Quantifier-free least fixed point functions for phonology

Jane Chandlee and Adam Jardine Haverford Rutgers

NECPhon 2018 Nov 4, 2018 MIT

Introduction

- What kind of functions are phonological UR-SR maps?
- Automata-theoretic characterizations have focused on subsequentiality (Heinz and Lai, 2013; Payne, 2017; Chandlee and Heinz, 2018)
- Logical characterizations of sets provide representation-independent complexity hypotheses
- No previous logical characterizations of functions approach subsequentiality

- Chandlee and Lindell (forthcoming) capture input
 strictly-local (ISL) functions with quantifier-free (QF) logic
- We generalize this with least fixed-point extension of QF functions (QFLFP)
- QFLFP offers recursive, output-based definitions of functions
- This is a (proper?) subclass of the subsequential functions that tightly fits the typology of phonological functions

Logical definitions of functions

$$| \bowtie_1 | a_2 | b_3 | b_4 | a_5 | b_6 | \bowtie_7$$

• **Model** of a string over Σ :

$$-D = \{1, 2, ..., n\}$$

$$D = \{1, 2, 3, 4, 5, 6, 7\}$$

-
$$P_{\sigma} \subseteq D$$
 for each $\sigma \in \Sigma, \rtimes, \ltimes$

$$P_b = \{3, 4, 6\}$$

– A predecessor function
$$p$$

$$p(2) = 1$$
, etc.

$$\bowtie_1 \mid a_2 \mid b_3 \mid b_4 \mid a_5 \mid b_6 \mid \bowtie_7$$

- **QF logic** of strings:
 - Terms are
 - variables x, y, ..., z range over D
 - p(t) for term t
 - $P_{\sigma}(t)$ for $\sigma \in \Sigma, \rtimes, \ltimes$ and term t

- **QF logic** of strings:
 - Terms are
 - variables x, y, ..., z range over D
 - p(t) for term t
 - $P_{\sigma}(t)$ for $\sigma \in \Sigma, \rtimes, \ltimes$ and term t
 - E.g., $P_b(x)$

- **QF logic** of strings:
 - Terms are
 - variables x, y, ..., z range over D
 - p(t) for term t
 - $P_{\sigma}(t)$ for $\sigma \in \Sigma, \rtimes, \ltimes$ and term t
 - E.g., $P_b(x)$, $P_b(p(x))$

$$\bowtie_1 \mid a_2 \mid b_3 \mid b_4 \mid a_5 \mid b_6 \mid \bowtie_7$$

- **QF logic** of strings:
 - Syntax:

$$P_{\sigma}(t) \mid \neg \varphi \mid \varphi \lor \psi \mid \varphi \land \psi \mid \varphi \to \psi$$

- E.g., $P_b(x) \wedge P_b(p(x))$

• A **logical transduction** defines an output structure in the logic of the input structure (Courcelle, 1994; Courcelle et al., 2012)

$$P'_{a}(x) \stackrel{\mathsf{def}}{=} P_{a}(x)$$

$$P'_{b}(x) \stackrel{\mathsf{def}}{=} P_{b}(x) \wedge \neg (P_{b}(p(x)))$$

$$P'_{c}(x) \stackrel{\mathsf{def}}{=} P_{b}(x) \wedge (P_{b}(p(x)))$$

•
$$b \rightarrow c / b$$

• Chandlee and Lindell (forthcoming): QF transductions capture ISL functions (Chandlee, 2014; Chandlee and Heinz, 2018)

$$P'_{a}(x) \stackrel{\text{def}}{=} P_{a}(x)$$

$$P'_{m}(x) \stackrel{\text{def}}{=} P_{m}(x)$$

$$P'_{p}(x) \stackrel{\text{def}}{=} P_{p}(x) \land \neg (P_{p}(p(x)))$$

$$P'_{b}(x) \stackrel{\text{def}}{=} P_{p}(x) \land (P_{m}(p(x)))$$

- Long-distance patterns are not QF
- Iterative spreading, e.g. nasal spread in Malay (Onn, 1980)

$$\begin{array}{ccc} P_{\tilde{a}}'(x) & \stackrel{\mathsf{def}}{=} & P_a(x) \wedge \mathtt{nasal}(p(x)) \\ P_a'(x) & \stackrel{\mathsf{def}}{=} & P_a(x) \wedge \neg \mathtt{nasal}(p(x)) \end{array}$$

•
$$\operatorname{nasal}(x) \stackrel{\mathsf{def}}{=} P_m(x) \vee P'_{\tilde{a}}(x) \vee P'_{\tilde{w}}(x)$$

- Long-distance patterns are not QF
- L-D harmony, e.g. nasal harmony in Kikongo (Ao, 1991)

•
$$nasal(x) \stackrel{\mathsf{def}}{=} P_m(x) \vee P_n(x)$$

- Least-fixed point logic allows:
 - reference to output structures;
 - definition of precedence from predecessor (p)
- Restriction to QF keeps logic weak

Least fixed point logic

• An **operator** on D is a function $f:\mathcal{P}(D)\to\mathcal{P}(D)$

- The least fixed point of f is $\mathtt{lfp}(f) = \bigcup_i X^i$, where $X^0 = \emptyset, X^{i+1} = f(X^i)$

Example
$$\begin{array}{|c|c|c|c|c|} \hline \times_1 & a_2 & b_3 & a_4 & a_5 & a_6 & c_7 & a_8 & \bowtie_9 \\ \hline & \varphi(A,x) = P_a(x) \wedge \left(P_b(p(x)) \vee A(p(x))\right) \\ & f_{\varphi}(\emptyset) &= \{4\} \\ & f_{\varphi}(\{4\}) &= \{4,5\} \\ & f_{\varphi}(\{4,5\}) &= \{4,5,6\} \\ & f_{\varphi}(\{4,5,6\}) &= \{4,5,6\} \\ \hline \end{array}$$

Example
$$\begin{array}{|c|c|c|c|c|} \hline \bowtie_1 & a_2 & b_3 & a_4 & a_5 & a_6 & c_7 & a_8 & \bowtie_9 \\ \hline & \varphi(A,x) = P_a(x) \wedge \left(P_b(p(x)) \vee A(p(x))\right) \\ & f_{\varphi}(\emptyset) = \{4\} & X^1 \\ & f_{\varphi}(\{4\}) = \{4,5\} & X^2 \\ & f_{\varphi}(\{4,5\}) = \{4,5,6\} & X^3 \\ & f_{\varphi}(\{4,5,6\}) = \{4,5,6\} & X^4 = X^5 = \dots \\ & & \texttt{lfp}(f_{\varphi}) = \{4,5,6\} \\ \hline \end{array}$$

- $\varphi(A,x)$ with a special predicate A(x) induces an operator $f_{\varphi}(X) = \big\{ d \in D \ \big| \ \varphi(A,x) \ \text{ is satisfied with } A \mapsto X, d \mapsto x \big\}$
- QFLFP is QF extended with predicates of the form

$$\left[_{\rm lfp} \varphi(A,x) \right](x)$$

for some $\varphi(A, x)$ in QF extended with A(x)

$$\begin{bmatrix} 1_{\text{lfp}} P_a(x) \wedge \left(P_b(p(x)) \vee A(p(x)) \right) \end{bmatrix} (x)$$

$$\times_1 \begin{vmatrix} a_2 & b_3 & a_4 & a_5 & a_6 & c_7 & a_8 \end{vmatrix} \times_9$$

$$P_b'(x) \stackrel{\mathsf{def}}{=} [_{\mathsf{lfp}}(P_b(x) \vee (A(p(x)) \wedge \neg P_c(x)))](x)$$

$$\bowtie_1 b_2 \mid a_3 \mid a_4 \mid c_5 \mid a_6 \mid b_7 \mid a_8 \mid \bowtie_9$$

$$P_b'(x) \stackrel{\mathsf{def}}{=} [_{\mathsf{lfp}}(P_b(x) \vee (A(p(x)) \wedge \neg P_c(x)))](x)$$

$$\bowtie_1 \mid b_2 \mid a_3 \mid a_4 \mid c_5 \mid a_6 \mid b_7 \mid a_8 \mid \bowtie_9 \mid$$

$$P_b'(x) \stackrel{\mathsf{def}}{=} [_{\mathsf{lfp}}(P_b(x) \vee (A(p(x)) \wedge \neg P_c(x)))](x)$$

$$\bowtie_1 b_2 \mid a_3 \mid a_4 \mid c_5 \mid a_6 \mid b_7 \mid a_8 \mid \bowtie_9$$

$$P_b'(x) \stackrel{\mathsf{def}}{=} [{}_{\mathsf{lfp}}(P_b(x) \lor (A(p(x)) \land \neg P_c(x)))](x)$$

$$oxed{b_1 b_2 a_3 a_4 c_5 a_6 b_7 a_8 \bowtie_9}$$

Long-distance agreement

 $cbccca \mapsto cbcccb$

$$P_b'(x) \stackrel{\mathsf{def}}{=} [_{\mathsf{lfp}}(P_b(x) \vee A(p(x)))](x) \wedge \neg P_c(x)$$

Spreading with blocking:

$$P_b'(x) \stackrel{\mathsf{def}}{=} [{}_{\mathsf{lfp}}(P_b(x) \lor (A(p(x)) \land \neg P_c(x)))](x)$$

LD agreement:

$$P_b'(x) \stackrel{\mathsf{def}}{=} [{}_{\mathsf{lfp}}(P_b(x) \vee A(p(x)))](x) \wedge \neg P_c(x)$$

QFLFP is (probably) subsequential

- **Subsequential functions** have some **deterministic** finite-state transducer (Schützenberger, 1977; Mohri, 1997)
- Reading left-to-right, we immediately know the output at each position in the input

- For any $\varphi(x) \in \mathrm{QFLFP}$, whether a position satisfies $\varphi(x)$ depends entirely on the *preceding* information in the input
- Reading left-to-right, we immediately know the output at each position in the input

Subsequential is (probably) not QFLFP

 Keeping track of even and odd-numbered elements of a particular type over arbitrary distances is subsequential

We cannot think of a QFLFP definition for this function

- This is a good phonological prediction of QFLFP; functions like "odd-numbered sibilants harmonize" are not attested.
- But, QFLFP can capture 'local' even/odd counting (for, e.g., iterative stress)

$$\begin{bmatrix} \begin{bmatrix} \\ \text{lfp} & \rtimes (p(x)) \lor A(p(p(x))) \end{bmatrix} (x) \\ & \times_1 \begin{bmatrix} a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 \end{bmatrix} \bowtie_9 \end{bmatrix}$$

The general picture (probably)

OSL = output strictly local functions (Chandlee, 2014; Chandlee et al., 2015)

Discussion

- QFLFP is a restrictive theory for phonology based on recursive definitions of local structures
- If QFLFP \subseteq SUBSEQ, then it is learnable (Oncina et al., 1993)
- Abstract definition of QFLFP?
- More efficient/plausible learner for QFLFP?

- Logic can be applied to non-string structures:
 - Features
 - Autosegmental representations
 - Metrical structure
 - Others?
- What do we get with two-place predicates and QFLFP (Koser et al., AMP)?

Conclusion

- QFLFP combines the restrictiveness of QF with the ability to recursively reference the output structure.
- Allows us to model non-ISL phenomena such as LD agreement and iterative spreading.
- This class of functions appears to cross-cut several subregular classes that have been applied to the modeling of phonological processes.
- If/as a subset of subsequential, it is also learnable.

Acknowledgements

Thanks to helpful thoughts and discussion from Jeff Heinz, Bill Idsardi, Steve Lindell, Jim Rogers, Jon Rawski, and the audience at the first Rutgers computational phonology workshop