STD - 10

MATHS

CHAPTER - 1

REAL NUMBER

EXERCISE -1.1(Q.1)

Euclid's division lemma(Algorithm)

➤ If a and b are two positive integers then they must satisfy the condition.

$$\triangleright$$
 a = bq + r where $0 \le r < b$

Use of Euclid division lemma

Find H.C.F

EX. Find H.C.F OF 45 AND 6.

Step. 1
$$45 > 6$$

So that
$$a = 45$$
, $b = 6$
 7
 $6\sqrt{45}$

42

We get
$$q = 7$$
, $r = 3$

Use Euclid division lemma

$$a = bq + r$$

$$45 = (6 \times 7) + 3$$

Step. 1
$$6 > 3$$

So that
$$a = 6, b = 3$$

We get
$$q = 2$$
, $r = 0$

Use Euclid division lemma

$$6 = (3 \times 2) + 0$$

We have r = 0, so that our method stops here. Since, in the last step the divisor is 3, therefore, HCF = (45, 6) = 3.

Q.1 Use Euclid's division algorithm to find HCF.

- (i) 135 and 225
- ➤ 225 is greater than 135. Therefore, by Euclid's division algorithm,

$$a = 225$$
 , $b = 135$

we get,
$$q = 1 r = 90$$

Use Euclid division lemma

$$a = bq + r$$

$$225 = (135 \times 11) + 90$$

Now, remainder 90 ≠ 0, thus again use division lemma

$$a = 135$$
, $b = 90$

$$90\sqrt{135}$$

$$-90$$

$$45$$

we get, q = 1, r = 45

According to Euclid division lemma

$$135 = (90 \times 1) + 45$$

Again, 45 ≠ 0, thus again use division lemma

$$a = 90 b = 45$$
 $45\sqrt{90}$
 -90

we get, q = 2 r = 0

We have r = 0, so that our method stops here. Since, in the last step, the divisor is 45,

therefore, HCF = (225, 135)

= 45.

(ii) 196 and 38220

> 38220 is greater than 196, Therefore, by Euclid's division algorithm,

$$a = 38220$$
 , $b = 196$

we have, q = 195, r = 0

Use Euclid division lemma

$$38220 = (196 \times 195) + 0$$

We have r = 0, so that our method stops here. Since, in the last step, the divisor is 195,

so that
$$HCF = (196, 38220)$$

$$= 195$$

(iii) 867 and 255

➤ 867 is greater than 255, Therefore, by Euclid's division algorithm,

$$a = 867$$
 $b = 255$

we get, q = 3, r = 102

$$867 = (255 \times 3) + 102$$

Again, 102 ≠ 0, therefore again use division lemma

we have,
$$q = 2$$
, $r = 51$

$$255 = (102 \times 2) + 51$$

Again, 51 ≠ 0, so that use Euclid's division lemma

$$a = 102$$
 $b = 51$

We have r = 0, so that our method

Thanks

For watching