

DECLARATION ENVIRONNEMENTALE ET SANITAIRE

« Mur Bois-Beton de 34 a 39 cm d'epaisseurs mis en œuvre a partir de premurs isole »

En conformité avec la norme NF EN 15804+A1 et son complément national NF EN 15804/CN

FDES Vérifiée dans le cadre du programme INIES

Version: 1.0 Date: Juin 2020

Réalisée par :

VERSo 5 quai Victor Augagneur 69003 Lyon Sur la commande de :

A2C Préfa BP 12 Route de Donnemarie 77480 Saint-Sauveur-lès-Bray

I. Avertissement

Les informations contenues dans cette déclaration sont fournies sous la responsabilité d'A2C Préfa (producteur de la DEP) selon la NF EN 15804+A1 et son complément national, la NF EN 15804/CN.

Toute exploitation, totale ou partielle, des informations fournies dans ce document doit au minimum être accompagnée de la référence complète à la DEP d'origine ainsi qu'à son producteur qui pourra remettre un exemplaire complet.

Il est rappelé que les résultats de l'évaluation sont fondés sur des faits, circonstances et hypothèses soumis par le commanditaire à l'auteur au cours de l'étude. Si ces faits, circonstances et hypothèses diffèrent, les résultats sont susceptibles de changer.

La norme EN 15804+A1 du CEN sert de Règles de définition des catégories de produits (RCP).

II. Guide de lecture

L'affichage des données d'inventaire respecte les exigences de la norme NF EN 15804+A1. Les valeurs sont exprimées selon la notation scientifique simplifiée : 0,0163 = 1,63.10-2 = 1,63E-2.

Abréviations utilisées:

- ACV: Analyse du Cycle de Vie
- BB: Bois-Béton
- COV: Composés Organiques Volatils
- DEP: Déclaration Environnementale de Produit
- DVR: Durée de Vie de Référence
- MP: Matières Premières
- NC: Non concerné
- UF : Unité Fonctionnelle

III. Précaution d'utilisation de la DEP pour la comparaison des produits

Les DEP de produits de construction peuvent ne pas être comparables si elles ne sont pas conformes à la norme NF EN 15804.

La norme NF EN 15804 définie au § 5.3 Comparabilité des DEP pour les produits de construction, les conditions dans lesquelles les produits de construction peuvent être comparés, sur la base des informations fournies par la DEP:

" Une comparaison de la performance environnementale des produits de construction en utilisant les informations des DEP doit être basée sur l'usage des produits et leurs impacts sur le bâtiment, et doit prendre en compte la totalité du cycle de vie (tous les modules d'informations). "

verso

IV. Table des matières

l.	Ave	ertissement	2
II.	Gui	de de lecture	2
III.	Р	Précaution d'utilisation de la DEP pour la comparaison des produits	2
V.	Info	ormations générales	4
VI.	D	Description de l'unité fonctionnelle et du produit	5
VII.	Е	tapes du cycle de vie	7
٧	II.1.	Etape de production, A1-A3	7
٧	11.2.	Etape de construction, A4-A5	8
٧	11.3.	Etape de vie en œuvre (exclusion des économies potentielles), B1-B7	8
٧	11.4.	Etape de fin de vie C1-C4	10
٧	11.5.	Potentiel de recyclage /réutilisation/ récupération, D	12
VIII	. Ir	nformation pour le calcul de l'analyse de cycle de vie	12
IX.	R	Résultats de l'analyse de cycle de vie	14
I)	<.1 .	Impacts environnementaux	14
I)	<.2.	Utilisation de ressources	15
I)	⟨.3.	Catégories de déchets	16
I)	<. 4.	Flux sortants	16
I)	⟨.5.	Impacts /flux relatifs à l'ensemble du cycle de vie	17
X. l'ea		ormations additionnelles sur le relargage de substances dangereuses dans l'air intérieur, le s ndant l'étape d'utilisation	
X	.1.	Air intérieur	18
X	.2.	Sol et eau	19
XI.	C	Contribution du produit à la qualité de vie à l'intérieur des bâtiments	19
	I.1. ans le	Caractéristiques du produit participant à la création des conditions de confort hygrotherm	
		Caractéristiques du produit participant à la création des conditions de confort acoustique ment	
	I.3. âtime	Caractéristiques du produit participant à la création des conditions de confort visuel da	
	I.4. âtime	Caractéristiques du produit participant à la création des conditions de confort olfactif da	
XII.	C	Contribution environnementale positive	20

V. Informations générales

1. Nom et adresse du fabricant

A2C Préfa BP 12 Route de Donnemarie 77480 Saint-Sauveur-lès-Bray

Contact: Jean-Baptiste Oblin, jb.oblin@a2c-materiaux.com>, 01 60 58 54 90

2. Le(s) site(s), le fabricant ou le groupe de fabricants ou leurs représentants pour lesquels la DEP est représentative :

A2C Préfa 605 zone artisanale La Meule 77115 Sivry Courtry

La zone de chalandise des produits d'A2C Préfa est la suivante : 75% Ile de France, 10% Lille, 10% Orléans et 5% Champagne-Ardenne.

3. Type de DEP : du berceau à la tombe

4. Type de DEP: Individuelle

5. Vérification: Frank Werner, Werner Umwelt & Entwicklung

6. Date de publication : Juin 20207. Date de fin de validité : Mai 2025

8.

La norme EN 15804 du CEN sert de RCP^a

Vérification indépendante de la déclaration, conformément à l'EN ISO 14025 : 2010

☐ Interne ☐ Externe

Selon le cas^b, vérification par tierce partie :

Frank Werner

Courriel: frank@frankwerner.ch

Programme de vérification : Programme FDES-INIES

Adresse: Association HQE. 4, avenue du Recteur Poincaré - 75016 Paris.

esse: Association HQE. 4, avenue du Recteur Poincare - 7501

Site web: http://www.inies.fr/accueil/

a. Règles de définition de catégories de produits

b. Facultatif pour la communication entre entreprises, obligatoire pour la communication entre une entreprise et ses clients (voir l'EN ISO 14025 : 2010, 9.4)

9. Référence commerciale/identification du produit par son nom : Mur BB 34 cm et Mur BB 39 cm

10. Lieu de production : France

11. Circuit de distribution BtoB

VI. Description de l'unité fonctionnelle et du produit

1. Description de l'unité fonctionnelle

L'unité fonctionnelle (UF) évaluée est « Assurer la fonction de mur porteur d'épaisseur 34 à 39 cm, constitué de béton armé incluant 2,6 % %wt d'armature et d'un isolant, l'ensemble de résistance thermique comprise entre 3,331 et 4,328 m 2 .K/W, sur 1 m 2 de paroi, pendant 50 ans. »

2. Description du produit

Il s'agit de murs construits à partir de prémurs isolés fabriqués en usine. Les prémurs sont des éléments préfabriqués composés de deux parois minces en en béton armé maintenues espacées par des connecteurs en fibre de verre. Une fois installé sur site, ils sont complétés par du béton coulé entre les deux parois qui font donc office de coffrage.

Pour une épaisseur totale de mur donnée, l'épaisseur de chaque paroi, autrement appelé peau, peut varier sensiblement selon les besoins. En général elle est comprise entre 5 et 7 centimètres. En complément, un isolant de 10 à 30 cm est intégré à l'intérieur des deux parois, en adhésion sur la face externe. Ils sont dits « BB » (Bois-Béton) lorsque que l'isolant est en fibres de bois. A2C Préfa utilise alors le Pavawall GF-90, d= 130 kg/m3, $\lambda=0.04$ W/(m.K). Les prémurs intègrent une lame d'air, appelée « noyau », de quelques centimètres d'épaisseur, supérieure, dans tous les cas, à 7 cm. Ce noyau sera rempli par du béton coulé une fois le prémur posé sur site.

3. Description de l'usage du produit (domaine d'application)

Les Murs BB sont destinés à la réalisation de tous types de parois verticales, porteuses et non porteuses : intérieures (exemple : cage d'escalier) ou extérieures, en superstructures comme en infrastructure, exposées ou non aux intempéries (cf. (« Document Technique d'Application 3.2 / 19-999_V1 - Mur à coffrage et isolation intégrés » 2020)), ce dans tous types de bâtiment (habitation, scolaires, de bureaux etc..). Cependant, ils ne peuvent être mis en œuvre dans des bâtiments de grande hauteur : le dernier plancher doit être situé à une hauteur de 28 m maximum.

L'utilisation dans les ouvrages en bord de mer ou exposés aux embruns salins est possible selon la définition de la classe d'exposition XS1, ainsi qu'en zones de sismicité 1 à 4 (selon l'arrêté du 22 octobre 2010 modifié) moyennant les dispositions spécifiques définies dans le DTA susmentionné.

4. Autres caractéristiques techniques non incluses dans l'unité fonctionnelle

Les Prémurs BB possèdent des caractéristiques de résistance aux séismes, au feu et d'isolation acoustique décrites dans le DTA (« Document Technique d'Application 3.2 / 19-999_V1 - Mur à coffrage et isolation intégrés » 2020)

En outre, étant donné l'isolation thermique par l'extérieur intégrée dans le procédé, les ponts thermiques les plus courants sont évités et les risques de condensation superficielle sur ces murs sont donc très limités.

verso

5. Description des principaux composants et/ou matériaux du produit

Tableau: Quantitatifs des principaux composants du plancher Dalle BB (complexe plancher fini).

	Mur BB 34 à 39 cm	Unités
Béton C40/50 coulé en usine	296,1	kg/m²
Armature du béton coulé en usine	13,5	kg/m²
Ecarteurs*	0,7	kg/m²
Crochets de levage	1,1	kg/m²
Isolant en fibres de bois	19,1	kg/m²
Masse totale du prémur sorti d'usine	330	kg/m²
Epaisseur totale du prémur sorti d'usine	37	cm
Remplissage en béton C25/30 coulé sur site	204,0	kg/m²
Acier de liaison	1,7	kg/m²
Masse du mur mis en œuvre	536	kg/m²
Epaisseur totale du mur mis en œuvre	37	cm
Pourcentage massique d'acier total	2,6%	%wt

Préciser si le produit contient des substances de la liste candidate selon le règlement REACH (si supérieur à 0,1% en masse)

Non, liste¹ consultée le 20 mai 2020

Description de la durée de vie de référence (si applicable et conformément aux 7.2.2 de la NF EN 15804) X

Paramètre	Valeur
Durée de vie de référence	50 ans
Propriétés déclarées du produit (à la sortie de l'usine) et finitions, etc.	Assurer la fonction de mur porteur de résistance thermique comprise entre 3,331 et 4,328 m2.K/W. Les produits sont conformes aux spécifications listées dans le (« Document Technique d'Application 3.2 / 19-999_V1 - Mur à coffrage et isolation intégrés » 2020)
Paramètres théoriques d'application (s'ils sont imposés par le fabricant), y compris les références aux pratiques appropriées	Les prémurs en béton armé doivent être posés conformément à la norme NF EN 14992 et au carnet de chantier QualiPremur.
Qualité présumée des travaux, lorsque l'installation est conforme aux instructions du fabricant	Les travaux doivent répondre aux exigences de la norme NF EN 14992 et au carnet de chantier QualiPremur
Environnement extérieur (pour les applications en extérieur), par exemple intempéries, polluants, exposition aux UV et au vent, orientation du bâtiment, ombrage, température	Usage conforme au domaine d'emploi de la norme NF EN 14992

¹ <u>https://echa.europa.eu/fr/candidate-list-table</u>

Environnement intérieur (pour les applications en intérieur), par exemple température, humidité, exposition à des produits chimiques	Usage conforme au domaine d'emploi de la norme NF EN 14992
Conditions d'utilisation, par exemple fréquence d'utilisation, exposition mécanique	Domaine d'emploi couvert par la norme NF EN 14992
Maintenance, par exemple fréquence exigée, type et qualité et remplacement des composants remplaçables	Les joints entre les murs doivent être refaits tous les 10 ans.

VII. Etapes du cycle de vie

VII.1. Etape de production, A1-A3

L'étape de fabrication comprend :

- La production des matières premières : ciment, additions minérales, sable, adjuvant, tiges d'acier, crochets de levage et isolant bois. Ce dernier en particulier capte du CO₂ lors de la croissance du bois.
- Le transport de ces matières premières vers le site de fabrication des Dalles BB
- La fabrication de la Dalle BB incluant les consommations d'énergies, d'eau et de consommables, le traitement des eaux usées et des déchets

Pour plus de lisibilité sur les procédés impliqués dans cette étape, la figure suivante présente le diagramme des flux.

Figure 1: Diagramme des flux de l'étape de fabrication A1-A3

Légende:

VII.2. Etape de construction, A4-A5

A4 - Transport jusqu'au chantier

Paramètre	Valeur
Type de combustible et consommation du véhicule ou type de véhicule utilisé pour le transport, par exemple camion sur longue distance, bateau, etc.	Camion tracteur EURO 5 et semi-remorque de Poids Total Roulant Autorisé 44 tonnes roulant au diesel.
Distance jusqu'au chantier	102 km
Utilisation de la capacité (y compris les retours à vide)	A l'aller : camion chargé au maximum de sa capacité en volume, soit 26,4 tonnes ; Au retour : il est estimé que les camions font le trajet retour chargé uniquement des racks à ramener à l'usine de Sivry Courtry, soit 1 tonne.
Masse volumique en vrac des produits transportés	~ 1 t/m ³

A5 - Installation dans le bâtiment

Paramètre	Valeur
Intrants auxiliaires pour l'installation (spécifiés par matériau)	1,7 kg Armature 204 kg Béton de la dalle de compression C25/30 à partir de CEM II/A 0,48 m Joint mousse
Utilisation d'eau	Non
Utilisation d'autres ressources	Non
Description quantitative du type d'énergie (mélange régional) et consommation durant le processus d'installation	0,09 kWh grue de montage
Déchets produits sur le site de construction avant le traitement des déchets générés par l'installation du produit (spécifiés par type)	Aucun Il n'y a pas d'emballage.
Matières (spécifiées par type) produites par le traitement des déchets sur le site de construction, par exemple collecte en vue du recyclage, de la récupération d'énergie, de l'élimination (spécifiées par voie)	Aucune
Emissions directes dans l'air ambiant, le sol et l'eau	Aucune

VII.3. Etape de vie en œuvre (exclusion des économies potentielles), B1-B7

B1 - Usage

verso

Pendant la durée de vie de l'ouvrage, le dioxyde de carbone présent dans l'atmosphère pénètre dans le béton à partir de la surface du matériau. Ce phénomène se nomme carbonatation. Il s'agit d'un processus chimique par lequel le dioxyde de carbone de l'air ambiant réagit avec les produits résultant de l'hydratation du ciment. La quantité absorbée est liée à la quantité de CaO réactif présent dans le liant. Elle est calculée conformément aux recommandations de la norme NF EN 16757 (Juin 2017). Elle est égale à la somme de la quantité de CO_2 eq absorbée par la face inférieure (béton C40) et par la face supérieure (béton C25/30) de la dalle - 0,5 et 1,3 kg CO_2 eq/m² respectivement - soit 1,8 kg CO_2 eq / UF.

B2/3/4/5/6/7 – Maintenance / Réparation / Remplacement / Réhabilitation / Utilisation de l'énergie / Utilisation de l'eau

Les Murs BB sont neutres à l'usage et ne requièrent ni utilisation d'eau ou d'énergie pendant la vie en œuvre.

En termes d'entretien, les joints entre les murs doivent être refaits tous les 10 ans. Pour cela, 0,48 m de joint /m2 est mis en œuvre 4 fois sur la durée de vie du produit considérée (50 ans).

Maintenance:

Paramètre	Valeur/description
Processus de maintenance	Joint entre les murs
Cycle de maintenance	Tous les dix ans
Intrants auxiliaires pour la maintenance (par exemple, produit de nettoyage, spécifier les matériaux)	1,92 m linéaire de joint / UF
Déchets produits pendant la maintenance (spécifier les matériaux)	Aucun
Consommation nette d'eau douce pendant la maintenance	Aucune
Intrant énergétique pendant la maintenance (par exemple nettoyage par aspiration), type de vecteur énergétique, par exemple électricité, et quantité, si applicable et pertinent	Aucun

Réparation:

Paramètre	Valeur/description
Processus de réparation	NC
Processus d'inspection	NC
Cycle de réparation	NC
Intrants auxiliaires (par exemple lubrifiant, spécifier les matériaux)	NC
Déchets produits pendant la réparation (spécifier les matériaux)	NC
Consommation nette d'eau douce pendant la réparation	NC
Intrant énergétique pendant la réparation (par exemple activité de grutage), type de vecteur énergétique, par exemple électricité, et quantité	NC

Remplacement:

Paramètre	Valeur/description
Cycle de remplacement	NC
Intrant énergétique pendant le remplacement (par exemple activité de grutage), type de vecteur énergétique (par exemple électricité), et quantité, si applicable et pertinent	NC
Echange de pièces usées pendant le cycle de vie du produit, spécifier les matériaux	NC

Réhabilitation:

Paramètre	Valour/doscription
Parametre	Valeur/description

Fiche de Déclaration Environnementale et Sanitaire Mur Bois-Béton de 34 à 39 cm d'épaisseur mis en œuvre à partir de prémurs isolés Juin 2020

Processus de réhabilitation	NC
Cycle de réhabilitation	NC
Intrant de matières pour la réhabilitation (par exemple briques), y compris les intrants auxiliaires pour le processus de réhabilitation (par exemple lubrifiant, spécifier les matériaux)	NC
Déchets produits pendant la réhabilitation (spécifier les matériaux)	NC
Intrant énergétique pendant la réhabilitation (par exemple activité de grutage), type de vecteur énergétique, par exemple électricité, et quantité, si applicable et pertinent	NC
Autres hypothèses pour l'élaboration de scénarios (par exemple, fréquence et durée d'utilisation, nombre d'occupants)	NC

Utilisation de l'énergie et de l'eau :

Paramètre	Valeur/description
Intrants auxiliaires spécifiés par matière	NC
Consommation nette d'eau douce	NC
Type de vecteur énergétique (par exemple, électricité, gaz naturel, chauffage urbain)	NC
Puissance de sortie de l'équipement	NC
Performance caractéristique (par exemple efficacité énergétique, émissions, variation de performance en fonction de l'utilisation de la capacité, etc.)	NC
Autres hypothèses pour l'élaboration de scénarios (par exemple, fréquence et durée d'utilisation, nombre d'occupants)	NC

VII.4. Etape de fin de vie C1-C4

Pour plus de lisibilité sur les procédés impliqués dans cette étape, la figure suivante présente le diagramme des flux.

Figure 2: Diagramme des flux de l'étape de fin de vie C1C4 et D

Fin de vie:

Paramètre	Valeur/description
Processus de collecte spécifié par type	536,5 kg collectés avec des déchets de construction mélangés
Système de récupération spécifié par type	NC
Elimination spécifiée par type	355 kg de béton non armé concassé en valorisation 13 kg d'acier au recyclage 168,4 kg de DIB envoyé en stockage définitif
Hypothèses pour l'élaboration de scénarios (par exemple transport)	C1: La consommation de diesel et les émissions de particules fines de la démolition sont données par ecoinvent. C2: La distance de transport considérée depuis le chantier de démolition et le site de traitement et stockage est de 45 km. C3-4: Voir ci-dessous

Les taux de valorisation pris en compte sont synthétisés dans le Tableau suivant.

Tableau: Destination des différents déchets issus des dalles

Béton	Acier	Isolant
71% valorisé en remblai	80% recyclé	100% en
29% en enfouissement	20% en enfouissement	enfouissement

Deux phénomènes se produisent :

- Dégradation du bois : en référence à (FCBA CSTB DHUP CODIFAB FBF, Convention DHUP CSTB 2009 Action 33 sous-action 6 ACV & DEP pour des produits et composants de la construction bois Volet 2 Prise en compte de la fin de vie des produits bois, 2012), il est considéré que 15% du bois se dégrade, c'est à dire que 15% massique de son contenu en carbone est émis dans l'air, pour moitié sous forme de méthane et pour moitié sous forme de dioxyde de carbone.
- Carbonatation du liant du béton: la surface d'échange avec l'air ambiant est augmentée contribuant ainsi à accélérer le processus de carbonatation. Il est donc considéré que le béton sera à terme complètement carbonaté dans la limite de 75% (« NF EN 16757 Contribution des ouvrages de construction au développement durable Déclarations environnementales sur les produits Règles régissant la catégorie de produits pour le béton et les éléments en béton » 2017).

VII.5. Potentiel de recyclage /réutilisation/ récupération, D

La consommation de graves d'origine naturelle pour l'application routière peut être substituée par la réutilisation des graves obtenues après broyage des produits de béton en fin de vie. Les bénéfices de la revalorisation des graves sont comptabilisés à cette étape.

La consommation d'acier de première production peut être substituée par l'acier recyclé obtenu après broyage des ferrailles en fin de vie. Les bénéfices de la revalorisation aciers sont aussi comptabilisés à cette étape.

VIII. Information pour le calcul de l'analyse de cycle de vie

PCR utilisé	NF EN 15804+A1: 2014 et NF EN 15804/CN: 2016 et FCBA CSTB DHUP CODIFAB FBF, Convention DHUP CSTB 2009 Action 33 sous-action 6 – ACV & DEP pour des produits et composants de la construction bois – Volet 2 Prise en compte de la fin de vie des produits bois, 2012
Frontières du	Du berceau à la tombe, conformément aux règles du PCR
système	
Allocations	Sur la base de critères physiques sauf en cas de différence de revenus importants, conformément aux règles du PCR
	Données génériques issues de la base de données ecoinvent 3.4 (cut-off by classification). Les jeux de données génériques qui contribuent le plus aux impacts
Représentativité	des produits sont ceux des ciments CEM II/A et CEM/III/A et de l'acier obtenu par la
géographique et	filière électrique.
représentativité	• Le profil environnemental des ciments CEM II/A et CEM III/A sont ceux
temporelle des	élaborés par l'ATILH dans la DEP conforme EN15904+A1, 2014 et son complément
données	national. Ces DEP ont été élaborées sur la base de données collectées sur sites sur
primaires	l'année 2014 et vérifiées par une tierce partie en 2017. Elles utilisent en base les
	données ecoinvent v3.1, dont le clinker. Le jeu de données d'ecoinvent du clinker repose sur des données collectées pendant la période 2005 – 2009 en Suisse. Ces
	· · · · · · · · · · · · · · · · · · ·

données ont été extrapolées au contexte Européen par l'emploi de statistiques. Ce jeu de données est estimé comme moyennement qualitatif.

• Les aciers de la filière électrique sont modélisés à partir du procédé ecoinvent Steel, low-alloyed {RER}| steel production, electric, low-alloyed | Cut-off » qui date de 2010 et a été mis à jour en 2018 pour suivre la conformité avec la version 3 de la base de données. Les données d'activités n'ont pas été mises à jour depuis 2010. La représentativité est européenne, le mix se compose principalement de fours avec un 4ème trou, en partie avec évacuation supplémentaire d'air. Ce jeu de données est estimé comme moyennement qualitatif.

Il est important de préciser que la plupart des FDES présentes dans la base INIES reposent, en dernière analyse, sur les mêmes jeux de données d'arrière-plan. Il reste donc pertinent de les utiliser, toujours, à terme, dans un objet comparatif.

Les données spécifiques sont collectées auprès d'A2C Préfa en 2019. Elles sont établies sur la base :

- A1: des données sur la composition des produits en 2019 et sur le taux de rebut
- A2 : de la localisation des usines de production des fournisseurs considérés comme valides pour les 5 ans à venir
- A3: de données moyennes de 2017 du hall prémurs (consommations d'électricité et d'eau), ou à défaut du site (déchets). La gamme dalle BB n'était pas encore produite en 2017. La méthode d'estimation des entrants par unité de surface de prédalle BB est l'allocation sur critères physiques
- A4 : des transports sur chantier observés et envisagés dans les 5 ans à venir pour des raisons économiques.

La variabilité a été étudiée sur 3 paramètres Distance parcourue par le ciment, Zone de chalandise, Distance parcourue par les déchets de chantier. La variabilité des résultats entre un modèle où tous les paramètres sont à leur minimum (optimiste), et un autre où ils sont à leur maximum (pessimiste) est de +/- 17 % sur le changement climatique, +/- 13% sur l'énergie primaire non renouvelable, et +/- 5% sur les déchets non dangereux. Sur le changement climatique en particulier la variabilité a été testé sur le scénario de fin de vie de l'isolant fibres de bois. La variabilité sur ces paramètres est inférieure au seuil indicatif de 40%.

En enfouissement (dégradation 100%) le produit a un impact total de 112 kg CO $_2$ e / UF (l'émission est pour partie sous forme de méthane) et en incinération il a pour impact total à 76,1 kg CO $_2$ e /UF

Variabilité des résultats

IX. Résultats de l'analyse de cycle de vie

Dans la suite, les résultats sur les indicateurs d'impacts et de flux sont donnés.

IX.1. Impacts environnementaux

	Eta	pe de fabricati	ion	Et ape de mi	se en œuvre	Etape de vi	e en œuvre		Et ape de	fin de vie		
Impacts environnementaux	A1 Approvisionnement en matières premières	A2 Transport	A3 Fabrication	A4 Transport	A5 Installation	B1 Usage	B2 Maintenance	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Elimination	D Bénéfices et charges au-delà des frontières du système
Réchauffement climatique kg CO₂ eq/UF	9,1	5,1	1,9	3,5	18,3	-0,9	0,4	4,1	3,1	1,0	9,1	-7,9
Appauvrissement de la couche d'ozone kg CFC 11 eq/UF	4,2E-06	9,8E-07	7,0E-07	6,7E-07	1,1E-06	0,0	0,0	6,7E-07	5,9E-07	2,6E-07	3,4E-07	-7,90E-07
Acidification des sols et de l'eau kg SO ₂ eq/UF	1,1E-01	1,7E-02	8,2E-03	9,3E-03	5,0E-02	0,0	0,0	2,9E-02	1,4E-02	7,5E-03	7,3E-03	-4,57E-02
Eutrophisation kg (PO ₄) ³⁻ eq/UF	1,6E-02	2,8E-03	1,6E-03	1,5E-03	7,6E-03	0,0	0,0	6,0E-03	2,5E-03	1,6E-03	1,5E-03	-2,98E-02
Formation d'ozone photochimique $kg C_2H_4eq/UF$	2,4E-02	8,3E-04	4,8E-04	5,1E-04	2,8E-03	0,0	0,0	8,1E-04	5,5E-04	2,8E-04	2,3E-03	-2,80E-03
Epuisement des ressources abiotiques (éléments) kg Sb eq/UF	3,8E-05	9,5E-06	2,3E-06	6,0E-06	2,2E-05	0,0	0,0	2,4E-06	9,0E-06	9,1E-06	1,2E-06	-4,99E-04
Epuisement des ressources abiotiques (fossiles) MJ/UF	454,0	85,0	22,8	56,6	109,7	0,0	5,6	59,1	51,6	13,6	30,8	-8,82E+01
Pollution de l'eau m³/UF	17,8	2,0	0,6	1,3	3,6	0,0	0,1	1,3	1,3	0,4	0,7	-8,43E+00
Pollution de l'air m³/UF	3939,9	586,4	186,9	352,2	999,5	0,0	28,2	2546,7	323,8	138,8	93,9	-3,13E+03

IX.2. Utilisation de ressources

		pe de fabrica	tion	Etape de mi	se en œuvre			Etap	e de vie en œ	euvre				Etape de	fin de vie		
Utilisation des ressources	A1 Approvisionnement en matières premières	A2 Transport	A3 Fabrication	A4 Transport	A5 Installation	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	BS Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Elimination	D Bénéfices et charges au-delà des frontières du système
Utilisation de l'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelables utilisées comme matières premières MJ/UF	26,9	0,6	3,8	0,6	4,4	0,0	0,2	0,0	0,0	0,0	0,0	0,0	2,7	0,4	1,3	0,2	-16,9
Utilisation des ressources d'énergie primaire renouvelables en tant que matières premières MJ/UF	286,7	0,2	3,1	0,1	1,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,7	0,1	0,5	0,1	-3,9
Utilisation totale des ressources d'énergie primaire renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières) MJ/UF	313,7	0,9	6,9	0,8	5,4	0,0	0,3	0,0	0,0	0,0	0,0	0,0	3,4	0,5	1,8	0,3	-20,7
Utilisation de l'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelables utilisées comme matières premières MJ/UF	685,8	86,6	88,5	58,2	168,3	0,0	5,2	0,0	0,0	0,0	0,0	0,0	68,5	52,5	31,1	31,4	-125,4
Utilisation des ressources d'énergie primaire non renouvelables en tant que matières premières MJ/UF	6,7	0,0	0,1	0,0	0,4	0,0	1,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Utilisation totale des ressources d'énergie primaire non renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières) MJ/UF	692,5	86,6	88,5	58,2	168,3	0,0	6,7	0,0	0,0	0,0	0,0	0,0	68,5	52,5	31,1	31,4	-125,4
Utilisation de matière secondaire kg/UF	35,4	0,0	0,4	0,0	4,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Utilisation de combustibles secondaires renouvelables MJ/UF	73,2	0,0	0,7	0,0	9,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Utilisation de combustibles secondaires non renouvelables MJ/UF	16,0	0,0	0,2	0,0	13,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Utilisation nette d'eau douce m³/UF	0,7	0,0	0,0	0,0	0,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,1

IX.3. Catégories de déchets

	Eta	pe de fabricat	ion	Etape de mi	se en œuvre	Etape de vi	ie en œuvre		Etape de	fin de vie		
Catégorie de déchets	A1 Approvisionnemen ten matières premières	A2 Transport	A3 Fabrication	A4 Transport	A5 Installation	B1 Usage	B2 Maintenance	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Elimination	DBénéfices et charges au-delà des frontières du système
Déchets dangereux éliminés kg/UF	2,5	0,0	0,1	0,0	0,4	0,0	0,0	0,0	0,0	0,1	0,0	-7,5
Déchets non dangereux éliminés kg/UF	8,3	7,3	12,7	4,5	4,6	0,0	0,1	0,5	3,3	0,5	168,6	-17,8
Déchets radioactifs éliminés kg/UF	3,8E-03	5,5E-04	1,0E-03	3,9E-04	8,8E-04	0	1,522E-05	4,5E-04	3,3E-04	3,2E-04	1,9E-04	-6,5E-04

IX.4. Flux sortants

		Eta	pe de fabricat	ion	Etape de mi	se en œuvre	Etape de vie	e en œuvre		Etape de	fin de vie		
Flux sortants		A1 Approvisionnement en matières premières	A2 Transport	A3 Fabrication	A4 Transport	A5 Installation	B1 Usage	B2 Maintenance	C1 Déconstruction/ démolition	C2 Transport	C3 Traitement des déchets	C4 Elimination	D Bénéfices et charges au-delà des front lères du système
Composants destinés à la réutilisation kg/UF		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Matériaux destinés au recyclage kg/UF		1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	368,0	0,0	0,0
Matériaux destinés à la récupération d'énergie kg/UF		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
· · · · · · · · · · · · · · · · · · ·	Electricité	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Vapeur	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
MJ/UF	Gaz de process	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

IX.5. Impacts /flux relatifs à l'ensemble du cycle de vie

Catégorie d'impact / de f	Total Fabrication	Total Mise en œuvre	Total Vie en œuvre	Total Fin de vie	Total Cycle de Vie	Module D	
Réchauffement climatique	kg CO ₂ eq/UF	16,0	21,8	-0,5	17,3	54,6	-7,9
Appauvrissement de la couche d'ozone	kg CFC 11 eq/UF	5,9E-06	1,8E-06	2,1E-08	1,9E-06	9,6E-06	-7,9E-07
Acidification des sols et de l'eau	kg SO ₂ eq/UF	1,4E-01	6,0E-02	1,3E-03	5,8E-02	2,6E-01	-4,6E-02
Eutrophisation	kg (PO ₄) ³⁻ eq/UF	2,1E-02	9,0E-03	2,7E-04	1,2E-02	4,2E-02	-3,0E-02
Formation d'ozone photochimique	kg C ₂ H ₄ eq/UF	2,5E-02	3,3E-03	3,5E-04	4,0E-03	3,3E-02	-2,8E-03
Epuisement des ressources abiotiques (éléments)	kg Sb eq/UF	5,0E-05	2,8E-05	6,5E-07	2,2E-05	1,0E-04	-5,0E-04
Epuisement des ressources abiotiques (fossiles)	MJ/UF	5,6E+02	1,7E+02	5,6E+00	1,6E+02	8,9E+02	-8,8E+01
Pollution de l'eau	m ³ /UF	20,4	4,9	0,1	3,6	29,1	-8,4
Pollution de l'air	m ³ /UF	4713,2	1351,7	28,2	3103,2	9196,3	-3133,8
Utilisation de l'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelables utilisées comme matières premières	MJ/UF	31,4	5,0	0,2	4,6	41,1	-16,9
Utilisation des ressources d'énergie primaire renouvelables en tant que matières premières	MJ/UF	290,1	1,1	0,1	1,5	292,7	-3,9
Utilisation totale des ressources d'énergie primaire renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières)	MJ/UF	321,4	6,1	0,3	6,0	333,9	-20,7
Utilisation de l'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelables utilisées comme matières premières	MJ/UF	861,0	226,6	5,2	183,5	1276,3	-125,4
Utilisation des ressources d'énergie primaire non renouvelables en tant que matières premières	MJ/UF	6,8	0,4	1,4	0,0	8,6	0,0
Utilisation totale des ressources d'énergie primaire non renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières)	MJ/UF	867,7	226,6	6,7	183,5	1284,4	-125,4
Utilisation de matière secondaire	kg/UF	35,8	4,2	0,0	0,0	40,0	0,0
Utilisation de combustibles secondaires renouvelables	MJ/UF	73,9	9,2	0,0	0,0	83,1	0,0
Utilisation de combustibles secondaires non renouvelables	MJ/UF	16,2	13,6	0,0	0,0	29,8	0,0
Utilisation nette d'eau douce	m ³ /UF	0,7	0,3	0,0	0,1	1,1	-0,1
Déchets dangereux éliminés	kg/UF	2,7	0,4	0,0	0,1	3,3	-7,5
	kg/UF		9,1			210,3	-17,8
Déchets non dangereux éliminés	Kg/UF	28,3	9,1	0,1	172,8	210,3	-17,8

Déchets radioactifs éliminés	kg/UF	0,0	0,0	0,0	0,0	0,0	0,0
Composants destinés à la réutilisation	kg/UF	0,0	0,0	0,0	0,0	0,0	0,0
Matériaux destinés au recyclage	kg/UF	1,0	0,0	0,0	368,0	369,0	0,0
Matériaux destinés à la récupération d'énergie	kg/UF	0,0	0,0	0,0	0,0	0,0	0,0
Energie fournie à l'extérieur (électricité)	MJ/UF	0,0	0,0	0,0	0,0	0,0	0,0
Energie fournie à l'extérieur (vapeur)	MJ/UF	0,0	0,0	0,0	0,0	0,0	0,0
Energie fournie à l'extérieur (gaz)	MJ/UF	0,0	0,0	0,0	0,0	0,0	0,0

Sur l'indicateur changement climatique, l'impact est inférieur à zéro sur l'étape B1_Usage grâce au processus de carbonatation.

Par soucis de transparence, A2C Préfa communique dans la table suivante le détail des contributions à l'impact changement climatique (en kg de CO₂ équivalent) des principaux composants du produit.

Tableau: Détails des contributions à l'impact changement climatique des composants du produit (en kg de CO2 équivalent/UF)

		A1	A2	А3	A4	A 5	B1	B2	C1	C2	C 3	C4	TOTAUX
	Décarbonatation	12,1				6,2							
Béton	Carbonatation						-0,9					-3,1	30,4
	Autres	6,9				9,2							
Acier		10,1				2,0							12,0
	Captage	-30,6										0,0	
	Fabrication panneau	9,2											
Isolant fibres de	Emission méthane											6,2	-11,3
bois	Emission CO2 issue du méthane brulé											1,6	
	Emission CO2											2,3	
Autre		1,5	5,1	1,9	3,5	0,9	0,0	0,4	4,1	3,1	1,0	2,1	23,4
TOTAUX		9,1	5,1	1,9	3,5	18,3	-0,9	0,4	4,1	3,1	1,0	9,1	54,6

X. Informations additionnelles sur le relargage de substances dangereuses dans l'air intérieur, le sol et l'eau pendant l'étape d'utilisation

X.1. Air intérieur

La paroi du mur donnant sur l'intérieur étant recouverte d'un revêtement ou doublage, le produit n'est pas en contact direct avec l'air intérieur après son installation dans le bâtiment.

18

Tableau: Information sur les émissions potentielles du produit dans l'air intérieur

Substances / gaz / radiations	Information sur le produit
potentiellement émises	
Composés Organiques Volatiles (COV) et formaldéhyde	Non mesurés
Particules viables, y compris les micro-organismes tels que les petits insectes, les protozoaires, les moisissures, les bactéries et les virus	Non mesurés
Fibres et particules	Non mesurées
Radioactivité naturelle	En Europe, les concentrations moyennes de radioéléments dans les bétons courants sont de 30 Bq/kg en thorium 232 (232Th), 40 Bq/kg en radium 226 (226R), 400 Bq/kg en potassium 40 (40K)². Ces valeurs sont proches de celles rencontrées en moyenne pour l'écorce terrestre qui sont selon l'UNSCEAR* de 40 Bq/kg, 40 Bq/kg et 400 Bq/kg respectivement en 232Th, 226R, et 40K. Par ailleurs, l'isolant en fibres de bois entrant dans la composition du plancher Dalle BB ne sont pas de nature à conférer une radioactivité accrue au plancher. Ces valeurs conduisent à un calcul de valeur d'activité l inférieur à 1 (calcul selon l'annexe VIII de la Directive Euratom 2013/59 du 5 décembre 2013). Cette valeur indique que le produit n'est pas de nature à causer un dépassement du niveau de référence d'exposition au rayonnement gamma de 1 mSv/an fixé à l'article 75, paragraphe 1 de la Directive Euratom.

^{*}UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiation

X.2. Sol et eau

Le matériau n'est ni en contact avec l'eau destinée à la consommation humaine, ni avec les eaux de ruissellement, les eaux d'infiltration, la nappe phréatique, les eaux de surface.

XI. Contribution du produit à la qualité de vie à l'intérieur des bâtiments

XI.1. Caractéristiques du produit participant à la création des conditions de confort hygrothermique dans le bâtiment

La résistance thermique du mur participe au confort thermique des bâtiments.

Résistance thermique Rmur = [3,331 - 4,328] m².K/W

En outre, étant donné l'isolation thermique par l'extérieur intégrée dans le procédé, les ponts thermiques les plus courants sont évités et les risques de condensation superficielle sur ces murs sont donc très limités. Les prémurs BB incluent des connecteurs en fibre de verre permettant à la fois de connecter les deux peaux et de les maintenir écartés de l'épaisseur de la lame d'air tout en limitant les ponts thermiques.

 $^{^2}$ Rapport 112 de la C.E. « Radiological Protection Principles concerning the Natural Radioactivity of Building Materials » 1999

XI.2. Caractéristiques du produit participant à la création des conditions de confort acoustique dans le bâtiment

Non mesuré. Il est considéré que la constitution des murs à base de Prémur BB A2C permet d'obtenir la valeur d'isolement minimale de la réglementation fixée à 30 dB.

XI.3. Caractéristiques du produit participant à la création des conditions de confort visuel dans le bâtiment

Le produit est apte à recevoir tout type de doublage intérieur permettant ainsi d'adapter le coefficient de réflexion lumineuse des murs et ainsi optimiser l'éclairage naturel et artificiel.

XI.4. Caractéristiques du produit participant à la création des conditions de confort olfactif dans le bâtiment

Aucune mesure spécifique n'a été réalisée. A priori, le produit n'intervient pas sur le confort olfactif du bâtiment dans les conditions normales d'utilisation.

XII. Contribution environnementale positive

Lors de sa croissance, le CO_2 capté par photosynthèse au cours de la sylviculture va être stocké pendant toute la durée de vie de l'ouvrage au sein du produit. Dans une optique de lutte contre le changement climatique, cette durée de stockage temporaire de CO_2 peut être par un « bénéfice climat » (FCBA CSTB DHUP CODIFAB FBF, Convention DHUP CSTB 2009 Action 33 sous-action 6 – ACV & DEP pour des produits et composants de la construction bois – Volet 2 Prise en compte de la fin de vie des produits bois, 2012) du fait que ce CO_2 ne se retrouve pas dans l'atmosphère et ne participe donc pas à l'effet de serre.

Le calcul proposé par l'analyste se base sur les recommandations de l'ILCD Handbook (2010). La déduction des émissions de CO_2 sur la durée de vie de référence (DVR) totale est égale à la quantité de carbone biomasse contenue dans le produit atténuée du facteur (100-DVR)/100 si DVR<100 ans. Si la DVR est supérieure ou égale à 100 ans, aucune atténuation n'est appliquée. Il en découle, dans notre étude, que la déduction d'émissions de CO_2 relatifs à une durée de vie de référence du produit de 50 ans, est égal = Emission CO_2 e capté x ½, soit -15,3 kg CO_2 e/UF.

20