6.S094: Deep Learning for Self-Driving Cars 2018

https://selfdrivingcars.mit.edu

Lex Fridman

Lecture 4:

Computer Vision

Computer Vision is Deep Learning

Unsupervised Learning

Semi-Supervised Learning

Reinforcement Learning

Computer Vision

Images are Numbers

- Regression: The output variable takes continuous values
- Classification: The output variable takes class labels
 - Underneath it may still produce continuous values such as probability of belonging to a particular class.

Computer Vision with Deep Learning:

Our intuition about what's "hard" is flawed (in complicated ways)

Visual perception: 540,000,000 years of data

Bipedal movement: 230,000,000 years of data

Abstract thought: 100,000 years of data

Prediction: **Dog** + Distortion Prediction: **Ostrich**

5ris.cn 专注无人驾驶

References: [6, 7, 11, 68]

[&]quot;Encoded in the large, highly evolve sensory and motor portions of the human brain is a **billion years of experience** about the nature of the world and how to survive in it.... Abstract thought, though, is a new trick, perhaps less than **100 thousand years** old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it."

⁻ Hans Moravec, Mind Children (1988)

Neuron: Biological Inspiration for Computation

 Neuron: computational building block for the brain

 (Artificial) Neuron: computational building block for the "neural network"

Differences (among others):

- Parameters: Human brains have ~10,000,000 times synapses than artificial neural networks.
- Topology: Human brains have no "layers".
 Topology is complicated.
- Async: The human brain works asynchronously, ANNs work synchronously.
- Learning algorithm: ANNs use gradient descent for learning. Human brains use ... (we don't know)
- Processing speed: Single biological neurons are slow, while standard neurons in ANNs are fast.
- Power consumption: Biological neural networks use very little power compared to artificial networks
- Stages: Biological networks usually don't stop / start learning. ANNs have different fitting (train) and prediction (evaluate) phases.

Similarity (among others):

• Distributed computation on a large scale.

[18, 143]

The Reticular Formation Radiations to cerebral cortex Visual impulses Reticular formation Auditory impulses Ascending general sensory tracts (touch, pain, temperature) Descending motor projections to spinal cord

Human Vision

Its structure is instructive and inspiring!

Thalamocortical System Simulation: 8 million cortical neurons + 2 billion synapses:

motor (thalame):

Visual Cortex

(Its Structure is Instructive and Inspiring)

Deep Learning is Hard: Illumination Variability

https://selfdrivingcars.mit.edu

January

2018

Deep Learning is Hard: Pose Variability

Figure 1. The deformable and truncated cat. Cats exhibit (al-

Parkhi et al. "The truth about cats and dogs." 2011. 5ris.cn 专注无人驾驶

https://selfdrivingcars.mit.edu/references

Deep Learning is Hard: Intra-Class Variability

Parkhi et al. "Cats and dogs." 2012.

Occlusion

5rjs.cn 专注无人驾驶

Occlusion

5rjs.cn 专注无人驾驶

Occlusion

5rjs.cn 专注无人驾驶

Philosophical Ambiguity: "Image Classification" is not (yet) "Understanding"

References: [121]

Image Classification Pipeline

Famous Computer Vision Datasets

MNIST: handwritten digits

CIFAR-10(0): tiny images

ImageNet: WordNet hierarchy

Places: natural scenes

Let's Build an Image Classifier for CIFAR-10

	test i	mage	
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

	tr	ainin	g imag	je
	10	20	24	17
	8	10	89	100
-	12	16	178	170
	4	32	233	112

	46	12	14	1	
	82	13	39	33	
=	12	10	0	30	→ 456
	2	32	22	108	•

pixel-wise absolute value differences

Let's Build an Image Classifier for CIFAR-10

	test i	mage		
56	32	10	18	
90	23	128	133	
24	26	178	200	
2	0	255	220	

10	20	g imag 24	17
10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pix	el-wise	absolu	te value	e differe	nces
	46	12	14	1	
	82	13	39	33	
=	12	10	0	30	→ 456
	2	32	22	108	
1					

Accuracy

Random: 10%

Our image-diff (with L1): **38.6%** Our image-diff (with L2): **35.4%**

K-Nearest Neighbors: Generalizing the Image-Diff Classifier

Tuning (hyper)parameters:

K-Nearest Neighbors: Generalizing the Image-Diff Classifier

References: [89, 94]

Accuracy

Random: 10%

Training and testing on the same data: **35.4%**

7-Nearest Neighbors: ~30%

Human: ~95%

• • •

Convolutional Neural Networks: ~97.75%

0.7 0.6 sum bias 1.4 Start

$$ext{output} = egin{cases} 0 & ext{if } \sum_j w_j x_j \leq & ext{threshold} \ 1 & ext{if } \sum_j w_j x_j > & ext{threshold} \end{cases}$$

2. sum up

1. weigh

3. activate

Reminder: "Learning" is Optimization of a Function

forward pass

block of differentiable compute (e.g. neural net)

log probabilities

-1.2 -0.36

0

gradients

1.0

Supervised Learning (correct label is provided)

correct action label = 0

backward pass

Ground truth for "6":

$$y(x) = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0)^T$$

"Loss" function:

$$C(w,b) \equiv rac{1}{2n} \sum_x \|y(x) - a\|^2$$

Classify and Image of a Number

Input: (28x28)

Convolutional Neural Networks

Regular neural network (fully connected):

Convolutional neural network:

Each layer takes a 3d volume, produces 3d volume with some smooth function that may or may not have parameters.

Convolutional Neural Networks: Layers

- **INPUT** [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and with three color channels R,G,B.
- **CONV** layer will compute the output of neurons that are connected to local regions in the input, each computing a dot product between their weights and a small region they are connected to in the input volume. This may result in volume such as [32x32x12] if we decided to use 12 filters.
- **RELU** layer will apply an elementwise activation function, such as the max(0,x) thresholding at zero. This leaves the size of the volume unchanged ([32x32x12]).
- **POOL** layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in volume such as [16x16x12].
- **FC** (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the numbers in the previous volume.

Layers **highlighted in blue** have learnable parameters.

Dealing with Images: Local Connectivity

Same neuron. Just more focused (narrow "receptive field").

The parameters on a each filter are spatially "shared" (if a feature is useful in one place, it's useful elsewhere)

ConvNets: Spatial Arrangement of Output Volume

- Depth: number of filters
- Stride: filter step size (when we "slide" it)
- Padding: zero-pad the input

Convolution

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Convolution

References: [124]

Convolution: Representation Learning

References: [124]

ConvNets: Pooling

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Same Architecture, Many Applications

This part might look different for:

- Different image classification domains
- Image captioning with recurrent neural networks
- Image object localization with bounding box
- Image segmentation with fully convolutional networks
- Image segmentation with deconvolution layers

Object Recognition

Case Study: ImageNet

What is ImageNet?

- ImageNet: dataset of 14+ million images (21,841 categories)
- Let's take the high level category of **fruit** as an example:
 - Total 188,000 images of fruit
 - There are 1206 Granny Smith apples:

[90]

What is ImageNet?

Dataset - ImageNet: dataset of 14+ million images

Competition ------- • ILSVRC: ImageNet Large Scale Visual Recognition
 Challenge

Networks --- • AlexNet (2012)

- ZFNet (2013)
- VGGNet (2014)
- GoogLeNet (2014)
- ResNet (2015)
- CUImage (2016)
- SENet (2017)

ILSVRC Challenge Evaluation for Classification

- Top 5 error rate:
 - You get 5 guesses to get the correct label

Image classification

Steel drum

Ground truth

Steel drum Folding chair Loudspeaker

Accuracy: 1

Scale T-shirt Steel drum Drumstick Mud turtle

Accuracy: 1

Scale T-shirt Giant panda Drumstick Mud turtle

Accuracy: 0

- ~20% reduction in accuracy for Top 1 vs Top 5
- Human annotation is a binary task: "apple" or "not apple"

- Human error: 5.1%
 - Surpassed in 2015

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform: 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - **Inception modules**
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models
- SENet (2017): 2.99% to 2.251%
 - Squeeze and excitation block: network is allowed to adaptively adjust the weighting of each feature map in the convolutional block.

January

2018

ImageNet Classification Error (Top 5)

References: [90]

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform:
 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models

Krizhevsky et al. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform:
 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models

Simonyan et al. "Very deep convolutional networks for large-scale image recognition." 2014.

References: [128]

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform:
 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models

Szegedy et al. "Going deeper with convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform:
 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models

POOLING

Inception Module

- Process: do different size convolutions, and concatenate
- Convolution sizes:
 - Smaller convolutions: local features
 - Larger convolutions: high-abstracted features
- **Result**: Fewer parameters and better performance

MIT 6.S094: Deep Learning for Self-Driving Cars

https://selfdrivingcars.mit.edu

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform:
 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Residual Block

Initial Observation:

 Network depth often increases representation power, but is harder to train.

Residual Block:

- Repeat a simple network block (think: RNN)
- Pass input along without transformation: help ensure that each layer learns something new

SENet: Squeeze-and-Excitation Networks

- Content-aware channel weighting: Add parameters to each channel of a convolutional block so that the network can adaptively adjust the weighting of each feature map
- This approach is simple and can be added to any model
 - **Takeaway for thought:** Parameterize everything (that's cost-effective) including higher-order hyper-parameters.

Capsule Networks (Hinton)

- A CNN see both images as the same. The problem:
 - Internal data representation of a convolutional neural network does not take into account important spatial hierarchies between simple and complex objects.
- See upcoming online-only lecture on capsule networks.

Same Architecture, Many Applications

This part might look different for:

- Different image classification domains
- Image captioning with recurrent neural networks
- Image object localization with bounding box
- Image segmentation with fully convolutional networks
- Image segmentation with deconvolution layers

Object Detection

R-CNN: Regions with CNN features

January

2018

Fully Convolutional Networks

- Goal: Classify every pixel in an image.
- Difficulty: Hard
- Why?
 - When precise boundaries of objects matter (medical, driving)
 - Useful for fusing with other sensors (LIDAR)

FCN (Nov 2014)

Paper: "Fully Convolutional Networks for Semantic Segmentation"

- Repurpose Imagenet pretrained nets
- Upsample using deconvolution
- Skip connections to improve coarseness of upsampling

SegNet (Nov 2015)

Paper: "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

Maxpooling indices transferred to decoder to improve the segmentation resolution.

Dilated Convolutions (Nov 2015)

Paper: "Multi-Scale Context Aggregation by Dilated Convolutions"

- Since pooling decreases resolution:
 - Added "dilated convolution layer"
- Still interpolate up from 1/8 of original image size

MIT 6.S094: Deep Learning for Self-Driving Cars

https://selfdrivingcars.mit.edu

DeepLap v1, v2 (Jun 2016)

Paper: "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs"

- Added fully-connected Conditional Random Fields (CRFs) as a post-processing step
 - Smooth segmentation based on the underlying image intensities

Key Aspects of Segmentation

- Fully convolutional networks (FCNs) replace fully-connected layers with convolutional layers
 - Deeper, updated models (now ResNet) consistent with ImageNet Challenge object classification tasks.
- Conditional Random Fields (CRFs) to capture both local and long-range dependencies within an image to refine the prediction map.
- **Dilated convolution** (aka Atrous convolution) maintain computational cost, increase resolution of intermediate feature maps

https://selfdrivingcars.mit.edu

ResNet-DUC (Nov 2017)

Paper: "Understanding Convolution for Semantic Segmentation"

- Dense upsampling convolution (DUC) instead of bilinear upsampling
 - Learnable: Learn the upscaling filters
- Hybrid dilated convolution (HDC)
 - Use a different dilation rate

https://selfdrivingcars.mit.edu

January

2018

FlowNet (May 2015)

Paper: "FlowNet: Learning Optical Flow with Convolutional Networks"

- Learn flow from image-pair, end to end.
 - FlowNetS stacks two images as input
 - FlowNetC convolute separately, combine with correlation layer

Fig. 1

January

2018

FlowNet 2.0 (Dec 2016)

Paper: "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks"

- Stack FlowNetS and FlowNetC
- Improvement over FlowNet
 - Smooth flow fields
 - Preserves fine-motion detail
 - Runs at 8-140fps

- **Observations:**
 - Stacking networks as an approach
 - Order of training dataset matters

[177]

cars.mit.edu/segfuse

cars.mit.edu/segfuse

cars.mit.edu/segfuse

cars.mit.edu/segfuse

cars.mit.edu/segfuse

Thank You

Tomorrow: Waymo

Next lecture: **Deep Learning for Human Sensing**

MIT 6.S094: Deep Learning for Self-Driving Cars

https://selfdrivingcars.mit.edu

Upcoming online-only lectures:

- Capsule networks
- Generative adversarial networks