Exploiting Symmetry in High-Dimensional Dynamic Programming

Kahou at al, presented by Yao Luo

Boston College

April 6, 2024

- Introduction
- 2 Permutation-Invariant Dynamic Programming
- Concentration of Measure
- 4 Concentration of Measure
- 5 Deep Learning Implementation
- 6 Extensions
- Discussion

Introduction

Introduction

Model: Investment under uncertainty

Introduction

Model solution: How to solve the curse of dimensionality problem?

Permutation-Invariant Dynamic Programming

- Dimensionality reduction
- Definition 1+2+intuition
- Representation theorem

Permutation-Invariant Dynamic Programming

■ Specific functional representation in the investment model

Concentration of Measure

- Why?
- definition 4 + proposition 3 + intuition

Concentration of Measure

- When it holds?
- ◀ section 5

- networks architecture set up:3
- ◀ baseline case
- Training: Euler residuals + minimization

Algorithm

Case I: $\nu = 1$

Figure 3: Comparison between the LQ-regulator solution and our three deep learning architures for the case with $\nu=1$ and N=128.

Figure 4: The Euler residuals for $\nu=1$ and N=128 for $\phi({\rm Identity})$, $\phi({\rm Moments})$, and $\phi({\rm ReLU})$. The dark blue curve shows the average residuals along equilibrium paths for 256 different trajectories. The shaded areas depict the 2.5th and 97.5th percentiles.

Figure 5: Performance of the $\phi(\text{ReLU})$ for different N.

Table 1: Performance of different networks in solving case I: $\nu = 1$

		Time (s)	Params (K)	$\begin{array}{c} \text{Train MSE} \\ (\varepsilon) \end{array}$	$\mathop{\rm Test\ MSE}_{(\varepsilon)}$	$\operatorname*{Val\ MSE}_{\left(\varepsilon\right)}$	Policy Error $(u-u_{\text{ref}})$	Policy Error $\left(\frac{ u-u_{ref} }{u_{ref}}\right)$
group	description							
$\phi({\rm Identity})$	Baseline	42	49.4	4.1e-06	3.3e-07	3.3e-07	2.9e-05	0.10%
	Thin (64 nodes)	33	12.4	3.7e-06	2.7e-07	2.7e-07	3.4e-05	0.10%
$\phi({\rm Moments})$	Baseline	55	49.8	1.4e-06	7.6e-07	7.6e-07	2.8e-05	0.09%
	Moments (1,2)	211	49.5	2.4e-06	1.1e-06	2.3e-06	4.4e-05	0.14%
	Very Shallow(1 layer)	241	0.6	1.1e-05	8.4e-06	7.9e-06	1.1e-02	34.00%
	Thin (64 nodes)	82	12.6	1.6e-06	9.1e-07	9.2e-07	3.8e-05	0.12%
$\phi({\rm ReLU})$	Baseline	107	66.8	3.7e-06	3.3e-07	3.3e-07	2.7e-05	0.09%
	L = 2	86	66.3	1.3e-05	2.1e-07	2.2e-07	2.6e-05	0.08%
	L = 16	91	69.9	5.5e-06	1.5e-07	1.5e-07	2.1e-05	0.07%
	$Shallow(\phi : 1 layer, \rho : 2 layers)$	79	17.7	2.0e-06	5.5e-07	5.5e-07	3.2e-05	0.11%
	$Deep(\phi : 4 \text{ layers}, \rho : 8 \text{ layers})$	242	165.1	2.1e-03	2.2e-03	2.1e-03	2.7e-03	8.50%
	$Thin(\phi, \rho : 64 \text{ nodes})$	87	17.0	1.1e-05	4.5e-07	4.5e-07	3.0e-05	0.10%

Case II:

Extensions

The tools are useful for solving any high-dimensional functional equations with some degree of symmetry, especially when these equations contain high-dimensional expectations.

- Decreasing returns to scale
- Multiple productivity types
- Complex idiosyncratic states
- Global solutions with transitions and aggregate shocks

Discussion

- Solve high-dimensional dynamic programming problems in minutes.
- Double-descent
- Model selection since results are sensitive to different network architectures.