Introducción Contexto preliminar: variación del PIB en Colombia Noción de derivada Hallando la derivada de funciones Aplicaciones de la derivada

Aplicaciones del límite I: de las tasas de variación a la noción de derivada

Matemáticas

Grado 11

2021

Contenidos

- Introducción
- Contexto preliminar: variación del PIB en Colombia
- Noción de derivada
- 4 Hallando la derivada de funciones
- Se Aplicaciones de la derivada

Introducción: un límite importante

El cociente incremental

Una aplicación importante del límite es el cociente incremental de una función. Tal límite se puede manifestar así (informal) . . . :

$$Cociente incremental = \lim_{\mathsf{Cambios} \to 0} \frac{\mathsf{Cambio \ var. \ dependiente}}{\mathsf{Cambio \ var. \ independiente}}$$

Los "cambios" son simples <u>restas</u> entre valores muy próximos:

$$Cambio = Valor posterior - Valor anterior$$

Introducción: un límite importante

El cociente incremental

Una aplicación importante del límite es el cociente incremental de una función. Tal límite se puede manifestar así (informal) . . . :

$$\mbox{Cociente incremental} = \mbox{l\'{im}}_{\mbox{Cambios} \rightarrow 0} \frac{\mbox{Cambio var. dependiente}}{\mbox{Cambio var. independiente}}$$

Los "cambios" son simples <u>restas</u> entre valores muy próximos:

Tal límite se puede definir así (formal) [5]:

c. i.
$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 ó, c. i. $f(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

Contexto y definiciones

Figura: Todo tiempo pasado fue...

Un breve análisis de nuestra economía Colombiana.

- PIB!? ¿Qué es?
- PIB per cápita!? ¿Qué es?
- ¿Nos afecta? Comparación regional
- Impacto social: protestas en Colombia
- Y esto...¿Cómo se relaciona con el tema?
 Tasas de variación PIB ⇔
 Cociente incremetal

Modelo: PIB en función del tiempo

Figura: Función PIB per cápita versus tiempo para Colombia [1].

Variables independiente y dependiente? Dominio? Imagen?

Cociente incremental: tasas de variación

Formas de "observar" los cambios del PIB [3].

• Tasa de variación porcentual,

$$TV = \frac{PIB \text{ Año final} - PIB \text{ Año inicial}}{PIB \text{ Año inicial}} \times 100 \%$$
 (1)

Tasa de variación media anual,

$$TVM = \frac{PIB \text{ Año final} - PIB \text{ Año inicial}}{Año \text{ final} - Año \text{ inicial}}$$
(2)

Variaciones en detalle (ver ejemplo a continuación).

Cociente incremental: tasas de variación

Como ejemplo, a continuación se muestra TVM anual para el año inicial 2009 y año final 2011. Consultando la tabla del PIB de Colombia de las 2 últimas décadas (ver al final) se tiene,

$$TVM = \frac{PIB \text{ Año } 2011 - PIB \text{ Año } 2009}{2011 - 2009}$$
$$= \frac{6166 - 4371}{2011 - 2009}$$
$$= \frac{1795}{2} = 897.5$$

El signo de la variación es positiva.

Cociente incremental: conclusiones

- Las tasas de variación "derivan" del aumento/disminución del PIB.
- Tasas de variación positivas, indican un aumento del PIB.
- Tasas de variación negativas, indican una disminución del PIB.
- Cuando la tasa cambia de signo, el PIB cambia de comportamiento: sube/baja.

Cociente incremental: conclusiones

• Si en el cociente incremental TVM, se toma límite

$$\mathsf{TVM}(\mathsf{instant\acute{a}nea}) = \lim_{x \to \mathsf{A\~{no}\ inicial}} \frac{\mathsf{PIB}(x) - \mathsf{PIB}(\mathsf{A\~{no}\ inicial})}{x - \mathsf{A\~{no}\ inicial}}$$

- se obtiene, la tasa de variación *instantánea*; ella permite *pronosticar* el PIB.
- Si ese límite existe, ese número se denomina derivada del PIB en ese Año inicial.

Del cociente incremental a noción de derivada

• Como una generalización a cualquier función f(x), si el cociente incremental tomado como límite

c. i.
$$f(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

existe y es único, a ese número se denomina derivada de f en ese punto a.

• Usualmente ese límite se representa como f'(a), por tanto [2]:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

 En el contexto gráfico, el límite muestra el de(crecimiento) de una función.

Ejemplo: Variación . . .

Figura: El PIB de Colombia ajustado al modelo de función polinomica grado 3.

$$PIB(x) = 2.9 - 0.4x + 0.1x^2 - 0.0036x^3$$

Figura: La derivada del modelo, es decir, la TVM instantánea.

Derivada de la función PIB:

$$TVM(x) = -0.4 + 0.2x - 0.011x^2$$

Aplicaciones del límite I:de las tasas de variación a la noción

¿Qué es la derivada de una función?

"Simplemente..." un cociente incremental tomado al límite extremo. Por ejemplo, para el PIB:

Derivada de una función

La función que a cada número x del dominio de f le asigna un número f'(x), si existe el límite, se le llama la **derivada de f**.

Introducción
Contexto preliminar: variación del PIB en Colombia
Noción de derivada
Hallando la derivada de funciones
Ablicaciones de la derivada

Noción de derivada

Calculando derivadas

Y para hallar la derivada de una función, ¿Hay que recurrir al límite?

Calculando derivadas

- Y para hallar la derivada de una función, ¿Hay que recurrir al límite?
- Hmmm...Si y No.

Calculando derivadas

- Y para hallar la derivada de una función, ¿Hay que recurrir al límite?
- Hmmm...Si y No.
- Formalmente Si porque así define la derivada; a su vez NO, ya que en la práctica no se usa el límite (salvo unas excepciones).

Calculando derivadas

- Y para hallar la derivada de una función, ¿Hay que recurrir al límite?
- Hmmm...Si y No.
- Formalmente Si porque así define la derivada; a su vez NO, ya que en la práctica no se usa el límite (salvo unas excepciones).
- En la práctica se usan tablas, libros, recursos informáticos y reglas para derivar funciones complejas.

Calculando derivadas

- Y para hallar la derivada de una función, ¿Hay que recurrir al límite?
- Hmmm...Si y No.
- Formalmente Si porque así define la derivada; a su vez NO, ya que en la práctica no se usa el límite (salvo unas excepciones).
- En la práctica se usan tablas, libros, recursos informáticos y reglas para derivar funciones complejas.
- Ejemplo, si $f(x) = x^2$, su derivada es:

$$f'(x) = \lim_{a \to x} \frac{f(a) - f(x)}{a - x} = \dots = 2x$$

Esta derivación se denomina regla de la potencia.

Derivada de funciones simples

Derivada de potencias y polinomios

La forma *usual* para calcular una derivada es a través de reglas o tablas,

Regla para función	Derivada	Resultado
Constante	y = k	y'=0
Potencia	$y = x^n$	$y' = nx^{n-1}$
Suma o resta	$y = u \pm v \pm \dots$	$y'=u'\pm v'\pm \dots$
"Mixta"	$y = kx^n$	$y' = knx^{n-1}$

Tabla: Derivadas de funciones simples: ideales para funciones polinomicas o simples potencias.

La notación para una derivada es:

$$y', \frac{dy}{dx}, D[y]$$
Applicaciones del límite lide las tasas de vari

Ejemplos de derivadas

La derivada de un trinomio

Encontrar la derivada de:

$$y = 9x^4 - 2x + 1$$

Solución. Basta con tomar la derivada de cada sumando y usar la tabla,

$$y = 9x^{4} - 2x + 1$$

$$y' = 9x^{4} - 2x + 1$$

$$= 9 \cdot 4x^{3} - 2 \cdot 1 + 0$$

$$= 36x^{3} - 2$$

Listo!

Aplicaciones de la derivada I

Crecimiento y decrecimiento de una función

Si la derivada y' de una función y existe, el valor de la derivada en un punto x permite conocer si la función y es creciente o decreciente en ese punto.

Criterio primera derivada

- Si la derivada y' calculada en un punto es positiva, la función y es creciente.
- Si la derivada y' calculada en un punto es negativa, la función y es decreciente.
- Si la derivada y' calculada en un punto es 0, la función es máxima o mínima en ese punto.

La aplicación de este criterio permite "dibujar" una gráfica.

Aplicaciones de la derivada I

Ejemplos de crecimiento y decrecimiento de una función

Comprobar el (de)creciente de un trinomio

Para la función dada, comprobar su comportamiento en x = -1 y x = 1:

$$y = 9x^4 - 2x + 1$$

Solución. Como la derivada de la función es $y' = 36x^3 - 2$, en ella se evalúan los puntos indicados,

$$y'(-1) = 36(-1)^3 - 2 = 36(-1) - 2 = -36 - 2 = -38 \rightarrow \text{decreciente}$$

 $y'(1) = 36(1)^3 - 2 = 36(1) - 2 = 36 - 2 = 34 \rightarrow \text{creciente}$

Listo!

Aplicaciones de la derivada II

Valores extremos (relativos) de una función

Si la derivada f' de una función f existe y si f es una función continua en algún dominio, entonces es posible que la función tenga un valor extremo en ese dominio.

Valores extremos ocurren cuando f'(x) = 0

Si la función f tiene un extremo relativo en el número c, entonces en ese número c se tiene f'(c)=0 ^a.

^aA veces el número c no es un valor extremo.

La aplicación de está afirmación permite encontrar los valores máximos y/o mínimos de una función.

Aplicaciones de la derivada II

Ejemplos de valores extremos de una función

Hallando los extremos de una función

Hallar los extremos de $y = 3x^4 - 4x^3$ en el dominio [-1,2].

Solución. Para encontrar los valores extremos de la función, se deriva la misma y se iguala a cero para resolver una ecuación,

$$y'(x)=12x^3-12x^2=0$$
 derivar
$$12x^3-12x^2=0$$
 igualar a 0
$$12x^2(x-1)=0$$
 resolver! Aquí factorización

Listo! Los valores extremos relativos están en x = 0 y x = 1.

Aplicaciones de la derivada II

Ejemplos de valores extremos de una función

Figura: Valores extremos de la función $y = 3x^4 - 4x^3$.

Contexto preliminar: variación del PIB en Colombia Hallando la derivada de funciones

Derivada: ejemplos y aplicaciones **Ejemplos**

Actividad 11

Usando la fórmula de tasa de variación media (TVM) dada por la fórmula 2 y los registros de la tabla del PIB de Colombia de las 2 últimas décadas ((ver al final)) determinar las TVM entre los respectivos años propuestos y escribir el signo de la variación (positiva o negativa).

- Hallar la TVM anual para el 2001 y 2003.
- 2 Hallar la TVM anual para el 2010 y 2015.

Actividad 12

Hallar la derivada de la siguiente función:

$$y = x^4 - 7x^3 + 67x - 60$$

y a partir de ella evaluar el punto o número x correspondiente para hallar el comportamiento de la función, es decir si en el punto x la función crece o decrece.

X	y'(x)	Signo	Comportamiento
-2			
3			

Tabla del PIB de Colombia años 1999 - 2020

Año	PIB per cápita (USD)	Año	PIB per cápita (USD)
2020	5567,24	2009	4371,9
2019	6766,12	2008	4376,62
2018	6698,86	2007	4042,68
2017	6609,18	2006	3503,42
2016	6183,2	2005	3220,22
2015	6475,84	2004	2604,26
2014	7104,78	2003	2343,48
2013	7205,08	2002	2938,2
2012	7308,92	2001	3149,42
2011	6166,68	2000	3145,88
2010	5603,82	1999	2874,48

Fuente DatosMacro.

Referencias I

Datosmacro.

Pib de colombia.

https://datosmacro.expansion.com/pib/colombia, 2021.

Consultado 11 sep 2021.

Roland Larson and Robert Hostetler.

Cálculo y Geometría Analítica.

McGraw-Hill, third edition, jan 1989.

Referencias II

Funciones matemáticas.

Tasa de variación media e instantánea.

https://www.funciones.xyz/

tasa-de-variacion-media-e-instantanea/, 2021.

Consultado 1 sep 2021.

Wikipedia.

Límite de una función.

https://es.wikipedia.org/wiki/L%C3%ADmite_de_una_

funci%C3%B3n, 2021.

Consultado 1 ago 2021.

Referencias III

Doris Álvarez et al.

Proyecto sé Matemáticas 11: libro del estudiante.

Ediciones SM, 2012.