

Department of Computer Science

Ramakrishna Mission Vivekananda Educational Research Institute, Belur Math

Optimization for ML –BDA 2022

Problem Set on Convexity of Functions

1. *Inverse of an increasing convex function*:

Suppose $f : \mathbb{R} \to \mathbb{R}$ is increasing and convex on its domain (a, b). Let g denote its inverse function, i.e., the function with domain (f(a), f(b)), and g(f(x)) = x for a < x < b. Is g convex/concave?

2. *Monotone mappings*:

A function $\psi: \mathbb{R}^n \to \mathbb{R}$ is called monotone if for all $\mathbf{x}, \mathbf{y} \in \text{dom } \psi, (\psi(\mathbf{x}) - \psi(\mathbf{y}))^T(\mathbf{x} - \mathbf{y}) \ge 0$. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, show that ∇f is monotone.

- 3. For each of the following functions determine whether it is convex, concave, or neither.
 - (a) $f(x) = e^x 1$ on \mathbb{R} .
 - (b) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
 - (c) $f(x_1, x_2) = 1/(x_1x_2)$ on \mathbb{R}^2_{++} .
 - (d) $f(x_1, x_2) = x_1 / x_2$ on \mathbb{R}^2_{++} .
 - (e) $f(x_1, x_2) = x_1^2 / x_2$ on $\mathbb{R} \times \mathbb{R}_{++}$
 - (f) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where, $0 \le \alpha \le 1$, on \mathbb{R}^2_+ .
- 4. Products and ratios of convex functions: Show that
 - (a) If f and g are convex, both nondecreasing (or nonincreasing), and positive functions on an interval, then fg is convex.
 - (b) If f, g are concave, positive, with one nondecreasing and the other nonincreasing, then f g is concave.
 - (c) If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and positive, then f/g is convex.
- 5. *Strong, strict convexity of functions:* For each function below, determine whether it is convex, strictly convex, strongly convex or none of the above.
 - (a) $f(x) = (x_1 3x_2)^2$
 - (b) $f(x) = (x_1 3x_2)^2 + (x_1 2x_2)^2$
 - (c) $f(x) = (x_1 3x_2)^2 + (x_1 2x_2)^2 + x_1^3$
 - (d) f(x) = |x|, $x \in \mathbb{R}$.
 - (e) f(x) = ||x||, $x \in \mathbb{R}^n$
- 6. Lipschitz continuity and smoothness of functions: Show that
 - (a) f(x) = |x| and $f(x) = \log(1 + e^x)$ are both 1-Lipschitz over \mathbb{R} ,
 - (b) $f(x) = x^2$ is not ρ -Lipschitz over \mathbb{R} for any $\rho > 0$, but is ρ -Lipschitz over set $C = \{x \mid |x| \le \rho/2\}$
 - (c) $f(x) = x^2$ is 2- smooth and $f(x) = \log(1 + e^x)$ is (1/4) smooth [Hint: show f'(x) is 1/4-Lipschitz]
- 7. Composition of Lipschitz and Smooth functions
 - (a) Let $f(x) = g_1(g_2(x))$, where g_1 is ρ_1 -Lipschitz and g_2 is ρ_2 -Lipschitz. Then f is $\rho_1\rho_2$ -Lipschitz. In particular, if g_2 is the linear function, $g_2(x) = \langle \mathbf{v}; \mathbf{x} \rangle + b$, for some $\mathbf{v} \in \mathbb{R}^n$ and $b \in \mathbb{R}$., then f is $(\rho_1 \|\mathbf{v}\|)$ -Lipschitz.
 - (b) Let $f(\mathbf{w}) = g(\langle \mathbf{w}; \mathbf{x} \rangle + b)$, where $g : \mathbb{R} \to \mathbb{R}$ is β -smooth and $\mathbf{x} \in \mathbb{R}^n$ and $b \in \mathbb{R}$, then f is $(\beta \|\mathbf{x}\|^2)$ -smooth.

Exercise problems of Chapter 3 of Nonlinear Programming by Bazaraa et al.

- [3.1] Which of the following functions is convex, concave, or neither? Why?
 - a. $f(x_1, x_2) = 2x_1^2 4x_1x_2 8x_1 + 3x_2$
 - b. $f(x_1, x_2) = x_1 e^{-(x_1 + 3x_2)}$
 - c. $f(x_1, x_2) = -x_1^2 3x_2^2 + 4x_1x_2 + 10x_1 10x_2$
 - **d.** $f(x_1, x_2, x_3) = 2x_1x_2 + 2x_1^2 + x_2^2 + 2x_3^2 5x_1x_3$
- [3.2] Over what subset of $\{x: x > 0\}$ is the univariate function $f(x) = e^{-ax^b}$ convex, where a > 0 and $b \ge 1$?
- [3.3] Prove or disprove concavity of the following function defined over $S = \{(x_1, x_2): -1 \le x_1 \le 1, -1 \le x_2 \le 1\}$:

$$f(x_1, x_2) = 10 - 3(x_2 - x_1^2)^2$$
.

- [3.4] Over what domain is the function $f(x) = x^2(x^2 1)$ convex? Is it strictly convex over the region(s) specified? Justify your answer.
- [3.5] Show that a function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if and only if f is both convex and concave. [A function f is affine if it is of the form $f(\mathbf{x}) = \alpha + \mathbf{c}^t \mathbf{x}$, where a is a scalar and \mathbf{c} is an n-vector.]
- Let $f(x_1, x_2) = e^{2x_1^2 x_2^2} 3x_1 + 5x_2$. Give the linear and quadratic approximations of f at (1, 1). Are these approximations convex, concave, or neither? Why?

Problems on convexity preserving operations

- [3.8] Let $f_1, f_2, ..., f_k$: $R^n \to R$ be convex functions. Consider the function f defined by $f(\mathbf{x}) = \sum_{j=1}^k \alpha_j f_j(\mathbf{x})$, where $\alpha_j > 0$ for j = 1, 2, ..., k. Show that f is convex. State and prove a similar result for concave functions.
- [3.10] Let $h: \mathbb{R}^n \to \mathbb{R}$ be a convex function, and let $g: \mathbb{R} \to \mathbb{R}$ be a nondecreasing convex function. Consider the composite function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(\mathbf{x}) = g[h(\mathbf{x})]$. Show that f is convex.
- [3.16] Let $g: R^m \to R$ be a convex function, and let $h: R^n \to R^m$ be an affine function of the form h(x) = Ax + b, where A is an $m \times n$ matrix and b is an $m \times 1$ vector. Then show that the composite function $f: R^n \to R$ defined as f(x) = g[h(x)] is a convex function. Also, assuming twice differentiability of g, derive an expression for the Hessian of f.
- [3.24] Let f be a convex function on R^n . Prove that the set of subgradients of f at a given point forms a closed convex set.

Problems on composition of convex functions

1. Prove the following

a)
$$f(\mathbf{x}, \mathbf{u}, \mathbf{v}) = -\operatorname{sqrt}(u\mathbf{v} - \mathbf{x}^{\mathsf{T}}\mathbf{x})$$
 on **dom** $\mathbf{f} = \{(\mathbf{x}, u, v) \mid u\mathbf{v} > \mathbf{x}^{\mathsf{T}}\mathbf{x}, u, v > 0\}$ is convex

b)
$$f(\mathbf{x}, \mathbf{u}, \mathbf{v}) = -\log(u\mathbf{v} - \mathbf{x}^{\mathsf{T}}\mathbf{x})$$
 on **dom** $\mathbf{f} = \{(\mathbf{x}, u, v) \mid uv > \mathbf{x}^{\mathsf{T}}\mathbf{x}, u, v > 0\}$ is convex.

c)
$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|$$
, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, and $\|.\|$ is a norm on \mathbb{R}^m .

Problems on Log-concavity

1. Show that the following functions are log-concave.

(a) Logistic function:
$$f(x) = e^x/(1+e^x)$$
 with **dom** $f = \mathbb{R}$.

(b) Harmonic mean:
$$f(x) = \frac{1}{1/x_1 + \dots + 1/x_n}$$
 on **dom** $f = \mathbb{R}^{n}_{++}$

(c) Show that if
$$f: \mathbb{R}^n \to \mathbb{R}$$
 is log-concave and $a \ge 0$, then the function $g = f - a$ is log-concave, where $\operatorname{dom} g = \{ \mathbf{x} \in \operatorname{dom} f \mid f(\mathbf{x}) > a \}$

2. Log-convexity of moment functions: Suppose $f : \mathbb{R} \to \mathbb{R}$ is nonnegative with $\mathbb{R}_+ \subseteq \operatorname{dom} f$. For $x \ge 0$ define

$$\phi(x) = \int_0^\infty u^x f(u) \ du.$$

Show ϕ is a log-convex function.

3. Show that the cumulative distribution function of a Gaussian random variable is log-concave. Also show the cumulative distribution function of any log-concave probability density is log-concave