Chapitre 10

Transformations du plan

	Sommaire	
1	Rappels	1
2	Définitions de quelques transformations de référence	1
3	Propriétés de quelques transformations de référence	2
1	Evarajeas	2

1 Rappels

Activité

La figure ci-contre et composée d'un carré ABCD de centre O et de quatre triangles équilatéraux

- 1. Déterminer les images des points B et C et H par la symétrie d'axe (OA).
- 2. Déterminer l'image du triangle BCG par la symétrie de centre O.
- 3. Déterminer l'image du segment [CG] par la translation de vecteur \overline{CE} .

2 Définitions de quelques transformations de référence

Définitions		
Symétrie axiale	Soit (Δ) une droite. M et M' deux point du plan. La transformation qui lie tout point M avec un point M' du plan tel que la droite (Δ) est la médiatrice du segment $[MM']$ s'appelle symétrie axiale d'axe (Δ) . On la note $S_{(\Delta)}$.	M+ $+M'$
Symétrie centrale	Soit I un point du plan. La transformation qui lie tout point M avec un point M' du plan tel que le point I est le milieu du segment $[MM']$ s'appelle symétrie centrale de centre I . On la note S_I .	M + \downarrow I + M'
${ m Translation}$	Soit \vec{u} un vecteur du plan. La transformation qui lie tout point M avec un point M' du plan tel que $\overrightarrow{MM'} = \vec{u}$ s'appelle translation de vecteur \vec{u} . On la note $t_{\vec{u}}$.	M $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
${ m Homoth\'etie}$	Soit Ω un point du plan. La transformation qui lie tout point M avec un point M' du plan tel que $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$ s'appelle homothétie de centre Ω et rapport k On la note $h(\Omega,k)$.	Ω + M $+$ M'

Exercice

Soit ABC un triangle de centre de gravité G.

Soient I et J sont les milieux respectifs des segments [AC] et [BC]. Construire les triangles suivants :

- 1. $A_1B_1C_1$ image du triangle ABC par la translation de vecteur \overline{II}
- 2. $A_2B_2C_2$ image du triangle ABC par la symétrie d'axe (AB).
- 3. $A_3B_3C_3$ image du triangle ABC par la symétrie de centre G.
- 4. $A_4B_4C_4$ image du triangle ABC par l'homothétie de centre G et de rapport 2.

3 Propriétés de quelques transformations de référence

Propriété					
$\frac{T \text{ransformation}}{T}$	Symétrie axiale $S_{(\Delta)}$	Symétrie centrale S_I	Translation $t_{\vec{u}}$	Homothétie $h_{(\Omega,k)}$	
Points Invariant	Les points de (Δ)	Le point I		Le point Ω	
Définition	Si $S_{(\Delta)}(M) = M'$ alors (Δ) est médiatrice de [MM']	Si $S_{\underline{I}}(\underline{M}) = \underline{M'}$ alors $\overrightarrow{IM'} = -\overrightarrow{IM}$	Si $t_{\vec{u}}(\underline{M}) = M'$ alors $\overrightarrow{MM'} = \vec{u}$	Si $h_{(\Omega,k)}(M) = M'$ alors $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$	
Propriété caractéristique		Si $S_I(M) = M'$ et $S_I(N) = N'$ $\overrightarrow{M'N'} = -\overrightarrow{MN}$	Si $t_{\vec{u}}(M) = M'$ et $t_{\vec{u}}(N) = N'$ $\underset{M'N'}{\underbrace{\text{alors}}}$	Si $h_{(\Omega,k)}(M) = M'$ et $h_{(\Omega,k)}(N) = N'$ alors $\overrightarrow{M'N'} = k\overrightarrow{MN}$	
Conservation de l'alignement	Si $\overrightarrow{AB} = a\overrightarrow{AC}$ et $T(A) = A'$ et $T(B) = B'$ et $T(C) = C'$ alors $\overrightarrow{A'B'} = a\overrightarrow{A'C'}$.				
Conservation du parallélisme	Si $(D_1)//(D_2)$ et $T((D_1)) = (D_1')$ et $T((D_2')) = (D_2')$ alors $(D_1')//(D_2')$. Si $(D_1) \perp (D_2)$ et $T((D_1)) = (D_1')$ et $T((D_2')) = (D_2')$ alors $(D_1') \perp (D_2')$.				
Conservation de l'orthogonalité					
Conservation du milieu	Si G est le milieu $[AB]$ et $T(A) = A'$ et $T(B) = B'$ et $T(G) = G'$ alors G' est le milieu de $[A'B']$.				
Conservation de la distance	Si $T(A) = A'$ et $T(B) = B'$ alors $A'B' = AB$.				
Conservation de la mesure d'un angle Si $T(A) = A'$ et $T(B) = B'$ et $T(C) = C'$ alors $\widehat{B'A'C'} = \widehat{BAC}$ (Argue).				\widehat{BAC} (Angles géomé-	
Conservation de la nature d'une figure	soient (\mathcal{E}) et (\mathcal{E}') sont de la même nature. Soient (\mathcal{E}) et (\mathcal{F}) deux figures du plan avec $T((\mathcal{E})) = (\mathcal{E}')$ et $T((\mathcal{F})) = (\mathcal{F}')$. Si $M \in (\mathcal{E}) \cap (\mathcal{F})$ alors $T(M) = M' \in (\mathcal{E}') \cap (\mathcal{F}')$				
Image de l'intersection de figures					

Exercice

Soit T une des transformations en haut.

- 1. Montrer que si T n'est pas une symétrie axiale alors l'image d'une droite par cette transformation est une droite qui lui est parallèle.
- 2. Déterminer l'image d'un cercle par la transformation T.

4 Exercices

On considere la figure suivante, où ABC est un triangle équilatéral. Compléter ce qui suit :

- 1. S_O est la symétrie centrale de centre O.
 - (a) $S_O(A) = \cdots$
- (b) $S_O(H) = \cdots$
- (c) $S_O(C) = \cdots$
- 2. $S_{(OA)}$ est la symétrie axiale d'axe (OA).
 - (a) $S_{(OA)}(B) = \cdots$ (b) $S_{(OA)}(H) = \cdots$ (c) $S_{(OA)}(G) = \cdots$
- 3. $t_{\overrightarrow{FE}}$ est la translation de vecteur \overrightarrow{FE} .

- (a) $t_{\overrightarrow{FE}}(G) = \cdots$ (b) $t_{\overrightarrow{FE}}(F) = \cdots$ (c) $t_{\overrightarrow{FE}}(C) = \cdots$ 4. $h_{(O,-2)}$ est l'homothétie de centre O et de rapport -2.

(a)
$$h_{(O,-2)}(E) = \cdots$$
 (b) $h_{(O,-2)}(G) = \cdots$ (c) $h_{(O,-2)}(F) = \cdots$

(b)
$$h_{(O,-2)}(G) = \cdots$$

(c)
$$h_{(O,-2)}(F) = \cdots$$

Déterminer la transformation T dans la cas suivant :

- 1. ABCD est un parallélogramme tel que T(A) = C et T(B) = D.
- 2. ABCD est un carré tel que T(A) = B et T(D) = C.
- 3. ABC est un triangle isocèle tel que T(A) = A et T(B) = C.
- 4. ABC est un triangle équilatéral, I et J sont les milieux respectifs de [AB] et [AC] tel que T(I) = Bet T(J) = C.

Soit ABCD un parallélogramme de centre O.

La droite (Δ) passant par O coupe (AD) en M et (BC) en N.

Soit S_O la symétrie centrale de centre O.

- 1. Déterminer l'image de la droite (Δ) par S_O .
- 2. Déterminer l'image de la droite (AD) par S_O .
- 3. Montrer que O est le milieu de [MN].

Exercice 4

Soit ABC un triangle rectangle en B, I et J sont les milieux respectives de [BC] et [AB], et H le projeté orthogonal de B sur (AC).

Soit $S_{(IJ)}$ la symétrie axiale d'axe (IJ).

1. Montrer que $S_{(IJ)}(B) = H$.

2. Déduire que (HI) et (HJ) sont perpendiculaires.

Exercice 5

Soit ABC un triangle rectangle en A tel que AB = 2 et BC = 4.

Soit I est le milieu de [BC], et D l'image du point B par la translation de vecteur AI.

Montrer que le triangle DBI est équilatéral.

Exercice 6

Soient A et B deux points du plan, et T la transformation du plan qui à chaque point M du plan on associe le point M' tel que $2\overline{M'A} - 2\overline{M'B} + 3\overline{M'M} = \vec{0}$.

- 1. Montrer que T est une translation.
- 2. Construire l'image du cercle (\mathcal{C}) de centre A est de rayon 2 par T.

Exercice 7

ABCD est un parallélogramme de centre O et H le projeté orthogonal de B sur la droite (AC). Soient A', B' et C' des points tels que $A' = S_A(B), B' = S_H(B)$ et $C' = S_C(B)$.

1. Construire la figure.

- 2. Montrer que A', B', C' et D sont les images respectives de A, H, C et O par une homothétie h d'éléments à déterminer.
- 3. En déduire que :
 - (a) A', B', C' et D sont alignés.
 - (b) A', B', C' et D appartiennent à une droite parallèle à (AC).
 - (c) D est le milieu du segment [A'C'].

Exercice 8

A, B, C et D des points d'une droite (D) tels que B est le milieu [AD] et C est le milieu [BD]. Soit M un point qui n'est sur la droite (D). La droite passant par B et parallèle à (AM) et celle passant par C et parallèle à (BM) se coupent au point N.

- 1. Construire la figure.
- 2. Soit h l'homothétie de centre D et rapport $\frac{1}{2}$.
 - (a) Déterminer les images de A et B par l'homothétie h.
 - (b) Montrer que N est l'image de M par l'homothétie h.
- 3. Montrer que les points M, N et D sont alignés.

Exercice 9

ABCD est un parallélogramme et I le point défini par $\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB}$. Soit h l'homothétie de centre I qui transforme A en B.

- 1. Montrer que -3 est le rapport de h.
- 2. Soit E le point d'intersection des droites (AD) et (IC).
 - (a) Montrer que h(E) = C
 - (b) En déduire que BC = 3AE.
- 3. On pose h(D) = D'. Montrer que les points B, C et D' sont alignés.

Exercice 10

ABC un triangle de centre de gravité G.

Soient A', B' et C' les milieux respectives de [BC], [AC] et [AB], et M un point différent de A, B et C. On considère h l'homothétie de centre G et de rapport $-\frac{1}{2}$.

- 1. Montrer que $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AA'}$.
- 2. Déduire que A' = h(A).
- 3. Soient (Δ_1) , (Δ_2) et (Δ_3) les images respectives de (AM), (BM) et (CM) par h.

Montrer que les droites (Δ_1) , (Δ_2) et (Δ_3) se coupent en un point N tels que $\overrightarrow{GN} = -\frac{1}{2}\overrightarrow{GM}$.

Exercice 11

ABC est un triangle.

Soient E est le symétrique de A par rapport à B et D est le symétrique de A par rapport à C.

Soit M le milieu de [BD] et N le milieu de [CE]. Les droites (AM) et (BC) se coupent en un point P, et (AN) et (BC) en un point Q.

- 1. Montrer que P et Q sont les centres de gravité respectifs des triangles ABD et ACE.
- 2. En déduire que $\overrightarrow{AM} = \frac{3}{2}\overrightarrow{AP}$ et $\overrightarrow{AN} = \frac{3}{2}\overrightarrow{AQ}$.
- 3. Soit I le milieu [CD] et J le milieu [BE].

On considère l'homothétie h de centre A et de rapport $\frac{3}{2}$.

- (a) Déterminer h(C) et h(B).
- (b) En déduire que I, J, M et N sont alignés.