

Chapter 17, Speech and Language Processing, 3rd edition draft, Jurafsky & Martin (2020).

6.3. Relation Extraction Methods

Edwin Simpson

Department of Computer Science,

University of Bristol, UK.

Regular Expressions to Extract Patterns

- Example relation: [holdsOfficeIn]
- PER, POSITION of ORG\
 George Marshall, Secretary of State of the United States
- PER (named|appointed|chose|etc.) PER Prep? POSITION\
 Truman appointed Marshall Secretary of State
- PER [be]? (named|appointed|etc.) Prep? ORG POSITION\
 George Marshall was named US Secretary of State
- Often, high recall requires a large number of patterns.

bristol.ac.uk

Text Classifiers

- Supervised learning from training data rather than hand-crafting patterns.
- The developers work shifts to designing suitable features.
- How can we apply a classifier to extract relations?

Section 17.2.2, Speech and Language Processing, 3rd edition draft, Jurafsky & Martin (2020).

Text Classifiers for RE

- List all pairs of named entities mentioned within a sentence.
- 2. Apply a classifier to each pair, where the class label is either "no relation" or a relation type like [holdsOfficeIn].

Feature vector for a pair of entities

 $\hat{\boldsymbol{y}} = \operatorname*{argmax} \Psi(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta})$ $\boldsymbol{y} \in \mathcal{Y}(\boldsymbol{x})$ Possible relation types /"no relation" label

Parameters of the classifier

Classifier: assigns a score or probability to each category

Assigned relation type/"no relation"

A Feature Vector for RE

Feature	Entity 1	Entity 2
Unigram	"American" , "Airlines"	"Tim", "Wagner"
UnigramNextToken	"Employs"	""
UnigramPrevToken	None	"Employs"

- Word features for both entities:
 - Unigrams (bag-of-words)
 - Bigrams
- Word features for neighbouring words:
 - Tokens between the entities
 - Tokens immediately before or after the entities.

A Feature Vector for RE

Feature	Entity 1	Entity 2
Unigram	"American" , "Airlines"	"Tim", "Wagner"
UnigramNextToken	"Employs"	""
UnigramPrevToken	None	"Employs"
EntityType	ORG	PER
	Relation Features	
ConcatenatedTypes	ORG-PER	

- Named entity types
 - Type of entity 1
 - Type of entity 2
 - Concatenation of types of entities1 and 2

A Feature Vector for RE

- Dependency Path:
 - Airlines, ←nsubj, employs, →obj,Wagner

Feature	Entity 1	Entity 2
Unigram	"American" , "Airlines"	"Tim", "Wagner"
UnigramNextToken	"Employs"	. "
UnigramPrevToken	None	"Employs"
EntityType	ORG	PER
	Relation Features	
ConcatenatedTypes	ORG-PER	
DependencyPath	Airlines, ←nsubj, employs, →obj, Wagner	

Feature-based Classifiers for RE

- Put it all together: concatenate into a single vector.
- How do we handle named entity types and path features?
 - Treat them in a similar way to words;
 - Extract a vocabulary for each type of feature.
- Apply any classifier to these feature vectors:
 - Naïve Bayes classifier
 - Logistic regression
 - Neural network

Summary

- Regular expressions can be used to extract some relations.
- Text classifiers can be applied to each pair of entities in a sentence to determine if they are related and what type of relation they have.
- For naïve Bayes or logistic regression, design a feature vector containing word features of the entities and tokens in between, parse tree features, and entity types

bristol.ac.uk