Heuristic analysis

custom score 3

This simple heuristic is based on the distance between player location to the board's center. The higher the distance, the lower the score player gets. Because player often gets more legal moves when at the center of the board than when near the board's border.

custom_score_2

This heuristic is the combination of open_move heuristic and the distance to the board's center heuristic (custom_score_3). While the custom_score_3 is useful at the early game, the open_move heuristic is the direct way to measure the player's number of legal moves. The combination is useful in case that there are 2 or more moves have the same score (using open_move heuristic). In these cases, player should move to a position closer to the center. To avoid the situation that the distance_to_center heuristic (custom_score_3) over influences the final score, we normalize the distance_to_center score by divide it by the sum of board's width and height to ensure that distance_to_center score always less than 1.

custom_score

This heuristic is similar to custom_score_2 but instead of using open_move heuristic, it uses improve_score heuristic. While moving to a position that gives player more move choices is good, moving to a position that gives player more move choices than opponent is even better. After all, the goal of the game is to last longer than the opponent. The combination with distance_to_center heuristic helps improve the early game.

Tournament result

Match #	<pre>Opponent</pre>	AB_Improved		AB_Custom		AB_Custom_2		AB_Custom_3	
		Won	Lost	Won	Lost	Won	Lost	Won	Lost
1	Random	8	2	10	0	10	0	10	0
2	MM_Open	7	3	8	2	9	1	6	4
3	MM_Center	9	1	9	1	8	2	10	0
4	MM_Improved	8	2	10	0	5	5	7	3
5	AB_Open	6	4	5	5	6	4	5	5
6	AB_Center	6	4	6	4	6	4	5	5
7	AB_Improved	4	6	4	6	6	4	4	6
	Win Rate:	68.6%		74.3%		71.4%		67.1%	

Match #	Opponent	AB_Custom	AB_Custom_2	
			Won Lost	
1	AB_Improved	30 20	24 26	
	Win Rate:	60.0%	48.0%	

Conclusion

The tournament result shows that the best heuristic of all 3 custom score functions is "custom_score" for its best win rate. All three heuristics are easy to compute. The "custom_score" and is more sensible in assessing the game situation than "custom_score_2" and "custom_score_3". In "custom_score" heuristic, we have to compute the number of legals move 2 times, while for "custom_score_2" heuristic, we only have to compute the number of legals move only one time. But, the difference in computation costs is trivia compares to the computation cost to explore new nodes when we go deep along the game tree. So the average depths of the "custom_score" and "custom_score_2" should be similar.