

British Physics Olympiad 2017-18

A2 Challenge - Mark Scheme

September/October 2017

Instructions Give equivalent credit for alternative solutions which are correct physics. Generally allow leeway of ± 1 significant figure.

1. a) (i) zero resultant force
		zero resultant moment
		equilateral triangle (sketch) arrows, etc. (labelled P, Q, R \checkmark)
	(111	all leads to an anticlockwise moment (easiest to see if moments taken
		about any point inside ABC) owtte
		If concurrent, zero moment abotu their point of concurrency owtte
	(v	Draw vector figure, angles $(180^{\circ} - \alpha), (180^{\circ} - \beta), (180^{\circ} - \gamma)$ Apply sine rule
		As $\sin(\theta) = \sin(180^{\circ} - \theta)$, this leads to result.
		(7)
b) (i	$F = pA = 1.0 \times 10^5 \times 0.040 = 4.0 \text{kN}$
	(ii	equal force on either side
	(iii	no pressure between panes as air excluded
	`	so $4 \mathrm{kN}$ from each side pushing panes together
	(iv	$F = \mu R = 0.95 \times 4.0 \mathrm{kN} = 3.8 \mathrm{kN}$
		so equally difficult to slide apart
	(v	paper porous/rough/compressible, so does not exclude air; allows air in owtte
	·	(5)
c) (i) $F = DLp = 2T; A = 2Lt;$ \checkmark $\sigma_{H} = F/A = DLp/2Lt = Dp/2t$ \checkmark) $F = \pi D^{2}p/4 = \pi Dt;$ \checkmark $\sigma_{A} = F/A = (\pi D^{2}p/4)/\pi DT = Dp/4t$
	(ii) $F = \pi D^2 p/4 = \pi Dt;$ \checkmark $\sigma_A = F/A = (\pi D^2 p/4)/\pi DT = Dp/4t$ \checkmark
		Hence $\sigma_{\rm H}:\sigma_{\rm A}=2:1$
	(iv	Wrapped as hoops around the curved surface.
	(11	(This is the result to counteract the direction of maximum stress. However, to use the bands
		most effectively, they would be wrapped around in a helical form, at angle $\tan^{-1} \frac{1}{2}$ i.e. forces
		F, 2F at right angles, as can be observed in the stranding within a reinforced hose pipe.)
		Bonus mark for the idea of helical wrapping. (\checkmark)
		(6)
		[18 marks]
1 -) W = 1.00 kO × 10.0 m V
2. a		$V = 1.00 \mathrm{k}\Omega \times 10.0 \mathrm{\mu A} = 10.0 \mathrm{mV}$
	(11) shunt current = $9.99999 A$ (= $10.0 A$)
	,···	$pd = 10.0 \text{mV} \to R = 1.00(0001) \text{m}\Omega$
	(111	
		current = $10.0 \mu\text{A} \rightarrow R = 999 \text{k}\Omega$
		(5)

b) Each of **FAE**, **FBE**, **FCE**, **FDE** is a potential divider, and they are all equivalent.

<u>Diagram(s)</u> required to illustrate equipotential points; such as below (may be combined)

Figure 1: equivalent circuit of the form....

(this arrangement would be *hexagonal close packed* and, whilst *fcc* would also have a coord no. of 6, *bcc* would be 8)

- (iv) all bonds intact, so no relative movement of atoms / still solid \checkmark smaller k ('weaker') means lower E or elastically softer material \checkmark Reference to expansion is due to the anharmonic nature of the bond, i.e. the force to compress and the force to expand are slightly different. For this a non-ideal spring is needed. Allow a mark if reference to the microscopic and macroscopic behaviour together.
- (v) Specific latent heats for some simple elements:

Element	SLH (Fusion)	SLH (Vaporisation)	F: (F + V)	\checkmark
	$/\mathrm{kJkg^{-1}}$	$/\mathrm{kJkg^{-1}}$	no units	
argon	29.5	161	0.155)
helium	3.45	20.7	0.143	
hydrogen (H_2)	59.5	445	0.118	\ \
krypton	16.3	108	0.131	
neon	16.8	84.8	0.165	J
			0.142 average	✓

So 14% or approximately one in seven bonds are broken on fusion and the remainder on vaporisation

Bonus mark realise that H_2 is the odd-one-out; average now 0.15

(**√**)

(8) **[13 marks]**

4. a) (i) phase change produces a dark line at the line joing the glass slides
Alternate bright and dark labels at the three reflections

Figure 2: path difference diagram

END OF SOLUTIONS