Shanghai NAEN Auto Technology Co., Ltd.	Document Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 1 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

智能钥匙低频高频通信帧定义 KeyFob LF-RF Telegram Definition

Version: 1.0

4 1			
	负责人	签名	时间
编写 (纳恩):	Eric Zhou		
2-12-13			
审核():			
411.VP- ()			
批准():			

发布: 上海纳恩汽车技术有限公司

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 2 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

Table of Contents

Cł	nange	History	 		. 3
GI	ossary	y	 		. 4
1	Intr	roduction	 		. 5
	1.1	General			
	1.2	Document Scope	 		5
2	Fur	nctional Specifications	 错误! 未	定义书签	0
	2.1	LF	 错误!	未定义书签	
	2.1.1	Physical Layer	错误!	未定义书签	
	2.1.2	Telegram Organization	错误!	未定义书签	
	2.2	UHF	错误!	未定义书签	
	2.2.1	Physical Layer	错误!	未定义书签	
	2.2.2	Telegram Organization	 错误!	未定义书签	
	2.3	RKE application protocol			
	2.3.1	General	 错误!	未定义书签	
	2.3.2	Long RKE Telegram			
	2.3.3	Short RKE Telegram	 		8
	2.4	PEPS application protocol			
	2.4.1	Description	 错误!	未定义书签	
	2.4.2	LF Challenge Message			
	2.4.3	UHF Response Message			
	2.4.4	Timing			
	2.5	LF calibration and scaling	 错误!	未定义书签	
	2.5.1	Description	 错误!	未定义书签	
	2.5.2	Examples	 错误!	未定义书签	
Δr	opendi	ix		•	21

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 3 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

Change History

 Table 1. Change History

Revision	Date	Change Description	Updated By
V1.0	2013-5-31	Draft	Eric Zhou

Shanghai NAEN Auto Technology Co., Ltd.	Document Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 4 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxxx-xxx	

Glossary

UID	User ID Device
LF	Low Frequency
UHF	Ultra High Frequency
RSSI	Received Signal Strength Indicator
EOL	End of Line
RKE	Remote Keyless Entry
PEPS	Passive Entry Passive Start
IDE	Identifier
TBD	To Be Define

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 5 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

1 Introduction

1.1 General

1.2 Document Scope

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 6 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

2 RKE Function

2.1 Long RKE Telegram

Preamble ('111111')	Start bit ('0')	ID
104 bits	1 bit	7 bits

UID number	Function Code	IDE			Battery Status	Button Code	
4 bits	4 bits	IDE0	IDE1	IDE2	IDE3		
By	te1	Byte2	Byte3	Byte4	Byte5	Ву	rte6

SI-Counter SI-Counter					
SI[2720]	SI[1912]	SI[114]	SI[30]	Reserved	
Byte7	Byte8	Byte9	Byt	e10	

Sequence Response				
SR1 SR2 SR3 SR4				
Byte11 Byte12 Byte13 Byte14				

Extra Byte 8 bits

 \Rightarrow Frame Transmit time: (104 + 1 + 7 + 15*8 + 8) bits / (2000) bps = 240 /2000 = 120 ms

→ Function Code (4 bits): 0001b (Long RKE Telgram)

> UID 2 = 0010b UID 3 = 0011b

UID 4 = 0100b

(Remark: Max number 4 UIDs are supported.)

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 7 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

- ♦ IDE: Serial number of UID. (Factory programmed in PCF7952 EEPROM Page0.)
- ♦ Battery Status (4 bits) :

VST3	VST2	VST1	VST0	V _{BAT} [V] (typ)
0	0	0	0	1.90
0	0	0	1	1.99
0	0	1	0	2.08
0	0	1	1	2.17
0	1	0	0	2.26
0	1	0	1	2.35
0	1	1	0	2.44
0	1	1	1	2.53
1	0	0	0	2.62
1	0	0	1	2.71
1	0	1	0	2.80
1	0	1	1	2.89
1	1	0	0	2.98
1	1	0	1	3.07
1	1	1	0	3.16
1	1	1	1	3.25

Figure 2.1 Battery Status

♦ Button Code (4 bits) :

0h = free

1h = Lock

2h = Trunk Release

4h = Unlock

♦ Sequence Response: HitagII encrypted data

♦ CRC8: 8 bits, CRC8, Polynomial (format: x^8+x^2+x+1), Start value 0x00; CRC calculation start from Byte1 toByte14.

Shanghai NAEN Auto Technology Co., Ltd.	Document Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 8 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxxx-xxx	

2.2 Short RKE Telegram

Preamble ('111')	Start bit ('0')	ID
10 bits	1 bit	7 bits

UID number	Function Code	IDE			Battery Status	Button Code		
4 bits	4 bits	IDE0	IDE1	IDE2	IDE3			
By	te1	Byte2	Byte3	Byte4	Byte5	Byte6		

- \Rightarrow Frame Transmit time: (8 + 6 + 6 + 6*8 + 8) bits / (2000) bps = 74 /2000 = 37 ms
- → Function Code (4 bits): 2h = 0002b (Short RKE Telgram)
- ♦ Button Code (4 bits) :

0h = free

1h = Lock

2h = Trunk Release

4h = Unlock

8h = Reserved

♦ Other data is the same as Long RKE Telegram.

Shanghai NAEN Auto Technology Co., Ltd.	Document Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 9 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

3 PEPS Function

3.1 PEPS Authentication Command

3.1.1 LF Challenge Message

Preamble	SYNC	WUPB			
		WUP1	WUP2	WUP3	WUP4_a
8 bits	9 bits	8 bits	8 bits	8 bits	8 bits

Zone and Trigger Info	LF Command	UID Response Sequence	Random Number			
4 bits	4 bits	Max number = 4	Ran1	Ran 2	Ran 3	Ran 4
Ву	te1	Byte2	Byte3	Byte4	Byte5	Byte6

MA	AC	CRC8
MAC1	MAC2	
Byte7	Byte8	Byte9

♦ WUP: 32 Bits, Wake Up ID, All UIDs of one vehicle must have the same value.

$$WUP4_a[7...0] = (WUP4[7...0] << 4) | 0x0F;$$

(Remark: Each vehicle must have a UNIQUE Vehicle-ID(VID) data as WUP! It can be one of the UIDs' IDE or the last 4 bytes VIN code.)

- ♦ LF Command (4 bits): 01h = 0001b

Passive Entry = 01h;

Passive Start = 02h;

Passive Exit = 03h;

Passive Trunk Close = 04h;

UID Response Sequence: Max 4 UIDs are supported.

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 10 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

UID Response Sequence									
UID4 UID3				UID2		UID 1			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
1	1	1	0	0	0	0	1		

The UID Response Sequence is: 0->1->2->3 = UID2->UID1->UID3->UID4

- ♦ Random Number: 32 bits Random Number Generated by PEPS Module.
- ♦ MAC: 16 Bits Message Authentication Code, intermediate result of Hitag3 algorithm
- ♦ CRC8: 8 bits, CRC8, Polynomial (format: x^8+x^2+x+1), Start value 0x00; CRC calculation start from Byte1 to Byte8.

3.1.2 UHF Response Message

Preamble ('111')	Start bit ('0')	ID
10 bits	1 bit	7 bits

UID number	Function Code	Battery Status	UID Info		Response				
4 bits	4 bits			RESP1	RESP2	RESP3	RESP4	RESP5	RESP6
By	te1	Byt	:e2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8

LF RSSI Value						CRC8
Mant1	Exp1	Mant2	Exp2	Mant3	Exp3	
Byte9	Byte10	Byte11	Byte12	Byte13	Byte14	Byte15

Extra Byte
8 bits

Function Code: 4 Bits, 03h = 0011b, PEPS Authentication Response

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 11 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

♦ UID Number: 4 Bits, UID1 = 0001b

UID 2 = 0010b UID 3 = 0011b UID 4 = 0100b

♦ UID Info: 4 Bits, Reserved

♦ Battery Status: 4 Bits, See .

- Response: 48 Bits Message Authentication Code, result of Hitag3 algorithm
- ♦ LF RSSI Value: for 3 antenna, each 2 Byte (exponent and mantissa)
- ♦ CRC8: 8 bits, CRC8, Polynomial (format: x^8+x^2+x+1), Start value 0x00; CRC calculation start from Byte1 to Byte14.

3.2 PEPS Fob Search Command(TBD)

3.2.1 LF Challenge Message

Preamble	SYNC		WUPB		
		WUP1	WUP2	WUP3	WUP4_a
8 bits	9 bits	8 bits	8 bits	8 bits	8 bits

	Till.	
Zone and Trigger Info	LF Command	UID Response Sequence
4 bits 4 bits		Max number = 4
Byt	te1	Byte2

← LF Command (4 bits): 02h = 0002b

→ Zone and Trigger Info: (TBD)

Passive Entry = 01h;

Printed copies are uncontrolled and for reference only.

Page 11 of 21

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 12 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxxx-xxx	

Passive Start = 02h;
Passive Exit = 03h;
Passive Trunk Close = 04h;

♦ UID Response Sequence : Max 4 UIDs are supported.

	UID Response Sequence									
UID4 UID3 UID2 L				UII	D 1					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
1	1	1	0	0	0	0	1			

The UID Response Sequence is: 0->1->2->3 = UID2->UID1->UID3->UID4

3.2.2 UHF Response Message

Preamble ('111')	Start bit ('0')	ID
10 bits	1 bit	7 bits

UID number	Function Code	IDE			
4 bits	4 bits	IDE0	IDE1	IDE2	IDE3
Byte1		Byte2	Byte3	Byte4	Byte5

Extra Byte 8 bits

→ Function Code: 4 Bits, 0Ah = 1010b

> UID 2 = 0010b UID 3 = 0011b UID 4 = 0100b

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 13 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

3.3 PEPS EOL Login

3.3.1 LF Challenge Message

Preamble	SYNC	WUPA			
		WUP1	WUP2	WUP3	WUP4_a
8 bits	9 bits	8 bits	8 bits	8 bits	8 bits

Reserved	LF Command	Login ID				
4 bits	4 bits	LID 0	LID1 1	LID1 2	LID1 3	
Ву	te1	Byte2 Byte3 Byte4 Byte5				

Rese	CRC8	
1		
Byte6	Byte7	Byte8

♦ WUPA: 32 Bits, Wake Up ID for EOL, different with the Authentication command.

Default value = $\frac{0x20}{0x16} \frac{0x12}{0xEF}$, saved in EEPROM;

$$WUP4_a[7...0] = (WUP4[7...0] << 4) | 0x0F;$$

- ← LF Command (4 bits): 03h = 0003b

3.3.2 UHF Response Message

Preamble ('111')	Start bit ('0')	ID
10 bits	1 bit	7 bits

Shanghai NAEN Auto Technology Co., Ltd.	Document Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 14 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxxx-xxx	

UID number	Function Code	VID				
4 bits	4 bits	VID 0 VID 1 VID 2 VID 3				
Ву	rte1	Byte2	Byte3	Byte4	Byte5	

IDE				Battery Status	Reserved	CRC8
IDE0	IDE1	IDE2	IDE3	4 bits 4 bits		
Byte6	Byte7	Byte8	Byte9	Byte10		Byte11

Extra Byte	
8 bits	

→ Function Code: 4 Bits, 04h

♦ UID Number: 4 Bits, UID1 = 0001b

UID 2 = 0010b UID 3 = 0011b

UID 4 = 0100b

♦ Battery Status: 4 Bits .

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 15 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

VST3	VST2	VST1	VST0	V _{BAT} [V] (typ)
0	0	0	0	1.90
0	0	0	1	1.99
0	0	1	0	2.08
0	0	1	1	2.17
0	1	0	0	2.26
0	1	0	1	2.35
0	1	1	0	2.44
0	1	1	1	2.53
1	0	0	0	2.62
1	0	0	1	2.71
1	0	1	0	2.80
1	0	1	1	2.89
1	1	0	0	2.98
1	1	0	1	3.07
1	1	1	0	3.16
1	1	1	1	3.25

Figure 3.1 Battery Status

3.4 PEPS RSSI Calibration

3.4.1 LF Challenge Message

Preamble	SYNC	WUPA			
		WUP1	WUP2	WUP3	WUP4_a
8 bits	9 bits	8 bits	8 bits	8 bits	8 bits

LF Command	Reserved	Reserved	Reserved	Reserved	Reserved
8 bits					
Byte1	Byte2	Byte3	Byte4	Byte5	Byte6

CRC8	LF Carrier

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 16 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

Byte7 15ms

- WUP: 32 Bits, WUPA, Wake Up ID for EOL. WUP4_a[7...0] = (WUP4[7...0] << 4) | 0x0F; the default data : 0x20 0x16 0x12 0xEF</p>
- ♦ CRC8: 8 bits, CRC8, Polynomial (format: x^8+x^2+x+1), Start value 0x00; CRC calculation start from Byte1 to Byte6.

3.4.2 UHF Response Message

Reserved	Function Code	Gain Range x	Gain Range y	Gain Range z		RSSI x	
4 bits	4 bits				Mant1	Mant2	Exp
By	te1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7

	RSSI y			RSSI z		Reserved	Reserved	CRC8
Mant1	Mant2	Ехр	Mant1	Mant2	Exp			
Byte8	Byte9	Byte10	Byte11	Byte12	Byte13	Byte14	Byte15	Byte16

- \Rightarrow Function Code: 4 Bits, 05h = $\frac{0101b}{1}$,
- ♦ RSSI x/y/z: floating point data, = (RSSIadc Offset)*GAINrange
- ♦ CRC8: 8 bits, CRC8, Polynomial (format: x^8+x^2+x+1), Start value 0x00; CRC calculation start from Byte1 to Byte15.

3.5 PEPS Write EEPROM

3.5.1 LF Challenge Message

Preamble	SYNC	WUPA			
		WUP1	WUP2	WUP3	WUP4_a
8 bits	9 bits	8 bits	8 bits	8 bits	8 bits

♦ LF Command (4 bits) : 0Bh

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 17 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

3.5.2 UHF Response Message

→ Function Code: 4 Bits, 06h

3.6 PEPS Read EEPROM

3.6.1 LF Challenge Message

Preamble	SYNC	WUPA			
	line and the second	WUP1	WUP2	WUP3	WUP4_a
8 bits	9 bits	8 bits	8 bits	8 bits	8 bits

♦ LF Command (4 bits) : 0Ch

3.6.2 UHF Response Message

♦ Function Code: 4 Bits, 07h

3.7 PEPS Calculate Input Voltage out of RSSI Results

3.7.1 LF Challenge Message

Preamble	SYNC	WUPA			
		WUP1	WUP2	WUP3	WUP4_a
8 bits	9 bits	8 bits	8 bits	8 bits	8 bits

LF Command	Reserved	Reserved	Reserved	Reserved	Reserved
8 bits					
Byte1	Byte2	Byte3	Byte4	Byte5	Byte6

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 18 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxxx-xxx	

CRC8	LF Carrier
Byte7	15ms

- ♦ WUP: 32 Bits, WUPA, Wake Up ID for EOL. WUP4_a[7...0] = (WUP4[7...0] << 4) | 0x0F; the default data : 0x20 0x16 0x12 0xEF</p>
- ♦ LF Command (4 bits) : 0Dh
- ♦ CRC8: 8 bits, CRC8, Polynomial (format: x^8+x^2+x+1), Start value 0x00; CRC calculation start from Byte1 to Byte6.

3.7.2 UHF Response Message

Reserved	Function Code	Gain Range	RSSI ADC measurement		Gain Range RSSI ADC measurement RSSI ADC O		DC Offset
4 bits	4 bits		ADCL	ADCH	ADCL	ADCH	
Byte1 Byt		Byte2	Byte3	Byte4	Byte5	Byte6	

RSSI convert			Reserved	Reserved	Reserved	Reserved	CRC8
Mant1	Mant2	Ехр					
Byte7	Byte8	Byte9	Byte10	Byte11	Byte12	Byte13	Byte14

- → Function Code: 4 Bits, 08h = 1000b,
- ♦ RSSI ADC measurement: *RSSI adc*, 12bit resolution
- ♦ RSSI ADC Offset: Offset , 12bit resolution
- ♦ RSSI convert: floating point data, = (RSSIadc Offset)*GAINrange
- ♦ CRC8: 8 bits, CRC8, Polynomial (format: x^8+x^2+x+1), Start value 0x00; CRC calculation start from Byte1 to Byte13.

3.8 PEPS RSSI Calibration Verify

3.8.1 LF Challenge Message

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 19 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxx-xxx	

Preamble	SYNC	WUPA			
		WUP1	WUP2	WUP3	WUP4_a
8 bits	9 bits	8 bits	8 bits	8 bits	8 bits

LF Command	Reserved	Reserved	Reserved	Reserved	Reserved
8 bits					
Byte1	Byte2	Byte3	Byte4	Byte5	Byte6

CRC8	LF Carrier
Byte7	15ms

- ♦ WUP: 32 Bits, WUPA, Wake Up ID for EOL. WUP4_a[7...0] = (WUP4[7...0] << 4) | 0x0F; the default data : 0x20 0x16 0x12 0xEF</p>
- ♦ LF Command (4 bits) : 0Eh
- ♦ CRC8: 8 bits, CRC8, Polynomial (format: x^8+x^2+x+1), Start value 0x00; CRC calculation start from Byte1 to Byte6.

3.8.2 UHF Response Message

Reserved	Function Code	Gain Range x	Gain Range y	Gain Range z	RSSI^2 x		
4 bits	4 bits				Mant1	Mant2	Exp
Byt	:e1	Byte2	Byte3	Byte4	Byte5 Byte6 I		Byte7

	RSSI^2 x+y			RSSI ^2 x+y+z			Reserved	CRC8
Mant1	Mant2	Exp	Mant1	Mant2	Exp			
Byte8	Byte9	Byte10	Byte11	Byte12	Byte13	Byte14	Byte15	Byte16

 \Rightarrow Function Code: 4 Bits, 09h = 1001b,

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 20 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxxx-xxx	

- ♦ RSSI x/y/z: floating point data, = (RSSIadc Offset)*GAINrange
- ♦ CRC8: 8 bits, CRC8, Polynomial (format: x^8+x^2+x+1), Start value 0x00; CRC calculation start from Byte1 to Byte15.

Shanghai NAEN Auto Technology Co., Ltd.	Cocument Title KeyFob LF-RF Telegram Definition	Date: 2013-05-31 Page 21 of 21 Division: Dept./Grp.: R&D
Document Revision	Part Number	
V1.0	xxxxxx-xxx	

Appendix

