

CEng 240 – Spring 2021 Week 2

Sinan Kalkan

A Broad Look at Programming and PL, Representation of data in computers

Disclaimer: Figures without reference are from either from "Introduction to programming concepts with case studies in Python" or "Programming with Python for Engineers", which are both co-authored by me.

Introduction to the Course

https://ceng240.github.io/

Spiectives

This course gives a brief introduction to a working understanding of basic computer organization, data representation, programming language constructs, and algorithmic thinking. It is designed as a first course of programming and supported by laboratory sessions for students outside of the Computer Engineering major.

Textbook

Programming with Python for Engineers, by S. Kalkan, O. T. Şehitoğlu and G. Üçoluk.
 Available at: https://pp4e-book.github.io/

Course conduct

- Weekly pre-recorded lectures released before the week.
- 2-hour live sessions with instructors.
- Office hours with the assistants.
- Lab exams.
- Midterm exam and final exam.

CAN CAO!

What is a computer?

- he most common context: An electronic device that has a 'microprocessor' in it.
 - Binary

■ The broader context: Any physical entity that can do 'computation'.

https://en.m.wikipedia.org/wiki/File:Computer_from_inside_018.jpg

What is programming?


```
typedef
        { char *key;
           int value;
           struct element*next;}
    element, *ep;
ep *Bucket entry;
#define KEY(p) (p->key)
#define VALUE(p) (p->value)
#define NEXT(p) (p->next)
void create Bucket(int size)
Bucket entry = malloc(size*sizeof(ep));
if (!Bucket entry)
  error("Cannot alocate bucket");
insert element(int value)
```

PROGRAM IN HIGH LEVEL LANGUAGE

METH Computer Engineering

METH Computer Engineering

Memory

- Random Access Memory (RAM)
- Allows reading and writing operations
- Each access requires an address

Etch, decode, execute cycle

■Fetch

Retrieve the next instruction from the memory

Decode

 Look at the opcode of the instruction and decode what actions should be performed.

Execute

Execute the actions identified in the decode phase.

OS

- Memory management
- Process management
- Device management
- File management
- Security
- User interface

From: "Invitation to Computer Science" book by G. M. Schneider, J. L. Gersting

This Week

- A Broad Look at Programming and PL (CH2)
 - Concept of Algorithm, Comparing algorithms, World of PLs, Low-High level PL, Interpreter vs Compiler, Programming Paradigms, Python as a PL

- Representation of data in computers (CH3)
 - Two's complement representation of integers, IEEE floating-point representation, Information loss with Floating Points, representation of characters, text and Boolean.

Administrative Notes

- Quiz 1 announced!
- Labs starting in two weeks.
- Midterm: 1 June, Tuesday, 17:40


```
typedef
   struct element
       { char *key;
          int value;
          struct element*next;}
     element, *ep;
ep *Bucket_entry;
#define KEY(p) (p->key)
#define VALUE(p) (p->value)
#define NEXT(p) (p->next)
void create_Bucket(int size)
Bucket_entry = malloc(size*sizeof(ep));
if (!Bucket entry)
   error("Cannot alocate bucket");
insert_element(int value)
```

PROGRAM IN HIGH LEVEL LANGUAGE

Concept of Algorithm, Comparing algorithms, World of PLs, Low-High level PL, Interpreter vs Compiler, Programming Paradigms, Python as a PL

A BROAD LOOK AT PROGRAMMING AND PL (CH2)

What does 'algorithm' mean?

- "A procedure or formula for solving a problem"
- "A set of instructions to be followed to solve a problem"
- "an effective method expressed as a finite list of well-defined instructions for calculating a function"
- "step-by-step procedure for calculations"

A formal definition of algorithm

"Starting from an initial state and initial input (perhaps empty), the instructions describe a **Computation** that, when executed, will proceed through a finite number of well-defined successive states, eventually producing "output" and terminating at a final ending state."

What is an algorithm?

An algorithm is a list that looks like

STEP 1: Do something

STEP 2: Do something

STEP 3: Do something

STEP N: Stop, you are finished

METU Computer Engineering

Valid Operations in Algorithms

- Sequential simple well-defined task, usually declarative sentence.
- Conditional- "ask a question and select the next operation on the basis of the answer to the question — usually an "ifthen" or "if then else"
- Iterative- "looping" instructions repeat a set of instructions

An example algorithm from our daily lives

Algorithm for Shampooing Your Hair

STEP	OPERATION
1	Wet your hair
2	Set the value of WashCount to 0
3	Repeat steps 4 through 6 until the value of WashCount equals 2
4	Lather your hair
5	Rinse your hair
6	Add 1 to the value of WashCount
7	Stop, you have finished shampooing your hair

Describing algorithms

Option 1: Use pseudo-code descriptions.

Algorithm. Calculate the average of numbers provided by the user.

Input: N -- the count of numbers

Output: The average of N numbers to be provided

Step 1: Get how many numbers will be provided and store that in N

Step 2: Create a variable named Result with initial value 0

Step 3: Execute the following step N times:

Step 4: Get the next number and add it to Result

Step 5: Divide Result by N to obtain the average

Describing algorithms

Option 2: Use flow-charts.

Comparing Algorithms

- Rougly count the main number of steps in terms of n, the 'size' of the problem.
- Example: Guess my number!
 - Random guessing
 - Sweeping from beginning
 - Middle guessing

Comparing Algorithms

Engineering

The World of Programming Languages

Interpreter vs. Compiler

Interpreter vs. Compiler

PL Paradigms

- Imperative
- Functional
- Object-oriented
- Logical-declarative
- Concurrent
- Event-driven

Guido van Rossum (1956 -)

- Zen of Python [https://en.wikipedia.org/wiki/Zen_of_Python]
 - Beautiful is better than ugly.
 - Explicit is better than implicit.
 - Simple is better than complex.
 - Complex is better than complicated.
 - Flat is better than nested.
 - Sparse is better than dense.
 - Readability counts.
 - ...

METH Computer Engineering

- An interpretive/scripting PL that:
 - Longs for code readability
 - Ease of use, clear syntax
 - Wide range of applications, libraries, tools
- Multiple Paradigms:
 - Functional
 - Imperative
 - Object-oriented

METH Computer Engineering

- Started at the end of 1980s.
- V2.0 was released in 2000
 - With a big change in development perspective: Community-based
 - Major changes in the facilities.
- V3.0 was released in 2008
 - Backward-incompatible
 - Some of its features are put into v2.6 and v2.7.

- Where does the name come from?
 - While van Possum was developing Python, he read the scripts of Monty Python's Flying Circus and thought 'python' was "short, unique and mysterious" for the new language [1]
- One goal of Python: "fun to use"
 - The origin of the name is the comedy group "Monty Python"
 - This is reflected in sample codes that are written in Python by the original developers.


```
The Engineering
```

```
skalkan@divan:~$ python
Python 2.5.2 (r252:60911, Jan 24 2010, 17:44:40)
[GCC 4.3.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
```


THERE ARE TYPES OF PEOPLE IN THE WORLD: THOSE WHO UNDERSTAND BINARY AND THOSE WHO DON'T

Two's complement representation of integers, IEEE floating-point representation, Information loss with Floating Points, representation of characters, text and Boolean.

REPRESENTATION OF DATA IN **COMPUTERS (CH3)**

Data Representation

- Based on 1s and 0s
 - So, everything is represented as a set of binary numbers
- We will now see how we can represent:
 - Integers: 3, 1234435, -12945 etc.
 - Floating point numbers: 4.5, 124.3458, -1334.234 etc.
 - Characters: /, &, +, -, A, a, ^, 1, etc.
 - • •

Binary Representation of Numeric Information

- Decimal numbering system
 - Base-10
 - Each position is a power of 10 $3052 = 3 \times 10^3 + 0 \times 10^2 + 5 \times 10^1 + 2 \times 10^0$
- Binary numbering system
 - Base-2
 - Uses ones and zeros
 - Each position is a power of 2 $1101 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

Decimal-to-binary Conversion

	Dividend		Divisor	Quotient	Remainder
Step 1	19	÷	2	= 9	1 +
Step 2	9	÷	2	= 4	1
Step 3	4	÷	2	= 2	0
Step 4	2	÷	2	= 1	0
Step 5	1	÷	2	= 0	1
	Continue unti	quotien	t is zero	The result:	

Binary Representation of Numeric Information (continued)

- Representing integers
 - Decimal integers are converted to binary integers
 - Question: given k bits, what is the value of the largest integer that can be represented?
 - 2^k 1
 - Ex: given 4 bits, the largest is $2^4-1 = 15$
- Signed integers must also represent the sign (positive or negative) Sign/Magnitude notation

Binary Representation of Numeric Information (continued)

Sign/magnitude notation

$$0 101 = +5$$

Problems:

- Two different representations for 0:
 - **1** 000 = -0
 - -0000 = +0
- Addition & subtraction require a watch for the sign! Otherwise, you get wrong results:
 - -0010(+2) + 1010(-2) = 1100(-4)

Arithmetic in Computers is Modular

Let's add two numbers in binary (Assume that there is no sign bit)

In other words:

- Numbers larger than or equal to 16 (2^4) are discarded in a 4-bit representation.
- Therefore, 11 + 14 yields 9 in this 4-bit representation.
- This is actually modular arithmetic:

$$11 + 14 \mod 16 \equiv 9 \mod 16$$

Binary Representation of Numeric Information (continued)

- Two's complement instead of sign-magnitude representation
 - Positive numbers have a leading 0.
 - 5 => 0101
 - The representation for negative numbers is found by subtracting the absolute value from 2^N for an N-bit system:
 - $-5 \Rightarrow 2^4 5 = 16 5 = (11)_{10} \Rightarrow (1011)_2$
- Advantages:
 - 0 has a single representation: +0 = 0000, -0 = 0000
 - Arithmetic works fine without checking the sign bit:
 - **•** 1011 (-5) + 0110 (6) = 0001 (1)
 - 1011 (-5) + 0011 (3) = 1110 (-2)

METH Computer Engineering

Binary Representation of Numeric Information (continued)

- Shortcut to convert from "two's complement":
 - If the leading bit is zero, no need to convert.
 - If the leading bit is one, invert the number and add 1.
- What is our range?
 - With 2's complement we can represent numbers from -2^{N-1} to 2^{N-1} 1 using N bits.
 - 8 bits: -128 to +127.
 - 16 bits: -32,768 to +32,767.
 - 32 bits: -2,147,483,648 to +2,147,483,647.

Binary Number	Decimal Value	Value in Two's Complement
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Binary Representation of Numeric Information (continued)

Example:

- We want to compute: 12 6
- **1**2 => 01100
- -6 => -(00110) => (11001)+1 => (11010)

01100

+ 11010

So, addition and subtraction operations are simpler in the Two's Complement

representation

Binary Representation of Numeric Information (continued)

Due to its advantages, two's complement is the most common way to represent integers on computers.

Why does Two's Complement work?

- Inversion and addition of a 1-bit correspond effectively to subtraction from 0 i.e., negative of a number.
- Negative of a binary number X: $(00...00)_2$ $(X)_2$
- Note that $(00...00)_2 = (11...11)_2 + (1)_2$
- In other words:
 - $(00...00)_2$ $(X)_2$ = $(11...11)_2$ $(X)_2$ + $(1)_2$.

(i.e., how we find two's complement)

METH Computer Engineering

Why does Two's Complement work?

- A 2nd perspective:
 - $i j \mod 2^N = i + (2^N j) \mod 2^N$
 - Example:
 - Consider X and Y are positive numbers.

$$X + (-Y) = X + (2^N - Y)$$

$$= 2^N - (Y - X) = -(Y - X) = X - Y$$

METH Computer Engineering

Why does Two's Complement work?

- A smart trick used in mechanical calculators
 - To subtract *b* from *a*, invert *b* and add that to *a*. Then discard the most significant digit.

http://en.wikipedia.org/wiki/Method_of_complements

Conversion of the digits after the dot into binary:

- 1st Way:
 - $-0.375 \rightarrow 0x\frac{1}{2} + 1x\frac{1}{4} + 1x\frac{1}{8} \rightarrow 011$
- 2nd Way:

	Fraction	Multiplier		Whole	Fraction
Step 1	0.375	× 2	=	0	75
Step 2	0.75	× 2	=	1	5
Step 3	0.5	× 2	=	1	. 0
	T.				
	Ine	e result:	1		Continue unt

- Approach 1: Use fixed-point
 - Similar to integers, except that there is a decimal point.
 - E.g.: using 8 bits:

Assumed decimal point

- Location of the decimal point changes the value of the number.
 - E.g.: using 8 bits:

Assumed decimal point

- Problems with fixed-point:
 - Limited in the maximum and minimum values that can be represented.
 - For instance, using 32-bits, reserving 1-bit for the sign and putting the decimal point after 16 bits from the right, the maximum positive value that can be stored is slightly less than 2¹⁵.
 - Allowing larger values gives away from the precision (the decimal part).

- Solution: Use scientific notation: a x 2^b (or ±M x B^{±E})
 - Example: 5.75
 - $5 \to 101$
 - $0.75 \rightarrow \frac{1}{2} + \frac{1}{4} \rightarrow 2^{-1} + 2^{-2} \rightarrow (0.11)_2$
 - 5.75 \rightarrow (101.11)₂ x 2⁰
- Number is then normalized so that the first significant digit is immediately to the left of the binary point
 - Example: 1.0111 x 2²
- We take and store the mantissa and the exponent.

- This needs some standardization for:
 - where to put the decimal point
 - how to represent negative numbers
 - how to represent numbers less than 1

IEEE 32bit Floating-Point Number Representation

• M x 2^E

 $(2-2^{-23})\times 2^{127}$

- Exponent (E): 8 bits
 - Add 127 to the exponent value before storing it
 - E can be 0 to 255 with 127 representing the real zero.
- Fraction (M Mantissa): 23 bits
- $2^{128} = 1.70141183 \times 10^{38}$

IEEE 32bit Floating-Point Number Representation

- Example: 12.375
- The digits before the dot:
 - $(12)_{10} \rightarrow (1100)_2$
- The digits after the dot:
 - 1st Way: $0.375 \rightarrow 0x\frac{1}{2} + 1x\frac{1}{4} + 1x\frac{1}{8} \rightarrow 011$
 - 2nd Way: Multiply by 2 and get the integer part until 0:
 - $0.375 \times 2 = 0.750 = 0 + 0.750$
 - $0.750 \times 2 = 1.50 = 1 + 0.50$
 - $0.50 \times 2 = 1.0 = 1 + 0.0$
- $(12.375)_{10} = (1100.011)_2$
- NORMALIZE (move the point): $(1100.011)_2 = (1.100011)_2 \times 2^3$
- Exponent: 3, adding 127 to it, we get 1000 0010
- Fraction: 100011

METU Computer Engineering

Why add bias to the exponent?

It helps in comparing the exponents of the same-sign realnumbers without looking out for the sign of the exponent.

Binary Number	Decimal Value	Value in Two's Complement	Value with bias 7
0000	0	0	-7
0001	1	1	-6
0010	2	2	-5
0011	3	3	-4
0100	4	4	-3
0101	5	5	-2
0110	6	6	-1
0111	7	7	0
1000	8	-8	1
1001	9	-7	2
1010	10	-6	3
1011	11	-5	4
1100	12	-4	5
1101	13	-3	6
1110	14	-2	7
1111	15	-1	8

To read more on this:

https://blog.angularindepth.com/the-mechanics-behind-exponent-bias-in-floating-point-9b3185083528

METH Computer Engineering

IEEE 32bit Floating-Point Number Representation

- Zero:
 - Exponent: All zeros
 - Fraction: All zeros
 - +0 and -0 are different numbers but they are equal!
- Infinity:
 - Exponent: All ones
 - Fraction: All zeros

- Not a number (NaN):
 - Exponent: All ones
 - Fraction: non-zero fraction.

http://steve.hollasch.net/cgindex/coding/ieeefloat.html

IEEE 32bit Floating-Point Number Representation

- What is the maximum positive IEEE floating point value that can be stored?
 - Just less than $2^{128}[(2-2^{-23})\times 2^{127}]$ to be specific]
 - Why? 2¹²⁸ is reserved for NaN.
- Check out these useful links:
 - http://steve.hollasch.net/cgindex/coding/ieeefloat.html
 - http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html

METU Computer Engineering

IEEE 32bit Floating-Point Number Representation

Now consider 4.1:

- 4 => (100)₂
- **0.1** =>

$$x = 0.2 = 0 + 0.2$$

$$x = 0.4 = 0 + 0.4$$

$$x = 0.8 = 0 + 0.8$$

$$x = 1.6 = 1 + 0.6$$

•
$$x 2 = 1.2 = 1 + 0.2$$

$$x = 0.4 = 0 + 0.4$$

$$x = 0.8 = 0 + 0.8$$

-

So,

- Representing a fraction which is a multiple of 1/2ⁿ is lossless.
- Representing a fraction which is not a multiple of 1/2ⁿ leads to precision loss.

>>> 0.9375 - 0.9

Representing Real Numbers: Information Loss

```
0.03749999999999998
>>> 2000.0041 - 2000.0871
-0.0829999999998563
>>> 2.0041 - 2.0871
-0.0829999999999974
>>> sin(PI)
1.2246467991473532e-16
>>> cos(PI)
-1.0
>>> A = 1234.567
>>> B = 45.67834
>>> C = 0.0004
>>> AB = A + B
>>> BC = B + C
>>> print (AB+C)
1280.2457399999998
>>> print (A+BC)
```

1280.2457400000001

METU Computer Engineering

Representing Real Numbers: Information Loss

What can you do?

- 1. It is in your best interest to refrain from using floating points. If it is possible transform the problem to the integer domain.
- 2. Use the most precise type of floating point provided by your high-level language, some languages provide you with 64 bit or even 128 bit floats, use them.
- 3. Use less precision floating points only when you are in short of memory.
- 4. Subtracting two floating points close in value has a potential danger.
- 5. If you add or subtract two numbers which are magnitude-wise not comparable (one very big the other very small), it is likely that you will lose the proper contribution of the smaller one. Especially when you iterate the operation (repeat it many times), the error will accumulate.
- 6. You are strongly advised to use well-known, commonly used scientific computing libraries instead of coding floating point algorithms by yourself.

Numbers in Python

- Integers
- Floating point numbers
- Complex numbers

Representing Boolean Values

- The CPU often needs to compare numbers, or data:
 - **3** >? 4
 - 125 = ? 1000/8
 - \blacksquare 3 \leq ? 12345.34545/12324356.0
- We have the truth values for representing the answers to such comparisons:
 - If correct: TRUE, True, true, T, 1
 - If not correct: FALSE, False, false, F, 0

Binary Representation of Textual Information

- ASCII (American Standard Code for Information Interchange) code set
 - Originally: 7 bits per character; 128 character codes
- Unicode code set
 - 16 bits per character
- UTF-8 (Universal Character Set Transformation Format) code set.
 - Variable number of 8-bits.

ASCII

7 bits long

Binary Representation of Textual Information (cont'd)

	тертевет	
Decimal	Binary	Val.
48	00110000	0
49	00110001	1
50	00110010	2
51	00110011	3
52	00110100	4
53	00110101	5
54	00110110	6
55	00110111	7
56	00111000	8
57	00111001	9
58	00111010	:
59	00111011	;
60	00111100	<
61	00111101	=
62	00111110	>
63	00111111	?
64	01000000	@
65	01000001	А
66	01000010	В

Hex.	Unicode	Charac.
0x30	0x0030	0
0x31	0x0031	1
0x32	0x0032	2
0x33	0x0033	3
0x34	0x0034	4
0x35	0x0035	5
0x36	0x0036	6
0x37	0x0037	7
0x38	0x0038	8
0x39	0x0039	9
0x3A	0x003A	:
0x3B	0x003B	;
0x3C	0x003C	<
0x3D	0x003D	=
0x3E	0x003E	>
0x3F	0x003F	?
0x40	0x0040	@
0x41	0x0041	А
0x42	0x0042	В

Unicode
16 bits long

Partial listings only!

METH Computer Engineering

UTF-8 Illustrated

Bits	Last code point	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
7	U+007F	Oxxxxxxx					
11	U+07FF	110xxxxx	10xxxxxx				
16	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx			
21	U+1FFFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx		
26	U+3FFFFF	111110xx	10xxxxxx	10xxxxxx	10xxxxxx	10xxxxxx	
31	U+7FFFFFF	1111110x	10xxxxxx	10xxxxxx	10xxxxxx	10xxxxxx	10xxxxxx

Character		Binary code	Binary UTF-8
<u>\$</u>	U+0024	0100100	00100100
¢	U+00A2	00010100010	11000010 10100010
€	U+20AC	0010000010101100	11100010 10000010 10101100
<u> </u>	U+24B62	000100100101101100010	11110000 10100100 10101101 10100010

METH Computer Engine

How about a text?

- Text in a computer has two alternative representations:
- 1. A fixed-length number representing the length of the text followed by the binary values of the characters in the text.
 - Ex: "ABC" =>
 00000011 01000001 01000001 (3 'A' 'B' 'C')
- 2. Binary values of the characters in the text ended with a unique marker, like "00000000" which has no value in the ASCII table.
 - Ex: "ABC" =>

01000001 01000001 01000001 00000000 ('A' 'B' 'C' END)

element:

Containers

If you have lots and lots of one type
of data (for example, the ages of all
the people in Turkey):

Address

Width =4 bytes

You can store them into memory consecutively (supported by most PLs) 128

This is called arrays.

132

136

Easy to access an element. Nth 140

<Starting-address>+ (N-1)*<Word Width>

Ex: 2nd element is at 128 + (2-1) * 4 = 132

2021 S. Kalkan - CEng 240 68

Containers

- What if you have to make a lot of deletions and insertions in the middle of an array?
- Then, you have to store your data in blocks/units such that each unit has the starting address of the next unit/block.

Final Words: Important Concepts

- The world of programming
 - How we solve problems using computers.
 - Algorithms: What they are, how we write them and how we compare them.
 - The spectrum of programming languages.
 - Pros and cons of low-level and high-level languages.
 - Interpretive vs. compilative approach to programming.
 - Programming paradigms.
- Representation of data
 - Sign-magnitude notation and two's complement representation for representing integers.
 - The IEEE754 standard for representing real numbers.
 - Precision loss in representing floating point numbers.
 - Representing characters with the ASCII table.
 - Representing truth values.

Final Words: Reading

Reading

The material at the end of the first chapter.

THAT'S ALL FOLKS! STAY HEALTHY