Material	Category	Tc	Bc	Feature / Applications
Nb	単体金属	9.2 (K)	0.2 (T)	単元素故に材料の均質性の点で有利 薄膜を用いたデバイス用途
NbN	金属化合物	16 (K)		Nb-Ti 線材のピン止め中心 量子コンピューティングの薄膜材料
Nb-Ti	合金	9.5 (K)	11.5 (T)	線材作成が容易で超伝導線材の98 (%) < 5 (T) における Jc が高いため電磁石向き
Nb₃Sn	金属化合物	18 (K)	22 (T)	高いTc, Hc2で 超高磁場(< 22 (T))が生成可 高磁場研究開発(NMR / ITER etc.)
MgB ₂	金属化合物	39 (K)	10 (T)	資源豊富 / 小型冷凍機or液体水素運用可 臨界磁場が低く,MRI等比較的低磁場線材応用
REBCO	銅酸化物 (セラミックス)	96 (K)		液体窒素冷却可能な100K程度の高いTc セラミックスのため加工が困難 / 高い臨界電流Jc