Homework 15: Legendre Transform

This set of problems is adapted from [54].

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a smooth function. f is called **strictly convex** if f''(x) > 0 for all $x \in \mathbb{R}$. Assuming that f is strictly convex, prove that the following four conditions are equivalent:
 - (a) f'(x) = 0 for some point x_0 ,
 - (b) f has a local minimum at some point x_0 ,
 - (c) f has a unique (global) minimum at some point x_0 ,

which it is not stable, what does the graph look like?

(d) $f(x) \to +\infty$ as $x \to \pm \infty$.

The function f is **stable** if it satisfies one (and hence all) of these conditions. For what values of a is the function $e^x + ax$ stable? For those values of a for

2. Let V be an n-dimensional vector space and $F:V\to\mathbb{R}$ a smooth function. The function F is said to be **strictly convex** if for every pair of elements $p,v\in V,\ v\neq 0$, the restriction of F to the line $\{p+xv\,|\,x\in\mathbb{R}\}$ is strictly convex.

The **hessian** of F at p is the quadratic form

$$d^2F_p: v \longmapsto \frac{d^2}{dx^2}F(p+xv)|_{x=0}$$
.

Show that F is strictly convex if and only if d^2F_p is positive definite for all $p \in V$.

Prove the n-dimensional analogue of the result you proved in (1). Namely, assuming that F is strictly convex, show that the four following assertions are equivalent:

- (a) $dF_p = 0$ at some point p_0 ,
- (b) F has a local minimum at some point p_0 ,
- (c) F has a unique (global) minimum at some point p_0 ,
- (d) $F(p) \to +\infty$ as $p \to \infty$.
- 3. As in exercise 2, let V be an n-dimensional vector space and $F:V\to\mathbb{R}$ a smooth function. Since V is a vector space, there is a canonical identification $T_p^*V\simeq V^*$, for every $p\in V$. Therefore, we can define a map

$$L_{\scriptscriptstyle F}:V\longrightarrow V^*$$
 (Legendre transform)

by setting

$$L_{\scriptscriptstyle F}(p) = dF_p \in T_p^*V \simeq V^* \ .$$

Show that, if F is strictly convex, then, for every point $p \in V$, L_F maps a neighborhood of p diffeomorphically onto a neighborhood of $L_F(p)$.

4. A strictly convex function $F:V\to\mathbb{R}$ is **stable** if it satisfies the four equivalent conditions of exercise 2. Given any strictly convex function F, we will denote by S_F the set of $l\in V^*$ for which the function $F_l:V\to\mathbb{R},\ p\mapsto F(p)-l(p)$, is stable. Prove that:

- (a) The set $S_{\scriptscriptstyle F}$ is open and convex.
- (b) $L_{\scriptscriptstyle F}$ maps V diffeomorphically onto $S_{\scriptscriptstyle F}.$
- (c) If $\ell \in S_{{}_F}$ and $p_0 = L_{{}_F}^{-1}(\ell)$, then p_0 is the unique minimum point of the function F_ℓ .

Let $F^*:S_F\to\mathbb{R}$ be the function whose value at l is the quantity $-\min_{p\in V}F_l(p).$ Show that F^* is a smooth function.

The function F^* is called the **dual** of the function F.

- 5. Let F be a strictly convex function. F is said to have **quadratic growth at infinity** if there exists a positive-definite quadratic form Q on V and a constant K such that $F(p) \geq Q(p) K$, for all p. Show that, if F has quadratic growth at infinity, then $S_F = V^*$ and hence L_F maps V diffeomorphically onto V^* .
- 6. Let $F:V\to\mathbb{R}$ be strictly convex and let $F^*:S_{\scriptscriptstyle F}\to\mathbb{R}$ be the dual function. Prove that for all $p\in V$ and all $\ell\in S_{\scriptscriptstyle F}$,

$$F(p) + F^*(\ell) \ge \ell(p)$$
 (Young inequality).

7. On one hand we have $V \times V^* \simeq T^*V$, and on the other hand, since $V = V^{**}$, we have $V \times V^* \simeq V^* \times V \simeq T^*V^*$.

Let α_1 be the canonical 1-form on T^*V and α_2 be the canonical 1-form on T^*V^* . Via the identifications above, we can think of both of these forms as living on $V\times V^*$. Show that $\alpha_1=d\beta-\alpha_2$, where $\beta:V\times V^*\to\mathbb{R}$ is the function $\beta(p,\ell)=\ell(p)$.

Conclude that the forms $\omega_1=d\alpha_1$ and $\omega_2=d\alpha_2$ satisfy $\omega_1=-\omega_2$.

8. Let $F:V\to\mathbb{R}$ be strictly convex. Assume that F has quadratic growth at infinity so that $S_F=V^*$. Let Λ_F be the graph of the Legendre transform L_F . The graph Λ_F is a lagrangian submanifold of $V\times V^*$ with respect to the symplectic form ω_1 ; why? Hence, Λ_F is also lagrangian for ω_2 .

Let $\operatorname{pr}_1:\Lambda_F\to V$ and $\operatorname{pr}_2:\Lambda_F\to V^*$ be the restrictions of the projection maps $V\times V^*\to V$ and $V\times V^*\to V^*$, and let $i:\Lambda_F\hookrightarrow V\times V^*$ be the inclusion map. Show that

$$i^*\alpha_1 = d(\operatorname{pr}_1)^*F .$$

Conclude that

$$i^*\alpha_2 = d(i^*\beta - (pr_1)^*F) = d(pr_2)^*F^*$$
,

and from this conclude that the inverse of the Legendre transform associated with F is the Legendre transform associated with F^{\ast} .