Отчет о выполнении лабораторной работы Эксперементадльная проверка закона вращательного движения на крестообразном маятнике

Лепарский Роман 08.11.2020

1 Аннотация

Целью работы является получение зависимости углового ускорения от момента прикладываемых к маятнику сил. Необходимо убедиться, что угловое ускорение зависит от момента сил линейно, определить момент инерции маятника. Также, нужно проанализировать влияние сил трения, действующих на ось вращения.

2 Теоретические сведения

В данной работе эксперементально поверяется уравнение вращательного движения:

$$I\frac{d\omega}{dt} = M \tag{1}$$

Для этого используется крестообразный маятник

Массы грузов:

$$m_1$$
, Γ | 155,5
 m_2 , Γ | 148,9
 m_3 , Γ | 151,9
 m_4 , Γ | 150,1

$$m_0 = \langle m \rangle = \frac{1}{N} \sum_{i=1}^{N} m_i = \frac{155.5 + 148.9 + 151.9 + 150.1}{4} = 151.6\Gamma$$

Запишем также некоторые полезные данные:

- Высота опускания груза H = 60 см
- Радиус маленького шкива $r_1 = 9$ мм
- Радиус большого шкива $r_2 = 17,5$ мм
- Расстояние от оси вращения до центров масс грузов в 1 опыте $R_1 = 60 + 12,5 = 72,5$ мм
- Расстояние от оси вращения до центров масс грузов во 2 опыте $R_1 = 200 + 12,5 = 212,5$ мм

Вращающий момент задаётся силой натяжения T:

$$M_H = rT (2)$$

где r - радиус шкива. Силу T легко найти из уравнения движения платформы с перегрузком:

$$mg - T = ma (3)$$

здесь m - масса платформы с перегрузком

Если момент трения в подшипниках мал по сравнению с моментом M_T , то из (1), (2) и (3) следует постоянство ускорения a, и, измеряя время t, в течение которого нагруженная платформа из состояния покоя опускается на расстояние h, можно найти её ускорение a:

$$a = \frac{2h}{t^2}$$

связанное с угловым ускорением $\beta = d\omega/dt$ соотношением:

$$a = r\frac{d\omega}{dt} = r\beta \tag{4}$$

Для дальнейшей работы удобно преобразовать уравнение (1), выделив момент сил трения в явном виде:

$$M_H - M_T = I \frac{d\omega}{dt}$$

3 Приборы и материалы

В работе используются:

• Крестообразный маятник,

- Набор перегрузков,
- Секундомер,
- Лнейка,
- Штангенциркуль

4 Обработка результатов

4.1 Опыт №1. R = 72,5мм

Запишем данные, полученные из экспериментов. Рассчитаем для каждого эксперимента угловое ускорение β и вращающий момент M_H :

$$\beta = \frac{2h}{rt^2}$$

$$M_H = mgr$$

Диаметр шкива	Масса платформы с	Время падения	β	M_0
	перегрузком			
MM	Γ	c	c^{-2}	$10^{-3} {\rm Hm}$
18	62	15	0,59	5,47
	73	13	0,79	6,44
	79	12	0,93	6,97
	117	9	1,65	10,32
	217	7	2,72	19,14
35	79	8	1,07	13,55
	100	7	1,40	17,15
	117	6	1,90	20,07
	162	5	2,74	27,78
	200	4	4,29	34,30

Построим график зависимости M от β

По МНК вычислим значения момента инерции:

$$I_1 = 6.36 \cdot 10^{-3} \pm 0.99 \cdot 10^{-3} \text{ kr·m}^2$$

 $I_2 = 6.64 \cdot 10^{-3} \pm 1.27 \cdot 10^{-3} \text{ kr·m}^2$

Оттуда же узнаем M_T :

$$M_T = M(0) \approx 5 \cdot 10^{-3} \; \text{Hm}$$

4.2 Опыт №2. R = 212,5мм

Запишем данные, полученные из экспериментов. Рассчитаем для каждого эксперимента угловое ускорение β и вращающий момент M_H :

$$\beta = \frac{2h}{rt^2}$$

$$M_H = mgr$$

Диаметр шкива	Масса платформы с	Время падения	β	M_0
	перегрузком			
MM	Γ	c	c^{-2}	$10^{-3} {\rm Hm}$
18	79	20	0,38	6,97
	123	18	0,46	9,64
	162	15	0,60	12,70
	217	13	0,89	19,14
	300	11	1,24	23,52
35	79	13	0,41	13,55
	100	11	0,56	17,15
	124	10	0,69	21,27
	156	8	1,07	26,75
	200	7	1,40	34,30

Построим график зависимости M от β

По МНК вычислим значения момента инерции:

$$I_1 = 19,15 \cdot 10^{-3} \pm 1,6 \cdot 10^{-3} \text{ кг·м}^2$$

 $I_2 = 20,14 \cdot 10^{-3} \pm 3,7 \cdot 10^{-3} \text{ кг·м}^2$

Оттуда же узнаем M_T :

$$M_T = M(0) \approx 5 \cdot 10^{-3} \; \text{Hm}$$

5 Вывод

Из проведённых опытов видно, что зависимость углового ускорения от момента приложенных сил с достаточной точностью (8%) аппроксимируется линейной функцией. Из чего можно сделать вывод, что формула $M=I\beta$ справедлива.