Practice Problems 9: Multivariate Calculus and Optimization

PREVIEW

- A complete space ensures that if you are solving something by approximation, you need not worry the object of interest might not be on the space.
- Contractions are the most common way of solving a problem by approximation. Intuitively, it is a function that you apply iteratively and each time gets you closer to the solution, in fact it ensures the solution is unique.

COMPLETE SPACES

- 1. * Suppose a sequence satisfies that $|x_{n+1}-x_n|\to 0$ as $n\to\infty$. Is it a Cauchy sequence?
- 2. Note that the number $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$. Use this to argue that \mathbb{Q} is not complete.
- 3. * Consider the metric $\rho(x,y) = \frac{|x-y|}{1+|x-y|}$, and the metric space (\mathbb{R},ρ) . Is this a complete space?
- 4. Exercises 3.6 from Stokey and Lucas
 - (a) Show that the following metric spaces are complete:
 - i. * (3.3a) Let S be the set of integers with metric $\rho(x,y) = |x-y|$
 - ii. (3.3b) Let S be the set of integers with metric $\rho(x,y) = \mathbb{1}\{x \neq y\}$
 - iii. * (3,4a) Let $S = \mathbb{R}^n$ with $||x|| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$.
 - iv. (3.4b) Let $S = \mathbb{R}^n$ with $||x|| = \max_i |x_i|$.
 - v. (3.4d) Let S be the set of all bounded real sequences $(x_1, x_2, ...)$ with $||x|| = \sup_n |x_n|$.
 - vi. (3.4e) Let S be the set of all continuous functions on [a, b], with $||x|| = \sup_{a \le t \le b} |x(t)|$.
 - (b) Show that the following metric spaces are not complete
 - i. (3.3c) Let S be the set of all continuous strictly increasing functions on [a, b], with $\rho(x, y) = \max_{a \le t \le b} |x(t) y(t)|$.
 - ii. * (3.4f) Let S be the set of all continuous functions on [a,b] with $||x|| = \int_a^b |x(t)| dt$
 - (c) Show that if (S, ρ) is a complete metric space and S' is a closed subset of S, then (S', ρ) is a complete metric space.

CONTRACTIONS AND IMPLICIT FUNCTION THEOREM

5. * Let $f:(0,1) \to (0,1)$ s.t. f(x) = 0.5 + 0.5x. Show that f is a contraction. Can we apply the contraction mapping theorem to claim the existence of a fixed point, f(x) = x?

- 6. * Suppose that you are interested of finding a solution to log(x) x + 2 = 0 how would program it on a computer to find it numerically?
- 7. * Prove that the expression $x^2 xy^3 + y^5 = 17$ is an implicit function of y in terms of x in a neighborhood of (x,y) = (5,2). Then Estimate the y value which corresponds to x = 4.8.
- 8. * Let q^d be the demand of a good:

$$q^d = f_1(p, x_1)$$

where $f_1: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}_+$ is the demand function, p is the price, x_1 is an exogenous demand shifter. Let q^s be the supply of the same good:

$$q^s = f_2(p, x_2)$$

where $f_2: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}_+$ is the supply function, x_2 is an exogenous supply shifter. The market is in equilibrium if $q^d = q^s$.

- (a) Make the required assumptions on the function f_1 and f_2 to apply the implicit function theorem. Simplify the model to 2 endogenous variables.
- (b) What is the impact of changes in x_1 and x_2 on the equilibrium price and quantity q_0, p_0 ?
- 9. Define $f: \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x, y, z) = x^2y + e^x + z.$$

Show that there exists a differentiable function g(y, z), such that g(1, -1) = 0 and

$$f(g(y,z), y, z) = 0$$

Specify the domain of g. Compute Dg(1, -1).