Homework 2

Seth Marceno April 18, 2019

Question 1

Part (a)

The predictor is GDP per person and the response is Fertility. ##Part (b) Looking at the scatterplot made below, the trend of GDP per person vs Fertility looks like it is NOT linear.

GDP Per Person vs. Fertility

Part (c)

Taking the natural log of both variables gives us a scatterplot where a simple linear regression model seems plausible.

GDP Per Person vs. Fertility

Question 2

Part (a)

Based off our results of the scatter plot below, a simple linear regression model seems reasonable.

```
#Reads in the dataset prostate into my global environment
data(prostate)
#Assigning values to my predictor and response variables, respectively
lpsa <- prostate$lpsa
lcavol <- prostate$lcavol
#Creates and titles my scatterplot
plot(lcavol, lpsa, xlab = 'log cancer volume', ylab = 'log prostate specific antigen')
title('Log Cancer Volume vs. Log Prostate Specific Antigen')</pre>
```

Log Cancer Volume vs. Log Prostate Specific Antigen

Part (b)

Here I compute the values of Xbar, Ybar, Sxx, Syy, Sxy, B0hat, and B1hat without using the built in R function lm(). Then I draw the fitted line on my plot from part (a)

```
Xbar <- 1/length(lcavol) * sum(lcavol)</pre>
Xbar
## [1] 1.35001
Ybar <- 1/length(lpsa) * sum(lpsa)
Ybar
## [1] 2.478387
Sxx <- sum(lcavol^2)-length(lcavol)*Xbar^2</pre>
Sxx
## [1] 133.359
Syy <- sum(lpsa^2)-length(lpsa)*Ybar^2</pre>
Ѕуу
## [1] 127.9176
Sxy <- sum(lcavol*lpsa) - length(lpsa)*Xbar*Ybar</pre>
Sxy
## [1] 95.92784
B1hat <- Sxy/Sxx
B1hat
```

```
## [1] 0.7193201
B0hat <- Ybar - B1hat*Xbar
B0hat

## [1] 1.507298

plot(lcavol, lpsa, xlab = 'log cancer volume', ylab = 'log prostate specific antigen')
title('Log Cancer Volume vs. Log Prostate Specific Antigen')
abline(a = B0hat, b = B1hat)</pre>
```

Log Cancer Volume vs. Log Prostate Specific Antigen

Part (c)

```
Here I estimate Sigma Squared Hat
Yhat <- B0hat + B1hat*lcavol
SigmaHatSquared <- 1/(length(lpsa)-2) * sum((lpsa - Yhat)^2)
SigmaHatSquared
## [1] 0.6201553
Standard Error of B0hat
SE_B0hat <- sqrt(SigmaHatSquared) * sqrt((1/length(lpsa)) + (Xbar^2/Sxx))
SE_B0hat
## [1] 0.1219368
Standard Error of B1hat
SE_B1hat <- sqrt(SigmaHatSquared)/sqrt(Sxx)
SE_B1hat</pre>
```

[1] 0.06819288

```
Finding covariance of B1hat and B0hat
```

```
covB1hat_B0hat <- (-Xbar*SigmaHatSquared)/Sxx
covB1hat_B0hat</pre>
```

[1] -0.006277907

```
T-test for B0hat: H_0: B0 = 0 vs. H_1: B0 != 0 with alpha = 0.05
```

```
test_stat_B0 <- B0hat/SE_B0hat
crit_val_B0 <- qt(p = .975, df = length(lpsa)-2)
P_value_B0 <- 2*pt(abs(test_stat_B0), df = length(lpsa)-2, lower.tail = FALSE)
P_value_B0</pre>
```

```
## [1] 1.722234e-21
```

```
test_stat_B0
```

```
## [1] 12.3613
crit_val_B0
```

```
## [1] 1.985251
```

Since |test_stat_B0| > crit_val_b0 we reject our null hypothesis that B0=0. Similarly since P_value_b0 < alpha = 0.05 we also conclude that we reject the null hypothesis.

```
T-test for B1hat: H_0: B1 = 0 vs. H_1: B1 != 0 with alpha = 0.05
```

```
test_stat_B1 <- B1hat/SE_B1hat
crit_val_B1 <- qt(p = .975, df = length(lpsa)-2)
P_value_B1 <- 2*pt(abs(test_stat_B1), df = length(lpsa)-2, lower.tail = FALSE)
P_value_B1</pre>
```

```
## [1] 1.118616e-17
```

```
test_stat_B1
```

[1] 10.54832

```
crit_val_B1
```

```
## [1] 1.985251
```

Since $|\text{test_stat_B1}| > \text{crit_val_b1}$ we reject our null hypothesis that B1=0. Similarly since P_value_b1 < alpha = 0.05 we also conclude that we reject the null hypothesis. Thus we can say that a simple linear regression model is reasonable.

Question 3

Part (a)

Reads in data, creates a linear regression model, and then plots that data.

```
data(ftcollinstemp)
fall <- ftcollinstemp$fall
winter <- ftcollinstemp$winter</pre>
```

```
fit1 <- lm(winter~fall)
plot(fall, winter, xlab = 'Fall Temp in F', ylab = 'Winter Temp in F')
abline(fit1)
title('Fall Temp in F vs Winter Temp in F')</pre>
```

Fall Temp in F vs Winter Temp in F

Part (b)

Testing $H_0 B1 = 0$ vs. $H_1: B1 != 0$ with alpha = 0.01

```
summary(fit1)
```

```
##
## Call:
## lm(formula = winter ~ fall)
##
## Residuals:
                1Q Median
##
       Min
                                 3Q
                                        Max
   -7.8186 -1.7837 -0.0873 2.1300
                                     7.5896
##
##
  Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                      1.825
                                              0.0708 .
## (Intercept) 13.7843
                            7.5549
## fall
                 0.3132
                             0.1528
                                      2.049
                                              0.0428 *
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.179 on 109 degrees of freedom
## Multiple R-squared: 0.0371, Adjusted R-squared: 0.02826
```

F-statistic: 4.2 on 1 and 109 DF, p-value: 0.04284

Based off of our summary function, we can see that our test statistic for B1 is .3132 and our t value is 2.049. Thus, since |.3132| !> 2.049 we fail to reject the null hypothesis.

Part (c)

We know that the percentage of the variability in winter as explained by fall is equal to R squared. Based off our summary from above we see that R squared is equal to 0.0371. Therefore we can conclude that 3.71% of the variability in winter is explained by fall.