Textindexierung Programmierprojekt

Abschlusspräsentation · 07.02.2022 Moritz Potthoff

Vorberechnung: Suffix Tree

Suffix Tree-Konstruktion:

- In $\mathcal{O}(n)$ mittels **Ukkonens Algorithmus**
- Hoher Platzbedarf
- Laufzeit...

Figure with running times for different tex

- Annotiere jeden Knoten mit String-Tiefe und Anzahl Blätter unter ihm Entferne dabei Sentinel-Blätter
- Für Query mit Eingaben ℓ und k:
 - DFS: Sammle jeden höchsten Knoten mit String-Tiefe $\geq \ell$
 - → Kandidaten, speichere Suffixposition und Anzahl Blätter
 - Sortiere Kandidaten stabil nach Anzahl Blättern
 - Gebe k-ten Kandidaten aus.

- Annotiere jeden Knoten mit String-Tiefe und Anzahl Blätter unter ihm Entferne dabei Sentinel-Blätter
- Für Query mit Eingaben ℓ und k:
 - DFS: Sammle jeden höchsten Knoten mit String-Tiefe $\geq \ell$
 - → Kandidaten, speichere Suffixposition und Anzahl Blätter
 - Sortiere Kandidaten stabil nach Anzahl Blättern
 - Gebe k-ten Kandidaten aus.

- Annotiere jeden Knoten mit String-Tiefe und Anzahl Blätter unter ihm Entferne dabei Sentinel-Blätter
- Für Query mit Eingaben ℓ und k:
 - DFS: Sammle jeden höchsten Knoten mit String-Tiefe $\geq \ell$
 - → Kandidaten, speichere Suffixposition und Anzahl Blätter
 - Sortiere Kandidaten stabil nach Anzahl Blättern
 - Gebe k-ten Kandidaten aus.

- Annotiere jeden Knoten mit String-Tiefe und Anzahl Blätter unter ihm Entferne dabei Sentinel-Blätter
- Für Query mit Eingaben ℓ und k:
 - DFS: Sammle jeden höchsten Knoten mit String-Tiefe $\geq \ell$
 - → Kandidaten, speichere Suffixposition und Anzahl Blätter
 - Sortiere Kandidaten stabil nach Anzahl Blättern
 - Gebe k-ten Kandidaten aus.

- Annotiere jeden Knoten mit String-Tiefe und Anzahl Blätter unter ihm Entferne dabei Sentinel-Blätter
- Für Query mit Eingaben ℓ und k:
 - DFS: Sammle jeden höchsten Knoten mit String-Tiefe $\geq \ell$
 - → **Kandidaten**, speichere Suffixposition und Anzahl Blätter
 - Sortiere Kandidaten stabil nach Anzahl Blättern
 - Gebe k-ten Kandidaten aus.

О

- Annotiere jeden Knoten mit String-Tiefe und Anzahl Blätter unter ihm Entferne dabei Sentinel-Blätter
- Für Query mit Eingaben ℓ und k:
 - DFS: Sammle jeden höchsten Knoten mit String-Tiefe $\geq \ell$
 - → **Kandidaten**, speichere Suffixposition und Anzahl Blätter
 - Sortiere Kandidaten stabil nach Anzahl Blättern
 - Gebe k-ten Kandidaten aus.

- Annotiere jeden Knoten mit String-Tiefe und Anzahl Blätter unter ihm Entferne dabei Sentinel-Blätter
- Für Query mit Eingaben ℓ und k:
 - DFS: Sammle jeden höchsten Knoten mit String-Tiefe $\geq \ell$
 - → **Kandidaten**, speichere Suffixposition und Anzahl Blätter
 - Sortiere Kandidaten stabil nach Anzahl Blättern
 - Gebe k-ten Kandidaten aus.

- Annotiere jeden Knoten mit String-Tiefe und Anzahl Blätter unter ihm Entferne dabei Sentinel-Blätter
- Für Query mit Eingaben ℓ und k:
 - DFS: Sammle jeden höchsten Knoten mit String-Tiefe $\geq \ell$
 - → **Kandidaten**, speichere Suffixposition und Anzahl Blätter
 - Sortiere Kandidaten stabil nach Anzahl Blättern
 - Gebe k-ten Kandidaten aus.

TopK Queries – Evaluation

Repeat Queries

- Annotiere jeden Knoten mit String-Tiefe und möglichem Suffix
- Sammle innere Knoten, absteigend sortiert nach String-Tiefe
- Für jeden inneren Knoten *v*:
 - Sammle sortierte Liste aller Suffixe unter dem Knoten
 - Falls es zwei Suffixe gibt mit Differenz der String-Tiefe von v: Gebe Ergebnis aus

