

地域:石川県 野々市市 地区: 北陸

チーム名: 朧月 チームNo.42

所属: 金沢工業大学 夢考房

【チーム紹介】

私たちは、金沢工業大学の夢考房に所属する情報工 学科5名・ロボティクス学科1名で構成されたチー ム『**朧月(ろうげつ)**』です。昨年度からの4名に加え、今年度から新たに2名が加わり、心を一つに して活動しています!

【目標・意気込み】

昨年度はCS大会には出場できたものの、入賞には 程遠い結果で終わってしまいました。今年度はシ ミュレータ競技になってしまいましたが、全国3位 **入賞**を目指して頑張ります!

モデルの概要

選択課題:「スラロームを通過する」

- 開発当初、障害物を回避する際に、曲がり切れずに障害物 に衝突する事故が多発した。そこで、一度の動作で曲がり 切ろうとするのではなく、曲がる途中で数回進路を変更することで、障害物をより確実に回避するという機能を実装 した。
- 動作の追加や変更、削除が容易にできるよう、各コースを 「エリア」、スラローム攻略エリアを「Phase」という単 位で分割した。また、この方針を容易に理解できるよう、 2.1項「設計方針」にてオブジェクト図を用いて記述した。

モデルの構成

1. 機能モデル

スラロームを、障害物を1本も倒さずに攻略するために、 ユースケース図やユースケース記述を用いて走行システムが 行う動作を分析し、そのフローについて記述した。さらに、 ミスユースケースや緩和ユースケース、ネガティブアクターを用いて、リスクの分析を行った。また、ユースケース図で分析した各動作をPhaseという単位で分割し、それらの大ま かな動きをアクティビティ図を用いて示した。

2. 構造モデル

機能モデルで定義したことを実現するために、オブジェクト 図を用いて関係性を示し、それらを用いてクラス図を作成し た。また、大まかな機能ごとにパッケージ分割を行い、その 概要や関係をパッケージ図でまとめた。

3. 振る舞いモデル

各動作の詳細を、シーケンス図を用いて示した。また、シナリオ管理について、各Phaseの進行が容易に理解できるよう 状態遷移図を示した。

機能モデル 構造 振る舞い

チーム名:朧月

選択課題:スラロームを通過する

1.1 目標設定

1.1.1 目標設定

選択した課題に対して『スラロームの完全攻略』を目標とした. スラロームの完全攻略とは以下のボーナスタイムを獲得することを指す.

- ・スラローム通過
- •障害物回避6本

1.1.2 モデリング対象

審査規約より、スラローム台に進入してから、スラロームを完全攻略した状態でスラロー ム台を下りるまでをモデリングの対象とする。 大まかな対象範囲を図1.1に示す。

図1.1 対象範囲(赤枠内)

[アームモータの角度がアームLの角度±1°以内]

各Phaseのフロー

1.2 要求分析・リスク分析

| 目標達成のために必要な走行体の機能をユースケース図, ユースケース記述を用いて示す. (図1.2.1,表1.2.2)図1.2.1では、ミスユースケースを用いて、発生するリスクを分析し、対策を織り込んだ.

図1.2.1 スラローム攻略システムのユースケース図

表1.2.2 「スラロームを攻略する」のユースケース記述

弘1.2.2 パノー コと久間 / 63の二 パノ 八 能定				
項目	内容			
ユースケー ス	スラロームを攻略する			
概要	走行体がスラローム通過及び障害物回避6本のボーナスを獲得する走行を 実行する.			
アクター	走行体			
事前条件	・走行体がゴールゲートを通過している・走行体がアームにて、LT走行をしている ※1・走行体がスラローム直前の青色マーカーを通過している			
事後条件	・スラローム通過、障害物回避6本のボーナスを獲得している ・走行体がスラロームの通過ラインを通過している ・走行体全体が通過ライン直後の布に接地している			
基本系列	①走行システムは、板を上る ②走行システムは、障害物を検知する ③走行システムは、障害物を回避する ③走行システムは、基本系列②、③を繰り返し、障害物C,Dを結んだ線上に移動する ④走行システムは、障害物パターンを判定する ⑤走行システムは、基本系列③を実行する ※2 ⑥走行システムは、板を下りる			
備考	※1 文中の「LT走行」に関してはTips1.2を、「アームL」に関してはTips1.3を参照 ※2 基本系列④にて判定した障害物パターンをもとに動作のパラメータ等を 決定する			

Tips 1.1

障害物の設置パターンは2種類あり、各パターンで計6本設置されている。本モデル内では、**障害物それぞれにA~Fの文字を割り当てる**ことで、モデル図内での説明を容易にしている。

図1.2.3 障害物パターン1

図1.2.4 障害物パターン2

1.2項「要求分析・リスク分析」の内容を踏まえ,機能をPhase①~⑤に分割した.各Phaseのフローを表1.3.1に示す.

章害物B~Cの区間 [LT走行] ・関値:18 ・内輪:4%(逆回転) ・外輪:10%

障害物C~Dの区間 [非LT走行]

※モータの最大出力を100%とす

Tips 1.2

機能を実現する際に、3種類の走行を用いる. 各走行の名称と概要を表1.3.2 に示す. (表1.3.2)

表1.3.2 走行の定義

名称	LT走行	非LT走行	旋回走行
概要	輪モータに与えられる値	路面の黒ラインに依存しないで走行する. 任意のパワー値を右輪, 左輪に設定する.	両輪モータを逆方向に 同じ速度で駆動させ、 その場で水平方向に回 転する. 走行体は水平 方向へ移動しない.

■ 「アームH」と「アームL」という名称を定義した. 以下にそれぞれの概要を示す. (図 1.3.2)

<u>◆アームH</u>

図1.3.2「アームH」と「アームL」の角度

光センサがアームと連動していることから、LT走行するためには「アームL」の角度に設定し、光センサを路面方向へ向ける必要がある。しかし、アームLの角度では板を上る際にアームが板に接触し、事故の原因になり得るため、板を上る際には「アームHの角度」に設定する必要がある。

Tips 1.4 Phaseの実行順は以下のとおりである. 詳細は3.1「シナリオ 管理の振る舞い」を参照.

機能

構造 振る舞い

チーム名:朧月

選択課題:スラロームを通過する

2.1 設計方針

ETロボコン2020のコースを「スピード競技工リア」、「スラロームエリア」、「ガレージエリア」に分割した. また、スラロームエリアで実行する動作について、1.2で求めたようにPhaseに分割した. 各Phaseで動作 内容が設定され、イベント判定の結果に基づきPhaseが切り替わる.

<u>Tips 2.1</u>

図2.1.1内の灰色のオブジェクトはモ デリング対象外であるため, 省略する.

各Phaseのフローについては、1.3項 「各Phaseのフロー」を参照。

2.3 詳細構造

「2.1 設計方針」、「2.2 パッケージ構造」に沿って、スラロームを攻略するソフトウェアの詳細構造を 定義した.以下にクラス図で示す(図2.3).なお、シナリオ管理パッケージの**走行制御タスクは4ミリ秒** ごとに実行される

図2.3 スラロームを攻略するソフトウェアの構造

Tips 2.2 【クラス図の注意点】

・コンストラクタ・デストラクタの 記述は省略する. ・「スラロームを攻略する」に必要の ないクラスは省略する. ・各パッケージの配色は2.2項「パッケージ 構造」にて定めた配色と対応する.

2.2 パッケージ構造

課題の攻略を行うソフトウェアの構造について、各パッケージの関係を図2.2.1に示す、また、各パッケージに関する説明を表2.2.1で示す。

表2.2.1 各パッケージの説明 パッケージ名 概要 走行体の動作及び、動作の流れを管理する. Phase シナリオ管理 の実行,切り替えについて指示する. 走行体のモータの動作を管理する. 各Phaseで用いら 動作 れる動作を実行する. 各Phaseの終了, 切り替えのための条件判定を管理 判定 する. 指示された判定を実行し, 条件を満たしている か判定する 制御量の算出を管理する. 動作や判定を行う際に必 制御パラメータ算出 要な値の計算を行う. センサ, モータを管理する. 動作に従って駆動させた

り、判定に必要な値を取得したりする。

3.1 シナリオ管理の振る舞い

「コース」,「エリア」,「Phase」が順次選択さ れ, 実行される振る舞いを図3.1.1に示す.

振る舞いモデル

チーム名:朧月

選択課題:スラロームを通過する

3.1 シナリオ管理の振る舞い(続き)

各Phaseの実行される順序について図3.1.2で示す、Phaseは終了条件(詳細 は1.3項「各Phaseのフロー」を参照)を満たした後、次のPhaseに遷移する。

3.2 「板を上る」の振る舞い

Phase①:「板を上る」(詳 細は1.3項「各Phaseのフ

ロー」を参照)の振る舞いを図3.2に示す。

3.5 走行等の振る舞い

各Phaseで実行されている走行などの動作の振 る舞いを示す.(図3.5.1~図3.5.3)

図3.5.1 LT走行の振る舞い

図3.5.2 非LT走行の振る舞い

Tips 3.2

Phase内で実行される動 作の中に「旋回走行」と いう動作があるが、この 動作の振る舞いは非LT 走行と同様であるため. 省略する

3.3 「障害物パターンを判定する」の振る舞い

Phase④:「障害物パターンを判定する」(詳細は1.3項「各Phaseのフロー」参照) の振る舞いを図3.3に示す.

図3.3 「障害物パターンを判定する」の振る舞い

3.4 「板を下りる」の振る舞い

Phaseのフロー」参照)の振る舞いを図3.4に示す。

Phase⑤:「板を下り る」(詳細は1.3項「各

板を下りる: Phase 指定距離走行完了判定 alt [降段状態 == 非LT走行で前進する] 1: 走行する(パワー値:両輪のパワー値) : void 非LT走行の振る舞し 2: 判定する(目標値:int): boolear 指定距離走行完了判定の振る舞り 非LT走行での直進完了判定の結果 [降段状態 == LT走行で前進する] 3: 走行する(パワー値:両輪のパワー値, 閾値:int): void ___ LT走行の振る舞い 4: 判定する(目標値:int): boolea 指定距離走行完了判定の振る舞り LT走行での直進完了判定の結果

図3.4 「板を下りる」の振る舞い

3.6 イベント判定の振る舞い

各Phaseで実行されている動作の 終了条件判定の振る舞いを示す(図

3.6.1~図3.6.3). ただし、紙面の都合により、アーム回転完了判定のみPhase① 「板を上る」の振る舞いに直接示している.

図3.6.1 指定距離走行完了判定の振る舞い

