CONTENTS

MEME15203 STATISTICAL INFERENCE

6	Dat	a Reduction	2
	6.1	Sufficient Statistics	2
	6.2	Factorization Theorem	5
	6.3	Rao-Blackwell	10
	6.4	Completeness	13
	6.5	Exponential Class	17
	6.6	Lehmann-Scheffe	20
	6.7	Range-Dependent Exponential Class	24
	6.8	Basu Theorem	31

6 Data Reduction

MEME15203 STATISTICAL INFERENCE

6.1 Sufficient Statistics

Definition 1. Jointly Sufficient Statistics Let $\mathbf{X} = (X_1, \dots, X_n)$ have joint pdf $f(\mathbf{x}, \boldsymbol{\theta})$, and let $S = (S_1, \dots, S_k)$ be a k-dimensional statistic. Then S_1, \dots, S_k is a set of **jointly sufficient statistics** for $\boldsymbol{\theta}$ if for any other vector of statistics, \mathbf{T} , the conditional pdf of \mathbf{T} given $\mathbf{S} = \mathbf{s}$, denoted by $f_{\mathbf{T}|\mathbf{S}}(t)$, does not depend on $\boldsymbol{\theta}$. In the one-dimensional case, we simply say that S is a sufficient statistic for $\boldsymbol{\theta}$.

202201

Example 1.

Let X_1, \ldots, X_n be a random sample from a Bernoulli distribution. Show that $S = \sum X_i$ is a sufficient statistic for θ by definition.

Example 2.

Consider a random sample from an exponential distribution, $X_i \sim EXP(\theta)$. Show that $S = \sum X_i$ is a sufficient statistic for θ by definition.

MEMEI5203 Statistical Inference 202201 MEMEI5203 Statistical Inference 202201

6.2 Factorization Theorem

Theorem 1. Factorization Criterion

If X_1, \ldots, X_n have joint pdf $f(x_1, \ldots, x_n; \theta)$, and if $S = (S_1, \ldots, S_k)$, then S_1, \ldots, S_k are jointly sufficient for θ if and only if

$$f(x_1,\ldots,x_k;\boldsymbol{\theta})=g(\mathbf{s};\boldsymbol{\theta})h(x_1,\ldots,x_n)$$

where $g(\mathbf{s}; \boldsymbol{\theta})$ does not depend on x_1, \ldots, x_n , except through s, and $h(x_1, \ldots, x_n)$ does not involve θ .

Example 3.

Consider a random sample from a Gamma distribution, $X_i \sim Gamma(\alpha = 5, \theta)$. Show that $S = \sum X_i$ is a sufficient statistic for θ by factorization theorem.

MEME15203 STATISTICAL INFERENCE 202201

MEME15203 Statistical Inference

Definition 2. If A is a set, then the indicator function of A, denoted by I_A is defined as

$$I_A = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

Example 4. Consider a random sample from a uniform distribution, $X_i \sim U(0, \theta)$, where θ is unknown. Find a sufficient statistic for θ .

Example 5. Consider a random sample from a uniform distribution, $X_i \sim U(\theta, \theta + 1)$. Notice that the length of the interval is one unit, but the endpoints are assumed to be unknown. Show that $S_1 = X_{1:n}$ and $S_2 = X_{n:n}$ are jointly sufficient for θ .

MEMEI5203 STATISTICAL INFERENCE 202201 MEMEI5203 STATISTICAL INFERENCE 202201

Example 6.

MEME15203 STATISTICAL INFERENCE

Consider a random sample from a normal distribution, $X_i \sim N(\mu, \sigma^2)$, where both μ and σ^2 are unknown. Show that $S_1 = \sum X_i$ and $S_2 = \sum X_i^2$ are jointly sufficient for $\boldsymbol{\theta} = (\mu, \sigma^2)$.

6.3 Rao-Blackwell

Theorem 2. Rao-Blackwell Let X_1, \ldots, X_n , have joint pdf $f(x_1, \ldots, x_n; \boldsymbol{\theta})$, and let $S = (S_1, \ldots, S_k)$ be a vector of jointly sufficient statistics for $\boldsymbol{\theta}$. If T is any unbiased estimator of $\tau(\boldsymbol{\theta})$, and if $T^* = E(T|\mathbf{S})$, then

- 1. T^* is an unbiased estimator of $\tau(\boldsymbol{\theta})$
- 2. T^* is a function of **S**, and
- 3. $V(T^*) \leq V(T)$ for every $\boldsymbol{\theta}$, and $V(T^*) < V(T)$ for some $\boldsymbol{\theta}$ unless $T^* = T$ with probability 1.

202201

MEME15203 STATISTICAL INFERENCE 202201

Example 7.

Let X_1, X_2, \ldots, X_n be random sample of size n from a Poisson distribution with unknown mean λ . Let

$$T = \begin{cases} 1, & X_1 = x \\ 0, & \text{otherwise} \end{cases}.$$

Find
$$E\left[T \middle| \sum_{i=1}^{n} X_i = s\right]$$
.

Example 8.

11

Suppose X_1, \ldots, X_{64} is a random sample from a normal distribution, $X_i \sim N(\mu, 25)$. Use the Rao-Blackwell theorem to find the UMVUE of $\nu = P[X \leq c]$.

MEME15203 Statistical Inference 202201

MEME15203 STATISTICAL INFERENCE

6.4 Completeness

Definition 3. Completeness A family of density functions $\{f_{\mathbf{T}}(t; \boldsymbol{\theta}); \boldsymbol{\theta} \in \Omega\}$ is called complete if E[u(T)] = 0 for all $\boldsymbol{\theta} \in \Omega$ implies u(T) = 0 with probability 1 for all $\boldsymbol{\theta} \in \Omega$.

A sufficient statistic the density of which is a member of a complete family of density functions will be referred to as a **complete sufficient statistic**.

Example 9.

13

Let X_1, \ldots, X_n denote a random sample from a Geometric distribution, $X_i \sim Geometric(p)$. Show that $S = \sum X_i$ is the complete sufficient statistic for p.

MEME15203 Statistical Inference 202201

MEME15203 STATISTICAL INFERENCE

Example 10.

Let X_1, \ldots, X_n be iid $N(\theta, a\theta^2)$, where a is known constant and $\theta > 0$. Show that the family of distribution is not complete.

Example 11.

Suppose that X_1, \ldots, X_{43} is a random sample from a Geometric distribution, $X_i \sim \text{Geometric}(p)$. Let

$$T = \begin{cases} 1, & X_1 + \dots + X_{10} = 10 \\ 0, & \text{otherwise} \end{cases}.$$

Find
$$E\left[T|\sum_{i=1}^{n}X_{i}=s\right].$$

MEME15203 Statistical Inference

202201

MEME15203 STATISTICAL INFERENCE

6.5 Exponential Class

Definition 4. Exponential Class A density function is said to be a member of the regular exponential class if it can be expressed in the form

$$f(\mathbf{x}; \boldsymbol{\theta}) = c(\boldsymbol{\theta})h(\mathbf{x})e^{-\sum_{j=1}^{n}q_{j}(\boldsymbol{\theta})t_{j}(\mathbf{x})}, \mathbf{x} \in A$$

and zero otherwise, where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)$ is a vector of k unknown parameters, if the parameter space has the form

$$\Omega = \{ \boldsymbol{\theta} | a_i \leq \theta_i \leq b_i, i = 1, \dots, k \}$$

(note that $a_i = -\infty$ and $b_i = \infty$ are permissible values), and if it satisfies regularity conditions 1, 2, and 3(a) or 3(b) given by:

- 1. The set $A = \{x : f(x; \boldsymbol{\theta}) > 0\}$ does not depend on $\boldsymbol{\theta}$.
- 2. The functions $q_j(\theta)$ are nontrivial, functionally independent, continuous functions of the θ .
- 3.(a) For a continuous random variable, the derivatives $t_j(x)$ are linearly independent contin-

MEME15203 STATISTICAL INFERENCE

uous functions of x over A.

(b) For a discrete random variable, the $t_j(x)$ are nontrivial functions of x on A, and none is a linear function of the others.

For convenience, we will write that $f(x; \boldsymbol{\theta})$ is a member of $REC(q_1, \ldots, q_k)$ or simply REC.

Theorem 3. X_1, \ldots, X_n , is a random sample from a member of the regular exponential class $REC(q_1, \ldots, q_k)$, then the statistics

$$S_1 = \sum_{i=1}^n t_1(X_i), \dots, S_k = \sum_{i=1}^n t_k(X_i)$$

are a minimal set of complete sufficient statistics for $\theta_1, \ldots, \theta_k$.

MEME15203 STATISTICAL INFERENCE 202201

Example 12.

MEME15203 STATISTICAL INFERENCE

Show that $X \sim Gamma(\alpha, \theta)$ belong to the regular exponential class, and use this information to find complete sufficient statistics based on a random sample X_1, \ldots, X_n .

6.6 Lehmann-Scheffe

MEME15203 STATISTICAL INFERENCE

Theorem 4. Lehmann-Scheffe Let X_1, \ldots, X_n have joint pdf $f(x_1, \ldots, x_n; \boldsymbol{\theta})$, and let S be a vector of jointly complete sufficient statistics for $\boldsymbol{\theta}$. If $T^* = t^*(\mathbf{S})$ is a statistic that is unbiased for $\tau(\boldsymbol{\theta})$ and a function of S, then T^* is a UMVUE of $\tau(\boldsymbol{\theta})$.

202201

19

Example 13.

Let X_1, \ldots, X_n be a random sample from a Bernoulli distribution, $X_i \sim Bin(1, p)$; $0 . Find the UMVUE of <math>p^2$.

Example 14.

Suppose that X_1, \ldots, X_n is a random sample from a Geometric distribution, $X_i \sim \text{GEO}(\theta)$,

- (a) Show that the p.d.f. of X belongs to the regular exponential family.
- (b) Based on the answer in a, find a complete and sufficient statistic for $\theta.$
- (c) Find the UMVUE of $\left[\frac{6\theta}{1-6(1-\theta)}\right]^n$.

MEMEI5203 STATISTICAL INFERENCE 202201 MEMEI5203 STATISTICAL INFERENCE

Example 15.

MEME15203 STATISTICAL INFERENCE

Suppose that X_1, \ldots, X_n is a random sample from a Poisson distribution, $X_i \sim \text{POI}(\theta)$. Find the UMVUE of $P(X = 0 \text{ or } 2) = (1 + \frac{1}{2}\theta^2)e^{-\theta}$ using Rao-Blackwell theorem.

6.7 Range-Dependent Exponential Class

Definition 5. A density function is said to be a member of the **range-dependent exponential class**, denoted by $RDEC(q_1, \ldots, q_k)$, if it satisfies regularity conditions 1 and 2 or 3 for $j = 3, 4, \ldots, k$ and if it has the form

$$f(x; \boldsymbol{\theta}) = c(\boldsymbol{\theta})h(x)e^{-\sum_{j=3}^{k}q_{j}(\theta_{3}, \dots, \theta_{k})t_{j}(x)}$$
 where $A = \{x|q_{1}(\theta_{1}, \theta_{2}) < x < q_{2}(\theta_{1}, \theta_{2})\}$ and $\boldsymbol{\theta} \in \Omega$.

- 1. The functions $q_j(\theta)$ are nontrivial, functionally independent, continuous functions of the θ .
- 2. For a continuous random variable, the derivatives $t_j(x)$ are linearly independent continuous functions of x over A.
- 3. For a discrete random variable, the $t_j(x)$ are nontrivial functions of x on A, and none is a linear function of the others.

MEME15203 STATISTICAL INFERENCE

202201

23

For special cases:

1. The one-parameter case:

$$f(x;\theta) = c(\theta)h(x)$$

with

$$A = \{x | q_1(\theta), x < q_2(\theta)\}$$

2. The two-parameter case:

$$f(x; \theta_1, \theta_2) = c(\theta_1, \theta_2)h(x)$$

with

$$A = \{x | q_1(\theta_1, \theta_2), x < q_2(\theta_1, \theta_2)\}\$$

Theorem 5.

MEME15203 STATISTICAL INFERENCE

Let X_1, \ldots, X_n be a random sample from a member of the $RDEC(q_1, \ldots, q_j)$.

- 1. If k > 2, then $S_1 = X_{1:n}$, $S_2 = X_{n:n}$ and S_3, \ldots, S_k where $S_j = \sum_{i=1}^n t_j(X_i)$ are jointly sufficient for $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_k)$.
- 2. In the two-parameter case, $S_1 = X_{1:n}$, and $S_2 = X_{n:n}$ are jointly sufficient for $\boldsymbol{\theta} = (\theta_1, \theta_2)$.

3. In the one-parameter case, $S = X_{1:n}$ and $S_2 = X_{n:n}$ are jointly sufficient for θ . If $q_1(\theta)$ is increasing and $q_2(\theta)$ is decreasing, then $T_1 = \min[q_1^{-1}(X_{1:n}), q_2^{-1}(X_{n:n})]$ is a single sufficient statistic for θ . If $q_1(\theta)$ is increasing and $q_2(\theta)$ is increasing, then $T_2 = \max[q_1^{-1}(X_{1:n}), q_2^{-1}(X_{n:n})]$ is a single sufficient statistic for θ .

If one of the limits is constant and the other depends on a single parameter, say θ , then the following theorem can be stated.

Theorem 6.

MEME15203 STATISTICAL INFERENCE

Suppose that X_1, \ldots, X_n , is a random sample from a member of the RDEC.

- 1. If k > 2 and the lower limit is constant, say $q_1(\theta) = a$, then $X_{n:n}$ and the statistics $\sum_{i=1}^n t_j(X_i)$ are jointly sufficient for θ and θ_j , $j = 3, \ldots, k$
- 2. If the upper limit is constant, say $q_2(\theta) = b$, then $X_{1:n}$ and the statistics $\sum_{i=1}^{n} t_j(X_i)$ are jointly sufficient for θ and θ_j ; j = 3, ..., k.

202201

3. In the one-parameter case, if $q_1(\theta)$ does not depend on θ , then $S_2 = X_{n:n}$ is sufficient for θ , and if $q_2(\theta)$ does not depend on θ , then $S_1 = X_{1:n}$ is sufficient for θ .

Example 16.

Consider the pdf

$$f(x;\theta) = \frac{1}{8\theta}, -3\theta < x < 5\theta$$

and zero otherwise. Find a single sufficient statistic for θ .

Example 17. Consider a two-parameter exponential distribution, $X \sim EXP(\theta, \eta)$. If X_1, \ldots, X_n is a random sample, find the joint sufficient statistics for (θ, η) .

MEMEI5203 STATISTICAL INFERENCE 202201 MEMEI5203 STATISTICAL INFERENCE 202201

Example 18.

Consider a random sample of size n from a uniform distribution, $X \sim U(\theta_1, \theta_2)$. Find the joint sufficient statistics for (θ_1, θ_2) .

Example 19.

29

Consider a random sample of size n from a uniform distribution $X \sim U(0, \theta)$. Show that $S = X_{n:n}$ is a complete sufficient statistic for θ .

MEMEI5203 Statistical Inference 202201 MEMEI5203 Statistical Inference 202201

6.8 Basu Theorem

Theorem 7. Basu Let X_1, \ldots, X_n , have joint pdf $f(x_1, \ldots, x_n X, ; \boldsymbol{\theta})$; $\boldsymbol{\theta} \in \Omega$. Suppose that $S = (S_1, \ldots, S_k)$ where S_1, \ldots, S_k are jointly complete sufficient statistics for $\boldsymbol{\theta}$, and suppose that T is any other statistic. If the distribution of T does not involve $\boldsymbol{\theta}$, then S and T are stochastically independent. In this case, T is call an ancillary statistic.

Example 20. Consider a random sample of size n from a normal distribution $X \sim N(\mu, \sigma^2)$. Use Basu Theorem to show that \bar{X} and S^2 are independent.

MEMEI5203 STATISTICAL INFERENCE 202201 MEMEI5203 STATISTICAL INFERENCE 202201

Example 21.

Consider a random sample of size n from a twoparameter exponential distribution, $X_i \sim EXP(1, \eta)$.

- 1. Show that $T(X) = X_{1:n}$ is complete and sufficient for η .
- 2. Find the UMVUE of η .
- 3. Find the UMVUE of η^2 .
- 4. Use Basu's Theorem to show that $X_{1:n}$ and $S^2 = \frac{\sum (X_i \bar{X})^2}{n-1}$ are independent.