CS306: Introduction to IT Security Assignment Project Exam Help

https://eduassistpro.github.io/ Le crecy

Add We Chat edu_assist_pro

September 15, 2020

Assignment Project Exam Help

https://eduassistpro.github.io/ ounce Add WeChat edu_assist_pro

CS306: Lab sections schedule

labs

CS306-Lx Thursdays

ZOOM ID: LAB SPECIFIC!

Assignment Project Exam Help

X	В			E	F
time	9:30 - 10:20	https://ed	duassistpro	githubsio	/15:30 - 16:20
Zoom ID	91573945614	93061161569 Add We	9497 Chat edu_a	²⁷¹¹⁹¹ Issist_pro	94520991826
TAs	Dean, Joseph, Joshua, Uday	Dean, Devharsh, Joseph, Joshua	Dean/Devharsh, Joshua, Mohammad, Uday	Devharsh, Joseph, Mohammad, Uday	Dean, Joseph, Mohammad, Uday

CS306: Other announcements

- Lab #2 this Thursday
- Homework #1 this Friday
 Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

CS306: Tentative Syllabus

Week	Date	Topics	Reading	Assignment
1	Sep 1	Introduction Project Exercises	Lecture 1	-
2	ASSIGII Sep 8	ment Project Exam	Lecture 2	Lab 1
3	Sep 15	ps://eduassistpro.	nithuh io	/
4	Sep 22		grarabilo	
5	Sep 29 A (dd Wechatedu_as	sist_pro	
6	Oct 6	Access control & authentication		
-	Oct 13	No class (Monday schedule)		
7	Oct 20	Midterm	All materials covered	

CS306: Tentative Syllabus

(continued)

Week	Date	Topics	Reading	Assignment
8	Oct 27	Software & Web security ment Project Exan Network security	Holp	
9	ASSIGII Nov 3	Network security	пер	
10	Nov 10 htt	ps://eduassistpro.g	nithub io	/
11	Nov 17	po.//odadoolotpioi	granasno	
12	Nov 24 A (ld WeChatvedu_as	sist_pro	
13	Dec 1	Economics		
14	Dec 8	Legal & ethical issues		
15	Dec 10 (or later)	Final (closed "books")	All materials covered*	

Last week

- Introduction to the field of IT security
 - Basic concepts and terms
 - Symmetric encryptionment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Today

- Symmetric-key Cryptography
 - Perfect secrecy
 - The One-Time Pasignment Project Exam Help
- Demo https://eduassistpro.github.io/
 - Why encryption ma
 - Using the Wireshark And det Was Cehat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/ ect se Add WeChat edu_assist_pro

Security tool: Symmetric-key encryption scheme

Abstract cryptographic primitive, a.k.a. cipher, defined by

a message space \mathcal{M} ; and

Enc

- a triplet of algorithms: Genn Fect Project Exam Help

 ◆ Gen, Enc are probabilistic algorithms, whereas Dec is deterministic
- Gen outputs a unif https://eduassistpro.ghthub.10/ de WeChat edu_assist_pro \mathcal{M} : set of possible messages Eve Alice

Dec

Perfect correctness

For any $k \in \mathcal{K}$, $m \in \mathcal{M}$ and any ciphertext c output of $Enc_k(m)$,

it holds that

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Towards defining perfect security

- defining security for an encryption scheme is not trivial
 - e.g., what we mean by << Eve "cannot learn" m (from c) >> ?
- our setting so far is a random experiment Exam Help
 - a message m is chosehttps://eduassistpro.github.io/
 - ullet a key k is chosen according to $\mathcal{D}_{\mathcal{K}}$
 - $Enc_k(m) \rightarrow c$ is given to the adversary

how to define security?

Attempt 1: Protect the key k!

Security means that

the Assignmenta Reviesta Etsam Helme key k

- Intuition
 https://eduassistpro.github.io/
 - it'd better be the c
- ◆ Problem Add WeChat edu_assist_pf@ not sufficient condition!
 - this definition fails to exclude clearly insecure schemes
 - e.g., the key is never used, such as when Enc_k(m) := m

Attempt 2: Don't learn m!

Security means that

the adversaries mentaline to the project of the pro

Intuition

- https://eduassistpro.github.io/
- it'd better be the c
- Problem Add WeChat edu_assist_pro
 - this definition fails to exclude clearly undesirable schemes
 - e.g., those that protect m partially, i.e., they reveal the least significant bit of m

Attempt 3: Learn nothing!

Security means that

the adversary signment earlier tearn any information about m

- Intuition https://eduassistpro.github.io/
 - it seems close to w
- Problem Add WeChat edu_assist_pro
 - lacktriangle this definition ignores the adversary's prior knowledge on ${\mathcal M}$
 - ullet e.g., distribution $\mathcal{D}_{\mathcal{M}}$ may be known or estimated
 - ◆ m is a valid text message, or one of "attack", "no attack" is to be sent

Attempt 4: Learn nothing more!

Security means that

the adversary and English the topic of the adversary and the adver

EveA WeChat edu_assist_Eprove

 How can we formali https://eduassistpro.github.io/

$$Enc_k(m) \rightarrow c$$

$$\mathbf{m} = \begin{cases} \text{attack} & \text{w/prob. 0.8} \\ \text{no attack} & \text{w/prob. 0.2} \end{cases}$$

$$\mathbf{m} = \begin{cases} \text{attack} & \text{w/prob. 0.8} \\ \text{no attack} & \text{w/prob. 0.2} \end{cases}$$

Two equivalent views of perfect secrecy

For every $\mathcal{D}_{\mathcal{M}}$, m \in \mathcal{M} and $c \in C$ for every m, m \in \mathcal{M} and $c \in C$, which $\Pr[C = c] > 0$, it holds that it holds that

Pr[M = m | C = c] = https://eduassistpro.githlubPfbFnck(m') = c]

Perfect secrecy (or information-theoretic security)

Definition 1

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} , is **perfectly secret** if A considering the result of A considering the res

Pr[https://eduassistpro.githyb.io/

- intuitively
 Add WeChat edu_assist_pro
 - the *a posteriori* probability that any give s actually sent is the **same** as the *a priori* probability that m would have been sent
 - observing the ciphertext reveals nothing (new) about the underlying plaintext

Alternative view of perfect secrecy

Definition 2

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} , is perfectly secret if for every message \mathcal{M} , is perfectly secret if for every message \mathcal{M} , in the perfectly secret if for every message \mathcal{M} , is perfectly secret if for every message \mathcal{M} , in the perfectly secret if for every message \mathcal{M} , is the perfectly secret if for every message \mathcal{M} , in the perfectly secret if for every message \mathcal{M} , is the perfectly secret if for every message \mathcal{M} , is the perfectly secret if for every message \mathcal{M} , is the perfectly secret if for every message \mathcal{M} , is the perfectly secret if for every message \mathcal{M} , is the perfectly secret if for every message \mathcal{M} , is the perfectly secret if for every message \mathcal{M} , is the perfectly secret if for every message \mathcal{M} , is the perfectly secret if for every message \mathcal{M} , is the perfectly secret if \mathcal{M} and \mathcal{M} is the perfectly secret if \mathcal{M} is the perfectly s

Pr[Ehttps://eduassistpro.github.io/

- intuitively
 - the probability distribution Weachattedu_assistantext
 - i.e., M and C are **independent** random variables
 - the ciphertext contains "no information" about the plaintext
 - "impossible to distinguish" an encryption of m from an encryption of m'

Assignment Project Exam Help

https://eduassistpro.github.io/ one-time pad Add WeChat edu_assist_pro

The one-time pad: A perfect cipher

A type of "substitution" cipher that is "absolutely unbreakable"

- invented in 1917 Gilbert Vernam and Joseph Mauborgne
- "substitution" citassignment Project Exam Help
 - individually replace ciphertext characters
 independently shif
 - - ♦ to encrypt a plaintext of level there edu_assiston plants k₁, ..., k_n
- "absolutely unbreakable"
 - perfectly secure (when used correctly)
 - based on message-symbol specific **independently random** shifts

The one-time pad (OTP) cipher

Fix n to be any positive integer; set $\mathcal{M} = C = \mathcal{K} = \{0,1\}^n$

- Gen: choose n bits uniformly at random (each bit independently w/ prob. .5)
 - ◆ Gen → {0,1}Assignment Project Exam Help
- Enc: given a key and mpute the bit-wise XOR https://eduassistory.github.io/
 - ♣ Enc(k, m) = Enck(https://eduassistpro.github.io/ essage with the key)
- Dec: compute the bit wife Weethat edu_assister pro-
 - ◆ Dec(k, c) = Dec_k(c) := k \oplus c
- Correctness
 - trivially, $k \oplus c = k \oplus k \oplus m = 0 \oplus m = m$

OTP is perfectly secure (using Definition 2)

For all n-bit long messages m₁ and m₂ and ciphertexts c, it holds that

 $Pr[\ E_K(m_1) = c\] = Pr[\ E_K(m_2) = c],$ where probabilities are measured over the possible keys chosen by Gen.

Proof

https://eduassistpro.github.io/

- events " $Enc_K(m_1) = c$ ", " $m_1 \oplus K = c$ " c" are equal-probable
- K is chosen at random, irrespectively edu_assist with probability 2-n
- thus, the ciphertext does not reveal anything about the plaintext

OTP characteristics

A "substitution" cipher

encrypt an n-symbol m using n uniformly random "shift keys" k₁, k₂, . . . , k_n 2 equivalent views Assignment Project Exam Help

•
$$\mathcal{K} = \mathcal{M} = C$$

"shift" method

vie

https://eduassistpro.github'.io/ bit

raction (m +/- k)

Perfect secrecy

since each shift is random, every ciphertext is equally likely for any plaintext

Add WeChat edu_assist_pro

Limitations (on efficiency)

"shift keys" (1) are as long as messages & (2) can be used only once

Perfect, but impractical

In spite of its perfect security, OTP has two notable weaknesses

- the key has to be as long as the plaintext
 - limited applicability gnment Project Exam Help
 - key-management p
- the key cannot be reu https://eduassistpro.github.io/
 - if reused, perfect security is not satisfie
 - e.g., reusing a key olde, We Cheat edu_assist_proges
 - this type of leakage can be devastating against secrecy

These weakness are detrimental to secure communication

securely distributing fresh long keys is as hard as securely exchanging messages...

Importance of OTP weaknesses

Inherent trade-off between efficiency / practicality Vs. perfect secrecy

- historically, OTP has been used efficiently & insecurely
 - repeated use Assignment Brojoote Exam Help communications du
 - NSA decrypted shttps://eduassistpro.github.io/ were transmitted in the 1940s
 - that was possible the state one-time pad scheme
- modern approaches resemble OTP encryption
 - efficiency via use of pseudorandom OTP keys
 - "almost perfect" secrecy