Minimal immersions of \mathbb{S}^2

Tien NGUYEN MANH

Jun 22, 2018

Contents

1	Brief view of Sacks and Uhlenbeck's strategy.	1
2	General machinery by Morse-Palais-Smale. 2.1 Perturbed functionals E_{α}	4
3	Local results: Estimates and extension.	8
4	Convergence of critical maps of E_{α} .	g
5	Nontrivial harmonic maps from \mathbb{S}^2 .	12
6	Minimal immersions of \mathbb{S}^2 .	15

1 Brief view of Sacks and Uhlenbeck's strategy.

Let M and N be compact Riemannian manifolds (without boundary), M is a surface and N is isometrically embedded in \mathbb{R}^k . It was showed by Eells and Sampson [?] that if N is negatively curved than any map from M to N is homotopic to a harmonic map. The idea of Sacks and Uhlenbeck in [?] consists of (1) approximating the energy functional E by a family E_{α} satisfying Palais-Smale condition, whose nontrivial critical values can be more easily proved to exist and (2) trying to prove that the critical maps s_{α} of E_{α} converge in C^1 -topology.

We will first review the general machinery of Morse-Palais-Smale theory and prove the existence of s_{α} . The convergence of s_{α} in the case of surface is due to the facts that energy functional E is a conformal invariant of M,

in particular E is invariant by homotheties (i.e. E remains unchanged when we zoom in and out), which allows us to justify the C^1 -convergence (under conditions of N) except at finitely many points using a local estimate and a suitable covering of M.

Sacks and Uhlenbeck used an extension result for harmonic map, in an elegant argument to prove that if the above sequence $\{s_{\alpha}\}$ fails to converge at a point, for a certain surface M, then one has a nontrivial harmonic map from \mathbb{S}^2 to N. Therefore if such sequence $\{s_{\alpha}\}$ from \mathbb{S}^2 to N exists, for example when $\pi_k(N)$ is nontrivial for a certain $k \geq 2$ then, whether s_{α} converges or not, there exists a nontrivial harmonic map from \mathbb{S}^2 to N.

Finally, the theory of branched immersion of surfaces by Gulliver-Osserman-Royden [?] can be applied to show that the harmonic map obtained this way is a conformal, branched, minimal immersion of \mathbb{S}^2 to N.

2 General machinery by Morse-Palais-Smale.

2.1 Perturbed functionals E_{α} .

Let $s: M \longrightarrow N \hookrightarrow \mathbb{R}^k$ be a map from a compact surface M to a compact Riemannian manifold N isometrically embedded into \mathbb{R}^k . Recall that the energy functional of s is given by $E(s) := \frac{1}{2} \int_M |ds|^2 dV_M = \frac{1}{2} \int_M \langle s^* g_N, g_M \rangle dV_M$. The perturbed energy functionals are

$$E_{\alpha}(s) := \int_{M} (1 + |ds|^{2})^{\alpha} dV, \quad \alpha \ge 1$$

We will suppose, by rescaling the metric g_M of M that the volume of M is 1, so when $\alpha = 1$, $E_1 = 1 + 2E(s)$ is just the previously defined energy. Using $(a+b)^{\alpha} \geq a^{\alpha} + b^{\alpha}$ and Jensen's inequality, one has $E_{\alpha}(s) \geq 1 + (2E(s))^{\alpha}$ for all $\alpha \geq 1$. Also, since we only interest in the case α close to 1, let us also suppose that α from now on is smaller than 2.

By Sobolev embedding, one has $W^{1,2\alpha}(M,\mathbb{R}^k) \subset C^0(M,\mathbb{R}^k)$ compactly for all $\alpha > 1$. It then makes sense to talk about $W^{1,2\alpha}(M,N) \subset C^0(M,N)$ which consist of elements of $W^{1,2\alpha}(M,\mathbb{R}^k) \subset C^0(M,\mathbb{R}^k)$ whose image lies in N.

Theorem 1 (Palais). The spaces $C^{\infty}(M,N) \subset W^{1,2\alpha}(M,N) \subset C^0(M,N)$, where $\alpha > 1$, are of the same homotopy type and the inclusions are homotopy equivalences. In particular, their connected components are naturally in bijection.

We will also need a version of Morse theory for Banach manifolds, also developed by R. Palais in [?]. For the terminologies, in the same way that a manifold is modeled by \mathbb{R}^n , a Banach manifold is modeled by Banach spaces. A Finsler manifold is a Banach manifold with a norm on its tangent space that is comparable with the norm of Banach charts.

Theorem 2 (Morse theory for Banach manifolds). 1. If F is a C^2 functional on a complete C^2 Finsler manifold L, F is bounded below and F satisfies Palais-Smale condition (C) then

- (a) The functional F admits minimum on each connected component of L.
- (b) If F has no critical value in [a,b] then the sublevel $\{F \leq b\}$ retracts by deformation to the sublevel $\{F \leq a\}$.
- 2. The pair $(L, F) = (W^{1,2\alpha}(M, N), E_{\alpha})$ with $\alpha > 1$ satisfies the condition of the first part.

The Palais-Smale condition is as follows:

(C): Let $S \subset L$ be a subset on which |F| is bounded, but |dF| is not bounded away from 0. Then there exists a critical point of F in \overline{S} .

The strategy to prove Theorem 2 is, as in finite dimensional case, to use a pseudo-gradient flow of F whose existence is due to a partition of unity of L (instead of a Riemannian metric on L). The role of Palais-Smale condition in the proof is as follows: Suppose that $\{x_n\}$ is a sequence in a connected component L_1 of L such that $F(x_n)$ tends to $\inf_{L_1} F$, then using the pseudo-gradient flow of F, we can suppose that $|dF(x_n)|$ is arbitrarily small, in particular, we can suppose that $|dF(x_n)| \to 0$. Choose a sequence $\{y_n\}$ of regular points near x_n such that $F(y_n) \to \inf_{L_1} F$ and $|dF(y_n)| \to 0$ and use (C) for $S = \{y_n\}$, one obtains a limit point y_∞ of $\{y_n\}$, hence also of $\{x_n\}$, which minimises F.

As a consequence of Theorem 2, one has:

Corollary 2.1 (Component-wise minimum of E_{α}). The minimum of E_{α} in each connected component C of $W^{1,2\alpha}(M,N)$, $\alpha > 1$ is taken by some $s_{\alpha} \in C^{\infty}(M,N)$ and there exists B > 0 depending on the component C such that

$$\min_{C} E_{\alpha} \le (1 + B^2)^{\alpha}$$

Proof. By Theorem 2, E_{α} admits minimum at s_{α} on each component C of $W^{1,2\alpha}(M,N)$. By writing down the Euler-Lagrange equation of E_{α} and

apply regularity estimates, one can prove that s_{α} is actually smooth. By Theorem 1, the preimage of C by inclusion $C^{\infty}(M,N) \subset W^{1,2\alpha}(M,N)$ is a connected component C' of $C^{\infty}(M,N)$ over which s_{α} is the minimum of E_{α} . Take $B = \sup_{M} |du|$ for an arbitrary element $u \in C'$ and the conclusion follows.

Remark 1. Corollary 2.1 is trivialised when $W^{1,2\alpha}(M,N)$ is connected (for one α or equivalently for all α). In this case, s_{α} is a constant map and B=0.

To establish a nontrivial analog of Corollary 2.1 in the case where the spaces of maps from M to N are connected, we will have to look at the submanifold $N_0 \cong N$ formed by constant maps.

2.2 Tubular neighborhood of the submanifold of trivial maps.

Fix $y \in N$, considered as a constant maps in N_0 . We will summarise a few facts about the tangent space of $W^{1,2\alpha}(M,N)$ at y in the following Remark.

These facts come from the differential structure of the Banach manifold $W^{1,2\alpha}(M,N)$ that so far has not been introduced, since we only consider $W^{1,2\alpha}(M,N)$ as a closed subset of $W^{1,2\alpha}(M,\mathbb{R})^{\oplus k}$ (so only a topological structure was given). We summarise here, and refer to [?], how a differential structure is given to $W^{k,p}(M,N)$ with k,p such that $W^{k,p}(M) \hookrightarrow C^0(M)$:

- Let ξ be a finite dimensional vector bundle over a compact manifold M, then $W^{k,p}(\xi,M)$ can be defined as the Banach space of sections of ξ that are locally $W^{k,p}$. A norm of $W^{k,p}(\xi,M)$ can be given using a metric of ξ and a volume form of M, but by compactness of M, its equivalent class is independent of such choices.
- Let E be a fiber bundle over M, in our case, $E = N \times M$, and $s \in C^0(E)$ be a continuous section. It can be proved that there exists an open subset ξ of E containing s such that $\xi \to M$ has a vector bundle structure. We say that $s \in W^{k,p}(E,M)$ if $s \in W^{k,p}(\xi,M)$ and it turns out that this definition is independent of the choice of ξ . This defines $W^{k,p}(E,M)$ set-theoretically.
- The differential structure of $W^{k,p}(E,M)$ is given by the atlas $W^{k,p}(\xi,M)$.

Remark 2. 1. The tangent $T_yW^{1,2\alpha}(M,N)$ can be identified with $W^{1,2\alpha}(M,T_yN)$. The subspace T_yN_0 contains constant maps from M to T_yN . 2. The fiber \mathcal{N}_y over y of the normal bundle \mathcal{N} of N_0 can be identified with

$$\mathcal{N}_y = \left\{ v \in W^{1,\alpha}(M, T_y N) : \int_M v dV = 0 \right\}$$

The exponential map on $TW^{1,2\alpha}(M,N)$ can be defined as follows:

$$e: TW^{1,2\alpha}(M,N) \longrightarrow W^{1,2\alpha}(M,N)$$

 $(s,v) \longmapsto \left(x \mapsto \exp_{s(x)} v(x)\right)$

where $s \in W^{1,2\alpha}(M,N)$ and $v \in T_sW^{1,2\alpha}(M,N)$ is a $W^{1,2\alpha}$ vector field along s(x). With the representation of normal bundle \mathcal{N} as Remark 2, the restriction of e on \mathcal{N} is given by

$$e|_{\mathcal{N}}: \mathcal{N} \longrightarrow W^{1,2\alpha}(M,N)$$

 $(y,v) \longmapsto (x \mapsto \exp_{v}(v(x)))$

where $y \in N_0 \cong N$ and $v \in W^{1,2\alpha}(M, T_y N)$.

Lemma 3. The restriction $e|_{\mathcal{N}}$ of e on \mathcal{N} is a local diffeomorphism mapping a neighborhood of the zero-section of \mathcal{N} onto a neighborhood of N_0 in $W^{1,2\alpha}(M,N)$.

Proof. It can be calculated that

$$de_{(y,0)}(a,v) = (x \mapsto a + v(x)) \in T_y W^{1,2\alpha}(M,N) = W^{1,2\alpha}(M,T_yN)$$

for $a \in T_yN$ and $v \in \mathcal{N}_y \subset W^{1,2\alpha}(M,T_yN)$. It is invertible since a is tangential to N_0 and $v \in \mathcal{N}_y$ is in the normal component. The Inverse function theorem applies.

2.3 Critical values of E_{α} .

The exponential map previously defined on the normal bundle of N_0 in $W^{1,2\alpha}(M,N)$ allows us to retract by deformation a small neighborhood of N_0 to N_0 . We will prove that if the energy $E_{\alpha}(s)$ is sufficiently close to $1 = E_{\alpha}(N_0)$ then s is sufficiently $W^{1,2\alpha}$ -close to N_0 and hence can be retracted to N_0 , in other words, $E_{\alpha}^{-1}[1,1+\delta]$ retracts by deformation to $N_0 = E_{\alpha}^{-1}(1)$.

Proposition 3.1. Given $\alpha > 1$, there exists $\delta > 0$ depending on α such that $E_{\alpha}^{-1}[1, 1 + \delta]$ retracts by deformation to $E_{\alpha}^{-1}(1) = N_0$.

Proof. Let $s \in E_{\alpha}^{-1}[1, 1+\delta]$, using $(a+b)^{\alpha} \geq a^{\alpha} + b^{\alpha}$, one has

$$1 + \delta > \int_{M} (1 + |ds|^{2})^{\alpha} dV > 1 + \int_{M} |ds|^{2\alpha} dV$$

therefore $\|ds\|_{L^{2\alpha}} \leq \delta^{1/2\alpha}$. By Poincaré-Wirtinger inequality, $\|s-\int_M s\|_{W^{1,2\alpha}} \leq C\delta^{1/4}$ where C is the Poincaré-Wirtinger constant.

By Sobolev embedding, $\max_M |s - \int_M s| \le C_\alpha ||s - \int_M s||_{W^{1,2\alpha}}$ where the Sobolev constant C_α can no longer be chosen uniformly in $\alpha \to 1$. Fix an $x_0 \in M$, one has

$$d_{W^{1,2\alpha}}(s,N_0) \le \|s-s(x_0)\|_{W^{1,2\alpha}} \le \|s-\int_M s\|_{W^{1,2\alpha}} + \left|\int_M s-s(x_0)\right| \le C_\alpha \delta^{1/4}$$

Now choose $\delta \ll 1$ depending on α such that s is in the neighborhood of N_0 given by Lemma 3, s can be written as

$$s(x) = e(y, v(x)) = \exp_y v(x)$$

where $y \in N_0$ and $v \in W^{1,2\alpha}(M, T_yN)$ depend continuously on $s \in W^{1,2\alpha}(M, N)$. We can define the deformation retraction by

$$\sigma:\ E_{\alpha}^{-1}[1,1+\delta]\times [0,1] \longrightarrow E_{\alpha}^{-1}[1,1+\delta] \\ (s,t)\longmapsto \left(x\mapsto \exp_y tv(x)\right)$$

It is clear that σ is continuous and σ_0 is a retraction. The only thing to check is that the image of σ remains in $E_{\alpha}^{-1}[1, 1 + \delta]$ at all time. This can be checked by showing that $\frac{d}{dt}E_{\alpha}(\sigma_t) \geq 0$, hence $E_{\alpha}(\sigma_t) \leq E_{\alpha}(\sigma_1) \leq 1 + \delta$ for all $0 \leq t \leq 1$.

We will now prove the existence of nontrivial critical value of E_{α} in an interval (1, B) for a certain B > 1 sufficiently big independently of $\alpha > 1$.

Fix $z_0 \in M$ and consider the map

$$p: C^0(M,N) \longrightarrow N$$

 $s \longmapsto f(z_0)$

then p is a fiber bundle and therefore is a Serre fibration. In fact fix $q_0 \in N$ then for all $q \in N$ near q_0 , there is a vector field v_q supported in a small ball centered at q_0 such that the flow of v_q from time 0 to 1 turns q_0 to q, i.e. $\Phi_{v_q 0}^{-1}(q_0) = q$, and that v_q varies continuously in q. Then any fiber $p^{-1}(q)$ can be identified with $p^{-1}(q_0)$ using the flow of v_q . We will denote by $\Omega(M, N)$ the topological fiber of p.

We will use a few facts from algebraic topology, briefly summarised here.

Fact 1. 1. (Long exact sequence of homotopy) Let $p: E \longrightarrow B$ be a fiber bundle of fiber $F = p^{-1}(b_0) \ni f_0$, then one has the following long exact sequence

$$\dots \xrightarrow{\partial} \pi_n(F) \xrightarrow{\iota_*} \pi_n(E) \xrightarrow{p_*} \pi_n(B) \xrightarrow{\partial} \pi_{n-1}(F) \longrightarrow \dots \longrightarrow \pi_0(E) \longrightarrow 0$$

where $\iota: F \longrightarrow E$ is the inclusion.

2. If p admits a global section s, then one has a retraction s_* of p_* :

$$\pi_n(E) \xrightarrow[s_*]{p_*} \pi_n(B)$$

hence p_* is surjective and ∂ factors through 0, which gives us the short exact sequence

$$0 \longrightarrow \pi_n(F) \xrightarrow{\iota_*} \pi_n(E) \xrightarrow{p_*} \pi_n(B) \longrightarrow 0$$

where p_* admits a retraction s_* , so the short exact sequence splits and we have

$$\pi_n(E) \cong \pi_n(F) \oplus \pi_n(B).$$

Now apply this result to the fiber bundle $p: C^0(M, N) \longrightarrow N$ of fiber $\Omega(M, N)$, which has N_0 as a global section, one obtains

$$\pi_n(C^0(M,N)) \cong \pi_n(N) \oplus \pi_n(\Omega(M,N)).$$

Theorem 4 (Nontrivial critical value of E_{α}). If $C^{0}(M, N)$ is not connected, or if $\Omega(M, N)$ is not contractible, then there exists B > 0 such that for all $\alpha > 1$, E_{α} has critical values in the interval $(1, (1 + B^{2})^{\alpha})$.

In particular, if $M = \mathbb{S}^2$ and if the universal covering \tilde{N} of N is not contractible then E_{α} has critical values in $(1, (1+B^2)^{\alpha})$.

Proof. If $C^0(M, N)$ is not connected, one only needs to apply Corollary 2.1 to a connected component of $W^{1,2\alpha}(M, N)$ not containing N_0 . We now suppose that $C^0(M, N)$ is connected and $\Omega(M, N)$ is not contractible.

In this case, there exists n > 0 such that $\pi_n(\Omega(M, N))$ is nontrivial and contains a nonzero element $\gamma: \mathbb{S}^n \longrightarrow \Omega(M, N)$ which is not homotopic to any $\tilde{\gamma}: \mathbb{S}^n \longrightarrow N_0$ in $\pi_n(C^0(M, N))$.

Choose $B := \max_{\theta \in \mathbb{S}^n, x \in M} |d\gamma(\theta)(x)|$ then by definition

$$E_{\alpha}(\gamma(\theta)) \le (1 + B^2)^{\alpha} \quad \forall \theta \in \mathbb{S}^n, \alpha > 1.$$

If E_{α} has no critical value in $[1+\frac{\delta_{\alpha}}{2},(1+B^2)^{\alpha}]$ where δ_{α} is given by Proposition 3.1, then by Theorem 2, $E_{\alpha}^{-1}[1,(1+B^2)^{\alpha}]$ retracts by deformation to $E_{\alpha}^{-1}[1,1+\delta_{\alpha}]$ which retracts by deformation to $E_{\alpha}^{-1}(1)=N_0$. But this means that γ is homotopic to a certain $\tilde{\gamma} \in \pi_n(N)$, which is a contradiction.

As an application, if $M = \mathbb{S}^2$ and the universal covering \tilde{N} is not contractible then the long exact sequence of homotopy for the bundle $\tilde{N} \longrightarrow N$ with fiber of dimension 0, gives

$$\pi_n(\tilde{N}) = \pi_n(N), \quad \forall n \ge 2.$$

Since \tilde{N} is simply-connected and not contractible, there exists $n \geq 2$ such that $0 \neq \pi_n(\tilde{N}) = \pi_n(N) = \pi_{n-2}(\Omega(\mathbb{S}^2, N))$, where the last equality follows from definition of homotopy group. The general argument applies.

3 Local results: Estimates and extension.

We will say that the map $s: M \longrightarrow N$ is a critical point of E_{α} on a small disc $D(R) \subset M$ if s satisfies the Euler-Lagrange equation of E_{α} (as functional on $W^{1,2\alpha}(M,N)$) on D(R).

Remark 3. Rescaling $(D(R), g_M)$, where $R \ll 1$ and g_M is ϵ -close to the Euclidean metric, to the unit disc D one obtains a metric \tilde{g}_M that is still ϵ -close to Euclidean metric. The curvature of \tilde{g}_M is R^2 times smaller than that of g_M .

If $s: D(R) \longrightarrow N$ is a critical map of E_{α} on D(R), then the composition \tilde{s} of s and the rescaling operator $D \longrightarrow D(R)$ satisfies the Euler-Lagrange equation of $\tilde{E}_{\alpha} = R^{2(1-\alpha)} \int_{D} (R^2 + |d\tilde{s}|^2)^{\alpha} d\tilde{V}$ where $d\tilde{V}$ is the volume form of the rescaled metric \tilde{g}_{M} . We will abusively use the same notation for \tilde{s} and s and regard s as a map on the unit disc D.

Lemma 5 (Sacks-Uhlenback's Main estimate). For all $p \in (1, +\infty)$, there exists $\epsilon > 0$ and $\alpha_0 > 1$ depending on p such that if

- $s: (D, \tilde{g}) \longrightarrow N$ is a critical map of E_{α} on D(R)
- $E(s) < \epsilon$, $1 < \alpha < \alpha_0$

then

$$||ds||_{W^{1,p}(D')} < C(p, D')||ds||_{L^2(D)}, \text{ for all disc } D' \in D$$

Remark 4. In fact α_0 , ϵ and C(p, D') depend on the rescaled metric \tilde{g} on D, but if $R \ll 1$ and \tilde{g} is very close to Euclidean metric, then one can choose these parameters independently of \tilde{g} .

A consequence of (the proof of) Lemma 5 is the following global result:

Theorem 6 (Critical maps of low energy are trivial). There exists $\epsilon' > 0$ and $\alpha_0 > 1$ such that if

- $s: M \longrightarrow N$ is critical map of E_{α}
- $E(s) < \epsilon', 1 < \alpha < \alpha_0$

then $s \in N_0$ and E(s) = 0.

We proved in the last section that, under certain algebraic topological condition on N, E_{α} admits critical value $v_{\alpha} \in (1, (1+B^2)^{\alpha})$. We now can conclude that, by Theorem 6, the critical values v_{α} are bounded away from 1, i.e. $\inf_{\alpha} v_{\alpha} > 1$.

We will also need the following extension theorem:

Theorem 7 (Extension of harmonic maps). If $s: D \setminus \{0\} \longrightarrow N$ is a harmonic map with finite energy $E(s) < \infty$, then s extends to a smooth harmonic map $\tilde{s}: D \longrightarrow N$.

4 Convergence of critical maps of E_{α} .

We proved in Theorem 4 that if $C^0(M, N)$ is not connected or if $\Omega(M, N)$ is not contractible, then there exists a family $\{s_{\alpha}\}$ of critical maps of E_{α} with bounded, nontrivial energy $E_{\alpha}(s_{\alpha}) < B$. Since

- $\int_M |ds_\alpha|^2 \le (E_\alpha(s_\alpha) 1)^{1/\alpha}$ is bounded uniformly on α
- $||s_{\alpha}||_{L^{\infty}}$ is bounded by compactness of N.

the $W^{1,2}(M,\mathbb{R}^k)$ -norms of $\{s_{\alpha}\}$ are bounded. By reflexivity of Sobolev spaces, there exists a subsequence $\{s_{\beta}\}$ weakly converging to s in $W^{1,2}(M,\mathbb{R}^k)$ with

$$||s||_{W^{1,2}} \le \liminf_{\beta \to 1} ||s_{\beta}||_{W^{1,2}}$$

We do not know at this moment if the convergence is C^0 , or if s is continuous, or even if the image of s remains in N. The following key lemma answer these questions on a small disc of M in the case the energy of s_{α} is small.

Lemma 8 (Key). There exists an $\epsilon > 0$, in fact given by the Main estimate Lemma 5 with p = 4, such that if

• $s_{\alpha}: D(R) \longrightarrow N \subset \mathbb{R}^k$ are critical maps of E_{α} in $W^{1,2\alpha}(D(R),N)$,

• $E(s_{\alpha}) < \epsilon$ and s_{α} converges weakly to s in $W^{1,2}(D(R), \mathbb{R}^k)$,

then

- the restriction of s on $\overline{D(R/2)}$ is smooth harmonic map with image in N,
- $s_{\alpha} \to s$ in $C^1(\overline{D(R/2)}, N)$.

Remark 5. There are two different ways to define convergence of a sequence s_n to s in $C^1(\Omega)$ on an open set Ω :

1. The sequence s_{α} and s extend to $C^{1}(\bar{\Omega})$ and have finite norm $\max_{\Omega} |s| + \max_{\Omega} |ds|$ and $\max_{\Omega} |s_{\alpha}| + \max_{\Omega} |ds_{\alpha}|$ and

$$\max_{\Omega} |s_{\alpha} - s| + \max_{\Omega} |ds - ds_{\alpha}| \to 0.$$

In this case, we will say that s_{α} converges to s in $C^{1}(\bar{\Omega})$.

2. $C^1(\Omega)$ is topologised by a family of seminorms $\Gamma_K : s \longmapsto \max_K |s| + \max_K |ds|$ for $K \subseteq \Omega$. This makes $C^1(\Omega)$ a Fréchet topological vector space. If the sequence s_{α} converges to s under this topology then we will say that s_{α} converges uniformly to s on compacts of Ω .

Proof. We consider s_{α} and s as maps from the unit disc D to \mathbb{R}^k , then by Main estimate Lemma 5 for p=4, since $E(s_{\alpha})<\epsilon$, one has:

$$||ds_{\alpha}||_{W^{1,4}(D(1/2),\mathbb{R}^k)} \le C(4,D(1/2))||ds_{\alpha}||_{L^2(D)} = C(4,D(1/2))E(s_{\alpha})^{1/2}$$

So $\{s_{\alpha}\}$ is bounded in $W^{1,4}(D(1/2),\mathbb{R}^k)$ which is embedded compactly into $C^1(\overline{D(1/2)},\mathbb{R}^k)$.

We now can prove that s_{α} converges strongly to s in $C^{1}(D(1/2), \mathbb{R}^{k})$: If there was a subsequence $\{s_{\beta}\}$ whose restriction to $\overline{D(1/2)}$ remains C^{1} -away from s, then by compactness of $W^{1,4}(D(1/2), \mathbb{R}^{k}) \hookrightarrow C^{1}(\overline{D(1/2)}, \mathbb{R}^{k})$, we can suppose that $\{s_{\beta}\}$ converges in C^{1} to a certain $\bar{s} \neq s$ on $\overline{D(1/2)}$. But as a subsequence of $\{s_{\alpha}\}$, $\{s_{\beta}\}$ converges weakly to s on D, hence on $\overline{D(1/2)}$, we than obtain a contradiction using the uniqueness of weak limit.

By considering the Euler-Lagrange equation and letting $\alpha \to 0$, one concludes that s is a harmonic map from D(1/2) to N.

The global convergence of $\{s_{\alpha}\}$ can be established by a well-chosen covering of M by small balls or radius R.

Proposition 8.1. Let $s_{\alpha}: M \longrightarrow N \subset \mathbb{R}^k$ be critical maps of E_{α} on M such that s_{α} converges weakly to s in $W^{1,2}(M,\mathbb{R}^k)$ and $E(s_{\alpha}) < B$. Then there exists l = l(B, N) such that given any m > 0, one can find a sequence $\{x_{m,1}, \ldots, x_{m,l}\} \subset M$ and a subsequence $\{s_{\alpha(m)}\}$ of $\{s_{\alpha}\}$ such that

$$s_{\alpha(m)} \longrightarrow s \text{ in } C^1\left(M \setminus \bigcup_{i=1}^l D(x_{m,i}, 2^{-m+1}), N\right)$$

Proof. We cover M by finitely many balls $D(y_i, 2^{-m})$ such that each point is covered at most h times by the bigger balls $D(y_i, 2^{-m+1})$. By Lemma ??, h can be chosen independently of m as $2^{-m} \to 0$.

Since $\sum_{i} \int_{D(y_{i},2^{-m+1})} |ds_{\alpha}|^{2} < Bh$, choosing $l = \lceil \frac{Bh}{2\epsilon} \rceil$, we see that there are at most l balls $D(y_{\alpha,i},2^{-m+1})$ with centers depending on α , on which the energy $E(s_{\alpha})$ is less than ϵ . Passing to a subsequence $\{s_{\alpha(m)}\}$ of $\{s_{\alpha}\}$, we can suppose that $\{y_{\alpha(m),i}\}$ converges to $x_{m,i}$ as $\{\alpha(m)\} \to 1$. But since the points $\{y_{i}\}$ are of finite number and separated, $y_{\alpha(m),i} \equiv x_{m,i}$ eventually and we can suppose that the bad balls $D(y_{\alpha(m),i})$ where energy of $s_{\alpha(m)}$ surpasses ϵ are the same for every $s_{\alpha(m)}$.

Now apply Lemma 8 to the sequence $\{s_{\alpha(m)}\}$ on all the other 2^{-m+1} -balls, one sees that $\{s_{\alpha(m)}\}$ converges in C^1 to s on all $\overline{D(y_i, 2^{-m})}$ except those centered at $x_{m,i}$. The conclusion follows.

Using a diagonal argument, we can find a subsequence $\{s_{\beta}\}$ of $\{s_{\alpha}\}$ that converges to s uniformly on compacts of $M \setminus \{x_1, \ldots, x_l\}$.

Theorem 9 (Convergence of $\{s_{\alpha}\}$). Let $s_{\alpha}: M \longrightarrow N \subset \mathbb{R}^k$ be critical maps of E_{α} on M such that s_{α} converges weakly to s in $W^{1,2}(M,\mathbb{R}^k)$ and $E(s_{\alpha}) < B$. Then there exist at most l points x_1, \ldots, x_l in M, where l is given by Proposition 8.1, and a subsequence $\{s_{\beta}\}$ of $\{s_{\alpha}\}$ such that

$$s_{\beta} \longrightarrow s \text{ in } C^{1}(M \setminus \{x_{1}, \dots, x_{l}\}, \mathbb{R}^{k}) \text{ uniformly on compacts.}$$

Proof. By passing to a subsequence $\{m_k\}$ of $\{m\}$, we can suppose that $\{x_{m,i}\}$ converges to x_i in M. Choose the diagonal subsequence $\{s_\beta\}$ from $\{s_{\alpha(m)}\}$ that consists of $s_{\alpha(m)(a_m)}$ where a_m is sufficiently big such that $\alpha(m)(a_m)$ is increasing and $\|s_{\alpha(m)(b)} - s_{\alpha(m)(c)}\|_{C^1(M \setminus \bigcup_i D(x_{m,i},2^{-m+1})} < \frac{1}{m}$ for all $b,c \geq a_m$. Then the sequence $\{s_\beta\}$ converges uniformly on compacts of $M \setminus \{x_1,\ldots,x_l\}$ because $\{\bigcup_i D(x_{m,i},2^{-m+1})\}_m$ is an exhaustive family of compacts of $M \setminus \{x_1,\ldots,x_l\}$.

Remark 6. With the same notation as Theorem 9,

- 1. The image $s(M\setminus\{x_1,\ldots,x_l\})$ lies in N. Also, using the Euler-Lagrange equation, one sees that s is a (smooth) harmonic map from $M\setminus\{x_1,\ldots,x_l\}$ to N.
- 2. Since $E(s) \leq \|s\|_{W^{1,2}}^2 \leq \liminf_{\alpha \to 1} \|s_\alpha\|^2 < +\infty$, $s|_{M \setminus \{x_1, \dots, x_l\}}$ extends to a harmonic map $\tilde{s}: M \to N$. We can therefore suppose that the limit s of Theorem 9 is smooth harmonic map on M and of image in N.

5 Nontrivial harmonic maps from \mathbb{S}^2 .

We will now prove the existence of nontrivial harmonic maps from \mathbb{S}^2 to a compact Riemannian manifold N satisfying the conditions of Theorem 4.

The following theorem does not suppose any condition on N.

Theorem 10. Let M be a compact surface and s_{α} be critical maps of E_{α} . Suppose that

- s_{α} converges in C^1 to s uniformly on compacts of $M \setminus \{x_1, \ldots, x_l\}$ but not on $M \setminus \{x_2, \ldots, x_l\}$.
- $E(s_{\alpha}) < B$

Then there exists a nontrivial harmonic map $s_*: \mathbb{S}^2 \longrightarrow N$.

Before proving the theorem, let us state its corollary.

Corollary 10.1 (Nontrivial harmonic map from \mathbb{S}^2). If the universal covering \tilde{N} of N is not contractible then there exists a nontrivial harmonic map $s: \mathbb{S}^2 \longrightarrow N$.

Proof. By Theorem 4 and Theorem 6, there exist critical maps $s_{\alpha}: \mathbb{S}^2 \longrightarrow N$ of E_{α} corresponding to critical values $E_{\alpha}(s_{\alpha})$ in $(1 + \delta, B)$. We claim that $\{s_{\alpha}\}$ cannot converge in $C^1(M)$ to a trivial harmonic map $s \in N_0$. In fact, if it did,

$$1 + \delta \le \lim_{\alpha \to 1} \int_M (1 + |ds_{\alpha}|^2)^{\alpha} dV = \int_M (1 + |ds|^2) dV = 1$$

which is contradictory.

Therefore, we only have two possibilities:

• $\{s_{\alpha}\}$ does not converge in $C^1(M)$ to s, then by Theorem 10, there exists a nontrivial harmonic map $s_*: \mathbb{S}^2 \longrightarrow N$.

• If $\{s_{\alpha}\}$ converges in $C^1(M)$ to a certain \tilde{s} , then as argued above, \tilde{s} is nontrivial.

In both cases, nontrivial harmonic map from \mathbb{S}^2 to N exists.

Let us now prove Theorem 10.

Proof of Theorem 10. If there is no C^1 convergence near x_1 , we claim that:

Assertion 1. For all C > 0 and $\delta > 0$, there exists $\alpha > 1$ arbitrarily close to 1 such that

$$\max_{\overline{D}(x_1,2\delta)} |ds_{\alpha}| > C.$$

Moreover, we can suppose that $\max_{\overline{D}(x_1,2\delta)} |ds_{\alpha}| = \max_{D(x_1,\delta)} |ds_{\alpha}|$.

Suppose that was not the case, then there exist $C, \delta > 0$ such that $\max_{D(x_1, 2\delta)} |ds_{\alpha}| \leq C$ for all $\alpha > 1$ sufficiently close to 1. Choose a radius $R \ll \delta$ such that

$$\int_{D(x_1,R)} |ds_{\alpha}|^2 \le \pi R^2 C^2 < \epsilon$$

It suffices to apply Key lemma 8 to see that $s_{\alpha} \to s$ in $C^1(D(x_1, R/2))$, hence s_{α} converges to s in $C^1(M \setminus \{x_2, \ldots, x_l\})$ uniformly on compacts. Moreover, since $\{ds_{\alpha}\}$ converges uniformly to ds on $\overline{D}(x_1, 2\delta) \setminus D(x_1, \delta)$, we can suppose, with α sufficiently close to 1, that the maximum is actually attained in $D(x_1, \delta)$.

Therefore, we can choose a sequence $\{C_n\}$ increasing to $+\infty$ and $\{\delta_n\}$ decreasing to 0, such that $C_n\delta_n$ diverges to $+\infty$ and there exists a sequence $\{\alpha_n\}$ decreasing to 1 such that

$$|ds_{\alpha_n}(y_n)| := \max_{D(x_1, \delta_n)} |ds_{\alpha_n}| = \max_{D(x_1, 2\delta_n)} |ds_{\alpha_n}| = C_n$$

We define

$$\tilde{s}_{\alpha_n}: D(\delta_n C_n) \longrightarrow N$$

$$x \longmapsto s_{\alpha_n} (y_n + C_n^{-1} x)$$

then $|d\tilde{s}_{\alpha_n}(0)| = \max_{D(C_n\delta_n)} |d\tilde{s}_{\alpha_n}| = 1.$

Fix any large $R < +\infty$, since $C_n \delta_n \to +\infty$, \tilde{s}_{α_n} is eventually defined on D(R) and is a critical point of E_{α_n} with respect to a metric \tilde{g}_n on D(R) converging to the Euclidean metric. The energy $E(\tilde{s}_{\alpha_n}\big|_{D(C_n\delta_n)}, \tilde{g}_n) = E(\tilde{s}_{\alpha_n}\big|_{D(y_n,\delta_n)}, g_M) \leq B$.

We claim that Proposition 8.1 and Theorem 9 remain correct when M = D(R) and s_{α} are critical maps of E_{α} with respect to metrics \tilde{g}_{α} converging to the Euclidean metric. To be precise:

Assertion 2. Let $\tilde{s}_{\alpha}: (D(R), \tilde{g}_{\alpha}) \longrightarrow N \subset \mathbb{R}^k$ be critical maps of E_{α} such that

- s_{α} converges weakly to s_{*} in $W^{1,2}(D(R), Euclid)$,
- $E(s_{\alpha}) < B$

then there exists at most l points $\{x_1, \ldots, x_l\}$ in $\overline{D}(R)$ and a subsequence $\{s_{\beta}\}$ such that s_{β} converges to s_* in $C^1(\overline{D}(R/2)\setminus\{x_1,\ldots,x_l\},\mathbb{R}^k)$ uniformly on compacts, and s_* is harmonic in D(R/2).

The two ingredients of the proof of Proposition 8.1 and Theorem 9 to be investigated are the covering and the estimate from Lemma 5. For the estimates, we already remarked that the parameters α_0 , ϵ , C(p,D') of Lemma 5 can be chosen independent of the metric \tilde{g}_{α} if they are close to Euclidean. For the covering, the investigation is not on the constant h, which can be chosen to be $3^{\dim M}$, but on how small the radius of the covering balls must be, but Lemma ?? states that their size is dictated by the Ricci curvature and sectional curvature of \tilde{g}_{α} , which are also uniformly bounded.

Using Assertion 2, passing to a subsequence of $\{\tilde{s}_{\alpha_n}\}$ if necessary, we can suppose that $\tilde{s}_{\alpha_n} \to s_*$ in $C^1(D(R), \mathbb{R}^k)$. Note that there is no singular point where $\{\tilde{s}_{\alpha_n}\}$ fails to converge because $|d\tilde{s}_{\alpha_n}|$ is bounded uniformly on D(R) (hence cannot explode as in Assertion 1). We can also choose, by a diagonal argument, a subsequence of $\{\tilde{s}_{\alpha_n}\}$ that converges to s_* in $C^1(\mathbb{R}^2)$ uniformly on compacts.

It is clear that $s_*: \mathbb{R}^2 \longrightarrow N$ is harmonic and nontrivial because

$$|ds_*(0)|_{\text{Euclid}} = \lim_{\alpha_n \to 1} |d\tilde{s}_{\alpha_n}(0)|_{\tilde{g}_{\alpha_n}} = 1.$$

Also,

$$\int_{D(R)} |ds_*|^2 dE = \lim_{\alpha_n \to 1} \int_{D(R)} |d\tilde{s}_{\alpha_n}|^2 dV_{\tilde{g}_{\alpha}} \le \limsup_{\alpha \to 1} 2E(s_{\alpha}\big|_{D(x_1, 2\delta_n)}) < 2B$$

which means the energy of s_* on \mathbb{R}^2 is bounded above by 2B.

Now since (\mathbb{R}^2 , Euclid) is conformal to $\mathbb{S}^2 \setminus \{p\}$, s_* can be seen as a harmonic map on $\mathbb{S}^2 \setminus \{p\}$ with the same (finite) energy. By Extension theorem 7, s_* extends to a nontrivial harmonic map from \mathbb{S}^2 to N.

Remark 7. 1. We can have a better estimate of $E(s_*)$. For any R > 0, one has

$$E(s_*\big|_{D(R)}) + E(s\big|_{M \setminus \bigcup_{i=1}^l D(x_i, \delta_n)}) \leq \limsup_{\alpha_n \to 1} \left[E(s_{\alpha_n}\big|_{D(x_1, \delta_n)}) + E(s_{\alpha_n}\big|_{M \setminus \bigcup_{i=1}^l D(x_i, \delta_n)}) \right]$$

Let $\delta \to 0$ then $R \to +\infty$, one has

$$E(s_*) + E(s) \le \limsup_{\alpha \to 1} E(s_\alpha).$$

2. The proof of Theorem 10 also gives a constraint on the image of s_* : since $s_*(D(R)) \subset \overline{\bigcup_{1 < \beta < \alpha} s_{\beta}(D(x_1, 2\delta))}$ for all α arbitrarily close to 1 and δ arbitrarily small, one has

$$s_*(\mathbb{S}^2) \subset \bigcap_{\delta \to 0} \bigcap_{\alpha \to 1} \overline{\bigcup_{1 < \beta < \alpha} s_\beta(D(x_1, \delta))}$$

6 Minimal immersions of \mathbb{S}^2 .

We use the following result:

Theorem 11 ([?], [?]). If $s: \mathbb{S}^2 \longrightarrow N$ is a nontrivial harmonic map and dim $N \geq 3$, then s is a C^{∞} conformal, branched, minimal immersion.

The "minimal" part follows from [?], the "branched" part follows from [?] and the "conformal" part follows from [?] and the fact that there is no nontrivial holomorphic quadratic differential on \mathbb{S}^2 . Theorem 10 gives:

Theorem 12. If the universal covering \tilde{N} of N is not contractible then there exists a C^{∞} conformal, branched, minimal immersion $s: \mathbb{S}^2 \longrightarrow N$.