

Universidade do Minho Departamento de Matemática

- Números Reais -

2. (a)
$$\frac{3}{8} > 0,37$$

(b)
$$0,33 < \frac{1}{3}$$

(c)
$$\sqrt{2} > 1,414$$

(d)
$$5 = \sqrt{25}$$

(e)
$$\frac{3}{7} > 0.428571$$

(f)
$$\frac{22}{7} > \pi$$

3. (a)
$$x = 2, 25 = \frac{9}{4}$$

(b)
$$x = 3,721 = \frac{3721}{1000}$$

(c)
$$x = 5, (4) = \frac{49}{9}$$

(d)
$$x = 0, (17) = \frac{17}{99}$$

(e)
$$x = 9, (17) = \frac{908}{99}$$

(f)
$$x = 3,66(087) = \frac{365721}{99900}$$

4. (a) Por exemplo,
$$\frac{\pi}{100}$$

(b) Por exemplo,
$$\frac{32}{11 \times 10} = \frac{32}{110}$$
.

5. (a) Afirmação falsa. Por exemplo, para
$$x=-5$$
 e $y=1$, tem-se $-5<1$ e, no entanto, $|-5|=5>1=|1|.$

- (b) Afirmação falsa. Por exemplo, para x=-5 e y=2, tem-se -5<2 e, no entanto, $(-5)^2=25>4=2^2$.
- (c) Afirmação falsa. Por exemplo, para x=2 e y=4, tem-se 2<4 e, no entanto, $\frac{1}{2}>\frac{1}{4}.$
- (d) Afirmação verdadeira. Basta observar que a função $f(x)=x^3,\,x\in\mathbb{R},$ é estritamente crescente.
- (e) Afirmação verdadeira. Para quaisquer $x, y \in \mathbb{R}$, tem-se que:

$$x < y \Rightarrow x + x < x + y \Rightarrow 2x < x + y \Rightarrow x < \frac{x + y}{2}$$

e

$$x < y \Rightarrow x + y < y + y \Rightarrow x + y < 2y \Rightarrow \frac{x + y}{2} < y.$$

- (f) Afirmação falsa. Por exemplo, para x=5 e y=10, tem-se 5<10 e, no entanto, $\frac{1}{|5|}>\frac{1}{|10|}.$
- 6. (a) |x-0| < 2
 - (b) |x (-2)| < 2
 - (c) |x-2| < 2
 - (d) |x-2| < 5
 - (e) |x (-2)| < 5
- 7. (a) $[-1, +\infty[$

- (b) $[0,\frac{1}{2}]$
- (c) $]-\infty,-\sqrt{5}[\cup]\sqrt{5},+\infty[$
- (d) $]-\infty,-1] \cup \{0\} \cup [1,+\infty[$

(e) $\left[-\frac{3}{5}, -\frac{1}{5}\right]$

(f) $]-\infty,1] \cup [5,+\infty[$

(g) $[-2,0] \cup [2,+\infty[$

(h) $\left[\frac{1}{3}, \frac{1}{2}\right]$

(i) $]-3,-2[\cup]2,3[$

(j) $]-\frac{3}{2},1[$

(k) $[-\sqrt{2}, \sqrt{2}]$

(1) $[-\sqrt{2}, \sqrt{2}]$

(m) $]-3,-2[\cup]2,3[$

- (n) [0, 2[
- (o) $]-\infty, -3[\cup]1, +\infty[$
- (p) $]1, +\infty[$

- 8. (a) $\{-7, -1\}$ (b) $\{-4, 2\}$
 - (c) $\{-1\}$ (d) $\{-\sqrt{7}, \sqrt{7}\}$
- 9. (a) Afirmação falsa. Por exemplo, para x=4 e y=4, tem-se $\sqrt{4+4}=\sqrt{8}\neq 4=\sqrt{4}+\sqrt{4}$.
 - (b) Afirmação falsa. Por exemplo, para n=2, x=2 e y=1, tem-se $(2+1)^2=9\neq 4+1=2^2+1^2.$
 - (c) Afirmação verdadeira. Justifique.
- 10. (a) Conjunto dos majorantes: $[7, +\infty[; \sup A = 7; \max A = 7$ Conjunto dos minorantes: $]-\infty, 0]; \inf A = 0; \min A = 0$ A é limitado porque é majorado e minorado
 - (b) Majorantes: $[2, +\infty[$; sup B=2; não existe máximo Conjunto dos minorantes: \emptyset ; não existe ínfimo nem mínimo B não é limitado porque não é minorado
 - (c) Conjunto dos majorantes: $[2, +\infty[$; sup C=2; não existe máximo Conjunto dos minorantes: $]-\infty,1]$; inf C=1; não existe mínimo C é limitado porque é majorado e minorado
 - (d) Conjunto dos majorantes: $[\sqrt{2}, +\infty[$; sup $D = \sqrt{2}$; não existe máximo Conjunto dos minorantes: $]-\infty,1]$; inf D=1; min D=1 D é limitado porque é majorado e minorado
 - (e) Conjunto dos majorantes: \emptyset ; não existe supremo nem máximo Conjunto dos minorantes: $]-\infty,1]$; inf E=1; min E=1 E não é limitado porque não é majorado
 - (f) Conjunto dos majorantes: $[\sqrt{5}, +\infty[; \sup F = \sqrt{5}; \text{ não existe máximo Conjunto dos minorantes: }] \infty, -\sqrt{5}]; \inf F = -\sqrt{5}; \text{ não existe mínimo } F$ é limitado porque é majorado e minorado
 - (g) Conjunto dos majorantes: $[0, +\infty[$; $\sup G = 0$; $\max G = 0$ Conjunto dos minorantes: $]-\infty, 0]$; $\inf G = 0$; $\min G = 0$ G é limitado porque é majorado e minorado
 - (h) Conjunto dos majorantes: $[1, +\infty[; \sup H = 1; \max H = 1$ Conjunto dos minorantes: $]-\infty, 0]; \inf H = 0;$ não existe mínimo H é limitado porque é majorado e minorado
 - (i) Conjunto dos majorantes: $[\frac{1}{2}, +\infty[$; $\sup I = \frac{1}{2}; \max I = \frac{1}{2}$ Conjunto dos minorantes: $]-\infty, -1]$; $\inf I = -1$; $\min I = -1$ I é limitado porque é majorado e minorado

11. (a) $A' = \mathbb{R}$

Conjunto dos majorantes: \emptyset ; não existe supremo nem máximo Conjunto dos minorantes: \emptyset ; não existe ínfimo nem mínimo

(b) $B =] - \sqrt{2}, \sqrt{2}[$ $B' = [-\sqrt{2}, \sqrt{2}]$

Conjunto dos majorantes: $[\sqrt{2}, +\infty[$; sup $B = \sqrt{2}$; não existe máximo Conjunto dos minorantes: $]-\infty, -\sqrt{2}]$; inf $B = -\sqrt{2}$; não existe mínimo

(c) $C =] - \sqrt{50}, \sqrt{50}[\cap \mathbb{R} \setminus \mathbb{Q}]$ $C' = [-\sqrt{50}, \sqrt{50}]$

> Conjunto dos majorantes: $[\sqrt{50}, +\infty[; \sup C = \sqrt{50}; \text{ não existe máximo}]$ Conjunto dos minorantes: $]-\infty, -\sqrt{50}]; \text{ inf } B = -\sqrt{50}; \text{ não existe mínimo}$

(d) $D =]-\infty, 0[$ $D' =]-\infty, 0]$

Conjunto dos majorantes: $[0, +\infty[$; $\sup D = 0$; não existe máximo Conjunto dos minorantes: \emptyset ; não existe ínfimo nem mínimo

(e) $E =]-1, 0[\cup]1, +\infty[$ $E' = [-1, 0] \cup [1, +\infty[$

Conjunto dos majorantes: \emptyset ; não existe supremo nem máximo Conjunto dos minorantes: $]-\infty,-1]$; inf E=-1; não existe mínimo

(f) $F = (]-2,2[\cap \mathbb{Q}) \cup ([1,\pi] \cap \mathbb{R} \setminus \mathbb{Q})$ $F' = [-2,\pi]$

Conjunto dos majorantes: $[\pi, +\infty[$; sup $F = \pi$; max $F = \pi$ Conjunto dos minorantes: $]-\infty, -2]$; inf F = -2; não existe mínimo

(g) G' = [0, 1]

Conjunto dos majorantes: $[1, +\infty[$; $\sup G = 1$; não existe máximo Conjunto dos minorantes: $]-\infty, 0]$; $\inf G = 0$; $\min G = 0$

(h) $H = (]-7, -1[\cap \mathbb{Q}) \cup (]-\sqrt{3}, \sqrt{3}[\cap \mathbb{R} \setminus \mathbb{Q})$ $H' = [-7, \sqrt{3}]$

Conjunto dos majorantes: $[\sqrt{3}, +\infty[; \sup H = \sqrt{3};$ não existe máximo Conjunto dos minorantes: $]-\infty, -7];$ inf H=-7; não existe mínimo