1 位相群が作用する集合の圏は Grothendiek Topos

1.1 準備

Remark. category **B**G とは、ある位相群 G があって、その群が作用する集合の 圏. すなわち、各 object X に対して、X に離散位相を入れた時に

$$X \times G \to X$$

が連続になるような群の作用が定まっていて、morphism は作用を preserve するもの.

Definition 1. (isotropy subgroup) G が X に作用するとき, $x \in X$ の安定化部分群 (isotropy subgroup) とは,

$$I_x = \{ g \in G \,|\, x \cdot g = x \}$$

なる部分群である. 1 これはこの作用が上の意味で連続なとき, open subgroup になる. 2

1.2 site of BG

Definition 2. $\mathbf{S}(G)$ を, $\mathbf{B}G$ の full subcategory で, objects が G/U (U は G の開部分群) たちであるものとして定める. 3 (なんか, 表記的に $U\backslash G$ の方が正しそう.) いま, G/U の商位相は離散的である. 4

作用 $G/U \times G \rightarrow G/U$ は書き下すと

$$(Ux) \cdot q = Uxq$$

になる. 安定化部分群 I_{Ux} は

$$I_{Ux} = \{q | Uxq = Ux\} = x^{-1}Ux$$

になる. 5 **S**B における morphism $\phi G/U \to G/V$ は作用に compatible である必要があるから, $\phi(Ux) = \phi(Ue) \cdot x$ となるので, ϕ は $\phi(Ue)$ から一意に決まる. 逆に $a \in G$ に対し, $\phi_a : G/U \to G/V; Ux \mapsto Vax$ が定めたいが, これが well-defined であるためには,

$$Ux = Uy \Rightarrow Vax = Vay$$

が必要. これは,

$$U \subseteq a^{-1}Va$$

と同値.6 まとめると次のようになる.

¹This defines subgroups since $g, g' \in I_x \Rightarrow x(gg') = (xg)g' = x$ and $g \in I_x \Rightarrow x \cdot g^{-1} = x \cdot gg^{-1} = x$

 $^{^2}G\cong \{x\} imes G\stackrel{\iota}{ o} X imes G o X$ の $\{x\}$ の逆像になる.

 $^{^3}$ 正規とは限らないので G/U は群とは限らない

 $^{^4}$ そりゃそう. G/U の各元は Ux の形で, U と同相な集合をつぶしたもの. 開集合を潰すと開集合.

 $^{^{5}}hxg\in Uxg,\, h^{\prime}x\in Ux,\, hxg=h^{\prime}x\Rightarrow g=x^{-1}h^{-1}hx\in x^{-1}Ux$

Proposition 1. $\operatorname{Hom}_{\mathbf{S}G}(G/U,G/V)$ は次と bijective; $Va \in G/V$ で, $U \subseteq a^{-1}Va$ なるものたち.

Va と対応する morphism を $G/U \xrightarrow{a} G/V$ と書く. 次が可換.

$$\begin{array}{cccc} G & \xrightarrow{a} & G & & x & \longmapsto ax \\ \downarrow^{\pi} & & \downarrow^{\pi} & & \downarrow & & \downarrow \\ G/U & \xrightarrow{a} & G/V & & Ux & \longmapsto Vax \end{array}$$

ここから $\mathbf{S}G$ の任意の射は epic であることがわかる.7 任意の morphism が単独で cover になるような Grothendiek topology を考えるのが良い. すなわち atomic topology を採用したい. atomic topology が入るためには,

$$\begin{array}{ccc}
\cdot & & D \\
\downarrow & & \downarrow \forall f \\
E & \xrightarrow{\forall g} C
\end{array}$$

が必要だが,

$$\begin{array}{ccc} G/O \stackrel{a^{-1}}{\longrightarrow} G/U \\ \downarrow_{b^{-1}} & \downarrow_a \\ G/W \stackrel{b}{\longrightarrow} G/V \end{array}$$

は, $O = aUa^{-1} \cap bWb^{-1}$ とすることで可換になるので条件は満たされる.8

1.3 Grothendiek topology との圏同値

まず

$$\phi : \mathbf{B}G \to \widehat{\mathbf{S}(G)}, \qquad \phi(X) = \operatorname{Hom}_G(-, X)$$

9 なる自然な関手がある. 次を思い出す.

Remark. X の U-不変部分集合 (U-fixed) とは,

$$X^U \equiv \{x \in X \,|\, \forall g \in U, \, (xg = x)\}$$

exponential とはなんの関係もないことに注意.

すると.

$$\phi(X)(G/U) = \operatorname{Hom}_G(G/U, X)$$
$$\cong X^U$$

⁷上の図式をぐっと睨むと全射がわかる.

 $^{^8}U$:subgroup なら aUa^{-1} :subgroup. subgroups は \cup で閉じている. Open は明らか.

 $^{{}^{9}\}mathrm{Hom}_{G} = \mathrm{Hom}_{\mathbf{B}G} \ \mathcal{O} \subset \mathcal{E}.$

が成り立つ.10 さらに $\phi(X) \in \widehat{\mathbf{S}(G)}$ による morphism の移り先を見ると,

$$\begin{array}{ccc} G/V & X^V \\ \downarrow^a & {}^{(-)\cdot a} \uparrow \\ G/U & X^U \end{array}$$

になっている. 具体的に計算すると以下のようになる.

Theorem 1. 上で定義した $functor \mathbf{B}G \xrightarrow{\phi} \widehat{\mathbf{S}(\mathbf{G})}$ は 圏同値

$$\mathbf{B}G \cong \mathrm{Sh}(\mathbf{S}(G))$$

を誘導する. ただし, 右の sheaves は atomic topology で定められたもの.

Proof. functor

$$\psi: \widehat{\mathbf{S}(G)} \to \mathbf{B}G$$

を次で定める; presheaf F に対し,

$$\psi(\mathbf{F}) = \lim_{\longrightarrow} {}_{U}\mathbf{F}(G/U)$$

ただし colimit は、G の開部分群たちに包含関係で順序を入れた圏でとる.

(i) ψ を equivalence class の表現に直し, functor であることを確かめる. $\psi(\mathbf{F})$ は [x,U] where $x \in \mathbf{F}(G/U)$ なる集合で, [x,U] = [y,V] となるのは, $W \subseteq U \cap V$ なる開部分群 W があって, $\mathbf{F}(G/W \xrightarrow{e} G/U)$ と $\mathbf{F}(G/W \xrightarrow{e} G/V)$ (e は単位元) に対し, x,y の移り先が一致するときである. G の $\psi(\mathbf{F})$ への作用は,

$$[x, U] \cdot g = [F(g)(x), g^{-1}Ug]$$

where,
$$F(g)(x) = F(G/g^{-1}Ug \xrightarrow{g} G/U)(x)$$

で定める. 11 この作用は well-defined (下の可換図式 1.6.1) で、連続である. 12

 $^{^{10}}f(Ux)=f(Ue\cdot x)=f(Ue)\cdot x.$ So, f(U) determines whole f. $\forall x\in U,\, Ue=Ux.$ We need $f(Ue)=f(Ue)\cdot x,$ which suggests $f(U)\in X^U.$ This condition is also sufficient.

 $^{^{11}}g: G/g^{-1}Ug \to G/U; g^{-1}Ugx \mapsto Ugx$ is defined since $(g^{-1}Ug) \subseteq g^{-1}(U)g$

 $g: G/g \to G/G, g \to G/G, g \to G/G$ は defined since $(g: G) = g \to G/G$ $(g: G) = g \to G/G$

あとは, ψ が morphism を morphism に移すことを示す. $\tau: F \to F'$ に対し,

$$\psi(\tau): \lim_{U} F \longrightarrow \lim_{U} F';$$
 $[x, U] \mapsto [\tau_{G/U}(x), U]$

とする. これは確かに群の作用を保つ. 13 well-defined であることはサボった.

(ii) $\psi \circ \phi \cong Id$

まず、 $\forall x \in X$ 、 $\forall g \in I_x$ 、xg = x. すなわち $\forall x \in X, x \in X^{I_x}$. いま I_x は開部分群だから、 $X = \bigcup X^U$ (U: 開部分群)となる. さらに、 $X^U \cong \phi(X)(G/U)$ だった.

$$\psi(\phi(X)) = \lim_{M \to U} \psi(X)(G/U) \cong \lim_{M \to U} UX^U$$

で、最後の colimit は、object X^U 、morphism は inclusion になる $\mathbf{B}G$ の図式の colimit なので、

$$\lim_U X^U \cong \bigcup X^U \cong X$$

となる. Naturality はまだ確かめてない.

(iii) $Id \to \phi \circ \psi$ まず、

$$g \in U \Rightarrow [x, U] \cdot g = [F(g)(x), g^{-1}Ug]$$

= $[x, U]$

だから,

$$[x,U] \in \psi(\mathbf{F})^U$$

となる. これを使って, 自然変換 $\alpha_F: F \to \phi \psi(F)$ を次で定める.

$$(\alpha_{\mathcal{F}})_U : \mathcal{F}(G/U) \longrightarrow \phi(\psi(\mathcal{F}))(G/U) \cong \phi(\mathcal{F})^U$$

$$\psi \qquad \qquad \psi$$

$$x \longmapsto [x, U]$$

これが自然変換になることは.

$$F(G/U) \xrightarrow{\alpha_U} \psi(F)^U$$

$$F(a) \uparrow \qquad (-) \cdot a \uparrow$$

$$F(G/V) \xrightarrow{\alpha_V} \psi(F)^V$$

 $[\]overline{ \ \ ^{13}\psi(\tau)([x,U]) \ \cdot \ g} \ = \ \left[\tau_{G/U}(x),U\right] \ \cdot \ g \ = \ \left[F'(g)(\tau_{G/U}(x)),g^{-1}Ug\right] \ = \left[\tau_{G/g^{-1}Ug}(F(g)(x)),g^{-1}Ug\right] = \psi(\tau)\left([x,U]\cdot g\right)$

が可換になること. すなわち, $y \in \mathcal{F}(G/V)$ に対し, $[F(a:G/U \to G/V)(y), U] = [F(a:G/a^{-1}Va \to G/V)(y), a^{-1}Va]$ となることである. これは次が可換であることから従う.

 α の F に関する naturality は下の 1.6.2

(iv) presheaf から sheaf に制限

Remark. Atomic topology において, presheaf P が sheaf になることは, for any $f:D\to C$ and any $y\in P(D)$, if $y\cdot g=y\cdot h$ for all diagrams

$$E \xrightarrow{g} D \xrightarrow{f} C$$

with fg = fh, then $y = x \cdot f$ for a unipue $x \in P(C)$

この定理から, f が monic なら, P(f) は bijective になる.

F を sheaf とする. 先ほどの $(\alpha_F)_U: F(G/U) \to \psi(F)^U$ の codomain を $\psi(F)$ まで広げて

$$(\alpha_F)_U : F(G/U) \to \lim_{V} F(G/V) \cong \phi(F)$$

とみると、計算するとこれは colimit への canonical map になっていて、いま、colimit は全ての morphism が inclusion の圏からとったから、diagram の各々の morphism は上の remark から mono になる. そうすると、 $(\alpha_F)_U$ も mono になる. 14

次に、 $(\alpha_F)_U: F(G/U) \to \psi(F)^U$ が全射になることを示す.任意の $[x,V] \in \psi(F)^U$ をとる.V は十分小さく $V \subseteq U$ となると仮定していい.S を morphism $G/V \stackrel{e}{\to} G/U$ 1 つが生成する sieve とする.すなわち S とは 次のような morphism の集合である.

$$G/W \stackrel{a}{\longrightarrow} G/V \stackrel{e}{\longrightarrow} G/U$$

x は F(G/V) の元だった. これに対して,

$$x_{e \circ a} := x \cdot a = F(a)(x)$$

が matching family になることを下の方で示す.1.6.3 すると, F は sheaf なので amalgamation が unique に存在するから, ある $y \in F(G/U)$ があって F(e)(y) = x. すると,

$$[x, U] = [y, U] = (\alpha_F)_U(y)$$

¹⁴同値類の取り方を見るとわかる.

となって, $(\alpha_F)_U$ は全射.

ここまでの議論から, F が sheaf なら α_F は bijection になる. ψ の domain を $Sh(\mathbf{S}(G))$ に制限することで, α は natural isomorphism になる.

(v) $\phi(X)$ it sheaf

本はここで証明が終わってるけど, ϕ で X をうつした先が sheaf にならな いとだめ.

これは、先ほどの remark を使って示す.

$$G/W \xrightarrow{e \atop b} G/aVa^{-1} \xrightarrow{a^{-1}} G/V \xrightarrow{a} G/U$$

が, $e = a \circ a^{-1} \circ e = a \circ a^{-1} \circ b = b$ を満たすことは $b \in U$ と同値. 条件 から, $b \in U$ ならば, $y \cdot a^{-1} = y \cdot a^{-1}b$. よって, 任意の U の元 b に対し, $(y \cdot a^{-1}) \cdot b = y \cdot a^{-1}$ となるので,

$$y \cdot a^{-1} \in X^U$$

がなりたつ. 一意性はすぐ示せる.

1.4 cofinal な open subgroup たちの時でも同様に示せること.

Theorem 2. G: 位相群 のとき, U を cofinal (共終) な開部分群の族とする. (すなわち, 任意の開部分群は U の開部分群を含む.) このときでも,

$$\mathbf{B}G \cong \mathrm{Sh}(\mathbf{S}_{\mathcal{U}}(G))$$

が示せる. ($\mathbf{S}_{\mathcal{U}}(G)$ は, $\mathbf{S}(G)$ の full sub category.)

1.5 具体例 **B**Aut(ℕ)

 \mathbb{N} の自己全単射からなる群 $\mathrm{Aut}(\mathbb{N})$ に直積位相の相対位相を入れる. (以下,自己全単射のことを自己同型と呼ぶ) すると, \mathbb{N} の有限部分集合 K に対して,

$$U(K) = \{ \alpha \in Aut(N) | \forall i \in K, \alpha(i) = i \}$$

とすると、これらを集めた集合族 U は、cofinal になる. 15

ここで, \mathbf{I} を $\mathbb N$ の有限部分集合と単射 $L \rightarrowtail K$ からなる圏とする. 目標は次の圏同値を示すことである.

 $^{1^{15}}$ 任意の開部分群 H に対し、位相の定め方から H はある $i,j\in\mathbb{N}$ に対し、 $\alpha(i)=j$ を満たす全ての自己同型 α を含まなくてはならない.そうすると、逆に H は α の逆元も含まなくてはならないから、 $\beta(j)=i$ なる全ての自己同型も含むことになる.このとき、 $\beta\circ\alpha\in H$ となるが、 $\tau(i)=i$ なる自己同型 τ は全て $\beta\circ\alpha$ の形に書けるから、結局 H は $U(\{i\})$ を含むことになる.

Corollary 1. Schanuel Topos

$$\operatorname{Sh}(\mathbf{I}^{op}) \cong \mathbf{B}\operatorname{Aut}(\mathbb{N})$$

Theorem 2 から, $\mathbf{I}^{op} \cong \mathbf{S}_{\mathcal{U}}(\mathrm{Aut}(\mathbb{N}))$ を示せばいい.

 $\operatorname{Aut}(\mathbb{N})$ を G と書くことにする. S_{UG} の任意の morphism は, $\alpha: G/U(K) \to G/U(L)$ where $\alpha \in G$ とかけて, $U(K) \subseteq \alpha^{-1}U(L)\alpha$ を満たすようなものだった. これはつまり $\alpha: \mathbb{N} \to \mathbb{N}$ は ϕ が K が 固定する (fix) とき $\alpha\phi\alpha^{-1}$ は L を固定するということだから, $\alpha^{-1}(L) \subseteq K$ が従う. 16 これは, $\alpha^{-1}: L \mapsto K$ を induce している.

 S_U から I への反変関手を, 上の対応によって作る. すなわち,

$$G/U(K) \xrightarrow{\alpha} G/U(L)$$

$$K \longleftarrow_{\alpha^{-1}} L$$

で対応づける. これは,

$$\begin{split} U(L)\alpha &= U(L)\beta \iff \alpha\beta^{-1} \in U(L) \\ &\iff \forall x \in L, \qquad \qquad \alpha\beta^{-1} = x \\ &\iff \forall x \in L, \qquad \qquad \beta^{-1}(x) = \alpha^{-1}(x) \\ &\iff \alpha^{-1} = \beta^{-1} \text{as morphisms in } \mathbf{I}. \end{split}$$

となるので、well-defined で faithful である. full であることは、任意の $L\mapsto K$ が $\mathbb{N}\to\mathbb{N}$ まで延長できることから明らか. essentially surjective も定義から明らか. (というか圏同値どころか逆関手作れる.)

1.6 証明の詳細

1.6.1

 $^{^{16}\}phi(\alpha^{-1}(l)) = \alpha^{-1}(l)$ なので.

1.6.2

$$F(G/U) \xrightarrow{(\alpha_F)_U} \psi(F)^U \qquad \qquad x \longmapsto [x, U]$$

$$\downarrow^{\tau_{G/U}} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F'(G/U) \xrightarrow{(\alpha_{F'})_U} \psi(F')^U \qquad \qquad \tau_{G/U} \longmapsto [\tau_{G_U}(x), U]$$

1.6.3

これは,

$$G/W \xrightarrow{a} G/V \xrightarrow{e} G/U$$

が可換なときに, $x \cdot a = x \cdot b$ を満たすことを示せばいい. いま,

$$G/aWa^{-1} \xrightarrow{a^{-1}} G/W$$

は monic なので, これを F で送っても monic. monic を後ろにつけても問題ないので, 上の a,b につなげることで a を e と仮定していい. すると, b=e : $G/W \to G/U$ となるので, これは $b \in U$ となる.

$$G/W \xrightarrow{e} G/V \xrightarrow{e} G/U \qquad (W \subseteq V, W \subseteq b^{-1}Vb)$$

$$[x, V] = [F(e)(x), e^{-1}Ue]$$
$$= [F(b)(x), (eb)^{-1}Ueb]$$
$$[x, V] = [F(b)(x), b^{-1}Vb]$$

これは同値類の作り方から, ある $W' \subseteq V \cup b^{-1}Vb$ があって,

$$F(G/V) \xrightarrow{F(e)} F(G/W') \xleftarrow{F(e)} F(G/b^{-1}b) \xleftarrow{F(b)} F(G/V)$$

$$\psi \qquad \qquad \psi \qquad \qquad \psi$$

$$x \longmapsto \cdots \longmapsto \cdot \xleftarrow{F(b)} x$$

さらに,

いま

で、F(e) は monic (injective) だから、F(b)(x) = F(e)(x) が従う.