Submission Details:

Current Score: 7.5 out of 10

66 minutes

7.5 out of 10

Time:

Kept Score:

Home

Modules

2023 Fall C

Announcements

Assignments

Discussions

Grades

•

Module 2-quiz-Fall 23 At

2023Fall-T-CSE579-90615-92233 > Quizzes > Module 2-quiz-Fall 23

 Due
 Sep 17 at 11:59pm
 Points 10
 Questions 10

 Available
 Sep 4 at 12am - Sep 17 at 11:59pm
 Time Lin

Time Limit 300 Minutes

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	66 minutes	7.5 out of 10

(!) Correct answers will be available on Sep 18 at 3am.

Score for this quiz: **7.5** out of 10 Submitted Sep 16 at 6:24pm This attempt took 66 minutes.

Question 2	1 / 1 pts
Function constants of arity 0 are called as	
Object Constants	
Propositional Constants	
Predicate Constants	
Proper Constants	

Question 3	1 / 1 pts
Suppose = {a, P, Q}, where a is object constant, P is Unary and Opredicate constant. Statement: ∀x P(a) is a Formula. True or False?	Q is binary
True	
○ False	

国

 $\forall x P(a) \text{ and } P(a) \text{ are formulas}$

hat are the	free varial	bles in the	below Fori	mula F1?	
: (∀x (P(x)	∧ Q(x))) -	\rightarrow (\neg P(x	Q(y)		
1 2	3	4	5		
O None					
4,5					
0 2,3					
2,3,4					

Question 5	1 / 1 pts
Statement: Following first-order formula is satisfiable. True or Fa $\{\exists x \ P(x), \exists x \ Q(x)\} \models \exists x \ (P(x) \land Q(x))$	lse?
○ True	
False	
For suppose if we take P as even and Q as odd there exists n element x which is both even and odd so it is false	o such

Partial Question 6 0.5 / 1 pts

Every student who takes CSE579 is intelligent. $\exists xStudent (x) \land Takes (x, CSE579) \rightarrow Intelligent (x)$ $\forall xStudent (x) \land Takes (x, CSE579) \rightarrow Intelligent (x)$ $\forall x \neg Student (x) \lor \neg Takes (x, CSE579) \lor Intelligent (x)$ $\exists x \neg Student (x) \lor \neg Takes (x, CSE579) \lor Intelligent (x)$

Question 7 1/1 pts Consider the following statements in first-order logic: $1) \ \forall x \ (P \ (x) \land Q(x))$ $2) \ \exists x \ (P \ (x) \land Q(x))$ $3) \ \forall x P(x) \land \forall x Q(x)$

O 3	
O 4	
O 2	
1	
state that for ev	$x\left(P\left(x ight)\wedge Q(x) ight)$, uses a universal quantifier ($orall$) to very individual x, both P(x) and Q(x) must be true. This concept that every individual in the domain satisfies

Which of the following statements are true for any first-order formula F and G, and for any interpretation !?

1) $(F \lor G)^I = \lor (F^I, G^I)$ 2) $(\neg G)^I = \neg (G^I)$ 3) $\exists x F(x)^I = t$ if $F(c^*)^I = t$ for some $c \in |I|$ 1,3

1

1,2,3

2,3

A set of clauses S is Herbrand satisfiable iff, the set of all ground instances of clauses in S is Herbrand satisfiable.

True or False?

True

False

Incorrect	Question 10	0 / 1 pts	
	Every student of CSE579 who reads everyday gets an A in C	SE579.	
	\circledcirc $\forall x \forall y Student\left(x ight) \land Day\left(y ight) \land ReadsOnDay(x,y) \land T$	$akes\left(x,CSE$ 579 $ ight)$	ightarrow GetA(x,CSE579)
	\bigcirc $\forall xStudent\left(x ight) \wedge Takes\left(x,CSE579 ight) \wedge \exists y \left(Day\left(y ight) \wedge SESSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS$	ReadsOnDay(x,y)	$))\rightarrow Get A(x,CSE579))$

```
\forall xStudent\left(x\right) \land Takes\left(x,CSE579\right) \land \forall yDay\left(y\right) \land ReadsOnDay(x,y) \\ \ominus \\ \forall xStudent\left(x\right) \land Takes\left(x,CSE579\right) \land \forall y\left(Day\left(y\right) \rightarrow ReadsOnDay(x,y)\right) \rightarrow GetA(x,CSE579)
```

Quiz Score: 7.5 out of 10

◆ Previous
Next >