Rank-65904 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_2^3 + X_3^3 + X_0^2 X_2 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

The point rank of the equation over GF(8) is 1244206222

General information

Number of lines	15
Number of points	105
Number of singular points	0
Number of Eckardt points	1
Number of double points	42
Number of single points	48
Number of points off lines	14
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{15}
Type of lines on points	$3, 2^{42}, 1^{48}, 0^{14}$

Singular Points

The surface has 0 singular points:

The 15 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & \gamma^6 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{3504} = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{3504} = \mathbf{Pl}(2, 0, 0, 1, 0, 0)_{19}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & \gamma^5 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{1752} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{1752} = \mathbf{Pl}(4, 0, 0, 1, 0, 0)_{21}$$

$$\begin{split} \ell_2 &= \begin{bmatrix} 1 & 0 & 0 & \gamma^3 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{2920} = \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{2920} = \mathbf{Pl}(7,0,0,1,0,0)_{24} \\ \ell_3 &= \begin{bmatrix} 1 & 0 & \gamma^6 & 0 \\ 0 & 1 & \gamma^3 & 1 \end{bmatrix}_{451} = \begin{bmatrix} 1 & 0 & 6 & 0 \\ 0 & 1 & 5 & 1 \end{bmatrix}_{451} = \mathbf{Pl}(1,1,5,0,2,1)_{1756} \\ \ell_4 &= \begin{bmatrix} 1 & 0 & \gamma^6 & 0 \\ 0 & 1 & \gamma^4 & \gamma^3 \end{bmatrix}_{485} = \begin{bmatrix} 1 & 0 & 6 & 0 \\ 0 & 1 & 7 & 5 \end{bmatrix}_{485} = \mathbf{Pl}(7,5,2,0,7,1)_{4261} \\ \ell_5 &= \begin{bmatrix} 1 & 0 & \gamma^5 & 0 \\ 0 & 1 & \gamma^6 & 1 \end{bmatrix}_{233} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 6 & 1 \end{bmatrix}_{233} = \mathbf{Pl}(1,1,6,0,4,1)_{2771} \\ \ell_6 &= \begin{bmatrix} 1 & 0 & \gamma^5 & 0 \\ 0 & 1 & \gamma & \gamma^6 \end{bmatrix}_{269} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 6 \end{bmatrix}_{269} = \mathbf{Pl}(2,6,4,0,2,1)_{1750} \\ \ell_7 &= \begin{bmatrix} 1 & 0 & \gamma^3 & 0 \\ 0 & 1 & \gamma^5 & 1 \end{bmatrix}_{376} = \begin{bmatrix} 1 & 0 & 5 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix}_{376} = \mathbf{Pl}(1,1,3,0,7,1)_{4262} \\ \ell_8 &= \begin{bmatrix} 1 & 0 & \gamma^3 & 0 \\ 0 & 1 & \gamma^2 & \gamma^5 \end{bmatrix}_{393} = \begin{bmatrix} 1 & 0 & 5 & 0 \\ 0 & 1 & 4 & 3 \end{bmatrix}_{393} = \mathbf{Pl}(4,3,7,0,4,1)_{2781} \\ \ell_9 &= \begin{bmatrix} 1 & 0 & 1 & \gamma^3 \\ 0 & 1 & \gamma^4 & \gamma^3 \end{bmatrix}_{3040} = \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 7 & 5 \end{bmatrix}_{3040} = \mathbf{Pl}(3,4,7,5,5,1)_{3732} \\ \ell_{10} &= \begin{bmatrix} 1 & 0 & \gamma^5 & 1 \\ 0 & 1 & \gamma^6 & 1 \end{bmatrix}_{963} = \begin{bmatrix} 1 & 0 & 5 & 1 \\ 0 & 1 & 5 & 1 \end{bmatrix}_{963} = \mathbf{Pl}(5,7,2,6,6,1)_{3993} \\ \ell_{12} &= \begin{bmatrix} 1 & 0 & 1 & \gamma^6 \\ 0 & 1 & \gamma^6 & 1 \end{bmatrix}_{1033} = \begin{bmatrix} 1 & 0 & 6 & 1 \\ 0 & 1 & 2 & 6 \end{bmatrix}_{3627} = \mathbf{Pl}(5,7,6,2,2,1)_{2173} \\ \ell_{14} &= \begin{bmatrix} 1 & 0 & \gamma^6 & 1 \\ 0 & 1 & \gamma^2 & \gamma^5 \end{bmatrix}_{1853} = \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 4 & 3 \end{bmatrix}_{1033} = \mathbf{Pl}(6,2,4,3,3,1)_{2580} \end{aligned}$$

Rank of lines: (3504, 1752, 2920, 451, 485, 233, 269, 376, 393, 3040, 816, 963, 3627, 1033, 1853) Rank of points on Klein quadric: (19, 21, 24, 1756, 4261, 2771, 1750, 4262, 2781, 3732, 3035, 4642, 3993, 2173, 2580)

Eckardt Points

The surface has 1 Eckardt points: $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0).$

Double Points

The surface has 42 Double points: The double points on the surface are:

$$\begin{array}{ll} P_{84} = (2,1,0,1) = \ell_0 \cap \ell_5 & P_{134} = (4,7,0,1) = \ell_1 \cap \ell_4 \\ P_{108} = (2,4,0,1) = \ell_0 \cap \ell_8 & P_{86} = (4,1,0,1) = \ell_1 \cap \ell_7 \\ P_{100} = (2,3,0,1) = \ell_0 \cap \ell_{11} & P_{102} = (4,3,0,1) = \ell_1 \cap \ell_9 \\ P_{124} = (2,6,0,1) = \ell_0 \cap \ell_{14} & P_{118} = (4,5,0,1) = \ell_1 \cap \ell_{13} \end{array}$$

$P_{89} = (7, 1, 0, 1) = \ell_2 \cap \ell_3$
$P_{97} = (7, 2, 0, 1) = \ell_2 \cap \ell_6$
$P_{129} = (7, 6, 0, 1) = \ell_2 \cap \ell_{10}$
$P_{121} = (7, 5, 0, 1) = \ell_2 \cap \ell_{12}$
$P_{13} = (2, 0, 1, 0) = \ell_3 \cap \ell_4$
$P_{533} = (4, 1, 7, 1) = \ell_3 \cap \ell_5$
$P_{339} = (2, 1, 4, 1) = \ell_3 \cap \ell_7$
$P_{401} = (0, 1, 5, 1) = \ell_3 \cap \ell_{10}$
$P_{150} = (5, 1, 1, 1) = \ell_3 \cap \ell_{14}$
$P_{257} = (0, 7, 2, 1) = \ell_4 \cap \ell_9$
$P_{199} = (6, 7, 1, 1) = \ell_4 \cap \ell_{11}$
$P_{518} = (5, 7, 6, 1) = \ell_4 \cap \ell_{12}$
$P_{452} = (3, 7, 5, 1) = \ell_4 \cap \ell_{14}$
$P_{15} = (4, 0, 1, 0) = \ell_5 \cap \ell_6$
$P_{216} = (7, 1, 2, 1) = \ell_5 \cap \ell_7$
$P_{151} = (6, 1, 1, 1) = \ell_5 \cap \ell_9$
$P_{465} = (0, 1, 6, 1) = \ell_5 \cap \ell_{11}$
$P_{478} = (5, 2, 6, 1) = \ell_6 \cap \ell_9$

$P_{345} = (0, 2, 4, 1) = \ell_6 \cap \ell_{12}$ $P_{156} = (3, 2, 1, 1) = \ell_6 \cap \ell_{13}$ $P_{287} = (6, 2, 3, 1) = \ell_6 \cap \ell_{14}$ $P_{18} = (7, 0, 1, 0) = \ell_7 \cap \ell_8$ $P_{148} = (3, 1, 1, 1) = \ell_7 \cap \ell_{12}$ $P_{273} = (0, 1, 3, 1) = \ell_7 \cap \ell_{13}$ $P_{428} = (3,4,5,1) = \ell_8 \cap \ell_9$ $P_{174} = (5, 4, 1, 1) = \ell_8 \cap \ell_{10}$ $P_{303} = (6, 4, 3, 1) = \ell_8 \cap \ell_{12}$ $P_{553} = (0, 4, 7, 1) = \ell_8 \cap \ell_{14}$ $P_{29} = (2, 2, 1, 0) = \ell_9 \cap \ell_{10}$ $P_{565} = (4, 5, 7, 1) = \ell_{10} \cap \ell_{11}$ $P_{355} = (2, 3, 4, 1) = \ell_{10} \cap \ell_{13}$ $P_{47} = (4, 4, 1, 0) = \ell_{11} \cap \ell_{12}$ $P_{256} = (7, 6, 2, 1) = \ell_{11} \cap \ell_{13}$ $P_{74} = (7, 7, 1, 0) = \ell_{13} \cap \ell_{14}$

Single Points

The surface has 48 single points: The single points on the surface are:

```
0: P_{76} = (2,0,0,1) lies on line \ell_0
1: P_{78} = (4, 0, 0, 1) lies on line \ell_1
2: P_{81} = (7,0,0,1) lies on line \ell_2
3: P_{92} = (2, 2, 0, 1) lies on line \ell_0
4: P_{94} = (4, 2, 0, 1) lies on line \ell_1
5: P_{105} = (7, 3, 0, 1) lies on line \ell_2
6: P_{110} = (4, 4, 0, 1) lies on line \ell_1
7: P_{113} = (7, 4, 0, 1) lies on line \ell_2
8: P_{116} = (2, 5, 0, 1) lies on line \ell_0
9: P_{126} = (4, 6, 0, 1) lies on line \ell_1
10: P_{132} = (2,7,0,1) lies on line \ell_0
11: P_{137} = (7, 7, 0, 1) lies on line \ell_2
12: P_{203} = (2, 0, 2, 1) lies on line \ell_{12}
13: P_{212} = (3, 1, 2, 1) lies on line \ell_3
14: P_{219} = (2, 2, 2, 1) lies on line \ell_6
15: P_{220} = (3, 2, 2, 1) lies on line \ell_{10}
16: P_{234} = (1, 4, 2, 1) lies on line \ell_8
17: P_{242} = (1, 5, 2, 1) lies on line \ell_{14}
18: P_{266} = (1,0,3,1) lies on line \ell_{10}
19: P_{274} = (1, 1, 3, 1) lies on line \ell_3
20: P_{276} = (3, 1, 3, 1) lies on line \ell_5
21: P_{284} = (3, 2, 3, 1) lies on line \ell_{11}
22 : P_{307} = (2, 5, 3, 1) lies on line \ell_9
23: P_{323} = (2,7,3,1) lies on line \ell_4
24: P_{333} = (4, 0, 4, 1) lies on line \ell_{14}
```

The single points on the surface are:

```
25: P_{342} = (5, 1, 4, 1) lies on line \ell_5
26: P_{365} = (4, 4, 4, 1) lies on line \ell_8
27: P_{366} = (5, 4, 4, 1) lies on line \ell_{11}
28: P_{378} = (1, 6, 4, 1) lies on line \ell_9
29: P_{386} = (1, 7, 4, 1) lies on line \ell_4
30: P_{394} = (1,0,5,1) lies on line \ell_{11}
31: P_{402} = (1, 1, 5, 1) lies on line \ell_5
32: P_{406} = (5, 1, 5, 1) lies on line \ell_7
33: P_{413} = (4, 2, 5, 1) lies on line \ell_6
34: P_{430} = (5, 4, 5, 1) lies on line \ell_{13}
35: P_{445} = (4, 6, 5, 1) lies on line \ell_{12}
36: P_{458} = (1,0,6,1) lies on line \ell_{13}
37: P_{466} = (1, 1, 6, 1) lies on line \ell_7
38: P_{471} = (6, 1, 6, 1) lies on line \ell_3
39: P_{488} = (7,3,6,1) lies on line \ell_{14}
40: P_{496} = (7,4,6,1) lies on line \ell_8
41: P_{519} = (6,7,6,1) lies on line \ell_{10}
42: P_{528} = (7,0,7,1) lies on line \ell_9
43: P_{535} = (6, 1, 7, 1) lies on line \ell_7
44: P_{538} = (1, 2, 7, 1) lies on line \ell_6
45: P_{546} = (1, 3, 7, 1) lies on line \ell_{12}
46: P_{583} = (6,7,7,1) lies on line \ell_{13}
47: P_{584} = (7,7,7,1) lies on line \ell_4
```

Points on surface but on no line

The surface has 14 points not on any line: The points on the surface but not on lines are:

 $\begin{array}{lll} 0: \, P_{19} = (0,1,1,0) & 8: \, P_{288} = (7,2,3,1) \\ 1: \, P_{32} = (5,2,1,0) & 9: \, P_{312} = (7,5,3,1) \\ 2: \, P_{33} = (6,2,1,0) & 10: \, P_{427} = (2,4,5,1) \\ 3: \, P_{46} = (3,4,1,0) & 11: \, P_{443} = (2,6,5,1) \\ 4: \, P_{49} = (6,4,1,0) & 12: \, P_{485} = (4,3,6,1) \\ 5: \, P_{70} = (3,7,1,0) & 13: \, P_{517} = (4,7,6,1) \\ 6: \, P_{72} = (5,7,1,0) & 7: \, P_{138} = (0,0,1,1) \end{array}$

Line Intersection Graph

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	1
1	1	0	1	0	1	0	0	1	0	1	0	0	0	1	0
2	1	1	0	1	0	0	1	0	0	0	1	0	1	0	0
3	0	0	1	0	1	1	0	1	0	0	1	0	0	0	1
4	0	1	0	1	0	0	0	0	0	1	0	1	1	0	1
5	1	0	0	1	0	0	1	1	0	1	0	1	0	0	0
6	0	0	1	0	0	1	0	0	0	1	0	0	1	1	1
7	0	1	0	1	0	1	0	0	1	0	0	0	1	1	0
8	1	0	0	0	0	0	0	1	0	1	1	0	1	0	1
9	0	1	0	0	1	1	1	0	1	0	1	0	0	0	0
10	0	0	1	1	0	0	0	0	1	1	0	1	0	1	0
11	1	0	0	0	1	1	0	0	0	0	1	0	1	1	0
12	0	0	1	0	1	0	1	1	1	0	0	1	0	0	0
13	0	1	0	0	0	0	1	1	0	0	1	1	0	0	1
14	1	0	0	1	1	0	1	0	1	0	0	0	0	1	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_5	ℓ_8	ℓ_{11}	ℓ_{14}
in point	P_1	P_1	P_{84}	P_{108}	P_{100}	P_{124}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_7	ℓ_9	ℓ_{13}
in point	P_1	P_1	P_{134}	P_{86}	P_{102}	P_{118}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_6	ℓ_{10}	ℓ_{12}
in point	P_1	P_1	P_{89}	P_{97}	P_{129}	P_{121}

Line 3 intersects

Line	ℓ_2	ℓ_4	ℓ_5	ℓ_7	ℓ_{10}	ℓ_{14}
in point	P_{89}	P_{13}	P_{533}	P_{339}	P_{401}	P_{150}

Line 4 intersects

Line	ℓ_1	ℓ_3	ℓ_9	ℓ_{11}	ℓ_{12}	ℓ_{14}
in point	P_{134}	P_{13}	P_{257}	P_{199}	P_{518}	P_{452}

Line 5 intersects

Line	ℓ_0	ℓ_3	ℓ_6	ℓ_7	ℓ_9	ℓ_{11}
in point	P_{84}	P_{533}	P_{15}	P_{216}	P_{151}	P_{465}

Line 6 intersects							
	Line	ℓ_2	ℓ_5	ℓ_9	ℓ_{12}	ℓ_{13}	ℓ_{14}
	in point	P_{97}	P_{15}	P_{478}	P_{345}	P_{156}	P_{287}
Line 7 intersects							
	Line	ℓ_1	ℓ_3	ℓ_5	ℓ_8	ℓ_{12}	ℓ_{13}
	in point	P_{86}	P_{339}	P_{216}	P_{18}	P_{148}	P_{273}
Line 8 intersects							
	Line	ℓ_0	ℓ_7	ℓ_9	ℓ_{10}	ℓ_{12}	ℓ_{14}
	in point	P_{108}	P_{18}	P_{428}	P_{174}	P_{303}	P_{553}
Line 9 intersects							
	Line	ℓ_1	ℓ_4	ℓ_5	ℓ_6	ℓ_8	ℓ_{10}
	in point	P_{102}	P_{257}	P_{151}	P_{478}	P_{428}	P_{29}
Line 10 intersects							
	Line	ℓ_2	ℓ_3	ℓ_8	ℓ_9	ℓ_{11}	ℓ_{13}
	in point	P_{129}	P_{401}	P_{174}	P_{29}	P_{565}	P_{355}
Line 11 intersects							
	Line	ℓ_0	ℓ_4	ℓ_5	ℓ_{10}	ℓ_{12}	ℓ_{13}
	in point	P_{100}	P_{199}	P_{465}	P_{565}	P_{47}	P_{256}
Line 12 intersects							
	Line	ℓ_2	ℓ_4	ℓ_6	ℓ_7	ℓ_8	ℓ_{11}
	in point	P_{121}	P_{518}	P_{345}	P_{148}	P_{303}	P_{47}
Line 13 intersects							
	Line	ℓ_1	ℓ_6	ℓ_7	ℓ_{10}	ℓ_{11}	ℓ_{14}

in point

Line 14 intersects

Line	ℓ_0	ℓ_3	ℓ_4	ℓ_6	ℓ_8	ℓ_{13}
in point	P_{124}	P_{150}	P_{452}	P_{287}	P_{553}	P_{74}

 P_{273}

 P_{355}

 P_{156}

The surface has 105 points: The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$20: P_{92} = (2, 2, 0, 1)$	$40: P_{150} = (5, 1, 1, 1)$
$1: P_{13} = (2,0,1,0)$	$21: P_{94} = (4, 2, 0, 1)$	$41: P_{151} = (6, 1, 1, 1)$
$2: P_{15} = (4,0,1,0)$	$22: P_{97} = (7, 2, 0, 1)$	$42: P_{156} = (3, 2, 1, 1)$
$3: P_{18} = (7,0,1,0)$	23: $P_{100} = (2, 3, 0, 1)$	$43: P_{174} = (5,4,1,1)$
$4: P_{19} = (0, 1, 1, 0)$	$24: P_{102} = (4,3,0,1)$	$44: P_{199} = (6,7,1,1)$
$5: P_{29} = (2, 2, 1, 0)$	$25: P_{105} = (7, 3, 0, 1)$	$45: P_{203} = (2,0,2,1)$
$6: P_{32} = (5, 2, 1, 0)$	$26: P_{108} = (2, 4, 0, 1)$	$46: P_{212} = (3, 1, 2, 1)$
$7: P_{33} = (6, 2, 1, 0)$	$27: P_{110} = (4, 4, 0, 1)$	$47: P_{216} = (7, 1, 2, 1)$
$8: P_{46} = (3, 4, 1, 0)$	$28: P_{113} = (7, 4, 0, 1)$	$48: P_{219} = (2, 2, 2, 1)$
$9: P_{47} = (4, 4, 1, 0)$	29: $P_{116} = (2, 5, 0, 1)$	$49: P_{220} = (3, 2, 2, 1)$
$10: P_{49} = (6, 4, 1, 0)$	$30: P_{118} = (4, 5, 0, 1)$	$50: P_{234} = (1,4,2,1)$
$11: P_{70} = (3, 7, 1, 0)$	$31: P_{121} = (7, 5, 0, 1)$	$51: P_{242} = (1, 5, 2, 1)$
$12: P_{72} = (5, 7, 1, 0)$	$32: P_{124} = (2, 6, 0, 1)$	$52: P_{256} = (7, 6, 2, 1)$
13: $P_{74} = (7, 7, 1, 0)$	$33: P_{126} = (4, 6, 0, 1)$	$53: P_{257} = (0,7,2,1)$
$14: P_{76} = (2, 0, 0, 1)$	$34: P_{129} = (7, 6, 0, 1)$	$54: P_{266} = (1, 0, 3, 1)$
$15: P_{78} = (4,0,0,1)$	$35: P_{132} = (2,7,0,1)$	$55: P_{273} = (0, 1, 3, 1)$
$16: P_{81} = (7, 0, 0, 1)$	$36: P_{134} = (4,7,0,1)$	$56: P_{274} = (1, 1, 3, 1)$
$17: P_{84} = (2, 1, 0, 1)$	$37: P_{137} = (7,7,0,1)$	$57: P_{276} = (3, 1, 3, 1)$
$18: P_{86} = (4, 1, 0, 1)$	$38: P_{138} = (0,0,1,1)$	$58: P_{284} = (3, 2, 3, 1)$
$19: P_{89} = (7, 1, 0, 1)$	$39: P_{148} = (3, 1, 1, 1)$	$59: P_{287} = (6, 2, 3, 1)$

$60: P_{288} = (7, 2, 3, 1)$	76: $P_{402} = (1, 1, 5, 1)$	$92: P_{496} = (7, 4, 6, 1)$
$61: P_{303} = (6, 4, 3, 1)$	$77: P_{406} = (5, 1, 5, 1)$	93: $P_{517} = (4, 7, 6, 1)$
$62: P_{307} = (2, 5, 3, 1)$	$78: P_{413} = (4, 2, 5, 1)$	$94: P_{518} = (5,7,6,1)$
$63: P_{312} = (7, 5, 3, 1)$	79: $P_{427} = (2, 4, 5, 1)$	$95: P_{519} = (6,7,6,1)$
$64: P_{323} = (2,7,3,1)$	$80: P_{428} = (3,4,5,1)$	$96: P_{528} = (7,0,7,1)$
$65: P_{333} = (4,0,4,1)$	$81: P_{430} = (5,4,5,1)$	$97: P_{533} = (4, 1, 7, 1)$
$66: P_{339} = (2, 1, 4, 1)$	$82: P_{443} = (2, 6, 5, 1)$	$98: P_{535} = (6, 1, 7, 1)$
$67: P_{342} = (5, 1, 4, 1)$	$83: P_{445} = (4, 6, 5, 1)$	$99: P_{538} = (1, 2, 7, 1)$
$68: P_{345} = (0, 2, 4, 1)$	$84: P_{452} = (3,7,5,1)$	$100: P_{546} = (1, 3, 7, 1)$
$69: P_{355} = (2, 3, 4, 1)$	$85: P_{458} = (1,0,6,1)$	$101: P_{553} = (0,4,7,1)$
$70: P_{365} = (4, 4, 4, 1)$	$86: P_{465} = (0, 1, 6, 1)$	$102: P_{565} = (4, 5, 7, 1)$
$71: P_{366} = (5, 4, 4, 1)$	$87: P_{466} = (1, 1, 6, 1)$	$103: P_{583} = (6,7,7,1)$
$72: P_{378} = (1, 6, 4, 1)$	$88: P_{471} = (6, 1, 6, 1)$	$104: P_{584} = (7,7,7,1)$
$73: P_{386} = (1,7,4,1)$	$89: P_{478} = (5, 2, 6, 1)$	
$74: P_{394} = (1,0,5,1)$	$90: P_{485} = (4, 3, 6, 1)$	
75: $P_{401} = (0, 1, 5, 1)$	$91: P_{488} = (7, 3, 6, 1)$	