```
In [1]: # Author: Chidura Santosh
# Importing required Libraries

import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt
import sklearn
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_boston
```

In [2]: # Loading Data and creating data frame with the data boston = load_boston() features = pd.DataFrame(boston.data,columns=boston.feature_names) targets=boston.target

Out[3]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
(0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
•	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
;	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [4]: #summary of the boston data statistics
features.describe()

Out[4]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000
mean	3.593761	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674
std	8.596783	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.44(
75%	3.647423	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.22
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900
4												•

<class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 13 columns): CRIM 506 non-null float64 ΖN 506 non-null float64 INDUS 506 non-null float64 CHAS 506 non-null float64 NOX 506 non-null float64 506 non-null float64 RM 506 non-null float64 AGE DIS 506 non-null float64 506 non-null float64 RAD TAX 506 non-null float64 PTRATIO 506 non-null float64 506 non-null float64 LSTAT 506 non-null float64

dtypes: float64(13)
memory usage: 51.5 KB

```
In [6]: # To check and display the sum of null values
    features.isnull().sum()

Out[6]: CRIM     0
     ZN      0
     TNDUS     0
```

INDUS 0 CHAS 0 NOX 0 RM 0 AGE 0 DIS 0 0 RAD TAX 0 PTRATIO 0 В 0 LSTAT dtype: int64

In [7]: # Creating heat map for data visualization with correlation and coefficients

f, ax = plt.subplots(figsize=(15, 15))
sns.heatmap(data=features.corr(), annot=True)

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x25dcb4c1588>

In [8]: #from the above Heat map RM and Lstat have higher positive and negative corelation with price values #RAD TAX have high multi colinearity same goes with DIS and age, dis and nox column values # displaying all the column names features.columns

```
In [9]: # Plotting the 'RM', 'PTRATIO', 'LSTAT' against Proce
plt.figure(figsize=(20, 5))

# iterating for each column 'RM', 'PTRATIO', 'LSTAT'
for i, col in enumerate(['RM', 'PTRATIO', 'LSTAT']):
    plt.subplot(1, 3, i+1)
    x = features[col]
    y = targets
    plt.plot(x, y, 'o')
    # Create regression Line
    plt.plot(np.unique(x), np.polyld(np.polyfit(x, y, 1))(np.unique(x)))
    plt.title(col)
    plt.xlabel(col)
    plt.ylabel('prices')
```



```
In [10]: # Creating different sizes of room based on their sizes using Quantile-based discretization function
         dd=pd.qcut(features.RM,q=[0, .25, .5, .75, 1.])
         pd.Categorical(dd)
         dd=pd.get dummies(dd,prefix='RM ')
         dd=dd.rename(index=str, columns={"RM (3.56, 5.885]":"Very Small room", "RM (5.885, 6.208]": "Small room", "RM (6.208, 6.
         features.index=dd.index
         features['Very Small room']=dd['Very Small room']
         features['Small room']=dd['Small room']
         features['Medium room']=dd['Medium room']
         features['Large room']=dd['Large room']
In [11]: # Creating different status using Quantile-based discretization function
         dd=pd.qcut(features.LSTAT,q=[0, .25, .5, .75, 1.])
         pd.Categorical(dd)
         dd=pd.get dummies(dd,prefix='status ')
         dd=dd.rename(index=str, columns={"status (1.729, 6.95]":"Least lower Status","status (6.95, 11.36]": "Medium lower Statu
         features.index=dd.index
         features['Majorly lower Status']=dd['Majorly lower Status']
         features['lower Status']=dd['lower Status']
         features['Medium lower Status']=dd['Medium lower Status']
         features['Least lower Status']=dd['Least lower Status']
In [12]: # Creating Independent(X) and Dependent(Target-Y) data frames
         X = features[['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'AGE', 'DIS', 'RAD', 'TAX',
                'PTRATIO', 'B', 'Very Small room', 'Small room',
                'Medium room', 'Large room', 'Majorly lower Status', 'lower Status',
                'Medium lower Status', 'Least lower Status']]
         Y = targets
```

Random Forest:

```
In [13]: from xgboost.sklearn import XGBRegressor
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.pipeline import make pipeline
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.preprocessing import Imputer, StandardScaler
         from sklearn.feature_selection import SelectFromModel
         from sklearn.model selection import train test split, GridSearchCV, ShuffleSplit, RandomizedSearchCV
         import pickle
            C:\ProgramData\Anaconda3\lib\site-packages\sklearn\ensemble\weight boosting.py:29: DeprecationWarning: numpy.core.umat
            h tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.
              from numpy.core.umath tests import inner1d
In [14]: X train, X test, y train, y test = train test split(X, y, test size=0.25, random state=42)
In [15]: #imputing null value of each column with the mean of that column
         imput = Imputer()
         X train = imput.fit transform(X train)
         X test = imput.fit transform(X test)
In [16]: #Initialization for random forest
         pipe = make pipeline(StandardScaler(),
                              RandomForestRegressor(n estimators=500, random state=123))
         cv = ShuffleSplit(test size=0.2, random state=0)
         param grid = {'randomforestregressor max features':['sqrt', 'log2', 10],
                       'randomforestregressor__max_depth':[9, 11, 13]}
```

grid = GridSearchCV(pipe, param grid=param grid, cv=cv)

```
In [17]: #finding feature importance for feature selection. from it we'll be able to decide threshold value
         model = XGBRegressor()
         model.fit(X train, y train)
         print(model.feature importances )
            [0.19127516 0.02013423 0.02516779 0.00503356 0.06040268 0.10067114
             0.15939598 0.02181208 0.06711409 0.06040268 0.11912752 0.02013423
             0.00167785 0.01174497 0.03691275 0.03020134 0.00671141 0.02013423
             0.04194631]
In [18]: | selection = SelectFromModel(model, threshold=0.01, prefit=True)
         select X train = selection.transform(X train)
         select X test = selection.transform(X test)
         # deviding train and test data sets
         X train, X test, y train, y test = train_test_split(X, y, test_size=0.25, random_state=42)
         grid.fit(select X train, y train)
                                                    #trainina
Out[18]: GridSearchCV(cv=ShuffleSplit(n splits=10, random state=0, test size=0.2, train size=None),
                error score='raise',
                estimator=Pipeline(memory=None,
              steps=[('standardscaler', StandardScaler(copy=True, with mean=True, with std=True)), ('randomforestregressor', Ran
         domForestRegressor(bootstrap=True, criterion='mse', max depth=None,
                    max features='auto', max leaf nodes=None,
                    min impurity decr...imators=500, n jobs=1,
                    oob score=False, random state=123, verbose=0, warm start=False))]),
                fit params=None, iid=True, n jobs=1,
                param grid={'randomforestregressor max features': ['sqrt', 'log2', 10], 'randomforestregressor__max_depth': [9,
         11, 13]},
                pre dispatch='2*n jobs', refit=True, return train score='warn',
                scoring=None, verbose=0)
In [19]: grid.best params
Out[19]: {'randomforestregressor max depth': 9,
          'randomforestregressor max features': 'sqrt'}
In [20]: Randfor reg = pickle.dumps(grid)
```

```
In [21]: Randfor_reg = pickle.loads(Randfor_reg)
    print("""RandomForest regressor accuracy is {ran}""".format(ran=Randfor_reg.score(select_X_test, y_test)))

RandomForest regressor accuracy is 0.7990931731692065

In [ ]:
```