Modelos Estocásticos (INDG-1008): Examen 02

Semestre: 2017-2018 Término II Instructor: Luis I. Reyes Castro

Problema 2.1. La sala de emergencias de un pequeño hospital cuenta con dos doctores, quienes cuentan con sus propios consultorios y quirófanos, además de cuatro camillas de espera. Los pacientes arriban a una tasa promedio de 1.8 por hora y son atendidos por orden de arribo. Todo paciente que arriba cuando todas las camillas de espera están ocupadas es enviado directamente a otro hospital. Los tiempos que necesitan los doctores para atender a los pacientes están exponencialmente distribuidos, con un promedio de 40 minutos. Después de ser atendido, cada paciente es referido a otra área de especialidad del hospital o dado de alta.

Con esto en mente, complete las siguientes actividades:

- a) 1 Punto: Indique, utilizando notación de Kendall, qué tipo de sistema de cola es este, y bosqueje la Cadena de Markov en Tiempo Continuo correspondiente.
- b) 4 Puntos: Encuentre la distribución estacionaria del sistema.
- c) 2 Puntos: Calcule el número promedio de pacientes en cola, junto con el tiempo esperado de espera en cola.
- d) 1 Punto: En el enunciado del problema original, suponga que hubiere cuatro doctores en vez de dos, cada uno con su propio consultorio y quirófano. Indique, utilizando notación de Kendall, qué tipo de sistema de cola es este, y bosqueje la Cadena de Markov en Tiempo Continuo correspondiente.
- e) 1 Punto: En el enunciado del problema original, suponga que hubiere cinco camillas de espera en vez de cuatro. Indique, utilizando notación de Kendall, qué tipo de sistema de cola es este, y bosqueje la Cadena de Markov en Tiempo Continuo correspondiente.

Problema 2.2. [8 Puntos] El Prof. Reyes entrenó una red neuronal convolucional para detectar barcos en imágenes satelitales, la cual (por falta de imaginación) bautizó como BarcoNet. Este modelo fue entrenado para clasificar imágenes de acuerdo a (i) la ausencia de barcos, (ii) la presencia de barcos de turismo, (iii) la presencia de barcos de pesca o (iv) la presencia de barcos de guerra. El entrenamiento se llevó a cabo utilizando un juego de imágnes artificialmente generadas, donde cada una de las clases anteriormente descritas ocurría con la misma probabilidad. Como resultado del entrenamiento, se obtuvo un modelo de clasificación con la siguiente matriz de confusión:

	Clase Predecida Y			
Clase Real X	Nada	B-Turismo	B-Pesca	B-Guerra
Nada	0.96	0.02	0.01	0.01
B-Turismo	0.01	0.88	0.08	0.03
B-Pesca	0.03	0.07	0.85	0.05
B-Guerra	0.02	0.03	0.04	0.91

Ahora, suponga que *BarcoNet* es probada por la Marina en las Galápagos. Para esto, se llevó a cabo un muestreo de imágenes satelitales del archipiélago, donde se encontró que cada una de las clases aparece con la frencuencia mostrada en la siguiente tabla.

Clase Real X	Nada	B-Turismo	B-Pesca	B-Guerra
Frecuencia	0.82	0.10	0.06	0.02

Con todo esto en mente, calcule la distribución posterior predictiva de BarcoNet con respecto a la distribución de imágenes de las Galápagos.

Problema 2.3. [6 Puntos] Un acaudalado inversionista tiene una empresa que se dedica a identificar *start-ups* prometedoras. De las empresas que él usualmente evalúa, se sabe que generalmente solo el 40% tendrá éxito. Actualmente, el inversionista logra identificar correctamente a empresas exitosas con probabilidad del 80% y a empresas no-exitosas con probabilidad del 70%. Cuando él acierta, su utilidad asciende a los \$400K, mientras que cuando se equivoca pierde alrededor de \$150K.

Suponga que un consultor dice poder predecir correctamente el futuro de una empresa con probabilidad del 95%. Cuánto es el máximo honorario por evaluación que el consultor puede cobrarle al inversionista para que lo contrate?