מבוא למרחבים מטריים וטופולוגיים - תרגול 2

ו בניות של מרחבים מטריים

 $A \subseteq X$ עם המטריקה עם המטריקה .1 תת מרחב של מרחב מטרי (X,d) הוא תת קבוצה $A \subseteq X$ עם המטריקה .($A,d|_A$). דוגמאות:

$$\{x \in \mathbb{R}^2 \, | \, ||x||_2 = 1\} = S^1 \subset \mathbb{R}^2$$
 (N)

:תהי $\phi:[0,\infty) \to [0,\infty)$ המקיימת.

$$\phi(s) = 0 \iff s = 0 \text{ (N)}$$

רדת לא יורדת ϕ (ב)

$$\phi(s+t) \le \phi(s) + \phi(t)$$
 מתקיים $s,t \ge 0$ לכל

X אם מטריקה מטרי אזי $\phi \circ d$ אזי מטריקה על

. מכפלה של מרחבים וקטוריים. יהיו יהיו $(X_1,d_1),....,(X_n,d_n)$ מרחבים וקטוריים. מכפלה של מרחבים וקטוריים. $X_1\times...\times X_n=\{(x_1,...,x_n)\ | \forall 1\leq i\leq n,\ x_i\in X_i\}$ ניתן להגדיר מטריקה על המרחב באופו הבא:

תהי $\bar x, \bar y \in \mathbb{R}^n_+$ נורמה על \mathbb{R}^n לא קטנה על \mathbb{R}^n (כלומר לכל $\|\cdot\|$ נורמה על $d=\|(d_1,...,d_n)\|$. נגדיר ($\|x\|\leq \|y\|$ מתקיים $x_i\leq y_i, 1\leq i\leq n$

$$d((x_1,...,x_n),(y_1,...,y_n)) = ||(d_1(x_1,y_1),....,d_n(x_n,y_n))||$$

בדיקה: $X_1 \times ... \times X_n$ בדיקה d

(א) אי שלילית - ברור.

$$d(\bar{x}, \bar{y}) = 0 \iff \forall i, d_i(x_i, y_i) = 0 \iff \forall i, x_i = y_i \iff x = y$$

- (ב) סימטריות ברור.
- (ג) אי שיוויון המשולש:

$$\begin{array}{rcl} d(\bar{x},\bar{z}) & = & \|(d_i(x_i,z_i))_i\| \\ (\text{non-decreasing}) & \leq & \|(d_i(x_i,y_i)+d_i(y_i,z_i))_i\| \\ (\triangle-\text{inequality}) & \leq & \|(d_i(x_i,y_i))_i\|+\|(d_i(y_i,z_i))_i\| \\ & = & d(\bar{x},\bar{y})+d(\bar{y},\bar{z}) \end{array}$$

 ${\rm non-}$ הטרה הנורמות הנורמות על $\|\cdot\|_p$ על הדוגמאות שהוזכרו בדוגמאות הערה 1.1 הערה (decreasing

2 שקילות של מטריקות

למה 2.2 שתי מטריקות הן שקולות טופולוגית אם"ם הן מגדירות את אותה הטופולוגיה (את אותו אוסף של קבוצות פתוחות).

הוכחה: אם הן מגדירות את אותה הטופולוגיה אז (לכל $B_{d_1}(x,r_1)$ ($x\in X,r_1>0$ היא $B_{d_2}(x,r_2)\subset$ ש- d_2 מתוחה גם במטריקה d_2 כלומר קיים כדור סביב d_2 (במטריקה לבאותו אופן כדורים ב- d_2 מכילים כדורים ב- d_1 . (ובאותו אופן כדורים ב- d_2

אם המטריקות שקולות ותהי U פתוחה ביחס ל- d_1 , ויהי $x\in U$, קיים כדור ביחס ל- $x\in D$ פתוחה ביב $x\in C$, לכן לפי הגדרת השקילות קיים $x\in B_{d_1}(x,r_1)\subset U$ על ביב $x\in C$ כך ש- $x\in B_{d_2}(x,r_2)\subset B_{d_1}(x,r_1)\subset U$ פתוחה ביחס ל- $x\in C$ פתוחות ביחס ל- $x\in C$ פתוחות ביחס ל- $x\in C$ פתוחות ביחס ל- $x\in C$

 $\frac{1}{M}d_1 \leq d_2 \leq Md_1$ כך של כל המטריקות שקולות שקולות ל d_1,d_2 המטריקות הגדרה 2.3 הגדרה

. טענה d_1, d_2 אם d_1, d_2 אם ענה d_1, d_2 אם 2.4 טענה

הוכחה: תרגיל

3 מרחק בין קבוצות

נגדיר $x\in X$ ונקודה $A\subset X$ מרחב מטרי, מרחב אבור (X,d) הגדרה 3.1

$$d(x, A) = \inf\{d(x, y)|y \in A\}$$

ועבור שתי קבוצות $A,B\subset X$ נגדיר

 $d(A,B) = \inf\{d(x,y)|x \in A, y \in B\}$