Package 'epifitter'

October 13, 2022

Type Package

Title Analysis and Simulation of Plant Disease Progress Curves

Version 0.3.0

Description Analysis and visualization of plant disease progress curve data. Functions for fitting two-parameter population dynamics models (exponential, monomolecular, logistic and Gompertz) to proportion data for single or multiple epidemics using either linear or no-linear regression. Statistical and visual outputs are provided to aid in model selection. Synthetic curves can be simulated for any of the models given the parameters. See Laurence V. Mad-

den, Gareth Hughes, and Frank van den Bosch (2007) <doi:10.1094/9780890545058> for further information on the methods.

Maintainer Kaique dos S. Alves <kaiquedsalves@gmail.com>

Depends R (>= 3.2)

Imports deSolve, dplyr, stats, ggplot2, knitr, tidyr, DescTools, minpack.lm, magrittr, tibble

Suggests rmarkdown, ggridges, cowplot

License MIT + file LICENSE

Encoding UTF-8 LazyData true

VignetteBuilder knitr

Date 2021-06-13 22:30:00 UTC

URL https://github.com/AlvesKS/epifitter

BugReports https://github.com/AlvesKS/epifitter/issues

X-schema.org-applicationCategory Tools

NeedsCompilation no

Author Kaique dos S. Alves [aut, cre]

(<https://orcid.org/0000-0001-9187-0252>),

Emerson M. Del Ponte [aut] (https://orcid.org/0000-0003-4398-409X)

Repository CRAN

Date/Publication 2021-06-14 14:50:02 UTC

2 AUDPC

R topics documented:

	AUDPC	- 2
	AUDPS	3
	expo_fun	4
	fit_lin	4
	fit_multi	5
	fit_nlin	6
	fit_nlin2	7
	gompi_fun	8
	logi_fun	9
	mono_fun	9
	plot_fit	10
	PowderyMildew	11
	print.fit_lin	11
	print.fit_nlin2	12
	sim_exponential	12
	sim_gompertz	13
	sim_logistic	14
	sim_monomolecular	15
Index		16

AUDPC

Area under disease progress curve

Description

Calculates the area under disease progress curves.

Usage

```
AUDPC(time, y, y_proportion = TRUE, type = "absolute")
```

Arguments

time A vector object of time.

y A vector object of disease intensity.

y_proportion Logical. If disease intensity is proportion (TRUE) or percentage(FALSE).

type Set if is absolute or relative AUDPC. type = "absolute" is default.

Author(s)

Kaique dos S. Alves

AUDPS 3

References

Madden, L. V., Hughes, G., and van den Bosch, F. 2007. The Study of Plant Disease Epidemics. American Phytopathological Society, St. Paul, MN.

Examples

```
epi = sim_logistic(N = 30, y0 = 0.01, dt = 5, r = 0.3, alpha = 0.5, n = 1)
AUDPC(time = epitime, y = epitime, y = proportion = TRUE)
```

AUDPS

Area under disease progress stairs

Description

Calculates the area under disease progress stairs.

Usage

```
AUDPS(time, y, y_proportion = TRUE, type = "absolute")
```

Arguments

time A vector object of time.

y A vector object of disease intensity.

y_proportion Logical. If disease intensity is proportion (TRUE) or percentage(FALSE)

type Set if is absolute or relative AUDPC. type = "absolute" is default.

Author(s)

Kaique dos S. Alves

References

Simko, I., and Piepho, H.-P. 2012. The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology 102:381-389.

```
epi = sim_logistic(N = 30, y0 = 0.01, dt = 5, r = 0.3, alpha = 0.5, n = 1) AUDPS(time = epitime, y = epit
```

fit_lin

expo_fun

Function for Exponential model

Description

Base function for the Exponential model. This function is used in the Exponential model simulation function sim_exponential()

Usage

```
expo_fun(t, y, par)
```

Arguments

t Vector of time

y Vector of disease intensity

par List of parameters

fit_lin

Fits epidemic models using data linearization

Description

Fits epidemic models (Exponential, Monomolecular, Logistic and Gompertz) to data using data linearization

Usage

```
fit_lin(time,y)
```

Arguments

time Numeric vector which refers to the time steps in the epidemics

y Numeric vector which refers to the disease intensity

Author(s)

Kaique dos S. Alves

fit_multi 5

Examples

fit_multi

Estimate model parameters for multiple disease progress curves

Description

Estimate model parameters for multiple disease progress curves

Usage

Arguments

time_col	Character name specifying the column for the time. eg: time_col = "days".
intensity_col	Character name specifying the column for the disease intensity.
data	data.frame object containing the variables for model fitting.
strata_cols	Character name or vector specifying the columns for stratification.
starting_par	Starting value for initial inoculun (y0) and apparent infection rate (r). Please informe in that especific order
maxiter	Maximum number of iterations. Only used if is nlin = TRUE
nlin	Logical. If FALSE estimates parameters using data linearization. If nlin=TRUE, estimates nonlinear approach. fit_nlin.
estimate_K	$Logical.\ If \ nlin=TRUE,\ estimates\ maximum\ disease\ intensity.\ (default:\ nlin=FALSE)\ fit_nlin2.$

6 fit_nlin

Value

Returns a data. frame containing estimated parameters for individual strata levels.

See Also

```
fit_lin,fit_nlin,fit_nlin2
```

Examples

```
set.seed(1)
# create stratified dataset
data_A1 = sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.3, alpha = 0.5, n = 4)
data_A1 = dplyr::mutate(data_A1,
                         fun = ^{"}A^{"},
                         cultivar = "BR1")
set.seed(1)
data_B1 = sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.2, alpha = 0.5, n = 4)
data_B1 = dplyr::mutate(data_B1,
                         fun = "B",
                         cultivar = "BR1")
set.seed(1)
data_A2 = sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.1, alpha = 0.5, n = 4)
data_A2 = dplyr::mutate(data_A2,
                         fun = ^{\prime\prime}A^{\prime\prime},
                         cultivar = "BR2")
set.seed(1)
data_B2 = sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.1, alpha = 0.5, n = 4)
data_B2 = dplyr::mutate(data_B2,
                         fun = "B",
                         cultivar = "BR2")
data = dplyr::bind_rows(data_A1, data_B1,data_A2, data_B2)
fit_multi(time_col = "time",
             intensity_col = "random_y",
             data = data,
             strata_col = c("fun","cultivar"),
             starting_par = list(y0 = 0.01, r = 0.03),
             maxiter = 1024,
             nlin = FALSE,
             estimate_K = FALSE)
```

fit_nlin

Fits epidemic models using nonlinear aproach

Description

Fits epidemic models (Exponential, Monomolecular, Logistic and Gompertz) using nonlinear approach for estimate parameters.

fit_nlin2 7

Usage

```
fit_nlin(time,
  y,
  starting_par = list(y0 = 0.01, r = 0.03),
  maxiter = 50)
```

Arguments

time Numeric vector which refers to the time steps in the epidemics

y Numeric vector which refers to the disease intensity

starting_par Starting value for initial inoculun (y0) and apparent infection rate (r). Please

informe in that especific order

maxiter Maximun number of iterations

Author(s)

Kaique dos S. Alves

Examples

fit_nlin2

Fits epidemic models using nonlinear aproach. This function also estimates the maximum disease intensity parameter K

Description

Fits epidemic models (Exponential, Monomolecular, Logistic and Gompertz) using nonlinear approach for estimate parameters. This function also estimates the maximum disease intensity parameter K.

Usage

```
fit_nlin2(time,
   y,
   starting_par = list(y0 = 0.01, r = 0.03, K = 0.8),
   maxiter = 50)
```

8 gompi_fun

Arguments

time Numeric vector which refers to the time steps in the epidemics.

y Numeric vector which refers to the disease intensity.

starting_par starting value for initial inoculun (y0) and apparent infection rate (r), and maxi-

mum disease intensity (K). Please informe in that especific order

maxiter Maximun number of iterations.

Examples

gompi_fun

Function for Gompertz model

Description

Base function for the Gompertz model. This function is used in the Gompertz model simulation function sim_gompertz()

Usage

```
gompi_fun(t, y, par)
```

Arguments

t Vector of time

y Vector of disease intensity

par List of parameters

logi_fun 9

-		_	
10	αi	fu	n
ΤU	gı_	_ıu	ш

Function for logistic model

Description

Base function for the Logistic model. This function is used in the Logistic model simulation function $sim_logistic()$

Usage

```
logi_fun(t, y, par)
```

Arguments

t	Vector	of	time

y Vector of disease intensity

par List of parameters

 ${\tt mono_fun}$

Function for Monomolecular model

Description

Base function for the Monomolecular model. This function is used in the Monomolecular model simulation function sim_monomolecular()

Usage

```
mono_fun(t, y, par)
```

Arguments

t	Vector of time

y Vector of disease intensity

par List of parameters

plot_fit

plot_fit

Creates a plot panel for the fitted models

Description

Create a ggplot2-style plot with the fitted models curves and the epidemic data.

Usage

```
plot_fit(object,
  point_size =1.2,
  line_size = 1,
  models = c("Exponential","Monomolecular", "Logistic", "Gompertz"))
```

Arguments

```
object A fit_lin or a fit_nlin object

point_size Point size

line_size Line size

models Select the models to be displayed in the panel
```

Details

It is possible to add more ggplot components by using the + syntax. See examples below.

PowderyMildew 11

Dataset powdery mildew disease progress curves

Description

Dataset containing experimental data of disease progress curves of powdery mildew under different irrigation systems and soil moisture levels in organic tomato.

Usage

```
data("PowderyMildew")
```

Format

A data frame with 240 observations on the following 2 variables.

```
irrigation_type Irrigations Systems: MS = Micro Sprinkler
moisture Levels of soils moisture
```

block Experimental blocks

time a numeric vector containing the time points

sev a numeric vector containg disease severity data in proportinal scales

References

Lage, D. A. C., Marouelli, W. A., and Café-Filho, A. C. 2019. Management of powdery mildew and behaviour of late blight under different irrigation configurations in organic tomato. Crop Protection. 125:104886.

Examples

```
data(PowderyMildew)
## maybe str(PowderyMildew) ; plot(PowderyMildew) ...
```

```
print.fit_lin
```

Print fit_lin() or fit_nlin() outputs

Description

The print method for density objects.

Usage

```
## S3 method for class 'fit_lin'
print(x, ...)
```

12 sim_exponential

Arguments

```
x output from fit_lin() or fit_nlin()
...
```

print.fit_nlin2

Print fit_nlin2() outputs

Description

The print method for density objects.

Usage

```
## S3 method for class 'fit_nlin2'
print(x, ...)
```

Arguments

```
x output from fit_nlin2()
```

sim_exponential

Simulate an epidemic using the Exponential model

Description

Simulate a stochastic epidemic curve using the Exponential model.

Usage

```
sim_exponential(N = 10, dt = 1, y0 = 0.01, r, n, alpha = 0.2)
```

Arguments

N	Total time course of the epidemic
1.	

dt Time step

y0 Initial inoculum or initial disease intensity

r Infection rate

n Number or replicates or sample size for each time step

alpha Variation parameter. stands for the variation for the replicates for each time

step. The standard deviation is calculated as sd = alpha * y * (1 - y), being y the

disease intensity for each time step.

sim_gompertz 13

Value

rep Replicates

time Time after epidemic start

y Disease intensity

random_y Disease intensity after applying the random alpha error

Examples

```
sim_exponential(N = 30, y0 = 0.01, dt = 5, r = 0.1, alpha = 0.5, n = 4)
```

sim_gompertz

Simulate an epidemic using the Gompertz model

Description

Simulate a stochastic epidemic curve using the Gompertz model.

Usage

```
sim_gompertz(N = 10, dt = 1, y0 = 0.01, r, K = 1, n, alpha = 0.2)
```

Arguments

N	Total time co	ourse of the	enidemic
IN	Total tille co	ourse or the	epideilic

dt Time step

y0 Initial inoculum or initial disease intensity

r Infection rate

K Maximum asymptote

n Number or replicates or sample size for each time step

alpha Variation parameter. stands for the variation for the replicates for each time

step. The standard deviation is calculated as sd = alpha * y * (1 - y), being y the

disease intensity for each time step.

Value

rep Replicates

time Time after epidemic start

y Disease intensity

random_y Disease intensity after applying the random alpha error

```
sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.3, K = 1, alpha = 0.5, n = 4)
```

sim_logistic

	_		
sim	log	ist	ic

Simulate an epidemic using the logistic model

Description

Simulate a stochastic epidemic curve using the logistic model.

Usage

```
sim_logistic(N = 10, dt = 1, y0 = 0.01, r, K = 1, n, alpha = 0.2)
```

Arguments

N	Total time course of the epidemic
dt	Time step
y0	Initial inoculum or initial disease intensity
r	Infection rate
K	Maximum asymptote
n	Number or replicates or sample size for each time step
alpha	Variation parameter. stands for the variation for the replicates for each time step. The standard deviation is calculated as $sd = alpha * y * (1 - y)$, being y the disease intensity for each time step.

Value

rep	Replicates
time	Time after epidemic start
у	Disease intensity
random_y	Disease intensity after applying the random alpha error

```
sim_logistic(N = 30, y0 = 0.01, dt = 5, r = 0.3, K = 1, alpha = 0.5, n = 4)
```

sim_monomolecular 15

sim_monomolecular Simulate an epidemic using the Monomolecular model
--

Description

Simulate a stochastic epidemic curve using the Monomolecular model.

Usage

```
sim_{monomolecular}(N = 10, dt = 1, y0 = 0.01, r, K = 1, n, alpha = 0.2)
```

Arguments

N	Total time course of the epidemic
dt	Time step
y0	Initial inoculum or initial disease intensity
r	Infection rate
K	Maximum asymptote
n	Number or replicates or sample size for each time step
alpha	Variation parameter. stands for the variation for the replicates for each time step. The standard deviation is calculated as $sd = alpha * y * (1 - y)$, being y the disease intensity for each time step.

Value

rep	Replicates
time	Time after epidemic start
у	Disease intensity
random_y	Disease intensity after applying the random alpha error

```
sim_{monomolecular}(N = 30, y0 = 0.01, dt = 5, r = 0.3, K = 1, alpha = 0.5, n = 4)
```

Index

```
\ast datasets
     PowderyMildew, 11
AUDPC, 2
AUDPS, 3
expo\_fun, 4
\texttt{fit\_lin}, 4, \textcolor{red}{6}
fit_multi, 5
fit_nlin, 5, 6, 6
fit_nlin2, 5, 6, 7
{\tt gompi\_fun, \textcolor{red}{8}}
logi_fun, 9
mono_fun, 9
\verb"plot_fit", \frac{10}{}
PowderyMildew, 11
print.fit\_lin, \\ 11
print.fit_nlin2, 12
sim_exponential, 12
sim_gompertz, 13
sim\_logistic, 14
sim_monomolecular, 15
```