Titre: Lemme de Morse

Recasages: 158,170,171,214,215

Thème : Algèbre linéaire, calcul différentiel.

Références : Rouvière - Petit guide du calcul différentiel (p. 344)

Théorème 1. Soient $U \in \mathbb{R}^n$ un ouvert, $f: U \to \mathbb{R}$ une fonction de classe C^3 , telle que $df_0 = 0$ et d^2f_0 est non dégénérée de signature (p, n - p). Alors il existe deux voisinages de l'origine dans \mathbb{R}^n , liés par un C^1 difféomorphisme $\varphi: x \mapsto u$, avec $\varphi(0) = 0$ et

$$f(x) - f(0) = u_1^2 + \dots + u_p^2 - u_{p+1}^2 - \dots - u_n^2 = \sum_{i=1}^p u_i^2 - \sum_{i=p+1}^n u_i^2$$

On commence par appliquer la formule de Taylor avec reste intégral sur f

$$f(x) = f(0) + df_0(x) + \int_0^1 \frac{(1-t)^1}{1!} d^2 f_{tx}(x,x) dt$$

ainsi, $f(x) - f(0) = {}^{t}xQ(x)x$ avec $Q(x) = \int_{0}^{1} (1-t)d^{2}f_{tx}dt$ est une matrice symétrique réelle. Nous montrons un lemme de réduction des matrices symétriques inversibles.

<u>Lemme</u> 2. Soit $A_0 \in Gl_n(\mathbb{R}) \cap S_n(\mathbb{R})$. Il existe un voisinage V de A_0 dans $S_n(\mathbb{R})$ et $\rho : V \to Gl_n(\mathbb{R})$ de classe \mathbb{C}^1 telle que

$$\forall A \in V, A = {}^t \rho(A) A_0 \rho(A)$$

Démonstration. Étape 1 : On pose

$$\chi: \mathcal{M}_n(\mathbb{R}) \longrightarrow S_n(\mathbb{R})$$

$$M \longmapsto {}^t M A_0 M$$

Par régularité du produit et de la transposition des matrices, cette application est polynômiale, donc de classe \mathbb{C}^1 . Pour $H \in \mathcal{M}_n(\mathbb{R})$, on a

$$\chi(I_n + H) - \chi(I_n) = {}^t(I_n + H)A_0(I_n + H) - I_nA_0I_n$$

= ${}^tHA_0I_n + I_nA_0{}^tH + {}^tHA_0H$
= ${}^t(A_0H) + A_0H + o(\|H\|)$

Donc $d\chi_{I_n}(H) = {}^t(A_0H) + A_0H$ et $H \in \text{Ker } d\chi_{I_n} \Leftrightarrow A_0H$ est antisymétrique.

Étape 2 : On voudrait appliquer le théorème d'inversion locale à χ , mais comme $d\chi_{I_n}$ n'est pas inversible, on va devoir être plus judicieux. Posons $F = \{H \in \mathcal{M}_n(\mathbb{R}) \mid A_0H \in S_n(\mathbb{R})\}$ et $\psi = \chi_{|F} : F \to S_n(\mathbb{R})$, on a $I_n \in F$ et Ker $d\psi_{I_n} = \text{Ker } d\chi_{I_n} \cap F = \{0\}$. Comme F et $S_n(\mathbb{R})$ ont même dimension, $d\psi_{I_n}$ est un isomorphisme, et comme ψ est de classe \mathbb{C}^1 , par inversion locale, il existe $U \subset F$ un voisinage ouvert de I_n tel que ψ soit un \mathbb{C}^1 difféomorphisme entre U et $V = \psi(U)$.

Quitte à remplacer U par $U' = U \cap Gl_n(\mathbb{R})$, (ceci est licite car $Gl_n(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$), on peut supposer que U est inclus dans $Gl_n(\mathbb{R})$. Ainsi, V est un voisinage ouvert de $A_0 = \psi(I_n)$ dans $S_n(\mathbb{R})$ avec

$$\forall A \in V, A = {}^t\psi^{-1}(A)A_0\psi^{-1}(A)$$

on pose alors $\rho := \psi^{-1}$ qui convient.

Ici, Q(x) est symétrique, avec $Q(0) = \frac{1}{2}d^2f_0 \in Gl_n(\mathbb{R})$, par notre lemme, il existe V un voisinage de Q(0) dans $S_n(\mathbb{R})$, et $\rho: V \to Gl_n(\mathbb{R})$ de classe \mathbb{C}^1 tel que $A = {}^t\rho(A)Q(0)\rho(A)$ pour tout $A \in V$. Par continuité de Q (continuité sous intégrale) il existe W un voisinage de 0 dans \mathbb{R}^n tel que

$$\forall x \in W, Q(x) \in V \text{ et } Q(x) = {}^{t}(Q(x))Q(0)\rho(Q(x))$$

On pose $M(x):=\rho(Q(x))$ et y=M(x)x, on a alors $f(x)-f(0)={}^tyQ(0)y$. Par hypothèse sur d^2f_x , il existe $A\in Gl_n(\mathbb{R})$ telle que ${}^tAQ(0)A=\begin{pmatrix}I_p&0\\0&-I_{n-p}\end{pmatrix}$, en posant $u=A^{-1}y$, on a

$$f(x) - f(0) = {}^{t}yQ(0)y = {}^{t}u^{t}AQ(0)Au = \sum_{i=1}^{p} u_{i}^{2} - \sum_{i=p+1}^{n} u_{i}^{2}$$

On pose alors $\varphi(x) = A^{-1}M(x)x$, on a bien $\varphi(0) = 0$, et φ est de classe \mathcal{C}^1 sur W. Puis, pour $h \in W$, $\varphi(h) - \varphi(0) = A^{-1}M(h)h = A^{-1}M(0).h + o(||h||)$ d'où $d\varphi_0 = A^{-1}M(0)$ qui est inversible. Par le théorème d'inversion locale, φ induit un \mathbb{C}^1 -difféomorphisme entre deux voisinages de 0, ce qui donne le résultat.