

WORKFLOW

PENGEMBANGAN MODEL

Aditya Firman Ihsan

Misalkan pada suatu hari, ibu menyuruhmu...

Ke supermarket, beli susu UHT 1 L

Misalkan pada suatu hari, ibu menyuruhmu...

Ke supermarket, beli Heavenly Blush

Misalkan pada suatu hari, ibu menyuruhmu...

Ke supermarket, beli bahan untuk bikin pancake

Bagaimana kita melakukan

sesuatu, bergantung seberapa

paham kita akan sesuatu itu

Programming help

Kita butuh paham apa yang kita lakukan untuk bisa copy-paste code yang tepat

Jack Forge

@TheJackForge

I'm a Pull Stack Developer.

I just pull things off the Internet and put it into my code.

8:13 am · 19 Dec 20 · Twitter for Android

Apa sebenarnya yang dilakukan ketika riset?

Penelitian

1. n pemeriksaan yang teliti; penyelidikan 2. n kegiatan pengumpulan, pengolahan, analisis, dan penyajian data yang dilakukan secara sistematis dan objektif untuk memecahkan suatu persoalan atau menguji suatu hipotesis untuk mengembangkan prinsipprinsip umum

Penelitian

1. n pemeriksaan yang teliti;

prinsip umum

Ada apa dengan model?

Mengatur Data

Yang sebenarnya dilakukan *leaming* model adalah membaca distribusi dari suatu data

Distribusi yang dibaca model hanya aproksimasi

What we study in class:

What we see on the exam paper:

Sayangnya,

Distribusi suatu data dari yang dipelajari dengan yang ditemui ketika diaplikasikan bisa berbeda

Training set

Validation/Development set

Generalization Gap

Berolahraga dan minum vitamin, agar tetap fit

Underfit

- Model terlalu sederhana, sehingga terlalu mudah mengambil keputusan
- Terbawa prasangka, kurang variatif
- Bias tinggi, variansi rendah

Overfit

- Model terlalu kompleks, terlalu fokus pada hal detail
- Terpengaruh data, tidak punya pendirian
- Bias rendah, variansi tinggi

Bias dan Variansi

Terus harus ngapain?

Bias tinggi

- Butuh model lebih kompleks
- Latihan lebih lama

Variansi Tinggi

- Butuh model lebih sederhana
- Latihan lebih singkat
- Regularisasi
- Lebih banyak data

Data harus dipastikan cukup, terutama validation set untuk mengukur variansi

Training set

Validation/Development set

Kalau sedikit bagaimana?

Saling kroscek saja antar data!

Nama kroscek ga keren, jadilah cross-validation

Mempercantik Model

Yang butuh di-tuning

Bagaimana cara mencari jodoh parameter yang baik?

Daftarkan dulu hiperparameter yang dimiliki model

Pilih sebagian yang kiranya sesuai

Grid Search

Sayangnya, kita tidak tahu parameter yang mana

Random Search

Perbaikan domain

Bila hiperparametenrya sedikit, pakai Grid Search

Bila banyak, pakai
Random Search secara
bertahap

*

Identifikasi skala setiap hiperparameter

learning rate

Hiperparameter cukup?

Avengeeers! Ensemble!

Ensemble: Belajar bersama itu lebih baik

Pembagian model bisa berdasarkan: data, fitur, hyperparameter, arsitektur

Belajar lah dari yang sudah berpengalaman

Knowledge Distillation

Memiliki model gabungan bisa berat ketika diaplikasikan

Self Distillation

Bagaimana kalau cukup belajar dari satu model?

Mengukur keberhasilan

Goal Setting

Error Analysis

Selalu gunakan "single number evaluation metric"

Untuk menciptakan 1 goal yang menjadi fokus

Misal kita ingin mengukur seberapa bagus kinerja perguruan tinggi

	Impact Rank	Openness Rank	Excellence Rank
ITB	749	6492	1392
IPB	592	987	2175
Tel-U	692	1773	2653
UGM	594	775	1503
ITS	784	1427	1741

Misal kita ingin mengukur seberapa bagus kinerja perguruan tinggi

	Impact Rank	Openness Rank	Excellence Rank	Overall Rank
ITB	749	6492	1392	2126
IPB	592	987	2175	1092
Tel-U	692	1773	2653	1417
UGM	594	775	1503	852
ITS	784	1427	1741	1103

Ada perhitungan bobotnya

Metrik	Bobot	
IMPACT	0.5	
OPENNESS	0.1	
EXCELLENCE	0.4	

Demikian juga model

	Precision	Recall	Accuracy
Model A	0.97	0.92	0.94
Model B	0.90	0.91	0.98
Model C	0.93	0.96	0.91

Kalau terdapat banyak metrik yang tidak terkait bagaimana?

Tidak semua metrik bisa (dan perlu) digabungkan

Misal seperti, Error & Lama komputasi? Metrik

Pengoptimal (*Optimizing*)

Metrik yang jadi ukuran utama

Dimaksimalkan/ Diminimalkan Pencukup (*Satisficing*)

Metrik pembatas sebagai ukuran cukup

Dijaga dalam suatu batas

Nilai Error & Lama komputasi?

Opsi 1

Metrik Pengoptimal: Nilai Error

Metrik Pencukup: Lama Komputasi

Target: Perkecil Error seminimal mungkin dengan

lama komputasi cukup < 1 menit

Opsi 2

Metrik Pengoptimal: Lama Komputasi

Metrik Pencukup: Nilai Error

Target: Perkecil waktu komputasi sesingkat

mungkin dengan nilai error cukup < 0.1

Gagal menetapkan metrik yang tepat

Seperti berusaha mengukur potensi seorang anak dari nilai UN-nya,

Seperti berusaha menembak rusa tapi yang dibidik pohon di belakangnya

Seperti berusaha merebut hati seseorang tapi yang dideketi sahabatnya (duh)

Setelah tentukan metriknya, selanjutnya? Sebelum lanjut,

Ini anjing atau kucing?

Manusia diberi masalah sesuai dengan batas kemampuannya,

Demikian juga model

Kita harus tahu batas paling baik suatu model

 $BE \leq SOTA \leq HLP$

Kita pada dasarnya tidak bisa tahu BE, tapi bisa gunakan HLP sebagai pendekatan

Bias

Variansi

Hate Speech atau Offensive?

"GA PERNAH MENDALAMI AL-QURAN YA BANG??? PANTESAN MULUTNYA KAYA ORANG KAFIR BEJAT HINA"

"Ya Bani Taplak dkk"

Setidaknya gw punya jari tenga buat lu, sebelom gw ukur nyali ama bacot lu

Periksa data-data yang membuat model gagal melaksanakan tugas

	Ciri 1	Ciri 2	 Label keliru	Komentar
Sampel 1				
Sampel n				
% total				

Contoh data gambar

	Blur	Objek tidak di tengah	Kontras rendah	Label keliru	Komentar
Sampel 1		V			
Sampel n				V	
% total	10%	21%	32%	1%	

Contoh data suara

	Suara gemerisik	Bicara terlalu cepat	Suara naik turun	Label keliru	Komentar
Sampel 1		V			
					Ada mobil lewat
Sampel n				V	
% total	2%	1%	5%	0.5%	

Contoh data teks

	Bahasa alay	Kata-kata ambigu	Kalimat <3 kata	Label keliru	Komentar
Sampel 1		V			
•••					Isinya emoticon semua
Sampel n				V	
% total	9%	3%	1%	21%	

Fyuh...

Terus, Intinya bagaimana pak?

Kalau warm-up tidak dilakukan dengan baik, maka pasti keram waktu iterasi

Kembangkan perlahan, dari sederhana ke kompleks

Terakhir (yeay), Saran sederhana tapi fatal

1. Buat timeline

- Tetapkan Langkah-Langkah besar
- Tentukan deadline untuk setiap Langkah
- Konsisten!

2. Buat log sheet

- Catat setiap hal yang dilakukan
- Jadikan deadline dari timeline sebagai acuan

Contoh log sheet (versi 1)

Waktu	Yang dilakukan	Hasil	File luaran	Komentar	
12 Des 2020	First run	0.65 train acc 0.6 val acc	start.csv	Underfit sepertinya	
13 Des 2020	Perpanjang iterasi	0.75 train acc 0.72 val acc	Longer_epoch.	Well, better, tpi mungkin masih kurang	
15 Des 2020	Perpanjang lagi iterasi	0.88 train acc 0.7 val acc	Longer_epoch_ 2.csv	Ups, malah overfit	
16 Des 2020	Coba regularisasi	0.89 train acc 0.88 val acc	Regularization. csv	Nice. Tapi malah jadi agak berat	
1 Jan 2021	Deadline 2: Bias dan variansi harus sudah kecil				

Contoh log sheet (versi 2)

								5.6	
Waktu	Epch	Batch	Reg	GPU	Arsi	file	Run time	Metrik	Komentar
12 Des 2020	50	8	No	No	CNN	1.Csv	30s	0.6, 0.65	Coba dulu arsi lain
13 Des 2020	50	8	No	No	LSTM	2.Csv	45s	0.77, 0.7	Sepertinya LSTM msih bisa di-tuning, tapi mau coba arsi lain dlu
15 Des 2020	100	8	No	No	BERT	3.Csv	120s	0.89, 0.8	Nah ini. Tapi terlalu kompleks
16 Des 2020	75	32	Yes	No	BERT	4.csv	100s	0.9, 0.9	Sekarang tuning- tuning biar perfect
1 Jan 2021	Deadline 2: Bias dan Variansi harus sudah kecil								

Terima Kasih

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

