

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки	
КАФЕДРА	Прикладная математика	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Прямые методы решения систем линейных алгебраических уравнений

Студент _	ФН2-41Б		С. И. Тихомиров
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководитель курсовой работы			Г.В. Гришина
		(Подпись, дата)	(И.О. Фамилия)

ОГЛАВЛЕНИЕ 2

Оглавление

1.	O	писание использованных алгоритмов
2.	О	тветы на контрольные вопросы
		1. Описание использованных алгоритмов
		2. Ответы на контрольные вопросы
	1)	Каковы условия применимости метода Гаусса без выбора и с выбором ведущего элемента?
		Без выбора ведущего элемента: Метод Гаусса может быть применен, если
		на всех шагах на главной диагонали не возникает нулевых элементов:
		$a_{ii}^{(i-1)} \neq 0, i = 1, 2, \dots, n.$
		С выбором ведущего элемента: Метод с выбором ведущего элемента при-
		меним всегда, когда матрица невырожденная ($\det A \neq 0$).
	2)	Докажите, что если $\det A \neq 0$, то при выборе главного элемента в
		столбце среди элементов, лежащих не выше главной диагонали, все-
		гда найдется хотя бы один элемент, отличный от нуля.
		Для любой невырожденной матрицы обязательно существует хотя бы один
		ненулевой элемент в каждом столбце среди элементов, которые находятся на
		главной диагонали или ниже ее. В противном случае хотя бы один столбец со-
		стоял бы из нулей, что привело бы к нулевому определителю, что противоречит
		условию $(\det A \neq 0)$:
	3)	В методе Гаусса с полным выбором ведущего элемента приходит-
		ся не только переставлять уравнения, но и менять нумерацию неиз-
		вестных. Предложите алгоритм, позволяющий восстановить перво-
		начальный порядок неизвестных.
		Создадим два массива linearr и columnarr, где изначально будет числовая по-
		следованность $i=1,2,\dots,n$. При перестановке уравнений (строк) или смене
		нумерации неизвестных (столбцов) будем менять элементы в этих массивах.
	4)	Оцените количество арифметических операций, требуемых для QR-
		разложения произвольной матрицы A размера $n \times n$.
		Для произвольной квадратной матрины A размера $n \times n$, количество операций

для QR-разложения зависит от конкретного метода:

5) Что такое число обусловленности и что оно характеризует? Имеется ли связь между обусловленностью и величиной определителя матрицы? Как влияет выбор нормы матрицы на оценку числа обусловленности?

Числом обусловленности $M_A = ||A_{-1}|| ||A||$ называется числом обусловленности матрицы A (и A_{-1} в силу симметрии формулы). Оно характеризует, насколько сильно ошибка в данных может повлиять на решение задачи.

Если матрица плохо обусловлена (большое число обусловленности), то матрица близка к вырожденной, что связано с малым значением определителя. Матрица с маленьким числом обусловленности близка к ортогональной или хорошо обусловленной. Норма матрицы влияет на оценку числа обусловленности: в зависимости от выбранной нормы $\|\cdot\|$ значение M_A может различаться.

- 6) Как упрощается оценка числа обусловленности, если матрица является:
 - (а) диагональной;
 - (b) **симметричной**;
 - (с) ортогональной;
 - (d) положительно определенной;
 - (е) треугольной?
 - (a) Диагональная матрица: $M_A = \frac{\max(|a_{ii}|)}{\min(|a_{ii}|)}$
 - (b) Симметричная матрица: оценка зависит только от собственных значений. Если матрица симметрична и положительно определена, то M_A можно оценить через отношение наибольшего и наименьшего собственных значений.
 - (c) Ортогональная матрица: $M_A = 1$, так как $A_{-1} = A_T$ и $||A|| = ||A_{-1}|| = 1$
 - (d) Положительно определенная: оценка зависит от собственных значений; чем больше разброс, тем выше число обусловленности.
 - (e) **Треугольная матрицая:** число обусловленности зависит от отношения наибольшего и наименьшего диагональных элементов.
- 7) Применимо ли понятие числа обусловленности к вырожденным матрицам?

Для вырожденных матриц ($\det A = 0$) число обусловленности формально не определено, так как A_{-1} не существует. Однако, если матрица почти вырожденная, можно использовать псевдообратную матрицу A_{+} для оценки обусловленности.

8) В каких случаях целесообразно использовать метод Гаусса, а в каких — методы, основанные на факторизации матрицы?

Метод Гаусса эффективен для решения систем линейных уравнений с квадратными матрицами, если матрица не слишком плохо обусловлена.

Методы факторизации предпочтительны, когда требуется решить несколько систем с одной и той же матрицей, но разными векторами правых частей. Они также более устойчивы при вычислениях с плавающей запятой и в случае плохо обусловленных матриц.

- 9) Как можно объединить в одну процедуру прямой и обратный ход метода Гаусса? В чем достоинства и недостатки такого подхода? Можно объединить прямой и обратный ход метода Гаусса, используя модифицированную схему, где вычисления производятся непосредственно в ходе исключения. Это уменьшает количество операций ввода-вывода, но усложняет алгоритм и снижает его численную устойчивость.
- 10) Объясните, почему, говоря о векторах, норму $\|\cdot\|_1$ часто называют октаэдрической, норму $\|\cdot\|_2$ шаровой, а норму $\|\cdot\|_\infty$ кубической. Норма $\|\cdot\|_1$ называется октаэдрической, потому что геометрическое место всех точек вектора с такой нормой образует октаэдр.

Норма $\|\cdot\|_2$ называется шаровой, потому что множество всех векторов с такой нормой образует сферу в евклидовом пространстве.

Норма $\|\cdot\|_{\infty}$ называется кубической, потому что множество точек с такой нормой образует гиперкуб (или куб в трёхмерном пространстве).