курс «Машинное обучение» Функции ошибки / функционалы качества Часть 3: скоринговые функции и кривые в машинном обучении

Александр Дьяконов

03 марта 2021 года

План на эти несколько лекций

задача регрессии

задача бинарной классификации

- чёткая классификация
- скоринговые функции кривые в ML

задача классификации с несколькими классами

задачи ранжирования

задачи кластеризации

Задача бинарной классификации

Теперь выдаём оценку принадлежности к классу 1

$$y \in \{0, 1\}$$

$$a \in [0, 1]$$

кроме меток {0, 1} возможны промежуточные значения

Приём: представление функции ошибки

Однозначное задание функции ошибки

«раздельная форма записи»

$$L(a, y) = \begin{cases} L(a, 1), & y = 1, \\ L(a, 0), & y = 0, \end{cases}$$

часто
$$L(a,1) = L(1-a,0)$$

Используем представление

«совместная форма записи»

$$L(a, y) = yL(a, 1) + (1 - y)L(a, 0)$$

Log Loss

В задаче классификации с двумя непересекающимися классами (0, 1), когда ответ вероятность (?) принадлежности к классу 1

logloss =
$$-\frac{1}{m} \sum_{i=1}^{m} (y_i \log a_i + (1 - y_i) \log(1 - a_i))$$

На что похоже?

Раздельная форма понятнее...

$$-\begin{cases} \log a_i, & y_i = 1, \\ \log(1 - a_i), & y_i = 0. \end{cases}$$

Нельзя ошибаться!

Откуда берётся Log Loss

Обучающая выборка ~ реализация обобщённой схемы Бернулли: для \mathcal{X}_i генерируем

$$y_i = \begin{bmatrix} 1, & p_i, \\ 0, & 1-p_i. \end{bmatrix}$$

Пусть наша модель генерирует эти вероятности!

$$a_i = a(x_i \mid w)$$

Правдоподобие:

$$p(y | X, w) = \prod_{i} p(y_i | x_i, w) = \prod_{i} a_i^{y_i} (1 - a_i)^{1 - y_i} \to \max$$

Откуда берётся Log Loss

Максимизация правдоподобия эквивалентна

$$\sum_{i} (-y_i \log a_i - (1 - y_i) \log(1 - a_i)) \to \min$$

Логична ровно настолько, насколько MSE в задаче регрессии (тоже выводится из ММП)

Названия

- логистическая функция ошибки
 - «ЛОГЛОСС»
- перекрёстная энтропия (кросс-энтропия)

Log Loss: Оптимальная константа для конечной выборки

$$-\frac{1}{m}\sum_{i=1}^{m}(y_{i}\log a + (1-y_{i})\log(1-a)) \to \min_{a}$$

$$-\frac{m_{1}}{m}\log a - \frac{m_{0}}{m}\log(1-a) \to \min_{a}$$

$$a = \frac{m_{1}}{m}$$

Интерпретация константного решения

Посчитаем матожидание ошибки -

у нас один (i-й) объект, который с вероятностью p принадлежит классу 1.

$$-p\log(a_i) - (1-p)\log(1-a_i)$$

Минимизируем это выражение:

$$\frac{p}{a_i} - \frac{1-p}{1-a_i} = 0$$

$$a_i = p$$

О чудо! Так и должно быть, но не всегда бывает...

Вот почему используют log_loss!

Интерпретация константного решения

Если подставить оптимальное значение
$$a_i = p$$
 в

$$-p\log(a_i) - (1-p)\log(1-a_i)$$

получаем энтропию:

$$-p\log(p) - (1-p)\log(1-p)$$

Вот почему используют энтропийный критерий расщепления!

он минимизирует logloss!

Log Loss

В каких пределах варьируется log_loss?

Какие недостатки log_loss?

Log Loss

В каких пределах варьируется log_loss?

Эффективное изменение в

$$\left[0, -\frac{m_1}{m}\log\frac{m_1}{m} - \frac{m_0}{m}\log\frac{m_0}{m}\right]$$

Если логарифм по основанию 2, то на сбалансированной выборке это [0,1]

Какие недостатки log_loss?

Его значение неинтерпретируемы...

Связь с логистической регрессией см. лекцию про минимизацию

Другая форма функционала

Подставим выражение для сигмоиды, сделаем переобозначение: метки классов теперь -1 и +1, тогда

$$\log\log(a, y) = \log(1 + \exp(-y \cdot w^{T} x))$$

LogReg

$$\sum_{i} \log(1 + \exp(-y_i \cdot w^{\mathsf{T}} x_i)) \to \min$$

SVM – Hinge Loss

$$\sum_{i} \max[1 - y_i w^{\mathsf{T}} x, 0] + \alpha w^{\mathsf{T}} w \to \min$$

RVM

$$\sum_{i} \log(1 + \exp(-y_i w^{\mathsf{T}} x)) + w^{\mathsf{T}} \operatorname{diag}(\alpha) w \to \min$$

Связь logloss с расхождением Кульбака-Лейблера

$$D_{\mathrm{KL}}(P \parallel Q) = \int p(z) \log \frac{p(z)}{q(z)} \partial z = \underbrace{H(p,q)}_{\mathrm{кросс-энтропия}} - H(p)$$

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{i} P_{i} \log \frac{P_{i}}{Q_{i}}$$

распределение алгоритма: (1-a, a) истинное: (1-y, y)

расхождение КЛ между ними:

$$(1-y)\log\frac{(1-y)}{(1-a)} + y\log\frac{y}{a} = -(1-y)\log(1-a) - y\log a$$
3. 3. 3. 3. 4. 4. 5. 5. 6. 6. 6. 6. 6. 7. 9. 9. 10.

Hactpoйка на Logloss – методы калибровки

Непараметрические

Histogram Binning Isotonic Regression

Модификации бининга

Scaling-binning calibrator

Смешанные

Probability calibration trees

Параметрические

Калибровка Платта (Platt calibration)

Логистическая регрессия в пространстве логитов

Matrix and Vector Scaling
Beta calibration

Ансамблирование

Ensemble of near-isotonic regression (ENIR)
Bayesian Binning into Quantiles (BBQ)

DL

Temperature Scaling
Maximum Mean Calibration Error (MMCE)
Label smoothing, Entropy penalty, Focal loss
Drop Out

отдельная тема

Hacтройка на Logloss – методы калибровки

калибровка Платта (Platt calibration) – для SVM

$$a(x) = \text{sigmoid}(\alpha \cdot r(x) + \beta)$$

Если использовать MSE в задаче классификации

$$L(y,a) = (y-a)^2 = y(1-a)^2 + (1-y)a^2$$

Если объект x с вероятностью p принадлежит классу 1, то матожидание ошибки

$$p(1-a)^2 + (1-p)a^2$$

оптимальный ответ тоже a=p

Минимум матожидания (подставляем a=p, как делали в logloss):

$$p(1-p)^2 + (1-p)p^2 = p(1-p)$$

критерий расщепления Джини минимизирует эту функцию ошибки!

это называется «Brier score»

from sklearn.metrics import brier_score_loss
brier_score_loss(y_true, y_prob)

Скоринговые ошибки

- ошибки в задаче бинарной классификации, для которых оптимальный ответ на каждом объекте - вероятность его принадлежности к классу 1.

$$L(y,a)$$
:
$$p = \underset{a}{\operatorname{arg\,min}} \operatorname{E}_{y} L(y,a)$$
 для $y \sim \operatorname{Bernoulli}(p)$.

- Log Loss
 - MSE
- Exploss
- Misclassification Loss

HO HE BCE...

Misclassification Loss

$$ME = y I[a \le 0.5] + (1 - y) I[a > 0.5]$$

$$y = 1$$

$$0.50$$

$$0.25$$

$$0.00$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

немного искусственная функция

почему?

$$\mathbf{E}_{y} \text{ME} = p I[a \le 0.5] + (1-p)I[a > 0.5], y \sim \text{Bernoully}(p),$$

нет единственного решения:

$$\arg\min \mathbf{E}_{y} \text{ME} \in \begin{cases} [0,0.5], & a \le 0.5, \\ [0.5,1], & a > 0.5, \end{cases}$$
$$\min \mathbf{E}_{y} \text{ME} = \min(p, 1-p)$$

Exploss: попытка немного изменить LogLoss

$$exploss = y\sqrt{\frac{1-a}{a}} + (1-y)\sqrt{\frac{a}{1-a}}$$

$$p\sqrt{\frac{1-a}{a}} + (1-p)\sqrt{\frac{a}{1-a}} \to \min$$

$$a = p$$

Exploss: попытка немного изменить LogLoss

$$p\sqrt{\frac{1-p}{p}} + (1-p)\sqrt{\frac{p}{1-p}} = 2\sqrt{p(1-p)}$$

Что это?

Exploss: почему логичная функция

задача классификации на два класса $\{\pm 1\}$ алгоритм выдаёт оценки принадлежности к классу 1

$$a(x) \in (-\infty, +\infty)$$

Естественна функция ошибки:

$$\exp(-ya)$$

(изначально использовалась в бустинге)

Матожидание на объекте

$$p \exp(-a) + (1-p)\exp(+a)$$

если взять производную и приравнять к нулю, то получим

$$a = \ln \sqrt{\frac{p}{1 - p}}$$

А это как вероятность превратить в оценку на $(-\infty, +\infty)$

Exploss: почему логичная функция

Подставляем...

$$\exp(-ya) = \exp\left(-y\ln\sqrt{\frac{p}{1-p}}\right) =$$

$$= \left(\sqrt{\frac{p}{1-p}}\right)^{-y}$$

выражение exploss
 (вместо ответов алгоритма там стоит вероятность)

Таким образом, это «естественная поправка» экспоненты, если мы хотим ответы нашего алгоритма интерпретировать как вероятности

- перевод ответов в вероятностную шкалу (probability scale)

Любая скоринговая функция порождает информационную меру, которая может быть использована в критерии расщепления

Функция ошибки	Минимальное матожидание		
LogLoss	$-p\log(p) - (1-p)\log(1-p)$		
MSE	$1 - p^2 - (1 - p)^2 = 2p(1 - p)$		
ExpLoss	$2\sqrt{p(1-p)}$		
ME	$\min(p, 1-p)$		

Вспоминаем критерии расщепления

MC = Missclassification criteria

ROC u AUC ROC

ROC = receiver operating characteristic Функционал зависит не от конкретных значений, а от их порядка

	оценка	класс
0	0.5	0
1	0.1	0
2	0.2	0
3	0.6	1
4	0.2	1
5	0.3	1
6	0.0	0

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
6	0.0	0	0


```
df['ответ'] = (df['оценка'] > 0.25).astype(int)
df.sort_values('оценка', ascending=False)
```

ROC M AUC ROC

наилучший (AUC=1), случайный (AUC~0.5) и наихудший (AUC=0) алгоритм

```
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, a)
plt.plot(fpr, tpr, lw=3, c='#000099')
```

Смысл AUC

AUC ~ число правильно отсортированных пар (на рис. «кирпичики»)

Это сложно объяснить заказчику!

$$AUC = \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j] I[a_i < a_j]}{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j]}$$

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
6	0.0	0	0

Чем хороша эта запись?

Что неправильно (требует пояснения) в формуле?

Смысл AUC

Чем хороша запись?

$$AUC = \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j] I[a_i < a_j]}{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j]}$$

Можно обобщить, например, на регрессию.

Что неправильно (требует пояснения) в формуле?

$$I[a_i < a_j] = \begin{cases} 1, & a_i < a_j, \\ 1/2, & a_i = a_j, \\ 0, & a_i > a_j. \end{cases}$$

Обобщения AUC

Иногда используют «естественные обобщения»:

$$AUC = \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j] \cdot \max(a_j - a_i, 0)}{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j]}$$

Если есть веса объектов...

как обобщить **AUC?**

Обобщения AUC

Напишем, что есть FPR, TPR (эти формулы после бинаризации)

TPR =
$$\frac{\sum_{i=1}^{m} I[a_i = 1]I[y_i = 1]}{\sum_{i=1}^{m} I[y_i = 1]}$$

$$FPR = \frac{\sum_{i=1}^{m} I[a_i = 1]I[y_i = 0]}{\sum_{i=1}^{m} I[y_i = 0]}$$

Теперь всё ясно...

wTPR =
$$\frac{\sum_{i=1}^{m} w_{i} I[a_{i} = 1] I[y_{i} = 1]}{\sum_{i=1}^{m} w_{i} I[y_{i} = 1]}$$

Настройка RF/GBM на AUC ROC

Случай из жизни (Интернет-математика)

классификация → классификация пар Можно дублировать, Можно брать разности/отношения.

AUC ROC

ROC – не всегда ступеньки!

$$TPR = \frac{TP}{TP+FN} = \frac{1-\theta^2}{1}$$

$$FPR = \frac{FP}{FP+TN} = \frac{(1-\theta)^2}{1}$$

$$TPR = 1 - (1 - \sqrt{FPR})^2 =$$

$$= 2\sqrt{FPR} - FPR$$

ДЗ Как соотносятся AUC ROC и максимальная достижимая точность?

AUC ROC: эксперименты

Если задаться распределениями классов (на ответах алгоритма) и получать оценку AUC ROC

Для оценки AUC ROC маленькие выборки не подходят!

Плотности линейные, а ROC не линейная.

GINI

История... изначально мера расслоения общества относительно какого-нибудь экономического показателя (чаще дохода)

Кривая Лоренца

Пример для доходов: 1, 1, 2, 2, 3

40% населения имеют 2/9 дохода.

GINI Вычисление

$$gini = \frac{A}{A+B} = 2A$$

gini =
$$1 - \sum_{t=1}^{m} (p_t - p_{t-1})(i_t + i_{t-1}) = 2/9$$

не путать с Gini impurity

GINI в машинном обучении

Кривая Лоренца (или САР – Cumulative Accuracy Profile Curve)

PR = Positive Rate – процент объектов, которые при определённом выборе порога, отнесены к классу 1

Коэффициент Джини – отношение площадей **■** ✓ (**■** + **□**) = 7/12

GINI в машинном обучении

AUCROC =
$$\int_{0}^{1} \text{TPR} \, \partial \text{FPR} = \int_{0}^{1} \frac{\text{TP}}{m_{1}} \partial \frac{\text{FP}}{m_{0}} = \frac{1}{m_{1} m_{0}} \int_{0}^{1} \text{TP} \partial \text{FP}$$

$$gini = \frac{\int_{0}^{1} \text{TPR} \, \partial \text{PR} - 0.5}{0.5m_{0} / (m_{0} + m_{1})} = \frac{\int_{0}^{1} \frac{\text{TP}}{m_{1}} \partial \frac{\text{FP} + \text{TP}}{m_{0} + m_{1}} - 0.5}{0.5m_{0} / (m_{0} + m_{1})}$$

GINI в машинном обучении

gini =
$$\frac{2}{m_1 m_0} \int_0^1 \text{TP} \partial (\text{FP} + \text{TP}) - \frac{m_0 + m_1}{m_0} =$$

= $2 \text{AUCROC} + \frac{2}{m_1 m_0} \int_0^1 \text{TP} \partial \text{TP} - \frac{m_1}{m_0} - 1$
gini = $2 \text{AUCROC} - 1$

Меняется от -1 до +1 - может сбивать с толку

0.9 AUC = 0.8 gini

GINI в задаче регрессии

суммы страховых случаев: 5, 2, 10, 3, 0, 5, 0, 0 (так упорядочил алгоритм)

Идеальный алгоритм: 10, 5, 5, 3, 2, 0, 0, 0

gini ≈ 0.57

AUC ROC

- + в задачах, где важен порядок
 + учитывает разную мощность классов (не зависит от пропорций)
 + не важны значения, важен порядок
 + можно использовать для оценки признаков
 - «завышает» качество
 - оценивает не конкретный классификатор, а регрессию
 - сложно объяснить заказчику
 - не путать классификацию и регрессию

AUC ROC и дисбаланс классов

это пример «задачи поиска», а не задачи с дисбалансом

Маленький **AUC** не всегда плохо

Чем хороши эти ROC-кривые?

Маленький **AUC** не всегда плохо

y = [1, 1, 1, 1, ...] если оценка большая почти всегда это правда «класс 1»

y = [..., 0, 0, 0, 0] если оценка маленькая почти всегда это правда «класс 0»

Можем хорошо отделить часть объектов одного класса

Пример: клиенты, которые точно не купят билет (чтобы предложить его им со скидкой)

Максимизация AUC ROC

- замена индикаторных функций на дифференцируемые
- использование смысла функционала (переход к парам)
 - ансамблирование с ранговой деформацией

Ещё примеры кривых... «полнота-точность»

Площадь под кривой.. «Average Precision» (есть и другой смысл)

	оценка	класс
0	0.5	0
1	0.1	0
2	0.2	0
3	0.6	1
4	0.2	1
5	0.3	1
6	0.0	0

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
6	0.0	0	0


```
from sklearn.metrics import precision_recall_curve
precision, recall, thresholds = precision_recall_curve(y_test, a)
plt.plot(recall, precision)
# вычисление площади методом трапеций
from sklearn.metrics import auc
auc(recall, precision)
# или готовую функцию использовать
from sklearn.metrics import average precision score
```

Кривая «полнота-точность»

в задаче с линейными плотностями

$$m = 300$$
 $AUC_PR = 0.839 \pm 0.024$

Генерируем выборки с соотв. распределениями и строим кривые

$$AUC_{PR} = \int_{0}^{1} P \partial R = \int_{0}^{1} \frac{1 + \sqrt{1 - R}}{2} \partial R = \frac{5}{6} = 0.83(3)$$

Кривая «полнота-точность»

Кривая «полнота-точность»

Есть зависимость от доли класса 1 Дисперсия оценки тоже зависит от доли класса 1

Сильный дисбаланс класса 0 ⇒ формально низкое качество и большая дисперсия

Александр Дьяконов (dyakonov.org)

Ещё примеры кривых... Gain Curve (Chart)

кривая в координатах

X: «доля, отнесённых к K₁»

$$PR = \frac{|\{a(x) \ge \theta\}|}{|\{x\}|} = \frac{TP + FP}{m}$$

Y: «какой процент класса 1 отнесли к позитивному»

$$R_1 = \text{TPR} = \frac{\text{TP}}{\text{TP+FN}}$$

Диагональ – случайный алгоритм это прямо кривая Лоренца

Ещё примеры кривых... Gain Curve (Chart)

кривая в координатах

X: «доля, отнесённых к K₁»

$$PR = \frac{|\{a(x) \ge \theta\}|}{|\{x\}|} = \frac{TP + FP}{m}$$

Y: «какой процент класса 1 отнесли к позитивному»

$$R_1 = \text{TPR} = \frac{\text{TP}}{\text{TP+FN}}$$

Диагональ – случайный алгоритм это прямо кривая Лоренца

Площадь под Gain-кривой

Мы доказали, что

$$\int_{0}^{1} \text{TPR} \, \partial \text{PR} - 0.5$$

$$gini = \frac{0}{0.5m_0 / (m_0 + m_1)} = 2 \text{AUC}_{ROC} - 1$$

отсюда получаем

$$\int_{0}^{1} \text{TPR} \, \partial \, \text{PR} = \frac{1}{2} \frac{m_0}{m_0 + m_1} (2 \text{AUC}_{ROC} - 1) + \frac{1}{2} =$$

$$= \frac{1}{m_0 + m_1} \left(m_0 \, \text{AUC}_{ROC} + \frac{m_1}{2} \right)$$

по смыслу это вероятность, что у случайного позитивного объекта оценка выше, чем у случайного

Gain Curve (Chart)

Это та же кривая Лоренца

А здесь

Miha Vuk, Tomaz Curk «ROC Curve, Lift Chart and Calibration Plot» http://mrvar.fdv.uni-lj.si/pub/mz/mz3.1/vuk.pdf

это (по Y вместо TPR – TP) названо «Lift-кривой»

Смысл: если планируем обзвон аудитории целевой признак – отклик на предложение

GC показывает как зависит покрытие целевой аудитории от масштаба обзвона

Ещё примеры кривых... Lift Curve (Chart)

Насколько Gain Curve лежит выше диагонали

X: «доля, отнесённых к K₁»

$$PR = \frac{|\{a(x) \ge \theta\}|}{|\{x\}|} = \frac{TP + FP}{m}$$

Ү: «отношение»

$$lift = \frac{TPR}{PR}$$

Всегда стремится к 1

Ещё примеры кривых... Lift Curve (Chart)

т=300, классы равновероятны

Насколько Gain Curve лежит выше диагонали

X: «доля, отнесённых к K₁»

$$PR = \frac{|\{a(x) \ge \theta\}|}{|\{x\}|} = \frac{TP + FP}{m}$$

Ү: «отношение»

$$lift = \frac{TPR}{PR}$$

Всегда стремится к 1

Термин «Lift-Top-10%»

Ещё примеры кривых... Kolomogorov Smirnov chart

классы равновероятны

Строим кривые

«доля объектов из K_1 отнесённых к K_1 », «доля объектов из K_0 отнесённых к K_1 »

 $(PR(\theta), TPR(\theta))$

 $(PR(\theta), FPR(\theta))$

находим максимум разности между ними

Ещё примеры кривых... Kolomogorov Smirnov chart

$$TPR(\theta) - FPR(\theta) \rightarrow max$$

Интересно, что в модельной задаче $\mathrm{TPR}(\theta),\mathrm{FPR}(\theta)$ не зависят от баланса классов, а вот K-S chart зависит... почему?

Доказать, что при p_1 = 0.1 на KSC максимальная разница в точке 0.3

Ещё примеры кривых...

Есть реализации

https://github.com/reiinakano/scikit-plot

Profit Analysis: The Gains Table

N	%	cum_%	Prob	N_1	%_1	cum_N1	cum_%1	N_0	%_0	cum_N0	cum_%0	K-S	Lift
11238	10.0%	10.0%	0.229	2572	49.0%	2572	49.0%	8666	8.1%	8666	8.1%	40.9%	4.902
11237	10.0%	20.0%	0.081	912	17.4%	3484	66.4%	10325	9.6%	18991	17.7%	48.7%	3.320
11238	10.0%	30.0%	0.050	565	10.8%	4049	77.2%	10673	10.0%	29664	27.7%	49.5%	2.572
11237	10.0%	40.0%	0.037	413	7.9%	4462	85.0%	10824	10.1%	40488	37.8%	47.2%	2.126
11238	10.0%	50.0%	0.025	282	5.4%	4744	90.4%	10956	10.2%	51444	48.0%	42.4%	1.808
11237	10.0%	60.0%	0.018	197	3.8%	4941	94.2%	11040	10.3%	62484	58.3%	35.8%	1.569
11237	10.0%	70.0%	0.013	146	2.8%	5087	97.0%	11091	10.4%	73575	68.7%	28.3%	1.385
11238	10.0%	80.0%	0.008	94	1.8%	5181	98.7%	11144	10.4%	84719	79.1%	19.7%	1.234
11237	10.0%	90.0%	0.005	51	1.0%	5232	99.7%	11186	10.4%	95905	89.5%	10.2%	1.108
11238	10.0%	100.0%	0.001	15	0.3%	5247	100.0%	11223	10.5%	107128	100.0%	0.0%	1.000

теперь можно задать стоимость обзвона (пусть =1\$), доход с отклика (пусть =5\$)

Если обзвонить 10%, траты = 11 238\$, доход = 2572*5 = 12 860\$ прибыль = 1 622\$

https://towardsdatascience.com/how-to-determine-the-best-model-6b9c584d0db4

Сравнение метрик в задачах классификации

Модельные задачи

Сравнение метрик в задачах классификации

Сравнение метрик в задачах классификации

ROC AUC у бинарного ответа (потом обсудим) но это же совпадает с balanced_accuracy_score (ниже)

Почему прыгает точность?

Итог

Ищите матожидание ошибки!

Пробуйте константные решения.

Функции ошибки / качества можно обобщать!

Скоринговые задачи

Log Loss	AUC ROC				
MSE	Gini				
Exp Loss	AUC PR				
ME					

Ещё кривые

Gain Curve Lif	t Curve K-S Chart
----------------	-------------------

Литература

Tom Fawcett An introduction to ROC analysis // Pattern Recognition Letters V.27 № 8, 2006, P. 861-874.

https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf

Интерактивная ROC-кривая

http://www.navan.name/roc/

Логистическая функция ошибки

https://dyakonov.org/2018/03/12/логистическая-функция-ошибки/

Кривые в машинном обучении

https://dyakonov.org/2019/08/29/кривые-в-машинном-обучении/

Калибровки

https://dyakonov.org/2020/03/27/проблема-калибровки-уверенности/