Building Future Generations: The Macroeconomic Consequences of Family Policies

Anson Zhou University of Wisconsin-Madison September 24, 2021

Family Policies

• Policies that provide support for childbearing and child-rearing (e.g. baby bonus, Child Tax Credit, subsidized childcare...)

Family Policies

- Policies that provide support for childbearing and child-rearing (e.g. baby bonus, Child Tax Credit, subsidized childcare...)
- Growing popularity and importance in developed countries:
 - Macro-Level: raise aggregate fertility rate to combat population aging

Family Policies

- Policies that provide support for childbearing and child-rearing (e.g. baby bonus, Child Tax Credit, subsidized childcare...)
- Growing popularity and importance in developed countries:
 - Macro-Level: raise aggregate fertility rate to combat population aging
 - Micro-Level: support families to improve children's outcomes and social mobility

Family Policies

- Policies that provide support for childbearing and child-rearing (e.g. baby bonus, Child Tax Credit, subsidized childcare...)
- Growing popularity and importance in developed countries:
 - Macro-Level: raise aggregate fertility rate to combat population aging
 - Micro-Level: support families to improve children's outcomes and social mobility
 - **Magnitude**: > 2% of GDP in OECD countries

Family Policies

- Policies that provide support for childbearing and child-rearing (e.g. baby bonus, Child Tax Credit, subsidized childcare...)
- Growing popularity and importance in developed countries:
 - Macro-Level: raise aggregate fertility rate to combat population aging
 - Micro-Level: support families to improve children's outcomes and social mobility
 - **Magnitude**: > 2% of GDP in OECD countries

This Paper: What are the macroeconomic consequences of family policies?

- 1 Effects on fertility, human capital, social mobility, and welfare
- 2 Short-run versus long-run effects, and transition
- 3 Compare in-cash versus in-kind family policies

Family Policies

- Policies that provide support for childbearing and child-rearing (e.g. baby bonus, Child Tax Credit, subsidized childcare...)
- Growing popularity and importance in developed countries:
 - Macro-Level: raise aggregate fertility rate to combat population aging
 - Micro-Level: support families to improve children's outcomes and social mobility
 - **Magnitude**: > 2% of GDP in OECD countries

This Paper: What are the macroeconomic consequences of family policies?

- 1 Effects on fertility, human capital, social mobility, and welfare
- 2 Short-run versus long-run effects, and transition
- 3 Compare in-cash versus in-kind family policies

Fundamental in understanding how family policies work & designing better policies

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Joint determination of the number of children (quantity) and investment per child (quality)
- 2 Rich life cycle with childhood, working age, and retirement
- 3 Home care and market childcare

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Joint determination of the number of children (quantity) and investment per child (quality)
- 2 Rich life cycle with childhood, working age, and retirement
- 3 Home care and market childcare

Model encompasses three key mechanisms of family policies:

Child quantity-quality trade-off

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Joint determination of the number of children (quantity) and investment per child (quality)
- 2 Rich life cycle with childhood, working age, and retirement
- 3 Home care and market childcare

Model encompasses three key mechanisms of family policies:

- Child quantity-quality trade-off
- **2** Composition effects: changing fertility profile across heterogeneous parents

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Joint determination of the number of children (quantity) and investment per child (quality)
- 2 Rich life cycle with childhood, working age, and retirement
- 3 Home care and market childcare

Model encompasses three key mechanisms of family policies:

- 1 Child quantity-quality trade-off
- **2** Composition effects: changing fertility profile across heterogeneous parents
- 3 Demographic structure effects: changing age distribution over time

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Joint determination of the number of children (quantity) and investment per child (quality)
- 2 Rich life cycle with childhood, working age, and retirement
- 3 Home care and market childcare

Model encompasses three key mechanisms of family policies:

- 1 Child quantity-quality trade-off
- **2** Composition effects: changing fertility profile across heterogeneous parents
- 3 Demographic structure effects: changing age distribution over time

Parameters affect elasticities of quantity and quality responses to policies:

- Disciplined by matching cross-sectional U.S. data and RCT evidence
- Validated using the Alaska Permanent Fund Dividend and other existing policies

1 Raising aggregate fertility from 1.9 to 2.1 children per women requires a \$30,000 cash reward to childbirth, \approx changes in the CTC from 2010 to 2021 (in NPV)

- **1** Raising aggregate fertility from 1.9 to 2.1 children per women requires a \$30,000 cash reward to childbirth, \approx changes in the CTC from 2010 to 2021 (in NPV)

- **1** Raising aggregate fertility from 1.9 to 2.1 children per women requires a \$30,000 cash reward to childbirth, \approx changes in the CTC from 2010 to 2021 (in NPV)
- This policy lowers both average child human capital and intergenerational income mobility by 2%

- **1** Raising aggregate fertility from 1.9 to 2.1 children per women requires a \$30,000 cash reward to childbirth, \approx changes in the CTC from 2010 to 2021 (in NPV)
- This policy lowers both average child human capital and intergenerational income mobility by 2%
- 4 Subsidized childcare and public education are less cost-effective in raising fertility than cash benefits, but offer other advantages

Contribution

Fertility, Family Policies, and the Aggregate Economy

- **Empirical:** Milligan (2005), Laroque and Salanié (2008), Drago et al. (2011), Luci-Greulich and Thévenon (2013), González (2013), Raute (2019)...
- Structural: de la Croix and Doepke (2003), Kim, Tertilt and Yum (2021)
- Contribution: Develop a structural model tailored to analyzing family policies

Income transfers, Children's Outcomes, and Social Mobility

- Benabou (2002), Heckman and Mosso (2014), Bastian and Michelmore (2018),
 Daruich (2019), Abbott, Gallipoli, Meghir and Violante (2019), Mullins (2019), Guner,
 Kaygusuz and Ventura (2020)...
- Contribution: Endogenize fertility choice and demographic structure

Outline

- Model
 - Setup and the maximization problem of parents
 - Mechanisms of family policies
- 2 Calibration (2010 USA)
 - Key parameters that affect quantity/quality elasticities
- Validation the Alaska Permanent Fund Dividend (APFD)
- 4 Counterfactual Steady-State & Transition
- **5** Compare In-Cash vs In-Kind Policy Instruments
- 6 Conclusion

Model

Birth Independent Child leaves the family
$$V_2(h, a) = \max_{c, a', n, e, t_h, m \ge 0} u(c/\Lambda(n)) + \underbrace{\beta \mathbb{E} V_3(h', a', n, \mathbb{E} h_k)}_{\text{includes utility of having children}$$

$$h$$
: parents' skills a : assets n : fertility (continuous) t_h : total home care m : market care e : private educ. input χ : care time per child p_m : market care price $\Lambda(n)$: equivalence scale S : childcare subsidy B : baby bonus \mathcal{E} : public education

Birth Independent Child leaves the family
$$V_2(h,a) = \max_{c,a',n,e,t_h,m\geq 0} u(c/\Lambda(n)) + \underbrace{\beta \mathbb{E} V_3(h',a',n,\mathbb{E} h_k)}_{\text{includes utility of having children}} \left((t_h^{1/\iota})^{\nu} + (n \cdot (m+\mathcal{S}))^{\upsilon} \right)^{1/\upsilon} = n \cdot \chi$$
 [childcare]

$$h$$
: parents' skills a : assets n : fertility (continuous) t_h : total home care m : market care e : private educ. input χ : care time per child p_m : market care price $\Lambda(n)$: equivalence scale \mathcal{S} : childcare subsidy \mathcal{B} : baby bonus \mathcal{E} : public education

7/25

Birth Independent Child leaves the family
$$V_2(h,a) = \max_{c,a',n,e,t_h,m\geq 0} u(c/\Lambda(n)) + \underbrace{\beta \mathbb{E} V_3(h',a',n,\mathbb{E} h_k)}_{\text{includes utility of having children}} \left((t_h^{1/\iota})^{\nu} + (n \cdot (m+\mathcal{S}))^{\nu} \right)^{1/\nu} = n \cdot \chi$$
 [childcare] $y = wh \cdot (1-t_h)$ [labor income]

$$h$$
: parents' skills a : assets n : fertility (continuous) t_h : total home care m : market care e : private educ. input χ : care time per child p_m : market care price $\Lambda(n)$: equivalence scale S : childcare subsidy B : baby bonus \mathcal{E} : public education

Birth Independent Child leaves the family
$$V_2(h,a) = \max_{c,a',n,e,t_h,m\geq 0} u(c/\Lambda(n)) + \underbrace{\beta \mathbb{E} V_3(h',a',n,\mathbb{E} h_k)}_{\text{includes utility of having children}} \left((t_h^{1/\iota})^{\nu} + (n \cdot (m+\mathcal{S}))^{\nu} \right)^{1/\nu} = n \cdot \chi$$
 [childcare] $y = wh \cdot (1-t_h)$ [labor income] $(1+\tau_c)(c+(p_m\cdot m+e)\cdot n)+a'=(1+r)a+y-\mathcal{T}(y,a,n)+\mathcal{B}\cdot n$ [BC]

$$h$$
: parents' skills a : assets n : fertility (continuous) t_h : total home care m : market care e : private educ. input χ : care time per child p_m : market care price $\Lambda(n)$: equivalence scale \mathcal{S} : childcare subsidy \mathcal{B} : baby bonus \mathcal{E} : public education

Birth Independent Child leaves the family
$$V_2(h,a) = \max_{c,a',n,e,t_h,m\geq 0} u(c/\Lambda(n)) + \underbrace{\beta \mathbb{E} V_3(h',a',n,\mathbb{E} h_k)}_{\text{includes utility of having children}$$

$$\left((t_h^{1/\iota})^{\nu} + (n \cdot (m+\mathcal{S}))^{\nu}\right)^{1/\upsilon} = n \cdot \chi \qquad \text{[childcare]}$$

$$y = wh \cdot (1-t_h) \qquad \text{[labor income]}$$

$$(1+\tau_c)(c+(p_m \cdot m+e) \cdot n) + a' = (1+r)a + y - \mathcal{T}(y,a,n) + \mathcal{B} \cdot n \qquad \text{[BC]}$$

$$h' = L_2(h,1-t_h,z') \qquad h_k = G(h,\mathcal{E},e,\epsilon) \qquad \text{[technology]}$$

$$h: \text{parents' skills} \qquad a: \text{assets} \qquad n: \text{fertility (continuous)}$$

$$t_h: \text{total home care} \qquad m: \text{market care} \qquad e: \text{private educ. input}$$

$$\chi: \text{care time per child} \qquad p_m: \text{market care price} \qquad \Lambda(n): \text{equivalence scale}$$

$$\mathcal{S}: \text{childcare subsidy} \qquad \mathcal{B}: \text{baby bonus} \qquad \mathcal{E}: \text{public education}$$

Birth Independent Child leaves the family
$$V_2(h,a) = \max_{c,a',n,e,t_h,m\geq 0} u(c/\Lambda(n)) + \underbrace{\beta \mathbb{E} V_3(h',a',n,\mathbb{E} h_k)}_{\text{includes utility of having children}$$

$$\left((t_h^{1/\iota})^{\nu} + (n \cdot (m+\mathcal{S}))^{\upsilon} \right)^{1/\upsilon} = n \cdot \chi \qquad \text{[childcare]}$$

$$y = wh \cdot (1-t_h) \qquad \text{[labor income]}$$

$$(1+\tau_c)(c+(p_m \cdot m+e) \cdot n) + a' = (1+r)a + y - \mathcal{T}(y,a,n) + \mathcal{B} \cdot n \qquad \text{[BC]}$$

$$h' = L_2(h,1-t_h,z') \qquad h_k = G(h,\mathcal{E},e,\epsilon) \qquad \text{[technology]}$$

Two simplifying modeling assumptions:

- **1** $G(h, \mathcal{E}, e, \epsilon)$ captures the overall skill formation of children from age 0 to 20
- 2 Time cost χ is non-educational and parents investments are summarized by e. High-quality public childcare can be implemented by raising \mathcal{S} and \mathcal{E} jointly in the model

Parent-to-Child Transfer

Parent-to-Child Transfer

$$V_{3}(h, a, n, \mathbb{E}h_{k}) = \max_{c, a', a_{k} \geq 0} \quad u(c/\Lambda(n)) + \beta \mathbb{E}V_{4}(h', a') + \underbrace{v(n, \mathbb{E}h_{k}, a_{k})}_{\text{utility from quantity and quality}}$$

$$y = wh$$

$$(1 + \tau_{c})c + a' + n \cdot a_{k} = (1 + r)a + y - \mathcal{T}(y, a, n)$$

$$h' = L_{3}(h, 1, z)$$
[BC]

Child quantity (n) interacts with child quality $(\mathbb{E}h_k, a_k)$ in two ways:

- **1** [BC]: higher n raises marginal costs of $(\mathbb{E}h_k, a_k)$ a lá Becker and Lewis (1973)
- 2 Preferences: complements or substitutes calibrated to match data

Family Policy Mechanisms with Endogenous Fertility

Quantity-quality Trade-off

• Consider increase in \mathcal{B} on private educational input e (and hence h_k):

$$\underbrace{\mathcal{M}U_c \cdot n}_{\text{marginal costs of } e} = \underbrace{\frac{\partial v(n, \mathbb{E}h_k, a_k)}{\partial \mathbb{E}h_k} \cdot \frac{\partial \mathbb{E}h_k}{\partial e}}_{\text{marginal benefits of } e}$$
FOC [e]

- When *n* is fixed, $\mathcal{B} \uparrow$ (income effect), $MU_c \downarrow \Longrightarrow e \uparrow$
- When n is endogenous, $\mathcal{B} \uparrow$ ("price" change), $n \uparrow \Longrightarrow e$ could fall (quantitative prediction depends on elasticities)

Family Policy Mechanisms with Endogenous Fertility

Quantity-quality Trade-off

• Consider increase in \mathcal{B} on private educational input e (and hence h_k):

$$\underbrace{\mathcal{M}U_{c} \cdot n}_{\text{marginal costs of } e} = \underbrace{\frac{\partial v(n, \mathbb{E}h_{k}, a_{k})}{\partial \mathbb{E}h_{k}} \cdot \frac{\partial \mathbb{E}h_{k}}{\partial e}}_{\text{marginal benefits of } e} + \underbrace{\int \mathcal{B}Eh_{k}}_{\text{marginal benefits of } e}$$

- When n is fixed, $\mathcal{B} \uparrow$ (income effect), $MU_c \downarrow \Longrightarrow e \uparrow$
- When n is endogenous, $\mathcal{B} \uparrow$ ("price" change), $n \uparrow \Longrightarrow e$ could fall (quantitative prediction depends on elasticities)

Family Policy Mechanisms with Endogenous Fertility

Quantity-quality Trade-off

• Consider increase in \mathcal{B} on private educational input e (and hence h_k):

$$\underbrace{\mathcal{M}U_c \cdot n}_{\text{marginal costs of } e} = \underbrace{\frac{\partial v(n, \mathbb{E}h_k, a_k)}{\partial \mathbb{E}h_k} \cdot \frac{\partial \mathbb{E}h_k}{\partial e}}_{\text{marginal benefits of } e}$$
 FOC [e]

- When *n* is fixed, $\mathcal{B} \uparrow$ (income effect), $MU_c \downarrow \Longrightarrow e \uparrow$
- When n is endogenous, $\mathcal{B} \uparrow$ ("price" change), $n \uparrow \Longrightarrow e$ could fall (quantitative prediction depends on elasticities)

Family Policy Mechanisms with Endogenous Fertility

Quantity-quality Trade-off

• Consider increase in $\mathcal B$ on private educational input e (and hence h_k)

$$\underbrace{MU_{c} \cdot n}_{\text{marginal costs of } e} = \underbrace{\frac{\partial v(n, \mathbb{E}h_{k}, a_{k})}{\partial \mathbb{E}h_{k}} \cdot \frac{\partial \mathbb{E}h_{k}}{\partial e}}_{\text{marginal proefits of } e} + \underbrace{\frac{\partial v(n, \mathbb{E}h_{k}, a_{k})}{\partial e}}_{\text{marginal proefits of } e}$$

- When *n* is fixed, $\mathcal{B} \uparrow$ (income effect), $MU_c \downarrow \Longrightarrow e \uparrow$
- When n is endogenous, $\mathcal{B} \uparrow$ ("price" change), $n \uparrow \Longrightarrow e$ could fall (quantitative prediction depends on elasticities)

Composition Effects

Average child human capital:

$$\frac{\overline{h}_k}{\text{average } h_k} = \iint \underbrace{\frac{n^*(h, a)}{N}}_{\text{fertility weight}} \cdot \underbrace{h_k^*(h, a, \cdot)}_{\text{individual child's } h_k} d \underbrace{\mu_2}_{\text{parents' dist.}} de$$

• Family policies change the fertility weights, i.e. composition of parents

Family Policy Mechanisms with Endogenous Fertility

Quantity-quality Trade-off

ullet Consider increase in ${\cal B}$ on private educational input e (and hence h_k)

$$\underbrace{\mathcal{M}U_c \cdot n}_{\text{marginal costs of } e} = \underbrace{\frac{\partial v(n, \mathbb{E}h_k, a_k)}{\partial \mathbb{E}h_k} \cdot \frac{\partial \mathbb{E}h_k}{\partial e}}_{\text{marginal benefits of } e} + \underbrace{FOC}[e]$$

- When *n* is fixed, $\mathcal{B} \uparrow$ (income effect), $MU_c \downarrow \Longrightarrow e \uparrow$
- When n is endogenous, $\mathcal{B} \uparrow$ ("price" change), $n \uparrow \Longrightarrow e$ could fall (quantitative prediction depends on elasticities)

Composition Effects

Average child human capital:

$$\underbrace{\overline{h}_k}_{\text{average } h_k} = \iint \underbrace{\frac{n^*(h, a)}{N}}_{\text{fertility weight}} \cdot \underbrace{h_k^*(h, a, \cdot)}_{\text{individual child's } h_k} d \underbrace{\mu_2}_{\text{parents' dist.}} ds$$

• Family policies change the fertility weights, i.e. composition of parents

ullet Representative firm with Cobb-Douglas production function: $Y=AK^{lpha}H^{1-lpha}$

- Representative firm with Cobb-Douglas production function: $Y = AK^{\alpha}H^{1-\alpha}$
- Denote age structure as $\{\omega_j\}_{j=0}^8$ (with $\sum_{j=0}^8 \omega_j = 1$) and the distribution of households across state space as $\{\mu_j\}_{j=0}^8$

- Representative firm with Cobb-Douglas production function: $Y = AK^{\alpha}H^{1-\alpha}$
- Denote age structure as $\{\omega_j\}_{j=0}^8$ (with $\sum_{j=0}^8 \omega_j = 1$) and the distribution of households across state space as $\{\mu_j\}_{j=0}^8$
- Government fiscal budget:

$$\underbrace{\left(\sum_{j=2}^{6} \omega_{j} \int \mathcal{T}(y_{j}^{*}, a_{j}^{*}, n_{j}^{*}) \, d\mu_{j}\right)}_{\text{labor and capital income taxes}} + \tau_{c} \left(\underbrace{\sum_{j=2}^{8} \omega_{j} \int c_{j}^{*} \, d\mu_{j} + \omega_{2} \int n^{*}(p_{m}m^{*} + e^{*}) \, d\mu_{2}}_{\text{labor and capital income taxes}}\right) = \underbrace{\left(\omega_{0} + \omega_{1}\right) \mathcal{E}}_{\text{mass of children}} + \omega_{2} \underbrace{\left(\underbrace{\int n^{*} \mathcal{B} \, d\mu_{2} + \int (1 + \tau_{c}) n^{*} p_{m} \mathcal{S} \, d\mu_{2}}_{\text{subsidized childcare}}\right) + \underbrace{\pi \left(\sum_{j=7}^{8} \omega_{j} \int wh \, d\mu_{j}\right)}_{\text{pension payments}} + \underbrace{\sum_{j=2}^{8} \omega_{j} \underbrace{\mathcal{X}}_{\text{exo.}}}_{\text{mass of adults}}$$

- Representative firm with Cobb-Douglas production function: $Y = AK^{\alpha}H^{1-\alpha}$
- Denote age structure as $\{\omega_j\}_{j=0}^8$ (with $\sum_{j=0}^8 \omega_j = 1$) and the distribution of households across state space as $\{\mu_j\}_{j=0}^8$
- Government fiscal budget:

$$\underbrace{\left(\sum_{j=2}^{6}\omega_{j}\int\mathcal{T}(y_{j}^{*},a_{j}^{*},n_{j}^{*})\,d\mu_{j}\right)}_{\text{labor and capital income taxes}} + \tau_{c}\underbrace{\left(\sum_{j=2}^{8}\omega_{j}\int c_{j}^{*}\,d\mu_{j} + \omega_{2}\int n^{*}(p_{m}m^{*} + e^{*})\,d\mu_{2}\right)}_{\text{labor and capital income taxes}} = \underbrace{\left(\omega_{0}+\omega_{1}\right)\underbrace{\mathcal{E}}_{\text{baby bonus}} + \omega_{2}\underbrace{\left(\int n^{*}\mathcal{B}\,d\mu_{2} + \int (1+\tau_{c})n^{*}p_{m}\mathcal{S}\,d\mu_{2}\right)}_{\text{subsidized childcare}} + \underbrace{\pi\left(\sum_{j=2}^{8}\omega_{j}\int wh\,d\mu_{j}\right)}_{\text{pension payments}} + \underbrace{\sum_{j=2}^{8}\omega_{j}\underbrace{\mathcal{X}}_{\text{exo.}}}_{\text{mass of adults}}$$

• Demographic Structure Effects: Family policies change $\{\omega_j\}_{j=0}^8$. Effects on fiscal burden depends on relative costs of old versus child

Calibration

Model Parameters

Table 1: Model Parameters

	Interpretation	Value	Source		Interpretation	Value	Source		
Preferences					Child human capital production				
β	discount rate	0.98^{10}	standard	Z	normalizing scalar	2.50	median income =1		
γ	elasticity of substitution	0.73	CPS	σ_{ϵ}	ability shock dispersion	0.58	PSID		
ψ	fertility preference	2.30	CPS	ρ	intergenerational spillover	0.30	Chetty et al. (2014)		
θ	human capital preference	2.85	PSID	ξ	substitution of education	0.9	CEX		
ν	transfer preference	0.29	PSID	$\mathcal E$	public education	\$12,000	NCES		
				κ	input productivity	0.13	Gárcia et al. (2020)		
	Childcare arrar	ngement							
χ	childcare cost	0.18	ATUS	Adults' human capital evolution					
L	economies of scale at home	0.7	ATUS	η	learning curvature	1.22	PSID		
υ	substitutability of care	0.38	SIPP	$\{\zeta\}_{i=1}^{5}$, learning level	misc.	PSID		
p_m	price of full-time care	\$6,860	NACCRRA	μ_Z	skill depreciation	-0.23	PSID		
				σ_z	shock dispersion	0.38	PSID		
Taxes and pension									
$\tau_{V}^{n}, \lambda_{V}^{n}$	tax levels and progressivity	misc.	TAXSIM	Firm production function					
$ au_{c}$	consumption tax	0.07	McDaniel (2007)	A	total factor productivity	1	normalization		
$ au_a$	capital income tax	0.27	McDaniel (2007)	α	capital share	0.33	standard		
π	pension replacement rate	0.40	OECD Database	δ_k	capital depreciation	0.04^{10}	standard		

• 14 parameters are calibrated within the model

$$v(n, \mathbb{E}h_k, a_k) = \underbrace{\Psi(n)}_{\text{child discounting}} \underbrace{\underbrace{(\theta \cdot u(\mathbb{E}h_k) + \nu \cdot u(a_k))}_{\text{utility from child quality}}}$$

$$\underbrace{\Psi(n) = 1 - \exp(-\psi n)}_{\text{increasing & concave in } n} \qquad u(x) = \frac{x^{1-\gamma}}{1-\gamma} \qquad \gamma \in (0,1) \quad x \in \{\mathbb{E}h_k, a_k, c\}$$

Results robust to dynastic altruism and separable preferences

$$v(n, \mathbb{E}h_k, a_k) = \underbrace{\Psi(n)}_{\text{child discounting}} \underbrace{\underbrace{(\theta \cdot u(\mathbb{E}h_k) + \nu \cdot u(a_k))}_{\text{utility from child quality}}}$$

$$\underbrace{\Psi(n) = 1 - \exp(-\psi n)}_{\text{increasing \& concave in } n} \qquad u(x) = \frac{x^{1-\gamma}}{1-\gamma} \qquad \gamma \in (0,1) \quad x \in \{\mathbb{E}h_k, a_k, c\}$$

- Results robust to dynastic altruism and separable preferences
- $\{\psi, \theta, \nu\}$ matches aggregate fertility and average spendings on quality

$$v(n, \mathbb{E}h_k, a_k) = \underbrace{\Psi(n)}_{\text{child discounting}} \underbrace{\underbrace{(\theta \cdot u(\mathbb{E}h_k) + \nu \cdot u(a_k))}_{\text{utility from child quality}}}$$

$$\underbrace{\Psi(n) = 1 - \exp(-\psi n)}_{\text{increasing \& concave in } n} \qquad u(x) = \frac{x^{1-\gamma}}{1-\gamma} \qquad \gamma \in (0,1) \quad x \in \{\mathbb{E}h_k, a_k, c\}$$

- Results robust to dynastic altruism and separable preferences
- $\{\psi, \theta, \nu\}$ matches aggregate fertility and average spendings on quality
- ullet γ elasticity of intergenerational substitution (EGS) (Córdoba and Ripoll 2019)

$$v(n, \mathbb{E}h_k, a_k) = \underbrace{\Psi(n)}_{\text{child discounting}} \underbrace{\underbrace{(\theta \cdot u(\mathbb{E}h_k) + \nu \cdot u(a_k))}_{\text{utility from child quality}}}$$

$$\underbrace{\Psi(n) = 1 - \exp(-\psi n)}_{\text{increasing \& concave in } n} \qquad u(x) = \frac{x^{1-\gamma}}{1-\gamma} \qquad \gamma \in (0,1) \quad x \in \{\mathbb{E}h_k, a_k, c\}$$

- Results robust to dynastic altruism and separable preferences
- $\{\psi, \theta, \nu\}$ matches aggregate fertility and average spendings on quality
- ullet γ elasticity of intergenerational substitution (EGS) (Córdoba and Ripoll 2019)
- Conditional on other parameters, γ determines fertility elasticity. Higher $\gamma \Longrightarrow$ smaller fertility responses, larger quality responses (c.f. Soares 2005)

Identification of γ

• γ identified by **fertility-income profile** (Córdoba, Ripoll and Liu 2016). Higher $\gamma \Longrightarrow$ Higher MRS of quantity for quality \Longrightarrow flatter profile

ullet Calibrated γ generates realistic life-cycle profile of net worth

Children's Human Capital Production Function

Children's human capital production function:

$$h_k = \underbrace{Z}_{\text{scalar}} \underbrace{\epsilon}_{\text{shock}} \underbrace{h^{\rho}}_{\text{spillover}} \cdot \underbrace{\left(\underbrace{\mathcal{E}^{\xi}}_{\text{public education}} + \underbrace{e^{\xi}}_{\text{private input}}\right)^{\kappa/\xi}}_{\text{private input}}$$

$$\log(\epsilon) \sim \mathcal{N}\left(-\frac{\sigma_{\epsilon}^2}{2}, \sigma_{\epsilon}^2\right)$$

- Highlight of parameters:
 - $\rho = 0.3$ rank-rank mobility (Chetty, Hendren, Kline and Saez 2014)
 - $\mathcal{E} = 0.16$ \$12k per pupil per year (NCES)
 - $\kappa = 0.13$ RCT evidence from García, Heckman, Leaf and Prados (2020)

Validation

- Established in 1982 after discovery of the petroleum. Equal transfer to **all residents** regardless of income, employment or age
- **Pronatal effects**: allows parent to claim dividend on behalf of a child with no requirements on how parents use a child's dividend.

- Established in 1982 after discovery of the petroleum. Equal transfer to **all residents** regardless of income, employment or age
- **Pronatal effects**: allows parent to claim dividend on behalf of a child with no requirements on how parents use a child's dividend.
- Ideal setting to test fertility responses:
 - 1 Large in scale (\approx \$1.5k per year) relative to other family policies
 - 2 Simple implementation that is income- or work-tested

- Established in 1982 after discovery of the petroleum. Equal transfer to **all residents** regardless of income, employment or age
- **Pronatal effects**: allows parent to claim dividend on behalf of a child with no requirements on how parents use a child's dividend.
- Ideal setting to test fertility responses:
 - 1 Large in scale (\approx \$1.5k per year) relative to other family policies
 - 2 Simple implementation that is income- or work-tested
- Re-calibrate, then implement APFD in the model: universal basic income (UBI) to parents and children by \$1.5k. The model predicts:
 - 1 Completed fertility rises by 0.16 children per women
 - 2 Larger responses from households with lower human capital

Difference-in-Difference Analysis

• CPS June Fertility Supplement 1982-2018, Alaskan women aged 40-55, divided into "not treated", "partially treated" ($T_1 = 1$), and "fully treated" ($T_2 = 1$)

Difference-in-Difference Analysis

- CPS June Fertility Supplement 1982-2018, Alaskan women aged 40-55, divided into "not treated", "partially treated" ($T_1 = 1$), and "fully treated" ($T_2 = 1$)
- Estimate on full sample, and subsamples by education (at least 1 year of college)

fertility =
$$\beta_0 + \beta_1 T_1 + \beta_2 T_2 + \text{State FE} + \text{Year FE} + \epsilon$$

Difference-in-Difference Analysis

- CPS June Fertility Supplement 1982-2018, Alaskan women aged 40-55, divided into "not treated", "partially treated" ($T_1 = 1$), and "fully treated" ($T_2 = 1$)
- Estimate on full sample, and subsamples by education (at least 1 year of college)

fertility =
$$\beta_0 + \beta_1 T_1 + \beta_2 T_2 + \text{State FE} + \text{Year FE} + \epsilon$$

Regression results confirm model predictions on fertility effects:

	(1)	(2)	(3)	Model Predictions		
	Full Sample	Low Educ.	High Educ.	Average	Low Educ.	High Educ.
β_2	0.172***	0.296***	0.105***	0.16	0.31	0.09
	(0.032)	(0.041)	(0.025)			
# Obs.	146,804	69,511	77,293			

Counterfactual

Main Counterfactual

- ullet Evaluate **baby bonuses** ${\cal B}$ of different sizes
 - Timing: unexpected and permanent policy change at beginning of period
 - Source of funds: au_c balances budget each period

Main Counterfactual

- Evaluate baby bonuses B of different sizes
 - Timing: unexpected and permanent policy change at beginning of period
 - Source of funds: τ_c balances budget each period
- Consider two (pragmatic) welfare measures:
 - **1** Long-run average welfare $W = \int V_2 d\mu_2$ average value of newborn
 - 2 Welfare of existing households and those born in transition

Main Counterfactual

- Evaluate baby bonuses B of different sizes
 - Timing: unexpected and permanent policy change at beginning of period
 - Source of funds: τ_c balances budget each period
- Consider two (pragmatic) welfare measures:
 - **1** Long-run average welfare $W = \int V_2 d\mu_2$ average value of newborn
 - 2 Welfare of existing households and those born in transition
- Roadmap of results:
 - Long-run effects
 - Transition and distributional effects across generations
- ullet Policy comparisons: subsidized childcare ${\mathcal S}$ and public education ${\mathcal E}$

Fertility Effects of Cash Rewards to Childbirth

Figure 1: Effects on aggregate fertility

- $\mathcal{B} = \$30k$ raises aggregate fertility rate to the replacement level
 - Similar to changes in the CTC from 2010 to 2021, including ARPA (in NPV)
 - 1.8% of GDP in the new equilibrium

Fertility Effects of Cash Rewards to Childbirth

Figure 1: Effects on aggregate fertility

E 2000 3000 4000 50000

Baby Bonus Size (dollars)

Figure 2: Heterogeneous fertility response

- $\mathcal{B} = \$30k$ raises aggregate fertility rate to the replacement level
 - Similar to changes in the CTC from 2010 to 2021, including ARPA (in NPV)
 - 1.8% of GDP in the new equilibrium
- Parents with lower human capital respond more in fertility larger proportional change in the shadow price of child $(e^*(h))$ and $(e^*(h))$ and $(e^*(h))$

Effects on e and Average Human Capital

Figure 3: Average private input *e*

• Average private input (e) falls by 4% - quantity-quality trade-off

Effects on e and Average Human Capital

Figure 3: Average private input *e*

Wodel

Deadon

Figure 4: Average human capital

- Average private input (e) falls by 4% quantity-quality trade-off
- Average human capital **falls by 2\% composition effects** and reduced e

Average Human Capital and Intergenerational Mobility

Figure 5: Heterogeneous response in *e*

ullet Larger reductions in e among parents with low h as their n increases more

Average Human Capital and Intergenerational Mobility

Figure 5: Heterogeneous response in *e*

Figure 6: Intergenerational mobility

- Larger reductions in e among parents with low h as their n increases more
- Intergenerational mobility decreases by 1.8%

Average Human Capital and Intergenerational Mobility

Figure 5: Heterogeneous response in *e*

Figure 6: Intergenerational mobility

- ullet Larger reductions in e among parents with low h as their n increases more
- Intergenerational mobility decreases by 1.8%
- Results will be **stronger** when baby bonus is targeted at low-income households

Output and Tax

Figure 7: Per capita output

• Per capita output falls by 0.6%

Output and Tax

Figure 7: Per capita output Figure 8: Change in consumption tax Model Change in Per Capita Output (%) Change in Consumption Tax (%) ----- Exo. n 50000 30000 10000 20000 30000 40000 10000 20000 40000 50000

• Per capita output falls by 0.6%

Baby Bonus Size (dollars)

• Demographic structure effects: consumption taxes reduces by 0.9%

Baby Bonus Size (dollars)

Figure 9: Change in welfare

• Long-run welfare ${\cal W}$ rises by 1.6% (c.e.), more than half due to lower au_c (0.9%)

Figure 9: Change in welfare

• Long-run welfare ${\cal W}$ rises by 1.6% (c.e.), more than half due to lower au_c (0.9%)

Transition Path of $\mathcal{B} = \$30,000$ - Replacement Fertility

Figure 10: Change in dependency ratios

• Higher child-related government expenditures in the first few decades beyond the direct policy costs (\mathcal{E} and $\mathcal{T}(n,\cdot)$)

Transition Path of $\mathcal{B} = \$30,000$ - Replacement Fertility

Figure 10: Change in dependency ratios

Figure 11: Change in consumption tax

- Higher child-related government expenditures in the first few decades beyond the direct policy costs (\mathcal{E} and $\mathcal{T}(n,\cdot)$)
- With τ_c changing to balance the budget, welfare effects for:

▶ plot

- Newborns in transition positive but smaller than 1.6%
- Existing baby bonus recipients (15% of voters): +1.4%, existing non-recipients (85% of voters): -2.4%

Highlights of Policy Comparisons

Figure 12: Effects on Fertility

- ullet ${\mathcal S}$ and ${\mathcal E}$ are less cost-effective in raising fertility
- \bullet Higher ${\cal E}\Longrightarrow$ children become more desirable & parents become more educated in the long-run

Highlights of Policy Comparisons

Figure 12: Effects on Fertility

Figure 13: Effects on Mobility

- \mathcal{S} and \mathcal{E} are less cost-effective in raising fertility
- Higher $\mathcal{E} \Longrightarrow$ children become more desirable & parents become more educated in the long-run
- \bullet E is most effective in improving mobility larger effects when targeted at low-income families

Conclusion

What I do:

- Develop a quantitative GE-OLG model to study the macroeconomic consequences of family policies
- Calibrate the model to match U.S. data and validate using empirical evidence

Conclusion

What I do:

- Develop a quantitative GE-OLG model to study the macroeconomic consequences of family policies
- Calibrate the model to match U.S. data and validate using empirical evidence

What I find:

- \$30k cash benefit at birth raises fertility to the replacement level, but reduces average human capital and social mobility by 2%
- 2 Long-run welfare rises by 1.6%, largely due to demographic structure changes
- 3 Government needs to finance higher child-related expenditures in transition
- 4 In-kind policies have smaller fertility effects, but offer other advantages

Time Trend of Public Expenditures on Child Benefits

Expenditure Breakdown

Working Without Children and Retirement

• For households working without children, $j \in \{4, 5, 6\}$:

$$V_{j}(h, a) = \max_{c, a' \geq 0} u(c/\Lambda(0)) + \beta \delta_{j} \mathbb{E} V_{j+1}(h', a')$$

 $(1 + \tau_{c})c + a' = (1 + r)a + y - \mathcal{T}(y, a, 0)$
 $h' = L_{j}(h, 1, z)$

• For retired households, $j \in \{7, 8\}$:

$$V_{j}(h, a) = \max_{c, a' \ge 0} u(c/\Lambda(0)) + \beta \delta_{j} V_{j+1}(h, a')$$
$$(1 + \tau_{c})c + a' = (1 + r)a + \pi \cdot wh - \mathcal{T}(0, a, 0)$$
$$V_{9}(\cdot) \equiv 0$$

where π is pension replacement rate

Stationary Equilibrium

- Invariant distribution: Demographic structure $\{\omega_j\}_{j=0}^8$ and distribution of agents over states $\{\mu_j\}_{j=0}^8$ are invariant over time periods
- Households optimize utility and firms maximize profits
- Prices clear markets
- Government balances budget in period to period
- Externalities/incompleteness that government could address:
 - 1 Fiscal externalities of childbearing and childrearing
 - Private returns \neq social returns (i.e. $\{\omega_j\}_{j=0}^8$ and $\{\mu_j\}_{j=0}^8$)
 - **2 Borrowing constraints** (Daruich 2019, Abbott et al. 2019 ...)

Endogenous Childcare Arrangements

• Standard models where a child costs fixed amount of time, total income *y*:

$$y = wh \left(1 - \underbrace{(\chi - S) \cdot n}_{\text{time cost}} \cdot n\right) + n \cdot \mathcal{B}$$
labor supply

which implies ${\cal S}$ is equivalent to a baby bonus $\frac{{\cal B}}{wh}$

Endogenous Childcare Arrangements

• Standard models where a child costs fixed amount of time, total income *y*:

$$y = wh \left(1 - \underbrace{(\chi - S) \cdot n}_{\text{time cost}} \cdot n\right) + n \cdot \mathcal{B}$$
labor supply

which implies ${\mathcal S}$ is $\operatorname{\underline{equivalent}}$ to a baby bonus $\frac{{\mathcal B}}{wh}$

- Empirical evidence indicates the opposite:
 - Subsidized childcare: labor supply ↑ market care enrollment ↑ (Baker et al. 2008)
 - Baby bonus: labor supply ↓ market care enrollment ↓ (González 2013)

Endogenous Childcare Arrangements

• Standard models where a child costs fixed amount of time, total income *y*:

$$y = wh \left(1 - \underbrace{(\chi - S) \cdot n}_{\text{time cost}}\right) + n \cdot \mathcal{B}$$
labor supply

which implies ${\mathcal S}$ is $\operatorname{\underline{equivalent}}$ to a baby bonus $\frac{{\mathcal B}}{wh}$

- Empirical evidence indicates the opposite:
 - Subsidized childcare: labor supply ↑ market care enrollment ↑ (Baker et al. 2008)
 - Baby bonus: labor supply ↓ market care enrollment ↓ (González 2013)
- Endogenous childcare arrangements: (in-kind) subsidized childcare induces more labor supply from parents with $m^*(h, a) \leq S$
- Affects inequalities in wage growth since $h_{j+1} = L_j(\cdot, t_w)$

Model Fit

Parameter	Interpretation	Moment	Data	Model
γ	elasticity of substitution	fertility differential	0.12	0.12
ψ	fertility preference	average fertility	1.92	1.92
θ	human capital preference	average investment as % of income	13.4	13.5
ν	transfer preference	average transfer	\$48,381	\$48,400
L	economies of scale at home	childcare time by # children	1.5	1.5
υ	substitutability of care	average care spending as % of income	16	16
Z	normalizing scalar	median income = 1	N/A	N/A
σ_{ϵ}	ability shock dispersion	Gini of earnings at $j = 2$	0.29	0.29
ρ	intergenerational spillover	intergenerational elasticity of earnings	0.34	0.33
ξ	substitution of education	investment by parents' education	misc.	misc.
κ	input productivity	return on per dollar investment (NPV)	\$1.3	\$1.29
η	learning curvature	income growth by initial decile	0.1	0.09
$\{\zeta\}_{i=2}^{5}$	learning level	income growth by age	misc.	misc.
σ_z	shock dispersion	Gini of earnings at $j = 6$	0.39	0.39

Elasticity of Moments to Parameters

	n Gap	TFR	е	a_k	m	Gini ₂	IGE	e_{low}	h Profile	Gini ₆
γ	-2.10	0.38	-3.50	-1.30	-1.73	0.00	-0.26	-7.58	0.07	0.20
ψ	-0.67	-0.96	2.36	0.73	1.21	-0.03	0.15	4.81	-0.08	-0.10
θ	0.63	0.19	1.90	-0.14	0.89	0.02	0.12	4.03	-0.01	-0.19
ν	-0.09	-0.05	0.16	1.33	0.08	0.00	0.01	0.34	-0.01	-0.04
υ	-0.92	-0.12	0.02	0.07	0.99	0.08	0.00	0.10	0.00	-0.38
σ_ϵ	0.76	0.05	-0.29	0.03	-0.32	0.85	-0.19	-1.36	-1.08	-2.13
ρ	-0.10	-0.02	0.90	0.02	0.52	0.06	0.93	0.45	-0.17	-0.92
ξ	0.61	0.09	-1.96	-0.06	-0.98	0.01	0.05	-11.08	0.03	0.32
η	0.19	-0.09	1.00	0.61	0.89	-0.03	0.06	1.87	2.14	1.60
σ_z	-0.02	0.03	-0.49	-0.24	-0.31	0.01	0.16	-1.17	-1.05	2.50

• Bold entries (row max): most responsive moment to parameter changes

Sensitivity of Parameters to Moments

γ	ψ	θ	ν	υ	σ_ϵ	ρ	ξ	η	σ_z
-0.51	-0.28	-0.53	-0.40	-0.01	0.00	-0.02	0.02	-0.01	-0.02
0.56	-0.56	1.67	1.05	0.11	-0.07	0.00	0.01	-0.04	0.05
0.47	0.48	1.12	0.35	-0.45	0.04	-0.10	0.30	0.00	-0.04
-0.02	-0.06	-0.04	0.75	0.00	0.00	0.00	0.00	0.00	0.00
-0.43	-0.33	-0.28	-0.29	1.02	-0.10	-0.06	0.05	-0.03	0.06
0.47	0.20	0.14	0.02	-0.12	1.21	0.19	-0.23	0.88	0.53
-0.20	-0.27	-0.83	-0.19	-0.18	-0.05	1.13	-0.23	0.16	0.21
-0.07	-0.08	-0.19	-0.05	-0.01	0.00	0.02	-0.15	0.01	0.01
0.08	-0.01	-0.14	-0.14	-0.17	0.03	0.07	-0.03	0.37	-0.23
0.04	0.03	0.06	0.02	-0.03	0.01	-0.06	0.00	0.14	0.29
	-0.51 0.56 0.47 -0.02 -0.43 0.47 -0.20 -0.07 0.08	-0.51 -0.28 0.56 -0.56 0.47 0.48 -0.02 -0.06 -0.43 -0.33 0.47 0.20 -0.20 -0.27 -0.07 -0.08 0.08 -0.01	-0.51 -0.28 -0.53 0.56 -0.56 1.67 0.47 0.48 1.12 -0.02 -0.06 -0.04 -0.43 -0.33 -0.28 0.47 0.20 0.14 -0.20 -0.27 -0.83 -0.07 -0.08 -0.19 0.08 -0.01 -0.14	-0.51 -0.28 -0.53 -0.40 0.56 -0.56 1.67 1.05 0.47 0.48 1.12 0.35 -0.02 -0.06 -0.04 0.75 -0.43 -0.33 -0.28 -0.29 0.47 0.20 0.14 0.02 -0.20 -0.27 -0.83 -0.19 -0.07 -0.08 -0.19 -0.05 0.08 -0.01 -0.14 -0.14	-0.51 -0.28 -0.53 -0.40 -0.01 0.56 -0.56 1.67 1.05 0.11 0.47 0.48 1.12 0.35 -0.45 -0.02 -0.06 -0.04 0.75 0.00 -0.43 -0.33 -0.28 -0.29 1.02 0.47 0.20 0.14 0.02 -0.12 -0.20 -0.27 -0.83 -0.19 -0.18 -0.07 -0.08 -0.19 -0.05 -0.01 0.08 -0.01 -0.14 -0.14 -0.17	-0.51 -0.28 -0.53 -0.40 -0.01 0.00 0.56 -0.56 1.67 1.05 0.11 -0.07 0.47 0.48 1.12 0.35 -0.45 0.04 -0.02 -0.06 -0.04 0.75 0.00 0.00 -0.43 -0.33 -0.28 -0.29 1.02 -0.10 0.47 0.20 0.14 0.02 -0.12 1.21 -0.20 -0.27 -0.83 -0.19 -0.18 -0.05 -0.07 -0.08 -0.19 -0.05 -0.01 0.00 0.08 -0.01 -0.14 -0.14 -0.17 0.03	-0.51 -0.28 -0.53 -0.40 -0.01 0.00 -0.02 0.56 -0.56 1.67 1.05 0.11 -0.07 0.00 0.47 0.48 1.12 0.35 -0.45 0.04 -0.10 -0.02 -0.06 -0.04 0.75 0.00 0.00 0.00 -0.43 -0.33 -0.28 -0.29 1.02 -0.10 -0.06 0.47 0.20 0.14 0.02 -0.12 1.21 0.19 -0.20 -0.27 -0.83 -0.19 -0.18 -0.05 1.13 -0.07 -0.08 -0.19 -0.05 -0.01 0.00 0.02 0.08 -0.01 -0.14 -0.17 0.03 0.07	-0.51 -0.28 -0.53 -0.40 -0.01 0.00 -0.02 0.02 0.56 -0.56 1.67 1.05 0.11 -0.07 0.00 0.01 0.47 0.48 1.12 0.35 -0.45 0.04 -0.10 0.30 -0.02 -0.06 -0.04 0.75 0.00 0.00 0.00 0.00 -0.43 -0.33 -0.28 -0.29 1.02 -0.10 -0.06 0.05 0.47 0.20 0.14 0.02 -0.12 1.21 0.19 -0.23 -0.20 -0.27 -0.83 -0.19 -0.18 -0.05 1.13 -0.23 -0.07 -0.08 -0.19 -0.05 -0.01 0.00 0.02 -0.15 0.08 -0.01 -0.14 -0.17 0.03 0.07 -0.03	-0.51 -0.28 -0.53 -0.40 -0.01 0.00 -0.02 0.02 -0.01 0.56 -0.56 1.67 1.05 0.11 -0.07 0.00 0.01 -0.04 0.47 0.48 1.12 0.35 -0.45 0.04 -0.10 0.30 0.00 -0.02 -0.06 -0.04 0.75 0.00 0.00 0.00 0.00 0.00 0.00 -0.43 -0.33 -0.28 -0.29 1.02 -0.10 -0.06 0.05 -0.03 0.47 0.20 0.14 0.02 -0.12 1.21 0.19 -0.23 0.88 -0.20 -0.27 -0.83 -0.19 -0.18 -0.05 1.13 -0.23 0.16 -0.07 -0.08 -0.19 -0.05 -0.01 0.00 0.02 -0.15 0.01 0.08 -0.01 -0.14 -0.17 0.03 0.07 -0.03 0.37

- Sensitivity "Λ" defined in Andrews, Gentzkow, and Shapiro (2017)
- Bold entries (row max): most sensitive parameter to moment changes

Net Worth by Age: Model and Data

Net worth by age of household head from SCF summary tables

Intergenerational Mobility: Model vs Data

• Rank-rank slope = 0.34 (Chetty, Hendren, Kline and Saez 2014)

Child's Skill Production Function Cont'd

Use **RCT** evidence to estimate the productivity of inputs κ :

$$h_k = Z \cdot \epsilon \cdot h^{\rho} \left(\mathcal{E}^{\xi} + e^{\xi} \right)^{\kappa/\xi}$$

- García, Heckman, Leaf and Prados (2020)
 - Two US early childhood development programs (ABC, CARE) in 1970s
 - Cost \approx \$13.5k per year for five years total \$67.5k per child
 - Followed up into adulthood and observe education/income
 - For every dollar invested, children's lifetime labor income increases by \$1.3
- ullet Apply similar policy in the model: expand existing ${\cal E}$ by \$67.5k
 - Small scale: prices and taxes remain unchanged
 - Target: children of parents at 10th percentile of earnings
- Comparing labor income changes with program costs gives $\kappa = 0.13$

Costs of Child and Childcare

OECD equivalence scale:

$$\Lambda(n) = 1.7 + 0.5 \cdot n$$

• Childcare arrangements:

$$n \cdot \chi = \left(t_h^{\upsilon/\iota} + (n \cdot m)^{\upsilon}\right)^{1/\upsilon}$$

Set $\chi=0.18$ (Folbre 2008). Returns to scale within family calibrated to be $\iota=0.7$

- Elasticity of substitution: v = 0.38 average share of income spent on childcare by education (SIPP) (Herbst 2018)
- Price of full-time childcare: $p_m = \$6,860$ per year for child aged 0-10 (The National Association of Child Care Resource & Referral Agencies 2011)

Fertility Response

Consider simplified problem for low-h parents, i.e. quality margin not operative

$$\max_{c,n} \quad u(c) + \Psi(n)u(\mathcal{E})$$
$$c + n \cdot \chi = 1$$

• First-order condition for *n*:

$$\underbrace{\Psi'(n) \cdot u(\mathcal{E})}_{\text{MB of } n} = \underbrace{\lambda \cdot \chi}_{\text{MC of } n}$$

• Plug in $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$, we have

$$\Psi'(n) = (1 - \gamma) \cdot \chi \cdot \frac{\lambda}{\mathcal{E}^{1 - \gamma}} \Longrightarrow \Delta \Psi'(n) \propto (1 - \gamma) \cdot \Delta \chi$$

Conditional on other parameters, higher $\gamma \Longrightarrow$ smaller n response

Skill Evolution for Adults

Human capital of working adults evolves:

$$h_{j+1} = L_j(h_j, t_w, z') = \exp(z') [h_j + \zeta_j (h_j \cdot t_w)^{\eta}]$$

 $\log(z) \sim \mathcal{N}(\mu_z, \sigma_z)$

- $\{\zeta_j\}_{j=2}^5$ age-earnings profile (CPS)
- $\eta = 1.22$ inequality in wage growth (CPS)
- $\mu_Z = -0.23$ 2% skill depreciation
- $\sigma_z = 0.38$ life-cycle Gini coefficient of earnings (Huggett, Ventura and Yaron 2011)

Inequality in Wage Growth: Model vs Data

 Growth rate of average income from age 25 to 35 by education in CPS-ASEC data (2008-2014)

Other Parameters

- Firms' production function: capital share $\alpha = 0.33$ and 4% capital depreciation
- Government taxes
 - Income taxes:

$$\mathcal{T}(y, a, n) = y \cdot (1 - \tau_y^n y^{-\lambda_y^n}) + \tau_a ra$$

where $\{\tau_y^n, \lambda_y^n\}_{n=0}^6$ estimated using TAXSIM

- Tax rates from McDaniel (2014): $\tau_c = 0.07$ and $\tau_a = 0.27$
- Pension replacement rate: $\pi = 40\%$

Income Taxes: Model vs Data

• Child tax benefits (reduction in tax rates) are larger for low-income households

APFD and Completed Fertility Rate

Figure 14: Completed Fertility Rate (CFR)

Figure 15: CFR by Education

Australian Baby Bonus

- A\$3,000 baby bonus¹ to every child born on or after July 1st 2004
- Risse (2010) and Drago et al. (2011) find:
 - Significant fertility responses and evidence for long-term/quantum effects
 - Baby bonus needed for additional birth around A\$126,000 $\approx 4 \times \text{GDPPC}$
 - Larger fertility responses from low-income households
- Gaitz and Schurer (2017) finds that the baby bonus was **ineffective** in boosting learning, socio-emotional or physical health outcomes of pre-school children

¹More details: (1) Announced on Mar 12th 2004, (2) universal coverage, lump-sum payment, (3) Equivalent to 4 times average weekly earnings, (4) Equivalent to \$2,800 in 2010 USD.

Australian Baby Bonus

- A\$3,000 baby bonus¹ to every child born on or after July 1st 2004
- Risse (2010) and Drago et al. (2011) find:
 - Significant fertility responses and evidence for long-term/quantum effects
 - Baby bonus needed for additional birth around A\$126,000 $\approx 4 \times \text{GDPPC}$
 - Larger fertility responses from low-income households
- Gaitz and Schurer (2017) finds that the baby bonus was **ineffective** in boosting learning, socio-emotional or physical health outcomes of pre-school children
- Results from baby bonus counterfactual are consistent with above findings:
 - Significant fertility effects that are larger among low-income households
 - Baby bonus needed for additional birth = $3.5 \times GDPPC$
 - Child human capital reduces due to quantity-quality trade-off

► back to validation ► back to results

¹More details: (1) Announced on Mar 12th 2004, (2) universal coverage, lump-sum payment, (3) Equivalent to 4 times average weekly earnings, (4) Equivalent to \$2,800 in 2010 USD.

Spanish Baby Bonus

- **€\$2,500 baby bonus**² to every child born on or after July 1st 2007
- González (2013) finds:
 - Total fertility rate increased
 - Mothers reduced labor supply
 - Fewer children were enrolled in formal childcare

²More details: (1) Announced on July 3rd 2007, (2) universal coverage, lump-sum payment, (3) Equivalent to 4.5 times the monly gross minimum wage for full-time worker, (4) Equivalent to \$3,500 in 2010 USD.

Spanish Baby Bonus

- **€\$2,500 baby bonus**² to every child born on or after July 1st 2007
- González (2013) finds:
 - Total fertility rate increased
 - Mothers reduced labor supply
 - Fewer children were enrolled in formal childcare
- Results from model are consistent with above findings:
 - Baby bonus needed for additional birth / GDPPC = 3.6 (data) vs 3.5 (model)
 - ullet Parents reduce labor supply as fertility raises o more childcare needs
 - Parents demand less market care as relative costs of home care falls due to economies of scale in home production of childcare

► back to validation

 $^{^2}$ More details: (1) Announced on July 3^{rd} 2007, (2) universal coverage, lump-sum payment, (3) Equivalent to 4.5 times the monly gross minimum wage for full-time worker, (4) Equivalent to \$3,500 in 2010 USD.

Georgia's Cherokee Land Lottery in 1832

- Georgia allocated more than 18,000 parcels of land via large-scale lottery in 1832. More than 98% of eligible man participated
- Shock in wealth rather than change in price of child
- Winners were about \$748 wealthier than losers by 1850³
- Bleakley and Ferrie (2016) finds:
 - Parents increase fertility slightly
 - Decedents of winners have no better adult outcomes than the sons of nonwinners

³Equivalent to 1,010 days of earnings for an unskilled laborer in the South

Georgia's Cherokee Land Lottery in 1832

- Georgia allocated more than 18,000 parcels of land via large-scale lottery in 1832. More than 98% of eligible man participated
- Shock in wealth rather than change in price of child
- Winners were about \$748 wealthier than losers by 1850³
- Bleakley and Ferrie (2016) finds:
 - Parents increase fertility slightly
 - Decedents of winners have no better adult outcomes than the sons of nonwinners
- As skill price increases, Cherokee results provides:
 - 1 Upper bound for fertility responses
 - 2 Lower bound for child quality responses
- Model predictions consistent with these predictions:

$$n^*(h, a') \le n^*(h, a)$$
 $e^*(h, a') \gg e^*(h, a)$

for fixed h and a' > a

³Equivalent to 1,010 days of earnings for an unskilled laborer in the South

Change in Demographic Structure

Distributional Welfare Consequences

Figure 16: Newborns in Transition

Figure 17: Long-run and Existing Households

Baby Bonus versus Subsidized Childcare

Figure 18: Effects on Income Growth

Figure 19: Effects on Welfare

Subsidized childcare reduces inequality in income growth

Figure 18: Effects on Income Growth

Baby Bonus
Subsidized Childcare
Baseline Model

Initial Income Decile at Age 25

Figure 19: Effects on Welfare

- Subsidized childcare reduces inequality in income growth
- Low-income households prefers cash transfers of the same face value