Student Number: Name: Bryan Hoang

1.

(a) Answer:

Using Table 1.11, the ciphertext of the plaintext message is

IBXFEPAQLBQAAXWQWIBXFSVAXW

(b) **Answer:**

Table 1: The associated decryption table of Table 1.11.

d	h	b	W	0	g	u	q	t	С	j	S	у	Х	Z	l	i	m	a	k	f	r	n	е	٧	р
Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	M	N	0	Р	Q	R	S	T	U	٧	W	Χ	Υ	Z

(c) **Answer:**

Using Table 1 to decrypt the message yields the following plaintext message:

The secret password is sword fish.

2.

(a) Answer:

Proof. Let $g = \gcd(a, b)$. Then $\exists A, B \in \mathbb{Z}$ such that a = gA and b = gB. Then substituting the equations into the given one yields

$$1 = au + bv$$

$$= gAu + gBv$$

$$= g(Au + Bv)$$

where $Au + Bv \in \mathbb{Z}$. Therefore, g divides 1, implying that g = 1.

(b) Answer:

It is not necessarily true that gcd(a, b) = 6. For example, take a = 1 and b = 2. Then

$$a \cdot (-6) + b \cdot 6 = 6,$$

and yet gcd(a, b) = 1.

Claim. In general, all possible values of gcd(a, b) divide 6, i.e., the RHS of au + bv = 6.

Proof. Suppose that au + bv = c has a solution. Let $g = \gcd(a, b)$ and divide c by g with remainder to get

$$c = gq + r$$
, with $q, r \in \mathbb{Z}$, $0 \le r < g$.

Then by the extended euclidean algorithm, we can find $x, y \in \mathbb{Z}$ such that g = ax + by. Then

$$au + bv = c = gq + r = (ax + by)q + r$$

 $\Rightarrow a(u - xq) + b(v - yq) = r.$

g divides the LHS since g divides both a and b, which implies that $g \mid r$. But if $0 \le r < g$ and $g \mid r$, then we have that r = 0. Therefore, c = gq which means that g divides c, where c = 6 for the specific example. \Box

Student Number:

Name: Bryan Hoang

(c) Answer:(d) Answer:

Proof. Let's subtract one equation from the other to get

$$au + bv - au_0 - bv_0 = 0$$

 $a(u - u_0) = -b(v - v_0).$

Dividing both sides by g yields

$$\frac{a}{g}(u - u_0) = -\frac{b}{g}(v - v_0) \tag{1}$$

We also have that

$$au + bv = g$$

 $\Rightarrow \frac{a}{g}u + \frac{b}{g}v = 1$

which, combined with part (a), gives $\gcd(\frac{a}{g},\frac{b}{g})=1$. By (1), $\frac{a}{g}\mid\frac{b}{g}(v-v_0)$. Since $\frac{a}{g}$ is relatively prime to $\frac{b}{g}$, it follows that $\frac{a}{g}\mid(v-v_0)$.

- 3. Answer:
- 4. Answer:
- 5. Answer:
- 6. Answer:
- 7. Answer:
- 8. Answer:
- 9. Answer:
- 10. **Answer:**
- 11. Answer:
- 12. Answer:

Student Number: Name: Bryan Hoang

- 13. Answer:
- 14. **Answer:**
- 15. Answer: