

Campaign for Deposit Subscription

- Feature and Model Selections for Predictions

Presenter: Mingyuhui Liu (Jane)

Instructor: Joel Klein

Agenda

- Introduction
- Preprocessing
- SQL
- Feature and Model Selections
- Prediction

Introduction

• Data:

- The dataset is from UCI (Sérgio Moro, Paulo Cortez and Paulo Rita, 2014.)
- Bank Campaign data: whether the customer subscribed the deposit

• Objective:

• Find best prediction model, and suggest strategies for bankers.

• Methodologies:

- SQL
- Handling categorical variables
- PCA
- SVC, Logistic, Random Forest and Naïve Bayes.
- Recall, Precision, F2 score, ROC, etc.

Preprocessing:

• Examples from the Original Data: 41188 instances, 23 columns

- "client data", "last contact of the current campaign", "other attributes", "social and economics attributes" and "output"
- Shuffle
- Add "ID" for creating SQL

SQL: Schema

SQL: Creating Tables & Python

- Load into SQL;
- Merge into DataFrame

Missing Values

• Stored as "Unknown" in some categorical data

Categorical Variables

- Categorical data includes:
 - 'job', 'marital', 'education', etc.
- Three ways to treat them:
 - Drop;
 - Ordinal concepts -> numerical;
 - One-hot-coding.

- Categorical Variables
 - Drop:
 - job;
 - default
 - Convert to numerical/continuous
 - month
 - day_of_week
 - education
 - One-hot-coding
 - marital
 - housing
 - loan
 - etc

• **Python:** categorical => numerical

from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()

No. Since I need full control of my encodings.

```
cleanup 1 = {"month": {"jan":1, "feb":2, "mar":3, "apr":4, "may":5, "jun":6, "jul":7, "aug": 8,
                        "sep":9, "oct":10, "nov":11, "dec":12},
              "day of week": {"mon": 1, "tue": 2, "wed": 3, "thu": 4, "fri": 5},
              "education": {"illiterate":0, "basic.4y":1, "basic.6y":2, "basic.9y":3,
                             "high.school":4, "professional.course":5, "university.degree":6},
              "y": {"no\r": 0, "yes\r": 1}}
#To convert the columns to numbers using replace :
obj_df.replace(cleanup_1, inplace=True)
obj df.head()
   default education housing
                                                                     contact day of week month
                                              marital y
                                                          poutcome
                                               single 0 nonexistent\r
                                                                     cellular
                                               single 0 nonexistent\r
                                                                     cellular
                                               single 0 nonexistent\r telephone
                        yes self-employed no\r divorced 0
                                                                     cellular
                                                                                     3
```

• **Python:** categorical => one-hot-code

DictVectorizer from SKLearn

No. Since I need full control of my encodings.

<pre>obj_df = pd.get_dummies(obj_df, columns=["marital", "housing", "loan", "contact", "poutcome"])</pre>												
education	у	day_of_week	month marita	l_divorced	marital_married	marital_single h	ousing_no	housing_yes	loan_no	loan_yes	contact_cellular	
6	0	1	11	0	0	1	0	1	1	0	1	
6	0	3	11	0	0	1	0	1	1	0	1	
3	0	2	5	0	0	1	1	0	1	0	0	
3	0	3	4	1	0	0	0	1	1	0	1	
3	0	5	5	0	1	0	0	1	1	0	0	
3	0	4	4	0	1	0	1	0	1	0	1	
1	0	1	5	0	1	0	1	0	1	0	1	

• Standardize the data.

Plotting

- Seaborn pair plot
 - Example: campaign status

- Conclusions:
 - Highly biased on some variables;
 - Y itself is highly biased;

Plotting

 Seaborn heatmap for correlations

• Drop correlated columns:

'marital_single', 'housing_ 'loan_yes', 'contact_telephone', 'poutcome_nonexistent', 'previous', 'emp.var.rate', 'euribor3m', 'nr.employed

Feature Selection and Model Selection

- Feature selections:
 - Simple
 - PCA with all features
 - PCA with only numerical features

Feature Selection

• PCA: with all features (All-data and down-sampled)

N = 7;Variance $\sim 65\%$

Feature Selection

• PCA: with only numerical data, and then join with categorical data

N = 4Variance $\sim 60\%$

Model Selection: Models

- All-data vs Down-sampled data (Equal classes)
 - 3859 'no' + 3859 'yes'
- Models:
 - LinearSVC
 - Logistic
 - Random Forest
 - Naïve Bayes
- Training vs Testing size:
 - 30%, 40%, 50%;
 - Control the random_state.

Model Selection: Evaluation Metrics

- Accuracy
- Precision
 - for 'yes'
- Recall
 - For 'yes'
- F2 Score
 - Beta = 2, so that recall is more important.
- ROC/AUC
 - Receiver operating characteristic curve
 - Area under the curve.

Model Selection: results

Conturns	Validation	LinearSVC		Logistic Classifier		Random Forest		Bernoulli NB		
Features	Validation	All Data	Balanced	All Data	Balanced	All Data	Balanced	All Data	Balanced	
	Accuracy Score	0.891	0.797	0.893	0.8	0.895	0.843	0.888	0.76	
15 selected	Precision of 'yes'	0.61	0.83	0.61	0.82	0.6 0.84		0.64	0.78	
features	Recall of 'yes'	0.29	0.75	0.33	0.77	0.44 0.85		0.18	0.74	
manually	F2 Score of 'yes'	0.324	0.767	0.36	0.783	0.464	0.862	0.205	0.744	
	AUC*	0.879	0.881	0.878	0.881	0.886 0.815		N/A		
	Accuracy Score	0.89	0.782	0.891	0.784	N/A		0.878	0.711	
7 selected	Precision of 'yes'	0.61	0.83	0.61	0.82			0	0.69	
features	Recall of 'yes'	0.27	0.72	0.29	0.74			0	0.78	
after PCA	F2 Score of 'yes'	0.301	0.742	0.322	0.755			0	0.758	
	AUC*	0.858	0.868	0.859	0.755			N/A		
	Accuracy Score	0.893	0.793	0.893	0.81			0.887	0.769	
4 selected	Precision of 'yes'	0.68	0.82	0.68	0.84			0.65	0.76	
continuous +	Recall of 'yes'	0.28	0.75	0.28	0.76	_		0.16	0.8	
7 Categorical	F2 Score of 'yes'	0.314	0.768	0.314	0.774			0.192	0.794	
	AUC*	0.851	0.875	0.851	0.885			N/A		
*· For Random Forest, this section will record the Out-of-bag accuracy scores										

Model Selection: LinearSVC

Summary:

• Balanced; 30% of Testings; Linear.

ROC: AUC = 0.881

Contingency Table:

Model Selection: LinearSVC

Coefficients: top 10

- education 0.063
- month -0.078
- marital_married -0.072
- contact_cellular 0.146
- Loan_no 0.189
- age 0.067
- campaign -0.094
- duration 0.495
- cons.conf.idx 0.077
- cons.price.idx -0.103

Choose the clients who:

- Higher educated;
- No loans;
- Elder;
- First-time customer

And the managers should:

- Early months:
- Use cells:
- Hold the conversation;
- When consumer price index is low and consumer confidence is high.

Prediction: Tackling the scaling problem

```
# Manually scale the input data.
std_original = df_original.std()
#print(std original['education'])
mean original=df original.mean()
#print(mean original)
col_needed = X_sampled.columns.tolist()
means = mean_original[col_needed].values
stds = std original[col needed].values
#print(stds.shape)
arr_original = np.array([4,2,5,0,1,0,1,0,0,0,40,1,145,-36.399, 93.994])
#[6,3,5,0,1,1,1,1,0,38,1,541,-46.2,92.893]
arr scaled = (arr original-means)/stds
arr = arr_scaled.reshape(1,-1)
#print(arr.shape)
print(arr)
[[-0.23041178 -0.69538014 -0.79868071 -0.36318842 0.8619419 -1.08757565
  0.43055191 -1.42656059 -0.35784484 -0.20162166  0.09386805 -0.55932607
  -0.43743926 0.8776455 0.80408191]]
```

Prediction: Simple GUI

Q&A

Thanks!

Results Discussion

- In this case:
 - "Yes" 1
 - Focus more on Recall, using F2.
 - We want the bankers to focus more on the customers that are more likely to subscribe.
- Another way to interpret:
 - "No" 1
 - Focus more on Precision, using F0.5.
 - We want the bankers to find out the main features that leads to non-subscription.

Model Selection: Random Forest

Summary:

• Balanced; 30% of Testings

Contingency Table:

[[1000 174] [147 995]]

Model Selection: Random Forest

Importance: Top 10 in order

- 'duration'
- 'cons.price.idx'
- 'age'
- 'cons.conf.idx'
- 'month'
- 'poutcome_success'
- 'day_of_week'
- 'campaign'
- 'education'
- 'contact_cellular'

```
digraph Tree
node [shape=box] :
0 [label="X[6] <= -0.946\ngini = 0.5\nsamples = 3434\nvalue = [2755, 2647]"];
1 [label="X[14] <= -1.119\ngini = 0.499\nsamples = 542\nvalue = [417, 450]"] :
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] :
2 [label="X[12] <= -0.428\ngini = 0.359\nsamples = 77\nvalue = [30. 98]"] :
1 -> 2 :
3 [label="X[8] <= 1.218\ngini = 0.5\nsamples = 21\nvalue = [16, 16]"];
2 -> 3 :
4 [label="X[10] <= -1.406\ngini = 0.444\nsamples = 14\nvalue = [6, 12]"];
3 -> 4:
5 [label="gini = 0.0\nsamples = 2\nvalue = [0, 3]"] :
4 -> 5 :
6 [label="X[14] <= -2.107\ngini = 0.48\nsamples = 12\nvalue = [6, 9]"];
4 -> 6:
7 [label="gini = 0.0\nsamples = 3\nvalue = [4, 0]"];
6 -> 7:
8 [label="X[2] <= 0.607\ngini = 0.298\nsamples = 9\nvalue = [2, 9]"] :
6 -> 8 :
```


F-score

- Many applications require a balance between precision and recall.
- $F_{\beta} = \frac{(1+\beta^2)Precision \cdot Recall}{(\beta^2 \cdot Precision) + Recall}$
 - Recall is β times more important than precision
 - Van Rijsbergen, C. J. (1979). Information Retrieval (2nd ed.). Butterworth.
- When β =1 they are equally important. This is a widely-used balance between these two quantities
 - $F_1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$ -- the "harmonic mean" of precision and recall
- Other applications:
 - β =2 (F_2 score) recall is twice as important as precision
 - β =0.5 ($F_{0.5}$ score) precision is twice as important as recall