Materiais Elétricos e Magnéticos para Engenharia

Prof. Marcus V. Batistuta

batistuta@unb.br

Lab-0 "Introdução"

FGA - Universidade de Brasília

Dormir é Importante!

- Passamos 1/3 da vida dormindo.
- Precisamos dormir:
 Para manter a saúde física e mental.
 Para aprender e memorizar.

- Planeje-se:

Para ter um sono de boa qualidade.

Para dormir ininterruptamente por pelo menos 8 horas por noite, regularmente.

- Dormir pouco resulta em doenças graves, irritabilidade, perda de memória, cansaço, <u>reprovação</u>.

Livro Texto

Autor: Sérgio Machado Rezende

Editora: Livraria da Física

3ª Edição (2014)

Prefácio	ix
Capítulo 1. Materiais para Eletrônica	1
1.1 Eletrônica e Física do Estado Sólido	2
1.2 Ligações Atômicas	5
1.3 Materiais Cristalinos	8
1.4 Materiais para Dispositivos Eletrônicos	14
Capítulo 2. Ondas e Partículas na Matéria	27
2.1 Ondas Eletromagnéticas	28
2.2 Ondas Elásticas em Sólidos	34
2.3 Efeito Fotoelétrico - Ondas e Partículas	40
2.4 O Elétron como uma Onda - Princípio da Incerteza	46
2.5 Fônons e outras Excitações Elementares	50
Capítulo 3. Mecânica Quântica: O Elétron no Átomo	55
3.1 Os Postulados da Mecânica Quântica	56
3.2 A Equação de Schroedinger Independente do Tempo	60
3.3 Aplicações Simples da Mecânica Quântica	62
3.4 Elétron no Átomo de Hidrogênio	73
3.5 Átomos de Muitos Elétrons	84

Capítulo 4. Elétrons em Cristais	91
4.1 Bandas de Energia em Cristais	92
4.2 Condutores, Isolantes e Semicondutores	98
4.3 Massa Efetiva	101
4.4 Comportamento dos Elétrons em $T>0$ - Distribuição de Fermi-Dirac	103
4.5 O Mecanismo da Corrente Elétrica em Metais	109
Capítulo 5. Materiais Semicondutores	117
5.1 Semicondutores	118
5.2 Elétrons e Buracos em Semicondutores Intrínsecos	122
5.3 Semicondutores Extrínsecos	135
5.4 Dinâmica de Elétrons e Buracos em Semicondutores	145
Capítulo 6. Dispositivos Semicondutores: Diodos	167
6.1 A Junção p-n	168
6.2 Corrente na Junção Polarizada	180
6.3 Heterojunções	186
6.4 Diodo de Junção	192
6.5 Diodo de Barreira Schottky	198
6.6 Ruptura na Polarização Reversa: Diodo Zener	200
6.7 Outros Tipos de Diodos	202

Capítulo 7. Transistores e	
Outros Dispositivos Semicondutores	215
7.1 O Transistor	217
7.2 O Transistor Bipolar	219
7.3 Correntes no Transistor Bipolar	225
7.4 Aplicações de Transistores	237
7.5 Transistores de Efeito de Campo	241
7.6 O Transistor MOSFET	251
7.7 Dispositivos de Controle de Potência: SCR e TRIAC	267
7.8 Circuitos Integrados	271
Capítulo 8. Materiais e Dispositivos Opto-Eletrônicos	287
8.1 Propriedades Ópticas dos Materiais	289
8.2 Interação da Radiação com a Matéria - Modelo Clássico	298
8.3 Teoria Quântica da Interação Radiação-Matéria	308
8.4 Fotodetetores	323
8.5 Diodo Emissor de Luz (LED)	342
8.6 Emissão Estimulada e Lasers	348
8.7 O Laser de Diodo Semicondutor	359
8.8 Aplicações dos Lasers de Diodo	372
Capítulo 9. Materiais e Dispositivos Magnéticos	383
9.1 Magnetismo e Materiais Magnéticos	385
9.2 Propriedades Magnéticas da Matéria	390
9.3 Materiais Magnéticos	400
9.4 Materiais para Aplicações Tradicionais	416
9.5 Gravação Magnética	425
9.6 Dispositivos de Ferrites para Microondas	442

Capítulo 10. Outros Materiais Importantes	
para a Eletrônica	463
10.1 Materiais Dielétricos	465
10.2 Materiais Dielétricos para Opto-Eletrônica	484
10.3 Materiais para Mostradores e Telas de Vídeo	493
10.4 Materiais Supercondutores	514
Apêndice A. Teoria de Perturbação: Cálculo da Probabilidade de Transição	535
Apêndice B. Constantes Físicas e Tabela de Conversão de Unidades Energia	539
Apêndice C. Tabela Periódica dos Elementos	540
Índice Analítico	541

Bibliografia Básica

Autor: Charles Kittel

Editora: LTC

8ª Edição (2006)

EIGHTH EDITION

Introduction to Solid State Physics

CHARLES KITTEL

Autor: Charles Kittel

Editora: IE-Wiley

8^a Edição (2005)

Bibliografia Básica

Shur, M., Cristoloveanu, S., Frontiers in Electronics, World Scientific Publishing Co., 2009.

http://www.ebrary.com/

Bibliografia Complementar

Autor: Jacobus Willibrordus Swart

Editora: UNICAMP

1^a Edição (2008)


```
# For loop on a list
>>> numbers = [2, 4, 6, 8]
>>> product = 1
>>> for number in numbers:
... product = product * number
...
>>> print('The product is:', product)
The product is: 384
```

Spyder

https://www.python.org/

The Scientific Method as an Ongoing Process

Garland, Jr., Theodore (2015). "The Scientific Method as an Ongoing Process". U. C. Riverside

O Método Científico

Neil deGrasse Tyson **The Scientific Method**(Cosmos)

- -Teste Ideias com Experimentos e Observações.
- Construa sobre as Ideias que passarem nos testes.
- Rejeite as ideias que falharem nos testes.
- Siga as evidências onde quer que elas levem.
- Questione tudo.

Matéria e Energia

Albert Einstein

Relatividade Geral (1915)

Relatividade Especial (1905)

$$E = mc^2$$

$$t' = \gamma(t - vx/c^2)$$

$$x' = \gamma(x - vt)$$

$$y' = y$$

$$z' = z$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Hádrons

Baryons qqq and Antibaryons qqq

Baryons are fermionic hadrons. There are about 120 types of baryons.

Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
р	proton	uud	1	0.938	1/2
p	anti- proton	ūūd	-1	0.938	1/2
n	neutron	udd	0	0.940	1/2
Λ	lambda	uds	0	1.116	1/2
Ω^{-}	omega	SSS	-1	1.672	3/2

Hádrons

Mesons qq

Mesons are bosonic hadrons. There are about 140 types of mesons.

Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
π^+	pion	ud	+1	0.140	0
K-	kaon	sū	-1	0.494	0
ρ^+	rho	ud	+1	0.770	1
B ⁰	B-zero	db	0	5.279	0
η_{c}	eta-c	сē	0	2 .980	0

Partículas Elementares do Modelo Padrão

Partículas Elementares do Modelo Padrão

The 17 named fundamental particles of the Standard Model

	12 fermions		5 bosons
up quark	charm quark	top quark	gluon
down quark	strange quark	bottom quark	photon
electron	muon	tau	W boson
electron neutrino	muon neutrino	tau neutrino	Z boson
			higgs boson

Férmions de Matéria (24)

Quarks come in 6 flavors and 3 colors, which gives us 18 unique quarks.

	18 quarks	
red up quark	red charm quark	red top quark
green up quark	green charm quark	green top quark
blue up quark	blue charm quark	blue top quark
red down quark	red strange quark	red bottom quark
green down quark	green strange quark	green bottom quark
blue down quark	blue strange quark	blue bottom quark

The leptons come in 6 flavors, 3 of which are neutrinos, but none of which are colored. There is nothing to multiply here. Just add 6 leptons to the 18 quarks to get 24 matter fermions.

	6 leptons	
electron	muon	tau
electron neutrino	muon neutrino	tau neutrino

Férmions de Antimatéria (24)

	18 antiquarks	
antired antiup quark	antired anticharm quark	antired antitop quark
antigreen antiup quark	antigreen anticharm quark	antigreen antitop quark
antiblue antiup quark	antiblue anticharm quark	antiblue antitop quark
antired antidown quark	antired antistrange quark	antired antibottom quark
antigreen antidown quark	antigreen antistrange quark	antigreen antibottom quark
antiblue antidown quark	antiblue antistrange quark	antiblue antibottom quark
	6 antileptons	
antielectron*	antimuon	antitau
electron antineutrino	muon antineutrino	tau antineutrino
	* also known as the positron	

Bósons (13)

Gluons come in 8 color combinations. Here's one way to write them out.

8 gluons

$$\frac{\overline{b} + b\overline{r}}{\sqrt{2}}$$

$$\frac{-i (r\overline{b} - b\overline{r})}{\sqrt{2}}$$

$$\frac{\overline{rr} - b\overline{b}}{\sqrt{2}}$$

$$\frac{\overline{g} + g\overline{r}}{\sqrt{2}}$$

$$\frac{-i (r\overline{g} - g\overline{r})}{\sqrt{2}}$$

$$\frac{\overline{gb} + b\overline{g}}{\sqrt{2}}$$

$$\frac{-i (g\overline{b} - b\overline{g})}{\sqrt{2}}$$

$$\frac{\overline{rr} + g\overline{g} - 2b\overline{b}}{\sqrt{6}}$$

4 electroweak bosons

photon

W⁺ boson

W boson

Z⁰ boson

1 higgs bosons

higgs boson

TOTAL: (61

PARTÍCULAS IDENTIFICADAS

As 4 Forças

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.

Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction oweak)	Strong Interaction
Acts on:	on: Mass – Energy Flavor		Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	W ⁺ W ⁻ Z ⁰	γ	Gluons
Strength at \(\begin{picture} 10^{-18} m \\ \end{picture}	10-41	0.8	1	25
3×10 ⁻¹⁷ m	10 ⁻⁴¹	10-4	1	60

Dmitri Ivanovich Mendeleev (1834 – 1907)

Reiben	Gruppe I. R*0	Gruppo II. — RO	Gruppe III. — R*0°	Gruppe IV. RH ⁴ RO ²	Groppe V. RH ² R ² 0 ⁵	Grappe VI. RH ^a RO ³	Gruppe VII. RH R*0'	Groppo VIII. — RO
1	II≔1							
2	Li=7	Be=9,4	B=11	C=12	N=14	0=16	F=19	
8	Na=28	Mg == 24	A1=27,8	Si=28	P=31	8=32	Cl=35,5	
4	K≕39	Ca=40	-=44	Ti=48	V=51	Cr=52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Cu=63)	Zn=65	-=68	-=72	As=75	So=78	Br==80	
6	Rb==85	Sr=87	?Yt=88	Zr== 90	Nb == 94	Mo≔96	-=100	Ru=104, Rh=104, Pd=106, Ag=108
7	(Ag=108)	Cd=112	In=113	Sn==118	Sb=122	Te=125	J=127	
8			?Di=138	?Co=140	-	-	-	
9	(-)	-	_	_	_		_	
10	-	-	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au=199)	fig=200	T1== 204	Pb== 207	Bi== 208	_	-	
12	_	-	-	Th=231	_	U==240	-	

25

Átomos

Espectro do Hidrogênio

Energia de Ionização

Estados da Matéria

A existência de um quinto estado da matéria só foi comprovada em laboratório em 1995. Ele havia sido previsto em 1924 pelo físico alemão Albert Einstein e pelo matemático indiano Satvendra Nath Bose

ESTADO DE PLASMA

A temperaturas altíssimas, da ordem de 10.000 °C, os átomos possuem carga elétrica. Movem-se caoticamente, espalhando-se para todas as direções, a cerca de 15.000 km/h. É o estado da matéria das estrelas

ESTADO GASOSO

Abaixo de 1.000 °C, as partículas começam a frear e a neutralizar sua carga elétrica. Num gás à temperatura ambiente, os átomos viajam com velocidade média de 1.500 km/h, também em qualquer direção

ESTADO LÍQUIDO

À temperatura ambiente, os átomos da maior parte das substâncias viajam ainda desordenadamente. Percorrem todo o volume que lhes é dado, como o de um copo. A velocidade média das partículas é bem menor: 90 km/h

ESTADO SÓLIDO

Quando a temperatura cai mais, os átomos se unem firmemente. Mas ainda dançam. Na água, a 0 °C, os átomos andam com a mesma velocidade de 90 km/h, mas já não caminham por todo o volume. Apenas vibram em torno de um ponto

NÃO EXISTE NA NATUREZA

QUINTO ESTADO

No condensado Bose-Einstein, os átomos estão a uma temperatura muito próxima do zero absoluto (-273 °C). As partículas vibram como um corpo único, numa velocidade tão baixa que é impossível medi-la em laboratório

Organização da Matéria Sólida

Célula Unitária - Diamante

BuckyBall - C60

Nanotubo de Carbono

DNA

Campos Eletromagnéticos x Matéria

Equações do Eletromagnetismo

Gauss:
$$\begin{cases} \nabla \cdot \mathbf{D} = \rho \\ \nabla \cdot \mathbf{B} = 0 \end{cases} \qquad \begin{pmatrix} \nabla^2 - \mu \epsilon \frac{\partial^2}{\partial t^2} \end{pmatrix} \mathbf{E} = 0$$
 Faraday:
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \text{Ampère:} \qquad \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \end{cases} \qquad \begin{pmatrix} \nabla^2 - \mu \epsilon \frac{\partial^2}{\partial t^2} \end{pmatrix} \mathbf{B} = 0$$

$$c = \frac{1}{\sqrt{\mu \epsilon}}$$

Continuidade:
$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$$
 Lorentz: $\vec{F} = q \left[\vec{E} + \vec{v} \times \vec{B} \right]$

Campos Eletromagnéticos x Matéria

Equações da Mecânica Quântica

Planck:
$$E=h
u=\hbar\omega$$

Planck:
$$E=h\nu=\hbar\omega$$
 Louis de Broglie: $p=\frac{h}{\lambda}=\hbar k$

Schrödinger:
$$i\hbar \frac{\partial}{\partial t} \Psi(x,y,z,\,t) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(x,y,z,\,t) + V(x) \Psi(x,y,z,\,t)$$

$$i\hbar\frac{\partial}{\partial t}\Psi(x_1,...,x_n,t) = \hbar^2(-\frac{\nabla_1^2}{2m_1} - \frac{\nabla_2^2}{2m_2}... - \frac{\nabla_N^2}{2m_N})\Psi(x_1,...,x_n,t) + V(x_1,...,x_n,t)\Psi(x_1,...,x_n,t)$$

Dirac:
$$\left(\beta mc^2 + \sum_{k=1}^3 \alpha_k p_k c\right) \psi(\mathbf{x}, t) = i\hbar \frac{\partial \psi(\mathbf{x}, t)}{\partial t}$$

Klein-Gordon:
$$-\frac{1}{c}\frac{\partial^2}{\partial t^2}\psi = -\nabla^2\psi + \frac{m^2c^2}{\hbar^2}\psi$$

RELATIVIDADE ESPECIAL + MECÂNICA QUÂNTICA (Sem Gravidade!)

Aplicações de Materiais E&M

