第一部分 选择题(每题4分,总共20分)

Part One Select one from the given four options (4 marks each question, in total 20 marks):

- 1. 若随机事件 A 与 B 相互独立,则 P(A∪B)=
 - A. P(A) + P(B)
 - B. P(A) + P(B) P(A)P(B)
 - C. P(A)P(B)
 - D. $P(\bar{A}) + P(\bar{B})$

Assume the events **A** and **B** are independent to each other, then $P(A \cup B) =$

- A. P(A) + P(B)
- B. P(A) + P(B) P(A)P(B)
- C. P(A)P(B)
- D. $P(\bar{A}) + P(\bar{B})$
- 2. 设F(x,y)是二维随机变量(X,Y)的分布函数,下面四个结论中错误的是:
 - A. $F(+\infty, +\infty) = 1$
 - B. $F(-\infty, -\infty) = 0$
 - C. $F(+\infty, y) = 1$
 - $D. \quad F(x, -\infty) = 0$

Assume F(x,y) is the distribution function of a two-dimensional random variable (X,Y), which conclusion is wrong:

- A. $F(+\infty, +\infty) = 1$
- B. $F(-\infty, -\infty) = 0$
- C. $F(+\infty, y) = 1$
- $D. \quad F(x, -\infty) = 0$
- 3. 设随机变量 $X \sim b(2,p), Y \sim b(3,p)$,若 $P(X \ge 1) = \frac{5}{9}$,则 $P(Y \ge 1) = \underline{\hspace{1cm}}$.

 - A. $\frac{8}{27}$ B. $\frac{19}{27}$ C. $\frac{5}{9}$ D. $\frac{4}{9}$.

Assume the random variables $X \sim b(2, p), Y \sim b(3, p)$. If $P(X \ge 1) = \frac{5}{9}$, $P(Y \ge 1)$

- A. $\frac{8}{27}$ B. $\frac{19}{27}$ C. $\frac{5}{9}$ D. $\frac{4}{9}$.

4. 设 X_i (i=1,2,3)为三个正态随机变量,且 $X_1 \sim N(0,1), X_2 \sim N(0,2^2), X_3 \sim N(5,3^2)$, 记 $p_i = P(-2 < X_i < 2), i = 1,2,3, 则______$

- A. $p_1 > p_2 > p_3$
- B. $p_3 > p_1 > p_2$
- C. $p_2 > p_1 > p_3$
- D. $p_1 > p_3 > p_2$.

Let X_i (i = 1, 2, 3) be three normal distributed random variables $X_1 \sim N(0,1), X_2 \sim N(0,2^2), X_3 \sim N(5,3^2)$. Let $p_i = P(-2 < X_i < 2), i = 1,2,3,$ then____

- A. $p_1 > p_2 > p_3$
- B. $p_3 > p_1 > p_2$
- C. $p_2 > p_1 > p_3$
- D. $p_1 > p_3 > p_2$.

5. 设 X 与 Y 为二随机变量,下面叙述正确的是

- A. 若 X 与 Y 均为一维正态随机变量 则(X, Y)是二维正态随机向量 ;
- 若 X 与 Y 均为一维均匀随机变量,则(X,Y)是二维均匀随机向量;
- $\Xi(X,Y)$ 是二维均匀随机向量,则X与Y均为一维均匀随机变量.

Let X and Y be two random variables, which statement of the following is true

If (X,Y) is a two-dimensional uniform distribution, X and Y are both one-dimensional uniform distributions

If X and Y are both one-dimensional normal distributions, (X,Y) is a bivariate normal distribution;

If X and Y are both one-dimensional uniform distributions, (X,Y) is a two-dimensional uniform distribution;

If (X,Y) is a bivariate normal distribution, X and Y are both onedimensional normal distributions;

第二部分 填空题 (每题 2 分,总共 20 分)

Part Two Fill in the boxes for each Question (2 marks each box, in total 20 marks)

1.	随机地把C, S, S, T, U五个字母排成一排 , 计算得到SUSTC的概率
	Line up five letters C, S, S, T, U randomly, the probability you get SUSTC is

Students A, B, C independently attend the mathematics resit examination at the
same time. The probability of their failure is 0.4, 0.3, 0.5. The probability that
exactly two students fail is If it is known that two out of three students fail,
the probability of student B fails is

3. 在一场五局三胜制的游戏中,双方每局的胜率分别是60%和40%,且每局之间相互独立。则游戏结束时每边至少赢了一局的概率是_____.

In the best three-out-of-five games, the probability that each side wins a game is 60%and40%respectively, and all games are independent. The probability that each side wins at least one game before the whole games end is _____.

4. 设事件A和B满足 $P(A) = P(B) = \frac{2}{3}$, $P(A \cup B) = 1$, 则 $P(\bar{A} \cup \bar{B}) = _____$. Suppose two events A and B satisfies $P(A) = P(B) = \frac{2}{3}$, $P(A \cup B) = 1$, then $P(\bar{A} \cup \bar{B}) = _____$.

5. 设随机变量 $X \sim EXP(\lambda)$ 服从指数分布。则 $P(4 > X > 3 | X > 2) = _____.$ 当参数

 $\lambda =$ ____时这个概率取到最大值。

Suppose random variable X satisfies exponential distribution $X \sim EXP(\lambda)$. P(4 > X > 3 | X > 2) =_____. When the parameter $\lambda =$ ____, this probability reaches its maximum.

6. 设随机变量X和Y独立,且均匀分布在[1,3],则 $P(\max(X,Y) > 2) = ____.$

Suppose two random variables X and Y independently uniformly distributed on [1,3]. $P(\max(X,Y) > 2) =$ ____.

7. 设 $X \sim N(\mu, \sigma^2)$, $Y \sim N(2\mu, \sigma^2)$ 是相互独立的正态分布的随机变量且 $P(X - Y \ge 2) = \frac{1}{2}$ 。 则 $\mu = _____$.

Let $X \sim N(\mu, \sigma^2)$, $Y \sim N(2\mu, \sigma^2)$ be two independent normal distributed random variables and $P(X - Y \ge 2) = \frac{1}{2}$. Then $\mu =$ _____.

8. 设 $X \sim P(\lambda)$ 服从参数为 λ 的泊松分布,则 $Y = X^3$ 的频率函数为_____

Suppose $X \sim P(\lambda)$ has a Poisson distribution with parameter λ . Then the frequency function for $Y = X^3$ is _____.

第三部分问答题(每题10分,总共60分)

Part Three Questions and Answers (10 marks each question, in total 60 marks)

1. 设随机变量X表示某个人打靶的准心情况,其概率分布密度函数

$$f(x) = \begin{cases} 3x^2 & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

设定事件 $\left\{X \leq \frac{2}{3}\right\}$ 发生为打靶成功。另 Y 代表三次打靶成功的次数 , 求刚好成功一次的概率。

Let X stand for the result of shooting target practice from someone. The density function of X is

$$f(x) = \begin{cases} 3x^2 & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

Assume $\left\{X \leq \frac{2}{3}\right\}$ as a successful practice. Let Y stand for the number of successful practice in total 3 shots. Find the probability when Y=1.

2. (X,Y) 是两个离散随机变量,有如下联合概率分布

X	1	2	3
Υ			
0	1/6	а	1/18
1	1/3	2/9	b

求: (1) a 与 b 存在的关系; (2) 若 X 与 Y 独立, 求 a 与 b 的值。

Suppose (X,Y) be a two-dimensional discrete random variable with the following distribution

Х	1	2	3
Υ			
0	1/6	а	1/18
1	1/3	2/9	b

(1) find the relationship between **a** and **b**; (2) given **X** and **Y** independent, find **a** and **b**.

3. 设二维随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} cx^2y & x^2 \le y \le 1, \\ 0 & 其他 \end{cases}$$

求: (1)常数 c; (2)求 $P{X > Y}$.

Let (X, Y) be a two-dimensional distribution with the joint density function

$$f(x,y) = \begin{cases} cx^2y & x^2 \le y \le 1, \\ 0 & \text{otherwise} \end{cases}$$

- (1) find the constant c; (2) compute P(X>Y).
- 4. 某地区 18 岁女青年的血压(收缩压,以 mmHg 计)服从 $N(110, 12^2)$,在该地区 任选一 18 岁女青年,测量她的血压X. 确定最小的x,使得 $P\{X>x\} \le 0.05$. (可能 用到的参数: $\Phi(1.645)=0.95$)

Suppose the blood pressure (systolic pressure, measured in mmHg) of 18 years old women somewhere has a normal distribution $N(110,\ 12^2)$. Randomly select a 18 years old woman and measure her systolic pressure X. Find the smallest x so that $P\{X>x\}\leq 0.05$. (it might be used $\Phi(1.645)=0.95$)

- 5. 设随机变量(X,Y)在区域 G 上服从均匀分布,其中 G 由x-y=0, x+y=2 与 y=0 围成.
 - (1) 求边际密度 $f_X(x)$.
 - (2) 求条件密度 $f_{X|Y}(x|y)$.

Suppose a two-dimensional random variable (X, Y) is uniformly distributed in the region G where G is formed by the three lines x - y = 0, x + y = 2 and y = 0.

- (1) Find the marginal density function $f_X(x)$
- (2) Find the conditional density function $f_{X|Y}(x|y)$

6. 设随机变量X的概率密度为

$$f(x) = \begin{cases} \frac{1}{9}x^2, & 0 < x < 3, \\ 0, & 其它. \end{cases}$$

令随机变量

$$Y = \begin{cases} 2 & X \le 1, \\ X & 1 < X < 2, \\ 1 & X > 2. \end{cases}$$

- (1) 求Y的累积分布函数;
- (2) 求概率 $P\{X \leq Y\}$.

Let X be a random variable with the density function

$$f(x) = \begin{cases} \frac{1}{9}x^2, & 0 < x < 3, \\ 0, & \text{others} \end{cases}$$

Define

$$Y = \begin{cases} 2 & X \le 1, \\ X & 1 < X < 2, \\ 1 & X \ge 2. \end{cases}$$

- (1) Find the cumulative distribution function of Y.
- (2) Compute $P\{X \leq Y\}$.