ВАРИАНТЫ КОНТРОЛЬНЫХ ЗАДАНИЙ

1. Коллинеарность векторов

Проверить коллинеарность векторов \vec{c} и \vec{d} , построенных по векторам \vec{a} и \vec{b} .

Таблица 1 – Исходные данные

No	$\vec{a}(x_a; y_a; z_a)$	$\vec{b}(x_b; y_b; z_b)$	ċ	\vec{d}
вар		$\sigma(x_b, y_b, z_b)$	C	a
1	2	3	4	5
1	(3; 7; 0)	(4; 6; -1)	$3\vec{a} + 2\vec{b}$	$5\vec{a}-7\vec{b}$
2	(2; -1; 4)	(3; -7; -6)	$2\vec{a}-3\vec{b}$	$3\vec{a}-2\vec{b}$
3	(5; -1; -2)	(6; 0; 7)	$3\vec{a}-2\vec{b}$	$-6\vec{a} + 4\vec{b}$
4	(-9; 5; 3)	(7; 1; -2)	$2\vec{a} - \vec{b}$	$3\vec{a} + 5\vec{b}$
5	(4; 2; 9)	(0; -1; 3)	$-3\vec{a} + 4\vec{b}$	$4\vec{a}-3\vec{b}$
6	(2; -1; 6)	(-1; 3; 8)	$5\vec{a}-2\vec{b}$	$2\vec{a}-5\vec{b}$
7	(5; 0; 8)	(-3; 1; 7)	$3\vec{a}-4\vec{b}$	$-9\vec{a} + 12\vec{b}$
8	(-1; 3; 4)	(2; -1; 0)	$\vec{6a} - 2\vec{b}$	$-3\vec{a} + \vec{b}$
9	(4; 2; -7)	(5; 0; -3)	$\vec{a} - 3\vec{b}$	$-2\vec{a} + 6\vec{b}$
10	(2; 0; -5)	(1; -3; 4)	$2\vec{a}-5\vec{b}$	$5\vec{a}-2\vec{b}$
11	(1; -2; 3)	(3; 0; -1)	$2\vec{a} + 4\vec{b}$	$-\vec{a} + 3\vec{b}$
12	(1; 0; 1)	(-2; 3; 5)	$\vec{a} + 2\vec{b}$	$3\vec{a}-\vec{b}$
13	(-2; 4; 1)	(1; -2; 7)	$5\vec{a} + 3\vec{b}$	$2\vec{a} - \vec{b}$
14	(1; 2; -3)	(2; -1; -1)	$4\vec{a} + 3\vec{b}$	$8\vec{a} - \vec{b}$
15	(3; 5; 4)	(5; 9; 7)	$-2\vec{a} + \vec{b}$	$3\vec{a}-2\vec{b}$
16	(1; 4; -2)	(1; 1; -1)	$\vec{a} + \vec{b}$	$4\vec{a} + 2\vec{b}$
17	(1; -2; 5)	(3; -1; 0)	$4\vec{a}-2\vec{b}$	$-2\vec{a} + \vec{b}$
18	(3; 4; -1)	(2; -1; 1)	$6\vec{a}-3\vec{b}$	$-2\vec{a} + \vec{b}$
19	(-2; -3; -2)	(1; 0; 5)	$3\vec{a} + 9\vec{b}$	$-\vec{a}-3\vec{b}$

Продолжение таблицы 1

1	2	3	4	5
20	(-1; 4; 2)	(3; -2; 6)	$2\vec{a} - \vec{b}$	$-6\vec{a} + 3\vec{b}$
21	(5; 0; -1)	(7; 2; 3)	$2\vec{a} - \vec{b}$	$-6\vec{a} + 3\vec{b}$
22	(0; 3; -2)	(1; -2; 1)	$5\vec{a}-2\vec{b}$	$3\vec{a} + 5\vec{b}$
23	(-2; 7; -1)	(-3; 5; 2)	$2\vec{a} + 3\vec{b}$	$3\vec{a} + 2\vec{b}$
24	(3; 7; 0)	(1; -3; 4)	$4\vec{a}-2\vec{b}$	$-2\vec{a}+\vec{b}$
25	(-1; 2; -1)	(2; -7; 1)	$6\vec{a}-2\vec{b}$	$-3\vec{a} + \vec{b}$
26	(7; 9; -2)	(5; 4; 3)	$4\vec{a} - \vec{b}$	$-\vec{a} + 4\vec{b}$
27	(5; 0; -2)	(6; 4; 3)	$5\vec{a}-3\vec{b}$	$-10\vec{a} + 6\vec{b}$
28	(8; 3; -1)	(4; 1; 3)	$2\vec{a} - \vec{b}$	$-4\vec{a} + 2\vec{b}$
29	(3; -1; 6)	(5; 7; 10)	$4\vec{a}-2\vec{b}$	$-2\vec{a} + \vec{b}$
30	(1; -2; 4)	(7; 3; 5)	$6\vec{a} - 3\vec{b}$	$-2\vec{a} + \vec{b}$

2. Скалярное произведение векторов

Даны точки $A(x_A; y_A; z_A)$, $B(x_B; y_B; z_B)$, $C(x_C; y_C; z_C)$. Найти длины векторов \overrightarrow{AB} и \overrightarrow{AC} ; скалярное произведение $\overrightarrow{AB} \cdot \overrightarrow{AC}$; а также угол между ними. Вычислить $np_{\overrightarrow{AC}} \overrightarrow{AB}$.

Таблица 2 – Исходные данные

$N_{\underline{0}}$	A	В	С
вар.	$(x_A; y_A; z_A)$	$(x_B; y_B; z_B)$	$(x_C; y_C; z_C)$
1	2	3	4
1	(7; 0; 2)	(7; 1; 3)	(8; -1; 2)
2	(2; 3; 2)	(-1; -3; -1)	(-3; -7; -3)
3	(2; 2; 7)	(0; 0; 6)	(-2; 5; 7)
4	(-1; 2; -3)	(0; 1; -2)	(-3; 4; -5)
5	(0; 3; -6)	(9; 3; 6)	(12; 3; 3)
6	(3; 3; -1)	(5; 1; -2)	(4; 1; -3)
7	(-2; 1; 1)	(2; 3; -2)	(0; 0; 3)
8	(1; 4; -1)	(-2; 4; -5)	(8; 4; 0)

Продолжение таблицы 2

троде	лиспис таолицы 2	!	
1	2	3	4
9	(0; 1; 0)	(0; 2; 1)	(1; 2; 0)
10	(-4; 0; 4)	(-1; 6; 7)	(1; 10; 9)
11	(1; -2; 3)	(0; -1; 2)	(3; -4; 5)
12	(0; -3; 6)	(-12; -3; -3)	(-9; -3; -6)
13	(3; 3; -1)	(5; 5; -2)	(4; 1; 1)
14	(-1; 2; -3)	(3; 4; -6)	(1; 1; -1)
15	(-4; -2; 0)	(-1; -2; 4)	(3; -2; 1)
16	(5; 3; -1)	(5; 2; 0)	(6; 4; -1)
17	(-3; -7; -5)	(0; -1; -2)	(2; 3; 0)
18	(2; -4; 6)	(0; -2; 4)	(6; -8; 10)
19	(0; 1; -2)	(3; 1; 2)	(4; 1; 1)
20	(3; 3; -1)	(1; 5; -2)	(4; 1; 1)
21	(2; 1; -1)	(6; -1; -4)	(4; 2; 1)
22	(-1; -2; 1)	(-4; -2; 5)	(-8; -2; 2)
23	(6; 2; -3)	(6; 3; -2)	(7; 3; -3)
24	(0; 0; 4)	(-3; -6; 1)	(-5; -10; -1)
25	(2; -8; -1)	(4; -6; 0)	(-2; -5; -1)
26	(3; -6; 9)	(0; -3; 6)	(9; -12; 15)
27	(0; 2; -4)	(8; 2; 2)	(6; 2; 4)
28	(3; 3; -1)	(5; 1; -2)	(4; 1; 1)
29	(-4; 3; 0)	(0; 1; 3)	(-2; 4; -2)
30	(1; -1; 0)	(-2; -1; 4)	(8; -1; -1)

3. Действия над векторами

Даны точки $A(x_A; y_A; z_A)$, $B(x_B; y_B; z_B)$, $C(x_C; y_C; z_C)$. Вычислить: $\overrightarrow{AB} \cdot \overrightarrow{AC}$; $(\overrightarrow{AB} + \overrightarrow{AC})^2$; $(3\overrightarrow{AB} - 2\overrightarrow{AC}) \cdot (\overrightarrow{AB} + 3\overrightarrow{AC})$. Таблица 3. — Исходные данные

No	A	В	С
вар.	$(x_A; y_A; z_A)$	$(x_B; y_B; z_B)$	$(x_C; y_C; z_C)$
1	2	3	4
1	(2; -2; 4)	(3; 2; 6)	(4; -3; 5)
2	(3; 1; -3)	(8; -4; -6)	(4; 2; 0)
3	(7; 5; -2)	(6; 3; -2)	(4; 11; 2)

4 Продолжение таблицы 3.

продолжение таолицы э.					
1	2	3	4		
4	(1; 3; 10)	(-3; -5; -9)	(-15; 3; 6)		
5	(3; -6; -8)	(9; -5; -1)	(-3; -3; 7)		
6	(5; 3; 7)	(1; 5; -2)	(7; -11; 12)		
7	(10;6;4)	(0; 3; 7)	(2; 14; 3)		
8	(5; 7; -3)	(6; 3; -4)	(5; 7; 11)		
9	(3; -8; -9)	(0; 5; 6)	(1; -6; -5)		
10	(3; 3; 8)	(-12; -4; 1)	(4; -6; 8)		
11	(0; -4; 11)	(2; 6; 10)	(1; 4; -4)		
12	(3; -4; 5)	(4; 15; 7)	(0; -16; -4)		
13	(1; 11; 10)	(2; 5; 11)	(4; -2; 5)		
14	(5; -5; -5)	(3; -4; 10)	(-6; 4; -8)		
15	(1;-9; 5)	(3; -3; 8)	(3; 13; 9)		
16	(1; -7; 4)	(-3; 4; 7)	(6; -4; 6)		
17	(7; -2; 7)	(5; 4; 5)	(-11; -6; -4)		
18	(4; -6; -6)	(2; -3; -5)	(0; 10; -6)		
19	(2; 4; -5)	(8; -1; -6)	(3; 4; 2)		
20	(0; 8; 6)	(1; 7; -7)	(6; 5; 12)		
21	(-4; 1; 8)	(-6; 7; 6)	(-9; 4; 10)		
22	(2; 7; -10)	(1; -1; 15)	(0; 20; -7)		
23	(1; 5; 7)	(-1; 12; 3)	(7; -5; 3)		
24	(0; -3; 8)	(-6; -10; -8)	(4; -3; 6)		
25	(-3; 4; 7)	(2; 4; 7)	(8; -1; 12)		
26	(-2; 5; -2)	(3; 10; -7)	(5; 6; -9)		
27	(5; 14; -2)	(0; 10; 4)	(0; 7; 7)		
28	(-3; -6; 3)	(-2; 4; 1)	(5; 12; -1)		
29.	(-2; 2;-10)	(-8; 8; 10)	(3; -2; 18)		
30	(5; 2; -2)	(4; 3; 3)	(8; 4; -7)		

4. Разложение вектора по базису

4.1. Даны векторы $\vec{a}(x_a;y_a)$, $\vec{b}(x_b;y_b)$ и $\vec{c}(x_c;y_c)$. Найти разложение вектора $\vec{c}(\alpha,\beta)$ по базису \vec{a} , \vec{b} .

Таблица 4.1 – Исходные данные

No॒	$\vec{a}(x_a; y_a)$	$\vec{b}(x_b; y_b)$	$\vec{c}(x_c; y_c)$	$N_{\underline{0}}$	$\vec{a}(x_a; y_a)$	$\vec{b}(x_b; y_b)$	$\vec{c}(x_c; y_c)$
вар.	(·· a , J a)	(10,70)	- (·· c , J c ,		· (· a, Ja)	- (- 0 - 7 0)	- (- c , J c)
				ap.			
1	(2; 4)	(2; 6)	(4; -3)	16	(-7; 4)	(-3; 7)	(6; -4)
2	(3; -3)	(-4; -6)	(4; 2)	17	(-2;7)	(5; 5)	(-11; -6)
3	(7; -2)	(3; -2)	(4; 11)	18	(-6; -6)	(2; -5)	(0; 10)
4	(1; 10)	(-5; -9)	(-15; 3)	19	(4; -5)	(8; -6)	(3;4)
5	(3; -8)	(-5; -1)	(-3; -3)	20	(8; 6)	(1; -7)	(6; 5)
6	(5; 7)	(5; -2)	(7; -11)	21	(1; 8)	(-6; 6)	(-9;4)
7	(10; 4)	(3; 7)	(2; 14)	22	(7; -10)	(1; 15)	(0; 20)
8	(5; -3)	(3; -4)	(5; 7)	23	(5;7)	(-1; 3)	(7; -5)
9	(3; -9)	(5; 6)	(1; -6)	24	(-3; 8)	(-6; -8)	(4; -3)
10	(3; 8)	(-4; 1)	(4; -6)	25	(4;7)	(2;7)	(8; -1)
11	(0; 11)	(6; 10)	(1;4)	26	(5; -2)	(3; -7)	(5; 6)
12	(3; 5)	(15; 7)	(0; -16)	27	(14; -2)	(0;4)	(0;7)
13	(1; 10)	(5; 11)	(4; -2)	28	(-6; 3)	(-2; 1)	(5; 12)
14	(5; -5)	(-4; 10)	(-6; 4)	29	(2;-10)	(-8; 10)	(3; -2)
15	(1; 5)	(-3; 8)	(3; 13)	30	(2; -2)	(4; 3)	(8; 4)

4.2. Даны векторы $\vec{a}(x_a; y_a; z_a)$, $\vec{b}(x_b; y_b; z_b)$, $\vec{c}(x_c; y_c; z_c)$ и $\vec{d}(x_d; y_d; z_d)$.

Найти разложение вектора \vec{d} (α, β, γ) по базису \vec{a} , \vec{b} , \vec{c} .

Таблица 4.2 – Исходные данные

	тиолици 1.2 тискодиве диниве			
$N_{\underline{0}}$	$\vec{a}(x_a; y_a; z_a)$	$\vec{b}(x_b; y_b; z_b)$	$\vec{c}(x_c; y_c; z_c)$	$\vec{d}(x_d; y_d; z_d)$
вар.	(a,) a, ~a /	° (° b) ∫ b, √b)	$(\cdot \cdot$	a (a, j, d, a, d)
1	2	3	4	5
1	(2; 1; 3)	(-1; 2; 1)	(3; 2; -4)	(9; 3; -6)
2	(2; 1; 4)	(-3; 5; 1)	(1; -4; -1)	(2; 5; -4)
3	(2; 1; 3)	(-4; -2; -1)	(1; 4; 5)	(1; 3; 2)
4	(2; 3; 1)	(-1; 2; -1)	(1; 2; 1)	(2; -2; -1)
5	(1; 2; 1)	(1; -1; 3)	(3; 2; 4)	(5; 1; 6)
6	(2; 3; 5)	(-1; -1; -3)	(1; 2; 4)	(2; 2; 4)
7	(1; 1; 2)	(4; -1; 3)	(5; -2; 2)	(2; 1; -3)
8	(2;5;1)	(2; -1; 3)	(-3; 8; 1)	(9; 4; 1)

Продолжение таблицы 4.2

1	2	3	4	5
9			-	
	(2; 5; 4)	(-3; 1; 3)	(1; -3; 2)	(17; -2; 16)
10	(2; 1; 6)	(-4; 0; 1)	(-5; -3; 1)	(21; -18; 30)
11	(1; 2; 1)	(3; -3; 2)	(-3; 3; 1)	(13; -10; 6)
12	(2; 3; 4)	(-1; 1; -1)	(1; -1; 3)	(-4; -1; -7)
13	(3; 2; 2)	(1; 3; 1)	(1; 1; 3)	(5; 1; 11)
14	(1; 2; 4)	(1; -1; 1)	(2; 2; 4)	(-1; -4; -2)
15	(2; 3; 3)	(-1; 4; -2)	(-1; -2; 4)	(4; 11; 11)
16	(4; 1; 1)	(-1; 5; -3)	(-4; 2; 1)	(-3; 0; 6)
17	(1; 2; 1)	(1; -3; 2)	(-2; 1; -1)	(-9; 2; 7)
18	(3; 1; 2)	(4; -2; 1)	(-1; 2; 5)	(-4; 1; 3)
19	(1; 2; 1)	(2; 3; -3)	(-1; 2; 1)	(3; 1; 2)
20	(2; 1; 1)	(-1; -3; 1)	(1; 1; 4)	(9; 6; 8)
21	(5; 1; 2)	(-3; 1; 3)	(4; -3; 1)	(4; 3; -2)
22	(1; 1; 2)	(5; -10; 1)	(2; -3; -1)	(1; 9; -2)
23	(5; 1; 2)	(-1; 1; -3)	(8; 6; -1)	(7; -3; 7)
24	(1; 5; 1)	(-2; 1; 3)	(1; -3; 2)	(12; -2; 7)
25	(3; 2; 1)	(-2; 4; -3)	(1; -3; -1)	(6; 5; 9)
26	(2; 5; 4)	(-7; 1; 23)	(2; -1; -1)	(-14; 8; 58)
27	(1; 2; 1)	(1; -1; 3)	(3; 1; -2)	(6; 3; 4)
28	(3; 2; 2)	(2; 3; 1)	(1; -1; -3)	(6; 7; 1)
29	(1; 2; 3)	(1; 3; 1)	(-5; 1; -1)	(5; 2; -1)
30	(1; 2; 1)	(2; -1; 3)	(3; -1; 2)	(10; 8; -1)

5. Векторное произведение

Даны векторы \vec{a} и \vec{b} . Вычислить

- 1) $\vec{a} \times \vec{b}$;
- 2) $(2\vec{a} + \vec{b}) \times \vec{b}$;
- 3) $(3\vec{a} \vec{b}) \times (\vec{a} + 2\vec{b})$.

Таблица 5 – Исходные данные

$N_{\underline{0}}$	$\vec{a}(x_a; y_a; z_a)$	$\vec{b}\left(x_b; y_b; z_b\right)$	№	$\vec{a}(x_a; y_a; z_a)$	$\vec{b}(x_b; y_b; z_b)$
вар.	$a(x_a, y_a, z_a)$	$U(x_b, y_b, z_b)$	вар.	$\alpha(x_a, y_a, z_a)$	$b(x_b, y_b, z_b)$
1	(7; 1; 3)	(8; -1; 2)	16	(5; 3; -1)	(6; 4; -1)
2	(-1; -3; -1)	(-3; -7; -3)	17	(-3; -7; -5)	(2; 3; 0)
3	(0; 0; 6)	(-2; 5; 7)	18	(2; -4; 6)	(6; -8; 10)
4	(0; 1; -2)	(-3; 4; -5)	19	(0; 1; -2)	(4; 1; 1)
5	(9; 3; 6)	(12; 3; 3)	20	(3; 3; -1)	(4; 1; 1)
6	(5; 1; -2)	(4; 1; -3)	21	(2; 1; -1)	(4; 2; 1)
7	(2; 3; -2)	(0; 0; 3)	22	(-1; -2; 1)	(-8; -2; 2)
8	(-2; 4; -5)	(8; 4; 0)	23	(6; 2; -3)	(7; 3; -3)
9	(0; 2; 1)	(1; 2; 0)	24	(0; 0; 4)	(-5; -10; -1)
10	(-1; 6; 7)	(1; 10; 9)	25	(2; -8; -1)	(-2; -5; -1)
11	(0; -1; 2)	(3; -4; 5)	26	(3; -6; 9)	(9; -12; 15)
12	(-12; -3; -3)	(-9; -3; -6)	27	(0; 2; -4)	(6; 2; 4)
13	(5; 5; -2)	(4; 1; 1)	28	(3; 3; -1)	(4; 1; 1)
14	(3; 4; -6)	(1; 1; -1)	29	(-4; 3; 0)	(-2; 4; -2)
15	(-1; -2; 4)	(3; -2; 1)	30	(1; -1; 0)	(8; -1; -1)

6. Площадь параллелограмма

Даны точки $A(x_A;y_A;z_A)$, $B(x_B;y_B;z_B)$, $C(x_C;y_C;z_C)$. Вычислить площадь параллелограмма, построенного на векторах \overrightarrow{AB} и \overrightarrow{AC} .

Таблица 6 – Исходные данные

истици о полодивте динивте				
№	$A(x_A; y_A; z_A)$	$B(x_B; y_B; z_B)$	$C(x_C; y_C; z_C)$	
вар.	11 11 11	D • D • D		
1	2	3	4	
1	(1; 0; -2)	(2; -1; 3)	(0; -3; 2)	
2	(-1; 3; 4)	(-1; 5; 0)	(2; 6; 1)	
3	(4; -2; 0)	(1; -1; 5)	(-2; 1; -3)	
4	(-8; 0; 7)	(-3; 2; 4)	(-1; 4; 5)	
5	(7; -5; 1)	(5; -1; -3)	(3; 0; -4)	
6	(-3; 5; -2)	(-4; 0; 3)	(-3; 2; 5)	
7	(1; -1; 8)	(-4; -3; 10)	(-1; -1; 7)	
8	(-2; 0; -5)	(2; 7; -3)	(1; 10; -1)	

Продолжение таблицы 6

1	2	3	4
9	(1; 9; -4)	(5; 7; 1)	(3; 5; 0)
10	(-7; 0; 3)	(1; -5; -4)	(2; -3; 0)
11	(0; -3; 5)	(-7; 2; 6)	(-3; 2; 4)
12	(5; -1; 2)	(2; -4; 3)	(4; -1; 3)
13	(-3; 7; 2)	(3; 5; 1)	(4; 5; 3)
14	(0; -2; 8)	(4; 3; 2)	(1; 4; 3)
15	(1; -1; 5)	(0; 7; 8)	(-1; 3; 8)
16	(-10; 0; 9)	(12; 4; 11)	(8; 5; 15)
17	(3; -3; -6)	(1; 9; -5)	(6; 6; -4)
18	(2; 1; 7)	(9; 0; 2)	(9; 2; 3)
19	(-7; 1; -4)	(8; 11; -3)	(9; 9; -1)
20	(1; 0; -6)	(-7; 2; 1)	(-9; 6; 1)
21	(-3; 1; 0)	(6; 3; 3)	(9; 4; -2)
22	(-4; -2; 5)	(3; -3; -7)	(9; 3; -7)
23	(0; -8; 10)	(-5; 5; 7)	(-8; 0; 4)
24	(1; -5; 2)	(6; -2; 1)	(2; -2; -2)
25	(0; 7; -9)	(-1; 8; -11)	(-4; 3; -12)
26	(-3; -1; 7)	(0; 2; -6)	(2; 3; -5)
27	(5; 3; -1)	(0; 0; -3)	(5; -1; 0)
28	(-1; 2; -2)	(13; 14; 1)	(14; 15; 2)
29	(7; -5; 0)	(8; 3; -1)	(8; 5; 1)
30	(-3; 6; 4)	(8; -3; 5)	(10; -3; 7)

7. Компланарность векторов

Даны точки $A(x_A;y_A;z_A)$, $B(x_B;y_B;z_B)$, $C(x_C;y_C;z_C)$ и $D(x_D;y_D;z_D)$. Являются ли векторы \overline{AB} , \overline{AC} , \overline{AD} компланарными? Выяснить, является ли тройка векторов \overline{AB} , \overline{AC} , \overline{AD} правой, если векторы некомпланарны? Вычислить направляющие косинусы вектора \overline{AB} .

Таблица 7 – Исходные данные

No		Диме данные	C ()	D()	
вар.	$A(x_A; y_A; z_A)$	$\mathrm{B}(x_{\scriptscriptstyle B};y_{\scriptscriptstyle B};z_{\scriptscriptstyle B})$	$C(x_C; y_C; z_C)$	$D(x_D; y_D; z_D)$	
1	2	3	4	5	
1	(1; 2; 0)	(1; -1; 2)	(0; 1; -1)	(-3; 0; 1)	
2	(1; 0; 2)	(1; 2; -1)	(2; -2; 1)	(2; 1; 0)	
3	(1; 2; -3)	(1; 0; 1)	(-2; -1; 6)	(0; -5; -4)	
4	(3; 10;-1)	(-2; 3; -5)	(-6; 0; -3)	(1; -1; 2)	
5	(-1; 2; 4)	(-1; -2; -4)	(3; 0; -1)	(7; -3; 1)	
6	(0; -3; 1)	(-4; 1; 2)	(2; -1; 5)	(3; 1; -4)	
7	(1; 3; 0)	(4; -1; 2)	(3; 0; 1)	(-4; 3; 5)	
8	(-2; -1; -1)	(0; 3; 2)	(3; 1; -4)	(-4; 7; 3)	
9	(-3; -5; 6)	(2; 1; -4)	(0; -3; -1)	(-5; 2; -8)	
10	(2; -4; -3)	(5; -6; 0)	(-1; 3; -3)	(-10; -8; 7)	
11	(1; 3; 6)	(2; 2; 1)	(-1; 0; 1)	(-4; 6; -3)	
12	(-4; 2; 6)	(2; -3; 0)	(-10; 5; 8)	(-5; 2; -4)	
13	(7; 2; 4)	(7; -1; -2)	(3; 3; 1)	(-4; 2; 1)	
14	(2; 1; 4)	(-1; 5; -2)	(-7; -3; 2)	(-6; -3; 6)	
15	(-1; -5; 2)	(-6; 0; -3)	(3; 6; -3)	(-10; 6; 7)	
16	(0; -1; -1)	(-2; 3; 5)	(1; -5; -9)	(-1; -6; 3)	
17	(5; 2; 0)	(2; 5; 0)	(1; 2; 4)	(-1; 1; 1)	
18	(2; -1; -2)	(1; 2; 1)	(5; 0; -6)	(-10; 9; -7)	
19	(-2; 0; -4)	(-1; 7; 1)	(4; -8; -4)	(1; -4; 6)	
20	(14; 4; 5)	(-5; -3; 2)	(-2; -6; -3)	(-2; 2; -1)	
21	(1; 2; 0)	(3; 0; -3)	(5; 2; 6)	(8; 4; -9)	
22	(2; -1; 2)	(1; 2; -1)	(3; 2; 1)	(-4; 2; 5)	
23	(1; 1; 2)	(-1; 1; 3)	(2; -2; 4)	(-1; 0 -2)	
24	(2; 3; 1)	(4; 1; -2)	(6; 3; 7)	(7; 5; -3)	
25	(1; 1; -1)	(2; 3; 1)	(3; 2; 1)	(5; 9; -8)	
26	(1; 5; -7)	(-3; 6; 3)	(-2; 7; 3)	(-4; 8; -12)	
27	(-3; 4; -7)	(1; 5; -4)	(-5; -2; 0)	(2; 5; 4)	
28	(-1; 2; -3)	(4; -1; 0)	(2; 1; -2)	(3; 4; 5)	
29	(4; -1; 3)	(-2; 1; 0)	(0; -5; 1)	(3; 2; -6)	
30	(1; -1; 1)	(-2; 0; 3)	(2; 1; -1)	(2; -2; -4)	

8. Смешанное произведение

Даны четыре точки $A(x_A;y_A;z_A)$, $B(x_B;y_B;z_B)$, $C(x_C;y_C;z_C)$ и $D(x_D;y_D;z_D)$. Вычислить объем треугольной пирамиды, построенной на векторах \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} и высоту, опущенную из точки D, на плоскость основания. Является ли тройка векторов \overline{AB} , \overline{AC} , \overline{AD} правой?

Таблица 8 – Исходные данные

3.0		пыс данные		
No	$A(x_A; y_A; z_A)$	$\mathrm{B}(x_{\scriptscriptstyle B};y_{\scriptscriptstyle B};z_{\scriptscriptstyle B})$	$C(x_C; y_C; z_C)$	$D(x_D; y_D; z_D)$
вар.				
1	2	3	4	5
1	(-3; 4; -7)	(1; 5; -4)	(-5; -2; 0)	(-12; 7; -1)
2	(-1; 2; -3)	(4; -1; 0)	(2; 1; -2)	(1; -6; -5)
3	(-3; -1; 1)	(-9; 1; -2)	(3; -5; 4)	(-7; 0; -1)
4	(1; -1; 1)	(-2; 0; 3)	(2; 1; -1)	(-2; 4; 2)
5	(1; 2; 0)	(1; -1; 2)	(0; 1; -1)	(2; -1; 4)
6	(1; 0; 2)	(1; 2; -1)	(2; -2; 1)	(-5; -9; 1)
7	(1; 2; -3)	(1; 0; 1)	(-2; -1; 6)	(3; -2; -9)
8	(3; 10; -1)	(-2; 3; -5)	(-6; 0; -3)	(-6; 7; -10)
9	(-1; 2; 4)	(-1; -2; -4)	(3; 0; -1)	(-2; 3; 5)
10	(0; -3; 1)	(-4; 1; 2)	(2; -1; 5)	(-3; 4; -5)
11	(1; 3; 0)	(4; -1; 2)	(3; 0; 1)	(4; 3; 0)
12	(-2; -1; -1)	(0; 3; 2)	(3; 1; -4)	(-21; 20; -16)
13	(-3; -5; 6)	(2; 1; -4)	(0; -3; -1)	(3; 6; 68)
14	(2; -4; -3)	(5; -6; 0)	(-1; 3; -3)	(2; -10; 8)
15	(1; -1; 2)	(2; 1; 2)	(1; 1; 4)	(-3; 2; 7)
16	(1; 3; 6)	(2; 2; 1)	(-1; 0; 1)	(5; -4; 5)
17	(-4; 2; 6)	(2; -3; 0)	(-10; 5; 8)	(-12; 1; 8)
18	(7; 2; 4)	(7; -1; -2)	(-5; -2; -1)	(10; 1; 8)
19	(2; 1; 4)	(3; 5; -2)	(-7; -3; 2)	(-3; 1; 8)
20	(-1; -5; 2)	(-6; 0; -3)	(3; 6; -3)	(10; -8; -7)
21	(0; -1; -1)	(-2; 3; 5)	(1; -5; -9)	(-4; -13; 6)
22	(5; 2; 0)	(2; 5; 0)	(1; 2; 4)	(-3; -6; -8)
23	(2; -1; -2)	(1; 2; 1)	(5; 0; -6)	(12; -3; 7)
24	(-2; 0; -4)	(-1; 7; 1)	(4; -8; -4)	(-6; 5; 5)
25	(14; 4; 5)	(-5; -3; 2)	(-2; -6; -3)	(-1; -8; 7)

Продолжение таблицы 8

1	2	3	4	5
26	(1; 2; 0)	(3; 0; -3)	(5; 2; 6)	(-13; -8; 16)
27	(2; -1; 2)	(1; 2; -1)	(3; 2; 1)	(-5; 3; 7)
28	(1; 1; 2)	(-1; 1; 3)	(2; -2; 4)	(2; 3; 8)
29	(2; 3; 1)	(4; 1; -2)	(6; 3; 7)	(-5; -4; 8)
30	(1; 1; -1)	(2; 3; 1)	(3; 2; 1)	(-3; -7; 6)

9. Нахождение вектора по заданным условиям

Найти вектор \vec{c} , зная, что он перпендикулярен векторам \vec{a} и \vec{b} и удовлетворяет условию $\vec{c} \cdot \vec{q} = 10$, где $\vec{q} = (1, 2, -7)$.

Таблица 9 – Исходные данные

	,	7.1	7 1				
№ вар	\vec{a}	$ec{b}$	q	№ вар	_a	\vec{b}	\vec{q}
Z.II	$(x_a; y_a; z_a)$	$(x_b; y_b; z_b)$	$(x_q; y_q; z_q)$	Jul	$(x_a; y_a; z_a)$	$(x_b; y_b; z_b)$	$(x_q; y_q; z_q)$
1	(1; 3; 10)	(-3; -5; -9)	(-15; 3; 6)	16	(2; 4; -5)	(8; -1; -6)	(3; 4; 2)
2	(3; -6; -8)	(9; -5; -1)	(-3; -3; 7)	17	(0; 8; 6)	(1; 7; -7)	(6; 5; 12)
3	(5; 3; 7)	(1; 5; -2)	(7; -11; 12)	18	(-4; 1; 8)	(-6; 7; 6)	(-9; 4; 10)
4	(10;6;4)	(0; 3; 7)	(2; 14; 3)	19	(2; 7; -10)	(1; -1; 15)	(0; 20; -7)
5	(5; 7; -3)	(6; 3; -4)	(5; 7; 11)	20	(1; 5; 7)	(-1; 12; 3)	(7; -5; 3)
6	(3; -8; -9)	(0; 5; 6)	(1; -6; -5)	21	(0; -3; 8)	(-6; -10;-8	(4; -3; 6)
7	(3; 3; 8)	(-12; -4; 1)	(4; -6; 8)	22	(-3; 4; 7)	(2; 4; 7)	(8; -1; 12)
8	(0; -4; 11)	(2; 6; 10)	(1; 4; -4)	23	(-2; 5; -2)	(3; 10; -7)	(5; 6; -9)
9	(3; -4; 5)	(4; 15; 7)	(0; -16; -4)	24	(5; 14; -2)	(0; 10; 4)	(0; 7; 7)
10	(1; 11; 10)	(2; 5; 11)	(4; -2; 5)	25	(-3; -6; 3)	(-2; 4; 1)	(5; 12; -1)
11	(5; -5; -5)	(3; -4; 10)	(-6; 4; -8)	26	(-2; 2;-10)	(-8; 8; 10)	(3; -2; 18)
12	(1;-9; 5)	(3; -3; 8)	(3; 13; 9)	27	(5; 2; -2)	(4; 3; 3)	(8; 4; -7)
13	(2; -2; 4)	(3; 2; 6)	(4; -3; 5)	28	(1; -7; 4)	(-3; 4; 7)	(6; -4; 6)
14	(3; 1; -3)	(8; -4; -6)	(4; 2; 0)	29	(7; -2; 7)	(5; 4; 5)	(-11; -6; -4)
15	(7; 5; -2)	(6; 3; -2)	(4; 11; 2)	30	(4; -6; -6)	(2; -3; -5)	(0; 10; -6)