Chapter 26 Introduction à la topologie

26.1 Topologie de la droite réelle

Exercice 26.1

Déterminer, pour tous les sous-ensembles de \mathbb{R} suivants, si ce sont des ouverts, des fermés, les deux, ou ni l'un ni l'autre. Donner également leurs intérieurs, adhérences et frontières.

- **1.** $A = \{x\}$ où $x \in \mathbb{R}$.
- **2.** B = [0, 1].
- **3.** $C = [0, 1] \cup \{2\}.$
- **4.** $D =]0, 1] \cup]3, 7].$
- 5. $E = [0, +\infty[$.
- **6.** $F = \mathbb{Q}$.

Exercice 26.2

On considère l'ensemble $\mathbb N$ comme sous-ensemble de $\mathbb R$.

- **1.** Montrer que \mathbb{N} n'est pas un ouvert de \mathbb{R} .
- **2.** Montrer que chaque singleton $\{n\}$, avec $n \in \mathbb{N}$, est un fermé.
- **3.** Montrer que $A =]-\infty, 0[\cup (\bigcup_{n \in \mathbb{N}}]n, n+1[)$ est un ouvert de \mathbb{R} .
- **4.** En déduire que \mathbb{N} est un fermé de \mathbb{R} .
- **5.** L'ensemble $\mathbb{Z} \cup [0, 1]$ est-il un ouvert ou un fermé de \mathbb{R} ?

Donner son intérieur et son adhérence.

6. L'ensemble $\mathbb{Q} \cap [0, 1]$ est-il un ouvert ou un fermé de \mathbb{R} ?

Donner son intérieur et son adhérence.

Exercice 26.3

Soit A une partie non vide majorée de \mathbb{R} .

Montrer que sup A est l'unique réel qui soit à la fois un majorant de A et un point adhérent à A.

Exercice 26.4

Dans l'espace vectoriel normé $E = \mathbb{R}$, on pose $A = \mathbb{Z}$ et $B = \left\{ \left. n - \frac{1}{2n} \, \right| \, n \in \mathbb{N}^{\star} \, \right\}$.

Montrer que A et B sont fermés et que A + B n'est pas fermé.

Étudier de même pour $E = \mathbb{R}^2$, les ensembles

$$A = \{ (x, y) \in]0, +\infty[^2 \mid xy = 1 \}$$
 et $B = \{ 0 \} \times]-\infty, 0]$ et $A + B$.

Exercice 26.5

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle, on note $U=\left\{u_n\mid n\in\mathbb{N}\right\}$ l'ensemble de ses valeurs. On suppose que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$. Déterminer l'adhérence \overline{U} de U.

Exercice 26.6

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle, on note $U=\left\{u_n\mid n\in\mathbb{N}\right\}$ l'ensemble de ses valeurs.

- 1. Montrer que l'ensemble des valeurs d'adhérence A de la suite (u_n) est fermé.
- **2.** On pose pour tout $n \in \mathbb{N}$, $U_n = \{ k \in \mathbb{N} \mid k \ge n \}$. Montrer que $A = \bigcap_{n \in \mathbb{N}} \overline{U_n}$.
- **3.** Montrer que $\overline{U} = A \cup U$.

Exercice 26.7 Points isolés

Soit S une partie de \mathbb{R} . On dit que $p \in S$ est un point isolé de S si

$$\exists r > 0, |p-r, p+r| \cap S = \{p\}.$$

On note $\operatorname{Isol}(S)$ l'ensemble des points isolées de S. On dit que $p \in \mathbb{R}$ est un *point d'accumulation* de S si

$$\forall r > 0, (]p - r, p[\cup]p, p + r[) \cap S \neq \emptyset.$$

On note Acc(S) l'ensemble des points d'accumulation de S.

- 1. Donner un exemple d'ensemble S avec un point isolé, un point d'accumulation qui appartient à S, et un point d'accumulation qui n'appartient pas à S.
- 2. Montrer

$$\operatorname{Isol}(S) \cup \operatorname{Acc}(S) = \overline{S}$$
 et $\operatorname{Isol}(S) \cap \operatorname{Acc}(S) = \emptyset$.

- **3.** Montrer que Acc(S) est un fermé de \mathbb{R} . Donner un exemple où Isol(S) n'est pas fermé.
- 4. Montrer

$$\operatorname{Isol}\left(\overline{S}\right)\subset S.$$

5. Montrer que si A est fermé et x est isolé dans A, alors $A \setminus \{x\}$ est fermé.

Exercice 26.8

Trouver une partie A de \mathbb{R} telle que les sept ensembles A, \overline{A} , \overline{A} , \overline{A} , \overline{A} , \overline{A} et A soient deux à deux distincts.

26.2 Topologie de \mathbb{R}^p

Exercice 26.9

Montrer que les boules ouvertes de \mathbb{R}^m sont ouvertes puis que les boules fermées sont fermées.

Exercice 26.10

Dans cet exercice, on utilise la définition des ouverts *via* les boules, et pas de critères séquentiels. On représentera chaque raisonnement sur un dessin.

On considère la bande verticale

$$C = \left\{ (x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1 \right\} \subset \mathbb{R}^2.$$

- Montrer que C est fermé.
- Quel est l'intérieur de C?

Exercice 26.11

Dans cet exercice, on utilise la définition des ouverts *via* les boules, et pas de critères séquentiels. On représentera chaque raisonnement sur un dessin.

On considère les parties de \mathbb{R}^2

$$U =]-1, 1[\times]-1, 1[$$
 et $U = [-1, 1] \times [-1, 1].$

1. Calculer le plus grand réel r, et le plus petit réel R tels que

$$B(0,r) \subset F \subset B(0,R)$$
.

- **2.** Montrer que U est ouvert.
- 3. Montrer que F est fermé.
- **4.** Déterminer l'intérieur de F.

Exercice 26.12

Représenter graphiquement les parties suivantes de \mathbb{R}^2 et dire pour chacune d'elle si c'est un ouvert, un fermé, ou ni l'un ni l'autre. Déterminer leurs adhérences et intérieurs.

- **1.** $\{(x, y) \in \mathbb{R}^2 \mid |x| \neq 1 \text{ et } |y| \neq 1 \}$.
- **2.** $\{(x, y) \in \mathbb{R}^2 \mid |x| = 1 \text{ et } |y| \neq 1 \}.$
- **3.** $\{(x, y) \in \mathbb{R}^2 \mid |x| \neq 1 \text{ ou } |y| \neq 1 \}.$
- **4.** $\{(x,y) \in \mathbb{R}^2 \mid 1 xy > 0 \}.$
- 5. $\{(x, y) \in \mathbb{R}^2 \mid 3x + 4y = 2\}.$
- **6.** $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$
- 7. $\{(x, y) \in \mathbb{R}^2 \mid xy = 1 \}$.
- **8.** $\bigcup_{n \in \mathbb{N}^*} \{ 1/n \} \times [0,1].$

Exercice 26.13

Pour $n \in \mathbb{N}^*$, on définit $A_n = \{ (x, y) \in \mathbb{R}^2 \mid x^n + y^n = 1 \}$.

 A_n est-il ouvert? fermé? borné? convexe?

Exercice 26.14

Soit $k \in \mathbb{R}_+^*$ et

$$A_n = \left\{ (x, y) \in \mathbb{R}^2 \, \middle| \, \left(x - \frac{1}{n} \right)^2 + \left(y - \frac{1}{n} \right)^2 \le \frac{k^2}{n^2} \, \right\} \quad \text{ et } \quad \Omega = \bigcup_{n \in \mathbb{N}^*} A_n.$$

 Ω est-il ouvert ? Ω est-il fermé ?

Exercice 26.15

Soit

$$A = \left\{ \left. \left(t, \sin \frac{1}{t} \right) \, \right| \, t > 0 \, \right\} \subset \mathbb{R}^2.$$

Montrer que A n'est ni ouvert ni fermé. Déterminer l'adhérence \bar{A} de A.

Exercice 26.16

Soient p_1 et p_2 les projections de \mathbb{R}^2 sur \mathbb{R}

$$p_1:(x,y)\mapsto x,$$
 $p_2:(x,y)\mapsto y.$

Soit *A* un ouvert de \mathbb{R}^2 . Montrer que $p_1(A)$ et $p_2(A)$ sont des ouverts de \mathbb{R} .

Exercice 26.17

Soient *A* et *B* deux parties de \mathbb{R}^p .

1. Montrer que si $A \subset B$, alors $\overset{\circ}{A} \subset \overset{\circ}{B}$ et $\overline{A} \subset \overline{B}$.

2. Comparer
$$\overline{A}$$
 et \overline{A} .

$$\frac{\circ}{\circ}$$
 \circ \circ **3.** Comparer A et A .

- **3.** Comparer A et A.
- **4.** Comparer $A \cup B$ et $A \cup B$.
- 5. Comparer $\stackrel{\circ}{A} \cap \stackrel{\circ}{B}$ et $\stackrel{\circ}{A} \cap \stackrel{\circ}{B}$.
- **6.** Comparer $\overline{A} \cup \overline{B}$ et $\overline{A \cup B}$.
- 7. Comparer $\overline{A} \cap \overline{B}$ et $\overline{A \cap B}$.

Exercice 26.18

Soit f une fonction continue de $\mathbb R$ dans $\mathbb R$. Montrer que la courbe représentative de f, c'est-à-dire

$$\mathcal{C} = \{ (x, f(x)) \mid x \in \mathbb{R} \}$$

est un fermé de \mathbb{R}^2 .

26.3 Compacité

26.4 Topologie de \mathbb{C}^p