a) Survival time decreases as white blood cell count increases

- b) Link function is log
- c) Using integration by parts:

$$\begin{split} & E[X] = \int x \, \lambda e^{-\lambda x} dx = -x e^{-\lambda x} - \frac{1}{\lambda} \, e^{-\lambda x} \, \big|_{0}^{\infty} = \frac{1}{\lambda} \\ & E[X^{2}] = \int x^{2} \, \lambda e^{-\lambda x} dx = -x^{2} \, e^{-\lambda x} + 2 \int x e^{-\lambda x} dx = \frac{2}{\lambda^{2}} \\ & Var[X] = E[X^{2}] - E[X]^{2} = \frac{1}{\lambda^{2}} \end{split}$$

- d) Two models are fitted below:
 - the first one is LM with y=log(survival time)
 lm1 <- lm(log_time ~ log_wbc)

2. the second is GLM() with y=time glm1 <- glm(time ~ log_wbc, family="poisson")</p>

e) we can see from the residual plot below that the residuals are small, except for the last observation (x=5, y=65, r=2.027). So the model fits the data well

Observations	₹ 1	▼ 2	™ 3	₹ 4	™ 5	 6	7	▼ 8	▼ 9	1 0	1 1	1 2	1 3	▼ 14	1 5	▼ 16	1 7	~
x		3.36	2.88	3.63	3.41	3.78	4.02	4	4.23	3.73	3.85	3.97	4.51	4.54	5	5	4.72	5
у		65	156	100	134	16	108	121	4	39	143	56	26	22	1	1	5	65
fitted_values		108.25	173.79	82.94	103.04	71.53	56.45	57.58	45.89	75.15	66.76	59.31	34.82	33.80	21.47	21.47	28.30	21.47
residuals		-4.49	-1.37	1.81	2.91	-7.95	6.09	7.27	-8.02	-4.60	8.09	-0.43	-1.56	-2.17	-5.90	-5.90	-5.41	7.55
standard_residua	als	-0.40	-0.10	0.21	0.30	-0.78	0.91	1.10	-0.91	-0.48	1.14	-0.06	-0.25	-0.35	-0.95	-0.95	-0.82	2.03

Survival time for leukemia (red=lm, blue=glm)

Appendix (R Code)

require(dobson)

require(ggplot2)

#preparation of data

leukemia <- dobson::leukemia

log_wbc = leukemia\$wbc

time = leukemia\$time

log_time = log(leukemia\$time)

#plot

plot(y=leukemia\$time, x=leukemia\$wbc, pch=19, col= "black",

```
main ="Survival time for leukemia", ylab ="time to death (weeks)", xlab = "log(white blood
cell count)")
#models
lm1 <- lm(log_time \sim log_wbc)
glm1 <- glm(time ~ log_wbc, family="poisson")
#table
table1 <- rbind( x=log_wbc, y= glm1$y, fitted_values= glm1$fitted.values,
          residuals = resid(glm1), standard_residuals = glm1$residuals)
write.csv(x= table1, file = "./York Statistics/Math 6622 - GLM/A2/table.csv")
#plots
plot(y=leukemia$time, x=leukemia$wbc, pch=19, col= "black",
   main ="Survival time for leukemia (red=lm, blue=glm)", xlab ="time to death (weeks)", ylab
= "log(white blood cell count)")
lines(leukemia$wbc, glm1$fitted, col="blue",lwd=3)
lines(leukemia$wbc, exp(lm1$fitted.values), col="red",lwd=3)
#residual plot
plot(glm1$residuals , pch=19, ylab = "residuals", main = "residual plot")
abline(h = 0)
plot( glm1$fitted , resid(glm1), pch=19)
```