Table of Contents

G	eometry Recipes	1
	Creating Geometries	1
	Procesing Geometries	7
	Reading and Writing Geometries	. 10
	Creating Bounds	. 14
	Getting Bounds Properties	. 15
	Processing Bounds	. 18

Geometry Recipes

Creating Geometries

Create a Point with an XY

```
Point point = new Point(-123,46)
```

Create a LineString from Coordinates

```
LineString lineString = new LineString(
        [3.1982421875, 43.1640625],
        [6.7138671875, 49.755859375],
        [9.7021484375, 42.5927734375],
        [15.3271484375, 53.798828125]
)
```


Create a Polygon from a List of Coordinates

Create a MultiPoint with a List of Points

```
MultiPoint multiPoint = new MultiPoint([
    new Point(-122.3876953125, 47.5820839916191),
    new Point(-122.464599609375, 47.25686404408872),
    new Point(-122.48382568359374, 47.431803338643334)
])
```



```
MultiPolygon multiPolygon = new MultiPolygon(
    new Polygon ([[
            [-122.2723388671875, 47.818687628247105],
            [-122.37945556640624, 47.66168780332917],
            [-121.95373535156249, 47.67093619422418],
            [-122.2723388671875, 47.818687628247105]
    ]]),
    new Polygon ([[
            [-122.76672363281249, 47.42437092240516],
            [-122.76672363281249, 47.59505101193038],
            [-122.52227783203125, 47.59505101193038],
            [-122.52227783203125, 47.42437092240516],
            [-122.76672363281249, 47.42437092240516]
    ]]),
    new Polygon ([[
            [-122.20367431640624, 47.543163654317304],
            [-122.3712158203125, 47.489368981370724],
            [-122.33276367187499, 47.35371061951363],
            [-122.11029052734374, 47.3704545156932],
            [-122.08831787109375, 47.286681888764214],
            [-122.28332519531249, 47.2270293988673],
            [-122.2174072265625, 47.154237057576594],
            [-121.904296875,
                                  47.32579231609051],
            [-122.06085205078125, 47.47823216312885],
            [-122.20367431640624, 47.543163654317304]
    ]])
)
```


Create a CircularString with a List of Points

Create a CircularRing with a List of Points

Create a CompoundCurve with a List of CircularStrings and LineStrings

```
CompoundCurve compoundCurve = new CompoundCurve([
    new CircularString([
            [27.0703125, 23.885837699862005],
            [5.9765625, 40.17887331434696],
            [22.5, 47.98992166741417],
    ]),
    new LineString([
            [22.5, 47.98992166741417],
            [71.71875, 49.15296965617039],
    ]),
    new CircularString([
            [71.71875, 49.15296965617039],
            [81.5625, 39.36827914916011],
            [69.9609375, 24.5271348225978]
    ])
])
```



```
CompoundRing = new CompoundRing([
       new CircularString([
               [27.0703125, 23.885837699862005],
               [5.9765625, 40.17887331434696],
               [22.5, 47.98992166741417],
       1),
       new LineString([
               [22.5, 47.98992166741417],
               [71.71875, 49.15296965617039],
       ]),
       new CircularString([
               [71.71875, 49.15296965617039],
               [81.5625, 39.36827914916011],
               [69.9609375, 24.5271348225978]
       ]),
       new LineString([
               [69.9609375, 24.5271348225978],
               [27.0703125, 23.885837699862005],
       ])
])
```


Procesing Geometries

Get the area of a Geometry

```
Polygon polygon = new Polygon([[
        [-124.80, 48.92],
        [-126.21, 45.33],
        [-114.60, 45.08],
        [-115.31, 51.17],
        [-121.99, 52.05],
        [-124.80, 48.92]
]])
double area = polygon.area
println area
```

```
62.4026
```

Get the length of a Geometry

```
LineString lineString = new LineString([-122.69, 49.61], [-99.84, 45.33])
double length = lineString.length
println length
```

23.24738479915536

Buffer a Point

```
Point point = new Point(-123,46)
Geometry bufferedPoint = point.buffer(2)
```


Get Bounds from a Geometry

```
Point point = new Point(-123,46)
Polygon polygon = point.buffer(2)
Bounds bounds = polygon.bounds
```


Create a Geometry of a String

```
Geometry geometry = Geometry.createFromText("Geo")
```


Create a Sierpinski Carpet in a given Bounds and with a number of points

```
Bounds bounds = new Bounds(21.645,36.957,21.676,36.970, "EPSG:4326")
Geometry geometry = Geometry.createSierpinskiCarpet(bounds, 50)
```


Create a Kock Snowflake in a given Bounds and with a number of points

```
Bounds bounds = new Bounds(21.645,36.957,21.676,36.970, "EPSG:4326")
Geometry geometry = Geometry.createKochSnowflake(bounds, 50)
```


Reading and Writing Geometries

The geoscript.geom.io package has several Readers and Writers for converting geoscript.geom.Geometry to and from strings.

Readers and Writers

Find all Geometry Readers

```
List<Reader> readers = Readers.list()
readers.each { Reader reader ->
    println reader.class.simpleName
}
```

```
GeobufReader
GeoJSONReader
GeoRSSReader
Gml2Reader
Gml3Reader
GpxReader
KmlReader
WkbReader
WktReader
GooglePolylineEncoder
```

Find a Geometry Reader

```
String wkt = "POINT (-123.15 46.237)"
Reader reader = Readers.find("wkt")
Geometry geometry = reader.read(wkt)
```

Find all Geometry Writers

```
List<Writer> writers = Writers.list()
writers.each { Writer writer ->
    println writer.class.simpleName
}
```

```
GeoDufWriter
GeoJSONWriter
GeoRSSWriter
Gml2Writer
Gml3Writer
GpxWriter
KmlWriter
WkbWriter
WkbWriter
GooglePolylineEncoder
```

Find a Geometry Writer

```
Geometry geometry = new Point(-122.45, 43.21)
Writer writer = Writers.find("geojson")
String geojson = writer.write(geometry)
println geojson
```

```
{"type":"Point","coordinates":[-122.45,43.21]}
```

WKT

Read a Geometry from WKT using the WktReader

```
String wkt = "POINT (-123.15 46.237)"

WktReader reader = new WktReader()

Geometry geometry = reader.read(wkt)
```

```
String wkt = "LINESTRING (3.198 43.164, 6.7138 49.755, 9.702 42.592, 15.327 53.798)"
Geometry geometry = Geometry.fromWKT(wkt)
```


Get the WKT of a Geometry

```
Geometry geometry = new Point(-123.15, 46.237)
String wkt = geometry.wkt
println wkt
```

```
POINT (-123.15 46.237)
```

Write a Geometry to WKT using the WktWriter

```
LINESTRING (3.198 43.164, 6.713 49.755, 9.702 42.592, 15.32 53.798)
```

GeoJSON

Read a Geometry from GeoJSON using the GeoJSONReader

```
String json = '{"type":"Point","coordinates":[-123.15,46.237]}'
GeoJSONReader reader = new GeoJSONReader()
Geometry geometry = reader.read(json)
```

Read a Geometry from GeoJSON using the Geometry.fromGeoJSON() static method

```
String json =
'{"type":"LineString","coordinates":[[3.198,43.164],[6.713,49.755],[9.702,42.592],[15.
32,53.798]]}'
Geometry geometry = Geometry.fromGeoJSON(json)
```


Get the GeoJSON of a Geometry

```
Geometry geometry = new Point(-123.15, 46.237)
String json = geometry.geoJSON
println json
```

```
{"type":"Point","coordinates":[-123.15,46.237]}
```

Write a Geometry to GeoJSON using the GeoJSONWriter

```
Geometry geometry = new LineString(
        [3.198, 43.164],
        [6.713, 49.755],
        [9.702, 42.592],
        [15.32, 53.798]
)
GeoJSONWriter writer = new GeoJSONWriter()
String json = writer.write(geometry)
println json
```

```
{"type":"LineString","coordinates":[[3.198,43.164],[6.713,49.755],[9.702,42.592],[15.3 2,53.798]]}
```

Creating Bounds

Create a Bounds from four coordinates (minx, miny, maxx, maxy) and a projection.

```
Bounds bounds = new Bounds(-127.265, 43.068, -113.554, 50.289, "EPSG:4326")
```


Create a Bounds from four coordinates (minx, miny, maxx, maxy) without a projection. The projection can be set later.

```
Bounds bounds = new Bounds(-127.265, 43.068, -113.554, 50.289)
bounds.proj = new Projection("EPSG:4326")
```


Create a Bounds from a string with commas delimiting minx, miny, maxx, maxy and projection values.

```
Bounds bounds = Bounds.fromString("-127.265,43.068,-113.554,50.289,EPSG:4326")
```


Create a Bounds from a string with spaces delimiting minx, miny, maxx, maxy and projection values.

```
Bounds bounds = Bounds.fromString("12.919921874999998 40.84706035607122 15.99609375 41.77131167976407 EPSG:4326")
```


Getting Bounds Properties

Create a Bounds and view it's string representation

```
Bounds bounds = new Bounds(-127.265, 43.068, -113.554, 50.289, "EPSG:4326")
String boundsStr = bounds.toString()
println boundsStr
```

```
(-127.265,43.068,-113.554,50.289,EPSG:4326)
```

Get the minimum x coordinate

```
double minX = bounds.minX
println minX
```

```
-127.265
```

Get the minimum y coordinate

```
double minY = bounds.minY
println minY
```

43.068

Get the maximum x coordinate

```
double maxX = bounds.maxX
println maxX
```

-113.554

Get the maximum y coordinate

```
double maxY = bounds.maxY
println maxY
```

50.289

Get the Projection

```
Projection proj = bounds.proj
println proj.id
```

EPSG:4326

Get the area

```
double area = bounds.area
println area
```

99.00713100000004

Get the width

```
double width = bounds.width
println width
```

13.710999999999999

Get the height

```
double height = bounds.height
println height
```

7.2210000000000004

Get the aspect ratio

```
double aspect = bounds.aspect
println aspect
```

1.8987674837280144

A Bounds is not a Geometry but you can get a Geometry from a Bounds

```
Bounds bounds = new Bounds(-122.485, 47.246, -122.452, 47.267, "EPSG:4326")
Geometry geometry = bounds.geometry
```


You can also get a Polygon from a Bounds

```
Bounds bounds = new Bounds(-122.485, 47.246, -122.452, 47.267, "EPSG:4326")
Polygon polygon = bounds.polygon
```


Get the four corners from a Bounds as a List of Points

```
Bounds bounds = new Bounds(-122.485, 47.246, -122.452, 47.267, "EPSG:4326")
List<Point> points = bounds.corners
```

Processing Bounds

Reproject a Bounds from one Projection to another.

```
Bounds bounds = new Bounds(-122.485, 47.246, -122.452, 47.267, "EPSG:4326") println bounds
```

```
(-122.485,47.246,-122.452,47.267,EPSG:4326)
```

```
Bounds reprojectedBounds = bounds.reproject("EPSG:2927")
println reprojectedBounds
```

```
(1147444.7684517875,703506.223164177,1155828.120242509,711367.9403610165,EPSG:2927)
```

Expand a Bounds by a given distance

```
Bounds bounds1 = new Bounds(-127.265, 43.068, -113.554, 50.289, "EPSG:4326")
Bounds bounds2 = new Bounds(-127.265, 43.068, -113.554, 50.289, "EPSG:4326")
bounds2.expandBy(10.1)
```


Expand a Bounds to include another Bounds

```
Bounds bounds1 = new Bounds(8.4375, 37.996162679728116, 19.6875, 46.07323062540835, "EPSG:4326")
Bounds bounds2 = new Bounds(22.5, 31.952162238024975, 30.937499999999996, 37.43997405227057, "EPSG:4326")
bounds1.expand(bounds2)
```


Scale an existing Bounds some distance to create a new Bounds

```
Bounds bounds1 = new Bounds(-127.265, 43.068, -113.554, 50.289, "EPSG:4326")
Bounds bounds2 = bounds1.scale(2)
```


Divide a Bounds into smaller tiles or Bounds

```
Bounds bounds = new Bounds(-122.485, 47.246, -122.452, 47.267, "EPSG:4326")
List<Bounds> subBounds = bounds.tile(0.25)
```


Calculate a quad tree for this Bounds between the start and stop levels. A Closure is called for each new Bounds generated.

```
Bounds bounds = new Bounds(-180, -90, 180, 90, "EPSG:4326")
bounds.quadTree(0,2) { Bounds b ->
    println b
}
```

```
(-180.0,-90.0,180.0,90.0,EPSG:4326)

(-180.0,-90.0,0.0,0.0,EPSG:4326)

(-180.0,0.0,0.0,90.0,EPSG:4326)

(0.0,-90.0,180.0,0.0,EPSG:4326)

(0.0,0.0,180.0,90.0,EPSG:4326)
```

Determine whether a Bounds is empty or not. A Bounds is empty if it is null or it's area is 0.

```
Bounds bounds = new Bounds(0,10,10,20)
println bounds.isEmpty()
```

false

```
Bounds emptyBounds = new Bounds(0,10,10,10)
println emptyBounds.isEmpty()
```

true

Determine if a Bounds contains another Bounds

```
Bounds bounds1 = new Bounds(-107.226, 34.597, -92.812, 43.068)
Bounds bounds2 = new Bounds(-104.326, 37.857, -98.349, 40.913)
println bounds1.contains(bounds2)
```


true

```
Bounds bounds3 = new Bounds(-112.412, 36.809, -99.316, 44.777)
println bounds1.contains(bounds3)
```


false

Determine if a Bounds contains a Point

```
Bounds bounds = new Bounds(-107.226, 34.597, -92.812, 43.068)

Point point1 = new Point(-95.976, 39.639)

println bounds.contains(point1)
```


true

```
Point point2 = new Point(-89.384, 38.959)
println bounds.contains(point2)
```


true

Determine if two Bounds intersect

```
Bounds bounds1 = new Bounds(-95.885, 46.765, -95.788, 46.811)
Bounds bounds2 = new Bounds(-95.847, 46.818, -95.810, 46.839)
println bounds1.intersects(bounds2)
```


false

```
Bounds bounds3 = new Bounds(-95.904, 46.747, -95.839, 46.792)
println bounds1.intersects(bounds3)
```



```
true
```

Calculate the intersection between two Bounds

```
Bounds bounds1 = new Bounds(-95.885, 46.765, -95.788, 46.811)
Bounds bounds2 = new Bounds(-95.904, 46.747, -95.839, 46.792)
Bounds bounds3 = bounds1.intersection(bounds2)
```


Generate a grid from a Bounds with a given number of columns and rows and the polygon shape. Other shapes include: polygon, point, circle/ellipse, hexagon, hexagon-inv).

```
Bounds bounds = new Bounds(-180,-90,180,90,"EPSG:4326")
Geometry geometry = bounds.getGrid(5,4,"polygon")
```


Generate a grid from a Bounds with a given number of columns and rows and a point shape. A Closure that is called with a geometry, column, and row for each grid cell that is created.

```
Bounds bounds = new Bounds(-180,-90,180,90,"EPSG:4326")
List geometries = []
Geometry geometry = bounds.generateGrid(10,8,"point") { Geometry g, int col, int row
->
    geometries.add(g)
}
```


Generate a grid from a Bounds with a given cell width and height and a circle/ellipse shape.

```
Bounds bounds = new Bounds(-180,-90,180,90,"EPSG:4326")
Geometry geometry = bounds.getGrid(72.0,72.0,"circle")
```


Generate a grid from a Bounds with a given cell width and height and a hexagon shape. A Closure is called with a geometry, column, and row for each grid cell generated.

```
Bounds bounds = new Bounds(-180,-90,180,90,"EPSG:4326")
List geometries = []
Geometry geometry = bounds.generateGrid(72.0,72.0,"hexagon") { Geometry g, int col, int row ->
        geometries.add(g)
}
```


Generate a grid from a Bounds with a given cell width and height and an inverted hexagon shape.

```
Bounds bounds = new Bounds(-180,-90,180,90,"EPSG:4326")
Geometry geometry = bounds.getGrid(5,5,"hexagon-inv")
```


Create a rectangle from a Bounds with a given number of Points and a rotation angle in radians.

```
Bounds bounds = new Bounds(0,0,20,20)
Polygon polygon = bounds.createRectangle(20,Math.toRadians(45))
```


Create an ellipse from a Bounds. The default number of points is 20 and the default rotation angle in radians is 0.

```
Bounds bounds = new Bounds(0,0,20,20)
Polygon polygon = bounds.createEllipse()
```


Create a squircle from a Bounds. The default number of points is 20 and the default rotation angle in radians is 0.

```
Bounds bounds = new Bounds(0,0,20,20)
Polygon polygon = bounds.createSquircle()
```


Create a super circle from a Bounds with a given power. The default number of points is 20 and the default rotation angle in radians is 0.

```
Bounds bounds = new Bounds(0,0,20,20)
Polygon polygon = bounds.createSuperCircle(1.75)
```


Create an arc from a Bounds with a start angle and angle extent. The default number of points is 20 and the default rotation angle in radians is 0.

```
Bounds bounds = new Bounds(0,0,20,20)
LineString lineString = bounds.createArc(Math.toRadians(45), Math.toRadians(90))
```


Create an arc polygon from a Bounds with a start angle and angle extent. The default number of points is 20 and the default rotation angle in radians is 0.

```
Bounds bounds = new Bounds(0,0,20,20)
Polygon polygon = bounds.createArcPolygon(Math.toRadians(45), Math.toRadians(90))
```


Create a sine star from a Bounds with a number of arms and an arm length ratio. The default number of points is 20 and the default rotation angle in radians is 0.

```
Bounds bounds = new Bounds(0,0,20,20)
Polygon polygon = bounds.createSineStar(5, 2.3)
```


Create a hexagon from a Bounds that is either inverted (false) or not (true).

```
Bounds bounds = new Bounds(0,0,20,20)
Polygon polygon = bounds.createHexagon(false)
```

