Preço de Contrato Ótimo da Geração Distribuída em Sistemas de Distribuição Radiais de Energia Elétrica

Marcia Cristina Dal Toé¹ e Marcos Julio Rider Flores²

¹ Universidade do Estado de Mato Grosso, UNEMAT Avenida São João, s/n, Cavalhada, 78200-000, Cáceres - MT marciadaltoe@unemat.br

Resumo Este artigo tem por objetivo determinar o preço de contrato ótimo da geração distribuída (GD) despachável em sistemas de distribuição radiais de energia. A abordagem proposta considera a interação de dois agentes: a concessionária de distribuição e o proprietário da GD. A concessionária de distribuição tem a intenção de minimizar os pagamentos realizados ao atender a demanda, e o proprietário da GD pretende maximizar os lucros obtidos pela venda da energia para a concessionária de distribuição. Este problema é modelado através da programação binível, e transformado em um problema de otimização linear inteiro misto de um único nível equivalente, usando as propriedades da dualidade e as condições de otimalidade. O problema é modelado usando a linguagem de modelagem AMPL e resolvida através do solver comercial CPLEX. Os resultados obtidos mostram a qualidade e a validade do modelo proposto.

Palavras-chave: Preço de contrato ótimo da geração distribuída. Programação Binível. Programação linear inteira mista.

1 Introdução

A geração distribuída pode proporcionar diversos benefícios ao sistema de distribuição, como melhoria do perfil de tensão e redução das perdas, pelo fato de ser uma geração que se localiza próxima à carga. Com a inserção da GD nos sistemas de distribuição há necessidade de estudar os impactos técnicos e econômicos ocasionados por ela. Depois da crise energética enfrentada nos últimos anos, o Brasil tem mostrado sinais que visam reduzir as barreiras para a instalação da GD, a partir de fontes renováveis, como já aconteceu em outros países.

Embora a maioria das metodologias são abordadas do ponto de vista da concessionária de distribuição, visando maximizar os benefícios potenciais da GD, a abordagem proposta neste artigo considera não apenas o ponto de vista da concessionária, mas também do proprietário da GD. Neste sentido, prevemos uma estrutura de mercado em que a concessionária de distribuição é livre para

Universidade Estadual Paulista "Júlio de Mesquita Filho" Avenida Brasil, 56, Centro, 15385-000, Ilha Solteira - SP mjrider@dee.feis.unesp.br

comprar energia a partir do mercado atacadista de energia e/ou das unidades de GD na sua rede.

Os problemas de tomada de decisão da concessionária de distribuição e do proprietário da GD podem ser combinados em um Problema de Programação Binível (PPB). Um PPB é um problema de tomada de decisão envolvendo dois níveis de otimização. Neste caso, o proprietário da GD está posicionado no nível de otimização superior, a escolha do preço de contrato das unidades da GD para maximizar os benefícios obtidos a partir da energia vendida para a concessionária de distribuição. A concessionária de distribuição está posicionada no nível inferior de otimização e calcula a energia comprada das unidades de GD e do mercado atacadista de energia. O preço de contrato tornar-se um conjunto de parâmetros do problema do nível inferior, para o qual a concessionária de distribuição reage comprando mais ou menos energia para minimizar os pagamentos totais efetuados para satisfazer a demanda esperada.

Uma abordagem comum para tratar com PPBs é transformar o problema de otimização do nível inferior em um conjunto de restrições de modo que o PPB original torna-se um problema de otimização de um único nível. Essa transformação pode ser obtida através da aplicação das condições de otimalidade de Karush-Kuhn-Tucker (KKT) ou usando teoria da dualidade. Do ponto de vista matemático, ou seja, mais rigoroso, as duas metodologias são equivalentes, no entanto, a última é mais adequada quando utiliza-se solvers especializados como o branch-and-cut disponíveis comercialmente. Isso ocorre porque o número de restrições e variáveis binárias equivalentes envolvidas na utilização da teoria da dualidade é consideravelmente menor do que a necessária quando utiliza-se as condições de otimalidade de KKT [2].

Em [3], os autores propõem um modelo de programação binível para o preço de contrato ótimo da GD. Tal metodologia é baseada em uma aproximação não linear das equações de fluxo de potência (as expressões matemáticas utilizadas para modelar a distribuição dos fluxos de potência entre os elementos de uma rede). Neste caso, o problema do nível inferior é substituído pelas condições de otimalidade de KKT. A principal desvantagem dessa abordagem é que, sendo o modelo do nível inferior um problema de programação não-linear, as condições de KKT são necessárias, mas não suficientes para garantir a otimalidade. Como consequência, a qualidade e o tipo das soluções são sensíveis aos valores iniciais atribuídos ao estado da variável no solver.

2 Formulação do Modelo Matemático

Nesta seção, é apresentado o modelo de programação binível proposto e como ele é reformulado como um modelo de programação linear inteira mista.

2.1 Aproximação do Fluxo de Potência

O modelo proposto considera uma aproximação das equações de fluxo de potência para sistemas de distribuição similar as apresentadas em [3], porém com uma

correta representação das perdas de potência ativa nos circuitos. Essas aproximações são válidas para sistemas de distribuição radiais, com alto fator de potência e uma alta proporção de X/R. As simplificações são adotadas com objetivo de reduzir o esforço computacional e para evitar problemas de não-convexidade na formulação do fluxo de potência. Neste caso, somente a potência ativa, o fluxo de corrente e a magnitude de tensão são consideradas como variáveis de decisão.

Figura 1. Sistema de distribuição de três barras.

A Figura 1 mostra as considerações que podem ser usadas para se obter a equação do balanço de potência, dada em (1).

$$P_{i,t}^{se} + P_{i,t}^{gd} - \sum_{ij \in L} P_{ij,t}^{de} - \sum_{ji \in L} P_{ji,t}^{para} = P_{i,t}^{d} \quad \forall i \in I, \forall t \in T.$$
 (1)

Em que $P_{i,t}^{se}$, $P_{i,t}^{gd}$ e $P_{i,t}^{d}$ são, respectivamente, a potência ativa fornecida pela subestação, potência ativa fornecida pela unidade de GD e a demanda de potência ativa na barra i no período t. $P_{ij,t}^{de}$ e $P_{ji,t}^{para}$ são, respectivamente, os fluxos de potência ativa que deixam a barra i para a barra j e deixam a barra j na direção da barra i no período t. Os fluxos de potência ativa ($P_{ij,t}^{de}$) e ($P_{ij,t}^{para}$) e a magnitude do fluxo da corrente ($I_{ij,t}$) do circuito ij no período t são dados por (2) e (3), respectivamente.

$$P_{ij,t}^{de} = \frac{R_{ij}}{Z_{ij}^{2}} V_{i,t} (V_{i,t} - V_{j,t}) \ \forall ij \in L, \forall t \in T \ (a)$$

$$P_{ij,t}^{para} = \frac{R_{ij}}{Z_{ij}^{2}} V_{j,t} (V_{j,t} - V_{i,t}) \ \forall ij \in L, \forall t \in T \ (b)$$
(2)

$$I_{ij,t} = \frac{V_{i,t} - V_{j,t}}{Z_{ij}} \quad \forall ij \in L, \forall t \in T.$$
 (3)

Em que R_{ij} e Z_{ij} são, respectivamente, a resistência e impedância do circuito ij; e $V_{i,t}$ é a magnitude de tensão na barra i no período t.

Adicionando e subtraindo as equações (2.a) e (2.b), e considerando (3), as seguintes expressões são obtidas:

$$P_{ij,t}^{de} + P_{ij,t}^{para} = R_{ij}I_{ij,t}^{2} \quad \forall ij \in L, \forall t \in T \quad (a)$$

$$P_{ij,t}^{de} - P_{ij,t}^{para} = \frac{R_{ij}}{Z_{ij}^{2}} \left(V_{i,t}^{2} - V_{j,t}^{2} \right) \quad \forall ij \in L, \forall t \in T \quad (b)$$
(4)

A equação (4.a) representa a perda da potência ativa no circuito ij. As restrições (2.a) e (2.b) são substituídas pelas restrições (4.a) e (4.b), respectivamente. As equações (1), (3) e (4) são usadas para representar a operação de regime permanente dos sistemas radiais de distribuição de energia elétrica no Modelo de Programação Binível que será mostrado adiante. Observe que as equações (1) e (3) são lineares, enquanto (4) contém termos quadráticos. Esses termos quadrados podem ser linearizados usando uma abordagem de linearização por partes.

2.2 Linearização

A linearização por partes dos termos quadráticos $V_{i,t}^2$ e $I_{ij,t}^2$ é apresentada a seguir.

Quadrado da magnitude de tensão. A magnitude de tensão $V_{i,t}$ tem um valor mínimo \underline{V} e um valor máximo \overline{V} . Seja $V_{i,t}^{sqr}$ a variável que representa o quadrado da magnitude de tensão, e calculado como mostrado na equação (5).

$$V_{i,t}^{sqr} = -\underline{V^2} + 2\underline{V}V_{i,t} + \Delta V_{i,t}^2 \ \forall i \in I, \forall t \in T.$$
 (5)

Sendo $\Delta V_{i,t} = V_{i,t} - \underline{V}$ com valor mínimo zero e valor máximo $\overline{V} - \underline{V}$. Para (5), o termo quadrático $\Delta V_{i,t}^2$ é linearizado como descrito em [1] e mostrado na Figura 2.

Figura 2. Aproximação linear por parte da função $\Delta V_{i,t}^{sqr}$.

Portanto, o quadrado da magnitude de tensão $V_{i,t}^{sqr}$ é definido em (6).

$$V_{i,t}^{sqr} = -\underline{V^2} + 2\underline{V}V_{i,t} + \Delta V_{i,t}^{sqr} \quad \forall i \in I, \forall t \in T$$

$$\Delta V_{i,t}^{sqr} = \sum_{p=1}^{P} m_p^V \Delta_{i,t,p}^V \quad \forall i \in I, \forall t \in T$$

$$V_{i,t} = \underline{V} + \sum_{p=1}^{P} \Delta_{i,t,p}^V \quad \forall i \in I, \forall t \in T$$

$$\Delta_{i,t,p}^V - \overline{\Delta}^V \le 0 \quad \forall i \in I, \forall t \in T, p = 1, \dots, P \quad (d)$$

$$-\Delta_{i,t,p}^V \le 0 \quad \forall i \in I, \forall t \in T, p = 1, \dots, P \quad (e)$$

$$(6)$$

5

Sendo

$$m_p^V = (2p-1)\overline{\Delta}^V$$
, $p = 1, \dots, P$,
$$\overline{\Delta}^V = \frac{\overline{V} - \underline{V}}{P}.$$

As restrições (6) são um conjunto de expressões lineares e m_p^V e $\overline{\Delta}^V$ são parâmetros constantes. A restrição (6.a) é uma aproximação linear do quadrado da magnitude de tensão na barra i no período t. A restrição (6.b) é uma aproximação do quadrado $\Delta V_{i,t}$. A restrição (6.c) define que a magnitude da tensão na barra i no período t é igual ao somatório dos valores em cada bloco de discretização mais \underline{V} . As restrições (6.d) e (6.e) definem os limites superior e inferior na contribuição de cada bloco na diferença entre a magnitude da tensão da barra i no período t e \underline{V} .

Quadrado da magnitude do fluxo de corrente. Analogamente, é assumido que a magnitude da corrente $I_{ij,t}$ tem um valor mínimo de $-\overline{I}_{ij}$ e um valor máximo de \overline{I}_{ij} . Seja $I_{ij,t}^{sqr}$ a variável que representa o quadrado da magnitude da corrente. Da mesma forma como para $V_{i,t}^{sqr}$, $I_{ij,t}^{sqr}$ é definido em (7).

$$I_{ij,t}^{sqr} = \sum_{p=1}^{P} m_{ij,p}^{I} \Delta_{ij,t,p}^{I} \quad \forall ij \in L, \forall t \in T$$

$$I_{ij,t}^{+} - I_{ij,t}^{-} = I_{ij,t} \quad \forall ij \in L, \forall t \in T$$

$$I_{ij,t}^{+} + I_{ij,t}^{-} = \sum_{p=1}^{P} \Delta_{ij,t,p}^{I} \quad \forall i \in I, \forall t \in T$$

$$\Delta_{ij,t,p}^{I} - \overline{\Delta}_{ij}^{I} \leq 0 \quad \forall ij \in L, \forall t \in T, p = 1, \dots, P \quad (d)$$

$$-\Delta_{i,t,p}^{I} \leq 0 \quad \forall ij \in L, \forall t \in T, p = 1, \dots, P \quad (e)$$

$$-I_{ij,t}^{+} \leq 0 \quad \forall ij \in L, \forall t \in T \quad (f)$$

$$-I_{ij,t}^{-} \leq 0 \quad \forall ij \in L, \forall t \in T \quad (g)$$

em que,

$$m_{ij,p}^{I} = (2p-1)\overline{\Delta}_{ij}^{I}, \quad \forall ij \in L, p = 1, \dots, P,$$

42 JAIIO - SIO 2013 - ISSN: 1850-2865 - Page 130

$$\overline{\Delta}_{ij}^{I} = \frac{\overline{I}_{ij}}{P} , \quad \forall ij \in L.$$

2.3 Modelo de Programação Binível

A formulação linear binível para calcular o preço de contrato ótimo da GD em um sistema de distribuição elétrica é apresentada nas equações (8) – (10), onde as variáveis duais associadas com cada uma das restrições estão colocadas do lado da equação correspondente .

$$\underset{Cp_j}{\text{Max}} \sum_{j \in J} \sum_{t \in T} \Delta t (Cp_j - c_j) P_{j,t}^{gd}$$
(8)

Sujeito a

$$\underset{P^{se}, P^{gd}, V, V^{sqr}, \Delta V, \Delta V^{sqr},}{\text{Min}} \sum_{k \in K} \sum_{t \in T} \Delta t \rho_{k,t} P_{k,t}^{se} + \sum_{j \in J} \sum_{t \in T} \Delta t C p_j P_{j,t}^{gd}$$

$$P^{se}, P^{gd}, V, V^{sqr}, \Delta V, \Delta V^{sqr}, k \in K} \sum_{t \in T} \Delta t \rho_{k,t} P_{k,t}^{se} + \sum_{j \in J} \sum_{t \in T} \Delta t C p_j P_{j,t}^{gd}$$
(9)

Sujeito a:

$$P_{i,t}^{se} + P_{i,t}^{gd} - \sum_{ij \in L} P_{ij,t}^{de} - \sum_{ki \in L} P_{ki,t}^{para} = P_{i,t}^{d} \quad \forall i \in I, \forall t \in T : \pi_{i,t} \text{ (a)}$$

$$P_{ij,t}^{de} + P_{ij,t}^{para} = R_{ij} I_{ij,t}^{sqr} \qquad \forall ij \in L, \forall t \in T : \lambda_{ij,t} \text{ (b)}$$

$$P_{ij,t}^{de} - P_{ij,t}^{para} = \frac{R_{ij}}{Z_{ij}^2} (V_{i,t}^{sqr} - V_{j,t}^{sqr}) \qquad \forall ij \in L, \forall t \in T : \alpha_{ij,t} \text{ (c)}$$

$$I_{ij,t} = \frac{V_{i,t} - V_{j,t}}{Z_{ij}} \qquad \forall ij \in L, \forall t \in T : \alpha_{ij,t} \text{ (d)}$$

$$I_{ij,t} - \overline{I}_{ij} \leq 0 \qquad \forall ij \in L, \forall t \in T : \overline{\phi}_{ij,t} \text{ (e)}$$

$$-I_{ij,t} - \overline{I}_{ij} \leq 0 \qquad \forall ij \in L, \forall t \in T : \overline{\phi}_{ij,t} \text{ (f)}$$

$$V_{i,t} - \overline{V} \leq 0 \qquad \forall i \in I, \forall t \in T : \overline{w}_{i,t} \text{ (g)}$$

$$-V_{i,t} + \underline{V} \leq 0 \qquad \forall i \in I, \forall t \in T : \overline{w}_{i,t} \text{ (h)}$$

$$P_{j,t}^{gd} - \overline{P}_{j}^{gd} \leq 0 \qquad \forall i \in I, \forall t \in T : \overline{\beta}_{j,t} \text{ (i)}$$

$$-P_{j,t}^{gd} + P_{j}^{gd} \leq 0 \qquad \forall j \in J, \forall t \in T : \overline{\beta}_{j,t} \text{ (i)}$$

$$-P_{k,t}^{se} - \overline{P}_{k}^{se} \leq 0 \qquad \forall k \in K, \forall t \in T : \overline{\delta}_{k,t} \text{ (k)}$$

$$-P_{k,t}^{se} - \overline{P}_{k}^{se} \leq 0 \qquad \forall k \in K, \forall t \in T : \overline{\delta}_{k,t} \text{ (k)}$$

$$(6.a) : \varrho_{i,t} \qquad (7.a) : \eta_{ij,t} \qquad (7.b) : \theta_{ij,t} \qquad (7.b) : \theta_{ij,t} \qquad (7.c) : \tau_{ij,t} \qquad (7.c) : \tau_{ij,t} \qquad (7.c) : \overline{\tau}_{ij,t} \qquad (7.$$

O modelo fornece incentivos econômicos adequados para a concessionária de distribuição e para o proprietário da GD, pois considera o interesse de ambos

simultaneamente em um único processo de otimização. Uma das vantagens do modelo é que permite ao proprietário da GD se adiantar à reação da concessionária de distribuição. Isso é feito considerando o problema de otimização da concessionária de distribuição como um conjunto de restrições do problema de otimização do proprietário da GD. O modelo também permite incluir facilmente restrições de venda de energia e contratos bilaterais com outros agentes. A principal limitação do modelo é o fato de que ele só pode ser implementado com tecnologias de GD despacháveis. Isto é devido ao fato de que, sob uma abordagem de programação binível, um dos agentes devem decidir sobre a quantidade de energia a ser vendida/comprada, e, no caso de tecnologias não-despacháveis, esta quantidade é determinada por fatores externos não-determinísticos.

Observe que no problema (8) – (10) existem dois níveis de otimização, denominados de nível superior e nível inferior. O problema de otimização do nível superior consiste na maximização do lucro pelo proprietário da GD, como mostrado em (8) e que pode ser calculado como a receita obtida pela venda da energia menos o custo de produzí-la, durante um período de tempo. Em um mercado atacadista de energia elétrica tradicional, agentes geradores têm controle de decisão sobre ofertas, quantidades e preços de mercado. Na estrutura do mercado descrito neste artigo, o agente GD tem apenas o controle sobre seu preço de contrato, enquanto a quantidade é decidida pela concessionária de distribuição de energia elétrica. Além disso, a GD não é paga pelo preço do mercado atacadista de energia (o preço na subestação), em vez disso, ela é paga (se despachada pela concessionária de distribuição) ao preco de contrato previsto. Sejam J e T os conjuntos de unidades de geração distribuída e intervalos de tempo, respectivamente. Δt é o comprimento do intervalo de tempo t em horas. Cp_j e c_j são os preços de contrato e o custo de produção da unidade j da GD em \in /MWh, respectivamente. $P_{j,t}^{gd}$ é a potência ativa fornecida pela GD na barra j no período

O problema de otimização do nível inferior consiste na minimização dos pagamentos efetuados pela concessionária de distribuição de energia elétrica na compra de energia, como mostrado em (9). Isso significa que o lucro do proprietário da GD está sujeito à reação da concessionária de distribuição de energia elétrica. A função objetivo (9) é dividida em dois termos. O primeiro termo corresponde à energia comprada no mercado atacadista através das subestações, e o segundo termo corresponde à energia comprada das unidades de GD. Observe que o preço de contrato no qual o proprietário da GD está disposto a vender sua energia não é variável de decisão, mas é um parâmetro do problema de nível inferior. K e L são os conjuntos de unidades de geração distribuída e linhas, respectivamente. $\rho_{k,t}$ é o preço da energia no atacado na subestação k no período t em \in /MWh. $P_{k,t}^{se}$ é a potência ativa fornecida por uma subestação na barra k no período t.

A equação (10.a) corresponde ao balanço de potência ativa em cada barra do sistema. Pode-se observar que essa equação considera de forma explícita as perdas ativas nas linhas. As equações (10.e) e (10.f) correspondem aos limites máximos e mínimos do fluxo da corrente nas linhas. As equações (10.g) e (10.h)

correspondem aos limites de magnitude da tensão nas barras do sistema, e as equações (10.i) a (10.l) correspondem aos limites máximos e mínimos das potências fornecidas pelas unidades de GD e as subestações, respectivamente. \overline{V} e \underline{V} representam, respectivamente, os limites máximo e mínimo da magnitude de tensão em todas as barras; \overline{I}_{ij} é a magnitude do fluxo máximo de corrente de circuito ij. \overline{P}_j^{gd} e \underline{P}_j^{gd} são os limites máximos e mínimos de potência ativa da unidade j da GD, respectivamente. \overline{P}_k^{se} e \underline{P}_k^{se} são os limites máximos e mínimos da potência ativa da subestação k.

Sendo $\pi_{i,t}$ a variável dual associada com a restrição da equação de equilíbrio de energia na barra i no período t. $\lambda_{ij,t}$ a variável dual associada com a restrição das perdas de potência ativa do circuito ij no período t. $\alpha_{ij,t}$ a variável dual associada à restrição da diferença dos fluxos de potência ativa do circuito ij no período t. $\varphi_{ij,t}$ a variável dual associada com a restrição da magnitude do fluxo da corrente do circuito ij no período t. $\overline{\phi}_{ij,t}$ e $\underline{\phi}_{ij,t}$ são as variáveis duais associadas com as restrições de máximo e mínimo dos limites do fluxo da corrente do circuito ij no período t, respectivamente. $\overline{w}_{i,t}$ e $\underline{w}_{i,t}$ são as variáveis duais associadas com as restrições de máximo e mínimo das tensões da barra i no período t. $\overline{\beta}_{j,t}$ e $\underline{\phi}_{j,t}$ são as variáveis duais associadas com as restrições de máximo e mínimo da potência ativa gerada pela GD unidade j no período t. $\overline{\delta}_{k,t}$ e $\underline{\delta}_{k,t}$ são as variáveis duais associadas com as restrições de máximo e mínimo da potência ativa gerada pela substação k no período t.

Adicionalmente, $\varrho_{i,t}$, $\varepsilon_{i,t}$, $\sigma_{i,t}$, $\overline{\upsilon}_{i,t,p}$, $\underline{\upsilon}_{i,t,p}$, $\eta_{ij,t}$, $\theta_{ij,t}$, $\tau_{ij,t}$, $\overline{\kappa}_{ij,t,p}$, $\underline{\iota}_{ij,t,p}$, $\overline{\iota}_{ij,t}$ e $\underline{\iota}_{ij,t}$ são as variáveis duais associadas as restrições (6) e (7). Observa-se que, para um determinado conjunto de variáveis de decisão Cp_j a partir do problema do nível superior, o problema do nível inferior dado por (9) - (10) é um problema de programação linear, e pode ser transformado em um conjunto de restrições que correspondem às restrições do problema primal, as restrições do problema dual e a condição de dualidade forte [1].

2.4 Modelo de Programação de um Único Nível

O problema binível (8) – (10) pode ser transformado em um problema de otimização de um único nível, substituindo o problema do nível inferior por um conjunto de restrições que representa a solução dele e incorporando-as ao problema do nível superior.

Problema dual correspondente ao problema do nível inferior. O problema dual associado ao problema do nível inferior (9) - (10) é:

$$\sum_{i \in I} \sum_{t \in T} \left(P_{i,t}^{d} \pi_{i,t} - \underline{V}^{2} \varrho_{i,t} + \overline{V} \overline{w}_{i,t} + \underline{V} (\sigma_{i,t} - \underline{w}_{i,t}) \right) + \sum_{i \in I} \sum_{t \in T} \sum_{p \in P} \left(\overline{\Delta}^{V} \overline{v}_{i,t,p} \right) + \\
\frac{\pi, \lambda, \alpha, \varphi, \theta, \eta, \tau, \varrho,}{\overline{\varphi}, \underline{\kappa}, \underline{\kappa}, \overline{\iota}, \underline{\iota}, \underline{v}, \underline{v},} \sum_{ij \in L} \sum_{t \in T} \sum_{p \in P} \left(\overline{\Delta}_{ij}^{I} \overline{\kappa}_{ij,t,p} \right) + \sum_{ij \in L} \sum_{t \in T} \left(\overline{I}_{ij} (\overline{\phi}_{ij,t} + \underline{\phi}_{ij,t}) \right) + \\
\sum_{j \in J} \sum_{t \in T} \left(\overline{P}_{j}^{gd} \overline{\beta}_{j,t} - \underline{P}_{j}^{gd} \underline{\beta}_{j,t} \right) + \sum_{k \in K} \sum_{t \in T} \left(\overline{P}_{k}^{se} \overline{\delta}_{k,t} - \underline{P}_{k}^{se} \underline{\delta}_{k,t} \right)$$
(11)

$$\pi_{k,t} + \overline{\delta}_{k,t} - \underline{\delta}_{k,t} = \Delta t \rho_{k,t} \qquad \forall k \in K, \forall t \in T$$

$$\pi_{j,t} + \overline{\beta}_{j,t} - \underline{\beta}_{j,t} = \Delta t C p_{j} \qquad \forall j \in J, \forall t \in T$$

$$- \sum_{ij \in L} \frac{\varphi_{ij,t}}{Z_{ij}} + \sum_{ki \in L} \frac{\varphi_{ki,t}}{Z_{ki}} - 2 \underline{V} \varrho_{i,t} + \sigma_{i,t} + \overline{w}_{i,t} - \underline{w}_{i,t} = 0 \ \forall i \in I, \forall t \in T$$

$$- \sum_{ij \in L} \frac{R_{ij}}{Z_{ij}^{2}} \alpha_{ij,t} + \sum_{ki \in L} \frac{R_{ki}}{Z_{ki}^{2}} \alpha_{ki,t} + \varrho_{i,t} = 0 \qquad \forall i \in I, \forall t \in T$$

$$- \varrho_{i,t} + \varepsilon_{n,t} = 0 \qquad \forall i \in I, \forall t \in T$$

$$- m_{V}^{V} \varepsilon_{i,t} - \sigma_{i,t} + \overline{v}_{i,t,p} - \underline{v}_{i,t,p} = 0 \qquad \forall i \in I, \forall t \in T$$

$$- m_{ij,t}^{V} + \theta_{ij,t} + \overline{\phi}_{ij,t} - \underline{\phi}_{ij,t} = 0 \qquad \forall ij \in L, \forall t \in T$$

$$- R_{ij}\lambda_{ij,t} + \eta_{ij,t} = 0 \qquad \forall ij \in L, \forall t \in T$$

$$- \theta_{ij,t} + \tau_{ij,t} - \overline{\iota}_{ij,t} = 0 \qquad \forall ij \in L, \forall t \in T$$

$$- \theta_{ij,t} + \tau_{ij,t} - \overline{\iota}_{ij,t} = 0 \qquad \forall ij \in L, \forall t \in T$$

$$- \theta_{ij,t} + \tau_{ij,t} - \underline{\iota}_{ij,t} = 0 \qquad \forall ij \in L, \forall t \in T$$

$$- \pi_{i,t} + \lambda_{ij,t} - \alpha_{ij,t} = 0 \qquad \forall ij \in L, \forall t \in T$$

$$- \pi_{i,t} + \lambda_{ij,t} - \alpha_{ij,t} = 0 \qquad \forall ij \in L, \forall t \in T$$

$$- \pi_{i,t} + \lambda_{ij,t} - \alpha_{ij,t} = 0 \qquad \forall ij \in L, \forall t \in T$$

$$- \pi_{i,t} + \lambda_{ij,t} - \alpha_{ij,t} = 0 \qquad \forall ij \in L, \forall t \in T$$

$$- \pi_{ij,t}, \underline{v}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\kappa}_{ij,t,p}, \underline{\varepsilon}_{ij,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{ij,t}, \underline{\psi}_{i,t,p} \leq 0 \qquad \forall ij \in L, \forall t \in T$$

$$\overline{\psi}_{$$

Formulação de Programação Não-Linear. O problema de um único nível equivalente de (8) - (10) é dado por:

$$\operatorname{Max} \sum_{j \in J} \sum_{t \in T} \Delta t C p_j P_{j,t}^{gd} - \sum_{j \in J} \sum_{t \in T} \Delta t c_j P_{j,t}^{gd}$$

$$\tag{13}$$

Sujeito a:

A formulação acima corresponde a um problema de programação não-linear devido aos produtos das variáveis de decisão Cp_j e $P_{j,t}^{gd}$ na condição de dualidade forte. Este modelo é transformado em um MILP "equivalente" com a finalidade de resolver esse modelo transformado usando um solver convencional MILP [2].

2.5 Formulação da Programação Linear Inteira Mista

O contrato de preços da unidade GD pode ser discretizado num conjunto de passos Q, por exemplo, $[C_1^{pd}, C_2^{pd}, C_3^{pd}, \dots, C_{Q+1}^{pd}]$. Assim, o produto $Cp_j P_{j,t}^{gd}$ é linearizado pelo uso de variáveis binárias $x_{j,q}$ e variáveis auxiliares $CP_{j,t,q}^{gd}$, $\forall q = 1, \dots, Q$, como mostrado em (14).

$$\min_{q} (C_q^{pd}) \underline{P}_j^{gd} x_{j,q} \leq C P_{j,t,q}^{gd} \leq \max_{q} (C_q^{pd}) \overline{P}_j^{gd} x_{j,q}
\forall j \in J, \forall t \in T, \forall q = 1 \dots Q \text{ (a)}
\min_{q} (C_q^{pd}) \underline{P}_j^{gd} (1 - x_{j,q}) \leq C_q^{pd} P_{j,t}^{gd} - C P_{j,t,q}^{gd} \leq \max_{q} (C_q^{pd}) \overline{P}_j^{gd} (1 - x_{j,q})
\forall j \in J, \forall t \in T, \forall q = 1 \dots Q \text{ (b)}
\sum_{q=1}^{Q} x_{j,q} = 1
x_{j,q} \text{ binário} \qquad \forall j \in J, \forall q = 1 \dots Q \text{ (d)}$$
(14)

As restrições (14.a) e (14.b) definem os valores de $CP_{j,t,q}^{gd}$, $\forall j \in J, \forall t \in T, \forall q = 1 \dots Q$. Se $x_{j,q} = 0$, então $CP_{j,t,q}^{gd} = 0$ e $\min_q(C_q^{pd})\underline{P}_j^{gd} \leq C_q^{pd}P_{j,t}^{gd} \leq \max_q(C_q^{pd})\overline{P}_j^{gd}$; caso contrário, $CP_{j,t,q}^{gd} = C_q^{pd}P_{j,t}^{gd}$ e $\min_q(C_q^{pd})\underline{P}_j^{gd} \leq CP_{j,t,q}^{gd} \leq \max_q(C_q^{pd})\overline{P}_j^{gd}$, onde $\min_q(C_q^{pd})\underline{P}_j^{gd}$ e $\max_q(C_q^{pd})\overline{P}_j^{gd}$ fornecem um grau suficiente de liberdade para $CP_{j,t,q}^{gd}$. A equação (14.c) assegura que é possível escolher apenas um preço de contrato para a unidade j da GD.

Finalmente, o problema equivalente de (13) - (14) é dado por:

$$\underset{Cp}{\text{Max}} \quad \sum_{j \in J} \sum_{t \in T} \sum_{q=1}^{Q} \Delta t C P_{j,t,q}^{gd} - \sum_{j \in J} \sum_{t \in T} \Delta t c_j P_{j,t}^{gd}$$

$$\tag{15}$$

Sujeito a:

Restrição (10): Restrições primais do nível inferior;

Restrição (12): Restrições duais do nível inferior;

Restrição (14): Linearizações;

$$\sum_{k \in K} \sum_{t \in T} \Delta t \rho_{k,t} P_{k,t}^{se} + \sum_{j \in J} \sum_{t \in T} \sum_{q=1}^{Q} \Delta t C P_{j,t,q}^{gd} =$$

$$\sum_{i \in I} \sum_{t \in T} \left(P_{i,t}^{d} \pi_{i,t} - \underline{V}^{2} \varrho_{i,t} + \overline{V} \overline{w}_{i,t} + \underline{V} (\sigma_{i,t} - \underline{w}_{i,t}) \right) + \sum_{i \in I} \sum_{t \in T} \sum_{p \in P} \left(\overline{\Delta}^{V} \overline{v}_{i,t,p} \right) +$$

$$\sum_{i \in L} \sum_{t \in T} \sum_{p \in P} \left(\overline{\Delta}^{I}_{ij} \overline{\kappa}_{ij,t,p} \right) + \sum_{i j \in L} \sum_{t \in T} \left(\overline{I}_{ij} (\overline{\phi}_{ij,t} + \underline{\phi}_{ij,t}) \right) + \sum_{j \in J} \sum_{t \in T} \left(P B_{j,t}^{gd} - P b_{j,t}^{gd} \right) +$$

$$\sum_{l \in K} \sum_{t \in T} \left(\overline{P}_{k}^{se} \overline{\delta}_{k,t} - \underline{P}_{k}^{se} \underline{\delta}_{k,t} \right) : \quad Condição \ da \ dualidade \ forte \ linear.$$

$$(16)$$

A formulação acima corresponde a um problema de programação linear inteira mista. As restrições (15) e (16) substituem as restrições (13) e (14), respectivamente. Este tipo de problema de otimização pode ser resolvido com a ajuda de um software de otimização comercial.

3 Testes e Resultados

Para demonstrar a eficácia da abordagem proposta foram realizados testes para o cálculo de preços de contratos ótimos de unidades de GD para o sistema de distribuição de 85 barras. O modelo (15) – (16) foi implementado em AMPL [4] e resolvido com o CPLEX [5], chamado como opção padrão. As localizações das unidades de GD, para este teste, são consideradas conhecidas.

3.1 Sistema de Distribuição de 85 Barras

A metodologia proposta foi testada para um sistema de distribuição de 85 barras. A Figura 3 representa o sistema de distribuição de 85 barras.

Figura 3. Sistema de Distribuição 85 Barras.

No sistema de 85 barras considera-se apenas um cenário de demanda. A curva de duração de carga anual deste cenário é apresentado na Figura 4.

12

Preço de Contrato Ótimo da GD em Sistemas de Distribuição Radiais de EE

Figura 4. Curva de duração de carga anual.

O preço de contrato de cada unidade j da GD foi discretizado utilizando 10 passos que variaram de $60 \in /MWh$ até $70 \in /MWh$.

Os preços da energia no mercado atacadista, correspondentes a este cenário, é de 60,0 \in /MWh para o ano todo. O número de blocos de linearização por partes é igual a 20.

Neste caso, vamos supor que existem três unidades de GD localizadas nas barras 27, 60 e 81 (designado por GD1, GD2 e GD3, respectivamente), com uma capacidade de 1,5 MW e custo de produção de $55 \in /MWh$ para todas as unidades de GD.

Tabela 1. Localização, preços dos contratos, fatores de capacidade e lucros das unidades de GD.

Unidade G	D Barra F	PC [€/MWh]	Fatores de capacidade [%]	Lucros [€]
GD1	27	64,0	100,00	118.260,00
$\mathrm{GD}2$	60	65,0	$72,\!26$	94.954,83
GD3	81	65,0	$56,\!25$	$73.906,\!90$
Total				287.121,73

Na Tabela 1 são mostrados as localizações, os preços dos contratos ótimos (PC), os fatores de capacidade e os lucros do proprietário da GD obtidos pela metodologia proposta para as três unidades de GD. Estes preços são fixados para contrato de um ano (o período de tempo considerado). A GD 27 tem fator de capacidade de 100%, ou seja, está operando com sua capacidade máxima enquanto que as GDs (60 e 81) têm fatores de capacidade de 72,26% e 56,25%,

respectivamente. Os preços de contratos da GD2 e GD3 são iguais, $65,0 \in /MWh$, enquanto o da GD1 foi de $64,0 \in /MWh$.

A Tabela 2 apresenta os pagamentos da concessionária de distribuição com e sem GD obtidos pela metodologia proposta e a economia que, neste caso, foi de $167.801,84 \in$.

Tabela 2. Pagamentos da Concessionária de Distribuição [€]

Caso	Total de Pagamentos
Sem GD	4.526.245,27
$\operatorname{Com}\operatorname{GD}$	4.358.443,43
Economia	167.801,84

A Figura 5 mostra o perfil da magnitude de tensão, em todas as 85 barras do sistema de distribuição, com e sem GD. O perfil da magnitude de tensão é maior com GD. Em geral, nas situações em que a GD é localizada em barras afastadas da subestação, esta pode contribuir no melhoramento do perfil da tensão. Observa-se na Figura 5 que nas barras mais afastadas da subestação o perfil de tensões da rede melhora consideravelmente.

Figura 5. Perfil da Magnitude de Tensão.

A energia adquirida na subestação precisa ser transportada ao longo do sistema de distribuição, as perdas de energia e incrementos deteriora o perfil de tensão. Consequentemente, a compra de energia de unidades estrategicamente localizadas de GD são atraentes para a concessionária de distribuição, mesmo

quando essa energia é um pouco mais cara do que a energia fornecida através das subestações.

4 Conclusões

A principal contribuição deste trabalho reside na combinação dos problemas de otimização mostrados no artigo, em um único, proporcionando uma solução que interesse a ambos, o proprietário da GD e a concessionária de distribuição. Para transformar o problema de programação binível em um problema de otimização linear inteiro misto de um único nível equivalente, foram usadas as propriedades de dualidade, as condições de otimalidade e algumas linearizações. O uso de um modelo de programação linear inteira mista garante a convergência para otimalidade usando solvers MILP convencionais.

Os testes feitos para o sistema de distribuição de 85 barras mostram que o perfil da magnitude de tensão é maior com GD do que sem GD, principalmente, nas barras mais afastadas da subestação, o perfil da tensão da rede de distribuição melhora significativamente.

Referências

- Alguacil, N., Motto, A. L., Conejo, A. J.: Transmission Expansion Planning: A Mixed-Integer LP Approach. In: IEEE Transactions on Power Systems, 18 (2003) 1070–1077.
- Arroyo, J. M.: Bilevel programming applied to power system vulnerability analysis under multiple contingencies. In: IET Generation, Transmission & Distribution, 4 (2010) 178–190.
- Lopez-Lezama, J. M., Padilha-Feltrin, A., Contreras, J.: Optimal Contract Pricing of Distributed Generation in Distribution Networks. In: IEEE Transactions on Power Systems, 26 (2011) 128–136.
- 4. Fourer, R., Gay, D. M., Kernighan, B. W.: AMPL: A modeling language for mathematical programming. CA: Brooks/Cole Thomson Learning, Pacific Grove (2003).
- 5. CPLEX: Optimization subroutine library guide and reference, version 11.0. Incline Village: CPLEX Division, ILOG Inc. (2008).

Agradecimentos. CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior do Brasil) pelo apoio financeiro.