

Professora: Aline de Oliveira

Contagem, 2020

ASPECTOS HITÓRICOS

Propriedades semelhantes entre os elementos

Necessidade de organizar informações

Tabela Periódica

ASPECTOS HITÓRICOS

As tríades de Döbereiner (1817)

Trios de átomos que apresentavam propriedades semelhantes

O parafuso telúrico de Chancourtois (1862)

Ordenamento crescente de massa atômica, em uma espiral.

- Em cada volta do parafuso, elementos com diferença de, aproximadamente, 16 unidades de massa eram verticalmente alinhados;
- Chancourtois foi quem primeiro percebeu que as propriedades eram comuns a cada sete elementos.

ASPECTOS HITÓRICOS

Lei das oitavas e Newlands (1863)

Notou que existiam muitas propriedades similares em pares de elementos que diferiam em oito unidades de massa atômica (associava as oitavas com intervalos de escala musical)

Dó	Ré	Mi	Fá	Sol	Lá	Si
Н	Li	Be	В	С	N	0
F	Na	Mg	Αl	Si	Р	S
Cl	K	Ca	Cr	Ti		

A tabela periódica de Mendeleiev (1869)

Os elementos foram organizados em ordem crescente de massa atômica, em filas horizontais. Nas colunas estavam localizados os elementos com propriedades semelhantes. Isso permitia a previsibilidade de propriedades para elementos ainda não conhecidos, o que ocasionou a existência de lacunas em sua tabela.

ASPECTOS HITÓRICOS

A tabela de Moseley (1897)

Os elementos são ordenados por ordem crescente do número atômico.

Propriedades dos elementos

dependem

- Número atômico;
 - Configuração eletrônica do último nível.

Página 102 do livro

Família ou grupo (as dezoito linhas verticais)

Conjunto de átomos com propriedades químicas semelhantes e mesma configuração eletrônica no último nível de energia (nível de valência).

Família ou grupo (as dezoito linhas verticais)

Conjunto de elementos com propriedades químicas semelhantes e mesma configuração eletrônica no último nível de energia (nível de valência).

Coluna	IUPAC	Nome	
1A	1	Metais alcalinos	
2A	2	Metais alcalino-terrosos	
3A	13	Metais terrosos ou família do Boro	
4A	14	Família do carbono	
5A 15		Família do nitrogênio	
6A	16	Calcogênio	
7A	17	Halogênio	
8A	18	Gases nobres	
Família B 3 a 12		Metais de transição	
Hidrogênio	1	Não pertence a nenhuma família	

Elementos típicos ou representativos

Períodos (as sete linhas horizontais)

Conjunto de elementos com elétrons dispostos no mesmo número de níveis de energia.

6º período: série dos lantanídeos;

7º período: série dos actinídeos.

Elementos de transição interna

Classificação dos elementos

Metais: 86 elementos (bons condutores de calor e eletricidade).

Semi-metais: 7 elementos (propriedades intermediárias entre metais e ametais).

Não-metais (ametais): 11 elementos (mal condutores de calor e eletricidade)

Gases nobres: 6 elementos (inertes).

Elementos naturais

Encontrados na natureza

Elementos artificiais

Produzidos artificialmente em laboratórios especiais:

☐ Cisurânicos (Z < 92)

Exemplos: Tecnécio (43Tc); Promécio

 $\binom{61}{61}$ Pm); Astato $\binom{85}{61}$ e Frâncio $\binom{87}{61}$.

☐ Transurânicos (Z > 92)

Exemplo: Neptúnio (93Np).