

MEGL

INTEGRATED CIRCUITS

INDEX MC300 Series

		Page No.
Numerical Index		2-3
Logic Description		2-4
General Information Circuit Description Definitions Packages Worst-Case Transfer Maximum Ratings Noise Margins	r Characteristics	2-6 2-6 2-7 2-7 2-8 2-8 2-8
DEVICE SPECIFICATION	ONS	
GATES MC306 MC307 MC301 MC309 MC310 MC311 MC312A MC313F	3-Input Gate 3-Input Gate 5-Input Gate Dual 2-Input Gate Dual 2-Input Gate Dual 2-Input Gate Dual 3-Input Gate Dual 3-Input Gate Quad 2-Input Gate	2-9 2-9 2-12 2-14 2-14 2-14 2-16 2-18
FLIP-FLOPS MC302 MC308 MC314	R-S Flip-Flop AC-Coupled J-K Flip-Flop AC-Coupled J-K Flip-Flop	2-20 2-22 2-24
HALF-ADDER MC303	Half-Adder	2-26
GATE EXPANDER MC305	Gate Expander	2-28
DRIVERS MC304 MC315 MC316	Bias Driver Line Driver Lamp Driver	2-29 2-30 2-31
TRANSLATORS MC317 MC318	MECL to Saturated Logic Translator Saturated Logic to MECL Translator	2-32 2-33

NUMERICAL INDEX (Functions and Characteristics)

 V_{CC} = 0, V_{EE} = -5.2 V, T_A = 25°C

Function	Туре ①	DC Output Loading Factor Each Output	Propagation Delay ^t pd ns typ	Total Power Dissipation mW typ/pkg	Case	Page No.
5-Input OR/NOR Gate	MC301	25	7.5	37	71, 72	2-12
R-S Flip-Flop	MC302		11	42		2-20
Half-Adder	MC303		7.5	63		2-26
Bias Driver	MC304	\	-	18		2-29
5-Input Gate Expander	MC305	-	4.5	_		2-28
3-Input OR/NOR Gate	MC306	25	7.5	37	į	2-9
3-Input OR/NOR Gate	MC307		7.5	15		2-9
AC-Coupled J-K Flip-Flop	MC308		8.5	87	İ	2-22
Dual 2-Input NOR Gate	MC309		7.0	54		2-14
Dual 2-Input NOR Gate	MC310		7.0	54	į	2-14
Dual 2-Input NOR Gate	MC311		7.0	41		2-14
Dual 3-Input NOR Gate (With Internal Bias)	MC312A		7.5	70	V	2-16
Quad 2-Input NOR Gate	MC313F		7.0	125	83	2-18
AC-Coupled J-K Flip-Flop	MC314	\ ₩	12	118	71, 72	2-24
Line Driver	MC315		14	180 ②	1	2-30
Lamp Driver Level Translator —	MC316	-	_	135		2-31
MECL to Saturated Logic	MC317	7 (DTL)	27.5	63	*	2-32
Level Translator — Saturated Logic to MECL	MC318	25 (MECL)	17	105	71, 72	2-33

① G suffix denotes Metal Can, F suffix denotes Flat Package. (i.e., MC301G = Metal Can, MC301F = Flat Package.) ② With 93-ohm load (each side)

LOGIC DESCRIPTION

MECL MC300 series

POSITIVE LOGIC: V_H is a logical "1", V_L is a logical "0" NEGATIVE LOGIC: V_H is a logical "0", V_L is a logical "1"

The logic diagrams shown describe the circuits of the MC300 line and permit quick selection of those circuits required for the implementation of this particular logic system. Pertinent information such as logic equations, typical time delay, typical power dissipation, and truth tables is provided to show line compatibility. Package pin numbers and fan-in and fan-out for each device are specified on each logic diagram. The numbers at the

ends of the terminals are package pin numbers. The numbers in parentheses indicate ac loading factors at each terminal.

MECL circuits require a bias voltage which, for best results, should be obtained from a regulated, temperature-compensated, bias supply. A bias driver, type MC304, is included in the MECL line to provide this function when the bias driver is not contained in the logic element. Specifications for the bias driver are given on page 2-29.

MC310 - DUAL 2-INPUT GATE

**Optional pull-down resistor.

If resistor is desired, connect pin 4 to pin 5.

$$t_{\text{\tiny dI}} = 6.5\,\text{ns}$$

 $P_D = 27 \, \text{mW/gate}$

Provides the positive logic "NOR" function. Same as MC309 with one output pull-down resistor optional (see schematic diagram on page 2-14).

MC311 - DUAL 2-INPUT GATE

**Optional pull-down resistor If resistor is desired, connect pin 4 to pin 5 or pin 6.

 $t_{\rm d1}=6.5\,\rm ns$

 $P_D = 21 \, \text{mW/gate}$

Provides the positive logic "NOR" function. Same as MC309 with one output pull-down resistor omitted and the second optional (see schematic diagram on page 2-14).

MC312A - DUAL 3-INPUT GATE

 $t_{ell} = 6.5 \text{ ns}$ $P_{ell} = 35 \text{ mW/gate}$

Provides the positive logic "NOR" function, and features an internal bias driver. This gate without the bias driver is available as the MC312.

MC313F - QUAD 2-INPUT GATE

 $t_{vi} = 6.5 \text{ ns}$

MC315 - LINE DRIVER

 $t_{\rm di}=14~{\rm ns}$

 $P_D = 180 \text{ mW (with 93 } \Omega \text{ load)}$

Drives lines of 93 ohms or greater while providing the positive logic "NOR" function and its complement simultaneously.

MC303 — HALF-ADDER

 $\mathbf{t}_{\mathrm{di}} = 7~\mathrm{ns}$

 $P_{\text{D}}=63~\text{mW}$

 $P_D = 105 \, \text{mW}$

Provides the "SUM", "CARRY", and "NOR" functions simultaneously. If complement inputs are not used, an undefined state can occur.

MC316 — LAMP DRIVER

 $P_D = 135 \, \text{mW}$

Capable of driving 6-volt lamps. Positive "NOR" function is obtained by applying $V_{\rm sig}$ to pin 4, 5, or 6, with pins 7 and 8 used as inputs. Positive "OR" is obtained by applying $V_{\rm sig}$ to pin 7 or 8, with pins 4, 5, and 6 used as inputs.

MC317 — LEVEL TRANSLATOR

 $t_{dr} = 30 \text{ ns}$ $P_D = 63 \text{ mW}$

Intended for converting non-saturated MECL signal levels to saturated logic levels. Positive "NOR" function is obtained by applying V_{ab} to pin 7 or 8, with pins 4, 5, and 6 used as inputs. Positive "OR" is obtained by applying V_{ab} to pin 4, 5, or 6, with pins 7 and 8 used as inputs.

MC318 — LEVEL TRANSLATOR MC305 — 5-INPUT EXPANDER

Intended for converting saturated logic levels to non-saturated MECL signal levels. By applying DTL input logic levels as defined by logical "0" at 0.4 V and logical "1" at 5.0 V, corresponding MECL outputs are obtained as defined by logical "0" at -1.55 V and logical "1" at -0.75 V.

 $t_{\rm dl}=5\,{\rm ns}$

For use with the MC302, MC306, MC307, and MC315. Each expander unit increases the fan-in of the basic gate by five. For highest performance, a maximum of three expander units per gate is recommended.

Note:

Any unused input should be connected to Ves.

GENERAL INFORMATION

CIRCUIT DESCRIPTION

The MECL line of monolithic integrated logic circuits was designed as a non-saturating form of logic which eliminates transistor storage time as a speed limiting characteristic, and permits extremely high-speed operation.

The typical MECL circuit comprises a differentialamplifier input, with emitter-follower output to restore dc levels. High fan-out operation is possible because of the high input impedance of the differential amplifier and the low output impedance of the emitter followers. Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides for simultaneous output of both the function and its complement.

POWER-SUPPLY CONNECTIONS

Any one of the power supply nodes, V_{BB} , V_{CC} , or V_{EE} may be used as ground; however, the manufacturer has found it most convenient to ground the V_{CC} node. In such a case: $V_{CC} = 0$, $V_{BB} = -1.15 \, \text{V}$, $V_{EE} = -5.2 \, \text{V}$, as shown in the schematic diagram above.

SYSTEM LOGIC SPECIFICATIONS

The output logic swing of 0.8 V then varies from a low state of $V_L = -1.55$ V to a high state of $V_H = -0.75$ V with respect to ground.

Positive logic is used when reference is made to logical "0's" or "1's". Then

"0" =
$$-1.55 \text{ V}$$
 typical $"1" = -0.75 \text{ V}$

Dynamic logic refers to a change of logic states. Dynamic "0" is a negative going voltage excursion and a dynamic "1" is a positive going voltage excursion.

CIRCUIT OPERATION

A bias of -1.15 volts is applied to the "bias input" of the differential amplifier and the logic signals are applied to the "signal input". If a logical "0" is applied, the current through RE is supplied by the fixed-biased transistor. A drop of 800 mV occurs across RC2. The OR output then is -1.55 V, or one VBE-drop below 800 mV. Since no current flows in the "signal input" transistor, the NOR output is a VBE-drop below ground, or -0.75 volts. When a logical "1" level is applied to the "signal input" transistor and a drop of 800 mV occurs across RC1. The OR output then goes to -0.75 volts and the NOR output goes to -1.55 volts.

Note: Any unused input should be connected to $V_{\mbox{\footnotesize{EE}}}$.

BIAS VOLTAGE SOURCE

The bias voltage applied to the bias input is obtained from a regulated, temperature-compensated bias driver, type MC304. The temperature characteristics of the bias driver compensate for any variations in circuit operating point over the temperature range or supply voltage changes, to insure that the threshold point is always in the center of the transition region. The bias driver can be used to drive up to 25 logic elements and should be employed for all elements except those with built-in bias networks.

DEFINITIONS

ein AC signal applied to the input

eout AC signal at the output

I_C Amount of current drawn from the positive power supply by the test unit

ICEX Total collector leakage current exhibited by the gate expander when all inputs are at the negative supply potential

IE Amount of current drawn from the test unit by the negative power supply

In Current drawn by the input of the test unit when a logical "1" (V_H) is applied to the input

IL Current drawn from a node when that node is at ground potential

t_{d1} Time required for the output pulse to reach the 50% point of its leading edge when referenced to the 50% point of the input pulse leading edge

t_{d2} Time required for the output pulse to reach the 50% point of its trailing edge when referenced to the 50% point of the input pulse trailing edge

t_{df} Time required for a flip-flop output to reach the 50% point of its negative going edge when referenced to the 50% point of the input pulse leading edge

t_{dr} Time required for a flip-flop output to reach the 50% point of its positive going edge when referenced to the 50% point of the input pulse leading edge

tf Time required for the output pulse to go more negative from its 90% point to its 10% point

t_r Time required for the output pulse to go more positive from its 10% point to its 90% point

V1 "NOR" output voltage — logical "1" level output voltage when a logical "0" level (V_L) is applied to the input

V2 "OR" output voltage — logical "0" level output voltage when a logical "0" level (V_L) is applied to the input

V3 Saturation breakpoint voltage which corresponds to the "NOR" output characteristic where the rate of change in the output voltage to the rate of change in input voltage is zero

V₄ "NOR" output voltage — logical "0" level output voltage when a logical "1" level (V_{1 max}) level is applied to the input

V₅ "OR" output voltage — logical "1" level output voltage when a logical "1" (V_{1 max}) level is applied to the input

V₆ Output latch voltage — input voltage to a flipflop which causes the output voltage to change from a logical "1" level to a logical "0" level and corresponds to the point where the rate of change in the output voltage to the rate of the input voltage approaches infinity

VH Logical "1" input voltage

V_L Logical "0" input voltage

VOH High-level output voltage when the saturated logic circuit output is in an "off" condition

V_{OL} Low-level output voltage when the saturated logic output circuit is in an "on" condition

 $^\Delta V_1$) Change in the "1" level output voltage as the $_\Delta V_5$) load is varied from no load to full load

PACKAGES

All MECL integrated circuits are available in both the TO-91, 10-lead flat package and the 10-lead metal package. To order the flat package, add suffix "F" to basic type number; to order metal package, add suffix "G".

Exception: Type MC313F is available only in the TO-86, 14-lead flat package.

GENERAL INFORMATION (continued)

WORST-CASE TRANSFER CHARACTERISTICS

The following graphs show minimum and maximum limits of major parameters associated with the transfer characteristics of the MECL line. Min-Max limits, given at three different temperatures can be interpreted for design purposes as 10% to 90% spreads at all points on the curve except for guaranteed points in the Electrical Characteristics tables.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit

Ratings above which device life may be impaired:

Power Supply Voltage (V _{cc} = 0 Vdc)	V _{EE}	-10	Vdc
Base Input Voltage ($V_{cc} = 0 \text{ Vdc}$)	V _{in}	0 Vdc to V _{EE}	Vdc
Output Source Current	l _o	20	mAdc
Storage Temperature Range	T _{stg}	-65 to +150	•c

Recommended maximum ratings above which performance may be degraded:

Operating Temperature Range	T _A	-55 to +125	•c
AC Fan-In (Expandable Gates)	m	18	_
AC Fan-Out* (Gates and Flip-Flops)	n	15	_

^{*}Although a minimum dc fan-out of 25 is guaranteed in each electrical specification, it is recommended that the maximum ac fan-out of 15 be used for high-speed operation.

NOISE MARGINS (90 PERCENTILE)

The following graphs show worst-case Noise Margins as a function of temperature and fan-out. Top graph illustrates the advantage gained through use of MC304 bias driver, as compared with non-compensated fixed bias source, bottom.

Note: Any unused input should be connected to $V_{\epsilon\epsilon}$

MECL MC300 series

3-INPUT GATES

MC306 · MC307

Expandable 3-input gates that provide the positive logic "NOR" function and its complement simultaneously. MC307 omits output pull-down resistors, permitting reduction of power dissipation.

SWITCHING TIME TEST CIRCUIT

SWITCHING CHARACTERISTICS (10% to 90% distribution)

- +125°C

MC306, MC307 (continued)

ELECTRICAL CHARACTERISTICS

Test Conditions

	1	Vdc	±1%													
€ Toot (-55°C	_	-0.945	-1.450	-5.20	-1.25											
@ Test +25°C	-0.690	-0.795	-1.350	-5.20	-1.15											
Temperature (+ 125°C		-0.655	-1.300	-5.20	-1.00								,			_
		Ì	ľ						Symbol				Fest Lim			ı
	V _H	V _{i max}	V,	VEE	VRB	₫V _{in}	I,	Ground	Pin No		55°C		25°C		25°C	į
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	Ĺ
Power Supply MC306	_	_		2,6,7,8	1	_	_	3	l∈ (2)	-	8.85		8.85	- 1	8.15	ĺ
Drain Current MC307		-	-	2,6,7,8	1			3	l _E (2)	_	3.6	_	3.6		3.3	L
Input Current	6	_	_	2,7,8	1	_	_	3	lin (6)			_	100	-		ĺ
	7	_		2,6,8	1	-	_	3	lin (7)	_	-	-		-	-	ı
	8	_	-	2,6,7	1	_	_	3	lin (8)	_		. —			_	L
"NOR" Logical "1"	_	_	6	2,7,8	1	_	_	3	V1 (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	1
Output Voltage	_	-	7	2,6,8	1	_	- '	3	V: (5)			1		1		
	_	- '	8	2,6,7	1	_	-	3	V: (5)	₩ .	₩.	•	Y	T	Ψ	L
"NOR" Logical "O"	_	6	_	2,7,8	1	_	_	3	V ₄ (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	۱
Output Voltage	-	7	_	2,6,8	1	_	l –	3	V4 (5)	1 1		l	1		1 1	l
- 1	-	8		2,6,7	1	-	-	3	V4 (5)	*	Y	₹ 1	₹ 7	T	7	L
"OR" Logical "1"	_	6	_	2,7,8	1	_	_	3	V ₅ (4)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	
Output Voltage		7	_	2,6,8	1	-	_	3	Vs (4)			1 1	1 1		1 1	١
	-	8	l –	2,6,7	1			3	Vs (4)	7	*	-	1	Y	7	L
"OR" Logical "O"	_	_	6	2,7,8	1	_	_	3	V2 (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	ı
Output Voltage	-	-	7	2,6,8	1	-	-	3	V2 (4)	1 1	1 1	1 1	1	1 1	1 1	
-	l –	_	8	2,6,7	1	-	-	3	V2 (4)	▼	. ▼	▼	▼	▼	▼	l

5 ®

43

6①

70

8①

3

3

3

Pins not listed are left open.

6

"NOR" Output

Voltage Change

(No load to full load) "OR" Output Voltage Change

(No load to full load) "NOR" Saturation

Breakpoint Voltage

Propagation Delay Time

Switching Times

Rise Time

Fall Time

2,7,8 ① Input voltage is adjusted to obtain dV "NOR / dV $_{\rm in}=0.$

6

2,7,8

2,7,8

2,7,8 1

2,6,8 1

2,6,7

2.7.8

2,7,8 1

2,7,8

2,7,8

2,7,8

2,7,8

1

6.5 6.5 ① Current test conditions: no load = 0; full load = -2.5mAdc ± 5 %.

Тур

7.0 5.5

5.5 10.0

7.0 10.5 7.0 11.0 9.5 14.5

6.0 8.5 6.0

7.5 11.5 7.5 12.5

-0.055

-0.055

Max Тур

11.0 7.0

10.0

10.5

12.0

5.5 10.5 7.0

6.5 12.0 9.0

6.5 12.5

-0.055

-0.055

Max 11.5 9.5

11.0 7.0

10.0

∆Vı (5)

∆Vs (4)

V3 (5)

V3 (5)

V3 (5)

ta: (4)

ta: (5)

t_{d2} (4)

td2 (5)

tr (4)

tr (5)

tr (4)

tr (5)

Unit mAdc mAdc

> Vdc Vdc

Volts

Volts

-0.060

-0.060

14.5

12.5

12.5

13.0

15.0

15.0

Тур Max

8.0

SWITCHING CHARACTERISTICS (10% to 90% distribution)

- -55°C and +25°C - +125°C

5-INPUT GATE

MECL MC300 series

MC301

A 5-input gate that provides the positive logic "OR" function and its complement simultaneously.

SWITCHING TIME TEST CIRCUIT Output

SWITCHING CHARACTERISTICS (10% to 90% distribution)

MC301 (continued)

ELECTRICAL CHARACTERISTICS

Test Conditions

(−55°C		-0.945	-1.450	-5.20	-1.25											
@ Test +25°C	-0.690	-0.795	-1.350	-5.20	-1.15											
1 cimperature (+125°C		-0.655	-1.300	-5.20	-1.00									••		
		1			ļ	1		* .	Symbol	-		-	est Lim		0500	Unit
	V _H	V _{I max}	V _L	VEE	V _{BB}	dV _{in}	I _L	Ground	Pin No		55°C	-	25°C		25°C	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
ower Supply Drain Current				2,6,7,8,9,10	1	<u> </u>	-	3	lε (2)	_	8.85	_	8.85		8.15	mAdo
nput Current	6	-	.—	2,7,8,9,10	1	-	-	3	lin (6)	-	=	_	100	_	_	μAdo
	7 8	=	=	2,6,8,9,10 2,6,7,9,10	i	_	=	3	lin (7) lin (8)	_	=	_	11	_	=	I
	9	-	-	2,6,7,8,10 2,6,7,8,9	1	=	_	3	lin (9)	_	-	-	♥	_	_	†
NOR" Logical "1"	10	<u> </u>	6	2,6,7,8,9	1	=	=	3	V ₁ (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc
Output Voltage	=	_	7	2,6,8,9,10	1	_	:	3	V ₁ (5)	1	1	1	1	i	1	i
· -	_		8 9	2,6,7,9,10 2,6,7,8,10	1	=	=	3	V1 (5) V1 (5)			1 1	1 1			
	=	=	10	2,6,7,8,10	i	=	=	3	V ₁ (5)	\ \	7	▼	7	₩.	▼	1
NOR" Logical "O"	-	6	_	2,7,8,9,10	1	_	_	3	V4 (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
Output Voltage		7 8	-	2,6,8,9,10	1	=	_	3	V4 (5) V4 (5)			1				
	=	9		2,6,7,8,10	î		_	3	V4 (5)	1	. ↓	1		↓	↓	↓
	<u> </u>	10		2,6,7,8,9	1	-		3	V4 (5)	1		<u>'</u>	-0.795	-0.525	0.655	Vdc
OR" Logical "1" Output Voltage	=	6 7		2,7,8,9,10 2,6,8,9,10	1	_	_	3 3	Vs (4) Vs (4)	-0.825	-0.945	-0.690	-0./95	-0.525	0.655	Vac
output voitage	=	8	-	2,6,7,9,10	ī	-	-	3	Vs (4)			1 1		 		
		9	_	2,6,7,8,10 2,6,7,8,9	1 1		=	3	Vs (4) Vs (4)	♥	†	♦	🕴	†	*	†
'OR'' Logical "O"	_	+ =	6	2.7.8.9.10	1	-	_	3	V ₂ (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
Output Voltage	-	-	7	2,6,8,9,10	1	<u> </u>	-	3	V2 (4)		١.	1				
		_	8 9	2,6,7,9,10	1	_	=	3	V ₂ (4) V ₂ (4)	↓	↓	1 1	1	l l	↓	1
			10	2,6,7,8,9	1	<u> </u>		3	V ₂ (4)	_ '	,	,	7	<u> </u>	'	
"NOR" Output Voltage Change		_	6	2,7,8,9,10	1	_	5⊛	3	∆V₁ (5)	_	-0.055	l _	-0.055	_	-0.060	Volt
(No load to full load)	_	-		2,7,8,3,10	1	-	1 30		Δ,, (9)		0.000					
"OR" Output											-0.055	_	-0.055	_	-0.060	Volt
Voltage Change (No load to full load)	T	6		2,7,8,9,10	1	_	4®	3	△٧₅ (4)	_	-0.055	_	-0.055	_	-0.060	1 4011
"NOR" Saturation	+	_	_	2,7,8,9,10	1	6①	T	3	V ₃ (5)	_	-0.40		-0.55	_	-0.68	Vdc
Breakpoint Voltage	-	-	-	2,6,8,9,10 2,6,7,9,10	1	7①	=	3	V ₃ (5) V ₃ (5)	_		=		_		I. I.
	=	=	= 1	2,6,7,8,10	ī	9①	=	3	V ₃ (5)	_	1 1	-	I	_		1
	I		1 -	2.6.7.8.9	1	100	_	3	V ₃ (5)	1 —	T	-	1	-		

3

3

3

3

ta: (4) ta: (5)

tr (4) tr (5)

Pins not listed are left open

Propagation Delay Tim

Switching Times

= = = = ① Input voltage is adjusted to obtain dV

2,7,8,9,10 2,7,8,9,10

Pulse Out

5

6

7.0 7.0

Тур

8.0 6.5 5.5 7.5 12.0 10.0

9.0 11.0 6.5 8.5

9.0 14.0

Тур Max

6.0 8.0 10.0 12.5

7.0 9.0

12.5 11.0 8.5 6.5

Max Тур

15.5 17.5

MECL MC300 series

DUAL 2-INPUT GATES

MC309 · MC310 · MC311

Dual 2-input gates that provide the positive logic "NOR" function. MC309 has two output pull-down resistors; MC310 has one of the output pull-down resistors optional; MC311 omits one output pull-down resistor and has the second optional.

MC309, MC310, MC311 (continued)

ELECTRICAL CHARACTERISTICS

Test Conditions

			dc ±1%													
@ Test \55°C \250°C	_	-0.945		-5.20	-1.25											
@ Test + 25°C Temperature (+125°C	-0.690	-0.795 -0.655	-1.350 -1.300	-5.20 -5.20	-1.15 -1.00											
(+125-6		-0.655	-1.500	-3.20	-1.00								Test Lin	nits		
	V _H	V _{I max}	V _L	V _{EE}	V _{BB}	dV _{in}	IL.	Ground	Symbol Pin No	-:	55°C	+:	25°C	+1	25°C	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in (.)	Min	Max	Min	Max	Min	Max	
Power Supply MC309, MC310	_	_	_	2,7,8,9,10	1	_		3	le (2)	_	13.0	_	13.0		12.0	mAdc
Drain Current MC311	_	_		2,7,8,9,10	1	_	_	3	I _E (2)	_	10.1		10.1	_	9.3	mAdo
Input Current	7	_	_	2,8,9,10	1	-	-	3	lin (7)	-		-	100	-	-	μAdc
	8	-	-	2,7,9,10	1	-	_	3	lin (8)	-	_	_		-	_	1 1
	9	_	-	2,7,8,10	1		-	3	1 in (9)	-	_	-	1 1	_	_	↓
	10	_		2,7,8,9	1		_	3	l in (10)		_		1			'
"NOR" Logical "1"	-	-	7	2,8,9,10	1	-	-	3	V1 (6)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc
Output Voltage		_	8	2,7,9,10	1	-	-	3	V1 (6)			1 1				1 1
	_	_	9 10	2,7,8,10 2,7,8,9	1	_	_	3	V ₁ (5) V ₁ (5)		↓	↓		↓	↓	+
"NOR" Logical "O"		7		2,8,9,10	1	_	<u> </u>	3	V4 (6)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
Output Voltage	_	8	_	2,7,9,10	1		_	3	V4 (6)	1		1		1		
	_	9	l _	2,7,8,10	1	_		3	V4 (5)				1			
	_	10	-	2,7,8,9	1	_	_	3	V4 (5)	†	*	+	. 🕈	†	*	•
"NOR" Output Voltage Change	_	_		2,7,8,9,10	1	-	63	3	∆V₁ (6)	_	-0.055	-	-0.055	-	0.060	Vdc
(No load to full load)		_		2,7,8,9,10	1		. 5③	3	△٧, (5)	_	-0.055		-0.055	_	-0.060	Vdc
"NOR" Saturation	-	-	-	2,8,9,10	1	7①	-	3	V ₃ (6)	-	-0.40		-0.55	-	-0.68	Vdc
Breakpoint Voltage	i –	-	-	2,7,9,10	1	8①	1 -	3	V3 (6)	_		_		-		
	-	-	-	2,7,8,10	1	9①	_	3	V ₃ (5)			-		-	l	↓
	_			2,7,8,9	1	10①		3	V3 (5)	_	<u>'</u>		<u>'</u>		,	
Switching Times	Pulse In	Pulse Out		}						Тур	Max	Тур	Max	Тур	Max	
Propagation Delay Time	7	6	1 _	2,8,9,10	1	_	<u> </u>	3	ta: (6)	5.5	10.0	6.0	11.0	7.0	12.0	ns
	10	5	-	2,7,8,9	1	-	-	3	ta: (5)	5.5	10.0	6.0	11.0	7.0	12.0	1 1
	7	6	_	2,8,9,10	1	-	-	3	ta2 (6)	6.5	13.0	7.0	13.5	9.5	15.0	
	10	5	_	2,7,8,9	1	-	-	3	taz (5)	6.5	13.0	7.0	13.5	9.5	15.0	
Rise Time	7	6	-	2,8,9,10	1	-	_	3	tr (6)	6.0	12.0	6.0	1	7.0	13.5	
	10	5	-	2,7,8,9	1	-	-	3	tr (5)	6.0	12.0	6.0	12.0	7.0	13.5	
Fall Time	7	6	-	2,8,9,10	1	-	-	3	tr (6)	7.0	13.0	7.5	1	9.5	17.0	
	10	5	l –	2,7,8,9	1		-	3	tr (5)	7.0	13.0	7.5	14.0	9.5	17.0	_ *

Pins not listed are left open For MC310, connect pin 4 to pin 5 for all tests ① Input voltage is adjusted to obtain dV "NOR" / dV = 0. ② Current test conditions: no load = 0; full load = -2.5 mAdc ± 5 %.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

DUAL 3-INPUT GATE

MC312A

Dual 3-input gate that provides the positive logic "NOR" function, and features an internal bias driver. This gate is available without bias driver as MC312.

ELECTRICAL CHARACTERISTICS

				conditions $\pm 1\%$	
	_55°C		-0.945	-1.450	-5.20
@ Test	+25°C	-0.690	-0.795	-1.350	-5.20
Temperature	+125°C	_	-0.655	-1.300	-5.20

Temperature +25°C	-0.690		-1.350	-5.20											
+ 125°C		-0.655	-1.300	-5.20							To	st Limit	•		
								Symbol	-5	E00	+2		+12	5°C	Unit
Characteristic	V _H Pin No	V _{1 max} Pin No	V _L Pin No	V _{EE} Pin No	dV _{in} Pin No	I _L Pin No	Ground Pin No	Pin No in ()	Min	Max	Min	Max	Min	Max	-
Power Supply Drain Current		_	_	1,2,6,7,8,9,10	_	_	3	le (2)	·	17.7		17.0		16.4	mAdc
	1	_	_	2,6,7,8,9,10		_	3	lin (1)	_		- l	100	- 1		μAdc
Input Current	6	= 1	<u> </u>	1,2,7,8,9,10	_	l _ '	3	lin (6)	- 1	- 1	- 1	1 1	-	-	1
	7		_	1,2,6,8,9,10	l ·	_	3	1in (7)		. —	- 1	11	- 1	-	- 1
	8	_		1,2,6,7,9,10	_	l —	3	1 in (8)	-	-	- 1	1 1	-	-	- 1
	9	١ _	-	1,2,6,7,8,10		_	3	Fin (9)	- 1	- 1	-	- ↓	-	-	- +
	10	_	-	1,2,6,7,8,9	- "	-	3	lin (10)						_=	<u> </u>
"NOR" Logical "1"	<u> </u>		6	1,2,7,8,9,10	_		3	V1 (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc
Output Voltage	_	_	7	1,2,6,8,9,10	l —	_	3	V: (5)	1 1 1	1 (1	- 1 1		- 1
output rollings	_	_	8	1,2,6,7,9,10	l –	l –	3	V: (5)	1 1 1	1 1	. 1 1		11	- 1 1	- 1
	_	_	1	2,6,7,8,9,10	l —	_	3	V1 (4)	1 1 1			- 1-1		1 1	
	l _	-	9	1,2,6,7,8,10	-	-	3	Vı (4)			↓	1	+	- ♦ 1	
	-	-	10	1,2,6,7,8,9			3	V1 (4)	1		-				
"NOR" Logical "O"	_	6	_	1,2,7,8,9,10	T _	_	3	V4 (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
Output Voltage	1 _	7	l —	1,2,6,8,9,10	-	l –	3	V4 (5)	1 1 1			- 1 - 1	. 1 1	1 1	
	_	8		1,2,6,7,9,10	-	-	3	V4 (5)				. 1		l '	
	_	1	I -	2,6,7,8,9,10	1 -	_	3	V4 (4)	1 1 1						1
	-	9	1 -	1,2,6,7,8,10	-	-	3	V4 (4)	1 1	♦	₩	♦	+ 1	•	*
	-	10	_	1,2,6,7,8,9	<u> </u>		3	V ₄ (4)	-		-				Volt
"NOR" Output Voltage Change	T _	_	6	1,2,7,8,9,10	-	5 ②	3	∆V: (5)	_	-0.055	-	-0.055	_	-0.060 -0.060	Volt
	_	-	1	2,6,7,8,9,10	1 -	43	3	_ ∆V₁ (4)		-0.055	_	-0.055			Vdc
"NOR" Saturation	T -	_	_	1,2,7,8,9,10	6①	-	3	V3 (5)	-	-0.40	_	_0.55	_	-0.68	Vac
Breakpoint Voltage		-	_	1,2,6,8,9,10	7①	-	3	V ₃ (5)	-	1 1	-		_		
	 		1 -	1,2,6,7,9,10	81	1 -	3	V ₃ (5)	l -	1	-				1 1
	-	I -		2,6,7,8,9,10	10	-	3	V ₃ (4)	_		=		_	1	1 1
	_	-	I -	1,2,6,7,8,10	9①	-	3	V ₃ (4)	_	•	_		l	†	1
	-	_		1,2,6,7,8,9	10①		3	V ₃ (4)	+	<u> </u>	ļ .	١·			<u> </u>
	Pulse	Pulse			1	1	1		Тур	Max	Тур	Max	Тур	Max	_
Switching Times	In	Out	-		1			tai (5)	6.5	10.5	6.5	10.5	7.5	11.5	ns
Propagation Delay Time	6	5	-	1,2,7,8,9,10	-	-	3 0	tai (4)	6.5	10.5	6.5	10.5	7.5	11.5	
	1	4	-	2,6,7,8,9,10	-		3	taz (5)	8.5	11.5	8.5	11.5	10.0	15.0	1 1
	6	5	_	1,2,7,8,9,10		1 =	3	ta2 (4)	8.5	11.5	8.5	11.5	10.0	15.0	1 1
1	1	4	1 -	2,6,7,8,9,10	_	-		1	i	12.5	9.5	12.5	11.5	15.5	
Rise Time	6	5		1,2,7,8,9,10	1 -	—	3	tr (5)	9.0	12.5	1		11.5	15.5	
	1	4	-	2,6,7,8,9,10		-	3	tr (4)	9.0		100	1	1		1
	1	1	1	1	- 1	ı	3	tr (5)	8.5	14.0	9.0	14.0	11.5	17.0	1 🔻
Fall Time	l 6	5	I —	1,2,7,8,9,10	_		.] 3	(3)	8.5	14.0		14.0	11.5	17.0	

Pins not listed are left open. ① Input voltage is adjusted to obtain dv "NOR" / $dV_{in}=0$. ② Current test conditions: no load = 0; full load = -2.5 mAdc $\pm 5\%$.

- +125°C

QUAD 2-INPUT GATE

MECL MC300 series

MC313F

Quad 2-input gate that provides the positive logic "NOR" function, and features an internal bias driver.

SWITCHING TIME TEST CIRCUIT UNIT UNDER TEST 2 N709 2 N52 -5.2 VINPUT PULSE t, AND $t_r = 6 \pm 2 \text{ ns}$ Stray capacitance introduced by the test jig: $C_S = (n + 12) \text{ pF where } n = \text{number of fan-outs.}$

ELECTRICAL CHARACTERISTICS

				st Conditi /dc ± 1°	
@ Tt	-55°C		-0.945	-1.450	-5.20
@ Test	+ 25°C	-0.690	-0.795	-1.350	-5.20
Temperature)	+125°C	_	-0.655	-1.300	-5.20

Temperature + 125°C	-0.690	-0.795	-1.350	-5.20											
Temperature (+125°C		-0.655	-1.300	-5.20			T 1				Test	Limits			
								Symbol		5°C		5°C	+12	5°C	Unit
Characteristic	V _H Pin No	V _{I max} Pin No	V _L Pin No	V EE Pin No	dV in Pin No	I _L Pin No	Ground Pin No	Pin No in ()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	_	_	_	1,3,6,7,9,10,11,12,14	_	_	4	1 _E (3)	_	31.0	_	30.0		29.0	mAdc
Input Current	1	_	_	3,6,7,9,10,11,12,14	_	_	4	l in (1)	_	-	-	100	-	-	μAdc
	6	_	1 —	1,3,7,9,10,11,12,14	-	l –	4	lin (6)		_		- 1	_	=	ì
-	7	-		1,3,6,9,10,11,12,14	=	-	4 4	lin (7) lin (9)		_			_	_	
	9 10	=	_	1,3,6,7,10,11,12,14 1,3,6,7,9,11,12,14	=	=	4	lin (10)		_	- 1			- 1	- 1
1	11	_	_	1,3,6,7,9,10,12,14		_	4	lin (11)	-	-	-		= 1	_	1
	12	_	-	1,3,6,7,9,10,11,14	-	_	4	lin (12) lin (14)	-	_	=	*	_	_	7
	14			1,3,6,7,9,10,11,12		=	4	V ₁ (2)	0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc
"NOR" Logical "1" Output Voltage	=	_	1 6	3,6,7,9,10,11,12,14 1,3,7,9,10,11,12,14	_	_	4	V ₁ (5)	0.823	-0.343	0.030	0.700	1	1	- 1
outher soitage	_		7	1,3,6.9,10,11,12,14	=	-	4	V: (5)		. 1			- []		- 1
	l –	l –	9	1,3,6,7,10,11,12,14	_	-	4	V: (8)	1 1		 		- 1 \		- 1
	-	_	10	1,3,6,7,9,11,12,14 1,3,6,7,9,10,12,14	=	_	4	V: (8) V: (13)		1				- []	
	_	=	12	1,3,6,7,9,10,12,14	_	_	4	V ₁ (13)		↓	l l	1	- ↓ 1	₩ 1	. ♦
	_	-	14	1,3,6,7,9,10,11,12	_		4	V: (2)	,		1	7	,	'	Vdc
"NOR" Logical "O"	_	1	_	3,6,7,9,10,11,12,14	I -	_	4	V4 (2)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vac
Output Voltage	-	6	-	1,3,7,9,10,11,12,14	=	=	4	V ₄ (5) V ₄ (5)	1 1	l	1 1		1 1	- 1- 1	
	_	7 9	_	1,3,6,9,10,11,12,14 1,3.6,7,10,11,12,14		_	4	V4 (8)			1 1				- 1
		10	_	1,3,6,7,9,11,12,14	l —		4	V4 (8)				l 1		- 1 1	
	_	11	l –	1,3,6,7,9,10,12,14	I -	-	4	V ₄ (13)			1 1	1		1	1
	_	12 14	=	1,3,6,7,9,10,11,14 1,3,6,7,9,10,11,12	=	=	4 4	V ₄ (13) V ₄ (2)	*	▼	. ▼			7	7
"NOR" Output Voltage Change	+=-	14	+=	1.3.6.7.9.10.11.12.14	+=-	2②	4	∧V₁ (2)		0.055	_	-0.055	_	-0.060	Volts
(No load to full load)	_	_	=	1,3,6,7,9,10,11,12,14	-	5 ②	4	_∆V₁ (5)	-		_	1		- 1	
(10 1022 10 1211 1022)		-	1 -	1,3,6,7,9,10,11,12,14	-	8②	4	△V₁ (8)	-	♦	-	†	_	•	*
				1,3,6,7,9,10,11,12,14	I	13②	4	△V₁ (13)		0.40	├	-0.55		-0.68	Vdc
"NOR" Saturation	_		_	1,3,6,7,9,10,11,12,14	7①		4	V ₁ (2) V ₁ (5)	_	-0.40	_	0.33	_	0.00	ï
Breakpoint Voltage	_		=	1,3,6,7,9,10,11,12,14	100	_	4	V ₃ (8)	_	l l	l –	1	-	. ↓	
	l —	-	-	1,3,6,7,9,10,11,12,14	12①		4	V ₃ (13)		<u> </u>	<u> </u>				
Switching Time	Pulse	Pulse Out						Í	Тур	Max	Тур	Max	Typ	Max	
Propagation Delay Time	1	2	7 -	3,6,7,9,10,11,12,14	-	-	4	tai (2)	6.5	11.0	6.5	11.0	8.0	14.5	ns
	6	5	=	1,3,7,9,10,11,12,14	=	_	4	td: (5)	L	L	T	1	1	Ţ	
	9	8 13	_	1,3,6,7,9,10,12,14	1 =	_	1 4	tai (13)	▼	▼	▼	. ▼	, ▼	y	
1	1 1	2	l _	3.6.7.9.10.11.12.14	_	-	4	td2 (2)	8.5	13.5	8.5	13.5	10.0	16.0	
1	6	5	-	1,3,7,9,10,11,12,14	-	_	4	td2 (5)							1 1
l	9	8	_	1,3,6,7,10,11,12,14		=	4	td2 (8)	\ ▼	♥	\ ▼	₩ .	♥	₩	
	11	13	_	1,3,6,7,9,10,12,14	1 =	_	1 4	tr (2)	8.5	12.5	9.0	12.5	11.0	15.5	
Rise Time	1 6	5	=	1,3,7,9,10,11,12,14	=	=	4	tr (5)	1		1 1	1	l L	1	
	9	8	_	1,3,6,7.10,11,12,14	-	i -	4	tr (8)	₩	₩		♦	♦	. 🔻	1
1	11	13	1 -	1,3,6,7,9,10,12,14	-	-	4	tr (13)	1		9.5	14.0	11.5	17.0	
Fall Time	1	2	-	3,6,7,9,10,11,12,14	=	=	4	tr (2) tr (5)	9.0	14.0	9.5	14.0	11.5	17.0	
Fall lime															
Pall time	6	5 8	. =	1,3,7,9,10,11,12,14 1,3,6,7,10,11,12,14		1 =	1 4	tı (8)	1 1	L	1 1	♦	l 👃	₩	i L

Pins not listed are left open ①Input voltage is adjusted to obtain dV "NOR" / dV_{in} = 0. ②Current test conditions: no load = 0; full load = -2.5 mAdc ±5%

SWITCHING CHARACTERISTICS (10% to 90% distribution)

R-S FLIP-FLOP

MECL MC300 series

MC302

DC Set-Reset flip-flop with an expandable input and buffered outputs.

ELECTRICAL CHARACTERISTICS

				onditions ±1%	
	/ -55°C	_	-0.945	-1.450	-5.20
@ Test	+25°C	-0.690	-0.795	-1.350	-5.20
Temperature	+ 125°C		-0.655	-1.300	-5.20

1 emperature (+ 125°C		-0.655	-1.300	-5.20			1			1 - 1	T	est Limi	ts		
The second secon		v	v	v	dV.,	i,	Ground	Symbol Pin No	-:	55°C	+2	5°C	+12	25°C	Unit
Characteristic	V _H Pin No	V _{I max} Pin No	V L Pin No	V EE Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	7 - 1	_	_	2,6,7,9,10	_	_	3	le (6)	_	10.35	-	10.35		9.52	mAdo
Input Current	6	_	_	2,7,9,10		_	3	lin (6)	_	_		100	-	_	μAdc
	7	_	-	2,6,9,10		_	3	lin (7)		-	-		-		
	9	_	_	2,6,7,10	_	-	3	lin (9)	_	-	-		-		
	10		-	2,6,7,9	_		3	lin (10)		_	_	*			<u> </u>
"Q" Logical "1" Output Voltage			6③	2,7,9,10	-	-	3	V1 (5)	-0.825	0.945	-0.690	-0.795	-0.525	-0.655	Vdc
	-	-	7③	2,6,9,10	·	-	3	V1 (5)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc
"Q" Logical "O" Output Voltage	<u> </u>	_	93	2,6,7,10	_	-	3	V2 (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
	- 1		10③	2,6,7,9	-		3	V ₂ (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
"Q" Logical "1" Output Voltage	-	_	9(3)	2,6,7,10		_	3	V1 (4)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc
	_	_	10③	2,6,7,9	_	-	3	V1 (4)	-0.825	-0.945	-0.690	-0.795	-0.525	0.655	Vdc
"Q" Logical "O" Output Voltage			6(3)	2,7,9,10	_	-	3	V2 (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
	_		73	2,6,9,10	—	-	3	V ₂ (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
"Q" Output Voltage Change	_	6		2,7,9,10		53	3	ΔVι (5)	-	-0.055	1	-0.055	-	-0.060	Volt
"Q" Output Voltage Change	_	10	_	2,6,7,9	_	43	3	△V₁ (4)	T -	-0.055	-	-0.055	_	0.060	Volt
"Q" Saturation Breakpoint Voltage	<u> </u>	_	_	2,7,9	6,10①		3	V ₂ (5)	-	-0.50	-	-0.65	-	0.75	Vdc
"Q" Saturation Breakpoint Voltage	_	_		2,7,9	6,10①	-	3	V ₃ (4)	J. 1	-0.50	-12	-0.65	-	0.75	Vdc
"Q" or "Q" Latch Voltage	_	<u> </u>	_	2,7,9	6,10 ③	_	3	V. (6,10)	-1.16	-1.34	-1.09	-1.21	0.93	-1.07	Vdc
Switching Times	Pulse	Pulse Out			14				Тур	Max	Тур	Max	Тур	Max	
Propagation Delay Time	6,10	4,5	1	2,7,9	_	_	3	tar (4,5)	9.0	14.0	10.5	16.0	22.0	29.0	ns
op-gation being rime	6.10	4,5		2,7,9	_	_	3	tar (4,5)	8.5	14.0	11.5	19.5	16.0	24.0	1 1
Rise Time	6.10	4,5	_	2,7,9	_	1 _	3	tr (4,5)	9.0	15.0	11.5	19.0	23.0	31.0	1 1
Fall Time	6.10	4,5	13 2	2,7,9	1 4		3	tr (4,5)	7.0	13.0	12.5	19.5	18.0	29.0	†

Pins not listed are left open. ① Input voltage is adjusted to obtain dV "Q" / dV_{in} = 0; dV "Q" / dV_{in} = 0. ① Current test conditions: no load = 0; full load = -2.5 mAdc ±5%. ③ Apply momentary V_{inus} to set output, then V_i for measurement. ② Input voltage is adjusted to obtain dV_i / dV_{in} $\approx \infty$.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

AC-COUPLED J-K FLIP-FLOP

MECL MC300 series

MC308

AC-coupled J-K flip-flop with dc Set and Reset inputs and buffered outputs for counter and shift register applications up to 15 MHz.

TRANSFER CHARACTERISTICS

FIGURE 1 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 2 — INPUT WAVEFORM TO ESTABLISH MINIMUM TOGGLE FREQUENCY

FIGURE 3 — SENSITIVITY (NO TOGGLE)

FIGURE 4 — SENSITIVITY (TOGGLE)

ELECTRICAL CHARACTERISTICS

				Conditions c ±1%	
0.7	_55°C		-0.945	-1.450	-5.20
@ Test	+ 25°C	-0.690	-0.795	-1.350	-5.20
Temperature	+125°C	_	-0.655	-1.300	-5.20

Temperature \(\begin{pmatrix} +25°C \\ +125°C \end{pmatrix}	-0.690	-0.795	-1.350	-5.20											
+125°C	_	-0.655	-1.300	-5.20								est Limi			
								Symbol				5°C		NE 0.0	Unit
	V _H	V _{I max}	V _L	VEE	dV _{in}	և	Ground	Pin No		5°C	Min	Max	Min	25°C Max	UIIIL
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	MIII				
Power Supply Drain Current	_	7,10	-	1,2,6,8,9	_		3	I∈ (2)		22.0	-	21.0		19.5	mAdc
Input Current	7		_	1,2,6,8,9,10		_	.3	lin (7)	-		-	100			μAdc
•	8	-	_	1,2,6,7,9,10	-	_	3	lin (8)	-		- 1		-	-	- 1
	9	-		1,2,6,7,8,10	_	_	3	lin (9)	- 1	_	_	- ↓	_	_	+
	10	_		1,2,6,7,8,9	_	_	3	lin (10)							
"Q" Logical "1"											0.000	-0.795	-0.525	0.655	Vdc
Output Voltage	_	_	6③	1,2,7,8,9,10	_		3	V1 (5)	-0.825	-0.945	-0.690	-0.793	-0.323	0.033	700
"Q" Logical "O"												. 750	-1.340	-1.675	Vdc
Output Voltage	-		13	2,6,7,8,9,10	-	_	3	V2 (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.6/5	****
"Q" Logical "1"												-0.795	-0.525	0.655	Vdc
Output Voltage	,-	_	1③	2,6,7,8,9,10			3	V1 (4)	-0.825	-0.945	0.690	-0.795	-0.525	0.033	700
"Q" Logical "O"												. 750	1 240	-1.675	Vdc
Output Voltage	-	<u> </u>	63	1,2,7,8,9,10			3	V ₂ (4)	-1.560	-1.850	- 1.465		-1.340		
"Q" Output Voltage Change	_	6		1,2,7,8,9,10	_	5 ②	3	△V₁ (5)	_	-0.055		-0.055	_	0.060	Volts
"Q" Output Voltage Change	_	1	_	2,6,7,8,9,10		4②	3	△V: (4)	_	-0.055	_	-0.055		-0.060	Volts
"Q" Saturation										0.50		0.55	_	-0.75	Vdc
Breakpoint Voltage	-		-	1,2,7,8,9.10	6 ①	<u> </u>	3	V ₃ (5)		-0.50	<u> </u>	-0.65		-0.75	, vuc
"Q" Saturation										١		0.65	_	-0.75	Vdc
Breakpoint Voltage	-	l	_	2,6,7,8,9,10	1①		3	V ₃ (4)	_	0.50		0.65		-0.75	vac.
"Q" or "Q" Latch													-0.93	-1.07	Vdc
Voltage	-	-		2,7,8,9,10	1,6 ④		3	V ₆ (1,6)	-1.16	-1.34	-1.09	-1.21	-0.93	-1.07	VOC
	Pulse	Pulse							1			ŀ	ĺ		Ì
	in	Out			1			Ì							
Toggle Frequency						1 .		١.	1		15]	_	l _	MHz
(See Figures 1 and 2)	7,10	5	1	1,2,6,9	-	-	3	freg		. –	1 ,15				
Sensitivity (No Toggle)	7,10	4	į	1,2,6,8,9	-	-	3	-				See Figu			1
	8,9	5	1	1,2,6,7,10		-	3	←				See Figu See Figu			1
Sensitivity (Toggle)	7,10	4,5	1	1,2,6,8,9	-	-	3	—		T	_	T			-
Switching Times		1				1		1	Тур						ns
Propagation Delay	7,10	4,5	1	1,2,6,8,9	-	_	3	t _{dr} (4,5)	7.0	1	1				l ns
	7,10	4,5	1	1,2,6,8,9	-	-	3	tar (4,5)	8.5		1	1			
Rise Time	7,10	4,5	1	1,2,6,8,9	-	-	3	tr (4,5)	6.5					1	↓
Fall Time	7.10	4,5	1	1,2,6,8,9	l	l —	3	tr (4,5)	7.5	14.5	1 8.3	20.5 וי	1 41.5	,1 20.0	

Pins not listed are left open. ① Input voltage is adjusted to obtain $dV_{n}/dV_{n}=0$. ① Current test conditions: no load = 0 to full load = -2.5 mAdc ±5%. ② Apply momentary V_{n-n} to set output, then V_{in} for measurement.

——— —55°C and +25°C ——— +125°C

AC-COUPLED J-K FLIP-FLOP

MECL MC300 series

MC314

High-speed ac-coupled J-K flip-flop with dc Set and Reset input for counter and shift register applications up to 30 MHz operation.

TRANSFER CHARACTERISTICS

FIGURE 1 -SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 2 — INPUT WAVEFORM TO ESTABLISH MINIMUM TOGGLE FREQUENCY

FIGURE 3 — SENSITIVITY (NO TOGGLE)

FIGURE 4 — SENSITIVITY (TOGGLE)

MC314 (continued)

ELECTRICAL CHARACTERISTICS

				nditions ±1%	
	_55°C	_	-0.945	-1.450	-5.20
@ Test	+ 25°C	-0.690	-0.795	-1.350	-5.20
Temperature `	+125°C	_	-0.655	-1.300	-5.20

Temperature + 125°C	-0.030	-0.655	-1.300	-5.20											
. (1.120	+	-0.033	-1.500	3.20	I						Ţ	est Limi			
	l v	v	V,	V _{EE}	dV _{in}	I,	Ground	Symbol Pin No	-:	55°C	+2	5°C		25°C	Unit
Characteristic	V _H Pin No	V _{I max} Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	_	7,10	_	1,2,6,8,9	_	_	3	I _E (2)		28.5		28.5		27.5	mAdc
Input Current	7	_	_	1,2,6,8,9,10	_	_	3	lin (7)	-	-	-	100			μAdc
	8	- 1	-	1,2,6,7,9,10	-	-	3	lin (8)	_		_		_	_	1
	9	_	-	1,2,6,7,8.10	- 1	_	3	lin (9) lin (10)	-	_	_	. ♦		_	†
	10	_		1,2,6,7,8,9			3	Tin (10)	_						
"Q" Logical "1" Output Voltage	_	_	6③	1,2,7,8,9,10	_	_	3	V1 (5)	-0.825	-0.945	-0.690	-0.795	-0.525	0.655	Vdc
"Q" Logical "O" Output Voltage			13	2.6.7.8,9,10	_	_	3	V ₂ (5)	1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
"Q" Logical "1"	_		13	2,6,7,8,9,10	_		3	V: (4)	-0.825	-0.945	-0.690	-0.795	-0.525	- 0.655	Vdc
Output Voltage					1.0	_	3	V ₂ (4)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
Output Voltage			- 63	1,2,7,8,9,10					_	-0.055		-0.055	_	-0.060	Volts
"Q" Output Voltage Change	_	6		1,2,7,8,9,10	-	5②	3	∆V₁ (5)	 	_			-	-0.060	Volts
"Q" Output Voltage Change	_	1		2,6,7,8,9,10		43	3	△٧₁ (4)		-0.055	_	-0.055		-0.060	Voits
"Q" Saturation Breakpoint Voltage	_	_	_	1,2,7,8,9,10	6①	_	3	V ₃ (5)	_	-0.50	_	0.65		-0.75	Vdc
"Q" Saturation Breakpoint Voltage	_	_	_	2,6,7,8,9,10	1①		3	V ₃ (4)	_	-0.50	_	-0.65	_	-0.75	Vdc
"Q" or "Q" Latch Voltage		_		2,7,8,9,10	1,6 ①	_	3	V ₆ (1,6)	-1.16	-1.34	-1.09	-1.21	-0.93	1.07	Vdc
	Pulse	Pulse Out													
Toggle Frequency (See Figures 1 and 2)	7,10	5] _	1,2,6,9	-	-	3	ftog	_	-	30	_	_	-	MHz
Sensitivity (No Toggle)	7,10	4	-	1,2,6,8,9	-	-	3	1				igure 3 —			ļ
	8,9	5	-	1,2,6,7,10	-	_	3	-				igure 3 -			1
Sensitivity (Toggle)	7,10	4,5	-	1,2,6,8,9	-	-	3	-	Γ	1	-	igure 4 -	T -	Man	-
Switching Times									Тур	Max 16.0		Max 16.0			ns
Propagation Delay Time	7,10		-	1,2,6,8,9	_	-	3	t _{dr} (4,5) t _{df} (4,5)	11.0				1		l ï
	7,10		-	1,2,6,8,9	-	-	3	ter (4,5)	11.5		1		15.0		
Rise Time	7,10			1,2,6,8,9	_	-	3	tr (4,5)	11.5			1			↓
Fall Time	7,10	4,5	-	1,2,6,8,9	_			conditions : no					1	L	

Pins not listed are left open. ① Input voltage is adjusted to obtain $dV_{n,r}/dV_n=0$. ② Current test conditions : no Ic ③ Apply momentary $V_{i,m,n}$ to set output, then $V_{i,n}$ for measurement. ② Input voltage is adjusted to obtain $dV_i/dV_{i,n}=\infty$

- -55°C and +25°C - +125°C

HALF-ADDER

MECL MC300 series

MC303

Half-adder that provides the ''SUM'', ''CARRY'', and ''NOR'' functions simultaneously.

SWITCHING TIMES TEST CIRCUIT

SWITCHING CHARACTERISTICS (10% to 90% distribution)

—— — — 55°C and +25°C —— +125°C

ELECTRICAL CHARACTERISTICS

				st Condit Vdc \pm 1 $^\circ$			l
@ Test	_55°C	_	-0.945	-1.450	-5.20	-1.25	ı
	+25°C	-0.690	-0.795	-1.350	-5.20	-1.15	ı
Temperature `	+ 125°C	_	-0.655	-1.300	-5.20	-1.00	L

Temperature)						1										
Temperature + 125°C		-0.655	-1.300	5.20	-1.00					1			est Lim	ite		
		l.,	١						Symbol		55°C		25°C		25°C	Unit
01	V _H	V _{I max}	V _L	V _{EE}	V _{BB}	dV _{in}	l _L	Ground	Pin No	Min	Max	Min	Max	Min	Max	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Mille	Max	141111	MIGA	141111	INUA	
Power Supply Drain Current	_		_	2,7,8,9,10	1	_	_	3	1 _E (2)	_	15.3	_	15.3	_	14.1	mAdc
Input Current	7	_	_	2,8,9,10	1	_	_	3	lin (7)	_		_	100	_	_	μAdc
	8	_	=	2,7,9,10 2,7,8,10	1 1			3	lin (8) lin (9)	_	_	_		_	_	1
	10	_	_	2,7,8,10	li	= -	_	3	lin (10)	_	_	=	†	_	_	1
"NOR" Logical "1" Output Voltage	=	=	9	2,7,8,10 2,7,8,9	1	=	=	3	V ₁ (5) V ₁ (5)	-0.825 -0.825	-0.945 -0.945	-0.690 -0.690	-0.795 -0.795	-0.525 -0.525	-0.655 -0.655	Vdc Vdc
"NOR" Logical "O"		9	-	2.7.8.10	1	-		3	V4 (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
Output Voltage	_	10	-	2,7,8,9	1	l –	_	3	V4 (5)	-1.560	-1.850	-1.465	-1.750	-1.340	-1.675	Vdc
"CARRY" Logical "1"	_	<u> </u>	7	2,8,9,10	1		_	3	V1 (6)	-0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc
Output Voltage			8	2,7,9,10	1			3	V1 (6)	0.825	-0.945	-0.690	-0.795	-0.525	-0.655	Vdc
"CARRY" Logical "O" Output Voltage	=	7 8	_	2,8,9,10 2,7,9,10	1	=	_	3 3	V4 (6) V4 (6)	-1.560 -1.560	$-1.850 \\ -1.850$	-1.465 -1.465	-1.750 -1.750	-1.340 -1.340	-1.675 -1.675	Vdc Vdc
"SUM" Logical "1"		7,9	_	2,8,10	1	_	_	3	Vs (4)	-0.825 -0.825	-0.945 -0.945	-0.690 -0.690	-0.795 -0.795	-0.525 -0.525	-0.655 -0.655	Vdc Vdc
Output Voltage		8,10		2,7,9	1	<u> </u>		3	Vs (4)	-0.825	-0.945 -1.850	-0.690	-0.795	-0.525	-0.655	Vdc
"SUM" Logical "O" Output Voltage	=	7 8	10 10	2,8,9 2,7,9	1	=		3	V ₂ (4) V ₂ (4)	-1.560	-1.850	-1.465	-1./50	-1.340	-1.6/5	Yuc.
outhat sortage	=	9	8	2,7,10	i	_	_	3	V ₂ (4)		l l	1	1	1	1	. ↓
	<u> </u>	10	7	2,8,9	1		_	3	V ₂ (4)	'	7		7	,		'
"NOR" Output Voltage Change (No load to full load)		10	-	2,7,8,9	1	-	5 ⑨	3	∆Vı (5)	_	-0.055	-	-0.055	_	-0.060	Volts
"CARRY" Output Voltage Change (No load to full load)	_	-	7	2,8,9,10	1	-	6⊛	3	∆V₁ (6)	_	-0.055	_	-0.055	_	-0.060	Volts
"SUM" Output Voltage Change (No load to full load)	_	7,10	_	2,8,9	1	_	43	3	△Vs (4)	-	0.055	_	-0.055	-	-0.060	Volts
"NOR" Saturation									1.72							
Breakpoint Voltage	_	<u> </u>		2,7,8,9	1	10①		3	V1 (5)		-0.40		-0.55		-0.65	Vdc
"CARRY" Saturation Breakpoint Voltage	_	_		2,8,9,10	1	7①	-	3	V3 (6)	_	-0.40		-0.55	_	-0.65	Vdc
Switching Times						Pulse	Pulse Out	ŀ		Тур	Max	Тур	Max	Typ		
Propagation Delay Time		_	_	2,7,8,9	1	10	5	3	tai (5)	6.0	10.0	6.0	11.0	7.5	13.0	ns
·	-	1 -	-	2,8,9,10	1	7	6	3	td: (6)	6.0 8.0	10.0 12.0	6.0 8.0		7.5 10.5	13.0 17.0	1 1
	-	7	-	2,8,9	1	10	4	3	tai (4)	7.5	10.5	7.5	11.0	10.5	15.0	
	=	-		2,7,8,9 2,8,9,10	1	10 7	5.	3	taz (5)	7.5	10.5	7.5	11.0	10.0	15.0	
	=	7	_	2,8,9	li	10	4	3	taz (4)	5.5	8.0	5.5	8.5	7.5	12.0	
Rise Time	l _	_	_	2.7.8.9	1	10	5	3	tr (5)	6.0	11.5	6.5	12.0	7.5	14.0	1 1
	-	-	-	2,8,9,10	1	7	6	3	tr (6)	6.0	11.5	6.5		7.5	14.0	
	-	7	-	2,8,9	1	10	4	3	tr (4)	6.0	10.0	6.5	11.0	10.0	16.0	1 1
Fall Time	1 _	I		2.7.8.9	1	10	5	3	t+ (5)	7.5	12.0	8.0	13.5	10.5	16.5	i 1
ran inite	_	1 -	l —	2.8.9.10	l î	1 7	6	3	tr (6)	7.5	12.0	8.0	13.5	10.5	16.5	i I

Pins not listed are left open. ① Input voltage is adjusted to obtain dV"NOR"//dV_{in} = 0 or dV "CARRY"/dV_{in} = 0. ④ Current test conditions: no load = 0; full load = -2.5 mAdc ±5%.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

GATE EXPANDER

MC305

A 5-input expander for use with the MC302, MC306, MC307, and MC315. Each expander unit increases the fan-in of the basic gate by five.

ELECTRICAL CHARACTERISTICS

and the state of the state of		and the second	Test C	ondition	3	104.00
			Vdc	±1%		mAdc
@ Test (-55°C	-2.0	-5.2	+2.0	+0.7	0.3	-1.33
	-2.0	-5.2	+2.0	+0.7	0.3	-1.33
Temperature (+125°C	-2.0	-5.2	+2.0	+0.7	0.3	-1.33

					- 1		100	7	Symbol				est Lim		1. 1.	. 7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V _E	_	V _{BB}	Vcc	V _{CB}	V _{BE}	I _E	Ground	Pin No	-	55°C	+2	25°C	+1	25°C	1 1
Characteristic	Pin		Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	Unit
Base Leakage Current	4		- 6			_		5	Ist (6)	_	0.5	_	0.5	_	2.0	μAdc
	4		7		_		- 1	5	Int (7)	-	1		1	_		
	4		8	_	-	- :		5	Inc (8)	-		-	1 1	-		
	4		10	_				2	Int (9)	=	🛊		\ \		†	♦
			10			H		3		 			• •			'.
Collector Leakage Current		•	-	5		6,7,8,9,10		4	Icex (5)	_	1.0	-	1.0	_	100.0	μAdc
Input Voltage	_		_	-	. 5		4	6	Vsc (4)	-0.810	-0.880	-0.680	-0.730	-0.490	-0.540	Vdc
	_	-		-	5		4	7	VBE (4)							
	_	-	_	_	2	_	4	8	Vsc (4) Vsc (4)						1 1	
	_	- 1	_	= 1	5	_	4	10	Vse (4)	. *	*	*	♥	†	*	†
	Pulse	Pulse								Tun	Max	Tun	Max	Tve	Max	
Switching Times	In	Out								Тур		Тур				} I
Propagation Delay Time	8 8	0	-	-	-, "	_	'	₩ · -	tar	5.0 4.0	8.0 8.0	5.0 4.0	8.5 8.0	5.5 4.5	9.5 10.0	ns
	- 1	0	-	_			_	_	tdz							
Rise Time	8	1	I						tr	8.0	10.5	8.5	11.5	6.5	13.0	1 1
Fall Time	8	0	-	_	_	- :	_	_	tr	3.0	8.5	3.5	8.5	4.5	9.5	. ▼

Pins not listed are left open. ① See Switching Time Test Circuit.

SWITCHING TIME TEST CIRCUIT

BIAS DRIVER

MC304

Bias driver that compensates for changes in circuit parameters with temperature.

ELECTRICAL CHARACTERISTICS

	Test Conditions Vdc ± 1%					· ,					
€ Tank (-55°C	-5.20	1									
@ Test +25°C	-5.20										
Temperature 1+125°C	-5.20							-			
							Test	Limits			
	V	1	Ground	Symbol Pin No	_	55°C	+2	25°C	+1	25°C	Unit
Characteristic	V _{EE} Pin No	Pin No		in()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	2	_	3	le(2)	_	4.4	_	4.4	_	4.0	mAdc
Output Voltage	2	10	3	Ves	-1.19	-1.32	-1.09	-1.22	-0.95	-1.08	Vdc

Pins not listed are left open.

① Current test conditions: no load = 0; full load = -2.5 mAdc $\pm 5\%$.

CIRCUIT DESCRIPTION

Circuit Operation:

The divider network R_1 , R_2 , D_1 , D_2 compensates for temperature variations of the base-emitter voltages of Q_1 , and of the driven gates, producing a bias voltage for the MECL logic circuits that maintains a constant set of dc operating conditions over the temperature range of -55 to +125°C. In addition, compensation for power supply variations is achieved, since the bias output voltage is derived from the system supply.

Either of the supply voltage nodes may be used as ground, however the ground potential of the bias driver must coincide with that of the logic system. Thus, if $V_{\rm CC}$ is grounded in the logic system, then —

$$V_{CC} = 0;$$
 $V_{EE} = -5.2 \text{ V};$ $V_{BB} = -1.15$ nominal output voltage at 25°C

MECL MC300 series

LINE DRIVER

MC315

Line driver for driving lines of 93 ohms or greater while providing the positive logic "NOR" function and its complement simultaneously.

ELECTRICAL CHARACTERISTICS

			t Conditio												
@ Test (-55°C		-0.945	-1.450	-5.20	-1.25	ĺ									
Temperature +25°C	-0.690	-0.795	-1.350	-5.20	-1.15	1									
+ 125°C	_	-0.655	-1.300	-5.20	-1.00	Ī									
												est Lim	its		
	V _H	V _{I max}	ν,	Vee	Van	Į,⊕.	Ground	Symbol	_	55°C	+:	25°C	+1	25°C	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No in ()	Min	Max	Min	Max	Min	Max	
Power Supply Brain Current	-		_	2,6,7,8	1	4,5	3	le (2)	_	45	_	45	_	45	mAdc
Input Current	6 7	-		2,7,8 2,6,8	1	=	3	lin (6) lin (7)	=	_	=	100 L	_	=	μAdc
	- 8			2,6,7	1		3	lin (8)		_		1			1
"NOR" Logical "1" Output Voltage	=	=	6 7 8	2,7,8 2,6,8 2,6,7	1 1	4,5 4,5 4.5	3 3 3	V: (6) V: (7) V: (8)	-0.805	-0.945	-0.670	-0.795	-0.505	-0.655	Vdc
"NOR" Legical "0"		6	-	2,7,8	i -	4,5	3	V ₄ (6)	-1.540	-1.850	-1.450	-1.750	-1.320	-1.675	Vdc
Output Voltage	_	7	_	2,6,8 2,6,7	î	4,5 4.5	3	V ₄ (7) V ₄ (8)	🕴	₩	1	₩ **	₩	•	🕷
"OR" Logical "1"		6	_	2,7,8	1	4,5	3	Vs (6)	-0.805	-0.945	-0.670	-0.795	-0.505	-0.655	Vdc
Output Voltage	_	7	_	2,6,8 2,6,7	i	4,5 4,5	3	Vs (7) Vs (8)	†	†	†	*	*	₩	Į į
"OR" Logical "O"	_	_	6	2,7,8	1	4,5	3	V2 (6)	-1.540	-1.850	-1.450	-1.750	-1.320	-1.675	Vdc
Output Voltage	_	_	7 8	2,6,8 2,6,7	1	4,5 4,5	3	V ₂ (7) V ₂ (8)	†	♦	🕴	+	†	1	♦
Switching Times	Pulse In	Pulse Out							Тур	Max	Тур	Max	Тур	Max	
Propagation Delay Time	6	5	_ :	2,7,8	1	_	3	ta: (5)	10.0	20.0	10.0	20.0	15.0	30.0	ns
	6	4	-	2,7,8	1	_	3	tai (4)	12.0	25.0	12.0	25.0	17.0	34.0	
	6	5 4	=	2,7,8 2,7,8	1 1	=	3 3	td2 (5) td2 (4)	12.0 10.0	25.0 20.0	12.0 10.0	25.0 20.0	13.0 11.0	30.0 25.0	
Rise Time	6	5	-	2,7,8 2,7,8	1	_	3	tr (5)	13.0 10.0	25.0 20.0	13.0 10.0	25.0 20.0	16.0 14.5	31.0 26.0	
Fall Time	6	5 4		2,7,8 2,7,8 2,7,8	1 1	=	3 3	tr (4) tr (5) tr (4)	15.0 15.0	35.0 35.0	15.0 15.0	35.0 35.0	20.0 20.0	40.0 40.0	

Pins not listed are left open. ① Output is loaded with a 93-ohm resistor.

LAMP DRIVER

MC316

Lamp driver that provides "OR" or "NOR" logic depending on the bias arrangement used and is capable of driving 6V lamps.

ELECTRICAL CHARACTERISTICS

	Test Conditions															
				/dc ±19	%		mAdc									
@ Test \55°C		-0.945	-1.450	-5.20	-1.25	+6.0	100									
Temperature 1 + 25°C	-0.670	-0.795	-1.350	-5.20	-1.15	+6.0	100									
+125°C		-0.655	-1.300	-5.20	-1.00	+6.0	50									
									Symbol	Test Limits						
	V _H	V _{I max}	V,	VEE	V _{RR}	Vcc	ار⊚	Ground	Pin No	-55°C +25°C			+12	+125°C		
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	_	4,5,6		2,7	8	10	_	3	Ic (10)	_	21.0	_	21.0	_	20.5	
	_	4,5,6	-	2,7	8	10	-	3	I∈ (2)	-	8.0	-	8.0	-	7.7	mAdc
Input Current	4	_	_	2,5,6,7	8	10	_	3	l in (4)	_	-	_	200	_	_	μAdc
	5	_	_	2,4,6,7	8	10	-	3	lin (5)	-		_		_	-	
	6	_	-	2,4,5,7	8	10		3	lin (6)	_	_			-	-	
	7	-	-	2,4,5,6	8	10	-	3	lin (7)	_	-	_			_	
	8	_	-	2,4,5,7	6	10	-	3	lin (8)	_	_	_	†	_	. —	+
Output Voltage, Low	_	_	6	2,4,5,7	8	10	9	3	Vol. (9)	_	0.9	_	1.0		0.8	-
	_	_	6	2,4,5,8	7	- 10	9	3	Vol. (9)	_	0.9	_	1.0	_	0.8	
Output Voltage, High	_	4	_	2,5,6,7	8	10,9①	_	3	Vон (4)	_	_		5.8	_	5.8	Vdc
	_	5	- 1	2,4,6,7	8	10,9①	-	3	V он (5)	_	_	-		_		
	_	6	-	2,4,5,7	8	10,9①	-	3	V он (6)	_	_	-		_		
	_	6	_	2,4,5,8	7	10,9①		3	Vон (6)	-	_	_	*	_		*

Pins not listed are left open. ① Pin 9 is connected to Vcc through a 10 k-ohm resistor. ② $l_{\rm L}$ specified for ambient temperature conditions. $l_{\rm L}=100$ mAdc at $Tc=+125^{\circ}C$ is acceptable, requiring a heat sink.

MECL-TO-SATURATED LOGIC TRANSLATOR

MC317

Level translator intended for converting nonsaturated MECL signal levels to saturated logic levels; provides "OR" or "NOR" logic depending on the bias arrangement used.

ELECTRICAL CHARACTERISTICS

Test Conditions

			1	/dc ±1%			mAdc	· .								
@ Test / -55°C	_	-0.945	-1.450	-5.20	-1.25	+6.0	10									
Temperature 5 TZ3"6	-0.690	-0.795	-1.350	-5.20	-1.15	+6.0	10									
+125°C	_	-0.655	-1.300	-5.20	-1.00	+6.0	10				1 .					
							i		Cumbal				Test L			
*	VH	V _{I max}	• V _L	VEE	Van	Vcc	Ն	Ground	Symbol Pin No	-5	5°C	+2	5°C	+12	5°C	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	1
Power Supply Drain Current	_	6	_	2,4,5,7	- 8	10	_	3 .	lc (10)	_	7.0	_	7.0	_	6.8	mAdc
	_	_	-	2,4,5,6,7	8	10	-	3	le (2)	_	7.0	-	7.0	-	6.8	mAdc
Input Current	4	_		2,5,6,7	8	10	_	3	lin (4)	_	_	_	200	_	_	μAdc
4 1 1	5	_		2,4,6,7	8	10	l —	3	lin (5)		_	-		—	- 1	
	6	_	-	2,4,5,7	- 8	10	l —	3	lin (6)	- 1	_	l –	1 1	-	-	
	7	· —	_	2,4,5,8	6	10		3	lin (7)	-	-	-		-	-	1 1
	8	_	_	2,4,5,7	6	10	_	3	lia (8)		-	-	†	_	-	*
Output Voltage, High	. —	_	-	2,4,5,6,7	8	10	_	3	Vон (9)	-	_	5.8	_	_	_	Vdc
	· —	_	-	2,4,5,6,8	7	10	-	3	Vон (9)	-	-	5.8	-	-	_	Vdc
Output Voltage, Low	_	4	_	2,5,6,7	8	10	9	3	Vol. (9)	_	0.45	_	0.45	_	0.50	Vdc
		5	_	2,4,6,7	8	10	9	3	Vol. (9)	-	1 1	-		l –		
	-	6	_	2,4,5,7	8	10	9	1 3	Vol. (9)			-	H	-	1	
	-	6	- .	2,4,5,8	7	-10	9	3	Vol (9)	-	†	-	7	_	₩	*
Switching Times	Pulse In	Pulse Out								Тур	Max	Тур	Max	Тур	Max	
Turn-On Time	6	9	1	2,4,5,7	8	10	_	3	ton	27.5	40.0	27.5	35.0	29.5	35.0	ns
	8.	. 9	_	2,4,5,7	6	10	_	3	ton	27.5	40.0	27.5	35.0	29.5	35.0	
Turn-Off Time	6	9	_	2,4,5,7	8	10	_	3	ton	25.0	40.0	26.0	35.0	27.0	40.0	
	8	9		2,4,5,7	6	10	_	3	torr	25.0	40.0	26.0	35.0	27.0	40.0	†

SATURATED LOGIC-TO-MECL DUAL TRANSLATOR

MC318

Level translator intended for converting saturated logic levels to non-saturated MECL signal levels.

SWITCHING CHARACTERISTICS AND WAVEFORMS UNIT UNDER TEST e_{in} $f(x) = x^2 + x$

ELECTRICAL CHARACTERISTICS

Test Conditions Vdc ±1%

@ Test \55°C	+0.45	+5.0	-5.20 -5.20	+6.0 +6.0							3 4		
Temperature + 25°C	+0.45 +0.45	+5.0 +5.0	-5.20 -5.20	+6.0									
(+123 0	10.43	10.0	0.20	1 0.0						Test Li			
	v	v	v	V _{cc}	Ground	Symbol Pin No	-5	5°C	+2	5°C	+12	5°C	Unit
Characteristic	Pin No	Pin No	V _{EE} Pin No	VCC Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Power Supply Brain Current	_	_	2 2	7	3 3	lc (7) Iε (2)	_	4.0 24.0	- <u> </u>	4.0 24.0	. =	3.9 23.3	mAdc mAdc
Input Load Current	=	=	2 2 2 2	7 7 7 7	3,5 3,6 3,9 3,10	lı (5) lı (6) lı (9) lı (10)		=	=	8.0	1111	1111	mAdc
Input Reverse Current	=	=	2 2 2 2	5,7 6,7 7,9 7,10	3,6 3,5 3,10 3,9	IR (5) IR (6) IR (9) IR (10)		=	=	0.5	=	2.0	μAdc
"OR" Logical "1" Output Voltage	=	5 6 9 10	2 2 2 2	7 7 7 7	3 3 3 3	Vs (4) Vs (4) Vs (1) Vs (1)	-0.825	_0.945 ↓	_0.690 ↓	-0.795	-0.525 ↓	_0.655 	Vdc
"OR" Logical "O" Output Voltage	5 6 9	=	2 2 2 2	7 7 7	3 3 3 3	V ₂ (4) V ₂ (4) V ₂ (1) V ₂ (1)	-1.560	-1.850 	-1.465	-1.750	-1.340	-1.675	Vdc ↓
Bias Veltage Output Current	-	-	2	7	3	Vss (8)	-1.19 ♦	-1.32 ↓	-1.09 ♦	-1.22 ↓	-0.95 ↓	-1.08 ↓	Vdc
Switching Times	Pulse	Pulse Out					Тур	Max	Тур	Max	Тур	Max	
Propagation Delay Time	5 9	4	2 2	7	3 3	tai (4) tai (1)	16.5 16.5	27.0 27.0	15.0 15.0	23.0 23.0	19.0 19.0	28.0 28.0	ns
	5 9	4	2 2	7 7	3 3	td2 (4) td2 (1)	13.0 13.0	20.0 20.0		23.0 23.0	20.0 20.0	31.0 31.0	
Rise Time	5 9	4 1	2 2	7 7	3 3	tr (4) tr (1)	8.0 8.0	15.0 15.0	7.0	13.0	9.5 9.5	16.0 16.0	
Fall Time	5 9	4	2 2	7 7	3 3	tr (4) tr (1)	8.0 8.0	14.0 14.0		13.0 13.0	10.0 10.0	17.0 17.0	↓

Pins not listed are left open.

MEGL

INTEGRATED CIRCUITS

INDEX MC350 Series

	MC350 Series	Dana Ma
NI		Page No.
Numerical Index		2-35
Logic Description		2-36
General Information Circuit Description Definitions Packages Worst-Case Transfe Maximum Ratings Noise Margins		2-38 2-38 2-39 2-39 2-40 2-40
DEVICE SPECIFICATION	ONS	
GATES		
MC356	2 Input Cata	0.44
MC357	3-Input Gate	2-41
MC357 MC351	3-Input Gate	2-41
MC359	5-Input Gate	2-44
MC360	Dual 2-Input Gate	2-46
MC361	Dual 2-Input Gate	2-46
MC369G	Dual 2-Input Gate	2-46
	Dual 2-Input High-Speed Gate	2-63
MC362A	Dual 3-Input Gate	2-48
MC369F MC363F	Dual 4-Input High-Speed Gate	2-65
MC303F	Quad 2-Input Gate	2-50
FLIP-FLOPS		
MC352A	R-S Flip-Flop	2-52
MC358A	AC-Coupled J-K Flip-Flop	2-54
MC364	AC-Coupled J-K Flip-Flop	2-56
HALF-ADDER		
MC353	Half-Adder	2-58
	Hall-Addel	2-30
GATE EXPANDER		
MC355	Gate Expander	2-60
DRIVERS		
MC354	Bias Driver	2-61
MC365	Line Driver	2-62
MC369G	Dual 2-Input Clock Driver	2-63
MC369F	Dual 4-Input Clock Driver	2-65
MC366	Lamp Driver	2-67
		20,
TRANSLATORS	MEQ	
MC367	MECL to Saturated Logic Translator	2-68
MC368	Saturated Logic to MECL Translator	2-69

NUMERICAL INDEX (Functions and Characteristics)

 V_{CC} = 0, V_{EE} = -5.2 V, T_A = 25°C

Function	Туре ①	DC Output Loading Factor Each Output	Propagation Delay ^t pd ns typ	Total Power Dissipation mW typ/pkg	Case	Page No.
5-Input OR/NOR Gate	MC351	25	7.5	37	71, 72	2-44
R-S Flip-Flop	MC352A	Ī	11	42	1	2-52
Half-Adder	MC353		7.5	63		2-58
Bias Driver	MC354	₩	_	18		2-61
5-Input Gate Expander	MC355	_	4.5	-		2-60
3-Input OR/NOR Gate	MC356	25	7.5	37		2-41
3-Input OR/NOR Gate	MC357	1	7.5	15		2-41
AC-Coupled J-K Flip-Flop	MC358A		8.5	87		2-54
Dual 2-Input NOR Gate	MC359		7.0	54	1	2-46
Dual 2-Input NOR Gate	MC360	1	7.0	54		2-46
Dual 2-Input NOR Gate	MC361		7.0	41		2-46
Dual 3-Input NOR Gate (With Internal Bias)	MC362A		7.5	70	V	2-48
Quad 2-Input NOR Gate	MC363F		7.0	125	83	2-50
AC-Coupled J-K Flip-Flop	MC364	1	12	118	71, 72	2-56
Line Driver	MC365	<u> </u>	14	270 ②		2-62
Lamp Driver	MC366	-	_	135	1	2-67
Level Translator -		İ				}
MECL to Saturated Logic	MC367	7 (DTL)	27.5	63	*	2-68
Level Translator — Saturated Logic to MECL	MC368	25 (MECL)	17	105	71, 72	2-69
Dual 4-Input Clock Driver/High-Speed Gate Dual 2-Input Clock	MC369F	100	3.0	250	83	2-65
Driver/High-Speed Gate	MC369G	100	3.0	250	71	2-63

① G suffix denotes Metal Can, F suffix denotes Flat Package. (i.e., MC351G = Metal Can, MC351F = Flat Package.)
② With 50-ohm load (each side)

MECL MC350 series

LOGIC DESCRIPTION

POSITIVE LOGIC: V_H is a logical "1", V_L is a logical "0" NEGATIVE LOGIC: V_H is a logical "0", V_L is a logical "1"

The logic diagrams shown describe the circuits of the MC350 line and permit quick selection of those circuits required for the implementation of this particular logic system. Pertinent information such as logic equations, typical time delay, typical power dissipation, and truth tables is provided to show line compatibility. Package pin numbers and fan-in and fan-out for each device are specified on each logic diagram. The numbers at the

ends of the terminals are package pin numbers. The numbers in parentheses indicate ac loading factors at each terminal.

MECL circuits require a bias voltage which, for best results, should be obtained from a regulated, temperature-compensated, bias supply. A bias driver, type MC354, is included in the MECL line to provide this function when the bias driver is not contained in the logic element. Specifications for the bias driver are given on page 2-61

MC360 - DUAL 2-INPUT GATE (15) -6 = 7 + 8(1) 8(1)9 $5=\overline{9+10}$ (15) (1) 10 **Optional pull-down resistor. If resistor is desired, connect pin 4 to pin 5. $P_D = 27 \, mW/gate$ $t_{..} = 6.5 \, \text{ns}$ Provides the positive logic "NOR" function. Same as MC359 with one output pull-down resistor optional (see schematic diagram on MC363F - QUAD 2-INPUT GATE (15) 5 = 6 + 7(1)7(15) (1)98 = 9 + 10(1) 10(1) 11(15) $13 = \overline{11 + 12}$ (1) 12(15)(1) 14 $2=\overline{14+1}$

Provides the positive logic "NOR" function, and features an internal bias driver. This gate without the bias driver is available as the

Drives lines of 50 ohms or greater while providing the positive logic "NOR" function and its complement simultaneously.

 $P_D=270$ mW (with $50~\Omega$ load)

Provides the "SUM", "CARRY", and "NOR" functions simultaneously. If complement inputs are not used, an undefined state can occur.

Capable of driving 6-volt lamps. Positive eapane or curving o-voit tamps. Positive "NOR" function is obtained by applying V_{ss} to pin 4, 5, or 6, with pins 7 and 8 used as inputs. Positive "OR" is obtained by applying V_{ss} to pin 7 or 8, with pins 4, 5, and 6 used as inputs.

intenueu τοr converting non-saturated MECL signal levels to saturated logic levels. Positive "NOR" function is obtained by applying V_{as} to pin 7 or 8, with pins 4, 5, and 6 used as inputs. Positive "OR" is obtained by applying V_{as} to pin 4, 5, or 6, with pins 7 and 8 used as inputs. Intended for converting non-saturated MECL

Intended for converting saturated logic levels to non-saturated MECL signal levels. By els to non-saturate MECL signai levers. By applying DTL input logic levels as defined by logical "0" at 0.4 V and logical "1" at 5.0 V. corresponding MECL outputs are obtained as defined by logical "0" at —1.55 V and logi-cal "1" at —0.75 V.

For use with the MC352A, MC356, MC357, and MC365. Each expander unit increases the fan in of the basic gate by five. For highest performance, a maximum of three expander units per gate is recommended.

GENERAL INFORMATION

CIRCUIT DESCRIPTION

The MECL line of monolithic integrated logic circuits was designed as a non-saturating form of logic which eliminates transistor storage time as a speed limiting characteristic, and permits extremely high-speed operation.

The typical MECL circuit comprises a differentialamplifier input, with emitter-follower output to restore dc levels. High fan-out operation is possible because of the high input impedance of the differential amplifier and the low output impedance of the emitter followers. Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides for simultaneous output of both the function and its complement.

POWER-SUPPLY CONNECTIONS

Any one of the power supply nodes, V_{BB} , V_{CC} , or V_{EE} may be used as ground; however, the manufacturer has found it most convenient to ground the V_{CC} node. In such a case: $V_{CC} = 0$, $V_{BB} = -1.15 \, \text{V}$, $V_{EE} = -5.2 \, \text{V}$, as shown in the schematic diagram above.

SYSTEM LOGIC SPECIFICATIONS

The output logic swing of 0.8 V then varies from a low state of $V_L = -1.55$ V to a high state of $V_H = -0.75$ V with respect to ground.

Positive logic is used when reference is made to logical "0's" or "1's". Then

"0" =
$$-1.55 \text{ V}$$
"1" = -0.75 V typical

Dynamic logic refers to a change of logic states. Dynamic "0" is a negative going voltage excursion and a dynamic "1" is a positive going voltage excursion.

CIRCUIT OPERATION

A fixed bias of -1.15 volts is applied to the "bias input" of the differential amplifier and the logics ignals are applied to the "signal input". If a logical "0" is applied, the current through RE is supplied by the fixed-biased transistor. A drop of 800 mV occurs across RC2. The OR output then is -1.55 V, or one VBE-drop below 800 mV. Since no current flows in the "signal input" transistor, the NOR output is a VBE-drop below ground, or -0.75 volts. When a logical "1" level is applied to the "signal input", the current through RC2 is switched to the "signal input" transistor and a drop of 800 mV occurs across RC1. The OR output then goes to -0.75 volts and the NOR output goes to -1.55 volts.

Note: Any unused input should be connected to VEE.

BIAS VOLTAGE SOURCE

The bias voltage applied to the bias input is obtained from a regulated, temperature-compensated bias driver, type MC354. The temperature characteristics of the bias driver compensate for any variations in circuit operating point over the temperature range or supply voltage changes, to insure that the threshold point is always in the center of the transition region. The bias driver can be used to drive up to 25 logic elements and should be employed for all elements except those with built-in bias networks.

GENERAL INFORMATION (continued)

DEFINITIONS

ein AC signal applied to the input

eout AC signal at the output

IC Amount of current drawn from the positive power supply by the test unit

ICEX Total collector leakage current exhibited by the gate expander when all inputs are at the negative supply potential

IE Amount of current drawn from the test unit by the negative power supply

lin Current drawn by the input of the test unit when a logical "1" (V_H) is applied to the input

IL Current drawn from a node when that node is at ground potential

t_{d1} Time required for the output pulse to reach the 50% point of its leading edge when referenced to the 50% point of the input pulse leading edge

t_{d2} Time required for the output pulse to reach the 50% point of its trailing edge when referenced to the 50% point of the input pulse trailing edge

t_{df} Time required for a flip-flop output to reach the 50% point of its negative going edge when referenced to the 50% point of the input pulse leading edge

t_{dr} Time required for a flip-flop output to reach the 50% point of its positive going edge when referenced to the 50% point of the input pulse leading edge

tf Time required for the output pulse to go more negative from its 90% point to its 10% point

t_r Time required for the output pulse to go more positive from its 10% point to its 90% point

V1 "NOR" output voltage — logical "1" level output voltage when a logical "0" level (VL) is applied to the input

V2 "OR" output voltage — logical "0" level output voltage when a logical "0" level (V_L) is applied to the input

V₃ Saturation breakpoint voltage which corresponds to the "NOR" output characteristic where the rate of change in the output voltage to the rate of change in input voltage is zero

V₄ "NOR" output voltage — logical "0" level output voltage when a logical "1" level (V_{1 max}) level is applied to the input

V₅ "OR" output voltage — logical "1" level output voltage when a logical "1" (V_{1 max}) level is applied to the input

V₆ Output latch voltage — input voltage to a flipflop which causes the output voltage to change from a logical "1" level to a logical "0" level and corresponds to the point where the rate of change in the output voltage to the rate of the input voltage approaches infinity

VH Logical "1" input voltage

V_L Logical "0" input voltage

VOH High-level output voltage when the saturated logic circuit output is in an "off" condition

VOL Low-level output voltage when the saturated logic output circuit is in an "on" condition

 \triangle V₁ Change in the "1" level output voltage as the \triangle V₅ load is varied from no load to full load

PACKAGES

All MECL integrated circuits are available in both the TO-91, 10-lead flat package and the 10-lead metal package. To order the flat package, add suffix "F" to basic type number; to order metal package, add suffix "G".

Exceptions: Types MC363F and MC369F are available only in the TO-86, 14-lead flat package; type MC369G is available only in the metal package.

GENERAL INFORMATION (continued)

WORST-CASE TRANSFER CHARACTERISTICS

The following graphs show minimum and maximum limits of major parameters associated with the transfer characteristics of the MECL line. Min-Max limits, given at three different temperatures can be interpreted for design purposes as 10 % to 90% spreads at all points on the curve except for guaranteed points in the Electrical Characteristics tables.

DEFINITIONS

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
atings above which device life may	be impaired	l:	
Power Supply Voltage (V _{cc} = 0)	V _{EE}	-10	Vdc
Base Input Voltage ($V_{CC}=0$)	Vin	0 Vdc to V _{EE}	Vdc
Output Source Current	lo	20	mAdc
Storage Temperature Range	T _{stg}	-65 to +150	•c

Recommended maximum ratings above which performance may be degraded:

Operating Temperature Range	TA	0 to +75	•c
AC Fan-In (Expandable Gates)	m	18	
AC Fan-Out* (Gates and Flip-Flops)	n	15	

^{*}Although a minimum dc fan-out of 25 is guaranteed in each electrical specification, it is recommended that the maximum ac fan-out of 15 be used for high-speed operation.

NOISE MARGINS (90 PERCENTILE)

The following graphs show worst-case Noise Margins as a function of temperature and fan-out. Top graph illustrates the advantage gained through use of MC354 bias driver, as compared with non-compensated fixed bias source, bottom.

Note: Any unused input should be connected to $V_{\mbox{\tiny EE}}$.

3-INPUT GATES

MC356 · MC357

Expandable 3-input gates that provide the positive logic "NOR" function and its complement simultaneously. MC357 omits output pull-down resistors, permitting reduction of power dissipation.

SWITCHING TIME TEST CIRCUIT

MC356, MC357 (continued)

ELECTRICAL CHARACTERISTICS

			Te	st Condit Vdc ±15		
O T4	O°C	_	-0.850	-1.350	-5.20	-1.18
@ Test	+25°C	-0.670	-0.795	-1.350	-5.20	-1.15
Temperature`	+75°C	_	-0.725	-1.350	-5.20	-1.08

Temperature +25°C +75°C	-0.670	-0.795 -0.725	-1.350 -1.350	-5.20 -5.20	-1.15											
+75°6	_=	-0.725	-1.350	-5.20	-1.08			T		T		Test	Limits		T	
	١ ا	١.,		.,		dVin		Ground	Symbol		l°C	+:	25°C	+7	5°C	Unit
Characteristic	V _H Pin No	V _{r max} Pin No	V _L Pin No	V _{EE} Pin No	V _{BB} Pin No	Pin No	լ Pin No	Pin No	Pin No in ()	Min	Max	Min	Max	Min	Max	
Power Supply MC356	_		_	2,6,7,8	1		_	3	I _E (2)	_	9.25	_	8.85	_	8.15	mAdc
Drain Current MC357	_		_	2,6,7,8	1	_	_	3	le (2)	_	3.8	_	3.6	_	3.3	mAdc
Input Current	6	_	_	2,7,8	1	_	_	3	lin (6)	_	_	_	100	_	_	μAdc
	7	_	-	2,6,8	1	_	-	3	lin (7)	-	-	-	1	-	_	- 1
	8	- 1	-	2,6,7	1	_	-	3	lin (8)	<u> </u>			*		_	*
"NOR" Logical "1"	_	_	6	2,7,8	1		_	3	V1 (5)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
Output Voltage	_	_	7	2,6,8	1	_	_	3	V1 (5)	1 1	1 1	l	1 1			
	-	-	8	2,6,7	1	_		3	V1 (5)		*	+		•	•	
"NOR" Logical "O"	_	6	_	2,7,8	1	_	_	3	V4 (5)	-1.510	-1.880	1.465	-1.750	-1.395	-1.730	Vdc
Output Voltage	-	7	_	2,6,8	1	-	-	3	V4 (5)	1 1	1	↓	1 1	1		1
	-	8	_	2,6,7	1	_		3	V4 (5)	•						
"OR" Logical "1"	_	6	_	2,7,8	1	_	-	3	Vs (4)	-0.715	0.850	-0.670	-0.795	-0.590	-0.725	Vdc
Output Voltage	-	7	_	2,6,8	1	-	_	3	Vs (4)	1 1	1 1	1 1	1 1	1 1	1	1
		8		2,6,7	1		_	3	V ₅ (4)	-		*	· ·		· ·	
"OR" Logical "O"	_	_	6	2,7,8	1	-	-	3	V ₂ (4)	1.510	-1.880	-1.465	1.750	-1.395	-1.730	Vdc
Output Voltage	_	-	7	2,6,8	1	-	_	3	V ₂ (4)	1 1	1 1	↓	1 1	↓	↓	1
	-		8	2,6,7	1			3	V ₂ (4)	*	*			V	_ v	
"NOR" Output						ŀ				1	1	1	Į	1		
Voltage Change	_		6	2,7,8	1	_	5②	3	∆V₁ (5)	-	-0.055	_	-0.055	-	-0.065	Volts
(No load to full load)					ļ					-			<u> </u>			ļ
"OR" Output Voltage Change	_	6	-	2,7,8	1	_	4② `	3	△Vs (4)	-	-0.055	-	-0.055	_	-0.065	Volts
(No load to full load)										ļ	ļ	L	<u> </u>			
"NOR" Saturation	_	-	-	2,7,8	1	6①	-	3	V ₃ (5)	-	- 0.51	-	- 0.55	-	- 0.63	Vdc
Breakpoint Voltage	-	-		2,6,8	1	7①	-	3	V ₃ (5)		↓	1 -	1 1	-	↓	↓
		<u> </u>		2,6,7	1	8①		3	V ₃ (5)		· •	<u> </u>	<u> </u>		· ·	_ •
Switching Times	Pulse In	Pulse Out						1		Тур	Max	Тур	Max	Тур	Max	[
Propagation Delay Time	6	4	1 _	2,7,8	1	_		3	tai (4)	8.5	11.5	8.5	11.5	10.0	15.0	ns
Tropagation ocial Time	6	5	_	2,7,8	1	_	_	3	tai (5)	6.5	10.5	6.5	10.5	7.5	11.5	1
	6	4	_	2,7,8	1	_	_	3	t _{d2} (4)	6.0	11.0	6.0	11.0	7.5	12.0	
	6	5	_	2,7,8	1	_	_	3	taz (5)	8.5	11.5	8.5	11.5	10.0	15.0	
Rise Time	6	4		2.7.8	1	_	_	3	tr (4)	7.0	11.5	7.0	11.5	9.0	13.0	
KIZE LIMIA	6	5	_	2,7,8	î	_	_	3	tr (5)	9.0	12.5	9.5	12.5	11.5	15.5	
E. 11 Elm.	1 -	4	1	2,7,8	1		_	3	tr (4)	9.0	14.0	9.5	14.0	12.0	17.0	
Fall Time	6	5		2,7,8	li		_	3	tr (4)	8.5	14.0	9.0	14.0	11.5	17.0	↓
Pins not listed are left open	1 -		e is adjuste						est conditions: n					E0/	·	

Pins not listed are left open

① Input voltage is adjusted to obtain dV "NOR/dV in = 0.

5-INPUT GATE

MECL MC350 series

MC351

A 5-input gate that provides the positive logic "OR" function and its complement simultaneously.

SWITCHING TIME TEST CIRCUIT

MC351 (continued)

ELECTRICAL CHARACTERISTICS

				st Condition		
O 7	0°C	_	-0.850	-1.350	-5.20	-1.18
@ Test	+25°C	-0.670	-0.795	-1.350	-5.20	-1.15
Temperature	+75°C	_	-0.725	-1.350	-5.20	-1.08

Temperature (+75°C		-0.725	-1.350	-5.20	-1.08											
		T							Symbol				Limits			
	V _H	V _{I max}	V,	VEE	Ves	dV _{in}	I,	Ground	Pin No		°C		25°C		5°C	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	_	_	_	2,6,7,8,9,10	1	_	_	3	le (2)	_	9.25	_	8.85	_	8.15	mAdc
Input Current	6	_	_	2,7,8,9,10	1	_	_	3	lin (6) lin (7)	_	=	=	100	- 1	_	μAdc
	7 8	=	_	2,6,8,9,10 2,6,7,9,10	1	_		3	lin (7)	= 4		_		_		
	9	-	_	2,6,7,8,10	1	_	_	3 3	lin (9) lin (10)	=	=	_	1	_		. ↓
"NOR" Logical "1"	10	-	- 6	2,6,7,8,9	1	_		3	V ₁ (5)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
Output Voltage	_	_	7	2,6,8,9,10	1	_	_	3	V1 (5)	1 1	1	1	1	I	1	ï
	=	=	8 9	2,6,7,9,10 2,6,7,8,10	1	=	_	3 3	V ₁ (5) V ₁ (5)							- 1
	_	_	10	2,6,7,8,10	î		_	3	V ₁ (5)	♦	+	*	+	*	+	<u> </u>
"NOR" Logical "O"	_	6	_	2,7,8,9,10	1	_	_	3	V4 (5)	-1.510	-1.880	1.465	-1.750	-1.395	-1.730	Vdc
Output Voltage	_	7 8		2,6.8,9,10 2,6,7,9,10	1	_		3	V ₄ (5) V ₄ (5)	1 1		1 1				- 1
	_	9	_	2,6,7,8,10	1	_	- 1	3	V ₄ (5)	1 1	1 1	1 1	1 1	1		. ↓
		10		2,6,7,8,9	1		_	3	V ₄ (5) V ₅ (4)	-0.715	-0.850	-0.670	-0.795	0.590	-0.725	Vdc
"OR" Logical "1" Output Voltage	_	6 7	=	2,7,8,9,10 2.6.8.9.10	i	_	=	3	Vs (4)	-0.715	_0.850	-0.870	-0.793	0.390	-0.723	i
	_	8	=	2,6,7,9,10	1	_	=	3	Vs (4) Vs (4)	1 1	1 1	1 1				- 1
	_	10	_	2,6,7,8,10 2,6,7,8,9	i	_	_	3	V ₅ (4)	\ \	↓	+	↓	₩	+	*
"OR" Logical "O"	_	_	6	2,7,8,9,10	1	_	_	3	V ₂ (4)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc
Output Voltage	_	=	7 8	2,6,8,9,10	1	=		3	V ₂ (4) V ₂ (4)	1 1	1 1	1 1	1 1			- 1
	-	_	9	2,6,7,8,10	1	-	-	3	V ₂ (4) V ₂ (4)	1	l]	l l	l l		↓ ·
"NOR" Output	_		10	2,6,7,8,9	1				¥2 (4)	⊢ •	<u> </u>	<u> </u>			-	
Voitage Change (No load to full load)	_	_	6	2,7,8,9,10	1	_	5②	3	ΔV₁ (5)	_	-0.055	_	-0.055	_	0.065	Volts
"OR" Output Voltage Change (No load to full load)	_	6	_	2,7,8,9,10	1		4⊛	3	∆Vs (4)	-	-0.055	_	-0.055	-	-0.065	Volts
"NOR" Saturation	-	-	_	2,7,8,9,10	1	6①	_	3	V3 (5)	T -	- 0.51	_	- 0.55	_	- 0.63	Vdc
Breakpoint Voltage	=	_	_	2,6,8,9,10 2,6,7,9,10	1	7①	=	3	V ₃ (5) V ₃ (5)	=	1 1		1 1	_		
	-	-	-	2,6,7,8,10	i	9① 10①	-	3	V ₃ (5) V ₃ (5)	_	↓	_		_		1
	Pulse	Pulse		2,6,7,8,9	<u> </u>	10(1)		,	*3 (3)	$+\overline{-}$	 	-	<u> </u>		\vdash	
Switching Times	In	Out	j							Тур	Max	Тур	Max	Тур	Max	
Propagation Delay Time	6	4 5	-	2,7,8,9,10	1	=	_	3	tai (4) tai (5)	9.0 7.0	12.5 11.0	9.0 7.0	12.5 11.0	9.5 7.5	16.0 13.0	ns I
	6	5	_	2,7,8,9,10	1	_	_	3	ta: (5)	6.5	11.0	6.5	11.0	7.5	13.0	
	6	5	_	2,7,8,9,10	i	=	_	3	taz (5)	8.5	12.5	8.5	12.5	10.0	16.0	
Rise Time	6	4	_	2,7,8,9,10	1	_		3	tr (4)	8.0	12.0	8.0	12.0	9.5	15.5	.
	6	5	_	2,7,8,9,10	1	-	-	3	tr (5)	9.5	14.5	10.0	14.5	11.0	17.0 17.5	
Fall Time	6	5	=	2,7,8,9,10 2,7,8,9,10	1 1	-	_	3	tr (4) tr (5)	9.5 9.0	15.0 15.0	10.0 9.5	15.0 15.0	10.5	17.5	1

Pins not listed are left open

① Input voltage is adjusted to obtain dV "NOR / dVin = "0".

① Current test conditions: no load = 0; full load = -2.5mAdc ±5%.

MECL MC350 series

MC359 · MC360 · MC361

Dual 2-input gates that provide the positive logic "NOR" function. MC359 has two output pull-down resistors; MC360 has one of the output pull-down resistors optional; MC361 omits one output pull-down resistor and has the second optional.

MC359, MC360, MC361 (continued)

ELECTRICAL CHARACTERISTICS

Test Conditions

		V	dc ±1%													
0°C	_	-0.850	-1.350	-5.20	-1.18	l										
@ Test +25°C	-0.670	-0.795	-1.350	-5.20	-1.15	l										
Temperature (+75°C		-0.725	-1.350	-5.20	-1.08					,						
		1							Symbol				Limits			
	V _H	V _{1 max}	V _L	VEE	Vas	dV _{in}	I _L	Ground	Pin No		0°C		25°C		75°C	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Power Supply MC359, MC360	l –	_	l –	2,7,8,9,10	1	_	_	3	le (2)	l –	13.55	_	13.0	_	12.0	mAdc
Drain Current MC361	_	-	l –	2,7,8,9,10	1	- 1	_	3,	le (2)	-	10.5	_	10.1	-	9.2	mAdo
Input Current	7	_	T _	2,8,9,10	1	_	_	3	lin (7)	_	_	_	100	_	_	μAdc
	8	-	_	2,7,9,10	1	_	_	3	lin (8)	-	_	_	l i	_	_	
	9		_	2,7,8,10	1		-	3	1 in (9)	_	_			_		
	10	-	-	2,7,8,9	1	-	-	3	tin (10)	-	-	-	+	-	_	+
"NOR" Logical "1"	_	_	7	2,8,9,10	1	_	_	3	V1 (6)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
Output Voltage	-	-	8	2,7,9,10	1	_	-	3	V1 (6)	1 1	1	1 1	1	١.		
	-	-	9	2,7,8,10	1	_	-	3	V1 (5)		1 1		1			
	-	-	10	2,7,8,9	1	_	_	3	V1 (5)	*	*	*	*	\ \	*	•
"NOR" Logical "O"	_	7	_	2,8,9,10	1	_	_	3	V4 (6)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc
Output Voltage	_	8	-	2,7,9,10	1	-	-	3	V4 (6)		1	1		1	1	
	_	9	l –	2,7,8,10	1	-	-	3	V4 (5)							
		10	-	2,7,8,9	1	_		3	V ₄ (5)	+	*	*	*	*	*	*
"NOR" Output Voltage Change	_	_	-	2,7,8,9,10	1	_	6②	3	∆V₁ (6)	_	-0.055	-	-0.055	_	-0.065	Vdc
(No load to full load)	_	-	-	2,7,8,9,10	1	_	5 ②	3	∆V₁ (5)	-	-0.055	-	-0.055	-	-0.065	Vdc
"NOR" Saturation	_	_	_	2,8,9,10	1	7①	_	3	V3 (6)	_	-0.51	-	-0.55	_	-0.63	Vdc
Breakpoint Voltage	-	_	-	2,7,9,10	1	8①		3	V3 (6)	-	1	-	1	-		1
		_	-	2,7,8,10	1	9①	_	3	V3 (5)	-		-		-		
	<u> </u>	-	-	2,7,8,9	1	10①		3	V3 (5)	_		_	*	_	\ \	*
Switching Times	Pulse In	Pulse Out								Тур	Max	Тур	Max	Тур	Max	
			1					١.			 					ĺ
Propagation Delay Time	7	6	_	2,8,9,10	1	-	_	3	ta: (6)	6.5	11.0	6.5	11.0	8.0	14.5	ns
	10	5	-	2,7,8,9	1	-	-	3	ta: (5)	6.5	11.0	6.5	11.0	8.0	14.5	
	7	6	-	2,8,9,10	1	-	-	3	td2 (6)	8.5	13.5	8.5	13.5	10.0	16.0	
	10	5	-	2,7,8,9	1	_		3	taz (5)	8.5	13.5	8.5	13.5	10.0	16.0	1
Rise Time	7	6	_	2,8,9,10	1	_	_	3	tr (6)	8.5	12.5	9.0	12.5	11.0	15.5	1
	10	5	I _	2789	1	l	_	3	t- (5)	8.5	125	9.0	125	110	15.5	(I

14.0 9.5 14.0 11.5 17.0

2,8,9,10

DUAL 3-INPUT GATE

MECL MC350 series

MC362A

Dual 3-input gate that provides the positive logic "NOR" function, and features an internal bias driver. This gate is available without bias driver as MC362.

MC362A (continued)

ELECTRICAL CHARACTERISTICS

ELECTRICAL CI															
			Conditions c ±1%												
C°C		-0.850	-1.350	-5.20											
@ Test ∫ +25°C	-0.670	-0.795	-1.350	-5.20											
Temperature \(\begin{array}{c} +75°C \\ \end{array}	-	-0.725	-1.350	-5.20											
(4730		0.723	1.000								Test L	imits			
	1		l			١. ١		Symbol	0	20	 2	5°C	+7	5°C	Unit
	V _H	V _{I mex}	V _L	V _{EE}	dV _{in}	l l	Ground	Pin No	Min	Max	Min	Max	Min	Max	•
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Mili	max	Milit	max	min	IVIGA	
Power Supply Drain Current	_	_	_	1,2,6,7,8,9,10	_	_	3	le (2)	_	17.7	_	17.0		16.4	mAdc
Input Current	1	 	_	2,6,7,8,9,10	_	_	3	lin (1)	_	- 1		100	-	- 1	μAdc
input current	6	_	_	1,2,7,8,9,10	_	l —	3	lin (6)	1 - 1	_			- 1	- 1	. 1
	7	_	l	1,2,6,8,9,10	_	_	3	lin (7)	-	_	_		_	-	
	l 's		_	1,2,6,7,9,10	_	_	3	tin (8)	-	_	_			- 1	. 1
	و ا	_	_	1,2,6,7,8,10			3	lin (9)	-		_			-	. 1
	10	_		1,2,6,7,8,9	_	<u> </u>	3	lin (10)	-	_			_	_	₩,,,
	+	+	6	1.2.7.8.9.10	_	†	3	V1 (5)	-0.715	0.850	-0.670	-0.795	-0.590	-0.725	Vdc
"NOR" Logical "1"	-	_	7	1,2,7,8,9,10	_		3	V ₁ (5)			1	1	1		
Output Voltage	-	-	1				3	V ₁ (5)						1 1	
	-	_	8	1,2,6,7,9,10	_	_	3	V: (4)	1 1		1 1				, I
	-	_	1	2,6,7,8,9,10	1	_	3	V ₁ (4)	1 1	1 1		1 1		1 1	. 1
	-	-	9	1,2,6,7,8,10			3	V ₁ (4)	\ \	l	♦	\ \	♦	♦	, ♦
	_	_	10	1,2,6,7,8,9		ļ			<u> </u>			-1.750	-1.395	-1.730	Vdc
"NOR" Logical "O"	_	6	-	1,2,7,8,9,10		-	3	V4 (5)	-1.510	-1.880	-1.465	-1./50	1.395	1./30	Vac
Output Voltage	l –	7	_	1,2,6,8,9,10	-	-	3	V4 (5)	1 1	1 1		1 1	l I	l I I	
-	-	8	_	1,2,6,7,9,10	-	_	3	V4 (5)	1 1	1 1	1 1	1 1	1 1	1 1	1 1
	-	1	_	2,6,7,8,9,10	-	-	3	V4 (4)	1 1	1 1	1 1	1 1	1	1 1	1
	-	9	-	1,2,6,7,8,10	-	—	3	V4 (4)		1 1	1 1	1 1	1	1	ı l
	_	10	-	1,2,6,7,8,9	-	_	3	V4 (4)	V					<u>'</u>	<u> </u>
"NOR" Output Voltage Change	—		6	1,2,7,8,9,10	T -	5 ⑨	3	∆V₁ (5)	-	-0.055	-	-0.055	-	0.065	Volts
Non Carput Fortage Change	_	_	1	2,6,7,8,9,10	-	43	3	△V₁ (4)		-0.055	_	-0.055		-0.065	Volts
"NOR" Saturation	_	_	_	1,2,7,8,9,10	6①	_	3	V3 (5)	_	-0.51	-	-0.55	-	-0.63	Vdc
Breakpoint Voltage		l _	_	1,2,6,8,9,10	70	_	3	V3 (5)	-		l —	1	l —	1 1	1 1
Bienkhoint tottage	1 _	_	l _	1,2,6,7,9,10	8①	1 -	3	V ₃ (5)	1 -	1	l —	1 1	-	1 1	i i
	_	_	l _	2,6,7,8,9,10	10	_	3	V ₃ (4)	-	1 1	l –		-	1 1	1 1
	1 _	_	_	1,2,6,7,8,10	9①	_	3	V3 (4)	_	1 1	-	1 1	_	1 1	1 1
	-	—	l	1,2,6,7,8,9	10①		3	V ₃ (4)		*		V	_		
Switching Times	Pulse	Pulse Out							Тур	Max	Тур	Max	Тур	Max	
_		+	⊣			1	3	ta: (5)	6.5	10.5	6.5	10.5	7.5	11.5	ns
Propagation Belay Time	6	5	_	1,2,7,8,9,10	_	-	3	tai (4)	6.5	10.5	6.5	10.5	7.5	11.5	1
1	1	4	-	2,6,7,8,9,10	_	1 =	3	taz (5)	8.5	11.5	8.5	11.5	10.0	15.0	
1	6	5	-	1,2,7,8,9,10	= -	_	3	taz (4)	8.5	11.5	8.5	11.5	10.0	15.0	1 1
1	1	4	-	2,6,7,8,9,10	-	-		1	1				I.	ı	
Rise Time	6	5	1 -	1,2,7,8,9,10	-	1 -	3	tr (5)	9.0	12.5	9.5	12.5	11.5	15.5	1
1	1	4	_	2,6,7,8,9,10	-	-	. 3	tr (4)	9.0	12.5	9.5	12.5	11.5	15.5	1 1.
	1	5	1	1,2,7,8,9,10	i _	1 _	3	tr (5)	8.5	14.0	9.0	14.0	11.5	17.0	
Fall Time	6	4	-	2,6,7,8,9,10	_	_	3	tr (4)	8.5	14.0	9.0	14.0	11.5	17.0	\ \
1	1	ı 4	-	1 2,0,7,0,3,10	1	1			1	1	1 -	1	1	1	1

Pins not listed are left open.

① Input voltage is adjusted to obtain dY "NOR" / dV $_{in}=0$. ② Current test conditions: no load = 0; full load = -2.5 mAdc $\pm 5\%$.

QUAD 2-INPUT GATE

MECL MC350 series

MC363F

Quad 2-input gate that provides the positive logic "NOR" function, and features an internal bias driver.

SWITCHING TIME TEST CIRCUIT Output

"NOR" Dutput Voltage Change (No load to full load)

Pulse In

1 6 9

Pulse Out

'NOR" Saturation Breakpoint Voltage

Switching Time Propagation Delay Time

ELECTRICAL CHARACTERISTICS

Test Conditions

		٧	dc ± 1%	6											
(0°C	_	-0.850	-1.350	5.20											
_ @ Test ∫ +25°C	-0.670	-0.795	-1.350	-5.20											
Temperature +75°C	_	-0.725	-1.350	-5.20											
											Test	Limits			
	.,	۱.,	V,	V _{EE}	40		Ground	Symbol	0	°C	+2	25°C	+7	75°C	Unit
Observatoristic	V _H	Vimax			dV _{in}	, IL		Pin No	Min	Max	Min	Max	Min	Max	
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	(41111	MIGA	141111		141111		
Power Supply Drain Current	-	_	_	1,3,6,7,9,10,11,12,14			4	I _E (3)		31.0		30.0		29.0	mAdc
Input Current	1	_	_	3,6,7,9,10,11,12,14	_	l —	4	lin (1)			-	100	-	_	μAdc
"	6	l —	-	1,3,7,9,10,11,12,14	-	_	4	lin (6)	- 1	_		1	_		
1	7	i –	-	1,3.6,9,10,11,12,14	_	_	4	lin (7)	- 1		-		_		1
	9	l –	<u> </u>	1,3,6,7,10,11,12,14	_	_	4	lin (9)	_	_			_		1 1
ľ	10	_	_	1.3,6,7,9,11,12,14 1.3,6,7,9,10,12,14		-	4	lin (10)		_	_				
	11	-	_	1.3.6.7.9.10.11.14	=	_	1 4	lin (11) lin (12)	1 _	_			_		1 1
	12 14	_		1,3,6,7,9 10,11,12	_	=	1 7	lin (14)		_	_	. ♦	_	_	♦
"NOR" Logical "1"	 		 , 	3.6.7.9.10.11.12.14			4	V: (2)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
Output Voltage			6	1,3,7,9,10,11,12,14	_		4	V ₁ (5)	1		1	l ı	1	1 1	1
output voitage	l	_	1 7	1.3.6.9.10.11.12.14			1 4	V: (5)			1 1	1 1	1 1	1 1	1 1
	l —	l —	9	1,3,6,7,10,11,12,14	1 —	l —	4	V: (8)	1 1	. 1			l I	1 1	1 1
1		l –	10	1,3,6,7,9,11,12,14	l —	_	4	V ₁ (8)	1 1		1	1 1		1 1	1 1
1	l —	1 —	11	1,3,6,7,9,10,12,14	1 –	_	4	V: (13)	1 1		1 1	1 1	1 1	1	i
1	_		12	1,3,6,7,9,10,11,14	1	_	4	V: (13)	1 1	1	1	l	1 1	1	l 1
ł	l —	l –	14	1,3,6,7,9,10,11,12			4	V1 (2)				-	-		
"NOR" Logical "O"	_	1	_	3,6,7,9,10,11,12,14	_	l –	4	V4 (2)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc
Output Voltage		6	l —	1,3 7,9,10,11,12,14	-	l –	4	V ₄ (5)	1 1	1 1	l i	1 1		1 1	11
1 ' -	-	7	_	1,3,6,9,10,11,12,14	_	_	1 4	V4 (5)		1 1	1 1	1 1	1 1	1	1 1
1	_	9	l —	1,3 6,7,10,11,12,14	I —	I —	1 4	V4 (8)	1 1	1 1	1	1 1	1 1	1 I	
	_	10	-	1,3,6,7,9,11,12,14	1 -		1 4	V4 (8)		1 1	1 1	1 1	1 1		1 1
	-	11	-	1,3,6,7,9,10,12,14	_	-	1 4	V ₄ (13) V ₄ (13)	1 1		1 1	1 1	I I	1 1	
l .	l –	12	-	1,3,6,7,9,10,11,14	_	1 -	l :	V4 (13)	1 1	↓	↓		١ ↓	1 1	! ₩

△V₁ (2) △V₁ (5) △V₁ (8) △V₁ (13)

V₃ (2) V₃ (5) V₃ (8) V₃ (13)

tai (2) tai (5) tai (8) tai (13)

tdz (2) tdz (5) tdz (8) tdz (13)

Тур Max Тур Max Тур Max

8.5 13.5

12.5

11.0

13.5 10.0

> 11.5 17.0

Volts

16.0

3,6,7,9,10,11,12,14 1,3,6,9,10,11,12,14 1,3,6,7,9,11,12,14 1,3,6,7,9,10,11,14

3,6,7,9,10,11,12,14 1,3,7,9,10,11,12,14 1,3,6,7,10,11,12,14 1,3,6,7,9,10,12,14

3,6,7,9,10,11,12,14 1,3,7,9,10,11,12,14 1,3,6,7,10,11,12,14 1,3,6,7,9,10,12,14

MC352A

DC Set-Reset flip-flop with an expandable input and buffered outputs. This flip-flop is available without buffered outputs as MC352.

TRANSFER CHARACTERISTICS -1.350 V e_{in} V₁ V₂ -3 V **SCOPE **FOR "Q" TESTS REVERSE "S" AND "R" CONNECTIONS

ELECTRICAL CHARACTERISTICS

			nditions ±1%												
		-0.850	±1% -1.350	-5.20											
@ Test 0°C	— —0.670	-0.795	-1.350	-5.20 -5.20											
Temperature \(\begin{pmatrix} +25°C \\ +75°C \end{pmatrix}	-0.670	-0.725	-1.350	-5.20											
\+/5°C		-0.723	1.550	5.20							Test I	imits.			
				.,			Ground	Symbol	0	°C	+2	5°C	+7	5°C	Unit
	V _H	V _{I max}	N ¹®	V _{EE}	dV _{in} Pin No	IL Pin No	Pin No	Pin No in ()	Min	Max	Min	Max	Min	Max	
Characteristic	Pin No	Pin No	Pin No	Pin No	PINNO	PIN NO					_	10.35	_	9.52	mAdc
Power Supply Drain Current	_	_	_	2,6,7,9,10		_	3	le (6)	_	10.35				9.52	
Input Current	6	_	_	2,7,9,10	-	-	3	lin (6)	-	-	_	100	-	-	μAdc
	7	—·		2,6,9,10	-	-	3	lin (7)	-	-	_		_	-	1
	9	_		2,6,7,10	_	_	3	lin (9)	-	_	_		-	_	- 1
	10		_	2,6,7,9	_	_	3	lin (10)	-		_	+	-	-	. +
"Q" Logical "1" Output Voltage		_	6	2,7,9,10	_	_	3	V1 (5)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
d rogical i carper to the	_	_	7	2,6,9,10		-	3	Vı (5)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
"Q" Logical "9" Output Voitage		_	9	2,6,7,10	_	-	3	V ₂ (5)	-1.510	-1.880	-1.465	-1.750	-1.395	—1.730	Vdc
a rogical o output tottage	_	_	10	2,6,7,9	_	_	3	V ₂ (5)	-1.510	-1.880	-1.465	-1.750	-1.395	—1.730	Vdc
"Q" Logical "1" Output Voltage		-	9	2,6,7,10		_	3	V: (4)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
a Euglian i Galpar Ionnago	_	_	10	2,6,7,9	_	-	3	V: (4)	-0.715	0.850	0.670	-0.795	-0.590	0.725	Vdc
"Q" Logical "O" Output Voltage		_	- 6	2,7,9,10	_	_	3	V ₂ (4)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc
	_	_	7	2,6,9,10	-	-	3	V ₂ (4)	-1.510	-1.880	-1.465	-1.750	-1.395	—1.730	Vdc
"Q" Output Voltage Change	_	6	_	2,7,9,10	_	5⊚	3	ΔV₁ (5)	-	-0.065	-	-0.065	_	0.075	Volt
"Q" Output Voltage Change	_	10	_	2,6,7,9	-	43	3	∆V₁ (4)	-	-0.065		-0.065	_	-0.075	Volt
"Q" Saturation Breakpoint Voltage	_	-	-	2,7,9	6,10①	-	3	V ₃ (5)	_	-0.61	-	-0.65	-	-0.73	Vdc
"Q" Saturation Breakpoint Voltage	_	_	_	2,7,9	6,10 ①	_	3	V3 (4)	-	-0.61	_	-0.65	-	-0.73	Vdc
"Q" or "Q" Latch Voltage	_	-	_	2,7,9	6,10 €	 -	3	V ₆ (6,10)	-1.11	-1.25	-1.09	-1.21	-1.02	-1.14	Vdc
		+	 		 	†	†		†						
Switching Times	Puise In	Pulse Out			1	1			Тур	Max	Тур	Max	Тур	Max	
Propagation Delay Time	6,10	4,5	1 _	2,7,9	-	_	3	t _{dr} (4,5)	10.0	16.0	10.5	16.0	13.5	22.0	ns
	6,10	4,5	_	2,7,9	-	-	3	t _{df} (4,5)	11.0	19.5	11.5	19.5	14.0	22.0	1
Rise Time	6,10	4,5	-	2,7,9	-	-	3	tr (4,5)	11.0	19.0	11.5	19.0	13.5	26.0	
Fall Time	6.10	4,5	_	2.7.9	l _		3	tr (4,5)	12.0	19.5	12.5	19.5	14.0	26.0	▼

Pins not listed are left open. ① Input voltage is adjusted to obtain dV "Q" /dVi_n = 0; dV "Q" /dVi_n = 0. ② Current test conditions: no load = 0; full load = -2.5 mAdc ±5%. ② Apply momentary V_{imax} to set output, then V_L for measurement. ② Input voltage is adjusted to obtain dV /dVi_n ≈ ∞.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

0°C and +25°C +75°C

AC-COUPLED J-K FLIP-FLOP

MECL MC350 series

MC358A

AC-coupled J-K flip-flop with dc Set and Reset inputs and buffered outputs for counter and shift register applications up to 15 MHz.

TRANSFER CHARACTERISTICS

FIGURE 1 — SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 2 — INPUT WAVEFORM TO ESTABLISH MINIMUM TOGGLE FREQUENCY

FIGURE 3 - SENSITIVITY (NO TOGGLE)

FIGURE 4 — SENSITIVITY (TOGGLE)

ELECTRICAL CHARACTERISTICS

-5.20
-5.20
-5.20

Temperature 1 +25°C	-0.670	-0.795	-1.330	-5.20											
Temperature (+75°C		-0.725	-1.350	-5.20							Test	Limits			
						. 1	C	Symbol	0	°C	+2	5°C	+7	5°C	Unit
	V _H	V _{I max}	V ∟®	V _{EE}	dV in Pin No	ار Pin No	Ground Pin No	Pin No in ()	Min	Max	Min	Max	Min	Max	
Characteristic	Pin No	Pin No	Pin No	Pin No					-	22.0	_	21.0	_	19.6	mAdc
Power Supply Brain Current	l –	7,10	_	1,2,6,8,9			3	l _E (2)		22.0					
Input Current	7	_	_	1,2,6,8,9,10	_	_	3	lin (7)	-	-	- 1	100	-	_	μAdc
	8	-	_	1,2,6,7,9,10	-	_	3	lin (8)	- 1	_	_	1 1		_	
	9		_ '	1,2,6,7,8,10		_	3	lin (9) lin (10)	_		_	↓	_	_	¥
	10			1,2,6,7,8,9			,	TIN (10)							
"Q" Logical "1"	1						3	V1 (5)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vdc
Output Voltage	_		6	1,2,7,8,9,10	_		3	VI (5)	-0.713	-0.030	0.070				
"Q" Logical "0"								W (F)	1.510	1 880	1 465	-1.750	_1 395	-1.730	Vdc
Output Voltage	-		1	2,6,7,8,9,10		_	3	V ₂ (5)	-1.510	-1.000	1.403	-1.750	2.000		
"Q" Logical "1"					ļ						0.670	0.795	0.590	-0.725	Vdc
Output Voltage	_	-	1	2,6,7,8,9,10	_	_	3	Vt (4)	-0.715	-0.850	-0.670	-0.793	-0.550	-0.723	100
"Q" Logical "O"													1.395	-1.730	Vdc
Output Voltage	i –	-	6	1,2,7,8,9,10			3	V ₂ (4)	-1.510	-1.880	-1.465		-1.395		
"Q" Dutput Voltage Change	_	6		1,2,7,8,9,10		5 ②	3	∆V₁ (5)	<u> </u>	-0.065	=	-0.065	_	-0.075	Volts
"Q" Output Voltage Change	T -	1	-	2,6,7,8,9,10		4⊚	3	∆V₁ (4)	<u> </u>	0.065		-0.065	_	0.075	Voits
"Q" Saturation						1	3	V ₃ (5)	_	_ 0.61	_	_ 0.65	_	0.73	Vdc
Breakpoint Voltage	_			1,2,7,8,9,10	6①		3	V3 (5)	-	- 0.61	┝▔	0.03			
"Q" Saturation		1		1					_	- 0.61	_	0.65	_	_ 0.73	Vdc
Breakpoint Voltage	_	_		2,6,7,8,9,10	1①		3	V ₃ (4)	+-	- 0.01		0.05			
"Q" or "Q" Latch		T	1						1	_ 1.25	1.00	_ 1.21	-1.02	_ 1.14	Vdc
Voltage	_			2,7,8,9,10	1,6 ④		3	V ₆ (1,6)	- 1.11	- 1.25	1.03	- 1.21	1.02		100
	Pulse	Pulse						ŀ	1			ł	1	ļ	
	ln	Out	1	1		i		ì	İ		1	1	1		1
Toggle Frequency	1	1		1	1	1		١.		1	15	i _	l _	_	MHz
(See Figures 1 and 2)	7,10	5	1	1,2,6,9	-	-	3	frog	' -	' -		' -	. –	'	,,,,,,
Sensitivity (No Toggle)	7,10	4	1	1,2,6,8,9	-	-	3	←			Figure			-	
	8,9	5		1,2,6,7,10	-	-	3	—			Figure :			<u> </u>	1
Sensitivity (Toggle)	7,10	4,5	1	1,2,6,8,9	-	_	3	-			<u> </u>		T		+
Switching Times			1		1	1	1		Тур	Max	Тур	Max	Typ	Max	٠
Propagation Delay	7,10	4,5		1,2,6,8,9	-	_	3	tdr (4,5)	7.5	13.0	7.5	13.0	8.0 11.0	16.0	ns
	7,10	4,5		1,2,6,8,9	_	-	3	tar (4,5)	10.0	14.5	10.0	15.0	8.5	16.0	1
Rise Time	7,10	4,5	1	1,2,6,8,9	-	-	3	tr (4,5)	8.0	13.0	8.0	13.0 15.5	12.5	22.0	1
Fall Time	7.10	4,5	1	1,2,6,8,9	1	1	3	tr (4,5)	10.5	15.5	11.0	15.5	1 12.3	1 22.0	1 7

Pins not listed are left open. ① Input voltage is adjusted to obtain $dV_{nn} / dV_{in} = "0"$. ② Current test conditions: no load = 0 to full load = -2.5 mAdc ±5%. ③ Apply momentary V_{in} max to set output, then V_{in} for measurement. ④ Input voltage is adjusted to obtain $dV_{in} / dV_{in} = \infty$.

SWITCHING CHARACTERISTICS (10% to 90% distribution)

-0°C and +25°C —+75°C

AC-COUPLED J-K FLIP-FLOP

MECL MC350 series

MC364

High-speed ac-coupled J-K flip-flop with dc Set and Reset input for counter and shift register applications up to 30 MHz operation.

TRANSFER CHARACTERISTICS

FIGURE 1 — SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 2 — INPUT WAVEFORM TO ESTABLISH MINIMUM TOGGLE FREQUENCY

FIGURE 3 - SENSITIVITY (NO TOGGLE)

FIGURE 4 — SENSITIVITY (TOGGLE)

ELECTRICAL CHARACTERISTICS

				onditions ±1%	
@ Test	0°C	_	0.850	-1.350	-5.20
Temperature	₹ +25°C	-0.670	-0.795	-1.350	-5.20
1 cmpciature	\+75°C	_	-0.725	-1.350	-5.20

Temperature) 17500	0.070		1.550	-3.20	l										
1 emperature (+75°C		-0.725	-1.350	-5.20											
	ľ		ł	1	ŀ			Symbol			Test	Limits			
	V _H	V _{1 max}	V _L	V _{EE}	dV _{in}	l,	Ground	Pin No		0°C	+	25°C	+	75°C	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in()	Min	Max	Min	Max	Min	Max	İ
Power Supply Drain Current	_	7,10	_	1,2,6,8,9	_		3	le (2)	_	30.0	_	28.5		28.0	mAd
Input Current	7	_	_	1,2,6.8,9,10	_	_	3	lin (7)	_	—	_	100		_	μAde
	8	-	_	1,2,6,7,9,10	_	_	3	lin (8)	_		_	l ï		_	~~
	9	_	_	1,2,6,7,8.10	- 1	_	3	lin (9)		i –	l –	1 1	_	_	1
	10	_	_	1,2,6,7,8,9	_		3	lin (10)	-	i –	-	♦	-	_	₩
"Q" Logical "1"															
Output Voltage	_	_	63	1,2,7,8,9,10		_	3	V: (5)	-0.715	-0.850	-0.670	-0.795	-0.590	-0.725	Vd
"Q" Logical "O"										 	†				-
Output Voltage	-	_	13	2,6,7,8,9,10	_		3	V ₂ (5)	-1.510	-1.880	-1.465	-1.750	_1.395	-1.730	Vd
"Q" Logical "1"									1				1.000	1.700	
Output Voltage	_	_	13	2,6,7,8,9,10	_		3	V: (4)	-0.715	-0.850	-0.670	0.795	-0.590	-0.725	Vd
"Q" Logical "O"	W								0.720	0.000	0.070	0.733	-0.330	-0.723	Vu
Output Voltage		_	63	1,2,7,8,9,10	_	_	3	V2 (4)	-1.510	_1.880		١		1	
"Q" Output Voltage Change		6									-1.465		-1.395	-1.730	Vd
				1,2,7,8,9,10		5⊛	3	∆Vı (5)		-0.065		-0.065		0.075	Volt
"Q" Output Voltage Change		1	_	2,6,7,8,9,10		41	3	△V₁ (4)	-	-0.065	_	-0.065	_	-0.075	Volt
"Q" Saturation															
Breakpoint Voltage	_	_	-	1,2,7,8,9,10	6①	-	3	V3 (5)	_	-0.61	-	-0.65	_	-0.73	Vdc
"Q" Saturation										 	-				
Breakpoint Voltage	_	- 1	_	2,6,7,8,9,10	10		3	V3 (4)	_	-0.61	_	-0.65	_	-0.73	Vdc
"Q" or "Q" Latch								.,,,,		0.01		-0.03		-0.73	Vac
Voltage	_	_	_	2,7,8,9,10	1,6@	_	3	Vs (1,6)	-1.11	-1.25	-1.09				
	Pulse	Pulse		-,,,-,-,-	-,,,,,			¥6 (1,0)	-1.11	-1.25	-1.09	-1.21	-1.02	-1.14	Vdc
	in	Out	- 1		- 1				1						
		000	i		1										
Toggle Frequency (See Figures 1 and 2)		_	ĺ		- 1										
	7,10	5		1,2,6,9	_	-	3	frog	! — !	- 1	30	_		_	MHz
Sensitivity (No Toggle)	7,10	4	-	1,2,6,8,9	-	_	3	.		- See	Figure 3			→ !	
440	8,9	5	-	1,2,6,7,10	- 1	- 1	3	←		- See	Figure 3			→	
Sensitivity (Toggle)	7,10	4,5	- 1	1,2,6,8,9	_ [_	3	4		- See	Figure 4				
Switching Times	1	j	ļ	}	ľ			•	·						
Propagation Delay Time	7,10	4,5	_	1,2,6,8,9		i	,		Тур	Max	Typ	Max	Тур	Max	
	7,10	4,5	_	1,2,6,8,9	_	_	3	tdr (4,5)	11.0	18.0	12.0	18.0	14.0	24.0	ns
Rise Time	7,10	4,5	_	1,2,6,8,9	- 1	_		taf (4,5)	12.0	18.0	13.0	18.0	15.0	24.0	- 1
Fall Time	7,10	4,5	- 1		-	-	3	tr (4,5)	11.5	20.0	12.5	21.0	15.0	26.0	- 1
	7,10	4,3		1,2,6,8,9			. 3	tr (4,5)	11.5	18.0	12.5	21.0	15.0	26.0	. 🔻

Pins not listed are left open. ① Input voltage is adjusted to obtain $dV_{out} / dV_{in} = 0$. ② Current test conditions: no load = 0; full load = -2.5 mAdc $\pm 5\%$. ② Apply momentary V_{in} no set output, then V_{in} for measurement.

HALF-ADDER

MECL MC350 series

MC353

Half-adder that provides the "SUM", "CARRY", and "NOR" functions simultaneously.

SWITCHING TIMES TEST CIRCUIT

SWITCHING CHARACTERISTICS (10% to 90% distribution)

- +75°C

MC353 (continued)

ELECTRICAL CHARACTERISTICS

		T	est Condi Vdc ±1		
@ Test (0°C	_	-0.850	-1.350	-5.20	-1.18
Temperature +25°C	-0.670	-0.795	-1.350	-5.20	-1.15
+75°C	_	-0.725	-1.350	-5.20	-1.08

remperature (+75°C	_	-0.725	-1.350	-5.20	-1.08											
		İ							C			Test	Limits			
	ν,,	V _{I max}	V,	V _{FF}	V _{RR}	dV _{in}	1,	Ground	Symbol Pin No)°C	+2	25°C	+7	5°C	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	_		_	2,7,8,9,10	1	_	_	3	I _E (2)	Π_	15.9	_	15.3	_	14.1	mAdc
Input Current	7	_		2,8,9,10	1	_		3	lin (7)	+ -		_	100			#Adc
	8	-		2,7,9,10	1	-	_	3	lin (8)	-		_	1	-		1
	9 10	_	_	2,7,8,10 2,7,8,9	1	_	_	3	lin (9) lin (10)		_	=	↓	_	_	↓
'NOR'' Logical ''1'' Output Voltage	_	=	9 10	2,7,8,10 2,7,8,9	1 1	=	=	3 3	V ₁ (5) V ₁ (5)	-0.715 -0.715	-0.850 -0.850	-0.670 -0.670	-0.795 -0.795	-0.590 -0.590	-0.725 -0.725	Vdc Vdc
'NOR'' Logical ''O'' Output Voltage	=	9 10	_	2,7,8,10 2,7,8,9	1	=	=	3	V ₄ (5) V ₄ (5)	-1.510 -1.510	-1.880 -1.880	-1.465 -1.465	-1.750 -1.750	-1.395 -1.395	-1.730 -1.730	Vdc Vdc
"CARRY" Logical "1" Output Voltage	_	=	7 8	2,8,9,10 2,7,9,10	1 1	=		3 3	V ₁ (6) V ₁ (6)	-0.715 -0.715	-0.850 -0.850	-0.670 -0.670	-0.795 -0.795	-0.590 -0.590	-0.725 -0.725	Vdc Vdc
"CARRY" Logical "0" Output Voltage	1	7 8	_	2,8,9,10 2,7,9,10	1 1	=	=	3 3	V ₄ (6) V ₄ (6)	-1.510 -1.510	-1.880 -1.880	-1.465 -1.465	-1.750 -1.750	-1.395 -1.395	-1.730 -1.730	Vdc Vdc
"SUM" Logical "1" Output Voltage	_	7,9 8,10	_	2,8,10 2,7,9	1	=	=	3 3	Vs (4) Vs (4)	-0.715 -0.715	-0.850 -0.850	-0.670 -0.670	-0.795 -0.795	-0.590 -0.590	-0.725 -0.725	Vdc Vdc
"SUM" Logical "O"	_	7	10	2,8,9	1	_	_	3	V2 (4)	-1.510	-1.880	-1.465	-1.750	-1.395	-1.730	Vdc
Output Voltage	_	8 9	10 8	2,7,9 2,7,10	1 1	=	_	3	V ₂ (4) V ₂ (4)							
	=	10	7	2,8,9	i	=		3	V2 (4) V2 (4)	\	↓	↓	↓	↓	↓	. ↓
"NOR" Output Voltage Change (No load to full load)	_	10	-	2,7,8,9	1	-	5⊛	3	∆V₁ (5)	_	0.055	_	0.055	_	0.065	Volts
"CARRY" Output Voitage Change (No load to full load)	-	_	7	2,8,9,10	1	_	63	3	ΔV₁ (6)	_	0.055	_	0.055	_	0.065	Volts
"SUM" Output Voltage Change (No load to full load)	-	7,10	_	2,8,9	1	_	4②	3	△Vs (4)	-	0.055	_	0.055		0.065	Volts
"NOR" Saturation										†			·			
Breakpoint Voltage "CARRY" Saturation	_	_	_	2,7,8,9	1	10①	-	3	V3 (5)	-	0.510	-	0.550	_	0.630	Vdc
Breakpoint Voltage	_			2,8,9,10	1	7 ① Pulse	D-1	3	V3 (6)	-	0.510		0.550		0.630	Vdc
Switching Times					Ì	In	Pulse Out		l	Тур	Max	Тур	Max	Typ	Max	
Propagation Delay Time	_	_	_	2,7,8,9	1	10	5	3	td: (5)	6.5	11.0	6.5	11.0	7.0	13.0	ns
	_	7	_	2,8,9,10 2,8,9	1	7 10	6	3	tai (6) tai (4)	6.5 8.5	11.0 11.5	6.5 8.5	11.0 11.5	7.0 10.0	13.0	1
	_	<u></u>	_	2,7,8,9	1	10	5	3	ta: (4)	8.5	13.5	8.5	13.5	10.0	15.0 16.0	
			_	2,8,9,10	î	7	6	3	td2 (6)	8.5	13.5	8.5	13.5	10.0	16.0	
		7	-	2,8,9	1	10	4	3	td2 (4)	6.0	11.0	6.0	11.0	7.5	12.0	
Rise Time	_	-	-	2,7,8,9	1	10	5	3	tr (5)	9.0	12.5	9.0	12.5	11.0	15.5	
	_	7	_	2,8,9,10 2,8,9	1	7 10	6	3	tr (6) tr (4)	9.0 7.0	12.5 11.5	9.0 7.0	12.5 11.5	11.0 9.0	15.5 13.0	
Fall Time		_	_	2,7,8,9	1	10	5	3	tr (5)	9.0	14.0	9.5	14.0	11.5	17.0	
	_	_	- 1	2,8,9,10	1	7	6	3	tr (6)	9.0	14.0	9.5	14.0	11.5	17.0	
ins not listed are left open		7	-	2,8,9	1	10	4	3	tr (4)	9.0	14.0	9.5	14.0	12.0	17.0	*

Pins not listed are left open.

① Input voltage is adjusted to obtain dV"NOR"/dV_{in} = 0 or dV "CARRY"/dV_{in} = 0.
② Current test conditions: no load = 0; full load = -2.5 mAdc ±5%.

GATE EXPANDER

MC355

A 5-input expander for use with the MC352A, MC356, MC357, and MC365. Each expander unit increases the fan-in of the basic gate by five.

ELECTRICAL CHARACTERISTICS

				Test C	ondition:	5		
				Vdc	±1%		mAdc	
@ Test	0°C	-2.0	-5.2	+2.0	+0.7	0.3	-1.33	l
Temperature	₹ +25°C	-2.0	-5.2	+2.0	+0.7	0.3	-1.33	l
remperature	(+75°C	-2.0	-5.2	+2.0	+0.7	0.3	-1.33	L
								Г

									Test Limits						
	V _{EE}	V _{BB}	Vcc	V _{CB}	V _{BE}	l _e	Ground	Symbol Pin No	0	°C	+:	25°C	+	75°C	Unit
Characteristic	Pin No	Pin No	Pin No		Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Base Leakage Current	4	6		_	_	_	5	1st (6)	_	0.5	_	0.5	-	2.0	μAdc
	4	8	=		_	_	5	Ist (7) Ist (8)	=	11	_		_		
	4	9 10	_	=	_	= .	5 5	Ist (9)	_	↓	=	↓	. =	↓	
Collector Leakage Current		_	5	_	6,7,8,9,10	_	4	Icex (5)		1.0	_	1.0	-	15.0	μAdc
Input Voltage	_	_	_	5	-	4	6	Vac (4)	0.730	0.780	0.680	0.730	0.580	0.630	Vdc
	=	=	_	5 5 5	=	4 4	7 8 9	VsE (4) VsE (4) VsE (4)							
	_	_	_	5	_	4	10	V8E (4)	*	*	*		*	<u> </u>	*
Switching Times	Pulse Pulse In Out								Тур	Max	Тур	Max	Тур	Max	
Propagation Delay Time	8 ① 8 ①	=	_	_	=	_	=	ta: taz	4.5 4.0	9.5 9.0	4.5 4.0	9.5 9.0	5.5 4.5	13.0 12.0	ns I
Rise Time	8 ①	-	_	- 1	-		_	tr	8.5	13.0	8.5	13.0	9.0	15.0	
Fall Time	8 ①					_		tr	3.5	10.5	3.5	10.5	4.0	11.5	Y

Pins not listed are left open. ① See Switching Time Test Circuit.

SWITCHING TIME TEST CIRCUIT

BIAS DRIVER

MC354

Bias driver that compensates for changes in circuit parameters with temperature.

ELECTRICAL CHARACTERISTICS

	Test Conditions Vdc ±1%										
@ Test $\begin{cases} 0^{\circ}C \\ +25^{\circ}C \\ +75^{\circ}C \end{cases}$	-5.20 -5.20 -5.20										
				Symbol				Limits			
	VEE	IL	Ground	Pin No		°C	 +2	25°C	+7	5°C	Unit
Characteristic	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	2		3	le (2)	_	4.6	_	4.4	_	4.0	mAdc
Output Voltage	2	1①	3	V _{BB}	-1.14	-1.27	-1.09	-1.22	-1.04		Vdc

Pins not listed are left open.

① Current test conditions: no load = 0; full load = -2.5 mAdc $\pm 5\%$.

CIRCUIT DESCRIPTION

Circuit Operation:

The divider network R_1 , R_2 , D_1 , D_2 compensates for temperature variations of the base-emitter voltages of Q_1 , and of the driven gates, producing a bias voltage for the MECL logic circuits that maintains a constant set of dc operating conditions over the temperature range of 0 to $+75^{\circ}$ C. In addition, compensation for power supply variations is achieved, since the bias output voltage is derived from the system supply.

Either of the supply voltage nodes may be used as ground, however the ground potential of the bias driver must coincide with that of the logic system. Thus, if $V_{\rm CC}$ is grounded in the logic system, then —

$$V_{CC}=0;$$
 $V_{EE}=-5.2 \text{ V};$ $V_{BB}=-1.15$ nominal output voltage at 25°C

MC365

Line driver for driving lines of 50 ohms or greater while providing the positive logic "NOR" function and its complement simultaneously.

ELECTRICAL CHARACTERISTICS

		Test	Conditio	ns											
		V	dc ±1%												
O*C		-0.850	-1.350	-5.20	-1.18										
@ Test +25°C	-0.670	-0.795	-1.350	-5.20	-1.15										
Temperature \(\begin{array}{c} +75°C \end{array}	_	-0.725	-1.350	-5.20	-1.08										
								Cumbal			Test	Limits			i
	V _H	V _{I max}	V,	V _{EE}	VRR	I, ①	Ground	Symbol Pin No	0	°C	+2	5°€	+7	5°C	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in()	Min	Max	Min	Max	Min	Max	
	PIII NO				1	4,5	3	I _E (2)		68	_	65	_	63	mAdc
Power Supply Drain Current	-			2,6,7,8	i	4,5	3	lin (6)	+=			100		-	μAdc
Input Current	6 7	_	_	2,7,8	l i	_	3	lin (7)	_	_	_	l ï	-		1
	l á	_		2,6,7	1		3	lin (8)	<u> </u>						V
"NOR" Logical "1"	T	-	6	2,7,8	1	4,5	3	V1 (6)	-0.695	-0.850	-0.650	-0.795	-0.570	-0.725	Vdc
Output Voltage	-	=	7 8	2,6,8 2,6,7	1	4,5 4.5	3	V1 (7) V1 (8)	↓	↓	↓	\ ₩	\	↓	↓
"NOR" Logical "O"	+=-	6	_	2,7,8	1	4,5	3	V4 (6)	-1.495	-1.880	-1.450	-1.750	-1.395	-1.730	Vdc
Output Voltage	=	7 8	=	2,6,8 2,6,7	1	4,5 4,5	3	V ₄ (7) V ₄ (8)	↓	↓	↓	↓	↓	↓	+
"OR" Logical "1"	 	6	_	2,7,8	1	4,5	3	V ₂ (6)	-0.695	-0.850	-0.650	-0.795	-0.570	-0.725	Vdc
Output Voltage	-	7	=	2,6,8 2,6,7	1	4,5 4,5	3	V ₂ (7) V ₂ (8)	↓	↓	↓	\	\ ₩	₩	. ♦
"OR" Logical "O"	-	-	6	2,7,8	1	4,5	3	V ₅ (6)	-1.495	-1.880	-1.450	-1.750	-1.395	-1.730	Vdc
Output Voltage	=	=	7	2,6,8	1	4,5	3	Vs (7)	1	1	1	↓	↓	↓	1 1
	<u> </u>		8	2,6,7	1	4,5	3	V ₅ (8)	+-	<u> </u>	<u> </u>	<u> </u>	- '-	<u> </u>	
Switching Times	Pulse	Pulse Out	l	l	ł			ì	Тур	Max	Тур	Max	Тур	Max	}
-Propagation Delay Time	6	5	1 _	2,7,8	1	_	3	ta: (5)	12.0	20.0	12.0	20.0	13.5	25.0	пѕ
- I tobagation paidy time	6	4	-	2,7,8	i	_	3	tai (4)	16.0	25.0	16.0	25.0	18.5	30.0	1 1
	6	5	-	2,7,8	1	_	3.	td2 (5)	14.0 10.0	25.0 20.0	14.0	25.0 20.0	16.0 11.0	30.0 23.0	1 1
	6	4	-	2,7,8	1	-	3	td2 (4)		25.0	16.0	25.0	19.0	30.0	
Rise Time	6	5	=	2,7,8 2,7,8	1 1	_	3 3	tr (5) tr (4)	16.5 13.0	20.0	13.0	20.0	15.5	25.0	
Fall Time	6	5	1 =	2,7,8	l i	_	3	tr (5)	20.5	35.0	20.5	35.0	26.0	47.0	1 I
rail line	6	4	_	2,7,8	l î	_	3	te (4)	20.0	35.0	20.0	35.0	23.0	47.0	

Pins not listed are left open. ①Output is loaded with a 50-ohm resistor.

DUAL 2-INPUT CLOCK DRIVER AND HIGH-SPEED GATE

MECL MC350 series

MC369G

High-speed clock driver or dual 2-input gate that provides the positive logic "NOR" function and its complement simultaneously.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY

RISE AND FALL TIME

MC369G (continued)

Pulse

Pulse

Switching Times

ELECTRICAL CHARACTERISTICS

Test Conditions Vdc ±1%

	1		uo — 1 /0		1										
O*** (0°C		-0.850	-1.510	-5.20											
@ Test +25°C	-0.670	-0.795	-1.465	-5.20]										
Temperature \(\begin{array}{c} +75°C \\ \end{array}	_	-0.725	-1.395	-5.20	1										
								0			Test L	imits			
		v	V _L	V _{FF}	dV _{in}	l.	Ground	Symbol Pin No	0	ů	+2	5°C	+7	5°C	Unit
Characteristic	V _H	V _{I max}	Pin No	Pin No	Pin No		Pin No	in()	Min	Max	Min	Max	Min	Max	
Cilaracteristic	Pin No	Pin No	PIRMO	FILINO	FILLING	FILLIA	1111110								
Power Supply Drain Current	_			2,5,6,9,10		_	3	le (2)				60	_		mAdc
Input Current	5	_	_	2,6,9,10	_	_	3	lin (5)	_	-	_	200	_	-	μAdc
	6	-	-	2,5,9,10	-	-	3	lin (6)	1. —	-	_		_	-	
	9	_	-	2,5,6,10	-	-	3	lin (9)	_	_	_	1 1	_	_	1
	10			2,5,6,9			3	lin (10)							_ '
"NOR" Logical "1"		_	5	2,6,9,10	-		3	V1 (4)	-0.700	0.900	-0.650	-0.825	-0.550	-0.770	Vdc
Output Voltage	l –	_	6	2,5,9,10	-	l —	3	V1 (4)	i i	1 1			1 1	1 1	1
• •	-		9	2,5,6,10	-	_ ·	3	V1 (1)					1	1 1	1
	_	-	10	2,5,6,9	l –	<u> </u>	3	V: (1)				•		7	
"NOR" Logical "O"	_	5	T	2,6,9,10		_	3	V4 (4)	-1.510	-1.880	-1.465	1.850	-1.395	1.790	Vdc
Output Voltage	_	6	_	2,5,9,10	_	_	3	V4 (4)	1 1	l I	ı	1	1 1	1 1	1
	_	9	_	2,5,6,10	_	-	3	V4 (1)	1 1		1			1 L	1
		10	_	2,5,6,9	-		3	V ₄ (1)		*	₩ .		V		
"OR" Logical "1"	T _	5		2,6,9,10	_	_	3	V ₅ (7)	-0.700	-0.900	-0.650	-0.825	-0.550	-0.770	Vdc
Output Voltage	_	6	_	2,5,9,10	_	_	3	Vs (7)	1 1.	1	1	1		1 1	1
output vollage	l _	9	l _	2,5,6,10	l –		3	Vs (8)	1	1 1	1 1		1 1	1 1	1 1
	_	10	_	2,5,6,9	-	-	3	Vs (8)			Y		V	V	
"OR" Logical "O"	T _	_	5	2.6,9,10	_	_	3	V ₂ (7)	-1.510	-1.880	-1.465	-1.850	_1.395	-1.790	Vdc
Output Voltage			6	2,5,9,10	_	l _	3	V ₂ (7)	1 1	1 1	1		1	1	1
Output voitage	1 _		9	2,5,6,10	-		3	V ₂ (8)	1 1	1 1	1 1	1 1	1 1.		
	-	_	10	2,5,6,9	-	-	3	V ₂ (8)		\ \	*	*	V	V	
unanu out-ut Valtage Ct	1	1	5	2,6,9,10	_	4②	3	∧V₁ (4)	_	-0.100		-0.100	_	-0.130	Volts
"NOR" Output Voltage Change	_	_	9	2,5,6,10		10	3	Δν. (1)	_	-0.100	_	-0.100	_	-0.130	Volts
	+	+	+ -	+	 	+	+		+_	-0.100	 	-0.100	_	-0.130	Volts
"OR" Output Voltage Change	-	5	_	2,6,9,10	_	73	3	△Vs (7) △Vs (8)		-0.100	=	0.100		-0.130	Volts
	_	9		2,5,6,10	↓ –	8②	1 3	 		 					
"NOR" Saturation	_	-	-	2,6,9,10	5①	-	3	V ₃ (4)	-	-0.51	-	-0.55	1 -	-0.63	Vdc
Breakpoint Voltage	_	-	-	2,5,9,10	6①	_	3	V ₃ (4)	-		_	11	1 -	1 1	
	-	-	_	2,5,6,10	9①	_	3	V ₃ (1)	-	1 1	-	1 1	-	↓	↓

10①

2,5,6,10 2,5,6,9

_

Max Тур Max Тур Max

Тур Propagation Delay Time In Out Fan-Out = 1 2,6,9,10 ta: (4) 2,6,9,10 ta: (7) _ 6 7 2,5,6,10 3 taı (1) 5 6 9 8 2,5,6,10 td: (8) 6 taz (4) 3 47 2,6,9,10 3 _ _ taz (7) 2,6,9,10 _ 3 taz (1) 6 5 6 6 8 2,5,6,10 taz (8) 3 ta: (4) Fan-Out = 10 4 2.6.9.10 5 4 5 tai (7) 10 10 11 2.6.9.10 _ _ 3 ta: (1) 4 5 5 6 8 11 10 10 8 2,5,6,10 td: (8) 11 10 6 2,6,9,10 3 tdz (4) 5 4 10 5 <u>-</u> _ 2,6,9,10 2,5,6,10 taz (7) 5 10 5 4 10 7 6 5 11 8 taz (1) 3 taz (8) 7 _ 4 4 7 9 2,6,9,10 3 tr (4) 7 <u>-</u> Rise Time, Fan-Out = 1 6 7 6 2,6,9,10 2,5,6,10 tr (7) 3 tr (1) 7 6 9 8 2,5,6,10 tr (8) <u>-</u> 2,6,9,10 _ _ _ _ 3 tr (4) 4 9 4 9 10 5 Fan-Out = 10 2,6,9,10 3 tr (7) tr (1) 2,5,6,10 9 9 2,5,6,10 3 tr (8) _ _ _ 3 tr (4) 5 _ 2,6,9,10 Fall Time. Fan-Out = 1 5 2,6,9,10 tr (7) tr (1) 2,5,6,10 3 tr (8) 2,5,6,10 9 _ 7 12 2,6,9,10 3 tr (4) 11 11 Fan-Out = 10 5 2,6,9,10 tr (7) tr (1) 2.5.6.10 2,5,6,10

Pins not listed are left open. ① Input voltage is adjusted to obtain dV "NOR" / dV_{in} = 0. ② Current test conditions: no load = 0; full load = -10 mAdc ±5%.

DUAL 4-INPUT CLOCK DRIVER AND HIGH-SPEED GATE MECL MC 350 series

MC369F

High-speed clock driver or dual 4-input gate that provides the positive logic "NOR" function and its complement simultaneously.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY

RISE AND FALL TIME

MC369F (continued)

ELECTRICAL CHARACTERISTICS

				st Condition	
@ Test	(o°c	_	-0.850	-1.510	-5.20
Temperature	+25°C	-0.670	-0.795	-1.465	-5.20
i emperature	+75°C	_	-0.725	-1.395	-5.20

76mperature (+75°C		-0.725	-1.395	-5.20							Test	Limits			
	V _H	v	V _L	V _{EE}	dV _{in}	1,	Ground	Symbol : Pin No	0	°C		25°C	+7	5°C	Unit
Characteristic	Pin No	V _{i max} Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	_	_		2,5,6,7,8,11,12,13,14	_	_	3	le (2)	_	_	_	60	_	_	mAdc
Input Current	5 6		_	2,6,7,8,11,12,13,14 2,5,7,8,11,12,13,14	_	_	3	lin (5) lin (6)	_	_	_	200	_	_	μAdc
	7 8	_	_	2,5,6,8,11,12,13,14 2,5,6,7,11,12,13,14	_	_	3	lin (7) lin (8)	-	11111	_		_	=	i
	11	_	_	2,5,6,7,8,12,13,14	=	= 1	3	lin (11)	_	_	_		_		- 1
	12 13	=	=	2,5,6,7,8,11,13,14 2,5,6,7,8,11,12,14	_	_	3 3	lin (12) lin (13)	_	_	_		_	=	1
"NOR" Logical "1"	14		5	2,5,6,7,8,11,12,13		-	3	lin (14) Vi (4)	0.700	-0.900	0.650	-0.825	-0.550	-0.770	Vdc
Output Voltage		_	6	2,5,7,8,11,12,13,14	=	_	3	V ₁ (4) V ₁ (4)	I	I					1
	_	_	7 8	2,5,6,8,11,12,13,14 2,5,6,7,11,12,13,14	=	=	3	V1 (4)							
	=	=	11 12	2,5,6,7,8,12,13,14 2,5,6,7,8,11,13,14	=	_	3	V: (1) V: (1)							- 1
	=	_	13 14	2,5,6,7,8,11,12,14 2,5,6,7,8,11,12,13	=	_	3	V ₁ (1) V ₁ (1)	↓	. ↓	↓		↓		¥
"NOR" Logical "O"	_	5	=	2.6.7.8.11.12.13.14	-		3	V ₄ (4) V ₄ (4)	-1.510	1.880	-1.465	-1.850	-1.395	-1.790	Vdc
Output Voltage	=	6 7	=	2,5,7,8,11,12,13,14 2,5,6,8,11,12,13,14		Ξ	3	V4 (4)		1					-
	=	8 11	=	2,5,6,7,11,12,13,14 2,5,6,7,8,12,13,14	_	_	3	V ₄ (4) V ₄ (1)							- 1
	_	12 13	_	2,5,6,7,8,11,13,14 2,5,6,7,8,11,12,14	=	=	3	V ₄ (1) V ₄ (1)							l
		14		2,5,6,7,8,11,12,13			3	V4 (1)	₩	-0.900	0.650	♦ -0.825	0.550	₩ 0.770	Vdc
"OR" Logical "1" Cutput Voltage	=	5 6	=	2,6,7,8,11,12,13,14 2,5,7,8,11,12,13,14	=	=	3	Vs (9) Vs (9)	0.700	-0.900	-0.650 	-0.825	1	[","	I
	=	7 8	1 —	2,5,6,8,11,12,13,14 2,5,6,7,11,12,13,14	_	=	3	Vs (9) Vs (9)					1		
	_	11 12	=	2,5,6,7,8,12,13,14 2,5,6,7,8,11,13,14	=	= .	3	V ₅ (10) V ₅ (10)							
	=	13	=	2,5,6,7,8,11,12,14	-	=	3 3	V ₅ (10) V ₅ (10)	↓	↓	↓	↓	↓		1
"OR" Logical "O"			5	2,5,6,7,8,11,12,13 2,6,7,8,11,12,13,14	=	=	3	V ₂ (9)	-1.510	-1.880	-1.465	-1.850	-1.395	-1.790	Vdc
Output Voltage	=		6 7	2.5,7,8,11,12,13,14 2.5,6,8,11,12,13,14	=		3	V ₂ (9) V ₂ (9)							
	=	1 -	8 11	2,5,6,7,11,12,13,14 2,5,6,7,8,12,13,14	=	_	3	V ₂ (9) V ₂ (10)]]				- 1
	l —	=	12	2,5,6,7,8,11,13,14		_	3 3	V ₂ (10) V ₂ (10)		1 1			1 1		
	_		13 14	2,5,6,7,8,11,12,14 2,5,6,7,8,11,12,13	_		3	V ₂ (10)	1	+	+	+	+	+	<u> </u>
"NOR" Output Voltage Change	_	_	5 11	2,6,7,8,11,12,13,14 2,5,6,7,8,12,13,14	_	4 ② 1 ②	3	△V: (4) △V: (1)	=	-0.100 -0.100	_	-0.100 -0.100	=	-0.130 -0.130	Volts Volts
"OR" Output Voltage Change		5	-	2,6,7,8,11,12,13,14	_	9②	3	△Vs (9)	-	-0.100	_	-0.100	_	-0.130 -0.130	Volts Volts
"NOR" Saturation	-	11	=	2,5,6,7,8,12,13,14	5①	10②	3	∆V ₅ (10) V ₃ (5)	+=	-0.100 -0.51	=	-0.100 -0.55	=	-0.63	Vdc
Breakpoint Voltage	=	_	_	2 5,7,8,11,12,13,14 2 5,6,8,11,12,13,14	6 ① 7 ①	_	3	V ₃ (6) V ₃ (7)	_		_		=		.
	1 =	_	_	2,5,6,7,11,12,13,14 2,5,6,7,8,12,13,14	8 ① 11 ①	=	3	V ₃ (8) V ₃ (11)	-		_		_		.
	=	=	_	2,5,6,7,8,11,13,14	12①		3	V ₃ (12)	=		=		=		
	=			2,5,6,7,8,11,12,14 2,5,6,7,8,11,12,13	13① 14①	_	3	V ₃ (13) V ₃ (14)		+	=	↓	=	+	+
Switching Times Propagation Delay Time	Pulse	Pulse		ĺ	ļ		İ		Тур	Max	Тур	Max	Тур	Max	
Fan-Out = 1	In 5	Out 4	1 –	2 6,7,8,11,12,13,14	_	=	3	ta: (4)	3	5	3	5	4	6	ns
	5 11	9	=	2,6,7,8,11,12,13,14 2,5,6,7,8,12,13,14	=	=	3	tai (9) tai (1)		5		6 5		6	1
	11	10	=	2,5,6,7,8,12,13,14 2 6,7,8,11,12,13,14			3	ta: (10) ta: (4)	3	6	3	6	\ \ \	7	ı
	5	9	=	2,6,7,8,11,12,13,14	=	=	3 3	taz (9) taz (1)	ΙĬ	5	ΙĬ	5	Ιi	6	
	11 11	1 10		2,5,6,7,8,12,13,14 2,5,6,7,8,12,13,14			3	td2 (10)	₩	5	₩	5	₩	6	
Fan-Out == 10	5	4 9	_	2 6,7,8,11,12,13,14 2 6,7,8,11,12,13,14	=	=	3	tai (4) tai (9)	4 5	7 10	4 5	7 10	5 6	8 11	
	11 11	1 10	=	2,5,6,7,8,12,13,14 2,5,6 7,8,12,13,14	=	=	3	tdi (1) tdi (10)	4 5	7	4 5	7 10	5 6	8 11	
	5	4	-	2,6,7,8,11,12,13,14	l —	-	3	td2 (4)	5	10	5	10	6	11	
	5 11	9	_	2 6,7,8,11,12,13,14 2,5,6,7,8,12,13,14	=	=	3	td2 (9) td2 (1)	5	7 10	4 5	10	5 6	8 11	
Rise Time, Fan-Out = 1	11	10	1 -	2,5,6,7,8,12,13,14 2,6,7,8,11,12,13,14	_		3	t _{d2} (10) tr (4)	4	7	4	7	5	8	
mise rime, ran-put = 1	5	9	=	2,6,7,8,11,12,13,14	_	l —	3	tr (9)	l i	6	l i	6 7	Ιĭ	8	
	11	1 10	=	2,5,6,7,8,12,13,14 2,5,6,7,8,12,13,14	=	=	3	tr (1) tr (10)	+	6	↓	6	₩	8	
Fan-Out == 10	5	4 9	=	2,6,7.8,11,12,13,14 2,6,7,8,11,12,13,14	=	=	3	tr (4) tr (9)	4	9	4	9	5 1	10	
	11	1		2,5,6,7,8,12,13,14	=	=	3	tr (1)	↓	↓	↓	↓	↓	↓	
Fall Time, Fan-Out = 1	11 5	10 4	=	2,5,6,7,8,12,13,14 2,6,7,8,11,12,13,14	_		3	tr (10) tr (4)	4	6	4	6	5	1	
	5 11	9	=	2.6,7,8,11,12,13,14 2,5,6.7,8,12,13,14	=	=	3 3	tr (9) tr (1)					1		
	11	10		2,5,6,7,8,12,13,14			3	tr (10)	*	*	*	*	*	*	
Fan-Out = 10	5 5	9	=	2,6,7,8,11,12,13,14 2,6,7,8,11,12,13,14	=	=	3 3	tr (4) tr (9)	l f	11	6	111	Ιí	12	
	11 11	10	=	2,5,6,7,8,12,13,14 2,5,6,7,8,12,13,14	_		3 3	tr (1) tr (10)	_ ↓	↓	↓	₩	↓	↓	
Pins not listed are left onen										4 10		E 0/			

Pins not listed are left open. ① Input voltage is adjusted to obtain dV "NOR" / dVin = 0. ② Current test conditions: no load = 0; full load = -10 mAdc ±5%.

LAMP DRIVER MECL MC 350 series

MC366

Lamp driver that provides "OR" or "NOR" logic depending on the bias arrangement used and is capable of driving 6V lamps.

ELECTRICAL CHARACTERISTICS

			Te	st Condit	ions			1								
				Vdc ±1°	%		mAdc	1								
@ Test \ 0°C	_	-0.850	-1.350	-5.20	-1.18	+6.0	100]								
Tomporature 1 +23°6	-0.670	-0.795	-1.350	-5.20	-1.15	+6.0	100]								
+75°C		-0.725	-1.350	-5.20	-1.08	+6.0	100									
	l i							1	Symbol				Limits			
Obanastanistia	V _H	V _{I max}	V _L	VEE	V ₈₈	V _{cc}	l _L	Ground	Pin No		°C		5°C		5°C	Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current		4,5,6	_	2,7	8	10	_	3	Ic (10)	_	22.5	-	21.5		20.7	mAdc
		4,5,6	-	2,7	8	10	-	3	le (2)	-	8.4	-	8.0	_	7.7	m:Adc
Input Current	4	_	_	2,5,6,7	8	10	_	3	lin (4)	_	_	_	200	_	_	μAdc
	5	-	_	2,4,6,7	8	10	_	3	lin (5)	_	_	-	1	-	_	,
	6	-	-	2,4,5,7	8	10	_	3	lin (6)	-	_	-		_	_	
	7	-	-	2,4,5,6	8	10	-	3	lin (7)		_	-		-	-	
	8	-	_	2,4,5,7	6	10	-	3	lin (8)	-	-	-	♦	-	_	+
Output Voltage, Low	-	-	6	2,4,5,7	8	10	9	3	Vol. (9)	_	0.9	_	1.0	_	1.25	Vdc
	-	-	6	2,4,5,8	7	10	9	3	Vol (9)	_	0.9	-	1.0	_	1.25	Vdc
Output Voltage, High	_	4	-	2,5,6,7	8	10,9①	_	3	Vон (4)	_	_	_	5.8	_	5.8	Vdc
	-	5	-	2,4,6,7	8	10,9①	_	3	Vон (5)	_	_	_		_	1	
	-	6	-	2,4,5,7	8	10,9①	_	3	Vон (6)	_	_	-		_		
	-	6		2,4,5,8	7	10,9 ①	_	3	Vон (6)	-	_	_	₩	_	\	↓

Pins not listed are left open. ① Pin 9 is connected to Vcc through a 10 k-ohm resistor.

MECL MC350 series

MC367

Level translator intended for converting nonsaturated MECL signal levels to saturated logic levels; provides "OR" or "NOR" logic depending on the bias arrangement used.

ELECTRICAL CHARACTERISTICS

Test Conditions

	1000 00112110110															
	Vdc ±1% mAdc															
O*C		-0.850	-1.350	-5.20	-1.18	+6.0	10									
@ Test +25°C	-0.670	-0.795	-1.350	-5.20	-1.15	+6.0	10									
Temperature 1+75°C	_	-0.725	-1.350	-5.20	-1.08	+6.0	10									
						ſ						Test	Limits			
	V _H	V _{i max}	V.	VEE	V _{BB}	Vcc	I.	Ground	Symbol Pin No	0°C +25°C +75°C			5°C	Unit		
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	Pin No	in()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current		6	_	2,4,5,7	8	10		3	Ic (10)	_	7.3	_	7.0	_	6.8	mAdc
rower suppry brain current	_	_	-	2,4,5,6,7	8	10	-	3	le (2)	_	7.3	_	7.0	_	6.8	mAdc
Input Current	4	_	_	2,5,6,7	8	10	_	3	lin (4)	_	_	_	200	_	-	μAdc
	5	_	_ :	2,4,6,7	8	10	_	3	lin (5)	-	_	_	1 1	-	-	
	6	_		2,4,5,7	8	10	_	3	lin (6)	_ !	_	_		_	_	
	7	_	_	2,4,5,8	6	10	-	3	lin (7)	_	_	l –	11	-	- 1	1 1
	8	-	-	2,4,5,7	6	10	-	3	lin (8)	_	_	_	*	_	_	V
Output Voltage, High	_	_		2,4,5,6,7	8	10	_	3	Vон (9)	_	_	5.8	-	-	-	Vdc
,	-	_	-	2,4,5,6,8	7	10	_	3	Vон (9)	_	_	5.8	_	_	_	Vdc
Output Voltage, Low	_	4	T -	2,5,6,7	8	10	9	3	Vol. (9)	_	0.45	-	0.45	-	0.50	Vdc
	l –	5	-	2,4,6,7	8	10	9	3	Vol (9)	_		-				1 1
	-	6	_	2,4,5,7	8	10	9	3	Vol (9)	-		-		_	1	1 1
	-	6	_	2,4,5,8	. 1	10	9	3	Vol (9)		*				V	· ·
Switching Times	Pulse In	Pulse Out								Тур	Max	Тур	Max	Тур	Max	
Turn-On Time	6	9	1_	2,4,5,7	8	10	_	3	ton (9)	27.5	40.0	27.5	40.0	29.5	43.0	ns
Talli-on time	8	9	_	2,4,5,7	6	10	_	3	ton (9)	27.5	40.0	27.5	40.0	29.5	43.0	1 1
	1	[i				1			25.0	40.0	26.0	40.0	27.0	43.0	
Turn-Off Time	6	9		2,4,5,7	8	10	-	3	torr (9)	25.0 25.0	40.0	26.0	40.0	27.0	43.0	1
l	8	9	_	2,4,5,7	6	10	<u> </u>	3	toff (9)	25.0	40.0	26.0	40.0	27.0	73.0	<u></u>

MC368

Level translator intended for converting saturated logic levels to non-saturated MECL signal levels.

SWITCHING CHARACTERISTICS AND WAVEFORMS UNIT UNDER TEST e_{in} 1 kΩ 1 kΩ 2 N2 369 5 1.1 kΩ 1 TO TEKTRONIX 567 OR EQUIVALENT E_{out} 1 t_{d1} 1 t_{d2} 1 t_{d1} 1 t_{d2} 1 t_{d1} 1 t_{d2} 1 t_{d2} 1 t_{d3} 1 t_{d3} 1 t_{d4}
ELECTRICAL CHARACTERISTICS

Test Conditions Vdc ±1%

@ Test (0°C	+0.45	+5.0	-5.20	+6.0									
Temperature 1 +25°C	+0.45	+5.0	-5.20	+6.0									
+75°C	+0.50	+5.0	-5.20	+6.0									
			l			Symbol	Test Limits						
	V _{II}	V _{IH}	Vee	Vcc	Ground	Pin No		°C	+25°C		+75°C		Unit
Characteristic	Pin No	Pin No	Pin No	Pin No	Pin No	in ()	Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	=	=	2 2	7	3	Ιc (7) Ιε (2)	=	4.2 21.9	=	4.0 21.0	=	3.9 20.2	mAdc mAdc
Input Load Current	_	_	2	7	3,5	IL (5)	_	_	-	8.5	_	_	mAdc
	_	_	2 2	7	3,6 3,9	!ι (6) !ι (9)	_	_	=	1	_	=	
	_	_	2	7	3,10	IL (10)	-	-	_	₩	_	_	\
Input Reverse Current	_	_	2 2	5,7 6,7	3,6 3,5	IR (5)	_	_	_	0.5	_	2.0	μAdc
	_	_	2	7,9	3,10	In (6) In (9)	_	=	_	1 1	_	11	
		_	2	7,10	3,9	ir (10)		_	_	*	_	. ♦ .	+
"OR" Logical "1" Output Voltage	_	5 6	2 2	7 7	3	Vs (4) Vs (4)	-0.715	-0.850	-0.670	-0.795	-0.570	-0.725	Vdc
output ronings	_	9	2	7	3	Vs (1)		1 1		1 1			ı
		10	2	7	3	V ₅ (1)	*	*	*	*	*	*	
"OR" Logical "O" Output Voltage	5 6	_	2 2	7 7	3 3	V ₂ (4) V ₂ (4)	-1.510	-1.880	1.450	-1.750	-1.395	-1.730	Vdc
	9	_	2	7	3	V ₂ (1)	1 1	1 1			li		ı
Bias Voltage	10		2	7	3	V ₂ (1)	_ <u> </u>	*	<u> </u>	_ v			<u> </u>
Output	_	_	2	7	3	Vss (8)	-1.14	—1.27	-1.09	-1.22	1.04	-1.18	Vdc
Switching Times	Pulse In	Pulse Out					Тур	Max	Тур	Max	Тур	Max	
Propagation Belay Time	5 9	4	2 2	7	3	td: (4)	14.5	24.0	15.0	24.0	19.0	28.0	ns
	5	4		7	3	ta: (1)	14.5	24.0	15.0	24.0	19.0	28.0	
	9	1	2 2	7	3 3	taz (4) taz (1)	15.5 15.5	23.0 23.0	15.5 15.5	23.0 23.0	19.0 19.0	28.0 28.0	- 1
Rise Time	5	4	2	7	3	tr (4)	6.5	13.0	7.0	13.0	8.0	14.0	- 1
	9	1	2	7	3	tr (1)	6.5	13.0	7.0	13.0	8.0	14.0	
Fall Time	5 9	4	2 2	7	3	tr (4)	7.0	13.0	7.5	13.0	8.0	14.0	- 1
	,		2		3	tr (1)	7.0	13.0	7.5	13.0	8.0	14.0	

Pins not listed are left open.

MECL III

INTEGRATED CIRCUITS

INDEX

Numerical Index

Page No.

2-73

	ricai index	2-13	
Loadir	ng Diagram Summ	ary of Devices Available 2-74	
Genera	al Information	2–78	
M	ECL II Design Phi	losophy 2-78	
Sy	stem Characterist	ics 2–79	
G	eneral Design and	System Layout Rules 2-80	
	ORing Features	2–80	
	Unused Inputs	2-80	
	Fan-In	2-81	
	V _{BB} Supply	2-81	
	System Layout	2-81	
	Clock Distribut		
Do	efinitions	2-81	
	he Basic MECL II	Logic Gate 2-82	
	Circuit Operati	-	
	Noise Margin	2-83	
	Power Supply (Connections 2–83	
	DC Loading Co		
	AC Loading Co		
	Switching Time		
TI	hermal Characteris		
	aximum Ratings	2-87	
	ackaging	2-88	
DEVICE SPECIFIC			
GATES AND EXP	ANDERS		Page No.
MC1001-1003,	MC1201-1203	6-Input OR/NOR Gates	2-89
MC1024,	MC1224	Expandable Dual 2-Input OR/NOR Gates	2-93
MC1025,	MC1225	Dual 4-5 Input Expanders	2-97
MC1004-1006,	MC1204-1206	Dual 4-Input OR/NOR Gates	2-99
MC1007-1009,	MC1207-1209	Triple 3-Input NOR Gates	2-103
MC1010-1012,	MC1210-1212	Quad 2-Input NOR Gates	2-107
MC1030,	MC1230	Quad Exclusive OR Gates	2-111
MC1031,	MC1231	Quad Exclusive NOR Gates	2-115
FLIP-FLOPS			
MC1013,	MC1213	85-MHz AC-Coupled J-K Flip-Flops	2-119
MC1013, MC1027		120-MHz AC-Coupled J-K Flip-Flop	2-127
MC1027 MC1014.	MC1214	Dual R-S Flip-Flops (Positive Clock)	2-133
MC1014, MC1015,	MC1214	Dual R-S Flip-Flops (Negative Clock)	2-137
MC1015, MC1016,	MC1216	Dual R-S Flip-Flops (Single Rail, Positive Clock)	2-141
MC1010, MC1033,	MC1233	Dual R-S Flip-Flops (Single Rail, Negative Clock)	
MC1033,	MC1222	Type "D" Flip-Flops	2-153
•		,, ,	2 100
MEMORY, TRANS	SLATOR, AND	INPUT-OUTPUT CIRCUITS	
MC1017,	MC1217	Saturated Logic-to-MECL Translators	2-157
MC1018,	MC1218	MECL-to-Saturated Logic Translators	2-161
MC1020,	MC1220	Quad Line Receivers	2-165
MC1036, 1037	_	16-Bit Coincident Memory	2-169
		,	
COMPLEX LOGIC			2-173
MC1019,	MC1219	Full Adders	2-173
MC1021,	MC1221	Full Subtractors	2-177 2-181
MC1029,	MC1229	Data Distributor	2-181
HIGH-SPEED ME	CL II		
MC1023	. -	Dual 4-Input Clock Driver	2-185

NUMERICAL INDEX (Functions and Characteristics)

V_{CC} = 0, V_{EE} = -5.2 V, T_A = 25°C

	Ту	pe	DC Output Loading Factor	Propagation Delay	Total Power	
Function	Case 83 -55 to +125°C	Case 93 0 to +75 ⁰ C	each Output	^t pd ns typ	Dissipation mW typ	Page No.
Single 6-Input Gate, 3 "OR" Outputs w Pulldowns 3 "NOR" Outputs w Pulldowns	MC1201F	MC1001P	25 	4.0	115	2-89
Single 6-Input Gate, 3 "OR" Outputs w Pulldowns 3 "NOR" Outputs w/o Pulldowns	MC1202F	MC1002P			80	
Single 6-Input Gate, 3 "OR" Outputs w/o Pulldowns 3 "NOR" Outputs w/o Pulldowns	MC1203F	MC1003P			40	
Dual 4-Input Gate, 2 "OR" Outputs w Pulldowns 2 "NOR" Outputs w Pulldowns	MC1204F	MC1004P			95	2-99 I
Dual 4-Input Gate, 2 "OR" Outputs w Pulldowns 2 "NOR" Outputs w/o Pulldowns	MC1205F	MC1005P			65	
Dual 4-Input Gate, 2 "OR" Outputs w/o Pulldowns 2 "NOR" Outputs w/o Pulldowns	MC1206F	MC1006P			45	1
Triple 3-Input Gate, 3 "NOR" Outputs w Pulldowns	MC1207F	MC1007P			110	2-103
Triple 3-Input Gate (2 "NOR" Output w Pulldowns	MC1208F	MC1008P			75	1
Triple 3-Input Gate, 3 "NOR" Outputs w/o Pulldowns	MC1209F	MC1009P			60	. ↓
Quad 2-Input Gate, 4 "NOR" Outputs w Pulldowns	MC1210F	MC1010P	1		115	2-107
Quad 2-Input Gate, 2 "NOR" Output w Pulldowns 2 "NOR" Output w/o Pulldowns	MC1211F	MC1011P			95	
Quad 2-Input Gate, 4 "NOR" Outputs w/o Pulldowns	MC1212F	MC1012P	.		65	
85 MHz AC Coupled J-K Flip-Flop	MC1213F	MC1013P		6.0	125	2-119
Dual R-S Flip-Flop (Positive Clock)	MC1214F	MC1014P		1	140	2-133
Dual R-S Flip-Flop (Negative Clock) Dual R-S Flip-Flop (Single Rail, Positive Clock)	MC1215F MC1216F	MC1015P MC1016P			140 140	2-137 2-141
Level Translator (Sat. Logic to MECL)	MC1217F	MC1017P	25 (MECL)	45		
Level Translator (MECL to Sat. Logic)	MC12171	MC1017F	7 (DTL)	15 20	105 70	2–157 2–161
Full Adder	MC1219F	MC1019P	25	4.0	110	2-173
Quad Line Receiver	MC1220F	MC1020P	1		115	2-165
Full Subtractor	MC1221F	MC1021P		+	110	2-177
Type "D" Flip-Flops	MC1222F	MC1022P	1 1	8.0	110	2-153
Dual 4-Input "OR/NOR" Clock Driver		MC1023P]]	2.0	250	2-185
Dual 2-Input Expandable Gate	MC1224F	MC1024P	1 *	4.0	95	2-93
Dual 4 and 5 Input Expander	MC1225F	MC1025P	-	-		2-97
120 MHz AC Coupled J-K Flip-Flop	_	MC1027P	25	4.0	250	2-127
Data Distributor	MC1229F	MC1029P		4.0	160	2-181
Quad Exclusive OR Gate	MC1230F	MC1030P		5.0	130	2-111
Quad Exclusive NOR Gate	MC1231F	MC1031P		5.0	130	2-115
Dual R-S Flip-Flop (Single Rail, Negative Clock) 16-Bit Coincident Memory	MC1233F	MC1033P	<u>'</u>	6.0	140	2-147
16-Bit Coincident Memory w/o Pulldowns	_	MC1036P MC1037P	5 5	17 17	250 250	2-169 2-169
TO DIE COMOIGENE MEMOLY W/O FUNDOWNS	- .	IVIC 103/P	1 5	17.	∠50	2-109

MECL II MC1000/1200 series

LOADING DIAGRAMS

The logic diagrams shown describe the circuits of the MECL II line and permit quick selection of those circuits required to implement a particular logic system. Pertinent information, such as logic equations, truth tables, typical propagation delay time (tpd), and typical power dissipation per package (PD) is provided to show line compatibility. Package pin numbers and dc loading factors for each device are specified on each logic diagram. The numbers at the ends of the terminals are package pin numbers. The numbers in parentheses indicate dc loading factors at each terminal.

MECL II circuits contain internal bias networks, insuring that the transistion point is always in the center of the transfer characteristic curves over the temerature range.

-DRIVER-MC1023P **Dual 4-Input Clock Driver** (3) 2 (3) 3 6 (25) (25) (3) 4-(3) 5 (3) 9-(3) 10 8 (25) (3) 11-13 (25) (3) 12 $6 = \overline{2 + 2 + 4 + 5}$ 1 = 2 + 3 + 4 + 5 t_{pd} = 2.0 ns P_D = 250 mW

GENERAL INFORMATION SECTION

INTRODUCTION

The MECL II family of Emitter-coupled Logic (current mode logic) was designed as a non-saturating form of logic which eliminates transistor storage time as a speed limiting characteristic, and permits extremely high-speed operation.

The typical MECL II circuit comprises a differentialamplifier input with internal bias reference and with emitter-follower outputs to restore dc levels. High fan-out operation is possible because of the high input impedance of the differential amplifiers and the low output impedance of the emitter followers. Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides for simultaneous output of both the function and its complement.

MECL II DESIGN PHILOSOPHY

The following goals have been met by MECL II, resulting in the most economical form of logic for system design:

- I. Availability has been maximized through:
 - A. Non-stringent processing requirements
 - B. Optimized chip and device size
 - C. Specifications determined by distribution data, on parts produced in volume, analyzed for system design requirements.
 - Internal specification guard-bands set to minimize correlation problems
- II. Rise and fall times of basic family are kept slow enough to be compatible with conventional layout techniques such as two-sided printed circuit boards and point-to-point backplane wiring.
- MECL II is compatible with the original MECL (MC300 and MC350 Series).
- Logic has been maximized for 14-pin packages by using complex functions wherever economical.

MECL II devices are specified over two temperature ranges: 0 to 75°C (MC1000 Series) and -55 to 125°C (MC1200 Series). The MC1000 Series is available in the dual in-line plastic package (add suffix "P" to basic type number) and the MC1200 Series in the TO-86 ceramic flat package (suffix "F").

Family characteristics are:

4.0 ns propagation delay
DC fan-out of 25 minimum
High-frequency operation, if required
Excellent speed-power product
Constant current drain regardless of logic state or operating
frequency

System features include:

±20% power supply tolerance

Minimized cross-talk

Reduced power dissipation and can count through WiredOR and the series gating design techniques
Guaranteed worst-case noise margin
Single power supply

Ease of designing parallel rather than serial logic

During design, the cost to run a problem or to do a specified amount of work on a system should be considered. To run a problem on a system, the costs decrease with increasing circuit speeds due to shorter running times. An increase in costs is experienced when using logic faster than 4.0 ns, and is caused by the required switch to stripline and ground-plane techniques. This will result in added expense in packaging and layout.

The enclosed individual device specifications show that MECL II is optimized for economy when computer operating time is compared with packaging and layout costs.

GENERAL INFORMATION SECTION

SYSTEM CHARACTERISTICS

MECL II provides several important systems features. A noise immunity-power dissipation trade-off is possible by varying the supply voltage of the system. Figures 1 and 2 show the OR and NOR transfer characteristics of typical MECL II gates as the supply voltage is varied. For example, noise immunity may be increased by 0.100 V by increasing the supply voltage to -6.0 V, which increases power dissipation by 35%.

Figures 3 through 7 illustrate the typical characteristics of MECL II versus temperature and supply voltage changes. There is minimal change in system operating characteristics for $\pm 10\%$ supply variation. The largest change is observed at $125^{\rm OC}$ and elevated supply voltages, where the gates will be operating into the saturation region which significantly reduces operating speeds.

For driving long lines with MECL II, or interfacing between systems that have a large difference in operating temperature, balanced twisted-pair lines are recommended. The differential output of a MECL gate drives the line. The far end is terminated in the characteristic impedance of the line and received by a differential amplifier. (See the discussion with MC1020/MC1220 Quad Line Receiver.) This method yields 1.0 V or better noise immunity at a very low impedance.

A significant feature of MECL II is its low generated noise and cross-talk in a system. The output rise and fall times are approximately the same as the propagation delay times, minimizing capacitive cross-talk. The noise immunity as a percentage of logic swing is also larger than standard saturated logic. The very low logic currents switched in the lines also appreciably reduce inductive cross-talk. If line lengths are kept short with respect to the fastest rise or fall time of noise, then the line is effectively clamped to the 15-ohm output impedance of the gate. This then requires considerable energy to overcome the voltage noise immunity of the gate. MECL II also shows a significant improvement over saturated logic rejection of noise and voltage variations due to poor regulation on the supply line.

FIGURE 1 - TYPICAL "OR" TRANSFER CHARACTERISTICS

FIGURE 2 - TYPICAL "NOR" TRANSFER CHARACTERISTICS

FIGURE 3 - RISE TIME versus TEMPERATURE AND SUPPLY VOLTAGE

FIGURE 4 - FALL TIME versus TEMPERATURE AND SUPPLY VOLTAGE

FIGURE 5 - PROPAGATION DELAY tpd+ versus TEMPERATURE AND SUPPLY VOLTAGE

FIGURE 6 - PROPAGATION DELAY tpd- versus TEMPERATURE AND SUPPLY VOLTAGE

FIGURE 7 - LOGIC SWING versus TEMPERATURE
AND SUPPLY VOLTAGE

MECL II

GENERAL INFORMATION SECTION

GENERAL DESIGN AND SYSTEM LAYOUT RULES

"OR"ING FEATURES

The outputs of several gates may be tied together to perform the Wired-OR function. A recommended maximum of 15 outputs should be ORed together if high-speed operation is desired. If speed is not a system requirement, a greater number of outputs may be ORed together. One pulldown resistor per Wired-OR function is recommended as a power saving feature. Two pulldowns result in appreciably better fall times with high capacitance loads. The high logic level noise immunity is reduced by a negligible amount. Three pulldown resistors reduce noise immunity typically by 50 mV and therefore are not generally recommended. As separate gates drive the Wired-OR output to the high level, approximately 3.0 mA current will be switched through the interconnecting leads with a rise time as short as 3.0 ns. To maintain the very low crosstalk advantages of MECL, it is not recommended that Wired-OR be employed on a computer back-plane but be restricted to printed circuit cards.

FIGURE 8 - EXAMPLE OF MULTIPLE OUTPUT GATE INTERCONNECTIONS

UNUSED INPUTS

All unused inputs must be tied to VEE for reliable system operation. As seen from the gate input characteristics (Figure 11), the input impedance of a gate is very high when at a low-level voltage. Any leakage to the input capacitance of the gate will gradually build up a voltage on the input lead. This may affect noise imunity of the gate or hinder switching characteristics at low repetition rates. Returning the unused inputs to VEE insures no build-up of voltage, and a noise immunity dependent only upon the inputs used. The emitter-base breakdown voltage of the transistors used is in excess of —6.5 V and will not start to clamp the voltage across the differential pair current source until a VEE greater than —8.0 V is applied to a gate, nor will device failure occur since base current is limited internally. For most evaluation and breadboarding purposes, unused inputs may be left open with negligible difference in results.

MECL II

GENERAL INFORMATION SECTION

FAN-IN

A maximum fan-in of 20 is recommended for high-speed operation. Greater fan-in may be employed if fast propagation delay, rise, and fall times are not required. Further discussion is found on the data sheets for the MC1024/MC1224 Dual 2-Input Gates and the MC1025/MC1225 Dual Expanders.

VBB SUPPLY

None of the MECL II devices require an external V_{BB} or reference supply, however V_{BB} has been brought out externally on the MC1017/MC1217 and MC1018/MC1218 translators for those who may require it. To maintain noise margin levels on MECL II, the maximum recommended load current for V_{BB} is 1.0 mA.

SYSTEM LAYOUT

As rise and fall times decrease, more restrictions are required on system layout. Standard MECL II exhibits typical rise, fall, and propagation delay times of 4.0 ns, but due to process and layout variations these may go as low as 3.0 ns. MECL II has been designed to be as fast as practical without requiring non-standard layout techniques such as ground planes on printed circuit boards. Two-sided printed circuit cards are still satisfactory for 3.0 ns rise times, especially since MECL draws constant current from the power supply.

Reflections that occur on high-impedance unterminated lines are a function of logic rise and/or fall times. For example, reflections can be a problem with 1.0 ns rise time and high-impedance wire lengths greater than three inches. For MECL II, maximum wire length of 12 inches is recommended. Wire length of 36 inches or more may be driven if a small ferrite bead is slipped over the wire. The ferrite bead attenuates the high-frequency components of the fast rise or fall times and therefore damps out overshoot, ringing, and reflections. Also if a wire is run adjacent to a ground plane, effective inductance per unit length may be reduced by onehalf that observed when the wire is a couple of inches above the ground plane. When long wires are being driven, a recommended fan-in of one should be employed at the receiving end. Higher fanin increases the mismatch of high impedance wires. See the discussion in Application Note AN-277 which gives methods of reducing overshoot to acceptable levels where both long leads and high fan-in are employed. Long leads and high fan-out and fan-in are less of a problem on a printed circuit board where high widthto-thickness ratios of the printed leads greatly reduce inductance. High-speed clock drivers (2.0 ns) can be used satisfactorily on twosided printed circuit boards if the layout is designed properly.

CLOCK DISTRIBUTION

Clock distribution is one of the largest system problems. Where large high-speed clock networks are required, a balanced twisted pair line is recommended for clock distribution. A gate such as the MC1001/MC1201 and the MC1020/MC1220 Quad Line Receiver make an excellent combination for distributing the clock throughout a system at frequencies to 50 MHz. (See the MC1020/MC1220 data sheet for further detail.) This method allows control of clock skew time and offers 1.0 V or better noise immunity regardless of line length.

DEFINITIONS

eg	Generator inputs to test circuit.
IBL	Base leakage current of a MECL expander input when at VEE.
^I C	Total power supply current drawn from the positive supply by the test unit.
ICEX	Total collector leakage current exhibited by the gate expander when all inputs are at the negative supply potential.
ΙE	Total power supply current drawn from the test unit by the negative power supply.
IF	Forward diode current drawn from an input of a saturated logic-to-MECL translator when that input is at ground potential.
l _{in}	Current drawn by the input of the test unit when a maximum logical "1" ($V_{IH\ max}$) is applied at that input.
IL.	Load current that is applied through a MECL circuit output when measuring the output "1" level voltage.
ІОН	Load current that is applied through a saturating output of a translator when measuring the output "1" level.
lor	Load current that is applied through a saturating output of a translator when measuring the output "0" level.
lout	Output current.
I _R	Reverse current drawn from a transistor input of the test unit when VEE is applied at that input.
Isc	Short-circuit current drawn from a translator saturating output when that output is at ground potential.
t _f	Time required for the output pulse to go more negative from its 90% point to its 10% point.
t _{pd} , t _{x±y±}	Propagation delay time from the 50% point of the input waveform at pin x (falling edge noted by — or rising edge noted by +) to the 50% point of the output waveform at pin y (falling edge noted by — or rising edge noted by +).
t _r	Time required for the output pulse to go more positive from its 10% point to its 90% point.
TPin	Test point at input of unit under test.
TPout	Test point at output of unit under test.
V _{BB}	Bias reference supply voltage (-1.175 V nominal at 25°C).
∨ _{BE}	Base-to-emitter voltage drop of a transistor.
V _{СВ}	Collector-to-base voltage drop of a transistor.
V _{CC}	Most positive power supply voltage for a circuit.
VEE	Most negative power supply voltage for a circuit.
v _{in}	Input voltage.
V _{IH max}	Maximum input logical "1" level voltage.
V _{IH min}	Minimum input logical "1" level (threshold) voltage.
V _{IL max}	Maximum input logical "0" level (threshold) voltage.
VIL min	Minimum input logical "0" level voltage.
٧L	Latch voltage of a dc flip-flop.
VOH max	Maximum output "1" or high-level voltage.
VOH min	Minimum output "1" or high-level voltage.
VOL max	Maximum output "0" or low-level voltage.
VOL min	Minimum output "0" or low-level voltage.
Vout	Output voltage.
V _{max}	Maximum positive supply voltage.

MECL II

GENERAL INFORMATION SECTION

THE BASIC MECL II LOGIC GATE

Each digital integrated circuit family is built around a basic circuit which determines the general characteristics of the family. The basic MECL II gate is evaluated in terms of circuit operation, transfer characteristics, noise margin, speed, component tolerances, and logic flexibility.

CIRCUIT OPERATION

Figure 9 illustrates a 4-input OR-NOR MECL II gate; Figure 10 depicts MECL II transfer characteristics and specification points. Typical operating voltages are $V_{CC}=$ ground and $V_{EE}=-5.2$ V. The internal bias (V_{BB}) is designed for a nominal -1.175 V in reference to V_{CC} . When the gate inputs are all at a low level $(V_{in} \leqslant V_{IL} \; \text{max})$ the input transistors will not be conducting current and the V_{BB} transistor will act as an emitter follower. At 25°C the V_{BE} -drop of a silicon integrated transistor averages around 0.750 V for base currents within the nominal operating region. Therefore the voltage at point 3 in Figure 9 is $V_{BB}=0.750$ V or -1.925 V. This potential establishes an I_{E} of 2.77 mA through the 1.18 k-ohm emitter resistor. I_{E} also causes a drop of 0.830 V across the 300-ohm collector resistor. The OR output is then obtained through an emitter follower which drops the output voltage to a nominal -1.580 V, which is a logic "0" or low logic level. The base of the NOR output transistor is essentially at 0 V, vielding an output of -0.750 V or the nominal "1" logic level.

If one or more of the gate inputs is switched to a high level (Vin>VIH min), the current from point 2 to point 3 will switch from point 1 to point 3. Point 3 is now at -1.500 V resulting in an IE of 3.14 mA which causes a drop of 0.900 V across the 290ohm resistor. The nominal NOR output voltage is then -1.650 V or 0.070 V lower than the OR output. The reasons for this are seen from the transfer characteristics shown in Figure 10. Observing the NOR transfer characteristics as VI increases from VIL min to VIL max, it is seen that the output remains at a high level. For $\rm V_I$ increasing from $\rm V_{IL\ max}$ to $\rm V_{IH\ min}$, the NOR output will switch to a low level. Then as the input continues more positive than VIH min, the output will continue more negative with a slope of about -0.24. This is caused by the input collector node going more negative as VI goes more positive. If the input is increased above $\rm V_{IH\ max}$, saturation will be reached at an input of about $-0.40\ V$. Beyond this point, the base-collector junction is forward biased and the collector voltage will increase with an increasing input level. The nominal NOR low-level output is designed to be more negative than the nominal OR low-level output, to assure that at an input of V_{IH} min the output is still more negative than $V_{OL\ max}$. Thus equal noise margins may be guaranteed for OR and NOR outputs.

The transfer characteristics (Figure 10) show that MECL II operating levels are well below the point at which the gate starts to saturate. The saturation temperature for MECL II devices is nominally 140°C ambient. Since the transistors stay out of the saturation region, current mode is inherently the fastest form of logic obtainable. Typically gates exhibit an average propagation delay of 4.0 ns when wired into a system.

The differential input of the MECL gate offers several advantages. Input impedance is high due to the emitter follower inputs. A worst-case current of 100 $\mu\rm A$ is guaranteed. (See Figure 11 for input characteristics.) The voltage gain and transfer characteristics are practically independent of transistor parameters. The input thresholds are determined effectively by the internal VgB due to the VgE match of integrated circuit transistors. The collectors of the differential amplifier provide the complementary outputs at essentially the same propagation delay time. The differential input is also responsible for common mode rejection of power supply variations.

FIGURE 9 - BASIC MECL II GATE

FIGURE 10 - MECL II TRANSFER CHARACTERISTICS AND SPECIFICATION POINTS

FIGURE 11 - TYPICAL INPUT VOLTAGE versus INPUT CURRENT

The emitter follower outputs offer low output impedance. Typically 15 ohms or less is measured, while a worst-case impedance of 20 ohms should be considered for any design requirements. See Figure 12 for output characteristics and specification points. The emitter follower outputs also permit the positive Wired-OR function to be obtained by tying outputs together.

Logic "0" levels in the MECL II gate are determined by resistor ratios rather than absolute values of resistance. Ratios can be held to within $\pm 5\%$ while absolute values can vary by $\pm 20\%$. This is a significant advantage in MECL processing. The transistors used in MECL II gates have a typical β of 150. Circuit restrictions on β are much wider than normal processing variations which yields another processing advantage. One processing step — that of gold-doping — is eliminated since the transistors operate in the non-saturating mode.

FIGURE 12 - TYPICAL OUTPUT VOLTAGE versus OUTPUT CURRENT

NOISE MARGIN

Noise margin may be defined as the difference between a worstcase logic level and the worst-case threshold closest to that logic level. The threshold point is sometimes defined as the point on a transfer characteristic curve where the slope is 1/1 indicating unity gain. For MECL II a more conservative threshold is defined as the worst-case input voltage (V_{IH} min or V_{IL} max) for which the output is still within specified limits. Another method of testing noise immunity is obtained by cascading worst-case gates and testing to the minimum "noise" input that will just propagate through the gates. This method is more indicative of actual system operation, and is often referred to as "system noise immunity". The method corresponds to driving the gate into the active region until the output reaches a worst-case VBB level which could then propagate through another gate. This method yields at least 0.040 V greater worst-case noise margin than the test methods employed, but it is very difficult to implement. Typical propagation noise immunity is 0.350 V for MECL II.

Figure 13 lists the worst-case limits for the basic MECL II family. Noise margin is easily obtained by subtracting V_{IH min} from V_{OH min} for high-level noise margin, and V_{OL max} from V_{IL max} for low-level noise margin. As seen from Figure 13, 0.175 V worst-case noise margin is guaranteed at all temperatures. Gates with higher guaranteed noise margin can be obtained by selection or special order. All noise specifications are also internally guard-banded to minimize correlation problems (a factor which also adds to actual system noise immunity). The worst-case "system noise immunity" (for noise to propagate through two or more worst-case gates) that can be measured with MECL II is 0.050 V greater than that specified in the brochure. For ex-

MECL II

GENERAL INFORMATION SECTION

ample, it will take more than 0.225 V of "noise" to propagate through MECL II gates specified at 0.175 V noise margin. The question often arises as to system noise margin with gates of different temperatures and power supply voltages driving one another. Figure 13 also lists the worst-case change in logic levels and threshold levels with a change in supply voltage. It is seen that the "1" logic levels are effectively independent of power supply voltage, the threshold level variance is less than 1/8 the change in VEE, and the worst-case "0" logic level change is 1/4 of the VEE change. These changes illustrate the common-mode rejection of power supply variations exhibited by MECL II. It may be shown that a MECL II system will operate with a ±30% variation in supply voltage, but it is recommended that a maximum variation of ±20% from the design nominal of -5.2 V be allowed. Supply variations of $\pm 10\%$ show negligible effect on system performance.

Figure 14 illustrates two worst-case system noise margin calculations with the data from Figure 13. It is seen that a system with a $\pm 5\%$ change in power supply voltage and $100^{\rm O}{\rm C}$ temperature differential will still operate with worst-case devices.

Noise immunity is specified only for logic inputs. In system applications noise at both the V_{CC} and the V_{EE} nodes must be considered. The logical "1" levels in MECL II are one diode drop more negative than V_{CC} . Therefore V_{CC} noise immunity is basically the same as logic input noise immunity. In actual measurements, V_{CC} noise immunity is about 0.030 V higher than if the noise were imposed directly on a logic input. V_{EE} noise immunity is typically greater than 1.5 V due to the common-mode rejection of the basic gate.

POWER SUPPLY CONNECTIONS

Ground is usually the most stable and lowest impedance source in a system. For this reason, V_{CC} is usually at ground potential in a MECL system while V_{EE} is the supply voltage. Another advantage of having V_{CC} as ground is that an output may be shorted to ground without drawing high current. If an output is accidentally shorted to V_{EE} , no permanent damage will result. If an output remains shorted for long periods of time (especially with values of V_{EE} greater than -5.2~V), permanent degradation may result due to excessive chip temperatures. The output of highspeed MECL II devices such as the clock driver should not be shorted to V_{FE} due to its very low output impedance.

Nominal power dissipation of the MECL II circuit is 15 mW for the basic gate, 14 mW for each emitter follower pull-down resistor, and 18 mW for the built-in bias driver. Since MECL II devices are built of various combinations of the above, power dissipation per package and logic function can vary widely. For example, a single gate with six output pull-down resistors and a bias driver dissipates 120 mW, while a quad 2-input gate without pull-

FIGURE 13 - MECL II WORST-CASE LEVELS

		AMBIEN	ІТ ТЕМРЕ	RATURE	v
VOLTAGE LEVEL	125 ⁰ C	75 ⁰ C	25°C	0°C	−55°C
VIH max	-0.535	-0.600	-0.700	-0.735	-0.825
V _{OH} max	-0.535	-0.600	-0.700	-0.735	-0.825
VOH min	-0.700	-0.775	-0.850	-0.895	-0.990
VIH min	-0.875	-0.950	-1.025	-1.070	-1.165
VIL max	-1.205	-1.260	-1.325	-1.350	-1.405
VOL max	-1.380	-1.440	-1.500	-1.525	-1.580
VOL min	-1.720	-1.760	-1.800	-1.830	-1.890
VIL min	< VEE	<∨EE	<∨EE	<vee< td=""><td><∨EE</td></vee<>	<∨EE

 $\frac{\Delta V_{OH}}{\Delta V_{EE}} = 0.015 \text{ max} \qquad \frac{\Delta (V_{IH \text{ min}}, V_{IL \text{ max}})}{\Delta V_{EE}} = 0.110 \text{ min}$ = 0.115 nom 0.120 max 0.210 min

 $\frac{\triangle (V_{OL \text{ max}}, V_{OL \text{ min}})}{\triangle V_{EE}} = 0.210 \text{ min}$ 0.230 nom 0.250 max

MECL II

GENERAL INFORMATION SECTION

down resistors and with a single bias driver dissipates only 20 mW per gate. Normalized power dissipation curves versus temperature and supply voltages are shown in Figure 15. Power dissipation for system design should be 80% of the value calculated from the Ig maximum values specified on the various data sheets. Nominal power dissipation is lower (75% of the maximum value specified).

FIGURE 14 - EXAMPLES OF WORST CASE NOISE MARGINS IN A MECL II SYSTEM

'40 mV is the minimum noise immunity gained before noise can actually propagate through worst-case gates.

Calculations shown are for gates with 175 mV minimum noise margin. Gates with 200 mV minimum noise margin may also be specified; this would add 25 mV to the above calculations.

DC LOADING CONSIDERATIONS

Worst-case fan-out specifications are obtained from Figures 11 and 12. With a worst-case input current of 100 μ A and a minimum output current of 2.5 mA for a VOH min level, a fan-out of 25 is guaranteed. Figure 16 illustrates the typical input characteristics of a MECL II gate versus temperature and a wide excursion of input voltage. The output dc loading characteristics of MECL II are shown in Figure 17 for loads that greatly exceed normal operation. It may be observed from the curves that one MECL II gate could typically drive more than a thousand other gates before noise immunity dropped below 0.100 V. It is obvious that loading restrictions are normally ac rather than dc. The heaviest loading occurs under Wired-OR conditions. If only one pull-down resistor is used (recommended as a power saving feature), the dc loading is the same as for normal conditions. If two pull-down resistors are employed, an additional current of 3.6 mA maximum is drawn at $V_{EE} = -5.2 \text{ V}$ and $T_A = 25^{\circ}\text{C}$. $V_{OH min}$ is specified at 2.5 mA load current, but the worst-case pull-down resistor draws an additional 1.1 mA. A worst-case output impedance of 20 ohms would then give an additional drop of 0.022 V. If the Wired-OR also drives a nominal fan-out, the output may drop 0.025 V below VOH min which subtracts 0.025 V from the worst-case noise margin. For this reason a maximum of two pull-down resistors is recommended for worst-case system design. It should be noted that two pull-down resistors appreciably decrease fall time under high capacitance loading. Typically three pull-down resistors (an additional load of 6.0 mA) would give a VOH of 0.850 V, which is VOH min-

AC LOADING CONSIDERATIONS

The input capacitance of a MECL II gate averages 3.3 pF. Since in any system stray capacitance is also present, a typical value of 5.0 pF per fan-out should be used for design purposes. A fan-out of 15 MECL II gates is than roughly equivalent to 75 pF, while a fan-out of 20 gates would be approximately 100 pF. These figures may be easily decreased with careful layout techniques.

FIGURE 15 - NORMALIZED POWER DISSIPATION VERSUS TEMPERATURE AND SUPPLY VOLTAGE

FIGURE 16 - INPUT CURRENT VERSUS INPUT
VOLTAGE AND TEMPERATURE

FIGURE 17 - TYPICAL OUTPUT VOLTAGES versus LOAD CURRENT

LOAD CURRENT (mA)

35 40

SWITCHING TIMES

-2.5

0 5.0 10 15 20 25 30

Figures 18 through 21 give typical rise, fall, and propagation delay times versus loading and temperature. The slow fall times and t_{pd-} are caused by the relatively long R-C time constant of the emitter pull-down resistor and the load capacitance. The fall time, t_f , may be calculated as 0.2 RC, where R is the value of the pull-down resistor (in k Ω) and C is the external load capacitance (in pF). For example, with a 100 pF load and a 1.5 k-ohm internal resistor, the fall time is approximately 30 ns. The increase in t_{pd-} over the delay at no load is very closely obtained by 0.1 RC. At no load, t_{pd-} is approximately 3.5 ns, and 0.1 RC with a 100 pF load is 15 ns, giving a total of 18.5 ns for t_{pd-} . The RC time constant of the load may be reduced significantly (for high capacitance) by paralleling an external resistance with the load to VEE.

MECL II

GENERAL INFORMATION SECTION

FIGURE 18 - RISE TIME versus LOADING AND TEMPERATURE

FIGURE 19 - FALL TIME versus LOADING AND TEMPERATURE
(Single Pulldown Resistor)

MECL II

GENERAL INFORMATION SECTION

FIGURE 20 - PROPAGATION DELAY t_{pd+} versus LOADING AND TEMPERATURE

THERMAL CHARACTERISTICS

The junction temperature of the integrated circuit is closely related to its long term operational characteristics; therefore, an accurate estimate of the junction temperature of the various circuit components must be made before the circuit designer can predict the expected reliability of his system. Motorola is including sufficient information in this section to permit the user of MECL II to estimate worst-case junction temperatures if he can estimate accurately the ambient or case temperatures and the operating circuit's power drain.

The average temperature at the junction region is a function of the systems ability to remove the heat generated in the circuit from the junction regions to the ambient or equivalent heat sink. The basic formula for converting calculated power dissipation to estimated junction temperature is:

$$T_J = T_A + P_D (\theta_{JC} + \theta_{CA})$$

or

$$T_J = T_A + P_D (\theta_{JA})$$

where

TA = ambient temperature

PD = calculated power dissipation

 θ_{JC} = thermal resistance, junction to case

 θ_{CA} = thermal resistance, case to ambient

 $heta_{
m JA}$ = thermal resistance, junction to ambient.

The worst-case rated thermal resistance values for Motorola's integrated circuit packages are found in Table 1. Figures 22, 23, and 24 are variations of the same derating curve. Figure 22, for instance, plots the maximum permissible package power handling capability as a function of ambient temperature when the maximum permissible junction is at 150°C (plastic package) and 175°C (ceramic flat package). Figure 23 plots worst-case junction temperature as a function of power dissipated for the two ambient temperatures, 75°C and 125°C. Figure 24 plots the junction temperature as a function of power drain when the case temperature is held constant. These figures have been developed using the worst-case thermal resistance values found in Table 1.

FIGURE 21 - PROPAGATION DELAY t_{pd} versus LOADING AND TEMPERATURE

FIGURE 22 - AMBIENT TEMPERATURE DERATING

FIGURE 23 - JUNCTION TEMPERATURE DERATING CURVE USING AMBIENT TEMPERATURE

FIGURE 24 - JUNCTION TEMPERATURE DERATING CURVE USING CASE TEMPERATURE

TABLE 1 - WORST-CASE THERMAL RESISTANCE OF INTEGRATED CIRCUIT PACKAGES

PACKAGE	$ heta_{ m JA}$ junction to ambient	θ _{JC} JUNCTION TO CASE
Ceramic Flat Package 14 lead ½ x ¼ inch	0.26 ^o C/m W	0.090 ^o C/mW
Plastic 14 lead dual-in-line	0.20°C/mW	0.15 ⁰ C/mW

MECL II

GENERAL INFORMATION SECTION

Characteristic		Symbol	Rating	Unit		
Ratings above which o	levice life	may be im	paired:			
Power Supply Voltage (\	/ _{cc} = 0)	VEE	-10	Vdc		
Input Voltage (V _{cc} = 0)		Vin	0 to VEE	Vdc		
Output Source Current		lo	20	mAdc		
Storage Temperature Range	MC1000 MC1200	Tstg	-55 to +125 -65 to +175	°C		
Recommended maximonay be degraded:	um rating:	s above wh	ich performat	ıce		
Operating Temperature Range	MC1000 MC1200	TA	0 to +75 -55 to +125	°C		
AC Fan-In (Expandable 0	Gates)	m	20	_		
AC Fan-Out* (Gates and	Flip-Flops)	n	15	_		

PACKAGING

6-INPUT GATES

MC1001 thru MC1003 MC1201 thru MC1203

Provide simultaneous OR/NOR or AND/NAND output functions. These devices contain an internal bias reference insuring that the threshold point is always in the center of the transition region over the temperature range.

Emitter follower output configurations differ for these three circuits as shown in the circuit schematic.

MC1001/MC1201 CIRCUIT SCHEMATIC

MC1001 thru MC1003, MC1201 thru MC1203 (continued)

ELECTRICAL CHARACTERISTICS

Outputs without pull-down resistors are tested with a 1.5 k Ω resistor to V_{EE} .

		Pin			C1201-	1203 T	est Lim	its			M	C1001-	1003 To	est Limi	ls	
		Under	-5	55°C	+2	25°C	+1	25°C		()°C		25°C		75°C	Ī
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current MC1201/MC1001 MC1202/MC1002 MC1203/MC1003	I _E			-	-	32 22 11	-	-	mAdc	-	-	-	32 22 11	-	-	mAd
nput Current	Iin	4 5 6	-	-	-	200	-	-	μAdc	=	-	-	200	-		μAde
		8 9 10	- -	-	-		-	-		=	-	-		-	-	
nput Leakage Current	I _R	Inputs*	-	-	-	0.2	-	1.0	μAdc	-	7	-	0. 2	-	1.0	μAdo
'NOR'' Logical ''1'' Output Voltage	v _{OH} ‡	1,2,3†	-0.990	-0.825	-0.850	-0. 700	-0. 700	-0.530	Vdc	-0.895	-0. 740	-0.850	-0. 700	-0. 775	-0.615	Vdc
NOR'' Logical ''0'' Output Voltage	V _{OL}	1, 2, 3†	-1.890	-1.580	-1.800	-1.500	-1. 720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1. 760	-1.435	Vdc
OR'' Logical ''1'' Output Voltage‡	v _{OH} ‡	11, 12, 13†	-0. 990	-0.825	-0.850	-0.700	-0. 700	-0.530	Vdc	-0.895	-0.740	-0.850	-0. 700	-0. 775	-0.615	Vdc
OR'' Logical ''0'' Output Voltage	V _{OL}	11, 12, 13†	-1.890	-1.580	-1.800	-1.500	-1.720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1.435	Vdc
witching Times			Тур	Max	Тур	Max	Тур	Max	-	Тур	Max	Тур	Max	T	Max	· ·
Propagation Delay (Fan-Out = 3)	t ₄₊₁₋ t ₄₋₁₊ t ₄₊₁₁₊	1 1 11	4.0	7.5	4.0	7.0	6. 0 6. 0 5. 0	9. 0 9. 0 9. 0	ns	4.0	7.0	4.0	7.0	5.0	8. 0	ns
(Fan-Out = 15)	t ₄₋₁₁ - t ₄₊₁ - t ₄ -1+	11 1 1	18 6. 0	-	18 6. 0	* - 	6.0 22 8.0	9.0		18 6. 0	-	18 6.0	-	20 7. 0	-	
Rise Time	t ₄ +11+ t ₄ -11-	11 11	4. 0 13	-	4. 0 13	-	6.0	-		4.0	-	4.0 13	-	5. 0 15	-	
(Fan-Out = 3)	t ₁₊	1 11	5. 0 4. 0	8. 0 7. 0	5. 0 4. 0	7. 5 6. 5	6.0 5.0	9. 0 8. 0		5. 0 4. 0	7.5 6.5	5.0	7.5 6.5	5.5 4.5	8. 0 7. 0	
Fall Time (Fan-Out = 3)	t ₁₋ t ₁₁₋	1 11	6. 0	8.5	6.0	8.0	7.0	10		6.0	8.0	6.0	8.0	6.5	9.0	

^{*} Individually test each input using the pin connections shown. † Individually test each output listed using the pin connections shown. † V_{OH} limits apply from no load (0 mA) to full load (-2.5 mA). I_{L} applied to output under test.

				TEST VOLTAGE/CUR	RENT VALU	JES		
		@Test		Vdc ±1.0%			mAdc	
	Te	emperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	ار	
		(−55°C	-5. 2 to -1. 405	-1.165 to -0.825	-	-5. 2	-2.5	
MC1	201-1203	} +25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5.2	-2.5	
		(+125°C	-5. 2 to -1. 205	-0.875 to -0.530	-	-5.2	-2.5	
		(0°C	-5.2 to -1.350	-1.070 to -0.740	-	-5.2	-2.5	
MC1	001-1003	} +25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5.2	-2.5	
MCI	001-1000	+75°C	-5.2 to -1.260	-0.950 to -0.615	-	-5.2	-2.5	
		r i	TEST VOL	TAGE/CURRENT APPLIE	D TO PINS	LISTED BELOW:	L	
Characteristic	Symbol	Pin Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	Ι _ι	V _{CC} (Gnd)
Power Supply Drain	I _E	7					:	
Current MC1201/MC1001 MC1202/MC1002 MC1203/MC1003			- - -		- - -	4,5,6,7,8,9,10	- - -	14
Input Current	I _{in}	4	= .	-	4	5, 6, 7, 8, 9, 10	-	14
*		5 6	-	-	5 6	4, 6, 7, 8, 9, 10 4, 5, 7, 8, 9, 10	-	
		8	-	-	8	4, 5, 6, 7, 9, 10	-	
		9 10	-	-	9	4, 5, 6, 7, 8, 10 4, 5, 6, 7, 8, 9	-	
Input Leakage Current	I _R	Inputs*	-	-	-	4, 5, 6, 7, 8, 9, 10	-	14
"NOR" Logical "1"	v _{OH} ‡	1, 2, 3†	4	· -	-	5, 6, 7, 8, 9, 10	‡	14
Output Voltage	OH*		5 6	-	-	4, 6, 7, 8, 9, 10 4, 5, 7, 8, 9, 10		1 1
			8		-	4, 5, 6, 7, 9, 10		1 1
		1 1 1	9 10	-	-	4, 5, 6, 7, 8, 10 4, 5, 6, 7, 8, 9		
'NOR'' Logical ''0''	37	1, 2, 3†	. 10	4		5, 6, 7, 8, 9, 10	-	14
Output Voltage	v _{OL}	1, 2, 3	A 10	5	-	4, 6, 7, 8, 9, 10	-	lï
		ļ. i	-	6 8	-	4,5,7,8,9,10 4,5,6,7,9,10	-	
			-	9	-	4, 5, 6, 7, 8, 10		1 1
		'	_	10	-	4,5,6,7,8,9	-	'
"OR" Logical "1" Output Voltage‡	V _{ОН} ‡	11, 12, 13†	-	4 5	-	5, 6, 7, 8, 9, 10 4, 6, 7, 8, 9, 10	1.	14
output torange+			= ,,	6	-	4,5,7,8,9,10		1 1
				8 9	_	4,5,6,7,9,10 4,5,6,7,8,10		į .
a.		+	· -	10	-	4, 5, 6, 7, 8, 9	+	+
'OR'' Logical ''0''	V _{OL}	11, 12, 13†	4	-	-	5, 6, 7, 8, 9, 10	-	14
Output Voltage			5	-	_	4, 6, 7, 8, 9, 10 4, 5, 7, 8, 9, 10	-	
			8	- · · ·	-	4, 5, 6, 7, 9, 10		
		+	9		-	4,5,6,7,8,10 4,5,6,7,8,9	_	+
Switching Times Propagation Delay			Pulse In	Pulse Out		V _{EE} = -4.0 Vdc		(+1.2 V)
(Fan-Out = 3)	t ₄₊₁₋	1	4	1	-	5, 6, 7, 8, 9, 10	-	14
•	t ₄₋₁₊	1		1	-		-	
	t ₄₊₁₁₊	11		11	-	1	-	
	t ₄₋₁₁₋	11		11	-	,	-	
(Fan-Out = 15)	t ₄₊₁₋	1		1	-		-	
	t ₄ -1+	1		1	-		-	
	t ₄ +11+	11		11	-		-	
	t ₄₋₁₁₋	11		11	-		-	
Rise Time	ł			1	_		_	
(Fan-Out = 3)	^t 1+	1			_		-	
E-11 W	^t 11+	11		11	_		-	
Fall Time (Fan-Out = 3)	t ₁₋	1		1	-		-	
	t ₁₁₋	11		11	-		-	
L	11-		L	L	1	L		1

MC1001 thru MC1003, MC1201 thru MC1203 (continued)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATIONS INFORMATION

The MC1001-1003/MC1201-1203 6-input OR/NOR gates are extremely useful in generating multiple wired-OR logic functions since six independent outputs are provided. (An example is shown in Figure 1.) The gate performs well as a clock driver with the multiple outputs which result in three times the normal fan-out for a given clock waveform. If twisted pair lines are being used for clock distribution in a system, the gate will drive three independent twisted pair lines, each with the same clock waveform.

An output impedance of about 2 ohms is obtained if three OR or NOR outputs are tied together. This provides an excellent 50-ohm driving capability. The 50-ohm line or coax should be terminated in its characteristic impedance to a nominal -2.0 V. This prevents excessively high output current that would pull the logic "1" level below nominal (see Figure 2).

FIGURE 1 - MECL II "WIRED OR" FEATURE

FIGURE 2 - MC1003/MC1203 AS A 50-OHM DRIVER WITH NOMINAL MECL LOGIC LEVELS

DUAL 2-INPUT EXPANDABLE GATES

MC1024 MC1224

Provide simultaneous OR/NOR or AND/NAND output functions. These devices contain an internal bias reference insuring that the threshold point is always in the center of the transition region over the temperature range.

Expandable inputs are available on pins 1, 4 and 10, 13 as shown in the circuit schematic.

CIRCUIT SCHEMATIC

MC1024, MC1224 (continued)

ELECTRICAL CHARACTERISTICS

1 5 5 6 4 10 11 9 12 8 13

Test procedures are shown for only one gate. The other gate is tested in the same manner.

		Pin			MC12	224 Te	est Limi	ts				MC10	24 Te	st Limit	s	
		Under	-5	5°C	+2	5°C	+1	25°C		0)°C	+2	5°C	+7	′5°C	Ī
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	I _E	7	-	-	-	26	-	-	mAdc	-	-	-	26	-	-	mAdo
Input Current	I _{in}	2 3	-	-	<u>-</u>	100 100	-	-	μAdc μAdc	-	-	-	100 100	-	-	μ A do
Input Leakage Current	I_R	Inputs*	-	-	-	0.2	-	1.0	μAdc	-	-	-	0.2	- "	1.0	μAdo
"NOR" Logical "1" Output Voltage‡	v _{OH} ‡	5 5	-0. 990 -0. 990	-0.825 -0.825		-0. 700 -0. 700		-0.530 -0.530	Vdc Vdc	-0. 895 -0. 895	-0. 740 -0. 740	-0. 850 -0. 850	-0.700 -0.700	-0. 775 -0. 775	-0.615 -0.615	Vdc Vdc
'NOR'' Logical ''0'' Output Voltage	v_{OL}	5 5		-1.580 -1.580						-1.830	-1. 525	-1.800	-1.500	-1.760		Vdc Vdc
'OR'' Logical "1" Output Voltage‡	v _{OH} [‡]	6 6	-0. 990 -0. 990	-0. 825 -0. 825	-0.850 -0.850	-0. 700 -0. 700	-0. 700 -0. 700	-0.530 -0.530	Vdc Vdc	-0. 895 -0. 895		-0.850 -0.850				Vdc Vdc
'OR'' Logical "0" Output Voltage	v _{OL}	6 6	-1.890 -1.890	-1.580 -1.580				-1.380 -1.380	Vdc Vdc	-1.830 -1.830		-1.800 -1.800				Vdc Vdc
Switching Times Propagation Delay			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	-
(Fan-Out = 3)	t ₂₊₅₋	5	5.0	7.0	5.0	7. 0	6.5	9.0	ns	5.0	7.0	5.0	7.0	6.0	8.0	ns
	t ₂₋₅₊	5	4.0	7.5	4.0	7. 5	5.5	9.0		4.0	7.5	4.0	7.5	5.0	8.5	
	t ₂₊₆₊	6	4.0	7.5	4.0	7. 0	5. 5	8.5		4.0	7.0	4.0	7.0	5.0	8.0	
	t ₂₋₆₋	6	4.0	7.0	4.0	7. 0	5.5	9.0		4.0	7.0	4.0	7.0	5.0	8.0	
(Fan-Out = 15)	t ₂₊₅ -	5	14	-	14	-	18	-		14	-	14	-	16		ł
	t ₂₋₅₊	5	5.0	-	5.0	-	7.0	-		5.0	-	5.0	-	6.0	- 1	
	t ₂₊₆₊	6	6.0	-	6.0	-	8.0	-	1 1	6.0	-	6.0	-	7.0	- 1	
	t ₂₋₆₋	6	13	-	13	-	17	-		13	-	13	-	15	-	
Rise Time														i		
(Fan-Out = 3)	^t 5+	5	5.0	7.5	5.0	7.5	6.0	9.0		5.0	7.5	5.0	7.5	5.0	8.0	
	^t 6+	6	4.0	7.0	4.0	6.5	5.5	8.0	-	4.0	6.5	4.0	6.5	5.0	7.0	
Fall Time (Fan-Out = 3)	t	5	5. 0	8.5	5.0	8.0	6.0	10		5.0		_				
, 0 41 0/	^t 5-	6	5.0	8.0	5.0	8. 0	7.0	10			8.0	5.0	8.0	5.5	9.0	1
Individually test as	^t 6-	٠	5.0	0.0	3.0	0.0	7.0	10		5.0	8.0	5.0	8.0	6.0	9.0	7

^{*} Individually test each input using the pin connections shown.

SWITCHING TIME TEST CIRCUIT @ 25°C

 $[\]mathop{\ddagger}^{V}{}_{OH}$ limits apply from no load (0 mA) to full load (-2.5 mA).

				TEST VOLTAGE/C	URRENT VA	LUES			
		@Test		Vdc ±1.0%	6		mAdc		
		mperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	IL.		
		(−55°C	-5.2 to -1.405	-1.165 to -0.825	-	-5.2	-2.5]	
N	IC1224	} +25℃	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5.2	-2.5]	
•	,	(+125°C	-5.2 to -1.205	-0.875 to -0.530	-	-5.2	-2. 5		
		(0°C	-5.2 to -1.350	-1.070 to -0.740		-5.2	-2.5]	
M	C1024	} +25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5.2	-2, 5]	
		(+75°C	-5.2 to -1.260	-0.950 to -0.615	-	-5.2	-2.5		
		Pin	TEST	VOLTAGE/CURRENT AP	PLIED TO PI	NS LISTED BELOW:		1.	
Characteristic	Symbol	Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	ار	V _{CC} (Gnd)	
Power Supply Drain Current	I _E	7	-	-	-	2, 3, 7, 11, 12		14	
Input Current	I _{in}	2 3	= 1	- -	2 3	3, 7, 11, 12 2, 7, 11, 12	-	14 14	
Input Leakage Current	I _R	Inputs*	-		-	2, 3, 7, 11, 12	-	14	
''NOR'' Logical ''1'' Output Voltageţ	^V OН [‡]	5 5	2 3		-	3,7,11,12 2,7,11,12	5 5	14 14	
''NOR'' Logical ''0'' Output Voltage	v _{OL}	5 5	-	2 3	-	3,7,11,12 2,7,11,12	-	14 14	
''OR'' Logical ''1'' Output Voltageţ	^V он [‡]	6	-	2 3	-	3,7,11,12 2,7,11,12	6 6	14 .14	
''OR'' Logical ''0'' Output Voltage	V _{OL}	6 6	2 3	<u>-</u>	-	3,7,11,12 2,7,11,12	-	14 14	
Switching Times			Pulse In	Pulse Out		V _{EE} = −4.0 Vdc		(+1.2 V	
Propagation Delay (Fan-Out = 3)	t ₂₊₅ -	. 5	2	5	-	3, 7, 11, 12	-	14	
	t ₂₋₅₊	5		. 5	-		-		
	t ₂₊₆₊	6		6	-		-	-	
	t ₂₋₆₋	6		6	-		-		
(Fan-Out = 15)	t ₂₊₅ -	5		5	-		-		
İ	t ₂₋₅₊	5		5 , ,	-		-		
	t ₂₊₆₊	6		6	-		-		
	t ₂₋₆₋	6		6	-		-		
Rise Time (Fan-Out = 3)	t ₅₊	5	1 2 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5,	-	1 1 1			
Fall Time	t ₆₊	6		6		3.1	-		
(Fan-Out = 3)	t ₅ -	5		5	-		-		

SWITCHING TIME WAVEFORMS

APPLICATIONS INFORMATION

The MC1024/MC1224 dual 2-input expandable OR/NOR gate provides the capability of increasing fan-in by making available the collector and emitter nodes of the standard gate. Note that complementary outputs are available, lending to circuit flexibility. By using the MC1025/MC1225 expander 6, 7, 10, 11, 12, 15, 16, or 20 gate inputs may be obtained with one or two expanders per gate. Note that as fan-in is increased, capacitance is added to the input collector node and propagation delays through the gate will increase. A maximum fan-in of 20 is recommended for high-speed operation. If high speed is not required, larger fan-ins may be utilized.

The expandable inputs allow a large fan-in NOR or NAND gate to be obtained, where power dissipation is decreased at the expense of propagation delay. The OR propagation delay times vary little with increasing fan-in since capacitance is not being added to the OR collector node. At a fan-in of 20, NOR output rise and fall times approach 20 ns, while OR output rise and fall times remain about 4.0 ns. For minimal added capacitance at the NOR collector node, lead lengths should be kept short and the circuits wired in directly rather than using sockets. Typical propagation delay curves versus fan-in and temperature are shown below.

TYPICAL PROPAGATION DELAY TIMES

DUAL 4-5 INPUT EXPANDERS

MC1025 MC1225

Dual expander arrays, with a 4-transistor array isolated from a 5-transistor array. The collectors and emitters from both arrays may be connected to form a 9-transistor array. With each base available, a 4, 5, or 9-input expander may be obtained.

Designed specifically for use with MC1024/MC1224 Dual 2-Input Gates.

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one expander. The other expander is tested in the same manner.

1 2 3 13	127
9	5 <u>1</u> 7

TES	T VOLT	AGE/0	URREN	IT VAI	LUES										
	Vdc ±1.0% mAdc														
VEE	V _{cc}	V _{BB}	V _{CB}	VBE	I _E										
-2.0	+2.0	-5.2	+0.7	+0.3	-1.33										

		Pin		MC1225 Test Limits MC1025 Test Limits											TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW:								
		Under		5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5℃			I	Ī				
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{EE}	V _{cc}	V _{BB}	V _{CB}	V _{BE}	I _E	Gnd
Base Leakage Current	BL	1 2 3	-	0.5	-	0.5	-	2.0	μAdc	-	0.5	-	0.5	-	2.0	μAde	11,12	-	1 2 3	-	-	-	4,5,7
		13 14	-		-		-			-		-		-	ļ			-	13 14	-	-	-	
Collector Leakage Current	ICEX	1 2 3 13 14	-	1.0		1.0	11111	100	μAde	-	1.0	-	1.0		15.0	μAdc	-	4,5,7	-	-	1 2 3 13 14	-	11, 12
Input Voltage	v _{BE}	12	-0.860	-0.910	-0.710	-0. 760	-0.520	-0.570	Vde	-0.760	-0.810	-0. 710	-0.760	-0.610	-0.660	Vdc		-		4,5	-	12	1 2 3 13 14

APPLICATIONS INFORMATION

The MC1025/MC1225 dual 4-5 input expander is designed to work with the MC1024/MC1224 expandable gate. The transistors are manufactured with the same buried layer process used on all MECL II devices and are typical of MECL II gate transistors. BVCEO is 12 V or greater, $f_T\approx 600$ MHz, and β is typically from 100 to 150. An example of two 20-input NOR gates and a 40-input OR gate made from an MC1024/MC1224 expandable gate and four MC1025/MC1225 expanders is shown.

@ AII

Temperatures

Two 20-input NOR gates and one 40-input OR gate generated using one MC1024/MC1224 expandable gate and four MC1025/MC1225 expanders.

DUAL 4-INPUT GATES

MC1004 thru MC1006 MC1204 thru MC1206

Provide simultaneous OR/NOR or AND/NAND output functions. These devices contain an internal bias reference insuring that the threshold point is always in the center of the transition region over the temperature range.

Emitter follower output configurations differ for these three circuits as shown in the circuit schematic.

MC1004/MC1204 CIRCUIT SCHEMATIC

MC1004 thru MC1006, MC1204 thru MC1206 (continued)

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one gate. The other gate is tested in the same manner. Outputs without pulldown resistors are tested with a 1.5 $k\Omega$ resistor to VEE.

		Pin			MC120	4-1206	Test Li	mits	MC1004-1006 Test Limits							
Characteristic		Under	−55°C		+2	5°C	+1:	25°C		0	0°C		5°C	+75°C		
	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current MC1204/MC1004 MC1205/MC1005 MC1206/MC1006	$^{ m I}_{ m E}$	7	-		- - -	26 18 12	-	- - -	mAdc	-	7 7 -	- - -	26 18 12	-	- -	mAde
Input Current	I _{in}	1 2 3 4	- - -	- - -	- - -	100	- '	- - -	μAdc	- - -	-	- - -	100	-	-	μAdc
Input Leakage Current	I_R	Inputs*	-	-	-	0. 2	-	1.0	μAdc	-	-	-	0. 2	-	1.0	μAdc
'NOR'' Logical ''1'' Output Voltage†	v _{OH} †	5	-0.990	-0.825	-0. 850	-0.700	-0. 700	-0.530	Vdc	-0. 895	-0. 740	-0.850	-0.700	-0. 775	-0.615	Vdc
"NQR" Logical "0" Output Voltage	V _{OL}	5	-1.890	-1.580	-1.800	-1.500	-1.720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1. 435	Vdc
'OR'' Logical ''1'' Output Voltage‡	v _{OH} ‡	6	-0.990	-0.825	-0.850	-0.700	-0.700	-0.530	Vdc	-0. 895	-0. 740	-0.850	-0.700	-0. 775	-0. 615	Vdc
'OR'' Logical ''0'' Output Voltage	v _{OL}	6	-1.890	-1.580	-1.800	-1.500	-1. 720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1. 760	-1. 435	Vdc
Switching Times		'	Тур	Max	Тур	Max	Тур	Max		Тур	Max	Typ	Max	T	V	*
Propagation Delay (Fan-Out = 3)	t ₁₊₅₋ t ₁₋₅₊ t ₁₊₆₊	5 5 6	5. 0 4. 0 4. 0	7. 0 7. 5 7. 5	5. 0 4. 0 4. 0	7.0 7.5 7.0	6. 5 5. 5 5. 5	9. 0 9. 0 8. 5	ns	5. 0 4. 0 4. 0	7. 0 7. 5 7. 0	5. 0 4. 0 4. 0	7. 0 7. 5 7. 0	6. 0 5. 0 5. 0	8. 0 8. 5 8. 0	ns
(Fan-Out = 15)	t ₁₋₆₋ t ₁₊₅₋ t ₁₋₅₊ t ₁₋₆₊	6 5 5	4. 0 14 5. 0 6. 0	7.0 - -	4. 0 14 5. 0 6. 0	7.0	5. 5 18 7. 0 8. 0	9. 0 - -		4. 0 14 5. 0 6. 0	7. 0 - -	4. 0 14 5. 0 6. 0	7.0	5. 0 16 6. 0 7. 0	8.0	
Rise Time (Fan-Out = 3)	t ₁₋₆₋	5	13 5. 0	7.5	13 5. 0	7.5	17 6. 0	9.0		13 5. 0	7.5	13 5. 0	7.5	15 5. 0	8.0	
Fall Time (Fan-Out = 3)	^t 6+ ^t 5- ^t 6-	6 5 6	4. 0 5. 0 5. 0	7. 0 8. 5 8. 0	5. 0 5. 0	6. 5 8. 0 8. 0	5. 5 6. 0 7. 0	8. 0 10 10		4. 0 5. 0 5. 0	6. 5 8. 0 8. 0	4. 0 5. 0 5. 0	6. 5 8. 0 8. 0	5. 0 5. 5 6. 0	7. 0 9. 0 9. 0	

^{*}Individually test each input using the pin connections shown. $\ddagger V_{\mbox{OH}}$ limits apply from no load (0 mA) to full load (-2.5 mA).

				TEST VOLTAGE,	CURRENT \	/ALUES		
		@Test		Vdc ±1.	0%		mAdc	
		nperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	ľ	
		(−55°C	-5.2 to -1.405	-1.165 to -0.825	-	-5. 2	-2.5	
MC120)4-1206	+25°C	-5.2 to -1.325	-1.025 to -0.700	0. 700	-5. 2	-2.5	
		(+125°C	-5.2 to -1.205	-0.875 to -0.530	-	-5. 2	-2.5	
		(0°C	-5.2 to -1.350	-1.070 to -0.740	-	-5.2	-2.5	
MC100)4-1006	+25°C	-5.2 to -1.325	-1.025 to -0.700	-0. 700	-5.2	-2.5	}
		+75°C	-5.2 to -1.260	-0.950 to -0.615	-	-5.2	-2.5]
		D:	TEST	VOLTAGE/CURRENT A	PPLIED TO I	PINS LISTED BELOW:		
		Pin Under						V _{cc}
Characteristic	Symbol	Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	I <u>.</u>	(Gnd)
Power Supply Drain	I _E	7						
Current MC1204/MC1004			_	_	-	1, 2, 3, 4, 7, 10, 11, 12, 13	-	14
MC1205/MC1005			-	-	-		-	
MC1206/MC1006			-	-	-	0.04.7.10.11.10.10	-	<u> </u>
Input Current	I _{in}	1 2	-	_	1 2	2, 3, 4, 7, 10, 11, 12, 13 1, 3, 4, 7, 10, 11, 12, 13	-	14
		3	-	-	3	1, 2, 4, 7, 10, 11, 12, 13	-	
		4	-	-	· 4	1, 2, 3, 7, 10, 11, 12, 13	-	14
Input Leakage Current	$^{\mathrm{I}}\mathrm{_{R}}$	Inputs*	-	-	-	1, 2, 3, 4, 7, 10, 11, 12, 13	-	14
"NOR" Logical "1"	v _{OH} [†]	5	1	-	-	2, 3, 4, 7, 10, 11, 12, 13	5	14
Output Voltage†	On		2 3	-	-	1, 3, 4, 7, 10, 11, 12, 13 1, 2, 4, 7, 10, 11, 12, 13		
		+	4	-	-	1, 2, 3, 7, 10, 11, 12, 13	+	
"NOR" Logical "0"	V _{OL}	5	-	1	-	2, 3, 4, 7, 10, 11, 12, 13	-	14
Output Voltage	OL			2 3	-	1, 3, 4, 7, 10, 11, 12, 13 1, 2, 4, 7, 10, 11, 12, 13	-	
		+	-	4		1, 2, 3, 7, 10, 11, 12, 13	-	↓.
"OR" Logical "1"	v _{OH} ‡	6	-	1	-	2, 3, 4, 7, 10, 11, 12, 13	6	14
Output Voltageţ			_	2 3	-	1, 3, 4, 7, 10, 11, 12, 13 1, 2, 4, 7, 10, 11, 12, 13		
		+	-	4	-	1, 2, 3, 7, 10, 11, 12, 13	+	+
"OR" Logical "0"	V _{OL}	6	1	_	-	2, 3, 4, 7, 10, 11, 12, 13	-	14
Output Voltage			2 3	_		1, 3, 4, 7, 10, 11, 12, 13 1, 2, 4, 7, 10, 11, 12, 13	-	
		+	4	-	-	1, 2, 3, 7, 10, 11, 12, 13	-	+
Switching Times			Pulse In	Pulse Out		V _{EE} = -4.0 Vdc		(+1.2 V
Propagation Delay (Fan-Out = 3)	t ₁₊₅₋	5	1	5	-	2, 3, 4, 7, 10, 11, 12, 13	-	14
	t ₁₋₅₊	5		5	-		-	
	t ₁₊₆₊	6		6	-		-	
	t ₁₋₆₋	6		6	-		· -	
(Fan-Out = 15)	t ₁₊₅₋	5		5	-		-	
·	t ₁₋₅₊	5		5	-		-	
	1-5+ t ₁₊₆₊	6		6	-		-	
	1+6+ t ₁₋₆₋	6		6	-		-	
Rise Time								
(Fan-Out = 3)	t ₅₊	5		5	-		-	
	t ₆₊	6		6	-		-	
Fall Time (Fan-Out = 3)		5		5	_		_	
(ran-out = s)	t ₅ -	6		6		1	_	
	t ₆₋	,						

MC1004 thru MC1006, MC1204 thru MC1206 (continued)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATIONS INFORMATION

The MC1004-1006/MC1204-1206 dual 4-input OR/NOR gates are very useful in generating system logic due to their flexibility. By employing negative logic on the inputs (low level of $-1.6~\rm V$ is considered true), the AND/NAND logic function is obtained from the basic gate. Since complementary inputs are available in MECL system, OR/NOR-AND/NAND logic may be employed, reducing the package count

in the system. An 8-input OR or AND gate is obtained by tying the OR outputs together and using positive or negative logic. The dual 4-input gate is also useful for driving two twisted pair lines where the lines must carry independent information. For a further discussion of twisted pair driving and receiving, refer to MC1020/MC1220 Line Receiver.

8-INPUT "OR" GATE (positive logic) or 8-INPUT "AND" GATE (negative logic)

DUAL 4-INPUT GATE USED TO DRIVE TWO BALANCED TWISTED PAIR LINES

TRIPLE 3-INPUT GATES

MC1007 thru MC1009 MC1207 thru MC1209

Provide the NOR output function. These devices contain an internal bias reference insuring that the threshold point is always in the center of the transition region over the temperature range.

Emitter follower output configurations differ for these three circuits as shown in the circuit schematic.

MC1007/MC1207 CIRCUIT SCHEMATIC

MC1007 thru MC1009, MC1207 thru MC1209 (continued)

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one gate. The other gates are tested in the same manner. Outputs without pulldown resistors are tested with a 1.5 k ohm resistor to VEE.

		Pin		M	C1207-	1209 T	est Lim	its	MC1007-1009 Test Limits							
		Under	5	5°C	+2	5°C	+13	25°C		0	°C	+2	:5°C	+7	′5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current MC1207/MC1007 MC1208/MC1008 MC1209/MC1009	I _E	7	-	-	-	30 20 16	-	-	mAdc	-	-	-	30 20 16	-	-	mAdc
Input Current	I _{in}	1 2 3		-	-	100	-	- - - -	μAdc	-		-	100	-	-	μAdc
Input Leakage Current	I_R	Inputs*	-	-	-	0.2	-	1.0	μAdc	-	-	-	0.2	-	1.0	μAdc
''NOR'' Logical ''1'' Output Voltage‡	v _{OH} ‡	4	-0.990	-0.825	-0. 850	-0. 700	-0. 700	-0.530	Vdc	-0.895	-0. 740	-0.850	-0.700	-0. 775	-0. 615	Vdc
"NOR" Logical "0" Output Voltage	v _{OL}	4	-1.890	-1.580	-1.800	-1.500	-1. 720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1. 760	-1. 435	Vdc
Switching Times Propagation Delay			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
(Fan-Out = 3)	t ₁₊₄₋ t ₁₋₄₊	4	4. 0 4. 0	7. 5 7. 0	4, 0 4. 0	7.5 7.0	6. 0 6. 0	9.0	ns	4. 0 4. 0	7.5	4.0 4.0	7.5 7.0	5. 0 5. 0	8.5 8.0	ns
(Fan-Out = 15)	t ₁₊₄₋		18 5. 0	-	18 5. 0	-	22 9. 0	-		18 5. 0	-	18 5. 0	-	20 7. 0	-	
Rise Time (Fan-Out = 3) Fall Time (Fan-Out = 3)	^t 1-4+ ^t 4+ ^t 4-		5. 0 6. 0	7. 5 8. 5	5. 0 6. 0	7. 5 8. 0	6. 0 7. 0	9.0		5. 0 6. 0	7.5	5. 0 6. 0	7.5 8.0	5. 5 6. 0	8. 0 9. 0	

SWITCHING TIME TEST CIRCUIT @ 25°C

^{*} Individually test each input using the pin connections shown. $\ ^{\dagger}V_{OH}$ limits apply from no load (0 mA) to full load (-2.5 mA).

				TEST VOLTAGE/O	URRENT V	ALUES		
		@Test		Vdc ±1.0°	%		mAdc	
		nperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	١	
		(−55°C	-5.2 to -1.405	-1.165 to -0.825	-	-5. 2	-2.5	
MC120	MC1207-1209 } +25°C		-5.2 to -1.325	-1.025 to -0.700	-0.700	-5. 2	-2.5]
		(+125°C	-5.2 to -1.205	-0.875 to -0.530	-	-5. 2	-2.5]
		(0°C	-5.2 to -1.350	-1.070 to -0.740	-	-5. 2	-2.5	
MC100	7-1009	} +25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5. 2	-2.5	
		(+75°C	-5.2 to -1.260	-0.950 to -0.615	-	-5. 2	-2.5	
		Pin	TEST	VOLTAGE/CURRENT AP	PLIED TO P	INS LISTED BELOW:		
Characteristic	Symbol	Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	I _L	V _{CC} (Gnd)
Power Supply Drain Current MC1207/MC1007 MC1208/MC1008 MC1209/MC1009	I _E	7	- - -		- - -	1, 2, 3, 5, 6, 7, 8, 11, 12, 13	- - -	14
Input Current	I _{in}	1 2 3	- - -	- - -	1 2 3	2,3,5,6,7,8,11,12,13 1,3,5,6,7,8,11,12,13 1,2,5,6,7,8,11,12,13	- - -	14
Input Leakage Current	IR	Inputs*	-	-	-	1, 2, 3, 5, 6, 7, 8, 11, 12, 13	-	14
"NOR" Logical "1" Output Voltage‡	v _{OH} ‡	4	1 2 3	- · · · - · · · - · · · · · · · · · · ·		2,3,5,6,7,8,11,12,13 1,3,5,6,7,8,11,12,13 1,2,5,6,7,8,11,12,13	4	14
"NOR" Logical "0" Output Voltage	V _{OL}	4	, -	1 2 3	-	2,3,5,6,7,8,11,12,13 1,3,5,6,7,8,11,12,13 1,2,5,6,7,8,11,12,13	- - -	14
Switching Times			Pulse In	Pulse Out		V _{EE} = −4.0 Vdc		(+1.2 V)
Propagation Delay (Fan-Out = 3)	t ₁₊₄₋ t ₁₋₄₊	4	1	4	-	2, 3, 5, 6, 7, 8, 11, 12, 13	-	14
(Fan-Out = 15)	t ₁₊₄₋ t ₁₋₄₊				-		-	
Rise Time (Fan-Out = 3) Fall Time (Fan-Out = 3)	^t 4+ ^t 4-				-		-	

SWITCHING TIME WAVEFORMS

APPLICATIONS INFORMATION

The MC1007-1009/MC1207-1209 triple 3-input gates provide NOR outputs only, due to the pin limitation of the 14-lead package. The three options on the emitter follower pull-down resistors, as on all of the basic gates, provide a significant power savings when the wired-OR feature is utilized. The power dissipation of additional emitter-follower resistors and additional gates to perform the OR function is

eliminated. By making liberal use of the wired-OR feature, power dissipation in a logic system may be reduced by one-half. If fast propagation delay time through a logic chain is required, an additional gate propagation delay of 4.0 to 5.0 ns is saved each time the wired-OR option is employed. Shown below are two examples of an MC1008/MC1208 with the outputs wired together.

QUAD 2-INPUT GATES

MC1010 thru MC1012 MC1210 thru MC1212

Provide the NOR output function. These devices contain an internal bias reference insuring that the threshold point is always in the center of the transition region over the temperature range.

Emitter follower output configurations differ for these three circuits as shown in the circuit schematic.

MC1010/MC1210 CIRCUIT SCHEMATIC

MC1010 thru MC1012, MC1210 thru MC1212 (continued)

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one gate. The other gates are tested in the same manner. Outputs without pulldown resistors are tested with a 1.5 k Ω resistor to VEE.

		Pin	Pin MC1210-1212 Test Limits							MC1010-1012 Test Limits							
	•	Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	
Power Supply Drain Current MC1210/MC1010 MC1211/MC1011 MC1212/MC1012	$^{ m I}_{ m E}$	7	-		111	32 26 18		111	mAdc		-		32 26 18	-		mAdc	
Input Current	I _{in}	1 2	-	-	1 1	100 100	-	1 1	μ Ad c μ A dc	-	- -	-	100 100	-	-	μ A dc μ A dc	
Input Leakage Current	I _R	Inputs*		-	-	0. 2	-	1.0	μ Ad c	-	-	-	0.2	-	1.0	μAdc	
"NOR" Logical "1" Output Voltage‡	$v^{OH^{\ddagger}}$	3 3				-0. 700 -0. 700			Vdc Vdc						-0. 615 -0. 615	Vdc Vdc	
''NOR'' Logical ''0'' Output Voltage	V _{OL}	3 3				-1.500 -1.500			Vdc Vdc						-1. 435 -1. 435	Vdc Vdc	
Switching Times Propagation Delay			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max		
(Fan-Out = 3)	t ₁₊₃₋	3	4.0	7.5	4.5	7.5	6.0	9.0	ns	4.0	7.5	4.5	7.5	5.5	8.5	ns	
	t ₁₋₃₊		5.0	7.0	5.0	7.0	6.0	9.0		5.0	7.0	5.0	7.0	5.5	8.0		
(Fan-Out = 15)	t ₁₊₃ -		18	-	18	-	22			18	-	18	-	20	-		
	t ₁₋₃₊		6.0		6.0	-	9.0	-		6.0	-	6.0	-	7.0	-		
Rise Time (Fan-Out = 3)	^t 3+		4.0	7. 5	4. 0	7.0	5.0	8.0		4.0	7.0	4.0	7.0	4.5	7.5		
Fall Time (Fan-Out = 3)	^t 3-		6.0	8.5	6.0	8.0	7. 0	10	ļ	6.0	8.0	6.0	8.0	6.5	9.0	•	

SWITCHING TIME TEST CIRCUIT @ 25°C

				TEST VOLTAGE/O	URRENT V	ALUES		
		@Test		Vdc ±1.0	1%		mAdc]
		mperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	I _L	
		(−55°C	-5.2 to -1.405	-1.165 to -0.825	-	-5. 2	-2.5	1
MC121	0-1212	} +25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5. 2	-2.5	1
		(+125°C	-5.2 to -1.205	-0.875 to -0.530	-	-5. 2	-2.5	1 1
		(°C	-5.2 to -1.350	-1.070 to -0.740	-	-5.2	-2.5	
MC101	0-1012	} +25°C	-5.2 to -1.325	-1.025 to -0.700	-0. 700	-5.2	-2.5	1
		(+75°C	-5.2 to -1:260	-0.950 to -0.615	-	-5.2	-2.5	1 1
		Pin	TEST	VOLTAGE/CURRENT A	PPLIED TO	PINS LISTED BELOW:		1 1
Characteristic	Symbol	Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	ار	V _{CC} (Gnd)
Power Supply Drain Current MC1210/MC1010 MC1211/MC1011 MC1212/MC1012	I _E	7	- - -	- - -	- - -	1, 2, 4, 5, 7, 9, 10, 12, 13	I,	14
nput Current	In	1 2	-	-	1 2	2, 4, 5, 7, 9, 10, 12, 13 1, 4, 5, 7, 9, 10, 12, 13	-	14 14
Input Leakage Current	I_R	Inputs*	-	-	-	1, 2, 4, 5, 7, 9, 10, 12, 13	-	14
'NOR'' Logical ''1'' Output Voltage‡	v _{OH} ‡	3	1 2		-	2, 4, 5, 7, 9, 10, 12, 13 1, 4, 5, 7, 9, 10, 12, 13	3	14 14
NOR" Logical "0" Output Voltage	V _{OL}	3 3	-	1 2	-	2, 4, 5, 7, 9, 10, 12, 13 1, 4, 5, 7, 9, 10, 12, 13	-	14 14
Switching Times Propagation Delay			Pulse In	Pulse Out		V _{EE} = −4.0 Vdc		(+1.2V)
(Fan-Out = 3)	t ₁₊₃₋ t ₁₋₃₊	3	1	3	-	2, 4, 5, 7, 9, 10, 12, 13	- -	14
(Fan-Out = 15)	t ₁₊₃₋ t ₁₋₃₊				-		-	
Rise Time (Fan-Out = 3)	t ₃₊				-		-	
Fall Time (Fan-Out = 3)	t _a _			1	-		-	

SWITCHING TIME WAVEFORMS

MC1010 thru MC1012, MC1210 thru MC1212 (continued)

APPLICATIONS INFORMATION

The MC1010-1012/MC1210-1212 quad 2-input NOR gates are very useful in building more complex functions. For example, two R-S flip-flops may be obtained by cross-coupling gates, or a single gated R-S flip-flop may be obtained (see diagram below).

Dual clocked R-S flip-flops are available in MECL II (see flip-flop section). The quad 2-input gate may also be used as a dual exclusive OR or NOR by ORing the outputs as shown below.

FIGURE 1 - FLIP-FLOPS OBTAINED BY USING MC1010-1012/MC1210-1212 GATES

FIGURE 2 - DUAL EXCLUSIVE "OR" or "NOR" GATES

$$\overline{\overline{A}}$$
 $\overline{\overline{A}}$ $\overline{\overline{B}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{B}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{B}}$ $\overline{\overline{A}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$ $\overline{\overline{A$

The nominal propagation delay through the Exclusive OR or NOR is 4.0 ns. The Exclusive NORs or ORs are often used as comparator gates giving an output whenever the input data is the same or different. Parity checkers are also built from Exclusive OR gates.

QUAD EXCLUSIVE "OR" GATES

MC1030 MC1230

Four gate arrays designed to provide four Exclusive OR functions. The output is high if and only if one input is high and all other inputs are low.

MC1030, MC1230 (continued)

3 4 4 10 10 11 12

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one gate. The other gates are tested in the same manner.

		Pin		•	MC12	30 Test	Limits					MC10	30 Test	Limits		
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	′5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	I _E	7	-		-	33		-	mAdc	-	-	-	33	-	-	m Adc
Input Current	I _{in}	1 3	-	-	-	150 100	-	-	μAdc μAdc	- 1	-	-	150 100	-	-	μAdc μAdc
Input Leakage Current	I _R	1 3	-	-	-	0.4 0.2	- -	2. 0 1. 0	μAdc μAdc	-	-	-	0.4 0.2	-	2. 0 1. 0	μAdc μAdc
Logical "1" Output Voltage	v _{OH} ‡	2 2	-0.990 -0.990	-0.825 -0.825		-0.700 -0.700	-0.700 -0.700		Vdc Vdc	-0,895 -0.895	-0.740 -0.740		-0.700 -0.700		-0.615 -0.615	Vdc Vdc
Logical ''0'' Output Voltage	v _{OL}	2 2		-1.580 -1.580		-1.500 -1.500		-1.380 -1.380	Vdc Vdc	-1.830 -1.830		-1.800 -1.800				Vdc Vdc
Switching Times (Fan-Out = 3)			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
Propagation Delay	t ₁₊₂₋	2	5.0	8.5	5.0	8.5	6.0	10	ns	5.0	8.5	5.0	8.5	6.0	9.0	ns
	t ₁₋₂₊			8.0		8.0		9.0	1		8.0		8.0	5.0	8.5	1
	t ₁₊₂₊			8.0		8.0		9.0			8.0	↓	8.0	5.0	8.5	
	t ₁₋₂₋	1	6.0	9.0	6.0	9.0		10		6.0	9.0	6.0	9.0	6.0	9.5	
	t ₃₊₂₋		5.0	8.5	5.0	8.5		10		. 5.0	8.5	5.0	8.5	6.0	9.0	
	t ₃₋₂₊			8.0		8.0		9.0			8.0		8.0	5.0	8.5	
j	t ₃₊₂₊			8.0		8.0		9.0		│	8.0	↓	8.0	5.0	8.5	
	t ₃₋₂₋		6.0	9.0	6.0	9.0		10		6.0	9.0	6.0	9.0	6.0	9.5	
Rise Time	t ₂₊		5.0	8.5	5.0	8.5		9.5		5.0	8.5	5.0	8.5	6.0	9.0	
	t ₂₊			8.0		8.0		9.0			8.0		8.0	5.0	8.5	
Fall Time	t ₂ -			8.5	+	8.5		10			8.5		8.5	6.0	9.0	
	t ₂ -	+	6.0	9.0	6.0	9.0	↓	10	. ↓	6.0	9.0	6.0	9.0	6.0	9.5	↓

 $^{{}^{\}dagger V}OH$ limits apply from no load (0 mA) to full load (-2.5 mA).

SWITCHING TIME TEST CIRCUIT @ 25°C

^{*} V_{IL}^{-} or V_{IH}^{-} value as given plus +1.2 V

			TEST VOLTAGE/CURRENT VALUES est Vdc ±1.0% mAdc								
		@Test					mAdc				
	Те	mperature	VIL	V _{IH}	V _{IH max}	V _{EE}	ار				
		(-55°C	-1.580	-0.990	-	-5. 2	-2.5				
	MC1230	} +25℃	-1.500	-0, 850	-0.700	-5.2	-2.5				
		(+125°C	-1.380	-0.700	-	-5.2	-2.5				
		(0°C	-1.525	-0.895	-	-5. 2	-2.5				
	MC1030		-1.500	-0.850	-0.700	-5.2	-2.5				
		(+75°C	-1.435	-0.775	-	-5.2	-2.5				
		Pin Under		TEST		E/CURRENT APPLIED LISTED BELOW:		V _{cc}			
Characteristic	Symbol	Test	V _{IL}	VIH	V _{IH max}	V _{EE}	١ _L	(Gnd)			
Power Supply Drain Current	I _E	7		-	-	1, 3, 4, 6, 7, 8, 10, 11, 13	=	14			
Input Current	I _{in}	1 3	-	-	1 3	3, 7 1, 7	- -	14 14			
Input Leakage Current	I _R	1 3	-	-	-	1, 3, 7 1, 3, 7		14 14			
Logical "1" Output Voltage	v _{OH} ‡	2 2	1 3	3 1	-	7 7	2 2	14 14			
Logical "0" Output Voltage	v _{OL}	2 2	1, 3	1, 3	-	7 7	-	14 14			
Switching Times			٧ _{١.} *	V _{IH} *	Pulse In	V _{EE} = -4.0 Vdc	Pulse Out	(+1.2 Vdc			
(Fan-Out = 3) Propagation Delay	t ₁₊₂ -	2	-	3	1	7	2	14			
	t ₁₋₂₊		-	3		1	lι				
	t ₁₊₂₊		3	-			[
	t ₁₋₂₋		3	-	1 1		<u> </u>				
	t ₃₊₂₋		-	1	3						
	t ₃₋₂₊		-	1	1 1						
	t ₃₊₂₊		1	-							
	t ₃₋₂₋		1	-							
Rise Time	t ₂₊		-	3	1						
	t ₂₊		1	-	3						
Fall Time	t ₂ -		-	3	1						
	t ₂ -	•	1	-	3	†	*	ļ +			

SWITCHING TIME WAVEFORMS

APPLICATIONS INFORMATION

The MC1030/MC1230 quad Exclusive OR gate is a high-speed device employing the series gating technique. The quad Exclusive OR (①) is useful in many applications such as data comparison, parity generation and checking, frequency mixing, decision circuitry, and code conversion circuitry. The output of each Exclusive OR is high if the two inputs are at different logic levels, while it is low if the inputs are at the same level.

Figure 1 illustrates the comparison of two 8-bit words. The OR output goes high if any Source "A" bit is not the same as the corresponding Source "B" bit. The comparison of two 16-bit words is possible by using two more MC1030/MC1230's, the other half of the

MC1004/MC1204, and ORing the two OR outputs together. Note that the MC1030/MC1230 gates are paired together (in Wired-OR configuration) to save extra inputs on the MC1004/MC1204, Typical propagation delay time from inputs to the output of the MC1004/MC1204 is 10 ns.

Figure 2 illustrates checking the bits of a word for odd parity; if the sum of the inputs is odd, the output will be high. (It is also possible to mix MC1030/MC1230 quad Exclusive OR gates and MC1031/MC1231 quad Exclusive NOR gates to obtain the same function.)

FIGURE 1 - DATA COMPARATOR

FIGURE 2 — 25 ns 16-BIT PARITY CHECKER (Odd Parity)

MC1031 MC1231

Four gate arrays designed to provide four Exclusive NOR functions. The output is high if and only if the two inputs are at the same logic level.

MC1031, MC1231 (continued)

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one gate. The other gates are tested in the same manner.

		Pin			MC12	31 Test	Limits					MC10:	31 Test	Limits		
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	75°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	I _E	7	-		-	33	-	-	m Adc	-	-	-	33	_	_	mAdo
Input Current	I _{in}	1 3	-	-	-	150 100	-	-	μ Adc μ Adc	-	-	-	150 100	-	-	μAdo μAdo
Input Leakage Current	$^{\mathrm{I}}\mathrm{_{R}}$	1 3	-	-	-	0.4 0.2	-	2.0 1.0	μ Adc μ Adc	-	-	-	0.4 0.2	-	2.0	μAdc μAdc
Logical ''1'' Output Voltage	v _{OH} ‡	2 2		-0.825 -0.825		-0.700 -0.700		-0.530 -0.530	Vdc Vdc	-0.895 -0.895	-0.740 -0.740			-0.775 -0.775	-0.615 -0.615	Vdc Vdc
Logical ''0'' Output Voltage	v _{OL}	2 2		-1.580 -1.580			-1.720 -1.720	-1.380 -1.380	Vdc Vdc	-1.830 -1.830	-1.525 -1.525	-1.800 -1.800			-1.435 -1.435	Vdc Vdc
Switching Times (Fan-Out = 3)			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
Propagation Delay	t ₁₊₂₋	2	5.0	8.5	5.0	8.5	6.0	10	ns	5.0	8.5	5.0	8.5	6.0	9.0	ns
	t ₁₋₂₊	1		8.0		8.0		9.0			8.0		8.0	5.0	8.5	1
	t ₁₊₂₊			8.0		8.0		9.0			8.0		8.0	5.0	8.5	
	t ₁₋₂₋		6.0	9.0	6.0	9.0		10		6.0	9.0	6.0	9.0	6.0	9.5	
	t ₃₊₂₋		5.0	8.5	5.0	8.5		10		5.0	8.5	5.0	8.5	6.0	9.0	
	t ₃₋₂₊			8.0		8.0		9.0			8.0		8.0	5.0	8.5	
	t ₃₊₂₊			8.0		8.0		9.0			8.0		8.0	5.0	8.5	
	t3-2-		6.0	9.0	6.0	9.0		10		6.0	9.0	6.0	9.0	6.0	9.5	
Rise Time	t ₂₊	-	5.0	8.5	5.0	8.5		9.5		5.0	8.5	5.0	8.5	6.0	9.0	
	^t 2+			8.0		8.0		9.0			8.0		8.0	5.0	8.5	
Fall Time	^t 2-			8.5		8.5		10		→ ↓	8.5	1	8.5	6.0	9.0	- 1
	t ₂₋		6.0	9.0	6.0	9.0	•	10	+	6.0	9.0	6.0	9.0	6.0	9.5	į.

 $^{^{\}ddagger V}OH}$ limits apply from no load (0 mA) to full load (-2.5 mA).

SWITCHING TIME TEST CIRCUIT @ 25°C

 $[*]V_{IL}$ or V_{IH} value as given plus +1.2 V

	TEST VOLTAGE/CURRENT VALUES								
		@Test			Vdc ±1		mAdc	i	
	Ter	mperature	V _{IL}	V _{IH}	V _{IH max}	V _{EE}	I _L		
		(-55°C	-1.580	-0.990	-	-5. 2	-2.5	- 1	
	MC1231	{ +25°C	-1.500	-0.850	-0.700	-5.2	-2.5	İ	
		(+125°C	-1.380	-0.700	-	-5.2	-2.5	}	
		(0°C	-1.525	-0.895	-	-5. 2	-2.5		
	MC1031	{ +25°C	-1.500	-0.850	-0.700	-5. 2	-2.5		
		(+75°C	-1.435	-0.775	-	-5. 2	-2.5		
		Pin		TEST		E/CURRENT APPLIED LISTED BELOW:		v _{cc}	
Characteristic	Symbol	Under Test	V _{IL}	V _{IH}	V _{IH max}	V _{EE}	Ιι	(Gnd)	
Power Supply Drain Current	I _E	7	-	-	-	1, 3, 4, 6, 7, 8, 10, 11, 13	-	14	
Input Current	I _{in}	1 3	-	- -	1 3	3, 7 1, 7	-	14 14	
Input Leakage Current	IR	1 3	-	-	-	1, 3, 7 1, 3, 7	-	14 14	
Logical ''1'' Output Voltage	v _{OH} ‡	2 2	1, 3	1, 3	-	7 7	2 2	14 14	
Logical "0" Output Voltage	v _{OL}	2 2	1 3	3 1	-	7 7	-	14 14	
Switching Times			V _{IL} *	V _{IH} *	Pulse In	V _{EE} = -4.0 Vdc	Pulse Out	(+1.2 Vdc)	
(Fan-Out = 3) Propagation Delay	t ₁₊₂₋	2	3	-	1	7	2	14	
	t ₁₋₂₊		3	-					
	t ₁₊₂₊		-	3			i l		
	t ₁₋₂₋		-	3	↓				
	t ₃₊₂₋		1	-	3				
	t ₃₋₂₊		1	-					
	t ₃₊₂₊		-	1					
	t ₃₋₂₋		-	1	+				
Rise Time	t ₂₊		3	-	1				
	t ₂₊		-	1	3				
Fall Time	t ₂ -		3	-	1		1 1		
	t ₂₋	+	-	1	3	•	<u>'</u>	'	

SWITCHING TIME WAVEFORMS

APPLICATIONS INFORMATION

The MC1031/MC1231 quad Exclusive NOR gate is obtained by changing circuit interconnections of the MC1030/MC1230 through use of a different metal mask. The quad Exclusive NOR (⊙) is useful for data comparison, parity generation and checking, decision circuitry, code conversion circuitry, and frequency mixing. The output of each Exclusive NOR is high if the two inputs are at the same logic levels. The Exclusive NOR is the logical complement or inversion of the Exclusive OR.

Figure 1 illustrates a controlled data inverter in which parallel data can be either inverted or not inverted with a single control level.

For example, the input information is passed directly to the output if C is at a high level. Exclusive OR gates may also be used to perform this function. The C input would be inverted for the same logic function.

Figure 2 illustrates checking the bits of a word for even parity; if the sum of the inputs is even, the output will be high. (It is also possible to mix MC1031/MC1231 quad Exclusive NOR gates and MC1030/MC1230 quad Exclusive OR gates to obtain the same function.)

FIGURE 1 - CONTROLLED DATA INVERTER

FIGURE 2 – 25 ns 16-BIT PARITY CHECKER (Even Parity)

MECL II MC1000/1200 series

85-MHz AC-COUPLED J-K FLIP-FLOPS

MC1013 MC1213

Designed for use at clock frequencies to 70 MHz minimum (85 MHz typical). Logic performing inputs (\overline{J} and \overline{K}) are available, as well as dc SET and RESET inputs.

MC1013, MC1213 (continued)

ELECTRICAL CHARACTERISTICS

		Pin		N	NC1213	Test	Limits				M	C1013	Test L	imits		
14		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	$I_{\mathbf{E}}$	7	-	-		29	-	-	mAdc	-	-	-	29	-	-	mAdc
Input Current	I _{in}	2	-	-		100	-	-	μAdc	-	-	-	100	-	-	μAdc
*		3 4	-	-		1	-	-		1 -	-	1 .	1 1	-	-	1
		5	-	_	-		-	_		_				-	-	
	1.0	6	-	-	-		-	-		-	-	-		-	-	
		8	-	-	-		-	-		-	-	-		-	-	1
		9	-	-	-	1	-	-		-	'-	-		-	-	i
		10	-	-	-		-	-		-	-	-	1 1	-	-	
		11	-	-	-		-	-	↓	1 :	_	1 -	1 1		_	
Input Leakage Current	I _R	Inputs*	-	-	-	0.2	-	1.0	μAdc	-	-	-	0. 2	-	1.0	μAdc
'Q'' Logical "1" Output Voltage‡	v _{OH} ‡	13	-0.990	-0.825	-0.850	-0. 700	-0. 700	-0. 530	Vdc	-0.895	-0.740	-0.850	-0.700	-0.775	-0. 615	Vdc
''Q'' Logical ''0'' Output Voltage	v _{OL}	13	-1.890	-1.580	-1.800	-1.500	-1.720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1. 435	Vdc
''Q'' Logical ''1'' Output Voltageţ	v _{OH} ‡	1	-0.990	-0.825	-0.850	-0. 700	-0. 700	-0.530	Vdc	-0.895	-0.740	-0.850	-0.700	-0.775	-0.615	Vdc
''Q'' Logical ''0'' Output Voltage	v _{ol}	1	-1.890	-1.580	-1.800	-1.500	-1. 720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1. 435	Vdc
''Q'' or ''Q'' Latch Voltage	v_L	2 12	-1.16 -1.16	-1. 34 -1. 34	-1.09 -1.09	-1. 21 -1. 21	-0. 93 -0. 93	-1.07 -1.07	Vdc Vdc	-1.11 -1.11	-1.25 -1.25	-1.09 -1.09	-1. 21 -1. 21	-1.02 -1.02	-1. 14 -1. 14	Vdc Vdc
Input Toggle Frequency (See Figures 3 & 4)	^f Tog	13	-	-	70	-	-	-	MHz	-	. · -	70	_	-	-	MHz
Sensitivity (No	-	1	-			igure 1		-		-		See Fi	gure 1-		-	
Toggle)		13	-		See F	igure 1		-				See Fi	gure 1-	-	-	
Sensitivity (Toggle)	_	1,13	_		See F	igure 2						See Fi	gure 2-			
Switching Times 4			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
Propagation Delay	t	1	6.0	8.5	6.0	8.5	8.0	10.5	ns	6.0	8.5	6.0	8.5	6.5	9.0	ns
sparfaction Delay	t ₆₊₁₊			"	"	1 1	7.5	-3.3	l Ï							Ĩ
	t ₆₊₁₋	1														
	^t 8+13+	13					8.0									
	t ₈₊₁₃₋	13	↓	+	+	♦	7.5	+		↓	+	+	1		. ↓	
Rise Time	0+13- t 1+	1	4.0	7.5	4.0	7.5	5.5	9.5		4.0	7.5	4.0	7.5	5.0	8.0	
	t ₁₃₊	13	4.0		4.0		5.5	9.5		4.0		4.0			8.0	
Fall Time	13+ t ₁₋	1	5.0		5.0		7.5	10		5.0		5.0			8.5	
	t ₁₃ -	13	5.0		5.0	} ↓	7.5	10	1	5.0		5.0	1		8.5	•

^{*} Individually test each input using the pin connections shown.

† V_{OH} limits apply from no load (0 mA) to full load (-2.5 mA).

(1) Vin(set) = V_{OH} then V_{OL}(max).

(2) Vin(reset) = V_{OH} then V_{OL}(max).

(3) Input voltage is adjusted to obtain dV···1··/dV_{in} = ∞.

(4) AC fan-out = 3

*			TEST VOLTAGE/CURRENT VALUES						
		@Test		Vdc ±1.09	%		mAdc		
		nperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	IL.		
		(−55°C	-5.2 to -1.405	-1.165 to -0.825	-	-5. 2	-2.5		
MC	1213	+25°C	-5.2 to -1.325	-1.025 to -0.700	-0. 700	-5. 2	-2.5		
		(+125°C	-5.2 to -1.205	-0.875 to -0.530	-	-5. 2	-2.5		
		(0°C	-5.2 to -1.350	-1.070 to -0.740	-	-5.2	-2.5		
MC	1013	+25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5. 2	-2.5		
		+75°C	-5.2 to -1.260	-0.950 to -0.615	. –	-5. 2	-2.5		
		Pin	TEST	VOLTAGE/CURRENT AP	PLIED TO P	INS LISTED BELOW:			
		Under							۷ _{cc}
Characteristic	Symbol	Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	I,	dV_in	(Gnd)
Power Supply Drain Current	I _E	7	_	-	-	2,3,4,5,6,7,8,9,10,11,12	-	-	14
Input Current	Iin	2	-	-	2	3, 4, 5, 6, 7, 8, 9, 10, 11, 12	-	-	14
	111	3 4	-	-	3 4	2, 4, 5, 6, 7, 8, 9, 10, 11, 12 2, 3, 5, 6, 7, 8, 9, 10, 11, 12	-	-	
		5	_	-	5	2, 3, 4, 6, 7, 8, 9, 10, 11, 12	-	-	
		6	-	-	6	2, 3, 4, 5, 7, 8, 9, 10, 11, 12	-	-	
		8 9		-	8 9	2, 3, 4, 5, 6, 7, 9, 10, 11, 12 2, 3, 4, 5, 6, 7, 8, 10, 11, 12	- 1	_	1 1
]		10	_	-	10	2, 3, 4, 5, 6, 7, 8, 9, 11, 12		_	
		11	-	-	11	2, 3, 4, 5, 6, 7, 8, 9, 10, 12	-	-	
Towns Topologica	т	12 Inputs*	-	-	12	2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	-		14
Input Leakage Current	I _R	Inputs*							
''Q'' Logical ''1'' Output Voltageţ	V _{OH} [‡]	13	-	-	2①	3, 4, 5, 6, 7, 8, 9, 10, 11, 12	13	-	14
"Q" Logical "0" Output Voltage	AOT	13	-	-	12②	2, 3, 4, 5, 6, 7, 8, 9, 10, 11	-	-	14
''Q'' Logical ''1'' Output Voltageţ	v _{OH} ‡	1	- ·	-	12②	2, 3, 4, 5, 6, 7, 8, 9, 10, 11	1	-	14
''Q'' Logical ''0'' Output Voltage	V _{OL}	1	-	-	2①	3, 4, 5, 6, 7, 8, 9, 10, 11, 12	-	-	14
''Q'' or ''Q'' Latch Voltage	v_L	2 12	-	-	-	3, 4, 5, 6, 7, 8, 9, 10, 11 3, 4, 5, 6, 7, 8, 9, 10, 11	-	2 ³ 12 ³	14 14
Input Toggle		1	Pulse In	Pulse Out		V _{EE} = -4.0 Vdc			(+1.2V)
Frequency (See Figures 3 & 4)	f _{Tog}	13	6,8	13		2,3,4,5,7,9,10,11,12	-	-	14
Sensitivity (No	-	1	6,8	1	-		-	-	
Toggle)		13	6, 8	13	-		-	-	
Sensitivity (Toggle)	-	1, 13	6,8	1,13	-	*	-	-	'
Switching Times 4									
Propagation Delay	t ₆₊₁₊	1	6	1	-	2, 3, 4, 5, 7, 9, 10, 11, 12	-	-	14
	t ₆₊₁₋	1	6	1	-		-	-	
	t ₈₊₁₃₊	13	8	13	-			-	
		13	8	13	-		-	-	
Rise Time	^t 8+13-	1	6	1	_		-	_	
Rise lime	t ₁₊		8		1			_	
	^t 13+	13		13	1		-	-	
Fall Time	t ₁₋	1	6	1	-		-	-	
1	t ₁₃₋	13	8	13	-	•	-	_	'

FIGURE 1 - SENSITIVITY (NO TOGGLE)

FIGURE 2 - SENSITIVITY (TOGGLE)

MC1013, MC1213 (continued)

FIGURE 3 - INPUT WAVEFORM TO ESTABLISH MINIMUM TOGGLE FREQUENCY

FIGURE 4 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATIONS INFORMATION

The MC1013/MC1213 J-K flip-flop is used in both counter and shift register applications. Typically the flip-flop will shift and toggle at 85 MHz. Flip-flop operation is illustrated by the curves shown on page 2-125. For a complete characterization of the device, refer to Application Note AN-280. Circuit operation is essentially the same as the MC314/MC364 flip-flop which is explained in Application Note AN-244. Due to the four J and four K inputs, many clocked and ripple through counters may be built without additional logic. Figure 5 is a table illustrating the J and K input equations for clocked counters, divide by 3 through 10. Figure 6 is a clocked BCD counter utilizing the logic equations shown in the table.

FIGURE 5 - INPUT EQUATIONS FOR CLOCKED COUNTERS

Divide By:	J̄Α	Κ _Α	ĴΒ	\overline{K}_B	<u>Г</u> С	\overline{K}_C	ŪD	\overline{K}_D
3	В	0	Ā	0				
4	0	0	Ā	Ā				
5	С	0	Ā	Ā	Ā+B	0		
6	0	0	Ā+C	Ā	Ā+B	Ā		
7	вс	0	Ā	Ā+C	Ā+B	B		
8	0	0	Ā	Ā	Ā+B	Ā+B		
9	D	0	Ā	Ā	Ā+B	Ā+B	Ā+B+C	0
10	0	0	Ā+D	Ā	Ā+B	Ā+B	Ā+B+C	Ā

0 (logic zero) \leq -1.6 V (pin usually tied to V_{EE}). All but $\dot{\overline{}}$ 7 may be obtained without additional gating. All \overline{J} inputs and all \overline{K} inputs are ORed together.

FIGURE 6 - CLOCKED BCD COUNTER USING MECL J-K FLIP-FLOPS

MC1013, MC1213 (continued)

FIGURE 7 - TYPICAL TOGGLE FREQUENCY versus VFF

FIGURE 8 - TYPICAL AND WORST CASE TOGGLE FREQUENCY versus AMBIENT TEMPERATURE

ALL UNUSED INPUTS RETURNED TO VEE. $V_{\text{EE}} = -5.2 \text{ V, } \text{ in} = 800 \text{ mV, } \text{ T}_{\text{A}} = 25^{\circ}\text{C} \text{ unless}$ otherwise noted. $\qquad \qquad \text{WORST CASE} \qquad ----\text{TYPICAL}$

FIGURE 10 - TIME TO DOMINATE

FIGURE 9 - AMPLITUDE versus RISE TIME TO INSURE TOGGLE

FIGURE 11 - PROPAGATION DELAY TIMES, RISE TIME, FALL TIME versus TEMPERATURE

120-MHz AC-COUPLED J-K FLIP FLOPS

MECL II MC1000/1200 series

MC1027

Designed for use at clock frequencies to 100 MHz minimum (120 MHz typical). Logic performing inputs (\overline{J} and \overline{K}) are available, as well as dc SET and RESET inputs.

ELECTRICAL CHARACTERISTICS

		Pin			AC1027	Test L	imits		
4		Under	0	°C	+2	5°C	+7	5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	I _E	7	-	-	-	58	-	-	mAdc
Input Current	I _{in}	2	-	-	-	200	-	-	μAdc
		3	-	-	-	1 1	-	-	
		5	_	_			_	- 1	
		6	l -	-	_		-		
		8	۱ -	۱ -			_	_	
		9			-		-	-	
		10	-		-	[.]	-	-	
		11	-	-1	-		-	-	
		12	-	-	-	٠,	-	-	
Input Leakage Current	I_R	Inputs*	-	-		1.0	-	5.0	μAdc
'Q" Logical "1" Output Voltage‡	v _{OH} ‡	13	-0. 895	-0. 740	-0.850	-0. 700	-0, 775	-0.615	Vdc
'Q'' Logical ''0'' Output Voltage	v_{OL}	13	-1.830	-1. 525	-1.800	-1.500	-1.760	-1.435	Vdc
'Q'' Logical ''1'' Output Voltage†	v _{OH} [‡]	1	-0.895	-0. 740	-0.850	-0. 700	-0. 775	-0.615	Vdc
'Q'' Logical ''0'' Output Voltage	v _{ol}	1	-1.830	-1.525	-1.800	-1.500	-1. 760	-1. 435	Vdc
'Q'' or "Q'' Latch Voltage	$v_{_{ m L}}$	2 12	-1. 13 -1. 13	-1.31 -1.31	-1, 11 -1, 11	-1. 27 -1. 27	-1.04 -1.04	-1.21 -1.21	Vdc Vdc
Input Toggle Frequency (See Figures 3 & 4)	f _{Tog}	13	-	-	100	-	-	1	MHz
Sensitivity (No	_	1	-		See Fi	gure 1		-	
Toggle)		13	 -			gure 1		-	
Sensitivity (Toggle)	-	1, 13	-		See Fi	gure 2			
Switching Times 4			Тур	Max	Тур	Max	Тур	Max	
Propagation Delay	^t 6+1+	1	4.0	6.0	4.0	6.0	5.0	8.0	ns
		1	1		1 1				
	^t 6+1-		1 1 .	.					
	t ₈₊₁₃₊	13							
	^t 8+13-	13	.						
Rise Time	t	1							
Mee IIIIC	t ₁₊	13							
Fall Time	^t 13+ ^t 1-	1							
	t ₁₃ -	13							↓

^{*}Individually test each input using the pin connections shown.

† V_{OH} limits apply from no load (0 mA) to full load (-2.5 mA)

① V_{in(set)} = V_{OH} then V_{OL(max)}.

② V_{in(reset)} = V_{OH} then V_{OL(max)}.

③ Input voltage is adjusted to obtain dV_{"1"}/dV_{in} = ∞.

⁴ AC fan-out = 3

			Vdc ±1.0% mAdc								
		@Test					mAdc				
	Te	emperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	i,	1			
		0°C	-5.2 to -1.350	-1.070 to -0.740	-	-5.2	-2.5				
		+25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5.2	-2.5]			
		+75°C	-5.2 to -1.260	-0.950 to -0.615	-	-5.2	- 2. 5				
		Pin	TEST	VOLTAGE/CURRENT A	PPLIED TO	PINS LISTED BELOW:					
Characteristic	Symbol	Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	I <u>L</u>	dV _{in}	V _{cc} (Gnd)		
Power Supply Drain Current	$^{\mathrm{I}}\mathrm{E}$	7	-	-	-	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	-	-	14		
Input Current	Iin	2	-	-	2	3, 4, 5, 6, 7, 8, 9, 10, 11, 12	-	-	14		
1		3 4	-	-	3 4	2, 4, 5, 6, 7, 8, 9, 10, 11, 12 2, 3, 5, 6, 7, 8, 9, 10, 11, 12	٠ -	-			
		5	1 -	_	5	2, 3, 5, 6, 7, 8, 9, 10, 11, 12	_	1			
1		6	-	_	6	2, 3, 4, 5, 7, 8, 9, 10, 11, 12		ΙĪ	1		
		8	-	_	8	2, 3, 4, 5, 6, 7, 9, 10, 11, 12	_	-			
		9	-	_	9	2, 3, 4, 5, 6, 7, 8, 10, 11, 12	_	-	1		
1		10	-	-	10	2, 3, 4, 5, 6, 7, 8, 9, 11, 12	-	-			
1		11	-	-	11	2, 3, 4, 5, 6, 7, 8, 9, 10, 12	-	-			
1		12	-	-	12	2, 3, 4, 5, 6, 7, 8, 9, 10, 11	-	-	↓		
Input Leakage Current	I_R	Inputs*	-	-	_	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	-	-	14		
"Q" Logical "1" Output Voltage‡	v _{OH} [‡]	13	-		2 ①	3, 4, 5, 6, 7, 8, 9, 10, 11, 12	13	-	14		
''Q'' Logical ''0'' Output Voltage	v_{OL}	13		-	12②	2, 3, 4, 5, 6, 7, 8, 9, 10, 11	-	-	14		
''Q'' Logical ''1'' Output Voltage‡	V _{OH} [‡]	1	-	-	12②	2, 3, 4, 5, 6, 7, 8, 9, 10, 11	1	-	14		
''Q'' Logical ''0'' Output Voltage	V _{OL}	1	-	-	2 ①	3,4,5,6,7,8,9,10,11,12	-	-	14		
''Q'' or ''Q'' Latch Voltage	v_L	2 12	<u>-</u> -	· <u>-</u>	- -	3,4,5,6,7,8,9,10,11 3,4,5,6,7,8,9,10,11	-	2 3 12 3	14		
Input Toggle			Pulse In	Pulse Out							
Frequency (See Figures 3 & 4)	$^{\rm f}{ m Tog}$	13	6,8	13	-	2,3,4,5,7,9,10,11,12	-	-	14		
Sensitivity (No	_	1 1	6,8	1	-		-	- 1	14		
Toggle)		13	6,8	13	-	1	-	- 1	1 7		
Sensitivity (Toggle)	_	1,13	6,8	1.13	-	1 +	-	-	1 +		
Switching Times 4			,	,		V _{EE} = -4.0 Vdc			+1.2V		
Propagation Delay	t ₆₊₁₊	1	6	1	-	2, 3, 4, 5, 7, 9, 10, 11, 12	-	-	14		
l i	t ₆₊₁₋	1	6	1	-		_	_			
1		1	1					ĺ			
1	t ₈₊₁₃₊	13	8	13	-		-	i -			
	t ₈₊₁₃₋	13	8	13	-		-	-			
Rise Time	t ₁₊	1	6	1	_		_	-			
	t ₁₃₊	13	8	13	_		_	-			
Fall Time	t ₁₋	1	6	1	_		_	-			
			8			1		ĺ	$ \perp $		
1	^t 13-	13	°	13	-	,	-	ı -	7		

TEST VOLTAGE/CURRENT VALUES

FIGURE 1 - SENSITIVITY (NO TOGGLE)

FIGURE 2 - SENSITIVITY (TOGGLE)

MC1027 (continued)

FIGURE 3 - INPUT WAVEFORM TO ESTABLISH MINIMUM TOGGLE FREQUENCY

FIGURE 4 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATIONS INFORMATION

The MC1027 flip-flop is obtained by reducing all resistor values of the MC1013 by a factor of two. The resultant flip-flop is no longer limited by circuit design, but by device speeds. Typically the MC1027 will operate 50% faster than the MC1013. Power dissipation is doubled over that of the MC1013, but circuit operation is the same. The MC1023 clock driver is recommended for driving the MC1027 to its full capability. (The MC1023 high-speed clock driver exhibits propagation delay and rise times of about 2.0 ns when driving five flip-flops.) Maximum operating frequency depends upon layout techniques. Short lead lengths with low impedance lines are recommended. A 100+MHz shift counter is shown in Figure 5.

Operation of the MC1027 is very uniform with negligible variation observed with temperature change from 0° C to $+75^{\circ}$ C. Propagation delay is nominally 4.5 ns, with rise and fall times varying from 3.5 to 4.0 ns with a load of another flip-flop on the output.

FIGURE 5 - 100 + MHz "SWITCH-TAIL" RING COUNTER

DUAL R-S FLIP-FLOPS WITH POSITIVE CLOCK

MC1014 MC1214

Two dc Set-Reset flip-flops with a positive clock input provided for each flip-flop. This device is useful as a dual storage element and may be teamed with the MC1015/MC1215 for shift register functions with a minimum number of packages.

MC1014, MC1214 (continued)

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one flip-flop. The other flip-flop is tested in the same manner.

		Pin			MC12	214 Test	Limits					MC10	14 Test	Limits		
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	$^{\mathrm{I}}\mathrm{_{E}}$	7	-	-	-	36	-	-	mAdc	-	-	-	36	-	-	mAdc
Input Current	I _{in}	4 5 6	-	- -	-	100 150 150	- - -	- - -	μAdc	- - -	- - -	-	100 150 150	-	- - -	μ A dc
Input Leakage Current	I_R	Inputs*	-	-	-	0.2	-	1.0	μAdc	-	-	1	0.2	-	1.0	μAdc
"Q" Logical "1" Output Voltage‡	v _{OH} ‡	2	-0. 990	-0.825	-0. 850	-0.700	-0. 700	-0. 530	Vdc	-0.895	-0. 740	-0.850	-0. 700	-0.775	-0. 615	Vdc
"Q" Logical "0" Output Voltage	v _{OL}	2	-1.890	-1.580	-1.800	-1.500	-1. 720	-1.380	Vdc	-1,830	-1. 525	-1.800	-1.500	-1.760	-1. 435	Vdc
''Q'' Logical ''1'' Output Voltage‡	v _{OH} ‡	1	-0. 990	-0.825	-0.850	-0.700	-0. 700	-0. 530	Vdc	-0.895	-0. 740	-0.850	-0. 700	-0.775	-0.615	Vdc
''Q'' Logical ''0'' Output Voltage	v_{OL}	1	-1.890	-1.580	-1. 800	-1.500	-1. 720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1.435	Vdc
Switching Times (Fan-Out = 3) Clock Inputs			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
Propagation Delay	t 4+1-	1 1	6. 0 5. 0	9.0 8.5	6.0 5.0	9.0 8.5	7.0	10.5	ns	6.0 5.0	9.0	6.0 5.0	9.0 8.5	6.0	9.5	ns
	t ₄₊₁₊	2	5.0	8.5	5.0	8.5				5.0	8.5	5.0	8.5			
	t ₄₊₂₊ t ₄₊₂₋	2	6.0	9.0	6.0	9.0		•		6.0	9.0	6.0	9.0		+	
Rise Time	^t 1+	1 2						10.0 10.0						7.0	10.0	
Fall Time	^t 2+ ^t 1-	1	5.0	8.5			8.0	11.5								
Set-Reset Inputs	^t 2-	2	5.0	8.5	•	· ·	8.0	11.5	•	'		,	'		, , , , , , , , , , , , , , , , , , ,	,
Propagation Delay	t ₆₊₁₋	1	5.0	8.0	5.0	8.0	7.0	10.5 10.0	ns	5.0	8.0	5.0	8.0	6.0	9.0 8.5	ns
	t ₅₊₁₊ t ₆₊₂₊	2						10.0			}				8.5	
	^t 5+2-	2	•	,		,	*	10.5			•	6.0	9.0	7.0	9.0 9.5	
Rise Time	t ₁₊	1 2	6.0	9. 0 9. 0	6.0	9. Q 9. 0	8.0	10.0		6.0	9.0	6.0	9.0	7.0	9.5	
Fall Time	^t 2+ ^t 1-	1	5.0	8.5	5.0	8.5	7.0	11.5		5.0	8.5	5.0	8.5	6.0	10.0	
	t ₂ -	2	5.0	8.5	5.0	8.5	7.0	11.5		5.0	8.5	5.0	8.5	6.0	10.0	+

^{*}Individually test each input using the pin connections shown.

APPLICATIONS INFORMATION

The MC1014/MC1214 is a dual R-S flip-flop with a positive clock input for each flip-flop. An extra level of gating is accomplished with only 2.0 ns increase in propagation delay. This device may be used with the MC1015/MC1215 negative-clock R-S flip-flop in a single-phase clocked master-slave type of shift register as shown in Figure 1.

[†] VOH limits apply from no load (0 mA) to full load (-2.5 mA).

				TEST VOLTAGE	/CURRENT \	/ALUES			
		@Test		Vdc ±1.09	6		$V \pm 50 \text{ mV}$	mAdc	
		mperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	V _{BB}	Ιι	
		(−55°C	-5.2 to -1.405	-1.165 to -0.825	-	-5.2	-1.270	-2.5	
Μ	IC1214	} +25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5.2	-1.175	-2.5	
		(+125°C	-5.2 to -1.205	-0.875 to -0.530	-	-5.2	-1.025	-2.5	
		(0°C	-5.2 to -1.350	-1.070 to -0.740	-	-5.2	-1.210	-2.5	ĺ
N	IC1014	} +25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5.2	-1. 175	-2. 5	
		(+75°C	-5.2 to -1.260	-0.950 to -0.615	-	-5.2	-1.115	-2.5	
		Pin	T	EST VOLTAGE/CURREN	T APPLIED 1	O PINS LISTED BELOW	:		
tic	Symbol	Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	V _{BB}	l _L	((
Orain	I _E	7	-	4, 10	-	5, 6, 7, 8, 9	-	-	

_		(T/3 C		-	1				_			
		Pin	TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW:									
Characteristic	Symbol	Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	V _{BB}	I _L	V _{CC} (Gnd)			
Power Supply Drain Current	I_E	7	-	4, 10	-	5, 6, 7, 8, 9	-	-	14			
Input Current	I _{in}	4 5 6	-	- - -	4 4,5 4,6	5, 6, 7, 8, 9, 10 6, 7, 8, 9, 10 5, 7, 8, 9, 10	- - -	-	14 14 14			
Input Leakage Current	I_R	Inputs*	-	-	-	4, 5, 6, 7, 8, 9, 10	-	-	14			
''Q'' Logical ''1'' Output Voltage‡	v _{OH} ‡	2	-	4,6	-	5, 7, 8, 9, 10	5	2	14			
''Q'' Logical ''0'' Output Voltage	v _{ol}	2	-	4,5	-	4, 7, 8, 9, 10	6	-	14			
"Q" Logical "1" Output Voltage‡	v _{OH} ‡	1	-	4,5	-	4, 7, 8, 9, 10	6	1	14			
''Q'' Logical ''0'' Output Voltage	V _{OL}	1	-	4, 6	-	5, 7, 8, 9, 10	5	-	14			
Switching Times (Fan-Out = 3) Clock Inputs			Pulse In	V _{IH min} +1.2 Vdc	Pulse Out	V _{EE} = -4.0 Vdc			(+1.2V			
Propagation Delay	t ₄₊₁₋	1	4	-	1	5, 6, 7, 8, 9, 10	-	-	14			
	t ₄₊₁₊	1		-	1		-	-				
	t ₄₊₂₊	2		-	2 2		-	-				
n. m	t ₄₊₂₋	2 1		-	1		_					
Rise Time	t ₁₊	2		_	2		_					
Fall Time	t2+	1		_	1		_	-				
	t ₁₋ t ₂₋	2	1	-	2	+	-	-	+			
Set-Reset Inputs Propagation Delay	t ₆₊₁₋	1	6	4	-	7, 8, 9, 10	-	-	14			
110paga	t ₅₊₁₊	1	5		1		-	-				
	t ₆₊₂₊	2	6		2		-	-				
	t ₅₊₂₋	2	5		2		-	-				
Rise Time	t ₁₊	1	6		1		-	-				
	t ₂₊	2			2		-	-				
Fall Time	t ₁₋	1			1		-	-				
1	t ₂ _	2	<u>'</u>	7	2	T	-					

FIGURE 1 - MC1014/MC1214 AND MC1015/ MC1215 CONNECTED TO MAKE TWO MASTER-SLAVE SHIFT REGISTER ELEMENTS

MC1014, MC1214 (continued)

SWITCHING TIME TEST CIRCUIT $T_A = 25^{\circ}C$

SWITCHING TIME DEFINITIONS AND TIMING DIAGRAM

DUAL R-S FLIP-FLOPS WITH NEGATIVE CLOCK

MC1015 MC1215

Two dc Set-Reset flip-flops with a negative clock input provided for each flip-flop. This unit is useful as a dual storage element and may be teamed with the MC1014/MC1214 for shift register functions with a minimum number of packages.

MC1015, MC1215 (continued)

Q С

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one flip-flop. The other flip-flop is tested in the same manner.

		Pin	MC1215 Test Limits							MC1015 Test Limits						
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	I _E	7	-	-	-	36	-	-	mAdc	-	-	-	36	-	-	mAdc
Input Current	I _{in}	4 5 6	-	-	- - -	100 150 150	-	-	μAdc	- - -	- - -	- - -	100 150 150	-	- - -	μAdc
Input Leakage Current	Inputs*	4,5,6	-	-	-	0.2	-	1.0	μAdc	-	-	-	0.2	-	1.0	μAdc
"Q" Logical "1" Output Voltage‡	v _{OH} ‡	2	-0. 990	-0.825	-0.850	-0. 700	-0. 700	-0.530	Vdc	-0.895	-0.740	-0.850	-0. 700	-0.775	-0.615	Vdc
''Q'' Logical ''0'' Output Voltage	v _{ol}	2	-1.890	-1.580	-1.800	-1.500	-1. 720	-1. 380	Vdc	-1.830	-1.525	-1.800	-1.500	-1. 760	-1. 435	Vdc
''Q'' Logical ''1'' Output Voltage‡	v _{OH} ‡	1	-0.990	-0.825	-0. 850	-0. 700	-0. 700	-0. 530	Vdc	-0.895	-0. 740	-0.850	-0. 700	-0. 775	-0. 615	Vdc
''Q'' Logical ''0'' Output Voltage	v _{OL}	1	-1.890	-1.580	-1.800	-1.500	-1. 720	-1. 380	Vdc	-1.830	-1.525	-1.800	-1. 500	-1.760	-1.435	Vdc
Switching Times (Fan-Out = 3) Clock Inputs			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
Propagation Delay	^t 4-1-	1	6.0	10.0	6.0	10.0	8.0	12.0	ns	6.0	10.0	6.0	10.0	7.0	11.0	ns
	t ₄₋₁₊	1	5.0	8.5	5.0	8.5	7.0	10.5		5.0	8.5	5.0	8.5	6.0	9.5	
	t ₄₋₂₊	2	5.0	8.5	5.0	8.5	7.0	10.5		5.0	8.5	5.0	8.5	6.0	9.5	
	^t 4-2-	2	6.0	10.0	6.0	10.0	8.0	12.0		6.0	10.0	6.0	10.0	7.0	11.0	
Rise Time	t ₁₊ t ₂₊	1 2														
Fall Time	t ₁ -	1	5.0	8.5	5.0	8.5	7.0	11.0		5.0	8.5	5.0	8.5	6.0	9.5	
	t ₂ -	2	5.0	8.5	5.0	8.5	7.0	11.0	↓	5.0	8.5	5.0	8.5	6.0	9.5	↓
Set-Reset Inputs Propagation Delay	t ₆₊₁₋ t ₅₊₁₊	1	5.0	8.0	5.0	8.0	7.0	11.0	ns	5.0	8.0	5.0	8.0	6.0	9.0	ns
	t ₆₊₂₊ t ₅₊₂₋	2 2														
Rise Time	t ₁₊	1	6.0	9.0	6.0	9.0				6.0	9.0	6.0	9.0	7.0	10.0	
	t ₂₊	2	6.0	9.0		9.0	↓	. ↓			9.0		9.0		-	
Fall Time	t ₁ -	1	5.0	8.0		8.5	8.0	11.5			8.5		8.5			
	t ₂ -	2	5.0	8.0	*	8.5	8.0	11.5	7	٧ ا	8.5	•	8.5	'	•	, ,

APPLICATIONS INFORMATION

The MC1015/MC1215 is a dual R-S flip-flop with a negative clock input for each flip-flop. An extra level of gating is accomplished with only 2.0 ns increase in propagation delay. This device may be used with the MC1014/MC1214 positive-clock R-S flip-flop in a single-phase clocked master-slave type of shift register as shown in Figure 1.

^{*} Individually test each input using the pin connections shown. $\ddagger V_{OH}$ limits apply from no load (0 mA) to full load (-2.5 mA).

				TEST VOLTAGE	CURRENT \	/ALUES			
		@Test		Vdc ±1.0)%		±50 mV	mAdc	
		mperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	V _{BB}	ار	
		(−55°C	-5.2 to -1.405	-1.165 to -0.825	-	-5.2	-1. 270	-2.5	
M	1215	} +25℃	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5.2	-1. 175	-2.5	
		(+125°C	-5. 2 to -1. 205	-0.875 to -0.530	-	-5.2	-1.025	-2.5	
		(0°C	-5. 2 to -1. 350	-1.070 to -0.740	- 1	-5.2	-1.210	-2.5	
M	C1015	} +25°C	-5. 2 to -1. 325	-1.025 to -0.700	-0.700	-5.2	-1.175	-2.5	
•••		+75°C	-5.2 to -1.260	-0.950 to -0.615	-	-5.2	-1.115	-2.5	
		Pin	TE	ST VOLTAGE/CURRENT	APPLIED TO	PINS LISTED BELOW:]
		Under		V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	V _{BB}	l _L	V _{cc} (Gnd)
Characteristic	Symbol	Test	V _{IL min} to V _{IL max}		'IH max	5, 6, 7, 8, 9	- 88	1	14
Power Supply Drain Current	I _E	7	-	4, 10	-		-		
Input Current	I _{in}	4	-	-	4	5, 6, 7, 8, 9, 10		-	14 14
	•••	5 6	-		5 6	4, 6, 7, 8, 9, 10 4, 5, 7, 8, 9, 10	_	-	14
Input Leakage Current	Inputs*	4, 5, 6	-	-	-	4, 5, 6, 7, 8, 9, 10	-	-	14
"Q" Logical "1" Output Voltage‡	v _{OH} ‡	2	4	6	-	5, 7, 8, 9, 10	5	2	14
"Q" Logical "0" Output Voltage	v _{OL}	2	4	5	-	4, 7, 8, 9, 10	6	-	14
"Q" Logical "1" Output Voltage‡	v _{OH} [‡]	1	4	5	-	4, 7, 8, 9, 10	6	1	14
"Q" Logical "0" Output Voltage	v _{OL}	1	4	6	-	5, 7, 8, 9, 10	5	-	14
Switching Times			V _{IL max} +1.2 Vdc	Pulse In	Pulse Out	$V_{EE} = -4.0 \text{ Vdc}$			+1.2V
(Fan-Out = 3) Clock Inputs Propagation Delay				4	1	5, 6, 7, 8, 9, 10	.	_	14
Propagation Delay	t4-1-	1 1	_	ĺ	1	1	-	-	
	t 4-1+	2			2		_	_	
	t ₄₋₂₊	2	<u> </u>		2		_	-	
	t ₄₋₂₋	1 1	-		1		_	_	11
Rise Time	^t 1+	1	-		2			_	1 1
ļ	^t 2+	2	-		1			_	
Fall Time	t ₁ -	1	-		1	1	_		
	t ₂ -	2	-	•	2	V			<u> </u>
Set-Reset Inputs Propagation Delay	t ₆₊₁₋	1	4	6	1	7, 8, 9, 10	-	-	14
	t ₅₊₁₊	1		5	1		-	-	1 1
1	t ₆₊₂₊	2		6	2		-	-	
	t ₅₊₂₋	2		5	2		-	-	
Rise Time		1		6	1		-	-	
Tube Time	t ₁₊	2			2		-	_	
Fall Time	^t 2+	1			1		-	_	
rall lime	^t 1-	1		1				_	↓

FIGURE 1 - MC1014/MC1214 AND MC1015/ MC1215 CONNECTED TO MAKE TWO MASTER-SLAVE SHIFT REGISTER ELEMENTS

MC1015, MC1215 (continued)

SWITCHING TIME TEST CIRCUIT $T_A = 25^{\circ}C$

SWITCHING TIME DEFINITIONS AND TIMING DIAGRAM

DUAL R-S FLIP-FLOPS WITH SINGLE RAIL INPUT AND NEGATIVE CLOCK

MC1016 MC1216

Two dc storage flip-flops with a positive clock input provided for each flip-flop. This device is useful as a dual storage element requiring only a single rail input, as a memory data register, a sample and hold register, or as a clocked R-S flip-flop with no undefined logic state.

MC1016, MC1216 (continued)

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one flip-flop. The other flip-flop is tested in the same manner.

		Pin			MCI	216 Te	216 Test Limits					MC1016 Test Limits						
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit		
Power Supply Drain Current	I _E	7	-	-	-	36	-	-	mAdc	-	-	-	36	-	-	mAdc		
Input Current	In	4 5	-	-	-	100 150	-	-	μAdc μAdc	-	-	-	100 150	-	-	μAdc μAdc		
Input Leakage Current	I_R	4 5	-	-	-	0.2 0.2	-	1. 0 1. 0	μAdc μAdc	-	-	-	0. 2 0. 2	-	1.0 1.0	μAdc μAdc		
"Q" Logical "1" Output Voltage‡	v _{OH} ‡	1	-0. 990	-0. 825	-0.850	-0. 700	-0.700	-0.530	Vdc	-0.895	-0. 740	-0.850	-0. 700	-0. 775	-0. 615	Vdc		
''Q'' Logical ''0'' Output Voltage	v _{OL}	1	-1.890	-1.580	-1.800	-1.500	-1. 720	-1.380	Vdc	-1.830	-1. 525	-1.800	-1.500	-1. 760	-1. 435	Vdc		
"Q" Logical "1" Output Voltage‡	v _{OH} ‡	2	-0. 990	-0. 825	-0.850	-0.700	-0.700	-0. 530	Vdc	-0. 895	-0. 740	-0.850	-0. 700	-0. 775	-0. 615	Vdc		
''Q'' Logical ''0'' Output Voltage	V _{OL}	2	-1.890	-1. 580	-1.800	-1.500	-1. 720	-1.380	Vdc	-1.830	-1. 525	-1.800	-1. 500	-1.760	-1. 435	Vdc		
Switching Times (Fan-Out = 3)			Тур	Max	Тур	Max	Тур	Max	·	Тур	Max	Тур	Max	Тур	Max			
Clock Inputs Propagation Delay	t	1	6.0	9. 0	6.0	9.0	7.0	10.5	ns	6.0	9.0	6.0	9.0	6.0	9.5	ns		
	^t 4+1- ^t 4+1+	1	5.0	8. 0	5.0	8. 0	6.0	9. 5	Ĩ	5.0	8.0	5.0	8.0	5.0	8.5	l Ï		
	t ₄₊₂₊	2	5.0	8.0	5.0	8.0	6.0	9.5		5.0	8.0	5.0	8.0	5.0	8. 5			
,	t ₄₊₂₋	2	6.0	9.0	6.0	9.0	7.0	10.5		6.0	9.0	6.0	9.0	6.0	9.5			
Rise Time	t ₁₊	1	5.0	7.5	5.0	7.5	6.0	9.5		5.0	7.5	5.0	7.5	5.0	8.0			
	t ₂₊	2	5.0	7.5	5.0	7.5	6.0	9.5		5.0	7.5	5.0	7.5	5.0	8.0			
Fall Time	t ₁₋	1	6.0	8.5	6.0	8.5	7.0	10.5		6.0	8.5	6.0	8.5	6.0	9.5			
	t ₂₋	2	5.0	8.5	5.0	8.5	7.0	10.5	+	5.0	8.5	5.0	8.5	6.0	9.5	•		
Set Inputs			5. 0	0.0	5.0	0.0					0.0		0.0					
Propagation Delay	t ₅₊₁₊	1	5.0	8.0	5.0	8.0	6.0	9.5 10.5	ns	5.0	8.0	5. 0	8.0	5.0	8. 5 	ns		
	^t 5-1-	1 2					7.0	10.5										
	^t 5+2-	2					6.0	9.5										
Rise Time	t ₅₋₂₊	1		7.5		7.5	0.0	9.0			7.5		7.5		▼ 8.0			
mac Time	t ₁₊	2		7.5		7.5		9.0			7.5		7.5		8.0			
Fall Time	t ₂₊	1		8.5	6.0	9.0	8.0	11		6.0	9.0	6.0	9.0	7.0	10			
	^t 1- ^t 2-	2		8.5	6.0	9.0	8.0	11	1 1	6.0	9.0	6.0	9.0	7.0	10	1 1		

 $[\]ensuremath{^{\mbox{t\,V}}}\xspace$ OH limits apply from no load (0 mA) to full load (-2.5 mA).

	TEST VOLTAGE/CURRENT VALUES											
@Test		Vdc ±1.0%	, •		mAdc							
Temperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	ار							
(−55°(-5. 2 to -1. 405	-1.165 to -0.825	-	-5.2	-2.5							
MC1216 +25°C	-5. 2 to -1. 325	-1.025 to -0.700	-0.700	-5.2	-2.5							
(+125°C	-5. 2 to -1. 205	-0.875 to -0.530	-	-5.2	-2.5]						
(0°(-1.070 to -0.740	-	-5.2	-2.5	1						
MC1016 +25°		-1.025 to -0.700	-0.700	-5.2	-2.5	1						
+75°		-0.950 to -0.615	-	-5.2	-2.5							
<u> </u>	TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW:											
Characteristic	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	I _L	V _{CC} (Gnd)						
Power Supply Drain Current		4,10	-	5,7,9	-	14						
Input Current	- -	-	4 4, 5	5,7,9,10 7,9,10	-	14 14						
Input Leakage Current	-	-	-	4,5,7,9,10 4,5,7,9,10	-	14 14						
"Q" Logical "1" Output Voltage‡	-	4,5	-	7,9,10	1	14						
"Q" Logical "0" Output Voltage	5	4	-	7,9,10	-	14						
"Q" Logical "1" Output Voltage‡	5	4	-	7,9,10	2	14						
"Q" Logical "0" Output Voltage	-	4,5	-	7,9,10	-	14						
Switching Times (Fan-Out = 3)	Pulse In	V _{IH min} +1.2 Vdc	Pulse Out	$V_{EE} = -4.0 \text{ Vdc}$		(+1.2V)						
Clock Inputs Propagation Dela	11	-	1	7,9,10	-	14						
		-	1		-							
		-	2		-							
		-	2		-	1 1 1						
Rise Time		-	1		-	111						
		-	2		-	1 1						
Fall Time		_	1									
ļ			2	•	-	+						
Set Inputs			 	1	-							
Propagation Dela	y 5	4	1	7, 9, 10	-	14						
			1		-	1 1 1						
			2		-							
			2		-							
Rise Time			1		-							
			2		-							
Fall Time			1		-							
		+	2	<u> </u>	-	,						

APPLICATIONS INFORMATION

The MC1016/MC1216 is a single-rail storage element that has no undefined logic state. (Note the change in the truth table over that of the dual-rail type of device, such as MC1014/MC1214 or MC1015/MC1215.) The speed-power product is better than that obtained with any other bipolar technique. An example of a 4-bit storage register with both input and output gating is shown in Figure 1, and an 8-bit buffer register with input gating is shown in Figure 2.

FIGURE 1 - 4-BIT STORAGE REGISTER WITH GATED INPUTS AND OUTPUTS (THREE DEVICES)

FIGURE 2 - 8-BIT BUFFER REGISTER WITH INPUT GATING (FOUR DEVICES)

MC1016, MC1216 (continued)

SWITCHING TIME TEST CIRCUIT $T_A = 25^{\circ}C$

SWITCHING TIME DEFINITIONS AND TIMING DIAGRAM

DUAL R-S FLIP-FLOPS WITH SINGLE RAIL INPUT AND POSITIVE CLOCK

MC1033 MC1233

Two dc storage flip-flops with a negative clock input provided for each flip-flop. This device is useful as a dual storage element requiring only a single rail input, as a memory data register, a sample and hold register, or as a clocked R-S flip-flop with no undefined logic state. It may be teamed with the MC1016 / MC1216 for shift register functions with a minimum number of packages.

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one flip-flop. The other flip-flop is tested in the same manner.

		Pin			MC1	233 Te	st Limits	;				MC1	033 Te	st Limit	S	
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	I _E	7	-	-	-	36	-	-	mAdc	-	-		36	-	-	mAdc
Input Current	I _{in}	4 5	-	-	-	100 150	-	-	μAdc μAdc	-	= -	-	100 150	-	-	μAdc μAdc
nput Leakage Current	I_R	4 5	-	-	-	0.2 0.2	-	1.0 1.0	μAdc μAdc	-	-	-	0.2 0.2	-	1.0 1.0	μAdc μAdc
'Q'' Logical ''1'' Output Voltage‡	v _{OH} [‡]	1	-0. 990	-0.825	-0. 850	-0.700	-0. 700	-0.530	Vdc	-0. 895	-0. 740	-0.850	-0. 700	-0. 775	-0. 615	Vdc
'Q'' Logical ''0'' Output Voltage	v _{ol}	1	-1.890	-1.580	-1.800	-1.500	-1. 720	-1.380	Vdc	-1.830	-1. 525	-1.800	-1.500	-1.760	-1. 435	Vdc
'Q'' Logical ''1'' Output Voltage‡	v _{OH} ‡	2	-0. 990	-0.825	-0.850	-0. 700	-0. 700	-0. 530	Vdc	-0. 895	-0.740	-0.850	-0. 700	-0. 775	-0. 615	Vdc
'Q'' Logical ''0'' Output Voltage	v_{OL}	2	-1.890	-1.580	-1.800	-1.500	-1. 720	-1. 380	Vdc	-1.830	-1.525	-1.800	-1.500	-1. 760	-1. 435	Vdc
Switching Times			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
(Fan-Out = 3) Clock Inputs																
Propagation Delay	t ₄₋₁₊	1	6.0	8.5	6.0	8.5	8.0	10.5	ns	6.0	8.5	6.0	8.5	7.0	9.5	ns
	t ₄₋₁₋	1	5.0	10	5.0	10	7.0	12		5.0	10	5.0	10	6.0	11	
	t ₄₋₂₊	2	5.0	8.5	5.0	8.5	7.0	10.5		5.0	8.5	5.0	8.5	6.0	9.5	
	t ₄₋₂₋	2	6.0	10	6.0	10	8.0	12		6.0	10	6.0	10	7.0	11	
Rise Time	t ₁₊	1								1						
	t ₂₊	2						↓		↓						
Fall Time	t ₁₋	1	5.0	8.5	5.0	8.5	7.0	11		5.0	8.5	5.0	8.5	6.0	9.5	
	t ₂ -	2	5.0	8.5	5.0	8.5	7.0	11	↓	5.0	8.5	5.0	8.5	6.0	9.5	↓
Set Inputs Propagation Delay	t ₅₊₁₊	1	5.0	8.0	5.0	8.0	6.0	9.5	ns	5.0	8.0	5.0	8.0	5.0	8.5	ns
	t ₅₋₁₋	1				11	7.0	10.5								
	t ₅₊₂₋	2					7.0	10.5]			1	
	t ₅₋₂₊	2					6.0	9.5		1 1						
Rise Time	t ₁₊	1		7.5		7.5		9.0			7.5		7.5		8.0	
	t ₂₊	2		7.5		7.5		9.0			7.5		7.5		8.0	
Fall Time	t ₁₋	1		8.5	6.0	9.0	8.0	11		6.0	9.0	6.0	9.0	7.0	10	
	t ₂₋	2		8.5	6.0	9.0	8.0	11		6.0	9.0	6.0	9.0	7.0	10	

 $[\]ensuremath{^{\ddagger}V}_{\ensuremath{OH}}$ limits apply from no load (0 mA) to full load (-2.5 mA).

			TEST VOLTAGE/CURRENT VALUES							
	(@Test		Vdc ±1.0%	/ 0		mAdc	1		
		nperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	Ι _ι			
		(−55°C	-5.2 to -1.405	-1.165 to -0.825	-	-5.2	-2.5			
	MC1233	} +25°C	-5. 2 to -1. 325	-1.025 to -0.700	-0.700	-5.2	-2. 5			
		(+125°C	-5. 2 to -1. 205	-0.875 to -0.530	-	-5.2	-2.5			
		(0°C	-5.2 to -1.350	-1.070 to -0.740	-	-5.2	-2.5			
	MC1033	+25°C	-5. 2 to -1. 325	-1.025 to -0.700	-0.700	-5.2	-2.5			
		(+75°C	-5.2 to -1.260	-0.950 to -0.615		-5.2	-2.5			
		Pin	TEST	VOLTAGE/CURRENT A	PPLIED TO PI	NS LISTED BELOW:				
Characteristic	Symbol	Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	I _L	V _{CC} (Gnd)		
Power Supply Drain Current	I _E	7	-	4, 10	-	5, 7, 9	-	14		
Input Current	I _{in}	4 5	-	-	4 5	5, 7, 9, 10 4, 7, 9, 10	-	14 14		
Input Leakage Current	I_R	4 5			-	4,5,7,9,10 4,5,7,9,10	-	14 14		
''Q'' Logical ''1'' Output Voltage‡	v _{OH} [‡]	1	4	5	-	7,9,10	1	14		
''Q'' Logical ''0'' Output Voltage	V _{OL}	1	4, 5	-	-	7,9,10	-	14		
''Q'' Logical ''1'' Output Voltage‡	v _{OH} [‡]	2	4, 5	-	-	7,9,10	2	14		
''Q'' Logical ''0'' Output Voltage	v _{OL}	2	4	5	-	7,9,10	-	14		
Switching Times			V _{IL max} +1.2 Vdc	Pulse In	Pulse Out	$V_{EE} = -4.0 \text{ Vdc}$		(+1.2V		
(Fan-Out = 3) Clock Inputs Propagation Delay	t ₄₋₁₊	1	4	<u>-</u>	1	7, 9, 10	_	14		
	t ₄₋₁₋	1		-	1		-	1 1		
	t ₄₋₂₊	2		-	2)	-			
	t ₄₋₂₋	2		-	2		-			
Rise Time	t ₁₊	1		-	1		-			
	t ₂₊	2		_	2		-			
Fall Time	t ₁₋	1		-	1		-			
	t ₂ _	2	+		2	•	-	+ .		
Set Inputs Propagation Delay	t ₅₊₁₊	1	5	4	1	7, 9, 10	-	14		
	^t 5-1-	1			1		-			
	t ₅₊₂₋	2			2		-			
	t ₅₋₂₊	2			2		-			
Rise Time	t ₁₊	1			1		-			
	t ₂₊	2			2		-			
Fall Time	t ₁₋	1			1 .		-			
	t ₂₋	2	11	, •	2	•	-	,		

APPLICATIONS INFORMATION

The MC1033/MC1233 is a single-rail storage element that has no undefined logic state. (Note the change in the truth table over that of the dual-rail type of device, such as MC1014/MC1214 or MC1015/MC1215.) The speed-power product is better than that obtained with any other bipolar technique. An example of a 4-bit storage register with both input and output gating is shown in Figure 1, and an 8-bit buffer register with input gating is shown in Figure 2.

FIGURE 1 - 4-BIT STORAGE REGISTER WITH GATED INPUTS AND OUTPUTS (THREE DEVICES)

FIGURE 2 - 8-BIT BUFFER REGISTER WITH INPUT GATING (FOUR DEVICES)

SWITCHING TIME TEST CIRCUIT $T_A = 25^{\circ}C$

SWITCHING TIME DEFINITIONS AND TIMING DIAGRAM

MECL II MC1000/1200 series

TYPE "D" FLIP-FLOPS

MC1022 MC1222

Designed for clocked-storage operation based on the "master-slave" principle. Operation depends only on voltage levels, therefore the shape of the clock waveform becomes unimportant in determining the state of the flip-flop. When the clock is low, the input data is stored in the "master" and is subsequently transferred to the "slave" when the clock is high, making the data available at the outputs. In this operation the "master" is disabled before the slave is enabled, due to the design of the internal threshold skew. Along with two data and two Clock inputs, the unit provides two SET and two RESET inputs that are independent of the Clock.

MC1022, MC1222 (continued)

ELECTRICAL CHARACTERISTICS

		Pin			MC1	222 Te	st Limi	ts				MC1	022 Te	st Limit	s	
		Under	5	5°C	+2	25°C	+1	25°C		0	°C	+2	25°C	+7	′5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	$^{\mathrm{I}}\mathrm{_{E}}$	7	-	-	-	27	-	-	m Adc	-	-	-	27	-	-	mAdc
Input Current	I _{in}	2 4 8 9		-	-	100	-	- - -	μAdc	- - -	-		100		- - -	μAdc
		11 12 13	-	-	-		-	- - -		-	-	-		- - -	- - -	
Input Leakage Current	I _R	Inputs*	-	-	-	0.2	-	1.0	μ Ad c	-		-	0.2	-	1.0	μ Adc
''Q'' Logical ''1'' Output Voltage‡	v _{OH} ‡	5 5†	-0.990 -0.990		-0.850 -0.850	-0.700 -0.700	-0.700 -0.700	-0.530 -0.530	Vdc Vdc	-0.895 -0.895	-0.740 -0.740				-0.615 -0.615	Vdc Vdc
''Q'' Logical ''0'' Output Voltage	V _{OL}	5 5†	-1.890 -1.890		-1.800 -1.800	-1.500 -1.500	-1.720 -1.720	-1.380 -1.380	Vdc Vdc		-1. 525 -1. 525				-1. 435 -1. 435	Vdc Vdc
''Q'' Logical ''1'' Output Voltage‡	v _{OH} ‡	6 6†	-0.990 -0.990	-0.825 -0.825			-0.700 -0.700	-0.530 -0.530	Vdc Vdc	-0.895 -0.895	-0.740 -0.740				-0.615 -0.615	Vdc Vdc
''Q'' Logical ''0'' Output Voltage	v_{OL}	6 6†	-1.890 -1.890		-1.800 -1.800	-1.500 -1.500	-1.720 -1.720	-1.380 -1.380	Vdc Vdc	-1.830 -1.830			-1.500	-1.760	-1.435 -1.435	Vdc Vdc
Switching Times Clock Input			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
Propagation Delay	^t 2+5-	5	8.0	12	8.0	12	11	15	ns	8.0	12	8.0	12	9.0	13	ns
	t ₂₊₅₊	5	7.0	11	7.0	11	12	18		7.0	11	7.0	11	9.0	13	
İ	t ₂₊₆₊	6	7.0	11	7.0	11	12	18		7.0	11	7.0	11	9.0	13	
n	t ₂₊₆₋	6	8.0	12	8.0	12	11	15		8.0	12	8.0	12	9.0	13	
Rise Time Fall Time	t ₅₊ , t ₆₊	5,6	5.0	7. 5	5.0	8.5	7.0	11		5.0	8.0	5.0	8.5	6.0	9.0	
raii 11me	^t 5- ^{, t} 6-	5, 6	7.0	9. 5	7.0	11.5	8.0	13	. *	7.0	10.5	7.0	11.5	8.0	12	+
Set Input Propagation Delay	t ₁₀₊₅₊	5	8.0	12	8.0	13	10	22	ns	8.0	12	8.0	13	10	14	ns
	^t 10+5+	5		12	8.0	13	10	22			12	8.0	13	10	14	
	t ₁₀₊₆₋	6		13	9.0	14	11	19	- 1 1		13	9.0	14	11	15	1 1
	^t 10+6-	6	•	13	9.0	14	11	19	+	+	13	9.0	14	11	15	+
Reset Input Propagation Delay	t ₉₊₅₋	5	8. 0	13	9.0	14	11	19	ns	8.0	13	9.0	14	11	15	ns
	t ₉₊₅₋	5		13	9.0	14	11	19			13	9.0	14	11	15	Ī
	t ₉₊₆₊	6		12	8.0	13	10	22			12	8.0	13	10	14	
	t ₉₊₆₊	6	+	12	8.0	13	10	22	. ↓ [+	12	8.0	13	10	14	+ 1

MC1022, MC1222 (continued)

				T	EST VOLTAG	SE/CURRENT VALUES		
	(@Test			Vdc ± 1.	.0%	mAdc	
		nperature	V _{IL}	V _{IH}	V _{IH max}	V _{EE}	١ _٤	
		(−55°C	-1.580	-0.990	-	-5.2	-2.5	
	MC1222	+25°C	-1.500	-0.850	-0.700	-5.2	-2.5	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+125°C	-1.380	-0.700	-	-5.2	-2.5	
		0°C	-1,525	-0.895	-	-5.2	-2.5	
	MC1022	+25℃	-1.500	-0.850	-0.700	-5.2	-2.5	
		+75°C	-1.435	-0.775	-	-5.2	-2.5	
-			TEST	VOLTAG	E/CURRENT	APPLIED TO PINS LISTED	BELOW:	
		Pin						V_{cc}
Characteristic	Symbol	Under Test	VIL	V _{IH}	$V_{\mathrm{IH\ max}}$	V _{EE}	ار	(Gnd)
Power Supply Drain	I _E	7	-	-	-	2, 4, 7, 8, 9, 10, 11, 12, 13	-	14
Current	I _{in}	2	-	_	2	4, 7, 8, 9, 10, 11, 12, 13	-	14
Input Current	în.	4	1 -	-	4	2, 7, 8, 9, 10, 11, 12, 13	-	
1		8	-	-	8	2, 4, 7, 9, 10, 11, 12, 13 2, 4, 7, 8, 10, 11, 12, 13	_	
		9	-	-	10	2, 4, 7, 8, 9, 11, 12, 13	-	
		11	-	-	11	2, 4, 7, 8, 9, 10, 12, 13	-	
		12 13	-	1 :	12 13	2, 4, 7, 8, 9, 10, 11, 13 2, 4, 7, 8, 9, 10, 11, 12	-	
Input Leakage	I _R	Inputs*	-	-	-	2, 4, 7, 8, 9, 10, 11, 12, 13	-	14
Current "Q" Logical "1"	v _{oн} ‡	5	-	10 13	-	2, 4, 7, 8, 9, 11, 12, 13 2, 7, 8, 9, 10, 11, 12	5 5	14 14
Output Voltage‡		5† 5		9		2, 4, 7, 8, 10, 11, 12, 13	-	14
"Q" Logical ''0" Output Voltage	v _{OL}	5 5†	13	-	-	4, 7, 8, 9, 10, 11, 12	-	14
"Q" Logical "1" Output Voltage‡	v _{OH} ‡	6 6†	- 12	8 -	-	2, 4, 7, 9, 10, 11, 12, 13 4, 7, 8, 9, 10, 11, 13	6 6	14 14
"Q" Logical "0" Output Voltage	v _{OL}	6 6†	-	11 12	-	2, 4, 7, 8, 9, 10, 12, 13 2, 7, 8, 9, 10, 11, 13	-	14 14
Switching Times					Pulse In	V _{EE} — 4.0 Vdc	Pulse Out	(+1.2 Vd
Clock Input Propagation Delay	t ₂₊₅₋	5	-	-	2	4,7,8,9,10,11,12,13	5	14
	t ₂₊₅₊	5		-			5	
	t ₂₊₆₊	6	-	-			6	
		6		-			6	
Rise Time	t ₂₊₆ -	5,6		_			5,6	
Fall Time	t ₅₋ , t ₆₋	5, 6		-	1	1	5,6	+
Set Input		1 _		1		470111019	5	14
Propagation Delay	10+3+	5	11:	2	10	4,7,8,11,12,13	5	14
	t ₁₀₊₅₊	5	2	-			1	
	t ₁₀₊₆₋	6	-	2			6	
	t ₁₀₊₆₋	6] 2	-	•	•	6	'
Reset Input Propagation Delay		5	-	2	9	4,7,8,11,12,13	5	14
4 15	t ₉₊₅₋	5	2	-			5	
	t ₉₊₆₊	6		2			6	
1	9 TUT	6	2	1	()	1 1	6	1 +

MC1022, MC1222 (continued)

APPLICATIONS INFORMATION

The MC1022/MC1222 single-phase Type D flip-flop offers advantages over the J-K flip-flop in applications such as single-rail operation. Since a true master-slave design is utilized, the input data may be asynchronous. There is no chance of data "rippling through" if the clock is in the low state. The SET and RESET inputs are also completely independent of the clock and will override the clock, setting both the master and the slave portions of the flip-flop. All the logic inputs are duplicated and ORed together internally, giving additional flexibility.

A low-level clock state (logic "0") allows information to be transferred to the master portion of the flip-flop through a "D" input. The master will continuously update itself to changing data as long as the clock is at a low level. When the clock goes to the high level, the master is disabled and the data transferred to the slave, thereby becoming available at the outputs. The thresholds of the master and slave portions of the flip-flop are internally offset to give a "raceless" flip-flop (i.e., the master is disabled before the slave is enabled, and vice versa). Thus the flip-flop operation is independent of the rise and fall times of the clock waveforms.

50 MHz SHIFT REGISTER

*Unused inputs should be returned to VEE.

A "1" level on the Inhibit input may be used to stop the shifting of data through the register. Parallel data may be brought into the register asynchronously since SET or RESET data internally inhibits the clock.

tions are tested in same manner and will meet limits speci-

SATURATED LOGIC-TO-MECL DUAL TRANSLATORS

MC1017 MC1217

Dual level translator intended for converting saturated logic levels to MECL signal levels. The translator provides the positive logic OR function.

MC1017, MC1217 (continued)

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one translator. The other translator is tested in the same manner.

		Pin	MC1217 Test Limits									MC1	017 Te	est Limi	ts	-
_		Under	_5	55°C	+2	:5°C	+1:	25°C		0	°C	+2	25°C	+;	75°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Positive Supply Drain Current	I _C	. 8	-	-	-	4.0		-	mAdc	-	-	-	4.0	-	-	mAdc
Negative Supply Drain Current	$^{\mathrm{I}}\mathrm{_{E}}$	7	-	-	-	24	-	-	mAdc	-	-	-	24	-	-	mAdc
Input Diode Reverse Current	I _R	3 4 5 6			-	0.2	-	2.0	μAdc	-		- - -	0.2	-	2.0	μAdc
Input Diode Forward Current	I _F	3 4 5 6	- - -	- - -	- - -	7.5	-	- - -	mAdc	- - -	-	- - -	7.5		-	mAdc
''OR'' Logical ''1'' Output Voltage	v _{OH} ‡	1	-0.990	-0.825	-0.850	-0. 700	-0. 700	-0. 530	Vdc	-0. 895	-0. 740	-0.850	-0. 700	-0. 775	-0. 615	Vdc
''OR'' Logical ''0'' Output Voltage	v _{OL}	1 1 1 1	-1.890	-1.580	-1.800	-1.500	-1.720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1. 435	Vdc
Bias Driver Output Voltage‡	v _{BB} †	2	-1. 33	-1. 19	-1. 23	-1.09	-1.09	-0.95	Vdc	-1.28	-1.14	-1. 23	-1.09	-1. 19	-1.04	Vdc
Switching Times			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
Propagation Delay	t ₃₊₁₊	1	17	22	15	20	13	18	ns	16	21	15	20	14	19	ns
	^t 3-1-		13	18	15	20	19	25		14	19	15	20	17	22	
Rise Time	^t 1+		7.0	10	7.0	10	8.0	12		7.0	10	7.0	10	7.0	11	
Fall Time	^t 1-	•	7.0	10	7.0	10	8.0	12	*	7.0	10	7.0	10	7.0	11	ŧ

 $[\]ddagger$ V_{OH} limits apply from no load (0 mA) to full load (-2.5 mA).

SWITCHING TIME TEST CIRCUIT @ 25°C

 $[\]dagger$ $V_{\mbox{\footnotesize{BB}}}^{\mbox{\footnotesize{O}}}$ limits apply from no load (0 mA) to full load (-1.0 mA).

				TEST	VOLTAGE/C	URRENT VA	LUES		
		@Test			Vdc ±1.0	0%		mAdc	
		nperature	V _{IH}	V _{IL}	V _{max}	V _{cc}	V _{EE}	ار	
		(−55°C	2. 1	0.5	-	5.0	-5.2	-2.5	
M	C1217	} { +25℃	2.0	1.0	8.0	5.0	-5.2	-2.5	
		(+125°C	2.0	0.7	8.0	5.0	-5. 2	-2.5	
		(0°C	2.0	0.85	-	5.0	-5.2	-2.5	
M	C1017	} +25°C	1.9	1.00	8.0	5.0	-5.2	-2.5	
		(+75°C	1.8	0.85	8.0	5.0	-5. 2	-2.5	
		Pin	TEST	VOLTAGE/C	URRENT AP	PLIED TO PI	NS LISTED B	ELOW:	
Characteristic	Symbol	Under Test	V _{IH}	V _{IL}	V_{max}	V _{cc}	V _{EE}	l _L	V _{CC} (Gnd)
Positive Supply Drain Current	IC	8	-	_	-	8	7	-	14
Negative Supply Drain Current	$^{\mathrm{I}}\mathrm{_{E}}$	7	-		-	8	7	_	14
Input Diode Reverse Current	$^{\mathrm{I}}\mathrm{_{R}}$	3 4 5 6	- - -	-	3 4 5 6		-	- - -	4,5,6,1 3,5,6,1 3,4,6,1 3,4,5,1
Input Diode Forward Current	I _F	3 4 5 6	- - - -	- - - -	- - -	8	7	- - - -	3, 14 4, 14 5, 14 6, 14
"OR" Logical "1" Output Voltage	v _{OH} ‡	1	3,4,5,6	-	-	8	7	1	14
''OR'' Logical ''0'' Output Voltage	v _{OL}	1 1 1 1		3 4 5 6	- - -	8	7	- - -	14
Bias Driver Output Voltage‡	v _{BB} †	2	-	-	-	8	7	2†	14
Switching Times			Pulse In	Pulse Out		(+6.2 V)	(-4.0 V)		(+1.2 \
Propagation Delay	t ₃₊₁₊ t ₃₋₁₋	1	1	3	-	8	7	-	14
Rise Time Fall Time	t ₁₊ t ₁₋				-		↓	-	↓

SWITCHING TIME WAVEFORMS

MECL-TO-SATURATED LOGIC **TRANSLATORS MC1018**

MC1218

Level translator intended for converting MECL signal levels to saturated logic levels. The translator will provide the positive logic OR or logic NOR function by connecting the internal bias driver output to the corresponding inputs of the differential amplifier. i.e., when pin 4 is connected to the reference bias, pin 5, pins 6, 10, 11 12, and 13 become the inputs of a 5-input NOR gate. When pin 6 is connected to the reference bias, pin 5, pins 1, 2, 3, and 4 become the inputs of a 4-input OR gate.

MC1018, MC1218 (continued)

ELECTRICAL CHARACTERISTICS

		Pin			MC1	218 Te	st Limit	s				MC1	018 Te	est Limit	s	
		Under		5°C	+2	5°C	+1:	25°C		C)°C	+2	25°C	+7	′5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Positive Supply Drain Current	^I C	9	-	-	-	3.0	-	-	mAdc	-	-	-	3.0	-	-	mAdc
Negative Supply Drain Current	I _E	7	-	-	-	11.0	-	-	mAdc	-	-	-	11.0	-	-	mAdc
Input Current	I _{in}	1 2 3	- - -	-	- - -	200	- - -	-	μAdc	-		-	200	-	-	μAdc
		4 6 10 11 12	-	- - -	- - -		-	- - - -		- - -	-	- - -		-	- - -	
		13	-	-	-	+	-	-	+	-		-	•	-	-	↓
Input Leakage Current	I _R	1,2,3,4* 6,10,11, 12,13*	-	-	-	0. 2 0. 2	-	2.0 2.0	μAdc μAdc	-	-	-	0.2 0.2	-	2. 0 2. 0	μAdc μAdc
Output Voltage High	v _{ОН}	8		- - -	4.6	- - -	4.4	- - -	Vdc	-	- - -	4.6	-	4.5		Vdc
Output Voltage Low	V _{OL}	8		0.40		0.40		0. 45	Vdc	-	0.45	-	0.45		0.50	Vdc
Bias Driver Output Voltage	v_{BB} ①	5	-1.33	-1. 19	-1, 23	-1.09	-1.09	-0.95	Vdc	-1. 28	-1. 14	-1. 23	-1.09	-1. 19	-1.04	Vdc
Output Short Circuit Current	I _{SC}	8	-	-4.0	-	-3.8	-	-3.6	mAdc	-	-3.9	-	-3.8	-	-3.6	mAdc
			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
Switching Times	t ₁₋₈₋	8	19	25	19	25	19	25	ns	19	25	19	25	19	25	ns
	t ₁₊₈₊		8.0	12	8.0	12	10	14		8.0	12	8.0	12	9.0	13	
	t ₆₋₈₊		8.0	12	8.0	12	10	14	.	8.0	12	8.0	12	9.0	13	
	t ₆₊₈₋	+	19	25	19	25	19	25	+	12	25	19	25	19	25	1

① v_{BB} is supplied from pin 5, and applies from no load (0 mA) to full load (-1.0 mAdc) * Individually test each input using the pin connections shown.

TPin To Channel "A" TP_{out} To Channel "B" +5.0 V V_{BB} (Pin 5) MC833 Or Equiv. Used For Diodes ∨_{EE}0 –5.2 ∨

Circuit Shown For OR Configurations. Connect Pin 5 to 4 For NOR.

			TEST VO	LTAGE/CUR	RENT	VALUES					
	@Test			Vdc ±1.	0%			μA	m/	Adc	
Ten	nperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{cc}	V _{EE}	V_{BB}	I _{OH}	loL	١	
	(−55°C	-5.2 to -1.405	-1.165 to -0.825	-	5.0	-5. 2	1	-120	11.4	-1.0	1
MC1218	} +25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	5.0	-5. 2	1	-120	12.0	-1.0	1
	(+125°C	-5.2 to -1.205	-0.875 to -0.530	-	5.0	-5. 2	1	-120	10.8	-1.0	1
. ((0°C	-5.2 to -1.350	-1.070 to -0.740	-	5.0	-5. 2	1	-120	12.0	-1.0	1
MC1018	+25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	5.0	-5.2	1	-120	12.0	-1.0	1
	+75°C	-5.2 to -1.260	-0.950 to -0.615	-	5.0	-5.2	1	-120	11.4	-1.0	
	Pin		TEST VOLTAGE/CURR	ENT APPLIE	D TO	PINS LISTED BELOW:			-		1
Characteristic	Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{cc}	V _{EE}	V _{BB}	Іон	loL	I _L	V _C
Positive Supply Drain Current	9	-	-	-	9	1, 2, 3, 6, 7, 10, 11, 12, 13	4	-	-	-	14
Negative Supply Drain Current	7	-		-	.9	1, 2, 3, 6, 7, 10, 11, 12, 13	4	-	-	-	14
Input Current	1	_	-	1	9	2, 3, 4, 7, 10, 11, 12, 13	6	-	-	-	14
	3	-	-	2 3		1, 3, 4, 7, 10, 11, 12, 13 1, 2, 4, 7, 10, 11, 12, 13	6	-	-	-	
	4	<u>-</u>		4	11	1, 2, 3, 7, 10, 11, 12, 13	6	-	_	-	
	6	· -	-	6]]	1, 2, 3, 7, 10, 11, 12, 13	4	-	-	-	Н
	10	-	-	10		1, 2, 3, 6, 7, 11, 12, 13	4	-	-	-	
	11 12	-	-	11 12		1, 2, 3, 6, 7, 10, 12, 13	4	-	-	-	
	13	-	-	13	+	1, 2, 3, 6, 7, 10, 11, 13 1, 2, 3, 6, 7, 10, 11, 12	4	-	-	-	
Input Leakage Current	1,2,3,4* 6,10,11, 12,13*	-	- -	-		1, 2, 3, 4, 7, 10, 11, 12, 13 1, 2, 3, 6, 7, 10, 11, 12, 13		-	-	-	14
Output Voltage High	8	6, 10, 11, 12, 13	-	_	9	1, 2, 3, 7	4	8	-	-	14
		-	1	-		2, 3, 4, 7, 10, 11, 12, 13	6		-	-	
		-	2 3	-		1, 3, 4, 7, 10, 11, 12, 13 1, 2, 4, 7, 10, 11, 12, 13			-	-	
	+	-	4	-	+	1, 2, 3, 7, 10, 11, 12, 13	•	+	-	-	•
Output Voltage Low	8	1, 2, 3, 4	-	-	9	7, 10, 11, 12, 13	6	-	8	-	14
		-	6 10	-	11	1, 2, 3, 7, 10, 11, 12, 13	4	-		-	
•		_	10			$\left[\begin{array}{c} 1,2,3,6,7,11,12,13 \\ 1,2,3,6,7,10,12,13 \end{array}\right]$		_		_	
		_	12	_		1, 2, 3, 6, 7, 10, 11, 13		-		_	ł
	'	-	13	-	*	1, 2, 3, 6, 7, 10, 11, 12	7	-	*	-	
Bias Driver Output Voltage	5	-	-	-	9	7	- ,	-	-	5	14
Output Short Circuit Current	8	-	-	4	9	1, 2, 3, 7, 10, 11, 12, 13	.6	-	-	-	8,1
	ľ	Pulse In	Pulse Out								
Switching Times	8	1	8	-	9	2, 3, 4, 7, 10, 11, 12, 13	6	-	-	-	14
,		1		-		2, 3, 4, 7, 10, 11, 12, 13	6	-	-	-	
		6		-		1, 2, 3, 7, 10, 11, 12, 13	4	-	-	-	
	+	6		_	🕴	1, 2, 3, 7, 10, 11, 12, 13	4	_	-	- 1	∳

SWITCHING TIME WAVEFORMS

QUAD LINE RECEIVERS

MC1020 MC1220

Four differential amplifiers with emitter follower outputs, intended for use as a comparator or for sensing differential signals over long lines. Each amplifier provides the OR or NOR logic function depending on which input is biased at a given reference voltage.

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one line receiver. The other line receivers are tested in the same manner.

1 3				TEST VOLTAGE	/CURRENT	VALUES		Т
2——		@Test		Vdc ±	1.0%			mAdc
5———4		nperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	V _{BB}	I _L
8——		(−55°C	-5.2 to -1.405	-1.165 to -0.825	-	-5. 2	-1. 270	-2.5
8——10	MC1220	₹ +25°C	-5.2 to -1.325	-1.025 to -0.700	-0. 700	-5. 2	-1.175	-2.5
9——		(+125°C	-5.2 to -1.205	-0.875 to -0.530	-	-5. 2	-1.025	-2.5
12-11		(0°C	-5.2 to -1.350	-1.070 to -0.740	-	-5. 2	-1. 210	-2.5
13	MC1020	} +25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5. 2	-1.175	-2.5
		(+75°C	-5. 2 to -1. 260	-0.950 to -0.615	-	-5.2	-1.115	-2.5

																+75°C	-5. 2 to -1. 260	-0.950 to -0.615	L	-3.2	-1.115	-2.5	
		Pin		MC	1220		Test Li	mits			MC	1020		Test Li	nits		T	EST VOLTAGE/CURRENT	T APPLIED	TO PINS LISTED BELO	N:		1
		Under	-5	5°C	+2	5°C	+13	25°C		0	°C	+2	5°C	+7	5°C		V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	V _{BB}	I _L	V _{cc}
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit						-	(Gnd)
Power Supply Drain Current	I _E	7	-	-	-	28	-	-	mAde	-	-	-	28	-	-	mAde	-	-		2, 5, 7, 9, 12	1,6,8,13	-	14
Input Current	I _{in}	1 2	-	-	-	100 100	-	-	μAdc μAdc	-	-	-	100 100	-	-	μ Adc μ Adc	-		1 2	5, 6, 7, 8, 9, 12, 13 5, 6, 7, 8, 9, 12, 13	2 1	-	14 14
Input Leakage Current	I _R	1 2	-	-	-	0. 2 0. 2	-	1.0	μAdc μAdc	-	-	-	0. 2 0. 2	-	1.0 1.0	μAdc μAdc	-	-	-	1, 5, 6, 7, 8, 9, 12, 13 2, 5, 6, 7, 8, 9, 12, 13	2 1	-	14 14
"NOR" Logical "1" Output Voltage‡	v _{OH} [‡]	3	-0. 990	-0.825	-0.850	-0. 700	-0.700	-0.530	Vdc	-0.895	-0.740	-0.850	-0.700	-0. 775	-0. 615	Vdc	2	-	-	5, 6, 7, 8, 9, 12, 13	1	3	14
"NOR" Logical "0" Output Voltage	v _{ol}	3	-1.890	-1.580	-1.800	-1.500	-1.720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1. 760	-1. 435	Vdc	-	2	-	5, 6, 7, 8, 9, 12, 13	1	-	14
"OR" Logical "1" Output Voltage‡	v _{OH[‡]}	3	-0. 990	-0.825	-0.850	-0. 700	-0. 700	-0.530	V dc	-0.895	-0.740	-0.850	-0.700	-0. 775	-0.615	Vdc	-	1	-	5, 6, 7, 8, 9, 12, 13	2	-	14
"OR" Logical "0" Output Voltage	V _{OL}	3	-1.890	-1.580	-1.800	-1.500	-1. 720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	. 1. 435	Vdc	1	-		5, 6, 7, 8, 9, 12, 13	2	-	14
Switching Times			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max		Pulse In	Pulse Out		V _{EE} = -4.0 Vdc			(+1.2V)
Propagation Delay (Fan-Out = 3)	t ₁₊₃₊	3	4.0	7.0	4.0	7.0	5.0	8.0	ns	4.0	7.0	4.0	7.0	4.0	7.5	ns	1	3] -	5, 6, 7, 8, 9, 12, 13	2	-	14
	t ₁₋₃₋		4.0	7.0	4.0	7.0	5.0	8.0		4.0	7.0	4.0	7.0	4.0	7.5				-			-	
Rise Time (Fan-Out = 3)	t ₃₊		4.0	7.0	4.0	7.0	5.0	8.0		4.0	7.0	4.0	7.0	4.0	7.5				-			-	
Fall Time (Fan-Out = 3)	t ₃₋	+	5.0	8.0	5.0	8.0	6.0	9.0	+	5.0	8.0	5. 0	8.0	5.0	8.5	•	•		-	 	+	-	+

[‡] VOH limits apply from no load (0 mA) to full load (-2.5 mA).

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATIONS INFORMATION

The MC1020/MC1220 quad line receiver is used primarily to receive data from balanced twisted pair lines, as indicated in Figure 1. Any MECL II gate with differential outputs may be used to drive the twisted pair line. The line is terminated in its characteristic impedance (around 100 ohms). A voltage divider is formed between the high-level gate output, the terminating resistor, and the pull-down resistor on the low-level gate output. The equivalent dc circuit is shown in Figure 2. The voltage swing across the terminating resistor (R_T) is typically \pm 275 mV. Any input voltage swing in excess of 120 mV is adequate due to the voltage gain of the MC1020/MC1220. The output of the line receiver is the same as a standard MECL II gate. For worst-case pull-down resistors in the driving gate (1.5 k ohms \pm 20%) and a VOH min, the differential drop across an R_T of 100 ohms is \pm 230 mV.

Very long lines may be used with excellent results. The only restriction on lead length (other than common mode noise) is series line resistance. The nominal voltage drop across R_{T} is actually shared with the series resistance of the twisted pair line. The resistance of # 22 AWG wire averages about 16 ohms per 1000 feet, while # 24 AWG wire averages about 26 ohms per 1000 feet. For very long lines, an additional voltage drop across R_{T} is easily obtained by paralleling additional pull-down resistors with those internal to the driver gate. For example, by paralleling a 1.5 k ohm resistor with each output, the voltage drop across R_{T} is effectively doubled.

Extensive data have shown that a positive transient of 1.0 V or a negative transient of 1.8 V may be introduced on the twisted pair line before noise can propagate through another MECL device tied to the line receiver output. This method of data transmission is useful at frequencies to 50 MHz and results in the highest bandwidth — noise immunity product obtainable with digital logic. A twisted pair is recommended for clock distribution in high-speed systems since distribution skew time may be balanced out by adjusting line lengths. Propagation delay times are approximately 1.0 ns per eight inches of line.

In system design it is often convenient to organize information transfer with a data bus or "party-line" approach. In this application, one of many sources may "talk" to the common data line and multiple receivers may "listen". Figure 3 illustrates such a data bus utilizing MECL II gates as drivers and MC1020's as line receivers. Note that the line is unbalanced, but this will in turn allow all drivers to be ORed together. Bandwidth of data distribution is excellent. The technique may be used to 50 MHz at 25°C and to 40 MHz over the entire military temperature range. Noise immunity

is also good due to the low impedance methods of transmission and the common mode rejection of the line receiver. The following results were obtained during an evaluation of the data bus shown in Figure 3 under worst-case conditions:

> Number of driver gates: 6 Number of receivers: 8

Line length: 24 feet
Differential temperature from transmitter gate to receiver gate: 100°C

Maximum operating frequency: 40 MHz
Total terminating resistance: 45 ohms

Differential power supply voltage from transmitter gate to receiver gate: \pm 5.0%

The quad line receiver can also be used in many linear applications. The voltage gain is typically 7.0, with a bandwidth of approximately 70 MHz for each differential amplifier. The device makes an excellent FM limiter with minimal phase shift. By employing feedback, both selective band-pass amplifiers and notch frequency rejection amplifiers may be built. Figure 4 shows % of the quad line receiver used as a parallel tuned-crystal oscillator that exhibits excellent stability.

FIGURE 1 - MECL LINE RECEIVER

FIGURE 2 - LINE RECEIVER DC EQUIVALENT CIRCUIT

FIGURE 3 - DATA BUS DRIVING WITH MECL II

FIGURE 4 - ¼ MC1020/1220 AS A PARALLEL-TUNED CRYSTAL OSCILLATOR

MECL II MC1000/1200 series

16-BIT COINCIDENT MEMORY

MC1036 MC1037

Designed for high-speed systems capable of cycle times as low as 50 ns. The memory is comprised of 16 multiple-emitter flip-flops, eight input emitter followers, and two nonsaturating complementary Sense/Write circuits. The flip-flops form an addressable 4 by 4 memory matrix that exhibits non-destructive readout for all 16 bits.

In operation a single bit is selected by applying a logical "1" to the coincident "X" and "Y" address lines. This gives a "read" condition where the sense amplifier outputs indicate the storage state of the

selected bit. For example, if the bit store is a logical "1", the Sense "1" amplifier output will be a logical "1" and the Sense "0" amplifier will indicate the complement. With the desired "X" and "Y" lines at a logical "1", writing is accomplished by applying a logical "1" to the Write "1" input or to the Write "0" to obtain a bit store of a "1" or a "0" respectively.

The emitter-coupled sense amplifier outputs permit Wired-OR operation so that word expansion is easily obtained.

ELECTRICAL CHARACTERISTICS

For MC1036 and MC1037: Test procedures are shown for only the X_1 input, for the $X_1, Y_{1,2,3,4}$ storage cells. To complete testing, sequence through remaining inputs, associated with remaining storage cells.

For MC1037 only: Outputs under test are connected to

		L
@	Test	L
Temp	erature	
(0°C	Γ
- {	+25°C	Ī
(+75°C	

	TES	T VOLTAGE/CURRENT '	VALUES	
		Vdc ± 1.0%		mAdc
V _{IH}	V _{IH max}	V _{IL}	V _{EE}	I _L
-0.890	-	-1.525	-5.2	-0.5
-0.850	-0.700	-1.500	-5.2	-0.5
-0.790	-	-1.435	-5.2	-0.5
	EST VOLTAGE	CLIDDENT ADDITED TO	DINC LICTED REL	٦w.

VEE through 1,5 ks	Ω resistor.							(+75°C	-0.790	-	-1.435	-5.2	-0.5	
		Pin		MC1	036, M	IC1037	Test Li	mits		TEST	T VOLTAGE/	CURRENT APPLIED TO P	NS LISTED BELOW:		.
		Under	0°	C	+2	5°C	+7	5°C		V	V	V	V	1	V _{cc} (Gnd)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	V _{IH}	V _{IH max}	V _{IL}	V _{EE}	և	(Gna)
Power Supply Drain Current	$^{\mathrm{I}}\mathrm{_{E}}$	7	,	-	-	66	•	-	m Adc	1,5	-	2,3,4,6,8,9,11,12	7	-	, 14
Input Current	2 I _{in}	1	-	-	-	200	-	-	μ Adc	-	1	2, 3, 4, 5, 6, 8, 9, 11, 12	7	-	14
	0.5 I _{in}	11	-	-	-	50	-	-		-	11	1, 2, 3, 4, 5, 6, 8, 9, 12		-	
	0.5 I _{in}	12	-	-	- '	50	-	-	+	-	12	1, 2, 3, 4, 5, 6, 8, 9, 11	*	-	
Input Leakage	I _R	1	-	~	-	1.0	-	5.0	μAdc	1 2	-	2, 3, 4, 5, 6, 8, 9, 11, 12	1,7	-	14
Current	R	11 12	-	-	-	1.0 1.0	-	5. 0 5. 0		12	-	1, 2, 3, 4, 5, 6, 8, 9, 12 1, 2, 3, 4, 5, 6, 8, 9, 11	7, 11 7, 12	- 1	
Sense "1" Logical "1"	v _{OH} ‡	10	-0.935	-0.740	-0.850		-0.790		Vdc	1, 5, 12*		2, 3, 4, 6, 8, 9, 11	7	10	14
Output Voltage‡	OH.	.				1 1				1, 6, 12* 1, 8, 12*	-	2, 3, 4, 5, 8, 9, 11 2, 3, 4, 5, 6, 9, 11			
		↓						1	+	1, 9, 12*	_	2, 3, 4, 5, 6, 8, 11	+	+	+
Sense "1" Logical "0"	v _{OL}	10	-1.830	-1.525	-1.800	-1.500	-1.760	-1.435	Vdc	1, 5, 11*	-	2, 3, 4, 6, 8, 9, 12	7	-	14
Output Voltage	OL			1						1, 6, 11* 1, 8, 11*	<u>-</u>	2, 3, 4, 5, 8, 9, 12 2, 3, 4, 5, 6, 9, 12		-	
		↓	•	+	•	+	+	•	+	1, 9, 11*	-	2, 3, 4, 5, 6, 8, 12	+	-	*
Sense "0" Logical "1"	v _{OH} ‡	13	-0.935	-0.740	-0.850	-0.700	-0.790	-0.615	Vdc	1, 5, 11*	_	2, 3, 4, 6, 8, 9, 12	7	13	14
Output Voltage‡	OH				1					1, 6, 11*	-	2, 3, 4, 5, 8, 9, 12 2, 3, 4, 5, 6, 9, 12			
						↓				1, 8, 11* 1, 9, 11*	_	2, 3, 4, 5, 6, 8, 12	•	+	•
Sense ''0" Logical''0"	V _{OL}	13	-1.830	-1.525	-1.800	-1.500	-1.760	-1.435	Vdc	1, 5, 12*	-	2, 3, 4, 6, 8, 9, 11	7	-	14
	OL		1							1, 6, 12*	-	2, 3, 4, 5, 8, 9, 11 2, 3, 4, 5, 7, 9, 11		_	
									+	1, 8, 12* 1, 9, 12*	-	2, 3, 4, 5, 6, 8, 11	•	-	•
Switching Times†			Тур	Max	Тур	Max	Тур	Max		Pulse In	Pulse Out	V _{IL} + 1.2 Vdc	V _{EE} — 4.0 Vdc		(+1.2 Vdc)
Write Recovery	t ₁₂₋₁₃₋	13	22	30	22	30	25	35	ns	12	13	2, 3, 4, 6, 8, 9, 12	7	-	14
Output Turn-Off	t ₅₊₁₃₊	13	17	20	17	20	19	22		1,5	13			-	
Output Turn-On		13	17	20	17	20	19	22	+	1,5	13		•	-	+
I Carpar Turn On	t ₁₋₁₃₋					1		<u> </u>	1	ــــــــــــــــــــــــــــــــــــــ					

^{*} $\rm V_{IH}$ applied momentarily to pin 11 or 12 as shown for 25 ns minimum. † Pins 1 and 5 at $\rm V_{IH}$ +1.2 Vdc.

 $^{^\}ddagger V_{OH}$ limits apply from no load (0 mA) to full load (-0.5 mA)

APPLICATIONS INFORMATION

A memory consisting of 16 words of N bits per word can be realized by connecting the selection lines of N 16-bit memories in parallel as shown in Figure 4. This results in a 4 by 4 selection matrix such that a word is selected by raising one X line and one Y line to the high state. The maximum value of N in this basic configuration is determined by the maximum fan-out of the gate used to drive the array. The recommended maximum N in this configuration is 12 (each input represents 2 dc loads) if MECL II gates are used to drive the X and Y selection lines and the wiring capacitance is a maximum of 3.0 pF per input.

The number of words can be increased by emitter ORing the outputs and/or using output gating. The

emitter ORing technique is shown in Figure 5 for an N-bit by 16M-word memory. Memories 11, 21, ..., N1 are MC1036's and the remaining units are MC1037's. In this way power dissipation is minimized and no external pulldown resistors are required. The maximum recommended M is 16 and the wiring capacitance should be a maximum of 3.0 pF per output.

A 256-word by 12-bit memory can be constructed without input or output gating (excluding selection gating) if the wiring capacitance can be kept reasonably small. The number of words and the number of bits per word can be increased by proper input and output gating.

FIGURE 4 - 16-WORD BY N-BIT MEMORY

FIGURE 5 - INTERCONNECTION TECHNIQUE FOR N-BIT BY 16M-WORD MEMORY

SWITCHING TIME TEST CIRCUIT @ 25°C

(For t1-13- and t5+13+)

TIMING DIAGRAM @ TA = 25°C

MECL II MC1000/1200 series

FULL ADDERS

MC1019 MC1219

Provides the SUM, SUM, CARRY, and CARRY functions while requiring only AUGEND (A) and ADDEND (B) inputs with CARRY IN and CARRY IN.

ELECTRICAL CHARACTERISTICS

1		Pin		M	AC1219	Test Li	mits				٨	AC1019	Test Li	mits		
,		Under	-5:	5°C	+2	5°C	+12	5°C		0 °	c	+25	5°C	+7	5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	I _E	7	-	-	•	30		-	mAdc	•	-	-	30	-	-	mAdc
Input Current	2 I _{in}	3	-	-	-	200	-	-	μAdc	-	-	-	200	-	- /	μAdc
	2 I	4	-	-	-	200	-	-		-	-	-	200	-	-	
	I _{in}	12	- "	-	-	100	-	-		-	-	-	100	-	-	
	I _{in}	13	-	-	-	100	-	-	+	-	-	-	100	-	-	. *
Input Leakage Current	I _R	Inputs*	-	-		0. 2	-	1.0	μAdc	-	-	-	0.2	-	1.0	μAdc
"SUM" Logical "1" Output Voltagei	v _{OH} ‡	5	-0.990	-0. 825	-0. 850	-0.700	-0. 700	-0. 530 	Vdc 	-0. 895 	-0. 740 	-0. 850	-0. 700	-0. 775	-0.615	Vdc
			1 1	↓	1		↓ .	1	1		ļ.	•	1	↓	•	1
"SUM" Logical "0"	V _{OL}	5	-1.890	-1.580	-1.800	-1.500	-1.720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1. 435	Vdc
Output Voltage	OL	1 1.														
		1 + 1	↓	1	+	•	+	↓	•	.	•	+	+	+	+	+
"CARRY" Logical	v _{OH} ‡	1	-0.990	-0. 825	-0.850	-0.700	-0.700	-0.530	Vdc	-0. 895	-0.740	-0.850	-0.700	-0.775	-0. 615	Vdc
"1" Output	011															
Voltage ‡		+	+	+	+	,	1		,	*	+	+	,	,	*	+
"CARRY" Logical	V _{OL}	1	-1.890	-1.580	-1.800	-1.500	-1.720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1. 435	V dc
"0" Output Voltage	-															
<u> </u>	_	1 1		1 1	1 4		1 4			1 +			1 .			
		<u> </u>			<u>'</u>	<u> </u>	<u>'</u>		<u> </u>	<u> </u>	<u> </u>	,		⊢_ '	-	
Switching Times		1	Тур	Max	Тур	Max	Тур	Max	, , , , , , , , , , , , , , , , , , ,	Тур	Max	Тур	Max	Тур	Max	
(Fan-out = 3)	<u> </u>	,	Тур	Max	Тур	Max	,·									
	t ₁₂₋₅₊	5	Typ 8. 0	Max 13.0	Typ	13.0	8.0	13.0	ns	8.0	13.0	8.0	13.0	8.0	13.0	ns
(Fan-out = 3) Addend Input	12-3+	5 5			8.0	13. 0 12. 0	8. 0 10. 0	13. 0 16. 0	ns		13.0 12.0		13.0 12.0		13. 0 14. 0	ns
(Fan-out = 3) Addend Input	t ₁₂₋₅₊ t ₁₂₊₅₋ t ₁₂₊₁₊		8. 0 7. 0 8. 0	13.0 11.5 12.0	8.0	13. 0 12. 0 12. 0	8. 0 10. 0 11. 0	13. 0 16. 0 17. 0	ns	8.0	13.0 12.0 12.0	8.0	13.0 12.0 12.0	8.0	13. 0 14. 0 14. 0	ns
(Fan-out = 3) Addend Input	t ₁₂₊₅₋	5	8. 0 7. 0 8. 0 9. 0	13.0 11.5 12.0 14.5	8.0	13. 0 12. 0 12. 0 14. 5	8. 0 10. 0 11. 0 10. 0	13.0 16.0 17.0 15.0	ns	9.0	13.0 12.0 12.0 14.5	8.0	13.0 12.0 12.0 14.5	8.0	13. 0 14. 0 14. 0 14. 5	ns
(Fan-out = 3) Addend Input	t ₁₂₊₅₋ t ₁₂₊₅₋ t ₁₂₊₁₊ t ₁₂₋₁₋ t ₅₊	5 1	8. 0 7. 0 8. 0 9. 0 8. 0	13.0 11.5 12.0 14.5 13.0	8. 0 9. 0 9. 0	13.0 12.0 12.0 14.5 14.0	8. 0 10. 0 11. 0 10. 0 9. 0	13.0 16.0 17.0 15.0 14.0	ns	8.0 9.0 9.0	13.0 12.0 12.0 14.5 14.0	8.0 9.0 9.0	13.0 12.0 12.0 14.5 14.0	8.0	13. 0 14. 0 14. 0 14. 5 14. 0	ns
(Fan-out = 3) Addend Input Propagation Delay	t ₁₂₊₅₋ t ₁₂₊₅₋ t ₁₂₊₁₊ t ₁₂₋₁₋ t ₅₊	5 1 1 5	8. 0 7. 0 8. 0 9. 0	13.0 11.5 12.0 14.5 13.0 8.5	8.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5	8. 0 10. 0 11. 0 10. 0 9. 0 8. 0	13.0 16.0 17.0 15.0 14.0 12.0	ns	9.0	13.0 12.0 12.0 14.5 14.0 8.5	8.0	13.0 12.0 12.0 14.5 14.0 8.5	8. 0 9. 0 7. 0	13. 0 14. 0 14. 0 14. 5 14. 0	ns
(Fan-out = 3) Addend Input Propagation Delay	t ₁₂₊₅ - t ₁₂₊₁₊ t ₁₂₋₁₋	5 1 1 5	8. 0 7. 0 8. 0 9. 0 8. 0	13.0 11.5 12.0 14.5 13.0 8.5 8.0	8. 0 9. 0 9. 0	13.0 12.0 12.0 14.5 14.0 8.5 8.5	8. 0 10. 0 11. 0 10. 0 9. 0 8. 0 7. 0	13.0 16.0 17.0 15.0 14.0 12.0	ns	8.0 9.0 9.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5	8.0 9.0 9.0 5.0	13.0 12.0 12.0 14.5 14.0 8.5 8.5	8. 0 9. 0 7. 0 6. 0	13.0 14.0 14.0 14.5 14.0 10.0 9.5	ns
(Fan-out = 3) Addend Input Propagation Delay Rise Time	t12+5- t12+1+ t12-1- t5+ t1+	5 1 1 5	8. 0 7. 0 8. 0 9. 0 8. 0	13.0 11.5 12.0 14.5 13.0 8.5	8. 0 9. 0 9. 0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5	8. 0 10. 0 11. 0 10. 0 9. 0 8. 0	13.0 16.0 17.0 15.0 14.0 12.0	ns	8.0 9.0 9.0	13.0 12.0 12.0 14.5 14.0 8.5	8.0 9.0 9.0	13.0 12.0 12.0 14.5 14.0 8.5	8. 0 9. 0 7. 0	13. 0 14. 0 14. 0 14. 5 14. 0	ns
(Fan-out = 3) Addend Input Propagation Delay Rise Time Fall Time Augend Input	t12-5+ t12+5- t12+1+ t12-1- t5+ t1+ t5- t1-	5 1 1 5 4 5	8.0 7.0 8.0 9.0 8.0 5.0	13.0 11.5 12.0 14.5 13.0 8.5 8.0	8.0 9.0 9.0 5.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 0	8. 0 10. 0 11. 0 10. 0 9. 0 8. 0 7. 0	13. 0 16. 0 17. 0 15. 0 14. 0 12. 0 11. 5 10. 0		9.0 9.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5	8.0 9.0 9.0 5.0	13.0 12.0 12.0 14.5 14.0 8.5 8.5	8. 0 9. 0 7. 0 6. 0	13.0 14.0 14.0 14.5 14.0 10.0 9.5	ns
(Fan-out = 3) Addend Input Propagation Delay Rise Time Fall Time	t12-5+ t12+5- t12+1+ t12-1- t5+ t1+ t5- t1- t5- t1- t5- t1-	5 1 1 5 -1 5	8. 0 7. 0 8. 0 9. 0 8. 0 5. 0	13.0 11.5 12.0 14.5 13.0 8.5 8.0 8.0	8. 0 9. 0 9. 0 5. 0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5	8. 0 10. 0 11. 0 10. 0 9. 0 8. 0 7. 0	13. 0 16. 0 17. 0 15. 0 14. 0 12. 0 11. 5 10. 0	ns	8.0 9.0 9.0 5.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 0	8.0 9.0 9.0 5.0	13.0 12.0 12.0 14.5 14.0 8.5 8.5 8.0	8. 0 9. 0 7. 0 6. 0 6. 0	13. 0 14. 0 14. 0 14. 5 14. 0 10. 0 9. 5 9. 0	
(Fan-out = 3) Addend Input Propagation Delay Rise Time Fall Time Augend Input Propagation Delay	t12-5+ t12+5- t12+1+ t12-1- t5+ t1+ t5- t1- t1- t3+5- t13-5+	5 1 1 5 4 5	8.0 7.0 8.0 9.0 8.0 5.0	13.0 11.5 12.0 14.5 13.0 8.5 8.0	8.0 9.0 9.0 5.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5	8. 0 10. 0 11. 0 10. 0 9. 0 8. 0 7. 0	13. 0 16. 0 17. 0 15. 0 14. 0 12. 0 11. 5 10. 0		8.0 9.0 9.0 5.0 6.0 5.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5	8.0 9.0 9.0 5.0	13.0 12.0 12.0 14.5 14.0 8.5 8.5 8.0	8. 0 9. 0 7. 0 6. 0 6. 0	13. 0 14. 0 14. 0 14. 5 14. 0 10. 0 9. 5 9. 0	
(Fan-out = 3) Addend Input Propagation Delay Rise Time Fall Time Augend Input Propagation Delay Rise Time	t12+5- t12+1+ t12-1- t5+ t1+ t5- t1- t13+5- t13-5+ t5+	5 1 1 5 4 5	8. 0 7. 0 8. 0 9. 0 8. 0 5. 0	13.0 11.5 12.0 14.5 13.0 8.5 8.0 8.0	8.0 9.0 9.0 5.0 6.0 6.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5 9. 0	8. 0 10. 0 11. 0 9. 0 8. 0 7. 0 7. 0	13. 0 16. 0 17. 0 15. 0 14. 0 12. 0 11. 5 10. 0		8.0 9.0 9.0 5.0 5.0 6.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5 9. 0	8.0 9.0 9.0 5.0 5.0 6.0	13.0 12.0 12.0 14.5 14.0 8.5 8.5 8.5 8.5	8. 0 9. 0 7. 0 6. 0 6. 0	13. 0 14. 0 14. 0 14. 5 14. 0 10. 0 9. 5 9. 0	
(Fan-out = 3) Addend Input Propagation Delay Rise Time Fall Time Augend Input Propagation Delay Rise Time Fall Time	t12-5+ t12+5- t12+1+ t12-1- t5+ t1+ t5- t1- t1- t3+5- t13-5+	5 1 1 5 4 5	8. 0 7. 0 8. 0 9. 0 8. 0 5. 0	13.0 11.5 12.0 14.5 13.0 8.5 8.0 8.0	8.0 9.0 9.0 5.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5	8. 0 10. 0 11. 0 10. 0 9. 0 8. 0 7. 0	13. 0 16. 0 17. 0 15. 0 14. 0 12. 0 11. 5 10. 0		8.0 9.0 9.0 5.0 6.0 5.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5	8.0 9.0 9.0 5.0 6.0 5.0	13.0 12.0 12.0 14.5 14.0 8.5 8.5 8.5 8.5 9.0	8. 0 9. 0 7. 0 6. 0 6. 0	13. 0 14. 0 14. 0 14. 5 14. 0 10. 0 9. 5 9. 0	
(Fan-out = 3) Addend Input Propagation Delay Rise Time Fall Time Augend Input Propagation Delay Rise Time Fall Time Carry Input	t12-5- t12+5- t12+1+ t12-1- t5+ t1+ t5- t1- t13+5- t13-5+ t5- t5- t15- t1- t13-5-	5 1 1 5 4 5	8. 0 7. 0 8. 0 9. 0 8. 0 5. 0	13.0 11.5 12.0 14.5 13.0 8.5 8.0 8.0	8.0 9.0 9.0 5.0 6.0 6.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5 9. 0	8. 0 10. 0 11. 0 9. 0 8. 0 7. 0 7. 0	13. 0 16. 0 17. 0 15. 0 14. 0 12. 0 11. 5 10. 0		8.0 9.0 9.0 5.0 5.0 6.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5 9. 0	8.0 9.0 9.0 5.0 5.0 6.0	13.0 12.0 12.0 14.5 14.0 8.5 8.5 8.5 8.5 9.0	8. 0 9. 0 7. 0 6. 0 6. 0	13. 0 14. 0 14. 0 14. 5 14. 0 10. 0 9. 5 9. 0	
(Fan-out = 3) Addend Input Propagation Delay Rise Time Fall Time Augend Input Propagation Delay Rise Time Fall Time Fall Time	t12+5- t12+1+ t12-1- t5+ t1+ t5- t1- t13+5- t13-5+ t5- t4-5+	5 1 1 5 1 5 1	8. 0 7. 0 8. 0 9. 0 8. 0 5. 0 5. 0	13.0 11.5 12.0 14.5 13.0 8.5 8.0 8.5 8.5	8.0 9.0 9.0 5.0 6.0 5.0 6.0 5.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5 9. 0 8. 5	8. 0 10. 0 11. 0 10. 0 9. 0 8. 0 7. 0 7. 0	13.0 16.0 17.0 15.0 14.0 12.0 11.5 10.0	ns	8.0 9.0 9.0 5.0 6.0 5.0 6.0 5.0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5 9. 0 8. 5	8.0 9.0 9.0 5.0 6.0 5.0 6.0 5.0	13.0 12.0 12.0 14.5 14.0 8.5 8.5 8.5 8.5 9.0	7. 0 6. 0 6. 0	13. 0 14. 0 14. 0 14. 5 14. 0 10. 0 9. 5 9. 0 9. 5 9. 5 9. 5	ns
(Fan-out = 3) Addend Input Propagation Delay Rise Time Fall Time Augend Input Propagation Delay Rise Time Fall Time Carry Input	t12-5- t12+5- t12+1+ t12-1- t5+ t1+ t5- t1- t13+5- t13-5+ t5- t5- t15- t1- t13-5-	5 1 1 5 1 5 1	8. 0 7. 0 8. 0 9. 0 8. 0 5. 0	13.0 11.5 12.0 14.5 13.0 8.5 8.0 8.5 8.5	8. 0 9. 0 9. 0 5. 0 6. 0 5. 0 6. 0 5. 0	13. 0 12. 0 12. 0 14. 5 14. 0 8. 5 8. 5 8. 5 8. 5 9. 0 8. 5	8. 0 10. 0 11. 0 10. 0 9. 0 8. 0 7. 0 7. 0	13.0 16.0 17.0 15.0 14.0 12.0 11.5 10.0 10.5 11.0 11.0	ns	8.0 9.0 9.0 5.0 6.0 5.0 6.0 5.0	13.0 12.0 12.0 14.5 14.0 8.5 8.5 8.0 8.5 8.5 9.0 8.5	8.0 9.0 9.0 5.0 6.0 5.0 6.0 5.0	13.0 12.0 12.0 14.5 14.0 8.5 8.5 8.0 8.5 9.0 8.5	8. 0 9. 0 7. 0 6. 0 6. 0	13. 0 14. 0 14. 0 14. 5 14. 0 10. 0 9. 5 9. 0 9. 5 9. 5 9. 5	ns

^{*} Individually test each input using the pin connections shown. ‡VOH limits apply from no load (0 mA) to full load (-2.5 mA)

SWITCHING TIME TEST CIRCUIT @ 25°C

*Load corresponds to fan-out = 3.

Switching test circuit is shown for pulse in on pin 4 and pulse out on pin 1, however all other input-output combinations specified may be tested similarly according to the full subtractor truth table.

Input pulse $\rm t_{f}$ and $\rm t_{f}$ = 5.0 \pm 0.5 ns

	TEST VOLTAGE/CURRENT VALUES												
@Test		Vdc ±1.09	%		mAdc								
mperature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	I _L								
(-55°C	-5. 2 to -1. 405	-1.165 to -0.825	-	-5.2	-2.5								
{ +25℃	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5.2	-2.5								
(+125℃	-5.2 to -1.205	-0.875 to -0.530	-	-5.2	-2.5								
(0°C	-5.2 to -1.350	-1.070 to -0.740	-	-5.2	-2.5								
} +25℃	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5.2	-2.5								
(+75°C	-5.2 to -1.260	-0.950 to -0.615	- 1	-5. 2	-2.5								
	-55°C +25°C +125°C 0°C +25°C	mperature		@ Test mperature V _{IL min} to V _{IL max} V _{IH min} to V _{IH max} V _{IH min} to V _{IH max} V _{IH min} to V _{IH max} V _{IH max} -55°C -5.2 to -1.405 -1.165 to -0.825 - +25°C -5.2 to -1.325 -1.025 to -0.700 -0.700 +125°C -5.2 to -1.350 -0.875 to -0.530 - 425°C -5.2 to -1.350 -1.070 to -0.740 - +25°C -5.2 to -1.325 -1.025 to -0.700 -0.700									

		175°C	-5.2 to -1.260	-0.950 to -0.615		-5. 2	2.5	1
·		(+75°C					-2.5	
		Pin	TEST	VOLTAGE/CURRENT AP	PLIED TO P	INS LISTED BELOW:		
Characteristic	Symbol	Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	I _L	V _{cc} (Gnd)
Power Supply Drain Current	I _E	7	-	-	-	3, 4, 7, 12, 13	-	14
Input Current	2 I _{in}	3	4, 13	-	3,12	7	-	14
	2 I	4	3, 12	-	4,13		-	
	I _{in}	12	3, 13	-	4, 12		-	
	I _{in}	13	3, 12	-	4, 13	+	-	+
Input Leakage Current	I _R	Inputs*	= :	-		3, 4, 7, 12, 13	-	14
"SUM" Logical "1" Output Voltage‡	v _{OH} ‡	5	3, 12, 13 4, 13	4 3, 12	-	7	5	14
		,	4, 12 3	3, 13 4, 12, 13	-	ļ		
"SUM" Logical "0"	v_{OL}	5	4, 12, 13	3	-	7	-	14
Output Voltage			3, 13 3, 12	4, 12 4, 13	-		-	
		,	4	3, 12, 13	-	,	-	+
"CARRY" Logical "1" Output	v _{OH} ‡	1	3, 13 3, 12	4, 12 4, 13	-	7	1	14
Voltage ‡			4	3, 12, 13	-			
UGA PRIMITA A - 1 - 1			3	4, 12, 13	-	<u> </u>	*	1
"CARRY" Logical "0" Output Voltage	VOL	1	4, 12, 13 3, 12, 13	3 4	- ,	1	-	14
			4, 13 4, 12	3, 12 3, 13	- 1		-	
Switching Times (Fan-out = 3)			Pulse In	Pulse Out		V _{EE} = -4.0 Vdc		(+1.2V)
Addend Input				ı				
Propagation Delay	^t 12-5+	5	12	5	-	7	-	14
ŀ	^t 12+5-	5		5	-		-	
_	^t 12+1+	1		1	-		-	
İ	^t 12-1-	1		1	- 1		-	
Rise Time	t ₅₊	5		5	-		-	
	t ₁₊	1		1	-		-	
Fall Time	^t 5-	5		5 1	-		-	
1	^t 1-	1	'	1	-	•	-	'
Augend Input Propagation Delay	t ₁₃₊₅ -	5	13	5	-	7	-	14
	t ₁₃₋₅₊				-		-	
Rise Time	t ₅₊				- 1		-	
Fall Time	t ₅₋	+	ļ .	1	-		-	
Carry Input								
Propagation Delay	t ₄₋₅₊	5	4	5 	-	7	-	14
	^t 4+5-				-		-	
Rise Time	^t 5+			[]	-		-	
Fall Time	t ₅₋	'		7	-	•		' '

FIGURE 1 - 8 BIT RIPPLE-THROUGH ADDER

APPLICATIONS INFORMATION

The MC1019/MC1219 full adder exhibits an average propagation delay time of 5.0 ns per stage in a system employing ripple Carry. This device permits practical ripple-through adders as shown in Figure 1, as well as ripple-through multipliers.

The schematic of the full adder illustrates the techniques employed to obtain the necessary logic equations. A compensated current source drives a transistor "tree" with three levels of branching. The B input is translated negative two levels, to switch current between either the left or right branch of the tree. The A input is translated negative one level to switch current at the second level of branching. The Carry inputs switch current through the third level of branching. Depending upon the eight possible combinations of inputs, one specific branch in the Sum generating tree will be carrying current. Thus the proper output state is determined. The Carry generating tree operates in the same manner. This series gating technique results in the best speed-power product obtainable with bipolar technology. Typical propagation delay times from the inputs to outputs are shown in Figure 2.

FIGURE 2 - TYPICAL PROPAGATION DELAY TIMES

MECL II MC1000/1200 series

FULL SUBTRACTORS

MC1021 MC1221

Provides the DIFFERENCE, DIFFERENCE, BORROW OUT, and BORROW OUT functions while requiring only MINUEND (X) and SUBTRAHEND (Y) inputs with BORROW IN and BORROW IN.

$$\begin{array}{llll} D &=& YXB_{1} + Y\overline{X}\overline{B}_{1} + \overline{Y}X\overline{B}_{1} + \overline{Y}\overline{X}B_{1} \\ \overline{D} &=& \overline{Y}\overline{X}\overline{B}_{1} + YX\overline{B}_{1} + Y\overline{X}B_{1} + \overline{Y}XB_{1} \\ B_{0} &=& \overline{Y}\overline{X}B_{1} + Y\overline{X}\overline{B}_{1} + Y\overline{X}B_{1} + YXB_{1} \\ \overline{B}_{0} &=& \overline{Y}\overline{X}\overline{B}_{1} + \overline{Y}X\overline{B}_{1} + \overline{Y}XB_{1} + YX\overline{B}_{1} \end{array}$$

DC Input Loading Factor: X, Y = 1 B_i , \overline{B}_i = 2 DC Output Loading Factor = 25 Power Dissipation = 110 mW typical

TRUTH TABLE

INF	UT LO	GIC LE	VEL	OUT	PUT LC	GIC L	EVEL
X	Y	Вį	Ēį	D	ō	Во	В́о
0	0	0	1	0	1	0	1
0	0	1	0	1	0	1	0
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
1	0	0	1	1	0	0	1
1	0	1	0	0	1	0	1
1	1	0	1	0	1	0	1
1	1	1	0	1	0	1	0

MC1021, MC1221 (continued)

ELECTRICAL CHARACTERISTICS

		Pin			MC12	21 Tes	t Limits	S						t Limits		
		Under	-5	5°C	+2	5°C	+12	25°C		0	C.	+2	5°C	+7	5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IE	7	-	-	-	30	-	-	mAdc	-		-	30	-	-	mAdc
Input Current	2 I _{in}	3		-	-	200	-	-	μAdc	-	-	-	200	-	-	μAdc
	2 I _{in}	4	-	-	-	200	-	-		-	-	-	200	-	-	
	I _{in}	12	-	-	-	100	-	-		-	-		100	-	-	
	I _{in}	13	-	-	-	100		-	,	-	-		100	- 1	-	. +
Input Leakage Current	$^{\rm I}{}_{\rm R}$	Inputs*	-	-	-	0. 2	-	1.0	μAdc	-	-		0.2	. ; -	1.0	μAdc
''DIFFERENCE'' Logical ''1'' Output Voltage‡	v _{OH} ‡	5	-0.990	-0.825	-0.850	-0. 700	-0. 700	-0.530	Vdc	-0.895	-0. 740	-0.850	-0. 700	-0. 775	-0.615	Vdc
"DIFFERENCE" Logical "0" Output Voltage	v _{OL}	5	-1.890	-1.580	-1.800	-1.500	-1. 720	-1. 380	Vdc	-1.830	-1. 525	-1.800	-1.500	-1.760	-1. 435	Vdc
"BORROW" Logical "1" Output Voltageţ	V _{OH} [‡]	1	-0. 990	-0.825	-0.850	-0. 700	-0. 700	-0. 530	Vdc	-0.895	-0. 740	-0.850	-0.700	-0.775	-0. 615	Vdc
"BORROW" Logical "0" Output Voltage	v _{OL}	1	-1.890	-1.580	-1.800	-1. 500	-1. 720	-1. 380	Vde	-1.830	-1.525	-1.800	-1.500	-1.760	-1. 435	Vdc
Switching Times			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
Minuend Input		5	9.0	14	8.0	13	9.0	14.5	ns	8.0	13	8.0	13	8.0	13	ns
Propagation Delay	12-5+	5	8.0	13	8.0	13.5	11	17	113	8.0	13.5	8.0	13.5	9.0	15	Ï
	12+5-	1	0.0	14	7.0	12.5	9.0	14.5		7.0	12.5	7.0	12.5	8.0	13	
	t12-1+	1		13.5	8.0	13.5	11	17		8.0	13.5	8.0	13.5	9.0	15	
Rise Time	12+1-	5		13. 3	9.0	14	10	14		9.0	14	9.0	14	9.0	14	
ruse time	t ₅₊	1		13	7.0	12	9.0	14		7.0	12	7.0	12	8.0	13	
Fall Time	t ₁₊	5	5.0	8.0	5.0	8.5	7.0	11.5		5.0	8.5	5.0	8.5	6.0	9.5	
1 an Illie	^t 5-	1	5.0	8.0	5.0	8.0	7. 0	11.0		5.0	8.0	5.0	8.0	6.0	9.0	
Subtrahend Input	1-							-					<u> </u>	-		
Propagation Delay	t ₁₃₊₅₋	5	5.0	8.5	5.0	8.5	7.0	11	ns	5.0	8.5	5.0	8.5	6.0	9.5	ns
	t ₁₃₋₅₊		6.0	9.0	5.0	8.5	7.0	11.5		5.0	8.5	5.0	8.5	6.0	9.0	
Rise Time	t ₅₊		5.0	8.5	6.0	9.0	8.0	11		6.0	9.0	6.0	9.0	7.0	9.5	
Fall Time	^t 5-		5.0	8.5	5.0	8.5	7.0	11	+	5.0	8.5	5.0	8.5	6.0	9.5	•
Borrow Input Propagation Delay	t ₄₋₅₊	5	3.0	5.5	3.0	5.0	4.0	6.0	ns	3.0	5.0	3.0	5.0	3.0	5.0	ns
	t ₄₊₅ -		4.0	7.5	4.0	7.5	6.0	10		4.0	7.5	4.0	7.5	5.0	8.5	
Rise Time	t ₅₊		5.0	8.0	6.0	8.5	8.0	10.5		6.0	8.5	6.0	8.5	7.0	10	
Fall Time	t ₅ -	1 +	5.0	8.0	5.0	8.5	7.0	11	ļ +	5.0	8.5	5.0	8.5	6.0	9.5	

^{*} Individually test each input using the pin connections shown. ${}^{\dagger}V_{OH}$ limits apply from no load (0 mA) to full load (-2.5 mA).

		@Test		TEST VOLTAGE/ Vdc ±1.0		ALUES	mAdc	-
	lem	perature	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	I _L	1
	(_55°C	-5.2 to -1.405	-1. 165 to -0. 825	" IM max	-5. 2		-
M	[1221 }	+25°C	-5. 2 to -1. 325	-1.025 to -0.700	-0.700	-5. 2 -5. 2	-2.5	4
	(+125°C	-5. 2 to -1. 205	-0.875 to -0.530	-0.700	-5. 2	-2.5	4
	(0°C	-5. 2 to -1. 350	-1.070 to -0.740	 	-5. 2 -5. 2	-2.5	4
MC	:1021 }	+25°C	-5.2 to -1.325	-1.025 to -0.700	-0.700	-5. 2 -5. 2	-2.5	4
	(+75°C	-5.2 to -1.260	-0.950 to -0.615	-0.700	-5. 2 -5. 2	-2.5	4
***************************************		1					-2.5	-
		Pin	1531	VOLTAGE/CURRENT AP	PLIED TO PI	N2 FI21ED REFOM:		4
Characteristic	Symbol	Under Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	1,	(G
Power Supply Drain Current	I _E	7	-	-	-	3, 4, 7, 12, 13	-	1
Input Current	2 I	3	4,13		3, 12	7		Η.
	2 I	4	3,12		4, 13	ĺ	-	1
	I _{in}	12	3,13		4, 12		-	
	in I _{in}	13	3,12		4, 12		1 -	Ι.
Input Leakage	I _R	Inputs*	-	-	-	3, 4, 7, 12, 13	-	1
Current "DIFFERENCE"			3, 12, 13	4	_	7		L.
Logical "1"	$v_{OH^{\ddagger}}$	5	4,13	3,12	-	í	5	1
Output Voltage‡		↓	4, 12 3	3, 13 4, 12, 13	-	.		
'DIFFERENCE"	$v_{_{\rm OL}}$	5	4, 12, 13	3	-	7	 	1.
Logical "0"	OL		3, 13 3, 12	4,12 4,13	-		-	1
Output Voltage		+	4	3, 12, 13	-	ļ	-	
'BORROW'' Logical	v _{on‡}	1	3, 12, 13	4	-	7	1	14
"1" Output Voltageţ	OH.		3, 12 4, 12	4, 13 3, 13	-			ΙÏ
		•	3	4, 12, 13	-	Į.		ļ
'BORROW'' Logical	v_{OL}	1	4, 12, 13	3	-	7	-	14
"0" Output Voltage	OL		4, 13 3, 13	3, 12 4, 12	- 1		-	
		+	4	3, 12, 13	-	↓ .	-	
Switching Times Minuend Input			Pulse In	Pulse Out		V _{EE} = -4.0 Vdc		+1.5
Propagation Delay	^t 12-5+	5	12	5	-	7] -	14
	t ₁₂₊₅₋	5		5	-		-	
	t ₁₂₋₁₊	1		1	-		-	П
	t ₁₂₋₁₊	1		1	-	İ	-	
Rise Time	12+1- t ₅₊	5		5	-		_	
	5+ t ₁₊	1		1	-			
Fall Time		5		5	_		[
	t ₅ -	1	.	1	_	1		
Subtrahend Input	^t 1-		•			T	-	•
Propagation Delay	t 13+5-	5	13	5	-	7	- 1	14
1	t ₁₃₋₅₊			1. 1	-	1		
Rise Time	t ₅₊				-		-	
Fall Time	5+ t ₅₋	↓ 1	↓	1 1	-			1
Borrow Input	⁻ 5 -		•	•		T		•
Propagation Delay	t ₄₋₅₊	5	4	5	-	7	-	14
. [t ₄₊₅ -				- 1		-	
	1	1 1	1	1 1	_ 1	1	1 1	
Rise Time	t ₅₊		1 1	1	- 1	i	- 1	- 1

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATIONS INFORMATION

The MC1021/MC1221 full subtractor is identical to the full adder except for the interconnection metalization. It exhibits an average propagation delay time of 5.0 ns per stage in a system employing ripple Borrow. This device permits building of ripple-through dividers.

The schematic of the full subtractor illustrates the techniques employed to obtain the necessary logic equations. A compensated current source drives a transistor "tree" with three levels of branching. The X input is translated negative two levels, to switch current between either the left or right branch of the tree. The Y input is translated negative one level to switch current at the second level of branching. Depending upon the eight possible combinations of inputs, one specific branch level in the Difference generating tree will be carrying current. Thus the proper output state is determined. The Borrow generating tree operates in the same manner. This series gating technique results in the best speed-power product obtainable with bipolar technology. Typical propagation delay times from the inputs to outputs are shown.

TYPICAL PROPAGATION DELAY TIMES

DATA DISTRIBUTOR

MECL II MC1000/1200 series

MC1029 MC1229

A 2 X 3 array of 2-input OR gates, designed primarily for the handling of data in a digital system.

MC1029, MC1229 (continued)

ELECTRICAL CHARACTERISTICS

		Pin			MC122	29 Test	Limits					MC10	29 Test	Limits		
		Under	-5	5°C	+2	5°C	+12	:5°C		0	°C	+2	5°C	+7	5°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	IE	7	-	-	-	36	-	-	mAdc	-	-	-	45	-	-	mAdc
Input Current	I	5 8 1 6	-	- - - -	-	300 300 200 200 200		- - - -	μ Adc	-		-	300 300 200 200 200	- - - -	- - - -	μAdc
Input Leakage Current	I_R	5, 8* 1, 6, 13*	-	-	-	0, 6 0, 4	-	3.0 2.0	μ Adc μ Adc	-	-	-	0.6 0.4	-	3.0 2.0	μ Adc μ Adc
Logical "1" Output Voltage	v _{OH} ‡	3, 11 [†] 4, 9 [†] 2, 12 [†] 2, 3, 4 [†] 9, 11, 12 [†]	-0.990	-0.825	-0.850	-0.700	-0.700	-0.530	Vdc	-0.895	-0.740	-0.850	-0.700	-0.775	-0.615	Vdc
Logical ''0'' Output Voltage	v _{OL}	3, 11 [†] 4, 9 [†] 2, 12 [†] 2, 3, 4 [†] 9, 11, 12 [†]	-1.890	-1.580	-1.800	-1.500	-1.720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1.435	Vdc
Switching Times			Тур	Max	Тур	Max	Тур	Max		Тур	Max	Тур	Max	Тур	Max	
Propagation Delay	t ₅₊₄₊ t ₅₋₄₋	4	4.0 4.0	7.5 7.5	4.0 4.0	7. 5 7. 5	6. 0 6. 0	9.0 9.0	ns	4. 0 4. 0	7.5	4.0 4.0	7.5 7.5	5. 0 5. 0	8.0 8.0	ns
Rise Time Fall Time	t ₄₊		5. 0 5. 0	8.5 8.0	5.0 5.0	8.5 8.0	7.0	9.5		5. 0 5. 0	8.5	5. 0 5. 0	8.5	6.0	9.0 8.5	
Propagation Delay	t ₄₋ t ₁₊₃₊ t ₁₋₃₋	3	4.0	7.5	4.0	7.5	6.0			4. 0 4. 0	7.5	4.0	7.5	5. 0 5. 0	8. 0 8. 0	
Rise Time	t ₃₊		5.0	8.5	5.0	8.5	7.0	9.5		5.0	8.5	5.0	8.5	6.0	9.0	
Fall Time	^t 3-		5.0	8.0	5.0	8.0	7.0	9.0	'	5.0	8.0	5.0	8.0	6.0	8.5	

^{*} Individually test each input using the pin connections shown. † Individually test each output using the pin connections shown.

SWITCHING TIME TEST CIRCUIT @ 25°C

	1	TEST VOLTAGE/CURRENT VALUES									
(@Test		Vdc ±1	.0%		mAdc					
Ten	perature	V _{IL}	V _{IH}	V _{IH max}	VEE	i,					
1	(−55°C	-1.580	-0.990	-	-5.2	-2.5					
MC1229	+25°C	-1.500	-0.850	-0.700	-5.2	-2.5					
	+125°C	-1.380	-0.700	-	-5.2	-2.5					
(0°C	-1.525	-0.895	-	-5.2	-2.5					
MC1029	+25°C	-1.500	-0.850	-0.700	-5.2	-2.5					
	+75°C	-1.435	-0.775	-	-5.2	-2.5					

		(+75°C	-1.435	-0.775	-	-5.2	-2.5	
		Pin Under	TEST VOLT	AGE/CURRENT AP	PLIED TO	PINS LISTED BELOW	' :	V _{cc}
Characteristic	Symbol	Test	V _{IL}	V _{IH}	V _{IH max}	V _{EE}	l _L	(Gnd)
Power Supply Drain Current	IE	7	-	-		1, 5, 6, 7, 8, 13	1	14
Input Current	I _{in}	5 8 1 6	- - - -	- - - - -	5 8 1 6	1, 6, 7, 8, 13 1, 5, 6, 7, 13 5, 6, 7, 8, 13 1, 5, 7, 8, 13 1, 5, 6, 7, 8		14
Input Leakage Current	I _R	5, 8* 1, 6, 13*	- -	-	-	1, 5, 6, 7, 8, 13 1, 5, 6, 7, 8, 13	-	14 14
Logical "1" Output Voltage	v _{OH} ‡	3, 11 [†] 4, 9 [†] 2, 12 [†] 2, 3, 4 [†] 9, 11, 12 [†]	- - - -	1 6 13 5 8	- - - -	5, 6, 7, 8, 13 1, 5, 7, 8, 13 1, 5, 6, 7, 8 1, 6, 7, 8, 13 1, 5, 6, 7, 13	‡	14
Logical ''0'' Output Voltage	v _{OL}	3, 11 [†] 4, 9 [†] 2, 12 [†] 2, 3, 4 [†] 9, 11, 12 [†]	1 6 13 5 8	- - - -	- - - -	5, 6, 7, 8, 13 1, 5, 7, 8, 13 1, 5, 6, 7, 8 1, 6, 7, 8, 13 1, 5, 6, 7, 13	- - -	14
Switching Times			Pulse In	Pulse Out		$V_{EE} = -4.0 \text{ Vdc}$		(+1.2 V)
Propagation Delay	t ₅₊₄₊ t ₅₋₄₋	4	5	4	-	1, 6, 7, 8, 13	-	14
Rise Time Fall Time	t ₄₊							
Propagation Delay	t ₁₊₃₊	3	1	3	-	5, 6, 7, 8, 13	-	
Rise Time Fall Time	t ₁₋₃₋ t ₃₊ t ₃₋							

 $[\]ddagger V_{\mbox{OH}}$ limits apply from no load (0 mA) to full load (-2.5 mA). $I_{\mbox{L}}$ applied to output under test.

SWITCHING TIME WAVEFORMS

The MC1029/MC1229 data distributor is a 2 X 3 array of 2-input OR gates, as shown in the logic diagram. Inputs X and Y may be used as control inputs to transfer the data on inputs A, B, and C, to the outputs on pins 9, 11, and 12, or to the outputs on pins 4, 3, and 2. Also, if it is desired to distribute data to three destinations, inputs X and Y may be used for data and A, B, and C as control inputs. The data distributor utilizes negative logic; i.e., the positive OR function becomes the negative AND. Data is transferred for a low level on the control inputs.

The data distributor is an example of the manner in which part of a logic system may be partitioned to reduce wiring and package count. Figure 1 illustrates the logic required for the transfer of data from "A" register to "B" register gating or to "C" register gating. Six stages per register are shown in the figure but arrays of any desired length may be built. The typical propagation delay of the data distributor in a system is 5.0 ns, permitting the rapid transfer of data through distribution gating. If data distribution is done on a double-rail basis instead of single-rail as shown, then twice the number of data distributors are required.

FIGURE 1 - REGISTER DATA TRANSFER

DUAL 4-INPUT CLOCK DRIVER MECL II MC1000/1200 series

MC1023

Provides simultaneous OR/NOR or AND/NAND output functions. It contains an internal bias reference insuring that the threshold point is always in the center of the transition region over the temperature range.

This circuit is designed to operate in high-speed digital computer applications as a clock driver or as a high-speed gate.

MC1023, MC1223 (continued

					4-			1				TECT V	OLTAGE/CURRENT VALUES		
TI FOTDIOA		D 4 6 =			5-			_	Test			Vdc ± 1		mAdc	+
ELECTRICA	L CHA	RACI	ERI	SHC	-	٦.	_	T	perature	V _{OL max}	V _{OH min}	V _{OH max}	V _{EE}	I IL	+
Test is shown fo	or only o	ne date	The	othe	10-		``	8 ^{rem} 13	0°C	-1.530	-0.930	-0.750	-5. 2	-2. 5	-
ate is tested in				Othic	12-			13	+25℃	-1, 500	-0. 950	-0.700	-5. 2 -5. 2	-2.5	4
									+75°C	-1.440	-0.790	-0.635	-5.2	-2.5	-
		Pin			MC10	23P Te	st Limit	s			TEST VO	LTAGE/CUR	RENT APPLIED TO PINS LISTE		1
		Under	0)°C	+2	5°C	+;	75°C	1		1	T	THE PART OF THE LISTER	J DELOW.	V _{cc}
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	V _{OL max}	V _{OH min}	V _{OH max}	V _{EE}	I _L	(Gnd)
Power Supply Drain Current	IE	7	-	-	-	61	-	-	mAdc	-	-	-	2, 3, 4, 5, 7, 9, 10, 11, 12	-	14
nput Current	I _{in}	2 3	-	-	-	300	-		μAdc		-	2	3, 4, 5, 7, 9, 10, 11, 12	 -	14
		4	1 -	_	1		-			2.44	-	3	2, 4, 5, 7, 9, 10, 11, 12 2, 3, 5, 7, 9, 10, 11, 12	-	
		5	ļ -	-	-	*	<u> </u>	-	*	-	-	5	2, 3, 4, 7, 9, 10, 11, 12		+
Input Leakage Current	I_R	2	-	1	-	1.0	1.	5.0	μAdc	1 :	1 :	-	2, 3, 4, 5, 7, 9, 10, 11, 12	-	14
		4 5	-	-	-		1 -			-		-		-	
'NOR" Logical "1"	v _{OH} ‡	6	-0, 930	-0.750	-0.850	-0. 700	-0. 790	0-0.635	Vdc	2			3, 4, 5, 7, 9, 10, 11, 12	6	14
Output Voltage‡	OH				1				1	3 .	-	-	2, 4, 5, 7, 9, 10, 11, 12	l i	14
			+	*	+	♦	♦	₩	+	5	-	-	2, 3, 5, 7, 9, 10, 11, 12 2, 3, 4, 7, 9, 10, 11, 12	1 1	↓
'NOR'' Logical ''0" Output Voltage	v_{OL}	6	-2.050	-1.530	-2.000	-1.500	-1.940	-1.440	Vdc	-	2 3	-	3, 4, 5, 7, 9, 10, 11, 12	-	14
									$1 \perp 1$	-	.4	-	2, 4, 5, 7, 9, 10, 11, 12 2, 3, 5, 7, 9, 10, 11, 12		
'OR" Logical "1"	v +	1	0.020	0.750	0.050	0.000	0.500	0-0.635	V	-	5 2	-	2, 3, 4, 7, 9, 10, 11, 12	-	*
Output Voltage ‡	^v он [‡]	•	-0.930	-0. /50	-0.850	-0.700	-0.790	1-0.635	Vdc	-	3	-	3, 4, 5, 7, 9, 10, 11, 12 2, 4, 5, 7, 9, 10, 11, 12	6	14
			+	\ \	♦	↓	↓	+	+	-	4 5	-	2, 3, 5, 7, 9, 10, 11, 12 2, 3, 4, 7, 9, 10, 11, 12		↓
'OR" Logical "0"	v _{OL}	1	-2.050	-1.530	-2.000	-1.500	-1.940	-1.440	Vdc	2	-	- '	3, 4, 5, 7, 9, 10, 11, 12	-	14
Output Voltage										3 4	- '	1 : 1	2, 4, 5, 7, 9, 10, 11, 12 2, 3, 5, 7, 9, 10, 11, 12	:	Ī
			*	*	*	٧.	*	*	*	5	-	-	2, 3, 4, 7, 9, 10, 11, 12	-	*
witching Times Propagation Delay	-		Тур	Max	Тур	Max	Тур	Max		Pulse in	Pulse Out				
(Fan-Out = 2)*	t 5+6- 5-6+	6	2.0	3.5	2.0	3.5	3.0	4.5	ns	5	6	-	2, 3, 4, 7, 9, 10, 11, 12	-	14
	5+1+	1	2.0	3.0	2.0	3.0	3.0	4.0			1	- 1			
(Fan-Out = 10)*	t5-1-	1 6	2.0	3.5	2.0	3.5	3.0	4. 5 5. 0			1	-		-	
(1 an-out = 10)	5+6- 5-6+	6	2.0	3.5	2.0	3.5	3.0	5.0			6	-		- 1	
	¹ 5+1+	1	2.0	3.5	2.0	3.5	3.0	5.0			1	-		-	
Rise Time	t 5-1-	-					0.0	3.0			1	-		-	
(Fan-Out = 2) *	t6+	6	2.0	4.0 4.0	2.0	4. 0 4. 0	3.5 3.5	5. 0 5. 0			6	-		-	
(Fan-Out = 10)*	t1+ t ₆₊	6	3.0	5.5	3.0	5.5	5.0	7.5			6	- 1		-	
·	t1+	1	3, 0	5.5	3.0	5. 5	5.0	7.5			1	-			
Fall Time (Fan-Out = 2)*	to I	6	2.0	4.5	2.0	4.5	3.0	5.5			6	_			
	t6- t1-	1	2.0	4.5	2.0	4.5	3.0	5.5			1	-		-	
(Fan-Out = 10)*	t ₆₋	6	3.0 3.0	5.5	3.0	5. 5	5.0	7.5		1 1	6		1		i

[‡] V_{OH} limits apply from no load (0 mA) to full load (-2.5 mA).

SWITCHING TIME TEST CIRCUIT

^{*}A fan-out is defined as one \overline{J} or \overline{K} input.

APPLICATIONS INFORMATION

The MC1023 is a dual high-speed gate designed for use as a clock driver which allows the MECL II flip-flops to operate at their full speed capability. More advanced processing techniques than those used on standard MECL II are employed for the clock driver, resulting in an improved speed-power product. The dual gate exhibits typical propagation delay times of 2.0 ns. Due to this short propagation delay, the gate makes an ideal clock driver for long shift registers where the clock pulse may be distributed with minimal skew time over the entire register length.

Since rise and fall times may be as fast as 1.0 ns under light loading, the following precautions must be taken during layout. The MC1023 will not drive back-plane point-to-point wiring satisfactorily. Due to the fast logic transitions a maximum length of three inches for point-to-point wiring is recommended. Lower impedance printed wires allow longer line lengths. Due to the low output impedance (5.0 ohms) of the MC1023, additional terminating resistance to -5.2 V may be employed. This reduces fall time for capacitive loads and propagation delay to negative-going outputs. Figure 1 shows typical curves for output voltage versus load current. Figures 2 through 7 show curves for rise, fall, and propagation delay times versus loading for a typical gate. Capacitance of 5.0 pF per fan-out was used during the tests. This is conservative, since stray and input capacitance is closer to 4.0 pF per fan-out when driving flip-flops in high-speed designs.

The MC1023 is also very useful for providing the additional levels of gating required for some counting configurations such as divide-by-seven and divide-by-thirteen counters. The maximum frequency of operation of such a counter depends upon the flip-flop and gating delay which determines the minimum "up time" of the clock waveforms. Due to its short propagation delay the MC1023 when used with an MC1027 allows a divide-by-seven counter to operate up to 100 MHz.

Due to the 5.0-ohm output impedance the clock driver will also drive low impedance lines. When driving a 50-ohm termination to -2.0 V the output "1" level will be reduced by a maximum of 0.100 V. The minimum "1" level is approximately -0.950 V with a load current of 21 mA, reducing voltage noise immunity by 0.100 V. Noise power or energy noise immunity is still good due to the very low gate output impedance and low line impedance.

Two additional applications of the MC1023 are shown in Figures 8 and 9.

FIGURE 1 - TYPICAL OUTPUT
CHARACTERISTICS

0-0.75
0-0.75
0-1.00
175°C
175°C
125°C
125°C

MC1023, MC1223 (continued)

APPLICATIONS INFORMATION (continued)

FIGURE 8 - MC1023 AS A ONE SHOT AND CLOCK SHAPER

very useful for generating accurate and stable pulse widths or reshaping clock pulse width. Pulse widths down to 3.0 ns are

Circuit courtesy of Mr. O. Gene Gabbard, Member of Technical staff, Communications Satellite Corporation.

FIGURE 9 - MC1023 AS A CRYSTAL OSCILLATOR

