Feature Selection Based on Univariate ROC_AUC for Classification and MSE for Regression

(http://localhost:8888/notebooks/Feature-Selection-in-Machine-Learning-using-Python-All-Code-master/Filtering%20Method/Feature%20Selection%20Base Selection-Based-on-Univariate-ROC_AUC-for-Classification-and-MSE-for-Regression)

What is ROC_AUC

The Receiver Operator Characteristic (ROC) curve is well-known in evaluating classification performance. Owing to its superiority in dealing with imbalanced and cost-sensitive data, the ROC curve has been exploited as a popular metric to evaluate ML models.

Diagonal segments are produced by ties.

The ROC curve and AUC (area under the ROC curve) have been widely used to determine the classification accuracy in supervised learning.

It is basically used in Binary Classification

Use of ROC_AUC in Classification Problem

```
In [2]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
 In [3]: from sklearn.model_selection import train_test_split
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.metrics import accuracy_score, roc_auc_score
          from sklearn.feature selection import VarianceThreshold
          data = pd.read_csv('0.9_5subjectslabelled_data.csv', nrows = 31437)
In [17]:
          data.head()
Out[17]:
             Time Snap
                           AccX
                                    AccY
                                             AccZ
                                                    Gyro_X Knee Angles Gait Cycle Phase
          0
                120.775 -0.181472 -0.088708 -0.665352 0.087145
                                                              67.223821
                                                                                    5
           1
                120.780 -0.181443 -0.088745 -0.659870 0.103506
                                                              67.217858
                                                                                    5
          2
               120.785 -0.183826 -0.089735 -0.654215 0.117635
                                                                                    5
                                                              67.154903
          3
               120.790 -0.188545 -0.091706 -0.648504 0.129259
                                                              67.011479
                                                                                    5
                120.795 -0.195535 -0.094645 -0.642857 0.138193
                                                              66.799616
                                                                                    5
In [18]: | X = data.drop('Gait Cycle Phase', axis = 1)
          y = data['Gait Cycle Phase']
          X.shape, y.shape
Out[18]: ((31436, 6), (31436,))
In [19]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, ran
```

Remove Constant, Quasi Constant and Duplicate Features

```
In [20]: #remove constant and quasi constant features
         constant_filter = VarianceThreshold(threshold=0.01)
         constant_filter.fit(X_train)
         X_train_filter = constant_filter.transform(X_train)
         X_test_filter = constant_filter.transform(X_test)
In [21]: | X_train_filter.shape, X_test_filter.shape
Out[21]: ((25148, 6), (6288, 6))
In [22]: #remove duplicate features
         X_train_T = X_train_filter.T
         X test T = X test filter.T
In [23]: X train T = pd.DataFrame(X train T)
         X_test_T = pd.DataFrame(X_test_T)
In [24]: | duplicated_features = X_train_T.duplicated()
In [25]: features_to_keep = [not index for index in duplicated_features]
         X_train_unique = X_train_T[features_to_keep].T
         X_test_unique = X_test_T[features_to_keep].T
In [26]: X_train_unique.shape, X_train.shape
Out[26]: ((25148, 6), (25148, 6))
```

Now calculate ROC_AUC Score

```
In [27]: roc auc = []
         for feature in X_train_unique.columns:
             clf = RandomForestClassifier(n estimators=100, random state=0)
             clf.fit(X train unique[feature].to frame(), y train)
             y_pred = clf.predict(X_test_unique[feature].to_frame())
             roc_auc.append(roc_auc_score(y_test, y_pred))
                                                    Traceback (most recent call last)
         ValueError
         Cell In[27], line 6
               4 clf.fit(X_train_unique[feature].to_frame(), y_train)
               5 y_pred = clf.predict(X_test_unique[feature].to_frame())
         ---> 6 roc_auc.append(roc_auc_score(y_test, y_pred))
         File ~\AppData\Roaming\Python\Python38\site-packages\sklearn\metrics\ rankin
         g.py:565, in roc_auc_score(y_true, y_score, average, sample_weight, max_fpr,
         multi_class, labels)
             558
                          raise ValueError(
             559
                              "Partial AUC computation not available in "
                              "multiclass setting, 'max_fpr' must be"
             560
                              " set to `None`, received `max_fpr={0}` "
             561
                              "instead".format(max fpr)
             562
             563
                          )
                     if multi class == "raise":
             564
          --> 565
                          raise ValueError("multi class must be in ('ovo', 'ovr')")
             566
                     return multiclass roc auc score(
                         y_true, y_score, labels, multi_class, average, sample_weight
             567
             568
             569 elif y_type == "binary":
         ValueError: multi class must be in ('ovo', 'ovr')
 In [ ]: |print(roc_auc)
 In [ ]: roc values = pd.Series(roc auc)
         roc values.index = X train unique.columns
         roc_values.sort_values(ascending =False, inplace = True)
 In [ ]: roc values
 In [ ]: roc values.plot.bar()
 In [ ]: |sel = roc_values[roc_values>0.5]
         sel
 In [ ]: | X_train_roc = X_train_unique[sel.index]
         X_test_roc = X_test_unique[sel.index]
```

Build the Model and compare the performance

Feature Selection using RMSE in Regression

```
In [33]:
    from sklearn.linear_model import LinearRegression
In [34]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
```

```
data = pd.read_csv('Subject01_dataset_202002071_50ms.csv', nrows = 2861)
In [35]:
         data.dropna(inplace=True)
         data.head()
```

Out[35]:	Tin	ne DEM	IG1_AR1	DEMG1_A	R2 DE	MG1_AR3	DEMG1_	AR4 DEI	MG1_AR5	5 DEMG1_AR6	DEM		
	0 0.	00	0.622484	-0.2604	61	0.356585	-0.234	4134	0.211762	-0.032847			
	1 0.	05	0.104438	0.1124	00	0.282052	-0.097	7667	0.134183	-0.088160			
	2 0.	10	0.032687	0.0447	36	0.055276	0.095	5904	0.082075	-0.239689			
	3 0.	15	0.148638	0.0444	86	0.156377	- 0.14	1641	-0.132405	0.049945			
	4 0.	20	0.298830	-0.1260	01	0.336519	-0.123	3507	-0.132748	3 - 0.037417			
	5 rows	× 103 c	columns										
	4										•		
In [36]:	<pre>columns_to_drop = ["Right Knee Angle", "Left Knee Angle", "Right Hip Angle ", X = data.drop(columns_to_drop, axis=1) y = data[columns_to_drop] print(y) X.shape, y.shape</pre>												
	→									>			
	0 1 2 3 4 2855 2856 2857 2858 2859		-12.014 -11.924 -11.843 -11.751 -72.057 -65.581 -58.013 -50.129 -41.375	520 123 622 801 638 122 923 967 815	-7. -7. -7. -6. -13. -12. -11. -10.	330916 321892 211070 071632 931188 742484 133072 103924 827592 732799		8.2480(8.3472) 8.5445; 8.7788; 8.8428(30.6795) 30.9876; 29.9036(27.4855) 23.9954	02 85 23 96 04 07 38 60 98	ft Hip Angle 5.384336 5.560538 5.762084 5.958896 5.944573 8.905448 7.561556 6.550607 5.810535 5.296846) 3 4) 3 3 5 5		
	0	Kignt	-9.80	-		e Torque 6.450071	_	-17.70		етт нір того 19.7711-	-		
	1		-10.77			7.615612		-18.38	8583	-21.7554	146		
	2		-11.34			8.882028		-18.20		-23.4496			
	3		-11.67			0.124378		-17.94		-25.2884			
	4		-11.33		-2	0.413309 		-17.19	06/2	-25.7271	.90		
	2855		-7.74		-2	9.369524		-3.13		-40.0413			
	2856		-10.71			7.305377		-4.48		-41.5875			
	2857		-11.64			1.695356		-5.86		-43.9334			
	2858		-9.88			1.048253		-4.41		-43.0884			
	2859 [2860	rows >	-8.16 8 colu		-3	6.671271		-0.39	0141	-40.8915	515		
0+[26].	//200	0 05\	(2252										

file:///C:/Users/ibra5/Desktop/Feature Selection/Feature Selection Filtering Techniques - 5 Jupyter Notebook.html

Out[36]: ((2860, 95), (2860, 8))

```
In [37]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, rand)
In [38]: 
mse = []
for feature in X_train.columns:
    clf = LinearRegression()
    clf.fit(X_train[feature].to_frame(), y_train)
    y_pred = clf.predict(X_test[feature].to_frame())
    mse.append(mean_squared_error(y_test, y_pred))
```

6/25/23, 9:56 PM

In [39]: mse

```
Out[39]: [519.0856427487026,
           443.22009026936166,
           500.3033248944889,
           504.4231539972099,
           511.5446826990982,
           486.4551091494251,
           520.0537557682898,
           362.4004610844161,
           372.58041098340084,
           520.4349809087416,
           519.7352776814612,
           519.1905997323147,
           519.6629388496567,
           517.3811165787337,
           519.2239909846317,
           424.10465377347975,
           423.37250183386914,
           448.2589040643992,
           460.4050458172525,
           517.5298637973591,
           508.59331457393114,
           518.6209048306231,
           508.36450431295555,
           351.9281267208346,
           362.07652336713875,
           465.7317373218353,
           473.7046202791931,
           508.02554583092683,
           517.9899204955868,
           501.7992882676291,
           511.84077550921523,
           463.5598205062023,
           464.8937143274216,
           466.2946270128469,
           473.27661614945015,
           516.51096401284,
           518.71789889042,
           503.309943173511,
           511.3151983799868,
           462.3759463321683,
           464.74815967712175,
           508.1865479557794,
           515.2897457075037,
           519.5612565468876,
           520.3208891036443,
           516.5982635699187,
           517.7209331636557,
           500.2486111914748,
           504.0147065391096,
           482.9628796858001,
           491.0128730001226,
           504.3028243745814,
           515.3732456289963,
           499.6510329540638,
           517.6561283339672,
           466.0015294941847,
           468.0627517221497,
```

505.7345438890148, 501.23345049422545, 502.5228404488237, 513.5537076794087, 507.17740261624124, 516.6544911879774, 446.37900800552006, 450.1408167193179, 399.0459301620998, 431.4470776487359, 494.8805509269018, 499.4072666947798, 487.54115990406115, 494.4644352536309, 439.67513647919094, 439.95891665161383, 430.73228224694606, 443.90565025580275, 503.62892324423206, 507.9458007186033, 502.48620532434273, 509.25694869831256, 404.39895840583796, 407.3014411361622, 491.37572087753034, 496.0114695505853, 512.318400262228, 516.3718701061373, 516.4366334276555, 518.8273281333543,

474.49252126354423, 475.94743454572654, 373.8498420263658, 378.06316848512205, 479.359424380929, 477.79856796372076, 460.8892911024466, 429.36095385309784]

file:///C:/Users/ibra5/Desktop/Feature Selection/Feature Selection Filtering Techniques - 5 Jupyter Notebook.html

```
In [51]: mse = pd.Series(mse, index=X_train.columns)
    mse.sort_values(ascending=False, inplace=True)
    last_15_least_mse = mse.tail(15)
    print(last_15_least_mse)
```

DEMG9_RMS	439.675136
DEMG9 AR2	431.447078
DEMG10_AR1	430.732282
R_Knee_Lat_z	429.360954
DEMG2_RMS	424.104654
DEMG2_MAV	423.372502
DEMG10_MAV	407.301441
DEMG10_RMS	404.398958
DEMG9_AR1	399.045930
Treadmill L Moment_z	378.063168
Treadmill R Moment_z	373.849842
DEMG1_MAV	372.580411
DEMG1_RMS	362.400461
DEMG3_MAV	362.076523
DEMG3_RMS	351.928127
dtype: float64	

```
In [50]: fig, ax = plt.subplots(figsize=(10, 6))
    mse.plot.bar(ax=ax)
    plt.xticks(rotation=45) # Rotate x-axis labels by 45 degrees

# Get the tick positions and labels
    ticks = ax.get_xticks()
    labels = ax.get_xticklabels()

# Keep only the last two tick positions and labels
    last_two_labels = labels[-10:]

# Set the modified tick positions and labels
    ax.set_xticks(last_two_ticks)
    ax.set_xticklabels(last_two_labels)

plt.show()
```



```
In [60]: X_train_2 = X_train[['DEMG9_RMS', 'DEMG9_AR2', 'DEMG10_AR1', 'R_Knee_Lat_z',
         X_test_2 = X_test[['DEMG9_RMS', 'DEMG9_AR2', 'DEMG10_AR1', 'R_Knee_Lat_z', 'DEMG10_AR1', 'R_Knee_Lat_z', 'DEMG10_AR1']
In [61]: | %%time
         model = LinearRegression()
         model.fit(X_train_2, y_train)
         y_pred = model.predict(X_test_2)
         print('r2_score: ', r2_score(y_test, y_pred))
         print('rmse: ', np.sqrt(mean_squared_error(y_test, y_pred)))
         print('sd of house price: ', np.std(y))
         r2 score: 0.6470015832798555
         rmse: 13.337357995706496
         sd of house price: Right Knee Angle
                                                   18.678156
                          18.465468
         Left Knee Angle
         Right Hip Angle
                             14.576384
          Left Hip Angle
                              13.417599
         Right Knee Torque 20.255105
         Left Knee Torque
                              22.576703
         Right Hip Torque
                             35.117830
         Left Hip Torque
                              34.600640
         dtype: float64
         CPU times: total: 31.2 ms
         Wall time: 31.9 ms
In [62]: | %%time
         model = LinearRegression()
         model.fit(X_train, y_train)
         y_pred = model.predict(X_test)
         print('r2 score: ', r2 score(y test, y pred))
         print('rmse: ', np.sqrt(mean squared error(y test, y pred)))
         print('sd of house price: ', np.std(y))
         r2 score: 0.8722936284656555
         rmse: 7.83863910720154
         sd of house price: Right Knee Angle
                                                   18.678156
         Left Knee Angle
                              18.465468
         Right Hip Angle
                              14.576384
          Left Hip Angle
                              13.417599
         Right Knee Torque
                              20.255105
         Left Knee Torque
                              22.576703
         Right Hip Torque
                              35.117830
         Left Hip Torque
                             34.600640
         dtype: float64
         CPU times: total: 93.8 ms
         Wall time: 106 ms
 In [ ]:
 In [ ]:
```