Ocean Temperature Dependence on Depth and Time of Day

Evan Chapman, Jacey Coniff, Jacob Garcia, Elizabeth Poss

Project Goals

- Original Goal: Investigate how tide and depth affect temperature and turbidity at a waypoint.
- Revised Goal: Investigate how temperature changes with depth and time of day.

Measurement Sensors and Robot Construction

- MPX5700 Pressure Sensor
- MCP9701A Low-Power Linear Temperature Sensor
- TSW-10 Turbidity Sensor

Ballasting

Turbidity Sensor

Op-Amp Sensor Amplification

Linear Sensor Responses

Imposed Condition: R2 << R3

$$V_{out} = V_{sensor} \left(1 + \frac{R_4}{R_3} \right) - V_{DD} \left(\frac{R_2}{R_1 + R_2} \right) \left(\frac{R_4}{R_3} \right)$$

Circuit Design: Temperature

Desired Range	Designed Voltage	Actual Voltage
12.4 ± 0.1°C	0.588 ± 0.019 V	0.000 ± 0.004 V (Railed)
22.0 ± 0.1°C	2.82 ± 0.02 V	1.847 ± 0.148 V

Circuit Design: Turbidity

Desired Range	Designed Voltage	Actual Voltage
0 ± 1 NTU	3.342 ± 0.054 V	3.300 ± 0.004 V (Railed)
430 ± 1 NTU	0.172 ± 0.052 V	1.94 ± 0.79 V

Figure 1: Sample at 194 NTU. This is more turbid than seawater yet still rails our circuit.

Circuit Design: Pressure

Desired Range	Designed Voltage	Actual Voltage
0.0 ± 0.01 m	0.264 ± 0.024 V	0.1448 ± 0.0019 V
2.0 ± 0.01 m	3.34 ± 0.025 V	2.9714 ± 0.0022 V

Pressure Re-calibration

- Change in:
 - Elevation
 - Water density
- Higher uncertainty
 - Careful measurement was impractical

Software Modifications (Depth PI Control)

- Even with careful ballasting, error was ≈ .1m for P control
- PI control has longer settling time, so data acquisition periods were longer at Dana Point

Data Collection: Procedure

- Manually deployed and recovered robot near buoy
- Deployer remained nearby to divert beach-goers

Deployment location within 5 ft radius of 33.462390, -117.705245

Data Analysis

Statistical Analysis

- Analysis of variance tests used to compare mean temperatures
 - ANOVA
 - Kruskal-Wallace

- Temperature compared over course of deployment
- Temperature at a certain depth compared across deployments

Suggestions for Further Study

- Re-design turbidity amplification circuit
- Implement full PID control
- Locate and fix the source of noise when vertical motors turn on
- Accurate pressure calibration at Dana Point
- Larger data set multiple days

Questions?

FFT

Fourier Transform Filtering

Turbidity Railing

qq plot for normal distribution

