CODE: 16BS1004 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, January-2019

ENGINEERING CHEMISTRY

(Common to CE, EEE & ME Branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

- 1. a Suggest and explain which moulding process is best suitable 5M to covering of PVC on copper wire
 - b Define functionality. Which of the factors to control the 4M strength of the polymer?
 - c Explain the process of manufacturing of cement by dry 5M process

(OR)

- 2. a Define isotactic, atactic and syndiotactic polymers. What are 7M the differences between thermoplastic and thermosetting plastics?
 - b What is the role of fillers in the compounding of plastics? 3M Give at least any four examples of fillers
 - c Define condensation polymerisation and write down the 4M preparation of one of the condensed polymer

UNIT-II

- 3. a What is temporary and permanent hardness of water? How 7M they are removing?
 - b Explain the procedure for softening of water by permutit 7M process and what are the limitations in this process?

(OR)

- 4. a How can you determine the total hardness of water by EDTA 7M method
 - b Explain the procedure for softening of water by ion exchange 7M process.

UNIT-III

5.	a b	Write about galvanic corrosion. Explain in which way the rate of corrosion is influenced by following factors (i) solubility of corrosion products (ii) Nature of electrolyte	4M 6M				
	c	Explain in which way the metal is protected against corrosion through modifying the environment (OR)	4M				
6.		List out some important proper designing techniques to protect against corrosion in metals	6M 8M				
	b What are the differences between dry and wet corrosion? 8M <u>UNIT-IV</u>						
7.	a	Define lubricant. Write functions of lubricant. Write any one	7M				
	b	mechanism of lubrications. Explain the procedure for getting of various by-products from crude oil. List out the by-products with their carbon content and separated boiling ranges	7M				
		(OR)					
8.	a b	Explain the synthesis of petrol by Fischer-Tropsch of method. Write short notes on (i) cloud and pour point (3M) (ii) aniline point (2M) (iii) neutralisation number (2M)	7M 7M				
<u>UNIT-V</u>							
9.	a	Derive Nernst equation. What are the applications of Nernst equation?	7M				
	b	Explain the procedure for conversion of solar energy into electrical energy.	7M				
		(OR)					
10.	a	Explain greenhouse concept	7M				
	b	Explain in detail in which way the single electrode potentials are measured	4M				
	c	Write about harnessing of solar energy	3M				

CODE: 16BS1003 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, January-2019

ENGINEERING PHYSICS

(Common to ECE, CSE & IT Branches)

Time: 3 Hours Max Marks: 70M

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

UNIT-I

- 1. a) What is the principle of superposition? obtain the expression for maxima and minima conditions for interference in thin films?
 - b) In Newton's rings experiment, the diameter of the 15th ring was found to be 0.59cm and that of the 5th ring was 0.336cm. if the radius of the plano convex lens is 100cm, compute the wavelength of light used.

(OR)

- 2. a) How diffraction is different from interference? 4M
 - b) obtain the condition for primary maxima in Fraunhofer **10M** diffraction due to single slit.

UNIT-II

3. a) Explain the construction and working of He-Ne Laser? 10Mb) Write applications of Lasers in Industry and Medical 4MFields.

(OR)

- 4. a) Obtain expression for Numerical aperture of an optical **10M** fiber
 - b) Calculate the numerical Aperture and Acceptance angle for an optical fiber with core and cladding refractive indices being 1.58 and 1.55 respectively.

UNIT-III

5.	a)	Derive the time independent Schrodinger's equation for a free particle.	6M
	b)	Explain the Physical significance of wave function.	4M
	•	An electron is confined in one-dimensional potential well of width	4M
		1 x 10 ⁻¹⁰ m. Find the energy of electron when it is in	
		the ground state. (OR)	
6	a)	Show that the energy of the particle is quantized in a	10M
0.	α)	potential box	10111
	b)	Compare Maxwell Boltzmann, Bose Einstein and Fermi Dirac Statistics Qualitatively?	4M
		<u>UNIT-IV</u>	
7.	a)	What is the origin of magnetic momentum explain?	8M
	b)	On the basis of domain theory explain the hysteresis curve?	6M
		(OR)	
8.	a)	Classify magnetic materials into Dia, Para and Ferro magnetic materials	6M
	b)	Show that $B = \mu_0(H + M)$	4M
	c)	Distinguish between soft and hard magnetic materials? <u>UNIT-V</u>	4M
0	\		101/
9.	a)	Obtain an expression for electronic polarizability of an atom?	10M
	b)	What are the applications of dielectrics?	4M
4.0		(\mathbf{OR})	07.5
10.	. a)		8M
	h`	Polarization in Barium Titanate Crystal Explain the frequency dependence of total	6N/I
	U,	Explain the frequency dependence of total polarizability?	6M

CODE: 13BS1004 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, January-2019

ENGINEERING PHYSICS (Common to CIVIL, MECH, CSE & IT)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) If the air film in Newton rings apparatus is replaced by an oil film the how does the diameter of the rings changes, explain
 - b) Describe Huygens principle
 - c) What is the wavelength of ruby laser?
 - d) What is numerical aperture of optical fibre?
 - e) What is the coordination number in a face centered cubic lattice?
 - f) State the limiting condition of Bragg's law
 - g) What is meant by magnetisation?
 - h) Write the relation between D, E & P in dielectrics.
 - i) Define drift velocity
 - j) What is Schrodinger's time independent equation in one dimension?

PART-B

Answer one question from each unit

[5x12=60M]

<u>UNIT-I</u>

- 2. a) Explain why the centre of Newton's rings is dark in the reflected system.
 - b) Derive an expression for condition of maxima and minima for 10M reflected light in case of transparent thin film of uniform thickness

(OR)

- 3. a) Explain clearly the differences between interference and 6M diffraction.
 - b) Give the differences between Fresnel and Fraunhofer 6M diffractions.

UNIT-II

4.	a)	What are the characteristics of Lasser?	4M
	b)	Explain the construction and working of He-Ne laser.	8M
		(OR)	
5.	a)	What are the types of optical fibres? Classify fibres based on	8M
		modes of propagation and index profile.	
	b)	What are the advantages of optical fibre?	4M
		<u>UNIT-III</u>	
6.	a)	Explain the terms i) Unit cell ii) lattice parameters	4M
	b)	Describe crystal systems with diagrams.	8M
		(OR)	
7.	a)		4M
	b)	Deduce the expression for the interplanar distance in terms of	8M
		Miller indices for a cubic structure.	
		<u>UNIT-IV</u>	
8.	a)	Give the classification and properties of Dia, Para and Ferro	8M
		magnetic materials.	
	b)	Explain Hysteresis of a Ferromagnetic material.	4M
		(OR)	
9.	a)	What are polar and non-polar dielectrics? Give examples for each.	4M
	b)	What is ionic polarisation? Derive the expression for ionic polarisability.	8M
		<u>UNIT-V</u>	
10.	. a)	Discuss the various drawbacks of classical free electron	4M
		theory of metals	
	b)		8M
		(OR)	
11.	a)	What are the physical significances of wave function.	4M
	b)	Obtain the Eigen values for a particle in one dimensional infinite potential box.	8M

CODE: 13BS1005 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, January-2019

ENGINEERING CHEMISTRY

(Common to ECE, EEE)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) Define degree of polymerisation
 - b) What are the salts responsible for temporary hardness of water?
 - c) Define pilling Bedworth rule.
 - d) Define octane number
 - e) Define nanomaterial
 - f) What is Puzzolana cement?
 - g) What is the working principle involved in the Lime Soda softening method?
 - h) Why pure metal always tendency to loss energy?
 - i) Define neutralization number.
 - j) Is it necessary to boil and filter the water in estimation of permanent hardness? Give a valid explanation about this?

PART-B

Answer one question from each unit

[5x12=60M]

<u>UNIT-I</u>

- 2. a Write the Differentiate between thermoplastics and 6M thermosettings.
 - b i)Express the important functions of raw materials which are used in the cement manufacture 3M
 - ii) List out the chemical constituents in the Portland cement with approximate compositions.

(OR)

- 3. a Write about the preparation, properties and engineering applications of PVC.
 - b Explain the setting and hardening of Portland cement. 6M

UNIT-II

- 4. a How can you determine the total hardness of water by EDTA 6M method
 - b Explain reverse osmosis method with neat diagram 6M

(OR)

1 of 2

5.	a	Write down the chemical reactions takes place in lime soda	6M
		softening process when water containing the following	
		constituents?	
		i) NaCl and KCl (ii) Mg(HCO ₃) ₂ (iii) HCO ₃ (iv) MgCl ₂ (v)	
		CaSO ₄ (vi) CaCl ₂	
	b	A water sample containing the following constituents per	6M
		mg/L . $NaHCO_3 = 8.4$, $Mg(HCO_3)_2 = 14.6$, $Ca(HCO_3)_2 = 16.2$,	
		$MgCl_2 = 9.5$, $CaSO_4 = 13.6$, $Na_2SO_4 = 14.2$, $FeSO_4 = 1.52$ and	
		NaCl = 5.85. Find out temporary, permanent and total hardness	
		in the given water sample	
		<u>UNIT-III</u>	
6.	a	Write a brief note on i) Galvanic corrosion	6M
		ii) Concentration cell corrosion	
	b	Explain the following factors towards influence the rate of	6M
		corrosion on metals?	
		(i) Nature of oxide film (ii) Position in galvanic series (iii)	
		Nature of electrolyte	
		(OR)	
7.	a	Write in detail about proper designing techniques towards	6M
		corrosion control?	
	b	Explain sacrificial anodic protection method with neat	6M
		diagram.	
		<u>UNIT-IV</u>	
8.	a	Explain the process about preparation of synthetic petrol by	6M
		Bergius process?	
	b	Explain the mechanism of lubrication.	6M
		(OR)	
9.	a	Why catalytic cracking is better than thermal Cracking? Descri	6M
		a method to get gasoline from Heavy oil when it is subjected	
		moving bed Catalytic Cracking	
	b	Write about semi solid lubricants?	6M
		<u>UNIT-V</u>	
10.	a	Explain the construction and working of photovoltaic cell.	6M
	b	Write about the preparation of carbon nano tubes by CVD	6M
		method.	
		(OR)	
11.	a	Write any six principles of green chemistry.	6M
	b	Write applications nanomaterials.	6M