8.3 More Integral Theorems

June 20, 2015

Abstract

Exercices de la secion 8.3 des théorèmes se rapportant à l'intégrale de Riemann dérivés à l'aide du critère d'intégrabilité de Lebesgue.

8-16

- 1. $f, g: [a, b] \to \mathbb{R}$ une fonction riemann
- 2. $\exists \epsilon > 0$ tel que $|g(x)| > \epsilon$ pour tout $x \in [a, b]$

(a)

$$\diamond$$
 (1) $\frac{f}{g}$ est riemann

Puisque g n'est jamais nulle sur [a,b], on a que $\frac{1}{g}(x)$ est bien définie sur [a,b].

Or, $\frac{1}{q}$ est continue pp puisque g est continue pp ([1] + thm 8.12).

On applique alors la partie 1 du thm 8.14.

(b)

$$\diamond |f|$$
 est riemann et $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

Puisque |x| est continue sur \mathbb{R} et f est continue pp sur [a, b], |f| est continue pp sur [a, b] car si f est continue en x, alors |f| le sera aussi (**thm 3.30**). Donc |f| est riemann (**thm 8.12**).

Par le **lemme 5.6**, puisque f est riemann, alors pour toutes suites de partition $\{P_k\}$ telle que $\lim_{n\to\infty}||P_k||=0$ avec suite d'ensemble d'évaluation $\{T_k\}$ correspondant, on a $\lim_{k\to\infty}R(f,P_k,T_k)=\int_a^bf$.

Par **2-12**, puisque la limite des sommes de riemann existe, on a $\left| \int_a^b f \right| = \left| \lim_{k \to \infty} R(f, P_k, T_k) \right| = \lim_{k \to \infty} |R(f, P_k, T_k)|$.

On déduit

$$\lim_{k \to \infty} |R(f, P_k, T_k)|$$

$$=$$

$$\lim_{k \to \infty} \left| \sum_{i=1}^{n_k} f(x_{k,i}) \Delta x_{k,i} \right|$$

$$\leq$$

$$\lim_{k \to \infty} \sum_{i=1}^{n_k} |f(x_{k,i})| \Delta x_{k,i}$$

$$=$$

$$\lim_{k \to \infty} R(|f|, P_k, T_k)$$

$$=$$

$$\int_{a}^{b} |f|$$

où la dernière égalité est une autre application du lemme 5.6.

On peut terminer la preuve en considérant n'importe quelle partition dont la norme tend vers 0 et considérer sa somme supérieure ou inférieure.

(c)

 \diamond Dans le but d'illustrer l'utilité du critère d'intégrabilité de Lebesgue, démontrez l'intégrabilité de |f| sur [a,b] à l'aide du critère de Riemann (**thm 5.25**).

Puisque f est riemann, pour tout $\epsilon > 0$ il existe P une partition de [a,b] tel que $U(f,P) - L(f,P) < \epsilon$ (thm 5.25).

Alors

$$U(|f|, P) - L(|f|, P)$$

$$= \sum_{i=1}^{n} M_i \Delta x_i - \sum_{i=1}^{n} m_i \Delta x_i$$

$$= \sum_{i=1}^{n} (M_i - m_i) \Delta x_i$$

où $M_i = \sup\{|f(x)| : x \in [x_{i-1}, x_i]\}$ et $m_i = \inf\{|f(x)| : x \in [x_{i-1}, x_i]\}$.

Soit
$$S_i := \sup\{f(x) : x \in [x_{i-1}, x_i]\}\$$
 et $L_i := \inf\{f(x) : x \in [x_{i-1}, x_i]\}.$

On a alors quelques cas. Si $S_i \geq 0$ et $L_i \geq 0$, alors $M_i = S_i$ et $m_i = L_i$

car $|f|([x_{i-1}, x_i]) = f([x_{i-1}, x_i])$ et donc $S_i - L_i = M_i - m_i$.

Si $S_i \geq 0$ et $L_i < 0$, alors $M_i = \max\{|S_i|, |L_i|\}$ et $m_i \geq 0$.

Si $S_i > |L_i|$, alors c'est que $S_i > 0$. SPDG, on ne considérera que des x tel que f(x) > 0. Supposons alors $L < S_i$ tel que L soit le supremum.On pose $\alpha := S_i - L$. Alors il existe $x \in [x_{i-1}, x_i]$ tel que $S_i - f(x) < \alpha = S_i - L$. Alors f(x) > L et donc L ne peut pas être le supremum. En particulier $|L_i|$.

Si $|L_i| > S_i$. Supposons $L < |L_i|$ le supremum. On pose $\alpha := |L_i| - L$. Puisque L_i est l'infimum de $\{f(x) : x \in [x_{i-1}, x_i]\}$, il existe x tel que $f(x) - L_i < \alpha = |L_i| - L = -L_i - L$. Alors f(x) < -L. SPDG, f(x) < 0. Alors |f(x)| > L et donc L ne peut pas être le supremum. À plus forte raison S_i .

Si alors $M_i=S_i$, alors $S_i-L_i\geq S_i$ car $-L_i>0$. Si $M_i=|L_i|$, alors $S_i-L_i=S_i+|L_i|=M_i+S_i\geq M_i-m_i$ car $m_i\geq 0$.

Si $S_i < 0$ et $L_i < 0$, alors $M_i = |L_i|$ et $m_i = |S_i|$. Car alors $|f|([x_{i-1}, x_i]) = -f([x_{i-1}, x_i])$ et donc $\sup(|f|([x_{i-1}, x_i])) = -\inf(f([x_{i-1}, x_i])) = |L_i|$ et analoguement pour l'infimum.

Alors $M_i - m_i = |L_i| - |S_i| = -L_i - (-S_i) = S_i - L_i$.

On conclut

$$\sum_{i=1}^{n} (M_i - m_i) \Delta x_i$$

$$\leq \sum_{i=1}^{n} (S_i - L_i) \Delta x_i$$

$$= U(f, P) - L(f, P) < \epsilon$$

Ainsi $U(|f|, P) - L(|f|, P) \le U(f, P) - L(f, P) < \epsilon$.

8-17

- 1. $f:[a,b]\to\mathbb{R}$
- 2. $m \in (a, b)$

 $\diamond f$ est riemann sur [a,b] ssi f est riemann sur [a,m] et sur [m,b] et alors

$$\int_a^b f = \int_a^m f + \int_m^b f$$

 (\Rightarrow)

Supposons f riemann sur [a,b]. Alors f est continue pp sur [a,b] (thm 8.12) et donc continue pp sur [a,m] et sur [m,b] et donc riemann sur chacun de ces

intervalles (thm 8.12).

Puisque f est riemann sur chacun des intervalles [a, m] et [m, b] alors pour toutes suites de partitions $\{P_k\}$ de [a, m], $\{D_k\}$ de [m, b] on a

$$\lim_{k \to \infty} R(f, P_k, T_k) = \int_a^m f$$

$$\lim_{k \to \infty} R(f, D_k, T_k^*) = \int_m^b f$$

Alors

$$R(f, P_k, T_k) + R(f, D_k, T_k^*) = \sum_{i=1}^{n} f(t_i) \Delta x_i + \sum_{i=1}^{m} f(t_i^*) \Delta x_i = \sum_{i=1}^{n} f(t_i) \Delta x_i + \sum_{i=n}^{n+m} f(t_{n+i}^*) \Delta x_{n+i} = \sum_{i=1}^{n+m} f(t_i) \Delta x_i = R(f, P_k \cup D_k, T_k \cup T_k^*)$$

car $P_k \cup D_k$ forme une partition de [a,b] où P_k termine en m et D_k y débute. De plus, il est clair que $\lim_{k\to\infty}||P_k\cup D_k||=0$.

Puisque f est riemann sur [a,b], on applique à répétition le **lemme 5.6** pour obtenir

$$\int_{a}^{m} f + \int_{m}^{b} f$$

$$= \lim_{k \to \infty} R(f, P_{k}, T_{k}) + \lim_{k \to \infty} R(f, D_{k}, T_{k}^{*})$$

$$= \lim_{k \to \infty} (R(f, P_{k}, T_{k}) + R(f, D_{k}, T_{k}^{*}))$$

$$= \lim_{k \to \infty} R(f, P_{k} \cup D_{k}, T_{k} \cup T_{k}^{*})$$

$$= \int_{a}^{b} f$$

 (\Leftarrow)

Supposons f intégrable sur [a, m] et sur [m, b]. Alors f est continue pp sur chacun de ces intervalles considérés individuellement.

Soit alors $x \in [a, b]$ tel que f : [a, b] est discontinue. Alors $x \in [a, m]$ ou $x \in [m, b]$. SPDG, $x \in [a, m]$. Alors $f(x) = f|_{[a,m]}(x)$. Mais alors $f|_{[a,m]}(x)$ doit être discontinue, car sinon f(x) serait continue. Donc les points de discontinuité de f forment un sous-ensemble des points de discontinuité de $f|_{[a,m]}$ et de $f|_{[m,b]}$. Or la mesure de l'union de ces ensembles est nulle, car la mesure de chacun d'entre eux l'est également, donc f est continue pp sur [a,b] donc riemann sur [a,b] (thm 8.12).

Alors, en appliquant le **lemme 5.6** pour $f|_{[a,m]}$ et $f|_{[m,b]}$, on effectue un raisonnement similaire à celui fait plus haut.

8-18

- 1. f Riemann sur [a, b]
- $2. \ x_0 \in [a, b]$
- 3. $G(x) := \int_{x_0}^{x} f(t)dt$
- $\diamond \ G(x) \ \text{est uniformément continue sur} \ [a,b] \\ \diamond \ \mathbf{Si} \ \ f \ \text{est continue en} \ x \in (a,b) \ \mathbf{alors} \ \frac{d}{dx} \left(\int_{x_0}^x f(t) dt \right) = f(x)$

On a que

$$\int_{a}^{x} f = \int_{a}^{x_0} f + \int_{x_0}^{x} f$$

et donc $G(x) = \int_a^x f - \int_a^{x_0} f$. Or, le premier terme de cette différence est uniformément continue (**thm 8.17**) et le deuxième, étant une constante, l'est également. Donc G(x) est une différence de fonctions continues sur [a,b]. Elle est donc continue sur [a,b] (**thm 3.27**) et donc uniformément continue sur cet interval (**lm 5.19**).

Supposons alors f continue en $x \in (a, b)$. Alors

$$G'(x) = \frac{d}{dx} \left(\int_a^x f - \int_a^{x_0} f \right) = f(x)$$

puisque la dérivé de $\int_a^x f$ est f(x) (thm 8.17) et que celle de $\int_a^{x_0} f$ est 0, étant une constante.

8-19

1. f, g Riemann sur [a, b]

 $\diamond fg$ est Riemann sur [a,b] à l'aide du critère de Riemann (thm 5.25)

On suppose d'abord que f et g sont non négatives.

Supposons ϵ^* et $\epsilon := \epsilon^* M^{-1}$ où $M := \sup_{[a,b]} f + \sup_{[a,b]} g + 1$. On suppose de plus une partition P tel que $U(P,f) - L(P,f) < \epsilon$ et $U(P,g) - L(P,g) < \epsilon$ (lemme 5.6).

On a alors que $M_{fg} \leq M_f M_g$ et que $m_{fg} \geq m_f m_g$. Donc $|M_{fg}-m_{fg}| \leq |M_f M_g - m_f m_g|$. Alors

$$\sum_{i=1}^{n} |M_{fg} - m_{fg}|_{i} \Delta x_{i}$$

$$\leq \sum_{i=1}^{n} |M_{f}M_{g} - m_{f}m_{g}|_{i} \Delta x_{i}$$

$$\leq \sum_{i=1}^{n} |M_{f}|_{i} |M_{g} - m_{g}|_{i} \Delta x_{i} + |m_{g}|_{i} |M_{f} - m_{f}|_{i} \Delta x_{i}$$

$$\leq \sup_{i=1}^{n} |M_{g} - m_{g}|_{i} \Delta x_{i} + \sup_{i=1}^{n} |M_{f} - m_{f}|_{i} \Delta x_{i}$$

$$\leq \sup_{i=1}^{n} |M_{g} - m_{g}|_{i} \Delta x_{i} + \sup_{i=1}^{n} |M_{f} - m_{f}|_{i} \Delta x_{i}$$

$$\leq \sup_{i=1}^{n} |M_{g} - m_{g}|_{i} \Delta x_{i} + \sup_{i=1}^{n} |M_{f} - m_{f}|_{i} \Delta x_{i}$$

$$\leq \sup_{i=1}^{n} |M_{g} - m_{g}|_{i} \Delta x_{i} + \sup_{i=1}^{n} |M_{f} - m_{f}|_{i} \Delta x_{i}$$

Alors, si f et g sont positives supérieures à 1, la théorèmes et prouvé.

Soit alors des fonctions générales f et g. Puisqu'elles sont intégrables, elles sont bornées (**par définition**) et donc on pose $B := |\min\{f,g\}| + 1$ et on considère (f+B)(g+B), un produit de fonctions positives supérieures à 1, dont intégrables.

Or, $(f+B)(g+B) = fg + B(f+g) + B^2$ où B(f+g) et B^2 sont intégrables (**thm. 5.8**). Donc $-B(f+g) - B^2$ est intégrables (**thm. 5.8**). Alors $(f+B)(g+B) - B(f+g) - B^2 = fg$ est intégrable (**thm. 5.8**).

8-21

- 1. $f:[a,b]\to\mathbb{R}$ continue
- 2. $q:[a,b]\to[0,\infty)$ riemann
- $\diamond \; \exists c \in [a,b] \; \text{tel que} \, \int_b^a fg = f(c) \int_a^b g$

Car $\min fg(x) \le fg(x) \le \max fg(x)$ et alors $\min f \int_a^b g \le \int_a^b fg \le \max f \int g$ (prop. 5.21).

Mais de même on a min $f \int_a^b g \le f(x) \int_a^b g \le \max f \int_a^b g$ sur [a, b]. Or, f est continue est l'intégral de g est une constante. Par le \mathbf{TVI} , il existe $c \in [a, b]$ tel que $f(c) \int_a^b g = \int_a^b f g$.

8-22

- 1. $g:[a,b]\to [0,\infty)$ riemann
- 2. $f:[a,b]\to\mathbb{R}$ non décroissante

$$\diamond \; \exists c \in [a,b] \; \text{tel que} \; \int_a^b fg = f(a) \int_a^c g + f(b) \int_c^b g$$

 $h(t) := f(a) \int_a^t g + f(b) \int_t^b g$ une fonction non décroissante.

Par l'hypothèse [2], $f(a) = \min f$ et $f(b) = \max f$.

Alors $f(a)g(x) \leq f(x)g(x) \leq f(b)g(x)$ et donc par monotonie de l'intégrale on a $f(a)\int_a^b g \leq \int_a^b fg \leq f(b)\int_a^b g$.

Mais
$$f(a) \int_a^b g = h(b)$$
 et $f(b) \int_a^b g = h(a)$.

Or $\int_a^t g$ et $\int_t^b g$ sont continues en t (**thm. 8.17**) et donc h(t) l'est également (**thm. 3.27**). On applique le **TVI**.

8-23

- 1. $[a,b] \subset (c,d)$
- 2. $F, g: (c, d) \to \mathbb{R}$ différentiable to F' = f
- 3. f, g' riemann sur [a, b]

$$\diamond \int_a^b fg = F(b)g(b) - F(a)g(a) - \int_a^b Fg'$$

Premièrement, que fg est riemann. Car f est riemann par hypothèse et g est différentiable sur (c,d), donc sur [a,b], donc continue sur [a,b], donc riemann sur [a,b]. Donc fg est riemann sur [a,b]. (ex. 8-19).

On a

$$F(b)g(b) - F(a)g(a)$$

$$= F(x)g(x)|_a^b$$

$$= \int_a^b fg + Fg'$$

$$= \int_a^b fg + \int_a^b Fg'$$

En substituant cette expression dans le membre de droite de ce qu'il faut prouver, on obitent le résultat voulu.

Note : je vois l'application du **thm. 5.23**, mais pas de **thm. 8.17**. C'est une généralisation d'un exercice précédent ou l'on supposait que f et g' était continue sur [a,b], alors qu'ici on ne suppose que la continuité presque partout. Mais il me semble que l'exercice aurait pû être fait avec exactement les mêmes hypothèses à la section 5.

8-24

- 1. $[a,b] \subset (c,d)$
- 2. $g:(c,d)\to\mathbb{R}$ différentiable
- 3. g' riemann sur [a, b]
- 4. $g([a,b]) \subseteq (u,v)$
- 5. $F:(u,v)\to\mathbb{R}$ dans C^1 to F'=f

$$\diamond \int_a^b f(g(x))g'(x)dx = F(g(b)) - F(g(a))$$

J'ai juste l'impression d'avoir à appliquer thm. 5.23. Car F(g(x)) est différentiable par thm. 4.10.

On montre facilement que le membre de gauche de l'identité est riemann...

8-25

- 1. a > 0
- 2. $f: [-a, a] \to \mathbb{R}$

 (\mathbf{a})

 \diamond Si f est pairs et riemann, alors $\int_{-a}^{a} f = 2 \int_{0}^{a} f$

$$\operatorname{Car} \int_{-a}^{a} f = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = -\int_{a}^{0} f(-y) dy + \int_{0}^{a} f(x) dx = -\int_{a}^{0} f(y) dy + \int_{0}^{a} f(x) dx = \int_{0}^{a} f(y) dy + \int_{0}^{a} f(x) dx = 2 \int_{0}^{a$$

On applique le **thm. 8.16** puis pose -y := x.

Note: La raison pour laquelle on fait cette exercice dans cette section est que l'on avait pas de thm. 8.16 pour le faire à la section 5.

(b)

 \diamond Si f est impaire et riemann, alors $\int_{-a}^a f = 0$

Car
$$\int_{-a}^{a} f = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx = -\int_{a}^{0} f(-y)dy + \int_{0}^{a} f(x)dx = \int_{a}^{0} f(y)dy + \int_{0}^{a} f(x)dx = -\int_{0}^{a} f(y)dy + \int_{0}^{a} f(x)dx = 0$$

Pour des raisons similaires à (a).

(c)

 $\diamond f$ est une somme de fonctions paires et impaires

On pose
$$g(x) := \frac{f(x) + f(-x)}{2}$$
 et $h(x) := \frac{f(x) - f(-x)}{2}$. Alors

$$g(-x) = \frac{f(-x) + f(-x)}{2} = \frac{f(x) + f(-x)}{2} = g(x)$$

et

$$h(-x) = \frac{f(-x) - f(-x)}{2} = \frac{f(-x) - f(x)}{2} = \frac{-(f(x) - f(-x))}{2} = -h(x)$$

et donc g est paire et h est impaire.

Or,
$$g + h = \frac{f(x) + f(-x) + f(x) - f(-x)}{2} = f(x)$$
.

8-27

- 1. $f:[a,b]\to\mathbb{R}$ continue
- 2. $l, u: (c, d) \rightarrow [a, b]$ différentiables

$$\diamond \frac{d}{dx} \left(\int_{l(x)}^{u(x)} f(t)dt \right) = f(u(x))u'(x) - f(l(x))l'(x)$$

Par thm. 8.17, thm. 5.20, $F(x) := \int_a^x f(t)dt$ et $G(x) := -\int_a^x f(t)dt$ sont uniformément continue et différentiables sur [a,b].

Alors, par **thm. 4.10**, $F \circ u$ et $G \circ l$ sont différentiables sur (c, d) et

$$(F \circ u)' = (F' \circ u)u'(x)$$
$$(G \circ l)' = (G' \circ l)l'(x)$$

or

$$F \circ u(x) + G \circ l(x)$$

$$= \int_{a}^{u(x)} f(t)dt - \int_{a}^{l(x)} f(t)dt$$

$$= \int_{a}^{u(x)} f(t)dt + \int_{l(x)}^{a} f(t)dt$$

$$= \int_{l(x)}^{u(x)} f(t)dt$$

par thm. 8.16.

Aussi,

$$(F' \circ u)u'(x) = ((\frac{d}{dx} \int_{a}^{x} f(t)dt) \circ u)u'(x)$$

$$= (f \circ u)u'(x)$$

par thm. 8.17 et analoguement pour G.

Alors

$$\frac{d}{dx}(F \circ u(x) + G \circ l(x)) = \int_{l(x)}^{u(x)} f(t)dt$$

$$= (F' \circ u)u'(x) + (G' \circ l)l'(x) = (f \circ u)u'(x) - (f \circ l)l'(x)$$

8-29

(a)

1. $f:[a,b]\to\mathbb{R}$ riemann

 $\diamond\;G:[a,b]\to\mathbb{R}$ ou $G:=\int_a^x f(t)dt$ est absolument continue sur [a,b]

La chose suit de **thm. 8.17** et de ce que les fonctions uniformément continues sont absolument continues.

Car soit f une fonction uniformément continue et ϵ, n et soit $\epsilon^* := \frac{\epsilon}{n}$.

Alors il existe un $\delta > 0$ tel que $|x - y| < \delta$ implique $|f(x) - f(y)| < \epsilon^*$.

Soit alors $\{(a_i,b_i)\}_{i=1}^n$ une collection d'intervales ouverts disjoints deux à deux et supposons $\sum_{i=1}^n |b_i - a_i| < \delta$. Alors $|b_i - a_i| < \delta$ pour tout i. Donc $\sum_{i=1}^n |f(b_i) - f(a_i)| < n\epsilon^* = \epsilon$.

Donc pour tout ϵ il existe un δ tel que pour toutes suites $\{(a_i, b_i)\}_{i=1}^n$ tel que $\sum_{i=1}^n |b_i - a_i| < \delta$ implique $\sum_{i=1}^n |f(b_i) - f(a_i)| < \epsilon$.

(b)

♦ Les fonctions absolument continues sont uniformément continues

On n'a qu'à remarquer que les suites $\{(a_i,b_i)\}_{i=1}^n$ d'intervales ouverts disjoints deux à deux sont une généralisation d'une paire (x,y) qui serait δ proches.

(c)

$$\diamond f(x) := \frac{1}{x}$$
 est continue sur $(0,1]$ mais pas absolument continue

Car par (a),(b) on a montré que abs.cont. \Leftrightarrow unif.cont.

Or, $\frac{1}{x}$ n'est pas uniformément continue sur (0,1] (ex. 5-14).

8-30

- 1. $g:[a,b]\to\mathbb{R}$ non décroissantes
- 2. $f,h:[a,b]\to\mathbb{R}$ bornées et riemann-stieltjes sur [a,b] par rapport à g

(a)

$$\diamond$$
 Si $|f|$ est riemann-stieltjes par rapport à $g,$ alors $\left|\int_a^b f dg\right| \leq \int_a^b |f| dg$

On prouve une version du lemme 5.6 valide pour l'intégrale de Riemann-Stieltjes et alors l'argument devient le même que pour ex. 8-16.

Soit f riemann-stieltjes par rapport à g une fonction non décroissante. Alors pour tout ϵ il existe δ tel que pour toutes partitions P tel que $||P|| < \delta$ et pour toutes ensembles d'évaluations T, on a

$$\left| S_g(f, P, T) - \int_a^b f dg \right| < \epsilon$$

Soit alors P_k tel que $||P_k|| \to 0$ lorsque $k \to \infty$. Alors on montre facilement que $S_g(f, P_k, T_k) \to \int_a^b f dg$.

(b)

 $\diamond \forall m \in [a,b] \int_a^m f dg$ et $\int_m^b f dg$ sont riemann-stieltjes et $\int_a^b f dg = \int_a^m f dg + \int_m^b f dg$

Car puisqe f est riemann-stieltjes par rapport à g, alors pour tout ϵ , il existe P tel que $U_g(f,P)-L_g(f,P)<\epsilon$.

On considère alors la partition P' un rafinement de P tel que $m \in P'$. Alors $U_g(f,P') - L_g(f,P') \le U_g(f,P) - L_g(f,P) < \epsilon$ (lm. 5.16).

(Note: Le lm. 5.16 tient pour riemann-stieltjes. On adapte très facilement l'argument.)

On peut alors séparer $U_g(f, P') - L_g(f, P')$ en

$$(U_q(f,Q) - L_q(f,Q)) + (U_q(f,H) - L_q(f,H))$$

où
$$Q := \{a = x_0 < \dots < x_k = m\}$$
 et $H := \{m = x_0 < \dots < x_r = b\}$.

Puisque chaqun des termes de cette somme est positifs, on a

$$U_g(f,Q) - L_g(f,Q) < \epsilon$$

$$U_g(f,H) - L_g(f,H) < \epsilon$$

et donc f est riemann-stieltjes sur [a, m] et [m, b].

Puisque le lemme 5.6 tient pour riemann-stieltjes, posons Q_k , H_k tel que

$$\lim_{k \to \infty} S(f, Q_k, T_k) = \int_a^m f dg$$

$$\lim_{k \to \infty} S(f, H_k, T_k) = \int_m^b f dg$$

où $Q_k := \{a = x_0 < \dots < x_k = m\}, H_k := \{x_0 = m < \dots < x_r = b\}$ et $||Q_k|| \to 0$ et de même pour H_k .

Alors

$$\begin{split} & \int_{a}^{m} f dg + \int_{m}^{b} f dg \\ = & \lim_{k \to \infty} S(f, Q_k, T_k) + \lim_{k \to \infty} S(f, H_k, T_k) \\ = & \lim_{k \to \infty} (S(f, Q_k, T_k) + S(f, H_k, T_k)) \\ = & \lim_{k \to \infty} S(f, P_k, T_k) \end{split}$$

Or, P_k forme une suite de partitions de [a,b] tel que $||P_k|| \to 0$ lorsque $k \to \infty$. Donc $\lim_{k\to\infty} S(f,P_k,T_k) = \int_a^b f dg$.

Note: Pour quoi ne pas se servir de 5.6 pour prouver directement l'égalité en plus de montrer que f est riemann-stieltjes sur [a,m] et [m,b]? Car la définition de l'intégrabilité existe qu'il existe un epsilon tel que pour toute partition, on ait une petit distance par rapport à un certain I de \mathbb{R} . On aurait donc à construire la limite et ensuite montrer quel que chose à partir de toute partition de [a,m] en fonction de partition de [a,b]. La construction de la limite est particulièrement problématique.

(c)

$\diamond~fh$ est riemann-stieltjes par rapport à g

L'argument est essentiellement le même que 8-19, mais on se sert de **ex. 5-12** pour déduire que les sommes de fonctions sont intégrables. Puisque l'on a que $\int_a^b dg$ est bien défini peu importe le g, les constantes sont intégrables peu importe le g, donc le raisonnement de 8-19 tient ici.

Que les constantes soient intégrables, on le voit à ce que

$$\sum_{i=1}^{n} \Delta g_i = \sum_{i=1}^{n} g_{i+1} - g_i$$

$$= \sum_{i=1}^{n} g_{i+1} - g^* + g^* - g_i$$

d'où il suit que, peu importe la partition, sa somme est g(b) - g(a) (puisque g est non-décroissante et x_i forme une partition).