부울대수

- 기본적인 불 대수식은 AND, OR, NOT을 이용하여 표현
- AND식은 곱셈의 형식으로 표현하고, OR 식은 덧셈의 형식으로 표현
- NOT식은 Ā 또는 A'로 표현
- 완전한 논리식은 입력 항목들의 상태에 따른 출력을 결정하는 식

A=0 and B=1 일 때 출력을 1로 만들려는 경우 출력 논리식

$$F = \overline{A}B$$

A=0 or B=1 일 때 출력을 1로 만들려는 경우 출력 논리식

$$F = \overline{A} + B$$

(A=0 and B=1) or (A=1 and B=0) 일 때 출력을 1로 만들려는 경우 출력 논리식

$$F = \overline{AB} + A\overline{B}$$

1 불 대수 법칙

- 불 대수의 모든 항은 0 또는 1을 갖는다.
- [표 3-1]은 증명 없이 사용하기로 한 AND와 OR의 불 대수 공리다.

표 3-1 불 대수 공리

P1	A=0 또는 $A=1$
P2	$0 \cdot 0 = 0$
P3	$1 \cdot 1 = 1$
P4	0+0=0
P5	1+1=1
P6	$1 \cdot 0 = 0 \cdot 1 = 0$
P7	1+0=0+1=1

표 3-2 불 대수의 기본 법칙

항등 · 누승 · 보간 · 이중 부정 법칙

$$\mathbf{1} A + 0 = 0 + A = A$$

$$3A+1=1+A=1$$

쌍대성duality

불 대수 공리나 기본 법칙에서 좌우 한 쌍에서 0과 1을 서로 바꾸고 ·과 +도 서로 바꾸면 다른 한쪽이 얻어지는 성질이다. 한쪽을 다른 쪽의 쌍대dua라고 한다. 예를 들어 1과 2는 쌍대성이 성립하며 3과 4,5와 5,7과 3도 마찬가지다.

$$\bigcirc A + \overline{A} = 1$$

$$\mathbf{8} A \cdot \overline{A} = 0$$

$$9\overline{\overline{A}} = A$$

교환 법칙commutative law

$$\bigcirc A + B = B + A$$

$$\mathbf{n} A \cdot B = B \cdot A$$

결합 법칙associate law

$$(A+B)+C=A+(B+C)$$

$$(B \cdot A \cdot B) \cdot C = A \cdot (B \cdot C)$$

분배 법칙distributive law

$$(A \cdot (B+C)=A \cdot B + A \cdot C)$$

(b)
$$A+B \cdot C = (A+B) \cdot (A+C)$$

드모르간의 정리De Morgan's theorem

$$\mathbf{G} \overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\mathbf{O} \overline{A \cdot B} = \overline{A} + \overline{B}$$

흡수 법칙absorptive law

$$\bigcirc A + A \cdot B = A$$

$$(A + B) = A$$

합의合意의 정리 consensus theorem

$$\bigcirc AB + BC + \overline{A}C = AB + \overline{A}C$$

$$(A+B)(B+C)(\overline{A}+C) = (A+B)(\overline{A}+C)$$

$$AB+BC+\overline{A}C=AB+\overline{A}C$$
의 증명

좌변을 다시 작성하면

$$AB + BC + \overline{A} C = AB + \overline{A}C + (A + \overline{A})BC$$

$$= AB + \overline{A}C + ABC + \overline{A}BC$$

$$= AB(1+C) + \overline{A}C(1+B)$$

$$= AB + \overline{A}C$$

❖ 진리표를 이용한 분배법칙 *A*+*BC*=(*A*+*B*)(*A*+*C*)의 증명

표 3-3 진리표를 이용한 분배 법칙 $A+B\cdot C=(A+B)\cdot (A+C)$ 의 증명

		좌변식		우변식			
A	A B C	C	$B \cdot C$	$A+B\cdot C$	A+B	A+C	$(A+B)\cdot (A+C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1
		^					

❖ 진리표를 이용한 드모르간의 정리 증명

표 3-4 진리표를 이용한 드모르간의 정리 $\overline{A+B}$ = $\overline{A}\cdot\overline{B}$ 의 증명

A	\boldsymbol{B}	A+B	좌변식 $\overline{A+B}$	\overline{A}	\overline{B}	우변식 $\overline{A}\cdot\overline{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

• 드모르간의 정리는 논리 게이트로 표현할 수 있고 항이 많아도 동일하게 적용할 수 있다.

(a) 드모르간의 정리 (b) $\overline{A+B} = \overline{A} \cdot \overline{B}$

$$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$

$$\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$$

(c) 3변수인 경우

(b) 드모르간의 정리 $\overline{\boldsymbol{v}} \overline{A \cdot B} = \overline{A} + \overline{B}$

$$\overline{A+B+C+D} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$

$$\overline{A \cdot B \cdot C \cdot D} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$$

(d) 4변수인 경우

그림 3-16 드모르간의 정리를 논리 게이트로 표현한 논리 기호와 일반식

2 불 대수식의 표현 형태

□ 곱의 합과 최소항

• 곱의 합(SOP, Sum Of Product)은 1단계인 입력이 AND항(곱의 항)으로 구성되고, 2단계인 출력이 OR항(합의 항)으로 만들어진 논리식이다.

❖ 최소항

- 최소항(minterm)은 입력 변수를 모두 포함하는 AND항이다.
- 최소항은 입력이 0이면 입력 변수의 부정을 쓰고, 입력이 1이면 입력 변수를 그대로 쓴 후 AND로 결합한다.
- 예를 들어 입력 변수가 A, B일 때 만들 수 있는 최소항은 \overline{AB} , \overline{AB} , $A\overline{B}$, AB 다.

표 3-5 최소항 표현 방법

(a) 2변수 최소항

A	B	최소항	기호
0	0	$\overline{A}\overline{B}$	m_0
0	1	$\overline{A}B$	m_1
1	0	$A\overline{B}$	m_2
1	1	AB	m_3

(b) 3변수 최소항

1	4	\boldsymbol{B}	C	최소항	기호
()	0	0	$\overline{A}\overline{B}\overline{C}$	m_0
()	0	1	$\overline{A}\overline{B}C$	m_1
()	1	0	$\overline{A}B\overline{C}$	m_2
()	1	1	$\overline{A}BC$	m_3
-	1	0	0	$A\overline{B}\overline{C}$	m_4
-	1	0	1	$A\overline{B}C$	m_5
-	1	1	0	$AB\overline{C}$	m_6
_	1	1	1	ABC	m_7

❖ 최소항 식

• 최소항 식은 출력이 1이 되는 항의 입력 변수를 AND 연산하고, 각 항을 OR 연산하는 식이다.

A	B	C	F	최소항	기호
0	0	0	1	$\overline{A}\overline{B}\overline{C}$	m_0
0	0	1	1	$\overline{A}\overline{B}C$	m_1
0	1	0	0	$\overline{A}B\overline{C}$	m_2
0	1	1	1	ĀBC	m_3
1	0	0	0	$A\overline{B}\overline{C}$	m_4
1	0	1	1	$A\overline{B}C$	m_5
1	1	0	0	$AB\overline{C}$	m_6
1	1	1	1	ABC	m_7

$$F(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC$$

$$= m_0 + m_1 + m_3 + m_5 + m_7$$

$$= \sum m(0, 1, 3, 5, 7)$$

(a) 진리표

(b) 최소항 식

그림 3-18 F(A,B,C)= $\sum m(0,1,3,5,7)$ 의 진리표와 최소항 식

□ 합의 곱과 최대항

• 합의 곱(POS, Product Of Sum)은 1단계인 입력이 OR항(합의 항)으로 구성되고, 2단계인 출력이 AND항(곱의 항)으로 만들어진 논리식이다.

그림 3-19 $F = (\overline{A} + B + C)(\overline{B} + D)(\overline{A} + C)$ 의 회로도

❖ 최대항

- 최대항(maxterm)은 입력 변수를 모두 포함하는 OR항이다.
- 최대항은 입력이 0이면 입력 변수를 그대로 쓰고, 입력이 1이면 입력 변수의 부정을 쓴 후 OR로 결합한다.
- 예를 들어 논리 변수가 A, B일 때 만들 수 있는 최대항은 (A+B), $(A+\overline{B})$, $(\overline{A}+B)$, $(\overline{A}+\overline{B})$ 다.

표 3-6 최대항 표현 방법

(a) 2변수 최대항

A	B	최대항	기호
0	0	A+B	M_0
0	1	$A+\overline{B}$	M_1
1	0	$\overline{A}+B$	M_2
1	1	\overline{A} + \overline{B}	M_3

(b) 3변수 최대항

A	B	C	최대항	기호
0	0	0	A+B+C	M_0
0	0	1	$A+B+\overline{C}$	M_1
0	1	0	$A + \overline{B} + C$	M_2
0	1	1	$A + \overline{B} + \overline{C}$	M_3
1	0	0	$\overline{A}+B+C$	M_4
1	0	1	$\overline{A}+B+\overline{C}$	M_5
1	1	0	$\overline{A} + \overline{B} + C$	M_6
1	1	1	$\overline{A} + \overline{B} + \overline{C}$	M_7

❖ 최대항 식

• 최대항 식은 출력이 0이 되는 항의 입력 변수를 OR 연산하고, 각 항을 AND 연산하는 식이다.

A	B	C	F	최대항	기호
0	0	0	0	A+B+C	M_0
0	0	1	0	$A+B+\overline{C}$	M_1
0	1	0	1	$A+\overline{B}+C$	M_2
0	1	1	0	$A + \overline{B} + \overline{C}$	M_3
1	0	0	1	$\overline{A}+B+C$	M_4
1	0	1	0	$\overline{A}+B+\overline{C}$	M_5
1	1	0	1	$\overline{A} + \overline{B} + C$	M_6
1	1	1	0	$\overline{A} + \overline{B} + \overline{C}$	M_7

(a) 진리표

$$\begin{split} F(A,B,C) &= (A+B+C)(A+B+\overline{C})(A+\overline{B}+\overline{C})(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+\overline{C})\\ &= M_0 \cdot M_1 \cdot M_3 \cdot M_5 \cdot M_7\\ &= \prod M(0,1,3,5,7)\\ \text{(b) 최대항 식} \end{split}$$

그림 3-20 $F(A, B, C) = \prod M(0, 1, 3, 5, 7)$ 의 진리표와 최대항 식

□ 최소항과 최대항의 관계

- 최소항 식은 출력이 1인 항을 곱의 합(SOP)으로 나타낸 것이고, 최대항 식은 출력이 0인 항을 합의 곱(POS)으로 나타낸 것이다.
- 따라서 최소항과 최대항은 서로 보수의 성질을 띤다고 할 수 있다.

표 3-7 3변수 최소항과 최대항의 관계

A	B	C	F	최소항	기호	최대항	기호	관계
0	0	0	0	$\overline{A}\overline{B}\overline{C}$	m_0	A+B+C	M_0	$M_0 = \overline{m_0}$
0	0	1	1	$\overline{A}\overline{B}C$	m_1	$A+B+\overline{C}$	M_1	$M_1 = \overline{m_1}$
0	1	0	1	$\overline{A}B\overline{C}$	m_2	$A + \overline{B} + C$	M_2	$M_2 = \overline{m_2}$
0	1	1	1	$\overline{A}BC$	m_3	$A + \overline{B} + \overline{C}$	M_3	$M_3 = \overline{m_3}$
1	0	0	1	$A\overline{B}\overline{C}$	m_4	$\overline{A}+B+C$	M_4	$M_4 = \overline{m_4}$
1	0	1	1	$A\overline{B}C$	m_5	$\overline{A}+B+\overline{C}$	M_5	$M_5 = \overline{m_5}$
1	1	0	0	$AB\overline{C}$	m_6	$\overline{A}+\overline{B}+C$	M_6	$M_6 = \overline{m_6}$
1	1	1	0	ABC	m_7	$\overline{A} + \overline{B} + \overline{C}$	M_7	$M_7 = \overline{m_7}$

수고하셨습니다!