Laboratorium IO Sprawozdanie 3 Piotr Gorzelnik 248947 prow. Mgr inż. Paweł Dobrowolski

7 grudnia 2020

1 Cel ćwiczenia

Celem ćwiczenia było obliczenie parametrów, przeprowadzenie symulacji oraz wyznaczenie wykresów charakteryzujących układy sterowania 4-20mA z tranzysotrem NPN oraz PNP.

2 Wstęp

Zbadałem układy zawierające tranzystor NPN oraz PNP dla trzech różnych wartości $R_{pom} = [10\Omega, 50\Omega, 250\Omega]$. W każdym przypadku w celu dobrania odpowiednich rezystorów do zbudowania układu przyjmowałem prąd $I_1 = 4mA$. Rezystancja obciążenia miała wartość stałą lub jednostajnie narastającą do wartości $R_{obc} = 1k\Omega$.

3 Moduł 4-20mA z tranzystorem NPN

3.1
$$R_{pom} = 10\Omega$$

Napięcia sterujące układem:

$$U_{pom.4mA} = 4mA \cdot 10\Omega = 0,04V$$

$$U_{pom.20mA} = 20mA \cdot 10\Omega = 0,2V$$

Dobranie rezystorów (przyjmuję prąd $I_1 = 4mA$):

$$R_1 = \frac{23,8V}{4mA} = 5,95k\Omega$$

 $R_2 = \frac{0,04V}{4mA} = 10\Omega$
 $R_{ptn} = \frac{0,16V}{4mA} = 40\Omega$

$$R_{MAX.4mA} = \frac{24V - 0, 1V - 0, 04V}{4mA} = 5965\Omega$$
$$R_{MAX.20mA} = \frac{24V - 0, 1V - 0, 2V}{20mA} = 1193\Omega$$

Rysunek 1: Układ z tranzystorem NPN

Rysunek 2: $U_{strer}(U_{ce})$

Rysunek 3: $U_{ce}(R_{obc})$

Rysunek 4: $R_{obc}(P_{diss})$

3.2 $R_{pom} = 50\Omega$

Napięcia sterujące układem:

$$U_{pom.4mA} = 4mA \cdot 50\Omega = 0, 2V$$

$$U_{pom.20mA} = 20mA \cdot 50\Omega = 1V$$

Dobranie rezystorów (przyjmuję prąd $I_1 = 4mA$):

$$R_1 = \frac{23V}{4mA} = 5,75k\Omega$$

$$R_2 = \frac{0,2V}{4mA} = 50\Omega$$

$$R_{ptn} = \frac{0.8V}{4mA} = 200\Omega$$

$$R_{MAX.4mA} = \frac{24V - 0, 1V - 0, 2V}{4mA} = 5925\Omega$$

$$R_{MAX.20mA} = \frac{24V - 0, 1V - 1V}{20mA} = 1145\Omega$$

Rysunek 5: $U_{strer}(U_{ce})$

Rysunek 6: $U_{ce}(R_{obc})$

Rysunek 7: $R_{obc}(P_{diss})$

3.3 $R_{pom} = 250\Omega$

Napięcia sterujące układem:

$$\begin{split} U_{pom.4mA} &= 4mA \cdot 250\Omega = 1V \\ U_{pom.20mA} &= 20mA \cdot 250\Omega = 5V \end{split}$$

Dobranie rezystorów (przyjmuję prąd $I_1 = 4mA$):

$$R_1 = \frac{19V}{4mA} = 4,75k\Omega$$
$$R_2 = \frac{1V}{4mA} = 250\Omega$$
$$R_{ptn} = \frac{4V}{4mA} = 1k\Omega$$

$$R_{MAX.4mA} = \frac{24V - 0, 1V - 1V}{4mA} = 5725\Omega$$

$$R_{MAX.20mA} = \frac{24V - 0, 1V - 5V}{20mA} = 945\Omega$$

Rysunek 8: $U_{strer}(U_{ce})$

Rysunek 9: $U_{ce}(R_{obc})$

Rysunek 10: $R_{obc}(P_{diss})$

4 Moduł 4-20mA z tranzystorem PNP

Rysunek 11: Układ z tranzystorem PNP

$4.1 \quad R_{pom} = 10\Omega$

Napięcia sterujące układem:

$$U_{pom.4mA} = 24 - 4mA \cdot 10\Omega = 23,96V$$

$$U_{pom.20mA} = 24 - 20mA \cdot 10\Omega = 23,98V$$

Dobranie rezystorów (przyjmuję prąd $I_1 = 4mA$):

$$R_1 = \frac{0,04V}{4mA} = 10\Omega$$

$$R_2 = \frac{23,8V}{4mA} = 5,95k\Omega$$

$$R_{ptn} = \frac{0,16V}{4mA} = 40\Omega$$

$$R_{MAX.4mA} = \frac{24V - 0, 1V - 0, 04V}{4mA} = 5965\Omega$$
$$R_{MAX.20mA} = \frac{24V - 0, 1V - 0, 2V}{20mA} = 1193\Omega$$

Rysunek 12: $U_{strer}(U_{ce})$

Rysunek 13: $U_{ce}(R_{obc})$

Rysunek 14: $R_{obc}(P_{diss})$

4.2 $R_{pom} = 50\Omega$

Napięcia sterujące układem:

$$U_{pom.4mA} = 24 - 4mA \cdot 50\Omega = 23,80V$$

$$U_{pom.20mA} = 24 - 20mA \cdot 50\Omega = 23V$$

Dobranie rezystorów (przyjmuję prąd $I_1 = 4mA$):

$$R_1 = \frac{0,2V}{4mA} = 50\Omega$$

$$R_2 = \frac{23V}{4mA} = 5,75k\Omega$$

$$R_{ptn} = \frac{0,8V}{4mA} = 200\Omega$$

$$R_{MAX.4mA} = \frac{24V - 0, 1V - 0, 2V}{4mA} = 5925\Omega$$

$$R_{MAX.20mA} = \frac{24V - 0, 1V - 1V}{20mA} = 1145\Omega$$

Rysunek 15: $U_{strer}(U_{ce})$

Rysunek 16: $U_{ce}(R_{obc})$

Rysunek 17: $R_{obc}(P_{diss})$

4.3 $R_{pom} = 250\Omega$

Napięcia sterujące układem:

$$U_{pom.4mA} = 24 - 4mA \cdot 250\Omega = 23V U_{pom.20mA} = 24 - 20mA \cdot 250\Omega = 19V$$

Dobranie rezystorów (przyjmuję prąd $I_1 = 4mA$):

$$R_1 = \frac{1V}{4mA} = 250\Omega$$

$$R_2 = \frac{19V}{4mA} = 4,75k\Omega$$

$$R_{ptn} = \frac{4V}{4mA} = 1k\Omega$$

$$R_{MAX.4mA} = \frac{24V - 0, 1V - 1V}{4mA} = 5725\Omega$$

$$R_{MAX.20mA} = \frac{24V - 0, 1V - 5V}{20mA} = 945\Omega$$

Rysunek 18: $U_{strer}(U_{ce})$

Rysunek 19: $U_{ce}(R_{obc})$

Rysunek 20: $R_{obc}(P_{diss})$

5 Wnioski

Układami zawierającymi tranzystor NPN można skutecznie sterować przy niższych napięciach niż w przypadku układów z tranzystorem PNP. Maksymalne wartości rezystancji obciążenia dla danego R_{pom} są identyczne dla układów z tranzystorem NPN i PNP, zatem układy te są symetryczne. Sterowanie za pomocą potencjometru jest odwrotne w zależności od użytego w układzie tranzystora.