Abstract Algebra Homework 8

Joe Loser

April 3, 2016

This problem set includes problems 2, 24, 28, 34, and 38 from section 16.6.
2) Let <i>R</i> be the ring of 2×2 matrices of the form
$\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$,
where $a, b \in \mathbb{R}$. Show that although R is a ring that has no identity, we can find a subring S of R with an identity.
<u>Proof</u> :
24) Let R be a ring with a collection of subrings $\{R_{\alpha}\}$. Prove that $\bigcap R_{\alpha}$ is a subring of R . Give an example to show that the union of two subrings cannot be a subring.
<u>Proof</u> :
28) A ring <i>R</i> is a boolean ring if for every $a \in \mathbb{R}$, $a^2 = a$. Show that every boolean ring is a commutative ring Proof:
34) Let p be prime. Prove that $Z_{(p)}=\left\{\frac{a}{b}\middle a,b\in\mathbb{Z}\text{and}\gcd(b,p)=1\right\}$
is a ring.
<u>Proof</u> :
38) An element x in a ring is called idempotent if $x^2 = x$. Prove that the only idempotent in an integral domain are 0 and 1. Find a ring with a idempotent x not equal to 0 or 1.

<u>Proof</u>: