Framework of Threshold Signature Scheme

AMIS November 10, 2022

CONTENTS

1	Distributed Key Generation	2
	Threshold Signature	3
	2.1 Hierarchical threshold signature	3
	2.2 Multiplication to Addition	5
	2.2.1 Paillier's MtA	5
	2.2.2 MtA of CL Scheme	5
3	Reshare	6

1 DISTRIBUTED KEY GENERATION

Distributed key generation (Abbrev. DKG) is a cryptographic process in which multiple parties participate to the calculation of a shared public and a private key set. The main merit of distributed key generation is not rely necessarily on trusted third parties. Let \mathcal{G} be an elliptic curve group with order $N_{\mathcal{G}}$ and G be a fixed point of \mathcal{G} . In our implementation, the threshold t, the number of total participants n, and the level n_i of each participants \mathcal{P}_i are determined before someone performs the following DKG protocol:

Algorithm 1 Distributed Key Generation

Input: positive integers t, n and a non-negative integer n_i .

Output: two sets of positive integers $\{n_i\}_{i=1}^n \{x_i\}_{i=1}^n$, a share s_i , and the unique corresponding public Key P.

- 1: Each participant \mathcal{P}_i
 - a. randomly chooses *x*-coordinate $x_i \in [1, N_{\mathscr{G}} 1]$, and $\{u_{i,j}\}_{j=1}^{t-1} \in [0, N_{\mathscr{G}} 1]$ (i.e. $f_i(x) := \sum_{i=0}^{t-1} u_{i,j} x^j$).
 - b. computes $u_{i,0} \cdot G$ and hash commitment $[\mathscr{C}_i, \mathscr{D}_i] = H(u_{i,0} \cdot G)$. Here H is a crypto-hash function.
 - c. broadcasts *x*-coordinate x_i , the level n_i , and the hash commitment \mathcal{C}_i .
- 2: Each participant \mathscr{P}_i
 - a. computes the associated Birkhoff coefficient w_i and Feldman's commitment $F_{i,j} := u_{i,j} \cdot G$.
 - b. broadcasts own decommitment \mathcal{D}_i and Feldman's commitment $F_{i,j}$.
- 3: Each participant \mathcal{P}_i
 - a. verifies the decommitment \mathcal{D}_i .
 - b. computes the values $f_i^{(n_k)}(x_k)$ for all $1 \le k \le n$.
 - c. sends the value $f_i^{(n_k)}(x_k)$ to the participant \mathcal{P}_k .
- 4: Each participant \mathcal{P}_i
 - a. verifies the Feldman commitment for $f_k^{(n_i)}(x_i)$ for all $1 \le k \ne i \le n$.
 - b. computes the public key $\sum_{i=1}^{n} u_{i,0} \cdot G$, the own share $s_i := \sum_k f_k^{(n_i)}(x_i)$, the point $s_i \cdot G$ and Schnorr's proof of $s_i \cdot G$.
 - c. broadcasts $s_i \cdot G$ and Schnorr's proof of $s_i \cdot G$.
- 5: Each participant \mathcal{P}_i
 - a. verifies the Schnorr's proof of $s_k \cdot G$ for all $1 \le k \ne i \le n$ and the Public key is given by $\sum_{k=1}^n w_k \cdot (s_k \cdot G) = \sum_{k=1}^n u_{k,0} \cdot G$.

2 THRESHOLD SIGNATURE

A (t, n)-threshold signature scheme is a digital signature scheme where any t or more signers of a group of n signers can produce signatures.

2.1 HIERARCHICAL THRESHOLD SIGNATURE

This implementation is sign protocols in section 4.2 GG18 or Section 3.3: Signing. Let \mathcal{G} be an elliptic curve group with order $N_{\mathcal{G}}$ and G be a fixed point of \mathcal{G} . Let $S \subset [1..n]$ be the set of players participating in the signature protocol. We assume that $|S| \ge t$. We note that using the appropriate Birkhoff coefficients $b_{i,S}$ each player in S can locally map its own (t,n) share s_i of the private key into a (t,|S|) share of x, $w_i = (b_{i,S})(x_i)$.

Algorithm 2 Sign: Part 1

Input: a Hash message m, a threshold t, the share w_i , the public Key P, a set of levels $\{n_i\}_{i=1}^n$ and a set of x-coordinates $\{x_i\}_{i=1}^n$.

Output: (r, s) **or** \perp .

- 1: Each participant \mathscr{P}_i
 - a. generates a private Key and the associated public Key P_i of a given homomorphic scheme.
 - b. randomly chooses k_i and $a_i \in [0, N_{\mathcal{G}} 1]$.
 - c. computes the proof of the public key for P_i .
 - d. computes hash commitment $[\mathscr{C}_i, \mathscr{D}_i] = \operatorname{Hash}(a_i \cdot G)$.
 - e. broadcasts the digest \mathcal{C}_i , the public Key P_i , and the proof of P_i . In Paillier case, the proof is the integer factorization for P_i . In CL scheme case, the proof is Schnorr's proof.

Algorithm 3 Sign: Part 2

- 2: Each participant \mathcal{P}_i
 - a. verifies the proof of publicKey P_i .
 - b. runs sMtA with the inputs $a = k_i$ and $b = a_i$ to get $\alpha_{i,j}$ and $\beta_{i,j}$, and the inputs $a = k_i$ and $b = w_i$ to get $v_{i,j}$ and $\mu_{i,j}$.
 - c. computes $\delta_i := k_i a_i + \sum_{j,j\neq i} \alpha_{i,j} + \sum_{j,j\neq i} \beta_{j,i} \mod N_{\mathscr{G}}$ and $s_i := k_i w_i + \sum_{j,j\neq i} v_{i,j} + \sum_{j,j\neq i} \mu_{j,i} \mod N_{\mathscr{G}}$.
 - d. broadcasts δ_i .
- 3: Each participant \mathcal{P}_i
 - a. computes $\delta := \sum_i \delta_i$ and $\delta^{-1} \mod N_{\mathscr{G}}$ and Schnorr's proof of a_i .
 - b. broadcasts Schnorr's proof for a_i and the decommitment \mathcal{D}_i .
- 4: Each participant \mathcal{P}_i
 - a. verifies the decommitment \mathcal{D}_i and Schnorr's proof for a_i .
 - b. computes $R = (R_x, R_y) := \delta^{-1} \cdot (\sum_i a_i \cdot G)$. If R is the identity element, then stop.
 - c. computes $\tilde{s}_i := \sum_i R_x s_i + mk_i$.
 - d. randomly chooses ℓ_i , and $\rho_i \in [0, N_{\mathcal{G}} 1]$.
 - e. computes $V_i := \tilde{s}_i \cdot R + \ell_i \cdot G$, and $A_i := \rho_i \cdot G$ and hash commitment $[\mathfrak{C}_i, \mathfrak{D}_i] := \operatorname{Hash}(V_i, A_i)$.
 - f. broadcasts the digest \mathfrak{C}_i .
- 5: Each participant \mathcal{P}_i
 - a. computes Schnorr's proof for ρ_i and Schnorr's proof for \tilde{s}_i and ℓ_i .
 - b. broadcasts the decommitment \mathfrak{D}_i and the above two Schnorr's proofs.
- 6: Each participant \mathscr{P}_i
 - a. verifies the decommitment \mathfrak{D}_i , and Schnorr's proof for ρ_i and Schnorr's proof for \tilde{s}_i and ℓ_i .
 - b. computes $V := (-m) \cdot G + (-R_x) \cdot P + \sum_i V_i$, $A := \sum_i A_i$, $U_i := \rho_i \cdot A$, $T_i := \ell_i \cdot A$ and hash commitment $[\mathbb{C}_i, \mathbb{D}_i] := \operatorname{Hash}(U_i, T_i)$.
 - c. broadcasts \mathbb{C}_i .
- 7: Each participant \mathscr{P}_i
 - a. verifies the decommitment \mathbb{D}_i and $\sum_i U_i = \sum_i T_i$.
 - b. broadcasts \tilde{s}_i .
- 8: Each participant \mathcal{P}_i
 - a. computes $s := \sum_{i} \tilde{s}_{i}$. If s = 0, then stop.
 - b. verifies that the signature (r, s) is correct with input m, and the public key P.

2.2 MULTIPLICATION TO ADDITION

In this subsection, we introduce the sMtA protocol: it appears in Section 5: Removing the ZK proofs from the MtA protocol. The goal of the protocol permits that Alice(resp. Bob) has own input a(resp. b) such that they get α and β respectively with $ab = \alpha + \beta$ in a certain field eventually. Meanwhile, Alice(resp. Bob) can not learn any knowledge of b and β (resp. a and a). For achieving this goal, homomorphic encryption schemes plays an important role.

2.2.1 PAILLIER'S MTA

Algorithm 4 Paillier's simplified Multiplication to Addition (abbrev. sMTA).

Input: Alice's secret $a \in [0, N_{\mathscr{G}} - 1]$ and Bob's secret $b \in [0, N_{\mathscr{G}} - 1]$.

Output: Alice gets α and Bob gets β such that $\alpha + \beta = a \cdot b \mod N_{\mathscr{G}}$.

- 1: Alice initiates the protocol by
 - a. sending $c_A = E_A(a)$.
- 2: Bob computes $c_B = b \times_E c_A +_E E_A(\beta')$, where β' is chosen uniformly at random in $[0, N_{Pai} (N_{\mathscr{G}} 1)^2]$. And set $\beta = -\beta' \mod N_{\mathscr{G}}$.
 - a. send c_B , the Schnorr's proofs of $B = b \cdot G$ and $B' := \beta' \cdot G$ to Alice.
- 3: Alice
 - a. verifies Schnorr's proof of B and B'.
 - b. verifies $\alpha \cdot G = a \cdot B + B'$.
 - c. decrypts c_B to obtain α' and sets $\alpha = \alpha' \mod N_{\mathscr{G}}$.

2.2.2 Mta of CL Scheme

Algorithm 5 CL Multiplication to Addition (with check).

Input: Alice's secret $a \in [0, N_{\mathscr{G}} - 1]$ and Bob's secret $b \in [0, N_{\mathscr{G}} - 1]$.

Output: Alice gets α and Bob gets β such that $\alpha + \beta = a \cdot b \mod N_{\mathscr{G}}$.

- 1: Alice initiates the protocol by
 - a. sending $c_A = E_A(a)$.
 - b. (with check) computing the associated proof $proof(c_A)$.
- 2: Bob computes $c_B = b \times_E c_A +_E E_A(\beta')$, where β' is chosen uniformly at random in $[0, N_{\mathscr{G}} 1]$. And set $\beta = -\beta' \mod N_{\mathscr{G}}$.
 - a. (with check) Verify that the $proof(c_A)$ is correct form.
 - b. send c_B to Alice.
 - c. (with check) send $G_{\beta} := \beta \cdot G$ and $G_b := b \cdot G$.
- 3: Alice
 - a. decrypts c_B to obtain α' and sets $\alpha = \alpha' \mod N_{\mathscr{G}}$.
 - b. (with check) verifies $\alpha \cdot G + G_{\beta} = a \cdot G_b$.

3 RESHARE

Let \mathcal{G} be an elliptic curve group with order $N_{\mathcal{G}}$ and G be a fixed point of \mathcal{G} . In our implementation, the threshold t, the number of total participants n, and the level n_i of each participants \mathcal{P}_i have been determined. The following implementation of resharing is the standard algorithm:

Algorithm 6 Reshare

Input: a threshold t, the public Key P, a set of levels $\{n_i\}_{i=1}^n$, a set of x-coordinate $\{x_i\}_{i=1}^n$ and a share s_i .

Output: a new share \tilde{s}_i

- 1: Each participant \mathcal{P}_i
 - a. randomly chooses $u_{i,0} = 0$, and $\{u_{i,j}\}_{j=1}^{t-1} \in [0, N_{\mathscr{G}} 1]$ (i.e. $f_i(x) := \sum_{j=0}^{t-1} u_{i,j} x^j$).
 - b. computes Birkhoff coefficient w_i and Feldman's commitment $F_{i,j} := u_{i,j} \cdot G$.
 - c. broadcasts the Feldman's commitments $F_{i,j}$.
- 2: Each participant \mathcal{P}_i
 - a. computes the values $f_i^{(n_k)}(x_k)$ for all $1 \le k \le n$.
 - b. sends the value $f_i^{(n_k)}(x_k)$ to the participant \mathscr{P}_k .
- 3: Each participant \mathscr{P}_i
 - a. verifies the Feldman commitment for $f_k^{(n_i)}(x_i)$ for all $1 \le k \ne i \le n$.
 - b. computes the new share $\tilde{s}_i := s_i + \sum_k f_k^{(n_i)}(x_i)$, the point $\tilde{s}_i \cdot G$, and Schnorr's proof of $\tilde{s}_i \cdot G$.
 - c. broadcasts $\tilde{s}_i \cdot G$ and Schnorr's proof of $\tilde{s}_i \cdot G$.
- 4: Each participant \mathcal{P}_i
 - a. verifies the Schnorr's proof of $\tilde{s}_k \cdot G$ for all $1 \le k \ne i \le n$ and the Public key is given by $P = \sum_{k=1}^n w_k \cdot (\tilde{s}_k \cdot G)$.