

CS7800: Advanced Algor: thms

Greedy Algs II

- · Minimum spanning trees
- · Classroom scheduling

Jonathan Ullman 09-16-2022

Network Design Problems

Given:

- A set of nodes V
- A set of nodes V

 A set of potential edges E

 G=(V, E, \(\sigma\))
- Costs & we3 for building each edge }

build a network that is vell connected and cheap

Minimum Spanning Trees

Given:

- A set of nodes V
- A set of potential edges E
- Costs & we3 for building each edge

build a network that is vell connected and cheap minimize I We

A subgraph T=(V,E')

T is a tree

G= (V, E, que3)

Brief Aside: Adjacency List Representation [VIET 1EIET Graph G= (V, E, Ewer) Adjacency Lat of G

Adjacency Lat of G

Nodes
$$\begin{array}{c}
1 \longrightarrow 2, \omega=3 \longrightarrow 3, \omega=2 \longrightarrow 4, \omega=8 \\
\hline
2 \longrightarrow 1, \omega=3 \longrightarrow 3, \omega=5 \\
\hline
3 \longrightarrow 2, \omega=5 \longrightarrow 1, \omega=2 \\
\hline
4 \longrightarrow 1, \omega=8
\end{array}$$

Size: O(n+m) Time to List Neighbors of i: O(deg(i)+1)

Time to List All Edges: O(n+m)

Cycles and Cuts

• Cycle: a set of edges $(v_1, v_2), (v_2, v_3), \dots, (v_k, v_1)$

1,2,34,5,6,1

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

• Cut: a partition of the nodes into S, \bar{S}

Fact: Any cycle intersects any cut in an even number of edges.

Cycle and Cot Property of MST

- Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e
 - We call such an e a safe edge
- Cycle Property: Let C be a cycle. Let f be the maximum weight edge in C. Then the MST T^* does not contain f.
 - We call such an f a useless edge

Proof of Cut Property

- - Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e • We call such an e a safe edge
 - let T* be the MST
 - let S, S be a cut
- let e be the min ut edge in

the cutset of S

- assume e & T* (for contradiction)
- adding e to T' would viewe a give C containing e
- Contenects the cut in 7,2 places, let fixe be one of then wf>we
- consider T = T+ se3- sf3 (DT' is a spenning tree

The "Only MST Algorithm"

Let $T = (V, \emptyset)$ While T is not connected:

nev
add one of more safe edges

Always terminates and outputs an MST no matter how we choose safe edges

Borûvka's Algorithm

Count connected components
Label nodes by component

Find the min-wt edges leaving each connected component

Borůvka's Algorithm

Boruvka's Algorithm Correctness

```
Input: G= (V, E, Ewe3)
Let T= (V, Ø)
 count < Count Label (T)
 While count > 1
     Add Safe Edges (G, T, count)

count - Countlabel (T)
Return T
```

Follows from the general template

Borûvka's Algorithm Running Time

Input: G= (V, E, Ewe3) Let T= (V, Ø) count < Count Label (T) While count > 1 Add Safe Edges (G,T, count)

count « Count Label (T) Return T

How many iterations?

O(log n)

How much time per iteration?

Total Time: O(m logn)

Borûvka's Algorithm Running Time

Input: G= (V, E, Ewe3) Let T= (V, Ø) count < Countlabel (T) While count > 1 Add Safe Edges (G,T, count)

count « Count Label (T) Return T

How many iterations?

- if I have count components
I will add >, count edges
-every edge reduces count by I
- next iteration there are at most

count components $\Rightarrow O(\log n)$

Borûvka's Algorithm Running Time

How much time per iteration?

loop over edges maintain cheapest edge sofar

time: O(n+m)

Other MST Algorithms

(0) tu 9)

- · Prim:
 - Maintain a component S
 - Initially S= & U,3
 - Add the safe edge for Suntil S=V
- · Kruska 1:
 - Sort edges
 - For each edge add it to Tiff it merges two components into one.

One More Greedy Proof Technique

Inpot: n "classes" [si,fi]
Output: A "room" for each class so that
1) No room has two overlapping classes
2) The total number of rooms is as small as possible
Example.
4 classrooms

A Greedy Algorithm

```
Sort intervals by stout

S_1 \leq S_2 \leq ... \leq S_n

For i=1,...,n:

| assign class i to the lovest numbered empty room
```


Proof of Correctness: Duality

