UNIT - II: Quantum Mechanics

Author : Physics Department **Date :** 2025

Matter Waves and de Broglie Wavelength

Louis de Broglie proposed that particles exhibit wave-like behavior. The de Broglie wavelength is given by:

[$\lambda = \frac{h}{p}$]

where h is Planck's constant, and p is momentum.

Heisenberg's Uncertainty Principle

The principle states that it is impossible to precisely measure both the position and momentum of a particle:

[$\Delta x \Delta p \leq x \Delta p \leq$

Physical Significance of Wave Functions

The wave function (\protect

Schrödinger Wave Equation

The fundamental equation of quantum mechanics:

• Time-dependent form:

[i \hbar \frac{\partial \psi} {\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + $V\psi$]

• Time-independent form:

 $[-\frac{\hbar^2}{2m} \nabla^2 \psi + V\psi = E\psi]$

Application to Particle in a One-Dimensional Box

A particle confined in a box with length L has energy levels given by: $[E_n = \frac{n^2 h^2}{8mL^2}, \quad n = 1,2,3,...]$

Tunnel Diode

Quantum tunneling allows particles to pass through potential barriers. Tunnel diodes utilize this effect for high-speed switching.