### Three methods for measuring perception

- 1. Magnitude estimation
- 2. Matching
- 3. Detection/discrimination



### Magnitude estimation

Have subject rate (e.g., 1-10) some aspect of a stimulus (e.g., how bright it appears or how load it sounds)..



### Steven's power law



 $P = k S^n$ 

P: perceived magnitude 5: stimulus intensity

k: constant

Relationship between intensity of stimulus and perception of magnitude follows the same general equation in all senses

### Matching

In a matching experiment, the subject's task is to adjust one of two stimuli so that they look/sound the same in some respect.

### Example: brightness matching



### Detection/discrimination

In a detection experiment, the subject's task is to detect small differences in the stimuli.

### Psychophysical procedures for detection experiments:

- Method of adjustment.
- Yes-No/method of constant stimuli.
- · Simple forced choice.
- Two-alternative forced choice

### Method of adjustment

Ask observer to adjust the intensity of the light until they judge it to be just barely detectable

Example: you get fitted for a new eye glasses prescription. Typically the doctor drops in different lenses and asks you if this lens is better than that one.

### Yes/no method of constant stimuli



Do these data indicate that Laurie's threshold is lower than Chris's threshold?

### Forced choice

- · Present signal on some trials, no signal on other trials (catch trials).
- · Subject is forced to respond on every trial either `Yes" the thing was presented'' or ``No it wasn't''. If they're not sure then they must guess.
- · Advantage: We have both types of trials so we can count both the number of hits and the number of false alarms to get an estimate of discriminability independent on the criterion.
- · Versions: simple forced choice, 2AFC, 2IFC



### Simple forced choice: four possible

outcomes

|                  | Doctor responds<br>"yes" | Doctor responds<br>"no" |
|------------------|--------------------------|-------------------------|
| Tumor<br>present | Hit                      | Miss                    |
| Tumor<br>absent  | False<br>alarm           | Correct<br>reject       |

### Information acquistisition

|                  | Doctor responds<br>"yes" | Doctor responds<br>"no" |
|------------------|--------------------------|-------------------------|
| Tumor<br>present | Hit                      | Miss                    |
| Tumor<br>absent  | False<br>alarm           | Correct<br>reject       |

### Criterion shift

|                  | Doctor responds<br>"yes" | Doctor responds<br>"no" |
|------------------|--------------------------|-------------------------|
| Tumor<br>present | Hit                      | Miss                    |
| Tumor<br>absent  | False<br>alarm           | Correct<br>reject       |

### Information and criterion

Two components to the decision-making: information and criterion.

- Information: Acquiring more information is good. The effect of information is to increase the likelihood of getting either a hit or a correct rejection, while reducing the likelihood of an outcome in the two error boxes.
- Criterion: Different people may have different bias/criterion. Some may may choose to err toward "yes" decisions. Others may choose to be more conservative and say "no" more often.

## Internal response: probability of occurrence curves



N: noise only (tumor absent)

S+N: signal plus noise (tumor present)

Discriminability (d' or "d-prime") is the distance between the N and S+N curves  $\,$ 

### Discriminability (d')



### Example applications of SDT

- Vision
- Detection (something vs. nothing)
- Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size, frequency, loudness, ...
- Memory (internal response = trace strength = familiarity)
- Neurometric function/discrimination by neurons (internal response = spike count)



### Criterion



Hits: respond "yes" when tumor present

Distribution of internal responses when no tumor when tumor present

Say "no"

Say "yes"

Internal response

Correct rejects: respond "no" when tumor absent



Misses: respond "no" when present



False alarms: respond "yes" when absent



Criterion shift



SDT: Gaussian case



ROC



ROC



ROC



ROC



Receiver operating characteristic (ROC)



ROC: Gaussian case



### Gaussian unequal variance



Rapid estimation of full ROC: confidence ratings





### SDT review

- Your ability to perform a detection/discrimination task is limited by internal noise.
- Information (e.g., signal strength) and criterion (bias) are the 2 components that affect your decisions, and they each have a different kind of effect.
- Because there are 2 components (information & criterion), we need to make 2 measurements to characterize the difficulty of the task. By measuring both hits & false alarms we get a measure of discriminability (d') that is independent of criterion.

### Measuring thresholds



Assumptions:  $x \propto \text{signal strength}$ ,  $\sigma \text{ constant}$ 

### Two-alternative forced choice

- Two options presented on each trial:
  - Two stimuli presented simultaneously at two different positions (e.g., one of which has higher contrast).
  - Two stimuli presented sequentially at the same position.
  - One stimulus presented with two possible choices (e.g., moving right or left).
- Subject is forced to pick one of the two options. If they're not sure then they must guess.
- Feedback (correct/incorrect or \$) provided after each trial.
- Advantage: Two options with feedback balances criterion so we can measure proportion correct.

### Aside: 2-IFC and Estimation of Threshold

- Frequently one wishes to estimate the signal strength corresponding to a fixed, arbitrary value of d', defined as threshold signal strength.
- For this, one can measure performance at multiple signal strengths, estimate d' for each, fit a function (as in the previous slide) and interpolate to estimate threshold.
- Staircase methods are often used as a more timeefficient method. The signal strength tested on each trial is based on the data collected so far, trying to concentrate testing at levels that are most informative.
- Methods: 1-up/1-down (for PSE: point of subjective equality), 1-up/2-down, etc., QUEST, APE, PEST, ...

### Staircase

## Starting point Average of last trials Trial

### Absolute and relative thresholds



Weber's law



Ernst Weber, c1850



Gustav Fechner, c1850





Weber's law

Fechner's analysis



Background intensity

Weber's law: Fechner's derivation



### Weber's law: Fechner's derivation

$$R_1 = \log(x)$$

$$R_2 = \log(x + dx)$$

$$R_2 - R_1 = \sigma$$

$$\sigma = \log(x + dx) - \log(x)$$

$$= \log\left(\frac{x + dx}{x}\right)$$

$$= \log\left(1 + \frac{dx}{x}\right)$$

$$e^{\sigma} - 1 = \frac{dx}{x}$$

$$\frac{dx}{x} = k$$

Weber's law: contrast ratio derivation

 $\mbox{Internal response} = \frac{\mbox{intensity of test flash}}{\mbox{intensity of background}}$ 

$$R_{1} = \frac{x}{x}$$

$$R_{2} = \frac{x + dx}{x}$$

$$R_{2} - R_{1} = \frac{dx}{x}$$

$$\frac{dx}{x} = \sigma$$

$$At threshold: d' = 1$$

$$R_{2} - R_{1} = \sigma$$

**Weber's law:** To perceive a difference between a background level x and the background plus some stimulation x+dx the size of the difference must be proportional to the background, that is, dx = k x where k is a constant.

**Fechner's interpretation:** The relationship between the stimulation level x and the perceived sensation s(x) is logarithmic, s(x) = log(x).

Main difference: Fechner's is an interpretation of Weber's law, a hypothesis.



# Behavioral protocol Two-alternative forced choice Null target Fix Pt Dots Targets

### Stimulus manipulation: motion coherence



### Psychometric function



Britten, Shadlen, Newsome & Movshon, 1992

### Motion coherence and MT neurons



### Motion coherence and MT neurons



### Neural responses are noisy



### Perceptual decision

Decision rule: Monitor the responses of two neurons on each trial, the one being recorded and another selective for the opposite motion direction. Choose 'pref' if pref response > non-pref response.



 $f_n(r)$ : response PDF for pref direction

 $f_n(r)$ : response PDF for non-pref direction

### Probability correct

 $r_n$ : response to pref direction

 $r_n$ : response to non-pref direction

 $f_{\scriptscriptstyle p}(r)$  : response PDF for pref direction

 $f_n(r)$ : response PDF for non-pref direction

 $F_n(r)$ : response CDF for non-pref direction

P(correct) = P(
$$r_p > r_n$$
) =  $\int_0^\infty f_p(r) \left[ \int_0^r f_n(r') dr' \right] dr$ 

$$\int_0^r f_n(r')dr' = F_n(r)$$

$$\int_{0}^{r} f_{n}(r')dr' = F_{n}(r)$$
 
$$P(\text{correct}) = \int_{0}^{\infty} f_{p}(r)F_{n}(r)dr$$

### Neurometric function



 $P(correct) = \sum_{r} f_p[r] F_n[r]$ 



Britten, Shadlen, Newsome & Movshon, 1992

### Neurometric vs. psychometric functions





### Predicting the monkey's decisions



Response distributions for pref and non-pref decisions at a fixed motion coherence



### Predicting the monkey's decisions

Choice probability: Accuracy with which one could predict monkey's decision from the response of the neuron given that you know the distributions.



 $f_{p}(r)$  : response PDF when monkey reports pref direction  $f_{N}(r)$  : response PDF when monkey reports non-pref direction

### Choice probability





Britten, Newsome, Shadlen, Celebrini & Movshon, 1996

### Computational model



- Noise is partially correlated across neurons.
- Responses are pooled non-optimally over large populations of neurons including those that are not the most selective.
- · Additional noise is added after pooling.

Shadlen, Britten, Newsome & Movshon, 1996