February 8, 2018

# ¿Qué es una rotación?



### ¿Qué es una rotación?

į...?

- Después de una rotación, los cuerpos rígidos mantienen su forma.
- Siempre hay un punto que queda quieto en el sistema de referencia, al que llamamos origen, o centro.



Empecemos por las rotaciones en 2D, usando números complejos.

Empecemos por las rotaciones en 2D, usando números complejos.

Nats → Enteros (tienen negativos)

Reales  $\rightarrow$  Complejos ( $\rightarrow$  ¡Cuaterniones!)

Empecemos por las rotaciones en 2D, usando números complejos.

Nats → Enteros (tienen negativos)

 $\mathsf{Reales} \to \mathsf{Complejos} \; (\to \mathsf{¡Cuaterniones!})$ 

¿Cuánto vale  $\sqrt{-1}$ ?

Empecemos por las rotaciones en 2D, usando números complejos.

Nats → Enteros (tienen negativos)

Reales  $\rightarrow$  Complejos ( $\rightarrow$  ¡Cuaterniones!)

¿Cuánto vale  $\sqrt{-1}$ ? Bueno, llamémoslo i

Empecemos por las rotaciones en 2D, usando números complejos.

Nats → Enteros (tienen negativos)

Reales  $\rightarrow$  Complejos ( $\rightarrow$  ¡Cuaterniones!)

¿Cuánto vale  $\sqrt{-1}$ ? Bueno, llamémoslo i

¿Y qué hacemos con eso? ¿Cómo hacemos cuentas?

## Números complejos en el plano



# Números complejos en el plano



• Longitud ('módulo'): 
$$|1+\mathbf{i}| = \sqrt{1^2+|\mathbf{i}|^2} = \sqrt{1+1} = \sqrt{2}$$

• Ángulo: 
$$\alpha = \cos^{-1}(\frac{CA}{HIP}) = \cos^{-1}(\frac{1}{\sqrt{2}}) = 45^{\circ} = \frac{\pi}{4}$$

### Forma trigonométrica

¡Tener un número complejo es lo mismo que tener su ángulo y su módulo!

De hecho si el número es  $a + b \cdot i$  entonces:

$$cos(angulo) \cdot longitud = a$$

$$sen(angulo) \cdot longitud = b$$

### ¿Cómo operar?

Si z, w son complejos, entonces  $z \cdot w$  'es' sumar los ángulos y multiplicar las longitudes (los 'modulos').

### ¿Cómo operar?

Si z, w son complejos, entonces  $z \cdot w$  'es' sumar los ángulos y multiplicar las longitudes (los 'modulos').

¡Hagamos un ejemplo! ¿Cuánto da  $(1+\mathbf{i})\cdot \mathbf{i}$ ?

Muy lindo, ¿pero y con las rotaciones qué onda?

Pensemos un poco cómo se relacionan.

# **Ejemplo**

¿Cómo llevo el punto (1,1) al punto  $(-\sqrt{2},0)$ ?



## ¿Cómo invierto una rotación?

¿Será difícil?

### ¿Cómo invierto una rotación?

¿Será difícil?

Si tengo  $a+b\cdot \mathbf{i}$  con ángulo  $\alpha$  y quiero otro número complejo con ángulo  $-\alpha=2\pi-\alpha$ , lo conjugo, es decir, uso  $a-b\cdot \mathbf{i}$ 



### Volvamos a i

¿Cuál es la solución de  $x^2 = -1$ ?

### Volvamos a i

¿Cuál es la solución de 
$$x^2 = -1$$
?

$$1 \cdot x^2 = -1$$

### Volvamos a i

¿Cuál es la solución de  $x^2 = -1$ ?

$$1 \cdot x^2 = -1$$

# ¿Cómo rotar 1 a -1?



## Volvamos a i (cont)



¿Qué es una rotación (en 3D)?

¿Qué es una rotación en 3D?

## ¿Qué es una rotación en 3D? Formalismo matemático



# ¿Qué es una rotación en 3D? Un pisa papas



# ¿Qué es una rotación en 3D? Un pisa papas



## Otro pisa papas



### Por fin, cuaterniones



William Hamilton, el inventor de los horribles, horribles cuaterniones.

### Por fin, cuaterniones



William Hamilton, el inventor de los horribles, horribles cuaterniones.

Hamilton buscaba esto:

$$a + b \cdot \mathbf{i} + c \cdot \mathbf{j}$$

(a, b, c son números reales)

### Por fin, cuaterniones



William Hamilton, el inventor de los horribles, horribles cuaterniones.

Hamilton buscaba esto:

$$a + b \cdot \mathbf{i} + c \cdot \mathbf{j}$$

(a, b, c son números reales)

...pero no funcionó.

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication 1'= j'= k'= ijk = -1 & cut it on a stone of this bridge

Un cuaternión tiene esta pinta:

$$a + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k}$$

(a, b, c, d son números reales) (i, j, k son números 'imaginarios')

Reglas:

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i} \cdot \mathbf{j} \cdot \mathbf{k} = -1$$

Un cuaternión tiene esta pinta:

$$a + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k}$$

(a, b, c, d son números reales)(i, j, k son números 'imaginarios')

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i} \cdot \mathbf{j} \cdot \mathbf{k} = -1$$

$$ij = k$$
  $jk = i$   $ki = j$  
$$ji = -k$$
  $kj = -i$   $ik = -j$ 

Un cuaternión tiene esta pinta:

$$a + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k}$$

(a, b, c, d son números reales)(i, j, k son números 'imaginarios')

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i} \cdot \mathbf{j} \cdot \mathbf{k} = -1$$

$$ij = k$$
  $jk = i$   $ki = j$  
$$ji = -k$$
  $kj = -i$   $ik = -j$ 

### Una representación alternativa

Así como a un número complejo lo podíamos marcar en un plano (2 dimensiones), un cuaternión es como un vector de 4 dimensiones (no dibujable) y se puede escribir así:

$$a + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k} \approx (\mathbf{a}, b, c, d)$$

### Resumencito

Los números complejos:

- Se pueden marcar sumar, restar, multiplicar, dividir.
- Se pueden marcar en un plano.
- Se les puede medir la longitud y obtener el ángulo.
- Los de módulo 1 representan rotaciones
- Para éstos, el conjugado es el inverso



#### Resumencito II

- Las rotaciones en 3D son girar alrededor de un eje por un ángulo fijo (un pisapapas).
- Los cuaterniones nos van a servir para representarlas.
- Los cuaterniones son como los complejos pero con 2 letras más y por ende más reglas que solamente  $i^2 = -1$ .
- Así como los complejos se pueden ver como puntos en un plano (2D), los cuaterniones se pueden ver como puntos de 4 dimensiones (4 números).

### Tarea = )

 $\cite{Lorentz} \cite{Lorentz} Lorentz \cite{Lorentz} \cite{Lorentz} Lorentz \cite{Lorentz} \ci$ 

$$(2+3\cdot\mathbf{i}+2\cdot\mathbf{j}-4\cdot\mathbf{k})\cdot(1-2\cdot\mathbf{i}+1\cdot\mathbf{j}+4\cdot\mathbf{k})=???$$

### ¡Fin!

¿Preguntas?