I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

Lecture 4: Text Representation I Count-based Representations

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01	Bag of Words
02	Word Weighting
03	N-Grams

What We Have Done So Far...

Collecting Text Data

arXiv.org Search Results

Back to Search form | Next 25 results

The URL for this search is http://arxiv.org:443/find/all/1/all:+EXACT+text mining/0/1/0/all/0/1

Showing results 1 through 25 (of 168 total) for all:"text mining"

1. arXiv:1703.05692 [pdf]

OncoScore: a novel, Internet-based tool to assess the oncogenic potential of genes

Rocco Piazza, Daniele Ramazzotti, Roberta Spinelli, Alessandra Pirola, Luca De Sano, Pierangelo Ferrari, Vera Magistroni, Nicoletta Cordani, Nitesh Sharma, Carlo Gambacorti-Passerini Subjects: Genomics (q-bio.GN), Quantitative Methods (q-bio.OM)

2. arXiv:1703.04213 [pdf, other]

MetaPAD: Meta Pattern Discovery from Massive Text Corpora

Meng Jiang, Jingbo Shang, Taylor Cassidy, Xiang Ren, Lance M. Kaplan, Timothy P. Hanratty, Jiawei Han Comments: 9 pages

Subjects: Computation and Language (cs.CL)

3. arXiv:1703.02819 [pdf, other]

Introduction to Formal Concept Analysis and Its Applications in Information Retrieval and Related Fields

Dmitry I. Ignatov

Journal-ref: RuSSIR 2014, Nizhniy Novgorod, Russia, CCIS vol. 505, Springer 42-141

Subjects: Information Retrieval (cs.IR); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Discrete Mathematics (cs.DM); Machine Learning (stat.ML)

4. arXiv:1702.07117 [pdf, other]

LTSG: Latent Topical Skip-Gram for Mutually Learning Topic Model and Vector Representations

Jarvan Law, Hankz Hankui Zhuo, Junhua He, Erhu Rong (Dept. of Computer Science, Sun Yat-Sen University, GuangZhou, China.)

Subjects: Computation and Language (cs.CL)

5. arXiv:1702.03519 [pdf, ps, other]

A Technical Report: Entity Extraction using Both Character-based and Token-based Similarity

Zeyi Wen, Dong Deng, Rui Zhang, Kotagiri Ramamohanarao

Comments: 12 pages, 6 figures, technical report

Subjects: Databases (cs.DB)

The complicated, evolving landscape of cancer

Mining textual patterns in news, tweets, papers, and

This paper is a tutorial on Formal Concept Analysis (FCA) and its applications. FCA is an applied branch of stu Lattice Theory, a mathematical discipline which enables disc formalisation of concepts as basic units of human rict thinking and analysing data in the object-attribute form. Originated in early 80s, during the last three decades, it stu became a popular human-centred tool for knowledge stru representation and data analysis with numerous fred applications. Since the tutorial was specially prepared in d for RuSSIR 2014, the covered FCA topics include call Information Retrieval with a focus on visualisation ma aspects, Machine Learning, Data Mining and Knowledge Discovery, Text Mining and several others.

pattern quality assessment function, which avoids costly dependency parsing and generates high-quality patterns; (2) it identifies and groups synonymous meta patterns from multiple facets---their types, contexts, and extractions; and (3) it examines type distributions of entities in the instances extracted by each group of patterns, and looks for appropriate type levels to make discovered patterns precise. Experiments demonstrate that our proposed framework discovers high-quality typed textual patterns efficiently from different genres of massive corpora and facilitates information

can

typi

pric

imp

prid

extraction.

What We Have Done So Far...

Preprocessing with some NLP techniques

The complicated, evolving landscape of cancer

can

typi

pric

imp

On

acc

avai

cha

(AU

the

(Or

95%

pro

prid

the

stu

disc

ricl

stu

stru

fred

in d

call

ma

Mining textual patterns in news, tweets, papers, and

This paper is a tutorial on Formal Concept Analysis (FCA) and its applications. FCA is an applied branch of Lattice Theory, a mathematical discipline which enables formalisation of concepts as basic units of human thinking and analysing data in the object-attribute form. Originated in early 80s, during the last three decades, it became a popular human-centred tool for knowledge representation and data analysis with numerous applications. Since the tutorial was specially prepared for RuSSIR 2014, the covered FCA topics include Information Retrieval with a focus on visualisation aspects, Machine Learning, Data Mining and Knowledge Discovery, Text Mining and several others.

pattern quality assessment function, which avoids costly dependency parsing and generates high-quality patterns; (2) it identifies and groups synonymous meta patterns from multiple facets---their types, contexts, and extractions; and (3) it examines type distributions of entities in the instances extracted by each group of patterns, and looks for appropriate type levels to make discovered patterns precise. Experiments demonstrate that our proposed framework discovers high-quality typed textual patterns efficiently from different genres of massive corpora and facilitates information extraction.

the complic evolv landscap of cancer mutat pose a mine textual pattern in news tweet paper and mani list this paper is a tutori on formal concept analysi fca and prid it applic fca is an appli branch of lattic theori a to a dep mathemat disciplin which enabl formalis of concept as too basic unit of human think and analys data in the base on objectattribut form origin in earli s dure the last three curv and decad it becam a popular humancentr tool for curat da knowledg represent and data analysi with numer applic oncosco sinc the tutori was special prepar for russir the cover oncosco fca topic includ inform retriev with a focus on visualis priorit o

text mine and sever other

aspect machin learn data mine and knowledg discoveri

What We Will Do...

Transform unstructured data into structured data

the complic evolv landscap of cancer mutat pose a form mine textual pattern in news tweet paper and mani

list oth pric tex to a dep too the base on curv and curat da oncosco oncosco

priorit o

this paper is a tutori on formal concept analysi fca and it applic fca is an appli branch of lattic theori a mathemat disciplin which enabl formalis of concept as basic unit of human think and analys data in the objectattribut form origin in earli s dure the last three decad it becam a popular humancentr tool for knowledg represent and data analysi with numer applic sinc the tutori was special prepar for russir the cover fca topic includ inform retriev with a focus on visualis aspect machin learn data mine and knowledg discoveri text mine and sever other

Bag of Words: Motivation

- Document Representation
 - √ How to represent a document in a structured way?
 - ✓ How to convert a unstructured text into a vector/matrix form to apply machine learning algorithms based on a vector space?

Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach the brais long time is cory, Draw retinal image wa isual, perception visual c cortex uporelinal, cerebral corte project Hubel eye, cell, optical behin nerve, image ubel, Wiese Hubel demonstrate that the *messal* the image falling on the undergoes a step-wise analysis system of nerve cells stored in cold In this system each cell has its spe function and is responsible for a spec detail in the pattern of the retin image.

China is forecasting a trade surplus of \$90bn (£51bn) to \$100bn this year, a threefold increase on 2004's \$32bn. The Commerce Ministry said the surplus would be created by predicted 30% with a 18 The figure olus, commer the China uan, bank, domest the cou aainst dollar and permitted it to trade within band, but the US wants the yu allowed to trade freely. However, has made it clear that it will to time and tread carefully before all the yuan to rise further in value.

Bag of Words: Idea

- Bag-of-words
 - ✓ A simplified representation method for documents where a text is represented in a vector of an unordered collection of words
 - ✓ Consider words as atomic symbols, represented in the discrete space

```
Ex:
     five_random_documents = [
                       sentences
      'i like this movie',
      'the movie hunger games is a trilogy movie',
documents -
      'jennifer lawrence is an excellent actor',
      'i would give the film an 8 out of 10',
      'you can observe some jaw-dropping cleverness'
     bag of words = [
                                    words
      documents \dashv
```

Bag of Words: Idea

- Bag-of-words:Term-Document Matrix
 - ✓ Simplifying representation method for documents where a text is represented in a vector of an unordered collection of words

S1: John likes to watch movies. Mary likes too.

S2: John also likes to watch football game.

Binar	y represe	entation
-------	-----------	----------

Word	S1	S ₂
John	1	1
Likes	1	1
То	1	1
Watch	1	1
Movies	1	0
Also	O	1
Football	0	1
Games	O	1
Mary	1	0
too	1	0

Word	S1	S ₂
John	1	1
Likes	2	1
То	1	1
Watch	1	1
Movies	1	0
Also	0	1
Football	0	1
Games	0	1
Mary	1	0
too	1	0

Bag of Words: Idea

- Bag of words Representation in a Vector Space
 - √ The contents can be inferred from the frequency of words
 - ✓ Vector representation does not consider the ordering of words in a document
 - Visual words = independent features
 - John is quicker than Mary = Mary is quicker than John in BOW representation
 - √ We cannot reconstruct the original text based on the term-document matrix

Text Preprocessing

- Remove unnecessary information
 - √ They vs. they: different words in many systems
 - lower case is commonly used
 - ✓ Punctuation
 - Punctuations do not contain significant information → Remove them!
 - ✓ Numbers
 - Numbers are not critical in some domains but critical in other domains
 - Removing numbers should be carefully determined based on the domain for which a collection of text is about to be analyzed

- What are stop words?
 - √ Words that do not carry any information
 - Mainly functional role
 - Usually remove them to help the machine learning algorithms to perform better
 - √ Natural language dependent
 - English: a, about, above, across, after, again, against, all, also, etc.
 - 한국어: ...습니다, ...로서(써), ...를 등

[Original text]

Information Systems Asia Web provides research, IS-related
commercial materials,
interaction, and even research
sponsorship by interested
corporations with a focus on Asia
Pacific region.

[After removing stop words]

Information Systems Asia Web provides research IS-related commercial materials interaction research sponsorship interested corporations focus Asia Pacific region

- Example I: SMART stop words list
 - ✓ SMART: **S**ystem for the **M**echanical **A**nalysis and **R**etrieval of **T**ext
 - A total of 571 stop words

[1]	"a"	"a's"	"able"	"about"	"above"	"according"	"accordingly"	"across"	"actually"	"after"	"afterwards"
[12]	"again"	"against"	"ain't"	"all"	"allow"	"allows"	"almost"	"alone"	"along"	"already"	"also"
[23]	"although"	"always"	"am"	"among"	"amongst"	"an"	"and"	"another"	"any"	"anybody"	"anyhow"
[34]	"anyone"	"anything"	"anyway"		"anywhere"	"apart"	"appear"	"appreciate"	"appropriate"	"are"	"aren't"
		"as"		"anyways" "ask"							"b"
[45]	"around"		"aside"		"asking"	"associated"	"at"	"available"	"away"	"awfully"	
[56]	"be"	"became"	"because"	"become"	"becomes"	"becoming"	"been"	"before"	"beforehand"	"behind"	"being"
[67]	"believe"	"below"	"beside"	"besides"	"best"	"better"	"between"	"beyond"	"both"	"brief"	"but"
	"by"	"c"	"c'mon"	"c's"	"came"	"can"	"can't"	"cannot"	"cant"	"cause"	"causes"
[89]	"certain"	"certainly"	"changes"	"clearly"	"co"	"com"	"come"	"comes"	"concerning"	"consequently"	"consider"
[100]	"considering"	"contain"	"containing"	"contains"	"corresponding"	"could"	"couldn't"	"course"	"currently"	"d"	"definitely"
[111]	"described"	"despite"	"did"	"didn't"	"different"	"do"	"does"	"doesn't"	"doing"	"don't"	"done"
[122]	"down"	"downwards"	"during"	"e"	"each"	"edu"	"eg"	"eight"	"either"	"else"	"elsewhere"
[133]	"enough"	"entirely"	"especially"	"et"	"etc"	"even"	"ever"	"every"	"everybody"	"everyone"	"everything"
[144]	"everywhere"	"ex"	"exactly"	"example"	"except"	"f"	"far"	"few"	"fifth"	"first"	"five"
[155]	"followed"	"following"	"follows"	"for"	"former"	"formerly"	"forth"	"four"	"from"	"further"	"furthermore"
[166]	"q"	"get"	"gets"	"getting"	"given"	"gives"	"go"	"goes"	"going"	"gone"	"got"
[177]			"h"	"had"	"hadn't"		"hardly"	"has"		"have"	"haven't"
	"gotten"	"greetings"	"he's"	"hello"		"happens"	"hardiy		"hasn't"		
[188]	"having"	"he"			"help"	"hence"	"her"	"here"	"here's"	"hereafter"	"hereby"
[199]	"herein"	"her eupon"	"hers"	"herself"	"hi"	"him"	"himself"	"his"	"hither"	"hopefully"	"how"
[210]	"howbeit"	"however"	"i"	"i'd"	"i'll"	"i'm"	"i've"	"ie"	"if"	"ignored"	"immediate"
[221]	"in"	"inasmuch"	"inc"	"indeed"	"indicate"	"indicated"	"indicates"	"inner"	"insofar"	"instead"	"into"
[232]	"inward"	"is"	"isn't"	"it"	"it'd"	"it'll"	"it's"	"its"	"itself"	"j"	"just"
[243]	"k"	"keep"	"keeps"	"kept"	"know"	"knows"	"known"	"]"	"last"	"lately"	"later"
[254]	"latter"	"latterly"	"least"	"less"	"lest"	"let"	"let's"	"like"	"liked"	"likely"	"little"
[265]	"look"	"looking"	"looks"	"ltd"	"m"	"mainly"	"many"	"may"	"maybe"	"me"	"mean"
[276]	"meanwhile"	"merely"	"might"	"more"	"moreover"	"most"	"mostly"	"much"	"must"	"my"	"myself"
[287]	"n"	"name"	"namely"	"nd"	"near"	"nearly"	"necessary"	"need"	"needs"	"neither"	"never"
[298]	"nevertheless"	"new"	"next"	"nine"	"no"	"nobody"	"non"	"none"	"noone"	"nor"	"normally"
[309]	"not"	"nothing"	"novel"	"now"	"nowhere"	"o"	"obviously"	"of"	"off"	"often"	"oh"
[320]	"ok"	"okay"	"old"	"on"	"once"	"one"	"ones"	"only"	"onto"	"or"	"other"
[331]	"others"	"otherwise"	"ought"	"our"	"ours"	"ourselves"	"out"	"outside"	"over"	"overall"	"own"
			"i1"								
[342]	"p"	"particular"	"particularly"	"per"	"perhaps"	"placed" "r"	"please"	"plus"	"possible"	"presumably"	"probably"
[353]	"provides"	"q"	"que"	"quite"	"qv"		"rather"	"rd"	"re"	"really"	"reasonably"
[364]	"regarding"	"regardless"	"regards"	"relatively"	"respectively"	"right"	"s"	"said"	"same"	"saw"	"say"
[375]	"saying"	"says"	"second"	"secondly"	"see"	"seeing"	"seem"	"seemed"	"seeming"	"seems"	"seen"
[386]	"self"	"selves"	"sensible"	"sent"	"serious"	"seriously"	"seven"	"several"	"shall"	"she"	"should"
[397]	"shouldn't"	"since"	"six"	"so"	"some"	"somebody"	"somehow"	"someone"	"something"	"sometime"	"sometimes"
[408]	"somewhat"	"somewhere"	"soon"	"sorry"	"specified"	"specify"	"specifying"	"still"	"sub"	"such"	"sup"
[419]	"sure"	"t"	"t's"	"take"	"taken"	"tell"	"tends"	"th"	"than"	"thank"	"thanks"
[430]	"thanx"	"that"	"that's"	"thats"	"the"	"their"	"theirs"	"them"	"themselves"	"then"	"thence"
[441]	"there"	"there's"	"thereafter"	"thereby"	"therefore"	"therein"	"theres"	"thereupon"	"these"	"they"	"they'd"
[452]	"they'11"	"they're"	"they've"	"think"	"third"	"this"	"thorough"	"thoroughly"	"those"	"though"	"three"
[463]	"through"	"throughout"	"thru"	"thus"	"to"	"together"	"too"	"took"	"toward"	"towards"	"tried"
[474]	"tries"	"truly"	"try"	"trying"	"twice"	"two"	"u"	"un"	"under"	"unfortunately"	"unless"
[485]	"unlikely"	"until"	"unto"	"up"	"upon"	"us"	"use"	"used"	"useful"	"uses"	"using"
[496]	"usually"	"uucp"	"v"	"value"	"various"	"very"	"via"	"viz"	"vs"	"w"	"want"
[507]	"wants"	"was"	"wasn't"	"way"	"we"	"we'd"	"we'11"	"we're"	"we've"	"welcome"	"well"
[518]	"went"	"were"	"weren't"	"what"	"what's"	"whatever"	"when"	"whence"	"whenever"	"where"	"where's"
[529]	"whereafter"	"whereas"	"whereby"	"wherein"	"whereupon"	"wherever"	"whether"	"which"	"while"	"whither"	"who"
[540]	"who's"	"whoever"	"whole"	"whom"	"whose"	"why"	"will"	"willing"	"wish"	"with"	"within"
[551]	"without"	"won't"	"wonder"	"would"	"would"	"wouldn't"	"x"	"y"	"yes"	"yet"	"you"
[562]	"you'd"	"you'11"	"you're"	"you've"	"your"	"yours"	"yourself"	"yourselves"	"z"	"zero"	

- Example 2: MySQL Stop words list
 - ✓ http://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html
 - A total of 543 stop words

	1	l	1.	i	i.	i.	i			1 .	1	i		l
a's	able	about	above	according	her	here	here's	hereafter	hereby	serious	seriously	seven	several	shall
accordingly	across	actually	after	afterwards	herein	hereupon	hers	herself	hi	she	should	shouldn't	since	six
again	against	ain't	all	allow	him	himself	his	hither	hopefully	50	some	somebody	somehow	someone
allows	almost	alone	along	already	how	howbeit	however	i'd	i'll	something	sometime	sometimes	somewhat	somewhere
also	although	always	am	among	i'm	i've	ie	if	ignored	soon	sorry	specified	specify	specifying
amongst	an	and	another	any	immediate	in	inasmuch	inc	indeed	still	sub	such	sup	sure
anybody	anyhow	anyone	anything	anyway	indicate	indicated	indicates	inner	insofar	t's	take	taken	tell	tends
anyways	anywhere	apart	appear	appreciate	instead	into	inward	is	isn't	th	than	thank	thanks	thanx
appropriate	are	aren't	around	as	it	it'd	it'll	it's	its	that	that's	thats	the	their
aside	ask	asking	associated	at	itself	just	keep	keeps	kept	theirs	them	themselves	then	thence
available	away	awfully	be	became	know	known	knows	last	lately	there	there's	thereafter	thereby	therefore
because	become	becomes	becoming	been	later	latter	latterly	least	less	therein	theres	thereupon	these	they
before	beforehand	behind	being	believe	lest	let	let's	like	liked	they'd	they'll	they're	they've	think
below	beside	besides	best	better	likely	little	look	looking	looks	third	this	thorough	thoroughly	those
between	beyond	both	brief	but	ltd	mainly	many	may	maybe	though	three	through	throughout	thru
by	c'mon	c's	came	can	me	mean	meanwhile	merely	might	thus	to	together	too	took
can't	cannot	cant	cause	causes	more	moreover	most	mostly	much	toward	towards	tried	tries	truly
certain	certainly	changes	clearly	со	must	my	myself	name	namely	try	trying	twice	two	un
com	come	comes	concerning	consequently	nd	near	nearly	necessary	need	under	unfortunately	unless	unlikely	until
consider	considering	contain	containing	contains	needs	neither	never	nevertheless	new	unto	up	upon	US	use
corresponding	could	couldn't	course	currently	next	nine	no	nobody	non	used	useful	uses	using	usually
definitely	described	despite	did	didn't	none	noone	nor	normally	not	value	various	very	via	viz
different	do	does	doesn't	doing	nothing	novel	now	nowhere	obviously	VS	want	wants	was	wasn't
don't	done	down	downwards	during	of	off	often	oh	ok	way	we	we'd	we'll	we're
each	edu	eg	eight	either	okay	old	on	once	one	we¹ve	welcome	well	went	were
else	elsewhere	enough	entirely	especially	ones	only	onto	or	other	weren't	what	what's	whatever	when
et	etc	even	ever	every	others	otherwise	ought	our	ours	whence	whenever	where	where's	whereafter
everybody	everyone	everything	everywhere	ex	ourselves	out	outside	over	overall	whereas	whereby	wherein	whereupon	wherever
exactly	example	except	far	few	own	particular	particularly	per	perhaps	whether	which	while	whither	who
fifth	first	five	followed	following	placed	please	plus	possible	presumably	who's	whoever	whole	whom	whose
follows	for	former	formerly	forth	probably	provides	que	quite	qv	why	will	willing	wish	with
four	from	further	furthermore	get	rather	rd	re	really	reasonably	within	without	won't	wonder	would
gets	getting	given	gives	go	regarding	regardless	regards	relatively	respectively	wouldn't	yes	yet	you	you'd
goes	going	gone	got	gotten	right	said	same	saw	say	you'll	you're	you've	your	yours
greetings	had	hadn't	happens	hardly	saying	says	second	secondly	see	yourself	yourselves	zero	,	
has	hasn't	have	haven't	having	seeing	seem	seemed	seeming	seems	ľ				
he	he's	hello	help	hence	seen	self	selves	sensible	sent					
	-	-	F	-						•				

할 생각이다. 지음하여

할 힘이 있다

한후

본대로

얼마간

혼자

• Example 3: Stop words list in Korean

√ http://www.ranks.nl/stopwords/korean

뿌마 에 1라 다시 말하자며

A total of 677 stop words

하기보다도

어찌돼드

01	어씨뇃는	하기보나는			까닭으로	중 유럽이다		근대도	2010	<u></u>	=^
휴	그위에	차라리	만이 아니다	바꿔 말하면	이유만으로	하려고하다	다른	자		너희	자기
	게다가	하는 편이 낫다	만은 아니다	즉	이로 인하여	이리하여	다른 방면으로	0	다소	당신	자기집
	점에서 보아	<u>==</u>	막론하고		그래서	그리하여	해봐요	이쪽		어찌	자신
	비추어 보아	놀라다				그렇게 함으	습니까	예기	조금	설마	무메 종합한것과
Olol T	고려하면	상대적으로 말하	그치지 않다		그러므로	로써		이것	다수	차라리	같이
		자면			그런 까닭에			이번	몇	할지언정	총적으로 보면
우리		마치			알 수 있다	일때		이렇게말하자면		할지라도	총적으로 말하면
		아니라면			결론을 낼 수 있			이런	지만	할망정	총적으로
(M2)	이 교역 좀	어디디딘 쉿						이러한	하물며		대로 하다
		고 그렇지 않으면	논하지 않다		으로 인하여			이와 같은		구토하다	으로서
의해	보다더		쓰지지 않다		있다			요만큼		게무다	참
	비하면	그렇지 않다면						요만한 것		토하다	그만이다
를		안 그러면			어떤것	로써		얼마 안 되는 것		메쓰겁다	할 따름이다
		아니었다면			관계가 있다			이만큼		에 프립디 옆사람	쿵
의		하든지			관련이 있다	까지			대해 말하자		탕탕
					연관되다			이 정도의	면	게 쳇	əə
		이라면	만 못하다		어떤것들			이렇게 많은 것		의거하여	55
	이어서	좋아	하는 편이 낫		에 대해	반드시		이와 같다		의거하여 근거하여	공공 봐
	잇따라		다		이리하여			olah			
뿐이다	뒤따라	하는것도			그리하여			이렇구나	반대로	의해	봐라
	뒤이어	그만이다			여부			것과 같이	반대로 말하		101010
근거하여	결국	어쩔수 없다	향해서		하기보다는	임메 틀림없		끼익	자면	힘입어	OILI
입각하여	의지하여	하나		OIZH	하느니			삐걱	이와 반대로		와아
기준으로	기대여	일	쪽으로	하고있었다	하면 할수록			(나위	바꾸어서 말		8
예하면	통하여	일반적으로	름타	이었다	운운			와 같은 사람들		버금	0101
예를 들면	자마자	일단	이용하여	에서	이러이러하다	등등	언젠가	부류의 사람들	바꾸어서 한		참나
예를 들자면		한켠으로는	ElCl	로부터	하구나	제	어떤것	왜냐하면		기타	년
저	불구하고	오자마자	오르다	까지	하도다	겨우	어느것	중의하나		첫번째로	월
		이렇게되면	제외하고	예하면	다시말하면	단지	저기	오직	그렇지않으		일
		이와같다면	이 외에		다음으로	다만	저쪽	오로지	면	그중에서	경
		전부			에었다	할뿐	저것	에 한하다		견지에서	영
지말고	곧	रुक्ता			에 달려 있다	딩동	⊐ 0H	하기만 하면	툭	형식으로 쓰여	일
하지마	즉시	한항목			우리	댕그	그럼	도착하다	딱	입장에서	0
	바로	근거로	한다면 몰라			대해서		까지 미치다	삐걱거리다	위해서	삼
	당장	하기에				CHatol		도달하다	보드득	단지	사
		아울러			하기는한데	대하면		정도에 이르다	비격거리다	의해되다	오
		하지 않도록			어떻게	훨씬		항 지경이다 항	꽈당	하도록시키다	육
					어떻해	얼마나		결과에 이르다		뿐만아니라	- 륙
	하면된다	않기 위해서						관해서는		반대로	칠
비길수 없다		이르기까지	부터		어찌됏어			전에서는 여러분	에가서	전후	팔
해서는 안된		이되다			OHILL				악	전자 전자	르 구
다	요컨대	로 인하여	따라서	하려고하다	어째서	남짓	할 줄 안다	하고 있다	\neg	C21	1

AGENDA

01	Bag of Words
02	Word Weighting
03	N-Grams

Word Weighting: Term-Frequency (TF)

Nayak & Raghavan (2014)

- Term frequency tf_{t,d}
 - ✓ The number of times that the term t occurs in the document d

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	o	o	o
Brutus	4	157	o	1	o	o
Caesar	232	227	o	2	1	1
Calpurnia	0	10	o	o	o	o
Cleopatra	57	o	o	o	o	o
mercy	2	o	3	5	5	1
worser	2	o	1	1	1	0

Word Weighting: Term-Frequency (TF)

이재천, 김수경, 홍성연 (2015)

- Term frequency tf_{t,d}
 - ✓ The more frequently occurs, the more important it is

<산공 강의 상위 25%>

<산공 강의 하위 25%>

Word Weighting: Document Frequency (DF)

- Document frequency df_t
 - \checkmark The number of documents in which the term t appears.
- Issues on DF
 - ✓ Rare terms are more informative than frequent terms across the document collection
 - is, can, the, of, ...
 - ✓ Consider a term in the query that is rare in the collection (e.g.,

 Pneumonoultramicroscopicsilicovolcanoconiosis (longest word in English, ◄)))
 - ✓ A document containing this term is very likely to be relevant to the query
 - √ We should give a high weight for rare terms than common terms

Word Weighting: Inverse Document Frequency (IDF)

Inverse document frequency idf_t

$$\checkmark idf_t = log_{10}(N/df_t)$$

- ✓ We use $log(N/df_t)$ instead of N/df_t to "dampen" the effect of idf
- IDF example with N = I million

term	df_t	idf_t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

Word Weighting: TF-IDF

TF-IDF

✓ TF-IDF weight of a term is the product of its tf weight and its idf weight

The word is more important if it appears several times in a target document

The word is more important if it appears in less documents

- ✓ Best known weighting scheme in information retrieval
- ✓ Increases with the number of occurrences within a document
- ✓ Increases with the rarity of the term in the collection

Word Weighting: TF-IDF

Nayak & Raghavan (2014)

• Example revisited

 \checkmark Each document is now represented by a real-valued vector of tf-idf weights in $R^{|V|}$

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	o	o
Brutus	1.21	6.1	o	1	o	0
Caesar	8.59	2.54	o	1.51	0.25	0.35
Calpurnia	0	1.54	o	o	o	0
Cleopatra	2.85	o	o	o	o	o
mercy	1.51	0	1.9	0.12	5.25	o.88
worser	1.37	o	0.11	4.15	0.25	1.95

- \checkmark So, we have a |V|-dimensional vector space
 - Terms are axes of the space
 - Documents are points or vectors in this space
 - Very high dimensional: need to reduce the number of features!
 - Sparseness: most entries are zero

Word Weighting: TF-IDF

TF-IDF Example

✓ QI:Which term is the most important for the document I?

✓ Q2:Which term is the least important for the document 1?

	Docl	Doc2	Doc3
Terml	5	0	0
Term2	I	0	0
Term3	5	5	5
Term4	3	3	3
Term5	3	0	I

Docl	TF	DF	IDF	TF-IDF
Terml	5	I	Log3	5log3
Term2	I	I	Log3	Hog3
Term3	5	3	LogI	0
Term4	3	3	LogI	0
Term5	3	2	Log(3/2)	3log(3/2)

Word weighting: Term I > Term 5 > Term 2 > Term 3 = Term 4

TF Variants

Roelleke (2013)

TF Variants

Definition 2.1 TF Variants: TF(t, d). TF(t, d) is a quantification of the within-document term frequency, tf_d . The main variants are:

K_d: (document length)/(average document length)

TF Variants

Roelleke (2013)

• TF Variants

DF & IDF Variants

Roelleke (2013)

DF & IDF Variants

Definition 2.3 DF Variants. DF(t, c) is a quantification of the document frequency, df(t, c). The main variants are:

$$df(t,c) := df_{total}(t,c) := n_D(t,c)$$
(2.18)

$$\mathrm{df}_{\mathrm{sum}}(t,c) := \frac{n_D(t,c)}{N_D(c)} \qquad \left(=\frac{\mathrm{df}(t,c)}{N_D(c)}\right) \tag{2.19}$$

$$df_{sum}(t,c) := \frac{n_D(t,c)}{N_D(c)} \left(= \frac{df(t,c)}{N_D(c)} \right)$$

$$df_{sum,smooth}(t,c) := \frac{n_D(t,c) + 0.5}{N_D(c) + 1}$$
(2.19)

$$df_{BIR}(t,c) := \frac{n_D(t,c)}{N_D(c) - n_D(t,c)}$$
 (2.21)

$$df_{BIR}(t,c) := \frac{n_D(t,c)}{N_D(c) - n_D(t,c)}$$

$$df_{BIR,smooth}(t,c) := \frac{n_D(t,c) + 0.5}{N_D(c) - n_D(t,c) + 0.5}$$
(2.21)

Definition 2.4 IDF Variants. IDF(t,c) is the negative logarithm of a DF quantification. The main variants are:

$$idf_{total}(t,c) := -\log df_{total}(t,c)$$
 (2.23)

$$idf(t,c) := idf_{sum}(t,c) := -\log df_{sum}(t,c)$$
(2.24)

$$idf_{sum,smooth}(t,c) := -log df_{sum,smooth}(t,c)$$
 (2.25)

$$idf_{BIR}(t,c) := -\log df_{BIR}(t,c)$$
 (2.26)

$$idf_{BIR,smooth}(t,c) := -log df_{BIR,smooth}(t,c)$$
 (2.27)

TF-IDF Variants Summary

Roelleke (2013)

• The most commonly used TF-IDF in general

Term f	frequency	Docum	ent frequency	Nor	malization
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log rac{N-\mathrm{d} f_t}{\mathrm{d} f_t}\}$	u (pivoted unique)	1/u
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$				

Effects of TF-IDF Variants

- Comparative Study (Paltoglou and Thelwall, 2010)
 - ✓ Task 1: Classification of 2,000 movie reviews: positive vs. negative
 - √ Task 2: Multi-Domain Sentiment Data set (MDSD)
 - Four different product types: books, electronics, DVDs, and kitchen appliances
 - I,000 positive & I,000 negative for each type, 8,000 in total

Term Frequency

Notation	Term frequency
n (natural)	tf
1 (logarithm)	1 + log(tf)
a (augmented)	$0.5 + \frac{0.5 \cdot tf}{max_t(tf)}$
b (boolean)	$\begin{cases} 1, & tf > 0 \\ 0, & otherwise \end{cases}$
L (log ave)	$\frac{1 + log(tf)}{1 + log(avg_dl)}$
o (BM25)	$\frac{(k_1+1)\cdot tf}{k_1\left((1-b)+b\cdot \frac{dl}{avg_dl}\right)+tf}$

Inverse Document Frequency

Notation	Inverse Document Fre-
	quency
n (no)	1
t (idf)	$log \frac{N}{df}$
p (prob idf)	$log \frac{N-df}{df}$
k (BM25 idf)	$log\frac{N-df+0.5}{df+0.5}$
$\Delta(t)$ (Delta idf)	$log \frac{N_1 \cdot df_2}{N_2 \cdot df_1}$
$\Delta(t')$ (Delta smoothed	$log \frac{N_1 \cdot df_2 + 0.5}{N_2 \cdot df_1 + 0.5}$
idf)	112 4/1 0.0
$\Delta(p)$ (Delta prob idf)	$log\frac{(N_1-df_1)\cdot df_2}{df_1\cdot (N_2-df_2)}$
$\Delta(p')$ (Delta smoothed	$log \frac{(N_1 - df_1) \cdot df_2 + 0.5}{(N_2 - df_2) \cdot df_1 + 0.5}$
prob idf)	2 ,2) -91
$\Delta(k)$ (Delta BM25 idf)	$log \frac{(N_1 - df_1 + 0.5) \cdot df_2 + 0.5}{(N_2 - df_2 + 0.5) \cdot df_1 + 0.5}$

Normalization

Notation	Normalization
n (none)	1
c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_n^2}}$

Effects of TF-IDF Variants

Paltoglou and Thelwall (2010)

• Experimental Result I: Movie Reviews

√ Base classifier: support vector machine (SVM)

Data set	#Documents	#Terms	#Unique	Average #Terms
			Terms	per Document
Movie Reviews	2,000	1,336,883	39,399	668
Multi-Domain Sentiment	8,000	1,741,085	455,943	217
Dataset (MDSD)				
BLOGS06	17,898	51,252,850	367,899	2,832

o (BM25)	$\frac{(k_1+1)\cdot tf}{k_1\Big((1-b)+b\cdot \frac{dl}{avg_dl}\Big)+tf}$
----------	---

$\Delta(k)$ (Delta BM25 idf)	$log \frac{(N_1 - df_1 + 0.5) \cdot df_2 + 0.5}{(N_2 - df_2 + 0.5) \cdot df_1 + 0.5}$

n (none)	1

Effects of TF-IDF Variants

Paltoglou and Thelwall (2010)

- Experimental Result 2: MDSD
 - ✓ Base classifier: support vector machine (SVM)

o (BM25)	$(k_1+1)\cdot tf$
,	$k_1\left((1-b)+b\cdot\frac{dl}{avg_dl}\right)+tf$

$\Delta(k)$ (Delta BM25 idf) $log \frac{(N_1 - df_1 + 0.5) \cdot df_2 + 0.5}{(N_2 - df_2 + 0.5) \cdot df_1 + 0.5}$		
	$\Delta(k)$ (Delta BM25 idf)	$log \frac{(N_1 - df_1 + 0.5) \cdot df_2 + 0.5}{(N_2 - df_2 + 0.5) \cdot df_1 + 0.5}$

H		
	n (none)	1

AGENDA

01	Bag of Words
02	Word Weighting
03	N-Grams

- N-Gram-based Language Models in NLP
 - ✓ Use the previous N-I words in a sequence to predict the next word

$$P(w_n|w_{n-1}, w_{n-2}, ..., w_1) = \frac{P(w_n, w_{n-1}, w_{n-2}, ..., w_1)}{P(w_{n-1}, w_{n-2}, ..., w_1)}$$

- √ Q) One of the hottest topics in artificial intelligence is deep ______
 - blue vs. frying vs. learning?
- N-Gram in Text Mining
 - √ Some phrases are very useful in text clustering/categorization!
 - Six sigma, supply chain management, big data, etc.
 - √ Term-frequency for n-grams can be utilized.
 - ✓ Domain-dependent.

• Bigram example

✓ Total counts in a corpus

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

• Google Books Ngram Viewer (https://books.google.com/ngrams)

- Google Books Ngram Viewer (https://books.google.com/ngrams)
 - ✓ Ngram frequencies for "artificial intelligence", "machine learning", "data mining", and "neural networks"

Furnkranz (1998)

• Empirical evaluation

- ✓ Data sets
 - 20 newsgroup data set: 20,000 articles (1,000 for each category)
 - 21578 REUTERS newswire articles: 21,578 articles with 90 categories
- √ Classification algorithm: RIPPER
- Results for 20 newsgroup dataset

Pruning	n-grams	Error rate	CPU secs.	No. Features
set-of-words		47.07 ± 0.92	n.a.	71,731
	1	46.18 ± 0.94	12686.12	36,534
DF: 3	2	45.28 ± 0.51	15288.32	113,716
TF: 5	3	45.05 ± 1.22	15253.27	155,184
	4	45.18 ± 1.17	14951.17	189,933
	1	45.51 ± 0.83	12948.31	22,573
DF: 5	2	45.34 ± 0.68	13280.73	44,893
TF: 10	3	46.11 ± 0.73	12995.66	53,238
	4	46.11 ± 0.72	13063.68	59,455
	1	45.88 ± 0.89	10627.10	13,805
DF: 10	2	45.53 ± 0.86	13080.32	20,295
TF: 20	3	45.58 ± 0.87	11640.18	22,214
	4	45.74 ± 0.62	11505.92	23,565

	1	48.23 ± 0.69	10676.43	n.a.
DF: 25	2	48.97 ± 1.15	8870.05	n.a.
TF: 50	3	48.69 ± 1.04	10141.25	n.a.
	4	48.36 ± 1.01	10436.58	n.a.
	5	48.36 ± 1.01	10462.65	n.a.
	1	51.54 ± 0.60	8547.43	n.a.
DF: 50	2	49.71 ± 0.53	8164.27	n.a.
TF: 100	3	51.21 ± 1.26	8079.59	n.a.
	4	51.21 ± 1.26	8078.55	n.a.
	5	51.21 ± 1.26	8147.75	n.a.
	1	52.59 ± 0.71	6609.05	n.a.
DF: 75	2	52.83 ± 0.25	6532.80	n.a.
TF: 150	3	52.36 ± 0.48	6128.49	n.a.
	4	52.36 ± 0.48	6128.49	n.a.
	5	52.36 ± 0.48	6119.27	n.a.

36/39

Furnkranz (1998)

• Results for 21578 REUTERS

✓ Classification accuracy is the highest with bigram features

Pruning	n-grams	Recall	Precision	F1	Accuracy	No. Features
set-of-words		76.71	83.42	79.92	99.5140	n.a.
	1	77.22	83.55	80.26	99.5211	9,673
DF: 3	2	80.34	82.03	81.18	99.5302	28,045
TF: 5	3	77.56	82.74	80.07	99.5130	38,646
	4	78.18	82.31	80.19	99.5130	45,876
	1	77.19	83.65	80.29	99.5221	6,332
DF: 5	2	80.05	82.06	81.04	99.5278	13,598
TF: 10	3	77.96	82.29	80.07	99.5106	17,708
	4	78.21	82.13	80.12	99.5106	20,468
	1	76.92	83.99	80.30	99.5241	4,068
DF: 10	2	79.06	82.04	80.52	99.5177	7,067
TF: 20	3	77.32	82.67	79.91	99.5096	8,759
	4	76.98	82.91	79.84	99.5096	9,907

References

Research Papers & Other materials

- Furnkranz, J. (1998). A Study using N-gram Features for Text Categorization. Austrian Research Institute for Artificial Intelligence Technical Report OEFAI-TR-98-30 Schottengasse.
- Nayak, P. and Raghavan, P. (2014). Lecture 6: Scoring, Term Weighting and the Vector Space Model. http://web.stanford.edu/class/cs276/handouts/lecture6-tfidf-handout-I-per.pdf
- Paltoglou, G. and Thelwall, M. (2010). A Study of Information Retrieval Weighting Schemes for Sentiment Analysis. In Proceedings of the 48th
 Annual Meeting of the Association for Computational Linguistics: 1386-1395.
- Roelleke, T. (2013). Information Retrieval Models: Foundations and Relationships. Morgan & Claypool Publishers.
- 박은정, Supervised Feature Representationsfor Document Classification, PhD Thesis, Seoul National University, 2016.
- 이재천, 김수경, 홍성연. (2015). Data Mining을 이용한 고려대 강의평가 분석: Klue 사이트 강의평가를 기준으로. 2015 캡스톤디자인 II Term Project.