Artificial Intelligence

Instructor: Jie Shen

Dept. of Computer Science

September 3, 2024

Al applications...

- ChatGPT
- content generation
- auto driving, robotics
- ...

But...

Theoretical Foundation of AI

- Review of calculus, probability, linear algebra
- random projection
- singular value decomposition, principal component analysis
- dictionary learning and sparse coding
- low-rank matrix estimation, with applications to recommender systems
- Large language models: the Transformer
- GPT, Bert, DistillBert
- Scaling laws, chain of thought
- Contrastive learning
- Deep learning in bioinformatics

Course Staff

Instructor: Jie Shen (jie.shen@stevens.edu)

TA - Section A: Ziruo (Rosie) Zhao (zzhao83@stevens.edu)

TA - Section B: Krishna Deb (kdeb@stevens.edu)

Office Hours: 1:00 - 2:00 Friday at GS 351

Textbook & Reference

- No Required Textbook
- Recommended (available online)

6 / 22

• Research Papers in NeurIPS, ICML, COLT

- Midterm Exam (60%)
 - closed-book
 - Section A: Oct 22 mark it in your calendar!
 - Section B: Oct 25 mark it in your calendar!
- Final Paper Presentation (40%)
 - Section A: Dec 10, or Dec 3 + Dec 10
 - Section B: Dec 13, or Dec 6 + Dec 13
 - more details will be announce in October
- Final Grade

ſ	90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	<70
Ī	Α	A-	B+	В	B-	Fail

About the Course

Tough

- Not for introductory purpose
- Research oriented
 - Emphasize on both theoretical and application aspects
 - Analyze computational cost
 - Understand statistical accuracy
- Strong background in calculus, linear algebra, and probability
 - If cannot do Quiz 0, consider dropping the course

About the Course

Overarching goal: Students can do independent research

- read research articles
- implement algorithms
- push the frontier of AI

General paradigm

- paper reading is assigned every week
- Not graded, but you are welcome to discuss during office hours

Quiz 0 (20 min)

- 1. Let $x = (1 \ 2 \ 3), y = (1 \ 1 \ 1)$. Calculate xy^{\top} and $x^{\top}y$.
- 2. Show that for all x > 0, $\log(1+x) \le x \frac{x^2}{2} + \frac{x^3}{3}$.
- 3. Show that $\frac{1}{2}(e^x + e^{-x}) \le e^{x^2/2}$ for all $x \in \mathbb{R}$, where e is the base of the natural logarithm.

Linear Algebra Overview

A d-dimensional column vector x is a set of d numbers

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$

- Bold lowercase letters for vectors
- Almost all the data is vector

11 / 22

Vector Operations

Suppose $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ are column vectors, $a, b \in \mathbb{R}$

$$\bullet x^{\top} \stackrel{\text{def}}{=} (x_1 \quad x_2 \quad \dots \quad x_d)$$

$$\bullet$$
 $a\mathbf{x} \stackrel{\text{def}}{=} (ax_1 \ ax_2 \ \dots \ ax_d)^{\top}$

•
$$\mathbf{x} + \mathbf{y} \stackrel{\text{def}}{=} (x_1 + y_1 \quad x_2 + y_2 \quad \dots \quad x_d + y_d)$$

- ax + by
- $ullet \langle \boldsymbol{x}, \boldsymbol{y} \rangle \stackrel{\mathsf{def}}{=} \sum_{i=1}^d x_i y_i \in \mathbb{R}$
 - Sometimes use $\mathbf{x}^{\top}\mathbf{y}$, $\mathbf{x} \cdot \mathbf{y}$

Vector Norms

$$\bullet \|\mathbf{x}\|_2 \stackrel{\mathsf{def}}{=} \sqrt{\sum_{i=1}^d x_i^2}$$

- Broadly used
- $\bullet \|\mathbf{x} \mathbf{y}\|_2$
- $\bullet \|\mathbf{x}\|_1 \stackrel{\mathsf{def}}{=} \sum_{i=1}^d |x_i|$
- $\bullet \|\boldsymbol{x}\|_{\infty} \stackrel{\mathsf{def}}{=} \max_{1 \leq i \leq d} |x_i|$

Matrix

Vector: a set of numbers Matrix: a set of vectors

- Bold capital letters $m{X} \in \mathbb{R}^{d \times n}$
- $X = (x_{ij})_{1 \le i \le d, 1 \le j \le n} = (x_1 \ x_2 \ \dots \ x_n)$
- aX for $a \in \mathbb{R}$
- aX + bY when X, Y have the same size
- Multiplication: $m{X} \in \mathbb{R}^{d \times n}$, $m{Y} \in \mathbb{R}^{p \times m}$
 - Can do XY only when n=p
 - $XY \in \mathbb{R}^{d \times m}$
 - For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, $\mathbf{x}^\top \mathbf{y} \in \mathbb{R}$, $\mathbf{x} \mathbf{y}^\top \in \mathbb{R}^{d \times d}$
- Transpose
- Symmetric matrix, diagonal
- Inverse of a square matrix

Probability Overview

Probability: measure of likelihood that an event will occur.

- From 0 to 1
- Coin tossing (heads or tails)

- Random variable X
- Events = $\{0, 1\}$
- X has distribution \mathcal{D}

Probability Overview

- If X is discrete, probability mass function p(x) = P(X = x)
 - Takes value from a countable set
 - {0,1}
 - $\{1, 2, 3, \dots\}$
- If X is continuous, probability density function (PDF) p(x)

$$P(X \le x) = \int_{-\infty}^{x} p(z) dz$$

- Uniform distribution
- Normal distribution
- $P(X \le x)$: cumulative density function

Expected Value

Expected value

- Discrete: $\mathbb{E}[X] = \sum xp(x)$
- Continuous: $\mathbb{E}[X] = \int xp(x)dx$
- Practice: Play a game for money. Each time

$$Pr(X = 1) = 0.6$$
, $Pr(X = -1) = 0.4$.

When can we win 100 dollars?

Expectation

- Average of multiple outcomes
- Not quite useful in practice
 - gambling
 - weather forecasting (rainy, sunny, dry)
 - in expectation = I guess
- But, $\mathbb{E}[X]$ implies P(X)

Markov's Inequality

Theorem. If X > 0, $P(X \ge t) \le \frac{\mathbb{E}[X]}{t}$ for all t > 0.

- Proof of correctness
- Proof of tightness
- Negative random variables
 - moment-generating function

•
$$\operatorname{Var}(X) \stackrel{\text{def}}{=} \mathbb{E}[X - \mathbb{E}X]^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

• $X_1, X_2, \dots X_n$ are independent, then $\operatorname{Var}(\sum_{i=1}^n X_i) = \sum_{i=1}^n \operatorname{Var}(X_i)$

Chebyshev's Inequality

Hoeffding's Inequality

Symmetric Bernoulli distribution: P(X = 1) = P(X = -1) = 1/2

Theorem. Let X_1, X_2, \ldots, X_n be independent symmetric Bernoulli random variables. Let $\mathbf{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{R}^n$. Then, for any $t \geq 0$,

$$P\left(\sum_{i=1}^{n} a_i X_i \ge t\right) \le \exp\left(-\frac{t^2}{2\|\boldsymbol{a}\|_2^2}\right)$$

- Proof of correctness
- Generalize to non-symmetric distribution

$$P(X = 1) = p \in [0, 1], P(X = -1) = 1 - p$$

CS 541 Al September 3, 2024 22 / 22