MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2016-17

EICO009 | COMPLEMENTOS DE MATEMÁTICA | 1º ANO - 2º SEMESTRE

Prova sem consulta. Duração: 2h45m.

Prova de Reavaliação Global

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

1. [2,5] Considere o ponto P = (2,1,0) e a curva, C, parametrizada por:

$$\vec{r}(t) = (2t, t^2, \ln(t)), t \in [1, e].$$

- a) Obtenha os versores da tangente e da binormal no ponto P.
- **b**) Determine a equação cartesiana do plano normal à curva no ponto *P*.
- **2.** [2,5] Sabendo que a equação $2xz^2 + y + z = 2$ define, de modo implícito, z = z(x, y) como função de x e de y na vizinhança do ponto Q = (1, 2, 0), obtenha as derivadas $\frac{\partial z}{\partial y}$ e $\frac{\partial^2 z}{\partial y^2}$ em Q.
- 3. [2,5] Considere o campo vetorial $\vec{f}(x, y, z) = (y, z + y, -y)$ e a curva, C, de interseção das superfícies $y^2 + z^2 = 1$ e x = y.
 - a) Obtenha uma parametrização para a curva C.
 - **b**) Calcule o integral de linha $\int_C y \, dx + (z+y) \, dy y \, dz$.
- **4.** [2,5] Sejam o campo vetorial $\vec{f}(x,y) = (2xy + 3x^2, y^2 + 2y)$ e a curva, C, fronteira da região do 1º quadrante delimitada pelo eixo dos yy e pelas linhas $y = x^2$ e y = 2 x. Esboce a curva e calcule, usando o teorema de Green, o integral de linha $\int_C \vec{f} \cdot d\vec{r}$.

.....continua no verso

Prova sem consulta. Duração: 2h45m.

Prova de Reavaliação Global

5. [2,**5**] Seja a superfície, *S*, definida por:

$$z = 4 - \frac{x^2 + y^2}{4}$$
, $0 \le z \le 3$.

Faça um esboço da superfície e calcule a sua área.

GRUPO II

6. [2,5] Considere o campo vetorial:

$$\vec{g}(x, y, z) = (xy, -yz, x)$$
.

Calcule o fluxo do campo vetorial \vec{g} através da superfície, S, x = 1 limitada por $v^2 + z^2 = 1$.

7. [3,0] Seja o integral triplo em coordenadas cartesianas:

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x} dz dy dx.$$

- a) Esboce o domínio de integração, V.
- **b**) Reescreva-o em coordenadas cilíndricas, identificando analiticamente o domínio de integração, e indique o significado geométrico do seu resultado.
- **8.** [2,0] Considere o campo de forças conservativo \vec{f} definido em $D \subset \mathbb{R}^3$ e seja C uma curva suave contida em D e parametrizada por $\vec{r}(t)$, $t \in [a,b]$. Mostre que o trabalho realizado por \vec{f} entre os pontos $P = \vec{r}(a)$ e $Q = \vec{r}(b)$ depende apenas da localização destes pontos no espaço.