Battle of the Neighborhoods

Finding a new home with data —

Brian Bloom

The Problem to solve

- Just returned from 3 years in Europe
- Need to find a home for my family in Austin, Texas area that satisfies:
 - Needs to be in our budget (max rent \$1800/mo)
 - Daughter is a swimmer and needs a nearby pool
 - Wife relies on mass transit so needs good local public transit options
 - We all enjoy sushi and pizza and would like some nearby options

Plan:

Use newly-acquired data science skills to find ideal neighborhoods using available data and Python, so can give list of top zip codes to a realtor for housing search.

Data Sources

Data Merging Process

- 1. Filter zip code file to just Austin, TX and remove unneeded columns
- 2. Merge in 3 bedroom rents per zip code, make normalized rent score and "isAffordable" flag for places under my budget.
- 3. Determine closest public pool per zip code, make normalized pool score and "nearPool" flag for pools < 10 miles away.
- 4. Skipping !isAffordable and !nearPool zips, query transit score API per zip code, make normalized transit score.
- 5. Skipping !isAffordable and !nearPool zips, query API for number of sushi/pizza places within 5km of each zip code, make normalized harmonic mean score for both types.

Normalized scores

Each variable's normalized score was computed using a linear scaling formula for that zip code relative to the range of values found in that dataframe column (e.g.: rent, distance, transit score, and # of restuarants):

 $normscore_i = (Value_i - Value_{min}) / (Value_{max} - Value_{min})$

Visualizations of Interim Results

Starting zip codes (disc size = population)

Affordability of each zip code (large disc = affordable, red = \$\$\$)

Visualizations continued

Proximity to nearest public pool (larger disc = close, red = too far)

Availability of public transit (larger disc = good, red = too \$\$\$)

Calculating an overall score per zip code

For each of the zip codes, generate a weighted average calculated as:

8

This places more emphasis on rent, which is a limiting factor, while "diluting" the relevance of nearby restaurants, which are just a "nice to have".

And the winner is...

Outcome of calculating the composite scores and ranking the results:

	zip	city	rent3br	rentscore	nearestPool	poolscore	transitscore	foodscore	overallscore	finalrank
27	78741	Austin	1640	0.931507	Montopolis	0.866505	1.000000	0.882824	0.926294	1
10	78723	Austin	1590	1.000000	Bartholomew	0.898224	0.766667	0.712105	0.880236	2
37	78752	Austin	1600	0.986301	Brentwood	0.737103	0.816667	0.908961	0.871926	3
1	78702	Austin	1790	0.726027	Parque Zaragoza	1.000000	0.866667	0.968812	0.860028	4
8	78721	Austin	1620	0.958904	Givens	0.898096	0.716667	0.549722	0.831995	5
41	78757	Austin	1830	0.671233	Northwest	0.936935	0.816667	0.956283	0.809648	6
38	78753	Austin	1660	0.904110	Walnut Creek	0.818021	0.550000	0.666122	0.764312	7
40	78756	Austin	1950	0.506849	Ramsey	0.891479	0.883333	0.968812	0.754873	8
9	78722	Austin	2020	0.410959	Patterson	0.940369	0.916667	0.967125	0.739259	9
42	78758	Austin	1780	0.739726	Walnut Creek	0.717830	0.666667	0.901141	0.736164	10

Heatmap of good and bad areas for us

Green = areas that best fit our needs based on composite score

Observations

Using public or API data for zip codes, pools, rents, transit scores, and restaurants, I was able to determine optimal starting places in Austin for a place to live for my family.

Those results point to East and North Austin, particularly in zip codes 78741, 78723, 78752, 78702, and 78721.

These calculations are preserved in a Jupyter notebook so that if I want to add new variables (*like crime or traffic*), or update with newer data, I can continue with the current data and rerun the code.

Conclusion

Full report for project is available at:

https://github.com/brianbloom/Coursera Capstone/raw/master/The%20Battle%20of%20Neighborhoods%20report.pdf

Or it can be downloaded with this QR code _

Jupyter notebook with code and data is available at:

https://github.com/brianbloom/Coursera Capstone/blob/master/Brians Capstone Final.ipynb