Parámetro y condiciones	Estadísticas	Intervalo de confianza
μ		
Población normal Varianza conocida	$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$	$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
 Población no normal Varianza conocida n ≥ 30 	$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$	$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
Población normal Varianza desconocida	$T = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}}$	$\overline{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$
1. Población no normal 2. Varianza desconocida 3. $n \ge 30$	$Z = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}}$	$\overline{x} - z_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{s}{\sqrt{n}}$
σ^2 ó σ		
Población normal	$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$ $gl = n - 1$	$\frac{(n-1)s^2}{\chi^2_{\alpha/2}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}$
p		
	$Z = \frac{\widehat{P} - p}{\sqrt{\frac{pq}{n}}}$ Condiciones: $np \ge 5$; $nq \ge 5$	$\widehat{p} - z_{\alpha/2} \sqrt{\frac{\widehat{p}\widehat{q}}{n}} \le p \le \widehat{p} + z_{\alpha/2} \sqrt{\frac{\widehat{p}\widehat{q}}{n}}$ Condiciones: $n\widehat{p} \ge 5$; $n\widehat{q} \ge 5$

	0 1: :	
Parámetro y condiciones	Condiciones	Intervalo de confianza
$\mu_1 - \mu_2$ 1. Poblaciones normales 2. Varianzas conocidas (σ_1^2, σ_2^2) 3.muestras independientes	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$(\overline{x}_1 - \overline{x}_2) \pm Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
1. Poblaciones no normales 2. Varianzas conocidas (σ_1^2, σ_2^2) 3. $n_1 \ge 30, n_2 \ge 30$ 4. muestras independientes	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$(\overline{x}_1 - \overline{x}_2) \pm Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
 Poblaciones normales Varianzas desconocidas pero iguales muestras independientes 	$T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ $gl = n_1 + n_2 - 2.$
 Poblaciones normales Varianzas desconocidas y diferentes muestras independientes 	$T = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$gl = n_1 + n_2 - 2.$ $(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ $v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2}.$ $\overline{d} + t_{\alpha/2} \frac{Sd}{d}$
muestras dependientes	$T = \frac{\overline{D} - \mu_d}{\frac{s_d}{\sqrt{n}}}$	$\overline{d} \pm t_{\alpha/2} \frac{S_d}{\sqrt{n}}$ $gl = n - 1$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Poblaciones normales	$F = \frac{\sigma_2^2 S_1^2}{\sigma_1^2 S_2^2}$	$\begin{aligned} \frac{s_1^2}{s_2^2} \frac{1}{f_{v_1, v_2, \alpha/2}} &\leq \frac{\sigma_1^2}{\sigma_2^2} \leq \frac{s_1^2}{s_2^2} f_{v_2, v_1, \alpha/2} \\ gl \ num &= v_1 = n_1 - 1, \\ gl \ den &= v_2 = n_2 - 1, \end{aligned}$
$p_1 - p_2$	$Z = \frac{(\widehat{P}_1 - \widehat{P}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}}$	$(\widehat{p}_1 - \widehat{p}_2) \pm z_{a/2} \sqrt{\frac{\widehat{p}_1 \widehat{q}_1}{n_1} + \frac{\widehat{p}_2 \widehat{q}_2}{n_2}}$
$ \begin{array}{c c} n_1 \hat{p}_1 \ge 5, & n_1 \hat{q}_1 \ge 5 \\ n_2 \hat{p}_2 \ge 5, & n_2 \hat{q}_2 \ge 5 \end{array} $	Valor estadística: $z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}}$	
$ \begin{array}{ c c c c c c } \hline n_1 \widehat{p} \ge 5, & n_1 \widehat{q} \ge 5 \\ n_2 \widehat{p} \ge 5, & n_2 \widehat{q} \ge 5 \end{array}; \widehat{p} = \frac{x_1 + x_2}{n_1 + n_2} $	Valor estadística: $z = \frac{(\widehat{p}_1 - \widehat{p}_2) - (p_1 - p_2)}{\sqrt{\widehat{p}\widehat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ Tamaños: $n = \left(\frac{z_{\alpha/2}\sigma}{e}\right)^2$	
Tolerancia: $\overline{x} \pm ks$	Tamaños: $n = \left(\frac{z_{\alpha/2}\sigma}{e}\right)^2$ $n = \frac{z_{\alpha/2}^2 \widehat{p} \widehat{q}}{e^2}$ $n_{\text{max}} = \frac{z_{\alpha/2}^2}{4e^2}$	Predicción para x_o $\overline{x} \pm z_{\alpha/2}\sigma \sqrt{1 + \frac{1}{n}}$ $\overline{x} \pm t_{n-1,\alpha/2}s \sqrt{1 + \frac{1}{n}}$
Valor P, para proporción	$Valor P = P(X \le x)$	Valor $P = 2P(X \le x)$ si $x \le np_o$
muestras pequeñas	Valor P = P(X > x)	Valor $P = 2P(X > x)$ si $x > np_o$