Nom	Prénom	Groupe
ou Numéro d'étudiant	si l'examen	est anonyme

INF124

Durée: 2h00, sans documents.

- Tous les appareils électroniques sont interdits à l'exception des montres
- Le barème est donné à titre indicatif
- Le sujet comporte 5 exercices indépendants
- Le sujet est sur 45 points.
- Répondez sur le sujet lorsque les questions comportent des pointillés
- N'oubliez pas de glisser le sujet dans votre copie.
- Commencez par lire tout le sujet pour repérer les questions faciles

Exercice 1 : Preuves en déduction naturelle et en français

3 nt

Q1. Donnez la preuve en déduction naturelle du théorème

$$(A \Rightarrow (B \Rightarrow (C \Rightarrow D))) \Rightarrow (B \Rightarrow ((C \land A) \Rightarrow D))$$

SOLUTION PROPOSÉE PAR LE PROUVEUR INF124

$$\underbrace{\frac{C \wedge A}{H_3 \vdash C} \wedge e_1}_{H_2} \xrightarrow{\underbrace{\frac{C \wedge A}{H_3 \vdash A} \wedge e_2}_{H_3, H_1 \vdash B \Rightarrow (C \Rightarrow D)}}_{H_2, H_3, H_1 \vdash C \Rightarrow D} \Rightarrow_e \Rightarrow_e \frac{H_2, H_3, H_1 \vdash D}{\underbrace{\frac{H_2, H_3, H_1 \vdash D}{H_2, H_1 \vdash (C \wedge A) \Rightarrow D}}_{\Rightarrow_i [H_3]} \Rightarrow_i [H_2]}_{\underbrace{\frac{H_3}{H_1 \vdash B \Rightarrow ((C \wedge A) \Rightarrow D)}}_{\Rightarrow_i [H_2]} \Rightarrow_i [H_1]$$

3 nt

Q2. Donnez la preuve en déduction naturelle du théorème $\neg(A \lor B) \Rightarrow (\neg A \land \neg B)$

SOLUTION PROPOSÉE PAR LE PROUVEUR INF124 _

$$\frac{\overbrace{A}^{H_{2}} \qquad \overbrace{-(A \vee B)}^{H_{1}} \qquad \overbrace{-(A \vee B)}^{H_{2}} \qquad \underbrace{\frac{H_{3}}{B}}^{H_{3}} \qquad \underbrace{\frac{H_{1}}{\neg (A \vee B)}}^{H_{1}} \qquad \underbrace{\frac{H_{1}}{\neg (A \vee B)}}^{H_{2}} \qquad \underbrace{\frac{H_{2}, H_{1} \vdash \bot}{H_{1} \vdash (A \vee B) \Rightarrow \bot}}^{def \neg} \Rightarrow_{e}
\frac{\underbrace{\frac{H_{2}, H_{1} \vdash \bot}{H_{1} \vdash (A \vee B)}}_{def \neg} \Rightarrow_{i} [H_{2}] \qquad \underbrace{\frac{H_{3}, H_{1} \vdash \bot}{H_{1} \vdash (A \vee B)}}_{def \neg} \Rightarrow_{i} [H_{3}]
\underbrace{\frac{H_{1} \vdash \neg A \land \neg B}{H_{1} \vdash \neg A \land \neg B}}_{\neg (A \vee B) \Rightarrow (\neg A \land \neg B)} \Rightarrow_{i} [H_{1}]$$

25-4

Q3. Donnez, sur votre copie, la version en français de la preuve précédente.

SOLUTION PROPOSÉE PAR LE PROUVEUR INF124

```
Démontrons (!(A \backslash / B) ==> (!A \backslash \backslash !B)) :
Supposons !(A \setminus B) (hypothèse [H1]) et montrons (!A \setminus B):
{ Preuve de (!A /\ !B) :
  1. Démontrons !A, ce qui est équivalent à (A ==> _|_) d'après la définition de neg.
     Démontrons donc (A ==> _|_).
        Pour cela, supposons A (hypothèse [H2]) et montrons qu'on aboutit à une contradiction (\_|\_) :
          Pour cela, on va montrer d'une part (A \ B) et d'autre part ((A \ B) ==> \ ]:
          - démontrons (A \/ B)
                Pour montrer (A \backslash / B) inutile de montrer B,
                on se contente de montrer A en remarquant que c'est l'hypoth?se [H2].
          - démontrons ((A \/ B) ==> _|_) : c'est l'hypothése [H1] d'après la définition de neg.
     Ceci achève la preuve de !A.
  2. Démontrons !B, ce qui est équivalent à (B ==> _|_) d'après la définition de neg.
     Démontrons (B ==> _|_).
        Pour cela, supposons B (hypothèse [H3]) et montrons qu'on aboutit à une contradiction (_|_) :
          Pour cela, on va montrer d'une part (A \ B) et d'autre part ((A \ B) ==> \ ]:
          - démontrons (A \/ B)
               Pour montrer (A \backslash/ B) inutile de montrer A,
                on se contente de montrer B en remarquant que c'est l'hypoth?se [H3].
          - démontrons ((A \/ B) ==> _|_) : c'est l'hypothèse [H1] d'après la définition de neg.
     Ceci achève la preuve de !B.
}: on a ainsi montré (!A /\ !B)
Ceci achève la démonstration de (!(A \setminus B) ==> (!A \setminus !B))
```

Q4. Donnez la preuve en déduction naturelle du théorème $(\exists u, (\forall v, F(u, v))) \Rightarrow (\forall x, (\exists y, F(y, x)))$

SOLUTION PROPOSÉE PAR LE PROUVEUR INF124 _

```
\underbrace{\frac{\frac{H_2}{\forall y,R(X_1,y)}}{\frac{H_2}{H_2} \vdash R(X_1,U_1)}}_{\frac{H_2}{H_2} \vdash R(X_1,U_1)} \forall_e(y:=U_1)
\underbrace{\frac{\frac{H_1}{\forall y,R(X_1,y)}}{\frac{(\forall y,R(X_1,y))\Rightarrow (\exists v,R(v,U_1))}{\forall x,(\forall y,R(x,y))\Rightarrow (\exists v,R(v,U_1))}}_{\frac{\exists x,(\forall y,R(x,y))\Rightarrow (\exists v,R(v,U_1))}{\frac{\exists x,(\forall y,R(x,y))\Rightarrow (\exists v,R(v,U_1))}{\frac{\exists x,(\forall y,R(x,y))\Rightarrow (\forall u,\exists v,R(v,u))}{\forall i}}}_{\frac{\exists x,(\forall y,R(x,y))\Rightarrow (\forall u,\exists v,R(v,u))}{\frac{\exists x,(\forall y,R(x,y)))\Rightarrow (\forall u,\exists v,R(v,u))}}
```

Q5. Donnez, sur votre copie, la version en français de la preuve précédente.

```
\_ SOLUTION PROPOSÉE PAR LE PROUVEUR INF124 \_
```

```
Démontrons ((EX x, (QQ y, R(x,y))) ==> (QQ u, (EX v, R(v,u))) :
Supposons (EX x, (QQ y, R(x,y))) (hypothèse [H1]) et montrons (QQ u, (EX v, R(v,u))) :
{ Preuve de (QQ u, (EX v, R(v,u))) :
    considérons un U1 quelconque et montrons (EX v, R(v,U1)) :
    Pour cela, exploitons l'hypothèse [H1] qui dit qu'il existe un x tel que (QQ y, R(x,y))
    Comme on ne connait pas explicitement le x qui satisfait la propriété,
    on va devoir montrer (EX v, R(v,U1)) pour tout x qui satisfait (QQ y, R(x,y)).

Démontrons donc (QQ x, ((QQ y, R(x,y)) ==> (EX v, R(v,U1)))) :
    Considérons un X1 quelconque et montrons ((QQ y, R(X1,y)) ==> (EX v, R(v,U1))) :
```

```
Pour cela, on suppose (QQ y, R(X1,y)) (hypothèse [H2]) et on montre (EX v, R(v,U1)) :
    { Preuve de (EX v, R(v,U1)) :
        il suffit de montrer la propriété R(v,U1) pour un v bien choisi ; prenons v := X1.
        R(X1,U1) est alors une instance particulière (pour y:=U1) de l'hypothèse [H2] : (QQ y, R(X1,y))
    }: on en conclu (EX v, R(v,U1))
}: on a ainsi montré (QQ u, (EX v, R(v,u)))
Ceci achève la démonstration de ((EX x, (QQ y, R(x,y))) ==> (QQ u, (EX v, R(v,u))))
```

		_

Exercice 2 : Preuve de propriétés des ensembles

10 pt

 $\bf Q6.$ Démontrez à l'aide d'une preuve en déduction naturelle que les 3 règles de déduction suivantes sont correctes :

3p

- 1. $\underline{a \in A \quad A \subseteq B}$ $a \in B$
- $2. \qquad \frac{a \in A}{\overline{a \in A \cup B}}$
- 3. $\underline{a \in A \cap B}$

•	tilisez les règles de la déduction naturelle et les règles de déduction sur le règles de la question précédente) pour montrer le théorème $(X \cap (Y \cup X))$	(0
	désigne l'ensemble vide par \emptyset . Utilisez les règles de la déduction naturelle r les ensembles pour montrer le théorème $((X \cap Y) = \emptyset) \Longrightarrow ((X \cap (Y \cup Z)))$	_
Exercice	3 : Schéma de récurrence associé à un type CAML	
Q9. Soi	it feu le type défini par :	
type feu =	=	
Vert		
Orange		
Rouge Clignota	cant of feu	
_		
— Donne	ez quatre élements différents de type feu de manière à utiliser chacun des	constructeurs.
Vert;	Orange; Rouge; Clignotant(Orange)	
— Compl	olétez le schéma de récurrence associé au type feu.	
_	$orall f \in \mathtt{feu}, Q(f)$	-rec-feu
	· J =, • (J)	
Q10. So	Soit color le type défini par :	
type color	· =	
	int (* rouge *)	
	int (* vert *)	
B of i	int (* bleu *)	
M of co	color * color (* mélange *)	
— Donne	ez quatre élements différents du type color de manière à utiliser chacun des	constructeurs.
B(0);	R(256); V(128); M(B(128), R(128))	
— Compl	létez le schéma de récurrence associé au type color.	
	$orall c \in exttt{color}, Q(c)$	$rec-color$
	- / v (/	

On se dote d'une nouvelle règle correspondant au raisonnement par « contraposé » :

$$\frac{\neg A \Rightarrow B}{\neg B \Rightarrow A}$$
 contraposé

On se demande si cette règle est valide et ce que nous apporte par rapport aux règles que l'on a déjà.

Q11. Utilisez la règle $\neg \neg_e$ pour démontrer la validité de la règle *contraposé*.

$$\frac{\overbrace{\neg A}^{H_3} \overbrace{\neg A \Rightarrow B}^{H_1}}{\neg A \Rightarrow B} \Rightarrow_e \frac{\overbrace{\neg B}^{H_2 \vdash B \Rightarrow \bot}}{H_2 \vdash B \Rightarrow \bot} \xrightarrow{def \, \neg} \Rightarrow_e \frac{H_1, H_3, H_2 \vdash \bot}{H_1, H_2 \vdash \neg A \Rightarrow \bot} \Rightarrow_i [H_3 : \neg A] \frac{H_1, H_2 \vdash A}{H_1 \vdash \neg B \Rightarrow A} \Rightarrow_i [H_2 : \neg B] \frac{H_1, H_2 \vdash A}{(\neg A \Rightarrow B) \Rightarrow (\neg B \Rightarrow A)} \Rightarrow_i [H_1 : \neg A \Rightarrow B]$$

Q12. Démontrez la propositon $\neg \neg A \Rightarrow A$ en utilisant la règle $contrapos \acute{e}$ avec un B bien choisi.

SOLUTION FOURNIE PAR LE PROUVEUR INF124

$$\frac{\bigcap_{\neg \neg A} \frac{\prod_{i=1}^{H_2} \frac{\prod_{i=1}^{H_2} \prod_{i=1}^{H_2} \prod_{i=1}^{H_2} \frac{\prod_{i=1}^{H_2} \prod_{i=1}^{H_2} \prod_{i=1}^{H_2} \prod_{i=1}^{H_2} \prod_{i=1}^{A\times (contrapose)}}{\prod_{i=1}^{H_1} \prod_{i=1}^{H_2} \prod_{i=1}^{A\times (contrapose)}} \Rightarrow_e \frac{\prod_{i=1}^{H_2} \prod_{i=1}^{H_2} \prod_{i=1}^{A\times (contrapose)}}{\prod_{i=1}^{H_2} \prod_{i=1}^{H_2} \prod_{i=1}^{A\times (contrapose)}} \Rightarrow_e$$

AUTRE SOLUTION FOURNIE PAR LE PROUVEUR INF124

$$\frac{H_{1}}{\neg A} \xrightarrow{\neg A} \frac{H_{1}}{H_{1} \vdash \neg A \Rightarrow \bot} \xrightarrow{def} \xrightarrow{def} \frac{H_{2}}{\neg A}$$

$$\frac{H_{2}}{H_{1} \vdash \neg A \Rightarrow \bot} \xrightarrow{H_{2}} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{2}}{H_{2}, H_{1} \vdash \bot} \xrightarrow{H_{2}} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{2}}{H_{2}, H_{1} \vdash \bot} \xrightarrow{H_{2}} \xrightarrow{def} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{1}, H_{2} \vdash \bot}{H_{1} \vdash \neg A \Rightarrow \bot} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{1}, H_{2} \vdash \bot}{H_{1} \vdash \neg A \Rightarrow \bot} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{1}, H_{2} \vdash \bot}{H_{1} \vdash \neg A \Rightarrow \bot} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{1}, H_{2} \vdash \bot}{H_{1} \vdash \neg A \Rightarrow \bot} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{1}, H_{2} \vdash \bot}{H_{2} \vdash A \Rightarrow \bot} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{1}, H_{2} \vdash \bot}{H_{2} \vdash A \Rightarrow \bot} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{1}, H_{2} \vdash \bot}{H_{2} \vdash A \Rightarrow \bot} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{1}, H_{2} \vdash \bot}{H_{2} \vdash A \Rightarrow \bot} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{1}, H_{2} \vdash \bot}{H_{2} \vdash A \Rightarrow \bot} \xrightarrow{def} \xrightarrow{\neg A}$$

$$\frac{H_{1}, H_{2} \vdash \bot}{H_{2} \vdash A \Rightarrow \bot} \xrightarrow{\neg A}$$

$$\frac{H_{1} \vdash A}{\neg \neg A \Rightarrow A} \Rightarrow_{i} [H_{1} : \neg \neg A]$$

Q13. D'après les questions précédentes, que peut-on dire des règles $\neg \neg_e$ et contraposé? Justifiez votre réponse.

_ SOLUTION _

- on a d'une part montré comment la conclusion de la règle contraposé s'obtient en utilisant la règle du $\neg \neg_e$ et les autres règles de la déduction naturelle.
- d'autre part on a démontré la conclusion de la règle $\neg \neg_e$ en utilisant la règle contraposé et les autres règles de la déduction naturelle.

On a ainsi démontré que chaque règle est un conséquence de l'autre. Tout ce qu'on peut démontrer avec l'une peut donc se démontrer avec l'autre règle. Les deux règles sont équivalentes.

*					
type nat = $^{\mid}$ Z					
S of nat					
Q14. Rappelez le	nuincina da nécuma				
Q14. Rapperez le	principe de récurre	ence associe au i	уре пас.		
_	$\forall n$	$e \in \mathtt{nat}, P(n)$		rec-nat	
		•			
Implantation d'un p axiomes suivants :	orédicat défini pa	r des axiomes	On cons	sidère le prédicat <i>pair</i>	r défini
and the state of t	Ax_1		Ax_2		
	$\widetilde{\mathit{pair}(\mathtt{z})}$	$\forall p, \ pair(s)$	$S(p)) \Leftrightarrow \neg p$	pair(p)	
let rec (pair: nat -		SOLUTION _	→ bool qui	correspond à ces ax	iomes.
Q15. Écrire en Callet rec (pair: nat -2 match n' with Z -> true S(p) -> not (pair;;	> bool) = fun n' -	SOLUTION _	→ bool qui	correspond à ces ax	iomes.
<pre>let rec (pair: nat -: match n' with</pre>	> bool) = fun n' - p) es axiomes qui défir	solution>		correspond à ces ax ${\rm rer}$, pour un K fixé,	
Let rec (pair: nat -2) match n' with $ z \rightarrow \text{true} $ $ s(p) \rightarrow \text{not (pair} $ $ s(p) \rightarrow \text{not (pair)} $	> bool) = fun n', - p) es axiomes qui défir $\Rightarrow pair(s(s(K)))$	solution - solution - nissent pair pou solution -	r démontr	er, pour un K fixé,	la proj
let rec (pair: nat -> match n' with \mid Z -> true \mid S(p) -> not (pair;; $\mathbf{Q16}$. Utilisez le suivante $\neg pair(\mathbf{S}(K)) = \mathbf{C}(K)$	> bool) = fun n', - p) es axiomes qui défir $\Rightarrow pair(s(s(K)))$	solution - solution - nissent pair pou solution -	r démontr	er, pour un K fixé,	la proj
let rec (pair: nat -> match n' with \mid Z -> true \mid S(p) -> not (pair;; $\mathbf{Q16}$. Utilisez le suivante $\neg pair(\mathbf{S}(K)) = \mathbf{C}(K)$	> bool) = fun n', - p) es axiomes qui défir $\Rightarrow pair(s(s(K)))$	solution - solution - nissent pair pou solution -	r démontr	er, pour un K fixé,	la proj
let rec (pair: nat -> match n' with \mid Z -> true \mid S(p) -> not (pair;; $\mathbf{Q16}$. Utilisez le suivante $\neg pair(\mathbf{S}(K)) = \mathbf{C}(K)$	> bool) = fun n', - p) es axiomes qui défir $\Rightarrow pair(s(s(K)))$	solution - solution - nissent pair pou solution -	r démontr	er, pour un K fixé,	la proj
Let rec (pair: nat -2) match n' with $ z \rightarrow \text{true} $ $ s(p) \rightarrow \text{not (pair} $ $ s(p) \rightarrow \text{not (pair)} $	> bool) = fun n', - p) es axiomes qui défir $\Rightarrow pair(s(s(K)))$	solution - solution - nissent pair pou solution -	r démontr		la proj

