Projekt, Inteligencja Obliczeniowa

Operacje na tekście na przykładzie analizy piosenek

Marta Leszczyńska, nr indeksu 234325 Informatyka II, niestacjonarne

1. Wybór i przygotowanie danych do dalszej analizy

Baza danych, na której przeprowadzona została niniejsza analiza tekstu, pochodzi kaggle.com: 55000+ Song Lyrics . Dane zostały pozyskane za pomocą metody web - scraping'u. Pierwotna baza zawierała ponad 55000 rekordów (piosenek) pogrupowanych alfabetycznie według zespołów. Baza została przeze mnie podzielona na pliki .csv o długościach po 1 000 rekordów, z czego do niniejszego projektu wykorzystano i przetworzono 14 plików po 1000 rekordów. Wyniki zaprezentowane w dalszych częściach projektu to przykłady analizy poszczególnych autorów i ich piosenek.

Pierwszym krokiem było pogrupowanie piosenek względem zespołów, co zostało zrealizowane automatycznie w języku Python, podobnie jak reszta operacji. Następnie, otrzymane wyniki zostały poddane tokenizacji oraz lemmatyzacji, przy pomocy pakietu NLTK. Na potrzeby innych operacji, pliki zostały również poddane łączeniu piosenek dla zespołów.

Na każdym etapie obróbki danych należało zapisać wyniki do pliku .pkl, z uwagi na długi czas wykonywania poszczególnych operacji. Długi czas przetwarzania wynikał z iterowania słowo po słowie każdej piosenki każdego zespołu.

```
get_data(filepath):
   data = []
   file = open(filepath)
   csv_file = csv.reader(file)
   for row in csv_file:
       data.append(row)
   return data
def get_artists_dict(data):
   dict = {}
for row in data:
       dict[row[index_artist]] = []
    for row in data:
       dict[row[index_artist]].append(row[index_text])
   return dict
def save_object_to_file(object, name):
   with open(objects_repo_location + name, 'wb') as file:
       pickle.dump(object, file, pickle.HIGHEST_PROTOCOL)
def load_object(name):
   with open(objects_repo_location + name, 'rb') as file:
       return pickle.load(file)
```

Metody przetwarzania, zapisu do pliku .pkl i jego odczytu

```
def tokenize_dict(dict_to_tokenize):
    tokenized_dict = {}
for key, value in dict_to_tokenize.items():
        song_texts_list_for_one_artist = value
        artist_name = key
        tokenized_texts_list_for_one_artist = []
        for song_text in song_texts_list_for_one_artist:
    song_text_without_line_breaks = song_text.replace("\n", " ")
             tokenized_text = word_tokenize(song_text_without_line_breaks)
             tokenized_texts_list_for_one_artist.append(tokenized_text)
        tokenized_dict[artist_name] = tokenized_texts_list_for_one_artist
    return tokenized_dict
def lemmatize_dict(tokenized_dict):
    lem = WordNetLemmatizer()
   lemmatized_dict = {}
for key, value in tokenized_dict.items():
        tokenized_songs = value
        artist_name = key
        lemmatized_song_texts = []
        for tokenized_song in tokenized_songs:
             lemmatized_song = [lem.lemmatize(word, get_wordnet_pos(word)) for word in tokenized_song]
             lemmatized_song_texts.append(lemmatized_song)
        lemmatized_dict[artist_name] = lemmatized_song_texts
    return lemmatized_dict
```

Metody tokenizacji i lemmatyzacji

2. Chmury najczęstszych słów

Dla każdego artysty dokonano analizy najczęściej używanych słów i zwizualizowano wyniki jako chmury tych słów. Użyto do tego pakietu WordCloud.

```
yeahblue in know time well back please back please
```

Chmura najczęstszych słów zespołu The Betles

Chmura najczęstszych słów Michael'a Jackson'a

Metoda tworząca chmury słów i zapisująca je do pliku

3. Podobieństwo zespołów

Do określenia podobieństw między zespołami wykorzystano podobieństwo cosinusowe. Przykładowy graf został stworzony przy pomocy paczki networkx. Jako węzły podano nazwy zespołów, natomiast miara podobieństwa cosinusowego podano jako wagę połączenia.

Graf podobieństwa dla wybranych zespołów

```
get_cosine_similarity(tokenized_filtered_text1, tokenized_filtered_text2):
text1 = []
text2 = []
text1_tokenized = word_tokenize(tokenized_filtered_text1)
text2_tokenized = word_tokenize(tokenized_filtered_text2)
sw = stopwords.words('english')
\label{eq:text1_set} \begin{array}{l} \texttt{text1\_set} = \{ \texttt{w} \text{ for w in text1\_tokenized if } \underbrace{\texttt{mot}}_{\texttt{w}} \texttt{w in sw} \} \\ \texttt{text2\_set} = \{ \texttt{w} \text{ for w in text2\_tokenized if } \underbrace{\texttt{mot}}_{\texttt{w}} \texttt{w in sw} \} \\ \end{array}
rvector = text1_set.union(text2_set)
 for w in rvector:
      if w in text1_set:
            text1.append(1) # create a vector
            text1.append(0)
            text2.append(1)
             text2.append(0)
for i in range(len(rvector)):
    c += text1[i] * text2[i]
cosine = c / float((sum(text1) * sum(text2)) ** 0.5)
return cosine
```

Metoda obliczająca podobieństwo cosinusowe

4. Wydobywanie tematu piosenek

Do wydobywania tematów piosenek użyto pakietu gensim. Za jego pomocą zbudowany został model LdaModel, który szukał 5 tematów w zdaniach. Dzięki wynikom możemy domyślić się, o czym jest sana piosenka, nie czytając/słuchając jej.

```
Foreigner, Mointain of love:

('0.161*"honey" + 0.057*"touch" + 0.057*"baby" + 0.055*"feel" + 0.031*"pretendin"')

('0.139*"high" + 0.095*"little" + 0.072*"build" + 0.050*"edge" + 0.050*"\'cause"')

('0.268*"love" + 0.255*"mountain" + 0.056*"climb" + 0.042*"risin"+ 0.068*"good")

Gloria Estefan, Along came you:

('0.241*"love" + 0.156*"baby" + 0.139*"come" + 0.088*"yes" + 0.037*"certain"')

('0.168*"along" + 0.127*"oh" + 0.127*"thula" + 0.066*"show" + 0.045*"angel"')

('0.240*"know" + 0.124*"knew" + 0.047*"apart" + 0.047*"live" + 0.047*"look"')

Glee, Away in a manger

('0.175*"directions" + 0.092*"love" + 0.092*"kitty" + 0.050*"baby" + 0.050*"bed"')

('0.208*"lord" + 0.088*"sky" + 0.088*"stay" + 0.048*"morning" + 0.048*"cattle"')

('0.140*"new" + 0.107*"little" + 0.073*"look" + 0.040*"head" + 0.040*"hay"')
```

Porównanie tematów wybranych piosenek

Możemy zauważyć, że zarówno piosenka zespołu Foreigner, Glorii Estefan oraz Glee, są o miłości.

```
Gloria Estefan, Bad Boy:

('0.100*"drive" + 0.100*"right" + 0.100*"heart" + 0.100*"oh" + 0.100*"phone"')

('0.641*"boy" + 0.107*"nothin" + 0.072*"good" + 0.038*"go" + 0.021*"night"'),

('0.632*"bad" + 0.052*"breathless" + 0.052*"gettin" + 0.052*"always" + 0.052*"restless"')

Glee, Cool:

('0.356*"cool" + 0.096*"easy" + 0.096*"loose" + 0.096*"breeze" + 0.052*"take"'),

('0.169*"got" + 0.092*"school" + 0.092*"coolie" + 0.092*"like" + 0.092*"high"')

('0.423*"boy" + 0.121*"crazy" + 0.051*"buzz" + 0.051*"get" + 0.051*"turn"')
```

Porównanie tematów wybranych piosenek

Natomiast powyższe dwie piosenki dotyczą młodości, spontaniczności.

```
def get_main_topics(dict_to_check):
    topics_dict = {}
    for key, value in dict_to_check.items():
        artist = key
        songs = value
        songs_topic_list = []
    for song in songs:
        song1 = [d.split() for d in song1]
        dictionary = corpora.Dictionary(song1)
        corpus = [dictionary.doc2bow(text) for text in song1]
        ldamodel = gensim.models.ldamodel.tdaModel(corpus, num_topics=NUM_TOPICS, id2word=dictionary, passes=15)
        topics = ldamodel.print_topics(num_words=5)
        songs_topic_list.append(songs.index(song))
        songs_topic_list.append(topics)
        topics_dict[artist] = songs_topic_list
    return topics_dict
```

Metoda szukania tematów w tekście

5. Prawo Zipfa

Ostatnią analizą przeprowadzoną na piosenkach jest sprawdzenie, czy zachodzi w nich prawo Zipfa. Prawo to głosi, że ranga słowa i częstotliwość jego występowania pomnożone przez siebie, powinny stanowić constans. Patrząc na poniższe wyniki można zauważyć, że odchylenia między poszczególnymi słowami jest dosyć spore.

Rank Word	Actual Freq	Zipf Frac	Zipf Freq	Actual Diff	Pct Diff
1 know	104	1/1	104.00	0.00	100.00%
2 come	87	1/2	52.00	35.00	167.31%
3 yeah	85	1/3	34.67	50.33	245.19%
4 love	751	1/4	26.00	49.00	288.46%
5 never	67	1/5	20.80	46.20	322.12%
6 want	62	1/6	17.33	44.67	357.69%
7 could	621	1/7	14.86	47.14	417.31%
8 like	52	1/8	13.00	39.00	400.00%
9 time	48	1/9	11.56	36.44	415.38%
10 when	1 421	1/10	10.40	31.60	403.85%
11 life	42	1/11	9.45	32.55	444.23%
12 ever	41	1/12	8.67	32.33	473.08%
13 lost	41	1/13	8.00	33.00	512.50%
14 world	38	1/14	7.43	30.57	511.54%
15 feel	38	1/15	6.93	31.07	548.08%
16 always	38	1/16	6.50	31.50	584.62%
17 light	34	1/17	6.12	27.88	555.77%
18 every	34	1/18	5.78	28.22	588.46%
19 what	34	1/19	5.47	28.53	621.15%
20 cause	33	1/20	5.20		634.62%
21 rain	33	1/21	4.95	28.05	666.35%
22 nothing	32	1/22	4.73		
23 find	l 301	1/23	4.52		
24 that	301	1/24	4.33		
25 would	29	1/25	4.16		
l 26 leyes	29	1/26	4.00		
27 right	28	1/27	3.85		
28 going	28	1/28	3.71		
29 everythin		1/29	3.59		
30 just	28	1/30	3.47		
31 arms	27	1/31	3.35		
32 maybe	26	1/32	3.25		
33 live	25	1/33	3.15		
34 feeling	25	1/34	3.06		
35 away	24	1/35	2.97		
36 back	24	1/36	2.89		
37 hear	23	1/37	2.81		
38 sing	22	1/38	2.74		
39 good	22	1/39	2.67		
40 came	22	1/40	2.60		
41 around 42 things	21	1/41	2.54		
	21	1/42	2.48		
43 water 44 look	21	1/43	2.42		
44 look	21	1/44	2.36	18.64	888.46%

Prawo Zipfa dla zespołu Coldplay

Rank	Word	Actual Freq	Zipf Frac	Zipf Freq	Actual Diff	Pct Diff
1 nev		57				100.00%
2 hel		43				150.88%
3 tak		42		19.00		221.05%
4 uni		40		14.25		
5 lov		39		11.40		342.11%
6 kno		35		9.50		368.42%
7 nig		32		8.14		392.98%
8 las		32		7.12		449.12%
10 blo		31 29		6.33 5.70		489.47%
11100		28		5.18		540.35%
12 wan		26		4.75		547.37%
13 tim		25		4.38		570.18%
14 aro		24		4.07		589.47%
15 sin		24		3.80		
16 ros		24		3.56		673.68%
17 sta	ind	23	1/17	3.35	19.65	685.96%
18 sum	mer	21		3.17	17.83	663.16%
19 giv	re	20	1/19	3.00	17.00	666.67%
20 ins	ide	20	1/20	2.85	17.15	701.75%
21 tha		20		2.71		736.84%
22 awa		19		2.59	16.41	733.33%
23 lif		19		2.48		766.67%
24 fal		19		2.38		
25 whe		18		2.28		789.47%
26 sta		17		2.19		775.44%
27 han		17		2.11		805.26%
28 eye		16		2.04		785.96%
29 fir 30 hea		16 16		1.97 1.90		814.04%
30 fiea		16		1.84		870.18%
32 ben		16		1.78		898.25%
33 cau		16		1.73		926.32%
34 wor		15		1.68		894.74%
35 eve		15		1.63		
36 sai		15		1.58		947.37%
37 fee		15		1.54		973.68%
38 fea	r	14		1.50		933.33%
39 lig	ht	14	1/39	1.46	12.54	957.89%
40 wit	h	14		1.43	12.57	982.46%
41 dea	th	14	1/41	1.39	12.61	1007.02%
42 sav	age	14	1/42	1.36	12.64	1031.58%
43 wha		13		1.33		980.70%
44 bet		13		1.30		1003.51%
45 nea	r	13	1/45	1.27	11.73	1026.32%

Prawo Zipfa dla zespołu Judas Priest

Przykład analizy prawa Zipfa: weźmy zespół Coldplay, jego 10, 20 oraz 30 słowo w rankingu.

Wynik równania Estoupa - Zipfa:

Dla 10 słowa: 10 * 42 = 420 Dla 20 słowa: 20 * 33 = 660 Dla 30 słowa: 30 * 28 = 840

Wynik równania dla wszystkich powyższych powinien być taki sam, natomiast różnica między wynikami jest spora.

Rank Word	Actual Freq	Zipf Frac	Zipf Freq	Actual Diff Pct Diff
1 aaaahh	48		48.00	
2 know	47		24.00	
3 love	45		16.00	
4 like	40		12.00	
5 never	36		9.60	
6 need	341		8.00	
7 time	34		6.86	
8 feel	33		6.00	
9 woman	33		5.33	
10 take	32	1/10	4.80	
11 hand	29		4.36	
12 long	1 26		4.00	
13 alone	25		3.69	
14 life	25		3.43	
15 back	24	1/15	3.20	
16 aahh	24		3.00	
17 mind	23		2.82	
18 right	22		2.67	
19 nothing	22		2.53	
20 hard	22		2.40	
21 make	21		2.29	
22 good	21		2.18	
23 there	21		2.09	
24 tell	20		2.00	
25 really	18		1.92	
26 could	18		1.85	
27 baby	18		1.78	
28 hell	18	1/28	1.71	
29 lady	18		1.66	
30 hear	17		1.60	
31 lover	17		1.55	
32 find	17	1/32	1.50	
33 anya	16	1/33	1.45	
34 that	16		1.41	
35 when	16		1.37	
36 night	16		1.33	
37 want	16		1.30	
38 well	16		1.26	
39 touch	16	1/39	1.23	
40 0000000	16	1/40	1.20	14.80 1333.33%
41 hush	16	1/41	1.17	14.83 1366.67%
42 heart	15	1/42	1.14	13.86 1312.50%
43 thing	15	1/43	1.12	13.88 1343.75%

Prawo Zipfa dla zespołu Deep Purple

Jedna z metod obliczających zgodność z prawem Zipfa