Inference & Causality Week 2 Session 3

27.10.2025

Lecturer: Narges Chinichian

IU University of Applied Science, Berlin

Course Overview

Check the course hub on Notion for up-to-date information:

https://tinyurl.com/mrcjp79s

Outline of Week 2

- From Discrete to Continuous Bayes
- Conjugate Priors
- Markov Chains

From Discrete to Continuous Bayes

Last week we learned:

- Bayes' theorem combines prior × likelihood → posterior
- "Cookie", "Dice", and "Monty Hall" illustrated our discrete reasoning.

$$P(A|B) = \frac{P(B|A) P(A)}{\sum_{a} P(B|a \in A) P(a \in A)}$$

When outcomes are continuous, we replace counting with integrating. The posterior is a <u>density function</u> describing our updated belief about θ .

Why? Motivation for Continuous Bayes

Problem: Discrete outcomes are easy to count. But what if θ = "probability of success" or "level of bias", which could be any real number between 0 and 1?

"Could we still apply Bayes if there are infinitely many possibilities?"

We replace probability tables with probability densities.

Typical Things We Report from Bayesian Inference

$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{\int f(x|\theta)f(\theta)d\theta}$$

Expectation value $E[\theta \mid x] = \int \theta f(\theta \mid x) d\theta$

Credible interval $[b_{l'}b_{u}]:\int_{b_{l}}^{b_{u}}f\left(\theta\mid x\right)d\theta=1-\alpha$

Mode $Mod(\theta \mid x) = arg max_{\theta} f(\theta \mid x)$

Discrete vs Continuous

Concept	Discrete	Continuous
Example	Dice, Cookies	Biased-coin bias θ, height, noise
Prior	A list of probabilities	A smooth curve (e.g. Beta, Normal)
Update	Multiply & normalize table	Multiply & normalize curves
Evidence	Count outcomes	Integrate likelihood across all θ

Expectation value $E[\theta \mid x] = \int \theta f(\theta \mid x) d\theta$

• This is the average (expected) value of the parameter θ given the observed data x. It minimizes the mean squared error loss and is often used as the "best single-point" estimate of θ if you want the expected value under the posterior.

Good for: Being wrong by the least amount on average.
 (Minimizes squared error — balances all possibilities.)

Credible interval $[b_l, b_{\mathrm{u}}]$: $\int_{b_l}^{b_u} f(\theta \mid x) d\theta = 1 - \alpha$

- This defines a range $[b_{l'}b_{u}]$ that contains the true parameter with probability $1-\alpha$ given your model and data.
- For example, a 95% credible interval means that, given the data and the prior, there's a 95% probability that the true θ lies within that interval.
- This is different from a frequentist confidence interval, which says that if we repeated the experiment many times, 95% of such intervals would contain the true value.
- Good for: Describing the range where the truth probably lies. (Captures a chosen percentage of your belief, e.g. 95%.)

Mode $Mod(\theta \mid x) = arg max_{\theta} f(\theta \mid x)$

- This is the most probable value of the parameter θ under the posterior the point where $f(\theta \mid x)$ is highest. It minimizes the 0–1 loss function (if you just care about being exactly correct).
- Good for: Picking the single most plausible value.
 (Ignores uncertainty just chooses the peak of belief.)

Game: Guess the Coin

- Imagine a coin but we don't know if it's fair.
- Prior belief: "probably fair" (centered at 0.5).
- Toss 5 times \rightarrow get 4 heads.
- Update belief: shift curve toward right.

Run Notebook 1 of Week 2

How precisely can we estimate θ ?

- The shape of the likelihood tells us how much data "inform" our parameter.
- A steep (narrow) log-likelihood → precise estimate.
- A flat (wide) log-likelihood → uncertain estimate.

Fisher Information

likelihood
$$L(\theta; x) = f(x \mid \theta)$$

$$I(\theta) = -\mathbb{E}\left[\left(\frac{d^2}{d\theta^2}\log L\left(\theta;X\right)\right)\right]$$

Fisher Information = expected curvature of the log-likelihood. Steeper curve \rightarrow more information \rightarrow lower variance.

Have a look at notebook 2 of this week!

The Curse of Dimensionality

• When a model contains several continuous parameters like θ_1 , θ_1 , ..., θ_k , the posterior is defined over a k-dimensional space:

$$\theta = (\theta_1, \theta_1, \dots, \theta_k)$$

$$f(\theta \mid x) = \frac{f(x \mid \theta) f(\theta)}{f(x)},$$

where

$$f(x) = \int_{\Theta_1} \dots \int_{\Theta_k} f(x' \mid \theta_1 \dots \theta_k) f(\theta_1' \dots \theta_k) d\theta_1 \dots d\theta_k$$

 That denominator, the evidence, involves an integral over all combinations of parameter values.

As the number of parameters grows, the number of integration points grows exponentially — this is known as the curse of dimensionality.

Even simple Gaussian integrals quickly become intractable when k > 4-5.

What Are Conjugate Priors?

- We already knew the importance of prior.
- When our **prior** and **likelihood** come from the same "family," updating beliefs is easy.
- the posterior has the same shape as the prior, just with new parameters.
- If you choose a prior that is conjugate to the likelihood (e.g. Beta–Binomial, Gamma–Poisson, Normal–Normal),
- the math simplifies, and those integrals have closed-form updates.

Conjugate Priors

make Bayesian updating simple — no need for integrals.

- We can "see" how data shapes beliefs.
- Useful for real-time or small data cases (counting, binary success, rates).
- Historically, the first Bayesian models used them before computers could sample.

Conjugate Game

- Let's play a quick game:
- Each of you has to take a paper from one of the stacks.
- You need to find the conjugate distribution of you and form a group.
- Read up on what are those distributions and explain them with one good example.
- You could use notebook 3 of this week and make a glossary for your distributions (optional).

Review of some relevant distributions

Likelihood	Model params	Conjugate prior
Bernoulli	p (probability)	Beta
Binomial (known trials (m))	p (probability)	Beta
Negative binomial (known failures (r))	p (probability)	Beta
Poisson	λ (rate)	Gamma
Exponential	λ (rate)	Gamma
Normal (with known variance σ²)	μ (mean)	Normal
Normal (with known mean μ)	σ2 (variance)	Inverse Gamma

Read more on: https://en.wikipedia.org/wiki/Conjugate_prior

But in real models (nonlinear regression, neural nets, hierarchical models), no such analytical simplification exists.

When we can't integrate analytically

- We must approximate the posterior:
- by sampling (drawing representative points),
- or by approximating it with a simpler shape.
- For low-dimensional problems, we can evaluate the posterior at many θ values and take a weighted average.
- But as dimensionality increases, the required number of samples explodes.

What is the Monte Carlo Method?

Let's have a look at notebook 4 of today.

Let's Play a Markov Chain Game Together.

Modern Approach: Markov Chain Monte Carlo (MCMC)

- To handle realistic models, we use algorithms that sample efficiently from highdimensional posteriors without evaluating the full multidimensional integral explicitly.
- Markov Chain Monte Carlo (MCMC) methods (such as Metropolis—Hastings, Gibbs sampling, and later Hamiltonian Monte Carlo) approximate the integral by simulating a "chain" that explores the posterior space.
- These methods let us compute expectations, variances, or credible intervals numerically:

$$E[g(\theta) \mid x] \approx \frac{1}{N} \sum_{i=1}^{N} g(\theta^{(i)}),$$

where each $\theta^{(i)}$ is a draw from the posterior.

Congratulations! We finished <u>unit 1</u> of this course.

Don't forget to read unit one of your course book for more detailed understanding of this unit.

Online Test Unit 1

 Now you should be ready to take Online Test for Unit 1 on your mycampus platform.

Homework

• Exercise: Fill out the exercises on notebooks 1 and 2 and 4 for this week, commit your answers and submit.