### **Adders**

- Adds two N-bit binary numbers
  - > 2-bit adder: adds two 2-bit numbers, outputs 3-bit result
  - > e.g., 01 + 11 = 100 (1 + 3 = 4)
- Can design using combinational design process of Ch 2, but doesn't work well for typical N

| W   | hv           | no | t? |
|-----|--------------|----|----|
| • • | · · <i>)</i> | •  |    |

| Inputs |    |    | Outputs |   |    |    |
|--------|----|----|---------|---|----|----|
| a1     | a0 | b1 | b0      | c | s1 | s0 |
| 0      | 0  | 0  | 0       | 0 | 0  | 0  |
| 0      | 0  | 0  | 1       | 0 | 0  | 1  |
| 0      | 0  | 1  | 0       | 0 | 1  | 0  |
| 0      | 0  | 1  | 1       | 0 | 1  | 1  |
| 0      | 1  | 0  | 0       | 0 | 0  | 1  |
| 0      | 1  | 0  | 1       | 0 | 1  | 0  |
| 0      | 1  | 1  | 0       | 0 | 1  | 1  |
| 0      | 1  | 1  | 1       | 1 | 0  | 0  |
| 1      | 0  | 0  | 0       | 0 | 1  | 0  |
| 1      | 0  | 0  | 1       | 0 | 1  | 1  |
| 1      | 0  | 1  | 0       | 1 | 0  | 0  |
| 1      | 0  | 1  | 1       | 1 | 0  | 1  |
| 1      | 1  | 0  | 0       | 0 | 1  | 1  |
| 1      | 1  | 0  | 1       | 1 | 0  | 0  |
| 1      | 1  | 1  | 0       | 1 | 0  | 1  |
| 1      | 1  | 1  | 1       | 1 | 1  | 0  |

## Half-Adder

*Half-adder*: Adds 2 bits, generates sum and carry

Design using combinational desig

Inputs

0

0

process from Ch 2

Step 1: Capture the function

| SIC  | gn   | + |
|------|------|---|
| Outp | outs |   |
| co   | S    | 1 |
| 0    | 0    | 1 |
| 0    | 1    |   |
| 0    | 1    |   |
| 1    | 0    |   |



Step 2A: Create equations

$$co = ab \leftarrow$$
  
 $s = a'b + ab' \text{ (same as } s = a \text{ xor } b) \leftarrow$ 





## Full-Adder

- Full-adder: Adds 3 bits, generates sum and carry
- Design using combinational design process from Ch 2



Step 1: Capture the function

| Inputs |   | Outputs |    |   |
|--------|---|---------|----|---|
| a      | b | ci      | co | S |
| 0      | 0 | 0       | 0  | 0 |
| 0      | 0 | 1       | 0  | 1 |
| 0      | 1 | 0       | 0  | 1 |
| 0      | 1 | 1       | 1  | 0 |
| 1      | 0 | 0       | 0  | 1 |
| 1      | 0 | 1       | 1  | 0 |
| 1      | 1 | 0       | 1  | 0 |
| 1      | 1 | 1       | 1  | 1 |
|        |   |         |    |   |

#### **Step 2A: Create equations**

Step 2B: Implement as circuit



# Full-Adder using Half Adder



## Carry-Ripple Adder

- Using half-adder and full-adders, we can build adder that adds like we would by hand
- Called a carry-ripple adder
  - 4-bit adder shown: Adds two 4-bit numbers, generates 5-bit output
     5-bit output can be considered 4-bit "sum" plus 1-bit "carry out"
  - Can easily build any size adder





## Carry-Ripple Adder

- Using full-adder instead of half-adder for first bit, we can include a "carry in" bit in the addition
  - Useful later when we connect smaller adders to form bigger adders



