HorizonML: A Decentralized Framework for Parallel Model Training

Independent Study — Spring 2025

Name: Deeptanshu Sankhwar

Advisor: Prof. Eric Keller

Motivation: Breaking Centralized Al Control

Problem: ML training is monopolized by a few companies with large GPU farms (OpenAI, Google, Anthropic).

Centralization leads to:

Biased models

Closed access

Rent-seeking compute APIs

Vision: Democratize model training by distributing the process across independently operated nodes, without trusting any single entity.

Related Work

Approach	Key Idea	Limitation
Data Parallelism (PyTorch DDP)	Split batches, sync gradients	Still centralized orchestrator
Model Parallelism (GPipe, PipeDream)	Split model layers	Not decentralized, still server-bound
Bittensor	Proof-of-Intelligence network	Narrow to inference rewards, limited training structure
Proof-of-Learning	Verifiable training claims	Still experimental, not integrated into training infra

HorizonML Architecture Overview

Implementation Setup

Model: ResNet (split across nodes)

Dataset: CIFAR-10 + ImageNet (subset)

Workers: 5 simulated Docker nodes

Parallelism Strategies:

- Data parallelism
- Layer-wise model parallelism
- Tensor-wse model parallelism

Communication Stack:

• REST (baseline)

Each node trains full model on data shard

Problems:

Requires full model memory on each node

Noisy gradients due to small batch sync

High communication cost

Data Parallelism

Layer-wise Model Parallelism

Each node handles a slice of the model

Forward/backward pass is distributed

Advantages:

Lower memory footprint

No gradient aggregation = more stable convergence

Easy to decentralize

Tensor-wise Model Parallelism

Forward/backward pass is **distributed within a layer**

Results from all nodes are **aggregated after partial tensor computation**

Advantages

- ✓ Lower memory footprint
- ✓ Enables fine-grained parallelism within large layers
- ✓ Scales across resource-constrained nodes
- Compatible with transformer-like architectures

What We Achieved

Created a modular training framework that:

Runs across independent nodes

Enables model splitting without centralized coordination

Demonstrated **better training quality** using model parallelism under decentralized assumptions

What's Next: Towards a Decentralized Al Chain

Introduce **blockchain layer** for:

Logging training contributions

Rewarding correct updates (Proof of Learning / ZKML)

Transform nodes into **agents**:

Compete or collaborate on training

Earn reputation or tokens

Move toward a **trust-minimized model training protocol**

Vision: HorizonML as a Base Layer for Open Al Infrastructure

Our study focuses on evaluating the market landscape, consumer trends, and competition pertinent to the new product.

"Just as Ethereum democratized finance, HorizonML aims to democratize intelligence."

Open training economy

Permissionless participation

On-chain coordination, off-chain training

Foundation for autonomous AI networks

Conclusion

Reimagined distributed training as a decentralized protocol

Built & evaluated competing strategies

Validated model split approach as more scalable and stable

Set the groundwork for training coordination without centralized compute monopolies

Thank you!