Two Envelopes Revisited

- · The "two envelopes" problem set-up
 - Two envelopes: one contains \$X, other contains \$2X
 - · You select an envelope and open it
 - Let Y = \$ in envelope you selected
 - ∘ Let Z = \$ in other envelope

$$E[Z \mid Y] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4}Y$$

- · Before opening envelope, think either equally good
 - So, what happened by opening envelope?
- E[Z | Y] above assumes all values X (where 0 < X < ∞) are equally likely
 - o Note: there are infinitely many values of X
 - o So, not true probability distribution over X (doesn't integrate to 1)

Subjectivity of Probability

- · Belief about contents of envelopes
 - Since implied distribution over X is not a true probability distribution, what is our distribution over X?
 - Frequentist: play game infinitely many times and see how often different values come up.
 - Problem: I only allow you to play the game once
 - Bayesian probability
 - Have <u>prior</u> belief of distribution for X (or anything for that matter)
 - 。Prior belief is a subjective probability
 - By extension, <u>all</u> probabilities are subjective
 - o Allows us to answer question when we have no/limited data
 - · E.g., probability a coin you've never flipped lands on heads
 - As we get more data, prior belief is "swamped" by data

The Envelope, Please

- Bayesian: have prior distribution over X, P(X)
 - Let Y = \$ in envelope you selected
 - Let Z = \$ in other envelope
 - Open your envelope to determine Y
 - If Y > E[Z | Y], keep your envelope, otherwise switch No inconsistency!
 - Opening envelope provides data to compute P(X | Y) and thereby compute E[Z | Y]
 - · Of course, there's the issue of how you determined your prior distribution over X...
 - Bayesian: Doesn't matter how you determined prior, but you must have one (whatever it is)
 - o Imagine if envelope you opened contained \$17.51

Revisting Bayes Theorem

Bayes Theorem (θ = model parameters, D = data): "Posterior" "Likelihood"

 $P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{P(D)}$

- Likelihood: you've seen this before (in context of MLE)
 - $_{\circ}$ Probability of data given probability model (parameter θ)
- Prior: before seeing any data, what is belief about model I.e., what is distribution over parameters θ
- Posterior: after seeing data, what is belief about model
 - $_{\circ}$ After data D observed, have posterior distribution p($\theta \mid D$) over parameters θ conditioned on data. Use this to predict new data
 - o Here, we assume prior and posterior distribution have same parametric form (we call them "conjugate")

Computing $P(\theta \mid D)$

• Bayes Theorem (θ = model parameters, D = data):

$$P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{P(D)}$$

- We have prior $P(\theta)$ and can compute $P(D \mid \theta)$
- But how do we calculate P(D)?
 - Complicated answer: $P(D) = \int P(D \mid \theta) P(\theta) d\theta$
 - Easy answer: It is does not depend on θ , so ignore it
 - Just a constant that forces $P(\theta \mid D)$ to integrate to 1

$P(\theta \mid D)$ for Beta and Bernoulli

• Prior: $\theta \sim \text{Beta}(a, b)$; D = $\{n \text{ heads}, m \text{ tails}\}$

$$f_{\theta|D}(\theta = p \mid D) = \frac{f_{D|\theta}(D \mid \theta = p) f_{\theta}(\theta = p)}{f_{D}(D)}$$

$$= \frac{{\binom{n+m}{n}}p^n(1-p)^m \cdot \frac{p^{a-1}(1-p)^{b-1}}{C_1}}{C_2} = \frac{{\binom{n+m}{n}}}{C_1C_2}p^n(1-p)^m \cdot p^{a-1}(1-p)^{b-1}$$

$$= C_3p^{n+a-1}(1-p)^{m+b-1}$$

- By definition, this is Beta(a + n, b + m)
 - All constant factors combine into a single constant
 - · Could just ignore constant factors along the way

Where'd Ya Get Them $P(\theta)$?

- θ is the probability a coin turns up heads
- Model θ with 2 different priors:
 - P₁(θ) is Beta(3,8) (blue)
 - P₂(θ) is Beta(7,4) (red)
- They look pretty different!

- · Now flip 100 coins; get 58 heads and 42 tails
 - · What do posteriors look like?

It's Like Having Twins

 As long as we collect enough data, posteriors will converge to the correct value!

From MLE to Maximum A Posteriori

- Recall Maximum Likelihood Estimator (MLE) of θ $\theta_{\text{MLE}} = \arg\max\prod_{i} f(X_i \mid \theta)$
- Maximum A Posteriori (MAP) estimator of θ :

$$\begin{split} \theta_{\text{MAP}} &= \arg\max_{\theta} f(\theta \mid X_{1}, X_{2}, \dots, X_{n}) = \arg\max_{\theta} \frac{f(X_{1}, X_{2}, \dots, X_{n} \mid \theta) \ g(\theta)}{h(X_{1}, X_{2}, \dots, X_{n})} \\ &= \arg\max_{\theta} \frac{\left(\prod_{i=1}^{n} f(X_{i} \mid \theta)\right) g(\theta)}{h(X_{1}, X_{2}, \dots, X_{n})} = \arg\max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_{i} \mid \theta) \end{split}$$

where $g(\theta)$ is prior distribution of θ .

- As before, can often be more convenient to use log: $\theta_{\mathit{MAP}} = \arg\max \left(\log(g(\theta)) + \sum_{i=1}^{n} \log(f(X_i \mid \theta))\right)$
- MAP estimate is the mode of the posterior distribution

Conjugate Distributions Without Tears

- · Just for review...
- Have coin with unknown probability θ of heads
 - Our <u>prior</u> (subjective) belief is that θ ~ Beta(a, b)
 - Now flip coin k = n + m times, getting n heads, m tails
 - Posterior density: (θ | n heads, m tails) ~ Beta(a+n, b+m)
 Beta is conjugate for Bernoulli, Binomial, Geometric, and
 - Beta is conjugate for Bernoulli, Binomial, Geometric, and Negative Binomial
 - a and b are called "hyperparameters"
 - $_{\circ}$ Saw (a+b-2) imaginary trials, of those (a-1) are "successes"
 - For a coin you never flipped before, use Beta(x, x) to denote you think coin likely to be fair
 - o How strongly you feel coin is fair is a function of x

Multinomial is Multiple Times the Fun

- Dirichlet(a₁, a₂, ..., a_m) distribution
 - · Conjugate for Multinomial
 - Dirichlet generalizes Beta in same way Multinomial generalizes Bernoulli/Binomial

$$f(x_1, x_2, ..., x_n) = \frac{1}{B(a_1, a_2, ..., a_n)} \prod_{i=1}^n x_i^{a_i - 1}$$

- Intuitive understanding of hyperparameters:
 - ∘ Saw $\sum_{i=1}^{m} a_i m$ imaginary trials, with $(a_i 1)$ of outcome i
- Updating to get the posterior distribution
 - After observing $n_1 + n_2 + ... + n_m$ new trials with n_i of outcome i...
 - o ... posterior distribution is Dirichlet($a_1 + n_1$, $a_2 + n_2$, ..., $a_m + n_m$)

Best Short Film in the Dirichlet Category

- And now a cool animation of Dirichlet(a, a, a)
 - This is actually *log* density (but you get the idea...)

Thanks Wikipedia!

Getting Back to your Happy Laplace

- · Recall example of 6-sides die rolls:
 - X ~ Multinomial(p₁, p₂, p₃, p₄, p₅, p₆)
 - Roll n = 12 times
 - Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
 MLE: p₁=3/12, p₂=2/12, p₃=0/12, p₄=3/12, p₅=1/12, p₆=3/12
 - Dirichlet prior allows us to pretend we saw each outcome k times before. MAP estimate: $p_i = \frac{X_i + k}{n + mk}$
 - $_{\circ}$ Laplace's "law of succession": idea above with k = 1
 - Laplace estimate: $p_i = \frac{X_i + 1}{x_i + \dots}$
 - Laplace: p₁=4/18, p₂=3/18, p₃=1/18, p₄=4/18, p₅=2/18, p₆=4/18
 - 。No longer have 0 probability of rolling a three!

Good Times With Gamma

- Gamma(α , λ) distribution
 - Conjugate for Poisson
 - 。 Also conjugate for Exponential, but we won't delve into that
 - Intuitive understanding of hyperparameters:
 - $_{\circ}$ Saw α total imaginary events during λ prior time periods
 - Updating to get the posterior distribution
 - 。 After observing *n* events during next *k* time periods...
 - $_{\circ}$... posterior distribution is Gamma(α + n, λ + k)
 - 。Example: Gamma(10, 5)
 - Saw 10 events in 5 time periods. Like observing at rate = 2
 - o Now see 11 events in next 2 time periods → Gamma(21, 7)
 - Equivalent to updated rate = 3

It's Normal to Be Normal

- Normal(μ_0 , σ_0^2) distribution
 - Conjugate for Normal (with unknown μ, known σ²)
 - Intuitive understanding of hyperparameters:
 - $_{\circ}\,$ A priori, believe true μ distributed ~ N($\mu_{0},\,\sigma_{0}{}^{2})$
 - Updating to get the posterior distribution
 - 。After observing *n* data points...
 - 。... posterior distribution is:

$$N\left(\left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n X_i}{\sigma^2}\right) / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right), \quad \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1}\right)$$