Learning in Games: Solution Concepts

Ben Chasnov

February 20, 2020

An optimization problem with multiple 'players.'

Single objective:

ightharpoonup Cost: $f: X \to \mathbb{R}$

▶ Variable: $x \in X$

Optimality:

$$f(x^*) \le f(x), x \in X_{x^*}$$
 (local)

 $\min_{x \in X} f(x)$

Single objective

An optimization problem with multiple 'players.'

Single objective:

- ightharpoonup Cost: $f: X \to \mathbb{R}$
- ▶ Variable: $x \in X$

Optimality:

$$f(x^*) \le f(x), x \in X_{x^*}$$
 (local)

$$\begin{bmatrix}
\min_{x \in X} f(x) \\
\text{Single objective}
\end{bmatrix}$$

Game (two players):

- ▶ Game: $G = (f_1, f_2)$.
- ightharpoonup Costs: $f_i: X_1 \times X_2 \to \mathbb{R}, i \in [1,2]$
- ▶ Variables: $(x_1, x_2) \in X_1 \times X_2$.

Optimality:

$$f_1(x_1^*, x_2^*) \le f_1(x_1, x_2^*), \ x_1 \in X_1,$$

 $f_2(x_1^*, x_2^*) \le f_2(x_1^*, x_2), \ x_2 \in X_2.$

Learning in Dynamic Environments

Shared state s, individual costs and actions

where actions $x=(x_1,x_2)$ and shared state s that evolves via dynamics $\sim P$

- Dynamic Games
- Stochastic Games
- Multi-agent Reinforcement learning

Differential Notions of Equilibrium

Optimization (Unconstrained)

Twice-continuously differentiable objective $c \in \mathcal{C}^2$. Local optimality of u^* :

$$Dc(u^*) = 0, \ D^2c(u^*) > 0.$$

Differential Notions of Equilibrium

Optimization (Unconstrained)

Twice-continuously differentiable objective $c \in \mathcal{C}^2$.

Local optimality of u^* :

$$Dc(u^*) = 0, \ D^2c(u^*) > 0.$$

Continuous Games

Local optimality of $u^* = (x_1^*, x_2^*)$: First player's condition

$$D_1 f_1(x_1^*, x_2^*) = 0, \ D_1^2 f_1(x_1^*, x_2^*) > 0$$

Second player's condition

$$D_2 f_2(x_1^*, x_2^*) = 0, \ D_2^2 f_1(x_1^*, x_2^*) > 0$$

Differential Notions of Equilibrium

Optimization (Unconstrained)

Twice-continuously differentiable objective $c \in C^2$.

Local optimality of u^* :

$$Dc(u^*) = 0, \ D^2c(u^*) > 0.$$

Continuous Games

Local optimality of $u^* = (x_1^*, x_2^*)$: First player's condition

$$D_1 f_1(x_1^*, x_2^*) = 0, \ D_1^2 f_1(x_1^*, x_2^*) > 0$$

Second player's condition

$$D_2 f_2(x_1^*, x_2^*) = 0, \ D_2^2 f_1(x_1^*, x_2^*) > 0$$

$$"D_i^2 f_i(x_i, x_{-j}) \equiv \frac{\partial}{\partial x_i^2} f_i(x)|_{x = (x_i, x_{-i})}"$$

Algorithms for Learning in Games

Develop a learning rule to generate sequence $x_i(0), \dots, x_i(t)$ over time...

Algorithms for Learning in Games

Develop a learning rule to generate sequence $x_i(0), \dots, x_i(t)$ over time...

- ▶ Asymptotic convergence: as $t \to \infty$, does $u(t) \to u^*$?
- ▶ Non-asymptotic bounds: for $t \geq T$, what is $||u(t) u^*||$?
- Regret/no-regret learning: "best action in hindsight."

Non-uniform Learning Rates

- ▶ Vector field of $\omega \equiv (D_1 f_1, D_2 f_2)$ with costs
- $f_1(u) = \frac{1}{4}x_1^4 \frac{1}{2}x_1^2 x_1x_2$
- $f_2(u) = \frac{1}{2}x_2^2 + 2x_1x_2$

Extensions of the Nash equilibrium

Hierarchy of play

Bilevel optimization, Stackelberg games, one-sided conjectural equilibrium.

Extensions of the Nash equilibrium

Hierarchy of play

Bilevel optimization, Stackelberg games, one-sided conjectural equilibrium.

Using models of others

Conjectural Variations Equilibria

Conjectural Variations Equilibria

Player 1 Player 2
$$\begin{array}{c|cccc}
 & & & & & & \\
 & \min_{x_1} f_1(x_1, \overline{x_2}) & & x_1 & & \min_{x_2} f_2(\overline{x_1}, x_2) \\
 & \overline{x_2} \in \xi_1(x_1) & & x_2 & & \overline{x_1} \in \xi_2(x_2)
\end{array}$$

Differential Conjectural Variations Equilibrium

Local optimality of $u^* = (x_1^*, x_2^*)$:

First player's condition

$$Df_1(x_1^*, \xi_1(x_1^*)) = 0, \ D^2f_1(x_1^*, \xi_1(x_1^*)) > 0$$

Second player's condition

$$Df_2(\xi_2(x_2^*), x_2^*) = 0, \ D^2f_1(\xi_2(x_2^*), x_2^*) > 0$$

• Consistency: $x_2^* = \xi_1(x_1^*)$, $x_1^* = \xi_2(x_2^*)$

Conjectural learning dynamics

Ways we can construct learning dynamics to reflect this idea:

1. Descend the gradient of $Df_1(x, \xi_i(x))$ and $Df_2(\xi_2(y), y)$.

$$\begin{aligned} x_{k+1} &= x_k - \gamma (D_1 f_1(x_k, y) + D\xi_1(x_k)^{\top} D_2 f_1(x_k, y)) \\ y_{k+1} &= y_k - \gamma (D_2 f_2(x, y_k) + D\xi_2(y_k)^{\top} D_1 f_2(x, y_k)) \end{aligned}$$
(1)

where

$$D\xi_1(x) = -(D_2^2 f_2(x, y_k))^{-1} D_{21} f_2(x, y_k).$$

2. Approximate the conjecture via taylor expansion of $\xi(x) \simeq y_k$

$$x_{k+1} = x_k - \gamma g(x_k, h(x_k)),$$

$$y_k = \arg\min_{y} f_2(x_k, y),$$
(2)

where

$$h(x) = y_k + D\xi(x_k)(x - x_k) + (x - x_k)^{\top} D^2 \xi(x_k)(x - x_k) + \mathcal{O}(x^3).$$
 (3)

Block structure of zero-sum games Approximate discrete update $x_{k+1} = x_k - \gamma g(x)$ as $\dot{x} = -g(x)$. Linearization of g at x^* where $g(x^*) = 0$:

1. Simulteanous play games

$$Dg(x^*) = \begin{bmatrix} A & B \\ -B^\top & D \end{bmatrix}$$

2. Hierarchical (Stackelberg) game

$$Dg(x^*) = \begin{bmatrix} A & 0 \\ -B^\top & D \end{bmatrix}$$

3. Conjectural (Stackelberg) game

$$Dg(x^*) = \begin{bmatrix} A & 0 \\ 0 & D \end{bmatrix}$$

Example: Individual Contribution to Public Goods

- ► Models the tragedy of the commons
- ▶ Utilities: $-f_i(x_i, x_{-i}) = (I_i x_i)^{\alpha_i}(x_i + x_{-i})^{1-\alpha_i}$
- Study of hierarchy of play and effects of various agent "conjectures."

Future Work in Learning in Games

. . .

- Characterize Conjectural Variations Equilibria: (stability, "performance metric")
- ► Devise learning rules
- Verify agent conjecture models behaviorally
- ► Lots more!