

CA20N
EAB
-0 53

ENVIRONMENTAL ASSESSMENT BOARD

ONTARIO HYDRO DEMAND/SUPPLY PLAN HEARINGS

VOLUME: 116

DATE: Monday, March 2, 1992

BEFORE:

HON. MR. JUSTICE E. SAUNDERS Chairman

DR. G. CONNELL Member

MS. G. PATTERSON Member

EARR
ASSOCIATES &
REPORTING INC.

416 482-3277

2300 Yonge St., Suite 709, Toronto, Canada M4P 1E4

ENVIRONMENTAL ASSESSMENT BOARD
ONTARIO HYDRO DEMAND/SUPPLY PLAN HEARING

IN THE MATTER OF the Environmental Assessment Act,
R.S.O. 1980, c. 140, as amended, and Regulations
thereunder;

AND IN THE MATTER OF an undertaking by Ontario Hydro
consisting of a program in respect of activities
associated with meeting future electricity
requirements in Ontario.

Held on the 5th Floor, 2200
Yonge Street, Toronto, Ontario,
on Monday, the 2nd day of March,
1992, commencing at 10:00 a.m.

VOLUME 116

B E F O R E :

THE HON. MR. JUSTICE E. SAUNDERS	Chairman
DR. G. CONNELL	Member
MS. G. PATTERSON	Member

S T A F F :

MR. M. HARPUR	Board Counsel
MR. R. NUNN	Counsel/Manager, Information Systems
MS. C. MARTIN	Administrative Coordinator
MS. G. MORRISON	Executive Coordinator

Digitized by the Internet Archive
in 2022 with funding from
University of Toronto

<https://archive.org/details/31761114684988>

(i)

A P P E A R A N C E S

B. CAMPBELL)	ONTARIO HYDRO
L. FORMUSA)	
B. HARVIE)	
J.F. HOWARD, Q.C.)	CITY OF TORONTO
J. LANE)	
G. A. KARISH)	
 J.C. SHEPHERD)	IPPSO
I. MONDROW)	
J. PASSMORE)	
 R. WATSON)	MUNICIPAL ELECTRIC
A. MARK)	ASSOCIATION
 S. COUBAN)	PROVINCIAL GOVERNMENT
P. MORAN)	AGENCIES
J. MacDONALD)	
 C. MARLATT)	NORTH SHORE TRIBAL COUNCIL,
D. ESTRIN)	UNITED CHIEFS AND COUNCILS
		OF MANITOULIN, UNION OF
		ONTARIO INDIANS
 D. POCH)	COALITION OF ENVIRONMENTAL
D. STARKMAN)	GROUPS
D. ARGUE)	
 T. ROCKINGHAM		MINISTRY OF ENERGY
 B. KELSEY)	NORTHWATCH
L. GREENSPOON)	
P. McKAY)	
 J.M. RODGER		AMPCO
 M. MATTSON)	ENERGY PROBE
D. CHAPMAN)	
 A. WAFFLE		ENVIRONMENT CANADA
 M. CAMPBELL)	ONTARIO PUBLIC HEALTH
M. IZZARD)	ASSOCIATION, INTERNATIONAL
		INSTITUTE OF CONCERN FOR
		PUBLIC HEALTH
 G. GRENVILLE-WOOD		SESCI

A P P E A R A N C E S
(Cont'd)

D. ROGERS	ONGA
H. POCH) CITY OF TORONTO
J. PARKINSON)
R. POWER	CITY OF TORONTO, SOUTH BRUCE ECONOMIC CORP.
S. THOMPSON	ONTARIO FEDERATION OF AGRICULTURE
B. BODNER	CONSUMERS GAS
J. MONGER) CAC (ONTARIO)
K. ROSENBERG)
C. GATES)
W. TRIVETT	RON HUNTER
M. KLIPPENSTEIN	POLLUTION PROBE
N. KLEER) NAN/TREATY #3/TEME-AUGAMA
J. OLTHUIS) ANISHNABAI AND MOOSE RIVER/
J. CASTRILLI) JAMES BAY COALITION
T. HILL	TOWN OF NEWCASTLE
M. OMATSU) OMAA
B. ALLISON)
C. REID)
E. LOCKERBY	AECL
C. SPOEL) CANADIAN VOICE OF WOMEN
U. FRANKLIN) FOR PEACE
B. CARR)
F. MACKESY	ON HER OWN BEHALF
D. HUNTER) DOFASCO
M. BADER)
B. TAYLOR) MOOSONEE DEVELOPMENT AREA
D. HORNER) BOARD AND CHAMBER OF
H. WATSON) COMMERCE

(iii)

A P P E A R A N C E S
(Cont'd)

T. HEINTZMAN)	ATOMIC ENERGY OF CANADA
D. HAMER)	
C. FINDLAY)	
P.A. NYKANEN)	CANADIAN MANUFACTURERS ASSOCIATION - ONTARIO
G. MITCHELL		SOCIETY OF AECL PROFESSIONAL EMPLOYEES
S. GOUDGE		CUPE
D. COLBORNE		NIPIGON ABORIGINAL PEOPLES' ALLIANCE
R. CUYLER		ON HIS OWN BEHALF

I N D E X o f P R O C E E D I N G S

Page No.

<u>ARTHUR RAYMOND EFFER,</u>	
<u>CHARLES WILLIAM DAWSON,</u>	
<u>JAMES RICHARD BURPEE,</u>	
<u>GARY NEIL MEEHAN,</u>	
<u>JOHN DOUGLAS SMITH,</u>	
<u>AMIR SHALABY;</u> Resumed.	20170
Cross-Examination by Mr. Shepherd (Cont'd)	20170

L I S T o f E X H I B I T S

No.	Description	Page No.
499	United States Department of Wind Energy Program Information.	20169
500	The potential of Renewable Energy: An Interlaboratory White Paper.	20169
501	California's Success with Renewable Energy and Efficiency.	20169
502	Two News Reports in the Status if Fuel Cell Generation of Electricity.	20169
503	California Energy Commission 1991 Energy Technology Status Report Excerpts.	20169
504	Photovoltaics in the Distribution System: the Evaluation of System and Distributed Benefits.	20169
505	Jobs from Electricity Generation.	20169
506	Solar Two Fact Sheet.	20170
475.33	Interrogatory No. 7.14.21.	20252

L I S T o f U N D E R T A K I N G S

No.	Description	Page No.
478.25	Ontario Hydro undertakes to supply reason why the LUEC fuel component is twice as much as the fuel per kilowatthour in the cost estimate, and the difference between the OM&A in the aforementioned two places.	20300
478.26	Ontario Hydro undertakes to advise why the fuel costs for your combined-cycle assumptions are lower than your assumptions for fuel costs for fuel cells.	20304
478.27	Ontario Hydro undertakes to provide a chart showing air emissions of various important pollutants per kilowatthour for molten carbonate fuel cells as compared to scrubbed and unscrubbed coal.	20328

TIME NOTATIONSPage No.

	10:03 a.m.	-----	20169
	10:15 a.m.	-----	20176
	10:25 a.m.	-----	20184
	10:40 a.m.	-----	20196
	10:56 a.m.	-----	20208
	11:15 a.m.	-----	20224
Recess	11:30 a.m.	-----	20232
Resume	11:45 a.m.	-----	20232
	11:56 a.m.	-----	20238
	12:15 p.m.	-----	20252
	12:36 p.m.	-----	20268
	12:55 p.m.	-----	20282
Luncheon recess	1:00 p.m.	-----	20286
Resume	2:30 p.m.	-----	20286
	2:50 p.m.	-----	20297
	3:12 p.m.	-----	20310
	3:25 p.m.	-----	20109
Recess	3:30 p.m.	-----	20323
Resume	3:46 p.m.	-----	20323
	4:05 p.m.	-----	20336
	4:29 p.m.	-----	20350
	4:45 p.m.	-----	20364
Adjourned	4:55 p.m.	-----	20370

1 ---Upon commencing at 10:03 a.m.

2 THE REGISTRAR: Please come to order.

3 This hearing is now in session. Be seated, please.

4 THE CHAIRMAN: Mr. Shepherd?

5 MR. SHEPHERD: Mr. Chairman, we promised
6 you Mr. Grenville-Wood this morning, but he has asked
7 that we change with him, and he is going to go tomorrow
8 morning, I think.

9 Before I start, I would like to file the
10 new exhibits I promised on Thursday. This is a package
11 of seven exhibits, numbers 499 through 506, inclusive,
12 and if it is okay with you, Mr. Chairman, I am going to
13 introduce each exhibit as I get to it and explain what
14 it is.

15 ---EXHIBIT NO. 499: United States Department of Wind
16 Energy Program Information.

17 ---EXHIBIT NO. 500: The potential of Renewable Energy:
18 An Interlaboratory White Paper.

19 ---EXHIBIT NO. 501: California's Success with
20 Renewable Energy and Efficiency.

21 ---EXHIBIT NO. 502: Two News Reports in the Status of
22 Fuel Cell Generation of Electricity.

23 ---EXHIBIT NO. 503: California Energy Commission 1991
24 Energy Technology Status Report Excerpts.

25 ---EXHIBIT NO. 504: Photovoltaics in the Distribution
26 System: the Evaluation of System and
27 Distributed Benefits.

28 ---EXHIBIT NO. 505: Jobs from Electricity Generation.

1 ---EXHIBIT NO. 506: Solar Two Fact Sheet.

2 THE CHAIRMAN: That will be fine.

3 MR. SHEPHERD: And finally, we promised a
4 video, and we are not delivering because we weren't
5 able to get it edited properly. There is, of course,
6 an alternative, and that is, we could have a field trip
7 to California to look at the stuff that was on the
8 video, and you might wish to consider that.

9 ARTHUR RAYMOND EFFER,
10 CHARLES WILLIAM DAWSON,
11 JAMES RICHARD BURPEE,
12 GARY NEIL MEEHAN,
13 JOHN DOUGLAS SMITH,
14 AMIR SHALABY; Resumed.

15 CROSS-EXAMINATION BY MR. SHEPHERD (Cont'd):

16 Q. Mr. Shalaby, the last thing you said
17 on Thursday just before we left for the day was that
18 hydrogen is a manufactured fuel, and you contrasted
19 that with other fuels, and that is the reason why you
20 excluded it or one of the reasons why you excluded it
21 from your fuel cell analysis even though it is cleaner.
22 That is the reason you gave; right?

23 MR. SHALABY: A. That was a description
24 of hydrogen, that it is not an alternate energy form.
25 It is a manufactured product rather than a naturally
26 occurring product, yes.

27 I don't know whether it is excluded from

1 the fuel cell analysis. We are showing fuel cell
2 economics with natural gas getting reformed into
3 hydrogen. We expect that if we put pure hydrogen in
4 there the cost would probably be a little higher.

5 Q. But it would also be a great deal
6 cleaner, wouldn't it.

7 THE CHAIRMAN: Sorry?

8 MR. SHEPHERD: Q. It would be a great
9 deal cleaner, wouldn't it?

10 MR. SHALABY: A. Again, my answer, I
11 remember it to be, it depends how the hydrogen is made.
12 At the combustion point, at the point of use, you are
13 quite right. If you use hydrogen instead of a
14 petrochemical fuel it would be cleaner at the scene,
15 yes.

16 Q. Of course, what you really do in a
17 natural gas fueled fuel cell is you manufacture a
18 hydrogen rich gas in the reformer; right?

19 A. That's correct.

20 Q. We were talking about the various
21 choices that were made in terms of technologies that
22 were analyzed in the alternate energy review.

23 I noted, for example, it is true, isn't
24 it, that the environmentally preferred ways of using
25 peat as a fuel would be pellets, briquettes or in the

1 longer term syngas; that's correct, isn't it?

2 MR. DAWSON: A. I'm not sure why pellets
3 or briquettes would be preferred over the method that
4 we describe which is currently the most popular.

5 It may be. I'm not disputing it
6 particularly, but I can't see particularly why.

7 Q. Aren't the emissions substantially
8 lower when you use the more refined products?

9 A. As far as I know, the only difference
10 between pellets or briquettes and milled peat would be
11 potentially the moisture content.

12 Q. Mr. Shalaby, is there a lot of
13 professional judgment in the alternate energy review?

14 MR. SHALABY: A. Yes.

15 Q. Presumably the usefulness of the
16 judgments in the alternate energy review is directly
17 related to the expertise and training of the people
18 making the judgments; is that fair?

19 A. And the resources they have access
20 to, yes.

21 Q. Okay. I noted with interest Mr.
22 Greenspoon's question in Volume 112 at page 19607. You
23 can turn to that if you want to.

24 A. The page number again, please?

25 Q. 19607. And his question is at line

1 11. He said to the effect: What about these rumours
2 that the alternate energy review was written by a bunch
3 of out-of-work nuclear scientists? And your answer
4 was, "I told you who wrote the report."

5 Well, I looked around for where you did
6 that, but I couldn't really find where you had already
7 answered his questions, in effect.

8 And then, when you said the other day
9 that the former head of the project had gone to the
10 Pickering Nuclear Generating Station I wondered again.
11 So I am just going to ask you straight out: Is it in
12 fact correct that a substantial number of the people
13 working on this report are from the nuclear side of
14 Ontario Hydro?

15 A. The person that was heading the study
16 is a civil engineer. The co-chair that chaired the
17 group after that is from Corporate Relations branch.
18 Others were people from the Research Division; from
19 System Planning Division; three people from Design and
20 Development Division, these are the specialists in the
21 alternate energy business; one person from Dr. Effer's
22 department, Environmental Studies; and assistance from
23 external consultants.

24 That is the answer I gave to Mr.
25 Greenspoon, maybe not in this much detail, but that was

1 the team that was put together to do the day-to-day
2 work on the report.

3 Q. I appreciate the description. I
4 guess all of those divisions and departments that you
5 have mentioned have groups within them that work on
6 nuclear research or nuclear development work?

7 A. That's correct.

8 Q. So, within that answer, of course, we
9 could have had the whole team being nuclear people
10 working on alternate energy.

11 I am asking the specific question: Was
12 it a bunch of a nuclear engineers and nuclear
13 physicists who wrote this report?

14 A. My answer is clear. There were three
15 experts that do nothing for the last 10 or 12 years in
16 their career in Hydro other than alternative energies.
17 There were the core people who provided the expertise.

18 The corporate relations person who
19 contributed to the thermal cost review is familiar with
20 the format, the costing methodology and the methodology
21 displaying various options and costing them in a
22 consistent way.

23 Q. That person is not a person whose
24 background is nuclear?

25 A. No, it is not.

1 Q. Okay.

2 A. A consultant whose background is not
3 nuclear; an assistant planner who works in Mr. Meehan's
4 department for the least several years, maybe two or
5 three years, he might have worked before that in the
6 operating side of the house and perhaps on nuclear
7 matters, but certainly he is a generation planner for
8 the last three years or so.

9 The team leader is a civil engineer, and
10 he is related to the nuclear side of the house, on the
11 civil side of the engineering.

12 Now, you make it out. Is that a nuclear
13 group working on --

14 Q. You described about eight people that
15 were involved in it. Is that about right, it was about
16 eight people?

17 A. That were involved on a full-time
18 basis, yes. There were others involved on an
19 on-and-off basis and consultation.

20 Yes, the one I didn't mention in detail
21 was the scientist from Dr. Effer's group. I don't
22 exactly know whether he is a biologist or not, but I
23 suspect he is in the natural sciences side of the
24 house, certainly not in the nuclear side.

25 DR. EFFER: A. I don't have any nuclear

1 engineers working for me.

2 Q. The record should record the big
3 smile you had on your face when you said that.

4 Mr. Shalaby, in the alternate energy
5 review you analyze certain technologies using
6 cost/benefit analysis, solar, wind, municipal solid
7 waste, and you analyzed others such as fuel cells,
8 biomass and peat using levelized unit energy costs.

9 Can you just briefly explain again why
10 you would do some differently than others?

11 MR. SHALABY: A. We provided both pieces
12 of information on all the options, but we felt that it
13 is more meaningful to look at cost/benefit ratios for
14 options that are not dispatchable.

15 And for the municipal solid waste we felt
16 the cost/benefit analysis can capture the tipping fee
17 benefit as part of the operation.

18 Municipal waste incineration or landfill
19 gas operation would benefit from both the electricity
20 purchase price and perhaps costs related to reducing
21 the landfill costs, whether it is tipping fee or
22 burning off the methane or something like that.

23 [10:15 a.m.]

24 So the municipal waste, we are catching
25 extra benefit; the solar and wind, because they are not

1 dispatchable, then the energy they produce has
2 different value at different times of the day,
3 different times of the year and we match those one to
4 one. As I explained in my direct, we did that for
5 hydraulic energy, for example, Panel 6 here displayed
6 the cost/benefit ratio as a measure of different
7 hydraulic resources and explained why that's an
8 appropriate way of measuring cost benefits.

9 Q. Can you confirm that the cost/benefit
10 analysis includes only benefits considered valid by
11 Ontario Hydro, that's, in effect, the system
12 incremental costs of capacity and energy to Hydro?

13 A. Plus a 10 per cent renewable --

14 Q. Plus the preference premium, right.

15 A. Yes.

16 Q. And when you do the LUEC analysis --

17 A. And transmission distribution
18 credits, as well.

19 Q. Those are in system incremental
20 costs; right?

21 A. Yes. They are added to it depending
22 on how deep into the distribution network.

23 Anyway, I just wanted to make sure that
24 we mention transmission distribution.

25 MR. DAWSON: A. Would you just repeat

1 the question again. Confirm that...

2 Q. When you do the cost/benefit analysis
3 the only benefits that are included in that analysis
4 are the system incremental costs associated with the
5 capacity and energy, and Mr. Shalaby has clarified that
6 that includes transmission and includes a preference
7 are premium but otherwise that's right.

8 A. Well, in the case of municipal solid
9 waste it includes the tipping fee too.

10 Q. Good point. All right.

11 I wanted to ask you a question about
12 that. Municipal solid waste, municipal waste generally
13 whether it's mass burned or landfilled gas is not
14 really primarily an energy technology, is it. It's a
15 waste management activity; isn't it?

16 MR. SHALABY: A. Yes.

17 Q. Now, when you do the LUEC calculation
18 is there a preference premium in there as well?

19 A. No, the LUEC is the cost of producing
20 electricity from a particular facility. Only when you
21 start comparing it to the benefit would you include the
22 premium. So the LUEC does not include a premium.

23 Q. So then if the preference premium
24 technique is valid, isn't it true that you can't
25 compare the LUEC of one thing to another thing directly

1 without considering that other impact?

2 A. If you are comparing the LUEC of
3 biomass, for example, yes, you want 10 per cent premium
4 before you discard that option.

5 Q. Fair enough.

6 For a number of the technologies analyzed
7 in the alternate energy review, Ontario Hydro has
8 estimated costs in the year 2000 and beyond. How did
9 you arrive at those estimates?

10 A. Several methods. Mostly cost
11 estimates by external laboratories and experts,
12 projections by people like U.S. Department of Energy,
13 Energy, Mines and Resources Canada, projections from
14 our own experience as to what the costs might come down
15 to. But most of the estimates were extracted from
16 large national laboratories like Energy, Mines and
17 Resources and like the U.S. Department of Energy
18 studies.

19 Q. So I assume then that you are fairly
20 confident that your longer term estimates are
21 consistent account estimates of other players such as
22 utilities, government departments, labs, et cetera,
23 that have analyzed the same markets?

24 A. They are not terribly out of whack,
25 yes. Though that is a dynamic market. Your own

1 exhibit shows how, for example, California Energy
2 Commission slashed down the costs of wind from 13-,
3 \$1,400 a kilowatt to 7- or \$800 hundred a kilowatt
4 almost overnight or within one report cycle.

5 Q. Two years. Within two years?

6 A. Within the one report cycle, yes.

7 So it's a dynamic market. Other
8 technologies, estimates for them go up in price.

9 Q. Of course.

10 A. For example, photovoltaics, there was
11 a lot of projection in the past that the targets set by
12 the Department of Energy would be met. Targets were
13 set in early 80s. Now people don't feel those targets
14 will be met, so the costs are a little higher.

15 Q. That is a timing question?

16 A. A timing question yes, that's right.

17 Q. Right.

18 A. So all I am saying is we try and keep
19 tabs on what people in the industry and in the business
20 are saying, but we recognize that they change what they
21 are saying as well. You can't catch them still at one
22 place for any length of time.

23 Q. Reading through the alternate energy
24 review one is struck by the fact that you have
25 instituted what appears to be a consistent policy high

1 of excluding the benefits of producing in cogeneration
2 mode particularly where technologies are naturally
3 suited to that, that affects biomass and peat, of
4 course, but also most importantly it has a very large
5 impact on fuel cells. Can you tell us why you excluded
6 the benefits of -- why you modelled them, in effect, in
7 a sub optimal way?

8 A. I think we recognize in the report
9 that those technologies can be much more economic if
10 employed in cogeneration facilities, particularly fuel
11 cells, and we indicated the value of the steam or the
12 thermal energy, we quantified it in dollars per
13 gigajoule. So we acknowledged what it is that it could
14 be additional benefit from cogeneration.

15 The difficulty in doing an analysis
16 combined as a cogeneration is that we don't know what
17 the incremental cost of, for example, fitting a
18 building with both electricity and heat utilization
19 from a fuel cell. There will be additional facilities
20 involved in generating heat or using the hot water off
21 the fuel cells or steam or something like that. We
22 prefer to show what the benefit is and we don't know
23 what the costs of cogeneration utilization will be.

24 It would have made the analysis more
25 complicated. This is sort of saying, to make

1 electricity that's what it would cost. If you could
2 also use steam or hot water you could get another
3 dollar or two per gigajoule in benefit. And in the
4 particular case of fuel cells our estimated potential
5 relies heavily on the idea that it could be located in
6 large industrial and institutional buildings where they
7 would use both electricity and heat energy.

8 Q. When we read your LUECs or your
9 cost/benefit analysis, in none of the technologies does
10 that include the cogeneration benefits; does it?

11 A. It's included separately. I don't
12 want to say that we included them combined. We
13 didn't combine them but we provided information that
14 you can look at the costs of producing electricity and
15 the benefit of using the steam, and you can add one to
16 the other. But the straight answer to your question is
17 your correct, yes.

18 Q. I am not suggesting you mislead us.
19 I am trying to get an idea of how we look at the LUEC
20 and the cost/benefit numbers?

21 A. It's strictly generating electricity.
22 The LUECs are strictly electricity generation.

23 Q. So because they are strictly
24 generating the electricity, in the case of heat
25 producing technologies like fuel cells, the model on

1 which the numbers are based is not the optimal model;
2 is it?

3 A. You are correct. If there is an
4 opportunity for cogeneration, there is additional
5 benefit, and we discuss that in great depth.

6 Q. Undoubtedly.

7 A. Yes.

8 Q. The alternate energy review, that
9 wasn't field --

10 A. Just for the record, maybe I should
11 say that page 90 of Exhibit 344 shows in figure 3-10-12
12 the potential value of usable heat for the fuel cell
13 options. And there is a value of heat in levelized
14 unit energy benefit really in there, it varies between
15 about 1 cent and 2.4 cents per kilowatthour. So it's
16 put in here. It's just the combination gets messy,
17 that's all.

18 Q. The alternate energy review wasn't
19 field studies, was it? It was a literature review, in
20 essence.

21 A. Yes.

22 Q. What limitations are placed on the
23 results of such a study as opposed to going out and
24 doing proper field studies?

25 A. Maybe you can tell me what proper

1 field studies mean in your own mind and I will detect
2 from that what limitations.

3 Q. Let me rephrase the question. A
4 literature review isn't the most detailed or
5 scientifically rigorous way of analyzing a problem; is
6 it?

7 A. Well, if we had five years that we
8 can get facilities and test run them in different
9 conditions, we would get more data perhaps. Yes, it
10 has limitations.

11 Q. It is true, isn't it, that in some
12 areas you have expressed the information limitations as
13 to being of significance importance; right?

14 A. What examples can you give of that?

15 Q. Well, haven't you said that is a
16 factor in fuel cells, in photovoltaics, in wind?

17 A. I expressed the opinion that in wind,
18 for example, lack of detailed knowledge of good wind
19 sites is a significant limitation in determining the
20 ultimate potential in Ontario. Without a good rigorous
21 resource assessment in Ontario of wind conditions at
22 specific sites over a long period of time, any
23 projections of wind potential would be fraught with
24 uncertainty and limitations. So that's an example of a
25 field study that can yield a lot more useful results

1 than a desk study, if you like.

2 Although the estimates that we have rely
3 on other field studies, they are not all, you know,
4 desk studies done to one another. Some of though
5 studies have been to the field and have done
6 measurements.

7 [10:25 a.m.]

8 Q. Yes.

9 A. In fuel cells the limitation in our
10 estimate has to do with the acceptability of fuel cells
11 in a large institutional building, whether a university
12 or a hospital or a prison or some large user of heat
13 and electricity would have acceptance of a fuel cell
14 operation.

15 We know that some administrators of these
16 institutions welcome the energy savings and the
17 independence that a fuel cell might offer; others would
18 not want the complications of running a power plant in
19 addition to their business.

20 So without detailed knowledge, again, if
21 you go and have a more rigorous survey the penetration
22 rate of fuel cells in that market could be refined a
23 bit.

24 So we have approximations in saying that
25 we expect roughly 20 or 30 per cent penetration in that

1 market over that time period. That was a judgement
2 call that can be perhaps refined and bettered by more
3 extensive marketing studies, for example.

4 So yes, there are limitations of a study
5 of this nature.

6 Q. Okay. Last Wednesday Mr. Starkman
7 asked you questions about how much you spend on R&D in
8 the alternate energy area as compared to fossil, large
9 hydro, nuclear, et cetera.

10 Do you recall that discussion?

11 A. Yes, I do.

12 Q. As I understand your answers, you
13 spend about 20 per cent as much on renewable energy,
14 not including large hydro of course, as on fossil or
15 large hydro, and about 2 per cent as much on renewables
16 as on nuclear.

17 Am I in the right range there?

18 A. You are probably in the right range.
19 I referred to particular interrogatory responses and
20 those are the answers, but for the sake of this
21 discussion you are in the right range, yes.

22 Q. Even within the alternate energy R&D
23 if we looked at the details of that budget -- it is
24 only in the hundreds of thousands; right?

25 A. That's correct.

1 Q. If we looked at the details of that
2 budget we would see a lot of off-grid stuff and a lot
3 of attending conferences and things like that. We
4 wouldn't see anything really on grid applications, hard
5 R&D on grid applications, would we?

6 A. I think it includes all of what you
7 mentioned, yes. But whether there are no dollars for
8 hard grid applications, I have to think about that.

9 If you are testing a fuel cell, for
10 example, at our Kipling Research Laboratories, would
11 you classify that as...what? Is that hard R&D for a
12 grid application or is it --

13 Q. Isn't the one you are testing one
14 that you have already said does not have a grid
15 potential? Isn't this the solid alkaline or something,
16 solid polymer one?

17 A. No, it's phosphoric acid. It is
18 phosphoric acid, 40 kilowatts.

19 Q. It's a PSE?

20 A. That's right. There is a picture of
21 it in the report.

22 Q. Confused me a bit.

23 A. The distinction between, for example,
24 photovoltaic research that is for grid application or
25 for remote application is a fine line, and the panels

1 and the technology and the converters and the power
2 conditioners work equally well in one application as
3 they do in the another.

4 The knowledge you gain in remote
5 applications can be in a large measure transferred to
6 the grid applications as well, or a good portion of it,
7 things like solar cell life efficiency, converter
8 operation, all of those things can be transferred to
9 the grid, that knowledge, and that experience is
10 transferable.

11 All I am saying is the research may be
12 designated for remote or for other applications, but
13 there is a rub off and benefit on the grid application
14 as well.

15 Q. So you would have learned a lot,
16 then, from, using in Fort Severn, a wind turbine that
17 nobody manufactures, not connected to a grid, you would
18 still learn a lot about whether wind energy would have
19 grid application in Ontario?

20 A. I think the objectives of the Fort
21 Severn - and I just got your interrogatory that you may
22 be intending to refer to - there were objectives to do
23 with determining maintenance requirements in a remote
24 application, in determining how a wind turbine works
25 with a diesel generator at such a high penetration

1 level, a large wind turbine with an equally large
2 diesel engine, and there were objectives to do with the
3 cost of that operation in a remote site.

4 So the objectives of the Fort Severn
5 application were quite specific. The demonstration and
6 the research and development work were specifically
7 towards remote applications.

8 Some of the things you learn here can be
9 transferred to a grid connected application, but
10 perhaps not many.

11 Q. Are you familiar with an organization
12 called PVUSA?

13 A. Yes, I am.

14 Q. Can you tell us what it stands for?

15 A. Photovoltaic Utility Scale
16 Applications.

17 Q. And what is that?

18 A. I am becoming the specialist in
19 acronyms in this hearing. I am quite proud of it.

20 Q. We all have a role.

21 A. I get distressed at the amount of
22 trivia I retain in my mind.

23 That is a photovoltaic demonstration
24 facility in the Pacific Gas & Electric utility area,
25 and it is a consortium by many manufacturers and

1 utilities, and I think EPRI as well, the Electric Power
2 Research Institute, to test out on a large scale,
3 meaning 200 kilowatts at a time, various manufactured
4 photovoltaics under different test conditions in a
5 real-life utility grid connection.

6 Q. Wasn't the primary rationale for the
7 establishment of PVUSA and the investment of
8 substantial amounts of money by utilities, wasn't the
9 primary reason the fact that the smaller scale,
10 off-grid type of research that had been done elsewhere
11 simply wasn't answering the utility's questions about
12 photovoltaics?

13 A. If you do it in the scale that PVUSA
14 is intending to do you get closer data and much more
15 relevant to a large scale utility application, yes.

16 Now, I wouldn't say that the earlier
17 experience is irrelevant, but it may not answer all the
18 questions. It certainly answers some of the questions,
19 but there are more to be answered, and that is why they
20 instituted that demonstration.

21 Q. There are a number of utilities, in
22 the U.S. at least, investor-owned utilities, that spend
23 a good deal more than Ontario Hydro on alternate energy
24 R&D; isn't that correct?

25 A. That is correct.

1 Q. PG&E, for example, might spend ten or
2 15 times as much as Hydro?

3 A. I wouldn't be surprised.

4 Q. Why is that?

5 A. I wonder whether they are better
6 answering that kind of question. But for one thing,
7 they are getting a larger portion of their energy from
8 some of these alternate energies than we are. For
9 example, they are getting something like 1 per cent of
10 their electricity, to my understanding, from wind and
11 perhaps more than that from geothermal.

12 They have large geothermal resources in
13 their territory and they are working hard on the
14 photovoltaic demonstration. So their climate and their
15 territory has larger potential for some of these
16 alternatives. They are extracting a lot of energy from
17 them, and therefore, they are spending more money to
18 learn about them and understand them.

19 Q. Of course, another utility that
20 spends a lot more than Ontario Hydro on alternate
21 energy is Niagara Mohawk; right?

22 A. I'm not sure of that, but I wouldn't
23 be surprised either.

24 Q. Niagara Mohawk is, what, about a
25 tenth the size or so of Ontario Hydro?

1 A. I'm not sure of that. It is a
2 smaller utility in the New York service territory, yes.

3 Q. They certainly don't have a lot of
4 deserts or mountain passes where there is a lot of
5 wind; they don't have a lot of renewables on their
6 system now, do they?

7 A. No, they don't. I am not familiar
8 exactly with what their budget is and what the areas of
9 their research are.

10 I am familiar, for example, that they are
11 part of a wind energy utility working group. I forget
12 what it is called, but U.S. Wind Power, Pacific Gas &
13 Electric, and Niagara Mohawk, and EPRI formed a group,
14 and Ontario Hydro is monitoring them as a member in
15 that group as well, to develop a variable speed wind
16 turbine, for example.

17 Q. Sorry, Ontario Hydro is a member of
18 that group?

19 A. Yes.

20 Q. Is that very recent?

21 A. Well, the whole group is very recent,
22 yes.

23 Q. Well, it is just that the stuff I got
24 from them a few months ago didn't have Ontario Hydro
25 listed on it. I am just wondering --

1 A. Well, they invited all utilities to
2 participate and to follow the activities of that group
3 and to attend their meetings.

4 Now, there are some that are sponsoring
5 and others that are members in the sense of attending
6 and sharing the information. My understanding is that
7 we are in the group that is attending and sharing the
8 information.

9 Q. Oh. Okay. Different kinds of
10 members?

11 A. I'm not exactly sure whether they
12 call them different kinds of members or not. I presume
13 a member that sponsors is different than one that
14 doesn't, yes. They have an east council and a west
15 council, and, to my knowledge, the east council is the
16 one that Niagara Mohawk would be a little more
17 interested in.

18 Q. Could you take a look, please, at
19 Exhibit 501? This is in that new package I gave you.

20 Mr. Chairman, just to introduce this,
21 this is the text of testimony given by the Chair of the
22 California Energy Commission before the U.S. House of
23 Representatives in December.

24 Mr. Shalaby, if you could look at page 4
25 on the last paragraph?

1 MR. SHALABY: A. Can you tell me again
2 what it is?

3 Q. This is Imbrecht's testimony to the
4 House of Representatives in December, Imbrecht being
5 the Chair of the California Energy Commission.

6 A. Yes? Page 4?

7 Q. Page 4, last paragraph, about the
8 middle of the paragraph, he says:

9 "This means that for every dollar
10 spent on renewables O&M, an additional 28
11 cents is created in the economy compared
12 to the same dollar spent for fossil plant
13 related O&M."

14 What he is doing, he is describing the economic
15 multipliers associated with the various technologies.

16 It is true, isn't it, that renewable
17 technologies generally have greater multipliers,
18 economic multipliers, than conventional technologies;
19 they create more economic activity per dollar invested.

20 Is that correct?

21 A. I am not sure whether that is
22 universally correct or not, whether in California that
23 is the case, whether that is directly transferable to
24 Ontario or not, I have no idea.

25 Q. Has Ontario Hydro not looked at that?

1 A. I don't think to that great detail
2 the operation and maintenance costs, the multipliers of
3 those related to wind and solar as opposed to fossil,
4 not to my knowledge.

5 Q. In your review of alternate energy
6 technologies did you at any time review the literature
7 on or do any direct studies on the relative economic
8 effects of those technologies as opposed to
9 conventional technologies?

10 A. Are you going to the relative
11 economics in the sense of employment, is that what you
12 are talking about?

13 Q. Creation of economic activity, yes.

14 A. I think there is a brief examination
15 of employment and socio-economic impacts on each of the
16 technologies in Exhibit 344, but I don't expect that it
17 went into the detail to quantify things like for every
18 dollar there is 28 cents of spin-off.

19 The reason it is difficult to do here in
20 Ontario is we don't have a large, established wind or
21 solar energy to know exactly how the dollar of
22 maintenance spins off other employment or other
23 facilities. We don't have the data base to make that
24 kind of determination.

25 Perhaps in California where it is a

1 multi-billion dollar industry for the last 10 years
2 they have accumulated enough data to be able to extract
3 that kind of information from it.

4 Q. California went through a massive
5 shift about 10 years ago from conventional technologies
6 to alternate energies, technologies and cogeneration;
7 isn't that right?

8 A. Yes.

9 Q. If you could turn to page 6 of
10 Exhibit 501, Mr. Imbrecht talks about the impact of
11 that in California. He says it was an \$8 billion
12 investment.

13 MR. HOWARD: Where are we now?

14 MR. SHEPHERD: We are right in the middle
15 of the page where it says "Since 1982..."

16 What he says is, it was an \$8 billion
17 investment, the return was over \$30 billion, and it
18 translates into 293,000 jobs.

19 [10:40 a.m.]

20 Q. Has Ontario Hydro done any studies or
21 another analysis to determine whether such impacts
22 could be duplicated in Ontario with different
23 electricity generation policies?

24 MR. SHALABY: A. No.

25 Q. I wonder if you could turn to Exhibit

1 505.

2 A. We have done some impact work on
3 employment and impact of GDP for cogeneration, for
4 example. That is part of -- I am trying to remember
5 the exhibit number, but some of the early strategy work
6 that we have done we have shown that cogeneration in
7 Ontario, for example, has a high economic multiplier,
8 small hydraulic as well.

9 Q. That was part of the demand/supply
10 options strategy; wasn't it?

11 A. That's correct, yes.

12 So we have shown that some waste, wood
13 waste use or cogeneration or small hydraulic has high
14 employment potential in Ontario. But to go as far as
15 what 9,000 megawatts would do in terms of employment
16 over a decade, that's again a much larger job than
17 saying a particular site creates so many jobs. So we
18 haven't done it in that extent.

19 Q. You had a discussion the other day
20 with Mr. - maybe it wasn't you, maybe it was Mr.
21 Meehan - had a discussion the other day with Mr.
22 Heintzman concerning the relative jobs created by
23 fossil and nuclear. Do you recall that?

24 A. Yes, I do.

25 Q. If you could turn to Exhibit 505,

1 this is a chart of the job creation impacts of
2 electricity generation technologies, the source you see
3 there. And this shows, for example, that wind energy
4 creates about five times as many jobs as either nuclear
5 or fossil.

6 Is this consistent with the information
7 currently available to Ontario Hydro?

8 A. You have got to ask where is that.
9 If you go to Denmark, for example, where they make wind
10 turbines but do not make nuclear reactors, sure, wind
11 turbines will create more employment than buying a
12 nuclear reactor designed and assembled outside of
13 Denmark and probably fueled by uranium mined and
14 manufactured outside of Denmark. So I think that kind
15 of story is very location and territory specific.

16 Is that meant to be universal, that wind
17 anywhere in the world will create more employment than
18 nuclear anywhere in the world? I doubt that very much.

19 Q. Okay.

20 A. So if you are at a place that makes
21 wind turbines and not nuclear reactors you are in a
22 very much different situation than if the reverse is
23 true.

24 Q. Currently there is no manufacture of
25 wind turbines in Ontario, is there?

1 A. I don't know what the status is but
2 there used to be a few. I don't know whether it's
3 still in the business or not.

4 Q. But there is manufacture of nuclear
5 reactors in Ontario, nuclear components?

6 A. I could probably say the same thing,
7 there used to be a few and I don't know whether they
8 are still in business today or not. [Laughter]

9 DR. CONNELL: Before we leave this, I
10 would be interested to know from the original study
11 what is the definition of direct employment. Does that
12 mean employment on site, engagement in the actual
13 construction and operation of the facility?

14 MR. SHEPHERD: Dr. Connell, the original
15 study, as I understand it, included all manufacturing
16 jobs and other things that were the direct result of
17 the wind powered generation, but didn't include
18 economic spin offs, the sort of normal multipliers
19 through the economy.

20 I would be happy to get the study and
21 table it, if you wish.

22 DR. CONNELL: Actually, I have a copy at
23 home and I can look it up.

24 MR. HOWARD: With the greatest respect, I
25 haven't been objecting to my friend introducing bits

1 and pieces from all over the world and he has got a
2 couple of inches from California, but it seems to me,
3 Mr. Chairman, that if what my friend is doing is
4 introducing one page from World Watch and then giving
5 evidence as to what is in it, we are going to be here
6 forever.

7 I respect Dr. Connell looking it up at
8 home, but if it isn't favourable to Ontario Hydro I
9 would like to know what conclusion he comes to.

10 We are getting into an absolutely
11 intolerable situation.

12 THE CHAIRMAN: This comes up quite
13 frequently.

14 MR. HOWARD: Yes, that's why I have been
15 quiet.

16 THE CHAIRMAN: Exhibit 505 is not, in my
17 view, evidence. It only used as an aid to elicit
18 evidence from this panel. To the extent that they can
19 present evidence they can, if they can't they aren't
20 able to. But I don't regard Exhibit 505 as evidence in
21 this hearing.

22 MR. SHALABY: I may note for Dr.
23 Connell's information that the author of Exhibit 505 is
24 Mr. Paul Gipe who is also the author of Exhibit 409 put
25 forth by Dynamo Genesis. And my information when I

1 read that, that Mr. Gipe is a wind energy expert based
2 in Tehachapi.

3 Is that correct?

4 MR. SHEPHERD: Q. No, I don't think 505
5 was --

6 MR. SHALABY: A. Or at the time he wrote
7 409 that was the credentials given.

8 Q. I don't think 409 is prepared by Mr.
9 Gipe. I think the source is the World Watch Institute
10 which has nothing to do with Mr. Gipe, as I think you
11 know.

12 THE CHAIRMAN: I think we are getting,
13 way beyond the scope of this particular...to get into
14 that kind of discussion.

15 MR. SHEPHERD: That's right.

16 Q. Well, Mr. Shalaby, perhaps we could
17 turn and look at wind energy in more detail.

18 Mr. Chairman, as you know, our other
19 client, if you like, is the Canadian Wind Energy
20 Association, so we may go into a little more detail in
21 wind energy than we might otherwise.

22 Wind energy is a commercial scale
23 maturing technology; is that correct, Mr. Shalaby?

24 MR. SHALABY: A. That is correct.

25 Q. Would you say it's a more mature

1 technology, more commercial level technology than
2 integrated coal gasification which is another one of
3 the technologies Hydro is interested in?

4 A. Probably the megawatts installed are
5 in the same order of magnitude as integrated coal
6 gasification or perhaps even more.

7 Q. I am asking about the stage of
8 development that the two technologies are at?

9 A. I would accept your proposal, yes.

10 Q. There is however still development
11 work going on in the technology. It's not as mature
12 as, say, hydraulic where there is very little room to
13 have move?

14 A. There is still work going on, yes.

15 Q. The result is that costs are
16 projected to go down in real terms by virtually
17 everybody; is that correct?

18 A. Yes.

19 Q. There are also expectations of
20 substantial manufacturing economies of scale?

21 A. Yes.

22 Q. You mentioned earlier, you talked
23 about the wind resource in Ontario, and it has been
24 said a number of times that Ontario isn't a very windy
25 place; is that correct?

1 A. Yes.

2 Q. In general, isn't it true that it is
3 not the windy jurisdictions that have tended to have
4 the most wind energy development?

5 A. Well, if you are referring to
6 California, again Exhibit 409 is an exhibit that shows
7 why wind energy development have taken off in
8 California and it makes a point that California in fact
9 is not the windiest place is in the United States. The
10 midwest and the Rockies and places like that have much
11 larger and much better wind resources than California
12 has. So it's not just the wind resource, it's other
13 conditions as well that kicked off the industry in
14 California.

15 Q. Could you turn to page 6 of Exhibit
16 499. Now, Exhibit 499 is a package of information from
17 the U.S. Department of Energy. They are one of the
18 sources you used for information in doing this sort of
19 study; right?

20 A. Yes.

21 Q. And page 6 of Exhibit 499 is a wind
22 resource map of the United States.

23 A. That's correct.

24 Q. It is divided up, I guess it's fair
25 to say that the darker the shading of the state, the

1 more wind resource there is; is that fair?

2 A. I wish you had one that showed wind
3 speeds, because Mr. Greenspoon wanted one of those.

4 All right. Go ahead. Save me an
5 undertaking.

6 Q. So this shows essentially what you
7 said, right, that California isn't one of the windier
8 places in the United States?

9 A. Yes.

10 Q. Fair?

11 The other place where wind power is
12 developing which is Oregon, that's also not one of the
13 windier places, but places like Texas, Montana, they
14 are very windy and have no wind turbines; right?

15 A. Not as significant has California.

16 Q. Another utility that's very
17 interested in wind power is Niagara Mohawk and that's
18 in New York which is also not very windy; right?

19 A. According to go this map, not as good
20 as some of the better wind sites, yes.

21 Q. In fact, if Ontario were on here too
22 we would be sort of in the same category as California
23 and New York, wouldn't we, in terms of overall wind
24 resource?

25 A. I'm not sure. In aggregate you may

1 be right.

2 See, in California, the entire state is
3 not a good wind site. There are very specific mountain
4 passes that are windy. Some of the wind maps that I
5 have seen would show three or four dark dots within the
6 California landscape that are windy.

7 Like this map here is showing an average
8 thousands of megawatts, but if you were presented a map
9 that shows a wind resource, you will find a few dark
10 spots in California. The mountain passes are
11 particularly windy, but the state in general perhaps is
12 not.

13 DR. CONNELL: Could someone explain what
14 we are looking at here before we carry on?

15 Just interpret the data for me.

16 MR. SHEPHERD: What DOE has done, or I
17 guess it's Pacific Northwest Lab has done is they have
18 said, what is the total wind resource in each state in
19 megawatts -- sorry, in thousands of megawatts. So they
20 have said, for example, total wind resource in
21 California is 7,000 megawatts, but in Texas it's
22 136,000 megawatts.

23 DR. CONNELL: Is this covering the entire
24 state with turbines?

25 MR. SHEPHERD: No. This is just using

1 the places that are places where you can produce wind
2 power.

3 DR. CONNELL: What is the criteria,
4 minimum velocity and duration?

5 MR. SHEPHERD: It's actually more
6 complicated than that. I am happy to actually table
7 that study which is a very interesting study.

8 DR. CONNELL: What does 10D by 5D mean?

9 MR. SHEPHERD: That's 10 diameters by
10 five diameters. That's the diameter of the blade.

11 Q. Mr. Shalaby, have you seen this
12 before? This is from Battelle study, are you familiar
13 with that?

14 MR. SHALABY: A. I seem to remember
15 something like it. Whether it's exactly that or not,
16 whether it was presented at the wind energy conference
17 in Montreal, I suspect there was. There were slides
18 ahead of that, to my memory, that showed the exact wind
19 map, if you like, and the wind resource, and that one
20 was very interesting as well.

21 Q. Can you confirm that my explanation
22 of this is correct?

23 A. It is generally correct, yes.

24 Now I am not sure what the criteria are
25 exactly, but generally they are saying if extensive

1 development in these areas, you will get that kind of
2 power.

3 Q. Now, you mentioned a number of times
4 wind speed maps as opposed to wind resource maps, and
5 you said in your direct evidence that mean wind speed
6 maps have a very limited usefulness; correct?

7 A. Yes.

8 Q. In fact, isn't it true that such a
9 map is unlikely to give any meaningful information on
10 the extent of the wind energy resource in Ontario?

11 A. It gives a preliminary indication, if
12 you are a prospector for wind resources and you are
13 free to go anywhere, you probably wouldn't come to
14 Ontario, you will go somewhere else first.

15 But yes, it has limited information. I
16 liken it to, for example, a geological survey that
17 would show you in general what the geological make up
18 of Ontario is, but if you want to go and prospect for
19 gold you have to go out and dig and pick and go walk
20 the trail and see whether you find what you are looking
21 for.

22 Q. Great analogy.

23 The map on page 43 on the alternate
24 energy review, that's a mean wind speed map; right?

25 A. Yes.

1 Q. Is it fair to say that this map
2 without further work, this map simply doesn't tell us
3 whether we have the sort of resource that California
4 has or not?

5 A. Without further work it gives you an
6 indication that there are limited areas in the province
7 that have higher wind speeds than others, and we
8 mentioned Sudbury, I think we mentioned the shores of
9 the Great Lakes.

10 [10:56 a.m.]

11 It gives you an indication of the average
12 wind resource. It has some information that is useful.

13 But it is not, as I said in my evidence
14 and as we are confirming now, the only information that
15 a serious wind prospector would rely on. They would
16 not rely on that data. They would go and do their own
17 measurements, as I said, for a continuous period of
18 time in specific locations.

19 I can't overemphasize, and I know you
20 know this, that the site-specific nature of wind is
21 paramount. You have got to go and find a site that can
22 harvest the wind better than others.

23 And sites, to my knowledge, that are even
24 500 metres away from good sites could be very bad
25 sites. We are told that in wind farms, for example,

1 you can have a wind turbine here and a wind turbine 100
2 metres away, and this one would harvest five times as
3 much energy as the other one only 100 metres away, just
4 to indicate the sensitivity of siting and the specific
5 conditions to the extent of harvesting the wind.

6 So it is not something that you can see
7 on a map of Ontario. You know, we are talking about
8 very, very specific differences in siting.

9 Q. Well, the level of detail on a map
10 like this is also, I guess, going to be very relevant
11 right, the level of detail? You have here, for
12 example, an area of what looks like 100 kilometres
13 around Sudbury which is at 20 kilometres per hour.

14 A. Yes.

15 Q. 20 kilometres per hour is still not a
16 good enough wind regime for most wind turbines, is it?

17 A. Not if it was exactly 20 kilometres
18 per hour. It has got to be better. Although, again,
19 people are promising developments in the technology
20 that would harvest that kind of wind regime, but for
21 today's mature technology I am told that that kind of
22 wind speed is not economic to harvest.

23 Q. But if this map were drawn at a
24 greater level of detail then we would start to see some
25 places where there was better wind; right?

1 A. Perhaps, yes. Yes.

2 Q. In fact, if you drew a map of
3 California at this level of detail you wouldn't see
4 Altamont, Tehachapi or San Gorgonio, would you?

5 A. No, the maps I have seen do show
6 these three mountain passes as dark blips, a little
7 better resource than the rest of the map.

8 Q. These are the maps produced in the
9 '80s after development took place there and anemometer
10 were put up by the developers?

11 A. Perhaps. Perhaps that without those
12 detailed measurements the maps would not have shown,
13 and, as was mentioned here, much of this data is
14 airport wind measurements, and somebody said that
15 airports by design are put in places that are not
16 windy.

17 So you are quite right. It could be that
18 without detailed studies you will not identify the wind
19 sites.

20 I think we are in total agreement that
21 detailed wind prospecting is the useful way of
22 identifying the wind resource, and this kind of map has
23 limitations and only indicative of what kind of wind
24 resource we are talking about in general. But it has
25 limitations.

1 I think we felt we would put that in
2 rather than be silent and say there may be wind, there
3 may not be wind. That is the reason for putting that
4 map in.

5 Q. You in fact have some better data
6 than this, don't you - not in the report, but you have
7 available to you better data than this?

8 A. Well, even in the report we showed
9 you wind -- the next page right up shows wind speeds at
10 Fort Severn and at the Kortright Centre, and again, it
11 is to give an indication that wind speed is not a
12 single number; it is really a daily variation in wind
13 speed as shown on these two graphs, and I introduced
14 them in my direct evidence.

15 A distribution of wind speeds is
16 important, not just the average. For example, an
17 average of eight metres per second can be an average of
18 a range between seven and nine. That would be a good
19 wind regime. Eight can also be the average of one and
20 17, and that may not be as good a wind regime, or one
21 and 15 for example.

22 If you have very, very windy gusts and
23 very quiet times and the average is still eight, that
24 is not as good a regime as a steady 7, 8, 9 all the
25 time.

1 Q. Gee, I had understood the opposite to
2 be true, that it was much better to have a wind regime
3 where you had sometimes at 12 metres per second and
4 sometimes at nothing because at 12 metres -- there is a
5 rule that says that, or a law of nature, I guess, a law
6 of physics, that says as the wind speed goes up the
7 power goes up exponentially; right?

8 A. That is correct, but there is a place
9 when you start getting into very high wind speeds that
10 the turbines shut down. They protect themselves or
11 they are going to disintegrate. At high wind speeds
12 they shut down.

13 Q. Fair enough.

14 A. So if you have wind that is very
15 high, above the cut-off point or below the cut-off
16 point, the average could be quite attractive looking,
17 but really the turbine will not operate much of the
18 time.

19 All I am trying to say is that wind is a
20 very complex resource. You know that. And to
21 characterize it by a single number is really
22 oversimplifying things.

23 Q. Of course. Fair enough. Just
24 looking at your map on page 43 of the alternate energy
25 review, will you confirm that none of the numbers shown

1 on this map show any area of the province that has a
2 commercially viable wind regime?

3 A. Well, I think you will be asking me
4 to contradict all the discussion we have been saying
5 for the last hour. I don't think this map gives you
6 sufficient information to say whether there is or there
7 isn't.

8 My testimony is this is a first broad
9 brush, but for those who are serious about this
10 business and can go prospecting they will find areas
11 that have wind regimes better than shown on this map.

12 Q. Now, an interesting thing you
13 mentioned, you talked about the California wind maps
14 having the little black dots where the very good wind
15 regimes are in some of the passes.

16 Isn't it true that the mean annual wind
17 speed at the Bruce nuclear station is about 7.13 metres
18 per second, which is about, what, 28, 29 kilometres per
19 hour? And no little black dot there, I just wondered
20 why that would be?

21 A. Well, I have got to confirm that your
22 number is right, but if you are going to give it to
23 three digits you probably got it out of somewhere that
24 is --

25 Q. I will even give you the details.

1 A. Well, accepting that anyway, that
2 chart does not have black dots anywhere. It just shows
3 contours of average speeds.

4 I think we have spent enough time showing
5 the limitation of that map, and you are giving us proof
6 that, yes, if you look you will find something higher
7 than the average. Average by definition is somewhere
8 that you will find higher wind speeds at certain
9 locations and lower wind speeds at certain locations.

10 Q. One of the things you haven't
11 mentioned is that generally speaking the AES data -
12 that is, the Atmospheric Environment Service data - is
13 collected at a height of 10 metres; correct?

14 A. Yes.

15 Q. Isn't the appropriate height
16 typically for measuring wind speed for wind turbines
17 more like 30 metres?

18 A. Yes, and I think I mentioned that.

19 Q. Oh, did you?

20 A. Yes.

21 Q. I missed it.

22 A. With Mr. Greenspoon. I said that
23 airport data is 10 metre height and the more useful
24 readings for wind developments are higher than that.

25 Q. Of course, at the higher height there

1 is uniformly a lot more wind resource, isn't there?

2 A. Yes.

3 Q. Well, then, now that we have agreed
4 you can't rely on these maps, what are we going to rely
5 on to determine what the wind resource is?

6 A. Detailed assessments.

7 Q. You have no data to offer this Board
8 on the raw potential for wind energy in Ontario?

9 A. Nothing detailed, no.

10 Q. Well, then...

11 A. I mentioned in these proceedings that
12 Ontario Hydro is contributing to a resource assessment
13 in the Bruce Peninsula, and I am not sure whether we
14 are contributing to resource assessments elsewhere, but
15 I know that there are detailed assessments elsewhere in
16 the province.

17 But those are sort of painstakingly made
18 by developers and prospectors and people who want to
19 develop wind form energy.

20 Q. Well, if you don't have any data,
21 then how did you come up with the number of one to 40
22 megawatts of wind energy in the next 20 years or
23 whatever it was?

24 A. Well, that number -- and I indicated
25 that it is just an indication and I indicated where I

1 came up with that number. It is an Energy, Mines and
2 Resources study that you requested to be tabled in
3 Panel 5, and it is Exhibit 322.12 I think it is.

4 Q. Yes.

5 A. That particular study has in it
6 indicated that Ontario under favourable conditions
7 would have something up to -- I think the number is
8 41.2 megawatts of wind generation in the year 2014. So
9 that is where we got that number.

10 Q. Is Hydro giving that number as
11 Hydro's evidence or as EMR's evidence?

12 A. We are giving this as -- you started
13 telling me where you get all the information, and I
14 said we get it from different places. That is one
15 place where we got that particular number, and we adopt
16 it as our evidence.

17 Q. Okay.

18 A. In absence of resource studies
19 Energy, Mines and Resources has commissioned
20 consultants - some of them work for Passmore
21 Associates - to do that study, and you are well
22 familiar with that study, and they gave the reasons and
23 they gave the saturation functions and diffusion
24 functions and various other techniques to come up with
25 that kind of number.

1 But again, it all depends on the quality
2 of the resource assessment that people are working
3 with.

4 Q. That report that you relied on, that
5 is a draft report, isn't it?

6 A. Yes.

7 Q. Isn't it in fact being rewritten
8 specifically with respect to Ontario because EMR wasn't
9 happy with the results?

10 A. I don't know that for sure. It may
11 well be. But at the time we prepared this we had an
12 access to that report. If it is being rewritten, then
13 perhaps the results will change.

14 We are not wedded to any of these
15 numbers. You know, if you want to say the potential is
16 not 40 but it is 80 or 100 or 200, I will accept any of
17 that. I think before we go and do some serious
18 site-specific resource assessment any of these studies
19 would have limitations.

20 My understanding as well is that IPPSO is
21 doing a detailed study of wind resource assessment. I
22 have heard a preliminary indication of the results of
23 that at the wind energy conference in Montreal.

24 Q. You did?

25 A. I am eagerly awaiting the results of

1 that. I think it is being funded by this hearing, and
2 we would love to see what the results look like.

3 Q. Your number of 40 megawatts could be
4 off by orders of magnitude, couldn't it?

5 A. It could be off, yes. Orders of
6 magnitude -- you know, I am saying it could be double,
7 triple, maybe ten times, yes. That is an order of
8 magnitude.

9 Q. Could it be thousands?

10 A. I am not going to sit here and
11 pretend that it couldn't be. Our best guess is that it
12 isn't going to be that much off, but, hey, we have been
13 wrong before.

14 I doubt that it is going to be that far
15 off, but if it is, it is not going to happen all of a
16 sudden. I think if it is off by that much that would
17 mean that there is technology to harvest moderate wind
18 speeds; there is acceptance in Ontario. If it is off
19 by thousands, then we are into millions of windmills
20 somewhere. And that will take time to take place.

21 DR. CONNELL: I believe even one
22 thousand, you are suggesting -- your question would be
23 40,000 megawatts, Mr. Shepherd? Is that what you are
24 putting...?

25 MR. SHEPHERD: Sorry, I was asking about

1 1,000 megawatts as opposed to 40 megawatts.

2 Q. And thousands of megawatts is not
3 millions of wind turbines, is it, Mr. Shalaby?

4 MR. SHALABY: A. No. If you said it is
5 off by a factor of a thousand, then it could be
6 millions of turbines, but 1,000 megawatts in California
7 today is about 18,000 turbines, to my knowledge, or
8 something like that.

9 Q. No, no. 2,000 is 18,000.

10 A. Is it?

11 Q. Then, isn't your own evidence that
12 the range of size of wind turbines today is between 300
13 and 600 kilowatts?

14 A. Right.

15 Q. So 1,000 megawatts would be about,
16 what, 2,500 turbines?

17 A. Of the large variety, yes.

18 But 1,000 megawatts has happened
19 elsewhere in the world and there is no reason it
20 couldn't happen here. If the wind resource is
21 identified and the land can be made available and all
22 the conditions that made that development viable
23 elsewhere, if they replicate it here there is no reason
24 it couldn't happen here.

25 But again, when we had to make a judgment

1 and to make the call we didn't think that that will
2 happen here that quickly. That is the judgment which
3 we had to make.

4 Now, as more data becomes available and
5 as the technology develops further that judgment can
6 evolve.

7 Q. The basis of that judgment is that
8 there are not enough windy sites?

9 A. Well, I think we better consult that
10 exhibit that we mentioned here, the Energy, Mines and
11 Resources data, that has assumptions on both the wind
12 resource but also the rate of return on investments and
13 the acceptance of the technology. It is a complex
14 function of both the acceptance, the rate of return,
15 and the resource itself.

16 Q. Well, whose judgment are you giving
17 evidence on here, Mr. Shalaby, EMR's or yours?

18 A. Mine.

19 Q. So I am asking if you think that
20 there is only a small potential here.

21 A. Yes.

22 Q. You made a judgment call that there
23 is not going to be thousands of megawatts.

24 A. Yes.

25 Q. It seems to me it can only be because

1 there is not enough wind, too expensive, or there is
2 some sort of other barrier to the development. I am
3 asking, which is it?

4 A. Mostly that we are not aware of high
5 wind resources in abundance in Ontario that are close
6 to transmission lines that can be made available to
7 wind developers at low cost. Those three factors are
8 the critical factors.

9 Q. But you have given evidence already
10 that you haven't done the work to find that out, have
11 you.

12 A. It is judgment. That is why it is
13 judgment and not an assertion that looking at every
14 cubic metre and square metre on the map we can tell you
15 where the wind resource is.

16 Q. Maybe your idea of judgment and mine
17 are different. I always thought you exercise judgment
18 on the basis of information.

19 A. Yes.

20 Q. But don't have any information on
21 this, do you.

22 A. We have information. I said, we
23 don't have detailed information of where all the sites
24 are and what the data is. Nobody else has that
25 information either.

1 We were asked to give potential for a
2 technology with preliminary indication of what the
3 resource is, not detailed information of what that
4 resource is.

5 If you prefer an answer of we don't know
6 what the wind potential is like, you can have that
7 answer, too.

8 Q. But that would be the correct answer,
9 wouldn't it?

10 A. That would be a good answer, yes, but
11 when my management asks me would it be 1,000 or ten or
12 10,000, I say it is going to be closer to 40 or 50
13 because they are not going to settle for "we don't
14 know."

15 But "I don't know" is a good answer;
16 there is no doubt about it.

17 Q. Do you have any of the preliminary
18 information from the people doing detailed studies on
19 Lake Huron and in the Sudbury area? Is any of that
20 information available to you yet?

21 A. Not to me.

22 Q. Well, the "you" meant "Ontario
23 Hydro".

24 A. If it is available to other places in
25 Hydro I am not aware of it.

1 Q. You are not aware of it? Okay.

2 A. But I know there are detailed
3 assessments being done in the Sudbury area.

4 Q. Maybe this is part of that same
5 question, but I will ask anyway. Are you aware of a
6 specific developer that has advised Ontario Hydro of a
7 site with 100 megawatts of potential that is readily
8 available today?

9 A. Yes, I am.

10 Q. Do you disagree that that site has
11 100 megawatts of potential?

12 A. I have no reason to disagree.

13 Q. Well, but isn't 100 megawatts in that
14 one site bigger than your 40 megawatt judgment?

15 A. Yes. And if that site gets developed
16 to that size then our judgment will have been wrong,
17 wouldn't it?

18 Q. Okay. Could you turn to Volume 109
19 of the transcript.

20 A. I just want to say that those kinds
21 of proposals and assessments, we have seen those before
22 and we continue to see them, and we are not wedded to
23 any one number and if developments take place then we
24 will just modify our expectation.

25 Q. But the proposal you are talking

1 about -- I am not going to mention names obviously, but
2 the proposal you are talking about --
3 [11:15 a.m.]

4 A. This is going to be a private
5 discussion? Just you and I know who we are talking
6 about. I don't think that's very helpful to the Board.

7 Q. I am going to ask you to characterize
8 it, it's from an experienced wind power developer that
9 knows what they are doing; is that correct?

10 A. Yes, absolutely.

11 Q. It's not some person who thinks wind
12 power is a good idea. It's a big company.

13 A. They think it's a good idea too, but
14 it's a big company, yes.

15 I have to go back and not leave this
16 question of our estimates of potential. It was a very
17 difficult job for the team that we have put together,
18 the team that wrote that report, a very difficult
19 question to ask them to cough up a potential by the
20 next 20 years. It's a very difficult job to speculate
21 as to what people will find when they go prospecting.

22 If we go back to the geological survey
23 and finding gold, if you send people prospecting how
24 could you predict how much gold they are going to find?
25 It's very difficult to estimate that.

1 So it's a number that's difficult to
2 estimate, however, people have to make judgments. Mr.
3 Smith, for example, would rely on projections of
4 natural gas, not based on identifying every well and
5 every geological information but on experience. This
6 reserve and unproven reserve and all of that is just
7 based on judgment.

8 So the application of judgment to what
9 you think the reserve will be or what the potential
10 will be is a common thing to rely on in our studies.
11 But it's got the uncertainties associated with it.

12 I think the other factor that we haven't
13 seen in wind developments in Ontario in a big way
14 could, for example, support the idea that we don't have
15 the abundant resource that perhaps California does.

16 Although I enjoy those Group of Seven
17 paintings that have the pine tree tilting to one way,
18 that is a sign of strong winds for a long period of
19 time, but all along the Georgian Bay you can see those
20 trees and you know there is a been wind in the area.
21 But is that a suitable resource or not is a complex
22 question to answer.

23 Q. What we have been talking about
24 though, and I am not trying to criticize what your
25 people have done, I guess what we are asking is, how

1 much reliability, how much faith should the Board put
2 in the number that you came up with? Do I get the
3 impression that you are saying that the reliability of
4 your wind resource estimate is comparable to the
5 reliability of gas reserve estimates?

6 A. No, I am just explaining to you the
7 hazards and the uncertainties associates with
8 predicting resources that you haven't scouted for in
9 detail into the future. It's that kind of nature.

10 Q. I understand that. My question was a
11 yes/no question.

12 Is it your evidence that the reliability
13 of your wind resource information is comparable to the
14 reliability of your natural gas resource information?

15 A. I would think it's even less
16 reliable.

17 Q. Fair enough.

18 If you could look at Volume 109, page
19 19123. I have got to find the line number here.

20 In line 8 through 10 you are talking
21 about availability of land for wind developments, you
22 say: I don't know to what extent those lands, this is
23 lands on the Great Lakes, would be available for wind
24 farm developments.

25 I guess I would just ask you to elaborate

1 briefly on that?

2 A. Elaborate?

3 Q. Elaborate briefly on that.

4 A. Well, I think what it says is that
5 while there may be windy sites on the Great Lakes, on
6 the shores of the Great Lakes, I do not know whether
7 these lands are publicly-owned or privately-owned,
8 whoever owns them, whether they would release them for
9 wind farm developments or not, whether the public and
10 the environmental approval process in the province
11 would permit the siting of wind farms on the shores of
12 the Great Lakes in these locations. There are uses for
13 these lands, whether it's recreational or tourism, or
14 some of them are reserves and so on. That's what I
15 meant by I don't know whether this land is available to
16 wind farm developers or not.

17 Q. So that's not different from the
18 uncertainties surrounding siting a nuclear station; is
19 it?

20 A. No, it's not.

21 Q. Except it's probably fair to say that
22 a wind farm has less local resistance than a nuclear
23 station; is that fair?

24 A. I will accept that, yes.

25 Q. Wind farms have co-existed

1 successful --

2 A. Mind you, until you try and do it.

3 Things are terribly acceptable until you try and do it.

4 Q. Okay. Wind farms have co-existed
5 successfully with agricultural operations in numerous
6 places; haven't they?

7 A. The places I have seen and read
8 about, I guess if you take Holland, wind farms are in
9 nice harmony with agricultural uses.

10 In California the lands are not high
11 grade agricultural, but they are in co-existence with
12 grazing and other activities, yes.

13 Q. Altamont Pass in California is the
14 largest concentration of wind turbines in the world;
15 right?

16 A. I think so, yes.

17 Q. There is about 4,200 wind turbines
18 there?

19 A. I will take your number. It's not
20 unreasonable.

21 Q. It's 800 megawatts or something like
22 that; correct?

23 A. That's about right.

24 And again, I should get my copy of
25 Exhibit 409, it describes the wind resource in

1 California and where it's located in the mountain
2 passes and what type of machines and everything else in
3 there.

4 Q. It's okay. These are just set up
5 questions. All of that land --

6 A. The kill comes later, does it?

7 [Laughter]. This is set up. That is fine.

8 Q. All that of land is used for cattle
9 grazing; correct, the Altamont land?

10 A. I don't know whether it's all or not,
11 I don't know. But to my information there is no reason
12 it couldn't be. Much of the land could be used for
13 cattle grazing, whether it's all being used that way or
14 not, I don't know.

15 Q. Mr. Shalaby, have you ever seen a
16 wind farm?

17 A. Yes.

18 Q. Where?

19 A. In Altamont and Tahachapi and in San
20 Gorgonio. I have been to all three mountain passes.

21 Q. So you have seen the cattle grazing
22 on the hills at Altamont; haven't you?

23 A. But I haven't seen them -- my answer
24 is not all. I haven't seen all 4,200 and 800 megawatts
25 with cattle below every one of them. [Laughter]

1 Q. Fair enough.

2 Isn't it true that the advent of large
3 scale wind energy development in the Altamont area
4 saved the economic position of the farmers in the area,
5 that is, they were in touch economic times and the
6 reliable income from the developers saved their farms;
7 isn't that true?

8 A. I know that in the places where wind
9 farming took place, it's been welcome news by the
10 locals. Now I don't know whether it made the
11 difference between bankruptcy for the farmers or not,
12 but it's been welcome news, yes.

13 Q. Most of the eastern shore of Lake
14 Huron, the area where Bruce, for example, is, it's
15 largely agricultural area; isn't it?

16 A. Yes.

17 Q. Sheep farming, some dairy farming,
18 things like that?

19 A. I wish Mr. Thompson was here, he
20 would give us a bigger breakdown, great detail of what
21 the farming types are. I am not familiar exactly what
22 the types are, but I am presume that is also set up.

23 Q. So it's fair to say, isn't it, that
24 just on a preliminary basis, sort of as preliminary as
25 your wind speed map perhaps, that there is probably

1 some opportunity there to place wind turbines in
2 agricultural areas?

3 A. Yes.

4 Q. We shouldn't be really concerned that
5 the landowners are going to resist and say no wind
6 turbines in this area?

7 A. I have testified here that we know of
8 a particular landowner that is actively soliciting wind
9 turbine development on his land in the Bruce area.

10 Q. Oh, really. That's good.

11 And similarly the Sudbury area -- I'm
12 sorry.

13 A. Mr. Burpee was reminding that Mrs.
14 Mackesy might have been concerned about wind
15 developments on different farm lands, but I said that
16 your question was whether the owners would be
17 concerned, and I thought not.

18 Q. The Sudbury area also has lots of
19 available land for wind development; doesn't it?

20 A. My understanding is yes.

21 Q. As with the Bruce area, the Sudbury
22 area could certainly welcome the economic development
23 associated with large scale wind energy; wouldn't that
24 be true?

25 A. I assume so, yes.

1 MR. SHEPHERD: Mr. Chairman, I am moving
2 on to a different area, I wonder if this might be the
3 be the appropriate time to take the break.

4 THE CHAIRMAN: All right. We will take
5 fifteen minutes.

6 THE REGISTRAR: The hearing will take a
7 15-minute break. Please come to order.

8 ---Recess at 11:30 a.m.

9 ---On resuming at 11:45 a.m.

10 THE REGISTRAR: Please come onto order.
11 This hearing is again in session. Please be seated.

12 THE CHAIRMAN: Mr. Shepherd?

13 MR. SHEPHERD: Thank you, Mr. Chairman.

14 Q. Mr. Shalaby, we are still in wind
15 energy. I would like to turn to the size of
16 developments that you have modelled.

17 You have used as you are examples in the
18 ought ever alternate energy review a 10 kilowatt
19 distributed application, which I will ignore for the
20 time being, and a 7 megawatt grid connected
21 development; right?

22 MR. SHALABY: A. Yes.

23 Q. It's correct that utility scale wind
24 farms being developed today are - except for
25 demonstration projects such as the ones in Alberta -

1 all larger than 7 megawatts; aren't they?

2 A. Generally in California the wind
3 farms are larger than 7, yes.

4 Q. Looking just at the cost of the
5 turbines themselves, I will get to the rest of it in a
6 second, would you say that generally as the size of a
7 wind farm development increases. The cost of the
8 turbines per kilowatt increases, decreases or stays the
9 same?

10 A. I presume it could decrease. The
11 quantity purchase could cause a decrease in the price.
12 But again, it's specific as to who is supplying the
13 turbines and things like that. But generally the more
14 you buy generally you can get a better price.

15 Q. Can you explain to the Board the
16 concept of balance of system, BoS, as a component of
17 wind farm development, what is that concept?

18 A. That is the components like
19 transformers, power conditioners. In the case of
20 variable speed wind turbines it would be inverters,
21 converters, to convert the energy from direct current
22 to alternating current. That's what balance of system
23 means.

24 Q. It includes also the roads on the
25 site and the transmission lines on the site, that sort

1 of stuff?

2 A. I am not sure whether we call that
3 balance of system or whether we call that services to
4 the site. But yes, the development includes road
5 preparation and site preparation.

6 Q. All of those other costs are, on
7 average, around 25 per cent of the cost of a wind farm
8 development typically?

9 A. I don't know that for a fact. Again,
10 it depends on how remote the site is or how difficult
11 it is to harness.

12 Q. Typically, balance of system costs or
13 the costs in excess of the wind turbines themselves,
14 they will tend to decrease per kilowatt as the size of
15 the development increases; isn't that correct?

16 A. Yes.

17 Q. So, just looking at the capital costs
18 side, isn't it fair to say that virtually all of the
19 capital costs are going to be lower per kilowatt as you
20 look at larger scale wind farms?

21 A. I accept that, yes.

22 Q. On the operating side, as I
23 understand the alternate energy review, you have
24 modelled a 7 megawatt wind farm as needing either three
25 or four full-time staff depending on how you look at

1 it; is that correct?

2 A. I'm not sure of that particular
3 number. If it's in the review, it might be correct.

4 Q. Didn't the alternate energy review
5 say that the reason you chose 7 megawatts was because
6 that was a three-person team, that represented 20 or 25
7 machines and therefore was a three-person team?

8 A. It says the experience shows that a
9 single maintenance crew, mechanical, electric and
10 electronic technician can serve 20 to 25 machines.
11 This is therefore considered minimum for commercial
12 operation.

13 Whether the crew is three people or
14 includes these three skills, I don't know. But three
15 people is not unreasonable to maintain a farm like
16 that.

17 Q. But there must be a number you used
18 when you did your calculations; isn't there?

19 A. Yes.

20 Q. What was it?

21 A. I don't know it for sure. But I can
22 find out if it is important.

23 Q. It's true, isn't it, that the largest
24 wind power developer in the world Kenetech runs 4,000
25 machines with a staff of about 80; isn't that right?

1 THE CHAIRMAN: How many did you say?

2 MR. SHEPHERD: Eight-zero.

3 MR. SHALABY: I don't know that for a
4 fact but I wouldn't be surprised.

5 MR. SHEPHERD: Q. Isn't it correct that
6 the new wind farms being planned at the sort of 100
7 megawatt size in various places around the world are
8 contemplating a staff of five?

9 MR. SHALABY: A. Again, I don't know
10 that for a fact. But as machines become more reliable
11 and as they are remotely controlled and remotely
12 operated, the number of staff necessary to operate them
13 can reduce.

14 Q. Is it fair to say, isn't it, that the
15 larger wind farm will generally have lower operating
16 costs per kilowatthour, won't they?

17 A. Than smaller ones?

18 Q. Than smaller ones.

19 A. Yes.

20 Q. On that same page 55 of the alternate
21 energy review that you were just looking at, the same
22 paragraph, page 55 of Exhibit 344, paragraph .4 on the
23 right-hand column, it starts off: "Why select 20
24 units", and if you go down it says:

25 Because Ontario Hydro does not have

1 specific sites with very high wind
2 speeds, Ontario is not likely to follow
3 California's pattern of very large wind
4 farms.

5 Now given our conversation earlier, is
6 that statement correct, to your knowledge?

7 A. Well, part of the statement that the
8 Danish pattern of small groupings, that there is a
9 pattern of small groupings in Denmark, and larger
10 groupings in the United States, that is correct.

11 The statement says it's not likely to
12 follow the California pattern, that's an opinion by the
13 authors of this report that the likely development is
14 not likely to be large farms but perhaps smaller
15 groupings. That was a judgment made here.

16 Q. The reason given, is we don't have
17 specific sites with very high wind speeds; right?

18 A. Yes.

19 Q. But that's not something you know; is
20 it?

21 A. Well again, we went through the idea
22 that the indications are that we are not a windy
23 province on average in general. Perhaps there are
24 specific sites that are windy.

25 So maybe if you have a specific site that

1 is windy, that is large, you could have a large
2 development. But in general, unless you have many
3 large sites that are windy, then a more localized
4 development is more likely than widespread several
5 thousand turbines per development is more likely. That
6 is a judgment made by the authors.

7 Q. It is true that the proposals that
8 have been made to Ontario Hydro so far for wind farm
9 development have generally been much larger than 7
10 megawatts; right? One was 100 -- in fact, there have
11 been a couple at 100; haven't there?

12 A. I don't know the exact details,
13 whether there are a couple or one, or whether they have
14 been proposals or just discussions, I don't know the
15 nature of the exact proposals from the wind developers
16 to Ontario Hydro.

17 Q. Isn't it true that in Hydro's
18 discussions with wind farm developers, the developers
19 have been telling you, we can't do small projects, we
20 can only do large ones because it's not economic to do
21 small ones?

22 A. The big developers prefer to do big
23 projects.

24 [11:56 a.m.]

25 There may be smaller developers that are

1 more comfortable with smaller projects, I don't know
2 that, but the big developers certainly find the
3 economies of a large farm to be attractive.

4 DR. CONNELL: If I could just pause for a
5 moment and go back to this issue of employment.

6 The case you cited, Mr. Shepherd, was
7 4,000 machines and a staff of 80?

8 MR. SHEPHERD: Yes.

9 DR. CONNELL: The employer in that case
10 was...?

11 MR. SHEPHERD: Kenetech.

12 DR. CONNELL: Kenetech. Can I infer for
13 purposes of discussion, are they involved in Altamont?

14 MR. SHEPHERD: Altamont and Tehachapi and
15 San Gorgonio, and I think they have some actually in
16 Whiskey Run in Oregon as well.

17 DR. CONNELL: So that is comparable to
18 the 4,200 turbines at Altamont which generate 800
19 megawatts?

20 MR. SHEPHERD: That's about right, yes.

21 DR. CONNELL: Can we assume that these
22 4,000 machines/staff of 80, for the purposes of
23 discussion is approximately 800 megawatts?

24 MR. SHEPHERD: I believe it is actually a
25 little more than 800 megawatts, but it is in that

1 range. Yes, sir.

2 DR. CONNELL: Okay. Now, if we assume --

3 what ACFs is it reasonable to assume for one of these?

4 MR. SHALABY: 20 per cent, 25 per cent.

5 DR. CONNELL: So we are looking at about

6 a terawatthour order of magnitude, one to two

7 terawatthours per year?

8 MR. SHALABY: That is about right, yes.

9 DR. CONNELL: If I could take us back to

10 505, then, a terawatthour, direct employment per

11 terawatthour per year is 542. That is a lot bigger

12 number than the 80.

13 MR. SHEPHERD: Yes.

14 DR. CONNELL: For comparison, I wonder,

15 could we think of a fossil plant that is approximately

16 1,000. Is that you, Mr. Burpee? 1,000 megawatts?

17 MR. BURPEE: I'm sorry, I didn't --

18 MR. SHALABY: Employment for a 1,000

19 megawatt fossil plant.

20 MR. BURPEE: Well, Lakeview which is

21 2,400 is about 600 people. Nanticoke is probably about

22 650 for 4,000 megawatts.

23 So for our standard 500 megawatt unit you

24 are probably looking at, including common services, 120

25 people per pair of units.

1 DR. CONNELL: For two 500 units?

2 MR. BURPEE: For two 500 megawatt units,
3 yes.

4 DR. CONNELL: 120 people?

5 MR. BURPEE: Yes.

6 DR. CONNELL: Perhaps Exhibit 505 was
7 talking about other kinds of employment, then, or
8 perhaps it was using earlier data than the numbers Mr.
9 Shepherd cited for Kenetech.

10 Thank you.

11 MR. SHEPHERD: Q. The numbers you are
12 talking about there are simply operating and
13 maintenance staff, right; they don't include any of the
14 construction, manufacturing or anything like that?
15 Correct?

16 MR. BURPEE: A. No. No.

17 Q. Mr. Shalaby, given your evidence that
18 wind farm developers, the larger developers tend to
19 prefer larger sites, larger-sized developments, why
20 would you model 7 megawatts rather than 70 or 100 or
21 whatever sort of range is more common in the industry
22 today?

23 MR. SHALABY: A. I think we have seen
24 the Canadian wind farms to be in the 7 or 9 or 10
25 megawatts: the Alberta, for example, Pincher Creek

1 developments.

2 Q. Those are demonstration projects,
3 aren't they?

4 A. Yes.

5 Q. Are demonstration projects generally
6 done at the same size as commercial scale projects?

7 A. Well, I think I am coming to the
8 point of you learn to walk before you learn to run,
9 kind of thing. If we are going from a single unit 10
10 kilowatt or 100 kilowatts perhaps an intermediate step
11 to the very large size wind farm could be an
12 intermediate size farm for demonstration projects.

13 Q. When Ontario Hydro modelled the
14 integrated coal gasification combined cycle to see
15 whether it was a cost effective solution in Ontario did
16 it model demonstration project-size developments or did
17 it model a full-scale development?

18 MR. DAWSON: A. It modelled multiple
19 modules of a full-scale development.

20 Q. You didn't do that for wind energy,
21 did you?

22 MR. SHALABY: A. I think one of the
23 benefits wind energy offers is that it is module and
24 the economies of scale may not be as pronounced as for
25 other plants, for example. There may be economies of

1 scale. I don't know whether it invalidates the results
2 for a smaller development or not.

3 Q. Yes, Mr. Dawson. Sorry?

4 MR. DAWSON: A. I was just going to add
5 that the demonstration typically would also be at full
6 scale. Otherwise, it is not a demonstration.

7 Q. So your belief is that demonstration
8 projects typically are full size?

9 A. EPRI, for instance, had a cool water
10 demonstration modelled, a single module that was full
11 scale, yes.

12 Q. I don't follow. Could you expand on
13 that?

14 A. They are saying that if you are going
15 to demonstrate it, if you don't demonstrate it at
16 something that is close to full scale anyway then there
17 is not a lot of value in the demonstration. So
18 demonstrations do tend to be at what you would call
19 commercial scale.

20 Q. Well, Mr. Shalaby, you just answered
21 that question differently and you just said, as I
22 understood it, that demonstration projects tend to be
23 smaller than commercial scale projects.

24 MR. SHALABY: A. Yes.

25 Q. Do you wish to change that?

1 A. For modular developments whether you
2 put twenty 350 kilowatt machines or you put 200 of them
3 you are demonstrating the same piece of technology.

4 Q. But your cost is going to be
5 different. Isn't that what you --

6 A. The cost could be different. And I
7 would like to draw your attention to page 61 of Exhibit
8 344--

9 Q. Yes?

10 A. --to show you that we have done
11 sensitivity work on OM&A, perhaps to capture the size
12 of the farm that you are mentioning. We are showing
13 that if OM&A for option 2 -- I am looking at table
14 2-10-7, which is the top table.

15 Q. Yes?

16 A. The third line in there, which is
17 option 2, "1991 Costs", we are saying that the point
18 estimate for operation, maintenance and administration
19 is 1.4 cents per kilowatthour.

20 We investigated the sensitivity of the
21 cost to a reduction of 20 per cent of that operations,
22 maintenance and cost. So we can detect from that what
23 effect a reduction in OM&A might have on the viability
24 of the wind farm.

25 So I think that range is given here to

1 explore things like perhaps there are economies in a
2 larger installation or perhaps there are improvements
3 in maintenance practice and proven reliability and so
4 on.

5 Q. So your evidence then is that this
6 sensitivity analysis captures the impacts of larger
7 scale developments?

8 A. Maybe not fully, but it shows what a
9 20 per cent reduction in OM&A would do to the viability
10 or to the net present value of cost.

11 Q. Okay.

12 A. Now, whether a large scale
13 development is 20 per cent lower in OM&A or 50 per cent
14 lower in OM&A I don't have that information. I don't
15 know.

16 Q. Could you turn back two pages in the
17 alternate energy review to page 59?

18 A. Before we leave that, I think the 1.4
19 cents per kilowatthour is comparable to the figure that
20 you tabled in Exhibit 493 as a first glance at
21 1-point-something cents per kilowatthour maintenance.

22 Q. I am going to come back to that. We
23 will talk about that in a minute.

24 A. I am just saying that the 1.4 is a
25 number that is adopted for large wind farms, not for

1 small experimental wind farms. So 1.4 is a good
2 number. I am quite comfortable with it.

3 Q. Good. In figure 2.10.4 on page 59 of
4 Exhibit 344 you have listed initial capital costs there
5 for option 2, 10 megawatt -- sorry, the 7 megawatt wind
6 farm of \$1,740 per kilowatt; correct?

7 A. Yes.

8 Q. On what information did you base that
9 estimate?

10 A. On data available from large
11 manufacturers and from the sources that we cite at the
12 end of that chapter, and we have noted in our
13 discussion that now cost estimates have gone down from
14 that.

15 Q. This alternate energy review was done
16 in September of 1991; right?

17 A. That is correct.

18 Q. Now, that \$1,740 per installed
19 kilowatt, that is complete turnkey cost; right? That
20 is everything, all the capital costs; correct?

21 A. Yes.

22 Q. Okay. Is it fair to say that that is
23 roughly \$1,480 a kilowatt in U.S. dollars?

24 A. Sounds good.

25 Q. Okay. Is it also fair to say that

1 economics of a wind farm are very sensitive to initial
2 capital costs?

3 A. Yes.

4 Q. Looks to me in fact like initial
5 capital costs are in a range of 75 per cent of the
6 total net present value of a wind farm?

7 A. That is reasonable, yes.

8 Q. Okay. That is generally true of most
9 renewable energy technologies, isn't it?

10 A. Yes.

11 Q. That they tend to be very capital
12 intensive?

13 A. That is correct.

14 Q. Because you don't have the fuel cost;
15 is that right?

16 A. Yes.

17 Q. Could you turn to Exhibit 493 which
18 you just mentioned and look at page E6-2? I think the
19 reason they number it that way is because it is so long
20 they don't want to have page 1,000 in a report.

21 If you take a look at page E6-2--

22 A. Yes.

23 Q. --would you confirm that the
24 California Energy Commission's analysis of the capital
25 cost of a wind farm per kilowatt is \$781 U.S. which, if

1 you escalate it from '89 dollars to '91 dollars is
2 approximately \$870?

3 A. But if you convert it to Canadian,
4 what would that be?

5 Q. I have already converted the Canadian
6 to U.S., \$1,480; right?

7 A. Oh, you converted the other one, yes.
8 Yes, that is what is written on page E6-2.

9 Q. It is correct, isn't it, that their
10 estimate is a directly comparable number, isn't it?
11 They are saying this is an all-in cost; isn't it?

12 A. It is intended to be that, yes.

13 Q. So by my calculation your assumption
14 is about 70 per cent higher than theirs. Why is that?

15 A. Well, if you go on and read E6-2, the
16 paragraph that you are pointing us to, it says that
17 until recently the cost estimates were over \$1,000,
18 \$1,800 or something in that nature.

19 Q. Sorry, is that what it says?

20 A. Well, recently the estimates have
21 come down considerably.

22 Q. Yes, that is fair.

23 A. And recently, as recently as a phone
24 call, I think the reference to the 781 is a phone call
25 to U.S. Wind Power, reference 6. Am I correct?

1 Q. Yes.

2 A. It says there it is a meeting and a
3 phone conversation with Eric Miller of U.S. Wind Power
4 on July 2nd, September 30th, 1991.

5 So that estimate is based on a quote from
6 U.S. Wind Power, which is the largest manufacturer of
7 wind turbines in the States, to my knowledge; recent
8 information, a quote from a manufacturer. That is the
9 basis of that quote.

10 My information is that this is a recent
11 development in U.S. Wind Power's marketing of these
12 turbines. So that is the reason for the difference. I
13 am coming to your question of why is it that we are
14 adopting 1,400 and they are adopting something like 800
15 or 900. There has been a recent reduction in estimates
16 by that one manufacturer.

17 Q. So when we look at your alternate
18 energy review should we then mentally reduce your
19 capital cost assumption to something more like what the
20 CEC has?

21 A. Depending on the confidence you would
22 place on that lower cost estimate. If you accept it
23 with confidence, then you could do that.

24 Q. No, I am asking for your evidence on
25 that. You said this is more recent information. Is it

1 as reliable as your information?

2 A. Well, I think I would like to -- I
3 heard it from those manufacturers as well but not from
4 other manufacturers. They have confidence in
5 delivering equipment at that price. To my knowledge,
6 they have not done that yet with anybody. They haven't
7 delivered the equipment at that price to any utility or
8 any developer, and I think one would develop more
9 confidence when we see equipment delivered and
10 installed for that price.

11 Q. So for planning purposes is it
12 appropriate to use \$1,480 a kilowatt U.S. or is it
13 appropriate to use \$870 a kilowatt U.S., or somewhere
14 in between?

15 A. We have done sensitivity analysis
16 that would indicate that if costs go down by 10 per
17 cent, the capital cost goes down by 10 per cent, the
18 net present cost would go down by 8 per cent, fairly
19 close to 1 to 1.

20 So, if costs go down by 40 per cent, as
21 in this case, then the net present costs of a wind farm
22 development would go down substantially and the
23 cost/benefit ratio would be favourable, would be close
24 to 1 or even less than 1.

25 Now, whether one would use the lower

1 number for planning purposes or the higher number for
2 planning purposes really depends on the confidence and
3 validity of that lower dollar per kilowatt number that
4 is only a few months old and is only a phone call from
5 a manufacturer.

6 Now, it may well be the case that they
7 are tooling up to develop products at that price, and
8 if that is the case then the costs will come down in
9 Ontario as well.

10 Q. Well, this is not a new product that
11 has never been delivered before, is it. They are up
12 and running in places, aren't they?

13 A. No, my understanding, this product is
14 a variable speed machine that has not been delivered to
15 any utility yet.

16 Q. But they are up and running in
17 Altamont, aren't they? I mean, I saw them, Mr.
18 Shalaby.

19 A. They have two machines on their own
20 site. The manufacturer has two machines on their own
21 site. They are testing them there, yes. But they
22 haven't made a sale of thousands of these to anybody
23 else.

24 Q. It is true, isn't it, that Pacific
25 Gas & Electric has listed a 100 megawatt wind farm

1 using these machines at this price as its deferrable
2 resource, as its proxy plant, in recent public utility
3 commission hearings in California; isn't that correct?

4 A. That is correct.

5 Q. So they obviously have some
6 confidence in them?

7 A. For the purpose they used it at.

8 This is not confidence to invest in it or to put their
9 money on it yet. It is just for the purpose of
10 identifying the deferral resource that they felt it
11 appropriate to put that resource in.

12 MR. SHEPHERD: I would like to file a new
13 interrogatory, which is 7.14.21. Copies have been
14 provided, Mr. Chairman.

15 THE REGISTRAR: 7.14.21 is .33.

16 ---EXHIBIT NO. 475.33: Interrogatory No. 7.14.21.

17 MR. SHEPHERD: Q. Now, Mr. Shalaby, if I
18 am not mistaken, this is a March, 1989 internal report
19 by Ontario Hydro's most experienced wind energy expert;
20 is that correct?

21 MR. SHALABY: A. Yes.

22 Q. And the report is actually on the
23 Fort Severn project; right?

24 A. That is right.

25 [12:15 a.m.]

1 Q. I would like you to turn to page 11,
2 if you would, please. In the sixth paragraph the
3 report talks about the capital cost of the turbine that
4 was put up in Fort Severn. That turbine, by the way,
5 is no longer manufactured anywhere in the world; is it?

6 A. I don't know that. But you may be
7 right. I don't know.

8 Q. In that paragraph the last sentence
9 is, and this is 1989 now: Other wind turbines may now
10 be available in \$600 to \$1,000 per kilowatt range.

11 So, why would your own wind energy expert
12 be using as an example numbers so much lower, in 1989,
13 so much lower than the numbers and you are assuming
14 today?

15 A. I could only tell you that it's the
16 same experts that put together the more recent
17 estimates.

18 The purpose, as I explained to you, for
19 putting together Exhibit 344 is to make sure that all
20 the cost components are accounted for on a consistent
21 basis in the same dollars, in the same rating and so
22 on.

23 Now I don't know exactly what page 11 is
24 referring to, but all I can tell you is it's the same
25 experts that put this together, put the other one

1 together, and on a more consistent and more complete
2 basis.

3 Q. Okay. But you have said, haven't
4 you, that if your capital cost numbers are wrong, if
5 the CEC numbers were correct, then wind power today
6 would be at roughly 1.0 cost/benefit analysis; right?

7 A. At a good wind site in Ontario, yes.
8 Sudbury kind of conditions, yes.

9 Q. So - correct me if I am wrong - that
10 would have been a big effect on your projections for
11 the role of wind power in electricity planning;
12 wouldn't it?

13 A. Yes, it would.

14 Q. Just before I leave that --

15 A. Again, not to be repetitive, but it
16 is (A) that the costs of the equipment installed in
17 Canada is in \$700 to \$800 range and, (B), there is
18 sufficient land that is good wind resource, close to
19 transmission available for development. Get enough of
20 that together and you have good potential, yes.

21 Q. But on the information to date you
22 know there are sites that have appropriate wind
23 regimes; correct?

24 A. Yes, we do.

25 Q. And you know that there are

1 manufacturers prepared to deliver at cost-effective
2 prices, yes?

3 A. I don't know that for a fact. These
4 are discussions that I hear, but until contracts are
5 produced and people are prepared to deliver at specific
6 prices, I guess nobody else will know.

7 Q. Now, of course, for planning purposes
8 your projected prices are more important than your
9 current prices; aren't they?

10 A. That's right.

11 Q. Your projected capital costs for the
12 year 2000 for wind is - this is also on page 59 of
13 Exhibit 344 - your projected price is \$1,490 Canadian
14 in 1991 dollars; right?

15 A. That's right, yes.

16 Q. In the same reference in the
17 California Energy Commission, isn't it correct that
18 they are talking about the current -- the next
19 generation, the new machines coming out now are
20 projected to cost as low as \$600 a kilowatt? Same
21 page, same paragraph.

22 A. Yes. And the reference to that is
23 information presented at the American Wind Energy
24 Association Annual Conference. It doesn't give
25 specifics as to who is giving that information or in

1 what context, and so on. But yes, that's what is
2 written in here.

3 Q. Isn't it correct, Mr. Shalaby, that
4 the consensus of the utilities and government officials
5 and wind energy experts and manufacturers in the United
6 States is that the year 2000 number to plan on is \$600
7 a kilowatt? Isn't that the number that they have all
8 been using for the last six months?

9 A. Consensus is a big word for utilities
10 and regulators and energy departments. I don't think
11 they ever reached any consensus on anything. But if it
12 is a number that people have been using in increasing
13 numbers, I'm not aware of that.

14 Q. You have been in contact with the
15 other people involved in wind energy in North America;
16 haven't you?

17 A. But I can't say that I know what the
18 consensus is. I know that people who are following the
19 wind energy developments and have confidence in
20 technical developments that will take place,
21 manufacturing cost studying will take place, might feel
22 comfortable planning on a number like that. But I
23 wouldn't say it's a consensus. Not to my knowledge.
24 If you know any different, that's something different.

25 Q. It's your evidence, not mine.

1 When you published your figure of \$1,490
2 in capital costs for the year 2000, did you talk to any
3 of the people working in the area in the United States
4 to see whether that was a reasonable projection?

5 A. I think the references indicate the
6 references to that chapter. They start on page 63 and
7 go on on page 64, indicate the extent of contact with
8 various utilities and various research organizations in
9 the United States and in Canada. I think it's a safe
10 bet that we would be in touch with people elsewhere in
11 the energy business, in the wind business.

12 Q. So is the answer to my question yes
13 or no?

14 A. The answer is yes.

15 Yes, we have been in touch with some
16 people, whether they are all the people or not, it's
17 unlikely that it is all the people doing wind work, but
18 a representative sample that we feel would give us
19 confidence in the numbers that we have.

20 Q. Would you confirm that if the number
21 used by the California Energy Commission of \$600 a
22 kilowatt were correct that wind energy in Ontario is
23 cheaper than many of your other options on a planning
24 basis obviously?

25 A. I think I have got to qualify that

1 again with, provided there is land available at costs
2 that are reasonable and close to transmission.

3 It's not such a trivial issue. You are
4 shaking your head as if it's trivial issue. It isn't.

5 Transmission can make or break a wind
6 farm development. Land costs can make or break a wind
7 farm development, and wind speed distribution that is
8 slightly off from good conditions can make or break a
9 wind farm development. So you have to have all these
10 things lined up for that kind of statement to be made.
11 And if they line up, yes, wind energy would be a viable
12 alternative for Ontario.

13 Q. We are not talking about 40 megawatts
14 here, are we? If there is available land and there is
15 available wind at these short of costs that are being
16 used by the California Energy Commission, we could be
17 talking about thousands of megawatts; couldn't we?

18 A. If there is available land with all
19 the provisos, yes.

20 Q. Yes.

21 A. But I think Dr. Effer and myself gave
22 the evidence that perhaps the transmission network can
23 accommodate a 40 megawatt or 30 megawatt wind farm,
24 several thousand megawatts would have significant
25 implications on transmission capability requirements,

1 significant implications on reliability reserve that's
2 required to backup the wind resource that's
3 intermittent, many of those effects are not very well
4 understood either.

5 So I am just saying that the first little
6 bit we can safely say we absorb on our system without
7 very much penalties or disturbance to the existing
8 system. When we let our imagination go to a much
9 larger penetration of wind, we don't know all the
10 answers as to the impact on transmission, on
11 reliability reserves, on the use of other resources and
12 so on. It will have impact on the fossil system,
13 hydraulic system, everything else.

14 Q. It is true that there is almost 2,000
15 megawatts in a California; correct? 1,850 or
16 something?

17 A. It changes every day, but that's
18 about right.

19 Q. And except for transmission
20 limitations in Tehachapi because the lines aren't
21 there, have there been system problems with adding that
22 wind to the system?

23 A. Not to my knowledge. But we have to
24 understand that the California electricity system is
25 larger than Ontario's and that the resources in

1 California are different than the resources in Ontario.
2 There are differences. But up to there, not to my
3 knowledge, there aren't significant problems, no.

4 Q. One other question about capital
5 costs, just take a look at your sensitivities here.
6 Your sensitivities on capital costs are -- this is on
7 page 61 of Exhibit 344. You have done an analysis for
8 1991 cost of plus 21 per cent and minus 20 per cent,
9 and you have done an analysis on the year of 2000 costs
10 of plus 20 per cent and minus 10 per cent. The
11 distribution you are modelling in 1991, that is a
12 symmetrical distribution; correct?

13 A. Yes.

14 Q. The distribution you are modelling in
15 the year 2000 is an asymmetrical distribution with an
16 anticipation of more likely higher costs than lower
17 costs; correct?

18 A. That's right.

19 Q. When you have a developing technology
20 isn't it true that the typical cost distribution in
21 future costs is asymmetrical on the lower side rather
22 than the upper side; isn't that correct?

23 A. I don't think I can accept that for
24 any developing technologies. Many developing
25 technologies, as they develop you find higher cost

1 components coming in or problems that you haven't
2 anticipated.

3 . I don't want to give a yes or generalize
4 that any developing technology goes down in price, that
5 is not necessarily the case.

6 For wind the technology has been coming
7 down in price significantly over the last 10 years, and
8 the judgment of the people that put this report
9 together is that they are projecting aggressive
10 reductions from today's prices to the year 2000 prices,
11 and they felt there is a chance that the price could be
12 lower and there is a chance that the price could be
13 higher. They are more comfortable with an asymmetrical
14 distribution.

15 Q. And why would that be?

16 A. Their feeling that there may be a
17 likelihood, a higher likelihood of the price being
18 higher than lower.

19 But I don't think that is explicitly
20 mentioned here, that this is in fact the distribution
21 that describes their confidence in prices. It's
22 implicit in there that they think there is a smaller
23 chance of being below that price than above that price.

24 Q. Now of course when Hydro models costs
25 for fossil or nuclear, in fact you use a symmetrical

1 distribution, don't you?

2 A. Not for all components, no.

3 Q. Overall isn't your cost analysis that
4 you provided to this Board for nuclear, for example,
5 doesn't it present a symmetrical distribution of
6 capital costs?

7 A. Maybe we will leave something for
8 Panel 9 to talk bout. But my understanding is that the
9 pluses and minuses on various components is not
10 necessarily symmetrical.

11 Q. Is it fair too say, Mr. Shalaby, that
12 when you are looking at costs, capital costs, say, that
13 you look at the costs and the sensitivities of costs
14 differently if you have to actually make a decision
15 whether to do something or not, or whether you are
16 making a planning judgment as to which direction to go
17 in? You look at costs differently?

18 A. Generally there is more rigorous
19 assessment of risks and costs when it's time to commit
20 to a project than it is when it's time to project its
21 potential into the future, yes, quite right.

22 Q. And when you are making a commitment,
23 for example, isn't there an emphasis on, in effect,
24 getting the right number without being as concerned
25 about the symmetry of the distribution?

1 A. Yes.

2 Q. So, for example, your median cost of
3 nuclear and your median cost of wind today showed that
4 wind was higher, but the cost distribution showed that
5 there was much more likelihood that wind would be on
6 the low side than on the high side and vice-versa for
7 nuclear, then from a commitment point of view you would
8 choose nuclear, but from a planning point of view you
9 might choose differently; isn't that correct?

10 A. All I am saying is the criteria used
11 at the time of committing projects is risk assessments
12 and sensitivity studies that are more detailed than
13 what you see here. Scenarios of what happens if this
14 happens or that happens, our performance falls short,
15 our life is longer or shorter.

16 If what you are asking implies that there
17 is no weight given to variations around the mean, I
18 will have to reject that proposal. We do give
19 probabilities around the mean number.

20 But what I accepted earlier is that when
21 you are making the commitment to something you are
22 trying to find its costs as best as you can,
23 recognizing all along you may be wrong one way or the
24 other.

25 Q. Okay. I am not going to go through

1 your other assumptions in detail, but I do want to ask
2 a couple of questions about a couple of things.

3 Can you turn to page 57 of Exhibit 344.

4 If you look at paragraph .2 on the left-hand column, it
5 is 2-10-1.2, I guess, your assumption of the life of a
6 wind development is 25 years; correct?

7 A. That's what it shows there, yes.

8 Q. And if you look at the California
9 Energy Commission at page E6-3, it's correct that they
10 have assumed a 30-year design life; correct?

11 A. They may well have, yes. Yes, they
12 have.

13 I think I indicated in my direct evidence
14 that the practicality of the matter is that wind
15 turbines have parts of them replaced continuously. The
16 blades get replaced, the brakes are replaced, the
17 generator is replaced, and so on. The concept of a
18 definitive life where you don't touch the machine and
19 then throw it away at the end of its life is really
20 oversimplifying what really takes place in the wind
21 farm.

22 Q. That's true of a fossil facility,
23 too, isn't it?

24 A. It is, yes.

25 Q. But you still make an assumption as

1 to how long it's going to last?

2 A. That's correct.

3 Q. And you have just increased your
4 assumption of how long your current stations are going
5 to last; right? Haven't you just told us that you are
6 going to extend the life of the fossil station so they
7 are not longer 40 years, they are 50 or 70 or whatever.

8 A. Yes, for two of the stations, yes.

9 I'm sorry, I heard a decrease and I think
10 you said increase.

11 Q. Isn't it true generally that for
12 technologies such as a wind and solar, perhaps even
13 fuel cells and others, that Hydro's assumptions as to
14 life tend to be shorter than other jurisdictions such
15 as California, whereas for conventional technology such
16 as nuclear and fossil, your assumptions as to life tend
17 to be longer than other jurisdictions; isn't that a
18 correct generalization?

19 A. I don't think it is, no.

20 I think photovoltaics, we are assuming a
21 life that's similar to what is in the California Energy
22 Commission report, so that immediately says that we are
23 not necessarily assuming a shorter life. Other members
24 of the panel gave evidence that some other utilities
25 are assuming lives that are comparable to our fossil

1 generating facilities.

2 Q. I didn't hear that evidence. Who was
3 that, Mr. Meehan?

4 MR. MEEHAN: A. Sorry, was there a
5 question?

6 Q. Mr. Shalaby was saying that there are
7 other utilities that have fossil fuel life assumptions
8 that are as long as Hydro's, as Hydro's new ones.

9 A. I think there might be. I think in
10 your own exhibit here, Exhibit 493, on page E8-1, it
11 talks about electric utility boilers in the first
12 paragraph nearing the end of their nominal design life
13 of 30 to 40 years, should be evaluated as candidates,
14 and it goes on later the page to suggest under what
15 they are calling life extension and life enhancement.
16 I believe in there somewhere I saw a 30-year life
17 extension--

18 Q. On the next page?

19 A. --was what was mentioned.

20 So, I don't think the concept that's
21 being looked at here is very much different from what
22 we are looking at for Lambton and Nanticoke.

23 Q. I am not suggesting that for a
24 moment. What I am asking is -- perhaps I could put it
25 to you this way: Can you think of a circumstance, Mr.

1 Shalaby or Mr. Meehan, in which Hydro's assumption as
2 to the life of any station that it currently has, any
3 conventional station, is shorter than a comparable
4 station with any other utility in the world, first?

5 A. I have limited knowledge on what
6 other utilities in the world are assuming.

7 Q. Mr. Shalaby, this must be something
8 you have looked at for system planning purposes.

9 MR. SHALABY: A. The question again is
10 whether Hydro is...

11 Q. Whether Hydro's assumption of the
12 life, the plant life of any of its existing stations is
13 shorter than the assumption of plant life of any other
14 utility for a similar station anywhere in the world?

15 A. What you are asking is whether we are
16 on one side and everybody is assuming a longer life?
17 Is that what you are saying?

18 Q. No. I am asking, do you have -- for
19 example, your assumption for nuclear stations is 40
20 years, is there any utility that assumes a longer life
21 than that in the world?

22 A. I don't have that knowledge, I don't
23 know.

24 MR. BURPEE: A. For fossil though we do
25 have utilities that assume a longer life. We have only

1 put in the plan to extend two of the Unit 2 stations,
2 which leaves, say, Lakeview at 40 years, and I know
3 that Duke Power, Texas Utilities and even Niagara
4 Mohawk have the same vintage where they are planning
5 them longer than 40 years.

6 Q. And they have changed their plant
7 life assumptions for coal?

8 [12:36 p.m.]

9 A. For coal.

10 Q. To longer periods?

11 A. Yes.

12 Q. Much like your Nanticoke and Lambton
13 assumptions?

14 A. That's correct.

15 Q. Fair enough.

16 MR. SHALABY: A. But coming back to what
17 I presume is the relevant question to the wind as we
18 were discussing--

19 Q. Yes?

20 A. --the experience has been that the
21 equipment is being replaced continuously, blades are
22 being replaced because they have better designed
23 blades. It is almost safe to say that no machine in
24 California today is the original machine that was put
25 on the site. Probably most of them have been upgraded,

1 enhanced or replaced entirely. A lot of the machines
2 didn't last one or two or five years even. Many of
3 them have been taken down in much shorter periods than
4 that.

5 So I think to assume 25 or 30 years is
6 really going on the other end of what actual experience
7 is at this time. We haven't had machines last 30 years
8 in big numbers, and, in fact, the actual experience
9 shows that most of the machines are dismantled and
10 decommissioned well ahead of them for technological
11 development, not for anything else.

12 Q. With the exception of the tax credit
13 scams, is it correct to say that no wind farm has
14 actually ended its life yet?

15 A. The farms haven't, but I am talking
16 about the machines now. Many wind farms take the one
17 machine that was on the good site and put another
18 machine in there, bigger, better, better blades, either
19 the entire machines, or just the blades, or the
20 controls on it, or something like that. There is
21 continuous improvement to the machines as they go
22 along.

23 Q. From your point of view as long as
24 the wind farm is still producing power you don't care,
25 do you?

1 A. That wasn't your question. Your
2 question was the assumption of the life of the
3 equipment of 25 or 30 years, is that appropriate or
4 not?

5 I am contrasting that with the actual
6 experience with the actual equipment. It is not living
7 anywhere near that kind of life. It is being replaced
8 well ahead of that.

9 Q. Your assumption of 25 years is the
10 assumption you use to model a wind farm of 7 megawatts;
11 correct?

12 A. Yes.

13 Q. It is not a turbine life, is it?

14 A. No, it is a turbine life, turbine
15 life that would make maintenance costs and replacement
16 costs.

17 Now, the financial modelling that we do
18 is, you buy piece of equipment, you operate it for this
19 much, you pay for it this much, you fix it up as you go
20 along for this much, and it lives this long. That is
21 the modelling that we have done.

22 Q. So then, you don't actually have an
23 assumption for the wind farm life?

24 A. The wind farm life could be
25 indefinite for all I know. If you keep replacing the

1 wind turbines in there it could be indefinite.

2 Q. Okay. It is true, isn't it, that if
3 you assume a longer life then generally the economics
4 are better?

5 A. That is correct.

6 Q. Because the capital costs are spread
7 over a longer period of time?

8 A. That is correct.

9 Q. The relative size of the capital cost
10 would make that factor even more important, won't it?

11 A. Yes.

12 Q. So in the case of renewable energy,
13 for example, where capital cost is a very large
14 component, like wind, plant life assumptions are
15 relatively more important than in the case of fossil,
16 for example?

17 A. I would expect that, yes.

18 Q. Okay. You have also assumed a
19 capacity factor on the same page 57 of 22 per cent.

20 A. I am trying to see - and I have found
21 it now - that we have done sensitivity on life on page
22 61 of Exhibit 344.

23 We have shown what the benefits would be
24 if life changed from 25 to 30 or to 20 years. If you
25 look at table 2-10-8, the bottom part of that page, the

1 third item under either option 1 or 2 says life in
2 years. The point estimate is 25 years and the range
3 assumed is anywhere between 30 and 20, and it shows
4 that the benefits increase by 8.8 per cent if the
5 machine lives 30 years instead of 25 years.

6 So we have a feel for what the benefit of
7 a longer life would be and a feel of what the reduction
8 in benefit would be if the shorter life comes about.

9 Q. So 8.8 per cent is quite a
10 substantial impact?

11 A. It is. And the minus 11 per cent for
12 20-year life is also substantial.

13 Q. Of course. The capacity factor you
14 have assumed is 22 per cent; correct?

15 A. Yes.

16 Q. On page 57 of Exhibit 344 it says:
17 That's based on Ontario Hydro experience. Perhaps you
18 can elaborate on that?

19 A. It is based on Ontario Hydro
20 experience and wind speed data for Sudbury, Ontario.

21 Q. Yes.

22 A. As I indicated, we operated wind
23 diesel turbines in the Sudbury area.

24 Q. Yes?

25 A. In Kortright area we have

1 measurements over several years of actual wind turbines
2 in different locations, and the judgment we made is
3 that 22 per cent is a good representative number to use
4 for this kind of analysis here.

5 Q. Capacity factor goes up as the
6 quality of the wind regime goes up; correct?

7 A. Yes.

8 Q. And you wouldn't suggest for a minute
9 that your Kortright installation is in a good wind
10 regime, would you?

11 A. In fact, I said it is not.

12 Q. All right. Just making sure of that.
13 And your Sudbury test, you didn't go out
14 and find the best site, did you. You just found a
15 piece of land and put it there; correct?

16 A. The site that we tested at I presume
17 was -- we didn't go out of our way to find a bad site
18 either. It was a good site. There may be better
19 sites, you are quite right.

20 Q. It was a six metres per second site;
21 right?

22 A. To my knowledge, yes.

23 Q. And good sites are typically more
24 like seven metres per second; right?

25 A. Developers would like to see seven or

1 eight, yes.

2 Q. And the difference in power
3 generation is exponential; correct?

4 A. Yes.

5 Q. If you could turn to the CEC report
6 again on page --

7 A. Not to be very boring, but I guess we
8 also did sensitivity on capacity factor.

9 Q. Oh, no. We will get to that.

10 A. Recognizing that it is not a hard
11 number.

12 Q. If you look at page E6-3 of the CEC
13 report there is a heading there. It says, "Capacity
14 factor", and there the CEC says they have assumed a
15 capacity factor of 25 per cent, and interestingly they
16 explain that by saying the machines can do better than
17 that but we think all the best sites are gone, so at
18 the lesser sites we think they can get 25 per cent.

19 A. I see that to be the same phone
20 conversation in reference 6.

21 Q. Fair enough.

22 A. Yes.

23 Q. But it is also based on actual
24 analysis by them of the capacity factors at existing
25 facilities; correct?

1 A. Yes.

2 Q. Okay. So why would your number be 14
3 per cent lower than theirs?

4 A. 14 per cent lower than 25 per cent?

5 Q. Yes. Yours is 22, theirs is 25. It
6 is actually a big difference in terms of energy output,
7 isn't it.

8 A. It is. Based on our experience - we
9 just went through the reasons - our experience tells us
10 that 22 per cent is representative of a decent site in
11 Ontario, and we have done analysis to show what the
12 benefit will be if the capacity factor was in fact 25
13 per cent.

14 Q. Exactly.

15 A. And it shows that the benefit
16 increases by 9.4 per cent. So it supports your point
17 that an increase of capacity factor from 22 to 25 per
18 cent would yield added benefits of about 10 per cent.

19 Q. 10 per cent, actually. Right.

20 A. 10 for option 2; 9.4 for option 1.

21 Q. Finally, I would like to look at
22 annual operating costs, and you made the point earlier
23 that your annual operating costs are in the same range
24 as the estimates of others?

25 A. Yes.

1 Q. But, of course, you don't have one
2 figure. You have two figures; right? You have later
3 capital costs and you have OM&A.

4 Isn't it correct that normally in
5 estimating this sort of ongoing expenditure later
6 capital costs for wind energy are included in OM&A;
7 correct?

8 A. I don't know what "normally" is in
9 the industry, but I can accept that that perhaps is the
10 way they work, yes.

11 Q. Isn't that in fact what the
12 California Energy Commission has done on page E6-3 of
13 their report? They have used a variable cost without
14 any fixed cost component; right?

15 A. Yes.

16 Q. And, in fact, if you compare your
17 number to theirs taking into account the later capital
18 would you confirm that your figure --

19 A. Can we find theirs again? Because I
20 just glanced at it quickly and I can't find it again.

21 Q. E6-3, paragraph 3(a), 1.3 cents a
22 kilowatthour?

23 A. Yes.

24 Q. No fixed cost component.

25 A. It is the same magic phone call

1 again. The variable cost was based on information --

2 Q. Well, they have also talked to
3 another developer who gave a lower figure, right, so
4 they used the higher one? Isn't that what they say
5 there?

6 A. Yes, I see the point, 1.3 American
7 cents per kilowatthour.

8 Q. Now, would you confirm that expressed
9 in the same terms your combination of later capital and
10 OM&A is actually 2.2 cents per kilowatthour Canadian?

11 A. You converted the \$16 per kilowatt
12 per year into cents per kilowatthour?

13 Q. Yes, at your --

14 A. I will accept your arithmetic. I
15 can't do it on the stand.

16 Q. All right.

17 A. What is the comparable number in the
18 U.S.?

19 Q. The comparable number, you would have
20 to escalate the 1.3 cents from '89 to '91 and convert
21 to Canadian.

22 A. Have you done that?

23 Q. No, I did it the other way. I got a
24 difference of 33 per cent.

25 A. Okay.

1 Q. Does that sound about right?

2 A. Again, I am not going to second guess
3 your arithmetic.

4 Q. Well, yes, but we need your evidence,
5 Mr. Shalaby. Would you advise or undertake to advise
6 whether Hydro's assumptions of wind energy OM&A are
7 approximately one third higher than the California
8 Energy Commission's?

9 MR. HOWARD: Well, Mr. Chairman, I won't
10 undertake to do that arithmetic. To begin with,
11 comparing that document 493 with estimates without
12 borrowing evidence is not relevant, in my submission.

13 THE CHAIRMAN: I think if you want to
14 bring evidence of that nature in, Mr. Shepherd, you can
15 do that.

16 MR. SHALABY: The only thing I might add
17 is that operating costs in cents per kilowatthour, it
18 has got two sides to it.

19 The amount of money you spend, that is
20 the cents part, and it is per kilowatthour. If you
21 produce more energy, then the operating and maintenance
22 cost is lower.

23 So on a farm that operates at 30 per cent
24 capacity factor the OM&A per kilowatthour is lower
25 than -- you will have the same crew maintaining the

1 same turbines. If the turbines operate at 20 per cent
2 the maintenance costs will be higher than if they
3 operated it at 30 per cent.

4 MR. SHEPHERD: Q. Okay.

5 MR. SHALABY: A. Again, the OM&A is
6 specific to the quality of the site, and the scale of
7 the development, and everything else.

8 Q. Well, in preparing your report, the
9 Alternate Energy Review, you have given evidence that
10 you went out and talked with other people in the
11 industry, people who knew about these issues; correct?

12 A. We do that continuously, and we
13 gathered our knowledge over the years, and we talked
14 some more and we put our information on paper, yes.

15 Q. Would that have included the
16 California Energy Commission?

17 A. I'm not sure whether specifically
18 that entity was contacted or not. I don't know.

19 Q. Could you take a look again at
20 Interrogatory 7.14.21, which has already been filed?

21 A. Mr. Dawson is bringing to my
22 attention at page E6-3 that the OM&A that you have just
23 presented, the 1.3 cents per kilowatthour, is a
24 variable cost of 1.3, and we were not sure whether when
25 you go down to item B that says "Replacement Cost"...

1 It says it is included in operation and
2 maintenance, but are they talking about a variable
3 component of operations and maintenance and a fixed
4 cost of operations and maintenance, or not?

5 I just raises a question of whether --

6 Q. Mr. Shalaby, don't they say a
7 variable cost of 1.3 cents a kilowatthour was used
8 without any fixed cost component? Don't they answer
9 your question right there?

10 A. But I don't know why there is another
11 paragraph that has replacement costs in it. I am
12 wondering why there is another category called
13 "Replacement Costs" if it was all inclusive at the top.

14 Q. Don't they also say there replacement
15 costs are included in operation and maintenance costs?

16 A. But not in variable operations and
17 maintenance costs. People have different categories of
18 costs. All they told us is variable OM&A is 1.3, and
19 they said there is replacement costs that are part of
20 operations.

21 All I am saying is we are not familiar
22 enough with these documents to accept all of those.

23 Mr. Burpee - and I am glad to see my
24 fellow witness is reading the document here - at page
25 E6-9 is pointing to me that there is a spreadsheet;

1 there is a little box on the upper left-hand corner of
2 E6-9 that shows O&M to be 1.6 cents per kilowatthour in
3 1989 dollars.

4 Q. Yes?

5 A. So again, that begs a question of is
6 it 1.3 or is it 1.3 plus something else to make it 1.6?
7 Why is there a 1.6 in here?

8 All I am saying, I think, is one has to
9 know the basis of the assumptions before one draws a
10 complete comparability conclusion to any two numbers.

11 Q. Okay. Perhaps you can turn to
12 Interrogatory 7.14.21, please, same page 11 that we
13 just looked at earlier. This is again a Hydro report,
14 right; this is not the California Energy Commission?

15 A. Yes.

16 Q. The paragraph that starts out "What
17 is not included...", et cetera, and the third sentence
18 says --

19 THE CHAIRMAN: Sorry, page 11?

20 MR. SHEPHERD: Page 11.

21 THE CHAIRMAN: The paragraph starts...?

22 MR. SHEPHERD: The paragraph is about two
23 thirds of the way down, starts "What is not
24 included..."

25 THE CHAIRMAN: Must be two page 11s. All

1 right. I've got it now. There are two page lls.

2 MR. SHEPHERD: Q. And the third sentence
3 starts:

4 The Fort Severn wind turbine is still
5 very much an experimental unit.

6 Maintenance costs for established wind
7 farms in California average about one
8 cent a kilowatthour.

9 So that was your 1989 information. So obviously there
10 are operating costs as well on top of that, but it does
11 seem to be a big jump from one cent to 2.2 cents;
12 doesn't it?

13 MR. SHALABY: A. Well, it is 1-point --
14 no, it isn't 2.2. We have separated maintenance away
15 from replacement costs to later capital costs. The
16 figure we have is 1.4 cents per kilowatt in 1991.

17 One of the things that I find difficult
18 to find is verifiable reliable data on operating costs
19 for wind farms. There isn't the system that is
20 available, for example, for fossil units or nuclear
21 units where there is a reporting requirement by a
22 utility to report its actual budgets on operations and
23 maintenance that is common in various utility areas.

24 [12:55 p.m.]

25 There isn't, to my knowledge - there may

1 be some but I couldn't find it - a place where data is
2 . collected on a consistent basis, audited for purposes
3 of cost reporting.

4 So all of the maintenance cost is really
5 previous property information. Wind farm developers
6 are very protective of their information because of
7 competitive reasons. That data is not readily
8 available, nor is it readily verifiable. It's all
9 estimates and it's all discussions between experts.
10 But there are motives of competition, there are motives
11 of investment protection, and all kinds of reasons why
12 this data is not openly available in the public domain.

13 So I think any discussion of what exactly
14 is the OM&A cost has got to be taken with the proviso
15 that these data are not verifiable, not audited, not
16 collected on a consistent basis.

17 Q. So, therefore not reliable or less
18 reliable?

19 A. I'm just saying you could hear
20 something from somebody, you could hear something from
21 somebody else, it depends what they include in it. It
22 depends whether it includes replacement costs or not,
23 whether it includes the shell facilities or not.

24 I am just saying there isn't a system
25 that's available for fossil units.

1 There are rigorous reporting definitions
2 for fossil units in the United States and Canada, for
3 example, where you can compare operation and
4 maintenance costs from one utility to another with a
5 little more comparability than you do with wind farm
6 operations. That's all I want to say.

7 Q. What is the appropriate conclusion to
8 draw from that fact in terms of the reliability of the
9 numbers presented in the alternate energy review?

10 A. The conclusion I draw is that the
11 numbers 1.4 or 1.6 or 1.3, or even 1.9, are all
12 representative of operation and maintenance costs. I
13 wouldn't make too much of a 10 or 20 per cent
14 difference because the reporting requirements are not
15 there, the consistency is not assured. And because
16 people protect their information and openly tell you
17 they will not tell you what their information is.
18 These are people in private business, out to make a
19 dollar, and they will not tell their competitors what
20 their costs are. And if you are relying on one
21 telephone conversation by one developer, it's just not
22 a large enough sample to pin the entire discussion on.
23 That's all I am saying.

24 Q. The difference between 1.4 and 1.9,
25 say, that's enough to make on an option like wind

1 energy economic or not in your planning; isn't it?

2 A. Yes, it could be.

3 Q. And certainly that difference would
4 have an influence on whether you included 40 megawatts
5 or 400 megawatts; correct?

6 A. Yes. But I think until you design a
7 wind farm and contract for the maintenance crews and
8 construct a shop and buy the vehicles and decide on the
9 maintenance schedule, all of that, the maintenance
10 practices from one farm to another are quite different
11 as well. Some let their machines rundown and replace
12 them every now and then. Some maintain them quite
13 rigorously on preventive maintenance programs.

14 All I am saying is that subject is far
15 from being an exact science. There is a lot of data
16 that's missing, a lot of consistency that isn't there,
17 a lot of protectionism of the data, that's rampant in
18 that area.

19 So I don't want to make too much of a
20 difference between 1.4 and 1.6 and 1.9, that's all. I
21 know it is sensitive, it could make or break a wind
22 farm operation. But as best as I can determine I
23 couldn't get to the heart of what exactly are the
24 maintenance costs.

25 MR. SHEPHERD: Mr. Chairman, that may be

1 an appropriate time to take a rest.

2 THE CHAIRMAN: All right. We will
3 adjourn until 2:30.

4 THE REGISTRAR: This hearing will adjourn
5 until 2:30.

6 ---Luncheon recess at 1:00 p.m.

7 ---On resuming at 2:30 p.m.

8 THE REGISTRAR: This hearing is now in
9 session. Please be seated.

10 THE CHAIRMAN: Mr. Shepherd?

11 MR. SHEPHERD: Mr. Chairman, I anticipate
12 being finished before the end of the day today, you
13 will be happy to know.

14 Q. We were just finishing off on wind,
15 Mr. Shalaby. I have a couple more questions about it.

16 Perhaps these questions are best
17 addressed to Dr. Effer.

18 You recall, Dr. Effer - maybe you don't
19 and I will ask you - the Pace University Study of
20 Environmental Externalities of various technologies,
21 have you seen that?

22 DR. EFFER: A. Would you repeat the
23 title again? I'm sorry.

24 Q. The Pace University Study of
25 Environmental Externalities.

1 A. I have not read the report in detail,
2 no.

3 Q. Have you seen the summaries of it,
4 the conclusions of it?

5 A. No.

6 Q. Would you agree that the
7 environmental externalities of wind energy are the
8 lowest of any? That is, the negative environmental
9 impacts of wind energy are the lowest of any currently
10 known electricity generation technology?

11 A. You are referring to the operational
12 phase of the technology?

13 Q. All-in.

14 A. I could imagine that they would be
15 amongst the lowest, yes.

16 Q. Now, the only environmental problems
17 that I could find in the transcript relating to wind
18 were land use and aesthetics. Are there others as
19 well?

20 A. If one wants to include in aesthetics
21 appearance, noise. With the construction as they are,
22 they do pose hazards to birds, that's another one.

23 Q. Bird collisions and electrocutions
24 have in some jurisdictions been considered the most
25 important of the environmental impacts; haven't they?

1 A. Yes.

2 Q. Are there any others that you can
3 think of, other environmental impacts?

4 A. Apart from the ones that I mentioned,
5 land use...nothing comes to mind as far as the
6 operational aspects. I can't speak for the front end.
7 Obviously the preparation of the materials that goes
8 into it and transportation of those materials on to the
9 site, construction of the materials on the site, they
10 may pose environmental effects such as noise, dust,
11 community impact.

12 Q. That would certainly be no more than,
13 for example, building a fossil or a nuclear facility?

14 A. That's correct.

15 Q. Now we talked about land use a little
16 while back, and you will agree, won't you, that farming
17 and many other uses happily co-exist with the wind farm
18 developments?

19 A. I believe certain types of farming
20 will, yes.

21 Q. Now, aesthetics, I guess I am
22 thinking of visual aesthetics right now, that was quite
23 a live issue in California for quite a while; wasn't
24 it?

25 A. I believe so, yes.

1 Q. Wasn't that whole exercise because
2 the Mayor of Palm Springs, Sonny Bono, was very
3 publicly opposed to wind farms in the San Gorgonio
4 Pass?

5 A. I have no knowledge of that situation
6 at all.

7 Q. You are not familiar with the
8 background of the debate in California?

9 A. No.

10 Q. Are you familiar with the current
11 position in California whether regarding aesthetics,
12 whether there is an issue there anymore?

13 A. I am not aware personally, no.

14 Q. Mr. Shalaby, what about are you, are
15 you aware of the development of the aesthetics issues
16 in California, what has happened to it?

17 MR. SHALABY: A. I am aware that it was
18 a big issue when farms initially came into operation,
19 and some communities have accepted the wind farms and
20 the concerns are not as big as they used to be, others
21 perhaps it's still an issue. I'm not sure whether it's
22 a non-issue everywhere or not. Some places it is not a
23 big issue.

24 Q. Okay.

25 A. Your own Exhibit 493 indicates that:

1 However, local government planning
2 restrictions and public opposition have
3 delayed or stopped some projects from
4 being built.

5 This is page E6-4. So this is a
6 California document, they are saying that some local
7 opposition has delayed or stopped some projects. So I
8 presume there may be some that haven't gone ahead
9 because of that.

10 Q. I am asking you whether that problem
11 is still the case. If you don't know it's okay, you
12 can just say so.

13 A. I don't know other than reading here
14 that they are still mentioning it so I presume it's
15 still an issue.

16 Q. That is fine.

17 Mr. Shalaby, you have seen wind farms in
18 operation, haven't you?

19 A. Yes, I have.

20 Q. Just in your own judgment, are the
21 aesthetics of a wind farm better, worst, or comparable
22 to, for example, Lakeview or Nanticoke or Pickering?

23 A. Certainly different, that much it's
24 safe to say.

25 I don't find them objectionable.

1 Q. Now, bird collisions --

2 DR. CONNELL: Excuse me, we didn't quite
3 get to the end of that. You found Lakeview
4 objectionable?

5 MR. SHALABY: I don't find Lakeview
6 objectionable either. [Laughter]

7 have a friend on the panel here that's
8 about a foot taller than I am. [Laughter]

9 MR. SHEPHERD: Q. Maybe I could put it
10 to you this way: if you had a chose of having Lakeview
11 next door to your or a wind farm, which would you
12 chose?

13 MR. SHALABY: A. I think that's probably
14 not a fair comparison because Lakeview is bigger than
15 all of the wind farms in California put together.

16 So whether you have a wind farm, the
17 comparable size of Lakeview -- and even all the wind
18 farms in California may not produce the energy that a
19 plant the size of Lakeview is capable of producing.

20 So I think the comparison is difficult to
21 say. I think this is one of the most difficult things
22 in the environmental assessments, is that better than
23 that or not. The land use will be massive.

24 I notice the land use in page E6-8 to be
25 3,300 acres for 100 megawatt farm. I might have been

1 underestimating the land requirements when I was
2 speaking with Mrs. Mackesy. I didn't realize the
3 spacing has that much impact on the land requirements.
4 But that's almost 33 acres per megawatt. That's what
5 is shown in here.

6 Q. In the California report?

7 A. In the California report. So the
8 land requirements are considerable. And to extrapolate
9 that over the 2,200 megawatts or 2,400 megawatts that
10 Lakeview is would be certainly in the tens of thousands
11 of acres.

12 Now, the visual impact of that is very
13 different than a little bunch at a time, or when you
14 see them a few at a time.

15 Q. Okay. The other factor that you have
16 talked about is noise. Dr. Effer, isn't it true that
17 the decibel ratings of a wind farm at the same distance
18 away from the wind farm are roughly equivalent to a
19 high capacity transmission line?

20 DR. EFFER: A. I have not seen that
21 comparison.

22 Q. Okay. Bird collisions as an issue
23 have generally been solved by blade design changes; is
24 that correct?

25 A. Bv?

1 Q. By changes in blade design?

2 A. I don't know that that would solve
3 the problem, but I will agree if you say so.

4 Q. No, it's your evidence though.

5 Are you familiar with the problem of bird
6 collisions in wind energy?

7 A. Yes.

8 Q. Is it correct that the problem
9 results from birds generally not being able to see the
10 blades; correct?

11 A. That may be one interpretation of the
12 reasons why the birds collide with the blades, yes.

13 Q. Okay. And are you familiar with the
14 work that's been done recently to change the markings
15 on the blades so the birds can see them?

16 A. No, I have not seen that work.

17 Q. Okay. Wind farms give off no air
18 emissions?

19 A. Correct.

20 Q. Solid wastes and liquid emissions are
21 negligible?

22 A. That's my direct evidence, yes.

23 Q. There is no radioactivity or
24 dangerous processes or materials?

25 A. That's correct.

1 Q. Let me go on to fuel cells. I won't
2 spend as much time on them as wind.

3 Perhaps could you, Mr. Shalaby, turn up
4 page 85 of the alternate energy review.

5 MR. SHALABY: A. Dragging this the wind
6 discussion, I know I will regret this. You pointed out
7 a lot of assumptions that we made that were perhaps
8 less generous than some of the assumptions made in the
9 California setting, there are some assumptions that we
10 made that were more generous than done in the
11 California setting.

12 Q. I was looking for one. Can you tell
13 us what one was?

14 A. Let's make it sound like you are
15 asking a question and then I will answer.

16 The capacity credit that we gave to wind
17 turbines is 30 per cent.

18 Q. Yes?

19 A. Most of the utilities would give
20 somewhere between 15 and 20 per cent.

21 Q. Okay. Is that because of system
22 differences or is that because of methodology
23 differences?

24 A. Because we wanted to be sure that we
25 are doing the assessment and not erring on

1 shortchanging anything at all.

2 Q. Is that the only assumption you have
3 made that is more generous than California?

4 A. I think most of the assumptions we
5 made are generous in the Ontario context. They are
6 different in California because of resource
7 differences.

8 Q. Because of resource differences?

9 A. Yes, the wind resource differences.
10 But in the Ontario context they are quite generous,
11 things to do with capacity factor, for example, that
12 kind of thing.

13 Q. But isn't your evidence that you
14 haven't done the work yet to know what the wind
15 resource is? Isn't that your evidence?

16 A. The wind resource that we know of,
17 yes. The wind resource that we know of is less
18 favourable than the wind resource that we know of in
19 California.

20 Anyway, let's move to fuel cells. I knew
21 that I would regret opening that. [Laughter]

22 Q. Page 85 of the alternate energy
23 review has a figure at the bottom which is assumptions
24 with respect to annual cell performance, Figure 3-10-1.
25 All I want to do here is clear up a few things before I

1 get into the details so that I don't waste time.

2 Am I right that the capacity factor that
3 you have assumed there for fuel cell performance,
4 that's not the availability factor; is it? You are not
5 assuming that you are going to run fuel cells full out
6 whenever they are available; are you?

7 A. I don't think we went to that level
8 of distinction between availability and unavailability,
9 and parameters to do with reliability. I think the
10 assumption was made that you would run them at 80 per
11 cent and that will be close to what they could run at,
12 given maintenance requirements and availability
13 problems. So I am not sure whether we went to that
14 distinction.

15 Q. So the basis of your assumption then
16 was that you would run them all of the time they were
17 available or not?

18 A. Run them 80 per cent of the time.

19 Q. That wasn't what I was asking.

20 A. I don't know whether there is more
21 time that they are unavailable and we chose to not run
22 them in the simulation or not.

23 Q. Of course that would affect the
24 economics, would it not?

25 A. It would.

1 Q. Did you do any research to see what
2 sort of assumptions for capacity factors were used
3 elsewhere?

4 A. Yes, I think the authors of this
5 section have done that.

6 Q. Okay.

7 A. Some are lower than 80 per cent and
8 some are higher than 80 per cent.

9 Q. On the next page, page 86, you have,
10 in figure 3-10-3, cost estimates for 10 megawatt fuel
11 cell options, you have a line called OM&A dollars per
12 kilowatt per year.

13 I take it that if we just multiplied that
14 by size of the hypothetical station, divide it by the
15 energy production, we will get the equivalent OM&A per
16 kilowatthour; right?

17 [2:50 p.m.]

18 A. Yes.

19 Q. Okay. And when I do that using your
20 number I get 0.9 cents per kilowatthour.

21 A. That can be found at table 3-10-4.

22 Q. 3-10-4? Oh, good.

23 A. Second line under the "Year 2000
24 Cost".

25 Q. No, no, no. That can't be. That is

1 the 200 kilowatt option, Mr. Shalaby. I'm sorry. I am
2 talking about the 10 megawatt option in 3-10-3.

3 A. That shows it as 1.1 cents per
4 kilowatthour.

5 Q. That is my question. Why are they
6 different?

7 A. I haven't done the .9, so I don't
8 know why they are different.

9 Q. Sorry?

10 A. I know about the 1.1. You are saying
11 that if you -- what number did you use to get to your
12 .9?

13 Q. If you just take \$63 a kilowatt and
14 multiply it by 10,000. You divide it by 8,760 and
15 multiply by .8 you get 0.9.

16 I just don't understand why that and that
17 aren't the same.

18 Perhaps we can come back to that in a
19 minute because I think if I ask the next series of
20 questions you may be assisted in that answer.

21 A. I am wondering whether the later
22 capital is part of the OM&A in this case or not. I
23 don't know.

24 Q. Okay. I wonder if I could ask you,
25 then, about the fuel amount in figure 3-10-3, 2.24

1 cents a kilowatthour.

2 A. Yes?

3 Q. I am reading now in the year 2000
4 costs, I just picked one, year 2000 PAFC. If you look
5 at 3-10-5, which is the LUECs that come out of your
6 assumptions, fuel is 4.5. It's twice as much. Now, do
7 you know why that is?

8 A. The LUECs are for an in-service in
9 the year 2002.

10 Q. Yes?

11 A. The cost estimates I presume are
12 dollars of 1989, but I will have to confirm that. If
13 you could give me some time I could do that.

14 Q. So are these cost estimates in
15 3-10-5, are they dollars of the year as opposed to
16 dollars of today?

17 A. I will go to the Introduction because
18 that is where the costing assumptions are in the part
19 on background, I think the economic assessment
20 methodology. Pages 4 and 5, I think, have a discussion
21 on that.

22 Q. All right. Because I was under the
23 impression that all of the costs in this report were
24 1991 dollars. If that is not the case, then all my
25 questions are wrong.

1 A. I can't readily explain the
2 difference in those off-the-cuff like that. I will
3 need some time to find out the difference.

4 Q. Well, could you undertake to provide
5 us with why the LUEC fuel component is twice as much as
6 the fuel per kilowatthour in the cost estimate, please?

7 A. Yes.

8 THE CHAIRMAN: Could we have a 478 number
9 for that?

10 THE REGISTRAR: That will be 478.25.

11 ---UNDERTAKING NO. 478.25: Ontario Hydro undertakes to
12 supply reason why the LUEC fuel
13 component is twice as much as the
14 fuel per kilowatthour in the cost
estimate, and the difference between
the OM&A in the aforementioned two
places.

15 MR. SHEPHERD: Q. I wonder if you could
16 include in that also the difference between the OM&A in
17 the two places. Would you do that as well?

18 MR. SHALABY: A. Yes.

19 Q. Thank you. Now, I am just looking at
20 page 87, that chart of fuel costs, the chart that has
21 the fuel costs on it. Those are cents per
22 kilowatthour; right?

23 A. Yes.

24 Q. Now, fuel cells are actually more
25 efficient typically than combined-cycle facilities,

1 aren't they?

2 A. I don't know about typically. Some
3 of them are higher efficiency, some are them are lower
4 efficiency. I think we gave evidence that the
5 efficiency is somewhere between 36 per cent and 54 per
6 cent.

7 Q. Yes.

8 A. Combined cycle is higher than 36, but
9 perhaps lower than 54.

10 Q. It is in the mid-40s, isn't it,
11 combined cycle?

12 A. Yes.

13 Q. So if you took a fuel cost let's say
14 of molten carbonate in the year 2000 which is 3.4 cents
15 a kilowatthour, now you are assuming a thermal
16 efficiency there of 54-1/2 per cent. So presumably per
17 kilowatthour the molten carbonate fuel cell uses less
18 natural gas, less fuel than a combined-cycle facility;
19 correct?

20 A. Yes.

21 Q. So is 3.4 cents a kilowatthour the
22 sort of fuel component of the LUEC you see for combined
23 cycle?

24 A. I think I have given the undertaking
25 to explain the... Is that a different question than

1 that?

2 Q. Different question.

3 A. Hmm?

4 Q. Different question.

5 A. I will have to defer it to Mr.

6 Meehan, then.

7 Q. Who is the fuels person on the panel?

8 MR. SMITH: A. I am, but it depends how
9 it was put together.

10 Q. Mr. Smith, typically what sort of
11 fuel component of the LUEC for a combined-cycle plant
12 would you expect?

13 A. I think Mr. Meehan will answer that
14 question.

15 MR. MEEHAN: A. Mr. Meehan is going to
16 have to ask what the question was because -- I guess I
17 am supposed to be the LUEC expert here, but you are
18 asking what is the fuel component to the LUEC?

19 Q. For a combined-cycle facility.

20 A. For a combined-cycle facility? I am
21 not sure we would have it at 80 per cent capacity
22 factor, and it would be very important it be done on
23 the same capacity factor as the alternative you are
24 wanting to compare it with.

25 Q. Now, why would that be?

1 A. Well, because it is a LUEC, and it is
2 essential that if you are talking about a LUEC and
3 comparing among alternatives the one thing that you
4 must have the same is the capacity factor.

5 Q. That is true of fixed costs and
6 capital costs, but surely that is not true of costs
7 that vary directly with energy production, is it?

8 A. You may be right about that.

9 MR. SMITH: A. Price of fuel will vary
10 with capacity factor, depending on the fuel. I
11 testified to that myself extensively in my direct
12 evidence and other cross that we had particularly for
13 natural gas, the degree to which price varies depending
14 on the capacity factor at which you use the
15 transportation system.

16 So it is very dependent on capacity
17 factor for natural gas.

18 MR. MEEHAN: A. Taking into account Mr.
19 Smith's remark, we have 2.53 as the fuel component of
20 LUEC for a combined cycle that is built in 2002, and so
21 if the fuel cell we are talking about was built in
22 about 2002 then that would be a comparable.

23 Q. And that, of course, is at a lower
24 capacity factor; right?

25 A. That is at 40 per cent capacity

1 factor, and if you were to take into account Mr.
2 Smith's remark -- I believe somewhere I have that
3 figure, that 80 per cent capacity factor, which would
4 have used the lower fueling price that might be
5 available for that higher --

6 Q. I just find that interesting. You
7 are talking about -- let's say 2.53 is right, that it
8 is not actually lower because of the higher capacity
9 factor. Let's just take 2.53 for now. That is at 45
10 per cent efficiency or so. Here we have something at
11 55 per cent efficiency that is 3.4. Now, why would
12 that be? Same fuel; right?

13 A. Well, I don't know, but I would think
14 that there are answers to this, but it is a bit
15 difficult for us to do it on the spot here.

16 Q. Well, I wonder if you could then
17 undertake to advise us why the fuel costs for your
18 combined-cycle assumptions are lower than your
19 assumptions for fuel costs for fuel cells.

20 THE CHAIRMAN: That had better have a
21 separate 478 number.

22 THE REGISTRAR: 478.26.

23 ---UNDERTAKING NO. 478.26: Ontario Hydro undertakes to
24 advise why the fuel costs for your
25 combined cycle assumptions are lower
than your assumptions for fuel costs
for fuel cells.

1

2 MR. SHEPHERD: Q. Now, Mr. Shalaby,
3 these sorts of things we are talking about, in the case
4 at least of the molten carbonate fuel cells, we are
5 talking about a very significant difference in
6 economics, aren't we? If there is a cent a
7 kilowatthour out, then we are talking about
8 technologies that may well be economic; correct?

9 MR. SHALABY: A. Yes. The projection
10 for natural gas prices that Mr. Smith gave in his
11 overhead S7 shows roughly a doubling of natural gas
12 prices over the next ten years or so, and I think that
13 may be at the root of the question that you asked: Why
14 is it that in 1991 fuel cost is 2-1/4 cents and they
15 become 4-1/2 cents in the year 2002.

16 Q. So 3-10-3 is cost today without
17 escalators?

18 A. Yes.

19 Q. And then the LUEC includes the
20 escalators and discounts back?

21 A. Yes, for a common in-service date of
22 2002, as indicated in chapter 1 of the report. To make
23 them comparable to the LUECs for the thermal options
24 they go for a 2002 in-service date. The real price of
25 gas escalates significantly between now and then,

1 according to the forecast that was used.

2 Q. I wondered about that, and just --

3 A. I think the OM&A perhaps could be --
4 the difference again could be subject to escalation.

5 Does that satisfy the undertaking?

6 Q. No.

7 A. It doesn't.

8 Q. Unless you are sure that is the
9 answer. If that is the answer, then that is fine.

10 A. Can we make it that if there is any
11 different answer we will supply the undertaking?

12 Q. Fair enough. Now, to get from 2.24
13 to 4.35 on that explanation, as I understand it, you
14 need to have natural gas prices increasing by five per
15 cent, or, actually, it is 4.4 per cent real every year
16 for 30 years compounded annually. Is that what your
17 projections are?

18 A. My projections are in overhead S7,
19 and it shows the projections all the way to the year
20 2015. I don't know what the compounded rate of growth
21 would be, but they go from something like between \$2
22 and \$3 for a million btu all the way to between \$6 and
23 \$8 per million btu. So there is a fourfold increase,
24 or a three to fourfold increase over the planning
25 period.

1 Q. Now, if it is correct that the costs
2 of natural gas over 30 years has a LUEC result of 4-1/2
3 cents a kilowatthour, then isn't the result of that -
4 and I don't think this is for you, Mr. Shalaby; I think
5 this is perhaps for Mr. Meehan - that natural gas
6 fueled options are simply not sensible for Ontario
7 Hydro, that you can't produce electricity economically
8 if you are paying 4-1/2 cents a kilowatthour for your
9 natural gas? Is that right?

10 A. I think Mr. Smith spoke about the
11 uncertainty in natural gas prices, and the very next
12 slide - overhead 7B it is marked in my package - shows
13 how there are different views of what natural gas
14 prices are going to be.

15 Q. Understood. But --

16 A. They could be going high, they could
17 remain flat. There are various forecasts. I am just
18 saying the forecast we used in producing the September,
19 '91 product, the 344 was the one that showed natural
20 gas prices increasing.

21 Q. I appreciate that, but I think the
22 question still stands for Mr. Meehan: Isn't it correct
23 that at 4-1/2 cents a kilowatthour for natural gas
24 there is no natural gas on your system; right? It is
25 too expensive?

1 MR. MEEHAN: A. First of all, we don't
2 have natural gas on our system in a base load operating
3 mode. It is there as a peaking resource.

4 For our option 6, which is a gas-fired,
5 combined-cycle unit at 40 per cent capacity factor, the
6 total LUEC is 7.3 and the fueling LUEC that I quoted
7 earlier is 2.53.

8 What you are talking about is adding
9 another 2 cents to 7.3, making it 9.3, and certainly if
10 that were at 40 per cent - but I am still concerned we
11 are mixing up capacity factors quite badly here -
12 adding 2 cents to that, it would not compete with
13 coal-fired generation, and, in fact, it doesn't compete
14 with coal-fired generation at 7.3 in any event.

15 Q. You have an undertaking where you are
16 going to take those fuel costs and sort of compare them
17 and give us an answer?

18 A. We will get to the bottom of it.

19 Q. Yes. Thanks.

20 THE CHAIRMAN: I am a little bit
21 confused. I thought Mr. Shalaby had answered those
22 undertakings.

23 MR. SHEPHERD: The first undertaking, Mr.
24 Chairman, he had, but the second undertaking I don't
25 think Mr. Meehan has given an answer yet.

1 THE CHAIRMAN: All right. Is that right,
2 Mr. Shalaby?

3 MR. SHALABY: The answer for the
4 undertaking that I have given, frankly, I wasn't
5 totally paying attention to the undertaking Mr. Meehan
6 has given, and I don't know whether my answer covered
7 that or not.

8 MR. MEEHAN: And I believe I have an
9 undertaking.

10 MR. SHEPHERD: Q. Let me just clear up
11 one other thing here.

12 On page 89, the sensitivity chart, under
13 "molten Carbonate Fuel Cells, Thermal Efficiency", I
14 assume that the range there -- those are typos,
15 correct, the range of efficiency that you have used for
16 your sensitivity?

17 MR. SHALABY: A. They appear to be, yes.

18 Q. The correct numbers, if I understand
19 the methodology in this, should be lower range of 55.5
20 and upper range of 53.5?

21 A. They have typically gone one
22 percentage point on either side, you are quite right.

23 Q. Now, the last question I want to ask
24 about economics is capital cost.

25 Ontario Hydro's estimate is that

1 phosphoric acid fuel cells will be commercial in 1996
2 and molten carbonate will be commercial in 1997; is
3 that correct?

4 A. Where do you see that?

5 Q. Page 84. There is a chart there.

6 You called it "mature", which I assume means
7 "commercial".

8 A. Molten carbonate by 1997?

9 Q. Yes.

10 A. Phosphoric acid by 1996.

11 Q. Yes.

12 A. Yes.

13 [3:12 p.m.]

14 Q. So by the year 2000 you expect both
15 types of fuel cells to be mature and commercially
16 available; correct?

17 A. Yes.

18 Q. Now, on page 86 you have an
19 assumption of capital costs for PAFC fuel cells of
20 \$1,603 per installed kilowatt?

21 A. Yes, for the 10 megawatt size.

22 Q. Yes.

23 A. Yes.

24 Q. Is that an estimate from some
25 external source or is that prepared internally by

1 Hydro?

2 A. I think in a large measure relied
3 upon from external sources.

4 Q. Can you tell us what those sources
5 were?

6 A. I first go to the references to that
7 chapter. Pages 95 and 96 have a large number of
8 references. I cannot pinpoint exactly which reference
9 brings that particular number.

10 Q. Now, if you just take a look quickly
11 at the California report, this is Exhibit 493, at page
12 E14-2. Sorry, E14-12. My apologies.

13 E14-12 has a chart of their anticipated
14 PAFC capital costs. You will see that in the year 2000
15 they are looking at \$990, and if you escalate that to
16 1991 dollars and you convert it to Canadian, will you
17 accept subject to check that that's about \$1,284
18 Canadian?

19 A. Yes.

20 Q. And that's about 25 per cent
21 different from yours; right?

22 A. That sounds reasonable, yes.

23 Q. And if you look at your sensitivity
24 analysis for costs, this is on page 88 of the alternate
25 energy review, this is option 2, PAFC, you haven't even

1 modelled capital costs 25 per cent lower than your
2 projection; have you?

3 A. We modelled only 10 per cent lower.

4 Q. Okay. The same thing is true of
5 molten carbonate; isn't it? If you look at page 86 of
6 your report, your year 2000 projection is \$2,003 a
7 kilowatt?

8 A. Yes.

9 Q. If you look at page E14-6 of the
10 California report, you will see there capital costs for
11 the simplified design. The simplified design is the
12 one that you are looking at in your report; right?

13 A. I don't know what they mean by
14 simplified design.

15 Q. I am trying to find the reference.
16 They are two different designs for molten carbonate
17 fuel cells; aren't there?

18 A. There could be even more than that.
19 I don't know what is meant by integrated design versus
20 simplified design. I just don't know.

21 Q. Okay. Let me come back to your cost
22 component sensitivities. This is on page 88 of the
23 alternate energy review.

24 A. Yes.

25 Q. And for both phosphoric acid and

1 molten carbonate you have used a strongly asymmetrical
2 capital cost sensitivity; correct?

3 A. Yes.

4 Q. And why is that?

5 A. Because of the expert opinion and the
6 people preparing this report, they felt there is a
7 higher likelihood of the costs exceeding the point
8 estimate than coming to below the point estimate.

9 Q. So when we look at your LUEC range on
10 page 91, or indeed in - where is it - figure 3-10-11,
11 you have a LUEC range for each of the options that
12 shows that the upper estimate is sort of very
13 expensive, right? At least 10 cents a kilowatthour is
14 expensive power; right?

15 A. Yes.

16 Q. But we have to recognize that in that
17 sensitivity analysis you have included highly
18 asymmetrical capital costs; haven't you?

19 A. Yes. Now the dominant component in
20 all of this is the fuel cost really, not the capital or
21 the operating cost. At least 50 per cent of the cost,
22 sometimes more, is the fuel costs.

23 But I acknowledge what you are saying
24 that we have included in the sensitivity asymmetrical
25 distribution of capital cost.

1 Q. If you just look at page 88 in that
2 chart, Cost Component Sensitivities, and look at molten
3 carbonate, option 4, the 40 per cent increase in
4 capital costs that you have assumed in your
5 sensitivity, that is approximately a 22 per cent
6 increase in LUEC; isn't it?

7 A. Yes.

8 Q. Okay. So it's about half your LUEC
9 increase on page 90; isn't it?

10 A. Yes.

11 Q. Can you tell us who the American
12 Public Power Association is?

13 A. I think it is an association of
14 municipal utilities, the equivalent of municipal
15 utilities. They are called cooperatives I think in the
16 U.S., or municipal distributing utilities, that's my
17 understanding.

18 Q. It's something similar to the MEA;
19 isn't it?

20 A. To the extent simplifications can be
21 allowed, yes.

22 The MEA must think they are totally
23 unique, but it's something like that, yes.

24 Q. Can you tell us what the APPA
25 sponsored fuel cell commercialization group is?

1 A. I think we have references made to
2 that APPA on page 95.. It's a group interested in --
3 for example, the third reference at page 95 is a report
4 on APPA's notice of market opportunity, Niagara Mohawk
5 for fuel cells initiatives. So the American Public
6 Power Association and the Electric Power Research
7 Institute are interested in commercializing fuel cells,
8 or seeing some manufacturing an demonstration
9 capabilities shown over the next seven years.

10 Q. It's specifically targeted to molten
11 carbonate; isn't it?

12 A. I don't know whether that's the
13 technology they are focusing on or not. You could be
14 right, I don't know.

15 Q. You are not very familiar with what
16 they are doing?

17 A. Not exactly what technology they are
18 sponsoring. I was at one time but I can't figure it
19 out now.

20 Q. You were at one time?

21 A. If you go to page 92...

22 Q. Yes?

23 A. On the left-hand column .8, it says
24 the American Power Association has taken an active
25 interest and role in promoting the development of fuel

1 cell technology.

2 Q. There is actually a full explanation
3 of it on E14-5 and E14-6 of the CEC's report.

4 A. Okay.

5 Q. Now, my question to you is: Why
6 would a commercialization initiative on the part of
7 utilities be necessary for a technology such as this?
8 Why wouldn't they just wait until the things were
9 manufactured and then stand in line and buy them?

10 A. Is your question, why are the
11 utilities interested in this?

12 Q. Why would they have a
13 commercialization initiative as opposed to letting the
14 manufacturers do it?

15 A. To get to understand the technology
16 and to know what it is that they will buying and
17 planning for.

18 Q. So this is are R&D?

19 A. They are also offering a test bed for
20 these utilities to operate under real life utility
21 conditions.

22 Those are sort of the general reasons why
23 utilities get into commercialization and demonstration
24 activities.

25 Q. Is that the reason why the APPA is

1 promoting fuel cells?

2 A. They must be part of the reasons.

3 I don't know what their full reasons are.

4 Q. You are not familiar enough to know?

5 A. No.

6 Q. In your experience in reviewing new
7 technologies, particularly new energy production
8 technologies, is it fair to say that there is often a
9 market imperfection when you move from a proven
10 non-commercial technology to a commercially available
11 technology; that is, the market has barriers to
12 commercialization?

13 A. Of new unproven technologies?

14 Q. Of proven technology which is not yet
15 commercialized?

16 A. If you mean by that lack of
17 familiarity, lack of track record to give confidence to
18 the people buying the technology that it will work
19 reliably, and so on, yes that is a market barrier.

20 Q. In fact, what Hydro did a long time
21 ago in supporting CANDU technology was overcoming such
22 a market barrier; wasn't it? A new technology that
23 worked but nobody would buy it?

24 A. What part of that is the question?

25 Q. Isn't what you did with CANDU the

1 sort of initiative where you overcome market
2 imperfections, market barriers to commercialization of
3 a new technology?

4 A. Yes, together with other Canadian
5 utilities, but, yes, Hydro did it.

6 Q. Yes. Mr. Passmore reminds me that
7 CANDU is not yet a commercial technology. That's not a
8 question.

9 Ontario Hydro has taken no steps similar
10 to what the APPA is doing, or indeed what you did with
11 CANDU, to try and help commercialize any fuel cell
12 technology, has it?

13 A. I think we described the activities
14 that we were involved with in terms of fuel cells in
15 the report.

16 Q. But it's a simple yes/no question.
17 Either you have got --

18 A. It isn't a simple yes/no situation.

19 We are involved in monitoring fuel cell
20 activities. We have a fuel cell at our research lab
21 that we are modifying and working with and
22 understanding. We belong to some of these consortiums
23 that are looking at commercializing and developing fuel
24 cells.

25 As I mentioned in my direct testimony, it

1 is no longer a single utility developing a technology;
2 it is always a group of utilities pooling their
3 resources and information and expertise to develop a
4 particular technology, and we are part that group.

5 Q. Of which group?

6 A. Part of the group of utilities taking
7 interest in commercializing fuel cell technologies. I
8 am not sure whether we are part of the APPA now, I
9 don't know that. But that is the nature of
10 participation in the development of technology.

11 Q. The raw materials for molten
12 carbonate fuel cells are readily available in Ontario;
13 aren't they?

14 A. Yes.

15 Q. And the manufacturing techniques
16 required for commercial production for those are for
17 the most part similar to techniques found in a lot of
18 operations in Ontario; isn't that correct?

19 A. I don't know that for a fact, but
20 I know that Ontario has a wide range of skills and
21 sophistication in manufacturing.

22 Q. What I am getting at is, there is no
23 reason why the fuel cells couldn't be manufactured in
24 Ontario, is there?

25 A. I suspect not, with enough lead time.

1 Q. Okay. And Hydro I think has said in
2 the alternate energy review that fuel cells represent a
3 substantial future market; isn't that correct?

4 A. Yes.

5 Q. Wouldn't it be fair to say that if
6 Ontario Hydro promoted fuel cell commercialization in
7 Ontario, that there is the potential for significant
8 economic activity in Ontario?

9 A. Probably, yes.

10 Q. In fact, in some respects, that's
11 what happened with CANDU; isn't it?

12 MR. SMITH: A. I would like to dispute
13 that position that you have taken on CANDU. The
14 commercialization of CANDU, what I would call,
15 notwithstanding your advisor's opinion, occurred with
16 the development of the Pickering plant, Pickering "A",
17 and Ontario Hydro in fact entered into an agreement
18 with the Ontario government and Atomic Energy of Canada
19 Limited to finance that project.

20 I forgot the exact statistics, but I
21 believe the government funded and AECL funded 60 per
22 cent or two-thirds of the cost of that plant, Hydro's
23 share being related to the capital cost of then
24 conventional technology of a coal plant. They entered
25 an agreement to share in the risks and costs of doing

1 that technology.

2 So I believe the big support for
3 development of that technology was in fact not from
4 Ontario Hydro but from the Government of Ontario and
5 Canada, and perhaps that might be the way fuel cell
6 technology should be developed.

7 Q. From what source are the largest
8 annual contributions to AECL presently? Isn't it true
9 that Ontario Hydro contributes more than anybody else?

10 A. I don't know. Panel 9 can answer
11 that question.

12 I am talking about when this was
13 developed which was 1965, which is nearly 30 years ago,
14 was the arrangement to build Pickering. And certainly
15 there have been many changes in that arrangement and
16 many changes in the funding of nuclear development
17 since then.

18 Q. The result of the initiative in
19 CANDU, I didn't mean to get into nuclear, it was just
20 by comparison, the result of the initiative in CANDU
21 was jobs and manufacturing activity, et cetera, in
22 Ontario; correct?

23 A. I think in Ontario and in Canada,
24 yes.

25 Q. Ontario Hydro has taken no steps to

1 initiate any similar programs or directions for any
2 renewable technology or fuel cells or anything else;
3 has it?

4 MR. SHALABY: A. That's what I am
5 saying, it isn't black and white, you haven't taken any
6 steps or you have taken a giant leap. We have taken
7 small steps.

The report, for example, on page 79
describes the Ontario Hydro experience and the Ontario Hydro initiatives. It says Hydro established a fuel cell task force group; Ontario Hydro has provided funding to Westinghouse to perform a concept design study of a solid oxide fuel cell plant for use in Ontario; it says Ontario Hydro has joined two inter-utility groups to gain a window on the development of molten carbonate fuel cell technology; it says Hydro is testing and obtained a 40 kilowatt phosphoric acid fuel cell.

19 So I wouldn't characterize that as
20 Ontario Hydro has not done anything at all. Those are
21 steps that are taken to become familiar with the
22 technology and to become aware of the development
23 issues and to give a signal to the corporation when
24 these technologies are mature and ready to go, we can
25 take advantage of it.

1 Q. That's quite different from building
2 a 2,000 megawatt nuclear facility?

3 A. It is quite different, yes.

4 MR. SHEPHERD: Mr. Chairman, that might
5 be an appropriate time to break as I am going on to a
6 new subject.

7 THE CHAIRMAN: Are you still on track?

8 MR. SHEPHERD: Yes, I am.

9 MR. SHALABY: Before we leave that, I
10 think we have got to say that the first CANDU
11 experience was not a 2,000 megawatt. The first steps
12 were Chalk River, several megawatts, 22 megawatts at
13 Chalk River facility, and so on. So you don't step
14 from zero to 2,000 in CANDU, that was not an accurate
15 characterization.

16 MR. SHEPHERD: Q. Right now you are at
17 40 kilowatts in the fuel cells; right?

18 MR. SHALABY: A. That's right.

19 THE CHAIRMAN: We will take a 15-minute
20 break.

21 THE REGISTRAR: The hearing will recess
22 for 15 minutes.

23 ---Recess at 3:30 p.m.

24 ---On resuming at 3:46 p.m.

25 THE REGISTRAR: Please come to order.

1 This hearing is again in session. Please be seated.

2 MR. SHEPHERD: Q. Dr. Effer, perhaps I
3 could ask you some questions about the environmental
4 impacts of fuel cells.

5 I went to the alternate energy review and
6 I didn't find much in the way of details on air
7 emissions associated with fuel cells. Perhaps just to
8 get a sense of it, could you compare the, let's say,
9 sulphur dioxide produced by scrubbed coal as opposed to
10 fuel cells?

11 DR. EFFER: A. On the assumption that we
12 are dealing with natural gas as fuel, it is very, very
13 much reduced, causes a very small quantity. The
14 sulphur will be scrubbed out of the natural gas and
15 taken up as a solid material. So the air emissions of
16 sulphur will be very, very small.

17 Q. Of course, that is because you can't
18 have sulphur in the reformed fuel when you put it into
19 the fuel cell, can you?

20 A. That is right.

21 Q. And that is comparing it to scrubbed
22 coal where you have already tried to scrub the sulphur
23 out of the coal; there is still some sulphur left?

24 A. Yes, depending on the efficiency of
25 the process. Yes.

1 Q. Similarly, with nitrous oxide --

2 A. Nitrogen oxide.

3 Q. Nitrogen oxides, NOx. Can you
4 compare the two again, fuel cells and scrubbed coal?

5 A. Very, very low levels in fuel cell
6 emissions compared with coal, and possibly lower with
7 selective catalytic reductions as well. Compared with
8 that it is still very low.

9 Q. That is, fuel cells are still very
10 low as compared to coal?

11 A. On the assumption that selective
12 catalytic reduction would be around 80 per cent, the
13 nitrogen oxide emissions probably would be comparable.

14 Q. For...?

15 A. That is, weight per energy produced
16 on an emission rate basis.

17 Q. Okay. What about carbon dioxide? Is
18 there a substantial difference between carbon dioxide
19 produced by coal generation and fuel cells?

20 A. Just to go back to nitrogen oxides, I
21 don't think I was clear. With SCR, I think the
22 nitrogen oxides would still be lower for the fuel cell
23 emission rates.

24 To go to carbon dioxide, if you are using
25 natural gas the amount of CO(2) in the hydrogen forming

1 would be the same. That is assuming that it all goes
2 to CO(2) and not to carbon monoxide. And the emission
3 rate would be lower to the extent that the plant
4 efficiency for the fuel cell process would be higher.

5 Q. Would it be fair to say that if you
6 compared the CO(2) emissions of a scrubbed coal plant
7 and let's say a molten carbonate fuel cell that the
8 fuel cell would be maybe 15 or 20 per cent of the coal
9 plant? Are we in the right range?

10 A. No, I wouldn't put it that high. It
11 is only in proportion approximately to the conversion
12 efficiency, and we are talking probably about --
13 something a little more than half the emission rate of
14 carbon dioxide for a fuel cell compared with a scrubbed
15 coal burning plant.

16 Q. Just to try to get an idea of some of
17 the numbers I went to the CEC report, which does have a
18 list of numbers. I wonder if you could turn to page
19 E14-4 of Exhibit 493.

20 A. Sorry, which page?

21 Q. E14-4. Now, can you take a look at
22 those atmospheric emissions numbers and advise us
23 whether they look to be accurate to you for a
24 phosphoric acid fuel cell power plant?

25 A. I can't readily do that conversion

1 from pounds per million btu to grams per kilowatthour,
2 and I am assuming that CO there is CO(2) on that table.

3 MR. DAWSON: A. That is carbon monoxide.

4 Q. Dr. Effer, perhaps we could short
5 circuit this.

6 I wonder if you could undertake to
7 provide us with a chart that shows the air emissions of
8 the various important pollutants per kilowatthour for,
9 let's say, molten carbonate fuel cells as compared to
10 scrubbed and unscrubbed coal.

11 Could you undertake to provide that sort
12 of chart for us?

13 DR. EFFER: A. Yes, we can do that.

14 Q. Thank you.

15 THE CHAIRMAN: I take it that is not set
16 out in 344 anywhere; is that right?

17 MR. SHEPHERD: No, it isn't.

18 DR. CONNELL: I notice just in the next
19 section down there is a reference to solid waste of 2.7
20 tonnes per day. Over on page E14-8 there is no
21 comparable section for the molten carbonate. Is there
22 no solid waste from the molten carbonate fuel cell?

23 DR. EFFER: Very small amounts, Dr.
24 Connell. The zinc oxide which is used to pick up the
25 sulphur is converted to zinc sulfide and is used -- and

1 it will be one solid waste. There are no other
2 substantial ones.

3 MR. SHEPHERD: Q. And that zinc sulfide
4 is actually recycled?

5 DR. EFFER: A. That is correct. It is
6 not usually recycled within the plant. It is usually
7 sent away to be reclaimed.

10 THE CHAIRMAN: Shall we have an
11 undertaking number, a 478 number?

12 THE REGISTRAR: 478.27.

17 MR. SHEPHERD: Q. Dr. Effer, just going
18 back to CO₂ for a second, the CO₂ emissions of a
19 gas combined-cycle facility are a little less than half
20 a scrubbed coal facility, aren't they?

21 DR. EFFER: A. Yes, that's right.

22 Q. Then if you ramp up the efficiency to
23 let's say a molten carbonate fuel cell that would
24 reduce the CO₂ per kilowatthour, wouldn't it?

25 A. Yes.

1 Q. Okay. So it would be then that much
2 less than half of what coal would be?

3 A. We are talking of CO(2) here?

4 Q. CO(2).

5 A. Yes, I said that it was a little less
6 than half.

7 Q. Could you take a look at page E14-5
8 of Exhibit 493? There is a paragraph there under the
9 heading "Economic Parameters". The paragraph starts
10 with the word "Overcoming" you will see there?

11 The statement is made: Members of the
12 American Public Power Association - this is about
13 halfway, or a little ways through the paragraph:

14 Members of the American Public Power
15 Association, APPA, found fuel cells to be
16 especially attractive for their use
17 because fuel cells can offer
18 environmentally benign service generation
19 at high efficiency and with easy siting.

20 Now, Dr. Effer, do you agree with the
21 statement: Fuel cells can offer environmentally benign
22 service generation at high efficiency and with easing
23 siting?

24 A. As I said in my testimony, the
25 emissions are low. On a comparative basis, yes, I

1 would agree that it is comparatively and
2 environmentally benign, and, as far as operation is
3 concerned, it does have qualities that lend the process
4 more attractive for siting; that is, low noise levels,
5 for example, in addition to the low emissions.

6 Q. Still dealing with environmental
7 impacts, on page 81 of the Alternate Energy Review, Dr.
8 Effer, in the lower right-hand corner Hydro says --
9 this is page 81 of the alternate energy review?

10 A. Yes.

11 Q. Hydro says:

12 Decommissioning of the remainder of
13 the fuel cell facility - this is after
14 the fuel and the active elements - should
15 be similar to decommissioning a
16 conventional power plant.

17 Do I take it that you are saying there
18 that decommissioning a fuel cell plant has roughly
19 similar environmental impacts to decommissioning a coal
20 facility?

21 A. Certainly, the types of materials
22 that are being disposed of are different. I think the
23 intention there was to say that it would be of a
24 comparable complexity. Obviously, it would be quite
25 different in terms of the materials to be disposed of

1 and the dismantling.

2 Q. In a coal facility you have a lot
3 more environmental problems you have to clean up in
4 decommissioning; isn't that true?

5 A. I think there are some areas where
6 they are more of a problem than with a fuel cell, yes.

7 Q. Let me turn, Mr. Shalaby, to
8 photovoltaics. I think my friend Mr. Grenville-Wood
9 will spend more time on this than I will, but I do have
10 a couple of questions on it.

11 Why don't we start maybe 15 or 20 years
12 ago. It is true, isn't it, that at that time
13 photovoltaic arrays, if you would like, had a capital
14 cost in the order of \$50 a peak watt, that sort of
15 range?

16 MR. SHALABY: A. Yes.

17 Q. Which is equivalent to \$50,000 a
18 kilowatt; right?

19 A. Yes.

20 Q. And if we ramp that up to today's
21 dollars we are talking about -- very expensive,
22 \$100,000 a kilowatt generation; right?

23 A. Yes.

24 Q. Correct? okay. But in the interim
25 time it is true, isn't it, that photovoltaic

1 applications, particularly consumer applications, have
2 become sort of a ubiquitous sign of the times. We see
3 them on calculators and we see them on watches and all
4 over the place. The technology has advanced
5 dramatically in that period of time, hasn't it.

6 A. Yes.

7 Q. Isn't it true that 15 years ago
8 amorphous silicon, which is the sort of material of
9 choice today, was just a lab concept?

10 A. Yes, that it was a lab concept. I am
11 not sure if it is the material of choice today. I
12 don't know whether I can detect a clear winner in the
13 photovoltaic materials and manufacturing methods yet.

14 Some people are betting on amorphous
15 technology. Others think it will have limitations for
16 a long period to come.

17 So I am saying to one part of your
18 question, but I am not sure that I am endorsing that
19 amorphous is the clear choice today.

20 Q. Amorphous is being produced in
21 commercial quantities today; is that correct?

22 A. Yes.

23 Q. And technologies like non-amorphous,
24 thin filmed cells, multi-layer cells, those were all
25 just ideas 15 years to ago and they are now being

1 produced in significant quantity today, aren't they?

2 A. They are certainly more than just
3 ideas; they are being produced, yes.

4 Q. We are now not talking about \$100,000
5 a kilowatt, are we. We are talking about in the order
6 of \$6,000 or \$7,000 a megawatt -- kilowatt, rather?

7 A. Yes.

8 Q. Could you turn to Exhibit 504,
9 please. This is a paper by Dan Shugar of Pacific Gas &
10 Electric on distribution benefits of photovoltaics. I
11 am going to come back to the central element in this
12 paper in a moment. I would just like you to look at
13 page 7 of that paper for a second, Mr. Shalaby.

14 A. Page 7?

15 Q. Seven. In the upper left-hand corner
16 of that page PG&E is using a number of \$6.50 a watt for
17 1992 installed cost for PV, am I correct that that is
18 \$6,500 a kilowatt?

19 A. American, yes.

20 Q. Would you agree that that number is
21 the right sort of range to use for capital costs for
22 photovoltaic systems?

23 A. Yes. It is close to the number that
24 we are giving in our own Exhibit 344. I think we have
25 given something like 7,000 or 8,000 Canadian.

1 Q. You have used 8,200 in 1981 dollars,
2 and that is about, what, 15 per cent higher?

3 A. Yes.

4 Q. That is the right range?

5 A. That is the right range.

6 Q. And it is correct that the cost of
7 generating electricity through photovoltaics is almost
8 exclusively driven by the high capital cost?

9 A. Yes.

10 Q. Perhaps could you look at page 34 of
11 the alternate energy review, please. You will see in
12 paragraph .8 there in the left-hand column--

13 A. Yes.

14 Q. --that you give a capacity credit for
15 photovoltaics of 20 per cent of rated capacity.

16 A. That is correct.

17 Q. And in order to do that you are
18 basing that on the likelihood of the capacity being
19 available at system peak; is that correct?

20 A. Yes.

21 Q. That is winter peak probability you
22 are using there, isn't it?

23 A. That is right.

24 Q. Now, you have said in paragraph .7
25 above that highest probability of PV power is at summer

1 peak; right?

2 A. The highest?

3 Q. Highest probability of PV providing
4 capacity at a given time is summer peak?

5 A. That is right.

6 Q. And if you look to the chart above
7 that, isn't it correct that the probability of capacity
8 at summer peak is about 45 per cent?

9 A. You are dividing 918 by the total
10 energy production?

11 Q. No, I am dividing 918 by total summer
12 peak hours. That is what your probability is; isn't
13 it?

14 A. So what does that number give you
15 then?

16 Q. 45 per cent?

17 A. Sounds about reasonable, yes, that
18 during summer peak hours photovoltaic is producing
19 electricity 45 per cent of the time.

20 Q. That is how you get the probability
21 number for capacity credit, right, except you use
22 winter peak?

23 A. I don't know whether it is exactly
24 that method or something close to it, yes. I am not
25 sure whether it is exactly that kind of arithmetic or

1 not. It is probably rounded, something close to that
2 but rounded.

3 [4:05 p.m.]

4 Q. So is summer peak power not valuable
5 to Ontario Hydro?

6 A. It is valuable.

7 Q. Is the capacity available at that
8 time valuable?

9 A. Yes.

10 Q. But this calculation doesn't give any
11 value to summer peak capacity; does it?

12 A. It gives more value to winter peak
13 capacity. We are a winter peaking utility.

14 I think we discussed at some length in
15 Panel 3, whether the capacity credit should be split
16 between winter and summer or remaining all assigned to
17 the winter period, whether we are becoming more a
18 summer peaking utility. I think we have had some
19 discuss on that.

20 There are views that perhaps capacity
21 credit should be split between the summer and winter
22 and not put altogether in the wintertime.

23 Q. As of right now though, and as of the
24 numbers that you provided in the alternate energy
25 review, there is zero credit for being available on

1 summer peak; is that correct?

2 A. Zero credit in terms of deferring
3 generation capacity.

4 There is credit in deferring transmission
5 distribution capacity, and there is \$20 per kilowatt
6 per year for distribution, there is \$7 for the regional
7 system, there is \$12 for bulk transmission. All of
8 these things times our summer peaking. So I think
9 there is transmission distribution credits given and
10 many of those could be because of the summer peaking
11 nature of photovoltaic.

12 Q. Maybe I am just remembering the cost
13 methodology wrong. But I thought that when you did
14 your transmission and distribution credits you
15 multiplied them by the same factor as your capacity
16 factor; didn't you, as your capacity credit? As part
17 of the same chart you add them all up and multiply by
18 the same 20 per cent?

19 A. You are right in that, but the reason
20 we give capacity credit for generation deferment in the
21 winter, you add to it deferment of transmission
22 distribution and regional supply facilities and those
23 could be peaking in the summer.

24 I am coming to the point that, yes, it
25 does have value in deferring some capacity in the

1 summer; it is not generation capacity but depending on
2 the local circumstances it could be transmission and
3 distribution capacity.

4 Q. Well. In your transmission and
5 distribution - and maybe I just misunderstood this -
6 don't you take the numbers in your system incremental
7 cost and multiply them by the same percentage as you
8 apply to the capacity credit?

9 A. Yes.

10 Q. So you only give 20 per cent of the
11 transmission and distribution benefits?

12 A. That's right.

13 Q. Exactly the same as the generation?

14 A. That's right.

15 Q. Okay.

16 Isn't it correct, Mr. Shalaby, that if
17 you used the summer peak number for photovoltaics
18 instead of the winter peak number, that the
19 cost/benefit ratio that you show here for photovoltaic
20 of - if I can find it. I can't even find it now.

21 Your point estimate is 2.1; right?

22 Cost/benefit ratio, point estimate is 2.1; is that
23 correct?

24 A. For option 2, the year 2000?

25 Q. Yes.

1 A. That's correct.

2 Q. If you use the summer capacity credit
3 instead of the winter capacity credit it would be 1.6,
4 wouldn't it, roughly?

5 A. It would be lower. Whether it's 1.6
6 or 1.5, I don't know.

7 Q. Let's come back to these transmission
8 and distribution credits or benefits, whatever they
9 are. Could you take a look at page 34 of Exhibit 344,
10 in paragraph .14?

11 A. Yes.

12 Q. Now, am I correct that about 20 per
13 cent of the net present value of the total benefit for
14 a PV installation is T&D benefits, this sort of
15 benefit?

16 THE CHAIRMAN: What page are you on?

17 MR. SHEPHERD: This is page 34 of Exhibit
18 344, the alternate energy review, in paragraph .14.

19 THE CHAIRMAN: Thank you.

20 MR. SHALABY: I guess you are still
21 asking me to translate dollars per kilowatt per year
22 into cents per kilowatthour. I cannot do that on the
23 fly, but if you have done it and those are the
24 numbers....

25 MR. SHEPHERD: Q. I am just asking you,

1 am I in the right range? It's not 100 per cent?

2 MR. SHALABY: A. No, they are not.

3 Q. It's not 1 per cent. The 20 per cent
4 range is about right?

5 A. Sounds reasonable, subject to check.

6 THE CHAIRMAN: Is this the paragraph
7 where the \$10 has to be changed to \$20?

8 MR. SHALABY: That's correct, Mr.
9 Chairman, yes.

10 MR. SHEPHERD: That's correct.

11 Q. Now, perhaps you could then turn to,
12 Mr. Shugar's papers, which is Exhibit 504.

13 Mr. Shalaby, were you familiar with this
14 work, this research work done by PG&E prior to seeing
15 this exhibit today?

16 MR. SHALABY: A. No, not this particular
17 paper.

18 Q. Were you aware of the work being done
19 on distribution benefits by PG&E?

20 A. In general, yes.

21 Q. Okay. Now, this paper is obviously
22 too technical for me most of the time in most places,
23 but it does appear to me - and correct me if I am
24 wrong - this represents a technical analysis of the
25 potential transmission and distributions benefits

1 available from distributed PV installations; is that a
2 fair characterization, Mr. Shalaby?

3 A. This is something I am seeing for the
4 first time and haven't read, the title says so, yes.

5 Q. Okay. If you could turn then to page
6 7 of the paper. There is a chart there that is a
7 schematic and what it appears to show is the benefits,
8 monetary benefits, of a PV installation as compared to
9 cost. Do you see that?

10 A. Yes.

11 Q. And if I understand this correctly,
12 and maybe you can correct me if I don't understand it
13 right, the benefits of distribution are a much, much
14 greater proportion of the total than your 20 per cent?

15 A. That's what they appear to be, yes.

16 Q. Has Hydro done any technical work
17 comparable to the PG&E work to determine whether it
18 could obtain similar benefits in Ontario?

19 A. Not to my knowledge, no.

20 Q. If you take a look at that chart you
21 will see there is a dotted section in the chart and the
22 legend says that that's called kVAR Support. In fact,
23 that's discussed on the previous page under the heading
24 Reactivate Power Value. Can you describe what this
25 benefit is?

1 A. It says:

2 Reactive power value is a result of
3 voltage support to the T&D system. Power
4 flow calculations showed that a 500 kW
5 array installed at the Kerman site would
6 reduce peak reactive power losses by a
7 surprisingly large 452 kVAR.

8 Q. I appreciate that that's what it
9 says. I guess I am wondering, could you explain that
10 in English.

11 A. Well, I guess the power system needs
12 voltage profile support and that was discussed by - I
13 forget who now - but the idea that the people at the
14 end of a distribution line could benefit more from
15 people elsewhere, and I think some interrogatories
16 touched on that as well.

17 And providing reactivate power at certain
18 times of the day, different parts of the system in
19 different systems costs money. So in systems can
20 benefit from provision of VARs, VARs are the units
21 measuring the reactivate power, to different extents
22 than other systems.

23 Q. Now, your transmission and
24 distribution benefits in your avoided costs, they don't
25 include kVAR support; do they?

1 A. Not explicitly, no.

2 Q. The biggest benefit listed by PG&E in
3 this chart on page 7 is called Reliability, and you can
4 see there is a discussion of it on the previous page.
5 But just rather than make you read that, if you take a
6 look at page 7, at the end of the first column text,
7 you will see it says there:

8 Economic applications of PV-T&D are
9 seen to depend on the treatment of
10 reliability benefits, the installed cost
11 of the PV system, and the availability of
12 solar tax credits.

13 Now, your numbers don't include any
14 reliability benefit either, do they?

15 A. The analysis we have done is not that
16 detailed, no. We don't have a reliability benefit nor
17 do we have a reliability disbenefit.

18 We are assuming the reliability of
19 photovoltaics would be neither a hindrance nor an
20 addition to the places being added here.

21 Q. But if we look at the chart that PG&E
22 has produced, that is a very large proportion of the
23 total benefit of photovoltaics?

24 A. I am actually not sure what
25 proportion of the large chart corresponds to

1 reliability. Is it the small cross-hatching or the
2 large cross-hatching?

3 Q. It's the large cross-hatching. You
4 can see that the small cross-hatching is loss savings.
5 You do include that; right?

6 A. Yes.

7 Q. And you also include what is here the
8 double cross-hatching, which is T&D savings; correct?

9 A. Yes.

10 Q. Now, to be fair, the numbers that you
11 use for transmission distribution benefits, those are
12 system wide averages; aren't they?

13 A. Yes.

14 Q. And they are not technology specific;
15 are they?

A. No, nor are they location specific.

17 Q. Fair.

18 A. I think these things are quite
19 sensitive to location and technology in applications.

20 Q. That's I guess what I was going to
21 drive at. If you look at page 8 of Shugar's paper,
22 Exhibit 504, you see in the first complete paragraph on
23 the left-hand side, he says:

1 impacts that could be greater than
2 benefits described. This re-emphasizes
3 the site-specific nature of distributed
4 benefits.

5 I guess what that suggests is that there
6 is a potential if you can find the right sites to get
7 substantially larger transmission and distribution
8 benefits from distributed generation like PV. Have you
9 done any work on that to see whether this sort of
10 benefit could be obtained in Ontario?

11 A. Well, not in the context of PV
12 generation, not in this kind of detail. Not at the
13 distribution system and so on.

14 Q. If we use the sorts of numbers they
15 are using here with your methodology in the alternate
16 energy review, that would change the conclusion on PV;
17 wouldn't it?

18 A. I would have to understand the
19 methodology first. I am still a bit perplexed with
20 that reliability. I'm not sure whether this a system
21 that has storage in it or not. A system that operates
22 20 or 25 per cent of the time is unable on its own to
23 provide reliable service continuously. So I want to
24 understand whether it has storage associated with it or
25 is it with a backup from the network and where do these

1 benefits come from. So I am unable to comment on to
2 what extent this is comparable to what we have done or
3 what it would do to our results, I don't know.

4 Q. Let me just ask one other question on
5 photovoltaics. Could you confirm that if you applied
6 the total customer cost test, which is what you apply
7 to demand management, instead of the avoided cost test,
8 to load displacement photovoltaic installations, that
9 you would find a number of locations in Ontario where
10 on-grid PV would be economic or very close to it?

11 A. You are asking me to...

12 Q. I am asking to you hypothetically
13 apply the total customer cost test to load displacement
14 PV. I am asking whether they are places in Ontario
15 where - on grid - the result would be that those
16 installations would be economic or close to it?

17 A. The places where my mind will go to
18 would be somebody on the rural distribution system or a
19 remote community that use a small amount of
20 electricity, that sort of they get into the early part
21 of the rate schedule or get the brunt of the fixed
22 costs. Certainly remote communities, I would expect
23 that total customer costs tests today would yield a
24 positive result, places where we fly diesel fuel, for
25 example.

1 Q. But I am asking about on-grid
2 applications?

3 A. On grid, I don't know whether a
4 cost/benefit ratio of 8.8, which is what we have seen,
5 whether they are places where the cost is eight times
6 the average cost or the average avoided cost. I would
7 be hard pressed to find one of those. Unless there is
8 a very peculiar application somewhere. So there may
9 be, I think if you look hard number there may be, but I
10 don't know how ...

11 Q. Hydro hasn't looked for them?

12 A. Not actively, no.

13 Q. One final thing on solar --

14 A. Again, with the expectation that we
15 won't find any. We have a technology that is 8.8 times
16 the avoided cost, we would start looking for
17 applications for other things before we would look for
18 applications for this. So we haven't looked not
19 because of lack of enthusiasm for this; it is just that
20 we don't think the cost is low enough to justify a
21 total customer cost saving at this time.

22 Q. Not everyone agrees with you that the
23 cost is eight times the benefit; is that correct?

24 A. Well, we have had Mr. Cuyler here who
25 is a practitioner photovoltaics, he told me, and he

1 didn't disagree with those costs. In fact, he thinks
2 the costs are of similar to what we have put together.

3 Your own PG&E exhibit shows 6,500
4 American dollars. It's not very different from the
5 costs that we have shown.

6 Q. If you look at page 7 of that
7 exhibit, and ignoring the solar tax credits, treating
8 that has being a cost, the difference between the 1992
9 PV cost and the benefits that they have calculated
10 isn't very much; is it? It's certainly not eight
11 times.

12 A. Not in that particular application.
13 But I don't know exactly what they are doing there.

14 Q. Okay. I have only one other question
15 on solar, that has to do with power towers, solar power
16 towers. We talked about them earlier.

17 A. Yes.

18 Q. Could you turn to Exhibit 506. This
19 is a fact sheet prepared by Sandia Labs. Could you
20 tell us s who Sandia Labs is?

21 A. It's one of the national laboratories
22 in United States, scientific laboratories doing work in
23 energy and other matters.

24 Q. It's a large research facility?

25 A. Yes.

1 Q. This is a fact sheet on the project
2 we talked about on Thursday, this Solar Two project.

3 If you just look at the upper right
4 corner there, there is a heading Solar Power Towers'
5 Advantages, if you could just read through that
6 quickly.

7 A. Yes.

8 Q. Can you confirm that if the power
9 tower demonstration currently being developed by
10 utilities in United States works as they expect it to,
11 that these are the benefits that one would expect that
12 they would get out of that technology?

13 A. I have no dispute with some of the
14 points, but when you get to cost is comparable with
15 alternatives, when you get to every component that's
16 tested and proven, when you get to future commercial
17 plants from the 100 to 200 megawatts plants, I have no
18 basis to know whether that is correct or not.

19 Q. The other ones are fine, though?

20 A. Practical energy storage, yes;
21 capacity factors up to 60 per cent is really a function
22 of the design, how much storage you design into.
23 Dispatchable, again you can make it dispatchable, at
24 what cost is the only question left. Clean, reliable
25 source of electricity, zero emissions, I have no

1 difficulty with that.

2 Q. Okay. Let me turn to biomass. It's
3 correct, isn't it, Mr. Shalaby, that in the alternate
4 energy review, you have only looked in detail at a few
5 of the potential biomass applications?

6 MR. DAWSON: A. We have looked at wood,
7 basically.

8 Q. At one?

9 A. At wood.

10 Q. At wood, yes.

11 So, for example, if you take a look at
12 page 97 of the alternate energy review, in paragraph .6
13 you refer to agricultural wastes and then you just sort
14 of dismiss them and you don't deal with them again, do
15 you?

16 A. I think what we are saying is that we
17 would expect those to come in at a higher price than
18 wood because they are more dispersed.

19 [4:29 p.m.]

20 Q. I am going to ask you to turn, then,
21 to Exhibit 503, and this is a report of the California
22 Energy Commission from last June, or excerpts from it,
23 on biomass energy potential.

24 Could you just look at page 1-113,
25 please?

1 A. Right.

2 Q. As I understand what that chart says,
3 agricultural field crops, that is agricultural waste;
4 right?

5 A. Well, I haven't seen the paper
6 before, but I would assume that is what it means, yes.

7 Q. Okay. That 13 in the far right
8 column, that is 130 million barrels of oil; am I right
9 there?

10 A. That is what it --

11 Q. 10(6)?

12 A. 13 million barrels of oil is what --

13 Q. 13 million? Right. Okay. That is
14 about 60 per cent of the wood waste potential it looks
15 like.

16 A. Yes.

17 Q. Then if you look several pages on you
18 will see pages 8-3 and 8-4. These are lists of biomass
19 facilities in California.

20 A. I'm sorry, where are you?

21 Q. 8-3 and 8-4.

22 A. Oh.

23 Q. Just look down the list. There
24 appears to be a fair bit of agricultural generation.
25 We are talking certainly hundreds of megawatts, aren't

1 we?

2 A. Yes, there appears to be, yes.

3 Q. The figure that we looked at of 13
4 million barrels of oil a year, is that a big number?
5 Is that a lot of energy or a little energy? Can you
6 give us a benchmark so we can figure out how much we
7 are talking about?

8 MR. DAWSON: A. Yes. I haven't
9 calculated what it is in megawatts, but yes, it is a
10 lot of energy regardless.

11 Q. So we have substantial agricultural
12 applications in Ontario, don't we? The agricultural
13 industry in Ontario is quite substantial?

14 A. Yes, though it depends to some degree
15 on -- I don't know what crops all this agricultural
16 waste is coming from and how concentrated it is
17 relative to ours. I don't know.

18 Q. I guess I am just wondering why a
19 technology which is obviously working in California
20 would be excluded entirely from your review.

21 A. I don't know, other than all we are
22 really trying to do is assess some sort of a potential.
23 We are not excluding anything by our review. If it is
24 available and somebody wants to generate electricity
25 from it, then they are free to do so.

1 MR. SHALABY: A. I think your exhibit
2 also shows that wood is still a larger resource than
3 agricultural waste. And in Ontario that is much more
4 the case, and wood is a much larger resource than
5 agricultural waste.

6 California is a much larger producer of
7 food products than Ontario and the nature of their
8 agricultural waste could be different than here as
9 well.

10 For example, I have seen agricultural
11 waste in the California area where it is almond shells,
12 for example, which is almost wood again. It is fairly
13 high in energy content. I don't know whether we have
14 anything like that here.

15 So I think transporting conclusions from
16 one state with a different agricultural base to here
17 one has to do that with a bit of care.

18 We felt that wood is dominant in Ontario,
19 agriculture is not, and as I indicated to you earlier,
20 the scope of the study was to look at areas that are
21 more promising. There may be other areas that are
22 still contributing in some way but not in a significant
23 way to alter our conclusions.

24 Q. Can we take it, then, that Ontario
25 Hydro has no evidence to offer on agricultural waste

1 and energy generation?

2 MR. DAWSON: A. Not to my knowledge.

3 Q. Thank you. Now, you also didn't look
4 in any detail at forest waste, right, what is called
5 "slash"? Are you familiar with that?

6 A. We have looked at forest thinning.
7 That was estimated as part of the alternative energy
8 study, the cost of forest thinning.

9 Q. But forest thinning and forest waste,
10 or slash, are not the same thing, are they?

11 A. Slash, as I understand it, is the
12 material that is left behind when you bring pulp wood
13 out, right.

14 Q. Right.

15 A. So I don't see why the cost would be
16 much different to the cost of forest thinning. But no,
17 we haven't looked at slash specifically, you are quite
18 right.

19 Q. But although there is not a big
20 difference in cost there is certainly a difference in
21 environmental benefits when you clear out and burn for
22 energy slash; correct?

23 A. In what sense?

24 Q. Well, maybe you could turn to page
25 8-8 of the CEC report. About midway down the page

1 there is a paragraph there that starts "Removal of
2 forest residues has several positive environmental
3 effects...", and then it lists them. So isn't it
4 correct to say that use of -- harvesting of forest
5 wastes, forest residues is an environmentally positive
6 activity?

7 A. I think I would agree that there are
8 those benefits there, though the negative side of it is
9 that you do remove nutrients from the forest by
10 removing the slash. So there are pluses and minuses.

11 Q. One of the benefits they have listed
12 there is improved forest growth. That tends to suggest
13 the removal of nutrients isn't really a bad thing.

14 MR. BURPEE: A. They are not similar
15 forest types, though. I mean, Northern Ontario is
16 arboreal forest, and I don't know how they can compare
17 to this kind of forest. You would need a forest expert
18 to tell you that.

19 Q. Okay. Now, Dr. Effer, like any other
20 combustion technology burning biomass produces air
21 emissions; right?

22 DR. EFFER: A. That is correct.

23 Q. And it is fair to say that the most
24 significant air emissions are NOx and CO(2) for these
25 technologies, biomass technologies?

1 A. The principle gaseous emissions, yes.

2 Q. And you control NOx and biomass

3 generation basically the same way as you do for natural
4 gas and coal, right - SCRs?

5 A. Yes. You can do, yes. And by
6 appropriate boiler combustion.

7 Q. Low NOx burners?

8 MR. DAWSON: A. You can't control the
9 NOx from a wood-fired boiler if it is a stoker-fired
10 boiler by low NOx burners because they don't exist.
11 The wood burns on the grate.

12 Q. So you would have to use SCR or
13 something like that?

14 A. Yes. You can control the supply of
15 combustion air under the grate relative to what you
16 supply over the grate to some degree, but it is not as
17 simple as a low NOx burner, put it that way.

18 Q. Is it fair to generalize that NOx as
19 a problem for biomass is a fairly similar problem to
20 NOx as a problem for natural gas and coal, and there is
21 a menu of solutions that you have to work to?

22 A. I would have to go back and look at
23 some data, but yes, generally they are of the same
24 order. The lower plant efficiency due to wood waste
25 may tend to push the NOx emissions up on a per

1 kilowatthour generated basis, but they are of the same
2 order.

3 Q. Now, Dr. Effer, with respect to CO(2)
4 if you look at the net CO(2) from biomass generation
5 isn't that net generally very low, the net for the
6 cycle?

7 DR. EFFER: A. On a theoretical basis
8 the amount of carbon dioxide taken up by the vegetation
9 will be released to the atmosphere by combustion, as I
10 said in my direct.

11 But there is a small additional CO(2)
12 which unbalances that equality, which is of course the
13 transportation and general manipulation of the
14 plantation. There is a fair amount of fossil fuels
15 used there.

16 So in the overall operation there
17 probably is some net emission of CO(2).

18 Q. From the vehicles, in effect?

19 A. Yes.

20 Q. But the plants are a carbon sync
21 until you cut them down, and then when you burn them
22 they release the same carbon that they brought in;
23 right?

24 A. That's correct. And I also made the
25 point in my direct that if that plantation replaced a

1 conventional fossil fueled generation, then there would
2 be a negative CO(2) balance.

3 Q. It is a sort of an avoided emissions
4 approach?

5 A. That is correct, yes.

6 Q. And, in fact, in the case of waste
7 biomass if you just leave it to decompose it is going
8 to release the CO(2) anyway, isn't it?

9 A. Yes, sooner or later.

10 Q. So is it fair to sort of generally
11 conclude that biomass generation is relatively
12 environmentally benign relative to other combustion
13 technologies?

14 A. I think the main limitation if one
15 looks beyond the emissions is that there may be certain
16 problems connected with soil integrity, which we
17 mentioned in direct, and as with many monocultures, the
18 use of pesticides and herbicides may introduce
19 complexities. But it has just been mentioned in the
20 literature. I have no further information about it.

21 Q. And those are forest management
22 issues; right?

23 A. That is correct.

24 Q. And if you do it properly you don't
25 have those problems?

1 A. If you use the pesticides and the
2 herbicides correctly, then you have no problem, yes.

3 Q. Just a couple of other questions. On
4 energy from waste, Mr. Shalaby, you said that the
5 energy from waste technologies, they are basically
6 waste management technologies; correct?

7 MR. SHALABY: A. Yes.

8 Q. Just dealing briefly with landfill
9 gas, you are familiar with the term BACT, best
10 available control technology?

11 A. Yes.

12 Q. Is it true that energy generation of
13 landfill gas is actually the best available control
14 technology for landfill gas emissions from a landfill?

15 A. I don't know that for a fact.

16 Q. Dr. Effer, are you familiar with
17 that?

18 DR. EFFER: A. I would have to get some
19 definition of what best available control technology
20 encompasses.

21 Q. Well, that is a --

22 A. From an environmental point of view.

23 Q. I thought it was a term of art and as
24 the expert you would know it better than I did. BACT
25 is a term you use all the time, isn't it?

1 A. Would you give me your question
2 again, then?

3 Q. The question is: Is the burning of
4 landfill gas to produce energy in fact environmentally
5 the best available control technology for landfill
6 methane emissions?

7 A. Yes.

8 Q. Okay. So I guess, Mr. Shalaby, one
9 of my experts asked me this and I didn't have the
10 answer.

11 Even forgetting the value of the energy
12 why wouldn't you just build landfill gas facilities on
13 every landfill right now just for control purposes,
14 just so you don't have that methane going to the air?

15 MR. SHALABY: A. Why wouldn't Ontario
16 Hydro do that?

17 Q. Or promote somebody else doing it.
18 It doesn't matter.

19 A. Well, we are promoting the purchase
20 of that energy from independent producers.

21 Q. Yes?

22 A. That is the end of my answer.

23 Q. Okay. It is a correct conclusion,
24 isn't it, that the smart thing to do with landfills is
25 burn the methane; right?

1 A. I have no difficulty with that, yes.

2 Q. I just have one other thing. If you
3 could turn to Exhibit 500, this is a report from 1990
4 from the U.S. Department of Energy. These are some
5 excerpts from it. It is quite long.

6 Mr. Shalaby, are you familiar with this
7 report?

8 A. Yes, I am.

9 Q. Okay. Can you look at page Roman
10 numeral 8 of that report? This is the Executive
11 Summary.

12 A. Yes.

13 Q. Just before I ask any questions about
14 the details of it, what's a quad?

15 A. A hell of a big number. I think it
16 is 10 to the 15th--

17 Q. In the context --

18 A. --btu. It is 10 to the 15 British
19 thermal units. The consumption of the United States is
20 something like 100 quads or 80 quads or something like
21 that.

22 Q. How would we convert that into
23 megawatts?

24 A. It is the end of the day, Mr.
25 Shepherd. I can't do that. Even at the beginning of

1 the day I can't do that. [Laughter]

2 Q. It is certainly thousands of
3 megawatts; right?

4 MR. DAWSON: A. So divide by 10 to the
5 fourth would convert it to kilowatts.

6 Q. Convert it to kilowatthours, you
7 mean?

8 A. To kilowatthours, that's right.

9 Q. Yes. And then divide by
10 eighty-seven-sixty to get kilowatts, or something like
11 that?

12 A. Yes, something like it.

13 MR. SHALABY: A. If you can do that you
14 are a lot fresher than I am.

15 Q. I purposely left my calculator back
16 in the office. But it is correct that quads are
17 thousands of megawatts; correct?

18 A. I will accept that, yes.

19 Q. If you look on page Roman numeral 9
20 of this report you see a chart there. It talks about
21 the future contribution of renewables, and, in fact,
22 you can see what DOE is talking about in terms of
23 renewables on the previous page where it has a chart
24 with the various components of renewables; right?

25 Now, it is correct, isn't it, Mr.

1 Shalaby, that there is very little new hydro power
2 development going on in the United States?

3 A. Not according to this report. They
4 see hydraulic power for the developed -- as far as I
5 can gather, towards the end of your exhibit they show
6 increasing hydro power.

7 Q. Yes?

8 A. Not significant, but there is a small
9 increase.

10 Q. Not like it was in the past; right?

11 A. Well, in one of the scenarios it
12 shows an increase from 3.1 quads to 5.1 quads over a 50
13 year period. So that is sort of a 60 per cent
14 increase.

15 Q. Okay. Perhaps we could turn to that
16 page. It is page 43, I think is the place where you
17 can see the technology breakdown.

18 It is correct, isn't it, that for these
19 various renewable energies the DOE is projecting under
20 various scenarios many thousands of megawatts of each
21 of them over the sort of 40 year horizon they are
22 looking at; correct?

23 A. You have got to understand what these
24 scenarios mean. R&D intensification, national
25 premiums, I think it is.

1 But yes, under most scenarios they are
2 expecting large increases over the next 50 years, yes.
3 [4:45 p.m.]

4 Q. Now, these increases, understanding
5 that the United States is a lot bigger than Ontario,
6 these increases, when you scale them down, are still
7 far and away larger than any of the projections that
8 Ontario Hydro has made for any of these technologies;
9 is that correct?

10 A. We haven't done to the year 2030.
11 Probably the more appropriate comparison would be to
12 look at page 42, which shows increases to the year
13 2010, for example. And then you do the prorating
14 between the United States and Ontario, which is a
15 factor of 25, or something, and I can't do all of that
16 in my head.

17 Q. Is it correct, though, for example,
18 they have got 1.7 quads of wind power, if you translate
19 that all through, that's still a lot more than you are
20 projecting; right?

21 A. Most likely is, yes.

22 Q. On the other hand their hydro power
23 number of 4.2 quads, do you see that there? That's
24 actually less than you are projecting, is it, if you do
25 the ratio?

1 A. It's too much to convert between
2 quads in U.S. and Ontario. It is just too much work.

3 Q. Fair enough.

4 DR. CONNELL: Just to clarify that.

5 Opposite wind power it doesn't specific electric, I
6 suppose that might embrace other forms.

7 MR. SHEPHERD: Oh, yes. In fact, these
8 numbers are all forms of energy. They include
9 transportation fuels, et cetera.

10 DR. CONNELL: Is there any breakdown as
11 to what proportion of the wind power is electric?

12 MR. SHEPHERD: There is a detailed
13 analysis, although I think that the conclusion - and
14 maybe Mr. Shalaby has the report there - I think the
15 conclusion with respect to wind would certainly be that
16 the vast majority of it would be electric. But Mr.
17 Shalaby has the whole report right there.

18 DR. CONNELL: There are no wind-powered
19 cars envisaged? [Laughter]

20 MR. SHALABY: No.

21 DR. CONNELL: Thermal churning, I suppose,
22 would be in there.

23 MR. SHALABY: I am not sure if there is
24 any pumping or mechanical pumping. I am not recalling
25 immediately what all the applications are.

1 If it's of sufficient interest, Dr.
2 Connell, we can undertake to find out.

3 MR. SHEPHERD: Q. In terms of its level
4 of adoption of renewable technologies in its plans over
5 the next quarter century, would you say that Ontario
6 Hydro is one of the more aggressive utilities or less
7 aggressive as compared to other North American
8 utilities or planners?

9 MR. SHALABY: A. There are utilities
10 that are more aggressive than we are and there are
11 utilities that are less aggressive than we are.

12 Q. Where do you rank in the scale?

13 A. I don't know if there is a scale.
14 But they often mention utilities in California that are
15 pursuing alternatives with more success than Ontario
16 is, because they have the resource, which is one of the
17 reasons, geothermal, for example, solar and wind.

18 Q. That's also because of a different
19 policy environment?

20 A. Yes. And some policy environment,
21 the regulatory environment is pushing in that
22 direction, yes. And some other utilities are doing
23 much less than we are.

24 Q. And the different policy environment
25 that you see in places like California that produces

1 more renewable energy, that's largely environmentally-
2 driven; is that correct?

3 A. I think it comes under the heading
4 environmental-driven.

5 Q. Yes.

6 A. Some of it is ideological as well.
7 But it goes under the banner of environmental.

8 MR. SMITH: A. I think your Exhibit 501
9 indicates quite clearly that part of the driver was to
10 get off oil, a very substantial oil consumer for
11 electric generation in the 70s. And if you look at
12 your figure 1 on page 5 of Exhibit 501 and some of the
13 verbiage in that exhibit, it quite clearly talks about
14 one of the major drivers was to get off oil use, and
15 that is both environmental and cost.

16 Q. And there was energy security at that
17 time as well, wasn't there?

18 A. That's true.

19 Q. Of course there are also off coal;
20 aren't they?

21 A. That's another question. I am glad
22 you asked that question. You raised that question last
23 week with Mr. Meehan in the transcript. And if I read
24 this chart it doesn't look like they are getting off
25 coal to me, but I don't have the details of the chart

1 and I don't have the reproduction in the original
2 version. But if I read the chart it looks like it
3 grows quite substantially between 1990 and the year
4 2009. I read the chart, I am assuming it's done in
5 some rationale order, and the first dark box on the
6 thing is imports, then oil and gas, then hydro storage
7 and then coal, and it grows very substantially on that
8 graph.

9 Q. All right. I didn't read it that
10 way, but that's all right.

11 A. I don't have the original graph, so
12 there are two black boxes on there and I can't tell
13 which is which. But if you read the chart, I am
14 assuming they would have gone around the circle in
15 order, and that shows a very large black box which
16 would be coal.

17 Q. So you are suggesting that coal use
18 in California is actually growing?

19 A. All I am doing is reading this chart.
20 I don't really know one way or the other.

21 Someone suggested to me at the break that
22 in fact it might be coal use in another state for
23 producing electricity in California which is an
24 interesting approach they have taken.

25 MR. SHEPHERD: Okay. Those are all my

1 questions, Mr. Chairman.

2 DR. CONNELL: I would just like to go
3 back to a matter that came up this morning when Mr.
4 Shepherd was drawing to your attention some economic
5 impacts studies. I believe two or three days ago we
6 had evidence that none of you considered yourselves to
7 be an expert on economic impact studies; is that
8 correct?

9 MR. SHALABY: That's correct.

10 DR. CONNELL: So you wouldn't be able to
11 criticize an economic impact study on grounds of
12 methodology or assumptions?

13 MR. SHALABY: Not in detail, no.

14 DR. CONNELL: I think I am correct that
15 secondary economic impacts are not reckoned into your
16 cost benefit studies say with the alternative energy?

17 MR. SHALABY: They are not factored in
18 there, no. You are correct.

19 DR. CONNELL: Right. This I don't think
20 requires an expert perspective, but I think it's
21 probably obvious that one could have an investment
22 which was totally unproductive, which lead to no
23 beneficial primary product, but yet had positive
24 economic impact; is that correct?

25 MR. SHALABY: Yes.

1 DR. CONNELL: Thank you.

2 THE CHAIRMAN: Any further questions?

3 MR. SHEPHERD: No, Mr. Chairman.

4 THE CHAIRMAN: Mr. Grenville-Wood, you
5 will be on tomorrow morning?

6 MR. GRENVILLE-WOOD: Yes, Mr. Chairman.

7 I am ready to go bright and early.

8 THE CHAIRMAN: Thank you. We will
9 adjourn then until tomorrow morning at ten o'clock.

10 THE REGISTRAR: This hearing will adjourn
11 until ten o'clock tomorrow morning.

12 ---Whereupon the hearing was adjourned at 4:55 p.m. to
13 be resumed on Tuesday, March 3, 1992, at 10:00 a.m.

14

15

16

17

18

19

20

21

22

23

24

25 JAS/RR [c. copyright 1985.]

