Addressing Defect Issues

DAT-475 Project Three Hayden Goracke

hayden.goracke@snhu.edu

Southern New Hampshire University

Overview

Pareto Charts

Potential Causes

Hypothesis Testing

Conclusion

Agenda

Overview

Why is this presentation important?

There has been a recent increase in demand for our manufactured products, and with that increase in demand, there has also been in increase in the number of defects found with our electronic boards.

Facility Defects

- 80% of defects attributed to:
 - Bad solder bridge
 - · Excessive solder
 - Missing components
 - Lifted components
 - Damaged components
 - Damaged pins

Model 595310-001-00 Defects

- 80% of defects attributed to:
 - Excessive solder
 - Bad solder bridge
 - Damaged components
 - Damaged pins

Model 595407-XXX-00

- 80% of defects attributed to:
 - Bad solder bridge
 - Missing components
 - · Lifted components
 - Damaged components
 - · Excessive solder
 - Reversed components

Model 595481-00X-00

- 80% of defects are attributed to:
 - Bad solder bridge
 - · Lifted components
 - · Wrong components
 - Damaged components
 - Damaged pins
 - Missing components
 - Excessive solder
 - Reversed components

Potential Causes

People

Quality Control

Machining

Materials

Which model should we focus on first?

• Pinpoint which model has the most issues to improve efficiency in defect reduction.

Hypothesis Testing

Hypothesis Testing

Hypotheses

- · Null hypothesis
 - There is no statistically significant difference between the mean defect percentage among Model 1, Model 2, and Model 3.
- Alternative hypothesis
 - At least one model has a statistically significant difference in mean defect percentage compared to others.

Methodology

- · Mean defect percentages
 - Model 1: 13.70%
 - Model 2: 3.05%
 - Model 3: 3.30%
- ANOVA Test
 - 5% level of significance
 - p-value = 0.0226
- · Post-Hoc Test: Tukey's HSD
 - Model 2 vs Model 1: p-value = 0.0363(S)
 - Model 3 vs Model 1: p-value = 0.0409(S)
 - Model 3 vs Model 2: p-value = 0.9975(NS)

Defect Percentage By Model

Conclusion

