CME 252: Homework 2 Due: Saturday, October 17, 11:59pm

AJ Friend

Check your solutions with grade hw2.py.

Submit your completed hw2.py to this Dropbox File Request link: https://www. dropbox.com/request/TehA2ACBUuXOz7a6XMOy

Problem 1: Convex Functions

Determine if each of the following functions is "convex", "concave", "both", or "neither".

In function prob1() of hw2.py, set the keys of the answer dictionary to the appropriate string: "convex", "concave", "both", or "neither".

The script grade_hw2.py will only check that you've changed the values to something other than None, so as not to give away the answer.

- 1. 1 + x
- 2. logistic loss: $\log(1+e^{-x})$ (Hint: Use 2nd derivative test.)
- 3. for $x \in \mathbf{R}^n$: $\max_i x_i \min_i x_i$
- 4. $\cosh(x) = \frac{e^x + e^{-x}}{2}$
- 5. $\frac{1}{1+x^2}$ with domain **R**6. $\frac{1}{1+x^2}$ with domain **R**₊

Problem 2: Regression

Given $x, y \in \mathbf{R}^n$, find coefficients $w \in \mathbf{R}^4$ to fit the model

$$y \approx w_0 + w_1 x + w_2 x^2 + w_3 \sin(x)$$

with the least-squares loss function $\ell(z) = z^2$.

Fill in prob2(x,y) to return w as a NumPy array. The following bit of NumPy code may be helpful:

Problem 3: Regression

Given $x, y \in \mathbf{R}^n$, find coefficients $w \in \mathbf{R}^4$ to fit the model

$$y \approx w_0 + w_1 x + w_2 x^2 + w_3 \sin(x)$$

to minimize the worst-case error. That is, solve the problem

minimize_w
$$\max_{i} |w_0 + w_1 x_i + w_2 x_i^2 + w_3 \sin(x_i) - y_i|$$
.

Fill in prob3(x,y) to return w as a NumPy array.