```
// DPLL знать не обязательно, но для понимания что делает DPLL\oplus его осознать полезно // что такое DPLL, SAT и KH\Phi можно прочитать на википедии
```

Algorithm 1 DPLL

if $DPLL(\Phi[x = \alpha]) = SAT$ then

return SATreturn $DPLL(\Phi[x=1-\alpha])$

Определение 1. DPLL ($DPLL\oplus$) называется drunken, если эвристика B выбирает возвращаемое значение случайно и равновероятно.

Algorithm 2 $DPLL \oplus$

 $\boxed{DPLL\oplus (\Phi,F)}$ Φ - формула в КН $\Phi,\,F$ - система линейных уравнений на переменные.

 $\mathbf{if} \ F$ не имеет решений \mathbf{then}

return UNSAT

if F противоречит некоторому дизъюнкту $C \in \Phi$ then return UNSAT

if F имеет единственное решение τ и $\Phi[\tau]=1$ then return SAT

Условия выше легко проверяются за полиномиальное время $f := A(\Phi, F)$

В отличие от DPLL, алгоритм теперь выбирает не какую-то конкретную переменную, а линейное условие на переменные

 $\alpha := B(\Phi, F, f)$

if $DPLL \oplus (\Phi, F \land (f = \alpha)) = SAT$ then

return SAT

return $DPLL \oplus (\Phi, F \land (f = 1 - \alpha))$

Определение 2. PHP_n^m (pigeonhole principle) - формула, записывающая принцип Дирихле, строится конъюнкцией двух видов дизъюнктов:

// $p_{i,k}$ - условие, сидит ли голубь i в клетке k. Первый индекс принимает значения $\{1...m\}$, второй $\{1...n\}$.

- короткие дизъюнкты $\neg p_{i,k} \lor \neg p_{j,k} \ \forall i \neq j \ \forall k \ // \$ записывает, что в кажедом ящике не более одного голубя
- ullet длинные дизъюнкты $\bigvee_k p_{i,k} \ orall i \ //$ записывает, что каждый голубь где-то сидит

При m > n формула очевидно невыполнима.

Теорема 1. (основной результат) Существует такой класс выполнимых формул $\{\Psi_n\}$, что drunken $DPLL \oplus c$ вероятностью $1-2^{-\Omega(n)}$ работает хотя бы $2^{\Omega(n)}$ времени на формуле Ψ_n и при этом размер Ψ_n полиномиален по n.

 Ψ_n строится как записанная в КНФ формула $PHP_n^{n+1} \vee (\sigma)$, где σ - формула, кодирующая некоторую подстановку на всех переменных (σ имеет вид $x_1 \wedge x_2 \wedge \neg x_3 \wedge \ldots$). Несложно заметить, что размер такой формулы полиномиален по n и что она имеет единственный выполняющий набор σ .