- 37. Suitable units for the gravitational constant G are:
 - A) $kg \cdot m/s^2$
 - B) m/s^2
 - \mathbb{C}) N·s/m
 - kg·m/s
 - $m^3/(kg \cdot s^2)$

- 38. When the brakes of an automobile are applied, the road exerts the greatest retarding force:
 - A) while the wheels are sliding
 - B) just before the wheels start to slide
 - C) when the automobile is going fastest
 - D) when the acceleration is least
 - E) at the instant when the speed begins to change
- 39. A sledge (including load) weighs 5000 N. It is pulled on level snow by a dog team exerting a horizontal force on it. The coefficient of kinetic friction between sledge and snow is 0.05. How much work is done by the dog team pulling the sledge 1000 m at constant speed?
 - A) $2.5 \times 10^4 \,\text{J}$

 - B) $2.5 \times 10^5 \text{ J}$ C) $5.0 \times 10^5 \text{ J}$
 - D) $2.5 \times 10^6 \,\text{J}$
 - E) $5.0 \times 10^6 \,\text{J}$

- = F3. Mc. d = 2.5x105
- 40. Two carts (A and B), having spring bumpers, collide as shown. Cart A has a mass of 2 kg and is initially moving to the right. Cart B has a mass of 3 kg and is initially stationary. When the separation between the carts is a minimum:

- cart B is still at rest
- cart A has come to rest
- (1) the carts have the same momentum
- the carts have the same kinetic energy
- the kinetic energy of the system is at a minimum

Name:	Cliu, 20	Qin	Date:	
T A COTTTO			Daic.	

4 1. Test masses are used to measure the gravitational field at various positions in and near a hollow spherical shell. The gravitational field will have its greatest value at point(s)

- DY 1, 2, and 5
- 1 and 2

 \downarrow 2. The mass density of a planet varies with distance from the center as $\rho = \rho_o (1 - C \frac{r}{R})$

where C is a dimensionless constant, and R_P is the radius of the planet. The gravitational field of the planet for $r < R_P$ is

A)
$$\bar{g} = -\rho_o G(\frac{r}{2} - \frac{Cr^2}{3R_p})\hat{r}$$

A)
$$\bar{g} = -\rho_o G(\frac{r}{2} - \frac{Cr^2}{3R_p})\hat{r}$$
 #477

B) $\bar{g} = -\rho_o G(\frac{r}{3} - \frac{Cr^2}{4R_p})\hat{r}$ #477

B)
$$\bar{g} = -\rho_o G(\frac{r}{3} - \frac{Cr^2}{4R_p})\hat{r}$$

$$\begin{array}{ccc}
\tilde{g} = -\rho_o G(r - \frac{Cr^2}{R_p})\hat{r} & \neq 477 \\
\end{array} = \int_0^r \rho_0 \left(1 - \frac{r}{R_p}\right) dr$$

D)
$$\vec{g} = -\rho_o GC \frac{r^2}{R} \hat{r}$$

D)
$$\bar{g} = -\rho_o G C \frac{r^2}{R_p} \hat{r}$$
 $\neq 477$
E) $\bar{g} = -\rho_o G \frac{r}{3} \hat{r}$ $\neq 477$ $= \rho_o \int_0^r 1 - C \frac{r}{R_p} dr$

E)
$$\vec{g} = -\rho_o G \frac{r}{3} \hat{r}$$

$$= p_0 \left(r - \left(\frac{r^2}{2kp} \right) \right)^r$$

Version 2 Page 1