dr inż. Julian Sienkiewicz

22 marca 2019

Drzewa klasyfikacyjne: geneza

Drzewa klasyfikacyjne: geneza

Pierwszy raz pojawiły się kontekście badań socjologicznych dotyczących kwestionariuszy:

Drzewa klasyfikacyjne: geneza

Pierwszy raz pojawiły się kontekście badań socjologicznych dotyczących kwestionariuszy:

 Morgan, Songuist, Problems in the analysis of survey data and a proposal, J. Am. Stat. Assoc. 58, 415 (1963)

Pierwszy raz pojawiły się kontekście badań socjologicznych dotyczących kwestionariuszy:

- Morgan, Sonquist, Problems in the analysis of survey data and a proposal, J. Am. Stat. Assoc. 58, 415 (1963)
- autorzy zauważali, że większość metod analizy polega na założeniu addytywności składników

Drzewa klasyfikacyjne: geneza

Pierwszy raz pojawiły się kontekście badań socjologicznych dotyczacych kwestionariuszy:

- Morgan, Songuist, Problems in the analysis of survey data and a proposal, J. Am. Stat. Assoc. 58, 415 (1963)
- autorzy zauważali, że większość metod analizy polega na założeniu addytywności składników
- ich podejście brało pod uwagę interakcje, działało sekwencyjnie i jako funcje celu stawiało sobie obniżenie błedów przewidywania

Pierwszy raz pojawiły się kontekście badań socjologicznych dotyczących kwestionariuszy:

- Morgan, Sonquist, Problems in the analysis of survey data and a proposal, J. Am. Stat. Assoc. 58, 415 (1963)
- autorzy zauważali, że większość metod analizy polega na założeniu addytywności składników
- ich podejście brało pod uwagę interakcje, działało sekwencyjnie i jako funcje celu stawiało sobie obniżenie błedów przewidywania

Drzewa klasyfikacyjne: definicja

Drzewo skierowane (nieskierowany, acykliczny i spójny graf), posiadające jedyny dający się wyróżnić wierzchołek (**korzeń**), będący węzłem początkowym drzewa.

Struktura i terminologia

Struktura i terminologia

Struktura i terminologia

Nazewnictwo

jeżeli z węzła wychodzą gałęzie do innych węzłów (dzieci), to jest to rodzic węzła,

- jeżeli z wezła wychodza gałezie do innych węzłów (dzieci), to jest to rodzic wezła,
- dzieci oraz ich dzieci, to potomkowie węzła-rodzica,

- jeżeli z wezła wychodza gałezie do innych węzłów (dzieci), to jest to rodzic wezła,
- dzieci oraz ich dzieci, to potomkowie wezła-rodzica,
- wezeł bez dzieci, to liść

- jeżeli z wezła wychodzą gałęzie do innych węzłów (dzieci), to jest to rodzic wezła,
- dzieci oraz ich dzieci, to potomkowie wezła-rodzica,
- wezeł bez dzieci, to liść

Reguly podziału

konwencja rysowania drzew rosnących od góry w dół [sic!]: korzeń na górze, na dole liście

- jeżeli z wezła wychodzą gałęzie do innych węzłów (dzieci), to jest to rodzic węzła,
- dzieci oraz ich dzieci, to potomkowie wezła-rodzica,
- wezeł bez dzieci, to liść

- konwencja rysowania drzew rosnących od góry w dół [sic!]: korzeń na górze, na dole liście
- od korzenia do każdego liścia prowadzi tylko jedna droga,

- jeżeli z wezła wychodzą gałęzie do innych węzłów (dzieci), to jest to rodzic wezła,
- dzieci oraz ich dzieci, to potomkowie wezła-rodzica,
- wezeł bez dzieci, to liść

- konwencja rysowania drzew rosnących od góry w dół [sic!]: korzeń na górze, na dole liście
- od korzenia do każdego liścia prowadzi tylko jedna droga,
- w korzeniach jest skupiona cała próba ucząca, kolejne elementy PU są przesuwane wzdłuż gałęzi, z góry w dół,

- jeżeli z wezła wychodzą gałęzie do innych węzłów (dzieci), to jest to rodzic węzła,
- dzieci oraz ich dzieci, to potomkowie wezła-rodzica,
- wezeł bez dzieci, to liść

- konwencja rysowania drzew rosnących od góry w dół [sic!]: korzeń na górze, na dole liście
- od korzenia do każdego liścia prowadzi tylko jedna droga,
- w korzeniach jest skupiona cała próba ucząca, kolejne elementy PU są przesuwane wzdłuż gałęzi, z góry w dół,
- w każdym węźle jest podejmowana o wyborze gałęzi, wzdłuż której będzie trwać przesuwanie próby

- jeżeli z wezła wychodzą gałęzie do innych węzłów (dzieci), to jest to rodzic węzła,
- dzieci oraz ich dzieci, to potomkowie wezła-rodzica,
- wezeł bez dzieci, to liść

- konwencja rysowania drzew rosnących od góry w dół [sic!]: korzeń na górze, na dole liście
- od korzenia do każdego liścia prowadzi tylko jedna droga,
- w korzeniach jest skupiona cała próba ucząca, kolejne elementy PU są przesuwane wzdłuż gałęzi, z góry w dół,
- w każdym węźle jest podejmowana o wyborze gałęzi, wzdłuż której będzie trwać przesuwanie próby
- czyli w w każdym węźle (oprócz liści) -> podział na podgrupy

Drzewa klasyfikacyjne - wprowadzenie

negative

16/214 ped < 0.62

10

negative

20/87

positive

43/129

ped >= 0.62

11

positive

19/42

BMI < 30.2

12

negative

7/34

Reguly podziału

negative

54/113

BMI >= 30.2

13

positive

32/79

positive

12/76

 klasyfikacja 532 Indianek w wieku powyżej 20 lat ze szczepu Pima (Phoenix) na osoby chore na cukrzyce (positive) i zdrowe (negative)

[Drzewo zaczerpnięte z Koronacki, Ćwik, Statystyczne systemy uczące się, wyd. drugie s. 133]

Drzewa klasyfikacyjne - wprowadzenie

- klasyfikacja 532 Indianek w wieku powyżej 20 lat ze szczepu Pima (Phoenix) na osoby chore na cukrzyce (positive) i zdrowe (negative)
- wektor cech: (1) liczba ciąż, (2) poziom testu glukozowgo, (3) ciśnienie tętnicze, (4) grubość fałdu skóry na tricepsie, (5) BMI, (6) wiek, (7) pedigree

Przykładowe drzewo klasyfikacyjne

Drzewa klasyfikacyjne - wprowadzenie

Reguly podziału

obok gałęzi → warunek podziału (np. liść nr. 4: poziom glukozy < 127.5 i wiek < 28.5 to osoba zdrowa

Przykładowe drzewo klasyfikacyjne

- obok gałęzi → warunek podziału (np. liść nr. 4: poziom glukozy < 127.5 i wiek < 28.5 to osoba zdrowa
- w węzłach podana jest klasa większościowa oraz numer węzła

Przykładowe drzewo klasyfikacyjne

- obok gałęzi → warunek podziału (np. liść nr. 4: poziom glukozy < 127.5 i wiek < 28.5 to osoba zdrowa
- w węzłach podana jest klasa większościowa oraz numer węzła
- ułamek błędów podany jest poniżej węzła

Przykładowe drzewo klasyfikacyjne

- obok gałęzi → warunek podziału (np. liść nr. 4: poziom glukozy < 127.5 i wiek < 28.5 to osoba zdrowa
- w węzłach podana jest klasa większościowa oraz numer węzła
- ułamek błędów podany jest poniżej wezła
- numeracja odpowiada nieskończonemu drzewu binarnemu (1-2-4-8-16...).

Drzewa klasyfikacyjne - wprowadzenie

Reguly podziału

Umożliwienie klasyfikacji obserwacji, o których nie wiemy, do jakich klas należą.

Cel drzewa klasyfikującego

Umożliwienie klasyfikacji obserwacji, o których nie wiemy, do jakich klas należą.

Drzewo jest uczone (trenowane) na podstawie próby uczącej:

Cel drzewa klasyfikującego

Umożliwienie klasyfikacji obserwacji, o których nie wiemy, do jakich klas należą.

Drzewo jest uczone (trenowane) na podstawie **próby uczącej**:

od niej zależy postać warunków podziału

Cel drzewa klasyfikującego

Umożliwienie klasyfikacji obserwacji, o których nie wiemy, do iakich klas należą.

Drzewo jest uczone (trenowane) na podstawie **próby uczącej**:

- od niej zależy postać warunków podziału
- ona determinuje, które wezły określa się jako liście.

Reguły podziału - ogólny zarys

Podział		
$\overline{}$		

Podział

 dokonywany jest tylko na podstawie tych elementów PU, które znalazły się w danym węźle

Podział

- dokonywany jest tylko na podstawie tych elementów PU, które znalazły się w danym węźle
- polega na najlepszym rozdzieleniu podpróby na 2 części przechodzące do węzłów dzieci

- dokonywany jest tylko na podstawie tych elementów PU, które znalazły się w danym węźle
- polega na najlepszym rozdzieleniu podpróby na 2 części przechodzące do węzłów dzieci

Najlepsze rozdzielenie

- dokonywany jest tylko na podstawie tych elementów PU, które znalazły się w danym węźle
- polega na najlepszym rozdzieleniu podpróby na 2 części przechodzące do węzłów dzieci

Najlepsze rozdzielenie

Reguly podziału

000000

Różnorodność otrzymywanych części jest możliwie największa

- dokonywany jest tylko na podstawie tych elementów PU, które znalazły się w danym węźle
- polega na najlepszym rozdzieleniu podpróby na 2 części przechodzące do węzłów dzieci

Najlepsze rozdzielenie

Reguly podziału

000000

Różnorodność otrzymywanych części jest możliwie największa

- dokonywany jest tylko na podstawie tych elementów PU, które znalazły się w danym węźle
- polega na najlepszym rozdzieleniu podpróby na 2 części przechodzące do węzłów dzieci

Najlepsze rozdzielenie

Requir podziału

000000

Różnorodność otrzymywanych części jest możliwie największa

Potrzebne jest:

o podanie stosownej miary różnorodności klas

- dokonywany jest tylko na podstawie tych elementów PU, które znalazły się w danym węźle
- polega na najlepszym rozdzieleniu podpróby na 2 części przechodzące do węzłów dzieci

Najlepsze rozdzielenie

Requir podziału

Różnorodność otrzymywanych części jest możliwie największa

Potrzebne jest:

- podanie stosownej miary różnorodności klas
- podanie miary różnicy pomiędzy różnorodnościa klas w weźle-rodzicu i wezłach-dzieciach

Podział

- dokonywany jest tylko na podstawie tych elementów PU, które znalazły się w danym węźle
- polega na najlepszym rozdzieleniu podpróby na 2 części przechodzące do wezłów dzieci

Najlepsze rozdzielenie

Requir podziału

Różnorodność otrzymywanych części jest możliwie największa

Potrzebne jest:

- podanie stosownej miary różnorodności klas
- podanie miary różnicy pomiędzy różnorodnościa klas w węźle-rodzicu i węzłach-dzieciach
- podanie algorytmu maksymalizacji różnorodności.

tegury podziału - ogolity zary:

Podział

- dokonywany jest tylko na podstawie tych elementów PU, które znalazły się w danym węźle
- polega na najlepszym rozdzieleniu podpróby na 2 części przechodzące do węzłów dzieci

Najlepsze rozdzielenie

Reguly podziału

Różnorodność otrzymywanych części jest możliwie największa

Potrzebne jest:

- o podanie stosownej miary różnorodności klas
- podanie miary różnicy pomiędzy różnorodnościa klas w węźle-rodzicu i węzłach-dzieciach
- podanie algorytmu maksymalizacji różnorodności.

UWAGA! jest to podział *lokalnie* najlepszy, ale prowadzi do dobrych *globalnych* wyników

Sformułowanie problemu

mamy problem dyskryminacji o g klasach 1,2,...g

000000

- mamy problem dyskryminacji o g klasach 1,2,...g
- próba ucząca to pary (\mathbf{x}_i, y_i) , i = 1, ..., n

000000

Reguły podziału - matematycznie

- mamy problem dyskryminacji o g klasach 1,2,...g
- próba ucząca to pary (\mathbf{x}_i, y_i) , i = 1, ..., n
- rozważamy dowolny, ustalony węzeł m,

000000

- mamy problem dyskryminacji o g klasach 1,2,...g
- próba ucząca to pary (\mathbf{x}_i, y_i) , i = 1, ..., n
- rozważamy dowolny, ustalony węzeł m,
- liczność próby, która trafiła do węzła m to n_m, liczba obserwacji z klasy k w węźle m to n_{mk}

000000

- mamy problem dyskryminacji o g klasach 1,2,...g
- próba ucząca to pary (\mathbf{x}_i, y_i) , i = 1, ..., n
- rozważamy dowolny, ustalony wezeł m,
- liczność próby, która trafiła do węzła m to nm, liczba obserwacji z klasy k w węźle m to n_{mk}
- ułamek obserwacji z klasy k w węźle m, $\hat{p}_{mk} = \frac{1}{n_m} \sum_{\mathbf{x}_i} \delta_{\mathbf{y}_i,k} = \frac{n_{mk}}{n_m} (\delta_{a,b} - \text{delta Kroneckera})$

Reguly podziału - matematycznie

- mamy problem dyskryminacji o g klasach 1,2,...g
- próba ucząca to pary (\mathbf{x}_i, y_i) , i = 1, ..., n
- rozważamy dowolny, ustalony węzeł m,
- liczność próby, która trafiła do węzła m to n_m, liczba obserwacji z klasy k w węźle m to n_{mk}
- ułamek obserwacji z klasy k w węźle m, $\hat{p}_{mk} = \frac{1}{n_m} \sum_{\mathbf{x}_i} \delta_{y_i,k} = \frac{n_{mk}}{n_m} \left(\delta_{a,b} \text{delta Kroneckera} \right)$
- obserwacje w węźle m klasyfikowane do klasy k:
 k(m) = arg max p̂_{mk}
 - jeżeli m jest liściem → ostateczny wyniki klasyfikacji x przez drzewo,

- mamy problem dyskryminacji o g klasach 1,2,...g
- próba ucząca to pary (\mathbf{x}_i, y_i) , i = 1, ..., n
- rozważamy dowolny, ustalony wezeł m,
- liczność próby, która trafiła do węzła m to nm, liczba obserwacji z klasy k w węźle m to n_{mk}
- ułamek obserwacji z klasy k w węźle m, $\hat{p}_{mk} = \frac{1}{n_m} \sum_{\mathbf{x}_i} \delta_{\mathbf{y}_i,k} = \frac{n_{mk}}{n_m} (\delta_{a,b} - \text{delta Kroneckera})$
- obserwacje w węźle m klasyfikowane do klasy k: $k(m) = \arg\max \hat{p}_{mk}$
 - jeżeli m jest liściem → ostateczny wyniki klasyfikacji x przez drzewo,
 - w przeciwnym razie $\rightarrow k(m)$ to informacja, która klasa jest nailiczniej reprezentowana.

Miara różnorodności

Sensowna miara różnorodnosci to taka, która przyjmuje

Miara różnorodności

Sensowna miara różnorodnosci to taka, która przyjmuje

 wartośc 0, gdy wszystkie obserwacje należą do tej samej klasy,

Miara różnorodności

Sensowna miara różnorodnosci to taka, która przyjmuje

- wartośc 0, gdy wszystkie obserwacje należą do tej samej klasy,
- wartość maksymalną, gdy mamy do czynienia z rozkładem jednostajnym $\hat{p}_{m1}=...=\hat{p}_{mg}=1/g$

Przykłady miar różnorodności $Q_n(T)$

Miara różnorodności

Sensowna miara różnorodnosci to taka, która przyjmuje

- wartośc 0, gdy wszystkie obserwacje należą do tej samej klasy,
- wartość maksymalną, gdy mamy do czynienia z rozkładem jednostajnym $\hat{p}_{m1}=...=\hat{p}_{mg}=1/g$

Przykłady miar różnorodności $Q_n(T)$

ułamek błednych klasyfikacji:

$$\frac{1}{n_m}\sum_{i}(1-\delta_{y_i,k(m)})=1-\hat{p}_{mk(m)}$$

Sensowna miara różnorodnosci to taka, która przyjmuje

- wartośc 0, gdy wszystkie obserwacje należą do tej samej klasy,
- wartość maksymalną, gdy mamy do czynienia z rozkładem jednostajnym $\hat{p}_{m1} = ... = \hat{p}_{mg} = 1/g$

Przykłady miar różnorodności $Q_n(T)$

ułamek błednych klasyfikacji:

$$\frac{1}{n_m} \sum_{i} (1 - \delta_{y_i, k(m)}) = 1 - \hat{p}_{mk(m)}$$

wskaźnik (indeks) Giniego (oszacowanie ułamka błednych klasyfikacji, gdy obserwacje są klasyfikowane do klasy k z prawdpodobieństwem \hat{p}_{mk}):

$$\sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^{g} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

Drzewa klasyfikacyjne - wprowadzenie

Sensowna miara różnorodnosci to taka, która przyjmuje

- wartośc 0, gdy wszystkie obserwacje należą do tej samej klasy,
- wartość maksymalna, gdy mamy do czynienia z rozkładem jednostajnym $\hat{p}_{m1} = ... = \hat{p}_{ma} = 1/g$

Przykłady miar różnorodności $Q_n(T)$

ułamek błednych klasyfikacji:

$$\frac{1}{n_m} \sum_{i} (1 - \delta_{y_i, k(m)}) = 1 - \hat{p}_{mk(m)}$$

wskaźnik (indeks) Giniego (oszacowanie ułamka błednych klasyfikacji, gdy obserwacje są klasyfikowane do klasy k z prawdpodobieństwem \hat{p}_{mk}):

$$\sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^{g} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

entropia:

$$-\sum_{k=1}^{g} \hat{p}_{mk} \log \hat{p}_{mk}$$

Przypadek g=2

0000000

Przypadek g=2

$$Q_m(T) = \begin{cases} 1 - \max(1, 1 - p) \\ 2p(1 - p) \\ p \log p - (1 - p) \log(1 - p) \end{cases}$$

p - ułamek (prawdopodobieństwo)przynależności do klasy 2

Przypadek g=2

$$Q_m(T) = \begin{cases} 1 - \max(1, 1 - p) \\ 2p(1 - p) \\ p \log p - (1 - p) \log(1 - p) \end{cases}$$

p - ułamek (prawdopodobieństwo)przynależności do klasy 2

Reguly podziału

0000000

Przypadek g = 2

$$Q_m(T) = \begin{cases} 1 - \max(1, 1 - p) \\ 2p(1 - p) \\ p \log p - (1 - p) \log(1 - p) \end{cases}$$

p - ułamek (prawdopodobieństwo) przynależności do klasy 2

Reguly podziału

0000000

Przypadek g = 2

$$Q_m(T) = \begin{cases} 1 - \max(1, 1 - p) \\ 2p(1 - p) \\ p \log p - (1 - p) \log(1 - p) \end{cases}$$

p - ułamek (prawdopodobieństwo)przynależności do klasy 2

 \hat{p}_L - ułamek elementów PU, które z węzła m przeszły do m_L , $\hat{p}_L = \frac{n_{mL}}{n_m}$ $\hat{p}_R = 1 - \hat{p}_L$ - ułamek elementów PU, które z wezła m przeszły do m_R

Przypadek g = 2

$$Q_m(T) = \begin{cases} 1 - \max(1, 1 - p) \\ 2p(1 - p) \\ p \log p - (1 - p) \log(1 - p) \end{cases}$$

p - ułamek (prawdopodobieństwo)przynależności do klasy 2

 \hat{p}_L - ułamek elementów PU, które z węzła m przeszły do m_L , $\hat{p}_L = \frac{n_{mL}}{n_m}$ $\hat{p}_R = 1 - \hat{p}_L$ - ułamek elementów PU, które z węzła m przeszły do m_R

 $Q_{m_L,m_R}=\hat{p}_LQ_{m_L}+\hat{p}_RQ_{m_R}$ - łączna miara różnorodności w dzieciach

Przypadek g = 2

$$Q_m(T) = \begin{cases} 1 - \max(1, 1 - p) \\ 2p(1 - p) \\ p \log p - (1 - p) \log(1 - p) \end{cases}$$

p - ułamek (prawdopodobieństwo)przynależności do klasy 2

 \hat{p}_L - ułamek elementów PU, które z węzła m przeszły do m_L , $\hat{p}_L=\frac{n_{mL}}{n_m}$ $\hat{p}_R=1-\hat{p}_L$ - ułamek elementów PU, które z węzła m przeszły do m_R

Reguly podziału

 $Q_{m_L,m_R}=\hat{p}_LQ_{m_L}+\hat{p}_RQ_{m_R}$ - łączna miara różnorodności w dzieciach $\Delta Q_{m,m_L,m_R}=Q_m-Q_{m_L,m_R}$ - różnica między różnorodności klas

Miary różnorodności

Ułamek błędnych klasyfikacji $Q_m^f = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$

Ułamek błędnych klasyfikacji

$$Q_m^f = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$$
 $Q_{mL}^f = 1 - \max\left(\frac{1}{4}, \frac{3}{4}\right) = 1 - \frac{3}{4} = \frac{1}{4}$

Drzewa klasyfikacyjne - wprowadzenie

Ułamek błędnych klasyfikacji

$$Q_{m}^{f} = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$$

$$Q_{mL}^{f} = 1 - \max\left(\frac{1}{4}, \frac{3}{4}\right) = 1 - \frac{3}{4} = \frac{1}{4}$$

$$Q_{mR}^f = 1 - \max\left(\frac{3}{4}, \frac{1}{4}\right) = 1 - \frac{3}{2} = \frac{1}{4}$$

Ułamek błędnych klasyfikacji $Q_m^f = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$

$$Q_{mL}^{f} = 1 - \max\left(\frac{1}{4}, \frac{3}{4}\right) = 1 - \frac{3}{4} = \frac{1}{4}$$

 $Q_{mR}^{f} = 1 - \max\left(\frac{3}{4}, \frac{1}{4}\right) = 1 - \frac{3}{2} = \frac{1}{4}$

$$\Delta_{mR} = 1 - \max(\frac{1}{4}, \frac{1}{4}) = 1 - \frac{1}{2} = \frac{1}{4}$$

$$\Delta Q^f = \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4}\right) = \frac{1}{4}$$

Drzewa klasyfikacyjne - wprowadzenie

Ułamek błędnych klasyfikacji

$$\begin{aligned} & Q_{m}^{f} = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2} \\ & Q_{mL}^{f} = 1 - \max\left(\frac{1}{4}, \frac{3}{4}\right) = 1 - \frac{3}{4} = \frac{1}{4} \\ & Q_{mR}^{f} = 1 - \max\left(\frac{3}{4}, \frac{1}{4}\right) = 1 - \frac{3}{2} = \frac{1}{4} \\ & \Delta Q^{f} = \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4}\right) = \frac{1}{4} \end{aligned}$$

Indeks Giniego

Przykład

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{mL}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

Indeks Giniego
$$Q_m^g = 2\frac{1}{2}\frac{1}{2} = \frac{1}{2}$$

Case study: Pima

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{mL}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

Indeks Giniego
$$Q_m^g = 2\frac{1}{2}\frac{1}{2} = \frac{1}{2}$$
 $Q_{mL}^g = 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8}$

Przykład 1

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{mL}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

Indeks Giniego

$$Q_{m}^{g} = 2\frac{1}{2}\frac{1}{2} = \frac{1}{2}$$

$$Q_{mL}^{g} = 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8}$$

$$Q_{mR}^{g} = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8}$$

Przykład 1

Ułamek błędnych klasyfikacji

$$\begin{aligned} Q_{m}^{f} &= 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2} \\ Q_{mL}^{f} &= 1 - \max\left(\frac{1}{4}, \frac{3}{4}\right) = 1 - \frac{3}{4} = \frac{1}{4} \\ Q_{mR}^{f} &= 1 - \max\left(\frac{3}{4}, \frac{1}{4}\right) = 1 - \frac{3}{2} = \frac{1}{4} \\ \Delta Q^{f} &= \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4}\right) = \frac{1}{4} \end{aligned}$$

Indeks Giniego $Q_m^g = 2\frac{1}{2}\frac{1}{2} = \frac{1}{2}$

$$\begin{aligned} Q_{m}^{p} &= 2\frac{1}{2}\frac{1}{2} = \frac{1}{2} \\ Q_{mL}^{g} &= 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8} \\ Q_{mR}^{g} &= 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8} \\ \Delta Q^{g} &= \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \end{aligned}$$

Przykład

Ułamek błędnych klasyfikacji

$$\begin{aligned} Q_{m}^{f} &= 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2} \\ Q_{mL}^{f} &= 1 - \max\left(\frac{1}{4}, \frac{3}{4}\right) = 1 - \frac{3}{4} = \frac{1}{4} \\ Q_{mR}^{f} &= 1 - \max\left(\frac{3}{4}, \frac{1}{4}\right) = 1 - \frac{3}{2} = \frac{1}{4} \\ \Delta Q^{f} &= \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4}\right) = \frac{1}{4} \end{aligned}$$

Indeks Giniego

$$\begin{array}{l} Q_{m}^{g} = 2\frac{1}{2}\frac{1}{2} = \frac{1}{2} \\ Q_{mL}^{g} = 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8} \\ Q_{mR}^{g} = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8} \\ \Delta Q^{g} = \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \end{array}$$

Przykład 2

Przykład

Ułamek błędnych klasyfikacji

$$\begin{aligned} Q_{m}^{f} &= 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2} \\ Q_{mL}^{f} &= 1 - \max\left(\frac{1}{4}, \frac{3}{4}\right) = 1 - \frac{3}{4} = \frac{1}{4} \\ Q_{mR}^{f} &= 1 - \max\left(\frac{3}{4}, \frac{1}{4}\right) = 1 - \frac{3}{2} = \frac{1}{4} \\ \Delta Q^{f} &= \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4}\right) = \frac{1}{4} \end{aligned}$$

Indeks Giniego

$$\begin{aligned} & Q_{m}^{g} = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \\ & Q_{mL}^{g} = 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8} \\ & Q_{mR}^{g} = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8} \\ & \Delta Q^{g} = \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \end{aligned}$$

Przykład 2

Ułamek błędnych klasyfikacji

Miary różnorodnośc

Przykład

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{mL}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

Indeks Giniego
O^g − 2 1 1 −

$$\begin{aligned} Q_{m}^{g} &= 2\frac{1}{2}\frac{1}{2} = \frac{1}{2} \\ Q_{ml}^{g} &= 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8} \\ Q_{mR}^{g} &= 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8} \\ \Delta Q^{g} &= \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \end{aligned}$$

Przykład 2

Ułamek błędnych klasyfikacji $Q_m^f = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$

Przykład

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{mL}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

Indeks Giniego $Q_m^g = 2\frac{1}{2}\frac{1}{2} = \frac{1}{2}$

$$Q_{mL}^{g} = 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8}$$

$$Q_{mR}^{g} = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8}$$

$$\Delta Q^g = \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8}$$

Przykład 2

Ułamek błędnych klasyfikacji

$$Q_{m}^{f} = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$$

$$Q_{mL}^{f} = 1 - \max\left(\frac{1}{3}, \frac{2}{3}\right) = 1 - \frac{2}{3} = \frac{1}{3}$$

Przykład

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{ml}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

Indeks Giniego

$$\begin{aligned} Q_{m}^{g} &= 2\frac{1}{2}\frac{1}{2} = \frac{1}{2} \\ Q_{ml}^{g} &= 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8} \\ Q_{mR}^{g} &= 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8} \\ \Delta Q^{g} &= \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \end{aligned}$$

Przykład 2

Ułamek błędnych klasyfikacji

$$Q_{mL}^{f} = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$$
 $Q_{mL}^{f} = 1 - \max\left(\frac{1}{3}, \frac{2}{3}\right) = 1 - \frac{2}{3} = \frac{1}{3}$
 $Q_{mR}^{f} = 1 - \max\left(0, 1\right) = 1 - 1 = 0$

Przykład ¹

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{mR}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

● Indeks Giniego $Q_m^g = 2\frac{1}{2}\frac{1}{2} = \frac{1}{2}$ $Q_m^g = 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8}$ $Q_m^g = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8}$ $\Delta Q^g = \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8}$

Przykład 2

Ulamek blednych klasyfikacji $Q_m^f = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$ $Q_{mL}^f = 1 - \max\left(\frac{1}{3}, \frac{2}{3}\right) = 1 - \frac{2}{3} = \frac{1}{3}$ $Q_{mR}^f = 1 - \max\left(0, 1\right) = 1 - 1 = 0$ $\Delta Q^f = \frac{1}{2} - \left(\frac{3}{4} \cdot \frac{1}{3} + \frac{1}{4} \cdot 0\right) = \frac{1}{4}$

Miary różnorodnośc

Przykład

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{ml}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

● Indeks Giniego $Q_{m}^{g} = 2\frac{1}{2}\frac{1}{2} = \frac{1}{2}$ $Q_{mL}^{g} = 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8}$ $Q_{mR}^{g} = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8}$ $\Delta Q^{g} = \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8}$

Przykład 2

Ulamek blędnych klasyfikacji $Q_m^f = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$ $Q_{mL}^f = 1 - \max\left(\frac{1}{3}, \frac{2}{3}\right) = 1 - \frac{2}{3} = \frac{1}{3}$ $Q_{mR}^f = 1 - \max\left(0, 1\right) = 1 - 1 = 0$

 $\Delta Q^f = \frac{1}{2} - \left(\frac{3}{4} \cdot \frac{1}{3} + \frac{1}{4} \cdot 0\right) = \frac{1}{4}$

Indeks Giniego

Przykład ¹

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{ml}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

 $\begin{array}{l} \bullet \quad \text{Indeks Giniego} \\ Q_m^g = 2\frac{1}{2}\frac{1}{2} = \frac{1}{2} \\ Q_{mL}^g = 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8} \\ Q_{mR}^g = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8} \\ \Delta Q^g = \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \\ \end{array}$

Przykład 2

Ulamek blędnych klasyfikacji $Q_m^f = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$ $Q_{mL}^f = 1 - \max\left(\frac{1}{3}, \frac{2}{3}\right) = 1 - \frac{2}{3} = \frac{1}{3}$ $Q_{mR}^f = 1 - \max\left(0, 1\right) = 1 - 1 = 0$ $\Delta Q^f = \frac{1}{2} - \left(\frac{3}{4} \cdot \frac{1}{3} + \frac{1}{4} \cdot 0\right) = \frac{1}{4}$

Indeks Giniego
$$Q_m^g = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$

Miary różnorodnośc

Przykład

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{mL}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

Indeks Giniego

$$\begin{aligned} Q_{m}^{g} &= 2\frac{1}{2}\frac{1}{2} = \frac{1}{2} \\ Q_{mL}^{g} &= 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8} \\ Q_{mR}^{g} &= 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8} \\ \Delta Q^{g} &= \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \end{aligned}$$

Przykład 2

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{mL}^{f} = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2} \\ &Q_{mL}^{f} = 1 - \max\left(\frac{1}{3}, \frac{2}{3}\right) = 1 - \frac{2}{3} = \frac{1}{3} \\ &Q_{mR}^{f} = 1 - \max\left(0, 1\right) = 1 - 1 = 0 \\ &\Delta Q^{f} = \frac{1}{2} - \left(\frac{3}{4} \cdot \frac{1}{3} + \frac{1}{4} \cdot 0\right) = \frac{1}{4} \end{aligned}$$

Indeks Giniego

$$Q_m^g = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$

 $Q_{ml}^g = 2 \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{4}{9}$

Przykład

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{ml}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

Indeks Giniego

$$\begin{aligned} Q_{m}^{g} &= 2\frac{1}{2}\frac{1}{2} = \frac{1}{2} \\ Q_{mL}^{g} &= 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8} \\ Q_{mR}^{g} &= 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8} \\ \Delta Q^{g} &= \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \end{aligned}$$

Przykład 2

Ułamek błędnych klasyfikacji

$$\begin{aligned} & Q_{mL}^f = 1 - \max\left(\frac{1}{2}, \frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2} \\ & Q_{mL}^f = 1 - \max\left(\frac{1}{3}, \frac{2}{3}\right) = 1 - \frac{2}{3} = \frac{1}{3} \\ & Q_{mR}^f = 1 - \max\left(0, 1\right) = 1 - 1 = 0 \\ & \Delta Q^f = \frac{1}{2} - \left(\frac{3}{4} \cdot \frac{1}{3} + \frac{1}{4} \cdot 0\right) = \frac{1}{4} \end{aligned}$$

Indeks Giniego

$$Q_{mL}^{g} = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$

$$Q_{mL}^{g} = 2 \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{4}{9}$$

$$Q_{mR}^{g} = 2 \cdot 0 \cdot 1 = 0$$

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{m}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{mL}^{f}=1-\max\left(\frac{1}{4},\frac{3}{4}\right)=1-\frac{3}{4}=\frac{1}{4}\\ &Q_{mR}^{f}=1-\max\left(\frac{3}{4},\frac{1}{4}\right)=1-\frac{3}{2}=\frac{1}{4}\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{4}\right)=\frac{1}{4} \end{aligned}$$

$$\begin{aligned} Q_m^g &= 2\frac{1}{2}\frac{1}{2} = \frac{1}{2} \\ Q_{mL}^g &= 2 \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8} \\ Q_{mR}^g &= 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8} \\ \Delta Q^g &= \frac{1}{2} - \left(\frac{1}{2} \cdot \frac{3}{8} + \frac{1}{2} \cdot \frac{3}{8}\right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \end{aligned}$$

Ułamek błędnych klasyfikacji

$$\begin{aligned} &Q_{mL}^{f}=1-\max\left(\frac{1}{2},\frac{1}{2}\right)=1-\frac{1}{2}=\frac{1}{2}\\ &Q_{mL}^{f}=1-\max\left(\frac{1}{3},\frac{2}{3}\right)=1-\frac{2}{3}=\frac{1}{3}\\ &Q_{mR}^{f}=1-\max\left(0,1\right)=1-1=0\\ &\Delta Q^{f}=\frac{1}{2}-\left(\frac{3}{4}\cdot\frac{1}{3}+\frac{1}{4}\cdot0\right)=\frac{1}{4} \end{aligned}$$

Indeks Giniego

$$\begin{split} Q_{m}^{g} &= 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \\ Q_{mL}^{g} &= 2 \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{4}{9} \\ Q_{mR}^{g} &= 2 \cdot 0 \cdot 1 = 0 \\ \Delta Q^{g} &= \frac{1}{2} - \left(\frac{3}{4} \cdot \frac{4}{9} + \frac{1}{4} \cdot 0\right) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \end{split}$$

Generalnie: wskaźnik Giniego i entropia są bardziej czułe na zmiany klas rozkładów!

Miary różnorodności

Algortym maksymalizacji ΔQ

Algortym maksymalizacji ΔQ

jest to algorytm poszukiwania najlepszego podziału,

0000000

Miary różnorodności

Algortym maksymalizacji △Q

- jest to algorytm poszukiwania najlepszego podziału,
- dopuszcza wszystkie podziały na wszystkich atrybutach

ackslashAlgortym maksymalizacji ΔQ

- jest to algorytm poszukiwania najlepszego podziału,
- dopuszcza wszystkie podziały na wszystkich atrybutach Dla ustalonego atrybutu (*L* wartości) mamy ¹/₂2^L - 1 = 2^{L-1} - 1 podziałów (ogólnie możliwe jest dokładnie 2^L podziałów, ale nie interesuje nas zbiór pusty oraz ważny jest sam podział)

Algortym maksymalizacji ΔQ

- jest to algorytm poszukiwania najlepszego podziału,
- dopuszcza wszystkie podziały na wszystkich atrybutach Dla ustalonego atrybutu (L wartości) mamy $\frac{1}{2}2^{L}-1=2^{L-1}-1$ podziałów (ogólnie możliwe jest dokładnie 2^L podziałów, ale nie interesuje nas zbiór pusty oraz ważny jest sam podział)
- czvli trzeba dokonać 2^{L-1} 1 podziałów i wybrać taki, który maksymalizuje kryterium,

Algortym maksymalizacji △Q

- jest to algorytm poszukiwania najlepszego podziału,
- dopuszcza wszystkie podziały na wszystkich atrybutach
 Dla ustalonego atrybutu (*L* wartości) mamy
 ¹/₂2^L 1 = 2^{L-1} 1 podziałów (ogólnie możliwe jest
 dokładnie 2^L podziałów, ale nie interesuje nas zbiór pusty
 oraz ważny jest sam podział)
- czyli trzeba dokonać 2^{L-1} 1 podziałów i wybrać taki, który maksymalizuje kryterium,
- wybór najlepszego podziału danego atrybutu należy powtórzyć dla wszystkich atrybutów i wybrać najlepszy podział na najlepszym atrybucie
- mamy więc kłopot obliczeniowy (np. dla L = 50 trzeba sprawdzić 2⁴⁹ – 1 podziałów!

Miary różnorodności

Skladowe o atrybutach liczbowych i porządkowych			

Miary różnorodnośc

Składowe o atrybutach liczbowych i porządkowych

jednak w przypadku argumentu liczbowego (nawet ciągłego — ma on zawsze skończoną liczbę wartości) oraz porządkowego ograniczamy się do podziałów monotonicznych: x^(I) ≤ c (albo x^(I) < c), gdzie c to jakaś zaobserwowana w danych wartość atrybutu,

Reguly podziału

000000

Składowe o atrybutach liczbowych i porządkowych

jednak w przypadku argumentu liczbowego (nawet ciągłego — ma on zawsze skończoną liczbę wartości) oraz porządkowego ograniczamy się do podziałów monotonicznych: x^(I) ≤ c (albo x^(I) < c), gdzie c to jakaś zaobserwowana w danych wartość atrybutu,

Reguly podziału

000000

ullet dzięki temu liczba możliwych podziałów spada do L-1.

Miary różnorodnośc

Składowe o atrybutach liczbowych i porządkowych

- jednak w przypadku argumentu liczbowego (nawet ciągłego ma on zawsze skończoną liczbę wartości) oraz porządkowego ograniczamy się do podziałów monotonicznych: x^(I) ≤ c (albo x^(I) < c), gdzie c to jakaś zaobserwowana w danych wartość atrybutu,
- ullet dzięki temu liczba możliwych podziałów spada do L-1.

A co ze składowymi o atrybutach nominalnych?

Składowe o atrybutach liczbowych i porządkowych

jednak w przypadku argumentu liczbowego (nawet ciagłego ma on zawsze skończoną liczbę wartości) oraz porządkowego ograniczamy się do **podziałów monotonicznych**: $x^{(l)} \leq c$ (albo $x^{(l)} < c$), gdzie c to jakaś zaobserwowana w danych wartość atrybutu.

Reguly podziału

ullet dzięki temu liczba możliwych podziałów spada do L-1.

A co ze składowymi o atrybutach nominalnych?

Niech g=2, a atrybut ma L poziomów. Załóżmy, że poziomy składowej $x^{(i)}$ zostały ułożone wg. rosnących wartości prawdopodobieństw $p(1|x^{(i)})$

$$p(1|x^{(1)}) \le p(1|x^{(2)}) \le ... \le p(1|x^{(L)})$$

Wówczas jeden z L-1 podziałów typu

$$\{x^{(1)},...,x^{(l)}\},\{x^{(1+1)},...,x^{(L)}\}$$

maksymalizuje ΔQ^g i ΔQ^e .

Jak długo należy budować drzewo?

reguły tworzenia drzewa mamy, ale skąd wiemy, kiedy należy zakończyć konstrukcję?

- reguły tworzenia drzewa mamy, ale skąd wiemy, kiedy należy zakończyć konstrukcję?
- czy budowę kontynuujemy tak długo, jak to jest możliwe, czyli do otrzymania liści, w których będą obserwacje tylko z jednej klasy?

- reguły tworzenia drzewa mamy, ale skąd wiemy, kiedy należy zakończyć konstrukcję?
- czy budowę kontynuujemy tak długo, jak to jest możliwe, czyli do otrzymania liści, w których będą obserwacje tylko z jednej klasy?
- raczej nie → takie drzewo będzie nadmiernie dopasowane do próby uczącej, czyli przeuczone (przetrenowane)

- reguły tworzenia drzewa mamy, ale skąd wiemy, kiedy należy zakończyć konstrukcję?
- czy budowę kontynuujemy tak długo, jak to jest możliwe, czyli do otrzymania liści, w których będą obserwacje tylko z jednej klasy?
- raczej nie → takie drzewo będzie nadmiernie dopasowane do próby uczącej, czyli przeuczone (przetrenowane)
- taka konstrukcja ma sens tylko i wyłącznie w przypadku zupełnie determinstycznym (brak losowości w danych)

Etapowa konstrukcja drzewa

 najpierw rozbudowujemy drzewo tak długo, jak to jest możliwe albo do do spełnienia naturalnej reguły zatrzymania budowy np.

- najpierw rozbudowujemy drzewo tak długo, jak to jest możliwe albo do do spełnienia naturalnej reguły zatrzymania budowy np.
 - w liściach są elementy tylko jednej klasy,

- najpierw rozbudowujemy drzewo tak długo, jak to jest możliwe albo do do spełnienia naturalnej reguły zatrzymania budowy np.
 - w liściach są elementy tylko jednej klasy,
 - w liściach są wektory obserwacji o tej samej wartości choć różnej przynależności do klas,

- najpierw rozbudowujemy drzewo tak długo, jak to jest możliwe albo do do spełnienia naturalnej reguły zatrzymania budowy np.
 - w liściach są elementy tylko jednej klasy,
 - w liściach są wektory obserwacji o tej samej wartości choć różnej przynależności do klas,
 - uznanie z góry za liść wezła, do którego dotrało nie więcej niż 5 elemntów PU.

- najpierw rozbudowujemy drzewo tak długo, jak to jest możliwe albo do do spełnienia naturalnej reguły zatrzymania budowy np.
 - w liściach są elementy tylko jednej klasy,
 - w liściach są wektory obserwacji o tej samej wartości choć różnej przynależności do klas,
 - uznanie z góry za liść węzła, do którego dotrało nie więcej niż 5 elemntów PU,
 - można też ograniczyć maksymalną długość drogi od korzenia do liścia

- najpierw rozbudowujemy drzewo tak długo, jak to jest możliwe albo do do spełnienia naturalnej reguły zatrzymania budowy np.
 - w liściach są elementy tylko jednej klasy,
 - w liściach są wektory obserwacji o tej samej wartości choć różnej przynależności do klas,
 - uznanie z góry za liść węzła, do którego dotrało nie więcej niż 5 elemntów PU,
 - można też ograniczyć maksymalną długość drogi od korzenia do liścia
- sprawdzamy zdolność klasyfikacyjną drzewa na próbie walidacyjnej lub testowej

- najpierw rozbudowujemy drzewo tak długo, jak to jest możliwe albo do do spełnienia naturalnej reguły zatrzymania budowy np.
 - w liściach są elementy tylko jednej klasy,
 - w liściach są wektory obserwacji o tej samej wartości choć różnej przynależności do klas,
 - uznanie z góry za liść węzła, do którego dotrało nie więcej niż 5 elemntów PU,
 - można też ograniczyć maksymalną długość drogi od korzenia do liścia
- sprawdzamy zdolność klasyfikacyjną drzewa na próbie walidacyjnej lub testowej
- przeprowadzamy systematyczne przycinanie drzewa (odcinanie końcowych gałęzi, potem rodziców) tak, aby otrzymać największą możliwą zdolność klasyfikacyjną

Przycinanie drzew

Algorytm przycinania	

Przycinanie drzew

Algorytm przycinania

• oznaczmy pełne drzewo jako T_0 , a jego rozmiar (liczbę liści) jako $|T_0|$,

Algorytm przycinania

- oznaczmy pełne drzewo jako T₀, a jego rozmiar (liczbę liści) jako |T₀|,
- zdolność klasyfikacyjną mierzymy jako ułamek błednych klasyfikacji R (na próbie walidacyjnej lub testowej) i obliczamy ją dla pełnego drzewa $R(T_0)$,

Przycinanie drzew

Algorytm przycinania

- oznaczmy pełne drzewo jako T₀, a jego rozmiar (liczbę liści) jako |T₀|,
- zdolność klasyfikacyjną mierzymy jako ułamek błednych klasyfikacji R (na próbie walidacyjnej lub testowej) i obliczamy ją dla pełnego drzewa $R(T_0)$,
- następnie znajdujemy poddrzewo zakorzenione T_1 drzewa T_0 o $|T_0|-1$ liściach i minimalnej wartości błednych klasyfikacji $R(T_1)$ (wśród wszystkich drzew o $|T_0|-1$ lisciach),

Algorytm przycinania

- oznaczmy pełne drzewo jako T₀, a jego rozmiar (liczbę liści) jako |T₀|,
- zdolność klasyfikacyjną mierzymy jako ułamek błednych klasyfikacji R (na próbie walidacyjnej lub testowej) i obliczamy ją dla pełnego drzewa $R(T_0)$,
- następnie znajdujemy poddrzewo zakorzenione T_1 drzewa T_0 o $|T_0|-1$ liściach i minimalnej wartości błednych klasyfikacji $R(T_1)$ (wśród wszystkich drzew o $|T_0|-1$ lisciach),
- potem szukamy tego samego dla drzewa T_2 o $|T_0| 2$ liściach itd, aż do uzyskania minimum globalnego wśród drzew wszystkich możliwych rozmiarów,

Algorytm przycinania

- oznaczmy pełne drzewo jako T₀, a jego rozmiar (liczbę liści) jako |T₀|,
- zdolność klasyfikacyjną mierzymy jako ułamek błednych klasyfikacji R (na próbie walidacyjnej lub testowej) i obliczamy ją dla pełnego drzewa $R(T_0)$,
- następnie znajdujemy poddrzewo zakorzenione T_1 drzewa T_0 o $|T_0|-1$ liściach i minimalnej wartości błednych klasyfikacji $R(T_1)$ (wśród wszystkich drzew o $|T_0|-1$ lisciach),
- potem szukamy tego samego dla drzewa T_2 o $|T_0|-2$ liściach itd, aż do uzyskania minimum globalnego wśród drzew wszystkich możliwych rozmiarów,
- wadą algorytmu jest to, że kolejne podrzewa nie muszą tworzyć rodziny zagnieżdżonej

Algorytm kosztu-złożoności

 kompromis pomiędzy kosztem dokonania błędnej klasyfikacji (R) i kosztem wynikającym z konieczności zbudowania drzewa (proporcjonalnym do liczy liści),

Reguly podziału

 kompromis pomiędzy kosztem dokonania błędnej klasyfikacji (R) i kosztem wynikającym z konieczności zbudowania drzewa (proporcjonalnym do liczy liści),

Reguly podziału

 zadanie polega na wybraniu drzewa zakorzenionego T drzewa pełnego T_0 , dla którego minimum osiąga kryterium postaci

$$R_{\alpha}(T) = R(T) + \alpha |T|,$$

gdzie $\alpha \geq 0$ jest współczynnikiem złożoności

 kompromis pomiędzy kosztem dokonania błędnej klasyfikacji (R) i kosztem wynikającym z konieczności zbudowania drzewa (proporcjonalnym do liczy liści),

Reguly podziału

 zadanie polega na wybraniu drzewa zakorzenionego T drzewa pełnego T₀, dla którego minimum osiąga kryterium postaci

$$R_{\alpha}(T) = R(T) + \alpha |T|,$$

gdzie $\alpha \ge 0$ jest współczynnikiem złożoności

• dla T_0 mamy $R_0(T_0) = 0$ (bo $\alpha = 0$ i powtórne podstawienie daje brak błędu), ale wraz ze wzrostem α następuje moment, kiedy T_0 przestaje być optymalne,

 kompromis pomiędzy kosztem dokonania błędnej klasyfikacji (R) i kosztem wynikającym z konieczności zbudowania drzewa (proporcjonalnym do liczy liści),

Reguly podziału

 zadanie polega na wybraniu drzewa zakorzenionego T drzewa pełnego T₀, dla którego minimum osiąga kryterium postaci

$$R_{\alpha}(T) = R(T) + \alpha |T|,$$

gdzie $\alpha \ge 0$ jest współczynnikiem złożoności

- dla T_0 mamy $R_0(T_0) = 0$ (bo $\alpha = 0$ i powtórne podstawienie daje brak błędu), ale wraz ze wzrostem α następuje moment, kiedy T_0 przestaje być optymalne,
- można pokazać, że istnieje taka rodzina zagnieżdżonych poddrzew T_j , że każde z nich jest optymalne dla wszystkich α z pewnego przedziału $\alpha \in [\alpha_i, \alpha_{i+1}), \alpha_1 < \alpha_2 < ... \infty$

Przycinanie drzew

Algorytm kosztu-złożoności (cd)

• czyli najpierw budujemy ciąg optymalnych poddrzew T_j w kolejnych przedziałach $[\alpha_j, \alpha_{j+1})$

Algorytm kosztu-złożoności (cd)

- czyli najpierw budujemy ciąg optymalnych poddrzew T_j w kolejnych przedziałach $[\alpha_i, \alpha_{i+1})$
- kolejne j-te drzewo buduje się dla ustalonej wartości współczynnika α np. $\alpha'_j = \sqrt{\alpha_j \alpha_{j+1}}$ (środek geometryczny odcinka),

Algorytm kosztu-złożoności (cd)

- czyli najpierw budujemy ciąg optymalnych poddrzew T_j w kolejnych przedziałach $[\alpha_i, \alpha_{i+1})$
- kolejne j-te drzewo buduje się dla ustalonej wartości współczynnika α np. $\alpha'_j = \sqrt{\alpha_j \alpha_{j+1}}$ (środek geometryczny odcinka),
- drzewo optymalne nie musi być jednoznaczne, algorytm pozwala wybrać najmniesze drzewo zagnieżdżone,

Algorytm kosztu-złożoności (cd)

- czyli najpierw budujemy ciąg optymalnych poddrzew T_j w kolejnych przedziałach $[\alpha_j, \alpha_{j+1})$
- kolejne j-te drzewo buduje się dla ustalonej wartości współczynnika α np. $\alpha'_j = \sqrt{\alpha_j \alpha_{j+1}}$ (środek geometryczny odcinka),
- drzewo optymalne nie musi być jednoznaczne, algorytm pozwala wybrać najmniesze drzewo zagnieżdżone,
- dla wszystkich drzew T_j obliczamy ułamek błednych klasyfikacji i wybieramy to drzewo, dla którego ten ułamek jest najmiejszy.