习题课 广义积分

判断下列广义积分的敛散性.

$$(1) \int_{1}^{+\infty} \frac{x \ln x}{\sqrt{x^5 + 1}} dx$$

$$(2) \quad \int_0^\pi \frac{1}{\sqrt{\sin x}} dx$$

$$(3) \int_0^{+\infty} \frac{\arctan x}{x^p} dx$$

(4)
$$\int_0^{+\infty} \left[\ln \left(1 + \frac{1}{x} \right) - \frac{1}{1+x} \right] dx$$
 (5) $\int_0^{\frac{\pi}{2}} \frac{dx}{\sin^p x \cos^q x}$ (6) $\int_0^{+\infty} \frac{\ln(1+x)}{x^p} dx$

$$(5) \quad \int_0^{\frac{\pi}{2}} \frac{dx}{\sin^p x \cos^q x}$$

$$(6) \quad \int_0^{+\infty} \frac{\ln(1+x)}{x^p} dx$$

$$(7) \int_0^1 \frac{\ln x}{\sqrt{x}(1-x)^2} dx$$

$$(8) \int_0^{+\infty} \frac{\sin x^2}{x^p} dx$$

(9)
$$\int_0^{+\infty} (-1)^{[x^2]} dx$$

- 证明: 如果 f(x) 在 $[a,+\infty)$ 上非负且一致连续, $\int_a^{+\infty} f(x) dx$ 收敛,则 $\lim_{x \to +\infty} f(x) = 0$. 如果将非负条件去掉,是否仍然有 $\lim_{x\to +\infty} f(x) = 0$? 如果是,请证明; 如果不是,请举反 例。
- 证明以下命题:
- (1) $\int_{a}^{+\infty} f(x) dx$ 收敛, $\lim_{x \to +\infty} f(x)$ 存在, 证明: $\lim_{x \to +\infty} f(x) = 0$.
- (2) $\int_{a}^{+\infty} f(x) dx$ 收敛, $f(x) \in [a, +\infty)$ 上单调, 证明: $\lim_{x \to +\infty} f(x) = 0$.
- (3) $\int_{a}^{+\infty} f(x) dx$ 收敛, f(x) 在[a, + ∞) 上单调,证明: $\lim_{x \to +\infty} x f(x) = 0$.
- (4) f(x) 在[a,+ ∞) 上连续可微, $\int_{a}^{+\infty} f(x) dx$, $\int_{a}^{+\infty} f'(x) dx$ 均收敛,证明: $\lim_{x \to +\infty} f(x) = 0$.
- (5) f(x) 在[a, + ∞)上可微,单调,且 $\int_{a}^{+\infty} f(x) dx$ 收敛,则 $\int_{a}^{+\infty} x f'(x) dx$ 收敛.
- (6) f(x) 在 (0,1] 上单调,且 $\lim_{x\to 0+} f(x) = +\infty$,且 $\int_0^1 f(x) dx$ 收敛,证明: $\lim_{x\to 0+} xf(x) = 0$.
- (7) 设 $\int_{a}^{+\infty} f(x)dx$ 绝对收敛,且 $\lim_{x \to +\infty} f(x) = 0$,证明 $\int_{a}^{+\infty} f^{2}(x)dx$ 收敛。
- (8) 设f(x)单调下降,且 $\lim_{x\to +\infty} f(x) = 0$,证明:若f'(x)在 $[0,+\infty)$ 上连续,则反常积 分 $\int_0^{+\infty} f'(x) \sin^2 x \, dx$ 收敛。
- 4. 讨论 p 为何值时,广义积分 $\int_{1}^{+\infty} \frac{\sin x}{x^{p} + \sin x} dx$ 绝对收敛、条件收敛、发散。
- 5. 判断 $\int_{0}^{+\infty} \frac{x^{\alpha}}{1+x^{\beta}} dx$ 收敛性, 其中 $\beta > 0$ 。

- 6. 判断 $\int_0^{+\infty} \frac{\sin^2 x}{x^p} dx$ 收敛性(第六章复习题题 2(1),p. 206)
- 7. 判断 $\int_{1}^{+\infty} x \cos(x^3) dx$ 收敛性。(习题 6.2 题 9 (2), p. 206)
- 8. 判断 $\int_{0}^{+\infty} \sin x \sin \frac{1}{x} dx$ 收敛性(第六章复习题题 3, p. 206)
- 9. 计算下列广义积分

(1)
$$\int_0^{+\infty} \frac{1}{(1+5x^2)\sqrt{1+x^2}} dx \, \cdot$$

$$(2) \quad \int_{1}^{+\infty} \frac{\arctan x}{x^2} dx.$$

(3)
$$\int_0^{+\infty} \frac{xe^{-x}}{(1+e^{-x})^2} dx$$
.

(4)
$$\int_{1}^{+\infty} \frac{dx}{\sqrt{e^{2x}-1}}$$

10. 求
$$I = \int_{a}^{b} \frac{dx}{\sqrt{(x-a)(b-x)}}$$
, 其中 $b > a$ 。

11.
$$\int_{0}^{+\infty} \frac{dx}{1+x^3}$$

12.
$$\dot{\mathcal{R}}I = \int_{0}^{+\infty} \frac{dx}{(1+x^2)(1+x^a)}, \quad \dot{\mathbf{x}} = \mathbf{a} > 0.$$

13. 求
$$\int\limits_0^{+\infty} \frac{1+x^2}{1+x^4} dx$$
(有理函数积分或者变量代换)

14. 已知
$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
 , 求 $\int_0^{+\infty} \frac{\sin x \cos x}{x} dx$, 及 $\int_0^{+\infty} \frac{\sin^2 x}{x^2} dx$

15. (补充内容,了解即可)三个重要的广义积分

(1) 计算 Euler 积分
$$I = \int_{0}^{\pi/2} \ln \cos x \ dx$$
 。

(2) 计算 Froullani 广义积分
$$\int_{0}^{+\infty} \frac{f(ax) - f(bx)}{x} dx$$