Home DBMS SQL PL/SQL SQLite MongoDB Cassandra MySQL Oracle CouchDB Neo4j DB2 C Java Projects

Relational Algebra

Relational algebra is a procedural query language. It gives a step by step process to obtain the result of the query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:

- The select operation selects tuples that satisfy a given predicate.
- It is denoted by sigma (σ).

Notation: σ p(r)

Where:

- σ is used for selection prediction
- **r** is used for relation
- **p** is used as a propositional logic formula which may use connectors like: AND OR and NOT. These relational can use as relational operators like =, \neq , \leq , \leq , \leq .

For example: LOAN Relation

BRANCH_NAME	LOAN_NO	AMOUNT
Downtown	L-17	1000
Redwood	L-23	2000
Perryride	L-15	1500
Downtown	L-14	1500

Mianus	L-13	500
Roundhill	L-11	900
Perryride	L-16	1300

Output:

BRANCH_NAME	LOAN_NO	AMOUNT
Perryride	L-15	1500
Perryride	L-16	1300

2. Project Operation:

- This operation shows the list of those attributes that we wish to appear in the result. Rest of the attributes are eliminated from the table.
- \circ It is denoted by \square .

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAME	STREET	CITY
Jones	Main	Harrison
Smith	North	Rye
Hays	Main	Harrison
Curry	North	Rye
Johnson	Alma	Brooklyn
Brooks	Senator	Brooklyn

Input:

 \prod Name, City (Customer)

Output:

NAME	CITY
Jones	Harrison
Smith	Rye

Hays	Harrison
Curry	Rye
Johnson	Brooklyn
Brooks	Brooklyn

3. Union Operation:

- Suppose there are two tuples R and S. The union operation contains all the tuples that are either in R or S or both in R & S.
- \circ It eliminates the duplicate tuples. It is denoted by \cup .

Notation: R ∪ S

A union operation must hold the following condition:

- R and S must have the attribute of the same number.
- Duplicate tuples are eliminated automatically.

Example:

DEPOSITOR RELATION

CUSTOMER_NAME	ACCOUNT_NO
Johnson	A-101
Smith	A-121
Mayes	A-321
Turner	A-176
Johnson	A-273
Jones	A-472
Lindsay	A-284

BORROW RELATION

CUSTOMER_NAME	LOAN_NO
Jones	L-17

Smith	L-23
Hayes	L-15
Jackson	L-14
Curry	L-93
Smith	L-11
Williams	L-17

 $\ \ \square$ CUSTOMER_NAME (BORROW) \cup $\ \square$ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME
Johnson
Smith
Hayes
Turner
Jones

Lindsay	
Jackson	
Curry	
Williams	
Mayes	

4. Set Intersection:

- Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in both R & S.
- \circ It is denoted by intersection \cap .

Notation: $R \cap S$

Example: Using the above DEPOSITOR table and BORROW table

 $\ \ \square$ CUSTOMER_NAME (BORROW) $\cap \ \square$ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Smith

Jones

5. Set Difference:

• Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in R but not in S.

• It is denoted by intersection minus (-).

Notation: R - S

Example: Using the above DEPOSITOR table and BORROW table

Input:

☐ CUSTOMER_NAME (BORROW) - ☐ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME Jackson Hayes Willians Curry

6. Cartesian product

- The Cartesian product is used to combine each row in one table with each row in the other table. It is also known as a cross product.
- It is denoted by X.

Notation: E X D

Example:

EMPLOYEE

EMP_ID	EMP_NAME	EMP_DEPT
1	Smith	А
2	Harry	С
3	John	В

DEPARTMENT

DEPT_NO	DEPT_NAME	
А	Marketing	
В	Sales	

С	Legal

EMPLOYEE X DEPARTMENT

Output:

EMP_ID	EMP_NAME	EMP_DEPT	DEPT_NO	DEPT_NAME
1	Smith	А	А	Marketing
1	Smith	А	В	Sales
1	Smith	А	С	Legal
2	Harry	С	А	Marketing
2	Harry	С	В	Sales
2	Harry	С	С	Legal
3	John	В	А	Marketing
3	John	В	В	Sales
3	John	В	С	Legal

7. Rename Operation:

The rename operation is used to rename the output relation. It is denoted by **rho** (ρ).

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

ρ(STUDENT1, STUDENT)

Note: Apart from these common operations Relational algebra can be used in Join operations.

← Prev

 $Next \rightarrow$

For Videos Join Our Youtube Channel: Join Now

Feedback

• Send your Feedback to feedback@javatpoint.com

Help Others, Please Share

Learn Latest Tutorials

Python Pillow

Python Turtle

Preparation

Trending Technologies

B.Tech / MCA

