Grundlagen von Datenbanken

Abbildung ERM-RM

Abbildung ERM-RM

Kriterien:

- Informationserhaltung, d.h. möglichst genaue Übereinstimmung der Semantik (Übernahme aller spezifizierten Eigenschaften)
- Minimierung der Redundanz
- Minimierung des Verknüpfungsaufwandes
- Natürlichkeit der Abbildung
- Keine Vermischung von Objekten
- Verständlichkeit

2 Entity-Mengen mit (n:m)-Verknüpfung

Verwendung von drei Relationen erforderlich:

PROJEKT (JNR, BEZEICH, ...)

PERS (PNR, PNAME, ...)

MITARBEIT (JNR → PROJEKT.JNR, PNR → PERS.PNR)

2 Entity-Mengen mit (n:m)-Verknüpfung

Im Fall eines zusammengesetzten Primärschlüssels:

PROJEKT (JNR, BEZEICH, ...)

PERS (VName, NName, ...)

MITARBEIT (JNR → PROJEKT.JNR, (VName, NName) → (PERS.VName, PERS.NName))

2 Entity-Mengen mit (1:n)-Verknüpfung

Drei Relationen

ABT (ANR, ANAME, ...)

PERS (PNR, PNAME, ...)

ABT-ZUGEH (ANR → ABT.ANR, PNR → PERS.PNR)

2 Entity-Mengen mit (1:1)-Verknüpfung

Drei Relationen

RAUM (RNR, LAGE, ...)

PERS (PNR, PNAME, ...)

BÜRO (RNR → RAUM.RNR, <u>PNR → PERS.PNR</u>)

Besser: Zwei Relationen A

RAUM (RNR, LAGE, ...)

PERS (PNR, PNAME, ..., RNR \rightarrow RAUM.RNR)

Achtung Null-Werte!
Viele Räume werden nicht als Büro genutzt.

Zwei Relationen B

RAUM (RNR, LAGE, ..., PNR \rightarrow PERS.PNR)

PERS (PNR, PNAME, ...)

1 Entity-Menge mit (n:m)-Verknüpfung

1 Entity-Menge mit (n:1)-Verknüpfung

Zwei Relationen

PERS (PNR, PNAME, ...)

PRÜFUNG (PRÜFLING → PERS.PNR, PRÜFER→ PERS.PNR)

Besser: Eine Relation

PERS (PNR, PNAME, ..., PRÜFER → PERS.PNR)

Umbenennung erforderlich!

mehrere Entity-Mengen mit (n:m)-Verknüpfung

Darstellungsmöglichkeit im RM:

```
LIEF (LNR, LNAME, ...)
```

PROJEKT (PRONR, PRONAME, ...)

TEIL (TNR, TBEZ, GEWICHT, ...)

 $\textbf{LIEFERUNG} (\underline{\mathsf{LNR}} \to \! \mathsf{LIEF}. \mathsf{LNR}, \, \underline{\mathsf{PRONR}} \to \! \mathsf{PROJEKT}. \underline{\mathsf{PRONR}}, \, \underline{\mathsf{TNR}} \to \! \mathsf{TEIL}. \underline{\mathsf{TNR}}, \, \mathsf{DATUM})$

Abbildungstypen innerhalb einer Entity-Menge

Darstellungsmöglichkeit im RM:

PERS (PNR, NAME)

L-ESSEN (PNR \rightarrow PERS.PNR, GERICHT)

KINDER (PNR \rightarrow PERS.PNR, VORNAME, ALTER)

Generalisierung

Generalisierung: Hausklassenmodell

- Jede Instanz ist genau einmal und vollständig in ihrer Hausklasse gespeichert
- Es wird eine **horizontale Partitionierung** der DB-Instanzen erreicht

		UNI-ANGEH. ID						NAME
						111	Ernie	
			ANGES	STELLTE	١	NAME	BAT	
					Garfield		la	
TECHNIKER ID				ERFAHI	RUNG	NA	ME	BAT
123			SUN	JN Donald			IVa	
WISSMA.	ID	DIPLOM		SEPZGEB.		NAME		BAT
	333	Informatik		RECOVERY		Daisy		lla
	765	Mat	hematik	ERM		Grouch		lla

Generalisierung: Partitionierungs-Modell

- Jede Instanz wird entsprechend der Klassenattribute in der Is-a-Hierarchie zerlegt und in Teilen in den zugehörigen Klassen gespeichert
- Es wird nur das ID-Attribut dupliziert
- Es wird eine **vertikale Partitionierung** in der DB erzielt

UNI-ANGEH.	ID	NAME	≣	ANGE	ST	ELLTE	ID	ВАТ	
	007	Garfie	ld				007	la	
	111	Ernie					123	IVa	
	123	Donald					333	lla	
	333	Dais	/				765	lla	
	765	Groud	:h					l	!
	HNIKER		ID	HRUNG					
			123	SL	JN				
	WISSMA			ID	DIPLOM		SPE	SPEZGEB	
					Informatik		E	ERM	
			765	Mathematik		ik M	MAD		

Generalisierung: Volle Redundanz

- Eine Instanz wird wiederholt in jeder Klasse, zu der sie gehört, gespeichert
- Sie besitzt dabei die Werte der Attribute, die sie geerbt hat, zusammen mit den Werten der Attribute der Klasse

			1						
UNI-ANGEH.	ID	NAN	1E	A	ANGES	TELLTE	ID	NAME	BAT
	111 E		arfield Ernie Jonald				007123333	Garfield Donald Daisy	la IVa IIa
	333 765	Dais Grou	1					Grouch	lla
TECHNIKER		ID	NAME		BAT	ERFA	HRUN	G	
		123	Donald		IVa	SUN			_
WISSMA		ID	NAME		BAT	DIPLO	М	SPEZGEB.	
			Daisy Grouch		lla Ila	Informatik Mathematik		RECOVERY ERM	

Kriterium: Minimierung der Redundanz?

Generalisierung: Einzelne Relation

- Die Attribute aller Entity-Typen werden in einer Relation zusammengefasst
- Spezielle Attribute um Typ-Zugehörigkeit zu modellieren

UNI-ANGEH.	ID	NAME	ANG?	ВАТ	TECH?	ERFAHRUNG	WMA?	DIPLOM	SPEZGEB.
	007	Garfield	Ja	la	Nein		Nein		
	111	Ernie	Nein		Nein		Nein		
	123	Donald	Ja	IVa	Ja	SUN	Nein		
	333	Daisy	Ja	lla	Nein		Ja	Informatik	RECOVERY
	765	Grouch	Ja	lla	Nein	-	Ja	Mathematik	ERM

Kriterien:

- · Natürlichkeit der Abbildung?
- · Keine Vermischung von Objekten?
- · Verständlichkeit?

Fragen?

