

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики Кафедра математического моделирования гетерогенных систем

Практическое задание №1 по курсу «Суперкомпьютерное моделирование и технологии»

Выполнил:

студент 608 группы

Трибрат Вадим Дмитриевич

1 Постановка задачи.

Необходимо вычислить многомерный интеграл $\int_{-1}^{0} \int_{-1}^{0} x^3 y^2 z \, dx dy dz$ методом Монте-Карло с применением технологии MPI (мастер - рабочие).

Программа получает в качестве аргумента командной строки требуемую точность є и выводит четыре числа:

- Посчитанное приближённое значение интеграла.
- Ошибка посчитанного значения: модуль разности между приближённым и точным значениями интеграла.
 - Количество сгенерированных случайных точек.
 - Время работы программы в секундах.

2 Аналитическое решение интеграла.

$$\int_{-1}^{0} \int_{-1}^{0} \int_{-1}^{0} x^{3}y^{2}z \, dx dy dz = \frac{1}{2} \int_{-1}^{0} dx \int_{-1}^{0} x^{3}y^{2} * (0^{2} - (-1)^{2}) dy$$
$$= -\frac{1}{2 * 3} \int_{-1}^{0} x^{3} * (0^{3} - (-1)^{3}) dy$$
$$= -\frac{1}{6 * 4} * (0^{4} - (-1)^{4}) = \frac{1}{24}$$

3 Численный подход.

Метод Монте-Карло основан на законе больших чисел. Его основная идея заключается в следующем: выберем произвольную случайную величину ξ и рассмотрим другую с.в. $\zeta = \frac{f(\xi)}{p(\xi)}$, где $p(\xi)$ – плотность распределения ξ . Тогда $E(\zeta) = \int f(\xi) \, d\xi$. А согласно закону больших чисел, мы можем оценить $E(\zeta)$ как среднее арифметическое $\frac{1}{N} \sum \frac{f(\xi_i)}{p(\xi_i)}$.

4 Описание программы.

Мастер генерирует случайные точки, равномерно распределенные на кубе $[-1,0]^3$. Для каждого рабочего он генерирует 50 точек, т. е. общее

число точек в мастере -50 * N, где N - кол-во рабочих. Рассылка производится с помощью функции MPI_Recv, что позволяет экономить память в рабочих процессах. Затем каждый поток вычисляет свою часть суммы и с помощью операции редукции вычисляется текущее приближение интеграла. Если точность недостаточна, то процесс повторяется.

5 Исследование масштабируемости.

Точность є	Число	Время	Ускорение	Ошибка
	процессов	работы (с)		
3.0 * 10 ⁻⁵	1	0.035406	1	$2.9 * 10^{-5}$
	4	0.025973	1.366	$2.9 * 10^{-5}$
	8	0.025294	1.4	$2.7 * 10^{-5}$
	16	0.028433	1.246	$2.6 * 10^{-5}$
5.0 * 10 ⁻⁶	1	0.034859	1	$4.2 * 10^{-6}$
	4	0.027534	1.265	$4.9 * 10^{-6}$
	8	0.024580	1.42	$2.5 * 10^{-6}$
	16	1.493152	0.02	$4.9 * 10^{-6}$
1.5 * 10 ⁻⁶	1	0.035219	1	$1.2 * 10^{-6}$
	4	0.026151	1.348	$1.1 * 10^{-6}$
	8	0.025818	1.364	1.3 * 10 ⁻⁶
	16	1.548619	0.022	1.3 * 10 ⁻⁶

