УДК 535.37 ©1993

УЛЬТРАЗВУКОВОЕ ВОЗДЕЙСТВИЕ НА СПЕКТРЫ ОПТИЧЕСКОГО ПРОПУСКАНИЯ И ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ В КРИСТАЛЛАХ Cds

О.А.Коротченков, А.Х.Рожко, А.М.Антонов, И.В.Островский

Обнаружено увеличение прозрачности кристаллов CdS при воздействии ультразвуковой волны с интенсивностью, не превышающей 0.5 Вт/см², в температурном интервале 4.2–300 К. Показано, что оно может быть объяснено уменьшением показателя преломления кристалла и эффектами ионизации и перезарядки локальных центров под воздействием ультразвука.

Эффект деформационного изменения диэлектрической проницаемости

 ε (или показателя преломления n) исследовался ранее в различных твердых телах, в том числе и в полупроводниковых кристаллах $[^{1,2}]$. Ранее было установлено, что эффективность воздействия высокочастотной ультразвуковой (УЗ) волны может существенно превышать эффективность гидростатического сжатия для процессов взаимодействия света с кристаллом $[^3]$. Это обусловлено тем, что УЗ-воздействие не сводится к периодическому сжатию и растяжению в волне, а определяется также тепловым, пьезоэлектрическим действием УЗ, вкладом электрических полей движущихся дислокаций и генерируемых ультразвуком точечных дефектов $[^4]$. Следовательно, можно ожидать существенного изменения n и управления показателем преломления вещества при действии УЗ. Кроме того, появляется возможность разработки нового метода акустомодуляционной спектроскопии твердых тел, где в отличие от традиционных методов электро- и фотомодуляции $[^{5,6}]$ используется УЗ-волна.

Эксперименты проводились на пластинчатых и объемных монокристаллах CdS. Пластинчатые образцы были выращены из паровой фазы и имели толщину 50–500 мкм, размеры поверхностей 1–10 мм. Гексагональная ось С6 была направлена вдоль длины образца. Для возбуждения УЗ-волн Лэмба на противоположные грани у торца кристалла наносились In-Ga электроды. УЗ возбуждался за счет собственного пьезоэффекта в CdS при подаче на электроды высокочастотного напряжения V в интервале частот 5–20 МГц. Объемные монокристаллы CdS, специально не легированные и с примесью Те (0.01%), имели характерные размеры граней от 3 до 9 мм. УЗ-волны с частотой 2.6–2.8 МГц возбуждались с помощью пьезокерамических преобразователей, приклеенных к боковым граням кристаллов. Эксперименты проводились в температурном интервале 100–300 K, характерном для работы оптико-электронных устройств. При этом тонкие пластины CdS исследовались лишь при температуре

Рис. 1. Воздействие импульсного УЗ на спектры ОП CdS:Те толщиной 3 мм. Амплитуда импульсов V=0 (1), 16 В (2), 3 — разность спектров 2 и 1. Частота УЗ 2.64 МГц, длительность ймпульсов 30 мс, период повторения 60 мс. Значение V=16 В соответствует средней интенсивности ~ 2 Вт/см². Стрелкой показано значение $h\nu=Eg-0.17\gg$ В. T=300 К.

УЗ (параметры импульсов те же, что и на рис. 1) на спектр ОП (a) CdS:Те и его временная релаксация спустя 2 мс (б) после окончания импульса УЗ. Амплитуда импульсов V=15 В, частота УЗ 2.74 МГц. Стрелками ($t=1\div 6$) показаны полосы, соответствующие электронным переходам. T=120 К.

Рис. 2. Воздействие импульсного

жидкого гелия во избежание разрушения при разогреве УЗ. Спектры оптического пропускания (ОП) регистрировались установками на базе спектрографа ДФС-13 и монохроматора МСД-2 с фотоэлектрической регистрацией. Исследовалось влияние на спектры ОП непрерывного и импульсного УЗ. В последнем случае длительность импульсов УЗ изменялась от 10 до 100 мс, а ФЭУ отпирался на короткое время 0.2-10 мс. Время отпирания ФЭУ можно было смещать относительно импульсов УЗ для исследования кинетики воздействия УЗ на спектры ОП.

Исследованиями установлено увеличение оптического пропускания кристаллов CdS под действием УЗ (спектры I, 2 на рис. 1). Для анализа обнаруженного эффекта исходные спектры перестраивались в спектральные зависимости разности пропускания $T_V(h\nu)$ при различных амплиту-

Рис. 3. Влияние непрерывного УЗ на спектры ОП пластины CdS толщиной 95 мкм в области оптической прозрачности $(\alpha=0)$.

Прикладываемое напряжение V=10 (1), 60 (2), 68 B (3). Значение $V_{\Pi}=60$ B соответствует интенсивности УЗ $\sim 1.5\,\mathrm{Bt/cm^2}$. Частота УЗ 9.2 МГц. T=4.2 K.

Рис. 4. Изменение ОП T_V/T_0 пластины CdS (1) и объемного CdS:Те (2) с изменением прикладываемого напряжения V при фиксированной $h_V=2.245$ (1) и 1.90 σ B (2) из области прозрачности кристаллов.

дах V, УЗ и исходных спектров $T_0(h\nu)$ в отсутствие УЗ для различных образдов CdS (спектр 3 на рис. 1; рис. 2, 3).

Относительное изменение ОП $T_V(h\nu)/T_0(h\nu)$ с увеличением V для фиксированного значения $h\nu$ из области прозрачности двух из исследованных образдов показано на рис. 4. При малых амплитудах V3 наблюдается увеличение ОП в области прозрачности кристалла (спектр 3 на рис. 1; спектр I на рис. 2, 3; участок ab на графиках рис. 4). При $V\gtrsim 20\div 40$ В прозрачность образда начинает уменьшаться (спектр 2 на рис. 3, участок bc на рис. 4). Повышение амплитуды V3 выше некоторого порогового значения $V_{\rm II}$ приводило к резкому падению пропускания (участок cd на графике I рис. 4). Наблюдается также длинноволновое смещение края ОП, наиболее значительное в области $V>V_{\rm II}$ (спектр 3 на рис. 3).

Анализируя результаты, отметим, что пороговое значение \hat{V}_{Π} соответствует возникновению акустолюминесценции и генерации дефектов структуры кристалла под действием УЗ [7]. Это приводит к значительному сдвигу края ОП [3,7] и падению ОП образда. Видно также, что относительный рост пропускания при малых V неодинаков для различных $h\nu$, что дает полосы в спектрах (рис. 1, 2). Наблюдаемые полосы сильнее проявляются в объемных и легированных (рис. 1, 2) кристаллах CdS. В тонких чистых пластинах CdS изменение пропускания в области прозрачности практически равномерно по энергии $h\nu$ (рис. 3). Пропус-

Рис. 5. Зонная схема CdS с дефектами структуры. Стрелками обозначены электрон-

Стрелками обозначены электронные переходы, проявляющиеся в спектрах на рис. 1. Энергии E_t рассчитаны по формуле (4) для $r_t=2.52$ Å ($t=1,\,E_1=0.690$ эВ), 3.0 ($t=2,\,E_2=0.603$ эВ), 4.23 ($t=3,\,E_3=0.466$ эВ), 4.5 ($t=4,\,E_4=0.446$ эВ) и 5.8 ($t=6,\,E_6=0.375$ эВ).

кание T кристалла зависит от коэффициентов отражения R и поглощения lpha и при нормальном падении света задается формулой

$$T = \frac{(1-R)^2 \exp(-\alpha d)}{1 - R^2 \exp(-2\alpha d)},$$
 (1)

d — толщина образца.

Следовательно, увеличение T в спектрах (рис. 1-3) можно объяснить уменьшением R и α под действием ультразвука. При этом в области прозрачности образца $\alpha=0$ и коэффициент пропускания будет определяться лишь коэффициентом отражения R света

$$T = (1 - R)/(1 + R), (2)$$

где

$$R = (n-1)^2/(n+1)^2, (3)$$

n — показатель преломления кристалла.

Следовательно, увеличение прозрачности в области $\alpha=0$ можно объяснить уменьшением показателя преломления. Такое уменьшение определяет, по-видимому, увеличение T в спектре пропускания тонких чистых пластин CdS (рис. 3), соответствующем области прозрачности. Основной вклад, по-видимому, вносят уменьшение n и увеличение T в области $h\nu\lesssim 1.95$ эВ (спектра β на рис. 1), соответствующей области прозрачности объемного CdS:Те (спектр I на рис. 1). Оценки величины изменения n в рамках указанного предположения дают в максимумах зависимостей I, I на рис. 4 уменьшение I на I при интенсивностях I I позволяет предположить проявление в них наряду с изменением I оптических переходов, связанных с дефектами структуры.

Зонная схема CdS с собственными дефектами приведена на рис. 5. Глубина залегания междоузельных кадмия Cd_i^+ и серы S_i^- , а также вакансии серы V_S^+ взяты из работ [8-10]. Группа уровней (V_S^+ , Cd_i^+) рассчитывалась по формуле

$$E_t = E(V_S^+) + q^2/\varepsilon r_t - \varphi(r_t), \tag{4}$$

где $E(V_{\rm S}^+)$ — глубина залегания уровня $V_{\rm S}^+$; r_t — расстояние между $V_{\rm S}^+$ и ${\rm Cd}_i^+$ в t-й координационной сфере, вычисленное из геометрии решетки ${\rm CdS}$; φ — поправка на некулоновский характер взаимодействия, взятая 0.02 Эв [11] для близких пар дефектов в CdS.

Наблюдаемые в спектрах (рис. 1, 2) полосы соответствуют электронным переходам в системе дефектов (рис. 5). Так, полоса 2.23-2.28 эВ (спектр I на рис. 1) энергетически соответствует переходу электрона с уровня \mathbf{S}_i^- в зону проводимости. Энергия такого перехода $h\nu=E_g-0.17$ эВ =2.24 эВ для ширины запрещенной зоны $E_g=2.41$ эВ при 300 К. Рост пропускания в этой полосе можно объяснить ионизацией [12,13] мелких центров \mathbf{S}_i^- УЗ, а также их диффузией к ядру колеблющихся в поле УЗ дислокаций с эффективной очисткой объема образца [14,15] и соответствующим уменьшением коэффициента поглощения α . Полосы $h\nu\approx1.78\div1.82,1.90,2.04,2.10-2.20$ эВ (спектр I на рис. 2) соответствуют по энергии электронным переходам из валентной зоны на уровни комплекса дефектов ($V_{\mathbf{S}}^+$, Cd_i^+). Энергию таких переходов можно рассчитать исходя из (1) и известной $E_g=2.51$ эВ при 120 К

$$h\nu = E_g = E_t. (5)$$

Результаты расчетов приведены на рис. 5 й указаны стрелками $t=1,\ldots,6$ на рис. 2. Увеличение пропускания в указанных полосах можно объяснить захватом электронов комплексом $(V_{\rm S}^+,{\rm Cd}_i^+)$ вследствие перезарядки локальных центров в присутствии УЗ-волны.

Что касается существенного влияния УЗ на показатель преломления, то выяснение его механизма требует дальнейших исследований. Можно лишь предположить, что движущиеся под действием УЗ дислокапии вносят вклад в наблюдаемое изменение n. На используемых оптических частотах диэлектрическая проницаемость определяется в основном электронной поляризуемостью. Влияние заряженных колеблющихся дислокаций и перезаряженных дислокацией точечных дефектов (включая комплексы последних) на свойства решетки кристалла может приводить к изменению поляризуемости единицы объема [14,16], что в свою очередь влияет на показатель преломления. Это не противоречит наблюдаемой релаксации спектров ОП после прекращения УЗ воздействия (спектр 2 на рис. 2). Пропускание резко падает за время, меньшее экспериментально разрешимого мс-диапазона, в промежутках между описанными выше полосами $h\nu_t$ (минимумы в спектре 2). Релаксация же этих полос определяется мс-временами, что характерно для процессов перезарядки локальных центров в CdS.

Таким образом, воздействие УЗ на кристаллы CdS может вызывать обратимое увеличение их прозрачности, достигающее 20% при интенсивностях УЗ, не превышающих $0.5~\mathrm{Bt/cm^2}$. В чистых тонких пластинах обнаруженный эффект определяется, по-видимому, уменьшением показателя преломления. В кристаллах с относительно большой концентрацией дефектов вклад в увеличение прозрачности помимо изменения n будут вносить также эффекты ионизации и перезарядки дефектов и их комплексов под действием УЗ.

Список литературы

- [1] Van Vechten J.A. // Phys. Rev. 1969. V. 182. N 3. P. 891-905.
- [2] Wienstein B.A., Zallen R., Slade M.L., de Lozanne A. // Phys. Rev. B. 1981. V. 24. N 8. P. 4652-4665.
- [3] Коротченков О.А., Островский И.В. // ФТТ. 1990. Т. 32. № 12. С. 3687-3689.
- [4] _{Островский} И.В., Коротченков О.А. // УФЖ. 1985. Т. 30. № 3. С. 356-362.
- [5] Кардона М. Модуляционная спектроскопия. М.: Мир, 1972. 416 с.
- [6] Bhattacharya R.N., Shen H., Parayanthal P., Pollak F.N., Coutts T., Aharoni H. // Phys. Rev. B. 1988. V. 37. N 8. P. 4044-4050.
- [7] Островский И.В. // Письма в ЖЭТФ. 1981. Т. 15. № 12. С. 467-471.
- [8] Ермолович И.Б., Горбунов В.В., Конозенко И.Д. // ФТП. 1977. Т. 11. № 11. С. 1812-1817.
- C. 1812-1817.
 [9] Susa N., Watanabe H., Wada M. // Jap. J. Appl. Phys. 1976. V. 17. N 12. P. 2365-2370.
- [10] Емцев В.В., Машовец Т.В. Примеси и точечные дефекты в полупроводниках. М.:
- Радио и связь, 1981. 275 с. [11] Физика и химия соединений A₂B₆ / Под ред. С.А.Медведева. М.: Мир, 1970. 624 с.
- [12] Попов В.В., Чаплик А.В. // ФТП. 1976. Т. 10. № 9. С. 1780-1783.
- [13] Островский И.В., Рожко А.Х., Лысенко В.Н. // ФТТ. 1981. Т. 23. № 5. С. 1548–1550.
- [14] Островский И.В., Рожко А.Х. // ФТТ. 1984. Т. 26. № 12. С. 3718-3720.
- [15] Здебский А.П., Остапенко С.С., Савчук А.У., Шейнкман М.К. // Письма в ЖТФ. 1984. Т. 10. № 20. С. 1243–1247.
- [16] Островский И.В., Половинко И.И., Волчанский О.В. // УФЖ. 1987. Т. 32. № 4. С. 525–527.

Киевский университет им. Т.Шевченко

Поступило в Редакцию 10 декабря 1992 г. В окончательной редакции 14 апреля 1993 г.