

- 1/45页 -

- 正交设计: 优方案只能限制在已定的水平上,而不是一定 试验范围内的最优方案
- 回归正交设计(orthogonal regression design):
- > 可以在因素的试验范围内选择适当的试验点
- 用较少的试验建立回归方程
- ▶ 能解决试验优化问题
- ~ 不适合非数量性因素

8.1 一次回归正交试验设计及结果分析

- 建立试验指标(y)与m个试验因素 x_1 , x_2 , ..., x_m 之间的一次回归方程
- 例: m=3时,一次回归方程:

$$y=a+b_1x_1+b_2x_2+b_3x_3+b_{12}x_1x_2+b_{13}x_1x_3+b_{23}x_2x_3$$

- \rightarrow 其中 x_1, x_2, x_3 表示3个因素; x_1x_2, x_1x_3, x_2x_3 表示交互作用
- > 若不考虑交互作用,为三元一次线性回归方程:

$$y = a + b_1 x_1 + b_2 x_2 + b_3 x_3$$

8.1.1 一次回归正交设计的基本方法

(1) 确定因素的变化范围

以因素 x_j 为例:

- 设 x_j 的变化范围为[x_{j1} , x_{j2}]
- x_{j1} 为 x_{j} 的下水平
- \mathbf{x}_{j2} 为 \mathbf{x}_{j} 的上水平
- x_{j0} 为 x_j 的零水平: $x_{j0} = (x_{j1} + x_{j2})/2$
- 因素 x_j 的变化间距 Δ_j :
 - Δ_j =上水平 零水平 = x_{j2} x_{j0}

(2) 因素水平的编码

■ 编码 (coding): 将因素 x_i 的各水平进行线性变换:

$$z_{j} = \frac{x_{j} - x_{j0}}{\Delta_{j}}$$

- x_i : 自然变量
- \triangleright 上水平 x_{j2} 的编码: $z_{j2}=1$
- \triangleright 下水平 x_{i1} 的编码: $z_{i1}=-1$
- > 零水平 x_{j0} 的编码: $z_{j0}=0$

- 编码目的:
- ightharpoonup 使每因素的每水平在编码空间是"平等"的,规范变量 z_i 的取值范围都是[-1, 1]
- \triangleright 编码能将试验结果y与因素 x_j (j=1,2,…,m)之间的回归问题,转换成试验结果y与编码值 z_j 之间的回归问题

- (3) 一次回归正交设计表
- 将二水平的正交表中"2"用"-1"代换,例:

正交表 L₈(27)

试验号		列 号							
四级与	1	2	3	4	5	6	7		
1	1	1	1	1	1	1	1		
2	1	1	1	2	2	2	2		
3	1	2	2	1	1	2	2		
4	1	2	2	2	2	1	1		
5	2	1	2	1	2	1	2		
6	2	1	2	2	1	2	1		
7	2	2	1	1	2	2	1		
8	2	2	1	2	1	1	2		

識号		列 号								
PLAY 7	1	2	3	4	5	6	7			
1	1	1	1	1	1	1	1			
2	1	1	1	-1	-1	-1	-1			
3	1	-1	-1	1	1	-1	-1			
4	1	-1	-1	-1	-1	1	1			
5	-1	1	-1	1	-1	1	-1			
6	-1	1	-1	-1	1	-1	1			
7	-1	-1	1	1	-1	-1	1			
8	-1	-1	1	-1	1	1	-1			

- 回归正交设计表的特点:
 - ▶ 任一列编码的和为0
 - ▶ 任两列编码的乘积之和等于0

试验号		列 号								
四条之	1	2	3	4	5	6	7			
1	1	1	1	1	1	1	1			
2	1	1	1	-1	-1	-1	-1			
3	1	-1	-1	1	1	-1	-1			
4	1	-1	-1	-1	-1	1	1			
5	-1	1	-1	1	-1	1	-1			
6	-1	1	-1	-1	1	-1	1			
7	-1	-1	1	1	-1	-1	1			
8	-1	-1	1	-1	1	1	-1			

(4) 试验方案的确定

- ■表头设计:
- 可参考正交设计的表头设计方法
- 交互作用列的编码等于表中对应两因素列编码的乘积
- 零水平试验(中心试验)

三因素一次回归正交表

무소대수선	1	2	3	4	5
试验号	Z1	Z2	Z1Z2	Z 3	Z1Z3
1	1	1	1	1	1
2	1	1	1	-1	-1
3	1	-1	-1	1	1
4	1	-1	-1	-1	-1
5	-1	1	-1	1	-1
6	-1	1	-1	-1	1
7	-1	-1	1	1	-1
8	-1	-1	1	-1	1
9	0	0	0	0	0
10	0	0	0	0	0

8.1.2 一次回归方程的建立

■ 总试验次数为n:

$$n=m_c+m_0$$

- ▶ m_c: 二水平试验次数
- ▶ m₀: 零水平试验次数
- 一次回归方程系数的计算:
- ▶ 常数项: a
- 一次项系数: b_i
- \triangleright 交互项系数: b_{ik}

三因素一次回归正交表

试验号	1	2	3	4	5
DAM 4	z ₁	Z 2	Z1Z2	Z 3	Z1Z3
1	1	1	1	1	1
2	1	1	1	-1	-1
3	1	-1	-1	1	1
4	1	-1	-1	-1	-1
5	-1	1	-1	1	-1
6	-1	1	-1	-1	1
7	-1	-1	1	1	-1
8	-1	-1	1	-1	1
9	0	0	0	0	0
10	0	0	0	0	0

$$y=a+b_1z_1+b_2z_2+b_3z_3+b_{12}z_1z_2+b_{13}z_1z_3+b_{23}z_2z_3$$

$$a = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{y}$$

$$b_{j} = \frac{\sum_{i=1}^{n} z_{ji} y_{i}}{m_{c}}$$
 $j=1, 2, ..., m$

$$j=1, 2, ..., m$$

$$b_{kj} = \frac{\sum_{i=1}^{n} (z_k z_j)_i y_i}{m_c}$$
 $j > k, k = 1, 2, ..., m-1$

- 说明:
- 回归方程中回归系数绝对值大小直接反映了该系数的显著 程度大小
- 一次回归方程中,回归系数绝对值大小直接反映了该因素或交互作用的重要性
- 线性方程中,回归系数的符号反映了因素对试验指标影响的正负

8.1.3 回归方程及偏回归系数的方差分析

- 8.1.3.1 无零水平试验时
- ①平方和:
- 总平方和:

$$SS_T = L_{yy} = \sum_{i=1}^n (y_i - \overline{y})^2 = \sum_{i=1}^n y_i^2 - \frac{1}{n} (\sum_{i=1}^n y_i)^2$$

- ■一次项偏回归平方和: $SS_j = m_c b_j^2$
- ■交互项偏回归平方和: $SS_{kj} = m_c b_{kj}^2$
- ■回归平方和: $SS_R = \sum SS_{-\chi_{\bar{\eta}}} + \sum SS_{\bar{\chi}_{\bar{\eta}}}$
- ■残差平方和: $SS_e = SS_T SS_R$

②自由度

- $df_T = n-1$
- 各种偏回归平方和的自由度=1
- 回归平方和的自由度:

$$df_R = \sum df_{-\chi\bar{\eta}} + \sum df_{\bar{\chi}\bar{\eta}}$$

■ 残差自由度:

$$df_e = df_T - df_R$$

- ③均方
- **④F检验:**
- 回归方程显著性检验
- 偏回归系数显著性检验:
- > 线性方程中,可判断因素对试验结果的影响程度
- 经检验不显著的一次或交互项的系数,对应的项可归入残差,可直接从回归方程中剔除这些一次或交互项(重新建立的方程应检验

例8-1:

(1) 因素水平编码

40年	因素 x _j							
编码专	灰化温度 x1/C	原子化温度 x₂/℃	灯电流 x3/ mA					
上水平 (1)	700	2400	10					
下水平 (-1)	300	1800	8					
零水平 (0)	500	2100	9					
变化间距△j	200	300	1					

(2) 正交表的选择和试验方案的确定

YEBA D		_					试验方案				
试验号	Z ₁	Z ₂	2122	Z 3	Z1Z3	灰化温度 x1/C	原子化温度 x2/°C	灯电流 x3/mA	y i		
1	1	1	1	1	1	700	2400	10	0.552		
2	1	1	1	-1	-1	700	2400	8	0.554		
3	1	-1	-1	1	1	700	1800	10	0.480		
4	1	-1	-1	-1	-1	700	1800	8	0.472		
5	-1	1	-1	1	-1	300	2400	10	0.516		
6	-1	1	-1	-1	1	300	2400	8	0.532		
7	-1	-1	1	1	-1	300	1800	10	0.448		
8	-1	-1	1	-1	1	300	1800	8	0.484		

(3) 回归方程的建立

- $> m_0 = 0, n = m_c = 8$
- > 计算表
- > 计算各回归系数
- > 写出y与规范变量z_j的回归方程
 - (4) 方差分析:
- 回归方程的显著性检验
- 偏回归系数显著性检验
 - (5) 优方案的确定: 规划求解

8.1.3.2 有零水平试验时

- 目的: 进行回归方程的失拟性(lack of fit) 检验 (要求 $m_0 \ge 2$)
- 失拟性检验:为了检验一次回归方程在整个研究范围内的 拟合情况
- 失拟性检验步骤:

设 m_0 次零水平试验结果为 y_{01} , y_{02} , ..., y_{0m0}

- ①重复试验误差:
- 平方和:

$$SS_{e1} = \sum_{i=1}^{m_0} (y_{0i} - \overline{y}_0)^2 = \sum_{i=1}^{m_0} y_{0i}^2 - \frac{1}{m_0} (\sum_{i=1}^{m_0} y_{0i})^2$$

- ■重复试验误差的自由度: $df_{e1} = m_0 1$
- ②回归方程失拟部分:
- ■失拟平方和: $SS_{Lf} = SS_T SS_R SS_{e1}$ = $SS_a - SS_{e1}$
- ■失拟平方和自由度: $df_{Lf} = df_e df_{e1}$

③失拟检验:

$$F_{Lf} = \frac{SS_{Lf} / df_{Lf}}{SS_{e1} / df_{e1}}$$

- 对于给定的显著性水平a(一般取0.1)
- 当 \mathbf{F}_{Lf} < \mathbf{F}_{α} (df_{Lf} , df_{e1})时,就认为回归方程失拟不显著,失拟平方和 SS_{Lf} 是由随机误差造成的,所建立的回归方程是拟合得很好
- 例8-2

8.2 二次回归正交组合设计

- 回归方程的建立:
- 根据最小二乘法原理得到正规方程组
- > 求解正规方程组,得回归系数
- > 要求: 试验次数>回归方程的项数
- 回归正交组合设计:在一次回归正交试验设计的基础上 再增加一些特定的试验点,通过适当的组合形成试验方 案

8.2.1 二次回归正交组合设计表

- (1) 二元二次回归正交组合设计试验方案
- 二元二次回归方程:

$$\hat{y} = a + b_1 z_1 + b_2 z_2 + b_{12} z_1 z_2 + b_{11} z_1^2 + b_{22} z_2^2$$

■ 试验方案

试验号	zı	z ₂	у	说明	
1	1	1	у1		
2	1	-1	У2	二水平试验	
3	-1	1	уз	一小十四海	
4	-1	-1	У4		
5	γ	0	У5		
6	-γ	0	У6	星号试验	
7	0	γ	У7	生力环型	
8	0	-γ	У8		
9	0	0	у9	零水平试验	

雨课堂 Rain Classroom

- 正交组合设计的三类试验点及次数:
- ▶ 二水平试验:
- 全实施: $m_c=2^m$
- 1/2实施: $m_c = 2^{m-1}$
- 1/4实施: $m_c = 2^{m-2}$
- ▶ 星号试验:
- · 与原点(中心点)的距离都为y
- $m_{\gamma} = 2m$
- > 零水平试验:
- 各因素水平编码都为零时的试验
- · 试验次数 m_0

■ 二元二次回归正交组合设计表

试验号	z ₁	z 2	z ₁ z ₂	z12	z22
1	1	1	1	1	1
2	1	-1	-1	1	1
3	-1	1	-1	1	1
4	-1	-1	1	1	1
5	γ	0	0	γ2	0
6	-γ	0	0	γ2	0
7	0	γ	0	0	γ2
8	0	-γ	0	0	γ2
9	0	0	0	0	0

- (2) 三元二次回归正交组合设计试验方案
- 三元二次回归方程:

$$y = a + b_1 z_1 + b_2 z_2 + b_3 z_3 + b_{12} z_1 z_2 + b_{13} z_1 z_3 + b_{23} z_2 z_3 + b_{11} z_1^2 + b_{22} z_2^2 + b_{33} z_3^2$$

■ 试验方案

试验号	zı	Z2	z 3	у	说明
1	1	1	1	yı	
2	1	1	-1	у2	
3	1	-1	1	у3	
4	1	-1	-1	У4	二水平全面试验, m _c =2 ³ =8
5	-1	1	1	у5	二八十主国政争, m_c-2^c-8
6	-1	1	-1	У6	
7	-1	-1	1	y 7	
8	-1	-1	-1	У8	
9	γ	0	0	у9	
10	-γ	0	0	y10	
11	0	γ	0	уш	
12	0	-γ	0	y12	星号试验, m,=2×3=6
13	0	0	γ	у13	
14	14 0 0	0	-γ	У14	
15	0	0	0	У15	零水平试验, m ₀ =1

■ 三元二次回归正交组合设计

试验号	zı	Z 2	Z 3	z ₁ z ₂	z ₁ z ₃	z ₂ z ₃	z ₁ ²	z2 ²	z ₃ ²
1	1	1	1	1	1	1	1	1	1
2	1	1	-1	1	-1	-1	1	1	1
3	1	-1	1	-1	1	-1	1	1	1
4	1	-1	-1	-1	-1	1	1	1	1
5	-1	1	1	-1	-1	1	1	1	1
6	-1	1	-1	-1	1	-1	1	1	1
7	-1	-1	1	1	-1	-1	1	1	1
8	-1	-1	-1	1	1	1	1	1	1
9	γ	0	0	0	0	0	γ2	0	0
10	-γ	0	0	0	0	0	γ2	0	0
11	0	γ	0	0	0	0	0	γ2	0
12	0	-γ	0	0	0	0	0	γ2	0
13	0	0	γ	0	0	0	0	0	γ2
14	0	0	-γ	0	0	0	0	0	γ2
15	0	0	0	0	0	0	0	0	0

(3) 星号臂长度与二次项的中心化

- ①星号臂长度
- 星号臂长度 γ 与因素数m,零水平试验次数 m_0 及二水平试验数 m_c 有关
- γ的确定
- > 公式计算

$$\gamma = \sqrt{\frac{\sqrt{(m_c + 2m + m_0)m_c} - m_c}}{2}$$

> 参考表8-18

二次回归正交组合设计γ值表

		因素数m										
m_0	2	3	4(1/2实施)	4	5 (1/2实施)	5						
1	1.000	1.215	1.353	1.414	1.547	1.596						
2	1.078	1.287	1.414	1.483	1.607	1.662						
3	1.147	1.353	1.471	1.547	1.664	1.724						
4	1.210	1.414	1.525	1.607	1.719	1.784						
5	1.267	1.471	1.575	1.664	1.771	1.841						
6	1.320	1.525	1.623	1.719	1.820	1.896						
7	1.369	1.575	1.668	1.771	1.868	1.949						
8	1.414	1.623	1.711	1.820	1.914	2.000						
9	1.457	1.668	1.752	1.868	1.958	2.049						
10	1.498	1.711	1.792	1.914	2.000	2.097						

②二次项的中心化 (利用Excel数据处理时,可以省略)

■ 对二次项的每个编码进行中心化处理: $z_{ji}' = z_{ji}^2 - \frac{1}{n} \sum_{i=1}^n z_{ji}^2$ (二次项编码) — (二次项编码算术平均值)

二元二次回归正交组合设计编码表

试验号	Z ₁	\mathbf{z}_2	$\mathbf{z_1} \ \mathbf{z_2}$	Z ₁ ²	Z ₂ ²	Z ₁ '	z,
1	1	1	1	1	1	1/3	1/3
2	1	-1	-1	1	1	1/3	1/3
3	-1	1	-1	1	1	1/3	1/3
4	-1	-1	1	1	1	1/3	1/3
5	1	0	0	1	0	1/3	-2/3
6	-1	0	0	1	0	1/3	-2/3
7	0	1	0	0	1	-2/3	1/3
8	0	-1	0	0	1	-2/3	1/3
9	0	0	0	0	0	-2/3	-2/3

8.2.2 二次回归正交组合设计的应用

- (1) 基本步骤
- ①因素水平编码
- 试验因素的水平被编为一y, 一1, 0, 1, y
- 变化间距: Δ_i = 上水平 零水平 = 零水平 下水平

$$\Delta_j = \frac{x_{j\gamma} - x_{j0}}{\gamma}$$

因素水平的编码表

—————————————————————————————————————	自然变量x _j						
が他又里 <i>ij</i>	x_1	x_2	•••	x_m			
上星号臂γ	$x_{1\gamma}$	$x_{2\gamma}$	95 4 11 4 134	$x_{m\gamma}$			
上水平1	$x_{12} = x_{10} + \Delta_1$	$x_{22} = x_{20} + \Delta_2$	300000	$x_{\text{m2}} = x_{\text{m0}} + \Delta_{\text{m}}$			
零水平0	<i>x</i> ₁₀	x_{20}	0 ● • •	x_{m0}			
下水平-1	$x_{11} = x_{10} - \Delta_1$	$x_{21} = x_{20} - \Delta_2$	3(●, ●, ●,	$x_{\rm m1} = x_{\rm m0} - \Delta_{\rm m}$			
下星号臂一γ	$x_{-1\gamma}$	$\mathbf{x}_{-2\gamma}$	((●(●(●)	$x_{-m\gamma}$			
变化间距∆ _j	Δ_1	Δ_2	•••	Δ_m			

- ②确定合适的二次回归正交组合设计
- 参考表8-22

正交表的选用

因素数m	选用正交表	表头设计	m_c	m _y
2	$L_4 (2^3)$	1, 2列	22=4	4
3	L ₈ (2 ⁷)	1, 2, 4列	23=8	6
4(1/2实施)	L ₈ (2 ⁷)	1, 2, 4, 7列	24-1=8	8
4	L ₁₆ (2 ¹⁵)	1, 2, 4, 8列	24=16	8
5(1/2实施)	L ₁₆ (2 ¹⁵)	1, 2, 4, 8, 15列	24-1=16	10
5	$L_{32} (2^{31})$	1, 2, 4, 8, 16列	25=32	10

③试验方案的实施

④回归方程的建立

常数项:
$$a = \frac{1}{n} \sum_{i=1}^{n} y_{i} = \overline{y}$$

一次项偏回归系数 b_{j} : $b_{j} = \frac{\sum_{i=1}^{n} z_{ji} y_{i}}{\sum_{i=1}^{n} z_{ji}^{2}}$

$$b_{j} = \frac{\sum_{i=1}^{n} z_{ji} y_{i}}{\sum_{i=1}^{n} z_{ji}^{2}}$$

■ 交互项偏回归系数 b_{ki} :

$$b_{kj} = \frac{\sum_{i=1}^{n} (z_k z_j)_i y_i}{\sum_{i=1}^{n} (z_k z_j)_i^2}$$

■二次项偏回归系数b_{ii}:

$$b_{jj} = \frac{\sum_{i=1}^{n} (z'_{ji}) y_{i}}{\sum_{i=1}^{n} (z'_{ji})^{2}}$$

⑤回归方程显著性检验

■ 平方和:

》 总平方和:
$$SS_T = \sum_{i=1}^n (y_i - \overline{y})^2 = \sum_{i=1}^n y_i^2 - \frac{1}{n} (\sum_{i=1}^n y_i)^2$$

- ightharpoonup 一次项偏回归平方和: $SS_j = b_j^2 \sum_{i=1}^n z_{ji}^2$
- ightharpoonup 交互项偏回归平方和: $SS_{kj} = b_{kj}^2 \sum_{i=1}^n (z_k z_j)_i^2$
- ightharpoonup 二次项偏回归平方和: $SS_{jj} = b_{jj}^2 \sum_{i=1}^n (z_{ji}')^2$
- ightharpoonup 回归平方和: $SS_R = \sum SS_{-$ 次项</sub> + $\sum SS_{-$ 次项</sub> + $\sum SS_{-$ 次项
- \triangleright 残差平方和: $SS_e = SS_T SS_R$

- 自由度:
- $\rightarrow df_{\rm T} = n-1$
- > 各种偏回归平方和的自由度: 1
- > 回归平方和的自由度:

$$df_R = \sum df_{-\text{hyp}} + \sum df_{\text{com}} + \sum df_{\text{cyp}}$$

 \triangleright 残差平方自由度: $df_e = df_T - df_R$

■ 回归系数的检验:

$$F_{j} = \frac{MS_{j}}{MS_{e}} = \frac{SS_{j}}{SS_{e}/df_{e}}$$

$$F_{kj} = \frac{MS_{kj}}{MS_e} = \frac{SS_{kj}}{SS_e/df_e}$$

$$F_{jj} = \frac{MS_{jj}}{MS_e} = \frac{SS_{jj}}{SS_e/df_e}$$

- ⑥失拟性检验
- ⑦最优试验方案的确定:
- 回归方程的"规划求解"
- 根据极值的必要条件:

$$\begin{cases} \frac{\partial y}{\partial x_1} = 0\\ \frac{\partial y}{\partial x_2} = 0 \end{cases}$$

(2) 例8-3

*8.3 二次回归正交旋转组合设计

(1) 基本概念

回归旋转正交设计:

- 规范变量空间(编码空间)内,与试验中心点(零水平点) 距离相等的球面上
- > 各点回归方程预测值的方差相等
 - (2) 三类试验点

$$n = m_c + m_{\gamma} + m_0$$

- ▶ 二水平试验m_c
- $m_{y}=2m$,m为因素数
- > 零水平试验 m_0 ,参考表8-28确定

(3) 回归正交旋转组合设计编码表

(4) 数据处理 与回归正交组合设计相同

8.4 Excel在回归正交设计的应用

- 8.4.1 利用Excel建立回归正交设计编码表
- 8.4.2 Excel在回归正交设计数据处理中的应用
- 回归方程的建立和检验
- 偏回归系数显著性判断:
- ▶ 根据t-Stat: 绝对值越大越显著
- ▶ 根据P-value: 若<0.01,则**,若在0.01~0.05之间,则*
- 最优试验方案的确定
- > 规划求解