

Host Microbiome and aging using 16s approach

Guillermo G. Torres

Ph.D. student

Genetics of Human Longevity Group

About the data

	AII	Males	Females
BSP/SPC	133	68	<i>65</i>
FOC	101	49	<i>52</i>
AGI	9		
Samples	241	117+agi_M	117+agi_F

About the data

A whole genome sequencing (metagenes) was performed to 12 samples using our budget plus 9 from centenarians.

FOC_236, FOC_253, FOC_291, FOC_306, FOC_341, FOC_346, FOC_366, BSPSPC_168, BSPSPC_462, BSPSPC_468, BSPSPC_475, BSPSPC_489.

** Fiete, are These included in the whole batch of 54? or are extra.

We are going to use 54 more metagenomes from FOC/ SPC batches for later analysis. From this 47 sequencing libraries got so far.

Working with data

» Sequences are binned into OTU according sequence similarity.

	No. Seqs.	
Raw seqs.	11674227	
Quality Control	8573796	
OTUs	203000	

General overview Alpha diversity

Reads per sample

Rarefaction or cumulative curves

The Human Microbiome Project Consortium 2012 b

OTUs per sample

OTU classification

OTU classification

Bacteroides genus dominating.

Networks approach

workflow

- 1) In ecology the competition between organisms could be seen from their presence abundanc.
 - » Patterns of co-occurrence due to ecological relationships (mutualism, comensalism, etc.) or just niche overlapping.
- 2) The interactions will be represented as a network (mathematical representation of real-world complex system).
- 3) Use the age variable to represent network serial time.
- 4) Calculate network global and local parameters to understand the dynamics of the organism interactions.

Raw data does not fit well to log-normal distribution

Distribution of OTU sizes

Many OTUs low covered

We estimated the population size of each sample based on rare OTUs using Chao and ACE estimators. According to ACE, 85% of the samples estimate less than 12000 OTUs. Congruent with rarefaction.

Around12K OTUs with are formed with 10 read counts or more. OTU size threshold = 10 read counts

Raw

Information lost = 3.3% - Trimmed

After trimmed OTUs with fewer read counts than 10 fits better to lognormal. Probably better distribution adjustment would be to free-scale

$$x_i = (c_{i1}/N_i, ..., c_{ik}/N_i)$$

 $r_i = (r_{i1}, ..., r_{ik})$

$$r_{ij} = \begin{cases} t_{ij} \frac{s_i}{N_i + s_i} & \text{if } x_{ij} = 0, \\ x_{ij} \left(1 - \frac{s_i}{N_i + s_i} \sum_{k|x_{ik} = 0} t_{ik} \right) & \text{if } x_{ij} > 0. \end{cases}$$

Most OTU appears in a few individuals with low abundance, and zero values dominate most count values. Data structure falls into special Non-sufficient sampling effort. data class named as compositional data (Aitchison

For replacing the zero counts by a proper value, 2003) we managed the data using the Bayesian-multiplicative approach (Pawlowsky-Glahn et. al.

2011-chap4).

Data structure

- Construction of OTU correlation matrix. ~12K OTUs found.
- OTU filtration; assessed OTUs will be those that occurs in at least 15% of the samples. This reduction left 300 OTUs
- filtered OTUs may have accounted for **particularities** of each sample.

OTU in individuals

OTUs discarded

Get more deep into this later.

OTUs

Data structure

Where **RA** means the transformed relative abundance of the OTU in an individual.

Due to data follows a compositional data statistics we use log-ratios for further analysis (Aitchison 2003).

Correlation matrix

Using a sliding window we generates multiples correlation matrixes.

Later evaluation as time series.

Correlation network matrices

Network metics

Nodes with high degree are interacting, structurally or functionally.

Elderly loose high connected nodes and gender convergence.

Network metics

Hubs between males and females look a bit different. Get in deep later.

Matrice metics

The level of clustering between male and female are different specially around 50's.

Topologies of the network for males with mean age of 34 (left) and 55 (right). Contrasting clustering and strength values.

Ongoing work...

Our first approach to generate the correlation matrixes using log-ratios and cosine distance give us many spurious values therefore we are exploring:

- 1) John Baines suggests to use Sparcc algorithm (2012) and relative ones (REBACCA 2015) to generate the correlation matrix.
- 3) We are exploring to generate a Covariance matrix to assess OTUs relationships using SPIEC-EASI algorithm (2015). (more complex than Sparcc)

Next steps

- 1) Once the "relationship" matrices are done, collaborative partners from Spain (Dr. Javier Buldú, at the Center for Biomedical Engineering of the Technical University of Madrid) will assist me to analyze this time series framework to model the dynamics in microbial relationships through aging.
- 2) For most relevant microbial clusters we are going to generate its possible functional profile, and then with the assistance of Christoph Kaleta, we will perform a flux balance analysis to know whether the cluster has a functional dependency or not.

Extra...

Where data comes from?

- » 16S gene exists universally among bacteria
- » Highly conserved regions (V3-V4)

Working with data

- » 16S variability rate has been determined experimentally:
 - ≥ 99% Species level
 - ≥ 97% Genus level
 - ≥ 95% Family level

Working with data

Abundance

Richness = No. OTUs

	No. Seq.
OTU_1	50
OTU_2	20
OTU_3	300
OTU_4	100

Each sample has one OTU profile

Alpha Diversity

Identify Microbial composition with regard to age

- » Data combines quantitative and qualitative variables besides multiple environmental factors (OTUs).
 - » Multivariate statistics is one alternative.
 - Classification
 - Placement of sample units into groups
 - Ordination
 - Arrangement or 'ordering' of sample units along gradients.

» OTU abundance change through age? Is the richness changing through age? Which taxa are changing?

Syntrophy = Cross-feeding, one species lives off the products of another species

Syntrophy = Cross-feeding, one species lives off the products of another species

The relationship will be measured in terms of the abundance.

Then following up through age.

Characterise Relationships among microbiota

- » Complex network analysis.
 - » Holistic approach which allows explore the interactants and their interaction:
 - Micro-scale (OTUs)
 - Meso-scale (Group of OTUs)
 - Macro-scale (Net)

Results

	No. Seqs.	No.
Raw	11674227	
Quality Control	10158262	
Contigs	5079131	
Quimeras	3047478.6	
OTUs	2031652.4	322000

Data transformation

By column, RA values are transformed to lineal scale

1) linearisation:

$$SO = \begin{bmatrix} m_{a1} & m_{a2} & \dots & m_{aj} \\ m_{b1} & m_{b2} & \dots & m_{bj} \\ \dots & \dots & \dots & \dots \\ m_{i1} & m_{i2} & \dots & m_{ij} \end{bmatrix}$$

Data transformation

By column normalisation. *m* values are transformed into 0 - 1 scale:

2) Individual normalisation:

$$M_{ij} = \frac{m_{ij} - \min(SO_{.j})}{\max(SO_{.j}) - \min(SO_{.j})}$$

$$SO_{.j} = \begin{bmatrix} m_{aj} \\ m_{bj} \\ m_{cj} \\ \dots \\ m_{ij} \end{bmatrix} \rightarrow \begin{bmatrix} M_{aj} \\ M_{bj} \\ M_{cj} \\ \dots \\ M_{ij} \end{bmatrix} \mid \{M \in R: \ 0 \le M \le 1\}$$

Data transformation

$$SO_{sin} = \begin{bmatrix} M_{a1} & M_{a2} & \dots & M_{aj} \\ M_{b1} & M_{b2} & \dots & M_{bj} \\ \dots & \dots & \dots & \dots \\ M_{i1} & M_{i2} & \dots & M_{ij} \end{bmatrix}$$

$$dim(SO_{sin}) = [samples, OTUs] = [222,300]$$

OTU - OTU correlation

$$SO_{sin,j} = \begin{bmatrix} M_{aj} \\ M_{bj} \\ ... \\ M_{pj} \\ ... \\ M_{ij} \end{bmatrix}$$
 "Maj" represents the abundance of the OTU "a" in the organism "j" then:

1) Calculate all the OTU permutations
2) Calculate the distance "d" of each permutation

the OTU "a" in the organism "j" then:

- permutation

$$d_{ap} = M_{aj} - M_{pj} \Longrightarrow Dis_{j} = \begin{bmatrix} d_{aa} \\ d_{ab} \\ \dots \\ d_{ai} \\ \dots \\ d_{ii} \end{bmatrix}$$

SOsin

OTU - OTU correlation

$$D_w = \begin{bmatrix} d_{aa}^l \ d_{aa}^2 \dots \ d_{aa}^k \\ d_{ab}^l \ d_{ab}^2 \dots \ d_{ab}^k \\ \dots \ \dots \ \dots \\ d_{ai}^l \ d_{ai}^2 \dots \ d_{ai}^k \\ \dots \ \dots \ \dots \\ d_{ii}^l \ d_{ii}^2 \dots \ d_{ii}^k \end{bmatrix} \text{ Dw matrix contains distance vectors } (Dis._j) \text{ of individuos in slide window.}$$

$$\begin{bmatrix} d_{ii}^{1} & d_{ii}^{2} & \dots & d_{ii}^{k} \end{bmatrix}$$

$$w_{pq} = 1 - sd(Win[pq,]) \Longrightarrow Cor = \begin{bmatrix} w_{aa} \\ w_{ab} \\ \dots \\ w_{ai} \\ \dots \\ w_{ii} \end{bmatrix}$$

$$w_{pq} = 1 - sd(Win[pq,]) \longrightarrow Cor = \begin{bmatrix} w_{aa} \\ w_{ab} \\ \dots \\ w_{ai} \\ \dots \\ w_{ii} \end{bmatrix}$$

OTU - OTU correlation

```
Tensor = [Cor_1, Cor_2 ..., Cor_k]
```

 $dim(Tensor) = \lceil (samples-Win_length)+1 \rceil = \lceil 211 \rceil$

dim(Cor) = [OTUs, OTUs] = [300, 300]