Lecture 5: Knowledge Distillation

On-Device Al Journey

What is Knowledge Distillation?

- Distill "knowledge" from a large neural network to a small one.
 - E.g. ResNet101 → MobileNet
- Larger DNNs are easier to train
- Small DNNs are easier to deploy
- Knowledge?
 - Classification: Softmax class probabilities
- Proposed by Caruna et al. (2006)
- Generalized by Hinton et al. (2015)

Learning Outcomes

Understand what knowledge distillation is and why it is needed.

Write code to perform knowledge distillation

Understand advanced knowledge distillation techniques and open problems

Training a neural network

Training a neural network

Where do we get soft targets?

- 1. From labeled data by clustering similar classes
- 2. Using an equation
- 3. From a trained neural network
- 4. Using expert annotation

Knowledge Distillation

Softmax Temperature

Recall: Softmax function:
$$q_i = \frac{e^{-c}}{\sum_i e^{-z}}$$

Softmax with temperature: $q_i = \frac{e^{-T}}{\sum_j e^{z_j}/T}$

	Z	q [T=1]	q [T=10]
	-1.1	0.007	0.171
	1.4	0.087	0.219
	3.7	0.880	0.276
	0.1	0.024	0.193
	-3.0	0.001	0.141

Additional hyper-parameter: **T** → exposes more "dark knowledge"

Knowledge Distillation Can we use logits? Logits (z) Probabilities (q) 5 x 1 5 x 1 **Neural Network** 0.3 0.11 Which loss function? 0.9 0.21 Student Image **Small Neural Network** 0.54 1.9 Softmax 224 x 224 x 3 0.1 0.09 T = 50.2 0.10 Loss Which temperature to use during inference? Function (Soft) Targets 0.1 0.03 Teacher 0.7 0.25 Large Neural Network Softmax 2.9 0.70 0.2 T = 5 0.02 0.1 0.01

What temperature to use during inference?

- 1. Same as training (T = 5)
- 2. T = 1 (Standard softmax)
- 3. T = 0
- 4. T = 10

Distillation Loss + Student Loss

Neural Network

Image 224 x 224 x 3

Small Neural Network

Large Neural Network

Softmax

Softmax

T = 1

T = 5

(Soft) Targets

0.03

Hard prediction

0.02

0.11

0.84

0.01

0.02

Soft predictions

0.25 0.70

0.01

Teacher

T = 5

0.02

13

Hard labels

Loss

Function

Student

Loss

Loss

Function

Distillation

Loss

0

Distillation Loss + Student Loss

$$L(x;W) = \alpha * H(y,\sigma(z_s;T=1)) \longleftarrow Student loss$$

$$+ \beta * H(\sigma(z_t;T=t),\sigma(z_s;T=t)) \longleftarrow Distillation loss$$

x: input

W: student model parameters

H: *loss function*

y: hard targets

 σ : softmax function

T: softmax temperature

 z_s : student soft predictions

 z_t : teacher soft targets

```
import torch
import torch.nn.functional as F
import torchvision
# load model + init optimizer
model = torchvision.models.mobilenet v2()
optimizer = torchvision.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
for epoch in range(NUM EPOCHS):
    for inputs, labels in trainloader:
        # forward
        outputs = net(inputs)
        # loss
        loss = F.cross_entropy(outputs, labels)
        # backward + optimize
        loss.backward()
        optimizer.step()
```

```
# load model + init optimizer
student = torchvision.models.mobilenet_v2()
optimizer = torchvision.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
           Load teacher + set hyper-params
for epoch in range(NUM_EPOCHS):
    for inputs, labels in trainloader:
       # forward
       outputs_s = student(inputs)
                                        Compute loss
       # backward + optimize
       loss.backward()
       optimizer.step()
```

```
# load model + init optimizer
student = torchvision.models.mobilenet v2()
optimizer = torchvision.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
teacher = torchvision.models.resnet101() # load teacher model
T, ALPHA = 5, 0.3 # distillation hyper-params
for epoch in range(NUM EPOCHS):
    for inputs, labels in trainloader:
        # forward
        outputs s = student(inputs)
        outputs t = teacher(inputs) # teacher forward pass
        hard loss = F.cross entropy(outputs, labels) # hard loss with G.T. labels
        #distillation loss
        p, q = F.softmax(outputs_s/T, dim=1), F.softmax(outputs_t/T, dim=1)
        dist loss = F.kl div(p, q)
        loss = ALPHA * dist_loss + (1. - ALPHA) * hard_loss # combined hard + distillation loss/
        # backward + optimize
        loss.backward()
        optimizer.step()
```

Learning Outcomes

Understand what knowledge distillation is and why it is needed.

Write code to perform knowledge distillation

Understand advanced knowledge distillation techniques and open problems

Ensembles and Specialists

 Teacher architecture can be more complicated – boost accuracy

Ensembles and Specialists

- Teacher architecture can be more complicated – boost accuracy
- Ensembles:
 - Different initializations
 - Different model architectures

Ensembles and Specialists

- Teacher architecture can be more complicated – boost accuracy
- Ensembles:
 - Different initializations
 - Different model architectures
- Specialists [1]:
 - Divide classes to different model
 - Google JFT dataset has 15000 classes
 - One generalist NN on all data
 - Top-k classes from generalist are further refined by specialists
 - How to choose specialist classes?

Distillation Types

- Offline: Pretrained teacher used to add distillation loss during student training
- Online: Both teacher and student are trained simultaneously
 - Collaborative/mutual learning

Distillation Types

- Offline: Pretrained teacher used to add distillation loss during student training
- Online: Both teacher and student are trained simultaneously
 - Collaborative/mutual learning
- Self distillation:
 - E.g. Progressive hierarchical inference

Knowledge Types

- Response-based:
 - Output probabilities as soft targets (as we have already seen)

$$L_{ResD}(z_t, z_s) = \mathcal{L}_R(z_t, z_s)$$

- Feature-based:
 - Output/weights of 1 or more "hint layers" and minimize e.g. MSE loss
 - More advanced: minimize difference in attention maps between student/teacher

$$L_{FeaD}(f_t(x), f_s(x)) = \mathcal{L}_F(\Phi_t(f_t(x)), \Phi_s(f_s(x)))$$

- Relation-based:
 - Correlations between feature maps: e.g. Gramian between two features

$$L_{RelD}(f_t, f_s) = \mathcal{L}_{R^1} \big(\Psi_t(\hat{f}_t, \check{f}_t), \Psi_s(\hat{f}_s, \check{f}_s) \big)$$

Distillation Algorithms

- Survey paper [2] has a thorough overview of different distillation variations
- Adverserial: Teacher also acts as discriminator in GAN to supplement training data to "teach" true data distribution
- Cross-modal: Teacher trained on RGB distills information to student learning on heat maps. Unlabeled image pairs needed.
- Quantized distillation: Use full-precision network to transfer knowledge to quantized network.
- ... more in the paper!

Image from [2]

Reading

[1] G. Hinton et al., <u>Distilling the knowledge in a neural network</u>, Neural Information Processing Systems (NeurIPS), 2015.

[2] J. Guo et al., Knowledge Distillation: A Survey, ArXiV preprint, 2021.

Learning Outcomes

Understand what knowledge distillation is and why it is needed.

Write code to perform knowledge distillation

Understand advanced knowledge distillation techniques and open problems

Greater Impact

- Environmental impact: Smaller models, lower carbon footprint
 - Beware Jevons paradox!
- Data privacy: Smaller models, on-device AI, data stays on your device
- If you are Google:
 - Power bill \$\$
- If you are Samsung:
 - AWS bill \$\$

