第19回 推定量の性質(11.3)

村澤 康友

2024年12月3日

今		の	才	₹-	1	ン	r
令日	Ħ	(U)	刁	\	ſ	ン	1

•	推定量の厳密な分布に関する性質を有限 標本(小標本)特性という.	3.3 3.4	漸近正規性 (p. 222)
2.	期待値が母数と等しい推定量を不偏推定	4	まとめ
	量という.	4.1	標本平均の性質
3.	不偏推定量の中で分散が最小の推定量を	4.2	標本分散の性質
	最小分散不偏推定量という. 正規母集団	4.3	平均と分散の推定(正規母集団).
	から抽出した無作為標本の標本平均・標	4.4	平均と分散の推定(非正規母集団)
	本分散は母平均・母分散の最小分散不偏推	1.1	1.3℃对限的配定(7.11元件外面)
	定量.	5	今日のキーワード

- 4. 大標本における推定量の近似的な分布を 漸近分布という. 推定量の漸近分布に関 する性質を漸近(大標本)特性という.
- 5. 母数に確率収束する推定量を一致推定量 という.
- 6. 漸近分布が正規分布である推定量を漸近 正規推定量という. 漸近分布の分散を漸 近分散という. 漸近正規推定量の中で漸 近分散が最小となる推定量を漸近有効推定 量という. ML 推定量は一般に漸近有効.

1 母平均の推定量

1. 標本平均 (算術平均)

次回までの準備

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$

2. 刈り込み標本平均(外れ値を除いた標本平均)

- 3. 標本中央値
- 4. 幾何平均(対数の算術平均)

$$\ln \hat{\mu} := \frac{1}{n} \sum_{i=1}^{n} \ln X_i$$

5. 調和平均(逆数の算術平均)

$$\frac{1}{\hat{\mu}} := \frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_i}$$

良し悪しを判断する基準は?

目次

3

漸近特性

L	母平均の推定量]
2	有限標本特性	2
2.1	有限標本特性	2
2.2	不偏性(p. 219)	2
2.3	最小分散不偏性(p. 222)	2

2 有限標本特性

2.1 有限標本特性

定義 1. 推定量の厳密な分布に関する性質を**有限標本 (小標本) 特性**という.

注 1. 推定量の厳密な分布の導出は一般に難しい.

2.2 不偏性 (p. 219)

母数 θ の(点)推定量を $\hat{\theta}$ とする.

定義 2. 期待値が母数と等しい推定量を**不偏推定**量という.

注 2. すなわち $\mathbf{E}(\hat{\theta}) = \theta$ なら $\hat{\theta}$ は θ の不偏推 定量.

例 1. 標本平均は母平均の不偏推定量. 標本分散は 母分散の不偏推定量.

注 3. 以下の理由で不偏性は必ずしも不可欠な性質ではない.

1. f(.) が非線形なら一般に

$$E\left(\hat{\theta}\right) = \theta \Longrightarrow E\left(f\left(\hat{\theta}\right)\right) \neq f(\theta)$$

したがって s^2 は σ^2 の不偏推定量だが, s は σ の不偏推定量でない.

2. ML・MM 推定量は一般に不偏でない(例えば 母分散の推定量).

2.3 最小分散不偏性 (p. 222)

定義 3. 不偏推定量の中で分散が最小の推定量を**最** 小分散不偏推定量という.

注 4. 不偏でない推定量の中には分散がより小さい 推定量が存在しうる.

定理 1. 正規母集団から抽出した無作為標本の標本 平均は母平均の最小分散不偏推定量.

証明.「統計学入門」の水準を超えるので略. □

定理 2. 正規母集団から抽出した無作為標本の標本 分散は母分散の最小分散不偏推定量.

証明.「統計学入門」の水準を超えるので略.

3 漸近特性

3.1 漸近特性

定義 4. 大標本における推定量の近似的な分布を**漸** 近分布という.

定義 5. 推定量の漸近分布に関する性質を**漸近(大標本)特性**という.

注 5. 厳密な分布が導出できなくても推定量の良し 悪しを比較できる.

3.2 一致性 (p. 221)

3.2.1 確率変数の収束

 $\{X_n\}$ を確率変数列とする.

定義 6. 任意の $\epsilon > 0$ について

$$\lim_{n \to \infty} \Pr[|X_n - c| < \epsilon] = 1$$

なら $\{X_n\}$ は c に確率収束するという.

注 6. plim $_{n\to\infty} X_n = c$ または $X_n \xrightarrow{p} c$ と書く.

例 2. $X_n \sim N(0, 1/n)$ なら $X_n \stackrel{p}{\longrightarrow} 0$.

3.2.2 一致性と大数の法則

定義 7. 母数に確率収束する推定量を**一致推定量**という.

注 7. 推定量として不可欠な性質.

定理 3. 平均 μ , 分散 σ^2 の母集団分布から抽出した 大きさ n の無作為標本の標本平均を \bar{X}_n とすると

$$\lim_{n \to \infty} \bar{X}_n = \mu$$

証明. 観測値 X_1, \ldots, X_n は平均 μ ,分散 σ^2 の iid なので,チェビシェフの大数の弱法則が成立. \square

定理 4. ML・MM 推定量は一般に一致推定量.

証明.「統計学入門」の水準を超えるので略.

系 1. 平均 μ , 分散 σ^2 の母集団分布から抽出した 無作為標本の標本分散は一致推定量.

証明. 母分散の MM 推定量は

$$\hat{\sigma}^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

標本分散は

$$s^{2} := \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$
$$= \frac{n}{n-1} \hat{\sigma}^{2}$$

 $\hat{\sigma}^2$ は一致推定量なので s^2 も同様.

3.3 漸近正規性 (p. 222)

3.3.1 確率分布の収束

 $\{X_n\}$ に対応する cdf の列を $\{F_n(.)\}$ とする.

定義 8. F(.) の任意の連続点 x で

$$\lim_{n \to \infty} F_n(x) = F(x)$$

なら $\{X_n\}$ は F(.) に分布(法則)収束するという. 注 $8.~X_n \stackrel{d}{\longrightarrow} F(.)$ と書く.

例 3. $X_n \sim N(0,1/n)$ なら $X_n \stackrel{d}{\longrightarrow} \Delta(.)$. ただし

$$\Delta(x) := \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$$

$$\lim_{n\to\infty} F_n(0) \neq \Delta(0)$$

しかし $\Delta(.)$ は x=0 で不連続なので分布収束の定義に反しない.

3.3.2 漸近正規性と中心極限定理

定義 9. 漸近分布が正規分布である推定量を**漸近正** 規推定量という.

定理 5. 平均 μ , 分散 σ^2 の母集団分布から抽出した 大きさ n の無作為標本の標本平均を \bar{X}_n とすると

$$\frac{\bar{X}_n - \mu}{\sqrt{\sigma^2/n}} \xrightarrow{d} N(0,1)$$

証明. 観測値 X_1, \ldots, X_n は平均 μ ,分散 σ^2 の iid なので,リンドバーグ=レヴィの中心極限定理が成立.

注 9. すなわち

$$\bar{X}_n \stackrel{a}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right)$$

ただし $\stackrel{a}{\sim}$ は近似分布を表す.

定理 6. ML・MM 推定量は一般に漸近正規推定量.

 \Box

証明.「統計学入門」の水準を超えるので略.

3.4 漸近有効性 (p. 222)

定義 10. 漸近分布の分散を**漸近分散**という.

定義 11. 漸近正規推定量の中で漸近分散が最小となる推定量を**漸近有効推定量**という.

定理 7. ML 推定量は一般に漸近有効.

証明.「統計学入門」の水準を超えるので略. □

注 10. 正規母集団から抽出した無作為標本の標本 平均は母平均の ML 推定量なので漸近有効. 標本 分散は母分散の ML 推定量でないので漸近有効で ない.

4 まとめ

4.1 標本平均の性質

- 母平均の不偏推定量
- 正規母集団なら母平均の最小分散不偏推定量
- 一致性・漸近正規性をもつ
- 正規母集団なら ML 推定量でもあり漸近有効
- MM 推定量でもある

4.2 標本分散の性質

- 母分散の不偏推定量
- 正規母集団なら母分散の最小分散不偏推定量
- 一致性・漸近正規性をもつ
- 正規母集団なら ML 推定量でないので漸近有 効でない
- MM 推定量でない

4.3 平均と分散の推定(正規母集団)

● 母平均は標本平均で推定する(最小分散不偏か つ漸近有効) ● 母分散は標本分散(最小分散不偏)と ML 推定 量(漸近有効)のどちらか

4.4 平均と分散の推定(非正規母集団)

- 標本平均・標本分散ともに最小分散不偏または 漸近有効とは限らない
- 原則として ML 推定量を用いるのがよい

5 今日のキーワード

有限標本(小標本)特性,不偏推定量,最小分散 不偏推定量,漸近分布,漸近(大標本)特性,一致推 定量,漸近正規推定量,漸近分散,漸近有効推定量

6 次回までの準備

復習 教科書第 11 章 3 節,復習テスト 19 **予習** 教科書第 11 章 5 節