Quantifying Voter Suppression

Technology Review

•••

Andres De La Fuente Anmol Srivastava Juan Solorio

Background & Needs

Visualize voter suppression across the US:

- analyses that group regions by degree of inhibited turnout
- interactive map, with proper labels and contributing factors

Specifically, we need Python tools that can:

- perform cluster analysis, regression, or group comparisons
- generate an interactive browser-friendly map, based on our findings

At Minimum.

% of all U.S. hourly workers earning minimum wage or less

Source: U.S. Bureau of Labor Statistics Inspired by FiveThirtyEight's Ella Koeze

Tricky additions:

- user-adjusted time attribute
- on-click information (pop-ups)

Use Case: Analysis

Objective

- user wants to compare voting patterns in one year, across states
- group states based on available attributes
- give map information about each state's grouping and statistics

Interaction

- year is fixed
- user hovers over and selects different states
- map highlights information about states' categorization

Technology Options: Analysis

scipy

• library oriented around mathematics, engineering and computation

scikit-learn

third-party extension of scipy designed for machine learning

Technology Comparisons: Analysis

scipy

- more robust support for statistical tests
 - scipy.stats.ttest_ind
 - o scipy.stats.f_oneway
- includes ML features, to a lesser capacity
 - o scipy.cluster.vq

scikit-learn

- state-of-the-art ML methods, with interpretability issues
 - o sklearn.cluster
- limited support for statistical tests

Technology Comparisons: Analysis

scipy

- more robust support for statistical tests
 - scipy.stats.ttest_ind
 - scipy.stats.f_oneway
- includes ML features, to a lesser capacity
 - o scipy.cluster.vq

scikit-learn

- state-of-the-art ML methods, with interpretability issues
 - o sklearn.cluster
- limited support for statistical tests

Use Case: Map Interactivity

Objective

- user compares changes in voting patterns in the US, as time progresses
- map allows the user to manipulate the 'year' variable and updates itself

Interaction

- user adjusts a slider for the 'year' variable
- map updates itself based on analysis for that year
- user hover and click on specific states
- map lists selected states' details

Technology Options: Map Interactivity

bokeh

• library meant for interactive web-based visualizations

folium

library for constructing leaflet.js visualizations through Python

Technology Comparisons: Map Interactivity

bokeh

- convenient solutions to interactivity requirements
 - o bokeh.models.Slider
 - o bokeh.models.HoverTool
- cleaner, more versatile, and high-performance heat maps and graphs

folium

- restrictive interactivity features
 - TimeStampedGeoJson(..., time_slider_drag_update=True, ...)
 - JavaScript-editing for hover functionality
- noisier and rigid choropleth method for map construction

Technology Comparisons: Map Interactivity

boke<u>h</u>

- convenient solutions to interactivity requirements
 - o bokeh.models.Slider
 - bokeh.models.HoverTool
- cleaner, more versatile, and high-performance heat maps and graphs

folium

- restrictive interactivity features
 - TimeStampedGeoJson(..., time_slider_drag_update=True, ...)
 - JavaScript-editing for hover functionality
- noisier and rigid choropleth method for map construction

towardsdatascience.com

Closing Remarks

- scipy over scikit-learn
 - o necessarily involves pandas and numpy
- bokeh over folium
 - o potential issues in support and documentation
 - o may require switch to friendlier packages
 - Plotly
 - Dash (React + Plotly)
 - Tableau (easy visuals and publication)