XTEA

Gruppe 109 – Aufgabe A502

Liming Kuang Yaxuan Chen Feng Hu

25.08.2022

Agenda

Lösungsansatz

2 Korrektheit

Performanzanalyse

Aufbau einer Feistelchiffre

- Blockverschlüsselung mit einer bestimmten Blocklänge, z. B. 64-Bit
- Ein Block wird in zwei (meist gleich große) Teile geteilt und in *n* aufeinanderfolgenden Runden verarbeitet
- Rundenfunktion
- umkehrbare Verknüpfung, oft verwendet XOR

Strukturvergleich

Feistelchiffre vs. TEA vs. XTEA

Padding auf Blocklänge

Padding Verfahren: z. B. PKCS#7

- Padding muss immer gemacht werden, d. h. mindestens ein Padding-Byte
- Wert des Padding-Byte = Anzahl der aufzufüllenden Bytes
- Wenn die Länge des Klartextes bereits ein Vielfaches der Blocklänge ist, müssen auch 8 Padding-Bytes hinzugefügt werden

Verarbeitung mehrerer Blöcke

- ECB (Electronic Code Book Mode): Jeder Block wird unabhängig verschlüsselt.
- CBC (Cipher Block Chaining Mode): Jeder Geheimtextblock fließt in den nächsten ein und für den ersten Block wird ein Initialisierungsvektor (IV) benötigt.

Test Methodologie

- Test Pyramid
 - ► End-to-End Test
 - ► Service Test
 - ▶ Unit Test
- In unseren Tests wurde eine vereinfachte Version ohne Service Test verwendet

End-to-End Test

- Bash Skript einfache Batch-Verarbeitung von umfangreichen Benutzereingaben
- 5 Tests insgesamt:
 - 4 Tests für normale Eingaben
 - ▶ Ein umfangreicher Test der Fehlerhandlung, der 11 verschiedene Fehleingaben enthält
- Beispiele der Fehleingaben:
 - Fehlende Eingabedatei.
 - ► Falsches Format von Schlüssel/IV-Eingabe. (z. B.: -k a,12,345,b; -k 1,2,3)
 - ► Falsche Rheinfolge der Optionen und ungültige Option.(z. B.: -o steht vor -V/-B; -not-an-option; -x;)

Unit Test

- C-Programm, mit assert () realisiert
- Relativ isolierte Tests, mit denen die Korrektheit jeder einzelnen Funktionsimplementierung verifiziert wurde
- 9 wichtigsten c-Funktionen wurden getestet
- Die grundlegende funktionale Korrektheit jeder Funktion wird getestet.
- Zusätzlich noch 14 Rand-/Sonderfälle, z. B.:
 - wie xtea_encrypt () Funktion paddet, wenn die L\u00e4nge der Eingabe kleiner als die Blockl\u00e4nge ist.
 - maximale/minimale Eingabedaten für xtea_encrypt_block () Funktion

Laufzeitanalyse

- GNU Profiler
 - ▶ -pg
 - -gropf
- Verschlüsselung xtea_encrypt_block () und Hex-codierung binary_to_hex ().
 - CBC Zeitaufwand
- Zeitmessung
 - clock_gettime (CLOCK_MONOTONIC, struct timespec * res)

Vergleich

Naive C Implementierung vs. Assemblerimplementierung

Vergleich

Naive C Implementierung vs. C Implementierung mit Lookup-Tabelle

