6.1 The Family of Exponential Functions

Definition. An exponential function has the form $f(x) = a^x$, where a > 0. The number a is called the base.

Example.

\boldsymbol{x}		f(x)
$\overline{-1}$	2^{-1}	= 1/2
0	2^{0}	=1
1/2	$2^{1/2}$	$=\sqrt{2}$
2	2^{2}	=4
3.2	$2^3 \cdot 2$	$^{1/5} = 8\sqrt[5]{2}$

The base a determines if a^x increases with exponential growth or decreases with exponential decay:

a > 1

Example. Graph 3^x and 5^x on the axes provided below:

Example. Graph $\left(\frac{1}{3}\right)^x$ and $\left(\frac{1}{5}\right)^x$ on the axes provided below:

 $\frac{\text{Note:}}{\left(\frac{1}{3}\right)^{x}} = 3^{-x}$ $\left(\frac{1}{5}\right)^{x} = 5^{-x}$

Example. Graph $\left(\frac{6}{7}\right)^x$ and $\left(\frac{7}{6}\right)^x$:

6.2 The Function e^x

The number e is an irrational number whose exact form is

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.718281828459045\dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

This exponential function has a 45° tangent at x = 0. This function shows in many applications, and each function a^x can be written as e^{kx} .

Example. Graph 2^x , e^x and 3^x :

All exponential functions follow the all the typical rules when performing transformation of functions:

Example.

Solve:

a)
$$2^{x-3} = 64 = 2^{6}$$

=) $x - 3 = 6$ =) $x = 9$

b)
$$4^{2x-3} = 64 = 4^3$$

 $\Rightarrow 2x^{-3} = 3$

c)
$$10^{\sin x} = 1 = 70^{\circ}$$

$$\Rightarrow 5 \text{ in } x = 0$$

$$\Rightarrow \boxed{x = K \text{ T, } \text{ kean in teger}}$$

e)
$$\left(\frac{1}{4}\right)^{2-x} = 16^x = \left(4^2\right)^x$$

(4-1) 2-x

=> $-(2-x) = 2x$

=> $x-2=2x$

=> $-2=x$

Example. Simplify:

a)
$$(e^x)^3$$

b)
$$\frac{e^{2x}}{e^x}$$

$$e^{2x-x} = e^x$$

$$1. a^m \cdot a^n = a^{m+n}$$

$$2. \ \frac{a^m}{a^n} = a^{m-n}$$

3.
$$(a^m)^n = a^{mn}$$

$$4. (ab)^n = a^n b^n$$

5.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$$

6.
$$a^{-n} = \frac{1}{a^n}, a \neq 0$$

7.
$$a^0 = 1, a \neq 0$$

d)
$$5^{x^2+2x} = 125 = 5^3$$

=> $x^2 + 2x = 3$
 $(x-3)(x+1) = 0$
 $(x^2 + 2x - 3) = 0$

c)
$$\frac{e^{2x}-1}{e^x-1} = \frac{(e^x-1)(e^x+1)}{e^x-1}$$
$$= e^x+1$$