令和3年度 第2回技術管理委員会(令和4年1月24日開催) 要旨

審議事項

(1) **簡易提供型共同研究の終了評価 研究テーマ名**人力清掃困難箇所における清掃技術の開発

研究テーマ名	人力清掃困難箇所における清掃技術の開発			
研究形態	簡易提供型共同研究			
共同研究者	管清工業株式会社			
所管部署	計画調整部 技術開発課			
研究期間	令和2年3月9日から令和3年8月31日まで			
研究目的	大口径管きょの清掃業務は、人力・機械併し、清掃作業は、堆積物から発生する硫化定度の高い作業になっている。 本開発は、人力清掃が困難な大口径管き技術』を確立するものである。	水素等毒ガスや、管内の高水位箇所な	ど、作業上、危険	
		超強力學	出装置	
	研究目標	研究成果	備考	
	(1)適用管径・形状800mm以上 円形・矩形きょ・馬蹄きょ	(1)適用管径・形状 円形:800mm以上で確認 矩形きょ:センター放流渠で確認 馬蹄きよ:矩形きよで確認		
	(2) 施工延長 ホース延長500m (人孔深含む) (3) 適用水位	(2)施工延長 土砂吸引能力:500m確認 ホースけん引能力:300m確認 (3)適用水位	【陸上検証】	
	カメラが水没しない程度(水深150cm程 度)	構造上水深150cmまで可能である。 (現場では水深63cmまで確認)		
	(八音压进海船上	(4) 肯尼姓為地士		
研究目標及び 成果	(4)高圧洗浄能力 通常時 20MPa以上 超高圧時 70MPa以上 ※上記の洗浄能力を発揮するときでも、清掃 ロボットは転倒せず安定した稼働できるこ と。超高圧はモルタル堆積の際使用。	(4)高圧洗浄能力 通常時20MPaの水圧で清掃可能 超高圧時70MPaでモルタル塊を破壊確認		
	通常時 20MPa以上 超高圧時 70MPa以上 ※上記の洗浄能力を発揮するときでも、清掃 ロボットは転倒せず安定した稼働できること。超高圧はモルタル堆積の際使用。 (5)施工可能揚程 22m以上	通常時20MPaの水圧で清掃可能 超高圧時70MPaでモルタル塊を破壊確認 (5)施工可能場程 22m以上の場程で施工可能 (約37mの場程で確認)		
	通常時 20MPa以上 超高圧時 70MPa以上 ※上記の洗浄能力を発揮するときでも、清掃 ロボットは転倒せず安定した稼働できること。超高圧はモルタル堆積の際使用。	通常時20MPaの水圧で清掃可能 超高圧時70MPaでモルタル塊を破壊確認 (5)施工可能場程 22m以上の揚程で施工可能	【陸上検証】	

研究目標及び 成果	(7)清掃ロボットの組立・撤去時間 人孔内での機械の組立・撤去 ※清掃ロボットの組立・撤去時間は各々2時間以内 (8)機動性 前進・後退、左右旋回(180°)可能 障害物走破能力(高低差10cm以上) (9)施工量 1日当たりの搬出土量(同日に清掃ロボットの組立・撤去含む) ①連続吸引排出装置の未装着時 1.5m3/日以上 ②連続吸引排出装置の装着時 4.5m3/日以上 共同研究の結果、研究目標を概ね達月	(7)清掃ロボットの組立・撤去時間ロボット組立:約1.5時間撤去:約1時間 (8)機動性前進・後退、左右旋回(180°)確認障害物走破能力(高低差15cm以上)確認 (9)施工量 ①連続吸引排出装置未装着時最大2.7m3/日(実績) ②連続吸引排出装置装着時最大4.1m3/日(実績)	【陸上検証】	
	所において、無人清掃ロボットの使用により、清掃可能範囲の拡大につながる。 ①管路内の換気が不要 ②作業可能な水位が150cmに拡大 ③人孔からの作業可能距離が300mにまで可能(陸上検証より)			
審議結果	本技術は、硫化水素ガス等が発生するなど人力清掃困難な箇所において、作業員の安全が確保された清掃作業が可能である。また、清掃が困難な大深度においても対応可能である。このことから、本技術は実用化すべき技術として評価された。			
備考				