Posizione e orientazione di un braccio robotico

Sistemi di coordinate

Trasformiamo le coordinate locali del sistema S rispetto al sistema di coordinate B

Sistemi di coordinate

Trasformiamo le coordinate locali del sistema S rispetto al sistema di coordinate B

Generica matrice di rototraslazione

$$\mathbf{M} = \begin{pmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{n} & \mathbf{o} & \mathbf{a} & \mathbf{p} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$n_x \\ n_y \\ n_z$	Versore n dell'asse x del nuovo sistema di riferimento rispetto al vecchio
$egin{array}{l} o_x \ o_y \ o_z \end{array}$	Versore o dell'asse y del nuovo sistema di riferimento rispetto al vecchio
a_x a_y a_z	Versore a dell'asse z del nuovo sistema di riferimento rispetto al vecchio
$egin{array}{l} p_x \ p_y \ p_z \end{array}$	Posizione p dell'origine del nuovo sistema di riferimento rispetto al vecchio

Esempio

$$\mathbf{M}_{S}^{B} = \begin{pmatrix} 0 & 0 & 1 & p_{x} \\ 0 & 1 & 0 & p_{y} \\ -1 & 0 & 0 & p_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Angoli

Rotazione del sistema di coordinate **S** rispetto a **B** Convenzione:

- una rotazione positiva dell'asse x porta l'asse y verso l'asse z
- Una rotazione positiva dell'asse y porta l'asse z verso l'asse x

Angolo positivo	$x \rightarrow y$	y o z	z o x
Angolo negativo	$y \to x$	$z \rightarrow y$	$x \rightarrow z$

Vettore di Yaw, Pitch, Roll (imbardata, beccheggio, rollio):

$$YPR_S^B = (p_x \quad p_y \quad p_z \quad \alpha \quad \beta \quad \gamma)^T$$

Letteratura medica: Flexion/extension, Varus/valgus, Rotation/derotation

Ricodiamo l'altra convenzione: gli angoli di Eulero

Posizioni e orientazioni relative

Tre sistemi di riferimento: M_S^B , $M_{S'}^S$, $M_{S'}^B$

$$\mathbf{M}_{S}^{B} = \begin{pmatrix} 0 & 0 & 1 & p_{x} \\ 0 & 1 & 0 & p_{y} \\ -1 & 0 & 0 & p_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{S'}^S = \left(egin{array}{cccc} 1 & 0 & 0 & p_x' \ 0 & 1 & 0 & p_y' \ 0 & 0 & 1 & p_z' \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Dove $(p_x' p_y' p_z')^T$ è l'origine di S' in coordinate di S. Si ha:

 $M_{s'}^B = M_S^B \cdot M_{s'}^S \rightarrow moltiplichiamo a destra!!$

Catena robotica: bracci collegati mediante giunti

Robot planare con un giunto e una pinza (effettore)

Unico grado di libertà: rotazione θ attorno l'asse z_B La matrice di riferimento della pinza è funzione di θ

Sistema di riferimento **B** di base

Sistema di riferimento **G** della pinza

Aggiungiamo un sistema di riferimento intermedio S_1 solidale al giunto Attenzione: quando il giunto si muove, B resta fermo e S_1 si muove con il giunto

Quando il giunto effettua una rotazione θ l'asse x_B resta fermo e l'asse x_{S_1} ruota di θ attorno l'asse $z_B=z_{S_1}$

Sistema di riferimento intermedio S_1 rispetto a ${f B}$

$$x_{S_1} = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix}$$

$$y_{S_1} = \begin{pmatrix} -\sin\theta \\ \cos\theta \\ 0 \end{pmatrix}$$

$$z_{S_1} = z_B$$

La matrice $M_{S_1}^B$ è:

$$\mathbf{M}_{S_1}^B = \left(egin{array}{cccc} \cos heta & -\sin heta & 0 & 0 \ \sin heta & \cos heta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Sistema di riferimento ${\bf G}$ della pinza rispetto ${\bf S_1}$: Si ottiene dalla traslazione di ${\bf S_1}$ della lunghezza L del giunto

$$\mathbf{M}_{G}^{S_{1}} = \left(egin{array}{cccc} 1 & 0 & 0 & L \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Sistema di riferimento **G** della pinza rispetto **B**: Si ottiene dal prodotto della matrice relativa ad $\mathbf{S_1}$ $\mathbf{M}_G^B = \mathbf{M}_{S_1}^B \cdot \mathbf{M}_G^{S_1} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 & L\cos\theta \\ \sin\theta & \cos\theta & 0 & L\sin\theta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ per la matrice relativa a **G**

Riepilogo delle rotazioni e traslazioni semplici

$$R(x,\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad R(y,\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad R(z,\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotazione attorno l'asse x

Rotazione attorno l'asse y

Rotazione attorno l'asse z

$$T(p_{x}, 0,0) = \begin{pmatrix} 1 & 0 & 0 & p_{x} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T(p_x, 0, 0) = \begin{pmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad T(0, p_y, 0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad T(0, 0, p_z) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T(0,0,p_z) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Traslazione lungo l'asse x

Traslazione lungo l'asse y

Traslazione lungo l'asse z

Angoli ai giunti: θ_1 , θ_2 , θ_3

Sistemi di coordinate intermedi $S_i=(x_i,y_i,z_i), i=1,\cdots,3$ $B=S_0=(x_0,y_0,z_0)$ sistema di coordinate fissato al tavolo Nota: l'origine di B coincide con S_1

 S_G : coordinate della pinza

Primo passo da S_0 a S_1 :

- origine in comune;
- rotazione del giunto attorno l'asse z;
- Rotazione del sistema di riferimento di -90 attorno l'asse x

$$\boldsymbol{M}_{S_1}^{S_0} = \boldsymbol{M}_1^0 = R(z, \theta_1) \cdot R(x, -90) = \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & 0 \\ \sin \theta_1 & \cos \theta_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos \theta_1 & 0 & -\sin \theta_1 & 0 \\ \sin \theta_1 & 0 & \cos \theta_1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Secondo passo da S_1 a S_2 :

- rotazione del giunto 2 attorno l'asse z;
- Traslazione del sistema di riferimento di a_2 lungo l'asse x;

$$\boldsymbol{M}_{2}^{1} = R(z,\theta_{2}) \cdot T(a_{2},0,0) = \begin{pmatrix} \cos\theta_{2} & -\sin\theta_{2} & 0 & 0 \\ \sin\theta_{2} & \cos\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & a_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos\theta_{2} & -\sin\theta_{2} & 0 & a_{2}\cos\theta_{2} \\ \sin\theta_{2} & \cos\theta_{2} & 0 & a_{2}\sin\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Terzo passo da S_2 a S_3 :

- rotazione del giunto 3 attorno l'asse z;
- Rotazione del sistema di riferimento di 90 attorno l'asse x

$$\mathbf{M}_{3}^{2} = R(z, \theta_{3}) \cdot R(x, 90) = \begin{pmatrix} \cos \theta_{3} & -\sin \theta_{3} & 0 & 0 \\ \sin \theta_{3} & \cos \theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos \theta_{3} & 0 & \sin \theta_{3} & 0 \\ \sin \theta_{3} & 0 & -\cos \theta_{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Quarto passo da S_3 a G:

- Traslazione del sistema di riferimento di d_4 lungo l'asse z

$$\mathbf{M}_{G}^{3} = T(0, 0, d_{4}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Cinematica diretta del robot a tre bracci

Si ottiene:
$$\mathbf{M}_{G}^{0} = \mathbf{M}_{1}^{0} \cdot \mathbf{M}_{2}^{1} \cdot \mathbf{M}_{3}^{2} \cdot \mathbf{M}_{G}^{3} = \begin{pmatrix} c_{1}c_{23} & -s_{1} & c_{1}s_{23} & a_{2}c_{1}c_{2} + d_{4}c_{1}s_{23} \\ s_{1}c_{23} & c_{1} & s_{1}s_{23} & a_{2}s_{1}c_{2} + d_{4}s_{1}s_{23} \\ -s_{23} & 0 & c_{23} & -a_{2}s_{2} + d_{4}c_{23} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Dove: $s_1 = \sin \theta_1$...; $s_{23} = \sin(\theta_2 + \theta_3)$...

Convenzione di Denavit-Hartenberg (DH)

• Convenzione per definire le terne di riferimento relative ai bracci

• Minimizzare i parametri per trasformare una terna dall'altra: 4 invece

Convenzione di Denavit-Hartenberg:

- sistema base di riferimento
- Per il generico sistema S_i
 - z_i asse di rotazione del giunto (i + 1)
 - x_i ortogonale a z_i e a z_{i-1} la direzione di x_i è da z_{i-1} verso z_i
 - y_i è tale da fare la terna S_i levogira
- L'origine O_i della terna S_i è all'intersezione tra z_i e la normale comune a z_{i-1} e z_i (non sono complanari)

Convenzione di Denavit-Hartenberg (DH)

- si sceglie l'asse z_i giacente lungo l'asse del giunto (i+1)
- si individua O_i all'intersezione dell'asse z_i con la normale comune agli assi z_i e a z_{i-1} , e con $O_{i'}$ si indica l'intersezione della normale comune con z_{i-1}
- si assume l'asse x_i diretto lungo la normale comune agli assi z_i e z_{i-1} con verso positivo dal giunto (i) al giunto (i+1)
- si sceglie l'asse y_i in modo da completare una terna levogira

Convenzione di Denavit-Hartenberg (DH)

Definizione non univoca della terna:

- con riferimento alla terna B, per la quale la sola direzione dell'asse z_0 risulta specificata: si possono scegliere arbitrariamente O_0 e x_0
- con riferimento alla terna n per la quale il solo asse x_n risulta soggetto a vincolo (deve essere normale all'asse z_{n-1}): infatti non vi è il giunto n+1, per cui non è definito z_n e lo si può scegliere arbitrariamente
- quando due assi consecutivi sono paralleli, in quanto la normale comune tra di essi non è univocamente definita
- quando due assi consecutivi si intersecano, in quanto il verso di x_i è arbitrario
- quando il giunto i è prismatico, nel qual caso la sola direzione dell'asse z_{i-1} è determinata

Parametri di Denavit-Hartenberg

 a_i distanza di O_i da $O_{i'}$; d_i coordinata su z_{i-1} di $O_{i'}$; α_i angolo intorno all'asse x_i tra l'asse z_{i-1} e l'asse z_i valutato positivo in senso antiorario; θ_i angolo intorno all'asse z_{i-1} tra l'asse x_{i-1} e l'asse x_i valutato positivo in senso antiorario.

 a_i e α_i sono sempre costanti se il giunto è *rotoidale* la variabile è θ_i se il giunto è *prismatico* la variabile è d_i

Una sola variabile per giunto!!

Procedura per passare dalla terna i-1 alla terna i

- 1. Traslazione lungo l'asse z_{i-1} di una quantità d_i ;
- 2. Rotazione attorno l'asse z_{i-1} di un angolo θ_i
- 3. Traslazione lungo l'asse x_i di una quantità a_i
- 4. Rotazione attorno l'asse x_i di un angolo α_i

$$\mathbf{M}_i^{i-1} = T(0, 0, d_i) \cdot R(z, \theta_i) \cdot T(a_i, 0, 0) \cdot R(x, \alpha_i)$$

Sole quattro trasformazioni per giunto!!

Procedura per passare dalla terna i-1 alla terna i

$$\mathbf{M}_i^{i-1} = T(0, 0, d_i) \cdot R(z, \theta_i) \cdot T(a_i, 0, 0) \cdot R(x, \alpha_i)$$

$$\boldsymbol{M}_i^{i-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_i & -\sin\theta_i & 0 & 0 \\ \sin\theta_i & \cos\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha_i & -\sin\alpha_i & 0 \\ 0 & \sin\alpha_i & \cos\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{i}^{i-1} = \begin{pmatrix} c_{\theta_{i}} & -c_{\alpha_{i}} s_{\theta_{i}} & s_{\alpha_{i}} s_{\theta_{i}} & a_{i} c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\alpha_{i}} c_{\theta_{i}} & -s_{\alpha_{i}} c_{\theta_{i}} & a_{i} s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \begin{array}{c} i & \alpha_{i} & a_{i} & d_{i} & \theta_{i} \\ 1 & \alpha_{1} & a_{1} & d_{1} & \theta_{1} \\ 2 & \alpha_{2} & a_{2} & d_{2} & \theta_{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{array}$$

4 parametri

Tabella DH del manipolatore

Esempio

i	$lpha_i$	a_i	d_i	$ heta_i$
1	-90	0	0	$ heta_1$
2	0	a_2	0	$ heta_2$
3	90	0	0	$ heta_3$
G	0	0	d_4	0

Angoli ai giunti (cinematica inversa)

$$\begin{array}{c}
\bullet \\
y \\
L
\end{array}$$

$$\begin{array}{c}
p \\
\theta \\
x
\end{array}$$

Il target è
$$\boldsymbol{p} = \begin{pmatrix} p_x \\ p_y \end{pmatrix}$$
; dobbiamo trovare θ

Supponiamo L=1; $\cos\theta=p_x$; $\sin\theta=p_y$

Da cui:
$$\frac{\sin \theta}{\cos \theta} = \frac{p_y}{p_x}$$
 E quindi: $\theta = \tan^{-1} \frac{p_y}{p_x}$

Estensione dell'arco-tangente: $\theta = \frac{\text{atan2}(p_y, p_x)}{\text{atan2}(p_y, p_y)}$

Estensione della funzione arco-tangente

$$atan2(y,x) = \begin{cases}
0 & x = 0, y = 0 \\
\pi/2 & x = 0, y > 0 \\
3 \cdot \pi/2 & x = 0, y < 0 \\
\tan^{-1}(y/x) & x > 0, y \ge 0 \\
2\pi + \tan^{-1}(y/x) & x > 0, y < 0 \\
\pi + \tan^{-1}(y/x) & x < 0, y \ge 0 \\
\pi + \tan^{-1}(y/x) & x < 0, y < 0
\end{cases}$$

Quaternioni

 Notazione alternativa alle matrici per indicare posizione e orientamento

Molto usata nelle operazioni di tracciamento dell'effettore

• Durante il tracking la prescrizione della traiettoria dell'effettore tramite sequenze di trasformazioni di matrici può portare a delle singolarità posizionali inducendo movimenti «a scatto»

• I quaternioni si prestano ad una interpolazione continua della traiettoria dell'effettore

Quaternioni

Un quaternione si definisce come «numero iper-complesso» con una parte immaginaria vettoriale: $\mathbf{a} = a_1 + a_2i + a_3j + a_4k = (a_1, \mathbf{v}_a)$

Le parti immaginarie i, j, k (versori dello spazio della parte vettoriale) sono definite nel seguente modo:

ii = -1	jj = -1	kk = -1
ij = k	jk = i	ki = j
ji = -k	kj = -i	ik = -j

Quaternione come vettore a 4 dimensioni $\boldsymbol{a}=(a_1 \quad a_2 \quad a_3 \quad a_4)^T$

Somma di quaternioni: $\mathbf{a} + \mathbf{b} = (a_1 + b_1, \mathbf{v}_a + \mathbf{v}_b)^T = (a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4)^T$

Quaternioni

Prodotto di quaternioni:
$$\mathbf{ab} = (a_1 + a_2i + a_3j + a_4k)(b_1 + b_2i + b_3j + b_4k) = \begin{pmatrix} a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4 \\ a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3 \\ a_1b_3 - a_2b_4 + a_3b_1 + a_4b_2 \\ a_1b_4 + a_2b_3 - a_3b_2 + a_4b_1 \end{pmatrix}$$

Attenzione: $ab \neq ba$

Norma di un quaternione:
$$\|a\| = \sqrt{a_1^2 + a_2^2 + a_3^3 + a_4^4}$$

Inverso di un quaternione:
$$a^{-1} = \frac{(a_1 - a_2 - a_3 - a_4)^T}{\|a\|}$$
 $aa^{-1} \triangleq e = (1 \ 0 \ 0)^T$

Rotazioni con i quaternioni

Un quaternione, di opportuni coefficienti esprime la generica rotazione $R(\theta, n)$ di un angolo θ attorno ad un asse definito dal versore unitario n

$$\mathbf{r} = \mathbf{r}_{p} + \mathbf{r}_{\perp}, \ \mathbf{r}_{p} = (\mathbf{n} \cdot \mathbf{r}) \mathbf{n}, \ \mathbf{r}_{\perp} = \mathbf{r} - (\mathbf{n} \cdot \mathbf{r}) \mathbf{n}$$

$$\mathbf{V} = \mathbf{n} \times \mathbf{r}_{\perp} = \mathbf{n} \times \mathbf{r}$$

$$R\mathbf{r}_{\perp} = \cos \theta \mathbf{r}_{\perp} + \sin \theta \mathbf{V}$$

$$R\mathbf{r} = R\mathbf{r}_{p} + R\mathbf{r}_{\perp} = R\mathbf{r}_{p} + \cos \theta \mathbf{r}_{\perp} + \sin \theta \mathbf{V} =$$

$$= (\mathbf{n} \cdot \mathbf{r}) \mathbf{n} + \cos \theta (\mathbf{r} - (\mathbf{n} \cdot \mathbf{r}) \mathbf{n}) + \sin \theta \mathbf{n} \times \mathbf{r} =$$

$$= \cos \theta \mathbf{r} + (1 - \cos \theta) \mathbf{n} (\mathbf{n} \cdot \mathbf{r}) + \sin \theta \mathbf{n} \times \mathbf{r}$$

Questa è la rotazione di un vettore p tramite un <u>quaternione unitario</u> $a = (\cos\theta/2, n_x \sin\theta/2, n_y \sin\theta/2, n_z \sin\theta/2)^T$ secondo la trasformazione apa^{-1}

Rotazioni con i quaternioni

$$\boldsymbol{apa}^{-1} = \left(\cos\theta/2\,, n_x\sin\theta/2\,, n_y\sin\theta/2\,, n_z\sin\theta/2\right) \left(0, p_x, p_y, p_z\right) \left(\cos\theta/2\,, -n_x\sin\theta/2\,, -n_y\sin\theta/2\,, -n_z\sin\theta/2\right)$$

$$= (\cos\theta/2, n_x \sin\theta/2, n_y \sin\theta/2, n_z \sin\theta/2) \begin{pmatrix} \sin\theta/2 \, \boldsymbol{n} \cdot \boldsymbol{p} \\ \cos\theta/2 \, p_x + \sin\theta/2 (\boldsymbol{n} \times \boldsymbol{p})_x \\ \cos\theta/2 \, p_y + \sin\theta/2 (\boldsymbol{n} \times \boldsymbol{p})_y \\ \cos\theta/2 \, p_z + \sin\theta/2 (\boldsymbol{n} \times \boldsymbol{p})_z \end{pmatrix}$$

$$= (0, \cos \theta \, \boldsymbol{p} + \sin \theta \, (\boldsymbol{n} \times \boldsymbol{p}) + (1 - \cos \theta) (\boldsymbol{n} \cdot \boldsymbol{p}) \boldsymbol{n})$$

Ricordando che:
$$n \times p = \binom{n_y p_z - n_z p_y}{n_z p_y - n_y p_z} \cos \theta = \left(\cos \frac{\theta}{2}\right)^2 - \left(\sin \frac{\theta}{2}\right)^2 \sin \theta = 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}$$