Data Mining Assignment-1

Group Members:-

- 1. Prabal (IIT2018140)
- 2. Nikhil Kumar (IIT2018152)
- 3. Sagar Kumar (IIT2018154)
- 4. Kartik Nema (IIT2018156)
- 5. Bhupendra (IIT2018163)
- 6. Prakhar Srivastava (IIT2018172)

k-Times Markov Sampling for SVMC

Introduction :- This paper aims to solve the problem of reducing the training time while using Markov sampling, while keeping the classification rates the same.

To solve this problem a SVMC algorithm is proposed based on the k-times Markov Sampling.

On comparing the performance of SVMC based on k times Markov Sampling and classical SVMC and the SVMC based on Markov sampling, it was found that the SVMC with k-times (k = 1, 2), Markov sampling has the following advantages over the others:

- 1. The misclassification rates are smaller;
- 2. The total time of sampling and training is less; and
- 3. The obtained classifiers are more sparse.

Keywords:- SVM (support vector machine), SVMC (support vector machine classifiers), Markov Sampling, Balanced samples, unbalanced samples.

<u>SVM</u>:- SVM are supervised machine learning models that use classification algorithms for two-group classification problems.

<u>SVMC</u>:- SVMC has a good theoretical property in universal consistency and learning rates.

<u>Markov Sampling</u>:- It creates samples from a continuous random variable, with probability density proportional to a known function.

<u>Balanced samples</u>: In data set if positive values are approximately the same as negative values then it is called balanced samples(dataset).

<u>Unbalanced samples</u>: In a data set if there is a very high difference between the positive values and negative values, then it is called unbalanced samples.

Algorithm:-

1. Algorithm - I (for balanced samples)

Input: S_T , N, k, q, n_2

Output: $sign(f_k)$

- 1: Draw randomly N samples $S_{iid} := \{z_j\}_{j=1}^N$ from S_T . Train S_{iid} by SVMC and obtain a preliminary learning model f_0 . Let i = 0.
- **2:** Let $N_+ = 0$, $N_- = 0$, t = 1.
- 3: Draw randomly a sample z_t from S_T , called it the current sample. Let $N_+ = N_+ + 1$ if the label of z_t is +1, or let $N_- = N_- + 1$ if the label of z_t is -1.
- **4:** Draw randomly another sample z_* from S_T , called it the candidate sample, and calculate the ratio α , $\alpha = e^{-\ell(f_i, z_*)}/e^{-\ell(f_i, z_t)}$.
- 5: If $\alpha \ge 1$, $y_t y_* = 1$ accept z_* with probability $\alpha_1 = e^{-y_* f_t} / e^{-y_t f_t}$. If $\alpha = 1$ and $y_t y_* = -1$ or $\alpha < 1$, accept z_* with probability α . If there are n_2 candidate samples can not be accepted continually, then set $\alpha_2 = q\alpha$ and accept z_* with probability α_2 . If z_* is not accepted, go to Step 4, else let $z_{t+1} = z_*$, $N_+ = N_+ + 1$ if the label of z_{t+1} is +1 and $N_+ < N/2$, or let $z_{t+1} = z_*$, $N_- = N_- + 1$ if the label of z_{t+1} is -1 and $N_- < N/2$ (if the value α (or α_1 , α_2) is bigger than 1, accept the candidate sample z_* with probability 1).
- **6:** If $N_+ + N_- < N$, return to Step 4, else we obtain N Markov chain samples S_{Mar} . Let i = i + 1. Train S_{Mar} by SVMC and obtain a learning model f_i .
- 7: If i < k, go to Step 2, else output $sign(f_k)$.

Input: S_T , N, k, q, n_2

Output: $sign(f_k)$

- 1: Draw randomly N samples $S_{iid} := \{z_j\}_{j=1}^N$ from S_T . Train S_{iid} by SVMC and obtain a preliminary learning model f_0 . Let i = 0.
- **2:** Let $N_i = 0$, t = 1.
- 3: Draw randomly a sample z_t from S_T , called it the current sample. Let $N_i = N_i + 1$.
- **4:** Draw randomly another sample z_* from S_T , called it the candidate sample. Calculate the ratio α , $\alpha = e^{-\ell(f_i,z_*)}/e^{-\ell(f_i,z_t)}$.
- 5: If $\alpha = 1$, $y_t y_* = 1$ accept z_* with probability $\alpha_1 = e^{-y_* f_i} / e^{-y_t f_i}$. If $\alpha = 1$ and $y_t y_* = -1$ or $\alpha < 1$, accept z_* with probability α . If there are n_2 candidate samples can not be accepted continually, then set $\alpha_2 = q\alpha$ and accept z_* with probability α_2 . If z_* is not accepted, go to Step 4, else let $z_{t+1} = z_*$, $N_i = N_i + 1$ (if α (or α_1 , α_2) is greater than 1, accept z_* with probability 1).
- **6:** If $N_i < N$, return to Step 4, else we obtain N Markov chain samples S_{Mar} . Let i = i + 1. Train S_{Mar} by SVMC and obtain a learning model f_i .
- 7: If i < k, go to Step 2, else output $sign(f_k)$.

Results:-

The following table presents the accuracy of the k-Times Markov Sampling for SVMC with different Kernels for **letters** dataset.

Kernel	KPCA	SVDD	OCSVM	OCSSVM	OCSSVM with smo	KT_SVM
Linear	0.02	0.09	0.01	0.07	0.04	0.86
RBF	0.05	0.07	0.14	0.09	0.04	0.94
chi_squar	0.18	0.0	0.02	0.18	0.17	0.89

Conclusion :- This paper proposes SVMC with k times sampling and presents 2 algorithms (one for balanced, one for unbalanced samples). The results show that SVMC with k-times (k = 1, 2) Markov sampling outperforms classical SVMC and the SVMC with Markov sampling in terms of learning efficiency (misclassification speeds, total time of sampling and preparation, and support vector numbers).