the computation
 - What computation to perform per edge
 - How to update the vertex's value
 - What adjacent edges are modified by the computation
 - How to update these output edge values
- Note how GraphLab requires the program to tell it all data that will be accessed, and whether it is read or write access

PageRank: GraphLab vertex program (C++ code)

```
struct web_page {
  std::string pagename;
  double pagerank;
 web_page(): pagerank(0.0) { }
                                                                                   Graph has record of type
typedef graphlab::distributed_graph<web_page, graphlab::empty> graph_type;
                                                                                   web_page per vertex,
                                                                                   and no data on edges
class pagerank_program:
            public graphlab::ivertex_program<graph_type, double>,
            public graphlab::IS_POD_TYPE {
public:
 // we are going to gather on all the in-edges
                                                                             Define edges to gather
  edge_dir_type gather_edges(icontext_type& context,
                             const vertex_type& vertex) const {
                                                                             over in "gather phase"
    return graphlab::IN_EDGES;
 // for each in-edge gather the weighted sum of the edge.
                                                                                       Compute value to
  double gather(icontext_type& context, const vertex_type& vertex,
                                                                                        accumulate for
               edge_type& edge) const {
    return edge.source().data().pagerank / edge.source().num_out_edges();
                                                                                       each edge
  // Use the total rank of adjacent pages to update this page
  void apply(icontext_type& context, vertex_type& vertex,
                                                                            Update vertex rank
             const gather_type& total) {
    double newval = total * 0.85 + 0.15;
    vertex.data().pagerank = newval;
  // No scatter needed. Return NO EDGES
                                                                              PageRank example
  edge_dir_type scatter_edges(icontext_type& context,
                               const vertex_type& vertex) const {
                                                                              performs no scatter
    return graphlab::NO_EDGES;
                                                                                      16 CMU 15-418/618, Fall 2023
```

Running the program

```
graphlab::omni_engine<pagerank_program> engine(dc, graph, "sync");
engine.signal_all();
engine.start();
```

GraphLab runtime provides "engines" that manage scheduling of vertex programs engine.signal_all() marks all vertices for execution

You can think of the GraphLab runtime as a work queue scheduler.

And invoking a vertex program on a vertex as a task that is placed in the work queue.

So it's reasonable to read the code above as: "place all vertices into the work queue" Or as: "foreach vertex" run the vertex program.

Vertex signaling: GraphLab's mechanism for generating new work

$$R[i] = \frac{1 - \alpha}{N} + \alpha \sum_{\substack{j \text{ links to } i}} \frac{R[j]}{\text{Outlinks}[j]}$$

Iterate update of all R[i]'s 10 times

Uses generic "signal" primitive (could also wrap code on previous slide in a for loop)

```
struct web_page {
  std::string pagename;
                                                        Per-vertex "counter"
  double pagerank;
  int counter; 
 web_page(): pagerank(0.0),counter(0) { }
 // Use the total rank of adjacent pages to update this page
 void apply(icontext_type& context, vertex_type& vertex,
             const gather_type& total) {
    double newval = total * 0.85 + 0.15;
    vertex.data().pagerank = newval;
    vertex.data().counter++;
                                               If counter < 10, signal to scheduler to run the
    if (vertex.data().counter < 10)</pre>
                                               vertex program on the vertex again at some
       vertex.signal();
                                               point in the future
```

Signal: general primitive for scheduling work

Parts of graph may converge at different rates (iterate PageRank until convergence, but only for vertices that need it)

};

```
class pagerank_program:
      public graphlab::ivertex_program<graph_type, double>,
      public graphlab::IS_POD_TYPE {
                             Private variable set during apply phase, used during scatter phase
private:
 bool perform_scatter;
public:
   // Use the total rank of adjacent pages to update this page
 void apply(icontext_type& context, vertex_type& vertex,
             const gather_type& total) {
    double newval = total * 0.85 + 0.15;
    double oldval = vertex.data().pagerank;
    vertex.data().pagerank = newval;
    perform_scatter = (std::fabs(oldval - newval) > 1E-3);
                                                                         Check for convergence
 // Scatter now needed if algorithm has not converged
  edge_dir_type scatter_edges(icontext_type& context,
                               const vertex_type& vertex) const {
    if (perform_scatter) return graphlab::OUT_EDGES;
    else return graphlab::NO_EDGES;
   // Make sure surrounding vertices are scheduled
                                                                                     Schedule update of
   void scatter(icontext_type& context, const vertex_type& vertex,
               edge_type& edge) const {
                                                                                     neighbor vertices
    context.signal(edge.target());
```

Synchronizing parallel execution

Local neighborhood of vertex (vertex's "scope") can be read and written to by a vertex program

= vertex or edge data in scope of red vertex

Programs specify what granularity of atomicity ("consistency") they want GraphLab runtime to provide: this determines amount of available parallelism

- "Full consistency": implementation ensures no other execution reads or writes to data in scope of v when vertex program for v is running.
- "Edge consistency": no other execution reads or writes any data in ν or in edges adjacent to ν
- "Vertex consistency": no other execution reads or writes to data in ν ...

GraphLab: job scheduling order

GraphLab implements several work scheduling policies

- Synchronous: update all scheduled vertices "simultaneously" (vertex programs observe no updates from programs run on other vertices in same "round")

GraphLab: job scheduling order

- GraphLab implements several work scheduling policies
 - Synchronous: update all vertices simultaneously (vertex programs observe no updates from programs run on other vertices in same "round")
 - Round-robin: vertex programs observe most recent updates
 - **Graph coloring**
 - Dynamic: based on new work created by signal
 - Several implementations: fifo, priority-based, "splash" ...
- Application developer has flexibility for choosing consistency guarantee and scheduling policy
 - Implication: choice of schedule impacts program's correctness/output

Summary: GraphLab concepts

- Program state: data on graph vertices and edges + globals
- Operations: per-vertex update programs and global reduction functions (reductions not discussed today)
 - Simple, intuitive description of work (follows mathematical formulation)
 - Graph restricts data access in vertex program to local neighborhood
 - Asynchronous execution model: application creates work dynamically by "signaling vertices" (enable lazy execution, work efficiency on real graphs)
- Choice of scheduler and consistency implementation
 - In this domain, the order in which nodes are processed can be critical property for both performance and quality of result
 - Application responsible for choosing right scheduler for its needs

Graph Framework Taxonomy

Figure: Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros, and Rajkumar Buyya. 2018. Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges. ACM Comput. Surv. 51, 3, Article 60 (June 2018).

- Vertex centric: GraphLab, Pregel, GPS
- Edge centric: Chaos, X-Stream
- Sub-graph centric: Giraph++, GoFFish

If you are going to implement GraphLab, will you choose shared-memory or message passing?

PageRank in Pregel

```
class PageRankVertex
    : public Vertex<double, void, double> {
public:
  virtual void Compute(MessageIterator* msgs) {
    if (superstep() >= 1) {
      double sum = 0;
                                                                       Gather Phase
      for (; !msgs->Done(); msgs->Next())
        sum += msgs->Value();
      *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
                                                                       Apply Phase
    if (superstep() < 30) {</pre>
      const int64 n = GetOutEdgeIterator().size();
      SendMessageToAllNeighbors(GetValue() / n);
                                                                         Satter Phase
    } else {
      VoteToHalt();
```

Elements of good domain-specific programming system design

#1: good systems identify the most important cases, and provide most benefit in these situations

- Structure of code should mimic natural structure of problems in the domain
 - e.g., graph processing algorithms are designed in terms of per-vertex operations
- Efficient expression: common operations are easy and intuitive to express
- **Efficient implementation: the most important optimizations in the** domain are performed by the system for the programmer
 - Our experience: a parallel programming system with "convenient" abstractions that precludes best-known implementation strategies will almost always fail

#2: good systems are usually simple systems

- They have a small number of key primitives and operations
 - GraphLab: run computation per vertex, trigger new work by signaling
 - But GraphLab's design gets messy with all the scheduling options
 - Halide: only a few scheduling primitives
 - Hadoop: map + reduce
- Allows compiler/runtime to focus on optimizing these primitives
 - Provide parallel implementations, utilize appropriate hardware
- Common question that good architects ask: "do we really need that?" (can this concept be reduced to a primitive we already have?)
 - For every domain-specific primitive in the system: there better be a strong performance or expressivity justification for its existence

#3: good primitives compose

- Composition of primitives allows for wide application scope, even if scope remains limited to a domain
 - e.g., frameworks discussed today support a wide variety of graph algorithms
- Composition often allows for generalizable optimization
- Sign of a good design:
 - System ultimately is used for applications original designers never anticipated
- Sign that a new feature should not be added (or added in a better way):
 - The new feature does not compose with all existing features in the system

Optimizing graph computations

(now we are talking about implementation)

Wait a minute...

- So far in this lecture, we've discussed issues such as parallelism, synchronization ...
- But graph processing typically has low arithmetic intensity

Walking over edges accesses information from "random" graph vertices

VTune profiling results: Memory bandwidth bound!

Or just consider PageRank: ~ 1 multiply-accumulate per iteration of summation loop

$$R[i] = \frac{1 - \alpha}{N} + \alpha \sum_{j \text{ links to } i} \frac{R[j]}{\text{Outlinks}[j]}$$

Two ideas to increase the performance of operations on large graphs *

- 1. Reorganize graph structure to increase locality
- 2. Compress the graph

Directed graph representation

```
      Vertex Id
      1
      2
      3
      4
      5
      6

      Outgoing Edges
      2
      3
      5
      2
      4
      5
      6
      1
      2
      3
      6
      2
      4

      Vertex Id
      1
      2
      3
      4
      5
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      7
      8
      6
      2
      3
      4
      3
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      6
      7
```


Memory footprint challenge of large graphs

- Challenge: cannot fit all edges in memory for large graphs (graph vertices may fit)
 - From example graph representation:
 - Each edge represented twice in graph structure (as incoming/outgoing edge)
 - 8 bytes per edge to represent adjacency
 - May also need to store per-edge values (e.g., 4 bytes for a per-edge weight)
 - 1 billion edges (modest): ~12 GB of memory for edge information
 - Algorithm may need multiple copies of per-edge structures (current, prev data, etc.)
- Could employ cluster of machines to store graph in memory
 - Rather than store graph on disk
- Would prefer to process large graphs on a single machine
 - Managing clusters of machines is difficult
 - Partitioning graphs is expensive (also needs a lot of memory) and difficult

"Streaming" graph computations

- Graph operations make "random" accesses to graph data (edges adjacent to vertex v may distributed arbitrarily throughout storage)
 - Single pass over graph's edges might make billions of fine-grained accesses to disk

Streaming data access pattern

- Make large, predictable data accesses to slow storage (achieve high bandwidth data transfer)
- Load data from slow storage into fast storage*, then reuse it as much as possible before discarding it (achieve high arithmetic intensity)
- Can we restructure graph data structure so that data access requires only a small number of efficient bulk loads/stores from slow storage?

^{*} By fast storage, in this context I mean DRAM. However, techniques for streaming from disk into memory would also apply to streaming from memory into a processor's cache

Sharded graph representation

GraphChi: Large-scale graph computation on just a PC [Kryola et al. 2013]

- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard
- Sort edges in a shard by source vertex id

Shard	1:
vertices	(1-2)

vertices (1 2)			
src	dst	value	
1	2	0.3	
3	2	0.2	
4	1	0.8	
5	1	0.25	
	2	0.6	
6	2	0.1	

Shard 2: vertices (3-4)

src	dst	value
1	3	0.4
2	3	0.9
3	4	0.15
5	3	0.2
6	4	0.9

Shard 3: vertices (5-6)

src	dst	value
2	5	0.6
3	5	0.9
	6	0.85
4	5	0.3
5	6	0.2

Yellow = data required to process subgraph containing vertices in shard 1

Notice: to construct subgraph containing vertices in shard 1 and their incoming and outgoing edges, only need to load contiguous information from other P-1 shards

Sharded graph representation

GraphChi: Large-scale graph computation on just a PC [Kryola et al. 2013]

- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard
- Sort edges in a shard by source vertex id

Shard	1:
vertices	(1-2)

src	dst	value
1	2	0.3
3	2	0.2
4	1	0.8
5	1 2	0.25 0.6
6	2	0.1

Shard 2: vertices (3-4)

src	dst	value
1	3	0.4
2	3	0.9
3	4	0.15
5	3	0.2
6	4	0.9

Shard 3: vertices (5-6)

src	dst	value
2	5	0.6
3	5 6	0.9 0.85
4	5	0.3
5	6	0.2

Yellow = data required to process subgraph containing vertices in shard 2

Sharded graph representation

GraphChi: Large-scale graph computation on just a PC [Kryola et al. 2013]

- Partition graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard
- Sort edges in a shard by source vertex id

Shard 2:

ve	rtices	(1-2)	ve	rtices	(3-4)	
src	dst	value	src	dst	value	SI
1	2	0.3	1	3	0.4	2
3	2	0.2	2	3	0.9	3
4	1	0.8	3	4	0.15	
5	1	0.25	5	3	0.2	4
	2	0.6	6	4	0.9	5

Shard 1:

vertices (5-0)			
src	dst	value	
2	5	0.6	
3	5	0.9	
	6	0.85	
4	5	0.3	
5	6	0.2	

Shard 3:

 1

 2

 3

Yellow = data required to process subgraph containing vertices in shard 3

Observe: due to sort of incoming edges, iterating over all intervals results in contiguous sliding window over the shards

Putting it all together: looping over all graph edges

For each partition i of vertices:

- Load shard i (contains all incoming edges)
- For each other shard s
 - Load section of s containing data for edges leaving i and entering s
- Construct subgraph in memory
- Do processing on subgraph

Note: a good implementation could hide disk I/O by prefetching data for next iteration of loop

PageRank in GraphChi

GraphChi is a system that implements the out-of-core sliding window approach

PageRank in GraphChi:

```
1 typedef: VertexType float
2 Update(vertex) begin
       var sum \leftarrow 0
3
      for e in vertex.inEdges() do
4
           sum += e.weight * neighborRank(e)
5
       end
6
       vertex.setValue(0.15 + 0.85 * sum)
       broadcast(vertex)
8
                                         Take per-vertex rank and distribute to all outbound edges
9 end
                                         (memory inefficient: replicates per-vertex rank to all edges)
```

Alternative model: assume vertex data can be kept in memory and redefine neighborRank() function

Performance on a Mac mini (8 GB RAM)

Throughput (edges/sec) remains stable as graph size is increased

- Desirable property: throughput largely invariant of dataset size

Graph compression

- Recall: graph operations are often BW-bound
- Implication: using CPU instructions to reduce BW requirements can benefit overall performance (the processor is waiting on memory anyway!)
- Idea: store graph compressed in memory, decompress on-the-fly when operation wants to read data

Compressing an edge list

Vertex Id 32

Outgoing Edges 1001 10 5 30 6 1025 200000 1010 1024 100000 1030 275000

1. Sort edges for each vertex

5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000

2. Compute differences

5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000 0 1 4 20 971 9 14 1 5 98070 100000 75000

3. Group into sections requiring same number of bytes

4. Encode deltas

Uncompressed encoding: 12 x 4 bytes = 48 bytes
Compressed encoding: 26 bytes

1-byte group header

[FOUR_BYTE, 3], 98070, 100000, 75000 (13 bytes)

Performance impact of graph compression

[Shun et al. DCC 2015]

- Benefit of graph compression increases with higher core count, since computation is increasingly bandwidth bound
- Performance improves even if graphs already fit in memory
 - Added benefit is that compression enables larger graphs to fit in memory

^{*} Different data points on graphs are different compression schemes (byte-RLE is the scheme on the previous slide)

Summary

- Today there is significant interest in high performance computation on large graphs
- Graph processing frameworks abstract details of efficient graph processing from application developer
 - handle parallelism and synchronization for the application developer
 - handle graph distribution (across a cluster)
 - may also handle graph compression and efficient iteration order (e.g., to efficiently stream off slow storage)
- Great example of domain-specific programming frameworks
 - for more, see: GraphLab, GraphX, Pregel, Ligra/Ligra+