Chapitre 1 : Nombres et inégalités

1 Les ensembles de nombres

Histoire

Au fil de l'histoire, les mathématiciens ont progressivement pris conscience qu'il existait une infinité de nombres, de natures très variées. Ils se sont aperçus qu'il était possible de « ranger » en grandes familles les nombres ayant des propriétés identiques.

Cette typologie fut l'œuvre de trois mathématiciens de la deuxième moitié du XIXe siècle et du début du XXe siècle : l'Allemand Richard Dedekind (1831-1916), le Russe Georg Cantor (1845-1918) et l'Italien Giuseppe Peano (1858-1932).

1.1 L'ensemble des réels

Définition 1.1

L'ensemble de tous les nombres connus en seconde s'appelle l'ensemble des réels. Il est noté \mathbb{R} .

Remarque

On peut représenter chaque nombre réel par un point d'une droite graduée. Et inversement : Chaque point de la droite graduée correspond à un réel et un seul.

Exercices47 à 50 page 22

1.2 Les autres ensembles de nombres

Définition 1.2

Il existe des réels particuliers :

- L'ensemble des entiers naturels, noté \mathbb{N} : $0; 1; 2; 3; 4; \dots$
- L'ensemble des entiers relatifs, noté \mathbb{Z} : ... -3; -2; -1; 0; 1; 2; 3; ...
- L'ensemble des nombres décimaux, noté \mathbb{D} : Un décimal est un nombre qui peut s'écrire sous la forme d'un quotient d'entiers dont le dénominateur est une puissance de 10.
- L'ensemble des nombres rationnels, noté \mathbb{Q} : Un nombre rationnel est un nombre qui peut s'écrire sous la forme d'un quotient d'entiers.

Exemple

- 1.25 est un décimal car il peut s'écrire sous la forme $\frac{125}{100}$. 1.25 est donc aussi un nombre rationnel. On note $1.25 \in \mathbb{D}$ et $1.25 \in \mathbb{Q}$.
- $\frac{2}{3}$ est un nombre rationnel (sans être un décimal). On note $\frac{2}{3} \in \mathbb{Q}$.
- -5 est un entier relatif. C'est aussi un décimal car $-5 = \frac{-50}{10}$, et c'est également un nombre rationnel. On note $-5 \in \mathbb{Z}$, $-5 \in \mathbb{D}$, $-5 \in \mathbb{Q}$ et bien évidemment $-5 \in \mathbb{R}$.

∠Démonstration 1.1

 $\frac{1}{3}$ Montrons que $\frac{1}{3}$ n'est pas un nombre décimal.

1.3 Propriétés

Propriété 1.1 (admise) | On a : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.

Exemple

Savoir-Faire 1.1

SAVOIR DÉTERMINER À QUEL(S) ENSEMBLE(S) APPARTIENT UN NOMBRE

Indiquer par une croix à quel **plus petit ensemble** de nombres appartiennent les nombres suivants (Attention, deux colonnes) :

Dans le tableau apparaissent les nombre a et b qui sont définis de la façon suivante :

- a est l'inverse de 5
- b est la somme de 7 et de l'opposé de 8.
- ☆ Si ce n'est pas évident, il faut expliquer!

	N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}		N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}
-3						π					
$-\sqrt{144}$						$\sqrt{7}$					
$\frac{12}{3}$						0					
$-\frac{2}{3}$						$\frac{77}{25}$					
$\frac{-56874}{3}$						$\frac{4}{7}$					
a						b					

Exercices

82 page 24, 86 et 87 page 25 (+ déterminer à quel ensemble appartiennent les nombres) .

Exercices

97 page 25, 143 page 29.

Algorithme 1.1

 $\sqrt{2}$ est irrationnel, on ne peut donc pas l'écrire sous la forme d'une fraction. On cherche donc à déterminer une valeur approchée à l'aide de l'informatique.

Question préliminaire : Donner deux entiers consécutifs a et b tel que $a \le \sqrt{2} \le b$. On obtient ainsi un encadrement de $\sqrt{2}$ à l'unité près.

 \S Déterminer par balayage un encadrement de $\sqrt{2}$ d'amplitude inférieure ou égale à 10^{-n} .

2 Inégalités et intervalles

2.1 Inégalités

Exercices | 83 page 24

2.1.1 Ordre dans \mathbb{R}

Propriété 1.2 (admise)

Si a,b et c sont des réels tels que a < b et b < c, alors a < c.

2.1.2 Somme

Propriété 1.3 (admise)

- Si a,b et c sont des réels tels que a < b, alors a + c < b + c et a c < b c.
- Si a,b et c sont des réels tels que a > b, alors a + c > b + c et a c > b c.

Propriété 1.4 (admise)

On peut additionner les inégalités de même sens :

Si a,b,c et d sont des réels tels que a < b et c < d, alors a + c < b + d.

2.1.3 Produit

Propriété 1.5 (admise)

- On peut multiplier (ou diviser) chaque membre d'une inégalité par un réel strictement positif, sans changer l'ordre :
 - si a et b sont deux réels tels que a < b et si c > 0, alors $a \times c < b \times c$
- On peut multiplier(ou diviser) chaque membre d'une inégalité par un réel strictement négatig, mais il faut changer l'ordre :
 - si a et b sont deux réels tels que a < b et si c < 0, alors $a \times c > b \times c$

Savoir-Faire 1.2

SAVOIR UTILISER LES PROPRIÉTÉS SUR LES INÉGALITÉS POUR ENCADRER UNE EXPRES-SION.

une bille a pour rayon r=0.76 cm. Donner un encadrement de son volume en cm^3 à 0.1 près (rappel : $V=\frac{4}{3}\times\pi\times r^3$) en utilisant l'encadrement suivant de $\pi:3.14<\pi<3.15$.

Exercices89, 90 page 25

2.2 Intervalles

2.2.1 Définitions

Définition 1.3

• L'intervalle fermé [a;b] désigne l'ensemble des nombres x tels que $a \le x \le b$.

• L'intervalle ouvert a; b désigne l'ensemble des nombres a tels que a < x < b.

• L'intervalle semi-ouvert [a; b[désigne l'ensemble des nombres x tels que $a \le x < b$.

• L'intervalle semi-ouvert a; b désigne l'ensemble des nombres a tels que $a < x \le b$.

• L'intervalle $[a; +\infty[$ désigne l'ensemble des nombres x tels que $a \le x$.

• L'intervalle $]a; +\infty[$ désigne l'ensemble des nombres x tels que a < x.

• L'intervalle $]-\infty; b]$ désigne l'ensemble des nombres x tels que $x \leq b$.

• L'intervalle $]-\infty$; b[désigne l'ensemble des nombres x tels que x < b.

Exercices

53,56,57,58 page 22 73,74 page 24 (+ convertir en intervalle)

2.2.2 Réunion et intersection d'intervalles

Définition 1.4

Soient I et J deux intervalles.

- L'intersection de I et J, noté $I \cap J$, l'ensemble des réels qui appartiennent à I et à J.
- L'union de I et J, noté $I \cup J$, l'ensemble des réels qui appartiennent à I ou à J.

Savoir-Faire 1.3

SAVOIR DÉTERMINER UNE RÉUNION OU INTERSECTION D'INTERVALLES

- Déterminer la réunion de [3; 7] et [4; 10]
- Déterminer l'intersection de [3, 7] et [4, 10]

Savoir-Faire 1.4

Savoir résoudre une équation du premier degré Résoudre dans \mathbb{R} , et donner la nature de la solution :

- 3x + 1 = 8
- 4x 4 = 5

Savoir-Faire 1.5

Savoir résoudre une inéquation du premier degré Résoudre dans $\mathbb R$:

- $3x + 1 \le 8$
- -4x 4 > 5

Exercices

67 page 23

110, 112, 115 page 26, 119 page 27, 120, 121 page 27

3 Les puissances

3.1 Définition

Définition 1.5

Pour tout entier relatif a et tout entier naturel n non nul, on a : $a^n = a \times a \times ... \times a$ (n facteurs)

Ce nombre se lit « a puissance n » ou bien « a exposant n »

Remarque

Pour tout entier relatif a non nul, $a^0 = 1$.

Définition 1.6

Pour tout entier relatif a non nul, et tout entier naturel n non nul, on a : $a^{-n} = \frac{1}{a^n}$.

Exemples

- $5^4 =$
- $3^{-4} =$
- $10^3 =$
- $10^{-3} =$
- $4^0 =$

3.2 Propriétés

Propriété 1.6 (admise)

On considère a et b des entiers relatifs non nuls, et n et p des entiers naturels. On a :

- $\bullet \ a^n \times a^p = a^{n+p}$
- $\bullet \ \frac{a^n}{a^p} = a^{n-p}$
- $\bullet \ \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
- $\bullet \ (a \times b)^n = a^n \times b^n$

Exemples

- $4^8 \times 4^6 =$
- $\frac{5^4}{5^6} =$
- $(x^2)^4 =$
- $3.5^7 \times 2^7 =$
- $\frac{10^4}{5^4} = \left(\frac{10}{5}\right)^4 =$

Exercices

98,99,100 page 26, 106 page 26

3.3 Écriture scientifique

Définition 1.7

L'écriture scientifique d'un nombre décimal est $a \times 10^p$ où p est un entier relatif et a un nombre décimal tel que $1 \le a < 10$.

Exemples

- L'écriture scientifique de 4 236 000 est
- L'écriture scientifique de 0.000 036 est

Exercices

 $101,\!102$ page 26

4 La racine carrée

4.1 Définition

Définition 1.8

Soit a un réel positif. La racine carrée de a est le réel positif dont le carré est égal à a.

Remarque

Pour tout $a \ge 0$, on a donc $(\sqrt{a})^2 = a$.

Exemples

- $\sqrt{4} =$
- $\sqrt{100} =$
- $\sqrt{36} =$
- $\sqrt{1.44} =$
- $\sqrt{0.01} =$
- $\left(\sqrt{5}\right)^2 =$
- $\sqrt{5^2} =$

4.2 Propriétés

Propriété 1.7

Soient a et b deux réels positifs. On a : $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$

Exemples

- $\sqrt{18} =$
- $\bullet \ \sqrt{7 \times 5} =$

∠Démonstration 1.2

S Démonter que pour tous a et b réels positifs, $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$

Propriété 1.8 (admise)

Soient a et b deux réels positifs, avec b non nul.

On a :
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
.

Exemples

•
$$\sqrt{\frac{16}{9}} =$$

•
$$\frac{\sqrt{100}}{\sqrt{25}} =$$

 \triangle En général : $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$

Exemple

•
$$\sqrt{9+16} =$$

•
$$\sqrt{9} + \sqrt{16} =$$

Propriété 1.9

Soient a et b deux réels strictement positifs. Alors on a $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$.

∕Démonstration 1.3

 $\ref{5}$ Démonter que pour tous a et b réels strictement positifs, $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$

Savoir-Faire 1.6

SAVOIR ADDITIONNER, LORSQUE CELA EST POSSIBLE, DES RACINES CARRÉES

•
$$\sqrt{18} + \sqrt{8} =$$

Exercices

104, 105 page 2

Exercice 1.1

Le nombre $\Phi = \frac{1+\sqrt{5}}{2}$ est appelé "nombre d'or".

- 1. Calculer Φ^2 et simplifier le résultat obtenu.
- 2. Calculer $1 + \Phi$
- 3. Calculer $\frac{1}{\Phi}$ et simplifier le résultat obtenu en multipliant le numérateur et le dénominateur par $1-\sqrt{5}$
- 4. Que constate t-on?

5 La valeur absolue

5.1 Définition

Définition 1.9

La valeur absolue d'un nombre réel x est la distance entre x et 0 sur l'axe des réels. Elle se note |x|.

Exemples

- |8| =
- |-4| =
- |0| =

5.2 Propriétés

Propriété 1.10 (admise)

Soit x un nombre réel. Alors :

$$|x| = \begin{cases} x & si \ x \ge 0 \\ -x & si \ x \le 0 \end{cases}$$

Exemples

• |5| =

• |-5| =

Remarque

- Pour tout réel x, on a $|x| \ge 0$: la valeur absolue d'un nombre réel est toujours positive ou nulle car c'est une distance.
- pour tout réel x, on a |x| = |-x|.

Algorithme 1.2

En utilisant la propriété précédente, programmer la fonction valeur absolue sous la forme d'une fonction python, comme le montre le screen suivant :

```
>>> val_absolue(5)
5
>>> val_absolue(0)
0
>>> val_absolue(-5)
5
```

Savoir-Faire 1.7

SAVOIR RÉSOUDRE DES ÉQUATIONS ET D'INÉQUATIONS AVEC LA VALEUR ABSOLUE Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

- |x| = 5
- |x| = -3
- |x| = 7.23
- \bullet $|x| \leq 5$
- \bullet $|x| \leq 8$