Calcul différentiel

Table des matières

1	informations utiles	2
Ι	Rappels sur les espaces vectoriels normés	2
2	Rappels de topologie	2
	2.1 Distance associée à la norme	2
	2.2 rappels de topologie des espaces vectoriels normés	3
	2.3 Norme d'opérateur	4
3	Limite et continuité	5
II	Différentiabilité	7
4	Applications différentiables	7

1 informations utiles

Première partie

Rappels sur les espaces vectoriels normés

2 Rappels de topologie

Soit E, un \mathbb{R} -espace vectoriel.

Définition 1. *Une norme sur E est une application* $||||_E : E \to \mathbb{R}$ *vérifiant :*

- -- $\forall x \in E$, $\forall \lambda \in \mathbb{R}$, $||\lambda x||_E = |\lambda|||x||_E$
- $\forall x, y \in E$, $||x + y|| \le ||x|| + ||y||$, il s'agit de l'inégalité triangulaire
- -- $\forall x \in E$, $||x|| = 0 \Leftrightarrow x = 0_E$

Exemple. Pour $E = \mathbb{R}^n$,

$$||x||_2 = \sqrt{\sum_i x_i^2}$$
$$||x||_\Delta = \sum_i |x_i|$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

2.1 Distance associée à la norme

Définition 2. La distance associée à cette norme est :

$$E \times E \to \mathbb{R}$$

$$(x, y) \mapsto d(x, y) := ||x - y||$$

Exemple. *Pour* A = (1,0), B = (0,1),

$$d_2 = \sqrt{2}$$

$$d_{\Delta} = 2$$

$$d_{\infty} = 1$$

Définition 3. Deux normes $||\cdot||$ et $||\cdot||'$ sont dites équivalentes s'il existe deux constantes C > 0 et C' > 0 telles que :

$$\forall x \in E, \ C'||x|| \le ||x||' \le C||x||$$

Exercice. Montrer qu'il s'agit effectivement d'une relation d'équivalence.

Théorème 1. Si dim $E < +\infty$, toutes les normes sont équivalentes.

Exemple. $Sur \mathbb{R}^2$,

||x|

Rappel 1.

$$\langle x, y \rangle = ||x||_2 ||y||_2$$

Sur les espaces de dimension infinie, les choses peuvent être plus compliquées.

Exemple. Dans $E = C^0([0,1], \mathbb{R})$, pour $f \in E$, on note,

$$||f||_{2} = \sqrt{\int_{0}^{1} f^{2}(t)dt}$$

$$||f|| = \int_{0}^{1} f(t)dt$$

$$||f||_{\infty} = \sup_{0 \le t \le 1} |f(t)|$$

Soit

$$f_n: \begin{cases} [0,1] \to \mathbb{R} \\ t \mapsto t^n \end{cases}$$
$$||f_n||_1 = \int_0^1 t^n dt$$
$$||f_n||_{\infty} = 1$$

 $Si \mid \mid \cdot \mid \mid_1 et \mid \mid \cdot \mid \mid_{\infty}$ étaient équivalents, on aurait une constate C telle que :

$$\forall n \in \mathbb{N}, ||f_n||_{\infty} \le C||f_n||_1$$

or,

$$\forall n \in \mathbb{N}, ||f_n||_{\infty} = 1 \ et \ C||f_n||_1 = 0$$

On arrive donc à une contradiction.

2.2 rappels de topologie des espaces vectoriels normés

Définition 4. *Une boule ouverte est un ensemble* $B_{(x,r)}$ *de la forme :*

$$B_{(x,r)} = \{ y \in E \mid ||x - y|| < r \}$$

Définition 5. *Un sous-ensemble* Ω *est un ouvert si* :

$$\forall x \in \Omega, \; \exists r > 0, \; | \; B_{(x,r)} \subset \Omega$$

Remarque 1. Une conséquence de cette définition est que ϕ est un ouvert.

Définition 6. *Une partie* $V \subset E$ *est un voisinage de* $x_0 \in E$ *si* :

$$\exists r > 0 \mid B_{(x_0,r)} \subset V$$

Définition 7. Une partie $F \subset E$ est dite fermée si le complémentaire de $F \in E$ est un ouvert.

Exemple. Dans \mathbb{R}^2 , $O = \{(x, y) \in \mathbb{R}^2 \mid x > 0\}$ est un ouvert $F = \{(x, y) \in \mathbb{R}^2 \mid x \geq 0\}$ est un fermé

Définition 8. Pour E de dimension finie ($\dim E < +\infty$), une partie $X \subset E$ est un compact si elle est fermée et bornée.

2.3 Norme d'opérateur

 $(E,||\cdot||_E)$ est un espace vectoriel normé de dimension finie; $(F,||\cdot||_F)$ est un espace vectoriel normé de dimension finie; $\mathscr{L}(E,F)$ est aussi un espace vectoriel normé Pour $u\in\mathscr{L}(E,F)$, on définit la norme triple :

$$|||u||| = \sup_{u \in \mathcal{L}(E,F)} \frac{||u(x)||_F}{||x||_E}$$

Proposition 1. *En dimension finie,*

$$\forall u \in \mathcal{L}(E, F), |||u||| < +\infty$$

Remarque 2.

$$\frac{||u(x)||}{||x||} = \frac{1}{||x||} ||u(x)||$$

$$= ||\frac{1}{||x||} u(x)||$$

$$= ||u(\frac{x}{||x||})||$$

Par conséquent, $|||u||| = \sup \frac{u(x)}{x}$

Proposition 2. $|||\cdot|||: \mathcal{L}(E,F) \to \mathbb{R}$ *est une norme*

Propriété 1. — $\forall u \in \mathcal{L}(E, F), \forall x \in E$

$$||u(x)|| \le |||u||| \cdot ||x||$$

$$|||v \circ u||| \le |||v||| \cdot |||u|||$$

Remarque 3. $\mathcal{L}(E, E)$ est une algèbre, i.e. possède un produit :

$$(u, v) \mapsto u \circ v$$

et

$$|||u\cdot v||| \leq |||u|||\cdot|||v|||$$

On dit que $||| \cdot |||$ est une norme d'algèbre

Exercice.

3 Limite et continuité

Définition 9. Soit x_n , une suite de E, soit $l \in E$, on dit que (x_n) converge vers l et on note $\lim_{n \to \infty} x_n = l$ si

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ ||x_n - l|| < \epsilon$$

Rappel 2. Les notions d'ouverts, de fermés, etc... se caractérisent en terme de suites convergentes.

Exemple. — $\Omega \in E$ est un ouvert si et seulement si $\forall l \in \Omega$, $\forall (x_n)$, suite de E, $\lim_{n \to +\infty} x_n = 0$

l, on *a*:

 $\exists N \in \mathbb{N} \ / \ \forall n > N, \ x_n \in \Omega$

- $F \subset E$ est fermée $si : \forall (x_n)$ suite de F, $\forall l \in E$, $\lim_{n \to +\infty} x_n = l$, on a $l \in F$ (i.e. F contient toutes les limites de ses suites)
- K ⊂ E est compact si toute suite de K a une valeur d'adhérence dans K.

Rappel 3. Une valeur d'adhérence de (x_n) est une limite d'une suite extraite. Une suite extraite de (x_n) est une suite de la forme $(x_{\phi(n)})_{x \in \mathbb{N}}$ où $\phi : \mathbb{N} \to \mathbb{N}$ est strictement croissante

Définition 10. *Soit* $\Omega \in E$, *un ouvert.*

Soit f , *une application telle que f* : $\Omega \to \mathbb{R}$,

Soit $x_0 \in E$ et $l \in F$

On dit que f a pour limite sur x_0 si : $\forall \epsilon > 0$, $\exists r > 0$, $\forall x \in \Omega$, $||x - x_0|| < r \Rightarrow ||f(x) - f(x_0)|| < \varepsilon$ On note alors $\lim_{x \to x_0} f(x) = l$

Définition 11. *Soit* $f : \Omega \to F$, *et* $x_0 \in \Omega$

f est continue en x_0 si f a pour limite $f(x_0)$ quand x tend vers x_0 (i.e. f est continue en x_0 si $\lim_{x \to x_0} existe$ et $\lim_{x \to x_0} = f(x_0)$)

Remarque 4. Avec la définition de la limite,

 $si \lim_{x \to x_0} f(x)$ existe, alors cette limite est nécessairement $f(x_0)$

Définition 12. f est continue sif est continue sur Ω sif est continue en tout point de Ω

Exemple.

$$\mathbb{R}^{2} \to \mathbb{R}$$

$$f: (x, y) \mapsto \begin{cases} \frac{x^{3} - y^{3}}{x^{2} + y^{2}} si(x, y) \neq (0, 0) \\ 0 si(x, y) = (0, 0) \end{cases}$$

Deuxième partie

Différentiabilité

Rappel 4. Rappels en dimension 1:

 $\begin{array}{l} f:\mathbb{R}\to\mathbb{R} \ est \ d\acute{e}riv\acute{a}ble \ en \ x_0\in\mathbb{R} \ de \ d\acute{e}riv\acute{e}e \ \lambda \\ \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = \lambda \end{array}$

Une définition équivalente est la suivante :

f est dérivable en x_0 de dérivée λ s'il existe une fonction $\varepsilon(h)$ telle que :

$$- f(x) = f(x_0) + \lambda(x - x_0)\varepsilon(x - x_0)$$

$$- \lim_{h \to 0} \varepsilon(h) = 0$$

Il suffit alors de poser $\varepsilon(h) = \frac{f(x-h)-f(x_0)}{h}$ Où on a alors la pente de Δ_{x_1} s'exprimant $\frac{f(x_1)-f(x_0)}{h}$

On peut aussi voir Δ_{x_1} comme le graphe d'une application affine :

$$u(x) = f(x_0) + \tau(x - x_0)$$

$$u(x_0 + h) = f(x_0) + \tau h$$

Ces deux points de vue induisent deux points de vue si la dérivée $f'(x_0) \in \mathbb{R}$ est la pente de la tangente :

$$f'(x_0): \mathbb{R} \to \mathbb{R}$$

$$f'(x_0): h \mapsto f'(x_0)h$$

Le second point se généralise aux dimensions superieures à 1.

4 Applications différentiables

$$f:\Omega\subset E\to F$$

$$p_0 \in \Omega$$

Définition 13. f est différentiable en p_0 s'il existe une application linéaire $l: E \to F$ est une fonction $\varepsilon: \Omega \to F$ telle que:

-
$$f(p_0 + h) = f(p_0) + l(h) + ||h||\varepsilon(h)$$

$$-\lim_{h\to 0}\varepsilon(h)=0$$

Proposition 3. Si f est différentiable en p_0 , l'application linéaire de la différentielle est unique. On l'appelle différentielle de f en p_0 et on la note $L = D_{p_0} f$

Démonstration. Si L_1 et L_2 conviennent :

$$\begin{split} f(p_0+h) &= f(p_0) + L_1 h + ||h||\varepsilon_1(h) \\ f(p_0+h) &= f(p_0) + L_2 h + ||h||\varepsilon_2(h) \\ \end{split} \Rightarrow 0 = 0 + (L_1 - L_2) h + ||h||(\varepsilon_1 - \varepsilon_2)(h) \end{split}$$

fixons h, pour $t \in [0,1]$:

$$\begin{aligned} &(L_1-L_2)(th)+||th||(\varepsilon_1-\varepsilon_2)(th)\\ &=t((L_1-L_2)(h)+||h||(\varepsilon_1-\varepsilon_2)(h))\\ &=t0\\ &=0 \end{aligned}$$

D'où $\lim_{t\to 0} (\varepsilon_1-\varepsilon_2)(th)=0,$ Par conséquent $(L_1-L_2)(h)=0$

Donc, pour tout h tel que $(p_0 + h) \in \Omega$, $L_1(h) = L_2(h)$

Donc $L_1 = L_2$ sur une petite boule B(0,1).

On peut alors généraliser à $L_1 = L_2$

Définition 14. Si f est différentiable en tout point de Ω , on dit que f est différentiable $sur \Omega$.

Si de plus, $\Omega \to \mathcal{L}(E, F)$ est continue, ont dit que f est de classe \mathscr{C}^1 .

 $-f: \mathbb{R}^n \to \mathbb{R}^m$ linéaire: Exemple.

$$f(p_0 + h) = f(p_0) + f(h)$$
$$= f(p_0) + f(h) + ||h||\varepsilon(h)$$

$$f \text{ est différentiable, et } D_p f = f$$

$$-\frac{f: \mathbb{R}^2 \to \mathbb{R}}{(x, y) \mapsto x^2 + y^2}$$