A DTR pode também ser determinada experimentalmente injetando um **traçador** no reator em degrau

Degrau

Ao reactor inicialmente cheio só com solvente, alimenta-se continuamente o "traçador" a uma concentração C_0

Normalização da curva C

Degrau:

A normalização é feita dividindo a concentração à saída pela concentração da alimentação.

$$F(t) = \frac{C_A(t)}{C_{A_0}(t)}$$

Função cumulativa, F(t)

Medical use of RTD

Cumulative RTD function for arterial blood flow in the eye and Image of an eye after tracer injection.

Study arterial blood flow in the eye. The mean residence time can be calculated for each artery to estimate the mean circulation time (ca 2.85 s)

Lee et I., Med.Eng.Phys., 19, 125, 1997.

									N	- Y /\
Tempo (min)	Abs (522nm)	Integral- Regra Trapézios	E(t) (min ⁻¹)	F(t)	t _{real} *E(t)	Integral	θ	Ε(θ)	F(θ)	TECHNOLOGY
0	0	0	0	0	0	0	0	0	0	100
1	0,1389	0,06945	0,294779287	0,147389643	0,29477929	0,147389643	0,276023666	1,067949322	0,147389643	
2	0,1077	0,1233	0,228565365	0,409061969	0,45713073	0,375955008	0,552047332	0,828064377	0,409061969	
3	0,0669	0,0873	0,141977929	0,594333616	0,42593379	0,441532258	0,828070998	0,51436868	0,594333616	
4	0,0423	0,0546	0,089770798	0,71020798	0,35908319	0,392508489	1,104094663	0,325228627	0,71020798	
5	0,0295	0,0359	0,062606112	0,786396435	0,31303056	0,336056876	1,380118329	0,226814291	0,786396435	
6	0,0205	0,025	0,043505942	0,839452462	0,26103565	0,287033107	1,656141995	0,157616711	0,839452462	
7	0,0147	0,0176	0,031196944	0,876803905	0,21837861	0,239707131	1,932165661	0,113022714	0,876803905	
8	0,0084	0,01155	0,017826825	0,901315789	0,1426146	0,180496604	2,208189327	0,064584408	0,901315789	
9	0,0088	0,0086	0,018675722	0,919567063	0,16808149	0,155348048	2,484212993	0,067659856	0,919567063	
10	0,0054	0,0071	0,011460102	0,934634975	0,11460102	0,141341256	2,760236659	0,041518548	0,934634975	
11	0,0027	0,00405	0,005730051	0,943230051	0,06303056	0,088815789	3,036260325	0,020759274	0,943230051	
12	0,0022	0,00245	0,00466893	0,948429542	0,05602716	0,059528862	3,31228399	0,016914964	0,948429542	
13	0,0043	0,00325	0,009125637	0,955326825	0,11863328	0,087330221	3,588307656	0,033061066	0,955326825	
14	0,0046	0,00445	0,009762309	0,964770798	0,13667233	0,127652801	3,864331322	0,035367652	0,964770798	
15	0,0041	0,00435	0,008701188	0,974002547	0,13051783	0,133595076	4,140354988	0,031523342	0,974002547	
16	0,0042	0,00415	0,008913413	0,982809847	0,1426146	0,136566214	4,416378654	0,032292204	0,982809847	
17	0,004	0,0041	0,008488964	0,991511036	0,14431239	0,143463497	4,69240232	0,03075448	0,991511036	
18	0,002	0,003	0,004244482	0,997877759	0,07640068	0,110356537	4,968425986	0,01537724	0,997877759	
19	0	0,001	0	1	0	0,03820034	5,244449651	0	1	
20	0	0	0	1	0	0	5,520473317	0	1	
	Integral	0,4712	1	ſ ^t		3,622877759				Δ
$E(t) = \frac{1}{\int_0^t}$	$\frac{C(t)}{\varepsilon C(t)} = \frac{\varepsilon A(t)}{\varepsilon \int_0^\infty A(t)}$	$\int_0^\infty A(t)dt$	$E(t) = \frac{A(t)}{\int_0^\infty A(t)dt}$	$F(t) = \int_0^{\infty} E(t)dt$	$ar{t}$	$\overline{t} = \int_{0}^{\infty} tE(t)dt$	$ heta = rac{t}{\overline{t}}$	$(\theta) = \bar{t}.E(\theta)$	$F(\theta) = \int_{0}^{\pi} f(t) dt$	$E(\theta)d$
			$\int_{0}^{\infty} E(t)dt = 1$			τ (tau)				

_ _1	(+	(A_i)	$\frac{(+A_{1+1})}{2}$
A_{i+1} –	$(\iota_{i+1}$	(i)	2

/s	t/min	Tempo (min)	Abs (522nm)	Integral- Regra Trapézios	E(t) (ı
		0	0	0	(
25s		1	0,1389	=(G8-G7)*(H8+H7)/2	0,2947
		2	0,1077	0,1233	0,2285
		3	0,0669	0,0873	0,1419
		4	0,0423	0,0546	0,0897
		5	0,0295	0,0359	0,0626
		6	0,0205	0,025	0,0435
		7	0,0147	0,0176	0,0311
		8	0,0084	0,01155	0,0178
		9	0,0088	0,0086	0,0186
		10	0,0054	0,0071	0,0114
3/2024 SST[N	OVA	11	0.0027	0.00405	0.0057

Somatório da coluna

Abs (522nm)	Integral- Regra Trapézios	E(t) (min ⁻¹)
0	0	0
0,1389	0,06945	0,294779287
0,1077	0,1233	0,228565365
0,0669	0,0873	0,141977929
0,0423	0,0546	0,089770798
0,0295	0,0359	0,062606112
0,0205	0,025	0,043505942
0,0147	0,0176	0,031196944
0,0084	0,01155	0,017826825
0,0088	0,0086	0,018675722
0,0054	0,0071	0,011460102
0,0027	0,00405	0,005730051
0,0022	0,00245	0,00466893
0,0043	0,00325	0,009125637
0,0046	0,00445	0,009762309
0,0041	0,00435	0,008701188
0,0042	0,00415	0,008913413
0,004	0,0041	0,008488964
0,002	0,003	0,004244482
0	0,001	0
0	0	0
Integral	0,4712	1
$\frac{C(t)}{C(t)} = \frac{\varepsilon A(t)}{\varepsilon \int_0^\infty A(t)}$	$\int_0^\infty A(t)dt$	$E(t) = \underbrace{\frac{A(t)}{\int_0^\infty A(t)d}}$
		$\int_{E(t)dt=1}^{\infty}$

	=K7+(G8-	·G7)*(J8+J	7)/2						
	D	E	F	G	Н	1	J	K	
s)		t/s	t/min	Tempo (min)	Abs (522nm)	Integral- Regra Trapézios	E(t) (min ⁻¹)	F(t)	t,
				0	0	0	0	0	
		1m25s		1	0,1389	0,06945	0,294779287	=K7+(G8-G7)*(J8+J7)/2	0,2
				2	0,1077	0,1233	0,228565365	0,409061969	0,4
				3	0,0669	0,0873	0,141977929	0,594333616	0,4
				4	0,0423	0,0546	0,089770798	0,71020798	0,3
				5	0.0295	0.0359	0.062606112	0.786396435	0.3

$$F_{i+1} = F_i + (t_{i+1} - t_i) \frac{(E_i + E_{i+1})}{2}$$

Função Cumulativa

$$F(t) = \int_0^t E(t)dt$$

No valor máximo de t o F(t)=1

Bateria de dois CSTR

Caso em que
$$V_1 = V_2 = \frac{V}{2}$$

Balanço ao reactor 1

$$vC_E = vC_1 + \frac{V}{2} \cdot \frac{dC_1}{dt}$$

Balanço ao reactor 2

$$vC_1 = vC_S + \frac{V}{2} \cdot \frac{dC_S}{dt}$$
 Como resolver este sistema de equações?

Dividindo por v $com \tau = \frac{r}{r}$

$$C_E = C_1 + \frac{\tau}{2} \cdot \frac{dC_1}{dt}$$

$$C_1 = C_S + \frac{\tau}{2} \cdot \frac{dC_S}{dt}$$

Integrando este sistema de equações aplicando transformadas de Laplace

$$\overline{C}_E = \overline{C}_1 + \frac{\tau}{2} s \, \overline{C}_1 = \frac{\overset{\text{Pôr em evidência}}{\overleftarrow{C}_1}}{\left(1 + \frac{\tau}{2} s\right)} \qquad \therefore \qquad \overline{C}_1 = \frac{\overline{C}_E}{1 + \frac{\tau}{-s}}$$

$$\therefore \left(\overline{C_1} = \frac{\overline{C_E}}{1 + \frac{\tau}{2}s}\right)$$

$$\overline{C_1} = \overline{C}_S + \frac{\tau}{2} s \, \overline{C}_S = \left(1 + \frac{\tau}{2} s\right) \, \overline{C}_S$$

$$\int \left\{ \frac{dC_1}{dt} \right\} = s\overline{C_1} - f(0)$$

$$\left(\frac{\overline{C}_E}{1 + \frac{\tau}{2}s}\right) = \overline{C}_S + \frac{\tau}{2}s\overline{C}_S = \left(1 + \frac{\tau}{2}s\right)\overline{C}_S$$

$$F(t) = \int_{0}^{t} E(t) dt$$

$$\frac{C_{S}(t)}{C_{E}} = \int_{0}^{t} E(t) dt$$

A concentração à saída do reactor está relacionada com a concentração à entrada segundo o integral de convolução:

$$C_{\text{out}}(t) = \int_0^t C_{\text{in}}(t - t') E(t') dt$$

Função de Transferência

$$g(s) = \mathbf{L}\{E(t)\} = \frac{\mathbf{L}\{C_S\}}{\mathbf{L}\{C_E\}}$$

$$\frac{\overline{C}_E}{1 + \frac{\tau}{2}s} = \left(1 + \frac{\tau}{2}s\right) \cdot \overline{C}_S$$

$$g(s) = \frac{\overline{C}_S}{\overline{C}_E} = \frac{1}{\left(1 + \frac{\tau}{2}s\right)^2} = \frac{4}{\tau^2} \frac{1}{\left(\frac{2}{\tau} + s\right)^2}$$
Função Transferência g(s)
A sua transformada de Laplace inversa dá a função distribuição dos tempos de residência

$$E(t) = \mathbf{L}^{-1} \{g(s)\} = \frac{4}{\tau^2} \quad \mathbf{L}^{-1} \left\{ \frac{1}{\left(\frac{2}{\tau} + s\right)^2} \right\}$$

dos tempos de residência

	TABLE OF LAPLACE TRANSFORMS		
	$\vec{f}(s)$	f(t)	
1	$\frac{1}{s}$	1 - Company of the Co	
2	$\frac{1}{s^2}$	t.	
3	$\frac{1}{s^n}(n=1,2,\ldots)$	$\frac{t^{n-1}}{(n-1)!}$	
4	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{\pi t}}$	
5	√ S S ^{-3/2}	$2\sqrt{\frac{t}{\pi}}$	
6	$s^{-(n+\frac{1}{2})}(n=1,2,$	$\frac{2^n t^{n-\frac{1}{2}}}{1 \times 3 \times 5 \dots (2n-1)\sqrt{\pi}}$	
7	$\frac{\Gamma(k)}{s^k}(k>0)$	t^{k-1}	
8	$\frac{1}{s-a}$	e ^{at}	
9	$\frac{1}{(s-a)^2}$	t e ^{at}	
	$\frac{1}{(s-a)^n}(n=1,2,\ldots$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$	
	$\frac{\Gamma(k)}{(s-a)^k}(k>0)$	$t^{k-1}e^{at}$	
12*	$\frac{1}{(s-a)(s-b)}$	$\frac{1}{a-b}(e^{at}-e^{bt})$	

$$E(t) = \mathbf{L}^{-1} \{g(s)\} = \frac{4}{\tau^2} \quad \mathbf{L}^{-1} \left\{ \frac{1}{\left(\frac{2}{\tau} + s\right)^2} \right\} \qquad a = -\frac{2}{\tau}$$

$$9 \left| \frac{1}{(s-a)^2} \right| te^{at}$$

$$E(t) = \mathbf{L}^{-1} \{g(s)\} = \frac{4}{\tau^2} t e^{-\frac{2t}{\tau}}$$

Caso em que $V_1 \neq V_2$

$$vC_E = vC_1 + \gamma V \frac{dC_1}{dt} \qquad vC_1 = vC_S + (1 - \gamma)V \frac{dC_S}{dt}$$

Dividindo por
$$v$$
 com $\tau = \frac{V}{V}$

$$\overline{C}_E = \overline{C}_1 + \gamma \tau s \, \overline{C}_1 = \frac{\downarrow}{\overline{C}_1} \cdot \left(1 + \gamma \tau s \right) \qquad \therefore \quad \overline{C}_1 = \frac{\overline{C}_E}{1 + \gamma \tau s}$$

$$\overline{C}_1 = \overline{C}_S + (1 - \gamma)\tau s \overline{C}_S = [1 + (1 - \gamma)\tau s] \cdot \overline{C}_S$$

$$\frac{\overline{C}_E}{1 + \gamma \tau s_1} = \left[1 + (1 - \gamma)\tau s\right] \cdot \overline{C}_S$$

$$\frac{\overline{C}_S}{\overline{C}_E} = \frac{1}{(1 + \gamma \tau s) \cdot [1 + (1 - \gamma)\tau s]} = g(s)$$

Função de Transferência

$$g(s) = \mathbf{L}\{E(t)\} = \frac{\mathbf{L}\{C_S\}}{\mathbf{L}\{C_E\}}$$

$$g(s) = \frac{1}{\gamma(1-\gamma)\tau^2} \frac{1}{\left(\frac{1}{\gamma\tau} + s\right) \cdot \left[\frac{1}{(1-\gamma)\tau} + s\right]}$$

$$E(t) = \mathbf{L}^{-1}\left\{g(s)\right\} = \frac{1}{\gamma(1-\gamma)\tau^{2}} \cdot \mathbf{L}^{-1}\left\{\frac{1}{\left(\frac{1}{\gamma\tau} + s\right) \cdot \left[\frac{1}{(1-\gamma)\tau} + s\right]}\right\}$$

$$12^* \frac{1}{(s-a)(s-b)} \qquad \frac{1}{a-b} (e^{at} - e^{bt})$$

$$E(t) = \frac{1}{\gamma (1 - \gamma)\tau^2} \cdot \frac{e^{-\frac{t}{\gamma \tau}} - e^{-\frac{1}{(1 - \gamma)\tau}}}{\frac{1}{(1 - \gamma)\tau} - \frac{1}{\gamma \tau}}$$

Exemplo

Numa instalação de ar condicionado de um edifício, no troço compreendido entre a entrada de ar e a primeira saída, o escoamento pode ser modelado pela associação em série de 2 CSTR ideais.

- a) Deduza a expressão da distribuição de tempos de residência.
- b) Deduza a expressão da função cumulativa.
- c) Admita que à entrada da instalação é continuamente alimentado um *traçador* consistindo em ar contendo 40% de argon. Sabendo que o caudal da alimentação é de 100 dm³/min., que as condutas de ar condicionado têm uma secção recta, rectangular, com as dimensões de 50 cm X 70 cm e que até à primeira saída de ventilação a conduta tem 20 m de comprimento, calcule o tempo ao fim do qual a concentração de argon, nessa primeira saída de ventilação, é 99% do seu valor à entrada.
- d) Calcule ao fim de quanto tempo se atinge a concentração máxima de traçador, na primeira saída de ar condicionado, no caso da introdução ser feita por impulso e mantendo-se as restantes condições de alimentação idênticas às da alínea anterior.

Transformadas de Laplace:

f(s)	F(t)
$\frac{1}{(s-a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{a\cdot t}$

Deduza a expressão da distribuição de tempos de residência.

Estamos a considerar 2 CSTRs iguais (volumes iguais) e caudal volumétrico constante em todas as correntes.

Balanços molares aos reactores (IN=OUT + acumulado)

$$v C_E = v C_1 + \frac{V}{2} \frac{dC_1}{dt}$$

 $v C_E = v C_1 + \frac{V}{2} \frac{dC_1}{dt}$ volumes iguais, ou seja, cada CSTR tem volume V/2 sendo que V é o volume total (volume do reactor real) $v C_1 = v C_S + \frac{V}{2} \frac{dC_S}{dt}$

$$v C_1 = v C_S + \frac{V}{2} \frac{dC_S}{dt}$$

$$C_1 = C_S + \frac{\tau}{2} \frac{dC_S}{dt}$$

Dividiu-se pelo caudal volumétrico. Ficamos com os balanços em função de tempo espacial

$$\tau = \frac{V}{V}$$

Temos de integrar o sistema de equações aplicando Transformadas de Laplace

O traço simboliza a transformada

$$\overline{C_E} = \left(1 + \frac{\tau}{2}s\right) \overline{C_1}$$

$$\overline{C_E} = \left(1 + \frac{\tau}{2}s\right)\overline{C_1} \qquad \therefore \ \overline{C_1} = \frac{\overline{C_E}}{1 + \frac{\tau}{2}s}$$

$$\overline{C_1} = \overline{C_S} + \frac{\tau}{2} S \overline{C_S}$$

$$\overline{C_1} = \overline{C_S} + \frac{\tau}{2} s \overline{C_S} \qquad \therefore \overline{C_S} = \frac{\overline{C_1}}{1 + \frac{\tau}{2} s} = \frac{\overline{1 + \frac{\tau}{2} s}}{1 + \frac{\tau}{2} s} = \frac{\overline{C_E}}{\left(1 + \frac{\tau}{2} s\right)^2}$$

$$\therefore g(s) = \frac{\overline{C_S}}{\overline{C_E}} = \frac{1}{\left(1 + \frac{\tau}{2}s\right)^2} = \frac{1}{\frac{\tau^2}{4}\left(s + \frac{2}{\tau}\right)^2} = \frac{4}{\tau^2} \frac{1}{\left(s + \frac{2}{\tau}\right)^2}$$

$$pondo \frac{\tau}{2} \text{ em evidência}$$

Função Transferência g(s)

A sua transformada de Laplace inversa dá a função distribuição dos tempos de residência

$$E(t) = \mathbf{L}^{-1} \{ g(s) \} = \frac{4}{\tau^2} \quad \mathbf{L}^{-1} \left\{ \frac{1}{\left(\frac{2}{\tau} + s\right)^2} \right\} \qquad a = -\frac{2}{\tau}$$

$$a = -\frac{2}{\tau}$$

f(s)	F(t)
$\frac{1}{(s-a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{a\cdot t}$

$$E(t) = \mathbf{L}^{-1} \{g(s)\} = \frac{4}{\tau^2} t e^{-\frac{2t}{\tau}}$$

$$\therefore E(t) = \frac{4}{\tau^2} t e^{-\frac{2}{\tau}t}$$
 Função de distribuição de tempos de residência

$$9 \left| \frac{1}{(s-a)^2} \right|$$

Exemplo de tabela de transformadas

19	$\bar{f}(s)$	f(t)
$1 \left \frac{1}{s} \right $		1
$2 \left \frac{1}{s^2} \right $		t
$3 \left \frac{1}{s^n} (n =$	1, 2,)	$\frac{t^{n-1}}{(n-1)!}$
$4 \left \frac{1}{\sqrt{s}} \right $		$\frac{1}{\sqrt{\pi t}}$
5 5-3		$2\sqrt{\frac{t}{\pi}}$
$s^{-(n+\frac{1}{2})}$	$n(n=1,2,\dots$	$\frac{2^n t^{n-\frac{1}{2}}}{1 \times 3 \times 5 \dots (2n-1)\sqrt{\pi}}$
$\frac{\Gamma(k)}{s^k}(k)$	> 0)	t^{k-1}
$8 \left \frac{1}{s-a} \right $		e^{at}
$9 \left \frac{1}{(s-a)^2} \right $		t eat
	(n = 1, 2,	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
$1 \frac{\Gamma(k)}{(s-a)^k}$	(k > 0)	$t^{k-1}e^{at}$
2^* $\frac{1}{(s-a)(s-a)}$		$\frac{1}{a-b}(e^{at}-e^{bt})$

b) Deduza a expressão da função cumulativa.

$$F(t) = \int_0^t E(t)dt = \int_0^t \frac{4}{\tau^2} t e^{-\frac{2}{\tau}t} dt = \frac{4}{\tau^2} \int_0^t t e^{-\frac{2}{\tau}t} dt$$

Simplificamos a função dentro do integral

$$\left(t e^{-\frac{2}{\tau}t}\right)' = e^{-\frac{2}{\tau}t} - \frac{2}{\tau}te^{-\frac{2}{\tau}t}$$

$$f(t) g(t)$$

$$[f(t)g(t)]'=f'(t)g(t)+f(t)g'(t)$$

A derivada da exponencial é a própria exponencial multiplicada pela derivada do expoente

$$P\left(t e^{-\frac{2}{\tau}t}\right)' = P\left(e^{-\frac{2}{\tau}t}\right) - \frac{2}{\tau}P\left(t e^{-\frac{2}{\tau}t}\right)$$

$$t e^{-\frac{2}{\tau}t} = -\frac{\tau}{2}e^{-\frac{2}{\tau}t} - \frac{2}{\tau}P\left(te^{-\frac{2}{\tau}t}\right)$$

A primitiva é a própria função vezes o inverso da derivada do expoente

Explicitando em ordem à primitiva

$$P\left(te^{-\frac{2}{\tau}t}\right) = \left(-\frac{\tau}{2}\left(\frac{\tau}{2} + t\right)e^{-\frac{2}{\tau}t}\right)$$

Corresponde à resolução do integral entre os limites de integração.

O integral de uma função é a família de primitivas dessa função

$$F(t) = \frac{4}{\tau^2} \left[-\frac{\tau}{2} \left(\frac{\tau}{2} + t \right) e^{-\frac{2}{\tau}t} \right] \frac{t}{0} = \frac{2}{\tau} \left[\left(\frac{\tau}{2} + t \right) e^{-\frac{2}{\tau}t} \right] \frac{0}{t}$$
 Invertem-se os limites para tirar o sinal de menos

$$F(t) = \frac{2}{\tau} \left[\left(\frac{\tau}{2} + t \right) e^{-\frac{2}{\tau}t} \right]_{t}^{0} = 1 - \left(1 + \frac{2}{\tau}t \right) e^{-\frac{2}{\tau}t}$$

Função cumulativa

c) Admita que à entrada da instalação é continuamente alimentado um *traçador* consistindo em ar contendo 40% de argon. Sabendo que o caudal da alimentação é de 100 dm³/min., que as condutas de ar condicionado têm uma secção recta, rectangular, com as dimensões de 50 cm X 70 cm e que até à primeira saída de ventilação a conduta tem 20 m de comprimento, calcule o tempo ao fim do qual a concentração de argon, nessa primeira saída de ventilação, é 99% do seu valor à entrada.

$$F(t) = 1 - \left(1 + \frac{2}{\tau}t\right)e^{-\frac{2}{\tau}t}$$

$$\tau = \frac{V}{v} = \frac{7 \times 5 \times 200}{100} = 70 \ min$$

$$0.99 = 1 - \left(1 + \frac{2}{70}t\right)e^{-\frac{2}{70}t}$$

$$\left(1 + \frac{2}{70}t\right)e^{-\frac{2}{70}t} = 1 - 0.99$$

$$\left(1 + \frac{2}{70}t\right)e^{-\frac{2}{70}t} = 0.01$$
 Resolver em ordem a t

$$F(t) = \frac{C_A(t)}{C_{A_0}(t)}$$

Traçador em degrau (alimentação contínua)- a curva C tem o andamento da função cumulativa. F(t) obtem-se dividindo Cs(t) por CE

$$\left(1 + \frac{2}{70}t\right)e^{-\frac{2}{70}t} = 0.01$$
 Resolver em ordem a t

$$g(t) = 0.01 - \left(1 + \frac{2}{70}t\right)e^{-\frac{2}{70}t} = 0$$

Resolvemos em ordem a t, determinando os zeros da função

Graficamente é fácil.

- -Podem fazer na máquina.
- -Se não tiverem máquina gráfica dão alguns valores a t para ver quando a função se anula g(t)=0

t=232.4 min

d) Calcule ao fim de quanto tempo se atinge a concentração máxima de traçador, na primeira saída de ar condicionado, no caso da introdução ser feita por impulso e mantendo-se as restantes condições de alimentação idênticas às da alínea anterior.

Condição de máximo é a 1ª derivada nula, ou seja no máximo da inflexão da curva f'(x)=0

$$\frac{dC(t)}{dt} = \frac{N}{v} \frac{dE(t)}{dt} = 0 \qquad \therefore \frac{dE(t)}{dt} = 0$$

Injeção por impulso- a curva C tem o andamento da função dos tempos de residência

Corresponde ao máximo de E(t)

$$\therefore \frac{dE(t)}{dt} = \frac{d}{dt} \frac{4}{\tau^2} t e^{-\frac{2}{\tau}t} = 0 \qquad \therefore \frac{4}{\tau^2} \frac{d}{dt} t e^{-\frac{2}{\tau}t} = 0$$

Pôr em evidência

$$\therefore \frac{4}{\tau^2} \left(e^{-\frac{2}{\tau}t} - \frac{2}{\tau} t e^{-\frac{2}{\tau}t} \right) = 0 \qquad \frac{4}{\tau^2} \left(1 - \frac{2}{\tau} t \right) e^{-\frac{2}{\tau}t} = 0$$
Este termo

nunca é 0

 $\therefore 1 - \frac{2}{\tau}t = 0$ $\therefore t = \frac{\tau}{2} = \frac{70}{2} = 35 \text{ min}$