Stations

In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Rid
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("stations.csv")
df

Out[2]:

	id	name	address	lon	lat	elevation
0	28079004	Pza. de España	Plaza de España	-3.712247	40.423853	635
1	28079008	Escuelas Aguirre	Entre C/ Alcalá y C/ O' Donell	-3.682319	40.421564	670
2	28079011	Avda. Ramón y Cajal	Avda. Ramón y Cajal esq. C/ Príncipe de Vergara	-3.677356	40.451475	708
3	28079016	Arturo Soria	C/ Arturo Soria esq. C/ Vizconde de los Asilos	-3.639233	40.440047	693
4	28079017	Villaverde	C/. Juan Peñalver	-3.713322	40.347139	604
5	28079018	Farolillo	Calle Farolillo - C/Ervigio	-3.731853	40.394781	630
6	28079024	Casa de Campo	Casa de Campo (Terminal del Teleférico)	-3.747347	40.419356	642
7	28079027	Barajas Pueblo	C/. Júpiter, 21 (Barajas)	-3.580031	40.476928	621
8	28079035	Pza. del Carmen	Plaza del Carmen esq. Tres Cruces.	-3.703172	40.419208	659
9	28079036	Moratalaz	Avd. Moratalaz esq. Camino de los Vinateros	-3.645306	40.407947	685
10	28079038	Cuatro Caminos	Avda. Pablo Iglesias esq. C/ Marqués de Lema	-3.707128	40.445544	698
11	28079039	Barrio del Pilar	Avd. Betanzos esq. C/ Monforte de Lemos	-3.711542	40.478228	674
12	28079040	Vallecas	C/ Arroyo del Olivar esq. C/ Río Grande.	-3.651522	40.388153	677
13	28079047	Mendez Alvaro	C/ Juan de Mariana / Pza. Amanecer Mendez Alvaro	-3.686825	40.398114	599
14	28079048	Castellana	C/ Jose Gutierrez Abascal	-3.690367	40.439897	676
15	28079049	Parque del Retiro	Paseo Venezuela- Casa de Vacas	-3.682583	40.414444	662
16	28079050	Plaza Castilla	Plaza Castilla (Canal)	-3.688769	40.465572	728
17	28079054	Ensanche de Vallecas	Avda La Gavia / Avda. Las Suertes	-3.612117	40.372933	627
18	28079055	Urb. Embajada	C/ Riaño (Barajas)	-3.580747	40.462531	618
19	28079056	Pza. Fernández Ladreda	Pza. Fernández Ladreda - Avda. Oporto	-3.718728	40.384964	604
20	28079057	Sanchinarro	C/ Princesa de Eboli esq C/ Maria Tudor	-3.660503	40.494208	700
21	28079058	El Pardo	Avda. La Guardia	-3.774611	40.518058	615
22	28079059	Juan Carlos I	Parque Juan Carlos I (frente oficinas mantenim	-3.609072	40.465250	660
23	28079060	Tres Olivos	Plaza Tres Olivos	-3.689761	40.500589	715

```
In [3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24 entries, 0 to 23
Data columns (total 6 columns):
```

	`	,	
#	Column	Non-Null Count	Dtype
0	id	24 non-null	int64
1	name	24 non-null	object
2	address	24 non-null	object
3	lon	24 non-null	float64
4	lat	24 non-null	float64
5	elevation	24 non-null	int64
dtyp	es: float64	(2), int64(2),	object(2)

In [4]: df1=df.dropna()
 df1

Out[4]:

	id	name	address	lon	lat	elevation
0	28079004	Pza. de España	Plaza de España	-3.712247	40.423853	635
1	28079008	Escuelas Aguirre	Entre C/ Alcalá y C/ O' Donell	-3.682319	40.421564	670
2	28079011	Avda. Ramón y Cajal	Avda. Ramón y Cajal esq. C/ Príncipe de Vergara	-3.677356	40.451475	708
3	28079016	Arturo Soria	C/ Arturo Soria esq. C/ Vizconde de los Asilos	-3.639233	40.440047	693
4	28079017	Villaverde	C/. Juan Peñalver	-3.713322	40.347139	604
5	28079018	Farolillo	Calle Farolillo - C/Ervigio	-3.731853	40.394781	630
6	28079024	Casa de Campo	Casa de Campo (Terminal del Teleférico)	-3.747347	40.419356	642
7	28079027	Barajas Pueblo	C/. Júpiter, 21 (Barajas)	-3.580031	40.476928	621
8	28079035	Pza. del Carmen	Plaza del Carmen esq. Tres Cruces.	-3.703172	40.419208	659
9	28079036	Moratalaz	Avd. Moratalaz esq. Camino de los Vinateros	-3.645306	40.407947	685
10	28079038	Cuatro Caminos	Avda. Pablo Iglesias esq. C/ Marqués de Lema	-3.707128	40.445544	698
11	28079039	Barrio del Pilar	Avd. Betanzos esq. C/ Monforte de Lemos	-3.711542	40.478228	674
12	28079040	Vallecas	C/ Arroyo del Olivar esq. C/ Río Grande.	-3.651522	40.388153	677
13	28079047	Mendez Alvaro	C/ Juan de Mariana / Pza. Amanecer Mendez Alvaro	-3.686825	40.398114	599
14	28079048	Castellana	C/ Jose Gutierrez Abascal	-3.690367	40.439897	676
15	28079049	Parque del Retiro	Paseo Venezuela- Casa de Vacas	-3.682583	40.414444	662
16	28079050	Plaza Castilla	Plaza Castilla (Canal)	-3.688769	40.465572	728
17	28079054	Ensanche de Vallecas	Avda La Gavia / Avda. Las Suertes	-3.612117	40.372933	627
18	28079055	Urb. Embajada	C/ Riaño (Barajas)	-3.580747	40.462531	618
19	28079056	Pza. Fernández Ladreda	Pza. Fernández Ladreda - Avda. Oporto	-3.718728	40.384964	604
20	28079057	Sanchinarro	C/ Princesa de Eboli esq C/ Maria Tudor	-3.660503	40.494208	700
21	28079058	El Pardo	Avda. La Guardia	-3.774611	40.518058	615
22	28079059	Juan Carlos I	Parque Juan Carlos I (frente oficinas mantenim	-3.609072	40.465250	660
23	28079060	Tres Olivos	Plaza Tres Olivos	-3.689761	40.500589	715

```
In [5]: df1=df1.drop(["name","address"],axis=1)
```

In [6]: df1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 24 entries, 0 to 23
Data columns (total 4 columns):

	()			
#	Column	Non-Null Count	Dtype	
0	id	24 non-null	int64	
1	lon	24 non-null	float64	
2	lat	24 non-null	float64	
3	elevation	24 non-null	int64	
dtypes: float64(2), int64(2)				

dtypes: float64(2), int64(2)
memory usage: 960.0 bytes

In [7]: sns.heatmap(df1.corr())

Out[7]: <AxesSubplot:>

In [8]: plt.plot(df1["lat"],df1["elevation"],"o")

Out[8]: [<matplotlib.lines.Line2D at 0x2a9c17eb220>]


```
In [9]: # sns.stripplot(x=df["EBE"],y=df["PXY"],jitter=True,marker='o',color='blue')
```

```
In [10]: x=df1.drop(["elevation"],axis=1)
    y=df1["elevation"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [11]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[11]: LinearRegression()

```
In [12]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[12]: <matplotlib.collections.PathCollection at 0x2a9c1eeebb0>


```
In [13]: lis=li.score(x_test,y_test)
```

```
In [14]: df1["lat"].value_counts()
Out[14]: 40.423853
                       1
         40.462531
                       1
         40.347139
                       1
         40.518058
                       1
          40.419356
                       1
          40.388153
                       1
         40.445544
                       1
         40.398114
                       1
         40.414444
                       1
          40.384964
                       1
          40.451475
          40.372933
                       1
         40.465572
                       1
         40.394781
                       1
         40.421564
                       1
         40.407947
                       1
          40.478228
                       1
         40.476928
                       1
         40.465250
                       1
         40.494208
                       1
         40.439897
                       1
          40.419208
                       1
          40.440047
                       1
          40.500589
                       1
         Name: lat, dtype: int64
In [15]: df1.loc[df1["lat"]<40.44,"lat"]=1</pre>
         df1.loc[df1["lat"]>1.40,"lat"]=2
         df1["lat"].value_counts()
Out[15]: 1.0
                 13
          2.0
                 11
          Name: lat, dtype: int64
```

Lasso

```
In [16]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
Out[16]: Lasso(alpha=5)
```

```
In [17]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[17]: <matplotlib.collections.PathCollection at 0x2a9c1f63580>


```
In [18]: las=la.score(x_test,y_test)
```

Ridge

```
In [19]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[19]: Ridge(alpha=1)

```
In [20]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[20]: <matplotlib.collections.PathCollection at 0x2a9c1fbac10>


```
In [21]: | rrs=rr.score(x_test,y_test)
```

Elastic Net

```
In [22]: en=ElasticNet()
         en.fit(x_train,y_train)
Out[22]: ElasticNet()
In [23]: | prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
```

Out[23]: <matplotlib.collections.PathCollection at 0x2a9c1f75070>


```
In [24]: ens=en.score(x_test,y_test)
```

Logistic

```
In [25]:
         g={"lat":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["lat"].value_counts()
Out[25]: Low
                 13
         High
                 11
         Name: lat, dtype: int64
In [26]: x=df1.drop(["lat"],axis=1)
         y=df1["lat"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [27]: lo=LogisticRegression()
lo.fit(x_train,y_train)

Out[27]: LogisticRegression()

In [28]: prediction3=lo.predict(x_test)
   plt.scatter(y_test,prediction3)

Out[28]: <matplotlib.collections.PathCollection at 0x2a9c20439d0>
```



```
In [29]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [30]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV

In [31]: g1={"lat":{"Low":0,"High":1}}
    df1=df1.replace(g1)

In [32]: x=df1.drop(["lat"],axis=1)
    y=df1["lat"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [33]: rfc=RandomForestClassifier()
    rfc.fit(x_train,y_train)

Out[33]: RandomForestClassifier()
```

```
In [34]: parameter={
            'max_depth':[1,2,4,5,6],
            'min samples leaf':[5,10,15,20,25],
            'n estimators':[10,20,30,40,50]
In [35]: grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accu
        grid_search.fit(x_train,y_train)
Out[35]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                   param_grid={'max_depth': [1, 2, 4, 5, 6],
                              'min samples leaf': [5, 10, 15, 20, 25],
                              'n_estimators': [10, 20, 30, 40, 50]},
                   scoring='accuracy')
In [36]: rfcs=grid search.best score
In [37]: rfc best=grid search.best estimator
In [38]: from sklearn.tree import plot_tree
        plt.figure(figsize=(80,40))
        plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',"|
Out[38]: [Text(2232.0, 1630.800000000000, 'lon <= -3.68\ngini = 0.469\nsamples = 11\n
        value = [10, 6]\nclass = Yes'),
         class = Yes'),
         Text(3348.0, 543.59999999999, 'gini = 0.49\nsamples = 5\nvalue = [3, 4]\nc
        lass = No')]
                                  lon <= -3.68
                                  gini = 0.469
                                 samples = 11
                                value = [10, 6]
                                   class = Yes
                 gini = 0.346
                                                    gini = 0.49
                 samples = 6
                                                   samples = 5
                value = [7, 2]
                                                  value = [3, 4]
                  class = Yes
                                                    class = No
```

```
In [40]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.3130261684188642 Lasso: -0.0017273805143300791 Ridge: 0.008149999718764178 ElasticNet: -0.00137933116138389

Logistic: 0.375 Random Forest: 0.625

Best Model is Random Forest