# ClipCap: CLIP Prefix for Image Captioning

논문 리뷰

## **INDEX**

1. Introduction

2. Method

3. Experiments

4. Conclusion

## Introduction

## ClipCap

- OpenAl 2021.11 발표 논문
- Image Captioning task 해결하기 위한 접근법 중 하나
- Image captioning?
  - : 주어진 입력 이미지에 대한 설명 캡션을 예측하여 생성하는 것
    - 1) 이미지를 통해 개체와 개체간의 관계를 파악할 수 있는 유의미한 특징을 추출
    - 2) 이미지를 잘 설명할 수 있는 텍스트를 생성

## Introduction

"From Show to Tell"

Image Captioning

ex) "VLP", "oscar" ···

=> '이미지 인코더' + '텍스트 디코더' 구조



Fig. 1: Overview of the image captioning task and taxonomy of the most relevant approaches.

## Introduction

#### ● 이미지 캡셔닝의 주요 과제

: "시각적 표현"과 "텍스트 표현"사이의 격차를 해소하는 것

- -> visual-language data간의 데이터의 분포나 특성이 다름
- -〉 많은 훈련시간, 매개변수, 데이터, 추가 어노테이션 필요…
- -> 많은 자원 없이 가벼운 캡션모델로도 좋은 성능 ? => CLIPCAP

- 1) Visual Encoding 과정에서 'CLIP 인코더' 사용
  - CLIP: 이미지와 텍스트 프롬프트 모두에 대해 공유표현을 적용
    - \*CLIP의 대조학습: 이미지와 텍스트가 주어졌을 때, 두 개의 표현이 일치하는지 아닌지 대비하는 식으로 학습



- image와 text를 하나의 공통된 space로 보낸 다음
- positive pair에서의 코사인유사도는 최대화하고
- negative pair에서의 유사도는 최소화하도록
- CE loss를 사용하여 학습
- -> 두 개의 표현이 잘 연관되어 있음
- -> 두 표현 사이의 격차 해소

CLIP의 Contrastive pre-training

2) 접근방식의 핵심: prefix

- prefix -> Mapping Network 거쳐서 나온 embedding vector
- prefix를 LM의 인풋으로 넣어줌
- LM이 추가 튜닝 없이 새로운 task에 잘 적용됨
  - \* inspired by "prefix-tuning"

\*prefix-tuning: LM의 입력 시퀀스에 추가적인 prefix embedding을 결합하여 추가된 embedding 만 학습



- 1. clip의 이미지 인코더로 feature들을 추출
- 2. 매핑 네트워크를 거쳐 prefix를 생성
- 3. 생성된 prefix를 Im에 넣어 prefix로부터 한 단어씩 캡션을 생성

$$p_1^i, \ldots, p_k^i = F(CLIP(x^i)).$$

- -. x: Image embedding
- -. k(const): prefix length
- -. p : prefix embedding

- prefix : CLIP과 Mapping Network의 활성화함수를 거쳐 나온 embedding vector
- prefix length (k) = 10

$$\mathcal{L}_X = -\sum_{i=1}^N \sum_{j=1}^\ell \log p_{ heta}(c^i_j|\ p^i_1, \dots, p^i_k, c^i_1, \dots, c^i_{j-1}).$$

- -. ci:i번째 caption
- -. θ: Model's trainable parameters

- 언어모델의 손실함수
- 다음 단어의 확률을 최대화할 수 있는 파라미터값 찾아서 업데이트
- gpt2를 직접 fine tuning하지 않고, gpt2의 입력으로 들어가는 prefix를 학습시키기 위함

학습 과정

- 1. CLIP의 visual encoder로 visual information 추출
- 2. Mapping Network를 통과시켜 embedding vector 추출
- 3. embedding vector가 **prefix**로 작용하여 caption의 앞쪽에 붙여진다.
- 4. GPT-2를 통해 caption을 생성하고, cross entropy loss를 구한다.
- 5. back-propagation으로 Mapping Network를 optimizing

● 최신 SOTA 모델과 비교 (CLIPCAP vs OSCAR, VLP, BUTD)

|                | Image                    | Text   |
|----------------|--------------------------|--------|
| ClipCap (ours) | CLIP                     | GPT2   |
| BUTD           | Object Detection Network | LSTM   |
| Oscar          | Object Detection Network | ≈ BERT |
| VLP            | Object Detection Network | ≈ BERT |

- 데이터셋: conceptual caption / nocaps datasets / COCO-caption
- 평가 metrics : BLEU, METEOR, CIDEr, SPICE, ROUGE ...

Results

#### (A) Conceptual Captions Model ROUGE-L↑ CIDEr↑ SPICE↑ #Params (M) ↓ Training Time ↓ VLP 24.3516.59 77.57115 1200h (V100) Ours; MLP + GPT2 tuning 26.71 80h (GTX1080) 87.26 18.5 156 Ours; Transformer 25.1271.8216.07 43 72h (GTX1080)

| (B) | nocaps |
|-----|--------|
|     |        |

|                         | in-do  | omain   | near-d | lomain | out-of-domain |       | Overall |       |         |       |
|-------------------------|--------|---------|--------|--------|---------------|-------|---------|-------|---------|-------|
| Model                   | CIDEr↑ | SPICE ↑ | CIDEr  | SPICE  | CIDEr         | SPICE | CIDEr   | SPICE | Params↓ | Time↓ |
| BUTD [4]                | 74.3   | 11.5    | 56.9   | 10.3   | 30.1          | 8.1   | 54.3    | 10.1  | 52      | 960h  |
| Oscar [19]              | 79.6   | 12.3    | 66.1   | 11.5   | 45.3          | 9.7   | 63.8    | 11.2  | 135     | 74h   |
| Ours; MLP + GPT2 tuning | 79.73  | 12.2    | 67.69  | 11.26  | 49.35         | 9.7   | 65.7    | 11.1  | 156     | 7h    |
| Ours; Transformer       | 84.85  | 12.14   | 66.82  | 10.92  | 49.14         | 9.57  | 65.83   | 10.86 | 43      | 6h    |

#### (C) COCO

| Model                   | B@4↑  | METEOR ↑ | CIDEr ↑ | SPICE ↑ | #Params (M) ↓ | Training Time ↓     |
|-------------------------|-------|----------|---------|---------|---------------|---------------------|
| BUTD [4]                | 36.2  | 27.0     | 113.5   | 20.3    | 52            | 960h (M40)          |
| VLP [47]                | 36.5  | 28.4     | 117.7   | 21.3    | 115           | 48h (V100)          |
| Oscar [19]              | 36.58 | 30.4     | 124.12  | 23.17   | 135           | 74h (V100)          |
| Ours; Transformer       | 33.53 | 27.45    | 113.08  | 21.05   | 43            | <b>6h</b> (GTX1080) |
| Ours; MLP + GPT2 tuning | 32.15 | 27.1     | 108.35  | 20.12   | 156           | 7h (GTX1080)        |

## **Ablation Study**

- LM fine-tuning
  - conceptual captions -> fine-tuning 성능이 더 잘 나옴
  - nocaps -> 비슷

#### Mapping Network

| (D) Ablation                         |       |       |        |       |     |              |  |
|--------------------------------------|-------|-------|--------|-------|-----|--------------|--|
| Ours; Transformer + GPT2 tun-<br>ing | 32.22 | 27.79 | 109.83 | 20.63 | 167 | 7h (GTX1080) |  |
| Ours; MLP                            | 27.39 | 24.4  | 92.38  | 18.04 | 32  | 6h (GTX1080) |  |

- Mapping Network 있을 때 보다 성능 떨어짐

## **Ablation Study**

- Prefix length
- LM이 트랜스포머 구조 -> prefix 길이 조정 가능
- prefix length가 길어질수록 많은 양의 정보 => 성능 증가



(a) MLP mapping network with fine-tuning of the language model



(b) Transformer mapping network with frozen language model.

## Conclusion

#### 한계

- CLIP 모델의 한계점 상속 (e.g., 자전거 인식 잘 못함?)
- 일부 데이터셋에서 거대 모델보다 성능이 우세하지 못함

#### 의의

- 추가적인 객체 태그 없이 훈련 가능 (oscar는 필요)
- nocaps, conceptual이 coco보다 다양한 시각적 개념을 모델링함