A Logiford structure of measure spaces

Inkee Jung ¹ Siu-Cheong Lau ²

¹Mathematics PhD student Boston University

²Faculty of Mathematics Department Boston University

December 18

2024 IMS International Conference on Statistics and Data Science 16 - 19 December 2024, Nice, France

"Manifold" in Data Science

High-dimensional analogue of 2 dimensional surface in \mathbb{R}^N

(Image from Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová)

Manifold: Local-to-Global Principle

Locally Euclidean Space (M, \mathcal{U}) with collection of local data $\mathcal{U} = \{(U_{\alpha}, \Phi_{\alpha})\}$

- Modeling Spacetime by Einstein's theory of relativity
- Local-to-Global principle

(Figure based on W. M. Boothby)

Dataset and Neural Network

 $f = \sigma_2 \circ L_2 \circ \sigma_1 \circ L_1$

Classification with two classes

• Network models gain tremendous success in describing datasets

Motivated from Neural Network.

Example: Directed graph G & Set of affine maps $L = \{l_{v_1}, l_{v_2}, l_{v_3}\}$, $D \subset \mathbb{R}^2$

Motivated from Neural Network.

Example: Directed graph G & Set of affine maps $L = \{l_{v_1}, l_{v_2}, l_{v_3}\}$, $D \subset \mathbb{R}^2$

Motivated from Neural Network.

Example: Directed graph G & Set of affine maps $L=\{l_{v_1},l_{v_2},l_{v_3}\}$, $D\subset\mathbb{R}^2$

Motivated from Neural Network.

Example: Directed graph G & Set of affine maps $L=\{l_{v_1},l_{v_2},l_{v_3}\}$, $D\subset\mathbb{R}^2$

 $f: D \to \{t_1, t_2, t_3\}$ is a function defined by G and L.

Definition of Linear Logical Function

- Measurable set $D \subset \mathbb{R}^n$, Finite set T.
- Directed finite graph G without cycle
- Affine maps

 $L = \{I_v : v \text{ is a vertex with more than one outgoing arrows}\}$

Definition

 $f_{G,L}:D\to T$ is a linear logical function of (G,L) if $I_v\in L$ are affine linear functions whose chambers in D are one-to-one corresponding to the outgoing arrows of v.

(G, L) is called a linear logical graph.

Linear logical function: Example

Activation map: Step function

 $f = \sigma \circ L_2 \circ s \circ L_1$ where

- ullet $L_1:\mathbb{R}^n o\mathbb{R}^2$ is affine map and s is a component-wise step function.
- $L_2: \mathbb{R}^2 \to \mathbb{R}^3$ is affine map and σ is the index-max map.

f is a linear logical function with the above graph G and $L = \{L_{v_0}\}$.

Linear logical function: Example

Activation map: ReLu

 $f = \sigma \circ L_2 \circ s \circ L_1$, where L_1, L_2 are affine maps and s is a component-wise ReLu function defined as $\operatorname{ReLu}(x) = \max(0, x)$.

f is a linear logical function with the above graph G and $L=\{L_{v_0},L_{v_1},L_{v_2},L_{v_3}\}.$

Fuzzy linear logical function: Example

 $f = \sigma \circ L_2 \circ s \circ L_1 : S^n \to S^3$ with SoftMax σ and Sigmoid s, where $\operatorname{Softmax}(x) = (e^{x_k} / \sum_i e^{x_i})_i$, $\operatorname{Sigmoid}(x) = (1 + e^{-x})^{-1}$.

• *G* is a finite directed graph that has no oriented cycle with exactily one source vertex and target vertex *t*.

Fuzzy linear logical function: Example

• Each vertex v of G is equipped with a product of standard simplices P_v , with domain $D = P_{v_0}$.

•
$$p_{a_1} = s \circ L_1 : P_{v_0} \to P_{v_1}, p_{a_2} = \sigma \circ L_2 : P_{v_1} \to P_t$$

$$\downarrow P_{v_0} \qquad \qquad P_{v_1} \qquad$$

mapping to the next 'state'.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ご

Fuzzy linear logical function : Definition

- G is a finite directed graph that has no oriented cycle with exactily one source vertex and target vertices t_1, \ldots, t_K .
- Each vertex v of G is equipped with a product of standard simplices P_v . Domain D is a subset of P_{v_0} .
- Each arrow a is equipped with a continuous function

$$p_a:P_{s(a)} o P_{t(a)}$$

where s(a), t(a) denote the source and target vertices of the arrow a respectively.

• Each vertex v that has more than one outgoing arrows is equipped with affine map I_v whose chambers in P_v are one-to-one corresponding to the outgoing arrows of v.

Given $x \in D$, L and p_a determine a path to a target, and $f_{(G,L,P,p)}(x)$ is defined by the composition of arrow maps along the path.

□ ▶ ◀♬ ▶ ◀불 ▶ ◀불 ▶ □ 불 · 쒸익()

- $D \subset \mathbb{R}^N$ with $\mu(D) < \infty$, where μ is the Lebesgue measure.
- T is finite

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f:D\to T$, we have a linear logical function that approximates to f.

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f:D\to T$, we have a linear logical function that approximates to f.

Proof of idea

Definition (Lou van den Dries)

A structure S on the real line consists of a boolean algebra S_n of subsets of \mathbb{R}^n for each $n = 0, 1, \ldots$, such that

- $\bullet \{x \in \mathbb{R}^n : x_i = x_j\}, 1 \le i < j \le n \in S_n.$
- Closed under Cartesian product.
- Closed under projection $(A \in S_{n+1} \to \pi(A) \in S_n)$.
- $\{(x, y) \in \mathbb{R}^2 : x < y\} \in S_2$.

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f:D\to T$, we have a linear logical function that approximates to f.

Proof of idea

For instance, let ϕ and ψ be 1st order logic formulas on $(x, y) \in X \times Y$.

$$\Phi := \{(x,y) \in X \times Y : \phi(x,y)\}, \Psi := \{(x,y) \in X \times Y : \psi(x,y)\}.$$

 $\phi \wedge \psi$ and $\phi \vee \psi$ define $\Phi \cap \Psi$ and $\Phi \cup \Psi$.

 $\exists x \phi(x, y)$ defines $\pi_Y(\Phi)$.

 $\forall x \phi(x, y)$ defines $Y \setminus \pi_Y (X \times Y \setminus \Phi)$.

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f:D\to T$, we have a linear logical function that approximates to f.

Proof of idea

semilinear set of \mathbb{R}^n : Finite unions of

$$\{x \in \mathbb{R}^n : f_1(x) = \cdots = f_k(x), g_1(x) > 0, \ldots, g_l(x) > 0\}$$

with affines f_i and g_j .

Semilinear sets form o-minimal structure, in which every definable subset is a finite union of intervals and points.

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f:D\to T$, we have a linear logical function that approximates to f.

Proof of idea

Lemma

A function $f: D \to T$, where $D \subset \mathbb{R}^n$ and T is a finite set, is semilinear if and only if it is a linear logical function.

Using this lemma, we can approximate f with linear logical functions by constructing approximations of semilinear functions.

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f:D\to T$, we have a linear logical function that approximates to f.

Corollary

There exists a family \mathcal{L} of linear logical functions $L_i: D_i \to T$, where $D_i \subset D$ and $L_i \equiv f|_{D_i}$, such that $D \setminus \bigcup_i D_i$ is measure zero set.

Fuzzy linear logifold

Definition

A fuzzy linear logifold is a tuple $(X, \mathcal{P}, \mathcal{U})$, where (X, \mathcal{U}) be a logifold and

- \mathcal{U} is a collection of tuples (ρ_i, ϕ_i, f_i)
- $ho_i:X o [0,1]$ describe fuzzy subsets of X with $\sum_i
 ho_i \leq 1_X$
- $U_i = \{x \in X : \rho_i(x) > 0\}$ be the support of ρ_i

In classification problems,

- $X = \mathbb{R}^n \times T$
- $\mathcal{P}: X \to [0,1]$ describes how likely an element of $\mathbb{R}^n \times \mathcal{T}$ is classified as 'yes'
- ρ_i can be 'generalization performance', or 'constant'.

Example of logifold

 $f:(0,1]\to\{0,1\}$ be a function defined as

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{(-1)^n + 1}{2} \right) I_{E_n}(x)$$

where $E_n = (1 - 2^{-n}, 1 - 2^{-n-1}].$ The graph of $f \subset [0, 1) \times \{0, 1\}$

with countably many 'jumps' or 'discontinuities' near at x = 0.

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

Practical Aspect: Ensemble Machine Learning

In classification problems, $X = \mathbb{R}^n \times T$ and each model $g_i : X \to T$ with $U_i = X$. Define $G_i : X \times T \to [0,1]$ by g such that $G_i(x,t) = (g_i(x))_t$. Let N be the total number of classifiers.

• If $\rho_i = \frac{1}{N}$ for any i, then $P: X \times T \rightarrow [0,1]$ is defined by

$$P(x,t) = \sum \rho_i(x) 1_{t_{i,0}(x)}(t)$$

, where $t_{i,0}(x) = \arg \max G_i(x,t)$ denoting 'the answer of g_i ', and therefore the system employs **majority voting**.

Practical Aspect: Ensemble Machine Learning

In classification problems, $X = \mathbb{R}^n \times T$ and each model $g_i : X \to T$ with $U_i = X$. Define $G_i : X \times T \to [0,1]$ by g such that $G_i(x,t) = (g_i(x))_t$. Let N be the total number of classifiers.

• If $\rho_i = \frac{1}{N}$ for any i, then $P: X \times T \rightarrow [0,1]$ is defined by

$$P(x,t) = \sum \rho_i(x) \mathbb{1}_{t_{i,0}(x)}(t)$$

, where $t_{i,0}(x) = \arg \max G_i(x,t)$ denoting 'the answer of g_i ', and therefore the system employs **majority voting**.

• If $\rho_i = \frac{1}{N}$ for any i, then $P: X \times T \rightarrow [0,1]$ is defined by

$$P(x,t) = \sum G_i(x,t)$$

, which is simple average.

Practical Aspect: Ensemble Machine Learning

In classification problems, $X = \mathbb{R}^n \times T$ and each model $g_i : X \to T$ with $U_i = X$. Define $G_i : X \times T \to [0,1]$ by g such that $G_i(x,t) = (g_i(x))_t$. Let N be the total number of classifiers.

• If $\rho_i = \frac{1}{N}$ for any i, then $P: X \times T \rightarrow [0,1]$ is defined by

$$P(x,t) = \sum \rho_i(x) \mathbb{1}_{t_{i,0}(x)}(t)$$

, where $t_{i,0}(x) = \arg \max G_i(x,t)$ denoting 'the answer of g_i ', and therefore the system employs **majority voting**.

• If $\rho_i = \frac{1}{N}$ for any i, then $P: X \times T \rightarrow [0,1]$ is defined by

$$P(x,t) = \sum G_i(x,t)$$

, which is simple average.

• If $\rho_i(x) = \frac{\max g_i(x)}{N}$ then $P(x,t) = \sum \rho_i(x)G_i(x,t)$ be the weighted average.

Practical Aspect: Flexible target and Fuzzy Domain

Targets
$\{\{c_1,c_2,c_3\},\{c_4,c_5\}\}$
$\{\{c_1,c_2\},\{c_3\}\}$
$\{c_1,c_2\}$
$\{c_4,c_5\}$

$$\{\{c_1, c_2, c_3\}, \{c_4, c_5\}\}$$

$$\{\{c_1, c_2\}, \{c_3\}\}$$

$$\{c_4, c_5\}$$

$$\{c_1, c_2\}$$

$$Certainty = \max g(x)$$

Certain domain = {certainty > α }, α = threshold

Then compute the precisions for each target of g on the Certain domain, which contribute to $\rho_i(x)$ along with the target tree.

Experimental Result 1

Dataset: CIFAR10

Six Simple CNN structure models trained on CIFAR10 (56.45% in average)

ResNet20 structure model trained on CIFAR10 (85.96%)

Simple average: 62.55%

Majority voting provides 58.72%. Our logifold formulation: 84.86%

Experimental Result 2

dataset : CIFAR10, MNIST, Fashion MNIST (resized to 32*32*3 pixels)

- Filters are models classifying coarse targets. It only classify given data into three classes; CIFAR10, MNIST, and Fashion MNIST.
- Models only classifying either CIFAR10, MNIST, or Fashion MNIST.

Single model classifying 30 classes : 76.41% in average.

Simple average of models classifying 30 classes: 82.35%

Our logifold formulation: 94.94%.