

Report No: CCIS15070062005

FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 13.3" Android touch LCD Media Player

Model No.: DT133-AC4-720, 502-1339ATATM

FCC ID: 2AB6Z-DT133-AC4

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 30 Jul., 2015

Date of Test: 30 Jul., to 06 Sep., 2015

Date of report issued: 06 Sep., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	06 Sep., 2015	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Prepared by: Date: 06 Sep., 2015

Report Clerk

Reviewed by: One Date: 06 Sep., 2015

Project Engineer

3 Contents

			Page
1	CO.	VER PAGE	
2	VEF	RSION	2
3	CO	NTENTS	3
4	TES	ST SUMMARY	4
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	14
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	16
	6.7	Spurious Emission	
	6.7.		
	6.7.		
	6.8	FREQUENCY STABILITY	37
7	TES	ST SETUP PHOTO	38
8	EU.	T CONSTRUCTIONAL DETAILS	39

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass*
26dB Occupied Bandwidth	15.407 (a)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4:2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

	Ochicial Description (
	Product Name:	13.3" Android touch LCD Media Player
	Model No.:	DT133-AC4-720, 502-1339ATATM
	Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Operation mode: Channel numbers: Channel separation:		Indoor used
		Band 1: 802.11a/802.11n20: 4, 802.11n40: 2 Band 4: 802.11a/802.11n20: 5, 802.11n40: 2
		802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
	Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)		BPSK, QPSK, 16-QAM, 64-QAM
	Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps
	Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
	Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
	Antenna Type:	Omni-directional
	Antenna gain:	2.5 dBi
	AC Adapter:	MODEL: PS24A120K2000UD Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 2000mA
	Remark:	Model No.: DT133-AC4-720, 502-1339ATATM were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different model number for customer and for HUNG WAI.

Operation Frequency each of channel

Band 1				
802.11a/	802.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
36	5180MHz	39	5190MHz	
40	5200MHz	45	5230MHz	
44	44 5220MHz			
48 5240MHz				
	Bai	nd 4		
802.11a/	802.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
149	149 5745MHz		5755MHz	
153	153 5765MHz		5795MHz	
157	157 5785MHz			
161	161 5805MHz			
165	5825MHz		_	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1				
802.11a/802	2.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
The lowest channel	5180MHz	The lowest channel	5190MHz	
The middle channel	5200MHz	The highest channel	5230MHz	
The highest channel	5240MHz			
	Bar	nd 4		
802.11a/802.11n20		802.11n40		
Channel	Frequency	Channel	Frequency	
The lowest channel	5745MHz	The lowest channel	5755MHz	
The middle channel	5785MHz	The highest channel	5795MHz	
The highest channel	5825MHz			

Report No: CCIS15070062005

5.3 Test environment and mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.	

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.		
Mode	Data rate	
802.11a	6 Mbps	
802.11n20	6.5 Mbps	
802.11n40	13 Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

a line impedance stabilization network (L.I.S.N.). It provide 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main post through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm LISN				
Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9 kHz, VBW=30 kHz Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power threa a line impedance stabilization network (L.I.S.N.). It provides 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main pothrough a LISN that provides a 500hm/50uH coupling impedit with 500hm termination. (Please refer to the block diagram of test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. Test setup: Reference Plane	Test Requirement:	CC Part15 C Section 15.207		
Class / Severity: Class B Receiver setup: RBW=9 kHz, VBW=30 kHz Frequency range (MHz) Class B Class B Receiver setup: Frequency range (MHz) Class B Class B RBW=9 kHz, VBW=30 kHz Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power threa a line impedance stabilization network (L.I.S.N.). It provides 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main potherough a LISN that provides a 500hm/50uH coupling imped with 500hm termination. (Please refer to the block diagram of test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. Test setup: Reference Plane LISN Average Limit (dBuV) Quasi-peak Average Average 60 50 50 46 60 50 Frequency indicated Average Average Average Class Wall (dBuV) Quasi-peak Average Average Average 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power threat a line impedance stabilization network (L.I.S.N.). It provides a 500hm/50uH coupling impedance stabilization network (L.I.S.N.). It provides a feet of the maximum power threat a line impedance stabilization network (L.I.S.N.). It provides a feet of the main power threat a line impedance stabilization network (L.I.S.N.). It provides a feet of the main power threat a line impedance stabilization network (L.I.S.N.). It provides a feet of the main power threat a line impedance stabilization network (L.I.S.N.). It provides a feet of the main power threat a line impedance stabilization network (L.I.S.N.). It provides a feet of the main power threat a line impedance stabilization network (L.I.S.N.). It provides a feet of th	Test Method:	ANSI C63.10: 2009		
Receiver setup: RBW=9 kHz, VBW=30 kHz	Test Frequency Range:	50 kHz to 30 MHz		
Limit: Frequency range (MHz)	Class / Severity:	Class B		
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. Test setup: Reference Plane	Receiver setup:	RBW=9 kHz, VBW=30 kHz		
D.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 Test procedure 1. The E.U.T and simulators are connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. Test setup: Reference Plane	Limit:	Ereguency range (MHz) Limit (dBuV)		
Test procedure 1. The E.U.T and simulators are connected to the main power three a line impedance stabilization network (L.I.S.N.). It provides 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedate with 500hm termination. (Please refer to the block diagram of test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm LISN		Quasi-peak Average		
Test procedure 1. The E.U.T and simulators are connected to the main power threat a line impedance stabilization network (L.I.S.N.). It provides 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm LISN				
* Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm LISN				
Test procedure 1. The E.U.T and simulators are connected to the main power threa line impedance stabilization network (L.I.S.N.). It provide 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm LISN				
LISN 40cm 80cm LISN		 a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted 		
Remark E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	τεςι σειαμ.	LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network		
Test Instruments: Refer to section 5.6 for details	Test Instruments:	tefer to section 5.6 for details		
Test mode: Refer to section 5.3 for details.	Test mode:	tefer to section 5.3 for details.		
Test results: Passed	Test results:	assed		

Measurement Data

Trace: 15 Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 13.3" Android touch LCD Media Player : DT133- AC4-720 EUT

Model Test Mode : 5G-WIFI mode

Power Rating: AC120V/60Hz Environment: Temp: 23°C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

: Level Line Limit Remark
dBuV dBuV dB
31.88 54.50 -22.62 Average
3 45.73 63.18 -17.45 QP
3 32.06 48.96 -16.90 Average
38.13 56.00 -17.87 QP
29.81 46.00 -16.19 Average
2 35.22 56.00 -20.78 QP
27.82 46.00 -18.18 Average
5 27.29 46.00 -18.71 Average
5 35.87 56.00 -20.13 QP
2 32.72 50.00 -17.28 Average
40.10 60.00 -19.90 QP
34.47 60.00 -25.53 QP
3

Neutral:

Trace: 13

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 13.3" Android touch LCD Media Player : DT133- AC4-720 EUT

Model : 5G-WIFI mode Test Mode

Power Rating: AC120V/60Hz Environment: Temp: 23°C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

Freq	Read Level		Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	<u>dB</u>	<u>d</u> B	dBu₹	dBu∜	<u>dB</u>	
0.180	24.62	0.25	10.77	35.64	54.50	-18.86	Average
0.205	37.51	0.25	10.76	48.52	63.40	-14.88	QP
0.246	36.58	0.26	10.75	47.59	61.91	-14.32	QP
0.755	26.27	0.19	10.79	37.25	56.00	-18.75	QP
0.871	17.60	0.20	10.83	28.63	46.00	-17.37	Average
1.472	25.11	0.26	10.92	36.29	56.00	-19.71	QP
1.472	17.27	0.26	10.92	28.45	46.00	-17.55	Average
2.567	18.73	0.29	10.94	29.96	46.00	-16.04	Average
6.186	21.13	0.27	10.82	32.22	50.00	-17.78	Average
6.219	28.63	0.27	10.82	39.72	60.00	-20.28	QP
18.232	22.88	0.26	10.91	34.05	50.00	-15.95	Average
18.328	30.93	0.26	10.91	42.10	60.00	-17.90	QP
	0.180 0.205 0.246 0.755 0.871 1.472 1.472 2.567 6.186 6.219 18.232	Read Freq Level MHz dBuV 0.180 24.62 0.205 37.51 0.246 36.58 0.755 26.27 0.871 17.60 1.472 25.11 1.472 17.27 2.567 18.73 6.186 21.13 6.219 28.63 18.232 22.88	Read LISN Level Factor MHz dBuV dB	Read LISN Cable Level Factor Loss MHz dBuV dB dB	Read LISN Cable Freq Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.180 24.62 0.25 10.77 35.64 0.205 37.51 0.25 10.76 48.52 0.246 36.58 0.26 10.75 47.59 0.755 26.27 0.19 10.79 37.25 0.871 17.60 0.20 10.83 28.63 1.472 25.11 0.26 10.92 36.29 1.472 17.27 0.26 10.92 36.29 1.472 17.27 0.26 10.92 28.45 2.567 18.73 0.29 10.94 29.96 6.186 21.13 0.27 10.82 32.22 6.219 28.63 0.27 10.82 39.72 18.232 22.88 0.26 10.91 34.05	Read LISN Cable Limit Freq Level Factor Loss Level Line MHz dBuV dB dB dB dBuV dBuV 0.180 24.62 0.25 10.77 35.64 54.50 0.205 37.51 0.25 10.76 48.52 63.40 0.246 36.58 0.26 10.75 47.59 61.91 0.755 26.27 0.19 10.79 37.25 56.00 0.871 17.60 0.20 10.83 28.63 46.00 1.472 25.11 0.26 10.92 36.29 56.00 1.472 17.27 0.26 10.92 36.29 56.00 1.472 17.27 0.26 10.92 28.45 46.00 2.567 18.73 0.29 10.94 29.96 46.00 2.567 18.73 0.27 10.82 32.22 50.00 6.219 28.63 0.27 10.82 39.72 60.00 18.232 22.88 0.26 10.91 34.05 50.00	Read LISN Cable Limit Over Loss Level Line Limit MHz dBuV dB dB dB dBuV dBuV dB 0.180 24.62 0.25 10.77 35.64 54.50 -18.86 0.205 37.51 0.25 10.76 48.52 63.40 -14.88 0.246 36.58 0.26 10.75 47.59 61.91 -14.32 0.755 26.27 0.19 10.79 37.25 56.00 -18.75 0.871 17.60 0.20 10.83 28.63 46.00 -17.37 1.472 25.11 0.26 10.92 36.29 56.00 -19.71 1.472 17.27 0.26 10.92 36.29 56.00 -19.71 1.472 17.27 0.26 10.92 28.45 46.00 -17.55 2.567 18.73 0.29 10.94 29.96 46.00 -16.04 6.186 21.13 0.27 10.82 32.22 50.00 -17.78 6.219 28.63 0.27 10.82 39.72 60.00 -20.28 18.232 22.88 0.26 10.91 34.05 50.00 -15.95

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)						
Test Method:	ANSI C63.10: 2009 KDB 789033						
Limit:	Band 1: 1 W (For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.); Band 4: 1W.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.4 Occupy Bandwidth

• •							
Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)						
Test Method:	ANSI C63.10:2009 and KDB 789033						
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.5 Power Spectral Density

Toot Doguiroment	FCC Port45 F Section 45 407 (a) (1) (ii) 8 (a) (2)					
Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)					
Test Method:	ANSI C63.10:2009, KDB 789033					
Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.6 Band Edge

6.6 Band Edge								
Test Requireme	nt:	FCC Part15 E Section 15.407 (b)						
Test Method:		ANSI C63.10:20	009 , KDB 7	89033				
Receiver setup:		Detector Quasi-peak Peak RMS	RBW 120kHz 1MHz 1MHz	VBW 300kHz 3MHz 3MHz	Remark Quasi-peak Va Peak Value Average Val	Э		
Limit:		Band Band Remark: 1. Band 1 limi E[dBµV/m]: 2. Band 4 limi	1 4 t: = EIRP[dBm] t:	Limit (dl	BuV/m @3m) 68.20 54.00 78.20 54.00	Remark Peak Value Average Value Peak Value Average Value Average Value R[dBm]= -27dBm.		
Test Procedure:		1. The EUT w the ground to determin 2. The EUT w antenna, w tower. 3. The antenn the ground Both horizo make the m 4. For each st case and th meters and to find the r 5. The test-results Specified B 6. If the emiss the limit specified EUT have 10dB	as placed of at a 3 meter e the position as set 3 meter hich was much a height is to determine that and vertices and width which was margin would be remargin would margin would would margin would would margin would woul	on the top of a camber. To on of the higher away founted on the waried from the the maximum and the came was turned and the came was set with Maximum the EUT in the testing coreported. Other came was the core and	f a rotating table The table was roghest radiation. From the interfer the top of a variation one meter to formum value of the zations of the arranged to heights from 0 degree to Peak Detect m Hold Mode. peak mode was uld be stopped a nerwise the emissisted one by one	e 0.8 meters above otated 360 degrees ence-receiving able-height antenna our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees		
Test setup: Test Instruments	S:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table 0.8m Im Amplifier						
Test mode:		Refer to section						
Test results:		Passed	J.J 101 UEL	AIIO				
rest results.		เ สองชน						

Band 1:

	802.11a								
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	35.24	32.07	9.13	40.06	36.38	68.20	-31.82	Horizontal	
5150.00	35.36	32.07	9.13	40.06	36.50	68.20	-31.70	Vertical	
				802.11a					
Test cl	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	25.48	32.07	9.13	40.06	26.62	54.00	-27.38	Horizontal	
5150.00	24.36	32.07	9.13	40.06	25.50	54.00	-28.50	Vertical	
				802.11a					
Test cl	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	34.25	31.78	9.15	40.18	35.00	68.20	-33.20	Horizontal	
5350.00	35.65	31.78	9.15	40.18	36.40	68.20	-31.80	Vertical	
				802.11a					
Test cl	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	25.36	31.78	9.15	40.18	26.11	54.00	-27.89	Horizontal	
5350.00	25.46	31.78	9.15	40.18	26.21	54.00	-27.79	Vertical	

	802.11n-HT20									
Test cl	nannel		Lowest	Lowest		vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	36.25	32.07	9.13	40.06	37.39	68.20	-30.81	Horizontal		
5150.00	35.28	32.07	9.13	40.06	36.42	68.20	-31.78	Vertical		
	802.11n-HT20									
Test cl	nannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	25.89	32.07	9.13	40.06	27.03	54.00	-26.97	Horizontal		
5150.00	25.33	32.07	9.13	40.06	26.47	54.00	-27.53	Vertical		
			8	302.11n-HT20						
Test cl	nannel		Highest		Level		F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	35.98	31.78	9.15	40.18	36.73	68.20	-31.47	Horizontal		
5350.00	35.26	31.78	9.15	40.18	36.01	68.20	-32.19	Vertical		
			8	302.11n-HT20						
Test cl	nannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	24.05	31.78	9.15	40.18	24.80	54.00	-29.20	Horizontal		
5350.00	24.81	31.78	9.15	40.18	25.56	54.00	-28.44	Vertical		

802.11n-HT40									
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	35.26	32.07	9.13	40.06	36.40	68.20	-31.80	Horizontal	
5150.00	35.16	32.07	9.13	40.06	36.30	68.20	-31.90	Vertical	
			8	302.11n-HT40					
Test cl	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	25.45	32.07	9.13	40.06	26.59	54.00	-27.41	Horizontal	
5150.00	25.03	32.07	9.13	40.06	26.17	54.00	-27.83	Vertical	
			8	302.11n-HT40					
Test cl	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	34.23	31.78	9.15	40.18	34.98	68.20	-33.22	Horizontal	
5350.00	34.08	31.78	9.15	40.18	34.83	68.20	-33.37	Vertical	
			8	02.11n-HT40					
Test cl	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	25.88	31.78	9.15	40.18	26.63	54.00	-27.37	Horizontal	
5350.00	25.36	31.78	9.15	40.18	26.11	54.00	-27.89	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a								
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	41.23	32.27	9.30	40.54	42.26	78.20	-35.94	Horizontal	
5725.00	41.06	32.27	9.30	40.54	42.09	78.20	-36.11	Vertical	
				802.11a					
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	29.58	32.27	9.30	40.54	30.61	54.00	-23.39	Horizontal	
5725.00	29.36	32.27	9.30	40.54	30.39	54.00	-23.61	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	38.64	32.71	9.37	40.69	40.03	78.20	-38.17	Horizontal	
5850.00	38.78	32.71	9.37	40.69	40.17	78.20	-38.03	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	30.25	32.71	9.37	40.69	31.64	54.00	-22.36	Horizontal	
5850.00	30.63	32.71	9.37	40.69	32.02	54.00	-21.98	Vertical	

			g	302.11n-HT20				
Test c	hannel		Lowest	002.1111-11120	l e	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	41.25	32.27	9.30	40.54	42.28	78.20	-35.92	Horizontal
5725.00	41.03	32.27	9.30	40.54	42.06	78.20	-36.14	Vertical
			8	302.11n-HT20				
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	30.63	32.27	9.30	40.54	31.66	54.00	-22.34	Horizontal
5725.00	30.78	32.27	9.30	40.54	31.81	54.00	-22.19	Vertical
			8	302.11n-HT20				
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	40.03	32.71	9.37	40.69	41.42	78.20	-36.78	Horizontal
5850.00	41.23	32.71	9.37	40.69	42.62	78.20	-35.58	Vertical
			8	302.11n-HT20				
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	31.25	32.71	9.37	40.69	32.64	54.00	-21.36	Horizontal
5850.00	30.36	32.71	9.37	40.69	31.75	54.00	-22.25	Vertical

	802.11n-HT40								
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	38.56	32.27	9.30	40.54	39.59	78.20	-38.61	Horizontal	
5725.00	38.23	32.27	9.30	40.54	39.26	78.20	-38.94	Vertical	
			8	02.11n-HT40					
Test cl	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	29.05	32.27	9.30	40.54	30.08	54.00	-23.92	Horizontal	
5725.00	29.32	32.27	9.30	40.54	30.35	54.00	-23.65	Vertical	
			8	02.11n-HT40					
Test cl	hannel		Highest		Level		F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.75	32.71	9.37	40.69	43.14	78.20	-35.06	Horizontal	
5850.00	41.98	32.71	9.37	40.69	43.37	78.20	-34.83	Vertical	
			8	02.11n-HT40					
Test cl	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	30.46	32.71	9.37	40.69	31.85	54.00	-22.15	Horizontal	
5850.00	31.23	32.71	9.37	40.69	32.62	54.00	-21.38	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>										
	Test Requirement:	FCC Part15 E Section 15.407(b)								
	Test Method:	ANSI C63.10: 2	2009							
	Test Frequency Range:	Band 1: 4.5 GH Band 4: 5.35 G			z to 5.46GH	Ηz				
	Test site:	Measurement [Distance: 3m							
	Receiver setup:									
	·	Frequency	Detector	RBW	VBW	Remark				
		Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Limit:	RMS 1MHz 3MHz Average Value								
	LIIIII.	Freque	ency	Limit (dBuV/	/m @3m)	Remark				
		Above 1		74.0		Peak Value				
		7,5070	0112	54.0	0	Average Value				
	Test setup:	the ground to determine to determine antenna, we tower. 9. The antendation Both horized make the interest and to find the specified If the emist the limit specified EUT have 10dE	I at a 3 meter come the position was set 3 meter which was mount and height is varied to determine to ontal and vertice measurement. Suspected emischen the antenned the rota table maximum read eceiver system Bandwidth with sion level of the pecified, then terms would be reposed.	amber. The of the highers away from the on the tried from one he maximum al polarization, the EU a was turned was turned ing. was set to Form Maximum Form EUT in peasing could be treed. Otherwas the extended of the country be re-tested.	table was rest radiation. In the interference of a variation of a variation of the analysis of the emit one by one	rence-receiving able-height antenna our meters above he field strength. Intenna are set to haged to its worst from 1 meter to 4 rees to 360 degrees				
	Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Analyzer Amplifier								
	Test Instruments:	Refer to section	5.6 for details							
	Test mode:	Refer to section	n 5.3 for details							
	Test results:	Passed								

Band 1:

802.11a

								
Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	35.28	30.72	8.54	40.67	33.87	74.00	-40.13	Horizontal
4500.00	36.06	30.72	8.54	40.67	34.65	74.00	-39.35	Vertical
Test c	hannel		Lowest		Le	vel	Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	25.36	30.72	8.54	40.67	23.95	54.00	-30.05	Horizontal
4500.00	24.92	30.72	8.54	40.67	23.51	54.00	-30.49	Vertical
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	35.07	31.99	9.16	40.23	35.99	74.00	-38.01	Horizontal
5460.00	35.24	31.99	9.16	40.23	36.16	74.00	-37.84	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	26.32	31.99	9.16	40.23	27.24	54.00	-26.76	Horizontal
5460.00	26.54	31.99	9.16	40.23	27.46	54.00	-26.54	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	35.26	30.72	8.54	40.67	33.85	74.00	-40.15	Horizontal
4500.00	35.06	30.72	8.54	40.67	33.65	74.00	-40.35	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	35.23	30.72	8.54	40.67	33.82	54.00	-20.18	Horizontal
4500.00	25.01	30.72	8.54	40.67	23.60	54.00	-30.40	Vertical
Test cl	nannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.28	31.99	9.16	40.23	37.20	74.00	-36.80	Horizontal
5460.00	36.92	31.99	9.16	40.23	37.84	74.00	-36.16	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	26.36	31.99	9.16	40.23	27.28	54.00	-26.72	Horizontal
5460.00	26.54	31.99	9.16	40.23	27.46	54.00	-26.54	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.85	30.72	8.54	40.67	35.44	74.00	-38.56	Horizontal
4500.00	36.13	30.72	8.54	40.67	34.72	74.00	-39.28	Vertical
Test c	hannel		Lowest		Le	vel	Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	26.58	30.72	8.54	40.67	25.17	54.00	-28.83	Horizontal
4500.00	26.34	30.72	8.54	40.67	24.93	54.00	-29.07	Vertical
Test c	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalariantian
	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	35.28	Factor (dB) 31.99	9.16	Factor (dB) 40.23	(dBuV/m) 36.20	(dBuV/m) 74.00	Limit (dB) -37.80	Horizontal
5460.00 5460.00	,	` ,	` '	` '	, ,	, ,	` ,	
5460.00	35.28	31.99	9.16	40.23	36.20	74.00 74.00	-37.80 -37.90	Horizontal
5460.00	35.28 35.18	31.99	9.16 9.16	40.23	36.20 36.10	74.00 74.00	-37.80 -37.90	Horizontal Vertical
5460.00 Test c Frequency	35.28 35.18 hannel Read Level	31.99 31.99 Antenna	9.16 9.16 Highest	40.23 40.23 Preamp	36.20 36.10 Level	74.00 74.00 vel	-37.80 -37.90 Av	Horizontal Vertical erage

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	44.25	31.78	9.15	40.18	45.00	74.00	-29.00	Horizontal
5460.00	44.03	31.99	9.16	40.23	44.95	74.00	-29.05	Horizontal
5350.00	43.68	31.78	9.15	40.18	44.43	74.00	-29.57	Vertical
5460.00	44.31	31.99	9.16	40.23	45.23	74.00	-28.77	Vertical
Test cl	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.55	31.78	9.15	40.18	33.30	54.00	-20.70	Horizontal
5460.00	33.68	31.99	9.16	40.23	34.60	54.00	-19.40	Horizontal
5350.00	33.09	31.78	9.15	40.18	33.84	54.00	-20.16	Vertical
5460.00	32.15	31.99	9.16	40.23	33.07	54.00	-20.93	Vertical

802.11n-HT20

00Z.11II-H1Z0										
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	44.12	31.78	9.15	40.18	44.87	74.00	-29.13	Horizontal		
5460.00	44.36	31.99	9.16	40.23	45.28	74.00	-28.72	Horizontal		
5350.00	43.05	31.78	9.15	40.18	43.80	74.00	-30.20	Vertical		
5460.00	43.00	31.99	9.16	40.23	43.92	74.00	-30.08	Vertical		
Test c	hannel		Lowest		Level		Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	34.78	31.78	9.15	40.18	35.53	54.00	-18.47	Horizontal		
5460.00	34.23	31.99	9.16	40.23	35.15	54.00	-18.85	Horizontal		
5350.00	34.06	31.78	9.15	40.18	34.81	54.00	-19.19	Vertical		
5460.00	34.91	31.99	9.16	40.23	35.83	54.00	-18.17	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	eak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	44.26	31.78	9.15	40.18	45.01	74.00	-28.99	Horizontal
5460.00	44.36	31.99	9.16	40.23	45.28	74.00	-28.72	Horizontal
5350.00	43.98	31.78	9.15	40.18	44.73	74.00	-29.27	Vertical
5460.00	43.08	31.99	9.16	40.23	44.00	74.00	-30.00	Vertical
Test c	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.68	31.78	9.15	40.18	33.43	54.00	-20.57	Horizontal
5460.00	32.52	31.99	9.16	40.23	33.44	54.00	-20.56	Horizontal
5350.00	32.93	31.78	9.15	40.18	33.68	54.00	-20.32	Vertical
5460.00	32.13	31.99	9.16	40.23	33.05	54.00	-20.95	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205					
Test Method:	ANSI C63.10:2009							
Test Frequency Range:	30MHz to 40GH	lz						
Test site:	Measurement D	istance: 3m						
Receiver setup:								
reserver setup.	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value			
	Abovo 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 1G112	Above 1GHz RMS 1MHz 3MHz Avera						
Limit:	Fraguency Limit (dDu)//m @2m) Demark							
	Freque		Limit (dBuV/		Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21		43.5		Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-	1GHz	54.0)	Quasi-peak Value			
	Frogue	nov	Limit (dBn	ɔ/N/I⊔¬\	Remark			
	Freque	TICY	68.2		Peak Value			
	Above 1	GHz	54.0		Average Value			
	Remark:		0 1.0		7 (Volugo Value			
	1. Above 1GH	z limit:						
	$ $ $E[dB\mu V/m] = EII$	RP[dBm] + 95.2=	68.2 dBuV/m	, for EIPR[dl	Bm]=-27dBm.			
Test Procedure:	1. The EUT we the ground determine of the EUT we antenna, we tower. 3. The antenne ground to compare the formula of the end of the	ras placed on the at a 3 meter casthe position of the position of the as set 3 meters which was mountained the position of the and vertical polaritation. The antenna was a table was turn reading, ceiver system was also be and width with lesion level of the ed, then testing puld be reported.	ne top of a reamber. The reamber. The reamber. The reamber is away from ted on the top of the following ted on the EU tuned to he are to Personal to the following ted one to the sted one to	otating table table was readiation. the interferop of a variation of the first the antennal of the emission of the emission of the using the emission of the e	e 0.8 meters above otated 360 degrees to rence-receiving able-height antenna our meters above the eld strength. Both ha are set to make the eld strength are set to m			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 13.3" Android touch LCD Media Player : DT13.3-AC4-720 Condition

EUT

Model Test mode : 5G-WIFI mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C
Test Engineer: Viki
REMARK : Huni:55% 101KPa

CHECKET									
	Freq		Antenna Factor				Limit Line	Over Limit	
_	MHz	dBu∇	-dB/m	<u>ab</u>	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	97.115	42.69	12.97	0.94	29.54	27.06	43.50	-16.44	QP
2	191.745	48.86	10.56	1.37	28.89	31.90	43.50	-11.60	QP
3	287.990	51.11	12.84	1.74	28.47	37.22	46.00	-8.78	QP
4	351.708	55.72	14.30	1.94	28.57	43.39	46.00	-2.61	QP
2 3 4 5 6	420.580	47.33	15.47	2.18	28.82	36.16	46.00	-9.84	QP
6	699.305	47.30	18.80	2.91	28.67	40.34	46.00	-5.66	QP

Vertical:

THE THE									
	Freq		Antenna Factor						Remark
_	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	41.567	45.52	13.57	0.53	29.89	29.73	40.00	-10.27	QP
1 2 3	97.456	44.93	13.00	0.94	29.54	29.33	43.50	-14.17	QP
3	351.708	50.14	14.30	1.94	28.57	37.81	46.00	-8.19	QP
4	423.540	43.69	15.49	2.18	28.82	32.54	46.00	-13.46	QP
5 6	699.305	46.17	18.80	2.91	28.67	39.21	46.00	-6.79	QP
6	776.878	45.81	19.77	3.11	28.32	40.37	46.00	-5.63	QP

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10360.00	44.25	39.23	13.84	41.34	55.98	68.20	-12.22	Vertical				
10360.00	44.06	39.23	13.84	41.34	55.79	68.20	-12.41	Horizontal				
		802.11	a mode Lowe	est channe	I (Average V	'alue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10360.00	33.52	39.23	13.84	41.34	45.25	54.00	-8.75	Vertical				
10360.00	33.68	39.23	13.84	41.34	45.41	54.00	-8.59	Horizontal				

	802.11a mode Middle channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	42.36	39.36	13.85	41.27	54.30	68.20	-13.90	Vertical				
10400.00	42.05	39.36	13.85	41.27	53.99	68.20	-14.21	Horizontal				
		802.11	a mode Midd	dle channe	l (Average V	alue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	33.58	39.36	13.85	41.27	45.52	54.00	-8.48	Vertical				
10400.00	33.20	39.36	13.85	41.27	45.14	54.00	-8.86	Horizontal				

	802.11a mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	44.26	39.56	13.90	41.06	56.66	68.20	-11.54	Vertical		
10480.00	44.98	39.56	13.90	41.06	57.38	68.20	-10.82	Horizontal		
		802.11a	a mode High	est channe	l (Average \	/alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	32.11	39.56	13.90	41.06	44.51	54.00	-9.49	Vertical		
10480.00	32.06	39.56	13.90	41.06	44.46	54.00	-9.54	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n20 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	44.23	39.23	13.84	41.34	55.96	68.20	-12.24	Vertical		
10360.00	44.84	39.23	13.84	41.34	56.57	68.20	-11.63	Horizontal		
		802.11n2	20 mode Low	est chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	32.12	39.23	13.84	41.34	43.85	54.00	-10.15	Vertical		
10360.00	32.65	39.23	13.84	41.34	44.38	54.00	-9.62	Horizontal		

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	44.15	39.36	13.85	41.27	56.09	68.20	-12.11	Vertical			
10400.00	44.81	39.36	13.85	41.27	56.75	68.20	-11.45	Horizontal			
		802.11n	20 mode Mid	ddle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	34.26	39.36	13.85	41.27	46.20	54.00	-7.80	Vertical			
10400.00	34.19	39.36	13.85	41.27	46.13	54.00	-7.87	Horizontal			

	802.11n20 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	44.23	39.56	13.90	41.06	56.63	68.20	-11.57	Vertical		
10480.00	44.16	39.56	13.90	41.06	56.56	68.20	-11.64	Horizontal		
		802.11n2	20 mode Higl	hest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	33.26	39.56	13.90	41.06	45.66	54.00	-8.34	Vertical		
10480.00	33.14	39.56	13.90	41.06	45.54	54.00	-8.46	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	44.21	39.29	13.84	41.31	56.03	68.20	-12.17	Vertical		
10380.00	44.54	39.29	13.84	41.31	56.36	68.20	-11.84	Horizontal		
		802.11n	40 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	30.28	39.29	13.84	41.31	42.10	54.00	-11.90	Vertical		
10380.00	30.05	39.29	13.84	41.31	41.87	54.00	-12.13	Horizontal		

	802.11n40 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10460.00	44.08	39.54	13.88	41.17	56.33	68.20	-11.87	Vertical		
10460.00	44.02	39.54	13.88	41.17	56.27	68.20	-11.93	Horizontal		
		802.11n4	10 mode Hig	hest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10460.00	34.15	39.54	13.88	41.17	46.40	54.00	-7.60	10460.00		
10460.00	34.06	39.54	13.88	41.17	46.31	54.00	-7.69	10460.00		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	44.25	40.25	13.82	40.75	57.57	68.20	-10.63	Vertical		
11490.00	44.31	40.25	13.82	40.75	57.63	68.20	-10.57	Horizontal		
		802.11	a mode Lowe	est channe	I (Average V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	32.02	40.25	13.82	40.75	45.34	54.00	-8.66	Vertical		
11490.00	32.31	40.25	13.82	40.75	45.63	54.00	-8.37	Horizontal		

	802.11a mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	44.23	40.17	13.78	40.91	57.27	68.20	-10.93	Vertical		
11570.00	44.69	40.17	13.78	40.91	57.73	68.20	-10.47	Horizontal		
		802.11	a mode Mido	dle channe	l (Average V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	32.54	40.17	13.78	40.91	45.58	54.00	-8.42	Vertical		
11570.00	32.15	40.17	13.78	40.91	45.19	54.00	-8.81	Horizontal		

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	42.25	39.89	13.74	41.06	54.82	68.20	-13.38	Vertical			
11650.00	42.18	39.89	13.74	41.06	54.75	68.20	-13.45	Horizontal			
		802.11a	a mode High	est channe	l (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	34.56	39.89	13.74	41.06	47.13	54.00	-6.87	Vertical			
11650.00	34.25	39.89	13.74	41.06	46.82	54.00	-7.18	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n20 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	44.29	40.25	13.82	40.75	57.61	68.20	-10.59	Vertical		
11490.00	44.05	40.25	13.82	40.75	57.37	68.20	-10.83	Horizontal		
		802.11n2	20 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	31.26	40.25	13.82	40.75	44.58	54.00	-9.42	Vertical		
11490.00	31.06	40.25	13.82	40.75	44.38	54.00	-9.62	Horizontal		

	802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	44.17	40.17	13.78	40.91	57.21	68.20	-10.99	Vertical		
11570.00	44.39	40.17	13.78	40.91	57.43	68.20	-10.77	Horizontal		
		802.11n	20 mode Mid	ddle chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	31.29	40.17	13.78	40.91	44.33	54.00	-9.67	Vertical		
11570.00	31.13	40.17	13.78	40.91	44.17	54.00	-9.83	Horizontal		

	802.11n20 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	44.19	39.89	13.74	41.06	56.76	68.20	-11.44	Vertical		
11650.00	44.03	39.89	13.74	41.06	56.60	68.20	-11.60	Horizontal		
		802.11n2	20 mode Hig	hest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	33.28	39.89	13.74	41.06	45.85	54.00	-8.15	Vertical		
11650.00	33.19	39.89	13.74	41.06	45.76	54.00	-8.24	Horizontal		

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	40.15	40.26	13.83	40.77	53.47	68.20	-14.73	Vertical
11510.00	40.36	40.26	13.83	40.77	53.68	68.20	-14.52	Horizontal
802.11n40 mode Lowest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	28.54	40.26	13.83	40.77	41.86	54.00	-12.14	Vertical
11510.00	28.23	40.26	13.83	40.77	41.55	54.00	-12.45	Horizontal

802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	43.25	40.08	13.77	40.95	56.15	68.20	-12.05	Vertical
11590.00	43.26	40.08	13.77	40.95	56.16	68.20	-12.04	Horizontal
802.11n40 mode Highest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	28.54	40.08	13.77	40.95	41.44	54.00	-12.56	Vertical
11590.00	28.31	40.08	13.77	40.95	41.21	54.00	-12.79	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)				
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.				
Test setup:	Temperature Chamber				
	Spectrum analyzer EUT Att. Variable Power Supply				
	Note: Measurement setup for testing on Antenna connector				
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.				
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB				