Mestrado em Engenharia Informática

Image Segmentation

Visão por Computador

Luís Paulo Peixoto dos Santos

Bibliography

© 2008 by Pearson Education, Inc.

Pearson Prentice Hall

Pearson Education, Inc.

Upper Saddle River, New Jersey 07458

ISBN 0-13-168728-x

https://www.imageprocessingplace.com/

Capítulo 10

What is segmentation?

The process of partitioning the set of pixels R in an image into subregions $R_1, ..., R_n$, such that:

$$1. \quad \bigcup_{r=1}^{n} R_r = R$$

- 2. R_r is a connected set
- 3. $R_i \cap R_j = \emptyset, \forall i, j = 1 \dots n, i \neq j$
- 4. $Q(R_i) = TRUE$
- 5. $Q(R_i \cup R_j) = FALSE$ for any **adjacent** regions R_i , R_j

where $Q(R_i)$ is some logical predicate over the pixels in region R_i

Image Segmentation

Image Segmentation

Processamento de Imagem e Visão por Computador

Edge Detection - Fundamentals

Edge Detection - Fundamentals

Laplacian Operator

$$\nabla^2 f(x,y) = 8 * f(x,y) - \sum_{s=-a, s \neq 0}^a \sum_{t=-b, t \neq 0}^b f(x+s,y+t).$$

$$\nabla^2 f(x,y) = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Care must be taken with the sign and magnitude of $\nabla^2 f(x,y)$ if it is to be displayed as an image

Point Detection

$$mask(x,y) = \begin{cases} 1 & \leftarrow |\nabla^2 f(x,y)| \ge T \\ 0 & \leftarrow \neg \end{cases}$$

Line Detection

$$mask(x,y) = \begin{cases} 1 & \leftarrow \nabla^2 f(x,y) \ge T \\ 0 & \leftarrow \neg \end{cases}$$

Only positive values to avoid doubling the lines' thickness.

Line Detection

- The previously seen Laplacian is isotropic (response independent of the lines' directions)
- Different anisotropic filters can be used to detect lines with given orientations

-1	-1	-1	2	-1	-1	-1	2	-1	-1	-1	2
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
Horizontal		+45°		Vertical			-45°				

Processamento de Imagem e Visão por Computador

Impact of Noise (I)

Impact of Noise (II)

Mestrado em

Enga Informática

Gradient Operators

g	χ
$\mathbf{\circ}$	~

-1	-1	-1		
0	0	0		
1	1	1		

g_{y}

	Oy	
-1	0	1
-1	0	1
-1	0	1

Prewitt

-1	-2	-1	_	-1	0	1
0	0	0	-	-2	0	2
1	2	1	_	-1	0	1

$$M(x,y) = |\nabla f(x,y)| = \sqrt{g_x^2 + g_y^2} \approx |g_x| + |g_y|$$

$$\alpha(x,y) = tan^{-1} \left(\frac{g_y}{g_x} \right)$$

Gradient Operators

Application to raw image sensitive to noise and detail

Processamento de Imagem e Visão por Computador

Gradient Operators – Smoothing

Smoothing diminishes sensitivity to noise and detail

Gradient Operators – Thresholding

Canny edge detection

- 1. Noise reduction by Gaussian filtering
- 2. Compute the magnitude and direction of the gradient
- 3. Apply nonmaxima suppression to the gradient magnitude image:
 - 1. For each pixel g_p in the gradient magnitude map:
 - 1. Compare g_p with the 2 pixels in the negative and positive gradient directions
 - 2. If g_p is larger than both keep it, otherwise set to 0

Mestrado em

Enga Informática

Canny edge detection

- 1. Noise reduction by Gaussian filtering
- 2. Compute the magnitude and direction of the gradient
- 3. Apply nonmaxima suppression to the gradient magnitude image:
 - 1. For each pixel g_p in the gradient magnitude map:
 - 1. Compare g_p with the 2 pixels in the negative and positive gradient directions
 - 2. If g_p is larger than both keep it, otherwise set to 0
- 4. Hysteresis Thresholding

which pixels in the magnitude gradient are edges based on their connectivity to strong ("sure") edges

Canny edge detection

The original image

Non-maximum suppression applied to the previous image.

Image has been reduced to grayscale, and a 5x5 Gaussian filter with σ =1.4 has been applied

Double thresholding applied to the previous image. Weak pixels are

The intensity gradient of the previous image. The edges of the image have been handled by replicating.

Hysteresis applied to the previous image

Canny edge detection

Edge Linking – Hough Transform

• A point in cartesian space $p_i = (x_i, y_i)$ belongs to an infinite number of lines to which the following expression holds:

$$y_i = m * x_i + b, \forall m, b \in \mathbb{R}$$

• A point in parameter space $l_i = (m_i, b_i)$ represents a line with an infinite number of points to which the following expression holds:

$$y = m_i * x + b_i, \forall x, y \in \mathbb{R}$$

Edge Linking – Hough Transform

• Since m approaches ∞ as lines approach the vertical, polar coordinates are used instead:

$$r = x_i * \cos \theta + y_i * \sin \theta$$

- where the parameters (r, θ) represent all lines passing in (x_i, y_i)
- For an image (r, θ) are discretized and positive $(\theta \in [0, 2\pi[)$

Edge Linking – Hough Transform

Edge Linking – Hough Transform

Processamento de Imagem e Visão por Computador

Edge Linking – Hough Transform

- The Hough transform can be applied to other curves described in closed analytical form.
- For example the circle: $(x x_c)^2 + (y y_c)^2 = r^2$
- The time complexity of the algorithm increases with the number of parameters

Thresholding

$$g(x,y) = \begin{cases} 1 & \leftarrow f(x,y) \ge T \\ 0 & \leftarrow \neg \end{cases}$$

Thresholding: noise

Thresholding: illumination

Processamento de Imagem e Visão por Computador

Otsu Optimal Global Thresholding

- Consider the normalized histogram with $p_i = {n_i \choose (M*N)}$, i = 0, ..., L-1, for an image with M*N pixels and L illumination levels
- A threshold k divides the pixels into 2 classes:
 - C_1 containing the pixels with values in $\{0, \dots, k\}$
 - C_2 containing the pixels with values in $\{k+1,\cdots,L-1\}$
- Let $P_1(k)$ be the probability that a pixel belongs to C_1
- Let $m(k) = \sum_{i=0}^{k} i p_i$ be the average intensity of C_1
- Let $m_G = \sum_{i=0}^{L-1} i p_i$ be the average global intensity (whole image)
- Then the optimal threshold is given by

$$k = \underset{0 \le k < L}{\operatorname{argmax}} \left(\frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]} \right)$$

Otsu Optimal Global Thresholding

Thresholding: smoothing noise

Processamento de Imagem e Visão por Computador

Thresholding: Edges

- Select the threshold using the edges' pixels instead of all pixels:
- 1. $\mathcal{L}(x,y) = |\nabla^2 f(x,y)|$
- 2. $\mathcal{L}_{TG}(x,y) = \begin{cases} 0 & \leftarrow \mathcal{L}(x,y) < TG \\ 1 & \leftarrow \neg \end{cases}$ // mask strong edges
- 3. $f_{TG}(x,y) = \begin{cases} 0 & \leftarrow \mathcal{L}_{TG}(x,y) = 0 \\ f(x,y) & \leftarrow \mathcal{L}_{TG}(x,y) = 1 \end{cases}$ // select strong edges
- 4. $T = Otsu(f_{TG})$
- 5. $f_T(x,y) = \begin{cases} 0 & \leftarrow f(x,y) < T \\ 1 & \leftarrow \neg \end{cases}$ // threshold the original image

Thresholding: Edges

Processamento de Imagem e Visão por Computador

Local Thresholding

- Select a per pixel threshold T(x, y)
- Most commonly

$$T(x,y) = a * \sigma(x,y) + b * m(x,y)$$

or

$$T(x,y) = a * \sigma(x,y) + b * m_G$$

- m_G mean image value
- m(x, y) mean value in a neighbourhood of (x, y)
- $\sigma(x, y)$ standard deviation in a neighbourhood of (x, y)

Local Thresholding

