Developing a Robotic Learning System Using Pololu Romi Robot

Charlie Monroe
Advisor: Dr. Jim Conrad

Background and Motivation

Previous Work

- TI-RSLK (Robotic Systems Learning Kit)
 - Communication limitations due to microcontroller and software capabilities.
 - The RSLK kit has been discontinued.

Motivation

- Building a high powered robotic learning system:
 - Pololu Romi with Raspberry Pi offers enhanced processing power, software flexibility, and educational applications for learning ROS.
 - A flexible framework for building robot applications.
 - Provides the tools and libraries to build and reuse software components.
 - Peer-to-peer network communication infrastructure.

Objectives

Integrate systems into the Pololu Romi robotic system:

- Raspberry Pi processing power
- Camera image processing
- LiDAR object avoidance and SLAM

Develop and integrate ROS nodes for control and sensor data acquisition:

RViz - robotic movement and environmental perspective

Test and evaluate the system's performance:

- Power consumption
- Encoder and position accuracy
- Evaluate object detection and SLAM algorithm

Robot Hardware

- Driver board ATmega32U4
- Motor pair with encoders
- Arduino

Modified Robot:

- Romi base
- Raspberry Pi
- Additional sensors
- 3D printed parts

Hardware Design

Pololu Romi Chassis and Romi32U4 Control Board

 Manages low-level motor control and integrates with the Raspberry Pi.

Raspberry Pi 4B

 Capable of running various software environments, including Ubuntu/ROS.

LD19 LiDAR Module

 0.02~12m 360° range for Simultaneous Localization and Mapping (SLAM.)

Raspberry Pi Camera v2.1

o 8MP, 1080p30 video for vision-based tasks.

USB Flash Drive/MicroSD Card

Provides storage for the Raspberry Pi

System Design

Software Architecture

- Ubuntu 20.04 and ROS Noetic
- Unified Robotics Description Format (URDF) for physical robot description
- ROS control stack
 - Create controller manager
 - ROS differential drive controller
 - Joint state and joint velocity interfaces to wheel joints
 - C++ hardware interface class
 - Read and write methods
 - Class for I2C communication
 - Dead man's switch
- Camera: OpenCV and image_transport
- LiDAR: LDROBOT LD19 and SLAM_toolbox

ROS RQT Graph

ROS TF Tree

ecorded at time: 1722124835.3110063

Accuracy Testing

- 1 meter test square
- Measure error in Rviz

Driving forward 1 meter

Test #	Error (cm)			
1	<1			
2	<1			
3	<1			
4	<1			
5	<1			
AVG	<1			

Accuracy Testing

Driving 1 meter square

Test #	Error (cm)		
1	2.5		
2	3.1		
3	1.5		
4	2.9		
5	1.2		
AVG 2.24			

Results - SLAM

Results - Power

- Modified 40-pin extension header
- USB current meter

Battery Type	Battery Size (mAh)	Battery Voltage (V)	Battery Power (mWh)	
Rechargeable NiMH	2500	7.2	18000	
Alkaline	2500	9	22500	
Lithium	3000	9	27000	

	Component	Current Draw (mA)	Supply Voltage (V)	Power Consumption (mWh)	Rechargeable Runtime (hours)	Alkaline Runtime (hours)	Lithium Runtime (hours)
Idle	Raspberry Pi 4B	540	5	2700			
	Total:	540		2700	7	8	10
Running	Raspberry Pi 4B	670	5	3350			
	LiDAR	180	5	900			
	Camera	150	5	750			
	USB	50	5	250			
	Total:	1050		5250	3	4	5
Moving	W/Motors	500	5	2500			
	Total:	1550		7750	2.3	2.9	3.5

Discussion

Challenges:

- Ensuring reliable data transmission over I2C- false encoder readings.
- Raspberry Pi camera V3 incompatibility with Ubuntu 20.04.

Limitations:

Processing:

- Raspberry Pi has limitations in handling high-computation tasks simultaneously.
- Tasks may be offloaded to a PC for efficient operation.

• Physical Constraints:

Size and weight restrictions for integrating additional components with the Romi.

Power:

Limited by 6x AA batteries, can use 40 pin extension header to power from USB-C.

Conclusion

- 1. Successfully implemented a ROS platform on the Pololu Romi robot.
- 2. Developed a reliable and accurate ROS Control stack.
- 3. Achieved seamless integration of multiple sensors (LiDAR, camera) for sophisticated environmental perception.
- 4. Achieved reasonable power consumption, further extended if not all sensors used.
- 5. Comprehensive educational tool for in-depth learning and practical application of ROS.

Future work:

- Vision processing (YOLOv8)
- Machine learning techniques
- Path planning
- Lab exercises for project-based learning

Demo & Questions