Lois de probabilité.

Si X est une variable aléatoire réelle, sa fonction de répartition est la fonction

$$\forall t \in \mathbb{R}, \qquad F_X(t) = \mathbb{P}(X \le t).$$

Si X est à valeurs dans \mathbb{R}^d , sa fonction caractéristique est donnée par

$$\forall t \in \mathbb{R}^d, \qquad \varphi_X(t) = \mathbb{E}\left[e^{it \cdot X}\right].$$

Lois discrètes.

Notation : Pour p élément de [0,1], on note q=1-p.

Si X est à valeurs entières, sa fonction ou série génératrice est la série entière

$$\forall |z| \leq 1, \qquad G_X(z) = \mathbb{E}\left[z^X\right].$$

On a alors $\varphi_X(t) = G_X\left(e^{it}\right)$

Loi de Bernoulli, $\mathcal{B}(p)$, $0 \le p \le 1$: $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = q$;

Loi binomiale, $\mathcal{B}(n,p)$, $n \ge 1$, $0 \le p \le 1$: pour k = 0, ..., n, $\mathbb{P}(X = k) = C_n^k p^k q^{n-k}$;

Loi géométrique, $\mathcal{G}(p), \ 0 : pour <math>k \in \mathbb{N}^*, \ \mathbb{P}(X = k) = pq^{k-1}$;

 $\textbf{Loi binomiale n\'egative}, \, \mathcal{B}_{-}(n,p), \, n \geq 1, \, 0$

Loi de Poisson, $\mathcal{P}(c)$, c > 0: pour $k \in \mathbb{N}$, $\mathbb{P}(X = k) = e^{-c}c^k/k!$.

Loi / v.a.	Notation	Espérance	Variance	G_X
Bernoulli	$\mathcal{B}(p)$	p	pq	q + pz
Binomiale	$\mathcal{B}(n,p)$	np	npq	$(q+pz)^n$
Géométrique	$\mathcal{G}(p)$	1/p	q/p^2	$pz \left(1 - qz\right)^{-1}$
Binomiale négative	$\mathcal{B}_{-}(n,p)$	n/p	nq/p^2	$\left \left(pz \left(1 - qz \right)^{-1} \right)^n \right $
Poisson	$\mathcal{P}(c)$	c	c	$e^{c(z-1)}$

Lois à densité.

X à valeurs dans \mathbb{R}^d a pour densité p_X si

$$\forall B \in \mathcal{B}(\mathbb{R}^d), \qquad \mathbb{P}(X \in B) = \int_B p_X(x) \, dx.$$

Loi uniforme sur [a,b], $\mathcal{U}(a,b)$, a < b: $p_X(x) = (b-a)^{-1} \mathbf{1}_{[a,b]}(x)$, $F_X(t) = 0$ si t < a, $F_X(t) = (b-a)^{-1} (t-a)$ si $a \le t < b$, $F_X(t) = 1$ si $t \ge b$;

Loi de Cauchy, C(c), c > 0: $p_X(x) = c\pi^{-1} (c^2 + x^2)^{-1}$, $F_X(t) = 1/2 + \pi^{-1} \arctan(c^{-1}t)$; **Loi exponentielle**, E(c), c > 0: $p_X(x) = ce^{-cx} \mathbf{1}_{\mathbb{R}_+}(x)$, si t < 0 $F_X(t) = 0$, si $t \ge 0$ $F(t) = 1 - e^{-ct}$;

Loi de Laplace, $\mathcal{L}(c)$, c > 0: $p_X(x) = ce^{-c|x|}/2$, $F_X(t) = e^{ct}/2$ si t < 0, $F_X(t) = 1 - e^{-ct}/2$ si $t \ge 0$;

 $\textbf{Loi gaussienne ou normale réelle}, \, \mathcal{N}(m,\sigma^2), \, \sigma^2 > 0: \quad p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right).$

Loi / v.a.	Notation	Espérance	Variance	φ_X
Uniforme	$\mathcal{U}(a,b)$	(a+b)/2	$(b-a)^2/12$	$\left(e^{itb} - e^{ita}\right) \left(it(b-a)\right)^{-1}$
Cauchy	C(c)	non	non	$e^{-c t }$
Exponentielle	$\mathcal{E}(c)$	c^{-1}	c^{-2}	$c(c-it)^{-1}$
Laplace	$\mathcal{L}(c)$	0	$2c^{-2}$	$c^{2}\left(c^{2}+t^{2}\right)^{-1}$
Gaussienne	$\mathcal{N}(m,\sigma^2)$	m	σ^2	$\exp\left(itm - \sigma^2 t^2/2\right)$