Functions of Several Variables

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

September 27, 2024

Lecture 21

Functions of several variables

Definition: Suppose D is a set of n-tuples of real numbers (x_1, x_2, \ldots, x_n) . A **real-valued function** f on D is a rule that assigns a unique (single) real number

$$w = f(x_1, x_2, \ldots, x_n)$$

to each element in D. Here the symbol w is called **dependent variable** of f and f is said to be the function of several **independent variables** x_1 to x_n .

Domain and Range:

The set D is the function's **domain**. The set of w-values taken by f is called the **range** of the function f.

• The temperature at each point of an object.

- The temperature at each point of an object.
- Distance of a point in the space from the origin.

- The temperature at each point of an object.
- 2 Distance of a point in the space from the origin.

$$f(x,y) = \sqrt{1 - x^2 - y^2}.$$

- The temperature at each point of an object.
- 2 Distance of a point in the space from the origin.

$$f(x,y) = \sqrt{1 - x^2 - y^2}.$$

•
$$f(x, y, z) = \sin(x + y) + |z|$$
.

• If f is a function of two independent variables, we write it as z = f(x, y) and we usually call the independent variables x and y and the dependent variable z, and we picture the domain of f as a region in the xy-plane.

- If f is a function of two independent variables, we write it as z = f(x, y) and we usually call the independent variables x and y and the dependent variable z, and we picture the domain of f as a region in the xy-plane.
- If f is a function of three independent variables, we write it as w = f(x, y, z) and we call the independent variables x, y, and z and the dependent variable w, and we picture the domain as a region in space.

6/29

Function	Domain	Range
$z=\sqrt{y-x^2},$	$\{(x,y) : y \ge x^2\}$	$[0,\infty)$
$z = \frac{1}{x + y}$	$\{(x,y) : x+y\neq 0\}$	$\mathbb{R}-\{0\}$
$z = \sin xy$	Entire plane \mathbb{R}^2	[-1, 1]
$w = \sqrt{x^2 + y^2 + z^2}$	Entire space \mathbb{R}^3	$[0,\infty)$
$w = \frac{1}{x^2 + y^2 + z^2}$	$\mathbb{R}^3 - \{(0,0,0)\}$	$(0,\infty)$
$w = xy \ln z$	$\{(x,y,z): z>0\}$	$(0,\infty)$

Functions of two variables

• If the domain of real-valued function f is a subset of \mathbb{R}^2 (i.e., a some region in xy-plane), then f is called function of two variables.

Functions of two variables

- If the domain of real-valued function f is a subset of \mathbb{R}^2 (i.e., a some region in xy-plane), then f is called function of two variables.
- Here we define an interior point and boundary point of regions in xy-planes (subsets of \mathbb{R}^2).

Interior Point: A point (x_0, y_0) in a region R in the xy-plane is an interior point of R if the region R contains a disk centered (x_0, y_0) .

Interior Point: A point (x_0, y_0) in a region R in the xy-plane is an interior point of R if the region R contains a disk centered (x_0, y_0) .

Interior Point: A point (x_0, y_0) in a region R in the xy-plane is an interior point of R if the region R contains a disk centered (x_0, y_0) .

Boundary Point: A point (x_0, y_0) is a boundary point of R if every disk centered at (x_0, y_0) contains points that lies outside of R as well as points that lies in R.

Interior Point: A point (x_0, y_0) in a region R in the xy-plane is an interior point of R if the region R contains a disk centered (x_0, y_0) .

Boundary Point: A point (x_0, y_0) is a boundary point of R if every disk centered at (x_0, y_0) contains points that lies outside of R as well as points that lies in R.

Interior of a region: The interior points of a region R, as a set, make up the **interior** of the region R.

Interior of a region: The interior points of a region R, as a set, make up the **interior** of the region R.

Interior of a region: The interior points of a region R, as a set, make up the **interior** of the region R.

Open unit disk

Boundary of a region: The boundary points of a region R, as a set, make up the **boundary** of the region R.

Interior of a region: The interior points of a region R, as a set, make up the **interior** of the region R.

Open unit disk

Boundary of a region: The boundary points of a region R, as a set, make up the **boundary** of the region R.

Boundary of unit disk

Open Set: A region *R* is said to be **open** if every point in it is an interior point of the region *R*.

Open Set: A region *R* is said to be **open** if every point in it is an interior point of the region *R*.

Open Set: A region *R* is said to be **open** if every point in it is an interior point of the region *R*.

Close Set: A region *R* is said to be **closed** if it contains all its bounday points.

Open Set: A region *R* is said to be **open** if every point in it is an interior point of the region *R*.

Close Set: A region *R* is said to be **closed** if it contains all its bounday points.

Bounded and Unbounded Regions

Definition 0.1 (Bounded and Unbounded Regions).

A region in the *xy*-plane is **bounded** if it is lies inside a disk of fixed radius. A region is **unbounded** if it is not bounded.

Bounded and Unbounded Regions

Definition 0.1 (Bounded and Unbounded Regions).

A region in the *xy*-plane is **bounded** if it is lies inside a disk of fixed radius. A region is **unbounded** if it is not bounded.

Examples: Line segments, triangles, interior of triangles, rectangles, circles and disks are bounded regions (sets) in *xy*-plane.

Bounded and Unbounded Regions

Definition 0.1 (Bounded and Unbounded Regions).

A region in the *xy*-plane is **bounded** if it is lies inside a disk of fixed radius. A region is **unbounded** if it is not bounded.

Examples: Line segments, triangles, interior of triangles, rectangles, circles and disks are bounded regions (sets) in *xy*-plane.

The lines, coordinate axes, quadrants, half-planes, and the full plane itself are unbounded regions.

Describe the domain of the functions $f(x, y) = \sqrt{y - x^2}$.

Describe the domain of the functions $f(x, y) = \sqrt{y - x^2}$.

Describe the domain of the functions

$$f(x,y)=\sqrt{y-x^2}.$$

Ans. The domain is given by $D = \{(x, y) : y - x^2 \ge 0\}$. It is closed, not open and it is unbonded.

Describe the domain of the functions

$$f(x,y)=\sqrt{y-x^2}.$$

Ans. The domain is given by $D = \{(x, y) : y - x^2 \ge 0\}$. It is closed, not open and it is unbonded.

Describe the domain of the function

$$f(x,y) = \frac{1}{\ln(25 - x^2 - y^2)}.$$

Graphs, Level Curves and Contours of Functions of Two Variables

• How to draw the graph two variable function z = f(x, y)?

Graphs, Level Curves and Contours of Functions of Two Variables

- How to draw the graph two variable function z = f(x, y)?
- There are two standard ways, one is to draw and labels the curves in the domain on which f has a constant value.

Graphs, Level Curves and Contours of Functions of Two Variables

- How to draw the graph two variable function z = f(x, y)?
- There are two standard ways, one is to draw and labels the curves in the domain on which f has a constant value.
- The other is to sketch the surface z = f(x, y) in space.

Level Curves and Graph of Two Variable Function

Definition 0.2.

• The set of points in the plane where a function f(x, y) has a constant value f(x, y) = c is called a level curve of f.

Definition 0.2.

- The set of points in the plane where a function f(x, y) has a constant value f(x, y) = c is called a level curve of f.
- The set of all points (x, y, f(x, y)) in space, for (x, y) in the domain of f, is called the graph of f.

Definition 0.2.

- The set of points in the plane where a function f(x, y) has a constant value f(x, y) = c is called a level curve of f.
- The set of all points (x, y, f(x, y)) in space, for (x, y) in the domain of f, is called the graph of f.
- The graph of f is also called surface z = f(x, y).

Partial Derivatives

18 / 29

Contours of Functions of Two Variables

Definition 0.3.

• The curve in the space in which the plane z = c cuts a surface z = f(x, y) is made up of the points that represent the function value f(x, y) = c.

Contours of Functions of Two Variables

Definition 0.3.

- The curve in the space in which the plane z = c cuts a surface z = f(x, y) is made up of the points that represent the function value f(x, y) = c.
- It is called the contour curve f(x, y) = c to the distinguish it from the level curve f(x, y) = c in the domain of f.

Contour of Two Variable Function

The contour curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the plane z = 75.

The level curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the xy-plane.

Level curves of functions of two variables

Find the domain, range and the level curve for the following functions passing through the given point.

Level curves of functions of two variables

Find the domain, range and the level curve for the following functions passing through the given point.

•
$$f(x,y) = 16 - x^2 - y^2$$
, $(2\sqrt{2}, \sqrt{2})$.

Level curves of functions of two variables

Find the domain, range and the level curve for the following functions passing through the given point.

•
$$f(x,y) = 16 - x^2 - y^2$$
, $(2\sqrt{2}, \sqrt{2})$.

$$f(x,y) = \sqrt{x^2 - 1}, \quad (1,0).$$

Functions of Three Variable

• The functions of three variables mean by the real-valued functions whose domains are subsets of \mathbb{R}^3 (regions in space).

Functions of Three Variable

- The functions of three variables mean by the real-valued functions whose domains are subsets of \mathbb{R}^3 (regions in space).
- Let $\varepsilon > 0$ and (x_0, y_0, z_0) be a point in space. We define **open ball** of radius $\varepsilon > 0$ centered at (x_0, y_0, z_0) by the set

$$\{(x,y,z)\in\mathbb{R}^3: \sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}<\varepsilon\}$$

Interior Point: A point (x_0, y_0, z_0) in a region R in space is an interior point of R if the region R contains an open ball centered at (x_0, y_0, z_0) of some positive radius.

Interior Point: A point (x_0, y_0, z_0) in a region R in space is an interior point of R if the region R contains an open ball centered at (x_0, y_0, z_0) of some positive radius.

Interior Point: A point (x_0, y_0, z_0) in a region R in space is an interior point of R if the region R contains an open ball centered at (x_0, y_0, z_0) of some positive radius.

Boundary Point: A point (x_0, y_0, z_0) is a boundary point of R if every open ball centered at (x_0, y_0, z_0) contains points that lies outside of R as well as points that lies in R

Interior Point: A point (x_0, y_0, z_0) in a region R in space is an interior point of R if the region R contains an open ball centered at (x_0, y_0, z_0) of some positive radius.

Boundary Point: A point (x_0, y_0, z_0) is a boundary point of R if every open ball centered at (x_0, y_0, z_0) contains points that lies outside of R as well as points that lies in R

Interior of a region: The interior points of a region R, as a set, make up the interior of the region R.

Interior of a region: The interior points of a region R, as a set, make up the interior of the region R.

Examples:

 The interior of the closed half-space z ≥ 0 is the open half-space z > 0.

Interior of a region: The interior points of a region R, as a set, make up the interior of the region R.

Examples:

- The interior of the closed half-space z ≥ 0 is the open half-space z > 0.
- The interior of an open ball is itself.

Interior of a region: The interior points of a region R, as a set, make up the interior of the region R.

Examples:

- The interior of the closed half-space z ≥ 0 is the open half-space z > 0.
- The interior of an open ball is itself

Boundary of a region:

The boundary points of a region R, as a set, make up the **boundary** of the region R.

Interior of a region: The interior points of a region R, as a set, make up the interior of the region R.

Examples:

- The interior of the closed half-space z ≥ 0 is the open half-space z > 0.
- The interior of an open ball is itself

Boundary of a region:

The boundary points of a region *R*, as a set, make up the **boundary** of the region *R*.

Examples:

 The boundary of the closed half-space z ≥ 0 is the plane z = 0.

Interior of a region: The interior points of a region R, as a set, make up the interior of the region R.

Examples:

- The interior of the closed half-space z ≥ 0 is the open half-space z > 0.
- The interior of an open ball is itself.

Boundary of a region:

The boundary points of a region *R*, as a set, make up the **boundary** of the region *R*.

Examples:

- The boundary of the closed half-space z ≥ 0 is the plane z = 0.
- The boundary of an open ball is the surface

Open Set: A region *R* is said to be **open** if every point in it is an interior point of the region *R*.

Open Set: A region *R* is said to be **open** if every point in it is an interior point of the region *R*.

Examples:

The open half-space
 z > 0 is an open set.

Open Set: A region *R* is said to be **open** if every point in it is an interior point of the region *R*.

Examples:

- The open half-space
 z > 0 is an open set.
- Every open ball is an open set.

Open Set: A region *R* is said to be **open** if every point in it is an interior point of the region *R*.

Close Set: A region *R* is said to be **closed** if it contains all its bounday points.

Examples:

- The open half-space
 z > 0 is an open set.
- Every open ball is an open set.

Open Set: A region *R* is said to be **open** if every point in it is an interior point of the region *R*.

Examples:

- The open half-space
 z > 0 is an open set.
- Every open ball is an open set.

Close Set: A region *R* is said to be **closed** if it contains all its bounday points.

Examples:

• The plane z = 0.

Open Set: A region *R* is said to be **open** if every point in it is an interior point of the region *R*.

Examples:

- The open half-space
 z > 0 is an open set.
- Every open ball is an open set.

Close Set: A region *R* is said to be **closed** if it contains all its bounday points.

Examples:

- The plane z = 0.
- The surface of an open ball.

Bounded and Unbounded Regions

Definition 0.4 (Bounded and Unbounded Regions).

A region in the space is **bounded** if it is lies inside an open ball of fixed radius. A region is **unbounded** if it is not bounded.

Bounded and Unbounded Regions

Definition 0.4 (Bounded and Unbounded Regions).

A region in the space is **bounded** if it is lies inside an open ball of fixed radius. A region is **unbounded** if it is not bounded.

Examples: Line segments, triangles, rectangles, open balls are bounded regions (sets) in space.

Bounded and Unbounded Regions

Definition 0.4 (Bounded and Unbounded Regions).

A region in the space is **bounded** if it is lies inside an open ball of fixed radius. A region is **unbounded** if it is not bounded.

Examples: Line segments, triangles, rectangles, open balls are bounded regions (sets) in space.

The lines, coordinate axes, octants, half-spaces, and the full space itself are unbounded regions.

Definition 0.5.

The set of points (x, y, z) in space where a function f(x, y, z) of three independent variables has a constant value f(x, y, z) = c is called a level surface of f.

Example. Discribe the level surfaces of the function

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
.

$$f(x,y,z) = \sqrt{x^2 + y^2 + 2z}.$$

•
$$f(x, y, z) = \sqrt{x^2 + y^2 + 2z}$$
.

2
$$f(x, y, z) = \ln(x + z)$$
.

•
$$f(x, y, z) = \sqrt{x^2 + y^2 + 2z}$$
.

2
$$f(x, y, z) = \ln(x + z)$$
.

$$f(x, y, z) = z - x^2 - y^2$$

