6.6 Quantum capacitor

Capacitance: the capacity to store charges

Applied voltage V_q, injected charges Q

$$C_{\rm g} = \frac{Q}{V_{\rm g}}$$

Band diagram of the capacitor

Semiconductor has a very low density of states near band edge or inside bandgap

$$C_{\rm q} = \frac{\mathrm{d}Q}{\mathrm{d}V_{\rm ch}} = \frac{1}{e} \frac{\mathrm{d}Q}{\mathrm{d}E_{\rm F}}$$

For conventional metal:

$$C_{\rm q} \rightarrow \infty$$

 C_{q} can be detected

Quantum capacitance: $C_q = e^2 \cdot \rho(E_F)$ Density of states

Parallel plate capacitor

Geometry capacitance

$$C_g = \frac{\varepsilon}{d}$$

Quantum capacitor

$$C_t^{-1} = \left(\frac{\varepsilon}{d}\right)^{-1} + C_q^{-1}$$

Geometry Quantum capacitance capacitance

Quantum capacitance: $C_a = e^2 \cdot \rho(E_F)$ ---- Density of states

Metal - Large ρ , $C_q > 100 \,\mu\text{F/cm}^2 >> C_q$ 2D material - Low ρ , $C_q \sim 1 \,\mu\text{F/cm}^2$

Advantage of capacitance measurement

Capacitance $C_a = e^2 \cdot \rho(E_F)$

Transport $\sigma = e^2 \cdot D(E_{\rm F}) \cdot \rho(E_{\rm F})$

- Study intrinsic electronic states
- Band structure

Detect impurity states

Electron-electron interactions

Quantum capacitance in pristine graphene

Graphene/8nm-Y₂O₃/Au

$$C_t^{-1} = \left(\frac{\varepsilon}{d}\right)^{-1} + \boldsymbol{C_q}^{-1}$$

Larger ε/d, better performance

Quantum capacitance in pristine graphene

Quantum phenonmena

6.7 Dielectric breakdown

Electric field cannot be infinite large

When $E \ge E_{\rm br}$, there will be large current. This phenomenon is called **dielectric breakdown**

 $E_{\rm br}$ is called **dielectric strength**

Dielectric Medium	Dielectric Strength	Comments
Atmosphere at 1 atm pressure	31.7 kV cm ⁻¹ at 60 Hz	1 cm gap. Breakdown by electron avalanche by impact ionization.
SF ₆ gas	79.3 kV cm ⁻¹ at 60 Hz	Used in high-voltage circuit breakers to avoid discharges.
Polybutene	>138 kV cm ⁻¹ at 60 Hz	Liquid dielectric used as oil filler and HV pipe cables.
Transformer oil	128 kV cm ⁻¹ at 60 Hz	
Amorphous silicon dioxide (SiO ₂) in MOS technology	10 MV cm ⁻¹ dc	Very thin oxide films without defects. Intrinsic breakdown limit.
Borosilicate glass	10 MV cm ⁻¹ duration of 10 μs	Intrinsic breakdown.
	6 MV cm ⁻¹ duration of 30 s	Thermal breakdown.
Polypropylene	295-314 kV cm ⁻¹	Likely to be thermal breakdown or electrical treeing.

Dielectric breakdown in gas

Cosmic radiation

Some free electrons in air

Free electrons are accelerated to a high energy, which can knock out other electrons from gas molecule

Avalanche effect: more and more electrons are knocked out

High voltage conductor

An example

Argon ionization energy $E_{\rm I}$ Argon gas pressure PIonization radius $r_{\rm i}$ Temperature T

Breakdown voltage V_{br}

Electron mean free path parallel to E-field between two ionization collision l

To knock out electron: $eE_{\rm br}l = E_{\rm I}$

$$PV = NkT$$

$$n_{gas} = \frac{P}{kT}$$

$$V_{br} = E_{br}d = \frac{\pi E_{I}Pr_{i}^{2}d}{ekT}$$

$$l = \frac{1}{n_{gas}(\pi r_{i}^{2})}$$

$$E_{br} = \frac{\pi E_{I}Pr_{i}^{2}}{ekT}$$

$$V_{\rm br} = \frac{\pi E_{\rm I} P r_{\rm i}^2 d}{ekT}$$

Higher pressure, larger breakdown voltage

Dielectric breakdown in solids

Intrinsic/Electronic breakdown

Electron avalanche effect

When $eE_{\rm br}l \ge ??$

$$eE_{\rm br}l \ge E_{\rm g}$$

Electrons have enough energy to knock out other bonded electrons to the conductance band.

Intrinsic/Electronic breakdown

Amorphous SiO₂, $E_{\rm br} \sim 10$ MV/cm for DC voltage.

If a MOSFET has a 10 nm-thick SiO₂, the breakdown voltage is 10V

If the dielectric material is thin enough, quantum tunneling effect can occur before dielectric breakdown.

Thermal breakdown

For high frequency AC voltage

Input power: $IV = j\omega C'^{V^2} + \frac{V^2}{R_P}$

Joule heat per unit volume: $\frac{V^2}{R_P} \frac{1}{\text{Volume}} = \sigma_P E^2$

If heat cannot be efficiently removed, local temperature will be very high

Conductance channel forms and dielectric breakdown

Thermal breakdown

Thermal breakdown depends on ambient temperatures

Higher temperature, lower dielectric strength E_{br}

Electromechanmical/Electrofracture breakdown

Small elastic modulus → Easy to deform 易变形

Internal discharge

Internal gas atmosphere region easily breakdown

Internal discharge

The void/crack

Locally breakdown

Melt dielectric or other chemical transformation

The breakdown region extends

Electrical tree 电树枝

Breakdown in high voltage coaxial cable

Branch trees

Bush trees

Insulation aging

Moist environment

Although water tree is not conductive, it reduces the quality of dielectric.

Comparison of various breakdown mechanism

6.8 Piezoelectricity 压电效应

Crystals, such as quartz (crystalline SiO₂) and BaTiO₃, become polarized when they are mechanically stressed.

Charges appear on the surface under stress, and results in a voltage difference between two surfaces.

When apply an external electric field, the crystal also experiences mechanical deformation (extension or compression).

These two effects are called **piezoelectricity**.

Physical mechanisms

(1) When crystalline structure has center of symmetry

No piezoelectricity!

(2) When crystalline structure is noncentrosymmetric

Hexagonal cell

When stress is along y direction

$$P_{\rm x}=0$$

$$P_{x} = 0$$
$$P_{y} < 0$$

(2) When crystalline structure is noncentrosymmetric

Hexagonal cell

When stress is along x direction

$$P_{\rm x}=0 \qquad P_{\rm y}>0$$

An applied stress in one direction can give rise to induced polarization in other crystal directions.

Induced polarization $P_{\rm i}=d_{\rm ij}T_{\rm j}$ Mechanical stress along *j*-direction

 d_{ij} : piezoelectric coefficients

 d_{ij} : has a unit of m/V

 T_i : has a unit of Pa

Induced strain (应变) $S_{\rm i}=d_{\rm ij}E_{\rm j}$ Applied electric field along *j*-direction

Electromechanical coupling factor机电耦合系数

$$k^2 = \frac{\text{Electrical energy coverted to mechanical energy}}{\text{Input of electrical energy}}$$
 or
$$k^2 = \frac{\text{Mechanical energy coverted to electrical energy}}{\text{Input of mechanical energy}}$$

Crystal	$d \text{ (m V}^{-1})$	k	Comment
Quartz (crystal SiO ₂)	2.3×10^{-12}	0.1	Crystal oscillators, ultrasonic transducers, delay lines, filters
Rochelle salt (NaKC ₄ H ₄ O ₆ · 4H ₂ O)	350×10^{-12}	0.78	
Barium titanate (BaTiO ₃)	190×10^{-12}	0.49	Accelerometers
PZT, lead zirconate titanate (PbTi _{1-x} Zr _x O ₃)	480×10^{-12}	0.72	Wide range of applications including earphones, microphones, spark generators (gas lighters, car ignition), displacement transducers, accelerometers
Polyvinylidene fluoride (PVDF)	18×10^{-12}	-	Must be poled; heated, put in an electric field and then cooled. Large area and inexpensive

Piezoelectric transducer 压电换能器

The transducer is coupled with solids using grease油脂

An elastic waves is generated in solids, and are usually in ultrasonic wave region 超声波.

Piezoelectric transducer 压电换能器

Can be used to determine the Young's modulus of solids, and imperfections (such as cracks) in solids.

Piezoelectric spark generator压电火花发生器

Widely used in lighters打火机 and car ignitions汽车点火.

If we know:

Piezoelectric coefficient d

Relative dielectric constant $\varepsilon_{\rm r}$

Surface area A

Thickness L

Breakdown voltage of the spark gap in air $V_{\rm br}$

Ask: the minimum force needed to generate the spark.

(a) Left figure

Induced polarization: $P = dT = d\frac{F}{A}$

Induced voltage:
$$V = \frac{Q}{C} = \frac{PA}{\varepsilon_r \varepsilon_0 A/L} = \frac{PL}{\varepsilon_r \varepsilon_0} = \frac{FLd}{A\varepsilon_r \varepsilon_0}$$

Minimum force:
$$F = \frac{A\varepsilon_r \varepsilon_0}{LdV_{br}}$$

(b) Right figure

Induced polarization: $P = dT = d\frac{F}{A}$

Induced voltage:
$$V = \frac{Q}{C} = \frac{2PA}{\varepsilon_r \varepsilon_0 A/L} = \frac{2PL}{\varepsilon_r \varepsilon_0} = \frac{2FLd}{A\varepsilon_r \varepsilon_0}$$

Minimum force:
$$F = \frac{A\varepsilon_{\rm r}\varepsilon_0}{2LdV_{\rm br}}$$

Quartz oscillators and filters

Piezoelectric vibration 压电振荡

- 3) When AC voltage frequency equals to the intrinsic frequency of quartz.
 - 4) The amplitude of vibration is very large, oscillation is resonant.

Intrinsic frequency: 固有频率, is also called resonant frequency 共振频率

Equivalent circuit 等效电路

 C_0 : Static capacitance

L: Inertia of mechanical vibration 机械振动的惯性

 $C \ll C_0$: Elastic capacitance

R: Friction dissipation 摩擦损耗

Equivalent circuit 等效电路

 C_0 : Determine by area and thickness of quartz

L is large: 10 H ~ 10 mH

C is small: 0.01 ~ 0.1 pF

R is small: ~100 Ω

Equivalent circuit 等效电路

Quality factor Q is large: $10^4 \sim 10^6$

Frequency stability $\Delta f/f_0$ is very good:

RC oscillator $\Delta f/f_0$: 10^{-2}

LC oscillator $\Delta f/f_0$: $10^{-3} \sim 10^{-4}$

Quartz oscillator $\Delta f/f_0$: $10^{-9} \sim 10^{-11}$

Ignore R: R=0

Impedance 阻抗 \dot{Z} = reactance 电抗 \dot{X}

$$\dot{X} = \frac{\frac{1}{j\omega C_0} (j\omega L + \frac{1}{j\omega C})}{\frac{1}{j\omega C_0} + j\omega L + \frac{1}{j\omega C}}$$

$$= \frac{1 - \omega^2 LC}{\mathrm{j}\omega C_0(\frac{C}{C_0} + 1 - \omega^2 LC)}$$

$$\dot{X} = \frac{1 - \omega^2 LC}{j\omega C_0 (\frac{C}{C_0} + 1 - \omega^2 LC)}$$

(a) When $1 - \omega^2 LC = 0$, $\dot{X} = 0$

Series resonance 串联谐振

Series resonant frequency:

$$f_{\rm S} = \frac{1}{2\pi\sqrt{LC}}$$

When $f < f_s$: circuit is capacitive 电路呈容性

When $f > f_s$: circuit is inductive 电路呈感性

$$\dot{X} = \frac{1 - \omega^2 LC}{j\omega C_0 (\frac{C}{C_0} + 1 - \omega^2 LC)}$$

(b) When
$$\frac{c}{c_0} + 1 - \omega^2 LC = 0$$
, $\dot{X} \to \infty$

Parallel resonance 并联谐振

Parallel resonant frequency:

$$f_{\rm p} = \frac{1}{2\pi\sqrt{LC||C_0}} > f_{\rm s}$$

$$C \ll C_0$$
: $f_p \approx f_s$

When $f > f_p$: circuit is capacitive 电路呈容性

When $f < f_s$: circuit is capacitive

When $f_s < f < f_p$: circuit is inductive

When $f > f_p$: circuit is capacitive

6.8 Ferroelectric and pyroelectric crystals铁电和热释电晶体

Ferroelectric crystals: crystals are permanently polarized in the absence of an applied stress.

BaTiO₃ cubic crystal structure above 130 °C

No polarization!

Above 130 °C

Below 130 °C

No polarization!

Polarization!

Non-ferroelectric!

Ferroelectric!

The transition temperature T_c =130 °C is called **Curie temperature**.

Below 130 °C

a=0.4 nm

Displacement of Ti⁴⁺ atoms is around 0.012 nm.

Poling 极化

The axis along which P develops is called the **ferroelectric axis**.

Since $\varepsilon_{\rm r}$ along a-axis ~4200 is much larger than that along c-axis ~160, the displacement of Ti atom will be more efficient along a-axis.

Remove electric field

Below 130 °C

$$P = \Delta P + P_{\text{permanent}}$$

All ferroelectric crystals are also piezoelectric, but the reverse is not true.

Pyroelectricity 热释电

Temperature \uparrow \Longrightarrow Crystal expands \Longrightarrow Polarization change δP

Potential change δV

Electric field change δP

$$\delta E = \frac{\delta P}{\varepsilon_0(\varepsilon_r - 1)}$$

A temperature change induces a change in polarization: **pyroelectricity**.

Pyroelectric coefficient:

$$p = \frac{dP}{dT}$$

Pyroelectric detector

After incident light, charges start accumulate at surface, and voltage increases.

When temperature is steady, charges at surface will slowly become neutralized or leak.

Chopped incident light

Pyroelectric current density

$$J_{\rm p} = \frac{dP}{dt} = p \frac{dT}{dt}$$

Pyroelectric current responsivity

$$R_{\rm I} = \frac{J_{\rm p}}{\text{Input radiation power}}$$

Pyroelectric voltage responsivity

$$R_{V} = \frac{\text{Pyroelectric output voltage}}{\text{Input radiation power}}$$