Commande événementielle et systèmes multi-agents I. Introduction

Romain Postoyan

romain.postoyan@univ-lorraine.fr

Schéma de commande idéal

Schéma de commande en pratique

Cours de commande numérique

Instants de transmission ou d'échantillonnage définis par

$$\exists T > 0 \quad \forall i \in \mathbb{Z}_{\geq 0} \quad t_{i+1} = t_i + T$$

Commande numérique

Systèmes linéaires

$$\dot{x}(t) = Ax(t) + Bu(t_i), \quad t \in [t_i, t_{i+1})$$

- Discrétisation : $x(t_{i+1}) = \widetilde{A}_T x(t_i) + \widetilde{B}_T u(t_i)$ pour tout $i \in \mathbb{Z}_{\geq 0}$
- Transformée en z
- Analyse et synthèse de contrôleurs numériques

Limites

• Échantillonnage périodique

Commande numérique

Systèmes linéaires

$$\dot{x}(t) = Ax(t) + Bu(t_i), \quad t \in [t_i, t_{i+1})$$

- Discrétisation : $x(t_{i+1}) = \widetilde{A}_T x(t_i) + \widetilde{B}_T u(t_i)$ pour tout $i \in \mathbb{Z}_{\geq 0}$
- Transformée en z
- Analyse et synthèse de contrôleurs numériques

Limites

• Échantillonnage périodique

Systèmes sous contraintes de ressources

• Communication

FIGURE - Robot contrôlé via un réseau sans fil

Systèmes sous contraintes de ressources

• Communication

 $F_{\rm IGURE}-{\sf Syst\`eme}\ command\'e\ par\ r\'eseau$

Systèmes sous contraintes de ressources (suite)

Calcul

FIGURE - Système embarqué (http://hsc.com)

Systèmes sous contraintes de ressources (suite)

• Énergie

FIGURE - Véhicule électrique Shell Eco-marathon de Polytech Nancy (www.ecomotionteam.org)

Systèmes sous contraintes de ressources (suite)

Lois de commande qui communiquent avec le système uniquement lorsque cela est nécessaire

ldée

Rappel : échantillonnage périodique

$$\exists T > 0 \quad \forall i \in \mathbb{Z}_{\geq 0} \quad t_{i+1} = t_i + T$$

Adapter T en fonction de l'état du système $\to T(x(t))$

$$t_{i+1} = t_i + T(x(t_{i+1}))$$
 (1)

Échantillonnage événementiel

Questions

Comment définir

- le contrôleur
- la fonction T(x(t)) via un critère du type

si
$$\Gamma(x(t),x(t_i)) \geq 0$$
 alors $t_{i+1} = t$?

Nous allons donc construire Γ et non T directemen

I. Introduction

ldée

Rappel : échantillonnage périodique

$$\exists T > 0 \quad \forall i \in \mathbb{Z}_{>0} \quad t_{i+1} = t_i + T$$

Adapter T en fonction de l'état du système $\to T(x(t))$

$$t_{i+1} = t_i + T(x(t_{i+1}))$$
 (1)

Échantillonnage événementiel

Questions

Comment définir :

- le contrôleur?
- la fonction T(x(t)) via un critère du type :

si
$$\Gamma(x(t),x(t_i)) \geq 0$$
 alors $t_{i+1} = t$?

Nous allons donc construire Γ et non T directement

Schéma

Échantillonnage événementiel ("event-triggered control")

Cadre du cours

Système linéaire

$$\dot{x} = Ax + Bu$$

οù

- $x \in \mathbb{R}^n$ est l'état, $n \in \mathbb{Z}_{>0}$
- $u \in \mathbb{R}^m$ est l'entrée de commande, $m \in \mathbb{Z}_{>0}$

Objectif

Construire une loi de commande par retour d'état à échantillonnage événementiel pour :

- stabiliser l'origine du système (CM);
- le bon fonctionnement d'une flotte de voitures autonomes (TD et TP).

Ce que j'attends de vous

- Savoir ce qu'est la commande (à échantillonnage) événementiel(le) et en quoi cela est utile
- Oconnaître les techniques de base
- 3 Être capable de simuler de tels systèmes à l'aide de Matlab

Ce que j'attends de vous

- Savoir ce qu'est la commande (à échantillonnage) événementiel(le) et en quoi cela est utile
- 2 Connaître les techniques de base
- 3 Être capable de simuler de tels systèmes à l'aide de Matlab

Ce que j'attends de vous

- Savoir ce qu'est la commande (à échantillonnage) événementiel(le) et en quoi cela est utile
- 2 Connaître les techniques de base
- 3 Être capable de simuler de tels systèmes à l'aide de Matlab

Application : commande d'une flotte de véhicules autonomes

Voir vidéos

Pré-requis

Automatique continue (S5)

Commande par retour d'état (S7)

Plan du cours

- Introduction ✓
- Présentation générale
- Modèle
- 4 Construction de lois d'échantillonnage
- 6 Temps d'inter-transmission : quelles garanties?
- 6 Analyse avancée

Organisation

Commande événementielle

3 x 2h de CM : alternances planches / polycopié

1 séance de TD de 2h

1 séance de TP de 4h

Évaluation : TP

Systèmes multi-agents

Cf. cours de Constantin Morarescu.

Quelques mots sur les systèmes multi-agents

Quelques mots sur les systèmes multi-agents

Quelques mots sur les systèmes multi-agents

