Algèbre 2

Extensions de corps

Question 1/18

Tranfert d'algébricité

Réponse 1/18

Si α est algébrique sur \mathbb{K} et β est algébrique sur $\mathbb{K}[\alpha]$ alors β est algébrique sur \mathbb{K}

Question 2/18

Clôture algébrique

Réponse 2/18

Une clôture algébrique de K est une extension algébrique de K qui est algébriquement close

Question 3/18

Compositum
$$\mathbb{E}_1 \cdot \mathbb{E}_2$$

Réponse 3/18

Plus petit corps contenant \mathbb{E}_1 et \mathbb{E}_2

Question 4/18

Corps de rupture

Réponse 4/18

Si $P \in \mathbb{K}[X]$, un corps de rupture de P est une extension algébrique de \mathbb{K} sur laquelle P admet une racine Si Q est un facteur irréductible de P alors $\mathbb{K}[X]/(Q)$ est un corps de rupture de P sur $\mathbb{K}[X]/(Q)$ est un corps de rupture de P sur $\mathbb{K}[X]/(Q)$ est un corps de rupture de P sur $\mathbb{K}[X]/(Q)$ est un corps de rupture de P sur $\mathbb{K}[X]/(Q)$ est un corps de rupture de P sur $\mathbb{K}[X]/(Q)$ est un corps de rupture de P sur $\mathbb{K}[X]/(Q)$ est un corps de rupture de P sur $\mathbb{K}[X]$

Question 5/18

 $\mathbb{K}^{\mathrm{alg},\mathbb{L}}$

Réponse 5/18

$$\{\ell \in \mathbb{L}, \ell \text{ est algébrique sur } \mathbb{K}\}$$

C'est une extension intermédiaire entre \mathbb{K} et \mathbb{L}

Question 6/18

Propriété de $[\mathbb{E}_1\mathbb{E}_2:\mathbb{K}]$

Réponse 6/18

Si les deux extensions sont algébriques, $[\mathbb{E}_1\mathbb{E}_2:\mathbb{K}] \leqslant [\mathbb{E}_1:\mathbb{K}][\mathbb{E}_2:\mathbb{K}]$

Si $[\mathbb{E}_1:\mathbb{K}] \wedge [\mathbb{E}_2:\mathbb{K}] = 1$ alors on a égalité

Question 7/18

 \mathbb{L}/\mathbb{K} est une extension de corps

Réponse 7/18

Morphisme d'anneau $\mathbb{K} \to \mathbb{L}$ \mathbb{L} est une \mathbb{K} -algèbre

Question 8/18

Corps de décomposition

Réponse 8/18

Si $P \in \mathbb{K}[X]$, un corps de rupture de P est une extension algébrique de \mathbb{K} sur laquelle P est scindé

Question 9/18

Images des racines d'un polynôme par un morphisme $\sigma: \mathbb{K} \to \mathbb{K}^a$

Réponse 9/18

Si $P \in \mathbb{K}[X]$ et $\alpha \in \text{rac}(P)$ alors $\sigma(\alpha) \in \text{rac}(P)$ et σ définit une bijection de rac(P)

En particulier, si P est irréductible, alors l'action $\operatorname{Gal}(\mathbb{K}^{\mathbf{a}}/\mathbb{K}) \curvearrowright \operatorname{rac}(P)$ est transitive

Question 10/18

Théorème de Steiniz

Réponse 10/18

Tout corps admet une clôture algébrique Cette clôture est unique à isomorphisme près

Question 11/18

Propriété de
$$[\mathbb{K}[\alpha]:\mathbb{K}]$$
 si $[\mathbb{L}:\mathbb{K}]=n<+\infty$ et $\alpha\in\mathbb{L}$

Réponse 11/18

$$[\mathbb{K}[\alpha]:\mathbb{K}] \mid n$$

Question 12/18

Extension finie

Réponse 12/18

$$[\mathbb{L}:\mathbb{K}]<+\infty$$

Question 13/18

K-algèbre

Réponse 13/18

Anneau A et morphisme d'anneau $\sigma: \mathbb{K} \to A$

Question 14/18

Corps algébriquement clos

Réponse 14/18

 \mathbb{K} est algébriquement clos si tout $P \in \mathbb{K}[X]$ admet une racine dans \mathbb{K}

Question 15/18

Théorème de la base télescopique

Réponse 15/18

Si $\mathbb{M}/\mathbb{L}/\mathbb{K}$ sont deux extensions finies, $(\beta_j)_{j\in J}$ une \mathbb{L} -base de \mathbb{M} et $(\alpha_i)_{i\in I}$ une \mathbb{K} -base de \mathbb{L} alors $(\alpha_i\beta_j)_{(i,j)\in I\times J}$ est une \mathbb{K} -base de \mathbb{M}

Question 16/18

Prolongement d'un morphisme $\sigma: \mathbb{M}' \to \mathbb{L}$

Réponse 16/18

Si \mathbb{L}/\mathbb{K} est algébriquement clos et $\mathbb{M}/\mathbb{M}'/\mathbb{K}$ des extensions algébriques alors σ se prolonge en $\widetilde{\sigma}:\mathbb{M}\to\mathbb{L}$

Si M est une clôture algébrique de K, c'est un isomorphisme

Question 17/18

$$\mathbb{K}[\alpha]$$

Réponse 17/18

$$\mathbb{K}[\alpha] \cong \mathbb{K}[X]/\ker(\mathrm{ev}_{\alpha})$$
 Si $\ker(\mathrm{ev}_{\alpha}) = (0)$, α est transcendant et
$$\mathbb{K}(\alpha) \cong \mathbb{K}(X)$$
, sinon, α est algébrique et
$$\mathbb{K}(\alpha) = \mathbb{K}[\alpha] \text{ et } [\mathbb{K}[\alpha] : \mathbb{K}] < \infty$$

Question 18/18

 $[\mathbb{L}{:}\mathbb{K}]$

Réponse 18/18

 $\dim_{\mathbb{K}}(\mathbb{L})$