

Mathematical Foundations of Computer Science

-// M

Lecture 3: Proofs by Contradiction and Induction

Outline

- Different types of Proofs
- Proof by Contradiction
- Principle of Mathematical Induction

Examples

Types of Proofs

Direct Proof

Axioms $\Longrightarrow S_1 \Longrightarrow S_2 \Longrightarrow S_3 \Longrightarrow$ Proposition

- Proof by Cases
- Proof by Contrapositivity

Proof by Contradiction

Proof by Mathematical Induction

Direct Proofs

Eg. Axioms $A_1, A_2, ... A_k$ implies propositions S_1, S_2, S_3 which in turn implies required Theorem/ Proposition.

Most high school proofs are direct proofs (e.g. Pythagoras theorem, many Geometry proofs).

Proof by Cases

Proposition. If (proposition) P, then (proposition) Q i.e., to prove $P \Rightarrow Q$

Proof structure.

Step 1: If P is true, then either (a) P1 is true, or (b) P2 is true

Step 2: Case (a): Show P1 implies Q

Step 3: Case (b) Show P2 implies Q

Can also have several (more than two) cases.

Proof by Cases: An example

Proposition. If $x + y \ge 4$, then at least one of $x, y \ge 2$.

Proof.

Case 1: N72: Roposition Distance!

P (axt p) Gard.

P Rank P Rank.

Proof by Contrapositive

Proposition. If (proposition) P, then (proposition) Q i.e. to prove $P \Longrightarrow Q$

Proof structure.

We will prove the contrapositive (logically equivalent statement)

Eg: x is not a multiple of $3 \Rightarrow x$ is not a multiple of $6 \cdot - y$.

Contrapositive? $\neg Q \Rightarrow \neg P$ $\Rightarrow \neg P$

- a) x is a multiple of $3 \implies x$ is a multiple of 6.
- (b) x is a multiple of 6 ⇒ x is a multiple of 3
 - c) x is not a multiple of $6 \Rightarrow x$ is not a multiple of 3

Warning: Remember contrapositive is not the same as converse!

Proof by Contrapositive

Proposition. If $a \times b$ is not a multiple of n, then a is not a multiple of n and b is not a multiple of n. A containing the second containin

Proof.

We will prove the contrapositive i.e., we need to prove: If a is a multiple of n or b is a multiple of n,

then ab is a multiple of n

Case 1: a is a multiple of
$$n$$
. Then $axb = (k \times n) \times b$

$$= (kb) \times n$$

Proof by Contradiction

Proposition. If P (is true), then Q (is true).

Proof.

Suppose not i.e. $P \land (\neg Q)$ • Assume proposition is not true. (suppose P is true and Q is false)

```
Then.....
```

••••

it follows that $C \land \neg C$ i.e. a contradiction $(\Longrightarrow \Leftarrow)$

- Arrive at a contradiction
- Hence, proposition is true (called Modus Tollens in logic)

Hence $P \Longrightarrow Q$

Infinite Primes

Prime number: Natural number p is a prime number if the only divisors of p are $\{1, p\}$.

$$p \in \{2,3,5,7,11,13,17,19,23,\dots\}$$

- A natural number that is not prime is called composite
- Every composite number has a prime divisor.

Qn. What is the largest prime?

Theorem. There are infinite primes.

Proof by Contradiction

Theorem. There are infinite primes.

Proof. We will prove by contradiction. Suppose there are only finitely many primes (say n of them). Let $p_1, p_2, ..., p_n$ be all the primes.