CS 580 HW 7

Ankur Dhoot

April 12, 2017

Q1

It's obvious that Enormous-Cut \in NP, since given a certificate, we can easily check the certificate in polynomial time (just sum up the edge weights for edges with one endpoint in U and the other endpoint not in U and check whether the sum is $\geq K$).

We'll reduce Set-Partition to Enormous-Cut thereby proving Enormous-Cut to be NP-Hard. We already showed Enormous-Cut in NP, so together we'll have that Enormous-Cut is NPC.

Let $R = \{r_1, r_2, ... r_n\}$ be an instance of Set-Partition (i.e a set of positive integers). We'll construct a graph G such that R contains a valid partition if and only if G contains a subset of vertices, U, s.t $c(U) = (\sum_{u \in U} r_u)^2$ where

c(U) denotes the sum of the weights of the edges with one endpoint in U and the other not in U and r_u denotes the uth integer in R.

We construct G as follows:

Let G be the complete graph on n vertices, one vertex for each integer in R (i.e the ith integer in R corresponds to the ith vertex in G). Then, let w_{ij} , the weight between vertex i and vertex j (i \neq j), be $r_i * r_j$.

Claim: R contains a valid partition if and only if G contains a subset of vertices, U, s.t $c(U) = (\sum_{u \in U} r_u)^2$

 (\Rightarrow) Suppose R has a valid partition. That is, there exists some subset of R, S, s.t $\sum_{r \in S} r = \sum_{r \in R-S} r$. Consider the corresponding subset of vertices, U, in G. We then have that $c(U) = \sum_{u \in U} \sum_{v \in V-U} r_u r_v = \sum_{u \in U} r_u \sum_{v \in V-U} r_v = \sum$

U, in G. We then have that
$$c(U) = \sum_{u \in U} \sum_{v \in V - U} r_u r_v = \sum_{u \in U} r_u \sum_{v \in V - U} r_v = (\sum_{u \in U} r_u)^2$$
 since $\sum_{u \in U} r_u = \sum_{v \in V - U} r_v$.
(\Leftarrow) Suppose G contains a subset of vertices, U, s.t $c(U) = (\sum_{u \in U} r_u)^2$.

By definition,
$$c(U) = \sum_{u \in U} \sum_{v \in V - U} r_u r_v$$
 which by hypothesis equals $(\sum_{u \in U} r_u)^2$.
Thus, we have $\sum_{u \in U} \sum_{v \in V - U} r_u r_v - (\sum_{u \in U} r_u)^2 = 0 \Rightarrow \sum_{u \in U} r_u (\sum_{v \in V - U} r_v - \sum_{u \in U} r_u) = 0$

 $0 \Rightarrow \sum_{v \in V - U} r_v - \sum_{u \in U} r_u = 0$ since $\sum_{u \in U} r_u > 0 \Rightarrow \sum_{u \in U} r_u = \sum_{v \in V - U} r_v$. Let S be the subset of integers in R corresponding to U, and we have the desired conclusion.

(Note: Technically, Enormous-Cut answers the question "Is $c(U) \ge K$?" instead of "Is c(U) = K?", but if we just ask "Is $c(U) \ge K$?" and "Is $c(U) \ge K + 1$?", and the answer to the former is yes, but the answer to the latter is no, then that means c(U) = K)

 $\mathbf{Q2}$