Начальник отдела операторов в колл-центре утверждает, что новый оператор за смену обработал 185 звонков.

Сотрудник отдела контроля качества составляет случайную выборку из 25 операторов и обнаружил, что средняя арифметическая выборки равна 165 звонков за смену, при среднем квадратическом отклонении 40 звонков.

Может ли оказаться в действительности правильным объявленное количество звонков нового оператора? Принять уровень значимости равным $\alpha = 0.05$

Решение

Теория для решения задачи

Имеем гипотезу о численной величине среднего значения

Имеем гипотезу H_0 : $\bar{x} = a ->$ некоторое число

Имеем альтернативную гипотезу

Проверяем гипотезу на уровне значимости α = 0,05 (т.е. γ = 0,95)

Рассуждения

- 1. Дисперсия σ^2 известна
- 2. В качестве статистики берут величину

$$t = \frac{(\bar{x} - a)\sqrt{n}}{\bar{S}}$$

Где
$$\bar{S}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

Можно показать, что статистика t имеет распределение Стьюдента с n-1 степенями свободы.

- 3. Для заданного уровня доверия у по таблицам распределения Стьюдента определяется критическое значение $t_{{
 m Kp}\,n-1}$
- 4. Принимается решение, что если

 $|t| < t_{KD} \, n-1$, то гипотеза H_0 принимается.

Вычисления для данной задачи

1)
$$a = 185$$
; $\bar{x} = 165$; $n = 25$; $\bar{S} = 40$; $\alpha = 0.05 => \gamma = 0.95$

Дисперсия неизвестна => для проверки гипотезы H_0 : \bar{x} = а используем распределение Стьюдента

$$t = \frac{(\bar{x} - a)\sqrt{n}}{\bar{S}} = \frac{(165 - 185)\sqrt{25}}{40} = -2,5$$

2) Работаем с таблицей «Значение t-критерия Стьюдента по таблице при γ = 0.95 находим $t_{
m kp}$

Для числа степеней свободы (n-1) = 24.

$$t_{\text{KD }24,\ 0.95}$$
 = 2,06

3) Анализируем и принимаем решение - т.к. $|t|=2.5 > 2.06 = t_{\text{кр 24}, 0.95}$, то гипотеза H_0 о среднем количестве звонков за смену не принимается на уровне доверия $\gamma = 0.95$.