- 1. GPU和CUDA编程模型
- 2. CUDA优化 矩阵乘法
- 3. Fastertransformer概述
- 4. TensorRT概述

CUDA – 并行计算平台和编程模型

GPU Computing Applications											
Libraries and Middleware											
cuDNN TensorRT	,	cuFFT, cuBLAS, cuRAND, cuSPARSE		MA	Thrust NPP	VSIPL, SVM, OpenCurrent		PhysX, OptiX, iRay		MATLAB Mathematica	
	Programming Languages										
С	C C++		Fortran		Java, Pytho Wrappers	/ Direct(Or		mouto		rirectives ., OpenACC)	
	CUDA-enabled NVIDIA GPUs										
•	Turing Architecture (Compute capabilities 7.x)		DRIVE/JETSON Ge		eForce 2000 Series		Quadro RTX Series		T	Tesla T Series	
	Volta Architecture (Compute capabilities 7.x)		DRIVE/JETSON AGX Xavier						Т	esla V Series	
	Pascal Architecture (Compute capabilities 6.x)		Tegra X2		GeForce 1000 Series		Quadro P Series		ī	Tesla P Series	
	Maxwell Architecture (Compute capabilities 5.x)		Tegra X1		GeForce 900 Series		Quadro M Series		Т	Tesla M Series	
	Kepler Architecture (Compute capabilities 3.x)		Tegra K1		GeForce 700 Series GeForce 600 Series		Quadro K Series		Т	Tesla K Series	
		Ε	MBEDDED	COI	NSUMER DESKTO LAPTOP	OP,	PROFESS WORKST			DATA CENTER	

V100架构: 84个SM(Streaming Multiprocessor)

SM:运算和调度的基本单元

- 1. CUDA cores
- 2. Scheduler/Dispatcher
- 3. Shared memory, register file, L1 cache

Tensor Core支持混合精度:

CUDA编程模型: Kernel、Thread、Block、Grid

Kernel: GPU上每个Thread执行的程序

Grid > Block > Thread

```
// Kernel definition
global void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
   int row = blockIdx.x;
   int col = threadIdx.x;
   if (row < N && col < N)
       C[row][col] = A[row][col] + B[row][col];
int main()
    // Kernel invocation
   dim3 numBlocks(N); //grid dim
   dim3 threadsPerBlock(N); //block dim
   MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    . . .
```

CUDA编程模型: Kernel、Thread、Block、Grid


```
// Kernel definition
global void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
    int i = blockIdx.x * blockDim.x + threadIdx.x: //find row
    int j = blockIdx.y * blockDim.y + threadIdx.y; //find col
   if (i < N \&\& j < N)
       C[i][j] = A[i][j] + B[i][j];
int main()
    // Kernel invocation
    dim3 threadsPerBlock(16, 16);
    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    . . .
```

CUDA程序执行流程

- Wrap: SM中的SIMD线程 (Single Instruction Multiple Data,单指令流多数据流)
- CPU使用的是MIMD(Multiple Instruction Multiple Data, 多指令流多数据流)架构

CUDA优化: 内存优化

Kernel运行时只能访问到GPU的内存,所以任务执行前后都需要 在host(CPU)和device(GPU)之间进 行数据交互

访问速度: local memory > shared memory > global memory

优化方法:将数据拷贝到block的共享内存,加快数据访问速度

CUDA内存优化举例:矩阵乘法

```
void main()
   // Invoke kernel
   dim3 dimBlock(BLOCK SIZE, BLOCK SIZE);
   dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
   MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C);
    . . .
// Matrix multiplication kernel called by MatMul()
global void MatMulKernel(Matrix A, Matrix B, Matrix C)
   // Each thread computes one element of C
   // by accumulating results into Cvalue
   float Cvalue = 0;
   int row = blockIdx.y * blockDim.y + threadIdx.y;
   int col = blockIdx.x * blockDim.x + threadIdx.x;
   for (int e = 0; e < A.width; ++e)
       Cvalue += A.elements[row * A.width + e]
                * B.elements[e * B.width + col];
   C.elements[row * C.width + col] = Cvalue;
```


上面这种每个线程计算一个元素简单的SGEMM kernal显然是效率非常低的,需要两次Global Memory的load才能完成一次乘累加运算,计算访存比极低,没有有效的数据复用。

那么,我们接下来尝试这样一种方法:每个Block负责计算矩阵C中的BM*BN个元素,每个Thread负责计算矩阵C中的TM*TN个元素;使用Shared Memory来存放线程间可以复用的矩阵A和矩阵B的元素,一个Block的所有线程每次一起从Global Memory中load BM*BK个矩阵A的元素和BK*BN个矩阵B的元素,存放到Shared Memory中,之后每个线程再分别从Shared Memory中取数运算,这样的循环一共需要K/BK次以完成整个矩阵乘法操作,如下图所示。

CUDA优化: 多流并发

CUDA优化: 多流并发

- Two streams just issuing CUDA kernels
 - Stream 1 : Ka1, Kb1
 - Stream 2 : Ka2, Kb2
 - Kernels are similar size, fill ½ of the SM resources

Issue depth first

Issue breadth first

issue order matters!

CUDA优化: 并发算法之Grid-Stride Loop (网格跨步循环)

CUDA优化: 并发算法之Parallel reduction (并行规约)

Parallel reductions exchange data between threads within the same thread block.

```
Shuffle On Down
warpld 0 1 2 3 4 5 6 7
i 0 1 2 3 4 5 6 7
i 2 3 4 5 6 7 j=_shfl_down(var,2,8);

j 2 3 4 5 6 7 6 7 j=_shfl_down(var,2,8);
```

CUDA优化: 并发算法之Parallel reduction (并行规约)

Shuffle Warp Reduce

warpld 0 1 2 3 4 5 6 7

```
inline device
     int warpReduceSum(int val) {
       for (int offset = warpSize/2; offset > 0; offset /= 2)
         val += shfl down(val, offset);
       return val;
v+=__shfl_down(v,4)
v+= shfl_down(v,2)
v+= shfl down(v,1)
```

CUDA优化: 并发算法之Parallel reduction (并行规约)

```
inline device
                                                                        - Block Reduce
int blockReduceSum(int val) {
 static shared int shared[32]; // Shared mem for 32 partial sums
 int lane = threadIdx.x % warpSize; // in-wrap id
 int wid = threadIdx.x / warpSize; // wrap idx
 val = warpReduceSum(val);  // Each warp performs partial reduction
 if (lane==0) shared[wid]=val; // Write reduced value to shared memory
 syncthreads(); // Wait for all partial reductions
 //read from shared memory only if that warp existed
 val = (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : 0;</pre>
 if (wid==0) val = warpReduceSum(val); //Final reduce within first warp
 return val:
```

- 1. 为了减少kernel调用次数,将除了矩阵乘法的kernel都 尽可能合并 (60 -> 14)
- 2. 针对大batch单独进行了kernel优化
- 3. 支持选择最优的矩阵乘法
- 4. 在使用FP16时使用half2类型,达到half两倍的访存带 宽和计算吞吐
- 5. 优化gelu、softmax、layernorm的实现以及选用rsqrt等

- 针对大batch单独进行了kernel优化

```
if(batch_size * head_num <= 120)
{
    grid.x = batch_size * head_num * seq_len;
    softmax_kernel_v2<DataType_><<<grid, block, 0, stream>>>(qk_buf_)
}
else
{
    grid.x = batch_size * head_num;
    softmax_kernel<DataType_><<<grid, block, 0, stream>>>(qk_buf_,;
}
```

- 支持选择最优的矩阵乘法

2.2.9. cublasGemmAlgo_t

cublasGemmAlgo_t type is an enumerant to specify the algorithm for matrix-matrix multiplication. It is used to run cublasGemmEx routine with specific algorithm. CUBLAS has the following algorithm options.

Value	Meaning
CUBLAS_GEMM_DEFAULT	Apply Heuristics to select the GEMM algorithm
CUBLAS_GEMM_ALGO0 to CUBLAS_GEMM_ALGO23	Explicitly choose an Algorithm [0,23]
CUBLAS_GEMM_DEFAULT_TENSOR_OP	Apply Heuristics to select the GEMM algorithm, and allow the use of Tensor Core operations when possible
CUBLAS_GEMM_ALGO0_TENSOR_OP to CUBLAS_GEMM_ALGO15_TENSOR_OP	Explicitly choose a GEMM Algorithm [0,15] while allowing the use of Tensor Core operations when possible

- 在使用FP16时使用half2类型, 达到half两倍的访存带宽和计算吞吐

```
device half2 hadd2 (const half2 a, const half2 b) throw ()
                   Performs half2 vector addition in round-to-nearest-even mode.
device half2 hadd2 sat (const half2 a, const half2 b) throw ()
                   Performs half2 vector addition in round-to-nearest-even mode, with saturation to [0.0, 1.0].
device half2 hfma2 (const half2 a, const half2 b, const half2 c) throw ()
                   Performs half2 vector fused multiply-add in round-to-nearest-even mode.
__device__ half2 __hfma2 sat ( const __half2 a, const __half2 b, const __half2 c ) throw ( )
                   Performs half2 vector fused multiply-add in round-to-nearest-even mode, with saturation to [0.0, 1.0].
device half2 hmul2 (const half2 a, const half2 b) throw ()
                   Performs half2 vector multiplication in round-to-nearest-even mode.
__device___half2 __hmul2 sat ( const __half2 a, const __half2 b ) throw ( )
                   Performs half2 vector multiplication in round-to-nearest-even mode, with saturation to [0.0, 1.0].
device half2 hneg2 (const half2 a) throw ()
                   Negates both halves of the input half2 number and returns the result.
__device__ half2 __hsub2 ( const __half2 a, const __half2 b ) throw ( )
                   Performs half2 vector subtraction in round-to-nearest-even mode.
device half2 hsub2 sat (const half2 a, const half2 b) throw ()
                   Performs half2 vector subtraction in round-to-nearest-even mode, with saturation to [0.0, 1.0].
```

- 优化gelu、softmax、layernorm的实现以及选用rsqrt等
- 1. 使用Parallel Reduction
- 2. $\operatorname{rsqrt}(x) > \operatorname{sqrt}(x)$

C++ BERT

- 1. 合并了3个Embedding <u>operation</u>
- 2. 合并了Output的线性层和Softmax
- 3. 采用cuBERT的Tokenizer

V100性能测试

Batch size	Model	FP32(ms)	FP16(ms)
1	fastertransformer	3.66	1.89
	C++ BERT	3.65	1.96
	TRT BERT	3.78	2.08
	TF BERT	7.35	5.75
	Pytorch BERT	15.92	15.28
16	fastertransformer	34.48	9.4
	C++ BERT	34.68	9.67
	TRT BERT	35.58	10.18
	TF BERT	39.22	12.99
	Pytorch BERT	41.13	42.35
32	fastertransformer	64.84	16.01
	C++ BERT	64.69	16.39
	TRT BERT	66.22	17.27
	TF BERT	68.72	19.98
	Pytorch BERT	76.17	80.97

TensorRT

TensorRT是一个高性能深度学习推理平台,可以对各种框架训练好的模型进行优化

MODEL REPOSITORY (Persistent Volume) Request/Response Handling Management Inference Response Inference Request Per-model Framework NVIDIA TensorRT Scheduler Queues Backends Inference Server TensorFlow ? STATUS/HEALTH METRICS EXPORT **GPU GPU** CPU

TensorRT Inference Server

- 支持单GPU上的多模型&单模型多实例
- 2. 支持多种backends框架
- 3. 动态Batch增加吞吐

4.

提供负载均衡及状态监测

TensorRT C++ BERT

V100性能测试

Batch size	Model	FP32(ms)	FP16(ms)
1	fastertransformer	3.66	1.89
	TRT HTTP	4.76	2.23
	TF HTTP	8.29	6.68
16	fastertransformer	34.48	9.4
	TRT HTTP	35.76	10.7
	TF HTTP	55.5	24.86
32	fastertransformer	64.84	16.01
	TRT HTTP	66.04	18.25
	TF HTTP	98.79	41.84

直播摘要

- 1. Fastertransformer可针对线上问答(小batch)和推荐(大batch)场景
- 2. 优化后的Transformer中矩阵运算占比70%以上

如何在已有项目中应用Fastertransformer: C++的性能最好. 没有overhead

- 4. 如何优化:
- 1. tensorflow中的操作被细分成了很多GPU小Kernel, cuda kernel lanuch有overhead。每个kernel都会进行global memory读写(400-800的clock cycle延迟)=>无法充分利用GPU
- 2. 除矩阵乘之外都做Kernel fusion
- 3. 优化矩阵乘法(cuBLAS最快),根据场景测试最快的矩阵乘算法
- 4. 优化自定义Kernel: 针对element wish的Kernel,可以进行内存优化,使用寄存器保存中间结果;计算优
- 化(__expf,rsqrt),双下划线的算法都是低精度快速算法 5. 在Volta和Turing卡可以进行FP16优化(half2),可以降低instraction的数量,提高吞吐
- 6. Softmax的不同版本: 针对不同业务类型, batch比较小的时候只有12个block, 无法隐藏wrap的latency, 因此多乘一个seq len, 增加block数量
- 5. ____Github issue: DSM是GPU计算能力; FP32的diff在1e-5. F16在0.02左右,如果diff过大可修改GEMM的 重播地址: https://v.youku.com/v_show/id_XNDM3NzMzOTM2MA==.html?spin=a2h0k.11417342.soresults.dtitle computeType;
- 6. Fastertransformer2.0: 实现了decoder、beam search、任意batch size和seg_len_