$\begin{array}{c} {\rm Juin~2022} \\ {\rm Dur\acute{e}e:} 01~{\rm heure~} 30 \end{array}$

Examen de rattrapage Maths 1

Exercice 1. (04 pts)

Montrer par récurrence que :

$$\forall n \ge 1, \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

Exercice 2. (10 pts)

Considérons l'application f définie par :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \mapsto f(x) = x^3 - x^2 - 4x + 4.$

- I. Soient les ensembles $A = \{-2, 0, 1, 2\}$ et $B = \{4\}$.
 - 1. Calculer f(A) et $f^{-1}(B)$.
 - 2. L'application f est-elle injective? bijective?
- II. On définit sur \mathbb{R} la relation binaire \mathcal{R} par :

$$\forall x, y \in \mathbb{R} : x\mathcal{R}y \Leftrightarrow f(x) = f(y).$$

- 1. Montrer que ${\mathcal R}$ est une relation d'équivalence.
- 2. Déterminer les classes d'équivalences de -2 et 0.

Exercice 3. (06 pts)

Soient a et b deux nombres réels. On définit la fonction f par :

$$f(x) = \begin{cases} ax + b & si \quad x \le 0, \\ \frac{3}{1+x} & si \quad x > 0. \end{cases}$$

- 1. Déterminer b pour que f soit continue sur \mathbb{R} .
- 2. Déterminer a et b pour que f soit dérivable sur \mathbb{R} .

Bon courage

Conigé de l'examen de Rattrapage mattis 1.

- Montrons par récurrence que:

$$\forall n \geq 1, \quad \begin{cases} \frac{1}{k=1} & \frac{1}{k(k+1)} = \frac{h}{h+1} \\ \frac{1}{k(k+1)} = \frac{1}{k(1+1)} = \frac{1}{2} = \frac{1}{1+1} \end{cases}$$

$$O \text{ Pour } n = 1, \quad \text{on } a \mid \quad \begin{cases} \frac{1}{k=1} & \frac{1}{k(k+1)} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \\ \frac{1}{k=1} & \frac{1}{k(k+1)} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \end{cases}$$

$$O \text{ Pour } n = 1, \quad \text{on } a \mid \quad \begin{cases} \frac{1}{k=1} & \frac{1}{k(k+1)} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \\ \frac{1}{k=1} & \frac{1}{k(k+1)} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \end{cases}$$

$$O \text{ Pour } n = 1, \quad \text{on } a \mid \quad \begin{cases} \frac{1}{k=1} & \frac{1}{k(k+1)} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} = \frac$$

Authement dit : PU) est maie.

© Soit
$$n \ge 1$$
, on suppose que Plul est unaic, c'est à dire $\frac{1}{h-1} = \frac{n}{k \lfloor h+1 \rfloor} = \frac{n}{n+1}$

et on montre que P(n+1) est moie, c'est à dire

=
$$\frac{u}{u+1} + \frac{1}{(u+1)(u+2)}$$
 (par hypothèse de récurrence)
= $\frac{u(u+2) + 1}{(u+1)(u+2)}$ ($\frac{u+1}{u+2} = \frac{u+1}{(u+1)(u+2)} = \frac{u+1}{u+2}$

Exercice $u^2 21$ Soit $\begin{cases} 1 & \text{if } R \longrightarrow R \\ x & \text{if } x^3 - x^2 - 4x + 4. \end{cases}$

IL 1) - Calculous & (A) et f (B).

\$(A) = { f(n), x = A}

= [{ (2) , { (1) , { (2) (30) } = { (0 , 4) } .

 $f'(B) = \{x \in \mathbb{N}, f(x) \in B\}$ $= \{x \in \mathbb{N}, x^3 - x^2 - 4x + 4 = 4\}$ $= \{x \in \mathbb{N}, x(x^2 - x - 4) = 0\}$ $= \{0, \frac{1 - \sqrt{17}}{2}, \frac{1 + \sqrt{17}}{2}\}.$

2). a). Injectivité de f: d'après la question précédente, on a f(-2) = 0 = f(1) mais -2 ≠ 1. Donc f n'est pas injective.

5). Bijectivité de f : f n'est pas bijective con elle n'est pas injective.

II. Soit Pr la relation boinaire définie par: $\forall x,y \in \mathbb{R}, x Pr y (=) f(x) = f(y).$

- 1). Montrour que R est une relation d'équivalence.
 i). Réflexivité: Soit x e R, Orica. f(x) = f(x)
 d'où x Rx et donc R est réflexive.
- ii). Symétrie: Soient $x, y \in \mathbb{R}$: x R y. $\theta n a 1$ x R y = 0 f(n) = f(y) $\Rightarrow f(y) = f(x)$ $\Rightarrow y R x$

Done! Rest symétrique.

m). Transitivité: soient x, y, z e M: 2 Ry et y Rz.

$$\frac{\partial ma!}{\partial x} = \frac{\partial x}{\partial y} = \frac{\partial x}{\partial y}$$

En sommant (1) et (2), on obtient! { (x) = f(3) = 0 x h g. Donc! h est transitive.

Conclusion! De i), ii) et iii), R est une relation

d'équivalence sur R.

2). Déterminons les classes d'équivalences de -2 et 0.

$$-\frac{1}{2} = \frac{1}{2} \times e R : \times R - 2$$

$$= \frac{1}{2} \times e R : \frac{1}{2} \times R - 2$$

$$= \frac{1}{2} \times e R : \frac{1}{2} \times R - 2$$

$$= \frac{1}{2} \times e R : \frac{1}{2} \times R - 2$$

et d'après la que «vien I-1-, en déduit que : $x^3 - x^2 - 4x + 4 = (x-2)(x+2)(x-1)$.

Alous,
$$-2 = \{2 \times 1 = 1 : (2 - 2)(2 + 2)(2 - 1) = 0\}$$

= $\{2, -2, 1\}$.

Exercice 43 3.

Soient a et b deux nombres réels. On définit la fonction f pran :

$$f(x) = \frac{3}{1+x}$$
, $\sin x < 0$,

1). Continuité de f sur M:

a) Sun \mathbb{R}^* , fest continue con $\times \longrightarrow a \times +b$ est continue sun \mathbb{R} donc en particulier sun $J-\varpi, \sigma \in et \times \longrightarrow \frac{3}{1+2\varepsilon}$ est continue sun $\mathbb{R}-\xi-1$ donc en particulier sun $J = \varphi + \sigma \in et$ sur $J = \varphi + \sigma \in et$

b). Continuité de f en 0 : On a : {101 = a x0 + b = b.

 $\lim_{n \to 0} f(n) = \lim_{n \to 0} \frac{3}{1+2} = 3.$

lun f (n) = lim a n + b = b.

$$f$$
 est continue en $0 \neq 1$ lim $f(n) = \lim_{n \to \infty} f(n) = f(n) = f(n) \neq 1$

Finalement, fest continue sur R si et seulement si b = 3.

2). Dérivabilité de f sur R.

a). Som R*, f est dérivable can $n \mapsto an + b$ est dérivable som R donc en ponticulier son J-0,0 E et $n \mapsto \frac{3}{1+x}$ est dérivable son R-2-13 donc en particulier son IO,+DE.

6). Dérivabilité de f en 0:

Si b \ 3, \ \ n'est pas dérivable en 0 con elle n'est pas continue en 0.

Donc prosons b = 3, donc of 161 = 3.

$$\begin{array}{lll}
\Theta & \lim_{n \to 0} \frac{f(n) - f(0)}{n - 6} &= \lim_{n \to \infty} \frac{\frac{3}{1+n} - 3}{x} \\
&= \lim_{n \to \infty} \frac{3 - 3 - 3x}{x(1+n)} \\
&= \lim_{n \to \infty} \frac{-3}{1+x} = -3 = \begin{cases} d & |0| \end{cases}.$$

$$6 \lim_{n \to 0} \frac{f(n) - f(0)}{x - 0} = \lim_{n \to 0} \frac{ax + 3 - 3}{x} = a = f(g(0)).$$

f est dérivable en 0 (=) b=3 et $f'_d|_{0}$ | $f'_g|_{0}$ (=) b=3 et a=-3.

018

Finalement f est dérivable sur \mathbb{R} si et seulement si b=3 et a=-3.