STANDARD CELL LIBRARY DOCUMENTATION (DOCUMENT 3)

Table of Contents

Introduction	7
Standard Cell: Inverter	7
INVX1	7
Schematic	7
Layout	8
Behavioral Model	8
Timing Data	9
User's Guide	9
INVX4	9
Schematic	9
Layout	10
Behavioral Model	10
Timing Data	11
User's Guide	11
INVX8	11
Schematic	11
Layout	12
Behavioral Model	13
Timing Data	13
User's Guide	13
Standard Cell: Buffer	13
BUF4X	14
Schematic	14
Layout	15
Behavioral Model	15
Timing Data	16
User's Guide	16
BUF8X	16

	Schematic	16
	Layout	17
	Behavioral Model	17
	Timing Data	18
	User's Guide	18
Star	ndard Cell: NAND	18
N	AND2X1	18
	Schematic	18
	Layout	19
	Behavioral Model	20
	Timing Data (for IN1 => OUT)	20
	User's Guide	20
N	AND3X1	21
	Schematic	21
	Layout	22
	Behavioral Model	23
	Timing Data (for IN1 => OUT)	23
	User's Guide	23
N	ANDX2	24
	Schematic	24
	Layout	25
	Behavioral Model	25
	Timing Data (for IN1 => OUT)	26
	User's Guide	26
Star	ndard Cell: NOR	27
N	OR2X1	27
	Schematic	27
	Layout	28
	Behavioral Model	29

Timing Data (for IN1 => O	UT)29
User's Guide	29
Standard Cell: And-Or-Invert	30
AOI21	30
Schematic	30
Layout	31
Behavioral Model	32
Timing Data (for IN1 => O	UT)32
User's Guide	32
AOI22	33
Schematic	33
Layout	34
Behavioral Model	34
Timing Data (for IN1 => O	UT)35
User's Guide	35
Standard Cell: Or-And-Invert	35
OAI21	35
Schematic	35
Layout	36
Behavioral Model	36
Timing Data (for IN1 => O	UT)37
User's Guide	37
Standard Cell: Multiplexer	37
MUX2X1	37
Schematic	37
Layout	38
Behavioral Model	38
Timing Data (for IN1 => O	UT)39
Timing Data (for S => OUT	r)39

User's Guide	39
Standard Cell: 1-bit Full Adder	40
FULLADD	40
Schematic	40
Layout	41
Behavioral Model	41
Timing Data (for A => COUT)	42
Timing Data (for A => SUM)	42
User's Guide	42
Standard Cell: D Flip-Flop	43
DFFRX1	43
Schematic	43
Layout	44
Behavioral Model	45
Timing Data (Setup & Hold Times)	45
Timing Data (CLK => Q)	45
User's Guide	46
Standard Cell: TIEHI & TIELO	46
TIEHI	46
Schematic	46
Layout	47
Behavioral Model	47
User's Guide	47
TIELO	48
Schematic	48
Layout	49
Behavioral Model	49
User's Guide	49
Standard Cell: Filler	50

Filler	50
Layout	50
User's Guide	50
Filler4	
Layout	51
User's Guide	51
Filler8	51
Layout	52
User's Guide	52

Introduction

In this document, all the standard cells in our library (Lib6710_05) are described in detail. For each cell, the following information is provided: schematic, layout, behavioral model, timing data & user's guide.

Standard Cell: Inverter

There are three types of inverters in our standard cell library: standard 1X sized inverter (INVX1), inverter with 4X drive strength (INVX4), and inverter with 8X drive strength (INVX8).

INVX1

Behavioral Model

```
//Verilog HDL for "Lib6710_05", "INVX1" "behavioral"

module INVX1 ( OUT, IN );
  input IN;
  output OUT;
  not not1(OUT, IN);

  specify
        (IN => OUT) = (1.0, 1.0);
  endspecify
endmodule
```

Timing Data

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	0.93	4.44
Falling propagation delay (ns)	1.2	5.89
Rising output slope (ns)	0.66	3.63
Falling output slope (ns)	0.85	4.72

User's Guide

The Boolean expression is:

$$OUT = \sim IN$$

INVX4

Behavioral Model

```
//Verilog HDL for "Lib6710_05", "INVX4" "behavioral"

module INVX4 ( OUT, IN );
  output OUT;
  input IN;
  not n1(OUT, IN);
  specify
      (IN => OUT) = (1.0, 1.0);
  endspecify
endmodule
```

Timing Data

Delays	Input slope = 0.42 ns Output loading = 0.4 pF	Input slope = 1.2 ns Output loading = 2.4 pF
Rising propagation delay (ns)	0.83	3.93
Falling propagation delay (ns)	0.84	4.09
Rising output slope (ns)	0.55	3.13
Falling output slope (ns)	0.55	3.15

User's Guide

The Boolean expression is:

$$OUT = \sim IN$$

INVX8

Behavioral Model

```
//Verilog HDL for "Lib6710_05", "INVX8" "behavioral"

module INVX8 ( OUT, IN );
  output OUT;
  input IN;
  not n1(OUT, IN);
  specify
     (IN => OUT) = (1.0, 1.0);
  endspecify
endmodule
```

Timing Data

Delays	Input slope = 0.42 ns Output loading = 0.8 pF	Input slope = 1.2 ns Output loading = 4.8 pF
Rising propagation delay (ns)	0.83	3.93
Falling propagation delay (ns)	0.84	4.09
Rising output slope (ns)	0.55	3.13
Falling output slope (ns)	0.55	3.15

User's Guide

The Boolean expression is:

$$OUT = \sim IN$$

Standard Cell: Buffer

There are two types of buffers in our standard cell library: buffer with 4X drive strength (BUF4X), and buffer with 8X drive strength (BUF8X).

BUF4X

Behavioral Model

```
//Verilog HDL for "Lib6710_05", "BUF4X" "behavioral"

module BUF4X ( OUT, IN );
   output OUT;
   input IN;
   buf u_buf(OUT, IN);
   specify
        (IN => OUT) = (1.0, 1.0);
   endspecify
endmodule
```

Timing Data

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	0.74	1.86
Falling propagation delay (ns)	0.67	1.77
Rising output slope (ns)	0.21	0.82
Falling output slope (ns)	0.20	0.82

User's Guide

The Boolean expression is:

$$OUT = IN$$

BUF8X

Behavioral Model

```
//Verilog HDL for "Lib6710_05", "BUF8X" "behavioral"

module BUF8X ( OUT, IN );
  output OUT;
  input IN;
  buf u_buf(OUT, IN);
  specify
      (IN => OUT) = (1.0, 1.0);
  endspecify
```

endmodule

Timing Data

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	0.58	1.31
Falling propagation delay (ns)	0.58	1.36
Rising output slope (ns)	0.14	0.45
Falling output slope (ns)	0.13	0.45

User's Guide

The Boolean expression is:

$$OUT = IN$$

Standard Cell: NAND

There are three types of NAND gates in our standard cell library: standard 2-input 1X sized NAND gate (NAND2X1), a 2-input NAND gate with 2X drive strength (NANDX2), and a 3-input 1X sized NAND gate (NAND3X1).

NAND2X1

Behavioral Model

```
//Verilog HDL for "Lib_6710_05", "NAND2X1" "behavioral"

module NAND2X1 ( OUT, IN1, IN2 );
  input IN2;
  output OUT;
  input IN1;

nand NAND2X1 (OUT, IN1, IN2);

specify

(IN1 => OUT) = (1.0, 1.0);
  (IN2 => OUT) = (1.0, 1.0);
endspecify

endmodule
```

Timing Data (for IN1 => OUT)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	0.96	4.48
Falling propagation delay (ns)	0.80	3.69
Rising output slope (ns)	0.66	3.64
Falling output slope (ns)	0.55	2.93

Due to body effect, the worst case delays & slopes will occur for the path IN1 => OUT. The timing data for IN2 => OUT is similar to the above table to the first decimal point (a little lesser), for almost all cases.

User's Guide

The Boolean expression is:

$$OUT = \sim (IN1 \& IN2)$$

NAND3X1

Behavioral Model

```
//Verilog HDL for "Lib6710_05", "NAND3X1" "behavioral"

module NAND3X1 ( OUT, IN1, IN2, IN3 );
   input IN3;
   input IN2;
   output OUT;
   input IN1;
   wire OUT;

assign OUT="(IN1&IN2&IN3);

specify

(IN1 => OUT) = (1.0, 1.0);
(IN2 => OUT) = (1.0, 1.0);
(IN3 => OUT) = (1.0, 1.0);
endspecify
```

Timing Data (for IN1 => OUT)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	1.12	4.64
Falling propagation delay (ns)	0.67	2.97
Rising output slope (ns)	0.80	3.78
Falling output slope (ns)	0.51	2.56

Due to body effect, the worst case delays & slopes will occur for the path IN1 => OUT.

User's Guide

endmodule

The Boolean expression is:

$$OUT = \sim (IN1 \& IN2 \& IN3)$$

NANDX2

Behavioral Model

```
//Verilog HDL for "Lib6710_05", "NANDX2" "behavioral"

module NANDX2 ( OUT, IN1, IN2 );
input IN2;
output OUT;
input IN1;
nand u_n1(OUT, IN1, IN2);
specify
    (IN1 => OUT) = (1.0, 1.0);
    (IN2 => OUT) = (1.0, 1.0);
endspecify
```

endmodule

Timing Data (for IN1 => OUT)

Delays	Input slope = 0.42 ns Output loading = 0.2 pF	Input slope = 1.2 ns Output loading = 1.2 pF
Rising propagation delay (ns)	0.92	4.15
Falling propagation delay (ns)	0.66	3.13
Rising output slope (ns)	0.62	3.33
Falling output slope (ns)	0.48	2.58

Due to body effect, the worst case delays & slopes will occur for the path IN1 => OUT.

User's Guide

The Boolean expression is:

$$OUT = \sim (IN1 \& IN2)$$

Standard Cell: NOR

NOR2X1

Behavioral Model

```
//Verilog HDL for "Lib_6710_05", "NOR2X1" "behavioural"

module NOR2X1 ( OUT, IN1, IN2 );

input IN2;
output OUT;
input IN1;

nor nor2(OUT, IN1, IN2);

specify

(IN1 => OUT) = (1.0, 1.0);
(IN2 => OUT) = (1.0, 1.0);
endspecify

endmodule
```

Timing Data (for IN1 => OUT)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	0.82	3.73
Falling propagation delay (ns)	1.36	6.05
Rising output slope (ns)	0.60	3.16
Falling output slope (ns)	0.96	4.83

The worst case delays & slopes occurs for the path IN1 => OUT.

User's Guide

The Boolean expression is:

$$OUT = \sim (IN1 \mid IN2)$$

Standard Cell: And-Or-Invert

AOI21

Behavioral Model

```
//Verilog HDL for "Lib_6710_05", "A0I21" "behavioral"

module A0I21 ( OUT, IN1, IN2, IN3 );
  input IN3;
  input IN2;
  output OUT;
  input IN1;

assign OUT="((IN1&IN2)|IN3);

specify
(IN1 => OUT) = (1.0, 1.0);
(IN2 => OUT) = (1.0, 1.0);
(IN3 => OUT) = (1.0, 1.0);
endspecify
endmodule
```

Timing Data (for IN1 => OUT)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	0.86	3.78
Falling propagation delay (ns)	0.92	3.83
Rising output slope (ns)	0.61	3.17
Falling output slope (ns)	0.64	3.02

User's Guide

The Boolean expression is:

$$OUT = \sim ((IN1 \& IN2) \mid IN3)$$

AOI22

Behavioral Model

```
//Verilog HDL for "Lib_6710_05", "A0I22" "behavioral"

module A0I22 ( OUT, IN1, IN2, IN3, IN4 );
  input IN4;
  input IN3;
  input IN2;
  output OUT;
  input IN1;

assign OUT="((IN1&IN2)|(IN3&IN4));

specify
(IN1 => OUT) = (1.0, 1.0);
(IN2 => OUT) = (1.0, 1.0);
(IN3 => OUT) = (1.0, 1.0);
(IN4 => OUT) = (1.0, 1.0);
endspecify
endmodule
```

Timing Data (for IN1 => OUT)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	0.85	3.48
Falling propagation delay (ns)	0.99	3.90
Rising output slope (ns)	0.58	2.82
Falling output slope (ns)	0.69	3.08

User's Guide

The Boolean expression is:

$$OUT = \sim ((IN1 \& IN2) \mid (IN3 \& IN4))$$

Standard Cell: Or-And-Invert

OAI21

Behavioral Model

```
//Verilog HDL for "Lib6710_05", "OAI21" "behavioral"

module OAI21 ( OUT, IN1, IN2, IN3 );
   input IN3;
   input IN2;
   output OUT;
   input IN1;

assign OUT="((IN1|IN2)&IN3);

specify
(IN1 => OUT) = (1.0, 1.0);
(IN2 => OUT) = (1.0, 1.0);
(IN3 => OUT) = (1.0, 1.0);
endspecify
endmodule
```

Timing Data (for IN1 => OUT)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	0.86	3.79
Falling propagation delay (ns)	0.91	3.82
Rising output slope (ns)	0.62	3.18
Falling output slope (ns)	0.63	3.02

User's Guide

The Boolean expression is:

$$OUT = \sim ((IN1 \mid IN2) \& IN3)$$

Standard Cell: Multiplexer

MUX2X1

Behavioral Model

```
//Verilog HDL for "Lib_6710_05", "MUX2X1" "behavioral"

module MUX2X1 ( S, IN1, IN2, OUT );
   input IN1, IN2, S;
   output OUT;

assign OUT = S ? IN2 : IN1;

specify

(IN1 => OUT) = (1.0, 1.0);
(IN2 => OUT) = (1.0, 1.0);
(S => OUT) = (1.0, 1.0);
endspecify

endmodule
```

Timing Data (for IN1 => OUT)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	0.71	3.42
Falling propagation delay (ns)	0.78	3.83
Rising output slope (ns)	0.67	3.27
Falling output slope (ns)	0.76	3.84

Timing Data (for S => OUT)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	0.92	3.76
Falling propagation delay (ns)	0.96	4.20
Rising output slope (ns)	0.59	3.22
Falling output slope (ns)	0.69	3.79

User's Guide

The Boolean expression is:

$$OUT = (\sim S \& IN1) | (S \& IN2)$$

Standard Cell: 1-bit Full Adder

FULLADD

Behavioral Model

```
//Verilog HDL for "Lib6710_05", "FULLADD" "behavioral"

module FULLADD ( COUT, SUM, A, B, CIN );
   input A;
   input B;
   input COUT;
   output SUM;

assign {COUT, SUM} = A + B + CIN;

specify

(A => SUM) = (1.0, 1.0);
(B => SUM) = (1.0, 1.0);
(CIN => SUM) = (1.0, 1.0);
(A => COUT) = (1.0, 1.0);
(B => COUT) = (1.0, 1.0);
(CIN => COUT) = (1.0, 1.0);
endspecify
```

endmodule

Timing Data (for A => COUT)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	1.25	4.66
Falling propagation delay (ns)	1.55	6.19
Rising output slope (ns)	0.68	3.63
Falling output slope (ns)	0.86	4.71

Timing Data (for A => SUM)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	1.18	4.54
Falling propagation delay (ns)	1.48	6.10
Rising output slope (ns)	0.66	3.63
Falling output slope (ns)	0.85	4.71

User's Guide

The Boolean expression is:

$$COUT = ((A \mid B) \& CIN) \mid (A \& B)$$

 $SUM = (A \& B \& CIN) \mid ((A \mid B \mid CIN) \& (\sim COUT))$

Standard Cell: D Flip-Flop

DFFRX1

Behavioral Model

```
//Verilog HDL for "Lib6710_05", "DFFRX1" "behavioral"
module DFFRX1 ( Q, QB, CLK, D, CLRB );
   input CLRB;
   input CLK:
   input D:
  output Q;
  output QB;
  reg Q_buf ;
  assign Q = Q_buf ; assign QB = "Q_buf ;
  end
  specify
     \begin{array}{lll} \text{(D => Q) = (1.0, 1.0);} \\ \text{(CLK => Q) = (1.0, 1.0);} \\ \text{(CLRB => Q) = (1.0, 1.0);} \end{array}
     (D => QB) = (1.0, 1.0);
(CLK => QB) = (1.0, 1.0);
(CLRB => QB) = (1.0, 1.0);
  endspecify
endmodule
```

Timing Data (Setup & Hold Times)

Delays	D Input slope = 1.2 ns Clock slope = 0.06 ns	D Input slope = 1.2 ns Clock slope = 0.6 ns
Hold time for rising edge of D (ns)	-0.41	-0.68
Hold time for falling edge of D (ns)	0.27	0.17
Setup time for rising edge of D (ns)	1.32	1.03
Setup time for falling edge of D (ns)	0.93	0.69

Timing Data (CLK => Q)

Delays	Input slope = 0.42 ns Output loading = 0.1 pF	Input slope = 1.2 ns Output loading = 0.6 pF
Rising propagation delay (ns)	1.44	4.89
Falling propagation delay (ns)	2.00	6.74
Rising output slope (ns)	0.87	3.80

User's Guide

The Boolean expression is:

@(posedge CLK | negedge CLRB)

$$Q = D$$
, If $CLRB \sim 0$
 $Q = 0$, else

The D flip-flop is master-slave, rising-edge triggered with an asynchronous active-low clear signal. There exists no drive fight for the internal nodes.

Standard Cell: TIEHI & TIELO

TIEHI

Behavioral Model

```
//Verilog HDL for "Lib_6710_05", "TIEHI" "behavioral"

module TIEHI ( OUT );
   output OUT;
supply1 OUT;
endmodule
```

User's Guide

The TIEHI cell provides a connection to VDD. It has only one output, and no inputs. A diode-connected NMOS device provides a low voltage to the gate of the PMOS transistor. This PMOS device then generates a high voltage at its drain output.

TIELO

Behavioral Model

```
//Verilog HDL for "Lib_6710_05", "TIELO" "behavioral"

module TIELO ( OUT );
   output OUT;

supply0 OUT;
endmodule
```

User's Guide

The TIELO cell provides a connection to ground. It has only one output, and no inputs. A diode-connected PMOS device provides a high voltage to the gate of the NMOS transistor. This NMOS device then generates a low voltage at its drain output.

Standard Cell: Filler

Filler

Layout

User's Guide

A filler cell is used by the place and route tool to fill-in the gaps in the standard cell rows. It has a width of 2.4 μ m, and consists of VDD, GND, & NWELL layers. A single-width filler has only one contact width.

Filler4

Layout

User's Guide

The Filler4 cell has a width of four contacts.

Filler8

User's Guide

The Filler8 cell has a width of eight contacts.