Name						
------	--	--	--	--	--	--

EE-3221 - Dr. Durant - Quiz 3 Winter 2020-'21, Week 3

This is a *closed*-book quiz. But, as always, you may refer to your homework that is due today.

$$F\{\cos(\omega_0 t)\} = \pi((\delta(\omega - \omega_0) + \delta(\omega + \omega_0)) = (1/2) ((\delta(f - f_0) + \delta(f + f_0))$$

In the above FT pair, the change from rad/sec to hertz requires dividing Fourier Transform by 2π .

1. (3 points) Let $x(t) = 3 \cos(2\pi \times 2500t) + 7 \cos(2\pi \times 5500t)$. Plot the magnitude spectrum |X(f)|. Note the multiplier of $10^4 = 10,000$ on the frequency axis.

2. (4 points) Let x(t) be sampled at sampling frequency $f_s = x + 2$ kHz with no anti-alias (lowpass) filter applied. Plot the magnitude spectrum $|X_s(f)|$ of the sampled signal to at least $x = \pm 16$ kHz.

3. (3 points) Plot |H(f)|, the magnitude spectrum of the ideal anti-alias filter, which is a function of the given f_s .

Discuss whether aliasing occursord what, if any, aliased Frequences