DATA 605 - Discussion 15

Omer Ozeren

Table of Contents

28		 1
Solution		 ······

Section 12.3, Exercise 28, Page 679

28.

Form a function z = f(x, y) such that $f_x = x + y$ and $f_y = x + y$.

Solution

Firstly, since the second partials are equal to each other (0 in this case), by Schwarz's Theorem, f(x, y) exists.

If
$$f_x = x + y$$
, then $f(x, y) = \frac{1}{2}x^2 + xy + c(y) + A$.

If
$$f_y = x + y$$
, then $f(x, y) = xy + \frac{1}{2}y^2 + d(x) + B$.

Combining these, we get
$$f(x, y) = \frac{1}{2}x^2 + xy + c(y) + A = xy + \frac{1}{2}y^2 + d(x) + B$$
.

So our original function is $z = f(x, y) = \frac{1}{2}x^2 + xy + \frac{1}{2}y^2$.