Eukaryotic Genome & Transcriptome Structural Annotation

Jessica Goodheart
Comparative Genomics 2
1 November 2024

Expected outcomes

- You should be able to:
 - Describe the general goals and steps of structural genome and transcriptome annotation
 - Explain the purpose and process of repeat identification and masking
 - List and describe the types of gene prediction tools for genome and transcriptome annotation
 - Briefly describe the most common algorithms used in annotation
 - Select the appropriate gene prediction tool for your genome or transcriptome

Why annotate genomes and transcriptomes?

Genome and Transcriptome Annotation

- Genome annotation consists of five primary steps:
 - 1. Find and mask repeats
 - 2. Identifying genes in the genome (ORFs)
 - 3. Update gene models with alternative splicing events and UTRs
 - 4. Predict non-coding RNAs
 - 5. Attaching biological information to genes
- Transcriptome annotation consists of two primary steps:
 - 1. Identifying coding regions in the transcriptome
 - 2. Attaching biological information to genes

Goal to produce a GFF3 (Gene Feature Format) file

```
##gff-version 3
##Generated using GenSAS, Friday 27th of January 2017 03:31:25 PM
##Project Name : test 011317
##Job Name : Annotations a1
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                                 30779
                                                                         49550
                                                                                                         ID=Ps.00g000010-v2.0.a1; Name=Ps.00g000010;
                                                         gene
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                                                                         ID=Ps.00g000010.m01-v2.0.a1; Name=Ps.00g000010.m
                                                         mRNA
                                                                 30779
                                                                         49550
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                                 49501
                                                                         49550
                                                                                                         ID=Ps.00g000010.m01.exon01-v2.0.a1;Name=Ps.00g0
                                                         exon
                        GenSAS 588bd2c415861-publish
                                                                                                         ID=Ps.00g000010.m01.CDS01-v2.0.a1;Name=Ps.00g00
Ps_scaffold_3113
                                                         CDS
                                                                 49501
                                                                         49550
                                                                                 4.572
                        GenSAS 588bd2c415861-publish
                                                                 48853
                                                                         48958
                                                                                                         ID=Ps.00g000010.m01.exon02-v2.0.a1;Name=Ps.00g0
Ps scaffold 3113
                                                         exon
Ps_scaffold_3113
                                                                         48958
                                                                                 8.308
                        GenSAS 588bd2c415861-publish
                                                         CDS
                                                                 48853
                                                                                                         ID=Ps.00g000010.m01.CDS02-v2.0.a1;Name=Ps.00g00
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                                                                         ID=Ps.00g000010.m01.exon03-v2.0.a1;Name=Ps.00g0
                                                                 42418
                                                                         42490
                                                         exon
                        GenSAS 588bd2c415861-publish
                                                                                                         ID=Ps.00g000010.m01.CDS03-v2.0.a1;Name=Ps.00g00
Ps scaffold 3113
                                                         CDS
                                                                 42418
                                                                         42490
                                                                                 9.700
Ps_scaffold_3113
                                                                 35796
                                                                         35839
                                                                                                         ID=Ps.00g000010.m01.exon04-v2.0.a1;Name=Ps.00g0
                        GenSAS 588bd2c415861-publish
                                                         exon
                                                                                 9.505
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                         CDS
                                                                 35796
                                                                         35839
                                                                                                         ID=Ps.00g000010.m01.CDS04-v2.0.a1;Name=Ps.00g00
                        GenSAS 588bd2c415861-publish
Ps scaffold 3113
                                                                 34289
                                                                         34402
                                                                                                         ID=Ps.00g000010.m01.exon05-v2.0.a1;Name=Ps.00g0
                                                         exon
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                         CDS
                                                                 34289
                                                                         34402
                                                                                 12.968 -
                                                                                                         ID=Ps.00g000010.m01.CDS05-v2.0.a1;Name=Ps.00g00
                                                                 30779
                                                                         30787
                                                                                                         ID=Ps.00g000010.m01.exon06-v2.0.a1;Name=Ps.00g0
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                         exon
Ps scaffold 3113
                        GenSAS_588bd2c415861-publish
                                                                         30787
                                                                                 10.870 -
                                                                                                         ID=Ps.00g000010.m01.CDS06-v2.0.a1;Name=Ps.00g00
                                                         CDS
                                                                 30779
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                                 63826
                                                                         74139
                                                                                                         ID=Ps.00g000020-v2.0.a1; Name=Ps.00g000020;
                                                         gene
                        GenSAS 588bd2c415861-publish
                                                                 63826
                                                                         74139
                                                                                                         ID=Ps.00g000020.m01-v2.0.a1; Name=Ps.00g000020.m
Ps scaffold 3113
                                                         mRNA
Ps_scaffold_3113
                        GenSAS_588bd2c415861-publish
                                                                         74139
                                                                                                         ID=Ps.00g000020.m01.exon01-v2.0.a1;Name=Ps.00g0
                                                                 74048
                                                         exon
                                                                         74139
                                                                                 12.403 -
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                         CDS
                                                                 74048
                                                                                                         ID=Ps.00g000020.m01.CDS01-v2.0.a1;Name=Ps.00g00
                        GenSAS 588bd2c415861-publish
                                                                                                         ID=Ps.00g0000020.m01.exon02-v2.0.a1;Name=Ps.00g0
Ps scaffold 3113
                                                                 70576
                                                                         70585
                                                         exon
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                         CDS
                                                                 70576
                                                                         70585
                                                                                 3.360
                                                                                                         ID=Ps.00g000020.m01.CDS02-v2.0.a1;Name=Ps.00g00
                                                                 70295
                                                                         70380
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                         exon
                                                                                                         ID=Ps.00g000020.m01.exon03-v2.0.a1;Name=Ps.00g0
Ps_scaffold_3113
                        GenSAS_588bd2c415861-publish
                                                                         70380
                                                                                 3.052
                                                                                                         ID=Ps.00g000020.m01.CDS03-v2.0.a1;Name=Ps.00g00
                                                         CDS
                                                                 70295
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                                 63826
                                                                         63835
                                                                                                         ID=Ps.00g0000020.m01.exon04-v2.0.a1;Name=Ps.00g0
                                                         exon
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                         CDS
                                                                 63826
                                                                         63835
                                                                                 0.530
                                                                                                 1
                                                                                                         ID=Ps.00g000020.m01.CDS04-v2.0.a1;Name=Ps.00g00
Ps scaffold 3113
                        GenSAS 588bd2c415861-publish
                                                                 83242
                                                                         83535
                                                                                                         ID=Ps.00g000030-v2.0.a1; Name=Ps.00g000030;
                                                         gene
```

Column 1:

Sequence names must match the names of sequences used in the GenSAS project

Column 3:

GenSAS looks at this column for the Feature type when importing

First: prediction of genome structures

Including the components of gene structure

Berghia genome as an example

Genome and Transcriptome Annotation

- Genome annotation consists of five primary steps:
 - 1. Find and mask repeats
 - 2. Identifying genes in the genome (ORFs)
 - 3. Update gene models with alternative splicing events and UTRs
 - 4. Predict non-coding RNAs
 - 5. Attaching biological information to genes
- Transcriptome annotation consists of two primary steps:
 - 1. Identifying coding regions in the transcriptome
 - 2. Attaching biological information to genes

Multiple types of repeats exist

https://wi.mit.edu/many-roles-repetitive-dna-many-roles-repetitive-dna-cartoon-explainer

Repeats are common and can be misleading

- Repetitive sequences are found throughout genomes and are more likely to cause nonspecific gene hits
- Can range from ~10-85% of a genome depending on the species
- BUT, repeats can be biologically meaningful

Classification of human repetitive DNA

Repeats can be challenging to identify

- Regions containing repeats and repeat boundaries are not known a priori
- Some repeat occurrences appear as partial copies
- Risk of overmasking due to high-identity gene families

Methods of finding repeats – Homology based

- Identification by finding sequences similar to known repeats
- Comparisons to databases like RepBase, Dfam, msRepDB, REXdb, and Pfam
- RepeatMasker is an example of such a tool, which uses Dfam or RepBase as the library and RMBLAST as the aligner
 - Other examples include Censor, TESeeker, Greedier, and T-le

Advantages: accuracy and high efficacy with small number of copies

Disadvantages: Cannot be used for new repeat discovery

BLAST compares query sequences to a DB

Methods of finding repeats – Structure based

- Repeats, and particularly TEs, often have specific structures
- Rely on prior knowledge of structural features of known repeats in a library
- Use a heuristic algorithm that uses prior info to identify repeats
- Examples include LTRharvest, MASiVE, SINE-finder, etc.

Advantages: high detection efficiency and lower false-positive rate, easy to verify and classify detected repeats **Disadvantages:** Cannot be used to discover new repeats with unknown structure, relies heavily on precision and completeness of input sequences.

Methods of finding repeats – de novo

- Can be classified into three categories based on the core technology of the method:
 - Type 1 Uses local multiple sequence alignments. Examples: PILER, RECON
 - Type 2 High-frequency *k-mers* and space seed extension. Examples: RepeatModeler, RepeatScout
 - Type 3 Sequence similarity networks built from de novo sequence assembly

Each type has different advantages and disadvantages, but computing costs vary widely and detection can be inaccurate

Edgar & Meyers 2003

Classification and masking repeats

(d) Repeat masking

Repeat modeler commands

Compile initial repeat library (with Classifications):

RepeatModeler -database berghia -pa 2 -LTRStruct

Blast proteome against RepeatMasker TE database:

```
blastp -query
../Berghia alltissues_onerep_trinity291_transdecoder_cdhit95_noaliens_fulltranscripts_novectors_nocontaminants.fasta.trans
decoder.pep -db
/ocean/projects/bio210009p/shared/tools/miniconda3/envs/repeatmodeler/share/RepeatMasker/Libraries/RepeatPeps.lib -outfmt
'6 qseqid staxids bitscore std sscinames sskingdoms stitle' -max_target_seqs 25 -culling_limit 2 -num_threads 8 -evalue
1e-5 -out Bsteph ref.pep.vs.RepeatPeps.25cul2.1e5.blastp.out
```

Remove TEs from proteome:

```
fastaqual select.pl -f
../Berghia alltissues onerep_trinity291 transdecoder_cdhit95_noaliens_fulltranscripts_novectors_nocontaminants.fasta.trans
decoder.cds -e <(awk T{print $1}' Bsteph_re..pep.vs.RepeatPeps.25cul2.le5.blastp.out T sort | uniq) >
Bsteph_ref.fa.no_tes.fa
```

Blast proteome against RepeatModeler library:

```
makeblastdb -in Bsteph_ref.fa.no_tes.fa -dbtype nucl
blastn -task megablast -query consensi.fa.classified -db Bsteph_ref.fa.no_tes.fa -outfmt '6 qseqid staxids bitscore std
sscinames sskingdoms stitle' -max target seqs 25 -culling limit_2 -num_threads 8 -evalue 1e-10 -out
repeatmodeller_lib.v.Bsteph_ref.fa.no_tes.25cul2.1e10.megablast.out
```

Remove hits from RepeatModeler library:

```
fastaqual select.pl -f consensi.fa.classified -e <(awk '{print $1}'
repeatmodeller lib.v.Bsteph ref.fa.no tes.25cul2.1e25.megablast.out | sort | uniq) >
consensi.fa.classified.filtered for CDS repeats.fa
```

Table S2. RepeatMo	Retroelements 204933 54014008 5.16			
Category	Type	Number of Elements	Length Occupied (bp)	Percentage of Sequence
Retroelements		204933	54014008	5.16
	SINEs	17251	1753942	0.17
	Penelope	9522	2726192	0.26
	LINEs	180146	48023476	4.58
	CRE/SLACS	0	0	0
	L2/CR1/Rex	98626	23489586	2.24
	R1/LOA/Jockey	2230	920175	0.09
	R2/R4/NeSL	18134	4183768	0.4
	RTE/Bov-B	36219	11988222	1.14
	L1/CIN4	0	0	0
	LTR elements	7536	4236590	0.4
	BEL/Pao	386	384152	0.04
	Ty1/Copia	258	399159	0.04
	Gypsy/DIRS1	6892	3453279	0.33
	Retroviral	0	0	0
DNA transposons		91824	15755392	1.5
	hobo-Activator	10142	1790783	0.17
	Tc1-IS630-Pogo	19968	4791551	0.46
	En-Spm	0	0	0
	MuDR-IS905	0	0	0
	PiggyBac	3247	509014	0.05
	Tourist/Harbinger	0	0	0
	Other (Mirage, P-	25970	3071959	0.29
Rolling-circles	-	503	229700	0.02
Unclassified	-	1991187	287564488	27.45
Total interspersed	-		357333888	34.11
Small RNA	-	16841	1391635	0.13
Satellites	-	6364	998671	0.1
Simple repeats	-	1204558	121713746	11.62
Low complexity	-	103563	7316572	0.7

~50% of the *Berghia* genome is made up of repeats

RepeatMasker commands

Hardmask for STAR aligner:

RepeatMasker Berghia_Apr2021_hirise_purged.filtered.fasta -e ncbi -lib RM_24730.MonJul121509252021/consensi.fa.classified.filtered_for_CDS_repeats .fa -pa 20

Softmask for Augustus/BRAKER:

```
RepeatMasker Berghia_Apr2021_hirise_purged.filtered.fasta -e ncbi -lib RM_24730.MonJul121509252021/consensi.fa.classified.filtered_for_CDS_repeats .fa -xsmall -pa 20
```

Genome and Transcriptome Annotation

- Genome annotation consists of five primary steps:
 - 1. Find and mask repeats
 - Identifying genes in the genome (ORFs)
 - 3. Update gene models with alternative splicing events and UTRs
 - 4. Predict non-coding RNAs
 - 5. Attaching biological information to genes
- Transcriptome annotation consists of two primary steps:
 - 1. Identifying coding regions in the transcriptome
 - 2. Attaching biological information to genes

Challenge: Lots of Open Reading Frames

Gene Prediction – Different Approaches

- Ab initio gene finders
 - Intrinsic
 - de novo, rule-based
 - uses first principles
- Evidence-based approaches
 - Extrinsic
 - based on homology or similarity
 - External data proteins, RNA-seq, ESTs, etc.
- Comparative approaches
 - Use of closely related genomes

Ab initio methods

 Statistical models need to be trained and optimized for your specific data set. Examples: GeneMark, GenomeScan

Scalzitti et al. 2020

Ab initio methods - probabilistic models

- Often used Hidden Markov Models (HMMs) or Support Vector Machines (SVM)
- Example: Genscan
- HMMs type of supervised machine learning algorithm using Bayesian statistics
 - Makes classifications based on characteristics of training data
 - Many types of applications for bioinformatics
 - Gene predictions
 - Sequence alignments
 - ChIP-seq analysis
 - Protein folding

Genscan HMM

- Each shape represents a functional unit of a gene or genomic region
- Pairs of intron/exon units represent the different ways an intron can interrupt a coding sequence (after 1st base in codon, after 2nd base or after 3rd base)
- Complementary submodel (not shown) detects genes on opposite DNA strand

Great description of HMM models here: https://towardsdatascience.com/hidden-markov-model-hmm-simple-explanation-in-high-level-b8722fa1a0d5

Evidence-based approaches

- Use experimental data such as RNA-seq or proteomes to provide direct evidence for exon boundaries and gene length
- More universally applicable, but introns can sometimes still be present in transcripts
- Examples: Stringtie, Scallop

Liang et al. 2009

Gene prediction commands using StringTie

Run StringTie for each tissue separately

Short reads

```
stringtie -o Bs_genome_V1_18seqs_stringtie_illumina_Bb7.gtf --rf ../../mapping files/illumina/Bb7.sorted.names.bam -p 12 -1 Bs
```

Long reads

```
stringtie -o Bs_genome_V1_18seqs_stringtie_long_BSDEV.gtf -L ../../mapping files/isoseq/BSDEV_flnc_isoforms.sorted.names.bam -p 12 -l Bs
```

Merge StringTie outputs

```
stringtie --merge -p 6 -o Bs_genome_V1_18seqs_stringtie_merged.gtf gtf_files.txt
```

Comparative approaches - TOGA

- TOGA (Tool to infer Orthologs from Genome Alignments) is the first method that integrates gene annotation, inferring orthologous genes and classifying genes as intact or lost
- Relies on existing closely related, well-annotated genomes

Kirilenko et al. 2023

Combined approaches

- Combine ab initio and evidence-based gene predictions
- Most popular and widely used
- Examples: EvidenceModeler, Jigsaw, GAZE, GLEAN, EuGene, MAKER, etc
- Not all combiners are the same – must decide what type of prediction is preferred

Gene prediction commands using BRAKER2

Initial Annotation

```
braker.pl --species=Bsteph --
genome=Berghia_Apr2021_hirise_purged.filtered.fasta_edited.softmasked --prot_seq
mollusca_odb10_with_berghiabuscos.fasta --
bam=Berghia_Apr2021_repeatmodeler_masked_starmappedtwopassAligned.sortedByCoord.out.
bam,Berghia_Apr2021_repeatmodeler_masked_hisat2mapped_sort_shortheaders.bam,berghia_
flnc_isoforms_bestlocus.sorted.bam --etpmode --softmasking -cores 12 --useexisting -
-gff3
```

Filter Annotations

python selectSupportedSubsets.py --anySupport augustus.anysupport.gtf --fullSupport augustus.fullsupport.gtf --noSupport augustus.nosupport.gtf augustus.hints.gtf hintsfile.gff

Certain types of annotation approaches are more effective for some types of organisms

 Moral of the story: Be thoughtful about your choices for which programs and pipelines to use

Gene prediction outputs for Berghia

	Initial Prediction (BRAKER2)	Filtered Predictions (BRAKER2, any support)	StringTie predictions
No. Gene Models	61,662	26,595	91,490
Avg. Protein Length	327.1 AA	441.1 AA	5,940 AA

Challenges with gene prediction

- Eukaryotic gene predictions have high error rates
- Can be caused by:
 - Errors in sequencing and assembly
 - Mis-modeling of complex genes
 - Diversity of eukaryotic gene structure
 - Errors propagated by public databases

Genome and Transcriptome Annotation

- Genome annotation consists of five primary steps:
 - 1. Find and mask repeats
 - Identifying genes in the genome (ORFs)
 - 3. Update gene models with alternative splicing events and UTRs
 - 4. Predict non-coding RNAs
 - 5. Attaching biological information to genes
- Transcriptome annotation consists of two primary steps:
 - 1. Identifying coding regions in the transcriptome
 - 2. Attaching biological information to genes

UTRs and Alternative Splicing

- Both PASA and BRAKER3 have mechanisms for including UTR annotations, but BRAKER3 is in beta and not recommended
- UTRs and alternative splicing helpful for analyzing different types of data

Genome and Transcriptome Annotation

- Genome annotation consists of three primary steps:
 - 1. Find and mask repeats
 - Identifying genes in the genome (ORFs)
 - 3. Update gene models with alternative splicing events and UTRs
 - 4. Predict non-coding RNAs
 - 5. Attaching biological information to genes
- Transcriptome annotation consists of two primary steps:
 - 1. Identifying genes in the genome
 - 2. Attaching biological information to genes

Non-coding RNAs

- Non-coding RNAs are functional RNA molecules that regulate gene expression and other processes without being translated into proteins
- Majority of many genomes (e.g., human genome at 76-97% ncRNAs)
- Many programs available to use:
 - tRNAscan, snoScan, INFERNAL
 - IncRNAs via BLAST or RNAseq (Cufflinks models or PASA assemblies with no predicted CDS)

Genome and Transcriptome Annotation

- Genome annotation consists of five primary steps:
 - 1. Find and mask repeats
 - 2. Identifying genes in the genome (ORFs)
 - 3. Update gene models with alternative splicing events and UTRs
 - 4. Predict non-coding RNAs
 - 5. Attaching biological information to genes
- Transcriptome annotation consists of two primary steps:
 - 1. Identifying coding regions in the transcriptome
 - 2. Attaching biological information to genes

Transcriptome ORF/CDS prediction

- Important for determining coding sequence in transcripts as opposed to UTRs
- TransDecoder has been the primary means for CDS detection in transcriptome data
 - Used for de novo ORF detection using the presence of start and stop codons combined with sequence length data
- Other option is ORFanage, which uses a set of reference ORFs to find ORFs in query transcripts

TransDecoder for use in Berghia

ORF Detection

```
TransDecoder.LongOrfs -t Berghia_alltissues_onerep_trinity291.fasta TransDecoder.Predict -t Berghia alltissues onerep trinity291.fasta
```

NOTE: By default, TransDecoder.LongOrfs will identify ORFs that are at least 100 amino acids long. You can lower this via the '-m' parameter, but know that the rate of false positive ORF predictions increases drastically with shorter minimum length criteria.

Transcript Clustering

```
cd-hit-est -i Berghia_alltissues_onerep_trinity291.fasta.transdecoder.cds -o Berghia_alltissues_onerep_trinity291_transdecoder_cdhit95.fasta -c 0.95 -n 11 -M 96000 -T 24
```

Challenges with TransDecoder ORF prediction

- False positive predictions
- Incomplete transcripts
- Upstream amino acid codons
- ORFs on the opposite strand

Complete (C) 5' partial (5') 3' partial (3') Internal (I)

Schaarschmidt et al. 2020

Summary

- Eukaryotic genomes and transcriptomes are complex and diverse
- Predicting genes in eukaryotic genomes is important, but still incredibly challenging
- Use as much data as possible for building gene models including RNAseq data in constructing predictions is incredibly valuable
- Use gene predictions with care

Additional References

- Dominguez Del Angel V, Hjerde E, Sterck L, Capella-Gutierrez S, Notredame C, Vinnere Pettersson O et al. Ten steps to get started in Genome Assembly and Annotation. F1000Res. 2018;7(ELIXIR):148. DOI: 10.12688/f1000research.13598.1
- Freeman AH, Sackton TB. Building better genome annotations across the tree of life. bioRxiv. 2024.04.12.589245; https://doi.org/10.1101/2024.04.12.589245
- Salzberg, S.L. Next-generation genome annotation: we still struggle to get it right. *Genome Biol* **20**, 92 (2019). https://doi.org/10.1186/s13059-019-1715-2
- Scalzitti, N., Jeannin-Girardon, A., Collet, P. et al. A benchmark study of ab initio gene prediction methods in diverse eukaryotic organisms. *BMC Genomics* **21**, 293 (2020). https://doi.org/10.1186/s12864-020-6707-9
- Sun, YM., Chen, YQ. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. *J Hematol Oncol* **13**, 109 (2020). https://doi.org/10.1186/s13045-020-00945-8
- Yoon BJ. Hidden Markov Models and their Applications in Biological Sequence Analysis. Curr Genomics. 2009 Sep;10(6):402-15. doi: 10.2174/138920209789177575. PMID: 20190955; PMCID: PMC2766791.