T'aurais pas une entropie?

by ifb & co,

Abstract

Where we show that it is possible to derive new entropies yielding a particular specified maximum entropy distribution. There are (probably) many errors –I hope not fundamental but is is possible; (certainly many) approximations, typos, maths and language mistakes. Suggestions and improvements will be much appreciated.

1. Maximum entropy distributions

Let $S[f] = -\int f(x) \log f(x) d\mu(x)$ be the Shannon entropy. Subject to n moment constraints such as $\mathbb{E}\left[[T_i(x) = t_i, i = 1, \dots, n \text{ and to normalization, it is well known that the maximum entropy distribution lies within the exponential family$

$$f_X(x) = \exp\left(\sum_{i=1}^n \lambda_i T_i(x) + \lambda_0\right).$$

In order to recover known probability distributions (that must belong to the exponential family), it is then sufficient to specify a set of functions T_i , i.e., a function $T: \mathbb{R} \to \mathbb{R}^n$ where n is the number of moment constraints. This has been used by many authors. For instance, the gamma distribution can be viewed as a maximum entropy distribution if one knows the moments $\mathbb{E}[X]$ and $\mathbb{E}[\log(X)]$. In order to find maximum entropy distributions with simpler constraints or distributions outside of the exponential family, it is possible to consider other entropies. This is discussed below.

2. Maximum (h, ϕ) -entropy distributions

2.1. Definition and maximum (h, ϕ) -entropy solution

Definition 1. Let $\phi : \Omega \subset \mathbb{R}_+ \mapsto \mathbb{R}$ be a strictly convex differentiable function defined on a closed convex set Ω . Then, if f is a probability distribution defined with respect to a general measure $\mu(x)$ on a set \mathcal{X} ,

$$H_{\phi}[f] = -\int_{\mathcal{X}} \phi(f(x)) d\mu((x))$$
(1)

is the ϕ -entropy of f.

Since $\phi(x)$ is convex, then the entropy functional $H_{\phi}[f]$ is concave. Also note that the composition of a concave function with a nondecreasing concave function preserves concavity, and that composition of a convex function with a nonincreasing convex function yields a concave functional.

Definition 1. With the same assumption in definition 1,

$$H_{h,\phi}[f] = h\left(-\int_{\mathcal{X}} \phi(f(x)) d\mu((x))\right)$$
 (2)

is called (h, ϕ) -entropy of f, where

- either ϕ is convex and h concave nondecreasing
- or ϕ is concave and h convex nonincreasing

These (h, ϕ) -entropies have been studied in ? ?] for instance. In these works neither concavity (resp. convexity) of h, nor the differentiability of ϕ are imposed.

A useful related quantity to these entropies is the Bregman divergence associated with ϕ :

Definition 2. With the same assumption in definition 1, the Bregman divergence associated with ϕ defined on a closed convex set Ω , is given by

$$D_{\phi}(x_1, x_2) = \phi(x_1) - \phi(x_2) - \phi'(x_2)(x_1 - x_2). \tag{3}$$

A direct consequence of the strict convexity of ϕ is the nonnegativity of the Bregman divergence: $D_{\phi}(x_1, x_2) \ge 0$ with equality if and only if $x_1 = x_2$.

Consider the problem of maximizing entropy (2) subject to constraints on some moments $\mathbb{E}[[T(X)]]$ where the normalization constraint is now included in T (namely $T_0(x) = 1$ and $t_0 = 1$). Since h is monotone, it is enough to look for the maximum of the ϕ -entropy (1),

$$\begin{cases} \max_{f} & -\int \phi(f(x)) d\mu(()x) \\ \text{s.t.} & \mathbb{E}\left[[T(X)] \right] = t \end{cases}$$
 (4)

Proposition 2. The probability distribution f_X solution of the Maximum entropy problem (4) satisfies the equation

$$\phi'(f_X(x;t)) = \lambda^t T(x). \tag{5}$$

where vector λ is such that $\mathbb{E}[T(X)] = t$.

Proof. The maximization problem being concave, the solution exists and is unique. Equation 5 results directly from the classical Lagrange multipliers technique.

An alternative derivation of the result consists in checking that the distribution (5) is effectively a maximum entropy distribution, by showing that $H_{\phi}[f] > H_{\phi}[g]$ for all probability distributions with a given (fixed) moment $\mathbb{E}[[T(X)]]$. To this end, consider the functional Bregman divergence acting on functions defined on a common domain \mathcal{X} :

$$D_{\phi}(f_1, f_2) = \int_{\mathcal{X}} \phi(f_1(x)) d\mu((x)) - \int_{\mathcal{X}} \phi(f_2(x)) d\mu((x)) - \int_{\mathcal{X}} \phi'(f_2(x)) (f_1(x) - f_2(x)) d\mu((x)).$$

From the nonnegativity of the Bregman divergence this functional divergence is nonnegative as well, and zero if and only if $f_1 = f_2$ almost everywhere. Define by

$$C_t = \{ f : \mathcal{X} \mapsto \mathbb{R}_+ : \mathbb{E}[[T(X)]] = t \}$$

the set of all probability distributions defined on \mathcal{X} with given moments t. Consider now $f_X \in C_t$ such that $\phi'(f_X(x)) = \lambda^t T(x)$ and any given function $f \in C_t$. Then

$$D_{\phi}(f, f_{X}) = \int_{\mathcal{X}} \phi(f(x)) d\mu(()x) - \int_{\mathcal{X}} \phi(f_{X}(x)) d\mu(()x) - \int_{\mathcal{X}} \phi'(f_{X}(x)) (f(x) - f_{X}(x)) d\mu(()x)$$

$$= -H_{\phi}[f] + H_{\phi}[f_{X}] - \int_{\mathcal{X}} \lambda^{t} T(x) (f(x) - f_{X}(x)) d\mu(()x)$$

$$= H_{\phi}[f_{X}] - H_{\phi}[f]$$

where we used the fact that f and f_X have the same moments $\mathbb{E}[T(X)] = t$. By nonegativity of the Bregman functional divergence, we finally get that

$$H_{\phi}[f_X] \ge H_{\phi}[f]$$

for all pdf f with the same moments t than f_X , with equality if and only if $f = f_X$. In other words, this shows that f_X , solution of (5), realizes the minimum of $H_{\phi}[f]$ over C_t .

2.2. Defining new entropy functionals

Given an entropy functional, we thus obtain a maximum entropy distribution. There exists numerous (h,ϕ) -entropies in the literature. However a few of them lead to explicit forms for the maximum entropy distribution. Therefore, it is of high interest to look for the entropies that lead to a specified distribution as a maximum entropy solution.

Since we will look for the function ϕ for a given probability distribution $f_X(x)$ we also see that the corresponding λ parameters can be included in the definition of the function.

Let us recall some implicit properties of $\phi(x)$.

- $\phi'(x)$ is defined on a domain included on $f_X(\mathcal{X})$;
- From the strict convexity property of ϕ , necessarily ϕ' is increasing.

The identification of a function $\phi(x)$ such that a given $f_X(x)$ is the associated maximum entropy distribution amounts to solve (5), that is

- 1. choose T(x),
- 2. find $\phi'(y)$ such that

$$\lambda^t T(x) + \mu = \phi'(f_X(x)) = \phi'(y) \tag{6}$$

- 3. integrate the result to get $\phi(y) = \int \phi'(y) dy + c$, where c is an integration constant. The entropy being defined by $H_{\phi}[f] = -\int_{\mathcal{X}} \phi(f(x)) d\mu(()x)$, the constant c will usually be zero.
- 4. Parameters λ may be choosen case by case in order to simplify the expression of ϕ .

Remind that ϕ' must be increasing, thus, necessarily, $\lambda^t T(x)$ and $f_X(x)$ must have the same sense of variation.

Observe that since we want $\phi(x)$ to be convex, which means $\phi''(x) \ge 0$ for a twice differentiable function, it is thus necessary that $\phi'(x)$ is non decreasing on $[0, \max(f)]$. By the relation

$$\phi'^{-1}(\lambda T(x) + \mu) = f_X(x). \tag{7}$$

we have that

$$f'_X(x) = \lambda T'(x) \frac{1}{\phi''(\phi'^{-1}(\lambda T(x) + \mu))} = \lambda T'(x) \frac{1}{\phi''(f_X(x))}.$$

Hence we get that

$$\phi''(f_X(x)) = \frac{f_X'(x)}{\lambda T'(x)}$$

and we see that $f_x(x)$ and T(x) must have the same or an opposite variation, depending on the sign of λ . Examples: if λ is negative, then

- for T(x) = x, $f_X(x)$ must be non increasing,
- for $T(x) = x^2$ or T(x) = |x|, $f_X(x)$ must be unimodal with a maximum at zero.

For instance, for one moment constraint, if λ_1 is negative, then

- for $T_1(x) = x$, $f_X(x)$ must be decreasing,
- for $T_1(x) = x^2$ or $T_1(x) = |x|$, $f_X(x)$ must be unimodal with a maximum at zero.

Equation (5) may have no solution, when $\lambda^t T(x)$ has not the same variations than f_X . But it can also have several solutions.

3. ϕ -escort, ϕ -Fisher information and generalized Cramér-Rao inequality

4. Some examples

- 4.1. Normal distribution and second-order moment
- 4.2. q-exponential distribution and first-order moment
- 4.3. q-Normal distribution and second-order moment
- 4.4. Hyperbolic secant distribution and first-order moment

Let us consider some specific cases.

1. For a normal distribution, $f_X(x)=\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})$ and $T(x)=x^2$, we begin by computing the inverse $y=\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})$, which gives $-\frac{1}{2}x^2-\log\sqrt{2\pi}=\log(y)$. Choosing $\lambda=-\frac{1}{2}$, $\mu=-\log\sqrt{2\pi}$ and integrating, we obtain

$$\phi(y) = y \log y - y$$

2. For a Tsallis q-exponential, $f_X(x) = C_q \left(1 - (q-1)\beta x\right)_+^{\frac{1}{(q-1)}}, x \ge 0$, and T(x) = x. We simply have $C_q^{q-1} \left(1 - (q-1)\beta x\right) = y^{q-1}$. With $\lambda = qC_q^{q-1}\beta$ and $\mu = qC_q^{q-1}/(1-q)$, this yields

$$\phi(y) = \frac{y^q}{1 - q}.$$

Taking $\mu = \left(qC_q^{q-1} + 1\right)/(1-q)$ gives

$$\phi(y) = \frac{y^q - y}{1 - q},$$

and an associated entropy can be

$$H_{\phi}[f] = \frac{1}{1-q} \left(\int f(x)^q \mathrm{d}\mu(x) - 1 \right),$$

which is nothing but Tsallis entropy.1

3. The same entropy functional can readily be obtained for the so-called q-Gaussian, or Student-t and -r distributions $f_X(x) = C_q \left(1 - (q-1)\beta x^2\right)_+^{\frac{1}{(q-1)}}$. It suffices to follow the very same steps as above with $T(x) = x^2$.

Of course, we can also take the first $\phi(y) = \frac{y^q}{1-q}$, integrate and add any constant, since adding a constant do not modify the actual value af the minimizer (or maximizer if we consider concave entropies).

4. Let $f_X(x)$ be the hyperbolic secant distribution, with density

$$f_X(x) = \frac{1}{2}\operatorname{sech}(\frac{\pi}{2}x) = \frac{1}{2}\cosh^{-1}(\frac{\pi}{2}x).$$

Obviously, $\frac{\pi}{2}x = \cosh(2y) = \phi'(y)$ with T(x) = x, $\lambda = \frac{\pi}{2}$, and

$$\phi(y) = \sinh(2y).$$

So doing, we obtain an hyperbolic sine entropy with the hyperbolic secant distribution as the associated maximum entropy distribution.

5. Multiform entropies

Of course, the preceeding derivations require that (6) is effectively solvable. In addition, one has also to choose or design a specific T(x) statistic, as well as the parameters λ and μ . In the examples above, we used T(x) = x and $T(x) = x^2$. Particular choices such as $T(x) = x^2$ or T(x) = |x| obviously lead to symmetrical densities.

For nonsymmetrical unimodal densities, the situation is more involved. For instance, if we take T(x)=x, then the resolution of (6) amounts to compute the inverse relation of $y=f_X(x)$, which is is multi-valued. Indeed, $f_X(x)$ is not injective and to each y correspond two distinct values of x. Let us denote \mathcal{S}_y the image of f_X , $I_+\subseteq\mathbb{R}$ the domain where $f_X(x)$ is non decreasing, and $I_-\subseteq\mathbb{R}$ the domain where $f_X(x)$ is non increasing. We thus have two possible inverses defined respectively say $\phi'_+:\mathcal{S}_y\mapsto I_+$ and $\phi'_-:\mathcal{S}_y\mapsto I_-$ such that $\phi'^{-1}_+(-x)=f_X(x)$ for $x\in I_+$ and $\phi'^{-1}_-(-x)=f_X(x)$ for $x\in I_-$. Furthermore, by the remarks at the end of section 2.2, we see that ϕ_+ is convex while ϕ_- is concave. In this context, our proposal is to define a ϕ -entropy as follows

$$H_{\phi}[f_X] = -\int_{I_+} \phi_+(f_X(x)) d\mu(x) - \int_{I_-} \phi_-(f_X(x)) d\mu(x).$$

It is easy to check that this entropy functional is no more convex nor concave (for the subset of distributions with support on I_+ the entropy is convex while it its concave for on the subset of distributions on I_- . We propose to look for the *extreme entropy* (instead of the maximum entropy as in the classical case). With a moment constraint, the Lagrangian is

$$L(f_X; \lambda_1, \lambda_0) = \int_{I_+} \phi_+(f_X(x)) d\mu(x) + \int_{I_-} \phi_+(f_X(x)) d\mu(x) + \int_{\mathbb{R}} \lambda_1 x d\mu(x) + \int_{\mathbb{R}} \lambda_0 d\mu(x)$$

and its first variation is

$$\delta L(f_X; \lambda_1, \lambda_0) = \phi_+(f_X(x)) 1_{I_+} + \phi_-(f_X(x)) 1_{I_-} + \lambda_1 x + \lambda_0.$$

Thus the critical points are defined by $\phi_+(f_X(x)) + \lambda_1 x + \lambda_0 = 0$ for $x \in I_+$ and $\phi_-(f_X(x)) + \lambda_1 x + \lambda_0 = 0$ for $x \in I_-$, which actually define the extreme entropy distribution $f_X(x)$ as the inverse relation of a multiform entropy. Obviously, this formulation includes the classical maximum entropy approach as a particular case.

Observe that it is still possible to get a maximum or a minimum entropy solution, but on subsets. Thus, it will still be possible to use these entropies in testing problems. For such goal, define m_+ to be the moment computed on the subset $I_+: m_+ = \int_{I_+} x \, f_X(x) \mathrm{d}\mu(x)$, and similarly for a moment m_- computed on I_- . By the very same reasoning and proof as in the classical case (see the proof of proposition 2), we have that

- (a) $H_{\phi_+}[f_X] \ge H_{\phi_-}[f_1]$ for all distributions f_1 with a fixed moment m_+ ,
- (a) $H_{\phi_{-}}[f_X] \leq H_{\phi_{-}}[f_2]$ for all distributions f_2 with a fixed moment m_{-}

where $f_X(x) = \phi'_+^{-1}(-x)$ for $x \in I_+$ and $f_X(x) = \phi'_-^{-1}(-x)$ for $x \in I_-$. Hence we will be able to use these entropies for distribution testing, provided that we are able to compute empirical values for m_+ and m_- from data, which is quite easy.

5.1. Example 1. The logistic distribution

The pdf of the logistic distribution is given by

$$f_X(x) = \frac{e^{-\frac{x}{s}}}{s(1 + e^{-\frac{x}{s}})^2}.$$

This distribution, which resembles the normal distribution but has heavier tails, has been used in many applications. By direct calculations, we obtain

$$\begin{cases} \phi'_{-}(y) = s \ln \left(\frac{1}{2} \frac{-2ys+1+\sqrt{-4}ys+1}{ys} \right), \\ \phi'_{+}(y) = s \ln \left(-\frac{1}{2} \frac{2ys-1+\sqrt{-4}ys+1}{ys} \right). \end{cases}$$

The associated entropy is then

$$\begin{cases} \phi_{-}(y) = -\frac{1}{2}\sqrt{-4ys+1} + \frac{1}{2} + ys \ln\left(-\frac{\sqrt{-4ys+1}-1}{\sqrt{-4ys+1}+1}\right) \\ \phi_{+}(y) = \frac{1}{2}\sqrt{-4ys+1} + \frac{1}{2} + ys \ln\left(-\frac{\sqrt{-4ys+1}-1}{\sqrt{-4ys+1}+1}\right) \end{cases}$$

for $y \in [0, \frac{1}{4s}]$, and where we have introduced a integration constant such that $\min_y \phi_+(y) = 0$. For $y > \frac{1}{4s}$, we extend the function and let $\phi_+(y) = +\infty$. Figure 1 gives a representation of this entropy for s = 1.

5.2. Example 2. The gamma distribution

The probability density function of the gamma distribution is given by

$$f_X(x) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$$

We obtain

$$\phi'(y) = -e^{\frac{1}{\alpha - 1} \left(-W\left(-\frac{\beta \left(y\Gamma(\alpha)\beta^{-\alpha}\right)^{(\alpha - 1)^{-1}}}{\alpha - 1} \right) \alpha + W\left(-\frac{\beta \left(y\Gamma(\alpha)\beta^{-\alpha}\right)^{(\alpha - 1)^{-1}}}{\alpha - 1} \right) + \ln(y\Gamma(\alpha)\beta^{-\alpha}) \right)}$$

where W is the Lambert W multivalued 'function' defined by $z = W(z)e^{W(z)}$ (ie the inverse relation of $f(w) = we^w$). Unfortunately, in the general case, we do not have a closed form for $\phi(y)$ as the integral of $\phi'(y)$. Restricting us to the case $\alpha = 2$, we have

$$\phi(y) = \frac{\left(1 - W\left(-\frac{y}{\beta}\right) + y\left(W\left(-\frac{y}{\beta}\right)\right)^{2}\right)}{\beta W\left(-\frac{y}{\beta}\right)} + \frac{\beta}{e},$$

which is convex if we choose the -1 branch of the Lambert function and concave for the 0 branch. An example with $\alpha = 2$ and $\beta = 3$ is given on Figure 2.

²This might not be completely unacceptable. Indeed, it is really not difficult to compute numerically the values of $\phi(y)$.

5.3. Example 3. The arcsine distribution

As a further example, we consider the case of the arcsine distribution (see wiki) which also yields a multiform entropy. This distribution, defined for $x \in (0,1)$, is a special case of the Beta distribution with parameters $\alpha = \beta = 1/2$. It has the following pdf:

$$f_X(x) = \frac{1}{\pi \sqrt{x(1-x)}}.$$

Observe that $\min_x f_X(x) = 2/\pi$. Doing our now usual calculations, we obtain

$$\begin{cases} \phi'_{-}(y) = -\frac{y\pi + \sqrt{y^2\pi^2 - 4}}{2y\pi}, \\ \phi'_{+}(y) = -\frac{y\pi - \sqrt{y^2\pi^2 - 4}}{2y\pi}. \end{cases}$$

and the expression of the entropy is

$$\phi_{\pm}(y) = \frac{1}{2} \frac{\sqrt{y^2 \pi^2 - 4}}{\pi} \pm \frac{1}{\pi} \arctan\left(2 \frac{1}{\sqrt{y^2 \pi^2 - 4}}\right) - \frac{1}{2} y,$$

for $y \ge 1/\pi$. The entropy is shown on 3.

5.4. Example 4. The Chi-squared distribution

Let us now consider the case of a chi-squared distribution. The probability density, for $x \ge 0$, is given by

$$f_X(x) = c x^{\frac{k}{2} - 1} \exp{-\frac{x}{2}}$$

with $c^{-1}=2^{\frac{k}{2}}\Gamma(\frac{k}{2})$. Instead of T(x)=x, we now take $T(x)=x^2$ and $\lambda=1$, which means that we look for ϕ such that $\phi'^{-1}(x^2)=f_X(x)$. Solving, we get that

$$\phi'(y) = \begin{cases} 4\left(n-1\right)^2 W\left(\frac{1}{2(n-1)}\left(-y\right)^{\frac{1}{n-1}}\right)^2 & \text{for } k = 2n \text{even, } n \text{even} \\ 4\left(n-1\right)^2 W\left(\pm \frac{1}{2(n-1)}\left(y\right)^{\frac{1}{n-1}}\right)^2 & \text{for } k = 2n \text{even, } n \text{odd} \\ \left(k-2\right)^2 W\left(\frac{1}{k-2}\left(-y^2\right)^{\frac{1}{k-2}}\right)^2 & \text{for } k \text{odd} \end{cases}$$

Among these solutions, we must discard complex valued solutions. Since y is non negative, we see that we can only keep solutions with k=2n even with n odd (or n=2). For n=2, the solution reduces to

$$\phi'(y) = 4W \left(-\frac{1}{2}y\right)^2.$$

By integration, we obtain the corresponding entropy, e.g.

$$\phi(y) = 4 \frac{\left(-4 + 4 W \left(-1/2 y\right) - 2 \left(W \left(-1/2 y\right)\right)^{2} + \left(W \left(-1/2 y\right)\right)^{3}\right) y}{\left(-1/2 y\right)}$$
 for n=2