University Physics: Mechanical Vibration

Date: April 1, 2025

 $Wuhan\ University$

Lai Wei

目录

1	简谐	振动		1
	1.1	简谐振	最动的动力学特征	1
		1.1.1	弹簧振子的振动	1
		1.1.2	弹簧振子的运动方程	1
		1.1.3	谐振动的速度和加速度	2
		114	描述简谐振动的物理量	3

Lai Wei	University Physics: Mechanical Vibration

机械振动:物体围绕一固定位置往复运动。

1 简谐振动

1.1 简谐振动的动力学特征

1.1.1 弹簧振子的振动

模型:谐振子轻弹簧(不计质量)与物体(看成质点)弹簧振子的无阻尼自由振动:

振动的成因:

- 1. 回复力;
- 2. 惯性。

1.1.2 弹簧振子的运动方程

$$F = -kx = ma = m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} \tag{1.1}$$

令

$$\omega^2 = \frac{k}{m}$$

得

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega^2 x$$

具有加速度a与位移的大小x成正比,而方向相反特征的振动称为简谐运动。 简谐运动的微分方程:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega^2 x \tag{1.2}$$

解得

$$x = A\cos(\omega t + \varphi) \tag{1.3}$$

或

$$x = A\sin\left(\omega t + \varphi + \frac{\pi}{2}\right) \tag{1.4}$$

用复指数表示

$$x = Ae^{i(\omega t + \varphi)} \tag{1.5}$$

公式之间的相互推导关系

$$F = -kx = ma = m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$$

$$/$$

$$F(x) \longrightarrow a \longrightarrow v(t) \longrightarrow x(t)$$

1.1.3 谐振动的速度和加速度

由

$$x = A\cos(\omega t + \varphi)$$

运动方程对时间求导

$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = -\omega A \sin(\omega t + \varphi) = -v_{\mathrm{m}} \sin(\omega t + \varphi) \tag{1.6}$$

运动方程对时间求二阶导

$$a = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega^2 A \cos(\omega t + \varphi) = -a_{\mathrm{m}} \cos(\omega t + \varphi) \tag{1.7}$$

其中,

$$A = \sqrt{x_0^2 + \left(\frac{v_0}{\omega}\right)^2}$$

$$\varphi = \arctan\left(-\frac{v_0}{\omega x_0}\right)$$

(此结果一般有两个值,最后要舍去一个,根据速度的方向。)

1.1.4 描述简谐振动的物理量

振幅 (amplitude):

$$x_m = A (1.8)$$

周期 (period):

$$T = \frac{2\pi}{\omega} \tag{1.9}$$

简谐运动中, ω被称为角频率或圆频率

$$\omega = \sqrt{\frac{k}{m}} \tag{1.10}$$

频率 (frequency):

$$\nu = \frac{1}{T} \tag{1.11}$$

相位 (phase):

$$(\omega t + \varphi) \tag{1.12}$$

初相位(初相, initial phase)

$$\varphi$$
 (1.13)

相位差:

设有两个同方向、同频率的简谐振动,它们的振动表达式分别为

$$x_1 = A_1 \cos(\omega t + \varphi_1)$$
$$x_2 = A_2 \cos(\omega t + \varphi_2)$$

它们在任意时刻的相位差为

$$\Delta \varphi = (\omega t + \varphi_1) - (\omega t + \varphi_2) \tag{1.14}$$