Figure 1: General structure of activators of non-genomic Estrogen-Like Signalling (ANGELS).

Figure 2: Estrogen deficiency causes increased apoptosis of osteoblasts and osteocytes in murine vertebral bon

Figure 3: Inhibition of apoptosis of osteoblastic cells.

Figure 4: Inhibition of apoptosis of MLO-Y4 osteocytic cells by ANGELS

Figure 5: Blockade of the anti-apoptotic effect of estrogen and ANGELS by ICI 182,780 in osteoblastic cells

Figure 6: Inhibition of the antiapoptotic effect of estrogen and ANGELS by ICI 182,780 in MLO-Y4 osteocytic cells

<u>Figure 7</u>: Estrogen receptor a or b is required for the antiapoptotic effects of 17b estradiol, 17a estradiol, and estratri ne-3-ol on etoposide-induced apoptosis (experiment 1/21//99).

Figure 8: Activation of Extracellular Signal Regulated Kinases (ERKs)

Figure 9: The effect of estrogenic compounds on the activation of ERK1/2 is blocked by specific inhibitor.

ರ # Figure 10: The specific inhibitor of ERK activation abolishes the anti-apoptotic of the estrogenic compounds.

[2S-(2a,4aα,10aβ)]-1,2,3,4,4a,9,10,10a-Octahydro-7-hydroxy-2-methyl-2-phenanthrenecarboxaldehyde

 $C_{16}H_{20}O_2$ MW=244

[2S-(2a,4aα,10aβ)]-1,2,3,4,4a,9,10,10a-Octahydro-7-hydroxy-2-methyl-2-phenanthrenemethanol

 $C_{16}H_{22}O_2$ MW=246

Figure 12

a

Figure 14: Mechanisms of Estrogen Receptor Action

Formation occurs only on sites of previous osteoclastic bone resorption.

Small and slow increase in trabecular thickness

Large and rapid increase in trabecular thickness

Anti-fracture efficacy (through inhibition of osteocyte apoptosis)

Figure 15: Implications of the effects of anti-resorptive vs. non anti-resorptive agents on apoptosis

STRUCTURE
-O l
-Qi3
-OCH3
0-с-снз
0-CH2-CH3
-OCH3
och ₃
C≡CH
<u>``</u>
امر حا
0CH/2—(Q)
Сенвое
OSO3Nc
=
-C5HgC
-0-0-(CH ₂) ₂
-0-C-(CH ₂) ₂
-C4 H4O2 -C16H32O2
-C16H32O2

Figure 16A

R AND/OR F	SUBSTITUTIONS		
∴	STRUCTURE		
SODIUM PHOSPI	-0-P03No2		
ENANTH"	-C7H120		
GLUCURONIDE SOOIUM S."	-C6H8O6Nc		
STEAT	-C18H340		
TRETHYL AMMONIUM S	-N-(C2H5)3		
CYPIC	0-C-CH2CH2 -		
178 EST.	04. OH		
17a ES1	OH OH		

Namet	3, 17 ³ -Estradol 3, 173-Estradol 3-O-ME	Estratione-3-ol	3,170.Estradol	2.Hydoxy-17p-stradol
	R=E R=CH3	R=R	R=ff R=CB3CO	R-FF
			El _{Ru}	

R=H Estriol

R=CFI3 Estriol 3-O-ME

R=CFI3 Estriol 3-O-ME

R=CFI3 Mestratol

R=CFI3 Mestratol

Estrone 3-0-ME

R=CH3

Estroce

R

3,178-Estradiol

Phonoi

Diethylstilbesterol

Diedry Istilbestarol-mono-O-ME

Diethylstilbestarol-di-O-ME

Figure 18

Figure 19: Effect of the all peptide on the 17bE₂-induced ERE activity in 293 cells

Figure 20: Effect of the all peptide on the 17bE₂-induced inhibition of IL-6 activity in 293 cells

Figure 21: Effect of the all peptide on the Etoposide-induced apoptosis of 17b-BSA-activated 293 cells