Halogen-Free Product

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

- **▼ 100% Avalanche Test**
- **▼** Fast Switching Characteristic
- **▼** Simple Drive Requirement
- **▼** RoHS Compliant

BV _{DSS}	650V
R _{DS(ON)}	1 Ω
I_D	10A

Description

AP2761 series are from Advanced Power innovated design and silicon process technology to achieve the lowest possible onresistance and fast switching performance. It provides the designer with an extreme efficient device for use in a wide range of power applications.

The TO-220CFM package is widely preferred for all commercial-industrial through hole applications. The mold compound provides a high isolation voltage capability and low thermal resistance between the tab and the external heat-sink.

G	
D _	-220CFM(I)
5 10	-220CFWI(I)

Absolute Maximum Ratings

	<u> </u>		
Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	650	V
V_{GS}	Gate-Source Voltage	<u>+</u> 30	V
I _D @T _C =25°ℂ	Continuous Drain Current, V _{GS} @ 10V	10	А
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V	6.4	А
I _{DM}	Pulsed Drain Current ¹	36	А
$P_D@T_C=25^{\circ}C$	Total Power Dissipation	37	W
E _{AS}	Single Pulse Avalanche Energy ²	65	mJ
I _{AR}	Avalanche Current	10	Α
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$

Thermal Data

Symbol	Parameter	Value	Units
Rthj-c	Maximum Thermal Resistance, Junction-case	3.4	°C/W
Rthj-a	Maximum Thermal Resistance, Junction-ambient	65	°C/W

AP2761I-A-HF

Electrical Characteristics@T_i=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS}=0V$, $I_{D}=1mA$	650	-	-	V
R _{DS(ON)}	Static Drain-Source On-Resistance ³	V _{GS} =10V, I _D =5A	-	-	1	Ω
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	2	-	4	V
g _{fs}	Forward Transconductance	V _{DS} =10V, I _D =5A	-	4.8	-	S
I _{DSS}	Drain-Source Leakage Current	V _{DS} =600V, V _{GS} =0V	-	-	100	uA
I _{GSS}	Gate-Source Leakage	$V_{GS} = \pm 30V, V_{DS} = 0V$	-	-	<u>+</u> 100	nA
Q_g	Total Gate Charge	I _D =10A	-	53	-	nC
Q_{gs}	Gate-Source Charge	V _{DS} =520V	-	10	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =10V	-	15	-	nC
t _{d(on)}	Turn-on Delay Time	V _{DD} =320V	-	16	-	ns
t _r	Rise Time	I _D =10A	-	20	-	ns
$t_{d(off)}$	Turn-off Delay Time	$R_G=10\Omega$	-	82	-	ns
t _f	Fall Time	V _{GS} =10V	-	36	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	2750	-	pF
C _{oss}	Output Capacitance	V _{DS} =25V	-	160	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	6	-	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ³	I _S =10A, V _{GS} =0V	•	•	1.5	V
t _{rr}	Reverse Recovery Time	I _S =10A, V _{GS} =0V,		610	-	ns
Q_{rr}	Reverse Recovery Charge	dl/dt=100A/μs	-	8.64	-	μC

Notes:

- 1. Pulse width limited by max. junction temperature.
- 2.Starting $\rm T_i{=}25^{o}C$, $\rm V_{DD}{=}50V$, L=1.2mH , $\rm R_G{=}25\,\Omega$, $\rm I_{AS}{=}10A.$
- 3.Pulse test

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

Fig 1. Typical Output Characteristics

Fig 3. Normalized $BV_{\rm DSS}~~v.s.~Junction$ Temperature

Fig 5. Forward Characteristic of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s.
Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 8. Typical Capacitance Characteristics

Fig 9. Maximum Safe Operating Area

Fig 10. Effective Transient Thermal Impedance

Fig 11. Switching Time Waveform

Fig 12. Gate Charge Waveform

MARKING INFORMATION

