Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа по основам профессиональной деятельности №4

Вариант 15601

Санкт Петербург 2025 г.

Выполнил: Снагин Станислав Максимович Проверил: Блохина Елена Николаевна

Группа: РЗ115

Содержание

дания и цели работы	3
од работы	.4
Текст исходной программы	4
Назначение программы и реализуемая ею функция	
Область представления	
Область допустимых значений	
Расположение данных в памяти ЭВМ программы, исходных данных и результатов:	
Программа	.6
Исходные данные Результат	. 6
Результат	6
Адреса первой и последней выполняемой программы	.6
Таблица трассировки	
ывод	

Задания и цели работы

Необходимо по варианту 1560

39E: +	0200	Ι	3AC:	0800	ı	3BA:	YYYY	1	729:	EC01
39F:	EE1C	Ì	3AD:	0740	Ĺ	3BB:	XXXX	Ì	72A:	0A00
3A0:	AE19	ĺ	3AE:	6E0D	ĺ	3BC:	FF3A	Ī	72B:	0F6C
3A1:	0700	ĺ	3AF:	EE0C	ĺ			Ī	72C:	00C1
3A2:	0C00	ĺ	3B0:	AE0A	ĺ	71F:	AC01	Ī		
3A3:	D71F	ĺ	3B1:	0700	ĺ	720:	F204	ĺ		
3 A4 :	0800		3B2:	0C00		721:	F003			
3A5:	0700		3B3:	D71F		722:	7E08			
3A6:	6E15		3B4:	0800		723:	F004			
3A7:	EE14		3B5:	0740	ĺ	724:	F803			
3A8:	AE10	Ī	3B6:	4E05	ĺ	725:	4C01	1		
3 A 9:	0740	Ī	3B7:	EE04	ĺ	726:	6E05	Ī		
3AA:	0C00	ĺ	3B8:	0100	ĺ	727:	CE01	Ī		
3AB:	D71F	Ī	3B9:	ZZZZ	ĺ	728:	AE02	Ī		

Ход работы

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии
39E+	0200	CLA	Начало программы
39F	EE1C	ST IP + 28	(AC=0) AC → D , отчистка результата
3A0	AE19	LD IP + 25	Y → AC
3A1	0700	INC	AC = Y + 1
3A2	0C00	PUSH	Передача Y + 1 (аргумента) в стек (0x7FF)
3A3	D71F	CALL 0x71F	Вызов подпрограммы F(Y + 1) (0x7FE)
3A4	0800	POP	Получаем результат подпрограммы в AC
3A5	0700	INC	AC = AC + 1 (AC = F(Y + 1) + 1)
3A6	6E15	SUB IP + 21	AC = AC – D вычитаем из результата ноль
			AC = F(Y + 1) + 1 - 0
3A7	EE14	ST IP + 20	AC → D Сохраняем новый результат
			$(D = \mathbf{F}(\mathbf{Y} + 1) + 1)$
3A8	AE10	LD IP + 16	Z → AC
3A9	0740	DEC	AC = AC - 1
			(AC = Z - 1)
3AA	0C00	PUSH	Передача Z – 1 (аргумента) в стек (0x7FF)
3AB	D71F	CALL 0x71F	Вызов подпрограммы F(Z – 1)

			(0x7FE)
3AC	0800	POP	Результат из SP → AC
3AD	0740	DEC	AC = F(Z - 1) - 1
3AE	6E0D	SUB IP + 13	AC = F(Z - 1) - D
			(AC = F(Z - 1) - F(Y + 1) - 1)
3AF	EE0C	ST IP + 12	AC → D
			(D = F(Z - 1) - F(Y + 1) - 1)
3B0	AE0A	LD IP + 10	$X \rightarrow AC$
3B1	0700	INC	AC = AC + 1
			(AC = X + 1)
3B2	0C00	PUSH	Передача аргумента X + 1 в стек (0x7FF)
3B3	D71F	CALL 0x71F	Вызов подпрограммы F(X + 1) (0x7FE)
3B4	0800	POP	Результат из SP → AC
3B5	0740	DEC	AC = AC - 1
			(AC = F(X + 1) - 1)
3B6	4E05	ADD IP + 5	AC = AC + D
			(AC = F(X + 1) - 1 + F(Z - 1) - F(Y + 1) - 1)
3B7	EE04	ST IP + 4	АС → D, итоговый результат программы
			(D = F(X + 1) - 1 + F(Z - 1) - F(Y + 1) - 1)
3B8	0100	ніт	Остановка программы

Текст подпрограммы

Адрес	Код команды	Мнемоника	Комментарии
71F	AC01	LD SP + 1	Загрузка аргумента (0x7FF) + флаги
720	F204	BMI IP + 4	Если AC < 0 , переход на 0х725
721	F003	BEQ IP + 3	Если AC = 0 , переход на 0x725
722	7E08	CMP IP + 8	Флаги по результату АС - А
723	F004	BEQ IP + 4	Если $\mathbf{AC} - \mathbf{A} = 0$, переход на $0x728$
724	F803	BLT IP + 3	Если AC – A < 0 , переход на 0x728
725	4C01	ADD SP + 1	Умножить аргумент на 2
726	6E05	SUB IP + 5	AC = AC - B + флаги по результату.
			т. е. Если изначальный аргумент был отрицательный, то $AC = 2X - B$
727	CE01	JUMP IP + 1	Переход на 0х729
728	AE02	LD IP + 2	A → AC Загрузка константы
			т. е. Если значение AC <= A, загружаем A в AC
729	EC01	ST (SP + 1)	AC → M Сохранение результата в ячейку аргумента программы в стеке
72A	0A00	RET	Возврат

Данные подпрограммы

72B	0F6C	A	Константа

			F6C (16) = 3948 (10)
7	72C	00C1	Константа, вычитаемое в 2X - В
			C1 (16) = 193 (10)

Данные

3B9	ZZZZ	Z	Значение Z
ЗВА	YYYY	Y	Значение У
3BB	XXXX	X	Значение X
3ВС	00C1	D	Результат

Назначение программы и реализуемая ею функция

Программа представляет собой сумму трех значений

$$D = F(X + 1) - 1 + F(Z - 1) - F(Y + 1) - 1$$

$$D = F(X + 1) - F(Y + 1) - F(Z - 1) - 2$$

от кусочно заданной функции

$$F(X) = \{ 2X - 193, если (x <= 0 или x > 3948) ; 3948, если 0 < x <= 3948 \}$$

от переменных X, Y и Z. На вход в качестве аргументов через стек подается X + 1, Y + 1 и Z - 1 соответственно, а результат подпрограммы записывается в ту же ячейку данных, через которую в подпрограмму и передавались аргументы (в нашем случае, это 0x7FF)

Область представления

Некоторые значения \mathbf{X} , \mathbf{Y} , \mathbf{Z} — 16-ти разрядные знаковые числа в допкоде.

Константы А, В -- 16-ти разрядные знаковые числа в допкоде.

Результат **D** -- 16-ти разрядное знаковое число в допкоде.

Область допустимых значений

$$A = 0F6C (16) = 3948 (10)$$

$$B = C1 (16) = 193 (10)$$

(1) Рассмотрим случай, где 0 < a <= 3948

Функция $F(\mathbf{a})$ вернёт 3948, если значение аргумента \mathbf{a} будет находиться в диапазоне (0, 3948]. при использовании любых значений \mathbf{a} , переполнения не возникнет

(2) Рассмотрим случай, где a <= 0.

Максимальное значение достигается в F(0) = -193, минимальное число в $F(-2^15)$. Переполнения не возникнет, но это будет минимальное возможное значение функции

$$F(-2^15) = -65729$$

(3) Рассмотрим случай, где а > 3948: так как функция монотонно возрастает на этом промежутке, то и максимальное значение достигается в $2^{15} - 1$:

$$F(2^15 - 1) = 65341$$

$$D = F(X + 1) - F(Y + 1) - F(Z - 1) - 2$$

Минимально для **D** мы можем получить:

$$D = -65729 - (65341) - (65341) - 2 = -196413 < -2^15$$
, переполнение

Максимальное для D:

$$D = 65341 - (-65729) - (-65729) - 2 = 196797 > 2^15 - 1$$
, переполнение

Исходя из этого, минимальное и максимальное значение -2 15 и 2 15 - 1

$$X$$
 и $Y = [-2^15; 2^15 - 2]$

$$Z = [-2^15 + 1.2^15]$$

$$\mathbf{D} = [-2 \land 15, 2 \land 15 - 1]$$

Расположение данных в памяти ЭВМ программы, исходных данных и результатов:

Программа

0х39Е — 0х3В8 - команды

0х3В9 — 0х3ВВ - данные

0х3ВС — данные (результат)

Подпрограмма

0x71F — 0x72A - команды

0х72В и 0х72С — данные (константы)

Адреса первой и последней выполняемой программы

Адрес первой выполняемой программы: 0х39Е

Адрес последней выполняемой программы: 0х72А

Вывод

В ходе лабораторной работы были подробно изучены команды, связанные с работой со стеком: POP, RET, CALL, а так же прямая адресация относительно SP.