MA1126: Set Theory Selected Problems

Anthony Gibbons, Daniel Devine

February 2019

Problem 1: 2016 *Q*3

(a.) Define an open set in \mathbb{R} . Define closed set.

Solution: Open set:

A set $A \subset \mathbb{R}$ is called open if $\forall x \in A, \exists \varepsilon > 0$ s.t. $N(x, \varepsilon) \subset A$

Where $N(x,\varepsilon)$ is a neighbourhood $\{y \in \mathbb{R} \mid |x-y| < \varepsilon\}$

Closed set:

A set $A \subset \mathbb{R}$ is closed if $\mathbb{R} \setminus A$ is open, where $\mathbb{R} \setminus A$ is the complement of A in \mathbb{R} \square Prove that A is closed \iff it contains all of its accumulation points.

Solution:

 \Rightarrow

We need to show that no accumulation points of A are contained in $\mathbb{R}\setminus A$ Accumulation Point: p is an accumulation point of A if $\forall \varepsilon > 0 \; \exists \; x \in A \setminus \{p\} \; s.t. \; |x-p| < \varepsilon$

i.e. \exists an infinite sequence x_1, x_2, x_3, \ldots of points of A, distinct from p, that converge to p, with $\lim_{j\to\infty} x_j = p$ but all $x_j \in A$, hence $p \in A$ also

Hence A contains all of its accumulation points

A is closed \implies it contains all of its accumulation points.

 \Leftarrow Now assume A contains all of its accumulation points, then choose $p \in \mathbb{R} \backslash A$, so p is not an accumulation point of A.

So by definition of accumulation points, $\exists \delta > 0$ s.t. $\{x \in A \mid 0 < |x - p| < \delta\} = \varnothing$ Hence there exists an open ball about p in $\mathbb{R} \setminus A$, so $\mathbb{R} \setminus A$ is open, $\Longrightarrow A$ is closed So A is closed \iff it contains all of its accumulation points, as required.

(b.) Define Cauchy sequence.

Solution: A Cauchy sequence a_1, a_2, a_3, \ldots (infinite sequence) such that $\forall \varepsilon > 0 \exists N \in \mathbb{N} s.t. |a_n - a_m| < \varepsilon \forall n, m \geq N$

(c.) Prove that every Cauchy Sequence converges in \mathbb{R} is equivalent to the least upper bound axiom

Solution: Want C.S. \implies L.U.B and L.U.B \implies C.S. Assume Cauchy convergence.

Let A be a nonempty subset of \mathbb{R} and suppose A has an upper bound b_1

Since A is nonempty, $\exists a_1 \in A$ and not an upper bound. Define sequences a_1, a_2, a_3, \ldots b_1, b_2, b_3, \ldots as follows: Check if $\frac{a_n+b_n}{2}$ is an upper bound of A.

If so, $a_{n+1} = a_n$, $b_{n+1} = \frac{a_n + b_n}{2}$ Otherwise, $\exists s \in As.t. \ s > \frac{a_n + b_n}{2}$ Let $a_{n+1} = s, b_{n+1} = b_n$

Then $a_1 \leq a_2 \leq \cdots \leq b_2 \leq b_1$ and $|b_n - a_n| \to 0$ as $n \to \infty$

 \implies Both sequences are Cauchy: they converge towards some limit L

 \implies L is the least upper bound for s \checkmark

Note: Every Cauchy sequence is bounded.

Proof:

Take $\varepsilon = 1$, then

 $\exists N \in \mathbb{N} s.t. \ m, n \geq N \implies |x_m - x_n| < 1 \implies |x_m| - |x_n| < 1 \implies |x_m| < 1 + |x_n|$ In general, $|x_n| \leq max\{|x_1|, \dots, |x_n|, 1 + |x_n|\}$

Note also that every sequence has a monotone (strictly increasing) subsequence.

Now Assume Least upper bound axiom is true.

Suppose we have a monotone bounded sequence (increasing)

Since it is bounded, by the L.U.B axiom, then it has a supremum.

$$s = \sup_{n \in \mathbb{N}} \{x_n\}$$

Claim S is the limit of the sequence.

Let $\varepsilon > 0$, then $\exists N \in \mathbb{N} \text{ s.t. } s - \frac{\varepsilon}{2} < x_N \le x_{N+1} \le \dots \le S$ $\Longrightarrow \forall n \ge N \text{ we have } |x_n - s| < \frac{\varepsilon}{2}$

Now take any x_m in the original sequence with m > N

 $|x_m - x_n| \le |x_m - s| + |x_n - s| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

So the sequence is Cauchy \checkmark

Problem 2: 2017 *Q*4

(a.) Show that $f: \mathbb{R} \to \mathbb{R}$ is continuous \iff the preimage of any open set $U, f^{-1}(U)$ is open

Solution:

 \Rightarrow

Assume f is continuous on \mathbb{R} , then

$$\forall x_0 \in \mathbb{R}, \forall \varepsilon > 0, \exists \delta > 0 \text{s.t.} |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

In other words, $\forall x_0 \in \mathbb{R}, \forall N(f(x_0), \varepsilon) \exists N(x_0, \delta) s.t. f(N(x_0, \delta)) \subset N(f(x_0), \varepsilon)$

Let U be open in \mathbb{R}

Let $x_0 \in f^{-1}(U)$

Then $f(x_0) \in U$

$$\Longrightarrow \exists \varepsilon > 0 s.t. N(f(x_0), \varepsilon) \subset U$$

$$\implies \exists N(x_0, \delta) s.t. f(N(x_0, \delta)) \subset N(f(x_0), \varepsilon) \subset U$$

$$\implies N(x_0, \delta) \subset f^{-1}(U)$$

 x_0 is an interior point of $f^{-1}(U) \implies f^{-1}(U)$ is open.

 \leftarrow

 $f^{-1}(U)$ for any U open.

Given $N(f(x_0), \varepsilon)$, this is open. $\Longrightarrow f^{-1}(N(f(x_0), \varepsilon))$ is open.

and $x_0 \in f^{-1}(N(f(x_0), \varepsilon))$ so x_0 is an interior point

$$\Longrightarrow \exists \delta > 0 s.t. N(x_0, \delta) \subset f^{-1}(N(f(x_0), \varepsilon))$$

$$\implies f(N(x_0, \delta) \subset N(f(x_0), \varepsilon) \implies f \text{ is continuous.}$$

(b.) Prove that the continuous image of a compact subset of R is compact.

Solution: Suppose $A \subset \mathbb{R}$ is compact, and f is continuous

Suppose $f(A) \subset \bigcup U_{\alpha}, U_{\alpha}open$

Then
$$A \subset f^{-1}(\bigcup_{\alpha}^{\alpha} U_{\alpha}) = \bigcup_{\alpha} f^{-1}(U_{\alpha})$$

By part (a.), each of the $f^{-1}(U_{\alpha})$ is open.

And A is compact $\implies \exists$ a finite subcover of A

.e.
$$A \subset f^{-1}(U_{\alpha_1}) \cup f^{-1}(U_{\alpha_2}) \cup \cdots \cup f^{-1}(U_{\alpha_n})$$

 $\Longrightarrow f(A) \subset U_{\alpha_1} \cup U_{\alpha_1} \cup \ldots \cup U_{\alpha_n} \Longrightarrow f(A) \text{ is compact.}$

(c.) Use part (b.) to prove the Extreme Value Theorem

Solution:

Suppose f is continuous on [a,b],

[a,b] is compact by Heine-Borel.

Then f([a,b]) is compact by part $(b.) \Longrightarrow it$ is closed and bounded.

 $bounded \Longrightarrow LUB \ and \ GLB \ exist$

 $closed \Longrightarrow LUB \ and \ GLB \ belong \ to \ f([a,b])$

So
$$\exists x_0, x \in [a, b]$$
 s.t. $f(x_0) = \max_{x \in [a, b]} f(x)$ $f(x_1) = \min_{x \in [a, b]} f(x)$

This is the Extreme Value Theorem.

Problem 3: 2017 *Q*3

- (a.) Prove or disprove

1. $U_nopen \ \forall n \geq 1 \implies \bigcap_{n \geq 1} U_n \ open.$ Solution: $U_nopen \ \stackrel{}{\Longrightarrow} \bigcap_{n \geq 1} U_n \ open.$

e.g. let
$$U_n = (-\frac{1}{n}, \frac{1}{n})$$

 $\bigcap_{n\geq 1} U_n = \{0\}$ which is not open.

2. U_n open $\forall n \geq 1 \implies \bigcup_{n \geq 1} U_n$ open. Solution: Let $x \in \bigcup_{n \geq 1} U_n \implies x \in U_{n_i}$ for some n_i

$$\Longrightarrow \exists \varepsilon > 0 \text{ s.t. } N(x, \varepsilon) \subset U_{n_i}$$

$$\implies N(x,\varepsilon) \subset \bigcup U_n$$

$$\Rightarrow \exists \varepsilon > 0 \text{ s.t. } N(x, \varepsilon) \subset U_{n_i}$$

$$\Rightarrow N(x, \varepsilon) \subset \bigcup_{n \geq 1} U_n$$

$$\Rightarrow \bigcup_{n \geq 1} U_n \text{ is open.}$$

3. $U_n closed \ \forall n \geq 1 \implies \bigcap_{n \geq 1} U_n \ closed.$ Solution: $U_n \ closed \implies (U_n)^C open$

$$\implies \bigcup (U_n)^C$$
 is open, from above.

$$\Longrightarrow (\bigcup_{n=1}^{n\geq 1} (U_n)^C)^C$$

$$\Rightarrow \bigcup_{n\geq 1} (U_n)^C \text{ is open, from above.}$$

$$\Rightarrow (\bigcup_{n\geq 1} (U_n)^C)^C$$

$$\Rightarrow \bigcap_{n\geq 1} (U_n^C)^C = \bigcap_{n\geq 1} (U_n) \text{ closed.}$$

4. $U_n closed \ \forall n \geq 1 \implies \bigcup_{n \geq 1} U_n \ closed.$ Solution: $U_n closed \implies \bigcup_{n \geq 1} U_n \ closed.$

- e.g. $O_n = \{\frac{1}{n}\}\ 0$ is an accumulation point not included in $\bigcup_{n=1}^{\infty} U_n$
- \implies not closed (since a set is closed \iff it contains all its accumulation points.

(b.) Prove a subset of R is compact \iff it is closed and bounded **Solution:**

Suppose $A \subset \mathbb{R}$ Suppose it is not bounded

Let
$$U_n = (-n, n)$$
 Then $A \subset \bigcup U_n = \mathbb{R}$

But a finite subcover cannot be found \implies A is not compact

So not bounded \Longrightarrow not compact

Taking the contrapositive compact \implies bounded.

Suppose $A \subset \mathbb{R}$ and not closed $\exists x$ an accumulation point of A not in A

Let
$$U_n = (-\infty, x - \frac{1}{n}) \cup (x + \frac{1}{n}, +\infty)$$
 be a cover of A

But a finite subcover cannot be found \implies A not compact

So not closed \implies not compact

Taking the contrapositive compact \implies closed.

Now suppose A is closed and bounded.

<u>Case 1:</u> A = [a, b]

Suppose $A \subset \bigcup U_{\alpha}$ and a finite number of U_{α} don't cover $A = I_1$

Consider $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$

One of these subintervals which we will call I_2 , also does not have a finite subcover.

Divide I_2 in half, one of these will not have a finite subcover ... etc.

We have $I_1 \supset I_2 \supset I_3 \supset \cdots \supset I_n \supset \cdots$ infinite series of nested subintervals.

with each I_n closed and bounded interval that does not have a finite subcover of U_{α}

By the Nested Intervals Theorem, $\bigcap I_n \neq \emptyset$

Let $x \in \bigcap I_n$, so $x \in U_{\alpha_i}$ for some α_i

 U_{α_i} open, then $\exists \varepsilon > 0$ s.t. $N(x, \varepsilon) \subset U_{\alpha_i}$

 $But|I_n| \to 0$ and if $|I_n| < \varepsilon$, then $x \in I_n \implies I_n \subset N(x, \varepsilon)$

 $\Longrightarrow I_n$ has a finite subcover $\Longrightarrow \leftarrow$ Contradiction

Then A is closed

<u>Case 2:</u>

A is closed and bounded but not necessarily an interval.

 $\exists [a,b] \ s.t. \ A \subset [a,b]$ If $A \subset \bigcup U_{\alpha}$

and if we consider all U_{α} and A^{C} , we have an open cover of [a,b].

 $\Longrightarrow \exists \ a \ finite \ subcover \ U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} \ (\cup A^C \ possibly)$ But $A \cup A^C = \varnothing : U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} \supset A \ covers \ A$

Problem 4: *Page* 16 *Q*48

we define \oplus to denote exclusive or, so $p \oplus q \equiv (p \lor Q) \land \neg (p \land q)$ Hence the truth table for exclusive or is as follows:

p	q	$p \oplus q$
\overline{T}	\overline{T}	F
T	F	T
F	T	T
F	F	F

a. find simpler statement forms that are logically equivalent to $p \oplus p$ and $(p \oplus p) \oplus p$

C - 1	lution:
-50	minon

p	$(p \oplus p)$	$(p \oplus p) \oplus p$
T	\overline{F}	T
F	F	F

So
$$(p \oplus p) \equiv contradiction$$
, $(p \oplus p) \oplus p \equiv p$

$$(p \oplus p) \oplus p \equiv p$$

b. Is $(p \oplus q) \oplus r \equiv (p \oplus q) \oplus r$? Justify your answer.

Solution:

\overline{n}	q	r	$(n \oplus a)$	$(p \oplus q) \oplus r$	$(q \oplus r)$	$p \oplus (q \oplus r)$
P	9		$P \oplus q$	$(P \oplus q) \oplus r$	(1 0)	
$\mid T$	$\mid T \mid$	$\mid T \mid$	F	T	F	T
$\mid T$	T	F	F	F	T	F
$\mid T$	F	T	T	F	T	F
$\mid T$	F	F	T	T	F	T
$\mid F \mid$	T	T	T	F	F	F
$\mid F \mid$	T	F	T	T	T	T
$\mid F \mid$	F	T	F	T	T	T
$\mid F \mid$	F	F	F	F	F	F

So
$$(p \oplus q) \oplus r \equiv (p \oplus q) \oplus r$$

c. Is $(p \oplus q) \wedge r \equiv (p \wedge q) \oplus (q \wedge r)$? Justify your answer.

Solution:

p	q	r	$(p \oplus q)$	$(p \oplus q) \wedge r$	$(p \wedge r)$	$(q \wedge r)$	$(p \wedge r) \oplus (q \wedge r)$
T	T	T	F	F	T	T	F
$\mid T$	T	F	F	F	F	F	F
$\mid T$	F	T	T	T	T	F	T
$\mid T \mid$	F	F	T	F	F	F	F
F	T	T	T	T	F	T	T
F	T	F	T	F	F	F	F
$\mid F \mid$	F	T	F	F	F	F	F
F	F	F	F	F	F	F	F

So
$$(p \oplus q) \land r \equiv (p \land q) \oplus (q \land r)$$

Problem 5: 2018 *Q*2

(a.) Define what it means for 2 sets to have the same cardinal number.

Solution: 2 sets X and Y have the same cardinality if \exists a bijective map $f: X \to Y$ i.e. a 1-1 correspondence.

Define Cardinal Number.

Solution: The cardinal number of a set X, #X is the number of elements in the set X

$$e.g. \#\{1, 2, 4, 6, 9\} = 5$$

Prove that \mathbb{Q} is countable but \mathbb{R} is not.

Solution:

1. Define \mathbb{Q}_+ =

Where $s_{ij} = \frac{i}{i}, j \neq 0, i.e.$

We define the list in the diagonalising order as defined in the diagram, where we skip the rational numbers already in the list, e.g. $\frac{2}{2} = \frac{1}{1}$ $\frac{8}{4} = \frac{2}{1}$

Hence \mathbb{Q}_+ is countable. Similarly, \mathbb{Q}_- is countable. Hence $\mathbb{Q} = \mathbb{Q}_+ \cup \{0\} \cup \mathbb{Q}_-$ is countable.

2. We show below in part (c.) that $\prod_{i=1}^{\infty} \{0,1\} \sim \mathbb{P}(\mathbb{N})$ and that $\#\mathbb{P}(\mathbb{N}) > \#\mathbb{N}$ Claim the interval (0,1) is not countable. If not, then \mathbb{R} is not countable.

Assume \mathbb{R} is countable. We consider the countable list of decimal expansions

Where $0 \le a_{ij} \le 9 \ \forall \ i, j \ge 1$ Define a decimal expansion

$$b = \cdot (a_{11} + 1) (a_{22} + 1) (a_{33} + 1) (a_{44} + 1) \cdots (a_{nn} + 1) \cdots$$

But $9 \rightarrow 1$ as we don't want a string of zeroes

This is a real number by completeness of the real line, This is not equal to any of the decimal expansions above since it is different to each of the a^i in the i^{th} place. Hence (0,1) is not countable \mathbb{R} is not countable.

(b.) State the Schroeder-Bernstein Theorem and Cantor's Theorem.

Solution: <u>Schroeder-Bernstein Theorem</u>

If $\exists f: X \to Y$ one to one

If $\exists g: Y \to X$ one to one

Then $\exists h: X \to Y$ one to one and onto.

i.e. $\#X \le \#Y$ and $\#Y \le \#X \implies \#X = \#Y$

Cantor's Theorem

For any set A, $\#A < \#\mathbb{P}(A)$ i.e. $n < 2^n$

i.e. $\exists f: A \to \mathbb{P}(A)$ one to one and onto.

Prove Cantor's Theorem.

Solution:

Suppose There exists $f: A \to \mathbb{P}(A)$ one to one and onto.

Let
$$B = \{x \in A \mid x \notin f(x)\} : B \subset A$$

$$B \subset A \implies B \in \mathbb{P}(A)$$

 $f \ surjective \implies \exists \ y \ s.t. \ f(y) = B$

Suppose $y \in B, y \in f(y) \implies y \notin B \Rightarrow \Leftarrow contradiction$.

Suppose $y \notin B, y \notin f(y) \implies y \in B \Rightarrow \Leftarrow contradiction$.

 \therefore f does not exist.

(c.) Prove $\prod_{i=1}^{\infty} \{0,1\} \sim \mathbb{P}(\mathbb{N})$

Solution: This means there exists a bijective map $f: \prod_{i=1}^{\infty} \{0,1\} \to \mathbb{P}(\mathbb{N})$ $\prod_{i=1}^{\infty} \{0,1\}$ is a sequence of 0's and 1's. e.g. $\{1,0,1,0,0,\dots\}$

 $A \subset \mathbb{N} \to f(A) \in \prod_{i=1}^{\infty} \{0, 1\}$

So the sequence
$$\{f(A)\}_i = \begin{cases} 1, & \text{if } i \in A \\ 0, & \text{if } i \notin A \end{cases}$$

Is f bijective?

Injective: $Does\ f(A_1) = f(A_2) \implies A_1 = A_2$?

 $\overline{Let\ j \in A_1} \implies f(A_1)_j = 1 = f(A_2)_j \implies j \in A_2$

So $A_1 \subset A_2$

By symmetry, $A_2 \subset A_1$ also

 $\implies A_1 = A_2 : \text{injective.}$

Surjective: $given\ b = \{b_1, b_2, b_2, \dots\} \in \prod_{i=1}^{\infty} \{0, 1\}$
 $\overline{Does\ there\ exist\ } A \subset \mathbb{N}\ s.t.\ f(A) = b$?

We know $j \in A \iff b_j = 1$
 $f(A)_j - 1 \iff j \in A \iff b_j = 1 \forall j$
 $\therefore f(A)_j = b_j \forall j$
 $\implies f(A) = b : \text{surjective}$

Hence f is bijective, and $\prod_{i=1}^{\infty} \{0, 1\} \sim \mathbb{P}(\mathbb{N})$

Extra: Prove the Schroeder-Bernstein Theorem Solution:

In the below diagram we use the fact that $f(X \setminus Y) = f(X) \setminus f(Y)$

$$X = X \setminus g(Y) \cup g(Y) \setminus g(f(X)) \cup g(f(X)) \setminus g(f(g(Y))) \cup \dots$$

$$Y = Y \setminus f(X) \cup f(X) \setminus f(g(Y)) \cup f(g(Y)) \setminus f(g(f(X))) \cup \dots$$

$$A_{n+1} = g(f(A_n)) \text{ and } A_{\infty} = \bigcup_{n=0}^{\infty} A_n$$

$$Define$$

$$h(x) = \begin{cases} f(x), & \text{if } x \in A_{\infty} \\ g^{-1}(x), & \text{otherwise} \end{cases}$$

We can easily show h is onto since all of Y is used

But is h injective?

We are also using the result that if h is injective on A_1, A_2 , then h is injective on $A_1 \cup A_2$ if $f(A_1) \cap f(A_2) = \emptyset$.

Hence A_{∞} is the union of disjoint A_n , and h is injective on all the A_n since f is. so h is injective on the A_{∞} .

Similarly h is injective $\forall x \notin A_{\infty}$ by injectivity of g.

So h is injective $\forall x \in X$

 \implies h is bijective, as required