Inverse Calculation

Let the vector $(y_0, y_1, ... y_{n-1})$ represent the values of polynomial A of degree n-1 where the points $x=w_n^k$ be given. We want to restore the coefficients $(a_0, a_1, ..., a_{n-1})$ of the polynomial. So the whole FFT process can be shown like the matrix

The square matrix on the left is the **Vandermonde Matrix** (V_n), where the (k, j) entry of V_n is $w_n^{k_j}$ Now for finding the inverse, we can write the above equation as

A quick check can verify that the inverse of the matrix has the following form:

Thus we obtain the formula:

$$a_k=1/n\sum y_j w_n^{-kj}$$
 for $j=0$ to n-1

Comparing this to the formula for y_k

$$y_k=1/n\sum a_j w_n^{kj}$$
 for $j=0$ to n-1

We notice that these problems are almost the same, so the coefficients a_k can be found by the same divide and conquer algorithm, only instead of $\mathbf{w_n}^k$ we have to use $\mathbf{w_n}^{-k}$, and at the end, we need to divide the resulting coefficients by n.