Parcial 1 Computación gráfica

Diego Vargas

6000460

-Punto 1.1

<u>1.1.1</u>

30 grados es igual a pi/6 en radianes.

Matrices:

Tx,y,z =

1	0	0	Tx
0	1	0	Ту
0	0	1	Tz
0	0	0	1

R(pi/6)x,z =

Raíz(3)/2	0	1/2	0
0	1	0	0
-1/2	0	Raíz(3)/2	0
0	0	0	1

Tx,y,z * R(pi/6)x,y=

Raíz(3)/2	0	1/2	(Raíz(3)/2)*Tx+(1/2)*Tz
0	1	0	Ту
-1/2	0	Raíz(3)/2	(-1/2)*Tx+(Raíz(3)/2)*Tz
0	0	0	1

Tx,y,z(inversa) =

1	0	0	-Tx
0	1	0	-Ty
0	0	1	-Tz
0	0	0	1

Tx,y,z * R(pi/6)x,z* Tx,y,z(inversa)=

Raíz(3)/2	0	1/2	0
0	1	0	0
-1/2	0	Raíz(3)/2	0
0	0	0	1

Finalmente

P=

X

Z 1

Tx,y,z * R(pi/6)x,z* Tx,y,z(inversa) * P = P'.

P'=

X'

Z'

<u>1.1.2</u>

Escala

3	0	0	Tx*(1-3)
0	3	0	Ty*(1-3)
0	0	3	Tz*(1-3)
0	0	0	1

Escala * P'= P"

P"=

X" Y"

Z"

<u>1.1.3</u>

Traslado

1	0	0	2
0	1	0	1
0	0	1	-2
0	0	0	1

Traslado*P"=P"

P""=

X"+2
Y"+1
Z"-2
1

<u>1.2</u>

Primero llevar los ejes de la bola roja hasta la coordenada descrita

R(a)x,y=

Cos(a)	-Sin(a)	0	0
Sin(a)	Cos(a)	0	0
0	0	1	0
0	0	0	1

R(a)x,z=

Cos(a)	0	Sin(a)	0
0	1	0	0
-Sin(a)	0	Cos(a)	0
0	0	0	1

Luego rotar la esfera respecto a su propio origen

R(a')x,y=

Cos(a')	-Sin(a')	0	0
Sin(a')	Cos(a')	0	0
0	0	1	0
0	0	0	1

Al multiplicar queda la matriz para el objeto:

-Sin(a)*Sin(a')+ (cos(a) ^2)*cos(a')	-Sin(a')*(cos(a)^2)-sin(a)*cos(a')	Sin(a)*cos(a)	0
Sin(a')*cos(a)+sin(a)*cos(a)*cos(a')	-sin(a)*sin(a')*cos(a)+cos(a)*cos(a')	-1	0
-sin(a)*cos(a')	Sin(a)*sin(a')	Cos(a)	0
0	0	0	1

Y esta para los ejes propios del objeto

Cos(a) ^2	-sin(a)	Sin(a)*cos(a)	0
Sin(a)*cos(a)	Cos(a)	-1	0
-Sin(a)	0	Cos(a)	0
0	0	0	1