Chrysler CCD/SCI Scanner UART Protocol

Last update: 2018.07.26

Preliminary documentation, not complete!

1. UART Frame Format

Start of Frame		Used for checksum calculation					
SOF	Data I	Data length		Data description		EOF	
SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM	
\$33	\$00	\$04	\$45	\$01	\$00 \$22	\$9F	

Table 1. Serial Frame Format.

- 1.1 SYNC byte: fixed value (\$33) at the beginning of every packet.
- 1.2 **LENGTH** bytes: number of bytes following until the CHECKSUM byte is reached. Size: 2 bytes (High Byte + Low Byte).
- 1.3 **DATA CODE** byte: contains the source/target of the packet and broadly describes what's inside the packet. Size: 1 byte.
- 1.4 SUB-DATA CODE byte: describes the packet further if needed. Reads \$00
 if the DATA CODE byte is enough to explain the packet's meaning. Size:
 1 byte
- 1.5 **PAYLOAD** byte(s): optional. Arbitrary data can be stored here (e.g. CCD/SCI-bus messages) and sent later to the laptop when connected. Size: 0-1018 bytes (max. 1024-6 bytes)
- 1.6 **CHECKSUM** byte: every byte after the SYNC byte is summed and the lower byte of the result is kept as error detection. Size: 1 byte.

2. UART Frames in detail

2.1 DATA CODE byte description

	DATA CODE byte									
High nibble Low nibble										
Sou	rce	Tar	get	DC command						
bit 7	bit 6	bit 5	bit 4	bit 3 bit 2 bit 1 bit			bit 0			
0	0	1	0	0 1 1 0						

Table 2. DATA CODE byte description.

Bit 7:6 describe the source of the packet:

- 2b00: USB 2b01: CCD-bus
- 2b10: SCI-bus (PCM) 2b11: SCI-bus (TCM)

Bit 5:4 describe the target of the packet:

- 2b00: USB 2b01: CCD-bus
- 2b10: SCI-bus (PCM) 2b11: SCI-bus (TCM)

```
Bit 3:0 contain the actual DC (Data Code) command ($00-$0F) that broadly
describes what this packet means:
- 4b0000 ($00): Reboot scanner
- 4b0001 ($01): Handshake request (for USB-connection)
- 4b0010 ($02): Status report request
- 4b0011 ($03): Change scanner settings
- 4b0100 ($04): General request to the scanner
- 4b0101 ($05): General response from the scanner
- 4b0110 ($06): Send message to the CCD/SCI-bus
- 4b0111 ($07): Send message(s) repeatedly to the CCD/SCI-bus
- 4b1000 ($08): Stop message flow to the CCD/SCI-bus
- 4b1001 ($09): Message forwarded from the CCD/SCI-bus
- 4b1010 ($0A): Run self-diagnostics
- 4b1011 ($0B): Create scanner settings backup
- 4b1100 ($0C): Restore scanner settings
- 4b1101 ($0D): Restore default scanner settings
- 4b1110 ($0E): Debug
- 4b1111 ($0F): OK/ERROR
```

2.2 SUB-DATA CODE byte description

SUB-DATA CODE byte								
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0							bit 0	
0	1	0	0	1	1	0	0	

Table 3. SUB-DATA CODE byte description.

```
Related DC command: $03 (Change scanner settings)
- $00: NOT USED
- $01-$FF: RESERVED
Related DC command: $04 (General request from the scanner)
- $00: NOT USED
- $01-$FF: RESERVED
Related DC command: $05 (General response from the scanner)
- $00: NOT USED
- $01-$FF: RESERVED
Related DC command: $06 (Send message to the CCD/SCI-bus)
- $00-$FF: RESERVED
      PAYLOAD contains the message
Related DC command: $07 (Send message(s) repeatedly to the CCD/SCI-bus)
- $00: Same message over and over again
- $01: Variable message (explained in PAYLOAD)
- $02-$FF: RESERVED
      PAYLOAD contains the message (described later on)
Related DC command: $09 (Message forwarded from the CCD/SCI-bus)
- $00: NOT USED
- $01-$FF: RESERVED
      PAYLOAD contains the message
Related DC command: $0E (Debug)
- $00: NOT USED
- $01-$FF: RESERVED
Related DC command: $0F (OK/ERROR)
- $00: OK: general acknowledgement
- $01: ERROR: SYNC, invalid value
- $02: ERROR: LENGTH, invalid value
```

- \$03: ERROR: DATA CODE, packet source and target cannot be the same

- \$04: ERROR: DATA CODE, packet source and target conflict
- \$05: ERROR: DATA CODE, invalid target
- \$06: ERROR: DATA CODE, invalid DC command
- \$07: ERROR: SUB-DATA CODE, invalid value
- \$08: ERROR: SUB-DATA CODE, not enough information
- \$09: ERROR: PAYLOAD, missing value(s)
- \$0A: ERROR: PAYLOAD, invalid value(s)
- \$0B: ERROR: CHECKSUM, invalid value
- \$0C: ERROR: PACKET, invalid frame format
- \$0D: ERROR: PACKET, timeout occurred
- \$0E: ERROR: PACKET, unknown source
- \$0F: ERROR: SCANNER, internal error
- \$FF: ERROR: FATAL
- \$10-\$FE: RESERVED

3. Example packets (don't use these yet)

3.1 Sent from laptop:

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$33	\$00	\$02	\$00	\$00		\$02

Table 4. Reboot scanner (simplest packet there is).

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$33	\$00	\$02	\$01	\$00		\$03

Table 5. Handshake request (another simple packet).

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$33	\$00	\$17	\$01	\$00	\$43 \$48 \$52 \$59 \$53 \$4C \$45 \$52 \$43 \$43 \$44 \$53 \$44 \$53 \$43 \$49 \$53 \$43 \$41 \$4E \$4E \$45 \$52	\$37

Table 6. Handshake response.

In the PAYLOAD section the scanner responds with an ASCII encoded text:

\$43 \$48 \$52 \$59 \$53 \$4C \$45 \$52 \$43 \$43 \$44 \$53 \$43 \$49 \$53 \$43 \$41 \$4E \$4E \$45 \$52 = CHRYSLERCCDSCISCANNER

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$33	\$00	\$02	\$02	\$00		\$04

Table 7. Scanner status report request.

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$33	\$00	\$XX	\$02	\$00	\$XX \$XX \$XX \$XX \$XX \$XX \$XX \$XX	\$CS

Table 8. Scanner status report response.

\$XX \$XX = some bytes describing something...

XX XX = same

XX XX = same

\$XX \$XX = same

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$33	\$00	\$08	\$16	\$00	\$B2 \$20 \$22 \$00 \$00 \$F4	\$06

Table 9. Send a DRB request message to the CCD-bus.

DRB request message: \$B2 \$20 \$22 \$00 \$00 \$F4

- \$B2: DRB request message ID byte
- \$20: target module on the CCD-bus (Body Control Module, BCM)
- \$22: command: read RAM/ROM/EEPROM value
- \$00: RAM/ROM/EEPROM address high byte
- \$00: RAM/ROM/EEPROM address low byte
- \$F4: checksum

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$33	\$00	\$08	\$49	\$00	\$F2 \$20 \$22 \$15 \$EA \$33	\$B7

Table 10. Response to a DRB request message from the CCD-bus.

DRB response message: \$F2 \$20 \$22 \$15 \$EA \$33

- \$F2: DRB response message ID byte
- \$20: responding module on the CCD-bus (Body Control Module, BCM)
- \$22: responding to this command: read RAM/ROM/EEPROM
- \$15: RAM/ROM/EEPROM value at the previously given 16-bit address (\$0000)
- \$EA: RAM/ROM/EEPROM value at the next 16-bit address (\$0001)
- \$F7: checksum

Convert DATA CODE byte from hexadecimal to binary and refer to Table 2. to figure out the source, target and command bits.