FIG.1

FIG.2

FIG.3

FIG.4

FIG.6

FIG.8

FIG.10

FIG.12

FIG.11

EXPERIMENTAL CONDITIONS*	TIME UNTIL CORROSION OCCURS
LEFT IN AIR AFTER ETCHING OF GAP LAYER	5 MIN
LEFT IN AIR AFTER PURE WATER RINSING/DRYING WITHIN 2 MIN. AFTER ETCHING OF GAP LAYER	AFTER MORE THAN 2 WEEKS

ITEM	UNIT	RESULT
RATE	nm/min	108.5

*OTHER CONDITIONS

ITEM	CONDITIONS
DEVICE STRUCTURES PRIOR TO & AFTER ETCHING	UPPER MAG. POLE GAP LAYER (NiFe ALLOY) (ALUMINA) SHIELD LAYER (NiFe ALLOY)
GAS	CI 20sccm+BCl3 30sccm
PRESSURE	0.3Pa
STAGE TEMP.	40℃
SOURCE RF POWER	750W
SOURCE RF FREQ.	13.56MHz
BIAS RF POWER	60W
BIAS RF FREQ.	800KHz