Seminario 4

Temas:

- Cálculos estequiométricos, reactivo limitante y rendimiento de las reacciones
- Unidades de concentración
- Titulación
- I. Cálculos estequiométricos, reactivo limitante y rendimiento de las reacciones.
- 1. Se tienen 4.00 g de C₂H₆ y 4.00 g de oxígeno, determine para la siguiente reacción:

Dato: M.M. (g/mol): H=1.008; C= 12.01; O=16.00

$$C_2H_6(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

- a) ¿Cuál es el reactivo limitante?
- b) ¿Cuál es la masa de CO2 que se genera?
- c) ¿Cuál es la masa que queda del reactivo en exceso?
- d) Sí experimentalmente se obtienen 3.00 g de CO₂, ¿cuál es el rendimiento de la reacción?

II. Unidades de concentración

- 1. Se agregan 16.00 g de (NH₄)₃PO₄ (149.1 g/mol) a un recipiente para preparar una disolución de 200 mL. ¿Cuál es la concentración mol/L de una disolución v de sus respectivos iones?
- 2. Calcule la molalidad de una disolución de ácido sulfúrico (98.08 g/mol) cuya densidad es 1.198 g/mL y contiene 27.0 % m/m de H₂SO₄ en masa.
- 3. En el laboratorio se puede obtener CO₂ (44.01 g/mol) haciendo reaccionar carbonato de calcio, CaCO₃ (100.1 g/mol), con HCl (36.46 g/mol).

$$CaCO_3$$
 (s) + HCI (ac) \rightarrow $CaCI_2$ (ac) + H_2O (l) + CO_2 (g)

Si se desea obtener 166.0 g de CO_2 (g) a partir de una cantidad suficiente de $CaCO_3$ (s), calcule el volumen de disolución de HCl (ac) 40.00% m/m (d= 1.198 g/ml) que se necesitará.

III. Titulaciones

Se necesita un volumen de 16.42 mL de una disolución de KMnO₄ 0.1327 mol/L para oxidar 20.00 mL de una disolución de FeSO₄ en medio ácido. ¿Cuál es la concentración de la disolución de FeSO₄?. La ecuación iónica neta es:

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$