

Description

The VSM110N15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in Automotive applications and a wide variety of other applications.

General Features

- $V_{DSS} = 150V, I_D = 110A$ $R_{DS(ON)} < 13m\Omega @ V_{GS} = 10V$ (Typ: 10 m Ω)
- Good stability and uniformity with high E_{AS}
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Automotive applications
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM110N15-T7	VSM110N15	TO-247	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DSS}	150	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	110	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	80	А
Pulsed Drain Current	I _{DM}	390	Α
Maximum Power Dissipation	P _D	385	W
Derating factor		2.57	W/°C
Single pulse avalanche energy (Note 3)	E _{AS}	1800	mJ
Peak Diode Recovery dv/dt (Note 4)	dv/dt	3	V/ns

Shenzhen VSEEI Semiconductor Co., Ltd

Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}\mathbb{C}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 1)	R ₀ JC	0.39	°C/W	١
--	-------------------	------	------	---

Electrical Characteristics (T_c=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·		•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	160	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±200	nA
On Characteristics	·		•			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	10	13	mΩ
Forward Transconductance	g FS	V _{DS} =50V,I _D =40A	50	-	-	S
Dynamic Characteristics						•
Input Capacitance	C _{lss}		-	16500	-	PF
Output Capacitance	C _{oss}	V_{DS} =25 V , V_{GS} =0 V , F=1.0MHz	-	1344	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UMHZ	-	1025	-	PF
Switching Characteristics			•			
Turn-on Delay Time	t _{d(on)}	V_{DD} =30V, I_{D} =2A, R_{L} =15 Ω V_{GS} =10V, R_{G} =2.5 Ω ^(Note2)	-	20	-	nS
Turn-on Rise Time	t _r		-	130	-	nS
Turn-Off Delay Time	t _{d(off)}		-	50	-	nS
Turn-Off Fall Time	t _f		-	60	-	nS
Total Gate Charge	Qg	V _{DS} =30V,I _D =30A, V _{GS} =10V ^(Note2)	-	377	-	nC
Gate-Source Charge	Q _{gs}		-	79	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V \	-	118	-	nC
Drain-Source Diode Characteristics	·		•			
Diode Forward Voltage	V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A	-	60	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note2)}$	-	90	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 2. Pulse Test: Pulse Width \leq 400 μ s, Duty Cycle \leq 2%.
- 3. EAS condition: Tj=25 $^{\circ}\text{C}\,\text{,V}_\text{DD}\text{=}75\text{V},\text{V}_\text{G}\text{=}10\text{V},\text{L=2mH,Rg=25}\Omega$
- 4. Isd \leqslant 125A, di/dt \leqslant 260A/ μ s, Vdd \leqslant V(BR)dss, TJ \leqslant 175°C

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

T_J-Junction Temperature(°C)

Figure 4 Rdson-JunctionTemperature

Qg Gate Charge (nC)

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

0.0001

0.001 0.00001

Figure 10 V_{GS(th)} vs Junction Temperature

2. Peak T J = P DM X ZthJC + TC

0.1

Square Wave Pluse Duration(sec)

0.01

Figure 11 Normalized Maximum Transient Thermal Impedance

0.001