

Материалы
Всероссийской конференции
с международным участием
"Исследования молодых ученых:
идеи и перспективы"

19 декабря 2014 года

Выходные данные электронного сборника:

Исследования молодых ученых: идеи и перспективы / Сборник материалов Всероссийской конференции с международным участием. [Электронный ресурс] /отв. ред.В.Н. Кризский—Стерлитамак: СФ БашГУ, 2014.

должении цепи окисления при взаимодействии с гидропероксидами, равны 0,6 и 1,0 соответственно), ингибирующим характером продуктов его превращения (влияние продуктов превращения ингибитора на процесс окисления, равным >1).

5. Применение высокомолекулярных антиокислительных присадок способно решить проблему эффективной защиты полимеров от окисления при их эксплуатации в жестких условиях. Наиболее перспективным способом получения высокомолекулярных антиокислительных присадок является химическая модификация реакционноспособных полимеров и олигомеров веществами, оказывающими стабилизирующее действие. В качестве основы для синтеза антиокислительных присадок на "полимерной ножке" могут выступать различные высокомолекулярные соединения, содержащие функциональные группы.

Литература:

- 1. Полетаева, О.Ю., Квятковская, М.В., Мовсумзаде, Э.М. Исторический аспект исследования присадок к авиационным топливам / Нефтепереработка, нефтехимия, 2012. N = 3. C.44-47.
- 2. *Granovsky*, A.A. *URL* http://classic.chem.msu.su/gran/gamess/index.html.

Колыванова Т.В., Каткова С.С., Иванов А.Н., Хамзин И.Р. Научный руководитель: Левашова В.И., Исламутдинова А.А.

СИНТЕЗ ИНГИБИТОРА КОРРОЗИИ НА ОСНОВЕ АМИНОЭТИЛЭТАНОЛАМИНА

В настоящее время, одной из актуальных задач современных исследований является защита поверхности металла от воздействия внешних агрессивных сред, с которыми контактирует поверхность различных технологических установок.

Для снижения материальных и энергетических затрат на переработку сырья и ремонта оборудования в условиях химических производств, нефтедобычи и нефтепереработки нами предлагается новое соединение, обладающее ингибирующими свойствами.

Ингибитор, полученный на основе синтеза хлорорганического соединения с производным аминов и аминоспиртов – аминоэтилэтаноламином – обладает защитными свойствами.

Синтез опытного образца осуществлялся смешением компонентов при мольном соотношении 1:1, в водной среде при температуре 60 °C. Продолжительность синтеза составила 2 часа. Конец реакции определяли меркурометрическим методом (по содержанию ионов Cl⁻ в растворе).

Предварительная оценка защитных свойств полученного соединения производилась на приборе «Моникор-2М». Результаты испытаний при различных концентрациях ингибитора представлены ниже.

Рис. 1 – Скорость коррозии после обработки на аппарате Моникор-2М

1 ячейка — без ингибитора; 2 — концентрация ингибитора 1 г/л ; 3 — концентрация ингибитора 2 г/л

В качестве агрессивной среды использовали 20-ти % раствор соляной кислоты. Степень защиты для аминоэтилэтаноламин-производного равна 97,8%, защитный эффект составил 45,7. Анализируя полученные данные, сделан вывод о том, что полученное соединение является достаточно эффективным ингибитором кислотной коррозии и может составить конкуренцию существующим на рынке аналогам.

Литература:

- 1. Иванов А.Н., Исламутдинова А.А., и др. Ингибирующая способность циклических азотсодержащих соединений /Актуальные проблемы развития нефтегазового комплекса России: Х Всероссийской научно-технической конференции. М.: РГУ нефти и газа имени И.М.Губкина, 2014. С. 142.
- 2. Левашова В. И. // Нефтехимия. 2002. –Т. 42, № 2. С. 166.
- 3. Р.Н. Загидуллин, Т.Г. Дмитриева, С.Н. Загидуллин, Г.Р. Загидуллин, В.А.Идрисова Разработка технологии получения ингибиторов кислотной коррозии Материалы Международной научно-практической конференции «Нефтепераработка 23 мая 2012.

_

[©] Колыванова Т.В., Каткова С.С., Иванов А.Н., Хамзин И.Р., 2014

Научный руководитель: к.т.н. Пупшева Л.Н	
ПЕРСПЕКТИВЫ РЕАКЦИИ СИНТЕЗА ФИШЕРА-ТРОПША	•••••
Колчина Г.Ю. (к.х.н., старший преподаватель)	
КВАНТОВОХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ	
АНТИОКИСЛИТЕЛЬНЫХ ПРИСАДОК	
ДЛЯ РЕАКТИВНЫХ ТОПЛИВ МЕТОДАМИ КВАНТОВОЙ ХИМИИ В	
ПРИБЛИЖЕНИИ ВЗLYP/6-311+G(d,p) и MP2/6-31G(d,p)	•••••
Колыванова Т.В., Каткова С.С., Иванов А.Н., Хамзин И.Р 40	
Научный руководитель: Левашова В.И., Исламутдинова А.А 40	
СИНТЕЗ ИНГИБИТОРА КОРРОЗИИ НА ОСНОВЕ	
АМИНОЭТИЛЭТАНОЛАМИНА	•••••
Красильникова Т.А	
Научный руководитель: к. б. н., доцент Михайлова В.А 41	
ХАРАКТЕРИСТИКА ПОПУЛЯЦИИ ЛИШАЙНИКА <i>РНҮЅСІА</i>	
STELLARIS В ОКРЕСТНОСТЯХ Д. АНТОНОВКА И	
ДМИТРИЕВКА ГАФУРИЙСКОГО РАЙОНА РЕСПУБЛИКИ	
БАШКОРТОСТАН41	
Кулябина Л.Ю., Мудрик В.А41	
УТИЛИЗАЦИЯ ДИСТИЛЛЕРНОЙ ЖИДКОСТИ СОДОВОГО	
ПРОИЗВОДСТВА С ПОЛУЧЕНИЕМ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ	
Кинзибаев Д.Р., Абдуллина М.И., Глазырин А.Б., Гайсин Л.В 42	
РАДИКАЛЬНАЯ ПРИВИВКА МАЛЕИНОВОГО АНГИДРИДА К	
СИНДИОТАКТИЧЕСКОМУ 1,2-ПОЛИБУТАДИЕНУ	•••••
Кинзибаев Д.Р., Абдуллина М.И., Глазырин А.Б., Гараев И.И 43	
ИСПОЛЬЗОВАНИЕ МАЛЕИНИЗИРОВАННОГО 1,2-	
ПОЛИБУТАДИЕНА ДЛЯ МОДИФИКАЦИИ БИТУМНЫХ	
композиций	•••••
Ларева О.Э 50	
Научный руководитель: М.М. Залимова, Т.Р. Залимов 50	
ЭТИЛЕНГЛИКОЛЬ	
Максютова Э.И	
Научный руководитель: М.М. Залимова 56	
ПРОИЗВОДСТВО СИНТЕТИЧЕСКОГО ИЗОПРЕНОВОГО КАУЧУКА	
СКИ-3	•••••
Максютова Э.И	
Научный руководитель: В.И. Левашова 57	
СИНТЕЗ ПОЛИОКСИФЕНИЛЕНОВ НА ОСНОВЕ	
ДВУХАТОМНЫХ ФЕНОЛОВ	•••••
Никифоров Е.В57	