

HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +200 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout
- 3.3 V, 5 V, and 15 V logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Internal set deadtime
- High-side output in phase with HIN input
- Low-side output out of phase with LIN input
- RoHS compliant

Description

The IRS2003 is a high voltage, high speed power MOSFET and IGBT drivers with dependent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable rugge-dized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down

Product Summary

Voffset	200 V max.
I _O +/-	130 mA/270 mA
Vout	10 V - 20 V
t _{on/off} (typ.)	680 ns/150 ns
Deadtime (typ.)	520 ns

Packages

to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 200 V.

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High-side floating absolute voltage		-0.3	225	
Vs	High-side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High-side floating output voltage		V _S - 0.3	V _B + 0.3	
Vcc	Low-side and logic fixed supply voltage		-0.3	25	
V _{LO}	Low-side output voltage	-0.3	V _{CC} + 0.3		
V _{IN}	Logic input voltage (HIN & LIN)	-0.3	V _{CC} + 0.3		
dV _S /dt	Allowable offset supply voltage transient	_	50	V/ns	
D-	Package power dissipation @ T _A ≤ +25 °C	(8 Lead PDIP)	_	1.0	W
FD	P _D Package power dissipation @ T _A ≤ +25 °C (8 Le		_	0.625	, vv
Rth, _{IA}	Thermal registance in action to embient	(8 Lead PDIP)	_	125	°C/W
KuijĄ	Thermal resistance, junction to ambient (8 Lead SOIC)		_	200	10/00
TJ	Junction temperature		_	150	
T _S	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High-side floating supply offset voltage	Note 1	200	
V _{HO}	High-side floating output voltage	VS	V _B	
Vcc	Low-side and logic fixed supply voltage	10	20	V
V_{LO}	Low-side output voltage	0	Vcc	
V _{IN}	Logic input voltage (HIN & LIN)	0	Vcc	
T _A	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 V to +200 V. Logic state held for V_S of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, C_L = 1000 pF and T_A = 25 °C unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	680	820		V _S = 0 V
toff	Turn-off propagation delay	_	150	220		V _S = 200 V
t _r	Turn-on rise time	_	70	170		
tf	Turn-off fall time	_	35	90	ns	
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off	400	520	650		
MT	Delay matching, HS & LS turn-on/off	_	_	60		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V and T_A = 25 °C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" (HIN) & Logic "0" (LIN) input voltage	2.5	_	_		V = = = 40 V += 20 V
V _{IL}	Logic "0" (HIN) & Logic "1" (LIN) input voltage	_	_	0.8	V	V _{CC} = 10 V to 20 V
V _{OH}	High level output voltage, V _{BIAS} - V _O	_	0.05	0.2	v	I _O = 2 mA
V _{OL}	Low level output voltage, V _O	_	0.02	0.1		10 - 2 111/4
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 200 V
I _{QBS}	Quiescent V _{BS} supply current	_	30	55		
lacc	Quiescent V _{CC} supply current	_	150	270	μΑ	$V_{IN} = 0 \text{ V or 5 V}$
I _{IN+}	Logic "1" input bias current	_	3	10		HIN = 5 V, LIN = 0 V
I _{IN-}	Logic "0" input bias current	_	_	5		HIN = 0 V, LIN = 5 V
Vccuv+	V _{CC} supply undervoltage positive going threshold	8	8.9	9.8	V	
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9	V	
l _{O+}	Output high short circuit pulsed current	130	290		mA.	$V_O = 0 \text{ V}, V_{IN} = V_{IH}$ $PW \le 10 \mu\text{s}$
I _O -	Output low short circuit pulsed current	270	600	_	111/4	$V_{O} = 15 \text{ V}, V_{IN} = V_{IL}$ PW \le 10 \mus

Functional Block Diagram

Lead Definitions

Symbol	Description
HIN	Logic input for high-side gate driver output (HO), in phase
LIN	Logic input for low-side gate driver output (LO), out of phase
VB	High-side floating supply
НО	High-side gate drive output
Vs	High-side floating supply return
Vcc	Low-side and logic fixed supply
LO	Low-side gate drive output
COM	Low-side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

HO DT 10%

HO DT 10%

10%

Figure 3. Deadtime Waveform Definitions

Figure 4A. Turn-On Time vs. Temperature

1400

Figure 4B. Turn-On Time vs. Supply Voltage

Figure 4C. Turn-On Time vs. Input Voltage

Figure 5A. Turn-Off Time vs. Temperature

Figure 5B. Turn-Off Time vs. Supply Voltage

Figure 5C. Turn-Off Time vs. Input Voltage

Figure 6A. Turn-On Rise Time vs. Temperature

Figure 7A. Turn-Off Fall Time vs. Temperature

Figure 8A. Deadtime vs. Temperature

Figure 6B. Turn-On Rise Time vs. Voltage

Figure 7B. Turn-Off Fall Time vs. Voltage

Figure 8B. Deadtime vs. Voltage

Figure 9A. Logic "1" Input Voltage vs. Temperature

Figure 10A. Logic "0"(HIN) & Logic "1" (LIN) Input Voltage vs. Temperature

Figure 11A. High Level Output Voltage vs. Temperature

Figure 9B. Logic "1" Input Voltage vs. Supply Voltage

Figure 10B. Logic "0"(HIN) & Logic "1" (LIN) Input Voltage vs. Voltage

Figure 11B. High Level Output Voltage vs. Supply Voltage

Figure 12A. Low Level Output Voltage vs. Temperature

Figure 13A. Offset Supply Current vs. Temperature

Figure 14A. V_{BS} Supply Current vs. Temperature

Figure 12B. Low Level Output Voltage vs. Supply Voltage

Figure 13B. Offset Supply Current vs. Voltage

Figure 14B. V_{BS} Supply Current vs. Voltage

Figure 15A. Vcc Supply Current vs. Temperature

Figure 16A. Logic "1" Input Current vs. Temperature

Figure 17A. Logic "0" Input Bias Current vs. Temperature

Figure 15B. Vcc Supply Current vs. Voltage

Figure 16B. Logic "1" Input Current vs. Voltage

Figure 17B. Logic "0" Input Bias Current vs. Voltage

International TOR Rectifier

IRS2003(S)PbF

Figure 18A. V_{CC} Undervoltage Threshold(+) vs. Temperature

Figure 18B. V_{CC} UndervoltageThreshold (-) vs. Temperature

Figure 19A. Output Source Current vs. Temperature

Figure 19B. Output Source Current vs. Supply Voltage

Figure 20A. Output Sink Current vs. Temperature

Figure 20B. Output Sink Current vs. Supply Voltage

Case Outlines

Tape & Reel 8-lead SOIC

LOADED TAPE FEED DIRECTION

CARRIER TAPE DIMENSION FOR 8SOICN

OMMENDION I ON OCCION						
	M etric		lm p	erial		
Code	Min	Min Max		Max		
Α	7.90	8.10	0.311	0.318		
В	3.90	4.10	0.153	0.161		
С	11.70	12.30	0.46	0.484		
D	5.45	5.55	0.214	0.218		
E	6.30	6.50	0.248	0.255		
F	5.10	5.30	0.200	0.208		
G	1.50	n/a	0.059	n/a		
Н	1.50	1.60	0.059	0.062		

REEL DIMENSIONS FOR 8SOICN

	M e	tric	lm p erial			
Code	Min	Max	Min	Max		
Α	329.60	330.25	12.976	13.001		
В	20.95	21.45	0.824	0.844		
С	12.80	13.20	0.503	0.519		
D	1.95	2.45	0.767	0.096		
E	98.00	102.00	3.858	4.015		
F	n/a	18.40	n/a	0.724		
G	14.50	17.10	0.570	0.673		
Н	12.40	14.40	0.488	0.566		

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2003PbF 8-Lead SOIC IRS2003SPbF 8-Lead SOIC Tape & Reel IRS2003STRPbF

International

TOR Rectifier

The SOIC-8 is MSL2 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 11/27/2006