Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients and Outline

The Unit

Integration or the Unit Circl

Polynomials on the Unit

Monomials as a Basis on the Unit Circle

Fourier Coefficients

Section 11.A: Fourier Coefficients and The Riemann-Lebesgue Lemma

Joseph McGuire

October 19, 2024

Fourier Coefficients and Outline

Section 11.A: Fourier Coefficients and The Riemann-Lebesgue Lemma

Fourier Coefficients and Outline

For $k \in \mathbb{Z}$ we define the family $e_k : (-\pi, \pi] \to \mathbb{R}$ defined by

$$e_k(t) = \begin{cases} \frac{1}{\sqrt{\pi}} \sin(kt) & \text{if } k > 0\\ \frac{1}{\sqrt{2\pi}} & \text{if } k = 0\\ \frac{1}{\sqrt{\pi}} \cos(kt) & \text{if } k < 0 \end{cases}$$
 (1)

These are easily shown to be an orthonormal family on $L^2((-\pi, \pi])$. The difficulty comes in showing that it's a basis on $L^2((-\pi, \pi])$. One way to do this is with the Spectral Theorem for Compact Operators, we won't be doing this though.

The Unit Circle

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients and Outline The Unit

Circle
Integration on

Polynomials on the Unit

Monomials as a Basis on the Unit Circle To show that this is a basis of $L^1((-\pi,\pi])$ we'll use the map

$$t \mapsto e^{it} = \cos(t) + i\sin(t), \tag{2}$$

for $t \in (-\pi, \pi]$ to establish a bijection between the interval $(-\pi, \pi]$ and the unit circle.

Definition $(D; \partial D)$

• *D* denotes the open disk in the complex plane:

$$D = \{ w \in C : |w| < 1 \}.$$

• ∂D is the unit circle in the complex plane:

$$\partial D = \{ z \in \mathsf{C} : |z| = 1 \}.$$

The Unit Circle

Section 11.A: Fourier Coefficients and The Riemann-Lebesgue Lemma

The Unit

Circle

We know a lot about the interval $(-\pi, \pi]$ because of our work in Chapter 2 and background in Lebesgue integration. We'll use the bijection between ∂D and $(-\pi, \pi]$ to define measurable sets and a measure on the unit circle, ∂D .

Definition (Measurable Subsets of ∂D ; σ)

- A subset E of ∂D is measurable if $\{t \in (-\pi, \pi] : e^{it} \in E\}$ is a Borel subset of R.
- \bullet σ is the measure on the measurable subsets of ∂D obtained by transforming Lebesgue measure from $(-\pi, \pi]$ to ∂D , normalized so that $\sigma(\partial D) = 1$. If E is measurable, then

$$\sigma(E) = \frac{|\{t \in (-\pi,\pi] : e^{it} \in E\}|}{2\pi}.$$

Integration on the Unit Circle

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients and Outlin

The Unit Circle

Integration on the Unit Circle

Circle Monomials as

Monomials as a Basis on the Unit Circle

Fourier Coefficient and Series

Definition (The Lebesgue Integral on ∂D)

Let $f: \partial D \to C$ be a measurable function, then, if it makes sense, define:

$$\int_{\partial D} f \ d\sigma = \int_{\partial D} f(z) \ d\sigma(z) = \int_{-\pi}^{\pi} f(e^{it}) \frac{dt}{2\pi}.$$

Definition $(L^p(\partial D))$

For $1 \le p \le \infty$, define $L^p(\partial D)$ to mean the complex version of $L^p(\sigma)$, where σ is the normalized Lebesgue measure on $(-\pi, \pi]$.

A quick note, assume $t \in R$ and $n \in Z$, and $z = e^{it}$

•
$$\bar{z} = e^{-it}$$

•
$$z^n = e^{int}$$

•
$$\bar{z^n} = e^{-int}$$

Polynomials on the Unit Circle

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients

The Unit

Integration or

Polynomials on the Unit Circle

Monomials as a Basis on the

Fourier Coefficients and Series

Theorem (Orthonormal Family in $L^2(\partial D)$)

 $\{z^n\}_{n\in\mathbb{Z}}$ is an orthonormal family in $L^2(\partial D)$.

Proof.

In $n \in Z$, then:

$$\langle z^{n}, z^{n} \rangle = \int_{\partial D} z^{n} \overline{z^{n}} dz$$

$$= \int_{-\pi}^{\pi} e^{itn} e^{\overline{i}tn} \frac{dt}{2\pi}$$

$$= \int_{-\pi}^{\pi} |e^{itn}|^{2} \frac{dt}{2\pi}$$

$$= \int_{-\pi}^{\pi} \frac{dt}{2\pi} = 1.$$

Monomials on the Unit Circle

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients

The Unit

Integration o

Polynomials on the Unit Circle

Monomials as a Basis on the Unit Circle

Fourier Coefficients and Series

Proof. (Cont.)

If $m, n \in \mathbb{Z}$ and $m \neq n$, then:

$$\langle z^{n}, z^{m} \rangle = \int_{\partial D} z^{n} \overline{z^{m}} dz$$

$$= \int_{-\pi}^{\pi} e^{int} e^{-imt} \frac{dt}{2\pi}$$

$$= \int_{-\pi}^{\pi} e^{i(n-m)t} \frac{dt}{2\pi}$$

$$= \frac{e^{i(m-n)t}}{2\pi i(m-n)} \Big|_{t=-\pi}^{t=\pi}$$

$$= \frac{e^{i(m-n)\pi} - e^{-i(m-n)\pi}}{2\pi i(m-n)} = 0.$$

As desired.

Polynomials as a Basis on the Unit Circle

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficient and Outlin

Integration o

the Unit Circle

on the Unit Circle

Monomials as a Basis on the Unit Circle We'll rigourously show that the monomials form a basis for $L^2(\partial D)$ in the next section, until then recall that from Hilbert space theory if f is in the closure of the span of $\{z^n\}_{n\in\mathbb{Z}}$ and in $L^2(\partial D)$ then we'll have:

$$f = \sum_{n \in \mathbb{Z}} \langle f, z^n \rangle z^n$$

where the infinite sum converges as an unordered sum in the norm of $L^2(\partial D)$, where

$$\langle f, z^n \rangle = \int_{\partial D} f(z) \overline{z^n} dz = \int_{-\pi}^{\pi} f(e^{it}) e^{-int} \frac{dt}{2\pi}.$$

So since |z| = 1 for $z \in \partial D$, we'll have $|z^n| = 1$ for every $z \in \partial D$, this integral makes since even when $f \in L^1(\partial D)$.

Fourier Coefficients and Series

Section 11.A: Fourier Coefficients and The Riemann-Lebesgue Lemma

Fourier Coefficients

and Series

Definition (Fourier Coefficients; $\hat{f}(n)$; Fourier Series)

Suppose $f \in L^1(\partial D)$.

• For $n \in Z$, the n^{th} Fourier Coefficient of f is denoted $\hat{f}(n)$ and is defined by:

$$\hat{f}(n) = \inf_{\partial D} f(z) \bar{z^n} \ d\sigma(z) = \int_{-\pi}^{\pi} f(e^{it}) e^{-int} \frac{dt}{2\pi}.$$

• The Fourier series of f is the formal sum:

$$\sum_{n=-\infty}^{\infty} \hat{f}(n)z^n.$$

We will formalize in what sense f is equal to this sum later.

Examples of Fourier Coefficients

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients and Outlin

Circle

the Unit Circle

Circle

Monomials as

Monomials as a Basis on the Unit Circle

Fourier Coefficients and Series Suppose h is an analytic function on an open set that contains D (The closure of the open unit disk). Then h has a power series representation:

$$h(z)=\sum_{n=0}^{\infty}a_nz^n,$$

where the sum on the right converges uniformly on \bar{D} to h. Because uniform convergence on ∂D implies convergence in $L^2(\partial D)$, 8.58(b) and 11.6 imply that

$$(h\big|_{\partial D})^{\wedge}(n) = \begin{cases} a_n & \text{if } n \geq 0 \\ 0 & \text{if } n < 0 \end{cases}$$

for all $n \in \mathbb{Z}$. In other words, functions analytic on an open set containing the closure of the open unit disk \bar{D} , the Fourier series is the same as a Taylor series.

Examples of Fourier Coefficients

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients and Outline

The Unit

Integration or the Unit Circl

Polynomials on the Unit

Monomials as a Basis on the Unit Circle

Fourier Coefficients and Series Suppose $f: \partial D \to R$ is defined by

$$f(z)=\frac{1}{|3-z|^2}.$$

Note that |z| = 1, so that $3 \notin \partial D$. Then for $z \in \partial D$ we have that:

$$f(z) = \frac{1}{3-z} \frac{1}{3-\bar{z}}$$

$$= \frac{1}{8} \left(\frac{z}{3-z} + \frac{3}{3-\bar{z}} \right)$$

$$= \frac{1}{8} \left(\frac{\frac{z}{3}}{1-\frac{z}{3}} + \frac{1}{1-\frac{\bar{z}}{3}} \right)$$

$$= \frac{1}{8} \left(\frac{z}{3} \sum_{1}^{\infty} \frac{z^{n}}{3^{n}} + \sum_{1}^{\infty} \frac{(\bar{z})^{n}}{3^{n}} \right)$$

Examples of Fourier Coefficients

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients and Outline

The Unit Circle

Integration on the Unit Circle

Polynomials on the Unit Circle

Monomials as a Basis on the Unit Circle

Fourier Coefficients and Series

$$= \frac{1}{8} \left(\frac{z}{3} \sum_{n=0}^{\infty} \left(\frac{z}{3} \right)^n + \sum_{n=0}^{\infty} \frac{z^{-n}}{3^n} \right)$$
$$= \frac{1}{8} \sum_{n=-\infty}^{\infty} \frac{z^n}{3^{|n|}},$$

where the infinite sum converges uniformly on ∂D . Thus we see that

$$\hat{f}(n) = \frac{1}{8} \frac{1}{3^{|n|}} \qquad n \in \mathbb{Z}$$

Algebraic Properties of Fourier Coefficients

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficient and Outlin

Integration or

Polynomials on the Unit Circle

Monomials as a Basis on the Unit Circle

Fourier Coefficients

Theorem (Algebraic Properties of Fourier Coefficients)

Suppose $f,g\in L^1(\partial D)$ and $n\in Z$. Then

(a)
$$(f+g)^{\wedge}(n) = \hat{f}(n) + \hat{g}(n);$$

$$|\hat{f}(n)| \leq ||f||_1.$$

Suppose $f, g \in L^1(\partial D)$ and $n \in \mathbb{Z}$. Then

$$(f+g)^{\wedge}(n) = \int_{\partial D} (f+g)(z)\bar{z^n} dz$$

$$= \int_{-\pi}^{\pi} (f(z)e^{-int} + g(z)e^{-int}) \frac{dt}{2\pi}$$

$$= \hat{f}(n) + \hat{g}(n)$$

Algebraic Properties of Fourier Coefficients

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients

The Unit

Integration or the Unit Circl

Polynomials on the Unit Circle

Monomials as a Basis on the Unit Circle

Fourier Coefficients Then we'll also have

$$(\alpha f)^{\wedge}(n) = \int_{\partial D} (\alpha f)(z) \bar{z}^{n} dz$$
$$= \alpha \hat{f}(n).$$

To show the last, consider the following:

$$\left| \hat{f}(n) \right| = \left| \int_{\partial D} f(z) \bar{z^n} \ dz \right|$$
(Def. of Fourier Coef.)
$$= \left| \int_{-\pi}^{\pi} f(e^{it}) e^{-int} \frac{dt}{2\pi} \right|$$
(Theorem 3.23)
$$\leq \int_{-\pi}^{\pi} |f(e^{it}) e^{-int}| \frac{dt}{2\pi}$$

$$(|e^{-int}| = 1) = \int_{-\pi}^{\pi} |f(e^{it}) \frac{dt}{2\pi}$$

$$= ||f||_{1}.$$

where we use the normalized-norm on $(-\pi,\pi]$ where we divide by $2\pi_{\mathbb{R}^2}$

The Riemann-Lebesgue Lemma, Example

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients and Outline

The Unit Circle

Integration on the Unit Circle

Polynomials on the Unit Circle

Monomials as a Basis on the Unit Circle Combining (a) and (b) this shows that the map $f \mapsto \hat{f}(n)$ between $L^1(\partial D) \to C$ is a linear functional. Then (c) gives us that this is indeed a bounded linear functional with norm 1. (c) also gives us that $\{\hat{f}(n)\}_{n\in\mathbb{Z}}$ is a bounded family for all $f \in L^1(\partial D)$.

By the example we did earlier, 11.8, we have that this family also has a stronger property namely that $\lim_{n\to\pm\infty}\hat{f}(n)=0$.

That is, since

$$(h\big|_{\partial D})^{\wedge}(n) = \begin{cases} a_n & \text{if } n \geq 0 \\ 0 & \text{if } n < 0 \end{cases}$$

where $h(z) = \sum_{n=0}^{\infty} a_n z^n$ is some analytic function on an open set

containing \bar{D} (the closure of the open unit disk). Then sense this is a uniformly convergent series, we must have $\lim_{n\to\infty} a_n = 0$ and clearly

$$\lim_{n\to\infty} 0 = 0.$$

The Riemann-Lebesgue Lemma

Section 11.A:
Fourier
Coefficients
and The
RiemannLebesgue
Lemma

Joseph McGuire

Fourier Coefficients and Outlin

The Un Circle

Integration on the Unit Circle

Circle

Monomials as

Monomials as a Basis on the Unit Circle

Fourier Coefficients

Theorem

Suppose
$$f \in L^1(\partial D)$$
. Then $\lim_{n \to \pm \infty} \hat{f}(n) = 0$.

Proof.

Suppose $\epsilon > 0$. Then there exists a $g \in L^2(\partial D)$ such that $||f - g||_1 < \epsilon$ (by 3.44). By 11.6 and Bessel's Inequality (8.57) we have that:

$$\sum_{n=-\infty}^{\infty} |\hat{g}(n)|^2 \leq ||g||_2^2 < \infty.$$

That is, there exists a $M \in \mathbb{Z}^+$ such that $|\hat{g}(n)| < \epsilon$ for all $n \in \mathbb{Z}$ with $|n| \geq M$.

The Riemann-Lebesgue Lemma

Section 11.A: Fourier Coefficients and The Riemann-Lebesgue Lemma

Proof. Cont.

Now if $n \in \mathbb{Z}$ and $|n| \geq M$, then:

$$|\hat{f}(n)| \le |\hat{f}(n) - \hat{g}(n)| + |\hat{g}(n)|$$

$$(11.9(a) \text{ and work}) < |(f - g)^{\wedge}(n)| + \epsilon$$

$$(11.9(c)) \le ||f - g||_1 + \epsilon$$

$$(3.44 \text{ and work}) < 2\epsilon.$$

Giving us
$$\lim_{n\to\pm\infty}\hat{f}(n)=0$$
, as desired.