Linguistic Intermezzo

Philipp Koehn

15 October 2024

A Naive View of Language

- Language needs to name
 - nouns: objects in the world (dog)
 - verbs: actions (jump)
 - adjectives and adverbs: properties of objects and actions (*brown, quickly*)

A Naive View of Language

- Language needs to name
 - nouns: objects in the world (dog)
 - verbs: actions (jump)
 - adjectives and adverbs: properties of objects and actions (brown, quickly)
- Relationship between these have to specified
 - word order
 - morphology
 - function words

morphology

Marking of Relationships: Agreement

- From Catullus, First Book, first verse (Latin):
- Gender (and case) agreement links adjectives to nouns

Cui dono lepidum novum libellum arida modo pumice expolitum? Whom I-present lovely new little-book dry manner pumice polished?

(To whom do I present this lovely new little book now polished with a dry pumice?)

Marking of Relationships to Verb: Case

Marking of Relationships to Verb: Case

• German:

Die Frau gibt dem Mann den Apfel
The woman gives the man the apple
subject indirect object object

Case inflection indicates role of noun phrases

Writingwordstogether

• Definition of word boundaries purely an artifact of writing system

Writingwordstogether

- Definition of word boundaries purely an artifact of writing system
- Differences between languages
 - Agglutinative compounding
 Informatikseminar vs. computer science seminar
 - Function word vs. affix

Writingwordstogether

- Definition of word boundaries purely an artifact of writing system
- Differences between languages
 - Agglutinative compounding
 Informatikseminar vs. computer science seminar
 - Function word vs. affix
- Border cases
 - Joe's one token or two?
 - Morphology of affixes often depends on phonetics / spelling conventions $dog+s \rightarrow dogs$ vs. $pony \rightarrow ponies$
 - ... but note the English function word *a*: *a donkey* vs. *an aardvark*

Changing Part-of-Speech

• Derivational morphology allows changing part of speech of words

Changing Part-of-Speech

- Derivational morphology allows changing part of speech of words
- Example:
 - base: *nation*, noun
 - \rightarrow *national*, adjective
 - \rightarrow *nationally*, adverb
 - \rightarrow *nationalist,* noun
 - \rightarrow *nationalism*, noun
 - \rightarrow *nationalize*, verb

Changing Part-of-Speech

- Derivational morphology allows changing part of speech of words
- Example:
 - base: *nation*, noun
 - → *national*, adjective
 - \rightarrow *nationally*, adverb
 - \rightarrow *nationalist*, noun
 - \rightarrow *nationalism*, noun
 - \rightarrow *nationalize*, verb
- Sometimes distinctions between POS quite fluid (enabled by morphology)
 - I want to integrate morphology
 - *I* want the integration of morphology

Meaning Altering Affixes

• English

undo redo hypergraph

Meaning Altering Affixes

• English

undo redo hypergraph

• German: zer- implies action causes destruction

Er **zer***redet das Thema* → *He talks the topic* **to death**

Meaning Altering Affixes

English

undo redo hypergraph

• German: zer- implies action causes destruction

Er **zer***redet das Thema* → *He talks the topic* **to death**

• Spanish: -ito means object is small

burro → burrito

Adding Subtle Meaning

- Morphology allows adding subtle meaning
 - verb tenses: time action is occurring, if still ongoing, etc.
 - count (singular, plural): how many instances of an object are involved
 - definiteness (*the cat* vs. *a cat*): relation to previously mentioned objects
 - grammatical gender: helps with co-reference and other disambiguation

• Sometimes redundant: same information repeated many times

Unknown Words

• Ratio of unknown words in WMT 2013 test set:

Source language	Ratio unknown
Russian	2.0%
Czech	1.5%
German	1.2%
French	0.5%
English (to French)	0.5%

- Caveats:
 - corpus sizes differ
 - not clear which unknown words have known morphological variants

Differently Encoded Information

• Languages with different sentence structure

- Convert from inflected language into configuration language (and vice versa)
- Ambiguities can be resolved through syntactic analysis
 - the meaning *the* of *das* not possible (not a noun phrase)
 - the meaning *she* of *sie* not possible (subject-verb agreement)

Non-Local Information

• Pronominal anaphora

I saw the movie and it is good.

- How to translate *it* into German (or French)?
 - *it* refers to *movie*
 - movie translates to Film
 - *Film* has masculine gender
 - ergo: *it* must be translated into masculine pronoun *er*
- We are not handling pronouns very well

Complex Semantic Inference

• Example

Whenever I visit my uncle and his daughters, I can't decide who is my favorite cousin.

- How to translate *cousin* into German? Male or female?
- Google Translate is getting this wrong (checked October 2024)

word embeddings

Word Embeddings

- In neural translation models words are mapped into, say, 500-dimensional continuous space
- Contextualized in encoder layers

Latent Semantic Analysis

- Word embeddings not a new idea
- Representing words based on their context has long tradition in natural language processing

Latent Semantic Analysis

- Word embeddings not a new idea
- Representing words based on their context has long tradition in natural language processing
- Co-occurrence statistics

word	context				
	cute	fluffy	dangerous	of	
dog	231	76	15	5767	
cat	191	21	3	2463	
lion	5	1	79	796	

• But: large counts of function words misleading

Pointwise Mutual Information

• Pointwise mutual information

$$PMI(x; y) = \log \frac{p(x, y)}{p(x)p(y)}$$

• Intuition: measures how much more frequent than chance

word	context			
	cute	fluffy	dangerous	of
dog	9.4	6.3	0.2	1.1
cat	8.3	3.1	0.1	1.0
lion	0.1	0.0	12.1	1.0

• Similar words have similar vectors

Singular Value Decomposition

- Raw co-occurence statistics matrix very sparse
- ⇒ Reduce into lower dimensional matrix

Singular Value Decomposition

- Raw co-occurence statistics matrix very sparse
- ⇒ Reduce into lower dimensional matrix
 - Factorize the PMI matrix *P* into
 - two orthogonal matrices U and V (i.e. UU^T and VV^T are an identity matrix)
 - diagonal matrix Σ (i.e., it only has non-zero values on the diagonal)

$$P = U\Sigma V^T$$

Singular Value Decomposition

- Not going into details how to compute this
- Geometric interpretation: rotation U, a stretching Σ , and another rotation V^T
- ullet Matrices U and V^T play similar role as embedding matrices

Continuous Bag of Words (CBOW)

Predict word from context

$$h_t = \frac{1}{2n} \sum_{j \in \{-n, \dots, -1, 1, \dots, n\}} Cw_{t+j}$$

$$y_t = \operatorname{softmax}(Uh_t)$$

• Similar to n-gram language model

Skip Gram

• Predict context from word

$$y_t = \operatorname{softmax}(UCw_t)$$

ullet C input word embedding matrix, U output word embedding matrix

GloVe

• Global Vectors: use co-occurrence statistics

word	context				
	cute	fluffy	dangerous	of	
dog	231	76	15	5767	
cat	191	21	3	2463	
lion	5	1	79	796	

• Predict the values in this matrix X, using target word embeddings v_i and context word embeddings \tilde{v}_j

$$cost = \sum_{i} \sum_{j} \tilde{v}_{j}^{T} |v_{i} - \log X_{ij}|$$

• Training: loop over all words, and their context words

• Bias terms b and \tilde{b}

$$cost = \sum_{i} \sum_{j} |b_i + \tilde{b}_j + \tilde{v}_j^T v_i - \log X_{ij}|$$

• Bias terms b and \tilde{b}

$$cost = \sum_{i} \sum_{j} |b_i + \tilde{b}_j + \tilde{v}_j^T v_i - \log X_{ij}|$$

ullet Most word pairs (i, j) meaningless, especially for rare words

• Bias terms b and \tilde{b}

$$cost = \sum_{i} \sum_{j} |b_i + \tilde{b}_j + \tilde{v}_j^T v_i - \log X_{ij}|$$

- ullet Most word pairs (i, j) meaningless, especially for rare words
- Discount them with a scaling function

$$f(x) = \min(1, (x/x_{\text{max}})^{\alpha})$$

hyper parameter values, e.g., $\alpha = \frac{3}{4}$ and $x_{\text{max}} = 200$

• Bias terms b and \tilde{b}

$$cost = \sum_{i} \sum_{j} |b_i + \tilde{b}_j + \tilde{v}_j^T v_i - \log X_{ij}|$$

- Most word pairs (i, j) meaningless, especially for rare words
- Discount them with a scaling function

$$f(x) = \min(1, (x/x_{\text{max}})^{\alpha})$$

hyper parameter values, e.g., $\alpha = \frac{3}{4}$ and $x_{\rm max} = 200$

• Complete refined cost function

$$cost = \sum_{i} \sum_{j} f(X_{ij})(b_i + \tilde{b}_j + \tilde{v}_j^T v_i - \log X_{ij})^2$$

ELMo

- Word embeddings widely used in natural language processing
- But: better refine them in the sentence context
- ⇒ Embeddings from language models (ELMo)
 (we have always done this in the encoder of our neural translation models)

- Several layers, use weighted sum of representations at different layers
 - syntactic information is better represented in early layers
 - semantic information is better represented in deeper layers.

BERT

- Contextualized word embeddings with Transformer model
- Masked training

• Next sentence prediction

Each unhappy family is unhappy in its own way.

All happy families are alike.

multi-lingual word embeddings

Multi-Lingual Word Embeddings

- Word embeddings often viewed as semantic representations of words
- Tempting to view embedding spaces as language-independent cat (English), gato (Spanish) and Katze (German) are mapped to same vector
- Common semantic space for words in all languages?

Language-Specific Word Embeddings

ullet Train English word embeddings C_E and Spanish word embeddings C_S

Mapping Word Embedding Spaces

• Learn mapping matrix $W_{S\to E}$ to minimize Euclidean distance between each word and its translation

$$cost = \sum_{i} ||W_{S \to E} c_i^S - c_i^E||$$

- Needed: Seed lexicon of word translations (may be based on cognates)
- Hubness problem: some words being the nearest neighbor of many words

Using only Monolingual Data

- Learn transformation matrix $W_{S\to E}$ without seed lexicon?
- Intuition: relationship between *dog*, *cat*, and *lion*, independent of language
- How can we rotate the triangle to match up?

Using only Monolingual Data

ullet One idea: learn transformation matrix $W_{\operatorname{German} \to \operatorname{English}}$ so that words match up

Adversarial Training

- Another idea: adversarial training
 - points in the German and English space do not match up
 - → adversary can classify them as either German and English

Adversarial Training

- Another idea: adversarial training
 - points in the German and English space do not match up
 - \rightarrow adversary can classify them as either German and English
- Training objective of adversary to learn classifier *P*

$$cost_D(P|W) = -\frac{1}{n} \sum_{i=1}^n log P(German|Wg_i) - \frac{1}{m} \sum_{j=1}^m log P(English|e_j)$$

• Training objective of unsupervised learner

$$cost_L(W|P) = -\frac{1}{n} \sum_{i=1}^n log P(English|Wg_i) - \frac{1}{m} \sum_{j=1}^m log P(German|ej)$$

large vocabularies

Large Vocabularies

- Zipf's law tells us that words in a language are very unevenly distributed.
 - large tail of rare words
 (e.g., new words retweeting, website, woke, lit)
 - large inventory of names, e.g., eBay, Yahoo, Microsoft

Large Vocabularies

- Zipf's law tells us that words in a language are very unevenly distributed.
 - large tail of rare words
 (e.g., new words retweeting, website, woke, lit)
 - large inventory of names, e.g., eBay, Yahoo, Microsoft
- Neural methods not well equipped to deal with such large vocabularies
 (ideal representations are continuous space vectors → word embeddings)

Large Vocabularies

- Zipf's law tells us that words in a language are very unevenly distributed.
 - large tail of rare words
 (e.g., new words retweeting, website, woke, lit)
 - large inventory of names, e.g., eBay, Yahoo, Microsoft
- Neural methods not well equipped to deal with such large vocabularies
 (ideal representations are continuous space vectors → word embeddings)
- Large vocabulary
 - large embedding matrices for input and output words
 - prediction and softmax over large number of words
- Computationally expensive, both in terms of memory and speed

Special Treatment for Rare Words

- Limit vocabulary to 20,000 to 80,000 words
- First idea
 - map other words to unknown word token (UNK)
 - model learns to map input UNK to output UNK
 - replace with translation from backup dictionary
- Not used anymore, except for numbers and units
 - numbers: English 540,000, Chinese 54 TENTHOUSAND, Indian 5.4 lakh
 - units: map 25cm to 10 inches

Morphology

tweet, tweets, tweeted, tweeting, retweet, ...

→ morphological analysis?

Morphology

tweet, tweets, tweeted, tweeting, retweet, ...

- → morphological analysis?
- Compounding

homework, website, ...

 \rightarrow compound splitting?

Morphology

tweet, tweets, tweeted, tweeting, retweet, ...

- → morphological analysis?
- Compounding

homework, website, ...

- \rightarrow compound splitting?
- Names

Netanyahu, Jones, Macron, Hoboken, ...

 \rightarrow transliteration?

Morphology

tweet, tweets, tweeted, tweeting, retweet, ...

- → morphological analysis?
- Compounding

homework, website, ...

- → compound splitting?
- Names

Netanyahu, Jones, Macron, Hoboken, ...

- \rightarrow transliteration?
- ⇒ Breaking up words into **subwords** may be a good idea

Byte Pair Encoding

• Start by breaking up words into characters

```
the _ fat _ cat _ is _ in _ the _ thin _ bag
```

Merge frequent pairs

```
t h\rightarrowth th e _ f a t _ c a t _ i s _ i n _ th e _ th i n _ b a g a t\rightarrowat th e _ f at _ c at _ i s _ i n _ th e _ th i n _ b a g i n\rightarrowin th e _ f at _ c at _ i s _ in _ th e _ th in _ b a g th e\rightarrowthe the _ f at _ c at _ i s _ in _ the _ th in _ b a g
```

- Each merge operation increases the vocabulary size
 - starting with the size of the character set (maybe 100 for Latin script)
 - stopping after, say, 50,000 operations

Byte Pair Encoding

Obama receives Net@@ any@@ ahu

the relationship between Obama and Net@@ any@@ ahu is not exactly friendly . the two wanted to talk about the implementation of the international agreement and about Teheran 's destabil@@ ising activities in the Middle East . the meeting was also planned to cover the conflict with the Palestinians and the disputed two state solution . relations between Obama and Net@@ any@@ ahu have been stra@@ ined for years . Washington critic@@ ises the continuous building of settlements in Israel and acc@@ uses Net@@ any@@ ahu of a lack of initiative in the peace process. the relationship between the two has further deteriorated because of the deal that Obama negotiated on Iran 's atomic programme . in March , at the invitation of the Republic@@ ans , Net@@ any@@ ahu made a controversial speech to the US Congress , which was partly seen as an aff@@ ront to Obama . the speech had not been agreed with Obama , who had rejected a meeting with reference to the election that was at that time im@@ pending in Israel .

Subwords

- Byte pair encoding induces subwords
- But: only accidentally along linguistic concepts of morphology
 - morphological: critic@@ ises, im@@ pending
 - not morphological: aff@@ ront, Net@@ any@@ ahu
- Still: Similar to unsupervised morphology (frequent suffixes, etc.)

Sentence Piece

_Obama _receives _Net any ahu

_the _relationship _between _Obama _and _Net any ahu _is _not _exactly _friendly _. _the _two _wanted _to _talk _about _the _implementation _of _the _international _agreement _and _about _Teheran _'s _destabil ising _activities _in _the _Middle _East _. _the _meeting _was _also _planned _to _cover _the _conflict _with _the _Palestinians _and _the _disputed _two _state _solution _. _relations _between _Obama _and Net _any _ahu _have _been _stra ined _for _years _. _Washington _critic ises _the _continuous _building _of _settlements _in _Israel _and _acc uses _Net any ahu _of _a _lack _of _initiative _in _the _peace _process _. _the _relationship _between _the _two _has _further _deteriorated _because _of _the _deal _that _Obama _negotiated _on _Iran _'s _atomic _programme _. _in _March _, _at _the _invitation _of _the _Republic ans _, _Net any ahu _made _a _controversial _speech _to _the _US _Congress _, _which _was _partly _seen _as _an _aff ront _to _Obama _. _the _speech _had _not _been _agreed _with _Obama _, _who _had _rejected _a _meeting _with _reference _to _the _election _that _was _at _that _time _im pending _in _Israel .

character-based models

Character-Based Models

- Explicit word models that yield word embeddings
- Standard methods for frequent words
 - distribution of beautiful in the data
 - → embedding for beautiful
- Character-based models
 - create sequence embedding for character string b e a u t i f u l
 - training objective: match word embedding for beautiful
- Induce embeddings for unseen morphological variants
 - character string b e a u t i f u l l y
 - → embedding for beautifully
- Hope that this learns morphological principles

Character Sequence Models

- Same model as for words
- Tokens = single characters, incl. special space symbol
- But: generally poor performance
- With some refinements, use in output shown competitive

Character Based Word Models

- Word embeddings as before
- Compute word embeddings based on character sequence
- Typically, interpolated with traditional word embeddings

Recurrent Neural Networks

Convolutional Neural Networks

- Convolutions of different size: 2 characters, 3 characters, ..., 7 characters
- May be based on letter n-grams (trigrams shown)

syntax

Tree-Based Models

• Traditional statistical models operate on sequences of words

Tree-Based Models

- Traditional statistical models operate on sequences of words
- Many translation problems can be best explained by pointing to syntax
 - reordering, e.g., verb movement in German–English translation
 - long distance agreement (e.g., subject-verb) in output

Tree-Based Models

- Traditional statistical models operate on sequences of words
- Many translation problems can be best explained by pointing to syntax
 - reordering, e.g., verb movement in German–English translation
 - long distance agreement (e.g., subject-verb) in output
- ⇒ Translation models based on tree representation of language
 - successful for statistical machine translation
 - open research challenge for neural models

Dependency Structure

- Center of a sentence is the verb
- Its dependents are its arguments (e.g., subject noun)
- These may have further dependents (adjective of noun)

Phrase Structure Grammar

- Phrase structure
 - noun phrases: *the big man, a house,* ...
 - prepositional phrases: at 5 o'clock, in Baltimore, ...
 - verb phrases: going out of business, eat chicken, ...
 - adjective phrases, ...

Phrase Structure Grammar

• Phrase structure

- noun phrases: *the big man, a house,* ...
- prepositional phrases: at 5 o'clock, in Baltimore, ...
- verb phrases: going out of business, eat chicken, ...
- adjective phrases, ...
- Context-free Grammars (CFG)
 - non-terminal symbols: phrase structure labels, part-of-speech tags
 - terminal symbols: words
 - production rules: NT → [NT,T]+ example: NP → DET NN

Phrase Structure Grammar

Phrase structure grammar tree for an English sentence (as produced Collins' parser)

semantics

Meaning

- The grand goal of artificial intelligence
 - machines that do not mindlessly process data
 - ... but that ultimately **understand** its meaning
- But what is meaning?

Meaningful Machines

A Scale of Understanding?

wisdom

knowledge

data

Eliza

Joseph Weizenbaum wrote the computer program Eliza in 1969 to demonstrate how easily people can be fooled into thinking that machines have some deep understanding.

young woman: Men are all alike.

eliza: In what way?

young woman: They're always bugging us about something specific or other.

eliza: Can you think of a specific example?

young woman: Well, my boyfriend made me come here.

eliza: Your boyfriend made you come here?

young woman: He says I'm depressed much of the time.

eliza: I am sorry to hear you are depressed.

young woman: It's true. I'm unhappy.

eliza: Do you think coming here will help you not to be unhappy?

Online demo: http://www-ai.ijs.si/eliza-cgi-bin/eliza_script

semantic translation problems

Semantic Translation Problems

• Syntactic analysis may be ambiguous

- Both readings (SVO and OSV) are syntactically possible
- But: OSV reading is semantically much more plausible

⇒ Need for semantic model to produce semantically plausible output

lexical semantics

Word Senses

- Some words have multiple meanings
- This is called polysemy
- Example: bank
 - financial institution: *I put my money in the bank.*
 - river shore: He rested at the bank of the river.
- How could a computer tell these senses apart?

Homonym

- Sometimes two completely different words are spelled the same
- This is called a homonym
- Example: can
 - modal verb: You can do it!
 - container: *She bought a can of soda.*
- Distinction between polysemy and homonymy not always clear

How Many Senses?

- How many senses does the word *interest* have?
 - She pays 3% interest on the loan.
 - He showed a lot of **interest** in the painting.
 - Microsoft purchased a controlling **interest** in Google.
 - It is in the national **interest** to invade the Bahamas.
 - I only have your best **interest** in mind.
 - Playing chess is one of my **interests**.
 - Business interests lobbied for the legislation.
- Are these seven different senses? Four? Three?

Wordnet

- Wordnet, a hierarchical database of senses, defines synsets
- According to Wordnet, *interest* is in 7 synsets
 - Sense 1: a sense of concern with and curiosity about someone or something,
 Synonym: involvement
 - Sense 2: the power of attracting or holding one's interest (because it is unusual or exciting etc.), Synonym: interestingness
 - Sense 3: a reason for wanting something done, Synonym: sake
 - Sense 4: a fixed charge for borrowing money; usually a percentage of the amount borrowed
 - Sense 5: a diversion that occupies one's time and thoughts (usually pleasantly), Synonyms: pastime, pursuit
 - Sense 6: a right or legal share of something; a financial involvement with something, Synonym: stake
 - Sense 7: (usually plural) a social group whose members control some field of activity and who have common aims, Synonym: interest group

Sense and Translation

Most relevant for machine translation:
 different translations → different sense

Sense and Translation

- Most relevant for machine translation:
 different translations → different sense
- Example *interest* translated into German
 - Zins: financial charge paid for load (Wordnet sense 4)
 - Anteil: stake in a company (Wordnet sense 6)
 - *Interesse*: all other senses

Languages Differ

- Foreign language may make finer distinctions
- Translations of *river* into French
 - *fleuve*: river that flows into the sea
 - rivière: smaller river

Languages Differ

- Foreign language may make finer distinctions
- Translations of *river* into French
 - *fleuve*: river that flows into the sea
 - rivière: smaller river
- English may make finer distinctions than a foreign language
- Translations of German Sicherheit into English
 - security
 - safety
 - confidence

Overlapping Senses

- Color names may differ between languages
- Many languages have one word for blue and green
- Japanese: *ao* change early 20th century: *midori* (*green*) and *ao* (*blue*)
- But still:
 - vegetables are *greens* in English,
 ao-mono (blue things) in Japanese
 - "go" traffic light is **ao** (blue)

Color names in English and Berinomo (Papua New Guinea)

One Last Word on Senses

• Lot of research in word sense disambiguation is focused on polysemous words with clearly distinct meanings, e.g. *bank*, *plant*, *bat*, ...

One Last Word on Senses

- Lot of research in word sense disambiguation is focused on polysemous words with clearly distinct meanings, e.g. *bank*, *plant*, *bat*, ...
- Often meanings are close and hard to tell apart, e.g. *area, field, domain, part, member,* ...
 - She is a part of the team.
 - She is a member of the team.
 - The wheel is a part of the car.
 - * The wheel is a member of the car.

subcategorization frames

Verb Subcategorization

• Example

```
Das Vorhaben verwarf die Kommission the plan rejected the commission
```

• Propbank

```
Arg0-PAG: rejecter (vnrole: 77-agent)
```

Arg1-PPT: thing rejected (vnrole: 77-theme)

Arg3-PRD: attribute

• Is *plan* a typical Arg0 of *reject*?

Dependency Parsing

• Dependencies between words

- Can be obtained by
 - dedicated dependency parser
 - CFG grammar with head word rules

Dependency Parsing

Dependencies between words

- Can be obtained by
 - dedicated dependency parser
 - CFG grammar with head word rules
- Are dependency relations enough?
 - reject subj → plan ⇒ bad
 - reject subj → commission \Rightarrow good

logical form

First Order Logic

• Classical example

Every farmer has a donkey

• Ambiguous, two readings

First Order Logic

• Classical example

Every farmer has a donkey

- Ambiguous, two readings
- Each farmer as its own donkey

 \forall x: farmer(x) \exists y: donkey(y) \land owns(x,y)

First Order Logic

Classical example

Every farmer has a donkey

- Ambiguous, two readings
- Each farmer as its own donkey

 $\forall x: farmer(x) \exists y: donkey(y) \land owns(x,y)$

• There is only one donkey

 $\exists y: donkey(y) \land \forall x: farmer(x) \land owns(x,y)$

• Does this matter for translation? (typically not)

• Input sentence

Whenever I visit my uncle and his daughters, I can't decide who is my favorite cousin.

• Input sentence

Whenever I visit my uncle and his daughters, I can't decide who is my favorite cousin.

• Facts from input sentence

```
∃ d: female(d)
∃ u: father(u,d)
∃ i: uncle(u,i)
∃ c: cousin(i,c)
```


• Input sentence

Whenever I visit my uncle and his daughters, I can't decide who is my favorite cousin.

• Facts from input sentence

```
∃ d: female(d)
∃ u: father(u,d)
∃ i: uncle(u,i)
∃ c: cousin(i,c)
```

World knowledge

```
\forall i,u,c: uncle(u,i) \land father(u,c) \rightarrow cousin(i,c)
```


• Input sentence

Whenever I visit my uncle and his daughters, I can't decide who is my favorite cousin.

• Facts from input sentence

```
∃ d: female(d)
∃ u: father(u,d)
∃ i: uncle(u,i)
∃ c: cousin(i,c)
```

World knowledge

```
\forall i,u,c: uncle(u,i) \land father(u,c) \rightarrow cousin(i,c)
```

- Hypothesis that c = d is consistent with given facts and world knowledge
- Inference

$$female(d) \rightarrow female(c)$$

Scope

• Example (Knight and Langkilde, 2000)

green eggs and ham

- Only eggs are green

(green eggs) and ham

- Both are green

green (eggs and ham)

Scope

• Example (Knight and Langkilde, 2000)

green eggs and ham

Only eggs are green

(green eggs) and ham

Both are green

green (eggs and ham)

- Spanish translations
 - Only eggs are green

- Also ambiguous

huevos verdes y jamón

jamón y huevos verdes

Machine translation should preserve ambiguity

discourse

Ambiguous Discourse Markers

• Example

Since you brought it up, I do not agree with you.

Since you brought it up, we have been working on it.

• How to translated *since*? Temporal or conditional?

Implicit Discourse Relationships

• English syntactic structure may imply causation

Wanting to go to the other side, the chicken crossed the road.

• This discourse relationship may have to made explicit in another language

Discourse Parsing

- Discourse relationships,
 - e.g., Circumstance, Antithesis, Concession, Solutionhood, Elaboration, Background, Enablement, Motivation, Condition, Interpretation, Evaluation, Purpose, Evidence, Cause, Restatement, Summary, ...
- Hierarchical structure

• There is a discourse treebank, but inter-annotator agreement is low

abstract meaning representations

Example

He looked at me very gravely, and put his arms around my neck.

```
(a / and
      :op1 (1 / look-01)
            :ARG0 (h / he)
            :ARG1 (i / i)
             :manner (g / grave
                   :degree (v / very)))
      :op2 (p / put-01)
            :ARGO h
            :ARG1 (a2 / arm
                   :part-of h)
             :ARG2 (a3 / around
                   :op1 (n / neck
                         :part-of i))))
```

Abstracts from Syntax

• Abstract meaning representation

```
(1 / look-01
    :ARG0 (h / he)
    :ARG1 (i / i)
    :manner (g / grave
        :degree (v / very)))
```

- Possible English sentences
 - He looks at me gravely.
 - I am looked at by him very gravely.
 - He gave me a very grave look.

Feature Engineering vs Machine Learning

- Engineering approach
 - identify weak points of current system
 - develop changes that address them

Feature Engineering vs Machine Learning

- Engineering approach
 - identify weak points of current system
 - develop changes that address them
- Machine learning
 - deeper models
 - more robust estimation techniques
 - fight over-fitting or under-fitting
 - other adjustments

Feature Engineering vs Machine Learning

- Engineering approach
 - identify weak points of current system
 - develop changes that address them
- Machine learning
 - deeper models
 - more robust estimation techniques
 - fight over-fitting or under-fitting
 - other adjustments
- Difficult to analyze neural models → engineering hard to do