Développement 6. Densité des polynômes orthogonaux

Soient $I \subset \mathbf{R}$ un intervalle et $\rho: I \longrightarrow \mathbf{R}_+^*$ une fonction intégrable. On suppose qu'il existe un réel $\alpha>0$ tel que

$$\int_{I} e^{\alpha|x|} \rho(x) \, \mathrm{d}x < +\infty. \tag{1}$$

Notons $L^2(I, \rho)$ l'ensemble des fonctions mesurables de I dans \mathbf{R} qui sont intégrables par rapport à la mesure ρ dx. Grâce à l'hypothèse (1), les fonctions polynomiales sur I, identifiées à des polynômes de $\mathbf{R}[X]$, appartiennent à l'espace $L^2(I, \rho)$.

Théorème 1. L'espace $\mathbf{R}[X]$ est dense dans $\mathrm{L}^2(I,\rho)$. En particulier, il existe une base hilbertienne $(P_n)_{n\in\mathbb{N}}$ de $\mathrm{L}^2(I,\rho)$ telles que

$$\forall n \in \mathbf{N}, \qquad P_n \in \mathbf{R}[X] \quad \text{et} \quad \deg P_n = n.$$

Preuve Grâce au théorème de Riesz-Fischer, l'espace $L^2(I,\rho)$ est complet. Avec le critère de densité, il suffit de montrer que l'orthogonal $\mathbf{R}[X]^{\perp}$ est nul. Soit $f \in \mathbf{R}[X]^{\perp}$. Cette fonction f est, par définition, orthogonale à tous les monômes, c'est-à-dire

$$\forall n \in \mathbf{N}, \qquad \int_{I} x^{n} f(x) \rho(x) \, \mathrm{d}x = 0.$$
 (2)

On veut montrer qu'elle est nulle. Considérons l'ouvert connexe $\Omega \coloneqq \{|\mathrm{Im}| < \alpha/2\} \subset \mathbf{C}$ et l'application

$$F: \left| \begin{matrix} \Omega \longrightarrow \mathbf{C}, \\ z \longmapsto \int_{\mathbf{R}} e^{-izx} f(x) \rho(x) \, \mathrm{d}x \end{matrix} \right|$$

où l'on a prolongé les fonctions f et ρ sur \mathbf{R} par zéro. Montrons que l'application F est holomorphe sur Ω . D'abord, pour tout réel $x \in \mathbf{R}$, la fonction $z \in \Omega \longmapsto e^{-izx} f(x) \rho(x)$ est holomorphe sur Ω . Par ailleurs, pour tout complexe $z \in \Omega$ et tout réel $x \in \mathbf{R}$, on a

$$\begin{split} |e^{-izx}f(x)\rho(x)| &\leqslant e^{|\operatorname{Im} z||x|} |f(x)| \, \rho(x) \\ &\leqslant e^{\alpha/2 \times |x|} |f(x)| \, \rho(x) \\ &= e^{\alpha/2 \times |x|} \sqrt{\rho(x)} \times |f(x)| \, \sqrt{\rho(x)} \end{split}$$

où la fonction majorante est dans L¹(**R**) puisque l'inégalité de Cauchy-Schwarz donne

$$\int_{I} e^{\alpha/2 \times |x|} |f(x)| \rho(x) \, \mathrm{d}x \le \left(\int_{I} e^{\alpha|x|} \rho(x) \, \mathrm{d}x \right)^{1/2} \left(\int_{I} |f(x)|^{2} \rho(x) \, \mathrm{d}x \right)^{1/2} < +\infty.$$

Par conséquent, le théorème d'holomorphie sous la signe intégral nous assure que la fonction F est holomorphe sur Ω et qu'elle vérifie

$$\forall n \in \mathbf{N}, \ \forall z \in \Omega, \qquad F^{(n)}(z) = \int_{\mathbf{R}} (-ix)^n e^{-izx} f(x) \rho(x) \, \mathrm{d}x.$$

Avec notre hypothèse (2), on obtient alors

$$\forall n \in \mathbf{N}, \ \forall z \in \Omega, \qquad F^{(n)}(0) = (-i)^n \int_{\mathbf{R}} x^n f(x) \rho(x) \, \mathrm{d}x = 0.$$

Le théorème des zéros isolés nous assure ainsi que la fonction F est nulle sur un voisinage de o. Mais l'ouvert Ω étant connexe, elle est nulle sur tout l'ouvert Ω et, en particulier, sur la droite réelle \mathbf{R} . La transformée de Fourier sur $\mathrm{L}^1(\mathbf{R})$ étant une injection et comme

$$\forall x \in \mathbf{R}, \qquad |f(x)\rho(x)| \le \frac{1}{2}(1+|f(x)|^2)\rho(x),$$

on en déduit que la fonction $f \rho \in L^1(\mathbf{R})$ est nulle presque partout. Comme $\rho > 0$, il en va de même pour la fonction f ce qu'il fallait démontrer.

Montrons la seconde partie du théorème. Le précédent paragraphe montre que la famille $(X^n)_{n\in\mathbb{N}}$ est une base totale de $L^2(I,\rho)$. Il suffit alors de lui appliquer le procédé d'orthonormalisation de Gram-Schmidt qui, remarquons-le, conserve le degré.

Remarque

Faisons un petit aparté sur la transformé de Fourier sur L¹(\mathbf{R}) issu du livre [2]. Pour une fonction $f \in L^1(\mathbf{R})$, on définit sa transformée de Fourier

$$\hat{f} : \begin{vmatrix} \mathbf{R} \longrightarrow \mathbf{K}, \\ t \longmapsto \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} f(x) e^{-ixt} \, \mathrm{d}x \end{vmatrix}$$

Notons $\mathscr{C}_0(\mathbf{R})$ l'espace des fonctions continues sur \mathbf{R} et nulles à l'infini. Grâce au théorème 9.12, l'application $f \longmapsto \hat{f}$ réalise une injection $L^1(\mathbf{R}) \longrightarrow \mathscr{C}_0(\mathbf{R})$. En effet, il s'agit d'une conséquence de la formule d'inversion : pour toute fonction $f \in L^1(\mathbf{R})$ avec $\hat{f} \in L^1(\mathbf{R})$ et pour presque tout $x \in \mathbf{R}$, on a

$$f(x) = \int_{\mathbf{R}} \hat{f}(t)e^{ixt} dt.$$

^[1] Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2° édition. H&K, 2005.

^[2] Walter Rudin. Analyse réelle et complexe. 3e édition. Dunod, 1998.