STA 304H1F-1003H Fall 2019

Assignment 1-Question 1-Solution

Question 1. (15 marks)

We consider a population of N=5 service-stations, labeled 1,2,3,4,5 with respective price of a litre of high-grade petrol in a certain month, $y_1=5.82$, $y_2=5.33$, $y_3=5.76$, $y_4=6.20$, $y_5=5.89$. Consider a simple random sample without replacement design with sample size n=3. For your convenience, several parts of the following may be combined into a single table.

(a) Find the values of the population parameters μ , the median, and the σ . List every possible sample of size n=3. For each sample, what is the probability that it is the one selected?

Solution:

Population: Size N=5 Y = 5.82, 5.33, 5.76, 6.20, 5.89

Population Mean:
$$\mu = \frac{\sum_{i=1}^{5} y_i}{5} = 5.8$$
 (1 mark)

Population Median: middle observation: Median = 5.82 (1 mark)

Population standard deviation:
$$\sigma = \sqrt{\frac{\sum_{i=1}^{5} (y_i - \mu)^2}{5}} = 0.27964$$
 (1 mark)

Simple random sample without replacement (SRS) of size n=3:

Number of possible sample: $\binom{N}{n} = \binom{5}{3} = 10$

Table 1: List of all possible samples, and their probabilities of selection

Sample	Y_s	Prob
(1,2,3)	(5.82, 5.33, 5.76)	$\frac{1}{10}$
(1,2,4)	(5.82, 5.33, 6.20)	$\frac{1}{10}$
(1,2,5)	(5.82, 5.33, 5.89)	$\frac{1}{10}$
(1,3,4)	(5.82, 5.76, 6.20)	$\frac{1}{10}$
(1,3,5)	(5.82, 5.76, 5.89)	$\frac{1}{10}$
(1,4,5)	(5.82, 6.20, 5.89)	$\frac{1}{10}$
(2,3,4)	(5.33, 5.76, 6.20)	$\frac{1}{10}$
(2,3,5)	(5.33, 5.76, 5.89)	$\frac{1}{10}$
(2,4,5)	(5.33, 6.20, 5.89)	$\frac{1}{10}$
(3,4,5)	(5.76, 6.20, 5.89)	$\frac{1}{10}$

(3 marks)

(b) What is the sampling distribution of \bar{y} ?

Solution:

The sampling distribution of \bar{y} is given by the following table

ybar Prob
1 5.64 0.1
2 5.78 0.1
3 5.68 0.1
4 5.93 0.1
5 5.82 0.1
6 5.97 0.1
7 5.76 0.1
8 5.66 0.1
9 5.81 0.1
10 5.95 0.1

(5 marks)

OR use the Table 1 above and add the values of \bar{y}

Sample	Y_s	Prob	\bar{y}
(1,2,3)	(5.82, 5.33, 5.76)	$\frac{1}{10}$	5.637
(1,2,4)	(5.82, 5.33, 6.20)	$\frac{1}{10}$	5.783
(1,2,5)	(5.82, 5.33, 5.89)	$\frac{1}{10}$	5.68
(1,3,4)	(5.82, 5.76, 6.20)	$\frac{1}{10}$	5.927
(1,3,5)	(5.82, 5.76, 5.89)	$\frac{1}{10}$	5.823
(1,4,5)	(5.82, 6.20, 5.89)	$\frac{1}{10}$	5.97
(2,3,4)	(5.33, 5.76, 6.20)	$\frac{1}{10}$	5.763
(2,3,5)	(5.33, 5.76, 5.89)	$\frac{1}{10}$	5.66
(2,4,5)	(5.33, 6.20, 5.89)	$\frac{1}{10}$	5.807
(3,4,5)	(5.76, 6.20, 5.89)	$\frac{1}{10}$	5.95

(c) Find $\mathbf{E}(\bar{y})$, $\mathbf{V}(\bar{y})$, $\mathbf{Bias}(\bar{y})$ and $\mathbf{MSE}(\bar{y})$

Solution:

1. The expected value of $\hat{\mu} = \bar{y}$:

$$\mathbf{E}(\bar{y}) = 5.64 \frac{1}{10} + 5.78 \frac{1}{10} + 5.68 \frac{1}{10} + 5.93 \frac{1}{10} + 5.82 \frac{1}{10} + 5.97 \frac{1}{10} + 5.76 \frac{1}{10} + 5.66 \frac{1}{10} + 5.81 \frac{1}{10} + 5.95 \frac{1}{10}$$

$$\boxed{\mathbf{E}(\bar{y}) = 5.8}$$

(1 mark)

2.The variance of $\hat{\mu} = \bar{y}$:

$$\mathbf{V}(\bar{y}) = (5.64 - 5.8)^2 \times \left(\frac{1}{10}\right) + (5.78 - 5.8)^2 \times \left(\frac{1}{10}\right) + (5.68 - 5.8)^2 \times \left(\frac{1}{10}\right) + (5.93 - 5.8)^2 \times \left(\frac{1}{10}\right) + (5.82 - 5.8)^2 \times \left(\frac{1}{10}\right) + (5.97 - 5.8)^2 \times \left(\frac{1}{10}\right) + (5.76 - 5.8)^2 \times \left(\frac{1}{10}\right) + (5.66 - 5.8)^2 \times \left(\frac{1}{10}\right) + (5.81 - 5.8)^2 \times \left(\frac{1}{10}\right) + (5.95 - 5.8)^2 \times \left(\frac{1}{10}\right) = \boxed{0.01303}$$

(1 mark)

We can also use

$$\mathbf{V}(\bar{y}) = \mathbf{E}(\bar{y}^2) - \mathbf{E}(\bar{y})^2 = (5.64)^2 \frac{1}{10} + 5.78^2 \frac{1}{10} + 5.68^2 \frac{1}{10} + 5.93^2 \frac{1}{10} + 5.82^2 \frac{1}{10} + 5.97^2 \frac{1}{10} + 5.76^2 \frac{1}{10} + 5.66^2 \frac{1}{10} + 5.81^2 \frac{1}{10} + 5.95^2 \frac{1}{10} - (5.8)^2 = \boxed{0.01303}$$

Or this one too

$$\mathbf{V}(\bar{y}) = \frac{N-n}{N-1} \frac{\sigma^2}{n} = 0.013$$

3.The Bias of $\hat{\mu} = \bar{y}$:

Bias
$$(\bar{y}) = \mathbf{E}(\bar{y}) - \mu = \boxed{5.8 - 5.8 = 0}$$

(1 mark)

4.The MSE of $\hat{\mu} = \bar{y}$:

$$\mathbf{MSE}(\bar{y}) = \mathbf{Var}(\bar{y}) + \mathbf{Bias}(\bar{y})^2 = \mathbf{Var}(\bar{y}) = \boxed{0.13033}$$

(1 mark)

End of Question 1

Sample

```
Y=c(5.82,5.33,5.76,6.20,5.89)
y1bar<-mean(c(5.82, 5.33, 5.76))
y2bar<-mean(c(5.82, 5.33, 6.20))
y3bar<-mean(c(5.82, 5.33, 5.89))
y4bar<-mean(c(5.82, 5.76, 6.20))
y5bar<-mean(c(5.82, 5.76, 5.89))
y6bar<-mean(c(5.82, 6.20, 5.89))
y7bar<-mean(c(5.33, 5.76, 6.20))
y8bar<-mean(c(5.33, 5.76, 5.89))
y9bar<-mean(c(5.33, 6.20, 5.89))
y10bar<-mean(c(5.76, 6.20, 5.89))
```