

FIG. 1

FIG. 2-A

1/131/11 CAA AAC TTC CTA ATT TCT CAA TGT ATT ACT AAT TAA TAG AAA GTT TGT TTT ATT TTC ATG gln asn phe leu ile ser gln cys ile thr asn OCH AMB lys val cys phe ile phe met 91/31 TGG ATA AAT GAA TTA TTT TCT CTA TAC CGG CAT TTG CAT GCA ATT TTG TAT GAC TAA AAT trp ile asn glu leu phe ser leu tyr arg his leu his ala ile leu tyr asp OCH asn 121/41 151/51 GTA AAT AAT TAT TTG CAT GCA ATT ATG TGG GCA TGT CAT AGT TTT TCA AGA ATA ATA ATA val asn asn tyr leu his ala ile met trp ala cys his ser phe ser arg ile ile ile 181/61 211/71 AGA TGA CAT GAC AAG ATA TTC AAA AAA ATT TGA TGA TTA TAT GTT GAA GTT AAT TGA ACT arg OPA his asp lys ile phe lys lys ile OPA OPA leu tyr val glu val asn OPA thr 241/81 271/91 AAA AAG TAA TTA AGT AAA ATG GAC ATA GGA AAC AAC GTG GAA GAA CAT CAG GAA TAT ATT lys lys OCH leu ser lys met asp ile gly asn asn val glu glu his gln glu tyr ile 301/101 331/111 TCT GGA CCA TAC ATT GCA TTA ATT AAT GGC ACT AAT CAA CAA AGG GAA CCG AAT AAA AAG ser gly pro tyr ile ala leu ile asn gly thr asn gln gln arg glu pro asn lys lys 361/121 391/131 TTG AAA AAC ATA ATA ATT GCA ACG TTG ATT GCA ATC TTT ATA GTT TTG GTT GCT GTA leu lys asn ile ile ile ala thr leu ile ala ile phe ile val leu val val thr val 451/151 TCT TTG TAT ATT ACT AAT AAC ACC AGT GAC AAA ATT GAC GAT TTC GTA CCT GGT GAT TAT ser leu tyr ile thr asn asn thr ser asp lys ile asp asp phe val pro gly asp tyr 511/171 GTT GAT CCA GCA ACT AGG GAG TAT AGA AAG AGT TTT GAG GAG TTC AAA AAG AAA TAC CAC val asp pro ala thr arg glu tyr arg lys ser phe glu glu phe lys lys lys tyr his 541/181 571/191 AAA GTA TAT AGC TCT ATG GAG GAG GAA AAT CAA AGA TTT GAA ATT TAT AAG CAA AAT ATG lys val tyr ser ser met glu glu glu asn gln arg phe glu ile tyr lys gln asn met 601/201 631/211 AAC TIT ATT AAA ACA ACA AAT AGC CAA GGA TTC AGT TAT GTG TTA GAA ATG AAT GAA TTT ash phe ile lys thr thr ash ser qln qly phe ser tyr val leu qlu met ash qlu phe 661/221 691/231 GGT GAT TTG TCG AAA GAA GAG TTT ATG GCA AGA TTC ACA GGA TAT ATA AAA GAT TCC AAA gly asp leu ser lys glu glu phe met ala arg phe thr gly tyr ile lys asp ser lys 721/241 751/251 GAT GAT GAA AGG GTA TIT AAG TCA AGT AGA GTC TCA GCA AGC GAA TCA GAA GAG GAA TIT asp asp glu arg val phe lys ser ser arg val ser ala ser glu ser glu glu glu phe 781/261 811/271 GTT CCC CCA AAT TCT ATT AAT TGG GTG GAA GCT GGA TGC GTG AAC CCA ATA AGA AAT CAA val pro pro asn ser ile asn trp val glu ala gly cys val asn pro ile arg asn gln 841/281 871/291 AAG AAT TGT GGG TCA TGT TGG GCT TTC TCT GCT GTT GCA GCT TTG GAG GGA GCA ACG TGT lys asn cys gly ser cys trp ala phe ser ala val ala ala leu glu gly ala thr cys 931/311 GCT CAA ACA AAC CGA GGA TTA CCA AGC TTG AGT GAA CAG CAA TTT GTT GAT TGC AGT AAA ala gln thr asn arg gly leu pro ser leu ser glu gln gln phe val asp cys ser lys

FIG. 2-B

961/321		991/331
CAA AAT GGC AAC TTT GGA TGT GAT	GGA GGA	ACA ATG GGA TTG GCT TTT CAG TAT GCA ATT
gln asn gly asn phe gly cys asp	gly gly	thr met gly leu ala phe gln tyr ala ile
1021/341		1051/351
AAG AAC AAA TAT TTA TGT ACT AAT	GAT GAT	TAC CCT TAC TIT GCT GAG GAA AAA ACA TGT
lys asn lys tyr leu cys thr asr	asp asp	tyr pro tyr phe ala glu glu lys thr cys
1081/361		1111/371
ATG GAT TCA TTT TGC GAG AAT TAT	ATA GAG	ATT CCT GTA AAA GCC TAC AAA TAT GTA TTT
met asp ser phe cys glu asn tyr	`ile glu	ile pro val lys ala tyr lys tyr val phe
1141/381		1171/391
CCG AGA AAT ATT AAT GCA TTA AAG	ACT GCT	TTG GCT AAG TAT GGA CCA ATT TCA GTT GCA
	thr ala	leu ala lys tyr gly pro ile ser val ala
1201/401		1231/411
		TAT AAA AGT GGA GTA TTC GAT GCT CCT TGT
	gln phe	tyr lys ser gly val phe asp ala pro cys
1261/421		1291/431
		GTT GAA TAT GAT ATG GAT GAA GAT ACT AAT
1321/441	vai ieu	val glu tyr asp met asp glu asp thr asn
•	ACC TCC	1351/451 GGT GAA GCG TGG GGA GAG AAA GGA TAC ATC
		gly glu ala trp gly glu lys gly tyr ile
1381/461	ser tip	1411/471
,	AAG GGA	ACA TGT GGT ATA TTG GTT GAG CCA GTG TAT
		thr cys gly ile leu val glu pro val tyr
1441/481	173 917	1471/491
•	GCA TTT	CAG TGT TTG ACT AAG TAA TTC TAA TAT ATT
		gln cys leu thr lys OCH phe OCH tyr ile
1501/501	•	1531/511
TCA GCA TTC TCA GAG ATA ATT TTA	GTT CAA	ATG AAC AAT CTA TTC ATA TAT ATA AGC ATT
		met asn asn leu phe ile tyr ile ser ile
1561/521	•	1591/531
CCA TAC TTA ATT ATT TAT TGA TTT	TAA TAA	AAT GTT TGG CTA AAG AAA GCA ATC AAG ATA
pro tyr leu ile ile tyr OPA phe	OCH OCH	asn val trp leu lys lys ala ile lys ile
1621/541		1651/551
ATT TAT GGA CGT TCT ATT GTT CTT	ACT TCA	ATA ATA ATC CTT
ile tyr gly arg ser ile val leu	thr ser	ile ile leu

FIG. 3-A

met 1	asp	ile	gly	asn 5	asn	val	glu	glu	his 10	gln	glu	tyr	ile	ser 15
gly	pro	tyr	ile	ala 20	leu	ile	asn	gly	thr 25	asn	gln	gln	arg	glu 30
pro	asn	lys	lys	leu 35	lys	asn	ile	ile	ile 40	ala	thr	leu	ile	ala 45
ile	phe	ile	val	leu 50	val	val	thr	val	ser 55	leu	tyr	ile	thr	asn 60
asn	thr	ser	asp	1ys 65	ile	asp	asp	phe	val 70	pro	gly	asp	tyr	val 75
·	pro			80	-				85					1ys 90
	lys			95					100					gln 105
arg	phe	glu	ile	tyr 110	lys	gln	asn	met	asn 115	phe	ile	lys	thr	thr 120
	ser	-		125					130					gly 135
	leu			140					145					150
	asp			155					160		ser		_	val 165
	ala			170					175	•	pro			ile 180
	trp			185					190					lys 195
	cys			200					205					210
_	ala			215					220					ser 225
_	gln			230					235					240
•	asp	-	•	245		_			250					255
	lys			260					265					270
_	lys			275					280					ile 285
	val			290					295					300
	lys			305					310					315
-	ala	·	_	320	-				325					phe 330
asp	ala	pro	cys	gly	thr	lys	val	asn	hıs	gly	val	val	reu	val

FIG. 3-B

			3	335				3	340				3	345
glu	tyr	asp	met	asp	glu	asp	thr	asn	lys	glu	tyr	trp	leu	val
				350					355					360
arg	asn	ser	trp	gly	glu	ala	trp	gly	glu	lys	gly	tyr	ile	lys
				365					370					375
leu	ala	leu	his	ser	gly	lys	lys	gly	thr	cys	gly	ile	leu	val
				380					385					390
glu	pro	val	tyr	pro	val	ile	asn	gln	ser	ile				
				395					400	403	,	SEQ 1	ID NO): 4

09
QEYISGPYIA LINGTNQQRE PNKKLKNIII ATLIAIFIVL VVTVSLYITN
130 RLIQLFESWM LKHNKIYKNI DEKIYRFEIF KDNLKYIDET NKKNNSYWLG EYRKSFEEFK KKYHKVYSSM EEENQRFEIY KQNMNFIKTT NSQGFSYVLE
AGNYII IELSYEEVLN DGDVNIPEYV DWRQKGAVIP VKNQGSCGSC KDSKDDERVF KSSRVSASES EEEFVPPNSI NWVEAGCVNP IRNQKNCGSC
GIIKIRTG.N LNEYSEQELL DCDRRSYG CNGGYPWSAL QLVAQY.GIH YRNTYPYEGV GATCAQTNRG LPSLSEQQFV DCSKQNGNFG CDGGTMGLAF QYAIKNKYLC TNDDYPYFAE
PISFSEQQMV DCSTENYG CDGGNPFYAF LYMINN.GVC LGDEYPYKGH
340 RQVQPYNEGA LLYSIANQ PVSVVLEAAG KDFQLYRGGI FVGPCGNKVD KYVEDDNINA LKTALAKY G DISVAIDADO IDEOFYKSGV FDADGGIKVN
EDFVLYSGGV
SEQ ID NO: 7
SEQ ID NO: 8

7/9

FIG. 5

FIG. 6

FIG. 7A

- 1. AAAGGATCCT GC/TGGIA/TG/CITG C/TTGGGCITT
- 2. TTTGAATTCC CAIG/CA/TA/GTTIC/T T/GIAC/TIATCCA A/GTA
- 1. CCAGGTACCA TGGACATAGG AAAC
- 2. CCCTCTAGAT GCTTATATTG ATTG

FIG. 7B

