Assignment-1

EE224BTECH11044 - Muthyala koushik*

1.Section-B: JEE Main/AIEEE

- 4) If $f: \mathbb{R} \to \mathbb{R}$ satisfies f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$ and f(1) = 7, then $\sum_{r=1}^{n} f(r)$ is (2003)
 - a) $\frac{7n(n+1)}{2}$
 - b) $\frac{7n}{2}$
 - c) $\frac{7(n+1)}{2}$
 - d) 7n + (n + 1)
- 5) The function f from the set of natural numbers to integers is defined by (2003)

 $f(n) = \begin{cases} \frac{n-1}{2} & \text{when } n \text{ is odd,} \\ -\frac{n}{2} & \text{when } n \text{ is even.} \end{cases}$ is

- a) neither one-one nor onto
- b) one-one but not onto
- c) onto but not one-one
- d) one-one and onto both.
- 6) The range of the function f(x) = P(7-x, x-3) is (2004)
 - a) $\{1, 2, 3, 4, 5\}$
 - b) {1, 2, 3, 4, 5, 6}
 - c) $\{1, 2, 3, 4\}$
 - d) {1, 2, 3}
- 7) If $f: R \to S$, defined by $f(x) = \sin x \sqrt{3}\cos x + 1$, is onto, then the interval of S is (2004)
 - a) [-1,3]
 - b) [-1, 1]
 - c) [0, 1]
 - d) [0, 3]
- 8) The graph of the function y = f(x) is symmertrical about the line x=2,then (2004)
 - a) f(x) = -f(-x)
 - b) f(2 + x) = f(2 x)
 - c) f(x) = f(-x)
 - d) f(x+2) = f(x-2)
- 9) The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$ is (2004)

- a) [1, 3]
- b) [2, 3)
- c) [1,2]
- d) [2, 3]
- 10) Let $f: (-1,1) \to B$, be a function defined by $f(x) = tan^{-1} \frac{2x}{1-x^2}$, then f is both one-one and onto when B is the interval (2005)

1

- a) $\left(0,\frac{\pi}{2}\right)$
- b) $\left[0,\frac{\pi}{2}\right)$
- c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- d) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- 11) A function is macthed below against an interval where it is supposed to increasing. Which of the following pairs is incorrectly matcher? (2005)

Interval Function

- a) $(-\infty, \infty)$ $x^3 3x^2 + 3x + 3$
- b) $[2, \infty)$ $2x^3 3x^2 + 3x + 3$
- c) $\left(-\infty, \frac{1}{3}\right]$ $3x^2 2x + 1$
- d) $(-\infty, -4)$ $x^3 + 6x^2 + 6$
- 12) A real valued function f(x) satisfies the functional equation

$$f(x - y) = f(x)f(y) - f(a - x)f(a + y)$$

where a given constant and f(0)=1, f(2a-x) is equal to (2005)

- a) -f(x)
- b) f(x)
- c) f(a) + f(a x)
- d) f(-x)
- 13) The Largest interval lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the function, $f(x) = 4^{-x^2} + \cos^{-1}\left(\frac{x}{2} 1\right) + \log(\cos x)$, is defined, is (2007)
 - a) $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right)$

- b) $[0, \frac{\pi}{2})$
- c) $[0, \pi]$
- d) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- 14) Let $f: N \to Y$ be a function defined as f(x) = 4x+3 where $Y=\{y \in \mathbb{N} : y = 4x+3 \text{ for some } x \in \mathbb{N}\}$. Show that f is invertible and its inverse is (2008)
 - a) $g(y) = \frac{3y+4}{3}$
 - b) $g(y) = 4 + \frac{y+3}{4}$
 - c) $g(y) = \frac{y+3}{4}$
 - d) $g(y) = \frac{y-3}{4}$
- 15) Let $f(x) = (x+1)^2 1, x \le -1$ **Statement-1:**The set $\{x: f(x) = f^{-1}(x) = \{0,-1\}$

Statement-2: f is a bijection. (2009)

- a) Statement-1 is true, Statement-2 is true. Statement-2 is not a correct explanation for Statement-1.
- b) Statement-1 is true, Statement-2 is flase.
- c) Statement-1 is false, Statement-2 is true.
- d) Statement-1 is true, Statement-2 is true. Statement-2 is not a correct explanation for Statement-1.
- 16) For real x, let $f(x) = x^3 + 5x + 1$, then (2009)
 - a) f is onto \mathbb{R} but not one-one
 - b) f is one-one and onto \mathbb{R}
 - c) f is neither one-one nor onto \mathbb{R}
 - d) f is one-one but not onto \mathbb{R}
- 17) The domain of the function $f(x) = \frac{1}{\sqrt{|x|-x}}$ is (2011)
 - a) $(0, \infty)$
 - b) $(-\infty,0)$
 - c) $(-\infty, \infty) \{0\}$
 - d) $(-\infty, \infty)$
- 18) $x \in \mathbb{R} \{0, 1\}$, let $f_1(x) = \frac{1}{x}$, $f_2(x) = 1 x$ and $f_3(x) = \frac{1}{1-x}$ be the three given functions. If a function, J(X) satisfies $(f_2oJof_1)(x) = f_3(x)$ then J(x) is equal to: (JEE M 2019-9 Jan(M))
 - a) $f_3(x)$
 - b) $f_3(x)$
 - c) $f_2(x)$
 - d) $f_1(x)$