

Structure

- 1.Introduction
- 2.Data Overview
- 3. Methodology
- 4. Conclusion and Discussion

Introduction

Travel Mode Choice Theory

Which Travel Mode Would you Take?

A function of

(1) socio-demographic attributes

(2) travel purpose (work/school/...)

(3) origin/destination location

I(4) path attributes (cost/transit supply)

(Metro Transit, Star Tribune)

The most important thing is how a traveler perceives each transport mode for a given circumstances-> latent

LRT Ridership Matters: Machine Learning Approach?

\$957.0 M Green Line

Inaccurate ridership prediction: tremendous social cost

Develop a mode prediction model, unlike the conventional one, which can handle large number of demographic variables that predicts the number and attributes of potential LRT riders.

Data

Binary Target Class Label

Predictors

Predictors

Predictors

Others (Self-Explanatory)

N=30,491

Category	Level	Count
Gender	Female	17,088
Geridei	Male	18,673
	Age over 44	10,889
Age Group	Age 25-44	15,588
	Age under 25	9,284
Ethnicity	White	22,079
Ethnicity	Non-white	13,682
	Over \$6oK	16,814
Annual Income (in 2016 USD)	\$15K~\$60K	14,381
(111 2020 005)	Under \$15K	4,566
Student/	Student	10,364
Employment	Employed	22,402
Status	None of the above	2,995
Disability	Disabled	3,837
Disability	Not Disabled	31,924

First 10 Rows of the Data

ORIGIN_PLACE_TYPE	DESTIN_PLACE_TYPE	TIME_PERIOD ‡	TRIP_IN_OPPOSITE_DIR	^	GENDER ‡	Access ‡	Egress ‡	Vehicle [‡]	pay [‡]	income ‡	status ‡	disable ‡	ages
1 Social Visit / Community / Religious / Personal	Social Visit / Community / Religious / Personal	Midday	No	1	Male	Non-Motorized	Non-Motorized	Not Available	Free Ride or Pass Used	\$15K~\$60K	Others	Disabled	Over 44
2 Your HOME	Recreation / Sightseeing / Restaurant	Midday	No	2	Male	Non-Motorized	Non-Motorized	Not Available	Cash	Under \$15K	Others	Disabled	Over 4
3 Work	Your HOME	Midday	Yes	3	Female	Non-Motorized	Non-Motorized	Not Available	Go-to Card or Mobile	Under \$15K	Employed	Disabled	Under
4 Your HOME	Recreation / Sightseeing / Restaurant	PM Peak	Yes	4	Male	Motorized	Non-Motorized	Available	Go-to Card or Mobile	\$15K~\$60K	Employed	Disabled	Over 4
Doctor / Clinic / Hospital (non-work)	Social Visit / Community / Religious / Personal	PM Peak	No	5	Female	Non-Motorized	Non-Motorized	Available	Free Ride or Pass Used	\$15K~\$60K	Student	Disabled	Age 2
6 Work	Shopping	Midday	Yes	6	Female	Non-Motorized	Non-Motorized	Not Available	Cash	Under \$15K	Student	Disabled	Age 2
7 Your HOME	Work	Midday	Yes	7	Female	Non-Motorized	Non-Motorized	Available	Free Ride or Pass Used	\$15K~\$60K	Others	Disabled	Under
8 Work	Your HOME	PM Peak	No	8	Female	Non-Motorized	Non-Motorized	Not Available	Free Ride or Pass Used	Under \$15K	Employed	Disabled	Age 2
9 Social Visit / Community / Religious / Personal	Your HOME	PM Peak	No	9	Male	Motorized	Non-Motorized	Available	Go-to Card or Mobile	Under \$15K	Others	Disabled	Age 2
Doctor / Clinic / Hospital (non-work)	Social Visit / Community / Religious / Personal	PM Peak	Yes	10	Female	Non-Motorized	Non-Motorized	Not Available	Go-to Card or Mobile	Under \$15K	Others	Disabled	Over

*	eng 🕏	HH ‡	iswhite ‡	Label 💠	DAY ‡	SEASON [‡]	Orig_Rail_Meter_Disc	Dest_Rail_Meter_Disc	Orig_Bus_Meter_Disc	Dest_Bus_Meter_Disc
1	Others	1	Yes	LRT	Monday	Spring	1	0	0	0
2	English	1	No	LRT	Monday	Spring	0	1	0	1
3	English	More than 2	No	Bus	Monday	Spring	0	1	0	0
4	English	1	Yes	LRT	Monday	Spring	1	0	1	0
5	English	1	Yes	LRT	Monday	Spring	0	0	0	0
6	English	2	Yes	LRT	Tuesday	Spring	0	0	0	0
7	Others	More than 2	No	LRT	Tuesday	Spring	0	0	0	0
8	English	1	Yes	LRT	Tuesday	Spring	1	0	0	0
9	English	1	No	LRT	Tuesday	Spring	0	0	0	0
10	English	1	Yes	L RT	Tuesday	Spring	0	1	0	0

P=22 * N=30,491

Methods Overview

1. Implemented models:

- Logistic regression
- Decision trees
- Random forest
- Neural network

- 2. Training and Testing Process
 - Original dataset: 30,491 observations
 - 80:20 training testing data split (24,393 vs 6,098)

Logistic Regression

- 1. Used all (22) available predictors
- 2. Test error rate: 0.249
- 3. Simple to implement
- 4. Not doing so well in categorizing LRT users
- 5. Baseline model

Accuracy: 0.7506 Sensitivity: 0.5378 95% CI: (0.7395, 0.7614 Specificity: 0.8714

No Information Rate: 0.6378 Pos Pred Value: 0.7038 P-Value [Acc > NIR]: < 2.2e-16 Neg Pred Value: 0.7685

Prevalence : 0.3622

Kappa: 0.4312 Detection Rate: 0.1948

Detection Prevalence: 0.2768

Mcnemar's Test P-Value : < 2.2e-16 Balanced Accuracy : 0.7046

6,098	Pred	Pred
Tests	Bus	LRT
True	3,389	500
Bus	(87%)	(13%)
True LRT	1,021 (46%)	1,188 (54%)

Decision Tree (Baseline Tree)

Baseline Decision Tree

1. Baseline tree was grown using all available predictors

2. 10 fold CV was implemented for tuning parameters

3. Test error rate: 0.255

6,098 Tests	Pred Bus	Pred LRT
True Bus	3,190 (82%)	699 (18%)
True LRT	850 (39%)	1,350 (61%)

Pruned Tree

Pruning Result

1. Pruning resulted in 9 predictors to be utilized

2. 10 fold CV was implemented for tuning parameters

3. Test error rate: 0.240

6,098 Tests	Pred Bus	Pred LRT
True Bus	3,430 (88%)	459 (12%)
True LRT	1,005 (45%)	1,204 (55%)

Most Pruned Tree

- 1. Pruning resulted in 6 predictors to be utilized
 - Discretized Distance from Origin to nearest LRT station
 - Discretized Distance from Destination to nearest LRT station
 - Origin Place Type
 - Destination Place Type
 - Access Mode (Motorized or not)
 - Season
- 2. Most straightforward interpretation
- 3. Test error rate: 0.249

6,098 Tests	Pred Bus	Pred LRT
True Bus	3,462 (89%)	427 (11%)
True LRT	1,094 (50%)	1,115 (50%)

Random Forest

Model Fitting

- 1. All predictors were used
- 2. Test error rate: 0.236
- 3. Simple to implement, but higher time complexity
- 4. Slightly overfitting, but acceptable
- 5. Aligning features importance with DT
- 6. Does not doing so well with categorizing LRT

6,098 Tests	Pred Bus	Pred LRT
True Bus	3,480 (89%)	409 (11%)
True LRT	1,034 (47%)	1,175 (53%)

Neural Network

- 1. FNN with between 1-5 layers and 32-256 nodes per layer and different activation functions
- 2. All results were similar, with the lowest test error of 26.0% with 2 layers of 32 nodes

6,098 Tests	Pred Bus	Pred LRT
True Bus	3,375 (87%)	514 (13%)
True LRT	1,050 (47%)	1,159 (53%)

Conclusion

Discussion

- 1. Smallest test error rate of 23.6% (Random Forest)
- 2. Behavioral interpretation with decision trees and RF's predictor importance plot are available for better interpretability
- 3. The main purpose of the models are predicting & analyzing LRT for given demographic/geographic input -> The accuracy for LRT could be another metric (False LRT is costlier than False Bus)
- 4. **Baseline Decision Tree** had the most accurate LRT prediction
- 5. Incorporating path attributes (in-vehicle time, # of transfers...)
 predictors derivable from shortest path passenger assignment
 algorithms would significantly increase the model accuracy

Results Summary

Method	Training Error Rate	Test Error Rate	Predicted LRT Given True LRT*
Logistic Regression	0.250	0.249	1,188 (-46%)
Baseline Decision Tree	0.183	0.256	<mark>1,350</mark> (-39%)
Pruned Decision Tree	0.242	0.240	1,204 (-45%)
Most Pruned Tree	0.251	0.249	1,115 (-50%)
Random Forest	0.190	0.236	1,175 (-47%)
Neural Network	0.260	0.261	1,159 (-47%)

^{*} Numbers in the parentheses: The difference proportion of the predicted LRT ridership compared to the actual ridership (2,209)

Future Work

- Potential approaches
- 1. Implementing more models such as SGD Classifier or LDA
- 2. Applying Factors analysis since variables might have underlying relationships
- 3. Better feature engineering
- 4. Fine tuning Neural Network
- 5. Comparing model interpretability versus prediction accuracy

Thank you for your attention!

Questions and Answers

