This notebook contains the Data Exploration Analysis for Sprocket Plt Company.

I will be answering their inquires about their marketing strategy, using the insights from this dataset.

After every charts the deductions follows to explain the results

```
In [1]:

#Importing relevant packages
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

// *matplotlib inline*
```

Extracting the data file from my device

C:\Users\MRS COLLINS\AppData\Local\Temp\ipykernel_6216\169425300.py:1: FutureWarning: I nferring datetime64[ns] from data containing strings is deprecated and will be removed in a future version. To retain the old behavior explicitly pass Series(data, dtype=date time64[ns])

```
df = pd.read_excel('KPMG_customer_data.xlsx', sheet_name=None)
```

C:\Users\MRS COLLINS\AppData\Local\Temp\ipykernel_6216\169425300.py:1: FutureWarning: I nferring datetime64[ns] from data containing strings is deprecated and will be removed in a future version. To retain the old behavior explicitly pass Series(data, dtype=date time64[ns])

```
df = pd.read_excel('KPMG_customer_data.xlsx', sheet_name=None)
```

C:\Users\MRS COLLINS\AppData\Local\Temp\ipykernel_6216\169425300.py:1: FutureWarning: I nferring datetime64[ns] from data containing strings is deprecated and will be removed in a future version. To retain the old behavior explicitly pass Series(data, dtype=date time64[ns])

```
df = pd.read excel('KPMG customer data.xlsx', sheet name=None)
```

The above warining is as regards to one of the sheet that contains a date type as number, we'll ingnore it because we'er not working on that sheet

The 1000 new customer's data information

understanding the dataset

In [3]: 1 clients1 = df['NewClients']
2 clients1

Out[3]:

	first_name	last_name	gender	past_3_years_bike_related_purchases	DOB	job_title	job_indus		
0	Chickie	Brister	Male	86	1957- 07-12	General Manager	1		
1	Morly	Genery	Male	69	1970- 03-22	Structural Engineer			
2	Ardelis	Forrester	Female	10	1974- 08-28	Senior Cost Accountant	Fina		
3	Lucine	Stutt	Female	64	1979- 01-28	Account Representative III	ſ		
4	Melinda	Hadlee	Female	34	1965- 09-21	Financial Analyst	Fina		
995	Ferdinand	Romanetti	Male	60	1959- 10-07	Paralegal	Fina		
996	Burk	Wortley	Male	22	2001- 10-17	Senior Sales Associate			
997	Melloney	Temby	Female	17	1954- 10-05	Budget/Accounting Analyst IV	Fina		
998	Dickie	Cubbini	Male	30	1952- 12-17	Financial Advisor	Fina		
999	Sylas	Duffill	Male	56	1955- 10-02	Staff Accountant IV			
1000 rows × 23 columns									
1.000							>		

In [4]: 1 clients1.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype					
0	first_name	1000 non-null	object					
1	last_name	971 non-null	object					
2	gender	1000 non-null	object					
3	<pre>past_3_years_bike_related_purchases</pre>	1000 non-null	int64					
4	DOB	983 non-null	<pre>datetime64[ns]</pre>					
5	job_title	894 non-null	object					
6	<pre>job_industry_category</pre>	835 non-null	object					
7	wealth_segment	1000 non-null	object					
8	deceased_indicator	1000 non-null	object					
9	owns_car	1000 non-null	object					
10	tenure	1000 non-null	int64					
11	address	1000 non-null	object					
12	postcode	1000 non-null	int64					
13	state	1000 non-null	object					
14	country	1000 non-null	object					
15	<pre>property_valuation</pre>	1000 non-null	int64					
16	Unnamed: 16	1000 non-null	float64					
17	Unnamed: 17	1000 non-null	float64					
18	Unnamed: 18	1000 non-null	float64					
19	Unnamed: 19	1000 non-null	float64					
20	Unnamed: 20	1000 non-null	int64					
21	Rank	1000 non-null	int64					
22	Value	1000 non-null	float64					
<pre>dtypes: datetime64[ns](1), float64(5), int64(6), object(11)</pre>								
memoi	ry usage: 179.8+ KB							

In [5]:

1 clients1.describe()

Out[5]:

	past_3_years_bike_related_purchases	tenure	postcode	property_valuation	Unnamed: 16	Un
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000
mean	49.836000	11.388000	3019.227000	7.397000	0.751790	0
std	27.796686	5.037145	848.895767	2.758804	0.206927	0
min	0.000000	0.000000	2000.000000	1.000000	0.400000	0
25%	26.750000	7.000000	2209.000000	6.000000	0.580000	0
50%	51.000000	11.000000	2800.000000	8.000000	0.740000	0
75%	72.000000	15.000000	3845.500000	9.000000	0.930000	1
max	99.000000	22.000000	4879.000000	12.000000	1.100000	1
4						•

In []:

To begin data cleaning, we check for data types and missing values

```
1 clients1.dtypes
In [6]:
Out[6]: first name
                                                           object
         last_name
                                                           object
         gender
                                                           object
         past_3_years_bike_related_purchases
                                                            int64
         DOB
                                                  datetime64[ns]
         job title
                                                          object
         job industry category
                                                           object
         wealth segment
                                                           object
         deceased_indicator
                                                           object
         owns_car
                                                           object
         tenure
                                                            int64
         address
                                                           object
                                                            int64
         postcode
         state
                                                           object
         country
                                                          object
         property_valuation
                                                            int64
                                                         float64
         Unnamed: 16
         Unnamed: 17
                                                         float64
         Unnamed: 18
                                                         float64
         Unnamed: 19
                                                         float64
                                                            int64
         Unnamed: 20
         Rank
                                                            int64
                                                         float64
         Value
         dtype: object
             clients1.isna().sum()
In [7]:
Out[7]: first_name
                                                    0
         last name
                                                   29
         gender
                                                    0
         past_3_years_bike_related_purchases
                                                    0
                                                   17
                                                  106
         job_title
         job_industry_category
                                                  165
         wealth_segment
                                                    0
         deceased indicator
                                                    0
         owns car
                                                    0
         tenure
                                                    0
         address
                                                    0
         postcode
                                                    0
         state
                                                    0
         country
                                                    0
         property_valuation
                                                    0
         Unnamed: 16
                                                    0
         Unnamed: 17
                                                    0
         Unnamed: 18
                                                    0
         Unnamed: 19
                                                    0
         Unnamed: 20
                                                    0
         Rank
                                                    0
         Value
                                                    0
         dtype: int64
```

There are missing values in columns: last_name, DOB, job_title and job_industry_category

For the purpose of this analysis, I will drop thee first_name, last_name, decreased_indicator, Address, postcode,country, rank and value.

Reasons:

- first_name, last_name, postcode and adrress are personal information
- · the decreased indicator is a genaral N
- · contry has nor relevance because they aare all autralia
- · Rank and value rates from 1 ro 1000, they don't infer with the analysis

NOTE:

The column names Unnamed's are irrelevant to this analysis, those information are viod.

```
In [8]:
                # Dropping some of the columns
            2
                n_clients1 = clients1.drop(['first_name', 'last_name', 'address', 'postcode', 'dece
                                                 'Unnamed: 16','Unnamed: 17', 'Unnamed: 18', 'Unnamed: 19
            3
                                                'Unnamed: 20', 'country', 'Rank', 'Value'], axis = 1)
            4
 In [9]:
               # remane the past 3 year
            1
               n clients1.rename(columns={'past 3 years bike related purchases': 'bike purchase'},
In [10]:
               n_clients1.head()
Out[10]:
              gender bike_purchase
                                     DOB
                                                job_title job_industry_category wealth_segment owns_car tenure
                                    1957-
                                                 General
           0
                Male
                                 86
                                                                 Manufacturing
                                                                                Mass Customer
                                                                                                    Yes
                                                                                                            14 (
                                    07-12
                                                Manager
                                     1970-
                                                Structural
                Male
                                 69
                                                                      Property
                                                                                Mass Customer
                                                                                                    Nο
                                                                                                            16 N
                                     03-22
                                                Engineer
                                              Senior Cost
                                                                                      Affluent
           2 Female
                                                              Financial Services
                                                                                                            10
                                                                                                    No
                                    08-28
                                              Accountant
                                                                                     Customer
                                                 Account
                                                                                      Affluent
           3 Female
                                           Representative
                                                                 Manufacturing
                                                                                                    Yes
                                                                                                             5 (
                                     01-28
                                                                                     Customer
                                                Financial
                                                                                      Affluent
                                     1965-
                                                              Financial Services
             Female
                                                                                                    No
                                                                                                            19 N
                                    09-21
                                                 Analyst
                                                                                     Customer
```

Explore the values in each columns to get an idea of their inputs

remove nulls and missplelt entries

```
In [15]:
             # from gender remove 'u'
           1
           3
             u = n_clients1[(n_clients1['gender'] == 'U')].index
Out[15]: Int64Index([ 59, 226, 324, 358, 360, 374, 434, 439, 574, 598, 664, 751, 775,
                      835, 883, 904, 984],
                     dtype='int64')
In [16]:
           1 n clients1.drop(u, inplace=True)
In [17]:
           1 n_clients1['gender'].unique()
Out[17]: array(['Male', 'Female'], dtype=object)
             # drop nulls in DOB, job_title and job_industry_category
In [18]:
           1
             clean_set = n_clients1.dropna(axis = 0, how = 'any')
In [19]:
           1 # the cleaned datsets
              clean set.isna().sum()
Out[19]: gender
         bike purchase
                                   0
         DOB
                                   0
         job_title
                                   0
         job_industry_category
                                   0
         wealth segment
                                   0
                                   0
         owns car
         tenure
                                   0
         state
                                   0
         property_valuation
                                   0
         dtype: int64
```

Checking each data types

In [20]: 1 # The data types of the cleaned dataset
2 clean_set.dtypes

Out[20]: gender object int64 bike_purchase DOB datetime64[ns] object job_title job_industry_category object wealth_segment object object owns_car tenure int64 state object

dtype: object

property_valuation

int64

Out[21]:		gender	bike_purchase	DOB	job_title	job_industry_category	wealth_segment	owns_car	tenı
	0	Male	86	1957- 07-12	General Manager	Manufacturing	Mass Customer	Yes	
	1	Male	69	1970- 03-22	Structural Engineer	Property	Mass Customer	No	
	2	Female	10	1974- 08-28	Senior Cost Accountant	Financial Services	Affluent Customer	No	
	3	Female	64	1979- 01-28	Account Representative III	Manufacturing	Affluent Customer	Yes	
	4	Female	34	1965- 09-21	Financial Analyst	Financial Services	Affluent Customer	No	
,	995	Male	60	1959- 10-07	Paralegal	Financial Services	Affluent Customer	No	
•	996	Male	22	2001- 10-17	Senior Sales Associate	Health	Mass Customer	No	
!	997	Female	17	1954- 10-05	Budget/Accounting Analyst IV	Financial Services	Affluent Customer	Yes	
•	998	Male	30	1952- 12-17	Financial Advisor	Financial Services	Mass Customer	Yes	
,	999	Male	56	1955- 10-02	Staff Accountant IV	Property	Mass Customer	Yes	

735 rows × 10 columns

In []: 1

count relevant columns

```
In [22]:
              wealth = clean_set['wealth_segment'].value_counts()
           2
              wealth
Out[22]: Mass Customer
                               369
         High Net Worth
                               184
         Affluent Customer
                               182
         Name: wealth segment, dtype: int64
              states = clean_set['state'].value_counts()
In [23]:
              states
Out[23]: NSW
                 364
         VIC
                 200
         QLD
                 171
         Name: state, dtype: int64
In [24]:
              car_owners= clean_set['owns_car'].value_counts()
              car_owners
Out[24]: No
                 376
                 359
         Name: owns_car, dtype: int64
In [25]:
              job_industry = clean_set['job_industry_category'].value_counts()
              job_industry
Out[25]: Financial Services
                                187
         Manufacturing
                                175
         Health
                                138
         Retail
                                 73
         Property
                                 51
         Entertainment
                                 34
                                 30
                                 24
         Argiculture
         Telecommunications
                                 23
         Name: job_industry_category, dtype: int64
In [26]:
              gender = clean_set['gender'].value_counts()
              gender
Out[26]:
         Female
                    380
                    355
         Male
         Name: gender, dtype: int64
```

Data Exploration Analysis and Visualization on the new customer data

Which customer segment has the highest customer value?

Segments of interest:

- Wealth
- Gender

- Job industry
- State

Deductions:

From the charts we can infer that the "mass customer" segment has the highest customer value

- The marketting team of Sprocket Plt should focus their campaigns towards the Mass Customers
- · Equal chances should be given to their Affluent and High Net Worth customers

Distribution of customers by gender segment

Deductions:

The illustration above tells us that the Female segment has 51.7% of customer value.

- The marketting team should launch their campaign towards both gender while considering the female first
- Since the difference between male and female isn't that much, both customers have value as regards to Sprocket plt.

```
# To know which segment has the highest customer values by Job industry category
In [47]:
           1
           2
           3
             industry = ['Financial Services', 'Manufacturing', 'Health', 'Retail', 'Property', 'E
                         'IT','Argiculture','Telecommunications' ]
           4
           5
             count= [187,175,138 , 73, 51,34, 30,24, 23 ] # These industry and count was gotten
           6
           7
           8 x = np.arange(len(job_industry))
           9 width = .6 #the width of the bar
          10 fig, ax = plt.subplots(figsize=(12, 10))
             bar1 = ax.bar(x - width/2, job_industry, width, label='Count')
          11
          12
          13
          14
             ax.set_title('Distribution of customer by Job industry category', fontsize=18)
             ax.set_xlabel('Job industry category', fontsize=16)
          15
             ax.set_xticks(x, industry, rotation=-45, fontsize=12)
          17
             ax.legend()
          18
          19
             ax.bar_label(bar1, padding=3,)
          20
          21
          22
          23 plt.show()
```


Deductions:

The bar chart reveals that the industry segment with thw highest customer value is, Financial Services(187)

- The marketting team of Spocket plt should leverage their customers that work in the "Finanacial services, Manufacturing, and Health sector".
- Close attention should be paid to the financial and manufacturing indurstry categories

Distribution of customers by State

Deductions:

Clearly the NSW state has the highest customer value among the three states

- Sprocket marketting team should direct their campaigns towards their customers who live in NSW state.
- Since the other states, VIC and QLD has almost same percent of customer value, equal chances shoul be given to them

```
# To know which segment has the highest customer values by States and car owners
In [35]:
           1
           2
           3
              fig, ax = plt.subplots(figsize=(10, 8))
           4
           5
           6
              plot= sns.countplot(x='state', data=clean_set,hue = 'owns_car', ax =ax, palette= 'me
           7
              ax.set_title('Customers distribution by states and cars onwers', fontsize=20)
              ax.set_xlabel('States', fontsize =18)
           8
           9
              for container in ax.containers:
          10
                  ax.bar_label(container)
```


Deductions:

The highest customer value in NSW state was linked to th fact that Most car owners are from there, even thoun there is a high number of people who dont have car also.

- Car owners have little significant role to adding value to customer at Sproket plt.
- · Marketting campaigns sholud be lauched inrespective of whethe they own cars or not.

The top customers the made bike related purchase in the pas 3 years

In [64]:	1	<pre>top_sales = clean_set[clean_set['bike_purchase']>= 90]</pre>									
In [69]:	1 2	<pre>top_sales.sort_values(by=['bike_purchase'], ascending=False)</pre>									
Out[69]:		gender	bike_purchase	DOB	job_title	job_industry_category	wealth_segment	owns_car	tenure	sta	
	359	Male	99	1990- 07-28	Media Manager IV	Retail	High Net Worth	No	10	V	
	866	Female	99	1964- 12-07	Dental Hygienist	Health	High Net Worth	No	14	Q	
	705	Female	99	1951- 07-22	Cost Accountant	Financial Services	High Net Worth	No	16	Nξ	
	546	Female	99	1972- 04-27	Accountant III	Financial Services	Mass Customer	No	5	Nξ	
	473	Male	99	1956- 04-21	Geologist III	IT	Affluent Customer	Yes	20	Nξ	
							•••				
	944	Male	91	1992- 08-09	Analog Circuit Design manager	Property	Mass Customer	No	5	N٤	
	576	Male	90	1943- 10-27	Sales Associate	Financial Services	Affluent Customer	No	7	\	
	250	Female	90	1975- 03-12	Cost Accountant	Financial Services	Mass Customer	No	11	Nξ	
	136	Female	90	1990- 05-29	Graphic Designer	Manufacturing	Affluent Customer	No	4	Q	
	943	Male	90	1974- 05-28	Software Test Engineer I	Retail	Mass Customer	No	8	١	
	61 rows × 10 columns										

Designed BY:

Faith Ubara-collins

Email: <u>ubarajf@gamil.com (mailto:ubarajf@gamil.com)</u>

In []: 1