Pflichtenheft, provisorisch

Projekt 3 EIT, Team 2: Reto Freivogel, Alexander Murray, Raphael Frey

7. Oktober 2015

1 Lösungskonzept

Abbildung 1: Blockdiagramm des Lösungsansatzes

Das Kernstück des Gerätes besteht aus dem CVCC Spannungswandler und dem Mikrocontroller. Der Mikrocontroller misst Ausgangsstrom und Ausgangsspannung. Aus diesen Werten berechnet er Sollspannung und Strom. Durch zwei digital einstellbare Widerstände stellt er die Spannungs- und Stromlimite des Wandlers. Damit bildet er die I-V Kennlinie eines PV-Moduls nach.

Die Solarzelle wird mit folgender Formel modelliert:

$$I_d = I_{sc} \cdot \left(\frac{G}{G_0} - exp\left(\frac{V_d - V_{oc}}{V_t}\right)\right) \tag{1}$$

Wobei I_d der momentane Strom, I_{sc} der Kurzschlussstrom, $\frac{G}{G_0}$ das Beleuchtungsverhältnis, V_d die momentane Ausgangsspannung, V_{oc} die Leerlaufspannung und V_t die Dunkelspannung aller Zellen in Serie sind. Der Einfluss der Temperatur wird in dieser Formel vernachlässigt und sie gilt lediglich falls $V_{oc} > 5 \cdot V_t$.

Das Gerät wird über ein Text-LCD und einen Dreh-Drück-Taster bedient. Weiter ist ein Ein-Aus Schalter vorgesehen. Auf dem LCD werden die Werte der momentanenen Spannung und des momentanen Stromes sowie die eingestellte Belechtungsstärke angezeigt. Dreht man den Drehtaster wird die Beleuchtungsstärke verändert. Durch Drücken des Tasters gelangt man in Untermenüs, in denen man die anderen Parameter $(I_{sc}, V_{oc} \text{ und } V_t)$ verändern kann.

2 Ziel-Spezifikationen

Maximale Ausgangsspannung	24V
Maximaler Ausgangsstrom	3.5A
Effizienz bei Volllast	80%
Leistungsverbrauch Leerlauf	3W
Nachregelzeit	$1 \mathrm{ms}$
Genauikeit Spannung	2%
Genauikeit Strom	2%
Rippel Spannung	$300 \mathrm{mV}$
Rippel Strom	$100 \mathrm{mA}$
Stufen Kennlinie	3

3 Komponenten

Digikey	Beschreibung	Preis	Anzahl	Betrag
DSPIC33EP16GS506-I/PT-ND	dsPIC33 microcontroller	4.91	1	4.91
768-1008-1-ND	FT232RQ (UART to serial)	4.5	1	4.5
NHD-0440WH-ATMI-JT#-ND	LCD Display, 160 (4x40) chars	24.9	1	24.9
H11N1SR2MCT-ND	optocouplers	5.94	2	11.88
811-1673-5-ND	DCDC isolated converter	7.95	1	7.95
285-1829-ND	ACDC 230V to 36V supply module	27.41	1	27.41
LTM8026EV#PBF-ND	CVCC buck converter, for output	21.49	1	21.49
J151-ND	Banana Plugs	0.7	2	1.4
TBD	Twistbutton	10	1	10
TBD	Misc. components	20	1	20
Subtotal				134.44
Jackaltac	Printed Circuit Board	40	1	40
TBD	Housing	50	1	50
Subtotal				224.44

4 Testkonzept

- Verhalten von Strom und Spannung bei verschiedenen resistiven, kapazitiven und induktiven Lasten (und Kombinationen davon).
- Verhalten von Floating Potential und Stromaufnahme bei verschiedenen resistiven, kapazitiven und induktiven Lasten (und Kombinationen davon).
- Vergleich des Verhaltens mit Referenzdaten echter Solarzellen.