Notas del teórico

Complementos de análisis matemático - Irene Drelichman 2024

Bustos Jordi

Bustos Jordi jordibustos01@gmail.com

Contenido

6 | Prefacio

8	Clase I - 23/08	
	2.1 Repaso de funciones 2.1.1 Propiedades 2.1.2 Función inversa 2.1.3 Composición de funciones 2.1.4 Familia de funciones 2.2 Números naturales 2.3 Cuerpo 2.3.1 Axiomas de la suma 2.3.2 Axiomas del producto 2.3.3 Cuerpos Ordenados	8 9 10 10 11 11 11 12
14	Clase II - 27/08	
	 3.1 Cuerpo Arquimediano 3.2 Supremo e ínfimo 3.3 Cuerpo completo 3.4 Cardinalidad - introducción 	14 14 16 17
20	Clase III - 30/08	
	 4.1 Conjuntos numerables 4.2 Cantor - Schröder - Bernstein 4.3 Los Reales son no numerables 4.3.1 Principio de encaje de Intervalos 4.4 Propiedades 	21 22

	C	lase IV - 03/09	Contenido $ullet$	
	5.1 5.2 5.3	Operaciones con cardinales		2
31	c	lase V - 06/09		
	6.1 6.2 6.3	Construcción de los Reales		3
37	c	lase VI - 10/09		
	7.1 7.2 7.3 7.4	Sucesiones Propiedades de límites Ejemplo subsucesiones Punto de acumulación		3
43	C	lase VII - 13/09		
	8.1 8.2 8.3 8.4	Límite superior e inferior Sucesiones de Cauchy Límites infinitos Series numéricas		4
48	c	lase VIII - 24/09		
	9	Ejemplo de convergencia condicional		4 4 4

4 • Contenido

55	Clase IX - 27/09	
	10.1 (Continuación) Reordenamientos 10.2 Topología Euclídea 10.2.1 Conjuntos abiertos 10.2.2 Interior de un conjunto 10.3 Entorno 10.4 Conjunto Cerrado 10.4.1 Clausura	55 56 57 58
62	Clase X - 01/10	
	11.1 (Continuación) Clausura	62 64
69	Clase XI - 04/10	
	12.1 Corolarios Conjuntos Compactos	

Prefacio

"Considero a cada hombre como un deudor de su profesión, y ya que de ella recibe sustento y provecho, así debe procurar, mediante el estudio, servirle de ayuda y ornato."

Francis Bacon

Este libro recoge las notas tomadas durante el curso de Complementos de Análisis Matemático dictado por Irene Drelichman en el segundo cuatrimestre de 2024.

Las clases 1 a 8, junto con la primera parte de la clase 9, abarcan la primera mitad del curso. Las clases 9 a 22 cubren la segunda mitad, que incluye temas de diferenciación, integración y ecuaciones diferenciales, los cuales no fueron evaluados en la práctica. Se tomaron dos exámenes parciales, uno por cada mitad del curso.

Estas notas se basan principalmente en material de los libros *Principles of Mathematical Analysis* de Walter Rudin, *Curso de análise vol.1* de Elon Lages Lima y *Calculus* de Tom M. Apostol.

Clase I - 23/08

2.1 Repaso de funciones

Una función $f:A\to B$ es un objeto que consta de tres partes: un conjunto A (dominio), un conjunto B (codominio) y una regla que permite asociar todo elemento de A a un único elemento de B. Es decir, $f(x)\in B$, donde $x\in A$. Además, f(x)=y, lo que significa que f asigna a x el valor f(x).

El gráfico de $f: A \to B$ es el subconjunto de $A \times B$ dada por (x, f(x)) con $x \in A$ y $f(x) \in B$. Notamos $G(f) = \{(x, y) \in A \times B : y = f(x)\}.$

Definición 2.1. $f: A \to B$ es inyectiva cuando para $x, y \in A$, $f(x) = f(y) \Rightarrow x = y$.

Definición 2.2. $f: A \to B$ es survectiva cuando para $(\forall y \in B)(\exists x \in A)(f(x) = y)$

Definición 2.3. $f: A \to B$ si es inyectiva y survectiva.

Definición 2.4. Dados $f:A\to B$ y $X\subset A$ se llama imagen de X por f al conjunto $f(X)=\{f(x):x\in X\}.$

2.1.1. Propiedades

Proposición 2.5. $f(X) \cup f(Y) = f(X \cup Y)$

Proposición 2.6. $f(X \cap Y) \subset f(X) \cap f(Y)$. La igualdad vale si y sólo si es inyectiva.

Demostración. Sea $a \in f(X \cap Y) \Rightarrow \exists x \in X \cap Y : f(x) = b \Rightarrow x \in X \Rightarrow f(x) \in f(X)$ y $y \in Y \Rightarrow f(y) \in f(Y)$.

Si $f: A \to B$ no es inyectiva $\Rightarrow \exists x \neq y : f(x) = f(y)$. Si $X = \{x\}, Y = \{y\} \Rightarrow X \cap Y = \emptyset$. $f(X) \cap f(Y) = \{f(x)\}$ luego $f(X \cap Y) = \emptyset$.

Si f es inyectiva, sea $y \in f(X) \cap f(Y) \Rightarrow \exists \alpha \in X, b \in Y \text{ tal que } f(\alpha) = f(b) = y$. Como f es inyectiva $\alpha = b \Rightarrow \alpha \in X \cap Y \Rightarrow y = f(\alpha), y \in f(X \cap Y) \Rightarrow f(X) \cap f(Y) \subset f(X \cap Y)$. Si f es inyectiva son iguales.

Proposición 2.7. $X \subset Y \Rightarrow f(X) \subset f(Y)$

Proposición 2.8. $f(\emptyset) = \emptyset$

Definición 2.9. Dados $f:A\to B$ y $Y\subset B$ se llama preimagen de Y por f al conjunto $f^{-1}(Y)=\{x\in A: f(x)=y, \forall y\in Y\}.$

2.1.2. Función inversa

Sea $f: A \to B$:

Proposición 2.10. $f^{-1}(X) \cup f^{-1}(Y) = f^{-1}(X \cup Y)$

Proposición 2.11. $f^{-1}(X) \cap f^{-1}(Y) = f^{-1}(X \cap Y)$

Proposición 2.12. $f^{-1}(Y^c) = (f^{-1}(Y))^c$

Proposición 2.13. $Y \subset Z \Rightarrow f^{-1}(Y) \subset f^{-1}(Z)$

Proposición 2.14. $f^{-1}(B) = A$

Proposición 2.15. $f^{-1}(\varnothing) = \varnothing$

2.1.3. Composición de funciones

Sean $f: A \to B$ y $g: B \to C$, definimos $g \circ f: A \to C$ como $(g \circ f)(x) = g(f(x)) \forall x \in X$, es suficiente que $f(A) \subset B$.

Proposición 2.16. Composición de funciones suryectivas/inyectivas es suryectiva/inyectiva.

Proposición 2.17. $(g \circ f)^{-1}(Z) = f^{-1}(g^{-1}(Z)).$

Definición 2.18. La restricción de f en un subconjunto $X \subset A$ la notamos $f|_X : X \to B$.

Definición 2.19. Dada $f: A \to B$ y $g: B \to A$, g es una inversa a izquierda si y sólo si $g \circ f = id_A$. $\exists g$ si y sólo si f es invectiva.

Análoamente para la inversa a derecha si f es survectiva. Si f es biyectiva $\Rightarrow g$ es inversa a ambos lados y es única.

2.1.4. Familia de funciones

Sea L un conjunto de elementos que llamamos índices y representamos genéricamente con λ .

Dado un conjunto X, una familia de elementos de X con índices en L es $X : L \to x$. El valor de x en $\lambda \in L$ lo notamos x_{λ} y la familia $(x_{\lambda})_{\lambda \in L}$.

Ejemplo. $L = \{1, 2\}$ los valores de $x : \{1, 2\} \to X$ se representan por x_1, x_2 , es decir que los puedo identificar con pares ordenados (x_1, x_2) de elementos de X.

Una familia con elementos en \mathbb{N} se llama sucesión. $(x_n)_{n\in\mathbb{N}}$ de elementos de X es una función de $x:\mathbb{N}\to X$ donde $x_n=x(n)$.

Las propiedades enunciadas previamente se pueden extender a cualquier familia de conjuntos.

2.2 Números naturales

Partimos de un conjunto \mathbb{N} y una función $S: \mathbb{N} \to \mathbb{N}$ que cumple los siguientes axiomas (de Peano):

- 1) Es inyectiva.
- 2) $\mathbb{N} S(\mathbb{N})$ tiene un solo elemento y lo llamamos 1.
- 3) Principio de inducción, si $X \subset \mathbb{N}$ tal que $1 \in X$ y $\forall m \in X$ vale $S(m) \Rightarrow X = \mathbb{N}$.

El principio de inducción permite definir operaciones

La suma se define como m + 1 = S(m), m + S(n) = S(m + n).

Proposición 2.20. Asociatividad: sea $X = \{p \in \mathbb{N} : m + (n+p) = (m+n) + p, \forall n, m \in \mathbb{N}\}$

Demostración.
$$1 \in X$$
, $p \in X \Rightarrow m + (n + S(p)) = m + S(n + p) = S(m + (n + p)) = S((n + m) + p) = (m + n) + S(p)$. Por inducción $X = \mathbb{N}$.

Proposición 2.21. Conmutatividad: n + m = m + n.

Proposición 2.22. Ley de cancelación: $m + n = m + p \Rightarrow n = p$.

Proposición 2.23. Tricotomía: $\mathfrak{m},\mathfrak{n}\in\mathbb{N},$ si $\mathfrak{m}>\mathfrak{n},\exists\mathfrak{p}:\mathfrak{m}+\mathfrak{p}=\mathfrak{n}.$ Si $\mathfrak{m}<\mathfrak{n},\,\exists\mathfrak{p}\in\mathbb{N}:\mathfrak{n}+\mathfrak{p}=\mathfrak{m}.$

Definición 2.24. La multiplicación se define recursivamente como: $m \times 1 = m$ y $m \times (n + 1) = m \times n + m$.

Cumple la asociatividad, conmutatividad, ley de cancelación y monotonía.

Teorema 2.25. Principio de buena ordenación

Todo subconjunto no vacío $A \subset \mathbb{N}$ tiene un elemento mínimo.

Demostración. Llamemos $\mathbb{I}_{\mathfrak{m}} = \{ \mathfrak{p} \in \mathbb{N} : 1 \leq \mathfrak{p} \leq \mathfrak{n} \} = [[1, \mathfrak{m}]] \ y \ X = \{ \mathfrak{m} \in \mathbb{N} : \mathbb{I}_{\mathfrak{m}} \subset \mathbb{N} - A \}.$

Si $1 \in A \Rightarrow 1$ es primer elemento. Si $1 \notin A \Rightarrow 1 \in X$ como $X \neq \mathbb{N}$ pues $X \subseteq \mathbb{N} - A$ y $A \neq \emptyset$. Por el principio de inducción $\exists m \in X$ tal que $m+1 \notin X$, si no tendríamos que $X = \mathbb{N}$. Luego todos los elementos entre 1 y m están en $\mathbb{N} - A$ y $m+1 \in A$, se sigue que $\mathfrak{a} = m+1$ es primer elemento de A.

2.3 Cuerpo

Un cuerpo es un conjunto dotado de dos operaciones, suma y producto y se denota por \mathbb{K} .

2.3.1. Axiomas de la suma

- 1) Associatividad: $\forall x, y, z \in \mathbb{K}, (x + y) + z = x + (y + z).$
- 2) Conmutatividad: $\forall x, y \in \mathbb{K}, x + y = y + x$.
- 3) Neutro: $\exists 0 \in \mathbb{K} : x + 0 = x, \forall x \in X$.
- 4) Opuesto: $\forall x \in X, \exists -x \in \mathbb{K} : x + (-x) = 0_{\mathbb{K}}$.

2.3.2. Axiomas del producto

- 1) Asociatividad: $\forall x, y, z \in \mathbb{K}, (xy)z = x(yz)$.
- 2) Conmutatividad: $\forall x, y \in \mathbb{K}, xy = yx$.
- 3) Neutro: $\exists 1 \in \mathbb{K} \{0\} : x \cdot 1 = x, \forall x \in X$.
- 4) Inverso: $\forall x \in X, \exists x^{-1} \in \mathbb{K} : x \cdot x^{-1} = 1_{\mathbb{K}}$.

Axioma de distributividad: $\forall x, y, z \in \mathbb{K}, x(y+z) = xy + xz$.

Ejemplo. \mathbb{Q}, \mathbb{Z}_2 .

2.3.3. Cuerpos Ordenados

Un cuerpo ordenado es un cuerpo \mathbb{K} que tiene un subconjunto $P \in \mathbb{K}$ llamado conjunto de elementos positivos de \mathbb{K} que cumplen:

- 1) $x, y \in P \Rightarrow x + y \in P, xy \in P$.
- 2) $x \in \mathbb{K} \Rightarrow x \in P \text{ o } -x \in P \text{ o } x = 0.$

Ejemplo. \mathbb{Q} con $P = \{p/q : p, q \in \mathbb{N}\}, \mathbb{Z}_2$ no es ordenado.

Proposición 2.26. Dado un cuerpo ordenado si $a \neq 0 \Rightarrow a^2 \in P$.

En un cuerpo ordenado definimos x < y para significar que $y - x \in P$. La relación < tiene las siguientes propiedades:

Proposición 2.27. Transitividad: $x < y \ y \ y < z \Rightarrow x < z$.

Proposición 2.28. Tricotomía: $x, y \in \mathbb{K} \Rightarrow x = y \circ x < y \circ x > y$.

Proposición 2.29. Monotonía de la suma $x < y \Rightarrow x + z < y + z$.

Proposición 2.30. Monotonía del producto $x < y, 0 < z \Rightarrow xz < yz$.

En el cuerpo ordenado \mathbb{K} escribimos $x \leq y$ para significar x < y o x = y. O sea $y - x \in P \cup \{0\}$. Con esta relación se cumplen todas las propiedades anteriores y la antisimetría. $x \leq y, y \leq x \Rightarrow x = y$.

Además tenemos la noción de intervalo, dados $a, b \in \mathbb{K}$ definimos $[a, b] = \{x \in \mathbb{K} : a \le x \le b\}, [a, b), (a, b), [a, +\infty), (-\infty, b], (a, +\infty), (-\infty, b), [a, a] = \{a\}.$

Un subconjunto de $X \subset K$ se dice acotado inferiormente, superiormente si tiene cota inferior o cota superior. $\exists b \in \mathbb{K} : x \leq b, \forall x \in X$.

Clase II - 27/08

3.1 Cuerpo Arquimediano

Si \mathbb{K} es un cuerpo ordenado, $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{K}$, pero esto no necesariamente implica que \mathbb{N} es no acotado.

Ejemplo. $\mathbb{Q}(t)$: cuerpo de funciones racionales con coeficientes en \mathbb{Q} , r(t) = p(t)/q(t), $p,q \in \mathbb{Q}, q \neq 0$. Este cuerpo puede ser ordenado diciendo que r(t) es positivo si y sólo si el coeficiente de mayor grado del polinomio pq es positivo. En este cuerpo observemos que p(t) = t = t/1 cumple que $\forall n \in \mathbb{N}, p(t) = t - n \in P \Rightarrow t > n, \forall n \in \mathbb{N}$. Es decir que en $\mathbb{Q}(t)$, \mathbb{N} es un conjunto acotado, por ejemplo por t.

Teorema 3.1. En un cuerpo ordenado \mathbb{K} son equivalentes:

- 1) $\mathbb{N} \subset \mathbb{K}$ no es acotado superiormente.
- 2) Dados $a, b \in \mathbb{K}$ con $a > 0, \exists n \in \mathbb{N} : m \cdot a > b$.
- 3) Dado cualquier $0 < a \in \mathbb{K}, \exists n \in \mathbb{N} : 0 < \frac{1}{a} < a$.

Cuando vale cualquiera decimos que \mathbb{K} es arquimediano.

Demostración. $1) \Rightarrow 2)$

Como $\mathbb N$ es no acotado, dados $a,b\in\mathbb K,\ a>0,\ \exists m\in\mathbb N:m>\frac{b}{a},$ caso contrario $\frac{b}{a}$ sería cota de $\mathbb N\Rightarrow ma>b$

 $2) \Rightarrow 3)$

Dado $a > 0, \exists n \in \mathbb{N} : ma > 1 \text{ (tomando } b = 1 \text{ en } 2.) \Rightarrow a > \frac{1}{m} > 0$

 $(3) \Rightarrow 1$

Dado $0 < a \in \mathbb{K} \Rightarrow \forall n \in \mathbb{N}, 0 < \frac{1}{n} < \frac{1}{a}$, pues 3. vale para todo $\mathbb{K} \Rightarrow b < n \Rightarrow$ es no acotado (pues ningún b > 0 puede ser cota superior).

3.2 Supremo e ínfimo

Definición 3.2. Dados un cuerpo ordenado \mathbb{K} y un subconjunto $X \subset \mathbb{K}$ acotado superiormente, decimos que $b \in \mathbb{K}$ es supremo de X si es la menor de las cotas superiores de X en \mathbb{K} .

Es decir, se cumple:

1. $\forall x \in X, x < b$

- 2. Si $c \in \mathbb{K}$ y x < c, $\forall x \in X \Rightarrow b < c$.
- 3. Dado c < b en $\mathbb{K}, \exists x \in X : c < x$

Nota. 1) El supremo de un conjunto, si existe es único.

- 2) Si un conjunto tiene máximo, es el supremo.
- 3) Si $X = \emptyset$, todo $b \in \mathbb{K}$ es cota superior, como \mathbb{K} no tiene primer elemento, se sigue que \emptyset no tiene supremo en \mathbb{K} .

Definición 3.3. Dados un cuerpo ordenado \mathbb{K} y un subconjunto $X \subset \mathbb{K}$ acotado inferiormente, decimos que $b \in \mathbb{K}$ es ínfimo de X si es la mayor de las cotas inferiores de X en \mathbb{K} .

Es decir, se cumple:

- 1. $\forall x \in X, x \geq b$
- 2. Si $c \in \mathbb{K}$ y $x \ge c$, $\forall x \in X \Rightarrow b \ge c$.
- 3. Dado c > b en $\mathbb{K}, \exists x \in X : b < x < c$.

Ejemplo. Dados a < b en \mathbb{K} . Si $X = (a, b) \Rightarrow \inf(X) = a$, $\sup(X) = b$.

- 1) Por definición a es cota inferior y b superior.
- 2) $\alpha < c \in \mathbb{K}$, no es cota inferior. En efecto, si $c \ge b$ trivial. Si $c < b \Rightarrow \frac{\alpha + c}{2} \in X$, $\alpha < \frac{\alpha + c}{2} < c \Rightarrow \alpha < c : c$ no es cota inferior.

Luego por 1) y por 2) α es ínfimo de X.

Ejemplo. $Y = \{y \in \mathbb{Q} : y = \frac{1}{2^n}, n \in \mathbb{N}\}$. Veamos que $inf(Y) = 0, sup(Y) = \frac{1}{2}$. $\frac{1}{2} \in Y, \frac{1}{2^n} < \frac{1}{2} \forall n \in \mathbb{N} \Rightarrow \frac{1}{2} = sup(Y)$.

Como $0 < \frac{1}{2^n} \forall n \in \mathbb{N} \Rightarrow 0$ es cota inferior. Sea $0 < c \in \mathbb{K}, \ 2^n = (1+1)^n \le 1+n \le \frac{1}{c} \Rightarrow n \le \frac{1}{c} - 1 \Rightarrow \frac{1}{2^n} < c \Rightarrow c$ no puede ser cota inferior por la propiedad 3 de la arquimedianidad : 0 es el ínfimo de Y.

El problema más serio de los racionales desde el punto de vista del análisis es que algunos conjuntos acotados de números racionales no tienen súpremo (o ínfimo) en \mathbb{Q} .

Ejemplo. Sean $X = \{X \in \mathbb{Q} : x \ge 0, x^2 < 2\}$, $Y\{y \in \mathbb{Q} : y > 0, y^2 > 2\}$. Notemos que si $z > 2 \Rightarrow z^2 > 4 \Rightarrow z \notin X \Rightarrow X \subset [0,2]$ y X es un conjunto acotado. Además $Y \subset (0,+\infty)$ por lo que es un conjunto acotado inferiormente. Veamos que \nexists supremo e ínfimo en \mathbb{Q} .

1) Quiero ver que X no tiene máximo. Dado $x \in X$ quiero encontrar $r \in \mathbb{Q}$ tal que 0 < r < 1 y $x + r \in X \iff (x + r)^2 = x^2 + 2xr + r^2 < 2$. Como $r < 1 \Rightarrow (x + r)^2 < x^2 + 2xr + r = x^2 + r(2x + 1) < 2 \therefore x + r \in X$.

2) Quiero ver que Y no tiene elemento mínimo, dado $y \in Y$ tomo $r \in \mathbb{Q}: 0 < r < \frac{y^2 - 2}{2y}$

$$(y-r)^2 = y^2 - 2yr + r^2 > y^2 - 2yr > 2$$
(3.1)

$$y^2 - 2 > 2yr \tag{3.2}$$

$$\frac{y^2 - 2}{2y} > r \tag{3.3}$$

Es decir que $y - r \in Y$ e y - r < y

3) Si
$$x \in X, y \in Y \Rightarrow x < y \ x^2 < 2 < y^2 \Rightarrow x^2 < y^2$$
.

Veamos que por 1, 2, $3 \not\equiv \sup(X)$, $\inf(Y)$. Supongamos $0 < \alpha = \sup(X)$, no puede ser $\alpha^2 < 2$ porque si no $\alpha \in X$ y X no tiene máximo. Tampoco puede ser $\alpha^2 > 2$ pues estaría en Y e Y no tiene mínimo, pues habría un $\beta \in Y$ con $\beta < \alpha$ y por 3) sería $x < \beta < \alpha$, $\forall x \in X$ lo que contradice que $\sup(X) = \alpha$, pues sería β el supremo. En definitiva si existiese $\sup(X) = \alpha$, debe ser $\alpha^2 = 2 \notin \mathbb{Q}$. Luego X no tiene supremo en \mathbb{Q} . Ínfimo, ejercicio (análogo).

3.3 Cuerpo completo

Definición 3.4. Si \mathbb{K} es un cuerpo ordenado no Arquimediano, $\mathbb{N} \subset \mathbb{K}$ es acotado superiormente.

si $b \in \mathbb{K}$ es una cota superior de $\mathbb{N} \Rightarrow \mathfrak{n} + 1 \in \mathbb{N} < b, \forall \mathfrak{n} \in \mathbb{N} \Rightarrow \mathfrak{n} < b - 1$ o sea b - 1 es cota superior de $\mathbb{N} : \nexists sup(\mathbb{N})$ en \mathbb{K} .

Definición 3.5. Un cuerpo ordenado \mathbb{K} se dice completo cuando dado un subconjunto no vacío y acotado superiormente tiene supremo en \mathbb{K} .

Nota. 1) Si el cuerpo es ordenado y completo \Rightarrow es arquimediano.

2) En un cuerpo ordenado completo \mathbb{K} todo subconjunto no vacío y acotado inferiormente tiene ínfimo en \mathbb{K} .

Demostración. Sea $Y \subset \mathbb{K}$, no vacío y acotado inferiormente. Sea $X = -Y = \{-y : y \in Y\} \Rightarrow X$ es no vacío y acotado superiormente $\Rightarrow \exists \sup(X) = \alpha \Rightarrow -\alpha = \inf(Y)$.

Axioma: Existe un cuerpo ordenado llamado \mathbb{R} .

Ejercicio: Dados $0 < \alpha \in \mathbb{R}, m \in \mathbb{N} \Rightarrow \exists ! 0 < b \in \mathbb{R} : b^m = \alpha$. Sugerencia Definir $X = \{x \in \mathbb{R} : x \geq 0, x^n < \alpha\}, Y = \{y \in \mathbb{R} : y > 0, y^n > \alpha\}$ e imitar la demostración anterior. Probar y usar que dado x > 0 \exists para cada $m \in \mathbb{N}$ un número real positivo que depende de x tal que

17

 $(x + d)^m \le A_n d + x^n, \forall 0 < d < 1...$

Definición 3.6. Un conjunto $X \subset \mathbb{R}$ se dice denso en \mathbb{R} si todo intervalo abierto (a,b) contiene algún punto de X.

Ejemplo. \mathbb{Q} es denso en \mathbb{R} .

Demostración. Como $b-\alpha>0, \exists p\in\mathbb{N}: 0<\frac{1}{p}< b-\alpha.$

Sea $A = \{m \in \mathbb{Z} : \frac{m}{p} \geq b\}$. Como \mathbb{R} es Arquimediano, A es un conjunto de números enteros no vacío y acotado por bp. Sea m_0 el menor elemento de A entonces $b \leq \frac{m_0}{p}$ y $\frac{m_0 - 1}{p} < b$. También $\frac{m_0 - 1}{p} > 0$, si no tendríamos que

$$\frac{m_0 - 1}{p} \le a \le b \le \frac{m_0}{p} \tag{3.4}$$

Luego

$$b - a \le \frac{m_0}{p} - \frac{m_0 - 1}{p} = \frac{1}{p}$$
 (3.5)

Absurdo! \therefore \mathbb{Q} es denso en \mathbb{R} .

Ejemplo. $\mathbb{R} - \mathbb{Q}$ es denso en \mathbb{R} .

Para ver que $\mathbb{R} - \mathbb{Q}$ es denso usamos la misma idea tomando $\mathfrak{p} \in \mathbb{N} : 0 < \frac{1}{\mathfrak{p}} < \frac{\mathfrak{b} - \mathfrak{a}}{\sqrt{2}}$ por Arquimedianidad y $\frac{\sqrt{2}}{\mathfrak{p}} < \mathfrak{b} - \mathfrak{a}$ por longitud del intervalo. Ejercicio terminar la demostración.

3.4 Cardinalidad - introducción

Definición 3.7. Decimos que dos conjuntos X,Y tienen el mismo cardinal (coordinables o equipotentes) si $\exists f: X \to Y$ biyectiva. Notamos $X \sim Y$ o card(X) = card(Y) o #X = #Y y \sim es una relación de equivalencia.

Dado $n \in \mathbb{N}$ definimos $\mathbb{I}_n = \{1, 2, 3, \cdots, n\}$.

Teorema 3.8. Sean $\mathfrak{n},\mathfrak{m}\in\mathbb{N}.$ Entonces, $\mathbb{I}_{\mathfrak{n}}\sim\mathbb{I}_{\mathfrak{m}}\iff\mathfrak{n}=\mathfrak{m}.$

Demostración. Sabemos que si $\mathbb{I}_n \sim \mathbb{I}_m$, entonces $\exists f : \mathbb{I}_n \to \mathbb{I}_m$ biyectiva. Supongamos

Esto implica que puedo definir $g: \mathbb{I}_m \to \mathbb{I}_{n+1}$ survectiva como:

$$g(k) = \begin{cases} k & \text{si } 1 \leq k \leq n+1, \\ 1 & \text{si } k > n+1. \end{cases}$$

 $g \circ f : \mathbb{I}_n \to \mathbb{I}_{n+1} \Rightarrow$ basta probar que \nexists funciones $h : \mathbb{I}_n \to \mathbb{I}_{n+1}$ suryectivas para probar el absurdo. Por inducción:

Si m=1 luego h no puede ser survectiva. Supongamos que vale si $1 \le k \le n-1$, si $\exists h: \mathbb{I}_n \to \mathbb{I}_{n+1}$ survectiva $\exists k: f(n)=k$. Defino una permutación r de \mathbb{I}_{n+1} tal que $r(k)=n+1 \Rightarrow$

 $r\circ h:\mathbb{I}_n\to\mathbb{I}_{n+1}\ \mathrm{es}\ \mathrm{suryectiva}\ \mathrm{y}\ (r\circ f)(n)=r(k)=n+1.$

 \Rightarrow la restricción $\mathfrak{r}\circ\mathfrak{f}|_{\mathbb{I}_{n-1}}:\mathbb{I}_{n-1}\to\mathbb{I}_n$ y es suryectiva. Abusrdo, por Hipotesis inductiva no existen suryectivas de $\mathbb{I}_{n-1}\to\mathbb{I}_n$

 \Leftarrow trivial.

Definición 3.9. X es finito si $\exists n: X$ es coordinable con \mathbb{I}_n y escribimos card(X) = n. Decimos que X es infinito si no existe tal n.

Clase III - 30/08

4.1 Conjuntos numerables

Definición 4.1. Un conjunto X es numerable si $X \sim \mathbb{N}$. Cada biyección se llama una enumeración de los elementos de X.

Definición 4.2. Decimos que un conjunto es a lo sumo numerable (contable) si es finito numerable.

Ejemplo. Los números pares, $P = \{2n : n \in \mathbb{N}\}.$

Demostración. f(n) = 2n, $f: \mathbb{N} \to P$ es biyectiva : es numerable.

Ejemplo. \mathbb{Z} es numerable.

Demostración. Definimos $f: \mathbb{Z} \to \mathbb{N}$ como $f(n) = \begin{cases} 2n & \text{si } n > 0, \\ -2n+1 & \text{si } n \leq 0. \end{cases}$ y f^{-1} es una enumeración.

Teorema 4.3. Sea X un conjunto y $P(X) = \{A : A \subset X\} \Rightarrow card(X) \neq card(P)$

Demostración. Supongamos que $\exists f: X \to P(X)$ biyectiva, en particular, f es survectiva.

Dado $x \in X$, puede pasar que $x \in f(X)$ o $x \notin f(X)$. Definimos $B = \{x \in X : x \notin f(X)\} \subset X$. Como f es survectiva se tiene que $\exists y \in Y : f(y) = B$.

Si $y \notin B = f(y) \Rightarrow y \notin f(y) \Rightarrow y \in B$.

Si $y \in B = f(y) \Rightarrow y \in f(y) \Rightarrow y \notin B$.

Absurdo en ambos casos, luego $\Rightarrow \exists f$ biyectiva $: \operatorname{card}(X) \neq \operatorname{card}(P)$.

Definición 4.4. Decimos que $card(X) \le card(Y)$ si $\exists f : X \to Y$ inyectiva. card(X) < card(Y) si card(X) < card(Y), pero $\neg(X \sim Y)$.

Proposición 4.5. Es una relación de orden

Demostración. i) $card(X) \le card(X)$ porque la identidad es inyectiva.

ii) $card(X) \le card(Y)$, $card(Y) \le card(Z) \Rightarrow card(Z) \le card(Z)$ pues la composición de funciones es inyectiva.

iii)
$$card(X) = card(Y) \Rightarrow X \sim Y$$
.

4.2 Cantor - Schröder - Bernstein

Teorema 4.6 (Cantor - Schröder - Bernstein). Si $\exists f: X \to Y \ y \ g: Y \to X$ inyectivas $\Rightarrow \exists h: X \to Y$ biyectiva.

Demostración. Vamos a probar que existen dos particiones distintas de X e Y. Sea $X = X_1 \cup X_2$ y $Y = Y_1 \cup Y_2$: $f: X_1 \to Y_1$ y $g: X_2 \to Y_2$ son biyectivas.

 $\mathrm{Podemos}\ \mathrm{definir}\ \mathrm{a}\ h: X \to Y\ \mathrm{como}\ h(x) = \begin{cases} f(x) & \mathrm{si}\ x \in X_1, \\ g^{-1}(x) & \mathrm{si}\ x \in X_2. \end{cases} \mathrm{y}\ \mathrm{resulta}\ \mathrm{biyectiva}.$

Definimos $\phi(x): P(X) \to P(X), \ \phi(A) = X - g(Y - f(A))$. Veamos primero que ϕ es creciente (i.e $A \subseteq B \Rightarrow \phi(A) \subseteq \phi(B)$.

Demostración.
$$A \subseteq B \iff f(A) \subseteq f(B) \iff y - f(B) \subseteq y - f(A) \iff g(y - f(B)) \subseteq g(y - f(A)) \iff X - \varphi(A) \subseteq X - \varphi(B)$$

Sea $\mathcal{C} = \{C \subset X : \varphi(C) \subset C\} \neq \emptyset$ pues $X \in \mathcal{C}$ y $A = \bigcap_{C \in \mathcal{C}} C \neq \emptyset$, $A \subset C, \forall C \in \mathcal{C}$ y φ es creciente y tenemos que $\varphi(C) \subset C \Rightarrow \varphi(A) \subset \varphi(C) \subset C \Rightarrow \varphi(C) \in A$. Además, usando otra vez que φ es creciente, $\varphi(\varphi(A)) \subset \varphi(A) \Rightarrow \varphi(A) \in \mathcal{C} \Rightarrow A \subset \varphi(A) \Rightarrow A = \varphi(A)$.

$$\begin{array}{l} \operatorname{Sean} X_1 = A, \ X - X_1 = X_2 = g_2(Y_2) \\ Y_1 = f(A), \ Y_2 = Y - f(A) \Rightarrow \\ A = \varphi(A) = X - g(Y - f(A)) \iff X - A = g(Y - f(A)) \iff X - X_1 = g(Y_2) = \\ X_2 \therefore f: X_1 \rightarrow Y_1 \ y \ g: X_2 \rightarrow Y_2 \ \text{son biyectivas.} \end{array}$$

Ejemplo. $\mathbb{N} \sim \mathbb{Z} \sim \mathbb{Q}$.

Demostración. $f: \mathbb{Z} \to \mathbb{Q}$, f(x) = x es inyectiva.

Sea $\mathfrak{a} \in \mathbb{Z}, \mathfrak{b} \in \mathbb{N}, \ f : \mathbb{Q} \to \mathbb{Z}, f(\frac{\mathfrak{a}}{\mathfrak{b}}) = \text{sign}(\mathfrak{a}) \cdot 2^{\mathfrak{a}} \cdot 3^{\mathfrak{b}}$ es inyectiva por Teorema Fundamental de la Aritmética. Luego por el teorema anterior $\mathbb{Z} \sim \mathbb{Q}$.

Ejemplo. $(\mathbb{N} \times \mathbb{N})$ es numerable.

Demostración. $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, f(n) = (1, n) es inyectiva. $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $f((n, m)) = 2^n \cdot 3^m$ es inyectiva por Teorema Fundamental de la Aritmética : es numerable.

4.3 Los Reales son no numerables

Teorema 4.7. \mathbb{R} no es numerable.

Demostración. Supongamos que es numerable. \Rightarrow

 $\exists f : \mathbb{N} \to \mathbb{R}$ biyectiva. A cada número real x_n le asignamos un intervalo centrado en ese punto de longitud 2^{-n} . La unión de todos esos intervalos tiene longitud menor o igual a la suma de las longitudes (se pueden superponer).

 $|\bigcup_{n\in\mathbb{N}} Ix_n| \leq \sum_{i=1}^n |Ix_n| = \sum_{n\in\mathbb{N}} \frac{1}{2^n} = 1$. Se cubrió un intervalo de longitud 1 de toda la recta real, por lo tanto quedan reales afuera y eso es un absurdo \therefore \mathbb{R} no es numerable.

Ejemplo. $A = \{(\alpha_n)_{n \geq 1} : \alpha_n \in \{0,1\}\} = \{0,1\}^{\mathbb{N}}$. Es decir las sucesiones de ceros y unos no es un conjunto numerable.

Demostración. Supongamos que si es numerable \Rightarrow podemos escribir $A = \{(\alpha_n^1)_{n \geq 1}, \cdots, (\alpha_n^j)_{n \geq 1}, \cdots\}$, todas las sucesiones de ceros y unos están contenidas en A. La sucesión donde $a_i = 1 - a_n^n$ (en el i-ésimo lugar tiene lo contrario de lo que la n-ésima sucesión tiene en el lugar n) debería ser una de ellas, pero eso es absurdo \therefore es no numerable.

La idea del último ejemplo (argumento diagonal), se puede adaptar para probar que (0,1] es no numerable.

4.3.1. Principio de encaje de Intervalos

Teorema 4.8. Sea $\mathbb{I}_1\supset\mathbb{I}_2\supset\mathbb{I}_3\supset\cdots$ una sucesión de intervalos cerrados y acotados $\mathbb{I}_n=[\mathfrak{a}_n,\mathfrak{b}_n]\Rightarrow$

La intersección de todos es no vacía.

 $\bigcap_{n=1}^\infty \mathbb{I}_n = [\mathfrak{a},\mathfrak{b}] \ \mathrm{con} \ \mathfrak{a} = sup(\mathfrak{a}_n), \mathfrak{b} = inf(\mathfrak{b}_n).$

Demostración. $\forall n \in \mathbb{N}, \ \exists \mathbb{I}_{n+1} \subset \mathbb{I}_n \Rightarrow \alpha_n \leq \alpha_{n+1} \leq b_{n+1} \leq b_n$

 $a_1 \leq a_2 \leq \cdots \leq b_n \leq \cdots \leq b_1$. El conjunto A de los a_i está acotado y B el conjunto de los b_i también.

Sea $\alpha = \sup(A)$, $\beta = \inf(B)$. Como $a_n \le b_n$, $\forall n \in \mathbb{N} \Rightarrow \alpha \le \beta \Rightarrow a_1 \le \cdots \le a_1 \le \alpha \le \beta \le \cdots \le b_1$.

Luego $[\alpha, \beta] \subset \mathbb{I}_n \forall n \in \mathbb{N} \Rightarrow \bigcap_{n \geq 1} I_n$.

Además ningún $x \le \alpha$ puede pertenecer a todos los \mathbb{I}_n . En efecto, si $x < \alpha = \sup(A) \Rightarrow \exists \alpha_1 \in A : x < \alpha_1 \Rightarrow x \notin \mathbb{I}_n$.

Análogamente con el ínfimo.

Teorema 4.9. \mathbb{R} no es numerable.

Demostración. Supongamos que $\exists f : \mathbb{N} \to \mathbb{R} : f(n) = x_n$.

Definimos la sucesión de \mathbb{I}_n de la siguiente forma:

Tomamos [0,1] y divido en 3 cerrados iguales, luego, al menos uno no contiene a x_1 , lo elijo como \mathbb{I}_1 (si hayh dos que no lo contienen elijo alguno). Inductivamente lo divido en 3 intervalos iguales y al menos 1 de ellos no contiene a x_{n+1} y lo elijo como \mathbb{I}_{n+1} . Por el principio anterior la $\mathbb{I} = \bigcap_{n=1}^{\infty} \mathbb{I}_n \neq \emptyset$ (tiene un único elemento y la longitud de los intervalos tiende a cero).

Si $x \in \mathbb{I}$ no puede ser igual o mayor que x_1 (por construcción se los excluye en algún paso) $\Rightarrow \mathbb{R}$ es no numerable, pues ese x queda afuera.

4.4 Propiedades

Teorema 4.10. Sea X numerable, $Y \subset X \Rightarrow Y$ es a lo sumo numerable.

Demostración. Supongamos que Y no es finito. Como $X \sim Y$ puedo pensar $X = (x_n)_{n \geq 1}$ y defino $n_1 = \min\{n \in \mathbb{N} : x_n \in Y\}$ e inductivamente elegimos $n_1, n_2, \cdots, n_k, \cdots$. Definimos $n_k = \min\{n \in \mathbb{N} : n > n_k, x_n \in Y\}$ \Rightarrow Tenemos la sucesión estrictamente creciente de naturales y podemos definir $g : \mathbb{N} \to Y, g(K) = x_{n_k}$. g es inyectiva si $K \neq Y, n_k \neq n_j$ por ser estrictamente creciente y es suryectiva, si $y \in Y \Rightarrow y = x_j$. Para ningún $j \Rightarrow \exists k : n_k \leq j \leq n_k + 1$. Como $j \leq n_{k+1} = \{n > n_k : x_n \in Y\}$ debe ser $j = n_k$.

Corolario 4.11. $f: X \to Y$ inyectiva e Y numerable $\Rightarrow X$ es a lo sumo numerable.

Demostración. f es inyectiva $\Rightarrow X \sim f(X)$ y como $f(X) \subset Y \Rightarrow$ es a lo sumo numerable por el teorema anterior.

Teorema 4.12. $f: X \to Y$ survectiva, X a lo sumo numerable $\Rightarrow Y$ es a lo sumo numerable.

Demostración. $f: X \to Y$ es survectiva $\exists g: Y \to X$ inversa a derecha tal que $f \circ g = id_Y \Rightarrow f$ es inversa a izquierda de $g \Rightarrow g$ es invectiva \therefore por el corolario anterior Y es a lo sumo numerable.

Teorema 4.13. Para cada $m \in \mathbb{N}$. Sea x_n un conjunto numerable $\Rightarrow \bigcup_{n \in \mathbb{N}} x_n = X$ es numerable.

Demostración. x_n es numerable $\Rightarrow \exists f : \mathbb{N} \to x_n$ biyectiva. Sea $f : \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} x_n$ definida como $f(n,n) = f_n(n)$. Veamos que es suryectiva, dado $x \in X$, $\exists n \in \mathbb{N} : x \in x_n \Rightarrow \exists m : x = f_n(m)$ luego $X = f_n(m) = f(n,m)$. Como $\mathbb{N} \times \mathbb{N}$ es numerable $y \in \mathbb{N} \times \mathbb{N} \to \bigcup_{n \geq 1} x_n$ es suryectiva $x \in \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ es numerable $x \in \mathbb{N}$ como es infinito, es numerable.

Ejemplo. $\mathbb{Q}(x) \sim \mathbb{N}$.

Demostración. $\mathbb{Q}_k[x] = \{ p \in \mathbb{Q}(x) : gr(p) \leq k \}$ tenemos $f_n : \mathbb{Q}^{n+1} \to \mathbb{Q}_n[x],$ $f(a_0, \cdots, a_{n+1}) = a_0 + \cdots + a_n x^n$, cada f_n es biyectiva $\Rightarrow \mathbb{Q}^{n+1}$ es numerable y como la unión numerable de conjuntos numerables es numerable $\therefore \mathbb{Q}(x)$ es numerable. \square

Definición 4.14. Un número se dice algebraico si es raíz de algún polinomio con coeficientes enteros, por ejemplo $\sqrt{2}$ es raíz de $x^2 = 2$.

Definición 4.15. Si un número real no es algebraico se lo llama trascendente.

Ejercicio: demostrar que el conjunto de números algebraicos es numerable.

Clase IV - 03/09

5.1 Operaciones con cardinales

Dados dos cardinales n, m (no necesariamente finitos) y X, Y conjuntos disjuntos tales que card(X) = n, card(Y) = m, podemos definir:

- 1) Suma: $n + m = card(X \cup Y)$.
- 2) **Producto:** $n \cdot m = card(X \times Y)$.
- 3) Potencia: $n^m = card(\{f : Y \to X\}) = card(X^Y)$.

Nota. Suponer que $X \cap Y = \emptyset$ no es restrictivo porque $X \sim (X \times \{1\})$ e $Y \sim (Y \times \{2\})$, y $(X \times \{1\}) \sim (Y \times \{2\})$ y son disjuntos.

Nota. Hay que probar que la definición es independiente de los conjuntos X, Y que elegimos. Si $n = card(\tilde{X})$ y $m = card(\tilde{Y})$, $\tilde{X} \cap \tilde{Y} = \varnothing \Rightarrow n + m = card(\tilde{X} \cup \tilde{Y})$. Vale porque existen biyecciones entre \tilde{X} y X y entre Y y \tilde{Y} . Sea $f: X \to \tilde{X}$, $g: Y \to \tilde{Y}$ con lo cual $h: X \cup Y \to \tilde{X} \cup \tilde{Y}$ dada por

$$h(z) = \begin{cases} f(z) & \text{si } z \in X, \\ g(z) & \text{si } z \in Y. \end{cases}$$

es biyectiva. Similar para el producto y la potencia.

Supongamos card(X) = n, card(Y) = m, card(Z) = p, no necesariamente finitos con X, Y, Z disjuntos dos a dos. La suma cumple las siguientes propiedades:

Proposición 5.1. 1) Conmutatividad: n + m = m + n, pues $X \cup Y = Y \cup X$.

- 2) Asociatividad: (n + m) + p = n + (m + p).
- 3) Existencia del neutro: 0 + n = n, $\emptyset \cup X = X$.

El producto cumple las siguientes propiedades:

Proposición 5.2. 1) Conmutatividad: $n \cdot m = m \cdot n$, pues $X \times Y \sim Y \times X$.

- 2) $0 \cdot n = 0$, pues $\emptyset \times X = \emptyset$.
- 3) $1\cdot n=n,$ pues $\{1\}\times X\sim X.$ Aquí, $f:\{1\}\times X\to X$ saca el 1 y $g:X\to \{1\}\times X$ agrega el
- 1. Ambas funciones son biyectivas.

Proposición 5.3. Distributiva del producto en la suma: $n \cdot (m+p) = n \cdot m + n \cdot p$ porque $X \times (Y \cup Z) \sim (X \times Y) \cup (X \times Z)$.

Nota. No vale la ley de cancelación: $n + m = n + p \not\gg m = p$. $n \cdot m = n \cdot p \not\gg m = p$.

```
Ejemplo. Si n = card(\mathbb{N}) = \aleph_0 y card(\mathbb{R}) = c, tenemos que:
a) n + n = \aleph_0 + \aleph_0 = \aleph_0.
n \cdot n = \aleph_0 \cdot \aleph_0 = \aleph_0.
b) c \cdot c = c.
c + c = c.

Demostración. a) Vimos que card(\{2n : n \in \mathbb{N}\}) = \aleph_0, card(\{2n + 1 : n \in \mathbb{N}\}) = \aleph_0. Y la unión de ambos conjuntos es \mathbb{N}. Además \mathbb{N} \times \mathbb{N} = \aleph_0, así \aleph_0 \cdot \aleph_0 = \aleph_0.
b) Si pruebo que el cardinal de cualquier intervalo no degenerado (sin extremos iguales) de la recta es c, puedo probar que c + c = c observando que (0, 1) = (0, \frac{1}{2}) \cup (\frac{1}{2}, 1). En efecto, arctan(x) es una biyección entre \mathbb{R} y el intervalo (-\frac{\pi}{2}, \frac{\pi}{2}), y hay una biyección entre este intervalo y cualquier (a, b) dada por y = \frac{b}{\pi} \cdot (x + \frac{\pi}{2}) + a. Además, (0, 1) y [0, 1] son coordinables. Si f : [0, 1] \to (0, 1) es inyectiva y por el Teorema de Cantor-Bernstein [0, 1] \sim (0, 1). Para probar c \cdot c = c, uso que (0, 1] \times (0, 1] \sim (0, 1].
```

Sea $g:(0,1] \to (0,1] \times (0,1]$, g(x) = (x,1) es inyectiva. $f:(0,1] \times (0,1] \to (0,1]$, $f(x,y) = 0.x_1y_1x_2y_2 \cdots$ (primeros decimales). Si $x,y \in (0,1]$, los pensamos con desarrollo decimal infinito. Como f es inyectiva, por el

Teorema de Cantor-Bernstein, existe una biyección entre ellos, por lo que $c \cdot c = c$. \Box

Sean n = card(X), m = card(Y), p = card(Z), no necesariamente finitos, con X, Y, Z disjuntos dos a dos.

Proposición 5.4. $n^m \cdot n^p = n^{m+p}$

$$\begin{split} \textbf{Demostración.} \ & X^Y \times X^Z \sim X^{Y \cup Z}. \\ & X^Y \times X^Z = \{(f,g): f: Y \to X, g: Z \to X\}. \\ & f \in X^{Y \cup Z}, f: Y \cup Z \to X \Rightarrow (f|_Y, f|_Z) \in X^Y \times X^Z \ \mathrm{inyectiva}. \end{split}$$

Dadas $f: Y \to X, g: Z \to X, h: Y \cup Z \to X$ tal que $h(x) = \begin{cases} f(x) & \text{si } x \in X, \\ g(x) & \text{si } x \in Z \end{cases}$

Como Y, Z son disjuntos por hipótesis h es inyectiva y vale por Teorema CSB.

Demostración.
$$f \in (X^Y)^Z$$
, $f : Z \to X^Y$, $Z \mapsto (f_Z : Y \to X)$. $(\forall z \in Z)(\exists f_Z : Y \to X)$, si $y \in Y$, $f_Z(y)$ es $g(z, y) = f_Z(y)$

Teorema 5.6. Sea $n=\aleph_0$ o c y sea m otro cardinal tal que $2\leq m\leq 2^n$ \Rightarrow $m^n=2^n$ $(2^{\aleph_0}) = (2^{\aleph_0})^{\aleph_0}$.

Demostración. En general si $\mathfrak{m} \leq \mathfrak{p} \Rightarrow \mathfrak{m}^{\mathfrak{m}} \leq \mathfrak{p}^{\mathfrak{n}}$ con $card(X) = \mathfrak{m}$, $card(Y) = \mathfrak{m}$, card(Z) = p, X, Y, Z disjuntos dos a dos.

 $f:Y\to Z$ es inyectiva $\Rightarrow \forall g:X\to Y$ tenemos que $f\circ g:X\to Z$ de manera inyectiva (si $g_1 \neq g_2 \rightarrow f = g_1 \neq f \circ g_2$ porque f es inyectiva).

Nota. $\{0,1\}^{\mathbb{N}} \sim P(\mathbb{N})$ pues a cada $f: \mathbb{N} \to \{0,1\}$ le asigno el subconjunto $A \subset \mathbb{N}$ definido por $n \in A \iff f(n) = 1$

Teorema 5.7. $\mathbb{R} \sim \{0, 1\}^{\mathbb{N}} \text{ es decir } 2^{\aleph_0} = c.$

Demostración. $f:[0,1] \to \{0,1\}^{\mathbb{N}}, f(x)=(x_n)_{n\in\mathbb{N}}$. Siendo x_n las cifras del desarrollo en base dos de x.

Tenemos que $x = \sum_{n=1}^{\infty} \frac{x_n}{2^n} \Rightarrow f$ es inyectiva xq el desarrollo es único.

Ahora si $g: \{0,1\}^{\mathbb{N}} \to [0,1], g((x_n)_{n \in \mathbb{N}}) = \sum_{n \geq 1} \frac{x_n}{2^n}, x_n \in \{0,1\}.$ No es inyectiva pues $0, 11 = 0, 10\overline{1}$. Una forma simple es pensar el desarrollo en base 3 de cada tira de 0 y 1 que no tiene ningún dos. Es decir $g((x_n)_{n\in\mathbb{N}}) = \sum_{n\geq 1} \frac{x_n}{3^n} y(0,11)_3 \neq (0,10\overline{1})_3$: es inyectiva y por Teorema CSB: $\mathbb{R} \sim \{0, 1\}^{\aleph_0}$.

Otra forma es la siguiente: $S = \{0,1\}^{\mathbb{N}} - \bigcup_{i=1}^n S_i \text{ con } S_i = \{(x_n)_{n \in \mathbb{N}} \in \{0,1\}^{\mathbb{N}} : x_m = \{0,1\}^{\mathbb{N}} = \{0,1\}^{\mathbb{N}} : x_m = \{0,1\}^{\mathbb{N}} = \{$ $0, \forall m > i$. O sea $0, 11000 \cdots$ se saca y queda solo $0, 10\overline{1}$. Cada S_i es un conjunto finito (tiene 2^i elementos) luego $\bigcup_{i>1} S_i$ es numerable \therefore S y $\{0,1\}^{\mathbb{N}}$ tienen el mismo cardinal.

$$g((x_n)_{n\in\mathbb{N}}) = \sum_{n\geq 1} \frac{x_n}{2^n}$$
 si es inyectiva y $g:S\to [0,1]$.

Hipótesis del continuo 5.2

 \nexists cardinal entre \aleph_0 y $c=2^{\aleph_0}$. No se puede demostrar ni refutar.

Es independiente de la teoría de conjuntos más el axioma de elección. Gödel 1940 probó que no se puede demostrar, Cohen en 1963 que no se puede refutar.

5.3 Construcción de los Reales

Sucesiones de números racionales $(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$.

Sea $(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$ decimos que tiende a 0 si dado $\varepsilon>0, \exists n_0\in\mathbb{N}: |a_n|<\varepsilon, \forall n>n_0$. Notamos $a_n \rightarrow 0$.

Definición 5.8. Sea $(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$. Decimos que la sucesión es de Cauchy \iff dado $\varepsilon > 0, \exists n_0 : \forall n, m > n_0, |a_n - a_m| < \varepsilon.$

Teorema 5.9. $(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$ es convergente (es decir $a_n-q\to 0, q\in\mathbb{Q})\Rightarrow$ es de Cauchy.

$$\begin{split} \textbf{Demostración.} \ \operatorname{Dado} \ \epsilon > 0, \exists n_0 \in \mathbb{N} : |\alpha_n - q| < \frac{\epsilon}{2}, \forall n > n_0. \\ |\alpha_n - \alpha_m| = |(\alpha_n - q) + (q - \alpha_n)| \leq |\alpha_n - q| + |q - \alpha_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \\ \forall n, m > n_0. \end{split}$$

Teorema 5.10. Toda sucesión de Cauchy es acotada.

Demostración. Como $(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$ es de Cauchy, eligiendo $\varepsilon=1$ $\exists n_0 \in \mathbb{N} : |a_n - a_m| < 1, \forall n, m > n_0.$ En particular $|\alpha_n - \alpha_{n_0+1}| < 1$ $a_{n_0+1}-1 < a_n < 1 + a_{n_0+1}, \forall n > n_0 \Rightarrow |a_n| < max(|a_{n_0+1}+1|, |a_{n_0+1}-1|), \forall n > n_0.$ Tomo $M = \max(|a_0|, \dots, |a_{n_0}|, |a_{n_0+1}+1|, |a_{n_0+1}-1|)$ y vale $\forall n \in \mathbb{N}$.

Definición 5.11. Sea $\mathcal{C}_{\mathbb{Q}}$ el conjunto de todas las sucesiones de Cauchy de números racionales. Dados $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}\in\mathcal{C}_{\mathbb{Q}}$. Decimos que son equivalentes $\iff a_n-b_n\to 0$.

Proposición 5.12. La relación anterior es de equivalencia.

- i) Reflexidad: $a_n a_n = 0 \rightarrow 0$.
- $\begin{array}{l} \text{ii) Simetria: } a_n b_n \to 0 \Rightarrow b_n a_n = -(a_n b_n) \to 0. \\ \text{iii) Tansitividad: } \epsilon > 0, \exists n_0 : |a_n b_n| < \frac{\epsilon}{2}, \forall n > n_0 \text{ y } \exists n_1 : |b_n c_n| < \frac{\epsilon}{2}, \forall n > n_1. \\ \end{array}$

 $\mathrm{Tomando}\ n>max(n_0,n_1), |a_n-c_n|\leq |a_n-b_n|+|b_n-c_n|<\frac{\epsilon}{2}+\frac{\epsilon}{2}<\epsilon.$

Definición 5.13. Los números reales \mathbb{R} son las clases de equivalencia $[(a_n)]$ de las sucesiones $\mathcal{C}_{\mathbb{O}}$ por la relación anterior.

Clase V - 06/09

6.1 Construcción de los Reales

Nota. Dado $q \in \mathbb{Q}$ definimos \tilde{q} como la clase de equivalencia de la sucesión constante como $(q, q, q, \cdots) \Rightarrow \mathbb{Q} \subset \mathbb{R}$.

Definición 6.1. $\tilde{s}, \tilde{t} \in \mathbb{R}, \ s = [(a_n)], t = [(b_n)]$ definimos $s + t = [(a_n + b_n)]$ la clase de equivalencia de $(a_n + b_n)_{n \in \mathbb{N}}$.

 $s \cdot t = [(a_n b_n)]$ la clase de equivalencia de $(a_n b_n)_{n \in \mathbb{N}}$.

Veamos que están bien definidas, si $[(a_n)] = [(c_n)]$ y $[(b_n)] = [(d_n)]$.

 $a_n-c_n\to 0\ \mathrm{y}\ b_n-d_n\to 0.$

 $([a_n] + [(b_n)]) - ([c_n] + [d_n])) = ([a_n] - [(c_n)]) + ([b_n] - [(d_n)]) = 0 \Rightarrow \mathrm{la} \ \mathrm{suma} \ \mathrm{est\'a} \ \mathrm{bien} \ \mathrm{definida}.$

 $\begin{array}{l} a_n b_n - c_n d_n = a_n b_n - c_n b_n + c_n b_n - c_n d_n = b_n (a_n - c_n) + c_n (b_n - d_n) \Rightarrow |a_n \cdot b_n - c_n \cdot b_n| \leq \\ |b_n||a_n - c_n| + |c_n||b_n - d_n|. \end{array}$

 $\mathrm{Como}\ (b_n)_{n\in\mathbb{N}}\ \mathrm{y}\ (c_n)_{n\in\mathbb{N}}\ \mathrm{est\'{a}n}\ \mathrm{acotadas}\ \exists M: |b_n| < M,\, |c_n| < M, \forall n\in\mathbb{N}.$

 $|a_nb_n-c_nb_n|\leq M(|a_nc_n|+|b_n-d_n|)<\varepsilon, \forall n>n_0.$

Porque $a_n - c_n \to 0$, $b_n - d_n \to 0$.

Proposición 6.2. \mathbb{R} es un cuerpo con esta definición.

Demostración. Ejercicio.

Teorema 6.3. Dado $S \in \mathbb{R} - \{0\}, \exists t \in \mathbb{R} : s \cdot t = 1.$

Demostración. $S = [(a_n)]$ sabemos que $S \notin 0$, o sea $a_n \not\to 0$. Podría pasar que algunos de los terminos de $(a_n)_{n\in\mathbb{N}}$ si sean 0, lo que pasa es que $a_n\neq 0$, para n lo suficiente grande.

Como $a_n \not\to 0$, $\exists \epsilon_1 > 0$, \exists infinitos valores de $M: |a_M - 0| > \epsilon_1$, si $\epsilon = \frac{\epsilon_1}{2}$, como $(a_n)_{n\in\mathbb{N}} \text{ es de cauchy, } \exists n: |a_n-a_m|<\frac{\epsilon}{2}, \forall n,m>n_0.$

 $\mathrm{Si}\; M>n_0\; (\mathrm{puedo\; porque\; son\; infinitos}): |\alpha_M|>\epsilon_1 \Rightarrow |\alpha_m-\alpha_M|<\frac{\epsilon_1}{2}, \forall m>n_0.$

$$-\varepsilon_1/2 < \alpha_n - \alpha_m < \varepsilon_1/2$$
 o $-\varepsilon_1/2 < \alpha_m - \alpha_n < \varepsilon_1/2$.

Si
$$a_M > 0 \Rightarrow \frac{\varepsilon_1}{2} < a_M - \frac{\varepsilon_1}{2} < a_n < a_M + \frac{\varepsilon_1}{2}, \forall n > n_0$$

$$\begin{split} &-\epsilon_1/2 < \alpha_n - \alpha_m < \epsilon_1/2 \text{ o } -\epsilon_1/2 < \alpha_m - \alpha_n < \epsilon_1/2. \\ &\mathrm{Si} \ \alpha_M > 0 \Rightarrow \frac{\epsilon_1}{2} < \alpha_M - \frac{\epsilon_1}{2} < \alpha_n < \alpha_M + \frac{\epsilon_1}{2}, \forall n > n_0. \\ &\mathrm{Si} \ \alpha_M < 0, \ \frac{\epsilon_1}{2} < -\alpha_M - \frac{\epsilon_1}{2} < -\alpha_n < -\alpha_m + \frac{\epsilon_1}{2} \Rightarrow \alpha_n < -\frac{\epsilon_1}{2}, \forall n > n_0. \\ &\mathrm{O} \ \mathrm{sea} \ \mathrm{que} \ \forall n > n_0, \ \alpha_n \ \mathrm{tiene} \ \mathrm{el} \ \mathrm{mismo} \ \mathrm{signo} \ \mathrm{que} \ \alpha_M \ \mathrm{en} \ \mathrm{particular} \ \alpha_n \neq 0, \forall n > n_0. \\ &\mathrm{Sabiendo} \ \mathrm{este} \ \mathrm{vectors} \ \mathrm{este} \ \mathrm{vectors} \ \mathrm{este} \ \mathrm{este$$

Sabiendo esto veamos que \exists el inverso:

 $S = [(a_n)] \neq 0$ por lo anterior $\exists n_0 : a_n \neq 0, \forall n > n_0$.

Sea $(b_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$ como

$$b_n = \begin{cases} 0 & \text{si } n < n_0, \\ \frac{1}{a_n} & \text{si } n > n_0. \end{cases} \Rightarrow$$

$$a_n b_n = \begin{cases} 0 & \text{si } n < n_0, \\ 1 & \text{si } n > n_0, \end{cases} \Rightarrow$$

 $(1,1,\cdots)-(\alpha_n\cdot b_n)_{n\in\mathbb{N}}\to 0\ \therefore\ [(\alpha_nb_n)]=[(1,1,\cdots)],\ \mathrm{es\ decir}\ t=[(b_n)]\ \mathrm{cumple\ que}$

Cuerpo ordenado 6.2

Para probrar que R es un cuerpo ordenado bajo esta definición hay que definir qué es ser positivo.

Sea $s \in \mathbb{R}$ decimos que s es positivo si $s \neq 0$ y $s = [(a_n)]$ tal que $a_n > 0 \forall n > n_0$. O sea, todos los terminos son positivos a partir de un punto.

Definición 6.4. Decimos que s > t si s - t > 0. Ejercicio probrar que está bien definido.

Veamos un ejemplo de como se prueban los axiomas de orden.

Teorema 6.5. Sean $s, t \in \mathbb{R}$: $s > t, r \in \mathbb{R} \Rightarrow s + r > t + r$. **Demostración.** $s = [(a_n)], t = [(b_n)], r = [(c_n)].$ $\begin{array}{l} \mathrm{Como}\ s>t, \exists n_0: a_n-b_n>0, \forall n>n_0, a_n-b_n\not\to 0 \Rightarrow (a_n+c_n)-(b_n+c_n)=\\ a_n+b_n>0\ y\ (a_n+c_n)-(b_n+c_n)\not\to 0 \Rightarrow \\ s+r-(t+r)>0 \Rightarrow s+r>t+r. \end{array}$ **Teorema 6.6.** \mathbb{R} con esta construcción es Arquimediano.

Demostración. Sean $s,t>0,s,t\in\mathbb{R}$ quiero ver que $\exists m\in\mathbb{N}:m\cdot s>t.$ Es decir si $s=[(a_n)],\ t=[(b_n)]$ quiero ver que $[(m\cdot a_n)]>[(b_n)]$. O sea que $m\cdot a_n-b_n\not\to 0$ y que $\exists n_0:m\cdot a_n-b_n>0, \forall n>n_0.$

Supongamos que $\forall m, n_0, \exists n > n_0 : m \cdot a_n \leq b_n$. Como $(b_n)_{n \in \mathbb{N}}$ es de Cauchy $\Rightarrow \exists M \in \mathbb{Q} : b_n < M, \forall n \in \mathbb{N} \Rightarrow$.

 $a_n \leq \frac{b_n}{m} \leq \frac{M}{m}, \; \mathrm{para \; alg\'un} \; n > n_0, \forall n_0.$

Como $\mathbb Q$ es arquimediano, dado $\varepsilon > 0, \exists m : \frac{M}{m} < \frac{\varepsilon}{2}$, elijo m así y tengo que

 $\alpha_n \leq \frac{b_n}{m} < \frac{M}{m} < \frac{\epsilon}{2}, n > n_0, \forall n_0.$

Como $(a_n)_{n\in\mathbb{N}}$ es de Cauchy $\exists n_0 : \forall n, k > n_0, |a_n - a_k| < \varepsilon/2$. Para este n_0, \exists algún $n > n_0$ tal que $a_n < \varepsilon/2 \Rightarrow$

 $\forall k>n_0, \alpha_k-\alpha_n<\epsilon/2 \Rightarrow \alpha_k<\alpha_n+\epsilon/2<\epsilon/2+\epsilon/2<\epsilon \Rightarrow \alpha_n\to 0. \ {\rm Absurdo!} \\ ([\alpha_n])=S>0.$

Luego $\exists m \in \mathbb{N} : m \cdot a_n - b_n > 0, \forall n > n_0$. Queda ver que $m \cdot a_n - b_n \rightarrow 0$, si $m \cdot a_n - b_n \rightarrow 0$ nada que probar. Caso contrario tomamos m+1 en vez de m.

 $\begin{array}{l} (m+1)\cdot a_n-b_n=m\cdot a_n+a_n-b_n>a_n>0, \forall n>n_0\Rightarrow m\cdot a_n-b_n\to 0\ \mathrm{y}\ a_n\to 0\ \ddots \\ \mathbb{R}\ \mathrm{es\ arquimediano}. \end{array}$

Teorema 6.7. \mathbb{Q} es denso en \mathbb{R} . Es decir dado $r \in \mathbb{R}$ y $\epsilon > 0, \exists q \in \mathbb{Q} : |r-q| < \epsilon$. $r = [(a_n)], \text{ con } (a_n)_{n \in \mathbb{N}} \subset \mathbb{Q}$ es de Cauchy.

 $\begin{array}{l} \textbf{Demostración.} \ \mathrm{Dado} \ \epsilon > 0, \exists n_0 : |\alpha_n - \alpha_m| < \epsilon, \forall n, m > n_0. \\ \mathrm{Elijo} \ \mathrm{alg\'un} \ l > n_0 \ \mathrm{y} \ \mathrm{defino} \ q = [(\alpha_l, \alpha_l, \cdots)] \Rightarrow r - q = [(\alpha_n - \alpha_l)] \ \mathrm{y} \ q - r = [(\alpha_l - \alpha_n)]. \\ \mathrm{Como} \ l > n_0 \Rightarrow (\forall n > n_0) (\alpha_n - \alpha_l < \epsilon) (\alpha_l - \alpha_n < \epsilon) \Rightarrow |r - q| < \epsilon. \end{array}$

6.3 R tiene la propiedad del supremo

Sea $S \subset \mathbb{R}, S \neq \emptyset$, M cota superior de S. Vamos a construir dos sucesiones $(\mathfrak{u}_n)_{n \in \mathbb{N}}, (\mathfrak{l}_n)_{n \in \mathbb{N}}$. Como $S \neq \emptyset$, $\exists s_0 \in S$. Defino $\mathfrak{u}_0 = M$, $\mathfrak{l}_0 = s_0$.

Si ya están definidos u_m, l_m , llamo $m_n = \frac{l_n + u_n}{2}$ al punto medio.

- i) Si m_n es cota superior de S definimos $u_{m+1} = m_n, l_{n+1} = l_n$.
- ii) Si \mathfrak{m}_n no es cota superior de S definimos $\mathfrak{u}_{n+1}=\mathfrak{u}_n$ y $\mathfrak{l}_{n+1}=\mathfrak{m}_n$.

Como $s_0 < M$ es fácil ver que $(u_n)_{n \in \mathbb{N}}$ es decreciente y que $(l_n)_{n \in \mathbb{N}}$ es creciente. Queda como ejercicio demostrarlo.

Lema 6.8. $(u_n)_{n\in\mathbb{N}}$ y $(l_n)_{n\in\mathbb{N}}$ son succesiones de Cauchy de números reales.

```
\begin{array}{l} \textbf{Demostración.} \ \text{Por construcción se tiene que } l_n \leq M, \forall n \in \mathbb{N} \Rightarrow \\ (l_n)_{n \in \mathbb{N}} \ \text{es creciente y acotada} \ ^*{\Rightarrow} \\ \text{Es de cauchy.} \\ \\ \textbf{Como } u_n > s_0, \forall n \in \mathbb{N} \Rightarrow -u_n \leq s_0, (-u_n)_{n \in \mathbb{N}} \ \text{es creciente} \Rightarrow \\ \text{Es de cauchy.} \\ \\ * \\ \textbf{Demostración.} \ \text{Supongamos que } (l_n)_{n \in \mathbb{N}} \ \text{no es de Cauchy. Entonces existe } \epsilon > 0: \\ \forall n_0, \exists n, m \geq n_0: l_n - l_m \geq \epsilon. \\ \text{Como } (l_n)_{n \in \mathbb{N}} \ \text{es creciente, } l_n - l_{n_0} \geq \epsilon, \ \text{inductivamente consigo:} \\ n_1 > n_0: l_{n_1} - l_{n_0} \geq \epsilon \\ n_2 > n_1: l_{n_2} - l_{n_1} \geq \epsilon \\ \vdots \\ \text{Por otro lado por la arquimedianidad } \exists k \in \mathbb{N}: k \cdot \epsilon > M - l_{n_0} \Rightarrow \\ l_{n_k} - l_{n_0} = (l_{n_k} - l_{n_{k-1}}) + (l_{n_{k-1}} - l_{n_{k-2}}) + \cdots + (l_{n_1} - l_{n_0}) > k \cdot \epsilon > M - l_{n_0} \Rightarrow \\ l_{n_k} > M. \ \text{Absurdo!} \\ \end{tabular}
```

```
Lema 6.9. \exists u \in \mathbb{R} : u_n \to u.

Demostración. Sea u_n un termino de (u_n)_{n \in \mathbb{N}} \Rightarrow \exists q_n \in \mathbb{Q} : |u_n - q_n| < \frac{1}{n}
Consideremos (q_1, q_2, \cdots) \subset \mathbb{Q}.

Afirmo que (q_n)_{n \in \mathbb{N}} es de Cauchy. Dado \varepsilon > 0, como (u_n)_{n \in \mathbb{N}} es de Cauchy \Rightarrow \exists n_0 : \forall n, m > n_0, |u_n - u_m| < \frac{\varepsilon}{3}.

Por arquimedianidad \exists n_1 : \frac{1}{m}, \forall n > n_1 \Rightarrow \text{si } n > \max(n_0, n_1) \Rightarrow |q_n - q_m| \leq |q_n - u_n| + |u_n - u_m| + |u_m - q_m| < \varepsilon \Rightarrow u = [(q_n)] \in \mathbb{R}, falta ver que u_n \to u.

Si \tilde{q}_n = [(q_n, q_n, \cdots)] \in \mathbb{R} \Rightarrow \tilde{q}_n - u \to 0 pues q_n es de Cauchy y por construcción
```

 $u_n - q_n < \frac{1}{n} \Rightarrow u_n - \tilde{q}_n \to 0 \text{ y como } \tilde{q}_n - u \to 0 \Rightarrow$

```
Lema 6.10. l_n \rightarrow u
```

Demostración. Según las posibles definiciones de $l_{\mathfrak{n}}$ tenemos que:

Demostración. Según las posibles definiciones de
$$l_n$$
 ten $u_{n+1} - l_{n+1} = m_n - l_n = \frac{u_n + l_n}{2} - l_n = \frac{u_n - l_n}{2}$ o $u_{n+1} - l_{n+1} = u_{n+1} - m_n = u_n - \frac{u_n - l_n}{2} = \frac{u_n - l_n}{2} \Rightarrow u_1 - l_1 = \frac{1}{2}(M - s)$ $u_2 - l_2 = \frac{1}{2}(u_1 - l_1) = (\frac{1}{2})^2(u - s)$ \vdots $u_n - l_n = (\frac{1}{2})^n(M - s)$

Por arquimedianidad de $\mathbb{R}, \forall \varepsilon > 0, \frac{1}{2^n}(M-s) < \varepsilon, \forall n > n_0 \Rightarrow$ $u_n - l_n \to 0$: $l_n \to u$, pues $u_n \to u$.

Teorema 6.11. \mathbb{R} tiene la propiedad del supremo.

Demostración. 1) Veamos que u es cota superior, si no $u < s, s \in S \Rightarrow \varepsilon = s - u > 0$, $\mathrm{como}\; u_n \to u \; \mathrm{y} \; \mathrm{es} \; \mathrm{decreciente} \; \exists n : u_n - u < \epsilon \Rightarrow u_n < u + \epsilon = u + s - u = s \; \mathrm{Absurdo},$ por construcción u_n era cota superior de $S, \forall n$.

2) Veamos que es la menor de las cotas superiores.

Sabemos que l_n no es cota superior de S, así que $(\forall n \in \mathbb{N})(\exists s_n \in S): l_n \leq s_n$. Como $l_n \to u \ y \ l_n \ {\rm es \ creciente} \Rightarrow$

 $\forall \epsilon>0, \exists n_0: l_n>u-\epsilon, \forall n>n_0 \Rightarrow s_n\geq l_n>u-\epsilon, \forall n>n_0. \text{ Es decir que para todo}$ $\varepsilon > 0$ tengo un s_n más grande en S : u es la menor de las cotas superiores.

Clase VI - 10/09

7.1 Sucesiones

Una sucesión de números reales es una función $x: \mathbb{N} \to \mathbb{R}$. Notamos $x(n) = x_n$ y lo llamamos el n-ésimo término de la sucesión. Indicamos la sucesión como $(x_n)_{n \in \mathbb{N}}$ o (x_1, x_2, \cdots) . Una subsucesión de x es la restricción de x a un subconjunto infinito $A = \{n_1 < n_2 < \cdots\} \subset \mathbb{N}$. Escribimos $(x_n)_{n \in A}$ para indicar la subsucesión.

Nota. Estrictamente la subsucesión no tiene dominio \mathbb{N} , pero es trivial considerarla como una función definida en \mathbb{N} componiendo con $1\mapsto x_1, 2\mapsto x_2, \cdots$ Por esto se usa la notación $(x_{n_i})_{i\in\mathbb{N}}$.

Definición 7.1. Decimos que $a = \lim_{n \to \infty} x_n \iff (\forall \epsilon > 0)(\exists n_0 \in \mathbb{N}) : |x_n - \alpha| < \epsilon, \forall n > n_0.$

Equivalentemente, si $\forall \varepsilon > 0$ el intervalo $(\alpha - \varepsilon, \alpha + \varepsilon)$ contiene a todos los términos de la sucesión salvo quizás un número finitos.

Teorema 7.2 (Unicidad del límite). Si $\lim_{n\to\infty} x_n = a$ y $\lim_{n\to\infty} x_n = b \Rightarrow a = b$

Demostración. Supongamos que $a \neq b$. Tomemos $\varepsilon = \frac{|b-a|}{2} > 0$.

 $(a - \varepsilon, a + \varepsilon) \cap (b - \varepsilon, b + \varepsilon) = \emptyset$. En efecto si x pertenece a la intersección entonces $|x - a| < \varepsilon$ y $|x - b| < \varepsilon$ \Rightarrow

 $\begin{array}{l} |b-a| \leq |a-x| + |x-b| < \epsilon + \epsilon = 2\epsilon = |b-a| \; \mathrm{Absurdo!} \; \mathrm{Como} \; \lim_{n \to \infty} x_n = a \Rightarrow \\ \exists n_0 : x_n \in (a-\epsilon, a+\epsilon), \forall n > n_0 \Rightarrow \end{array}$

 $x_n \notin (b - \varepsilon, b + \varepsilon), \forall n > n_0 :: \lim_{n \to \infty} x_n \neq b$ pues vimos que son disjuntos.

Teorema 7.3. Si $\lim_{n\to\infty} x_n = a \Rightarrow \text{toda subsucesi\'on de } (x_n)_{n\in\mathbb{N}} \text{ converge a } a.$

Demostración. Dado $(x_{n_1}, x_{n_2}, \cdots)$ una subsucesión de $(x_n)_{n \in \mathbb{N}}$. Por hipotesis dado $\varepsilon > 0, \exists n_0 \in \mathbb{N} : |x_n - \alpha| < \varepsilon, \forall n > n_0$. Como los índices de la subsucesión son infinitos, $\exists n_{i_0} > n_0 \Rightarrow \text{si } n_i > n_{i_0} \Rightarrow |x_{n_i} - \alpha| < \varepsilon, (n_i > n_{i_0} > n_0) \Rightarrow \lim_{n \to \infty} x_{n_i} = \alpha$.

Teorema 7.4. Toda sucesión convergente es acotada.

38 •

Demostración. Sea $\alpha = \lim_{n \to \infty} x_n$. Tomando $\varepsilon = 1, \exists n_{\varepsilon} : x_n \in (\alpha - 1, \alpha + 1), \forall n > n_{\varepsilon}$. $A = \{x_1, x_2, \dots, x_{n_{\varepsilon}}, a-1, a+1\}, c = \min(A), d = \max(A) \Rightarrow x_n \in [c, d], \forall n \in \mathbb{N} :$ la sucesión es acotada.

Teorema 7.5. Toda sucesión monótona y acotada es convergente.

Demostración. Supongamos que $(x_n)_{n\in\mathbb{N}}$ es creciente y acotada y quiero ver que $\lim_{n\to\infty} x_n = a = \sup\{x_n\}_{n\in\mathbb{N}}.$

Dado $\varepsilon > 0$, como $\mathfrak{a} - \varepsilon < \mathfrak{a}, \mathfrak{a} - \varepsilon$ no puede ser cota superior de $\{x_n\} \Rightarrow \exists n_0 : x_{n_0} > 0$ $a - \varepsilon$. Como $(x_n)_{n \in \mathbb{N}}$ es monótona, si $n > n_0 \Rightarrow x_n > x_{n_0} > a - \varepsilon \Rightarrow$

 $a-\epsilon < x_n \leq a < a+\epsilon, \forall n > n_0 \mathrel{\dot{.}.} x_n \to a.$

Análogamente para $(x_n)_{n\in\mathbb{N}}$ es decreciente y acotada.

Corolario 7.6. Si una sucesión monótona tiene una subsucesión convergente \Rightarrow es convergente.

Demostración. $(x_n)_{n\in\mathbb{N}}$ es acotada porque tiene una subsucesión acotada.

Ejemplo. $x_n = a^n, a \in \mathbb{R}$. Si a = 0 o a = 1 la sucesión es constante.

Si a = -1, la sucesión diverge porque $x_{2n} \to 1$ y $x_{2n+1} \to -1$.

Si a > 1, la sucesión es creciente y no acotada \Rightarrow diverge.

Si $\alpha < -1$, la sucesión es decreciente y no acotada \Rightarrow diverge.

Si $0 < \alpha < 1$, la sucesión es convergente por ser subsucesión de $\frac{1}{n}$ y más aún $a^n \to 0$.

Si $-1 < \alpha < 0$, la sucesión converge pues $|\alpha^n| = |\alpha|^n = \alpha^n \to 0$.

Propiedades de límites 7.2

Teorema 7.7. Si $\lim_{n\to\infty} x_n = 0$ e $(y_n)_{n\in\mathbb{N}}$ una sucesión acotada $\Rightarrow \lim_{n\to\infty} x_n \cdot y_n = 0$.

Demostración. $\exists c : |y_n| < c, \forall n \in \mathbb{N}, \text{ pues } y_n \text{ es acotado.}$

Dado $\varepsilon > 0$, como $x_n \to 0$, $\exists n_0 : |x_n| < \varepsilon/c$, $\forall n > n_0 \Rightarrow$

 $|x_n y_n| < c(\varepsilon/c) = \varepsilon, \forall n > n_0 : x_n \cdot y_n \to 0.$

Sea $\lim_{n\to\infty} x_n = a$ y $\lim_{n\to\infty} y_n = b$.

Proposición 7.8. $x_n + y_n \rightarrow a + b$.

Demostración. Dado $\varepsilon > 0, \exists n_0 \in \mathbb{N} : |x_n - \alpha| < \frac{\varepsilon}{2}, \forall n > n_0 y$ $\exists n_1 \in \mathbb{N} : |y_n - b| < \frac{\epsilon}{2}, \forall n > n_1. \text{ Sea } n_2 = \max(n_0, n_1)$ $\mathrm{Si}\ n>n_2, |(x_n+y_n)-(\alpha+b)|\leq |x_n-\alpha|+|y_n-b|\leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$

Proposición 7.9. $x_n - y_n \rightarrow a - b$.

Demostración. Análogo.

Proposición 7.10. $x_n \cdot y_n \rightarrow a \cdot b$.

 $\textbf{Demostración.} \ x_n \cdot y_n - ab = x_n \cdot y_n - x_n \cdot b + x_n \cdot b - a \cdot b = x_n \cdot (y_n - b) + b \cdot (x_n - a).$ Como $y_n - b \to 0$ y x_n es acotada, pues es convergente $\Rightarrow x_n \cdot (y_n - b) \to 0$. Además $x_n - a \to 0 \Rightarrow b(x_n - a) \to 0 \Rightarrow x_n \cdot y_n = a \cdot b.$

Proposición 7.11. $\frac{x_n}{u_n} \rightarrow \frac{a}{b}$.

Demostración. Si $y_n \not\to 0 \Rightarrow y_n \neq 0$ salvo quizá finitos términos.

En efecto, como $b \neq 0$, si $\varepsilon = |b|$ resulta que $0 \notin (b - \varepsilon, b + \varepsilon) \Rightarrow$

 $\exists n_{\epsilon}: y_n \in (b-\epsilon, b+\epsilon), \forall n > n_{\epsilon}, \ \mathrm{luego} \ y_n \neq 0, \forall n > n_{\epsilon}.$

Ahora escribo $\frac{x_n}{y_n} - \frac{a}{b} = \frac{x_n \cdot b - a \cdot y_n}{y_n \cdot b}$ quiero ver que $\frac{1}{y_n \cdot b}$ es acotada. Como $y_n \cdot b \to b^2$ si $\varepsilon = \frac{b^2}{2}, \exists n_0 : y_n \cdot b > \frac{b^2}{2}, \forall n > n_0 \Rightarrow$

 $0 < \frac{1}{u_n \cdot b} < \frac{2}{b^2}, \forall n > n_0 \Rightarrow (\frac{1}{u_n \cdot b})_{n \in \mathbb{N}} \text{ es acotada.}$

Ejemplo subsucesiones 7.3

Ejemplo. $x_n = \sqrt[n]{a}, \ a > 0.$

 $(x_n)_{n\in\mathbb{N}}$ es monótona (decreciente si $\mathfrak{a}>1$, creciente si $\mathfrak{0}<\mathfrak{a}<1$) y acotada $\mathfrak{0}<\mathfrak{l}=1$ $\lim_{n\to\infty} \sqrt[n]{a}$.

Para ver que l=1, considero la subsucesión $(a^{\frac{l}{n(n+1)}})_{n\in\mathbb{N}}$ convergente a l.

 $l=\lim_{n\to\infty}\alpha^{\frac{1}{n(n+1)}}=\lim_{n\to\infty}\alpha^{\frac{1}{n}-\frac{1}{n+1}}=\tfrac{\lim_{n\to\infty}\alpha^{\frac{1}{n}}}{\lim_{n\to\infty}\alpha^{\frac{1}{n+1}}}=\tfrac{l}{l}=1.$

Ejemplo. $x_n = \sqrt[n]{n}$.

 $\text{Veamos si es monótona. } \sqrt[n]{n} > \sqrt[n+1]{n+1} \iff n^{n+1} > (n+1)^{n+1} \iff n > (\frac{n+1}{n})^{n+1}.$

Esto pasa para $\forall n \geq 3$ porque $(1 + \frac{1}{n})^n < 3, \forall n \in \mathbb{N}$. Se puede demostrar por inducción. Luego, es decreciente a partir del tercer término.

Además está acotada inferiormente por $0, (\sqrt[n]{n} > 0)$: $\exists \lim_{n \to \infty} \sqrt[n]{n} = l = \inf \{\sqrt[n]{n}\}_{n \in \mathbb{N}}$. Como $\sqrt[n]{n} > 1 \Rightarrow l \geq 1$ y $l \neq 0$.

Considero la subsucesión $(2n)^{\frac{1}{2n}} \Rightarrow l^2 = (\lim_{n \to \infty} (2n)^{\frac{1}{2n}})^2 = \lim_{n \to \infty} 2^{\frac{1}{n}} \cdot \lim_{n \to \infty} n^{\frac{1}{n}} = 1 \cdot l.$

Luego $l^2 = l$ y $l \neq 0$: l = 1.

Nota. La definición de límite puede ser reformulada de la siguiente forma: Dado $\alpha \in \mathbb{R}$ es el límite de $(x_n)_{n \in \mathbb{N}} \iff \forall \epsilon > 0$ el conjunto $\{n \in \mathbb{N} : x_n \in (\alpha - \epsilon, \alpha + \epsilon)\}$ tiene complemento finito (o vacío) en \mathbb{N} .

Vamos a ver que $\alpha \in \mathbb{R}$ es el límite de alguna subsucesión de $(x_n)_{n \in \mathbb{N}} \iff \forall \epsilon > 0$ el conjunto $\{n \in \mathbb{N} : x_n \in (\alpha - \epsilon, \alpha + \epsilon)\}$ es subconjunto infinito de \mathbb{N}

Teorema 7.12. $\alpha \in \mathbb{R}$ es el límite de alguna subsucesión de $(x_n)_{n \in \mathbb{N}} \iff \forall \epsilon > 0, \exists$ infinitos índices $n : x_n \in (\alpha - \epsilon, \alpha + \epsilon)$.

Demostración. Para la ida tenemos que $\alpha = \lim_{n \in A} x_n$, con $A = \{n_1 < n_2 < \cdots\}$. $\forall \epsilon > 0, \exists i_0 : x_{n_i} \in (\alpha - \epsilon, \alpha + \epsilon), \forall i > i_0$.

 $\mathrm{Como}\ \mathrm{existen}\ \mathrm{infinitos}\ i>i_0:n_i\in A\Rightarrow \exists\ \mathrm{infinitos}\ n_i\in \mathbb{N}\ \mathrm{tales}\ \mathrm{que}\ x_{n_i}\in (\alpha-\epsilon,\alpha+\epsilon).$

Recíprocamente si tomamos sucesivamente $\varepsilon = 1, 1/2, 1/3, \cdots$. Puedo obtener $A = \{n_1, n_2, \cdots\}$: $\lim_{n \in A} x_n = a$ pues:

Sea $n_1 \in \mathbb{N}$: $x_{n_1} \in (\alpha - 1, \alpha + 1)$. Supongamos por inducción que $n_1 < n_2 < \dots < n_i$ fueron definidos tales que $x_{n_2} \in (\alpha - 1/2, \alpha + 1/2), \dots x_{n_i} \in (\alpha - 1/i, \alpha + 1/i)$.

Como el conjunto $\{n \in \mathbb{N} : x_n \in (\alpha - \frac{1}{1+i}, \alpha + \frac{1}{1+i})\}$ es infinito, contiene algún x_n con $n > n_i$ y lo tomo como x_{n_i+1} .

Como $|x_{n_i} - a| < \frac{1}{i}, \forall i \in \mathbb{N} \Rightarrow \lim_{i \to \infty} x_{n_i} = a.$

7.4 Punto de acumulación

Definición 7.13. $a \in \mathbb{R}$ se llama punto de acumulación de $(x_n)_{n \in \mathbb{N}}$ si es límite de alguna subsucesión de $(x_n)_{n \in \mathbb{N}}$.

Definición 7.14. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión acotada, digamos $\alpha \leq x_n \leq \beta, \forall n \in \mathbb{N}$. Si llamamos $X_n = \{x_n, x_{n+1}, \cdots\}$ tenemos que $[\alpha, \beta] \supset X_1 \supset X_2 \supset \cdots$. Así que llamando $a_n = \inf(X_n), b_n = \sup(X_n)$ tenemos que

$$\begin{split} &\alpha \leq \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n \leq \cdots \leq b_n \leq \cdots \leq \cdots \leq b_2 \leq b_1 \leq \beta \Rightarrow . \\ &\exists \alpha = lim_{n \to \infty} \alpha_n = sup(\alpha_n)_{n \in \mathbb{N}} = sup(inf(X_n)_{n \in \mathbb{N}}). \\ &b = lim_{n \to \infty} b_n = inf(b_n)_{n \in \mathbb{N}} = inf(sup(X_n)_{n \in \mathbb{N}}). \end{split}$$

 $\mathfrak a$ se llama el límite inferior de la sucesión $(x_{\mathfrak n})_{\mathfrak n \in \mathbb N}.$

 $\alpha = \lim\inf\nolimits_{n \to \infty} x_n.$

b se llama el límite superior de la sucesión $(x_n)_{n\in\mathbb{N}}$.

 $b=\limsup\nolimits_{n\to\infty}x_n.$

$$\begin{split} &\textbf{Ejemplo.}\ (x_n)_{n\in\mathbb{N}}=(-1,2,-1/2,3/2,-1/3,4/3,\cdots).\\ &(x_{2n+1})_{n\in\mathbb{N}}=-\frac{1}{n}\ y\ (x_{2n})_{n\in\mathbb{N}}=1+\frac{1}{n}.\\ &\mathrm{Luego}\ inf(X_{2n-2})=inf(X_{2n-1})=-\frac{1}{n}\\ &\sup(X_{2n-2})=\sup(X_{2n-1})=1+\frac{1}{n}\Rightarrow \liminf_{n\to\infty}x_n=0\ y\ \limsup_{n\to\infty}x_n=1. \end{split}$$

Clase VII - 13/09

8.1 Límite superior e inferior

Teorema 8.1. $(x_n)_{n\in\mathbb{N}}$ acotada \Rightarrow lím inf x_n es el menor punto de acumulación de la sucesión y lím sup x_n es el mayor.

Demostración. Veamos que $\mathfrak{a}=\liminf_{n\to\infty}x_n$ es punto de acumulación de $(x_n)_{n\in\mathbb{N}}$. Como $\mathfrak{a}=\lim_{n\to\infty}\mathfrak{a}_n$ (los ínfimos de X_n). Dados ϵ y $\mathfrak{n}_0\in\mathbb{N}, \exists \mathfrak{n}_1>\mathfrak{n}_0: \mathfrak{a}-\epsilon<\mathfrak{a}_{\mathfrak{n}_1}<\mathfrak{a}+\epsilon, \ \mathfrak{a}_{\mathfrak{n}_1}=\inf(X_{\mathfrak{n}_1})\Rightarrow \mathfrak{a}+\epsilon$ no puede ser cota inferior de $X_{\mathfrak{n}_1}$.

 $\Rightarrow \exists n \geq n_1: \alpha_{n_1} \leq x_n \leq \alpha + \epsilon, \ (n \geq n_1 \geq n_0 \ y \ (\alpha - \epsilon < x_n < \alpha + \epsilon), \ \text{luego } \alpha \ \text{es punto} \ \text{de acumulación de} \ (x_n)_{n \in \mathbb{N}}.$

Falta ver que si $c < a \Rightarrow c$ no es punto de acumulación.

Como $a = \lim_{n \to \infty} a_n$ y $c < a \Rightarrow \exists n_0 \in \mathbb{N} : c < a_{n_0} \leq a$. Como a_{n_0} es el ínfimo de X_{n_0} si $n \geq n_0 \Rightarrow c < a_{n_0} \geq x_n$. Tomando $\varepsilon = a_{n_0} - c \Rightarrow c + \varepsilon = a_{n_0}$ y entonces $\forall x_n : n \geq n_0, x_n \notin (c - \varepsilon, c + \varepsilon)$. c no es punto de acumulación.

Teorema 8.2. Toda sucesión acotada de \mathbb{R} tiene una subsucesión convergente.

Demostración. lím sup x_n es punto de acumulación de x_n así que alguna subsucesión converge a él.

Corolario 8.3. Una sucesión acotada de \mathbb{R} es convergente \iff lím sup $x_n =$ lím inf x_n , es decir, posee un único punto de acumulación.

Demostración. Para la ida tenemos que si $(x_n)_{n\in\mathbb{N}}$ converge, toda subsucesión converge a lo mismo y en particular lím sup $x_n = \lim\inf x_n = \lim_{n\to\infty} x_n$.

 $\mathrm{Para}\ \mathrm{la}\ \mathrm{vuelta},\ \mathrm{si}\ \mathrm{l\acute{i}m}\,\mathrm{sup}\,x_{n} = \mathrm{l\acute{i}m}\,\mathrm{inf}\,x_{n} = \mathrm{l\acute{i}m}_{n\to\infty}a_{n} = \mathrm{l\acute{i}m}_{n\to\infty}b_{n} \Rightarrow$

Dado $\varepsilon > 0$, $\exists n_0 \in \mathbb{N} : a - \varepsilon \leq a_{n_0} \leq a \leq b_{n_0} \leq a + \varepsilon$.

Como $n \ge n_0 \Rightarrow a_{n_0} \le x_n \le b_{n_0}$.

8.2 Sucesiones de Cauchy

Dada una sucesión $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$, decimos que es de Cauchy si dado $\varepsilon>0$, $\exists n_0\in\mathbb{N}:|x_n-x_m|<\varepsilon$, $\forall n,m>n_0$. Al igual que hicimos con las sucesiones de Cauchy en \mathbb{Q} .

- 1. Toda sucesión convergente es de Cauchy
- 2. Toda sucesión de Cauchy es acotada

Lema 8.4. Si una sucesión de Cauchy tiene una subsucesión que converge a $\mathfrak{a}\in\mathbb{R}\Rightarrow$ $\lim_{n\to\infty}x_n=\mathfrak{a}.$

Demostración. Dado $\varepsilon > 0$: $\exists n_0 : |x_n - x_m| < \varepsilon/2, \forall n, m > n_0$. Como α es el límite de una subsucesión $\exists n_1 > n_0 : |x_n - \alpha| < \varepsilon/2$. \Rightarrow si $n > n_0, |x_n - \alpha| \le |x_n - x_{n_1}| + |x_{n_1} - \alpha| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

Teorema 8.5. Toda sucesión de Cauchy en \mathbb{R} es convergente.

Demostración. Por ser de Cauchy es acotada, por ser acotada alguna subsucesión converge al lím sup o lím inf y por el lema anterior, toda la sucesión converge. \Box

8.3 Límites infinitos

Definición 8.6. Decimos que $\lim_{n\to\infty}x_n=+\infty$ si dado $\alpha>0, \exists n_0\in\mathbb{N}:x_n>\alpha\forall n>n_0.$

Definición 8.7. Decimos que $\lim_{n\to\infty} x_n = -\infty$ si dado a > 0, $\exists n_0 \in \mathbb{N} : x_n < -a \forall n > n_0$.

Proposición 8.8. $\lim_{n\to\infty} x_n = +\infty$ e $(y_n)_{n\in\mathbb{N}}$ es acotada inferiormente $\Rightarrow \lim_{n\to\infty} (x_n + y_n) = +\infty$.

Demostración. Sea $A>0, \exists c\in\mathbb{R}: c< y_n, \forall n\in\mathbb{N}.$ Como $\lim_{n\to\infty}x_n=+\infty, \exists n_0\in\mathbb{N}: x_n>A-c, \forall n>n_0\Rightarrow \mathrm{Si}\ n>n_0, x_n+y_n>A-c+c=A:\lim_{n\to\infty}(x_n+y_n)=+\infty.$

 $\text{Proposición 8.9. } \lim_{n\to\infty} x_n = +\infty \,\, \mathrm{y} \,\, \exists c>0: y_n>c, \forall n\in\mathbb{N} \Rightarrow \lim_{n\to\infty} (x_n\cdot y_n) = +\infty.$

Demostración. Dado $A>0, \exists n_0\in\mathbb{N}: x_n>A/c, \forall n>n_0\Rightarrow \mathrm{si}\ n>n_0, x_n\cdot y_n>(A/c)\cdot c=A: \lim_{n\to\infty}x_n\cdot y_n=+\infty.$

 $\text{Proposición 8.10.} \ x_n > 0 \forall n \in \mathbb{N} \Rightarrow \text{lim}_{n \to \infty} x_n = 0 \iff \text{lim}_{n \to \infty} = \frac{1}{x_n} = +\infty.$

Demostración. Para la ida, $\lim_{n\to\infty}x_n=0$. Dado $A>0, \exists n_0\in\mathbb{N}:0< x_n<1/A, \forall n>n_0\Rightarrow\frac{1}{x_n}>A, \forall n>n_0$. $\lim_{n\to\infty}\frac{1}{x_n}=+\infty$.

Para la vuelta $\lim_{n\to\infty}\frac{1}{x_n}=+\infty$. Dado $\epsilon>0, \exists n_0\in\mathbb{N}:\frac{1}{x_n}>\frac{1}{\epsilon}, \forall n>n_0\Rightarrow 0< x_n<\epsilon, \forall n>n_0$: $\lim_{n\to\infty}x_n=0$.

Proposición 8.11. Sean $(x_n)_{n\in\mathbb{N}}$, $\forall n\in\mathbb{N}$ e $(y_n)_{n\in\mathbb{N}}$ sucesiones de números positivos \Rightarrow

- $\mathrm{a)} \,\, \mathrm{Si} \,\, \exists c>0: x_n>c, \forall n\in \mathbb{N} \,\, \mathrm{y} \,\, \mathrm{si} \,\, \lim_{n\to\infty} y_n=0 \Rightarrow \lim_{n\to\infty} \frac{x_n}{y_n}=+\infty.$
- b) $(x_n)_{n\in\mathbb{N}}$ es acotada y $\lim_{n\to\infty}y_n=+\infty\Rightarrow\lim_{n\to\infty}\frac{x_n}{u_n}=0$.

 $\textbf{Demostración.} \ \ \mathrm{a)} \ \ \mathrm{Dado} \ \ A > 0, \\ \exists n_0 \in \mathbb{N} : 0 < y_n < c/A, \\ \forall n > n_0 \Rightarrow \frac{x_n}{y_n} > (A/c) \cdot c = 0.$

 $\begin{array}{l} A, \forall n > n_0 \mathrel{.\,.} \lim_{n \to \infty} \frac{x_n}{y_n} = +\infty. \\ \text{b) Dado } \epsilon > 0, \exists n_0 \in \mathbb{N} : y_n > k/\epsilon, \forall n > n_0, \text{ donde } k > 0 \text{ es cota superior de} \\ x_n \Rightarrow \forall n > n_0, 0 < \frac{x_n}{y_n} < k \cdot (\epsilon/k) = \epsilon \mathrel{.\,.} \lim_{n \to \infty} \frac{x_n}{y_n} = 0. \end{array}$

8.4 Series numéricas

Dada una sucesión $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ formamos una nueva sucesión $(S_n)_{n\in\mathbb{N}}$. Dada por $S_1=a_1,S_2=$ $a_1 + a_2, \cdots, S_n = a_1 + \cdots + a_n$; que llamamos sumas parciales de la serie $\sum_{n>1} a_n$.

Teorema 8.12. $\sum_{n\geq 1} a_n \text{ converge} \Rightarrow \lim_{n\to\infty} a_n = 0.$

 $\textbf{Demostración.}\ lim_{n\to\infty}S_n=lim_{n\to\infty}S_{n-1}\Rightarrow 0=s-s=lim_{n\to\infty}S_n-lim_{n\to\infty}S_{n-1}=lim_{n\to\infty}S_n$ $\lim_{n\to\infty} S_n - S_{n-1} = \lim_{n\to\infty} a_n.$

Ejemplo. El recíproco del teorema anterior es falsa pues $\sum_{n>1} \frac{1}{n}$ diverge.

Demostración.

$$S_{2^n} = 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + \dots + (\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^n}) \ (8.1)$$

$$> 1 + 1/2 + 2/4 + 4/8 + \dots + \frac{2^{n-1}}{2^n} = 1 + n/2$$
 (8.2)

Luego $\lim_{n\to\infty} S_{2^n} = +\infty$.

Teorema 8.13. $a_n \ge 0, \forall n > 0 \Rightarrow$

 $\sum_{n\geq 1} a_n$ converge \iff S_n forman una sucesión acotada.

es acotada.

Corolario 8.14 (Criterio de comparación). Sean $a_n, b_n \geq 0, \forall n \in \mathbb{N}, \ \mathrm{dadas} \ \sum_{n>1} a_n,$ $\begin{array}{l} \sum_{n\geq 1} b_n \Rightarrow \\ \mathrm{Si} \ \exists c>0, n_0 \in \mathbb{N} : a_n \leq c \cdot b_n, \forall n>n_0 \Rightarrow \end{array}$

- 1. Si $\sum b_n$ converge entonces $\sum a_n$ converge.
- 2. Si $\sum a_n$ diverge entonces $\sum b_n$ diverge.

Nota. $\sum a_n$ converge \iff Dado $n_0 \in \mathbb{N}, \sum_{n \geq n_0} a_n$ converge.

 $\textbf{Demostración.} \ \mathrm{Sea} \ (s_n)_{n \in \mathbb{N}} \ \mathrm{la} \ \mathrm{primera} \ \mathrm{serie}, \ (t_n)_{n \in \mathbb{N}} \ \mathrm{la} \ \mathrm{segunda}, \ t_n = s_{n+n_0} - s_{n_0}. \quad \Box$

Teorema 8.15 (Criterio de Cauchy). $\sum a_n \ \mathrm{converge} \iff \forall \epsilon > 0, \exists n_0 \in \mathbb{N} : |a_{n+1} + \cdots + a_{n+p}| < \epsilon, \forall n > n_0, p \in \mathbb{N}.$

Demostración. $|s_{n+p}-s_n|=|a_{n+1}+\cdots+a_{n+p}|<\epsilon, \forall n>n_0\in\mathbb{N}\Rightarrow (s_n)_{n\in\mathbb{N}}$ es de Cauchy y por lo tanto convergente.

Definición 8.16. $\sum a_n$ es absolutamente convergente si $\sum |a_n|$ converge. Si $\sum a_n$ converge y $\sum |a_n|$ diverge entonces decimos que es condicionalmente convergente.

Teorema 8.17. Toda serie absolutamente convergente es convergente.

 $\begin{array}{l} \text{\textbf{Demostración.}} \ \operatorname{Como} \ \sum |a_n| \ \operatorname{converge} \ \Rightarrow \ \forall \epsilon > 0, \exists n_0 \in \mathbb{N} : \|a_{n+1}| + \cdots + |a_{n+p}|| < \\ \epsilon, \forall n > n_0, p \in \mathbb{N} \ \Rightarrow \\ |a_{n+1} + \cdots + a_{n+p}| \leq |a_{n+1}| + \cdots + |a_{n+p}| < \epsilon, \forall n > n_0, p \in \mathbb{N} \ \therefore \ \sum a_n \ \operatorname{converge.} \end{array} \quad \Box$

Clase VIII - 24/09

9.1 Ejemplo de convergencia condicional

Ejemplo. $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n}$ converge, pero no lo hace absolutamente.

Demostración. i) Las sumas parciales pares son:

$$S_2 = 1 - 1/2$$

•
$$S_4 = (1 - 1/2) + (1/3 - 1/4)$$

•
$$S_6 = (1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6)$$

En general $S_2 < S_4 < S_6 < \cdots < S_{2n} < \cdots < 1$, es creciente y acotada, luego converge. ii) Las sumas parciales impares son:

•
$$S_1 = 1$$

$$S_3 = 1 - (1/2 - 1/3)$$

•
$$S_5 = 1 - (1/2 - 1/3) - (1/4 - 1/5)$$

En general $S_1>S_2>\cdots>S_{2n+1}>\cdots>0.$ Es decreciente y acotada, luego converge.

Por i) e ii)
$$\exists \tilde{s} = \lim_{n \to \infty} S_{2n} \text{ y } \exists s' = \lim_{n \to \infty} S_{2n+1}, \text{ como } S_{2n+1} - S_{2n} = \frac{1}{2n+1} \to 0 \Rightarrow \tilde{s} = s' \therefore \text{ la serie converge.}$$

9.2 Corolarios de series

Corolario 9.1. Sea $\sum b_n$ una serie convergente de términos positivos si $\exists k > 0$ y $n_0 \in \mathbb{N}$ tales que $|a_n| \leq k \cdot b_n, \forall n > n_0 \Rightarrow \sum a_n$ converge absolutamente.

Demostración. Sencilla aplicación del criterio de comparación.

Corolario 9.2. $\forall n > n_0, |a_n| \le k \cdot c^n \text{ con } 0 < c < 1, k > 0 \Rightarrow \sum a_n \text{ es absolutamente convergente.}$

Demostración. Como $c \in (0,1), \sum c^n$ converge (serie geométrica).

Nota. Tomando $k=1, |a_n| \leq c^n \iff \sqrt[n]{a_n} \leq c < 1, \forall n > n_0 \in \mathbb{N}$. Que esto valga para algún n_0 específico significa que lím $\sup_{n \to \infty} \sqrt[n]{a_n} < 1$.

9.3 Criterios de convergencia

9.3.1. Criterio de la raíz

Corolario 9.3. Si $\limsup_{n\to\infty} \sqrt[n]{|a_n|} < 1 \Rightarrow \sum a_n$ converge absolutamente.

Nota. Si existen infinitos índices tales que $\sqrt[n]{|a_n|} > 1 \Rightarrow \sum_n a_n$ diverge pues $a_n \not\to 0$. Si $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = 1$ el criterio no concluye $(\sum_n \frac{1}{n}, \sum_n \frac{1}{n^2})$.

9.3.2. Criterio del cociente y D'Alembert

Teorema 9.4 (Criterio del cociente). Sean $\sum_{n\geq 1} \alpha_n$ una serie tal que $\alpha_n \neq 0, \forall n \in \mathbb{N}$ y $\sum_{n\geq 1} b_n$ una serie de términos positivos y convergente \Rightarrow

Si $\exists n_0 \in \mathbb{N} : \frac{|\alpha_{n+1}|}{|\alpha_n|} \leq \frac{|b_{n+1}|}{|b_n|}, \forall n > n_0 \Rightarrow \sum_{n \geq 1} \alpha_n \text{ es absolutamente convergente.}$

Demostración.

$$\frac{|a_{n_0+2}|}{|a_{n_0+1}|} \le \frac{|b_{n_0+2}|}{|b_{n_0+1}|}, \cdots, \frac{|a_n|}{|a_{n-1}|} \le \frac{|b_n|}{|b_{n-1}|}, \forall n > n_0$$
 (9.1)

Multiplicando todas las desigualdades obtenemos

$$\frac{|a_n|}{|a_{n_0+1}|} \le \frac{|b_n|}{|b_{n_0+1}|} \iff |a_n| \le \frac{|a_{n_0+1}| \cdot b_n}{b_{n_0+1}}$$
(9.2)

... por criterio de comparación $\sum_{n>1} a_n$ converge.

Corolario 9.5 (Criterio de D'Alembert). Si $\exists c \in (0,1): \frac{|\alpha_{n+1}|}{\alpha_n} \leq c, \forall n > n_0 \Rightarrow \sum_{n \geq 1} \alpha_n$ converge absolutamente.

Equivalentemente si lím sup $\frac{|\alpha_{n+1}|}{|\alpha_n|} < 1 \Rightarrow \sum_{n \geq 1} \alpha_n$ converge absolutamente.

Demostración. Tomamos $b_n = c^n$ en el teorema anterior pues $\sum_{n \geq 1} c^n$ converge si $c \in (0,1)$.

Nota. Si el cociente es 1 el criterio no decide. Si el cociente es mayor que 1 la serie diverge.

Teorema 9.6. $(a_n)_{n\in\mathbb{N}}$ acotada $a_n > 0, \forall n \in \mathbb{N} \Rightarrow$

$$\liminf_{n\to\infty}\frac{a_{n+1}}{a_n}\leq \liminf_{n\to\infty}\sqrt[n]{a_n}\leq \limsup_{n\to\infty}\sqrt[n]{a_n}\leq \limsup_{n\to\infty}\frac{a_{n+1}}{a_n} \tag{9.3}$$

En particular si $\exists \lim_{n\to\infty} \frac{a_{n+1}}{a_n} \Rightarrow \exists \lim_{n\to\infty} \sqrt[n]{a_n} \text{ y son iguales.}$

Demostración. Veamos que $\limsup_{n\to\infty} \sqrt[n]{a_n} \le \limsup_{n\to\infty} \frac{a_{n+1}}{a}$.

Supongamos que no lo es \Rightarrow

$$\exists c : \limsup_{n \to \infty} \frac{a_{n+1}}{a_n} < c < \limsup_{n \to \infty} \sqrt[n]{a_n}$$
(9.4)

Por la primer desigualdad $\exists n_0 \in \mathbb{N} : \forall n > n_0, \frac{\alpha_{n+1}}{\alpha_n} < c \Rightarrow$

$$\frac{a_{n_0+1}}{a_{n_0}} < c, \frac{a_{n_0+2}}{a_{n_0+1}} < c, \cdots, \frac{a_n}{a_{n+1}} < c \Rightarrow \tag{9.5}$$

Multiplicando termino a termino

$$\frac{a_n}{a_{n_0}} < c^{n-n_0} \Rightarrow a_n < \frac{a_{n_0}}{c^{n_0}} \cdot c^n \tag{9.6}$$

 $\mathrm{Llamemos}\; k = a_{\mathfrak{n}_0}/c^{\mathfrak{n}_0} \in \mathbb{R} \Rightarrow \lim_{n \to \infty} \sqrt[n]{k} = 1 \Rightarrow \lim_{n \to \infty} \sqrt[n]{k \cdot c^n} = c \cdot \lim_{n \to \infty} \sqrt[n]{k} = 1$

 $\begin{array}{l} \mathrm{Tendriamos} \ \mathrm{que} \ \mathrm{lim} \sup_{n \to \infty} \sqrt[n]{a_n} \leq \mathrm{lim} \sup_{n \to \infty} \sqrt[n]{k \cdot c^n} = c \ \mathrm{Absurdo!} \\ \mathrm{Luego} \ \mathrm{debe} \ \mathrm{ser} \ \mathrm{lim} \sup_{n \to \infty} \sqrt[n]{a_n} \leq \mathrm{lim}_{n \to \infty} \frac{a_{n+1}}{a_n}. \end{array}$

Ejemplo. Puede existir el límite de la raíz y no del cociente.

Demostración. Sean 0 < a < b y la sucesión $(x_n)_{n \in \mathbb{N}}$ que se obtiene alternando cada término por a ó b.

$$x_1 = a, x_2 = a \cdot b, x_3 = a^2 \cdot b, x_4 = a^2 \cdot b^2.$$

$$\frac{x_{n+1}}{x_n} = \begin{cases} b & \text{si n es par,} \\ a & \text{si no} \end{cases}$$

Luego $\not\exists \lim_{n\to\infty} \frac{x_{n+1}}{x_n}$, pero $\limsup_{n\to\infty} x_n = b$, $\liminf_{n\to\infty} x_n = a$. Por otro lado $\lim_{n\to\infty} \sqrt[n]{x_n} = \sqrt{a\cdot b}$. Si $x_{2k} = a^k \cdot b^k \Rightarrow \sqrt[2^k]{a^k \cdot b^k} = \sqrt{a\cdot b}$. Si $x_{2k-1} = a^k \cdot b^{k-1} \Rightarrow \sqrt[2^{k-1}]{x_{2k-1}} = a^{\frac{k}{2k-1}} \cdot b^{\frac{k}{2k-1}} \to \sqrt{a\cdot b}$ si $k \to \infty$.

9.3.3. Criterio de Dirichlet - Abel

Teorema 9.7. Sea $\sum_{n>1} a_n$ no necesariamente convergente cuyas sumas parciales forman una sucesión acotada.

Sea $(b_n)_{n\in\mathbb{N}}$ una sucesión decreciente de números positivos con $\lim_{n\to\infty}b_n=0\Rightarrow \sum_{n\geq 1}a_n\cdot b_n$ b_n es convergente.

Demostración.

$$a_1 \cdot b_1 + \cdots + a_n \cdot b_n = \tag{9.7}$$

$$a_1 \cdot (b_1 - b_2) + (a_1 + a_2) \cdot (b_2 - b_3) + \dots + (a_1 + \dots + a_{n-1}) \cdot (b_{n-1} - b_n) + (a_1 + \dots + a_n) \cdot b_n$$

$$(9.8)$$

$$= S_1 \cdot (b_1 - b_2) + S_2 \cdot (b_2 - b_3) + S_3 \cdot (b_3 - b_2) + \dots + S_{n-1}(b_{n-1} - b_n) + S_n \cdot b_n \quad (9.9)$$

$$= \sum_{i=2}^{n} S_{i-1} \cdot (b_{i-1} - b_i) + S_n \cdot b_n$$
 (9.10)

Por hipotesis $\exists k > 0: |S_n| \le k, \forall n \in \mathbb{N}$ (son acotadas). Además $\sum_{n \ge 2} b_{n-1} \cdot b_n$ es una telescópica de números positivos.

Luego $\sum_{n\geq 2} S_{n-1} \cdot (b_{n-1} - b_n)$ es absolutamente converge y en particular convergente. Como $S_n \cdot b_n \to 0 \Rightarrow \exists \lim_{n\to\infty} \sum_{i\geq 2}^n S_{i-1} \cdot (b_{i-1} - b_i) + S_n \cdot b_n = \lim_{n\to\infty} \sum_{i\geq 1}^n \alpha_n \cdot b_n$. converge.

Corolario 9.8 (Abel). Si $\sum a_n$ es convergente y $(b_n)_{n\in\mathbb{N}}$ es decreciente de términos positivos $\Rightarrow \sum a_n \cdot b_n$ es convergente.

Demostración. $b_n \to c$ pues es acotada inferiormente por 0 y decreciente.

Sea $(b_n - c)_{n \in \mathbb{N}}$ es una sucesión decreciente que tiende a cero, podemos aplicar el teorema anterior y, luego $\sum_{n\geq 1} a_n \cdot (b_n-c) = S \Rightarrow \sum_{n\geq 1} a_n \cdot b_n = S - \sum a_n \cdot c$.

Corolario 9.9 (Criterio de Leibniz). Si $(b_n)_{n\in\mathbb{N}}$ es decreciente y $\lim_{n\to\infty}b_n=0\Rightarrow\sum_{n\in\mathbb{N}}(-1)^nb_n$ converge.

Demostración. Aplicamos el criterio de Dirichlet pues $\sum (-1)^n$ no converge y $S_n=0,-1$ son acotadas.

9.4 Parte positiva y negativa

$$\begin{aligned} & \textbf{Definición 9.10.} \ \operatorname{Sea} \ \sum_{n \geq 1} \alpha_n, \ \operatorname{para} \ \operatorname{cada} \ n \in \mathbb{N} \ \operatorname{definimos} \ p_n = \begin{cases} \alpha_n & \operatorname{si} \ \alpha_n > 0, \\ 0 & \operatorname{c.c} \end{cases} \\ & q_n = \begin{cases} 0 & \operatorname{si} \ \alpha_n \geq 0, \\ -\alpha_n & \operatorname{c.c} \end{cases} \ \Rightarrow \ p_m, q_n \, \geq \, 0, \\ \forall n \in \ N, \alpha_n \, = \, p_n - q_n \ y \ |\alpha_n| \, = \, p_n + q_n \, = \\ \alpha_n + 2 \cdot q_n = 2 \cdot p_n - \alpha_n. \end{aligned}$$

Nota. Si $\sum_{n>1} \alpha_n$ converge absolutamente $\Rightarrow \forall k \in \mathbb{N}$ vale que:

$$\sum_{n\geq 1} |a_n| \geq \sum_{n=1}^k |a_n| = \sum_{n=1}^k p_n + \sum_{n=1}^k q_n \Rightarrow \tag{9.11}$$

 $\textstyle\sum_{n\geq 1}p_n\text{ y }\textstyle\sum_{n\geq 1}q_n\text{ convergen, pues son crecientes y están acotadas por }\textstyle\sum_{n\geq 1}|a_n|.$

Además si $\sum_{n\geq 1} p_n$ y $\sum_{n\geq 1} q_n$ convergen $\Rightarrow \sum a_n$ converge absolutamente.

Teorema 9.11. Si $\sum a_n$ converge condicionalmente $\Rightarrow \sum_{n\geq 1} p_n$ y $\sum_{n\geq 1} q_n$ son divergentes.

Demostración. Supongamos que $\sum q_{\mathfrak{n}} = c \Rightarrow |a_{\mathfrak{n}}| = a_{\mathfrak{n}} + 2 \cdot q_{\mathfrak{n}}$

$$\sum_{n=1}^{k} |a_n| = \sum_{n=1}^{k} a_n + 2 \cdot \sum_{n=1}^{k} q_n$$
 (9.12)

Si $k \to +\infty$ luego $\sum_{n\geq 1} |a_n| = \sum_{n\geq 1} a_n + 2\cdot c$ Absurdo! pues no converge absolutamente $\therefore \sum_{n\geq 1} q_n$ diverge.

9.5 Reordenamientos

Definición 9.12. Sea $\sum a_n$, cambiar el orden de la suma significa tomar una biyección $\phi: \mathbb{N} \to \mathbb{N}$ y considerar la serie $\sum b_n$ como $b_n = a_{\phi(n)}$.

Teorema 9.13. Todas las reordenaciones de una serie absolutamente convergente convergen al mismo valor de la serie original.

Demostración. Sea $\sum a_n, a_n > 0 \forall n \in \mathbb{N}$. Sea $\phi : \mathbb{N} \to \mathbb{N}$ una biyección y $b_n = a_{\phi(n)}$ quiero ver que $\sum b_n = \sum a_n$. Sea S_n las sumas parciales de \mathfrak{a}_n y T_n las de \mathfrak{b}_n . Para cada $\mathfrak{n} \in \mathbb{N}$ llamo $\mathfrak{m} =$

 $\text{max}(\varphi(1),\cdots\varphi(n)). \text{ Donde } \{\varphi(1),\cdots,\varphi(n)\}\subseteq [[1,m]].$

 $\begin{array}{l} \text{max}(\phi(1),\cdots\phi(n)). \text{ Defice } (\phi(1),\cdots\phi(n)). \text{ Defice } (\phi(1),\cdots\phi(n)). \text{ Luego } T_n \leq S_m. \\ \text{Luego } T_n = \sum_{i\geq 1} \alpha_{\varphi(i)} \leq \sum_{j\geq 1} \alpha_j = S_m. \text{ Luego } T_n \leq S_m. \\ \text{Análogamente con } \varphi^{-1} \Rightarrow S_m \leq T_n \text{ luego } \lim_{n\to\infty} S_n = \lim_{n\to\infty} T_n \therefore \sum_{n\geq 1} \alpha_n = \sum_{j\geq 1} \alpha_j =$ $\sum_{n\geq 1} b_n$.

El caso general, $\sum_{n\geq 1} \alpha_n = \sum_{n\geq 1} p_n - \sum_{n\geq 1} q_n \Rightarrow$ todo reordenamiento $(b_n)_{n\in \mathbb{N}}$ de los términos de $(a_n)_{n\in \mathbb{N}}$ produce un reordenamiento de $(p_n)_{n\in \mathbb{N}}$ y $(q_n)_{n\in \mathbb{N}}$ que llamo $(u_n)_{n\in \mathbb{N}}$, $(v_n)_{n\in \mathbb{N}}$. De modo que son la parte positiva y negativa de $(b_n)_{n\in\mathbb{N}}$ y usamos el caso anterior pues son términos de valores positivos.

Clase IX - 27/09

10.1 (Continuación) Reordenamientos

Teorema 10.1. Si $\sum_{n\geq 1} a_n$ converge condicionalmente. Dado $c\in\mathbb{R},\exists$ reordenamiento $(b_n)_{n\in\mathbb{N}}$ de los términos de $\sum_{n\geq 1} a_n$ tal que $\sum_{n\geq 1} b_n = c$. **Demostración.** Como a_n converge condicionalmente entonces $a_n\to 0\Rightarrow p_n, q_n\to 0$, pero $\sum_{n\geq 1} p_n = \sum_{n\geq 1} q_n = +\infty$. Reordenemos la serie tomando $p_1, p_2, \cdots, p_{n_1}$ donde n_1 es el menor índice tal que $p_1+\cdots+p_{n_1}>c$, (T_1) . Similarmente $-q_1,-q_2,\cdots,q_{n_2}$ donde n_2 es el menor índice tales que $\sum_{i=1}^{n_1} p_i + \sum_{i=1}^{n_2} q_i < c$, (T_2) . Seguimos con el menor n_3 tal que $\sum_{i=1}^{n_1} p_i + \sum_{i=1}^{n_2} q_i + \sum_{i=1}^{n_3} p_i > c$, (T_3) , etc. Veamos que las sumas parciales T_n de este reordenamiento tienden a 0. $\forall i$ impar tenemos que $T_{n_i+1} < c < T_i \Rightarrow 0 < T_{n_i} - c \le p_{n_i} \Rightarrow 0 < c - T_{n_i} < q_{n_i}$ y como $\lim_{i\to\infty} p_{n_i} = 0 = \lim_{i\to\infty} q_{n_i} \Rightarrow \lim_{i\to\infty} T_{n_i} = c$. Además para i impar si $n_i < n < n_{i+1} \Rightarrow T_{n_i+1} \le T_n \le T_{n_i}$ y para i par, si

10.2 Topología Euclídea

 $n_i < n < n_{i+1} \Rightarrow T_{n_i+1} \leq T_n \leq T_{n_i}$

 $\therefore \lim_{n\to\infty} T_n = c.$

Definición 10.2. La norma euclídea es la función $\|\cdot\|$ que en cada punto $\mathbf{x}=(x_1,\cdots,x_n)\in\mathbb{R}^n$ toma el valor $\|\mathbf{x}\|=\sqrt{\sum_{i=1}^n x_i^2}$. Propiedades:

- 1. $\forall x \in \mathbb{R}^n, ||x|| > 0$ y $||x|| = 0 \iff x = 0$.
- 2. $\forall x \in \mathbb{R}^n, \forall \lambda \in \mathbb{R}, ||\lambda x|| = |\lambda|||x||.$
- 3. $||x + y|| \le ||x|| + ||y||$.

 $\begin{array}{l} \textbf{Proposición 10.3 (Desigualdad de Cauchy-Schwarz). Si } x = (x_1, \cdots, x_n) \ \mathrm{e} \ y = (y_1, \cdots, y_n) \in \\ \mathbb{R}^n \Rightarrow |\sum_{i=1}^n x_i \cdot y_i| \leq ||x|| \cdot ||y||. \\ \textbf{Demostración. Ejercicio} \end{array}$

Definición 10.4. La distancia euclídea es la función $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} : d(x,y) = ||x-y||$. Tenemos que $\forall x, y, z \in \mathbb{R}^n$.

- 1. d(x,y) > 0 y $d(x,y) = 0 \iff x = y$
- 2. d(x, y) = d(y, x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

Demostración. 1. d(x,y) = ||x-y|| > 0, $d(x,y) = 0 \iff ||x-y|| = 0 \iff x = y$.

- 2. $d(x,y) = ||x-y|| = ||(-1)|| \cdot ||y-x|| = ||y-x|| = d(y,x)$.
- 3. $d(x,z) = ||x-z|| = ||x-z+y-y|| \le ||x-y|| + ||z-y|| = d(x,y) + d(y,z)$.

10.2.1. Conjuntos abiertos

Definición 10.5. Si $x \in \mathbb{R}^n$ y r > 0, la bola abierta centrada en x de radio r es el conjunto $B_r(x) = B(x,r) = \{y \in \mathbb{R}^n : d(x,y) < r\}.$

Definición 10.6. Un subconjunto $U \subset \mathbb{R}^n$ es abierto si $\forall x \in U, \exists r > 0 : B_r(x) \subset U$.

Lema 10.7. La bola abierta $B_r(x)$ es un conjunto abierto.

Demostración. Sea $s = r - d(x, y), y \in B_r(x)$. Si $z \in B_s(y) \Rightarrow d(x, z) \le d(x, y) + d(y, z) < d(x, y) + s = r$ Luego $z \in B_r(x) \Rightarrow B_s(y) \subset B_r(x)$: es abierto.

Proposición 10.8. Un subconjunto propio $U \subset \mathbb{R}^n$ es abierto $\iff \forall x \in U$ se tiene que $\inf\{d(x,y): y \in \mathbb{R}^n - U\} > 0$.

El ínfimo existe pues el conjunto es no vacío y acotado superiormente.

Demostración. Para la ida tenemos que si U es abierto entonces $\exists r > 0 : B_r(x) \subset U$. Si $y \in R^n - U \Rightarrow y \notin B_r(x)$ por lo que d(x,y) > r > 0 y r es una cota inferior mínima positiva del conjunto, pues si $d(x,y) < r \Rightarrow y \in B_r(x)$ absurdo!

Para la vuelta tomemos $s=\inf\{d(x,y):y\in\mathbb{R}^n-U\}>0$. Consideremos $B_{\frac{s}{2}}(x)$. Si z pertenece a esa bola entonces $d(x,z)<\frac{s}{2}< s\Rightarrow$

 $d(x,z) \notin \{d(x,y) : y \in \mathbb{R}^n - U\}$ pues si no sería el ínfimo, se sigue que $z \in U$ y entonces $B_{\frac{s}{2}}(x) \subset U : U$ es abierto.

- 1. \emptyset , \mathbb{R}^n son abiertos.
- 2. Intersección de una familia finita y no vacía de \mathbb{R}^n de subconjuntos abiertos es un conjunto abierto.
- 3. La unión de una familia cualquiera de subconjuntos abiertos de \mathbb{R}^n es abierto.

Demostración. 1. Por definición

- 2. $U = \bigcap_{i=1}^k U_i, U_i \subset \mathbb{R}^n$, abierto. Tomando $B_r(x)$ con $r = \min(r_1, \dots, r_k)$ y listo.
- 3. Si $\mathfrak u$ es una familia de abiertos de $\mathbb R^n$ y $\mathfrak U$ su unión, dado $x\in \mathfrak U$ tiene que haber algún $V\in \mathfrak u$ tal que $x\in V$. Por ser V abierto $\exists r>0: B_r(x)\subset \nu\subset \mathfrak U$ \therefore $\mathfrak U$ es abierto.

Notemos que la hipotesis de que la familia sea finita en la intersección es necesaria pues si definimos $U_n=(1-\frac{1}{n},1+\frac{1}{n}), \forall n\in\mathbb{N}\Rightarrow\bigcap_{n\geq 1}U_n=\{1\}$ que no es abierto.

Definición 10.10. La topología Euclídea es el conjunto de todos los abiertos de \mathbb{R}^n .

Corolario 10.11. Un subconjunto de \mathbb{R}^n es abierto \iff es la unión de una familia de bolas abiertas.

Demostración. Para la ida: Sea $U \subset \mathbb{R}^n$ un conjunto abierto y sea $\mathfrak u$ la familia de bolas abiertas de \mathbb{R}^n contenidas en U. Si llamamos $\tilde U$ a la unión de todas basta ver que $\tilde U = U$.

- \subset) Inmediato.
- $\supset) \ \mathrm{Dado} \ x \in U, \exists r > 0: B_r(x) \subset U \ \mathrm{por \ ser} \ U \ \mathrm{abierto} \ y \ B_r(x) \in \mathfrak{U} \Rightarrow B_r(x) \subset \tilde{U} \Rightarrow U \subset \tilde{U} \ \mathrm{pues \ vale} \ \forall x \in U.$

La vuelta es la proposición anterior.

10.2.2. Interior de un conjunto

Definición 10.12 (Interior). $X \subset \mathbb{R}^n$ decimos que $x \in \mathbb{R}^n$ es interior a X si $\exists r > 0 : B_r(x) \subset X$. El interior del conjunto X, que notamos X° , es el conjunto de puntos interiores de X.

Nota. Si $X^{\circ} \subset X, X$ es abierto $\iff X^{\circ} = X$.

Proposición 10.13. Sea $X \subset \mathbb{R}^n$. X° es abierto y coincide con la unión de todos los subconjuntos abiertos de X. En particular X° es el mayor abierto contenido en X.

Demostración. Sea U la unión de todos los subconjuntos abiertos de X, veamos que $U=X^{\circ}$.

- i) Si $x \in X^{\circ}$, $\exists r > 0 : B_r(x) \subset U$, como $B_r(x)$ es abierto $B_r(x) \subset U$ por lo que $X^{\circ} \subset U$.
- ii) Si $x \in U \Rightarrow \exists V \subset X$ abierto tal que $x \in X$, como V es abierto $\exists r > 0 : B_r(x) \subset V \subset X \Rightarrow X^\circ$ por definición de punto interior, luego $U \subset X^\circ$.

$$\therefore X^{\circ} = U.$$

Corolario 10.14. Si $X \subset Y \Rightarrow X^{\circ} \subset Y^{\circ}$.

Demostración. $X^{\circ} \subset X \subset Y$. Como Y es el mayor abierto contenido en Y se sigue que $X^{\circ} \subset Y^{\circ} \subset Y$.

Propiedades del interior

Proposición 10.15. $(X \cap Y)^{\circ} = X^{\circ} \cap Y^{\circ}$.

Demostración. $(X \cap Y)^{\circ} \subset X \cap Y \Rightarrow X^{\circ} \cap Y^{\circ} \text{ es abierto } \Rightarrow (X^{\circ} \cap Y^{\circ}) \subset (X \cap Y)^{\circ}.$ $X \cap Y \subset X \Rightarrow (X \cap Y)^{\circ} \subset X^{\circ} \text{ y } X \cap Y \subset Y \Rightarrow (X \cap Y)^{\circ} \subset Y^{\circ} \Rightarrow (X \cap Y)^{\circ} \subset X^{\circ} \cap Y^{\circ}.$

Proposición 10.16. $X^{\circ} \cup Y^{\circ} \subset (X \cup Y)^{\circ}$.

Demostración. $X^{\circ} \subset X \subset X \cup Y \text{ y } Y^{\circ} \subset Y \subset X \cup Y \Rightarrow X^{\circ} \cup Y^{\circ} \subset (X \cup Y) \Rightarrow X^{\circ} \cup Y^{\circ} \subset (X \cup Y)^{\circ}, \text{ pues } X^{\circ} \cup Y^{\circ} \text{ es abierto.}$

Notemos que la inclusión puede ser estricta pues sea $X = (-1, 1), Y = [1, 2] \Rightarrow 1 \notin X^{\circ} \cup Y^{\circ} = (-1, 1) \cup (1, 2), pero 1 \in (X \cup Y)^{\circ} = (-1, 2).$

10.3 Entorno

Definición 10.17 (Entorno). Sea $x \in \mathbb{R}^n$ un entorno de x es un subconjunto $N \subset \mathbb{R}^n : x \in \mathbb{N}^\circ$.

Proposición 10.18. Un subconjunto de \mathbb{R}^n es abierto \iff es un entorno de cada uno de sus puntos.

Demostración. Si U es entorno de cada uno de sus puntos entonces $U \subset U^{\circ} \Rightarrow U = U^{\circ}$: es abierto.

Proposición 10.19. El interior de un subconjunto $X \subset \mathbb{R}^n$ es el conjunto de puntos de los que X es entorno.

Demostración. Sea U el conjunto de puntos de X de los que X es un entorno. Si $x \in U \Rightarrow X$ es el entorno de x y $x \in X^{\circ} \Rightarrow U \subset X^{\circ}$. Si $x \in X^{\circ} \Rightarrow X$ es un entorno de $x \Rightarrow x \in U \Rightarrow X^{\circ} \subset U$.

10.4 Conjunto Cerrado

Definición 10.20 (Conjunto cerrado). Un subconjunto $F \subset \mathbb{R}^n$ se dice cerrado si su complemento es abierto $(R^n - F$ es abierto).

Proposición 10.21. Propiedades de los conjuntos cerrados:

- 1. \emptyset , \mathbb{R}^n son certados.
- 2. La unión finita de conjuntos cerrados es cerrado.
- 3. La intersección de una familia arbitraria de cerrados es cerrada.

Demostración. 1. $(\mathbb{R}^n)^c = \emptyset$ y $\emptyset^c = \mathbb{R}^n$ abiertos.

- 2. Si $F_1, \cdots, F_k \subset R^n$ son cerrados $\Rightarrow (F_1 \cup \cdots \cup F_k)^c = F_1^c \cap \cdots \cap F_k^c$ y cada F_i es abierto.
- 3. Si F es una familia de cerrados $(\bigcap_{f\in F}f)^c=(\bigcup_{f\in F}f^c)$ que es abierto.

Definición 10.22. Si $x \in \mathbb{R}^n, r > 0$ llamamos bola cerrada centrada en x de radio r al conjunto $\overline{B_r x} = \overline{B(r,x)} = \{y \in \mathbb{R}^n : d(x,y) \le r\}.$

Proposición 10.23. Veamos que la bola cerrada es, efectivamente, cerrada.

Demostración. Si $y \in \mathbb{R}^n - \overline{B_r(x)}$ tenemos que d(x,y) > r. Llamamos $0 < r_1 = d(x,y) - r$ y queremos que $B_{r_1}(y) \subset R^n - \overline{B_r(x)}$.

Sea $z \in B_{r_1}(y)$ por desigualdad triangular:

$$d(x, y) \le d(x, z) + d(z, y)$$

$$d(x,z) \geq d(x,y) - d(z,y) > d(x,y) - r_1 = r \Rightarrow z \notin \overline{B_r(x)} :: B_{r_1}(y) \subset \mathbb{R}^n - \overline{B_r(x)}. \quad \Box$$

10.4.1. Clausura

Definición 10.24 (Clausura). La clausura de un subconjunto $X \subset \mathbb{R}^n$ es la intersección \overline{X} de todos los subconjuntos cerrados de \mathbb{R}^n que contienen a X.

Proposición 10.25. Sea $X \subset \mathbb{R}^n \Rightarrow \overline{X}$ es el menor subconjunto cerrado de \mathbb{R}^n que contiene a X en el sentido de que es contenido en todo subconjunto cerrado de \mathbb{R}^n que contiene a X.

Corolario 10.26. Un subconjunto $X \subset \mathbb{R}^n$ es cerrado $\iff \overline{X} = X$.

Demostración. Si X es cerrado, contiene a X y luego $\overline{X} \subset X$, como $X \subset \overline{X} \Rightarrow X = \overline{X}$. Si $X = \overline{X} \Rightarrow X$ es cerrado, pues \overline{X} es cerrado.

Proposición 10.27. $X \subset Y \Rightarrow \overline{X} \subset \overline{Y}$.

Demostración. $X \subset Y \subset \overline{X}$, pero como \overline{X} es el menor cerrado que contiene a $X \Rightarrow \overline{X} \subset \overline{Y}$.

Proposición 10.28. $\overline{X \cup Y} = \overline{X} \cup \overline{Y}$.

Demostración. $X \subseteq X \cup Y \Rightarrow \overline{X} \subset \overline{X \cup Y}$

 $Y\subset X\cup Y\Rightarrow \overline{Y}\subset \overline{X\cup Y}\Rightarrow$

 $\overline{X} \cup \overline{Y} \subset \overline{X \cup Y}$.

Para la otra contención notemos que $X \subset \overline{X}$ y $Y \subset \overline{Y} \Rightarrow X \cup Y \subset \overline{X \cup Y} \Rightarrow \overline{X \cup Y} \subset \overline{X} \cup \overline{Y}$.

Proposición 10.29. $\overline{X \cap Y} \subset \overline{X} \cap \overline{Y}$.

Demostración. $X \cap Y \subset X \subset \overline{X} \text{ y } X \cap Y \subset Y \subset \overline{Y} \Rightarrow X \cap Y \subset \overline{X} \cap \overline{Y} \Rightarrow \overline{X \cap Y} \subset \overline{X} \cap \overline{Y}$. Pues es el menor de los cerrados.

Clase X - 01/10

11.1 (Continuación) Clausura

Proposición 11.1. Sean $X \subset \mathbb{R}^n$ $yx \in \mathbb{R}^n$. Son equivalentes:

- 1. $x \in \overline{X}$.
- 2. $\forall r > 0, B_r(x) \cap X \neq \emptyset$.
- 3. \forall entorno abierto N de X, $N \cap X \neq \emptyset$.
- 4. \forall entorno \mathbb{N} de \mathbb{X} , $\mathbb{N} \cap \mathbb{X} \neq \emptyset$.

Demostración. $4) \Rightarrow 3) \Rightarrow 2)$ son inmediatos.

2) \Rightarrow 1) Por contrarrecíproco, supongamos que $x \notin \overline{X}$ de manera tal que \exists F cerrado tal que $x \in F$ y $X \subset F$ (si no estaría en la clasura) $\Rightarrow x \in F^c$ que es abierto $\Rightarrow \exists r > 0, B_r(x) \subset F^c, B_r(X) \cap X \subset B_r(x) \cap F = \emptyset$.

1) \Rightarrow 4) Supongamos que existe N entorno de X tal que N \cap X $= \emptyset$. El conjunto U = N $^{\circ}$ es abierto y x \in U. Además U \subset N \subset X c \Rightarrow X \subset U c que es cerrado y x \in U c \Rightarrow x \notin \overline{X} .

Ejemplo. Si \mathbb{Q}^n es el conjunto de puntos de \mathbb{R}^n que tienen todas sus coordenadas racionales $\overline{\mathbb{Q}^n} = \mathbb{R}^n$. Decimos que \mathbb{Q}^n es denso en \mathbb{R}^n .

Demostración. 1) $\overline{\mathbb{Q}^n} \subseteq \mathbb{R}^n : \mathbb{Q}^n \subset \mathbb{R}^n$, que es cerrado $\Rightarrow \overline{\mathbb{Q}^n} \subseteq \mathbb{R}^n$.

2) $\mathbb{R}^n \subseteq \overline{\mathbb{Q}^n}$: Si $x \in \mathbb{R}^n$ y U es entorno abierto de $x, U \cap \mathbb{Q}^n \neq \emptyset$ (1) \iff 2)). Como U es abierto $\exists r > 0 : B_r(x) \subset U$.

Si $x=(x_1,\cdots,x_n)$ para cada $i\in\{1,\cdots,n\}$ elijo un racional q_i en el intervalo $(x_i-\frac{r}{\sqrt{n}},x_i+\frac{r}{\sqrt{n}}):|x_i-q_i|<\frac{r}{\sqrt{n}}\Rightarrow d(x,q)< r.$ Sabemos que existe porque ya probamos que $\mathbb Q$ es denso en $\mathbb R$.

 $\Rightarrow \mathfrak{q} \in B_r(x) \subset U \Rightarrow U \cap \mathbb{Q}^n \neq \varnothing \text{ pues al menos } \mathfrak{q} \text{ está allí } \forall U \text{ entorno abierto de } X.$ $\therefore \mathbb{R}^n \subset \mathbb{Q}^n.$

11.2 Punto de acumulación

Definición 11.2 (Punto de acumulación). $X \subset \mathbb{R}^n$. Un punto $x \in X$ es de acumulación si pertenece a $\overline{X - \{x\}}$.

Definición 11.3 (Conjunto derivado). El conjunto derivado de X es el conjunto de todos los puntos de acumulación de X.

Proposición 11.4. Dados $X \subset \mathbb{R}^n, x \in X$, son equivalentes:

- 1. x es un punto de acumulación.
- 2. $\forall r > 0, B_r(x)$ contiene un punto de X distinto de x.
- 3. Todo entorno abierto de x contiene un punto de X distinto de x.
- 4. Todo entorno de x contiene un punto de X distinto de x.

Demostración. $4) \Rightarrow 3) \Rightarrow 2)$ son inmediatos.

2) \Rightarrow 1) Por contrarrecíproco: $x \in X$ no es punto de acumulación de X luego $x \in (X - \{x\})^c$. Como ese conjunto es abierto $\exists r > 0$, $B_r(x) \subset (\overline{X - \{x\}}) \Rightarrow B_r(x) \cap (X - \{x\}) \subset B_r(x) \cap (\overline{X - \{x\}}) = \varnothing$.

1) \Rightarrow 4) Sea $x \in X'$ y N un entorno de x. Como $x \in \overline{X - \{x\}} \Rightarrow N \cap (X - \{x\}) \neq \emptyset$. \square

Proposición 11.5. Si $X \subset \mathbb{R}^n \Rightarrow \overline{X} = X \cup X'$.

Demostración. Sea $X \subset \mathbb{R}^n$ sabemos que $X \subset \overline{X}$. Por otro lado si $x \in X' \Rightarrow$ Para cualquier entorno N de X, $N \cap X \subset N \cap (\overline{X - \{x\}}) \neq \emptyset \Rightarrow$ $x \in \overline{X} \Rightarrow X' \subset \overline{X} \Rightarrow X \cup X' \subset \overline{X}$.

Sea $x \in \overline{X}$ y supongamos que $x \notin X$. Para cada entorno N de X tenemos que $N \cap (X - \{x\}) = N \cap X \neq \emptyset \Rightarrow x \in X'$, luego $\overline{X} \subset X \cup X'$. $\therefore \overline{X} = X \cup X'$.

Proposición 11.6. Sea $X \subset \mathbb{R}^n$. Un punto x es punto de acumulación de $X \iff \forall$ entorno abierto de X contiene infinitos elementos de x.

Demostración. \Leftarrow) Si todo entorno abierto de x contiene infinitos elementos de X entonces hay alguno distinto de x y $x \in X'$.

 \Rightarrow) Sea $x \in X'$ y N un entorno abierto de $x \Rightarrow \exists r > 0 : B_r(x) \subset N$.

Construyamos una sucesión de puntos $(x_n)_{n\in\mathbb{N}}$ pertenecientes a $\mathbb{N}\cap X$ y tales que $d(x_n,x)>d(x_{n+1},x)>0, \forall n\in\mathbb{N}$.

 $x_1 \neq x$, si n > 0 y ya elegimos $x_1, \dots x_n : d(x_1, x) > \dots > 0, \forall i \in \{1, \dots, n-1\}$. Como $B_{d(x_n, x)}(x)$ es un entorno abierto de x y $x \in X'$ contiene algún punto distinto de x, lo llamo x_{n+1} .

Tenemos entonces que $d(x_n, x) > d(x_{n+1}, x) > 0 \Rightarrow$ los términos de la sucesión $(x_n)_{n \in \mathbb{N}}$ son todos diferentes de x, distintos dos a dos y pertenecen a $B_r(x)$.

 $\therefore (x_n)_{n\in\mathbb{N}} \subset N \cap X$ es infinito.

Proposición 11.7. $X \subset \mathbb{R}^n$, $(X')' \subset X'$.

Demostración. $x \in (X')'$ y N un entorno abierto de x. Sabemos que N contiene un punto $y \in X'$ distinto de x. Luego contiene infinitos puntos de $X : x \in X'$.

Corolario 11.8. El conjunto derivado de todo subconjunto de \mathbb{R}^n es cerrado.

Demostración. $\overline{X'} = X' \cup (X')' = X'$: es cerrado.

Definición 11.9 (Conjunto perfecto). $X \subset \mathbb{R}^n$ es un conjunto perfecto $\iff X = X'$.

Definición 11.10 (Punto aislado). $X \subset \mathbb{R}^n, x \in X$ es aislado en X si $\exists N$ un entorno de $x : N \cap X = \{x\}$.

Definición 11.11 (Conjunto discreto). Un conjunto es discreto \iff todos sus puntos son aislados.

Ejemplo. $Z \subset R$ es discreto.

11.3 Sucesiones en varias dimensiones

Decimos que una sucesión $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}^n$ converge a un punto $L\in\mathbb{R}^n$ si $(\forall \epsilon>0)(\exists n_0\in\mathbb{N}):$ $\forall n>n_0, d(x_n,L)<\epsilon.$

Lema 11.12. Si una sucesión tiene límite en \mathbb{R}^n es único.

Demostración. Supongamos que converge a L y a L' con L \neq L' \Rightarrow $(\forall \epsilon > 0)(\exists n_0 \in \mathbb{N}) : (\forall n > n_0), d(x_n, L) < \epsilon$ $(\forall \epsilon > 0)(\exists n_1 \in \mathbb{N}) : (\forall n > n_1), d(x_n, L') < \epsilon$ $d(L, L') \leq d(L, x_n) + d(x_n, L') \leq 2 \cdot \epsilon, \forall n > \max(n_0, n_1).$ Sea $\epsilon = d(L, L')/2 \Rightarrow d(L, L') < d(L, L')$ Absurdo!

Proposición 11.13. Sea $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}^n$ y $L\in\mathbb{R}^n$ son equivalentes:

- 1. $L = lim_{n\to\infty}x_n$
- 2. $\forall r > 0, \exists n_0 \in \mathbb{N} : \forall n > n_0, x_n \in B_r(L)$
- 3. \forall entorno abierto N de $L, \exists n_0 \in \mathbb{N} : \forall n > n_0, x_n \in N$
- 4. \forall entorno N de $L, \exists n_0 \in \mathbb{N} : \forall n > n_0, x_n \in N$

 $\begin{array}{l} \textbf{Demostración.} \ 4) \Rightarrow 3) \Rightarrow 2) \Rightarrow 1) \ \mathrm{son} \ \mathrm{inmediatos} \ \mathrm{de} \ \mathrm{la} \ \mathrm{definición} \ \mathrm{de} \ \mathrm{l'imite}. \\ 1) \Rightarrow 4) \ \mathrm{Sea} \ N \ \mathrm{un} \ \mathrm{entorno} \ \mathrm{de} \ L. \ \mathrm{Como} \ L \in N^{\circ}, \exists r > 0 : B_r(L) \subset N^{\circ} \ \mathrm{y} \ \mathrm{como} \\ \mathrm{lim}_{n \to \infty} x_n = L \Rightarrow \exists n_0 \in \mathbb{N} : \forall n > n_0, d(L, x_n) < r \Rightarrow \\ x_n \in B_r(x), \forall n > n_0 \therefore x_n \in N, \forall n > n_0. \end{array} \qquad \qquad \Box$

Proposición 11.14. Ejercicio: Demostrar las siguientes propiedades en \mathbb{R}^n .

- 1. Toda sucesión convergente es acotada.
- 2. Suma de sucesiones convergentes es convergente y el límite de la suma es la suma de los límites.
- 3. Si $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}^n$ y $(\lambda_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ convergen $\Rightarrow (x_n\cdot\lambda_n)_{n\in\mathbb{N}}\to\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}\lambda_n$.

Proposición 11.15. Sea $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}^n, x_i=(x_{i_1},x_{i_2},\cdots,x_{i_n})\in\mathbb{R}^n$. Son equivalentes:

- 1. La sucesión converge en \mathbb{R}^n .
- 2. $\forall i \in \{1, \dots, n\}, (x_{n_i})_{n \in \mathbb{N}}$ converge a \mathbb{R} .

Si se cumplen y además $\lim_{n\to\infty}=L$ y $\lim_{n\to\infty}x_{n_i}=L_i, \forall i\in\{1,\cdots,n\}\Rightarrow L=(L_1,\cdots,L_n).$

$$\begin{array}{l} \textbf{Demostración.} \ 1) \ \Rightarrow \ 2) \ \operatorname{Sea} \ L = \lim_{n \to \infty} x_n \ y \ L = (L_1, \cdots, L_n), \ \operatorname{si} \ i \in \{1, \cdots, n\} \ y \\ \varepsilon > 0, \exists n_0 : \forall n > n_0, \ d(x_n, L) < \varepsilon \Rightarrow \\ \forall n > n_0, \ d(x_{n_i}, L_i) < \varepsilon \ \therefore \lim_{n \to \infty} x_{n_i} = L_i. \\ 2) \ \Rightarrow \ 1) \ \operatorname{Si} \ \lim_{n \to \infty} x_{n_i} = L_i, \ \forall i \in \{1, \cdots, m\}. \ Llamo \ L = (L_1, \cdots, L_m). \\ \operatorname{Dado} \ \varepsilon > 0, \exists n_i \in \mathbb{N} : \forall n > n_i, \ d(x_{n_i}, L_i) < \frac{\varepsilon}{\sqrt{n}} \Rightarrow n_0 = \max(n_1, \cdots, n_m) \ y \ n > n_0, \\ d(x_n, L) = (d(x_{n_1}, L_1)^2 + \cdots + d(x_{n_m}, L_m)^2) < (\frac{\varepsilon^2}{n} + \cdots + \frac{\varepsilon^2}{n})^{\frac{1}{2}} = \varepsilon. \\ \therefore \lim_{n \to \infty} x_n = L. \end{array}$$

11.4 Conjuntos compactos

Teorema 11.16. Un subconjunto $F \subset \mathbb{R}^n$ es cerrado \iff si $(x_n)_{n \in \mathbb{N}} \subset F$ y $x_n \to x, x \in F$.

 $\begin{array}{l} \textbf{Demostración.} \Rightarrow) \ \mathrm{Sea} \ F \subset \mathbb{R}^n \ \mathrm{cerrado} \ y \ \mathrm{supongamos} \ \mathrm{que} \ \exists (x_n)_{n \in \mathbb{N}} \subset F, \ x_n \to L \in F^c. \\ \mathrm{Como} \ F^c \ \mathrm{es} \ \mathrm{abierto}, \ \mathrm{entonces} \ \exists r > 0 : B_r(X) \subset F^c \Rightarrow \exists n_0 \in \mathbb{N} : x_n \subset F^c, \forall n > n_0. \\ \mathrm{Absurdo} \ \mathrm{pues} \ (x_n)_{n \in \mathbb{N}} \subset F. \\ \Leftarrow) \ \mathrm{Si} \ F \subset \mathbb{R}^n \ \mathrm{no} \ \mathrm{es} \ \mathrm{cerrado} \ \exists x \in F' \ y \ x \notin F. \ \mathrm{Como} \ x \ \mathrm{es} \ \mathrm{punto} \ \mathrm{de} \ \mathrm{acumulación} \\ \forall n > n_0 \in \mathbb{N}, B_{\frac{1}{n}}(x) \cap X \neq \varnothing \ y \ \mathrm{elijamos} \ \mathrm{un} \ \mathrm{punto} \ x_n \ \mathrm{alli}. \ (x_n)_{n \in \mathbb{N}} \subset F \ y \ \mathrm{d}(x_n, n) < \\ \frac{1}{n}, \forall n > n_0 \therefore x_n \to x \notin F. \end{array}$

Ejemplo.
$$(0,1]$$
 no es cerrado pues $\frac{1}{n} \to 0$ y $\frac{1}{n} \in (0,1], \forall n \in \mathbb{N}$.

Definición 11.17 (Relativamente compacto). Un subconjunto $F \subset \mathbb{R}^n$ se dice relativamente compacto si toda sucesión en F posee una subsucesión convergente.

Definición 11.18 (Compacto). Un conjunto se dice compacto si además de ser relativamente compacto cumple que está acotado.

Proposición 11.19. Un subconjunto de \mathbb{R}^n es relativamente compacto \iff es acotado.

Demostración. Sea $F \subset \mathbb{R}^n$ no acotado \Rightarrow para cada $n \in \mathbb{N}, \exists y_n \in F : ||y_n|| > n$. Si $f : \mathbb{N} \to \mathbb{N}$ es una función estrictamente creciente cualquiera entonces la sucesión $(y_{f(n)})_{n \in \mathbb{N}}$ de $(y_n)_{n \in \mathbb{N}}$ no es acotada, pues $||y_{f(n)}|| > f(n) \ge n$ y \therefore no converge. Luego F no es relativamente compacto.

Supongamos ahora que F es acotado, digamos que $\exists k > 0 : F \subset B_k(0)$ y sea $(x_n)_{n \in N}$ una sucesión en F.

Para cada $m \in \mathbb{N}$, $x_m = (x_{m_1}, x_{m_2}, \cdots, x_{m_n})$. Si $L = \{1, \cdots, n\} \Rightarrow \forall m \in \mathbb{N}, ||x_{m_i}|| \le ||x_m|| < k$, es decir que las sucesiones $(x_{m_1})_{m \in \mathbb{N}}, \cdots, (x_{m_n})_{m \in \mathbb{N}} \subset \mathbb{R}$ son acotadas.

En particular $\exists f: \mathbb{N} \to \mathbb{N}$ estrictamente creciente tal que la subsucesión $(x_{f(m)_1})_{m \in \mathbb{N}}$ converge. Es decir que 1 es un elemento del conjunto D de todos los $f \in \{1, \cdots, n\}$ con la propiedad: "Hay una función estrictamente creciente $f: \mathbb{N} \to \mathbb{N}: \forall i \in \{1, \cdots, f\}$ la sucesión $(x_{f(m)_i})_{m \in \mathbb{N}}$ converge".

Sea $k = \max D$ y k < n. Como $k \in D, \exists f : \mathbb{N} \to \mathbb{N}$ estrictamente creciente tal que $\forall i \in \{1, \dots, k\}$ la sucesión $(x_{f(m)_i})_{m \in \mathbb{N}}$ converge.

Por otro lado $(x_{f(m)_{k+1}})_{m\in\mathbb{N}}$ es acotada \Rightarrow Hay una función $g:\mathbb{N}\to\mathbb{N}$ estrictamente creciente tal que $(x_{g(f(m))_{k+1}})_{m\in\mathbb{N}}$ converge.

Entonces las k+1 sucesiones convergen y g(f(m)) generan subsucesiones que convergen a lo mismo.

Sea $h=g\circ f$ estrictamente creciente, entonces $k+1\in D$ absurdo pues $k=m\alpha xD$. Luego $k=n\Rightarrow \exists f:\mathbb{N}\to\mathbb{N}$ estrictamente creciente tal que

 $(x_{f(m)_1})_{m\in\mathbb{N}}, \cdots, (x_{f(m)_n})_{n\in\mathbb{N}}$ convergen \therefore F es relativamente compacto.

Clase XI - 04/10

- 12.1 Corolarios Conjuntos Compactos
- 12.2 Propiedades de límites

Bibliografía

- [1] Walter Rudin. Principles of mathematical analysis, 3rd Edition. McGraw-Hill, New York, 1976.
- [2] Elon Lages Lima. Curso de Análise, Vol.1. IMPA, Río de Janeiro, 2014.
- [3] Tom Mike Apostol. Calculus. John Wiley and Sons, New York, 1967.