## Monetary Policy

ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims

University of Notre Dame

Spring 2018

### Inefficiency in the New Keynesian Model

- Backbone of the New Keynesian model is the neoclassical model
- ► The equilibrium of the neoclassical model, Y<sub>t</sub><sup>f</sup>, is approximately efficient – the quantities associated with this equilibrium are optimal from perspective of a hypothetical social planner
- ▶ Because of stickiness in the price level, no guarantee that  $Y_t = Y_t^f$  as equilibrium outcome in the short run
- ▶ But the *optimal* equilibrium of the New Keynesian model features  $Y_t = Y_t^f$
- Basically, use endogenous monetary policy to implement hypothetical neoclassical equilibrium in short run

### Optimal Policy in the New Keynesian Model

- Optimal Policy will involve adjustment of M<sub>t</sub> (equivalently, interest rates r<sub>t</sub> or i<sub>t</sub>) in response to exogenous shocks to implement Y<sub>t</sub> = Y<sub>t</sub><sup>f</sup>
- ▶ Basically, don't wait for medium run dynamics to close the gap – "In the long run, we are all dead" (Keynes)
- ▶ This will involve countercyclical/contractionary policy in response to demand shocks (i.e. move  $M_t$  opposite what would happen to  $Y_t$ ), but expansionary/accommodative policy in response to supply shocks (i.e. move  $M_t$  in same direction as what would happen to  $Y_t$ )
- As we will shall see, optimal policy is consistent with *price* stability: targeting a constant price level (equivalently, constant inflation) implements optimal equilibrium except conditional on shocks to  $\bar{P}_t$

### Why not Fiscal Policy?

- Want to use monetary policy to implement neoclassical equilibrium
- Why not fiscal policy (i.e. adjustment of  $G_t$  and/or  $T_t$  to extent to which Ricardian Equivalence does not hold)?
  - ▶ Could use fiscal policy to implement  $Y_t = Y_t^f$ , but because this affects IS curve will affect  $r_t^f$  (the hypothetical real interest rate in the neoclassical model), and hence the distribution of output across consumption and investment in the neoclassical model
  - Potentially long implementation lags with fiscal policy
  - Consensus view: fiscal policy ought to be geared more toward the long run (e.g. infrastructure), with possible exception of extreme periods where monetary policy is ineffective

## Optimal Monetary Policy Responses: IS and Supply Shocks

#### ► IS shocks:

- ightharpoonup Positive IS shocks cause output to rise, but do not affect  $Y_t^f$
- If nothing done, will open up a positive output gap,  $Y_t Y_t^f$
- ▶ Optimal policy should reduce  $M_t$  (equivalently, raise  $r_t/i_t$ ) to counteract the IS shock

#### Supply shocks:

- ▶ Supply shocks (changes in  $A_t$  or  $\theta_t$ ) affect  $Y_t^f$  and cause  $Y_t$  to react less than  $Y_t^f$
- Optimal policy should increase M<sub>t</sub> (equivalently, lower r<sub>t</sub> / i<sub>t</sub>) to accommodate positive supply shocks (increase in A<sub>t</sub> or decrease in θ<sub>t</sub>)
- Intuition:  $\frac{M_t}{P_t}$  needs to adjust to implement neoclassical equilibrium. If  $P_t$  can't adjust, adjust  $M_t$

### Counteracting a Positive IS Shock



### Counteracting a Positive AS Shock



### The Case for Price Stability

- ▶ Conditional on both *IS* and *AS* shocks (coming from changes in  $A_t$  or  $\theta_t$ ), optimal policy response involves *no change* in price level
- In other words, a goal of *price stability* achieves the goal of no output gap,  $Y_t = Y_t^f$
- This forms the normative basis for strict inflation targets adopted by many central banks around the world – targeting price stability is optimal
- A very neat result. Central bank does not need to know what Y<sub>t</sub><sup>f</sup> is in order to implement optimal equilibrium – just needs to target a constant price level!
- ► A statement of the so-called "Divine Coincidence" (Blanchard and Gali, 2007)

### Targeting Price Stability

► Can think about price stability as meaning that the position of the *LM* curve is *endogenously* chosen such that the *AD* curve is perfectly horizontal at a targeted price level. Call this "effective" AD curve



# Price Stability: IS Shock



# Price Stability: AS Shock



### When is Price Stability Not a Good Goal?

- ightharpoonup Price stability is *not* a good goal conditional on shocks to  $\bar{P}_t$
- ▶ Such shocks shift the AS curve but do *not* change  $Y_t^f$
- ightharpoonup Targeting price stability involves  $Y_t$  reacting to these shocks
- Breaks the "divine coincidence"
- In a sense, this possibility strengthens case for price stability if price level never changes, there is really no reason for  $\bar{P}_t$  to ever exogenously change

# Price Stability: $\bar{P}_t$ Shock



### The Natural Rate of Interest

▶ Wicksell (1898), and later Woodford (2003): the "natural rate of interest" is  $r_t^f$ , the real interest rate which would obtain in the absence of nominal rigidities (i.e. the medium run). Satisfies:

$$Y_t^f = C(Y_t^f - G_t, Y_{t+1} - G_{t+1}, r_t^f) + I^d(r_t^f, A_{t+1}, f_t, K_t) + G_t$$

- Instead of adjusting the money supply, can think of monetary policy as trying to set the real interest rate equal to the natural rate, which automatically implements  $Y_t = Y_t^f$
- ▶ Set M<sub>t</sub> such that:

$$\frac{M_t}{P_t} = M^d(r_t^f + \pi_{t+1}^e, Y_t^f)$$

- Recently, many feel that  $r_t^f$  fell significantly but  $r_t$  couldn't fall enough because of ZLB, resulting in negative output gap

### Why not Fiscal Policy for Short Run Stabilization?

- $ightharpoonup M_t$  affects neither  $r_t^f$  nor  $Y_t^f$
- ► Therefore a well-defined exercise to pick  $M_t$  such that the economy is at a point on the IS curve where  $(r_t, Y_t) = (r_t^f, Y_t^f)$ .
- ▶ Not so with fiscal policy, since  $G_t$  and  $G_{t+1}$  affect  $r_t^f$
- In other words, could adjust  $G_t$  to implement  $Y_t = Y_t^f$ , but since this would affect  $r_t^f$ , you wouldn't have  $C_t = C_t^f$  and  $I_t = I_t^f$

### Monetary Policy In Practice

► Taylor (1993) argues that a fairly simple rule written in terms of inflation and the output gap fits data well:

$$i_t = r^* + \pi^* + \phi_{\pi}(\pi_t - \pi^*) + \phi_{y}(Y_t - Y_t^f)$$

- $ightharpoonup r^*$  and  $\pi^*$  are long run targets, and  $\phi_\pi$  and  $\phi_y$  are positive coefficients
- Not exactly the optimal policy response we discussed above, and phrased in terms of nominal interest rate rather than money supply
- ▶ But embodies some of the features of optimal policy:
  - Positive output gap: raise nominal interest rate
  - If inflation above target, likely that output gap is positive (e.g. basic Phillips Curve idea), so responding to inflation kind of makes sense as well
  - ► Hence, the "Taylor rule" has some desirable *normative* properties

### Taylor Rule versus FFR: Data

► The Taylor rule provides a pretty good *positive* description of monetary policy making from the early 1980s to mid 2000s



### Replacing LM Curve with "MP Curve"

- Can re-write model by replacing LM curve with a Taylor rule, which is sometimes called the "MP curve" (for "monetary policy")
- ▶ Basic idea: M<sub>t</sub> is endogenous and adjusts to hit interest rate target
- Auxiliary assumptions:
  - Adaptive expectations, so  $\pi_{t+1}^e = \pi_t$
  - ▶ Re-write *AS* curve in terms of  $\pi_t$  instead of  $P_t$  (trivial to do)
- Parameter  $\phi_{\pi}$  governs slope of AD curve in way similar to discussion about price stability above bigger  $\phi_{\pi}$  means AD is flatter
- See GLS Appendix D

#### The Zero Lower Bound

► The Taylor Rule relationship breaks down after 2008 when the economy hit the zero lower bound (ZLB)



Will next consider implications of the ZLB for policy