· Basic Formulae

$$1. \int u.v dx = u \int v dx - \int (u' \int v dx) \cdot dx$$

OR

$$\int u \cdot v \, dx = u v_1 - u' v_2 + u'' v_3 - u''' v_4 - \dots \left[\frac{H}{H} u'' - 0 \right]$$

2. Even function

$$f(x) = f(-x)$$
here,
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

3. Odd function

$$f(-x) = -f(x)$$
here
$$\int f(x) dx = 0$$

4.
$$\int e^{ax} \cdot \sinh x \, dx = \underbrace{e^{ax}}_{a^2 + b^2} \left[a \sin bx - b \cos bx \right]$$

$$\int e^{ax} \cdot \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} \left[a \cos bx + b \sin bx \right]$$

S. Sin nT = 0

· Fourier Series

$$F(x) = Q_0 + \sum_{n=1}^{\infty} Q_n Cosnx + \sum_{n=1}^{\infty} b_n Sinnx$$

where,
$$a_0 = \frac{1}{2\pi} \int_{c}^{c} f(x) dx$$

$$\frac{1}{2} \int_{c}^{c} f(x) dx$$

$$\frac{1}{2} \int_{c}^{c} \frac{1}{2} \int_{c$$

$$Q_n = \prod_{x \in \mathcal{X}} f(x) \cdot \cos nx \, dx$$

$$\lim_{x \in \mathcal{X}} \frac{\cos nx}{\cos nx} \, dx$$

$$\lim_{x \in \mathcal{X}} \frac{\cos nx}{\cos nx} \, dx$$

$$\lim_{x \in \mathcal{X}} \frac{\cos nx}{\cos nx} \, dx$$

$$bn = \iint_{\pi} f(x) \sin nx \, dx$$

eg if given
$$(0,2\pi)$$
 at $f(x) = \infty$
here $0 = \frac{1}{2\pi} \int_{0}^{2\pi} x \cdot dx$

$$Q_n = \frac{1}{\pi} \int_{S}^{\infty} x \cdot \cos nx \qquad ; \quad b_n = \frac{1}{\pi} \int_{S}^{\infty} x \cdot \sin nx \, dx$$

eg if given
$$f(x) = \begin{cases} -T & -T < x < 0 \\ x & 0 < x < T \end{cases}$$

here $a_0 = \frac{1}{2\pi} \int_{-T}^{-T} dx + \frac{1}{2\pi} \int_{0}^{T} x dx$

$$a_n = \frac{1}{\pi} \int_{-T}^{-T} (\cos nx) dx + \frac{1}{\pi} \int_{0}^{T} x (\cos nx) dx$$

1. Cosine series

$$a_0 \sim \frac{1}{l} \int_0^l f(x) dx$$

$$a_n = \frac{2}{l} \int_{0}^{l} f(x) \cos n\pi x dx$$

here,
$$f(x) = a_0 + \underset{n=1}{\overset{\infty}{\leq}} a_n \cos \frac{n\pi x}{2} d\alpha$$

2. Sine series

$$bn = \frac{2}{l} \int_{l}^{l} f(x) \cdot \sin \frac{n\pi}{l} x \cdot dx$$

neve,
$$f(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x . d\alpha$$

· Parseval's Identity

$$\frac{1}{2l} \int_{0}^{c+2l} \left[f(x) \right]^{2} dx = a_{0}^{2} + \frac{1}{n} \underbrace{\leq}_{n=1}^{\infty} \left(a_{n}^{2} + b_{n}^{2} \right)$$

$$Q_0 = \frac{1}{1} \int_{C} f(x) dx$$

$$Q_n = \int\limits_{\mathcal{L}} \int\limits_{\mathcal{L}} f(x) \cos \frac{n\pi x}{2} dx$$

bn =
$$\int_{\mathcal{Q}} f(x) \sin n\pi x dx$$

here,		π (() 2 ·		
half range cosine	<u>1</u> π) (f(x)) dac =	a. +	1 [a,2 1 a2 +]
sine	1	$\int_{a}^{a} (f(x))^{2} dx$	£	1 [b12 + b2 +]

· Harmonic Analysis

$$y = f(x) = \underbrace{a_0}_{2} + \underbrace{\xi}_{n=1} \left(a_n \cos n a + b_n \sin n a \right)$$

$$a_0 = \frac{2}{2} \le 7$$

$$an = 2 \le y \cos \theta \qquad \text{when } Amp = 10^{2} + b_1^{2}$$

hue,	×	0	Y	Ysino	Y cos 8	
	<u> </u>	60-00-0	9			
				·	',	
	١	60×1 = 60	18		,	
	2	120	ચ 4			
	3	180	२ ४			
	4	240	26			
	5	3 0 0	a٥			