日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 3月20日

出 願 番 号 Application Number:

特願2003-076890

[ST. 10/C]:

Applicant(s):

[JP2003-076890]

出 願 人

セイコーエプソン株式会社

2003年 9月 9日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【提出日】 平成15年 3月20日

【あて先】 特許庁長官 太田 信一郎 殿

【国際特許分類】 B41J 2/175

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 橋井 一博

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 品田 聡

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 坂井 康人

【特許出願人】

【識別番号】 000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】 100087974

【弁理士】

【氏名又は名称】 木村 勝彦

【先の出願に基づく優先権主張】

【出願番号】 特願2002-341826

【出願日】 平成14年11月26日

【手数料の表示】

【予納台帳番号】 199739

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0215606

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 インクカートリッジ、及び記録装置

【特許請求の範囲】

【請求項1】 インク容器を構成する底壁面の、一方の側に偏した位置に形成されたインク供給口と、前記底壁面と隣接し、前記インク供給口から遠方の壁面下部に形成され、記録装置に装着された状態では上面、及び側部の位置を規制される位置決め用凸部と、前記壁面に対向する他方の壁面に形成され、前記他方の壁面から間隔をおいて上方に延び、その途中に記録装置の一部と係合する係合部を備えた弾性変形可能なレバーと、前記インク容器に配設された記憶手段と接続する前記位置決め用凸部に形成された電極群とからなるインクカートリッジ。

【請求項2】 前記レバーの下方に前記容器の装填方向に伸びるガイド用凸部が形成されている請求項1に記載のインクカートリッジ。

【請求項3】 前記位置決め用凸部が形成されている壁面に隣接する他の壁面に、回動支援用凹部が形成されている請求項1に記載のインクカートリッジ。

【請求項4】 前記インク供給口に付勢手段により常時閉弁状態を維持する 弁体が収容されている請求項1に記載のインクカートリッジ。

【請求項5】 前記記録装置に装着された場合に、前記レバーの上部を外方に強制的に変位させる突起が前記レバーに形成されている請求項1に記載のインクカートリッジ。

【請求項6】 前記突起は、前記レバーの両側面に設けられている請求項5 に記載のインクカートリッジ。

【請求項7】 前記位置決め用凸部のインクカートリッジの列設方向における幅が、前記インク容器の幅よりも狭く形成されている請求項1に記載のインクカートリッジ。

【請求項8】 前記記録装置に装着された状態における位置決め用凸部の上面となる領域が平坦面として形成されている請求項1に記載のインクカートリッジ。

【請求項9】 前記電極群は、複数の電極列から構成されており、前記インク供給口の軸方向と平行な線に対して垂直に形成されている請求項1に記載のイ

ンクカートリッジ。

【請求項10】 前記位置決め用凸部の上面が、インクカートリッジの挿入 方向に対して前記レバーの係合部よりも奥側に位置するように配置されている請 求項1に記載のインクカートリッジ。

【請求項11】 前記レバーが、前記インク容器を前記位置決め用凸部側に変位させる弾性力を発現するように構成されている請求項1に記載のインクカートリッジ。

【請求項12】 前記インク供給口に前記記録装置の流路形成部材と係合する弾性シール材が収容されている請求項1に記載のインクカートリッジ。

【請求項13】 前記位置決め用凸部の上面と前記インク供給口の中心との距離がL、取り外し時の回動角が θ 、前記流路形成部材の進入長さがH、前記弾性シール材の位置ずれ許容範囲を ΔL としたとき、

 $L \ge H/\tan \theta + \Delta L$

なる関係を満足する請求項12に記載のインクカートリッジ。

【請求項14】 前記位置決め用凸部が形成されている壁面に挟持用の凹部または凸部が形成されている請求項1に記載のインクカートリッジ。

【請求項15】 前記インク供給口が前記位置決め用凸部と対向する面側に偏して形成され、前記位置決め用凸部の前記上面を中心に回動して記録装置から外される請求項1に記載のインクカートリッジ。

【請求項16】 インク容器を構成する底壁面の、一方の側に偏した位置に 形成されたインク供給口と、前記底壁面と隣接し、前記インク供給口から遠方の 壁面下部に形成され、記録装置に装着された状態では上面、及び側部の位置を規 制される位置決め用凸部と、前記壁面に対向する他方の壁面に形成され、前記他 方の壁面から間隔をおいて上方に延び、その途中に記録装置の一部と係合する係 合部を備えた弾性変形可能なレバーと、前記インク容器に配設された記憶手段と 接続する前記位置決め用凸部に形成された電極群とからなるインクカートリッジ が装着される記録装置であり、

記録ヘッドに連通し、かつ前記インクカートリッジが装着された状態で前記インク供給口に対向する位置に形成された流路形成部材と、前記位置決め用凸部の

3/

両側面に当接する幅方向規制用凸部と、前記位置決め用凸部の上面に当接する位置規制用の弾性片とを備えたインクジェット記録装置。

【請求項17】 前記弾性片は、前記インクカートリッジの装填時に前記位置決め用凸部の下部に押されて弾性変形可能で、前記インクカートリッジの装着が完了した時点では元の位置に復帰して前記位置決め用凸部の上面に当接する請求項16のインクジェット記録装置。

【請求項18】 前記幅方向規制用凸部の前記インクカートリッジに形成された回動支援用凹部に対応する位置に凸部が形成されている請求項16に記載のインクジェット記録装置。

【請求項19】 前記電極群に接触するコンタクト群を有する請求項14に 記載のインクジェット記録装置。

【請求項20】 前記インク容器が容器本体と蓋体とにより構成され、また 前記レバーが、その一端を前記容器本体に固定され、その側部に突起を有し、前 記突起と係合して前記レバーの上部を外方に回動させるガイド溝を備えた請求項 16に記載のインクジェット記録装置。

【請求項21】 前記インクカートリッジの取り外し時の回動中心である前記位置決め用凸部の上面と前記インク供給口の中心との距離をL、取り外し時の回動角を θ 、前記流路形成部材の進入長さをH、前記インク供給口に装着された前記弾性シール材の位置ずれ許容範囲を ΔL としたとき、

 $L \ge H/\tan \theta + \Delta L$

なる関係を満足する請求項16に記載のインクジェット記録装置。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、ノズル開口からインク滴を吐出して画像などのデータを印刷する記録へッドを搭載したキャリッジに着脱可能に装着されるインクを供給するインクカートリッジ及びインクジェット記録装置に関する。

[0002]

【従来の技術】

キャリッジに着脱可能に装着されるインクカートリッジは、インク供給針など記録へッドに連通する流路形成部材と確実な液密状態を維持する一方で、交換のために容易に着脱できることが求められる。さらにインク情報を記憶した記憶手段が付帯されたカートリッジにあっては、記録装置とのコンタクトを図るため、インクカートリッジには接点が設けられていて、記録装置のコンタクト手段と確実に接触できるようにカートリッジホルダにインクカートリッジを収容する必要がある。

[0003]

このため、たとえば特許文献1に見られるようにインク容器を構成する1つの 壁面にインク供給口を形成するとともに、この壁面を挟むように対向する一方の 壁面には記憶手段、及び接点群を設け、この接点群を挟むように2つの第1の突 起が、また他方の壁面には拡開方向に付勢されたレバーが設けられている。

またインク容器と協働する記録装置のインク容器受けには第1の突起と上面、 及び側部で係合する2つの第2の突起と、レバーと係合する凹部が設けられてい る。

このような構成により、インクカートリッジの装填時には、第1の突起を第2の突起に最初に係合させるように容器を斜めにインク容器受けに装填し、ついで他方の側を押し込む。この過程でインク供給口がインク供給用の流路形成部材に当接し、またレバーが凹部に係合してインクが供給可能な状態でインク容器がインク容器受けに固定される。

インクカートリッジがインク容器受けに固定されている状態では、インク容器 受けに設けられたバネによりインク容器を常時上方に押圧するため、インク容器 の2つの第1の突起とインク容器受けの2つの第2の突起とがそれぞれ上下、左 右の2つの方向で係合して、インク容器は上下、左右の位置を基準位置に規制さ れ、インク容器の接点群がインク容器受けのコンタクト群を確実に接触状態を維 持する。

またインクカートリッジの取り外しに際しては、レバーと凹部との係合を解除するようにレバーを押し込みつつ斜め上方に回動させて、インク供給口とインク供給用の流路形成部材との当接と、第1の突起と第2の突起の係合を解除する必

要がある。

【特許文献1】

国際公開第01/54910号パンフレット

[0004]

【発明が解決しようとする課題】

しかしながら、インク容器の電極群の両側に位置決め用の2つの凸部が必要となるため、インク容器、及びインク容器受けの構造が複雑化し、また幅が広くなるという問題がある。

また、レバーが、自身の弾性力により拡開しているため、強い弾性力を発現させることができず、つまり容器側に変形されてコンパクトに箱などに収容した場合には、レバーの係合力が低下するという問題を抱えている。

さらには、インク容器の装着、または取り外しの際にインク容器を回動させて 移動させる機構を記録装置に備えた場合には、インク供給口と係合する流路形成 部材が長い場合には流路形成部材に大きな曲げ力が作用して流路形成部材の破損 や、インク供給口に装填されているパッキンを損傷するという問題がある。

本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、電極群の位置規制のための構造の簡素化と、小型化が可能なインクカートリッジを提供することである。

また、装着時にはインク供給口を流路形成部材に平行に移動させて押し込み操作だけで装着でき、取り外し時には流路形成部材に対する曲げ力の発生を可及的に抑制し、かつ取り外しのための回動を誘導して容易に取り外すことができるインクカートリッジを提供することである。

また、本発明の他の目的は、上記インクカートリッジに適したインクジェット 記録装置を提供することである。

[0005]

【課題を解決するための手段】

このような問題を解消するために請求項1の発明は、インク容器を構成する底壁面の、一方の側に偏した位置に形成されたインク供給口と、前記底壁面と隣接し、前記インク供給口から遠方の壁面下部に形成され、記録装置に装着された状

態では上面、及び側部の位置を規制される位置決め用凸部と、前記壁面に対向する他方の壁面に形成され、前記他方の壁面から間隔をおいて上方に延び、その途中に記録装置の一部と係合する係合部を備えた弾性変形可能なレバーと、前記インク容器に配設された記憶手段と接続する前記位置決め用凸部に形成された電極群とから構成されている。

これによれば、位置決め用凸部の両側、及び上面を規制するため、位置決め用凸部の幅を小さくしても電極群の位置を所定位置に保持させることができる。

また、レバーの上部をインク容器本体側に引き寄せて記録装置との係合を解除し、位置決め用凸部を支点とするような回動力を上方に発生させることで、流路 形成部材に対する曲げ力を可及的に抑えて、容易に取り外すことができる。

請求項2の発明は、前記レバーの下方に前記容器の装填方向に伸びるガイド用 凸部が形成されている。

これにより、インクカートリッジの装填時に、インク供給口側を確実に流路形成部材にガイドでき、また装着が完了した時点ではインクカートリッジの前後の幅方向の位置を所定位置に確実に保持することができる。

請求項3の発明は、前記位置決め用凸部が形成されている壁面に隣接する他の壁面に、回動支援用凹部が形成されている。

これによれば、取り外し時の回動を所定の軌跡にガイドすることができ、横ぶれに起因する流路形成部材への外力を可及的に小さくすることができる。

請求項4の発明は、前記インク供給口に付勢手段により常時閉弁状態を維持する弁体が収容されている。

記録装置側に付勢手段を必要とすることなく、振動などによるがたつきを防止 することができる。

請求項7の発明は、前記位置決め用凸部のインクカートリッジの列設方向における幅が、前記インク容器の幅よりも狭く形成されている。

これによりインクカートリッジをキャリッジに密着させて収容でき、キャリッジをコンパクトにしつつ、インクカートリッジを確実に位置決めすることができる。

請求項10の発明は、前記位置決め用凸部の上面が、インクカートリッジの挿

入方向に対して前記レバーの係合部よりも奥側に位置するように配置されている。
。

これにより、インクカートリッジの前の下部と奥の上部とで対角に保持して、 操作性と装着性とを両立させることができる。

請求項11の発明は、前記レバーが、前記インク容器を前記位置決め用凸部側に変位させる弾性力を発現するように構成されている。

これにより電極群を記録装置に確実にコンタクトさせることができる。

請求項12の発明は、前記インク供給口に前記記録装置の流路形成部材と係合する弾性シール材が収容されている。

これにより、レバー等による付勢力を弾性シール材で緩和して記録装置の流路 形成部材に局所的な力が作用するのを防止して、ダメージを低減することができ る。

請求項13の発明は、前記位置決め用凸部の上面と前記インク供給口の中心との距離がL、取り外し時の回動角が θ 、前記流路形成部材の進入長さがH、前記弾性シール材の位置ずれ許容範囲を ΔL としたとき、 $L \ge H/\tan \theta + \Delta L$ なる関係を満足するように構成されている。

これにより、流路形成部材に無理な外力を作用させたり、また弾性シール材に 永久歪みを残すことなく、回動させて取り外すことが可能となる。

請求項16の発明は、インク容器を構成する底壁面の、一方の側に偏した位置に形成されたインク供給口と、前記底壁面と隣接し、前記インク供給口から遠方の壁面下部に形成され、記録装置に装着された状態では上面、及び側部の位置を規制される位置決め用凸部と、前記壁面に対向する他方の壁面に形成され、前記他方の壁面から間隔をおいて上方に延び、その途中に記録装置の一部と係合する係合部を備えた弾性変形可能なレバーと、前記インク容器に配設された記憶手段と接続する前記位置決め用凸部に形成された電極群とからなるインクカートリッジが装着される記録装置であり、

記録ヘッドに連通し、かつ前記インクカートリッジが装着された状態で前記インク供給口に対向する位置に形成された流路形成部材と、前記位置決め用凸部の 両側面に当接する幅方向規制用凸部と、前記位置決め用凸部の上面に当接する位

8/

置規制用の弾性片とを備えている。

これによれば、位置決め用凸部の両側を幅方向規制用凸部により、また上面を 弾性片により規制するため、電極群の位置を所定位置に保持でき、また装着され た時点ではレバーをガイド溝により外方に強制的に移動させて、強い弾性力によ り記録装置に係合させることができる。

また、インクカートリッジを記録装置の流路形成部材と平行に押し込むことにより装着することもでき、流路形成部材及びインク供給口に無理な外力を作用させることがない。

さらには、レバーの上部を押し込み、記録装置との係合を解除し、位置決め用 凸部を支点とするような回動力を上方に作用させることにより、流路形成部材へ の曲げ力を可及的に抑えつつ、容易に取り外すことができる。

請求項17の発明は、前記弾性片は、前記インクカートリッジの装填時に前記位置決め用凸部の下部に押されて弾性変形可能で、前記インクカートリッジの装着が完了した時点では元の位置に復帰して前記位置決め用凸部の上面に当接する

これによれば、弾性片はカートリッジの装着動作に支障を与えることなく、カートリッジの移動に対応して後退し、また装着が完了した時点では、電極群とのコンタクトを確実に維持できる位置に保持する。

請求項18の発明は、前記インクカートリッジに形成された回動支援用凹部と協働して、前記インクカートリッジの取り外し時に回動を支援する凸部が形成されている。

これによれば、取り外し時に凸部により回動を所定の軌跡にガイドすることができ、流路形成部材への外力を可及的に小さくすることができる。

請求項21の発明は、前記インクカートリッジの取り外し時の回動中心である前記位置決め用凸部の上面と前記インク供給口の中心との距離をL、取り外し時の回動角を θ 、前記流路形成部材の進入長さをH、前記インク供給口に装着された前記弾性シール材の位置ずれ許容範囲を ΔL としたとき、 $L \ge H/\tan \theta + \Delta L$ なる関係を満足するように構成されている。

これにより、流路形成部材に無理な外力を作用させたり、また弾性シール材に

永久歪みを残すことなく、回動させて取り外すことが可能となる。

[0006]

【発明の実施の態様】

そこで以下に本発明の詳細を図示した実施例に基づいて説明する。

図1(イ)、(ロ)は、それぞれ本発明のインクカートリッジの一実施例を示すものであって、この実施例ではインクカートリッジ1は、容器本体2aと、蓋体2bとからなる扁平な容器と、容器本体2aの1つの壁面(底面)3に記録ヘッドの流路形成部材を構成するインク供給針と係合してインクを供給するインク供給口4を設けて構成されている。なお、インク供給口4は、カートリッジの長手方向の中央部よりも一側に偏する位置(つまり係止部材であるレバー9が形成された壁面の側)に配置されていて、図2に示したようにインク供給口4の先端側に付勢力を発揮するバネ5により常時閉弁状態を維持する弁体6が装着され、その外側、つまり先端側に流路形成部材と係合する環状の弾性シール材6aが装填されている。

[0007]

インク供給口4が形成されている壁面3に略直交し、かつ相対向する2つの壁面7、8の、前記インク供給口4に近い側の壁面7には、弾性変形可能な係止部材であるレバー9が、下端を壁面側にまた上部を壁面から離れるように上部の方向に延びるように形成され、その下部にはガイド用凸部10が形成されている。

また他方の壁面8の下部端部には後述する弾性片を支持できる面、たとえば平面11を有する位置決め用凸部12が、容器本体2a及び蓋体2bからなるインク容器の幅よりも狭い幅となるように形成され、その上部には親指の平が入る程度の凹部2cが形成されている。壁面8と平行な位置決め用凸部12の面13には、記録装置の弾性接点部材41とコンタクトを形成する電極14が複数、この実施例では水平方向に複数並ぶように上段に3つの電極が、また下段に4つの電極が、上下で千鳥上となるように形成されている。

上段の中央に位置する電極は、インク供給口4の中心軸を電極14の形成面に 垂直投影した線上に位置し、この中央に位置する電極を中心とするように他の電 極が配置されている。 このような形態の電極の配置によりインクカートリッジの装填時にインク供給口を中心としたがたつきが生じても、電極14の位置ズレを小さくできる。

[00008]

この電極14は、図3(イ)に示したように回路基板15の表面に形成されていて、この回路基板15を位置決め用凸部12の面13に固定することにより形成されている。なお、回路基板15の裏面には図3(ロ)に示したようにインク容器に収容されているインクの情報を格納したEEPROM等の読み書き可能な半導体記憶素子等の記憶手段18が実装され、電極14に導電的に接続されている。

[0009]

また、位置決め用凸部12が形成されている側方には、後述するキャリッジの位置決め部材と協働して取り出し時の回動を支援する回動支援用凹部17が形成されている。この回動支援用凹部17には、下方を壁面8の側とし、また上方を他方の壁面7側に後退する斜めの斜面17aが設けられている。

[0010]

レバー9は、下部を支点9aとし、かつ弾性変形可能に容器本体2aの壁面7に設けられていて、支点9aよりも上部にはキャリッジの係合部38に着脱可能な係合部である爪部19が外側に突出するように形成され、支点9aと爪部19との間に、レバー本体から側方に突出するように突起20が、好ましくは両側にそれぞれ形成されている。

[0011]

図4は上述のインクカートリッジに適した記録装置の一実施例を、キャリッジの構造で示すものであって、キャリッジ30は、上部から複数のインクカートリッジの挿入が可能なように略箱型に形成されたカートリッジホルダとして構成されていて、その底部近傍の側面に記録装置のフレームなどを平板加工して形成されたガイド部材に係合して移動経路を規制する凹部31と、第2のガイド部材の平面を滑動するガイド面32が形成されている。

[0012]

図6に示すように、キャリッジ30のインクカートリッジ収容部には複数のインクカートリッジ、この実施例では同型に形成されたカラーインクカートリッジ

を3個と、厚みだけが大きくなるように変更されたブラックインクカートリッジを1個収容するように、カートリッジ間をリブ33と、幅方向規制用部材及び回動支援部材を兼ねるリブ34により区画されている。特にリブ34は、下部は同一幅として形成されているものの、上部の中央部側にカートリッジ1の回動支援用凹部17と協働する斜面部34aが形成されている。リブ34がこの様な構造を有するため、リブ34の下部の側面がカートリッジの位置決め凸部12の側面に当接して幅方向の位置を規制し、また取り外し時には斜面部34a、回動支援用凹部17とによりカートリッジの回動軌跡を規制することができる。

[0013]

各インクカートリッジの収容領域には下面に設けられた記録ヘッド35にインクを供給するインク供給口と係合する流路形成部材36、この実施例では先端部が円錐状に形成され、他部が胴部として形成された中空針が植設されている。中空針の円錐状部の円錐面には、メニスカスを保持できる複数の微細貫通孔が穿設されていて、この微細貫通孔から中空針の胴部を経由して記録ヘッドにインクが供給される。

$[0\ 0\ 1\ 4]$

図5に示すように、インクカートリッジ1のレバー9と対向する壁面には突起20と係合する溝37と、爪部19に係合する係合部38、この実施例では凹部が形成されている。溝37には、上部がカートリッジ側に拡開する斜面37aが形成されていて、この斜面37aによりインクカートリッジの装填当初にはレバー9の開き具合に関わり無く広い口で両側の突起20を拾いこみ、また装着状態ではレバー9をキャリッジの壁面の側、つまり外側に強制的に拡開させる作用をする。特に両側に突起20が形成されている場合には、レバーにねじれが生じている場合でも、確実にレバーを正規の位置に誘導することができる。

[0015]

また、溝37の下方には、第2の溝39が形成されている。この溝39は、装填終了間際からインクカートリッジのガイド用の凸部10と係合し、装着完了時にはインクカートリッジの幅方向へのがたつきを防止する。なお、この実施例ではガイド用の凸部10と溝37とをそれぞれインクカートリッジ、及びインクカ

ートリッジ収容部に設け、インクカートリッジの容積を可及的に大きくしているが、溝37をインクカートリッジに、また凸部10をインクカートリッジ収容部に形成してもガイド機能としては同様の効果を奏する。

[0016]

キャリッジ30の他方の面の各カートリッジ収容領域には図5に示したように上端40aを支点とし、また下端40bが位置決め用凸部12の平面11に当接する位置決め用の弾性片40が形成されている。この弾性片40の下部には、位置決め用凸部12に形成されている電極14に導電的に接触する弾性接点41が配置されている。

$[0\ 0\ 1\ 7]$

図7(イ)は、キャリッジ30の弾性片40、及び弾性接点41が組み付けられる領域の構造の一実施例を示すもので、インクカートリッジ1に対向する領域には図7(口)に拡大して示すようにリブ34の内側に位置して両側に溝34bを有し、上部が開放された開口34cが形成されている。この開口34cには、その下方側に図8(イ)に示したように両側に弾性変形可能な爪41aを有し、弾性接点41が装着された基板41bからなる接点形成部材42が挿入され、その上部に図8(口)に示した弾性片40を複数個、この実施例では4個を形成した弾性片ユニット50が装着される。弾性片ユニット50は、それぞれの弾性片40の両側に溝34cに係合する凸部51が形成され、爪52により上下方向への移動が阻止されている。それぞれの弾性片40は、接点形成部材42に覆い被さるように配置されているので、接点形成部材42を保護するための機能をも備えている。なお、図中53は、ガイド用の凸部を示す。

[0018]

この実施例において、図9に示したようにインクカートリッジ1をキャリッジ30の所定の領域に位置合わせすると、位置決め用凸部12が弾性片40に衝突する。この状態でさらにインクカートリッジ1を下方に垂直に押し込むと、図10に示したように弾性片40が凸部12に押されて図中矢印Bで示すように変形するから、インクカートリッジ1が弾性片40を通過してさらに降下する。

[0019]

この過程でインクカートリッジ1のレバー9の両側の突起20が拡開部を形成する斜面37aに拾われ、またガイド用の凸部10が溝39に進入する。さらにカートリッジ1を押し込むと、また、位置決め用凸部12の両側がリブ34にガイドされ、インク供給針36がインク供給口4に進入して弁体6をバネ5に抗して押し上げる。

[0020]

このようにして規定の位置までインクカートリッジ1が押し込まれると、図5に示したようにレバー9は、キャリッジの斜面37aにより外方の所定位置に固定された領域を支点として回動して強い弾性力により爪19が係合部38に落ち込み、強い1回のクリック音を発する。これにより、ユーザはカートリッジがキャリッジに確実に装着されたことが確認できる。

また、ほぼ同時に弾性片40が位置決め用凸部12による支持力を失って元の 状態に復帰するから、弾性片40の下端40bが位置決め用凸部12の上部の平 面11に当接する。この際に、インクカートリッジ1は弾性接点41が位置する 方向に移動するので、電極14と弾性接点41との間にこすれがほとんど無く、 電極14及び弾性接点41の磨耗や破損を防止しつつ、電極14と弾性接点41 との間での導通をとることができ、また不適切な接触が生じた場合に発生する可 能性があるEEPROの格納データの破損を防止できる。

[0021]

この状態では、インクカートリッジ1は、上下方向については、手前側を位置 決め用凸部12と弾性片40の下端により、奥側を爪19と係合部38とにより 規制され、また水平方向(幅方向)については、手前側を位置決め用凸部12の両 側を幅方向規制用凸部34、34により、奥側をガイド用の溝39とガイド用の 凸部10とにより規制されるから、電極14が弾性接点41と正常に導電関係を 形成する。

[0022]

このように、装着が完了した状態では、インクカートリッジは、手前側の下部 と奥側の上部とで対角に保持されるため、操作性を損なうことなく、所定位置で 装着状態を確実に維持される。 また、レバー9に作用する強い弾性力は、インクカートリッジを弾性接点41の側に移動させるように作用させるから、電極41が確実に導電関係を維持する。なお、インク供給口4の弾性シール材6aは、インク供給針36と気密性を維持しながら若干弾性変形してインク供給針36との局所的な接触を緩和してインク供給針36に局所的な力が作用することによるダメージを防止する。

また、位置決め用凸部 1 2 は、容器本体 2 a の幅か、これよりも狭い幅となるように形成されているため、図 6 に示したように複数のインクカートリッジの列設方向の隙間を可及的に小さく、つまり相互が略密着するように収容しても、列設方向の位置を正確に規制することができる。

[0023]

一方、インクカートリッジ1をキャリッジ30から取り外す場合には、例えば レバー9を人差し指、狭持用凹部2cを親指で持ち、レバー9を手前側、つまり カートリッジ側に引き寄せるように変形させると、レバー9が弾性変形して爪1 9が係合部38から外れる。係合部38による支持を失ったインクカートリッジ はインク供給口4のバネ5の付勢力により若干上方に移動して、レバー9の爪1 9が係合部38の領域外に位置する。

この取り外しの際、インク供給口4は、レバー9が設けられている壁面7の側に偏して配置されているから、図12に示したように弾性片40の下端との当接点Fを中心とする図中矢印G方向の大きな回動半径Lで流路形成部材であるインク供給針36との係合を解除でき、インク供給針36の筒胴部に弾接する弾性シール材6aによる緩衝作用と相まって、インク流路形成部材36に対する曲げ力の作用を緩和できる。

なお、回動中心を規制する弾性片 40 とインク供給口 4 の中心線 C の下端との距離 L 、インク供給針 36 の装着長さを H 、取り外し時の回動角を θ とすると、インク供給針 36 とインク供給口 4 の中心とのズレ量を Δ L は、

$\Delta L = L - (H / \tan \theta)$

で表すことができ、インク供給針 36 の装着長さ H を 5 mm、回動半径 L を 2 8.8 mm、回動角 θ を 10 度とすると、インク供給針 36 とインク供給口 4 の中心とのズレ量 Δ L は、0.4 mmとなる。

すなわち、インク供給口36に装填されている弾性シール材6aが、インク供給針36に損傷を与えない程度の力で変形できる変形量をΔLとした場合、

$\Delta L \leq L - H / \tan \theta$

なる関係を満足するようにインク供給針36の装着長さH、回動半径L、回動角 θ が設定されている。

また、回動力を位置決め用凸部 1 2 から最も遠方の略対角の位置に存在するレバー 9 の先端に作用させるため、容易に取り外すことができる。

さらに、この回動により、電極14と弾性接点41との間にこすれがほとんど無く、電極14及び弾性接点41の磨耗や破損を防止しつつ、電極14と弾性接点41との間での導通をとることができ、また不適切な接触が生じた場合に発生する可能性があるEEPROの格納データの破損を防止できる。

なお、挟持用凹部 2 c に代えて、親指が引っかかりやすい凸部を設けても同様の作用を奏する。

[0024]

一方、インクカートリッジ1の他方側は、位置決め用凸部12が弾性片40の下端40bに邪魔をされているから、レバー9の側を図4に示したように持ち上げると、位置決め用凸部12の上面を回動支点とし、かつ幅方向規制用凸部であるリブ34にガイドされて図11の符号Cで示すように回動する。このとき、カートリッジ収容領域を区画するリブ34がインクカートリッジ1の側面の回動支援用凹部17に入り込んで所定角度まで、つまり位置決め用凸部12の平面11が弾性片40の下端40bよりも外れた位置まで回動しながら移動するから、この段階でインクカートリッジ1を斜めに持ち上げることにより、キャリッジ30から取り外すことができる。

[0025]

図13は、本発明のインクカートリッジの他の実施例を示すものであって、このインクカートリッジ1'は、容器本体2aを前述のインクカートリッジ1とはその奥行きDを異にするものの、蓋体2bなど他の構造は同一に構成されている。そして、位置決め用凸部12は、容器本体2a'の幅方向の一方に偏した位置に形成され、電極群14の幅方向中心は、前述のインクカートリッジ1と同様に

インク供給口4'の中心軸C1と平行な線C2に位置するように配置されている

[0026]

なお、上述の実施例においては、装着操作は、直線移動により行うことを前提としているが、位置決め用凸部12を最初に装填し、位置決め用凸部12を支点としてレバー9を回動させて装着した場合にも、弾性片40の下端40bが位置決め用凸部12の平面11に当接し、この当接領域を回動中心とし、幅方向を手前側は幅方向規制用凸部34、34により、また奥側をガイド用の溝39により規制されるから、電極14が弾性接点41とほとんど擦れを生じることなく正常に導電関係を形成する。

そして、インク供給口4は、レバー9側、つまり回動支点となる凸部12から離れた位置に存在するため、インク供給針36に可及的に平行に移動し、インク供給口4の弾性シール材6aに無理な変形を強いることが防止される。

【図面の簡単な説明】

- 【図1】 図(1)、(1)は、それぞれ本発明のインクカートリッジの一実施例を示す斜視図である。
- 【図2】 同上インクカートリッジのインク供給口の一実施例を示す断面図である。
- 【図3】 図(イ)、(ロ)は、それぞれ同上インクカートリッジの凸部に形成する電極を構成する回路基板の表裏の構造を示す斜視図である。
- 【図4】 同上インクカートリッジに適した記録装置のキャリッジの一実施 例を示す斜視図である。
- 【図5】 同上インクカートリッジをキャリッジに装着した状態を示す断面 図である。
- 【図 6 】 同上インクカートリッジをキャリッジに装着した状態を示す平面 図である。
- 【図7】 図(イ)、(ロ)は、それぞれキャリッジの接点形成部材と弾性片ユニットの組み付け部の一実施例を示す斜視図、及びリブの上端部を拡大して示す斜視図である。

- ページ: 17/E
- 【図8】 図(イ)、(ロ)は、それぞれ接点形成部材、及び弾性片ユニットの一実施例を示す斜視図である。
- 【図9】 同上インクカートリッジをキャリッジの所定位置に位置合わせした状態を示す説明図である。
- 【図10】 インクカートリッジがその凸部により弾性片を変形させるまで押し込まれた状態を示す説明図である。
 - 【図11】 インクカートリッジの取り外しの工程を示す説明図である。
- 【図12】 インクカートリッジの取り外し時の回動による軌跡を説明する図である。
- 【図13】 本発明のインクカートリッジの他の実施例を示す斜視図である

【符号の説明】

 1、1'、インクカートリッジ
 2a、2a'、容器本体
 2b 蓋体

 3 壁面
 4、4'、インク供給口
 7、8 壁面
 9 レバー 1

 0 凸部
 11
 平面
 12 位置決め用凸部
 14 電極
 17 回動支援用

 凹部
 19 爪部
 20 突起
 30 キャリッジ
 34 幅方向規制用凸部

 37 溝
 38 係合部
 40 弾性片
 41 弾性接点

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【書類名】 要約書

【要約】

【課題】 少なくとも装着時にはインク供給口を流路形成部材に平行に移動させて装着でき、また電極群の位置規制のための構造を簡素化でき、さらにはレバーの付勢力を増幅することができるインクカートリッジを提供することである。

【解決手段】 インク容器本体2aを構成する1つの壁面3の、一方の側に偏した位置に形成されたインク供給口4と、壁面3と隣接し、かつ対向する2つの壁面の一方の壁面8に形成され、記録装置に装着された状態では上面、及び側部の位置を規制される位置決め用凸部12と、2つの壁面の他方の壁面7に形成され、常時拡開状態を維持し、かつ記録装置に装着された場合に外方に強制的に変位される突起20を有するレバー9と、インク容器のインクの情報を格納した記憶手段に接続され、位置決め用凸部12に形成された電極14とからなる。

【選択図】 図1

認定・付加情報

特許出願の番号

特願2003-076890

受付番号

5 0 3 0 0 4 5 5 6 4 3

書類名

特許願

担当官

第二担当上席

0091

作成日

平成15年 3月26日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000002369

【住所又は居所】

東京都新宿区西新宿2丁目4番1号

【氏名又は名称】

セイコーエプソン株式会社

【代理人】

申請人

【識別番号】

100087974

【住所又は居所】

東京都文京区小石川2丁目1番2号 11山京ビ

ル にしき特許事務所

【氏名又は名称】

木村 勝彦

特願2003-076890

出願人履歴情報

識別番号

[000002369]

1. 変更年月日 [変更理由]

1990年 8月20日

[変更理田] 住 所 新規登録

東京都新宿区西新宿2丁目4番1号

セイコーエプソン株式会社