- -Characterized by C=C double bond(s)
- -Classified as unsaturated hydrocarbons
- -empirical formula = C_nH_{2n}

(applies when the molecule only has one double bond)

$$\rightarrow$$
 C_nH_{2n}, n=4

$$= C_4H_8$$

Some IUPAC names of alkenes:

eth<u>ene</u>

<u>propene</u>

but-1-ene

All alkenes have the suffix "ene"

IUPAC naming system:

Ex: but-1-ene

IUPAC naming system:

Name the following alkenes:

$$H - C - C = C$$
 $H - H$
 $H - H$

$$H - C - C = C - C - H$$
 $H - H - H$
 $H - H - H$

but-2-ene

IUPAC naming system:

Name the following alkenes:

$$\begin{array}{c}
H \\
C = C \\
C$$

methylpropene

methylbut-2-ene

The double bond has a higher numbering priority than the alkyl and halide substituents

IUPAC naming system:

Name the following alkenes:

trans-but-2-ene

cis = longest chain forms a U shape

trans = longest chain forms a Z shape

Geometric isomers

IUPAC naming system:

Name the following alkenes:

trans-3-methylpent-2-ene

cis-hept-3-ene

IUPAC naming system:

Name the following alkenes:

trans-1,2-dichloroethene

cis-1,2-dichloroethene

IUPAC naming system:

cis and trans have limitations.

Try naming the following alkenes:

Since both molecules are different, they must be differentiated by name. However, cis and trans cannot be used in this case as each carbon atom has two different groups, unlike in the previous examples.

IUPAC naming system:

- E-Z notation:
- (E)-: the higher priority groups are on opposite sides of the double bond.
- (Z)-: the higher priority groups are on the same side of the double bond.

Bromine has a higher atomic number than fluorine. Chlorine has a higher atomic number than hydrogen.

Bromine has the higher priority.

Br

Chlorine has the higher priority.

F

H

Chlorine has the Class the higher priority.

The atom which has the higher atomic number is given the higher priority. We look only at the atoms directly attached to the double bond.

IUPAC naming system:

E-Z notation names:

(Z)-1-bromo-2-chloro-1-fluoroethene

(E)-1-bromo-2-chloro-1-fluoroethene

IUPAC naming system:

Name the following alkenes:

(*E*)-1,2-dichloroethene

(Z)-1,2-dichloroethene

IUPAC naming system:

Name the following alkenes:

IUPAC naming system:

Name the following alkene:

(2E)-2-bromobut-2-ene

Although this looks like a cis structure, Br actually has higher priority than CH_3 , because the atomic number of Br is higher than C

IUPAC naming system:

.: the molecule has Z geometry

*higher atomic number atoms are written first

IUPAC naming system:

Is this molecule E or Z?

.: the molecule has Z geometry

IUPAC naming system:

Name the following alkenes:

4-methylpenta-1,3-diene

(3*E*)-hept<u>a</u>-1,3,6-triene

When there is more than one double bond, add the letter "a" to the end of the prefix (i.e. buta)

IUPAC naming system:

Name the following alkenes:

3,4-dimethylcyclohexene

5-methylcyclohexa-1,3-diene

IUPAC naming system:

Name the following alkene:

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3

1,5-diethyl-2,4-dimethyl-3,6-dipropylcyclohexa-1,3-diene

Drawing alkenes:

Draw the following alkenes using line diagrams

2,3-diethylcyclopentene (2E,4E)-3-methyl-4-propylocta-2,4-diene

Drawing alkenes:

Draw the following alkenes using structural diagrams

1,2,3-trimethylcyclohexa-1,3-diene

3-methylpent-1-ene

Properties:

-Are hydrophobic like all hydrocarbons

-terminal alkenes (ex.) have slightly lower boiling points than their alkane counterparts, but cis, trans, and cyclic alkenes have slightly higher boiling points.

Formula	B.p., °C	ethane	$C_2H_{6(g)}$	-88
CH ₂ =CH ₂	-102	propane	C ₃ H _{8(g)}	-42
$CH_2 = CHCH_3$	-48	butane	$C_4H_{10(g)}$	0
$CH_2 = CHCH_2CH_3$	-6.5	pentane	C ₅ H _{12(D}	+36
$CH_2 = CH(CH_2)_2 CH_3$	30	hexane	C ₆ H ₁₄₍₁₎	+68
$CH_2 = CH(CH_2)_3 CH_3$ $CH_2 = CH(CH_2)_4 CH_3$	63.5 93	heptane	C7H16(1)	+98
CH_2 = $CH(CH_2)_5CH_3$ CH_2 = $CH(CH_2)_5CH_3$	122.5	octane	C ₈ H _{18(I)}	+126

Properties:

-cis and trans alkenes have slightly higher boiling points than their alkane counterparts

-this is due to their increased ability to stack together and form London Dispersion Forces (cis generally stacks better and has higher boiling points)

Formula	.р., С
cis-CH ₃ CH=CHCH ₃ trans-CH ₃ CH=CHCH ₃	4 1
cis-CH ₃ CH=CHCH ₂ CH ₃ trans-CH ₃ CH=CHCH ₂ CH ₃	37 36

Homework:

Page 21 #1, 2 (includes alkynes)
Page 27 #2-5