CM2604 Machine Learning

Clustering Techniques

Week 06 | Prasan Yapa

Content

- Clustering in ML
- Classification Vs Clustering
- Use cases
- Notion of a Cluster
- Clustering approaches
- K-means Clustering

Clustering in Machine Learning

- A way of grouping the data points into different clusters, consisting of similar data points.
- Clustering is an unsupervised learning method; hence no supervision is provided to the algorithm.
- The objects with the possible similarities remain in a group that has less or no similarities with another group.
- After applying the clustering technique, each cluster or group is provided with a cluster-ID.

Clustering in Machine Learning

Clustering in Machine Learning

- Market Segmentation
- Statistical data analysis
- Social network analysis
- Image segmentation
- Anomaly detection

What is a natural grouping among these objects?

Clustering is subjective Simpson's Family Clustering is subjective Females Males

Classification Vs Clustering

Classification Vs Clustering

Intra-cluster Vs Inter-cluster

Use cases

- In Identification of Cancer Cells: It divides the cancerous and noncancerous data sets into different groups.
- In Search Engines: It does it by grouping similar data objects in one group that is far from the other dissimilar objects. The accurate result of a query depends on the quality of the clustering algorithm used.
- Customer Segmentation: It is used in market research to segment the customers based on their choice and preferences.
- In Biology: It is used in the biology stream to classify different species of plants and animals using the image recognition technique.
- In Land Use: The clustering technique is used in identifying the area of similar lands use in the GIS database.

Use cases – Image Recognition

Notion of a Cluster

Types of Clustering

Types of Clustering Methods

- Partitioning Clustering
- Density-Based Clustering
- Distributional Clustering
- Hierarchical Clustering
- Fuzzy Clustering

Partitioning Clustering

- A type of clustering that divides the data into non-hierarchical groups.
- It is also known as the centroid-based method.
- The most common example of partitioning clustering is the K-Means Clustering algorithm.
- The dataset is divided into a set of groups, where *K* is used to define the number of pre-defined groups.
- The cluster center is created in such a way that the distance between the data points of one cluster is minimum.

Introduction to K-Means

- Partitioning Clustering Approach
 - a typical clustering analysis approach via iteratively partitioning training data set to learn a partition of the given data space
 - learning a partition on a data set to produce several non-empty clusters (usually, the number of clusters given in advance)
 - in principle, optimal partition achieved via minimising the sum of squared distance (i.e. cost function) to its "representative object" in each cluster

$$E = \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_k} d^2(\mathbf{x}, \mathbf{m}_k)$$

e.g., Euclidean distance

$$d^{2}(\mathbf{x},\mathbf{m}_{k}) = \sum_{n=1}^{N} (x_{n} - m_{kn})^{2}$$

K-Means Algorithm

Given the cluster number K, the K-means algorithm is carried out in three steps after initialization:

Initialisation: set seed points (randomly)

- 1) Assign each object to the cluster of the nearest seed point measured with a specific distance metric
- 2) Compute new seed points as the centroids of the clusters of the current partition (the centroid is the centre, i.e., *mean point*, of the cluster)
- 3) Go back to Step 1), stop when no more new assignment (i.e., membership in each cluster no longer changes)

How K-Means Clustering algorithm works?

Example – Implementation of K-Means (k=2)

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Step 1:

<u>Initialization</u>: Randomly we choose following two centroids (k=2) for two clusters.

In this case the 2 centroid are: m1=(1.0,1.0) and m2=(5.0,7.0).

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

)	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

Step 2:

- Thus, we obtain two clusters containing:
 - $\{1,2,3\}$ and $\{4,5,6,7\}$.
- Their new centroids are:

$$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$$

$$m_2 = (\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5))$$

$$=(4.12,5.38)$$

Individual	Centrold 1	Centrold 2
1	0	7.21
2 (1.5, 2.0)	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.72	2.5
6	5.31	2.06
7	4.30	2.92

$$d(m_1,2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$

Step 3:

- Now using these centroids we compute the Euclidean distance of each object, as shown in table.
- Therefore, the new clusters are: {1,2} and {3,4,5,6,7}
- Next centroids are: m1=(1.25,1.5) and m2 = (3.9,5.1)

Individual	Centroid 1	Centroid 2
1	1.57	5.38
2	0.47	4.28
3	2.04	1.78
4	5.64	1.84
5	3.15	0.73
6	3.78	0.54
7	2.74	1.08

• <u>Step 4</u>:

The clusters obtained are: {1,2} and {3,4,5,6,7}

- Therefore, there is no change in the cluster.
- Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

Individual	Centroid 1	Centroid 2
1	0.56	5.02
2	0.56	3.92
3	3.05	1.42
4	6.66	2.20
5	4.16	0.41
6	4.78	0.61
7	3.75	0.72

K-Means Pros & Cons

Pros

- Simple, understandable
- Quick
- Instances automatically set to clusters

Cons

- All instances lead to a single cluster
- Sensitive to more outliers
- Cluster must be picked beforehand

Distributional Clustering

- The data is divided based on the probability of how a dataset belongs to a particular distribution.
- The grouping is done by assuming some distributions commonly Gaussian Distribution.
- The example of this type is the Expectation-Maximization
 Clustering algorithm.
- This is based on Gaussian Mixture Models (GMM).

Hierarchical Clustering

- In this algorithm, we develop the hierarchy of clusters in the form of a tree.
- This tree-shaped structure is known as the dendrogram.
- Sometimes the results of K-means clustering and hierarchical clustering may look similar.
- The hierarchical clustering technique has two approaches:
 Agglomerative & Divisive.

Questions