

Features	Application		
● 650V, 7A	● Load Switch		
$R_{DS(ON)} < 1.35\Omega @ V_{GS} = 10V$	 PWM Application 		
● Fast Switching	Power management		
■ Improved dv/dt Capability			
	100% UIS		
	100% ΔVds		
事產半导体 Variet translateduter TO-252	Schematic Diagram		

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM7N65-T2	VSM7N65	TAPING	TO-252	13inch	2500	25000

Absolute Maximum Ratings (T_C =25 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		650	V
V _{GSS}	Gate-Source Voltage		±30	V
I _D	Continuous Drain Current	T _C = 25 °C	7	Α
ID		T _C = 100°C	4.5	Α
I _{DM}	Pulsed Drain Current note1		28	Α
E _{AS}	Single Pulsed Avalanche Energy note2		198	mJ
P _D	Power Dissipation	T _C = 25°C	63	W
$R_{ heta JC}$	Thermal Resistance, Junction to Case		1.98	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient Operating and Storage Temperature Range		62.5	°C/W
T_J, T_{STG}			-55 to +150	$^{\circ}$

Electrical Characteristics (TJ=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	650	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650V, V _{GS} = 0V, T _J = 25℃	-	-	1	μA		
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 30V$	-	-	±100	nA		
On Charac	On Characteristics							
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	-	4	V		
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 3.5A	-	1.15	1.35	Ω		
Dynamic C	Dynamic Characteristics							
C _{iss}	Input Capacitance), OF),), O),	-	1148	-	рF		
Coss	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1.0MHz	-	106	-	рF		
C _{rss}	Reverse Transfer Capacitance	1 - 1.UIVIMZ	-	12	-	pF		
Q_g	Total Gate Charge	V _{DS} =520V, I _D =7A, V _{GS} = 10V	-	22	-	nC		
Q_{gs}	Gate-Source Charge		-	4.3	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS - 10V	-	13	-	nC		
Switching Characteristics								
t _{d(on)}	Turn-On Delay Time		-	15	-	ns		
t _r	Turn-On Rise Time	$V_{DD} = 325V, I_D = 7A,$	-	18	-	ns		
$t_{d(off)}$	Turn-Off Delay Time	$R_G = 25\Omega$	-	80	-	ns		
t _f	Turn-Off Fall Time		-	35	-	ns		
Drain-Soul	Drain-Source Diode Characteristics and Maximum Ratings							
Is	Maximum Continuous Drain to Source Diode Forward		-		7	Α		
IS	Current			ı	/	A		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	28	Α		
V _{SD}	Drain to Source Diode Forward	$V_{GS} = 0V$, $I_{SD} = 7A$,			1.4	V		
V SD	Voltage	T _J = 25℃		-	1.4	٧		
t _{rr}	Reverse Recovery Time	$V_{GS} = 0V, I_{S} = 7A,$	-	300	-	ns		
Q_{rr}	Reverse Recovery Charge	di/dt =100A/µs	-	4.1	-	μC		

Notes: 1. Repetitive Rating: Pulse width limited by maximum junction temperature

^{2.} EAS condition: $T_J = 25$ °C, $V_{DD} = 50$ V, $V_G = 10$ V, L = 10mH, $I_{AS} = 6.3$ A

^{3.} Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 1%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms