Chain Rule

More practice, more fun 😊

Differentiate each of the following

1.
$$f(x) = \ln x^{10}$$

8.
$$f(x) = \frac{1}{5x^2 - 6x + 19}$$

13.
$$f(x) = (5-x)^{100}$$

2.
$$f(x) = \cos(10x)$$

9.
$$f(x) = \ln(\sin(1-x^2))$$

14.
$$f(x) = (5-x)^{17}$$

3.
$$f(x) = (5x^4 + 12x + 3)^{100}$$

4.
$$f(x) = \ln\left(\sqrt{x^3 - x - 10}\right)$$
 10. $f(x) = \cos\left(\ln\left(1 - x^2\right)\right)$

15.
$$f(x) = \cos(x^4 + 3x^2 + 1)$$

5.
$$f(x) = \sin(x^3 - 2x)$$

16.
$$f(x) = \sqrt{1 - x^2}$$

6.
$$f(x) = \cos\left(\frac{\pi}{2}x\right)$$

$$11. \ f\left(x\right) = \frac{1}{\cos^3 x}$$

17.
$$f(x) = \frac{1}{\sin x}$$

7.
$$f(x) = \sqrt{x^2 - \frac{1}{x^2}}$$

12.
$$f(x) = \sin^3 x + \cos^3 x$$

18.
$$f(x) = \ln^3(2x - 1)$$

19. Let g be a differentiable function with g(2) = 4 and g'(2) = -3. Compute the exact value of f'(2) if f is defined as

a)
$$f(x) = 2g(x) - 3$$

$$d) f(x) = \cos(g(x))$$

$$f) f(x) = \frac{1}{q(x)}$$

b)
$$f(x) = (g(x))^3$$

c)
$$f(x) = \ln(g(x))$$

e)
$$f(x) = \frac{1}{(g(x))^3}$$

Answers

1.)
$$f'(x) = \frac{10}{x}$$
 2.) $f'(x) = -10\sin(10x)$ 3.) $f'(x) = 100(12x + 5x^4 + 3)^{99}(20x^3 + 12)$

4.)
$$f'(x) = \frac{3x^2 - 1}{2(x^3 - x - 10)}$$
 5.) $f'(x) = (3x^2 - 2)\cos(x^3 - 2x)$

6.)
$$f'(x) = -\frac{\pi}{2}\sin\left(\frac{\pi}{2}x\right)$$
 7.) $f'(x) = \frac{x + \frac{1}{x^3}}{\sqrt{x^2 - \frac{1}{x^2}}}$ 8.) $f'(x) = -\frac{10x - 6}{\left(5x^2 - 6x + 19\right)^2}$

9.)
$$f(x) = -2x \frac{\cos(1-x^2)}{\sin(1-x^2)}$$
 10.) $f'(x) = \frac{2x}{1-x^2} \sin(\ln(1-x^2))$ 11.) $f'(x) = \frac{3}{\cos^4 x} \sin x$

12.)
$$f'(x) = 3\cos x \sin^2 x - 3\cos^2 x \sin x$$
 13.) $f'(x) = -100(5-x)^{99} = 100(x-5)^{99}$

14.)
$$f'(x) = -17(5-x)^{16} = -17(x-5)^{16}$$
 15.) $f'(x) = -(4x^3+6x)\sin(x^4+3x^2+1)$

16.)
$$f'(x) = \frac{-x}{\sqrt{1-x^2}}$$
 17.) $f'(x) = -\frac{\cos x}{\sin^2 x}$ 18.) $f'(x) = \frac{6\left(\ln^2(2x-1)\right)}{2x-1}$

19.) a)
$$-6$$
 b) -144 c) $-\frac{3}{4}$ d) $3\sin 4$ e) $\frac{9}{256}$ f) $\frac{3}{16}$