Do write program codes to execute the 'Forward-backward sweep load flow algorithm' for 33-node, 69-node, and 52-node test distribution networks.

Procedure: For "Forward-backward sweep load flow" first we have to calculate the load current at each bus and after the load current calculation be have to calculate the line current for all line. to calculate the line current we have to start the calculation from end points of the system this procedure is called "BACKWARD" sweep. after the calculation of line current we will calculate the value of voltage at each node, this procedure is called as FORWARD sweep. after complete calculation of voltage we will find the difference between new voltage and old voltage check it's value. error should be less then our accuracy or equal. Then we will stop the iteration /calculation other wise we will continue to perform forward-backward sweep method(continue with iteration).

For performing the forward-backward sweep method first we have to calculate the end points of the system like for the 33-bus system end points are :18,22,25 & 33.similarly for the system 69 and 52 also.

The code for finding the end points is:

```
count=1;
for line_no=length(linedata)+1:-1:1
   if line_no<length(linedata)
       if linedata(line_no+1,1)~=linedata(line_no,2)
            end_point(count)=linedata(line_no,2);
            count=count+1;
   end
end
if line_no==length(linedata)+1
   end_point(count)=length(linedata)+1;
   count=count+1;</pre>
```

```
end
end
```

We know that apparent power for a bus is:

$$S = V.I^*$$

We want to calculate the load current at each bus so:

$$I_i = S_i^* / V_i^* = (P_i - j * Q_i) / V_i^*$$

this is for calculation of load current at ith bus.

for first iteration we will calculate the current at the reference voltage (reference voltage magnitude is 1 and angle is 0°).

```
%load current at each bus
for i=1:length(linedata)+1
    load_current(i,1)=(P(i)-j*Q(i))/conj (Vlt_new(i,1));
end
For calculation of load
current at each bus
```

after load current calculation we will calculate the value of line current

Line current $_{i-1}$ = load current $_i$ + Line current $_i$

2<=i<=33, for all load bus

Code for the calculation of line current is:

```
% finding the line or bus current
    for i=1:length(end_point)
    endbus = end_point(i);
    for k= endbus:-1:1
        p=k;
        if p>0
        if p== endbus
            bus_current(p,1)=k;
            bus_current(p,2)=bus_current(p,2)+load_current(p);
        else
        if linedata(p,1)== linedata(p,2)-1

        present bus=linedata(p,1);
```

```
next bus=linedata(p,2);
            bus current(present bus,1) = present bus;
            bus current (present bus, 2) =
bus_current(present_bus, 2) + load_current(present_bus) +
bus current(next bus, 2);
        else
            present bus=linedata(p,1);
            next bus=linedata(p,2);
            bus_current(present_bus,1)=present_bus;
bus current(present bus, 2) = bus current(present bus, 2) + bus current(next bus, 2)
            break
        end
         end
         end
        end
    end
```

our backward sweep is completed and we are going to calculate the value of voltage by forward sweep the code is :

we successfully calculate the value of load current, line current and bus voltages.

now we have to calculate the error between old voltage and new voltage see the error is less the or accuracy or not, if error is less than our accuracy then we will stop the iteration other we will continue with the code:

Complete code for the forward-backward sweep is

```
while max v err r>=0.0001 & no iter<100
max v err r >= 0.0001
Vlt old=Vlt new;
bus current=zeros(length(busdata(:,1)),2);
    %load current at each bus
    for i=1:length(linedata)+1
        load current(i,1)=(P(i)-j*Q(i))/conj (Vlt new(i,1));
    end
 % finding the line or bus current
    for i=1:length(end point)
     endbus = end point(i);
        for k= endbus:-1:1
        p=k;
         if p>0
         if p== endbus
            bus current (p, 1) = k;
            bus current(p,2)=bus current(p,2)+load current(p);
        if linedata(p,1) == linedata(p,2)-1
            present bus=linedata(p,1);
            next bus=linedata(p,2);
            bus current(present bus,1) = present bus;
            bus current (present bus, 2) =
bus current (present bus, 2) + load current (present bus) +
bus current(next bus,2);
        else
            present bus=linedata(p,1);
            next bus=linedata(p,2);
            bus current(present bus,1) = present bus;
bus current(present bus, 2) = bus current(present bus, 2) + bus current(next bus, 2)
            %k=0;
            break
        end
         end
         end
        end
    end
    for point=1:length(linedata(:,1))
        starting node=linedata(point,1);
        ending node=linedata(point,2);
```

```
lineno=linedata(point,5);
    Vlt_new(ending_node,1)=Vlt_new(starting_node,1)=
bus_current(lineno+1,2)*z(point,3);

end
    error=Vlt_new-Vlt_old;

max_v_err_r=max(abs(error));
busdata(:,3)=abs(Vlt_new);

no_iter=no_iter+1;
end
```

After calculation of voltage at all node we will calculate the power loss for the system the code for power loss :

```
Ploss=0;
for point=1:length(linedata(:,1))
        lineno=linedata(point,5);
        Ploss=Ploss+abs(bus_current(lineno+1,2))^2*real(z(point,3));
end
```

FLOW CHART FOR THE FORWARD-BACKWARD SWEEP METHOD

Results for 69-bus system

- (1) End points are = 69 67 65 52 50 46 35 27
- (2) Final system voltages are

Bus no.	Voltage (complex)	Voltage in magnitude
1	1.+ 0.0i	1.0000
2(Max. voltage bus)	0.9999 - 2.14e-05i	1.0000
3	0.999 - 4.28e-05i	0.9999
4	0.999- 0.00010i	0.9998
5	0.999 - 0.00032i	0.9990
6	0.9900 + 0.000852i	0.9901
7	0.98079 + 0.002074i	0.9808
8	0.978574 + 0.0023629i	0.9786
9	0.9774393 + 0.002511i	0.9774
10	0.972 + 0.0039372i	0.9724
11	0.97131 + 0.00421i	0.9713
12	0.968142 + 0.005096i	0.9682
13	0.965211 + 0.0058i	0.9652
14	0.96231 + 0.00662264i	0.9623
15	0.95944 + 0.007373i	0.9595
16	0.95889755 + 0.00751141i	0.9589
17	0.9580151 + 0.0077411i	0.9580
18	0.9580 + 0.00774i	0.9580
19	0.957539 + 0.00788i	0.9576
20	0.957240 + 0.007971i	0.9573
21	0.95675+ 0.00811i	0.9568
22	0.956749 + 0.00811i	0.9568
23	0.9566779+ 0.008139i	0.9567
24	0.9565210 + 0.0081i	0.9566
25	0.95634 + 0.008232i	0.9564
26	0.956278 + 0.008253i	0.9563
27	0.95625848 + 0.00825i	0.9563
28	0.9999260 - 4.7230279e-05i	0.9999
29	0.99985 - 9.260e-05i	0.9999
30	0.99973 - 5.550e-05i	0.9997
31	0.9997119 - 4.8956e-05i	0.9997
32	0.99961 - 1.62101e-05i	0.9996
33	0.999349 + 6.0997e-05i	0.9993
34	0.99901332 + 0.000163i	0.9990
35	0.99895 + 0.00018159i	0.9989
36	0.99992 - 5.182e-05i	0.9999
37	0.99975 - 0.00016365i	0.9997
38	0.9996 - 0.00020581i	0.9996
39	0.99955 - 0.0002179i	0.9995
40	0.999541 - 0.0002186i	0.9995

42 0.998 43 0.998	385 - 0.00041007i 3551 - 0.00049i 351 - 0.00050148i 350 - 0.0005041i 34051 - 0.000535597i	0.9988 0.9986 0.9985 0.9985
43 0.999	351 - 0.00050148i 350 - 0.0005041i	0.9985
0.55	350 - 0.0005041i	
44 0.00		0.9985
0.330	2/051 _ 0 000525507;	
45 0.998	34031 - 0.0003333371	0.9984
46 0.998	3404765 - 0.0005358i	0.9984
47 0.999	97894 - 0.0001345i	0.9998
48 0.998	35431 - 0.00091552i	0.9985
49 0.994	16932 - 0.003326i	0.9947
50 0.994	1146 - 0.00366i	0.9942
51 0.978	35377 + 0.002367i	0.9785
	35280 + 0.002371i	0.9785
	1652 + 0.0028763i	0.9747
54 0.97	141 + 0.003305i	0.9714
	593 + 0.00389i	0.9669
56 0.965	256 + 0.004456i	0.9626
	00 + 0.0108582i	0.9401
	3935 + 0.0140144i	0.9290
59 0.924	163 + 0.0152i	0.9248
60 0.919	958 + 0.01685i	0.9197
61 0.913	21 + 0.01781i	0.9123
62 0.91	188 + 0.017853i	0.9121
	14895 + 0.01791i	0.9117
64 0.909	9585 + 0.018149i	0.9098
65(minimum voltage bus) 0.909	901 + 0.018223i	0.9092
66 0.97	12511 + 0.004237i	0.9713
67 0.97	1250 + 0.0042364i	0.9713
68 0.96	781 + 0.005197i	0.9678
69 0.96	781 + 0.005197i	0.9678

Results for 33-bus system

(1) End points are = 33 25 22 18

(2) Final system voltages are

Bus no.	Voltage (complex)	Voltage in magnitude
1	1.0000 + 0.0000i	1.0000
2(Max. voltage bus)	0.9970 + 0.0003i	0.9970
3	0.9829 + 0.0016i	0.9829
4	0.9755 + 0.0028i	0.9755
5	0.9681 + 0.0039i	0.9681
6	0.9497 + 0.0022i	0.9497
7	0.9462 - 0.0016i	0.9462
8	0.9413 - 0.0010i	0.9413
9	0.9351 - 0.0022i	0.9351

10	0.9292 - 0.0032i	0.9292
11	0.9284 - 0.0031i	0.9284
12	0.9269 - 0.0029i	0.9269
13	0.9208 - 0.0043i	0.9208
14	0.9185 - 0.0056i	0.9185
15	0.9171 - 0.0062i	0.9171
16	0.9157 - 0.0065i	0.9157
17	0.9137 - 0.0077i	0.9137
18(minimum voltage bus)	0.9131 - 0.0079i	0.9131
19	0.9965 + 0.0001i	0.9965
20	0.9929 - 0.0011i	0.9929
21	0.9922 - 0.0014i	0.9922
22	0.9916 - 0.0018i	0.9916
23	0.9794 + 0.0011i	0.9794
24	0.9727 - 0.0004i	0.9727
25	0.9694 - 0.0011i	0.9694
26	0.9477 + 0.0029i	0.9477
27	0.9452 + 0.0038i	0.9452
28	0.9337 + 0.0051i	0.9337
29	0.9255 + 0.0063i	0.9255
30	0.9219 + 0.0080i	0.9220
31	0.9178 + 0.0066i	0.9178
32	0.9169 + 0.0062i	0.9169
33	0.9166 + 0.0061i	0.9166

Results for 52-bus system

- (1) End points are = 52 50 48 46 44 42 40 38 37 34 31 29 26 24 19 17 14 13 15 12 7 5 3
- (2) Final system voltages are

Bus no.	Voltage (complex)	Voltage in magnitude
1	1.+ 0.0i	1.0000
2	0.956 + 0.001693i	0.9560
3	0.94864 + 0.00199i	0.9486
4	0.93754 + 0.002338i	0.9375
5	0.935741 + 0.002404i	0.9357
6	0.927634 + 0.002711i	0.9276
7	0.92642 + 0.00276i	0.9264
8	0.905112 + 0.00351i	0.9051
9	0.882758+ 0.0043454i	0.8828
10	0.850264 + 0.005557i	0.8503
11	0.847771 + 0.0056364i	0.8478
12	0.84644 + 0.005685i	0.8465
13	0.8442 + 0.005764i	0.8441

14	0.841805 + 0.00583i	0.8418
15	0.8411 + 0.00588i	0.8411
16	0.844220 + 0.0057711i	0.8442
17	0.839226 + 0.00599i	0.8392
18	0.8324068 + 0.00618i	0.8324
19	0.82835 + 0.0063251i	0.8284
20(Max. voltage bus)	0.987756 + 0.0005356i	0.9878
21	0.9790725 + 0.00088532i	0.9791
22	0.96474 + 0.00149i	0.9647
23	0.95295 + 0.001972i	0.9529
24	0.9499 + 0.002085i	0.9500
25	0.9600762 + 0.001717i	0.9601
26	0.9583 + 0.001798i	0.9583
27	0.9823 + 0.0007716i	0.9824
28	0.97876 + 0.000928i	0.9788
29	0.976942+ 0.0010054i	0.9769
30	0.9754581 + 0.0010769i	0.9755
31	0.970371 + 0.00129729i	0.9704
32	0.90874 + 0.00305481i	0.9087
33	0.7970129 + 0.0067i	0.7970
34	0.794866 + 0.006854i	0.7949
35	0.781674 + 0.0073428i	0.7817
36	0.7699667+ 0.007808i	0.7700
37	0.767211 + 0.007919i	0.7673
38	0.7798 + 0.00741i	0.7799
39	0.75735 + 0.007919i	0.7574
40	0.754382 + 0.00801i	0.7544
41	0.724679 + 0.008854i	0.7247
42	0.720567 + 0.008986i	0.7206
43	0.71482 + 0.009144i	0.7149
44	0.70584 + 0.009421i	0.7059
45	0.7113 + 0.009211i	0.7114
46	0.7071 + 0.009327i	0.7072
47	0.6959 + 0.00965i	0.6960
48	0.6949 + 0.00967i	0.6951
49	0.6891 + 0.0098i	0.6892
50(minimum voltage bus)	0.6842 + 0.00995i	0.6843
51	0.6857 + 0.00991i	0.6858
52	0.6851 + 0.00993i	0.6852

Final results for the all system

Bus-system	33-bus system	69-bus system	52-bus system
Min. voltage bus	18 th Bus	65 th Bus	50 th Bus
Min. voltage (p.u)	0.9131	0.9092	0.6842
Max. voltage bus	2 th Bus	2 th Bus	20 th Bus
Max. voltage(p.u)	0.9970	1	0.9877
Power loss(kw)	202.6650	224.9783	791.9124

Voltage plot for each bus for 69-bus system

Voltage plot for each bus for 33-bus system

Voltage plot for each bus for 52-bus system

Place a capacitor bank, one at a time, in each node of a test network and show how the capacitor placement improves power loss and voltage profile.

We know that when we are place a capacitor on a bus then it injecting the negative reactive power to the bus due to this negative reactive power injection on bus then some amount of current is injected on bus and the magnitude of line current is reduce hence the line losses in system are also improve and voltage profile for the system also improve.

In above figure I try to show the plot between power loss and value of capacitor . if we increase the value to capacitor then power loss is decreasing but after a limit the power loss further increasing with increasing the capacitor size so the power & capacitor value for the minimum power loss are Pmin and corresponding the value of capacitor.

We will do it for all the buses and we will find the minimum power loss among all the bus and corresponding the value of capacitor.

```
for bus_for_Q=1:length(busdata(:,1))-1
                                                  We will put our capacitor for all the bus so I make a for
                                                  loop which will put capacitor at different-different bus
      bus for Q=bus for Q+1;
      plot ploss=0;
      plot Q=0;
      plot iter=0;
      p_error=0;
      injected Q=0;
      new ploss=0;
      old ploss=0;
    while p error<=0</pre>
      old ploss=new ploss;
                                                         Checking the difference between old
      assign 4
                                                         power loss and new power loss if
      new ploss=Ploss;
                                                         difference is positive then stop the
    if injected Q==0
      p error=0;
                                                         iteration and change the bus no for
      disp("injec = 0 ");
                                                         putting the capacitor
    else
                                                         else we further increment in the capacitor
      p error = new ploss-old ploss;
      disp("injec not 0 ");
                                                         value.
    end
                                                         This
                                                               p error is comparing in
                                                         while loop
     plot iter=plot iter+1;
     plot ploss(plot iter) = new ploss;
     plot Q(plot iter) = injected Q;
                                                          Increment in the capacitor size by 1kvar
     injected Q=injected Q+1/(basemva*1000);_
     disp("error of power = "+p error+" new ploss = "+new_ploss+"old ploss =
"+old ploss);
```

```
end
figure(2)
plot(plot_Q*basemva*1000,plot_ploss*basemva*1000),

hold on
data_plmin(bus_for_Q,1)=bus_for_Q;
data_plmin(bus_for_Q,2)=new_ploss*basemva*1000;
data_plmin(bus_for_Q,3)=(injected_Q-1/(basemva*1000))*basemva*1000;
end
```

Minimum power loss for all bus in 33-bus system

Bus no.	Power loss(kw)	Capacitor value (KVAR)
1	0	0
2	198.914903528167	2545.9999999991
3	182.336072243439	2317.9999999999
4	175.403503265411	2085.9999999993
5	168.762468918649	1948.9999999994
6	154.415668968013	1792.9999999994
7	155.739345297206	1695.9999999995
8	161.087187970646	1384.9999999996
9	166.572148909341	1105.9999999997
10	169.874801862533	932.99999999999
11	170.383592281271	906.9999999980
12	171.381545740372	860.9999999982
13	174.671144111088	720.9999999987
14	175.726606121314	679.99999999999
15	177.186063944282	635.99999999991
16	178.816910548198	587.9999999999
17	181.269713151748	519.99999999996
18	182.513912740314	486.99999999997
19	200.995026321348	1018.9999999998
20	201.963669380584	252.00000000001
21	202.008261591548	219.000000000001
22	202.109179035172	175.00000000000
23	187.436910765179	1498.9999999996
24	190.240581269916	983.99999999977
25	192.518360420252	731.99999999987
26	153.849044505754	1718.9999999995
27	153.000059389826	1630.9999999995
28	148.857216250922	1413.9999999996
29	145.319988882683	1309.9999999996
30 (Min power loss)	143.597932586212	1253.99999999997
31	150.006247657982	1079.9999999997
32	151.963476780873	1032.9999999997
33	154.413277035331	981.99999999977

Minimum power loss for all bus in 69-bus system

Bus no.	Power loss (KW)	Capacitor (kvar)
1	0	0
2	224.941469317306	3436.99999999978
3	224.904641873524	3436.9999999998
4	224.806517673536	3318.999999999
5	223.994838559549	2387.999999999
6	213.745188100469	2116.9999999993
7	203.141833642115	2082.999999999
8	200.660690047848	2072.999999999
9	199.450601446762	2063.9999999994
10	204.545876810848	1329.0000000002
11	204.966391502827	1248.0000000003
12	206.879249146029	1009.0000000002
13	209.487877774865	788.00000000012
14	210.831016195036	661.00000000009
15	211.595262859994	579.00000000006
16	211.692311465287	567.00000000006
17	211.935509093644	544.00000000005
18	211.939598536557	544.00000000005
19	212.292004351755	523.00000000005
20	212.498672517488	510.00000000004
21	212.806535187406	492.00000000004
22	212.826419565174	491.00000000004
23	213.050931879124	481.00000000004
24	213.506818715182	461.00000000003
25	214.452362356059	421.00000000002
26	214.794420634009	406.00000000001
27	214.985733579955	399.00000000001
28	224.962285890853	691.00000000010
29	224.974254848095	98.00000000000
30	224.974046233632	39.000000000000
31	224.973744166617	38.00000000000
32	224.972125801220	34.000000000000
33	224.968103994869	32.000000000000
34	224.965506788559	25.000000000000
35	224.968057799580	19.000000000000
36	224.959765707934	743.00000000011
37	224.967226549271	161.00000000000
38	224.962849294548	120.00000000000
39	224.961357026637	116.00000000000
40	224.961312477763	116.00000000000
41	224.949225423787	72.000000000001
42	224.943197274765	68.000000000000
43	224.942397412996	68.000000000000

44	224.942251623788	68.000000000000
45	224.940493233897	67.000000000000
46	224.940498669931	67.000000000000
47	224.864036164666	1762.9999999997
48	224.707894964011	690.00000000010
49	224.158937404226	585.00000000007
50	224.160575091219	530.00000000005
51	202.979708672840	1871.9999999996
52	208.686747407710	1385.0000000001
53	197.785026582638	1945.9999999995
54	195.705043007586	1845.9999999999
55	192.761172744357	1743.9999999997
56	189.844757080057	1669.9999999998
57	172.936232648634	1455.0000000000
58	164.228817940387	1402.0000000001
59	160.809688070705	1385.0000000001
60	157.048888748729	1360.0000000001
61 (Min power loss)	152.037848429923	1331.00000000002
62	152.952570050822	1310.0000000002
63	154.320288521539	1279.0000000002
64	160.042484577490	1149.0000000002
65	169.051162431223	983.00000000018
66	206.816413585375	1130.0000000002
67	206.856304256212	1127.00000000002
68	210.592289643792	793.00000000013
69	210.611634943051	792.00000000013

Minimum power loss for all bus in 52-bus system

Bus no.	Power loss (KW)	Capacitor (kvar)
1	0	0
2	776.964100353974	725.00000000001
3	784.660896809126	303.00000000000
4	771.895024811284	670.00000000001
5	776.356331090592	506.00000000000
6	769.953197252548	626.00000000001
7	775.658883009889	456.00000000000
8	766.050991376933	547.00000000000
9	763.352225712201	476.00000000000
10	760.196818770457	398.00000000000
11	762.281580264416	365.00000000000
12	763.591306156942	173.00000000000
13	791.747629611079	53.000000000000
14	766.935152016551	297.00000000000
15	791.789456846519	51.000000000000

16	760.731431464616	373.00000000000
17	768.084436197615	274.00000000000
18	764.533089330521	300.00000000000
19	767.998369995948	254.00000000000
20	788.967643312775	579.00000000001
21	788.472838155201	391.00000000000
22	787.473960769142	295.00000000000
23	787.815573417185	202.00000000000
24	788.195212588118	172.00000000000
25	788.260490364833	213.00000000000
26	789.227426252208	150.00000000000
27	788.906858611036	411.00000000000
28	789.419040739168	281.00000000000
29	790.211683613905	177.00000000000
30	789.979780508826	188.00000000000
31	790.384365133559	123.00000000000
32	714.759355561171	1301.9999999997
33	640.829999015289	1052.0000000000
34	691.725668104420	679.00000000001
35	673.616346556047	750.00000000001
36	696.840780071033	562.00000000000
37	709.219783967110	479.00000000000
38	690.910277928182	631.00000000001
39	629.466867944638	910.00000000001
40	655.064080112366	749.00000000001
41(Min power loss)	625.507441040571	792.00000000001
42	657.251549711854	621.00000000001
43	665.154739193581	566.00000000000
44	690.554156571110	429.00000000000
45	629.723452807587	723.00000000001
46	662.518621523909	558.00000000000
47	641.429691630478	622.00000000001
48	655.140041794015	559.00000000000
49	649.104249212132	570.00000000000
50	675.125933797078	450.00000000000
51	650 747555005000	F34 0000000000
52	658.747555085223	521.00000000000

Plot between Ploss(kw) and capacitor value(kvar) for each bus of 33-bus system

In this plot you can see that minimum power loss is obtain for capacitor size of 1254KVAR and loss 143.598KW at bus no. 30

Similarly we can make plot for all bus system (for 69-bus system & 52-bus system)

Plot between Ploss(kw) and capacitor value(kvar) for each bus of 52-bus system

In this plot you can see that minimum power loss is obtain for capacitor size of 789KVAR and loss 625.508KW at bus no. 41

Plot between Ploss(kw) and capacitor value(kvar) for each bus of 69-bus system

In this plot you can see that minimum power loss is obtain for capacitor size of 1331KVAR and loss 152.037KW at bus no. 61

Voltage profile after putting capacitor for minimum power loss. 33-bus

You can see that without capacitor the minimum voltage at bus no 18 is 0.9131 p.u. but after putting the capacitor for reducing the losses the it become 0.9256 p.u. so voltage is increased after putting the capacitor.

Similarly for the other bus system also.

Voltage profile after putting capacitor for minimum power loss. 69-bus

You can see that without capacitor the minimum voltage at bus no 65 is 0.9091 p.u. but after putting the capacitor for reducing the losses the it become 0.9307 p.u. so voltage is increased after putting the capacitor.

Voltage profile after putting capacitor for minimum power loss. 52-bus

You can see that without capacitor the minimum voltage at bus no 41 is 0.6843 p.u. but after putting the capacitor for reducing the losses the it become 0.755 p.u. so voltage is increased after putting the capacitor

Complete result for the part-2

Results	33-bus	69-bus	52-bus
Min. Ploss(KW)	143.59	152	625.50
Location (bus)	30 th bus	61 th bus	41 th bus
Size of capacitor(KVAR)	1254	1331	792
Min. voltage without cap.	0.9131 at 18 th	0.9091 at 65 th	$0.6843 \text{ at } 50^{\text{th}}$
	bus	bus	bus
Min voltage with cap	0.9256 at 18 th	0.93074 at	0.75536 at 50 th
	bus	65 th bus	bus