Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Roteiro da Aula 3

- Definição Autômatos Finitos Não-determinísticos Sintaxe
 Semântica
- 2 Exemplos
- 3 Equivalência AFD/AFN
- 4 Propriedades de Fechamento União Interseção
- Situação Atual

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Sintaxe Semântica

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Não-determinismo

Determinístico

Exatamente uma trajetória sobre uma $w \in \Sigma^*$.

Não-determinístico

Nenhuma, uma ou várias trajetórias sobre uma $w \in \Sigma^*$.

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Sintaxe Semântica

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Não-determinismo

Observação

Autômatos não-determinísticos são uma generalização de autômatos determinísticos

Todo autômato determinístico é também, por definição, não-determinístico. O contrário não vale!

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Sintaxe Semântica

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Intuição sobre a semântica

• Autômato A aceita palavra w se existe uma trajetória de A sobre w que termina num estado final.

Exemplo: autômato N_1

- Aceita (p.ex.): ε , a, baba, baa, aaa;
- Não aceita (p. ex.): b, bb, babba, baab.

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Sintaxe Semântica

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Sintaxe

Para qualquer alfabeto Σ , $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

 $\mathsf{Sintaxe}$

Semântica

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Sintaxe

Para qualquer alfabeto Σ , $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

Um Autômato Finito Não-determinístico (AFN) é uma tupla $A=(Q,\Sigma,\delta,q_0,F)$, onde:

Q Σ $F \subseteq Q$ $q_0 \in Q$ $\delta : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$

conjunto finito de estados alfabeto finito de símbolos conjunto de estados finais estado inicial função de transição

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

 ${\sf Sintaxe}$

Semântica

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Exemplo

AFN N_2

$$N_2 = (Q = \{\ell_1, \ell_2, \ell_3, \ell_4\}, \Sigma = \{0, 1\},$$

estado	0	1	ε
$\overline{\ell_1}$	$\{\ell_1\}$	$\{\ell_1,\ell_2\}$	Ø
ℓ_2	$\{\ell_3\}$	$\{\ell_3\}$	\emptyset
ℓ_3	$\{\ell_4\}$	$\{\ell_4\}$	\emptyset
ℓ_4	Ø	Ø	\emptyset

$$q_0 = \ell_1,$$
 $F = \{\ell_4\}$

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Sintaxe Semântica

Evemples

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Exemplo

AFN N_2

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

 ${\sf Sintaxe}$

Semântica

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Exemplo

AFN N_2

Qual linguagem é aceita por N_2

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Sintaxe

Semântica

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Exemplo

AFN N_2

$$\mathcal{L}(N_2) = \{ w \mid \text{antepenItimo smbolo de } w \mid \text{um } 1 \}$$

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Sintaxe Semântica

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Semântica

Sejam $A=(Q,\Sigma,\delta,q_0,F)$ um AFN e $w=w_1w_2w_3\dots w_n$ uma palavra sobre Σ

Dizemos que A aceita w se:

- podemos escrever w como $w=y_1y_2\dots y_m,\ y_i\in\Sigma_{\varepsilon}$; e
- existe uma sequência de estados de Q, $r=r_0,r_1,\ldots,r_m$, tal que:
- **1** $r_0 = q_0$; e
- **2** $r_{i+1} \in \delta(r_i, y_{i+1})$ para todo $0 \le i \le m-1$; e
- $r_m \in F$.

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Exemplo

Que linguagem aceita N_3 ?

 N_3 :

Construir um AFD equivalente...

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Não-determinismo às vezes facilita

Para N_2 :

O menor AFD equivalente é:

Equivalência entre AFD e AFN

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Teorema

Para todo AFN A, existe AFD B, tal que $\mathcal{L}(A) = \mathcal{L}(B)$.

Linguagem Regular

Uma linguagem $\mathcal{L} \subseteq \Sigma^*$ é Regular se existe um AFN A tal que $\mathcal{L}(A) = \mathcal{L}$.

Victor Ströele

Roteiro

Definição Autômatos Finitos Nãodeterminísticos

Exemplos

Equivalência AFD/AFN

Propriedades de Fechamento

Situação Atual

Intuição sobre o Teorema

AFN
$$N_1 = (Q, \Sigma, \delta, q_0, F)$$
:

- Construir AFD $B=(Q',\Sigma,\delta',q_0',F')$ tal que $Q'=\mathcal{P}(Q)$;
- B é chamado de construção do subconjunto.