# Lecture 16: Network Resiliency





<u>Definition</u>: A [property] of [a system] is *robust* if it is [invariant] for [a set of perturbations]

Robustness to different kinds of perturbations:

Reliability component failures

Efficiency resource scarcity

Scalability changes in size and complexity of the

system as a whole

Modularity structured component rearrangements

Evolvability lineages to possibly large changes over

long time scales



## Strategies for Creating System Robustness

- 1. Improve robustness of individual components
- 2. Functional redundancy: components or subsystems
- 3. Sensors that trigger human intervention
  - Monitor system performance
  - Detect individual component wear
  - Indentify external threats
- 4. Automated control

### Complexity – Robustness Spiral



- The same mechanisms responsible for robustness to most perturbations
- allows possible extreme fragilities to others
- Usually involving hijacking the robustness mechanism in some way



### Robust yet Fragile

[a system] can have
[a property] robust for
[a set of perturbations]

Yet be *fragile* for [a different property]
Or [a different perturbation]



### <u>Proposition</u>:

The RYF tradeoff is a *hard limit* that cannot be overcome.



### Network resiliency

- Reasons for studying error and attack tolerance
  - Designing robust networks
  - Protecting existing networks
- network resiliency
  - effects of node and edge failure
- Two kinds of component removals:
  - Error: random failure
  - Attack: intentional failure, e.g. removing nodes with high degrees
- Error/attack tolerance of networks!



### Network resiliency

- Question: If a given fraction of nodes or edges are removed...
  - How large are the connected components?
  - What is the average distance between nodes in the components
  - How is the efficiency
  - How are the spectral properties
  - ...
- This topic is related to percolation



bond percolation



site percelation



### Bond percolation in Networks

- Edge removal
  - bond percolation: each edge is removed with probability (1-p)
    - corresponds to random failure of links
  - targeted attack: causing the most damage to the network with the removal of the fewest edges
    - strategies: remove edges that are most likely to break apart the network or lengthen the average shortest path
    - e.g. usually edges with high betweenness



bond percolation



### Edge percolation



How many edges would you have to remove to break up an Erdos-Renyi random graph? e.g. each node has an average degree of 4.6

50 nodes, 116 edges, average degree 4.64 after 25 % edge removal 76 edges, average degree 3.04 – still well above percolation threshold

## Percolation threshold in Erdos-Renyi Graphs



**Percolation threshold:** the point at which the giant component emerges

As the average degree increases to z = 1, a giant component suddenly appears

Edge removal is the opposite process –as the average degree drops below 1 the network becomes disconnected





## Site percolation on lattices

Fill each square with probability p



☐ low p: small isolated islands







 p critical: giant component forms, occupying finite fraction of infinite lattice.
 Size of other components is power law distributed

p above critical: giant component rapidly spreads to span the lattice. Size of other components is O(1).



## Percolation on Complex Networks



- Percolation can be extended to networks of arbitrary topology.
- We say the network percolates when a giant component forms.



# Scale-free networks are resilient with respect to random error

Example: gnutella network, 20% of nodes removed





# Targeted attacks are affective against scale-free networks

Example: same gnutella network, 22 most connected nodes removed (2.8% of the nodes)



574 nodes in giant component

301 nodes in giant component



## Random failures vs. attacks





## Percolation Threshold in scalefree networks

- What proportion of the nodes must be removed in order for the size (S) of the giant component to drop to 0?
- For scale free graphs there is always a giant component (the network always percolates)





## Network resilience to targeted attacks

Scale-free graphs are resilient to random attacks, but sensitive to targeted attacks. For random networks there is smaller difference between the two

- random failure
- targeted attack



Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabasi. Nature 406, 378-382(27 July 2000); http://www.nature.com/nature/journal/v406/n6794/abs/406378A0.html



### Real networks





## When the first few % of nodes removed



Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási. Nature 406, 378-382(27 July 2000);

http://www.nature.com/nature/journal/v406/n67 94/abs/406378A0.html



# Error/attack tolerance of global efficiency in scale-free networks

### few removals



Soure: Crucitti, Latora, Marchiori, Rapisarda, Physica A 320 (2003) 622

### Scale-Free (BA model) (Heterogeneous)

Attacks: the removal of a tiny fraction of important nodes (2%) causes the network to lose 50% of its efficiency.

**Errors**: the network is nearly unaffected from the removal of a few nodes

Erdös-Rényi Random graph (EXP) (Homogeneous)

**Attacks & Errors**: the network is nearly unaffected from the removal of a few nodes



# Error/attack tolerance of global efficiency in scale-free networks

### many removals



Soure: Crucitti, Latora, Marchiori, Rapisarda, Physica A 320 (2003) 622

## Scale-Free (BA model) (Heterogeneous)

Attacks: global efficiency of the network is completely destroyed, removing 10% of important nodes.

**Errors**: network's efficiency slowly decreases.

Erdös-Rényi Random graph (EXP) (Homogeneous)

Attacks & Errors: differences are evident, but less pronounced than in the BA model.



Nodes = Crossings

Edges = Streets

Edge weights:

 $\tau_{ij}$  = time spent in order to go from node i to node j



If today Piazza Emanuele iliberto is not practicable

People have to find an alternative path.

Load redistribution



Load redistribution can cause traffic in alternative routes.

**Overload** 

Traffic hold up

Degradation in efficiency (times  $\tau_{ij}$  grow longer)

Camillo Carlo Alberto ©2003, Maporama, Navtech



Traffic hold up leads

again to the choice

of alternative routes

**New overload** 

New degradation in efficiency

\* ---

**Cascading effect** 





...and the result is...





## Degree assortativity and resiliency

will a network with positive or negative degree assortativity be more resilient to attack?





### Degree assortativity and resiliency



Each curve is for a single network of 107 vertices generated using the Monte Carlo method with different assortativity values



- Let us consider undirected and unweighted networks
- The eigenratio of the Laplacian R:
  - the largest eigenvalue / the second smallest eigenvalue
- The eigenratio represents somehow the synchronizability of the network (we will see later on)
- How random removal of nodes affect the synchronizability?
- Remember as a node is removed all its attaching edges are also removed

28





A) Scale-free networks are constructed with N = 1000, and then, nodes are randomly removed from the networks. B) Scale-free networks are grown starting with N = 750. Graphs show averages along with the standard deviations over 50 realizations.



A) clustering coefficient, B) efficiency, C) assortativity, and D) eccentricity, as a function of network size in scale-free networks with m = 5. The networks are constructed with N = 1000, and then, nodes are randomly removed from the networks. Graphs show averages along with the standard deviations over 50 realizations.



Source: Jalili, Physica A 2011



A) clustering coefficient, B) efficiency, C) assortativity, and D) eccentricity, as a function of network size in scale-free networks with m = 5. The networks are grown starting with N = 750. Graphs show averages along with the standard deviations over 50 realizations.



Source: Jalili, Physica A 2011



- Many networks are small-world
- We can measure to what extent the networks are smallworld

$$S = \frac{E_{local}}{E_{local-random}} \times \frac{E_{global}}{E_{global-random}}$$

- If S > 1, the network is small-world
- For the networks of the same size and average degree, the larger the value of S is the more the small-world the network is
- How S changes with random/intentional removal of nodes





The small-worldness as a function of A) N (m = 8 and P = 0.1), B) m (N = 1000 and P = 0.1), and C) P (N = 1000 and m = 8). m: average degree, N: size, P: rewiring probability





The small-worldness as a function of the fraction of (randomly or systematically) removed nodes in Watts-Strogatz networks with m = 8, P = 0.1, and different number of nodes; A) N = 600, B) N = 900, and C) N = 1200.





The small-worldness as a function of the fraction of removed nodes in Watts-Strogatz networks with N = 1000, P = 0.1, and different average degree; A) m = 5, B) m = 10, and C) m = 15.



The small-worldness as a function of the rewiring probability P and the fraction of, A) Randomly and B) Systematically, removed nodes in Watts-Strogatz networks with m = 8, N = 1000. The figure also shows the small-worldness as a function of the fraction of removed nodes in two values of P; C) P = 0.005 and D) P = 0.05.







Source: Jalili, Informetrics 2011



The small-worldness as a function of the fraction of removed nodes in a number of real-world networks



37



- Motifs are important subgraphs in networks
- Network function depends on motif structure
- Let us see how failures in the edges influences motifs:
  - Random failure: at each step, one edge is randomly chosen and removed from the network
  - Failure based on the node degrees: at each step, the quantity  $k_i k_j$  is calculated for each edge  $e_{ij}$ , and then, the edge with the maximum amount of  $k_i k_j$  is removed from the network.  $k_i$  is degree of node i.
  - Failure based on the edge betweenness centrality: at each step, the edge with maximum betweenness  $L_{ij}$  is removed.
  - Failure based on the node closeness centrality: at each step, the edge with maximum C<sub>i</sub>C<sub>j</sub> is removed where C<sub>i</sub> is betweenness of node i

Source: Mirzasoleiman and Jalili, PLoS ONE 2011





| Network Type           | N   | <k></k> | std(k) | P      | C      |
|------------------------|-----|---------|--------|--------|--------|
| Protein structure      | 99  | 4.2828  | 0.4748 | 5.2607 | 0.3600 |
| Functional human brain | 200 | 4.5400  | 0.5690 | 5.2200 | 0.2858 |

a) Protein structure network and (b) human brain functional network extracted through functional magnetic resonance imaging



| Network Type    |                    | Protein structure    |                            |                        | Functional Human brain |                            |                        |
|-----------------|--------------------|----------------------|----------------------------|------------------------|------------------------|----------------------------|------------------------|
| Motif<br>Number | Motif<br>Structure | Motif<br>frequencies | Non-normalized<br>Z-scores | normalized<br>Z-scores | Motif<br>frequencies   | Non-normalized<br>Z-scores | normalized<br>Z-scores |
| #1              | L.                 | 544                  | -29.581                    | -0.0060                | 1388                   | -44.913                    | -0.0034                |
| #2              |                    | 130                  | 25.086                     | 0.0051                 | 187                    | 38.600                     | 0.0029                 |
| #3              | K                  | 294                  | -20.086                    | -0.0041                | 1008                   | -33.844                    | -0.0025                |
| #4              |                    | 1359                 | -21.871                    | -0.0044                | 4020                   | -34.167                    | -0.0026                |
| #5              | $\square$          | 661                  | 11.529                     | 0.0023                 | 1196                   | 24.000                     | 0.0018                 |
| #6              |                    | 29                   | -1.687                     | -0.0003                | 88                     | 6.351                      | 0.0005                 |
| #7              | Z                  | 150                  | 37.333                     | 0.0076                 | 205                    | 81.360                     | 0.0061                 |
| #8              | $\boxtimes$        | 38                   | 31.666                     | 0.0064                 | 19                     | 17.272                     | 0.0013                 |

Source: Mirzasoleiman and Jalili, PLoS ONE 2011





Z-score of motifs #1 - #8 as a function of the percentage of removed edges for protein structure network





**Z**-score of motifs #1 - #8 as a function of the percentage of removed edges for human brain functional network





Frequencies of motifs #1 - #8 as a function of the percentage of removed edges for protein structure network





Frequencies of motifs #1 - #8 as a function of the percentage of removed edges for human brain functional network



- Although biological networks have been shown to be robust against random failures in terms of network connectedness and efficiency, such failures can have destructive effects on network motifs
- random failures could destroy motif structure
- Degree-based systematic failure had the most destructive role in most cases, i.e. causing in the largest decrease in the frequency of occurrence and absolute value of the Z-scores
- Attacks in the highly loaded edges had the least influence on the motif profile



- Crucitti P, Latora V, Marchiori M, & Rapisard A (2003)
   Efficiency of scale-free networks: error and attack tolerance. *Physica A* 320:622-642.
- Jalili M (2011) Synchronizability of dynamical scale-free networks subject to random errors. *Physica A* 390:4588-4595.
- Mirzasoleiman B , & Jalili M (2011) Failure tolerance of motif structure in biological networks. *PLoS ONE* 6:e20512.
- Jalili, M (2011) Error and attack tolerance of smallworldness in complex networks. *Journal of Informetrics* 5:422-430.