Constrained Functions

Text: Chapter 6

There are some situations in which we want to include known restrictions about x(t).

- \triangleright x(t) is always positive
- \triangleright x(t) is always increasing (or decreasing)
- \triangleright x(t) is a density

Idea: Enforce these conditions by transforming x(t).

Positive Smoothing

We want to ensure that x(t) > 0.

Observation:

$$e^w:(-\infty,\infty)\to(0,\infty)$$

So try the transformation

$$x(t) = e^{W(t)}$$

with

$$W(t) = \Phi(t)\mathbf{c}$$

and penalize the roughness of W(t)

Estimating a Positive Smooth

We now want to minimize

$$\mathsf{PENSSE}_{\lambda}(W) = \sum_{i=1}^{n} \left(y_i - e^{W(t_i)} \right)^2 + \lambda \int [LW(t)]^2 dt$$

This does not have an explicit formula.

But it is convex – there is only one minimum.

Requires numerical optimization, but this is generally fast.

Positive Smoothing Vancouver Precipitation

Constraints imply smoothness (of a certain type) – tend to need less smoothing on \mathcal{W} .

Monotone Smoothing

Berkeley growth study - heights aged 1 - 18

Monotone Smoothing

We need x(t) always increasing:

suggests

$$Dx(t) = e^{W(t)} \rightarrow x(t) = \alpha + \int_{t_0}^t e^{W(s)} ds$$

again,
$$W(t) = \Phi(t)\mathbf{c}$$

Estimating a Monotone Smooth

We now want to minimize

$$PENSSE_{\lambda}(W) = \sum_{i=1}^{n} \left(y_i - \alpha - \int_{t_0}^{t_i} e^{W(s)} ds \right)^2 + \lambda \int [LW(t)]^2 dt$$

- No explicit formula
- No good formula for the integral
- Still a convex problem; numerics work fairly quickly

Note, $LW(t) = D^2W(t)$ suggests that any $x(t) = \alpha + e^{\beta t}$ is smooth.

Density Estimation

Position of Beetles in Angles

Density Estimation

x(t) a density \Rightarrow positive, integrates to 1

$$x(t) = e^{W(t)} / \int e^{W(t)} dt$$

But we observe only t_1, \ldots, t_n .

Need to find an objective to minimize.

Penalized Likelihood

Likelihood of W(t) is probability of seeing t_1, \ldots, t_n if W is true.

Easier to work with log likelihood

$$I(W|t_1,\ldots,t_n)=\sum_{i=1}^n\left(W(t_i)-\log\int e^{W(t)}dt\right)$$

Minimize the *penalized negative log likelihood*:

$$\mathsf{PENLOGLIK}_{\lambda}(W) = -\sum_{i=1}^n W(t_i) + n\log \int e^{W(t)} dt + \lambda \int [LW(t)]^2 dt$$

Usual comments about numerics apply.

Thinking about Smoothness

What is an appropriate measure of smoothness for densities?

$$x(t) = Ce^{W(t)}$$

Compare to Normal density

$$f(t) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(t-\mu)^2/\sigma^2}$$

then $W(t) = t^2$ should be smooth $\Rightarrow LW(t) = D^3W(t)$.

Alternatively, $LW(t) = D^2W(t) \Rightarrow$ exponential distribution is smooth – useful for positive data.

Rough to Smooth Densities

Summary

Can put constraints to force

- x(t) > 0 by $x(t) = e^{W(t)}$
- x(t) monotone by $x(t) = \alpha + \int_{t_0}^{t} e^{W(s)} ds$
- x(t) a density by $x(t) = e^{W(t)} / \int e^{W(t)} dt$

Extension: penalized maximum likelihood for x(t) not directly observed.

Requires nonlinear optimization, but still relatively fast.