Quiz 7: Introduction to Sequence Models

Introduction to Supervised Learning

*Required

1.	Email address *
2.	Please enter your name: *

Based on some information of the past T data points, we want to predict one of the three following categories for the next return of FB: category o if the return is <-1%, category 1 if the return is between -1% and +1% and category 2 if the return is >1%

Here is the description of the training data:

- At each time step t, we have a feature vector x_t of size D representing the information we have gathered about the FB stock at time t.
- The whole sequence of feature vectors is: x_1, \ldots, x_F
- The corresponding sequence of targets is: y_1,\ldots,y_F (where each $y_i\in\{0,1,2\}$)
- We have the following sequences of features and the corresponding targets:

Preprocessing

3. How many sequences do we have in our training data?

1 point

Mark only one oval.

4. Let N be the number of sequences. What is the shape of our training tensor da	ensor data	r training ter	shape of our training	What is the sh	sequences.	number of	Let N be the	4.
---	------------	----------------	-----------------------	----------------	------------	-----------	--------------	----

1 point

Mark only one oval.

(N, D)

(N, T, D)

(N, T)

5. What is the shape of our training target data after the one-hot encoding of the targets?

1 point

Mark only one oval.

(N, 3)

(N,)

(N, T, 3)

The LSTM layer

We want to use an LSTM layer to process the sequences. Let d be the output vector size at each time step t.

6.	Why choosing an LSTM layer over a standard RNN layer?	1 point
7.	How does the sigmoid activation function protect the cell state?	1 point
8.	List all the parameters of the LSTM layer that should be learned using Gradient Descent.	1 point

9. For each sequence $x_1, ..., x_T$, let $h_1, ..., h_T$ represent the output vectors. What information is represented by the vector h_t for each t in $\{1, ..., 1 \text{ point } T\}$?

The Supervised Model

Let's describe the forward propagation for the first sequence $s_{-1} = x_{-1}, ..., x_{-T}$. The sequence is fed into an LSTM layer. We only keep the last output vector h_{-T} of size d. The vector h_{-T} is then fed into a Dense layer to output a vector of size 3.

10. Describe the evolution of the shape of data after each layer transformation: The LSTM layer and the Dense layer.

1 point

11. What activation function should be used in the Dense layer?

1 point

12.	What loss function should be used?	1 poin
Pro	gramming Session	
13.	Did you understand the problem?	
	Mark only one oval.	
	Yes	
	◯ No	
14.	Do you have any questions about the Coursework?	

Feel free to send us an email if you need more support.

15.	Any comment?	
		_
		_
		_
		_

This content is neither created nor endorsed by Google.

Google Forms