Estadística la venganza

Importamo los datos:

```
load("...\Utils4SP\Datasets\S5_Estadistica101_LaVenganza.mat")
```

Plots exploratorios

```
figure

% Vamos a graficar las columnas Pres,Temp y Hum. En el eje x (XVariable)
% se va a poner la fecha "DateTime"
stackedplot(atmosfera,'XVariable','DateTime')
```


summary(atmosfera)

Variables:

Fecha: 137522×1 cell array of character vectors

Hora: 137522×1 cell array of character vectors

Pres_kpa: 137522×1 double

Values:

Min 77.55 Median 78.06 Max 78.46

Temp_C: 137522×1 double

Values:

Min 13.38 Median 21.01 Max 100 NumMissing 11

Hum_perc: 137522×1 double

Values:

Min 15.27 Median 50.16 Max 99.97 NumMissing 61

DateTime: 137522×1 datetime

Values:

Min 20210518 06:00:03 Median 20210522 05:59:48 Max 20210526 05:59:55

%Exploración de Números faltantes
% Todas las lecturas de atmosfera
% tal que existan Nan's en su campo "humedad"
% y que sean todos los campos (columnas)
atmosfera(ismissing(atmosfera.Hum_perc),:)

ans = 61×6 table

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
1	'210519'	'01:55:14'	77.8600	16.5900	NaN	20210519 01:
2	'210523'	'04:27:47'	78.2000	17.2300	NaN	20210523 04:
3	'210523'	'05:17:37'	78.2000	17.2000	NaN	20210523 05:
4	'210524'	'02:32:46'	78.3800	100	NaN	20210524 02:
5	'210524'	'02:32:56'	78.3800	100	NaN	20210524 02:
6	'210524'	'02:33:06'	78.3800	100	NaN	20210524 02:
7	'210524'	'02:33:11'	78.3800	100	NaN	20210524 02:
8	'210524'	'02:33:16'	78.3900	100	NaN	20210524 02:
9	'210524'	'02:33:21'	78.3800	100	NaN	20210524 02:
10	'210524'	'02:33:26'	78.3800	100	NaN	20210524 02:
11	'210524'	'02:33:31'	78.3700	100	NaN	20210524 02:
12	'210524'	'02:33:36'	78.3700	100	NaN	20210524 02:
13	'210524'	'02:33:41'	78.3600	100	NaN	20210524 02:

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
14	'210524'	'02:33:47'	78.3600	100	NaN	20210524 02:
15	'210524'	'02:33:52'	78.3600	100	NaN	20210524 02:
16	'210524'	'02:33:57'	78.3600	100	NaN	20210524 02:
17	'210524'	'02:34:02'	78.3500	100	NaN	20210524 02:
18	'210524'	'02:34:07'	78.3500	100	NaN	20210524 02:
19	'210524'	'02:34:12'	78.3500	100	NaN	20210524 02:
20	'210524'	'02:34:17'	78.3500	100	NaN	20210524 02:
21	'210524'	'02:34:22'	78.3500	100	NaN	20210524 02:
22	'210524'	'02:34:27'	78.3400	100	NaN	20210524 02:
23	'210524'	'02:34:32'	78.3400	100	NaN	20210524 02:
24	'210524'	'02:34:37'	78.3400	100	NaN	20210524 02:
25	'210524'	'02:34:42'	78.3500	100	NaN	20210524 02:
26	'210524'	'02:34:47'	78.3400	100	NaN	20210524 02:
27	'210524'	'02:34:52'	78.3400	100	NaN	20210524 02:
28	'210524'	'02:34:57'	78.3500	100	NaN	20210524 02:
29	'210524'	'02:35:02'	78.3400	100	NaN	20210524 02:
30	'210524'	'02:35:07'	78.3400	100	NaN	20210524 02:
31	'210524'	'02:35:12'	78.3400	100	NaN	20210524 02:
32	'210524'	'02:35:17'	78.3400	100	NaN	20210524 02:
33	'210524'	'02:35:22'	78.3400	100	NaN	20210524 02:
34	'210524'	'02:35:27'	78.3300	100	NaN	20210524 02:
35	'210524'	'02:35:32'	78.3300	100	NaN	20210524 02:
36	'210524'	'02:35:37'	78.3300	100	NaN	20210524 02:
37	'210524'	'02:35:42'	78.3300	100	NaN	20210524 02:
38	'210524'	'02:35:47'	78.3300	100	NaN	20210524 02:
39	'210524'	'02:35:52'	78.3200	100	NaN	20210524 02:
40	'210524'	'02:35:57'	78.3300	100	NaN	20210524 02:
41	'210524'	'02:36:02'	78.3200	100	NaN	20210524 02:
42	'210524'	'02:36:07'	78.3200	100	NaN	20210524 02:
43	'210524'	'02:36:12'	78.3200	100	NaN	20210524 02:
44	'210524'	'02:36:17'	78.3200	100	NaN	20210524 02:
45	'210524'	'02:36:22'	78.3200	100	NaN	20210524 02:
46	'210524'	'02:36:27'	78.3200	100	NaN	20210524 02:

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
47	'210524'	'02:36:32'	78.3300	100	NaN	20210524 02:
48	'210524'	'02:36:37'	78.3100	100	NaN	20210524 02:
49	'210524'	'02:36:42'	78.3000	100	NaN	20210524 02:
50	'210524'	'02:36:47'	78.3100	100	NaN	20210524 02:
51	'210524'	'02:36:53'	78.3100	100	NaN	20210524 02:
52	'210524'	'02:36:58'	78.3000	100	NaN	20210524 02:
53	'210524'	'02:37:03'	78.3100	100	NaN	20210524 02:
54	'210524'	'02:37:08'	78.3100	100	NaN	20210524 02:
55	'210524'	'02:37:13'	78.3100	100	NaN	20210524 02:
56	'210524'	'02:37:18'	78.3200	100	NaN	20210524 02:
57	'210524'	'02:37:24'	78.3100	100	NaN	20210524 02:
58	'210524'	'02:37:34'	78.3100	100	NaN	20210524 02:
59	'210524'	'02:37:39'	78.3200	100	NaN	20210524 02:
60	'210524'	'08:33:50'	78.2800	18.3700	NaN	20210524 08:
61	'210526'	'01:52:49'	78.4100	18.4400	NaN	20210526 01:

%Exploración de Números faltantes

% Todas las lecturas de atmosfera

% tal que existan Nan's en su campo "Temperatura"

% y que sean todos los campos

atmosfera(ismissing(atmosfera.Temp_C),:)

ans = 11×6 table

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
1	'210518'	'17:59:58'	77.7100	NaN	49.6800	20210518 17:
2	'210520'	'09:27:14'	77.9500	NaN	38.9700	20210520 09:
3	'210520'	'09:37:27'	77.9500	NaN	39.4700	20210520 09:
4	'210520'	'21:22:43'	77.8400	NaN	44.8400	20210520 21:
5	'210521'	'20:50:27'	78.0400	NaN	48.0700	20210521 20:
6	'210522'	'20:57:34'	78.0700	NaN	51.3400	20210522 20:
7	'210522'	'20:57:44'	78.0800	NaN	51.2100	20210522 20:
8	'210522'	'20:58:39'	78.0700	NaN	51.2900	20210522 20:
9	'210523'	'10:19:08'	78.3200	NaN	53.7100	20210523 10:
10	'210523'	'21:44:54'	78.0100	NaN	52.8200	20210523 21:
11	'210525'	'18:14:48'	78	NaN	61.0600	20210525 18:

%Exploración de Números faltantes

% Todas las lecturas de atmosfera

```
% tal que existan Nan's en su campo "Presión"
% y que sean todos los campos
atmosfera(ismissing(atmosfera.Pres_kpa),:)
```

ans =

0×6 empty table

% Podemos especificar qué columnas sean las únicas que queramos que se
% muestren
atmosfera(ismissing(atmosfera.Temp_C),["DateTime","Hum_perc"])

ans = 11×2 table

	D-4-T:	I lives a see
	DateTime	Hum_perc
1	20210518 17:	49.6800
2	20210520 09:	38.9700
3	20210520 09:	39.4700
4	20210520 21:	44.8400
5	20210521 20:	48.0700
6	20210522 20:	51.3400
7	20210522 20:	51.2100
8	20210522 20:	51.2900
9	20210523 10:	53.7100
10	20210523 21:	52.8200
11	20210525 18:	61.0600

```
%Quitamos los Nans (rmissing) de la tabla atmosfera:
atmosfera_clean = rmmissing(atmosfera);

%Y vemos cómo se ven las gráficas sin los Nans
figure
stackedplot(atmosfera_clean,'XVariable','DateTime')
```


Obtenemos datos estadísticos

hum_3Q = quantile(atmosfera_clean.Hum_perc,0.75)

 $hum_3Q = 66.9600$

```
%Obtenemos el promedio
hum_mean = mean(atmosfera_clean.Hum_perc)

hum_mean = 49.6841

%y la mediana
hum_median = median(atmosfera_clean.Hum_perc)

hum_median = 50.1550

%y la moda:
hum_mode = mode(atmosfera_clean.Hum_perc)

hum_mode = 28.9200

%Quantiles
hum_1Q = quantile(atmosfera_clean.Hum_perc,0.25)

hum_1Q = 29.8800
```

Métricas de tendencia central

```
%Una gráfica con boxplot e histograma
figure

% Es como hacer subplots en Python
tiledlayout(1,2)

% nexttile es para ir colocando las gráficas en cada subplot que creamos
nexttile

% El contenido en la primera gráfica
boxplot(atmosfera_clean.Hum_perc)
```

Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'PositionConstraint' for objects in a TiledChartLayout

```
xlabel("Humedad relativa")
ylabel("%")
% Siguiente subplot
nexttile
histogram(atmosfera_clean.Hum_perc, 'BinWidth',5, 'Normalization', "probability")
%El siguiente paso agrega líneas verticales que representan varios valores
%estadísticos
hold on
xline(hum_mean, 'b', 'Promedio', "LabelHorizontalAlignment", "left")
xline(hum_median,'--k','Mediana',"LabelHorizontalAlignment","right")
xline(hum_mode,'--r','Moda',"LabelHorizontalAlignment","left")
xline(hum_1Q,'k','1Q',"LabelHorizontalAlignment","right")
xline(hum_3Q,'k','3Q',"LabelHorizontalAlignment","right")
hold off
xlabel("Humedad [%]")
ylabel("Probabilidad")
```



```
%Serie de tiempo
figure
% plot(x,y)
plot(atmosfera_clean.DateTime,atmosfera_clean.Hum_perc)
ylabel("Humedad relativa")
%El siguiente paso agrega líneas horizontales que representan varios valores
%estadísticos
hold on
yline(hum_mean,'--k','Promedio',"LabelVerticalAlignment","bottom")
yline(hum_median,'m','Mediana',"LabelVerticalAlignment","top")
yline(hum_mode,'--b','Moda',"LabelVerticalAlignment","bottom")
yline(hum_1Q,'k','1Q',"LabelVerticalAlignment","top")
yline(hum_3Q,'k','3Q',"LabelVerticalAlignment","top")
hold off
% Ponemos una rejilla
grid on
grid minor
```


Dispersión

```
% Vamos a graficar las muestras de sonido de "buho":
% Tomamos el canal izquierdo:
buho_left = buho(:,1);
plot(buho_left)
```



```
%Copiamos y pegamos los códigos de las gráficas anteriores:
%Una gráfica con boxplot e histograma
figure
% Es como hacer subplots en Python
tiledlayout(1,2)
% nexttile es para ir colocando las gráficas en cada subplot que creamos
nexttile
% El contenido en la primera gráfica
boxplot(buho_left)
```

Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'PositionConstraint' for objects in a TiledChartLayout

```
xlabel("Audio buho")
ylabel("V")

% Siguiente subplot
nexttile
histogram(buho_left,20,'Normalization',"probability")
hold off

xlabel("Audio buho [V]")
```



```
%Serie de tiempo
figure
plot(buho_left)
ylabel("Audio buho [V]")
% Ponemos una rejilla
grid on
grid minor
```


Actividad:

- Sacar desviación estándar, varianza y promedio
- Colocar promedio
- Actividad: colocar promedio + σ y promedio - σ

```
%Obtenemos el promedio
buho_mean = mean(buho_left)
```

buho_mean = 8.1547e-08

```
%Obtenemos la varianza
buho_var = var(buho_left)
```

 $buho_var = 0.0451$

```
%Obtenemos la std
buho_std = std(buho_left)
```

 $buho_std = 0.2124$

%Hacemos el plot:

```
%Una gráfica con boxplot e histograma
figure

% Es como hacer subplots en Python
tiledlayout(1,2)

% nexttile es para ir colocando las gráficas en cada subplot que creamos
nexttile

% El contenido en la primera gráfica
boxplot(buho_left)
```

Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'PositionConstraint' for objects in a TiledChartLayout

```
xlabel("Audio buho")
ylabel("V")

% Siguiente subplot
nexttile
histogram(buho_left,20,'Normalization',"probability")
xlabel("Audio buho [V]")
ylabel("Probabilidad")

hold on
xline(buho_mean,'k--','Promedio',"LabelHorizontalAlignment","left")
xline(buho_mean + buho_std,'--r','+\sigma',"LabelHorizontalAlignment","right")
xline(buho_mean - buho_std,'--r','-\sigma',"LabelHorizontalAlignment","left")
hold off
```



```
%Serie de tiempo
figure
plot(buho_left)
ylabel("Audio buho [V]")
%Ploteamos líneas euivalentes a +/- 1 sigman y 2 sigma
hold on
yline(buho_mean, 'k--', 'Promedio')
%+/- 1 sigma
yline(buho_mean + buho_std,'--r','+\sigma 34%')
yline(buho_mean - buho_std,'--r','-\sigma 34%')
%+/- 2 sigma
yline(buho_mean + 2.*buho_std,'--b','+2 \sigma 47.5%')
yline(buho_mean - 2.*buho_std,'--b','-2 \sigma 47.5%')
hold off
% Ponemos una rejilla
grid on
grid minor
```


Ajustes

```
plot(atmosfera clean.Temp C,atmosfera clean.Hum perc,'.')
xlabel ("Temperatura [C]")
ylabel("Humedad [%]")
grid on
% Hacemos el fit
% El primer argumento es el fit y el 2o es gof=goodness of fit
% la función fit recibe tres parámetros, el tercero se refiere al grado del
% polinomio. 'Poly1' es un polinomio de grado 1
[fit relacion,gof] = fit(atmosfera clean.Temp C,atmosfera clean.Hum perc,'poly1')
fit relacion =
    Linear model Poly1:
    fit_relacion(x) = p1*x + p2
    Coefficients (with 95% confidence bounds):
      p1 =
               -2.772 (-2.781, -2.763)
      p2 =
               113.2 (112.9, 113.4)
gof = struct with fields:
         sse: 1.5967e+07
      rsquare: 0.7212
         dfe: 137448
   adjrsquare: 0.7212
         rmse: 10.7783
[fit_relacion2,gof] = fit(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,'poly2')
```

```
figure
plot(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,'.')
hold on
plot(fit_relacion, 'r')
plot(fit_relacion2, 'b')
```



```
hold off
xlabel ("Temperatura [C]")
ylabel("Humedad [%]")
grid on
legend("Data", "Ajuste de línea", "Ajuste de polinomio grado 2")
```

