Name: Patel Naisargi | ID: 202201291

Question: 1

TestCase	Output	
15,6,2010	14,6,2010	
29,2,2012	28,2,2012	
31,12,2015	30,12,2015	
0,6,2010	Error	
32,7,2005	Error	
29,2,13	Error	
15,0,2005	Error	
15,13,2005	Error	
15,5,2018	Error	
15,5,2020	Error	

Question: 1

Equivalence Partitioning:

v = 3, a = [1, 2, 3, 4]	2
v = 5, a = [1, 2, 3, 4]	-1
v = 3, a = []	-1

Boundary Value Analysis:

v = 1, a = [1]	0
v = 2, a = [1]	-1
v = 5, a = [5, 6, 7]	0
v = 4, a = [1, 2, 3, 4]	3

Modified Code:

public static int linearSearch(int v, int[] a)

 $\{ int i = 0;$

while (i < a.length)

 $\{ if (a[i] == v) \}$

```
{ return i;
}
i++;
}
return -1;
}
```

Equivalence Partitioning:

v = 2, a = [1, 2, 3, 2]	2
v = 2, a = [1, 2, 3]	1
v = 4, a = [1, 2, 3]	0
v = 1, a = []	0

Boundary Value Analysis:

v = 2, a = [2]	1
v = 2, a = [1]	0
v = 2, a = [2, 2, 3]	2
v = 2, a = [1, 3, 2, 2]	2

```
public static int countItem(int v, int[] a) {
int count = 0;
for (int i = 0; i < a.length; i++) {
  if (a[i] == v) {
    count++;
  }
}
return count;</pre>
```

Equivalence Partitioning:

v = 3, a = [1, 2, 3, 4, 5]	2
v = 6, a = [1, 2, 3, 4, 5]	-1
v = 1, a = []	-1

Boundary Value Analysis:

v = 1, a = [1]	0
v = 2, a = [1]	-1
v = 1, a = [1, 2, 3, 4, 5]	0
v = 5, a = [1, 2, 3, 4, 5]	4

```
public static int binarySearch(int v, int[] a) {
  int lo, mid, hi;
  lo = 0;
  hi = a.length - 1;
  while (lo <= hi) {
    mid = (lo + hi) / 2;
    if (v == a[mid]) {
      return mid;
    }
    else if (v < a[mid]) {
      hi = mid - 1;
    } else { lo = mid + 1;
    }
}</pre>
```

```
}
return -1;
}
```

Equivalence Partitioning:

a = 3, b = 3, c = 3	EQUILATERAL	
a = 5, b = 5, c = 3	ISOSCELES	
a = 3, b = 4, c = 5	SCALENE	
a = 1, b = 2, c = 3	INVALID	
a = 0, b = 4, c = 5	INVALID	
a = -1, b = 3, c = 4	INVALID	

Boundary Value Analysis:

a = 1, b = 1, c = 1	EQUILATERAL
a = 10000, b = 10000, c = 10000	EQUILATERAL
a = 1, b = 2, c = 3	INVALID

```
final int EQUILATERAL = 0;

final int ISOSCELES = 1;

final int SCALENE = 2;

final int INVALID = 3;

public static int triangle(int a, int b, int c) {

if (a <= 0 || b <= 0 || c <= 0 || a >= b + c || b >= a + c || c >= a + b) {

return INVALID

}

if (a == b && b == c) {

return EQUILATERAL;
```

```
}
if (a == b || a == c || b == c) {
return ISOSCELES
}
return SCALENE;
}
```

Equivalence Partitioning:

s1 = "pre", s2 = "prefix"	True
s1 = "post", s2 = "prefix"	False
s1 = "longer", s2 = "short"	False
s1 = "", s2 = "anything"	True

Boundary Value Analysis:

s1 = "", s2 = ""	True
s1 = "aa" (1000 times), s2 = "aa"	True
(1000 times)	

```
public static boolean prefix(String s1, String s2) {
  if (s1.length() > s2.length()) {
    return false;
  }
  for (int i = 0; i < s1.length(); i++) {
    if (s1.charAt(i) != s2.charAt(i)) {
      return false;
    }
}</pre>
```

}
return true;
}

Question: 6

(A)

Valid Triangles:

• Equilateral Triangle: All three sides are equal.

o Example: A = 5.0, B = 5.0, C = 5.0

• **Isosceles Triangle**: Two sides are equal.

 $_{\circ}$ Example: A = 5.0, B = 5.0, C = 3.0

• Scalene Triangle: All three sides are different.

o Example: A = 3.0, B = 4.0, C = 5.0

• **Right-angled Triangle**: Satisfies the Pythagorean theorem ($A^2 + B^2 = C^2$).

 $_{\circ}$ Example: A = 3.0, B = 4.0, C = 5.0 (or any permutation)

Invalid Triangles:

• Non-Triangle (Triangle Inequality Violation): The sum of two sides is less than or equal to the third.

o Example: A = 1.0, B = 2.0, C = 3.0

• Non-Positive Sides: One or more sides are zero or negative.

Example: A = 0, B = 4.0, C = 5.0

 $_{\circ}$ Example: A = -1, B = 4.0, C = 5.0

(B)

Equilateral Triangle	A = 5.0, B = 5.0, C = 5.0	All sides equal.
Isosceles Triangle	A = 5.0, B = 5.0, C = 3.0	Two sides equal.
Scalene Triangle	A = 3.0, B = 4.0, C = 5.0	All sides different, valid
		triangle.

Right-angled Triangle	A = 3.0, B = 4.0, C = 5.0	Satisfies Pythagorean
		theorem.
Non-Triangle	A = 1.0, B = 2.0, C = 3.0	Invalid triangle, fails
(Inequality)		inequality.
Non-positive Sides	A = 0.0, B = 4.0, C = 5.0	One side is zero.
Non-positive Sides	A = -1.0, B = 4.0, C = 5.0	One side is negative.

(C)

Boundary for A + B > C (Scalene Triangle)

- **Boundary Test 1**: A = 1.0, B = 2.0, C = 2.99999
 - Expected outcome: Valid scalene triangle (because A + B > C).
- **Boundary Test 2**: A = 1.0, B = 2.0, C = 3.0
 - Expected outcome: Invalid triangle (because A + B == C).
- **Boundary Test 3**: A = 1.0, B = 2.0, C = 3.00001
 - Expected outcome: Valid scalene triangle (because A + B > C).

(D)

Boundary for A = B (Isosceles Triangle)

- **Boundary Test 1**: A = 5.0, B = 5.0, C = 0.00001
 - o Expected outcome: Isosceles triangle (two equal sides).
- **Boundary Test 2**: A = 5.0, B = 5.0, C = 5.0
 - Expected outcome: Equilateral triangle (all sides equal).
- **Boundary Test 3**: A = 5.0, B = 5.0, C = 10.0
 - Expected outcome: Invalid triangle

(E)

Boundary for A = B = C (Equilateral Triangle)

• **Boundary Test**: A = 5.0, B = 5.0, C = 5.0

Expected outcome: Equilateral triangle.

(F)

Boundary for $A^2 + B^2 = C^2$ (Right-angled Triangle)

- **Boundary Test 1**: A = 3.0, B = 4.0, C = 5.0
 - Expected outcome: Right-angled triangle
- **Boundary Test 2**: A = 3.0, B = 4.0, C = 5.00001
 - Expected outcome: Scalene triangle
- **Boundary Test 3**: A = 3.0, B = 4.0, C = 4.99999
 - Expected outcome: Scalene triangle

(G)

Boundary Test 1: A = 1.0, B = 1.0, C = 2.0

• Expected outcome: Invalid triangle

Boundary Test 2: A = 1.0, B = 1.0, C = 1.99999

• Expected outcome: Valid triangle

Boundary Test 3: A = 1.0, B = 1.0, C = 2.00001

• Expected outcome: Invalid triangle

(H)

Non-positive Input Test 1: A = 0.0, B = 4.0, C = 5.0

• Expected outcome: Invalid triangle.

Non-positive Input Test 2: A = -1.0, B = 4.0, C = 5.0

• Expected outcome: Invalid triangle.