GEMM3: Constant-Workspace High-Performance Multiplication of Three Matrices for Matrix Chaining

Krzysztof A. Drewniak

The University of Texas at Austin

April 13, 2018

Matrix chaining problem

- ▶ Problem: compute $A_1A_2\cdots A_n$ efficiently
- ▶ $O(n \log n)$ algorithm, also $O(n^3)$ with dynamic programming
- ► Fewer flops → more performance?

Drewniak (UT Austin) GEMM3 2 / 37

Generalized matrix chaining

- ▶ In reality transposes, inverses, properties
- ► Ensemble Kalman filter $X_i^b S_i(Y_i^b)^T R_i^{-1}$ Tridiagonalization $\tau_u \tau_v v v^T A u u^T$ Two-sided triangular solve $L^{-1}AL^{-H}$ (L lower triangular)
- ▶ Performance with BLAS/LAPACK must be expert
- Less performance with Matlab, numpy, etc. (left-to-right)
- ightharpoonup Linnea: expression ightharpoonup BLAS calls automagically

GEMM3 — Why bother?

- ▶ All multiply three matrices as a subproblem
- ▶ (Notation: G += DEF and GEMM3)
- Not everything divides well this way

GEMM3 — Why a new algorithm?

- ► Current approach: parentheses, multiply twice, store temporary *T*
- ► T often eats memory (& perf)
- We can do better!
- ▶ Use how GEMM works to nest computations
- \triangleright O(1) extra memory, maybe more performance

Section 2

High-Performance GEMM

Drewniak (UT Austin) GEMM3 6 / 37

Memory hierarchy

Important matrix shapes

Block

Row panel

GEMM: The kernels

GEMM: The kernels

GEMM: The algorithm

Data reuse

▶ Every loop reads *something* repeatedly

Want:

Section 3

The GEMM3 algorithm

Key concept of the algorithm

- ▶ We want G += DEF, (dimensions: m, k, l, n in order)
- EF first needed in packing step
- ► Compute a row panel then

Deriving GEMM3: Partitionings

 $m \times n_C$

$$\leftrightarrow$$

1.
$$m \times n$$

$$=$$
 $m \times k$

D

$$I \times n$$

 $m \times k$

 $k \times 1$

$$k \times I$$

 $1 \times n_C$

3.

$$m \times n_C$$
 $+=$ $\begin{pmatrix} m \times k_C \end{pmatrix}$

 $k_C \times n_C$

 \leftrightarrow

 $k_C \times I$

 $1 \times n_C$

Deriving GEMM3: Inner algorithm

$$EF: k_C \times n_C = E: k_C \times I$$

$$F: I \times n_C$$

- ▶ Only point to compute *EF* in constant memory
- GEMM algorithm needs tweaks

Inner algorithm tweaks: Removing the outer loop

Inner alg. tweaks: Microkernel packed writes

Inner alg. tweaks: Halving n_C

Inner algtweaks: Small k_C reduction

Drewniak (UT Austin) GEMM3 19 / 37

Inner algebraiches: Small k_C reduction

GEMM3 19 / 37

Deriving GEMM3: The small drawback

Problem shape:

$$\widetilde{EF}: k_C \times n_C = E: k_C \times I$$

$$F: I \times n_C$$

Reuse problem: *m* small

The algorithm

$$G += (DE)F$$

- Putting parentheses there sometimes better
- ▶ Deriving directly doesn't work bad shape
- ▶ However, $G += (DE)F \Leftrightarrow G^T += F^T(E^TD^T)$

Section 4

Experiments and Results

Implementation details

- Multilevel Optimization of Matrix Multiply Sandbox (MOMMS)
- Extended to support three matrices
- ► Implement both GEMM3 and BLIS algorithm
- ▶ BLIS algorithm port performs like BLIS
- Machine: 3.5 GHz (one core used), 15 GB RAM, 32 KB L1 cache, 256 KB L2, 8 MB L3. Peak perf 56 GFLOPS/s.

	GЕММ3	BLIS algorithm
m_R	6	6
n_R	8	8
m_C	72	72
k_C	252	256
I_C	256	
n_C	2040	4080

Table: Parameters for Haswell CPUs

Experiments

- 1. G += D(EF), square matrices
 - Inputs column-major, outputs row-major for fairness
- 2. $G^T += F^T(E^TD^T)$, square matrices
 - After transpose, all row major
- 3. G += D(EF), rectangles (one dimension small)

Workspace usage, square matrices

G += D(EF), square matrices

G += D(EF), square matrices

G += (DE)F, square matrices

G += (DE)F, square matrices

G += D(EF), rectangular matrices

G += D(EF), narrow dimension = 9

Conclusions

- ▶ GEMM structure lets us make GEMM3
- Constant memory
- ► Comprable performance
- ► Cleaner API

Future Work

- ► Parallel case
- ► More architectures

Acknowledgments

- ▶ Prof. Robert van de Geijn advising and providing inspiration
- Dr. Tyler Smith writing MOMMS and algorithm design
- Prof. Tze Meng Low performance fixes
- ▶ NSF awards CCF-1714091 and ACI-1550493 funding

Questions?

Picking parameters: m_R , n_R

- Determine microkernel
- ▶ Based on microarchitecture register width, FMA properties
- We're reusing BLIS's work
- \triangleright Can swap m_R and n_R

Picking parameters: k_C

L1 Cache:

Placing memory in cache: [tag][set #][offset in line]

$$m_r k_c S_{elem} = C_A C_{L1} N_{L1}$$
 $n_r k_C S_{elem} = C_B C_{L1} N_{L1}$

$$A A B B A B B C \dots C_A + C_B + 1 \le W_{L1}$$

Maximizing k_C improves performance

$$C_{B} = \left\lceil \frac{n_{R}k_{C}S_{elem}}{N_{L1}C_{L1}} \right\rceil$$
$$= \left\lceil \frac{n_{R}}{m_{R}}C_{A} \right\rceil$$
$$C_{A} \le \left\lceil \frac{W_{L1} - 1}{1 + \frac{n_{R}}{m_{R}}} \right\rceil$$

Picking parameters: m_C and n_C

- ▶ For m_C : reserve ways for B and C
- ► Then take all you can
- \triangleright n_C , leave out what architecture requires, then divide
- ▶ L3 is very big, tuning is much less needed