CpE-262: Fundamental of digital logic

Semester: Spring

HomeWork No. 6

Student Name: Hesah Alghanim Student Id: 2211120928

Student Name: Hala Saleh Student Id: 2211112873

Instructor Name: Dr.Sami Habib

TA Name: Eng.Layla Kamel

Date: 24/4/2024

Consider the timing diagram in the Figure. Assuming that the D and Clock inputs shown are applied to the circuit in Figure 5.10 from the textbook, draw waveforms for the Q_a , Q_b , and Q_c signals.

a. Design T-flip-flop and JK-flip-flop using D-flipflop.

- JK-flip-flop using D-flipflop

$$Qn+1 = JQ' + K'Q$$

,
$$D = Qn+1$$

J	K	Qn	Qn+1	D	
0	0	0	0	0	Mα
0	0	1	1	1	M۱
0	1	0	0	0	1/
0	1	1	0	0	M3
1	0	0	1	1	1 4
1	0	1	1	1	115
1	1	0	1	1	Mb
1	1	1	0	0	mt

EXCITATION TABEL FOR D-flipflop

Qn	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1

K-MAP

$$D = J Qn' + K' Qn$$

- T-flip-flop using D-flipflop

$$Qn+1 = T XOR Qn$$

,
$$D = Qn+1$$

CHARACTERISTIC TABLE

T	Qn	Qn+1	D
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

EXCITATION TABEL FOR D-flipflop

Qn	Qn+1	D
0	0	0
1	1	1
0	1	1
1	0	0

K-MAP K-MAP

Compare between D-flip-flop, T-flip-flop, and JK-flip-flop with positive-edge trigger.

- a. Gate level for each gate.
- b. Characteristic table.
- c. Graphical Symbol.
- d. Complete the following timing diagram showing the output of each gate based on the given input and the clock
- a. Gate level for each gate.

b. Characteristic table.

D-flip-flop

D	Qn	Qn+1
0	0	0
0	1	0
1	0	1
1	1	1

T-flip-flop

T	Qn	Qn+1
0	0	0
0	1	1
1	0	1
1	1	0

JK-flip-flop

31X-111p-110p			
J	K	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

c. Graphical Symbol.

d. Complete the following timing diagram showing the output of each gate based on the given input and the clock

Design an equality comparator circuit for 4-bit binary numbers A and B, which represent unsigned binary numbers. The comparator produces an output E. E is set to 1 if A equals B, otherwise 0.

Create a Verilog code that represents 8-to-1 multiplexer using an if-else statement.

```
module muX (in,out,s);
input [7:0] in;
input [2:0] s;
output out;
reg out;
Wire [2:0] s;
wire [7:0]in;
always @(s or in)
begin
If (s==0)
out = in[0];
else If (s==1)
out = in[1];
else If (s==2)
out = in[2];
else If (s==3)
out = in[3];
else If (s==4)
out = in[4];
else If (s==5)
out = in[5];
else If (s==6)
out = in[6];
else (s==7)
out = in[7];
end
endmodule
```