

TURMA: 2023.1

DISCIPLINA: Engenharia de Software

COMPONENTES: Alexandre, Anatália, Tarcisio, Uelisson

Campus

Catu

ATIVIDADE: SIMULAÇÃO

Tema:

" Robô de Patrulha Residencial: Integração de Sensores e Alerta Sonoro"

Descrição:

O projeto visa desenvolver um robô de alerta de presença para segurança residencial, utilizando Arduíno como protótipo. O robô será equipado com sensores de proximidade (como PIR ou ultrassônicos) e um sistema de alarme sonoro. Ele será capaz de detectar a presença de intrusos e emitir um alerta sonoro, além de poder se mover autonomamente para monitorar diferentes áreas da residência.

1. ATIVIDADES

1. Analisar Solicitação do Cliente

• **Questão Estratégica:** Quais são as reais necessidades e expectativas do cliente em relação ao sistema de segurança residencial? Como podemos entender completamente o contexto de uso e os principais problemas que ele quer resolver?

POSSÍVEIS PERGUNTAS AO CLIENTE:

- ---- O que o cliente realmente precisa do robô? Qual problema ele quer que o robô resolva?
- ----Como podemos entender melhor o que o cliente espera de um robô de segurança?

2. Levantar Requisitos

- Questão Estratégica: Quais funcionalidades essenciais o robô precisa ter para atender à solicitação do cliente (detecção de intrusos, alarme sonoro, movimentação autônoma)?
 Como podemos garantir que os requisitos são claros, completos e testáveis?
- Questão Estratégica: Quais são as limitações do sistema (como custo, tempo e recursos) e como podemos balancear isso com as funcionalidades necessárias?

POSSÍVEIS PERGUNTAS AO CLIENTE:

- ----O que o robô precisa fazer exatamente? Como ele vai detectar intrusos e avisar sobre isso?
- ----Quais são as coisas que o robô *não* pode fazer ou que seria difícil fazer?

3. Documentar Requisitos

- **Questão Estratégica:** Como podemos documentar de forma clara e acessível os requisitos funcionais e não funcionais, assegurando que todos os envolvidos no projeto (equipe, stakeholders, fornecedores) tenham uma visão alinhada do que será entregue?
- **Questão Estratégica:** Qual é a melhor forma de criar uma documentação que seja fácil de atualizar conforme surgem novos requisitos ou alterações durante o desenvolvimento?

POSSÍVEIS PERGUNTAS AO CLIENTE:

- -----Como podemos escrever de maneira simples e clara tudo o que o robô precisa fazer?
- -----Como vamos garantir que todos saibam o que estamos criando e que todo mundo concorde com isso?

4. Realizar Estimativas de Tamanho

- Questão Estratégica: Quais são os componentes e recursos necessários para implementar o sistema? Como podemos estimar o custo e o tempo de desenvolvimento com base nesses recursos?
- **Questão Estratégica:** De que forma podemos quebrar o projeto em etapas menores para estimar de forma mais precisa o esforço necessário em cada fase?
- POSSÍVEIS PERGUNTAS AO CLIENTE:

- ----Quanto tempo e dinheiro será necessário para fazer o robô funcionar?
- ----Como podemos dividir o projeto em partes menores para ficar mais fácil de estimar o tempo e o custo?

5. Validar Requisito com o Cliente

- Questão Estratégica: Como podemos envolver o cliente de forma contínua no processo, validando as expectativas em cada fase do desenvolvimento para garantir que o produto final atenda às suas necessidades?
- Questão Estratégica: O que o cliente espera em termos de funcionalidade de mobilidade e de alertas sonoros, e como podemos validar se a solução está alinhada com essas expectativas?

POSSÍVEIS PERGUNTAS AO CLIENTE:

- ---Como vamos mostrar ao cliente o que estamos fazendo e confirmar se está de acordo com o que ele precisa?
- ---O cliente tem mais alguma coisa para adicionar ou mudar nas funcionalidades do robô?

6. Realizar Planejamento com Stakeholders (são todas as pessoas ou grupos que têm interesse ou são afetados por um projeto ou decisão.)

- Questão Estratégica: Como podemos alinhar as expectativas de todos os stakeholders e definir claramente os marcos do projeto para garantir um progresso contínuo e sem surpresas?
- Questão Estratégica: Quais são os riscos que podem impactar o cronograma ou o orçamento, e como podemos mitigá-los através de um planejamento detalhado?

POSSÍVEIS PERGUNTAS AO CLIENTE:

- ---Quem mais está envolvido no projeto e como podemos garantir que todos saibam o que precisa ser feito?
- ---O que pode dar errado durante o desenvolvimento e como podemos evitar ou corrigir esses problemas?

7. Projetar Arquitetura

- Questão Estratégica: Qual é a melhor arquitetura para o robô, levando em consideração os sensores, motores e o Arduino? Como podemos garantir que a arquitetura seja modular e escalável para ajustes futuros?
- Questão Estratégica: Como podemos dividir o sistema em subsistemas (detecção de movimento, controle de movimento, alarme sonoro) para facilitar a implementação e testes?
- POSSÍVEIS PERGUNTAS AO CLIENTE:

- ---Como vamos dividir o robô em partes simples (como sensores, movimento e alarme) para que seja mais fácil de criar?
- ---Quais peças ou componentes o robô vai precisar para funcionar corretamente?

8. Realizar Teste

- Questão Estratégica: Como podemos testar cada componente (sensores, motores, alarme) isoladamente para garantir que funcionem corretamente antes de integrá-los no sistema completo?
- Questão Estratégica: Qual será o cenário de testes? Como podemos simular um ambiente residencial para validar a eficácia da detecção de presença e o desempenho do robô no ambiente real?
- POSSÍVEIS PERGUNTAS AO CLIENTE:
- ---Como podemos testar se o robô está funcionando como esperado antes de mostrar para o cliente?
- ---Vamos testar os sensores e o movimento do robô em um ambiente real ou simulado?
 Como?

9. Validação e Ajustes

- Questão Estratégica: Como podemos coletar feedback contínuo do cliente durante os testes para ajustar o comportamento do robô em tempo real?
- Questão Estratégica: O que devemos priorizar nos ajustes finais: a precisão da detecção, a autonomia do movimento ou a eficácia do alarme? Como podemos balancear todos esses fatores para um desempenho otimizado?
- POSSÍVEIS PERGUNTAS AO CLIENTE:
 - --- Como podemos saber se o robô está realmente atendendo ao que o cliente pediu?
 - ---O que podemos ajustar para melhorar a precisão da detecção ou a resposta do robô?

1. Quem e quantos irão participar?

<u>Participantes: A equipe será composta por profissionais de diferentes áreas para garantir que o projeto seja bem executado. (ATENDENTES)</u>

 Quantidade de pessoas: Serão 4 pessoas, podendo aumentar, dependendo da complexidade e do tempo disponível.

• Membros da equipe:

Engenheiro de Hardware (1 pessoa): Responsável pelos componentes físicos do robô (como sensores, motores e Arduino).

Programador/Desenvolvedor (1-2 pessoas): Responsável pela programação do Arduino e do algoritmo de controle do robô.

Designer/Interface (1 pessoa, opcional): Responsável por qualquer interface visual ou melhorias no design do robô (caso o robô tenha uma interface com o usuário).

Testador/Qualidade (1 pessoa): Responsável por testar o robô em diversas situações para garantir que tudo funcione corretamente.

Gerente de Projeto (1 pessoa): Responsável por coordenar a equipe e garantir que o cronograma e os requisitos sejam cumpridos.

2. Quais serão os papéis na equipe?

Engenheiro de Hardware: Responsável por escolher os componentes corretos, montar os circuitos e garantir que os sensores, motores e Arduino funcionem juntos.

Programador: Responsável por escrever o código para controlar o robô (como mover, detectar presença e emitir o alarme sonoro).

Testador: Vai testar o robô em diferentes condições (simulando presença ou obstáculos) para garantir que ele funcione corretamente.

Gerente de Projeto: Vai coordenar a equipe, garantir que as tarefas sejam feitas no tempo certo e que o robô atenda aos requisitos do cliente.

3. Quais estratégias vamos utilizar?

Divisão em etapas: Vamos dividir o projeto em pequenas etapas para facilitar o trabalho e garantir que tudo esteja bem feito, como a montagem dos sensores, a programação do movimento, e os testes.

Prototipagem rápida: Usaremos o Arduino para montar um protótipo rápido e simples do robô, permitindo que testemos e ajustemos ideias mais rapidamente.

Testes contínuos: Faremos testes durante o processo, não apenas no final, para garantir que o robô funcione bem em todas as etapas.

4. Como vamos estudar e entender o domínio(ETAPAS)?

Pesquisa inicial sobre segurança residencial: Vamos estudar como os sistemas de segurança funcionam, quais são os tipos de sensores mais usados (como PIR e ultrassônicos), e como os robôs de segurança autônomos operam.

Leitura de documentação e tutoriais: Vamos procurar tutoriais e guias sobre como usar o Arduino com sensores de movimento e motores, além de pesquisar sobre como programar robôs autônomos simples.

Entendimento das necessidades do cliente: Vamos conversar com o cliente para entender as necessidades exatas do robô, quais áreas ele deseja monitorar, e que tipo de alerta sonoro ele espera.

5. Onde e Com Quem Vamos Conversar?

Reuniões presenciais e online (via Teams) com o cliente, engenheiros e desenvolvedores.

E-mail para comunicações formais e envio de documentos.

WhatsApp/Telegram para comunicação rápida e informal com a equipe e o cliente.