模式识别

主成分分析 Principal Component Analysis

> 吴建鑫 南京大学计算机系,2018

与领域无关的特征提取

- ✓ domain independent feature extraction
- ✓第4讲. PCA
- ✓ 第5讲. 特征的归一化(normalization)
- ✓ 第5讲. FLD
- ✓首先介绍PCA

目标

- ✓理解PCA的含义、目的、适用范围
- ✓ 熟记PCA的各个步骤,能实际应用PCA
- ✓了解PCA的各种相关解释,理解其含义
- ✓提高目标
 - 理解相关推导,能自主独立完成推导
 - 进一步能通过独立阅读理解更多PCA的含义、限制、解释等,并能应用到学习、研究中遇到的问题中去

PCA基础

你的数据是多少维的?

常见的数据特点

- ✓数据各维度之间不是互相独立的
 - 数据的内在维度(intrinsic dimensionality)通常远低于其表面维度
 - 因此,需要降低数据维度(dimensionality reduction)
 - PCA在降维方法中(可能)是最常用的一种

这是谁? 96×108 = 10368?

Starting point: 零阶表示

- ✓ Zero-dimensional representation
- ✓不允许使用任何维度,如何最佳表示x?
- ✓ 寻找某个固定(constant)的m, 使得

$$J_1(\mathbf{m}) = \min_{\mathbf{m}} \sum_{i=1}^{N} ||\mathbf{x}_i - \mathbf{m}||^2$$

✓最优解:(证明?)

$$m^* = \underset{m}{\operatorname{argmin}} \sum_{i=1}^n ||x_i - m||^2 = \frac{1}{n} \sum_{i=1}^n x_i$$

一维表示:数据维度间的线性关系

- ✓如同前面的例子
 - 数据是d维
 - 但是内在维度可能是m维的,m < d或者 $m \ll d$
 - PCA用线性关系来降低维度
- $✓ x ∈ \mathbb{R}^d$: 原来的高维数据(随机变量)
 - 训练样本: $x_1, x_2, ..., x_n$
- ✓ 假设m=1,用原数据的单个线性组合来表示
 - $\bullet \ y_i = \mathbf{w}^T \mathbf{x}_i + b$
 - $y_1, y_2, ..., y_n$ 新的数据/特征(features)
 - 如何寻找最佳的w? 如何找到最佳的b?

Idea: 选择什么方向?为什么?

✔什么方向最优?

形式化formalization: 最大化方差

- ✓ 方差是衡量新特征包含信息多少的度量
 - 有时也称为能量energy
- ✓ 优化目标函数 $J_2(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n ||\mathbf{w}^T (\mathbf{x}_i \overline{\mathbf{x}})||^2$
- ✓发现问题了吗?
 - J₂(w)可以是无穷大或者无穷小!
 - 最常用的解决办法: 加上限制条件 $||w||^2 = w^T w = 1$

$$\underset{\boldsymbol{w}}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} \|(\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T \boldsymbol{w}\|^2$$

$$\mathbf{w}^T \mathbf{w} = 1$$

• s. t. - subject to, 表示约束条件constraint(s)

简化simplification 变换 transformation

$$\|(\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T \boldsymbol{w}\|^2 = ((\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T \boldsymbol{w})^T ((\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T \boldsymbol{w})$$
$$= \boldsymbol{w}^T (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T \boldsymbol{w}$$

$$\frac{1}{n} \sum_{i=1}^{n} ||(\mathbf{x}_i - \overline{\mathbf{x}})^T \mathbf{w}||^2 = \mathbf{w}^T \sum_{i=1}^{n} \frac{1}{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T \mathbf{w}$$
$$= \mathbf{w}^T Cov(\mathbf{x}) \mathbf{w}$$

优化optimization

- ✓拉格朗日乘子法 Lagrange multipliers
 - 将有约束的优化问题转化为无约束的优化问题
- ✓ Lagrangian 拉格朗日函数 $f(\mathbf{w}, \lambda) = \mathbf{w}^T Cov(\mathbf{x}) \mathbf{w} \lambda (\mathbf{w}^T \mathbf{w} 1)$
- ✓ λ: 拉格朗日乘子Lagrange multiplier
- ✓ 最优的必要条件: $\frac{\partial f}{\partial w} = \mathbf{0}$, $\frac{\partial f}{\partial \lambda} = \mathbf{0}$
- $\sqrt{\frac{\partial f}{\partial w}} = 2Cov(x)w 2\lambda w = 0$
 - 我们这里的前提条件是什么?
 - 应该想到用哪一个公式?
- $\checkmark Cov(x)w = \lambda w, \qquad w^T w = 1!$

选哪个特征向量?

- $\checkmark J_2(\mathbf{w}) = \mathbf{w}^T Cov(\mathbf{x})\mathbf{w} = ?$
- ✓ Cov(x)是半正定的(如何证明?)
- ✓ 选取 λ_1 (即最大特征值)对应的特征向量 ξ_1 为 w_1
 - 为什么?约束条件满足了吗?
- ✓怎样用w₁来近似x?
 - 投影!
 - $x \approx \overline{x} + (w_1^T(x \overline{x}))w_1$
 - 所以, $y_i = \mathbf{w}_1^T(\mathbf{x} \overline{\mathbf{x}})$
 - 那么, b =?

J_1 和 J_2 的等价关系

- ✓ 若干向量
 - x_i : 降维之前的向量
 - $\mathbf{w}_1^T(\mathbf{x}_i \overline{\mathbf{x}})\mathbf{w}_1 = y_i\mathbf{w}_1$: 降维之后的向量
 - \hat{x} : 在原空间中重建的向量
 - 目前的重建关系: $\hat{x_i} \approx \overline{x} + y_i w_1$
- ✓ J_1 的目的是使得 $\hat{x_i}$ 和 x_i 尽可能相差小(\bar{x} 固定为均值)
 - $J_1(\mathbf{w}, \mathbf{a}) = \sum_{i=1}^n \frac{1}{n} ||\mathbf{x}_i (\overline{\mathbf{x}} + a_i \mathbf{w})||^2$
 - w: 投影方向, a_i : 投影系数
- ✓ 最小化 J_1 得到的 a_i 和w与 J_2 得到的结果完全一致!
 - 试着去证明!

如果需要更多投影方向?

- ✓ What if we need $w_2, w_3, ...$
 - •新的投影方向需要继续保持"能量"
 - 但是需要限制
 - $w_2 \perp w_1$, $w_3 \perp w_2$, $w_3 \perp w_1$, ...
- ✓ 在上述限制条件下
 - $w_2 = \xi_2$, $w_3 = \xi_3$, ...
 - 重建系数: $\mathbf{w}_{j}^{T}(\mathbf{x}-\overline{\mathbf{x}})$
- ✓ 总之,

$$x \approx \overline{x} + (w_1^T(x - \overline{x}))w_1 + (w_2^T(x - \overline{x}))w_2 + \cdots$$

重建和原数据的关系

- ✓ 假设n > d,即数据比维数多
 - 进一步假设Cov(x)可逆
 - 如果n < d,那么情况如何、还能做PCA变换吗?
- ✓ Cov(x)是 $d \times d$ 矩阵,有d个互相垂直的特征向量 ξ_i
 - 重建会有d个互相垂直的投影方向 w_i

$$\forall x, \qquad x = \overline{x} + \sum_{i=1}^{d} (w_i^T (x - \overline{x})) w_i$$

- 将 \mathbf{w}_i 拼成矩阵形式 $W = [\mathbf{w}_1 \ \mathbf{w}_2 \ \cdots \mathbf{w}_d] \ (d \times d)$
- 投影系数是 $W^T(x-\overline{x})$, 投影方向是W
- $x = \overline{x} + WW^T(x \overline{x})$ (为什么?)
- 重建是完全精确的(没有误差),为什么?

降维

- ✔ 很多时候,有些投影方向是噪声
 - 需要扔掉一些方向
 - 扔掉哪些? 扔掉多少?
- ✓去掉特征值最小的那些
- ✓通常保持90%的能量

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_T}{\lambda_1 + \lambda_2 + \dots + \lambda_d} > 0.9$$

• 寻找第一个T, 使得上面的不等式成立

降维的损失

- ✓ 现在 $\widehat{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \cdots \mathbf{w}_T] \ (d \times T)$
- $\checkmark x \widehat{x} = \sum_{j=T+1}^{d} (\mathbf{w}_j^T (\mathbf{x} \overline{\mathbf{x}})) \mathbf{w}_j = \sum_{j=T+1}^{d} \mathbf{e}_j$
 - 这个误差多大?
 - $e_j^T e_k = 0$ 如果 $j \neq k$ (为什么?)
 - $E(\|x \hat{x}\|^2) = \sum_{i=T+1}^{d} E(\|e_i\|^2)$ (为什么?)
 - $E(\|\mathbf{e}_i\|^2) = \lambda_i$ (为什么?)
- ✓ 这样降维保证平均(期望)重建误差最小
 - 直接优化重建误差/1得到同样的结果

小结: PCA变换的步骤

- ✓ 训练样本: $x_1, x_2, ..., x_n$
- ✓ 计算得到 \bar{x} 和Cov(x)
- ✓ 求得Cov(x)的特征值和特征向量
 - Matlab, R, octave, …
- ✓ 根据特征值选定T
- ✓ 根据T的值确定矩阵 \hat{W}
- \checkmark 对任何数据x,其新的经过PCA变换得到的特征是 $y = \widehat{W}^T(x \overline{x})$

重建则为 $x \approx \hat{x} = \overline{x} + \hat{W}y$

正态分布与PCA

PDF和等概率曲线

Generated from Kevin Murphy's toolbox

PCA vs. Gaussian

- ✓ x服从D维高斯分布 $N(\mu, \Sigma)$
 - $p(\mathbf{x}) = (2\pi)^{-\frac{D}{2}} |\mathbf{\Sigma}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x} \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu})\right\}$
- ✓对x进行PCA操作,结果是什么?
 - W = ?
 - $\widehat{W} = ?$
 - PCA完成后的新特征是什么样子的?

PCA of Gaussian

- $\checkmark x \sim N(\mu, \Sigma)$
- ✓ 假设使用全部特征向量,则 $y = W^T(x \mu)$
 - $\Sigma = \sum_{i=1}^d \lambda_i \, \boldsymbol{\xi}_i \, \boldsymbol{\xi}_i^T = \sum_{i=1}^d \lambda_i \, \boldsymbol{w}_i \, \boldsymbol{w}_i^T = W \Lambda W^T$
 - Λ 是一个对角矩阵, $\Lambda_{ii} = \lambda_i$
 - $WW^T = ?$ $W^TW = ?$
 - Ey = ?
 - Cov(y) = ?
- $\checkmark y \sim N(0, \Lambda)!$
- ✔PCA旋转了数据,使得新特征各个维度互不相关
 - 对高斯分布,不相关意味着互相独立!

PCA的优点

- ✓减少了数据量
 - 可以减少计算量,缩短训练、测试、识别时间
 - 可以减少所需的存储空间
 - ■对大规模数据特别重要
 - 可能去除数据中的噪声
 - ■所以可能提高系统的识别精确度
- ✓ 如果数据服从高斯分布
 - 完成PCA后,新特征各维度互不相关
 - 有利于模式识别

白化变换

- ✓ 协方差矩阵Σ,可以从训练样本估计
 - PCA: $y = W^T(x \mu)$
 - $\Sigma = \sum_{i=1}^d \lambda_i \, \boldsymbol{\xi}_i \, \boldsymbol{\xi}_i^T = \sum_{i=1}^d \lambda_i \, \boldsymbol{w}_i \, \boldsymbol{w}_i^T = \boldsymbol{W} \Lambda \boldsymbol{W}^T$
- ✓ 白化变化(Whitening transform):
 - $\mathbf{y} = (W \Lambda^{-\frac{1}{2}})^T (\mathbf{x} \boldsymbol{\mu})$
 - 如何计算 $\Lambda^{-\frac{1}{2}}$?
- $\checkmark y \sim N(0,I)$!
 - 各向同性

高斯假设

✓PCA变换

- PCA变换不一定要求x服从高斯分布
- x不服从高斯分布时,E(y) = 0, $Cov(y) = \Lambda$,但y 不服从高斯分布
- x不服从高斯分布时,y的各维度不相关,但不独立

✔ 白化变换

- 白化变换不一定要求 水服从高斯分布
- x不服从高斯分布时,E(y) = 0,Cov(y) = I,但y不服从高斯分布
- x不服从高斯分布时,y的各维度不相关,但不独立

Can I use PCA?

- ✓ 如果数据服从高斯分布
 - 单峰分布 (unimodal distribution)
 - 白噪声(white noise)
 - $\mathbf{x} = \mathbf{x}' + \boldsymbol{\epsilon}$
 - $\bullet \epsilon \sim N(0,\Gamma)$
 - ■噪声独立于数据,噪声均值为**0**(zero mean),噪声各维互相 独立(Γ是对角阵),噪声幅度有限(finite variance)
 - ■此时PCA效果最佳
- ✓ 实际上,如果特征值服从指数递减即可
- ✓能处理离群值吗? (outlier)

特征值(825, 0) 方向(3,1)

特征值 (837.13 0.42) 方向 (3.03 1)

特征值 (858.97 16.43) 方向 (3.43 1)

进一步的阅读

- ✓ 如果对本章的内容感兴趣,可以参考如下文献
 - DHS相关部分
 - ■提示: 使用DHS中的index(索引)和目录
 - PRML相关部分
 - 拉格朗日乘子法:
 - 经典教材: Convex Optimization, by Boyd and Vandenberghe
 - http://www.stanford.edu/~boyd/cvxbook/
 - ■有电子书可以下载
 - ■第五章