Package 'INSPECTumours'

October 12, 2022

Title IN-vivo reSPonsE Classification of Tumours

Version 0.1.0
Maintainer Bairu Zhang <bairu.zhang@astrazeneca.com></bairu.zhang@astrazeneca.com>
Description This is a shiny app used for the statistical classifying and analysing pre-clinical tumour responses.
License Apache License (== 2)
Depends R (>= $3.5.0$)
Imports brms, dplyr, DT, ggeffects, ggplot2, knitr, lme4, modelr, pander, plotly, purrr, readxl, rlang, rmarkdown, shiny, shinyalert, shinyFeedback, shinyjs, shinytoastr, shinyvalidate, tidybayes, tippy, tidyr, vroom, waiter
Suggests spelling, lintr, testthat
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Language en-US
NeedsCompilation no
Author Bairu Zhang [cre, aut], Olga Muraeva [aut], Natasha Karp [aut]
Repository CRAN
Date/Publication 2022-05-06 12:10:02 UTC
R topics documented:
aggregate_study_info2animal_info_classification3assess_efficacy3below_min_points4calc_gr4calc_probability5

calc_survived	5
change_time_multi	6
change_time_single	6
classify_data_point	7
classify_subcategories	7
classify_type_responder	8
clean_string	8
control_growth_plot	9
example_data	9
exclude_data	10
expand_palette	10
f_start	11
get_responder	11
guess_match	12
hide_outliers	12
load_data	13
make_terms	
model_control	14
notify_error_and_reset_input	
ordered_regression	
plotly_volume	
plot_animal_info	
plot_class_gr	
plot_class_tv	
plot_proportions	
plot_waterfall	
predict_lm	
predict_nlm_multi	
predict_nlm_single	
predict_regr_model	
run_app	
run_nl_model	
set_waiter	22

aggregate_study_info create a table with aggregated data: each row contains information about control and treatments of a single study

23

Description

create a table with aggregated data: each row contains information about control and treatments of a single study

Usage

Index

```
aggregate_study_info(df)
```

Arguments

df

data.frame

Value

data.frame

animal_info_classification

Generate table representing number of animals in classification groups

Description

Generate table representing number of animals in classification groups

Usage

```
animal_info_classification(data)
```

Arguments

data

final classification data

Value

data frame

assess_efficacy

Credible interval (or say "Bayesian confidence interval") of the mean difference between two groups (treatment and reference) is used to assess the efficacy. If 0 falls outside the interval, the drug was considered significantly effective

Description

Credible interval (or say "Bayesian confidence interval") of the mean difference between two groups (treatment and reference) is used to assess the efficacy. If 0 falls outside the interval, the drug was considered significantly effective

Usage

```
assess_efficacy(data, reference = "Control")
```

4 calc_gr

Arguments

data prediction results

reference name of the reference treatment

Value

dataframe with information about drug efficacy

below_min_points makes df with data to be excluded

Description

makes df with data to be excluded

Usage

```
below_min_points(df, min_points)
```

Arguments

df initial data frame

min_points minimum number of data points for one animal_id per study

Value

df

calc_gr Function to return rate of growth (e.g. the slope after a log transfor-

mation of the tumour data against time)

Description

Function to return rate of growth (e.g. the slope after a log transformation of the tumour data against time)

Usage

```
calc_gr(df, log_tv = "log_tv", day = "day")
```

Arguments

df subset, one animal_id

log_tv name of the column, tumour volume

day name of the column, days

calc_probability 5

Value

tibble with GR and GR_SE

calc_probability

Calculate probability of categories

Description

Calculate probability of categories

Usage

```
calc_probability(data)
```

Arguments

data

data frame with predictions

Value

data frame

calc_survived

Calculate percentage of survived animals

Description

Calculate percentage of survived animals

Usage

```
calc_survived(df)
```

Arguments

df

data frame

Value

data frame

6 change_time_single

change_time_multi

Get an array with change_time for studies from the population-level effects, multiple studies

Description

Get an array with change_time for studies from the population-level effects, multiple studies

Usage

```
change_time_multi(model)
```

Arguments

model

an object of class brmsfit

Value

data frame

change_time_single

Get a change time from the population-level effects, single study

Description

Get a change time from the population-level effects, single study

Usage

```
change_time_single(model)
```

Arguments

model

an object of class brmsfit

Value

a numeric vector of length one

classify_data_point 7

classify_data_point

Classify individual data points as Responders or Non-responders

Description

Classify individual data points as Responders or Non-responders

Usage

```
classify_data_point(df_newstudy, pred_newstudy)
```

Arguments

df_newstudy data from new study

pred_newstudy data frame with predictions

Value

data frame with "Responder"/"Non-responder" for individual data points

classify_subcategories

Make predictions for subcategories

Description

Make predictions for subcategories

Usage

```
classify_subcategories(data, model)
```

Arguments

data frame with classification results

model object of class brmsfit

Value

data frame

8 clean_string

classify_type_responder

Classify tumour based on the growth rate and the p_value for a twosided T test Tumour will be considered as "Non-responder", "Modest responder", "Stable responder" or "Regressing responder"

Description

Classify tumour based on the growth rate and the p_value for a two-sided T test Tumour will be considered as "Non-responder", "Modest responder", "Stable responder" or "Regressing responder"

Usage

```
classify_type_responder(df)
```

Arguments

df

data frame

Value

data frame with a new column classify_tumour

clean_string

function to remove hyphens, underscores, spaces and transform to lowercase

Description

function to remove hyphens, underscores, spaces and transform to lowercase

Usage

```
clean_string(string)
```

Arguments

string

to modify

Value

modified string

control_growth_plot 9

control_growth_plot

Function to plot a control growth profile

Description

Function to plot a control growth profile

Usage

```
control_growth_plot(df, model_type, col_palette)
```

Arguments

df data frame model_type string

col_palette character palette

Value

ggplot object

example_data

Tumour volume data over time for in-vivo studies

Description

A dataset containing the repeatedly measurements of tumour volume data over time for individual animals.

Usage

```
example_data
```

Format

A data frame with 1462 rows and 6 variables:

study study identifier
group group identifier
treatment treatment type
animal_id animal identifier
day day after implant
tumour_volume volume in mm3

10 expand_palette

exclude	data	
excrude	uata	

Filter rows to exclude from the analysis

Description

Filter rows to exclude from the analysis

Usage

```
exclude_data(df, study_id_ex, animal_id_ex, day_ex, reason)
```

Arguments

```
df initial df
```

study_id_ex string: study id animal_id_ex string: animal id day_ex string: day

reason string: why it should be excluded

Value

dataframe with rows that meets exclusion criteria

expand_palette

Function to expand a vector of colors if needed

Description

Function to expand a vector of colors if needed

Usage

```
expand_palette(col_palette, n)
```

Arguments

col_palette character palette to color the treatments

n how many colors are needed

Value

a character vector of colors

f_start 11

f_start

Calculate coefficients for a nonlinear model

Description

Calculate coefficients for a nonlinear model

Usage

```
f_start(df, x, y, r_change)
```

Arguments

df data frame with x as a predictor and y is an outcome

x predictor string y outcome string

r_change numeric

Value

list of coefficients

get_responder

Classify tumour based on response status of individuals

Description

Classify tumour based on response status of individuals

Usage

```
get_responder(x, n)
```

Arguments

x character vector with response statuses of one animal

n consecutive measurements for classification

Value

"Responder" or "Non-responder"

hide_outliers

guess_match

function to search for the possible critical columns in a data.frame

Description

function to search for the possible critical columns in a data.frame

Usage

```
guess_match(colnames_df, crit_cols)
```

Arguments

colnames_df a character vector with names

crit_cols a character vector

Value

list: possible match to each critical column

hide_outliers

Function to hide outliers in boxplots with jitterdodge as suggested

Description

Function to hide outliers in boxplots with jitterdodge as suggested

Usage

```
hide_outliers(x)
```

Arguments

x plotly object

Value

plotly object without boxplot outliers

load_data 13

load_data	function to read data from users (.csv	or .xlsx files)
-----------	--	-----------------

Description

function to read data from users (.csv or .xlsx files)

Usage

```
load_data(path, name)
```

Arguments

path path to a temp file

name filename provided by the web browser

Value

data frame

make_terms	Create a character vector with the names of terms from model, for
	which predictions should be displayed Specific values are specified in

which predictions should be displayed Specific values are specified in

square brackets

Description

Create a character vector with the names of terms from model, for which predictions should be displayed Specific values are specified in square brackets

Usage

```
make_terms(days, studies = NULL)
```

Arguments

days vector with days with which to predict studies vector with studies with which to predict

Value

vector with values for predictions

model_control

Build model and make predictions

Description

Build model and make predictions

Usage

```
model_control(df_control, df_newstudy, method, end_day)
```

Arguments

df_control data frame with control data (including historical control, if provided)

df_newstudy data frame, data from new study

method "Two-stage non-linear model" or "Linear model"

end_day period of time used for the statistical modelling of the control data

Value

list: two data frames with prediction results (for new study and for control data)

```
notify_error_and_reset_input
```

Display a popup message and reset fileInput

Description

Display a popup message and reset fileInput

Usage

```
notify_error_and_reset_input(message_text)
```

Arguments

message_text the modal's text

ordered_regression 15

ordered_regression

Fit model (Bayesian ordered logistic regression)

Description

Fit model (Bayesian ordered logistic regression)

Usage

```
ordered_regression(df, formula, n_cores)
```

Arguments

df data frame with classification results. Tumour classification is converted into

ordinal data

formula string

n_cores number of cores to use

Value

object of class brmsfit

plotly_volume

Create volume plot for one-batch data

Description

Create volume plot for one-batch data

Usage

```
plotly_volume(
   df,
   col_palette = NULL,
   faceting_var,
   y_name,
   y_var,
   p_title,
   ...
)
```

plot_animal_info

Arguments

df data.frame, single-batch long format

col_palette character palette to color the treatments

faceting_var string
y_name string

y_var string: column name for y axis

p_title plot title

... arguments passed to plot_ly

Value

plotly object

plot_animal_info

Plot representing number of animals in classification groups

Description

Plot representing number of animals in classification groups

Usage

```
plot_animal_info(data, col_palette)
```

Arguments

data final classification data

col_palette character palette

Value

ggplot object

plot_class_gr 17

plot_class_gr

Function to plot classification over growth rate

Description

Function to plot classification over growth rate

Usage

```
plot_class_gr(df, col_palette)
```

Arguments

df data frame

col_palette character palette

Value

ggplot object

plot_class_tv

Function to plot classification over tumour volume

Description

Function to plot classification over tumour volume

Usage

```
plot_class_tv(df, col_palette, title_name)
```

Arguments

df data frame
col_palette named vector
title_name character

Value

ggplot object

plot_waterfall

plot_proportions

Plot estimated proportions

Description

Plot estimated proportions

Usage

```
plot_proportions(data, col_palette)
```

Arguments

data table of the category prediction

col_palette character palette

plot_waterfall

Function to plot waterfall

Description

Function to plot waterfall

Usage

```
plot_waterfall(df, col_palette, study_name)
```

Arguments

df data frame

col_palette character palette

study_name string: to show on title

Value

ggplot object

predict_lm 19

predict_lm

Make predictions, linear model

Description

Make predictions, linear model

Usage

```
predict_lm(model, newdata, single)
```

Arguments

model a model object

newdata data frame in which to look for variables with which to predict

single logical: TRUE if single study experiment

Value

data frame with predictions

predict_nlm_multi

Make predictions based on non-linear model, multiple studies

Description

Make predictions based on non-linear model, multiple studies

Usage

```
predict_nlm_multi(model, newdata, change_time)
```

Arguments

model an object of class brmsfit

newdata data frame in which to look for variables with which to predict

change_time data frame

Value

data frame with predictions

20 predict_regr_model

predict_nlm_single

Make predictions based on non-linear model, single study

Description

Make predictions based on non-linear model, single study

Usage

```
predict_nlm_single(model, newdata, change_time)
```

Arguments

model an object of class brmsfit

newdata data frame in which to look for variables with which to predict

change_time numeric

Value

data frame with predictions

predict_regr_model

Make predictions

Description

Make predictions

Usage

```
predict_regr_model(model, df)
```

Arguments

model object of class brmsfit

df data frame with classification results

Value

data frame

run_app 21

run_app

Run the Shiny Application

Description

Run the Shiny Application

Usage

```
run_app(...)
```

Arguments

... additional options passed to shinyApp()

Value

No return value, called for the shiny app interface

run_nl_model

Fit nonlinear model - continuous hinge function

Description

Fit nonlinear model - continuous hinge function

Usage

```
run_nl_model(start, df_mod, formula, n_cores)
```

Arguments

start df with coefficients

df_mod data of all variables used in the model

formula an object of class brmsformula

n_cores number of cores to use

Value

object of class brmsfit

22 set_waiter

set_waiter

Set up a waiting screen

Description

Set up a waiting screen

Usage

set_waiter(header)

Arguments

header

text to display on loading screen

Value

object of a class waiter

Index

```
* datasets
                                                 plot_class_tv, 17
    example_data, 9
                                                 plot_proportions, 18
                                                 \verb|plot_waterfall|, 18
aggregate_study_info, 2
                                                 plotly_volume, 15
animal_info_classification, 3
                                                 predict_lm, 19
assess_efficacy, 3
                                                 predict_nlm_multi, 19
                                                 predict_nlm_single, 20
{\tt below\_min\_points}, 4
                                                 predict_regr_model, 20
calc_gr, 4
                                                 run_app, 21
calc_probability, 5
                                                 run_nl_model, 21
calc_survived, 5
change_time_multi, 6
                                                 set_waiter, 22
change_time_single, 6
classify_data_point, 7
classify_subcategories, 7
classify_type_responder, 8
clean_string, 8
control_growth_plot, 9
example_data, 9
exclude_data, 10
expand_palette, 10
f_start, 11
get_responder, 11
guess_match, 12
hide_outliers, 12
load_data, 13
make_terms, 13
model_control, 14
{\tt notify\_error\_and\_reset\_input,}\ 14
ordered_regression, 15
plot_animal_info, 16
plot_class_gr, 17
```