Lab 1: For Ungrouped Data

Enter the following values in SPSS and calculate mean, s.d, ranges, mode, median.

Weights: 25, 35, 45, 55, 65, 75

Basic Steps for SPSS

1. Select Analyze ->Descriptive statistics ->Descriptives

2. Click the Descriptives-> Move Midvalue into Variable(s).

3. Click the Option. select Mean, s.d, ranges, mode, median

4. Click Ok

Working Expression:

1. Mean: Mean= Sum of all values divided by the number of values

Mean= $\sum x/n$

2. **Median:** Arrange the data in ascending order.

If n is odd: Median=Middle value

If n is even: Median=(Middle two values sum)/2

3. Standard Deviation: Square root of the average of squared differences from the mean

$$\sigma = \sqrt{rac{\sum (x_i - \mu)^2}{N}}$$

4. Range: Range=Maximum value - Minimum value

Output:

Weights

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	25.00	1	14.3	16.7	16.7
	35.00	1	14.3	16.7	33.3
	45.00	1	14.3	16.7	50.0
	55.00	1	14.3	16.7	66.7
	65.00	1	14.3	16.7	83.3
	75.00	1	14.3	16.7	100.0
	Total	6	85.7	100.0	
Missing	System	1	14.3		

100.0

Statistics

Weights

N	Valid	6
	Missing	1
Mean		50.0000
Median		50.0000
Mode		25.00 ^a
Std. Dev	viation	18.70829
Range		50.00

a. Multiple modes exist. The smallest value is shown

Interpretation:

- 1. Mean=50, mean the average value of weights is 50.
- 2. Median= 50, means the 50% of the wight is above 50 and 50% is below 50.
- 3. Mode=25, means the majority of times the weight is 25.
- 4. Std Deviation=18.708, means 18.708 is the average dispersion from mean.
- 5. Range= 50, means the difference between highest and lowest weight is 50.

Lab 2: For Ungrouped Data

Enter the following values in SPSS and calculate mean, s.d., ranges, mode, median.

Weight	Midvalue	Frequency
20-30	25	4
30-40	35	6
40-50	45	7
50-60	55	21
60-70	65	23
70-80	75	2

Basic Steps:

- 1. Enter the Data Editor Window.
- 2. Select Data-> Weight Cases.
- 3. Move Frequency into Frequency Variable.
- 4. Click Ok. select Analyze -> Descriptive statistics-> Frequencies
- 5. Click the frequencies-> Move Midvalue into Variable(s)
- 6. Click the Statistics. select Mean.
- 7. Click continue. Click ok.

Working Expression:

- 1. **Mean:** Mean= Sum of all values divided by the number of values Mean= $\sum x/n$
- 2. **Median:** Arrange the data in ascending order.

If n is odd: Median=Middle value

If n is even: Median=(Middle two values sum)/2

3. Standard Deviation: Square root of the average of squared differences from the mean

$$\sigma = \sqrt{rac{\sum (x_i - \mu)^2}{N}}$$

4. Range: Range=Maximum value - Minimum value

midvalue

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	25.00	1	16.7	16.7	16.7
	35.00	1	16.7	16.7	33.3
	45.00	1	16.7	16.7	50.0
	55.00	1	16.7	16.7	66.7
	65.00	1	16.7	16.7	83.3
	75.00	1	16.7	16.7	100.0
	Total	6	100.0	100.0	

Statistics

		midvalue	frequency
N	Valid	6	6
	Missing	0	0
Mean		50.0000	10.5000
Media	n	50.0000	6.5000
Mode		25.00 ^a	2.00^{a}
Std. D	eviation	18.70829	9.09395
Range		50.00	21.00

a. Multiple modes exist. The smallest value is shown

frequency

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	2.00	1	16.7	16.7	16.7
	4.00	1	16.7	16.7	33.3

6.00	1	16.7	16.7	50.0
7.00	1	16.7	16.7	66.7
21.00	1	16.7	16.7	83.3
23.00	1	16.7	16.7	100.0
Total	6	100.0	100.0	

Interpretation.

For Mid-value.

- 1. Mean=50, mean the average value of weights is 50.
- 2. Median= 50, means the 50% of the wight is above 50 and 50% is below 50.
- 3. Mode=25, means the majority of times the weight is 25.
- 4. Std Deviation=18.708, means 18.708 is the average dispersion from mean.
- 5. Range= 50, means the difference between highest and lowest weight is 50.

For Frequency.

- 1. Mean=10.5, mean the average value of weights is 10.5.
- 2. Median= 6.50, means the 50% of the wight is above 6.50 and 50% is below 6.50.
- 3. Mode=2, means the majority of times the weight is 2.
- 4. Std Deviation=9.093, means 9.093 is the average dispersion from mean.
- 5. Range= 21, means the difference between highest and lowest weight is 21.

Lab 3: Confidence Interval for Population Mean μ,(σ² Unknown and large n)

Enter the following values in SPSS and create a confidence interval assuming normal distribution:

Length: 125, 120, 121, 123, 122, 130, 124, 122, 120, 122, 118, 119, 123, 124, 122, 124, 121, 122, 138, 149, 123, 128, 122, 130, 120, 122, 124, 134, 137, 128, 122, 121, 125, 120, 132, 130, 128, 130, 122, 124.

Basic Steps for SPSS

- 1. Enter the data.
- 2. Select Analyze -> Compare Means-> One sample T test.
- 3. Click Options-> Type % (90, 95, 99) confidence interval
- 4. Click on Continue and then Click OK.

Working Expression

95%

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Length	40	125.2750	6.14770	.97204

One-Sample Test

Test Value = 0

					95% Confidence Difference	Interval of the
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
Length	128.879	39	.000	125.27500	123.3089	127.2411

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Length	40	125.2750	6.14770	.97204

One-Sample Test

Test Value = 0

				Mean	90% Confidence Difference	e Interval of the
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
Length	128.879	39	.000	125.27500	123.6372	126.9128

99%

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Length	40	125.2750	6.14770	.97204

One-Sample Test

Test Value = 0

				Mean	99% Confidence Interval of the Difference	
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
Length	128.879	39	.000	125.27500	122.6428	127.9072

Interpretation:

- 1. For 95% confidence level confidence interval is (123.3089, 127.2411).
- 2. For 90% confidence level confidence interval is (123.6372, 126.9128).
- 3. For 99% confidence level confidence interval is (122.6428, 127.9072).

LAB 4: Testing of Hypothesis

The following values are the lengths of 40 steel rods selected for lab test from a factory.

Length: 125, 120, 121, 123, 122, 130, 124, 122, 120, 122, 118, 119,

123, 124, 122, 124, 121, 122, 138, 149, 123, 128, 122, 130, 120, 122,

124, 134, 137, 128, 122, 121, 125, 120, 132, 130, 128, 130, 122, 124.

Test whether this sample of size 40 has come from a population whose mean length is 125 cm.

Basic Steps in SPSS

- 1. Enter the data in the data editor.
- 2. Select Analyze ->Compare Means-> One sample T test. Type in Test Value box.
- 3. Click Options-> Type 95 in confidence interval percentages box.
- 4. Click on Continue and then Ok.

Working Expression:

We wish to test the hypothesis that the samples differ significantly from a hypothesized population mean height of 125 cm. So, we have

Step 1: Null Hypothesis(H_0): $\mu = 125$

i.e. There is no difference between sample mean and population mean.

Step 2: Alternate Hypothesis(H₁): $\mu \neq 125$

i.e. There is significant difference between sample mean and population mean.

Step3: Test statistics

Under H₀ Test statistics is given by,

p- value of test statistics (sig. (2-tailed)) = 0.00, compared to α = 0.05.

Step4: Decision and Conclusion

 $P < \alpha$, accept H_1 and reject H_0 .

Conclusion: There is significant difference between sample mean and population mean.

Output:

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Length	40	125.2750	6.14770	.97204

One-Sample Test

Test Value = 0

					95% Confidence Interval of the Difference			
	t	df	Sig. (2-tailed)	Difference	Lower	Upper		
Length	128.879	39	.000	125.27500	123.3089	127.2411		

Interpretation: There is significant difference between sample mean and population mean.

Lab 5: Hypothesis Testing between two population Means for Matched Paired Samples

The sales of a product of a company after and before advertisement are as follows: Is advertisement effective at 5 %?

Month	1	2	3	4	5	6
Before X	120	140	160	140	180	190
After Y	200	210	150	200	220	240

Basic steps in SPSS

1.Enter the data into Data Editor

2. Select Analyze-> Compare Means -> Paired- Samples T test.

3. Click Options-> Continue-> Ok.

Working expression:

Step 1: Null Hypothesis(H₀): $\mu x = \mu y$

I.e There is no difference between before and after.

Step 2: Alternate Hypothesis(H₁): $\mu x < \mu y$

I.e There is significant difference between before and after.

Step3: Test statistics

Under H₀ Test statistics is given by,

Tcal=0.465

p- value of test statistics (sig. (2-tailed)) = 0.00, compared to α = 0.05.

Step4: Decision and Conclusion

 $P < \alpha$, accept H_1 and reject H_0 .

Conclusion: There is significant difference between sample mean and population mean.

Output:

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	BeforeX	155.0000	6	26.64583	10.87811
	AfterY	203.3333	6	30.11091	12.29273

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	BeforeX & AfterY	6	.374	.465

Paired Samples Test

Paired Differences								
	Mean	Std. Deviation	Std. Error Mean	95% Confi Interval of Difference Lower		t	df	Sig. (2-tailed)
Pair 1BeforeX - AfterY	- 48.3333 3	31.88521	13.01708	-81.79481	-14.87186	-3.713	5	.014

Interpretation: There is significant difference between sample mean and population mean.

Lab 6: Hypothesis Testing When raw data for Independent Samples is given

The monthly advertising cost of a company for two products X and Y were as follows during 6-month period:

Is there sufficient evidence to conclude that average cost on advertising on product Y is more than on product X.

Month	1	2	3	4	5	6	7
Cost I (X)	220	240	160	240	280	290	-
Cost II (Y)	100	110	150	100	120	140	145

Basic Steps for SPSS

- 1. Enter the data into Data editor.
- 2. Select Analyze -> Compare means -> Independent samples T Test
- 3. Move value into Test variable(s) and type into grouping variable
- 4. Click Define groups and type 1 and 2 into group 2
- 5. Click Options-> Continue ->Ok.

Working Expression:

Step 1: Null Hypothesis(H₀): μ 1 = μ 2

i.e. There is no significant difference between population mean of two group.

Step 2: Alternate Hypothesis(H₁): $\mu 1 < \mu 2$

i.e. There is significant difference between population mean of two group.

Step3: Test statistics

Under H₀ Test statistics is given by,

Tcal=5.862

Step4: Critical Value

For $\alpha=5\%$ level of significance and (n1+n2-2) degree of freedom

Ttab= 1.796

Step4: Decision and Conclusion

Ttab<Tcal, accept H₁ and reject H₀.

Conclusion: There is significant difference between population mean of two groups.

Output:

Group Statistics

	group	N	Mean	Std. Deviation	Std. Error Mean
cost	1.00	6	238.3333	46.65476	19.04673
	2.00	7	123.5714	21.35304	8.07069

Independent Samples Test

		Levene's Equality of Variances	of	t-test f	or Equa	ality of M	eans			
		F	Sig.	t	df	Sig. (2-tailed)	Mean Differenc e	Std. Error Differenc		f +10 0
cost	Equal variances assumed	1.357	.269	5.862	11	.000	114.7619 0	19.57600	71.67541	157.8484 0
	Equal variances not assumed			5.548	6.775	.001	114.7619 0	20.68608	65.51535	164.0084 6

Independent Samples Effect Sizes

				95% Confidence Interval		
		Standardizer ^a	Point Estimate	Lower	Upper	
cost	Cohen's d	35.18658	3.262	1.502	4.964	
	Hedges' correction	37.83666	3.033	1.396	4.617	
	Glass's delta	21.35304	5.374	2.213	8.512	

a. The denominator used in estimating the effect sizes.

Cohen's d uses the pooled standard deviation.

Hedges' correction uses the pooled standard deviation, plus a correction factor.

Glass's delta uses the sample standard deviation of the control group.

Interpretation: There is significant difference between population mean of two groups.

Lab 7: Run Test

Test at 0.05 level of significance level whether the sequence is random.

Basic Steps for SPSS:

- 1.Enter the data in data editor window.
- 2. Analyze/ Nonparametric test / Legacy Dialogs / Runs
- 3. Click Options Select Descriptive and continue
- 4. Click OK

Working Expression:

Step 1: Null Hypothesis(H₀):

I.e. Sample observation is random.

Step 2: Alternate Hypothesis(H₁): $\mu 1 < \mu 2$

I.e. Sample observation is not random.

Step3: Test statistics:

Under H₀ Test statistics is given by,

Number of runs(R)=22

Number of head(n1)=14

Number of tails(n2)=16

Step 4: Critical value

For α = 0.05 level of significance, n1=16 and n2=14 tabulated value is

Rtab = (10,22)

Step4: Decision and Conclusion

 $R=22 \in (10,22)$, accept H0 and reject H1.

Conclusion: Sample observation is random.

Output:

Descriptive Statistics

	N	Mean	Std. Deviation	Minimum	Maximum
Runs	30	10.9333	6.32964	1.00	22.00

Runs Test

	Runs
Test Value ^a	10.50
Cases < Test Value	15
Cases >= Test Value	15
Total Cases	30
Number of Runs	2
Z	-5.017
Asymp. Sig. (2-tailed)	.000

Interpretation: Sample observation is random.

Lab 8: Binomial Test

Test whether the coin is unbiased from following observations.

Tail Head Head Tail Head Tail Head Head Tail

Tail Tail Head Tail Tail Tail Head Tail Tail Tail

Tail Head Tail Tail Head Tail Head Tail Tail

Basic Steps in SPSS

- 1.Enter the data in data editor window.
- 2. Analyze/ Nonparametric test / Legacy Dialogs / Binomial test
- 3. Click Options Select Descriptive and continue
- 4. Click OK

Working Expression:

Step 1: Null Hypothesis(H₀): P=1/2

I.e. Head and Tails are equally likely.

Step 2: Alternate Hypothesis(H₁): $P \neq 1/2$

I.e. Head and Tails are not equally likely.

Step3: Test statistics

Under H₀ Test statistics is given by,

Number of Toss(n)=50

Number of head(n1)=20

Number of tails(n2)=30

Step 4: Critical value

Pvalue=0.203

Step4: Decision and Conclusion

Since Pvalue = 0.203>0.05, accept H0 and reject H1.

Conclusion: Heads and tails are equally likely.

Output:

Binomial Test

		Category	N	Observed Prop.	Test Prop.	Exact Sig. (2-tailed)
Toss	Group 1	Tail	30	.60	.50	.203
	Group 2	Head	20	.40		
	Total		50	1.00		

Interpretation: Heads and tails are equally likely.

Lab 9: One Sample K-S Test

The number of disease infected tomato plants in 10 different plots of equal size are given below. Test whether the disease infected plants are uniformly distributed over the entire area use Kolmogorov Smirnov Test.

Plot no.	1	2	3	4	5	6	7	8	9	10
No. of infected plants	8	10	9	12	15	7	5	12	13	9

Basic Steps in SPSS

- 1. Start the SPSS program. In the Data editor window, type in the data.
- 2. Select Analyze-> Nonparametric tests-> Legacy Dialogs-> 1-Samples K-S.
- 3. Move X into Test Variable List. Then, Click OK.

Working Expression:

Step 1: Null Hypothesis(H₀): $F_e(x) = F_0(x)$

I.e. disease infected plants are uniformly distributed over the entire area.

Step 2: Alternate Hypothesis(H₁): $F_e(x) \neq F_0(x)$

I.e. disease infected plants are not uniformly distributed over the entire area.

Step3: Test statistics:

Under H₀ Test statistics is given by,

Number of Toss(n)=50

Number of head(n1)=20

Number of tails(n2)=30

Step 4: Critical value

Pvalue=0.200

Step4: Decision and Conclusion

Since Pvalue = 0.200>0.05, accept H0 and reject H1.

Conclusion: Disease infected plants are uniformly distributed over the entire area.

Output:

One-Sample Kolmogorov-Smirnov Test

		Noofinfectedpla nts
N		10
Normal Parameters ^{a,b}	Mean	10.0000
	Std. Deviation	3.01846
Most Extreme Differences	Absolute	.146
	Positive	.130
	Negative	146
Test Statistic		.146
Asymp. Sig. (2-tailed) ^c		.200 ^d
Monte Carlo Sig. (2-	Sig.	.786
tailed) ^e	99% Confidence Interval Lower Bound	.775
	Upper Bound	.796

a. Test distribution is Normal.

Interpretation: Disease infected plants are uniformly distributed over the entire area.

Lab 10: Mann - Whitney U Test

Test the hypothesis of no difference between the ages of male and female employees of a certain company, using the Mann- Whitney U test for the samples data below. Use $\alpha = 0.01$

Male 35 43 26 44 40 42 33 38 25 26

Female: 30 41 34 31 36 32 25 47 28 24

Basic Steps in SPSS:

- 1. Go to Analyze \rightarrow Nonparametric Tests \rightarrow Legacy Dialogs \rightarrow 2 Independent Samples.
- 2. In the **Two-Independent-Samples Tests** dialog box:
 - Move Age to the Test Variable List.
 - Move Gender to the Grouping Variable box.
 - Click **Define Groups** and enter:
 - Group 1: 1 (Male)
 - Group 2: 2 (Female)
 - Ensure Mann-Whitney U is checked.
- 3. Click OK.

Working Expression:

Step 1: Null Hypothesis(H₀):

I.e. There is no difference in age distributions between male and female employees.

Step 2: Alternate Hypothesis(H_1):

I.e. There is a difference in age distributions between male and female employees.

Step3: Test statistics:

Under H₀ Test statistics is given by,

Mann-Whitney U = 42

Wilcoxon W = 97

Z = -0.605

Asymp. Sig. (2-tailed) = 0.545

Step 4: Critical value

For $\alpha = 0.01$ and n1=10 and n2=10

Pvalue=0.545

Step 5: Decision and Conclusion

Since Pvalue = 0.545 > 0.01, accept H0 and reject H1.

Conclusion: There is no difference in age distributions between male and female employees.

Output:

Ranks

	gender	N	Mean Rank	Sum of Ranks
age	male	10	11.30	113.00
	female	10	9.70	97.00
	Total	20		

Test Statistics^a

	age
Mann-Whitney U	42.000
Wilcoxon W	97.000
Z	605
Asymp. Sig. (2-tailed)	.545
Exact Sig. [2*(1-tailed Sig.)]	.579b

a. Grouping Variable: gender

b. Not corrected for ties.

Interpretation: There is no difference in age distributions between male and female employees.

Lab 11: Mann - Whitney U Test

The following are the scores which random samples of students from 2 minority groups obtained on a current event test:

Groups I:73 82 39 68 91 75 89 67 50 86 57 65

Groups II: 51 42 36 53 88 59 49 66 25 64 18 76

Use Mann - Whitney U test at the 0.05 level of sig. to test whether or not students from the two minority groups can be expected to score equally well on the test.

Basic Steps in SPSS:

- 1. Go to Analyze \rightarrow Nonparametric Tests \rightarrow Legacy Dialogs \rightarrow 2 Independent Samples.
- 2. In the **Two-Independent-Samples Tests** dialog box:
 - Move Score to the Test Variable List.
 - Move **Group** to the **Grouping Variable** box.
 - Click **Define Groups** and enter:
 - Group 1: 1 (group1)
 - Group 2: 2 (group2)
 - Ensure Mann-Whitney U is checked.
- 3. Click OK.

Working Expression:

Step 1: Null Hypothesis(H₀):

I.e. There is no difference in the distribution of test scores between Group I and Group II.

Step 2: Alternate Hypothesis(H_1):

I.e. There is difference in the distribution of test scores between Group I and Group II.

Step3: Test statistics:

Under H₀ Test statistics is given by,

Mann-Whitney U = 34

Wilcoxon W = 112

Z = -2.194

Asymp. Sig. (2-tailed) = 0.28

Step 4: Critical value

For $\alpha = 0.01$ and n1=12 and n2=12

Pvalue=0.28

Step 5: Decision and Conclusion

Since Pvalue = 0.28 > 0.01, accept H0 and reject H1.

Conclusion: There is no difference in the distribution of test scores between Group I and Group II.

Output:

Descriptive Statistics

	N	Mean	Std. Deviation	Minimum	Maximum
group	24	61.2083	20.04556	18.00	91.00
score	24	1.5000	.51075	1.00	2.00

Mann-Whitney Test

Ranks

	score	N	Mean Rank	Sum of Ranks
group	group1	12	15.67	188.00
	group2	12	9.33	112.00
	Total	24		

Test Statistics^a

	group
Mann-Whitney U	34.000
Wilcoxon W	112.000
Z	-2.194
Asymp. Sig. (2-tailed)	.028
Exact Sig. [2*(1-tailed Sig.)]	.028 ^b

a. Grouping Variable: score

b. Not corrected for ties.

Interpretation: There is no difference in the distribution of test scores between Group I and Group II.

Lab 12: Friedman Test

A survey was conducted in four hospitals in a particular city to obtain the number of babies born over a 12 months' period. This time period was divided into four seasons to test the hypothesis that the birth rate is constant over all the four seasons. The results of the survey were as follows:

Hospital	No Of Births			
	Winter	Spring	Summer	Fall
Α	92	72	94	77
В	15	16	10	17
С	58	71	51	62
D	19	26	20	18

Analyze the data using Friedman two ANOVA test.

Basic Steps in SPSS:

- 1. Start the SPSS program. In the Data Editor window, type in the data.(Hospital, and values {1, A.....} in hospital)
- 2. Select Analyze-> Nonparametric tests -> Legacy Dialogs -> K Related sample.
- 3. Click test variable and select test type.
- 4. Test type Friedman and Click OK.

Working Expression:

Step 1: Null Hypothesis(H₀):

I.e. There is no difference in the number of births across seasons (distributions are the same).

Step 2: Alternate Hypothesis(H_1):

I.e. There is a difference in the number of births across at least two seasons.

Step3: Test statistics:

Under H₀ Test statistics is given by,

N	4
Chi-Square	.900
df	3
Asymp. Sig.	.825

Step 4: Critical value

For $\alpha = 0.05$, N = number of blocks (hospitals) = 4, k = number of seasons = 4 p value is given by

Pvalue=0.825

Step 5: Decision and Conclusion

Since Pvalue = 0.825>0.05, accept H0 and reject H1.

Conclusion: There is no difference in the number of births across seasons.

Output:

Ranks

	Mean Rank
Winter	2.25
Spring	3.00
Summer	2.25
Fall	2.50

Test Statistics^a

N	4
Chi-Square	.900
df	3
Asymp. Sig.	.825

a. Friedman Test

Nonparametric Correlations

Correlations

			Х	у
Kendall's tau_b	Х	Correlation Coefficient	1.000	810 [*]
		Sig. (2-tailed)		.011
		N	7	7
	У	Correlation Coefficient	810 [*]	1.000
		Sig. (2-tailed)	.011	
		N	7	7
Spearman's rho	Х	Correlation Coefficient	1.000	929**
		Sig. (2-tailed)		.003
		N	7	7
	У	Correlation Coefficient	929**	1.000
		Sig. (2-tailed)	.003	
		N	7	7

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Interpretation: There is no difference in the number of births across seasons

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Lab 13: Median Test

a. Large Samples size

An IQ test was given to a randomly selected 15 male and 20 female students of a university. Their scores were recorded as follows;

male: 56 66 62 81 75 73 83 68 48 70 60 77 86 44 72

female: 63 77 65 71 74 60 76 61 67 72 64 65 55 89 45 53 68 73 50

Use median test to determine whether IQ of male and female students is same in the university.

Basic Steps in SPSS:

1. Start the SPSS program. In the Data Editor window, type in the data.(in scores and Gender)

- 2. Select Analyze-> Nonparametric tests -> Legacy Dialogs -> K -independent sample.
- 3. Defined Groups {Gender (1,2)}.
- 4. Click OK.

Working Expression:

Step 1: Null Hypothesis(H_0):

I.e. The median IQ of male and female students is the same.

Step 2: Alternate Hypothesis(H_1):

I.e. The median IQ of male and female students is not the same.

Step3: Test statistics:

Under H₀ Test statistics is given by,

Test Statistics^a

		Iqscore
N		34
Median		67.5000
Chi-Square		1.074
df		1
Asymp. Sig.		.300
Yates' Continuity Correction	Chi-Square	.477
	df	1
	Asymp. Sig.	.490

a. Grouping Variable: Gender

Step 4: Critical value

For $\alpha = 0.05$, N = number of blocks (hospitals) = 4, k = number of seasons = 4 p value is given by

Pvalue=0.825

Step 5: Decision and Conclusion

Since Pvalue = 0.825>0.05, accept H0 and reject H1.

Conclusion: There is no difference in the number of births across seasons.

Descriptive Statistics

	N	Mean	Std. Deviation	Minimum	Maximum
Iqscore	34	66.7353	11.22041	44.00	89.00
Gender	34	1.5588	.50399	1.00	2.00

Frequencies

Gender

		Male	Female
Iqscore	> Median	9	8
	<= Median	6	11

Test Statistics^a

		Iqscore
N		34
Median		67.5000
Chi-Square		1.074
df		1
Asymp. Sig.		.300
Yates' Continuity Correction	Chi-Square	.477
·	df	1
	Asymp. Sig.	.490

a. Grouping Variable: Gender

Correlations

		Х	у
Х	Pearson Correlation	1	929**
	Sig. (2-tailed)		.003
	N	7	7
у	Pearson Correlation	929**	1
	Sig. (2-tailed)	.003	
	N	7	7

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Interpretation: There is no difference in the number of births across seasons.

Lab 14: Simple Regression

Enter the following values in SPSS and find the regression equation of y on x:

X	1	2	3	4	5	6	7
Υ	6	7	5	4	3	1	2

Basic Steps in SPSS:

- 1. Enter X and Y values into SPSS.
- 2. Go to Analyze \rightarrow Regression \rightarrow Linear.
- 3. Move **X** to Independent(s) and **Y** to Dependent(s).
- 4. Click OK.

Output:

Coefficients

				Standardized		
		Unstandardize	ed Coefficients	Coefficients		
Mode	al .	В	Std. Error	Beta	t	Sig.
1	(Constant)	7.714	.742		10.392	.000
	X	929	.166	929	-5.594	.003

a. Dependent Variable: Y

Conclusion:

The computed regression equation is:

Y=7.714-0.929X

This means:

- Intercept $(b_0) = 7.714$
- Slope $(b_1) = -0.929$

This regression line represents the best linear fit for predicting Y based on X using least squares estimation.

Lab 15: Simple Correlation

Enter the following values in SPSS and find the correlation between X and Y:

X	1	2	3	4	5	6	7
Υ	6	7	5	4	3	1	2

Basic Steps in SPSS:

- 1. Enter the values for **X** and **Y**.
- 2. Go to Analyze \rightarrow Correlate \rightarrow Bivariate.
- 3. Move both **X** and **Y** into the Variables box.
- 4. Select the desired correlation method (e.g., Pearson, Kendall's tau-b, Spearman).
- 5. Click **OK** to view the correlation result.

Output:

Correlations

		Х	Y
X	Pearson Correlation	1	929**
	Sig. (2-tailed)		.003
	N	7	7
Υ	Pearson Correlation	929**	1
	Sig. (2-tailed)	.003	
	N	7	7

^{**.} Correlation is significant at the 0.01 level (2-tailed).

NONPAR CORR /VARIABLES=X Y /PRINT=BOTH TWOTAIL NOSIG FULL /MISSING=PAIRWISE.

Nonparametric Correlations

Correlations

			Х	Υ
Kendall's tau_b	X	Correlation Coefficient	1.000	810 [*]
		Sig. (2-tailed)		.011
		N	7	7
	Υ	Correlation Coefficient	810 [*]	1.000
		Sig. (2-tailed)	.011	
		N	7	7
Spearman's rho	X	Correlation Coefficient	1.000	929**
		Sig. (2-tailed)		.003
		N	7	7
	Y	Correlation Coefficient	929**	1.000
		Sig. (2-tailed)	.003	
		N	7	7

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Interpretation:

The Pearson correlation measures the linear relationship between two variables.

Using the formula or software (e.g., Excel, SPSS, Python), we get:

r≈-0.929

Interpretation of Pearson Result:

- Value: -0.929 (Very strong negative correlation)
- Meaning: As X increases, Y strongly decreases in a linear fashion.
- Strength: The correlation is very strong because the value is close to -1.
- Direction: It's negative, meaning there is an inverse relationship.

Spearman & Kendall (for ranked data)

If you're dealing with ordinal or non-normally distributed data, use:

- Spearman's rho: Also shows a strong negative correlation (~ -0.929).
- Kendall's tau-b: Slightly weaker in magnitude but still strongly negative (~ -0.81).

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Conclusion:

There is a **very strong negative correlation** between variables **X** and **Y**. As one increases, the other tends to decrease in a near-perfect linear pattern. This is evident both visually and statistically.