What's Cooking

All Eatable

CS 412: Introduction to Machine Learning

He Huang, Ye Liu, Lichao Sun Zhu Wang, Congying Xia, Fan Zhu

Apr 27, 2017

Project Description

- Kaggle
- **7** Goal
 - use recipe ingredients to predict the cuisine
- Data
 - Training data
 - **₹** 39774 recipes and 20 kinds of cuisines
 - Recipe id
 - 7 type of cuisine
 - list of ingredients of each
 - Testing data
 - Recipe id
 - list of ingredients of each

This image cannot currently be displayed.	

Introduction

Italian (7838) Mexican (6438) Southern_US (4320)

Introdution

- Using K-means Clusters to visualize training dataset
 - Tf-idf: each term in gradients and cuisine as documents
 - PCA: reduced to 2-Dimensentions
 - **7** K-means cluster: k = 5
 - Size of bubbles: Jaccard Similarity(one v.s the other cuisines in its cluster)

Introduction

Ingredients frequency more than 1000

Introduction

- Data representation
 - Focus on *Italian* cuisine to show its ingredient network
 - After removing stop-words, numbers and stemming

Methods

- Random Forest
- Naïve Bayes
- **₹** SVM
- **7** LDA
- Neural Network

Random Forest

- Number of trees
 - Higher number of trees
 - Better performance
 - Lower speed

- Max_features
 - Sqrt -> sqrt(n_features)
 - → Log2 -> log2(n_features)
 - **尽** None → n_features

Random Forest

Min samples leaf

- **₹** The minimum number of samples
- required to split an internal node

max_depth

- The maximum depth of the tree.
- If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split sample

Naïve Bayes

Using 5-fold cross-validation to tune smoothing parameter alpha, we got alpha=0.125 to build model.

There are 20 classes and the areas of ROC curves are around 0.89 to 0.99.

	Accuracy	F-score(micro)	F-score(macro)
Train	0.826601	0.826601	0.788229
Test	0.762946	0.762946	0.685015

Linear SVM

- max_iter
 - 7 The maximum number of iterations to be run

Max_Iter	Train	Test
5	0.874827153	0.751194368
10	0.904431175	0.758109127
100	0.933312382	0.764018104
4000	0.000400004	0.764005070
1000	0.933123821	0.764395273

Linear SVM

C: Penalty parameter C of the error term.

С	Train	Test
0.5	0.9221873	0.7738245
1	0.9331238	0.7643952
2	0.9403834	0.7523259

Loss: 'hinge' or 'squared_hinge'

loss	Train	Test
hing	0.9085167	0.7725672
squred_hing	0.9331238	0.7643953

Linear SVM

Roc Curve

Latent Dirichlet Allocation

Unsupervised learning

- Randomly generate the topic distribution θ_i of document i from dirichlet distribution with α
- Randomly sample the topic of word j in the document i $z_{i,j}$ from the topic polynomial distribution θ_i
- Dirichlet distribution with β to randomly generate the vocabulary distribution $\varphi_{z_{i,j}}$ of topic $z_{i,j}$
- From vocabulary with polynomial distribution $\varphi_{z_{i,j}}$ to randomly sample the final word $w_{i,j}$

LDA

Most probable words in four of the topics:

probability

Topic 0	Topic 5	Topic 9	Topic 14
Sour cream	salt	salt	butter
Chili powder	All-purpose flour	Garlic cloves	salt
salsa	Baking powder	Cooking spray	eggs
Black beans	sugar	Olive oil	sugar
Flour tortillas	Large eggs	Chopped onion	milk

LDA

Most probable words in four of the topics:

LDA

Most probable topics in five of the docs:

LDA + KNN

Unsupervised -> Supervised

Neural Network

Results of Neural Network

Batch-norm with Dropout

	Accuracy	Loss
Train	0.987010	0.043150
Test	0.789090	1.269093

This image cannot currently be displayed.

Results of Neural Network

No Batch-norm but with Dropout

	Accuracy	Loss
Train	0.780003	0.726374
Test	0.741327	0.855012

Results of Neural Network

Batch-norm without Dropout

	Accuracy	Loss
Train	0.999609	0.001691
Test	0.754651	1.096316

Comparison on the effects of Batch-norm and Dropout

Batch Normalization	Dropout	Train Accuracy	Test Accuracy
Yes	Yes	0.987010	0.789090
No	Yes	0.780003	0.741327
Yes	No	0.999609	0.754651
No	No	0.999497	0.746858

Batch-norm:

faster convergence

Dropout:

reduce over-fitting

Comparison

Fin

Thank you for your Attention