전공의 정원관련 신경과 보고서

중앙대학교 신경과학교실 박광열 2019-10-01

Contents

Things to be done		5
1	신경과 전문의 수급현황1.1 인구 10만명당 신경과 전문의 수1.2 한국의 신경과 전문의 연령별 분포 (2018.4기준)	7 7 8
2	국내외 선행연구 고찰 2.1 2017.9 전공의 정원정책 수립을 위한 전문의 인력 수요 추계 연구 보고서	9 9
3	전문의 수급에 영향을 줄 만한 정책적 이슈	13
4	전문의 수급 추계에 관한 문제제기 4.1 Example one	15 15 15
5	소결론	17
6	Survey 6.1 Demographics	19 19

4 CONTENTS

Things to be done

6 CONTENTS

신경과 전문의 수급현황

1.1 인구 10만명당 신경과 전문의 수

- 인구 10만명당 신경과 전문의의 숫자는 한국이 3.57명 (2018년기준)으로 네덜란드, 일본, 헝가리, 스위스, 칠레 등에 비해 적음.
- 통계청 자료에 의한 2018년 인구는 51,014,947명으로, 인구 10만명당 신경과 전문의 수가 네덜란드 수준인 6명이 되려면 3060명이 필요함 (2018년 전문의 수가1845명이므로 부족분은 1215명).
- 미국의 경우 2012년 기준 인구 10만명당 신경과 전문의는 5.21명이며 2025년에는 6.21명이 필요할 것으로 예상되고 있음.

1.2 한국의 신경과 전문의 연령별 분포 (2018.4기준)

국내외 선행연구 고찰

2.1 2017.9 전공의 정원정책 수립을 위한 전문의 인력 수요 추계 연구 보고서

2.1.1 서론

- 의료인력의 쏠림: 지역별, 전문과목별
- 수급의 불균형: 의료인력의 고령화, 인구의 변화, 수요의 증가, 지역적 편재, (전문과목별 편재)
- 추계접근방법: 전통적 접근법과 통합적 접근법
- 전공의를 근로자로 인식하는 잘못된 인식. 수련병원의 인력수요에 대응하는 정원정책이 아닌 고령화, 만성질환증가 등에 대응하는 추계가 필요함
 - 그러나, 현실적으로는 전공의가 의료의 상당부분을 담당하고 있음. 또한, 전공의가 없을 경우, 대부분의 수련병원에서 의료공백이 발생할것이 명백함. 전공의의 공백을 채울 전문의가 아직 없음. 따라서, 현실을 고려하지 않은 발상임.
 - 또한, 이런 생각이라면, 공급추계를 할 때, 전공의를 의료인력에서 제외해야 함 (공급추계에서 제외)
- 전문과목별 의료 이용량및 질병양상 예측을 통해 의료이용추계를 하고자 함.
- 공급: 유입유출법, 수요: 전문의 1일 생산성과 환자 의료 이용율을 이용한 의료수요 계측법
 - 신경과와 같이 유출이 적은 경우에는 유입유출법을 적용할 수 없음.
 - 특히 전문의의 노화에 대한 고려가 있어야 함.
- 전문의가 해당 전문과목의 전문의로 기능하고 있는 경우: 18 %
- 전문과목별 쏠림현상의 개선을 위해 진행.
 - 정원이 줄어들면서 오히려 지원이 감소하는 경우도 있음.

- 한국은 의료이용시의 장애가 낮은 편인데 OECD와 비교하는 것이 맞을지?
- 공급모형에서는 전공의 충원률 또는 지원률이 같이 고려되어야 함.
- 실제 일하는 인력에 대한 조사가 정기적으로 필요함.
- 수요추계모형에서는 인구학적인 요인과 더불어 보험적용기준의 변화에 따른 변화 (MRI의 보험적용등)가 같이 고려되어야 함.
- 앞으로 의료인력 추계 모형연구는 reproducibility가 담보될 수 있도록 raw data를 공개해야 한다.

2.1.2 전문의 수요 추계

• 국내 한국보건사회연구원 오영호(2011, 2014)의 연구와, 정형선(2011)의 연구 및 미국 Bureau of Health Workforce 모형을 참조하여 개발

2.1.2.1 공급추정: 전문의사수

-- , . ()

- 의사에 대한 공급량은 실제 활동하고 있는 의사 수에 의해 측정하되, 심사평가 원에서 제공된 자료 이용
- 의사의 연간 근무일수: 365 (법정공휴일 66일 + 주5일 51일 + 학회 10일)
 - 1년중 평일〉249일, 휴일〉116일. https://zetawiki.com/wiki/연간_공휴일_수, _ 영업일_수, _근무일_수
 - 연차 휴가: 간단한 근속년수에 따른 연차가산일 수식 = (근속년수- 1년)/2 (나머지 버림) https://help.jobis.co/hc/ko/articles/115003127813--연차-근로기간에-따른-연차휴가
 - 출산휴가(90일), 육아휴직 https://help.jobis.co/hc/ko/articles/360001561894--노무-출산휴가-육아휴직-일

2.1.2.2 전제조건

- 현재의 급여 및 연령 구조 동일
 - 연령구조가 동일하다는 것은 신생과의 경우에는 맞지 않음.
- 전체 이용량에서 외래에 대비한 입원의 비중이 변화하지 않고 현재 상태 유지함.
- 의사 1인당 생산성의 변화는 없음
 - 전공의가 없어지면서 1인당 생산성을 떨어짐.
 - 전공의 특별법의 영향.
- 건강보험과 의료급여 포함
 - 비급여에 대한 고민 ?

2.1.2.3 수요추정

- 수요 추정을 위한 의료이용량은 2012-2016년 건강보험, 의료급여 및 보훈 병원 의 의원급 병원급 진료 과목별 심사실적을 사용
- 2018-2022년의 의료 공급과 수요를 계산하기 위해서, 공급은 최근 5년간의 평 균 증가율인 3.7% 그리고 수요도 최근 5년간의 평균 증가율인 2.7%를 적용함
- 이 평균 증가율은 정형선(2011)의 자료와 차이를 보이는데(수요 평균 증가율 6~7%). 이는 최근의 경기 불황으로 의료 수요의 증가폭이 줄어든 것이 반영된 것임.
 - 2015년 MERS사태가 고려되지 않음.
 - 2015년 IA thrombectomy에 대한 연구 다수 발표. 이후 혈전제거술의 time window가 늘어남.
- 환자 1인당 평균진료시간: 7.9분 (신경과), 8.1분 (일반외과),

전문의 수급에 영향을 줄 만한 정책적 이슈

1-2 page

- (이 부분은 해당 전문과별로 특별한 이슈가 있는 경우에만 적용하는 것이 좋을 듯합니다만, 전문과목과 무관하게 의료계의 정책적인 변화가 수급 전반에 걸쳐 큰 영향을 준다고 판단하신다면, 전문과목별 작성 내용에서 다루지 않고 전체 내용을 다루는 챕터에서 별도로 다루시는 게 좋을 듯 합니다.)
- 예를 들어, 문재인 케어와 같은 정책변화는 전 의료계에 영향을 줄 수 있는 요인이고 그 내부에 과목별 특이적인 사항(ex. 특정 시술 또는 처방에 대한 보장성 강화로 급여 확대)이 있다면, 이는 어떤 챕터에서 다룰 지 내부 논의가 필요할 것 같습니다.

전문의 수급 추계에 관한 문제제기

- (2, 3번 내용을 토대로) 전문의 수급 추계에 관한 문제제기 (1~2page)
- (2, 3번의 내용을 모두 전문과목별 작성 챕터에서 다루시게 될 경우 둘의 순서는 바꾸어도 무방할 듯 함.)
- -국내외 선행연구 고찰 및 정책적 이슈로 인한 변화(영향)을 통해 현재 전문의 수급 현황, 적정 전문의 수 추계 과정 및 방법, 관계부처와 관련된 특이사항 등을 포괄하여 문제점으로 제시될 수 있는 다양한 내용을 도출. 국외와 비교하는 내용도 좋음.
- -이 챕터에서는 특히나 소제목으로 범주화하여 내용을 기술하는 것이 중요할 것임. -(그러나, 만약 5개 전문과목별로 문제제기 내용이 대동소이하다면, 이 부분 역시 특정 전문과목에 제한하지 말고 전체 전문과목에 대한 소결 정도로 도출하면 좋을 듯 합니다.)

4.1 Example one

4.2 Example two

소결론

• (해당과) 전문과목에 대해 핵심적으로 도출할만한 내용을 소결로 작성해 주시면, 과별 내용을 간단명료하게 확인할 수 있을 뿐 아니라, 이후 전체 보고서의 결론에 소결의 내용을 모아 작성하는 데 큰 도움이 될 듯 합니다.

Survey

6.1 Demographics

The number of respondent: 2497

DQ1_Sepcialty

Χ

CS:85

X.1

GS:497

X.2

Multi: 19

X.3

NU:296

X.4

PED:835

X.5

PSY:765

20 CHAPTER 6. SURVEY

```
ggplot(db_nu, aes(x = DQ1_1_ReperfusionTx)) +
  geom_bar(aes(fill = DQ1_1_ReperfusionTx)) +
  scale_x_discrete(limits = c("Reperfusion Tx (+)", "Reperfusion Tx (-)"))
  150 -
  100 -
                                                   DQ1_1_ReperfusionTx
count
                                                      Reperfusion Tx (+)
                                                      Reperfusion Tx (-)
  50 -
   0 -
                              Reperfusion Tx (-)
           Reperfusion Tx (+)
                  DQ1_1_ReperfusionTx
table(db$DQ3_1_ _ , db$DQ1_Sepcialty)
##
##
       CS GS Multi NU PED PSY
     1 0 1
              1 0 15 10
##
     2 0 2
                 0 5 14 17
##
     3 0 1
                 1 11 21 16
     4 1 0
                 2 12 26 19
##
6.2 A. Work hours
db %>% group_by(DQ1_Sepcialty) %>%
  summarise(meanworkhour = mean(A1_1_worktime_weekday, na.rm = T),
            maxworkhour = max(A1_1_worktime_weekday, na.rm = T),
            minworkhour = min(A1_1_worktime_weekday, na.rm = T))
## # A tibble: 6 x 4
    DQ1_Sepcialty meanworkhour maxworkhour minworkhour
                                       <dbl> <dbl>
##
     <fct>
                          <dbl>
## 1 CS
                          10.9
                                          18
                                                       6
```

```
## 2 GS
                              10.4
                                             24
                                                           4
  ## 3 Multi
                              8.55
                                              12
                                                           5
  ## 4 NU
                                              18
                                                           5
                              10.7
  ## 5 PED
                              8.92
                                              24
                                                           2
  ## 6 PSY
                              8.57
                                             40
                                                           3
  ggplot(db, aes(x = DQ1_Sepcialty, y = A1_1_worktime_weekday)) +
    geom_boxplot(aes(fill = DQ1_Sepcialty), alpha = 0.1) +
    geom_jitter(aes(color = DQ1_Sepcialty, alpha = 0.1)) +
    scale_x_discrete(limits = c("PED", "GS", "PSY", "CS", "NU", "Multi"))
    40 -
                                                            alpha
A1_1_worktime_weekday
                                                             • 0.1
                                                            DQ1_Sepcialty
                                                             cs cs
                                                             GS
                                                             Multi
                                                             PED PED
                                                             PSY
          PĖD
                   ĠS
                           PSY
                                   cs
                                            NU
                                                    Multi
                          DQ1_Sepcialty
  db %>% group_by(DQ1_Sepcialty) %>%
    summarise(meanworkhour = mean(A1_2_worktime_saturday, na.rm = T),
               maxworkhour = max(A1_2_worktime_saturday, na.rm = T),
               minworkhour = min(A1 2 worktime saturday, na.rm = T))
  ## # A tibble: 6 x 4
       DQ1_Sepcialty meanworkhour maxworkhour minworkhour
  ##
       <fct>
                                          <dbl>
                                                       <dbl>
                              <dbl>
  ## 1 CS
                               4.94
                                             24
                                                           1
  ## 2 GS
                              4.52
                                             24
  ## 3 Multi
                               4.71
                                             12
                                                           1
  ## 4 NU
                               4.86
                                             24
                                                           1
  ## 5 PED
                              5.18
                                             24
                                                           1
  ## 6 PSY
                              4.43
                                             24
```

22 CHAPTER 6. SURVEY

```
ggplot(db, aes(x = DQ1_Sepcialty, y = A1_2_worktime_saturday)) +
  geom_boxplot(aes(fill = DQ1_Sepcialty), alpha = 0.1) +
  geom_jitter(aes(color = DQ1_Sepcialty, alpha = 0.1)) +
  scale_x_discrete(limits = c("PED", "GS", "PSY", "CS", "NU", "Multi"))
```



```
## # A tibble: 6 x 4
##
     DQ1_Sepcialty meanworkhour maxworkhour minworkhour
##
     <fct>
                                         <dbl>
                                                     <dbl>
                           <dbl>
## 1 CS
                            5.67
                                            24
                                                         1
## 2 GS
                             4.54
                                            24
                                                          1
## 3 Multi
                            7.33
                                            12
                                                          4
## 4 NU
                             5.52
                                            24
                                                          1
## 5 PED
                             5.95
                                            24
                                                          1
                            2.74
## 6 PSY
                                            24
```

```
ggplot(db, aes(x = DQ1_Sepcialty, y = A1_3_worktime_sunday)) +
  geom_boxplot(aes(fill = DQ1_Sepcialty), alpha = 0.1) +
  geom_jitter(aes(color = DQ1_Sepcialty, alpha = 0.1)) +
  scale_x_discrete(limits = c("PED", "GS", "PSY", "CS", "NU", "Multi"))
```



```
## # A tibble: 6 x 4
     DQ1_Sepcialty meanworkhour maxworkhour minworkhour
##
     <fct>
                           <dbl>
                                       <dbl>
                                                   <dbl>
## 1 CS
                           63.7
                                         110
                                                       8
## 2 GS
                           56.8
                                         200
                                                       6
## 3 Multi
                           48.4
                                          80
                                                      22
## 4 NU
                            58.5
                                         114
                                                       7
## 5 PED
                            48.7
                                         168
                                                       0
## 6 PSY
                                         100
                                                       5
                            44.3
ggplot(db, aes(x = DQ1_Sepcialty, y = A2_meanworkhourperweek)) +
  geom_boxplot(aes(fill = DQ1_Sepcialty), alpha = 0.1) +
  geom_jitter(aes(color = DQ1_Sepcialty, alpha = 0.1)) +
  scale_x_discrete(limits = c("PED", "GS", "PSY", "CS", "NU", "Multi"))
```

24 CHAPTER 6. SURVEY

