Exercice 1.	Théorie	dus	graphes.
			, l l

Q1. pas de boucles: $\forall x \rightarrow R(x,x)$ non-orienté: $\forall x \forall y \quad R(x,y) \leftarrow R(y,x)$. (l'implication simple suffit).

D'où M'(Grapheo non-enientés simples) = $\{ \forall x \neg R(x,x), \forall x \forall y R(x,y) \hookrightarrow R(y,x) \}$.

Q2. On pose J'= J qui est une théorie sur l'= L.

Q3. $Y_n = V_{x_1} ... V_{x_{m-1}} (R(a, x_1) \wedge R(x_1, x_2) \wedge ... \wedge R(x_{n_1} b))$

Q.L. Gui. On considère G=(V,E) dérit oi-denous. Soit $N=\max\{\{n_1,...,n_k\}+1\}$.

a x x x b

Il out commerce, simple, mon-occenté et mon-viole.

Gt, pour tout i & [1, k], il n'y
a pas de chemins de long
no entre a et b dans 6.

Q5. Soit T2A une théorie des grophes connexes.

Om pose J' := JUl4, | neN*7.

Toute partie jimie de J'est satisficulole.
Par compacifé, on a que J'est satisficulole. Absurde con soul un graphe vide satisfait J'.

Exercice 2. Langage sans fonction.
Q1. Pou récusseure sur on, montions que:
$\forall x_1 \cdots \forall x_n \exists y_1 \cdots \exists y_k A[x_1, \dots, x_n, y_2, \dots, y_k]$
est un théorème sti elle est soutirfaite dans toute interprétation de ronde au plus n+m.
Ψ
● Pour n=0, Jy2 ··· Jyk A[y2,,42] est un théorème soi
y M modèle, de, M,e ≠ 4
Si en a un modèle de card > m, en peut le décomposer en modèles
ole and & k pan dénombrement.
D'étéguivalence.
Q2. Dans $b = \{c_1,, c_m, f, = \}$
on considice $A = \{(y_1, y_2) = \{(y_2, y_1) \land \neg (y_4 = y_2) \land \bigwedge_{\lambda=3} (y_i = y_{i+2})\}$
Dans le modèle
M: 20,17, for= xon, c; = 0
la formule A est fourse.

Exercice 3. Wensite.
Od Com - (P) 4) at (O) 4) and comb many common observations
Q1. Om a (Q, <) et (R, <) qui sont non-isomorphes.
0.2 Doif (P:= ∀x, ∃y π(x,y).
$\mathcal{D}_{0}(q) := \forall x, \exists y \qquad \mathcal{P}(x,y).$
Dons (R, L), la formule l'est verifiée Dons ([0,1], <) la formule l'ne l'est pas.
Dans (lo,1), <) la formule en l'est pas.
יא אין א
D'où In'est pas complète.
Q3. Soit un modèle et.
Soient a, y & lett tels que 2 < 4 (pon Az).
Construisons pou récurrence des éléments de 01.
on commence over or, y
pan Au, et comme ocky, il existe of to och och
· · · · · · · · · · · · · · · · · · ·
· Роп Ан, 22 22 м 22м2 эз
Si 126 1 7 11 -) along one A at A- on a 1111 - hour with
Si $x \in \{x, y, z\}$, along par A_2 et A_3 on a some abstraction
D'ai I n'admet pas de modèle gini.
or out of Barner pas at modera gim.
a 7. /w. d
Q4. $J_1: (113, 4)$ $J_2: (114, 4)$
Ja: (11 7, 8)
J ₃ :
$\frac{1}{2}$
J ₄ (30, 17, 2)

Exercice 1. Contortion misme

The Groupes abéliens soms tousion) := { $\forall x \exists y \quad x + y = y + x = 0$, $\forall x \quad \forall y \quad \forall x \quad (x + y) + x = x + (y + x_2)$, $\forall x \quad x + 0 = 0 + x = x$, $\forall x \quad \forall y \quad x + y = y + x$ $\exists \quad \forall \forall x \quad \forall x \quad x + y = y + x$

Q2. Supposons qu'il existe une théorie T des groupes abélions avec

6m considère:

J:= July x = 0 - n. x + 0 | ne N* 7

Totale postile fince To J'est satisfiable.
Emeflet, soit n=mortners 19me 77 <+00, puis 6:= 2/p2 over p>n et p premien.

Pon compacité, T'est soutioficulde.

Absuch con il existe accé et ne Nx, n.x+o et x+o.

avec tession + soms tossion

Exercice 2. Formules closes

Ty = 2FeF | M = F3

```
Soit F € F.
            Si Of F F alous
               & of $F alow of $= 7F et Top+7F on 7F e Top.
               Pe plus, si Ty + 1 alors, par correction, of \= 1 absurde.
                                                                                                                                                                                                                                                                                       car of modifie de Ton.
        Exercice 3.
Q1 Pour n=0, on a: Po + SO + O pour A1.
                          Pour moo, on a:
                                                                                                                                                                                                                                                                                                por hyp de récurrence
                                                                                                                                                    \frac{P_{0} + S^{n+2} \circ = S^{n} \circ}{P_{0} + S^{n} \circ + S^{n}
           1 + 5 - 0 = 60 - 50 = 5 - 0
                                                T= 6, 5 -10 = 5 -10 + 5 0 = 5 -10
                                                                                                                                                     6,5 TO = 50+1
                                                                                                                                                       Po + 5 "+ 20 + 5"
      Q2. PA+ V2 S2 = 0.
                                               (ma:
                                                      · Pa+80+0
                                                                                                                                                                                                                                                                                                                      (1+ Sx + x
                                                                          f + S_{x} = x
                                                                                                                                                                                                                          5 <u>x = 5x</u>
                                                                                                                                  PA, S = + = + S2 = + S =
PA+S = + = - = S2 = + S =
```

Q3. On pose N:= NUZWZ où Sw:= w avec W×0 := 0. (Az) - (A s) pas de plo avec w (As) ok par def. (& commutativité) $(\theta_{3}) \quad 0 \times \underbrace{5^{2} \omega}_{\omega} = (0 \times \omega) + 0 = 0$ ωx(Sg)=(ωxg)+ω =ω D'où NFPo et NFFx Ser +2 Exercice 4. Q1. En applique le théorème de Söwenheim-Skolem pour obtenir un modèle de oard > X0. Q2. Soit, pou l'absurde, 4: N-J un L-isomorphisme. $\Psi(0) = (0,0)$ $\Psi(1) = \Psi(S_0) = S_1 \Psi(0) = S_2(0,0) = (0,1)$ $\Psi(2) = \Psi(S_{N}^{1}) = S_{N}^{1}\Psi(1) - S_{N}^{1}(0,1) = (0,2)$ $\Psi(3) = \Psi(S_{N}2) = S_{N}\Psi(2) = S_{CN}(0,2) = (0,3)$ Aimsi, im P = 302 xN = 101). Absurde. On verifie que el verifie (A1) - (A3). Q3. Soit F := V2 Vy 2+4=4+2. Gn a N = F mais CY & F con (1,1) + (2,1) = (1,2) et (2,1) + (1,1) = (2,2)Doù Po m'est pous complète.

D'ai, par schéma inducts, on a Vx, Sz + x.

Exercice 5. Ensembles définissables. Q1. For (2):= 34 x=444. Q2. Fp (2):= Vy (3 n = yxy) -> (y=2 v y= (50)) Q3. (a) $\forall x F_{F}(x) \longrightarrow F_{F}(x)$ (b) F (x) Ny (x > F(y))) 6(x) (c) (1 x F x) ~ (Vx F (x) - 34 > x F (4)) Q4. PE(y) := (3 x & y Fe(x)) - 3 x 6(x) x & y QS. Po + 3 z 0 + z = 0 (b) dong et se fait par induction sur y. (fait on cours) (c) T:= P., ... x+4=0, x = Sz Po, 74 x+4 =0 + x=0 On utilise le schéma inductif: **(4)** · PE (0) - FE (0) NOSON YYLONFE (0) · PE (m) - PE (m+s) 6(n+1) Amus nus

Lo con simon, entials dons l'embe cos.

Q6.	(3 x F,	<i>⊸ [</i> ∞]	∂મુ '	હ (યુ)						
	Soit	× E E. G(4).	Pan	Q5,	32,	6(₂)	1 7 4:	z		
)'ai	6(y).					<i>-</i>			
	•									
QЭ.										

Exercice 1. Modèles sons schéma d'induction

Q1.
$$A_2$$
 okay A_2 okay A_3 okay A_4 $f(x,*)=x$
 A_5 okay A_6 $g(x,*)=*$ A_7 $f(g(x,y),x)=g(x,y)$

$$(x,n) \times_{\mathcal{D}} S_{\mathcal{U}}(y,m) = (x,n) \times_{\mathcal{U}} (y,m+1)$$

= $(g(x,y), nm+n)$

Q1. Commutativité:
$$f(x,y) = f(x,y)$$
 et $g(x,y) = g(y,x)$
Associativité: $f(f(x,y),y) = f(x,f(y,y))$
 $g(g(x,y),y) = g(x,g(y,y))$

$$(x, n) \stackrel{?}{=} (y, m) = \exists (x, p), (x, n) + y_1(y, p) = (y, m)$$

 $\Rightarrow \exists (x, p), (f(x, y), n+p) = (y, m)$
 $\Rightarrow \exists (x, y), (x, y) = y$

$$(*, 0) + (x,n) = (f(*,x), n) = (*, n) \neq (x,n)$$

$$(*,0) \times (x,n) = (g(*,x),0) = (x,0) \neq (*,0).$$

Exercice 2. Equivalences.

Q1. Supposons avoir Tune théorie des relations d'équivalences ayant un nombre fini de classes.

Puis, T' == Tu } 4n InENY.

Noute partie A ⊆ finie T' est satisfiable, par exemple ([1,n],=),
où n = max }n'∈N | Pn, ∈ A } fini.

D'où T' satisfiable absude.

Q2. Par l'absurde, soit T une théorie des rolations d'équivolences n'ayant que des classes finies.

Soil
$$\mathcal{P}_{m} := 3\pi_{1} \dots 9\pi_{m} \bigwedge_{i=1}^{m-1} R(\pi_{i}, \pi_{i+1}) \wedge \bigwedge_{i\neq j} (\pi_{i} = \pi_{j}).$$

Soit T'= TUBY I NEWY.

Toute partie finie $A \subseteq g_{inic} T'$ est satisfiable, par exemple ([1,n], ~), où en == anax } n \n n \in A \ frai et x ~ y \ V x, \forall y.

D'où T' batisfiable. Absurde.

Q3. 6m pose T== { \(\mathbb{R} \, \mathbb{R}(\mathbb{x},\mathbb{X}) \, \mathbb{H} \, \mathbb{H} \, \mathbb{R}(\mathbb{R},\mathbb{H}) \to \mathbb{R}(\mathbb{H},\mathbb{R}) \to \mathbb{R}(\mathbb{H},\mathbb{H}) \\ \mathbb{H} \, \mathbb{H} \, \mathbb{H} \, \mathbb{R}(\mathbb{H},\mathbb{H}) \\ \mathbb{H} \, \mat

Q4. (a) Soit T2 tel que + T+T2. Il existe donc T'∈T telle que l'on ait T'+T2 (car preuve de T+T2 finie).
On a: T'+T2 ok T2+T d'où T'+T.
(b) Non: simon T' = gimic T= donc n= min ~
et m:= min m Pm E7'
En considére un ens ayant < n classes toutes de cardinal < m. ~5 modèle 91.
Don't admet of pour modifie. Absude.
(C) qui en théorie, mais non, cela ne dépend pas.
Q.5. Soient $\mathcal{O}_{1}=(N, =, \text{ disisibilite}),$ $\mathcal{O}_{2}=(N, =, n \sim m \rightleftharpoons \psi(n) \approx \psi(m))$
$Q: \mathbb{N} \xrightarrow{\text{bid}} \mathbb{N}^2 \text{où } (\gamma, q) \approx (\gamma', q') \Longrightarrow \gamma + q' = \gamma' + q'$
Soit 4: 912 on d-morphisme.
$n \mid m \rightleftharpoons \Upsilon(n) \approx \Upsilon(m)$ Absurde.

Exercice 1. Des entiers pas commes les autres
La fhéorie PA dus entieus du Peano vérifie:
ond R > cond C:
· and R > X
• and R≥ X ₀ ; • PA a un modèle infini N.
D'où par howenheim-Skolem, PA a un modile de cond=adR, mon isomorphe à IN.
Exercice 2. De nouveaux axiomes
r est une rel' d'ordre (reflexivité pou (iv), symmétize pou (iv), tromps tivé té pou (vi))
qui admet un minimum (i)
s est une fonction injective soms points fixes qui sérifie
y=nx +y < 2 >(x) ← y=x = y= x(x)
Q1. La structure (N, = 100, succ) est un modèle de N.
6m pose (70,17 × N, ≾, s) où ≤ est l'ondre lexicographiq son 70,17 × N ex
10,17 × N -0 30,17 × N
(x,y) (x,y+1)
Q2. La théorie I n'est pas complète : le gormule
Fx Fy x + y ~ Yu (x+ Su) ~ (y + Su)
est oracie dans 20,1 } × N mais pas dans N.

Exercice 3. Arithmetique non standard.
Q1. Reflexivité: Ol = a+0 = a+0 d'où a~a Va
Symmétric: si $\mathcal{O} = a + n = b + m (a \sim b)$
Jeans: tivite: $b = b + m = a + n = d'où b \sim a$. Trans: tivite: $b = d + m = b + m = a + b = b = a +$
et of = c+q (b~c)
alors
si m = p alors
$\mathcal{H} \models a + \underline{m} = c \neq (\underline{q} + \underline{m} - \underline{p})$
09 = a+ (n+p-m) = c+ q
Q2. Soient m, m, p, q tels que Ol = a+2 = a' + m et ol = b + p = b' + q.
D'où, el = a+b + n+p = a'+b'+ m + q (par commutativité de tor car et modile de PA)
et donc of = (a+b) + n+p = (a'+b') + m+q.
Q3. Réflexivité: A5A con A+OS d'où A3a verifie Clfasa. Transitivité:
si A≤B et B≤C il existe a,b, b', c tells que
Of Fash it of for
alors b ~ b' d'où b+n = b'+m
Sinemalors on pose $b^* = b + (m-n) \sim b$ of $y \neq a \leq b^*$ et $y \neq b^* \leq c$
limen $limen$ = $limen$ $limen$ $limen$
et OI = a = b + et oI = b * ec
Gn en condut or = a ≤ c.

```
Antisymmetrie:
        si A & B et B & A alors
        il existe a, a', b, b'
                 MEach & ME b'ca'
       Comme bob' et avai, on a:{b+n = b'+m a+q = a'+q
       D'où il existe 11. 1 les que
Olta+n=b et d'+b'+n= a'
       ainai,
     a++++++++= b'+m+++= a'+m
      d'où a + n + v ~ a'
                            donc
                                U, v bont Standards
                            d'air
                                  a+u=b= a~b
                            d'air
                                 A = B.
Totalifé: la relation É, y est totale:
   Par schema inductif, montrons pour tout 2,
            Vy x = y v y = x
   · Si y & x alors y + k = x et y & Sx
    somen, alone y = 2 oc donc y = k+oc
            si k=5l=) 4 % 5 %
de totalité de 4 découle de celle de ≤ or.
```