Big Data and Computing Visions

www.bidacv.com

Big. Data. Comp. Vis. Vol. 4, No. 2 (2024) 164-169.

Paper Type: Original Article

r-neutrosophic Subset of G-submodules

Binu R¹

Citation:

Received: 9 January 2024	Binu, R.(2024). r-neutrosophic subset of G-submodules
L Porrigod: 5 March 2024	Big Data and Computing Visions ,4(2), 164-169
Accepted: 21 April 2024	- · · · · · · · · · · · · · · · · · · ·

Abstract

This article explains a particular category of neutrosophic subsets of G-submodules, specifically r-neutrosophic subsets, where $r \in [0,1]$. The algebra of r-neutrosophic subsets of G-submodules is discussed, along with some fundamental characteristics of their sum. Definitions and theorems related to this concept are provided to clarify the properties of an arbitrary non-empty family of r-neutrosophic subsets of G-submodules.

Keywords: Neutrosophic set, Neutrosophic G-submodule, r neutrosophic subset of G-submodule, Neu-trosophic point

1. Introduction

The key factors of indeterminacy, uncertainty, and true values in real-valued problems have led to the development of a new set theory known as the neutrosophic set developed by Florentin Smarandache [1–3]. The neutrosophic set extends fuzzy [4] and intuitionistic fuzzy sets [5] by introducing three independent membership functions for each element: truth-membership, falsehood-membership, and indeterminacy-membership. One of the major research areas in the current scenario is the generalization or expansion of classical algebraic structures within the neutrosophic domain, which is used for modeling real-world problems.

The algebraic structure of a G-module, introduced by Curtis [6], generalizes the action of a group G on a vector space M, helping to further refine the study of group representation. Fuzzy G-modules and intuitionistic fuzzy G-modules, introduced by Sherry Fernandez [7, 8] and Sharma et al. [9–12] respectively, are generalizations

Corresponding Author: 1984binur@gmail.com

https://doi.org/10.22105/bdcv.2024.479468.1204

Licensee System Analytics. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).

Department of Mathematics ,Rajagiri School of Engineering & Technology, Kerala, India; 1984binur@gmail.com,

of G-modules, forming a new type of generalized algebraic structure. Some characterization and structural properties of neutrosohic G-modules are studied by Binu and P.Isaac [13, 14]. This study presents a special class of neutrosophic sets of G-submodules, referred to as r-neutrosophic G-submodules, where $r \in [0, 1]$. Additionally, this paper explores the algebra of r-neutrosophic set of G-submodules, including concepts of sum in various contexts and their algebraic properties in arbitrary collection.

2. Preliminary Concepts

We provide some of the fundamental concepts and results in this session, which are necessary for a better comprehension of the sessions that follow.

Definition 2.1. [15] "Let (G, *) be a group. A vector space M over the field K is called a G-module, denoted as G_M , if for every $g \in G$ and $m \in M$; \exists a product (called the action of G on M), $g \cdot m \in M$ satisfies the following axioms

- (1) $1_G \cdot m = m$; $\forall m \in M$ (1_G being the identity element of G)
- (2) $(g * h) \cdot m = g \cdot (h \cdot m); \forall m \in M \text{ and } g, h \in G$
- (3) $g \cdot (k_1 m_1 + k_2 m_2) = k_1 (g \cdot m_1) + k_2 (g \cdot m_2); \forall k_1, k_2 \in K; m_1, m_2 \in M$ ".

Example 2.1. [8] "Let $G = \{1, -1, i, -i\}$ and $M = \mathbb{C}^n$; $(n \ge 1)$. Then M is a vector space over \mathbb{C} and under the usual addition and multiplication of complex numbers we can show that M is a G-module".

Definition 2.2. [2] "A neutrosophic set P of the universal set X is defined as $P = \{(x, t_P(x), i_P(x), f_P(x)) : x \in X\}$ where $t_P, i_P, f_P : X \to (^-0, 1^+)$. The three components t_P, i_P and f_P represent membership value (Percentage of truth), indeterminacy (Percentage of indeterminacy) and non membership value (Percentage of falsity) respectively. These components are functions of non standard unit interval $(^-0, 1^+)$ ".

Remark 2.1. [16] "If $t_P, i_P, f_P: X \to [0, 1]$, then P is known as single valued neutrosophic set (SVNS)"

Definition 2.3. [2] "Let P and Q be two neutrosophic sets of X. Then P is contained in Q, denoted as $P \subseteq Q$ if and only if $P(x) \leq Q(x) \ \forall x \in X$, this means that $t_P(x) \leq t_Q(x)$, $i_P(x) \leq i_Q(x)$, $f_P(x) \geq f_Q(x)$, $\forall x \in X$ ".

Definition 2.4. [2] " Let $P, Q \in U^X \ \forall \ x \in X$. Then

1. The union C of P and Q is denoted by $C = P \cup Q$ and defined as $C(x) = P(x) \vee Q(x)$ where $C(x) = \{x, t_C(x), i_C(x), f_C(x) : x \in X\}$ is given by

$$t_C(x) = t_P(x) \lor t_Q(x)$$

$$i_C(x) = i_P(x) \lor i_Q(x)$$

$$f_C(x) = f_P(x) \land f_Q(x)$$

2. The intersection C of P and Q is denoted by $C = P \cap Q$ and is defined as $C(x) = P(x) \wedge Q(x)$ where $C(x) = \{x, t_C(x), i_C(x), i_C$

$$t_C(x) = t_P(x) \land t_Q(x)$$

$$i_C(x) = i_P(x) \land i_Q(x)$$

$$f_C(x) = f_P(x) \lor f_Q(x) ".$$

Definition 2.5. [17] "Let P_i , $i \in J$ be an arbitrary non empty family of neutrosophic sets in U^X , then

$$\bigcap_{i \in J} P_i = \{x, t_{\bigcap_{i \in J} P_i}(x), i_{\bigcap_{i \in J} P_i}(x), f_{\bigcap_{i \in J} P_i}(x) : x \in X\} \text{ where}$$

$$t_{\bigcap_{i \in J} P_i}(x) = \bigwedge_{i \in J} t_{P_i}(x)$$
$$i_{\bigcap_{i \in J} P_i}(x) = \bigwedge_{i \in J} i_{P_i}(x)$$
$$f_{\bigcap_{i \in J} P_i}(x) = \bigvee_{i \in J} f_{P_i}(x)$$

Definition 2.6. [18] "Let P and Q be neutrosophic sets of an R-Module M . Then their sum P+Q is a neutrosophic set of M, defined as follows

$$\begin{split} P + Q(x) &= \{x, t_{P+Q}(x), i_{P+Q}(x), f_{P+Q}(x) : x \in M\} \text{ where } \\ t_{P+Q}(x) &= \vee \{t_P(y) \wedge t_Q(z) | x = y + z, y, z \in M\} \\ i_{P+Q}(x) &= \vee \{i_P(y) \wedge i_Q(z) | x = y + z, y, z \in M\} \\ f_{P+Q}(x) &= \wedge f_P(y) \vee f_Q(z) | x = y + z, y, z \in M\} \end{split}$$

Proposition 2.1. [19] If $A \in U(M)$ and $B \in U(N)$, then $A \times B \in U(M \times N)$.

Definition 2.7. [13] Let M be a G module over a field K and $A \in U^{G_M}$, where U^{G_M} denotes the set of all neutrosophic set of M. Then the neutrosophic set $A = \{(x, t_A(x), i_A(x), i_A(x), f_A(x)) : x \in M\}$ is said to be a neutrosophic G-module if the following conditions are satisfied:

- (1) $t_A(ax + by) \ge t_A(x) \land t_A(y)$ $i_A(ax + by) \ge i_A(x) \land i_A(y)$ $f_A(ax + by) \le f_A(x) \lor f_A(y), \forall x, y \in M, a, b \in K$ (2) $t_A(gm) \ge t_A(m)$ $i_A(gm) \ge i_A(m)$ $f_A(gm) \le f_A(m) \forall g \in G, m \in M$
- **Remark 2.2.** (1) We denote the all neutrosophic sets of G-submodules of M by $U(G_M)$.

Definition 2.8. [13] For any $x \in X$, the neutrosophic point $\hat{N}_{\{x\}}$ is defined as $\hat{N}_{\{x\}}(s) = \{(s, t_{\hat{N}_{\{x\}}}(s), i_{\hat{N}_{\{x\}}}(s), f_{\hat{N}_{\{x\}}}(s) : s \in X\}$ where

$$\hat{N}_{\{x\}}(s) = \begin{cases} (1,1,0) & x = s \\ (0,0,1) & x \neq s \end{cases}$$

Remark 2.3. Let X be a non empty set. The neutrosophic point $\hat{N}_{\{0\}}$ in X is $\hat{N}_{\{0\}}(x) = \{(x, t_{\hat{N}_{\{0\}}}(x), i_{\hat{N}_{\{0\}}}(x), f_{\hat{N}_{\{0\}}}(x), f_{\hat{N}_{\{0\}}}(x)\}$ where

$$\hat{N}_{\{0\}}(x) = \begin{cases} (1,1,0) & x = 0\\ (0,0,1) & x \neq 0 \end{cases}$$

3. r-Neutrosophic subset of a neutrosophic- G submodule

Definition 3.1. Let $A = \{(x, t_A(x), i_A(x), f_A(x)) : x \in M\}$ be a neutrosophic G submodule of M over a field K ie, $A \in U(G_M)$. Then for each $r \in [0, 1]$, the r-neutrosophic subset of a neutrosophic- G submodule A of M is denoted and defined as $A_r = \{(x, t_{A_r}(x), i_{A_r}(x), f_{A_r}(x)) : x \in M\}$ where

$$t_{A_r}(x) = t_A(x) \wedge r, \ i_{A_r}(x) = i_A(x) \wedge r, \ f_{A_r}(x) = f_A(x) \vee 1 - r$$

Definition 3.2. Let A_r , $B_r \in U^{G_M}$. Then their sum $A_r + B_r \in U^{G_M}$ defined as follows

$$A_r + B_r(x) = \{x, t_{A_r + B_r}(x), i_{A_r + B_r}(x), f_{A_r + B_r}(x) : x \in M\}$$

where

$$t_{A_r+B_r}(x) = \bigvee \{ t_{A_r}(y) \land t_{B_r}(z) | x = y + z, y, z \in M \}$$
$$i_{A_r+B_r}(x) = \bigvee \{ i_{A_r}(y) \land i_{B_r}(z) | x = y + z, y, z \in M \}$$
$$f_{A_r+B_r}(x) = \bigwedge \{ f_{A_r}(y) \lor f_{B_r}(z) | x = y + z, y, z \in M \}$$

Definition 3.3. For any $A_r \in U^{G_M}$, $\lambda A_r \in U^{G_M}$ defined as follows

$$\lambda A_r = \{x, t_{\lambda A_r}(x), i_{\lambda A_r}(x), f_{\lambda A_r}(x) : x \in M, \lambda \in K\}$$

where

$$t_{\lambda A_r}(x) = \begin{cases} \bigvee \{t_{A_r}(y)\} & if \ y \in M, x = \lambda y \\ 0 & otherwise \end{cases}$$
$$i_{\lambda A_r}(x) = \begin{cases} \bigvee \{i_{A_r}(y)\} & if \ y \in M, x = \lambda y \\ 0 & otherwise \end{cases}$$
$$f_{\lambda A_r}(x) = \begin{cases} \bigwedge \{f_{A_r}(y)\} & if \ y \in M, x = \lambda y \\ 0 & otherwise \end{cases}$$

Proposition 3.1. Let $A_r = \{(x, t_{A_r}(x), i_{A_r}(x), f_{A_r}(x)) : x \in M\} \in U^{G_M}$, then $t_{\lambda A_r}(\lambda x) \ge t_{A_r}(x), i_{\lambda A_r}(\lambda x) \ge i_{A_r}(x)$ and $f_{\lambda A_r}(\lambda x) \le f_{A_r}(x)$.

Proof: We have

$$\lambda A_r = \{x, t_{\lambda A_r}(x), i_{\lambda A_r}(x), f_{\lambda A_r}(x) : x \in M, \lambda \in K\}$$

$$t_{\lambda A_r}(x) = \begin{cases} \forall \{t_{A_r}(y)\} & \text{if } y \in M, x = \lambda y \\ 0 & \text{otherwise} \end{cases}$$

$$\Rightarrow$$
, $t_{\lambda A_r}(\lambda x) = \forall \{t_{A_r}(y), if \ y \in M, \lambda x = \lambda y\} \ge t_{A_r}(x) \ \forall x \in M$

Similarly $i_{\lambda A_r}(\lambda x) \geq i_{A_r}(x)$. Also

$$f_{\lambda A_r}(x) = \begin{cases} \wedge \{f_{A_r}(y)\} & if \ y \in M, x = \lambda y \\ 0 & otherwise \end{cases}$$

 \Rightarrow , $f_{\lambda A_r}(\lambda x) = \wedge \{f_{A_r}(y), if \ y \in M, \lambda x = \lambda y\} \leq f_{A_r}(x) \ \forall x \in M$ Hence the proof.

Theorem 3.1. If $A_r, B_r \in U^{G_M}$, then $\forall x, y \in M, \lambda, \nu \in K$, then

- (1) $t_{(\lambda A_r + \nu B_r)}(\lambda x + \nu y) \ge t_{A_r}(x) \wedge t_{B_r}(y) \ge t_A(x) \wedge t_B(y)$
- $(2) i_{(\lambda A_r + \nu B_r)}(\lambda x + \nu y) \ge i_{A_r}(x) \wedge i_{B_r}(y) \ge i_A(x) \wedge i_B(y)$
- $(3) f_{(\lambda A_r + \nu B_r)}(\lambda x + \nu y) \le f_{A_r}(x) \lor f_{B_r}(y) \le f_A(x) \lor f_B(y)$

Proof: 1. We know

$$\begin{array}{lcl} t_{(\lambda A_r + \nu B_r)}(\lambda x + \nu y) & = & \bigvee \{t_{\lambda A_r}(\vartheta_1) \wedge t_{\nu B_r}(\vartheta_2) : \vartheta_1, \vartheta_2 \in M, \vartheta_1 + \vartheta_2 = \lambda x + \nu y\} \\ & \geq & t_{\lambda A_r}(\lambda x) \wedge t_{\nu B_r}(\nu y) \\ & \geq & t_{A_r}(x) \wedge t_{B_r}(y) \; \forall \; x, y \in M, \; \lambda, \nu \in K \\ & = & (t_A(x) \wedge r) \wedge (t_B(y) \wedge r) \\ & \geq & t_A(x) \wedge t_B(y) \end{array}$$

- 2. Same as above.
- 3. We know

$$\begin{split} f_{(\lambda A_r + \nu B_r)}(\lambda x + \nu y) &= & \bigwedge \{ f_{\lambda A_r}(\vartheta_1) \vee f_{\nu B_r}(\vartheta_2) : \vartheta_1, \vartheta_2 \in M, \vartheta_1 + \vartheta_2 = \lambda x + \nu y \} \\ &\leq & f_{\lambda A_r}(\lambda x) \vee f_{\nu B_r}(\nu y) \\ &\leq & f_{A_r}(x) \vee f_{B_r}(y) \; \forall \; x, y \in M, \; \lambda, \nu \in K \\ &= & (f_A(x) \vee 1 - r) \vee (f_B(y) \vee 1 - r) \\ &\leq & f_A(x) \vee f_B(y) \end{split}$$

Hence the proof.

Definition 3.4. Let $(A_r)_i$, $i \in J$ be an arbitrary non empty family of U^{G_M} , then

(1)
$$\bigcap_{i \in J} (A_r)_i = \{x, t_{\bigcap_{i \in J} (A_r)_i}(x), i_{\bigcap_{i \in J} (A_r)_i}(x), f_{\bigcap_{i \in J} (A_r)_i}(x) : x \in M \}$$
 where
$$t_{\bigcap_{i \in J} (A_r)_i}(x) = \bigwedge_{i \in J} t_{(A_r)_i}(x)$$
$$i_{\bigcap_{i \in J} (A_r)_i}(x) = \bigwedge_{i \in J} i_{(A_r)_i}(x)$$
$$f_{\bigcap_{i \in J} (A_r)_i}(x) = \bigvee_{i \in J} f_{(A_r)_i}(x)$$

$$(2) \ \bigcup_{i \in J} (A_r)_i = \{x, t_{\bigcup_{i \in J} (A_r)_i}(x), i_{\bigcup_{i \in J} (A_r)_i}(x), f_{\bigcup_{i \in J} (A_r)_i}(x) : x \in M \} \text{ where}$$

$$t_{\bigcup_{i \in J} (A_r)_i}(x) = \bigvee_{i \in J} t_{(A_r)_i}(x)$$

$$i_{\bigcup_{i \in J} (A_r)_i}(x) = \bigvee_{i \in J} i_{(A_r)_i}(x)$$

$$f_{\bigcup_{i \in J} (A_r)_i}(x) = \bigwedge_{i \in J} f_{(A_r)_i}(x)$$

Theorem 3.2. Let $(A_r)_i$, $i \in J$ be an arbitrary non empty family of U^{G_M} , then $\lambda(\bigcup_{i \in J} (A_r)_i) = \bigcup_{i \in J} (\lambda(A_r)_i)$ for $\lambda \in K$

 $\begin{aligned} &\textit{Proof: Consider } \lambda \bigcup_{i \in J} (A_r)_i = \{x, t_{\lambda \bigcup_{i \in J} (A_r)_i}(x), i_{\lambda \bigcup_{i \in J} (A_r)_i}(x), f_{\lambda \bigcup_{i \in J} (A_r)_i}(x) : x \in M, \ \lambda \in K \} \end{aligned}$ Now

$$\begin{array}{lll} t_{\lambda\bigcup_{i\in J}(A_r)_i}(x) & = & \begin{cases} \vee\{t_{\bigcup_{i\in J}(A_r)_i}(y)\} & if \ y\in M, x=\lambda y \\ 0 & otherwise \end{cases} \\ & = & \begin{cases} \vee\{\underset{i\in J}{\vee}t_{(A_r)_i}(y)\} & if \ : y\in M, x=\lambda y \\ 0 & otherwise \end{cases} \\ & = & \underset{i\in J}{\vee}t_{\lambda(A_r)_i}(x) \\ & = & t_{\bigcup_{i\in J}\lambda(A_r)_i}(x) \end{cases}$$

Similarly $i_{\lambda \bigcup_{i \in J} (A_r)_i}(x) = i_{\bigcup_{i \in J} \lambda (A_r)_i}(x)$ Now

$$\begin{split} f_{\lambda \bigcup_{i \in J} (A_r)_i}(x) &= \begin{cases} \wedge \{f_{\bigcup_{i \in J} (A_r)_i}(y)\} & if \ y \in M, x = \lambda y \\ 1 & otherwise \end{cases} \\ &= \begin{cases} \wedge \{\bigwedge_{i \in J} f_{(A_r)_i}(y)\} & if \ y \in M, x = \lambda y \\ 1 & otherwise \end{cases} \\ &= \bigwedge_{i \in J} f_{\lambda(A_r)_i}(x) \\ &= f_{\bigcup_{i \in J} \lambda(A_r)_i}(x) \end{split}$$

Hence $\lambda(\bigcup_{i\in J} (A_r)_i) = \bigcup_{i\in J} (\lambda(A_r)_i)$ for $\lambda \in K$

Theorem 3.3. Let $A_r \in U^{G_M}$. Then A_r hold the following:

- (1) $\hat{N}_{\{0\}} \subseteq A_r$
- (2) $\lambda A_r \subseteq A_r \ \forall \lambda \in K$
- (3) $A_r + A_r \subseteq A_r$

Proof: Consider $P \in U(M)$

1. We know $\hat{N}_{\{0\}}(x)=\{(x,t_{\hat{N}_{\{0\}}}(x),i_{\hat{N}_{\{0\}}}(x),f_{\hat{N}_{\{0\}}})(x):x\in M\}$ where

$$\hat{N}_{\{0\}}(x) = \begin{cases} (1,1,0) & x = 0\\ (0,0,1) & x \neq 0 \end{cases}$$

Then obviously, $t_{\hat{N}_{\{0\}}}(x) \leq t_{A_r}(x)$, $i_{\hat{N}_{\{0\}}}(x) \leq i_{A_r}(x)$ and $f_{\hat{N}_{\{0\}}}(x) \geq f_{A_r}(x) \ \forall \ x \in M$ Hence $\hat{N}_{\{0\}} \subseteq A_r$

2. Consider $\lambda A_r = \{x, t_{\lambda A_r}(x), i_{\lambda A_r}(x), f_{\lambda A_r}(x) : x \in M\}$ where

$$t_{\lambda A_r}(x) = \begin{cases} \forall \{t_{A_r}(y)\} & if \ y \in M, x = \lambda y \\ 0 & otherwise \end{cases}$$

$$\leq t_{A_r}(x) \ \forall x \in M \ [t_{A_r}(x) = t_{A_r}(ry) \geq t_{A_r}(y)]$$

Similarly $i_{\lambda A_r}(x) \leq i_{A_r}(x), \ f_{\lambda A_r}(x) \geq f_{A_r}(x), \forall x \in M.$ Hence $\lambda A_r \subseteq A_r$.

3. Consider $x \in M, \lambda \in K$

$$t_{A_r+A_r}(x) = \bigvee \{t_{A_r}y \wedge t_{A_r}(z) : y, z \in M, x = y + z\}$$

$$< t_{A_r}(x) \ \forall x \in M$$

Similarly we can prove, $i_{A_r+A_r}(x) \leq i_{A_r+A_r}(x)$ and $f_{A_r+A_r}(x) \geq f_{A_r}(x)$ Therefore $A_r + A_r \subseteq P$

Corollary 3.3.1. Let $A_r \in U^{G_M}$, then A_r satisfy the following:

(1)
$$\lambda A_r + \nu A_r \subseteq A_r, \ \forall \lambda, \nu \in K$$

4. Conclusion

The special class of neutrosophic sets and their algebraic study advance the application of neutrosophic sets in signal systems and decision making. Structure-preserving properties can be easily derived from r-neutrosophic G-submodules, allowing for the analysis of characteristics in uncertain and indeterminate systems. Future research will focus on homomorphisms and isomorphisms of r-neutrosophic G-submodules, as well as tensor analysis.

References

- [1] Florentin Smarandache, Said Broumi, Prem Kumar Singh, Chun-fang Liu, V Venkateswara Rao, Hai-Long Yang, Ion Patrascu, and Azeddine Elhassouny. Introduction to neutrosophy and neutrosophic environment. In *Neutrosophic Set in Medical Image Analysis*, pages 3–29. Elsevier, 2019.
- [2] Florentin Smarandache. Neutrosophic set-a generalization of the intuitionistic fuzzy set. *International journal of pure and applied mathematics*, 24(3):287, 2005.
- [3] Haibin Wang, Florentin Smarandache, Yanqing Zhang, and Rajshekhar Sunderraman. Single valued neutrosophic sets. *Infinite study*, 12, 2010.
- [4] Lotfi A Zadeh. Fuzzy sets. Informtaion and control, 8(3):338–353, 1965.
- [5] Krassimir T Atanassov and Krassimir T Atanassov. Intuitionistic fuzzy sets. Springer, 1999.
- [6] Charles W Curtis and Irving Reiner. Representation theory of finite groups and associative algebras, volume 356. American Mathematical Soc., 1966.
- [7] Shery Fernadez. Fuzzy g-modules and fuzzy representations. TAJOPAM, 1:107–114, 2002.
- [8] S. Fernandez. A study of fuzzy G-modules. PhD thesis, M. G. University, Kottayam, Kerala, India, 2004.
- [9] PK Sharma and Tarandeep Kaur. Intuitionistic fuzzy g-modules. Notes on Intuitionistic Fuzzy Sets, 21(1):6–23, 2015.
- [10] PK Sharma. Group action on intuitionistic fuzzy modules. International Journal, 1:1, 2016.
- [11] PK Sharma and Tarandeep Kaur. On intuitionistic fuzzy representation of intuitionistic fuzzy g-modules. Annals of Fuzzy Mathematics and Informatics, 11(4):557–569, 2016.
- [12] Paul Isaac and Pearly P John. On intuitionistic fuzzy submodules of a module. *Int. J. of Mathematical Sciences and Applications*, 1(3):1447–1454, 2011.
- [13] R Binu and Paul Isaac. Some characterizations of neutrosophic g-submodule. *J. Math. Comput. Sci.*, 10(1):27–39, 2019.
- [14] P Isaac et al. Neutrosophic projective g-submodules. Neutrosophic Sets and Systems, 32(1):8, 2020.
- [15] C. W. Curties and Irving Reiner. Representation Theory of Finite Group and Associative Algebra. Interscience Publishers, Inc., USA, 1962.
- [16] WANG Haibin, Florentin Smarandache, Yanqing Zhang, and Rajshekhar Sunderraman. Single valued neutrosophic sets. Infinite Study, 2010.
- [17] O. Kazancß and B. Davvaz. On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings. J. Appl. Math.and Informatics, 178:1343 1354, 2008.
- [18] Florentin Smarandache. Neutrosophic set-a generalization of the intuitionistic fuzzy set. 2004.
- [19] R Binu and Ursala Paul. Tensor product of neutrosophic submodules of an r-module. *Neutrosophic Sets* and Systems, page 457, 2022.