Test Plot 1#: GSM 850_Head Left Cheek_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.934 S/m; ϵ_r = 40.297; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.374 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.714 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.468 W/kg

SAR(1 g) = 0.304 W/kg; SAR(10 g) = 0.195 W/kg

Maximum value of SAR (measured) = 0.425 W/kg

Test Plot 2#: GSM 850_Head Left Tilt_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.934 S/m; ϵ_r = 40.297; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.199 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.280 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.216 W/kg

SAR(1 g) = 0.157 W/kg; SAR(10 g) = 0.111 W/kg

Maximum value of SAR (measured) = 0.198 W/kg

Test Plot 3#: GSM 850_Head Right Cheek_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.934 S/m; ϵ_r = 40.297; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.333 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.758 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.374 W/kg

SAR(1 g) = 0.255 W/kg; SAR(10 g) = 0.168 W/kg

Maximum value of SAR (measured) = 0.343 W/kg

Test Plot 4#: GSM 850_Head Right Tilt_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.934 S/m; ϵ_r = 40.297; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.170 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.589 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.177 W/kg

SAR(1 g) = 0.133 W/kg; SAR(10 g) = 0.094 W/kg

Maximum value of SAR (measured) = 0.162 W/kg

0 dB = 0.162 W/kg = -7.90 dBW/kg

Test Plot 5#: GSM 850_Body Worn Back_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 1.004 S/m; ϵ_r = 53.881; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.692 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.48 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.485 W/kg; SAR(10 g) = 0.278 W/kg

Maximum value of SAR (measured) = 0.721 W/kg

Test Plot 6#: GSM 850_Body Back_Low

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GPRS-2 slots; Frequency: 824.2 MHz;Duty Cycle: 1:4 Medium parameters used: f = 824.2 MHz; $\sigma = 0.991$ S/m; $\epsilon_r = 53.427$; $\rho = 1000$ kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.31 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.45 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 0.940 W/kg; SAR(10 g) = 0.562 W/kg

Maximum value of SAR (measured) = 1.49 W/kg

Test Plot 7#: GSM 850_Body Back_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GPRS-2 slots; Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 836.6 MHz; $\sigma = 1.004$ S/m; $\epsilon_r = 53.881$; $\rho = 1000$ kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.52 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.88 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 2.18 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.607 W/kg

Maximum value of SAR (measured) = 1.56 W/kg

Test Plot 8#: GSM 850_Body Back_High

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GPRS-2 slots; Frequency: 848.8 MHz;Duty Cycle: 1:4 Medium parameters used: f = 848.8 MHz; $\sigma = 0.997$ S/m; $\epsilon_r = 53.784$; $\rho = 1000$ kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.51 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.74 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.72 W/kg

SAR(1 g) = 0.950 W/kg; SAR(10 g) = 0.632 W/kg

Maximum value of SAR (measured) = 1.40 W/kg

0 dB = 1.40 W/kg = 1.46 dBW/kg

Test Plot 9#: GSM 1900_Head Left Cheek_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.432 S/m; ϵ_r = 38.685; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.293 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.275 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.355 W/kg

SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.130 W/kg

Maximum value of SAR (measured) = 0.291 W/kg

0 dB = 0.291 W/kg = -5.36 dBW/kg

Test Plot 10#: GSM 1900_Head Left Tilt_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.432 S/m; ϵ_r = 38.685; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0956 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.577 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.108 W/kg

SAR(1 g) = 0.069 W/kg; SAR(10 g) = 0.044 W/kg

Maximum value of SAR (measured) = 0.0925 W/kg

0 dB = 0.0925 W/kg = -10.34 dBW/kg

Test Plot 11#: GSM 1900_Head Right Cheek_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.432 S/m; ϵ_r = 38.685; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.247 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.800 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.105 W/kg

Maximum value of SAR (measured) = 0.224 W/kg

Test Plot 12#: GSM 1900_Head Right Tilt_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.432 S/m; ϵ_r = 38.685; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.118 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.877 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.137 W/kg

SAR(1 g) = 0.085 W/kg; SAR(10 g) = 0.051 W/kg

Maximum value of SAR (measured) = 0.117 W/kg

0 dB = 0.117 W/kg = -9.32 dBW/kg

Test Plot 13#: GSM 1900_Body Worn Back_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.55 S/m; ϵ_r = 51.849; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.885 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.59 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.576 W/kg; SAR(10 g) = 0.305 W/kg

Maximum value of SAR (measured) = 0.868 W/kg

Test Plot 14#: GSM 1900_Body Back_Middle

DUT: Mobile Phone; Type: CR-MP3004; Serial: 17070600220

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; σ = 1.55 S/m; ϵ_r = 51.849; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.825 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.24 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.890 W/kg

SAR(1 g) = 0.487 W/kg; SAR(10 g) = 0.259 W/kg

Maximum value of SAR (measured) = 0.703 W/kg

0 dB = 0.703 W/kg = -1.53 dBW/kg