Package 'RLumCarlo'

November 15, 2019

```
Type Package
Title Monte-Carlo Methods for Simulating Luminescence Phenomena
Version 0.1.0.9000-127
Date 2019-11-15
Author Johannes Friedrich [aut, trl] (<a href="https://orcid.org/0000-0002-0805-9547">https://orcid.org/0000-0002-0805-9547</a>),
       Sebastian Kreutzer [aut, trl, cre] (<a href="https://orcid.org/0000-0002-0734-2199">https://orcid.org/0000-0002-0734-2199</a>),
       Vasilis Pagonis [aut] (<a href="https://orcid.org/0000-0002-4852-9312">https://orcid.org/0000-0002-4852-9312</a>),
       Christoph Schmidt [aut] (<a href="https://orcid.org/0000-0002-2309-3209">https://orcid.org/0000-0002-2309-3209</a>),
       Ena Rajovic [ctb],
       Alex Roy Duncan [ctb],
       Christian Laag [ctb] (<a href="https://orcid.org/0000-0002-6012-1029">https://orcid.org/0000-0002-6012-1029</a>)
Maintainer Sebastian Kreutzer < sebastian.kreutzer@u-bordeaux-montaigne.fr>
Description A collection of functions to simulate luminescence production in dosimetric materials us-
       ing Monte-Carlo methods.
       Implemented are models for delocalised, localised and tunnelling transitions.
       Supported stimulation methods are TL, CW-OSL, LM-OSL, LM-IRSL, and ITL (ISO-TL).
Contact Package Developer Team <sebastian.kreutzer@u-bordeaux-montaigne.fr>
License GPL-3
BugReports https://github.com/R-Lum/RLumCarlo/issues
Depends R (>= 3.3.0),
       utils,
       magrittr
URL https://CRAN.R-project.org/package=RLumCarlo
LinkingTo Rcpp (>= 1.0.2),
       RcppArmadillo (>= 0.9.700.2.0)
Imports abind (>= 1.4-5),
       doParallel (>= 1.0.15),
       foreach (>= 1.4.7),
       khroma (>= 1.2.0),
       parallel,
       methods,
       Rcpp (>= 1.0.2)
Suggests R.rsp (>= 0.43.1),
       testthat (>= 2.0.0)
Encoding UTF-8
```

2 RLumCarlo-package

VignetteBuilder R.rsp **RoxygenNote** 7.0.0

R topics documented:

	RLumCarlo-package	2
	plot_RLumCarlo	
	run_MC_CW_IRSL_LOC	
	run_MC_CW_IRSL_TUN	6
	run_MC_CW_OSL_DELOC	
	run_MC_ISO_DELOC	1
	run_MC_ISO_LOC	
	run_MC_ISO_TUN	
	run_MC_LM_OSL_DELOC	
	run_MC_LM_OSL_LOC	
	run_MC_LM_OSL_TUN	
	run_MC_TL_DELOC	
	run_MC_TL_LOC	
	run_MC_TL_TUN	
Index		32
		_
RLum	Carlo-package Monte-Carlo Methods for Simulating Luminescence Phenomena	

Description

A collection of functions to simulate luminescence production in dosimetric materials using Monte-Carlo methods. Implemented are models for delocalised, localised and tunnelling transitions. Supported stimulation modes are TL, CW-OSL, LM-OSL, LM-IRSL, and ITL (ISO-TL).

Details

Funding

The development of RLumCarlo benefitted from the support by various funding bodies:

- The initial work by Johannes Friedrich, Sebastian Kreutzer and Christoph Schmidt was supported by the Deutsche Forschungsgemmeinschaft (DFG, 2015–2018, SCHM 3051/4-1, "Modelling quartz luminescence signal dynamics relevant for dating and dosimetry", SCHM 3051/4-1).
- Later work (2018-2019) was secured through the project "ULTIMO: Unifying Luminescence Models of quartz and feldspar DAAD: Deutscher Akademischer Austauschdienst (German Academic Exchange Service). Framework: DAAD PPP USA 2018, ID: 57387041.
- The work of Sebastian Kreutzer as maintainer of the package was supported by LabEx LaS-cArBx (ANR n. ANR-10-LABX-52) between 2017 and 2019.

plot_RLumCarlo 3

Author(s)

Johannes Friedrich (University of Bayreuth, Germany),
Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS-Université Bordeaux Montaigne (France),
Vasilis Pagonis, McDaniel College Westminster (MD, USA),
Christoph Schmidt, University of Bayreuth (Germany),
Ena Rajovic, University of Bayreuth (Germany),
Alex Roy Duncan, University of Bayreuth (Germany),
Christian Laag, University of Bayreuth (Germany)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R., Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects_A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

plot_RLumCarlo

Plot RLumCarlo Monte-Carlo Simulations Results

Description

Visualise 'RLumCarlo' modelling results without extracting the values manually. Typically visualised values are the averaged signal or the number of remaining electrons with a polygon indicating modelling uncertainties.

Usage

```
plot_RLumCarlo(
  object,
  plot_uncertainty = "range",
  norm = FALSE,
  add = FALSE,
  ...
)
```

Arguments

object

list of class RLumCarlo_Model_Output (**required**): input object to be plotted, usually the required input object is generated by one for the functions preceding with run_. Alternatively a list of such objects can be provided.

plot_uncertainty

logical (with default): type of the displayed uncertainty. Allowed values are range, sd (standard deviation) and var (variance). NULL disables the uncertainty

visualisation.

norm logical (with default): normalise curve to the highest intensity value

add logical (with default): allows overplotting of results by adding curve to an existing plot. This argument is handled automatically if object is of type list

ing plot. This argument is nandied automatically if object is of type list

further arguments that can be passed to control the plot output largely following the argument names in graphics::plot.default. Currently supported are: xlab, ylab, xlim, ylim, main, lwd, type, pch, lty,col, grid, legend. The arguments lwd, type, pch, lty, col can be provided as a vector if object is a list

Details

For colouring the curves, the package khroma::khroma-package is used to provide colours that can be best distinguished, in particular by colour-blind users.

Value

This function returns a graphical output

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S., 2019. plot_RLumCarlo(): Plot RLumCarlo Monte-Carlo Simulations Results. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, Université Bordeaux Montaigne (France)

run_MC_CW_IRSL_LOC

Monte-Carlo Simulation for CW-IRSL (localized transitions)

Description

Runs a Monte-Carlo (MC) simulation of continuous wave infrared stimulated luminesence (CW-IRSL) using the generalized one trap (GOT) model. Localized transitions refer to transitions which do not involve the conduction or valence band. These transitions take place between the ground state and an excited state of the trapped charge, and also involve a state of the recombination center.

Usage

```
run_MC_CW_IRSL_LOC(
    A,
    times,
    clusters = 10,
    n_filled = 100,
    r,
    method = "par",
    output = "signal",
    ...
)
```

Arguments

A	numeric (required): The optical excitation rate from trap to the excited state (s^-1)
times	numeric (with default): The sequence of time steps within the simulation (s)
clusters	numeric (with default): The number of MC runs (unitless)
n_filled	integer (with default): The number of filled electron traps at the beginning of the simulation (unitless)
r	numeric (with default): The retrapping ratio for localized transitions
method	character (with default): Sequential 'seq' or parallel 'par' processing
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges/electrons, in the trap)</pre>
	further arguments

Details

The model

$$I_{LOC}(t) = -dn/dt = A * (n^2/(r+n))$$

where in the function:

A := optical excitation rate from the ground state into the excited state of the trapped charge (s^{-1})

r := retrapping ratio for localized transitions

t := time(s)

n := number of filled electron traps

Value

This function returns an object of class RLumCarlo_Model_Output which is a list consisting of an array with dimension length(times) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_CW_IRSL_LOC(): Monte-Carlo Simulation for CW-IRSL (localized transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading

Chen, R., McKeever, S.W.S., 1997. Theory of Thermoluminescence and Related Phenomena. WORLD SCIENTIFIC. doi: 10.1142/2781

Examples

```
run_MC_CW_IRSL_LOC(
  A = 0.12,
  times = 0:100,
  clusters = 50,
  n_filled = 2,
  r = 1e-7,
  method = "seq",
  output = "signal"
) %>%
plot_RLumCarlo(legend = TRUE)
```

run_MC_CW_IRSL_TUN

Run Monte-Carlo Simulation for CW-IRSL (tunneling transitions)

Description

Runs a Monte-Carlo (MC) simulation of continuous wave infrared stimulated luminesence (CW-IRSL) using the model for tunneling translation. Tunneling refers to quantum mechanical tunneling processes from the excited state of the trapped charge, into a state of the recombination center.

Usage

```
run_MC_CW_IRSL_TUN(
    A,
    rho,
    times,
    clusters = 10,
    r_c = 0,
    delta.r = 0.1,
    N_e = 200,
    method = "seq",
    output = "signal",
    ...
)
```

Arguments

A numeric (**required**): The optical excitation rate from ground state of trap to excited state of trap (s^-1).

rho numeric (**required**): The density of recombination centers (defined as ρ ' in Huntley 2006) (unitless).

times numeric (with default): The sequence of time steps within the simulation (s).

clusters numeric (with default): The number of MC runs (unitless).

r_c	numeric (with default): Critical distance (>0) that must be provided if the sample has 1 been thermally and/or optically pretreated. This parameter expresses the fact that electron-hole pairs within a critical radius r_c have already been recombined.
delta.r	numeric (with default): Increments of the unitless distance parameter r
N_e	numeric (width default): The total number of electron traps available (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments

Details

The model

$$I_{TUN}(r',t) = -dn/dt = A * exp(-(\rho')^{(-1/3)} * r') * n(r',t)$$

Where in the function:

A := Excitation rate from ground state of the trap to the excited state (1/s)

r' := the unitless tunneling radius

 ρ' := rho the unitless density of recombination centres

t := time(s)

n := The Instantaneous number of electrons

Value

This function returns an object of class $RLumCarlo_Model_Output$ which is a list consisting of an array with dimension length(times) x length(r) x clusters and a numeric time vector.

Function version

0.2.0

How to cite

Friedrich, J., Kreutzer, S., 2019. run_MC_CW_IRSL_TUN(): Run Monte-Carlo Simulation for CW-IRSL (tunneling transitions). Function version 0.2.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, Université Bordeaux Montaigne (France)

References

Huntley, D.J., 2006. An explanation of the power-law decay of luminescence. Journal of Physics: Condensed Matter, 18(4), 1359. doi: 10.1088/09538984/18/4/020

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects:

A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading

Aitken, M.J., 1985. Thermoluminescence dating. Academic Press.

Jain, M., Guralnik, B., Andersen, M.T., 2012. Stimulated luminescence emission from localized recombination in randomly distributed defects. J. Phys.: Condens. Matter 24, 385402. doi: 10.1088/09538984/24/38/385402

Chen, R., McKeever, S.W.S., 1997. Theory of Thermoluminescence and Related Phenomena. WORLD SCIENTIFIC. doi: 10.1142/2781

Examples

```
run_MC_CW_IRSL_TUN(
    A = 0.8,
    rho = 1e-4,
    times = 0:10,
    r_c = 0.05,
    delta.r = 0.1,
    method = "seq",
    clusters = 2,
    output = "signal") %>%
    plot_RLumCarlo(norm = TRUE, legend = TRUE)
```

run_MC_CW_OSL_DELOC

Run Monte-Carlo Simulation for CW-OSL for Delocalized Transition

Description

Runs a Monte-Carlo (MC) simulation of continuous wave optically stimulated luminesence (CW-OSL) using the one trap one recombination center (OTOR) model. The term delocalized here refers to the involvement of the conduction band.

Usage

```
run_MC_CW_OSL_DELOC(
   A,
   times,
   clusters = 10,
   N_e = 200,
   n_filled = N_e,
   R,
   method = "par",
   output = "signal",
   ...
)
```

Arguments

A	numeric (required): The optical excitation rate from trap to conduction band (s^-1)
times	numeric (with default): The sequence of temperature steps within the simulation (s)
clusters	numeric (with default): The number of MC runs (unitless)
N_e	integer (with default): The total number of electron traps available (unitless)
n_filled	integer (with default): The number of filled electron traps at the beginning of the simulation (unitless)
R	numeric (with default): The retrapping ratio for delocalized transitions (unitless)
method	character (with default): Sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): Output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments

Details

The model

$$I_{DELOC}(t) = -dn/dt = A * (n^2/(N * R + n(1 - R)))$$

Where in the function:

t := Time

A := The optical excitation rate from trap to conduction band

 $n := n_filled$ The instantaneous number of electrons

 $N := N_e$ the available number of electron traps available

R := Retrapping ratio for delocalized transitions

Value

This function returns an object of class $RLumCarlo_Model_Output$ which is a list consisting of an array with dimension length(times) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_CW_OSL_DELOC(): Run Monte-Carlo Simulation for CW-OSL for Delocalized Transition. Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading

main = "Delocalised Transition")

Chen, R., McKeever, S.W.S., 1997. Theory of Thermoluminescence and Related Phenomena. WORLD SCIENTIFIC. doi: 10.1142/2781

Examples

```
## brief example
run_MC_CW_OSL_DELOC(
A = 0.12,
R = 0.1,
times = 0:10,
clusters = 10,
method = "seq") %>%
plot_RLumCarlo(legend = TRUE)
## A long example
## Not run:
A \leftarrow c(0.1, 0.3, 0.5, 1)
times <- seq(0, 60, 1)
s <- 1e12
E <- 1
R <- c(1e-7, 1e-6, 0.01, 0.1) # sequence of different R values
clusters <- 1000 # number of Monte Carlo simulations
N_e < -c(200, 500, 700, 400) # number of free electrons
n_{filled} \leftarrow c(200, 500, 100, 70) # number of filled traps
method <-"par"
output <- "signal"</pre>
col \leftarrow c(1,2,3,4) # ifferent colours for the individual curves
add_TF <- c(FALSE,rep(TRUE, (length(R)-1)))</pre>
#loop to plot different curves into one plotfor
for (u in 1:length(R)){
results <- run_MC_CW_OSL_DELOC(
 A = A[u],
 times,
 clusters = clusters,
 N_e = N_e[u],
  n_filled = n_filled[u],
 R = R[u],
 method = method,
 output = output)
plot_RLumCarlo(
results,
add = add_TF[u],
legend = FALSE,
col = col[u],
```

```
# add your legend with your parameters
legend("topright",
    ncol = 4,
    cex = 0.55,
    title = "parameters",
    legend=c(
    paste0("A = ", A),
    paste0("n_filled = ", n_filled),
    paste0("N_e = ", N_e),
    paste0("R = ", R)),
    bty = "n",
    text.col = col)
## End(Not run)
```

run_MC_ISO_DELOC

Run Monte-Carlo Simulation for ISO-TL (delocalized transitions)

Description

Runs a Monte-Carlo (MC) simulation of isothermally stimulated luminesence (ISO-TL or ITL) using the one trap one recombination center (OTOR) model. Delocalized refers to involvement of the conduction band.

Usage

```
run_MC_ISO_DELOC(
    s,
    E,
    T = 20,
    times,
    clusters = 10,
    N_e = 200,
    n_filled = N_e,
    R,
    method = "par",
    output = "signal",
    ...
)
```

Arguments

```
s numeric (required): The frequency factor of the trap (s^-1)

E numeric (required): Thermal activation energy of the trap (eV)

T numeric (with default): Constant stimulation temperature (degrees C)

times numeric (with default): The sequence of temperature steps within the simulation (s)

clusters numeric (with default): The number of MC runs (unitless)

N_e integer (with default): The total number of electron traps available (unitless)
```

n_filled integer (with default): The number of filled electron traps at the beginning of the

simulation (unitless)

R numeric (with default): The delocalized retrapping ratio (unitless)
method character (with default): Sequential 'seq' or parallel processing 'par'

output character (with default): Output is either the 'signal' (the default) or 'remaining_e'

(the remaining charges, electrons, in the trap)

... further arguments

Details

The model

$$I_{DELOC}(t) = -dn/dt = (s * exp(-E/(k_B * T_{ISO}))) * (n^2/(N * R + n(1 - R)))$$

Where in the function:

t := Time

 $k_B := Boltzmann constant$

 T_{ISO} = Temperature of the isothermal experiment

 $n := n_{filled}$ the number of filled electron traps at the beginning of the simulation

E := The trap depth in eV

s :=The frequency factor in 1/s

 $N := N_e$ is the total number of electron traps available (unitless)

R := The retrapping ratio for delocalized transitions

Value

This function returns an object of class RLumCarlo_Model_Output which is a list consisting of an array with dimension length(times) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_ISO_DELOC(): Run Monte-Carlo Simulation for ISO-TL (delocalized transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading

Chen, R., McKeever, S.W.S., 1997. Theory of Thermoluminescence and Related Phenomena. WORLD SCIENTIFIC. doi: 10.1142/2781

 $run_MC_ISO_LOC$ 13

Examples

```
run_MC_ISO_DELOC(
    s = 3.5e12,
    E = 1.45,
    T = 200,
    R = 1,
    method = 'seq',
    times = 0:100) %>%
plot_RLumCarlo(legend = TRUE)
```

run_MC_ISO_LOC

Run Monte-Carlo simulation for ISO-TL (localized transitions)

Description

Runs a Monte-Carlo (MC) simulation of isothermally stimulated luminesence (ISO-TL or ITL) using the genralized one trap (GOT) model. Localized transitions refer to transitions which do no involve the conduction or valence band. These transitions take place between the ground state and an excited state of the trapped charge, and also involve a state of the recombination center.

Usage

```
run_MC_ISO_LOC(
    s,
    E,
    T = 20,
    times,
    clusters = 10,
    n_filled = 100,
    r,
    method = "par",
    output = "signal",
    ...
)
```

Arguments

```
numeric (required): The frequency factor of the trap (s^-1)
s
Ε
                   numeric (required): Thermal activation energy of the trap (eV)
Τ
                   numeric (with default): Constant stimulation temperature (degrees C)
times
                   numeric (with default): The sequence of temperature steps within the simulation
                   numeric (with default): The number of MC runs (unitless)
clusters
n_filled
                   integer (with default): The number of filled electron traps at the beginning of the
                   simulation (unitless)
r
                   numeric (with default): The retrapping ratio for localized transitions.
                   character (with default): Sequential 'seq' or parallel processing 'par'
method
                   character (with default): output is either the 'signal' (the default) or 'remaining_e'
output
                   (the remaining charges, electrons, in the trap)
                   further arguments
. . .
```

14 run_MC_ISO_LOC

Details

The model

```
I_{LOC}(t) = -dn/dt = (s * exp(-E/(k_B * T_{ISO}))) * (n^2/(r+n)))
```

```
Where in the function:

t := Time (s)

k_B := Boltzmann constant

T_{LSO} = Isothermal temperat
```

 T_{ISO} = Isothermal temperature

 $n := n_filled$

s := frequency factor of the trap (1/s)

E := activation energy of the trap (eV)

r := retrapping ratio for localized transitions

Value

This function returns an object of class RLumCarlo_Model_Output which is a list consisting of an array with dimension length(times) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_ISO_LOC(): Run Monte-Carlo simulation for ISO-TL (localized transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Examples

```
run_MC_ISO_LOC(
    E = 1.45,
    s = 3.5e12,
    T = 200,
    times = 0:100,
    method = 'seq',
    r = 1) %>%
plot_RLumCarlo(legend = TRUE)
```

run_MC_ISO_TUN 15

run_MC_ISO_TUN

Monte-Carlo Simulation for Isothermal-TL (tunneling transitions)

Description

Runs a Monte-Carlo (MC) simulation of isothermally stimulated luminesence (ISO-TL or ITL) using the tunneling (TUN) model. Tunneling refers to quantum mechanical tunneling processes from the excited state of the trapped charge, into a state of the recombination center.

Usage

```
run_MC_ISO_TUN(
    E,
    s,
    T = 200,
    rho,
    times,
    clusters = 10,
    r_c = 0,
    delta.r = 0.1,
    N_e = 200L,
    method = "par",
    output = "signal",
    ...
)
```

Arguments

E	numeric (required): Thermal activation energy of the trap (eV).
S	numeric (required): The effective frequency factor for the tunneling process (1/s).
Т	numeric (with default): Constant stimulation temperature (degrees C).
rho	numeric (required): The dimensionless density of recombination centres (defined as ρ ' in Huntley 2006) (unitless).
times	numeric (with default): The sequence of temperature steps within the simulation (s).
clusters	numeric (with default): The number of MC runs (unitless).
r_c	numeric (with default): Critical distance (>0) that must be provided if the sample has 1 been thermally and/or optically pretreated. This parameter expresses the fact that electron-hole pairs within a critical radius r_c have already been recombined.
delta.r	numeric (with default): Fractional change of the dimensionless distance of nearest recombination centres (r')
N_e	numeric (width default): The total number of electron traps available (unitless).
method	character (with default): sequential 'seq' or parallel processing 'par'
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments

16 run_MC_ISO_TUN

Details

The model

```
I_{TUN}(r',t) = -dn/dt = (s * exp(-E/(k_B * T_{ISO}))) * exp(-(\rho')^{(-1/3)} * r') * n(r',t)
```

Where in the function:

E := thermal activation energy (eV)

s := the effective frequency factor for the tunneling process (1/s)

 T_{ISO} := The temperature of the isothermal experiment (degrees C)

 $k_B := Boltzmann constant$

r := the unitless tunneling radius

 $\rho := \text{rho the unitless density of recombination centres}$

t := Time(s)

n := The Instantaneous number of electrons

Value

This function returns an object of class $RLumCarlo_Model_Output$ which is a list consisting of an array with dimension length(times) x length(r) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S., 2019. run_MC_ISO_TUN(): Monte-Carlo Simulation for Isothermal-TL (tunneling transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V. and Kulp, C., 2017. Monte Carlo simulations of tunneling phenomena and nearest neighbor hopping mechanism in feldspars. Journal of Luminescence 181, 114–120. doi: 10.1016/j.jlumin.2016.09.014

Further reading Aitken, M.J., 1985. Thermoluminescence dating. Academic Press.

Huntley, D.J., 2006. An explanation of the power-law decay of luminescence. Journal of Physics: Condensed Matter, 18(4), 1359.doi: 10.1088/09538984/18/4/020

Jain, M., Guralnik, B., Andersen, M.T., 2012. Stimulated luminescence emission from localized recombination in randomly distributed defects. J. Phys.: Condens. Matter 24, 385402. doi: 10.1088/09538984/24/38/385402

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Examples

```
## short example
run_MC_ISO_TUN(
E = .8,
 s = 1e16,
 T = 50,
 rho = 1e-4,
 times = 0:100,
 clusters = 10,
 N_e = 2,
 r_c = 1e-4,
 delta.r = 0.5,
method = "seq") %>%
plot_RLumCarlo(legend = TRUE)
## Not run:
## long (meaningful) example
run_MC_ISO_TUN(
E = .8,
 s = 1e16,
 T = 50,
 rho = 1e-4,
 times = 0:100,
 clusters = 1000,
 N_e = 200,
 r_c = 1e-4
 delta.r = 0.5,
 method = "par")
 plot_RLumCarlo(legend = TRUE)
## End(Not run)
```

run_MC_LM_OSL_DELOC Run Monte-Carlo Simulation for LM-OSL (delocalized transitions)

Description

Runs a Monte-Carlo (MC) simulation of linearly modulated optically stimulated luminesence (LM-OSL) using the one trap one recombination center (OTOR) model. Delocalized refers to involvement of the conduction band.

Usage

```
run_MC_LM_OSL_DELOC(
   A,
   times,
   clusters = 10,
   N_e = 200,
   n_filled = N_e,
   R,
   method = "par",
   output = "signal",
```

)

Arguments

A numeric (**required**): The optical excitation rate from trap to conduction band (s^{-1})

times numeric (with default): The sequence of temperature steps within the simulation

(s)

clusters numeric (with default): The number of MC runs (unitless)

N_e integer (with default): The total number of electron traps available (unitless)
n_filled integer (with default): The number of filled electron traps at the beginning of the

simulation (unitless)

R numeric (with default): The retrapping ratio for delocalized transitions method character (with default): sequential 'seq' or parallel processing 'par'

output character (with default): output is either the 'signal' (the default) or 'remaining_e'

(the remaining charges, electrons, in the trap)

... further arguments

Details

The model

$$I_{DELOC}(t) = -dn/dt = A * (n^2/(N * R + n(1 - R)))$$

Where in the function:

t := Time(s)

A := The optical excitation rate from trap to conduction band

 $n := n_filled$ The Instantaneous number of electrons

R := The retrapping ratio for delocalized transitions

N := N_e total number of electron traps available (unitless)

P := total stimulation time"

Value

This function returns an object of class RLumCarlo_Model_Output which is a list consisting of an array with dimension length(times) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_LM_OSL_DELOC(): Run Monte-Carlo Simulation for LM-OSL (delocalized transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading

Chen, R., McKeever, S.W.S., 1997. Theory of Thermoluminescence and Related Phenomena. WORLD SCIENTIFIC. doi: 10.1142/2781

Examples

```
run_MC_LM_OSL_DELOC(
    A = 0.12,
    R = 0.1,
    times = 0:50,
    method = "seq",
    clusters = 10) %>%
plot_RLumCarlo(legend = TRUE)
```

run_MC_LM_OSL_LOC

Run Monte-Carlo Simulation for LM-OSL (localized transitions)

Description

Runs a Monte-Carlo (MC) simulation of linearly modulated optically stimulated luminesence (LM-OSL) using the generalized one trap (GOT) model. Localized transitions refer to transitions which do not involve the conduction or valence band. These transitions take place between the ground state and an excited state of the trapped charge, and also involve a state of the recombination center.

Usage

```
run_MC_LM_OSL_LOC(
   A,
   times,
   clusters = 10,
   n_filled = 100,
   r,
   method = "par",
   output = "signal",
   ...
)
```

Arguments

```
A numeric (required): The optical excitation rate from trap to conduction band (s^-1)

times numeric (with default): The sequence of time steps within the simulation (s)

clusters numeric (with default): The number of MC runs (unitless)
```

n_filled integer (with default): The number of filled electron traps at the beginning of the

simulation (unitless)

r numeric (with default): The retrapping ratio for localized transitions

method character (with default): sequential 'seq' or parallel processing 'par'

output character (with default): output is either the 'signal' (the default) or 'remaining_e'

(the remaining charges, electrons, in the trap)

... further arguments

Details

The model

$$I_{LOC}(t) = -dn/dt = (A * t/P) * (n^2/(r+n))$$

Where in the function:

A := optical excitation rate from the trap to the conduction band

P := total excitation time

t := Time(s)

 $n := n_{filled}$ The instantaneous number of electrons

r := The retrapping ratio for localized transitions

P := the total stimulation period (s)

Value

This function returns an object of class RLumCarlo_Model_Output which is a list consisting of an array with dimension length(times) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_LM_OSL_LOC(): Run Monte-Carlo Simulation for LM-OSL (localized transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Examples

```
## short example
run_MC_TL_LOC(
 s = 1e8,
E = 0.5,
 times = 0:40,
 clusters = 10,
 n_filled = 10,
 r = 1e-7,
method = "seq",
output = "signal") %>%
plot_RLumCarlo(legend = TRUE)
## Not run:
## the long (meaningful) example
run_MC_TL_LOC(
s = 1e8,
E = 0.6,
 times = 0:100,
 clusters = 100,
n_filled = 100,
 r = 1e-7,
method = "par",
output = "signal")
plot_RLumCarlo(legend = TRUE)
## End(Not run)
```

run_MC_LM_OSL_TUN

Run Monte-Carlo Simulation for LM-OSL (tunneling transitions)

Description

Runs a Monte-Carlo (MC) simulation of linearly modulated optically stimulated luminesence (LM-OSL) using the tunneling (TUN) model. Tunneling refers to quantum mechanical tunneling processes from the excited state of the trapped charge, into a state of the recombination center.

Usage

```
run_MC_LM_OSL_TUN(
    A,
    rho,
    times,
    clusters = 10,
    r_c = 0,
    delta.r = 0.1,
    N_e = 200,
    method = "par",
    output = "signal",
    ...
)
```

Arguments

numeric (required): The effective optical excitation rate for the tunneling process rho numeric (required): The dimensionless density of recombination centers (defined as ρ ' in Huntley 2006) (unitless) times numeric (with default): The sequence of time steps within the simulation (s) numeric (with default): The number of MC runs clusters numeric (with default): Critical distance (>0) that is to be used if the sample has r_c 1 been thermally and/or optically pretreated. This parameter expresses the fact that electron-hole pairs within a critical radius r_c have already been recombined. delta.r numeric (with default): Increments of r_c (unitless) N_e numeric (width default): The total number of electron traps available (unitless) character (with default): sequential 'seq' or parallel processing 'par' method output character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap) further arguments

Details

The model

$$I_{TUN}(r',t) = -dn/dt = (A * t/P) * exp(-(\rho')^{(-1/3)} * r') * n(r',t)$$

Where in the function:

A := the effective optical excitation rate for the tunneling process

t := Time

P := Maximum stimulation time

r' := r

 ρ ' := rho

n := The instantaneous number of electrons

Value

This function returns an object of class $RLumCarlo_Model_Output$ which is a list consisting of an array with dimension length(times) x length(r) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S., 2019. run_MC_LM_OSL_TUN(): Run Monte-Carlo Simulation for LM-OSL (tunneling transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS-Université Bordeaux Montaigne (France)

References

Huntley, D.J., 2006. An explanation of the power-law decay of luminescence. Journal of Physics: Condensed Matter, 18(4), 1359.doi: 10.1088/09538984/18/4/020

Pagonis, V. and Kulp, C., 2017. Monte Carlo simulations of tunneling phenomena and nearest neighbor hopping mechanism in feldspars. Journal of Luminescence 181, 114–120. doi: 10.1016/j.jlumin.2016.09.014

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading Aitken, M.J., 1985. Thermoluminescence dating. Academic Press.

Jain, M., Guralnik, B., Andersen, M.T., 2012. Stimulated luminescence emission from localized recombination in randomly distributed defects. J. Phys.: Condens. Matter 24, 385402. doi: 10.1088/09538984/24/38/385402

Examples

```
##the short example
run_MC_LM_OSL_TUN(
 A = 1,
 rho = 1e-7,
 times = 0:10,
 clusters = 3,
N_e = 2,
 r_c = 0.001,
delta.r = 1e-1,
method = "seq",
output = "signal") %>%
plot_RLumCarlo(norm = TRUE)
## Not run:
## the long (meaningful) example
run_MC_LM_OSL_TUN(
A = 1,
 rho = 1e-3,
 times = 0:1000,
 clusters = 30,
N_e = 100,
 r_c = 0.1,
 delta.r = 1e-1,
 method = "par",
 output = "signal")
plot_RLumCarlo(norm = TRUE)
## End(Not run)
```

24 run_MC_TL_DELOC

run_MC_TL_DELOC

Run Monte-Carlo Simulation for TL (delocalized transitions)

Description

Runs a Monte-Carlo (MC) simulation of thermo-luminesence (TL) using the one trap one recombination center (OTOR) model. Delocalized refers to involvement of the conduction band.

Usage

```
run_MC_TL_DELOC(
    s,
    E,
    times,
    clusters = 10,
    N_e = 200,
    n_filled = N_e,
    R,
    method = "par",
    output = "signal",
    ...
)
```

Arguments

```
numeric (required): The frequency factor of the trap (s^-1)
s
Ε
                   numeric (required): Thermal activation energy of the trap (eV)
times
                   numeric (with default): The sequence of temperature steps within the simulation
clusters
                   numeric (with default): The number of MC runs (unitless)
                   integer (with default): The total number of electron traps available (unitless)
N_e
n filled
                   integer (with default): The number of filled electron traps at the beginning of the
                   simulation (unitless)
R
                   numeric (with default): Retrapping ratio for delocalized transitions
                   character (with default): sequential 'seq' or parallel processing 'par'
method
                   character (with default): output is either the 'signal' (the default) or 'remaining_e'
output
                   (the remaining charges, electrons, in the trap)
                   further arguments
```

Details

The model

```
I_{DELOC}(t) = -dn/dt = (s * exp(-E/(k_B * T))) * (n^2/(N * R + n(1 - R))))
```

Where in the function:

```
E := the thermal activation enery (eV) s := The frequency factor in 1/s
```

run_MC_TL_DELOC 25

```
\label{eq:tau} \begin{array}{l} t:= {\sf Time} \\ k_B:= {\sf Boltzmann\ constant} \\ {\sf T= Temperature} \\ {\sf n:= n\_filled\ The\ Instantaneous\ number\ of\ electrons} \\ {\sf N:= N\_e} \end{array}
```

Value

This function returns an object of class RLumCarlo_Model_Output which is a list consisting of an array with dimension length(times) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_TL_DELOC(): Run Monte-Carlo Simulation for TL (delocalized transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading

Chen, R., McKeever, S.W.S., 1997. Theory of Thermoluminescence and Related Phenomena. WORLD SCIENTIFIC. doi: 10.1142/2781

Examples

```
## the short example
run_MC_TL_DELOC(
 s = 3.5e12,
E = 1.45,
R = 0.1,
 method = 'seq',
 clusters = 3,
 times = 150:350) %>%
plot_RLumCarlo(legend = TRUE)
## Not run:
## the long (meaningful) example
# define your parameters
times <- seq(100, 450, 1)
s \leftarrow rep(3.5e12, 4)
E \leftarrow rep(1.45, 4)
R \leftarrow c(0.7e-6, 1e-6, 0.01, 0.1)
```

26 run_MC_TL_LOC

```
clusters <- 300
N_e < -c(400, 500, 700, 400)
n_{filled} \leftarrow c(400, 500, 300, 70)
method <- "par"
output <- "signal"
col <- c(1, 2, 3, 4) # different colours for the individual curves
plot_uncertainty <- c(TRUE, TRUE, TRUE, TRUE) # do you want to see the uncertainty?
add_TF <- c(FALSE, rep(TRUE, (length(R) - 1)))</pre>
# loop to plot different curves into one plot
for (u in 1:length(R)){
 results <- run_MC_TL_DELOC(
 times=times,
  s = s[u],
  E = E[u],
  clusters = clusters,
  N_e = N_e[u],
  n_filled = n_filled[u],
  R = R[u],
  method = method,
  output = output)
plot_RLumCarlo(
 results,
 add = add_TF[u],
 legend = FALSE,
 col=col[u],
 main = " your plot",
ylim=c(0,20))
}
#add your legend with your parameters
legend("topright",
  ncol = 5,
  cex = 0.55,
  bty = "n",
  title = "parameters",
  legend = c(
   paste0("E = ", E),
   paste0("s = ", s),
   paste0("n_filled = ", n_filled),
   paste0("N_e = ", N_e), paste0("R = ", R)),
   text.col = col)
## End(Not run)
```

run_MC_TL_LOC

Run Monte-Carlo Simulation for TL (localized transitions)

Description

Runs a Monte-Carlo (MC) simulation of thermo-luminesence (TL) using the generalized one trap (GOT) model. Localized transitions refer to transitions which do not involve the conduction or valence band. These transitions take place between the ground state and an excited state of the trapped charge, and also involve a state of the recombination center.

run_MC_TL_LOC 27

Usage

```
run_MC_TL_LOC(
    s,
    E,
    times,
    clusters = 10,
    n_filled = 100,
    r,
    method = "par",
    output = "signal",
    ...
)
```

Arguments

```
numeric (required): The frequency factor of the trap (s^-1)
Ε
                   numeric (required): Thermal activation energy of the trap (eV)
times
                   numeric (with default): The sequence of temperature steps within the simulation
clusters
                   numeric (with default): The number of MC run (unitless)
n_filled
                   integer (with default): The number of filled electron traps at the beginning of the
                   simulation (unitless)
r
                   numeric (with default): The localized retrapping ratio (unitless)
method
                   character (with default): sequential 'seq' or parallel processing 'par'
                   character (with default): output is either the 'signal' (the default) or 'remaining_e'
output
                   (the remaining charges, electrons, in the trap)
                   further arguments
```

Details

The model

```
I_{LOC}(t) = -dn/dt = (s * exp(-E/(k_B * T))) * (n^2/(r+n))
```

Where in the function:

```
E := the thermal activation energy (eV)

s := the frequency factor for the trap (1/s)

t := time (s)

k_B := Boltzmann constant

T := temperature (degrees C)

n := the Instantaneous number of electrons

r := the retrapping ratio for localized transitions
```

Value

This function returns an object of class RLumCarlo_Model_Output which is a list consisting of an array with dimension length(times) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Kreutzer, S., 2019. run_MC_TL_LOC(): Run Monte-Carlo Simulation for TL (localized transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., reutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Examples

```
## the short example
run_MC_TL_LOC(
s = 1e14,
E = 0.9,
times = 50:100,
method = "seq",
clusters = 2,
r = 1e4) \%
plot_RLumCarlo()
## Not run:
## the long (meaningful) example
run_MC_TL_LOC(
s = 1e14,
E = 0.9,
 times = 50:100,
method = "par",
clusters = 100,
 r = 1e4)
plot_RLumCarlo()
## End(Not run)
```

run_MC_TL_TUN

Run Monte-Carlo Simulation for TL (tunneling transitions)

Description

Runs a Monte-Carlo (MC) simulation of thermo-luminesence (TL) caused by tunnelling (TUN) transitions. Tunneling refers to quantum mechanical tunneling processes from the excited state of the trapped charge, into a state of the recombination center.

Usage

```
run_MC_TL_TUN(
    s,
    E,
    rho,
    r_c = 0,
    times,
    clusters = 10,
    N_e = 200,
    delta.r = 0.1,
    method = "par",
    output = "signal",
    ...
)
```

Arguments

S	list (required): The effective frequency factor for the tunneling process (1/s)
Е	numeric (required): Thermal activation energy of the trap (eV)
rho	numeric (required): The dimensionless density of recombination centers (defined as ρ ' in Huntley 2006)
r_c	numeric (with default): Critical distance (>0) that is to be used if the sample has been thermally and/or optically pretreated. This parameter expresses the fact that electron-hole pairs within a critical radius r_c have already been recombined.
times	vector (wih default): The sequence of time steps within the simulation (s)
clusters	numeric (with default): The number of MC runs (unitless)
N_e	numeric (with default): The total number of electron traps available (unitless)
delta.r	numeric (with default): The increments of r_c (unitless)
method	character (with default): sequential 'seq' or parallel processing 'par'.
output	<pre>character (with default): output is either the 'signal' (the default) or 'remaining_e' (the remaining charges, electrons, in the trap)</pre>
	further arguments

Details

The model

```
I_{TUN}(r',t) = -dn/dt = (s*exp(-E/(k_B*T)))*exp(-(\rho')^(-1/3)*r')*n(r',t) Where in the function: s := \text{effective frequency for the tunneling process (1/s)} E := \text{thermal activation energy (eV)} k_B := \text{Boltzmann constant} T := \text{temperature } r' := \text{r electron-hole distance (unitless)} \rho' := \text{Density of recombination centers} t := \text{time (s)} n := \text{The instantaneous number of electrons}
```

Value

This function returns an object of class RLumCarlo_Model_Output which is a list consisting of an array with dimension length(times) x length(r) x clusters and a numeric time vector.

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S., 2019. run_MC_TL_TUN(): Run Monte-Carlo Simulation for TL (tunneling transitions). Function version 0.1.0. In: Friedrich, J., Kreutzer, S., Pagonis, V., Schmidt, C., 2019. RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-127.

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, Université Bordeaux Montaigne (France)

References

Huntley, D.J., 2006. An explanation of the power-law decay of luminescence. Journal of Physics: Condensed Matter, 18(4), 1359.doi: 10.1088/09538984/18/4/020

Pagonis, V. and Kulp, C., 2017. Monte Carlo simulations of tunneling phenomena and nearest neighbor hopping mechanism in feldspars. Journal of Luminescence 181, 114–120. doi: 10.1016/j.jlumin.2016.09.014

Pagonis, V., Friedrich, J., Discher, M., Müller-Kirschbaum, A., Schlosser, V., Kreutzer, S., Chen, R. and Schmidt, C., 2019. Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence 207, 266–272. doi: 10.1016/j.jlumin.2018.11.024

Further reading Aitken, M.J., 1985. Thermoluminescence dating. Academic Press.

Jain, M., Guralnik, B., Andersen, M.T., 2012. Stimulated luminescence emission from localized recombination in randomly distributed defects. J. Phys.: Condens. Matter 24, 385402. doi: 10.1088/09538984/24/38/385402

Examples

```
## the short example
run_MC_TL_TUN(
    s = 1e12,
    E = 0.9,
    rho = 1,
    r_c = 1,
    times = 80:120,
    clusters = 2,
    method = 'seq',
    delta.r = 1e-1) %>%
plot_RLumCarlo()

## Not run:
## the long (meaningful example)
run_MC_TL_TUN(
```

```
s = 1e12,
E = 0.9,
rho = 0.01,
r_c = 0.1,
times = 80:220,
clusters = 100,
method = 'par',
delta.r = 1e-1)
plot_RLumCarlo()
```

Index

logical, 3

```
* data
                                                  numeric, 5-7, 9, 11-16, 18-20, 22, 24, 25, 27,
    run_MC_CW_IRSL_LOC, 4
                                                           29, 30
    run_MC_CW_IRSL_TUN, 6
                                                  plot_RLumCarlo, 3
    run_MC_CW_OSL_DELOC, 8
    run_MC_ISO_DELOC, 11
                                                  RLumCarlo (RLumCarlo-package), 2
    run_MC_ISO_LOC, 13
                                                  RLumCarlo-package, 2
    run_MC_ISO_TUN, 15
                                                  run_MC_CW_IRSL_LOC, 4
    run_MC_LM_OSL_DELOC, 17
                                                  run_MC_CW_IRSL_TUN, 6
    run_MC_LM_OSL_LOC, 19
                                                  run_MC_CW_OSL_DELOC, 8
    run_MC_LM_OSL_TUN, 21
                                                  run_MC_ISO_DELOC, 11
    run_MC_TL_DELOC, 24
                                                  run_MC_ISO_LOC, 13
    run_MC_TL_LOC, 26
                                                  run_MC_ISO_TUN, 15
    run_MC_TL_TUN, 28
                                                  run_MC_LM_OSL_DELOC, 17
* hplot
                                                  run_MC_LM_OSL_LOC, 19
    plot_RLumCarlo, 3
                                                  run_MC_LM_OSL_TUN, 21
* models
                                                  run_MC_TL_DELOC, 24
    run_MC_CW_IRSL_LOC, 4
                                                  run_MC_TL_LOC, 26
    run_MC_CW_IRSL_TUN, 6
                                                  run\_MC\_TL\_TUN, 28
    run_MC_CW_OSL_DELOC, 8
    run_MC_ISO_DELOC, 11
                                                  vector, 29
    run_MC_ISO_LOC, 13
    run_MC_ISO_TUN, 15
    run_MC_LM_OSL_DELOC, 17
    run_MC_LM_OSL_LOC, 19
    run_MC_LM_OSL_TUN, 21
    run_MC_TL_DELOC, 24
    run_MC_TL_LOC, 26
    run\_MC\_TL\_TUN, 28
* package
    RLumCarlo-package, 2
array, 5, 7, 9, 12, 14, 16, 18, 20, 22, 25, 27, 30
character, 5, 7, 9, 12, 13, 15, 18, 20, 22, 24,
        27, 29
graphics::plot.default, 3
integer, 5, 9, 11–13, 18, 20, 24, 27
khroma::khroma-package, 4
list, 3, 5, 7, 9, 12, 14, 16, 18, 20, 22, 25, 27,
         29, 30
```