Modeling Commodity Flow in the Context of Invasive Species Spread: Study of *Tuta*absoluta in Nepal

S. Venkatramanan¹, S. Wu^{1,2}, B. Shi³, A. Marathe^{1,4}, M. Marathe^{1,2}, S. Eubank^{1,5,6}, L. P. Sah^{7,8,9}, A. P. Giri^{7,8,9}, L. A. Colavito^{7,8,9}, K. S. Nitin¹⁰, V. Sridhar¹⁰, R. Asokan¹⁰,

R. Muniappan⁷, G. Norton⁴, A. Adiga¹

¹Biocomplexity Institute of Virginia Tech,

²Department of Computer Science, Virginia Tech,

³Department of Economics, Virginia Tech,

⁴Department of Agricultural and Applied Economics, Virginia Tech,

⁵Department of Population Health Sciences, Virginia Tech,

⁶Department of Physics, Virginia Tech,

⁷Feed the Future Integrated Pest Management Innovation Lab,

⁸Feed the Future Asian Vegetable and Mango Innovation Lab,

⁹International Development Enterprises, Nepal,

 10 Indian Institute of Horticultural Research

Trade and transport of goods is widely accepted as a primary pathway for the introduction and dispersal of invasive species. However, understanding commodity flows remains a challenge owing to its complex nature, unavailability of quality data and lack of systematic modeling methods. A robust network-based approach is proposed to model seasonal flow of agricultural produce and examine its role in pest spread. It is applied to study the spread of *Tuta absoluta*, a devastating pest of tomato in Nepal. Further, the long-term establishment potential of the pest and its economic impact on the country are assessed. Preliminary analyses indicate that *T. absoluta* will invade most major tomato production regions within a year of introduction and the economic impact of invasion could range from \$17-25 million. The proposed approach is generic and particularly suited for data-poor scenarios.