Bias and Variance

Advice for Applying Machine Learning

Introduction

- Most of the time you will have
 - High variance (overfitting)
 - High bias (underfitting)

High bias (underfit)

"Just right"

High variance (overfit)

High bias (underfit)

Training error:
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Training error: $J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ Cross validation error: $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$

Training error: $J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Cross validation error: $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$

Training error:
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Training error: $J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ Cross validation error: $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$

Training error: $\underbrace{J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2}_{m_{cv}}$

Cross validation error: $\underline{J_{cv}(\theta)} = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2 \qquad \left(\text{or Ttot (0)}\right)$

Andrew Ng

Training error: $J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Cross validation error: $\underline{J_{cv}(\theta)} = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2 \qquad \left(\text{or } \exists_{\textbf{tot}} (\textbf{0})\right)$

Training error:
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross validation error: $\underline{J_{cv}(\theta)} = \frac{1}{2m_{cv}} \sum_{n=0}^{\infty} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2 \qquad \left(\text{or Ttot}\left(\Theta\right)\right)$

(or Jtest (61) degree of polynomial d Size Size

Andrew Ng

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Bias (underfit):

Variance (overfit):

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Bias (underfit):

Jtion (6) will be high

Jou(0) & Jtoun(6)

Variance (overfit):

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Bias (underfit):

Variance (overfit):

Exercise

- Suppose you have a classification problem. The (misclassification) error is defined as $\frac{1}{m}\sum_{i=1}^{m} err \left(h_{\theta}\left(x^{(i)}\right) y^{(i)}\right)$ and the cross validation (misclassification) error is similarly defined, using the cross validation examples $(x_{CV}^{(1)}, y_{CV}^{(1)}), \dots, (x_{CV}^{m_{CV}}, y_{CV}^{m_{CV}})$
- Suppose your training error is 0.10, and your cross validation error is 0.30. What problem is the algorithm most likely to be suffering from?
 - High bias (overfitting)
 - High bias (underfitting)
 - High variance (overfitting)
 - High variance (underfitting)