

BROMBERG, E.D.; SHENBERG, M.G.

Course of neurodystrophic processes as dependent on the reactivity of the organism. Probl. stom. 5:5-14 160. (MINA 15:2)

1. Khar'kovskiy meditsinskiy stomatologicheskiy institut. (TRIGEMINAL NERVE) (NERVOUS SYSTEML_DEGENERATION AND REGENERATION)

	Chemical Abri. Vol. 48 No. 8 Apr. 25, 1954 Fuels and Carbonization Products	Chlorination of Ukrainian brown toal. A. E. Kretov. 10 1. Savin, M. I. Shenbor, and I. E. Lev Chem. Technol. 10 1. Dneprocetrovsey. Wream. Khina Chem. Record. (19-2) in Russian).—Ukrainian brown coal in the first coal in the products that are sad in the first coal in the products can be used as a coal in the first coal in the products can be used as a coal in the first coal in the products can be used as a coal in the first coal in the latter case the reaction is substantially complete within 10 hrs. at 0-60° temp. range. G. M. K.			
÷		en e	9-16-59		
		fo, +' <u>'</u> '			

```
Silling, A. I.

"Ullibring to a of Ubrainian Liquito." Card Them Sei, DiscrepeBrovett
Glomico-echno.cylond Inst, Dispro.etrovet, 19:2. ("Discret, 15:1, Iar 35")
So: Sum. No. 40, 2, Sept 35 - Survey of Scientific and Accimical Discretations
Set and and TARREL or Educational American one (15)
```


Shenbor, M. I.

USSR/ Chemistry - Organic chemistry

Card 1/1

Pub. 116 - 14/29

Authors

: Savin, M. I., and Shenbor, M. I.

Title

1 Condensation of chlorinated coal with aromatic hydrocarbons

Periodical

Ukr. khim. zhur. 21/6, 754-756, Dec 1955

Abstract

Experiments showed that chlorinated brown coal condenses easily with aromatic hydrocarbons in the presence of AlCl₃. The condensation products also submit to sulfurization and nitration. A reduction of the nitro-derivatives into amines results in the formation of diazo-compounds which enter into combination reaction leading to the formation of water soluble dyes. It was shown that chlorinated brown coal can be utilized in the role of basic raw material for the derivation of new variegated chemical compounds. One USSR reference (1952).

Institution: Dnepropetrovek Metallurgical Inst. im. I. V. Stalin

: March 28, 1955 Submitted

SHENBOR, M.I.; KRETOV, A.Ye.; SAVIN, M.I.

Effect of organic solvents on chlorinated lignite. Ukr.khim.

zhur. 22 no.4:546-549 150. (MIRA 10:10)

1. Dnepropetrovskiy khimiko-tekhnologicheskiy institut.

(Solvents) (Lignite)

5 (1, 2, 3) AUTHORS:

Shenbor, M. I., Burmistrov, S. I.,

SOV/153-2-2-14/31

Lepskaya N. M.

TITLE:

Chlorine Substitutes of Diphenoxy Ethane (Khlorzameshchennyye

difenoksietana)

PERIODICAL:

Izvestiya vysshikh uchebnykh zavedeniy. Khimiya i khimicheshaya

tekhnologiya, 1959, Vol 2, Nr 2, pp 215-218 (USSR)

ABSTRACT:

While searching for active insecticides, the authors made the synthesis of the substances mentioned in the title (diphenyl ether of ethylene glycol). Diaryl oxy ethanes are easily made of phenolene and dichlorethane. Some are efficient against mites (Ref 1). They perhaps also kill weeds after their oxidation into aryl oxy acetic acid for which the mentioned activity has been proved. The oxidation may take place in the soil through a vital activity of the bacteria. Among the substances mentioned in the title, the following are known in publications: 2,2'-dichlorodiphenoxyethane, 4,4'-dichlorodiphenoxyethane (Ref 1), 2,4,2',4'-tetrachlorodiphenoxyethane, and 2,4,6,2',4',6'-hexachlorotic contents and 2,4,6,2',4',6'-hexachloro-

diphenoxyethane (Ref 3). Asymmetric chlorine substitutes of diphenoxyethane have not been described up to now. The authors obtained symmetric calorine substitutes of diphenoxyethane by

Card 1/3

Chlorine Substitutes of Diphenoxy Ethane

SOV/153-2-2-14/31

means of the influence of dichloroethane (with less active compounds of dibromoethane) on phenolate, in an alcoholic solution. In the case of the highly chlorinated phenols, the reaction is shown under atmospheric pressure. Therefore the synthesis with such diphenyloxyethenes was performed with dibromoethanes, and in a solution of glycol. This made it possible to raise the temperature up to 130°, and to shorten the time of reaction. It is possible, without any doubt, to use dichloroethane under high pressure. Symmetric chlorine substitutes were produced of α -aryloxy- β -chloroethane with the corresponding phenols in an alkylic solution. Tables 1 and 2 show the results. All synthesized substances are solid and nonvolatile, insoluble in water and soluble in organic solvents. The increase in the number of halogen atoms raises the melting temperature in the series of symmetrical compounds (Table 1); the melting temperature in a fully chlorinated product is 2170. As expected, the melting points of the asymmetric chloring substitutes on the whole are lower than those of symmetric compounds (Table 2). Furthermore it was found that a direct chlorination of diphenoxyethane makes it possible to produce some chlorine substitutes:

card 2/3

Chlorine Substitutes of Diphenoxy Ethane

SOV/153-2-2-14/31

2,4,2',4'-tetrachlorodiphenoxyethane (output 56%). A mixture of chlorine substitutes which cannot be crystallized eni of which no individual compounds can be isolated, is left from the mixture of the chlorination products to the admission of the 4 chlorine atoms into the diphenoxyethane molecule, after took place in the rest. A more intensive chlorination of diphenoxyethane takes place much more slowly. A complicated mixture of products develops in this process. There are 2 tables and 4 references, 1 of which is Soviet.

ASSOCIATION:

Dnepropetrovskiy khimiko-tekhnologicheskiy institut; Karedra tekhnologii osnovnogo organicheskogo sinteza i SK (Dnepropetrovsk Chemical and Technological Institute, Chair of Technology of Basic Organic Synthesis and SR (Synthetic Rubber

SUBMITTED:

March 18, 1958

Card 3/3

s/153/61/004/005/003/005 E142/E485

Shenbor, M.I., Burmistrov, S.I., Ivanov, A.A. **AUTHORS:**

Increasing the yield of acrylonitrile during the

thermal dehydration of ethylene cyanhydrin TITLE:

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy SSSR. Khimiya i khimicheskaya tekhnologiya, v.4, no.5, 1961,

837-842

Large quantities of acrylonitrile (AN) can be obtained by the thermal liquid phase dehydration of ethylene cyanhydrin (ECH). The process is carried out at a temperature of 170 to 240°C, in the presence or absence of a catalyst. by-products are formed which decrease the yield of AN and therefore Experiments were carried out on increase production costs. increasing the yield of AN by improving the reaction conditions during the liquid phase dehydration process. evaluated the efficiency of some catalyst mentioned in literature (NaCl and sodium formiate, HCOOK, (HCOO) 2Ca, (HCOO)₂Cu, (HCOO)₂Zn and (HCOO)₃Al), tested new dehydration catalysts and investigated the effect of temperature and of agitating the reaction medium on the yield of the end-product. Card 1/4

S/153/61/004/005/003/005 E142/E485

Increasing the yield ...

The starting material ECH contained 93.2% of the basic material, 0.05% HCN, 1.75% amines and 5% of vat residue. This substance was placed in a 250 ml flask and heated in a wood tube. The authors used a so-called "reinforced" resin which they prepared by dehydrating 14 ml of ECH at 209 to 210°C for 90 min; the addition of this resin accelerated the process considerably. layer of AN was neutralized in a separating funnel with 10% H2SO4, to separate ammonia and the amine bases, freed from the acidic aqueous layer and subjected the same to azeotropic distillation. Each distillation stage gave 45% of a fraction boiling between 68 and 75°C (which contained water) and 55% of a fraction with a boiling point between 75 to 88°C, the latter being AN. first fraction was redistilled and this process was repeated four times. The $\rm H_2S0_{\it 4}$ solution (after neutralization of the upper layer) and the water were additionally steam distilled; The heat transfer and even insured complete separation of AN. distribution of temperature in the reaction medium were improved by mechanical agitation (220 rev/min); this increased the yield of AN by 3%. Investigations on the effect of temperature showed that the process is rather slow at a temperature below 180°C; Card 2/4

S/153/61/004/005/003/005 E142/E485

Increasing the yield ...

a 57% yield of AN was obtained at 170°C. The yield of the resin reached a minimum on increasing the temperature to 110°C and above that temperature the yield of ECH increased again. The most satisfactory yields and lowest resin formation occur at a temperature between 209 and 210°C, Some of the experiments were carried out whilst using a saturated solution of NaCl and bubbling CO2 through; a 77% yield was obtained; the yield of AN increased to 80% when using NaCl without CO2. Further experiments indicated that the catalytic dehydration of ECH in a current of nitrogen did not affect the yield of AN. formiate was most effective amongst the salts of formic acid (when used as catalyst). Experiments in which mixtures of two catalysts were used indicated that these mixtures had no higher catalytic activity than the individual components themselves. These experimental data were used for calculating parameters of an industrial plant with an annual output of 5000 ton AN and it was found that highly satisfactory results were obtained when carrying out the dehydration process with a sodium formiate catalyst at 210°C. There are 1 table and 12 references: 2 Soviet-bloc and 10 non-Soviet-bloc. The four most recent Card 3/4

Increasing the yield ...

S/153/61/004/005/003/005
E142/E485

references to English language publications read as follows:
Ref.6: US Pat. 2436774 (1948); Chem. Abstrs., 42, 3773 (1949);
Ref.8: US Pat. 2461492 (1949); Chem. Abstrs., 43, 3836 (1949);
Canad.Pat. 511735 (1955); Canad.Pat. 511732 (1955);
Ref.9: US Pat. 2501651 (1950); Chem. Abstrs., 44, 5375 (1950).

ASSOCIATION: Dnepropetrovskiy khimiko-tekhnologicheskiy institut im. F.E. Dzerzhimskogo. Kafedra tekhnologii osnovnogo organicheskogo sinteza i SK (Dnepropetrovsk Institute of Chemical Technology im. F.E. Dzerzhimskiy Department of Technology of Basic Organic Synthesis

SUBMITTED: May 23, 1960

Card 4/4

Arglamides and alkylamides of 3,6-dichlerophthalic teid.

Izv.vys.ucheb.zav; khim.i khim.tekh. 4 no. 5:65-671 '61.

(MITA 14:11)

1. Dnepropetrovskiy khimiko-tekhnologicheskiy institut imeni
F.E. Dzerzhinskogo, kafedra tekhnologii esnovnogo organicheskogo sinteza i sinteticheskogo kauchuka.

(P:thalic acid)

(Amides)

307/24-58-10-4/34

AUTHOR: Shenbrot, I. M. (Moscow)

TITLE: Ferrite-Transistor Circuits in Control Systems (Ferritocranzistornyje yacheyki v skhemakh upravleniya)

raRloulUAL: Investiya Akademii nauk SSSR, Otdeleniye tekhnicheskikh nauk, 1958, Mr 10, pp 18-26 (USSR)

ABSTRACT: The use of ferrites in transistorized circuits, particularly in relation to digital systems, is reviewed from the theoretical point of view, assuming rectangular hysteresis loops for the cores (used as in Fig.1) and linearized transistor characteristics (Fig.3). The first section deals with the transients to be expected in such circuits, and the second with uses as rectangular pulse shapers; the third deals briefly with their use as storage elements. The paper contains 8 figures, 7 references, 2 of which are Soviet and 5 English.

SUBMITTED: January 27, 1953.

Card 1/1

SHENBROT, Isidor Markovich; MALOV, Y.S., red.; SHIROKOVA, M.M., tekhn. red.

[Centralized control of technological processes] TSentralizovannyi kontrol' tekhnologicheskikh protsessov. Moskva, Gos. energ. izd-vo, 1961. 95 p. (Biblioteka po avtomatike, no.40) (MIRA 14:10) (Automatic control)

RUPERSHMIDT, Ya.A. (Moskva); MALOV, V.S. (Moskva); SHENEROT, I.M. (Moskva)

Present-day trends in the development of dispatcher control systems
using digital computers. Avtom.i telem. 22 no.7:954-959 Jl '61.

(Electronic digital computers) (Information theory)

s/081/62/000/013/017/054 3158 3144

AUTHUR:

Shenurot, I. M.

TITLS:

Apparatus for central control of continuous technological

processes

PERIODICAL: Referatively anumal. Chimiya, no. 15, 1962, 355, abstract 131125 (Sc. "rrimeneniye vychisl. tekhn. dlya avtomatiz.

proiz-va". M., Mashgiz, 1961, 329-341)

TEXT: Information functions of central control devices and methods of signalling, measuring and recording are considered. [Abstracter's note: Complete translation.

Card 1/1

EWT(d)/EWP(v)/EWP(k)/EWP(h)/EWP(1)8/0000/64/001/000/0144/0151 ACCESSION NR: , AT5009C50 AUTHOR: Shenbrot, I. M. (Moscow) Structure of centralized control machines TITLE: SOURCE: Konferentsiya po avtomaticheskomu kontrolyu i metodam elektricheskikh izmereniy. 3d, Novosibirsk, 1961. Avtomaticheskiy kontrol' i metody elektricheskikh izmereniy; trudy konferentsii, t. 1: Metody elektricheskikh izmereniy. Analiz i sintez sistem upravleniya i kontrolya. Elementy ustroystv avtomaticheskogo kontrolya (Automatic control and electrical measuring techniques; transactions of the conference. v. 1: Electrical measuring techniques. Analysis and synthesis of reguiation and control systems. Elements of automatic control devices). Novosibirsk, Redizdat Sib. otd. AN SSSR, 1964, 144-151 TOPIC TAGS: centralized control, production control, control equipment/ ABSTRACT: This is a review of various units used for centralized control of machinery, and describes various constructions of apparatus employed in American equipment. These include switches and witching relays, digital converters, printers, and display equipment. Simplified structural diagrams of the centralized-

L 45286-55						
ACCEPSION MR: ATS	009050					
control machines are scribed by B. M. Yal Orig. art. has: 3 i	presented, Obson in Pro	includin borostro	g some for t	he Soviet me	ochines "Mars enit," and "	"(de- Tsikl."
ASSOCIATION: None				45 (1 - 1)		
SUBMITTED: 13Apr64		ENCL	00			
NR REF SOV: 003			l: 000	SUB CO	E: IF, DI	
	·					
sr.						
ord 2/2	:					
i i i i i i i i i i i i i i i i i i i						स्थान चित्रके विक्रमान

"APPROVED FOR RELEASE: 08/23/2000 CIA-

CIA-RDP86-00513R001549030003-6

L 28752-65 EWT(d)/EWP(1) Po-4/Pq-4/Pg-4/Ph-4/P1-4 LJP(c) BC

ACCESSION NR: AT5003304

S/2950/64/000/003/0055/0956

AUTHOR: Shenbrot, I.M.

43

TITLE: Systems of centralized control with sampled data inputs

SOURCE: EIKA, entsiklopediya izmereniy, kontrolya i avtomatizatsii (Encyclopedia of measurement, control, and automation), no. 3. Moscow, Izd-vo Energiya, 1964, 55-56

TOPIC TAGS: automatic control system, centralized control system, sampled data input, temperature regulation

ABSTRACT: The two main types of centralized control systems are the operational control systems and the control systems used for investigation of new technological processes. Because of the requirement of monitoring and control of many process parameters (in the form of outputs of various sensors), periodic sampling of all sensor outputs is usually employed. Since 1955, many such systems have been constructed. The following three examples are discussed: the MARS-200 system, designed for control and regulation of temperature at 200 different points; the sampler consists of electromagnetic relays and has a speed of about 3 points/second. The parameter values are printed out by an automatic typewriter (in red when out of tolerance and in black when

L 28752-65

ACCESSION NR: AT5003304

within tolerance). Special readout requests are provided for. The accuracy of regulation and recording is \pm 3C on a scale from 100 to 500C. The control system ELRV-2 is designed to control 56 parameters and has a mechanical rotating sampler whose full cycle is about 4 minutes (4.5 seconds per parameter sample). The maximum error is \pm 1% of the scale reading. The dimensions are $1388 \times 750 \times 650$ mm and the weight is about 350 kgm. The "Zenit -1" and "Zenit -2" systems can control 40 and 80 parameters, respectively. A rotating sampler samples 10 to 14 points per second and the input can accommodate sensor signals from 0 to 10 volts. Readout of all parameters, or only to those outside of their tolerance values, is available on an automatic typewriter. Readout can be periodic, on request or only when tolerances are exceeded. Orig. art. has: 2 figures.

ASSOCIATION: Tsentral'nyy nauchno-issledovatel'skiy institut kompleksnoy avtomatizatsii, Moscow (Central complex automation scientific research institute)

SUBMITTED: 00

KNCL: 00

SUB CODE: LE

NO REF SOV: 003

OTHER: 006

Card 2/2

MELONICHERY, Anatolly Avenuovich; VAL'DENEERG, Yuriy Stanislavovich;
MERGURYEV, Leonid Ivanovich; Frinkal uchastiye
LAVICYSKIY, A.K.;
SHEHEROT, I.M., red.

Classic delectronic conjuters in the automation of industrial
leader of limenenic vychislitelynkh mashin dlia evtomatileader i, rei.v. istvennykh protsessov. Moskva, Energ.ia,
(MIRA 17:12)

REVIEWS and bitliography. Friborostroenie no.5:32 My '65.

(MIRA 18:5)

IJP(c) BC EWT(d)/EWP(1)/2394-66

ACCESSION NR: AP5022987

UR/0103/65/026/008/1462/1468

62-502

27

H

Shenbrot, I. M. (Moscow) AUTHOR:

TITIE: Minimization of the error of digital integration in data logging

160

SOURCE: Avtomatika i telemekhanika, v. 26, no. 8, 1965, 1462-1468

TOPIC TAGS: data recording, random process, digital integrator, error

minimization, mean square error

ABSTRACT: An analysis of digital integration errors of technological quantities using the fixed ordinate method in data logging has been given. The present article investigates the problem of minimizing the mean square error of the integral over a given time interval by appropriate selection of the recording period. Results of the theoretical discussion show that 1) all partial digital integration errors of a random process decrease with the number of readings n over the integration interval; 2) the accidental partial integration error caused by inaccuracies in measurements and level quantization is actually by a factor of \sqrt{n} smaller than the corresponding error of a single measurement; 3) the systematic partial error caused by level quantization can be removed for all

Card 1/2

L 2394-66 ACCESSION NR: AP5022987 practical purposes by expansion of the digital transformation without synchronising the start of the sweep with the counting pulses; 4) the digital integration is increased by independent detection of the integration time and of the number of digital registrations; and 5) for a given digital processing device there is a limit to the increase in the number of measurements; the paper presents formulas for the determination of the optimum number of measurements and of quantum levels. Orig. art. has: 27 formulas and 1 table. ASSOCIATION: none SUB CODE: DP, MA ENCL: CiO SUBMITTED: 260ct63 OTHER: 000 NO REF SOV: 005

GULIY, V.M.; SHENDAROVICH, D.Kh., brigadir sharoshechnogo bureniya (Sokol'nyy rudnik); BEKETOV, P.Ye.; DZHEMARDZHIDZE, N.M.; MOCHALIN, M.P.; PRIGOZHIN, Ye.I., gornyy inzhener (Metallicheskiy rudnik); POLISHCHUK, A.D.

Speeches by participants in a conference. Gor.zhur. no.1:20-24
Juli 156. (MLRA 9:5)

1. Nachal'nik Proizvodstvenno-tekhnicheskogo otdela Dzhezkazganskogo rudoupravleniya (for Pzhemardzhidze); 2. Nauchnyy setrudnik Instituta gornogo dela AN SSSR (for Mochalin); 3. Glavnyy inzhener Ukrglavrudy (for Polishchuk); 4. Glavnyy inzhener Bystrushinskogo rudnika (for Guliy); 5. Glavnyy inzhener Salairskogo rudnika (for Beketov). (Mining engineering) (Mining machinery)

SHELLOCL', V.F.

Projects should conform to present-day standards of structural engineering. Stroit truloprov. no.9:13-19 3 -64. (MinA 17:10)

1. Trest Shkepovneftestroy, Selebey, Bashkirskaya ASSR.

SEMCHUK, I.M., inzh.; SEREBRO, V.S., inzh.; TUIL!, M.A., inzh.; SHCHIGOL!—
SHENDKLIS, L.Te., inzh

Introducing water-cooled steel chill molds for large-scale cast
iron castings. Mashinostroepie no.3:27-28 My-Je *65.

(MIRA 18:6)

- 1. CHENLEI YAN, T.
- 2. ULUR (6(L)
- 4. Higgidians in literature
- 7. Levelogment of love for the medical profession. Fel'd. i akush., No. 2, 1952
- Ga <u>"conthly list of Pussion Accessions</u>, Litrary of Congress, April 1957. UNCLASSIFIED.

Development of connected oral communication in young school children. Nauk. zap. Nauk.-dosl. inst. psykhol. 11:105-109 159. (MIRA 13:11) 1. Pedagogicheskiy institut, Zhitomir. (Children:-Language)

LEBEDINSKIY, V.V.; SHENDERETSKAYA, Ye.V.

Complex nitroammonium compounds of rhodium. Part 2. izv.Sekt.
plat.i blag.met. no.31:53-55 '55. (MiRA 9:5)

(Rhodium compounds) (Compounds, Complex)

LEBEDINSLIY, V.V. [docensed]: SHENDLARKTSKAYA, Ye.V.

Part 3: Rhodium sulfite and sulfiteammonium compounds. Zhur. neorg.

khin. 2 no.8:1768-1774 Ag '57.

(Ehodium compounds)

(Ehodium compounds)

SOV/80-32-4-41/47 5(2)

Lebedinskiy, V.V., Shenderetskaya, Ye.V. and Mayorova, A.G. AUTHOR3:

The Preparation of Spectrally Pure Rhodium (Polucheniye spektral no-TITLE:

chistogo rodiya)

Zhurnal prikladnoy khimii, 1959, Vol 32, Nr 4, pp 928-929 (USSR) PERIODICAL:

To obtain chemically pure rhodium metal, the triammine-trichloride ABSTRACT: method proposed by V.V. Lebedinskiy has been extensively used. The

product obtained by this method, although corresponding to a grade of chemically pure, still does not meet high purity requirements for manufacturing certain physical devices. In order to remove the remaining impurities, the authors propose to apply the sulfite method which they describe in detail. The essence of this method consists

in the dissolving of rhodium triammine-trichloride in the boiling solution of the ammonium sulfite which results in the formation of the

sulfite compound of rhodium, $(NH_4)_3 \sqrt{Rh(SO_3)_3}$. By a series of sub-

sequent operations and by roasting, rhodium metal is obtained, in which Card 1/2

CIA-RDP86-00513R001549030003-6 "APPROVED FOR RELEASE: 08/23/2000

The Propagation of Spelwally Pure Rhodium

sov/80-32-4-41/47

even traces of impurities, such as Pt, Pd, Ir, Cu and Fe, are not

detected by spectral analysis

Institut obshchey i neorganicheskoy khimii imeni N.S. Kurnakova AN ASSOCIATION -

SSSR (Institute of General and Inorganic Chemistry imeni N.S. Kurnakov

of the AS USSR)

November 17, 1958 SUBMITTED .

Card 2/2

CHERNYAYEV, I.I.; SHENDERETSKAYA, Ye.V.; Karyagina, A.A.

Monovalent rhodium formates. Zhur.neorg.khim. 5 no.5:1163
My '60.

(Rhodium compounds) (Formic acid)

(Rhodium compounds) (Formic acid)

BARAYEVA, A. J.; KHARITONOV, Yu. Ya.; SHENDERETSKAYA, Ye. V.

Infrared absorption spectra of rhodium (III) complex compounds with an inner-sphere sulfito group. Zhur.neorg.khim. 7 no.7:1530-1537 Jl '62. (MIRA 16:3)

1. Institut obshchey i neorganicheskoy khimii imeni N.S.Kurnakova AN SSSR.

(Rhodium compounds—Spectra)

AVTOKRATOVA, T.D.; ALDRIAHOVA, O.N.; BABAYEVA, A.V.; BELOVA, V.I.;
GOLOVNYA, V.A.; DERBISHER, G.V.; MAYOROVA, A.G.; MURAVEYSKAYA,
G.S.; NAZAROVA, L.A.; NOVOZHENYUK, Z.M.; ORLOVA, V.S.; USHAKOVA,
N.I.; FEDOROV, I.A.; FILIMONOVA, V.N.; SHENDERETSKAYA, Ye.V.;
SHUBOCHKINA, Ye.F.; KHANANOVA, E.Ya.; CHERNYAYEV, I.I., akademik,
otv. red.

[Synthesis of complex compounds of platinum group metals; a handbook] Sintez kompleksnykh soedinenii metallov platinovoi grupty; spravochnik. Moskva, Izd-vo "Nauka," 1964. 338 p. (MI:A 17:5)

1. Akademiya nauk SSSR. Institut obshchey i neorganicheskoy khimii. 2. Institut obshchey i neorganicheskoy khimii AN SSSE (for all except Chernyayev).

CHARNYAYEV, I.I., SHEMPERETSKAYA, Ye.V.; MAYOROVA, A.G.; KORYACINA, A.A.

**Prodium formate compounds. Thur. neorg. khim. 10 no.2:
537-579 F '65. (MERA 18:11)

1. Submitted July 20, 1964.

					-
CHEN DESETTLY TEMPS (TR	$v^{-1}_{-\infty}$				
). Comprehensity, b. I					
while (Fre)					
A NORIDIANT UN; Gladioulus					
7. Experiments in the develop Kanaidat SKh. Nauk Botaniche M. V. Iomonosova.	ment of Cold-resistant skiy sad Moskovskogo G	Gladioli, Agrobi osuđarstvennogo U	ologiia No. 2, niversitεta im	, 1952 , sen i	
ô.			•		
			,		
					ø
			,		

DEMEZER, A.A.; DZYUBA, M.L.; BLINOV, L.F. kandidat sel'skokhozyaystvennykh nauk; BOLDYREV, N.I., kandidat pedagogicheskikh nauk; GAY-GULINA, Z.S, GRUDEV, D.I., kandidat sel'skokhozyaystvennykh nauk; DUBROV, Ya.G., professor; KOVALENKO, V.D., ;KRYSINA, O.I.; KURKO, V.I.; LEVI M.F., kandidat sel'skokhozyaystvennykh nauk; MORDKOVICH, M.S.; POPOV, I.P. kandidat biologicheskikh nauk;SAGALOVICH, Ye.N., agronom; SILIN, V.N., zootekhnik; STRUYANSKIY, I.L., vrach; SUSHKOVA-LYAKHOVICH, M.L., kandidat meditsinskikh nauk; SHAPOVALOV, Ya.Ya., kandidat sel'skokhozyaystvennykh nauk; YAVNEL', A.Yu., kandidat meditsinskikh nauk; RODINA, P.I., redaktor; YUROVITSKIY, Ye.I., redaktor; PEVZNER, V.I., tekhnicheskiy redaktor.

[Home economics] Domovodstvo. Moskva, Gos.izd-vo sel'khoz.lit-ry.
1956. 479 p.

(Home economics)

GOTLIB Ye.A., inzhener; FOTGIN, A.V., inzhener; SHENDERRY, A.I. inzhener.

Chekking the quality of welded joints of tubes of heating surfaces.

Elek.Sta. 27 no.11:41-43 N '56.

(Gamma rays--Industrial applications) (Boilers)

.

GOTLIB, Ye.A., inzhener; POIGIN, A.V., inzhener; SHENDEREY, A.I., inzhener.

Experience in welding pipes. Elekt.sta. 28 no.9:78-79 5 '57.

(MIRA 10:11)

(Pipe--Welding)

TSIKLIS, D.S.; MUSHKINA, Ye.V.; SHENDEREY, L.I.

Phase equilibriums in the ethylene water system at high temperatures and pressures [with summary in English]. Inzh.-fiz. zhur, 1 no.8:3-7 Ag '58. (MIRA 11:8)

1.Gosudarstvennyy nauchno-issledovatel'skiy i proyektnyy institut azotnoy promyshlennosti, Moskya.

(Phase rule and equilibrium)

 $\sum_{3(4)}$ $50\frac{y}{76} - 33 - 9 - 20/37$

AUTHORS: Tsiklis, D. S., Kofman, A. N., Shenderey, L. I.

TITLE: Phase- and Volumetric Behavior of Solutions of Acetylene in

Acetone

PERIODICAL: Zhurnal fizicheskoy khimii, 1959, Vol 33, Nr 9, pp 2012-2016

(USSR)

ABSTRACT: G. S. Cherkasova and L. F. Abramova (NIAT) took part in the experimental part of the work under review. As there are no

accurate data in publications concerning the volumetric behavior of solutions of acetylene (I) in acetone (II), the present investigation was carried out following suggestions made by Yu. V. Dalago and G. F. Chepelyugin. The solubility of (I) in (II) was measured according to the statistical method by measuring the total pressure over the solution at a given temperature and known concentration of the solution; a special arrangement was used for the purpose (Fig 1). The device essentially consists of a graduated tube with tap, glass manometer (as zero instrument), mercury gauge, and portioning

vessel. The working procedure is described. The solubility of

Card 1/2 (I) in (II) was measured at -40, -50, -60, -70 and -80°C at a

SOV/76-33-9-20/37 Phase- and Volumetric Behavior of Solitions of Acetylene in Acetone

pressure up to 1 atm, and the volume of the solution was determined. To interpret results for the phase equilibrium, the known equation (1) (Ref 5) was applied and the values obtained are specified (Table 1). With the (I)-concentration the volume of the solution rises noticeably (Pable 2). By extrapolation, the solution rises noticeably (Pable 2). By extrapolation, the solution rises noticeably (Pable 3). The solution, the solution rises noticeably (Table 3). The solution for a pressure above 1000 term (Table 3). The solution of I. R. Krichevskiy - A. A. Illinskays. The solution heat of (I) in (II) was likewise calculated. Finally, gratitude is expressed to I. R. Krichevskiy for valuable advice. There are 5 figures, 3 tables, and 8 references, 5 of which are Soviet.

SUBMITTED:

February 26, 1958

Card 2/2

s/064/60/000/005/005/009 B015/B058

AUTHORS:

Tsiklis, D. S., Kulikova, A. I., Shenderey, L. I.

Phase Equilibrium in the System Ethanol - Ethylene - Water

TITLE:

at High Pressures and High Temperatures

Klimicheskaya promyshlennost, 1960, No. 5, pp. 49 - 54

TEXT: Specific data on the phase equilibrium in the three-component system water-ethylene-ethanol at a pressure of up to 200 atm and tem-PERIODICAL: peratures between 200° and 300°C must be known for the ethylene hydration under rational technological conditions, Present investigations were conducted for this purpose according to the static method. V. I. Alisova participated in the experimental part of the work. Four solutions with 2.3, 6.1, 10.5, and 21.5 mole% ethanol in water were investigated, the composition of the coexisting phases in the system ethanol-water was determined for 300°C (Table 1), and the corresponding of the coexisting phases in the system of the coexisting phases in the coexisting phases in the coexisting phases in the coexisting phase of the coexi e unanor-water was determined for 200 (Table I), and the corresponding values for 200 and 250 C were taken from publications. The intering values for 200 and 250 C were taken from publications. polated values of the composition of the liquid and gas phase of the systems ethanol-water, water-ethylene and ethanol-ethylene-water

card 1/2

Phase Equilibrium in the System Ethanol - S/064/60/000/005/009 Ethylene - Water at High Pressures and B015/B058

(Tables 2,3) were defined from these data. The diagrams mentioned (Figs. 1-9) show that critical phenomena occur in the mentioned three-component system for the temperature- and pressure ranges investigated. It is established that the ethanol concentration decreases in the co-existing liquid solutions with the pressure- and temperature increase. It is shown that the formation of two liquid phases is possible at temperatures of up to 100°C under pressure, the one being able to contain 70% in weight of ethanol and more, which would make it possible to achieve a considerable improvement in the rectification. There are 9 figures, 3 tables, and 8 references: 3 Soviet, 3 US, and 2 German.

Card 2/2

TSIKLIS, D.S.; KLIKOVA, A.I.; SHEMDHERY, L.I.

Phase equilibrium in the system ethanol - ethylene - water at high pressures and temperatures. Khim.prom. no.5:401-406 J1-Ag

160. (MIRA 13:9)

(Ethanol) (Ethylene) (Phase rule and equilibrium)

AUTHORS:

Tsiklis D. S., Shenderey, L. I.,

\$/076/60/034/03/014/038

Kofman, A. N. (Mogsow)

B115/B016

TITLE:

Phase Equilibria in the System Acetaldehyde - Carbon Dioxide

PERIODICAL:

Zhurnal fizicheskoy khimii, 1960, Vol 34, Nr 3, pp 585-586 (USSR)

TEXT: The investigation of the phase equilibrium in the system acetaldehyde - carbon dioxide was carried out in a device already previously described (Refs 1,2) according to an operational method also described there. The system was investigated at 1, 25, and 50° and pressures of up to 100 atm. The carbon dioxide applied was purified and its purity checked. The results obtained are given in a diagram (Figure) and a table. It may be seen from the figure that liquid acetaldehyde and carbon dioxide are miscible in any ratio at temperatures below the critical temperature of CO₂. At temperatures above the critical temperature of CO₂ the critical processes set in. The authors did not succeed in expressing the data for this system by the equation of I. R. Krichevskiy and N. Ye. Khazanova (Ref 3). The system carbon dioxide - acetaldehyde belongs to the concentrated solutions, the treatment of which is extremely difficult. There are 1 figure, 1 table, and 4 references, 3 of which are Soviet.

SUBMITTED:

June 10, 1958

Card 1/1

TSIKLIS, D.S.; SHENDEREY, L.I.; KOFMAN, A.N. (Moscow)

Solubility of acetaldehyde in compressed gases. Zhur. fiz. khim.
34 no.4: 768-772 Ap '60. (MIRA 14:5)

(Acetaldehyde) (Nitrogen) (Hydrogen)

84694

S/020/60/134/004/021/023 B004/B064

11.1210

AUTHORS: Tsiklis, D. S., Kulikova, A. I., and Shenderey, L. I.

TITLE: The Volumes of Gaseous Sclutions of Water in Ethylene at

High Pressures and Temperatures

PERIODICAL: Doklady Akademii bauk SSSR, 1960, Vol. 134, No. 4,

pp. 887-890

TEXT: The authors used a piezometer of constant volume to study the volumes of saturated solutions of water in compressed ethylene at 200 - 300°C and 100 - 150 atm. The apperatus is schematically shown in Fig. 1. A certain amount of water and ethylene was filled into the piezometer. Then, it was heated and stirred with a magnetic mixer, and pressure and temperature were measured. Samples were taken from the piezometer in portions, their water was condensed in an ampoulte, and their ethylene collected in evacuated flasks. The solution was mixed after each sample taking, and the pressure measured. Table 1 shows the experimental data. Fig. 2

Card 1/4

 $\sqrt{}$

The Volumes of Gaseous Solutions of Water in Ethylene at High Pressures and Temperatures

S/020/60/134/004/021/023 B004/B061

mole fraction of ethylene --

shows the water volumes in ethylene in the saturated state obtained by extrapolation. The authors represent the behavior of the solutions by the virial equation pv = RT $\left[1 + B(T)/v - C(T)/v^2\right]$ (i). To determine the virial coefficient, (i) was transformed: $\left[\left(pv/RT\right) - 1\right]v = B + C/v$ (2). The values on the left-hand side of equation (2) result in straight lines from whose ordinate section and inclination the authors determined B and C respectively for the mixture given. To find the virial Card 2/4

84694

The Volumes of Gaseous Solutions of Water in 5/020/60/134/004/021/023 Ethylene at High Pressures and Temperatures B004/B064

coefficients for any concentration, the authors calculated, by means of the equations $B_p = B_{1,1}N_1^2 + 2B_{1,2}N_1N_2 + B_{2,2}N_2^2$ (3) and

for the binary and ternary interactions. These values are given in Table 2. The pressure was calculated from equation (1). Table 3 shows a good agreement between the measured and the calculated pressure. Accordingly, equation (1) yields correct results for the range in question. The authors thank I. R. Krichavskiy for advice. V. I. Alisova took part in experimenting. There are 2 figures, 3 tables, and 6 references: 4 Soviet, 2 US, and 1 German.

ASSOCIATION: Gosudarstvenny, nauchno-issledovateliskiy i proyektnyy institut azotnoy promyshlermosti i produktov organicheskogo sinters (State Scientific Research and Planning Institute of the Nitrogen Industry and the Products of Organic Synthesis)

Card $3/\overline{4}$

The Volumes of Gaseous Solutions of Water in S/020/60/134/004/021/023 Ethylene at High Pressures and Temperatures B004/B064

PRESENTED: May 18, 1960, by A. N. Frumkin, Academician

SUBMITTED: May 18, 1960

M

Card 4/4

TSIKLIS, D.S.; KULIKOVA, A.I.; SHENDEREY, L.I.

Calculation of the thermodynamic properties of gaseous solutions of water in ethylene and the plotting of thermal diagrams. Khim.prom. no.1:52-56 Ja '62. (MIRA 15:1)

(Ethylene) (Waver) (Thermodynamics)

```
TSIKLIS, D.S.; KULIKOVA, A.I.; Prinimali uchastiye: SHENDEREY, L.I.;
ALISOVA, V.I.

Chemical equilibrium in the system ethylene - water - ethyl alcohol at high pressures and temperatures. Khim.prom. no.6:413-418 Je '62.

(Ethylene) (Ethyl alcohol) (Chemical equilibrium)
```

TSIKLIS, D.S.; SHENDEREY, I.I.: ELINATANOV, A.I.

Phase and volume ratios in the system toluene - nitrogen.
Khim. prom. no.5:348-353 My '63. (MIRA 16:8)

TSKILIS, D.S.; SHENDEREY, L.I.; Prinimala uchastive GORYUNOVA, N.P.

Solubility of exygen-nitrogen mixtures in toluene. Knim.prom.
no.9:690-691 S '63. (MIRA 16:12)

TSIKLIS, D.S.; SHENDEREY, L.I. Prinimala uchastiye GORYUNOVA, N.P.

Phase equilibria in the system ber ic acid - toluene - nitrogen.
Khim. prom. 40 no.11:841-842 N '64 (MIRA 18:2)

5(4),5(1) AUTHORS:

Shenderey, Ye.R., Zel'venskiy, Ya. D., SOV/64-59-4-13/27

Ivanovskiy, F. P.

TITLE:

Solubility of Carbon Dioxide in Methanol at Deep Temperature Under Pressure (Rastvorimost) dvuokisi ugleroda v metanole pri

nizkoy temperature pod davlenijem)

PERIODICAL:

Khimicheskava promyshlennost:, 1959, Hr 4, pp 50-53 (USSR)

ABSTRACT:

For the purpose of purifying the synthesis-gas of sulfur compounds and carbon floxide (I), and of extracting the acetylene from combustion gases (Refs 1-4) a gas absorption in organic solution mediums at deep temperatures (-25 to -60°) and a pressure of from 10-30 atmospheres is used. Methanol (II) proved to be the best means of absorption of this kind (Ref 5). The determination results concerning the solubility of (I) in (II) at -26, -36, -45; and -60° under pressure are given. The determinations were made according to a static method in an arrangement (Fig 1) which is in principle similar to that of (Ref 8). The autoclave and the piezometer were mounted in a thermostat. The pressure was measured with a spring-manometer, and the temperature by means of a copper/Constantan-thermo-couple

Card 1/2

Solubility of Carbon Dioxide in Methanol at Deep Temperature Under Pressure

SOV/64-59-4-13/27

via a potentiometer PPTN. The measuring results obtained (Table 1, Figs 2,3 Isotherms) show that the solubility of (I) in (II) at given conditions is very high, and that for instance, if the pressure is equal, at -45° 70 times more of (I) is dissolved in (II) than at +25° in water. With (I) concentrations under 20 mol% the solubility increases proportionally with the pressure. In this interval the molar concentration of (I) in the solution may be calculated by multiplying the corresponding pressure of (I) with a coefficient. The solution heat of (I) in (II) was calculated from the temperature function of solubility (4050 kcal/mol). The densities of concentrated (I)-solutions in (II) (Table 2) were determined, and it was found that the molar volume of the (I)-solution in (II) is an additive composition of the liquid (I) and (II) with a deviation up to 2%. There are 6 figures, 2 tables, and 9 references, 5 of which are Soviet.

Card 2/2

Control, w. .. income of "and the first transfer and last and the control of the

85409 s/064/60/000/005/011/021/XX BC24/B070 Shenderey Ye. R. Zelivenskiy Ya D. Ivanovskiy, F. E. 17 1153 The Solubility of Carbon Dioxide in Methyl Ethyl Ketone. AUTHORS: Ethyl Acetate, and Toluene at Low Temperatures Under TITLE. Khimicheskaya promyshlennost, 1960 No. 5 pp. 18 TEXT: As the process of purification and extraction of gases by means PERIODICAL: of absorption at low temperatures is becoming more and more important for industry, a study is made here of the gas solutility; n different × advents. The solubility of carbon dioxide in methyl ethyl ketone ethyl acetate, and voluene has been examined at -25, -35, and -450, and pressures up to 16 of min - 23 of the min - 25 of the and pressures up to 16 atm. The solutions were found to be almost ideal. It is found from the analysis of the experimental results that the equation of I. P. Krichevsk: y (Ref.5) for dilute solutions of nonelectrolytes is valid for the systems studied only if the concentration of COp is not were than 10-15 moley. The equation is: card 1/2

35609

The Solubility of Carbon Dioxide in S/064/60/000/005/011/021/XX Methyl Ethyl Ketone, Ethyl Acetate. B024/B070 and Toluene at Low Temperatures Under Pressure

RT in f_2/N_2 = RT in K = A* N_2 (*) (f_2 = volatility of CO_2 ; N_2 = molar fraction of CO_2 in the solution; A* = a inefficient depending on the pressure but not on the imposition of the gas; K = Henry coefficient). This equation is a generalization of the equation of Sechenov (Ref.5) to binary systems. From the results of the experiments, methyl ethyl ketone and ethyl acetate may be recommended as the most efficient solvents for CO_2 . There are 8 figures, 4 tables, and 6 references: 3 Soviet, 1 German, 1 US, and 1 British.

Card 2/2

SHENDEREY, Ye. R.; ZEL'VENSKIY, Ya.D.; IVANOVSKIY, F.P.

Solubility of the mixture of carbon dioxide and hydrogen in methyl alcohol at low temperature under pressure. Khim.prom. no.5:30-312 My '61. (MIRA 14:6) (Carbon dioxide) (Hydrogen) (Methanol)

Shenderey, Ye.R.; Zel'venskiy, Ya.D.; Ivanovskiy, F.P.

Solubility of carbon dioxide in methyl ethyl ketone, ethyl acetate, and toluene under pressure and at a low temperature.

Khim.prom. no.5:370-374 Jl-Ag '60. (MIRA 13:9)

(Carbon dioxide)

S/081/61/000/020/064/089 B105/B147

AUTHORS: Shenderey, Ye. R., Zel'venskiy, Ya. D., Ivanovskiy, F. P.

TITLE: Solubility of hydrogen, nitrogen, and methane in methanol

under pressure and at low temperatures

PERIODICAL: Referativnyy zhurnal. Khimiya, no. 20, 1961, 283, abstract

20K72 (Gaz. prom-st), no. 3, 1961, 42-45)

TEXT: The experimental data that were obtained by examining the solubility of $\rm H_2$, $\rm N_2$, $\rm CH_4$ in $\rm CH_3$ OH at a pressure of up to 80 atm, and at t = 0-60°C can be well described by equations for dilute solutions of nonelectrolytes. The solubility of $\rm H_2$ in the considered temperature range decreases with a drop of t. The sign of the temperature coefficient of $\rm N_2$ solubility changes at t $\simeq 10^{\rm OC}$. The heat of solution of $\rm H_2$, $\rm N_2$, and $\rm CH_4$ in $\rm CH_3$ OH was calculated on the basis of experimental data.

Abstracter's note: Complete translation.

Card 1/1

```
SHENDERSY, Ye.R.; ZEL'VENSKIY, Ya.D.; IVANOVSKIY, F.P.

Solubility of ethylene in methanol at low temperatures. Zhur.-
prikl.khim. 35 no.3:690-693 Mr '62. (MIRA 15-4)

(Ethylene) (Methanol)
```

SHENDEREY, Ye.R.; ZEL'VENSKIY, Ya.D.; IVANOVSKIY, F.P. (Moskva)

Ethylene solubility in acetone, methyl eth,l ketone, and toluene at low temperatures. Zhur. fiz. khim. 36 no.41800-807 Ap '62. (MIRA 15:6)

1. Gosudarstvennyy institut azotnoy promyshlennosti. (Ethylene) (Solvents)

SHENDEREY, Ye.R.; IVAHOVSKIY, F.P.

Separation of acetylene from gases yielded during thermal oxidative pyrolisis of hydrocarbons by using a selective solvent.

K.im.prom. no.9:650-655 3 '63. (MIRA 16:12)

SHIMDEREY, Ye.H.; IVANOVSKIY, F.P. Solubility of acetylene, ethylene, propylene, and carbon dioxide in dimethyl forwamide at low temperature. Gaz. prom. 7 no.8:33-44 (MERA 17;10)

162.

SHENDEREY, Ye.R.; IVANOVSKIY, F.P.

Solubility of carbon dioxide in aqueous solutions of dimethylformamide at low temperature. Zhur. fiz. khim. 37 no.9:2125-2127 S **163. (MIRA 16:12)

1. Gosudarstvennyy nauchno-issledovatel'skiy institut azotnoy promyshlennosti i produktov organicheskogo sinteza.

SHENDEREY, Ye.R.; IVANOVSKIY, F.F.; Printmail neterrity. Translation in SERGETTVA, L.Ye.; DORFMAN, I.M.

Solubility of acetylene in scetche at low temperatures. Find. prikl.khim. 37 no.7:1557-1552 Jl 464.

(N.r.4 .6...)

SHLEYNIKOV, V.M.; TAGINTSEV, B.G.; Prinimali uchastive: IVANOVSKIY, F.P.;
SHENDEREY, Ye.R.

Separating acetylene from gases obtained by the electrocracking of methane at low temperatures. Gaz. prom. 9 no.6:38-42 '64..

(MIRA 17:8)

SHEIDEREY, Ye.R.

Henry coefficients for ethylene and carbon dioxide in acetone containing acetylene at low temperatures.

Zhur.grikl.khim. 38 no.9:2126-2128 S 165.

(MIRA 18:11)

Solubility of acetylene, methylace ylene, propadiene and diacetylene in n-octane. Thim, pros. 41 no.8:580-585 Ag (65, (MTRA 18:9))

SHNDERIKHIN, I.M.; SHARAVSKIY, P.V.

Investigating the characteristics of germanium diodes. Fiz.tver. tela 2 no.7:1497-1505 Jl '60. (MIRA 13:8)

1. Leningradskiy Inzhenerno-stroitel'nyy institut, kafedra fiziki. (Germanium diodes)

POPOV, Y1.I., inzhener; SHENDEROV, A.I., inzhener; MARICHEV, V.P., inzhe.er; SLIZKIT, P.I., inzhener.

Excavators built by the Novo-Kramatorsk machinery building plant.
Gor.zhur. no.1:47-54 Ja '56. (MIRA 9:5)

(Excavating machinery)

SHENDERCV, A.I., inzh.; LOMAKIN, V.F., inzh.; KAMINSKAYA, D.A., inzh.;

KALASHNIKOV, Yu.T., inzh.

Increasing the productivity of high-powered steam shovels by automation of the digging process. Stroi. i dor. mash. 6

no.2:4-7 F '61. (MIRA 14:5)

GRIGAS, V.A.; GEMER, D.M.; SHENDEROV, A.I.; Martynov, A.S.

Walking, movable equipment. Gor. zhur. no.2:76 F '65.

(MIRA 18:4)

"APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549030003-6

Reel #506 Shenderov, A.I.

