

BY UMA-ATECH

Diseño con SolidWorks para Impresión 3D

Juanma Martín Gálvez

Hardware Development Mechanical and Electronic Design

https://cults3d.com/es/usuarios/ZAPO/

IMPRESIÓN 3D - PLANTEAMIENTO DEL CURSO

Práctico

Enfocado a gente que se inicia

Método y ejemplos de <u>uso real</u>

Actual

IMPRESIÓN 3D – PLANTEAMIENTO DEL CURSO

IMPRESIÓN 3D – USO REAL

EJEMPLO REAL EN LA INDUSTRIA

Inyectora para Sobremoldeo

IMPRESIÓN 3D – USO REAL

EJEMPLO REAL EN LA INDUSTRIA

Inyectora para Sobremoldeo

(=3D)

IMPRESIÓN 3D – USO REAL

IMPRESIÓN 3D – OBJETIVO DEL CURSO

CONOCIMIENTO GENERAL

ENTENDER LO ENSENCIAL

CONTINUAR EN EL MUNDO DE LA IMPRESIÓN 3D

IMPRESIÓN 3D – **RESUMEN** DEL CURSO

CLASE 1

- Conceptos básicos
- Programa de laminación Uso general

CLASE 2

- Diseño listo para imprimir
- Contacto práctico de impresora 3D

CLASE 3

- Programa de laminación Orientación de piezas y soportes
- Puesta en marcha y mantenimiento de impresora 3D

CLASE 4

- Diseño y fabricación de producto
- Siguientes pasos en la impresión 3D

IMPRESIÓN 3D – **RESUMEN** DEL CURSO

CLASE 1

- Conceptos básicos
- Programa de laminación Uso general

CLASE 2

- Diseño listo para imprimir
- Contacto práctico de impresora 3D

CLASE 3

- Programa de laminación Orientación de piezas y soportes
- Puesta en marcha y mantenimiento de impresora 3D

CLASE 4

- Diseño y fabricación de producto
- Siguientes pasos en la impresión 3D

BY UMA-ATECH

CLASE 1 - A Impresión 3D Conceptos Básicos

¿QUÉ ES LA IMPRESIÓN 3D?

Impresión 3D = Fabricación Aditiva

Proceso de fabricación

El material se **añade**

Capa a capa

OTROS MÉTODOS DE FABRICACIÓN

INYECCIÓN DE PLÁSTICO

El material se inyecta

MECANIZADO

El material se <u>arranca</u>

OTROS MÉTODOS DE FABRICACIÓN

INYECCIÓN DE PLÁSTICO

El material se inyecta

MECANIZADO

El material se arranca

MODELO 3D

- Siglas de "Estereolitografía"
- Formato 3D simplificado
- Usado para impresión 3D

MODELO LAMINADO

MODELO LAMINADO

- Lenguaje de programación
- Usado para **máquinas**

MODELO LAMINADO

```
;Layer count: 25
;LAYER:0
M107
G0 F9000 X52.235 Y55.800 Z0.300
d;TYPE:SKIRT
G1 F2340 X56.093 Y55.800 E0.18815
G1 X56.346 Y55.605 E0.20373
G1 X57.299 Y55.078 E0.25684
G1 X58.540 Y54.758 E0.31934
G1 X59.404 Y54.719 E0.36152
G1 X60.320 Y53.688 E0.42878
```

.gcode

- Lenguaje de programación
- Usado para **máquinas**

ENVIAR ARCHIVO

EVOLUCIÓN

<u>Hideo Kodama - Japón</u>

Primera impresora 3D — Dispositivo prototipado rápido

<u>Adrian Bowyer - Reino Unido</u>

Creador de **RepRap** – Impresora FDM de escritorio autorreplicable

- Máquina de **prototipado rápido**
- **Tres** ejes
- Estereolitografía (SLA)

<u> Hideo Kodama - Japón</u>

Primera impresora 3D – Dispositivo prototipado rápido

- Máquina de prototipado rápido
- Tres ejes
- Estereolitografía (SLA)

Luz Ultravioleta (UV)

Fotopolimerización

Resina fotosensible

Mejor acabado

<u>Hideo Kodama - Japón</u> Primera impresora 3D — Dispositivo prototipado rápido

Enlace → ¿Qué es la impresión 3D por estereolitografía?

- Máquina de prototipado rápido
- **Tres** ejes
- Estereolitografía (SLA)

1981

<u>Hideo Kodama - Japón</u> Primera impresora 3D — Dispositivo prototipado rápido

Diseño con SolidWorks para Impresión 3D

EVOLUCIÓN - RESUMEN

Chuck Hull- EE.UU.

Inventor Estereolitografía

Patenta tecnología SLA

Funda empresa 3D Systems

Hideo Kodama - Japón

Primera impresora 3D — Dispositivo prototipado rápido

Chuck Hull- EE.UU.

Inventor Estereolitografía

Chuck Hull - EE.UU.

SLA-1 Primera Impresora 3D comercial

Carl Deckard - EE.UU.

Inventor Sinterizado Láser Selectivo (SLS)

Hideo Kodama - Japón

Primera impresora 3D — Dispositivo prototipado rápido

Chuck Hull - EE.UU.

SLA-1 Primera Impresora 3D comercial

Carl Deckard - EE.UU.

Inventor Sinterizado Láser Selectivo (SLS)

Hideo Kodama - Japón

Primera impresora 3D – Dispositivo prototipado rápido Láser selectivo

Sinterizado

Plástico en polvo

Geometría complejas

Enlace → SLS - ¿Cómo funciona?

Chuck Hull - EE.UU.

SLA-1 Primera Impresora 3D comercial

Carl Deckard - EE.UU.

Inventor Sinterizado Láser Selectivo (SLS)

Hideo Kodama - Japón

Primera impresora 3D — Dispositivo prototipado rápido

Scott Crump / Lisa Crump - EE.UU. Inventor Modelado por deposición Fundida (**FDM**)

1992

Stratasys 3D Modeler

Scott Crump / Lisa Crump - EE.UU. Inventor Modelado por deposición Fundida (**FDM**)

1992

"IMPRESORA DE FILAMENTO"

Scott Crump / Lisa Crump - EE.UU. Inventor Modelado por deposición Fundida (FDM)

1992

Plástico fundido

Material en filamento

Diseño con SolidWorks para Impresión 3D

EVOLUCIÓN - RESUMEN

<u>Adrian Bowyer – Reino Unido</u>

Creador de **RepRap** – Impresora FDM de escritorio autoreplicable

2005

Autorreplicable

Reducción del coste

Fin de la patente para las impresoras FDM

PRUSA
RESEARCH
by JOSEF PRUSA

Se lanza al mercado **Prusa i3** de código abierto

Desarrollador de RepRap

Código abierto

Montaje sencillo

EVOLUCIÓN - ACTUALIDAD

EVOLUCIÓN - ACTUALIDAD

Diseño con SolidWorks para Impresión 3D

EVOLUCIÓN

Full Colour 3D Printer by Mimaki - New Samples!

TECNOLOGÍA LCD - IMPRESORAS DE RESINA

TECNOLOGÍA LCD - IMPRESORAS DE RESINA

Coste menor que SLA

Uso doméstico

Alta calidad

IMPRESIÓN 3D – FDM / LCD

FDM
"Filamento"

MATERIAL FUNDIDO

LCD
"Resina"

RESINA POLIMERIZADA

Impresora FDM – Tipos según ejes de movimiento

Impresora FDM – Tipos según ejes de movimiento

Impresora FDM – Tipos de impresoras Cartesianas

Impresora FDM Cartesiana – Ejes de movimiento

Cama Caliente

Motores

Fuente de alimentación

Pantalla

Electrónica - Placa principal