

KS091201
MATEMATIKA DISKRIT
(DISCRETE
MATHEMATICS)

Growth of Functions

Discrete Math Team

Outline

- How Does One Measure Algorithm?
- Binary Search Running Time
- Big-Oh Notation
- ullet Big- Ω Notation
- Big-θ Notation
- Complexity of Algorithm

How does one measure algorithms

- We can time how long it takes a computer
 - What if the computer is doing other things?
 - And what happens if you get a faster computer?
 - A 3 Ghz Windows machine chip will run an algorithm at a different speed than a 3 Ghz Macintosh
- So that idea didn't work out well...

How does one measure algorithms

- We can measure how many machine instructions an algorithm takes
 - Different CPUs will require different amount of machine instructions for the same algorithm
- So that idea didn't work out well...

How does one measure algorithms

- We can loosely define a "step" as a single computer operation
 - A comparison, an assignment, etc.
 - Regardless of how many machine instructions it translates into
- This allows us to put algorithms into broad categories of efficient-ness
 - An efficient algorithm on a slow computer will always beat an inefficient algorithm on a fast computer

Binary Search running time

- The binary search takes log₂n "steps"
- Let's say the binary search takes the following number of steps on specific CPUs:
 - Intel Pentium IV CPU: 58* log₂n /2
 - Motorola CPU: $84.4*(\log_2 n + 1)/2$
 - Intel Pentium V CPU: 44*(log₂n)/2
- Notice that each has an log₂n term
 - As n increases, the other terms will drop out
- As processors change, the constants will always change
 - The exponent on *n* will not

Big-Oh notation

- Let b(x) be the bubble sort algorithm
- We say b(x) is $O(n^2)$
 - This is read as "b(x) is big-oh n^2 "
 - This means that as the input size increases, the running time of the bubble sort will increase proportional to the square of the input size
 - In other words, by some constant times n^2
- Let I(x) be the linear (or sequential) search algorithm
- We say I(x) is O(n)
 - Meaning the running time of the linear search increases directly proportional to the input size

Big-Oh notation

- Consider: b(x) is $O(n^2)$
 - That means that b(x)'s running time is less than (or equal to) some constant times n^2
- \circ Consider: I(x) is O(n)
 - That means that I(x)'s running time is less than (or equal to) some constant times n

Big-Oh notation

- If f(x) and g(x) are two functions of a single variable, the statement f(x)=O(g(x)) or alternatively $f(x)\in O(g(x))$ means that $\exists k\in \mathbb{R}, \ \exists c\in \mathbb{R}, \ \forall x\in \mathbb{R}, \ x>k \Rightarrow 0 \leq |f(x)| \leq c|g(x)|$.
- Note: O(g(x)): a set of functions
- Informally
 - \circ c g(x) is greater than f(x) for sufficiently large x.
 - f(x) grows no faster than g(x), as x gets large.
- How proof goes
 - Need to find k and c to show $f(x) \in O(g(x))$.
- Conventionally people use f(x)=O(g(x)).

Formal Big-Oh definition

Let f and g be functions. We say that f(x) is O(g(x)) if there are constants c and k such that

$$|f(x)| \le C |g(x)|$$

whenever $x > k$

 Big-Oh notation is used to estimate the number of operations needed to solve a problem using a spesified procedure or algorithm.

Formal Big-Oh definition

FIGURE 2 The Function f(x) is O(g(x)).

Big-Oh proofs

- Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$
 - In other words, show that $x^2 + 2x + 1 \le c^*x^2$
 - Where c is some constant
 - For input size greater than some x
- We know that $2x^2 \ge 2x$ whenever $x \ge 1$
- And we know that $x^2 \ge 1$ whenever $x \ge 1$
- So we replace 2x+1 with 3x²
 - We then end up with $x^2 + 3x^2 = 4x^2$
 - This yields $4x^2 \le c^*x^2$
- This, for input sizes (k) 1 or greater, when the constant (C) is 4 or greater, f(x) is $O(x^2)$
- We could have chosen values for Cand x that were different

Big-Oh proofs

Sample Big-Oh problems

- Show that $f(x) = x^2 + 1000$ is $O(x^2)$
 - In other words, show that $x^2 + 1000 \le c^*x^2$
- We know that $x^2 > 1000$ whenever x > 31
 - Thus, we replace 1000 with x²
 - This yields $2x^2 \le c^*x^2$
- Thus, f(x) is $O(x^2)$ for all x > 31 when $c \ge 2$

Sample Big-Oh problems

- Show that f(x) = 3x+7 is O(x)
 - In other words, show that $3x+7 \le c^*x$
- We know that x > 7 whenever x > 7
 - Duh!
 - So we replace 7 with x
 - This yields $4x \le c^*x$
- Thus, f(x) is O(x) for all x > 7 when $c \ge 4$

A variant of the last question

- Show that f(x) = 3x+7 is $O(x^2)$
 - In other words, show that $3x+7 \le c^*x^2$
- We know that x > 7 whenever x > 7
 - Duh!
 - So we replace 7 with x
 - This yields $4x < c*x^2$
 - This will also be true for x > 7 when $c \ge 1$
- Thus, f(x) is $O(x^2)$ for all x > 7 when $c \ge 1$

What that means

- If a function is O(x)
 - Then it is also $O(x^2)$
 - And it is also $O(x^3)$
- Meaning a O(x) function will grow at a slower or equal to the rate x, x², x³, etc.

Function growth rates

• For input size n = 1000

○ ○(1)	1
O(log n)	≈10
O(n)	10^{3}
O(n log n)	≈10 ⁴
• $O(n^2)$	106
• $O(n^3)$	109
 ○ O(n⁴) 	1012
 O(n^c) 	10 ^{3*c}
• 2 ⁿ	≈10 ³⁰¹
• n!	≈10 ²⁵⁶⁸
o n ⁿ	103000

c is a consant

Many interesting problems fall into these categories

Function growth rates

Logarithmic scale!

FIGURE 3 A Display of the Growth of Functions Commonly Used in Big-O Estimates.

Big- Ω and Big- θ Notation

- Big-O notation does not provide a lower bound for the size of f(x) for large x, for this we use big-Omega (Big- Ω) notation.
- When we want to give both, an upper and lower bound on the size of a function f(x), relative to a reference function g(x), we use big-Theta (Big- θ) notation.

Formal Definition of Big- Ω

• Let f and g be function from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Omega(g(x))$ if there are positive constants C and k such that

$$|f(x)| \ge C |g(x)|$$
 whenever $x > k$

- This is read as "f(x) is big-Omega of (g(x))".
- Alternatively, we can say that:

$$\exists k \in \mathbb{R}, \exists c \in \mathbb{R}, \forall x \in \mathbb{R}, x > k \Rightarrow |f(x)| \ge c |g(x)|$$

Example Big- Ω Problem

- The function $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(g(x))$, where g(x) is the function $g(x) = x^3$.
- $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(x^3)$. • since $8x^3 + 5x^2 + 7 > 8x^3$ for all x > 0.
- $f(x) = \Omega(g(x))$ is equivalent to g(x) = O(f(x))

Formal Definition of Big- θ

- Let f and g be function from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\theta(g(x))$ if f(x) is O(g(x)) and f(x) is $\Omega(g(x))$.
- When f(x) is $\theta(g(x))$ we say that "f(x) is big-Theta of (g(x))" and we also say that f(x) is of order (g(x))
- When f(x) is $\theta(g(x))$, it is also the case that g(x) is $\theta(f(x))$.
- Note that f(x) is $\theta(g(x))$ if and only if f(x) is O(g(x)) and g(x) is O(f(x)).

Proof

- f(x) is $\theta(g(x))$ if and only if f(x) is O(g(x)) and g(x) is O(f(x)).
 - If f(x) is $\theta(g(x))$, then there exist constants C_1 and C_2 with $C_1 | g(x) | \le | f(x) | \le C_2 | g(x) |$.
 - It follows that $|f(x)| \le C_2 |g(x)|$ and $|g(x)| \le 1/C_1 |f(x)|$ for x > k.
 - Thus f(x) is O(g(x)) and g(x) is O(f(x)).
 - Conversely, suppose that f(x) is O(g(x)) and g(x) is O(f(x)), then there exist constants C_1 , C_2 , k_1 , k_2 such that $|f(x)| \le C_1 |g(x)|$ for $x > k_1$ and $|g(x)| \le C_2 |f(x)|$ for $x > k_2$.
 - We can assume that $C_2 > 0$ (we can always make C_2 larger). Then we have $1/C_2|g(x)| \le |f(x)| \le C_1|g(x)|$ for $x > \max(k_1, k_2)$. Hence f(x) is $\theta(g(x))$.

Example Big-θ Problem

- Show that $3x^2 + 8x \log x$ is $\theta(x^2)$
- Solution:
 - f(x) is $\theta(g(x))$ if f(x) is O(g(x)) and f(x) is $\Omega(g(x))$
 - We can find c_1 and c_2 such that $c_1 |g(x)| \le |f(x)| \le c_2 |g(x)|$.
 - $3x^2 + 8x \log x \text{ is } \theta(x^2)$
 - \circ 3x² + 8x log x < 3x² + 8x² = 11x² for x > 1
 - : $3x^2 + 8x \log x = O(x^2)$.
 - $3x^2 + 8x \log x > x^2 \text{ for } x > 1$
 - : $3x^2 + 8x \log x = \Omega(x^2)$.

Complexity of Algorithm

- How can the efficiency of an algorithm be analyzed?
- One measure of efficiency is the time used by a computer to solve a problem using the algorithm when input values are of specified size → time complexity
- A second measure is the amount of computer memory required to implement the algorithm when input values are of specified size → space complexity
- In this section we will discuss the time complexity.

Comparison of running times

- Searches
 - Linear: n steps
 - Binary: 2 log n steps
- Sorts
 - Bubble: n^2 steps
 - Insertion: n^2 steps

Time Complexity of Max Element Algorithm

- The number of comparisons will be used as the measure of the time complexity since comparisons are the basic operations used.
- Two comparisons are used for each of the second through the nth elements and one more comparison to exit the loop when i = n + 1, exactly 2(n 1) + 1 = 2n 1.
- Hence the algorithm for finding max element of a set of n elements has time complexity $\theta(n)$, measured in terms of the number of comparisons used.

Time Complexity of Linear Search Algorithm

- At each step of the loop, two comparisons are performed – one to see whether the end of the loop has been reached and one to compare the element x with a term in the list. One more comparison is made outside the loop.
- Consequently, if $x = a_i$, 2i + 1 comparisons are used.
- The most comparison, 2n + 2, are required when the element is not in the list 2n comparisons are used to determine that x is not a_i , an additional comparison is used to exit the loop, and one more comparison outside the loop.
- Hence, a linear search algorithm requires at most $\theta(n)$. This is worst case complexity.
- Worst case analysis tells us how many operations an algorithm requires to guarantee that it will produce a solution.

Time Complexity of Binary Search Algorithm

- Binary search requires at most $2 \log n + 2$ comparisons when the list being searced has 2^k elements, where $k = \log n$.
- If n is not a power of 2, the original list is expanded with 2^{k+1} terms, where $k = \lfloor \log n \rfloor$ and the search requires at most $2 \lceil \log n \rceil + 2$ comparisons.
- Consequently, binary search requires at most $\theta(\log n)$ comparisons.
- This is average case complexity → the average number of operations used to solve the problem over all inputs of a given size.

Average Case Performance of Linear Search Algorithm

- If x is ith term in the list, 2i + 1 comparisons are needed.
- Hence the average number of comparisons used equals:

$$\frac{3+5+7+\dots+(2n+1)}{n} = \frac{2(1+2+3+\dots+n)+n}{n}$$

•
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

• Hence, the average number of comparisons used by linear search algorithm (when x is known to be in the list) is $\frac{2\left[\frac{n(n+1)}{2}\right]}{n} + 1 = n + 2$, which is $\theta(n)$

Worst Case Complexity of Two Sorting Algorithms

o Bubble sort:

 Total number of comparisons used by bubble sort to order a list of n elements is:

$$(n-1) + (n-2) + \dots + 2 + 1 = \frac{(n-1)n}{2}$$

• So it has $\theta(n^2)$ worst case complexity

o Insertion sort:

• Total number of comparisons used by insertion sort to order a list of *n* elements is:

$$2 + 3 + \dots + n = \frac{n(n+1)}{2} - 1$$

• So it has $\theta(n^2)$ worst case complexity

Commonly Used Terminology for Complexity of Algorithms

Complexity	Terminology
θ(1)	Constant complexity
$\theta(\log n)$	Logarithmic complexity
$\theta(n)$	Linear complexity
$\theta(n \log n)$	n log n complexity
$\theta(n^b)$	Polynomial complexity
$\theta(b^n)$, where $b > 1$	Exponential complexity
θ(n!)	Factorial complexity