

Kapitel 4 Flüsse in Graphen

Effiziente Algorithmen, SS 2018

Professor Dr. Petra Mutzel

VO 6 am 26. April 2018

4.1 Das Flussproblem

Definition 4.1

Ein Netzwerk N ist ein gerichteter, asymmetrischer, gewichteter Graph G=(V,E,c) mit Quelle $Q\in V$ und Senke $S\in V$ und einer Kapazitätsfunktion $c \colon E \to \mathbb{N}_0$.

Die Quelle hat Eingangsgrad 0, die Senke hat Ausgangsgrad 0.

Bemerkung zur Definition

- Asymmetrisch bedeutet: $\forall u, v \in V : (u, v) \in E \Rightarrow (v, u) \notin E$.
- Mit dieser Bedingung, auf die auch verzichtet werden könnte, ist die Beschreibung der Algorithmen einfacher.
- Praktisch bedeutet sie keine Einschränkung, weil man im Falle einer Verletzung künstliche Knoten hinzufügen kann ⇒ asymmetrisch.

Definitionen

Definition 4.1

Ein Netzwerk N ist ein gerichteter, asymmetrischer, gewichteter Graph G=(V,E,c) mit Quelle $Q\in V$ und Senke $S\in V$ und einer Kapazitätsfunktion $c\colon E\to \mathbb{N}_0$.

Die Quelle hat Eingangsgrad 0. Die Senke hat Ausgangsgrad 0.

• In einem Netzwerk heißt die Abbildung $\phi \colon E \to \mathbb{R}_0^+$ Fluss, wenn gilt:

1 $\forall e \in E : \phi(e) \le c(e)$ (Kapazitäten respektierend)

2
$$\forall v \in V \setminus \{Q, S\}$$
: $\sum_{e=(u,v)} \phi(e) = \sum_{e=(v,u) \text{ alles was reinfließt muss rausfließen}} \phi(e)$ (Kirchhoff-Regel)

• Ein Fluss ϕ heißt ganzzahlig, wenn $\forall e \in E \colon \phi(e) \in \mathbb{N}_0$

Definitionen

Definition 4.1 ff

- Der Wert eines Flusses ϕ ist $w(\phi) = \sum_{e=(Q,v)} \phi(e)$.
- Ein Fluss ϕ heißt maximal, wenn $\forall \phi'$ Fluss: $w(\phi') \leq w(\phi)$.
- Das Flussproblem: Berechne maximalen Fluss in einem gegebenen Netzwerk N

Flussproblem - Beispiel

Fluss ϕ mit Wert $w(\phi) = 5$.

Motivation

Ziel: möglichst viel Substanz (z.B. Wasser, Öl, Gas) durch ein Netzwerk von einer Quelle zu einer Senke liefern

Viele praktische Anwendungen, wie z.B.

- Energietransporte, wie z.B. Fernwärme
- Telekommunikation
- Gütertransporte (wenn Güter klein sind oder teilbar)
- Paketzustelldienst
- Multimodale Transporte (Speditionen, Green Logistics)
- . .

Viele Probleme als Flussproblem modellierbar!

Historische Anwendung: Eisenbahnnetz [Harris, Ross 1955]

Beispielanwendung

Maximale Matchings in bipartiten Graphen

Sei $G = (U \uplus V, E)$ ein bipartiter Graph.

Definiere Netzwerk $N(G) := (V_N, E_N, c_N)$ durch

- $V_N := \{Q\} \uplus \{S\} \uplus U \uplus V$
- $E_N := \{(Q, u) \mid u \in U\}$ $\uplus \{(u, v) \mid u \in U, v \in V, \{u, v\} \in E\} \uplus \{(v, S) \mid v \in V\}$
- $c_N(e) := 1$ für alle $e \in E_N$

Beobachtung erinnert an Hopcroft/Karp

Lemma

Sei G ein ungerichteter, bipartiter Graph und ϕ ein ganzzahliger, maximaler Fluss auf N(G).

 $M := \{\{u, v\} \mid \phi(u, v) = 1\}$ ist maximales Matching in G.

Beweis.

- 1. Jeder solche Fluss Φ def. Matching M mit $|M|=w(\Phi)$: Definiere M durch $e\in M\Leftrightarrow \Phi(e)=1$. M ist Matching, da alle Knoten $u\in U$ genau eine eingehende Kante und alle Knoten $v\in V$ genau eine ausgehende Kante haben und darum nur Fluss 1 durch jeden Knoten gehen kann.
- 2. Jedes Matching M def. solchen Fluss Φ mit $|M|=w(\Phi)$: Definiere $\phi(Q,u_i):=\phi(u_i,v_i):=\phi(v_i,S):=1$ für alle $\{u_i,v_i\}\in M.$ ϕ ist ganzzahliger Fluss mit $w(\phi)=|M|.$

Aber gibt es einen ganzzahligen maximalen Fluss?

Wir erarbeiten uns konstruktiven Beweis: Algorithmus, der ganzzahligen maximalen Fluss berechnet

4.2 Algorithmus von Ford und Fulkerson: Erste Idee

- **1** Starte mit dem leeren Fluss $\phi \equiv 0$.
- 2 Suche einen Weg von der Quelle zur Senke ausschließlich über Kanten mit freien Kapazitäten.
- 3 Vergrößere den Fluss, indem die kleinste Restkapazität auf diesem Weg auf den Fluss der betroffenen Kanten addiert wird.
- 4 Weiter bei 2.

Man muss schlechte Entscheidungen rückgängig machen können.

Das "warnende" Beispiel

ldee "Fluss zurücknehmen" ↔ "Kante mit Fluss rückwärts gehen"

Der Restgraph

Definition

Zu $e = (x, y) \in E$ heißt rev(e) = (y, x) Rückwärtskante von e.

Definition 4.2 (Restgraph)

Sei G = (V, E, c) ein Netzwerk, $\phi \colon E \to \mathbb{R}_0^+$ ein Fluss auf G. Der Restgraph Rest $_{\phi} = (V, E_{\phi}, r_{\phi})$ hat die gleichen Knoten wie Gund folgende Kanten:

- für $e \in E$ mit $\phi(e) < c(e)$ enthält E_{ϕ} die Kante e mit Kapazität $r_{\phi}(e) = c(e) - \phi(e)$,
- für $e \in E$ mit $\phi(e) > 0$ enthält E_{ϕ} die Kante e' = rev(e) mit der Kapazität $r_{\phi}(e') = \phi(e)$.

Beispiel Restgraph

Über den Nutzen von Restgraphen

Lemma 4.3

Sei (G=(V,E),c) Netzwerk, Φ Fluss auf G, $\mathrm{Rest}_\Phi=((V,E'),r_\Phi)$ Restgraph dazu, $P=(e_1,e_2,\ldots,e_l)$ einfacher gerichteter Weg in Rest_Φ mit Start in Q und Ende in S, $r:=\min\{r_\Phi(e)\mid e\in P\}$. Betrachte $\Phi'\colon E\to\mathbb{R}_0^+$ mit

$$\Phi'(e) := \begin{cases} \Phi(e) + r & \text{falls } e \in P, \\ \Phi(e) - r & \text{falls rev}(e) \in P, \\ \Phi(e) & \text{sonst.} \end{cases}$$

 Φ' ist ein Fluss für (G,c) mit $w(\Phi')=w(\Phi)+r>w(\Phi).$

Beispiel Restgraph

Beispiel Restgraph

Über den Nutzen von Restgraphen

Lemma 4.3

Sei (G=(V,E),c) Netzwerk, Φ Fluss auf G, $\mathrm{Rest}_\Phi=((V,E'),r_\Phi)$ Restgraph dazu, $P=(e_1,e_2,\ldots,e_l)$ einfacher gerichteter Weg in Rest_Φ mit Start in Q und Ende in S, $r:=\min\{r_\Phi(e)\mid e\in P\}$. Betrachte $\Phi'\colon E\to\mathbb{R}_0^+$ mit

$$\Phi'(e) := \begin{cases} \Phi(e) + r & \text{falls } e \in P, \\ \Phi(e) - r & \text{falls rev}(e) \in P, \\ \Phi(e) & \text{sonst.} \end{cases}$$

 Φ' ist ein Fluss für (G,c) mit $w(\Phi')=w(\Phi)+r>w(\Phi).$

Offensichtlich $w(\Phi') = w(\Phi) + r > w(\Phi)$ zu zeigen Ist Φ' wirklich ein Fluss? Kapazitäten, Kirchhoff-Regel

Beweis von Lemma 4.3

Fluss
$$\Phi$$
, $\mathrm{Rest}_\Phi = ((V, E'), r_\Phi)$ Restgraph, $P = (e_1, e_2, \ldots, e_l)$ einfacher gerichteter Weg in Rest_Φ

$$\Phi'(e) := \begin{cases} \Phi(e) + r & \text{falls } e \in P, \\ \Phi(e) - r & \text{falls rev}(e) \in P, \\ \Phi(e) & \text{sonst.} \end{cases}$$

schon gesehen Kirchhoff-Regel kritisch:
$$\sum\limits_{e=(\cdot,v)}\phi(e)=\sum\limits_{e=(v,\cdot)}\phi(e)$$

klar für Q und S nichts zu zeigen $\sqrt{}$

Betrachte $e_i = (u, v), e_{i+1} = (v, w) \text{ mit } v \in V \setminus \{Q, S\}$

Voraussetzung für Φ Kirchhoff-Regel für v erfüllt

1. Fall $e_i \in E, e_{i+1} \in E$:

Beobachtung eingehende und ausgehende Summe wachsen um $r\sqrt{}$

2. Fall $e_i \notin E$, $e_{i+1} \notin E$:

Beobachtung eingehende und ausgehende Summe fallen um $r\sqrt{}$

Beweis von Lemma 4.3 – 2. Teil

Fluss Φ , $\mathrm{Rest}_\Phi=((V,E'),r_\Phi)$ Restgraph, $P=(e_1,e_2,\ldots,e_l)$ einfacher gerichteter Weg in Rest_Φ

$$\Phi'(e) := \begin{cases} \Phi(e) + r & \text{falls } e \in P, \\ \Phi(e) - r & \text{falls rev}(e) \in P, \\ \Phi(e) & \text{sonst.} \end{cases}$$

3. Fall $e_i \in E$, $e_{i+1} \notin E$:

Beobachtung eingehende Summe wächst wegen e_i um r

Beobachtung eingehende Summe fällt wegen e_{i+1} um $r\sqrt{}$

4. Fall $e_i \notin E, e_{i+1} \in E$:

Beobachtung ausgehende Summe wächst wegen e_{i+1} um r

Beobachtung ausgehende Summe fällt wegen e_i um $r\sqrt{}$

Auf dem Weg zum Algorithmus . . .

- Restgraph Rest_Φ zu Fluss Φ
- Q S-Weg in Rest $_{\Phi} \Rightarrow$ Fluss kann vergrößert werden:
 - \bullet minimale Restkapazität r auf dem Pfad berechnen
 - $r \text{ zu } \Phi(e) \text{ für } e \in E \text{ addieren}$
 - r von $\Phi(e)$ für $e \notin E$ abziehen
 - Wert des Flusses erhöht sich um r

Definition

Ein Weg $Q \rightsquigarrow S$ im Restgraphen heißt flussvergrößernd (FV-Weg) (oder auch augmentierender Weg).

Wir sagen auch: Der Fluss wird entlang des Weges augmentiert.

Algorithmus von Ford und Fulkerson

- Start mit dem leeren Fluss $\phi \equiv 0$.
- Berechne den Restgraphen.
- 3. Markiere Q. {* Wir suchen FV-Weg. *}
- Solange S nicht markiert ist Weg durch DFS oder BFS
- 5. Falls es im Restgraphen einen markierten Knoten x, einen nicht markierten Knoten y und eine Kante (x,y)gibt, markiere y mit dem Vermerk "erreicht von x".
- Sonst STOP. Ausgabe ϕ .
- Betrachte den markierten Weg P von Q nach S.
- $r := \min\{r_{\phi}(e) \mid e \in P\}$ {* kleinste "Kapazität" *}
- $\forall e \in E \cap P : \phi'(e) := \phi(e) + r \quad \{* \ Vorwärtskante + r *\}$
- 10. $\forall \mathsf{rev}(e) \in E \cap P : \phi'(e) := \phi(e) r \quad \{* \ \mathsf{R\"uckw\"artskante} r *\}$
- 11. Weiter bei 2.

Einfache Beobachtungen

- Schritte 4.-6, mit Breitensuche oder Tiefensuche erreichbar
- Minimum such e geht in Zeit O(|P|) = O(V).
- ϕ wird in Zeit O(|P|) = O(V) augmentiert (aktualisiert).
- Also: eine Runde läuft in Zeit O(|V| + |E|).
- ϕ ist nach jeder Runde ein Fluss.
- Wenn S markiert wird, ist Φ nicht maximal.
- Der berechnete Fluss ist ganzzahlig.

00000

Terminierung

Ist der Ford-Fulkerson-Algorithmus endlich?

00000

klar

- $B := \sum c(e)$ ist obere Schranke für ϕ $e=(Q,\cdot)$
- ϕ wächst je Runde um > 1
- Algorithmus stoppt nach < B Runden
- Laufzeit $O(B \cdot (|V| + |E|))$

Pseudopolynomiell

Laufzeit des Ford-Fulkerson-Algorithmus

Unsere Abschätzung sagt "superpolynomiell". Ist das realistisch?

also 2M Flussvergrößerungen wenn man Pech hat mehr dazu: später

Ist der Fluss maximal? — Beweis im nächsten Abschnitt...

4.3 Das Max-Flow / Min-Cut Theorem

Definition 4.5: *Q-S-*Schnitte

Eine Partitionierung der Knotenmenge von G in (V_Q,V_S) mit $V_Q \uplus V_S = V, \ Q \in V_Q$ und $S \in V_S$ definiert einen Q-S-Schnitt. Der Wert eines Q-S-Schnitts ist definiert durch $w(V_Q,V_S) := \sum_{C} c(e).$

$$w(V_Q, V_S) := \sum_{e \in E \cap (V_Q \times V_S)} c(e).$$

Das Flussproblem

Max Flow = Min Cut

Theorem 4.6 (Max Flow = Min Cut)

Der Wert eines maximalen Flusses in einem Netzwerk N ist gleich dem Wert eines minimalen $Q\text{-}S\text{-}\mathsf{Schnittes}.$

Beweisidee

2 Schritte:

- **1** " \forall Flüsse ϕ und \forall Schnitte (V_Q, V_S) : $w(\phi) \leq w(V_Q, V_S)$ "
- $\ \ \, 2 \ \, \exists \Phi^* \ \, \mathrm{und} \ \, \exists (V_Q^*,V_S^*) \colon w(v_Q^*,V_S^*) = w(\Phi^*)$

Aus dem Beweis folgt:

- (a) Max Flow = Min Cut
- (b) Optimalität von Ford-Fulkerson, da $\Phi^* := Ausgabe von$ Ford-Fulkerson

Beweis "Max Flow = Min Cut"

Beweis. "
$$\forall$$
 Flüsse ϕ und \forall Schnitte (V_Q,V_S) : $w(\phi) \leq w(V_Q,V_S)$ " Erinnerung $w(\Phi) = \sum_{e=(Q,\cdot)} \Phi(e)$ (Definition)

Beobachtung
$$\forall v \in V \setminus \{Q,S\} \colon \sum_{e=(v,\cdot)} \Phi(e) = \sum_{e=(\cdot,v)} \Phi(e)$$
 (Kirchhoff)
$$\forall v \in V \setminus \{Q,S\} \colon \sum_{e=(v,\cdot)} \Phi(e) - \sum_{e=(\cdot,v)} \Phi(e) = 0$$
 pativlish such
$$\forall v \in V_0 \setminus \{Q\} \colon \sum_{e=(v,\cdot)} \Phi(e) = \sum_{e=(\cdot,v)} \Phi(e) = 0$$

natürlich auch
$$\forall v \in V_Q \setminus \{Q\} : \sum_{e=(v,\cdot)} \Phi(e) - \sum_{e=(\cdot,v)} \Phi(e) = 0$$

$$\operatorname{darum} \quad \sum_{v \in V_Q} \left(\sum_{e = (v, \cdot)} \Phi(e) - \sum_{e = (\cdot, v)} \Phi(e) \right) = \sum_{e = (Q, \cdot)} \Phi(e) = w(\Phi)$$

Beweis
$$\forall \Phi, (V_Q, V_S) : w(\Phi) \leq w(V_Q, V_S)$$

haben
$$w(\Phi) = \sum_{v \in V_Q} \left(\sum_{e=(v,\cdot)} \Phi(e) - \sum_{e=(\cdot,v)} \Phi(e) \right)$$

Idee Partitioniere Kanten in drei Teilmengen $E \cap (V_Q \times V_Q)$, $E \cap (V_Q \times V_S)$, $E \cap (V_S \times V_Q)$

Beobachtung

- ullet $E\cap (V_Q imes V_S)$ ausschließlich in $\sum\limits_{e=(v,\cdot)}\Phi(e)$
- $E \cap (V_S \times V_Q)$ ausschließlich in $-\sum_{e=(\cdot,v)} \Phi(e)$
- $E \cap (V_Q \times V_Q)$ jeweils einmal in beiden Summen \leadsto Beitrag 0

also
$$w(\Phi) = \sum_{e \in E \cap (V_Q \times V_S)} \Phi(e) - \sum_{e \in E \cap (V_S \times V_Q)} \Phi(e)$$

Das Flussproblem

Beweis $\forall \Phi, (V_Q, V_S) : w(\Phi) \leq w(V_Q, V_S)$ (Fortsetzung)

haben
$$w(\Phi) = \sum_{e \in E \cap (V_Q \times V_S)} \Phi(e) - \sum_{e \in E \cap (V_S \times V_Q)} \Phi(e)$$

Erinnerung
$$w(V_Q,V_S) = \sum_{e \in E \cap (V_Q \times V_S)} c(e)$$
 (Definition)

$$\begin{split} & \text{also} & \quad w(V_Q, V_S) \geq \sum_{e \in E \cap (V_Q \times V_S)} \Phi(e) \text{ weil } \forall e \colon c(e) \geq \Phi(e) \\ & \text{klar} & \quad - \sum_{e \in E \cap (V_S \times V_Q)} \Phi(e) \leq 0 \\ & \quad \text{weil } \forall e \colon \Phi(e) \geq 0 \end{split}$$

also

$$\begin{split} w(\Phi) &= \sum_{e \in E \cap (V_Q \times V_S)} \Phi(e) - \sum_{e \in E \cap (V_S \times V_Q)} \Phi(e) \leq w(V_Q, V_S) + 0 \\ \text{also} & \forall \Phi, (V_Q, V_S) \colon w(\Phi) \leq w(V_Q, V_S) \checkmark \end{split}$$

Beweis "Max Flow = Min Cut" (Fortsetzung)

haben $\forall \Phi, (V_O, V_S) : w(\Phi) \leq w(V_O, V_S)$

wollen Max Flow = Min Cut

zeigen $\exists \Phi^* \text{ und } \exists (V_O^*, V_S^*) \colon w(V_O^*, V_S^*) = w(\Phi^*)$

Beobachtung daraus folgt Behauptung

 $\Phi^* := \mathsf{Ergebnis} \ \mathsf{von} \ \mathsf{Ford/Fulkerson}$ Definition

Erinnerung daraus folgt Optimalität des Algorithmus

Definition für (V_O^*, V_S^*) betrachte markierten Restgraphen Rest $_{\Phi^*}$

 $V_O^* := \{v \mid v \text{ markiert}\}$

 $V_S^* := \{v \mid v \text{ nicht markiert}\}$

Beobachtung $f "u" r e \in V_O^* \times V_S^* \colon \Phi(e) = c(e)$

sonst $e \in \mathsf{Rest}_{\Phi^*}$ und Endpunkt markierbar

 $f \ddot{\mathsf{u}} \mathbf{r} \ e \in V_S^* \times V_O^* \colon \Phi(e) = 0$ Beobachtung

sonst $rev(e) \in Rest_{\Phi^*}$ und Startpunkt markierbar

Zusammenfassung für Φ^* und (V_Q^*, V_S^*)

haben

- $\forall e \in V_Q^* \times V_S^* \colon \Phi(e) = c(e)$
- $\forall e \in V_S^* \times V_O^* \colon \Phi(e) = 0$

also
$$w(\Phi^*) = \sum_{e \in E \cap (V_Q^* \times V_S^*)} \Phi(e) - \sum_{e \in E \cap (V_S^* \times V_Q^*)} \Phi(e)$$

$$= \sum_{e \in E \cap (V_Q^* \times V_S^*)} c(e) - \sum_{e \in E \cap (V_S^* \times V_Q^*)} 0$$

$$= \sum_{e \in E \cap (V_Q^* \times V_S^*)} c(e) = w(V_Q^*, V_S^*)$$

Motivation für Max Flow vs. Min Cut

Folgerungen aus Max Flow = Min Cut

- Wenn der Ford-Fulkerson-Algorithmus nicht die Senke S markiert, ist φ maximal.
- Der Ford-Fulkerson-Algorithmus ist korrekt.
- Der maximale Fluss ist ganzzahlig.

Theorem 4.7

Der Algorithmus von Ford und Fulkerson (Algorithmus 4.4) berechnet einen maximalen Fluss in Zeit $O(B\cdot (|V|+|E|))$ mit

$$B = \min \bigg\{ \sum_{e = (Q, \cdot)} c(e), \sum_{e = (\cdot, S)} c(e) \bigg\}.$$

Definition Algorithmen mit Laufzeit polynomiell in Eingabelänge und Größe der größten Zahl heißen pseudopolynomiell

also Algorithmus von Ford und Fulkerson nur pseudopolynomiell

0000000

Laufzeit des Ford-Fulkerson-Algorithmus

Unsere Abschätzung sagt pseudopolynomiell. Ist das realistisch?

also 2M Flussvergrößerungen wenn man Pech hat bei Eingabelänge $\Theta(\log M)$ also Laufzeit $O(B\cdot (|V|+|E|))$ wirklich pseudopolynomiell