

Clue to Resolving Forward Guidance Puzzle

Kento Yoshizawa

Harris School Public Policy, University of Chicago, kyoshizawa@uchicago.edu

Research Question

How can Heterogeneous Agent New Keynesian (HANK) model resolve forward guidance puzzle?

- Estimate HANK model along with standard Representative New Keynesian (RANK) model and calculate the impulse response function.
- What is Forward Guidance Puzzle?
- Central bank's announcement about the future path of monetary policy
- Puzzle = Gap of its effect between model prediction and empirical outcomes
- What is **HANK**?
 - RANK: Assume representative households with rational expectation
 - HANK: Allow households to be heterogeneous
- Motivation & Contribution
 - Difficulties in implementing monetary policy
 - Estimate parameters and calculate impulse response using empirical data
 - Evaluate HANK which may give a clue to dealing with such difficulties

Model

- Set up RANK and HANK as (simple) DSGE models
- Households' decision problem as part of DSGE model:

$$\max U = \Sigma_{t=0}^{\infty} eta \left[rac{c_{h,t}^{1-\gamma}}{1-\gamma} - rac{\ell_{h,t}^{1+\psi}}{1+\psi}
ight]$$

- Households optimize consumption and labor supply subject to...
 - RANK model:

$$c_t + b_{t+1} = (1+i_t)b_t + w_t\ell_t$$

HANK model:

$$c_{h,t} + b_{h,t+1} = (1+i_t)b_{h,t} + w_t \ z_{h,t} \ \ell_{h,t}, \ b_{h,t+1} \geq 0$$

Introduce stochastic idiosyncratic productivity $(z_{h,t})$ and borrowing constraints $(b_{h,t+1} \geq 0)$ to households' budget constraint.

Mechanism

- For estimation, set up more detailed models as follows:
- RANK model following An and Schorfheide (2007)
- a one-asset HANK model in continuous time following Ahn et al. (2017) and Kaplan et al. (2018)

Method & Data

Method

- Bayesian methods + Markov Chain Monte Carlo (MCMC)
- With prior distributions, log likelihood and MCMC for sampling algorithm, estimate posterior distributions of structure parameters.
- MCMC algorithm:
 - Metropolis–Hastings (MH) algorithm for RANK
 - Sequential Monte Carlo (SMC) algorithm for HANK
- Calculate impulse response functions to evaluate the effect of forward guidance

Data

- Real output per capita, CPI for Inflation rate, Federal Funds Rate for the nominal interest rate in the U.S.
- Data period: from 1990:Q1 to 2019:Q4.

Result

Posterior Distributions

RANK (4 out of 13 parameters)

Impulse Response Functions

lacksquare Monetary easing policy shock at t=0

HANK (4 out of 6 parameters)

FG (easing policy until t = 5).

Result (Estimated posterior distributions)

Table: Estimated Posterior Distribution for RANK model Parameter Mean Std.Dev 90% Confidence Interval

au	3.5294	0.6210	(2.588, 4.6116)
κ	0.1449	0.0415	(0.0814, 0.2192)
ψ_1	1.9615	0.2979	(1.4817, 2.4729)
ψ_2	0.8651	0.3583	(0.3531, 1.5183)
r_A	0.2419	0.1785	(0.0201, 0.5795)
π^*	1.4112	0.2683	(1.0086, 1.8799)
γ_Q	0.7548	0.1237	(0.5594, 0.9611)
$ ho_R$	0.8400	0.0235	(0.7994, 0.8768)
$ ho_g$	0.9760	0.0087	(0.9623, 0.9905)
$ ho_z$	0.9494	0.0122	(0.9288, 0.969)
σ_R	0.1793	0.0148	(0.1587, 0.2076)
$oldsymbol{\sigma}_g$	0.6877	0.0506	(0.6146, 0.7779)
σ_z	0.1965	0.0199	(0.1652, 0.2312)

Table: Estimated Posterior Distribution for HANK model

Parameter	Mean	Std.Dev	90% Confidence Interval
$\overline{\hspace{1.5cm}\phi_1}$	0.5305	0.0922	(0.374, 0.6851)
$oldsymbol{ heta}$	100.6775	10.2741	(83.7623, 117.4115)
ψ_1	1.2692	0.2100	(0.8844, 1.5926)
ψ_2	0.1051	0.0465	(0.031, 0.1843)
σ_R	0.4535	0.1847	(0.2567, 0.7995)
$ heta_R$	0.2935	0.0978	(0.1427, 0.4613)

Conclusion

- Found that HANK model with estimated structure parameters from empirical data can reduce the power of the forward guidance
- This result is consistent with McKay et al.(2016)

Limitation & Future Work

- Expand Two assets HANK model
- Use household balance sheet data to calibrate more realistic parameters
- International comparison

Reference

- Ahn, SeHyoun, Greg Kaplan, Benjamin Moll, Thomas Winberry, and Christian Wolf, "When Inequality Matters for Macro and Macro Matters for In- equality," National Bureau of Economic Research Working Paper, 2017, (No.23494).
- 2. An, Sungbae and Frank Schorfheide, "Bayesian analysis of DSGE models," Econometric reviews, 2007, 26 (2-4), 113-172.
- Kaplan, Greg, Benjamin Moll, and Giovanni L. Violante, "Monetary policy according to HANK," American Economic Review, 2018, 108 (3), 697-743.
- McKay, Alisdair, Emi Nakamura, and Jón Steinsson, "The power of forward guidance revisited," American Economic Review, 2016, 106 (10), 3133-3158.

Acknowledgement

I would like to thank Dr. Richard W. Evans for his helpful support and advice. The views expressed in the paper are solely the responsibility of the author.