## PAATHSHALA PHYSICS | M | TWT 01

Max. Marks: 120

SYLLABUS: Complex Numbers And Quadratic Equations

Time: 60 min.

The smallest positive integer *n* for which  $(1+i)^{2n} = (1-i)^{2n}$  is: 1.

(a) 1

(c) 3 (d) 4 If  $\alpha$  and  $\beta$  be the roots of  $x^2 + px + q = 0$ , then 2.

 $\frac{(\omega\alpha + \omega^2\beta)(\omega^2\alpha + \omega\beta)}{(\omega^2\alpha + \omega^2\beta)}$  is equal to  $(\omega, \omega^2)$  are complex cube

roots of unity)

(b)  $\alpha \beta$ 

(d)  $\omega$ 

If  $\alpha$ ,  $\beta$  be the roots of the equation  $x^2 - px + q = 0$ , then the equation whose roots are

 $\alpha^2\!\!\left(\!\frac{\alpha^2}{\beta}\!-\!\beta\right) \text{ and } \beta^2\!\!\left(\!\frac{\beta^2}{\alpha}\!-\!\alpha\right) \, is$ 

- (a)  $qx^2 p(p^2 q)(p^2 4q)x p^2q^2(p^2 4q) = 0$ (b)  $px^2 q(p^2 p)(p^2 4q)x + p^2q^2(p^2 4q) = 0$
- (c)  $px^2 qx + p = 0$
- (d) None of these



If  $\alpha$  and  $\beta$  be the values of x in  $m^2(x^2 - x) + 2mx + 3 = 0$ 4. and  $m_1$  and  $m_2$  be two values of m for which  $\alpha$  and  $\beta$  are

connected by the relation  $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{4}{3}$ . Then the value of

$$\frac{m_1^2}{m_2} + \frac{m_2^2}{m_1}$$
 is

- (c)  $\frac{3}{68}$  (d)  $-\frac{68}{3}$
- If  $z_1 = \sqrt{3} + i\sqrt{3}$  and  $z_2 = \sqrt{3} + i$ , then in which quadrant  $\left(\frac{z_1}{z_2}\right)$  lies?

  - (a) I

- (c) III
- The root of the equation  $2(1+i)x^2 4(2-i)x 5 3i = 0$ which has greater modulus is
  - (a)  $\frac{3-5i}{2}$  (c)  $\frac{3-i}{2}$
- (b)  $\frac{5-3i}{2}$
- (d) None of these
- Value of  $\frac{(\cos\theta + i\sin\theta)^4}{(\cos\theta i\sin\theta)^3}$  is
  - (a)  $\cos 5\theta + i \sin 5\theta$
- (b)  $\cos 7\theta + i \sin 7\theta$
- $\cos 4\theta + i \sin 4\theta$
- (d)  $\cos\theta + i\sin\theta$
- Number of solutions of the equation,  $z^3 + \frac{3|z|^2}{z} = 0$ , where 8.

z is a complex number and  $|z| = \sqrt{3}$  is

(a) 2

(c) 6

(d) 4

If z = x + iy is a variable complex number such that

- $\arg \frac{z-1}{z+1} = \frac{\pi}{4} \text{ then :}$ (a)  $x^2 y^2 2x = 1$ (b)  $x^2 + y^2 2x = 1$ (c)  $x^2 + y^2 2y = 1$ (d)  $x^2 + y^2 + 2x = 1$ 10. Let a > 0, b > 0 and c > 0. Then both the roots of the equation  $ax^2 + bx + c = 0$ 
  - (a) are real and negative
  - (b) have negative real parts
  - (c) are rational numbers
  - (d) None of these
- Let z lies on the circle centred at the origin. If area of the triangle whose vertices are z,  $\omega z$  and  $z+\omega z$ , where  $\omega$  is the cube root of unity is  $4\sqrt{3}$  sq. unit. Then radius of the circle is:
  - (a) 1 unit
- (b) 2 units
- (c) 4 units
- (d) None of these
- 12. For a complex number z, the minimum value of |z| + |z-2| is
  - (a) 1

(b) 2

(c) 3

- (d) None of these
- 13. The complex number z satisfying the equations

$$|z|-4 = |z-i| = |z+5i| = 0$$
, is

- (a)  $\sqrt{3}-i$
- (b)  $2\sqrt{3} 2i$
- (c)  $-2\sqrt{3} + 2i$
- (d) 0
- 14. If  $\alpha, \beta, \gamma$  and a, b, c are complex numbers such that

 $\frac{\alpha}{a} + \frac{\beta}{b} + \frac{\gamma}{c} = 1 + i$  and  $\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 0$ , then the value of

- $\frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2}$  is equal to
- (b) 2*i*

(c)

(d) +1

- **15.** If  $(7-4\sqrt{3})^{x^2-4x+3} + (7+4\sqrt{3})^{x^2-4x+3} = 14$ , then the value of x is given by
  - (a)  $2, 2 \pm \sqrt{2}$ (c)  $3 \pm \sqrt{2}, 2$

- (b)  $2 \pm \sqrt{3}$ , 3 (d) None of these
- **16.** If  $\alpha$ ,  $\beta$  be the roots of ax  $^2 + bx + c = 0$  and  $\gamma$ ,  $\delta$  those of  $lx^2 + mx + n = 0$ , then the equation whose roots are  $\alpha y + \beta \delta$ and  $\alpha \delta + \beta \gamma$  is
  - (a)  $a^2 l^2 x^2 ablmx + b^2 l n + acm^2 4acl n = 0$
  - (b)  $alx^2 ablmx + (a+b-c)(l+m-n) = 0$
  - (c)  $a^2l^2x^2 + (a^2+b^2)(l^2+m^2)x (a+b-c)(l+m-n) = 0$
  - (d) None of these
- 17.  $\left(\frac{-1+\sqrt{-3}}{2}\right)^{100} + \left(\frac{-1-\sqrt{-3}}{2}\right)^{100}$  is equal to

- 18. If x is real, the maximum value of  $\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$  is
- (b) 41

- (d)  $\frac{17}{7}$
- **19.**  $\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right)$  is equal to:
  - (a)  $\frac{1}{2} + \frac{9}{2}i$
- (b)  $\frac{1}{2} \frac{9}{2}i$
- (d)  $\frac{1}{4} + \frac{9}{4}i$

- 20. If p, q, r are non-zero real numbers, the two equation,  $2a^2x^2 2abx + b^2 = 0$  and  $p^2x^2 + 3pqx + q^2 = 0$ 
  - (a) no common root
  - (b) one common root if  $2a^2 + b^2 = p^2 + q^2$
  - (c) two common roots if 3pq = 2ab
  - (d) two common roots if 3qb = 2 ap
- The centre of a regular hexagon is at the point 21. z = i. If one of its vertices is at 2 + i, then the adjacent vertices of 2 + i are at the points
  - (a)  $1\pm 2i$
- (b)  $i + 1 \pm \sqrt{3}$
- (c)  $2 + i(1 \pm \sqrt{3})$
- (d)  $1+i(1\pm\sqrt{3})$
- **22.** If a, b, c are real numbers  $a \ne 0$ . If  $\alpha$ , is a root of  $a^2x^2 + bx$ +c=0,  $\beta$  is a root of  $a^2x^2-bx-c=0$  and  $0 < \alpha < \beta$ , then the equation  $a^2x^2 + 2bx + 2c = 0$  has a  $\gamma$  root that always satisfies:
  - (a)  $\gamma = \frac{\alpha + \beta}{2}$
- (b)  $\gamma = \frac{\alpha \beta}{2}$
- (c)  $\gamma = \alpha$
- (d)  $\alpha < \gamma < \beta$
- If the roots of the equation (x a)(x b) + (x b)(x-c) + (x-c)(x-a) = 0 are equal, then  $a^2 + b^2 + c^2 =$ 
  - (a) a + b + c
- (b) 2a + b + c
  - (c) 3*abc*
- (d) ab + bc + ca
- **24.** If |a + ib| = 1, then the simplified form of  $\frac{1 + b + ai}{1 + b ai}$  is
  - (a) b + ai
- (b) a + bi
- (c)  $(1+b)^2 + a^2$
- (d) ai

**25.** Let a, b, c, p, q be real numbers. Suppose  $\alpha$ ,  $\beta$  are the roots

of the equation 
$$x^2 + 2px + q = 0$$
 and  $\alpha$ ,  $\frac{1}{\beta}$  are the roots of the

equation 
$$x^2 + 2bx + c = 0$$
, where  $\beta^2 \notin (-1, 0, 1)$   
**Statement-1:**  $(p^2 - q)(b^2 - ac) \ge 0$ 

**Statement-1:** 
$$(p^2 - q)(b^2 - ac) \ge 0$$

**Statement-2:**  $b \neq pa$  or  $c \neq qa$ 

- (a) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement-1
- Statement -1 is true, Statement -2 is true; Statement -2 is NOT a correct explanation for Statement-1
- Statement -1 is false, Statement-2 is true
- (d) Statement -1 is true, Statement-2 is false
- If  $\omega$  is a non-real cube root of unity, then

$$\frac{1 + 2\omega + 3\omega^{2}}{2 + 3\omega + \omega^{2}} + \frac{2 + 3\omega + 3\omega^{2}}{3 + 3\omega + 2\omega^{2}}$$
 is equal to

- (a)  $-2\omega$
- (b)  $2\omega$
- (c) ω
- (d) 0

- If  $\alpha$ ,  $\beta$  are the roots of the equation  $ax^2 + bx + c = 0$  such that  $\beta < \alpha < 0$ , then the quadratic equation whose roots are  $|\alpha|$ ,  $|\beta|$ , is given by

- (a)  $|a|x^2 + |b|x + |c| = 0$  (b)  $ax^2 |b|x + c = 0$  (c)  $|a|x^2 |b|x + |c| = 0$  (d)  $a|x|^2 + b|x| + |c| = 0$
- If z = 2 + i, then  $(z 1)(\overline{z} 5) + (\overline{z} 1)(z 5)$  is equal to

(c) -1

- **29.** If  $\alpha$ ,  $\beta$  are the roots of the equation  $2x^2 + 6x + b = 0$ , (b < 0)

then 
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$
 is less than :

(a)

(c) 2

- A + iB form of  $\frac{(\cos x + i \sin x)(\cos y + i \sin y)}{(\cot u + i)(1 + i \tan y)}$  is equal to:
  - (a)  $\sin u \cos v [\cos (x+y-u-v) + i \sin (x+y-u-v)]$
  - (b)  $\sin u \cos v [\cos (x+y+u+v)+i \sin (x+y+u+v)]$
  - (c)  $\sin u \cos v \left[\cos (x+y+u+v) i \sin (x+y-u+v)\right]$
  - (d) None of these

