AuditPCH: Auditable Payment Channel Hub with Privacy Protection

IEEE TIFS 2024

Yuxian Li, Jian Weng, Junzuo Lai, Yingjiu Li, Jianfei Sun, Jiahe Wu, Ming Li, Pengfei Wu, Robert H. Deng

汇报人: 赵路路

Outline

- 1. Background
- 2. Preliminaries
- 3. Linkable Randomizable Puzzle Scheme
- 4. Auditable Anonymous PCH
- 5. Performance Analysis

1 Background

1.1 Payment Channel

- Two users open a payment channel and perform off-chain payments by updating the channel state enjoying high payment throughput and low confirmation delay.
- If there are more than two users, each pair of users needs to establish their own payment channel to facilitate the payment, which is a non-scalable approach.
- Payment Channel Networks (PCN) enable two users with no direct payment channel to pay each other through the channels of some intermediaries.
- PCN payments may require multi-channel paths and intermediaries to actively participate in relaying the payments, which can lead to their failure.

1.2 Challenges in Auditable Anonymous PCH

- Atomicity: For any payment of m coins from S to R, the PCH should ensure that either R receives m coins from T and T receives m coins from S, or both parties receive none.
- Value Privacy: T should not know the payment amount between S and R.
- Relationship Anonymity: T should not be able to find out if there is any relation between S and R of a specific payment.
- **Griefing Resistance:** The PCH should only initiate a payment procedure if R can prove that the payment request are previously backed by some coins locked by a S during the payment procedure.
- Illegal Financial Activity Auditability: A should know the relationship of S and R and verify the integrity of payments.

1.3 Abstract

• PCH Definition:

Anonymous Payment Channel Hub (PCH), one of the most promising layer-two solutions, settles the scalability issue in blockchain while guaranteeing the unlinkability of transacting parties.

• Problem:

Developments bring conflicting requirements, i.e., hiding the sender-to-receiver relationships from any third party but opening the relationship to the auditor. Existing works do not support these requirements simultaneously since off-chain transactions are not recorded in the blockchain.

• This work:

The first anonymous PCH solution that provides privacy & auditability.

- 1 Linkable randomizable puzzle for conditional transactions.
- ② A novel auditable solution for PCH.
- ③ Formal security proof & extensive experiments and evaluation.

2 Preliminaries

2.1 Public Key Encryption

Public Key Encryption. The encryption scheme includes the algorithms (Gen, Enc, Dec) [18]. $(pk, sk) \leftarrow \text{Gen}(\lambda)$ is the key generation algorithm to produce a key pair (sk, pk), where sk is a selected value. $c \leftarrow \text{Enc}(pk, m)$ is the encryption algorithm to encrypt a message m with the public key pk as a ciphertext $c.m' \leftarrow \text{Dec}(c, sk)$ decrypts the ciphertext c as the plaintext m' via the private key sk. We utilize the ElGamal encryption scheme Π_{El} [18] and the Castagnos-Laguillaumie (CL) encryption scheme Π_{CL} which satisfy the Indistinguishability under Chosen Plaintext Attacks (IND-CPA).

SysGen: The system parameter generation algorithm takes as input a security parameter λ . It chooses a cyclic group (\mathbb{G}, p, g) and returns the system parameters $SP = (\mathbb{G}, p, g)$.

KeyGen: The key generation algorithm takes as input the system parameters SP. It randomly chooses $\alpha \in \mathbb{Z}_p$, computes $g_1 = g^{\alpha}$, and returns a public/secret key pair (pk, sk) as follows:

$$pk = g_1, sk = \alpha.$$

Encrypt: The encryption algorithm takes as input a message $m \in \mathbb{G}$, the public key pk, and the system parameters SP. It chooses a random number $r \in \mathbb{Z}_p$ and returns the ciphertext CT as $CT = (C_1, C_2) = (g^r, g_1^r \cdot m)$.

Decrypt: The decryption algorithm takes as input a ciphertext CT, the secret key sk, and the system parameters SP. Let $CT = (C_1, C_2)$. It decrypts the message by computing

$$C_2 \cdot C_1^{-\alpha} = g_1^r m \cdot (g^r)^{-\alpha} = m.$$

Algorithm KeyGen (1^{λ})

- 1. $(B, n, p, s, g, f, G, F) \leftarrow \operatorname{\mathsf{Gen}}(1^{\lambda}, 1^{\mu})$
- 2. Pick^a $x \stackrel{\$}{\leftarrow} \{0, \dots, Bp-1\}$ and set $h \leftarrow g^x$
- 3. Set $pk \leftarrow (B, p, g, h, f)$ and $sk \leftarrow x$.
- 4. Return (pk, sk)

Algorithm Encrypt $(1^{\lambda}, pk, m)$

- 1. Pick $r \stackrel{\$}{\leftarrow} \{0, \dots, Bp-1\}$
- 2. Compute $c_1 \leftarrow g^r$
- 3. Compute $c_2 \leftarrow f^m h^r$
- 4. Return (c_1, c_2)

Algorithm Decrypt $(1^{\lambda}, pk, sk, (c_1, c_2))$

- 1. Compute $M \leftarrow c_2/c_1^x$
- 2. $m \leftarrow \mathsf{Solve}(p, g, f, G, F, M)$
- 3. Return m

Algorithm EvalSum $(1^{\lambda}, pk, (c_1, c_2), (c'_1, c'_2))$

- 1. Compute $c_1'' \leftarrow c_1 c_1'$ and $c_2'' \leftarrow c_2 c_2'$
- 2. Pick $r \stackrel{\$}{\leftarrow} \{0, \dots, Bp-1\}$
- 3. Return $(c_1''g^r, c_2''h^r)$

Algorithm EvalScal $(1^{\lambda}, pk, (c_1, c_2), \alpha)$

- 1. Compute $c_1' \leftarrow c_1^{\alpha}$ and $c_2' \leftarrow c_2^{\alpha}$
- 2. Pick $r \stackrel{\$}{\leftarrow} \{0, \dots, Bp-1\}$
- 3. Return $(c_1'g^r, c_2'h^r)$

2.2 Commitment Scheme

Commitment scheme. Our construction requires a commitment scheme that allows users to commit a message (e.g., token identification) and verify its correctness. A commitment scheme Π_{com} is composed by three algorithms (CMSetup, Com, CMVerify). $pp \leftarrow \text{CMSetup}(\lambda)$ inputs λ and generates the public parameter $pp.(com, r) \leftarrow \text{Com}(pp, m, r)$ commits the message m in the commitment com with the randomness $coin r. \{0, 1\} \leftarrow \text{CMVerify}(com, r, m)$ verifies if the message m is committed in com. Our solution introduces the Pedersen commitment scheme [14], satisfying the information-theoretically hiding and computationally binding properties.

Let us consider $\mathbb{G} = \langle g \rangle$, a cyclic group of prime order q, and two random generators $g, h \in \mathbb{G}$. The Pedersen commitment scheme allows to commit to scalar elements from \mathbb{Z}_q :

Commitment: to commit to a scalar $m \in \mathbb{Z}_q$, one chooses a random $r \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, and sets $c \leftarrow g^m h^r$, while the opening value is set to r;

Opening: to open a commitment $c \in \mathbb{G}$, one reveals the pair (m, r). If $c = g^m h^r$, the receiver accepts the opening to m, otherwise it refuses.

2.3 Malleable Proof Scheme

Malleable proof scheme. The malleable proof schemes [16, 19] support users to transform their receiving proofs into new proofs against the converted witness (e.g., a randomized solution of a randomized puzzle) and statement. Let R(x, w)be a relation related to the language $L := \{x \mid \exists w \text{ such that } \}$ $(x, w) \in R$, where x is a statement and w is a witness of the statement. Two transformation functions $(w' = \mathcal{T}_{wit}(w), x')$ = $\mathcal{T}_{stmt}(x)$) are defined to restrict the allowed transformation of users. The malleable proof scheme is formulated as: Π_{MP} = (CRSSetup, Vry, Prove, ZKEval). $crs \leftarrow CRSSetup(\lambda)$ generates the Common Reference Strings (CRS) crs. $\pi \leftarrow$ Prove(w, crs, x) is the prover algorithm with the witness w, the CRS crs, and the statement x as inputs to produce a proof π stating $(x, w) \in R$. $\{0, 1\} \leftarrow \mathsf{Vry}(\pi, crs, x)$ is the verifier algorithm to check whether the existence of w and x satisfies the relation $R. \pi' \leftarrow \mathsf{ZKEval}(crs, x, \{\mathcal{T}_{wit}, \mathcal{T}_{stmt}\}, \pi)$ produces a transformed proof π' for stating $(x', w') \in R$, where x' and w'come from the transformation functions $\{\mathcal{T}_{wit}, \mathcal{T}_{stmt}\}$. Note that the transformed proof π' still can be verified by the algorithm Vry. Here, a malleable proof scheme [16] is initialized by the Groth-Sahai proof scheme [19] and satisfies the Witness Indistinguishability (WI) property.

Malleable Proof Systems and Applications

Melissa Chase Microsoft Research Redmond melissac@microsoft.com

> Anna Lysyanskaya Brown University anna@cs.brown.edu

Markulf Kohlweiss
Microsoft Research Cambridge
markulf@microsoft.com

Sarah Meiklejohn* UC San Diego smeiklej@cs.ucsd.edu

January 16, 2012

Efficient Non-interactive Proof Systems for Bilinear Groups *

Jens Groth University College London j.groth@ucl.ac.uk[†] Amit Sahai University of California Los Angeles sahai@cs.ucla.edu[‡]

April 7, 2016

2.4 Adaptor Signature

Adaptor signature scheme. Different from traditional signature schemes, the adaptor signature scheme Π_{ad} , which consists of five algorithms (SKeyGen, PSign, Adapt, PVrfy, Ext), enables signers to give a *pre-signature* concerning the revelation of a secret value. We define a statement $Y = g^y$, where g is the generator of the group. $(pk, sk) \leftarrow SKeyGen(\lambda)$ initializes a key pair (pk, sk) for signing. $\widetilde{\sigma} \leftarrow \mathsf{PSign}(m, Y, sk)$ inputs the secret key sk, a message m, and a statement Y to generate a presignature $\widetilde{\sigma}$. $\{0,1\} \leftarrow \mathsf{PVrfy}(pk, m, \widetilde{\sigma}, Y)$ checks the validity of the pre-signature $\widetilde{\sigma}$. $\sigma \leftarrow \mathsf{Adapt}(y, \widetilde{\sigma})$ takes the witness y and the pre-signature $\tilde{\sigma}$ as inputs to produce a valid signature σ . $y \leftarrow \text{Ext}(\tilde{\sigma}, \sigma, Y)$ computes the witness y via the inputs $\tilde{\sigma}$ and σ . The adaptor signature scheme satisfies pre-signature adaptability, which guarantees parties collect a valid signature from a valid pre-signature, and witness extractability, which ensures parties extract a valid witness via a valid signature and its pre-signature. Here, the scheme is formalized in [20, 21] and matches the security property against Existential Unforgeability under Chosen Message Attack (EUF-CMA) [18].

$pSign_{sk}(m,I_Y)$	$pVrfy_{pk}(m,I_Y;\tilde{\sigma})$	$Adapt(\tilde{\sigma},y)$	$Ext(\sigma, ilde{\sigma}, I_Y)$		
$x:=sk,(Y,\pi_Y):=I_Y$	$X:=pk, (Y,\pi_Y):=I_Y$	$(r, \tilde{s}, K, \pi) := \tilde{\sigma}$	$(r,s):=\sigma$		
$k \leftarrow_{\$} \mathbb{Z}_q, \tilde{K} := g^k$	$(r, ilde{s},K,\pi):= ilde{\sigma}$	$s := \tilde{s} \cdot y^{-1}$	$(ilde{r}, ilde{s},K,\pi):= ilde{\sigma}$		
$K := Y^k, r := f(K)$	$u := \mathcal{H}(m) \cdot \tilde{s}^{-1}$	$\mathbf{return}\ (r,s)$	$y' := s^{-1} \cdot \tilde{s}$		
$\tilde{s} := k^{-1}(\mathcal{H}(m) + rx)$	$v := r \cdot \tilde{s}^{-1}$		$\mathbf{if}\ (I_Y,y')\in R_g'$		
$\pi \leftarrow P_Y((\tilde{K},K),k)$	$K' := g^u X^v$		$\mathbf{then} \;\; \mathbf{return} \; y'$		
return (r, \tilde{s}, K, π)	$\textbf{return} ((I_Y \in L_R)$		else return \perp		
$\wedge \ (r = f(K)) \wedge V_Y((K',K),\pi))$					

2.5 High-level Design of A²L⁺

Puzzle-promise phase. During this phase, the receiver P_r starts by sending a valid signature σ'_r on a transaction message m' to the hub P_h . The hub generates a statement/witness pair (A, α) and creates a randomizable puzzle Z along with a zero-knowledge proof π_{α} [15, 22] that proves α is a valid solution to Z. The hub then produces an adaptor signature $\hat{\sigma}'_h$ over the transaction m' using α and shares both the puzzle and the adaptor signature with P_r . The receiver pre-verifies the signature and randomizes the puzzle Z to Z', which is then shared with the sender P_s , completing the puzzle promise protocol.

Puzzle-solver phase. Here, the sender further randomizes the puzzle Z' to Z'' and generates a pre-signature $\hat{\sigma}_s$ on the transaction m' using Z''. This randomized puzzle and the presignature are sent to the hub, which then solves the puzzle Z'' using the trapdoor information to obtain α'' . The hub uses α'' to adapt $\hat{\sigma}_s$ into a valid signature σ_s and signs the transaction m' with its secret key, producing σ_h . After verifying the signature σ_s , the hub publishes both σ_s and σ_h . Finally, the secret α'' is extracted and shared with the receiver, allowing them to finalize the transaction by revealing the secret α .

3 Linkable Randomizable Puzzle Scheme

3.1 Randomizable Puzzle Scheme

• Assuming that (*KGen*, *Enc*, *Dec*) is a linearly homomorphic encryption with statistical circuit privacy, the there exists a randomizable puzzle with statistical privacy.

Definition A.1 (Randomizable Puzzle). A randomizable puzzle scheme RP = (PSetup, PGen, PSolve, PRand) with a solution space scheme (KGen, Enc, Dec) matches the syntax of a randomizable S (and a function ϕ acting on S) consists of four algorithms defined puzzle, setting pp to the encryption key and td to be the decryption as:

- $(pp, td) \leftarrow PSetup(1^n)$: is a PPT algorithm that on input security parameter 1^n , outputs public parameters pp and a trapdoor td.
- $Z \leftarrow \mathsf{PGen}(\mathsf{pp},\zeta)$: is a PPT algorithm that on input public paramtion of security for randomizable puzzles. eters pp and a puzzle solution ζ , outputs a puzzle Z.
- $\zeta := \mathsf{PSolve}(\mathsf{td}, Z)$: is a *DPT* algorithm that on input a trapdoor td and puzzle Z, outputs a puzzle solution ζ .
- $(Z',r) \leftarrow \mathsf{PRand}(\mathsf{pp},Z)$: is a PPT algorithm that on input public parameters pp and a puzzle Z (which has a solution ζ), outputs a randomization factor r and a randomized puzzle Z'(which has a solution $\phi(\zeta, r)$).

It is not hard to see that a linearly homomorphic encryption key. For the PRand algorithm, we can sample a random $r \leftarrow \mathbb{Z}_p$ and compute

$$\operatorname{Enc}(\operatorname{ek},\zeta)\circ\operatorname{Enc}(\operatorname{ek},r)=c$$

which is an encryption of $\phi(\zeta, r) = \zeta + r$. Next we recall the defini-

3.2 Linkable Randomizable Puzzle Scheme

The Linkable Randomizable Puzzle (LRP) Scheme

- $(pp, sk_0) \leftarrow \mathbf{Setup}(\lambda)$: is a PPT algorithm (used by the auditor) that on input security parameter λ , outputs public parameters $pp = (G, g, q, r_0, \Pi_{\mathsf{MP}}, crs, \Pi_{\mathsf{EI}}, pk_0)$ and private key sk_0 . The details of the outputs are as follows:
 - G is an elliptic curve group of order q with generator g.
 - r_0 is a random number in Z_q .
 - Π_{MP} is a secure malleable non-interactive zero-knowledge proof scheme [16] under a common reference string crs.
 - Π_{El} is the ElGamal encryption scheme [18] of which $\text{Enc}(pk_0, \cdot)$ is for encryption and $\text{Dec}(pk_0, sk_0, \cdot)$ is for decryption, and (pk_0, sk_0) is a key pair of Π_{El} .
- $(pk_1, sk_1) \leftarrow \mathbf{KGen}(\lambda)$: is a PPT algorithm (used by the hub) that on input security parameter λ , outputs a key pair (pk_1, sk_1) from the Castagnos-Laguillaumie (CL) encryption scheme Π_{CL} [29], of which $\operatorname{Enc}(pk_1, \cdot)$ is for encryption and $\operatorname{Dec}(pk_1, sk_1, \cdot)$ is for decryption.
- $(pz, \pi) \leftarrow \mathbf{PGen}(pp, pk_1, \aleph)$: is a PPT algorithm (used by the hub) that on input public parameters pp, public key pk_1 , and a puzzle solution $\aleph \in Z_q$, outputs a puzzle $pz = (\alpha, \beta, \gamma)$ and associated proof π . The details of the outputs are as follows:
 - $\alpha = \Pi_{\mathsf{Fl}} \cdot \mathsf{Enc}(p k_0, r_0)$.
 - $\beta = \prod_{\mathsf{CL}} \cdot \mathsf{Enc}(pk_1, \aleph)$.
 - $\gamma = g^{\aleph}.$
 - π is a malleable proof of existence of witness (\aleph, r_0) for a statement $\alpha \wedge \beta \wedge \gamma * g^{r_0}$ using $\Pi_{MP}{}^a$.
- $0/1 \leftarrow \mathbf{PVerify}(pp, pz, \pi)$: is a Deterministic Polynomial Time (DPT) algorithm that on input public parameters pp, a puzzle pz, and a proof π , outputs either 0 (failure) or 1 (success) for verifying pz. The process of generating the outputs is as follows:
 - Parse $pz = (\alpha, \beta, \gamma)$.
 - Check if proof π is correct for statement $\alpha \wedge \beta \wedge \gamma \wedge \gamma * g^{r_0}$ using scheme Π_{MP} .
 - Return 1 if the proof is correct and 0 otherwise.
- $\aleph \leftarrow \mathbf{PSol}(pk_1, sk_1, pz)$: is a DPT algorithm (used by hub) that on input public key pk_1 , private key sk_1 , and a puzzle pz, outputs $\aleph = \Pi_{Cl}$. Dec (pk_1, sk_1, β) , where pz is parsed as $pz = (\alpha, \beta, \gamma)$.

- $(pz', \pi', r) \leftarrow \mathbf{PRand}(pp, pk_1, pz, \pi)$: is a PPT algorithm (used by users) that on input public parameters pp, pubic key pk_1 , a puzzle pz, and a malleable proof π , outputs a randomized puzzle pz', randomized proof π' , and associated random number r. The process of generating the outputs is as follows:
 - Parse $pz = (\alpha, \beta, \gamma)$.
 - Sample a random number $r \in Z_q$.
 - Randomize puzzle pz to $pz' = (\alpha', \beta', \gamma')$ using r such that $\alpha' = \Pi_{El} \cdot \text{Enc}(pk_0, r_0 + r), \beta' = \Pi_{CL} \cdot \text{Enc}(pk_1, \aleph + r),$ and $\gamma' = g^{\aleph + r}$ (note that both Π_{CL} and Π_{El} are homomorphic).
 - Randomize π to π' using r to prove the existence of witness $(\aleph + r, r_0 + r)$ for statement $\alpha' \wedge \beta' \wedge \gamma' \wedge \gamma' * g^{r_0}$. Note that $T_{wit}((\aleph, r_0)) = (\aleph + r, r_0 + r)$ and $T_{stmt}(\alpha \wedge \beta \wedge \gamma \wedge \gamma * g^{r_0}) = \alpha' \wedge \beta' \wedge \gamma' \wedge \gamma' * g^{r_0}$
 - Return $pz' = (\alpha', \beta', \gamma'), \pi'$, and r.
- $0/1 \leftarrow \mathbf{PLink}(pp, sk_0, pz, pz')$: is a DPT algorithm (used by the auditor) that on input public parameters pp, (auditor's) private key sk_0 , and two puzzles pz and pz', outputs 1 (success) or 0 (failure). Respectively, pz and pz' are parsed as $pz=(\alpha, \beta, \gamma)$ and $pz'=(\alpha', \beta', \gamma')$. The process of generating the output is as follows:
 - If $g^{\Pi_{\text{El}}.\operatorname{Dec}(pk_0,sk_0,\alpha')}/g^{\Pi_{\text{El}}.\operatorname{Dec}(pk_0,sk_0,\alpha)}=\gamma'/\gamma$, return 1.
 - Otherwise, output 0.
- ^a Including $\gamma * g^{r_0}$ in the statement is to bind \aleph to r_0 .

4 Auditable Anonymous PCH

4.1 Security Model

- Both hub and users can be malicious while auditor is entrusted with auditing and verifying.
- PPT adversary \mathcal{A} adopts static corruption.
- Synchronous communication network \mathcal{F}_{syn} and secure transmission \mathcal{F}_{smt} .
- Blockchain is a global ledger \mathcal{F}_L .
- $\mathcal{F}_{AuditPCH}$ defines five operations: setup, open, pay, close, and audit.

4.2 Auditable Anonymous PCH

5 Performance Analysis

5.1 Performance Analysis

- 1.6GHz Intel Core i5-8265U with 8-Core and 8GB RAM.
- Java & C with JPBC and Relic.
- Secp256kl elliptic curve.

The number of Sender-Receiver pairs involved payments ranges from 4 to 60. ranges from 6 to 30.

Fig. 4: The computation cost of each role Fig. 5: The time cost comparison between while executing the AuditPCH protocol. AuditPCH and A²L⁺. The number of hub-

TABLE II: The computation cost of the LRP scheme.

	Setup	KGen	PVerify	PGen	PSol	PRand	PLink
Cost(s)	0.419	0.074	6.504	0.615	0.070	0.622	0.013

TABLE III: The computation cost of AuditPCH. Time is shown in seconds.

	Pay			Open	Close	Audit	Total
	Channel Au- thentication	Puzzle Generation	Puzzle Solution	орен	Close	ruun	10
Sender	0.002	7.279	0.008	_	_	_	7.289
Hub	0.004	0.768	6.582	0.004	_	_	7.358
Receiver	_	7.583	0.008	_	_	_	7.591
Auditor	-	_	_	0.485	_	13.258	13.716

TABLE IV: The communication cost of AuditPCH. n is the number of payments. Size is shown in KB.

	Pay			Open	Close	Audit	
	Channel Au- thentication	Puzzle Generation	Puzzle Solution	open close		. Addit	
Sender	0.969	5.764	0.281	_	_	_	
Hub	0.203	5.764	0.562	_	_	11.52n + 2n[TX]	
Receiver	_	5.404	_	_	_	_	
Auditor	-	_	_	7.230	_	-	

Thanks! Questions?