Duration:	$50 \ minutes$		
Aids Allowed:	A calculator. A single 8.5 by 11 inch aid sheet, written on The aid sheet must be a handwritten original	-	ocopies.
	t Number:		
F	irst Name:		
Do no	t turn this page until you have received the Please fill out the identification section a	_	
		// 1 .	/ C
		# 1: # 2:	•
This test consists of 5 questions on 6 pages (including this one). When you receive the signal to start, please make sure that your copy of the test is complete. This test is double-sided.		# 3:	
		# 4:	
		# 5:	_/ 6
		TOTAL	/30

Good Luck

Question 1. [6 MARKS]

Part (a) [2 MARKS]

In a floating-point number system, is the product of two floating-point numbers usually exactly representable in the floating-point system? Explain.

Part (b) [2 MARKS]

Give examples of floating-point arithmetic operations that would produce each of the exceptional values Inf and NaN.

Would produce Inf:

1/0

Would produce NaN:

(4-4)/(2-2)

Part (c) [2 MARKS]

In what circumstances does *cancellation* occur in a floating-point system?

Subtraction for two close numbers

Question 2. [6 MARKS]

Part (a) [4 MARKS]

If **A** is an $n \times n$ matrix, \underline{x} is an $n \times 1$ (column) vector and \underline{y} is a $1 \times n$ (row) vector, which of the following computations requires less work? Explain.

- 1. $\mathbf{B} = (\underline{x} * y) * \mathbf{A}$
- $2. \mathbf{B} = \underline{x} * (y * \mathbf{A})$

The second requires less work . Because if we calculate x^*y which gives us an nXn matrix. And if you multiply two nXn matrix takes $O(n^3)$ flops.

Part (b) [2 MARKS]

Give an example of a 3×3 matrix **A**, other than the identity matrix, such that $\operatorname{cond}(\mathbf{A}) = 1$. Justify your response.

permutation of identity matrix

Question 3. [6 MARKS]

The dot product of two *n*-vectors \underline{x} and y may be defined using the formula

$$\underline{x} \cdot \underline{y} = \sum_{i=1}^{n} x_i * y_i.$$

The formula suggests use of the algorithm:

```
dotProd = x(1) * y(1)
for i = 2:length(x)
    dotProd = dotProd + x(i) * y(i)
end for
```

This algorithm does not always compute an accurate result when implemented using floating-point arithmetic. Discuss the numerical difficulties that might arise and propose alternative approaches that may make the algorithm's result more accurate.

First, compute all x(i)*y(i) then sort them in ascending order. Add the small number first then bigger number.

Question 4. [6 MARKS]

$$\text{Let } \mathbf{A} = \begin{bmatrix} 1 & 3 & 5 \\ 4 & 8 & 4 \\ 2 & 6 & 8 \end{bmatrix}, \ \mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \ \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.25 & 0.5 & 1 \end{bmatrix}, \ \mathbf{U} = \begin{bmatrix} 4 & 8 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \underline{b} = \begin{bmatrix} 4 \\ 4 \\ 6 \end{bmatrix}.$$

Part (a) [2 MARKS]

Show that PA = LU.

simple mulipication

Part (b) [4 MARKS]

Use the $\mathbf{PA} = \mathbf{LU}$ factorization to solve the problem $\mathbf{A}\underline{x} = \underline{b}$ for \underline{x} . Please show all steps in your solution.

$$Ux = y$$
, $Ly = Pb$

Question 5. [6 MARKS]

The "floor" of a real number x is an integer valued function of x, usually denoted |x|, and defined as

```
|x| \equiv \text{the largest integer} \leq x.
```

Suppose that you have a function with prototype int mfloor (float x). Given a normalized number x in the IEEE single-precision floating-point number system, mfloor returns an approximation to |x|.

The following program segment attempts to print out $|2^k e|$ for k from 1 to 29.

```
float x;
int j,k;
x = (float) exp( 1.0 );
for ( k = 1; k < 30; k ++ ) {
    x = 2.0 * x;
    j = mfloor( x );
    printf("k = %2d j = %10d \n", k, j);
}</pre>
```

Explain why the program will most likely print out a wrong value for $|2^k e|$, for some k.

Note: The exp function computes the exponential of x, e^x , where the irrational number e is the base of natural logarithms. The float variables implement the IEEE single precision floating-point number system which has parameters $\beta = 2$, p = 24, L = -126, and U = 127. Assume that int variables are 32 bits in size.