Table 1: Simply typed lambda-calculus with Let binding, Records and General recursion.

LEMMA [Inversion of the Typing Relation]:

- 1. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$
- 2. If $\Gamma \vdash \lambda x : T_1.t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 , with Γ , $x : T_1 \vdash t_2 : R_2$.
- 3. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \to R$ and $\Gamma \vdash t_2 : T_{11}$.
- 4. If $\Gamma \vdash let \ x = t_1 \ in \ t_2 : R$, then there is some type T_1 such that $\Gamma \vdash t_1 : T_1$, with $\Gamma, \ x : T_1 \vdash t_2 : R$.
- 5. If $\Gamma \vdash \{l_i = t_i^{i \in 1 \dots n}\} : R$, then there are some types $R_i^{i \in 1 \dots n}$ such that for each i is satisfied that $\Gamma \vdash t_i : R_i$ and $R = \{l_i = R_i^{i \in 1 \dots n}\}$.
- 6. If $\Gamma \vdash t.l_j : R$, then there is some type $\{l_i = R_i^{i \in 1 \cdots n}\}$ such that $\Gamma \vdash t : \{l_i = R_i^{i \in 1 \cdots n}\}$ and $R = R_j$.
- 7. $\Gamma \vdash fix \ t_1 : R \text{ then } \Gamma \vdash t1 : R \to R.$

Proof: Immediate from the definition of the typing relation.

LEMMA [Canonical Forms]:

- 1. If v is a value of type $T_1 \to T_2$, then $v = \lambda x : T_1.t_2$.
- 2. If v is a value of type $\{l_i = T_i^{i \in 1 \cdots n}\}$ then $v = \{l_i = v_i^{i \in 1 \cdots n}\}$, and $\Gamma \vdash v_i : T_i \ i \in 1 \cdots n$.

Proof: Straightforward.

THEOREM [Progress]: Suppose t is a closed, well-typed term (that is, $\vdash t' : T$ for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$. Proof: Straightforward induction on typing derivations.

- 1. The variable case cannot occur (because t is closed).
- 2. The abstraction case is immediate, since abstractions are values.
- 3. For application, where $t = t_1$ t_2 , with $\vdash t_1 : T_{11} \longrightarrow T_{12}$ and $\vdash t_2 : T_{11}$, for the inversion lemma. Then, by the induction hypothesis, either t_1 is a value or else it can make a step of evaluation, and likewise t_2 . If t_1 can take a step, then rule EApp1 applies to t. If t_1 is a value and t_2 can take a step, then rule EApp2 applies. Finally, if both t_1 and t_2 are values, then the canonical forms lemma tells us that t_1 has the form $\lambda x : T_{11}.t_{12}$, and so rule EAppAbs applies to t.
- 4. If $t = (let \ x = t_1 \ in \ t_2)$, then $\vdash \ t_1 : T_1$ and $\vdash \ t_2 : T_2$, for the inversion lemma. Then, by the induction hypothesis, either t_1 is a value or else it can make a step of evaluation. If t_1 can take a step, then rule ELet applies to t. If t_1 is a value, then rule ELetV applies.
- 5. If $t = \{l_i = t_i^{\ i \in 1 \cdots n}\}$, then there are some types $T_i^{\ i \in 1 \cdots n}$ such that for each i is satisfied that $\Gamma \vdash t_i : T_i$ and $T = \{l_i = T_i^{\ i \in 1 \cdots n}\}$. By the induction hypothesis, for each $t_i^{\ i \in 1 \cdots n}$, either it is a value or else it can make a step of evaluation. If all the $t_i^{\ i \in 1 \cdots n}$ are values, then t is a value. If all the $t_i^{\ i \in 1 \cdots n}$ are not values, then there is t_j such that it can take a step, then rule ERcd applies to t.

- 6. If $t = t'.l_j$, then there is some type $\{l_i = T_i^{i \in 1 \cdots n}\}$ such that $\Gamma \vdash t' : \{l_i = T_i^{i \in 1 \cdots n}\}$ and $T = T_j$. By the induction hypothesis, either t' is a value or else it can make a step of evaluation. If t' can take a step, then rule EProj applies to t. If t' is a value, then rule EProjRcd applies.
- 7. If $t = fix \ t'$, then $\Gamma \vdash t' : T \to T$, for the inversion lemma. By the induction hypothesis, either t' is a value or else it can make a step of evaluation. If t' can take a step, then rule EFix applies to t. If t' is a value, then the canonical forms lemma tells us that t' has the form $\lambda x : T.t_1$, and so rule EFixBeta applies to t.

LEMMA[Permutation]: If $\Gamma \vdash t : T$ and Δ is a permutation of Γ , then $\Delta \vdash t : T$. *Proof*: Straightforward induction on typing derivations.

LEMMA[Weakening]: If $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma, x : S \vdash t : T$. *Proof*: Straightforward induction on typing derivations.

LEMMA [Preservation of types under substitution]: If $\Gamma, x : S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof: By induction on a derivation of the statement $\Gamma, x : S \vdash t : T$. For a given derivation, we proceed by cases on the final typing rule used in the proof.

- 1. Case TVar: t=z with $z: T \in (\Gamma, x:S)$. There are two sub-cases to consider, depending on whether z is x or another variable. If z=x, then $[x\mapsto s]z=s$. The required result is then $\Gamma\vdash s:S$, which is among the assumptions of the lemma. Otherwise, $[x\mapsto s]z=z$, and the desired result is immediate.
- 2. Case TAbs: $t = \lambda y : T_2.t_1$, with $T = T_2 \to T_1$ and $\Gamma, x : S, y : T_2 \vdash t_1 : T_1$. By convention, we may assume $x \neq y$ and $y \notin FV(s)$. Using permutation on the given subderivation, we obtain $\Gamma, y : T_2, x : S \vdash t_1 : T_1$. Using weakening on the other given derivation $(\Gamma \vdash s : S)$, we obtain $\Gamma, y : T_2 \vdash s : S$. Now, by the induction hypothesis, $\Gamma, y : T_2 \vdash [x \mapsto s]t_1 : T_1$. By $TAbs, \Gamma \vdash \lambda y : T_2.[x \mapsto s]t_1 : T_2 \to T_1$. But this is precisely the needed result, since, by the definition of substitution, $[x \mapsto s]t = \lambda y : T_1.[x \mapsto s]t_1$.
- 3. Case TApp: $t = t_1 \ t_2, \Gamma, x : S \vdash t_1 : T_2 \to T_1, \Gamma, x : S \vdash t_2 : T_2, T = T_1$. By the induction hypothesis, $\Gamma \vdash [x \mapsto s]t_1 : T_2 \to T_1$ and $\Gamma \vdash [x \mapsto s]t_2 : T_2$. By TApp, $\Gamma \vdash [x \mapsto s]t_1 \ [x \mapsto s]t_2 : T$, then $\Gamma \vdash [x \mapsto s](t_1 \ t_2) : T$.
- 4. Case TRcd: $t = \{l_i = t_i^{i \in 1 \cdots n}\}$, for each $i, \Gamma, x : S \vdash t_i : T_i, T = \{l_i = T_i^{i \in 1 \cdots n}\}$. By the induction hypothesis, for each $i, \Gamma \vdash [x \mapsto s]t_i : T_i$. By the $TRcd, \Gamma \vdash \{l_i = [x \mapsto s]t_i^{i \in 1 \cdots n}\} : T$, then $\Gamma \vdash [x \mapsto s]\{l_i = t_i^{i \in 1 \cdots n}\} : T$.
- 5. Case TLet: $t = (let \ y = t_1 \ in \ t_2), \Gamma, x : S \vdash t_1 : T_1, \Gamma, x : S, \ y : T_1 \vdash t_2 : T_2, \ T = T_2.$ By convention, we may assume $x \neq y$ and $y \notin FV(s)$. Using permutation on the given subderivation, we obtain $\Gamma, y : T_1, x : S \vdash t_2 : T_2$. Using weakening on the other given derivation $(\Gamma \vdash s : S)$, we obtain $\Gamma, y : T_1 \vdash s : S$. Now, by the induction hypothesis, $\Gamma, y : T_1 \vdash [x \mapsto s]t_2 : T_2$ and $\Gamma \vdash [x \mapsto s]t_1 : T_1$. By $TLet, \Gamma \vdash let \ y : [x \mapsto s]t_1 \ in \ [x \mapsto s]t_2 : T_2$. But this is precisely the needed result, since, $[x \mapsto s]t = (let \ y = [x \mapsto s]t_1 \ in \ [x \mapsto s]t_2)$.

- 6. Case TProj: $t=t_1.l_j$, $\Gamma,x:S\vdash t_1:\{l_i=T_i^{\ i\in 1\cdots n}\}$ and $T=T_j$. By the induction hypothesis, $\Gamma\vdash [x\mapsto s]t_1:\{l_i=T_i^{\ i\in 1\cdots n}\}$. By TProj, $\Gamma\vdash [x\mapsto s]t_1.l_j:T$. But this is precisely the needed result, since, $[x\mapsto s]t=[x\mapsto s]t_1.l_j$.
- 7. Case TFix: $t = fix \ t_1$ and $\Gamma, x : S \vdash t_1 : T \to T$. By the induction hypothesis, $\Gamma \vdash [x \mapsto s]t_1 : T \to T$. By TFix, $\Gamma \vdash fix \ [x \mapsto s]t_1 : T$. But this is precisely the needed result, since, $[x \mapsto s]t = fix \ [x \mapsto s]t_1$.

LEMMA[Preservation]: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on a derivation of t:T. At each step of the induction, we assume that the desired property holds for all subderivations (i.e., that if s:S and $s \longrightarrow s'$, then s':S, whenever s:S is proved by a subderivation of the present one) and proceed by case analysis on the final rule in the derivation.

- 1. Case TVar: It cannot be the case that $t \longrightarrow t'$ for any t', and the requirements of the theorem are vacuously satisfied.
- 2. Case TAbs: $t = \lambda x : T_2.t_1$, with $T = T_2 \to T_1$ and $\Gamma, x : T_2 \vdash t_1 : T_1$. If the last rule in the derivation is TAbs, then we know from the form of this rule that t must be a function $\lambda x : T_2.t_1$ and T must be $T_2 \to T_1$, with $\Gamma, x : T_2 \vdash t_1 : T_1$. But then t is a value, so it cannot be the case that $t \to t'$ for any t', and the requirements of the theorem are vacuously satisfied.
- 3. Case TApp: $t = t_1 \ t_2$, $\vdash \ t_1 : T_2 \to T$ and $\vdash \ t_2 : T_2$. If the last rule in the derivation is TApp, then we know from the form of this rule that t must have the form $t_1 \ t_2$, for some t_1 and t_2 . We must also have a subderivation with conclusions $\vdash t_1 : T_2 \to T$ and $\vdash t_2 : T_2$. Now, looking at the evaluation rules with this form on the left-hand side, we find that there are three rules by which $t \longrightarrow t'$ can be derived: EApp1, EApp2 and EAppAbs. We consider each case separately.
 - Subcase $EApp1: t_1 \longrightarrow t'_1, t' = t'_1 t_2$. By the induction hypothesis, $\vdash t'_1 : T_2 \to T$, then we can apply rule TApp, to conclude that $\vdash t'_1 t_2 : T$, that is $\vdash t' : T$.
 - Subcase EApp2: $t_2 \longrightarrow t_2'$, $t' = t_1 \ t_2'$. By the induction hypothesis, $\vdash t_2' : T_2$, then we can apply rule TApp, to conclude that $\vdash t_1 \ t_2' : T$, that is $\vdash t' : T$.
 - Subcase EAppAbs: $t_1 = \lambda x : T_1.t_{12}, t_2 = v_2, t' = [x \mapsto v_2]t_{12}$ and $\vdash t_{12} : T$ for the inversion lemma. The resulting term $\vdash [x \mapsto v_2]t_{12} : T$, for the Substitution lemma, that is $\vdash t' : T$.
- 4. Case TRcd: $t = \{l_i = t_i^{i \in 1 \dots n}\}$, for each $i, \vdash t_i : T_i, T = \{l_i = T_i^{i \in 1 \dots n}\}$.
 - If for each $i, t_i = v_i$, then t is a value, so it cannot be the case that $t \longrightarrow t'$ for any t', and the requirements of the theorem are vacuously satisfied.
 - Subcase ERcd: $t = \{l_i = v_i^{i \in 1 \dots j-1}, l_j = t_j, l_k = t_k^{k \in j+1 \dots n}\}, t_j \longrightarrow t'_j, t' = \{l_i = v_i^{i \in 1 \dots j-1}, l_j = t'_j, l_k = t_k^{k \in j+1 \dots n}\}$ and $\vdash t_j : T_j$. By the induction hypothesis, $\vdash t'_j : T_j$, then we can apply rule TRcd, to conclude that $\vdash t' : T$.
- 5. Case TLet: $t = (let \ x = t_1 \ in \ t_2), \Gamma \vdash t_1 : T_1 \ and \ \Gamma, x : T_1 \vdash t_2 : T$. If the last rule in the derivation is TLet, then we know from the form of this rule that t must have the form

(let $x = t_1$ in t_2), for some t_1 and t_2 . We must also have a subderivation with conclusions $\vdash t_1 : T_1$ and $\vdash t_2 : T_2$. Now, looking at the evaluation rules with Let form on the left-hand side, we find that there are two rules by which $t \longrightarrow t'$ can be derived: ELetV and ELet. We consider each case separately.

- Subcase ELetV: $t_1 = v_1$, $t' = [x \mapsto v_1]t_2$, and $\vdash t_2 : T$. Then for the substitution lemma t' : T.
- Subcase ELet: $t_1 \longrightarrow t'_1$ and $t' = (let \ x = t'_1 \ in \ t_2)$. By the induction hypothesis, $\vdash t'_1 : T_1$, then we can apply rule TLet, to conclude that $\vdash (let \ x = t'_1 \ in \ t_2) : T$, that is $\vdash t' : T$.
- 6. Case TProj: $t = t_1.l_j$, $\vdash t_1 : \{l_i = T_i^{i \in 1 \cdots n}\}$ and $T = T_j$. If the last rule in the derivation is TProj, then we know from the form of this rule that t must have the form $t_1.l_j$. We must also have a subderivation with conclusions $\vdash t_1 : \{l_i = T_i^{i \in 1 \cdots n}\}$ and $T = T_j$. Now, looking at the evaluation rules with this form on the left-hand side, we find that there are two rules by which $t \longrightarrow t'$ can be derived: EProjRcd and EProj. We consider each case separately.
 - Subcase EProjRcd: $t_1 = \{l_i = v_i^{i \in 1 \cdots n}\}$ and $t' = v_j$. This means we are finished, since we know $\vdash v_j : T_j$ and $T = T_j$.
 - Subcase EProj: $t_1 \longrightarrow t_1'$ and $t' = t_1'.t_j$. By the induction hypothesis, $\vdash t_1' : \{l_i = T_i^{i \in 1 \cdots n}\}$, then we can apply rule TLet, to conclude that $\vdash t_1'.t_j : T_j$, that is $\vdash t' : T$.
- 7. Case TFix: $t = fix \ t_1$ and $\vdash t_1 : T \to T$. If the last rule in the derivation is TFix, then we know from the form of this rule that t must have the form $fix \ t_1$, for some t_1 . We must also have a subderivation with conclusions $\vdash t_1 : T \to T$. Now, looking at the evaluation rules with fix on the left-hand side, we find that there are two rules by which $t \to t'$ can be derived: EFixBeta and EFix. We consider each case separately.
 - Subcase EFixBeta: $t_1 = \lambda x : T_1.t_2$, $t' = [x \mapsto (fix (\lambda x : T_1.t_2))]t_2$, $\vdash t_1 : T \to T$ and $\vdash t_2 : T$, for the inversion lemma. Then, by the substitution lemma, $\vdash [x \mapsto (fix (\lambda x : T_1.t_2))]t_2 : T$, which is what we need.
 - Subcase EFix: $t_1 \longrightarrow t'_1$ and $t' = fix \ t'_1$. By the induction hypothesis, $\vdash t'_1 : T \to T$, then we can apply rule TFix, to conclude that $\vdash fix \ t'_1 : T$, that is $\vdash t' : T$.