ECE 286: Bayesian Machine Perception

Class 9: The Probabilistic Data Association Filter

Florian Meyer

Electrical and Computer Engineering Department University of California San Diego

• "Single object tracking in clutter" problem

- "Single object tracking in clutter" problem
- Measurement-origin uncertainty (MOU), false clutter measurements and missed detections

- "Single object tracking in clutter" problem
- Measurement-origin uncertainty (MOU), false clutter measurements and missed detections

- "Single object tracking in clutter" problem
- Measurement-origin uncertainty (MOU), false clutter measurements and missed detections

The Association Variable

- Object-oriented association variable $a_n \in \{0,1,\ldots,M_n\}$
 - $-a_n=m>0$: at time n, the object generates the measurement with index m
 - $-a_n=0$: at time n, the object did not generate a measurement
- Example:

© Florian Meyer, 2020 5

Probabilistic Data Association Filter

Prediction Step

$$\underbrace{f(\boldsymbol{x}_{n}|\boldsymbol{y}_{1:n-1})}_{\text{Predicted posterior pdf}} = \int \underbrace{f(\boldsymbol{x}_{n}|\boldsymbol{x}_{n-1})}_{\text{State-transition}} \underbrace{f(\boldsymbol{x}_{n-1}|\boldsymbol{y}_{1:n-1})}_{\text{Previous posterior pdf}} d\boldsymbol{x}_{n-1}$$

Updated Step

$$\underbrace{f(\boldsymbol{x}_{n}|\boldsymbol{z}_{1:n})}_{\text{Posterior pdf}} \propto \underbrace{f(\boldsymbol{x}_{n}|\boldsymbol{z}_{1:n-1})}_{\text{predicted posterior pdf}} \sum_{m=0}^{M_{n}} g_{\boldsymbol{z}_{n}}(\boldsymbol{x}_{n}, a_{n} = m)$$

$$= f(\boldsymbol{x}_{n}|\boldsymbol{z}_{1:n-1}) \left((1 - p_{d}) + \frac{p_{d}f(\boldsymbol{z}_{m,1}|\boldsymbol{x}_{n})}{\mu_{c}f_{c}(\boldsymbol{z}_{m,1})} + \dots + \frac{p_{d}f(\boldsymbol{z}_{m,M_{n}}|\boldsymbol{x}_{n})}{\mu_{c}f_{c}(\boldsymbol{z}_{m,M_{n}})} \right)$$

© Florian Meyer, 2020 6

Key Parameters

Posterior Distribution

$$f(oldsymbol{x}_n|oldsymbol{z}_{1:n}) \propto f(oldsymbol{x}_n|oldsymbol{z}_{1:n-1}) \left((1-oldsymbol{p}_{ ext{d}}) + rac{oldsymbol{p}_{ ext{d}} f(oldsymbol{z}_{1,n}|oldsymbol{x}_n)}{\mu_{ ext{c}} f_{ ext{c}}(oldsymbol{z}_{1,n})} + \cdots + rac{oldsymbol{p}_{ ext{d}} f(oldsymbol{z}_{M_n,n}|oldsymbol{x}_n)}{\mu_{ ext{c}} f_{ ext{c}}(oldsymbol{z}_{M_n,n})}
ight)$$

• Probability that a measurements is generated by the object $0 < p_{\rm d} \leqslant 1$ (probability of detection)

Key Parameters

Posterior Distribution

$$f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n}) \propto f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n-1}) \left((1-p_{\mathrm{d}}) + \frac{p_{\mathrm{d}}f(\boldsymbol{z}_{1,n}|\boldsymbol{x}_n)}{\mu_{\mathrm{c}}f_{\mathrm{c}}(\boldsymbol{z}_{1,n})} + \dots + \frac{p_{\mathrm{d}}f(\boldsymbol{z}_{M_n,n}|\boldsymbol{x}_n)}{\mu_{\mathrm{c}}f_{\mathrm{c}}(\boldsymbol{z}_{M_n,n})} \right)$$

- Probability that a measurements is generated by the object $0 < p_{\rm d} \leqslant 1$ (probability of detection)
- Mean number of clutter measurements $0<\mu_{\rm c}$

Key Parameters

Posterior Distribution

$$f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n}) \propto f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n-1}) \left((1-p_{
m d}) + \frac{p_{
m d}f(\boldsymbol{z}_{1,n}|\boldsymbol{x}_n)}{\mu_{
m c}f_{
m c}(\boldsymbol{z}_{1,n})} + \cdots + \frac{p_{
m d}f(\boldsymbol{z}_{M_n,n}|\boldsymbol{x}_n)}{\mu_{
m c}f_{
m c}(\boldsymbol{z}_{M_n,n})} \right)$$

- Probability that a measurements is generated by the object $0 < p_{\rm d} \leqslant 1$ (probability of detection)
- Mean number of clutter measurements $0 < \mu_{\rm c}$
- Clutter pdf $0 < f_{\rm c}(\boldsymbol{z}_m)$

Linear-Gaussian State-Space Model

ullet Consider a sequence of states $oldsymbol{x}_n$ and a sequence of measurements $oldsymbol{y}_n$

State-Transition Model:

State x_n evolves according to

$$egin{aligned} oldsymbol{x}_n &= oldsymbol{G}_n \, oldsymbol{x}_{n-1} + oldsymbol{u}_n \ & ext{driving noise (white)} \end{aligned}$$

with Gaussian driving noise

$$oldsymbol{u}_n \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Sigma_{u_n}})$$

Model for Object Generated Meas.:

Measurement y_n is generated as

$$egin{aligned} oldsymbol{y}_{n,m} &= oldsymbol{H}_n oldsymbol{x}_n + oldsymbol{v}_n \ &\Rightarrow f(oldsymbol{y}_{n,m} | oldsymbol{x}_n) \end{aligned} \qquad ext{measurement noise (white)}$$

with Gaussian measurement noise

$$oldsymbol{v}_n \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Sigma_{oldsymbol{v}_n}})$$

ullet Prior PDF at n=0 , $oldsymbol{x}_0 \sim \mathcal{N}(oldsymbol{\mu}_{oldsymbol{x}_0}, oldsymbol{\Sigma}_{oldsymbol{x}_0})$

Prob. Data Association with Linear-Gaussian Model

- Let us assume $f(m{x}_{n-1}|m{y}_{1:n-1})$ is Gaussian with mean $m{\mu}_{m{x}_{n-1}}$ and covariance $m{\Sigma}_{m{x}_{n-1}}$
- The Prediction step can be performed in closed form (as in the Kalman filter), i.e., $f(\boldsymbol{x}_n|\boldsymbol{y}_{1:n-1})$ is Gaussian with mean $\boldsymbol{\mu}_{\boldsymbol{x}_n}^-$ and covariance $\boldsymbol{\Sigma}_{\boldsymbol{x}_n}^-$ given as

$$\boldsymbol{\mu}_{\boldsymbol{x}_n}^- = G_n \boldsymbol{\mu}_{\boldsymbol{x}_{n-1}}$$
 $\boldsymbol{\Sigma}_{\boldsymbol{x}_n}^- = \boldsymbol{G}_n \boldsymbol{\Sigma}_{\boldsymbol{x}_{n-1}} \boldsymbol{G}_n^{\mathrm{T}} + \boldsymbol{\Sigma}_{\boldsymbol{u}_n}$

• Goal: Closed-form solution for the update step such that $f(x_n|y_{1:n})$ can be represented be mean μ_{x_n} and covariance Σ_{x_n}

The Gaussian Mixture Distribution

• A continuous random variable x is said to have a Gaussian mixture distribution with K components and parameters w_k , μ_k , Σ_k , $k=1,\ldots,K$ if its probability density function is given by

$$f(oldsymbol{x}) = \sum_{k=1}^K w_k f_{\mathrm{g}}(oldsymbol{x}; oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$

- The $f_{
 m g}(m x;m \mu_k,m \Sigma_k)$ are Gaussian distributions with mean $m \mu_k$ and covariance matrix $m \Sigma_k$
- The weights $w_k>0$ normalize to one, i.e., $\sum_{k=1}^K w_k=1$

Mean and Covariance of Gaussian Mixture Distribution

• Let f(x) be a Gaussian mixture distributions with parameters w_k , μ_k , Σ_k , $k=1,\ldots,K$

• The mean of $f(\boldsymbol{x})$ is given by

$$\boldsymbol{\mu_x} = w_1 \boldsymbol{\mu}_1 + w_2 \boldsymbol{\mu}_2 + \dots + w_K \boldsymbol{\mu}_K$$

• The covariance of f(x) is given by

$$\mathbf{\Sigma}_{x} = \sum_{k=1}^{K} w_{k} \mathbf{\Sigma}_{k} + \sum_{k=1}^{K} w_{k} \boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\mathrm{T}} - \boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{\mathrm{T}}$$

Closed-Form Update Step

• Recall posterior distribution ($z_{1:n}$ is observed and thus fixed)

$$f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n}) \propto f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n-1}) \left((1-p_{\mathrm{d}}) + \frac{p_{\mathrm{d}}f(\boldsymbol{z}_{1,n}|\boldsymbol{x}_n)}{\mu_{\mathrm{c}}f_{\mathrm{c}}(\boldsymbol{z}_{1,n})} + \dots + \frac{p_{\mathrm{d}}f(\boldsymbol{z}_{M_n,n}|\boldsymbol{x}_n)}{\mu_{\mathrm{c}}f_{\mathrm{c}}(\boldsymbol{z}_{M_n,n})} \right)$$

• Theorem: If the predicted posterior $f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n-1})$ is Gaussian, with mean $\boldsymbol{\mu}_{\boldsymbol{x}_n}^-$ and covariance $\boldsymbol{\Sigma}_{\boldsymbol{x}_n}^-$ and the model for the object-generated measurement is linear-Gaussian, then $f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n})$ is a Gaussian mixture distribution with M_n+1 components and parameters

$$w_m \propto rac{p_{
m d}f(oldsymbol{z}_{m,n}|oldsymbol{z}_{1:n})}{\mu_{
m c}f_{
m c}(oldsymbol{z}_{m,n})} \qquad m \in \{1,\ldots,M_n\}$$
 $w_{M_n+1} \propto (1-p_{
m d})$ $oldsymbol{\mu}_{m} = oldsymbol{\mu}_{oldsymbol{x}_n}^- + oldsymbol{K}_nig(oldsymbol{z}_{m,n} - oldsymbol{H}_noldsymbol{\mu}_{oldsymbol{x}_n}^-ig) \qquad oldsymbol{\mu}_{M_n+1} = oldsymbol{\mu}_{oldsymbol{x}_n}^- \ oldsymbol{\Sigma}_{m+1} = oldsymbol{\Sigma}_{oldsymbol{x}_n}^- \ oldsymbol{\Sigma}_{M_n+1} = oldsymbol{\Sigma}_{M_n+1}^- \ o$

Closed-Form Update Step - Sketch of Proof

• Let's take a look at the single component $m \in \{1, \ldots, M_n\}$

$$\frac{p_{\mathrm{d}}f(\boldsymbol{z}_{m,n}|\boldsymbol{x}_n)f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n-1})}{\mu_{\mathrm{c}}f_{\mathrm{c}}(\boldsymbol{z}_{m,n})} = \frac{p_{\mathrm{d}}f(\boldsymbol{z}_{m,n}|\boldsymbol{x}_n,\boldsymbol{z}_{1:n-1})f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n-1})}{\mu_{\mathrm{c}}f_{\mathrm{c}}(\boldsymbol{z}_{m,n})} \qquad \text{Statistical Independent Meas. & Driving Noise}$$

$$= \frac{p_{\mathrm{d}}f(\boldsymbol{z}_{m,n},\boldsymbol{x}_n|\boldsymbol{z}_{1:n-1})}{\mu_{\mathrm{c}}f_{\mathrm{c}}(\boldsymbol{z}_{m,n})}$$

$$= \frac{p_{\mathrm{d}}f(\boldsymbol{z}_{m,n}|\boldsymbol{z}_{1:n-1})}{\mu_{\mathrm{c}}f_{\mathrm{c}}(\boldsymbol{z}_{m,n})}f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n-1},\boldsymbol{z}_{m,n}) \qquad \mu_m = \mu_{\boldsymbol{x}_n}^- + K_n(\boldsymbol{z}_{m,n} - H_n\mu_{\boldsymbol{x}_n}^-)$$

$$\boldsymbol{\Sigma}_m = \boldsymbol{\Sigma}_{\boldsymbol{x}_n}^- - K_nH_n\boldsymbol{\Sigma}_{\boldsymbol{x}_n}^-$$

$$\boldsymbol{\Sigma}_m = \boldsymbol{\Sigma}_{\boldsymbol{x}_n}^- - K_nH_n\boldsymbol{\Sigma}_{\boldsymbol{x}_n}^-$$

$$\boldsymbol{K}_n = \boldsymbol{\Sigma}_{\boldsymbol{x}_n}^- H_n^{\mathrm{T}}(H_n\boldsymbol{\Sigma}_{\boldsymbol{x}_n}^- H_n^{\mathrm{T}} + \boldsymbol{\Sigma}_{\boldsymbol{v}_n})^{-1}$$

• The conditional evidence $f(z_{m,n}|z_{1:n-1})$ is given by

$$f(\boldsymbol{z}_{m,n}|\boldsymbol{z}_{1:n-1}) = f_{g}(\boldsymbol{z}_{m,n};\boldsymbol{H}_{n}\boldsymbol{\mu}_{\boldsymbol{x}}^{-},\boldsymbol{H}_{n}\boldsymbol{\Sigma}_{\boldsymbol{x}_{n}}^{-}\boldsymbol{H}_{n}^{\mathrm{T}} + \boldsymbol{\Sigma}_{\boldsymbol{v}_{n}})$$

Closed-Form Update Step - Discussion

- Mean and covariances $\mu_m, \Sigma_m, m=1,\dots,M_n+1$ of the Gaussian mixture distribution are obtained by
 - performing the Kalman update step for each "measurement component" $m=1,\ldots,M_n$
 - keeping predicted mean and covariance for the ``missed-detection component'' $m=M_n+1$
- Weights $\mu_m, \Sigma_m, m=1,\ldots,M_n+1$ are given as

$$w_m \propto p_{\rm d} f(z_{m,n}|z_{1:n})/\mu_{\rm c} f_{\rm c}(z_{m,n}), \qquad m = 1, \dots, M_n \qquad \qquad w_{M_n+1} \propto (1-p_{\rm d})$$

- The probability of detection $p_{
 m d}$ determines the ratio between measurement component weights and missed-detection component weight
- Large conditional evidence $f(z_{m,n}|z_{1:n})$ means that measurement $z_{m,n}$ is likely to be object generated
- Large $\mu_{
 m c} f_{
 m c}(m{z}_{m,n})$ means that the measurement is likely to be clutter

Example

Posterior at time n-1

$$f(\boldsymbol{x}_{n-1}|\boldsymbol{z}_{1:n-1})$$

Predicted Posterior at time n

$$f(\boldsymbol{x}_n|\boldsymbol{z}_{1:n-1})$$

Posterior at time n

$$f(oldsymbol{x}_n|oldsymbol{z}_{1:n})$$

Closed-Form Update Step - Approximation

- Let's assume $f(x_{n-1}|z_{1:n-1})$ is a Gaussian mixture distribution with K components
- At time n, we could calculate a predicted posterior $f(x_n|z_{1:n-1})$ that has a Gaussian mixture distribution from $f(x_{n-1}|z_{1:n-1})$ by performing K prediction steps
- However, after the following update step, we would obtain a Gaussian mixture with $K(M_n+1)$ components \Rightarrow complexity of the resulting algorithm has a computational complexity that scales exponentially with time n
- Thus, after each update step, we approximate the update posterior $f(x_n|z_{1:n})$ by a single Gaussian with a mean μ_{x_n} and covariance Σ_{x_n} that are equal to the mean and covariance of its Gaussian mixture distribution (moment matching)

Closed-Form Update Step - Summary

• Step 1: Calculate means and covariances of mixture components:

$$egin{aligned} oldsymbol{\mu}_m &= oldsymbol{\mu}_{oldsymbol{x}_n}^- + oldsymbol{K}_n ig(oldsymbol{z}_{m,n} - oldsymbol{H}_n oldsymbol{\mu}_{oldsymbol{x}_n}^-ig) & m = 1, \dots, M_n \end{aligned} egin{aligned} oldsymbol{\mu}_{M_n+1} &= oldsymbol{\mu}_{oldsymbol{x}_n}^- \ oldsymbol{\Sigma}_m &= oldsymbol{\Sigma}_{oldsymbol{x}_n}^- - oldsymbol{K}_n oldsymbol{H}_n^{\mathrm{T}} oldsymbol{\Sigma}_{oldsymbol{x}_n}^- \ oldsymbol{\Sigma}_{oldsymbol{x}_n}^- oldsymbol{H}_n^{\mathrm{T}} oldsymbol{\Psi}_{oldsymbol{x}_n}^- \ oldsymbol{\Sigma}_{oldsymbol{x}_n}^- oldsymbol{H}_n^{\mathrm{T}} oldsymbol{\Psi}_{oldsymbol{x}_n}^- \ oldsymbol{\Sigma}_{oldsymbol{x}_n}^- oldsymbol{H}_n^{\mathrm{T}} oldsymbol{\Sigma}_{oldsymbol{x}_n}^- oldsymbol{H}_n^{\mathrm{T}} oldsymbol{\Sigma}_{oldsymbol{x}_n}^- oldsymbol{\Pi}_n^{\mathrm{T}} oldsymbol{\Psi}_n^- oldsymbol{\Pi}_n^{\mathrm{T}} oldsymbol{\Psi}_n^- oldsymbol{\Pi}_n^{\mathrm{T}} oldsymbol{\Pi}_n^{\mathrm{$$

• Step 2: Calculate unnormalized weights:

$$\tilde{w}_m = \frac{p_{\rm d}f_{\rm g}(\boldsymbol{z}_{m,n}; \boldsymbol{H}_n\boldsymbol{\mu}_{\boldsymbol{x}_n}^-, \boldsymbol{H}_n\boldsymbol{\Sigma}_{\boldsymbol{x}_n}^-\boldsymbol{H}_n^{\rm T} + \boldsymbol{\Sigma}_{\boldsymbol{v}_n})}{\mu_{\rm c}f_{\rm c}(\boldsymbol{z}_{m,n})} \qquad m = 1,\dots, M_n \qquad \tilde{w}_{M_n+1} = (1 - p_{\rm d})$$

- Step 3: Normalize weights: $w_m = \tilde{w}_m / \left(\sum_{m'=1}^{M_n+1} \tilde{w}_{m'}\right)$
- Step 4: Approximate Gaussian mixture by a single Gaussian with same mean and covariance (moment matching):

$$\boldsymbol{\mu_{x_n}} = \sum_{m=1}^{M_n+1} w_m \boldsymbol{\mu_m}$$

$$\boldsymbol{\Sigma_{x_n}} = \sum_{m=1}^{M_n+1} w_m \boldsymbol{\Sigma_m} + \sum_{m=1}^{M_n+1} w_m \boldsymbol{\mu_m} \boldsymbol{\mu_m}^{\mathrm{T}} - \boldsymbol{\mu_{x_n}} \boldsymbol{\mu_{x_n}^{\mathrm{T}}}$$

• Result: Mean $\mu_{m{x}_n}$ and covariance $m{\Sigma}_{m{x}_n}$ representing the posterior distribution $f(m{x}_n|m{z}_{1:n})$

Y. Bar-Shalom, F. Daum, and J. Huang, The Probabilistic Data Association Filter, IEEE Contr. Syst. Mag., 2009

Conclusion

- Single object tracking in clutter for linear-Gaussian system models
 - prediction and update steps can be performed in closed-form
 - posterior distributions are Gaussian mixture densities with a number of components that scales exponentially with time
 - to limit computational complexity, the posterior distribution is approximate by a single Gaussian after each update step