

#### ER MODEL

Instructor: Nítesh Kumar Jha

níteshjha@soa.ac.ín

ITER,S'O'A(DEEMED TO BE UNIVERSITY)

July 2018

## Review

■ The ER Model

#### Content

- The ER Model
- The ER Diagram

## Keys - I

- The values of the attributes of an entity must be such that, they uniquely identify the entity.
- No two entities in an entity set are allowed to have exactly the same value for all its attributes.
- A Key makes one entity distinguishable from other entity in the same entity set.
- A key for an entity set is a set of attributes, whose value uniquely determines each and every entity in an entity set.
- Different keys used are
  - Candidate key
  - Super key
  - Primary Key
  - Alternate key

# Keys - II

- Ex. Consider the entity set
  - Student(reg\_no, name, branch, address, ph\_no, DoB)
- Candidate key: is an attribute who's value uniquely determine each and every entity in an entity set.
  - Ex. Candidate keys {name, ph\_no}, {name, address} or {reg\_no}
  - For a given entity set, more than one candidate keys can be designed.
- Super Key: any superset of an candidate key is referred as super key
  - i.e. A candidate key is the minimal super key, of which no proper subset can again act as a key.
  - Ex. Super Keys: {reg\_no, name}, {reg\_no, name, ph\_no}, {reg\_no, name, branch}, {reg\_no, name, address} or {reg\_no, name, DoB}, . . .

# Keys - III

- Primary key: Out of multiple candidate keys, one of the key is chosen by the database engineer as the primary key.
- Primary key is used as principal means to uniquely identify each and every entity in the entity set.
  - Ex. Primary key {reg\_no}
- Alternate Key: Rest of the candidate keys (excluding primary key) are called alternate keys
  - Ex. Alternate Keys {name, ph\_no} and {name, address}
- Keys are represented in ER Diagram by underlining the key attribute(s)

#### ER Model: Constraints

- Constraints are the reflections of business rules/logic to which the database design must comply to.
- These are the characteristics of relationship set.
- ER Model supports two types of constraints:
  - Mapping Cardinalities or Cardinality constraints
    - How many entities in one entity set is associated with entities of another entity set?
  - Participation Constraints.
    - Tells about the total or partial participation of an entity set in a relationship set.
    - i.e. Whether all entities or few of them are participating in a relationship set.
    - Ex. Participation of Student entity set in the relationship advisor is total. But participation of Instructor may be partial

ER Model: Mapping Cardinalities - I

Mapping cardinalities or cardinality ratios tells the number of entities to which another entity can be associated via a relationship set.

- One-to-One: An entity in entity set A is associated with at most one entity in another entity set B.
- Ex. One Student enrolls in One course
- One-to-Many: An entity in entity set A is associated with any number of entities in entity set B.
  - Ex. One Teacher advises Multiple students



## ER Model: Mapping Cardinalities - II

- Many-to-One: An entity in A is associated with at most one entity in B. An entity in B, however, can be associated with any number of entities in A.
  - Ex. Many Students are enrolled in One Course





- Many-to-Many: An entity in A is associated with any number of entities in B and an entity in B is associated with any number of entities in A.
  - Ex. One Customer have Many bank Accounts and One Account can have Multiple number of Customers.

## ER Diagram: Cardinality Constraints-I

- One: A directed line (→) from relationship set to entity set
- Many: an undirected line (—)



- One-to-One relationship between an instructor and a student:
  - A student is associated with at most one instructor via the relationship advisor
  - Task: Draw ER diagram where, A student is associated with at most one department via stud\_dept

## ER Diagram: Cardinality Constraints-II

 One-to-Many: an instructor is associated with several (including 0) students via advisor



Many-to-One: a student is associated with several (including
 instructors via advisor



## ER Diagram: Cardinality Constraints-III

#### Many-to-Many:

- An instructor is associated with several (possibly 0) students via advisor
- A student is associated with several (possibly 0) instructors via advisor





#### ER Diagram: Total and Partial Participation

- Total participation is indicated by double line:
  - i.e. every entity in the entity set participates in at least one relationship in the relationship set



Ex. participation of student in advisor relation is total

- every student must have an associated instructor
- Partial participation: some entities may not participate in any relationship in the relationship set
  - Ex. participation of instructor in advisor is partial

# ER Diagram: Complex Constraints

- A line may have an associated minimum and maximum cardinality, shown in the form I..h, where
  - A minimum value of 1 indicates total participation
  - A maximum value of 1 indicates that the entity participates in at most one relationship
  - A maximum value of \* indicates no limit.



Instructor can advise 0 or more students. A student must have 1 advisor; cannot have multiple advisors

# ER Model: Weak Entity Set - I

- An entity set that cannot be uniquely identified by its attributes alone are called weak entity sets.
  - i.e. the entity set does not have sufficient attributes to form a primary key and are dependent on other entity sets for their existence.
- An entity having own primary key is called a strong entity.
- The strong entity upon which the weak entity depends is referred as identity entity
- The relationship set through which the weak entity is connected to its identity (strong) entity set is called identifying relationship set.

# ER Diagram: Weak Entity Set

Ex. orderItem(item\_no, quantity, price, discount)



- The relationship set with its identity entity (strong) set is represented using double line diamond
- The line from weak entity to identifying relationship set is double lined
- A set of attributes of a weak entity set is referred as the discriminator (or partial key) that is used as a means of distinguishing among all those entities in the weak entity set that depend on one particular strong entity

# Weak Entity Set - III

- The primary key of a weak entity set is formed by
  - the primary key of the identifying entity set, plus
  - the weak entity set's discriminator.
  - Example: {order\_no, item\_no} is the primary key in the table
     orderItem
- In the case of the entity set section, its primary key is {course\_id, sec\_id, year, semester}
- The participation of the weak entity set with its identifying relationship set is always total.
- The cardinality of the identifying relationship set is always manyto-one from the weak entity set to its identifying entity set
- The identifying relationship set is not allowed to have any descriptive attribute
- Weak entity can participate in any other relationship set after forming the primary key.

## Complex Attributes



- Make name attribute of customer entity set as composite attribute with component attributes as
  - fName & IName
  - Make phoneNum
    attribute of customer
    entity set as
    multivalued attribute
    as one customer can
    have multiple phone
    numbers

## Cardinality Constraints



## Participation Constraints



 Participation of entity set account in deposit relationship & accWith relationship is total

Participation of loan entity set in loanBranch relationship & borrows relationship is total

## Weak Entity Set

- Design an Weak entity set installment with attributes instNum, instAmt, instDate
- Join it with loan entity set with the relationship set payBack

payBack



installment

instNum

instAmt

instDate

# Thank You