```
// You need to

// 1. Read the programming assignment in homework #1.

// 2. Implement function GetStudentName.

// 3. Implement function FindKey.

// 4. Compile your code as explained in the PDF file.

// 5. Run the executable on small and large unit tests.

// 6. Test and debug your code. Make sure that your program does not have

// any memory leaks.

// 7. Remove all commented out code. Double check that your program does not

// print any debug information on the screen.

// 8. Submit your source code ("student_code_1.h") on Canvas.
```

Multiple Machines

Can we use greedy for more than two machines?

Can we use greedy for multiple machines? Job 3 Job 2

Two Problems to Solve

- We need to
 - > Select jobs that we want to run.
 - Assign jobs to machines.
- Let's solve them separately
 - \triangleright Find a set of jobs A such that at every point of time no more than m jobs are scheduled.
 - Assign jobs in *A* to machines (using the Machine Minimization algorithm).

Algorithm for Selecting Jobs

Create a set of jobs $A = \emptyset$, which we are going to run. Sort all jobs in I by their finish time f(i).

for every job j in J:

If we can add *j* to A without *overloading* machines, do it; Otherwise, discard the job.

return A

Selection Problem

- $A = \{a_1, ..., a_k\}$ solution returned by Alg.
- $\mathbf{0} = \{o_1, \dots, o_{k'}\}$ optimal solution.

Claim: For all $i \in k$, there exists an optimal solution H_i i.e. $|H_i| = |O|$ that contains the first i jobs in A:

$$a_1, \ldots, a_i \in H_i$$

Selection Problem

- $A = \{a_1, ..., a_k\}$ solution returned by Alg.
- $\mathbf{0} = \{o_1, \dots, o_{k'}\}$ optimal solution.

Claim: For all $i \in k$, there exists an optimal solution H_i i.e. $|H_i| = |O|$ that contains the first i jobs in A: $a_1, \ldots, a_i \in H_i$

Proof by induction.

Base case: i = 0. $H_0 = \mathbf{0}$ is such a solution.

Selection Problem

- $A = \{a_1, ..., a_k\}$ solution returned by Alg.
- $\mathbf{0} = \{o_1, \dots, o_{k'}\}$ optimal solution.

Claim: For all $i \in k$, there exists an optimal solution H_i i.e. $|H_i| = |O|$ that contains the first i jobs in A: $a_1, \dots, a_i \in H_i$

Proof by induction.

Inductive step: H_i is an optimal solution containing a_1, \dots, a_i . Need to construct H_{i+1} .

Claim: For all $i \in k$, there exists an optimal solution H_i i.e. $|H_i| = |O|$ that contains the first i jobs in A: $a_1, ..., a_i \in H_i$

Proof by induction.

Inductive step: H_i is an optimal solution containing $a_1, ..., a_i$. Need to construct H_{i+1} .

Claim: For all $i \in k$, there exists an optimal solution H_i i.e. $|H_i| = |O|$ that contains the first i jobs in A: $a_1, \dots, a_i \in H_i$

Proof by induction.

Inductive step: H_i is an optimal solution containing $a_1, ..., a_i$. Need to construct H_{i+1} .

- \triangleright If $a_{i+1} \in H_i$, then let $H_{i+1} = H_i$ and we are done.
- ➤ Otherwise: insert a_{i+1} and remove $b \in H_i \setminus \{a_1, ..., a_i\}$ with the earliest start time s(b).

$$H_{i+1} = H_i + \{a_{i+1}\} - \{b\}$$

We need to show that H_{i+1} is a **feasible** solution for the selection problem.

What can go wrong?

- By inserting job a_{i+1} in H_i , we can potentially overload machines at time t.
- Jobs $a_1, \ldots, a_i, a_{i+1}$ are in **A.** They do not overload machines on their own, because **A** is feasible. Thus, there must be another job c in H_i active at time t.

What can go wrong?

- Jobs $a_1, \ldots, a_i, a_{i+1}$ are in **A.** They do not overload machines on their own, because **A** is feasible. Thus, there must be another job c in H_i active at time t.
- However, job b starts before job c.

What can go wrong?

- Jobs $a_1, \ldots, a_i, a_{i+1}$ are in **A.** They do not overload machines on their own, because **A** is feasible. Thus, there must be another job c in H_i active at time t.
- However, job b starts before job c. It also finishes after job a_{i+1} !

What can go wrong?

- Jobs $a_1, \ldots, a_i, a_{i+1}$ are in **A.** They do not overload machines on their own, because **A** is feasible. Thus, there must be another job c in H_i active at time t.
- Therefore, b is active at time t. Since it is removed from H_i , the total number of active jobs at time t is at most m.

CS 336: Design and Analysis of Algorithms © Konstantin Makarychev

Sum of Weighted Completion Times

• We have n jobs 1, ..., n with processing times $p_1, ..., p_n$ and weights $w_1, ..., w_n$. We need to schedule them on one machine one after another so as to minimize

$$\sum_{j} w_{j} C_{j}$$

where C_j is the completion time of job j.

Our goal it to find the optimal ordering of jobs.

Discussion

Assume that all jobs have the same processing time:

$$p_j = 1$$

 Then, we need to schedule one job at time 0, one job at time 1, etc.

Discussion

Assume that all jobs have the same processing time:

$$p_j = 1$$

- Then, we need to schedule one job at time 0, one job at time 1, etc.
- The objective equals to $\sum_{j=1}^{n} j \cdot w_j$.

Discussion

Assume that all jobs have the same processing time:

$$p_j = 1$$

- Then, we need to schedule one job at time 0, one job at time 1, etc.
- The objective equals to $\sum_{j=1}^{n} j \cdot w_j$.
- Solution: Sort w_i 's in decreasing order.

Discussion

Assume that there are only two different processing times:

$$p_i = 1$$
 or $p_i = 2$

• Solution: Sort jobs in decreasing order of w_j/p_j .

Smith's Rule

Compute $x_j = w_j/p_j$ for all j. Sort jobs in decreasing order of x_i .

- x_i is the money per minute.
- The rule is simple and fast!

Proof uses Bubble Sort!

- Assume that all x_i are distinct.
- Bubble sort compares two consecutive elements j' and j'' in the array and swaps them if $x_{j'} < x_{j''}$.
- Bubble sort is slow, but it works.
- Let's sort the optimal solution using Bubble sort.
- What happens when we swap jobs j' and j''?

Swaps

- Swaps affect only jobs j' and j''.
- Decrease the objective function by $p_{j'}w_{j''}-p_{j''}w_{j'}$.

$$p_{j'}w_{j''}-p_{j''}w_{j'}>0 \Leftrightarrow \frac{w_{j'}}{p_{j'}}<\frac{w_{j''}}{p_{j''}}$$

