⑩ 日本国特許庁(JP)

⑩特許出願公開

@ 公 開 特 許 公 報 (A) 平4-118241

SInt. Cl. 5

識別記号

庁内整理番号

❸公開 平成4年(1992)4月20日

B 41 J 2/045 2/055 2/16

9012-2C B 41 J 3/04

103 A 103 H

103 審査請求 未請求 請求項の数 1

D数 1 (全 4 頁)

公発明の名称 インクジェットプリンタヘッド用振幅変換アクチュエーター

②特 顧 平2-239258

②出 願 平2(1990)9月10日

個発明者 宮澤

久 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式

会社内

勿出 願 入 セイコーエブソン株式

東京都新宿区西新宿2丁目4番1号

会社

個代 理 人 弁理士 鈴木 喜三郎 外1名

明細書

1. 発明の名称

インクジェットプリンタヘッド用 振幅 変換アク チュエーター

2. 特許請求の範囲

ノズルオリフィスからインクを吐出するインクジェットプリンタへッドに用いられる振動を発来するための振幅を換アクチュエーターであって、 へッドに固定される基部と、 この板がよいのであって、 前記振動素子とノズルリウィスとの間にあって振動素子に当接する単りのとを有する事を特徴とする、インクジェットプリンタへッド用振幅を換アクチュエーター。

3. 発明の詳細な説明

【産業上の利用分野】

本発明はインクジェット記録装置に係わるもので、特にインク中に於て振動素子を駆動し、振幅 変換アクチュエーターでその振幅を伝達拡大させ、 発生する圧力でノズルオリフィスよりインクを吐 出させて印字を行うインクジェットプリンタへッ ド用の振幅変換アクチュエーターに関する。

[従来の技術]

世来のインクジェットプリンタヘッドは、例えば特開平1-186329号公報にみられるように、 扱動素子の振動によって直接得られるインクの圧力変動により、 ノズルオリフィスからのインクを吐出するようになっていた。

[発明が解決しようとする課題]

上述した従来のインクジェットブリンタへッドは、 振動素子の振動によって直接的 に得られるインクの圧力変動によりインクを吐出するのに必要な圧力変動を得るためには、 振動素子の振幅を大きくする必要があった。

このため、振動衆子には大きな電圧を印加しなければならず、 その駆動回路や電気絶縁対策が複雑化するという問題があった。

本発明の目的は、このような従来技術の問題点 を解決し、振動素子の振幅を伝達拡大する事によ り、小さな駆動電圧でインク吐出させる事のでき

特開平4-118241(2)

るインクジェットブリンタヘッド用 振幅 変換アク チュエーターを提供することにある。

[課題を解決するための手段]

本発明のインクジェットブリンタへッド用振幅 変換アクチュエーターは、ヘッドに固定される基 部と、この基部と一体的に形成された板バネ部と、 この板パネの先端部分に形成され、前記振動案子 とノズルオリフィスとの間にあって振動業子に当 接する重り部とを有する事を特徴とする。

[作用]

本発明の上記の構成によれば揺動素子の変位速度を活用し振動の伝達を行う原理から、 振動 エー の 数少な変位 (衝撃力を受けての移動) る電質 かって 変 なながって 振動 素子に印 加される。 したがって 振動 素子に印 加されるの 重り 部 は 大きくく 振動 することと なる。 その 間 するので、この 振動による インク圧力変 動で、 ての 振動による インク 圧力変 すなわち、 本がノズルオリフィスから吐出する。 すなわち

エーターの板パネ部1a及び重り部1bの詳細平面図で、 それぞれ振動時のインク抵抗を低減する為の形状の例を示したものである。

(ア)に示したものは、板パネ部1 a にスリット 6 を設けてインク抵抗の低減を図ったものである。 (イ)に示すものは、板パネ部1 a の幅をできる だけ小さくして、インク抵抗の低減を図ったもの である。

(ウ)に示すものは、 板バネ部1 a に複数の孔7 を開けることにより、 インク抵抗の低減を図ったものである。

第3図は第2図に示した振幅変換アクチュエーターの重り部1bを示す詳細断面図であり、振動素子2と振幅変換アクチュエーター1との接触に於て、インクの介在による振動伝達不良を抑制する為に、重り部1bの、振動素子との接触面を突起させた例を示すものである。(ア)、(イー)に示すものは、突起部1cがRになっており、(イ)に示すものは、突起部1cが

発明によれば、小さな駆動電圧でインクが吐出す ることになる。

[実施例]

以下本発明のインクジェットブリンタヘッド用 掘幅変換アクチュエーターの構造及び特徴を図面 に従って説明する。

第2図(ア)(イ)(ウ)は振幅変換アクチュ

(ア)と逆Rになっている。

なお第2図に示した板パネ部1 a の形状と第3図に示した重り部1 b の形状の組合せは自由に選択できる。

第4図(i)~(ii)及び(I)~(II)は第 3 図に示した形状の重り部1bを作成する製造工 程例を示すもので、 電鋳法で示す。 電鋳法は等方 的に成長する事を前提に説明する。(i)図にお いて、aは導電部材で、レジスト材bにより選択 的に導電層が露出している。そこでメッキ処理す るとcの折出層ができる。 次に(ⅱ)図に示すよ うに、前記(i)図に示した析出層 c の表面に シ ジスト材 d を用いて選択的に導電層(析出層 C) を露出させる。そこで再度メッキ処理すると斜線 部eの部材が形成できる。 その後 (iii) 図に示す ように、前記(ni)図に示した斜線部eを各々剝 離することにより、 第3図(イ)に示した形状の 重り部1bが得られる。 同様に(Ⅰ)図において、 aは導電部材で、 レジスト材 b により選択的に導 電層が露出している。 そこでメッキ処理すると c

の折出層ができる。次いで(II)図に示すように、 前記(II)図に示したレジスト材 b を除去し、再 度レジスト材 d を用いて選択的に導電層を露出さ せる。そこで再度メッキ処理すると斜線部 e の部 材が形成できる。その後(皿)図に示すように、 前記(II)図に示した斜線部 e を各々剥離するこ とにより、第3図(ア)に示した形状の重り部1 bが得られる。

第5図は第1図に示した振幅変換アクチュエーターを用いたインクジェットへッドの一例を示した部分断面図である。 振幅変換アクチュエーター1は、その基部1 dがヘッドケーシング 5 に固定され、重り部1 b の突起1 c が、振動素子である. 圧電素子2 の端面2 a に接している。 3 はノズルブレートでノズルオリフィス3 a を有している。

第5図の構成に於て圧電素子2にバルスが印加されると、立ち上がりパルスで圧電素子2が伸びる圧電素子だとすると、圧電素子2が急峻に伸び、その端面2aによって、振幅変換アクチュエータ

で介在するインクを排除する事ができる。

また、 振幅変換アクチュエーター 1 がインク中で振動する為、 インクの抵抗が大きいと、 振動の減衰が生じて、 所定の振幅を得る事に障害となる。そこで、 第 2 図に示したように振幅変換アクチュエーター 1 のインク加圧面(すなわち重り部 1 b)の表面積よりも板バネ部 1 a の表面積を小さくする事で、 振幅変換アクチュエーターの振動減衰を 最小限にとどめ、 安定した振動特性を実現し、 良好な印字品質を得る事ができる。

[発明の効果]

本発明によれば、振幅変換アクチュエーターに よって振動素子の変位速度を活用し、振動素子の 振幅を伝達拡大することにより、小さな駆動電圧 でインク吐出させることができる。

4. 図面の簡単な説明

第1図は本発明に係わるインクジェットプリンタヘッド用抵揮変換アクチュエーターの一実施例を示す平面図、第2図(ア)(イ)(ウ)はそれぞれ変形例を示す部分平面図、第3図(ア)

これらの運動の中で重り部1bがノズルブレート3より復帰し、圧電素子2に接する際に、圧電素子2の場面2aとの間にインク4が介在すると、良好な接触にとって障害となる。そこで第3回に示したように、重り部1bの、圧電素子2の場面2aとの接触面に、突起部1cを設ける事により、接触面積を少なくし、押し付け力を増加させる事

(イ)はそれぞれ変形例を示す部分側断面図、第4図(i)~(ii)及び(I)~(II)は第3図(ア)(イ)に示したものの製造工程図、第5図は本発明に係わる振幅変換アクチュエーターを用いたヘッドの要部断面図である。

- 1 振幅変換アクチュエーター
 - 1 a 板パネ部
 - 1 b 重り部
 - 1 c 突起部
 - 1 d 基部
 - 1 e. 1 f アクチュエーターの位置決め孔
- 2 振動素子
- 3 ノズルプレート
 - 3 a ノズルオリフィス
- 4-インク

以上

出願人 セイコーエプソン株式会社 代理人 弁理士 鈴木客三郎 他一名

特開平4-118241(4)

第5図

