MID-SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4002 SEMESTER: Spring 2017

MODULE TITLE: Engineering Mathematics 2 DURATION OF EXAMINATION: 45 minutes

LECTURER: Prof. N. Kopteva PERCENTAGE OF TOTAL MARKS: 25%

Please, do NOT open this paper until ANNOUNCED by your lecturer

EVERYBODY IS SUPPOSED TO START AT THE SAME TIME

2%

2%

- 1 (a) Evaluate the indefinite integral $\int \frac{x^2}{\sqrt{x^3+1}} dx$. Hint: use an appropriate substitution.
 - (b) Calculate the area between $y = 3^x \frac{1}{x+1}$ and the x-axis for $0 \le x \le 1$.
 - (c) Express as a definite integral and then <u>evaluate</u> the limit of the Riemann sum $\lim_{n\to\infty}\sum_{i=1}^n\sin(2c_{i-1})\,\Delta x$, where $c_i\in[x_{i-1},x_i]$, and we use the partition P with $x_i=-1+\frac{3i}{n}$ for $i=0,1,\ldots,n$ and $\Delta x\equiv x_i-x_{i-1}$.
 - (d) Evaluate $\frac{d}{dx} \left(\int_{2x}^{\cos x} \sqrt{\sin t + 1} \ dt \right)$.
 - (e) Find an upper bound for the error E_S in the Simpson's Rule approximation of the definite integral $\int_1^2 \cos(\sqrt{3}\,x)\,dx$, using N subintervals. Choose N such that $E_S \leq 5 \cdot 10^{-10}$. Hint: evaluate $M_4 = \max_{x \in [1,2]} \left| \frac{d^4}{dx^4} \cos(\sqrt{3}\,x) \right|$.

 $x{\in}[1,2]$ (as

- 2 Evaluate the indefinite integral $\int \sin^5 x \ dx$.
- 3 Find the average value of the function $\frac{x+6}{x^2+4x+4}$ on the interval [-1,2].
- 4 Evaluate the indefinite integral $\int e^x \sin(x/2) \ dx$. (Hint: use integration by parts.)

.....

5 Perform a partial fraction expansion of $\frac{4}{(x^2-1)(x^2+1)}$;

then evaluate the indefinite integral $\int \frac{4}{(x^2-1)(x^2+1)} dx$. 5%