Image Processing and Computer Vision (IPCV)

Prof. J. Weickert Mathematical Image Analysis Group

Summer term 2019 Saarland University

Example Solutions for Classroom Assignment 5 (C5)

Problem 1 (Point Transformations)

(a) First, we calculate the histogram of the image, i.e. we count the occurrence frequency of all grey values from the 3bit range $(0, \ldots, 7)$.

Grey value index i	1	2	3	4	5	6	7	8
Grey value v_i	0	1	2	3	4	5	6	7
Frequency p_i	0	4	10	9	9	6	2	0

The image consists of N=40 pixels and we have $2^3=8$ different grey values. Thus the desired number of pixels for each value is $q_i=\frac{40}{8}=5$.

To apply the histogram equalisation we first compute the accumulated histogram:

Grey value index i	1	2	3	4	5	6	7	8
$s_i := \sum_{i=1}^i p_i$	0	4	14	23	32	38	40	40

For $r=1,\ldots,8,$ we are looking for the largest index k_r such that $s_{k_r} \leq r \cdot 5$:

Index r	1	2	3	4	5	6	7	8
k_r	2	2	3	3	4	4	5	8
s_{k_r}	4	4	14	14	23	23	32	40
$r \cdot 5$	5	10	15	20	25	30	35	40

Let $k_0 := 0$. We map the grey values $v_{k_{r-1}+1}, \ldots, v_{k_r}$ to new grey value

$$w_r \text{ for } r = 1, \dots, 8$$
:

$$r=1: v_{k_0+1},\ldots,v_{k_1} \Leftrightarrow v_1,\ldots,v_2 \Rightarrow v_1,v_2 \text{ are mapped to } w_1=0$$

$$r=2: v_{k_1+1}, \ldots, v_{k_2} \Leftrightarrow v_3, \ldots, v_2 \Rightarrow f$$
, there is no mapping to $w_2=1$

$$r=3: v_{k_2+1}, \ldots, v_{k_3} \Leftrightarrow v_3, \ldots, v_3 \Rightarrow v_3 \text{ is mapped to } w_3=2$$

$$r=4: v_{k_3+1}, \ldots, v_{k_4} \Leftrightarrow v_4, \ldots, v_3 \Rightarrow \ell$$
, there is no mapping to $w_4=3$

$$r=5: v_{k_4+1}, \ldots, v_{k_5} \Leftrightarrow v_4, \ldots, v_4 \Rightarrow v_4 \text{ is mapped to } w_5=4$$

$$r=6: v_{k_5+1}, \ldots, v_{k_6} \Leftrightarrow v_5, \ldots, v_4 \Rightarrow \ell$$
, there is no mapping to $w_6=5$

$$r=7: v_{k_6+1}, \ldots, v_{k_7} \Leftrightarrow v_5, \ldots, v_5 \Rightarrow v_5 \text{ is mapped to } w_7=6$$

$$r=8: v_{k_7+1}, \ldots, v_{k_8} \Leftrightarrow v_6, \ldots, v_8 \Rightarrow v_6, v_7, v_8 \text{ are mapped to } w_8=7$$

The equalised image is given by

	7	7	7	0	2	2	2	4
	6	6	6	6	7	4	2	4
Ì	6	6	6	4	7	4	4	4
	6	6	4	4	7	2	2	2
Ì	0	0	7	7	0	2	2	2

and its histogram is

Grey value index i	1	2	3	4	5	6	7	8
Grey value w_i	0	1	2	3	4	5	6	7
Frequency	4	0	10	0	9	0	9	8

(b) The histograms are given in the following way:

