

Relatório Estudo De Caso I

Análise De Sistemas Elétricos De Potência II

Integrantes: Cássia Reis Afonso de Freitas Matrícula: 190900-048

Gabriel Luis de Sousa 180950-030

Lucas Xavier de Morais 190950-011

São João del-Rei, abril de 2024.

Sumário

1.	INTRODUÇÃO	1
2.	OBJETIVO	1
3.	METODOLOGIA	1
4.	RESULTADOS DA ROTINA IMPLEMENTADA E SIMULAÇÃO	5
5.	VERIFICAÇÃO DE PREMISSAS PARA ESTUDO ELÉTRICO	9
6.	CONDICIONAMENTO DO SISTEMA	10
7.	CONCLUSÃO	14
8.	REFERÊNCIAS BIBLIOGRÁFICAS	14
	<u>Lista De Figuras</u>	
Figu	ura 01 – Gráfico Referente a Reposta do Método de Newton Raphson	5
Figu	ura 02 – Relatório das Potências nas Barras	6
Figu	ura 03 $-$ Relatório das Potências nas Barras em $ extbf{ extit{p}}. extbf{ extit{u}}$	6
Figu	ura 04 – Relatório das Potências Ativas Geradas nas Barras em $m{p}.m{u}.$	7
Figu	ura 05 – Relatório das ${m km}$ e ${m mk}$ e suas Capacidades de Operação em ${m p}.{m u}$	7
Figu	ura 06 – Sistema Implementado no <i>PowerWorld.</i>	8
Figu	ura 07 – Resultados das Barras no <i>PowerWorld</i>	8
Figu	ura 08 – Resultados dos Circuitos no <i>PowerWorld.</i>	9
Figu	ura 09 – Limites de Tensões de Operação, ONS	9
Figu	ura 10 – Sugestões de Ajuste para Operação	11
Figu	ura 11 – Novas Potências Ativas Geradas nas Barras em $m{p}.m{u}$	11
Figu	ura 12 – Novo Relatório das Potências nas Barras	12
Figu	ura 13 – Novo Relatório das km e mk e suas Capacidades de Operação em	p. u.
		13

1. INTRODUÇÃO

O Sistema Elétrico de Potência (SEP), é um conjunto complexo de vários equipamentos que atuam para a transmissão e distribuição de energia elétrica de maneira segura e estável. O estudo e análise das grandezas em cada componente deste sistema é de extrema importância para garantir a estabilidade e segurança na operação.

No Brasil, o ONS (Operador Nacional do Sistema Elétrico) é responsável por supervisionar e regular a transmissão de modo que os limites seguros de operação sejam atendidos.

O sistema é um modelo do que acontece na realidade, e como em qualquer modelo, é uma representação matemática do sistema. Este geralmente é representado por barras, que são nós no sistema, interligados por linhas, que podem estar representando uma linha de transmissão ou um transformador que liga duas barras.

2. OBJETIVO

O estudo de caso 1 (EC1), é um sistema de 12 (doze) barras, com 3 (três) transformadores e 4 (quatro) geradores. Também são representadas 6 (seis) cargas neste sistema e 1 (um) banco de capacitor.

O Objetivo deste estudo é analisar as grandezas iniciais em todos os componentes, como, magnitude das tensões nodais, ângulos de fase, distribuição dos fluxos e das injeções de potências ativa e reativa nas barras, dentre outras grandezas de interesse utilizando o método Newton-Raphson para um modelo estático do sistema, e assim, verificar se, em operação, o sistema se adequa aos limites da ONS e seus limites próprios de potência.

3. METODOLOGIA

Um fator muito importante no SEP é a definição das barras e seus tipos. Como visto no material de apoio disponibilizado [1], a cada barra, serão associadas quatro variáveis:

- V_k Magnitude da tensão nodal.
- θ_k Ângulo da tensão nodal.

- P_k Potência ativa injetada na barra k (geração menos carga).
- Q_k Potência reativa injetada na barra k (geração menos carga).

No problema básico do SEP, há três tipos de barra:

- PQ (barras de carga).
- PV (barras de geração).
- SW (referência ou slack bus).

A barra do tipo *PQ*, é uma barra de carga, onde não há geração. Esta barra pode ser apenas uma barra de *passagem*, onde não há nenhuma carga instalada nela, ou um nó que há carga, que pode estar modelando uma subestação por exemplo. Nas barras *PQ*, são determinadas as potências ativas e reativas, e a magnitude da tensão e o ângulo da barra são incógnitas.

A barra PV é uma barra de tensão controlada. Nesta barra, há um gerador instalado nela, e há um sistema de controle que garante a tensão escolhida. Aqui, a potência ativa e a magnitude de tensão é determinada antes, e o ângulo e a potência reativa deverão ser calculados.

Já a barra SW é a barra de referência para o problema. Nesta, são determinadas a magnitude de tensão e o ângulo, que geralmente são $1.00\,p.\,u.$ e 0° radianos respectivamente. Serão calculados os fluxos de potências ativas e reativas nessa barra e é ela quem fecha o balanço de potência do problema.

O primeiro passo para solucionar um SEP, é montar a matriz admitância do mesmo, considerando os modelos estáticos para cada componente. Importante notar, que para facilitar os cálculos, principalmente quando o sistema envolve transformadores, os dados considerados devem estar em valores p.u. (por unidade).

A matriz admitância (Y), é uma matriz $NB \times NB$, onde NB é o número de barras do sistema, e cada componente Y_{km} representa a conexão entre as barras k e m. Na diagonal, onde, k = m, são representadas todas as ligações ao nó.

As equações (1) e (2) podem ser usadas para modelar cada componente, como podese observar a seguir,

$$Y_{kk} = jb_{sh}^{k} + a_{km}^{2} + jb_{km}^{sh} \tag{1}$$

$$Y_{km} = -a_{km}e^{-j}\emptyset y_{km} \tag{2}$$

A partir de Y, é possível calcular a potência a partir de (3) e (4).

$$P_{k} = V_{km}V_{m}(G_{km}cos(\emptyset_{km}) + B_{km}sin(\emptyset_{km}))$$
(3)

$$Q_k = V_{km}V_m (G_{km}sin(\phi_{km}) + B_{km}cos(\phi_{km}))$$
(4)

Desta forma, temos que o problema pode ser separado em dois subsistemas de equações. Um de dimensão (2NPQ + NPV), e outro de dimensão (NPV + 2), onde NPQ e NPV são o número de barras do tipo PQ e PV respectivamente.

Para o primeiro subsistema, deverão ser solucionadas as equações (5) e (6):

$$P_{k}^{esp} - V_{km} V_{m} (G_{km} cos(\emptyset_{km}) + B_{km} sin(\emptyset_{km})) = 0$$

$$(5)$$

$$Q_k^{es} p = V_{km} V_m (G_{km} sin(\emptyset_{km}) + B_{km} cos(\emptyset_{km})) = 0$$
(6)

Neste subsistema as incógnitas são implícitas, e, portanto, é necessário aplicar o método iterativo. Para o segundo subsistema, temos as equações (7) e (8), a serem solucionadas.

$$P_k - V_{km}V_m(G_{km}cos(\emptyset_{km}) + B_{km}sin(\emptyset_{km})) = 0$$
(7)

$$Q_k^{esp} = V_{km}V_m(G_{km}sin(\emptyset_{km}) + B_{km}cos(\emptyset_{km})) = 0$$
(8)

Aqui, as equações possuem incógnitas explícitas, e, portanto, sua solução é trivial.

A fim de solucionar então o subsistema 1, onde a solução do método Newton-Raphson para um sistema de equações, se dá a partir da equação (9).

$$\Delta x^{i} = \left[\Delta \emptyset^{i} ; \Delta V^{i} \right] = -J^{-1} \cdot \left[\Delta P(\emptyset^{i}, V^{i}) ; Q(\emptyset^{i}, V^{i}) \right]$$
(9)

Onde a cada iteração i, serão calculadas, a partir das duas matrizes J e [$\Delta P(\emptyset^i, V^i)$; $Q(\emptyset^i, V^i)$], as variações que deverão ser aplicadas aos chutes de ângulo para as barras PQ e PV e tensões nas barras PQ.

A matriz jacobiana J, é uma matriz que contém as derivadas das equações (5) e (6) para cada barra k do sistema.

Na implementação da rotina, por conveniência, dado que a mesma, foi construída para fins de estudo, o método mais eficaz de Newton-Raphson para a solução do sistema não foi utilizado, desta forma, foi implementada uma matriz Jacobina completa, de dimensões 2NB x 2NB.

Na submatriz $\partial P/\partial O$, insere-se um valor bastante elevado na posição da diagonal correspondente à barra de referência (Swing) e zero nos demais elementos da linha e coluna referentes a essa barra. Outrossim, na submatriz $\partial Q/\partial V$, insere-se um valor bastante elevado na posição da diagonal correspondente à barra de referência (Swing) e PV, e zero nos demais elementos da linha e coluna referentes a essa barra.

O método Newton-Raphson, consiste em analisar a curva de uma função através de sua derivada, fazendo ajustes ao chute do valor até que este chute atenda à uma tolerância definida, que permite então, chegar numericamente a um valor aproximado da raiz da função.

Figura 01 – Gráfico Referente a Reposta do Método de Newton Raphson.

Analisando a Figura 01, a função f(x) é a curva em azul, e deseja-se encontrar a raíz desta. Para isso foi feito um chute inicial x_0 . O valor de f(x) neste ponto, não é um valor próximo suficiente de zero, portanto, através da derivada desta função naquele ponto, será feito um novo chute x_1 , que é o ponto onde, $f'(x_0) = 0$.

Assim, obtém-se então, todos os ângulos, magnitudes de tensão, e potências ativa e reativa para cada barra, desta maneira, é possível analisar o sistema.

Para solucionar e calcular os fluxos de potência, foi criada uma rotina em Python [2], que interpreta os dados do sistema a partir de um arquivo texto, e soluciona o problema de fluxo de potência através do método Newton Raphson. Os resultados, são então, disponibilizados em um outro arquivo texto.

4. RESULTADOS DA ROTINA IMPLEMENTADA E SIMULAÇÃO

A seguir, será apresentado pela Figura 02, um relatório sobre as potências demandadas e injetadas nas barras do sistema, assim como na Figura 03, mas desta vez apresentadas em relação a base do sistema (p.u.)

Ademais, a fim de facilitar a visualização da geração e consumo de potência do sistema, foram impressos os relatórios presentes na Figura 04 e Figura 05.

BARRA	TENSA0	THETA	PΙ	QI	PG	QG	SG	PD	QD
#	(PU)	(DEG)	MW	MVAr	MW	MVAr	MVA	MW	MVAr
1	1.02000	-4.35037	95.0000	14.1610	95.0000	14.1610	96.0496	0.0000	0.000
2	1.00998	-4.26692	-38.7400	-8.7000	0.0000	0.0000	0.0000	38.7400	8.700
3	1.01000	-0.00000	61.9603	-17.0031	115.1603	-7.8031	115.4244	53.2000	9.200
4	0.97695	-10.86890	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.000
5	0.98473	-4.67990	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.000
6	1.01000	-2.76193	60.0000	111.2494	60.0000	111.2494	126.3979	0.0000	0.000
7	0.98130	-5.07776	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
8	0.94903	-8.51725	-64.9000	-5.4000	0.0000	-0.0000	0.0000	64.9000	5.400
9	1.08031	-5.77781	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.000
10	0.93785	-12.17962	-53.5000	-11.6000	0.0000	-0.0000	0.0000	53.5000	11.600
11	0.95313	-9.40274	-33.5000	-8.5200	-0.0000	0.0000	0.0000	33.5000	8.520
12	1.00000	-4.44829	-8.5000	-58.4821	35.0000	-48.9621	60.1855	43.5000	9.520
tal					305.1603	68.6451	398.0574	287.3400	287.340

Figura 02 – Relatório das Potências nas Barras.

BARRA #	TENSAO (PU)	THETA (DEG)	PI [QI 	PG	QG (PU)	SG 	PD	QD
1	1.02000	-0.07593	0.9500	0.1416	0.9500	0.1416	0.9605	0.0000	0.000
2	1.00998	-0.07447	-0.3874	-0.0870	0.0000	0.0000	0.0000	0.3874	0.087
3	1.01000	-0.00000	0.6196	-0.1700	1.1516	-0.0780	1.1542	0.5320	0.092
4	0.97695	-0.18970	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.000
5	0.98473	-0.08168	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.000
6	1.01000	-0.04820	0.6000	1.1125	0.6000	1.1125	1.2640	0.0000	0.000
7	0.98130	-0.08862	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
8	0.94903	-0.14865	-0.6490	-0.0540	0.0000	-0.0000	0.0000	0.6490	0.054
9	1.08031	-0.10084	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.000
10	0.93785	-0.21257	-0.5350	-0.1160	0.0000	-0.0000	0.0000	0.5350	0.116
11	0.95313	-0.16411	-0.3350	-0.0852	-0.0000	0.0000	0.0000	0.3350	0.085
12	1.00000	-0.07764	-0.0850	-0.5848	0.3500	-0.4896	0.6019	0.4350	0.09
tal					3.0516	0.6865	3.9806	2.8734	2.8734

Figura 03 – Relatório das Potências nas Barras em p.u.

BARRA #	PG (PU)	Carga Máxima (PU)	Carga Mínima (PU)	Carga aceitáv SIM / NÃO
	(FU)	(FU)	(FU)	31M / NAU
1	0.9500	1.20	0.00	SIM
3	1.1516	1.00	0.00	NÃO
6	0.6000	1.00	0.00	SIM
12	0.3500	0.80	0.00	SIM

Figura 04 – Relatório das Potências Ativas Geradas nas Barras em p.u.

	RRA PARA [PKM	QKM (P		Capacidade	Pode operar? SIM / NĀO
1	2	0.0282	0.1497	0.1524	1.0	SIM
1	4	0.9218	-0.0081	0.9218	1.0	SIM
2	3	-0.3597	0.0884	0.3704	1.0	SIM
3	6	0.2535	-0.0864	0.2678	1.0	SIM
4	7	0.8777	-0.0840	0.8817	0.8	NÃO
5	8	0.2482	0.1478	0.2889	0.8	SIM
5	6	-0.2482	-0.1478	0.2889	1.0	SIM
6	9	0.6002	0.8731	1.0594	0.8	NÃO
7	8	0.4623	-0.1069	0.4745	0.5	SIM
7	10	0.4154	-0.0114	0.4156	0.5	SIM
8	11	0.0392	-0.0579	0.0699	0.5	SIM
9	11	0.4937	0.1521	0.5166	0.5	NĀ0
9	12	0.0532	0.3147	0.3192	0.5	SIM
9	12	0.0532	0.3147	0.3192	0.5	SIM
10	11	-0.1424	0.0439	0.1490	0.5	SIM
			Relatório das potên	cias nos circuito	s mk em PU	
	RRA	PMK	QMK	SMK	 Capacidade	Pode operar?
			QMK (P	SMK U)	Capacidade	Pode operar? SIM/NĀO
DE			QMK (P (P	SMK U) 0.1775	Capacidade	Pode operar? SIM/NÃO SIM
DE	PARA [(P	U)	1	SIM/NÃO
DE 2	PARA [(P (P -0.1754	U) 0.1775	1.0	SIM/NĀO SIM
DE 2 4	PARA [1 1	-0.0277 -0.8777	(P 	U) 0.1775 0.8817	1.0	SIM/NĀO SIM SIM
DE 2 4 3	PARA [1 1 2	-0.0277 -0.8777 0.3661	-0.1754 0.0840 -0.0837	U) 	1.0 1.0 1.0	SIM/NĀO SIM SIM SIM
DE 2 4 3 6	PARA [-0.0277 -0.8777 0.3661 -0.2495	-0.1754 0.0840 -0.0837 0.0794	U) 	1.0 1.0 1.0 1.0	SIM/NĀO SIM SIM SIM SIM
DE 2 4 3 6 7	PARA [-0.0277 -0.8777 0.3661 -0.2495 -0.8777	-0.1754 0.0840 -0.0837 0.0794 0.1183	U) 	1.0 1.0 1.0 1.0 0.8	SIM/NĀO SIM SIM SIM SIM NĀO
DE 2 4 3 6 7	PARA [1 1 2 3 4 5	-0.0277 -0.8777 0.3661 -0.2495 -0.8777 -0.2482	-0.1754 0.0840 -0.0837 0.0794 0.1183 -0.1261	U) 0.1775 0.8817 0.3755 0.2618 0.8856 0.2784	1.0 1.0 1.0 1.0 0.8	SIM/NĀO SIM SIM SIM SIM SIM SIM SIM SIM NĀO SIM
DE 2 4 3 6 7 8 6	PARA [1 1 2 3 4 5 5	-0.0277 -0.8777 0.3661 -0.2495 -0.8777 -0.2482 0.2493	-0.1754 0.0840 -0.0837 0.0794 0.1183 -0.1261 0.1600	U) 0.1775 0.8817 0.3755 0.2618 0.8856 0.2784 0.2963	1.0 1.0 1.0 1.0 0.8 0.8	SIM/NĀO SIM SIM SIM SIM SIM SIM NĀO SIM SIM
DE 2 4 3 6 7 8 6 9	PARA [-0.0277 -0.8777 0.3661 -0.2495 -0.8777 -0.2482 0.2493 -0.6002	-0.1754 0.0840 -0.0837 0.0794 0.1183 -0.1261 0.1600 -0.7815	U) 0.1775 0.8817 0.3755 0.2618 0.8856 0.2784 0.2963 0.9854	1.0 1.0 1.0 1.0 0.8 0.8 1.0	SIM/NĀO SIM SIM SIM SIM SIM NĀO SIM SIM SIM
DE 2 4 3 6 7 8 6 9	PARA [-0.0277 -0.8777 0.3661 -0.2495 -0.8777 -0.2482 0.2493 -0.6002 -0.4401	-0.1754 0.0840 -0.0837 0.0794 0.1183 -0.1261 0.1600 -0.7815 0.1300	U) 0.1775 0.8817 0.3755 0.2618 0.8856 0.2784 0.2963 0.9854 0.4589	1.0 1.0 1.0 1.0 0.8 0.8 1.0 0.8	SIM/NĀO SIM SIM SIM SIM SIM NĀO SIM SIM SIM SIM SIM SIM SIM SIM
DE 2 4 3 6 7 8 6 9 8	PARA [-0.0277 -0.8777 0.3661 -0.2495 -0.8777 -0.2482 0.2493 -0.6002 -0.4401 -0.3926	-0.1754 0.0840 -0.0837 0.0794 0.1183 -0.1261 0.1600 -0.7815 0.1300 0.0599	U) 0.1775 0.8817 0.3755 0.2618 0.8856 0.2784 0.2963 0.9854 0.4589 0.3972	1.0 1.0 1.0 1.0 0.8 0.8 1.0 0.8 0.5	SIM/NĀOSIM SIM SIM SIM NĀO SIM SIM SIM SIM SIM NĀO SIM SIM SIM SIM
DE 2 4 3 6 7 8 6 9 8 10	PARA [-0.0277 -0.8777 0.3661 -0.2495 -0.8777 -0.2482 0.2493 -0.6002 -0.4401 -0.3926 -0.0385	-0.1754 0.0840 -0.0837 0.0794 0.1183 -0.1261 0.1600 -0.7815 0.1300 0.0599 0.0587	U) 0.1775 0.8817 0.3755 0.2618 0.8856 0.2784 0.2963 0.9854 0.4589 0.3972 0.0702	1.0 1.0 1.0 1.0 0.8 0.8 1.0 0.8 0.5 0.5	SIM/NĀOSIM SIM SIM SIM NĀO SIM SIM NĀO SIM NĀO SIM SIM SIM SIM SIM SIM
DE 2 4 3 6 7 8 6 9 8 10 11 11	PARA [-0.0277 -0.8777 0.3661 -0.2495 -0.8777 -0.2482 0.2493 -0.6002 -0.4401 -0.3926 -0.0385 -0.4432	-0.1754 0.0840 -0.0837 0.0794 0.1183 -0.1261 0.1600 -0.7815 0.1300 0.0599 0.0587 -0.1063	U) 0.1775 0.8817 0.3755 0.2618 0.8856 0.2784 0.2963 0.9854 0.4589 0.3972 0.0702 0.4558	1.0 1.0 1.0 1.0 0.8 0.8 1.0 0.8 0.5 0.5	SIM/NĀOSIM SIM SIM SIM NĀO SIM SIM NĀO SIM SIM SIM SIM SIM SIM SIM SIM

Figura 05 – Relatório das km e mk e suas Capacidades de Operação em p.u.

Outrossim, como observado na Figura 06, utilizou-se o *software PowerWorld,* para que o sistema de doze barras pudesse ser simulado, e assim verificarmos de outra forma, o fluxo de potência do mesmo, como visto na Figura 07 e Figura 08.

Figura 06 - Sistema Implementado no PowerWorld.

	Number 🛦	Name	Area Name	Nom kV	PU Volt	Volt (kV)	Angle (Deg)	Load MW	Load Mvar	Gen MW	Gen Mvar
1	1	1	1	500.00	1.02001	510.003	-4.35			95.00	13.99
2	2	2	1	500.00	1.00998	504.990	-4.27	38.74	8.70		
3	3	3	1	500.00	1.01000	505.000	0.00	53.20	9.20	115.15	-7.81
4	4	4	1	500.00	0.97706	488.528	-10.87				
5	5	5	1	500.00	0.98476	492.381	-4.68				
6	6	6	1	500.00	1.01001	505.003	-2.76			60.00	111.22
7	7	7	1	230.00	0.98140	225.723	-5.08				
8	8	8	1	230.00	0.94912	218.297	-8.52	64.90	5.40		
9	9	9	1	230.00	1.08033	248.476	-5.78				
10	10	10	1	230.00	0.93797	215.734	-12.18	53.50	-10.39		
11	11	11	1	230.00	0.95321	219.238	-9.40	33.50	8.52		
12	12	12	1	230.00	1.00001	230.002	-4.45	43.50	9.52	35.00	-48.97

Figura 07 - Resultados das Barras no PowerWorld.

	From Numbe ▲ From Name	To Number	To Name	Circuit	Status	Branch Device Type	Xfrmr	MW From	Mvar From	MVA From	Lim MVA	% of MVA Limit (Max)	MW Loss	Mvar Loss
1	1 1	4	4	1	Closed	Line	NO	92.2	-1.0	92.2	0.0	0.0	4.41	7.41
2	1 1	2	2	1	Closed	Line	NO	2.8	15.0	15.2	0.0	0.0	0.05	-2.56
3	2 2	3	3	1	Closed	Line	NO	-36.0	8.8	37.0	0.0	0.0	0.64	0.47
4	3 3	6	6	1	Closed	Line	NO	25.3	-8.6	26.8	0.0	0.0	0.40	-0.70
5	4 4	7	7	1	Closed	Transformer	YES	87.8	-8.4	88.2	0.0	0.0	0.00	3.43
6	5 5	8	8	1	Closed	Transformer	YES	24.8	14.8	28.9	0.0	0.0	0.00	2.17
7	6 6	5	5	1	Closed	Line	NO	24.9	16.0	29.6	0.0	0.0	0.12	1.22
8	6 6	9	9	1	Closed	Transformer	YES	60.0	87.3	105.9	0.0	0.0	0.00	9.15
9	7 7	10	10	1	Closed	Line	NO	41.5	-1.2	41.6	0.0	0.0	2.28	4.85
10	7 7	8	8	1	Closed	Line	NO	46.2	-10.7	47.4	0.0	0.0	2.22	2.31
11	8 8	11	11	1	Closed	Line	NO	3.9	-5.8	7.0	0.0	0.0	0.07	0.09
12	9 9	12	12	2	Closed	Line	NO	5.3	31.5	31.9	0.0	0.0	1.07	2.23
13	9 9	12	12	1	Closed	Line	NO	5.3	31.5	31.9	0.0	0.0	1.07	2.23
14	9 9	11	11	1	Closed	Line	NO	49.4	15.2	51.6	0.0	0.0	5.05	4.57
15	10 10	11	11	1	Closed	Line	NO	-14.2	4.4	14.9	0.0	0.0	0.43	0.63

Figura 08 - Resultados dos Circuitos no PowerWorld.

5. VERIFICAÇÃO DE PREMISSAS PARA ESTUDO ELÉTRICO

A partir dos resultados apresentados em 4, é possivel verificar que, na Figura 05, a potência de geração na barra 3 excede o limite da mesma. Agora analisando a Figura 08, nas linhas entre as barras [4 e 7], [6 e 9] e [9 e 11], flui uma potência aparente maior que a suportada.

Também é necessário verificar as tensões nas barras, e se as mesmas atendem aos requisitos da ONS, que são apresentados em "Premissas, critérios e metodologia para estudos elétricos" no Submódulo 2.3 dos Procedimentos de Rede do ONS, como apresentado na Figura 09.

Tensão nominal de operação (1)		ão operativa ormal		perativa sob gências
(kV)	(kV)	(pu) (2)	(kV)	(pu) (2)
< 230	-	0,95 a 1,05	-	0,90 a 1,05
230	218 a 242	0,95 a 1,05	207 a 242	0,90 a 1,05
345	328 a 362	0,95 a 1,05	311 a 362	0,90 a 1,05
440	418 a 460	0,95 a 1,046	396 a 460	0,90 a 1,046
500	500 a 550	1,00 a 1,10	475 a 550	0,95 a 1,10
525	500 a 550	0,95 a 1,048	475 a 550	0,90 a 1,048
765	690 a 800	0,90 a 1,046	690 a 800	0,90 a 1,046

Figura 09 - Limites de Tensões de Operação, ONS.

No sistema em questão, as barras 1 a 6 possuem tensão nominal de 500kV e as barras 7 a 12, possuem tensão nominal de 230kV. Para este estudo de caso deverá ser considerada a operação do sistema em condições normais. Assim, as barras 1 a 6 devem apresentar uma tensão entre 1,00 p.u. - 1,10 p.u. e as barras 1 a 6 devem apresentar uma tensão entre 0,95 p.u. - 1,05 p.u.

A partir da Figura 03, é possível verificar que as barras 4, 5, 8, 9 e 10 não satisfazem as premissas de operação da ONS.

6. CONDICIONAMENTO DO SISTEMA

Como visto em **Erro! Fonte de referência não encontrada.**, o sistema implementado n a Figura 06 não cumprem com as premissas dirigidas pela ONS, desta forma, através da tentativa e erro, feita de maneira manual, foram sugeridas algumas alterações como,

- Incluir um banco de capacitores na barra 4 de $B_{sh}=0.25~p.\,u.$, ou $Q_k^{sh}=0.25~p.\,u.=25~MVar;$
- Incluir um banco de capacitores na barra 5 de $B_{sh}=0.15\,p.\,u.$, ou $Q_k^{sh}=0.15\,p.\,u.=15\,MVar;$
- Incluir um banco de capacitores na barra 8 de $B_{sh}=0.10~p.u.$, ou $Q_k^{sh}=0.10~p.u.=10~MVar$;
- Aumentar o banco de capacitores na barra 10 para $B_{sh}=0.35~p.\,u.$, ou $Q_k^{sh}=0.35~p.\,u.=35~MVar;$
- Mudar o tap de defasagem do transformador entre as linhas 4 e 7 para 4,0°;
- Mudar o *tap* do transformador da linha 6 e 9 para 1,05 *p.u.*

Estas alterações podem ser visualizadas na Figura 10, assim, o sistema apresenta condições satisfatórias de funcionamento. Porém, esta não é a melhor solução, visto que foi providenciada a partir de chutes aleatórios e não de maneira eficiente, como será aprendido mais à frente no curso de *Análise de Sistemas Elétricos de Potência II*.

DBAR							
	(X				xx		
BARRA			Bsh(PU)				PGesp(PU) C
01		0 0	0.00		1.0200	0.00	0.950
02			0.00		1.0000	0.00	0
03					1.0100	0.00	0
04		0 0			1.0000	0.00	0
0.5		0 0			1.0000	0.00	0
06		0 0			1.0100	0.00	0.800
07		0 0			1.0000	0.00	0
08			0.10		1.0000	0.00	0
09		0 0			1.0000	0.00	0
10			0.35		1.0000	0.00	0
11			0.00		1.0000	0.00	0
12	0.435	0 0.0952	0.00	PV	1.0000	0.00	0.350
####							
DCIR							
x >	xx	xx x	x x-	x	xx	xx	xx
BDE	BPARA	NCIR RE	S(PU) RE	AT(PU)	SUCsh(PU)	TAD(DII)	DEE(CDAME)
					0000(/	IAF(FU)	DEF(GRAUS)
01	02	01 0		0.0592			
01			.0194			1.00	00.000
	04	02 0	.0194 .0540	0.0592	0.0264 0.0246	1.00	00.000 00.000
01	04 2 03	02 0 03 0	.0194 .0540 .0470	0.0592 0.1230	0.0264 0.0246 0.0219	1.00 1.00 1.00	00.000 00.000 00.000
01	04 9 03 8 06	02 0 03 0 04 0	.0194 .0540 .0470 .0581	0.0592 0.1230 0.1980	0.0264 0.0246 0.0219	1.00 1.00 1.00	00.000 00.000 00.000 00.000
01 02 03	04 2 03 3 06 4 07	02 0 03 0 04 0 05 0	.0194 .0540 .0470 .0581 .0000	0.0592 0.1230 0.1980 0.1763	0.0264 0.0246 0.0219 0.0187	1.00 1.00 1.00 1.00	00.000 00.000 00.000 00.000 4.000
01 02 03	04 9 03 8 06 9 07 6 08	02 0 03 0 04 0 05 0 06 0	.0194 .0540 .0470 .0581 .0000	0.0592 0.1230 0.1980 0.1763 0.0421	0.0264 0.0246 0.0219 0.0187 0.0000	1.00 1.00 1.00 1.00	00.000 00.000 00.000 00.000 4.000 00.000
01 02 03 04	04 2 03 3 06 4 07 6 08 6 06	02 0 03 0 04 0 05 0 06 0	.0194 .0540 .0470 .0581 .0000 .0000	0.0592 0.1230 0.1980 0.1763 0.0421 0.2520	0.0264 0.0246 0.0219 0.0187 0.0000	1.00 1.00 1.00 1.00 1.00	00.000 00.000 00.000 00.000 4.000 00.000
01 02 03 04 05	04 03 06 07 6 08 6 06	02 0 03 0 04 0 05 0 06 0 07 0 08 0	.0194 .0540 .0470 .0581 .0000 .0000	0.0592 0.1230 0.1980 0.1763 0.0421 0.2520 0.1421	0.0264 0.0246 0.0219 0.0187 0.0000 0.0000	1.00 1.00 1.00 1.00 1.00 1.00	00.000 00.000 00.000 00.000 4.000 00.000 00.000
01 02 03 04 05 05	04 2 03 8 06 9 07 6 08 6 06 6 09	02 0 03 0 04 0 05 0 06 0 07 0 08 0	.0194 .0540 .0470 .0581 .0000 .0000 .0134 .0000	0.0592 0.1230 0.1980 0.1763 0.0421 0.2520 0.1421	0.0264 0.0246 0.0219 0.0187 0.0000 0.0000 0.0000	1.00 1.00 1.00 1.00 1.00 1.00	00.000 00.000 00.000 4.000 00.000 00.000 00.000
01 02 03 04 05 05	04 2 03 3 06 4 07 6 08 6 06 6 09 7 08	02 0 03 0 04 0 05 0 06 0 07 0 08 0 09 0	.0194 .0540 .0470 .0581 .0000 .0134 .0000 .0950	0.0592 0.1230 0.1980 0.1763 0.0421 0.2520 0.1421 0.1100 0.0989	0.0264 0.0246 0.0219 0.0187 0.0000 0.0000 0.0000 0.0000	1.00 1.00 1.00 1.00 1.00 1.00 1.00	00.000 00.000 00.000 4.000 00.000 00.000 00.000 00.000
0 1 0 2 0 3 0 4 0 5 0 6 0 7	04 2 03 3 06 4 07 6 08 6 06 6 09 7 08 7 10	02 0 03 0 04 0 05 0 06 0 07 0 08 0 09 0 10 0	.0194 .0540 .0470 .0581 .0000 .0134 .0000 .0950 .1271	0.0592 0.1230 0.1980 0.1763 0.0421 0.2520 0.1421 0.1100 0.0989 0.2704	0.0264 0.0246 0.0219 0.0187 0.0000 0.0000 0.0000 0.0000 0.0000	1.00 1.00 1.00 1.00 1.00 1.00 1.00	00.000 00.000 00.000 4.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000
0 2 0 3 0 4 0 5 0 6 0 7 0 7	04 2 03 3 06 4 07 6 08 6 06 6 09 7 08 7 10 8 11	02 0 03 0 04 0 05 0 06 0 07 0 08 0 09 0 10 0 11 0	.0194 .0540 .0470 .0581 .0000 .0134 .0000 .0950 .1271 .1351	0.0592 0.1230 0.1980 0.1763 0.0421 0.2520 0.1421 0.1100 0.0989 0.2704 0.1569	0.0264 0.0246 0.0219 0.0187 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.00	00.000 00.000 00.000 4.000 00.000 00.000 00.000 00.000 00.000
02 03 04 05 05 06 07	04 2 03 3 06 4 07 6 08 6 06 6 09 7 08 7 10 8 11 9 11	02 0 03 0 04 0 05 0 06 0 07 0 08 0 09 0 10 0 11 0 12 0 13 0	.0194 .0540 .0470 .0581 .0000 .0134 .0000 .0950 .1271 .1351 .2209	0.0592 0.1230 0.1980 0.1763 0.0421 0.2520 0.1421 0.1100 0.0989 0.2704 0.1569 0.1999	0.0264 0.0246 0.0219 0.0187 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00	00.000 00.000 00.000 4.000 00.000 00.000 00.000 00.000 00.000 00.000
02 03 04 05 05 06 07 07	04 03 06 07 08 06 09 08 07 08 10 11 11 12 12	02 0 03 0 04 0 05 0 06 0 07 0 08 0 09 0 10 0 11 0 12 0 13 0 14 0	.0194 .0540 .0470 .0581 .0000 .0134 .0000 .0950 .1271 .1351 .2209 .1229	0.0592 0.1230 0.1980 0.1763 0.0421 0.2520 0.1421 0.1100 0.0989 0.2704 0.1569 0.1999 0.2558	0.0264 0.0246 0.0219 0.0187 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00	00.000 00.000 00.000 4.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000

Figura 10 - Sugestões de Ajuste para Operação.

Em posse do novo sistema a ser implementado, utilizamos novamente nossa rotina, e conseguimos gerar os seguintes resultados, apresentados na

BARRA #	PG (PU)	Carga Máxima (PU)	Carga Mínima (PU)	Carga aceitávelí SIM / NÃO
1	0.9500	1.20	0.00	SIM
3	0.9072	1.00	0.00	SIM
6	0.8000	1.00	0.00	SIM
12	0.3500	0.80	0.00	SIM

Figura 11 – Novas Potências Ativas Geradas nas Barras em p.u.

						barras			
BARRA #	TENSAO (PU)	THETA (DEG)	PI MW	QI MVAr	PG MW	QG MVAr	SG MVA	PD MW	QD MVAr
1	1.02000	-2.91216	95.0000	-12.2954	95.0000	-12.2954	95.7924	0.0000	0.000
2	1.00988	-3.16339	-38.7400	-8.7000	0.0000	0.0000	0.0000	38.7400	8.700
3	1.01000	-0.00000	37.5224	-10.9791	90.7224	-1.7791	90.7398	53.2000	9.200
4	1.01025		-0.0005	0.0001	-0.0005	0.0001	0.0005	0.0000	0.000
5	1.00856		-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000	0.000
6		-1.14037	80.0000	24.1307	80.0000	24.1307	83.5601	0.0000	0.000
7	1.01293		0.0005	0.0001	0.0005	0.0001	0.0005	0.0000	0.000
8		-9.61394	-64.8999	-5.4000	0.0001	0.0000	0.0001	64.9000	5.400
9		-4.16164	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
10		-13.80919	-53.4999		0.0001	0.0001	0.0002	53.5000	11.600
11		-10.04005	-33.5000	-8.5199	-0.0000	0.0001	0.0001	33.5000	8.520
12	1.00000	-3.89293	-8.5000	-25.6137	35.0000	-16.0937	38.5228	43.5000	9.520
otal					300.7226	-6.0370	308.6166	287.3400	287.340
otal de F	erdas	Per	das Ativas	= 13.3826	MW	Perda	s Reativas	= 24.6588	MVAr
			Relatório	das potênc	ias nas ba	rras em PU			
BARRA #	TENSA0 (PU)	THETA	 Relatório PI [das potênc QI	ias nas ba PG	 irras em PU QG (PU)	SG	PD	QD
#	(PU)	THETA (DEG)	PI [QI	PG	QG (PU)	SG		
# 1	(PU) 1.02000	THETA (DEG) -0.05083	PI [0.9500	QI -0.1230	PG 	QG (PU) 	SG 	0.0000	0.000
# 1 2	(PU) 1.02000 1.00988	THETA (DEG) 	PI [0.9500 -0.3874	QI -0.1230 -0.0870	PG 0.9500 0.0000	QG (PU) 	SG 0.9579 0.0000	0.0000 0.3874	0.000
# 1 2 3	(PU) 1.02000 1.00988 1.01000	THETA (DEG)0.05083 -0.05521 -0.00000	PI [0.9500 -0.3874 0.3752	QI	PG 0.9500 0.0000 0.9072	QG (PU) -0.1230 0.0000 -0.0178	SG 	0.0000 0.3874 0.5320	0.000 0.087 0.092
# 1 2 3 4	(PU) 1.02000 1.00988 1.01000 1.01025	THETA (DEG) -0.05083 -0.05521 -0.00000 -0.16219	PI [0.9500 -0.3874 0.3752 -0.0000	QI	PG 0.9500 0.0000 0.9072 -0.0000	QG (PU) -0.1230 0.0000 -0.0178 0.0000	SG 	0.0000 0.3874 0.5320 0.0000	0.000 0.08 0.092 0.092
# 1 2 3	(PU) 1.02000 1.00988 1.01000 1.01025 1.00856	THETA (DEG) -0.05083 -0.05521 -0.00000 -0.16219 -0.07259	PI [0.9500 -0.3874 0.3752 -0.0000 -0.0000	QI	PG 0.9500 0.0000 0.9072 -0.0000 -0.0000	QG (PU) -0.1230 0.0000 -0.0178 0.0000 0.0000	SG 	0.0000 0.3874 0.5320 0.0000 0.0000	0.000 0.09 0.09 0.000
# 1 2 3 4 5	(PU) 1.02000 1.00988 1.01000 1.01025	THETA (DEG) -0.05083 -0.05521 -0.00000 -0.16219 -0.07259 -0.01990	PI [0.9500 -0.3874 0.3752 -0.0000	QI	PG 0.9500 0.0000 0.9072 -0.0000	QG (PU) -0.1230 0.0000 -0.0178 0.0000	SG 	0.0000 0.3874 0.5320 0.0000	0.00 0.08 0.09
# 1 2 3 4 5	(PU) 1.02000 1.00988 1.01000 1.01025 1.00856 1.01000	THETA (DEG) -0.05083 -0.05521 -0.00000 -0.16219 -0.07259 -0.01990 -0.12493	PI [0.9500 -0.3874 0.3752 -0.0000 -0.0000 0.8000	QI0.1230 -0.0870 -0.1098 0.0000 0.0000 0.2413	PG 0.9500 0.0000 0.9072 -0.0000 -0.0000 0.8000	QG (PU) -0.1230 0.0000 -0.0178 0.0000 0.0000 0.2413	SG 0.9579 0.0000 0.9074 0.0000 0.0000 0.8356	0.0000 0.3874 0.5320 0.0000 0.0000	0.00 0.08 0.09 0.00 0.00
# 1 2 3 4 5 6	(PU) 1.02000 1.00988 1.01000 1.01025 1.00856 1.01000 1.01293	THETA (DEG) -0.05083 -0.05521 -0.00000 -0.16219 -0.07259 -0.01990 -0.12493 -0.16779	PI [0.9500 -0.3874 0.3752 -0.0000 -0.8000 0.8000	QI	PG 0.9500 0.0000 0.9072 -0.0000 -0.0000 0.8000 0.0000	QG (PU) -0.1230 0.0000 -0.0178 0.0000 0.0000 0.2413 0.0000	0.9579 0.0000 0.9074 0.0000 0.0000 0.8356 0.0000	0.0000 0.3874 0.5320 0.0000 0.0000 0.0000	0.00 0.08 0.09 0.00 0.00 0.00
# 1 2 3 4 5 6 7	(PU) 1.02000 1.00988 1.01000 1.01025 1.00856 1.01000 1.01293 0.98365	THETA (DEG) -0.05083 -0.05521 -0.00000 -0.16219 -0.07259 -0.01990 -0.12493 -0.16779 -0.07263	PI [0.9500 -0.3874 0.3752 -0.0000 -0.8000 0.8000 0.0000 -0.6490	QI	PG 0.9500 0.0000 0.9072 -0.0000 -0.0000 0.8000 0.0000	QG (PU) -0.1230 0.0000 -0.0178 0.0000 0.0000 0.2413 0.0000 0.0000	SG 0.9579 0.0000 0.9074 0.0000 0.0000 0.8356 0.0000 0.0000	0.0000 0.3874 0.5320 0.0000 0.0000 0.0000 0.0000 0.6490	0.00 0.08 0.09 0.00 0.00 0.00 0.00
# 1 2 3 4 5 6 7 8	(PU) 1.02000 1.00988 1.01000 1.01025 1.00856 1.01000 1.01293 0.98365 1.03799	THETA (DEG) -0.05083 -0.05521 -0.00000 -0.16219 -0.07259 -0.01990 -0.12493 -0.16779 -0.07263 -0.24102	PI [0.9500 -0.3874 0.3752 -0.0000 -0.8000 0.8000 0.0000 -0.6490 0.0000	QI	PG 0.9500 0.0000 0.9072 -0.0000 -0.0000 0.8000 0.0000 0.0000	QG(PU)0.1230 0.0000 -0.0178 0.0000 0.0000 0.2413 0.0000 0.0000	SG 0.9579 0.0000 0.9074 0.0000 0.0000 0.8356 0.0000 0.0000 0.0000	0.0000 0.3874 0.5320 0.0000 0.0000 0.0000 0.0000 0.6490 0.0000	0.00 0.08 0.09 0.00 0.00 0.00 0.00 0.05 0.00
# 	(PU) 1.02000 1.00988 1.01000 1.01025 1.00856 1.01000 1.01293 0.98365 1.03799 0.97376	THETA (DEG) -0.05083 -0.05521 -0.00000 -0.16219 -0.07259 -0.01990 -0.12493 -0.16779 -0.07263 -0.24102	PI [0.9500 -0.3874 0.3752 -0.0000 -0.8000 0.8000 0.0000 -0.6490 0.0000 -0.5350	QI	PG 0.9500 0.0000 0.9072 -0.0000 -0.0000 0.8000 0.0000 0.0000	QG (PU)0.1230 0.0000 -0.0178 0.0000 0.0000 0.2413 0.0000 0.0000 0.0000	SG 0.9579 0.0000 0.9074 0.0000 0.0000 0.8356 0.0000 0.0000 0.0000	0.0000 0.3874 0.5320 0.0000 0.0000 0.0000 0.0000 0.6490 0.0000 0.5350	0.00 0.08 0.09 0.00 0.00 0.00 0.00 0.05 0.00
# 	(PU) 1.02000 1.00988 1.01000 1.01025 1.00856 1.01000 1.01293 0.98365 1.03799 0.97376 0.96275	THETA (DEG) -0.05083 -0.05521 -0.00000 -0.16219 -0.07259 -0.01990 -0.12493 -0.16779 -0.07263 -0.24102 -0.17523	PI [0.9500 -0.3874 0.3752 -0.0000 -0.0000 0.8000 0.0000 -0.6490 0.0000 -0.5350 -0.3350	QI	PG 0.9500 0.0000 0.9072 -0.0000 -0.0000 0.8000 0.0000 0.0000 0.0000	QG (PU)0.1230 0.0000 -0.0178 0.0000 0.0000 0.2413 0.0000 0.0000 0.0000 0.0000	SG 0.9579 0.0000 0.9074 0.0000 0.0000 0.8356 0.0000 0.0000 0.0000 0.0000	0.0000 0.3874 0.5320 0.0000 0.0000 0.0000 0.0000 0.6490 0.0000 0.5350 0.3350	0.00 0.08 0.09 0.00 0.00 0.00 0.00 0.00

Figura 12 – Novo Relatório das Potências nas Barras.

			Relatório das potêno	cias nos circuito	s km em PU	
	RRA PARA [PKM	QKM (PU	J)	Capacidade]	Pode operar? SIM / NĀO
1	2	0.1205	0.1212	0.1710	1.0	SIM
1	4	0.8295	-0.2442	0.8647	1.0	SIM
2	3	-0.2675	0.0596	0.2740	1.0	SIM
3	6	0.1042	-0.0427	0.1126	1.0	SIM
4	7	0.7910	-0.0514	0.7926	0.8	SIM
5	8	0.3742	0.1175	0.3923	0.8	SIM
5	6	-0.3742	0.0350	0.3759	1.0	SIM
6	9	0.5274	0.2309	0.5758	0.8	SIM
7	8	0.3790	-0.0549	0.3829	0.5	SIM
7	10	0.4120	-0.0224	0.4126	0.5	SIM
8	11	0.0906	0.0531	0.1051	0.5	SIM
9	11	0.4380	-0.0670	0.4431	0.5	SIM
9	12	0.0447	0.1327	0.1401	0.5	SIM
9	12	0.0447	0.1327	0.1401	0.5	SIM
10	11	-0.1441	0.1486	0.2070	0.5	SIM
	 RRA PARA [PMK	Relatório das potêno QMK (Pl	cias nos circuito SMK J)	s mk em PU Capacidade 1	 Pode operar? SIM/NĀO
2	1	-0.1199	-0.1466	0.1894	1.0	SIM
4	1	-0.7910	0.3065	0.8483	1.0	SIM
3	2	0.2710	-0.0671	0.2792	1.0	SIM
6	3	-0.1035	0.0257	0.1067	1.0	SIM
7	4	-0.7910	0.0773	0.7947	0.8	SIM
8	5	-0.3742	-0.0794	0.3826	0.8	SIM
6	5	0.3761	-0.0153	0.3764	1.0	SIM
9	6	-0.5274	-0.1985	0.5635	0.8	SIM
8	7	-0.3654	0.0691	0.3719	0.5	SIM
10	7	-0.3909	0.0672	0.3966	0.5	SIM
11	8	-0.0891	-0.0513	0.1028	0.5	SIM
11	9	-0.3977	0.1034	0.4109	0.5	SIM
12	9	-0.0425	-0.1281	0.1349	0.5	SIM
12	9	-0.0425	-0.1281	0.1349	0.5	SIM
11	10	0.1518	-0.1373	0.2047	0.5	SIM
Linh	as oper	ando dentro dos	limites de potência			

Figura 13 – Novo Relatório das km e mk e suas Capacidades de Operação em p.u.

Apesar deste ajuste não ser o melhor, foi possível verificar que, além de, conformar o sistema às premissas da ONS, houve uma diminuição das perdas nas linhas. Antes, na Figura 02, o relatório apresentava que haviam perdas ativas de $0,1782 \, p. \, u.$ e perdas reativas de $0,3769 \, p. \, u.$, a partir da Figura 12, verifica-se que as perdas ativas caíram para $0,1338 \, p. \, u.$ e as perdas reativas para $0,2466 \, p. \, u.$

7. CONCLUSÃO

Durante o desenvolvimento deste estudo de caso (EC1), foi possível concluir após implementar a rotina computacional, e executar a mesma, que a mesma, em comparação com a simulação no *software PowerWorld*, que a rotina computacional atingiu de forma suficiente as expectativas.

Além disso, após a solução do problema de fluxo de potência do sistema de doze barras proposto, foram observados o valor da magnitude das tensões das barras, a capacidade de geração de potência ativa e a capacidade dos circuitos. Esses parâmetros calculados foram comparados com os limites, permitindo um vislumbre de como o sistema deve operar de maneira real, e como os operadores mantém o sistema dentro dos limites apresentados na Figura 09.

Ademais, ao longo do trabalho, foram propostas mudanças no sistema e com o auxílio da rotina computacional foi possível observar os efeitos dessas mudanças. Possibilitando, por exemplo, alterar parâmetros do sistema a fim de adequar os resultados aos limites préestabelecidos. Esse tipo de estudo é importante pois facilita o entendimento dos efeitos das mudanças e como corrigir possíveis problemas que podem ocorrer em um sistema real.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Fernando A. Assis Notas das Aulas do MÓDULO 01 FLUXO DE CARGA: CONTROLES E LIMITES
- [2] Pedro D. T. M. Elias Rotina EC1.m
- [3] Premissas, critérios e metodologia para estudos elétricos Submódulo 2.3 NOS. Disponível em:

https://www.ons.org.br/paginas/sobre-o-ons/procedimentos-de-rede/vigentes.

Acesso em: abril de 2024.