EECS101 Discussion 5

Yongfan Liu

Binary SGM Image

- Compute the SGM image
 - $\circ \mathsf{SGM} = (\frac{\partial E}{\partial x})^2 + (\frac{\partial E}{\partial y})^2$
- Use a threshold to isolate edges in the SGM image
- Edge Map E(x,y)

Equation of line

$$x\sin(\theta) - y\cos(\theta) + \rho = 0, \ x, y \in R$$
$$y = [\sin(\theta)/\cos(\theta)]x + \rho/\cos(\theta)$$

Hough transform for line

$$xsin(\theta) - ycos(\theta) + \rho = 0, \theta \in [0, \pi), \rho \in R$$
$$\rho = -xsin(\theta) + ycos(\theta)$$

Pixels on the edges satisfy the equation. In other words, given (x,y), use the equation to solve for (θ,ρ)

Horizontal axis is θ , vertical is ρ .

Image space

Votes

$$xsin(\theta) - ycos(\theta) + \rho = 0, \theta \in [0, \pi), \rho \in R$$
$$\rho = -xsin(\theta) + ycos(\theta)$$

- Quantize (ρ, θ) parameter
 - θ : [0, 180), step=1 or smaller
 - ρ : based on image size
 - ρ might be negative, how to use it as index?
 - Rescale ρ to keep it positive,
 - $\rho' = a\rho + b$, $s.t.\rho' \ge 0$

$$xsin(\theta) - ycos(\theta) + \rho = 0, \theta \in [0, \pi), \rho \in R$$
$$\rho = -xsin(\theta) + ycos(\theta)$$

- Radians and Degrees
 - Trigonometric Functions provided with <math.h>
 in C
 - The measurement of C is Radians
 - 180° is equal π rad.
 - $\cos\left(60 \times \left(\frac{pi}{180}\right)\right) = \frac{1}{2}$

- Initialize accumulate function $A(\rho, \theta)$ to zero for each bucket in (ρ, θ) space
- For each edge pixel in the edge map, compute ρ , θ corresponding to the edge from its position & direction. Set $A(\rho, \theta) = A(\rho, \theta) + 1$ for computed (ρ, θ)

Reconstruct an Image from the Voting Array

- Find local maxima in $A(\theta, \rho)$ corresponding to detected lines in image
 - The voting array is noisy because of small numbers.
 Use threshold to eliminate noise.
 - Find 3 local maxima corresponding to 3 lines.
 - hough_threshold = min{3 local maxima}

How to avoid that the most two bright pixels indicate the same line?

Think about their distance

Reconstruct an Image from the Voting Array

- Reconstruction from the array
 - Three pairs of (θ, ρ)
 - Draw three lines using the line equation.

$$x\sin(\theta) - y\cos(\theta) + \rho = 0, \quad x, y \in R$$

- Given (θ, ρ) , find out all the (x,y) that satisfy the equation and assign them value 255.
- Remember you have rescaled ρ, transfer it back.

- Assume that the (x, y) coordinate system origin is at the bottom left corner of the image where x increases going to the right and y increases going up.
- The index matrix never change.

```
for (i = end of i; i > 0; i--)
for (j = 1; j < end of j; j++)
```


Original

Edge Detection

Found Lines

Votes

The workload of HW5 is heavy! Start your assignment as Earlier as possible.

Submission Guideline

- 4 images will be generated
- image-sgm.ras: SGM to original image
- image-binary.ras: Threshold SGM to original image
- image-voting_array.ras: Voting array, there should be lots of curves in the image.
- image-reconstructed_image.ras:
 Reconstructed image, there should be 3 lines.

Submission Guideline

Demo:

- 1. Show your working directory without any .ras files.
- 2. Compile and run your program.
- 3. Show the same working directory in step 1 with newly generated ras files.
- 4. Display the images including SGM, binary, normalized voting array and reconstructed image and comments.
- Submit your program and write up to Canvas by Feb 27 midnight

Grading Criteria

- ▶ Total 100 points
 - 10 points for submitting a program
 - 20 points for demo
 - 22 points for the binary SGM image
 - \circ 8 points for reporting each of the 3 pairs of (θ, ρ) and corresponding votes (totally 24 points)
 - 24 points for the reconstructed image