Lecture 3

Turing Machine

 $\Omega: K \times \Sigma \to (K \cup \{h,y,n\}) \times \Sigma \times \{\leftarrow,\rightarrow,-\}$

M(x)

where M is a TM and x is an input word

Output	Condition	
"yes"	after finitely many steps, the "yes" state is reached	
"no"	after finitely many steps, the "no" state is reached	
У	where $y \in \Sigma^*$, is a tape word after k steps and M has entered the "h" state	
7	no halting state is reached	

Overview of Computing Tasks

	$\begin{array}{c} compute \\ f: \mathbb{N}^k \to \mathbb{N} \end{array}$	Handling L's
Always terminates	total recursive functions	(always terminates with y/n) Decidable L's Recursive L's
M(x) = y or $M(x) = \nearrow$	(partially) recursive functions	$M(x)=yes, x\in L\ M(x)= extstyle{ early}, x otin L$ "Semi-decidable" L's Recursively enumerable L's

Proposition 3.1

- 1. If $m{L}$ is recursive, then $m{L}$ is also recursively enumerable
- 2. If $m{L}$ is recursive, then $m{L}^{m{C}}$ is also recursive
- 3. $m{L}$ is recursive, iff $m{L}$ and $m{L}^{m{C}}$ are recursively enumerable (rec. en.)