Un petit langage fonctionnel : FUN.

On se rapproche de notre but final en considérant un petit langage fonctionnel, nommé FUN.

On se donne l'ensemble des entiers relatifs \mathbb{Z} et un ensemble infini de variables \mathbb{V} . L'ensemble des expressions de FUN, notées e, e' ou e_i , est défini par la grammaire suivante :

$$e ::= k \mid e_1 + e_2 \mid \underbrace{\operatorname{fun} x \rightarrow e}_{\text{Application}} \mid x.$$
Fonction / Abstraction

Note 1. On simplifie la notation par rapport à EA ou LEA : on ne souligne plus les entiers, on n'entoure plus les plus.

On notera de plus e_1 e_2 e_3 pour $(e_1$ $e_2)$ e_3 . Aussi, l'expression $\operatorname{fun} x \ y \to e$ représentera l'expression $\operatorname{fun} x \to (\operatorname{fun} y \to e)$. On n'a pas le droit à plusieurs arguments pour une fonction, mais on applique la curryfication.

1 Sémantique opérationnelle « informellement ».

Exemple 1. Comment s'évalue (fun $x \rightarrow x + x$)(7 + 7)?

- $\,\triangleright\,$ D'une part, 7+7 s'évalue en 14.
- $\,\,\,\,$ D'autre part, $(\operatorname{\mathtt{fun}} x \to x + x)$ s'évalue en elle même.

 \triangleright On procède à une substitution de (x+x)[14/x] qui s'évalue en 28.

Exemple 2. Comment s'évalue l'expression

$$(\underbrace{(\operatorname{fun} f \to \underbrace{(\operatorname{fun} x \to x + (f \ x))}^{A})}_{B} \underbrace{(\operatorname{fun} y \to y + y)}_{C}) ?$$

On commence par évaluer A et C qui s'évaluent en A et C respectivement. On continue en calculant la substitution

$$(\operatorname{fun} x \to x + (f x))[\operatorname{fun} y \to y + y/f],$$

ce qui donne

$$(\operatorname{fun} x \to x + ((\operatorname{fun} y \to y + y) x)).$$

Là, on **ne simplifie pas**, car c'est du code *dans* une fonction. On calcule ensuite la substitution

$$(x + ((\operatorname{fun} y \to y + y) \ x))[7/x],$$

ce qui donne

$$7 + ((\operatorname{fun} y \to y + y) \ 7).$$

On termine par la substitution

$$(y+y)[7/y] = 7 + 7.$$

On conclut que l'expression originelle s'évalue en 21.

Remarque 1. Dans FUN, le résultat d'un calcul (qu'on appellera valeur) n'est plus forcément un entier, ça peut aussi être une fonction.

L'ensemble des valeurs, notées v, est défini par la grammaire

$$v ::= k \mid \operatorname{fun} x \to e.$$

LES FONCTIONS SONT DES VALEURS! Et, le « contenu » la fonction n'est pas forcément une valeur.

On peut remarquer que l'ensemble des valeurs est un sousensemble des expressions de FUN.

2 Sémantique opérationnelle de FUN (version 1).

Définition 1. On définit l'ensemble des variables libres $\mathcal{V}\ell(e)$ d'une expression e par (on a 5 cas) :

- $\triangleright \mathcal{V}\ell(x) = \{x\};$
- $\triangleright \mathcal{V}\ell(k) = \emptyset;$
- $\triangleright \mathcal{V}\ell(e_1 + e_2) = \mathcal{V}\ell(e_1) \cup \mathcal{V}\ell(e_2);$
- $\triangleright \mathcal{V}\ell(e_1 e_2) = \mathcal{V}\ell(e_1) \cup \mathcal{V}\ell(e_2);$
- $\forall \mathcal{V}\ell(\mathtt{fun}\,x \to e) = \mathcal{V}\ell(e) \setminus \{x\}.^{1}$

On dit que e est close si $\mathcal{V}\ell(e) = \emptyset$.

Définition 2. Pour $e \in \mathsf{FUN}, \ x \in \mathcal{V}$ et v une valeur **close**, on définit la substitution $e^{[v/x]}$ de x par v dans e par :

$$\triangleright k[v/x] = k;$$

$$\triangleright y[v/x] = \begin{cases} v & \text{si } x = y \\ y & \text{si } x \neq y; \end{cases}$$

$$\label{eq:fun} \triangleright \ (\operatorname{fun} y \to e)[v/x] = \begin{cases} \operatorname{fun} y \to e & \text{si } x = y \\ \operatorname{fun} y \to e[e/x] & \text{si } x \neq y; \end{cases}$$

$$(e_1 + e_2)[v/x] = (e_1[v/x]) + (e_2[v/x]);$$

$$\triangleright (e_1 e_2)[v/x] = (e_1[v/x]) (e_2[v/x]).$$

^{1.} L'expression $\operatorname{fun} x \to e$ est un $\operatorname{lieur} : x$ est liée dans e.

2.1 **Grands pas pour** FUN.

On définit la relation ↓ sur couples (expression, valeur) par :

$$\frac{e_1 \Downarrow k_1 \qquad e_2 \Downarrow k_2}{e_1 + e_2 \Downarrow k} \qquad \frac{v \Downarrow v}{v \Downarrow v}$$

$$\frac{e_1 \Downarrow \operatorname{fun} x \to e \qquad e_2 \Downarrow v_2 \qquad e^{\left[v_2/x\right] \Downarrow v}}{e_1 e_2 \Downarrow v}$$

expressions ne s'évaluer $x\not \Downarrow \quad \text{et} \quad z+(\operatorname{fun} x \to x)\not \Downarrow$ par exemple. Remarque 2. Certaines expressions ne s'évaluent pas :

$$x \not \Downarrow$$
 et $z + (\operatorname{fun} x \to x) \not \Downarrow$

Petits pas pour FUN.

On définit la relation $\rightarrow \subseteq \mathsf{FUN} * \mathsf{FUN}$ par :

$$\begin{array}{ll} & \frac{e_2 \rightarrow e_2'}{e_1 + e_2 \rightarrow e_1 + e_2'} \, \, \Re_{\mathrm{pk}} & \overline{\left(\operatorname{fun} x \rightarrow e \right) \, v \rightarrow e[v/x]} \, \, \Re_{\beta} \\ \\ & \frac{e_2 \rightarrow e_2'}{e_1 + e_2 \rightarrow e_1 + e_2'} \, \, \Re_{\mathrm{pd}} & \frac{e_1 \rightarrow e_1'}{e_1 + k \rightarrow e_1' + k} \, \, \Re_{\mathrm{pg}} \\ \\ & \frac{e_2 \rightarrow e_2'}{e_1 \, e_2 \rightarrow e_1 \, e_2'} \, \, \Re_{\mathrm{ad}} & \frac{e_1 \rightarrow e_1'}{e_1 \, v \rightarrow e_1' \, v} \, \, \Re_{\mathrm{ag}} \\ \end{array}.$$

Remarque 3. Il existe des expressions que l'on ne peut pas réduire: 1. $k \not\rightarrow$; 2. $(\operatorname{fun} x \rightarrow x) \not\rightarrow$; 3. $e_1 + (\operatorname{fun} x \rightarrow x) \not\rightarrow$; 4. $3(5+7) \rightarrow 312 \not\rightarrow$.

Théorie de la programmation

Dans les cas 1. et 2., c'est cohérent : on ne peut pas réduire des valeurs.

Lemme 1. On a

$$e \Downarrow v$$
 si, et seulement si, $e \to^* v$.

Remarque 4. Soit $e_0 = (\operatorname{fun} x \to x \ x) \ (\operatorname{fun} x \to x \ x)$. On remarque que $e_0 \to e_0$.

En FUN, il y a des divergences : il existe $(e_n)_{n\in\mathbb{N}}$ telle que l'on ait $e_n\to e_{n+1}.$

La fonction ² définie par ↓ est donc partielle.

Remarque 5 (Problème avec la substitution). On a la chaîne de réductions :

$$((\operatorname{fun} y \to (\operatorname{fun} x \to x + y)) (x + 7)) 5$$

$$(\star) \qquad \to (\operatorname{fun} x \to x + (x + 7)) 5$$

$$\to 5 + (5 + 7)$$

$$\to^{\star} 17.$$

Attention! Ici, on a triché : on a substitué avec l'expression x+7 mais ce n'est pas une valeur (dans la réduction (\star))!

Mais, on a la chaîne de réductions

$$(\operatorname{fun} f \to (\operatorname{fun} x \to (f \ 3) + x)) \ (\operatorname{fun} t \to x + 7) \ 5$$

$$\to (\operatorname{fun} x \to ((\operatorname{fun} t \to x + 7) \ 3) + x) \ 5$$

$$\to (\operatorname{fun} x \to ((\operatorname{fun} t \to x + 7) \ 3) + x) \ 5.$$

Et là, c'est le drame, on a **capturé la variable libre**. D'où l'hypothèse de v close dans la substitution.

^{2.} Pour indiquer cela, il faudrait démontrer que la relation \Downarrow est déterministe.

Remarque 6. Les relations \Downarrow et \rightarrow sont définies sur des expressions closes. Et on a même $\rightarrow \subseteq \mathsf{FUN}_0 * \mathsf{FUN}_0$.

Lemme 2.
$$ightharpoonup$$
 Si v est close et si $x \notin \mathcal{V}\ell(e)$ alors $e[v/x] = e$. $ightharpoonup$ Si v est close, $\mathcal{V}\ell(e[v/x]) = \mathcal{V}\ell(e) \setminus \{x\}$. \square

Lemme 3. Si $e \in \mathsf{FUN}_0$ et $e \to e'$ alors $e' \in \mathsf{FUN}_0$.

Preuve. Montrons que, quelles que soient e et e', on a : si $e \to e'$ alors $(e \in \mathsf{FUN}_0) \implies (e' \in \mathsf{FUN}_0)$ On procède par induction sur la relation $e \to e'$. Il y a 6 cas :

- 1. Pour \Re_{β} , on suppose (fun $x \to e$) v est close, alors
 - \triangleright (fun $x \rightarrow e$) est close;
 - $\triangleright v$ est close.

On sait donc que $\mathcal{V}\ell(e) \subseteq \{x\}$, d'où par le lemme précédent, $\mathcal{V}\ell(e[v/x]) = \emptyset$ et donc e[v/x] est close.

2-6. Pour les autres cas, on procède de la même manière.

Remarque 7. De même, si $e \Downarrow v$ où e est close, alors v est close.

Les relations \Downarrow et \rightarrow sont définies sur les expressions et les valeurs closes.

Définition 3 (Définition informelle de l' α -conversion). On définit l' α -conversion, notée $e =_{\alpha} e'$: on a fun $x \to e =_{\alpha}$ fun $y \to e'$ si, et seulement si, e' s'obtient en replaçant x par y dans e à condition que $y \notin \mathcal{V}\ell(e)$. ⁴

On étend $e =_{\alpha} e'$ à toutes les expressions : « on peut faire ça

^{3.} Il faudrait ici justifier que la réduction d'une formule close est close. C'est ce que nous allons justifier.

partout ».

Exemple 3 (Les variables liées sont muettes.). On a :

$$\begin{split} \operatorname{fun} x & \to x + z =_{\alpha} \operatorname{fun} y \to y + z \\ &=_{\alpha} \operatorname{fun} t \to t + z \\ & \neq_{\alpha} \operatorname{fun} z \to z + z. \end{split}$$

L'intuition est, quand on a fun $x \to e$ et qu'on a besoin de renommer la variable x, pour cela on prend $x' \notin \mathcal{V}\ell(e)$.

"Lemme" 1. Si $E_0 \subseteq \mathcal{V}$ est un ensemble fini de variables, alors il existe $z \notin E_0$ et $e' \in \mathsf{FUN}$ tel que $\mathsf{fun}\, x \to e =_\alpha \mathsf{fun}\, z \to e'$. \square

Remarque 8 (Fondamental). En fait FUN désigne l'ensemble des expressions décrites par la grammaire initiale quotient'ee par α -conversion.

Remarque 9. On remarque que

$$(e =_{\alpha} e') \implies \mathcal{V}\ell(e) = \mathcal{V}\ell(e').$$

D'après le "lemme", on peut améliorer notre définition de la substitution.

Définition 4. Pour $e \in \mathsf{FUN}, \ x \in \mathcal{V}$ et v une valeur **close**, on définit la *substitution* $e^{[v/x]}$ de x par v dans e par :

$$\begin{array}{l} \triangleright \ k[v/x] = k \,; \\ \\ \triangleright \ y[v/x] = \begin{cases} v & \text{si } x = y \\ y & \text{si } x \neq y \;; \end{cases} \\ \\ \triangleright \ (\operatorname{fun} x \to e)[v/x] = (\operatorname{fun} y \to e)[v/x] \text{ lorsque } x \neq y \,; \end{cases}$$

^{4.} C'est une « variable fraîche ».

$$(e_1 + e_2)[v/x] = (e_1[v/x]) + (e_2[v/x]);$$

$$(e_1 \ e_2)[v/x] = (e_1[v/x]) \ (e_2[v/x]).$$

3 Ajout des déclarations locales (FUN + let).

On ajoute les déclarations locales (comme pour $\mathsf{EA} \to \mathsf{LEA}$) à notre petit langage fonctionnel. Dans la grammaire des expressions de FUN , on ajoute :

$$e ::= \cdots \mid \text{let } x = e_1 \text{ in } e_2.$$

Ceci implique d'ajouter quelques éléments aux différentes opérations sur les expressions définies ci-avant :

- \triangleright on définit $\mathcal{V}\ell(\mathtt{let}\,x=e_1\ \mathtt{in}\ e_2)=\mathcal{V}\ell(e_1)\cup(\mathcal{V}\ell(e_2)\setminus\{x\});$
- ▷ on ne change pas les valeurs : une déclaration locale n'est pas une valeur;
- \triangleright on ajoute let $x = e_1$ in $e_2 =_{\alpha}$ let $y = e_1$ in e'_2 , où l'on remplace x par y dans e_2 pour obtenir e'_2 ;
- \triangleright pour la substitution, on pose lorsque $x \neq y$ (que l'on peut toujours supposer modulo α -conversion)

$$(\text{let } y = e_1 \text{ in } e_2)[v/x] = (\text{let } y = e_1[v/x] \text{ in } e_2[v/x]).$$

- ▷ pour la sémantique à grands pas, c'est comme pour LEA;
- ▶ pour la sémantique à petits pas, on ajoute les deux règles :

$$\frac{}{\text{let } x = v \text{ in } e_2 \to e_2[v/x]} \,\, \Re_{\text{lv}}$$

et

$$\frac{e_1 \to e_1'}{\text{let } x = e_1 \text{ in } e_2 \to \text{let } x = e_1' \text{ in } e_2} \,\, \Re_{\lg}.$$

Attention! On n'a pas de règle

$$\frac{e_2 \rightarrow e_2'}{\text{let } x = e_1 \text{ in } e_2 \rightarrow \text{let } x = e_1 \text{ in } e_2'} \; \mathcal{R}_{\text{ld}}$$

on réduit d'abord l'expression e_1 jusqu'à une valeur, avant de passer à e_2 .

Le langage que l'on construit s'appelle FUN + let.

3.1 Traduction de FUN + let vers FUN.

On définit une fonction qui, à toute expression de e dans $\mathsf{FUN} + \mathsf{let}$ associe une expression notée $\llbracket e \rrbracket$ dans FUN (on supprime les expressions locales). L'expression $\llbracket e \rrbracket$ est définie par induction sur e. Il y a 6 cas :

```
Lemme 4. Pour tout e \in (FUN + let),
```

- $\triangleright [e]$ est une expression de FUN⁵;
- $\quad \triangleright \text{ on a } \mathcal{V}\!\ell([\![e]\!]) = \mathcal{V}\!\ell(e)\,;$
- $\triangleright [e]$ est une valeur $ssi\ e$ est une valeur;
- $\triangleright [e[v/x]] = [e][v]/x]^{6}.$

Pour démontrer le lemme 4, on procède par induction sur e. C'est long et rébarbatif, mais la proposition ci-dessous est bien plus intéressante.

Proposition 1. Pour toutes expressions e, e' de $\mathsf{FUN} + \mathsf{let}$, si on a la réduction $e \to_{\mathsf{FUN}+\mathsf{let}} e'$ alors $[\![e]\!] \to_{\mathsf{FUN}} [\![e']\!]$.

Preuve. On procède par induction sur $e \to e'$ dans FUN + let. Il y a 8 cas car il y a 8 règles d'inférences pour \to dans FUN + let.

 $ho Cas \mathcal{R}_{lv}$. Il faut montrer que $[\![let x = v \ in \ e_2]\!] \to_{\mathsf{FUN}}$ $[\![e[v/x]]\!]$. Par définition, l'expression de droite vaut

$$(\operatorname{fun} x \to \llbracket e \rrbracket_2) \ \llbracket v \rrbracket \xrightarrow{\mathfrak{R}_\beta}_{\mathsf{FUN}} \ \llbracket e \rrbracket_2 \, \llbracket v \rrbracket /_x \rbrack,$$

^{5.} i.e. $\llbracket e \rrbracket$ n'a pas de déclarations locales

^{6.} On le prouve par induction sur e, c'est une induction à 6 cas

car $\llbracket v \rrbracket$ est une valeur par le lemme 4, ce qui justifie \Re_{β} . De plus, encore par le lemme 4, on a l'égalité entre $\llbracket e \rrbracket_2 \llbracket v \rrbracket/x \rrbracket = \llbracket e \llbracket v/x \rrbracket \rrbracket$.

 $ightharpoonup Cas \mathcal{R}_{lg}$. On sait que $e_1 \to e'_1$ et, par hypothèse d'induction, on a $[\![e_1]\!] \to [\![e'_1]\!]$. Il faut montrer que

$$[\![let x = e_1 \text{ in } e_2]\!] \to [\![let x = e_1' \text{ in } e_2]\!].$$

L'expression de droite vaut

$$(\operatorname{\mathtt{fun}} x \to \llbracket e_2 \rrbracket) \ \llbracket e_1 \rrbracket \xrightarrow{\mathscr{R}_{\operatorname{ad}} \ \& \ \operatorname{hyp. \ ind.}} (\operatorname{\mathtt{fun}} x \to \llbracket e_2 \rrbracket) \ \llbracket e_1' \rrbracket \ .$$

Et, par définition de [.], on a l'égalité :

$$\llbracket \mathtt{let} \ x = e_1' \ \mathtt{in} \ e_2 \rrbracket = (\mathtt{fun} \ x \to \llbracket e_2 \rrbracket) \ \llbracket e_1' \rrbracket \, .$$

 $\,\,\vartriangleright\,\,$ Les autres cas sont laissées en exercice.

Proposition 2. Si $[e] \rightarrow [e']$ alors $e \rightarrow e'$.

Preuve. La proposition ci-dessus est mal formulée pour être prouvée par induction, on la ré-écrit. On démontre, par induction sur la relation $f \to f'$ la propriété suivante :

« quel que soit e, si $f = \llbracket e \rrbracket$ alors il existe e' une expression telle que $f' = \llbracket e' \rrbracket$ et $e \to e'$ (dans FUN + let) »,

qu'on notera $\mathcal{P}(f, f')$.

Pour l'induction sur $f \to f'$, il y a 6 cas.

- $ightharpoonup Cas de la règle <math>\mathcal{R}_{ad}$. On suppose $f_2 \to f_2'$ et par hypothèse d'induction $\mathcal{P}(f_2, f_2')$. On doit montrer $\mathcal{P}(f_1, f_2, f_1, f_2')$. On suppose donc $[e] = f_1, f_2$. On a deux sous-cas.
 - 1^{er} sous-cas. On suppose $e = e_1$ e_2 et $[e_1] = f_1 = f_2$. Par hypothèse d'induction et puisque $[e_2] = f_2$, il

existe e_2' tel que $e_2 \to e_2'$ et $\llbracket e_2' \rrbracket = f_2'$. De $e_2 \to e_2'$, on en déduit par \mathcal{R}_{ad} que $e_1 e_2 \to e_1 e_2'$. On pose $e' = e_1 e_2'$ et on a bien $\llbracket e' \rrbracket = \llbracket e_1 \rrbracket \ \llbracket e_2' \rrbracket$.

- $2^{\grave{e}me}$ sous-cas. On suppose $e = \mathtt{let}\,x = e_1$ in e_2 . Alors,

$$\llbracket e \rrbracket = \underbrace{(\operatorname{fun} x \to \llbracket e_2 \rrbracket)}_{f_1} \underbrace{\llbracket e_1 \rrbracket}_{f_2}.$$

Par hypothèse d'induction, il existe e'_1 tel que $e_1 \to e'_1$ et $\llbracket e'_1 \rrbracket = f'_2$. Posons $e' = (\text{let } x = e'_1 \text{ in } e_2)$. On doit vérifier $\llbracket e \rrbracket \to \llbracket e' \rrbracket$ ce qui est vrai par \Re_{ad} et que $\llbracket e' \rrbracket = f_1 f'_2$, ce qui est vrai par définition.

- $ightharpoonup Cas de la règle <math>\Re_{ag}$. On suppose $f_1 \to f_1'$ et l'hypothèse d'induction $\mathscr{P}(f_1, f_1')$. On doit vérifier que $\mathscr{P}(f_1 \ v, f_1' \ v)$. On suppose $[\![e]\!] = f_1 \ v$ et on a deux sous-cas.
 - 1^{er} sous-cas. On suppose $e = e_1$ e_2 et alors $[\![e]\!] = [\![e_1]\!] [\![e_2]\!]$ par le lemme 4 et parce que e_2 est une valeur (car $[\![e_2]\!] = v$). On raisonne comme pour la règle $\mathcal{R}_{\rm ad}$ dans le premier sous-cas, en appliquant $\mathcal{R}_{\rm ag}$.
 - 2^{nd} sous-cas. On suppose $e = (\text{let } x = e_1 \text{ in } e_2)$ alors

$$\llbracket e \rrbracket = \underbrace{\operatorname{fun} x \to \llbracket e_2 \rrbracket}_{f_1} \underbrace{\llbracket e_1 \rrbracket}_{f_2}.$$

On vérifie aisément ce que l'on doit montrer.

 \triangleright Les autres cas se font de la même manière (attention à \mathcal{R}_{β}).