2024年《电力系统分析》课程作业——暂态部分

课程大作业简介

本次作业基于同步发电机数学模型的知识点,拓展学习同步电机基本参数的概念,掌握基本参数与标准 参数的转换关系;明确电力系统故障分析与计算的模型、原理和实现方法,认知不同类型的短路故障对电力 系统运行的影响;基于测试系统完成暂态稳定的相关分析。

本次作业要求学习并初步掌握一种电磁暂态仿真软件(包括但不限于 Simulink、PSCAD 等软件)的基本功能和使用方法,并在软件上完成图 1 所示测试系统的建模、分析与计算,并撰写研究报告。

测试系统

测试系统如图 1 所示,系统为单机无穷大系统,包含左侧 1 个发电机节点、右侧 1 个无穷大系统节点,1 组三相变压器以及双回 230kV 输电线路。测试系统各元件具体参数设置如表 1,2,3 所示。

请在仿真软件中建立测试系统的模型。系统初始运行工况:左侧发电机的输出功率为 100+j20 MVA,且 机械功率和励磁电压恒定。

图 1 测试系统示意图

表1 火电机组参数

名称	单位	数值
额定容量	MVA	200
定子额定电压	kV	13.8
直轴同步电抗 Xdu	%	208
横轴同步电抗 X _{qu}	%	162
直轴暂态电抗 X'du	%	29.6
横轴暂态电抗 X'qu	%	47.4
直轴超暂态电抗 X"du	%	20.0
横轴超暂态电抗 X"qu	%	20.0
定子电阻	%	0.205
定子漏电抗 (Xp)	%	15
直轴开路暂态时间常数 T'd0	s	9.3
数 T d0	s	0.8
直轴开路超暂态时间 常数 T"d0	S	0.05
横轴开路超暂态时间 常数 T"q0	S	0.07
惯性常数	S	3.3
中性点电阻/电抗	%	1e6/0

表 2 火电厂主变 T1 参数

名称	单位	数值
额定容量	MVA	210
连结组别		YNd1
电压变比	kV	230/13.8
阻抗电压	%	14
空载电流	%	0.11
负载损耗	kW	319.37
空载损耗	kW	94.84

表 3 230kV 线路参数 (单回)

70 5 25 0 R 1 3 A 2 C 1 1 1 7			
	单位	数值	
线路长度	km	30	
正序电阻	Ω/km	0.01241	
正序电抗	Ω/km	0.2745	
正序电容	μF/km	0.01330	
零序电阻	Ω/km	0.20390	
零序电抗	Ω/km	0.82240	
零序电容	μF/km	0.00836	

基本部分(必做)

1、同步发电机标准参数与基本参数

查阅相关文献,了解同步电机**标准参数与基本参数**的基本概念,并列出两者的转换关系。根据上述测试系统中的同步电机的标准参数(见表 1)求出基本参数。

2、对称短路故障分析

- (1) 其中一回线路的首端(图中 K 点)发生三相短路故障时,试用三阶段法求出左侧发电机提供的三相 短路电流表达式,并画出其波形。理论计算时,可忽略发电机负载电流、线路电阻及并联电容的影响。
 - (2) 将理论与仿真结果进行对比,分析异同点。

3、不对称短路故障分析

- (1) 其中一回线路的首端(图中 K 点) 发生 AB 两相接地短路故障时,采用实用计算方法计算左侧发电机提供的各相短路电流,理论计算时忽略线路电阻及并联电容影响。
 - (2) 将理论与仿真结果进行对比,分析异同点。

4、 暂态稳定性分析

试采用理论和仿真方法计算 K 点发生三相短路故障时的临界切除时间,并分析造成结果差异的原因。注:理论计算时,可忽略线路电阻及并联电容影响。

拓展部分(选做)

5、风电机组对短路电流的影响研究

使用一个风电场代替左侧同步发电机,初始工况下,风电场的输出功率为100+j20 MVA。当系统发生第2、3问所述的两个短路故障时,给出风电场所提供的短路电流仿真波形,探讨其与原同步机所提供的短路电流的区别(可从电流大小、变化趋势及速度等方面),并进一步分析原因。

注:建议使用 Simulink 或 PSCAD 官方提供的风电场示例模型,注意修改变压器电压变比;风电场输出功率=单机输出功率*风机台数。

附: 学习资料

1、MATLAB/Simulink 的安装与使用:清华大学信息化用户服务系统(https://its.tsinghua.edu.cn/index.jsp)—公共软件—计算类—MATLAB—安装指南、培训讲座

- 2、MATLAB/Simulink 官方提供的示例模型与应用:
 - (1) 打开 Simulink 平台, 点击 New—Library

(2) 点击 Examples, 选 view all

(3) 在右上方的搜索框,搜索模型关键词。例如,下面方框中就是同步机并网的一个示例模型。

- 3、PSCAD 免费版下载网址 https://www.pscad.com/software/pscad/free-edition。注意,免费版对仿真系统有节点限制(15节点以内)。
- 4、PSCAD/EMTDC 建模仿真入门(b站)

 $\frac{https://www.bilibili.com/video/BV1tr4y1K77v/?spm_id_from=333.337.search-card.all.click\&vd_source=e6a2036853461c021b2ee7dd18f46771}{2}$

5、PSCAD 官方提供的示例模型与应用: PSCAD Engineering Applications https://www.pscad.com/knowledge-base/topic-248/v-