

Искази

27

Дефиниција. Реченице које имају смисла и које су или тачне или нетачне (само једно од ова два) зову се искази.

Пример.

- "Данас је други октобар." -нетачан исказ
- "2+5=7" тачан исказ
- ightharpoonup "2+4<5" нетачан исказ
- "Сваки паран број веци од 4 је збир два проста броја." исказ, али не знамо да ли је тачан (Голбахова хипотеза)
- "Реченица коју сада изговарам је лаж." -није исказ.

Искази

Исказе означавамо словима

$$p, q, r, \ldots, p_1, q_1, r_1, \ldots, p_2, q_2, \ldots$$

- $p,q,r,\dots,p_1,q_1,r_1,\dots,p_2,q_2,\dots$ Од исказа градимо нове исказе повезујући их речима "и", "или", "није", "ако...онда", "ако и само ако",
 - које називамо логичким везницима.
- Тачност новог исказа одређујемо на основу тачности исказа од којих је саграђен и значења логичких везника у природном језику.

Дисјункција исказа

Дефиниција. Дисјункција редом исказа p и q је исказ "p или q", у ознаци $p \lor q$, који је тачан акко је бар један од исказа p или q тачан.

- ightharpoonup "2+5=7 или 2+4<5" тачан исказ
- lacktriangle "2+5=7 или 2+4>5." тачан исказ
- "Сунце се окреће око Земље или слон је птица" -нетачан исказ

Конјункција исказа

Дефиниција. Конјункција редом исказа p и q је исказ "p и q", у ознаци $p \wedge q$, који је тачан акко су оба исказа p и q тачна. Пример. "2+5=7 и 2+4<5." - нетацан исказ.

Импликација

Дефиниција. Импликација редом исказа p и q је исказ "ако p онда q", у ознаци $p\Rightarrow q$, који је нетачан акко и само ако је исказ p тачан, а исказ q нетачан.

Исказ p је премиса (претпоставка), а исказ q је закључак.

Пример.

- lacktriangle "Из 2+5<7 следи 2<3" тачан исказ.
- ▶ "ако је 2 < 3 онда је 2+5=7" -тачан</p>
- ightharpoonup "ако је 2 < 3 онда је 2+5<7" -нетачан исказ
- "ако вода мрзне на 100° онда је Беч главни град Аустрије" -тачан исказ

Напомена. Математичку логику не интересује значење исказа p и q, већ само њихова истинитост. Другим речима, истинитост импликације $p\Rightarrow q$ не зависи од значења исказа p и q, већ само од њихове истинитости.

Импликацију $p\Rightarrow q$ можемо читати и на следећи начин:

- ightharpoonup "из p следи q"
- ightharpoonup повлачи q"
- lacktriangleright "p имплицира q"
- ▶ "p је довољан услов за q"
- "q је потребан услов за p".

Пример. Сваком од следећих реченица се тврди исто:

- (1) Ако је природан број дељив са 4 онда је он дељив и са 2.
- (2) Довољан услов да је природан број дељив са 2 је да је он дељив са 4.
- (3) Потребан услов да је природан број дељив са 4 је да је он дељив са 2.

Еквиваленција исказа

Дефиниција. Еквиваленција редом исказа p и q је исказ "p ако и само ако q", у ознаци $p\Leftrightarrow q$, који је тачан ако и само ако су или оба исказа p и q тачна или оба исказа нетачна.

Еквиваленцију $p \Leftrightarrow q$ можемо читати и на следећи начин:

- ightharpoonup "p је еквивалентно са q"
- lacktriangle "p је потребан и довољан услов за q"
- lacktriangle "ако p онда q и ако q онда p".

Негација исказа

Дефиниција. Негација p је исказ "није p", у ознаци $\neg p$, који је тачан $_$ акко је исказ p нетачан.

Пример. "Није 2=2." -нетачан исказ.

Синтакса исказне логике

28

- 2
- Исказна логика настаје формализацијом рачуна са исказима.
- Потребно је одредити скуп симбола (алфабет) који ће се користити за грађење формула и правила по којима ће се формирати формуле.
- Са аспекта синтаксе, формуле се посматрају искључиво као низови симбола, не узимајући у обзир било какво њихово (могуће) значење.

Синтакса исказне логике

Дефиниција. Алфабет исказне логике се састоји од следећих симбола:

- пребројив скуп исказних слова (исказних променљивих) $P = \{p_1, p_2, p_3, ...\},$
- ▶ скуп логичких везника $\{\lor,\land,\Rightarrow,\Leftrightarrow,\lnot\}$,
- скуп логичких константи $\{\top, \bot\}$ (опционално, логичке констане могу, али не морају учествовати у грађењу формула),
- скуп помоћних симбола $\{(,)\}$ (заграде).

Од ових симбола по прецизно утврђеним правилима граде се исказне формуле.

Дефиниција. Исказне формуле се дефинишу индуктивно, на следећи начин:

- 1. Исказна слова и логичке константе су исказне формуле.
- 2. Ако су A и B исказне формуле, онда су и $(A \wedge B)$, $(A \vee B)$, $(A \Rightarrow B)$, $(A \Leftrightarrow B)$ и $\neg A$ исказне формуле.
- Исказне формуле се добијају само коначном применом правила (1) и (2).

Пример. Следећи низови симбола су исказне формуле:

- ▶ p, q, ⊤, ⊥
- \blacktriangleright $(p \land \top)$, $(\neg q)$, $(\top \lor \bot)$,
- $\blacktriangleright ((p \land \top) \lor (\neg q)), (\neg (p \land \top)), ((\neg q) \Leftrightarrow (\top \lor \bot)).$

Следећи низови симбола нису исказне формуле:

$$(p \lor q)(\Rightarrow p), p \land \bot \lor \top, (\dots ((p_1 \Rightarrow p_2) \Rightarrow p_3) \Rightarrow \dots).$$

Семантика исказне логике

Семантички аспект исказне логике говори о значењу исказних формула.

Да би се правила за одређивање вредности исказне формуле прецизно формализовала уводи се следећа алгебарска структура:

- ▶ двоелементни скуп, чије елементе можемо означити са 0 и 1 или $\mathbf T$ и $\mathbf F$ или \top и \bot
- ▶ једна унарна и четири бинарне операција на датом скупу, које чемо означити са $\neg^i, \wedge^i, \vee^i, \Rightarrow^i, \Leftrightarrow^i$ и које задајемо таблицама.

Семантика исказне логике

Дефиниција. Двоелементна алгебра $(\{1,0\}, \wedge^i, \vee^i, \Rightarrow^i, \Leftrightarrow^i, \neg^i)$ је исказна алгебра ако су:

- 1 и 0 два различита знака,
- $lackbox{}\wedge^i,ee^i,\Rightarrow^i,\Leftrightarrow^i$ бинарне операције скупа $\{1,0\}$ дате следећим

таблицама

▶ и \neg^i унарна операција скупа $\{1,0\}$ дата таблицом $egin{array}{c|c} \hline 1 & 0 \\ \hline 0 & 1 \\ \hline \end{array}$

Да би се израчунала вредност исказне формуле, најпре треба доделити вредности исказним променљивим. Додељивање конкретних вредности променљивама назива се валуација.

Дефиниција. Свако пресликавање $\alpha:\{p_1,p_2,\dots\} \to \{1,0\}$ зовемо валуација исказних слова (променљивих).

Ако је p исказно слово, за $\alpha(p)$ кажемо да је вредност исказног слова p у валуацији α .

Произвољну валуацију lpha можемо приказати на следећи начин:

$$lpha = \left(egin{array}{cccc} p_1 & p_2 & p_3 & p_4 & \dots \\ a_1 & a_2 & a_3 & a_4 & \dots \end{array}
ight)$$
, где $a_i \in \{1,0\}$ за свако i .

Ако је задата валуација, онда свакој формули одговара тачно једна истинитосна вредност. Другим речима, свака валуација $\alpha:P \to \{0,1\}$ се природно проширује до функције $v_\alpha:Form \to \{0,1\}$ чији је домен скуп свих исказних формула Форм.

Дефиниција. Свакој исказној формули A, за дату валуацију α , придружујемо вредност $v_{\alpha}(A)$ из скупа $\{1,0\}$ дефинисану индукцијом по сложености формуле A, на следећи начин:

ако
$$A=p_i$$
 онда $v_{\alpha}(A)\stackrel{\mathrm{def}}{=}\alpha(p_i),$ ако $A=\top$ онда $v_{\alpha}(A)\stackrel{\mathrm{def}}{=}1,$ ако $A=\bot$ онда $v_{\alpha}(A)\stackrel{\mathrm{def}}{=}0,$ ако $A=(B\wedge C)$ онда $v_{\alpha}(A)\stackrel{\mathrm{def}}{=}v_{\alpha}(B)\wedge^i v_{\alpha}(C),$ ако $A=(B\vee C)$ онда $v_{\alpha}(A)\stackrel{\mathrm{def}}{=}v_{\alpha}(B)\vee^i v_{\alpha}(C),$ ако $A=(B\Rightarrow C)$ онда $v_{\alpha}(A)\stackrel{\mathrm{def}}{=}v_{\alpha}(B)\Rightarrow^i v_{\alpha}(C),$ ако $A=(B\Leftrightarrow C)$ онда $v_{\alpha}(A)\stackrel{\mathrm{def}}{=}v_{\alpha}(B)\Rightarrow^i v_{\alpha}(C),$ ако $A=\neg B$ онда $v_{\alpha}(A)\stackrel{\mathrm{def}}{=}\neg^i v_{\alpha}(B)$

За $v_{\alpha}(A)$ кажемо да је вредност формуле A за валуацију α . Ако је $v_{\alpha}(A)=1$, кажемо да је формула A тачна за валуацију α , а ако је $v_{\alpha}(A)=0$, да је нетачна.

Пример. Одредити
$$v_{lpha}(A)$$
, ако је $A=p \wedge \neg (q\Rightarrow r)$ и

$$\alpha = \left(\begin{array}{cccc} p & q & r & s & \dots \\ 1 & 0 & 0 & 1 & \dots \end{array}\right).$$

Дефиниција.

- (1) Формула A је задовољива акко постоји валуација α таква да је $v_{\alpha}(A) = \top.$
- (2) Формула A је таутологија акко за сваку валуацију α важи $v_{\alpha}(A) = \top.$
- (3) Формула A је порецива акко постоји валуација lpha таква да је $v_lpha(A) = \bot.$
- (4) Формула A је контрадикција акко за сваку валуацију lpha важи $v_lpha(A) = ot.$

Да је формула A таутологија означавамо са $\models A$.

Пример.

- ▶ Формула $p \lor \neg p$ је таутологија,
- lacktriangle формула $p \lor q$ је задовољива и порецива,
- ▶ формула $p \land \neg p$ је контрадикција.

