NASA TECHNICAL MEMORANDUM

NASA TM X-3347

EFFECT OF CASING TREATMENT ON PERFORMANCE OF AN INLET STAGE FOR A TRANSONIC MULTISTAGE COMPRESSOR

Donald C. Urasek, George W. Lewis, Jr., and Royce D. Moore Lewis Research Center Cleveland, Ohio 44135

1. Report No.	2. Government Accession No.	3. Recipient's Catalot	No.
NASA TM X-3347 4. Title and Subtitle		5. Report Date	
EFFECT OF CASING TREATM	ENT ON PERFORMANCE OF AN	February 19'	76
INLET STAGE FOR A TRANSO	NIC MULTISTAGE COMPRESSOR	6. Performing Organia	zation Code
7. Author(s)		8. Performing Organiz	zation Report No.
Donald C. Urasek, George W.	Lewis, Jr., and Royce D. Moore	E-8183	
9. Performing Organization Name and Address		10. Work Unit No.	
Lewis Research Center		505-04	
National Aeronautics and Space	Administration	11. Contract or Grant	No.
Cleveland, Ohio 44135		13. Type of Report a	ad Bariad Caused
12. Sponsoring Agency Name and Address		7	
National Aeronautics and Space	Administration	Technical M	
Washington, D.C. 20546		14. Sponsoring Agency	Code
15. Supplementary Notes		<u> </u>	
13. Supplementary Notes			
16. Abstract			
-	impressor was tested with three r		١ -
	ccumferential grooves, and axial s	-	1
	total pressure ratio, total tempe	•	
range, and very large improve.	ments in stall margin were obtain		
			- 1
ment configurations. The grea	test improvement in performance		- 1
			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea			- 1
ment configurations. The grea		was achieved with	- 1
ment configurations. The grea	test improvement in performance	was achieved with	- 1
ment configurations. The great slots. 17. Key Words (Suggested by Author(s)) Turbomachinery Compressor	test improvement in performance	was achieved with	- 1
ment configurations. The grea slots. 17. Key Words (Suggested by Author(s)) Turbomachinery	test improvement in performance 18. Distribution Statem Unclassified	was achieved with	- 1
ment configurations. The great slots. 17. Key Words (Suggested by Author(s)) Turbomachinery Compressor	test improvement in performance 18. Distribution Statem Unclassified	was achieved with	- 1
ment configurations. The great slots. 17. Key Words (Suggested by Author(s)) Turbomachinery Compressor	test improvement in performance 18. Distribution Statem Unclassified	was achieved with	- 1

STAGE FOR A TRANSONIC MULTISTAGE COMPRESSOR by Donald C. Urasek, George W. Lewis, Jr., and Royce D. Moore Lewis Research Center

SUMMARY

The first stage of a transonic multistage compressor was tested with three rotor tip casing treatment configurations; blade angle slots, circumferential grooves, and axial skewed slots. Radial surveys of the flow conditions upstream of the inlet guide vanes (IGV's), between the IGV's and rotor, between the rotor and stator, and behind the stator were made over the stable operating flow range of the stage at the design blade tip speed of 425 meters per second. The surveys were taken at 11 radial positions. The results of this casing treatment investigation substantiate the results from a previous study in that casing treatment has a pronounced effect on improving the performance of rotors and stages which are rotor tip critical. Significant increases in both rotor and stage total pressure ratio, total temperature ratio, efficiency, flow range, and very large improvements in stall margin were obtained with all three casing treatment configurations. The greatest improvement in performance was achieved with axial skewed slots.

INTRODUCTION

The NASA Lewis Research Center is engaged in a research program on axial-flow compressors for advanced airbreathing engines. The program is directed primarily towards providing the technology to permit reducing the size and weight of the compressor while maintaining a high level of performance. In support of this program a 51-centimeter-diameter, five-stage compressor designed for a mass flow of 29.7 kilograms per second and a pressure ratio of 9.27 was fabricated and tested.

Data obtained from initial tests of the five stage indicated that the first stage was not meeting its intended performance. To more completely map the performance of this first stage, it was tested separately in the Lewis single-stage test facility. The aero-

dynamic performance of this stage is presented in reference 1. The test results showed that the first stage rotor was low in flow range, pressure ratio, and efficiency. The rotor appeared to be tip critical; that is, blade elements in the tip region reach a critical operating condition and stall before the remaining elements. The rotor tip did not pass the flow forcing a redistribution of flow in the blade passage. The stall margin was only 8 percent.

Rotor casing treatments have been fairly successful with rotors having tip critical conditions. One such successful experiment is discussed in reference 2. To evaluate the effect of rotor casing treatment on the performance of this stage, an experimental study was undertaken.

This report presents the performance of the first stage of the five-stage compressor with three separate rotor casing treatment configurations. The stage was tested with inlet guide vanes which were set for zero turning (axial discharge). The data are presented over the stable operating flow range of the stage at design speed. Surveys of the flow conditions were taken at 11 radial positions. The data presented in this report are in tabular as well as in plotted form. The symbols are defined and the equations are given in appendixes A and B. The definitions and units used for the tabular data are presented in appendix C.

AERODYNAMIC DESIGN

Three computer programs were used in the design of the five-stage compressor. These programs are (1) streamline analysis program, (2) blade geometry program, and (3) blade coordinate program. These three computer programs are presented in detail in references 3 and 4 and only a brief description of each is presented in this report.

The streamline analysis program was used to calculate the flow field parameters at several axial locations including radial planes approximating the blade leading and trailing edges for both the rotor and stator. The weight flow, rotative speed, flow path geometry, and radial distributions of total pressure and temperature are inputs to this program. The program accounts for both streamline curvature and entropy gradients; boundary layer blockage factors are also included.

The distributions of velocity, total pressure, and total temperature calculated in the streamline analysis program are utilized in the blade geometry program to compute blade geometry parameters. Total loss for the blades was primarily based on the experimental rotor loss data presented in reference 3 with modifications due to influences of other unreported test data. The profile loss was then estimated by subtracting a calculated shock loss from the total loss. The shock loss calculation was based on the method presented in reference 5.

The blade geometry parameters are utilized in the blade coordinate program (ref. 4) to compute blade elements on conical surfaces passing through the blade row. In this program the blade elements are then stacked on a line passing through their centers of gravity and cartesian blade coordinates are computed which are used directly in fabrication.

The overall design parameters for the rotor and stage are listed in table I and the flow path is shown in figure 1. For the single-stage compressor tests, the flow area downstream of the stator was enlarged to pass the required weight flow; otherwise, the flow path was unchanged. This stage was designed for an overall pressure ratio of 1.61 at a weight flow of 29.7 kilograms per second (196 (kg/sec)/m² of annulus area). The design tip speed was 425 meters per second. The rotor and stator were designed for tip solidities of 1.4 and 1.5, respectively. The rotor had 57 blades with an aspect ratio of 3.1 and the stator had 64 blades with an aspect ratio of 2.7.

The blade-element design parameters for the rotor are presented in table II. This rotor was designed for a radially constant total pressure ratio of 1.62. The stator blade element design parameters are given in table III. The blade geometry is presented in table IV for the rotor and in table V for the stator. The rotor has multiple circular-arc blade shapes while the stator has a double circular-arc blade shape.

The equations used for calculating overall and blade-element performance parameters are presented in appendix B and all definitions and units presented in the tabulation tables are given in appendix C.

A sketch of the inlet guide vane (IGV) together with profile coordinates are shown in figure 2. The vanes utilized multiple circular-arc blade profiles. There were 26 vanes having a tip solidity of 1.0 and an aspect ratio of 2.4. All tests were conducted with the vanes alined in the axial direction.

APPARATUS AND PROCEDURE

Compressor Test Facility

The compressor stage was tested in the single-stage compressor test facility at the Lewis Research Center. A schematic diagram of the facility is shown in figure 3.

Atmospheric air enters the test facility through an inlet located on the roof of the building, flows through the flow measuring orifice, and into the plenum chamber upstream of the test stage. The air then passes through the experimental compressor stage into the collector and is exhausted to the atmosphere. Weight flow is controlled with a sleeve valve in the collector.

Test Stage

Photographs of the tested IGV, rotor, and stator are shown in figure 4. The rotor blades have vibration dampers located at about 40 percent span from the rotor tip. The maximum thickness of the damper is 0.180 centimeter. The nonrotating radial tip clearance of the rotor was a nominal 0.05 centimeter at ambient conditions. To accommodate survey instrumentation, the axial spacing between the IGV hub trailing edge and rotor hub leading edge was 2.50 centimeters. The axial spacing between the rotor hub trailing edge and the stator hub leading edge was 2.66 centimeters.

Casing Treatment Inserts

Blade-angle slot insert. - The slots, which were at the same angle as the blade-tip setting angle ($\sim 63^{\circ}$), extended radially into the casing. The slots are shown in figure 5. Also shown in the figure are a photograph of the relative location of the slots to the rotor blade and a photograph of the slot insert. The bottoms of the slots were closed to avoid slot to slot recirculation of air. Based on the results presented in reference 2, the slots cover only the midportion of the blades (approximately 50 percent of blade tip axial chord).

<u>Circumferential grooved insert</u>. - The circumferentially grooved insert is shown in figure 6. Included in the figure are a photograph of the relative location of the slots with respect to the rotor blade and a photograph of the insert. The grooves extended only over the midportion of the blades (approximately 70 percent of blade tip axial chord). With circumferential grooves, the rear-to-forward recirculation is minimized, but blade-to-blade recirculation occurs in the circumferential direction.

Axial skewed slot insert. - The skewed slots are parallel to the axial direction and skewed in the direction of rotation. The axial skewed slots are shown in figure 7. A photograph of the relative location of the slots with respect to the rotor blade and a photograph of the insert are included in the figure. Like the other inserts, the slots cover only the midportion of the blades (approximately 50 percent of blade tip axial chord). The bottoms of the slots were closed to avoid slot to slot recirculation of air.

Instrumentation

The compressor weight flow was determined by means of a calibrated thin-plate orifice. The orifice temperature was determined with Chromel-constantan thermocouples. Orifice pressures were measured with calibrated transducers.

Radial surveys of the flow were made upstream of the inlet guide vanes (IGV's), between the IGV's and rotor, between the rotor and stator, and downstream of the stator. Two combination survey probes at each station were used to measure total pressure and total temperature. Flow angles were measured upstream of the IGV, between the IGV and rotor, and downstream of the stator. A photograph of the combination probe is shown in figure 8. Each probe was positioned with a null-balancing, stream-directional sensitive control system that automatically alined the probe to the direction of flow. The probes were angularly alined in an air tunnel prior to testing. The thermocouple materials were Chromel-constantan.

The circumferential locations of the two survey probes, at each of the four measuring stations are shown in figure 9. The probes between the IGV's and rotor, and downstream of the stator were circumferentially traversed one blade passage counterclockwise from the nominal values shown. One IGV blade passage is 13.87° and one stator blade passage is 5.63°.

An electronic speed counter, in conjunction with a magnetic pickup, was used to measure rotative speed (rpm).

The estimated errors of the data based on inherent accuracies of the instrumentation and recording system are as follows:

Flow rate, kg/sec
Rotative speed, rpm
Flow angle, deg
Temperature, K
Guide vane inlet total pressure, N/cm ² 0.01
Rotor inlet total pressure, N/cm ²
Rotor outlet total pressure, N/cm^2
Stator outlet total pressure, N/cm ² 0.10

Test Procedure

The stage survey data were taken at five weight flows ranging from maximum flow attainable to the near-stall conditions at design speed for each insert configuration. Data were recorded at 11 radial positions for each weight flow.

At each radial position the combination probes behind both the IGV's and stator blades were circumferentially traversed to nine different locations to cover one complete blade gap. Values of total pressure, total temperature, and flow angle were recorded at each circumferential position. At the last circumferential position, values of total pressure, total temperature, and flow angle upstream of the IGV's and total pressure and total temperature between the rotor and stator were also recorded. All probes were

then traversed to the next radial position and the circumferential traverse procedure repeated.

The back pressure on the stage was increased by closing the sleeve valve in the collector until a stalled condition was detected by a sudden drop in stage outlet total pressure. This pressure was measured by a probe located at midpassage of the annulus and was recorded on an X-Y plotter. Stall was corroborated with a sudden increase in noise level.

Calculation Procedure

Data were reduced using a streamline-analysis computer program which calculated static pressures at each measuring station and flow angles at the station behind the rotating blade row. The inputs to this program include corrected weight flow, corrected speed, total pressure, and total temperature behind the rotating blade row and weight flow, total pressure, total temperature, and flow angle behind the fixed blade row. Static pressure is calculated within the program from considerations of continuity of mass flow and radial equilibrium which includes streamline curvature terms.

At each radial position nine circumferential values of total temperature, total pressure, and flow angle across both the IGV and stator gaps were area averaged. The data, measured at the four measuring stations, were then translated to the blade leading and trailing edges by the method presented in reference 3. Orifice weight flow, total pressure, static pressure, and temperatures were all corrected to standard sea-level conditions at the IGV inlet.

RESULTS AND DISCUSSION

The results from this investigation are presented in three main sections: (1) overall performance for the rotor and stage, (2) radial distributions of various performance parameters for the IGV, rotor and stator with the solid casing (from ref. 1) and axial skewed slots, and (3) blade-element data for both rotor and stator with solid casing and the three rotor casing treatments. The data presented are computer plotted; occasionally a data point falls outside the range of parameters shown in the figure and is omitted.

All of the plotted data together with some additional performance parameters are also presented in tabular form. The overall performance data for the rotor and the stage are presented in table VI. The blade-element data are presented for the IGV, rotor, and stator in tables VII, VIII, and IX, respectively. The definitions and units used for the tabular data are presented in appendix C.

Overall Performance

The overall performance of the rotor and the stage are presented for the three rotor casing treatments in figures 10 and 11, respectively. The results are compared at design speed with the solid casing data from reference 1. Data are presented at several weight flows from the maximum attainable to the near-stall condition. Design point values are shown as solid symbols.

In figures 10 and 11, averaged values of total pressure ratio, total temperature ratio, and temperature rise efficiency are plotted as a function of equivalent weight flow. Significant increases in flow range, total pressure ratio, total temperature ratio, and efficiency were realized with all three rotor casing treatments.

One exception was noted where stage overall efficiency deteriorated with blade angle slots. The computed stall margins, based on equivalent weight flow and total pressure ratio at stage peak efficiency, were (1) 17 percent for axial skewed slots, (2) 17 percent for blade angle slots, and (3) 17 percent for circumferential grooves. The stall margin for the solid casing configuration was 8 percent (ref. 1).

The axial skewed slots casing configuration offered the most gain in both rotor and stage overall performance. Peak efficiency values for the rotor and stage, with axial skewed slots, were 0.887 and 0.850, respectively. This represents an increase of three points in rotor peak efficiency and two points in stage peak efficiency over that of the solid casing configuration. Total pressure ratios for both rotor and stage, with axial skewed slots, at stage peak efficiency weight flow of 29.2 kilograms per second, were 1.59 and 1.56, respectively, as compared to the solid casing values of 1.53 and 1.495. Corresponding values of total temperature ratios for the stage, with axial skewed slots, at peak efficiency weight flow, were 1.16 as compared to the solid casing values of 1.15.

Radial Distributions

Radial distributions of performance parameters for the solid casing and axial skewed slots configurations, for both rotor and stator are discussed in the following sections. Only the axial skewed slot tip treatment is presented because this configuration represents the best improvement in performance over the solid casing configuration. The data from the other two tip treatment configurations are presented in the tables. Radial distribution of total loss coefficient for the inlet guide vane, for the solid casing configuration only, is also included. For each configuration, the performance parameters are presented for three weight flows; stall, peak efficiency, and maximum flow attainable. A solid line is faired through the peak efficiency weight flow data. Design values are shown by solid symbols.

Inlet guide vane. - The inlet guide vane total loss coefficients are presented only for the solid casing (fig. 12) which is representative of the losses for all configurations. As was noted in reference 1, substantial loss occurs in the end wall regions of the blade. The unusually high end wall losses may be due to wall boundary layer buildup caused by the relatively long inlet section ahead of the IGV. The five-stage compressor was designed with no IGV's. The IGV was designed at a later date and installed just prior to the testing of the five-stage compressor. As a result, the compressor design did not include a profile loss associated with the presence of IGV's.

Rotor and stator with solid casing. - The radial distribution of performance parameters for the rotor and stator with solid casing are presented in figures 13 and 14, respectively. As indicated by the radial distribution of meridional velocity ratio the rotor tip does not pass the required flow resulting in a redistribution of flow in the blade passage. Very high rotor tip losses resulted in low total pressure ratio and correspondingly low efficiency in the tip region. The large boundary layer coupled with locally high losses in the end wall region ahead of the rotor result in high incidence angles to the rotor tip. Deviation angles at the rotor tip are very high. The stator, as a result, was forced to operate at unusually high incidence angles (fig. 14).

Rotor and stator with axial skewed slot insert. - The radial distributions for the rotor, with axial skewed slots casing treatment, and the stator are presented in figures 15 and 16, respectively. The rotor with casing treatment exhibits a substantial improvement in performance in the tip region. The meridional velocity ratio shows no drop-off near the tip and deviation angles in the tip region approach the design value. As a result, the losses in the tip region are significantly reduced and total pressure ratio is substantially improved. As a result of this casing treatment, the rotor tip efficiency improved about 10 percentage points. With the improvement in the rotor tip performance, the stator performance (fig. 16) in the tip region also shows substantial improvement. The stator tip operated at design incidence angle at design flow. The blade loading in the tip region as indicated by diffusion factor nearly equaled design values; however, stator tip losses were extremely high indicating that the design losses were underestimated. The losses at other radial locations were also underestimated but to a lesser extent.

Variation of Blade-Element Performance with Incidence Angle

The variations of selected rotor and stator blade-element performance parameters with incidence angle are presented in figures 17 and 18, respectively. The variations are presented for the solid casing, blade angle slots, axial skewed slots, and circumferential groove configurations. Design values are shown by solid symbols.

Rotor. - All three rotor casing treatments allowed the rotor to operate over a much greater range of incidence angles across the entire blade span (fig. 17). Substantial improvement in rotor tip flow was obtained with all three casing treatment configurations as evidenced by very significant reductions in rotor tip losses and deviation angles, resulting in a large improvement in rotor tip total pressure ratio and efficiency. As a result of the rotor tip portion of the blade passing more flow with all three casing treatment configurations, a beneficial redistribution of flow was observed across the entire passage. Lower losses were observed across the entire passage, except near the damper, for all three casing treatments, resulting in higher pressure ratios with accompanying higher efficiencies.

Stator. - Although notable improvements in rotor performance across the entire passage were obtained with all three casing treatments, the only significant difference in stator performance occurred in the tip region (5 percent of blade span) wherein an improvement in flow was shown by the meridional velocity ratio (fig. 18). At design incidence angle, stator losses were underestimated across the entire blade except at 90 percent of span.

CONCLUDING REMARKS

The results of this casing treatment investigation substantiate the results obtained in a previous study (ref. 2) in that casing treatment has a pronounced effect on improving the performance of rotors and stages which are rotor tip critical. Both casing treatment studies were conducted on rotors which were tip critical; that is, blade elements in the tip region reach a critical operating condition and stall before the remaining elements. The results of this investigation showed significant improvements in both rotor and stage total pressure ratio, total temperature ratio, efficiency, and very large improvements in stage stall margin. The results from reference 1 showed the greatest improvements in performance were obtained through the use of short blade angle slots whereas, in the present investigation, the best improvements in performance were obtained with short axial skewed slots. One probable cause for this discrepancy is that the axial skewed slots in reference 2 extended beyond the leading and trailing edges of the rotor blades resulting in flow recirculation in the blade tip region. The slots in the present investigation did not extend beyond the blade edges.

SUMMARY OF RESULTS

An axial flow compressor inlet stage which was deficient in performance in the rotor tip region was tested at design speed with three different rotor casing treatment

configurations; circumferential grooves, blade angle slots, and axial skewed slots. Overall performance and blade-element data from radial surveys were obtained at several weight flows for each configuration. This investigation yielded the following principal results:

- 1. Significant improvements in stage flow range, and in rotor and stage overall pressure ratio and efficiency, along with very large gains in stage stall margin were realized with all three rotor casing treatment configurations.
- 2. The axial skewed slot configuration provided the greatest improvement in performance.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 8, 1975,
505-04.

APPENDIX A

SYMBOLS

annulus area at rotor leading edge. m² $\mathbf{A}_{\mathbf{a}\mathbf{n}}$ frontal area at rotor leading edge, m² A_f $C_{\mathfrak{p}}$ specific heat at constant pressure, J/(kg)(K)D diffusion factor mean incidence angle, angle between inlet air direction and line tangent to blade imc mean camber line at leading edge, deg suction-surface incidence angle, angle between inlet air direction and line taniss gent to blade suction surface at leading edge, deg Ν rotative speed, rpm total pressure, N/cm² P static pressure, N/cm² p radius, cm r SMstall margin total temperature, K \mathbf{T} U wheel speed, m/sec air velocity, m/sec V W weight flow, kg/sec \mathbf{Z} axial distance referenced from rotor blade hub leading edge, cm cone angle, deg α_{c} slope of streamline, deg α_{s} air angle, angle between air velocity and axial direction, deg β relative meridional air angle based on cone angle, $\arctan (\tan \beta_m' \cos \alpha_c/\cos \alpha_s)$, $\beta_{\mathbf{c}}^{*}$ deg ratio of specific heats γ ratio of rotor inlet total pressure to standard pressure of 10.13 N/cm² δ deviation angle, angle between exit air direction and tangent to blade mean camδ

ber line at trailing edge, deg

 θ ratio of rotor inlet total temperature to standard temperature of 288.2 K

 η efficiency

 κ_{mc} angle between blade mean camber line and meridional plane, deg

 κ_{ss} angle between blade suction-surface camber line at leading edge and meridional

plane, deg

σ solidity, ratio of chord to spacing

 $\overline{\omega}$ total loss coefficient

 $\overline{\omega}_{\rm p}$ profile loss coefficient

 $\overline{\omega}_{\mathrm{S}}$ shock loss coefficient

Subscripts:

ad adiabatic (temperature rise)

id ideal

LE blade leading edge

m meridional direction

mom momentum rise

p polytropic

TE blade trailing edge

z axial direction

 θ tangential direction

0 instrumentation plane upstream of inlet guide vanes

instrumentation plane upstream of rotor

2 instrumentation plane between rotor and stator

3 instrumentation plane downstream of stator

Superscript:

relative to blade

APPENDIX B

EQUATIONS

Suction-surface incidence angle -

$$i_{ss} = (\beta_c')_{LE} - \kappa_{ss}$$
 (B1)

Mean incidence angle -

$$i_{mc} = (\beta_c^*)_{LE} - (\kappa_{mc})_{LE}$$
 (B2)

Deviation angle -

$$\delta^{O} = (\beta_{C}^{\dagger})_{TE} - (\kappa_{mc})_{TE}$$
 (B3)

Diffusion factor -

$$D = 1 - \frac{V_{TE}^{\prime}}{V_{LE}^{\prime}} + \left| \frac{\left(\mathbf{r} V_{\theta} \right)_{TE} - \left(\mathbf{r} V_{\theta} \right)_{LE}}{\left(\mathbf{r}_{TE} + \mathbf{r}_{LE} \right) \sigma(V_{LE}^{\prime})} \right|$$
(B4)

Total loss coefficient -

$$\overline{\omega} = \frac{\left(\mathbf{P_{id}'}\right)_{TE} - \mathbf{P_{TE}'}}{\mathbf{P_{LE}'} - \mathbf{p_{LE}'}}$$
(B5)

Profile loss coefficient -

$$\overline{\omega}_{\mathbf{p}} = \overline{\omega} - \overline{\omega}_{\mathbf{S}}$$
 (B6)

Total loss parameter -

$$\frac{\overline{\omega}\cos\left(\beta_{\mathbf{m}}^{\prime}\right)_{\mathbf{TE}}}{2\sigma}\tag{B7}$$

Profile loss parameter -

$$\frac{\overline{\omega}_{p} \cos \left(\beta_{m}^{\prime}\right)_{TE}}{2\sigma} \tag{B8}$$

Adiabatic (temperature rise) efficiency -

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1}$$
(B9)

Momentum-rise efficiency -

$$\eta_{\text{mom}} = \frac{\left(\frac{\mathbf{P}_{\text{TE}}}{\mathbf{P}_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{\left(\mathbf{U}\mathbf{V}_{\theta}\right)_{\text{TE}} - \left(\mathbf{U}\mathbf{V}_{\theta}\right)_{\text{LE}}}{\mathbf{T}_{\text{LE}}\mathbf{C}_{\mathbf{p}}}} \tag{B10}$$

Equivalent weight flow -

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta}$$
 (B11)

Equivalent rotative speed -

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Weight flow per unit annulus area -

$$\frac{\left(\frac{\mathbf{W}\sqrt{\theta}}{\delta}\right)}{\mathbf{A}_{\mathbf{3}n}} \tag{B13}$$

Weight flow per unit frontal area -

$$\frac{\left(\frac{W\sqrt{\theta}}{\delta}\right)}{A_{f}} \tag{B14}$$

Head-rise coefficient -

$$\frac{C_{p}^{T}_{LE}}{U_{tip}^{2}} \left[\frac{P_{TE}}{P_{LE}} \right]^{(\gamma-1)/\gamma} - 1$$
(B15)

Flow coefficient -

$$\left(\frac{v_z}{v_{tip}}\right)_{LE}$$
 (B16)

Stall margin -

$$SM = \left[\frac{\left(\frac{P_{TE}}{P_{LE}}\right)_{stall}}{\left(\frac{P_{TE}}{P_{LE}}\right)_{ref}} \times \frac{\left(\frac{W\sqrt{\theta}}{\delta}\right)_{ref}}{\left(\frac{W\sqrt{\theta}}{\delta}\right)_{stall}} - 1 \right] \times 100$$
(B17)

Polytropic efficiency -

$$\eta_{p} = \frac{\ln\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma}}{\ln\left(\frac{T_{TE}}{T_{LE}}\right)}$$
(B18)

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

AREA RATIO ratio of actual flow area to critical area (where local Mach number is

one)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing blade

element, deg

DELTA INC difference between mean camber blade angle and suction-surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean defined

by eq. (B2)), deg

KIC angle between the blade mean camber line at the leading edge and the

meridional plane, deg

KOC angle between the blade mean camber line at the trailing edge and the

meridional plane, deg

KTC angle between the blade mean camber line at the transition point and

the meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined by

eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meriodional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE SLOPE slope of streamline, deg

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines, deg

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

X FACTOR ratio of suction-surface camber ahead of assumed shock location

of multiple-circular-arc blade section to that of double-

circular-arc blade section

ZIC axial distance to blade leading edge from inlet, cm

ZMC axial distance to blade maximum thickness point from inlet, cm

ZOC axial distance to blade trailing edge from inlet, cm

ZTC axial distance to transition point from inlet, cm

REFERENCES

- 1. Urasek, Donald C.; Steinke, Ronald J.; and Lewis, George W.: Performance of Inlet Stage of Transonic Compressor. NASA TM X-3345, 1975.
- 2. Moore, Royce D.; Kovich, George; and Blade, Robert J.: Effect of Casing Treatment on Overall and Blade-Element Performance of a Compressor Rotor. NASA TN D-6538, 1971.
- 3. Ball, Calvin L.; Janetzke, David C.; and Reid, Lonnie: Performance of 1380-Foot-Per-Second-Tip-Speed Axial-Flow Compressor Rotor with Blade Tip Solidity of 1.5. NASA TM X-2379, 1972.
- 4. Crouse, James E.; Janetzke, David C.; and Schwirian, Richard E.: A Computer Program for Composing Compressor Blading from Simulated Circular-Arc Elements on Conical Surfaces. NASA TN D-5437, 1969.
- 5. Schwenk, Francis C.; Lewis, George W.; and Hartmann, Melvin J.: A Preliminary Analysis of the Magnitude of Shock Losses in Transonic Compressors. NACA RM E 57A30, 1957.

TABLE I. - TEST STAGE DESIGN

OVERALL PARAMETERS

ROTOR TOTAL PRESSURE RATIO	1.621
STAGE TOTAL PRESSURE RATIO	
ROTOR TOTAL TEMPERATURE RATIO	1.168
STAGE TOTAL TEMPERATURE RATIO	1.168
ROTOR ADIABATIC EFFICIENCY	0.881
STAGE ADIABATIC EFFICIENCY	0.863
ROTOR POLYTROPIC EFFICIENCY	0.888
STAGE POLYTROPIC EFFICIENCY ROTOR HEAD RISE COEFFICIENT	0.871
ROTOR HEAD RISE COEFFICIENT	0.237
STAGE HEAD RISE COEFFICIENT	0.232
FLOW COEFFICIENT	0.464
WT FLUW PER UNIT FRONTAL AREA	147.469
WT FLOW PER UNIT ANNULUS AREA	197.021
WT FLOW	29.710
RPM 16	042.300
TIP SPEED	425.426

TABLE II. - TEST ROTOR DESIGN BLADE-ELEMENT PARAMETERS

RP 11P 1 2 3 4 5 6 7 8 9 10 11 HUB	24.794 24.216 23.041 21.841 20.866 19.878 19.378 16.811 15.470 14.079	0UT 25.222 24.657 24.092 22.962 21.831 20.927 20.023 19.571 17.310	ABS IN 0. 0. 0. 0. 0. 0. 0. 0.	BETAM 0UT 43.2 42.7 42.2 41.3 41.9 42.3 44.9 42.3 44.6 48.6 49.6 50.5	IN 65.2 64.5 63.8	BETAM 0UT 63.5 61.4 59.2 56.7 54.3 51.7 50.3 33.2 24.2 18.9 13.2	TOTA IN 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	L TEMP RATIO 1.198 1.193 1.187 1.177 1.169 1.165 1.162 1.158 1.158 1.158 1.158	TOTAL IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13	PRESS RAT10 1.621 1.621 1.621 1.621 1.621 1.621 1.621 1.621 1.621 1.621
RP 11P 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 196.6 198.4 200.1 202.6 203.8 203.0 202.4 197.3 193.5 189.0 186.5	VEL 0UT 197.5 198.6 199.6 201.1 203.3 206.0 209.1 211.0 222.7 231.0 241.5 247.6 254.0	IN 468.6 461.4 453.4 436.9 419.7 405.5 390.8	VEL 0UT 322.3 315.2 308.3 294.6 279.4 265.3 265.3 207.1 189.9 175.1 169.6 165.8	MERI 196.6 198.4 200.1 202.6 203.8 203.0 202.4 197.3 193.5 186.5 184.2	D VEL OUT 143.9 145.9 147.8 151.1 153.5 154.7 155.5 156.0 158.8 159.7 160.5 161.5	TAN IN 00. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	WEL OUT 135.3 134.8 134.2 132.8 133.3 139.8 142.1 156.9 167.7 181.2 188.5 196.0	IN 425.4 416.5 406.8 387.1	SPEED OUT 423.7 414.2 404.7 385.7 366.8 351.6 4328.8 290.8 271.8 252.8 243.3 233.8
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS M IN 0.598 0.604 0.618 0.622 0.622 0.617 0.617 0.588 0.573 0.565	ACH NO OUT 0.546 0.550 0.555 0.562 0.570 0.579 0.590 0.595 0.632 0.638 0.690 0.709	REL M IN 1.426 1.485 1.381 1.332 1.280 1.237 1.192 1.169 1.048 0.985 0.919 0.865 0.854	ACH NO OUT 0.891 0.897 0.857 0.784 0.746 0.707 0.687 0.588 0.588 0.541 0.500 0.486	MERID M IN 0.598 0.604 0.610 0.618 0.622 0.622 0.617 0.601 0.588 0.573 0.558	0.404 0.401 0.401 0.401 0.411 0.422 0.435 0.435 0.439 0.440 0.448 0.457 0.460	STREAML II IN -3.94 -3.63 -3.19 -1.87 -0.06 1.63 3.47 4.45 9.90 13.05 16.51 18.39 20.14	NE SLOPE 0UT -4.94 -4.14 -3.31 -1.56 0.36 1.98 3.68 4.56 9.38 12.15 15.28 17.02 18.81		PEAK SS MACH NO 1.524 1.514 1.504 1.483 1.463 1.450 1.439 1.434 1.410 1.340 1.298
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN 0. 5.00 20.00 30.00 38.00 46.00 50.00 70.00 80.00 95.00	INCI MEAN 2.7 2.9 3.7 4.3 4.7 5.1 6.6 6.6 6.6	DENCE SS 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.	DEV 4.7 4.5 4.0 5.7 3.6 3.7 4.7 5.6 6.7 7.8	D-FACT 0.416 0.419 0.421 0.425 0.433 0.445 0.468 0.510 0.531 0.546 0.546 0.543	0.747 0.767 0.789 0.836 0.877 0.896 0.911 0.917 0.939 0.940 0.936 0.934	LOSS CO TOT 0.198 0.181 0.164 9.127 0.097 0.084 0.074 0.070 0.059 0.063 0.076 0.082 0.028	DEFF PROF 0.108 0.097 0.086 0.060 0.041 0.036 0.034 0.034 0.037 0.048 0.070 0.080	LOSS P TOT 0.032 0.029 0.027 0.017 0.014 0.013 0.012 0.011 0.012 0.014 0.015 0.015	ARAM PROF 0.017 0.016 0.014 0.010 0.007 0.006 0.006 0.007 0.009 0.013 0.014

TABLE III. - TEST STATOR DESIGN BLADE-ELEMENT PARAMETERS

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	RAD 1N 24.968 24.447 23.937 22.913 21.886 21.063 20.240 19.827 17.767 16.739 15.715 15.207 14.834	0UT 25.121 24.358 23.897 22.970 22.038 21.290 20.544 20.172 18.326 17.412 16.499 16.040	A2S 1N 39.6 39.2 38.8 38.0 37.7 38.0 39.0 41.3 43.0 44.9 45.8	BETAM OUT 0. -0. 0. 0. 0. 0. 0. 0.	REL 1N 39.6 39.2 38.8 38.0 37.7 38.6 39.0 41.3 43.0 44.9 45.8	BETAM OU. -0. 0. 0. 0. 0. 0. 0.	TOTA 1N 345.2 343.7 342.2 339.1 336.8 335.7 334.6 333.6 533.5 333.8	RATIO 1.003 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 16.42 16.42 16.42 16.42 16.42 16.42 16.42 16.42 16.42 16.42	PRESS RATIO 0.985 0.990 0.993 0.994 0.994 0.994 0.993 0.991 0.988 0.980 0.962
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 214.3 215.0 215.5 216.3 217.6 219.5 221.5 222.9 231.5 245.9 250.5	VEL 0UT 174.3 176.1 177.0 177.8 177.7 177.3 177.0 174.3 170.9 161.0 155.8	REL 1N 214.3 215.0 215.5 216.3 217.6 221.5 222.9 231.5 237.8 245.0 250.5	VEL 0UT 174.3 176.1 177.0 177.8 177.5 177.0 174.3 176.9 165.8	MERI IN 165.0 166.5 168.0 170.6 172.2 173.1 173.2 173.8 174.0 174.7	D VEL OUT 174.3 1.76.1 177.0 177.8 177.7 177.3 177.0 174.3 170.9 165.0 155.8	TAN 1N 136.7 135.9 135.0 133.1 132.9 135.1 138.3 140.2 152.9 162.1 173.5 179.5	G VEL OUT 0. 0. 0. 0. 0. 0. 0.	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0.
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS M IN 0.595 0.599 0.602 0.607 0.613 0.627 0.632 0.659 0.704 0.719	0.478 0.478 0.485 0.489 0.495 0.495 0.495 0.495 0.495 0.495 0.487 0.460 0.448	REL M IN 0.595 0.599 0.602 0.607 0.632 0.627 0.632 0.659 0.779 0.730	ACH NO OUT 0.478 0.485 0.489 0.493 0.495 0.495 0.495 0.478 0.468 0.468	MERID M 1N 0.459 0.464 0.469 0.479 0.488 0.488 0.491 0.495 0.497 0.501 0.503	ACH NO OUT 0.478 0.485 0.489 0.493 0.495 0.495 0.495 0.495 0.478 0.468 0.433	STREAML II IN -3.54 -2.48 -1.49 0.35 2.03 3.33 4.64 5.32 8.93 10.94 13.07 14.17	NE SLOPE OUT -2.24 -0.99 -0.25 1.18 2.56 3.68 4.84 5.44 8.61 10.35 12.21 13.20 14.39		MACH NO 0.962 0.956 0.949 0.935 0.930 0.936 0.947 0.953
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN 0. 5.00 10.00 20.00 30.00 38.00 46.00 50.00 90.00 95.00	INCI MEAN 4.0 3.7 5.5 3.2 3.1 2.6 2.4 2.4	DENCE SS -3.0 -2.9 -2.5 -2.5 -2.1 -1.9 -1.5 -1.5 -1.1 -1.0	DEV 8.7 8.4 8.2 7.8 7.5 7.5 7.5 7.7 8.0 8.0 8.1	D-FACT 0.401 0.389 0.368 0.362 0.364 0.369 0.373 0.432 0.475 0.500	EFF 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.115 0.045 0.029 0.026 0.027 0.028 0.028 0.034 0.045 0.071 0.096 0.130	0EFF PROF 0.115 0.045 0.034 0.029 0.026 0.027 0.028 0.034 0.034 0.045 0.071 0.096 0.130	LOSS F TOT 0.039 0.015 0.011 0.009 0.008 0.008 0.008 0.008 0.010 0.015 0.020	PARAM PROF 0.039 0.011 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.010 0.015 0.020

TABLE IV. - TEST ROTOR BLADE GEOMETRY

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN 0. 5. 10. 20. 30. 36. 46. 50. 70. 80. 90. 100.	R1 25.324 24.794 24.216 23.041 21.841 20.866 19.878 19.378 16.811 15.470	R0 25.222 24.657 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049	KIC 62.51 61.59 60.60 58.61 56.67 55.14 53.63 52.87 48.96 46.91 44.75 43.60	DE ANGL KTC 63.11 62.04 60.87 55.94 55.95 51.48 50.29 44.21 40.93 37.49 35.80	ES K0C 58.81 57.92 57.03 55.18 52.98 50.75 48.06 46.46 35.52 27.52 17.34 11.47 5.34	DELTA INC 2.68 2.93 3.20 3.75 4.27 5.07 5.26 6.08 6.39 6.65 6.68	CONE ANGLE -3.238 -4.225 -3.688 -2.213 -0.268 1.522 3.444 4.458 10.070 13.261 16.722 18.571
	BLADE	THICK	ובככבכ	A	XIAL DI	MENSIAN	c	
RP	BL AUE	. IHICKN TM	165565 TO	ZIC	ZMC	MENSTON ZTC	S ZOC	
TIP	0.025	0.115	0.025	0.808	1.689	1.936	2.604	
1	0.028	0.126	0.028	0.778	1.688	1.910	2.636	
2	0.030 0.035	0.138	0.030	0.746 0.681	1.687 1.684	1.879	2.667 2.730	
3 4	0.033	0.184	0.033	0.615	1.680	1.726	2.795	
5 6	0.044	0.202	0.044	0.561	1.677	1.650	2.852	
6 7	0.048	0.218	0.048	0.505	1.672	1.565	2.913	
8	0.050 0.059	0.227	0.050 0.059	0:.476 0:.320	1.670 1.650	1.518	2.946 3.130	
9	0.062	0.282	0.062	0.226	1.635	1.075	3.237	
10	0.066	0.298	0.066	0.117	1.616	0.879	3.347	
11 HUB	0.068	0.305	0.068	0.057	1.606	0.772	3.399	
nvo	0.069	0.312	0.069	0.000	1.596	0.672	3.450	
	1554				u			
RP	AERO CHORD	SETTING ANGLE		SOLIDITY	X FACTOR	PHISS	AREA RATIO	
TIP	3.875	62.15	3.70	1.391	0.592	2.83	1.045	
1	3.884	61.13	3.67	1.425	0.641	3 .19	1.040	
2	3.884	60.03	3.58 3.43	1.459 1.531	0.693 0.788	3.58 4.35	1.034	
3 4	3.882 3.881	57.79 55.42	3.69	1.613	0.868	5.19	1.014	
5	3.882	53.32	4.39	1.685	0.921	5.96	1.007	
ě	3.884	51.04	5.57	1.766	0.961	6.76	1.004	
7 8	3.886 3.914	49.78 42.24	6.41 13.44	1.810 2.081	0.977 1.002	7.17 9.03	1.003	
9	3.947	37.23	19.39	2.263	1.000	9.90	0.999	
10	4.003	31.06	27.41	2.494	1.000	10.69	1.005	
11	4.044	27.55	32.13	2.635	1.000	10.94	1.009	
HUB	4.073	23.95	37.18	2.776	1.000	11.13	1.013	

TABLE V. - TEST STATOR BLADE GEOMETRY

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	5. 10. 20. 30. 38. 46. 50. 70. 80. 90.	RAD Ri 24.968 24.447 23.937 22.913 21.886 21.063 20.240 19.827 17.767 16.739 15.715 15.207	R0 25.121 24.358 23.897 22.970 22.038 21.290 20.544 20.172 18.326 17.412 16.499 16.040	BLAI KIC 35.67 35.39 35.05 34.29 34.18 35.41 35.86 38.55 40.37 42.46 43.47	DE ANGLI KTC 21.55 21.72 21.85 22.54 23.15 23.90 24.32 26.75 28.31 30.99 31.67	KOC -8.65 -8.37 -8.18 -7.79 -7.56 -7.51 -7.52 -7.53 -7.66 -7.79 -7.96 -8.09	DELTA INC 7.04 6.76 6.53 5.45 5.45 5.45 5.43 4.97 4.23 3.89 3.57 3.57	CONE ANGLE 2.507 -1.470 -0.657 0.944 2.481 3.716 4.985 5.642 9.148 11.009 11.009 13.652 10.909
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE TI 0.065 0.064 0.057 0.054 0.051 0.047 0.040 0.037 0.035 0.033	THICKN TM 0.297 0.286 0.276 0.261 0.233 0.217 0.211 0.182 0.169 0.156 0.151	ESSES TO 0.067 0.064 0.062 0.057 0.054 0.051 0.048 0.047 0.040 0.037 0.035 0.033	Z1C 6.042 6.040 6.037 6.032 6.031 6.034 6.042 6.061 6.075 6.102 6.109	XIAL DII ZMC 7.700 7.701 7.701 7.703 7.703 7.703 7.702 7.702 7.699 7.697 7.693	MENSION ZTC 7.068 7.045 7.021 6.969 6.932 6.912 6.896 6.889 6.855 6.841 6.828 6.820 6.814	20C 9.523 9.524 9.524 9.526 9.527 9.531 9.531 9.535 9.535 9.535	
RP T!P 1 2 3 4 5 6 7 8 9 10 11 HUB	AERO CHORD 3.650 3.647 3.647 3.650 3.654 3.663 3.663 3.709 3.732 3.743 3.702	SETTING ANGLE 13.53 13.51 13.44 13.25 13.31 13.58 13.58 13.58 13.77 15.44 16.29 17.25 17.72 18.06		50LIDITY 1.484 1.523 1.553 1.619 1.693 1.758 1.828 1.866 2.083 2.213 2.360 2.440 2.487	X FACTOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	PHISS 18.33 17.64 16.95 15.62 14.69 14.34 14.12 13.81 13.87 13.99 14.00	AREA RATIO 1.139 1.149 1.157 1.169 1.180 1.195 1.195 1.207 1.216 1.227 1.231	

TABLE VI. - OVERALL PERFORMANCE WITH VARIOUS CASING TREATMENTS (100 PERCENT OF DESIGN SPEED)

(a) With axial skewed slots

Parameter	Reading number						
	724	736	749	760	771		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY STAGE ADIABATIC EFFICIENCY ROTOR POLYTROPIC EFFICIENCY STAGE POLYTROPIC EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT **EOUIVALENT VALUES BASED ON STAGE INLET** WEIGHT FLOW WEIGHT FLOW PER UNIT ANNULUS AREA	1.425 1.386 1.125 1.122 0.852 0.801 0.859 0.810 0.168 0.154 0.441	1.544 1.511 1.149 1.148 0.887 0.845 0.894 0.213 0.201 0.432 29.60	1.645 1.616 1.174 1.175 0.878 0.842 0.886 0.852 0.245 0.235 0.408	1.667 1.640 1.182 1.183 0.864 0.828 0.874 0.839 0.251 0.243 0.396 27.88	1.684 1.666 1.190 1.195 0.846 0.806 0.857 0.819 0.257 0.251 0.375		
WEIGHT FLOW PER UNIT FRONTAL AREA WHEEL SPEED, RPM TIP SPEED PERCENT OF DESIGN SPEED **CUMULATIVE VALUES** COMPRESSOR TOTAL PRESSURE RATIO COMPRESSOR TOTAL TEMPERATURE RATIO COMPRESSOR ADIABATIC EFFICIENCY COMPRESSOR POLYTROPIC EFFICIENCY	149.80 16141.9 428.1 100.6 1.365 1.126 0.741 0.752	146.90 15993.8 424.1 99.7 1.492 1.152 0.800 0.811	141.47 16034.7 425.2 100.0 1.600 1.178 0.808 0.821	138.38 16036.4 425.3 100.0 1.626 1.187 0.798 0.811	132.77 16030.1 425.1 99.9 1.654 1.198 0.782 0.797		

TABLE VI. - Continued.

(b) With circumferential grooves

Parameter	Reading number						
	785	796	808	819	830		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO	1.632	1.518	1.590	1.631	1.644		
	1.600	1.473	1.551	1.591	1.607		
	1.182	1.149	1.164	1.173	1.179		
ROTOR ADIABATIC EFFICIENCY STAGE ADIABATIC EFFICIENCY ROTOR POLYTROPIC EFFICIENCY	1.183 0.824 0.783 0.836	1.142 0.851 0.822 0.859	1.159 0.865 0.838 0.873	1.171 0.866 0.832 0.875	1.179 0.854 0.808 0.864		
STAGE POLYTROPIC EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT	0.797	0.832	0.848	0.842	0.821		
	0.242	0.203	0.227	0.240	0.244		
	0.232	0.187	0.214	0.227	0.232		
	0.354	0.431	0.419	0.403	0.381		
"'EQUIVALENT VALUES BASED ON STAGE INLET" WEIGHT FLOW PER UNIT ANNULUS AREA WEIGHT FLOW PER UNIT FRONTAL AREA WHEEL SPEED. RPM	25.53	29.61	29.02	28.25	27.10		
	169.28	196.37	192.44	187.34	179.71		
	126.71	146.98	144.04	140.22	134.51		
TIP SPEED PERCENT OF DESIGN SPEED CUMULATIVE VALUES:	15979.2	16028.5	16026.7	16051.9	16044.4		
	423.8	425.1	425.0	425.7	425.5		
	99.6	99.9	99.9	100.1	100.0		
COMPRESSOR TOTAL PRESSURE RATIO COMPRESSOR TOTAL TEMPERATURE RATIO COMPRESSOR ADIABATIC EFFICIENCY COMPRESSOR POLYTROPIC EFFICIENCY	1.592	1.463/	1.541	1.582	1.598		
	1.185	1.146	1.162	1.174	1.182		
	0.766	0.789	0.810	0.807	0.787		
	0.781	0.800	0.821	0.819	0.801		

 $\label{eq:table_viscosity} \textbf{TABLE VI. - Continued}.$

(e) With solid casing

Parameter	Reading number						
	845	856	867	884	895		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO	1.591	1.581	1.553	1.517	11.445		
ROTOR TOTAL TEMPERATURE RATIO	1.558	1.548	1.518	1,478	1.392		
STAGE TOTAL TEMPERATURE RATIO	1.166	1.161	1,157	1.143	1.125		
ROTOR ADIABATIC EFFICIENCY	0.853	0.855	0.855	0.847	0.822		
STAGE ADIABATIC EFFICIENCY	0.813	0.823	0.830	0.827	0.790		
ROTOR POLYTROPIC EFFICIENCY	0.863	0.864	0.864	0.856	0.831		
STAGE POLYTROPIC EFFICIENCY	0.825	0.834	0.840 '	0.836	0.800		
ROTOR HEAD RISE COEFFICIENT	0.228	0.224	0.216	0.201	0.176		
STAGE HEAD RISE COEFFICIENT	0.217	0.213	0.204	0.188	0.157		
FLOW COEFFICIENT	0.395	0.406	0.416	0.426	0.434		
EQUIVALENT VALUES BASED ON STAGE INLET							
WEIGHT FLOW	27.78	28.38	28.81	29.40	29.82		
WEIGHT FLOW PER UNIT ANNULUS AREA	184.23	168.18	191.08	194.99	197.76		
WEIGHT FLOW PER UNIT FRONTAL AREA	137.90	140.85	143.02	145.95	148.03		
WHEEL SPEED, RPM TIP SPEED	16008.6	16037.4	15986.6	16072.0	16091.2		
PERCENT OF DESIGN SPEED	424.5	425.3 100.0	423.9	426.2	426.7		
CUMULATIVE VALUES	99.8	100.0	99.7	100.2	100.3		
COMPRESSOR TOTAL PRESSURE RATIO	1.549	1.538	1.508	1,467	1.381		
COMPRESSOR TOTAL TEMPERATURE RATIO	1.169	1,165	1,156	1,1467	1.129		
COMPRESSOR ADIABATIC EFFICIENCY	0.788	0.795	0.799	0.794	0.752		
COMPRESSOR POLYTROPIC EFFICIENCY	0.801	0.808	0.810	0.804	0.763		

TABLE VI. - Concluded.

(d) With blade angle slots

Parameter	Reading number						
	916	927	938	950	963		
ROTOR TOTAL PRESSURE RATIO	1.685	1.654	1.612	1.563	1,481		
STAGE TOTAL PRESSURE RATIO	1.650	1.610	1.568	1.518	1,429		
ROTOR TOTAL TEMPERATURE RATIO	1.192	1.180	1.167	1.156	1,139		
STAGE TOTAL TEMPERATURE RATIO	1.194	1.181	1.167	1.154	1.135		
ROTOR ADIABATIC EFFICIENCY	0.836	0.860	0.875	0.873	0.858		
STAGE ADIABATIC EFFICIENCY	0.791	0.806	0.820	0.822	0.799		
ROTOR POLYTROPIC EFFICIENCY	0.847	0.870	0.883	0.881	0.865		
STAGE POLYTROPIC EFFICIENCY	0.806	0.819	0.831	0.832	0.809		
ROTOR HEAD RISE COEFFICIENT	0.255	0.248	0.235	0.219	0.191		
STAGE HEAD RISE COEFFICIENT	0.244	0.234	0.220	0.204	0.173		
FLOW COEFFICIENT	0.370	0.392	0.409	0.424	0.436		
EQUIVALENT VALUES BASED ON STAGE INLET							
WEIGHT FLOW	26.57	27.62	28.49	29.20	29.78		
WEIGHT FLOW PER UNIT ANNULUS AREA	176.19	183.16	188.91	193.63	197.45		
WEIGHT FLOW PER UNIT FRONTAL AREA	131.88	137.10	141.40	144.93	147.79		
WHEEL SPEED, RPM	16096.3	16009.3	16003.2	15990.5	16004.8		
TIP SPEED	426.9	424.6	424.4	424.1	424.4		
PERCENT OF DESIGN SPEED	100.3	99.8	99.8	99.7	99.8		
CUMULATIVE VALUES	1			j	}		
COMPRESSOR TOTAL PRESSURE RATIO	1.641	1,601	1.558	1.507	1.418		
COMPRESSOR TOTAL TEMPERATURE RATIO	1.197	1,184	1,171	1,157	1.138		
COMPRESSOR ADIABATIC EFFICIENCY	0.773	0.782	0.791	0.790	0.761		
COMPRESSOR POLYTROPIC EFFICIENCY	0.788	0.796	0.804	0.802	0.773		

TABLE VII. - INLET GUIDE VANE BLADE-ELEMENT DATA

(a) Reading 724

RP 1 23 4 5 6 7 8 9 10 11	RAD IN 25.072 24.412 23.058 21.659 20.508 19.334 18.738 15.624 13.960 12.192 11.255	9UT 24.971 24.354 23.096 21.806 20.752 19.682 19.139 16.350 14.889 13.365	ABS IN -1.1 -0.4 -0.3 0.9 0.6 1.1 0.8 3.9 2.8 3.8	5 BETAM OUT -0.6 -0.8 -0.5 -0.5 -0.2 -1.4 -0.2 -1.5 -0.7 2.0	IN -1.1 -0.4 -0.3 0.9 0.6 1.1 0.8 3.9 2.8 3.7	BETAM OUT -0.6 -0.8 -0.5 -0.5 -0.2 -1.4 -0.2 -1.5 -1.1 -0.7 2.0	TOTA IN 289.3 288.8 288.3 288.0 287.9 287.9 287.7 287.7 287.7	RATIO 1.004 1.004 1.004 1.004 1.004 1.003 1.002 1.002	TOTAL IN 10.02 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 0.990 0.993 0.994 0.972 0.991 0.990 0.975 0.975
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 155.5 162.0 165.2 164.3 164.0 163.2 162.7 159.2 155.9 152.1	VEL OUT 181.3 187.5 192.0 188.5 183.3 185.9 186.2 177.6 168.4 166.4	REL: 185.5 162.0 165.2 164.3 164.0 163.2 162.7 159.2 155.9 152.1	VEL 0UT 181.3 187.5 182.0 188.5 185.9 186.0 177.2 173.6 168.4	MERI IN 155.4 162.0 165.2 164.2 164.0 163.2 162.7 158.8 155.8 155.7	D VEL OUT 181.3 187.5 192.0 188.5 183.3 185.9 186.0 177.1 173.6 168.4 166.3	TAN 1N -3.0 -1.0 -0.9 2.6 1.7 3.2 2.10.8 7.6 9.9 7.3	G VEL OUT -1.8 -2.6 -1.7 -0.8 -4.5 -0.7 -4.6 -3.3 -2.1 5.7	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 25 4 5 6 7 8 9 10 11	ABS M IN 0.466 0.487 0.497 0.494 0.494 0.491 0.469 0.469 0.456 0.448	ACH NO 0.546 0.567 0.581 0.571 0.554 0.563 0.535 0.524 0.507 0.500	REL M IN 0.466 0.487 0.497 0.494 0.494 0.491 0.479 0.469 0.456 0.448	ACH NO OUT 0.546 0.567 0.581 0.571 0.554 0.562 0.563 0.535 0.524 0.507	MERID N IN 0.466 0.487 0.497 0.494 0.491 0.490 0.468 0.455 0.448	MACH NO 0UT 0.546 0.567 0.581 0.571 0.554 0.563 0.535 0.535 0.535 0.507				PEAK SS MACH NO 0.466 0.487 0.497 0.494 0.491 0.491 0.479 0.469 0.456 0.448
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 70.00 80.00 90.00 95.00	INCI MEAN -1.1 -0.4 -0.3 0.9 0.6 1.1 0.8 3.9 2.8 3.7 2.8	DENCE SS -13.1 -12.4 -12.3 -11.1 -11.4 -10.9 -11.2 -8.1 -9.2 -8.3 -9.2	DEV -0.6 -0.8 -0.5 -0.2 -1.4 -0.2 -1.5 -1.1 -0.7	D-FACT -0.162 -0.153 -0.160 -0.136 -0.112 -0.120 -0.136 -0.082 -0.093 -0.088 -0.110	EFF 0. 0. 0. 0. 0. 0. 0.	LOSS CO TOT 0.073 0.046 0.039 0.036 0.180 0.061 0.063 0.165 0.165 0.189 0.193	DEFF PROF 0.073 0.046 0.039 0.036 0.180 0.061 0.063 0.165 0.165 0.189	LOSS P TOT 0.037 0.022 0.018 0.016 0.075 0.024 0.053 0.048 0.048	ARAM PROF 0.037 0.022 0.018 0.016 0.075 0.024 0.024 0.053 0.048 0.048

(b) Reading 736

RP 1 2 3 4 5 6 7 8 9	25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889	ABS BETAM IN OUT -0.9 -0.7 0.2 -0.7 00.4 0.9 -0.3 1.2 -0.2 1.5 -0.0 2.1 -0.1 3.5 -1.5 2.9 -1.2 3.8 -0.8 3.3 2.0	REL BETAM IN OUT -0.9 -0.7 0.2 -0.7 00.4 0.9 -0.2 1.5 -0.0 2.1 -0.1 3.5 -1.5 2.9 -1.2 3.8 -0.8 3.3 2.0	TOTAL TEMP IN RATIO 289.1 1.003 288.8 1.003 288.4 1.003 288.0 1.004 287.9 1.004 287.8 1.004 287.7 1.002 287.7 1.002 287.9 1.001 288.7 1.000	TOTAL PRESS IN RATIO 10.02 0.990 10.14 0.993 10.14 0.994 10.15 0.993 10.14 0.993 10.14 0.991 10.14 0.979 10.14 0.978 10.14 0.978
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 151.7 173.8 158.6 180.4 161.8 184.1 160.9 183.8 160.7 183.5 159.8 182.3 159.3 181.2 155.7 173.2 152.7 169.2 148.8 164.3 146.4 162.5	REL VEL IN OUT 151.7 173.8 158.6 180.4 161.8 184.1 160.9 183.8 160.7 183.5 159.8 182.3 159.3 181.2 155.7 173.2 152.7 169.2 148.8 164.3 146.4 162.5	MERID VEL 1N OUT 151.7 173.8 158.6 180.3 161.8 184.1 160.9 183.8 160.7 183.5 159.8 182.3 159.2 181.2 155.4 173.2 155.5 169.1 148.5 164.3 146.1 162.4	3.4 -0.8 4.3 -0.0 5.9 -0.2 9.6 -4.4 7.8 -3.5	0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10	ABS MACH NO IN OUT 0.454 0.523 0.476 0.544 0.486 0.556 0.484 0.556 0.483 0.555 0.481 0.551 0.479 0.548 0.468 0.523 0.458 0.510 0.446 0.494 0.438 0.488	REL MACH NO IN OUT 0.454 0.523 0.476 0.544 0.556 0.484 0.555 0.481 0.555 0.481 0.551 0.479 0.548 0.468 0.523 0.458 0.510 0.446 0.494 0.438 0.488	MERID MACH NO IN OUT 0.454 0.523 0.476 0.544 0.556 0.484 0.556 0.483 0.555 0.480 0.551 0.479 0.542 0.467 0.522 0.458 0.510 0.445 0.494 0.437 0.488	9.8 -2.3 8.4 5.6	MERID PEAK SS VEL R MACH NO 1.146 0.454 1.137 0.476 1.138 0.486 1.143 0.484 1.142 0.483 1.141 0.481 1.138 0.479 1.115 0.468 1.109 0.458 1.106 0.446 1.111 0.438
RP 1 2 3 4 5 6 7 8 9 10	SPAN MEAN 5.00 -0.9 10.00 0.2 20.00 0. 30.00 0.9	-11.8 -0.7 -12.0 -0.4 -11.1 -0.3 -10.8 -0.2 -10.5 -0.0 -9.9 -0.1 -8.5 -1.5 -9.1 -1.2 -8.2 -0.8	D-FACT EFF -0.145 00.129 00.134 00.135 00.131 00.130 00.123 00.084 00.087 00.084 00.087 0.	LOSS COEFF TOT PROF 0.075 0.075 0.048 0.048 0.039 0.039 0.038 0.038 0.045 0.045 0.051 0.051 0.064 0.064 0.152 0.152 0.165 0.165 0.183 0.183 0.182 0.182	LOSS PARAM TOT PROF 0.038 0.038 0.024 0.024 0.018 0.018 0.017 0.017 0.019 0.019 0.020 0.020 0.024 0.024 0.049 0.049 0.048 0.046 0.043 0.043

(c) Reading 749

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	1.1 0 2.8 -0 3.5 -1 3.1 -1 2.9 -0	T	IN RATIO 5 289.0 1.003 6 288.7 1.003 0 288.4 1.003 0 288.0 1.003 287.9 1.003 1 287.9 1.003 1 287.9 1.003 1 287.8 1.002 1 287.8 1.002 1 288.0 1.002	TOTAL PRESS IN RATIO 10.01 0.992 10.14 0.993 10.14 0.995 10.14 0.995 10.14 0.995 10.14 0.995 10.14 0.985 10.14 0.985 10.14 0.984 10.14 0.981
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 144.3 164.0 151.6 170.4 155.1 174.0 153.9 174.0 153.1 172.9 152.6 172.1 148.6 166.1 145.8 162.1 142.1 156.9 140.0 154.7	REL VEL IN OUT 144.3 164.1 151.6 170.1 155.1 174.1 153.9 174.1 152.6 172.148.6 166.145.8 162.1 156.1 154.1 154.1	4 151.6 170.4 0 155.1 174.0 0 154.1 174.0 0 153.8 174.0 153.1 172.9 1 152.4 172.1 1 148.3 166.1 1 145.6 162.1 9 141.9 156.6	4 -2.8 -1.7 0 -0.2 -0.1 0 2.8 -0.0 0 3.0 0.5 2.8 0.3 1 7.4 -0.2 1 9.1 -4.5 1 7.9 -3.3 7.2 -1.0	WHEEL SPEED IN OUT 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.431 0.492 0.454 0.512 0.465 0.524 0.462 0.524 0.469 0.521 0.459 0.521 0.458 0.518 0.445 0.500 0.437 0.487 0.425 0.471 0.418 0.464	REL MACH N IN OUT 0.431 0.49 0.454 0.51 0.465 0.52 0.462 0.52 0.462 0.52 0.459 0.52 0.459 0.52 0.459 0.51 0.445 0.510 0.437 0.48 0.425 0.47 0.418 0.464	IN OUT 2 0.431 0.492 2 0.454 0.512 4 0.465 0.524 4 0.462 0.524 1 0.462 0.524 1 0.459 0.521 3 0.457 0.518 0 0.445 0.500 7 0.436 0.487	224444	MERID PEAK SS VEL R MACH NO 1.137 0.431 1.124 0.454 1.122 0.465 1.130 0.462 1.131 0.462 1.130 0.459 1.129 0.445 1.129 0.445 1.113 0.437 1.106 0.425 1.106 0.418
RP 1 2 3 4 5 6	PERCENT INCI SPAN MEAN 5.00 -1.7 10.00 -1.1 20.00 -0.1 30.00 1.1 38.00 1.1 46.00 1.1	DENCE SS -13.7 -0.6 -13.1 -0.6 -12.1 -0.0 -10.9 -0.0	5 -0.128 0. 5 -0.120 0. 0 -0.121 0. 0 -0.121 0.	LOSS COEFF TOT PROF 0.068 0.068 0.051 0.051 0.047 0.047 0.039 0.039 0.039 0.039 0.050 0.050	LOSS PARAM TOT PROF 0.034 0.034 0.025 0.025 0.022 0.022 0.017 0.017 0.016 0.016 0.020 0.020

(d) Reading 760

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	-1.7 -6 -1.2 -0.5 0.6 0.9 0 0.9 -6 2.3 -6 3.0 -1 3.7 -1 3.4 -6	MM REI IN -1.7 0.6 -1.7 0.0 -1.2 0.2 -0.5 0.0 0.6 0.3 0.9 0.1 0.9 0.3 2.3 0.1 3.7 0.5 3.4 0.8 3.2	BETAM OUT -0.6 -0.0 0.2 0.0 0.3 -0.1 -0.3 -1.8 -1.1 -0.5 2.8	289.0 1 288.6 1 288.4 1 288.0 1 288.0 1 287.9 1 287.8 1 287.8 1 287.8 1	TEMP AT10 .003 .003 .003 .003 .003 .003 .003 .0	TOTAL IN 10.03 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RAT10 0.992 0.993 0.994 0.995 0.994 0.994 0.987 0.988 0.983
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 140.9 159.1 147.4 168.4 149.6 168.6 149.4 168.6 148.9 167.7 148.7 166.9 142.5 158.7 136.6 150.6	REL VEL IN OUT 140.9 159. 147.4 164. 150.4 168. 149.6 168. 149.4 168. 148.9 167. 148.7 166. 145.3 161. 142.5 158. 138.9 153. 136.6 150.	IN 140.9 8 147.4 4 150.4 6 149.6 6 149.4 8.5 9 148.5 7 142.2 1 138.6	1D VEL 0UT 159.1 164.8 168.4 168.6 167.7 166.9 161.8 158.7 153.1	-4.1 -3.2 -1.4 1.5 2.2 2.3 5.9 7.7 9.3	VEL OUT -1.8 0.1 0.5 0.1 0.8 -0.7 -5.0 -3.0 -1.5	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 6 7 8 9 10 11	ABS MACH NO IN OUT 0.421 0.477 0.441 0.506 0.451 0.506 0.448 0.507 0.446 0.505 0.446 0.505 0.446 0.502 0.435 0.487 0.415 0.459 0.408 0.451	REL MACH N IN 0.421 0.47 0.421 0.49 0.451 0.50 0.448 0.50 0.448 0.50 0.446 0.50 0.446 0.50 0.435 0.48 0.435 0.45 0.415 0.45	IN 0.421 0.441 0.451 0.448 0.445 0.448 0.445 0.448 0.445 0.455 0.4	0UT 0.477 0.495 0.506 0.507 0.507				PEAK SS MACH NO 0.421 0.441 0.451 0.448 0.446 0.446 0.446 0.435 0.427 0.415 0.408
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 -1.7 10.00 -1.2 20.00 -0.5 30.00 0.6 38.00 0.9 46.00 0.9 50.00 2.3 70.00 3.0 80.00 3.7 90.00 3.4	IDENCE SS -13.7 -013.2 012.5 011.4 011.1 -09.7 -09.0 -18.3 -18.6 -0.	6 -0.121 0 -0.107 2 -0.114 0 -0.123 1 -0.124 1 -0.120 3 -0.105 8 -0.087 1 -0.089 6 -0.085	EFF 0. 0. 0. 0. 0. 0. 0.	0.071 0.056 0.048 0.036 0.045 0.045 0.058 0.0108 0.0101 0.0149 0.0149 0.0149	ROF .071 .056 .048 .036 .043 .045 .058 .108 .101 .149 .156	LOSS P TOT 0.036 0.028 0.016 0.018 0.022 0.035 0.029 0.038 0.037	ARAM PROF 0.036 0.028 0.022 0.016 0.018 0.022 0.035 0.029 0.038 0.037

(e) Reading 771

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 0UT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365	IN -1.7 -0.7 0.1 0.5 0.8 2.1 2.1 2.9 3.4	5 BETAM 0UT -0.4 -0.2 0.7 0.3 0.2 -0.2 -0.2 -1.1 -0.6 2.8	IN -1.7 -0.7 0.1 0.5 0.8 2.1 2.1 2.9 3.4 4.0	BETAM OUT -0.4 -0.2 0.7 0.3 0.2 -0.6 -2.0 -1.1 -0.6 2.8	TOTA IN 289.0 288.7 288.4 288.1 288.1 287.9 287.7 287.7 287.7 287.9 288.6	RATIO 1.002 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.002	TOTAL IN 10.03 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 0.994 0.993 0.994 0.995 0.994 0.994 0.991 0.986
RP 1234567-89011	ABS VEL IN OUT 133.4 150.0 140.5 155.5 143.9 159.0 142.8 159.2 141.9 158.5 141.5 155.5 151.4 132.2 146.2 130.3 143.5	IN 133.4 140.5 143.9 142.8 142.6 141.5 138.1 135.5	VEL 0UT 150.0 155.5 159.0 159.2 159.2 158.5 158.6 151.4 146.2 143.5	MERI IN 133.4 140.5 143.9 142.8 142.6 141.8 141.4 137.9 135.3 131.9	D VEL 0UT 150.0 155.5 159.0 159.2 158.5 158.5 158.5 154.5 151.4 146.2	TAN IN -4.1 -1.8 0.3 1.2 2.0 5.3 7.0 8.2 7.0	OUT -1.1 -0.7 2.1 0.7 -0.7 -0.7 -1.6 -5.3 -2.8 -1.5 6.9	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.398 0.448 0.420 0.466 0.430 0.477 0.427 0.478 0.425 0.476 0.425 0.474 0.413 0.464 0.395 0.438 0.388 0.429	IN 0.398 0.420 0.430 0.427 0.427 0.425 0.413 0.405 0.395	MACH NO OUT 0.448 0.466 0.477 0.478 0.476 0.476 0.454 0.454 0.454	MERID M IN 0.397 0.420 0.430 0.427 0.427 0.423 0.412 0.404 0.394 0.388	ACH NO OUT 0.448 0.466 0.477 0.478 0.478 0.474 0.464 0.454 0.454		en	VEL R 1.125 1.106 1.105 1.115 1.116	PEAK SS 0.398 0.420 0.430 0.427 0.427 0.425 0.425 0.413 0.405 0.395 0.388
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT IN SPAN MEAN 5.00 -1. 10.00 -0. 30.00 0. 38.00 0. 46.00 2. 70.00 2. 80.00 3. 90.00 3. 95.00 2.	7 -13.7 7 -12.7 1 -11.9 5 -11.5 8 -11.2 1 -9.9 1 -9.9 9 -9.1 4 -8.6 9 -8.1	DEV -0.4 -0.2 0.7 0.3 0.2 -0.2 -0.6 -2.0 -1.1 -0.6 2.8	D-FACT -0.113 -0.102 -0.099 -0.113 -0.112 -0.100 -0.099 -0.091 -0.095 -0.087	EFF 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.060 0.060 0.051 0.038 0.042 0.048 0.048 0.048 0.048	OEFF PROF 0.060 0.060 0.051 0.038 0.042 0.048 0.048 0.087 0.084 0.125 0.137	LOSS P TOT 0.031 0.024 0.017 0.017 0.019 0.018 0.028 0.024 0.032	ARAM PROF 0.031 0.030 0.024 0.017 0.017 0.019 0.018 0.028 0.024 0.032

(f) Reading 785

RP 1 2 3 4 5 6 7 8 9 1 1 1	RADII IN OUT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	ABS BEIN -2.4 -2.3 -1.5 -0.5 0.9 0.2 1.1 2.9 2.4 1.8 1.4	TAM OUT 0.4 1.8 2.9 2.6 2.2 1.8 1.4 -0.1	REL 1N -2.4 -2.3 -1.5 -0.5 0.9 0.2 1.1 2.4 1.4	BETAM OUT 0.4 1.8 2.9 2.6 2.2 1.8 1.4 -0.1 1.5 1.1	289.3 289.7 289.3 288.2 287.9 287.7 287.7 287.2 287.3 287.6	TEMP RATIO 1.001 1.002 1.002 1.002 1.002 1.002 1.002 1.001 1.001	TOTAL IN 10.04 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 0.991 0.995 0.994 0.996 0.997 0.998 0.995 0.995 0.992
RP 1 2 3 4 5 6 7 8 9 1 1 1	ABS VEL IN OUT 126.7 138.3 133.4 145.7 136.5 149.7 135.4 149.8 135.2 150.4 134.6 150.1 134.2 149.9 131.2 146.3 128.7 143.3 125.4 138.7 123.4 134.6	126,7 13 133,4 14 136,5 14 135,2 15 134,2 15 134,2 14 131,2 14 128,7 14	TL 58.3 45.7 49.8 50.4 50.1 49.9 46.3 43.3 58.7	MER II IN 126.6 133.3 136.5 135.4 135.1 134.6 134.2 131.0 128.6 125.3	0 VEL 0UT 138.3 145.6 149.5 149.6 150.3 150.1 149.9 146.3 143.3 134.5	TANG IN -5.4 -3.6 -1.1 2.1 0.5 2.6 6.6 5.4 3.9	VEL OUT 0.8 4.6 7.6 9.5 8.8 4.6 7.7 2.7 2.5	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 25 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.377 0.412 0.397 0.435 0.407 0.447 0.404 0.450 0.402 0.450 0.401 0.449 0.392 0.439 0.384 0.429 0.374 0.415 0.368 0.402	0.577 0.397 0.407 0.404 0.404 0.402 0.392 0.584 0.374 0.	H NO DUT ,412 ,435 ,447 ,448 ,450 ,449 ,439 ,429 ,415	MERID M IN 0.376 C 397 0.407 0.404 0.404 0.402 0.401 0.391 0.384 0.374 0.368	ACH NO OUT 0.412 0.434 0.447 0.448 0.450 0.450 0.450 0.439 0.439 0.414 0.402				PEAK SS MACH NO 0.377 0.397 0.407 0.404 0.404 0.402 0.401 0.392 0.384 0.374 0.368
RP 1 2	PERCENT INC SPAN MEAN	IDENCE SS	DEV	D-FACT	EFF	LOSS COL	EFF PROF	LOSS F	PARAM PROF

(g) Reading 796

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	ABS BETAM IN OUT -1.1 -01.9 01.7 10.5 1. 0.7 1. 1.5 1. 1.1 0.9 0. 0.8 1. 1.7 1. 1.5 0.	IN OUT 1 -1.1 -0.1 8 -1.9 0.8 5 -1.7 1.5 6 -0.5 1.6 8 0.7 1.8 8 0.7 1.8 6 1.5 1.6 7 0.9 0.7 2 0.8 1.2 4 1.7 1.4	TOTAL TEMP IN RATIO 289.1 1.003 288.7 1.004 288.4 1.003 288.0 1.003 288.0 1.003 287.9 1.003 287.7 1.003 287.8 1.002 288.1 1.002 288.3 1.002	TOTAL PRESS IN RATIO 10.01 0.988 10.14 0.994 10.14 0.995 10.14 0.996 10.14 0.996 10.14 0.996 10.14 0.993 10.14 0.991 10.14 0.990 10.14 0.990 10.14 0.980
RP 1 23 4 5 6 7 8 9 5 1 1	ABS VEL IN OUT 152.8 170.8 160.0 178.7 163.3 183.3 162.1 182.9 162.0 183.0 161.3 182.4 160.7 181.9 156.5 176.4 153.6 172.9 149.4 166.2 146.8 158.6	REL VEL IN OUT 152.8 170.8 160.0 178.7 163.3 183.3 162.1 182.9 162.0 183.0 161.3 182.4 160.7 181.9 156.5 176.4 153.6 172.9 149.4 166.2 146.8 158.6	159.9 178.7 163.2 183.2 162.1 182.9 161.9 182.9 161.2 182.3 160.6 181.3 150.5 176.4 153.5 172.8 149.4 166.2	TANG VEL IN OUT -3.1 -0.3 -5.4 2.5 -4.8 4.8 -1.5 5.1 2.1 5.8 4.3 5.2 3.2 5.2 2.5 2.2 2.5 2.2 3.7 4.5 4.2 3.8 0.4	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.458 0.513 0.480 0.539 0.491 0.554 0.488 0.553 0.487 0.553 0.485 0.551 0.485 0.550 0.470 0.532 0.461 0.521 0.448 0.500 0.439 0.476	REL MACH NO IN OUT 0.458 0.513 0.480 0.559 0.491 0.554 0.488 0.553 0.487 0.551 0.483 0.551 0.483 0.550 0.470 0.532 0.461 0.521 0.448 0.500 0.479 0.476	1N 0UT 0.457 0.513 0.480 0.539 0.491 0.554 0.488 0.553 0.487 0.553 0.485 0.551 0.483 0.550 0.470 0.532 0.461 0.521 0.448 0.500		MERID PEAK SS VEL R MACH NO 1.118 0.458 1.118 0.460 1.123 0.491 1.128 0.488 1.130 0.487 1.131 0.485 1.132 0.463 1.127 0.470 1.126 0.461 1.113 0.448 1.081 0.439
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 -1.1 10.00 -1.9 20.00 -1.7 30.00 -0.5 38.00 0.7 46.00 1.5 50.00 1.1 70.00 0.9 80.00 0.8 90.00 1.7 95.00 1.5	DENCE SS -13.1 -0.1 -13.9 0.8 -13.7 1.5 -12.5 1.6 -11.3 1.8 -10.5 1.6 -10.9 1.6 -11.1 0.7 -11.2 1.2 -10.3 1.5 -10.5 0.1	D-FACT EFF -0.108 00.093 00.095 00.111 00.120 00.127 00.127 00.123 00.112 00.112 0.	LOSS COEFF TOT PROF 0.089 0.089 0.039 0.039 0.030 0.030 0.025 0.025 0.027 0.027 0.028 0.028 0.027 0.027 0.052 0.052 0.064 0.064 0.080 0.080 0.158 0.158	LOSS PARAM TOT PROF 0.045 0.045 0.019 0.019 0.014 0.014 0.011 0.011 0.011 0.011 0.010 0.010 0.017 0.017 0.018 0.018 0.020 0.020 0.037 0.037

(h) Reading 808

RP 1 2 3 4 5 6 7 8 9 10 11	RADII 1N OUT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	IN -2.5 -2.1 -0.3 -0.4	BETAM OUT 0.0 1.2 1.7 1.4 1.8 1.6 0.4 0.9	IN -2.5 -2.1 -0.3 -0.4 -0.7 0.4 0.6 1.1 1.2 2.0	OUT 0.0 1.2 1.7 1.4 1.8 1.8 0.4 0.4	TOTA IN 289.0 288.7 288.4 299.0 287.9 287.9 287.9 287.9 288.4	RATIO 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.002	TOTAL IN 10.02 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RAT10 0.989 0.995 0.996 0.996 0.996 0.993 0.983
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 149.3 166.2 155.9 173.5 159.1 177.7 158.1 177.6 157.2 177.1 156.7 176.7 152.6 171.9 149.5 168.4 145.5 161.9 143.1 155.8	REL IN 149.3 155.9 159.1 157.2 156.7 152.6 149.5 145.5 143.1	VEL 0UT 166.2 173.5 177.7 177.6 177.7 177.1 176.7 171.9 168.4 161.9 155.8	MERI IN 149.2 155.8 159.1 157.9 157.9 156.7 152.5 149.4 145.5 143.1	D VEL 0UT 166.2 173.4 177.6 177.5 177.6 177.0 176.6 171.9 168.3 161.9	TAN: 1N -6.5 -5.8 -0.9 -1.0 -1.8 1.5 2.8 3.0 5.5	VEL OUT 0.1 3.6 5.4 4.5 5.6 5.7 4.9 1.3 2.7 3.6	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.447 0.499 0.468 0.536 0.475 0.536 0.474 0.536 0.471 0.533 0.458 0.518 0.448 0.507 0.436 0.447	REL M IN 0.447 0.468 0.478 0.475 0.474 0.472 0.471 0.458 0.448 0.436 0.428	ACH NO OUT 0.499 0.522 0.536 0.536 0.536 0.534 0.533 0.518 0.507 0.467	MERID M 1N 0.4467 0.478 0.475 0.474 0.472 0.471 0.458 0.448 0.428	ACH NO OUT 0.499 0.535 0.536 0.536 0.534 0.533 0.518 0.507 0.486 0.467				PEAK SS MACH NO 0.447 0.468 0.478 0.475 0.474 0.472 0.471 0.458 0.448 0.436 0.428
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 -2.5 10.00 -2.1 20.00 -0.4 38.00 -0.7 46.00 0.6 70.00 1.1 80.00 1.2 90.00 2.0 95.00 1.4	IDENCE SS -14.5 -14.1 -12.3 -12.4 -12.7 -11.6 -11.4 -10.9 -10.8 -10.0	DEV 0.0 1.2 1.7 1.4 1.8 1.6 0.4 0.9 1.3	D-FACT -0.091 -0.083 -0.098 -0.108 -0.114 -0.119 -0.124 -0.126 -0.110 -0.084	EFF 0. 0. 0. 0. 0. 0.	LOSS CONTOT 0.082 0.038 0.025 0.026 0.029 0.052 0.055 0.088 0.146	OEFF PROF 0.082 0.038 0.025 0.026 0.029 0.028 0.052 0.055 0.088 0.146	LOSS P. TOT 0.042 0.019 0.011 0.011 0.011 0.017 0.016 0.022 0.034	ARAM PROF 0.042 0.019 0.011 0.011 0.011 0.017 0.016 0.022

(i) Reading 819

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	-2.0 1 -1.8 1 -0.1 1 -0.9 1 -0.2 1 1.5 1.	IN OUT 2 -2.1 0.2 2 -2.0 1.2 9 -1.8 1.9 7 -0.1 1.7 9 -0.9 1.9 7 -0.2 1.7 6 1.5 1.6 2 1.2 0.2 2 2.2 1.2 1 2.0 1.1	TOTAL TEMP IN RATIO 289.3 1.002 288.6 1.003 288.4 1.004 287.8 1.003 288.2 1.002 287.8 1.003 287.8 1.003 287.8 1.003 287.8 1.002 287.8 1.002 287.8 1.002	TOTAL PRESS IN RATIO 10.02 0.990 10.14 0.995 10.14 0.996 10.14 0.996 10.14 0.997 10.14 0.997 10.14 0.994 10.14 0.994 10.14 0.992 10.14 0.995
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 143.3 158.7 150.6 166.6 154.0 171.0 153.1 170.9 152.9 171.2 152.1 170.8 151.7 170.6 147.9 166.4 145.2 163.0 141.4 157.1 138.8 151.3	REL VEL IN OUT 143.3 158.1 150.6 166.6 154.0 171.0 153.1 170.6 152.9 171.2 152.1 170.6 151.7 170.6 147.9 166.4 145.2 163.1 141.4 157.1 138.8 151.3	5 150.5 166.6 153.9 170.9 153.1 170.9 152.1 170.7 152.1 170.7 151.7 170.5 1414.9 166.4 145.1 163.0 141.3 157.1	TANG VEL IN OUT -5.2 0.5 -5.4 3.6 -4.8 5.8 -0.4 5.2 -2.5 5.6 -0.4 5.0 3.8 4.6 3.2 0.7 5.7 3.3 5.0 3.1 3.6 0.2	WHEEL SPEED IN OUT 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.428 0.475 0.451 0.501 0.462 0.514 0.459 0.516 0.457 0.514 0.455 0.514 0.443 0.501 0.435 0.490 0.423 0.471 0.415 0.453	REL MACH NI 10.428 0.475 0.451 0.501 0.462 0.514 0.459 0.515 0.459 0.516 0.457 0.514 0.455 0.514 0.443 0.501 0.435 0.491 0.423 0.471 0.415 0.455	IN OUT 0.428 0.475 0.451 0.500 0.462 0.514 0.459 0.515 0.457 0.514 0.455 0.514 0.443 0.501 0.435 0.490 0.423 0.471		MERID PEAK SS VEL R MACH NO 1.108 0.428 1.107 0.451 1.110 0.462 1.116 0.459 1.119 0.459 1.122 0.457 1.124 0.455 1.125 0.443 1.123 0.435 1.111 0.423 1.090 0.415

(j) Reading 830

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	ABS BETAM IN OUT -2.7 02.5 1.6 -1.6 2.6 -0.6 2.1 -0.5 1.5 1.7 1.5 1.8 0.2 2.5 1.0 2.7 1.0	2 -2.7 0.2 5 -2.5 1.6 6 -1.6 2.6 0 -0.6 2.0 9 -0.2 1.9 7 -0.5 1.7 1.7 1.5 2 1.8 0.2 2.5 1.0 2.7 1.1	TOTAL TEMP IN RATIO 289.2 1.002 289.0 1.002 288.8 1.003 287.9 1.003 287.8 1.003 287.8 1.002 287.5 1.002 287.6 1.002 287.9 1.001 288.2 1.001	TOTAL PRESS IN RATIO 10.03 0.991 10.14 0.995 10.14 0.997 10.14 0.997 10.14 0.997 10.14 0.995 10.14 0.995 10.14 0.995 10.14 0.998
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 136.8 150.6 143.5 157.7 146.6 161.8 145.4 162.3 144.8 161.5 140.2 157.3 137.6 154.4 134.3 149.0 131.9 143.8	REL VEL IN OUT 136.8 150.6 143.5 157.7 146.6 161.6 145.4 162.3 144.8 161.8 144.3 161.5 140.2 157.3 137.6 154.4 134.3 149.8	MERID VEL IN OUT 136.6 150.6 143.3 157.6 146.5 161.4 145.5 161.7 145.4 162.2 144.8 161.7 144.2 161.4 140.1 157.3 137.5 154.3 134.1 149.0 131.9 143.8	TANG VEL IN OUT -6.4 0.6 -6.3 4.5 -4.1 7.5 -1.5 5.5 -0.5 5.3 -1.3 4.9 4.3 4.3 4.4 0.4 6.0 2.8 6.3 3.0 2.0 1.7	WHEEL SPEED IN OUT 0.
RP 1 25 4 5 6 7 8 9 1 1 1	ABS MACH NO IN OUT 0.408 0.450 0.429 0.472 0.438 0.485 0.436 0.486 0.436 0.486 0.432 0.485 0.419 0.472 0.412 0.463 0.401 0.446 0.394 0.430	REL MACH NO IN OUT 0.408 0.450 0.429 0.472 0.438 0.486 0.436 0.486 0.434 0.486 0.432 0.485 0.419 0.472 0.412 0.463 0.430 0.430	MERID MACH NO IN OUT 0.407 0.450 0.428 0.472 0.438 0.484 0.436 0.486 0.436 0.486 0.432 0.485 0.419 0.472 0.411 0.463 0.401 0.446 0.394 0.430		MERID PEAK SS VEL R MACH NO 1.102 0.408 1.100 0.429 1.102 0.438 1.111 0.436 1.115 0.436 1.117 0.434 1.119 0.432 1.123 0.419 1.123 0.411 1.111 0.401 1.1090 0.394
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 -2.7 10.00 -2.5 20.00 -1.6 30.00 -0.6 38.00 -0.2 46.00 -0.5 50.00 1.7 70.00 1.8 80.00 2.5 90.00 2.7 95.00 0.9	DENCE DEV SS -14.7 0.2 -14.5 1.6 -13.6 2.6 -12.6 1.9 -12.2 1.9 -12.5 1.7 -10.3 1.5 -10.2 0.2 -9.5 1.1 -9.3 1.1 -11.1 0.7	D-FACT EFF -0.075 00.062 00.066 00.099 00.100 00.119 00.115 00.116 00.104 00.090 0.	LOSS COEFF TOT PROF 0.083 0.083 0.045 0.045 0.050 0.050 0.029 0.029 0.025 0.025 0.027 0.027 0.026 0.026 0.043 0.043 0.046 0.046 0.061 0.061 0.111 0.111	LOSS PARAM TOT PROF 0.042 0.042 0.022 0.023 0.013 0.013 0.010 0.010 0.010 0.010 0.014 0.014 0.013 0.013 0.016 0.016 0.026 0.026

(k) Reading 845

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 0UT 25.072 24.971 24.41.2 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	ABS B IN -2.0 -1.5 -1.1 -0.8 0.5 0.1 1.5 2.3 2.1 1.9	OUT -0.5 0.3 1.3 0.9 0.9 0.8 0.7 -0.3 0.8	IN -2.0 -1.5 -1.1 -0.8 0.5 0.1 1.5 2.3 2.5 2.1	OUT -0.5 0.3 1.3 0.9 0.9 0.8 0.7 -0.3 0.8 1.4	TOTA IN 289.1 288.8 288.7 288.2 287.9 287.9 287.5 287.6 287.9 288.5	L TEMP RATIO 1.002 1.003 1.003 1.003 1.002 1.003 1.002 1.002 1.002	TOTAL IN 10.04 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 0.989 0.995 0.994 0.995 0.996 0.996 0.994 0.993 0.988
RP 1 2 3 4 5 6 7 8 9 0 1 1	ABS VEL IN OUT 141.9 156.0 147.8 163.3 150.7 167.3 150.0 167.2 149.8 167.6 149.0 167.1 148.5 166.7 144.4 162.2 141.5 158.7 157.9 153.5 155.8 148.8	141.9 1 147.8 1 150.7 1 150.0 1 149.8 1 149.5 1 148.5 1 144.4 1 141.5 1 137.9 1	EL 0UT 56.0 63.3 67.2 67.6 67.1 66.7 55.5 48.8	MERI IN 141.8 147.8 150.7 149.9 149.8 149.0 148.4 144.2 141.4 137.8 135.7	D VEL OUT 155.9 163.3 167.2 167.2 167.6 167.1 166.7 162.2 158.7 153.5 148.7	TAN IN -5.0 -3.7 -2.9 -2.1 1.2 0.3 3.9 5.9 6.1 5.6	G VEL OUT -1.4 0.9 3.8 2.7 2.6 2.3 2.0 -1.0 0.8 2.1 3.5	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.424 0.467 0.442 0.490 0.451 0.502 0.449 0.503 0.449 0.504 0.447 0.503 0.445 0.502 0.432 0.488 0.424 0.477 0.412 0.460 0.405 0.445	0.424 0 0.442 0 0.451 0 0.449 0 0.4447 0 0.4447 0 0.445 0 0.445 0 0.432 0	H NO OUT .467 .490 .502 .503 .504 .503 .502 .488 .477 .460	MERID M IN 0.423 0.442 0.451 0.449 0.447 0.445 0.432 0.412 0.405	ACH NO OUT 0.467 0.490 0.502 0.503 0.504 0.503 0.504 0.503 0.502 0.477 0.460 0.445				PEAK SS MACH NO 0.424 0.442 0.451 0.449 0.449 0.445 0.432 0.445 0.432 0.424 0.405
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCO SPAN MEAN 5.00 -2.0 10.00 -1.5 20.00 -1.1 30.00 -0.8 38.00 0.5 46.00 0.1 50.00 1.5 70.00 2.3 80.00 2.4 90.00 2.1 95.00 1.9	-13.5 -13.1 -12.8 -11.5 -11.9	DEV -0.5 0.3 1.3 0.9 0.9 0.8 0.7 -0.3 0.3 0.8 1.4	D-FACT -0.086 -0.089 -0.089 -0.101 -0.115 -0.116 -0.118 -0.108 -0.108 -0.108	EFF 0. 0. 0. 0. 0. 0. 0. 0.	LOSS CO TOT 0.095 0.042 0.044 0.037 0.029 0.030 0.030 0.047 0.054 0.066 0.109	DEFF PROF 0.095 0.042 0.044 0.037 0.029 0.030 0.030 0.047 0.054 0.066 0.109	LOSS P TOT 0.048 0.021 0.016 0.012 0.012 0.011 0.015 0.016 0.017 0.026	ARAM PROF 0.048 0.021 0.012 0.015 0.012 0.015 0.016 0.017 0.026

(l) Reading 856

RP 1 2 3 4 5 6 7 8 9 10 11	RADII	ABS BETAM IN OUT -2.2 -01.4 01.0 00.1 00.2 0. 1.3 0. 1.4 0. 1.5 -0. 2.3 -0. 2.5 0.	IN OUT 5 -2.2 -0.5 0 -1.4 0.0 9 -1.0 0.9 7 -0.1 0.7 8 -0.2 0.8 7 1.3 0.7 7 1.4 0.7 6 1.5 -0.6 1 2.3 -0.1 9 2.5 0.9	TOTAL TEMP IN RATIO 289.1 1.003 288.8 1.003 288.5 1.003 288.1 1.003 287.9 1.003 287.8 1.003 287.7 1.002 287.7 1.002 288.0 1.002 288.5 1.001	TOTAL PRESS IN RATIO 10.03 0.990 10.13 0.994 10.14 0.995 10.14 0.996 10.14 0.996 10.14 0.996 10.14 0.995 10.14 0.993 10.14 0.993 10.14 0.995 10.14 0.995 10.14 0.995 10.14 0.995 10.14 0.995 10.14 0.995 10.14 0.985
RP 1 2 3 4 5 6 7 8 9 1 1 1	ABS VEL IN OUT 145.2 161.4 151.5 168.3 154.5 172.2 153.6 172.1 153.4 172.4 152.7 171.9 152.3 171.4 148.5 166.8 145.5 163.1 141.8 157.2 139.5 152.1	REL VEL IN OUT 145.2 161.4 151.5 168.3 154.5 172.1 153.4 172.4 152.7 171.9 152.3 171.4 148.5 166.6 145.5 163.1 141.8 157.2	151.4 168.3 154.5 172.1 153.6 172.1 153.4 172.4 152.7 171.9 152.2 171.4 148.4 166.8 145.4 163.1	TANG VEL IN OUT -5.6 -1.5 -3.7 0.1 -2.7 2.8 -0.3 2.1 -0.4 2.4 3.4 2.0 3.6 2.0 3.8 -1.7 5.9 -0.2 6.3 2.5 5.4 2.6	WHEEL SPEED IN OUT 0.
RP: 254567-891011	ABS MACH NO IN OUT 0.434 0.484 0.506 0.463 0.518 0.460 0.519 0.458 0.518 0.457 0.516 0.445 0.502 0.436 0.490 0.424 0.472 0.417 0.456	REL MACH NO IN OUT 0.434 0.484 0.454 0.506 0.463 0.518 0.460 0.518 0.458 0.518 0.457 0.516 0.457 0.502 0.436 0.490 0.436 0.490 0.417 0.456	IN 0UT 0.434 0.484 0.453 0.506 0.463 0.518 0.461 0.518 0.458 0.518 0.457 0.516 0.445 0.502 0.436 0.490 0.424 0.472		MERID PEAK SS VEL R MACH-NO 1.112 0.434 1.112 0.454 1.114 0.463 1.120 0.461 1.123 0.460 1.126 0.458 1.126 0.457 1.123 0.445 1.123 0.445 1.122 0.436 1.109 0.424 1.091 0.417
RP 1 23 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 -2.2 10.00 -1.4 20.00 -1.0 30.00 -0.1 38.00 -0.2 46.00 1.3 50.00 1.4 70.00 1.5 80.00 2.3 90.00 2.5 95.00 2.2	DENCE SS -14.2 -0.5 -13.4 0.6 -13.0 0.9 -12.1 0.7 -12.2 0.7 -10.6 0.7 -10.5 -0.6 -9.7 -0.7 -9.5 0.5 -9.8 1.6	0 -0.097 0. 0 -0.099 0. 0 -0.098 0. 1 -0.115 0. 2 -0.122 0. 2 -0.122 0. 3 -0.111 0. -0.109 0. 0 -0.102 0.	LOSS COEFF TOT PROF 0.084 0.084 0.044 0.044 0.034 0.034 0.030 0.030 0.029 0.029 0.031 0.031 0.051 0.051 0.058 0.058 0.088 0.088 0.134 0.134	LOSS PARAM TOT PROF 0.043 0.043 0.022 0.022 0.019 0.019 0.015 0.015 0.012 0.012 0.011 0.011 0.012 0.012 0.016 0.016 0.017 0.017 0.022 0.022 0.032 0.032

(m) Reading 867

RP 1 2 3 4 5 6 7 8 9 10	RAD IN 25.072 24.412 23.058 21.659 20.508 19.334 18.738 15.624 13.960 12.192 11.255	OUT 24.971 24.354 23.096 21.806 20.752 19.682 19.139 16.350 14.889 13.365	ABS 1N -1.6 -1.5 -1.5 -0.4 -0.5 1.8 1.0 2.1 2.9 2.4	BETAM OUT -0.5 0.1 0.9 0.6 0.8 0.7 0.6 -0.5 -0.0	IN -1.6 -1.5 -1.5 -0.4 -0.5 1.8 1.0 2.1 2.9 2.4	BETAM OUT -0.5 0.1 0.9 0.6 0.8 0.7 0.6 -0.5 -0.0	TOTA 1N 289.0 288.6 288.5 288.1 287.9 287.8 287.7 287.8 288.0 288.5	L TEMP RAT10 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.002	TOTAL IN 10.03 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RAT10 0.989 0.994 0.995 0.996 0.996 0.996 0.996 0.993 0.991 0.988
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 148.0 154.4 156.4 156.2 155.7 155.1 151.3 148.3 142.2	VEL 0UT 165.2 172.3 176.3 176.1 176.3 175.7 175.2 170.0 166.0 159.3 152.9	REL IN 148.0 154.4 156.4 156.2 155.7 155.1 151.3 148.4 142.2	VEL 0UT 165.2 172.3 176.1 176.3 175.7 175.2 170.0 166.0 159.3	MERI IN 148.0 157.3 156.4 156.2 155.6 155.1 151.2 144.3	D VEL 0UT 165.2 172.3 176.3 176.1 176.3 175.7 175.2 170.0 166.0 159.3	TAN IN -4.1 -4.1 -1.2 -1.4 4.9 2.8 5.5 7.4 4.5	G VEL OUT -1.3 0.3 2.6 1.7 2.5 2.2 1.9 -1.4 -0.1 1.7 0.9	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED - OUT
RP 1 2 3 4 5 6 7 8 9 10 11	ABS M IN 0.443 0.463 0.472 0.470 0.469 0.466 0.454 0.445 0.432 0.425	ACH NO 0.496 0.519 0.531 0.531 0.532 0.532 0.5528 0.512 0.500 0.478 0.458	REL M IN 0.443 0.463 0.472 0.470 0.469 0.468 0.454 0.454 0.432	ACH NO OUT 0.496 0:519 0.531 0.532 0.532 0.552 0.512 0:500 0.478 0.458	MERID M IN 0.445 0.463 0.472 0.470 0.469 0.466 0.466 0.444 0.432 0.425	ACH NO OUT 0.496 0.519 0.531 0.532 0.532 0.532 0.512 0.512 0.500 0.478 0.458				PEAK SS MACH NO 0.443 0.463 0.472 0.470 0.469 0.468 0.454 0.454 0.432 0.425
RP 1 2 3	PERCENT SPAN 5.00 10.00 20.00	INCI MEAN -1.6 -1.5 -1.5	DENCE SS -13.6 -13.5 -13.5	DEV -0.4 0.1 0.8	D-FACT -0.107 -0.103 -0.101	EFF 0. 0.	LOSS C TOT 0.087 0.044 0.036	0EFF PROF 0.087 0.044 0.036	LOSS P TOT 0.044 0.022 0.017	ARAM PROF 0.044 0.022 0.017

(n) Reading 884

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	-0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	IN OUT 6 -1.5 -0.6 .0 -1.4 -0.0 .6 -0.9 0.6 .5 -0.1 0.5 .7 -0.3 0.7 .8 -0.0 0.8 .8 0.2 0.8	IN RATIO 289.1 1.003 288.7 1.003 288.6 1.003 288.1 1.003 287.9 1.003 287.8 1.003 287.6 1.003 287.7 1.002 287.9 1.002	TOTAL PRESS IN RATIO 10.02 0.990 10.14 0.994 10.14 0.996 10.14 0.996 10.14 0.995 10.14 0.995 10.15 0.992 10.14 0.995 10.14 0.981
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 151.6 170.4 158.5 177.3 161.8 181.5 160.8 181.2 160.7 181.2 159.8 180.5 159.1 179.9 154.9 174.5 151.8 170.1 147.7 163.5	REL VEL IN OUT 151.6 170.1 158.5 177.1 161.8 181.1 160.8 181.1 160.7 181.1 159.8 180.1 159.1 179.1 154.9 174.1 151.8 170.1 147.7 163.1	5 158.4 177.3 5 161.8 181.5 2 160.8 181.2 2 160.7 181.1 159.8 180.5 9 159.1 179.6 154.7 174.5 151.7 170.1 147.6 163.5	-3.8 -0.1 -2.6 2.0 -0.3 1.5 -0.9 2.3 -0.1 2.6 0.5 2.4 6.2 -0.3 6.9 0.4 5.1 1.1	WHEEL SPEED IN OUT O. O
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.454 0.512 0.476 0.534 0.548 0.547 0.483 0.547 0.481 0.545 0.479 0.543 0.465 0.527 0.456 0.513 0.442 0.434 0.476	REL MACH N. IN 00.77 0.454 0.51 0.476 0.53 0.486 0.54 0.484 0.54 0.483 0.54 0.481 0.54 0.479 0.54 0.465 0.52 0.456 0.51 0.442 0.494 0.434 0.476	IN OUT 2 0.454 0.512 4 0.475 0.534 8 0.486 0.548 7 0.484 0.547 6 0.481 0.545 5 0.479 0.543 7 0.465 0.527 6 0.465 0.527 6 0.462 0.492		MERID PEAK SS VEL R MACH NO 1.125 0.454 1.119 0.476 1.122 0.486 1.127 0.484 1.127 0.483 1.129 0.481 1.130 0.479 1.128 0.465 1.122 0.456 1.108 0.442 1.094 0.434
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 -1.5 10.00 -0.9 30.00 -0.1 38.00 -0.3 46.00 -0.0 50.00 0.2 70.00 2.3 80.00 2.6	SS -13.5 -0.6 -13.4 -0.1 -12.9 0.6 -12.1 0.5 -12.3 0.7 -12.0 0.8 -11.8 0.8 -9.7 -0.1 -9.4 0.4 -10.0 0.6 -10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6 -0.116 0. 0 -0.107 0. 6 -0.109 0. 7 -0.119 0. 8 -0.123 0. 8 -0.125 0. 1 -0.114 0. 1 -0.109 0.	LOSS COEFF TOT PROF 0.076 0.076 0.042 0.042 0.030 0.030 0.029 0.029 0.030 0.031 0.031 0.031 0.032 0.032 0.059 0.059 0.075 0.075 0.119 0.119	LOSS PARAM TOT PROF 0.038 0.038 0.021 0.021 0.014 0.014 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.012 0.019 0.019 0.022 0.022 0.030 0.030

(o) Reading 895

	.8 -1.0 0. .1 1.6 0. .9 2.1 0. .3 1.5 0. MERI VEL 1.12 1.12
MERID PE	VEL R 1 1.126 1.124 1.127
525 1.126 547 1.124	1.133 1.133 1.134

(p) Reading 916

RP 1 25 4 5 67 8 9 10 11	RAD IN 25.072 24.412 23.058 21.659 20.508 19.334 18.738 15.624 15.960 12.192 11.255	0UT 24.971 24.354 23.096 21.806 20.752 19.682 19.139 16.350 14.889 13.365	ABS 1N -2.3 -0.5 -0.5 -0.5 2.7 2.2 2.4	BETAM OUT -0.7 0.9 1.6 0.8 0.5 0.2 -1.35 -0.2	REL 12.3 -2.5 -0.5 -0.5 -0.5 -0.2 -2.3 -2.3 -2.3 -2.3 -2.3 -2.3 -2.3 -2	BETAM OUT -0.7 0.9 1.6 0.8 0.5 0.5 -1.3 -0.5 -0.2	TOTA IN 289.2 288.8 288.6 288.0 287.9 287.9 287.8 287.8 287.9	L TEMP RATIO 1.002 1.002 1.003 1.003 1.002 1.002 1.002 1.001 1.001	TOTAL IN 10.04 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 0.992 0.994 0.995 0.997 0.997 0.995 0.995 0.995 0.998
RP 1 2 3 4 5 6 7 8 9 11 11	ABS 134.0 134.0 143.0 142.2 142.0 141.2 140.6 137.0 134.3 130.8	VEL 0UT 147.5 153.9 157.4 157.8 158.2 157.6 157.2 153.2 154.7 144.3	REL IN 134.0 140.2 143.0 142.2 142.0 141.2 140.6 137.0 134.3 130.8 7	VEL 0UT 147.5 153.9 157.4 157.8 158.2 157.6 157.2 153.2 144.7 140.3	MER I. 133.8 143.0 142.1 142.0 141.2 140.6 136.8 134.2 130.7	D VEL 0UT 147.5 153.9 157.4 157.8 158.2 157.6 157.2 153.1 150.2 144.7 140.3	TAN IN -5.58 -1.2 -1.1 1.8 0.4 5.8 5.5	G VEL OUT -1.7 2.3 4.4 2.1 2.2 1.3 0.6 -3.4 -1.4 -0.7	HEEL IN 0. 0. 0. 0.	SPEED OUT
RP 1 23 4 5 6 7 8 9 10 11	ABS M IN 0.399 0.418 0.428 0.425 0.425 0.422 0.421 0.410 0.401 0.391 0.384	ACH NO OUT 0.441 0.461 0.472 0.475 0.475 0.475 0.475 0.475 0.475 0.475	REL M IN 0.399 0.418 0.425 0.425 0.422 0.421 0.410 0.401 0.391 0.384	ACH NO OUT 0.441 0.461 0.472 0.473 0.475 0.473 0.472 0.460 0.450 0.433 0.419	MERID M IN 0.399 0.418 0.425 0.425 0.425 0.421 0.401 0.390 0.383	ACH NO OUT 0,441 0.461 0.473 0.475 0.475 0.473 0.460 0.450 0.450				PEAK SS MACH NO 0.399 0.418 0.428 0.425 0.425 0.421 0.410 0.391 0.384
RP 1 2 3 4 5 6 7 8 9 1 1 1 1	PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 90.00 95.00	INCI MEAN -2.5 -0.5 -0.5 0.7 0.7 2.7 2.9	DENCE SS -14.3 -12.5 -12.5 -12.0 -11.3 -11.3 -9.8 -9.1 -9.6	DEV -0.7 0.9 1.6 0.8 0.5 0.2 -1.3 -0.5 -0.3	D-FACT -0.087 -0.073 -0.082 -0.100 -0.108 -0.117 -0.096 -0.104 -0.092 -0.080	EFF 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.081 0.049 0.058 0.029 0.029 0.029 0.028 0.044 0.048 0.071	0EFF PROF 0.081 0.049 0.058 0.029 0.029 0.028 0.044 0.048 0.071	LOSS P TOT 0.041 0.024 0.027 0.013 0.012 0.011 0.014 0.014 0.018 0.026	ARAM PRCF 0.041 0.024 0.027 0.013 0.012 0.011 0.014 0.014 0.018 0.026

(q) Reading 927

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 11 1	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 38.00 46.00 50.00 70.00 80.00 90.00	ABS M IN 0.417 0.438 0.448 0.445 0.445 0.445 0.442 0.431 0.422 0.410	ABS IN 139.7 146.4 149.6 148.6 147.9 147.5 143.9 140.9 137.4	RAE IN 25.072 24.412 23.058 21.659 20.508 19.334 18.738 15.624 13.960 12.192
INCI MEAN -2.4 -1.0 -0.8 0.1 -0.6 1.1 0.5 1.6 2.1 2.8 2.0	OL485 0.485 0.498 0.499 0.500 0.499 0.498 0.498 0.475 0.475 0.441	VEL 0UT 154.0 161.8 165.9 166.0 166.2 165.8 165.4 161.2 158.2 152.6 147.3	OUT 24.971 24.354 23.096 21.806 20.752 19.682 19.139 16.350 14.889 13.365
DENCE SS -14.4 -13.0 -12.8 -11.9 -12.6 -10.9 -11.5 -10.4 -9.9 -9.2 -10.0	REL M IN 0.417 0.438 0.445 0.445 0.445 0.443 0.442 0.431 0.422 0.410 0.403	REL [N 139.7 146.4 149.6 148.5 147.9 147.5 143.9 140.9 137.4	ABS IN -2.4 -1.0 -0.8 0.1 -0.6 1.1 0.5 1.6 2.1 2.9
DEV -0.8 0.5 1.4 0.7 0.5 0.2 -1.3 -0.7 -0.4	ACH NO 0UT 0.460 0.485 0.498 0.500 0.499 0.500 0.498 0.498 0.485 0.475 0.441	VEL 0UT 154.0 161.8 165.9 166.2 165.8 165.4 161.2 158.2 152.6 147.3	BETAM OUT -0.8 0.7 0.7 0.5 0.2 -1.3 -0.7 -0.4
D-FACT -0.089 -0.092 -0.090 -0.111 -0.109 -0.118 -0.120 -0.103 -0.109 -0.097 -0.080	MERID M 1N 0.416 0.438 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445	MERI IN 139.5 146.4 148.6 148.5 147.9 147.5 143.8 140.8 137.2 135.0	IN
EFF 0. 0. 0. 0. 0. 0.	0.460 0.460 0.485 0.498 0.499 0.500 0.499 0.498 0.498 0.498	1D VEL 0UT 153.9 161.8 165.8 166.0 166.2 165.8 165.4 161.2 158.2 152.6 147.3	BETAM OUT -0.8 0.5 1.4 0.7 0.7 0.5 0.2 -1.3 -0.7 -0.4
LOSS COTOT 0.098 0.046 0.050 0.028 0.028 0.028 0.028 0.049 0.049 0.064 0.117		TAN IN -5.8 -2.6 -2.1 -1.5 2.8 1.2 4.1 5.1 6.9	TOTA IN 289.2 288.6 288.5 287.9 287.8 287.9 287.8 287.9 288.1 288.5
DEFF PROF 0.098 0.045 0.050 0.028 0.028 0.028 0.049 0.049 0.064 0.117		OVEL OUT -2.2 1.3 4.0 2.1 2.2 1.5 0.5 -3.7 -1.8 -1.0	RATIO 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.002 1.002
LOSS P. TOT 0.050 0.023 0.012 0.012 0.011 0.016 0.014 0.016 0.028		IN 0. 0. 0. 0. 0. 0. 0. 0.	[N: 10.03
ARAM PROF 0.050 0.023 0.012 0.012 0.011 0.011 0.016 0.014 0.016 0.028	PEAK SS MACH NO 0.417 0.438 0.448 0.445 0.445 0.445 0.442 0.431 0.422 0.410	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	PRESS RATIO 0.989 0.994 0.996 0.996 0.996 0.994 0.994 0.993 0.988

(r) Reading 938

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.682 18.738 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	ABS 1 IN -2.4 -2.0 -0.8 -0.5 -0.2 0.4 1.1 3.2 2.4 1.9	BETAM OUT -1.0 0.2 1.1 0.6 0.8 0.6 0.5 -1.1 -0.6 -0.7 -0.9	IN -2.4 -2.0 -0.8 -0.5 -0.2 0.4 1.4	BETAM OUT -1.0 0.2 1.1 0.6 0.8 0.6 0.5 -1.1 -0.6 -0.7 -0.9	TOTAL TEMP IN RATIO 289.0 1.003 288.8 1.003 288.4 1.003 288.0 1.003 287.8 1.003 287.8 1.003 287.8 1.003 287.8 1.003 287.8 1.002 288.0 1.002 288.0 1.002	10.14 0.996 10.14 0.996 10.14 0.997
RP 1 2 3 4 5 6 7 8 9 111	ABS VEL IN OUT 146.0 162.0 152.2 169.5 155.1 173.3 154.3 173.2 154.1 173.4 153.4 173.0 152.9 172.5 149.1 167.5 146.3 164.0 142.4 157.4 140.1 151.9	152.2 155.1 154.3 154.1 153.4 152.9 149.1 146.3 142.4	YEL 0UT 162.0 169.5 173.3 173.2 173.4 173.0 172.5 167.5 164.0 157.4 151.9	MERII IN 145.9 152.2 155.1 154.3 154.1 153.4 152.9 149.1 146.0 142.2	VEL OUT 161.9 169.5 173.3 173.2 173.4 173.0 172.5 164.0 157.4 151.9	TANG VEL IN OUT -6.0 -2.8 -5.3 0.6 -2.1 3.2 -1.4 1.8 -0.5 2.5 1.1 1.7 3.7 1.4 2.8 -3.3 8.2 -1.7 6.0 -1.9 4.7 -2.3	0. 0. 0. 0. 0. 0. 0. 0.
RP 1 233 4 5 6 7 8 9 11 1	ABS MACH NO IN OUT 0.436 0.485 0.456 0.509 0.465 0.522 0.463 0.522 0.463 0.523 0.460 0.521 0.459 0.520 0.447 0.504 0.438 0.493 0.426 0.472 0.419 0.455	0.456 0.465 0.463 0.463 0.460 0.459 0.447 0.438 0.426	CH NO OUT 0.485 0.509 0.522 0.522 0.523 0.521 0.520 0.504 0.493 0.472	MERID M IN 0.436 0.456 0.465 0.463 0.463 0.463 0.469 0.447 0.438 0.426 0.418	ACH NO OUT 0.485 0.509 0.522 0.522 0.522 0.521 0.521 0.504 0.493 0.472 0.455		MERID PEAK SS VEL R MACH NO 1.110 0.456 1.114 0.456 1.117 0.465 1.123 0.463 1.125 0.463 1.128 0.460 1.128 0.459 1.123 0.447 1.123 0.438 1.106 0.426 1.085 0.419
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 -2.4 10.00 -2.0 20.00 -0.8 30.00 -0.5 38.00 -0.2 46.00 0.4 70.00 1.1 80.00 3.2 90.00 2.4 95.00 1.9	1DENCE SS -14.4 -14.0 -12.8 -12.5 -12.2 -11.6 -10.6 -10.9 -8.8 -9.6 -10.1	DEV -1.0 0.2 1.1 0.6 0.8 0.6 0.5 -1.1 -0.6 -0.7	D-FACT -0.098 -0.094 -0.102 -0.113 -0.117 -0.126 -0.122 -0.110 -0.102 -0.092 -0.073	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.094 0.094 0.043 0.042 0.042 0.042 0.032 0.032 0.031 0.031 0.025 0.025 0.028 0.028 0.052 0.052 0.061 0.061 0.096 0.096 0.150 0.150	LOSS PARAM TOT PROF 0.047 0.047 0.021 0.021 0.020 0.020 0.014 0.014 0.013 0.013 0.010 0.010 0.011 0.011 0.017 0.017 0.018 0.018 0.024 0.024 0.035 0.035

A A STATE OF THE STATE OF

(s) Reading 950

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.072 24.971 24.412 24.354 23.058 23.096 21.659 21.806 20.508 20.752 19.334 19.139 15.624 16.350 13.960 14.889 12.192 13.365 11.255 12.573	ABS IN -2.5 -2.2 -1.2 -0.5 0.3 0.7 1.7 2.1 3.0 2.2	BETAM OUT -1.0.1 0.6 0.4 0.6 0.5 -1.1 -0.6 -0.9	IN -2.5 -2.2 -1.2 -0.5 0.3 0.7 1.7 2.1 3.0 2.2	BETAM OUT -1.0 -0.1 0.6 0.4 0.6 0.5 -1.1 -0.6 -0.9	TOTAL TEMP IN RATIO 289.2 1.003 288.7 1.003 288.4 1.003 288.1 1.003 287.9 1.003 287.9 1.003 287.7 1.003 287.7 1.002 288.0 1.002 288.0 1.001	TOTAL PRESS IN RATIO 10.01 0.990 10.14 0.994 10.14 0.996 10.14 0.996 10.14 0.996 10.14 0.995 10.14 0.991 10.14 0.990 10.14 0.980
RP 1 2 5 4 5 6 7 8 9 10 11	ABS VEL IN OUT 149.0 168.1 156.5 175.2 169.1 179.3 159.0 179.6 158.2 178.7 157.8 178.2 154.1 173.1 169.2 146.9 162.3 144.3 156.4	156.5 160.1 159.2 159.0 158.2 157.8 154.1 151.1 146.9	VEL 0UT 168.1 175.2 179.3 179.6 178.7 178.2 173.1 173.1 175.2 162.3 156.4	MERI IN 148.8 156.4 169.2 159.0 158.2 157.8 154.0 150.9 146.8 144.2	D VEL 0UT 168.1 175.2 179.3 179.6 178.7 178.2 173.0 169.2 156.3	TANG VEL IN OUT -6.4 -3.1 -6.0 -0.2 -3.2 1.9 -1.3 1.3 0.8 1.8 2.0 1.8 4.6 1.4 5.6 -3.4 7.8 -1.9 5.7 -2.4 5.9 -3.5	WHEEL SPEED IN OUT 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.445 0.505 0.470 0.528 0.481 0.541 0.478 0.541 0.478 0.542 0.475 0.540 0.474 0.538 0.463 0.522 0.453 0.510 0.440 0.488 0.432 0.469	0.470 0.481 0.478 0.478 0.475 0.474 0.463 0.453 0.440	CH NO 0.505 0.528 0.541 0.541 0.542 0.540 0.538 0.522 0.510 0.488 0.469	MERID M IN 0.445 0.469 0.481 0.478 0.475 0.474 0.462 0.453 0.440 0.431	ACH NO 0.505 0.528 0.541 0.541 0.542 0.539 0.539 0.522 0.522 0.488 0.469		MERID PEAK SS VEL R MACH NO 1.129 0.445 1.120 0.470 1.120 0.481 1.126 0.478 1.130 0.478 1.130 0.475 1.129 0.474 1.124 0.463 1.121 0.453 1.105 0.440 1.084 0.432
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN MEAN 5.00 -2.5 10.00 -2.2 20.00 -1.2 30.00 0.3 46.00 0.7 50.00 1.7 70.00 2.1 80.00 2.9 90.00 2.2 95.00 2.3	DENCE SS -14.5 -14.2 -13.2 -12.5 -11.7 -11.3 -10.3 -9.9 -9.1 -9.8 -9.7	DEV -1.0 -0.1 0.6 0.4 0.6 0.5 -1.1 -0.6 -0.9	D-FACT -0.117 -0.101 -0.105 -0.119 -0.127 -0.129 -0.121 -0.105 -0.102 -0.091 -0.069	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.076 0.076 0.044 0.044 0.038 0.038 0.031 0.031 0.028 0.028 0.029 0.029 0.033 0.033 0.063 0.063 0.075 0.075 0.110 0.110 0.163 0.163	LOSS PARAM TOT PROF 0.039 0.039 0.022 0.022 0.017 0.017 0.014 0.014 0.011 0.011 0.011 0.011 0.012 0.012 0.020 0.020 0.022 0.022 0.028 0.028 0.038 0.038

TABLE VII. - Concluded.

(t) Reading 963

RP 1 2 3 4 5 6 7 8 9 1 1 1	RADII IN 0 25.072 24.2 24.412 24.2 23.058 23.21.659 21.1 20.508 20.19.354 19.6 18.738 19.6 15.624 16.1 13.960 14.1 12.192 13.1	UT IN 971 -2.3 354 -1.5 096 -0.7 806 -0.3 752 1.1 682 0.4 139 1.5 350 1.5 889 2.9 365 2.5	0UT -1.2 -0.5 0.2 0.3 0.3 -1.1 -0.6 -1.4	IN -2.3 -1.5 -0.7 -0.3 1.1 0.4 1.5 1.5 2.9 2.5	DETAM OUT -1.2 -0.5 0.3 0.3 0.3 0.3 -1.1 -0.5 -0.6 -1.4	TOTA IN 289.2 288.7 288.3 288.0 287.9 287.9 287.9 287.7 287.7 288.2	IL TEMP RATIO 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.002	TOTAL IN 10.03 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RAT10 0.994 0.995 0.996 0.995 0.995 0.991 0.988 0.978
RP 1 25 4 5 6 7 8 9 10 11	154.9 177 161.1 180 164.2 188 163.3 184 162.9 184 162.1 183 161.6 183 157.0 177 153.9 173 149.6 166	L REL UT 1N 2.6 154,9 0.8 161,1 5.2 164,2 4.8 163,3 4.6 162,9 5.8 162,1 3.3 161,6 7.3 157,0 5.1 153,9 6.3 149,6 9.8 147,2	VEL 0UT 172.6 180.8 185.2 184.8 184.6 183.8 177.3 177.3 1766.3	MERI IN 154.7 161.0 164.2 163.3 162.9 161.5 157.0 153.7 149.5 147.1	D VEL OUT 172.6 180.8 185.2 184.8 184.6 183.8 183.3 177.3 173.1 166.3	TAN IN -6.2 -4.3 -2.1 -1.0 3.1 4.0 7.9 6.5 4.6	O VEL OUT -3.5 -1.5 0.8 0.7 1.1 0.9 1.1 -3.5 -1.4 -1.7	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	0.464 0.5 0.484 0.5 0.494 0.5 0.491 0.5 0.490 0.5 0.488 0.5 0.486 0.5	UT IN 519 0.464 645 0.484 660 0.494 6558 0.491 6556 0.488 6554 0.486 6535 0.472 622 0.462 6500 0.449	0.519 0.545 0.559 0.559 0.556 0.554 0.554 0.535 0.522 0.500	MERID M IN 0.464 0.494 0.491 0.490 0.488 0.486 0.472 0.462 0.444	0.519 0.545 0.560 0.559 0.558 0.556 0.554 0.535 0.532 0.500 0.480				PEAK SS MACH NO 0.464 0.494 0.491 0.490 0.486 0.472 0.462 0.442 0.449
RP 1 2 3 4 5 6 7 8 9 10 11	5.00 - 10.00 - 20.00 - 30.00 - 38.00 - 46.00 50.00 70.00 80.00 90.00	INCIDENCE MEAN S5 -2.3 -14.3 -1.5 -13.7 -0.7 -12.7 -0.3 -12.3 1.1 -10.9 0.4 -11.6 1.5 -10.5 1.5 -10.5 2.9 -9.1 2.5 -9.5 1.8 -10.2	DEV -1.2 -0.5 0.2 0.3 0.3 -1.1 -0.5 -0.6 -1.4	D-FACT -0.106 -0.114 -0.127 -0.128 -0.134 -0.128 -0.114 -0.107 -0.098 -0.072	EFF 0. 0. 0. 0. 0. 0.	LOSS COTOT 0.103 0.039 0.032 0.029 0.027 0.032 0.033 0.066 0.091 0.112 0.173	0EFF PROF 0.103 0.039 0.032 0.027 0.037 0.033 0.066 0.091 0.112 0.173	LOSS P TOT 0.052 0.019 0.015 0.013 0.013 0.013 0.013 0.021 0.026 0.029	ARAM PROF 0.052 0.019 0.015 0.013 0.013 0.013 0.021 0.025 0.029 0.029

TABLE VIII. - ROTOR BLADE-ELEMENT DATA

(a) Reading 724

RP 1 2 3 4 5 6 7 8. 9 10 11	RP 1 2 5 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10	RP 1 2 3 4 5 6 7 8 9 10
PERCENT SPAN 5.00 10.00 20.00 50.00 58.00 46.00 70.00 80.00 90.00	ABS M IN 0.606 0.635 0.659 0.648 0.626 0.637 0.600 0.587 0.570	ABS IN 199.9 208.5 215.7 212.1 205.4 208.6 208.7 197.4 193.4 188.1	RAD IN 24.795 24.216 23.040 21.841 20.866 19.878 19.378 16.812 15.471 14.079 13.360
INC I MEAN 3.0 2.5 2.5 3.6 4.7 4.9 4.7 6.8 7.0 7.2	ACH NO OUT 0.548 0.530 0.532 0.544 0.538 0.498 0.523 0.667 0.667 0.699	VEL 0UT 195.2 186.7 186.8 190.9 189.1 174.8 183.1 219.6 230.9 240.4 251.0	OUT 24.656 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049
DENCE SS 0.1 -0.7 -1.2 -0.7 0.1 -0.6 0.7 0.6 0.6 -0.4	REL M 1N 1.415 1.403 1.366 1.304 1.247 1.220 1.188 1.066 0.997 0.926 0.876	REL IN 466.6 460.9 447.1 409.5 399.9 389.2 350.6 328.4 305.5 289.3	ABS 10.5 -0.5 -0.5 -0.2 -1.2 -1.3 -0.9 -0.6
DEV 4.3 5.6 6.1 5.9 7.0 10.0 7.8 9.4 12.9	0.995 1.018 0.978 0.915 0.843 0.821 0.793 0.730 0.691 0.657 0.619	VEL 0UT 354.1 358.8 343.4 321.1 296.6 288.1 277.8 253.6 239.2 226.4 213.0	BETAM 0UT 32.2 28.0 27.9 29.5 33.2 31.9 33.0 34.3 35.7 39.2
D-FACT 0.320 0.288 0.297 0.318 0.351 0.358 0.358 0.363 0.355 0.363	MERID M IN 0.606 0.635 0.659 0.648 0.626 0.637 0.600 0.587 0.570	MERI IN 199.9 208.5 215.7 212.1 205.4 208.5 208.7 197.3 193.4 188.1	REL IN 64.6 63.1 60.2 59.9 58.6 57.6 55.7 53.9 52.0 49.8
0.709 0.776 0.837 0.819 0.731 0.779 0.927 0.963 1.013	0.464 0.464 0.470 0.474 0.473 0.439 0.530 0.552 0.566 0.565	D VEL 0UT 165.1 164.9 165.1 166.2 158.2 148.4 153.6 184.2 190.9 195.1	BETAM 0UT 62.2 62.6 61.3 58.8 57.8 59.0 56.4 43.4 37.1 30.5 24.1
LOSS C TOT 0.183 0.123 0.088 0.104 0.101 0.155 0.135 0.056 0.031 -0.012		IN -1.9 -2.6 -1.7	TOTA 100 290.3 289.9 289.5 289.2 289.1 289.0 288.9 288.3 288.2 288.2
PROF 0.095 0.042 0.018 0.046 0.050 0.109 0.096 0.029 0.011		G VEL OUT 104.1 87.7 87.4 94.1 103.6 92.3 99.7 119.5 130.0 140.4 158.7	RATIO 1.152 1.126 1.119 1.122 1.127 1.113 1.115 1.125 1.126 1.125
LOSS P TOT 0.030 0.019 0.014 0.017 0.016 0.023 0.021 0.010 0.006 -0.002		WHEEL IN 419.7 408.4 389.8 369.0 353.4 336.7 327.8 285.3 262.2 238.7 226.5	TOTAL IN 9.92 10.07 10.08 10.08 9.86 10.05 10.04 9.90 9.91 9.89
PROF 0.015 0.007 0.003 0.007 0.008 0.016 0.015 0.005 0.002	PEAK SS MACH NO 1.527 1.502 1.474 1.461 1.458 1.431 1.451 1.481 1.372	SPEED 0UT 417.3 406.3 388.5 368.9 354.5 339.1 293.8 274.2 255.2 245.6	PRESS RATIO 1.429 1.388 1.395 1.428 1.320 1.349 1.469 1.493 1.519

(b) Reading 736

RP 1 2 5 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.656 24.216 24.092 23.040 22.962 21.841 21.831 20.866 20.927 19.878 20.023 19.378 19.378 16.812 17.310 15.471 16.180 14.079 15.049 13.360 14.483	ABS BETAM IN OUT -0.6 430.6 370.4 350.2 380.2 410.0 410.0 391.3 371.0 380.7 40. 1.6 44.	1N OUT 2 65.5 62.5 8 63.9 61.8 8 62.1 59.5 4 60.7 57.2 8 59.6 57.0 7 58.6 57.0 7 58.1 54.6 7 54.5 39.0 7 52.5 33.2	TOTAL TEMP IN RATIO 290,0 1.196 289.8 1.168 289.4 1.154 289.1 1.157 289.0 1.157 289.0 1.142 288.9 1.138 288.3 1.135 288.2 1.130 288.3 1.127 288.8 1.136	TOTAL PRESS IN RATIO 9.92 1.587 10.07 1.556 10.08 1.565 10.09 1.559 10.08 1.534 10.06 1.475 10.05 1.500 9.92 1.541 9.90 1.527 9.91 1.572
RP 1 2 3 4 5 6 7 8 9 1 0 1 1	ABS VEL IN OUT 190.9 198.4 199.6 195.5 205.6 196.1 205.7 193.6 204.0 185.2 202.5 190.9 192.5 216.0 188.0 216.1 183.1 220.3 181.9 237.5	REL VEL IN OUT 459.5 313.1 454.3 323.6 438.7 313.4 420.9 264.7 591.1 254.4 383.2 253.2 344.8 234.2 325.3 217.0 300.7 200.1 284.7 185.3	183.1 167.5	TANG VEL IN OUT -2.1 135.8 -2.1 118.7 -1.3 114.8 -0.9 123.9 -0.7 129.0 -0.0 122.8 -0.2 122.0 -4.3 130.9 -3.4 135.1 -2.2 143.1 5.2 167.0	WHEEL SPEED IN OUT 415.9 413.5 406.0 403.9 366.1 366.0 339.6 3350.6 335.6 325.1 328.3 281.7 290.1 259.7 271.6 236.2 252.5 224.4 243.3
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.577 0.547 0.606 0.540 0.627 0.560 0.627 0.544 0.621 0.522 0.617 0.540 0.584 0.618 0.570 0.624 0.634 0.554 0.634 0.550 0.684	REL MACH NO IN OUT 1.390 0.864 1.379 0.903 1.336 0.881 1.282 0.810 1.238 0.743 1.191 0.717 1.166 0.717 1.047 0.670 0.980 0.623 0.910 0.534	MERID MACH NO IN OUT 0.577 0.399 0.606 0.427 0.626 0.447 0.627 0.405 0.621 0.391 0.617 0.416 0.584 0.492 0.570 0.482 0.549 0.487		MERID PEAK 9 VEL R MACH 9 0.757 1.536 0.766 1.506 0.773 1.476 0.757 1.45 0.702 1.444 0.680 1.434 0.725 1.431 0.893 1.452 0.893 1.452 0.915 1.366 0.929 1.264
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 3.8 10.00 3.4 30.00 4.0 38.00 4.5 46.00 4.9 50.00 5.2 70.00 7.1 80.00 7.5 90.00 7.7	0.9 4.6 0.1 4.8 -0.3 4.3 -0.2 4.2 -0.2 6.2	D-FACT EFF 0.424 0.721 0.379 0.803 0.372 0.887 0.408 0.860 0.444 0.830 0.439 0.826 0.428 0.889 0.416 1.001 0.426 1.014 0.434 1.016 0.462 1.016	LOSS COEFF TOT PROF 0.219 0.134 0.140 0.062 0.079 0.013 0.103 0.048 0.130 0.083 0.128 0.089 0.082 0.046 -0.000 -0.026 -0.012 -0.030 -0.016 -0.022 -0.019 -0.019	LOSS PARAM TOT PROF 0.036 0.022 0.023 0.011 0.013 0.002 0.021 0.013 0.020 0.014 0.013 0.005 -0.000 -0.005 -0.002 -0.005 -0.003 -0.004 -0.003 -0.003

(c) Reading 749

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.656 24.216 24.092 25.040 22.962 21.841 21.831 20.866 20.927 19.878 20.023 19.378 19.571 16.812 17.310 15.471 16.180 14.079 15.049 13.360 14.483	ABS BETAM IN OUT -0.6 51.1 -0.5 44.7 -0.0 41.4 -0.0 42.7 0.2 44.6 0.1 44.7 -0.1 44.5 -1.0 47.6 -1.0 47.6 -1.0 52.1	65.4 59.5 63.5 57.8 62.2 55.8 61.1 54.6 60.1 53.6 59.6 52.4 57.4 45.6 55.7 44.6 53.8 38.7	TOTAL TEMP IN RATIO 289.8 1.251 289.6 1.210 289.3 1.183 288.9 1.179 288.9 1.175 288.8 1.164 288.8 1.164 288.5 1.151 288.4 1.137 288.4 1.137 288.9 1.147	TOTAL PRESS IN RATIO 9.93 1.768 10.07 1.706 10.08 1.681 10.09 1.675 10.09 1.645 10.07 1.619 10.06 1.618 9.99 1.551 9.95 1.527 9.95 1.622
RP 1 234 567 8 9 11 1	ABS VEL IN OUT 179.3 224.5 187.5 211.8 193.1 208.3 193.7 206.4 192.3 201.8 191.2 202.6 183.9 203.8 179.5 193.7 174.2 197.6 172.5 228.6	REL VEL IN OUT 455.0 277.8 449.8 237.2 433.1 293.6 415.3 272.9 400.3 253.8 385.4 241.9 378.2 236.8 340.9 203.7 318.6 183.7 294.7 1666.0 278.5 153.9	MERID VEL IN OUT 179.3 140.9 187.5 150.7 193.1 156.3 193.7 153.4 193.7 147.0 192.3 143.5 191.2 144.6 183.8 142.7 179.5 130.7 174.2 129.5 172.4 140.4	TANG VEL IN OUT -1.7 174.7 -1.7 148.9 -0.1 137.7 -0.0 141.5 0.5 145.0 0.3 141.9 -0.2 141.9 -4.4 145.6 -3.1 143.0 -1.0 149.5	WHEEL SPEED IN OUT 416.5 414.1 407.1 405.0 387.6 386.3 367.2 350.9 351.9 334.3 336.7 326.2 329.4 282.7 291.0 260.1 272.0 236.7 253.0 224.6 243.4
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.540 0.610 0.567 0.584 0.585 0.580 0.588 0.577 0.583 0.566 0.580 0.576 0.556 0.577 0.542 0.550 0.526 0.653	REL MACH NO IN 0UT 1.372 0.754 1.360 0.819 1.313 0.818 1.260 0.762 1.215 0.710 1.169 0.679 1.147 0.666 1.032 0.576 0.963 0.521 0.889 0.473 0.839 0.439	MERID MACH NO IN OUT 0.540 0.383 0.567 0.415 0.585 0.435 0.588 0.411 0.583 0.403 0.580 0.406 0.556 0.404 0.556 0.404 0.542 0.371 0.526 0.369 0.519 0.401		MERID PEAK SS VEL R MACH NO 0.786 1.558 0.804 1.536 0.809 1.505 0.792 1.488 0.759 1.473 0.746 1.467 0.756 1.469 0.776 1.489 0.729 1.457 0.743 1.369 0.814 1.273
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 5.2 10.00 4.7 20.00 5.5 38.00 5.9 46.00 6.4 50.00 6.8 70.00 8.4 80.00 8.8 90.00 9.0	DENCE SS 2.3 1.6 1.5 2.5 1.2 2.7 1.3 2.8 1.2 3.9 1.4 5.6 1.5 5.9 2.3 10.0 2.4 17.0 2.4 21.2 1.5 12.5	D-FACI EFF 0.525 0.705 0.454 0.786 0.426 0.874 0.449 0.888 0.473 0.873 0.477 0.898 0.478 0.915 0.509 0.972 0.527 0.975 0.542 0.981 0.572 1.009	LOSS COEFF TOT PROF 0.283 0.195 0.184 0.102 0.102 0.034 0.094 0.037 0.109 0.060 0.087 0.045 0.074 0.034 0.027 -0.002 0.025 0.006 0.020 0.014 -0.011 -0.011	LOSS PARAM TOT PROF 0.050 0.035 0.032 0.018 0.018 0.006 0.019 0.010 0.015 0.008 0.012 0.006 0.005 -0.000 0.004 0.001 0.003 0.002 -0.002 -0.002

(d) Reading 760

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24.795 24.216 23.040 21.841 20.866 19.878 19.378 16.812 15.471 14.079 15.360	0UT 24.656 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049	ABS IN -0.6 0.0 0.2 -0.0 -0.2 -1.6 -0.5 2.3	BETAM OUT 52.6 46.4 42.1 43.2 45.7 47.0 47.4 48.0 50.1 51.3 55.0	REL IN 67.5 66.0 64.3 63.0 61.9 60.9 60.5 58.1 54.6 52.5	DETAM 0UT 58.6 58.3 56.6 54.8 54.0 53.3 52.4 48.4 48.2 39.2 23.5	TOTA 1N 289.8 289.5 289.2 288.9 288.8 288.8 288.4 288.4 288.4	RATIO 1.264 1.222 1.191 1.185 1.181 1.174 1.171 1.150 1.135 1.152	TOTAL IN 9.95 10.06 10.08 10.09 10.09 10.01 10.01 10.01 9.97	PRESS RATIO 1.810 1.754 1.723 1.709 1.669 1.637 1.627 1.591 1.545 1.539 1.634
RP 1234567891011	ABS IN 173.6 180.9 186.3 187.1 187.1 185.9 1784.9 175.4 169.7	YEL OUT 231.6 220.0 214.8 213.6 209.9 204.5 194.5 199.6 199.4 228.2	REL 1N 453.1 445.0 429.1 412.2 397.0 382.8 375.1 338.4 2192.7 274.9	VEL 0UT 269.8 288.4 289.6 270.2 249.4 233.6 226.0 195.9 175.7 158.5 142.6	MER1 1N 173.6 180.9 186.3 187.1 187.1 185.9 178.8 175.3 169.7	0 VEL 140.6 151.7 159.5 155.6 146.6 139.4 137.8 130.1 121.6 122.8 130.8	TAN IN -1.8 0.5 0.1 0.8 -0.1 -0.7 -4.8 -2.9 -1.4	G VEL 0UT 184.1 159.3 143.9 146.3 150.2 149.5 149.5 149.5 149.5 149.5 149.7	WHEEL IN 416.8 406.7 387.1 367.4 351.0 334.5 525.7 282.5 260.2 237.1 224.9	SPEED 0UT 414.4 404.6 385.7 367.2 352.0 336.9 528.9 290.9 272.1 253.5 243.8
RP 1 2 3 4 5 6 7 8 9 10 11	ABS M/ IN 0.522 0.546 0.563 0.566 0.566 0.563 0.559 0.540 0.529	ACH NO OUT 0.627 0.605 0.598 0.596 0.572 0.572 0.549 0.537 0.558	REL M IN 1.363 1.343 1.298 1.248 1.202 1.155 1.022 0.954 0.882	ACH NO 0.730 0.793 0.806 0.754 0.653 0.653 0.553 0.450 0.406	MERID M IN 0.522 0.546 0.563 0.566 0.565 0.5540 0.529 0.511	ACH NO OUT 0.380 0.417 0.444 0.434 0.409 0.390 0.386 0.367 0.344 0.349 0.373				PEAK SS MACH NO 1.573 1.542 1.516 1.504 1.490 1.489 1.511 1.463 1.382 1.275
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 70.00 80.00 90.00	INC I MEAN 5.9 5.7 6.3 7.3 9.4 9.8 8.9	DENCE SS 2.9 2.2 1.9 2.1 2.2 2.3 3.1 3.0 3.2 2.2	0.7 1.2 1.4 1.9 3.3 6.0 12.8 18.5 21.7	D-FACT 0.548 0.474 0.434 0.455 0.484 0.501 0.529 0.529 0.568 0.611	0.699 0.785 0.883 0.895 0.871 0.871 0.947 0.951 0.970	L'OSS C TOT 0.301 0.195 0.100 0.092 0.116 0.116 0.115 0.051 0.048 0.032 0.008	OEFF PROF 0.211 0.115 0.032 0.033 0.066 0.072 0.074 0.019 0.030 0.026 0.008	LOSS F TOT 0.055 0.035 0.018 0.016 0.020 0.020 0.019 0.009 0.007 0.005	PARAM PROF 0.039 0.021 0.006 0.006 0.012 0.012 0.012 0.003 0.005 0.004

(e) Reading 771

RP 1 23 4 5 6 7 8 9 10 11	RAD iN 24.795 24.216 23.040 21.841 20.866 19.878 19.378 16.812 14.079 13.360	OUT 24.656 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049	ABS IN -0.4 -0.2 0.7 0.2 -0.5 -1.7 -0.9 -0.5 2.3	BETAM OUT 57.2 48.7 44.0 45.5 49.7 53.0 52.6 48.7 50.4 50.8	REL IN 68.7 67.4 65.6 64.4 63.3 62.4 61.9 59.6 55.8 53.9	BETAM 0UT 59.7 58.2 56.2 55.3 55.6 54.6 443.5 35.0 19.3	TOTA IN 289.7 289.5 289.2 288.9 288.8 288.8 288.7 288.4 288.3 288.3	L TEMP RAT10 1.282 1.234 1.199 1.191 1.187 1.181 1.151 1.146 1.142 1.159	TOTAL IN 9.97 10.07 10.08 10.10 10.09 10.08 10.04 10.05 10.01	PRESS RATIO 1.860 1.810 1.772 1.736 1.687 1.634 1.654 1.555 1.555
RP 1 2 3 4 5 6 7 8 9 10	ABS IN 163.1 170.0 175.0 175.8 175.8 174.9 174.9 174.2 166.8 161.6 159.1	VEL OUT 234.4 223.1 218.2 212.9 207.3 200.8 199.4 193.5 197.8 207.7 239.1	RELL 1N 448.8 441.7 423.2 406.5 391.6 377.8 370.7 334.2 287.6 269.9	VEL 0UT 251.8 279.3 282.1 261.9 235.3 213.7 209.0 193.6 173.6 160.0 146.4	MERI IN 163.1 170.0 175.0 175.8 174.9 174.4 170.1 166.8 161.6	D VEL 0UT 126.9 147.3 156.9 149.3 133.9 120.8 121.0 127.7 126.0 131.1 138.2	IN -1.1 -0.7 2.1 0.7 -0.6 -1.6 -5.1 -2.7	0 VEL 0UT 197.1 167.6 151.6 151.8 158.2 160.3 158.4 145.4 152.5 161.0	WHEEL 17.0 407.0 387.4 367.2 350.6 334.2 325.5 282.5 282.5 260.0 236.5 224.6	SPEED 0UT 414.6 404.9 386.1 367.0 351.6 328.8 290.9 271.9 252.8 243.4
RP 1 23 4 5 6 7 8 9 10 11	ABS M IN 0.489 0.511 0.527 0.530 0.530 0.528 0.513 0.502 0.486 0.478	ACH NO 0.631 0.611 0.606 0.593 0.556 0.555 0.5560 0.560 0.591	REL M IN 1.346 1.328 1.275 1.226 1.181 1.139 1.118 1.007 0.937 0.865 0.810	ACH NO OUT 0.677 0.764 0.783 0.729 0.654 0.598 0.546 0.546 0.491 0.455 0.418	MERID M IN 0.489 0.511 0.527 0.530 0.528 0.528 0.513 0.502 0.486 0.477	OUT 0.341 0.403 0.436 0.415 0.372 0.336 0.357 0.360 0.357 0.360 0.357				PEAK SS MACH NO 1.598 1.574 1.539 1.531 1.522 1.524 1.526 1.551 1.477 1.391
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 70.00 80.00 90.00 95.00	INCI MEAN 7.1 6.8 7.0 7.7 8.2 8.8 9.1 10.4 10.7 11.0	DENCE SS 4.2 3.6 3.2 3.4 3.5 3.7 3.8 4.3 4.3 4.4 3.6	1.8 1.1 1.0 2.3 4.6 7.5 8.2 13.1 15.8 17.5 7.7	D-FACT 0.593 0.498 0.471 0.519 0.555 0.556 0.555 0.561 0.596	0.688 0.788 0.894 0.893 0.844 0.807 0.818 0.902 0.923 0.948 0.974	LOSS C TOT 0.330 0.203 0.096 0.097 0.147 0.187 0.186 0.096 0.081 0.061 0.038	OEFF PROF 0.237 0.118 0.026 0.036 0.036 0.139 0.131 0.060 0.063 0.056 0.057	LOSS P TOT 0.058 0.037 0.017 0.025 0.030 0.028 0.015 0.013 0.010 0.007	ARAM PROF 0.042 0.021 0.005 0.006 0.016 0.022 0.021 0.009 0.010 0.009

(f) Reading 785

RP 1 2 3 4 5 6 7 8 9 10 11	RADII 1N OUT 24.795 24.656 24.216 24.092 23.040 22.962 21.841 21.831 20.866 20.927 19.878 20.023 19.378 19.571 16.812 17.310 15.471 16.180 14.079 15.049 13.360 14.483	ABS BETAM IN OUT 0.3 62.9 1.7 58.2 2.7 49.2 2.4 46.2 2.0 47.5 1.6 48.3 1.3 48.6 0.1 48.6 0.9 50.9 1.3 51.5 0.9 52.5	8 68.2 64.6 6 66.6 59.2 6 65.4 55.6 6 64.3 53.2 7 63.4 51.5 6 62.9 50.2 6 60.1 44.0 6 58.6 40.0 5 56.8 30.7	TOTAL TEMP IN RATIO 289.7 1.259 290.1 1.233 290.0 1.283.9 1.183 288.5 1.180 288.2 1.177 287.6 1.156 287.7 1.149 287.8 1.147 288.1 1.159	TOTAL PRESS IN RATIO 9.95 1.676 10.08 1.644 10.08 1.679 10.10 1.670 10.11 1.665 10.11 1.628 10.10 1.589 10.09 1.556 10.06 1.629
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 149.8 206.1 158.7 203.6 164.7 211.0 165.5 213.7 165.1 213.1 164.8 212.9 160.6 206.6 157.4 208.1 152.8 219.8 148.8 240.4	REL VEL IN OUT 441.3 248.6 427.1 250.3 394.9 258.5 381.8 241.3 368.6 225.5 361.3 218.9 321.9 190.0 501.7 171.5 278.9 159.1 267.4 153.9	MERID VEL IN OUT 149.8 93.9 158.6 107.4 163.9 134.6 164.6 146.0 165.4 144.4 165.0 140.5 164.8 140.2 160.6 136.7 157.4 131.3 152.8 136.9 148.8 144.9	TANG VEL IN OUT 0.9 183.4 4.6 173.0 7.6 158.9 6.9 152.3 5.8 157.6 4.6 160.2 3.6 160.3 -0.3 154.9 2.6 161.5 3.5 171.9 2.4 191.7	WHEEL SPEED IN OUT 416.0 413.6 401.2 399.1 386.6 385.2 365.7 349.9 350.9 334.2 336.6 325.2 328.4 278.6 286.8 260.0 271.9 236.8 253.1 224.6 243.5
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.448 0.555 0.475 0.553 0.492 0.575 0.495 0.589 0.498 0.597 0.496 0.597 0.496 0.597 0.496 0.597 0.483 0.584 0.473 0.591 0.459 0.627 0.446 0.687	REL MACH NO IN OUT 1.319 0.669 1.279 0.680 1.238 0.727 1.187 0.722 1.148 0.674 1.109 0.631 1.087 0.614 0.968 0.537 0.907 0.487 0.801 0.440	MERID MACH NO IN OUT 0.448 0.253 0.475 0.292 0.492 0.372 0.495 0.408 0.497 0.497 0.393 0.496 0.393 0.496 0.387 0.473 0.373 0.459 0.390 0.446 0.414		MERID PEAK SS VEL R MACH NO 0.626 1.622 0.677 1.556 0.821 1.541 0.887 1.532 0.873 1.531 0.851 1.536 0.851 1.537 0.851 1.523 0.854 1.459 0.896 1.374 0.974 1.337
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 8.6 10.00 7.6 20.00 8.0 30.00 8.7 38.00 9.2 46.00 9.8 50.00 10.0 70.00 11.1 80.00 11.6 90.00 12.0	DENCE SS 5.6 9.9 4.4 7.6 4.2 4.1 4.4 2.6 4.7 3.4 4.7 3.7 5.0 8.4 5.2 12.4 5.4 13.1 5.9 8.0	D-FACT EFF 0.581 0.615 0.549 0.655 0.482 0.799 0.459 0.862 0.486 0.854 0.508 0.839 0.515 0.842 0.527 0.908 0.551 0.902 0.555 0.932 0.565 0.941	LOSS COEFF TOT PROF 0.383 0.289 0.332 0.259 0.184 0.120 0.126 0.070 0.138 0.088 0.156 0.110 0.156 0.112 0.097 0.070 0.110 0.096 0.086 0.082 0.085 0.084	LOSS PARAM TOT PROF 0.051 0.038 0.049 0.038 0.031 0.020 0.022 0.012 0.025 0.016 0.028 0.019 0.028 0.020 0.017 0.012 0.015 0.014 0.015 0.015

(g) Reading 796

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.795 24.656 24.216 24.092 23.040 22.962 21.841 21.831 20.866 20.927 19.878 20.023 19.378 19.571 16.812 17.310 15.471 16.180 14.079 15.049 13.360 14.483	ABS BETAM IN OUT -0.1 44.3 0.7 37.8 1.3 36.6 1.4 38.9 1.6 42.7 1.4 42.5 1.4 40.6 0.6 37.0 1.1 38.3 1.2 40.8 0.1 43.2	REL BETAM IN OUT 65.9 62.8 63.8 61.2 61.9 59.2 60.5 56.9 59.3 56.4 58.2 56.8 57.6 53.6 55.0 39.7 53.1 34.6 51.4 26.4 51.7 20.0	TOTAL TEMP IN RATIO 290.1 1.197 289.7 1.163 289.3 1.151 288.9 1.155 288.8 1.140 288.7 1.138 288.5 1.137 288.4 1.133 288.6 1.137 288.8 1.147	TOTAL PRESS IN RATIO 9.90 1.558 10.08 1.534 10.10 1.526 10.10 1.512 10.10 1.467 10.10 1.467 10.10 1.463 10.06 1.526 10.05 1.522 10.04 1.541 9.94 1.573
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 187.3 198.4 197.6 195.8 204.6 198.7 204.8 201.5 205.0 197.6 204.0 186.9 203.4 195.7 196.4 230.1 192.5 234.5 185.5 245.9 177.2 256.3	REL VEL IN OUT 458.0 311.1 447.0 321.1 434.2 311.9 416.3 287.6 401.7 262.3 387.4 251.9 379.8 251.4 342.4 239.0 320.8 223.6 297.5 207.8 285.8 198.6	MERID VEL IN OUT 187.3 142.0 197.6 154.7 204.5 159.5 204.8 156.9 204.9 145.3 204.0 137.9 203.3 149.1 196.4 183.8 192.5 184.1 185.4 186.2 177.2 186.7	TANG VEL IN OUT -0.3 138.5 2.5 120.0 4.8 118.5 5.1 126.4 5.8 133.9 5.1 126.1 5.1 126.7 2.2 138.3 3.6 145.2 4.0 160.7 0.3 175.6	WHEEL SPEED 1N OUT 417.6 415.3 403.4 401.4 387.8 386.5 367.6 367.5 351.2 352.2 334.5 356.9 325.9 329.1 282.7 291.0 260.2 272.1 236.7 253.0 224.6 243.5
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.566 0.547 0.599 0.548 0.623 0.560 0.624 0.568 0.625 0.556 0.622 0.528 0.619 0.555 0.597 0.661 0.584 0.676 0.561 0.711 0.535 0.740	REL MACH NO IN OUT 1.383 0.858 1.356 0.899 1.322 0.879 1.268 0.811 1.224 0.738 1.180 0.711 1.157 0.713 1.041 0.687 0.974 0.645 0.901 0.600 0.863 0.574	MERID MACH NO IN OUT 0.566 0.591 0.599 0.433 0.622 0.450 0.624 0.442 0.624 0.409 0.621 0.389 0.619 0.423 0.597 0.528 0.584 0.531 0.561 0.538 0.535 0.539		MERID PEAK SS VEL R MACH NO 0.758 1.538 0.783 1.478 0.780 1.457 0.766 1.439 0.709 1.422 0.676 1.413 0.733 1.408 0.936 1.412 0.957 1.388 1.004 1.316 1.054 1.307
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 4.3 10.00 3.2 20.00 3.3 30.00 3.9 38.00 4.2 46.00 4.6 50.00 4.8 70.00 6.0 80.00 6.2 90.00 6.7 95.00 8.1	DENCE DEV SS 1.3 4.9 -0.0 4.2 -0.5 4.1 -0.4 4.0 -0.5 5.6 -0.5 8.8 -0.5 7.2 -0.1 4.1 -0.2 6.9 0.1 8.9 1.4 8.4	D-FACT EFF 0.427 0.685 0.371 0.795 0.367 0.859 0.400 0.837 0.442 0.808 0.439 0.761 0.427 0.832 0.399 0.939 0.403 0.958 0.411 0.960 0.426 0.939	LOSS COEFF TOT PROF 0.248 0.162 0.145 0.075 0.097 0.037 0.119 0.069 0.147 0.105 0.174 0.139 0.124 0.093 0.052 0.032 0.039 0.027 0.043 0.040 0.074 0.072	LOSS PARAM TOT PROF 0.040 0.026 0.024 0.012 0.016 0.006 0.020 0.012 0.024 0.017 0.027 0.022 0.020 0.015 0.010 0.006 0.007 0.005 0.008 0.007 0.013 0.013

(h) Reading 808

(i) Reading 819

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.795 24.216 23.040 21.841 20.866 19.878 19.378 16.812 15.471 14.079 13.360	OUT 24.656 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049	IN 0.2 1.1 1.8 1.6 1.7 1.5 1.4 0.2 1.0	BETAM OUT 57.5 47.6 42.9 43.6 45.1 44.3 44.7 44.9 47.3 48.1	IN 67.5 65.7 63.4 62.1 60.2 59.6 56.9 55.0 53.4	BETAM OUT 64.8 60.3 57.3 55.2 53.7 51.2 42.5 38.8 33.0 22.0	IN 289.9 289.4 289.4 288.8 288.6 288.6 288.4 288.4 288.4 288.8	L TEMP RATIO 1.251 1.213 1.182 1.177 1.175 1.165 1.161 1.152 1.144 1.138	TOTAL IN 9.91 10.09 10.11 10.11 10.11 10.08 10.08 10.06 9.99	PRES RAT 1.76 1.66 1.66 1.66 1.66 1.66 1.66
R1234567890::	183.0 189.3 189.3 189.6 189.6 189.3 184.2 180.6 174.4 168.4	OUT 209.4 211.4 209.8 210.1 211.5 207.0 208.1 215.2 213.3 215.6 237.8	IN 451.8 444.2 422.6 405.6 395.1 381.3 373.9 337.5 514.7 292.4 281.4	0UT 264.0 287.9 284.7 266.4 252.0 240.1 235.9 207.0 185.5 171.8 163.4	IN 173.1 183.0 189.2 189.8 190.2 189.6 189.3 184.2 180.5 174.4	OUT 112.5 142.5 153.8 152.2 149.2 145.6 147.8 152.5 144.6 144.1	1N 0.5 5.8 5.2 5.6 4.9 4.6 0.7 3.2 0.2	0UT 176.6 156.1 142.7 144.8 149.9 147.2 146.5 151.9 156.8 160.5	IN 417.8 408.4 383.6 363.7 351.9 335.7 327.0 283.5 261.0 237.6	00' 415 406 382 363 353 338 330 291 273 254 244
RP 1 2 3 4 5 6 7 8 9 10 11	ABS M IN 0.521 0.553 0.576 0.577 0.575 0.574 0.558 0.546 0.526	0.566 0.582 0.585 0.588 0.593 0.582 0.586 0.611 0.607 0.616 0.679	REL M IN 1.359 1.342 1.279 1.230 1.198 1.156 1.133 1.022 0.951 0.884	0.714 0.792 0.794 0.796 0.706 0.675 0.665 0.587 0.528 0.467	MERID M IN 0.521 0.553 0.573 0.575 0.577 0.575 0.574 0.554 0.526 0.507	ACH NO OUT 0.304 0.392 0.429 0.426 0.418 0.409 0.417 0.433 0.411 0.412			MERID VEL R 0.650 0.779 0.812 0.802 0.768 0.768 0.781 0.828 0.801 0.829	
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 70.00 80.00	INC! MEAN 5.9 5.1 4.8 5.4 6.1 6.6 7.9 8.1	DENCE SS 2.9 1.9 1.0 1.2 1.4 1.5 1.5	DEV 6.9 3.3 2.1 2.2 2.9 4.6 4.7 7.0 11.1 15.5	D-FACT 0.552 0.469 0.432 0.450 0.471 0.476 0.475 0.496 0.521	0.659 0.774 0.860 0.882 0.880 0.903 0.948 0.948 0.945	LOSS C TOT 0.326 0.199 0.116 0.101 0.105 0.050 0.055 0.055	PROF 0.237 0.121 0.060 0.053 0.060	LOSS P TOT 0.049 0.034 0.021 0.018 0.018 0.018 0.015 0.009	ARAM PRO 0.0 0.0 0.0 0.0 0.0

(j) Reading 830

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2334 556 7 8 9 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 70.00 80.00 90.00 95.00		ABS IN 163.8 172.5 178.1 178.8 179.5 178.8 178.4 173.4 170.3 164.9 159.6	RAD IN 24.795 24.216 23.040 21.841 20.866 19.878 19.378 16.812 15.471 14.079 13.360
INCII MEAN 6.9 6.2 6.3 7.0 7.4 7.9 8.1 9.5 9.6 10.1 10.8	0.553 0.578 0.590 0.590 0.599 0.591 0.594 0.588 0.577 0.604 0.670	VEL 0UT 204.6 210.5 212.1 211.2 213.9 210.9 211.6 208.2 203.3 211.9 234.8	OUT 24.656 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049
DENCE SS 4.0 3.0 2.5 2.8 2.7 2.8 2.7 2.9 3.4 3.2 3.5 4.2	REL M IN 1.343 1.318 1.265 1.176 1.132 1.111 1.000 0.931 0.862 0.824	REL IN 447.8 438.0 419.5 403.6 389.5 374.7 367.9 331.3 308.8 286.3 274.4	ABS: IN 0.2 1.5 2.4 1.8 1.7 1.6 1.4 0.1 0.9 1.0
DEV 8.0 3.9 2.4 2.5 2.4 3.7 4.0 8.8 14.1 16.1	ACH NO OUT 0.715 0.767 0.779 0.744 0.690 0.649 0.645 0.545 0.493 0.457	VEL 0UT 264.2 279.4 280.1 266.2 246.8 231.4 224.7 192.9 173.8 160.4 153.0	BETAM OUT 58.2 49.9 44.4 46.2 47.2 47.5 48.6 50.4 50.9
D-FACT 0.545 0.484 0.443 0.450 0.480 0.504 0.504 0.532 0.550 0.557	MERID M 1N 0.491 0.519 0.536 0.540 0.542 0.540 0.539 0.523 0.523 0.496 0.479	MERI. 1N 163.7 172.4 177.9 178.8 179.4 178.8 178.3 173.4 170.3 164.9 159.6	REL IN 68.5 63.7 62.6 61.5 61.0 58.4 56.5 54.8
0.663 0.759 0.855 0.871 0.871 0.866 0.872 0.919 0.916 0.938	ACH NO OUT 0.292 0.372 0.418 0.422 0.414 0.402 0.390 0.368 0.381 0.405	D VEL OUT 107.9 135.7 150.3 150.9 148.0 143.2 143.1 137.8 129.7 133.6 142.1	BETAM OUT 65.9 60.9 57.6 55.5 53.1 51.8 50.5 44.4 41.7 33.6 21.8
LOSS C TOT 0.322 0.219 0.125 0.099 0.118 0.123 0.121 0.082 0.088 0.072 0.073		TAN IN 0.6 4.6 7.5 5.3 4.2 0.4 2.8 1.6	TOTA IN 289.9 289.7 289.6 288.8 288.7 288.5 288.1 288.1 288.2 288.5
OEFF PROF 0.231 0.141 0.064 0.071 0.082 0.082 0.083 0.052 0.075 0.068 0.071		16 VEL 0UT 173.8 160.9 147.8 154.5 154.8 155.9 156.1 156.5 164.5 187.0	RATIO 1.246 1.218 1.189 1.180 1.181 1.174 1.172 1.157 1.145 1.141
LOSS P TOT		WHEEL IN 417.4 407.2 387.4 367.3 351.0 334.2 326.0 282.7 260.3 236.9 224.8	TOTAL IN 9.94 10.08 10.10 10.11 10.11 10.09 10.09 10.08 10.03
PARAM PROF 0.033 0.024 0.011 0.008 0.013 0.014 0.015 0.009 0.012 0.011	PEAK SS MACH NO 1.590 1.545 1.507 1.502 1.493 1.488 1.490 1.517 1.435 1.359 1.325	SPEED OUT 415.0 405.1 366.1 352.0 336.6 329.2 291.1 272.3 253.2 243.7	PRESS RATIO 1.698 1.708 1.688 1.680 1.670 1.637 1.632 1.601 1.546 1.547 1.619

(k) Reading 845

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.656 24.216 24.092 23.040 22.962 21.841 21.831 20.866 20.927 19.878 20.023 19.378 19.571 16.812 17.310 15.471 16.180 14.079 15.049 13.360 14.483	ABS IN -0.5 0.3 1.2 0.8 0.7 0.6 -0.3 0.7	BETAM OUT 61.9 51.2 44.6 42.2 43.6 43.3 42.2 41.9 44.1 44.4 48.6	RELIN 67.8 66.2 64.0 63.0 61.9 60.2 57.7 55.9 54.1 53.3	BETAM OUT 72.2 64.9 59.2 56.5 53.2 52.0 540.2 36.3 32.2 19.6	TOTA IN 289.7 289.6 289.5 289.0 288.7 288.7 288.3 288.3 288.3	RATIO 1.222 1.206 1.182 1.170 1.174 1.162 1.151 1.151 1.144 1.133 1.153	TOTAL IN 9.93 10.08 10.09 10.10 10.10 10.10 10.08 10.07 10.07	PRESS RAT10 1.558 1.588 1.606 1.610 1.634 1.583 1.597 1.597 1.565 1.510
R1234567899	ABS VEL IN OUT 169.9 176.1 179.1 191.4 184.8 201.0 185.3 204.8 186.0 211.9 185.3 207.8 184.7 209.1 179.2 224.4 179.2 224.4 170.2 220.1 165.4 247.5	REL IN 450.4 444.5 421.2 408.6 594.2 379.8 572.2 535.5 513.2 269.9 276.6	VEL OUT 271.1 282.9 279.4 274.9 256.1 246.0 243.7 218.5 198.5 175.9	MERI IN 169.9 179.1 184.8 185.3 185.9 185.2 184.7 179.2 175.4 170.2	0 VEL 0UT 83.0 119.9 143.2 151.8 153.4 155.0 167.0 159.7 163.8	TAN 19 87 63 69 8 0 3 1 1 0 3 2 2 2 2 2 0 0 2 3 5	G VEL OUT 155.3 149.3 141.5 137.5 146.2 142.4 140.3 150.1 154.7 155.6	WHEEL IN 415.7. 407.6 382.3 366.8 350.2 333.8 325.1 282.7 225.0	SPEED OUT 413.4 405.5 381.0 366.7 351.2 336.3 328.4 291.1 272.2 253.0 243.9
R1254501-8911	ABS MACH NO IN OUT 0.511 0.478 0.540 0.525 0.558 0.559 0.561 0.574 0.563 0.594 0.561 0.585 0.559 0.591 0.542 0.640 0.530 0.635 0.513 0.632 0.497 0.710	REL M. IN 1.354 1.340 1.273 1.236 1.193 1.126 1.014 0.946 0.874 0.832	ACH NO OUT 0.735 0.776 0.777 0.777 0.718 0.693 0.688 0.623 0.568 0.534	MERID M IN 0.511 0.540 0.558 0.561 0.563 0.561 0.559 0.542 0.530 0.513 0.497	0.225 0.329 0.329 0.430 0.430 0.436 0.436 0.456 0.456 0.452		*		PEAK SS MACH NO 1.576 1.547 1.482 1.482 1.477 1.474 1.496 1.438 1.354 1.305
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 6.2 10.00 5.6 20.00 5.4 30.00 6.4 38.00 6.7 46.00 7.2 50.00 7.4 70.00 8.7 80.00 9.0 90.00 9.3 95.00 9.7	DENCE SS 3.3 2.4 1.6 2.1 2.0 2.1 2.7 2.6 2.7	DEV 14.2 7.9 4.0 3.5 2.5 4.0 4.6 8.7 14.7	D-FACT 0.520 0.478 0.443 0.445 0.457 0.448 0.458 0.458 0.467 0.502	EFF 0.607 0.685 0.797 0.857 0.866 0.864 0.903 0.945 0.945 0.943	LOSS COTOT 0.341 0.266 0.167 0.117 0.116 0.117 0.084 0.053 0.057 0.062 0.076	0EFF PROF 0.251 0.185 0.109 0.062 0.069 0.076 0.046 0.025 0.042 0.058	LOSS F TOT 0.037 0.038 0.028 0.021 0.021 0.020 0.015 0.010 0.011	ARAM PROF 0.027 0.018 0.011 0.012 0.013 0.008 0.005 0.008 0.010

(l) Reading 856

RP 1 2 3 4 5 6 7 8 9 10	RP 1 2 3 4 5 6 7 8 9 1 1 1	RP 1 2 3 4 5 6 7 8 9 6 1	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 70.00 80.00	ABS M 1N 0.531 0.559 0.578 0.580 0.581 0.577 0.559 0.546 0.527 0.510	ABS IN 176.2 185.0 190.8 191.3 191.7 191.0 190.4 184.7 180.6 174.5	RAD IN 24.795 24.216 23.040 21.841 20.866 19.878 19.378 16.812 15.471 14.079 13.360
(NCI) MEAN 5.6 5.0 5.7 6.5 6.7 8.3	NO 0.460 0.460 0.557 0.569 0.592 0.591 0.657 0.664 0.654	VEL 0UT 169.4 190.4 200.1 203.1 211.2 206.6 209.1 229.9 232.0 227.4 .250.9	0UT 24.656 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049
DENCE SS 2.7 1.8 1.2 1.4 1.4 1.4 1.9	REL M 1,368 1,352 1,300 1,249 1,206 1,163 1,139 1,026 0,959 0,882 0,840	RELL IN 454'.5 447'.5 429.2 412.1 397.8 383.5 375.6 338.8 317.0 292.2 279.1	ABS IN -0.5 0.0 0.8 0.6 0.6 -0.5 -0.0 0.8
DEV 15.2 7.4 4.4 3.8 2.7 4.3 4.1 3.6 6.5	ACH NO OUT 0.755 0.797 0.804 0.778 0.724 0.702 0.651 0.595 0.560 0.524	VEL 0UT 278.2 290.0 288.6 277.6 258.2 247.5 227.9 207.7 194.8 182.4	BETAM OUT 61.5 49.0 43.2 41.5 43.2 42.6 39.7 42.2 42.5 46.7
D-FACT 0.504 0.462 0.429 0.426 0.457 0.453 0.442 0.434	MERID M IN 0.531 0.559 0.578 0.580 0.581 0.577 0.559 0.546 0.527 0.510	MER I. IN 176.2 185.0 190.8 191.3 191.7 191.0 190.3 184.7 180.6 174.5 169.4	REL IN 67.2 65.6 63.6 62.3 61.2 60.1 59.6 57.0 55.3 53.3 52.6
EFF 0.608 0.702 0.795 0.847 0.861 0.852 0.902 0.947	ACH NO 0.01 0.219 0.343 0.406 0.426 0.422 0.428 0.444 0.505 0.492 0.482 0.495	0 VEL 0UT 80.8 124.9 152.1 153.9 152.1 157.2 176.8 171.9 167.5 172.0	0UT 73.1 64.5 59.6 56.8 53.4 52.4 50.6 39.1 34.1 30.7
LOSS C TOT 0.327 0.244 0.163 0.122 0.119 0.124 0.082 0.051		TAN IN -1.5 0.1 2.8 2.1 2.0 2.0 -1.6 -0.2 2.4 2.5	TOTA IN 289.9 289.6 289.4 289.0 288.8 288.6 288.3 288.3 288.4 288.8
0EFF PROF 0.237 0.164 0.098 0.067 0.067 0.083 0.045 0.024 0.035		1G VEL OUT 148.9 143.7 136.9 134.7 144.6 139.8 137.9 147.0 155.8 153.7 182.6	RATIO 1.214 1.200 1.178 1.168 1.172 1.160 1.154 1.149 1.146 1.132
LOSS F TOT 0.033 0.036 0.027 0.021 0.021 0.021 0.009		WHEEL IN 417.5 407.5 387.3 367.1 350.9 334.5 325.8 282.5 260.4 236.8 224.3	TOTAL IN 9.93 10.08 10.09 10.10 10.10 10.10 10.08 10.07 10.04 9.99
PARAM PROF 0.024 0.024 0.016 0.011 0.013 0.014 0.008 0.004 2.006	PEAK SS MACH NO 1.568 1.536 1.495 1.483 1.470 1.464 1.460 1.474 1.436 1.345 1.300	SPEED OUT 415.1 405.4 3867.0 351.9 337.0 329.0 290.8 272.3 253.1 243.2	PRESS RATIO 1.534 1.584 1.589 1.592 1.623 1.564 1.578 1.578 1.511 1.590

(m) Reading 867

(n) Reading 884

RP 1 23 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 23 4 5 6 7 8 9 11 11	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 90.00 95.00	ABS M IN 0.564 0.615 0.617 0.617 0.614 0.590 0.574 0.551	ABS IN 186.8 195.9 202.7 202.7 201.7 200.9 194.1 189.1 182.1	RAD IN 24.795 24.216 23.040 21.841 20.866 19.878 19.378 16.812 15.471 14.079 13.360
INCI MEAN 4.3 3.8 3.7 4.7 5.1 5.4 6.7 7.1 7.6	ACH NO 0.405 0.565 0.565 0.579 0.596 0.588 0.678 0.692 0.706	VEL 0UT 148.1 187.2 200.6 204.9 209.8 200.2 207.1 235.7 239.8 244.1 254.9	0UT 24.656 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049
DENCE SS 1.4 0.6 -0.0 0.2 0.1 0.1 0.6 0.7 1.0	REL M IN 1.385 1.373 1.326 1.276 1.276 1.184 1.161 1.044 0.977 0.902 0.861	REL IN 458.3 458.8 436.0 419.3 403.9 388.9 381.5 343.8 322.0 298.1 285.2	ABS IN -0.5 -0.0 0.6 0.4 0.6 0.7 0.7 -0.1 0.3 0.6
DEV 17.4 6.5 3.3 2.9 5.7 4.7 3.4 6.1 8.6	ACH NO OUT 0.811 0.879 0.890 0.837 0.759 0.731 0.734 0.710 0.663 0.617	VEL 0UT 296.3 316.1 296.2 269.4 258.5 246.6 229.9 213.3 195.8	BETAM OUT 59.6 41.1 35.5 36.6 40.4 40.2 38.4 35.5 37.2 39.3 43.9
D-FACT 0.452 0.395 0.361 0.383 0.431 0.428 0.414 0.380 0.388 0.391 0.435	MERID M IN 0.564 0.594 0.615 0.617 0.617 0.614 0.590 0.574 0.551	MERII 1N 186.8 195.9 202.7 202.7 201.7 200.9 194.1 189.1 182.1	REL IN 65.9 64.4 61.1 59.9 58.8 58.2 55.6 54.0 52.3
0.565 0.734 0.820 0.843 0.818 0.770 0.841 0.945 0.951 0.965	ACH NO OUT 0.205 0.392 0.460 0.465 0.450 0.461 0.552 0.551 0.547	D VEL OUT 74.8 141.0 163.3 159.8 152.9 162.2 191.9 191.0 188.9 183.8	DETAM OUT 75.4 63.5 58.9 56.2 53.6 53.7 51.1 38.9 33.8 27.6 20.2
LOSS C TOT 0.318 0.192 0.124 0.113 0.143 0.173 0.122 0.048 0.047 0.047		[N -1.7 -0.1	TOTA IN 289.9 289.4 289.0 288.9 288.8 288.7 288.4 288.3 288.4 288.7
OEFF PROF 0.231 0.112 0.059 0.058 0.097 0.135 0.087 0.024 0.031 0.033 0.109		0 VEL 0UT 127.8 123.1 116.5 122.1 135.9 129.2 128.7 136.8 144.9 154.5 176.6	L TEMP RATIO 1.184 1.172 1.153 1.162 1.147 1.144 1.138 1.136 1.134
LOSS F TOT 0.028 0.029 0.021 0.025 0.029 0.021 0.009 0.009		WHEEL IN 416.8 408.2 368.5 351.7 335.0 326.7 283.4 261.0 237.1 225.3	TOTAL IN 9.92 10.07 10.10 10.10 10.10 10.00 10.06 10.04 9.99 9.95
PROF 0.020 0.017 0.010 0.010 0.017	PEAK SS MACH NO 1.542 1.515 1.477 1.465 1.434 1.434 1.435 1.422 1.345 1.301	SPEED 0UT 414.5 406.9 368.4 352.7 337.5 330.0 291.8 272.9 253.4 244.2	PRESS RATIO 1.415 1.516 1.510 1.528 1.547 1.457 1.491 1.536 1.531 1.532 1.552

(o) Reading 895

RP 1 2 3 4 5 6 7 8 9 10 11	RAU 1N 24.795 24.216 23.040 21.841 20.866 19.878 19.378 16.812 15.471 14.079 13.360	0UT 24.656 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049	ABS IN -0.5 -0.2 0.3 0.5 0.6 7 -0.3 0.5	BETAM OUT 44.4 33.6 30.7 31.7 36.0 36.8 35.8 33.7 34.4 37.3 40.7	REL IN 65.5 63.9 61.9 60.5 59.3 58.2 57.1 53.3 51.9	BETAM 0UT 69.2 63.7 59.9 57.1 55.5 57.0 38.7 33.4 25.9 20.6	TOTA IN 289.9 289.7 289.3 289.0 288.9 288.8 288.5 288.4 288.5 288.8	RAT10 1.163 1.142 1.131 1.132 1.141 1.126 1.126 1.135 1.130	TOTAL IN 9.92 10.08 10.09 10.10 10.09 10.06 10.03 9.97 9.91	PRESS RATIO 1.364 1.433 1.438 1.458 1.376 1.488 1.503 1.535
RP 12545678911	ABS IN 191.6 200.6 206.5 206.5 206.5 193.2 185.3	VEL .0UT 161.2 181.7 194.4 199.9 200.0 184.2 194.2 239.3 246.2 256.1 261.0	REL IN 461.8 456.2 439.5 421.9 383.8 347.3 323.5 299.8	VEL 0UT 324.7 341.5 333.0 285.5 271.1 267.7 255.2 243.4 226.4 211.4	MERI 191.6 200.6 206.5 207.4 206.2 205.5 198.6 193.2 185.1	D VEL OUT 115.2 151.3 167.1 170.0 161.7 147.5 157.4 199.1 203.2 203.6 198.0	TAN IN -1.6 -0.8 1.0 1.2 2.6 -1.0 1.5 2.0	IG VEL OUT 112.7 100.7 99.3 105.1 117.7 110.3 113.6 132.8 139.0 155.3 170.1	WHEEL IN 418.6 408.9 388.7 351.9 335.4 326.8 284.0 261.0 237.8 225.4	SPEED OUT 416.2 406.8 387.4 368.1 352.9 337.8 330.1 292.4 272.9 254.2 244.4
RP: 234567-891011	ABS M IN 0.580 0.630 0.633 0.633 0.629 0.626 0.634 0.587 0.561 0.542	ACH NO 0.447 0.511 0.552 0.569 0.567 0.523 0.690 0.714 0.757	REL M 1.398 1.366 1.339 1.286 1.241 1.195 1.176 0.982 0.982 0.866	ACH NO 0UT 0.900 0.961 0.946 0.891 0.809 0.770 0.763 0.736 0.736 0.658 0.613	MERID M IN 0.580 0.609 0.630 0.633 0.633 0.629 0.626 0.604 0.587 0.561 0.542	0.319 0.426 0.475 0.484 0.459 0.419 0.449 0.574 0.590 0.574				PEAK SS MACH NO 1.539 1.475 1.475 1.454 1.437 1.426 1.418 1.424 1.406 1.339
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 70.00 80.00 90.00 95.00	INCI MEAN 3.9 3.3 3.3 4.6 4.8 6.2 6.4 7.1	DENCE SS 1.0 0.1 -0.4 -0.5 -0.5 -0.5 0.1 0.0 0.5	DEV 11.3 6.7 4.7 4.1 4.7 9.0 7.5 3.1 5.8 8.4 8.9	0.384 0.328 0.315 0.334 0.383 0.383 0.383 0.359 0.344 0.351	0.569 0.734 0.829 0.808 0.682 0.755 0.893 0.953 0.953	LOSS C TOT 0.284 0.162 0.104 0.133 0.206 0.165 0.089 0.042 0.033 0.103	0EFF PROF 0.196 0.081 0.053 0.087 0.167 0.130 0.066 0.028 0.028	LOSS P TOT 0.035 0.025 0.017 0.018 0.022 0.032 0.027 0.017 0.008 0.006 0.018	ARAM PROF 0.024 0.012 0.006 0.015 0.026 0.021 0.012 0.005 0.005

(p) Reading 916

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.656 24.216 24.092 23.040 22.962 21.841 21.831 20.866 20.927 19.878 20.023 19.378 19.571 16.812 17.310 15.471 16.180 14.079 15.049 13.360 14.483	-0.6 0.8 1.5 0.7 0.7 0.4 0.2 -1.1 -0.5	TAM REL OUT IN 58.2 69.1 50.4 67.6 45.9 65.8 46.1 64.7 49.9 63.6 53.3 62.6 53.3 61.9 51.0 57.6 50.9 56.2 53.0 55.5	BETAM OUT 61.7 59.9 57.1 55.3 54.5 54.5 52.8 46.5 40.9 32.1 19.2	TOTAL IN 289.6 289.4 288.8 288.7 288.6 288.6 288.0 288.1 288.1	TEMP RATIO 1.278 1.231 1.202 1.194 1.196 1.192 1.188 1.158 1.152 1.148 1.164	TOTAL IN 9.96 10.08 10.07 10.11 10.11 10.10 10.09 10.09 10.03	PRESS RATIO 1.828 1.781 1.766 1.740 1.711 1.650 1.540 1.578 1.566 1.574
RP 1 25 4 5 6 7 8 9 13 1	ABS VEL 1N OUT 160.2 227.1 168.1 217.7 173.2 216.8 174.2 214.8 174.7 213.1 173.9 207.3 173.3 206.4 168.5 200.7 165.4 205.0 159.8 217.0 155.4 243.0	448.6 25 440.2 27 422.7 27 407.1 26 393.0 23 378.4 21 367.8 20 350.8 18 308.4 17 287.1 16	L MERI UT IN 2.1 160.2 6.6 168.1 7.5 173.1 1.6 174.6 3.2 173.9 4.3 173.3 8.3 168.5 0.5 165.4 1.7 159.8 4.9 155.4	ID VEL OUT 119.6 138.7 150.8 148.8 137.2 123.8 123.4 129.6 129.0 137.0 146.3	TAN(IN -1.7 2.3 4.4 2.1 1.3 0.6 -3.3 -1.4 -0.7	G VEL 0UT 193.0 167.8 155.8 154.1 166.2 165.4 153.2 159.3 168.3 194.0	WHEEL IN 417.3 409.2 390.0 370.1 354.3 324.9 281.4 259.0 237.8 226.0	SPEED OUT 414.9 407.1 388.7 369.9 355.3 339.9 328.2 289.7 270.9 254.2 245.0
RP 1 25 4 5 6 7 8 9 1 1 1	ABS MACH NO 1N OUT 0.480 0.610 0.505 0.595 0.521 0.601 0.525 0.597 0.527 0.592 0.524 0.576 0.523 0.574 0.508 0.566 0.498 0.580 0.480 0.617 0.466 0.693	1.345 0. 1.323 0. 1.273 0. 1.228 0. 1.185 0. 1.141 0. 1.109 0. 0.997 0. 0.929 0. 0.863 0.	NO MERID N 678 0.480 757 0.505 769 0.521 728 0.525 656 0.527 592 0.524 568 0.523 531 0.508 483 0.498 460 0.466	MACH NO OUT 0.322 0.379 0.418 0.414 0.381 0.344 0.343 0.365 0.365 0.365				PEAK SS MACH NG 1.609 1.575 1.545 1.535 1.535 1.533 1.544 1.399 1.356
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT NCI SPAN MEAN 5.00 7.5 10.00 6.9 20.00 7.2 30.00 8.0 38.00 9.0 70.00 10.4 80.00 10.6 90.00 11.4 95.00 11.9	SS 4.5 3.7 3.5 3.7 3.8 3.9 3.8 4.3 1 4.3	DEV D-FACT 3.7 0.590 2.9 0.500 1.9 0.460 2.3 0.474 3.7 0.521 6.5 0.560 6.4 0.569 0.9 0.546 3.2 0.565 4.6 0.559 7.6 0.576	0.676 0.776 0.875 0.884 0.846 0.809 0.809 0.882 0.902 0.934 0.949	LOSS CO TOT 0.338 0.213 0.114 0.107 0.148 0.197 0.191 0.121 0.108 0.080 0.072	DEFF PROF 0.243 0.129 0.044 0.044 0.092 0.147 0.149 0.087 0.092 0.074 0.070	LOSS P TOT 0.056 0.037 0.020 0.019 0.025 0.032 0.032 0.020 0.018 0.014	ARAM PROF 0.040 0.022 0.008 0.016 0.024 0.025 0.014 0.015 0.013

(q) Reading 927

RP 1 2 3 4 5 6 7 8 9 10	RAD IN 24.795 24.216 23.040 21.841 20.866 19.878 19.378 16.812 15.471 14.079 13.360	OUT 24.656 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049	ABS IN -0.8 0.4 1.3 0.7 0.7 0.5 0.2 -1.6 -0.3 -0.4	BETAM OUT 53.9 47.9 44.2 43.9 45.6 46.8 47.8 49.8 50.7 52.8	REL IN 68.1 66.5 64.4 63.2 62.1 60.6 58.0 56.2 54.5	BETAM OUT 60.4 59.9 57.7 55.7 53.6 52.5 51.5 44.0 36.5 22.9	TOTA 290.0 289.5 289.3 288.7 288.7 288.4 288.7 288.7 288.7	RATIO 1.260 1.219 1.189 1.181 1.180 1.173 1.170 1.152 1.142 1.138	TOTAL IN 9.92 10.08 10.07 10.10 10.11 10.11 10.08 10.08 10.07	PRESS RATIO 1.783 1.729 1.697 1.687 1.642 1.630 1.594 1.548 1.540 1.629
RP 1 23 4 5 6 7 8 9 5 1 1	ABS IN 167.6 177.3 183.2 184.0 184.3 183.6 183.1 178.0 174.8 169.1 163.6	VEL 0UT 223.7 214.5 210.4 209.5 211.2 207.3 206.4 200.1 195.6 230.8	IN 449.4 445.1 423.8 408.3 394.1 380.0 372.6 336.3 314.2 291.4	VEL 0UT 266.5 287.1 282.0 268.0 249.0 234.4 226.9 195.3 175.3 160.4 151.4	MERI 1N 167.6 177.3 183.2 183.9 184.2 183.6 183.1 174.8 169.1	D VEL OUT 131.8 143.9 150.8 151.1 147.7 142.6 141.2 134.4 126.2 139.4	TAN IN -2.2 1.3 4.0 2.1 2.2 1.4 0.5 -3.6 -1.7 -0.9	0 VEL 0UT 180.8 159.1 146.7 145.2 151.0 150.5 150.6 148.3 149.5 157.3	WHEEL 14.8 409.6 386.3 366.7 350.5 334.1 325.0 281.7 259.4 236.4	SPEED 00T 412.4 407.5 384.9 366.5 351.5 336.5 328.2 290.1 271.2 252.7 242.8
RP 1 23 4 5 6 7 8 9 10 11	ABS M 0.503 0.553 0.555 0.555 0.555 0.555 0.558 0.509 0.492	ACH NO 0.605 0.589 0.585 0.585 0.590 0.579 0.565 0.578 0.657	REL M IN 1.349 1.341 1.280 1.235 1.192 1.149 1.127 1.016 0.948 0.877 0.836	ACH NO OUT 0.721 0.788 0.784 0.749 0.696 0.657 0.655 0.551 0.497 0.456 0.431	MERID M IN 0.503 0.534 0.553 0.556 0.557 0.555 0.554 0.538 0.528 0.528 0.492	OUT 0.356 0.395 0.419 0.422 0.413 0.399	•			PEAK SS MACH NO 1.581 1.558 1.504 1.501 1.490 1.485 1.507 1.450 1.450 1.374 1.332
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 70.00	INC I MEAN 6.5 5.9 5.8 6.6 7.0 7.5 7.7 9.1	DENCE SS 3.6 2.7 2.0 2.3 2.3 2.4 2.4 3.0	DEV 2.4 2.9 2.5 2.7 2.9 4.5 5.1	D-FACT 0.549 0.476 0.444 0.452 0.480 0.495 0.503 0.529	0.692 0.772 0.862 0.892 0.878 0.881 0.882 0.936	LOSS C. TOT 0.307 0.205 0.118 0.094 0.109 0.108 0.109 0.062	0EFF PROF 0.217 0.121 0.055 0.037 0.061 0.065 0.069 0.032	LOSS P TOT 0.053 0.035 0.021 0.016 0.019 0.019 0.019	PROF 0.038 0.021 0.010 0.007 0.011 0.011 0.012

(r) Reading 938

RP 1 2 3 4 5 6 7 8 9 1 1 1	RADII IN OUT 24.795 24.650 24.216 24.090 23.040 22.960 21.841 21.83 20.866 20.92 19.878 20.020 19.378 19.57 16.812 17.310 15.471 16.180 14.079 15.040 13.360 14.480	IN -0.9 2 0.2 2 1.0 0.5 0.7 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	S BETAM OUT 52.6 46.2 43.0 43.1 44.7 43.9 43.9 44.6 45.2 47.9	1N 67.1 65.3 63.4 62.2 61.0 59.9 59.4 57.0 55.2 53.7	BETAM OUT 63.7 61:9 59.4 57.1 53.9 51.9 42.6 39.2 33.7 22.4	TOTAL TEMP IN R. 235 289.7 1.200 289.4 1.178 289.0 1.173 289.0 1.171 288.8 1.159 288.6 1.158 288.5 1.141 288.5 1.141 288.5 1.150	IN RATIO 9.92 1.682 10.08 1.651 10.08 1.638 10.10 1.634 10.11 1.586 10.10 1.599 10.07 1.595 10.06 1.558 10.03 1.531
RP 1 2 3 4 5 6 7 8 9 1 1 1	ABS VEL IN OUT 176.9 204.6 186.4 200.1 192.2 200.1 192.6 202.4 193.0 204.6 192.4 199.6 191.7 203.6 185.5 214.6 181.7 211.6 214.8 214.6 169.1 238.4	IN 454.9 446.7 429.0 412.8 397.5 383.5 376.2 340.5 318.2 295.5	VEL OUT 280.4 294.3 288.5 271.9 253.1 244.0 241.0 216.3 194.6 181.5 172.7	MERI IN 176.8 186.4 192.2 192.6 193.0 192.4 191.7 185.5 181.7 174.8 169.1	D VEL OUT 124.2 138.7 146.9 147.9 145.0 143.8 148.7 159.2 150.8 150.9	TANG VEL IN OUT -2.8 162.5 0.6 144.8 3.2 137.1 1.8 138.4 2.5 143.6 1.6 138.6 1.4 138.6 -3.2 144.2 -1.6 148.5 -1.8 151.9 -2.2 177.0	406.5 404.4 386.7 385.4 366.9 366.7 350.0 351.1 333.3 335.8 325.1 328.3 282.3 290.7 259.6 271.4
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH N IN OUT 0.532 0.55 0.563 0.55 0.582 0.56 0.584 0.566 0.584 0.56 0.584 0.56 0.584 0.60 0.584 0.60 0.562 0.610 0.549 0.603 0.527 0.612 0.509 0.682	IN 1.370 1.350 1.350 1.252 1.206 1.163 1.163 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031	MACH NO OUT 0.762 0.811 0.804 0.760 0.709 0.686 0.680 0.615 0.554 0.519	MERID N 0.532 0.563 0.582 0.584 0.585 0.584 0.562 0.549 0.527 0.509	MACH NO 0UT 0.337 0.382 0.409 0.413 0.406 0.404 0.419 0.452 0.432 0.432 0.457		MERID PEAK S' VEL R MACH N 0.702 1.567 0.744 1.526 0.764 1.488 0.768 1.480 0.751 1.462 0.748 1.456 0.776 1.455 0.858 1.476 0.830 1.438 0.863 1.372 0.945 1.332
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT 1N SPAN MEJ 5.00 5.10.00 4.30.00 5.38.00 6.70.00 8.80.00 8.90.00 9.95.00 9.	5 2.6 7 1.5 8 1.0 5 1.2 8 1.1 1.2 5 1.2 1.2 0 1.9 1.9 2.4	DEV 5.8 4.8 4.1 4.3 5.8 5.7 7.6 16.2	D-FACT 0.511 0.452 0.444 0.469 0.465 0.461 0.495 0.494 0.514	EFF 0.683 0.769 0.853 0.873 0.876 0.888 0.924 0.967 0.967	LOSS COEFE TOT PROF 0.288 0.198 0.193 0.115 0.117 0.054 0.104 0.049 0.105 0.059 0.093 0.054 0.064 0.028 0.031 0.004 0.039 0.023 0.035 0.030 0.029 0.026	LOSS PARAM TOT PROF 0.045 0.031 0.019 0.009 0.018 0.008 0.018 0.010 0.016 0.009 0.011 0.005 0.006 0.001 0.007 0.004 0.006 0.005

1

(s) Reading 950

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.656 24.216 24.092 23.040 22.962 21.841 21.831 20.866 20.927 19.878 20.023 19.378 19.571 16.812 17.310 15.471 16.180 14.079 15.049 13.360 14.483	ABS BETAM IN OUT -1.0 47.9 -0.0 42.0 0.6 39.6 0.4 40.5 0.5 43.3 0.5 42.8 0.4 41.0 -1.0 38.2 -0.7 41.4 -1.1 44.4	REL BETAM (N OUT 66.3 64.3 64.5 63.0 62.5 60.3 61.2 57.4 60.0 55.8 59.0 55.3 58.5 53.0 56.0 40.9 54.3 35.7 52.9 30.6 52.5 22.2	TOTAL TEMP IN RATIO 290.1 1.209 289.6 1.177 289.3 1.161 289.0 1.161 288.9 1.163 288.8 1.150 288.8 1.146 288.5 1.142 288.5 1.140 288.5 1.144	TOTAL PRESS IN RATIO 9.91 1.598 10.07 1.567 10.08 1.572 10.10 1.574 10.10 1.575 10.10 1.537 10.06 1.569 10.04 1.562 10.00 1.536 9.94 1.592
RP 1 23 45 67 8 9 10 11	ABS VEL IN OUT 184.1 194.1 195.3 190.1 199.6 193.4 200.3 198.6 200.7 199.5 199.5 199.5 199.5 198.7 198.7 198.7 198.8 198.5 223.3 188.0 226.8 180.7 226.8 174.5 245.5	REL VEL IN OUT 458.0 299.6 449.7 310.6 432.8 300.8 415.8 280.7 401.3 258.2 386.9 248.9 380.3 248.8 343.8 231.9 321.9 212.2 299.5 199.6 286.7 189.5	MERID VEL IN OUT 184.0 130.1 193.3 141.2 199.6 148.9 200.3 151.1 200.7 145.2 199.5 141.7 198.7 149.8 192.3 175.4 188.0 172.3 180.6 171.7 174.4 175.5	TANG VEL IN OUT -3.1 144.0 -0.2 127.2 1.9 123.4 1.3 128.8 1.8 136.8 1.8 131.1 1.4 130.2 -3.3 138.2 -1.8 147.5 -2.3 151.2 -3.2 171.6	WHEEL SPEED IN OUT 416.3 414.0 405.9 403.8 386.0 384.7 365.6 365.5 349.3 355.7 525.6 328.9 281.6 290.0 259.5 271.4 236.6 252.9 224.3
R 1 25 4 5 67 8 9 0 1 1	ABS MACH NO IN OUT 0.555 0.532 0.586 0.528 0.606 0.542 0.609 0.557 0.610 0.560 0.607 0.544 0.638 0.570 0.656 0.546 0.658 0.526 0.706	REL MACH NO IN OUT 1.382 0.821 1.362 0.862 1.264 0.788 1.221 0.724 1.176 0.701 1.156 0.704 1.043 0.663 0.975 0.608 0.905 0.574 0.865 0.545	MERID MACH NO IN OUT 0.555 0.356 0.586 0.392 0.606 0.417 0.609 0.424 0.610 0.407 0.607 0.399 0.604 0.424 0.584 0.501 0.570 0.494 0.546 0.494 0.526 0.505		MERID PEAK SS VEL R MACH NO 0.707 1.552 0.730 1.511 0.746 1.473 0.754 1.457 0.724 1.442 0.710 1.435 0.754 1.437 0.912 1.447 0.917 1.428 0.951 1.368 1.006 1.334
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 4.7 10.00 3.9 20.00 3.9 30.00 4.5 38.00 4.9 46.00 5.3 50.00 5.6 70.00 7.0 80.00 7.3 90.00 8.1 95.00 8.9	DENCE DEV SS 1.8 6.3 0.7 5.9 0.2 5.1 0.3 4.5 0.2 5.0 0.3 7.2 0.4 6.5 0.9 5.3 0.9 8.1 1.5 13.1 2.2 10.5	D-FACT EFF 0.458 0.687 0.406 0.774 0.397 0.857 0.420 0.861 0.457 0.848 0.452 0.838 0.440 0.896 0.426 0.969 0.445 0.973 0.440 0.977 0.459 0.971	LOSS COEFF TOT PROF 0.259 0.170 0.169 0.092 0.104 0.041 0.106 0.054 0.122 0.077 0.126 0.088 0.082 0.046 0.027 0.003 0.026 0.010 0.024 0.017 0.035 0.032	LOSS PARAM TOT PROF 0.039 0.026 0.026 0.014 0.017 0.007 0.018 0.009 0.020 0.013 0.020 0.014 0.014 0.008 0.005 0.001 0.005 0.002 0.004 0.003 0.006 0.006

TABLE VIII. - Concluded.

(t) Reading 963

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 5 4 5 6 7 8 9 10 11	RP 1 2334 5567 8 9 0 1 1	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 50.00 70.00 80.00 95.00	ABS M 0.572 0.608 0.631 0.632 0.632 0.625 0.601 0.585 0.562 0.539	ABS IN 189.4 200.1 207.2 207.1 206.0 205.2 197.5 192.8 185.6	RAD IN 24.795 24.216 23.040 21.841 20.866 19.878 19.378 16.812 15.471 14.079 13.360
INCI MEAN 4.1 3.3 3.2 3.8 4.6 4.8 6.4 6.5 8.3	ACH NO 0.510 0.512 0.534 0.553 0.546 0.513 0.654 0.677 0.710	VEL 0UT 183.6 182.1 188.9 195.2 193.3 181.0 189.5 227.5 234.6 245.2 257.3	0UT 24.656 24.092 22.962 21.831 20.927 20.023 19.571 17.310 16.180 15.049
DENCE SS 1.2 0.1 -0.5 -0.5 -0.6 -0.5 0.3 0.7 1.7	REL M 1.392 1.380 1.280 1.236 1.192 1.169 1.057 0.986 0.914 0.875	REL 1N 460.5 454.4 438.2 419.8 405.4 390.9 383.7 347.5 324.7 301.9 289.7	ABS IN -1.1 -0.4 0.2 0.3 0.2 0.3 -1.0 -0.4 -0.5
DEV 6.5 6.5 5.6 4.8 6.0 9.5 5.4 5.2 7.6 10.4	OUT 0.921 0.947 0.910 0.852 0.777 0.743 0.710 0.673 0.634 0.608	VEL 0UT 331.3 337.0 322.0 300.8 275.3 262.3 259.8 247.1 233.1 219.1 210.1	BETAM OUT 38.8 34.3 33.7 34.7 38.6 39.1 37.8 34.7 35.8 37.8
D-EACT 0.371 0.337 0.343 0.365 0.409 0.411 0.406 0.382 0.378 0.379	MERID M IN 0.572 0.608 0.631 0.632 0.632 0.625 0.601 0.585 0.562 0.539	MERI IN 189.4 200.1 207.2 207.1 206.0 205.2 197.5 192.8 185.6	REL IN 65.7 63.9 61.8 60.4 59.3 58.2 57,7 55.4 53.6 52.0
0.705 0.780 0.859 0.853 0.829 0.753 0.817 0.919 0.976 0.978	0.398 0.423 0.444 0.454 0.427 0.398 0.538 0.550 0.561 0.567	D VEL OUT 143.0 150.4 157.2 160.4 151.1 140.5 149.7 187.1 190.3 193.6	BETAM 0UT 64.4 63.5 60.8 57.8 56.7 57.6 54.8 40.8 35.3 27.9 21.3
LOSS C TOT 0.205 0.138 0.089 0.122 0.167 0.128 0.066 0.022 0.022		TAN IN -3.5 -1.5 0.8 0.7 1.1 0.9 1.1 -3.4 -1.4 -1.7	TOTA 10 290.1 289.7 289.4 289.0 288.9 288.8 288.8 288.4 288.4 288.4
OEFF PROF 0.117 0.059 0.025 0.045 0.077 0.130 0.093 0.042 0.006 0.016 0.038		OUT 115.1 102.7 111.2 120.5 114.1 116.2 129.4 137.2 150.4 167.1	RATIO 1.168 1.145 1.138 1.140 1.145 1.131 1.130 1.133 1.133
LOSS F TOT 0.031 0.021 0.014 0.016 0.025 0.025 0.012 0.004 0.004		WHEEL IN 416.3 406.4 387.8 349.6 333.1 325.3 282.5 259.9 236.5 224.6	TOTAL IN 9.88 10.09 10.10 10.10 10.09 10.09 10.05 10.02 9.99
PROF 0.018 0.009 0.004 0.008 0.013 0.020 0.015 0.008 0.001 0.003	PEAK SS MACH NO 1.542 1.505 1.467 1.445 1.431 1.422 1.419 1.432 1.420 1.356 1.334	SPEED OUT 413.9 404.3 385.8 365.6 350.6 355.5 328.6 290.9 271.8 252.8 243.4	PRESS RAT10 1.481 1.455 1.479 1.486 1.390 1.425 1.498 1.518 1.532

TABLE IX. - STATOR BLADE-ELEMENT DATA

(a) Reading 724

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 0UT 24.447 24.359 23.937 23.896 22.913 22.969 21.887 22.037 21.064 21.290 20.239 20.544 19.827 20.173 17.767 18.326 16.739 17.412 15.715 16.500 15.207 16.040	ABS BETAM IN OUT 28.9 0.25.0 -2.3 26.5 -3.3 30.1 -1.29.0 -4.29.5 -3.3 30.5 -3.3 31.6 -2.3 34.9 0.4	IN OUT 1 28.9 0.1 5 25.0 -2.3 6 25.0 -3.5 7 29.0 -4.7 8 29.9 -4.8 9 29.5 -3.0 2 30.5 -3.2 31.6 -2.0	TOTAL TEMP IN RATIO 334.3 0.991 326.6 1.003 324.0 1.002 324.4 1.001 325.9 0.995 321.6 0.999 322.0 0.997 324.4 0.995 324.5 0.995 324.5 0.998 326.3 0.999	TOTAL PRESS IN RATIO 14.17 0.936 13.97 0.988 14.06 0.982 14.07 0.974 14.08 0.968 13.27 0.978 13.55 0.962 14.55 0.985 14.79 0.969 15.01 0.972 15.23 0.975
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 217.4 196.0 208.8 214.5 210.0 214.1 205.0 208.3 188.6 198.3 197.1 198.4 236.7 215.3 256.3 218.5 264.0 223.4	REL VEL IN OUT 217.4 196.0 208.8 210.8 270.4 214.5 210.0 214.1 205.0 208.3 188.6 198.3 197.1 198.4 236.7 213.4 247.7 215.3 256.3 218.5 264.0 223.4	MERID VEL IN OUT 190.4 196.0 189.3 210.6 188.0 214.1 187.9 213.8 177.3 208.2 165.0 197.6 170.8 197.7 206.1 213.1 213.5 215.0 218.2 218.4 216.4 223.4	TANG VEL IN OUT 105.0 0.2 88.2 -8.4 87.5 -13.2 93.8 -12.3 102.9 -5.5 91.3 -16.3 98.4 -16.7 116.5 -11.2 125.7 -12.1 134.5 -7.6 151.2 1.6	WHEEL SPEED IN OUT 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.615 0.553 0.597 0.602 0.595 0.616 0.602 0.615 0.586 0.597 0.540 0.569 0.565 0.570 0.686 0.615 0.721 0.620 0.749 0.629 0.771 0.642	REL MACH NO IN OUT 0.615 0.553 0.597 0.602 0.595 0.616 0.602 0.615 0.586 0.597 0.540 0.565 0.570 0.686 0.615 0.721 0.620 0.749 0.629 0.771 0.642	MERID MACH NO IN OUT 0.539 0.553 0.541 0.601 0.539 0.615 0.539 0.614 0.506 0.597 0.472 0.567 0.472 0.568 0.597 0.614 0.621 0.619 0.637 0.629 0.632 0.642		MERID PEAK SS VEL R MACH NO 1.029 0.760 1.113 0.625 1.139 0.610 1.138 0.663 1.175 0.722 1.198 0.626 1.157 0.670 1.034 0.724 1.007 0.739 1.001 0.749 1.032 0.880
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 -6.4 10.00 -10.0 20.00 -9.2 30.00 -7.6 38.00 -4.5 46.00 -6.4 50.00 -5.9 70.00 -9.0 80.00 -9.8 90.00 -10.7 95.00 -8.4	DENCE SS -13.2 8.5 -16.5 6.0 -15.4 4.3 -13.4 4.4 -9.9 6.1 -11.5 2.9 -10.8 2.8 -13.2 4.7 -13.7 4.7 -14.3 6.1 -11.8 8.5	D-FACT EFF 0.257 0. 0.140 0. 0.115 0. 0.129 0. 0.133 0. 0.104 0. 0.149 0. 0.226 0. 0.255 0. 0.262 0. 0.267 0.	LOSS COEFF TOT PROF 0.282 0.282 0.054 0.054 0.084 0.084 0.119 0.119 0.155 0.155 0.123 0.123 0.195 0.055 0.055 0.055 0.105 0.105 0.089 0.089 0.078 0.078	LOSS PARAM TOT PROF 0.093 0.093 0.017 0.017 0.026 0.026 0.035 0.035 0.044 0.044 0.034 0.034 0.052 0.052 0.013 0.013 0.024 0.024 0.019 0.019 0.016 0.016

(b) Reading 736

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.447 24.359 23.937 23.896 22.913 22.969 21.887 22.037 21.064 21.290 20.239 20.544 19.827 20.173 17.767 18.326 16.739 17.412 15.715 16.500 15.207 16.040	34.4 0 32.6 -2 35.2 -0 38.6 0 38.4 -3 36.5 -2 33.8 -1 35.0 -2 36.6 -3		DETAM OUT 1.5 0.2 -2.0 -0.9 0.5 -3.2 -2.9 -1.7 -2.1 -3.1 -2.0	TOTAL TEMP IN RATIO 346.8 0.989 338.4 1.001 334.6 0.999 334.3 0.995 330.0 0.999 328.8 0.999 327.4 0.999 325.6 1.003 328.0 1.003	TOTAL PRESS IN RATIO 15.74 0.949 15.66 0.976 15.77 0.985 15.46 0.983 14.84 0.976 15.08 0.971 15.48 0.985 15.28 0.991 15.12 1.006 15.58 0.962
RP 1 2 3 4 5 6 7 8 9 1 1 1	ABS VEL IN OUT 214.4 178.1 211.2 187.1 213.8 192.9 214.5 194.6 205.5 184.3 195.7 172.4 202.4 174.8 229.4 187.7 227.4 186.0 229.7 186.0 224.1 175.6	REL VEL IN OUT 214.4 178. 211.2 187. 213.8 192. 214.5 194. 205.5 184. 195.7 172. 202.4 174. 229.4 187. 227.4 186. 229.7 182. 244.1 175.	IN 1 164.9 1 174.2 9 180.2 6 175.3 160.7 4 153.4 8 162.6 7 190.6 0 186.2 1 184.4	D VEL 0UT 178.0 187.1 192.8 194.6 184.3 172.1 174.6 185.9 181.8	TANG VEL IN OUT 137.0 4.6 119.4 0.5 115.1 -6.9 123.5 -3.0 128.1 1.7 121.5 -9.7 120.5 -8.8 127.6 -5.6 130.6 -6.7 137.0 -9.7 159.0 -6.1	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.594 0.491 0.593 0.521 0.605 0.542 0.606 0.547 0.579 0.517 0.554 0.485 0.575 0.493 0.659 0.532 0.655 0.528 0.663 0.515 0.705 0.495	REL MACH N 1N 0.594 0.49 0.593 0.52 0.605 0.54 0.606 0.54 0.579 0.51 0.554 0.48 0.575 0.49 0.659 0.53 0.655 0.52 0.705 0.49	IN 1 0.457 1 0.489 2 0.510 7 0.495 5 0.453 5 0.434 3 0.462 2 0.548 8 0.536 5 0.532	OUT 0.491 0.521 0.541 0.547 0.517 0.484 0.492 0.532 0.528 0.515		MERID PEAK SS VEL R MACH NO 1.080 0.960 1.074 0.848 1.070 0.821 1.110 0.869 1.147 0.887 1.121 0.832 1.074 0.821 0.984 0.825 0.998 0.816 0.986 0.825 0.948 0.960
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN MEAN 5.00 4.4 10.00 -0.5 20.00 -1.7 30.00 1.1 38.00 4.0 46.00 3.0 50.00 0.7 70.00 -4.7 80.00 -5.3 90.00 -5.7 95.00 -2.7	IDENCE SS -2.3 97.1 87.9 54.7 61.5 82.1 44.2 48.9 69.2 59.3 56.1 6.	9 0.373 4 0.295 8 0.274 8 0.267 1 0.301 7 0.306 0 0.319 8 0.316 0 0.340	0. 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.240 0.240 0.116 0.116 0.129 0.129 0.069 0.069 0.082 0.082 0.126 0.126 0.144 0.144 0.059 0.059 0.036 0.036 -0.024 -0.024 0.136 0.136	LOSS PARAM TOT PROF 0.079 0.079 0.037 0.037 0.040 0.040 0.020 0.023 0.034 0.034 0.038 0.038 0.014 0.014 0.008 0.008 -0.005 -0.005 0.028 0.028

(c) Reading 749

RP 1 2 3 4 5 6 7 8 9 10 11	RADI IN 24.447 24.23.937 22.913 22.913 22.1.887 22.21.064 22.239 20.239 20.17.767 18.16.739 17.5715 16.739 17.5	OUT 4.359 3.896 2.969 2.037 1.290 0.544 0.173 8.326 7.412 6.500	ABS 1N 47.7 41.1 38.0 39.4 41.4 41.5 41.2 42.2 44.1 45.4 48.5	BETAM OUT 3.2 -0.9 0.6 1.3 -0.8 -0.1 1.3 -0.1	REL IN 47.7 41.1 38.0 39.4 41.4 41.5 41.2 42.2 44.1 45.4	BETAM OUT 3.2 -0.9 0.6 1.3 -0.8 -0.1 1.3 -0.1	TOTA 1N 362.6 350.3 342.3 340.6 339.5 336.3 335.3 331.9 327.9 326.2 331.4	L TEMP RATIO 0.979 0.999 1.000 0.999 1.001 1.001 0.999 1.008 1.008	TOTAL IN 17.57 17.18 16.94 16.90 16.59 16.31 16.28 16.11	PRESS RATIO 0.964 0.988 0.990 0.984 0.978 0.965 0.968 0.971 1.005 1.030 0.956
RP 1 2 3 4 5 6 7 8 9 11:	227.7 1 224.3 1 222.6 1 218.0 1 212.1 1 212.5 1 211.1 1 198.4 1 200.6 1	VEL 0UT 187.8 189.4 185.0 177.9 166.0 154.2 152.9 148.6 148.6 148.6 148.6	REL [N 238.3 227.7 224.3 222.6 218.0 212.1 212.5 211.1 198.4 200.6 229.5	VEL 0UT 187.8 189.4 185.0 177.9 166.0 154.2 152.9 148.6 148.2 145.4	MER(IN 160.5 171.5 176.8 172.1 163.6 158.9 159.9 156.3 142.4	D YEL 0UT 187.5 189.1 185.0 177.9 166.0 154.2 152.9 148.5 148.5 145.4	TAN(1N 176.2 149.8 138.0 141.2 144.0 140.4 140.0 141.8 138.2 142.8 171.9	G VEL OUT 10.5 10.7 -2.8 1.7 -2.0 -0.4 3.3 -0.2 0.4	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP	ABS MAC	CH NO	REL M	ACH NO	MERID M	ACH NO			MERID	DETR CC
1 2 3 4 5 6 7 8 9 10 11	0.631 0 0.628 0 0.625 0 0.612 0 0.597 0 0.600 0 0.598 0 0.564 0	OUT 0.510 0.519 0.512 0.493 0.460 0.427 0.424 0.414 0.414	IN 0.650 0.631 0.628 0.625 0.612 0.597 0.600 0.598 0.564 0.572 0.656	0UT 0.510 0.519 0.512 0.493 0.460 0.427 0.424 0.414 0.414 0.378	IN 0.438 0.475 0.495 0.463 0.459 0.448 0.451 0.443 0.405 0.401	OUT 0.509 0.518 0.512 0.493 0.459 0.427 0.424 0.414 0.414 0.378				MACH NO 1.228 1.046 0.969 0.985 0.960 0.951 0.951 0.888 1.068

(d) Reading 760

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 70.00 80.00	ABS M IN 0.667 0.651 0.647 0.639 0.620 0.600 0.595 0.565 0.547 0.647	ABS IN 245.1 235.7 231.2 227.7 221.2 213.7 212.0 200.1 193.0 198.2 227.3	RAD IN 24.447 23.937 22.913 21.887 21.064 20.239 19.827 17.767 16.739 15.715 15.207
INCI MEAN 13.9 7.9 4.4 5.8 7.8 8.5 6.4 5.4	OUT 0.524 0.529 0.524 0.498 0.463 0.421 0.404 0.359 0.362 0.344	VEL 0UT 193.7 193.8 189.9 180.0 167.6 152.5 146.5 129.7 130.4 124.4 109.2	0UT 24.359 23.896 22.969 22.037 21.290 20.544 20.173 18.326 17.412 16.500
DENCE SS 7.2 1.4 -1.8 -0.0 2.4 3.3 3.4 2.0 2.6 1.9	REL M 1N 0.667 0.651 0.647 0.639 0.620 0.595 0.565 0.547 0.564	REL IN 245.1 235.7 231.2 227.7 221.2 213.7 212.0 200.1 193.0 198.2 227.3	ABS IN 49.2 42.9 38.6 39.9 42.4 43.8 44.2 44.7 46.7 47.8 51.6
DEV 11.9 12.3 7.5 9.6 9.5 7.7 10.4 9.0	ACH NO OUT 0.524 0.529 0.524 0.498 0.463 0.421 0.404 0.359 0.362 0.344 0.301	VEL 0UT 193.7 193.8 189.9 167.6 152.5 146.5 129.7 130.4 124.4 109.2	BETAM OUT 3.5 4.0 -0.3 2.0 1.9 0.1 1.1 2.7 1.1 2.3 3.4
D-FACT 0.443 0.378 0.372 0.390 0.426 0.474 0.491 0.511 0.482 0.520	MERID M IN 0.435 0.477 0.506 0.490 0.457 0.433 0.427 0.402 0.375 0.379 0.402	MERI 1N 160.1 172.8 180.7 174.7 163.2 154.2 152.0 142.1 132.2 133.2 141.3	REL IN 49.2 42.9 38.6 39.9 42.4 43.8 44.7 46.7 47.8 51.6
EFF 0. 0. 0. 0. 0.	ACH NO OUT 0.523 0.524 0.497 0.463 0.421 0.404 0.359 0.362 0.344 0.300	D VEL 0UT 193.3 193.3 189.9 167.5 152.5 146.5 129.5 130.4 124.3	BETAM OUT 3.5 4.0 -0.3 2.0 1.9 0.1 1.1 2.7 1.1 2.3 3.4
LOSS C TOT 0.146 0.062 0.086 0.104 0.160 0.166 0.038 -0.062		TAN IN 185.7 160.3 144.2 146.0 149.3 147.9 147.8 140.8 140.8 146.8 178.1	IN 366.4 353.7 344.4
PROF 0.146 0.062 0.055 0.086 0.104 0.160 0.166 0.038 -0.062		13.6 -1.0 6.3 5.4 0.2 2.7 6.1 2.6 5.0 6.6	RATIO 0.978 1.000 1.001 0.999 0.998 0.999 0.998 1.003 1.009 1.019
LOSS P TOT 0.048 0.020 0.017 0.025 0.030 0.044 0.004 0.0014 -0.032		WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TOTAL IN 18.01 17.65 17.36 17.25 16.83 16.51 16.38 15.92 15.47 15.34 16.28
PROF 0.048 0.020 0.017 0.025 0.030 0.044 0.044 0.009	PEAK SS MACH NO 1.296 1.118 1.012 1.017 1.031 1.012 1.005 0.923 0.904 0.921 1.123	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	PRESS RATIO 0.962 0.985 0.986 0.979 0.976 0.965 0.965 1.011 1.029 0.948

(e) Reading 771

RP 1 2 3 4 5 6 7 8 9 10	RADII IN (24.447 24. 23.937 23. 22.913 22. 21.887 22. 21.064 21. 20.239 20. 19.827 20. 17.767 18. 16.739 17. 15.715 16.	OUT IN .359 54.1 .896 45.2 .969 40.6 .037 42.2 .290 46.6 .544 50.0 .173 49.6 .326 45.5 .412 47.1 .500 47.3	BETAM OUT 3.8 4.8 1.6 3.8 3.1 2.5 3.3 5.8 7.7	REL. 18.1 45.2 40.6 42.2 46.6 50.0 49.6 45.1 47.3 51.2	DETAM OUT 3.8 4.8 1.6 3.8 3.1 2.5 3.3 3.8 3.3 5.8	TOTA IN 371.4 357.3 346.7 344.0 342.7 341.1 331.9 330.3 329.2 334.5	RATIO 0.977 1.001 1.002 1.000 0.997 0.996 0.997 1.008 1.016	TOTAL IN 18.53 18.22 17.85 17.53 17.02 16.48 16.37 15.70 15.62 15.56	PRESS RATIO 0.966 0.979 0.976 0.974 0.975 0.972 1.015 1.010 1.012 0.935
RP 1 2 3 4 5 6 7 8 9 1 0 1 1	245.4 19 237.6 19 233.7 18 225.6 17 216.2 15 205.2 13 198.8 11 201.3 11 209.8 10	CL REL IN 245.4 237.6 235.7 225.6 25.6 2 216.2 257.8 206.9 205.2 6.4 198.8 3.5 201.3 4.0 209.8 224 238.4	VEL 0UT 196.6 193.1 185.6 172.5 156.2 137.8 130.8 116.4 113.5 104.0 62.4	MERI IN 143.9 167.4 177.5 167.2 148.4 132.9 132.9 132.9 137.0 142.3 149.3	0 VEL 0UT 196.2 185.5 172.1 156.0 137.7 130.6 116.2 113.4 61.9	TAN(IN 198.8 168.6 151.9 151.4 157.2 158.6 156.4 141.7 147.4 154.2 185.8	VEL 0UT 12.9 16.1 5.0 11.5 8.3 6.0 7.4 7.8 6.5 10.5 8.4	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10	0.663 0. 0.653 0. 0.652 0. 0.630 0. 0.576 0. 0.572 0. 0.561 0. 0.570 0. 0.597 0.	NO REL M 101 IN 529 0.663 523 0.653 510 0.652 474 0.630 429 0.602 378 0.576 358 0.576 351 0.561 313 0.570 286 0.597 170 0.680	ACH NO OUT 0.529 0.523 0.510 0.474 0.429 0.378 0.358 0.351 0.286 0.170	MERID M IN 0.388 0.460 0.496 0.467 0.414 0.370 0.371 0.394 0.388 0.405 0.426	ACH NO OUT 0.528 0.521 0.509 0.473 0.428 0.377 0.358 0.313 0.284 0.169				PEAK SS MACH NO 1.406 1.175 1.063 1.053 1.088 1.096 1.073 0.930 0.949 0.949
RP 1 2 3 4 5 6 7 8 9 10 11	5.00 10.00 20.00 30.00 38.00 46.00	INCIDENCE MEAN SS 18.8 12.1 10.3 3.7 6.3 0.1 8.0 2.3 12.0 6.6 14.7 9.6 14.7 9.6 13.8 8.9 7.0 2.7 6.8 2.9 4.9 1.4 7.9 4.5	DEV 12.2 13.1 9.4 11.4 10.6 10.1 10.9 11.6 11.1 13.8 15.8	D-FACT 0.448 0.394 0.400 0.418 0.472 0.555 0.573 0.591 0.646 0.886	EFF 0. 0. 0. 0. 0. 0. 0. 0.	0.135 0.083 0.096 0.104 0.119 0.126 0.140 -0.078 -	PROF 0.135 0.083 0.096 0.104 0.119 0.126 0.140 0.078 0.050	LOSS P TOT 0.044 0.027 0.030 0.031 0.034 0.034 0.037 -0.019 -0.011	PROF 0.044 0.027 0.030 0.031 0.034 0.034 0.037 -0.019

(f) Reading 785

RP 1 2 3 4 5 6 7 8 9 1 1 1 RP 1 2 8	IN 213.0 211.8	0UT 24.359 23.896 22.969 22.037 21.290 20.544 20.173 18.326 17.412 16.500 16.040 VEL 0UT 166.1 162.9	IN 60.3 55.3 46.5 42.9 44.3 45.6 45.3 47.6 47.9 49.3 REL IN 213.0 211.8	OUT -0.3 1.1 4.8 4.7 3.6 2.7 2.1 2.0 1.1 1.8 3.3	IN 60.3 55.3 46.5 42.9 44.3 45.6 45.6 47.9 49.3 MERI IN 105.5	BETAM OUT -0.5 1.1 4.8 4.7 3.6 2.7 2.1 2.0 1.1 1.8 3.3	IN 364.6 357.7 347.9 341.8 340.2 339.3 332.4 330.6 330.1 333.9	L TEMP RATIO 0.982 0.991 0.999 1.001 0.995 0.994 0.993 1.000 1.003 1.008 1.001	TOTAL IN 16.68 16.58 16.92 16.83 16.56 16.47 16.04 15.70 15.81 16.38	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
3 4 5 6 7 8 9 10 11	IN	162.3 160.7 155.4 143.1 139.3 128.1 126.7 120.4 89.0 ACH NO	IN	162.3 160.7 155.4 143.1 139.3 128.1 126.7 120.4 89.0	151.0 163.4 160.6 155.4 154.7 149.4 142.8 148.6 156.9 MERID M	OUT	159.3 151.9 156.6 158.5 158.2 150.9 156.1 164.7 182.6	13.7 13.1 9.7 6.7 5.1 4.5 3.7 5.1	0. 0. 0. 0. 0. 0. 0. MERL	MACH
1 2 3 4 5 6 7 8 9 10	0.575 0.577 0.609 0.625 0.623 0.622 0.602 0.601 0.633 0.688	0.447 0.440 0.443 0.442 0.428 0.394 0.355 0.355 0.352	0.575 0.577 0.609 0.625 0.629 0.623 0.622 0.601 0.633 0.688	0.447 0.440 0.443 0.442 0.428 0.394 0.385 0.355 0.352 0.353	0.285 0.328 0.419 0.458 0.450 0.436 0.435 0.424 0.406 0.424	0.447 0.440 0.442 0.441 0.428 0.394 0.355 0.355 0.352 0.333			1.575 1.352 f.071 0.981 0.966 0.920 0.900 0.857 0.810 0.566	1.3
RP 1 2	PERCENT SPAN 5.00	INCI MEAN 24.9	DENCE SS 18.2	DEV.	D-FACT 0.507	EFF	LOSS C TOT 0.036	OEFF PROF 0.036	LOSS P TOT 0.012	ARAM PRO

(g) Reading 796

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.447 24.359 23.937 23.896 22.913 22.969 21.887 22.037 21.064 21.290 20.239 20.544 19.827 20.173 17.767 18.326 16.739 17.412 15.715 16.500 15.207 16.040	ABS BETAM IN OUT 40.8 1.7 34.4 -0.5 35.3 -2.6 35.6 -1.3 39.4 0.2 39.3 -3.4 37.1 -3.2 33.3 -2.0 34.4 -2.2 36.7 -5.4 39.1 -1.6	34.4 -0.5 33.3 -2.6 35.6 -1.3 39.4 0.2 39.3 -3.4 37.1 -3.2 33.3 -2.0 34.4 -2.2 36.7 -3.4	TOTAL TEMP IN RATIO 347.3 0.988 337.1 1.001 333.0 0.998 333.3 0.995 335.7 0.991 329.4 0.994 328.6 0.994 327.9 0.991 326.8 0.994 328.1 0.992 331.2 0.991	TOTAL PRESS IN RATIO 15.42 0.954 15.46 0.974 15.47 0.975 15.41 0.982 14.78 0.965 15.36 0.971 15.30 0.972 15.46 0.964 15.63 0.957
RP 123456789011	ABS VEL IN OUT 213.8 187.1 213.9 195.8 216.4 199.4 216.8 198.2 209.4 188.8 197.1 177.3 207.3 178.3 245.5 191.5 248.1 189.9 257.3 189.5 265.3 190.7	REL VEL IN OUT 213.8 187.1 213.9 195.8 216.4 199.4 216.8 198.2 209.4 188.8 197.1 177.3 207.3 178.3 245.5 191.5 248.1 189.9 257.3 189.5 265.3 190.7	MERID VEL IN OUT 161.8 187.0 176.5 195.8 180.9 199.2 176.4 198.2 161.7 188.8 152.5 176.9 165.3 178.0 205.2 191.4 204.6 189.8 206.2 189.2 206.0 190.6	TANG VEL IN OUT 139.7 5.5 120.7 -1.7 118.7 -9.0 126.1 -4.4 133.0 0.5 124.8 -10.6 125.0 -9.8 134.8 -6.8 140.4 -7.4 153.9 -11.4 167.2 -5.3	WHEEL SPEED IN OUT O.
RP 1 23 4 5 6 7 8 9 11 1	ABS MACH NO IN OUT 0.592 0.517 0.602 0.548 0.613 0.563 0.592 0.533 0.558 0.501 0.590 0.546 0.710 0.546 0.719 0.541 0.747 0.539 0.769 0.540	REL MACH NO IN OUT 0.592 0.517 0.602 0.548 0.613 0.563 0.565 0.592 0.533 0.558 0.501 0.590 0.505 0.710 0.546 0.719 0.541 0.747 0.539 0.769 0.540	MERID MACH NO IN OUT 0.448 0.517 0.497 0.548 0.513 0.562 0.500 0.560 0.457 0.533 0.432 0.500 0.471 0.504 0.593 0.545 0.593 0.541 0.599 0.538 0.597 0.540		MERID PEAK SS VEL R MACH NO 1.156 0.976 1.109 0.859 1.101 0.846 1.123 0.888 1.167 0.922 1.160 0.856 1.077 0.853 0.933 0.873 0.933 0.873 0.917 0.931 0.926 1.002
RP 1 2 3 4 5 6 7 8 9 1 1 1	PERCENT INCI SPAN MEAN 5.00 5.4 10.00 -0.7 20.00 -1.0 30.00 1.4 38.00 4.8 46.00 3.9 50.00 1.2 70.00 -5.3 80.00 -5.9 90.00 -5.7 95.00 -4.3	DENCE SS -1.3 10.1 -7.2 7.7 -7.2 5.2 -4.4 6.3 -0.7 7.7 -1.3 4.1 -3.7 5.6 -9.8 5.6 -9.3 4.5 -7.7 6.4	D-FACT EFF 0.331 0. 0.269 0. 0.260 0. 0.263 0. 0.277 0. 0.287 0. 0.313 0. 0.356 0. 0.367 0. 0.397 0. 0.411 0.	LOSS COEFF TOT PROF 0.217 0.217 0.118 0.118 0.112 0.112 0.096 0.096 0.136 0.136 0.093 0.093 0.168 0.168 0.102 0.102 0.096 0.096 0.115 0.115 0.132 0.132	LOSS PARAM TOT PROF 0.071 0.071 0.038 0.038 0.034 0.034 0.028 0.028 0.039 0.039 0.025 0.025 0.045 0.024 0.024 0.024 0.022 0.022 0.024 0.024 0.027 0.027

(h) Reading 808

RP 1 2 3 4 5 6 7 8 9 10	RP 1 2 3 4 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 70.00 80.00	ABS M IN 0.569 0.612 0.618 0.609 0.606 0.590 0.610 0.697 0.701 0.737	ABS IN 209.2 220.2 219.7 216.5 215.5 208.6 215.0 240.2 242.4 242.9 255.7	RAD IN 24.447 23.937 22.913 21.887 21.064 20.239 19.827 17.767 16.739 15.715 15.207
INCI. MEAN 17.3 6.5 3.4 7.5 5.8 3.35 -2.8	ACH NO 0.506 0.528 0.532 0.520 0.463 0.462 0.462 0.469 0.453	VEL 0UT 185.2 191.0 190.4 186.1 176.3 165.5 165.0 167.8 166.7 161.5 154.2	0UT 24.359 23.896 22.969 22.037 21.290 20.544 20.173 18.326 17.412 16.500
DENCE SS 10.5 -0.0 -2.8 -0.4 2.0 0.6 -1.7 -6.7 -5.7	REL M IN 0.569 0.612 0.618 0.609 0.606 0.590 0.610 0.697 0.737	REL IN 209.2 220.2 219.7 216.5 208.6 215.0 240.2 242.4 242.9 255.7	ABS IN 52.6 41.5 37.7 39.6 42.2 41.2 39.1 36.1 38.6 39.5 41.8
DEV 11.8 9.3 6.6 7.1 8.5 5.5 5.8 7.6	ACH NO OUT 0.506 0.528 0.532 0.520 0.492 0.463 0.462 0.472 0.469 0.453	VEL 0UT 185.2 191.4 186.1 176.3 165.5 165.0 167.8 166.7 161.5 154.2	BETAM OUT 3.4 1.1 -1.2 -0.4 1.0 -2.1 -1.7 -0.0 -1.4 -3.3 -1.7
D-FACT 0.359 0.341 0.328 0.330 0.367 0.393 0.406 0.440	MERID M IN 0.346 0.458 0.489 0.470 0.449 0.473 0.558 0.545 0.541 0.550	MERIL IN 127.0 164.8 173.0 159.6 157.0 166.7 194.2 189.4 187.5	REL IN 52.6 41.5 37.7 39.6 42.2 41.2 39.1 36.1 38.6 39.5 41.8
EFF. 0. 0. 0. 0. 0. 0.	0.506 0.528 0.531 0.520 0.492 0.463	D VEL OUT 184.8 191.3 186.1 176.3 165.4 164.9 167.8 166.6 161.2	BETAM OUT 3.4 1.1 -1.2 -0.4 1.0 -2.1 -1.7 -0.0 -1.4 -3.3 -1.7
LOSS C TOT 0.114 0.143 0.056 0.058 0.131 0.134 0.177 0.103		TAN IN 166.3 146.0 134.2 137.9 137.4 135.7 141.3 151.3 154.3	TOTA IN 357.8 346.6 338.7 337.8 337.8 333.4 332.1 330.1 328.3 332.0
0EFF PR0F 0.114 0.143 0.056 0.058 0.131 0.134 0.177 0.103 0.120		G VEL OUT 11.1 3.6 -4.0 -1.3 3.1 -6.0 -5.0 -0.1 -3.9 -9.3 -4.5	RAT10 0.978 0.993 0.996 0.995 0.991 0.996 0.996 0.994 1.002 0.996
LOSS P TOT 0.037 0.046 0.017 0.037 0.037 0.047 0.025 0.027		HHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TOTAL IN 16.30 16.70 16.16 15.55 15.79 15.82 15.79 15.43
PROF 0.037 0.046 0.017 0.017 0.037 0.037 0.047 0.025 0.027	PEAK SS MACH NO 1.175 1.021 0.945 0.963 1.001 0.941 0.924 0.920 0.957 0.943 1.031	SPEED OUT 0. 0. 0. 0. 0. 0.	PRESS RAT10 0.977 0.968 0.987 0.971 0.972 0.961 0.972 0.967 0.987 0.987

(i) Reading 819

RP 1 2 3 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.447 24.35 23.937 23.89 22.913 22.96 21.887 22.03 21.064 21.29 20.239 20.54 19.827 20.17 17.767 18.32 16.739 17.41, 15.715 16.50 15.207 16.04	IN 9 54.5 6 44.2 9 39.4 40.2 41.8 4 42.1 5 41.5 41.5 43.8 44.4	BETAM OUT 3.9 2.0 -0.6 0.7 1.6 -0.5 -0.1 1.2 -0.4 -1.1	54.5 3 44.2 2 39.4 -0 40.2 0	IN RATIO 9 362.5 0.974 0 351.0 0.990 6 342.1 0.997 7 339.7 0.997 6 339.4 0.995 5 336.3 0.998 1 335.1 0.998 2 332.3 0.997 4 350.1 1.000	TOTAL PRESS IN RATIO 16.93 0.978 17.19 0.966 16.78 0.983 16.79 0.978 16.69 0.969 16.27 0.961 16.28 0.955 16.16 0.971 15.75 0.984 15.44 1.008 16.06 0.950
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 218.7 187. 225.4 188. 225.1 186. 223.6 182. 217.3 161. 218.4 157. 223.6 146. 218.4 157. 223.6 146. 218.4 157. 223.6 138. 219.6 138.	IN 5 218.7 1 225.4 225.1 5 223.6 4 223.2 217.3 9 218.4 225.6 0 218.8 4 219.6	VEL 0UT 187.3 188.1 186.1 182.5 174.4 161.8 157.9 148.1 146.0 138.4 128.2	MERID VEL IN OUT 127.0 186. 161.6 188. 173.8 186. 170.7 182. 166.3 174. 161.3 161. 163.7 157. 167.5 148. 157.9 146. 156.9 138.	IN OUT 9 178.1 12.7 0 157.2 6.7 1 143.0 -1.9 5 144.5 2.1 3 148.9 4.8 8 145.6 -1.4 9 144.6 -0.2 0 148.0 3.2 0 151.5 -0.9 3 153.7 -2.6	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP	ABS MACH N		IACH NO	MERID MACH N		MERID PEAK SS
1 2 3 4 5 6 7 8 9 10	IN OUT 0.593 0.51 0.623 0.51 0.625 0.50 0.628 0.49 0.613 0.45 0.636 0.41 0.626 0.359 0.626 0.359	7 0.623 6 0.631 7 0.629 6 0.628 0 0.613 0 0.618 6 0.636 8 0.624 6 0.628	OUT 0.510 0.517 0.516 0.507 0.485 0.450 0.439 0.413 0.408 0.385 0.355	IN OUT 0.344 0.56 0.447 0.51 0.487 0.51 0.488 0.468 0.455 0.45 0.463 0.42 0.477 0.41 0.450 0.38 0.470 0.35	9 7 6 7 4 0 9 9 3 8	VEL R MACH NO 1,472 1,265 1,163 1,097 1,071 1,003 1,069 1,008 1,048 1,030 1,003 0,997 0,965 0,984 0,883 0,966 0,925 0,968 0,882 0,952 0,779 1,075

(j) Reading 830

RP 1 2 3 4 5 6 7 8 9 10 11 RP 1 2 3	24,447 24 23,937 23 22,913 22 21,887 22 21,064 21 20,239 20 19,827 20 17,767 18 16,739 17 15,715 16 15,207 16 ABS VI IN 213,4 1 223,2 1	OUT	.2 178.5	IN 55.2 46.5 41.5 42.9 44.0 44.2 45.3 47.0 47.4	BETAM 0UT 1.5 2.3 2.2 1.6 2.2 0.9 1.0 1.0 1.1 2.8 D VEL 0UT 181.0 178.3 174.8	IN 361.2 352.7 344.3 340.9 338.8 338.2 329.8 329.0 333.5	RAT10 0.987 0.999 1.000 0.995 0.995 0.995 0.994 1.011 1.002 4.9 7.2 6.7	TOTAL IN 16.88 17.22 17.01 16.97 16.88 16.55 16.50 16.15 15.60 15.59 16.23
3456789011 P12	224.3 1 225.2 1 220.5 1 220.6 1 214.1 1 206.9 1 214.1 1 235.3 1 ABS MAC IN 0.579 0	71.6 224 62.8 225 48.8 220 46.1 220 39.9 214 37.9 206 29.9 214 11.2 235	.3 171.6 .2 162.8 .5 148.8 .6 146.1 .1 139.9 .9 137.9 .1 129.9 .3 111.2 L MACH NO 0UT	169.1 164.9 158.6 158.0 150.7 141.1 145.0 153.9 MERID M 1N 0.330 0.423	171.5 162.7 148.8 146.0 139.8 137.8 129.9	147.4 153.5 153.2 153.9	4.7	0. 0. 0. 0. 0. 0. 0. 0. VEL R 1.488
5 6 7 8 9 10	0.630 0 0.633 0 0.620 0 0.621 0 0.606 0 0.588 0 0.611 0 0.671 0		30 0.474 33 0.450 20 0.411 21 0.404 06 0.389 88 0.384 11 0.360 71 0.306 E DEV	0.474 0.475 0.463 0.446 0.427 0.401 0.414 0.439	0.480 0.474 0.450 0.411 0.404 0.389 0.383 0.360 0.306	LOSS C	PROF	1.031 1.014 0.987 0.938 0.924 0.928 0.977 0.896 0.722
RP 1	5.00	19.9 13	.1 9.9 .0 10.5	0.414 0.424	0. 0.	0.018	0.018	0.006 0.033

(k) Reading 845

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.447 24.359 23.937 23.896 22.913 22.969 21.887 22.037 21.064 21.290 20.239 20.544 19.827 20.173 17.767 18.326 16.739 17.412 15.715 16.500 15.207 16.040	ABS BETAM IN OUT 59.3 1.8 48.1 2.9 41.2 1.7 38.9 -0.5 40.3 1.1 40.0 -0.7 38.8 -0.8 38.4 0.8 40.5 -0.9 40.5 -2.2 44.7 -1.2	48.1 2.9 41.2 1.7 38.9 -0.5 40.3 1.1 40.0 -0.7 38.8 -0.8 38.4 0.8 40.5 -0.9 40.5 -2.2	IN RATIO 354.2 0.989 349.3 0.996 342.2 0.997 338.1 0.998 335.5 0.997 335.8 0.998 331.9 0.994 329.8 0.997 326.5 1.011	TOTAL PRESS IN RATIO 15.47 1.019 16.18 0.991 16.25 0.986 16.51 0.964 16.00 0.965 16.05 0.959 16.11 0.965 15.76 0.976 15.20 1.014 16.06 0.942
RP 1 23 4 5 6 7 8 9 11 11	ABS VEL IN OUT 182.2 171.1 201.9 176.6 214.3 180.4 218.6 179.3 224.6 173.6 219.4 163.9 220.9 160.7 235.5 154.8 230.4 153.4 226.7 146.3 251.3 136.7	REL VEL IN OUT 182.2 171.1 201.9 176.6 214.3 180.4 218.6 179.3 224.6 173.6 219.4 163.9 220.9 160.7 235.5 154.8 230.4 153.4 226.7 146.3 251.3 136.7	MERID VEL IN OUT 93.1 171.0 134.9 176.4 161.1 180.3 170.2 179.3 171.3 173.6 168.1 163.9 172.1 160.7 184.6 175.3 153.4 172.3 146.2 178.6 136.6	137.1 -1.6 145.2 3.5 140.9 -2.1	WHEEL SPEED IN OUT 0.
RP 123456789111	ABS MACH NO IN OUT 0.495 0.466 0.555 0.483 0.598 0.499 0.615 0.499 0.633 0.483 0.620 0.456 0.627 0.448 0.674 0.433 0.660 0.430 0.652 0.408 0.722 0.380	REL MACH NO IN OUT 0.495 0.466 0.555 0.483 0.598 0.499 0.615 0.499 0.633 0.483 0.620 0.456 0.627 0.448 0.674 0.433 0.660 0.430 0.652 0.408 0.722 0.380	MERID MACH NO IN OUT 0.253 0.466 0.371 0.483 0.450 0.499 0.479 0.499 0.482 0.483 0.475 0.456 0.488 0.448 0.528 0.433 0.502 0.430 0.496 0.408 0.513 0.380		MERID PEAK SS VEL R MACH NO 1.837 1.149 1.308 1.054 1.119 0.990 1.054 0.959 1.014 1.006 0.975 0.966 0.934 0.944 0.838 0.954 0.875 0.950 0.875 0.950 0.849 0.905
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN MEAN 5.00 24.0 10.00 13.1 20.00 7.0 30.00 4.8 38.00 5.7 46.00 4.6 50.00 3.0 70.00 -0.1 80.00 0.2 90.00 -1.8 95.00 1.4	SS 17.2 10.2 6.6 11.2 0.8 9.6 -1.0 7.1 0.2 8.7 -0.5 6.9 -4.3 8.5 -3.7 6.9 -5.4 5.9 -2.0 6.9	D-FACT EFF 0.334 0. 0.351 0. 0.354 0. 0.366 0. 0.405 0. 0.442 0. 0.442 0. 0.487 0. 0.481 0. 0.494 0. 0.599 0.	LOSS COEFF TOT PROF -0.126 -0.126 0.000 0.000 0.040 0.040 0.060 0.060 0.154 0.154 0.151 0.151 0.176 0.176 0.135 0.135 0.094 0.094 -0.055 -0.055 0.196 0.196	LOSS PARAM TOT PROF -0.041 -0.041 0.000 0.000 0.012 0.012 0.018 0.018 0.044 0.044 0.041 0.041 0.047 0.047 0.032 0.032 0.021 0.021 -0.012 -0.012 0.040 0.040

(l) Reading 856

(m) Reading 867

RP 1 2 3 4 5 6 7 8 9	RAD'II IN OUT 24.447 24.359 23.937 23.896 22.913 22.969 21.887 22.037 21.064 21.290 20.239 20.544 19.827 20.173 17.767 18.326 16.739 17.412 15.715 16.500 15.207 16.040	58.2 41.9 36.7 	AM REDUT IN 2.4 58.2 1.8 41.9 36.7 0.8 36.4 0.9 39.1 2.3 38.3 2.2 0 34.1 1.3 36.5 3.7 37.0 41.1	DETAM OUT 2.4 1.8 -1.0 -0.8 0.9 -2.3 -2.0 -1.0 -1.3 -3.7 -1.9	TOTAL TEIN RAT 347.9 0.9 342.7 0.9 337.4 0.9 335.5 0.9 337.2 0.9 331.5 0.9 330.2 0.9 329.9 0.9 326.6 1.0 331.8 0.9	IN RATIO 14.72 1.021 15.62 0.990 15.63 1.000 15.76 0.990 16.01 0.965 15.37 0.969 15.59 0.961 15.80 0.964 15.74 0.966 15.12 1.000
RP 1 2 3 4. 5 6 7 8 9 10 11	ABS VEL IN OUT 165.7 166.7 199.5 179.5 214.3 186.9 217.2 186.7 222.4 179.2 216.0 169.8 221.3 170.2 249.0 179.1 249.6 177.3 244.0 173.4 258.8 168.9	REL VEL IN 00 165.7 166 199.5 179 214.3 186 227.4 179 216.0 169 221.3 170 249.0 179 249.6 177 244.0 173 258.8 168	IT IN 87.2 148.4 191.8 171.8 169.5 178.2 178.2 178.2 178.2 178.2 178.2 178.2 178.2 1194.9	ID VEL 0UT 166.6 179.4 186.8 186.6 179.2 169.7 170.1 179.0 177.2 173.1 168.8	TANG VEL IN OUT 140.9 7 133.3 5 128.1 -3 129.0 -2 140.2 2 134.0 -6 131.2 -5 139.7 -3 148.6 -4 146.7 -11 170.0 -5	IN OUT 0 0. 0. 6 0. 0. 2 0. 0. 6 0. 0. 9 0. 0. 8 0. 0. 8 0. 0. 0 0. 0 0. 1 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.452 0.457 0.496 0.603 0.523 0.613 0.523 0.628 0.502 0.612 0.476 0.630 0.478 0.718 0.506 0.720 0.501 0.706 0.489 0.747 0.474	REL MACH IN 0.452 0.4 0.554 0.4 0.603 0.5 0.613 0.5 0.628 0.5 0.612 0.4 0.630 0.4 0.718 0.5 0.720 0.5 0.747 0.4	1 IN 57 0.238 96 0.412 23 0.483 23 0.493 02 0.483 76 0.480 77 0.595 01 0.579 89 0.564	1ACH NO OUT 0.456 0.496 0.522 0.523 0.502 0.476 0.478 0.506 0.501 0.488 0.474		MERID PEAK SS VEL R MACH NO 1.910 1.032 1.208 0.934 1.088 0.905 1.068 0.906 1.037 0.972 1.002 0.920 0.955 0.896 0.868 0.908 0.884 0.938 0.888 0.888 0.865 1.029
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 22.9 10.00 7.0 20.00 2.5 30.00 2.3 38.00 4.4 46.00 3.0 50.00 0.6 70.00 -4.4 80.00 -3.8 90.00 -5.4 95.00 -2.2	SS 16.2 10 0.4 10 -3.7 6 -1.0 8 -2.1 5 -4.4 5 -7.6 6 -9.0 4		EFF 0. 0. 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF -0.161 -0.16 0.051 0.05 0.001 0.00 0.046 0.04 0.149 0.14 0.141 0.14 0.168 0.12 0.124 0.12 0.117 0.11 -0.001 -0.00 0.123 0.12	TOT PROF 1 -0.053 -0.053 1 0.016 0.016 1 0.000 0.000 6 0.014 0.014 9 0.042 0.042 1 0.038 0.038 8 0.045 0.045 4 0.030 0.030 7 0.027 0.027 1 -0.000 -0.000

(n) Reading 884

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 23 4 5 6 7 8 9 5 1 1	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 70.00 80.00 95.00	ABS M IN 0.421 0.565 0.622 0.631 0.635 0.604 0.630 0.734 0.741 0.742	ABS IN 153.7 202.2 219.2 222.2 222.2 212.7 221.0 253.2 255.1 256.8 263.2	RAD IN 24.447 23.937 22.913 21.887 20.239 17.767 16.739 15.715 15.207
INCI MEAN 21.7 2.8 -2.1 -0.9 2.4 1.6 -0.7 -6.7 -7.0 -7.2	ACH NO OUT 0.468 0.552 0.556 0.535 0.505 0.545 0.533 0.533	VEL 0UT 169.5 186.4 195.8 196.9 179.0 179.8 191.6 188.8 187.6	0UT 24.359 23.896 22.969 22.037 21.290 20.544 20.173 18.326 17.412
DENCE SS 14.9 -3.7 -8.3 -6.7 -3.0 -5.7 -11.0 -10.9 -10.7 -7.0	REL M IN 0.421 0.565 0.622 0.631 0.635 0.604 0.734 0.741 0.747	REL IN 153.7 202.2 219.2 222.2 224.2 212.7 221.0 253.2 255.1 256.8 263.2	ABS 1N 57.0 37.8 32.2 37.0 36.9 35.1 31.8 33.3 35.2 39.7
DEV 10.2 8.9 5.7 6.5 8.0 4.7 4.8 5.8 5.9 4.8	ACH NO 0.468 0.552 0.556 0.555 0.505 0.505 0.505 0.545 0.537 0.533	VEL 0UT 169.5 186.4 195.8 196.9 179.0 179.8 191.6 188.8 187.6 188.0	BETAM OUT 1.8 0.6 -2.2 -1.1 0.4 -2.8 -2.0 -2.0 -3.3 -1.6
D-FACT 0.161 0.272 0.282 0.280 0.322 0.353 0.350 0.374 0.387 0.398 0.418	MERID M IN 0.229 0.446 0.526 0.528 0.507 0.483 0.516 0.624 0.619 0.610	MER(1N 83.8 159.8 185.6 179.0 170.0 180.8 215.3 213.2 209.9 202.4	RELL 1N 57.0 37.8 32.2 37.0 36.9 35.1 31.8 33.3 35.2
EFF 0. 0. 0. 0. 0. 0. 0.	0.468 0.520 0.555 0.555 0.535 0.505 0.505 0.505 0.537 0.532	D VEL 0UT 169.5 186.4 195.7 196.9 178.8 179.6 191.5 188.7 187.3	BETAM OUT 1.8 0.6 -2.2 -1.1 0.4 -2.9 -2.8 -2.0 -2.0 -3.3 -1.6
LOSS C TOT -0.208 0.119 0.053 0.073 0.168 0.115 0.176 0.091 0.083 0.073 0.073		TAN IN 128.9 123.9 116.7 121.8 135.0 127.8 127.0 133.3 140.1 148.0	TOTA IN 343.4 339.4 333.5 335.7 331.3 330.2 328.2 327.6 327.1 331.2
PR0F		OVEL OUT 5.3 2.1 -7.4 -3.9 1.5 -9.1 -8.8 -6.5 -6.5 -10.6 -5.2	RATIO 0.992 0.993 0.996 0.997 0.987 0.991 0.992 0.992 0.993 0.996 0.992
LOSS P. TOT -0.068 0.038 0.016 0.022 0.048 0.031 0.047 0.022 0.019 0.015 0.018		WHEEL IN 0. 0. 0. 0. 0. 0.	TOTAL IN 14.03 15.27 15.24 15.43 15.62 14.71 15.04 15.37 15.31 15.43
PROF	PEAK SS MACH NO 0.940 0.875 0.862 0.939 0.878 0.869 0.859 0.871 0.887	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	PRESS RATIO 1.024 0.977 0.988 0.960 0.975 0.959 0.973 0.977 0.971

(o) Reading 895

RP 123345678910	RADII IN 0UT 24,447 24,359 23,937 23,896 22,913 22,969 21,887 22,037 21,064 21,290 20,239 20,544 19,827 20,173 17,767 18,326 16,739 17,412 15,715 16,500 15,207 16,040	ABS BETAM IN OUT 41.1 0.0 30.5 -1.27.6 -3.3 28.6 -2.3 32.8 -1.6 33.7 -3.6 32.6 -4.3 29.9 -3.6 30.4 -3.6 35.0 -2.4 36.3 0.1	IN OUT 41.1 0.0 430.5 -1.4 527.6 -3.3 728.6 -2.7 32.8 -1.0 33.7 -3.9 532.6 -4.3 29.9 -3.0 30.4 -3.3 33.0 -2.4	TOTAL TEMP IN RATIO 337.2 0.987 330.8 0.996 327.3 0.996 327.1 0.997 329.6 0.989 325.2 0.993 325.3 0.990 327.4 0.986 325.8 0.990 327.2 0.988 329.8 0.989	TOTAL PRESS IN RATIO 13.53 0.983 14.25 0.980 14.46 0.968 14.53 0.965 14.72 0.951 13.47 0.986 13.88 0.959 14.97 0.957 15.08 0.958 15.30 0.955 15.18 0.974
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 172.7 184.7 199.9 203.6 214.8 211.0 219.3 211.6 215.9 207.2 196.9 196.0 208.1 195.2 259.3 209.3 265.7 211.5 272.8 213.8 273.5 217.8	REL VEL IN 0UT 172.7 184.7 199.9 203.6 214.8 211.0 219.3 211.6 215.9 207.2 196.9 196.0 208.1 195.2 259.3 209.3 265.7 211.5 272.8 213.8 273.5 217.8	MERID VEL IN OUT 130.1 184.7 172.3 203.6 190.3 210.7 192.6 211.4 181.4 207.2 163.8 195.5 175.2 194.7 224.8 209.1 229.3 211.1 228.7 213.7 220.3 217.8	TANG VEL JN OUT 113.6 0.1 101.3 -5.0 99.5 -12.0 104.9 -10.1 116.9 -3.6 109.2 -13.5 112.2 -14.5 129.3 -11.0 134.3 -12.2 148.7 -8.9 162.0 0.3	WHEEL SPEED IN OUT 0.
RP 1 2 3 4 5 6 7 8 9 11 1	ABS MACH NO IN OUT 0.480 0.519 0.566 0.578 0.614 0.604 0.628 0.606 0.615 0.559 0.755 0.602 0.778 0.609 0.799 0.616 0.798 0.625	REL MACH NO IN OUT 0.480 0.519 0.566 0.578 0.614 0.604 0.628 0.606 0.615 0.592 0.562 0.561 0.596 0.559 0.775 0.602 0.778 0.609 0.799 0.616 0.798 0.625	MERID MACH NO IN OUT 0.361 0.519 0.488 0.578 0.544 0.603 0.552 0.605 0.517 0.592 0.467 0.560 0.502 0.558 0.654 0.601 0.671 0.608 0.670 0.615 0.643 0.625		MERID PEAK SS VEL R MACH NO 1.420 0.798 1.181 0.730 1.107 0.718 1.097 0.749 1.142 0.820 1.193 0.753 1.111 0.768 0.930 0.817 0.921 0.786 0.934 0.868 0.989 0.958
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 5.9 10.00 -4.5 20.00 -6.6 30.00 -5.6 38.00 -1.8 46.00 -1.7 50.00 -3.2 70.00 -8.6 80.00 -9.9 90.00 -9.3 95.00 -7.0	IDENCE SS -0.9 8.5 -11.1 6.8 -12.8 4.6 -11.3 4.9 -7.3 6.6 -6.8 3.7 -8.2 3.3 -12.8 4.7 -13.8 4.6 -12.9 5.7 -10.4 8.2	D-FACT EFF 0.147 0. 0.153 0. 0.178 0. 0.190 0. 0.198 0. 0.174 0. 0.224 0. 0.321 0. 0.327 0. 0.336 0. 0.321 0.	LOSS COEFF TOT PROF 0.115 0.115 0.105 0.105 0.143 0.143 0.149 0.149 0.217 0.217 0.071 0.071 0.194 0.194 0.137 0.137 0.128 0.128 0.132 0.132 0.075 0.075	LOSS PARAM TOT PROF 0.038 0.038 0.034 0.034 0.044 0.044 0.042 0.062 0.019 0.019 0.052 0.052 0.033 0.033 0.029 0.029 0.028 0.028 0.015 0.015

(p) Reading 916

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24.447 23.937 22.913 21.887 21.064 20.239 19.827 17.767 16.739 15.715 15.207	0UT 24.359 23.896 22.969 22.037 21.290 20.544 20.173 18.326 17.412	ABS 1N 55.2 47.1 42.5 42.8 46.8 50.4 50.3 46.5 47.7 47.3 49.4	BETAM OUT 4.3 1.8 3.5 3.2 2.9 3.4 3.8 3.1 6.6 10.2	RELL 1N 55.2 47.1 42.5 42.8 46.8 50.4 50.3 46.5 47.7 47.3 49.4	BETAM 0VT 4.2 4.3 1.8 3.5 3.2 2.9 3.4 3.8 3.1 6.6 10.2	TOTA IN 370.2 356.4 347.8 344.8 345.2 344.1 342.7 333.5 331.7 330.8 335.6	L TEMP RAT[0 0.978 1.000 1.000 0.999 0.994 0.994 1.007 1.007	TOTAL IN 18.20 17.96 17.78 17.58 17.29 16.67 15.93 15.80 15.85	PRESS RATIO 0.952 0.969 0.963 0.964 0.962 0.974 0.977 1.012 1.007 0.937
RP 1 2 3 4 5 6 7 8 9 1 1 1	ABS IN 237.1 230.9 227.2 222.3 213.6 212.2 205.6 209.3 219.3	VEL 0UT 178.2 176.9 171.7 165.6 153.1 141.6 137.4 128.4 110.9 65.3	REL 1N 237.1 230.9 227.2 222.3 213.6 212.2 205.6 208.3 219.3 243.4	VEL 0UT 178.2 176.9 171.7 165.6 153.1 141.6 137.4 128.4 110.9 65.3	MERI 1N 135.3 157.1 170.2 166.6 152.2 136.2 135.6 141.5 140.2 148.7	D VEL 0UT 177.7 176.4 171.7 165.3 152.8 141.5 137.1 128.1 120.2 1110.2 64.3	TAN IN 194.7 168.9 154.4 162.0 164.5 163.2 149.2 154.0 161.1	G VEL OUT 13.0 13.3 5.4 10.0 8.6 7.2 8.2 8.5 6.6 12.8	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS M IN 0.639 0.645 0.635 0.619 0.594 0.592 0.591 0.625 0.694	ACH NO 0.478 0.478 0.470 0.455 0.419 0.388 0.357 0.354 0.355 0.178	REL M IN 0.639 0.634 0.643 0.635 0.619 0.594 0.592 0.581 0.694	0.478 0.478 0.478 0.470 0.455 0.419 0.388 0.377 0.354 0.332 0.178	MERID M IN 0.365 0.452 0.474 0.465 0.424 0.379 0.379 0.397 0.424 0.452	0.477 0.477 0.469 0.454 0.419 0.358 0.356 0.353 0.175				PEAK SS MACH NO 1.384 1.180 1.092 1.075 1.123 1.138 1.124 0.984 0.995 1.011 1.153
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 46.00 50.00 80.00	INCI MEAN 19.9 12.1 8.4 8.7 12.0 14.5 8.1 7.4	DENCE SS 13.2 5.6 2.1 3.0 6.8 9.9 9.6 3.9	DEV 12.7 12.6 9.7 11.1 10.8 10.5 11.1 11.6	D-FACT 0.501 0.451 0.457 0.458 0.507 0.537 0.547 0.537 0.579	EFF 0. 0. 0. 0. 0. 0.		0EFF PR0F 0.201 0.132 0.154 0.150 0.168 0.121 0.111 -0.059	LOSS F TOT 0.066 0.042 0.048 0.044 0.048 0.030 -0.014 -0.008	PROF 0.066 0.042 0.048 0.044 0.048 0.033 0.030 -0.014

(q) Reading 927

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 0UT 24.447 24.359 23.937 23.896 22.913 22.969 21.887 22.037 21.064 21.290 20.239 20.544 19.827 20.173 17.767 18.326 16.739 17.412 15.715 16.500 15.207 16.040	ABS BETAM IN OUT 50.6 3.4 44.4 3. 40.8 -0. 40.5 1. 42.4 2. 43.3 1. 43.6 1. 44.5 2. 46.5 0.8 47.1 2. 49.2 3.	IN OUT 6 50.6 3.6 1 44.4 3.1 0 40.8 -0.0 3 40.5 1.3 1.1 42.4 2.1 1 43.3 1.1 6 43.6 1.6 0 44.5 2.0 3 46.5 0.8 0 47.1 2.0	IN RATIO 365.3 0.986 353.0 0.999 344.0 1.001 340.9 1.000 340.8 0.997 338.6 0.998 337.8 0.997 332.4 0.999 329.3 1.005 328.4 1.014	TOTAL PRESS IN RATIO 17.68 0.955 17.43 0.975 17.09 0.979 17.04 0.973 16.90 0.967 16.59 0.953 16.47 0.954 15.61 0.996 15.50 1.009 16.31 0.938
R + 254561.896.	ABS VEL IN OUT 235.9 187.9 228.7 188.2 225.0 183.9 222.8 177.3 222.6 169.5 217.0 155.6 215.4 150.4 206.1 139.9 205.6 128.9 231.2 114.7	REL VEL 1N 0UT 235.9 187.9 228.7 188.2 225.0 183.9 222.8 177.3 222.6 169.5 217.0 155.6 215.4 150.4 206.1 139.0 199.3 135.9 231.2 114.7	MERID VEL (N 00T 149.6 187.5 163.3 187.9 170.3 183.9 169.4 177.2 164.5 169.4 157.8 155.6 155.9 150.3 146.9 138.9 137.2 135.9 140.0 128.8 151.0 114.5	TANG VEL IN OUT 182.3 11.7 160.1 10.1 147.0 -0.1 144.8 4.1 150.1 6.2 148.9 2.9 148.6 4.1 144.5 1.8 150.6 4.6 175.2 6.4	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R1254561-89011	ABS MACH NO IN OUT 0.640 0.507 0.631 0.513 0.629 0.507 0.625 0.491 0.625 0.469 0.610 0.430 0.606 0.416 0.583 0.386 0.565 0.378 0.585 0.357 0.659 0.316	REL MACH NO IN OUT 0.640 0.507 0.631 0.513 0.629 0.507 0.625 0.491 0.625 0.469 0.610 0.430 0.606 0.416 0.583 0.386 0.565 0.378 0.585 0.357 0.659 0.316	MERID MACH NO IN OUT 0.406 0.506 0.451 0.512 0.476 0.507 0.475 0.490 0.461 0.469 0.443 0.430 0.439 0.416 0.415 0.386 0.389 0.378 0.398 0.357 0.430 0.316	!	MERID PEAK SS VEL R MACH NO 1.253 1.277 1.151 1.118 1.080 1.031 1.047 1.011 1.030 1.038 0.986 1.020 0.964 1.012 0.945 0.948 0.990 0.930 0.920 0.943 0.759 1.091
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC. SPAN MEAN 5.00 15.4 10.00 9.5 20.00 6.6 30.00 6.4 38.00 7.8 46.00 8.0 50.00 7.9 70.00 6.1 80.00 6.2 90.00 4.8 95.00 5.9	DENCE SS 8.6 12.1 3.0 11.4 0.4 7.9 0.7 9.0 2.3 9.7 2.9 8.7 2.9 9.7 2.9 9.7 2.3 8.7 1.2 10.1 2.5 11.3	D-FACT EFF 0.441 0. 0.389 0. 0.384 0. 0.390 0. 0.421 0. 0.466 0. 0.486 0. 0.476 0. 0.476 0. 0.520 0. 0.649 0.	LOSS COEFF TOT PROF 0.186 0.186 0.106 0.106 0.091 0.091 0.118 0.118 0.144 0.144 0.210 0.210 0.209 0.209 0.112 0.112 0.022 0.022 -0.045 -0.045 0.247 0.247	LOSS PARAM TOT PROF 0.061 0.061 0.034 0.034 0.028 0.028 0.035 0.035 0.041 0.041 0.057 0.057 0.056 0.056 0.027 0.027 0.005 0.005 -0.009 -0.009 0.050 0.050

(r) Reading 938

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24,447 23,937 22,913 21,887 21,064 20,239 19,827 17,767 16,739 15,715 15,207	OUT 24.359 23.896 22.969 22.037 21.290 20.544 20.173 18.326 17.412 16.500	ABS IN 49.4 42.9 39.7 39.8 41.5 40.7 39.7 41.4 44.1	BETAM OUT 3.1 2.0 -0.6 -0.3 1.3 -1.4 -1.0 0.8 -0.6 -1.8	RELIN 49.4 42.9 39.7 39.8 41.5 40.7 39.7 41.0 44.1	BETAM OUT 3.1 2.0 -0.6 -0.3 1.3 -1.4 -1.0 0.8 -0.6 -1.8	TOTA IN 358.1 347.7 340.7 338.8 338.3 334.6 333.5 331.1 329.0 327.2 332.2	L TEMP RAT10 0.988 0.998 0.998 0.997 1.001 1.000 0.998 1.001 1.001	TOTAL IN 16.69 16.64 16.51 16.49 16.45 16.03 16.16 16.07 15.67	PRESS RAFIO 0.953 0.975 0.982 0.979 0.973 0.965 0.969 0.981 1.003
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 216.0 215.0 215.6 215.4 210.3 214.1 224.7 218.8 219.9 242.4	VEL 0UT 175.7 183.9 186.3 183.8 177.8 167.1 164.8 159.2 156.4 150.4 140.6	REL IN 216.0 215.6 215.6 215.4 210.3 214.1 224.7 218.8 219.9	VEL 0UT 175.7 183.9 186.3 183.8 177.8 167.1 164.8 159.2 156.4 140.6	MERI IN 140.6 157.0 165.4 165.6 161.3 159.4 164.7 175.4 165.1	D VEL OUT 175.5 183.8 183.8 177.8 167.0 164.8 159.2 156.4 150.3	TAN IN 163.9 145.8 137.4 138.1 142.6 137.2 136.9 140.5 143.5 145.5 168.6	G VEL OUT 9.6 6.3 -2.0 -1.0 -4.1 -2.8 2.2 -1.7 -4.7	IN 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS M 1.589 0.589 0.602 0.605 0.605 0.605 0.605 0.605 0.605 0.605	0.477 0.477 0.505 0.517 0.512 0.495 0.465 0.466 0.438 0.438 0.390	REL M 0.589 0.593 0.602 0.605 0.605 0.605 0.641 0.625 0.630 0.695	0.477 0.505 0.517 0.512 0.495 0.465 0.465 0.446 0.438 0.438 0.390	MERID N IN 0.383 0.455 0.465 0.465 0.450 0.466 0.500 0.472 0.473 0.499	1ACH NO OUT 0.476 0.505 0.517 0.512 0.495 0.465 0.466 0.446 0.438 0.439				PEAK S MACH 1.148 1.148 0.965 0.965 0.987 0.940 0.932 0.916 0.912 0.912
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 38.00 46.00 70.00 80.00 95.00	INCI MEAN 14.1 8.5 5.8 6.9 5.4 4.0 0.2 0.7 9	DENCE SS 7.4 1.4 -0.7 -0.0 1.5 0.3 -1.0 -4.0 -3.2 -4.5 -2.6	DEV 11.63 7.34 8.9 6.27 8.53 8.8	D-FACT 0.422 0.351 0.334 0.337 0.356 0.388 0.403 0.437 0.432 0.458 0.557	EFF 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.225 0.117 0.085 0.097 0.122 0.164 0.199 0.129 0.082 -0.014 0.216	PROF 0.225 0.117 0.085 0.097 0.122 0.164 0.199 0.129 0.082	LOSS F TOT 0.074 0.038 0.026 0.029 0.035 0.045 0.053 0.018 -0.003 0.044	PROF 0.074 0.038 0.026 0.029 0.035 0.045 0.053 0.031

(s) Reading 950

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.447 24.359 23.937 23.896 22.913 22.969 21.887 22.037 21.064 21.290 20.239 20.544 19.827 20.173 17.767 18.326 16.739 17.412 15.715 16.500 15.207 16.040	ABS BETAM IN OUT 44.6 2.0 38.6 1.1 36.3 -1.3 37.2 -0.9 40.1 0.9 39.6 -2.6 37.7 -2.2 34.7 -1.5 36.8 -1.6 37.4 -4.0 40.3 -2.0	38.6 1.1 36.3 -1.3 37.2 -0.9 40.1 0.9 39.6 -2.6 37.7 -2.2	TOTAL TEMP IN RATIO 350.6 0.992 340.9 1.004 335.5 0.998 336.1 0.994 332.1 0.997 330.9 0.998 329.3 0.995 328.8 0.995 327.1 1.004 331.0 0.998	TOTAL PRESS IN RATIO 15.83 0.944 15.79 0.978 15.85 0.981 15.91 0.974 15.27 0.975 15.52 0.967 15.69 0.969 15.37 0.983 15.82 0.947
RP 1 23 4 5 6 7 8 9 11 1	ABS VEL IN OUT 207.0 165.9 205.0 181.3 208.6 188.6 212.6 189.6 211.2 183.1 203.5 174.2 210.0 175.1 236.8 184.5 237.7 181.2 238.2 177.7 252.7 173.4	REL VEL IN OUT 207.0 165.9 205.0 181.3 208.6 188.6 212.6 189.6 211.2 183.1 203.5 174.2 210.0 175.1 236.8 184.5 237.7 181.2 238.2 177.7 252.7 173.4	MERID VEL [N OUT 147.5 165.8 160.1 181.3 168.0 188.5 169.4 189.6 161.7 183.1 156.9 174.0 166.1 175.0 194.8 184.5 190.3 181.1 189.1 177.3 192.8 173.3	TANG VEL IN OUT 145.3 5.9 128.0 3.4 123.6 -4.2 128.5 -3.0 135.9 2.9 129.7 -8.0 128.5 -6.7 134.7 -4.7 142.6 -5.0 144.8 -12.5 163.4 -6.1	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.569 0.453 0.572 0.501 0.587 0.527 0.600 0.531 0.595 0.513 0.575 0.489 0.596 0.492 0.684 0.513 0.687 0.501 0.729 0.487	REL MACH NO IN OUT 0.569 0.453 0.572 0.501 0.587 0.527 0.600 0.531 0.595 0.489 0.596 0.492 0.680 0.522 0.684 0.513 0.687 0.501 0.729 0.487	MERID MACH NO [N OUT 0.406 0.452 0.446 0.501 0.473 0.527 0.478 0.531 0.455 0.513 0.444 0.488 0.471 0.492 0.560 0.522 0.547 0.512 0.546 0.500 0.556 0.487		MERID PEAK SS VEL R MACH NG 1.124 1.014 1.132 0.901 1.122 0.874 1.119 0.902 1.132 0.942 1.109 0.889 1.054 0.877 0.947 0.875 0.952 0.899 0.937 0.877 0.899 0.985
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 9.3 10.00 3.7 20.00 2.2 30.00 3.1 38.00 5.5 46.00 4.3 50.00 2.0 70.00 -3.8 80.00 -3.4 90.00 -4.9 95.00 -3.0	DENCE SS 2.5 10.5 -2.8 9.4 -4.0 6.6 -2.7 6.8 0.0 8.5 -0.9 5.0 -3.0 6.3 -7.3 6.3 -8.5 4.1 -6.4 6.1	D-FACT EFF 0.420 0. 0.311 0. 0.285 0. 0.290 0. 0.311 0. 0.328 0. 0.337 0. 0.360 0. 0.376 0. 0.391 0. 0.448 0.	LOSS COEFF TOT PROF 0.284 0.284 0.110 0.110 0.093 0.093 0.088 0.088 0.124 0.124 0.125 0.125 0.156 0.125 0.156 0.123 0.117 0.117 0.063 0.063 0.177 0.177	LOSS PARAM TOT PROF 0.093 0.093 0.035 0.035 0.029 0.029 0.026 0.026 0.035 0.035 0.034 0.034 0.042 0.042 0.030 0.030 0.026 0.026 0.013 0.013 0.036 0.036

TABLE IX. - Concluded.

(t) Reading 963

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 23 4 5 6 7 8 9 10 11	R1234567-8961	RP 1 23 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 38.00 50.00 70.00 80.00 90.00 95.00	ABS M 0.5565 0.5888 0.6047 0.5466 0.707 0.728 0.728	ABS IN 200.1 200.0 206.7 212.1 206.8 192.3 201.9 244.4 250.6 259.5 269.5	16.739
INCI MEAN 0.2 -3.8 -3.7 -2.5 0.6 -1.1 -7.4 -8.3 -8.6 -7.1	0.504 0.555 0.582 0.587 0.539 0.539 0.581 0.581 0.583	VEL 0UT 181.3 197.0 204.8 206.7 200.8 189.6 189.3 203.0 202.9 203.6 206.8	OUT 24.359 23.896 22.969 22.037 21.290 20.544 20.173 18.326 17.412 16.500
DENCE SS -6.6 -10.3 -9.9 -8.3 -4.7 -4.5 -6.1 -11.6 -12.2 -12.2	REL M IN 0.559 0.565 0.588 0.604 0.576 0.707 0.728 0.756 0.785	REL 1N 200.1 200.0 212.1 206.8 192.3 201.9 244.4 250.6 259.5	ABS IN 35.4 31.1 30.5 31.5 35.4 35.9 34.6 31.1 32.0 33.7 36.2
DEV 8.9 6.8 4.8 5.6 7.2 3.7 4.0 4.9 4.8 4.7 6.7	OUT 0.504 0.555 0.582 0.587 0.570 0.539 0.539 0.581 0.583 0.590	VEL OUT 181.3 197.0 204.8 206.7 200.8 189.6 189.3 203.0 202.9 203.6 206.8	BETAM OUT 0.4 -1.5 -3.1 -2.0 -0.4 -3.9 -3.6 -2.9 -3.1 -3.1
D-FACT 0.283 0.190 0.182 0.190 0.195 0.192 0.229 0.302 0.318 0.340 0.355	MERID M IN 0.455 0.484 0.506 0.515 0.478 0.474 0.606 0.618 0.629 0.633	MERI IN 163.0 171.2 178.1 180.8 168.7 155.7 166.1 209.4 212.6 217.5	REL IN 35.4 31.5 35.4 35.9 34.6 31.1 32.0 33.7 36.2
EFF 0. 0. 0. 0. 0. 0. 0.	OUT 0.504 0.554 0.581 0.587 0.570 0.538 0.538 0.580 0.580 0.582 0.589	D VEL 0UT 181.3 197.0 204.5 206.5 200.8 189.2 188.9 202.7 202.6 203.3 206.7	BETAM OUT 0.4 -1.5 -3.1 -2.0 -0.4 -3.9 -3.6 -2.9 -3.1 -3.4 -1.5
LOSS C TOT 0.306 0.120 0.161 0.124 0.180 0.111 0.202 0.099 0.115 0.126 0.143		TAN 1N 116.1 103.4 105.0 111.0 119.7 112.9 114.7 126.1 132.6 144.0 159.1	TOTA IN 339.0 331.7 329.2 329.3 330.7 326.7 326.4 326.8 325.9 326.6 329.9
0EFF PROF 0.306 0.120 0.161 0.124 0.180 0.111 0.202 0.099 0.115 0.126 0.143		1G VEL OUT 1.2 -5.3 -11.2 -7.3 -13.1 -12.0 -10.1 -11.1 -5.3	RATIO 0.999 1.005 1.000 1.000 0.994 0.996 0.995 0.992 0.992 0.992
LOSS P TOT 0.101 0.039 0.050 0.037 0.051 0.054 0.024 0.026 0.027 0.029		WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	IN 14.64 14.66 14.93 14.97 15.00
PROF 0.101 0.039 0.050 0.037 0.051 0.054 0.024 0.026 0.027 0.029	PEAK SS MACH NG 0.822 0.744 0.755 0.790 0.835 0.777 0.785 0.807 0.813 0.849 0.939	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	PRESS RATIO 0.941 0.977 0.966 0.973 0.963 0.980 0.952 0.966 0.960 0.960

Figure 1. - Flow path for IGV and stage showing axial location of instrumentation.

Figure 2. - Inlet guide vane.

Figure 3. - Compressor test facility.

(a) Rotor.

(b) Compressor casing with IGV's and stators installed.

Figure 4. - Test hardware.

Figure 5. - Blade angle slots.

Figure 6. - Circumferential grooves.

Figure 7. - Axial skewed slots.

Figure 8. - Combination sensing probe.

Figure 9. - Circumferential locations of measurements (looking downstream; clockwise rotation).

FIGURE 10. - ROTOR OVERALL PERFORMANCE.

FIGURE 12. - RADIAL DISTRIBUTION OF INLET GUIDE VANE TOTAL LOSS COEFFICIENT.

FIGURE 13, - RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR WITH SOLID CASING (REF. 1), 100 PERCENT DESIGN SPEED,

FIGURE 14. - RADIAL DISTRIBUTION OF PERFORMANCE FOR STATOR WITH SOLID CASING (REF. 1), 100 PERCENT DESIGN SPEED.

FIGURE 15, - RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR WITH'AXIAL SKEWED SLOTS CASING TREATMENT, 100 PERCENT DESIGN SPEED.

Page Intentionally Left Blank

FIGURE 16. - RADIAL DISTRIBUTION OF PERFORMANCE FOR STATOR WITH AXIAL SKEWED SLOTS CASING TREATMENT. 100 PERCENT DESIGN SPEED.

FIGURE 17, - BLADE-ELEMENT PERFORMANCE FOR ROTOR,

FIGURE 17. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR.

FIGURE 17. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR.

(F) 90.0 PERCENT SPAN.

FIGURE 17. - CONCLUDED. BLADE-ELEMENT PERFORMANCE FOR ROTOR.

FIGURE 18. - BLADE-ELEMENT PERFORMANCE FOR STATOR.

FIGURE 18, - CONTINUED, BLADE-ELEMENT PERFORMANCE FOR STATOR,

FIGURE 18, - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR STATOR,

FIGURE 18. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR STATOR,

FIGURE 18. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR STATOR.

FIGURE 18. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR STATOR.

FIGURE 18, - CONCLUDED, BLADE-ELEMENT PERFORMANCE FOR STATOR,

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546