Integrais Duplas

Márcio Antônio de Andrade Bortoloti

Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia

Cálculo III

Definição de Integral para $f: \mathbb{R} \to \mathbb{R}$

Seja $f:[a,b]\to\mathbb{R}$ uma função contínua. A integral de Riemman de f no intervalo [a,b] é definida como

$$\int_a^b f(x) dx = \lim_{n \to +\infty} \sum_{i=1}^n f(x_i^*) \Delta x,$$

onde $\Delta x=x_i-x_{i-1}$, $x_i\in\mathcal{P}$ e $\mathcal{P}=\{a=x_0< x_1<\cdots< x_{n-1}< x_n=b\}$ é uma partição de [a,b].

Considere $f: R \to \mathbb{R}$, onde $R = [a, b] \times [c, d]$, com $f(x, y) \ge 0$ para todo $(x, y) \in R$.

Para definir a integral de Riemann temos que considerar uma partição de R. Neste caso, tomaremos

$$R=\bigcup_{ij}R_{ij},$$

onde
$$R_{ij} = [x_{i-1}, x_i] \times [y_{i-1}, y_i].$$

$$\Delta A = \Delta x \, \Delta y$$

Como estamos considerando $f(x,y) \ge 0$ em R, podemos interpretar a integral de Riemann de f sobre R como um volume. Assim, vamos calcular o volume da figura entre o plano xy e o gráfico da função f, delimitado pelas dimensões de R.

O volume procurado é dado por

$$V = \lim_{m,n\to+\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_i^*, y_j^*) \Delta A$$

Definição

A integral dupla de f sobre o retângulo R é definida por

$$\iint_{R} f(x,y) dx = \lim_{m,n\to+\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_i^*, y_j^*) \Delta A,$$

desde que o limite exista.

Aproxime o volume do sólido que está acima do quadrado $R = [0, 2] \times [0, 2]$ e abaixo do parabolóide elíptico $z = 16 - x^2 - 2y^2$.

Vale observar que a medida que a quantidade de quadrados aumenta, obtem-se uma melhor aproximação para o volume.

(a)
$$m = n = 4, V \approx 41,5$$

(b)
$$m = n = 8, V \approx 44,875$$

(c)
$$m = n = 16$$
, $V \approx 46,46875$

Se
$$R = \{(x, y); -1 \le x \le 1, -2 \le y \le 2\}$$
, calcule a integral

$$\iint_{R} \sqrt{1-x^2} dA.$$

Basta observar que a integral representa o volume da figura abaixo.

O Valor Médio de uma Função

Definição

O valor médio de uma função $f:R\to\mathbb{R}$, onde $R\subset\mathbb{R}^2$ é definida por

$$f_{m\acute{e}dia} = \frac{1}{\acute{A}rea(R)} \iint_{R} f(x, y) dA.$$

Se $f(x,y) \ge 0$ então

$$f_{\text{m\'edia}} \times \text{\'Area}(R) = \iint_R f(x, y) dA.$$

O mapa de contorno abaixo mostra a precipitação de chuva, em milímetros, em uma região de um estado em uma determinada data. Use o mapa de contorno para estimar a precipitação média de chuva em todo o estado.

Vamos considerar uma partição do domínio, como na figura abaixo:

Vamos tomar os pontos (x_i^*, y_j^*) no centro de cada quadrilátero e fazer uma estimativa.

Assim,

$$\iint_{R} f(x,y) dA \approx \sum_{i=1}^{4} \sum_{j=1}^{4} f(x_{i}^{*}, y_{j}^{*}) \Delta A$$

$$\approx \left(0 + 15 + 8 + 7 + 2 + 25 + 18.5 + 11 + 4.5 + 28 + 17 + 13.5 + 12 + 15 + 17.5 + 13\right) \Delta A$$

$$= 207 \times 6693 = 1385451$$

Assim, o valor médio da função é dado por

$$f_{\text{médio}} = \frac{1}{\text{Área}(R)} \iint_{R} f(x, y) dA = \frac{1385451}{107088} \approx 12.9$$

Propriedades da Integral Dupla

Teorema

Sejam $f,g:R o\mathbb{R}$ funções contínuas, $R\subset\mathbb{R}^2$, um retângulo. Então

$$\iint_R f(x,y) + g(x,y) dA = \iint_R f(x,y) dA + \iint_R g(x,y) dA.$$

Prova: Para uma partição do domínio R tem-se

$$\iint_{R} f(x,y) + g(x,y) dA = \lim_{m,n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \left(f(x_{i}^{*}, y_{j}^{*}) + g(x_{i}^{*}, y_{j}^{*}) \right) \Delta A$$

$$= \lim_{m,n\to\infty} \left(\sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{i}^{*}, y_{j}^{*}) \Delta A + \sum_{i=1}^{n} \sum_{j=1}^{m} g(x_{i}^{*}, y_{j}^{*}) \Delta A \right)$$

$$= \lim_{m,n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{i}^{*}, y_{j}^{*}) \Delta A + \lim_{m,n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} g(x_{i}^{*}, y_{j}^{*}) \Delta A$$

$$= \iint_{R} f(x, y) dA + \iint_{R} g(x, y) dA$$

Propriedades da Integral Dupla

Teorema

Seja $f:R o\mathbb{R}$ uma função contínua, $R\subset\mathbb{R}^2$, um retângulo. Então

$$\iint_{R} \alpha f(x, y) dA = \alpha \iint_{R} f(x, y) dA.$$

Prova: Para uma partição de R, tem-se

$$\iint_{R} \alpha f(x, y) dA = \lim_{m, n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha f(x_{i}^{*}, y_{j}^{*}) \Delta A$$
$$= \alpha \lim_{m, n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{i}^{*}, y_{j}^{*}) \Delta A$$
$$= \alpha \iint_{R} f(x, y) dA$$

Propriedades da Integral Dupla

Teorema

Sejam $f,g:R\to\mathbb{R}$ funções contínuas, $R\subset\mathbb{R}^2$, um retângulo. Se $f(x,y)\geq g(x,y)$ em R, então

$$\iint_R f(x,y) dA \ge \iint_R g(x,y) dA.$$

Prova: Considere uma partição de R. Como $f(x,y) \ge g(x,y)$ segue que

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{i}^{*}, y_{j}^{*}) \Delta A \geq \sum_{i=1}^{n} \sum_{j=1}^{m} g(x_{i}^{*}, y_{j}^{*}) \Delta A.$$

Passando o limite obtemos

$$\iint_{R} f(x,y) dA = \lim_{m,n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{i}^{*}, y_{j}^{*}) \Delta A \geq \lim_{m,n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} g(x_{i}^{*}, y_{j}^{*}) = \iint_{R} g(x,y) dA.$$

Se f é uma função constante, f(x,y)=k e $R=[a,b]\times [c,d]$, mostre que

$$\iint_R k \, dA = k(b-a)(d-c).$$

Basta notar que

$$\iint_{R} k \, dA = k \iint_{R} dA$$

$$= k \lim_{m,n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} \Delta A$$

$$= k(b-a)(d-c)$$