Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3224	К работе допущен
Студент	Маликов Г. И.	Работа выполнена
Преполаватель	Смирнов А. В.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.03

Определение удельного заряда электрона

1. Цель работы.

Ознакомиться с одним из методов определения удельного заряда частицы и определить удельный заряд электрона.

2. Задачи, решаемые при выполнении работы

- 1. Провести измерения зависимости анодного тока Іа вакуумного диода от величины тока в соленоиде при различных значениях анодного напряжения.
- 2. Построить графики зависимостей Ia от B и определить по ним величины критических полей для каждого значения анодного напряжения.
- 3. По значениям критического поля найти величину удельного заряда электрона и оценить ее погрешность.

3. Объект исследования.

Анодный ток в соосном вакуумном диоде под действием магнитного поля соленоидной обмотки.

4. Метод экспериментального исследования.

Измерение анодного тока при изменении тока на соленоиде при различном напряжении на аноде.

5. Рабочие формулы и исходные данные.

Удельный заряд электрона:

$$\frac{e}{m} = \frac{8U}{B_c^2 r_a^2}$$

Где U - анодное напряжение, B_C - критическое значение магнитной индукции Магнитное поле внутри соленоида конечной длины в СИ:

$$B = \frac{\mu_0 IN}{\sqrt{d^2 + l^2}}$$

$$\mu_0 \cong 1.256637 \cdot 10^{-6} \frac{H}{A^2}$$

Радиус анода $r_a=3$ мм Диаметр катушки d=37мм Длина катушки l=36мм Число витков катушки N=1500

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Амперметр	Электронный	0-0.38 A	0.05%
2	Вольтметр	Электронный	13–15 B	0.25 B

7. Экспериментальная установка

Рисунок 1 - Принципиальная электрическая схема измерительного стенда

8. Результаты прямых измерений и их обработка.

Рисунок 2 - Результаты измерений

U =	U = 14 B		= 15 B
Ic, A	Ia, A	Ic, A	Ia, A
0	0.3717	0	0.4098
0.02	0.3717	0.02	0.409
0.04	0.3717	0.04	0.4095
0.06	0.3717	0.06	0.4094
0.08	0.3717	0.08	0.4098
0.1	0.372	0.1	0.4101
0.12	0.3722	0.12	0.4105
0.14	0.3734	0.14	0.4115
0.16	0.3742	0.16	0.4125
0.18	0.3728	0.18	0.4115
0.2	0.368	0.2	0.4066
0.22	0.3583	0.22	0.3977
0.24	0.3285	0.24	0.376
0.26	0.2352	0.26	0.289
0.28	0.209	0.28	0.2295
0.3	0.1753	0.3	0.1925
0.32	0.1599	0.32	0.1815
0.34	0.1502	0.34	0.1709
0.36	0.1355	0.36	0.1555
0.38	0.121	0.38	0.1395

Таблица 1 - Значения измерений

Находим удельный заряд:

Для анодного напряжения U = 14B:

$$\frac{e}{m} = \frac{8 \cdot 14 \cdot (0.036^2 + 0.037^2)}{(1.256637 \cdot 10^{-6} \cdot 0.003 \cdot 1500 \cdot 0.2307)^2} \approx 1.75378 \cdot 10^{11} \frac{\text{K}_{\pi}}{\text{K}_{\Gamma}}$$

 $I_{\rm kp} = 0.2307$ А согласно графику 1, приведённой ниже.

Для анодного напряжения U = 15B:

$$\frac{e}{m} = \frac{8 \cdot 15 \cdot (0.036^2 + 0.037^2)}{(1.256637 \cdot 10^{-6} \cdot 0.003 \cdot 1500 \cdot 0.2321)^2} \approx \ 1.85645 \cdot 10^{11} \ \frac{\mathrm{K}\pi}{\mathrm{\kappa}\Gamma}$$
 $I_{\mathrm{\kappa}p} = 0.2321 \ \mathrm{A}$ согласно графику 2, приведённой ниже.

9. Расчет погрешностей измерений

Среднее значение удельного заряда как полу сумма:

$$\left\langle \frac{e}{m} \right\rangle = \frac{\frac{e}{m_1} + \frac{e}{m_2}}{2} = \frac{1.75378 \cdot 10^{11} + 1.85645 \cdot 10^{11}}{2} = 1.805115 \cdot 10^{11} \frac{\text{K}\pi}{\text{K}\Gamma}$$

Погрешность среднего значения равна полу разности:

$$\Delta \left\langle \frac{e}{m} \right\rangle = \frac{\frac{e}{m_1} - \frac{e}{m_2}}{2} = \frac{1.75378 \cdot 10^{11} - 1.85645 \cdot 10^{11}}{2} = 5.13 \cdot 10^9 \frac{\text{K}_{\pi}}{\text{K}_{\Gamma}}$$

10.Графики

График 1 - Зависимость анодного тока от тока в соленоиде при U=14B

Критическое значение тока: $I_{\rm kp} = 0.2307 \, {\rm A}$

График 2 - Зависимость анодного тока от тока в соленоиде при U = 15B

Критическое значение тока: $I_{\rm KD} = 0.2321 \, {\rm A}$

11. Выводы и анализ результатов работы.

В результате выполнения лабораторной работы, было получено значение удельного заряда электрона через значение критического тока в соленоиде. Учитывая, что табличное значение удельного заряда электрона равно:

$$\frac{e}{m} \cong 1,76 \cdot 10^{11} \frac{\text{K}_{\text{Л}}}{\text{K}_{\text{Г}}}$$

то полученное среднее значение

$$\left\langle \frac{e}{m} \right\rangle = (1.805 \pm 0.051) \cdot 10^{11} \frac{\text{K}\pi}{\text{K}\Gamma}$$

достаточно приближается к нему. Таким образом, результаты лабораторной работы подтверждают эффективность применяемого метода определения удельного заряда электрона.

12. Вопросы

→ Сравнить найденные значения удельного заряда · с табличным.¶

(2). Найти для заданного значения <u>U= ⟨ЧВ·</u>в критическом режиме скорость электронов при пролете вблизи анода и радиус кривизны его траектории в этот момент. ¶

(3) Протон с энергией 1 МэВ падает по нормали на плоско-параллельный слой толщиной 1 см, в котором сосредоточено однородное магнитное поле. Направление магнитной индукции параллельно границам слоя. После прохождения слоя скорость протона оказалась повернута относительно первоначального направления на 30°. Какова величина магнитной индукции в слое? ¶

2. Скорость электрона можно найти с помощью формулы, основанной на законе сохранения энергии:

$$v = \sqrt{\frac{2eU}{m}}$$

Радиус кривизны траектории электрона можно найти с помощью формулы Лоренца:

$$r = \frac{mv}{eB}$$

Магнитное поле найдём через формулу:

$$B = \frac{\mu_0 IN}{\sqrt{d^2 + l^2}}$$

$$B = \frac{1.256637 \cdot 10^{-6} \cdot 0.2307 \cdot 1500}{\sqrt{0.036^2 + 0.037^2}} \approx 0.00842 \,\mathrm{T}\pi$$

$$v = \sqrt{\frac{2 \cdot 1.6 \cdot 10^{-19} \cdot 14}{9.1 \cdot 10^{-31}}} \approx 2.219 \cdot 10^6 \frac{\mathrm{M}}{\mathrm{c}}$$

$$r = \frac{9.1 \cdot 10^{-31} \cdot 2.219 \cdot 10^6}{1.6 \cdot 10^{-19} \cdot 0.00842365} \approx 1.49 \cdot 10^{-3} \,\mathrm{M}$$

3. Используем формулу для радиуса кривизны траектории заряженной частицы в магнитном поле:

$$r = \frac{mv}{eB}$$

Чтобы выразить магнитную индукцию:

$$B = \frac{mv}{er}$$

Подставим энергию в Джоулях в следующую формулу:

$$1$$
МэВ = $1.602 \cdot 10^{-19} \cdot 10^6 = 1.602 \cdot 10^{-13}$ Дж

$$v = \sqrt{\frac{2E}{m}} = \sqrt{\frac{2 \cdot 1.602 \cdot 10^{-13}}{1.673 \cdot 10^{-27}}} \approx 1.384 \cdot 10^7 \, \frac{M}{c}$$

Радиус получим как отношение толщины области и радиуса:

$$\sin \alpha = \frac{d}{r} = \sin 30^{\circ} = \frac{1}{2} \Rightarrow 2d = r \Rightarrow r = 2 \text{ см}$$

$$B = \frac{1.673 \cdot 10^{-27} \cdot 1.384 \cdot 10^{7}}{1.6 \cdot 10^{-19} \cdot 0.02} \approx 7.2351 \text{ Тл}$$