EXAMEN D'ANALYSE NUMERIQUE

Alex Aussem, Jonas Koko et T.Q. Phong Décembre 2001

Exercice I.

Dans de nombreux problèmes de moindres carrés, en particulier en statistique, on cherche un (petit) sous-ensemble J d'indices contenus dans $1, \ldots, n$, tel que le solution x_J du problème :

$$\{ In f || \mathbf{A}x - b ||_2; x_j = 0 \text{ pour } j \notin J \}.$$

ait un résidu d'erreur inférieur à un seuil donné. L'exercice suivant vise à établir des formules qui permettent de calculer la variation du résidu d'erreur si on restreint le problème initial à l'ensemble J.

Soient \mathbf{A}_1 une matrice de format (n,p), \mathbf{A}_2 une matrice de format (n,q), x_1 un vecteur de dimension p, et x_2 un vecteur de dimension q. On suppose que le rang de \mathbf{A}_1 vaut p.

On pose : $\mathbf{A} = [\mathbf{A}_1, \mathbf{A}_2]$ et $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. On se donne un vecteur b de dimension n.

- 1. A quelle condition le système $\mathbf{A}x = b$ est-il compatible?
- 2. Donner une CNS pour que x réalise le minimum de $E(x) = ||\mathbf{A}x b||_2^2$. A quelle condition la solution des moindres carrés est-elle unique?
- 3. Soit $\bar{x} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix}$ une solution des moindres carrés de $\|\mathbf{A}x b\|_2^2$. Exprimer \bar{x}_1 en fonction de \mathbf{A}_1 , \mathbf{A}_2 , b et \bar{x}_2 .
- 4. En déduire la relation $\mathbf{A}_2^t \mathbf{K}_1 (\mathbf{A}_2 \bar{x}_2 b) = 0$ ou \mathbf{K}_1 est une matrice à déterminer en fonction de \mathbf{A}_1 .
- 5. A quelle application correspond la matrice \mathbf{K}_1 ?
- 6. Soit \tilde{x}_1 la solution des moindres carrés de $\|\mathbf{A}_1\tilde{x}_1 b\|_2^2$. On pose $\bar{m} = \|\mathbf{A}\bar{x} b\|_2^2$ et $\tilde{m} = \|\mathbf{A}_1\tilde{x}_1 b\|_2^2$. Montrer que

$$\tilde{m} - \bar{m} = b^t \mathbf{K}_1 \mathbf{A}_2 \bar{x}_2$$

7. Application numérique. Déterminer $\tilde{m}, \bar{m}, \bar{x}, \tilde{x}_1, \mathbf{K}_1$ avec :

$$\mathbf{A}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \quad \mathbf{A}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Evercice II

Exercise 11.

On se donne : $\mathbf{A} = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix}$

- 1. Trouver une matrice de permutation, \mathbf{P} , et deux matrices triangulaires \mathbf{L} et \mathbf{U} telles que $\mathbf{P}\mathbf{A} = \mathbf{L}\mathbf{U}$. On utilisera la stratégie du pivot partiel (i.e. recherche du plus grand terme en valeur absolu sous la colonne).
- 2. En déduire l'inverse de A.