	Unech
Name:	
Roll No.:	A Description and Explana
Invigilator's Signature :	

CS/B.TECH(CE-OLD)/SEM-3/CE-301/2012-13 2012 MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1.	Choose the correct alternatives for any <i>ten</i> of the following :						
					$10\times 1=10$		
	i)	Find out the A.M. of the following data set :					
		5, 25, 36, 74, 45, 60, 52.					
		a)	51	b)	42.43		
		c)	46.75	d)	none of these.		
	ii)	Standard deviation					
		a)	varies between 0 to 1	b)	is a positive quantity		
		c)	is a negative quantity	d)	none of these.		
	iii) Probability of an event						
		a)	can be any number	b)	lies between 0 and 1		
		c)	can be negative	d)	none of these.		

3157(O) [Turn over

CS/B.TECH(CE-OLD)/SEM-3/CE-301/2012-13

- iv) Normal curve is
 - a) bell shaped
- b) positively sloped
- c) negatively sloped
- d) none of these.
- v) The function x.f(x). cos (x) in the interval $[-\pi, \pi]$, where f(x) is an even function, is
 - a) even

- b) odd
- c) neither even nor odd
- d) both even and odd.
- vi) If *A* and *B* are independent events, P(B) = 0.14 and $P(A \mid B) = 0.24$, then the value of P(A) is
 - a) 0.14

b) 0.0336

c) 0.38

- d) 0.24.
- vii) If X is normally distributed with zero mean and unit variance, then the expectation of X^2 is
 - a) 0

b) x^2

c) 1

- d) none of these.
- viii) If F(s) is the Fourier transform of f(t), then the Fourier transform of f(t). $\cos(\omega t)$ is
 - a) $F(s-\omega) + F(s+\omega)$
 - b) $\frac{1}{2} [F(s-\omega) + F(s+\omega)]$
 - c) $F(s-\omega) F(s+\omega)$
 - d) none of these.
- ix) D'Alembert's solution of the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ is
 - a) f(x+ct)+f(x-ct)
 - b) $\frac{1}{2} [f(x+ct) + f(x-ct)]$
 - c) f(x+ct)-f(x-ct)
 - d) $\frac{1}{2} [f(x+ct)-f(x-ct)],$

$$z = px + qy + f(p, q)$$
 is

a)
$$z = ax + by + f(a, b)$$

b)
$$z = a + b + f(a, b)$$

c)
$$z = f(a, b)$$

d) none of these

where a and b are real constants.

xi) The period of the function

$$f(x) = \sin(x) + \frac{1}{2}\sin(2x) + \frac{1}{3}\sin(3x) + \frac{1}{4}\sin(4x)$$

is

b)
$$\frac{2\pi}{3}$$

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Eliminate the arbitrary functions f and g to find the partial differential equation for

$$z = f(x - at) + g(x + at)$$
, a being a constant.

- 3. Expand the function f(x) = x. $\sin(x)$ as a Fourier series in $[-\pi, \pi]$.
- 4. If the mean of a binomial distribution is 3 and the variance is $\frac{3}{2}$, find the probability of obtaining at most 3 successes.
- 5. Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$.
- 6. If *X* has Binomial distribution with parameter *n* and *p*, then find out its mean and variance.

CS/B.TECH(CE-OLD)/SEM-3/CE-301/2012-13

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

$$3 \times 15 = 45$$

- 8. a) Find the Fourier series for the function $f(x) = x + x^2$ in the interval $-\pi < x < \pi$. Hence show that $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots = \frac{\pi^2}{12}.$
 - b) Show that $Var(aX + b) = a^2 Var(X)$, where a and b are real constants. 10 + 5
- 9. A tight string of length 1 has its ends x = 0 and x = 1 fixed. The midpoint is taken to a small height h and released from rest at time t = 0. Find the displacement function y(x, t).
- 10. Obtain the solution of the one dimensional heat equation assuming that the ends x = 0 and x = 1 of the bar are kept at the temperature zero and the initial temperature be f(x) = c, c is a constant, c > 0.
- 11. a) From the Fourier series expansion of f(x) = |x| in $-\pi \le x \le \pi$, prove that

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = \frac{\pi^4}{96}.$$

b) Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$, $0 < x < +\infty$.