Linear Algebra

Vectors

Interpretations of Vectors	2
Vector Addition and Subtraction	. 2
Vector-Scalar Multiplication	. 3
The Dot Product	3
Properties of the Dot Product	. 3
Vector Length	. 4
Geometric Interpretation of the Dot Product	. 4
Other Vector Products	5
Hadamard Multiplication	. 5
Outer Product	. 5
Cross Product	. 6
To be defined	7

Vectors

Interpretations of Vectors

- Algebraic vectors (v, \overrightarrow{v}) : an ordered list of numbers.
 - \circ E.g., $\mathbf{v} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$
 - Vectors can be written as rows (seen above) or columns (seen below), but differ only at the level of notation and convention.
 - o The order of elements in a vector matters:

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \neq \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

- **Dimensionality**: the number of elements in a vector.
- **Euclidean (geometric, spatial) vectors**: a line in geometric space that indicates the magnitude and direction from a starting point (tail) to an end point (head).
 - Geometric vectors can start at any point in space, but often represented as starting from the origin—such vectors are in standard position.
 - Coordinates are not the same as vectors, but they do indicate where the head of a vector will land if it is in standard position.

Vector Addition and Subtraction

• Algebraically, dimensionality of vectors must be equal. When they are, then addition or subtraction vectors is done on the corresponding elements of each vector, e.g.,

$$\begin{bmatrix} 1 \\ 0 \\ 4 \\ 5 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ -6 \\ 11 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ -2 \\ 16 \end{bmatrix}$$

- Geometrically, addition can be thought of translating the tail of one vector to the head of the other—resulting in a new vector.
- Geometric interpretations of subtraction can be thought of in two ways:
 - 1. Multiplying one vector by -1, then applying vector addition method above.
 - 2. Placing both vectors in standard position, with the resulting vector between the two heads being the answer.

2

Vectors The Dot Product

Vector-Scalar Multiplication

 \circ **Scalar**: typically denoted with lower case Greek letters (e.g., α , λ) indicating an element of a field (typically real numbers) used in scalar-multiplication of vectors.

 Algebraically, scalar-multiplication is the multiplication of each element of a vector by a particular scalar, e.g.,

$$\lambda \mathbf{v}
ightarrow 7 egin{bmatrix} -1 \ 0 \ 1 \end{bmatrix} = egin{bmatrix} -7 \ 0 \ 7 \end{bmatrix}$$

- Geometrically, scalar-multiplication can be thought of as the extension $(\lambda > 1)$ or compression $(\lambda \in (0, 1))$ of a vector.
 - When λ < 0, then it can be thought of inverting its direction with respect to the origin.

The Dot Product

- **Dot (scalar, inner) product**: an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number.
 - The result of a dot product is a scalar[↑], so often it is represented as such.
 - It can also be represented as multiplication between two vectors $(a \cdot b)$.
 - However, it is commonly represented as $\mathbf{a}^T \mathbf{b}$ transpose \downarrow will be explained in more detail when dealing with matrix products \downarrow .
 - Algebraically: $\sum_{i=1}^{n} a_i b_i$ where Σ denotes summation and n is the dimension of the vector space, e.g.,

$$\begin{bmatrix} 1 & 3 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix} = (1 \cdot 4) + (3 \cdot -2) + (-5 \cdot -1) = 3$$

Properties of the Dot Product

- \circ Note: the following properties hold as long as a, b, and c are real vectors.
- \checkmark Distributive: $a^T(b+c) = a^Tb + a^Tc$ vector multiplication distributes over vector addition.
- **X** Associative: $a^T(b^Tc) \neq (a^Tb)c$ in general the associative property does not hold, as the dot product would most likely produce different scalars.
 - Additionally, \boldsymbol{a} could have a different dimensionality than \boldsymbol{b} and \boldsymbol{c} . I.e., even if \boldsymbol{b} and \boldsymbol{c} had the same dimensionality ($\boldsymbol{a}^T(\boldsymbol{b}^T\boldsymbol{c})$ would be valid vector-scalar multiplication) then $\boldsymbol{a}^T\boldsymbol{b}$ would be invalid.
- \circ \checkmark Commutative: $a^Tb = b^Ta$ the order of the vectors does not matter.

Vectors The Dot Product

Vector Length

• **Vector norm (magnitude, length)**: denoted with double vertical bars $\|\mathbf{v}\|$, indicating length of a vector in euclidean space. Not to be confused with absolute value $|\mathbf{x}|$ of a scalar's "norm." However, sometimes the notation $|\mathbf{v}|$ is used.

 \circ Calculating $\|\mathbf{v}\|$ is done using the Euclidean norm:

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

- This is a consequence of the Pythagorean theorem, since the basis vectors \downarrow e_1 , e_2 , and e_3 are orthogonal \downarrow unit vectors \downarrow .
- Thus, the norm can easily be found by taking the square root of the dot product of the vector with itself:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v}^T \mathbf{v}}$$

Geometric Interpretation of the Dot Product

• The dot product of two Euclidean vectors $^{\uparrow}$ **a** and **b** is defined by:

$$\lambda = \mathbf{a}^{\mathsf{T}} \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta)$$

where θ is the angle between \boldsymbol{a} and \boldsymbol{b} .

- \circ Features based on θ :
 - When $\cos \theta > 0$ ($\theta < 90^{\circ}$ acute) then $\lambda > 0$ (+)
 - $\overline{\cdot}$ When $\cos heta<0$ ($heta>90^\circ-{
 m obtuse}$) then $\lambda<0$ (-)
 - \cdot When $\cos heta = 0$ ($heta = 90^\circ$ perpendicular) then $\lambda = 0$
 - · This represents a special case where the vectors are said to be orthogonal.
 - **Orthogonality**: the generalization of the notion of perpendicularity to the linear algebra of bilinear forms \(\psi \).
 - When $\cos \theta = 1$ then the vectors are codirectional:

$$a^T b = ||a|| \, ||b||$$

· Thus, the dot product with a vector **v** with itself is

$$\mathbf{v}^T \mathbf{v} = \|\mathbf{v}\|^2$$

- · Which gives us the norm $^{\uparrow}$ as defined above, i.e., $\|oldsymbol{v}\| = \sqrt{oldsymbol{v}^T oldsymbol{v}}$
- · If $\cos \theta = -1$, then really vectors are still codirectional, but point in opposite directions with respect to the origin.

Other Vector Products

Hadamard Multiplication

• **Hadamard (element-wise) product**: a binary operation (only takes two operands) that matrices of the same dimensions and produces another matrix of the same dimension as the operands, e.g., vector Hadamard multiplication:

$$\begin{bmatrix} 1 \\ 0 \\ 4 \\ 5 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ -6 \\ 11 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ -24 \\ 55 \end{bmatrix}$$

Outer Product

- \circ Recall that the dot (scalar, inner) product $^{\uparrow}$ produces a 1×1 matrix, or rather a scalar, hence "scalar" product.
 - Note: the typical notation used for dot products is $\mathbf{v}^T \mathbf{w}$ part of reasoning for the "inner" product.
- **Outer product**: an $N \times M$ matrix that results from the product of two vectors with dimensions n and m.

$$\mathbf{v}\mathbf{w}^{\mathsf{T}} = \mathsf{N} \times \mathsf{M}$$

- The subtle change in notation matters in contrast to the dot product, as both represent distinct operations (assuming they are column vectors).
- The outer product allows for the multiplication of vectors with different dimensionality
- Can be thought of in two different ways:
 - The row perspective:

$$\begin{bmatrix} 1 \\ 0 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} 1a & 1b & 1c \\ 0a & 0b & 0c \\ 4a & 4b & 4c \\ 2a & 2b & 2c \end{bmatrix}$$

The column perspective:

$$\begin{bmatrix} 1 \\ 0 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} 1a & 1b & 1c \\ 0a & 0b & 0c \\ 4a & 4b & 4c \\ 2a & 2b & 2c \end{bmatrix}$$

Cross Product

- Cross (vector, directed area) product: denoted by the symbol x, indicating a binary operation on two vectors in three-dimensional space \mathbb{R}^3 .
 - Given two linearly independent vectors \mathbf{a} and \mathbf{b} , then the cross product $\mathbf{a} \times \mathbf{b}$ produces a new vector that is orthogonal to both \mathbf{a} and \mathbf{b} , and thus normal to the plane containing them.
 - The direction of the vector is given by the right-hand rule (a = pointer, b = index, thumb = direction).
 - The magnitude of the vector represents the area of the parallelogram that the vectors span.
- The cross product can be defined by the formula:

$$\mathbf{a} \times \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) \mathbf{n}$$

- Notice this is similar to the geometric interpretations of the dot product 1.
- The key difference here is that $cos(\theta)$
- An algebraic example of vector e.g.,

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \times \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 2c & -3b \\ 3a & -1c \\ 1b & -2a \end{bmatrix}$$

Vectors To be defined

To be defined

- unit vectors
- basis vectors
- transpose
- matrix products