Final Project IS SOCCER ALL ABOUT STATS?

by Al Yazid Bensaid, Utkarsh Prasad, Sahil Shaik

Introduction

Ongoing debate: Is soccer really unpredictable?

Motivation:

- Develop a model with practical benefits for sports bettors
- Recognizing diverse goals
- Guiding users to a classifier aligned with their risk tolerance and betting strategy.

Research Goals:

- Primary Goal: Build a predictive model that will actually predict the outcome of a match for a new dataset
- Secondary Goal: Yield reliable interpretative insights about the nature of the relationship between all the variables

Presentation of the dataset

Source: Dataset from Kaggle, capturing all 64 matches of the 2022 FIFA World Cup.

Data Collection:

- Each row corresponds to a unique match
- Detailed tracking data recorded by multiple cameras, synchronized with match footage.
- Enables diverse exploratory analysis and visualization techniques.
 - Dataset allows us to conduct analysis and create visualizations

Response Variable:

Binary indicator representing match outcome (win or not).

Explanatory Variables:

- Numerical Variables: Possession, Passes, Goals Scored, Total Attempts, On-Target Attempts.
- Categorical Variable : Would a team be considered defensive?

Dataset Cleaning:

Implicit Missing Values: Identify and demonstrate the existence or absence of implicit missing values.

Handling Missing Values:

- Specify the strings representing these missing values.
- dropping rows to address missing values.

Sample Size Cleaning:

Assess if cat. explanatory variables contain levels with few observations.

Outlier Inspection:

- Create scatterplots for numerical explanatory variable pairs.
- Identify and evaluate outliers

Preliminary Analysis

Model Technique Used

0/1 Variable:

Created the indicator response variable using the 'Win' column

Scaling:

- Used the StandardScaler() library
- Scaled the numerical explanatory variables so that there is a focus on the secondary research goal of interpretability.

Algorithm:

Utilized the Backwards Elimination Algorithm with k=5 cross validation

AUC Comparison

Full Model:

Mean Test AUC Score: 0.8501587301587301

Model 1 (passes_team1 removed):

Mean Test AUC Score: 0.8561904761904762

Model 2 (on_target_attempts_team1 removed):

Mean Test AUC Score: 0.8834920634920636

Model 3 (total_attempts_team1 removed):

Mean Test AUC Score: 0.8512698412698413

Best Model!

AUC Comparison Cont.

Model 4 (number_of_goals_team1 removed):

Mean Test AUC Score: 0.643015873015873

Model 5 (possession_team1 removed):

Mean Test AUC Score: 0.8501587301587301

Model 6 (Defensive_Team removed):

Mean Test AUC Score: 0.8407936507936509

Comparing all AUC values, Model 2 has the one closest to 1, being 0.88

Best Logistic Regression Model Equation

$$\begin{array}{l} {\sf P^{\wedge}(Win=1)=1\,/\,(1+e^{\times})} \\ {\sf X=} \\ & -1.0747707454571722+ \\ & 0.016412744535441663\times possession_team1+ \\ & 1.283854480128989\times number_of_goals_team1+ \\ & -0.017679877093412136\times total_attempts_team1+ \\ & -0.0024039477226907905\times passes_team1+ \\ & 0.31810884580939336\times Defensive_Team \\ \end{array}$$

Insights from Best Model Discussion

df.corr() table:

£	possession_team1	number_of_goals_team1	total_attempts_team1	on_target_attempts_team1	passes_team1	Win	Defensive_Team
possession_team1	1.000000	0.286253	0.496749	0.307106	0.860115	-0.026806	-0.721992
number_of_goals_team1	0.286253	1.000000	0.464175	0.605179	0.472537	0.541378	-0.165238
total_attempts_team1	0.496749	0.464175	1.000000	0.818599	0.523735	0.172402	-0.389659
on_target_attempts_team1	0.307106	0.605179	0.818599	1.000000	0.342725	0.334501	-0.238389
passes_team1	0.860115	0.472537	0.523735	0.342725	1.000000	0.065112	-0.479811
Win	-0.026806	0.541378	0.172402	0.334501	0.065112	1.000000	0.057354
Defensive_Team	-0.721992	-0.165238	-0.389659	-0.238389	-0.479811	0.057354	1.000000

- passes_team1 + possession_team1
- on_target_attempts_team1 + total_attempts_team1

Insights from Best Model Discussion Cont.

ROC Curve:

- AUC = 1
- ROC Curve peaks at left corner, creating a right angle
- Either perfect prediction rate or overfitting variables

Additional Visualization: HeatMap

Defensive_Team + possesion_team1

On_target_attempts_team1 + total_attempts_team1

Passes_team1 + possession_team1

Conclusion + Shortcomings

- Best model w/ average test AUC of 0.88
 - Would recommend this model to sports betters
- Backward elimination doesn't guarantee best model
 - Simpler option like LASSO Regularization
 - Help prevent overfitting as it would 0 out certain variable slopes
 - Does not capture interaction effects between variables
- Some variables were similar
 - On_target_attempts_team1 + total_attempts_team1
 - Lead to overfitting of the full model
- Future work
 - Utilize more data cleaning techniques and more accurate models in order to increase the average test AUC
 - Proceed to create a sports betting app