LEAST SQUARES AND SMOLYAK'S ALGORITHM

JAKOB EGGL, ELIAS MINDLBERGER AND MARIO ULLRICH

ABSTRACT. We present novel, large-scale experiments for polynomial interpolation in high dimensional settings using some of the most popular algorithms available. We compare Smolyak's Algorithm (SA) on sparse grids and Least Squares (LS) using random data. We empirically confirm that interpolation using LS performs equally as good on smooth and better on non-smooth functions if SA is given n and LS is given n points.

1. Introduction

Smolyak's algorithm on Sparse Grids has been of high theoretical and practical interest for a long time [2, 5, 13, 19]. In [15], it was recently found that Smolyak's algorithm is *not* optimal in the sampling numbers

$$e_n(H) := \inf_{\substack{x_1, \dots, x_n \in D \\ \varphi_1, \dots, \varphi_n \in L_2}} \sup_{f \in B(H)} \left\| f - \sum_{i=1}^n f(\mathbf{x}_i) \varphi_i \right\|_{L_2}$$

disproving conjecture 5.26 in [7]. We extend upon these theoretical findings with an empirical study comparing the performance of Smolyak's algorithm and Least Squares on simple function recovery problems on the unit cube. Our implementation is available at https://github.com/th3lias/NumericalExperiments.

2. Notation

We denote the indexset containing all indices $i \in \mathbb{Z}$ where $m \leq i \leq n$ for $m \leq n$ with [m:n]. For the set of polynomials p from $D \subseteq \mathbb{C}^K$, $K \in \mathbb{N}$ to the field \mathbb{F} of F maximal degree N we use the notation $p \in \mathcal{P}^N(V, \mathbb{F})$. We use $f \lesssim g$ to denote $f \leq cg$ for functions f, g. With B(X) we denote the closed unit ball of a normed space X. With X^* we denote the topological dual space of X.

Date: April 21, 2025.

 $Key\ words\ and\ phrases.$ Polynomial interpolation, Sparse-Grids, Least-Squares, Smolyak.

3. Interpolation

Given $i \in \mathbb{N}$ and distinct data points $\mathbf{X}_i := \{x_{i,0}, \dots, x_{i,n}\} \subseteq D_i \subseteq \mathbb{R}$, function values $\mathbf{Y}_i := \{y_{i,0}, \dots, y_{i,n}\} = \{f(x_{i,0}), \dots, f(x_{i,n})\} \subseteq \mathbb{R}$ for $f: D_i \to \mathbb{R}$, it is a well known fact that there exists a polynomial $\mathcal{I}(\mathbf{Z}_i)$ of degree n such that

$$\mathcal{I}(\mathbf{Z}_i) = y_{i,j}, \quad j \in [0:n].$$

for $\mathbf{Z}_i := (\mathbf{X}_i, \mathbf{Y}_i)$ We then call $\mathcal{I}(\mathbf{Z}_i)$ an *interpolating* polynomial. It can be written down explicitly as

(3.1)
$$\mathcal{I}(\mathbf{Z}_i) = \sum_{j=0}^n y_{i,j} \ell_{i,j}$$

for basis functions $\ell_{i,j} \in \mathcal{P}^n(\mathbb{R},\mathbb{R})$. Moreover, in a single dimension, the formula for this basis is

$$\ell_{i,j}(w) = \prod_{m \in [0:n] \setminus \{j\}} \frac{w - x_{i,m}}{x_{i,j} - x_{i,m}},$$

see [16, 28]. We call \mathcal{I} the Lagrange interpolator.

Suppose now we have d point sets \mathbf{X}_i . By taking the full cartesian product of point sets

$$\mathbf{X} := \sum_{i=1}^{d} \mathbf{X}_i,$$

we may identify our grid by $\mathbf{X} = \{\mathbf{x_j}\}_{\mathbf{j}}$ with $\mathbf{j} \in \{0, 1, \dots, n\}^d$ and suppose we have according function evaluations $\mathbf{Y} := \{y_{\mathbf{j}}\}_{\mathbf{j}} = \{f(\mathbf{x_j})\}_{\mathbf{j}}$ for $f: D \to \mathbb{R}, D \subseteq \mathbb{R}^d$. Let $\mathbf{Z} := (\mathbf{X}, \mathbf{Y})$. Then, we may construct an interpolating polynomial as in (3.1). Indeed, the general formula stays the same but we take tensor product of basis functions, i.e.

(3.2)
$$\ell_{\mathbf{j}}(\mathbf{w}) = \bigotimes_{i=1}^{d} \ell_{j_i}(w_i) = \prod_{i=1}^{d} \ell_{j_i}(w_i) = \prod_{i=1}^{d} \prod_{\substack{k=0\\k\neq i;}}^{n} \frac{w_i - x_{i,k}}{x_{i,j_i} - x_{i,k}}$$

and the sum now ranges over all multiindices $\mathbf{j} = (j_1, \dots, j_d) \in [0:n]^d$. We denote

(3.3)
$$\mathcal{I}(\mathbf{Z}) := \sum_{j_1=0}^n \cdots \sum_{j_d=0}^n y_{j_1,\dots,j_d} \ell_{j_1,\dots,j_d}$$

for the interpolant on \mathbb{R}^d . Formula 3.2 is not a great choice for performing calculations on hardware. Leaving the storage of $(n+1)^d$ grid points aside, for computing one evaluation of the map $\mathbf{w} \mapsto \mathcal{I}(\mathbf{Z})(\mathbf{w})$, one must compute the sum of $(n+1)^d$ terms, where in each summand,

the evaluation of d basis functions is computed, each of which is a product of n terms. This evaluation is thus as costly as $\mathcal{O}((n+1)^d dn)$. One can counter the costly computation of the interpolating polynomial at a given point by reformulating the above (numerically instable) Lagrange interpolator in it's barycentric form

(3.4)
$$\mathcal{I}(\mathbf{Z})(\mathbf{w}) = \frac{\sum_{j_1=0}^n \ell_{j_1}^{(1)}(w_1) \cdots \sum_{j_d=0}^n \ell_{j_d}^{(d)}(w_d) y_{\mathbf{j}}}{\sum_{j_1=0}^n \ell_{j_1}^{(1)}(w_1) \cdots \sum_{j_d=0}^n \ell_{j_d}^{(d)}(w_d)}$$

where

(3.5)
$$\ell_{j_k}^{(k)}(w) := \frac{m_{j_k}}{w - x_{j_k}}, \qquad k \in [1:d].$$

with x_{j_k} being the j_k -th entry of \mathbf{x} . m_{j_k} are the *barycentric* weights which can be computed in $\mathcal{O}(n^2)$ time for general point distributions but admit $\mathcal{O}(1)$ computation for well-known and widely used point sets [14]. For example, due to [3],

(3.6)
$$m_0 = \frac{1}{2}, \quad m_l = (-1)^l, \ l \in [1:n-1], \quad m_n = \frac{1}{2}(-1)^n$$

for the Chebyshev Gauss-Lobatto (or just Chebyshev extrema), in which

(3.7)
$$x_l := x_{l,n} := -\cos\frac{l\pi}{n}, \ l \in [0:n].$$

Similarly, for the Chebyshev points of the second kind

(3.8)
$$x_l = x_{l,n} = \cos \frac{l\pi}{n}, \ l \in [0:n]$$

one gets the closed form

(3.9)
$$m_l = (-1)^l \cdot \begin{cases} 1/2 & l \in \{0, n\} \\ 1 & \text{else.} \end{cases}$$

In this case, one achieves an evaluation time of $\mathcal{O}((n+1)^d)$. Hence, in this construction, one cannot get around this bottleneck. *Here,* equation (3.8) and (3.9) are the same point set. This is probably wrong.

4. Smolyak's Algorithm & Sparse Grids

The following description follows [2]. The question arises, how one may reduce the complexity of exact interpolation on grids. The central idea of sparse grids is to *not* take the full tensor product of one dimensional point sets but restrict the number of simultaneously large

directions. To that end, take a variable number of points in each direction, i.e. let $\mathbf{X}_j := \{x_{1,j}, \dots, x_{N(j),j}\}$ and \mathcal{I}_j the corresponding one-dimensional interpolator with $\mathcal{I}_0 := 0$, $\Delta_j := \mathcal{I}_j - \mathcal{I}_{j-1}$. N(j) is not defined yet. It gets mentioned before subsection 4.1 (Polynomial Exactness) Then Smolyak's algorithm is given in a simple recursive manner

(4.1)
$$\mathcal{A}(q,d) := \sum_{\|\mathbf{j}\|_{1} \le q} \bigotimes_{k=1}^{d} \Delta_{j_{k}} = \mathcal{A}(q-1,d) + \sum_{\|\mathbf{j}\|_{1} = q} \bigotimes_{k=1}^{d} \Delta_{j_{k}}$$

with $\mathcal{A}(q,d) = 0$, q < d and \mathbf{j} , \mathcal{I} as before. Evidently, only a relatively small number of knots, through the restriction $\|\mathbf{j}\|_1 \leq q$, is needed. To be precise, $\mathcal{O}(n(\log n)^{d-1})$ points are needed. Hence q Mention scale? as q-d or do we only mention it in the section of the experimental results? can be thought of as a resolution parameter. By this form, one only needs to assess the function values at the sparse grid

$$H(q,d) := \bigcup_{q-d+1 \le \|\mathbf{j}\|_1 \le q} \mathbf{X}_{j_1} \times \cdots \times \mathbf{X}_{j_d}$$

where the number of nodes in a given direction can never be *large* for all directions simultaneously. Hence, given that $\mathbf{X}_j \subset \mathbf{X}_{j+1}$, one may write the interpolator given by Smolyak's construction as

$$\mathcal{A}(q,d)(f) = \sum_{\|\mathbf{j}\|_1 \le q} f(\mathbf{x_j}) \ell_{\mathbf{j}},$$

which is familiar from before. The number of knots N(j) used for each one–dimensional interpolation rule \mathcal{I}_j remains to be specified. In order to obtain nested points, i.e. $\mathbf{X}_j \subset \mathbf{X}_{j+1}$ and thus $H(q,d) \subset H(q+1,d)$ together with collocation rules such as (3.7) or (3.8) it is usual to choose a doubling rule, i.e.

$$N(1) = 1$$
, $N(j) = 2^{j-1} + 1$, $j > 1$.

4.1. Polynomial Exactness. Without loss of generality, we restrict ourselves to the symmetric cube $[-1,1]^d$ We have $[0,1]^d$. It appears multiple times, therefore I didn't want to change it everywhere now. But we need to change that! for interpolation of unknowns instead of a general domain D. In this case, Smolyak's algorithm is well known to exactly reproduce functions on certain polynomial spaces given that the rules \mathcal{I}_j are exact on nested spaces V_j , see [6] or [18].

Lemma 4.1. Assume \mathcal{I}_j is exact on the vector space $V_j \subseteq C([-1,1])$ and assume

$$V_1 \subset V_2 \subset V_3 \subset \ldots$$

then $\mathcal{A}(q,d)$ is exact on

$$\sum_{\|j\|_1=q} V_{j_1} \otimes \cdots \otimes V_{j_d}$$

[2] showed the following. Maybe cite [2] directly in the lemma environment. I.e. beginlem[cf. [2]]

Lemma 4.2. A(q,d) is exact on

$$E(q,d) := \sum_{\|\mathbf{j}\|_1 = q} \mathcal{P}^{m_{j_1} - 1}(\mathbb{R}, \mathbb{R}) \otimes \cdots \otimes \mathcal{P}^{m_{j_d} - 1}(\mathbb{R}, \mathbb{R})$$

and A(d+k,d) is exact for all polynomials of degree k.

Indeed, the following also follows from [2]. Note that we now abuse the notation from 3.1 by writing $\mathcal{I}(\mathbf{Z}) =: \mathcal{I}(f, \mathbf{X}) =: \mathcal{I}(f)$.

Lemma 4.3. Assume $\mathbf{X}_1 \subset \mathbf{X}_2 \subset \dots$ and $\mathcal{I}_j(f)(x) = f(x)$ for every $f \in C([-1,1])$ and every $x \in \mathbf{X}_j$. Then

$$\mathcal{A}(q,d)(f)(x) = f(x)$$

for every $f \in C([-1,1]^d)$ and $x \in H(q,d)$.

4.2. **Error Bounds.** Since the interpolation operator \mathcal{I}_j as defined before is exact on $\mathcal{P}^{N(j)-1}(\mathbb{R},\mathbb{R})$ one concludes

$$||f - \mathcal{I}_j(f)||_{\infty} \le \operatorname{err}_{N(j)-1}(f)(1 + \Lambda_{N(j)})$$

where err_n is the error of the best approximation by $p \in \mathcal{P}^n(\mathbb{R}, \mathbb{R})$, Λ_n is the Lebesgue constant for the point set in (3.7) and $n \geq 2$, in which case it is known that

$$\Lambda_n \le \frac{2}{\pi} \log(n-1) + 1,$$

see for example [9] and [8]. The following bounds can be found in [2] and is well known since [19, 25, 29].

Lemma 4.4. For the space

 $F_d^k := \{f : [-1,1]^d \to \mathbb{R} \mid D^{\alpha}f \text{ continuous if } \alpha_i \leq k \text{ for all } i\}$ the error of $\mathcal{A}(q,d)$ can be bounded as

$$||I_d - \mathcal{A}(q, d)||_{\text{op}} \le c_{d,k} n^{-k} (\log n)^{(k+2)(d-1)+1}$$

where I_d is the embedding $F_d^k \hookrightarrow C([-1,1]^d)$ and $c_{d,k}$ is a positive constant only dependent on d and k.

Moreover, for the Sobolev–Hilbert space H_w^k with

(4.2)
$$H_w^k := \left\{ f \in L_w^2 : \|f\|_k^2 = \sum_{\ell \in \mathbb{N}_0} (1 + \ell^2)^k \langle f, b_\ell \rangle^2 < \infty \right\}$$

with $\langle f, b_{\ell} \rangle$ being the ℓ -th Fourier coefficient, one obtains

$$||f - \mathcal{A}(q,d)(f)||_0 \le c_{d,k} n^{-k} (\log n)^{(k+1)(d-1)} ||f||_k.$$

Here, L_w^2 is the L^2 weighted by the Chebyshev weight

$$(4.3) (1-x^2)^{-1/2}.$$

In that case, it is well known that the Chebyshev polynomials

$$(4.4) T_n(x) := \cos(n\arccos(x)).$$

form an orthonormal basis.

5. Least Squares

Contrary to the construction of exactly interpolating approximants in the case of Smolyak's algorithm, Least Squares is a conceptually simpler algorithm. We are given the overdetermined system

$$A\mathbf{z} = \mathbf{v}$$

where $A \in \mathbb{R}^{n \times m}$ with n > m. It is well–known that this system may be inconsistent and no exact solution exists. However, one may always pose the optimisation problem solving for $\mathbf{z} \in \mathbb{R}^m$ with the smallest error

(5.1)
$$\inf_{\mathbf{z} \in \mathbb{R}^m} \|A\mathbf{z} - \mathbf{y}\|.$$

It is further known that, in case of a full–rank matrix V, the unique solution to (5.1) is given by

(5.2)
$$\mathbf{z}_* = (A^{\mathsf{T}}A)^{-1} A^{\mathsf{T}} \mathbf{y} \in \mathbb{R}^m.$$

In our specific case of polynomial interpolation, A is the Vandermonde matrix, consisting of basis polynomials b_1, b_2, \ldots, b_m evaluated at the n different sampled points x_1, x_2, \ldots, x_n in $D \subseteq \mathbb{R}^d$ and \mathbf{y} is the vector of function values sampled from the unknown function $f: D \to \mathbb{R}$, i.e. $\mathbf{y} = (f(\mathbf{x}_j))_{j=1}^n$. As for such points, the Vandermonde matrix is never singular, the solution to the approximation problem

$$\inf_{p} \|f - p\|$$

can analytically be expressed as

$$p_* \colon D \to \mathbb{R}, \quad t \mapsto \sum_{j=1}^m z_{*_j} b_j(t)$$

where $\mathbf{z}_* = (z_{*_j})_{j=1}^m$ is given by (5.2). For the later implementation, we choose the basis polynomials b_j as the j-th weighted Chebyshev polynomial (4.4).

6. Theoretical Guarantees

The notation in the following is borrowed from [26]. In this section we introduce a formal setting to the former considerations. That is, we consider a Hilbert space H of real-valued functions on a set D such that point evaluation $\delta_x: f \mapsto \int_D f \, \mathrm{d}\delta_x = f(x)$ is a bounded, linear functional on H. The general formulation of Least Squares allows for a broad class of recovery problems. In our specific case, the function recovery of real-valued functions on a d-dimensional (compact) subset D using basis functions of a k-dimensional subspace $V_k := \mathrm{span}\{b_1,\ldots,b_k\}$, we consider the specific form of Least Squares, given by

$$A_{n,k}(f) := \underset{g \in V_k}{\operatorname{argmin}} \sum_{i=1}^{n} \frac{|g(x_i) - f(x_i)|^2}{\varrho_k(x_i)}$$

where

$$\varrho_k(x) = \frac{1}{2} \left(\frac{1}{k} \sum_{j < k} b_{j+1}(x)^2 + \frac{1}{\sum_{j \ge k} a_j^2} \sum_{j \ge k} a_j^2 b_{j+1}(x)^2 \right)$$

and $x_1, \ldots, x_n \in D$. Whenever $f \in V_k$, then, of course, $f = A_{n,k}(f)$. With

(6.1)
$$e(A_{n,k}, H) := \sup_{f \in B(H)} \|f - A_{n,k}(f)\|_{L_2},$$

we denote the worst case error of $A_{n,k}$, where we measure the error of the reconstruction in the space $L_2 := L_2(D, \Sigma, \mu)$ of square integrable functions on D with respect to the measure μ , such that H is embedded into L_2 . In light of this, the n-th minimal error (also called n-th sampling number) is denoted by

$$e_n(H) := \inf_{\substack{x_1, \dots, x_n \in D \\ \varphi_1, \dots, \varphi_n \in L_2}} \sup_{f \in B(H)} \left\| f - \sum_{i=1}^n f(x_i) \varphi_i \right\|_{L_2}$$

and can be understood as the worst case error of the optimal algorithm using n function values. We get the clear inequality $e_n(H) \leq e(A_{n,k}, H)$ for any point set $\{x_1, \ldots, x_n\}$. With

$$a_n(H) := \inf_{\substack{h_1^{\star}, \dots, h_n^{\star} \in H^{\star} \\ \varphi_1, \dots, \varphi_n \in L_2}} \sup_{f \in B(H)} \left\| f - \sum_{i=1}^n h_i^{\star}(f) \varphi_i \right\|_{L_2}$$

we denote the n-th approximation number, which is the worst-case error of an optimal algorithm that uses the n best arbitrary linear and bounded functionals as information about the unknown. This quantity is equal to the n-th singular value of the embedding id: $H \to L_2$.

The following is known since [15].

Theorem 6.1 (Krieg-Ullrich). There exist constants C, c > 0 and a sequence of natural numbers (k_n) with each $k_n \ge cn/\log(n+1)$ and for any $n \in \mathbb{N}$ and measure space (D, Σ, μ) , and any RKHS H of real-valued functions on D embedded into $L_2(D, \Sigma, \mu)$, we have

$$e_n(H) \le \sqrt{\frac{C}{k_n} \sum_{j \ge k_n} a_j(H)^2}.$$

In particular, for

(6.2)
$$a_n(H) \lesssim n^{-s} \log^{\alpha+s}(n)$$

with $s > 1/2, \alpha \in \mathbb{R}$, this implies

$$e_n(H) \lesssim n^{-s} \log^{\alpha+s}(n)$$
.

The following follows from [26].

Theorem 6.2 (Ullrich). Given $n \geq 2$ and c > 0, let

$$k_n := \left| \frac{n}{2^8(2+c)\log n} \right|,$$

then, for any measure space (D, Σ, μ) and any RKHS H of real-valued functions on D, embedded into $L_2(D, \Sigma, \mu)$, it holds that

$$e_n\left(A_{n,2k_n},H\right) \le \sqrt{\frac{2}{k_n} \sum_{j>k_n} a_j(H)^2}$$

with probability at least $1 - 8n^{-c}$.

Examples. In particular, (6.2) is satisfied for the approximation numbers on the Sobolev space of dominating mixed smoothness,

$$H := H_{\text{mix}}^{s} (\mathbb{T}^{d})$$

$$:= \left\{ f \in L_{2} (\mathbb{T}^{d}) : \|f\|_{H}^{2} := \sum_{m \in \mathbb{N}_{0}^{d}} \prod_{j=1}^{d} (1 + |m_{j}|^{2s}) \langle f, b_{m} \rangle_{L_{2}}^{2} < \infty \right\}$$

with $\mathbb{T}^d \cong [0,1)^d$ where $b_m := \bigotimes_{j=1}^d b_{m_j}^{(1)}$ and $m = (m_1, \ldots, m_d)$ with

$$b_{2m}^{(1)} := \sqrt{2}\cos(2\pi mx)$$
$$b_{2m-1}^{(1)} := \sqrt{2}\sin(2\pi mx)$$

and $b_0^{(1)} := 1$. This satisfies the assumption for s > 1/2. In particular, we can say

(6.3)
$$e_n\left(H_{\min}^s\left(\mathbb{T}^d\right)\right) \lesssim n^{-s}\log^{sd}(n)$$

whenever s > 1/2. This disproves a previously posted conjecture (Conjecture 5.26) in [7] and shows that Smolyak's algorithm is not optimal in this case. The surprising fact is that, despite an optimal, deterministic construction of the point sets used for reconstruction being unknown, random i.i.d. points suffice for a reconstruction error that is on the order of optimal points, with probability tending to 1. We verify this by our experimental findings, presented in Section 7 with a much better relative number of points used for LS function recovery vs. SA recovery than guaranteed in this section, i.e. better constants than explicitly known before. It remains an open problem to rigorously improve upon the constants in (6.3).

7. Experimental Findings

For assessing the performance of the Least Squares algorithms in comparison to the Sparse Grid alternative, we use the following 12 families of test functions from [24], each defined of the d-dimensional

unit-cube $[0,1]^d$. boldface here in the formulas for c, w, x?

1. Continuous:
$$f_1(x) = \exp\left(-\sum_{i=1}^d c_i |x_i - w_i|\right)$$

2. Corner Peak:
$$f_2(x) = \left(1 + \sum_{i=1}^d c_i x_i\right)^{-(d+1)}$$

3. Discontinuous:
$$f_3(x) = \begin{cases} 0, & x_1 > w_1 \lor x_2 > w_2, \\ \exp\left(\sum_{i=1}^d c_i x_i\right), & \text{else} \end{cases}$$

4. Gaussian:
$$f_4(x) = \exp\left(-\sum_{i=1}^d c_i^2 (x_i - w_i)^2\right)$$

5. Oscillatory:
$$f_5(x) = \cos\left(2\pi w_1 + \sum_{i=1}^d c_i x_i\right)$$

6. Product Peak:
$$f_6(x) = \prod_{i=1}^d (c_i^{-2} + (x_i - w_i)^2)^{-1}$$

7. G-Function:
$$f_7(x) = \prod_{i=1}^d \frac{|4x_i - 2 - w_i| + c_i}{1 + c_i}$$

8. Morokoff & Calfisch 1:
$$f_8(x) = (1 + 1/d)^d \prod_{i=1}^d (c_i x_i + w_i)^{1/d}$$

9. Morokoff & Calfisch 2:
$$f_9(x) = \frac{1}{(d-0.5)^d} \prod_{i=1}^d (d-c_i x_i + w_i)$$

10. Roos & Arnold:
$$f_{10}(x) = \prod_{i=1}^{d} |4c_i x_i - 2 - w_i|$$

11. Bratley:
$$f_{11}(x) = \sum_{d=1}^{d} (-1)^i \prod_{i=1}^{d} (c_i x_i - w_i)$$

12. Zhou:
$$f_{12}(x) = \frac{10^d}{2} \left[\varphi \left(x - \frac{1}{3} \right) + \varphi \left(x - \frac{2}{3} \right) \right]$$

with
$$\varphi(x) = \frac{10}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2} \|c(x-w)\|_2^2\right)$$

Note that the first 6 function classes are also known as the Genz Integrand Families and were introduced by Genz in [10, 11]. Unlike the original definition in [24], we extend some function classes by introducing the parameters \mathbf{c} and \mathbf{w} which make something like an affine-linear transformation of the input \mathbf{x} . This allows for testing multiple realizations of these classes.

7.1. **Implementation Details.** Generating a function from a specific family is done by sampling the random vectors $\mathbf{c}, \mathbf{w} \in \mathbb{R}^d$. In our experiments, we sample each entry of \mathbf{c} and \mathbf{w} from a uniform distribution $\mathcal{U}(0,1)$ and rescale \mathbf{c} afterwards such that $\|\mathbf{c}\|_1 = d$.

Remark 7.1. In [2], experiments were performed for the Genz families, defined on $[-1,1]^d$. We use $[0,1]^d$ as this ensures that also the other

families are well-defined for any sampled (and possibly rescaled) $\mathbf{c}, \mathbf{w} \in \mathcal{U}(0,1)^d$ that .

In the following experiments, we compare Smolyak's algorithm with two realizations of the weighted Least Squares algorithm. In the first realization we use random points that are uniformly distributed in $[0, 1]^d$, and we don't reweigh those points. In the second realization we sample the points from $w(x) = (1 - x^2)^{1/2}$, as in 4.3 and we use the value of this density at each point as the basis for the weight calculation. We call the first realization Least Squares Uniform (LS-Uniform) and the second one Least Squares-Chebyshev (LS-Chebyshev). To ensure reproducibility, we initialized our random number generation with a fixed seed. For actually finding the least-squares solution we utilize Scipy [27] with their lstsq method which uses the gelsy driver from the standard linear algebra package Lapack [1] in the backend. Other drivers or for example the standard solve-method from Numpy ([12]) are a possible choice but did not meet our performance—and numerical precision requirements. All 3 algorithms use the same basis functions (4.4) which, as mentioned, form an ONB for L_w^2 . The implementation thereof is based on the implementation in [13]. For the implementation of Smolyak's algorithm we employ the standard library Tasmanian with it's Python frontend [17, 20–23]. All algorithms are tested for all families of functions with multiple (≥ 10) realizations and for all dimensions $d \in [2:10]$. In each dimension, the resolution $q \in \mathbb{N}$ was varied. In our experiments, the resolution parameter is usually denoted by scale, which is just q-d, since q>d. Depending on d smaller or larger values for the scale were possible because of computational bottlenecks based on the exponential increase in the used points, see also [4] for an overview on the number of points in a sparse grid. Both Least Squares algorithms enjoyed twice the amount of points, compared to Smolyak's algorithm, sampled in their respective distributions.

For assessing the quality of the interpolants, we again generate n random points $\mathbf{x}_1, \dots, \mathbf{x}_n$ distributed uniformly in $[0, 1]^d$, where n is the number of points in the Sparse Grid at the specific scale which serve as our testing points. For each function from our function classes for a fixed dimension and at each scale, we calculate the *uniform error* and the *mean squared error* by comparing the true function values and the values from our interpolant at those specific points.

The distribution, emerged by collecting all function realizations for each function class, is now depicted in Figures 1 to 26 for specific function classes and dimensions. For more detailed results, we want to refer to Tables 1 to 9, showcasing the exact errors for all three algorithms and different scales for each dimension.

Should we also show something for fixed scale and varying dimension? \rightarrow If yes, add pictures and also mention them here before.

Tables 10 to 21 showcase the interpolation capabilities of those 3 algorithms for each function class and various scales and dimensions.

In most of the experiments, at least one of the Least Squares methods performs beneficial compared to Smolyak's Algorithm. *Add few more sentences, however full conclusion on the next section.*

Decide whether to use boxplots or max error distribution Decide which plots we want to keep Decide whether we want to have fixed scale plots as well For those plots that we to keep, add more text in the captions

FIGURE 1. Visualization of the results for dim = 9 and various scales tested with n=25 realizations for function class *Continuous*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

Add more detailed description mentioning whether Smolyak or Least Squares is preferable.

FIGURE 2. Visualization of the results for dim = 10 and various scales tested with n=10 realizations for function class *Continuous*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sci	del	Sca	le2	Sca	le3	Sc	nie4	Sci	ale5	Sci	ale6	Sci	ile/	Sc	ale8	Sc	ale9
		m	ax	m	1X	m	EX.	п	1ax	III	ax	III	ax	III	ax	11	ax	11	ax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
Bratley $n = 25$	Smolyak LS-Uniform LS-Chebyshev	7.53e-02 8.32e-02 1.92e-01	9.57e-02 1.05e-01 2.99e-01	3.25e-16 7.53e-16 3.05e-15	6.66e-16 1.33e-15 6.11e-15	6.27e-16 1.11e-15 2.45e-15	1.33e-15 3.55e-15 7.11e-15	7.09e-16 1.79e-14 4.02e-15	2.22e-15 1.19e-13 1.55e-14	1.16e-15 4.14e-15 2.29e-15	4.88e-15 2.71e-14 9.33e-15	1.61e-15 2.62e-15 2.58e-15	6.22e-15 2.80e-14 8.88e-15	2.44e-15 5.71e-15 4.24e-15	1.15e-14 7.59e-14 2.27e-14	3.38e-15 2.04e-14 3.67e-15	1.55e-14 7.78e-13 3.57e-14	5.34e-15 3.48e-11 2.99e-15	2.66e-14 1.97e-09 2.82e-14
Continuous $n = 25$	Smolyak LS-Uniform LS-Chebyshev	1.55e-01 9.13e-02 2.16e-01	2.28e-01 1.35e-01 3.24e-01	1.01e-01 4.27e-02 5.49e-02	1.97e-01 1.09e-01 1.20e-01	2.50e-02 7.79e-02 1.90e-02	9.26e-02 2.84e-01 6.58e-02	7.88e-03 6.99e-02 9.06e-03	3.37e-02 4.70e-01 3.05e-02	2.72e-03 2.56e-02 3.58e-03	1.92e-02 2.24e-01 2.46e-02	1.35e-03 5.99e-03 1.92e-03	1.35e-02 7.54e-02 1.30e-02	4.62e-04 5.35e-03 6.80e-04	5.29e-03 8.21e-02 6.77e-03	1.97e-04 1.44e-02 2.50e-04	2.42e-03 5.47e-01 3.94e-03	7.01e-05 7.67e+00 1.06e-04	1.22e-03 4.39e+02 2.05e-03
Corner Peak n = 25	Smolyak LS-Uniform LS-Chebyshev	7.91e-02 3.50e-02 1.47e-01	1.17e-01 4.91e-02 2.28e-01	1.67e-02 6.20e-03 3.10e-02	3.26e-02 1.21e-02 5.44e-02	4.52e-03 3.23e-03 2.62e-03	8.68e-03 1.54e-02 8.10e-03	5.81e-04 5.19e-04 3.80e-04	1.48e-03 3.31e-03 1.94e-03	3.31e-05 5.36e-05 1.72e-05	1.04e-04 4.50e-04 5.50e-05	2.55e-07 4.37e-07 1.86e-07	8.90e-07 4.13e-06 8.95e-07	1.75e-09 1.07e-08 1.10e-09	6.08e-09 2.01e-07 4.69e-09	7.94e-14 8.45e-13 6.70e-14	2.56e-13 2.33e-11 2.87e-13	8.06e-16 1.38e-11 1.89e-15	6.22e-15 7.92e-10 2.48e-14
Discontinuous $n = 25$	Smolyak LS-Uniform LS-Chebyshev	1.41e+00 2.32e+00 1.55e+00	2.44e+00 3.51e+00 2.98e+00	2.23e+00 1.27e+00 1.80e+00	5.65e+00 3.36e+00 3.45e+00	1.12e+00 2.65e+00 1.06e+00	2.83e+00 1.07e+01 4.16e+00	8.57e-01 1.60e+01 8.25e-01	3.83e+00 1.06e+02 3.66e+00	6.10e-01 5.31e+00 5.28e-01	4.35e+00 4.74e+01 3.07e+00	3.93e-01 2.15e+00 3.67e-01	3.57e+01	2.89e-01 2.82e+00 2.91e-01	3.33e+00 5.96e+01 3.31e+00	2.68e-01 9.45e+00 2.00e-01	4.30e+00 3.56e+02 3.70e+00	1.67e-01 7.90e+03 1.54e-01	3.31e+00 4.49e+05 2.96e+00
Gaussian $n = 25$	Smolyak LS-Uniform LS-Chebyshev	1.01e-01 7.49e-02 1.53e-01	1.20e-01 1.15e-01 2.34e-01	8.34e-03 4.30e-03 1.22e-02	1.29e-02 8.14e-03 2.79e-02	5.85e-04 8.71e-04 2.86e-04	8.95e-04 3.82e-03 7.18e-04	1.95e-05 1.43e-05 1.37e-05	3.77e-05 8.85e-05 6.92e-05	3.01e-07 4.97e-07 1.68e-07	7.14e-07 3.64e-06 4.77e-07	1.23e-10 1.91e-10 8.37e-11	3.57e-10 1.58e-09 3.88e-10	1.59e-14 1.15e-13 9.38e-15	4.77e-14 2.26e-12 3.20e-14	2.21e-15 1.46e-14 2.38e-15	8.10e-15 4.63e-13 1.70e-14	3.76e-15 5.66e-11 2.14e-15	2.07e-14 3.25e-09 2.94e-14
G-Function $n = 25$	Smolyak LS-Uniform LS-Chebyshev	3.93e-01 3.41e-01 7.29e-01	4.99e-01 6.53e-01 1.01e+00	1.99e-01 1.19e-01 1.42e-01	3.67e-01 2.95e-01 4.01e-01	8.16e-02 3.64e-01 6.08e-02	2.13e-01 1.48e+00 1.44e-01	3.26e-02 3.63e-01 3.41e-02	1.10e-01 2.42e+00 1.25e-01	1.11e-02 1.11e-01 1.32e-02	7.23e-02 9.17e-01 6.48e-02	4.40e-03 2.37e-02 5.15e-03	3.70e-02 2.70e-01 3.77e-02	1.80e-03 2.67e-02 2.08e-03	2.05e-02 5.62e-01 2.43e-02	8.20e-04 3.48e-02 9.49e-04	1.25e-02 1.19e+00 1.81e-02	2.77e-04 3.54e+01 3.63e-04	6.82e-03 2.01e+03 9.36e-03
Morokoff Califisch 1 $n = 25$	Smolyak LS-Uniform LS-Chebyshev	4.43e-02 6.26e-02 1.45e-01	6.43e-02 7.99e-02 2.06e-01	1.31e-02 2.14e-03 1.06e-02	2.59e-02 3.95e-03 2.72e-02	1.66e-03 4.82e-04 1.82e-03	3.21e-03 1.93e-03 3.73e-03	1.02e-04 3.77e-04 2.03e-04	3.05e-04 2.33e-03 5.55e-04	3.02e-06 7.05e-06 3.40e-06	9.59e-06 5.76e-05 1.16e-05	7.42e-08 9.23e-08 9.34e-08	2.66e-07 7.85e-07 4.62e-07	1.15e-09 6.04e-09 2.03e-09	4.95e-09 1.41e-07 9.98e-09	2.37e-12 1.92e-10 3.13e-11	1.10e-11 7.21e-09 1.45e-10	1.21e-14 1.09e-09 4.23e-13	6.17e-14 6.19e-08 1.88e-12
Morokoff Califiech 2 $n = 25$	Smolyak LS-Uniform LS-Chebyshev	3.35e-02 3.70e-02 8.56e-02	4.25e-02 4.65e-02 1.33e-01	7.84e-16 1.59e-15 5.59e-15	1.78e-15 3.11e-15 1.07e-14	7.91e-16 1.93e-15 5.53e-15	1.78e-15 7.11e-15 1.47e-14	1.35e-15 3.78e-14 7.19e-15	3.55e-15 2.50e-13 2.02e-14	2.06e-15 7.75e-15 4.98e-15	5.77e-15 6.08e-14 1.69e-14	2.69e-15 6.06e-15 2.94e-15	9.33e-15 5.55e-14 1.29e-14	4.36e-15 8.93e-15 9.84e-15	1.60e-14 1.74e-13 5.73e-14	6.31e-15 3.18e-14 8.39e-15	2.09e-14 1.07e-12 8.28e-14	1.04e-14 9.76e-11 6.89e-15	5.28e-14 5.62e-09 9.59e-14
Oscillatory $n = 25$	Smolyak LS-Uniform LS-Chebyshev	7.28e-02 8.09e-02 1.84e-01	9.21e-02 1.01e-01 2.88e-01	3.22e-03 9.64e-04 4.61e-03	5.02e-03 2.00e-03 1.07e-02	4.66e-05 5.94e-05 2.43e-05	7.06e-05 2.74e-04 7.37e-05	2.02e-07 2.32e-07 1.43e-07	4.00e-07 1.52e-06 6.98e-07	3.76e-10 5.88e-10 2.14e-10	8.91e-10 4.00e-09 6.16e-10	1.24e-15 2.19e-15 1.48e-15	4.11e-15 2.13e-14 7.11e-15	1.62e-15 3.93e-15 3.68e-15	7.44e-15 7.05e-14 1.91e-14	2.33e-15 1.38e-14 2.42e-15	8.33e-15 5.34e-13 1.63e-14	3.89e-15 3.69e-11 1.64e-15	1.98e-14 2.13e-09 2.38e-14
Product Peak n = 25	Smolyak LS-Uniform LS-Chebyshev	6.06e-02 7.11e-02 1.10e-01	9.32e-02 9.82e-02 1.90e-01	4.82e-16 2.44e-15 7.19e-15	1.11e-15 4.66e-15 1.44e-14	4.52e-16 2.17e-15 8.31e-15	1.33e-15 7.55e-15 2.15e-14	8.43e-16 4.26e-14 1.22e-14	2.44e-15 2.82e-13 3.43e-14	1.14e-15 5.88e-15 5.17e-15	3.77e-15 4.12e-14 2.04e-14	1.71e-15 4.23e-15 3.52e-15	6.22e-15 3.73e-14 1.60e-14	2.50e-15 7.79e-15 7.11e-15	1.33e-14 1.42e-13 4.31e-14	3.56e-15 2.34e-14 6.33e-15	1.55e-14 8.82e-13 6.73e-14	5.65e-15 5.96e-11 4.77e-15	2.62e-14 3.43e-09 5.48e-14
Roos Arnold n = 25	Smolyak LS-Uniform LS-Chebyshev	1.41e+00 1.40e+00 2.48e+00	2.15e+00 1.90e+00 3.77e+00	9.44e-01 4.45e-01 8.71e-01	1.95e+00 9.78e-01 2.04e+00	2.99e-01 1.23e+00 2.41e-01	7.45e-01 5.07e+00 6.78e-01	1.10e-01 1.15e+00 1.24e-01	4.09e-01 7.74e+00 5.05e-01	4.15e-02 3.65e-01 4.00e-02	2.38e-01 3.51e+00 1.98e-01	1.53e-02 6.03e-02 2.08e-02	1.04e-01 7.97e-01 1.66e-01	5.97e-03 1.32e-01 7.15e-03	5.52e-02 2.77e+00 7.05e-02	2.10e-03 9.68e-02 2.74e-03	3.87e-02 3.67e+00 4.05e-02	8.52e-04 1.33e+02 1.07e-03	1.80e-02 7.64e+03 2.87e-02
Zhou n = 25	Smolyak LS-Uniform LS-Chebyshev	2.44e-01 2.04e-01 4.56e-01	2.85e-01 2.50e-01 7.18e-01	2.03e-02 6.21e-03 2.94e-02	2.93e-02 1.13e-02 7.10e-02	9.62e-04 9.46e-04 4.76e-04	1.46e-03 4.19e-03 1.20e-03	1.74e-05 1.81e-05 1.24e-05	3.47e-05 1.19e-04 6.05e-05	1.51e-07 2.42e-07 8.58e-08	3.60e-07 1.68e-06 2.46e-07	1.43e-11 2.45e-11 9.42e-12	4.15e-11 2.47e-10 4.02e-11	2.49e-14 5.85e-14 4.92e-14	1.14e-13 1.24e-12 2.74e-13	3.56e-14 1.69e-13 4.09e-14	1.37e-13 6.49e-12 3.55e-13	6.11e-14 6.28e-10 3.66e-14	3.13e-13 3.62e-08 6.13e-13

Table 1. Visualization of the results for dim = 2 and various scales tested with n=25 realizations for each function class. Best algorithm per function class, dimension and scale is depicted bold.

FIGURE 3. Visualization of the results for dim = 4 and various scales tested with n=25 realizations for function class *Corner Peak*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca		Sca		Sca		Scr		Sca			ale6		ale7		ale8		ale9
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
Bratley n = 25	Smolyak LS-Uniform LS-Chebyshev	1.57e-01 1.88e-01 4.85e-01	2.57e-01 3.37e-01 7.74e-01	1.69e-02 2.27e-02 2.86e-02	4.33e-02 6.09e-02 5.51e-02	7.02e-16 1.97e-15 1.84e-15	2.22e-15 7.33e-15 5.55e-15	1.07e-15 2.00e-15 5.32e-15	3.11e-15 1.02e-14 1.80e-14	1.76e-15 2.68e-15 8.33e-15	9.33e-15 1.83e-14 3.15e-14	2.37e-15 1.91e-15 7.42e-15	1.11e-14 2.96e-14 5.87e-14	3.26e-15 2.01e-15 8.79e-15	1.38e-14 5.76e-14 5.16e-14	4.44e-15 4.50e-15 8.00e-15	2.66e-14 1.84e-13 8.22e-14	6.74e-15 2.81e-14 1.19e-14	4.71e-14 1.68e-12 1.33e-13
Continuous n = 25	Smolyak LS-Uniform LS-Chebyshev	1.45e-01 9.91e-02 1.54e-01	2.48e-01 1.51e-01 2.93e-01	5.89e-02 1.67e-01 5.14e-02	1.90e-01 4.57e-01 1.56e-01	2.87e-02 5.12e-02 1.86e-02	8.67e-02 2.39e-01 9.44e-02	1.19e-02 1.48e-02 8.80e-03	5.77e-02 1.07e-01 4.80e-02	4.54e-03 7.14e-03 3.55e-03	2.78e-02 6.28e-02 2.93e-02	1.80e-03 6.91e-03 1.63e-03	1.70e-02 1.87e-01 1.72e-02	6.65e-04 2.41e-03 6.98e-04	1.07e-02 7.40e-02 9.45e-03	2.69e-04 1.31e-03 3.01e-04	4.95e-03 7.25e-02 7.23e-03	1.04e-04 9.36e-03 1.24e-04	3.40e-03 8.41e-01 3.79e-03
Corner Peak $n = 25$	Smolyak LS-Uniform LS-Chebyshev	4.34e-02 5.36e-02 2.22e-01	6.73e-02 9.50e-02 3.36e-01	3.96e-02 1.69e-02 4.79e-02	1.57e-01 4.45e-02 1.26e-01	1.36e-02 1.20e-02 1.12e-02	5.59e-02 5.84e-02 3.55e-02	5.80e-03 1.65e-03 3.33e-03	3.01e-02 9.08e-03 1.16e-02	1.43e-03 3.77e-04 5.53e-04	7.14e-03 7.16e-03 2.93e-03	2.46e-04 6.96e-05 8.54e-05	1.34e-03 1.03e-03 4.00e-04	2.77e-05 1.36e-05 1.15e-05	1.84e-04 5.16e-04 6.56e-05	1.88e-06 2.32e-06 9.61e-07	1.24e-05 8.73e-05 4.63e-06	4.08e-08 2.51e-07 2.12e-08	3.12e-07 1.69e-05 1.34e-07
Discontinuous $n = 25$	Smolyak LS-Uniform LS-Chebyshev	2.70e+00 2.26e+00 3.63e+00	4.58e+00 4.48e+00 5.31e+00	3.31e+00 4.20e+00 2.37e+00	1.08e+01 1.21e+01 5.88e+00	2.55e+00 4.14e+00 2.36e+00	8.43e+00 1.59e+01 7.11e+00	2.04e+00 2.20e+00 1.59e+00	1.08e+01 1.19e+01 7.53e+00	1.26e+00 1.87e+00 1.24e+00	1.11e+01 1.57e+01 6.59e+00	7.98e-01 1.81e+00 8.77e-01	7.68e+00 3.90e+01 5.66e+00	6.82e-01 2.10e+00 5.91e-01	$\substack{1.04\text{e}+01\\6.26\text{e}+01\\\mathbf{8.11e}+00}$	5.25e-01 2.61e+00 4.12e-01	1.02e+01 1.42e+02 6.51e+00	4.37e-01 3.39e+01 3.12e-01	9.66e+00 2.76e+03 6.23e+00
Gaussian $n = 25$	Smolyak LS-Uniform LS-Chebyshev	1.19e-01 1.04e-01 1.80e-01	2.41e-01 1.98e-01 2.94e-01	3.74e-02 8.55e-02 2.78e-02	6.96e-02 2.36e-01 7.21e-02	3.93e-03 3.91e-03 2.53e-03	7.46e-03 2.16e-02 6.34e-03	2.71e-04 1.39e-04 1.68e-04	6.07e-04 8.76e-04 4.87e-04	7.50e-06 6.84e-06 4.85e-06	2.66e-05 5.22e-05 1.83e-05	3.10e-07 1.84e-07 1.26e-07	1.26e-06 2.37e-06 5.29e-07	6.97e-09 5.01e-09 2.83e-09	3.23e-08 1.19e-07 1.48e-08	8.42e-11 1.25e-10 3.76e-11	4.24e-10 4.86e-09 1.91e-10	4.94e-14 5.54e-13 2.25e-14	2.60e-13 4.43e-11 1.46e-13
G-Function $n = 25$	Smolyak LS-Uniform LS-Chebyshev	6.12e-01 5.82e-01 6.84e-01	1.08e+00 1.17e+00 9.25e-01	4.34e-01 6.14e-01 3.72e-01	1.38e+00 1.76e+00 8.13e-01	1.99e-01 1.97e-01 1.45e-01	6.79e-01 9.60e-01 4.01e-01	9.02e-02 7.56e-02 8.58e-02	3.84e-01 4.53e-01 3.01e-01	4.39e-02 6.39e-02 3.75e-02	2.87e-01 7.35e-01 1.60e-01	1.85e-02 4.98e-02 1.62e-02	1.80e-01 1.13e+00 1.06e-01	7.74e-03 2.56e-02 7.48e-03	8.43e-02 6.36e-01 6.97e-02	2.88e-03 1.58e-02 2.84e-03	3.90e-02 7.06e-01 3.44e-02	1.07e-03 5.58e-02 1.13e-03	2.43e-02 4.08e+00 2.29e-02
Morokoff Calfisch 1 $n = 25$	Smolyak LS-Uniform LS-Chebyshev	1.23e-01 5.93e-02 2.45e-01	2.46e-01 1.15e-01 4.02e-01	2.50e-02 4.73e-02 2.64e-02	5.91e-02 1.25e-01 6.54e-02	2.84e-03 4.34e-03 4.37e-03	9.40e-03 2.23e-02 1.58e-02	2.84e-04 3.09e-04 4.47e-04	1.12e-03 2.80e-03 1.29e-03	1.38e-05 1.55e-05 1.58e-05	8.28e-05 2.20e-04 9.10e-05	6.95e-07 4.34e-07 4.73e-07	5.21e-06 1.09e-05 2.42e-06	2.64e-08 2.76e-08 1.96e-08	1.87e-07 1.16e-06 9.58e-08	4.04e-10 1.10e-09 3.11e-10	2.97e-09 7.16e-08 1.64e-09	5.05e-12 6.25e-11 7.53e-12	4.40e-11 4.44e-09 5.78e-11
Morokoff Calfisch 2 $n = 25$	Smolyak LS-Uniform LS-Chebyshev	3.46e-02 4.33e-02 1.00e-01	5.46e-02 7.43e-02 1.63e-01	1.07e-03 1.44e-03 1.82e-03	2.75e-03 3.87e-03 3.50e-03	1.36e-15 4.91e-15 2.91e-15	4.44e-15 1.87e-14 6.66e-15	1.98e-15 4.81e-15 7.29e-15	6.66e-15 2.80e-14 3.31e-14	2.73e-15 3.40e-15 1.55e-14	9.77e-15 2.31e-14 6.82e-14	3.74e-15 3.65e-15 1.22e-14	1.51e-14 6.20e-14 1.12e-13	5.52e-15 4.50e-15 1.58e-14	2.26e-14 1.14e-13 1.10e-13	7.36e-15 6.52e-15 1.14e-14	3.24e-14 2.97e-13 1.49e-13	1.16e-14 8.57e-14 1.24e-14	6.75e-14 8.96e-12 3.15e-13
Oscillatory n = 25	Smolyak LS-Uniform LS-Chebyshev	1.09e-01 1.57e-01 3.14e-01	2.25e-01 2.77e-01 4.91e-01	1.52e-02 2.08e-02 2.53e-02	3.53e-02 5.44e-02 4.78e-02	1.16e-03 1.21e-03 1.03e-03	2.69e-03 5.95e-03 2.84e-03	2.50e-05 1.14e-05 1.37e-05	5.80e-05 9.36e-05 4.49e-05	2.64e-07 1.05e-07 9.48e-08	6.93e-07 1.02e-06 4.74e-07	1.48e-09 6.21e-10 5.48e-10	4.68e-09 7.91e-09 2.57e-09	4.34e-12 3.02e-12 1.73e-12	1.70e-11 7.73e-11 9.71e-12	6.15e-15 9.89e-15 4.48e-15	2.79e-14 3.66e-13 7.55e-14	4.80e-15 3.73e-14 5.75e-15	2.71e-14 4.03e-12 1.02e-13
Product Peak n = 25	Smolyak LS-Uniform LS-Chebyshev	3.41e-01 5.91e-01 9.47e-01	8.35e-01 1.01e+00 1.46e+00	1.29e-02 1.53e-02 3.29e-02	5.80e-02 6.16e-02 6.83e-02	8.83e-16 1.99e-14 1.07e-14	3.11e-15 7.61e-14 2.35e-14	1.36e-15 1.47e-14 3.73e-14	6.22e-15 8.57e-14 1.17e-13	1.88e-15 1.36e-14 3.78e-14	1.15e-14 9.15e-14 1.54e-13	2.72e-15 9.60e-15 4.93e-14	1.87e-14 1.73e-13 2.01e-13	3.95e-15 7.03e-15 3.55e-14	3.02e-14 1.68e-13 1.96e-13	5.04e-15 5.11e-15 1.77e-14	3.64e-14 2.40e-13 3.26e-13		5.33e-14 1.11e-11 5.28e-13
Roos Arnold n = 25	Smolyak LS-Uniform LS-Chebyshev	4.54e+00 3.16e+00 6.32e+00	8.29e+00 7.23e+00 1.45e+01	2.53e+00 3.50e+00 2.07e+00	6.31e+00 1.02e+01 4.93e+00	1.48e+00 1.41e+00 8.67e-01	$\substack{3.68\mathrm{e}+00\\6.82\mathrm{e}+00\\\mathbf{2.97e}+00}$	4.41e-01 4.88e-01 3.48e-01	2.06e+00 2.80e+00 2.00e+00	1.87e-01 2.17e-01 1.34e-01	9.77e-01 1.63e+00 1.22e+00	8.06e-02 1.55e-01 5.93e-02	5.25e-01 2.42e+00 5.05e-01	2.98e-02 1.02e-01 2.78e-02	3.11e-01 3.01e+00 3.76e-01	1.19e-02 7.21e-02 1.20e-02	1.72e-01 4.79e+00 2.26e-01	4.52e-03 4.32e-01 5.04e-03	9.59e-02 4.76e+01 1.50e-01
Zhou n = 25	Smolyak LS-Uniform LS-Chebyshev	1.78e+00 2.03e+00 3.85e+00	2.66e+00 3.65e+00 6.24e+00	3.64e-01 4.20e-01 3.25e-01	5.92e-01 1.28e+00 7.17e-01	2.57e-02 2.33e-02 1.42e-02	4.64e-02 1.46e-01 4.16e-02	9.54e-04 4.65e-04 5.84e-04	2.08e-03 2.87e-03 2.25e-03	1.82e-05 1.59e-05 1.17e-05	4.77e-05 1.59e-04 4.12e-05	1.11e-07 5.00e-08 5.03e-08	4.01e-07 8.38e-07 4.03e-07	8.46e-10 6.97e-10 3.33e-10	3.64e-09 2.97e-08 1.95e-09	3.70e-12 7.72e-12 1.92e-12	1.96e-11 3.49e-10 1.06e-11	3.07e-13 1.69e-12 2.09e-13	1.66e-12 1.40e-10 4.68e-12

Table 2. Dim 3

FIGURE 4. Visualization of the results for dim = 10 and various scales tested with n=10 realizations for function class $Corner\ Peak$. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Scr	alel	Sci	de2	Sci	de3	Sci	ule4	Su	de5	Sci	ıle6	Sci	de7	Sca	de8	Sc	alc9
		m	ax.	m	ax	m	ax		ax	m	ax	m	ax	m		m	ax	THE PERSON NAMED IN	iax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
$\begin{array}{l} {\bf Bratley} \\ n=25 \end{array}$	Smolyak	2.41e-01	4.02e-01	6.99e-02	2.34e-01	5.29e-03	2.57e-02	1.79e-15	6.88e-15	2.63e-15	1.02e-14	3.55e-15	1.73e-14	4.60e-15	2.75e-14	6.18e-15	3.15e-14	8.66e-15	5.11e-14
	LS-Uniform	3.00e-01	4.75e-01	1.51e-01	5.16e-01	1.20e-02	6.85e-02	2.30e-15	1.41e-14	6.28e-15	3.69e-14	1.96e-15	2.71e-14	1.84e-15	4.36e-14	2.75e-15	1.04e-13	5.05e-15	5.49e-13
	LS-Chebyshev	8.39e-01	1.05e+00	2.10e-01	4.92e-01	1.95e-02	6.84e-02	1.29e-14	6.88e-14	1.10e-14	4.64e-14	1.37e-14	9.71e-14	5.59e-14	2.72e-13	2.87e-14	4.93e-13	2.06e-14	4.87e-13
Continuous $n = 25$	Smolyak	1.69e-01	4.47e-01	6.12e-02	2.12e-01	3.75e-02	1.16e-01	1.55e-02	5.44e-02	5.52e-03	3.96e-02	2.15e-03	2.29e-02	9.22e-04	1.42e-02	3.76e-04	1.04e-02	1.76e-04	4.97e-03
	LS-Uniform	1.30e-01	3.08e-01	8.44e-02	3.56e-01	2.70e-02	1.37e-01	1.09e-02	7.07e-02	6.80e-03	7.09e-02	2.87e-03	6.79e-02	1.55e-03	3.32e-02	8.18e-04	4.10e-02	6.25e-04	9.32e-02
	LS-Chebyshev	1.73e-01	4.39e-01	5.15e-02	2.17e-01	2.42e-02	1.19e-01	9.02e-03	6.54e-02	3.80e-03	4.28e-02	1.79e-03	3.52e-02	7.78e-04	1.95e-02	3.32e-04	1.55e-02	1.51e-04	9.79e-03
Corner Peak $n=25$	Smolyak	8.68e-03	1.73e-02	2.62e-02	1.23e-01	2.22e-02	1.64e-01	1.35e-02	8.03e-02	5.65e-03	5.32e-02	2.31e-03	1.81e-02	6.39e-04	6.36e-03	1.35e-04	1.55e-03	2.16e-05	3.04e-04
	LS-Uniform	1.84e-02	3.46e-02	2.19e-02	6.25e-02	9.98e-03	7.21e-02	3.51e-03	4.68e-02	1.34e-03	3.03e-02	2.63e-04	1.08e-02	5.53e-05	2.61e-03	1.53e-05	1.35e-03	2.87e-06	2.53e-04
	LS-Chebyshev	8.91e-02	1.58e-01	1.29e-01	2.77e-01	3.67e-02	1.08e-01	8.27e-03	3.26e-02	2.20e-03	1.05e-02	5.13e-04	2.84e-03	1.41e-04	9.73e-04	2.97e-05	1.94e-04	5.95e-06	4.72e-05
Discontinuous $n = 25$	Smolyak	9.48e+00	2.29e+01	5.76e+00	1.97e+01	5.20e+00	2.15e+01	2.96e+00	2.32e+01	2.66e+00	2.51e+01	1.73e+00	1.88e+01	1.44e+00	2.16e+01	1.05e+00	2.74e+01	7.32e-01	2.60e+01
	LS-Uniform	7.24e+00	2.01e+01	5.67e+00	2.50e+01	4.30e+00	2.31e+01	2.86e+00	3.05e+01	3.68e+00	5.69e+01	3.26e+00	7.03e+01	2.47e+00	6.35e+01	2.95e+00	2.06e+02	3.06e+00	3.47e+02
	LS-Chebyshev	9.15e+00	2.45e+01	6.46e+00	2.44e+01	3.35e+00	1.27e+01	3.79e+00	1.42e+01	2.37e+00	1.90e+01	1.65e+00	1.65e+01	1.44e+00	1.70e+01	1.01e+00	1.88e+01	7.34e-01	1.85e+01
Gaussian $n = 25$	Smolyak	1.24e-01	2.27e-01	3.18e-02	7.33e-02	5.19e-03	1.50e-02	6.17e-04	2.09e-03	6.51e-05	2.41e-04	4.11e-06	1.85e-05	1.63e-07	8.09e-07	5.55e-09	3.34e-08	1.44e-10	1.01e-09
	LS-Uniform	1.18e-01	2.25e-01	3.72e-02	1.41e-01	3.68e-03	3.06e-02	3.41e-04	3.84e-03	3.25e-05	6.16e-04	1.61e-06	3.73e-05	9.03e-08	3.19e-06	2.95e-09	1.51e-07	6.70e-11	4.31e-09
	LS-Chebyshev	1.80e-01	4.16e-01	4.02e-02	7.70e-02	4.39e-03	1.24e-02	3.53e-04	1.30e-03	2.94e-05	1.08e-04	1.68e-06	8.65e-06	6.71e-08	3.85e-07	1.71e-09	1.24e-08	4.13e-11	2.84e-10
$\begin{array}{l} \text{G-Function} \\ n=25 \end{array}$	Smolyak	8.16e-01	1.58e+00	5.69e-01	2.24e+00	3.74e-01	1.35e+00	1.72e-01	8.06e-01	7.73e-02	6.55e-01	3.29e-02	3.17e-01	1.43e-02	1.61e-01	6.03e-03	1.01e-01	2.51e-03	4.81e-02
	LS-Uniform	5.56e-01	1.25e+00	5.81e-01	2.38e+00	3.74e-01	2.64e+00	1.37e-01	1.18e+00	8.55e-02	8.84e-01	3.78e-02	8.67e-01	1.60e-02	6.40e-01	1.19e-02	1.14e+00	7.67e-03	9.26e-01
	LS-Chebyshev	1.05e+00	1.97e+00	6.71e-01	1.62e+00	3.90e-01	1.27e+00	1.22e-01	5.23e-01	5.15e-02	4.29e-01	2.37e-02	2.02e-01	1.10e-02	8.82e-02	4.60e-03	7.14e-02	1.99e-03	5.20e-02
$\begin{array}{l} {\rm Morokoff~Calflech~1} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.37e-01 8.55e-02 1.43e-01	4.55e-01 1.59e-01 2.55e-01	7.05e-02 5.74e-02 7.43e-02	2.49e-01 2.67e-01 2.22e-01	2.37e-02 1.37e-02 2.67e-02	9.16e-02 1.38e-01 8.95e-02	5.54e-03 3.78e-03 4.79e-03	2.78e-02 4.08e-02 1.76e-02	1.45e-03 5.87e-04 1.15e-03	9.13e-03 7.21e-03 7.21e-03	3.31e-04 1.33e-04 2.70e-04	2.67e-03 4.33e-03 1.38e-03	5.50e-05 3.66e-05 6.47e-05	5.68e-04 1.87e-03 4.05e-04	7.10e-06 4.92e-06 1.26e-05	1.38e-04 3.30e-04 1.25e-04	9.31e-07 2.71e-06	1.55e-05 7.79e-05 1.61e-05
$\begin{array}{l} {\rm Morokoff~Calfleth~2} \\ n=25 \end{array}$	Smolyak	3.30e-02	8.03e-02	1.46e-03	4.81e-03	3.39e-05	1.65e-04	3.52e-15	1.42e-14	4.94e-15	2.22e-14	6.39e-15	2.66e-14	8.55e-15	4.17e-14	1.14e-14	5.24e-14	1.62e-14	8.24e-14
	LS-Uniform	3.89e-02	9.42e-02	3.28e-03	1.10e-02	7.70e-05	4.40e-04	2.24e-15	1.20e-14	3.12e-15	2.66e-14	3.32e-15	5.42e-14	3.03e-15	8.17e-14	4.45e-15	2.20e-13	9.82e-15	1.08e-12
	LS-Chebyshev	8.87e-02	1.52e-01	5.11e-03	1.57e-02	1.25e-04	4.39e-04	1.40e-14	7.68e-14	1.01e-14	8.70e-14	1.10e-14	1.31e-13	3.21e-14	2.69e-13	2.78e-14	4.44e-13	2.37e-14	7.15e-13
Oscillatory $n=25$	Smolyak	2.19e-01	5.82e-01	3.83e-02	1.38e-01	4.20e-03	2.17e-02	3.49e-04	1.54e-03	1.10e-05	3.91e-05	1.79e-07	6.48e-07	1.63e-09	7.12e-09	8.65e-12	4.10e-11	2.95e-14	1.70e-13
	LS-Uniform	2.48e-01	7.03e-01	9.71e-02	3.47e-01	8.49e-03	4.88e-02	2.63e-04	2.43e-03	6.04e-06	7.96e-05	5.63e-08	1.34e-06	4.88e-10	1.44e-08	3.03e-12	1.55e-10	1.41e-14	9.29e-13
	LS-Chebyshev	4.17e-01	1.01e+00	1.37e-01	4.04e-01	1.29e-02	4.68e-02	4.23e-04	1.68e-03	7.53e-06	4.46e-05	6.86e-08	3.79e-07	5.19e-10	3.56e-09	2.62e-12	1.82e-11	1.26e-14	4.01e-13
Product Peak $n=25$	Smolyak	7.79e-01	2.06e+00	8.87e-02	3.66e-01	5.98e-03	6.06e-02	3.15e-15	1.33e-14	4.63e-15	3.55e-14	5.83e-15	3.82e-14	8.04e-15	4.88e-14	1.10e-14	1.09e-13	1.43e-14	1.31e-13
	LS-Uniform	6.71e-01	1.63e+00	1.11e-01	5.15e-01	6.19e-03	3.51e-02	2.95e-14	1.43e-13	2.83e-14	1.78e-13	1.61e-14	2.49e-13	1.13e-14	2.68e-13	6.70e-15	2.07e-13	1.13e-14	1.27e-12
	LS-Chebyshev	1.52e+00	2.99e+00	2.15e-01	7.50e-01	1.09e-02	4.32e-02	2.26e-13	9.61e-13	9.69e-14	4.34e-13	2.80e-13	1.48e-12	2.75e-13	1.11e-12	1.77e-13	2.40e-12	6.74e-14	1.59e-12
Roos Arnold n = 25	Smolyak LS-Uniform LS-Chebyshev	2.10e+01 1.56e+01 3.49e+01	5.31e+01 4.15e+01 9.39e+01	8.33e+00 1.02e+01 1.05e+01	1.94e+01 3.86e+01 3.08e+01	3.57e+00 3.74e+00 3.77e+00	$\substack{1.25\mathrm{e}+01\\2.66\mathrm{e}+01\\\mathbf{9.94e}+00}$	1.67e+00 1.74e+00 1.64e+00	1.02e+01 1.34e+01 6.40e+00	6.89e-01 8.79e-01 5.88e-01	$\substack{4.49\mathrm{e}+00\\1.06\mathrm{e}+01\\\mathbf{3.77e}+00}$	2.88e-01 4.28e-01 2.73e-01	2.31e+00 9.58e+00 2.17e+00	1.18e-01 2.40e-01 1.29e-01	1.35e+00 4.41e+00 1.39e+00	4.84e-02 1.36e-01 5.48e-02	8.59e-01 5.80e+00 7.43e-01	2.09e-02 8.20e-02 2.37e-02	4.72e-01 1.16e+01 4.95e-01
$\begin{array}{l} {\bf Zhou} \\ n=25 \end{array}$	Smolyak	8.18e+00	1.49e+01	2.22e+00	3.44e+00	1.99e-01	3.85e-01	1.11e-02	2.88e-02	2.96e-04	1.01e-03	9.09e-06	3.63e-05	1.85e-07	7.88e-07	4.21e-09	2.07e-08	6.35e-11	3.75e-10
	LS-Uniform	9.31e+00	2.22e+01	1.85e+00	4.59e+00	1.69e-01	1.61e+00	8.41e-03	7.97e-02	3.52e-04	3.82e-03	7.55e-06	3.64e-04	1.00e-07	7.68e-06	1.52e-09	8.93e-08	2.14e-11	1.66e-09
	LS-Chebyshev	1.91e+01	3.32e+01	2.51e+00	5.60e+00	1.57e-01	4.67e-01	7.04e-03	2.52e-02	2.28e-04	1.09e-03	3.43e-06	2.47e-05	5.93e-08	3.43e-07	1.13e-09	6.99e-09	1.76e-11	1.52e-10

Table 3. Dim 4

FIGURE 5. Visualization of the results for dim = 8 and various scales tested with n=25 realizations for function class Discontinuous. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca	ale1	Sea	ale2	Sca	ale3	Sca	ile4	Sca	ıle5		ale6	Sca		Sca	
			ax		ax	m			ax	m			ax	m		m	
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
Bratley n = 25	Smolyak LS-Uniform	2.20e-01 1.82e-01	5.04e-01 3.83e-01	6.23e-02 1.13e-01	2.48e-01 4.61e-01	2.57e-02 3.97e-02	1.58e-01 2.41e-01	1.79e-03 3.26e-03	1.13e-02 2.23e-02	1.02e-13 3.53e-15	3.61e-13 3.22e-14	1.70e-12 2.64e-15	8.84e-12 4.57e-14	3.77e-13 3.31e-15	2.12e-12 8.05e-14	1.60e-10 4.31e-15	9.96e-10 1.37e-13
n = 20	LS-Chebyshev	3.81e-01	8.67e-01	2.28e-01	5.86e-01	8.66e-02	4.19e-01	7.83e-03	4.88e-02	2.49e-14	2.31e-13	5.50e-14	3.42e-13	3.51e-14	4.18e-13	2.37e-14	6.87e-13
Continuous	Smolyak	1.24e-01	2.55e-01 2.29e-01	4.79e-02 4.55e-02	2.03e-01 1.74e-01	2.96e-02 2.95e-02	1.53e-01 1.59e-01	1.27e-02	9.53e-02 1.28e-01	3.69e-01 6.69e-03	1.67e+00 6.55e-02	4.26e-01 3.60e-03	3.22e+00 6.00e-02	1.28e-01 1.71e-03	8.79e-01 4.57e-02	3.14e+01	1.86e+02 4.29e-02
n = 25	LS-Uniform LS-Chebyshev	1.08e-01 1.37e-01	2.60e-01	5.23e-02	2.69e-01	2.46e-02	1.42e-01	1.60e-02 1.10e-02	1.03e-01	4.96e-03	6.10e-02	2.26e-03	4.49e-02	1.03e-03	2.44e-02	8.41e-04 4.45e-04	1.30e-02
Corner Peak	Smolyak	1.13e-03	3.15e-03	5.78e-03	2.98e-02	1.14e-02	8.92e-02	8.63e-03	1.43e-01	6.51e-03	8.86e-02	3.24e-03	7.53e-02	2.14e-03	3.72e-02	1.51e-02	8.48e-02
n = 25	LS-Uniform LS-Chebyshev	2.28e-03 9.80e-03	4.34e-03 2.22e-02	7.08e-03 2.36e-02	1.87e-02 6.71e-02	3.14e-03 3.22e-02	2.87e-02 1.49e-01	2.47e-03 1.24e-02	4.56e-02 6.98e-02	6.66e-04 4.76e-03	1.98e-02 2.46e-02	3.49e-04 1.39e-03	1.47e-02 1.14e-02	1.48e-04 4.67e-04	1.33e-02 4.75e-03	4.61e-05 1.41e-04	7.17e-03 1.47e-03
Discontinuous	Smolyak	1.10e+01	2.93e+01	7.81e+00	3.17e+01	7.04e+00	4.40e+01	6.20e+00	6.06e+01	8.37e+01	3.12e+02	2.73e+02	2.16e+03	4.15e+02	2.25e+03	1.73e+05	1.05e+06
n = 25	LS-Uniform LS-Chebyshev	1.04e+01 7.81e+00	2.49e+01 1.42e+01	9.75e+00 8.88e+00	3.34e+01 3.46e+01	6.97e+00 8.53e+00	4.17e+01 3.01e+01	6.96e+00 6.35e+00	6.86e+01 4.80e+01	4.79e+00 5.25e+00	5.05e+01 4.20e+01	4.55e+00 3.59e+00	9.36e+01 4.21e+01	4.16e+00 2.71e+00	1.21e+02 4.33e+01	3.56e+00 2.11e+00	1.83e+02 4.60e+01
	Smolyak	1.74e-01	3.96e-01	4.58e-02	1.07e-01	1.10e-02	3.39e-02	1.79e-03	6.75e-03	2.78e-04	1.06e-03	2.65e-05	1.22e-04	2.19e-06	1.01e-05	1.26e-07	7.34e-07
Gaussian n = 25	LS-Uniform LS-Chebyshev	1.45e-01 2.08e-01	2.64e-01 3.71e-01	3.99e-02 5.26e-02	1.71e-01 1.65e-01	7.90e-03 1.05e-02	5.69e-02 3.20e-02	1.23e-03 1.32e-03	1.44e-02 6.55e-03	1.13e-04 1.41e-04	2.11e-03 6.09e-04	1.07e-05 1.07e-05	3.54e-04 5.90e-05	7.73e-07 6.65e-07	6.02e-05 4.58e-06	5.17e-08 3.40e-08	9.34e-06 2.70e-07
G-Function	Smolyak	9.34e-01	2.42e+00	9.32e-01	4.26e+00	6.12e-01	3.56e+00	3.10e-01	1.78e+00	1.66e-01	1.34e+00	1.51e+00	1.10e+01	1.08e+00	5.74e+00	3.69e+02	2.36e+03
n = 25	LS-Uniform LS-Chebyshev	7.76e-01 3.06e+00	1.93e+00 4.38e+00	6.53e-01 9.59e-01	2.16e+00 2.99e+00	3.88e-01 4.79e-01	2.37e+00 2.14e+00	2.00e-01 2.08e-01	1.87e+00 1.29e+00	9.20e-02 8.72e-02	1.19e+00 6.27e-01	4.74e-02 4.27e-02	1.15e+00 3.43e-01	2.37e-02 2.00e-02	1.21e+00 2.06e-01	1.32e-02 9.17e-03	1.00e+00 1.65e-01
Morokoff Califisch 1	Smolyak	1.92e-01	4.54e-01	8.55e-02	2.74e-01	3.19e-02	1.27e-01	7.81e-03	5.18e-02	8.50e-02	4.56e-01	1.51e-01	8.10e-01	4.72e-02	2.65e-01	1.46e+00	9.02e+00
n = 25	LS-Uniform LS-Chebyshev	9.82e-02 1.41e-01	1.95e-01 2.73e-01	5.96e-02 9.40e-02	3.50e-01 2.56e-01	1.75e-02 3.34e-02	1.38e-01 1.18e-01	4.55e-03 9.93e-03	5.66e-02 4.90e-02	1.23e-03 2.95e-03	2.47e-02 1.58e-02	3.56e-04 8.84e-04	8.82e-03 5.89e-03	7.09e-05 2.02e-04	2.22e-03 1.50e-03	1.31e-05 3.74e-05	1.06e-03 2.24e-04
Morokoff Califisch 2	Smolyak	3.10e-02	7.67e-02	1.22e-03	4.43e-03	4.04e-05	2.20e-04	9.97e-07	6.29e-06	8.90e-14	4.64e-13	3.27e-13	2.42e-12	4.75e-13	2.74e-12	3.18e-10	2.08e-09
n = 25	LS-Uniform LS-Chebyshev	3.02e-02 5.22e-02	6.12e-02 1.12e-01	2.46e-03 4.37e-03	8.17e-03 1.35e-02	7.14e-05 1.61e-04	3.32e-04 5.52e-04	1.81e-06 4.35e-06	1.24e-05 2.71e-05	2.69e-15 2.78e-14	2.22e-14 3.45e-13	3.20e-15 2.66e-14	3.82e-14 4.57e-13	4.71e-15 2.70e-14	1.41e-13 1.06e-12	7.77e-15 3.33e-14	3.76e-13 1.70e-12
Oscillatory	Smolyak	3.15e-01	9.04e-01	7.35e-02	2.58e-01	1.11e-02	6.58e-02	1.28e-03	8.47e-03	1.25e-04	6.51e-04	5.16e-06	2.30e-05	1.15e-07	5.26e-07	1.58e-09	7.71e-09
n = 25	LS-Uniform LS-Chebyshev	3.45e-01 5.98e-01	7.68e-01 1.24e+00	1.19e-01 1.66e-01	5.17e-01 4.85e-01	1.97e-02 4.24e-02	1.07e-01 1.44e-01	2.26e-03 5.24e-03	1.49e-02 3.39e-02	8.43e-05 1.69e-04	1.13e-03 7.27e-04	2.34e-06 3.18e-06	1.37e-04 1.44e-05	3.20e-08 3.95e-08	1.97e-06 2.22e-07	3.53e-10 3.93e-10	3.37e-08 3.02e-09
Product Peak	Smolyak	1.96e+00	6.38e+00	4.01e-01	1.93e+00	2.34e-02	1.69e-01	1.15e-03	2.20e-02	3.65e-13	1.71e-12	2.69e-12	1.12e-11	2.22e-12	1.27e-11	1.60e-09	9.57e-09
n = 25	LS-Uniform LS-Chebyshev	1.42e+00 2.08e+00	4.42e+00 6.54e+00	2.61e-01 5.26e-01	8.35e-01 1.37e+00	2.83e-02 5.08e-02	1.74e-01 1.78e-01	1.04e-03 2.58e-03	1.22e-02 1.55e-02	5.12e-14 5.13e-13	4.61e-13 7.77e-12	2.38e-14 1.37e-12	3.65e-13 9.11e-12	3.07e-14 3.24e-13	1.07e-12 1.86e-12	7.67e-15 1.98e-13	3.64e-13 2.18e-12
Roos Arnold	Smolyak	4.81e+01	1.39e+02	2.75e+01	1.11e+02	1.36e+01	5.05e+01	7.56e+00	3.69e+01	5.24e+00	2.67e+01	2.27e+01	1.33e+02	5.31e+01	3.07e+02	1.78e+04	1.01e+05
n = 25	LS-Uniform LS-Chebyshev	4.23e+01 3.74e+01	9.66e+01 6.83e+01	1.91e+01 2.34e+01	5.83e+01 1.04e+02	9.11e+00 1.20e+01	6.26e+01 4.54e+01	4.85e+00 5.02e+00	3.29e+01 2.21e+01	2.54e+00 2.25e+00	2.96e+01 1.23e+01	1.31e+00 1.04e+00	2.46e+01 7.88e+00	7.41e-01 4.88e-01	1.58e+01 6.26e+00	3.90e-01 2.25e-01	1.84e+01 3.52e+00
	Smolyak	4.91e+01	9.92e+01	1.21e+01	2.33e+01	1.32e+00	3.36e+00	1.18e-01	3.96e-01	8.75e-03	3.14e-02	3.97e-04	1.70e-03	1.00e-05	6.08e-05	2.94e-07	1.90e-06
Zhou n = 25	LS-Uniform LS-Chebyshev	5.70e+01 6.06e+01	9.60e+01 1.10e+02	9.13e+00 1.22e+01	3.60e+01 3.29e+01	1.05e+00 1.20e+00	8.94e+00 4.06e+00	7.49e-02 7.96e-02	1.34e+00 2.78e-01	2.75e-03 3.53e-03	4.80e-02 1.71e-02	1.44e-04 1.38e-04	7.03e-03 7.55e-04	4.67e-06 4.10e-06	3.84e-04 2.93e-05	1.14e-07 1.18e-07	8.62e-06 1.04e-06
	and canady succe	0.000 101			50-5C U1		**************************************		JC-01	3.300-00	IC-02	1		1			220-00

Table 4. Dim 5

FIGURE 6. Visualization of the results for dim = 10 and various scales tested with n=10 realizations for function class $Corner\ Peak$. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca			ale2		ale3	Sca		Sca			ale6	Sca	
		l ₂	ax ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2 m	ℓ_{∞}
Bratley n = 25	Smolyak LS-Uniform LS-Chebyshev	4.00e-01 7.54e-01 9.47e-01	9.16e-01 1.69e+00 1.96e+00	8.18e-02 1.66e-01 2.21e-01	3.02e-01 6.66e-01 6.32e-01	1.62e-02 2.41e-02 6.27e-02	1.00e-01 1.67e-01 2.18e-01	5.85e-03 9.28e-03 2.41e-02	5.23e-02 9.77e-02 1.22e-01	3.99e-04 6.86e-04 2.58e-03	4.80e-03 8.63e-03 1.31e-02	5.21e-13 3.10e-15 5.38e-13	2.95e-12 4.57e-14 2.60e-12	2.57e-12 2.26e-15 2.52e-13	1.59e-11 8.78e-14 1.15e-12
Continuous $n = 25$	Smolyak	1.30e-01	2.61e-01	6.84e-02	2.24e-01	5.04e-02	1.57e-01	1.54e-02	1.25e-01	3.25e-01	8.38e-01	8.54e-01	4.18e+00	5.50e-01	3.29e+00
	LS-Uniform	1.13e-01	3.31e-01	4.96e-02	2.40e-01	2.27e-02	1.49e-01	9.41e-03	8.68e-02	4.82e-03	5.43e-02	2.69e-03	6.78e-02	1.37e-03	7.07e-02
	LS-Chebyshev	1.23e-01	3.71e-01	4.95e-02	3.36e-01	2.12e-02	2.17e-01	8.18e-03	1.39e-01	3.98e-03	9.18e-02	1.87e-03	5.23e-02	8.57e-04	3.40e-02
Corner Peak $n=25$	Smolyak	1.14e-03	4.11e-03	1.54e-03	1.22e-02	2.81e-03	2.15e-02	4.71e-03	1.12e-01	4.98e-03	1.72e-01	4.10e-03	1.03e-01	3.07e-03	9.44e-02
	LS-Uniform	1.58e-03	4.29e-03	4.75e-03	2.00e-02	2.71e-03	2.87e-02	1.45e-03	4.05e-02	6.61e-04	3.78e-02	3.29e-04	2.24e-02	1.25e-04	1.15e-02
	LS-Chebyshev	3.58e-02	6.67e-02	1.85e-02	5.02e-02	6.43e-03	2.22e-02	5.10e-03	6.38e-02	4.18e-03	2.31e-02	1.90e-03	1.81e-02	7.66e-04	9.90e-03
Discontinuous $n = 25$	Smolyak LS-Uniform LS-Chebyshev	2.48e+01 2.30e+01 6.53e+01	$\substack{6.34\mathrm{e} + 01\\7.01\mathrm{e} + 01\\1.04\mathrm{e} + 02}$	1.88e+01 1.70e+01 1.79e+01	$\substack{9.58\mathrm{e}+01\\6.93\mathrm{e}+01\\\mathbf{6.35e}+01}$	$\substack{1.22\text{e}+01\\1.38\text{e}+01\\1.65\text{e}+01}$	$\substack{1.32\mathrm{e}+02\\1.21\mathrm{e}+02\\\mathbf{9.97e}+01}$	8.69e+00 1.10e+01 1.31e+01	$\substack{\substack{1.22\mathrm{e}+02\\ \mathbf{8.31e}+01\\ 9.02\mathrm{e}+01}}$	9.32e+02 9.22e+00 8.91e+00	$\substack{2.87\mathrm{e}+03\\1.17\mathrm{e}+02\\\mathbf{8.68e}+01}$	1.11e+03 7.75e+00 6.67e+00	$\substack{7.38\mathrm{e}+03\\1.70\mathrm{e}+02\\\mathbf{9.65\mathrm{e}+01}}$	$\substack{3.01\mathrm{e}+03\\6.76\mathrm{e}+00\\\mathbf{5.49e}+00}$	$\substack{1.97\mathrm{e}+04\\2.26\mathrm{e}+02\\\mathbf{8.63e}+01}$
Gaussian $n = 25$	Smolyak	1.14e-01	3.09e-01	3.63e-02	9.34e-02	1.03e-02	4.42e-02	2.68e-03	1.11e-02	3.82e-04	2.08e-03	6.13e-05	3.13e-04	7.11e-06	4.26e-05
	LS-Uniform	1.53e-01	2.91e-01	3.61e-02	1.47e-01	8.16e-03	6.35e-02	1.66e-03	3.59e-02	1.84e-04	4.80e-03	3.21e-05	2.89e-03	2.51e-06	2.09e-04
	LS-Chebyshev	2.16e-01	4.85e-01	6.59e-02	1.93e-01	1.41e-02	5.01e-02	2.27e-03	1.16e-02	2.78e-04	1.75e-03	3.07e-05	2.23e-04	2.68e-06	2.03e-05
G-Function $n = 25$	Smolyak LS-Uniform LS-Chebyshev	2.27e+00 1.63e+00 5.40e+00	7.69e+00 5.40e+00 1.07e+01	1.23e+00 1.08e+00 2.04e+00	7.26e+00 3.30e+00 5.57e+00	7.87e-01 6.38e-01 8.05e-01	6.08e+00 3.14e+00 2.95e+00	4.96e-01 3.14e-01 4.24e-01	6.13e+00 2.76e+00 2.81e+00	8.36e-01 1.41e-01 1.83e-01	$\substack{4.94\mathrm{e}+00\\2.04\mathrm{e}+00\\\mathbf{1.45\mathrm{e}}+00}$	1.50e+00 8.01e-02 8.16e-02	9.23e+00 1.63e+00 6.10e-01	4.10e+00 4.10e-02 3.84e-02	2.53e+01 1.15e+00 5.31e-01
Morokoff Calfisch 1 $n = 25$	Smolyak	2.30e-01	5.74e-01	8.29e-02	3.30e-01	3.12e-02	1.70e-01	1.09e-02	8.55e-02	9.26e-03	5.01e-02	3.08e-02	1.86e-01	2.86e-01	1.69e+00
	LS-Uniform	1.01e-01	3.10e-01	3.11e-02	1.14e-01	1.25e-02	1.02e-01	2.65e-03	2.43e-02	7.37e-04	2.02e-02	2.57e-04	7.12e-03	6.80e-05	4.16e-03
	LS-Chebyshev	2.41e-01	5.67e-01	6.65e-02	2.00e-01	2.80e-02	1.40e-01	8.45e-03	4.01e-02	2.52e-03	1.10e-02	7.87e-04	4.84e-03	2.16e-04	1.63e-03
Morokoff Calfisch 2 $n=25$	Smolyak	2.83e-02	7.71e-02	1.32e-03	5.28e-03	4.23e-05	3.38e-04	1.12e-06	1.24e-05	1.96e-08	2.37e-07	1.95e-13	1.44e-12	1.21e-12	7.30e-12
	LS-Uniform	3.51e-02	7.94e-02	2.43e-03	8.95e-03	6.84e-05	4.06e-04	1.94e-06	2.34e-05	3.38e-08	4.26e-07	4.94e-15	1.26e-13	6.78e-15	1.99e-13
	LS-Chebyshev	6.65e-02	1.62e-01	4.36e-03	1.83e-02	1.74e-04	5.79e-04	4.79e-06	2.66e-05	1.27e-07	6.47e-07	8.07e-14	7.55e-13	6.57e-14	1.05e-12
Oscillatory $n = 25$	Smolyak	3.65e-01	1.22e+00	1.13e-01	4.72e-01	2.11e-02	1.86e-01	3.82e-03	4.68e-02	3.88e-04	4.44e-03	3.26e-05	3.19e-04	1.73e-06	1.33e-05
	LS-Uniform	4.78e-01	1.05e+00	1.97e-01	8.69e-01	3.77e-02	2.85e-01	6.30e-03	7.86e-02	4.91e-04	7.57e-03	2.50e-05	7.49e-04	7.39e-07	5.65e-05
	LS-Chebyshev	8.97e-01	2.40e+00	3.08e-01	9.02e-01	7.57e-02	2.97e-01	1.66e-02	7.36e-02	1.71e-03	1.04e-02	6.38e-05	3.89e-04	1.54e-06	1.00e-05
Product Peak n = 25	Smolyak	2.07e+00	6.82e+00	5.25e-01	4.40e+00	1.01e-01	1.44e+00	8.24e-03	2.01e-01	3.46e-04	1.08e-02	1.11e-11	8.36e-11	1.07e-10	6.57e-10
	LS-Uniform	2.07e+00	7.00e+00	5.15e-01	3.59e+00	8.96e-02	9.74e-01	6.66e-03	8.63e-02	4.53e-04	6.30e-03	9.89e-14	1.36e-12	1.08e-13	4.15e-12
	LS-Chebyshev	3.29e+00	8.02e+00	1.19e+00	2.48e+00	1.71e-01	7.10e-01	2.08e-02	7.64e-02	1.49e-03	6.52e-03	1.88e-11	1.05e-10	7.04e-12	5.61e-11
Roos Arnold $n = 25$	Smolyak	8.54e+01	2.66e+02	4.90e+01	2.23e+02	3.52e+01	2.20e+02	1.92e+01	1.21e+02	1.93e+01	7.50e+01	8.65e+01	4.64e+02	4.81e+02	2.93e+03
	LS-Uniform	6.62e+01	1.86e+02	3.82e+01	1.83e+02	1.85e+01	1.03e+02	9.70e+00	7.18e+01	5.43e+00	8.88e+01	3.09e+00	6.94e+01	1.72e+00	7.18e+01
	LS-Chebyshev	2.85e+02	4.46e+02	7.91e+01	2.32e+02	2.90e+01	1.46e+02	1.37e+01	8.41e+01	6.28e+00	4.12e+01	2.82e+00	2.47e+01	1.41e+00	1.50e+01
Zhou n = 25	Smolyak LS-Uniform LS-Chebyshev	1.81e+02 3.26e+02 5.56e+02	4.06e+02 7.14e+02 1.12e+03	4.78e+01 3.90e+01 6.57e+01	1.14e+02 1.92e+02 1.98e+02	7.94e+00 5.70e+00 8.92e+00	2.70e+01 6.33e+01 2.84e+01	1.06e+00 4.40e-01 6.47e-01	3.16e+00 7.11e+00 2.56e+00	8.33e-02 2.69e-02 3.81e-02	2.79e-01 6.56e-01 1.82e-01	3.81e-03 1.59e-03 2.26e-03	1.93e-02 6.75e-02 1.19e-02	2.34e-04 8.66e-05 1.09e-04	1.13e-03 7.67e-03 8.66e-04

Table 5. Dim 6

FIGURE 7. Visualization of the results for dim = 4 and various scales tested with n=25 realizations for function class *Gaussian*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca		Sca		Sca			ale4		ale5		ale6	Sca	
		ℓ_2 m	ax ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2 m	ℓ_{∞}
Bratley n = 20	Smolyak LS-Uniform LS-Chebyshev	6.31e-01 7.98e-01 1.31e+00	1.77e+00 2.74e+00 2.66e+00	1.68e-01 1.99e-01 4.26e-01	6.59e-01 1.02e+00 1.38e+00	2.53e-02 4.17e-02 7.72e-02	2.08e-01 3.51e-01 3.80e-01	6.48e-03 1.21e-02 2.23e-02	8.83e-02 1.92e-01 1.34e-01	1.14e-03 2.08e-03 4.73e-03	2.16e-02 4.26e-02 5.62e-02	1.30e-04 2.52e-04 6.55e-04	3.11e-03 8.44e-03 1.90e-02	8.31e-11 3.80e-09 9.29e-08	7.60e-10 9.67e-07 1.81e-06
Continuous $n = 20$	Smolyak	1.18e-01	3.24e-01	5.94e-02	1.93e-01	3.58e-02	1.76e-01	1.64e-02	1.49e-01	2.01e-01	1.64e+00	2.67e-01	2.24e+00	3.08e+00	2.67e+01
	LS-Uniform	6.66e-02	1.88e-01	3.29e-02	2.18e-01	1.53e-02	1.51e-01	7.28e-03	1.14e-01	3.65e-03	9.41e-02	1.89e-03	4.96e-02	9.26e-04	4.39e-02
	LS-Chebyshev	1.74e-01	3.22e-01	4.53e-02	2.08e-01	1.72e-02	2.01e-01	7.02e-03	1.55e-01	3.33e-03	8.45e-02	1.59e-03	6.32e-02	7.71e-04	4.04e-02
Corner Peak $n = 20$	Smolyak	4.58e-04	2.47e-03	9.86e-04	1.47e-02	9.43e-04	2.78e-02	4.04e-03	7.65e-02	6.07e-03	1.22e-01	4.61e-03	1.09e-01	2.90e-03	1.59e-01
	LS-Uniform	4.58e-04	2.48e-03	1.10e-03	8.19e-03	8.01e-04	2.66e-02	4.65e-04	1.12e-02	4.04e-04	5.40e-02	1.83e-04	4.35e-02	1.42e-04	4.51e-02
	LS-Chebyshev	1.21e-03	2.83e-03	2.42e-03	1.17e-02	1.08e-03	2.77e-02	9.72e-04	1.21e-02	6.60e-04	5.06e-02	3.31e-04	1.68e-02	2.22e-04	1.03e-02
Discontinuous $n = 20$	Smolyak LS-Uniform LS-Chebyshev	2.61e+01 4.48e+01 3.98e+01	$\substack{1.30\mathrm{e}+02\\1.14\mathrm{e}+02\\\mathbf{1.04e}+02}$	3.01e+01 3.56e+01 5.63e+01	$\substack{2.32\mathrm{e}+02\\ \mathbf{1.52e}+02\\ 1.77\mathrm{e}+02}$	2.31e+01 2.80e+01 5.05e+01	$\substack{3.28\mathrm{e}+02\\ \mathbf{2.17e}+02\\ 3.24\mathrm{e}+02}$	1.75e+01 2.13e+01 3.33e+01	$\substack{2.84\text{e}+02\\2.95\text{e}+02\\\mathbf{2.11e}+02}$	$\substack{2.20\mathrm{e}+02\\ \mathbf{1.86e}+01\\ 2.84\mathrm{e}+01}$	$\substack{1.74\text{e}+03\\5.64\text{e}+02\\\textbf{4.65e}+\textbf{02}}$	1.12e+03 1.53e+01 2.19e+01	$\substack{8.56\mathrm{e}+03\\5.81\mathrm{e}+02\\\mathbf{3.15\mathrm{e}}+02}$	$\substack{2.06\text{e}+04\\ \mathbf{1.24e}+01\\ 1.96\text{e}+01}$	$\substack{1.79\mathrm{e}+05\\4.82\mathrm{e}+02\\\mathbf{2.96e}+02}$
Gaussian $n = 20$	Smolyak	1.27e-01	5.09e-01	5.25e-02	1.98e-01	2.04e-02	8.19e-02	5.99e-03	2.55e-02	1.03e-03	5.48e-03	1.04e-04	7.67e-04	1.09e-05	9.11e-05
	LS-Uniform	1.64e-01	4.80e-01	5.76e-02	3.60e-01	1.43e-02	1.76e-01	3.02e-03	5.33e-02	4.11e-04	1.40e-02	4.38e-05	3.14e-03	3.70e-06	4.87e-04
	LS-Chebyshev	2.16e-01	4.32e-01	9.13e-02	3.07e-01	1.97e-02	7.26e-02	3.65e-03	1.72e-02	4.95e-04	4.03e-03	4.84e-05	5.75e-04	5.06e-06	7.89e-05
G-Function $n = 20$	Smolyak LS-Uniform LS-Chebyshev	2.66e+00 1.64e+00 5.62e+00	1.03e+01 7.09e+00 1.07e+01	2.83e+00 1.42e+00 2.09e+00	$\substack{3.10\mathrm{e}+01\\1.52\mathrm{e}+01\\\mathbf{1.32e}+01}$	1.33e+00 6.32e-01 7.16e-01	1.92e+01 4.80e+00 4.88e+00	8.36e-01 3.28e-01 3.12e-01	1.01e+01 4.31e+00 2.53e+00	5.09e-01 1.75e-01 1.50e-01	$\substack{7.42\mathrm{e}+00\\3.53\mathrm{e}+00\\\mathbf{2.01\mathrm{e}}+00}$	8.11e-01 9.32e-02 7.47e-02	$\substack{7.16\text{e}+00\\2.01\text{e}+00\\\mathbf{1.05\text{e}}+00}$	3.41e+01 4.96e-02 3.74e-02	2.99e+02 2.84e+00 6.95e-01
Morokoff Calfisch 1 $n = 20$	Smolyak	1.84e-01	4.04e-01	3.86e-02	1.27e-01	1.01e-02	4.78e-02	1.42e-03	1.25e-02	3.84e-03	2.53e-02	1.88e-03	1.41e-02	5.08e-03	4.83e-02
	LS-Uniform	1.03e-01	3.60e-01	2.60e-02	1.61e-01	5.38e-03	6.23e-02	1.05e-03	1.55e-02	1.77e-04	4.89e-03	2.95e-05	8.68e-04	4.20e-06	2.16e-04
	LS-Chebyshev	1.48e-01	3.91e-01	3.69e-02	1.26e-01	8.74e-03	4.46e-02	1.38e-03	8.73e-03	3.17e-04	2.45e-03	7.67e-05	6.24e-04	1.08e-05	1.53e-04
Morokoff Calfisch 2 $n = 20$	Smolyak	1.15e-02	3.17e-02	6.20e-04	4.55e-03	2.48e-05	3.31e-04	7.38e-07	1.32e-05	1.65e-08	2.89e-07	1.97e-10	3.94e-09	1.30e-11	1.05e-10
	LS-Uniform	1.68e-02	4.60e-02	8.95e-04	4.33e-03	3.76e-05	6.02e-04	1.25e-06	1.67e-05	3.04e-08	7.25e-07	3.72e-10	1.09e-08	4.18e-11	2.60e-09
	LS-Chebyshev	2.28e-02	5.42e-02	1.40e-03	7.15e-03	6.60e-05	9.22e-04	2.49e-06	2.90e-05	6.96e-08	2.74e-06	1.79e-09	2.85e-08	2.62e-09	4.70e-08
Oscillatory $n = 20$	Smolyak	3.66e-01	1.70e+00	1.30e-01	1.05e+00	3.83e-02	4.20e-01	6.64e-03	1.33e-01	1.22e-03	2.06e-02	1.22e-04	1.83e-03	9.23e-06	1.46e-04
	LS-Uniform	5.29e-01	1.49e+00	2.02e-01	9.42e-01	5.51e-02	6.55e-01	1.20e-02	1.58e-01	2.33e-03	5.04e-02	1.56e-04	6.58e-03	5.53e-06	5.14e-04
	LS-Chebyshev	1.02e+00	1.98e+00	3.74e-01	1.75e+00	9.50e-02	9.65e-01	2.44e-02	2.34e-01	4.75e-03	1.75e-01	3.18e-04	1.09e-02	1.30e-05	3.79e-04
Product Peak n = 20	Smolyak	1.85e-02	5.98e-02	5.82e-03	2.65e-02	1.56e-03	1.11e-02	3.50e-04	3.71e-03	7.07e-05	7.34e-04	1.22e-05	1.47e-04	1.86e-06	2.38e-05
	LS-Uniform	2.83e-02	8.55e-02	7.92e-03	3.06e-02	1.78e-03	2.08e-02	2.65e-04	5.21e-03	4.18e-05	1.39e-03	5.64e-06	4.92e-04	8.04e-07	9.14e-05
	LS-Chebyshev	3.13e-02	8.76e-02	1.32e-02	5.36e-02	2.66e-03	1.59e-02	4.31e-04	2.68e-03	6.17e-05	5.02e-04	7.73e-06	8.25e-05	8.51e-07	1.27e-05
Roos Arnold n = 20	Smolyak LS-Uniform LS-Chebyshev	1.74e+02 1.60e+02 3.08e+02	$\substack{8.26\mathrm{e}+02\\7.44\mathrm{e}+02\\\mathbf{7.12\mathrm{e}}+02}$	8.71e+01 9.45e+01 1.58e+02	$\substack{1.12\mathrm{e}+03\\6.56\mathrm{e}+02\\\mathbf{5.14e}+02}$	6.68e+01 4.17e+01 6.37e+01	1.03e+03 3.81e+02 3.54e+02	3.97e+01 2.33e+01 3.26e+01	4.99e+02 2.79e+02 2.86e+02	2.21e+01 1.28e+01 1.42e+01	3.81e+02 2.80e+02 1.50e+02	1.37e+02 6.60e+00 6.65e+00	1.12e+03 1.58e+02 9.01e+01	2.12e+03 3.49e+00 3.24e+00	1.90e+04 1.70e+02 7.67e+01
Zhou $n = 20$	Smolyak	7.56e+02	2.32e+03	1.89e+02	6.25e+02	3.75e+01	1.28e+02	5.00e+00	2.11e+01	5.54e-01	2.35e+00	5.79e-02	2.62e-01	4.21e-03	2.06e-02
	LS-Uniform	1.03e+03	2.62e+03	2.51e+02	1.67e+03	2.61e+01	2.49e+02	2.94e+00	7.44e+01	2.96e-01	1.17e+01	2.44e-02	1.39e+00	1.34e-03	8.32e-02
	LS-Chebyshev	1.97e+03	4.34e+03	3.16e+02	9.56e+02	3.96e+01	1.62e+02	4.44e+00	2.27e+01	3.97e-01	2.11e+00	2.89e-02	1.83e-01	1.64e-03	1.12e-02

Table 6. Dim 7

FIGURE 8. Visualization of the results for dim = 10 and various scales tested with n=10 realizations for function class *Gaussian*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca	ale1	Sca	de2	Sca	ıle3	Sca	ale4	Sca	ale5	Sea	ale6
			ax		ax		ax		ax		ax		ax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
$\begin{aligned} \mathbf{Bratley} \\ n = 10 \end{aligned}$	Smolyak	2.21e-01	6.10e-01	9.08e-02	3.36e-01	2.45e-02	2.73e-01	9.25e-03	1.58e-01	1.77e-03	3.56e-02	2.55e-04	7.25e-03
	LS-Uniform	3.56e-01	9.09e-01	1.45e-01	8.21e-01	3.58e-02	2.27e-01	1.52e-02	2.24e-01	3.06e-03	6.61e-02	4.65e-04	1.89e-02
	LS-Chebyshev	7.81e-01	1.77e+00	2.26e-01	7.64e-01	6.60e-02	4.70e-01	2.91e-02	3.87e-01	7.25e-03	1.25e-01	1.29e-03	1.68e-02
Continuous $n = 10$	Smolyak	8.52e-02	3.01e-01	3.04e-02	2.49e-01	2.08e-02	2.16e-01	8.93e-03	1.35e-01	1.19e-01	7.79e-01	3.17e-01	2.58e+00
	LS-Uniform	1.17e-01	3.28e-01	3.19e-02	2.21e-01	1.62e-02	1.42e-01	8.46e-03	9.53e-02	4.25e-03	8.13e-02	2.17e-03	6.28e-02
	LS-Chebyshev	1.25e-01	4.27e-01	3.16e-02	2.85e-01	1.62e-02	1.92e-01	7.84e-03	1.58e-01	3.58e-03	1.49e-01	1.80e-03	7.73e-02
Corner Peak $n = 10$	Smolyak	3.79e-05	2.09e-04	3.90e-05	6.27e-04	1.91e-05	6.36e-04	7.45e-05	3.16e-03	2.98e-04	2.20e-02	7.17e-04	8.41e-02
	LS-Uniform	3.21e-04	7.33e-04	3.05e-04	2.25e-03	1.42e-04	2.31e-03	6.64e-05	2.30e-03	5.85e-05	9.05e-03	3.90e-05	7.56e-03
	LS-Chebyshev	4.89e-05	1.96e-04	1.20e-04	6.06e-04	2.30e-04	1.76e-03	1.55e-04	5.73e-03	1.62e-04	4.95e-03	1.53e-04	4.48e-03
Discontinuous $n = 10$	Smolyak LS-Uniform LS-Chebyshev	5.83e+01 6.43e+01 8.01e+01	1.32e+02 1.48e+02 1.62e+02	4.62e+01 4.72e+01 6.62e+01	$\substack{2.44\text{e}+02\\ \mathbf{1.95e}+02\\ 2.57\text{e}+02}$	3.23e+01 3.13e+01 5.35e+01	$\substack{\textbf{4.10e+02}\\4.57e+02\\4.26e+02}$	2.72e+01 2.74e+01 4.32e+01	$\substack{4.71\mathrm{e}+02\\3.82\mathrm{e}+02\\\mathbf{3.48e}+02}$	1.67e+02 2.26e+01 3.20e+01	$\substack{1.17\text{e}+03\\6.61\text{e}+02\\\mathbf{3.91\text{e}}+02}$	1.79e+03 1.91e+01 2.81e+01	1.57e+04 5.47e+02 3.82e+02
Gaussian $n = 10$	Smolyak	1.43e-01	4.33e-01	4.47e-02	2.08e-01	1.66e-02	9.36e-02	5.26e-03	2.73e-02	1.38e-03	7.80e-03	2.54e-04	1.54e-03
	LS-Uniform	1.47e-01	4.30e-01	6.12e-02	4.46e-01	1.65e-02	1.85e-01	3.64e-03	9.65e-02	6.60e-04	3.80e-02	9.44e-05	6.00e-03
	LS-Chebyshev	1.68e-01	5.81e-01	6.78e-02	2.90e-01	2.39e-02	1.51e-01	5.44e-03	3.81e-02	9.19e-04	6.05e-03	1.26e-04	1.25e-03
$\begin{aligned} & \textbf{G-Function} \\ & n = 10 \end{aligned}$	Smolyak LS-Uniform LS-Chebyshev	2.57e+00 4.69e+00 7.42e+00	1.11e+01 1.09e+01 1.54e+01	2.51e+00 1.76e+00 2.65e+00	$\substack{2.38\mathrm{e}+01\\1.73\mathrm{e}+01\\\mathbf{1.05e}+01}$	1.49e+00 8.08e-01 1.08e+00	$\substack{2.39\mathrm{e}+01\\ \mathbf{7.67e}+00\\ 9.30\mathrm{e}+00}$	1.19e+00 3.99e-01 5.18e-01	$\substack{1.84\mathrm{e}+01\\5.33\mathrm{e}+00\\\mathbf{4.22\mathrm{e}+00}}$	7.56e-01 2.15e-01 2.56e-01	$\substack{1.61\mathrm{e}+01\\4.03\mathrm{e}+00\\\mathbf{3.29e}+00}$	9.98e-01 1.20e-01 1.43e-01	1.02e+01 5.01e+00 1.73e+00
Morokoff Calfisch 1 $n=10$	Smolyak	1.01e-01	2.95e-01	1.94e-02	7.63e-02	2.75e-03	2.04e-02	4.38e-04	5.73e-03	6.61e-05	1.14e-03	1.53e-05	2.17e-04
	LS-Uniform	6.37e-02	1.81e-01	1.10e-02	4.12e-02	1.54e-03	2.05e-02	1.58e-04	1.85e-03	1.49e-05	3.44e-04	1.67e-06	9.00e-05
	LS-Chebyshev	7.90e-02	1.98e-01	1.65e-02	6.66e-02	2.39e-03	1.12e-02	2.38e-04	2.05e-03	2.64e-05	2.83e-04	3.77e-06	4.51e-05
Morokoff Calfisch 2 $n=10$	Smolyak	1.03e-02	3.80e-02	5.32e-04	2.91e-03	2.04e-05	1.53e-04	5.76e-07	1.08e-05	1.49e-08	4.69e-07	2.91e-10	8.54e-09
	LS-Uniform	2.02e-02	5.98e-02	9.42e-04	3.76e-03	3.30e-05	2.58e-04	9.52e-07	1.34e-05	2.73e-08	7.68e-07	5.46e-10	2.39e-08
	LS-Chebyshev	2.53e-02	8.65e-02	1.50e-03	7.68e-03	6.37e-05	4.61e-04	2.12e-06	4.99e-05	6.23e-08	1.62e-06	3.51e-09	3.92e-08
Oscillatory $n = 10$	Smolyak	4.61e-01	2.22e+00	1.60e-01	1.14e+00	4.33e-02	4.17e-01	1.18e-02	2.84e-01	1.77e-03	6.05e-02	2.47e-04	7.27e-03
	LS-Uniform	6.25e-01	1.93e+00	2.68e-01	1.50e+00	6.82e-02	5.12e-01	1.88e-02	4.30e-01	3.04e-03	1.13e-01	4.47e-04	2.42e-02
	LS-Chebyshev	6.61e-01	2.08e+00	3.85e-01	1.93e+00	1.01e-01	7.33e-01	4.09e-02	8.28e-01	5.46e-03	1.99e-01	1.14e-03	3.26e-02
Product Peak n = 10	Smolyak	3.89e-02	1.24e-01	7.72e-03	4.67e-02	1.84e-03	1.24e-02	3.26e-04	4.62e-03	5.97e-05	7.33e-04	1.09e-05	1.99e-04
	LS-Uniform	3.25e-02	1.10e-01	9.21e-03	8.89e-02	1.47e-03	2.12e-02	2.42e-04	4.79e-03	4.20e-05	1.94e-03	7.57e-06	7.92e-04
	LS-Chebyshev	4.17e-02	1.32e-01	1.11e-02	4.68e-02	2.20e-03	1.97e-02	3.89e-04	4.74e-03	6.18e-05	9.90e-04	9.33e-06	1.85e-04
Roos Arnold n = 10	Smolyak LS-Uniform LS-Chebyshev	1.42e+03 1.43e+03 1.35e+03	8.09e+03 7.00e+03 7.02e+03	5.08e+02 5.84e+02 7.12e+02	$\substack{4.07\mathrm{e}+03\\3.85\mathrm{e}+03\\\mathbf{3.23\mathrm{e}}+03}$	2.67e+02 2.79e+02 3.30e+02	2.49e+03 2.99e+03 2.66e+03	1.62e+02 1.22e+02 1.49e+02	2.72e+03 2.37e+03 1.21e+03	9.16e+01 5.59e+01 6.79e+01	1.88e+03 1.25e+03 9.95e+02	3.18e+02 2.91e+01 3.16e+01	2.78e+03 7.71e+02 6.20e+02
Zhou $n = 10$	Smolyak LS-Uniform LS-Chebyshev	3.91e+03 6.87e+03 5.76e+03	1.46e+04 1.93e+04 1.47e+04	1.08e+03 1.02e+03 1.37e+03	$\substack{\textbf{2.74e+03}\\5.53e+03\\4.51e+03}$	2.26e+02 2.10e+02 2.35e+02	$\substack{ 7.50\mathrm{e}+02\\ 1.76\mathrm{e}+03\\ 1.26\mathrm{e}+03}$	2.93e+01 2.08e+01 2.76e+01	$\substack{1.58\mathrm{e}+02\\4.64\mathrm{e}+02\\\mathbf{1.20\mathrm{e}}+02}$	3.46e+00 1.73e+00 2.48e+00	$\substack{1.85\mathrm{e}+01\\6.85\mathrm{e}+01\\\mathbf{1.70\mathrm{e}}+01}$	3.97e-01 1.51e-01 2.07e-01	2.08e+00 $1.97e+01$ $1.51e+00$

Table 7. Dim 8

FIGURE 9. Visualization of the results for dim = 6 and various scales tested with n=25 realizations for function class *Oscillatory*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca	ale1	Sca	de2	Sca	ıle3	Sca	ale4	Sca	ale5	Sca	de6
			ax		ax		ax		ax		ax		ax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
$\begin{array}{l} \textbf{Bratley} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	4.23e-01 5.79e-01 1.65e+00	7.52e-01 1.69e+00 4.10e+00	1.29e-01 2.07e-01 4.29e-01	6.43e-01 9.54e-01 1.28e+00	4.45e-02 6.53e-02 1.83e-01	2.98e-01 4.35e-01 6.48e-01	9.67e-03 1.56e-02 5.27e-02	1.14e-01 1.80e-01 2.70e-01	2.23e-03 3.71e-03 1.54e-02	4.88e-02 9.71e-02 8.49e-02	3.82e-04 6.86e-04 3.57e-03	1.50e-02 2.69e-02 2.84e-02
Continuous $n = 25$	Smolyak LS-Uniform LS-Chebyshev	7.41e-02 1.20e-01	1.84e-01 1.75e-01 2.15e-01	3.22e-02 2.96e-02 3.37e-02	2.26e-01 2.15e-01 2.81e-01	3.09e-02 1.44e-02 1.75e-02	2.10e-01 1.87e-01 2.30e-01	1.37e-02 7.63e-03 8.10e-03	2.31e-01 1.48e-01 2.39e-01	6.23e-03 3.81e-03 3.83e-03	1.65e-01 9.10e-02 1.36e-01	3.45e-03 2.01e-03 1.83e-03	1.06e-01 9.37e-02 9.73e-02
Corner Peak $n=25$	Smolyak LS-Uniform LS-Chebyshev	3.04e-06 3.01e-06 4.45e-04	1.33e-05 1.30e-05 6.74e-04	4.70e-06 1.40e-05 2.04e-04	4.94e-05 1.11e-04 6.48e-04	9.96e-06 1.12e-05 3.54e-04	3.36e-04 2.87e-04 1.29e-03	3.59e-05 4.41e-05 1.07e-03	2.78e-03 2.55e-03 1.03e-02	7.27e-05 2.14e-05 1.03e-03	3.67e-03 2.34e-03 1.08e-02	3.50e-04 3.66e-05 1.57e-03	3.70e-02 1.15e-02 2.96e-02
Discontinuous $n = 25$	Smolyak LS-Uniform LS-Chebyshev	1.86e+02 2.43e+02 5.89e+02	6.52e+02 9.66e+02 1.18e+03	1.09e+02 1.39e+02 1.59e+02	$\substack{6.76\mathrm{e}+02\\7.04\mathrm{e}+02\\\mathbf{6.21e}+02}$	7.13e+01 8.33e+01 1.30e+02	$\substack{8.03\text{e}+02\\ \mathbf{6.98e}+02\\ 1.36\text{e}+03}$	5.40e+01 7.50e+01 9.55e+01	8.61e+02 1.00e+03 1.05e+03	4.59e+01 6.16e+01 7.68e+01	$\substack{1.58\mathrm{e}+03\\1.48\mathrm{e}+03\\\mathbf{1.20\mathrm{e}}+03}$	3.54e+01 5.24e+01 5.85e+01	1.53e+03 1.74e+03 1.17e+03
Gaussian $n = 25$	Smolyak LS-Uniform LS-Chebyshev	1.74e-01 1.38e-01 2.42e-01	5.90e-01 3.03e-01 4.86e-01	6.51e-02 5.18e-02 8.55e-02	3.16e-01 2.05e-01 3.43e-01	2.33e-02 1.60e-02 2.57e-02	1.87e-01 1.54e-01 1.37e-01	7.40e-03 4.36e-03 6.30e-03	6.08e-02 9.49e-02 4.01e-02	1.72e-03 8.34e-04 1.33e-03	1.89e-02 3.40e-02 1.02e-02	4.46e-04 1.46e-04 2.25e-04	4.04e-03 1.21e-02 2.25e-03
G-Function $n=25$	Smolyak LS-Uniform LS-Chebyshev	2.07e+00 3.96e+00 1.73e+01	$\substack{7.90\mathrm{e}+00\\ \textbf{7.81e}+\textbf{00}\\ 3.14\mathrm{e}+01}$	2.69e+00 1.82e+00 6.00e+00	$\substack{2.18\mathrm{e}+01\\ \mathbf{9.22e}+00\\ 1.85\mathrm{e}+01}$	1.94e+00 1.00e+00 3.21e+00	$\substack{2.43\mathrm{e}+01\\ \mathbf{1.02e}+01\\ 1.22\mathrm{e}+01}$	1.50e+00 5.77e-01 1.74e+00	3.58e+01 8.25e+00 9.25e+00	1.05e+00 3.34e-01 8.41e-01	3.46e+01 7.85e+00 5.52e+00	6.75e-01 1.88e-01 4.05e-01	1.99e+01 $6.19e+00$ $3.97e+00$
Morokoff Calfisch 1 $n=25$	Smolyak LS-Uniform LS-Chebyshev	2.90e-01 7.18e-02 3.28e-01	7.01e-01 1.86e-01 5.50e-01	8.59e-02 3.45e-02 1.03e-01	2.55e-01 1.35e-01 2.64e-01	2.87e-02 1.33e-02 3.69e-02	1.44e-01 1.13e-01 1.32e-01	8.41e-03 2.92e-03 8.70e-03	7.06e-02 3.67e-02 3.63e-02	2.36e-03 7.66e-04 2.48e-03	2.26e-02 3.91e-02 1.20e-02	6.38e-04 1.91e-04 7.74e-04	7.12e-03 1.36e-02 5.69e-03
Morokoff Calfisch 2 $n=25$	Smolyak LS-Uniform LS-Chebyshev	2.08e-02 2.45e-02 6.49e-02	6.39e-02 8.13e-02 1.59e-01	8.67e-04 1.56e-03 2.86e-03	5.64e-03 7.83e-03 9.68e-03	3.03e-05 4.88e-05 1.32e-04	3.66e-04 3.83e-04 6.62e-04	7.92e-07 1.32e-06 4.74e-06	1.68e-05 2.15e-05 3.12e-05	1.76e-08 2.98e-08 1.26e-07	6.13e-07 7.43e-07 1.26e-06	3.21e-10 5.92e-10 2.96e-09	1.19e-08 2.16e-08 2.03e-08
Oscillatory $n = 25$	Smolyak LS-Uniform LS-Chebyshev	7.99e-01 6.98e-01 1.39e+00	2.40e+00 1.90e+00 2.46e+00	2.31e-01 2.72e-01 6.19e-01	1.32e+00 1.61e+00 2.44e+00	7.70e-02 1.18e-01 2.71e-01	1.09e+00 1.08e+00 1.14e+00	1.77e-02 2.90e-02 8.26e-02	4.51e-01 5.07e-01 5.14e-01	3.87e-03 6.59e-03 2.34e-02	1.19e-01 2.58e-01 1.58e-01	5.91e-04 9.69e-04 4.42e-03	1.79e-02 4.29e-02 2.92e-02
Product Peak n = 25	Smolyak LS-Uniform LS-Chebyshev	1.64e+00 4.75e+00 1.04e+01	5.55e+00 9.52e+00 2.27e+01	2.12e+00 2.13e+00 4.92e+00	2.26e+01 1.51e+01 1.52e+01	5.05e-01 4.45e-01 1.39e+00	9.76e+00 4.75e+00 5.80e+00	9.90e-02 5.95e-02 2.24e-01	4.03e+00 1.38e+00 1.17e+00	8.57e-03 5.81e-03 2.81e-02	5.69e-01 2.27e-01 1.73e-01	1.37e-03 8.40e-04 3.60e-03	2.19e-01 9.11e-02 3.10e-02
Roos Arnold n = 25	Smolyak LS-Uniform LS-Chebyshev	6.79e+02 6.49e+02 3.36e+03	2.27e+03 1.53e+03 6.23e+03	9.78e+02 7.46e+02 1.60e+03	1.05e+04 7.82e+03 6.39e+03	4.05e+02 2.68e+02 6.98e+02	7.91e+03 3.65e+03 2.80e+03	2.57e+02 1.62e+02 3.57e+02	5.04e+03 2.27e+03 2.60e+03	1.79e+02 9.05e+01 1.76e+02	3.97e+03 1.36e+03 1.25e+03	1.03e+02 5.17e+01 8.42e+01	2.48e+03 1.63e+03 8.59e+02
Zhou $n=25$	Smolyak LS-Uniform LS-Chebyshev	2.15e+04 2.28e+04 2.78e+04	$\substack{5.01\text{e}+04\\ \textbf{4.93e}+\textbf{04}\\ 7.08\text{e}+04}$	4.49e+03 4.90e+03 7.48e+03	1.93e+04 2.27e+04 2.20e+04	9.62e+02 9.29e+02 1.45e+03	4.32e+03 1.01e+04 4.96e+03	2.01e+02 1.20e+02 2.08e+02	6.98e+02 2.54e+03 1.00e+03	2.87e+01 1.20e+01 2.21e+01	1.48e+02 4.91e+02 1.59e+02	3.34e+00 1.14e+00 1.87e+00	2.06e+01 7.11e+01 1.61e+01

Table 8. Dim 9

FIGURE 10. Visualization of the results for dim = 10 and various scales tested with n=10 realizations for function class *Oscillatory*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

			de1 ax	Sca	le2 ax		ıle3 ax		ale4 ax		ile5 ax		ale6
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ax ℓ_{∞}
Bratley $n = 10$	Smolyak	4.76e-01	1.18e+00	5.79e-02	4.21e-01	2.69e-02	3.25e-01	6.81e-03	1.19e-01	1.50e-03	3.81e-02	3.50e-04	1.34e-02
	LS-Uniform	7.95e-01	2.03e+00	7.01e-02	4.62e-01	4.14e-02	3.51e-01	1.09e-02	1.27e-01	2.54e-03	5.67e-02	6.21e-04	3.17e-02
	LS-Chebyshev	1.03e+00	3.86e+00	1.89e-01	6.08e-01	9.14e-02	3.80e-01	2.75e-02	2.69e-01	6.75e-03	7.61e-02	1.85e-03	3.81e-02
Continuous $n = 10$	Smolyak	5.19e-02	2.21e-01	2.03e-02	1.39e-01	1.69e-02	1.22e-01	8.83e-03	1.37e-01	1.72e-01	2.12e+00	1.76e+00	1.71e+01
	LS-Uniform	5.17e-02	2.76e-01	2.06e-02	1.67e-01	9.44e-03	1.24e-01	4.85e-03	9.10e-02	2.66e-03	7.49e-02	1.42e-03	7.87e-02
	LS-Chebyshev	6.37e-02	2.68e-01	2.40e-02	2.06e-01	1.06e-02	1.99e-01	5.17e-03	1.17e-01	2.62e-03	1.19e-01	1.31e-03	1.21e-01
Corner Peak $n=10$	Smolyak	6.36e-08	3.36e-07	1.12e-07	1.95e-06	4.22e-07	2.15e-05	1.09e-06	1.01e-04	2.53e-06	1.95e-04	1.53e-05	1.86e-03
	LS-Uniform	2.83e-07	7.51e-07	4.25e-07	2.41e-06	8.78e-07	1.96e-05	1.16e-06	7.89e-05	8.78e-06	8.42e-04	3.40e-06	1.07e-03
	LS-Chebyshev	4.76e-07	7.79e-07	6.31e-06	1.87e-05	2.43e-06	2.02e-05	6.27e-06	2.20e-04	4.21e-06	1.61e-04	1.55e-05	6.48e-04
Discontinuous $n = 10$	Smolyak LS-Uniform LS-Chebyshev	1.69e+02 1.88e+02 1.16e+03	$\substack{5.26\text{e}+02\\ \textbf{4.07e}+\textbf{02}\\ 2.57\text{e}+03}$	1.49e+02 1.84e+02 3.93e+02	$\substack{2.09\mathrm{e}+03\\2.31\mathrm{e}+03\\\mathbf{1.68e}+03}$	1.08e+02 1.10e+02 3.68e+02	2.13e+03 1.17e+03 1.80e+03	8.96e+01 8.38e+01 2.20e+02	1.81e+03 1.77e+03 1.75e+03	2.40e+03 7.52e+01 1.49e+02	$\substack{2.54\text{e}+04\\3.27\text{e}+03\\\mathbf{1.74\text{e}}+03}$	5.23e+04 6.23e+01 1.11e+02	5.17e+05 2.23e+03 1.81e+03
Gaussian $n = 10$	Smolyak	1.68e-01	5.18e-01	4.20e-02	3.83e-01	1.44e-02	1.40e-01	4.96e-03	5.87e-02	1.58e-03	2.57e-02	4.45e-04	4.64e-03
	LS-Uniform	1.40e-01	3.59e-01	4.45e-02	2.90e-01	1.64e-02	2.23e-01	4.46e-03	1.56e-01	1.22e-03	1.23e-01	2.49e-04	3.44e-02
	LS-Chebyshev	1.38e-01	4.45e-01	7.25e-02	3.39e-01	2.47e-02	1.93e-01	7.52e-03	7.87e-02	1.93e-03	2.35e-02	4.13e-04	5.15e-03
G-Function $n = 10$	Smolyak LS-Uniform LS-Chebyshev	4.80e+00 5.16e+00 1.01e+01	2.13e+01 1.41e+01 2.43e+01	3.85e+00 2.06e+00 6.59e+00	$\substack{3.74\mathrm{e}+01\\ \mathbf{2.04e}+01\\ 2.11\mathrm{e}+01}$	3.36e+00 1.42e+00 3.07e+00	5.23e+01 1.81e+01 1.80e+01	2.98e+00 8.82e-01 1.56e+00	9.17e+01 2.21e+01 1.50e+01	2.08e+00 5.11e-01 8.10e-01	6.29e+01 1.01e+01 9.99e+00	3.80e+00 2.95e-01 5.45e-01	5.50e+01 1.06e+01 8.00e+00
Morokoff Calfisch 1 $n = 10$	Smolyak	2.15e-01	6.01e-01	6.60e-02	2.27e-01	1.91e-02	9.96e-02	4.83e-03	4.73e-02	3.85e-02	3.54e-01	2.51e-02	2.80e-01
	LS-Uniform	8.17e-02	2.59e-01	3.26e-02	1.37e-01	9.92e-03	9.09e-02	1.95e-03	3.76e-02	5.93e-04	1.28e-02	1.48e-04	8.75e-03
	LS-Chebyshev	1.42e-01	3.07e-01	5.72e-02	2.23e-01	1.73e-02	7.04e-02	6.10e-03	3.23e-02	1.92e-03	1.40e-02	4.81e-04	4.57e-03
Morokoff Calfisch 2 $n=10$	Smolyak	9.91e-03	2.99e-02	5.43e-04	4.68e-03	2.32e-05	3.25e-04	6.91e-07	1.15e-05	1.21e-08	6.23e-07	2.10e-10	1.21e-08
	LS-Uniform	1.55e-02	4.95e-02	7.66e-04	4.89e-03	3.59e-05	3.17e-04	1.10e-06	1.49e-05	2.03e-08	7.06e-07	3.79e-10	2.29e-08
	LS-Chebyshev	1.75e-02	3.84e-02	1.16e-03	6.71e-03	7.10e-05	5.42e-04	2.68e-06	3.75e-05	6.19e-08	2.45e-06	4.89e-08	7.28e-07
Oscillatory $n = 10$	Smolyak	4.00e-01	1.44e+00	2.58e-01	1.65e+00	9.24e-02	2.42e+00	2.83e-02	7.26e-01	6.27e-03	3.11e-01	1.10e-03	5.98e-02
	LS-Uniform	7.35e-01	1.75e+00	3.66e-01	2.65e+00	1.33e-01	1.45e+00	4.53e-02	7.97e-01	1.08e-02	3.37e-01	1.94e-03	8.61e-02
	LS-Chebyshev	1.24e+00	3.27e+00	6.13e-01	3.01e+00	2.16e-01	1.98e+00	8.77e-02	2.28e+00	2.00e-02	1.11e+00	6.02e-03	3.95e-01
Product Peak $n=10$	Smolyak	2.21e-02	5.26e-02	4.35e-03	3.51e-02	1.02e-03	7.00e-03	2.20e-04	3.37e-03	4.36e-05	1.05e-03	7.98e-06	1.91e-04
	LS-Uniform	1.77e-02	3.89e-02	2.97e-03	1.61e-02	6.12e-04	8.38e-03	1.47e-04	1.02e-02	2.63e-05	2.67e-03	3.56e-06	4.04e-04
	LS-Chebyshev	2.29e-02	5.99e-02	4.85e-03	2.69e-02	9.90e-04	8.92e-03	1.98e-04	2.37e-03	3.71e-05	8.10e-04	7.24e-06	2.04e-04
Roos Arnold $n = 10$	Smolyak	9.78e+02	5.89e+03	6.01e+02	1.15e+04	5.72e+02	1.01e+04	4.95e+02	1.66e+04	3.99e+02	1.35e+04	1.27e+03	1.28e+04
	LS-Uniform	9.42e+02	4.49e+03	4.64e+02	8.87e+03	3.06e+02	4.31e+03	2.12e+02	4.74e+03	1.25e+02	5.31e+03	7.29e+01	2.97e+03
	LS-Chebyshev	2.46e+03	5.99e+03	1.33e+03	8.92e+03	8.08e+02	3.92e+03	5.08e+02	5.50e+03	2.68e+02	4.14e+03	1.46e+02	3.33e+03
Zhou $n = 10$	Smolyak	7.84e+04	2.55e+05	1.05e+04	1.11e+05	3.02e+03	3.27e+04	5.91e+02	5.95e+03	1.06e+02	9.28e+02	1.62e+01	1.62e+02
	LS-Uniform	6.76e+04	1.57e+05	1.26e+04	9.18e+04	2.67e+03	3.70e+04	4.42e+02	1.57e+04	5.77e+01	2.03e+03	7.06e+00	6.20e+02
	LS-Chebyshev	8.19e+04	3.01e+05	2.43e+04	1.05e+05	4.52e+03	2.38e+04	7.89e+02	5.77e+03	1.07e+02	7.63e+02	1.25e+01	1.36e+02

Table 9. Dim 10

FIGURE 11. Visualization of the results for dim = 10 and various scales tested with n = 10 realizations for function class Product-Peak. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

Add more detailed description mentioning whether Smolyak or Least Squares is preferable.

		Sca	de1	Sca	le2	Sca	de3	Sca	ile4	Sca	de5	Sca	le6	Sca	de7	Sca	ale8	Sea	ale9
		m	ax	m	ax	m	ax	m	ax	m	ax	m	ВX	m	ax	m	ıax	m	ax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
$\begin{array}{c} \mathbf{Dim} \ 2 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.55e-01 9.13e-02 2.16e-01	2.28e-01 1.35e-01 3.24e-01	1.01e-01 4.27e-02 5.49e-02		2.50e-02 7.79e-02 1.90e-02	2.84e-01	7.88e-03 6.99e-02 9.06e-03	3.37e-02 4.70e-01 3.05e-02	2.56e-02	1.92e-02 2.24e-01 2.46e-02	5.99e-03	1.35e-02 7.54e-02 1.30e-02	5.35e-03	5.29e-03 8.21e-02 6.77e-03	1.97e-04 1.44e-02 2.50e-04	5.47e-01	7.01e-05 7.67e+00 1.06e-04	
$\begin{array}{c} \textbf{Dim 3} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.45e-01 9.91e-02 1.54e-01		5.89e-02 1.67e-01 5.14e-02	1.90e-01 4.57e-01 1.56e-01	5.12e-02		1.19e-02 1.48e-02 8.80e-03	5.77e-02 1.07e-01 4.80e-02	7.14e-03	2.78e-02 6.28e-02 2.93e-02	6.91e-03	1.87e-01	6.65e-04 2.41e-03 6.98e-04	1.07e-02 7.40e-02 9.45e-03	1.31e-03		1.04e-04 9.36e-03 1.24e-04	3.40e-03 8.41e-01 3.79e-03
$\begin{array}{c} \textbf{Dim 4} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.69e-01 1.30e-01 1.73e-01	4.47e-01 3.08e-01 4.39e-01	6.12e-02 8.44e-02 5.15e-02		3.75e-02 2.70e-02 2.42e-02	1.16e-01 1.37e-01 1.19e-01	1.55e-02 1.09e-02 9.02e-03	5.44e-02 7.07e-02 6.54e-02	6.80e-03	3.96e-02 7.09e-02 4.28e-02	2.87e-03		9.22e-04 1.55e-03 7.78e-04	1.42e-02 3.32e-02 1.95e-02	3.76e-04 8.18e-04 3.32e-04		1.76e-04 6.25e-04 1.51e-04	4.97e-03 9.32e-02 9.79e-03
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.24e-01 1.08e-01 1.37e-01	2.55e-01 2.29e-01 2.60e-01			2.96e-02 2.95e-02 2.46e-02		1.60e-02	9.53e-02 1.28e-01 1.03e-01	6.69e-03	1.67e+00 6.55e-02 6.10e-02	3.60e-03			4.57e-02		4.29e-02		
$\begin{array}{c} \textbf{Dim 6} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.30e-01 1.13e-01 1.23e-01	2.61e-01 3.31e-01 3.71e-01	6.84e-02 4.96e-02 4.95e-02	2.24e-01 2.40e-01 3.36e-01		1.49e-01	9.41e-03	1.25e-01 8.68e-02 1.39e-01	4.82e-03	8.38e-01 5.43e-02 9.18e-02	2.69e-03	4.18e+00 6.78e-02 5.23e-02	1.37e-03	3.29e+00 7.07e-02 3.40e-02				
$\begin{array}{c} \mathbf{Dim} \ 7 \\ n=20 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.18e-01 6.66e-02 1.74e-01	3.24e-01 1.88e-01 3.22e-01		1.93e-01 2.18e-01 2.08e-01	3.58e-02 1.53e-02 1.72e-02		7.28e-03	1.49e-01 1.14e-01 1.55e-01	3.65e-03	1.64e+00 9.41e-02 8.45e-02	1.89e-03	4.96e-02		4.39e-02				
Dim 8 n = 10	Smolyak LS-Uniform LS-Chebyshev	8.52e-02 1.17e-01 1.25e-01	3.01e-01 3.28e-01 4.27e-01		2.49e-01 2.21e-01 2.85e-01	2.08e-02 1.62e-02 1.62e-02	1.42e-01				7.79e-01 8.13e-02 1.49e-01		2.58e+00 6.28e-02 7.73e-02						
Dim 9 n = 25	Smolyak LS-Uniform LS-Chebyshev	5.84e-02 7.41e-02 1.20e-01	1.84e-01 1.75e-01 2.15e-01		2.26e-01 2.15e-01 2.81e-01		2.10e-01 1.87e-01 2.30e-01		2.31e-01 1.48e-01 2.39e-01	3.81e-03			1.06e-01 9.37e-02 9.73e-02						
Dim 10 n = 10	Smolyak LS-Uniform LS-Chebyshev	5.19e-02 5.17e-02 6.37e-02	2.21e-01 2.76e-01 2.68e-01	2.06e-02	1.67e-01	9.44e-03				2.66e-03	2.12e+00 7.49e-02 1.19e-01	1.42e-03	7.87e-02				ï		

Table 10. Visualization of the results for function class Continuous for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 12. Visualization of the results for dim = 4 and various scales tested with n=25 realizations for function class *G-Function*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca	de1	Sca	le2	Sca	de3	Sci	de4	Sca	de5	Sca	de6	Sca	de7	Sca	de8	Sea	de9
		m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
$\begin{array}{c} \mathbf{Dim} \ 2 \\ n = 25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	7.91e-02 3.50e-02 1.47e-01	1.17e-01 4.91e-02 2.28e-01	1.67e-02 6.20e-03 3.10e-02		4.52e-03 3.23e-03 2.62e-03	8.68e-03 1.54e-02 8.10e-03	5.81e-04 5.19e-04 3.80e-04	1.48e-03 3.31e-03 1.94e-03	3.31e-05 5.36e-05 1.72e-05	1.04e-04 4.50e-04 5.50e-05	2.55e-07 4.37e-07 1.86e-07	8.90e-07 4.13e-06 8.95e-07	1.75e-09 1.07e-08 1.10e-09	6.08e-09 2.01e-07 4.69e-09	7.94e-14 8.45e-13 6.70e-14	2.56e-13 2.33e-11 2.87e-13	8.06e-16 1.38e-11 1.89e-15	6.22e-15 7.92e-10 2.48e-14
$\begin{array}{c} \mathbf{Dim} \ 3 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	4.34e-02 5.36e-02 2.22e-01	6.73e-02 9.50e-02 3.36e-01	3.96e-02 1.69e-02 4.79e-02		1.36e-02 1.20e-02 1.12e-02		1.65e-03	3.01e-02 9.08e-03 1.16e-02	3.77e-04		6.96e-05	1.34e-03 1.03e-03 4.00e-04	2.77e-05 1.36e-05 1.15e-05	1.84e-04 5.16e-04 6.56e-05	1.88e-06 2.32e-06 9.61e-07	1.24e-05 8.73e-05 4.63e-06	4.08e-08 2.51e-07 2.12e-08	3.12e-07 1.69e-05 1.34e-07
$\begin{array}{c} \textbf{Dim 4} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	8.68e-03 1.84e-02 8.91e-02	1.73e-02 3.46e-02 1.58e-01		1.23e-01 6.25e-02 2.77e-01	9.98e-03		3.51e-03	8.03e-02 4.68e-02 3.26e-02	1.34e-03		2.63e-04	1.81e-02 1.08e-02 2.84e-03	5.53e-05	6.36e-03 2.61e-03 9.73e-04	1.35e-04 1.53e-05 2.97e-05	1.55e-03 1.35e-03 1.94e-04	2.16e-05 2.87e-06 5.95e-06	3.04e-04 2.53e-04 4.72e-05
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.13e-03 2.28e-03 9.80e-03	3.15e-03 4.34e-03 2.22e-02		2.98e-02 1.87e-02 6.71e-02	3.14e-03	2.87e-02	2.47e-03	1.43e-01 4.56e-02 6.98e-02	6.66e-04		3.49e-04	7.53e-02 1.47e-02 1.14e-02	2.14e-03 1.48e-04 4.67e-04		1.51e-02 4.61e-05 1.41e-04	8.48e-02 7.17e-03 1.47e-03		
$\begin{array}{c} \textbf{Dim 6} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.14e-03 1.58e-03 3.58e-02	4.11e-03 4.29e-03 6.67e-02	1.54e-03 4.75e-03 1.85e-02	1.22e-02 2.00e-02 5.02e-02	2.71e-03	2.15e-02 2.87e-02 2.22e-02	1.45e-03	1.12e-01 4.05e-02 6.38e-02	6.61e-04	1.72e-01 3.78e-02 2.31e-02	4.10e-03 3.29e-04 1.90e-03	1.03e-01 2.24e-02 1.81e-02	3.07e-03 1.25e-04 7.66e-04	9.44e-02 1.15e-02 9.90e-03				
$\begin{array}{c} \mathbf{Dim} \ 7 \\ n=20 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	4.58e-04 4.58e-04 1.21e-03	2.47e-03 2.48e-03 2.83e-03					4.65e-04	7.65e-02 1.12e-02 1.21e-02	4.04e-04	1.22e-01 5.40e-02 5.06e-02	4.61e-03 1.83e-04 3.31e-04	1.09e-01 4.35e-02 1.68e-02	2.90e-03 1.42e-04 2.22e-04	1.59e-01 4.51e-02 1.03e-02				
$\begin{array}{c} \mathbf{Dim} \ 8 \\ n=10 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.79e-05 3.21e-04 4.89e-05	2.09e-04 7.33e-04 1.96e-04	3.90e-05 3.05e-04 1.20e-04	6.27e-04 2.25e-03 6.06e-04	1.91e-05 1.42e-04 2.30e-04		6.64e-05	3.16e-03 2.30e-03 5.73e-03	5.85e-05	2.20e-02 9.05e-03 4.95e-03	3.90e-05	8.41e-02 7.56e-03 4.48e-03						
$\begin{array}{c} \mathbf{Dim} \ 9 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.04e-06 3.01e-06 4.45e-04	1.33e-05 1.30e-05 6.74e-04	4.70e-06 1.40e-05 2.04e-04	4.94e-05 1.11e-04 6.48e-04	1.12e-05	3.36e-04 2.87e-04 1.29e-03	3.59e-05 4.41e-05 1.07e-03	2.78e-03 2.55e-03 1.03e-02		3.67e-03 2.34e-03 1.08e-02		3.70e-02 1.15e-02 2.96e-02						
$\begin{array}{c} \mathbf{Dim} \ 10 \\ n=10 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	6.36e-08 2.83e-07 4.76e-07	3.36e-07 7.51e-07 7.79e-07	4.25e-07	1.95e-06 2.41e-06 1.87e-05	8.78e-07	2.15e-05 1.96e-05 2.02e-05	1.16e-06	1.01e-04 7.89e-05 2.20e-04		1.95e-04 8.42e-04 1.61e-04	1.53e-05 3.40e-06 1.55e-05	1.86e-03 1.07e-03 6.48e-04				ï		

TABLE 11. Visualization of the results for function class $Corner\ Peak$ for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 13. Visualization of the results for dim = 10 and various scales tested with n = 10 realizations for function class *G-Function*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca	de1	Sci	de2	Scr	de3	Sci	ıle4	Sca	de5	Scr	de6	Sci	ıle7	Scr	de8	Sc	ale9
		m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	п	iax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
Dim 2 n = 25	Smolyak LS-Uniform LS-Chebyshev	1.41e+00 2.32e+00 1.55e+00		2.23e+00 1.27e+00 1.80e+00		1.12e+00 2.65e+00 1.06e+00	2.83e+00 1.07e+01 4.16e+00	8.57e-01 1.60e+01 8.25e-01	3.83e+00 1.06e+02 3.66e+00	6.10e-01 5.31e+00 5.28e-01	$\substack{4.35\mathrm{e}+00\\4.74\mathrm{e}+01\\\mathbf{3.07e}+00}$	3.93e-01 2.15e+00 3.67e-01	$\substack{4.18\mathrm{e}+00\\3.57\mathrm{e}+01\\\mathbf{2.95\mathrm{e}}+00}$	2.89e-01 2.82e+00 2.91e-01	3.33e+00 5.96e+01 3.31e+00	2.68e-01 9.45e+00 2.00e-01	4.30e+00 3.56e+02 3.70e+00	1.67e-01 7.90e+03 1.54e-01	3.31e+00 4.49e+05 2.96e+00
$\begin{array}{c} \mathbf{Dim} \ 3 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.70e+00 2.26e+00 3.63e+00	$\substack{4.58\mathrm{e}+00\\ \mathbf{4.48e}+00\\ 5.31\mathrm{e}+00}$	4.20e+00	1.08e+01 1.21e+01 5.88e+00		8.43e+00 1.59e+01 7.11e+00	2.04e+00 2.20e+00 1.59e+00	1.19e+01		1.11e+01 1.57e+01 6.59e+00	1.81e+00	7.68e+00 3.90e+01 5.66e+00	6.82e-01 2.10e+00 5.91e-01	1.04e+01 6.26e+01 8.11e+00	5.25e-01 2.61e+00 4.12e-01	1.02e+01 1.42e+02 6.51e+00	3.39e+01	9.66e+00 2.76e+03 6.23e+00
$\begin{array}{c} \textbf{Dim 4} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	9.48e+00 7.24e+00 9.15e+00		5.76e+00 5.67e+00 6.46e+00		4.30e+00	2.15e+01 2.31e+01 1.27e+01	2.96e+00 2.86e+00 3.79e+00		3.68e+00		3.26e+00	$\substack{1.88\mathrm{e}+01\\7.03\mathrm{e}+01\\\mathbf{1.65\mathrm{e}+01}}$	1.44e+00 2.47e+00 1.44e+00	6.35e+01	1.05e+00 2.95e+00 1.01e+00		7.32e-01 3.06e+00 7.34e-01	3.47e+02
Dim 5 n = 25	Smolyak LS-Uniform LS-Chebyshev	1.10e+01 1.04e+01 7.81e+00	2.49e+01			6.97e+00	4.40e+01 4.17e+01 3.01e+01	6.20e+00 6.96e+00 6.35e+00	6.86e+01	8.37e+01 4.79e+00 5.25e+00		4.55e+00		4.15e+02 4.16e+00 2.71e+00	1.21e+02	1.73e+05 3.56e+00 2.11e+00	1.05e+06 1.83e+02 4.60e+01		
$\begin{array}{c} \textbf{Dim 6} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.48e+01 2.30e+01 6.53e+01	6.34e+01 7.01e+01 1.04e+02	1.70e+01		1.38e+01	1.32e+02 1.21e+02 9.97e+01	1.10e+01	1.22e+02 8.31e+01 9.02e+01	9.22e+00	1.17e+02	1.11e+03 7.75e+00 6.67e+00	7.38e+03 1.70e+02 9.65e+01	3.01e+03 6.76e+00 5.49e+00					
Dim 7 n = 20	Smolyak LS-Uniform LS-Chebyshev	2.61e+01 4.48e+01 3.98e+01	$\substack{1.30\mathrm{e}+02\\1.14\mathrm{e}+02\\\mathbf{1.04e}+02}$		1.52e+02		3.28e+02 2.17e+02 3.24e+02	1.75e+01 2.13e+01 3.33e+01		1.86e + 01	$\substack{1.74\mathrm{e}+03\\5.64\mathrm{e}+02\\\mathbf{4.65\mathrm{e}}+02}$	1.53e+01	$\substack{8.56\mathrm{e}+03\\5.81\mathrm{e}+02\\\mathbf{3.15e}+02}$	2.06e+04 1.24e+01 1.96e+01					
$\begin{array}{c} \mathbf{Dim} \ 8 \\ n=10 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	6.43e+01	$\substack{1.32\text{e}+02\\1.48\text{e}+02\\1.62\text{e}+02}$	4.72e+01	2.44e+02 1.95e+02 2.57e+02		4.10e+02 4.57e+02 4.26e+02	2.74e+01	4.71e+02 3.82e+02 3.48e+02	2.26e+01		1.91e+01							
Dim 9 n = 25	Smolyak LS-Uniform LS-Chebyshev	1.86e+02 2.43e+02 5.89e+02	$\substack{6.52e+02\\9.66e+02\\1.18e+03}$	1.09e+02 1.39e+02 1.59e+02			8.03e+02 6.98e+02 1.36e+03	5.40e+01 7.50e+01 9.55e+01	8.61e+02 1.00e+03 1.05e+03	6.16e+01		3.54e+01 5.24e+01 5.85e+01	1.53e+03 1.74e+03 1.17e+03						
Dim 10 n = 10	Smolyak LS-Uniform LS-Chebyshev		5.26e+02 4.07e+02 2.57e+03		2.31e+03		2.13e+03 1.17e+03 1.80e+03			7.52e+01		6.23e+01							

TABLE 12. Visualization of the results for function class Discontinuous for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 14. Visualization of the results for dim = 4 and various scales tested with n=25 realizations for function class *Morokoff Calfisch 1*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca		Sca			ale3		ale4		de5	Sca		Sca		Sca			de9
		ℓ_2 m	ax ℓ∞	ℓ_2	ℓ_{∞}	ℓ_2	ax ℓ_{∞}	ℓ_2	$ext{ex}$	ℓ_2 m	ax ℓ_{∞}	ℓ_2	ax ℓ_{∞}	ℓ_2	ax ℓ_{∞}	ℓ_2 m	ℓ_{∞}	ℓ_2	ℓ_{∞}
Dim 2 n = 25	Smolyak LS-Uniform LS-Chebyshev	1.01e-01 7.49e-02 1.53e-01	1.20e-01 1.15e-01 2.34e-01	8.34e-03 4.30e-03 1.22e-02		5.85e-04 8.71e-04 2.86e-04	8.95e-04 3.82e-03 7.18e-04	1.95e-05 1.43e-05 1.37e-05	3.77e-05 8.85e-05 6.92e-05	3.01e-07 4.97e-07 1.68e-07	7.14e-07 3.64e-06 4.77e-07	1.23e-10 1.91e-10 8.37e-11	3.57e-10 1.58e-09 3.88e-10	1.59e-14 1.15e-13 9.38e-15	4.77e-14 2.26e-12 3.20e-14	2.21e-15 1.46e-14 2.38e-15	4.63e-13	3.76e-15 5.66e-11 2.14e-15	2.07e-14 3.25e-09 2.94e-14
$\begin{array}{c} \mathbf{Dim} \ 3 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.19e-01 1.04e-01 1.80e-01	2.41e-01 1.98e-01 2.94e-01	3.74e-02 8.55e-02 2.78e-02	6.96e-02 2.36e-01 7.21e-02	3.93e-03 3.91e-03 2.53e-03	7.46e-03 2.16e-02 6.34e-03		6.07e-04 8.76e-04 4.87e-04	6.84e-06	2.66e-05 5.22e-05 1.83e-05	1.84e-07	1.26e-06 2.37e-06 5.29e-07	6.97e-09 5.01e-09 2.83e-09	3.23e-08 1.19e-07 1.48e-08	8.42e-11 1.25e-10 3.76e-11	4.24e-10 4.86e-09 1.91e-10	4.94e-14 5.54e-13 2.25e-14	2.60e-13 4.43e-11 1.46e-13
$\begin{array}{c} \textbf{Dim 4} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.24e-01 1.18e-01 1.80e-01	2.27e-01 2.25e-01 4.16e-01	3.18e-02 3.72e-02 4.02e-02		3.68e-03	1.50e-02 3.06e-02 1.24e-02	3.41e-04	2.09e-03 3.84e-03 1.30e-03	3.25e-05	6.16e-04	4.11e-06 1.61e-06 1.68e-06	1.85e-05 3.73e-05 8.65e-06	1.63e-07 9.03e-08 6.71e-08	8.09e-07 3.19e-06 3.85e-07	5.55e-09 2.95e-09 1.71e-09	3.34e-08 1.51e-07 1.24e-08	1.44e-10 6.70e-11 4.13e-11	1.01e-09 4.31e-09 2.84e-10
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.74e-01 1.45e-01 2.08e-01	3.96e-01 2.64e-01 3.71e-01		1.07e-01 1.71e-01 1.65e-01	1.10e-02 7.90e-03 1.05e-02		1.23e-03	6.75e-03 1.44e-02 6.55e-03	1.13e-04		1.07e-05	1.22e-04 3.54e-04 5.90e-05	2.19e-06 7.73e-07 6.65e-07	1.01e-05 6.02e-05 4.58e-06	1.26e-07 5.17e-08 3.40e-08	7.34e-07 9.34e-06 2.70e-07		
$\begin{array}{c} \textbf{Dim 6} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.14e-01 1.53e-01 2.16e-01	3.09e-01 2.91e-01 4.85e-01		9.34e-02 1.47e-01 1.93e-01	1.03e-02 8.16e-03 1.41e-02	4.42e-02 6.35e-02 5.01e-02			1.84e-04	2.08e-03 4.80e-03 1.75e-03	6.13e-05 3.21e-05 3.07e-05		7.11e-06 2.51e-06 2.68e-06	4.26e-05 2.09e-04 2.03e-05				
$\begin{array}{c} \mathbf{Dim} \ 7 \\ n=20 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.27e-01 1.64e-01 2.16e-01	5.09e-01 4.80e-01 4.32e-01	5.76e-02	3.60e-01	2.04e-02 1.43e-02 1.97e-02	8.19e-02 1.76e-01 7.26e-02		2.55e-02 5.33e-02 1.72e-02	4.11e-04		4.38e-05	7.67e-04 3.14e-03 5.75e-04		9.11e-05 4.87e-04 7.89e-05				
Dim 8 n = 10	Smolyak LS-Uniform LS-Chebyshev	1.43e-01 1.47e-01 1.68e-01	4.33e-01 4.30e-01 5.81e-01			1.65e-02	9.36e-02 1.85e-01 1.51e-01	3.64e-03		6.60e-04	7.80e-03 3.80e-02 6.05e-03	9.44e-05	1.54e-03 6.00e-03 1.25e-03						
Dim 9 n = 25	Smolyak LS-Uniform LS-Chebyshev	1.74e-01 1.38e-01 2.42e-01	5.90e-01 3.03e-01 4.86e-01	6.51e-02 5.18e-02 8.55e-02	3.16e-01 2.05e-01 3.43e-01	2.33e-02 1.60e-02 2.57e-02	1.87e-01 1.54e-01 1.37e-01	7.40e-03 4.36e-03 6.30e-03		8.34e-04	1.89e-02 3.40e-02 1.02e-02	4.46e-04 1.46e-04 2.25e-04	4.04e-03 1.21e-02 2.25e-03						
$\begin{array}{c} {\bf Dim} \ {\bf 10} \\ n=10 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.68e-01 1.40e-01 1.38e-01	5.18e-01 3.59e-01 4.45e-01		3.83e-01 2.90e-01 3.39e-01	1.44e-02 1.64e-02 2.47e-02	1.40e-01 2.23e-01 1.93e-01	4.96e-03 4.46e-03 7.52e-03	5.87e-02 1.56e-01 7.87e-02	1.22e-03	2.57e-02 1.23e-01 2.35e-02	2.49e-04	4.64e-03 3.44e-02 5.15e-03				·		

Table 13. Visualization of the results for function class Gaussian for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 15. Visualization of the results for dim = 10 and various scales tested with n=10 realizations for function class *Morokoff Calfisch 1*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

			ale1		ale2		ale3	Sca		Sca			ıle6	Sca		Sca			ale9
		ℓ_2	ℓ_{∞}	ℓ_2	l_{∞}	ℓ_2	ℓ_{∞}	ℓ_2 m	ℓ_{∞}	ℓ_2 m	$e^{\pm i x}$	ℓ_2 m	ℓ_{∞}	ℓ_2 m	$e^{\pm i x}$	ℓ_2 m	ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}
$\begin{array}{c} \mathbf{Dim} \ 2 \\ n = 25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	7.28e-02 8.09e-02 1.84e-01	9.21e-02 1.01e-01 2.88e-01	3.22e-03 9.64e-04 4.61e-03	5.02e-03 2.00e-03 1.07e-02	4.66e-05 5.94e-05 2.43e-05	7.06e-05 2.74e-04 7.37e-05	2.02e-07 2.32e-07 1.43e-07	4.00e-07 1.52e-06 6.98e-07	3.76e-10 5.88e-10 2.14e-10	8.91e-10 4.00e-09 6.16e-10	1.24e-15 2.19e-15 1.48e-15	4.11e-15 2.13e-14 7.11e-15	3.93e-15	7.44e-15 7.05e-14 1.91e-14	2.33e-15 1.38e-14 2.42e-15	5.34e-13	3.89e-15 3.69e-11 1.64e-15	1.98e-14 2.13e-09 2.38e-14
$\begin{array}{c} \textbf{Dim 3} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.09e-01 1.57e-01 3.14e-01	2.25e-01 2.77e-01 4.91e-01	1.52e-02 2.08e-02 2.53e-02	3.53e-02 5.44e-02 4.78e-02	1.16e-03 1.21e-03 1.03e-03	2.69e-03 5.95e-03 2.84e-03	2.50e-05 1.14e-05 1.37e-05	5.80e-05 9.36e-05 4.49e-05	2.64e-07 1.05e-07 9.48e-08	6.93e-07 1.02e-06 4.74e-07	1.48e-09 6.21e-10 5.48e-10	4.68e-09 7.91e-09 2.57e-09	4.34e-12 3.02e-12 1.73e-12	1.70e-11 7.73e-11 9.71e-12	9.89e-15	2.79e-14 3.66e-13 7.55e-14		4.03e-12
$\begin{array}{c} \mathbf{Dim} \ 4 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.19e-01 2.48e-01 4.17e-01	5.82e-01 7.03e-01 1.01e+00	3.83e-02 9.71e-02 1.37e-01	1.38e-01 3.47e-01 4.04e-01	4.20e-03 8.49e-03 1.29e-02	2.17e-02 4.88e-02 4.68e-02	2.63e-04	1.54e-03 2.43e-03 1.68e-03	6.04e-06	3.91e-05 7.96e-05 4.46e-05		6.48e-07 1.34e-06 3.79e-07	4.88e-10	7.12e-09 1.44e-08 3.56e-09	8.65e-12 3.03e-12 2.62e-12	4.10e-11 1.55e-10 1.82e-11	1.41e-14	
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.15e-01 3.45e-01 5.98e-01	9.04e-01 7.68e-01 1.24e+00	7.35e-02 1.19e-01 1.66e-01	2.58e-01 5.17e-01 4.85e-01	1.11e-02 1.97e-02 4.24e-02	6.58e-02 1.07e-01 1.44e-01	1.28e-03 2.26e-03 5.24e-03		1.25e-04 8.43e-05 1.69e-04	6.51e-04 1.13e-03 7.27e-04	5.16e-06 2.34e-06 3.18e-06	2.30e-05 1.37e-04 1.44e-05	1.15e-07 3.20e-08 3.95e-08	5.26e-07 1.97e-06 2.22e-07	1.58e-09 3.53e-10 3.93e-10	7.71e-09 3.37e-08 3.02e-09		
$\begin{array}{c} \mathbf{Dim} \ 6 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.65e-01 4.78e-01 8.97e-01	$\substack{1.22\mathrm{e}+00\\ \mathbf{1.05e}+00\\ 2.40\mathrm{e}+00}$	1.13e-01 1.97e-01 3.08e-01	4.72e-01 8.69e-01 9.02e-01	2.11e-02 3.77e-02 7.57e-02	1.86e-01 2.85e-01 2.97e-01	3.82e-03 6.30e-03 1.66e-02	4.68e-02 7.86e-02 7.36e-02	3.88e-04 4.91e-04 1.71e-03	4.44e-03 7.57e-03 1.04e-02	3.26e-05 2.50e-05 6.38e-05	3.19e-04 7.49e-04 3.89e-04	1.73e-06 7.39e-07 1.54e-06	1.33e-05 5.65e-05 1.00e-05				
$\begin{array}{c} \textbf{Dim 7} \\ n=20 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.66e-01 5.29e-01 1.02e+00	1.70e+00 1.49e+00 1.98e+00	1.30e-01 2.02e-01 3.74e-01	1.05e+00 9.42e-01 1.75e+00	3.83e-02 5.51e-02 9.50e-02	4.20e-01 6.55e-01 9.65e-01	6.64e-03 1.20e-02 2.44e-02	1.33e-01 1.58e-01 2.34e-01	1.22e-03 2.33e-03 4.75e-03	2.06e-02 5.04e-02 1.75e-01	1.22e-04 1.56e-04 3.18e-04	1.83e-03 6.58e-03 1.09e-02	9.23e-06 5.53e-06 1.30e-05	1.46e-04 5.14e-04 3.79e-04				
$\begin{array}{c} \mathbf{Dim} \ 8 \\ n=10 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	4.61e-01 6.25e-01 6.61e-01	$\substack{2.22\mathrm{e}+00\\ \mathbf{1.93e}+00\\ 2.08\mathrm{e}+00}$	1.60e-01 2.68e-01 3.85e-01	1.14e+00 1.50e+00 1.93e+00	4.33e-02 6.82e-02 1.01e-01	4.17e-01 5.12e-01 7.33e-01	1.18e-02 1.88e-02 4.09e-02	2.84e-01 4.30e-01 8.28e-01	3.04e-03	6.05e-02 1.13e-01 1.99e-01	2.47e-04 4.47e-04 1.14e-03	7.27e-03 2.42e-02 3.26e-02						
$\begin{array}{c} \textbf{Dim 9} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	7.99e-01 6.98e-01 1.39e+00	$\substack{2.40\mathrm{e}+00\\ \mathbf{1.90e}+00\\ 2.46\mathrm{e}+00}$	2.31e-01 2.72e-01 6.19e-01	$\substack{1.32\text{e}+00\\1.61\text{e}+00\\2.44\text{e}+00}$			1.77e-02 2.90e-02 8.26e-02	4.51e-01 5.07e-01 5.14e-01	3.87e-03 6.59e-03 2.34e-02	1.19e-01 2.58e-01 1.58e-01	5.91e-04 9.69e-04 4.42e-03	1.79e-02 4.29e-02 2.92e-02						
Dim 10 n = 10	Smolyak LS-Uniform LS-Chebyshev	4.00e-01 7.35e-01 1.24e+00	1.44e+00 1.75e+00 3.27e+00	2.58e-01 3.66e-01 6.13e-01	$\substack{\textbf{1.65e+00}\\2.65e+00\\3.01e+00}$	1.33e-01	$\substack{2.42\mathrm{e}+00\\ \mathbf{1.45e}+00\\ 1.98\mathrm{e}+00}$	2.83e-02 4.53e-02 8.77e-02	7.26e-01 7.97e-01 2.28e+00	1.08e-02	3.11e-01 3.37e-01 1.11e+00	1.10e-03 1.94e-03 6.02e-03	5.98e-02 8.61e-02 3.95e-01						

Table 14. Visualization of the results for function class Oscillatory for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 16. Visualization of the results for dim = 6 and various scales tested with n=25 realizations for function class *Morokoff Calfisch 2*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca	del	Sca	de2	Sca	ale3	Sc	ale4	Sca	ıle5	Sca	de6	Sca	de7	Sca	le8	Sca	de9
		m	ax	m	ax	m	ax	11	ax	m	ax	m	ax	m	ax	m	hX:	m	ax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
$\begin{array}{c} \mathbf{Dim} \ 2 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	7.11e-02 1.10e-01	9.32e-02 9.82e-02 1.90e-01	4.82e-16 2.44e-15 7.19e-15	1.11e-15 4.66e-15 1.44e-14	4.52e-16 2.17e-15 8.31e-15	1.33e-15 7.55e-15 2.15e-14	8.43e-16 4.26e-14 1.22e-14	2.44e-15 2.82e-13 3.43e-14		4.12e-14	4.23e-15	3.73e-14	7.79e-15	1.33e-14 1.42e-13 4.31e-14	2.34e-14	8.82e-13	5.65e-15 5.96e-11 4.77e-15	
$\begin{array}{c} \textbf{Dim 3} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.41e-01 5.91e-01 9.47e-01	8.35e-01 1.01e+00 1.46e+00	1.29e-02 1.53e-02 3.29e-02	5.80e-02 6.16e-02 6.83e-02	1.99e-14	3.11e-15 7.61e-14 2.35e-14	1.47e-14	8.57e-14	1.36e-14	9.15e-14	9.60e-15	1.73e-13	3.95e-15 7.03e-15 3.55e-14	1.68e-13	5.11e-15	3.64e-14 2.40e-13 3.26e-13	7.45e-15 1.03e-13 2.12e-14	1.11e-11
$\begin{array}{c} \textbf{Dim 4}\\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	7.79e-01 6.71e-01 1.52e+00	$\substack{2.06\text{e}+00\\ \mathbf{1.63e}+00\\ 2.99\text{e}+00}$	8.87e-02 1.11e-01 2.15e-01	3.66e-01 5.15e-01 7.50e-01	5.98e-03 6.19e-03 1.09e-02	6.06e-02 3.51e-02 4.32e-02	3.15e-15 2.95e-14 2.26e-13	1.33e-14 1.43e-13 9.61e-13	2.83e-14	1.78e-13	1.61e-14	3.82e-14 2.49e-13 1.48e-12		2.68e-13	1.10e-14 6.70e-15 1.77e-13	1.09e-13 2.07e-13 2.40e-12	1.13e-14	1.31e-13 1.27e-12 1.59e-12
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.96e+00 1.42e+00 2.08e+00	$\substack{6.38\mathrm{e}+00\\ \mathbf{4.42e}+00\\ 6.54\mathrm{e}+00}$	4.01e-01 2.61e-01 5.26e-01	1.93e+00 8.35e-01 1.37e+00	2.34e-02 2.83e-02 5.08e-02	1.69e-01 1.74e-01 1.78e-01	1.15e-03 1.04e-03 2.58e-03	2.20e-02 1.22e-02 1.55e-02	5.12e-14		2.38e-14		2.22e-12 3.07e-14 3.24e-13	1.27e-11 1.07e-12 1.86e-12	7.67e-15	9.57e-09 3.64e-13 2.18e-12		
$\begin{array}{c} \textbf{Dim 6} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.07e+00 2.07e+00 3.29e+00	6.82e+00 7.00e+00 8.02e+00	5.25e-01 5.15e-01 1.19e+00	$\substack{4.40\mathrm{e}+00\\3.59\mathrm{e}+00\\\mathbf{2.48e}+00}$	1.01e-01 8.96e-02 1.71e-01	1.44e+00 9.74e-01 7.10e-01	8.24e-03 6.66e-03 2.08e-02	2.01e-01 8.63e-02 7.64e-02		1.08e-02 6.30e-03 6.52e-03	1.11e-11 9.89e-14 1.88e-11	1.36e-12	1.07e-10 1.08e-13 7.04e-12					
Dim 7 n = 20	Smolyak LS-Uniform LS-Chebyshev	1.85e-02 2.83e-02 3.13e-02	5.98e-02 8.55e-02 8.76e-02	5.82e-03 7.92e-03 1.32e-02	2.65e-02 3.06e-02 5.36e-02	1.56e-03 1.78e-03 2.66e-03	1.11e-02 2.08e-02 1.59e-02	3.50e-04 2.65e-04 4.31e-04	3.71e-03 5.21e-03 2.68e-03	4.18e-05	7.34e-04 1.39e-03 5.02e-04	5.64e-06	1.47e-04 4.92e-04 8.25e-05	1.86e-06 8.04e-07 8.51e-07	2.38e-05 9.14e-05 1.27e-05				
$ \frac{\mathbf{Dim 8}}{n-10} $	Smolyak LS-Uniform LS-Chebyshev	3.89e-02 3.25e-02 4.17e-02	1.24e-01 1.10e-01 1.32e-01	7.72e-03 9.21e-03 1.11e-02	4.67e-02 8.89e-02 4.68e-02	1.84e-03 1.47e-03 2.20e-03	1.24e-02 2.12e-02 1.97e-02	3.26e-04 2.42e-04 3.89e-04	4.62e-03 4.79e-03 4.74e-03	4.20e-05	7.33e-04 1.94e-03 9.90e-04	1.09e-05 7.57e-06 9.33e-06	1.99e-04 7.92e-04 1.85e-04						
Dim 9 n = 25	Smolyak LS-Uniform LS-Chebyshev	1.64e+00 4.75e+00 1.04e+01	5.55e+00 9.52e+00 2.27e+01	$\substack{\textbf{2.12e+00}\\2.13e+00\\4.92e+00}$	2.26e+01 1.51e+01 1.52e+01		9.76e+00 4.75e+00 5.80e+00	9.90e-02 5.95e-02 2.24e-01	4.03e+00 1.38e+00 1.17e+00	5.81e-03	5.69e-01 2.27e-01 1.73e-01	8.40e-04	2.19e-01 9.11e-02 3.10e-02						
Dim 10 n = 10	Smolyak LS-Uniform LS-Chebyshev	2.21e-02 1.77e-02 2.29e-02	5.26e-02 3.89e-02 5.99e-02	4.35e-03 2.97e-03 4.85e-03	3.51e-02 1.61e-02 2.69e-02	1.02e-03 6.12e-04 9.90e-04	7.00e-03 8.38e-03 8.92e-03	2.20e-04 1.47e-04 1.98e-04	3.37e-03 1.02e-02 2.37e-03	2.63e-05	1.05e-03 2.67e-03 8.10e-04	3.56e-06	1.91e-04 4.04e-04 2.04e-04						

TABLE 15. Visualization of the results for function class $Product\ Peak$ for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 17. Visualization of the results for dim = 9 and various scales tested with n=25 realizations for function class *Morokoff Calfisch 2*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca	le1	Sca	de2	Sca	ıle3	Sc	ale4	Sc	ale5	Sc	ale6	Sca	le7	Sca	le8	Sca	le9
		m	ax	m	ax	m	ax	11	iax	11	1830	m	ax	m	n.xc	ma	ax	m	ax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
$\begin{array}{c} \mathbf{Dim} \ 2 \\ n = 25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.93e-01 3.41e-01 7.29e-01	4.99e-01 6.53e-01 1.01e+00	1.99e-01 1.19e-01 1.42e-01	3.67e-01 2.95e-01 4.01e-01	8.16e-02 3.64e-01 6.08e-02	2.13e-01 1.48e+00 1.44e-01	3.26e-02 3.63e-01 3.41e-02	1.10e-01 2.42e+00 1.25e-01	1.11e-02 1.11e-01 1.32e-02	7.23e-02 9.17e-01 6.48e-02	4.40e-03 2.37e-02 5.15e-03	3.70e-02 2.70e-01 3.77e-02	1.80e-03 2.67e-02 2.08e-03	2.05e-02 5.62e-01 2.43e-02		1.19e+00		
$\begin{array}{c} \textbf{Dim 3} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	6.12e-01 5.82e-01 6.84e-01	1.08e+00 1.17e+00 9.25e-01	4.34e-01 6.14e-01 3.72e-01	1.38e+00 1.76e+00 8.13e-01	1.99e-01 1.97e-01 1.45e-01	6.79e-01 9.60e-01 4.01e-01	9.02e-02 7.56e-02 8.58e-02	3.84e-01 4.53e-01 3.01e-01	4.39e-02 6.39e-02 3.75e-02	2.87e-01 7.35e-01 1.60e-01	1.85e-02 4.98e-02 1.62e-02	1.80e-01 1.13e+00 1.06e-01	7.74e-03 2.56e-02 7.48e-03	8.43e-02 6.36e-01 6.97e-02	2.88e-03 1.58e-02 2.84e-03	7.06e-01		2.43e-02 4.08e+00 2.29e-02
$\begin{array}{c} \mathbf{Dim} \ 4 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	8.16e-01 5.56e-01 1.05e+00	1.58e+00 1.25e+00 1.97e+00	5.69e-01 5.81e-01 6.71e-01	2.24e+00 2.38e+00 1.62e+00	3.74e-01 3.74e-01 3.90e-01	1.35e+00 2.64e+00 1.27e+00	1.72e-01 1.37e-01 1.22e-01	8.06e-01 1.18e+00 5.23e-01	7.73e-02 8.55e-02 5.15e-02	6.55e-01 8.84e-01 4.29e-01	3.78e-02	3.17e-01 8.67e-01 2.02e-01	1.43e-02 1.60e-02 1.10e-02	1.61e-01 6.40e-01 8.82e-02		1.01e-01 1.14e+00 7.14e-02	7.67e-03	4.81e-02 9.26e-01 5.20e-02
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	9.34e-01 7.76e-01 3.06e+00	$\substack{2.42\text{e}+00\\ \mathbf{1.93e}+00\\ 4.38\text{e}+00}$	9.32e-01 6.53e-01 9.59e-01	4.26e+00 2.16e+00 2.99e+00	6.12e-01 3.88e-01 4.79e-01	3.56e+00 2.37e+00 2.14e+00	2.00e-01	$\substack{1.78\mathrm{e}+00\\1.87\mathrm{e}+00\\1.29\mathrm{e}+00}$	9.20e-02	1.34e+00 1.19e+00 6.27e-01	4.74e-02	1.15e+00	1.08e+00 2.37e-02 2.00e-02	1.21e+00	1.32e-02	1.00e+00		
$\begin{array}{c} \textbf{Dim 6} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.27e+00 1.63e+00 5.40e+00	7.69e+00 5.40e+00 1.07e+01	1.23e+00 1.08e+00 2.04e+00	7.26e+00 3.30e+00 5.57e+00	7.87e-01 6.38e-01 8.05e-01	6.08e+00 3.14e+00 2.95e+00	3.14e-01	6.13e+00 2.76e+00 2.81e+00	1.41e-01	4.94e+00 2.04e+00 1.45e+00	8.01e-02	1.63e+00	4.10e+00 4.10e-02 3.84e-02	1.15e+00				
Dim 7 n = 20	Smolyak LS-Uniform LS-Chebyshev	2.66e+00 1.64e+00 5.62e+00	1.03e+01 7.09e+00 1.07e+01		3.10e+01 1.52e+01 1.32e+01	1.33e+00 6.32e-01 7.16e-01	4.80e+00	3.28e-01	1.01e+01 4.31e+00 2.53e+00	5.09e-01 1.75e-01 1.50e-01	7.42e+00 3.53e+00 2.01e+00	8.11e-01 9.32e-02 7.47e-02	2.01e+00		2.84e+00				
$\begin{array}{c} \mathbf{Dim} \ 8 \\ n=10 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.57e+00 4.69e+00 7.42e+00	1.11e+01 1.09e+01 1.54e+01	2.51e+00 1.76e+00 2.65e+00	2.38e+01 1.73e+01 1.05e+01	1.49e+00 8.08e-01 1.08e+00	2.39e+01 7.67e+00 9.30e+00	3.99e-01	$\substack{1.84\mathrm{e}+01\\5.33\mathrm{e}+00\\\mathbf{4.22\mathrm{e}}+00}$		1.61e+01 4.03e+00 3.29e+00	1.20e-01	$\substack{1.02\text{e}+01\\5.01\text{e}+00\\\mathbf{1.73\text{e}+00}}$						
$\begin{array}{c} \mathbf{Dim} \ 9 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.07e+00 3.96e+00 1.73e+01	7.90e+00 7.81e+00 3.14e+01	2.69e+00 1.82e+00 6.00e+00	2.18e+01 9.22e+00 1.85e+01	1.94e+00 1.00e+00 3.21e+00	1.02e+01	5.77e-01		3.34e-01	3.46e+01 7.85e+00 5.52e+00	1.88e-01	1.99e+01 6.19e+00 3.97e+00						
Dim 10 n = 10	Smolyak LS-Uniform LS-Chebyshev	4.80e+00 5.16e+00 1.01e+01	$\substack{2.13\text{e}+01\\ \mathbf{1.41e}+01\\ 2.43\text{e}+01}$			$\substack{3.36\mathrm{e}+00\\ \mathbf{1.42e}+00\\ 3.07\mathrm{e}+00}$			9.17e+01 2.21e+01 1.50e+01	5.11e-01	6.29e+01 1.01e+01 9.99e+00	2.95e-01	5.50e+01 1.06e+01 8.00e+00						

TABLE 16. Visualization of the results for function class G-Function for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 18. Visualization of the results for dim = 10 and various scales tested with n=10 realizations for function class *Morokoff Calfisch 2*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca	de1	Sca	le2	Sca	de3	Sca	de4	Sea	de5	Sca	de6	Sca	de7	Sca	de8	Sca	ale9
		m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
$\begin{array}{c} \mathbf{Dim} \ 2 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	4.43e-02 6.26e-02 1.45e-01	6.43e-02 7.99e-02 2.06e-01	1.31e-02 2.14e-03 1.06e-02	2.59e-02 3.95e-03 2.72e-02		3.21e-03 1.93e-03 3.73e-03	1.02e-04 3.77e-04 2.03e-04	3.05e-04 2.33e-03 5.55e-04	3.02e-06 7.05e-06 3.40e-06	9.59e-06 5.76e-05 1.16e-05	7.42e-08 9.23e-08 9.34e-08	2.66e-07 7.85e-07 4.62e-07	1.15e-09 6.04e-09 2.03e-09	4.95e-09 1.41e-07 9.98e-09	2.37e-12 1.92e-10 3.13e-11	1.10e-11 7.21e-09 1.45e-10	1.21e-14 1.09e-09 4.23e-13	6.17e-14 6.19e-08 1.88e-12
$\begin{array}{c} \mathbf{Dim} \ 3 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.23e-01 5.93e-02 2.45e-01	2.46e-01 1.15e-01 4.02e-01	2.50e-02 4.73e-02 2.64e-02	5.91e-02 1.25e-01 6.54e-02	2.84e-03 4.34e-03 4.37e-03	9.40e-03 2.23e-02 1.58e-02	3.09e-04	1.12e-03 2.80e-03 1.29e-03	1.55e-05	2.20e-04	4.34e-07	5.21e-06 1.09e-05 2.42e-06	2.64e-08 2.76e-08 1.96e-08	1.87e-07 1.16e-06 9.58e-08	4.04e-10 1.10e-09 3.11e-10	2.97e-09 7.16e-08 1.64e-09	5.05e-12 6.25e-11 7.53e-12	4.44e-09 5.78e-11
$\begin{array}{c} \mathbf{Dim} \ 4 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.37e-01 8.55e-02 1.43e-01	4.55e-01 1.59e-01 2.55e-01		2.49e-01 2.67e-01 2.22e-01	1.37e-02	$\begin{array}{c} 9.16\text{e-}02 \\ 1.38\text{e-}01 \\ \textbf{8.95\text{e-}02} \end{array}$	3.78e-03	2.78e-02 4.08e-02 1.76e-02	5.87e-04	9.13e-03 7.21e-03 7.21e-03	1.33e-04	2.67e-03 4.33e-03 1.38e-03	3.66e-05	5.68e-04 1.87e-03 4.05e-04	7.10e-06 4.92e-06 1.26e-05	1.38e-04 3.30e-04 1.25e-04	9.31e-07 2.71e-06	1.55e-05 7.79e-05 1.61e-05
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.92e-01 9.82e-02 1.41e-01	4.54e-01 1.95e-01 2.73e-01		2.74e-01 3.50e-01 2.56e-01	3.19e-02 1.75e-02 3.34e-02	1.27e-01 1.38e-01 1.18e-01		5.18e-02 5.66e-02 4.90e-02	1.23e-03		1.51e-01 3.56e-04 8.84e-04		4.72e-02 7.09e-05 2.02e-04	2.65e-01 2.22e-03 1.50e-03	1.46e+00 1.31e-05 3.74e-05	9.02e+00 1.06e-03 2.24e-04		
$\begin{array}{c} \textbf{Dim 6} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.30e-01 1.01e-01 2.41e-01	5.74e-01 3.10e-01 5.67e-01	8.29e-02 3.11e-02 6.65e-02	3.30e-01 1.14e-01 2.00e-01		1.70e-01 1.02e-01 1.40e-01	1.09e-02 2.65e-03 8.45e-03	8.55e-02 2.43e-02 4.01e-02	7.37e-04	5.01e-02 2.02e-02 1.10e-02	2.57e-04	1.86e-01 7.12e-03 4.84e-03	6.80e-05	1.69e+00 4.16e-03 1.63e-03				
$\begin{array}{c} \mathbf{Dim} \ 7 \\ n=20 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.84e-01 1.03e-01 1.48e-01	4.04e-01 3.60e-01 3.91e-01			1.01e-02 5.38e-03 8.74e-03		1.42e-03 1.05e-03 1.38e-03	1.25e-02 1.55e-02 8.73e-03	1.77e-04		2.95e-05	1.41e-02 8.68e-04 6.24e-04	5.08e-03 4.20e-06 1.08e-05	4.83e-02 2.16e-04 1.53e-04				
Dim 8 n = 10	Smolyak LS-Uniform LS-Chebyshev	1.01e-01 6.37e-02 7.90e-02	2.95e-01 1.81e-01 1.98e-01	1.94e-02 1.10e-02 1.65e-02	7.63e-02 4.12e-02 6.66e-02		2.04e-02 2.05e-02 1.12e-02	1.58e-04	5.73e-03 1.85e-03 2.05e-03	1.49e-05	1.14e-03 3.44e-04 2.83e-04	1.67e-06	2.17e-04 9.00e-05 4.51e-05						
$\begin{array}{c} \mathbf{Dim} \ 9 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.90e-01 7.18e-02 3.28e-01	7.01e-01 1.86e-01 5.50e-01	8.59e-02 3.45e-02 1.03e-01	2.55e-01 1.35e-01 2.64e-01	1.33e-02	1.44e-01 1.13e-01 1.32e-01	2.92e-03		7.66e-04	2.26e-02 3.91e-02 1.20e-02	6.38e-04 1.91e-04 7.74e-04	7.12e-03 1.36e-02 5.69e-03						
$\begin{array}{c} \mathbf{Dim} \ 10 \\ n = 10 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.15e-01 8.17e-02 1.42e-01	6.01e-01 2.59e-01 3.07e-01			1.91e-02 9.92e-03 1.73e-02			4.73e-02 3.76e-02 3.23e-02	5.93e-04		2.51e-02 1.48e-04 4.81e-04							

TABLE 17. Visualization of the results for function class $Morokoff\ Calfisch\ 1$ for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 19. Visualization of the results for dim = 4 and various scales tested with n=25 realizations for function class $Roos\ Arnold$. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca	le1	Sca	ale2	Sca	de3	Sca	de4	Sea	de5	Sea	ıle6	Sca	de7	Sca	de8	Sea	ale9
		m	ВX	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax	m	ax
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}								
$\begin{array}{c} \mathbf{Dim} \ 2 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.35e-02 3.70e-02 8.56e-02	4.25e-02 4.65e-02 1.33e-01		1.78e-15 3.11e-15 1.07e-14	1.93e-15	7.11e-15	1.35e-15 3.78e-14 7.19e-15	2.50e-13	7.75e-15	6.08e-14	6.06e-15			1.60e-14 1.74e-13 5.73e-14	6.31e-15 3.18e-14 8.39e-15	1.07e-12		5.28e-14 5.62e-09 9.59e-14
$\begin{array}{c} \textbf{Dim 3} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.46e-02 4.33e-02 1.00e-01	5.46e-02 7.43e-02 1.63e-01	1.44e-03		1.36e-15 4.91e-15 2.91e-15	1.87e-14	1.98e-15 4.81e-15 7.29e-15	2.80e-14	3.40e-15	2.31e-14	3.65e-15	1.51e-14 6.20e-14 1.12e-13	4.50e-15		6.52e-15	3.24e-14 2.97e-13 1.49e-13	8.57e-14	8.96e-12
$\begin{array}{c} \textbf{Dim 4} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.30e-02 3.89e-02 8.87e-02	8.03e-02 9.42e-02 1.52e-01	3.28e-03	4.81e-03 1.10e-02 1.57e-02	7.70e-05	4.40e-04	3.52e-15 2.24e-15 1.40e-14	1.20e-14	3.12e-15	2.66e-14	3.32e-15	2.66e-14 5.42e-14 1.31e-13	3.03e-15	4.17e-14 8.17e-14 2.69e-13			9.82e-15	
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	3.10e-02 3.02e-02 5.22e-02			4.43e-03 8.17e-03 1.35e-02	4.04e-05 7.14e-05 1.61e-04	3.32e-04	9.97e-07 1.81e-06 4.35e-06	1.24e-05	2.69e-15		3.20e-15	2.42e-12 3.82e-14 4.57e-13	4.71e-15		3.18e-10 7.77e-15 3.33e-14			
$\begin{array}{c} \textbf{Dim 6} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.83e-02 3.51e-02 6.65e-02	7.71e-02 7.94e-02 1.62e-01	1.32e-03 2.43e-03 4.36e-03	5.28e-03 8.95e-03 1.83e-02	4.23e-05 6.84e-05 1.74e-04	3.38e-04 4.06e-04 5.79e-04	1.12e-06 1.94e-06 4.79e-06	2.34e-05	1.96e-08 3.38e-08 1.27e-07		4.94e-15	1.44e-12 1.26e-13 7.55e-13	6.78e-15	7.30e-12 1.99e-13 1.05e-12				
Dim 7 n = 20	Smolyak LS-Uniform LS-Chebyshev	1.15e-02 1.68e-02 2.28e-02	3.17e-02 4.60e-02 5.42e-02	8.95e-04	4.33e-03	2.48e-05 3.76e-05 6.60e-05	3.31e-04 6.02e-04 9.22e-04	1.25e-06	1.67e-05	1.65e-08 3.04e-08 6.96e-08	2.89e-07 7.25e-07 2.74e-06	3.72e-10	3.94e-09 1.09e-08 2.85e-08	1.30e-11 4.18e-11 2.62e-09	1.05e-10 2.60e-09 4.70e-08				
$\begin{array}{c} \mathbf{Dim} \ 8 \\ n=10 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.03e-02 2.02e-02 2.53e-02	3.80e-02 5.98e-02 8.65e-02	9.42e-04	2.91e-03 3.76e-03 7.68e-03	3.30e-05	2.58e-04		1.08e-05 1.34e-05 4.99e-05	1.49e-08 2.73e-08 6.23e-08	4.69e-07 7.68e-07 1.62e-06	5.46e-10	8.54e-09 2.39e-08 3.92e-08						
Dim 9 n = 25	Smolyak LS-Uniform LS-Chebyshev	2.08e-02 2.45e-02 6.49e-02	6.39e-02 8.13e-02 1.59e-01		5.64e-03 7.83e-03 9.68e-03	3.03e-05 4.88e-05 1.32e-04	3.66e-04 3.83e-04 6.62e-04	1.32e-06		1.76e-08 2.98e-08 1.26e-07	6.13e-07 7.43e-07 1.26e-06								
Dim 10 n = 10	Smolyak LS-Uniform LS-Chebyshev	9.91e-03 1.55e-02 1.75e-02	2.99e-02 4.95e-02 3.84e-02	7.66e-04	4.68e-03 4.89e-03 6.71e-03	3.59e-05	3.25e-04 3.17e-04 5.42e-04		1.49e-05	2.03e-08	6.23e-07 7.06e-07 2.45e-06	3.79e-10							

TABLE 18. Visualization of the results for function class $Morokoff\ Calfisch\ 2$ for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 20. Visualization of the results for dim = 8 and various scales tested with n=25 realizations for function class $Roos\ Arnold$. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca		Sca		Sca		Sca			de5		ıle6	Sca			ıle8	Sca	
		f ₂	ax ℓ_{∞}	ℓ_2 m	ℓ_{∞}	ℓ_2 m	ℓ_{∞}	ℓ_2 m	ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2 m	ℓ_{∞}	f ₂	ℓ_{∞}	lo II	ax ℓ_{∞}	ℓ_2 m	ℓ_{∞}
Dim 2 n = 25	Smolyak LS-Uniform LS-Chebyshev	1.41e+00 1.40e+00 2.48e+00	2.15e+00 1.90e+00	9.44e-01 4.45e-01 8.71e-01	1.95e+00 9.78e-01 2.04e+00	2.99e-01 1.23e+00 2.41e-01	7.45e-01 5.07e+00	1.10e-01 1.15e+00 1.24e-01	4.09e-01 7.74e+00 5.05e-01	4.15e-02 3.65e-01 4.00e-02	2.38e-01 3.51e+00 1.98e-01	1.53e-02 6.03e-02 2.08e-02	1.04e-01 7.97e-01 1.66e-01	5.97e-03 1.32e-01 7.15e-03		2.10e-03 9.68e-02 2.74e-03		8.52e-04 1.33e+02	1.80e-02
$\begin{array}{c} \textbf{Dim 3} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	4.54e+00 3.16e+00 6.32e+00	7.23e+00	2.53e+00 3.50e+00 2.07e+00	6.31e+00 1.02e+01 4.93e+00	1.48e+00 1.41e+00 8.67e-01	$\substack{3.68\mathrm{e}+00\\6.82\mathrm{e}+00\\\mathbf{2.97e}+00}$	4.41e-01 4.88e-01 3.48e-01	2.06e+00 2.80e+00 2.00e+00	1.87e-01 2.17e-01 1.34e-01	9.77e-01 1.63e+00 1.22e+00	8.06e-02 1.55e-01 5.93e-02	5.25e-01 2.42e+00 5.05e-01	2.98e-02 1.02e-01 2.78e-02	3.11e-01 3.01e+00 3.76e-01	1.19e-02 7.21e-02 1.20e-02	1.72e-01 4.79e+00 2.26e-01	4.32e-01	9.59e-02 4.76e+01 1.50e-01
$\begin{array}{c} \mathbf{Dim} \ 4 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.10e+01 1.56e+01 3.49e+01	4.15e+01	1.02e+01	1.94e+01 3.86e+01 3.08e+01	3.74e+00	$\substack{1.25\mathrm{e}+01\\2.66\mathrm{e}+01\\\mathbf{9.94e}+00}$	1.74e+00	1.02e+01 1.34e+01 6.40e+00	6.89e-01 8.79e-01 5.88e-01	4.49e+00 1.06e+01 3.77e+00	2.88e-01 4.28e-01 2.73e-01	2.31e+00 9.58e+00 2.17e+00	1.18e-01 2.40e-01 1.29e-01	$\substack{1.35\text{e}+00\\4.41\text{e}+00\\1.39\text{e}+00}$	4.84e-02 1.36e-01 5.48e-02	8.59e-01 5.80e+00 7.43e-01		4.72e-01 1.16e+01 4.95e-01
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	4.81e+01 4.23e+01 3.74e+01	$\substack{1.39\mathrm{e}+02\\9.66\mathrm{e}+01\\\mathbf{6.83e}+01}$		1.11e+02 5.83e+01 1.04e+02	9.11e+00	$\substack{5.05\mathrm{e}+01\\6.26\mathrm{e}+01\\\mathbf{4.54e}+01}$	4.85e+00	3.69e+01 3.29e+01 2.21e+01	5.24e+00 2.54e+00 2.25e+00	2.67e+01 2.96e+01 1.23e+01	2.27e+01 1.31e+00 1.04e+00	1.33e+02 2.46e+01 7.88e+00	7.41e-01	$\substack{3.07\mathrm{e}+02\\1.58\mathrm{e}+01\\\mathbf{6.26e}+00}$	3.90e-01	1.01e+05 1.84e+01 3.52e+00		
$\begin{array}{c} \textbf{Dim 6} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev		2.66e+02 1.86e+02 4.46e+02	3.82e+01		1.85e+01				5.43e+00		8.65e+01 3.09e+00 2.82e+00	4.64e+02 6.94e+01 2.47e+01	1.72e+00	2.93e+03 7.18e+01 1.50e+01				
Dim 7 n = 20	Smolyak LS-Uniform LS-Chebyshev	1.74e+02 1.60e+02 3.08e+02	8.26e+02 7.44e+02 7.12e+02	8.71e+01 9.45e+01 1.58e+02	1.12e+03 6.56e+02 5.14e+02	6.68e+01 4.17e+01 6.37e+01	1.03e+03 3.81e+02 3.54e+02	2.33e+01	4.99e+02 2.79e+02 2.86e+02	1.28e+01	3.81e+02 2.80e+02 1.50e+02	6.60e+00		3.49e+00	1.90e+04 1.70e+02 7.67e+01				
Dim 8 n = 10	Smolyak LS-Uniform LS-Chebyshev		8.09e+03 7.00e+03 7.02e+03	5.08e+02 5.84e+02 7.12e+02				1.22e+02	2.72e+03 2.37e+03 1.21e+03	5.59e+01	1.88e+03 1.25e+03 9.95e+02	2.91e+01	2.78e+03 7.71e+02 6.20e+02						
$\begin{array}{c} \mathbf{Dim} \ 9 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	6.79e+02 6.49e+02 3.36e+03	2.27e+03 1.53e+03 6.23e+03		1.05e+04 7.82e+03 6.39e+03	4.05e+02 2.68e+02 6.98e+02	7.91e+03 3.65e+03 2.80e+03	2.57e+02 1.62e+02 3.57e+02	5.04e+03 2.27e+03 2.60e+03		3.97e+03 1.36e+03 1.25e+03	1.03e+02 5.17e+01 8.42e+01							
Dim 10 n = 10	Smolyak LS-Uniform LS-Chebyshev		5.89e+03 4.49e+03 5.99e+03			3.06e+02			1.66e+04 4.74e+03 5.50e+03			1.27e+03 7.29e+01 1.46e+02							

Table 19. Visualization of the results for function class $Roos\ Arnold$ for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 21. Visualization of the results for dim = 10 and various scales tested with n = 10 realizations for function class $Roos\ Arnold$. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

			ale1	Sca			de3	Sca		Sca			de6		de7		ale8		ale9
		ℓ_2	ℓ_{∞}	ℓ_2 m	ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2 m	ℓ_{∞}	ℓ_2 m	ℓ_{∞}	ℓ_2 m	ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2 m	ax ℓ_{∞}
Dim 2 n = 25	Smolyak LS-Uniform LS-Chebyshev	7.53e-02 8.32e-02 1.92e-01	9.57e-02 1.05e-01 2.99e-01	7.53e-16	6.66e-16 1.33e-15 6.11e-15	1.11e-15			1.19e-13		2.71e-14		2.80e-14	5.71e-15	7.59e-14	2.04e-14	7.78e-13	5.34e-15 3.48e-11 2.99e-15	2.66e-14 1.97e-09 2.82e-14
$\begin{array}{c} \textbf{Dim 3} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.57e-01 1.88e-01 4.85e-01	2.57e-01 3.37e-01 7.74e-01	1.69e-02 2.27e-02 2.86e-02	4.33e-02 6.09e-02 5.51e-02	7.02e-16 1.97e-15 1.84e-15	7.33e-15		3.11e-15 1.02e-14 1.80e-14	2.68e-15	1.83e-14	2.37e-15 1.91e-15 7.42e-15	2.96e-14	3.26e-15 2.01e-15 8.79e-15	1.38e-14 5.76e-14 5.16e-14	4.50e-15	1.84e-13	6.74e-15 2.81e-14 1.19e-14	4.71e-14 1.68e-12 1.33e-13
$\begin{array}{c} \textbf{Dim 4} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.41e-01 3.00e-01 8.39e-01	4.02e-01 4.75e-01 1.05e+00	6.99e-02 1.51e-01 2.10e-01	2.34e-01 5.16e-01 4.92e-01	5.29e-03 1.20e-02 1.95e-02	2.57e-02 6.85e-02 6.84e-02		1.41e-14	6.28e-15	3.69e-14	3.55e-15 1.96e-15 1.37e-14	2.71e-14	1.84e-15	2.75e-14 4.36e-14 2.72e-13	2.75e-15		5.05e-15	
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.20e-01 1.82e-01 3.81e-01	5.04e-01 3.83e-01 8.67e-01	6.23e-02 1.13e-01 2.28e-01	2.48e-01 4.61e-01 5.86e-01	2.57e-02 3.97e-02 8.66e-02	1.58e-01 2.41e-01 4.19e-01			3.53e-15	3.22e-14	1.70e-12 2.64e-15 5.50e-14	4.57e-14	3.31e-15		4.31e-15			
$\begin{array}{c} \mathbf{Dim} \ 6 \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	4.00e-01 7.54e-01 9.47e-01	9.16e-01 1.69e+00 1.96e+00	8.18e-02 1.66e-01 2.21e-01	3.02e-01 6.66e-01 6.32e-01	1.62e-02 2.41e-02 6.27e-02	1.00e-01 1.67e-01 2.18e-01		5.23e-02 9.77e-02 1.22e-01	3.99e-04 6.86e-04 2.58e-03	8.63e-03	5.21e-13 3.10e-15 5.38e-13	4.57e-14	2.26e-15	1.59e-11 8.78e-14 1.15e-12				
$\begin{array}{c} \mathbf{Dim} \ 7 \\ n=20 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	6.31e-01 7.98e-01 1.31e+00	$\substack{1.77\text{e}+00\\2.74\text{e}+00\\2.66\text{e}+00}$	1.99e-01	6.59e-01 1.02e+00 1.38e+00	2.53e-02 4.17e-02 7.72e-02	2.08e-01 3.51e-01 3.80e-01		8.83e-02 1.92e-01 1.34e-01	1.14e-03 2.08e-03 4.73e-03	2.16e-02 4.26e-02 5.62e-02	1.30e-04 2.52e-04 6.55e-04	3.11e-03 8.44e-03 1.90e-02	8.31e-11 3.80e-09 9.29e-08	7.60e-10 9.67e-07 1.81e-06				
$ \begin{array}{c} \mathbf{Dim 8} \\ n = 10 \end{array} $	Smolyak LS-Uniform LS-Chebyshev	2.21e-01 3.56e-01 7.81e-01	6.10e-01 9.09e-01 1.77e+00	9.08e-02 1.45e-01 2.26e-01	3.36e-01 8.21e-01 7.64e-01		2.73e-01 2.27e-01 4.70e-01	1.52e-02	1.58e-01 2.24e-01 3.87e-01	1.77e-03 3.06e-03 7.25e-03	3.56e-02 6.61e-02 1.25e-01	2.55e-04 4.65e-04 1.29e-03	7.25e-03 1.89e-02 1.68e-02						
Dim 9 n = 25	Smolyak LS-Uniform LS-Chebyshev	4.23e-01 5.79e-01 1.65e+00	7.52e-01 1.69e+00 4.10e+00	2.07e-01	6.43e-01 9.54e-01 1.28e+00	4.45e-02 6.53e-02 1.83e-01	2.98e-01 4.35e-01 6.48e-01		1.14e-01 1.80e-01 2.70e-01	2.23e-03 3.71e-03 1.54e-02	4.88e-02 9.71e-02 8.49e-02	6.86e-04	1.50e-02 2.69e-02 2.84e-02						
$\begin{array}{c} {\bf Dim} \ {\bf 10} \\ n=10 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	4.76e-01 7.95e-01 1.03e+00	$\substack{\textbf{1.18e+00}\\2.03e+00\\3.86e+00}$	5.79e-02 7.01e-02 1.89e-01		2.69e-02 4.14e-02 9.14e-02	3.51e-01		1.19e-01 1.27e-01 2.69e-01	2.54e-03	3.81e-02 5.67e-02 7.61e-02								

Table 20. Visualization of the results for function class Bratley for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

FIGURE 22. Visualization of the results for dim = 6 and various scales tested with n=25 realizations for function class *Bratley*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

		Sca	lel	Sca	de2	Sca	de3	Sca	le4	Sca	de5	Sca	de6	Sca	de7	Sca	de8	Sca	ıle9
		m	ax	m	ax	m	ax	m	n.xc	m	ax	m	ax	m	ax	m	ax	m	axx
		ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}	ℓ_2	ℓ_{∞}
$\begin{array}{c} \mathbf{Dim} \ 2 \\ n = 25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	2.44e-01 2.04e-01 4.56e-01	2.85e-01 2.50e-01 7.18e-01	2.03e-02 6.21e-03 2.94e-02	2.93e-02 1.13e-02 7.10e-02	9.62e-04 9.46e-04 4.76e-04	1.46e-03 4.19e-03 1.20e-03	1.74e-05 1.81e-05 1.24e-05	3.47e-05 1.19e-04 6.05e-05	1.51e-07 2.42e-07 8.58e-08	3.60e-07 1.68e-06 2.46e-07	1.43e-11 2.45e-11 9.42e-12	4.15e-11 2.47e-10 4.02e-11		1.14e-13 1.24e-12 2.74e-13	3.56e-14 1.69e-13 4.09e-14	6.49e-12		3.13e-13 3.62e-08 6.13e-13
Dim 3 n = 25	Smolyak LS-Uniform LS-Chebyshev	1.78e+00 2.03e+00 3.85e+00	2.66e+00 3.65e+00 6.24e+00	3.64e-01 4.20e-01 3.25e-01	5.92e-01 1.28e+00 7.17e-01	2.57e-02 2.33e-02 1.42e-02	4.64e-02 1.46e-01 4.16e-02	9.54e-04 4.65e-04 5.84e-04	2.08e-03 2.87e-03 2.25e-03	1.82e-05 1.59e-05 1.17e-05	4.77e-05 1.59e-04 4.12e-05	1.11e-07 5.00e-08 5.03e-08	4.01e-07 8.38e-07 4.03e-07	8.46e-10 6.97e-10 3.33e-10	3.64e-09 2.97e-08 1.95e-09		1.96e-11 3.49e-10 1.06e-11	1.69e-12	
$\begin{array}{c} \textbf{Dim 4} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	8.18e+00 9.31e+00 1.91e+01		2.22e+00 1.85e+00 2.51e+00	3.44e+00 4.59e+00 5.60e+00	1.99e-01 1.69e-01 1.57e-01	3.85e-01 1.61e+00 4.67e-01	1.11e-02 8.41e-03 7.04e-03	2.88e-02 7.97e-02 2.52e-02	2.96e-04 3.52e-04 2.28e-04	1.01e-03 3.82e-03 1.09e-03	9.09e-06 7.55e-06 3.43e-06	3.63e-05 3.64e-04 2.47e-05	1.85e-07 1.00e-07 5.93e-08		4.21e-09 1.52e-09 1.13e-09	2.07e-08 8.93e-08 6.99e-09		3.75e-10 1.66e-09 1.52e-10
$\begin{array}{c} \textbf{Dim 5} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	4.91e+01 5.70e+01 6.06e+01	9.92e+01 9.60e+01 1.10e+02	9.13e+00	2.33e+01 3.60e+01 3.29e+01	1.05e+00	3.36e+00 8.94e+00 4.06e+00	1.18e-01 7.49e-02 7.96e-02	3.96e-01 1.34e+00 2.78e-01	8.75e-03 2.75e-03 3.53e-03	3.14e-02 4.80e-02 1.71e-02	3.97e-04 1.44e-04 1.38e-04	1.70e-03 7.03e-03 7.55e-04	1.00e-05 4.67e-06 4.10e-06	6.08e-05 3.84e-04 2.93e-05	2.94e-07 1.14e-07 1.18e-07	1.90e-06 8.62e-06 1.04e-06		
$\begin{array}{c} \textbf{Dim 6} \\ n=25 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	1.81e+02 3.26e+02 5.56e+02	$\substack{4.06\mathrm{e}+02\\7.14\mathrm{e}+02\\1.12\mathrm{e}+03}$	3.90e+01	$\substack{1.14\text{e}+02\\1.92\text{e}+02\\1.98\text{e}+02}$	7.94e+00 5.70e+00 8.92e+00	$\substack{\textbf{2.70e+01}\\6.33e+01\\2.84e+01}$	1.06e+00 4.40e-01 6.47e-01	$\substack{3.16\mathrm{e}+00\\7.11\mathrm{e}+00\\\mathbf{2.56e}+00}$	8.33e-02 2.69e-02 3.81e-02	2.79e-01 6.56e-01 1.82e-01	3.81e-03 1.59e-03 2.26e-03	1.93e-02 6.75e-02 1.19e-02	2.34e-04 8.66e-05 1.09e-04	1.13e-03 7.67e-03 8.66e-04				
$\begin{array}{c} \mathbf{Dim} \ 7 \\ n=20 \end{array}$	Smolyak LS-Uniform LS-Chebyshev	7.56e+02 1.03e+03 1.97e+03	$\substack{2.32\mathrm{e}+03\\2.62\mathrm{e}+03\\4.34\mathrm{e}+03}$			3.75e+01 2.61e+01 3.96e+01	1.28e+02 2.49e+02 1.62e+02	5.00e+00 2.94e+00 4.44e+00	2.11e+01 7.44e+01 2.27e+01	5.54e-01 2.96e-01 3.97e-01	2.35e+00 1.17e+01 2.11e+00	5.79e-02 2.44e-02 2.89e-02	2.62e-01 1.39e+00 1.83e-01	4.21e-03 1.34e-03 1.64e-03	2.06e-02 8.32e-02 1.12e-02				
Dim 8 n = 10	Smolyak LS-Uniform LS-Chebyshev	3.91e+03 6.87e+03 5.76e+03		1.02e+03	2.74e+03 5.53e+03 4.51e+03	2.26e+02 2.10e+02 2.35e+02	7.50e+02 1.76e+03 1.26e+03	2.93e+01 2.08e+01 2.76e+01	$\substack{1.58\mathrm{e}+02\\4.64\mathrm{e}+02\\1.20\mathrm{e}+02}$	3.46e+00 1.73e+00 2.48e+00	1.85e+01 6.85e+01 1.70e+01	3.97e-01 1.51e-01 2.07e-01	2.08e+00 1.97e+01 1.51e+00						
Dim 9 n = 25	Smolyak LS-Uniform LS-Chebyshev	2.15e+04 2.28e+04 2.78e+04	5.01e+04 4.93e+04 7.08e+04			9.29e+02	4.32e+03 1.01e+04 4.96e+03		6.98e+02 2.54e+03 1.00e+03	1.20e+01	1.48e+02 4.91e+02 1.59e+02	3.34e+00 1.14e+00 1.87e+00	2.06e+01 7.11e+01 1.61e+01						
Dim 10 n = 10	Smolyak LS-Uniform LS-Chebyshev	7.84e+04 6.76e+04 8.19e+04	2.55e+05 1.57e+05 3.01e+05		1.11e+05 9.18e+04 1.05e+05		3.27e+04 3.70e+04 2.38e+04	5.91e+02 4.42e+02 7.89e+02	5.95e+03 1.57e+04 5.77e+03	5.77e+01	9.28e+02 2.03e+03 7.63e+02	1.62e+01 7.06e+00 1.25e+01	1.62e+02 6.20e+02 1.36e+02						

Table 21. Visualization of the results for function class Zhou for various dimensions and scales, tested with n realizations. Best algorithm per dimension and scale is depicted bold.

As soon as the pictures are fixed, align them properly!

FIGURE 23. Visualization of the results for dim = 10 and various scales tested with n = 10 realizations for function class *Bratley*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

8. Conclusion

Needs to be formalized

Ideas

- Same (or usually not a worse—mostly better) order of decay
- 2n points seem to suffice compared to the number of the paper
- In some cases, Least Squares outperforms Smolyak a lot
- Tasmainian: Sometimes bad performance: Bad implementation or maybe sometimes Smolyak really bad (Mario: Approximation of the 0-Function). People might not be aware of the fact that the approximation quality might be extra-poor
- \bullet Write that np.linalg.solve was inaccurate \to That's why we used lstsq

ACKNOWLEDGEMENTS

What to write here?

FIGURE 24. Visualization of the results for dim = 4 and various scales tested with n = 25 realizations for function class *Zhou*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

References

- [1] E. Anderson et al. *LAPACK Users' Guide*. Third. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1999.
- [2] Volker Barthelmann, Erich Novak, and Klaus Ritter. "High dimensional polynomial interpolation on sparse grids". In: Advances in Computational Mathematics 12 (2000), pp. 273–288.
- [3] Jean-Paul Berrut and Lloyd N Trefethen. "Barycentric lagrange interpolation". In: *SIAM review* 46.3 (2004), pp. 501–517.
- [4] John Burkardt. "Counting Abscissas in Sparse Grids". In: (2014).
- [5] Chase Coleman and Spencer Lyon. Efficient Implementations of Smolyak's Algorithm for Function Approximation in Python and Julia. https://github.com/EconForge/Smolyak. 2013.
- [6] F.-J. Delvos. "d-Variate Boolean interpolation". In: *Journal of Approximation Theory* 34.2 (1982), pp. 99-114. URL: https://www.sciencedirect.com/science/article/pii/0021904582900855.
- [7] Dinh Dũng, Vladimir Temlyakov, and Tino Ullrich. *Hyperbolic Cross approximation*. Ed. by Sergey Tikhonov. Birkhäuser, 2018.
- [8] V. K. Dzjadyk and V. V. Ivanov. "On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points". In: *Analysis*

FIGURE 25. Visualization of the results for dim = 7 and various scales tested with n = 20 realizations for function class *Zhou*. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

Mathematica~9.2~(June~1983),~pp.~85-97.~URL:~https://doi.org/10.1007/BF01982005.

- [9] H. Ehlich and K. Zeller. "Auswertung der Normen von Interpolationsoperatoren". In: *Mathematische Annalen* (June 1966), pp. 105–112.
- [10] Alan Genz. "A package for testing multiple integration subroutines". In: Numerical integration: Recent developments, software and applications (1987), pp. 337–340.
- [11] Alan Genz. "Testing multidimensional integration routines". In: Proc. of international conference on Tools, methods and languages for scientific and engineering computation. 1984, pp. 81–94.
- [12] Charles R. Harris et al. "Array programming with NumPy". In: Nature 585.7825 (Sept. 2020), pp. 357–362. URL: https://doi.org/10.1038/s41586-020-2649-2.
- [13] Kenneth L Judd et al. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain". In: *Journal of Economic Dynamics and Control* 44 (2014), pp. 92–123.
- [14] Andreas Klimke, Kai Willner, and Barbara Wolmuth. "Uncertainty Modeling using Fuzzy Arithmetic based on Sparse Grids: Applications to Dynamic Systems". In: *International Journal*

FIGURE 26. Visualization of the results for dim = 10 and various scales tested with n = 10 realizations for function class Zhou. Left plot shows the estimated max mean squared error and the right one shows the estimated max uniform error.

- of Uncertainty, Fuzziness and Knowledge-Based Systems 12.06 (2004), pp. 745–759.
- [15] David Krieg and Mario Ullrich. "Function Values Are Enough for L_2 -Approximation". In: Foundations of Computational Mathematics 21.4 (Dec. 2020), pp. 1141–1151. URL: http://dx.doi.org/10.1007/s10208-020-09481-w.
- [16] Joseph-Louis Lagrange. "Lectures on Elementary Mathematics. On the employment of curves in the solution of problems". Trans. by Thomas J. McCormack. In: (1901). Originally published in French in 1795.
- [17] Zack Morrow and Miroslav Stoyanov. "A Method for Dimensionally Adaptive Sparse Trigonometric Interpolation of Periodic Functions". In: arXiv preprint arXiv:1908.10672 (2019).
- [18] Erich Novak and Klaus Ritter. "High Dimensional Integration of Smooth Functions over Cubes". In: *Numerische Mathematik* 75 (Oct. 1996), pp. 79–97.
- [19] S. A. Smolyak. "Quadrature and interpolation formulas for tensor products of certain classes of functions". In: *Dokl. Akad. Nauk SSSR* 148.5 (1963), pp. 1042–1045.

- [20] M Stoyanov. User Manual: TASMANIAN Sparse Grids. Tech. rep. ORNL/TM-2015/596. One Bethel Valley Road, Oak Ridge, TN: Oak Ridge National Laboratory, 2015.
- [21] Miroslav Stoyanov. "Adaptive Sparse Grid Construction in a Context of Local Anisotropy and Multiple Hierarchical Parents". In: Sparse Grids and Applications-Miami 2016. Springer, 2018, pp. 175–199.
- [22] Miroslav Stoyanov et al. *Tasmanian*. Sept. 2013. URL: https://github.com/ORNL/Tasmanian.
- [23] Miroslav K Stoyanov and Clayton G Webster. "A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions". In: *Computers & Mathematics with Applications* 71.11 (2016), pp. 2449–2465.
- [24] S. Surjanovic and D. Bingham. Virtual Library of Simulation Experiments: Test Functions and Datasets. Retrieved March 29, 2025, from https://www.sfu.ca/~ssurjano/integration.html.
- [25] V. N. Temlyakov. "Approximation of periodic functions of several variables by trigonometric polynomials, and widths of some classes of functions". In: *Math. USSR-Izv.* 27.2 (1986), pp. 285–322.
- [26] Mario Ullrich. "On the worst-case error of least squares algorithms for L_2 -approximation with high probability". In: Journal of Complexity 60 (Oct. 2020), p. 101484. URL: http://dx.doi.org/10.1016/j.jco.2020.101484.
- [27] Pauli Virtanen et al. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". In: *Nature Methods* 17 (2020), pp. 261–272.
- [28] Edward Waring. "Problems concerning Interpolations. By Edward Waring, M. D. F. R. S. and of the Institute of Bononia, Lucasian Professor of Mathematics in the University of Cambridge". In: *Philosophical Transactions of the Royal Society of London* 69 (1779), pp. 59–67. URL: http://www.jstor.org/stable/106408 (visited on 04/11/2025).
- [29] G.W. Wasilkowski and H. Wozniakowski. "Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems". In: Journal of Complexity 11.1 (1995), pp. 1-56. URL: https://www.sciencedirect.com/science/article/pii/S0885064X85710011.
- J.E., Johannes Kepler University Linz; jakob.eggl@jku.at; E.M., Johannes Kepler University Linz; elias.mindlberger@jku.at; M.U., Johannes Kepler University Linz; mario.ullrich@jku.at