## **AMMI Bootcamp Paper Implementation**

Paper Title: "Attention is all your need"

By: Amina Mardiyyah Rufai



### Table of Contents

- 1. Core idea from the Paper (What I Understood)
- Paper Implementation (What has been done thus far)



## Core Idea of the Paper

 Introducing "Parallelization" such that both inputs and expected outputs can be passed into the model simultaneously





## Core Idea of the Paper

2. Relying entirely on self-attention to compute representations of its input and output, without using RNN or CNN.



Transformer's Encoder





## Core Idea of the Paper

#### The two Key features of the Architecture:

- Multihead Attention (Implemented both in the Encoder and Decoder(Layer)
- The Positional Encoder



## The Embedding Class

(similar to word2vec)

#### Two key things:

- Using the learned linear transformation and softmax function to convert the decoder output to predicted next-token probabilities(implemented in the decoder class)
- In the embedding layer, the learned weights are multiplied by √dmodel.

```
# The Input Embeddings:
class Embeddings(nn.module):
  def init (self, vocab size, dmodel):
   Vocab Size = Length os entire sequence fed into the network
      super(Embeddings, self). init ()
      self.embed = nn.Embedding(vocab size, dmodel)
      self.dmodel = dmodel
  def forward(self, x):
      return self.embed(x) * math.sqrt(self.dmodel)
```



#### The Positional Encoder Class

(Implemented in both the encoder and decoder layer)

#### The Idea:

 No CNN or RNN, how is the seq2seq modelling done?

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)}=cos(pos/10000^{2i/d_{model}})$$

The positional encoder is made permutation invariant





Author (Institution) Short Title Date or Conference

#### The Positional Encoder Class

(Implemented in both the encoder and decoder layer)

# Implementation: Things to consider;

- Maximum Length of the sequence
- How each formula works.
- The dimensions of output of the encoder

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

```
class PositionalEncoder(nn.Module):
    """Implement the PE function.
   PE(pos,2i) = sin(pos/100002i/dmodel)
    PE(pos,2i+1) = cos(pos/100002i/dmodel)
    dim PE == dmodel
    pos: position of words
    i: dimension
    class PositionalEncoder(nn.Module):
    "Implement the PE function."
    def init (self, dmodel, max len=5000):
        super(PositionalEncoding, self). init ()
        self.dropout = nn.Dropout(p=0.1)
        # Compute the positional encodings
        pe = torch.zeros(max len, dmodel)
        pos = torch.arange(0, max len).unsqueeze(1)
        div exp term = torch.exp(torch.arange(0, dmodel, 2) *
                             -(math.log(10000.0) / dmodel))
        pe[:, 0::2] = torch.sin(pos * div exp term)
        pe[:, 1::2] = torch.cos(pos * div_exp_term)
        pe = pe.unsqueeze(0)
        self.register buffer('pe', pe)
   def forward(self, x):
        x = x + Variable(self.pe[:, :x.size(1)],
                         requires grad=False)
        return self.dropout(x)
```

### The Attention Mechanism

(Scaled Dot Product and Multihead Attention)

- Scaled Dot Product Attention(the self-attention Mechanism used)
- Compute a dot product
- Scale: dividing by the dimension of the embedding(dmodel)

Scaled Dot-Product Attention







### The Attention Mechanism

(Scaled Dot Product and Multihead Attention)

- 1. Scaled Dot Product Attention(the self-attention Mechanism used)
  - Compute a dot product
  - Scale my dividing by the dimension

```
#SCaled Dot Product Attention
def attention(q, k, v, dk, dropout=None, mask=None):
    """' Compute 'Scaled Dot Product Attention'
    q-query: bs, n, dmodel
   k-key: bs, n, dmodel
    v-value: bs, n, dmodel
    att scores = Attention
   Mask optional: As mentioned in the Paper
   Attention(Q, K, V) = softmax(Q*K.T/\sqrt{dk})*V
    mat mult = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d k) #matmul + scaling
    #Optional Mask
    # if mask != None:
         mask = mask.unsqueeze(1)
          att scores = scores.masked fill(mask == 0, -1e9)
    #Softmax Computation
    scores = f.softmax(scores, dim = -1) #softmax
    #Optional Dropout Implementation
    if dropout != None:
        scores = dropout(scores)
   output = torch.matmul(scores, v)
                                        #final matmul with v
    return output
```



### The Attention Mechanism

(Scaled Dot Product and Multihead Attention)

- Multi-Head Attention(the self-attention Mechanism used)
- Compute a dot product
- Scale my dividing by the dimension

```
#SCaled Dot Product Attention
def attention(q, k, v, dk, dropout=None, mask=None):
    """' Compute 'Scaled Dot Product Attention'
    q-query: bs, n, dmodel
   k-key: bs, n, dmodel
    v-value: bs, n, dmodel
    att scores = Attention
   Mask optional: As mentioned in the Paper
   Attention(Q, K, V) = softmax(Q*K.T/\sqrt{dk})*V
   mat mult = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d k) #matmul + scaling
    #Optional Mask
    # if mask != None:
         mask = mask.unsqueeze(1)
         att scores = scores.masked fill(mask == 0, -1e9)
    #Softmax Computation
    scores = f.softmax(scores, dim = -1) #softmax
    #Optional Dropout Implementation
    if dropout != None:
        scores = dropout(scores)
   output = torch.matmul(scores, v)
                                        #final matmul with v
    return output
```



# Thank You!

