| 1        | on bean                   |
|----------|---------------------------|
| 2        |                           |
| 3        | orno <sup>5</sup> , Bryan |
| 4        |                           |
| 5        |                           |
| 6        |                           |
| 7        |                           |
|          |                           |
| 8        |                           |
| 9        | D 58108,                  |
| 9<br>10  | ,                         |
| 11       |                           |
|          |                           |
| 12<br>13 | inesville, FL,            |
|          |                           |
| 14<br>15 | lulu, HI,                 |
|          |                           |
| 16       |                           |
| 17       |                           |

| 19 | n, including   |
|----|----------------|
| 20 | riation in     |
| 21 | s of common    |
| 22 | Three-         |
| 23 | s of 70 sites  |
| 24 | ery (CDBN).    |
| 25 | gating genetic |
| 26 | enepool) had   |
| 27 | surprisingly,  |
| 28 | the study      |
| 29 | 3 detected     |
| 30 | al adaptation  |
| 31 | ommon bean     |
| 32 | benefits and   |
| 33 |                |
| 34 |                |
| 35 | eritability,   |
| 36 |                |

|  | _   |
|--|-----|
|  | - / |
|  |     |

| 38 | election.       |
|----|-----------------|
| 39 | nging           |
| 40 | ss of genetic   |
| 41 | n-commercial    |
| 42 | d Gross 2011;   |
| 43 | long period of  |
| 44 | over short      |
| 45 | oination, and   |
| 46 | late, losses of |
| 47 | t al 2009, Lin  |
| 48 | mestication     |
| 49 |                 |
| 50 | ion. Common     |
| 51 |                 |
|    | agricultural    |
| 52 | des (from       |
| 53 | recipitation    |
| 54 | he habitat      |
| 55 | ean originated  |
| 56 | rs ago with a   |
| 57 | vo wild gene    |
| 58 | e American'     |
| 59 | tication        |

| 60 | y because         |
|----|-------------------|
| 61 | :hi et al., 2012; |
| 62 | ico and           |
| 63 | d common          |
| 64 | rican             |
| 65 | ool               |
| 66 | yield             |
| 67 | st formal         |
| 68 | y the United      |
| 69 | have              |
| 70 | 3N), the          |
| 71 | rs 1988;          |
| 72 | ost interested    |
| 73 | et                |
| 74 | sing material     |
| 75 | icipating         |
| 76 | on the            |
| 77 |                   |
| 78 | nd the            |
| 79 |                   |
|    |                   |
| 80 | onent of          |
| 81 | tic diversity,    |
| 82 | erent spatial     |

| 83  | he sense of      |
|-----|------------------|
| 84  | erica in pre-    |
| 85  | breeders at      |
| 86  | ries to specific |
| 87  | al within        |
| 88  | t have           |
| 89  | ividual-based    |
| 90  | portion of       |
| 91  | cient            |
| 92  | ponse to         |
| 93  | 30 vary          |
| 94  | ocess            |
| 95  | neritability     |
| 96  | ble to local     |
| 97  | process of P.    |
| 98  | 14; Rodriguez    |
| 99  |                  |
| 100 | bean races to    |
| 101 |                  |

**Table 1**. Implications of home field advantage and heritability for breeding and adaptation. Combining agroecological ecoregion information and heritability of specific traits may help improve selection efficiency while providing insights into processes driving past selection.

| Heritability |
|--------------|

|            |         | Lower                                                                                                                                                                                                                                                                                 | Higher                                                                                                                                                                                                                                                                  |
|------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Home Field | Larger  | Processes: High environmental variation among locations, low genetic variation potentially enriched in locally important alleles.  Implications: Inefficient selection on individuals for phenotypic improvement; testing at these sites may reveal conditionally beneficial alleles. | Processes: High environmental variation among locations, high genetic variation potentially enriched in locally important alleles.  Implications: Efficient identification and selection of specialists that may contain large-effect candidate loci for introgression. |
| Advantage  | Smaller | Processes: Low environmental variation among locations, low genetic variation potentially enriched in broadly important alleles.  Implications: Inefficient selection on individual entries for phenotypic improvement, so family based methods are necessary.                        | Processes: Low environmental variation among locations, high genetic variation potentially enriched in broadly important alleles.  Implications: Efficient selection on individual entries for phenotypic improvement.                                                  |

| 103 | nate local        |
|-----|-------------------|
| 104 | and across        |
| 105 | N entry into a    |
| 106 | ee races within   |
| 107 | home location,    |
| 108 | (Ewing et al,     |
| 109 | ithin each bean   |
| 110 | s in the CDBN     |
| 111 | ritability across |
| 112 | 3). We also       |
| 113 | ool as genetic    |
| 114 | time in the       |

| 115 | ne pools.         |
|-----|-------------------|
| 116 | ential strategies |
| 117 |                   |
|     |                   |
| 118 |                   |
| 119 |                   |
| 120 | en et al. 2020;   |
| 121 | uded data from    |
| 122 | nced breeding     |
| 123 | ars and           |
| 124 | American          |
| 125 | Ethree of the     |
| 126 | from the          |
| 127 | Franada, which    |
| 128 | points were       |
| 129 |                   |



131 ysis was 132 133 ield variance in 134 on across 135 tries, with only 136 rough the 137 shift is a 138 trial years and 139 field trials. 140 l components 141 erent locations 142 from different 143 ge in the

130

| 145 |                    |
|-----|--------------------|
| 146 | in three groups    |
| 147 | and entries        |
| 148 | o and the          |
| 149 |                    |
| 150 | receives by        |
| 151 | ıl, and            |
| 152 | iquart et al,      |
| 153 | importantly, we    |
| 154 | effects of         |
| 155 |                    |
| 156 | a. Next, we        |
| 157 | relative to        |
| 158 | = 0) and scaling   |
| 159 | 1 predictor        |
| 160 | ates et al, 2015). |
| 161 | ,                  |
|     |                    |
| 162 | DBN yields         |
| 163 | ıring              |
| 164 |                    |
| 165 |                    |

| 166 | cients of p           |
|-----|-----------------------|
| 167 | e model, $\mathbf{X}$ |
| 168 | binary                |
| 169 | relatedness to        |
| 170 | of the bigsnpr R      |
| 171 | ing by                |
| 172 | 1e singular           |
| 173 | o the base            |
| 174 | rith an HFA           |
| 175 |                       |
| 176 | .1.2                  |
| 176 | el 2 was always       |
| 177 | lodel 2 using         |
| 178 | ons to test the       |
| 179 | n site-year, we       |
| 180 | ese permuted          |
| 181 | observed HFA          |
| 182 |                       |
| 183 | dd a year by          |
| 184 | s within each         |
| 185 | site by home          |
| 186 |                       |

| 187 |   |   |                 |                 |
|-----|---|---|-----------------|-----------------|
| 188 |   |   |                 | sis, by         |
| 189 |   |   |                 | within each     |
| 190 |   |   |                 | neritability    |
| 191 |   |   |                 | ry, site, and   |
| 192 |   |   |                 | culated as      |
| 193 | г | 1 | <sub>1</sub> -1 |                 |
| 194 |   |   |                 | in the study    |
| 195 |   |   |                 | ge 163). To     |
| 196 |   |   |                 | -year sliding   |
| 197 |   |   |                 | Finally, to     |
| 198 |   |   |                 | äng             |
| 199 |   |   |                 | y was the       |
| 200 |   |   |                 |                 |
| 201 |   |   |                 |                 |
| 202 |   |   |                 | : defined such  |
| 203 |   |   |                 | lian home field |
| 204 |   |   |                 | elating the     |
| 205 |   |   |                 | ties. Home      |
| 206 |   |   |                 | m the first     |

| 207 | correlation                    |
|-----|--------------------------------|
| 208 |                                |
| 209 |                                |
| 210 | eted: statistics               |
| 211 | nd annotated                   |
| 212 | halo, 2019);                   |
| 213 | ors are standard               |
| 214 |                                |
| 215 |                                |
| 216 |                                |
| 217 | .001, Figure 2a;               |
| 218 | Durango                        |
| 219 | t with previous                |
| 220 | ılbeit at                      |
| 221 | $^{1}  \mathrm{yr}^{-1}  (p <$ |
| 222 | ls grew the                    |
| 223 |                                |



| 237 | or 1.3% of yield |
|-----|------------------|
| 238 | of               |
| 239 | cipal            |
| 240 | ncluding         |
| 241 | ueva Granada),   |
| 242 | 9%, 44%, and     |
| 243 | respectively     |
| 244 |                  |

**Table 2** Partitioning of CDBN Yield Variances

|                                 | Race          |              |               |
|---------------------------------|---------------|--------------|---------------|
|                                 | Durango       | Mesoamerican | Nueva Granada |
| Home Site                       | 1.3%          | 1.3%         | 1.1%          |
| Residuals                       | 14.1%         | 15.8%        | 15.6%         |
| Genotype                        | 3.3%          | 4.1%         | 3.2%          |
| Site                            | 33.1%         | 30.9%        | 29.0%         |
| Year                            | 2.4%          | 3.0%         | 2.5%          |
| Site-Year                       | 45.7%         | 44.9%        | 48.7%         |
| Residual Reduction <sup>1</sup> | 8.3%          | 7.7%         | 6.3%          |
| Proportion of residual varian   | nce explained | by home site |               |

| 246 | her these                                  |
|-----|--------------------------------------------|
| 247 | hat were not                               |
| 248 | ariation in                                |
| 249 | verage yield                               |
| 250 | p = 0.002). The                            |
| 251 | for this race.                             |
| 252 | than expected                              |
| 253 | 5% of expected                             |
| 254 | mental                                     |
| 255 | the                                        |
| 256 |                                            |
| 257 | we found                                   |
|     |                                            |
| 258 | : inconsistent,                            |
| 259 | 4.82; p = 0.01;                            |
| 260 | ± 2.0 kg ha <sup>-1</sup> yr               |
| 261 | .5 kg ha <sup>-1</sup> yr <sup>-1</sup> (p |
| 262 | mutation.                                  |
| 263 |                                            |
| 203 |                                            |
| 264 | ar                                         |
| 265 | ghest in the                               |
| 266 | stern gradient                             |
| 267 | 3h year-to-year                            |

| 268 | 2). More        |
|-----|-----------------|
| 269 | e was a         |
| 270 | deviation in    |
| 271 | ic heritability |
| 272 | was higher in   |
| 273 | ge yield of     |
| 274 | s trend was     |
| 275 | provement on    |
| 276 | raried by bean  |
| 277 | < 0.001). In    |
| 278 | over time,      |
| 279 | To test for a   |
| 280 | elated CDBN     |
| 281 | 0.001) and      |
| 282 | ries in the     |
| 283 | lity and home   |
| 284 |                 |
| 285 |                 |





286
287
288
Year
er 30-years of ites. Symbology

290

291

289

292

293 he fitness and
294 ad adaptation
295
296 rts that vary
297

| 298 | ng in broadly      |
|-----|--------------------|
| 299 | everaging local    |
| 300 | lect for locally   |
| 301 | al                 |
| 302 | n is whether       |
| 303 | ommon bean         |
| 304 | ck during the      |
| 305 | ıt may be          |
| 306 | ı conferred        |
| 307 | 's' yield          |
| 308 |                    |
| 309 | ıean heritability  |
|     |                    |
| 310 | nd heritability, a |
| 311 | cticed in the      |
| 312 | HFA are not        |
| 313 | approaches that    |
| 314 | gh and HFA         |
| 315 | onal               |
| 316 | ts at that         |
| 317 | ssed more          |
| 318 | it heritability is |
| 319 | -based             |
| 320 | ocally             |

| 321 | her trait |
|-----|-----------|
| 322 | reeding   |
| 323 | n bean    |





325 326 326 327 328 329 330 100°W 80°W 80°W site, by race. 80°W es. B) Top oamerican; N –

| 331 | mestication,      |
|-----|-------------------|
| 332 | es over the       |
| 333 | from the          |
| 334 | and showed        |
| 335 | ess, there was    |
| 336 | ty increased in   |
| 337 | occurred          |
| 338 | enetic variation  |
| 339 | :her              |
| 340 | oportunities for  |
| 341 | dean entries      |
| 342 | many CDBN         |
| 343 | , which would     |
| 344 |                   |
| 245 | , .               |
| 345 | nprovements in    |
| 346 | ion and           |
| 347 | ield heritability |
| 348 | e course of       |
| 349 | ty from the       |
| 350 | ollows the        |
| 351 | n source, which   |
| 352 | 17; MacQueen      |
| 353 | urango race in    |

| 354 | or yield within    |
|-----|--------------------|
| 355 |                    |
|     |                    |
| 356 | rements in         |
| 357 | d in more          |
| 358 | ion in genetic     |
| 359 | p in yields        |
| 360 | observation        |
| 361 | or                 |
| 362 | ture               |
| 363 | this               |
| 364 | ewer CDBN          |
| 365 | ights the          |
| 366 | ed yield, and      |
| 367 | ay override        |
| 368 | itability relative |
| 369 | ting within the    |
| 370 | ese alleles        |
| 371 | entries in the     |
| 372 | nt in              |
| 373 | is adjacent to     |
| 374 | ce or              |
| 375 | eep. When this     |
| 376 | etic variants.     |
|     |                    |

| 377 | ere required to   |
|-----|-------------------|
| 378 | rtant traits.     |
| 379 |                   |
| 380 | ld variation was  |
| 381 | ounting for       |
| 382 | is robust to      |
| 383 | HFA metric.       |
| 384 | ual breeding      |
| 385 | A. In absolute    |
| 386 | ins; in addition, |
| 387 | study, HFA        |
| 388 | Aesoamerican      |
| 389 | eral possible     |
| 390 | ses yield trials  |
| 391 | ts: thousands     |
| 392 | has occurred      |
| 393 | pecific sub-      |
| 394 | otation in        |
| 395 | ttle breeding,    |
| 396 | iz et al, 2007).  |
| 397 | uggests that      |
| 398 | ve of the         |
| 399 | species and       |

| 400 | valuable to       |
|-----|-------------------|
| 401 |                   |
| 402 |                   |
| 102 |                   |
| 403 | daptation to      |
| 404 | from both         |
| 405 | y the CDBN,       |
| 406 | ield heritability |
| 407 | liversity in      |
| 408 | ther genepool     |
| 409 | underscores       |
| 410 | tion to those     |
| 411 | avenues of        |
| 412 | el and changing   |
| 413 |                   |
| 414 |                   |
| 414 |                   |
| 415 | feedback on       |
| 416 | from the          |
| 417 | 2 to AHM.         |
| 410 |                   |
| 418 |                   |
| 419 | 1/cdbn-home-      |
| 420 |                   |

| 421 |                |
|-----|----------------|
| 422 | ИЕ designed    |
| 423 | s. PM, PEM,    |
| 424 | e annual CDBN  |
| 425 |                |
| 426 |                |
| 427 | e version 0.3, |
| 428 |                |
| 429 | Effects Models |
| 430 |                |
| 431 | pp. 357–426).  |
| 432 |                |
| 433 | Press,         |
| 434 |                |
| 435 | 3iagetti,      |
| 436 | on Diversity   |
| 437 | mon Bean. The  |
| 438 |                |
| 439 | Rodriguez,     |
| 440 | Parallel       |
| 441 | d the Andes.   |
| 442 |                |

| 443 | ini, Pierluigi   |
|-----|------------------|
| 444 | the Common       |
| 445 | Iational Academy |
| 446 |                  |
| 447 | ied spatial data |
| 448 |                  |
| 449 | nary tipping     |
| 450 | nal Academy of   |
| 451 |                  |
| 452 | . & Winn, A.     |
| 453 | tion, 25(1), 35- |
| 454 |                  |
| 455 | d advantage of   |
| 456 |                  |
| 457 | pp.,             |
| 458 |                  |
| 459 | for improved     |
| 460 | 99.              |
| 461 | 190 (4220):      |
| 462 |                  |
| 463 | ogramme.         |
| 464 |                  |
| 465 | and of rates of  |
| 466 |                  |
|     |                  |

| 467 | ression, Third    |
|-----|-------------------|
| 468 |                   |
| 469 |                   |
| 470 | oundation for     |
| 471 |                   |
| 472 | ber 2012).        |
| 473 | Variability in    |
| 474 | ence for          |
| 475 |                   |
| 476 |                   |
| 477 | Adam R.           |
| 478 | Disequilibrium    |
| 479 | 193–1505.         |
| 480 |                   |
| 481 | Evolutionary      |
| 482 |                   |
| 483 |                   |
| 484 | under             |
| 485 | 96–101.           |
| 486 |                   |
| 487 | , & Pastor-       |
| 488 | sistance locus in |
| 489 |                   |

| 490 | s). Econ. Bot   |
|-----|-----------------|
| 491 |                 |
| 492 | ър. 109-143 in  |
| 493 |                 |
| 494 | Eeckenbrugge,   |
| 495 | zhili pepper,   |
| 496 | ices, 111(17),  |
| 497 |                 |
| 498 | iess set and    |
| 499 |                 |
| 500 | ç Zheng,        |
| 501 | story of        |
| 502 | 8/ng.3117.      |
| 503 | . N., et al.    |
| 504 | veal            |
| 505 |                 |
| 506 | tion of the     |
| 507 | ce data. Funct. |
| 508 |                 |
| 509 | Fruit Crop      |
| 510 |                 |
| 511 | of              |
| 512 |                 |
| 513 |                 |

| 514 | rovement         |
|-----|------------------|
| 515 |                  |
| 516 | R. B., et al.    |
| 517 |                  |
| 518 | . H., et al.     |
| 519 | rnational wheat  |
| 520 |                  |
| 521 | phical structure |
| 522 | garis L.) from   |
| 523 |                  |
| 524 | Tagging the      |
| 525 | f pooled DNA     |
| 526 |                  |
| 527 | (2020). Pod      |
| 528 | lew              |
| 529 |                  |
| 530 | g. R             |
| 531 | project.org/.    |
| 532 | 1. V., Sosa, C.  |
| 533 | or ex situ       |
| 534 |                  |
| 535 | e Resende, M.    |
| 536 | rspectives on    |
| 537 |                  |

| 538 | I, Negri V,      |
|-----|------------------|
| 539 | tion structure   |
| 540 | : e57337.        |
| 541 | al data analysis |
| 542 |                  |
| 543 | . Cannon, Jane   |
| 544 | ın and           |
| 545 | 3.               |
| 546 |                  |
| 547 | lgaris,          |
| 548 |                  |
| 549 | ıs vulgaris,     |
| 550 | <u>7079</u>      |
| 551 | Bean             |
| 552 |                  |
| 553 |                  |
| 554 | Targeted         |
| 555 | henological,     |
| 556 |                  |
| 557 | Ξ, Raffini F,    |
| 558 | mmon beans       |
| 559 |                  |
| 560 | 14). Edible      |
| 561 |                  |
|     |                  |

| 562 | el. (2019).     |
|-----|-----------------|
| 563 | evels. Nature   |
| 564 |                 |
| 565 | , et al. (2016) |
| 566 |                 |
| 567 | i, T. H.        |
| 568 | on and          |
| 569 |                 |
| 570 |                 |
|     |                 |
| 571 |                 |
| 572 |                 |
|     |                 |
| 573 |                 |









er 30-years of ites. Sites with a gy is as in





es. B) Top oamerican; N –

**Table 1.** Implications of home field advantage and heritability for breeding and adaptation. Combining agroecological ecoregion information and heritability of specific traits may help improve selection efficiency while providing insights into processes driving past selection.

|                         |         | Heritability                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                         |
|-------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |         | Lower                                                                                                                                                                                                                                                                                 | Higher                                                                                                                                                                                                                                                                  |
| Home Field              | Larger  | Processes: High environmental variation among locations, low genetic variation potentially enriched in locally important alleles.  Implications: Inefficient selection on individuals for phenotypic improvement; testing at these sites may reveal conditionally beneficial alleles. | Processes: High environmental variation among locations, high genetic variation potentially enriched in locally important alleles.  Implications: Efficient identification and selection of specialists that may contain large-effect candidate loci for introgression. |
| Home Field<br>Advantage | Smaller | Processes: Low environmental variation among locations, low genetic variation potentially enriched in broadly important alleles.  Implications: Inefficient selection on individual entries for phenotypic improvement, so family based methods are necessary.                        | Processes: Low environmental variation among locations, high genetic variation potentially enriched in broadly important alleles.  Implications: Efficient selection on individual entries for phenotypic improvement.                                                  |

**Table 2**Partitioning of CDBN Yield Variances

|                                                                     |         | Race         |               |
|---------------------------------------------------------------------|---------|--------------|---------------|
|                                                                     | Durango | Mesoamerican | Nueva Granada |
| Home Site                                                           | 1.3%    | 1.3%         | 1.1%          |
| Residuals                                                           | 14.1%   | 15.8%        | 15.6%         |
| Genotype                                                            | 3.3%    | 4.1%         | 3.2%          |
| Site                                                                | 33.1%   | 30.9%        | 29.0%         |
| Year                                                                | 2.4%    | 3.0%         | 2.5%          |
| Site-Year                                                           | 45.7%   | 44.9%        | 48.7%         |
| Residual Reduction                                                  | 8.3%    | 7.7%         | 6.3%          |
| <sup>1</sup> Proportion of residual variance explained by home site |         |              |               |



608 s along principal axes.



613 -2013) centered 614



at at p < 0.10



625 :eviations

## ANOVA of Yield Across Time

|           | Sum Sq         | Df    | F value | Pr(>F) |
|-----------|----------------|-------|---------|--------|
| Year      | 252,500,000    | 1     | 292.70  | 0.000  |
| Race      | 1,050,000,000  | 2     | 608.26  | 0.000  |
| Year*Race | 6,895,000      | 2     | 4.00    | 0.018  |
| Residuals | 11,370,000,000 | 13174 | -       | -      |

 $\operatorname{AIC}^1 \text{ of Competing Home Field Advantage Models}$ 

|                          | Durango | Mesoamerican | Nueva<br>Granada |
|--------------------------|---------|--------------|------------------|
| With Home Field          | 6772    | 5095         | 3434             |
| Variety, Site, Year      | 7323    | 5421         | 3599             |
| With Home Field, Kinship | 7662    | 5703         | 3773             |
| With Kinship             | 8143    | 5997         | 3926             |

<sup>&</sup>lt;sup>1</sup>Akaike Information Criterion

Table S3
ANOVA of Home Field Advantage Across Time

|             | Sum Sq    | Df | F value | <b>Pr(&gt;F)</b> |
|-------------|-----------|----|---------|------------------|
| Year        | 4.755     | 1  | 0.00    | 0.992            |
| Race        | 36,290    | 2  | 0.43    | 0.654            |
| Year * Race | 410,000   | 2  | 4.82    | 0.010            |
| Residuals   | 3,994,000 | 94 | -       | -                |