Klasyfikacja fake newsów

Alicja Szpunar-Szałek

Dominika Kokoryk

Adrian Komuda

Michał Alenowicz

Kampania społeczna

W dobie dynamicznego rozwoju technologii i powszechnego dostępu do internetu zjawisko rozprzestrzeniania się fałszywych informacji staje się coraz bardziej powszechne. Dodatkowo rozwój sztucznej inteligencji zwiększa ryzyko generowania fałszywych treści przez modele językowe, co utrudnia odróżnienie informacji prawdziwych od zmanipulowanych.

Dlatego postanowiliśmy zająć się stworzeniem modelu, który potrafi rozpoznawać fake newsy. Naszym celem jest **zwiększenie świadomości społecznej** i wsparcie użytkowników w krytycznym myśleniu oraz weryfikowaniu źródeł informacji.

Problem

- Umiejętność klasyfikowania krótkich tekstów w języku angielskim jako fake lub real news
- Klasyfikacja binarna tekstów jako fake = 0 lub fake = 1

Dane

Rzeczywiste teksty w języku angielskim opatrzone etykietami do uczenia nadzorowanego

Teksty z etykietami pozyskano z kilku datasetów:

- baza ClaimsKG
- ISOT
- WELFake Dataset
- LIAR Fake news dataset
- English Fake News Dataset

Charakter newsów:

- zakres czasowy: głównie 2010-2023
- tematyka:
 - polityka (ok. 50%)
 - nauka, odkrycia, zdrowie
 - rozrywka
 - ciekawostki, sensacje

Czyszczenie danych

- Detekcja języka (niektóre bazy są wielojęzyczne),
- usunięcie duplikatów,
- usunięcie linków,
- zamiana wielu kategorii na dwie (dotyczy niektórych zbiorów, gdzie istniały etykiety typu 'halftrue', 'misleading')

Długość tekstu / ilość danych

- Znaczny rozrzut długości!
- Długi ogon sięgający > 10.000 słów
- Wybrano zakres: 5-50 słów
- Trudność w klasyfikacji długich tekstów
- Efekt: ok. 34 tys. wierszy, po dodaniu 'headlines' z bazy ISOT uzyskano ok. 68 tys. wierszy

Wpływ długości tekstu na wyniki

	Accuracy	
	Krótkie <5; 50> Długie (50; 1200>	
	ok. 34K wierszy	ok. 104K wierszy
Logit	0,69	0,55
MultinomialNB	0,68	0,56
RF classifier	0,72	0,34
XGBclassifier	0,68	0,60
SVM	0,69	0,54

Wektoryzacja tf-idf vs. transformers

		rierszy z tekstami <50 sł owych hiperparametraci		
	TF-IDF*	Tf-idf (n-grams 1-2)	All-mpnet-base-v2	
	Wektor ok. 20 tys.	Wektor ok. 430 tys.	Wektor 768	
Logit	0,78	0,80	0,80	
00RF classifier	0,78	0,80	0,77	
XGBclassifier	0,76	0,78	0,78	
CatBoost	0,78	0,80	0,80	
LGBM	0,76	0,79	0,78	
SVM	0,79	0,81	0,84	

^{*} tokenizacja, stopwords, lemmatyzacja

Różne modele embeddingowe (sentence-transformers)

	'all-MiniLM-L6-v2'	'all-MiniLM-L12-v2'	All-mpnet-base-v2
	Wektor 384	Wektor 384	Wektor 768
Logit	0,76	0,77	0,80
RF classifier	0,74	0,73	0,77
XGBclassifier	0,76	0,76	0,78
CatBoost	0,78	0,78	0,80
LGBM	0,77	0,76	0,78
SVM	0,81	0,82	0,84
prosta NN		0,81	0,83

Poszukiwanie hiperparametrów

	Accuracy	Precision	f1-score
Logit	0,80	0,80	0,80
RF classifier	0,77	0,78	0,76
XGBclassifier	0,79	0,78	0,78
SVC	0,84	0,84	0,84
prosta NN	0,83	0,83	0,83

Najlepsze wyniki po GridSearchCV / Optuna Metryki uzyskane na **danych testowych** (20%)

Wybór modelu (tylko embeddingi)

	Accuracy	
	Train (80%)	Test (20%)
Logit	0,80	0,80
RF classifier	0,80	0,77
XGBclassifier	0,81	0,79
SVC ('poly')	0,91	0,84
Prosta NN	0,90	0,83

Wybrany model - SVC

Parametry wybranego modelu:

- 'kernel': 'poly'

- 'C': 0,94

- 'coef0': 0,71

- 'degree': 2

- 'gamma': 'scale'

Threshold: 0,50

SVC on 50 wo	rds embeddings	FINAL e	valuation	(TEST SET),	threshold=0.5
	precision	recall	f1-score	support	
0	0.84	0.85	0.84	7010	
1	0.84	0.82	0.83	6669	
accuracy			0.84	13679	
macro avg	0.84	0.84	0.84	13679	
weighted avg	0.84	0.84	0.84	13679	
F1 score: 0.	831				
Accuracy: 0.	836				
Precision: 0	.837				
Recall: 0.82	4				

Wybrany model - SVC

Dataset testowy (20% danych)

Prompt użyty do uzyskania danych z chata GPT

I want you to prepare a validation dataset for my fake news classification neural network that I've trained. For starters, I want you to prepare a 200-row-long csv file with two columns: 'text' (strings, in English) and 'fake' (either 1 or 0; 1 for fakes, 0 for real news). Stick to the following requirements:

- texts should be 6-50 words long; I don't care about mean length, as long as you make the fakes and real news have similar mean length;
- the 'fake' class should be balanced (100 x fakes, 100 x real)
- don't use padding or any "tacked on" gibberish just to make texts longer they should be grammatically and syntactically correct in English;
- text should pertain to: global politics, general health tips and COVID, entertainment, trivia, including potentially scandalous or sensational news (both fake and real);
- they should be either news headlines or simple (apparently factual) statements, possibly 2-3 sentence sub-headlines; use a mixture.
- don't use any "giveaway words" that would obviously label the news as fake (e.g. "allegedly", "claims", "unconfirmed" etc.) Both fake and real news should represent a journalistic tone (sometimes sensational or gossipy).
- Use real person names (politicians, actors, scientists, historical figures) and placenames, but don't tack them onto EVERY news use sparingly.
- Don't try to "replicate" or "recycle" text templates by changing minor details and reusing the same basic sentence core (**use each unique template only once**).
- try to ensure syntactic variation by using various word ordering (within the limits of correct English syntax).
- IF POSSIBLE, **BASE BOTH REAL AND FAKE NEWS ON WEB RESEARCH OF THE MOST POPULAR SUBJECTS** IN THE FIELDS THAT I MENTIONED.

Kontrola człowieka nad danymi syntetycznymi do walidacji

- Połączenie 2 datasetów z Chata GPT (po ok. 170 próbek każdy)
- Ręczne usunięcie "near duplicates"
- Usunięcie twierdzeń dwuznacznych, zbyt ogólnych, półprawd
- Usunięcie twierdzeń wartościujących wiadomość lub źródło
- Nie modyfikowano treści wiersz był albo usuwany, albo pozostawiany
- Na końcu losowe usunięcie kilku wierszy z etykietą, która dominowała
- Uzyskano zbalansowany dataset 150/150

Generalizacja

(tylko embeddingi)

		Accuracy		
	Train (80%)	Test (20%)	ChatGPT (extra) Threshold = 0.5	ChatGPT (extra)* Threshold = ?
Logit	0,80	0,80	0.65	0,73
RF classifier	0,80	0,77	0,66	0,68
XGBclassifier	0,81	0,79	0,73	0,81
SVC ('poly')	0,91	0,84	0,76	0,76
Prosta NN	0,90	0,83	0,66	0,74

^{*}maksymalne accuracy uzyskane po dostosowaniu threshold do innego charakteru danych

Wybrany model - XGBoost Dataset 'ChatGPT curated' (300 próbek)

Parametry wybranego modelu:

- colsample_bytree: 0,61

- learning rate: 0,03

- max_depth: 3

- min_child_weight: 14

- n estimators: 705

gamma: 0,01lambda: 9,98alpha: 0,55

Threshold: 0,36

pr	ecision	recall	f1-score	support	
0	0.86	0.74	0.80	150	
1	0.77	0.88	0.82	150	
accuracy			0.81	300	
macro avg	0.82	0.81	0.81	300	
weighted avg	0.82	0.81	0.81	300	
F1 score: 0.822					
Accuracy: 0.810					
Precision: 0.772	!				
Recall: 0.880					

XGBoost Dataset 'ChatGPT curated' (300 próbek)

Aplikacja

Try and te	est our app!	
Disclaimer:		
validate facts. It has b		t does not search the Internet or any database to er of labeled text samples to classify news as real or fake
Test Yourself vs Al! (SVC)	Test Yourself vs Al! (XGBoost)	Enter Your text
Enter Your text below:		
Enter Your text		
Check		

Wnioski / F.R.I.N.

Wnioski:

- generalizacja osiągnięta dzięki połączeniu różnych datasetów;
- praca na dłuższych tekstach wymagałaby znacznego zwiększenia liczby próbek;
- po uzyskaniu embeddingów zadanie sprowadziło się do klasyfikacji binarnej - NN nie przebiła SVC.

Potencjalne ulepszenia:

- ensembling modeli;
- trening na większej ilości danych;
- zbadać dokładniej łączenie embeddingów z tf-idf.

Dziękujemy za uwagę

