Übungsblatt 6

Aufgabe 1: Folgen

Handelt es sich um Nullfolgen?

(a)
$$a_n = \frac{n}{n^3 + n^2 + 1}$$

(b)
$$a_n = \frac{n+1}{n-2}$$

(c)
$$a_n = \frac{\sin^3 n + \cos n}{\sqrt{n}}$$

Aufgabe 2: Grenzwerte

Bestimmen Sie (falls existent) die Grenzwerte folgender Folgen:

(a)
$$a_n = \frac{5-n}{8n}$$

(b)
$$a_n = \frac{2n^3 - 3n^2 + 3}{3n^2 - 3n + 4}$$

(c)
$$a_n = \frac{2n^3 - 3n^2 + 3}{3n^4 - 3n^3 + 4}$$

Übungsblatt 6

Aufgabe 3: Bonus: Reihen I

Nutzen Sie die Reihendarstellungen von $\exp(x)$ sowie $\sin(x)$ und $\cos(x)$, um die Relation

$$\exp(ix) = \cos(x) + i\sin(x)$$

zu beweisen.

Aufgabe 4: Vollständige Induktion

(a) Zeigen Sie, dass gilt
$$\sum_{i=1}^{n} i^3 = \left(\sum_{j=1}^{n} j\right)^2$$
.

(Hinweis: Verwenden Sie vollständige Induktion und den "kleinen Gauß")

Aufgabe 5: Reihen II

Überlegen Sie durch eine geeignete Abschätzung, ob die folgende Reihe konvergiert oder divergiert:

Übungsblatt 6

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$