(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年10月25日(25.10.2001)

PCT

(10) 国際公開番号 WO 01/79206 A1

(51) 国際特許分類7:

C07D 487/04, 471/04, 498/04, 513/04, A61K 31/519, 31/55, 31/551, 31/5365, 31/542, A61P 9/10, 25/00, 25/16, 25/28, 25/14, 3/10, 9/06, 19/02, 29/00, 1/04, 35/00

(21) 国際出願番号:

PCT/JP01/03104

(22) 国際出願日:

2001年4月10日(10.04.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2000-116577 2000年4月18日(18.04.2000)

(71) 出願人 (米国を除く全ての指定国について): 住友 製薬株式会社 (SUMITOMO PHARMACEUTICALS COMPANY, LIMITED) [JP/JP]; 〒541-8510 大阪府大 阪市中央区道修町2丁目2-8 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 増本秀治 (MASUMOTO, Shuji) [JP/JP]; 〒569-0857 大阪府高槻 市玉川1丁目9-1-203 Osaka (JP). 北野正史 (KITANO, Masahumi) [JP/JP]; 〒569-0081 大阪府高槻市宮野 町9-12-102 Osaka (JP). 大橋尚仁 (OHASHI, Nachito) [JP/JP]; 〒569-1020 大阪府高槻市高見台6-5 Osaka

- (74) 代理人: 中村敏夫(NAKAMURA, Toshio); 〒554-0022 大阪府大阪市此花区春日出中3丁目1-98 住友製薬株 式会社 知的財産部内 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: TRICYCLIC QUINAZOLINEDIONES

(54)発明の名称:三環性キナゾリンジオン類

(57) Abstract: Compounds represented by the general formula (1), prodrugs thereof or pharmaceutically acceptable salts thereof which have an effect of inhibiting poly(ADP-ribose)polymerase (PARP) and are useful as remedies for diseases caused by the accelerated PARP activity such as brain ischemic disorders in said formula (1), -X1-X2- represents $C(=O)-N(R^7)$ - or $-C(R^8)=N$ -(wherein R7 represents hydrogen, optionally substituted alkyl, etc.; and R8 represents halogeno. etc.); R1, R2 and R3 independently represent each hydrogen, optionally substituted alkyl, etc.; and R4 represents optionally substituted alkylene.

WO 01/79206 A1

(57) 要約:

一般式(1)

[式中、 $-X^1-X^2-$ は式:-C(=O)-N(R^7)-または-C(R^8)=N-で表される基を表し、

R⁷は水素原子、置換もしくは無置換のアルキル基等を、

R®はハロゲン原子等を、

 R^1 、 R^2 および R^3 は、それぞれ独立して、水素原子、置換もしくは無置換のアルキル基等を、

R⁴は、置換もしくは無置換のアルキレン基を表す。

]で表される化合物もしくはそのプロドラッグまたはそれらの医薬として許容される 塩は、ポリ(ADP-リボース)ポリメラーゼ(PARP)阻害作用を有する化合 物であり、PARP活性の亢進に起因する疾患、例えば、脳虚血障害等の治療薬と して有用である。

明細書

三環性キナゾリンジオン類

5 技術分野

10

15

本発明はポリ(ADPーリボース)ポリメラーゼ(PARP、別名:ポリ(ADPーリボース)シンセターゼ)阻害作用を有する化合物に関する。PARP阻害作用を有する化合物は、PARP活性の亢進に起因する疾患、例えば、脳虚血障害(例えば、脳卒中、脳卒中後の後遺症(脳卒中に伴う障害および脳卒中後の後遺症として起こる障害(例えば運動障害など)を含む)、脳浮腫など)、神経変性疾患(例えば、パーキンソン病、アルツハイマー病、ハンチントン舞踏病など)、脳挫傷、頭部外傷、脊椎損傷、糖尿病、虚血性心疾患(例えば、心筋梗塞、狭心症、不整脈など)、虚血もしくは虚血再潅流による臓器障害(例えば、心筋虚血再潅流障害、急性腎不全、腎虚血、臓器移植や経皮的冠動脈形成手術などの外科的処置により生じる障害など)、炎症(例えば、関節炎、慢性関節リウマチ、敗血症)、炎症性腸炎(例えば、大腸炎、クローン病など)、癌、悪液質(カヘキシー)、腎障害、骨粗鬆症、急性疼痛および慢性疼痛(例えば、神経原性疼痛など)、敗血症(例えば、エンドトキシンショックなど)、骨格筋変性症、筋ジストロフィー、皮膚の老化、免疫系の老化、AIDS、老化細胞の遺伝子発現の変化等の治療薬として有用である。

- 20 特に、脳虚血障害、脳卒中、脳卒中後の後遺症、脳浮腫、神経変性疾患、パーキンソン病、アルツハイマー病、ハンチントン舞踏病、脳挫傷、頭部外傷、脊椎損傷、糖尿病、虚血性心疾患、心筋梗塞、心筋虚血再潅流障害、狭心症、不整脈、関節炎、慢性関節リウマチ、炎症性腸炎、敗血症、癌、皮膚の老化等の治療薬として有用である。背景技術
- 25 ポリ (ADP-リボース) ポリメラーゼ阻害作用を有する化合物としては、例えば、 ジヒドロイソキノリノン誘導体およびイソキノリノン誘導体 (例えばAnti-cancer Drug Design(1991),7,107-117に記載)、ビスーベンズアミド誘導体 (例えば国際公

PCT/JP01/03104

開(WO) 第99/47494号公報に記載)、4環性化合物(例えば国際公開(WO)第99/11645号公報に記載)などが挙げられ、又、J.Biol.Chem.(1992),267(3),1569-1575には種々の骨格を有する化合物のポリ(ADP-リボース)ポリメラーゼ阻害作用が記載されている。

. 5

20

発明の開示

近年、上記のように様々な化学構造のPARP阻害剤が見出されているが、よりPARP阻害作用が強く、副作用の少ない化合物の発明、開発が望まれている。

本発明者らは、上記課題を達成するために鋭意検討した結果、一般式(1)で表される化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩(以下必要に応じ本発明化合物と略称することがある)が優れたポリ(ADPーリボース)ポリメラーゼ阻害作用を有することを見出した。すなわち、本発明は、次のものに関する。

15 [1] 一般式(1)

[式中、-X¹-X²-は式:-C(=O)-N(R¹)-または-C(R³)=N-で表される基を表し、R¹は水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のシクロアルキルアルキル基、置換もしくは無置換のアリールアルキル基、置換もしくは無置換の方香族基、置換もしくは無置換の飽和ヘテロ環基、または置換もしくは無置換のアシル基を、R³はハロゲン原子、

10

または式: $-OR^{8a}$ 、 $-NH_2$ 、 $-NHR^{8a}$ 、 $-NR^{8a}R^{8b}$ もしくは $-SR^{8a}$ で表される基を表す (R^{8a} および R^{8b} は、それぞれ独立して、置換もしくは無置換のアルキル基を表す)。

R¹、R²およびR³は、それぞれ独立して、水素原子、置換もしくは無置換のアルキール基、置換もしくは無置換のアルケール基、置換もしくは無置換のアルキール基、置換もしくは無置換のシクロアルキルアルキル基、置換もしくは無置換のシクロアルキルアルキル基、置換もしくは無置換のアリールアルキル基、置換もしくは無置換の芳香族基、置換もしくは無置換の飽和ヘテロ環基、置換もしくは無置換のアシル基、ハロゲン原子、ニトロ基、または式:一〇R¹a、一NR¹aR¹bもしくは一SR¹aで表される基を表す(R¹aおよびR¹bは、それぞれ独立して、水素原子、または置換もしくは無置換のアルキル基を表す)。

R⁴は、置換もしくは無置換のアルキレン基(該アルキレン基の一CH₂-基は式:-O-、-S(O)_n-、-N(R^{6a})-、-C(=N-OR^{6b})-、-C(=CR^{6c}R^{6d})-、または-C(=O)-で表される基によって、1または複数、同一または異なって置き換えられることができ、また該アルキレン基の隣り合ういずれか2つの炭素原子は2重結合もしくは3重結合を形成することができる。nは、0、1または2の整数を表し、R^{6a}は置換もしくは無置換のアルキル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のデールアルキル基、置換もしくは無置換の方香族基、置換もしくは無置換の飽和ヘテロ環基、または置換もしくは無置換のアシル基を表し、R^{6b}は水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリールアルキル基を表し、R^{6c}およびR^{6d}はそれぞれ独立して、水素原子または置換されていてもよい低級アルキル基を表す)を表す。

25 但し、1H, 5H-ピリド[3, 2, 1-ij] キナゾリン-1, 3, 7 (2H, 6H) -トリオン、

9-メチル-5, 6-ジフェニル-1H-ピロロ[3, 2, 1-ij] キナゾリン-

1, 3 (2H) ージオン、および

9-メトキシ-5, 6-ジフェニル-1H-ピロロ[3, 2, 1-ij]キナゾリン-1, 3(2H)-ジオンを除く。

]で表される化合物もしくはそのプロドラッグまたはそれらの医薬として許容される 5 塩。

- [2] R^4 が、置換もしくは無置換の $C^2 \sim 5$ アルキレン基(該アルキレン基の $-CH_2$ -基は式: -O-、-S(O) $_n-$ 、-N(R^{6a})-、
- -C (=N-OR^{6b}) -、-C (=CR^{6c}R^{6d}) -、または-C (=O) -で表さ 10 れる基によって、1または複数、同一または異なって置き換えられることができ、ま た該アルキレン基の隣り合ういずれか2つの炭素原子は2重結合もしくは3重結合を 形成することができる。n、R^{6a}、R^{6b}、R^{6c}、およびR^{6d}は〔1〕と同じ意味を 表す)である、〔1〕記載の化合物もしくはそのプロドラッグまたはそれらの医薬と して許容される塩。

15

- 【3】 R⁴が、置換もしくは無置換のC2~5アルキレン基(該アルキレン基の -CH₂-基は式:-C(=N-OR^{6b})-、-C(=CR^{6c}R^{6d})-、または -C(=O)-で表される基によって、1または複数、同一または異なって置き換えられることができ、また該アルキレン基の隣り合ういずれか2つの炭素原子は2重結20 合もしくは3重結合を形成することができる(R^{6b}、R^{6c}、およびR^{6d}は〔1〕と同じ意味を表す))である、〔1〕記載の化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩。
- 〔4〕 R⁴が、置換もしくは無置換のC2~5アルキレン基である、〔1〕記載の 25 化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩。
 - [5] R⁴上に少なくとも1つの置換基を有し、該置換基の少なくとも一つが式:

15

- R^{4a}-R^{4b}-R^{4c}-R^{4d}で表される置換アルキル基 (式中、R^{4a}は置換されていてもよいアルキレン基

(該アルキレン基の $-CH_2$ -基のうち、 R^4 に直接結合するもの以外の一つは酸素原子または式: $-NR^4$ °C(=O) -もしくは-C(=O) NR^4 °-で表される基(R^4 °は水素原子、低級アルキル基またはアリールアルキル基を表す)によって置き換えられていてもよい)を、

R⁴bは置換されていてもよい芳香族基、シクロアルキル基、または単結合 を、

10 R⁴°は置換されていてもよいアルキレン基(該アルキレン基の-CH₂-基のうちの一つは酸素原子によって置き換えられていてもよい)または単結合を、

R^{4d}は水素原子、アミノ基または窒素原子を含有する飽和ヘテロ環基 (該アミノ基または窒素原子を含有する飽和ヘテロ環基の窒素原子上には1つまたは2つの低級アルキル基またはアリールアルキル基が同一または異なって置換していてもよい)を表す

-)である、〔1〕~〔4〕のいずれかに記載の化合物もしくはそのプロドラッグまた はそれらの医薬として許容される塩。
- 20 [6] [1] ~ [5] のいずれかに記載の化合物もしくはそのプロドラッグまたは それらの医薬として許容される塩を含有する医薬。
- [7] [1] ~ [5] のいずれかに記載の化合物もしくはそのプロドラッグまたは それらの医薬として許容される塩を含有するポリ(ADP-リボース)ポリメラーゼ 25 阻害剤。
 - [8] $[1] \sim [5]$ のいずれかに記載の化合物もしくはそのプロドラッグまたは

それらの医薬として許容される塩を含有する脳虚血障害、脳卒中、脳卒中後の後遺症、 脳浮腫、神経変性疾患、パーキンソン病、アルツハイマー病、ハンチントン舞踏病、 脳挫傷、頭部外傷、脊椎損傷、糖尿病、虚血性心疾患、心筋梗塞、心筋虚血再潅流障 害、狭心症、不整脈、関節炎、慢性関節リウマチ、炎症性腸炎、敗血症、癌、または 皮膚の老化の治療剤。

[9] [1] ~ [5] のいずれかに記載の化合物もしくはそのプロドラッグまたは それらの医薬として許容される塩の、ポリ(ADP-リボース)ポリメラーゼ阻害剤 の製造に於ける使用。

10

15

25

5

- [10] [1] ~ [5] のいずれかに記載の化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩の、脳虚血障害、脳卒中、脳卒中後の後遺症、脳浮腫、神経変性疾患、パーキンソン病、アルツハイマー病、ハンチントン舞踏病、脳挫傷、頭部外傷、脊椎損傷、糖尿病、虚血性心疾患、心筋梗塞、心筋虚血再潅流障害、狭心症、不整脈、関節炎、慢性関節リウマチ、炎症性腸炎、敗血症、癌、または皮膚の老化の治療剤の製造に於ける使用。
- [11] 治療を必要とする患者に、[1]~[5]のいずれかに記載の化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩を投与することからな 20 る、患者におけるポリ (ADP-リボース) ポリメラーゼの阻害方法。
 - [12] 治療を必要とする患者に、[1]~[5]のいずれかに記載の化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩を投与することからなる脳虚血障害、脳卒中、脳卒中後の後遺症、脳浮腫、神経変性疾患、パーキンソン病、アルツハイマー病、ハンチントン舞踏病、脳挫傷、頭部外傷、脊椎損傷、糖尿病、虚血性心疾患、心筋梗塞、心筋虚血再潅流障害、狭心症、不整脈、関節炎、慢性関節リウマチ、炎症性腸炎、敗血症、癌、または皮膚の老化の治療方法。

WO 01/79206 PCT/JP01/03104

本明細書に於いては、必要に応じ一般式(1)で表される化合物もしくはそのプロドラッグまたはそれらの薬学的に許容される塩を本発明化合物と略する。

5 本発明における各種の基を以下に説明する。なお、特に指示のない限り、以下の説明は各々の基が他の基の一部である場合にも該当する。

アルキル基としては、例えば、メチル、エチル、プロピル、2-プロピル、ブチル、 2-ブチル、2-メチルプロピル、1,1-ジメチルエチル、ペンチル、ヘキシル、

10 ヘプチル、オクチルなどの直鎖または分枝した炭素原子数8個以下のアルキル基が挙げられる。

アルケニル基としては、例えばビニル、アリル、プロペニル、2-プロペニル、ブ テニル、ペンテニル、ヘキセニル等の炭素原子数6以下のアルケニル基が挙げられる。

アルキニル基としては、例えばエチニル、プロパルギル、ブチニル、ペンチニル等 の炭素原子数6以下のアルキニル基が挙げられる。

シクロアルキル基としては、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの3~8員環シクロアルキル基が挙げられる。

シクロアルケニル基としては、例えば1-シクロペンテニル、2-シクロペンテニ 20 ル、3-シクロペンテニル、1-シクロヘキセニル、2-シクロヘキセニル、3-シ クロヘキセニルなどの3~8員環の二重結合を1つ有するシクロアルケニル基が挙げられる。

シクロアルキルアルキル基としては、例えば前記アルキル基に前記シクロアルキル 基が置換した基が挙げられる。

25 芳香族基としてはアリール基、ヘテロアリール基が挙げられる。

15

アリール基としては、例えばフェニル基、ナフチル基等の炭素原子数 1 0 個以下の アリール基が挙げられる。

ヘテロアリール基としては、例えば窒素原子を1~2個含む5~6員単環式の基、 窒素原子を1~2個と酸素原子を1個もしくは硫黄原子を1個含む5~6員単環式の 基、酸素原子を1個もしくは硫黄原子を1個含む5員単環式の基、窒素原子1~4個 を含み、6員環と5または6員環が縮合した二環式の基等が挙げられ、具体的には、

5 例えば、2ーピリジル、3ーピリジル、4ーピリジル、2ーチエニル、3ーチエニル、3ーオキサジアゾリル、2ーイミダゾリル、2ーチアゾリル、3ーイソチアゾリル、2ーオキサゾリル、3ーイソオキサゾリル、2ーフリル、3ーフリル、3ーピロリル、2ーキノリル、8ーキノリル、2ーキナゾリニル、8ープリニル等が挙げられる。

ハロゲン原子としては、例えばヨウ素、フッ素、塩素および臭素原子が挙げられる。 10 アリールアルキル基としては、前記アリール基によって置換されたアルキル基が挙 げられる。

飽和ヘテロ環基としては、例えば1-ピペリジニル、1-ピロリジニル等の窒素原子1個を有する $5\sim8$ 員環の基、1-ピペラジニル等の窒素原子2個を有する $6\sim8$ 員環の基、モルホリノ等の窒素原子1個および酸素原子1個を有する $6\sim8$ 員環の基が挙げられる。

窒素原子を含有する飽和ヘテロ環基としては、例えば1-ピペリジニル、1-ピロリジニル等の窒素原子1個を有する $5\sim8$ 員環の基、1-ピペラジニル等の窒素原子2個を有する $6\sim8$ 員環の基、モルホリノ等の窒素原子1個および酸素原子1個を有する $6\sim8$ 員環の基が挙げられる。

20 飽和ヘテロ環基、窒素原子を含有する飽和ヘテロ環基、および飽和ヘテロ環カルボ ニル基の置換基としては、炭素原子上の置換基として例えば水酸基、カルボキシル基、 ハロゲン原子、アルコキシカルボニル基等が、窒素原子上の置換基としてアルキル基、 アリールアルキル基、アルコキシカルボニル基等が挙げられる。

アシル基としては、ホルミル基、例えばアセチル、プロパノイルなどの炭素原子数 2~6のアルカノイル基、例えばシクロプロパンカルボニル、シクロブタンカルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニルなどの炭素原子数4~7 のシクロアルカンカルボニル基、例えばシクロペンテンカルボニル、シクロヘキセン

10

15

20

25

PCT/JP01/03104

カルボニルなどの炭素原子数4~7のシクロアルケンカルボニル基、例えばベンゾイル、トルオイル、ナフトイルなどの炭素原子数7~11のアロイル基、例えば2-ピペリジンカルボニル、3-モルホリンカルボニルなどの窒素原子、酸素原子、硫黄原子から選ばれるヘテロ原子1~2個を含む5又は6員の飽和ヘテロ環を有する飽和ヘテロ環カルボニル基、例えば2-フロイル、3-フロイル、2-テノイル、3-テノイル、ニコチノイル、イソニコチノイルなどの窒素原子、酸素原子、硫黄原子から選ばれるヘテロ原子1~2個を含む5又は6員の複素芳香族環を有する複素芳香族アシル基などが挙げられる。

アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルキルアルキル基、アルカノイル基、シクロアルカンカルボニル基およびシクロアルケンカルボニル基、ならびにアリールアルキル基のアルキル部分の置換基は一個または同一もしくは異なって複数個あってもよく、置換基としては、例えばハロゲン原子、シアノ基、フェノキシ基、ベンジルオキシ基、トリフルオロメチル基、水酸基、低級アルコキシ基、低級アルカノイルオキシ基、アミノ基、モノ低級アルキルアミノ基、ジ低級アルキルアミノ基、低級アルキル (アリールアルキル) アミノ基、カルバモイル基、低級アルキルアミノカルボニル基、近級アルキルアミノカルボニル基、低級アルコキシカルボニル基、低級アルコキシカルボニル基、低級アルカノイルアミノ基、カルボキシル基、低級アルキルスルホニル基、低級アルカノイルアミノ基、アミノ基で置換された低級アルカノイルアミノ基、アロイルアミノ基、複素芳香族アシル基で置換されたアミノ基、低級アルキルスルホンアミド基、フタルイミド基、ヘテロアリール基、または飽和ヘテロ環基が挙げられる。

芳香族基、アロイル基および複素芳香族アシル基、ならびにアリールアルキル基のアリール部分の置換基としては、一個または同一もしくは異なって複数個あってもよく、例えばハロゲン原子、シアノ基、トリフルオロメチル基、ニトロ基、水酸基、メチレンジオキシ基、低級アルキル基、低級アルコキシ基、ベンジルオキシ基、低級アルカノイルオキシ基、アミノ基、モノ低級アルキルアミノ基、ジ低級アルキルアミノ基、カルバモイル基、低級アルキルアミノカルボニル基、ジ低級アルキルアミノカル

10

15

20

ボニル基、カルボキシル基、低級アルコキシカルボニル基、低級アルキルチオ基、低級アルキルスルフィニル基、低級アルキルスルホニル基、低級アルカノイルアミノ基、または低級アルキルスルホンアミド基が挙げられる。

低級とは当該置換基のアルキル部位が低級アルキル基であることを意味し、そのような低級アルキル基としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル等の炭素原子数4個以下の基が挙げられる。

アルキレン基としては、例えばメチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン等の炭素原子数10以下のアルキレン基が挙げられる。好ましくは炭素原子数2~5のアルキレン基が挙げられる。

アルキレン基の置換基としては、1または複数、同一または異なって、例えばアルキル基、置換アルキル基、水酸基、ハロゲン原子、シクロアルキル基、シクロアルケニル基、ホルミル基、カルボキシル基、アルコキシカルボニル基、飽和ヘテロ環基、アミノ基(該アミノ基の窒素原子上には1つまたは2つの低級アルキル基またはアリールアルキル基が同一または異なって置換していてもよい)、および芳香族基などが挙げられる。R⁴上の置換基としては置換アルキル基、殊に

式: $-R^{4a}-R^{4b}-R^{4c}-R^{4d}$ で表される置換アルキル基が好ましい(R^{4a} 、 R^{4b} 、 R^{4c} 、および R^{4d} は前記と同じ意味を表す)。特に R^{4a} で表される置換されていてもよいアルキレン基の $-CH_2$ -基が、酸素原子または式: $-NR^{4c}C$ (=O) -もしくは-C(=O) NR^{4e} -で表される基によって少なくとも一つ置き換えられているものが好ましい。

R⁶cおよびR⁶dに於ける低級アルキル基の置換基として好ましいものとしては、 ハロゲン原子及び低級アルコキシ基が挙げられる。

25 一般式(1)で表される化合物は公知化合物から公知の合成方法を組み合わせることにより合成することができる。例えば、次の方法により合成できる。

(A)

$$R^{2}$$
 R^{3}
 R^{4}

(A)

 R^{2}
 R^{3}
 R^{4}

(B)

 R^{2}
 R^{4}
 R^{2}
 R^{4}

(C)

 R^{2}
 R^{4}

(D)

 R^{2}
 R^{4}
 R^{2}
 R^{4}

(E)

 R^{2}
 R^{4}

(C)

 R^{2}
 R^{4}

(C)

[式中、 R^1 、 R^2 、 R^3 、 R^4 および R^7 は上記〔1〕と同じ意味を表す。 X^3 は水素原子またはハロゲン原子を、 R^{10} はアミノ基の保護基、例えば、アルコキシカルボニ

ル基を表す。]

式(3)で表される原料化合物は、公知化合物であるか、または公知化合物から公 知の合成方法を組み合わせることにより合成することができる。公知の方法としては、 例えば次の方法が挙げられる。

5 (i)キノリン誘導体を例えば酸化白金などの触媒を用いてメタノールなどの溶媒中、例えば0℃から溶媒の沸点で必要に応じて加圧下還元して対応するテトラヒドロキノリン誘導体を得ることができる(例えばSynth.Commun.(1990),20(22),3553-3562に記載の方法など)。

(ii)環状アミド誘導体を例えば水素化リチウムアルミニウム、ボランなどの選元10 剤を用いてテトラヒドロフランなどの溶媒中、例えば0℃から溶媒の沸点の温度で還元して対応する環状アミン誘導体を得ることができる(例えば

Chem. Pharm. Bull. (1996), 44(1), 103-114, J. Org. Chem. (1950), 15, 517に記載の方法など)。

(i i i) 次の式に示す閉環方法

15

20

$$R^{2}$$
 R^{3}
 R^{3}
 R^{48}
 R^{3}
 R^{48}
 R^{48}
 R^{48}
 R^{48}
 R^{48}

[式中、 R^1 、 R^2 および R^3 は上記〔1〕と同じ意味を表す。 R^{48} は置換もしくは無置換のアルキレン基(該アルキレン基の $-CH_2$ -基は式:-O-、-S(O) $_n-$ 、-N(R^{6a})-、-C($=N-OR^{6b}$)-、-C($=CR^{6c}R^{6d}$)-、または-C(=O)-で表される基によって、1または複数、同一または異なって置き換えられることができ、また該アルキレン基の隣り合ういずれか 2 つの炭素原子は 2 重結合もしくは 3 重結合を形成することができる。n、 R^{6a} 、 R^{6b} 、 R^{6c} 、および R^{6d}

10

15

20

は上記〔1〕と同じ意味を表す)を表す。]

式 (31) で表されるカルボキシルアルキルアニリン誘導体を、例えばポリリン酸中、例えば100°Cから200°Cにて閉環する方法(例えばTetrahedron Asymmetry(1998),9(7),1137-1142に記載の方法など)またはこれに準ずる方法、例えばポリリン酸エステル中にて閉環反応を行う方法により、式 (30) で表される化合物を合成することができる。

工程(z)は、式(3)の化合物のアミノ基をR¹⁰により保護して式(4)で表される化合物とする工程であり、例えば保護基がt-ブトキシカルボニルの場合は、ジーtert-ブチルジカルボネートを用い、溶媒としてベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、テトラヒドロフラン、1,4ージオキサンなどのエーテル系溶媒、ジクロロメタン、クロロホルム、1,2ージクロロエタンなどのハロゲン化炭化水素系溶媒、酢酸エチルなどのエステル系溶媒、またはそれらの混合溶媒中で0℃から溶媒の沸点で行なうこと方法が挙げられる。その他、種々のアミンの保護については、例えば、Protective Groups in Organic Synthesis, JOHN WILLEY & SONS, 1991年に記載されているものが使用できる。

工程(a)は窒素原子のオルト位にカルボン酸を導入して式(5)で表される化合物とする反応であり、例えば、テトラヒドロフラン、ジエチルエーテルなどのエーテル系溶媒中、−100℃から0℃の温度で、有機リチウム試薬を用いてリチオ化した後、二酸化炭素と反応させることができる(X³が水素原子の化合物についてHeterocycles (1992), 34(5), 1031-1038に記載されている方法と同様)。

工程(b)は式(5)で表されるカルボン酸をアミド化して式(6)で表される化 25 合物とする反応であり、例えば式(5)で表されるカルボン酸と式: H₂NR⁷で表 されるアミンとを縮合剤の存在下、不活性溶媒中、室温または加熱下反応させることによって得ることができる。反応は、例えば、ジシクロヘキシルカルボジイミド(D

WO 01/79206 PCT/JP01/03104

14

CC)、ジイソプロピルカルボジイミド(DIPC)、1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド(WSC)、ベンゾトリアゾール-1-イルートリス(ジメチルアミノ)ホスホニウム・ヘキサフルオロリン化物塩(BOP)、ジフェニルホスホニルアジド(DPPA)、N,N-カルボニルジイミダゾール(Angew. Chem. Int. Ed. Engl., Vol. 1,351(1962)などの縮合剤の存在下、場合によっては、たとえば、N-ヒドロキシスクシンイミド(HONSu)、1-ヒドロキシベンゾトリアゾール(HOBt)、3-ヒドロキシー4-オキソー3,4-ジヒドロー1,2,3-ベンゾトリアジン(HOObt)などの添加剤を加えて、たとえば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、ジクロロメタン、クロロホルム、1,2ージクロロエタンなどのハロゲン化炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒、ピリジンなどの塩基性溶媒、またはそれらの混

5

10

合溶媒中で行なうことが好ましい。

又、カルボン酸の反応性誘導体を中間化合物として得、この反応性誘導体にアミンを反応させる方法もよく知られている方法である。カルボン酸の反応性誘導体としては、酸ハロゲン化物、酸無水物(混合酸無水物を含む)あるいはエステル誘導体が挙げられ、具体的には、酸ハロゲン化物としては酸クロリドまたは酸プロミド、混合酸無水物としてはエチルオキシカルボニルクロリド、イソブチルオキシカルボニルクロリドなどのアルキルオキシカルボニルクロリド、および塩化2ーエチルーnーブチリル、塩化トリメチルアセチルなどのαーポリアルキル置換カルボン酸塩化物型化合物との混合酸無水物、エステル誘導体としてはpーニトロフェニルエステル、Nーヒドロキシスクシンイミドエステル、ペンタフルオロフェニルエステルなどの活性エステルおよびメチルエステル、エチルエステルなどの一般のエステルが挙げられる。このようなカルボン酸の反応性誘導体は、通常行われる一般的方法に従って、対応するカルボン酸から容易に得ることができる。

酸ハロゲン化物または酸無水物(混合酸無水物を含む)と反応させる場合には、塩基または過剰のアミンの存在下、溶媒中で冷却下ないし室温で実施することができる。

10

15

塩基としては水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウムなどの無機塩基、およびトリエチルアミン、ピリジンなどの有機塩基が、溶媒としてはベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタンなどのハロゲン化炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒、ピリジンなどの塩基性溶媒、またはそれらの混合溶媒が挙げられる。

エステル誘導体と反応させる場合には、等モルないし過剰のアミンの存在下、溶媒中で冷却ないし加熱しながら行われる。活性エステルの場合は、例えば、テトラヒドロフラン、1,2ージメトキシエタン、ジオキサンなどのエーテル系溶媒、酢酸エチルなどのエステル系溶媒、ジメチルホルムアミドまたはそれらの混合溶媒中で、他のエステルの場合には、たとえば、メタノール、エタノール、イソプロパノールなどのアルコール系溶媒、テトラヒドロフラン、1,2ージメトキシエタン、ジオキサンなどのエーテル系溶媒、ジメチルホルムアミドまたはそれらの混合溶媒中で反応させることが好ましい。場合によっては溶媒留去後、130℃付近にて短時間加熱することも可能である。

工程 (c)は、保護基R¹⁰を除去して式(7)で表される化合物とする反応であり、例えば、保護基が t ーブトキシカルボニルの場合は、ジオキサン中塩化水素を用いて、あるいは、酢酸中塩酸を用いて室温から溶媒の沸点までの温度で行う方法が挙げられる。その他、種々のアミンの保護基の除去については、例えば、Protective Groups in Organic Synthesis, JOHN WILLEY & SONS, 1991年に記載されている方法で行うことができる。

なお、上記(b)の工程に於いてカルボン酸の反応性誘導体を製造する際、特に、 25 酸ハロゲン化物を製造する際には酸性のハロゲン化水素が反応中に生じてくることが あり、保護基R¹⁰の種類によっては保護基を除去する工程(c)が不要な場合があ る。

15

工程(d)は、式(7)の化合物を閉環反応により式(21)で表される化合物とする反応であり、例えば、N,N-カルボニルジイミダゾール、ハロぎ酸エステル、トリホスゲンなどの試薬を用いて適当な溶媒の存在下、もしくはその試薬を溶媒のごとく用いて、室温から溶媒の沸点までの温度で行うことができる。溶媒を用いる場合は、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタンなどのハロゲン化炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒、ピリジンなどの塩基性溶媒、またはそれらの混合溶媒中で行なうことが好ましい。

R¹⁰がアルコキシカルボニル基などの場合、工程(e)の閉環反応により式(2 1)で表される化合物を直接得ることが可能である。例えば水素化ナトリウム、tーブトキシカリウム等の塩基の存在下、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、テトラヒドロフラン、1,4ージオキサンなどのエーテル系溶媒、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒、ピリジンなどの塩基性溶媒、またはそれらの混合溶媒中で行なうことが好ましい。反応温度としては、例えば、0℃から溶媒の沸点までの温度が挙げられる。

(B)

$$R^2$$
 R^3
 R^47
(22)

 R^47
(23)

$$\begin{array}{c}
 & R^{2} \\
 & R^{3} \\
 & R^{47}
\end{array}$$

(24)

[式中、 R^1 、 R^2 、 R^3 および R^7 は上記〔1〕と同じ意味を表す。 R^{47} は置換もしくは無置換のアルキレン基(該アルキレン基の $-CH_2$ – 基は式:-O-、

5 $-S(0)_{n}$ - $-N(R^{6a})$ - $-C(=N-OR^{6b})$ - -

-C ($=CR^{6c}R^{6d}$) -、または-C (=O) -で表される基によって、1または複数、同一または異なって置き換えられることができ、また該アルキレン基の隣り合ういずれか2つの炭素原子は2重結合もしくは3重結合を形成することができる。n、 R^{6a} 、 R^{6b} 、 R^{6c} 、および R^{6d} は上記[1]と同じ意味を表す)を表す。]

10

工程 (f)は、式(22)で表されるカルボン酸を閉環して式(23)で表される化合物を得る反応であり、例えば、ポリリン酸中、あるいはポリリン酸エステル中にて閉環反応を行うことができる(例えば、五塩化リンとリン酸を2.5:1の割合で用いて、140℃に加熱する方法がChem. Heterocycl. Compd. (1997), 33(1),

15 96-98に記載されており、これに準ずる方法で行うことができる)。

又、別法としては、通常知られているフリーデル・クラフツ反応を用いて行うことができる。方法としては、例えば式(22)で表されるカルボン酸を塩化チオニルあるいは五塩化リンなどで酸ハライドとしてから塩化アルミニウム、五塩化アンチモン、三塩化鉄、四塩化スズ、四塩化チタン、塩化亜鉛、三ふっ化ほう素などのルイス酸を用いる閉環反応が挙げられる。本工程に用いる溶媒としては、ニトロベンゼン、1,2ージクロロエタン、クロロホルム、アセトン、テトラヒドロフラン、酢酸エチルなどが挙げられる。

工程 (g) は、式 (23) で表される化合物を還元して式 (24) で表される化 10 合物を得る反応であり、通常行われるベンジル位のケトンの還元方法により実施できる。例えば、トリフルオロ酢酸中、トリエチルシランを用いて行う方法などが挙げられる。

また、還元条件を選ぶことによりカルボニル基がヒドロキシメチレン基に変換された化合物を合成することもでき、該ヒドロキシメチレン基を他の置換基に変換することも通常の方法に従って行うことができる。

(C)

15

[式中、R¹、R²、R³、R⁴およびR⁸は上記〔1〕と同じ意味を表す。]

工程 (h) は、式 (25) で表される化合物(前記式 (21) で表される化合物の うち、 R^7 が水素原子である化合物)から式 (26) で表される化合物を得る反応で あり、例えば R^8 が NH_2 の場合には、N、N - ジエチルアニリンの存在下、オキシ 塩化リン中で還流して得た中間化合物をアンモニアを飽和させたメタノール中室温から加熱環流までの温度下、好ましくは60 で反応を行うことにより製造できる (Tetrahedron Letters(1994),35(3),397-400)。 R^8 が式: $-OR^{8a}$ 、 $-NH_2$ 、 $-NH_3$ 、 $-NR^{8a}$ R^{8b} もしくは $-SR^{8a}$ で表される基の場合も、これに準じて製造することができる。

R⁸がハロゲン原子である化合物は、例えばオキシ塩化リンなどのオキシハロゲン 化リン、5塩化リンや3臭化リンなどのハロゲン化リン等と反応することにより、得 ることができる。

10 以上の各製造工程において、各反応の原料化合物が水酸基、アミノ基またはカルボン酸基のような、反応に活性な基を有する場合には、必要に応じて反応させたい部位以外のこれらの基を予め適当な保護基で保護しておき、それぞれの反応を実施した後またはいくつかの反応を実施した後に保護基を除去することにより、目的とする化合物を得ることができる。水酸基、アミノ基、カルボキシル基などを保護する保護基としては、有機合成化学の分野で使われる通常の保護基を用いればよく、このような保護基の導入および除去は通常の方法に従って行うことができる(例えば、Protective Groups in Organic Synthesis, JOHN WILLEY & SONS, 1991年に記載の方法)。

例えば、水酸基の保護基としては、メトキシメチル基、テトラヒドロピラニル基などが挙げられ、アミノ基の保護基としてはtertーブチルオキシカルボニル基などが挙げられる。このような水酸基の保護基は、例えば、塩基、硫酸、酢酸などの酸の存在下、含水メタノール、含水エタノール、含水テトラヒドロフランなどの溶媒中で反応させることにより除去することができ、アミノ基の保護基は、例えば、塩酸、トリフルオロ酢酸などの酸の存在下、含水テトラヒドロフラン、塩化メチレン、クロロホルム、含水メタノールなどの溶媒中で反応させることにより除去することができる。

25

20

5

カルボキシル基を保護する場合の保護の形態としては、例えばtertーブチルエステル、オルトエステル、酸アミドなどが挙げられる。このような保護基の除去は、tert

ーブチルエステルの場合は、例えば塩酸の存在下、含水溶媒中で反応させることにより行われ、オルトエステルの場合は、例えば、含水メタノール、含水テトラヒドロフラン、含水1, 2ージメトキシエタンなどの溶媒中で酸で処理し、引き続いて水酸化ナトリウムなどのアルカリで処理することにより行われ、酸アミドの場合は、例えば、塩酸、硫酸などの酸の存在下、水、含水メタノール、含水テトラヒドロフランなどの溶媒中で反応させることにより行うことができる。

式(1)で表される化合物は、光学的非対称中心を有するものも含まれ、したがって、これらはラセミ体としてまたは、光学活性の出発材料が用いられた場合には光学活性型で得ることができる。必要であれば、得られたラセミ体を、物理的にまたは化学的にそれらの光学対掌体に公知の方法によって分割することができる。好ましくは、光学活性分割剤を用いる反応によってラセミ体からジアステレオマーを形成する。異なるかたちのジアステレオマーは、例えば分別結晶などの公知の方法によって分割することができる。

15

20

25

10

5

「プロドラッグ」としては、生体内で容易に加水分解され、式 (1) の化合物を再生するものが挙げられ、例えばカルボキシル基を有する化合物であればそのカルボキシル基がアルコキシカルボニル基となった化合物、アルキルチオカルボニル基となった化合物、またはアルキルアミノカルボニル基となった化合物が挙げられる。また、例えばアミノ基を有する化合物であれば、そのアミノ基がアルカノイル基で置換されアルカノイルアミノ基となった化合物、アルコキシカルボニル基により置換されアルコキシカルボニルアミノ基となった化合物、アシロキシメチルアミノ基となった化合物、またはヒドロキシルアミンとなった化合物が挙げられる。また例えば水酸基を有する化合物であれば、その水酸基が前記アシル基により置換されてアシロキシ基となった化合物、リン酸エステルとなった化合物、またはアシロキシメチルオキシ基となった化合物が挙げられる。これらのプロドラッグ化に用いる基のアルキル部分としては前記アルキル基が挙げられ、そのアルキル基は置換(例えば炭素原子数1~6のア

ルコキシ基等により)されていてもよい。好ましい例としては、例えばカルボキシル 基がアルコキシカルボニル基となった化合物を例にとれば、メトキシカルボニル、エ トキシカルボニルなどの低級(例えば炭素数 1 ~ 6)アルコキシカルボニル、メトキ シメトキシカルボニル、エトキシメトキシカルボニル、2 - メトキシエトキシカルボ ニル、2 - メトキシエトキシメトキシカルボニル、ピバロイロキシメトキシカルボニ ルなどのアルコキシ基により置換された低級(例えば炭素数 1 ~ 6)アルコキシカル

5

15

塩;および、

ボニルが挙げられる。

- 式(1)で表される化合物もしくはそのプロドラッグは、必要に応じて医薬として 許容される塩とすることができる。そのような塩としては、たとえば塩酸、臭化水素 酸、硫酸、リン酸などの鉱酸との塩;ギ酸、酢酸、フマル酸、マレイン酸、シュウ酸、クエン酸、リンゴ酸、酒石酸、アスパラギン酸、グルタミン酸などの有機カルボン酸 との塩;メタンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸、ヒドロキシベンゼンスルホン酸、ジヒドロキシベンゼンスルホン酸などのスルホン酸との
 - たとえばナトリウム塩、カリウム塩などのアルカリ金属塩;カルシウム塩、マグネシウム塩などのアルカリ土類金属塩;アンモニウム塩;トリエチルアミン塩、ピリジン塩、ピコリン塩、エタノールアミン塩、ジシクロヘキシルアミン塩、N, N'ージベンジルエチレンジアミンとの塩等が挙げられる。
- 20 また、式(1)で表される化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩は、それらの無水物、水和物または溶媒和物であってもよい。

本発明化合物は、これらを医薬として用いるにあたり経口的または非経口的に投与することができる。すなわち通常用いられる投与形態、例えば粉末、顆粒、錠剤、カプセル剤、シロップ剤、懸濁液等の剤型で経口的に投与することができ、あるいは、例えば、その溶液、乳剤、懸濁液の剤型にしたものを注射の型で非経口投与することができる。坐剤の型で直腸投与することもできる。前記の適当な投与剤型は、例えば、

許容される通常の担体、賦型剤、結合剤、安定剤、希釈剤に本発明化合物を配合することにより製造することができる。注射剤型で用いる場合には、例えば、許容される緩衝剤、溶解補助剤、等張剤を添加することもできる。投与量および投与回数は、例えば、対象疾患、症状、年齢、体重、投与形態によって異なるが、通常は成人に対し1日あたり0.1~2000mg好ましくは1~200mgを1回または数回(例えば2~4回)に分けて投与することができる。

実施例

5

20

25

以下に本発明を、実施例および試験例により、さらに具体的に説明するが、本発明 10 はもとよりこれに限定されるものではない。尚、以下の実施例および試験例において 示された化合物名は、必ずしもIUPAC命名法に従うものではない。

実施例1

5, 6-ジヒドロー1H-ピロロ[3, 2, 1-ij] キナゾリン-1, 3 (2H) 15 -ジオンの製造

(1) 7ーインドリンカルボキサミド

¹ HNMR (DMSO-d₆) δ ; 7.62(br, 1H), 7.36(d, 1H, J=8.1Hz), 7.08(d, 1H, J=7.0Hz), 7.00(br, 1H), 6.61(s, 1H), 6.46-6.41(m, 1H), 3.52(t, 2H, J=8.5 Hz), 2.90(t, 2H, J=8.5 Hz).

(2) 5, 6-ジヒドロ-1H-ピロロ[3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン

7-インドリンカルボキサミド62.6 mg(0.386ミリモル)、N, N-カルボニルジイミダゾール300.1 mg(1.85ミリモル)およびテトラヒドロフラン2 mLの混合物を7.5時間還流攪拌した。反応混合物を室温まで冷却し、これに5%硫酸水素カリウム水溶液をゆっくり加えてクロロホルムにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムで乾燥した後、濾過、濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(SiO_2 、酢酸エチル)にて精製し、5,6-ジヒドロ-1H-ピロロ[3,2,1-ij]キナゾリン-1,3(2H)-ジオン50.8 mg(収率70%)を得た。

融点:314-315℃

15

10

5

実施例1に準じて実施例2に示す化合物を得た。

実施例2

6, 7-ジヒドロー1H, 5H-ピリド[3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン

20 融点:282-284℃

実施例3

- 5-(ヒドロキシメチル)-6,7-ジヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3(2H)-ジオンの製造
- 25 (1) 2-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)-1,2, 3,4-テトラヒドロキノリン
 - 1, 2, 3, 4-テトラヒドロ-2-キノリニルメタノール18.60g(0.1

14モル)、イミダゾール8.54g(0.125モル)およびジメチルホルムアミ ド10mLの混合物に氷冷攪拌下、tertーブチルジメチルシリルクロリド18. 03g(0.120モル)を加え、加えた後、氷浴を外して室温で一晩攪拌した。反 応混合物に冷2%硫酸水素カリウム水溶液を加えてジエチルエーテルにて抽出した。 有機層を水、飽和食塩水の順に洗浄し、無水硫酸マグネシウムで乾燥した後、濾過、 5 濃縮した。粗生成物として2-({[tert-ブチル(ジメチル)シリル]オキシ} メチル) -1, 2, 3, 4-テトラヒドロキノリン32, 36gを得た。 ¹ HNMR (CDC1₃) δ ; 6.99-6.94(m, 2H), 6.62-6.58(m, 1H), 6.51(d, 1H, J=7.9Hz), 4.27(br s, 1H), 3.69(dd, 1H, J=4.0, 9.4Hz), 3.51-3.35(m, 2H), 2.9-10 2.7(m, 2H), 1.9-1.8(m, 1H), 1.64-1.51(m, 1H), 0.93(s, 9H), 0.09(s, 3H), 0.08(s, 3H).

(2) tertーブチル 2- ({[tertーブチル (ジメチル) シリル]オキ シ} メチル) - 3, 4 - ジヒドロー1 (2 H) - キノリンカルボキシラート 粗2- ({[tert-ブチル (ジメチル) シリル]オキシ} メチル) - 1, 2, 3, 15 4ーテトラヒドロキノリン32.35g、ジーtert-ブチルジカルボナート28. 8mL(0.125モル)およびテトラヒドロフラン80mLの混合物を還流攪拌し た。還流攪拌開始8時間後にジーtert-ブチルジカルボナート5.0mL(0... 022モル)を追加し、さらに25時間還流攪拌した。反応混合物を濃縮し、得られ た残査をシリカゲルカラムクロマトグラフィー (SiО₂、ヘキサン:酢酸エチルー 20 30:1の後、20:1)にて精製し、 $\dot{y}-tert-$ ブチルジカルボナートを含む 粗tert-ブチル $2-(\{[tert-ブチル(ジメチル)シリル]オキシ\}メチ$ (1) (2)得た。

 1 HNMR (CDC1₃) δ ; 7.47(d, 1H, J=7.9Hz), 7.15-6.96(m, 3H), 4.53-25 4.44(m, 1H), 3.65(dd, 1H, J=5.1, 9.8Hz), 3.50(dd, 1H, J=7.1, 9.8Hz), 2.65-2.60(m, 2H), 2.25-2.14(m, 1H), 1.84-1.72(m, 1H), 1.51(s, 9H), 0.81(s, 9H), -0.01(s, 3H), -0.03(s, 3H).

WO 01/79206 PCT/JP01/03104

(3) $1-(tert-ブトキシカルボニル)-2-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)-1,2,3,4-テトラヒドロ<math>-8-$ キノリンカルボン酸

25

粗tert-ブチル 2-({[tert-ブチル(ジメチル)シリル]オキシ} メ チル) -3, 4-ジヒドロ-1 (2H) -キノリンカルボキシラート 42. 78g、 5 テトラメチルエチレンジアミン21.4mL(0.142モル)およびジエチルエー テル400mLの混合物に-78℃攪拌下、sec-ブチルリチウム(0.96モル/L シクロヘキサン/n-ヘキサン溶液)134mL(0.129モル)を40分間かけ て滴下し、-78℃にてさらに1時間攪拌した。-78℃攪拌下、ドライアイス約1 10 50gを加え、加えた後、ドライアイスーアセトン浴を外し、1時間かけて室温まで ゆっくり昇温しながら攪拌し、室温で一晩放置した。反応混合物を5%硫酸水素カリ ウム水溶液/氷に注ぎ、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄し、 無水硫酸マグネシウムで乾燥した後、濾過、濃縮した。得られた残査にジエチルエー テルとヘキサンを加えて攪拌後、固体を濾取した。第1晶として1-(tert-ブトキシカルボニル) 2 - ({[tert-ブチル (ジメチル) シリル]オキシ} メチ 15 (N) (N濾液をさらに濃縮し、同様な操作を行うことにより第2晶として1- (tert-ブトキシカルボニル)-2-({[tert-ブチル(ジメチル)シリル]オキシ}メ チル)ー1,2,3,4ーテトラヒドロー8ーキノリンカルボン酸3.00gを得た 20 (合わせて1,2,3,4ーテトラヒドロー2ーキノリニルメタノールから収率6 6%).

 $^{1} \text{HNMR} \text{ (DMSO-d}_{6}) \ \delta \ ; 12.49 (\text{br s, 1H}), \ 7.56 (\text{d, 1H, J=7.7Hz}), \\ 7.30 (\text{dd, 1H, J=1.4, 7.4Hz}), \ 7.12-7.07 (\text{m, 1H}), \ 4.4-4.25 (\text{m, 1H}), \ 3.85 (\text{dd, 1H, J=3.6, 9.4Hz}), \ 3.28-3.22 (\text{m, 1H}), \ 2.64-2.59 (\text{m, 1H}), \ 2.4-2.25 (\text{m, 2H}), \ 1.43-1.43 (\text{m, 2$

25

(4) $tert-ブチル 8-(アミノカルボニル)-2-({[tert-ブチル (ジメチル) シリル]オキシ} メチル)-3, 4-ジヒドロ-1 (2H)-キノリン$

1.29(m, 10H), 0.75(s, 9H), -0.02(s, 3H), -0.06(s, 3H).

カルボキシラート

25

1-(tert-ブトキシカルボニル) -2-({[tert-ブチル (ジメチル) シリル]オキシ} メチル) -1, 2, 3, 4-テトラヒドロ-8-キノリンカルボン酸12.63g(30.0ミリモル)、WSC塩酸塩8.61g(44.9ミリモル)、1-ヒドロキシベンゾトリアゾール6.07g(44.9ミリモル)、塩化アンモニウム3.25g(60.8ミリモル)及びジメチルホルムアミド80mLの混合物に室温攪拌下、ジイソプロピルエチルアミン21.0mL(0.121モル)を加え、室温にて一晩攪拌した。反応混合物を5%硫酸水素カリウム水溶液/氷に注ぎ、ジエチルエーテルにて抽出した。有機層を飽和重曹水、飽和食塩水の順に洗浄し、紙水硫酸マグネシウムで乾燥した後、濾過、濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(SiO2、ヘキサン:酢酸エチル=3:1の後、1:1)にて精製し、tert-ブチル8-(アミノカルボニル)-2-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)-3,4-ジヒドロ-1(2H)-キノリンカルボキシラート10.26g(収率81%)を得た。

¹ HNMR (DMSO-d₆) δ; 7.45(br, 1H), 7.41(dd, 1H, J=1.7, 7.7Hz), 7.23-7.20(m, 2H), 7.12-7.07(m, 1H), 4.43(m, 1H), 3.85-3.78(m, 1H), 3.51(dd, 1H, J=4.5, 10.9Hz), 2.64-2.57(m, 1H), 2.4 -2.19(m, 2H), 1.45-1.4(m, 1H), 1.40(s, 9H), 0.67(s, 9H), 0.02(s, 3H), -0.08(s, 3H).

(5)5-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)-6,7-20 ジヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3(2H)-ジオン

tertーブチル 8- (アミノカルボニル) -2- ({[tertーブチル (ジメチル) シリル]オキシ} メチル) -3, 4-ジヒドロ-1 (2H) -キノリンカルボキシラート5. 04 g (12. 0ミリモル) のテトラヒドロフラン 3 0 m L 溶液に室温攪拌下、6 0 %水素化ナトリウム 1. 2 0 g (30. 0 ミリモル) を加え、加えた後、5 0 \mathbb{C} に昇温して 5 0 \mathbb{C} で 1 時間半攪拌した。反応混合物を飽和塩化アンモニウム水溶液/氷に注ぎ、クロロホルムにて抽出した。有機層を無水硫酸マグネシウムで

乾燥した後、濾過、濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー (SiO_2 、ヘキサン:酢酸エチル=1:1)にて精製し、 $5-(\{[tert-ブチル (ジメチル) シリル]オキシ\} メチル) <math>-6$, 7-ジヒドロ-1H, 5H-ピリド[3,2,1-ij]キナゾリン-1, 3(2H)-ジオン3.82g(収率9

5 2%)を得た。

¹ HNMR (DMSO-d₆) δ ; 11.54(s, 1H), 7.80(d, 1H, J=7.0Hz), 7.50(d, 1H, J=7.3Hz), 7.16-7.11(m, 1H), 4.66-4.61(m, 1H), 3.72(d, 2H, J=5.9Hz), 3.08-2.96(m, 1H), 2.85-2.77(m, 1H), 2.30-2.23(m, 1H), 1.90-1.78(m, 1H), 0.72(s, 9H), -0.02(s, 3H), -0.12(s, 3H).

- 10 (6) 5-(ヒドロキシメチル)-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij]キナゾリン-1, 3 (2H)-ジオン
 - 5- ({[tert-ブチル (ジメチル) シリル]オキシ} メチル) -6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン3. 65g (10. 5ミリモル)、テトラブチルアンモニウムフルオリド (1モル/
- 15 L テトラヒドロフラン溶液)11.6mL(11.6ミリモル)及びテトラヒドロフラン20mLの混合物を室温で4時間攪拌した。反応混合物を5%硫酸水素カリウムに注ぎ、クロロホルムにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムで乾燥した後、濾過、濃縮した。得られた粗生成物3.20gのうち3.

18gをとり、酢酸エチル、ヘキサンを加えて攪拌後、固体を濾取した。得られたこ

20 の固体をメタノールと水の混合物中で攪拌し、固体を濾取して水にて洗浄し、5 - (ヒドロキシメチル) - 6, 7 - ジヒドロー1H, 5 H - ピリド [3, 2, 1 - i j] キナゾリン-1, 3 (2 H) - ジオン1. 9 1 gを得た。さらに濾液に水を加えて5 - (ヒドロキシメチル) - 6, 7 - ジヒドロー1H, 5 H - ピリド [3, 2, 1 - i j] キナゾリン-1, 3 (2 H) - ジオン0. 2 0 gを得た(合わせて収率8

25 7%).

融点:205-207℃

実施例3に準じて実施例4に示す化合物を得た。

実施例4

WO 01/79206

5- (ヒドロキシメチル) - 5, 6-ジヒドロ-1H-ピロロ[3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン

5 融点:238-240℃

実施例3に準じて実施例5に示す化合物を得た。

実施例5

10

6-(ヒドロキシメチル)-6,7-ジヒドロ-1H,5H-ピリド[3,2,1ij]キナゾリン-1,3(2H)-ジオン

融点:252-254℃

実施例3に準じて実施例6に示す化合物を得た。

実施例6

15 7- (ヒドロキシメチル) - 6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン

融点:226℃(分解)

実施例7

20 5-(ブロモメチル)-6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-i j] キナゾリン-1, 3 (2H) -ジオンの製造

5-(ヒドロキシメチル)-6,7-ジヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3(2H)-ジオン183.4mg(0.790ミリモル)、四臭化炭素340.7mg(1.03ミリモル)及びアセトニトリル6mLの

25 混合物に氷冷攪拌下、トリフェニルポスフィン269.0mg (1.03ミリモル) を加え、加えた後、氷浴を外して室温で5時間攪拌した。反応液を氷冷し、固体を濾取し、固体を冷アセトニトリルで洗い、5-(ブロモメチル)-6,7-ジヒドロー

1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3(2H) -ジオン17 8. 9mgを得た。濾液を半分まで濃縮して氷冷し、さらに5-(ブロモメチル) -6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3(2H) -ジオン33. 2mgを得た(合わせて収率91%)。

5 1 H N M R (D M S O - d₆) δ ; 11.63(s, 1H), 7.83(d, 1H, J=7.9Hz), 7.55(d, 1H, J=7.7Hz), 7.20-7.15(m, 1H), 4.81(m, 1H), 3.60-3.53(m, 2H), 3.03-2.78(m, 2H), 2.46 -2.40(m, 1H), 1.94-1.81(m, 1H).

実施例7に準じて実施例8に示す化合物を得た。

10 実施例8

5- (ブロモメチル) -5, 6-ジヒドロ-1H-ピロロ[3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン

¹ HNMR (DMSO-d₆) δ ; 11.32(s, 1H), 7.60(d, 1H, J=8.1Hz), 7.56(d, 1H, J=7.3Hz), 7.17-7.12(m, 1H), 5.07-5.00(m, 1H), 4.24-4.19(m, 1H), 3.95-

3.90(m, 1H), 3.63-3.54(m, 1H), 3.19-3.12(m, 1H).

実施例7に準じて実施例9に示す化合物を得た。

実施例9

6-(ブロモメチル)-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-i]

20 j] キナゾリン-1, 3 (2 H) -ジオン

融点:267-270℃(分解)

実施例7に準じて実施例10に示す化合物を得た。

実施例10

25 7- (ブロモメチル) -6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン

融点:225℃ (分解)

実施例11

5-[(ジメチルアミノ) メチル] -6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオンの製造

- 10 得られた残査を薄層クロマトグラフィー(SiO₂、クロロホルム:メタノール:トリエチルアミン=40:2:1)にて精製し、5-[(ジメチルアミノ)メチル]-6,7-ジヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3
 (2H)-ジオン31.8mg(収率22%)を得た。

 1 HNMR (DMSO-d₆) δ ; 11.48(s, 1H), 7.81(d, 1H, J=6.8Hz), 7.53(d,

15 1H, J=7.3Hz), 7.18-7.13(m, 1H), 4.78(m, 1H), 2.98-2.74(m, 2H), 2.42-2.14(m, 3H), 2.19(s, 6H), 1.78-1.66(m, 1H).

塩酸塩の融点:295-297℃(分解)

実施例11に準じて実施例12に示す化合物を得た。

20 実施例12

6-[(ジメチルアミノ) メチル]-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン

¹ HNMR (DMSO-d₆) δ ; 11.48(s, 1H), 7.79(d, 1H, J=7.9Hz), 7.51(d, 1H, J=7.2Hz), 7.16-7.11(m, 1H), 4.29-4.25(m, 1H), 3.32-3.24(m, 3H), 2.96-

25 2.91(m, 1H), 2.61-2.52(m, 1H), 2.21(m, 1H), 2.16(s, 6H).

実施例11に準じて実施例13に示す化合物を得た。

実施例13

5-[(ジメチルアミノ)メチル]-5,6-ジヒドロ-1H-ピロロ[3,2,1-ij]キナゾリン-1,3(2H)-ジオン

¹ HNMR (DMSO-d₆) δ ; 11.19(s, 1H), 7.59-7.53(m, 2H), 7.16-7.11(m,

5 1H), 4.77-4.69(m, 1H), 3.47-3.38(m, 1H), 3.31-3.24(m, 1H), 2.78-2.73(m, 1H), 2.5-2.43(m, 1H), 2.18(s, 6H).

塩酸塩の融点:300℃以上

実施例11に準じて実施例14に示す化合物を得た。

10 実施例14

7-[(ジメチルアミノ) メチル] -6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン

¹ HNMR (DMSO-d₆) δ ; 11.48(s, 1H), 7.84-7.81(m, 1H), 7.61-7.58(m, 1H), 7.18-7.13(m, 1H), 4.17-4.09(m, 1H), 3.60-3.51(m, 1H), 3.12-3.04(m, 1H),

15 2.5-2.43(m, 1H), 2.27-2.2(m, 1H), 2.20(s, 6H), 2.13-2.04(m, 1H), 1.90-1.79(m, 1H).

塩酸塩の融点:300℃以上

以下の化合物を副生成物として得た。

7-メチレン-6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾ

20 リン-1, 3 (2H) -ジオン

融点:242-245℃

実施例11に準じて実施例15に示す化合物を得た。

実施例 15

25 6-(1-ピロリジニルメチル)-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij]キナゾリン-1, 3 (2H)-ジオン

塩酸塩の融点:300℃以上

実施例16

- 1, 3-ジオキソー2, 3, 6, 7-テトラヒドロー1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-5-カルバルデヒドの製造
- 15 J=7.7Hz), 7.50(d, 1H, J=7.3Hz), 7.20-7.15(m, 1H), 5.25-5.21(m, 1H), 2.90-2.84(m, 1H), 2.62-2.45(m, 2H), 2.06-1.96(m, 1H).

実施例17

- 6-(アミノメチル)-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-i]
- 20 j]キナゾリン-1,3(2H)-ジオン 塩酸塩の製造
 - (1) 6 − (アジドメチル) − 6, 7 − ジヒドロ− 1 H, 5 H − ピリド [3, 2, 1 − i j] キナゾリン− 1, 3 (2 H) − ジオン
 - 6-(ブロモメチル)-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-i]j]キナゾリン-1, 3(2H)-ジオン302.2 mg(1.02ミリモル<math>)、ア
- 25 ジ化ナトリウム 6 0 0 0 3 m g (9 2 3 ミリモル)及びジメチルホルムアミド 3 m Lの混合物を 6 0℃で 2 時間攪拌した。反応液に水を加えて氷冷下攪拌した。固体を 濾過し、固体を冷水で洗った。 6 - (アジドメチル) - 6 , 7 - ジヒドロ-1 H . 5

WO 01/79206 PCT/JP01/03104

H-ピリド[3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン237.4mg (収率90%) を得た。

33

¹ HNMR (DMSO-d₆) δ ; 11.51(s, 1H), 7.80(d, 1H, J=7.5Hz), 7.53(d, 1H, J=6.8Hz), 7.18-7.13(m, 1H), 4.23-4.18(m, 1H), 3.56-3.40(m, 3H), 3.02-

- 5 2.95(m, 1H), 2.73-2.64(m, 1H), 2.24(m, 1H).
 - (2) 6-(アミノメチル)-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij]キナゾリン-1, 3(2H)-ジオン 塩酸塩
 - 6-(アジドメチル)-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij]キナゾリン-1, 3(2H)-ジオン200.4mg(0.779ミリモル)、
- 10 テトラヒドロフラン4mL及び水1.5mLの混合物に室温攪拌下、トリフェニルホスフィン214.8mg(0.819ミリモル)を加え、加えた後、60℃で1時間半攪拌し、40分加熱還流した。トリフェニルホスフィン46.6mg(0.174ミリモル)を追加し、さらに1時間加熱還流した。反応混合物を減圧濃縮し、得られた残査に1規定塩酸水と酢酸エチルを加えて分液した。塩酸水層を減圧濃縮し、6-
- 15 (アミノメチル) 6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij]キナゾリン-1, 3 (2H) -ジオン 塩酸塩203.5mg (収率98%)を得た。 融点:300℃以上

実施例17に準じて実施例18に示す化合物を得た。

20 実施例18

5- (アミノメチル) - 6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン 塩酸塩

融点:300℃以上

25 実施例17に準じて実施例19に示す化合物を得た。

実施例19

5-(アミノメチル)-5, 6-ジヒドロ-1H-ピロロ[3, 2, 1-ij]キナ

WO 01/79206 PCT/JP01/03104

34

ゾリン-1,3(2H)-ジオン 塩酸塩

融点:300℃以上

実施例17に準じて実施例20に示す化合物を得た。

5 実施例20

7-(アミノメチル)-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-i] j] キナゾリン-1, 3(2H)-ジオン 塩酸塩

融点:190℃(分解)

10 実施例21

N-[(1, 3-i)]+1-2, 3, 6, 7-f+5+i]+1-1+1, 5+1-2+i「3. 2. 1-ij]キナゾリン-6-イル)メチル]ベンズアミドの製造 6-(アミノメチル)-6, 7-ジヒドロ-1H, 5H-ピリド「3, 2, 1-ij] キナゾリンー1, 3 (2H) -ジオン 塩酸塩282, 6mg (1, 06ミリモ 15 ル)、WSC塩酸塩262.1mg(1.37ミリモル)、1-ヒドロキシベンゾト リアゾール158.0mg(1,17ミリモル)、安息香酸129,3mg(1,0 6ミリモル)、トリエチルアミンO、37mL(2,65ミリモル)及びジメチルホ ルムアミド5mLの混合物を室温にて一晩攪拌した。反応混合物に5%硫酸水素カリ ウム水を加えてクロロホルムにて抽出した。有機層を飽和重曹水、飽和食塩水の順に 20 洗浄し、無水硫酸マグネシウムで乾燥した後、濾過、濃縮した。得られた残査を少量 のクロロホルム中で攪拌し、固体を濾取し、固体を少量のクロロホルムで洗った。 [3, 2, 1-i j] + f'(収率80%)を得た。

25 融点:277-280℃

実施例21に準じて実施例22に示す化合物を得た。

実施例22

N-[(1, 3-ジオキソー2, 3, 6, 7ーテトラヒドロー1H, 5Hーピリド [3, 2, 1-ij]キナゾリンー6ーイル)メチル]アセトアミド 1 HNMR (DMSO-d₆) δ ; 11.48(s, 1H), 8.06(t, 1H, J=5.5Hz), 7.80(d, 1H, J=6.6Hz), 7.51(d, 1H, J=7.5Hz), 7.17-7.12(m, 1H), 4.22-4.17(m, 1H), 3.36-3.28(m, 1H), 3.20-3.03(m, 2H), 2.95-2.88(m, 1H), 2.65-2.57(m, 1H), 2.13-2.02(m, 1H), 1.83(s, 3H).

実施例21に準じて実施例23に示す化合物を得た。

10 実施例23

N-[(1,3-ジオキソー2,3,6,7-テトラヒドロー1H,5H-ピリド [3,2,1-ij] キナゾリン-6-イル) メチル] イソニコチンアミド 融点:282-285 \mathbb{C}

15 実施例21に準じて実施例24に示す化合物を得た。

実施例24

N-[(1,3-ジオキソー2,3,6,7-テトラヒドロー1H,5H-ピリド [3,2,1-ij]キナゾリン-6-イル)メチル]-2-ピリジンカルボキサミド

20 融点:247-250℃

実施例21に準じて実施例25に示す化合物を得た。

実施例25

N-[(1, 3-ジオキソ-2, 3, 6, 7-テトラヒドロ-1H, 5H-ピリド 25 [3, 2, 1-ij] キナゾリン-6-イル) メチル] ニコチンアミド ¹HNMR (DMSO-d₆) δ; 11.46(s, 1H), 9.01(d, 1H, J=1.7Hz), 8.87(t, 1H, J=5.6Hz), 8.70(dd, 1H, J=1.7, 4.8Hz), 8.20-8.16(m, 1H), 7.81(dd, 1H, J=1.4, 7.8Hz), 7.54-7.49(m, 2H), 7.18-7.12(m, 1H), 4.24-4.19(m, 1H), 3.51-3.3(m, 3H), 3.04-2.97(m, 1H), 2.75-2.67(m, 1H), 2.35-2.25(m, 1H).

融点:300℃以上

5 実施例21に準じて実施例26に示す化合物を得た。

実施例26

N-[(1, 3-ジオキソー2, 3, 6, 7ーテトラヒドロー1H, 5Hーピリド [3, 2, 1-ij] キナゾリンー6ーイル) メチル] ー2ーフェニルアセトアミド 融点: 275 \mathbb{C} (分解)

10

実施例21に準じて実施例27に示す化合物を得た。

実施例27

2-(i)メチルアミノ)-N-[(1,3-i)]オキソー2,3,6,7-iトラヒドロー1H,5H-ピリド[3,2,1-i] キナゾリンー6-イル)メチル] ベン

15 ズアミド

融点:220-236℃

実施例21に準じて実施例28に示す化合物を得た。

実施例28

20 3-(ジメチルアミノ)-N-[(1,3-ジオキソ-2,3,6,7-テトラヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-6-イル)メチル]ベンズアミド

融点:158-170℃

25 実施例21に準じて実施例29に示す化合物を得た。

実施例29

4-(ジメチルアミノ)-N-[(1, 3-ジオキソー2, 3, 6, 7-テトラヒド

ロー1H, 5Hーピリド[3, 2, 1-i j]キナゾリン-6ーイル)メチル]ベンズアミド

融点:268-278℃(分解)

5 実施例21に準じて実施例30に示す化合物を得た。

実施例30

N-[(1, 3-ジオキソー2, 3, 6, 7ーテトラヒドロー1H, 5Hーピリド [3, 2, 1-ij] キナゾリンー6ーイル) メチル] シクロヘキサンカルボキサミド

10 融点:280-281℃(分解)

実施例21に準じて実施例31に示す化合物を得た。

実施例31

N-[(1,3-ジオキソ-2,3,6,7-テトラヒドロ-1H,5H-ピリド 15 [3,2,1-ij] キナゾリン-6-イル)メチル] -2-ピラジンカルボキサミド

融点:255-257℃(分解)

実施例21に準じて実施例32に示す化合物を得た。

20 実施例32

N- [(1, 3-i)オキソー2, 3, 6, 7-fトラヒドロー1H, 5 Hーピリド [3, 2, 1-i j] キナゾリンー6ーイル) メチル] -4ーピリダジンカルボキサミド

融点:279-281℃(分解)

25

実施例21に準じて実施例33に示す化合物を得た。

実施例33

4-[(i)メチルアミノ)メチル] -N-[(1, 3-i)オキソー2, 3, 6, 7-テトラヒドロー1 H, 5 Hーピリド [3, 2, 1-i j] キナゾリン-6 ーイル)メチル] ベンズアミド

融点:240-243℃(分解)

5

実施例21に準じて実施例34に示す化合物を得た。

実施例34

N-[(1, 3-ジオキソー2, 3, 6, 7-テトラヒドロー1H, 5H-ピリド [3, 2, 1-ij] キナゾリンー6-イル) メチル] -1-メチルー4ーピペリジ

10 ンカルボキサミド

融点:246-250℃(分解)

実施例21に準じて実施例35に示す化合物を得た。

実施例35

15 1-ベンジル-N-[(1,3-ジオキソ-2,3,6,7-テトラヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-6-イル)メチル]-4-ピペリジンカルボキサミド

融点:240-242℃(分解)

20 実施例36

25

N¹- [(1,3-ジオキソ-2,3,5,6-テトラヒドロ-1H-ピロロ[3,2,1-ij]キナゾリン-5-イル)メチル]グリシンアミド塩酸塩 実施例21に準じて5-(アミノメチル)-5,6-ジヒドロ-1H-ピロロ[3,2,1-ij]キナゾリン-1,3(2H)-ジオン塩酸塩とN-Boc-グリシンの反応を行い、得られた生成物を脱保護することにより、実施例36に示す化合物を得た。

融点:293-300℃(分解)

実施例36に準じて反応を行い、実施例37に示す化合物を得た。

実施例37

5 2, 1-ij]キナゾリン-5-イル)メチル]-β-アラニンアミド 塩酸塩 融点:290-296℃(分解)

実施例36に準じて反応を行い、実施例38に示す化合物を得た。

実施例38

10 4- (アミノメチル) -N- [(1,3-ジオキソ-2,3,6,7-テトラヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-6-イル)メチル] ベンズアミド 塩酸塩

融点:300℃以上

15 実施例36に準じて反応を行い、実施例39に示す化合物を得た。

実施例39

N-[(1,3-ジオキソ-2,3,6,7-テトラヒドロ-1H,5H-ピリド [3,2,1-ij]キナゾリン-6-イル)メチル]-4-ピペリジンカルボキサミド 塩酸塩

¹ H NMR (DMSO-d₆) δ; 11.49(s, 1H), 8.87(br, 1H), 8.49(br, 1H), 8.19(t, 1H, J=5.3Hz), 7.80(d, 1H, J=7.9Hz), 7.50(d, 1H, J=7.5Hz), 7.17-7.12(m, 1H), 4.18-4.12(m, 1H), 3.4-2.4(m, 10H), 2.12(m, 1H), 1.87-1.66(m, 4H).

25 実施例40

1, 3-ジオキソー2, 3, 6, 7-テトラヒドロー1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-5-カルボン酸の製造

融点:300℃以上

10

5

実施例41

6-{ [ベンジル (メチル) アミノ] メチル}-6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオンの製造

D-1H, 5H-ピッド[3, 2, 1-ij] キナゾッン-1, 3(2H) -ジオン15 6-(ヒドロキシメチル)-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1]- i j] キナゾリン-1, 3 (2H) -ジオン1. 0 0 g (4, 3 1 ミリモル)、炭 酸カリウム778.6mg(5.63ミリモル)及びジメチルホルムアミド10mL の混合物に室温攪拌下、4ーメトキシベンジルクロリド0.630mL(4.65ミ リモル)を加え、加えた後、50℃で攪拌した。3時間半後、4-メトキシベンジル 20 クロリドO. 070mL(0. 52ミリモル)を追加し、さらに1時間50℃で攪拌 した。反応液を氷冷し、水を加えてクロロホルムにて抽出した。有機層を飽和食塩水 で洗い、無水硫酸マグネシウムで乾燥後、濾過、濃縮した。得られた残査をシリカゲ ルカラムクロマトグラフィー (SiO₂、ヘキサン:酢酸エチル=1:1の後酢酸エ チル) にて精製し、6-(ヒドロキシメチル)-2-(4-メトキシベンジル)-6. 25 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij] キナゾリン-1, 3(2)H) ージオン1.36g(収率90%)を得た。

25

¹ H N M R (C D C 1 ₃) δ ; 7.88-7.85(m, 1H), 7.55-7.51(m, 1H), 7.31-7.26(m, 2H), 7.17(t, 1H, J=7.7Hz), 6.87-6.82(m, 2H), 5.10-5.00(m, 2H), 4.83(t, 1H, J=5.2Hz), 4.37-4.32(m, 1H), 3.70(s, 3H), 3.54-3.36(m, 3H), 2.94-2.87(m, 1H), 2.67-2.86(m, 1H), 2.15-2.01(m, 1H).

- (2) 6-(ブロモメチル)-2-(4-メトキシベンジル)-6.7-ジヒドロー 1H, 5H-ピリド[3, 2, 1-ij]キナゾリン-1, 3(2H) -ジオン 6-(ヒドロキシメチル)-2-(4-メトキシベンジル)-6,7-ジヒドロー 1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3(2H) -ジオン860. 1 m g (2. 44ミリモル)、四臭化炭素1. 29g (3. 89ミリモル)及び 10 アセトニトリル10mLの混合物に氷冷攪拌下、トリフェニルホスフィン1.02g (3.89ミリモル)を加え、加えた後、氷浴を外して室温で一晩攪拌した。反応液 を減圧濃縮して、得られた残査をシリカゲルカラムクロマトグラフィー(SiO。、 ヘキサン:酢酸エチル=2:1の後1:1)にて精製し、6-(ブロモメチル)-2 -(4-メトキシベンジル) - 6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1]- i j] キナゾリン-1, 3 (2H) -ジオン1. 02g (定量的) を得た。 15 1 H NMR (CDC 1 ₃) δ ; 8.07(d, 1H, J=7.9Hz), 7.53-7.49(m, 2H), 7.44-7.41(m, 1H), 7.18-7.13(m, 1H), 6.86-6.81(m, 2H), 5.26-5.15(m, 2H), 4.56-4.50(m, 1H), 3.77(s, 3H), 3.64-3.56(m, 1H), 3.47(d, 2H, J=6.2Hz), 3.11-3.03(m, 1H), 2.89-2.80(m, 1H), 2.49-2.36(m, 1H).
- 20 (3) 6-{[ベンジル (メチル) アミノ] メチル}-2- (4-メトキシベンジル) -6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン

6 - (ブロモメチル) - 2 - (4 - メトキシベンジル) - 6, 7 - ジヒドロー1 H, 5 H - ピリド [3, 2, 1-ij] キナゾリン - 1, 3 (2 H) - ジオン101.3 mg (0.244 ミリモル)、N - ベンジルメチルアミン0.15 mL (1.16 ミ

リモル)及びジメチルホルムアミド1mLの混合物を室温で一晩攪拌した。反応液にトルエンを加えて減圧濃縮(3回)した。得られた残査にクロロホルム、無水炭酸カ

リウムを加えて20分間攪拌後、濾過、濃縮した。この残査をシリカゲルカラムクロマトグラフィー(SiO_2 、ヘキサン:酢酸エチル=2:1の後1:1)にて精製し、 $6-\{[ベンジル(メチル)アミノ]メチル\}-2-(4-メトキシベンジル)-6、7-ジヒドロー<math>1H$ 、5H-ピリド[3, 2, 1-ij]キナゾリン-1, 3 (2

- 5 H) -ジオン85.5 m g (収率77%) を得た。

 ¹ H N M R (C D C 1₃) δ; 8.03-8.00(m, 1H), 7.54-7.49(m, 2H), 7.39-7.36(m, 1H), 7.31-7.20(m, 5H), 7.13-7.08(m, 1H), 6.85-6.80(m, 2H), 5.26-5.15(m, 2H), 4.48-4.42(m, 1H), 3.76(s, 3H), 3.49(s, 2H), 3.47-3.40(m, 1H), 3.04-2.97(m, 1H), 2.60-2.51(m, 1H), 2.38-2.25(m, 3H), 2.24(s, 3H).
- (4) 6-{ [ベンジル (メチル) アミノ] メチル}-6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) ージオン 6-{ [ベンジル (メチル) アミノ] メチル}-2-(4-メトキシベンジル) -6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2 H) ージオン85. 4mg (0. 187ミリモル)、アセトニトリル2. 0mL及び
- 20 ロー1H, 5H-ピリド[3, 2, 1-ij]キナゾリン-1, 3 (2H) -ジオン28. 1mg (収率45%)を得た。

¹ HNMR (DMSO-d₆) δ ; 11.47(s, 1H), 7.75(d, 1H, J=7.9Hz), 7.50-7.47 (m, 1H), 7.28-7.08(m, 6H), 4.16-4.11(m, 1H), 3.56-2.19(m, 8H), 2.17(s, 3H).

25 実施例41に準じて実施例42に示す化合物を得た。

実施例42

 $6-\{[メチル(2-フェニルエチル)アミノ]メチル}-6,7-ジヒドロ-1H,$

 $5 \, \text{H} - \text{ピッド } [\ 3\ ,\ 2\ ,\ 1-\text{i}\ j\]$ キナゾッン $-1\ ,\ 3\ (2\, \text{H})$ -ジオン $^1 \, \text{HNMR}\ (\text{DMSO}-d_6)$ $\delta\ ;\ 11.47(\text{s},\ 1\text{H})$, $7.79(\text{d},\ 1\text{H},\ J=7.7\text{Hz})$, 7.48-7.45 (m, 1H), $7.27-7.11(\text{m},\ 6\text{H})$, $4.25-4.20(\text{m},\ 1\text{H})$, $3.35-2.15(\text{m},\ 10\text{H})$, $2.25(\text{s},\ 3\text{H})$.

5 実施例43

6-[(ベンジルオキシ)メチル]-6,7-ジヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3(2H)-ジオンの製造

(1) 6-[(ベンジルオキシ) メチル] -2-(4-メトキシベンジル) -6,7-ジヒドロ-1 H, 5 H-ピリド [3,2,1-ij] キナゾリン-1,3 (2 H)

10 ージオン

15

20

25

6-(ヒドロキシメチル) -2-(4-メトキシベンジル) -6, 7-ジヒドロー1H, 5H-ピリド[3, 2, 1-ij] キナゾリン-1, 3(2H) -ジオン11 1.6mg(0.317ミリモル)及びテトラヒドロフラン3mLの混合物に室温攪拌下、60%水素化ナトリウム14.0mg(0.35ミリモル)を加え、加えた後、60℃で1時間攪拌した。反応液を室温まで冷却し、室温攪拌下、ベンジルブロミド0.050mL(0.42ミリモル)を加え、室温で30分、50℃で30分、60℃で1時間半攪拌した。ベンジルブロミド0.030mL(0.25ミリモル)及び60%水素化ナトリウム7.9mg(0.20ミリモル)を追加し、さらに1時間60℃で攪拌した。反応液を冷5%硫酸水素カリウム水溶液に注ぎ、酢酸エチルにて抽出した。有機層を飽和食塩水で洗い、無水硫酸マグネシウムで乾燥後、濾過、濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(SiO₂、ヘキサン:酢酸エチル=4:1の後2:1)にて精製し、6-[(ベンジルオキシ)メチル] -2-(4-メトキシベンジル)-6,7-ジヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3(2H)-ジオン124.0mg(収率88%)を得た。

¹ H N M R (C D C 1₃) δ ; 8.04(d, ¹H, J=7.2Hz), 7.53-7.48(m, 2H), 7.40-7.29(m, 6H), 7.14-7.09(m, 1H), 6.85-6.80(m, 2H), 5.25-5.16(m, 2H), 4.53(s.

- 2H), 4.52-4.46(m, 1H), 3.76(s, 3H), 3.59-3.50(m, 3H), 3.00-2.94(m, 1H), 2.81-2.72(m, 1H), 2.44-2.28(m, 1H).
- (2) 6- [(ベンジルオキシ) メチル] 6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン
- 5 6-[(ベンジルオキシ)メチル]-2-(4-メトキシベンジル)-6,7-ジヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3(2H)-ジオンを原料とし実施例41-(4)に準じて6-[(ベンジルオキシ)メチル]-6,7-ジヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3(2H)-ジオンを得た。
- 10 ¹ H NMR (DMSO-d₆) δ; 11.49(s, 1H), 7.79(dd, 1H, J=1.3, 7.9Hz),
 7.51(d, 1H, J=6.4Hz), 7.37-7.24(m, 5H), 7.16-7.11(m, 1H), 4.51(s, 2H), 4.26-4.21(m, 1H), 3.54-3.39(m, 3H), 2.99-2.92(m, 1H), 2.72-2.64(m, 1H), 2.38-2.28(m, 1H).

15 実施例44

tert-ブチル 1, 3-ジオキソー2, 3, 6, 7-テトラヒドロー1H, 5H-ピリド $\begin{bmatrix} 3, 2, 1-i j \end{bmatrix}$ キナゾリンー6-カルバメートの製造

- (1) tert-ブチル 3-[(tert-ブトキシカルボニル)アミノ]-3, 4-ジヒドロ-1(2H)-キノリンカルボキシラート
- 20 1, 2, 3, 4ーテトラヒドロー 3ーキノリンアミン1. 92g(13.0ミリモル)及びトルエン10mLの混合物に氷冷攪拌下、ジーtertーブチルジカルボナート6.55mL(28.5ミリモル)を加え、加えた後、室温で2時間攪拌し、4時間半加熱還流した。反応液を濃縮し、得られた残査をシリカゲルカラムクロマトグラフィー(SiO2、ヘキサン:酢酸エチル=5:1の後3:1)にて精製し、 t
- 25 ertーブチル 3-[(tertーブトキシカルボニル)アミノ]-3,4-ジヒドロー1(2H)-キノリンカルボキシラート4.45g(収率98%)を得た。 1 HNMR(DMSO-d₆) δ ;7.51(d,1H,J=8.1Hz),7.13-6.95(m,4H),3.80-

- 3.65(m, 2H), 3.35(m, 1H), 3.03-2.96(m, 1H), 2.68-2.59(m, 1H), 2.50(s, 9H), 2.48(s, 9H).
- (2) tert-ブチル 8-(アミノカルボニル)-1, 2, 3, 4-テトラヒドロ-3-キノリニルカルバメート
- 5 実施例3-(3)及び実施例3-(4)に準じて反応を行い、tert-ブチル 8-(アミノカルボニル)-1, 2, 3, 4-テトラヒドロ<math>-3-キノリニルカルバメートを得た。
 - (3) tert-ブチル 1, 3-ジオキソー2, 3, 6, 7-テトラヒドロー1H, 5H-ピリド[3, 2, 1-ij]キナゾリン-6-イルカルバメート
- 10 実施例1-(2)に準じてtert-ブチル 1,3-ジオキソ-2,3,6,7 -テトラヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-6-イルカルバメートを得た。

¹ H NMR (DMSO-d₆) δ; 11.47(s, 1H), 7.81(d, 1H, J=6.8Hz), 7.50(d, 1H, J=6.4Hz), 7.20(d, 1H, J=7.9Hz), 7.17-7.12(m, 1H), 4.0-3.91(m, 2H), 3.78-3.71(m, 1H), 3.08-3.01(m, 1H), 2.87-2.80(m, 1H), 1.37(s, 9H).

tert-ブチル 1, 3-ジオキソー2, 3, 6, 7-テトラヒドロー1H, 5 Hーピリド [3, 2, 1-ij] キナゾリンー6-イルカルバメートを脱保護することにより、実施例45に示す化合物を得た。

20 実施例45

15

6-アミノー6, 7-ジヒドロー1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン 塩酸塩

融点:300℃以上

25 実施例46

6-ヒドロキシ-5, 6-ジヒドロ-1H-ピロロ[3, 2, 1-ij]キナゾリン-1, 3 (2H) -ジオンの製造

- ¹ HNMR (CDC1₃) δ ; 10.11(s, 1H), 8.31-8.28(m, 1H), 8.24(s, 1H),
- 15 8.17-8.14(m, 1H), 7.45-7.35(m, 2H), 1.71(s, 9H).

2g(収率42%)を得た。

(2) tertーブチル 3- (ホルミルオキシ) - 1 H-インドール-1-カルボ キシラート

t e r t -ブチル 3 -ホルミルー1 H -インドールー1 -カルボキシラート5. 3 8 g (2 1.9 ミリモル) の塩化メチレン1 5 0 m L溶液に氷冷攪拌下、7 0 - 7 20 5 % m -クロロ過安息香酸5.6 4 g を加え、氷冷下<math>2 時間攪拌し、室温で一晩攪拌した。反応混合物に水、1 0 % 亜硫酸ナトリウム水溶液の順に加え、1 時間室温で攪拌した。有機層を飽和重曹水、飽和食塩水の順に洗浄し、無水硫酸マグネシウムで乾燥した後、濾過、濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー (SiO_2 、ヘキサン:酢酸エチル=1 0:1の後、5:1) にて精製しt e r t -ブチル 3 - (ホルミルオキシ) - 1 H -インドールー1 -カルボキシラート2.4

¹ HNMR (CDC1₃) δ ; 8.37(s, 1H), 8.18(d, 1H, J=8.3Hz), 7.81(s, 1H),

7.16-7.11(m, 1H), 4.22(s, 2H), 1.59(s, 9H).

WO 01/79206

7.53(d, 1H, J=7.7Hz), 7.40–7.34(m, 1H), 7.30–7.25(m, 1H), 1.67(s, 9H).

- (3) tert-ブチル 3-オキソ-1-インドリンカルボキシラート tert-ブチル 3- (ホルミルオキシ) -1 H-インドール-1-カルボキシラート1.68g(6.43ミリモル)、テトラヒドロフラン10mL及びメタノー ル10mLの混合物に氷冷攪拌下、5%炭酸カリウム水溶液10mLを加え、氷冷下1時間半攪拌した。反応混合物を酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムで乾燥した後、濾過、濃縮した。得られた残査にヘキサン及び酢酸エチルを加えて攪拌後、固体を濾取した。第1晶としてtert-ブチル3-オキソ-1-インドリンカルボキシラート700.3mgを得た。濾液をさらに濃縮し、同様な操作を行うことにより第2晶としてtert-ブチル 3-オキソー1-インドリンカルボキシラート349.5mgを得た(合わせて収率70%)。 1HNMR(CDC13) δ;8.23(br, 1H),7.73-7.70(m, 1H),7.65-7.60(m, 1H),
 - (4) tertープチル 3ーヒドロキシー1ーインドリンカルボキシラート
- 15 tertーブチル 3ーオキソー1ーインドリンカルボキシラート582.7mg
 (2.50ミリモル)、テトラヒドロフラン5mL及びメタノール0.2mLの混合物に氷冷攪拌下、水素化ほう素ナトリウム28.4mg(0.751ミリモル)を加え、氷冷下、1時間攪拌し、室温で一晩攪拌した。反応混合物を氷冷し、水素化ほう素ナトリウム10.1mg(0.267ミリモル)を追加し、氷冷下、さらに1時間20 攪拌した。反応混合物に水を加えて30分攪拌後、酢酸エチルにて抽出した。有機層を飽和食塩水で洗浄し、濃縮した。粗生成物としてtertーブチル3ーヒドロキシー1ーインドリンカルボキシラート594.8mgを得た。
 - (5) 6-ヒドロキシ-5, 6-ジヒドロ-1H-ピロロ[3, 2, 1-ij]キナ ゾリン-1, 3 (2H) -ジオン
- 25 実施例3に準じて6-ヒドロキシ-5,6-ジヒドロ-1H-ピロロ[3,2,1-ij]キナゾリン-1,3(2H)-ジオンを得た。

融点:260-266℃(分解)

実施例47

- 5, 6, 7, 8 テトラヒドロ-1H-[1, 4] ジアゼピノ [6, 7, 1-ij] キナゾリン-1, 3 (2H) - ジオン 塩酸塩の製造
- 5 (1) 4-トリチルー2, 3, 4, 5-テトラヒドロー1H-1, 4ベンゾジアゼピン
- 2, 3, 4, 5ーテトラヒドロー1H-1, 4ベンゾジアゼピン 二塩酸塩1. 6 1 g、炭酸カリウム3. 2 0 g (2 3. 2ミリモル) 及びジメチルホルムアミド8m Lの混合物に室温攪拌下、塩化トリチル1. 6 2 g (5. 8 1 ミリモル) を加え、室 10 温で一晩攪拌した。反応混合物に水を加えてジエチルエーテルにて抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、濾過、濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(SiO₂、ヘキサン:酢酸エチル=10:1の後、5:1) にて精製し、粗4ートリチルー2, 3, 4, 5ーテトラヒドロー1H-1, 4ベンゾジアゼピン1. 91gを得た。
- 15 (2) tertーブチル 4ートリチルー2, 3, 4, 5ーテトラヒドロー1H-1, 4ベンゾジアゼピンー1ーカルボキシラート

粗4ートリチルー2, 3, 4, 5ーテトラヒドロー1H-1, 4ベンゾジアゼピン
1. 91g、ジーtertーブチルジカルボナート1. 40mL(6.09ミリモル)及びトルエン5mLの混合物を加熱還流した。3時間後、ジーtertーブチルジカルボナート0.50mL(2.2ミリモル)を追加し、さらに1時間加熱還流した。反応混合物を氷冷し、29%アンモニア水を加え、室温で一晩攪拌した。反応混合物に水を加えてジエチルエーテルにて抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、濾過、濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(SiO2、ヘキサン:酢酸エチル=12:1の後、10:1)

- 25 にて精製し、tert-ブチル 4-トリチル-2, 3, 4, 5-テトラヒドロ-1 H-1, 4ベンゾジアゼピン-1-カルボキシラート1. 38gを得た。
 - (3) 7ートリチルー5, 6, 7, 8ーテトラヒドロー1Hー[1, 4] ジアゼピノ

- [6, 7, 1-ij] キナゾリン-1, 3 (2 H) -ジオン 実施例3に準じて7-トリチル-5, 6, 7, 8-テトラヒドロ-1 H-[1, 4] ジアゼピノ [6, 7, 1-ij] キナゾリン-1, 3 (2 H) -ジオンを得た。 ¹HNMR (DMSO-d₆) δ; 11.60(s, 1H), 7.92(dd, 1H, J=1.6, 7.6Hz).
- 7.32-7.13(m, 17H), 4.01-3.91(br, 2H), 3.73(s, 2H), 2.79(br, 2H)
 (4) 5, 6, 7, 8ーテトラヒドロー1Hー[1, 4]ジアゼピノ[6, 7, 1ーij]キナゾリンー1, 3 (2 H) ージオン 塩酸塩
 7ートリチルー5, 6, 7, 8ーテトラヒドロー1Hー[1, 4]ジアゼピノ[6,

7, 1-i j] キナゾリン-1, 3 (2H) -ジオン91. 4mg (0. 199ミリ

- 10 モル)、ジオキサン2mL及び4規定塩化水素-1, 4-ジオキサン溶液2mL(8.0ミリモル)の混合物を室温で3時間攪拌した。反応液にエーテルを加えて攪拌後、固体を濾取し、固体をジエチルエーテルで洗った。5, 6, 7, 8-テトラヒドロー1H-[1, 4]ジアゼピノ[6, 7, 1-ij]キナゾリン-1, 3(2H)-ジオン塩酸塩50.6mg(定量的)を得た。
- ¹ H N M R (D M S O d₆) δ; 11.71(s, 1H), 9.88(br, 2H), 7.98(dd, 1H, J=1.5, 7.8Hz), 7.69(dd, 1H, J=1.5, 7.5Hz), 7.29-7.24(m, 1H), 4.64(s, 2H), 4.47(t, 2H, J=5.0Hz), 3.48(br, 2H)

融点:300℃以上

20 実施例47に準じて実施例48に示す化合物を得た。

実施例48

5, 6, 7, 8ーテトラヒドロー1Hーアゼピノ[3, 2, 1-ij]キナゾリンー 1, 3 (2H) -ジオン

融点:192-196℃

25

実施例49

7-ヒドロキシ-6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij]キナ

ゾリンー1,3(2H)-ジオン

1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3, 7 (2H, 6H) ートリオン108. 1mg (0.500ミリモル)、メタノール20mL及びテトラヒドロフラン20mLの混合物に水素化ほう素ナトリウム100.0mg (2.635ミリモル)を5分間かけて少量ずつ加え、室温で20分攪拌した。反応混合物の溶媒を留去し、残査に水を加え、クロロホルムにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムで乾燥し、濾過、濃縮し、7-ヒドロキシ-6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) ージオン72.8mg (収率67%)を得た。

¹ HNMR (DMSO-d₆) δ; 11.51(br s, 1H), 7.87(dd, 1H, J=1.7, 7.7Hz), 7.72(dd, 1H, J=1.7, 7.7Hz), 7.21(t, 1H, J=7.7Hz), 5.62(d, 1H, J=5.1Hz), 4.77-4.71(m, 1H), 4.05-3.82(m, 2H), 2.08-1.87(m, 2H).

実施例50

- 15 1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン 7-ヒドロキシ-6, 7-ジヒドロ-1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン20.0mg(0.0917ミリモル)、p-トルエンスルホン酸ー水和物20.0mg及びトルエン20mLの混合物を1時間還流攪拌した。反応混合物を室温まで冷却し、反応混合物の溶媒を留去し、残査にクロロホルムを加えて溶解し、これを水、飽和食塩水の順に洗浄し、無水硫酸マグネシウムで乾燥し、濾過、濃縮し、1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン17.6mg(収率96%)を得た。
 - 7.36(dd, 1H, J=1.1, 7.7Hz), 7.09(t, 1H, J=7.7Hz), 6.53(dt, 1H, J=2.9,

¹ HNMR (DMSO-d₆) δ ; 11.59(br s, 1H), 7.68(dd, 1H, J=1.1, 7.7Hz),

25 10.3Hz), 6.02(dt, 1H, J=3.7, 10.3Hz), 4.60(t, 2H, J=2.9Hz).

実施例50に準じて実施例51に示す化合物を得た。

実施例51

 $1 \, \text{H} - \text{ピロロ} \left[3, \ 2, \ 1 - \text{i j} \right]$ キナゾリン-1, $3 \, (2 \, \text{H})$ -ジオン $^1 \, \text{HNMR} \left(\text{DMSO} - \text{d}_6 \right) \, \delta$; $11.66 \, (\text{br s, 1H})$, $7.96 \, (\text{d, 1H, J=7.7Hz})$, $7.87 \, (\text{d, 1H, J=3.5Hz})$, $7.79 \, (\text{d, 1H, J=7.7Hz})$, $7.42 \, (\text{t, 1H, J=7.7Hz})$, $6.93 \, (\text{d, 1H, J=3.5Hz})$.

実施例 5 2

5

7-クロロ-1, 3-ジオキソ-2, 3-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij]キナゾリン-6-カルバルデヒド

ジメチルホルムアミド2mLに氷冷攪拌下、オキシ三塩化リン2.21g(14.4ミリモル)を加え、加えた後、氷浴を外し、室温で1時間攪拌した。この調整したビルスマイヤー(Vilsmeier)試薬を1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3,7(2H,6H)-トリオン1.30g(6.01ミリモル)のジメチルホルムアミド8mL懸濁液に滴下し、滴下後、80℃で1時間半攪拌した。反応混合物に水100mLを加え、析出した橙色固体を濾取し、固体を水で洗浄することにより、7-クロロ-1,3-ジオキソ-2,3-ジヒドロ-1H,5H-ピリド[3,2,1-ij]キナゾリン-6-カルバルデヒド1.38g(収率87%)を得た。

¹ HNMR (DMSO-d₆) δ ; 11.88(br s, 1H), 10.17(s, 1H), 8.08(d, 1H, J=7.7Hz), 8.03(d, 1H, J=7.7Hz), 7.32(t, 1H, J=7.7Hz), 4.67(s, 2H).

実施例49に準じて実施例53に示す化合物を得た。

実施例53

20

7-クロロー6-(ヒドロキシメチル)-1H, 5H-ピリド[3, 2, 1-ij] 25 キナゾリン-1, 3 (2H) -ジオン

¹HNMR (DMSO-d₅) δ; 11.73(br s, 1H), 7.81(dd, 1H, J=1.1, 7.7Hz).

7.72(dd, 1H, J=1.1, 7.7Hz), 7.20(t, 1H, J=7.7Hz), 5.34(br s, 1H), 4.74(s.

2H), 4.35(s, 2H).

実施例54

7-クロロ-6- (クロロメチル) -1H, 5H-ピリド [3, 2, 1-ij] キナ ゾリン-1, 3 (2H) -ジオン

7-クロロ-6-(ヒドロキシメチル)-1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3(2H)-ジオン100.0mg(0.378ミリモル)のトルエン20mL懸濁液に塩化チオニル258.4mg(2.17ミリモル)を加え、80℃で1時間攪拌した。反応混合物を室温まで冷却し、反応混合物を減圧濃縮し、

10 残査にトルエンを加えてさらに減圧濃縮し、7-クロロ-6-(クロロメチル)-1
 H,5H-ピリド[3,2,1-ij]キナゾリン-1,3(2H)-ジオン107.
 0mg(定量的)を得た。

¹ H NMR (DMSO-d₆) δ ; 11.73(br·s, 1H), 7.83(dd, 1H, J=1.1, 7.7Hz), 7.75(dd, 1H, J=1.1, 7.7Hz), 7.19(t, 1H, J=7.7Hz), 4.72(s, 2H), 4.54(s, 2H).

15

5

実施例11に準じて実施例55に示す化合物を得た。

実施例55

7-クロロ-6-[(ジメチルアミノ)メチル]-1H,5H-ピリド[3,2,1-ij]キナゾリン-1,3(2H)-ジオン

¹ HNMR (DMSO-d₆) δ ; 11.73(br s, 1H), 7.84(dd, 1H, J=1.1, 7.7Hz), 7.77(dd, 1H, J=1.1, 7.7Hz), 7.23(t, 1H, J=7.7Hz), 4.68(s, 2H), 3.31(s, 2H), 2.20(s, 6H).

実施例56

25 1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3, 7 (2H, 6H) -トリオン 7-オキシム

1H, 5H-ピリド[3, 2, 1-ij]キナゾリン-1, 3, 7 (2H, 6H)

-トリオン108.1mg(0.500ミリモル)、ヒドロキシルアミン塩酸塩525.0mg(7.56ミリモル)、酢酸ナトリウム三水和物900.0mg(6.609ミリモル)、エタノール40mL及び水20mLの混合物を6時間加熱還流した。反応混合物中のエタノールを留去し、析出した白色固体を濾取し、固体を水で洗浄することにより、1H,5Hーピリド[3,2,1-ij]キナゾリン-1,3,7(2H,6H)-トリオン 7-オキシム90.7mg(収率78%)を得た。
¹HNMR(DMSO-d₆)δ;11.61(br s,1H),11.55(br s,1H),8.12(dd,1H,J=1.1,7.7Hz),7.97(dd,1H,J=1.1,7.7Hz),7.24(t,1H,J=7.7Hz),3.97(t,2H,J=6.6Hz),2.91(t,2H,J=6.6Hz).

10

実施例56に準じて実施例57に示す化合物を得た。

実施例57

1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3, 7 (2H, 6H) - トリオン 7- (O-メチルオキシム)

15 ¹ HNMR (DMSO-d₆) δ; 11.64(br s, 1H), 8.13(dd, 1H, J=1.1, 7.7Hz), 8.00(dd, 1H, J=1.1, 7.7Hz), 7.25(t, 1H, J=7.7Hz), 3.97(t, 2H, J=6.6Hz), 3.96(s, 3H), 2.92(t, 2H, J=6.6Hz).

実施例56に準じて実施例58に示す化合物を得た。

20 実施例58

1H, 5H-ピリド [3, 2, 1-ij] キナゾリン-1, 3, 7 (2H, 6H) -トリオン 7- (O-ベンジルオキシム)

¹ HNMR (DMSO-d₆) δ ; 11.59(br s, 1H), 8.70(dd, 0.5H, J=1.1, 7.7Hz), 8.12(dd, 0.5H, J=1.1, 7.7Hz), 8.04(dd, 0.5H, J=1.1, 7.7Hz), 8.00(dd, 0.5H,

25 J=1.1, 7.7Hz), 7.22-7.45(m, 6H), 5.23(s, 1H), 5.20(s, 1H), 4.04(t, 1H, J=6.6Hz), 3.97(t, 1H, J=6.6Hz), 2.97(t, 1H, J=6.6Hz), 2.69(t, 1H, J=6.6Hz).

試験例

〔試薬および器材〕

- ·DNA(超音波処理済)(ナカライテスク)
- ・ニコチン酸アミドアデニンジヌクレオチド (NAD:ナカライテスク)
- 5 · [³H]NAD([アデニン-2,8-³H]-NAD)(NEN(登録商標) Life Science Products, Inc. (米国)、比活性1402 GBq/mmol)
 - ・PARP(ヒトPARP組替え体、660ユニット/mg)(Trevigen, Inc. (米国))
 - ・ベンズアミド (和光純薬工業(株))
 - ・96ウェルプレート(丸底パーフェクトプレート、ポリプロピレン製)(CORNING Costar
- 10 (米国))
 - ・96ウェルプレート用グラスファイバーフィルター:プリンテッド フィルターマット B(double thickness, 90×120 mm)(PerkinElmer, Inc. (米国))
 - ・固形シンチレーターシート: MeltiLex(登録商標)A (73×109 mm、~4 g/シート)(PerkinElmer, Inc. (米国))
- 15 ・フィルター+シンチレーターの封入用サンプルバック(PerkinElmer, Inc. (米国)) [試験方法]

各溶液の調製には、緩衝液(50mM Tris-HC1(pH8.0)/25mM MgC1₂水溶液)を使用した。ポリプロピレン製の96穴丸底プレートに、被検化合物溶液20μ1/ウェル、10μg/mlの DNAを含む1μM [³H]NAD(比活性7 kBq/ml)30μ1/ウェル、4ユニット/ml (6μg/ml)PARP 20 溶液50μ1/ウェルを順次添加し、室温で1.5時間、反応を進行させた(反応液中の各試薬 最終濃度は、DNA:3μg/ml、[³H]NAD:0.3μM/比活性2.1 kBq/ml、PARP:2ユニット/ml (3μg/ml))。反応は、24mMのベンズアミドを9μ1/ウェル添加(添加後2 mM)して停止させ、反応液中のPARPをセルハーベスター(HARVESTER 96 (登録商標) , TOMTEC Inc. (米国))でプレート用グラスファイバーフィルター上に回収した。グラスファイバーフィルターはPARP回収直前に80%エタノールを通し、PARP回収後、80%エタノールでプレ

ートの各ウェルを4回洗浄して、洗浄液もグラスファイバーフィルターに通した。グラ

スファイバーフィルターを電子レンジで3~4分加熱して乾燥させ、固形シンチレーターシートを2枚重ねてサンプルバック中に入れ、加熱シールにより封入した。これを約50℃のヒーター上に置いてシンチレーターを熱融解させ、フィルターに浸透させた後、室温に戻してプレート用カウンター(1450 MicroBeta (登録商標) TriLux、

5 PerkinElmer, Inc. (米国))で、PARPに付加されたpoly(ADP-ribose)中の[3H]のカウント(cpm)を測定した(10分/プレート)。

PARP活性に対する阻害率は、以下の式を用いて算出した。

阻害率(%)=[1-(化合物添加ウェルのカウント(cpm)-バックグランドカウント (cpm))/(化合物非添加ウェルのカウント(cpm)-バックグランドカウント(cpm))]×100

10 (バックグランドカウント=化合物・PARP非添加ウェルのカウント(cpm)) 各被検化合物について、阻害率をn=2で測定し、IC50値を算出した。
[試験結果]

- 5, 6-ジヒドロ-1H-ピロロ[3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン(実施例1の化合物):
- 15 I $C_{50} = 0$. 14 μ M.
 - 6, 7-ジヒドロ-1H, 5H-ピリド[3, 2, 1-ij] キナゾリン-1, 3 (2H) -ジオン(実施例2の化合物):
 - $IC_{50} = 0.052 \mu M$
 - 4-(ジメチルアミノ)-N-[(1,3-ジオキソー2,3,6,7-テトラヒド
- 20 ロー1H, 5H-ピリド[3, 2, 1-ij] キナゾリン-6-イル)メチル]ベン ズアミド(実施例29の化合物):
 - $IC_{50} < 0.05 \mu M$
 - N-[(1,3-ジオキソー2,3,6,7-テトラヒドロー1H,5H-ピリド [3,2,1-ij]キナゾリン-6-イル)メチル] -4-ピペリジンカルボキサ
- 25 ミド 塩酸塩(実施例39の化合物):
 - $IC_{50} = 0.074 \mu M$

産業上の利用の可能性

本発明化合物は、PARP阻害作用を有し、従って例えば、PARP活性の亢進に 起因する疾患、例えば、脳虚血障害、神経変性疾患、脳挫傷、頭部外傷、脊椎損傷、 5 糖尿病、虚血性心疾患、虚血もしくは虚血再潅流による臓器障害、炎症、炎症性腸炎、 癌、悪液質、腎障害、骨粗鬆症、急性疼痛および慢性疼痛、敗血症、骨格筋変性症、 筋ジストロフィー、皮膚の老化、免疫系の老化、AIDS、老化細胞の遺伝子発現の変化 等の治療薬薬として等として使用できる。

請求の範囲

1. 一般式(1)

5

10

15

20

[式中、 $-X^1-X^2-$ は式:-C(=O)-N(R^7)-または-C(R^8)=N-で表される基を表し、 R^7 は水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のシクロアルキルアルキル基、置換もしくは無置換のアリールアルキル基、置換もしくは無置換の方香族基、置換もしくは無置換の飽和へテロ環基、または置換もしくは無置換のアシル基を、 R^8 はハロゲン原子、または式: $-OR^{8a}$ 、 $-NH_2$ 、 $-NHR^{8a}$ 、 $-NR^{8a}R^{8b}$ もしくは一 SR^{8a} で表される基を表す(R^{8a} および R^{8b} は、それぞれ独立して、置換もしくは無置換のアルキル基を表す)。

R¹、R²およびR³は、それぞれ独立して、水素原子、置換もしくは無置換のアルキール基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のシクロアルキルアルキル基、置換もしくは無置換のシクロアルキルアルキル基、置換もしくは無置換のアリールアルキル基、置換もしくは無置換の芳香族基、置換もしくは無置換の飽和ヘテロ環基、置換もしくは無置換のアシル基、ハロゲン原子、ニトロ基、または式:-OR¹a、-NR¹aR¹bもしくは-SR¹aで表される基を表す(R¹aおよびR¹bは、それぞれ独立して、水素原子、または置換もしくは無置換のアルキル基を表す)。

 R^4 は、置換もしくは無置換のアルキレン基(該アルキレン基の $-CH_2$ -基は

WO 01/79206 PCT/JP01/03104

式:-O-、-S(O)_n-、-N(R^{6a})-、-C(=N-OR^{6b})-、
-C(=CR^{6c}R^{6d})-、または-C(=O)-で表される基によって、1または複数、同一または異なって置き換えられることができ、また該アルキレン基の隣り合ういずれか2つの炭素原子は2重結合もしくは3重結合を形成することができる。nは、0、1または2の整数を表し、R^{6a}は置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のシクロアルキルアルキル基、置換もしくは無置換のシクロアルキルアルキル基、置換もしくは無置換のアリールアルキル基、置換もしくは無置換の方香族基、置換もしくは無置換の飽和ヘテロ環基、または置換もしくは無置換のアシル基を表し、R^{6b}は

5

10 水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール アルキル基を表し、R⁶cおよびR^{6d}はそれぞれ独立して、水素原子または置換され ていてもよい低級アルキル基を表す)を表す。

但し、1H, 5H-ピリド[3, 2, 1-ij]キナゾリン-1, 3, 7 (2H, 6H) -トリオン、

15 9-メチルー5, 6-ジフェニルー1H-ピロロ[3, 2, 1-ij] キナゾリンー 1, 3 (2H) -ジオン、および

9-メトキシ-5, 6-ジフェニル-1H-ピロロ[3, 2, 1-ij]キナゾリン-1, 3(2H)-ジオンを除く。

]で表される化合物もしくはそのプロドラッグまたはそれらの医薬として許容される 20 塩。

- 2. R^4 が、置換もしくは無置換の $C2\sim5$ アルキレン基(該アルキレン基の $-CH_2$ -基は式: -O-、-S (O) $_n-$ 、-N (R^{6a}) -、
- -C ($=N-OR^{6b}$) -、-C ($=CR^{6c}R^{6d}$) -、または-C (=O) -で表さ
- 25 れる基によって、1または複数、同一または異なって置き換えられることができ、また該アルキレン基の隣り合ういずれか2つの炭素原子は2重結合もしくは3重結合を形成することができる。n、R^{6a}、R^{6b}、R^{6c}、およびR^{6d}は請求項1と同じ意味

20

を表す。) である、請求項1記載の化合物もしくはそのプロドラッグまたはそれらの 医薬として許容される塩。

- 3. R⁴が、置換もしくは無置換のC 2~5アルキレン基(該アルキレン基の -CH₂-基は式:-C(=N-OR⁶b) -、-C(=CR⁶cR⁶d) -、または -C(=O) -で表される基によって、1または複数、同一または異なって置き換え られることができ、また該アルキレン基の隣り合ういずれか2つの炭素原子は2重結 合もしくは3重結合を形成することができる(R⁶b、R⁶c、およびR⁶dは請求項1 と同じ意味を表す))である、請求項1記載の化合物もしくはそのプロドラッグまた 10 はそれらの医薬として許容される塩。
 - 4. R⁴が、置換もしくは無置換のC2~5アルキレン基である、請求項1記載の 化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩。
- 15 5. R⁴上に少なくとも1つの置換基を有し、該置換基の少なくとも一つが式:
 -R⁴^a-R⁴^b-R⁴^c-R⁴^dで表される置換アルキル基
 (式中、R⁴^aは置換されていてもよいアルキレン基

(該アルキレン基の $-CH_2$ -基のうち、 R^4 に直接結合するもの以外の一つは酸素原子または式: $-NR^4$ °C(=O) -もしくは-C(=O) NR^4 °-で表される基(R^4 °は水素原子、低級アルキル基またはアリールアルキル基を表す)によって置き換えられていてもよい)を、

R⁴bは置換されていてもよい芳香族基、シクロアルキル基、または単結合 を、

25 R⁴°は置換されていてもよいアルキレン基(該アルキレン基の-CH₂-基のうちの一つは酸素原子によって置き換えられていてもよい)または単結合を、

R⁴dは水素原子、アミノ基または窒素原子を含有する飽和ヘテロ環基 (該アミノ基または窒素原子を含有する飽和ヘテロ環基の窒素原子上には1 つまたは2つの低級アルキル基またはアリールアルキル基が同一または異なって置換していてもよい)を表す

- 5)である、請求項 1 ~4 のいずれか 1 項に記載の化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩。
 - 6. 請求項1~5のいずれか1項に記載の化合物もしくはそのプロドラッグまたは それらの医薬として許容される塩を含有する医薬。

10

- 7. 請求項1~5のいずれか1項に記載の化合物もしくはそのプロドラッグまたは それらの医薬として許容される塩を含有するポリ(ADP-リボース)ポリメラーゼ 阻害剤。
- 15 8. 請求項1~5のいずれか1項に記載の化合物もしくはそのプロドラッグまたは それらの医薬として許容される塩を含有する脳虚血障害、脳卒中、脳卒中後の後遺症、 脳浮腫、神経変性疾患、パーキンソン病、アルツハイマー病、ハンチントン舞踏病、 脳挫傷、頭部外傷、脊椎損傷、糖尿病、虚血性心疾患、心筋梗塞、心筋虚血再潅流障 害、狭心症、不整脈、関節炎、慢性関節リウマチ、炎症性腸炎、敗血症、癌、または 20 皮膚の老化の治療剤。
 - 9. 請求項1~5のいずれか1項に記載の化合物もしくはそのプロドラッグまたは それらの医薬として許容される塩の、ポリ (ADP-リボース) ポリメラーゼ阻害剤 の製造に於ける使用。

25

10. 請求項1~5のいずれか1項に記載の化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩の、脳虚血障害、脳卒中、脳卒中後の後遺症、脳

浮腫、神経変性疾患、パーキンソン病、アルツハイマー病、ハンチントン舞踏病、脳 挫傷、頭部外傷、脊椎損傷、糖尿病、虚血性心疾患、心筋梗塞、心筋虚血再灌流障害、 狭心症、不整脈、関節炎、慢性関節リウマチ、炎症性腸炎、敗血症、癌、または皮膚 の老化の治療剤の製造に於ける使用。

5

- 11. 治療を必要とする患者に、請求項1~5のいずれか1項に記載の化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩を投与することからなる、患者におけるポリ(ADP-リボース)ポリメラーゼの阻害方法。
- 10 12. 治療を必要とする患者に、請求項1~5のいずれか1項に記載の化合物もしくはそのプロドラッグまたはそれらの医薬として許容される塩を投与することからなる脳虚血障害、脳卒中、脳卒中後の後遺症、脳浮腫、神経変性疾患、パーキンソン病、アルツハイマー病、ハンチントン舞踏病、脳挫傷、頭部外傷、脊椎損傷、糖尿病、虚血性心疾患、心筋梗塞、心筋虚血再潅流障害、狭心症、不整脈、関節炎、慢性関節リウマチ、炎症性腸炎、敗血症、癌、または皮膚の老化の治療方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/03104

CLASSIFICATION OF SUBJECT MATTER C07D487/04, C07D471/04, C07D498/04, C07D513/04, A61K31/519, A61K31/55, Int.Cl' A61K31/551, A61K31/5365, A61K31/542, A61P9/10, A61P25/00, A61P25/16, A61P25/28, A61P25/14, A61P3/10, A61P9/06, A61P19/02, A61P29/00, A61P1/04, A61P35/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C07D487/04, C07D471/04, C07D498/04, C07D513/04, A61K31/519, A61K31/55, Int.Cl7 A61K31/551, A61K31/5365, A61K31/542, A61P9/10, A61P25/00, A61P25/16, A61P25/28, A61P25/14, A61P3/10, A61P9/06, A61P19/02, A61P29/00, A61P1/04, A61P35/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA(STN), REGISTRY(STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category* 1-3 GAMAY. et al., "Synthesis of glucosylamino · · · amino acids", 29(9), 1999, pp.1493-1501, table 1 BANASIKM.tal., "Specific Inhibitors of · · transferase", 1-10 Α Vol.267, No.3, 1992, pp.1569-1575 US, 3872119, A (Sandoz-Wander, Inc.), Α 1-10 18 March, 1975 (18.03.75) (Family: none) US, 3709887, A (Sandoz-Wander, Inc.), Α 1-10 09 January, 1973 (09.01.73) (Family: none) WO, 98/33802, A1 (UNIVERSITY VENTURES LIMITED), 1-10 Α 06 August, 1998 (06.08.98) & EP, 966476, A1 & US, 6156739, A Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or Special categories of cited documents: document defining the general state of the art which is not priority date and not in conflict with the application but cited to considered to be of particular relevance understand the principle or theory underlying the invention earlier document but published on or after the international filing document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is step when the document is taken alone document of particular relevance; the claimed invention cannot be cited to establish the publication date of another citation or other considered to involve an inventive step when the document is special reason (as specified) document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 08 June, 2001 (08.06.01) 19 June, 2001 (19.06.01) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No. Facsimile No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/03104

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: Claims Nos.: 11-12 because they relate to subject matter not required to be searched by this Authority, namely: Claims 11 and 12 involve methods for treatment of the human body by therapy. because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

国際出願番号 PCT/JP01/03104

国際調査報告

発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ CO7D487/04, CO7D471/04, CO7D498/04, CO7D513/04, A61K31/519, A61K31/55, A61K31/551, A61K31/5365, A61K31/542, A61P9/10, A61P25/00, A61P25/16, A61P25/28, A61P25/14, A61P3/10, A61P9/06, A61P19/02, A61P29/00, A61P1/04, A61P35/00

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' CO7D487/04, CO7D471/04, CO7D498/04, CO7D513/04, A61K31/519, A61K31/55, A61K31/551, A61K31/5365, A61K31/542, A61P9/10, A61P25/00, A61P25/16, A61P25/28, A61P25/14, A61P3/10, A61P9/06, A61P19/02, A61P29/00, A61P1/04, A61P35/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CA (STN), REGISTRY (STN)

C. 関連する	ると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	GAMA Y.et al「Synthesis of glucosylamino・・・amino acids」, 29(9),1999,p.1493-1501,表 1	1-3
A	BANASIK M. et al. [Specific Inhibitors of • transferase], Vol. 267, No. 3, 1992, p. 1569-1575	1-10
A	US, 3872119, A (Sandoz-Wander, Inc.), 18.3月.1975 (18.03.75) (ファミリーなし)	1-10
	•	

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告の発送日 国際調査を完了した日 19.06**.01** 08.06.01 特許庁審査官(権限のある職員) 国際調査機関の名称及びあて先 9160 日本国特許庁(ISA/JP) 福井悟 郵便番号100-8915 電話番号 03-3581-1101 内線 3452 東京都千代田区霞が関三丁目 4番3号

国際調査報告

国際出願番号 .PCT/JP01/03104

(続き).	関連すると認められる文献	
用文献の テゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	US, 3709887, A (Sandoz-Wander, Inc.), 9. 1月. 1973 (09. 01. 73) (ファミリーなし)	1-10
A	WO, 98/33802, A1 (UNIVERSITY VENTURES LIMITED), 6.8月.1998(06.08.98) & EP, 966476, A1 & US, 6156739, A	1-10
,	·	
:	·	
	*	
	<u>;</u>	
	•	
	·	
	•	

国際調査報告

国際出願番号 PCT/JP01/03104

法第8第	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き) 条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作		
成しなかった。			
_	請求の範囲 <u>11-12</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、		
	請求の範囲11-12は人の身体の治療による処置方法を包含するものである。		
	· ·		
2.	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、		
з. 🗌	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。		
	·		
第Ⅱ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)		
次に対	述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。		
	·		
•			
1. [出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。		
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。		
з. 🗌	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。		
3.			
]	付のあった次の請求の範囲のみについて作成した。		
3. [
]	付のあった次の請求の範囲のみについて作成した。 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載		
4. 🗍	付のあった次の請求の範囲のみについて作成した。 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。		
4. 🗍	付のあった次の請求の範囲のみについて作成した。 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載		