Graph Applications Pattern Recognition Automata

Finite Automaton

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

Input finished

Rejection

| | a | b | a |

Input finished

Languages Accepted by FAs FA M

Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that bring M to an accepting state}

Example

$$L(M) = \{\lambda, ab, abba\}$$

Formal Definition

Finite Automaton (FA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F: set of accepting states

Input Alphabet Σ

$$\Sigma = \{a,b\}$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

Set of Accepting States F

$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

δ	а	Ь	
q_0	q_1	q ₅	
q_1	9 5	92	
q_2	q_5	q_3	
q ₃	q_4	<i>q</i> ₅	a,b
<i>q</i> ₄	q ₅	q ₅	
q ₅	<i>q</i> ₅	q ₅	q_5
b a a b a,b			
$\longrightarrow (q_0) \xrightarrow{a} (q_1) \xrightarrow{b} (q_2) \xrightarrow{b} (q_3) \xrightarrow{a} (q_4)$			

Regular Languages

Definition:

A language L is regular if there is FA M such that L = L(M)

Observation:

All languages accepted by FAs form the family of regular languages

There exist languages which are not Regular:

Example:
$$L=\{a^nb^n:n\geq 0\}$$

There is no FA that accepts such a language

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$${a,bc}* = {\lambda,a,bc,aa,abc,bca,...}$$

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$
 (r_1)

Are regular expressions

Example

Regular expression: $(a+b)\cdot a*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages

Standard Representations of Regular Languages

String Matching Problem Concept

Regular expressions brute force algorithm complexity

Finite State Machines
Knuth-Morris-Pratt(KMP) Algorithm

Pre-processing complexity

Pattern Matching Algorithms

The Problem

```
Given a text T and a pattern P, check
 whether Poccurs in T
  eg: T = {aabbcbbcabbbcbccccabbabbccc}
  Find all occurrences of pattern P = bbc
There are variations of pattern matching
  Finding "approximate" matchings
  Finding multiple patterns etc..
```

Why String Matching?

Applications in Computational Biology

DNA sequence is a long word (or text) over a 4-letter alphabet

GTTTGAGTGGTCAGTCTTTTCGTTTCGACGGAGCCCCCAATTAA
TAAACTCATAAGCAGACCTCAGTTCGCTTAGAGCAGCCGAAA

• • • • •

Find a Specific pattern W

Finding patterns in documents formed using a large alphabet

Word processing

Web searching

Desktop search (Google, MSN)

Matching strings of bytes containing

Graphical data

Machine code

grep in unix

grep searches for lines matching a pattern.

String Matching

```
Text string T[0..N-1]

T = "abacaabaccabacabaabb"

Pattern string P[0..M-1]

P = "abacab"

Where is the first instance of P in T?

T[10..15] = P[0..5]

Typically, N >>> M
```

Java Pattern Matching Utilities

Java provides an API for pattern matching with regular expressions java.util.regex

Regular expressions describe a set of strings based on some common characteristics shared by each string in the set. eg: a* ={ ,a, aa, aaa, ...}

Regular expressions can be used as a tool to search, edit or manipulate text or data

perl, java, C#

Java Pattern Matching Utilities

```
java.util.regex
    Pattern
         Is a compiled representation of a regular expression.
         Eg: Pattern p = Pattern.compile("a*b");
    Matcher
         A machine that performs match operations on a character sequence by
           interpreting a pattern.
         Eq: _ Matcher m = p.matcher("aabbb");
Example:
    public static void main( String args[] ) {
          Pattern p = Pattern.compile("(aa|bb)*");
          Matcher m = p.matcher("aabbb");
          boolean b = m.matches(); //match the entire input sequence against the
       pattern
         // or boolean b = m.find(); // match the entire input sequence against the pattern
          System.out.println("The value is " + b);
```

String Matching

```
abacaabaccabacabaabb
abacab
 abacab
  abacab
   abacab
    abacab
     abacab
      abacab
       abacab
        abacab
         abacab
          abacab
```

The brute force algorithm 22+6=28 comparisons.

Naïve Algorithm (or Brute Force)

Assume |T| = n and |P| = m

Pattern P Pattern P Pattern P

Compare until a match is found. If so, return the index where match occurs

else return -1

Brute Force

```
static int match(char[] T, char[] P){
      for (int i = 0; i < T.length; i++) {</pre>
        boolean flag = true;
        if (P[0] == T[i])
          for (int j = 1; j < P.length; j++)
             if (T[i+j] != P[j])
               {flag = false; break;}
         if (flag) return i;
```

A bad case

```
0000000000000001
0000-
 0000-
  0000-
   0000-
    0000-
     0000-
      0000-
        0000-
         0000-
          0000-
           0000-
            0000-
             00001
```

60+5 = **65** comparisons are needed

A bad case

```
0000000000000001
0000-
 0000-
  0000-
   0000-
    0000-
     0000-
      0000-
        0000-
         0000-
          0000-
           0000-
            0000-
             00001
```

60+5 = 65
comparisons are
needed
How many of them
could be avoided?

Typical text matching

20+5=**25** comparisons are needed

(The match is near the same point in the target string as the previous example.)

String Matching

Brute force worst case *O*(MN)

Expensive for long patterns in repetitive text

How to improve on this?

Intuition:

Remember what is learned from previous matches

Finite Automaton (FA)

FA is a computing machine that takes

A string as an input

Outputs YES/NO answer

That is, the machine "accepts" or "rejects" the string

FA Model

Input to a FA

Strings built from a fixed alphabet {a,b,c} Possible inputs: aa, aabbcc, a etc..

The Machine

A directed graph

Nodes = States of the machine

Edges = Transition from one state to another

Why Study FA's

Useful Algorithm Design Technique

Lexical Analysis ("tokenization")
Control Systems
Elevators, Soda Machines....

Modeling a problem with FSM is

Simple

Elegant

Knuth Morris Pratt (KMP) Algorithm

KMP - The Big Idea

Retain information from prior attempts.

Compute in advance how far to jump in P when a match fails.

```
Suppose the match fails at P[j] ≠ T[i+j].

Then we know P[O .. j-1] = T[i .. i+j-1].

We must next try P[O] ? T[i+1].

But we know T[i+1]=P[1]

What if we compare: P[1] ? P[O]

If so, increment j by 1. No need to look at T.

What if P[1] = P[O] and P[2] = P[1]?

Then increment j by 2. Again, no need to look at T.
```

In general, we can determine how far to jump without any knowledge of T!

Implementing KMP

Never decrement i, ever.

```
Comparing T[i] with P[j].
```

Compute a table **f** of how far to jump **j** forward when a match fails.

```
The next match will compare T[i] with P[f[j-1]]
```

Do this by matching P against itself in all positions.

Building the Table for f

P = 1010011

Find self-overlaps

<u>Prefix</u>	Overlap	j	<u>f</u>	
1	•	1	0	
10	•	2	0	
10 1	1	3	1	
1010	10	4	2	
10100	•	5	0	
10100 1	1	6	1	
1010011	1	7	1	

What f means

Prefix	Overlap	j	f	
1	•	1	0	
10	•	2	0	
10 1	1	3	1	
10 10	10	4	2	
10100		5	0	
10100 1	1	6	1	
1010011	1	7	1	

```
If f is zero, there is no self-match.

Set j=0

Do not change i.

The next match is T[i] ? P[0]
```

```
f non-zero implies there is a
self-match.
    E.g., f=2 means P[0..1] = P[j-
    2..j-1]
        Hence must start new
        comparison at j-2, since we
        know T[i-2..i-1] = P[0..1]
   In general:
    Set j=f[j-1]
    Do not change i.
        The next match is
            T[i] ? P[f[i-1]]
```

Favorable conditions

P = 1234567 Find self-overlaps

Prefix	Overlap	j	f	
1	•	1	0	
12	•	2	0	
123	•	3	0	
1234	•	4	0	
12345	•	5	0	
123456	•	6	0	
1234567	•	7	0	

Mixed conditions

P = 1231234 Find self-overlaps

Prefix	Overlap	j	f	
1	•	1	0	
12	•	2	0	
123	•	3	0	
123 1	1	4	1	
123 12	12	5	2	
123 123	123	6	3	
1231234	•	7	0	

Poor conditions

P = 1111110 Find self-overlaps

Prefix	Overlap	j	f
1	•	1	0
1 1	1	2	1
111	11	3	2
1111	111	4	3
11111	1111	5	4
111111	11111	6	5
1111110	•	7	0

KMP pre-process Algorithm

```
\mathbf{m} = |\mathbf{P}|;
Define a table F of size m
F[0] = 0;
i = 1; j = 0;
while(i < m) {</pre>
                                     Use
  compare P[i] and P[j];
                                   previous
  if(P[j] == P[i])
                                  values of f
     {F[i] = j+1;}
       i++; j++; }
  else if (j > 0) j = F[j-1];
  else {F[i] = 0; i++;}
```

KMP Algorithm

```
input: Text T and Pattern P
|T| = n
Compute Table F for Pattern P
i=j=0
while(i < n) {</pre>
  if(P[j]==T[i])
    { if (j == m-1) return i-m+1;
       i++; j++; }
  else if (j>0) j=F[j-1];
  else i++;
                             Use F to determine
                              next value for i.
output: first occurrence of P in T
```

KMP Performance

Pre-processing needs O(M) operations.

At each iteration, one of three cases:

Hence, maximum of 2N iterations. Thus, worst case performance is O(N+M).