Modeling & Verification

Weak Bisimilarity

Max Tschaikowski (tschaikowski@cs.aau.dk)
Slides courtesy of Giorgio Bacci

in the last Lecture

- Value-passing CCS
- Behavioural Equivalences (idea & motivations)
- Strong Bisimilarity
- Game characterisation of Bisimilarity

in this Lecture

- Properties of Strong Bisimilarity (review)
- Example: Buffer implementation in CCS
- Weak Bisimilarity (Properties & Game characterisation)
- Tool: Concurrency Workbench Aalborg Edition (CAAL)

Strong Bisimilarity

Let (Proc, Act, $\{ \stackrel{\alpha}{\longrightarrow} \mid \alpha \in Act \}$) be an LTS.

Definition (Strong Bisimulation)

A binary relation R⊆Proc×Proc is a *strong bisimulation* iff whenever s R t, for each α∈Act

- if $s \stackrel{\alpha}{\longrightarrow} s'$, then $t \stackrel{\alpha}{\longrightarrow} t'$, for some t' such that s'R t'
- if $t \xrightarrow{\alpha} t'$, then $s \xrightarrow{\alpha} s'$, for some s' such that s'R t'

Definition (Strong Bisimilarity)

Two states s,t∈Proc are strongly bisimilar (s ~ t) iff there exists a strong bisimulation R such that s R t.

~ = U{R | R is a strong bisimulation }

The intuition...

The intuition...

(and symmetrically)

Bisimilarity (Properties)

Theorem

Let P and Q be CCS processes such that P ~ Q. Then

- $\alpha.P \sim \alpha.Q$, for each $\alpha \in Act$
- P+R ~ Q+R and R+P ~ R+Q, for each CCS process R
- P|R ~ Q|R and R|P ~ R|Q, for each CCS process R
- P[f] ~ Q[f], for each relabelling function f
- P\L ~ Q\L, for each set of labels L⊆A

Theorem

For any P, Q, and R CCS processes, the following hold

•
$$(P+Q)+R \sim P+(Q+R)$$

•
$$(P|Q)|R \sim P|(Q|R)$$

Buffer of capacity n (CCS implementation!)

Buffer of capacity n

A buffer of capacity n≥1, should satisfy the following:

- if full, it should not have any input capability;
- if *empty*, it should not have any **output** capability;
- otherwise, it should be able of inputting or outputting;

Buffer (continued)

proof

Construct the following binary relation, where $i_1,...,i_n \in \{0,1\}$,

$$R = \{ (B_{i,n}, B_{i_1,1} \mid ... \mid B_{i_n,1}) \mid i_1 + ... + i_n = i \}.$$

- $(B_{0,n}, B_{0,1} | B_{0,1} | ... | B_{0,1}) \in R$;
- R is a strong bisimulation.

Summary of properties

Properties of ~

- is an equivalence relation
- is the largest strong bisimulation
- is a congruence
- enough to prove some natural equivalences, like P|0~P, P|Q~Q|P, ...

should we look any further?

Internal actions...

Implementation

CS def pub.coin.coffee.CS

CM ^{def} coin.coffee.CM

Sys = (CM | CS)\{coin,coffee}

Specification

Spec = pub.Spec

Weak Bisimulation

a way to abstract from internal actions

Weak transition relation

Let (Proc, Act, $\{\stackrel{\alpha}{\longrightarrow} \mid \alpha \in Act \}$) be an LTS such that $\tau \in Act$.

Definition (Weak Transition)

$$\stackrel{\alpha}{\Longrightarrow} = \begin{cases} (\stackrel{\tau}{\longrightarrow})^* & \stackrel{\alpha}{\longrightarrow} & (\stackrel{\tau}{\longrightarrow})^* & \text{if } \alpha \neq \tau \\ (\stackrel{\tau}{\longrightarrow})^* & \text{if } \alpha = \tau \end{cases}$$

- if $\alpha \neq \tau$, then $s \stackrel{\alpha}{\Longrightarrow} t$ means that from s we can get to t by doing zero of more τ actions, followed by an action α , followed by zero or more τ actions.
- if $\alpha = \tau$, then $s \stackrel{\alpha}{\Longrightarrow} t$ means that from s we can get to t by doing zero or more τ actions.

Weak Bisimilarity

Let (Proc, Act, $\{ \stackrel{\alpha}{\longrightarrow} \mid \alpha \in Act \}$) be an LTS such that $\tau \in Act$.

Definition (Weak Bisimulation)

A binary relation $R \subseteq Proc \times Proc$ is a *weak bisimulation* iff whenever s R t, for each $\alpha \in Act$ (including τ)

- if $s \xrightarrow{\alpha} s'$, then $t \xrightarrow{\alpha} t'$, for some t' such that s'R t'
- if $t \xrightarrow{\alpha} t'$, then $s \xrightarrow{\alpha} s'$, for some s' such that s'R t'

Definition (Weak Bisimilarity)

Two states s,t∈Proc are *weakly bisimilar* (s ≈ t) iff there exists a weak bisimulation R such that s R t.

 \approx = U{R | R is a weak bisimulation }

The Game Characterisation

We define a weak bisimulation game in the same way we did in the case of strong bisimulation, except that

defender now answers using $\stackrel{\alpha}{\Longrightarrow}$ -moves (attacker still uses only $\stackrel{\alpha}{\Longrightarrow}$ -moves)

Theorem

- The states s and t are weakly bisimilar iff the defender has a *universal* winning strategy starting from the configuration (s,t).
- The states s and t are not weakly bisimilar iff the attacker has a universal winning strategy starting from the configuration (s,t).

Internal actions...

Implementation

 $CS \stackrel{\text{def}}{=} \overline{\text{pub.coin.coffee.CS}}$ $CM \stackrel{\text{def}}{=} \text{coin.coffee.CM}$ $Sys \stackrel{\text{def}}{=} (CM \mid CS) \setminus \{\text{coin,coffee}\}$

Specification

Spec = pub.Spec

Properties of Weak Bisimilarity

Properties of ≈

- is an equivalence relation
- is the largest weak bisimulation
- validates lots of natural laws, e.g,
 - a. τ .P \approx a.P; P + τ .P \approx τ .P;
 - $a.(P + \tau.Q) \approx a.(P + \tau.Q) + a.Q$
 - P+Q \approx Q+P; P|Q \approx Q|P; P+0 \approx P; etc...
- strong bisimilarity implies weak bisimilarity (~ ⊆ ≈)
- abstract from τ-loops

Is it a Congruence?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- $\alpha.P \approx \alpha.Q$, for each $\alpha \in Act$
- P|R ≈ Q|R and R|P ≈ R|Q, for each CCS process R
- P[f] ≈ Q[f], for each relabelling function f
- $P\L \approx Q\L$, for each set of labels $L\subseteq A$

what about nondeterministic choice?

$$\tau.a.0 \approx a.0$$
 but $\tau.a.0 + b.0 \approx a.0 + b.0$

Conclusion

Weak bisimilarity is not a congruence for CCS

Case Study (Communication Protocol)

Communication Protocol

A communication protocol is a discipline for transmission of messages from a source to destination. Sometimes it is designed to ensure reliable transmission under possible adverse conditions, such as loss messages caused by the transmission medium.

CCS Implementation

Send ^{def} acc. Sending

Sending def send.Wait

Wait = ack.Send + error.Sending

Rec ef trans.Del

 $Del \stackrel{\text{def}}{=} \overline{del}.Ack$

Ack = ack.Rec

Med $\stackrel{\text{def}}{=}$ send.Med $\stackrel{\text{def}}{=}$ τ .Err + trans.Med $\stackrel{\text{def}}{=}$ $\stackrel{\text{def}}{=}$ $\stackrel{\text{def}}{=}$ error.Med

Specification Checking

Impl def (Send | Med | Rec) \ {send,trans,ack,error}

Question

Impl [?] ≈ Spec

- Draw the LTS of Impl and Spec and prove ≈ (by hand)
- Use Concurrency WorkBench Aalborg Edition (CAAL)

Concurrency WorkBench Aalborg Edition (CAAL)

http://caal.cs.aau.dk