Operační systémy

2. Proces a vlákno3. ročník

Proces

- běžící program
- Po dobu jeho běhu umístěn v OP
 - Swapovací oddíl?
- V OS je definován:
 - Identifikátorem (PID)
 - Programem, kterým je řízen
 - Obsahem registrů
 - EIP čítač instrukcí, ESP adresa zásobníku
 - Daty (např. proměnné, konstanty)
 - Použitím dalších zdrojů OS a vazbou na jeho objekty
 - · UID, GID, signály, soubory, ...

Proces - správa

- Process Management
- Context Switch
 - Dispatcher
- Scheduler
 - Schedule algorithm
- Memory Management
- IPC & RPC communication
 - Inter Process Communication
 - Remote Process Communication

Proces

- Podléhají plánování
 - Přidělován strojový čas
 - Doba využití CPU než dojde k přepnutí kontextu
- Může jeden program běžet v OS víckrát?
 - Ano, může
 - Procesy s odlišnými daty, PID, ...
 - Internetový prohlížeč
 - Multimediální přehrávač
 - Souborový manažer
 - Kancelářský balík

Proces - životní cyklus

Vlákno

- = odlehčený proces
 - Thread
 - Samo nemůže existovat
- Snížení režie
 - Méně časté přepínání kontextu
- Společný adresní (paměť ový) prostor
 - Menší nároky na paměť
 - Stejná práva v rámci procesu
- Podléhají plánování obdobně jako procesy

Vlákno

- OS bez podpory vláken
 - 1 proces = 1 vlákno
- Podpora a použití vláken urychluje samotný běh procesu
- Vlákna je možno použít na uživatelské úrovni nebo na úrovni jádra OS
 - Některé OS podporují obě varianty
 - Windows 2000/XP, FreeBSD
- PCB vs. TCB?
 - Process Control Block
 - Thread Control Block

Vlákna

Výhody:

- Urychlení výpočtů, odezvy a celkového běhu programu
- Efektivní využití systému
 - 1 vlákno pracuje s ext. diskem, 2. vlákno čeká na data z cache, přitom se navzájem neblokují
 - Paralelní běh
- Lepší a přehlednější strukturalizace programu

Nevýhody:

- Omezení počtu vytvořených vláken (efektivita)
- Synchronizace
 - Složitější kód z důvodu ošetření souběhu (sdílené prostředky)
- Složité sledování toku programu
- Chyba v jednom vlákně může shodit celý proces

Vlákna na uživatelské úrovni

Vlákna na uživatelské úrovni

- OS o nich neví
 - Plně v režii programátora
 - Nezávislé na OS
- Pro přepínání není nutno volat jádro OS
- Lze použít i v OS, který neobsahuje žádnou podporu vláken
 - Nutno použít knihovnu "thread library "

Vlákna na uživatelské úrovni

- Výhody:
 - Rychlé přepínání
 - Rychlá tvorba a jejich zánik
 - Uživatelský proces nad nimi má plnou kontrolu

- Nevýhody:
 - Jádro OS o vláknech neví, přiděluje tak strojový čas celému procesu
 - Dvě vlákna stejného procesu nemohou běžet současně
 - Při volání služby blokuje všechny ostatní vlákna procesu

Vlákna na úrovni jádra OS

Vlákna na úrovni jádra OS

- O vše se stará OS
 - · Plánování, přepínání, rušení
- Jeden proces může využít více procesorů
 - Každé vlákno na jiném CPU
- Volání služby neblokuje ostatní vlákna procesu
- Náročnější na správu
- Často nespravedlivé plánování
 - Strojový čas je přidělován vláknům

KONEC

Zdroje

- http://labe.felk.cvut.cz/vyuka/A3B33OSD/Te ma-03-ProcesyVlakna-OSD.pdf [25. 9. 2018]
- http://www.cs.vsb.cz/benes/vyuka/pte/texty/vlakna/ch01s01.html [14. 5. 2020]
- https://tojaj.com/vlakna-vs-procesy/ [14. 5. 2020]