Real-Time Operating Systems RTOS

For Embedded systems

- Rajendra Singh

Real-Time Systems

- A system is said to be Real Time if it is required to complete it's work & deliver it's services on time.
- Result in severe consequences if logical and timing correctness are not met

· Example

- Flight Control System
- controlling traffic signal
- nuclear reactor
- · Non Example PC system

What a RTOS is not

- Real time computing is equivalent to fast computing.
- Real time systems operate in a static environment
- Real time programming involves assembly coding, writing device drivers.

Real-Time Systems (cont.)

- Two types exist
 - · Soft real-time
 - Tasks are performed as fast as possible
 - Late completion of jobs is undesirable but not fatal.
 - System performance degrades as more & more jobs miss deadlines
 - Also known as "best effort" systems
 - Example:
 - » multimedia transmission and reception
 - » networking, telecom (cellular) networks
 - » web sites and services, Online Databases
 - » computer games

Real-Time Systems (cont.)

- · Hard real-time
 - Tasks have to be performed on time
 - Failure to meet deadlines is fatal
 - Requires formal verification/guarantees of being to always meet its hard deadlines (except for fatal errors).
 - Example:
 - » Flight Control System, air traffic control
 - » vehicle subsystems control
 - » Nuclear power plant control

Most Real-Time Systems are embedded

- An embedded system is a computer built into a system but not seen by users as being a computer
- Examples
 - FAX machines
 - Copiers
 - Printers
 - Scanners
 - Routers
 - Robots

CHARACTERISTICS OF RTOS

Role of an OS in Real Time Systems

- Standalone Applications
 - Often no OS involved
 - Micro controller based Embedded Systems
- Some Real Time Applications are huge & complex
 - Multiple threads
 - Complicated Synchronization Requirements
 - File system / Network / Windowing support
 - OS primitives reduce the software design time

Role of an OS in Real Time Systems

- Standalone Applications
 - Often no OS involved
 - Micro controller based Embedded Systems
- Some Real Time Applications are huge & complex
 - Multiple threads
 - Complicated Synchronization Requirements
 - File system / Network / Windowing support
 - OS primitives reduce the software design time

FUNCTIONS OF RTOS

Task management

Scheduling.

Resource Allocation.

Interrupt Handling.

Task management

- In Real Time Applications the Process is called as Task which takes execution time and occupies memory.
- Task management is the process of managing tasks through its life cycle.

Scheduling in RTOS

- More information about the tasks are known
 - Number of tasks
 - Resource Requirements
 - Execution time
 - Deadlines
- Being a more deterministic system better scheduling algorithms can be devised.

Scheduling Algorithms in RTOS

· Clock Driven Scheduling

Weighted Round Robin Scheduling

· Priority Scheduling (Greedy / List / Event Driven)

Scheduling Algorithms in RTOS (cont.)

· Clock Driven

- All parameters about jobs (execution time/deadline)
 known in advance.
- Schedule can be computed **offline** or at some **regular time** instances.
- Minimal runtime overhead.
- Not suitable for many applications.

Scheduling Algorithms in RTOS (cont.)

Weighted Round Robin

- Jobs scheduled in Round Robin manner
- Time quantum given to jobs is proportional to it's weight
- Example use: High speed switching network
- Not suitable for precedence constrained jobs.
 - Job A can run only after Job B. No point in giving time quantum to Job B before Job A.

Scheduling Algorithms in RTOS (cont.)

· Priority Scheduling

- Processor never left idle when there are ready tasks
- Processor allocated to processes according to priorities
- Priorities
 - Static at design time
 - · Dynamic at runtime

Priority Scheduling

- Earliest Deadline First (EDF)
 - Process with earliest deadline given highest priority
- Least Slack Time First (LSF)
 - slack = (relative deadline execution left)
- Rate Monotonic Scheduling (RMS)
 - For periodic tasks
 - Tasks priority inversely proportional to it's period

Resource Allocation in RTOS

- Resource Allocation
 - Resources can be allocated in
 - · Weighted Round Robin
 - Priority Based
- · Some resources are non preemptible
 - Example: semaphores

Assigning Task Priorities

- In most systems, not all tasks are critical
 - Non-critical tasks are obviously low-priorities
- Most real-time systems have a combination of soft and hard requirements

Other RTOS issues

- · Interrupt Latency should be very small
 - Kernel has to respond to real time events
 - Interrupts should be disabled for minimum possible time
- For embedded applications Kernel Size should be small
 - Should fit in ROM
- Sophisticated features can be removed
 - No Virtual Memory

CONCLUSION.

 RTOS have been the heroes in most of the technological areas, right from fuel injection system to nuclear reactor control, satellite control, global positioning systems(gps), and fully equipped high-tech warfare aircrafts.

And the best is yet to come!

Thank you!