• If the spectrum of a random variable *X* is finite or countably infinite then the distribution of *X* is called a *discrete distribution*.

- If the spectrum of a random variable *X* is finite or countably infinite then the distribution of *X* is called a *discrete distribution*.
- Let spectrum of X: $T = \{x_i : i = 0, \pm 1, \pm 2, ...\}$ with

$$\dots < x_{-2} < x_{-1} < x_0 < x_1 < x_2 < \dots$$

The function $f_X : \mathbb{R} \to [0,1]$, defined as

$$f_X(x) = \begin{cases} P(X = x_i), & x = x_i \in T \\ 0, & \text{elsewhere.} \end{cases}$$

is called the *probability mass function* (p.m.f.) of X.

' /

•
$$F_X(x) = \sum_{\substack{x_j \le x_i \ j = -\infty}} P(X = x_j) \text{ if } x_i \le x \angle x_{i+1}$$

•
$$F_X(x) = \sum_{x_j \le x_i} P(X = x_j)$$
 if $x_i \le x \not \le x_{i+1}$

• F_X is a step function with steps $f_i = P(X = x_i)$ for $i = 0, \pm 1, \pm 2, ...$

Discrete Distribution: Properties

1.
$$\sum_{j=-\infty}^{\infty} f_j = 1$$
 We have, $F_X(\infty) = 1$

Discrete Distribution: Properties

$$1. \sum_{j=-\infty}^{\infty} f_j = 1$$

2. At each non-spectrum point a, P(X = a) = 0

$$P(X=a) = F_{X}(a) - F_{X}(a-0)$$
let, $\exists x_{k}, x_{k+1} \in \text{spectrum of } X \text{ s.t.}$

$$F_{x}(a) = \sum_{j=-\infty}^{k} f_{x}(x_{j}), \quad F(a-o) = \sum_{j=-\infty}^{k} f_{x}(x_{j})$$

$$\Rightarrow P(x-a) = 0.$$

Discrete Distribution: Properties

$$1. \sum_{j=-\infty}^{\infty} f_j = 1$$

2. At each non-spectrum point a, P(X = a) = 0

3.
$$P(a < X \le b) = \sum_{a < x_i \le b} f_X(x_i)$$

$$P(a < X \le b) = F_X(b) - F_X(a)$$

Discrete Distribution: Examples

1. Binomial (n,p) Distribution

Discrete Distribution: Examples

2. Poisson (μ) Distribution

Continuous Distribution

Definition

The distribution of a random variable X is said to be continuous if

- 1. the distribution function F_X is continuous
- 2. $\frac{d}{dx}F_X(x) = F_X'(x)$ is piecewise continuous in $(-\infty, \infty)$

Define: $f_X : \mathbb{R} \to [0,1]$ as $f_X(x) = \frac{d}{dx} F_X(x)$ which is called the *probability* density function (p.d.f.) of X.

1.
$$f_X \ge 0$$

$$f_{x}(x) \geq 0 \quad \forall x \in \mathbb{R}$$

$$f_{x}(x) = \frac{d}{dx} F_{x}(x) \ge 0$$
 Since $F_{x}(x)$ is months. In.

1.
$$f_X \ge 0$$

2.
$$P(a < X \le b) = \int_{a}^{b} f_X(x) dx$$

$$P(a < X \leq b) = F_{x}(b) - F_{x}(a)$$
.

(i)
$$f_{X}(x) = \frac{d}{dx} F_{X}(x)$$
 (primitive exist)

fx(x) has finite no. of jmp discontinuities (2st kind) in
$$[a,b] \Rightarrow f_X(x)$$
 is R. integrable in $[a,b]$.

$$\Rightarrow$$
 Applying Fundamental Th. of Integral Calculus
$$\int_{a}^{b} f_{x}(x) dx = F_{x}(b) - F_{x}(a) = P(a < x \le b).$$

- 1. $f_X \ge 0$
- 2. $P(a < X \le b) = \int_{a}^{b} f_X(x) dx$

3.
$$F_X(x) = \int_{-\infty}^x f_X(x) dx$$

- 1. $f_X \ge 0$
- 2. $P(a < X \le b) = \int_{a}^{b} f_X(x) dx$
- 3. $F_X(x) = \int_{-\infty}^{x} f_X(x) dx$
- 4. $\int_{-\infty}^{\infty} f_X(x) dx = 1$

- 1. $f_X \ge 0$
- 2. $P(a < X \le b) = \int_{a}^{b} f_X(x) dx$
- 3. $F_X(x) = \int_{-\infty}^{x} f_X(x) dx$
- $4. \int_{-\infty}^{\infty} f_X(x) dx = 1$
- 5. P(X = a) = 0 for a given constant a

- 1. $f_X \ge 0$
- 2. $P(a < X \le b) = \int_a^b f_X(x) dx$
- 3. $F_X(x) = \int_{-\infty}^x f_X(x) dx$
- $4. \int_{-\infty}^{\infty} f_X(x) dx = 1$
- 5. P(X = a) = 0 for a given constant a
- 6. **Converse statement:** Every non-negative, real-valued, piecewise-continuous function f that is integrable in $(-\infty,\infty)$ and satisfies $\int_{-\infty}^{\infty} f(x) dx = 1$, is the probability density function of a continuous distribution.

7. **Probability Differential:** Let X has continuous distribution. In differential notation we write:

$$P(x < X \le x + dx) = F_X(x + dx) - F_X(x) = dF_X$$

8. **Density Curve:** The curve $y = f_X(x)$ is called the probability density curve of the corresponding continuous distribution.

1. Uniform (a, b)

2. Normal (m, σ)

3. Cauchy (λ, μ) Distribution

4. Gamma (1) distribution

5. Beta (I, m) distribution of 1st kind

6. Beta (I, m) distribution of 2nd kind