

Guía de trabajo en laboratorio Nº 10:

Fundamentos de programación - Arduino

Secciones:	Apellidos:
Docente: Miguel Tupac Yupanqui Alanya	Nombres:
	Fecha :/2020

Instrucciones: Desarrollar las actividades que indica el docente en base a la guía de trabajo que se presenta.

1. **Propósito**: Comprender los tipos de variables, sentencias básicas, monitor serial empleando el IDE de Arduino.

2. Equipos, herramientas o materiales

- Simulador Tinkercad
- Computador con acceso a Internet

3. Fundamento Teórico

 Arduino Uno – La tarjeta de desarrollo del microcontrolador la cual será el corazón de tus proyectos. Descrito en clase.

• Protoboard (Placa de pruebas) – Placa con filas de agujeros sobre la cual se puede conectar cables y componentes sin necesidad de usar un soldador.

 Cables puente – Utilizarlos para conectar unos componentes con otros sobre la placa de prueba, y la tarjeta de Arduino.

- Diodos Emisores de Luz (LEDs) Diodo que emite luz cuando la corriente lo atraviesa.
 Como en todos los diodos, la corriente solo fluye en un sentido a través de estos componentes. El ánodo, que normalmente se conecta al positivo de la alimentación, es generalmente el terminal más largo, y el cátodo el terminal más corto.
- Resistencias Se opone al paso de la corriente eléctrica en un circuito, dando como resultado a un cambio en la tensión y en dicha corriente. El valor de las resistencias se mide en ohmios (Ω) . Las bandas de colores en un lado de la resistencia indica su valor.

https://www.digikey.com/es/resources/conversion-calculators/conversion-calculator-resistor-color-code-4-band https://www.inventable.eu/paginas/ResCalculatorSp/ResCalculatorSp.html

 Pulsadores - Son unos componentes muy simples. Cuando presionas un pulsador estás uniendo dos contactos dando lugar a que la corriente pueda fluir por ellos. Igual que si conectaras y desconectaras un cable. Son buenos para abrir o cerrar el paso a una señal.

www.TuElectronica.es

4. Procedimiento

Implementamos el siguiente circuito (modo de conexión Pull Down):

En el editor de código escribimos el siguiente programa:

```
void setup()

pinMode(12, OUTPUT);
pinMode(4, INPUT);

void loop()

function = digitalRead(4);
digitalWrite(12, lectura);
}
```

A continuación, compilamos y verificamos que no haya errores en el código escrito (botón **iniciar simulación**).

El Arduino leerá el estado del pulsador (digitalRead (4)), como no está presionado la entrada (pin4) está conectado a través de la resistencia a GND (0V), entonces el LED conectado en la salida (pin12) está **apagado**; **si mantenemos presionamos el pulsador**, el LED conectado en la salida (pin12) **enciende**.

5. Actividades

a. Empleando el circuito implementado para la práctica, escribir el siguiente código:

```
1
   bool estado=0;
 2
 3
   void setup()
 4
 5
      pinMode (12, OUTPUT);
 6
      pinMode (4, INPUT);
 7
8
9
   void loop()
10
11
      int lectura = digitalRead(4);
      if (lectura == HIGH) {
12
13
       delay(800);
14
        estado = !estado;
15
16
     if (estado==1) {
17
        digitalWrite(12, HIGH);
18
     }
19
      else{
20
        digitalWrite(12, LOW);
21
22
   }
```

Explicar la función de cada línea de código y la función que realiza el programa, comprobando en el circuito.

- b. Implementamos el circuito con el pulsador en modo de conexión Pull Up, comprobar su funcionamiento y explicar la diferencia con el modo de conexión Pull Down.
- c. Implementar un circuito con 6 leds y un pulsador como se muestra a continuación:

Implementar el programa que haga funcionar el circuito de la siguiente manera:

Input							
Clic en el pulsador	Pin 12 Led_1	Pin 11 Led_2	Pin 10 Led_3	Pin 9 Led_4	Pin 8 Led_5	Pin 7 Led_6	
1°							
2 °							
3 °							
4 °							
5 °							
6 °							
7 °							

d. Al circuito anterior incrementar un pulsador (pulsador2), luego implementar un programa que haga funcionar el circuito de la siguiente manera: Elaborar un programa para tener el siguiente funcionamiento:

Inp	out	Output					
Pulsador 1	Pulsador 2	Pin 12 Led_1	Pin 11 Led_2	Pin 10 Led_3	Pin 9 Led_4	Pin 8 Led_5	Pin 7 Led_6
0	0						
1	0						
0	1						

e. Crear un documento en Word (guardar con **APELLIDOS Y NOMBRES)** donde copiará los enlaces correspondientes de cada ejercicio (actividad), luego subir este documento al Aula Virtual.

6. Referencias

- Arduino Libro de Proyectos, Traducido by Florentino Blas Fernández Cueto (Tino Fernández).
 http://www.futureworkss.com. Bajo una Licencia Creative Commons Reconocimiento –
 NoComercial -CompartirIgual 3.0 del 2015 por futureworkss.
- https://www.arduino.cc/reference/es/