PENENTUAN SOLUSI OPTIMAL (PERT 5)

Mukhtada Billah Nasution | F1E122037 | mukhtadanasution@gmail.com

I. SOAL

Suatu Perusahaan beton memindahkan beton dari 3 (tiga) pabrik ke 3 (tiga) Lokasi konstruksi. Kapasitas penawaran dari tiga pabrik, permintaan dari tiga Lokasi, dan biaya transportasi per ton adalah sebagai berikut:

Pabrik	Lokasi	Konst	ruksi	Penawaran (TON)	
Tablik	A	В	C	Tenawaran (1011)	
1	8	5	6	120	
2	15	10	12	80	
3	3	9	10	80	
Permintaan (Ton)	150	70	60	280	

Hitung dengan menggunakan metode awal VAM.

I. Metode Stepping Stone

Tujuan	Lokasi	Pasokan		
Asal	A B		C	1 asokan
1	8	5	6	-
1	70		50	120
2	15	10	12	-
2		70	10	80
3	3`	9	10	-
3	80			80
	-	-	-	
Permintaan	150	70	60	280

1) Sel 1B

Tujuan	Lokasi	Pasokan		
Asal	A	В	C	1 asokan
1	8	4 5	_6	-
I	70	ſ	50	120
2	15	10	12	-
2		70	10	80
3	3`	9	10	-
3	80			80
	-	-	-	
Permintaan	150	70	60	280

$$1B \rightarrow 1C \rightarrow 2C \rightarrow 2B = 5 - 6 + 12 - 10 = $1$$

2) Sel 2A

Tujuan	Lokasi	Pasokan			
Asal	A	В	C	1 usonum	
1	8 -	5	6	-	
1	70		5 0	120	
2	15.	10	12	-	
2	<u> </u>	70	-1 0	80	
3	3`	9	10	-	
3	80			80	
	-	-	-		
Permintaan	150	70	60	280	

$$2A \rightarrow 2C \rightarrow 1C \rightarrow 1A = 15 - 12 + 6 - 8 = \$1$$

3) Sel 3B

Tujuan	Lokasi Konstruksi						Pasokan	
Asal	A		I	ВС		7	- I usokan	
1	-	► 8		5		6	-	
	70	(5()	120	
2.		15	-	10		12	-	
2			7	9	1) —	80	
3	-	3		9		10	-	
	80	5 ——	4	+			80	
	-		-		-			
Permintaan	15	0	70		60	0	280	

 $3B \rightarrow 2B \rightarrow 2C \rightarrow 1C \rightarrow 1A \rightarrow 3A$ \$9 - 10 + 12 - 6 + 8 - 3= \$10 4)

Sel 3C

Tujuan	Lo	kasi	Pasokan			
Asal		A	В	C		1 asokan
1	+	8	5		- 6	-
1	,	7 0		4	P	120
2		15	10		12	-
2			70	1	0	80
3	_	3`	9		10	-
3	8	30-				80
	-		-	-		
Permintaan	150		70	60		280

$$3C \rightarrow 3A \rightarrow 1A \rightarrow 1C = \$10 - 3 + 8 - 6 = \$9$$

Dikarenakan setiap penambahan biaya dari rute-rute yang telah dilalui untuk tiap-tiap sel bernilai di atas nol (positif) maka hasil akhir telah optimal dan tidak perlu melakukan iterasi ulang.

II. Metode Modified Distribution (MODI)

	V_{j}	V_a	V_{b}	$\mathbf{V}_{\mathbf{c}}$	
U	Pabrik	A	В	С	Penawaran
	1	8	5	6	120
U ₁		70	-	50	
	2	15	10	12	80
U_2	2	-	70	10	
	3	3	9	10	80
U ₃		80	-	-	
	Permintaan	150	70	60	280

$$X_{1A} = U_1 + V_a = 8$$

$$X_{1C} = U_1 + V_c = 6$$

$$X_{2B} = U_2 + V_b = 10$$

$$X_{2C} = U_2 + V_c = 12$$

$$X_{3A} = U_3 + V_a = 3$$

Misalkan $U_l = 0$, maka

$$X_{1A}=U_1+V_a=8$$

$$V_a = 8$$

$$\begin{split} X_{1C} &= U_1 + V_c = 6 \\ V_c &= 6 \\ X_{2C} &= U_2 + V_c = 12 \\ &= U_2 + 6 = 12 \\ U_2 &= 6 \\ X_{2B} &= U_2 + V_b = 10 \\ 6 + V_b &= 10 \\ V_b &= 4 \\ X_{3A} &= U_3 + V_a = 3 \\ U_3 + 8 &= 3 \\ U_3 &= -5 \end{split}$$

	V_{j}	$V_a = 8$	$V_b = 4$	$V_c = 6$	
U	Pabrik	A	В	С	Penawaran
	1	8	5	6	120
$U_1 = 0$	1	70	-	50	
	2	15	10	12	80
$U_2 = 6$		ı	70	10	
	3	3	9	10	80
$U_3 = -5$		80	-	-	•
	Permintaan	150	70	60	280

$$X1B = C1B - U1 - VB = 5 - 0 - 4 = 1$$

 $X2A = C2A - U2 - VA = 15 - 6 - 8 = 1$
 $X3B = C3B - U3 - VB = 9 + 5 - 4 = 10$
 $X3C = C3C - U3 - VC = 10 + 5 - 6 = 9$

Karena setiap sel tidak memiliki hasil hitung yang negative maka Solusi optimal telah dicapai dan tidak perlu iterasi lebih lanjut. Dengan demikian penerapan dengan Solusi awal VAM yang kemudian dilanjutkan dengan metode MODI dengan nilai yang teroptimasi pada metode VAM sebesar \$1,920 mencapai Solusi optimal pada iterasi 0.