

Monolithic Digital AM/FM Receiver Radio-on-a-Chip™

KT0913

Features

Worldwide full band FM/AM support

FM: 32MHz-110MHz AM: 500KHz-1710KHz

Fully integrated frequency synthesizer with no external components

High Sensitivity

1.6uVEMF for FM

16uVEMF for AM

High Fidelity

SNR (FM/AM): 60dB/55dB

THD: 0.3%

Low Supply Current

22mA (operating)

<15uA (standby)

Advanced features

Automatic antenna tuning

Adjustable AM channel filters (2/4/6KHz)

Automatic Frequency Control (AFC)

Automatic Gain Control (AGC)

Embedded FM SNR meter

Fast seek/Tune

Integrated stereo headphone driver

I2C control interface for MCU

Special Features:

Support traditional dial and digital key for frequency tuning and volume control

Memorize channel and volume in standby mode

Low supply voltage: 2.1V to 3.6V, can be supplied by 2 AAA batteries

Support both 32.768KHz and 38KHz crystal

Support continuous reference frequency from 32.768KHz to 26MHz

Small form factor SSOP16L package

RoHS Compliant

Applications

Desktop and portable radio, mini/portable audio systems, clock radio, campus radio, PMP docking station, car audio system, toy and gift.

Rev. 1.2

Information furnished by KT Micro is believed to be accurate and reliable. However, no responsibility is assumed by KT Micro for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of KT Micro, Inc.

KT0913 System Diagram

Description

The KT0913 is a fully integrated digital AM/FM radio receiver chip with patented technologies that offer full band AM/FM functionality, high quality audio performance, simple design and low BOM cost thanks to the minimum external components required and direct frequency and volume control interface without requiring customers to modify existing exterior module.

Thanks to the patented tuning technology, the receiver maintains good signal reception even with short antennas. The chip consumes merely 22mA current and can be powered by 2 AAA batteries. Another useful feature is that the volume and channel information can be preserved in standby mode without external memories. KT0913 supports a wide range of reference clocks from 32.768KHz to 26MHz, hence can share system clocks with a varieties of MCUs further reducing the system BOM cost.

With high audio performance, fully integrated features and low BOM cost, KT0913 is ideal for various applications and products.

Table of Content

1.				4
2.				(
3.				
3.1.				
3.2.				
3.3.		AN	A Receiver	
3.4.		Op	oeration Bands	
3.5.		Sta	andby	
3.6.		Cr	ystal and reference clock	
3.7.		Di	gital Signal Processing	
3.				
3.	7.2	2.	Mute / Softmute	
3.	7.3	3.	Stereo / Mono Blending	
				Ç
	7.5			
	7.6			
		7.	TUNE	9
				10
				10
3	8 1	ı	Programmable band	10
39	0.2	 120	Control Interface	13
3.7.)	Re	oister Rank	
3.10	'• 10	1	CHIP ID (Address Ov01)	
3.	10	2	SEEK (Address 0x02)	16
3.	10	3	TINF (Address 0x03)	
3.	10	1	VOLUME (Address 0x04)	
3.	10	.5.	LOCEGA (Address 0v0A)	
<i>3</i> .	10	./.	DVCEC (Addross 0x0E)	
).	10	.0.	CTATUCA (Address 0x12)	
				21
				21
				21
				21
				22
				23
				23
				24
			,	24
				24
				27
6.	R	evi	sion History	28

1. Electrical Specification

Table 1: Operation Condition

		F				
Parameter	Symbol	Operating Condition	Min	Тур	Max	Units
Power Supply	AVDD	Relative to AVss	2.1	3.3	3.6	V
Ambient Temperature	Ta		-30	25	70	$^{\circ}$

Table 2: DC Characteristics

		Tubic	2. De enaracterist	100			
Parameter		Symbol	Test/Operating Condition	Min	Тур	Max	Units
Current	FM Mode	I_{FM}		-	21.3		mA
Consumption	AM Mode	I_{AM}			22		mA
Standby Current	_	I_{APD}			14.5		μΑ

Table 3: FM Receiver Characteristics

(Unless otherwise noted Ta = $-30\sim70^{\circ}$ C, AVDD= 2.1V to 3.6V)

Parameter	Symbol	Test/Operating Condition	Min	Тур	Max	Units
FM Frequency Range	F_{rx}		32	₩	110	MHz
Sensitivity ^{1,2,3}	Sen	(S+N)/N=26dB	4	1.6	2	uVemf
Input referred 3 rd Order Intermodulation Production ^{4,5}	IIP3			85		dBuVE MF
Adjacent Channel Selectivity		±200KHz	35		51	dB
Alternate Channel Selectivity		±400KHz	50		70	dB
Image Rejection Radio	A			35		dB
AM suppression				50		dB
RCLK frequency	A		32.768	32.768	26000	KHz
RCLK frequency Range ⁸			-100		100	ppm
Audio Output Voltage ^{1,2,3,4}		32ohm load	90	100	110	mV_{RMS}
Audio Band Limits ^{1,2,4}		±3dB	30		15k	Hz
Audio Stereo Separation 1,4,6			35			dB
Audio Mono S/N ^{1,2,3,4}			55	60		dB
Audio Stereo S/N ^{1,4,6,7}		DBLND=1		64		dB
Audio THD ^{1,2,4,6}				0.3		%
De-emphasis Time Constant		DE=0		75		μs
		DE=1		50		μs
Audio Common Mode Voltage				0.85		V
Audio Output Load Resistance	R_{L}	Single-ended		32		Ω
Seek/Tune Time					50	ms
Power-up Time					600	ms

Notes

- 1. FMOD=1KHz, 75us de-emphasis
- 2. MONO=1
- 3. △F=22.5KHz
- 4. V_{EMF} =1mV, Frequency=32MHz~110MHz
- 5. AGCD=1
- 6. △F=75KHz
- 7. VOLUME<4:0>=11111
- 8. The supported RCLK frequency is not continuous. Please refer to application notes.

Table 4: AM Receiver Characteristics

(Unless otherwise noted Ta = $-30\sim70^{\circ}$ C, AVDD= 2.1V to 3.6V)

Parameter	Symbol	Test/Operating Condition	Min	Тур	Max	Units
AM Frequency Range	F_{rx}		500		1710	KHz
Sensitivity ^{1,2}	Sen	(S+N)/N=26dB		15		uVemf
Audio Output Voltage ^{1,2,3,4}		32ohm load		60		mV_{RMS}
Audio Mono S/N ^{1,2,3,4}				55		dB
Audio THD ^{1,2,4,6}				0.3	0.6	%
Antenna inductance	L		280	350	420	uН

Notes:

- 1. FMOD=1KHz
- 2. Modulation index is 30%
- V_{EMF} =1mV, Frequency=500KHz~1710KHz VOLUME<4:0>=11111 3.

2. Pin List

Table 5: Pin list

		14010 U 1 111 1100
Pin Num	Pin Name	Description
1	CH	Channel adjustment.
2	DVSS	Digital ground.
3	ROUT	Right channel audio output.
4	LOUT	Left channel audio output.
5	AVSS	Analog ground.
6	AVDD	Power supply.
7	XI/RCLK	Crystal input/Reference clock input.
8	XO	Crystal output.
9	ENABLE	Chip enable. Tied to an internal 600kohm pull down resistor.
10	AMINN	AM RF negative input.
11	AMINP	AM RF positive input.
12	RFINP	FM RF input.
13	RFGND	RF ground.
14	SCL	SCL of I2C interface. Tied to an internal 47kohm pull-up
		resistor.
15	SDA	SDA of I2C interface. Tied to an internal 47kohm pull-up
		resistor.
16	VOL	Volume adjustment.

Figure 1: KT0913 Pin assignment (Top view)

3. Function Description

3.1. Overview

KT0913 offers a true single-chip, full-band FM/AM and versatile radio solution by minimizing the external components and offering a variety of configurations.

3.2. FM Receiver

KT0913 enters FM mode by setting register AM_FM to 0. The FM receiver is based on the architecture of KT Micro's latest generation FM receiver chips in mass production. There are no external filters or frequency-tuning devices thanks to a proprietary digital low-IF architecture consisting of a fully-integrated LNA, an automatic gain control (AGC), a set of high-performance ADCs, high-quality analog and digital filters, and an on-chip low-noise self-tuning VCO. The on-chip high-fidelity Class-AB driver further eliminates the need for external audio amplifiers and can drive stereo headphones directly.

3.3. AM Receiver

KT0913 enters AM mode by setting register AM_FM to 1. The AM Receiver employs a similar digital low IF architecture and share many circuits with the FM receiver. The AM receiver supports a wide band from 500KHz to 1710KHz also known as the popular AM bands. The AM channel spacing can be set to 1KHz, 9KHz or 10KHz to address different applications. The bandwidth of the channel filter can be set to 2KHz, 4KHz or 6KHz to suit various requirements.

The AM receiver in KT0913 can provide accurate and automatic AM tuning without manual alignment. It supports 350uH ferrite loop antenna with +/- 25% tolerance.

3.4. Operation Bands

KT0913 supports wide FM band and AM bands. The FM receiver covers frequencies from 32MHz to 110MHz. The 32MHz to 64MHz is defined as Campus Band in KT0913 and can be enabled by setting CAMPUSBAND_EN register to 1. The AM band is from 500KHz to 1710KHz.

3.5. Standby

KT0913 supports both Software Standby mode and Hardware Standby mode. To enter Software Standby, the STANDBT register shall be set to 1 through I2C interface. To enter Hardware Standby, the ENABLE pin is pulled down to ground. In the standby modes, the internal state (channel, volume) is preserved and can be recovered when the chip wakes up from the standby.

3.6. Crystal and reference clock

KT0913 integrates a low frequency crystal oscillator that supports 32.768KHz and 38KHz crystals. Alternatively a CMOS level external reference clock may be used by setting the RCLK_EN register to 1 and setting REFCLK<3:0> according to the frequency of the reference clock.

3.7. Digital Signal Processing

3.7.1. FM Stereo Decoder

The digitized IF signal is fed to the FM demodulator which demodulates the signal and outputs a digital multiplexed (MPX) signal consisting of L+R audio, L-R audio, 19KHz pilot tone and RDS signal. The left channel signal and the right channel signal can be extracted from the MPX signal by simply adding and subtracting the L+R signal and L-R signal. The spectrum diagram is shown in Figure 2.

Figure 2: Spectrum diagram of the MPX signal

3.7.2. Mute / Softmute

KT0913 can be hard muted by setting DMUTE to 0 and the output of the audio signal is set to the common mode voltage.

There is also a Soft Mute feature that is enabled by setting FMDSMUTE to 0 in FM mode and AMDSMUTE to 0 in AM mode. In this mode, the audio volume is gradually attenuated when the signal reception is bad (i.e. when the RSSI is below a certain level as defined by FM_SMTH<2:0> and AM_SMTH<2:0>, respectively.) The attenuation attack rate and depth can be configured through SMUTER<1:0> and SMUTEA<1:0>,

respectively. The target volume can be configured through VOLUMET<4:0>. SNR value can also be used as the judgment threshold in FM mode by setting SMMD to 1.

3.7.3. Stereo / Mono Blending

In order to provide a comfortable listening experience, KT0913 blends the stereo signal with mono signal gradually when in weak reception in FM mode. The signal level range over which the blending occurs is set by BLNDADJ<1:0>. The blending is disabled when DBLND is set to 1.

MONO playback mode can be forced by setting the MONO to 1.

If the MONO bit and the INV_LEFT_AUDIO bit are both set to 1, then a fully differential signal will be output at the LOUT and ROUT.

3.7.4. Bass

KT0913 provides bass boost feature for audio enhancement. The gain of the bass boost can be programmed through BASS<1:0>. With BASS<1:0>=00, this feature is disabled.

3.7.5. Stereo DAC, Audio Filter and Driver

Two high-quality single-bit $\Delta\Sigma$ audio digital-to-analog converters (DAC) are integrated along with high-fidelity analog audio filters and class AB drivers. Headphones with impedance as low as 16ohms can be directly driven without adding external audio drivers. An integrated anti-pop circuit suppresses the click-and-pop sound during power up and power down. For different load capacitor, user can set different anti-pop configuration through POP<1:0>.

3.7.6. AM Bandwidth

KT0913 provide programmable AM channel bandwidth through AM BW<1:0>.

3.7.7. TUNE

The fully integrated LO synthesizer supports wide band operation. Channel tuning is started when the register AMTUNE/FMTUNE is set to 1.

In FM mode, the channel frequency is set by FMCHAN<11:0> and is defined as $Freq(MHz) = 50KHz \times FMCHAN<11:0>$ In AM mode, the channel frequency is set by AMCHAN<10:0> and is defined as $Freq(KHz) = 1KHz \times AMCHAN<10:0>$

3.7.8. SEEK

KT0913 offers an effective software based seek algorithm. Refer to application notes for more information.

3.8. User-Machine Interface

Channel and volume can be adjusted not only by setting corresponding FMCHAN, AMCHAN and VOLUME registers, but also by using built-in user-machine interface. Two types of user-machine interface, Key Mode and Dial Mode, are provided by KT0913. In these modes, the channel and volume are controlled by KT0913 itself.

3.8.1. Programmable band

KT0913 supports programmable arbitrary frequency range of the operation band by setting register USERBAND to 1. Information of the current band, such as AM/FM mode, upper and lower edge of the band, channel step and the number of guard channel used in Dial Mode, should be written to KT0913 once the band is chosen, which is sensed by MCU.

channel are The of channels and start defined number in register USER CHAN NUM<11:0> and USER START CHAN<14:0>. In FM mode, where register AM FM is set to 0, the lower and upper bound of the current band can be express as:

$$f_{bot} = USER_START_CHAN < 14:0 > \times 50KHz$$

 $f_{top} = f_{bot} + USER_CHAN_NUM < 11:0 > \times f_{step}$

 $f_{top} = f_{bot} + USER_CHAN_NUM < 11:0 > \times f_{step}$ Where f_{step} is the channel step, which can be configured by register FMSPACE<1:0>.

In AM mode, where register AM FM is set to 1, the corresponding lower and upper bound of the band are:

$$\begin{split} f_{bot} &= USER_START_CHAN < 14:0 > \times 1KHz \\ f_{top} &= f_{bot} + USER_CHAN_NUM < 11:0 > \times f_{step} \end{split}$$

Where f_{step} is the channel step, which can be configured by register AMSPACE<1:0>.

3.8.2. Key Mode

KT0913 allows user to control the channel and volume by using keys/buttons to send digital control signals to CH and VOL pins. Please refer to Section 4 for a typical application circuit. The key mode is enabled by setting GPIO1<1:0> and GPIO2<1:0> to 01.

Each time VOLP/VOLM key is pressed, the volume increases/decreases by 2dB. If the VOLP/VOLM key is pressed and held, the volume will continue to increase/decrease at 2dB steps until the key is released.

When configured in Key Mode, KT0913's channel selection has two working modes.

Mode A:

If KEY_MODE<1:0> is set to 00, Mode A is selected. In this mode, each time the CHP (CHM) is pressed, the channel frequency increases (decreases) by one step. The step sizes are defined by FMSPACE<1:0> and AMSPACE<1:0>. If the CHP (CHM) key is pressed for and held for a certain time (defined by TIME1<1:0>), the channel frequency will continue to increase (decrease) automatically at a certain pace (as defined by TIME2<2:0>) until the key is released.

Mode B:

If KEY_MODE<1:0> is set to 01, Mode B is selected. In this mode, each time the CHP (CHM) is pressed, the channel increases (decreases) by one step. The step sizes are defined by FMSPACE<1:0> and AMSPACE<1:0>. If the CHP (CHM) key is pressed and held for a specific time (TIME1<1:0>), the channel will continue to increase (decrease) automatically at a certain pace (TIME2<2:0>) even if the key is released. The movement is stopped when the key is pressed again.

3.8.3. Dial Mode

KT0913 supports a unique Dial Mode whose application circuit is shown in **Figure 3**. The dial is implemented by a variable resistor with the center tap connected to the chip. KT0913 measures the divider ratio of two parts of the variable resistor and maps the result to the real control parameters, such as channel frequency, volume, etc.

The channel controller enters dial mode by setting register GPIO1<1:0> to 10. The illustration circuit is shown in **Figure 3**错误! 未找到引用源。. If the center-tap of the variable resistor is located in the write area, the tuned channel could be expressed as:

$$f_{tune} = \frac{X}{X + Y} (f_{top} - f_{bot} + 2 \times N_{guard} \times f_{step}) - N_{guard} \times f_{step} + f_{bot}$$

Where f_{step} is the channel step, f_{top} and f_{bot} are the upper and lower bound of the band, as described in section 3.8.1. N_{guard} is the number of guard channel in channel step to prevent mechanical limit of the wheels, which is configured by register USER_GUARD<8:0>. When the center tap goes in the shaded guard area, the tuned channel stays at the upper or lower bound of band.

Figure 3: CH pin connection in dial-mode

The volume controller enters dial-mode by setting register GPIO2<1:0> to 10. 错误!未找到引用源。The illustration circuit is shown in Figure 4. The actual volume set by the dial could be expressed as:

Figure 4: VOL pin connection in dial-mode

Where N_{guard} is the guard number of volume control, in 2dB step, which can be set in register VOL_GUARD<6:0>.

3.9. I2C Control Interface

The serial interface (I2C mode) is used to read and write the device registers, the external controller can directly read and write a register without going though any other registers first. There is also an internal address counter that automatically moves the pointer forward after a read/write operation so that the external controller can continuously read/write desired number of chip registers starting from any of address. The MSB of a register data is transferred first.

I2C bus mode uses SCL and SDA to transfer data. The device always drives data to SDA at the falling edge of SCL and captures data from SDA at the rising edge of SCL. The device acknowledges the external controller by driving SDA low at the falling edge of SCL. Data transfer always begins with START condition and ends with STOP condition. The external controller can read/write one 16-bits data at the specified address or read/write desired number of registers data continuously from the specified address till when STOP condition is occurred.

For write operations, external controller shall send command & data in the following sequence: START condition -> 7 bit chip address and Write command ("0") -> 8 bit register address n -> write data n [15:8] -> write data n [7:0] -> write data n+1 [15:8] -> write data n+1 [7:0] -> -> STOP condition.

For read operations, external controller shall send command & data in the following sequence: START condition -> 7 bit chip address and Write command ("0") -> 8 bit register address n -> 7 bit chip address and Read command ("1"), then device will send read data n [15:8] -> read data n [7:0] -> read data n+1 [15:8] -> read data n+1 [7:0] -> till STOP condition.

Table 6: I2C Interface Protocol RANDOM REGISTER WRITE PROCEDURE

RANDOM REGISTER READ PROCEDURE

NO Acknowledge STOP condition

Note: The data bits in gray color are sent by KT0913

Figure 5: I2C interface timing diagram

3.10.Register Bank

Reg 01h	Name														i		
01h		cid	DI4	DI3	D12	DII	D10	D9	108	D7 L	De	DS	D4	D3	DZ	IJ	DO
100	CHIP ID								KT Mark								
07D	SEEK													FMSPACE<1:0>	CE<1:0>	DMUTER	DMUTEL
03h	TUNE	FMTUNE								FIA	FMCHAN<11:0>	<0:1					
04h	VOLUME	FMDSMUTE	AMDSMUTE	E DMUTE		DE		BASS<1:0>	:1:0>			POP<1:0>	_				
05h	DSPCFGA	ONOW						BLNDADJ<1:0>	V<1:0>			DBLND					
0Ah	LOCFGA								FMAFCD								
9СР	LOCFGC													CAMPUSB			
0Eb	RXCFG				STDBY								1	AIND_EIN _	J VOLUME<4:0>	^	
12h	STATUSA	XTAL OK	STC			PLL LOCK	LO LOCK	ST<1:0>	Ą		FM	FMRSSI<4:0>					
13h	STATUSB									RI	RDCHAN<11:0>	<0:1					
14h	STATUSC	PWRSTATE		CHPRDY			FI	FMSNR<6:0>									
16h	SYSCFG	AM/FM	USERBAND		RCLK_EN		REFCLK<3:0>	3:0>		AU_GAIN<1:0>	Δ						AMAFCD
17h	AMCHAN	AMTUNE									AMC,	AMCHAN<10:0>					
18h	AMCALI									CAP_INDEX<13:0>	<0						
1Dh	GPIO													GPIO2<1:0⊳	<0:I>;	<0:1>10IdΩ	<1:0>
22h	AMDSP									AM_BW<1:0>	^			INV_LEFT_ ATIDIO			
24h	AMSTATUSA					AN	AMRSSI<4:0>										
25h	AMSTATUSB											AN	1_AFCDE	AM_AFCDELTAF<7:0>			
2Eh	SOFTMUTE	SMUTE	SMUTERA <1:0>	SMUT	SMUTER<1:0>	AM	AM_SMTH<2:0>		•	NOLUN	VOLUMET<4:0>			SMMD	H	FM_SMTH<2:0>	Δ
2Fh U	USERSTARTCH								USER_STA	USER_START_CHAN<14:0>							
30h US	USERSTARINUM											USER_START_NUM<8:0>	RT_NUM	<0:8>			
31h US	USERCHANNUM									USER	USER_CHAN_NUM<11:0>	M<11:0>					
33h	AMCFG	AMSPA	AMSPACE<1:0>							K	KEY_MODE<1:0>	<1:0>					
34h	AMCFG2											TIME1<1:0>	<(TIME2<2:0>		
3Ah	VOLGUARD				VO	VOL_GUARD<6:0>											
3Ch	AFC											FM	_AFC_DE	FM_AFC_DELTAF<7:0>			

3.10.1. CHIP ID (Address 0x01)

Bit	Symbol	Access	Default	Functional Description
15:0	KT Mark	R	0x4B54	ASCII form of string "KT"

3.10.2. SEEK (Address 0x02)

Bit	Symbol	Access	Default	Functional Description
15:4	Reserved	RW	0000_0000_0000	Reserved
3:2	FMSPACE<1:0>	RW	01	FM Channel Spacing
				00 = 200 KHz
				01 = 100 KHz
				10 = 50 KHz
1	DMUTER	RW	1	Right Channel Mute Control
				0 = Right mute enable
				1 = Right mute disable
0	DMUTEL	RW	1	Left Channel Mute Control
				0 = Left channel mute enable
				1 = Left channel mute disable

3.10.3. TUNE (Address 0x03)

Bit	Symbol	Access	Default	Functional Description
15	FMTUNE	RW	0	FM Tune Enable
		>		0 = Normal operation
				1 = Start to tune to desired FM
				channel
14:12	Reserved	RW	000	Reserved
11:0	FMCHAN<11:0>	RW	0110_1011_1000	FM Channel Setting
	×		(0x06B8)	FMCHAN<11:0>=Frequency
				(KHz) / 50KHz. For example, if
				desired channel is 86MHz, then
				the FMCHAN<11:0> should be
				0x06B8.

3.10.4. **VOLUME (Address 0x04)**

Bit	Symbol	Access	Default	Functional Description
15	FMDSMUTE	RW	1	FM Softmute Disable
				0 = FM softmute enable
				1 = FM softmute disable

14	AMDSMUTE	RW	1	AM Softmute Disable
				0 = AM softmute enable
				1 = AM softmute disable
13	DMUTE	RW	0	Mute Disable
		T		0 = Mute enable
			7	1 = Mute disable
12	Reserved	RW	0	Reserved
11	DE	RW	0	De-emphasis time constant selection
				0 = 75us
				1 = 50us
10	Reserved	RW	0	Reserved
9:8	BASS<1:0>	RW	00	Bass Boost Effect Mode Selection
				00 = Disable
				01 = Low
				10 = Med
				11 = High
7:6	Reserved	RW	10	Reserved
5:4	POP<1:0>	RW	00	Audio DAC Anti-pop
			A	Configuration
				00: 100uF AC-coupling capacitor
			4 >	01: 60uF AC-coupling capacitor
				10: 20uF AC-coupling capacitor
				11: 10uF AC-coupling capacitor
3:0	Reserved	RW	0000	Reserved

3.10.5. DSPCFGA (Address 0x05)

Bit	Symbol	Access	Default	Functional Description
15	MONO	RW	0	Mono Select
				0 = Stereo
	Y A A X			1 = Force mono
				To be noted that if both MONO bit
				and INV_AUDIO_LEFT are set to 1,
-				fully differential audio signal can be
				obtained from LOUT and ROUT pin.
14:10	Reserved	RW	001_00	Reserved
9:8	BLNDADJ<1:0>	RW	00	Stereo/Mono Blend Level Adjustment
				00 = High
				01 = Highest
				10 = Lowest
				11 = Low
				Note: Write 00 explicitly even if 00 is the default
				value.
7:6	Reserved	RW	0	Reserved

5	DBLND	RW	0	Blend Disable
				0 = Blend enable
				1 = Blend disable
4:0	Reserved	RW	0_0000	Reserved

3.10.6. LOCFGA (Address 0x0A)

Bit	Symbol	Access	Default	Functional Description
15:9	Reserved	RW	0000_000	Reserved
8	FMAFCD	RW	1	AFC Disable Control Bit
				0 = AFC enable
				1 = AFC disable
7:0	Reserved	RW	0000_0000	Reserved

3.10.7. LOCFGC (Address 0x0C)

Bit	Symbol	Access	Default	Functional Description
15:4	Reserved	RW	0000_0000_0010	Reserved
3	CAMPUSBAND_EN	RW	0	Campus FM Band Enable
				0 = User can only use 64 MHz
				~ 110MHz
				1 = User can extend the FM
		A		band down to 32MHz
2:0	Reserved	RW	100	Reserved

3.10.8. RXCFG (Address 0x0F)

Bit	Symbol	Access	Default	Functional Description
15:13	Reserved	RW	100	Reserved
12	STDBY	RW	0	Standby Mode Enable
				0 = Disable
				1 = Enable
11:5	Reserved	RW	1000_000	Reserved
4:0	VOLUME<4:0>	RW	1_1111	Volume Control
		_		11111 = 0dB
				11110 = -2dB
		LT.		11101 = -4dB
				00010 = -58dB
				00001 = -60dB
				00000 = Mute

3.10.9. STATUSA (Address 0x12)

Bit	Symbol	Access	Default	Functional Description
15	XTAL_OK	R	NA	Crystal ready indictor
				0 = not ready
				1= crystal is ok
14	STC	RW	0	Seek/Tune Complete
				0 = Not Complete
				1 = Complete
				Every time the Seek/tune process begins,
				the STC bit will clear to zero by
				hardware.
13:10	Reserved	R	NA	Reserved
11	PLL_LOCK	R	NA	System PLL Ready Indicator
				0 = Not ready
				1 = System PLL ready
10	LO_LOCK	R	NA	LO Synthesizer Ready Indicator
				0 = Not ready
				1 = Ready
9:8	ST<1:0>	R	NA	Stereo Indicator
			A	11 = Stereo state
				Other = Mono state
7:3	FMRSSI<4:0>	R	NA	FM RSSI Value Indicator
		A P		RSSI starts from -100dBm and step is 3dB,
				namely
				RSSI(dBm) = -100 + FMRSSI < 4:0 > *3dB
2:0	Reserved	R	NA	Reserved

3.10.10. STATUSB (Address 0x13)

Bit	Symbol	Access	Default	Functional Description
15:12	Reserved	R	NA	Reserved
11:0	RDCHAN<11:0>	R	NA	Current Channel Indicator

3.10.11. STATUSC (Address 0x14)

Bit	Symbol	Access	Default	Functional Description
15	PWSTATUS	R	NA	Power Status Indicator
				0 = Power not ready
				1 = Power ready
14	Reserved	R	NA	Reserved
13	CHIPRDY	R	NA	Chip Ready Indicator
				0 = Chip is not ready

				1 = Chip is ready, calibration done.
12:6	FMSNR<6:0>	R	NA	Channel SNR value is FM mode.
				0000000 = Minimum SNR
				1111111 = Maximum SNR
5:0	Reserved	R	NA	Reserved

3.10.12. AMSYSCFG (Address 0x16)

Bit	Symbol	Access	Default	Functional Description	
15	AM FM	RW	0	AM/FM Mode Control	
	_			$0 = FM \mod e$	
				1 = AM mode	
14	USERBAND	RW	0	User Definition Band Enable	
				0 = Use internal defined band	
				1 = Use user-defined band which is	
				specified in USERSTARTCH,	
				USERSTARTNUM and USERCHANNUM	
13	Reserved	RW	0	Reserved	
12	RCLK_EN	RW	0	Reference Clock Enable	
			1	0 = Crystal	
				1 = Reference clock	
11:8	REFCLK<3:0>	RW	0000	Reference Clock Selection	
				0000 = 32.768KHz	
		A		0001 = 6.5 MHz	
			A 7	0010 = 7.6 MHz	
		,		0011 = 12MHz	
			and the second	0100 = 13MHz	
		A		0101 = 15.2 MHz	
				0110 = 19.2 MHz	
				0111 = 24MHz	
				1000 = 26 MHz	
		4		1001 = 38KHz	
7:6	AU_GAIN<1:0>	RW	00	Audio Gain Selection	
1				01 : 6dB	
				00:3dB	
				11:0dB	
				10 : -3dB	
5:1	Reserved	RW	0_0001	Reserved	
0	AMAFCD	RW	0	AFC Disable Control in AM Mode	
				0 = Enable	
				1 = Disable	

3.10.13. AMCHAN (Address 0x17)

Bit	Symbol	Access	Default	Functional Description
15	AMTUNE	RW	0	AM Tune Enable
14:11	Reserved	RW	000_0	Reserved
10:0	AMCHAN<10:0>	RW	001_1111_1000	AM Channel Setting
			$(0x01F8)^{-}$	AMCHAN<10:0>=
				Frequency(in KHz)

3.10.14. AMCALI (Address 0x18)

Bit	Symbol	Access	Default	Functional Description
15:14	Reserved	RW	00	Reserved
13:0	CAP_INDEX<13:0>	R	NA	On Chip Capacitor for
	_			AM Antenna Calibration
				0x0000:Minimum capacitor
				0x3FFF:Maximum capacitor

3.10.15. GPIOCFG (Address 0x1D)

Bit	Symbol	Access	Default	Functional Description
15:4	Reserved	RW	0000_0000_0000	Reserved
3:2	GPIO2<1:0>	RW	00	VOL Pin Mode Selection
				00 = High Z
		4		01 = Key controlled volume
		A	7	increase/decrease
				10 = Dial controlled volume
				increase/decrease
				11 = Reserved
1:0	GPIO1<1:0>	RW	00	CH Pin Mode Selection
	MA AN			00 = High Z
				01 = Key controlled channel
				increase / decrease
4				10 = Dial controlled channel
				increase / decrease
				11 = Reserved

3.10.16. AMDSP (Address 0x22)

Bit	Symbol	Access	Default	Functional Description
15:8	Reserved	RW	1010_1111	Reserved
7:6	AM_BW<1:0>	RW	00	AM Channel Bandwidth Selection

				00 = 2KHz
				01 = 2KHz
				10 = 4KHz
				11 = 6KHz
5:4	Reserved	RW	00	Reserved
3	INV_LEFT_AUDIO	RW	0	Left Channel Inverse Control
				0 : Normal operation
				1 : Inversing the left channel audio
				signal.
				A fully differential audio signal
				can be got from LOUT and ROUT
				if both of the INV_LEFT_AUDIO
				bit and MONO bit are set to 1.
2:0	Reserved	RW	100	Reserved

3.10.17. AMSTATUSA (Address 0x24)

Bit	Symbol	Access	Default	Functional Description
15:13	Reserved	RW	000	Reserved
12:8	AMRSSI<4:0>	R	NA	AM Channel RSSI
				AM RSSI starts from -90dBm
				and step is 3dB, namely
			7	AMRSSI(dBm) = -90 +
				AMRSSI<4:0> *3dB
7:0	Reserved	R	NA	Reserved

3.10.18. AMSTATUSB (Address 0x25)

Bit	Symbol	Access	Default	Functional Description
15:8	Reserved	R	NA	Reserved
7:0	AM_AFCDELTAF<7:0>	R	NA	Signed binary, max 16KHz,
1				min -16KHz, step is 128Hz.

3.10.19. SOFTMUTE (Address 0x2Eh)

Bit	Symbol	Access	Default	Functional Description
15:14	SMUTEA<1:0>	RW	00	Softmute Attenuation
				00 = Strong
				01 = Strongest
				10 = Weak
				11 = Weakest
13:12	SMUTER<1:0>	RW	00	Softmute Attack/Recover Rate

				00 = Slowest
				01 = Fastest (RSSI mode only)
				10 = Fast
				11 = Slow
11:9	AM_SMTH<2:0>	RW	000	AM Softmute Start Level.
	_			000 = Lowest
				001 =
				111 = Highest
8:4	VOLUMET<4:0>	RW	0_0001	Sofmute Target Volume
				0000 : Minimum volume
				1111 : Maximum volume
3	SMMD	RW	0	Softmute Mode Selection
				$0 = RSSI \mod e$
				$1 = SNR \mod (only effective in$
				FM mode)
2:0	FM SMTH<2:0>	RW	000	FM Softmute Start Threshold
	_			000 = Lowest
			1	001 =
				111 = Highest

3.10.20. USERSTARTCH (Address 0x2F)

Bit	Symbol	Access	Default	Functional Description
15	Reserved	RW	0	Reserved
14:0	USER_START _CHAN<14:0>	RW	000_1000_1111_1100 (0x08FC(2.3MHz))	User band start channel, only effect when USERBAND=1. See section 3.8.1.

3.10.21. USERGUARD (Address 0x30)

Bit	Symbol	Access	Default	Functional Description
15:9	Reserved	RW	0000_000	Reserved
8:0	USER_GUARD<8:0>	RW	0_0111_1000	User band guard number, only
				effective when USERBAND=1.
				See section 3.8.3.

3.10.22. USERCHANNUM (Address 0x31)

Bit	Symbol	Access	Default	Functional Description
15:12	Reserved	RW	0000	Reserved
11:0	USER_CHAN	RW	0001_1111_0100	User band channel number, only
	_NUM<11:0>		(0x01F4(500))	effective when USERBAND=1.
				See section 3.8.1.

3.10.23. AMCFG (Address 0x33)

Bit	Symbol	Access	Default	Functional Description
15:14	AMSPACE<1:0>	RW	00	AM Channel Space Selection
				00 : 1KHz
				01 : 9KHz
				10 : 10KHz
				11 : 10KHz
13:7	Reserved	RW	01_0100_0	Reserved
6:5	KEY_MODE<1:0>	RW	00	Working mode selection when
				key mode is selected.
				00 = Working mode A
				01 = Working mode B
				Others = Reserved
				For detailed information about
				working mode A and working mode
				B, please refer to section 3.8.2.
4:0	Reserved	RW	0_0001	Reserved

3.10.24. AMCFG2 (Address 0x34h)

Bit	Symbol	Access	Default	Functional Description
15:6	Reserved	RW	0100_0000_01	Reserved
5:4	TIME1<1:0>	RW	01	TIME1
				00 = Shortest
		4		
		A	7	11 = Longest
3:1	TIME2<2:0>	RW	000	TIME2
				000 = Fastest
				111 = Slowest
0	Reserved	RW	0	Reserved

3.10.25. VOLGUARD (Address 0x3Ah)

Bit	Symbol	Access	Default	Functional Description	
15	Reserved	R	NA	Reserved	
14:8	VOL_GUARD<6:0>	RW	0x0D	Volume Guard Number	
	_			See section 3.8.3.	
7:0	Reserved	R	NA	Reserved	

3.10.26. AFC (Address 0x3Ch)

Bit	Symbol	Access	Default	Functional Description
15:8	Reserved	R	NA	Reserved
7:0	FM_AFC_DELTAF <7:0>	R	NA	Frequency difference
				between CHAN and received
				signal, calculated by AFC
				block in two's complement
				format. Range is -127 to
				+127. Unit is KHz. This
				register is valid when STC=1

4. Typical Application Circuit

Figure 6: Typical application circuits

Components	Description	Value/Suppliers
C1,C2	Crystal load capacitor	C1=C2=24pF
C3,C4	Supply decoupling	C3=10uF
	capacitor	C4=0.1uF
L1	AM ferrite antenna	350uH
X1	Crystal	32.768KHz
S1	Switch	
VR1,VR2	Variable resistor	10kohm
K1~K4	Key-press	

5. Package Outline

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
A	1. 350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1. 350	1.550	0.053	0.061
b	0.200	0.300	0.008	0.012
c	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.200
Е	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
e	0.635(BSC)		0.025(BSC)	
L	0.400	1. 270	0.016	0.050
θ	0 °	8°	0°	8°