OEMA 2

2.1. Μέσα στο κλειστό κυλινδρικό δοχείο του σχήματος μήκους L υπάρχει ένα λεπτό έμβολο, το οποίο μπορεί να κινείται χωρίς τριβές και δεν επιτρέπει την ανταλλαγή θερμότητας μέσα από αυτό. Στο αριστερό μέρος του δοχείου υπάρχει ορισμένη ποσότητα μάζας m ιδανικού αερίου A σε θερμοκρασία ενώ στο δεξιό μέρος υπάρχει ίση ποσότητα μάζας m ιδανικού αερίου B στην ίδια θερμοκρασία T.

Η σχέση των γραμμομοριακών μαζών M_A και M_B των ιδανικών αερίων Α και Β αντιστοίχως είναι $M_A=16M_B$. Αν το έμβολο ισορροπεί, οι αποστάσεις του έμβολου l_1 και l_2 από τα άκρα του δοχείου ικανοποιούν τη σχέση:

(a)
$$l_2 = 16l_1$$
, (b) $l_2 = 4l_1$, (c) $l_2 = 2l_1$

2.1.Α. Να επιλέξετε την ορθή απάντηση.

Μονάδες 4

2.1.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 8

2.2. Δύο θετικά φορτισμένα σωματίδια εκτοξεύονται με ταχύτητα ίδιου μέτρου v_0 το ένα εναντίον του άλλου από άπειρη απόσταση μεταξύ τους. Τα φορτία και οι μάζες των σωματιδίων είναι αντίστοιχα q_1 , m και q_2 , 4m. Όταν η ηλεκτρική δυναμική ενέργεια του συστήματος γίνει μέγιστη, τα δύο φορτισμένα σωματίδια μάζας m και 4m αποκτούν ταχύτητες μέτρου v_1 και v_2 αντίστοιχα, ίσες με:

(a)
$$v_1 = \frac{3v_0}{5}$$
, $v_2 = \frac{3v_0}{5}$, (b) $v_1 = \frac{3v_0}{4}$, $v_2 = \frac{3v_0}{5}$, (v) $v_1 = \frac{3v_0}{4}$, $v_2 = \frac{3v_0}{7}$

2.2.Α. Να επιλέξετε την ορθή απάντηση.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9