Tartalom

1	Line	eáris a	llgebra 3
	1.1	Ismét!	lés
		1.1.1	Egyenes egyenlete síkban
		1.1.2	Egyenes egyenlete térben
		1.1.3	Sík egyenlete
		1.1.4	Sklaláris/Diadikus/Vektoriális szorzat
	1.2	Vekto	rterek
		1.2.1	Definíció
	1.3	Lineá	ris függetlenség, Generátorrendszerek, Bázisok 4
		1.3.1	Lineáris függetlenség
		1.3.2	Generátorrendszerek
		1.3.3	Bázisok
		1.3.4	Dimenzió
		1.3.5	Rang 5
		1.3.6	Altér
		1.3.7	Ortogonális bázis/Gram-Schmidt ortogonalizáció 6
	1.4		xok, Inverz Mátrixok 6
		1.4.1	Mátrixok felépítése 6
		1.4.2	Műveletek mátrixokkal 6
		1.4.3	Mátrixok transzponálása, nyoma
		1.4.4	Mátrixok inverze
	1.5		mináns
		1.5.1	Definíció
		1.5.2	Egyedi szabályok (2x2, 3x3) 8
		1.5.3	Kifejtési tétel
		1.5.4	Vandermonde mátrix determinánsa 9
		1.5.5	Determináns tulajdonságai 9
		1.5.6	Szinguláris/Reguláris Mátrixok
		1.5.7	Cramer-szabály
		1.5.8	Sajátvektor és Sajátérték
		1.5.9	Diagonalizálhatóság
	1.6		ris leképezések
		1.6.1	Definíció
		1.6.2	Lineáris leképezések további tulajdonságai
		1.6.3	Lineáris leképezések mátrixa és inverze
		1.6.4	Lineáris leképezések kompozíciója
		1.6.5	Áttérés másik bázisba
		1.6.6	Nevezetes lineáris leképezések
	1.7		deszi terek
		1.7.1	Skalárszorzások
		1.7.2	Cauchy-Schwarz egyenlőtlenség

2	Vég	gtelen sorok, sorbafejtések	16
	2.1	Sorok konvergenciája	16
		2.1.1 Definíció	16
		2.1.2 Geometriai sor	16
	2.2	Konvergencia kritériumok	16
		2.2.1 Konvergencia szükséges feltétele	16
		2.2.2 Leibniz-féle konvergencia kritérium	16
		2.2.3 Abszolút konvergencia	16
		2.2.4 Gyök kritérium	16
		2.2.5 Hányados kritérium	17
		2.2.6 Összehasonlítási kritérium	17
		2.2.7 Integrál kritérium	17
	2.3	Sorok összege	18
		2.3.1 Teleszkopikus sorok összege	18
	2.4	Hatványsorok	19
		2.4.1 Definíció	19
		2.4.2 Konvergencia tartomány	19
	2.5	Taylor sorok, Mclarin sorok	20
		2.5.1 Definíció	20
		2.5.2 Nevezetes Taylor sorok x_0 körül	20
		2.5.3 Taylor sorok előállítása deriválással	21
	2.6	Fourier Sorok	22
		2.6.1 Hasznos Trigonometria alapok	22
		2.6.2 Definíció	23
		2.6.3 Fourier sorok komplex alakja	23
		-	
3		obváltozós analízis	24
	3.1	Definíció, Ábrázolás	24
	3.2	Parciális deriváltak	24
		3.2.1 Első- és másodrendű parciális deriváltak	24
	3.3	Lokális szélsőértéktípusok	25
		3.3.1 Hesse-mátrix	25
		3.3.2 Lokális szélsőértékek megtalálása	26
		3.3.3 Feltételes szélsőértékek megtalálása, Lagrange multiplikátor	
		módszer	26
	3.4	Szintvonalak	27
	3.5	Érintősík	27
	3.6	Gradiens	28
	3.7	Implicit függvények deriválása	28

MATEK 2 Jegyzet

Krusóczki Ádám

May 29, 2024

1 Lineáris algebra

1.1 Ismétlés

1.1.1 Egyenes egyenlete síkban

Adott $P(x_0, y_0)$ és $\underline{n} = (A, B)^T$ normálvektor. Ekkor az egyenes egyenlete:

$$A(x - x_0) + B(y - y_0) = 0$$

1.1.2 Egyenes egyenlete térben

Adott $P(x_0, y_0, z_0)$ és $\underline{v} = (A, B, C)^T$ irányvektor. Ekkor az egyenes egyenlete:

$$\frac{x - x_0}{A} = \frac{y - y_0}{B} = \frac{z - z_0}{C}$$

1.1.3 Sík egyenlete

Adott $P(x_0, y_0, z_0)$ és $\underline{n} = (A, B, C)^T$ normálvektor. Ekkor a sík egyenlete:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

1.1.4 Sklaláris/Diadikus/Vektoriális szorzat

Adott

$$\underline{a} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} \qquad \underline{b} = \begin{bmatrix} x_1 \\ y_1 \\ z_0 \end{bmatrix}$$

vektorok. Ekkor a skaláris szorzatuk:

$$\langle \underline{a}, \underline{b} \rangle = \underline{a} \cdot \underline{b} = \underline{a}^T \underline{b} = x_0 x_1 + y_0 y_1 + z_0 z_1$$

És a diadikus szorzatuk:

$$\underline{a} \circ \underline{b} = \underline{a}\underline{b}^T = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix} = \begin{bmatrix} x_0x_1 & x_0y_1 & x_0z_1 \\ y_0x_1 & y_0y_1 & y_0z_1 \\ z_0x_1 & z_0y_1 & z_0z_1 \end{bmatrix}$$

Végül a vektoriális szorzatuk:

$$\underline{a} \times \underline{b} = \det \begin{bmatrix} e_1 & e_2 & e_3 \\ x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \end{bmatrix}$$

Ahol e_1, e_2, e_3 az egységvektorok. A vektoriális szorzat iránya merőleges mindkét vektorra.

1.2 Vektorterek

1.2.1 Definíció

Azt mondjuk, hogy Vvektortér $\mathbb F$ számtest felett, ha értelmezett a következő két művelet:

1.
$$+: V \times V \to V$$
 $+(\underline{u},\underline{v}) := \underline{u} + \underline{v} \in V$:

- $\forall \underline{u}, \underline{v} \in V$ $\underline{u} + \underline{v} = \underline{v} + \underline{u}$
- $\forall \underline{u}, \underline{v}, \underline{w} \in V$ $\underline{u} + (\underline{v} + \underline{w}) = (\underline{u} + \underline{v}) + \underline{w}$
- $\exists ! 0 \in V$ $\forall \underline{u} \in V$ $\underline{u} + 0 = \underline{u}$.
- $\forall \underline{u} \in V \exists ! \underline{u} \in V$ $\underline{u} + (-\underline{u}) = 0.$

2.
$$\cdot : \mathbb{F} \times V \to V$$
 $\cdot (\lambda, \underline{u}) := \lambda \underline{u} \in V$:

- $\forall \lambda, \mu \in \mathbb{F}$ $\forall \underline{u} \in V$ $\lambda (\mu \underline{u}) = (\lambda \mu) \underline{u}$
- $\forall \lambda, \mu \in \mathbb{F}, \forall \underline{u} \in V$ $(\lambda + \mu) \underline{u} = \lambda \underline{u} + \mu \underline{u}$
- $\bullet \ \, \forall \lambda \in \mathbb{F} \qquad \forall \underline{u},\underline{v} \in V \qquad \lambda \left(\underline{u} + \underline{v}\right) = \lambda \underline{u} + \lambda \underline{v}$
- $\exists ! 1 \in V \qquad \forall \underline{u} \in V \qquad 1u = u.$

1.3 Lineáris függetlenség, Generátorrendszerek, Bázisok

1.3.1 Lineáris függetlenség

Legyenek $\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_n$ vektorok. Ezek akkor alkotnak lineárisan független rendszert, ha:

$$\sum_{i=1}^{n} \lambda_i \underline{v}_i = \lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \ldots + \lambda_n \underline{v}_n = \underline{0} \Leftrightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$$

1.3.2 Generátorrendszerek

Legyenek $\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_n$ vektorok. Ezek akkor alkotnak generátorrendszert **V** vektortérben, ha:

$$\forall \underline{w} \in V : \underline{w} = \sum_{i=1}^{n} \lambda_{i} \underline{v}_{i}$$

1.3.3 Bázisok

Legyenek $\underline{v}_1,\underline{v}_2,\dots,\underline{v}_n$ vektorok. Ezek akkor alkotnak bázist **V** vektortérben, ha:

- 1. Generátorrendszert alkotnak
- 2. Lineárisan függetlenek

Bármely vektor kifejezhető egyértelműen a bázis vektorok lineáris kombinációjaként.

1.3.4 Dimenzió

Egy vektortér dimenziója a bázisának számossága. Jelölése: $\dim(\mathbf{V})$.

1.3.5 Rang

Egy vektortér rangjának száma a benne lévő független vektorok maximális száma. Jelölése: $\mathbf{rank}(\mathbf{V})$.

1.3.6 Altér

A V vektortérnek W altere, ha $W\subset V$ és W is egy vektortér a V-beli műveletekre. Jelölése: $W\leq V.$

1.3.7 Ortogonális bázis/Gram-Schmidt ortogonalizáció

Az ortogonális bázis egy olyan bázis ahol a bázisvektorok páronként merőlegesek egymásra. A Gram-Schmidt ortogonalizáció egy olyan eljárás, amely egy tetszőleges bázist ortogonális bázissá alakít.

Adott \underline{u} és \underline{x} vektorok. Ekkor az \underline{x} vektor \underline{u} vektorra vetítése a következőképpen számítható:

$$\operatorname{proj}_{\underline{u}} \underline{x} = \frac{\langle \underline{u}, \underline{x} \rangle}{\|\underline{u}\|^2} \underline{u}$$

ahol $\langle \underline{u},\underline{x}\rangle$ a két vektor skaláris szorzatát jelöli.

Az eljárás lényege, hogy az első vektor marad, a második vektort kivonjuk az első vektorra vetített második vektorból, a harmadik vektort pedig kivonjuk az első két vektorra vetített harmadik vektorból, és így tovább.

$$\underline{v}_1 = \underline{u}_1 \qquad e_1 = \frac{v_1}{\|v_1\|}$$

$$\underline{v}_2 = \underline{u}_2 - \operatorname{proj}_{\underline{v}_1} \underline{u}_2 \qquad e_2 = \frac{v_2}{\|v_2\|}$$

$$\underline{v}_3 = \underline{u}_3 - \operatorname{proj}_{\underline{v}_1} \underline{u}_3 - \operatorname{proj}_{\underline{v}_2} \underline{u}_3 \qquad e_3 = \frac{v_3}{\|v_3\|}$$

$$\underline{v}_n = \underline{u} - \sum_{k=1}^{n-1} \operatorname{proj}_{\underline{v}_k} \underline{u}_n \qquad e_n = \frac{v_n}{\|v_n\|}$$

Ha ortonormált bázist $(e_1 \dots e_n)$ szeretnénk, akkor az ortogonalizált vektorokat $(v_1 \dots v_n)$ osszuk le a hosszukkal.

1.4 Mátrixok, Inverz Mátrixok

1.4.1 Mátrixok felépítése

Egy $\mathbf{A} \in \mathbb{R}^{n \times k}$ (vagy $\mathbf{A} \in \mathbb{C}^{n \times k}$) Mátrix n darab sorból áll és k darab oszlopból, ha n = k akkor a mátrixot **négyzetes mátrixnak** nevezzük. A mátrix i-edik sorának j-edik elemét a_{ij} -nek jelöljük.

1.4.2 Műveletek mátrixokkal

Legyen $\mathbf{A} \in \mathbb{R}^{n \times k}$ és $\mathbf{B} \in \mathbb{R}^{l \times m}$. Ez a két mátrix akkor adható össze (vagy kivonható egymásból), ha n = l és k = m, vagyis a dimenziójuk megegyezik. A művelet:

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1k} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2k} + b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{l1} & a_{n2} + b_{l2} & \dots & a_{nk} + b_{lm} \end{bmatrix}$$

Ha egy mátrix skalárral szorzunk akkor minden eleme skalárral szorzódik. Legyen $\mathbf{A}\in\mathbb{R}^{n\times k}$ és $\lambda\in\mathbb{R}$ Ekkor:

$$\lambda \mathbf{A} = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1k} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{n1} & \lambda a_{n2} & \dots & \lambda a_{nk} \end{bmatrix}$$

Mátrix mátrixszal való szorzásának feltétele, hogy a bal oldali mátrix oszlopainak száma megegyezzen a jobb oldali mátrix sorainak számával. Legyen $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$, ekkor az eredmény $n \times n$ dimenziójú $(\mathbb{R}^{\mathbf{n} \times n} \cdot \mathbb{R}^{n \times \mathbf{n}})$ mátrix lesz.

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x & y & z \\ u & v & w \\ m & n & o \end{bmatrix} = \begin{bmatrix} ax + bu + cm & ay + bv + cn & az + bw + co \\ dx + eu + fm & dy + ev + fn & dz + ew + fo \\ gx + hu + im & gy + hv + in & gz + hw + io \end{bmatrix}$$

1.4.3 Mátrixok transzponálása, nyoma

Egy $\mathbf{A} \in \mathbb{R}^{n \times k}$ mátrix transzponáltja a mátrix sorait és oszlopait felcserélve kapott mátrix. Jelölése: \mathbf{A}^T .

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^T = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$

Mátrixok nyoma a főátló elemeinek összege. Jelölése: $tr(\mathbf{A})$. Ha $\mathbf{A} \in \mathbb{R}^{n \times n}$, akkor:

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

1.4.4 Mátrixok inverze

Egy $\mathbf{A} \in \mathbb{R}^{n \times n}$ mátrix akkor invertálható, ha létezik olyan $\mathbf{B} \in \mathbb{R}^{n \times n}$ mátrix, hogy:

$$AB = BA = I$$

Ilyenkor a mátrix inverze $\mathbf{A}^{-1}=\mathbf{B}.$ Ezt Gauss-eliminációval szokták meghatározni.

1.5 Determináns

1.5.1 Definíció

Az $\mathbf{A} \in \mathbb{R}^{n \times n}$ mátrix determinánsa definíció szerint a következőképpen számítható:

$$|\mathbf{A}| = \det \mathbf{A} = \sum_{\sigma \in S_n} (-1)^{I(\sigma)} \prod_{i=1}^n a_{i,\sigma(i)}$$

ahol S_n az n elemű permutációk halmaza, $I(\sigma)$ az σ permutáció inverzióinak száma, $a_{i,\sigma(i)}$ az A mátrix i sorának $\sigma(i)$ oszlopának eleme. Ezt a módszert nem használjuk mert nagyon számításigyényes.

1.5.2 Egyedi szabályok (2x2, 3x3)

Az $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ mátrix determinánsa a következőképpen számítható:

$$det \mathbf{A} = det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Az $\mathbf{A} \in \mathbb{R}^{3 \times 3}$ mátrix determinánsa a Szarrusz szabály szerint számítható:

$$det \mathbf{A} = det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

1.5.3 Kifejtési tétel

A kifejtési tétel szerint egy $n \times n$ -es mátrix determinánsát kiszámolhatjuk az alábbi módon (oszlop szerinti kifejtés):

$$\det \mathbf{A} = \sum_{i=1}^{n} a_{ij} \cdot (-1)^{i+j} \cdot \det A_{ij}$$

ahol \mathbf{A}_{ij} az \mathbf{A} mátrix i-ediksorát és j-edikoszlopát kivéve tartalmazza (Aldetermináns).

Ha sor szerint akarjuk kifejteni, akkor a mátrix determinánsa a következőképpen számítható:

$$\det \mathbf{A} = \sum_{j=1}^{n} a_{ij} \cdot (-1)^{i+j} \cdot \det A_{ij}$$

Érdemes akkor használni, ha a mátrixban sok 0 található.

1.5.4 Vandermonde mátrix determinánsa

A Vandermonde mátrixok determinánsa a következőképpen számítható:

$$V(x_1, x_2, \dots, x_n) = \det \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix} = \prod_{j < i} (x_i - x_j)$$

Példa:

$$V(2,3,4,7) = \det \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 7 & 49 & 343 \end{bmatrix} = (7-2)(7-3)(4-2)(4-3)(3-2) = 120$$

1.5.5 Determináns tulajdonságai

- 1. Ha a mátrixban van csupanulla sor vagy oszlop, akkor a determinánsa 0.
- 2. Ha a mátrixban van két azonos sor/oszlop, akkor a determinánsa 0.
- 3. Ha a mátrix egy sorához/oszlopához hozzáadjuk egy másik sor/oszlop szorzottját egy λ számmal, akkor a determinánsa nem változik.
- 4. A mátrix sorát/oszlopát λ -val szorozva, a determinánsa λ -szorosa lesz. (Minden sorát λ -val szorozva, a determinánsa λ^n -szeres lesz.)
- 5. Ha a mátrixunk felsőháromszög mátrix (a főátló alatt csak 0-ák vannak), akkor a determinánsa a főátló elemeinek szorzata. (Gauss-elimináció)
- 6. Sorcsere esetén a determináns (-1)-el szorzódik.
- 7. $det(\mathbf{A}) = det(\mathbf{A}^T)$
- 8. $det(\mathbf{AB}) = det(\mathbf{A}) \cdot det(\mathbf{B})$
- 9. $det(\mathbf{A}^k) = det(\mathbf{A})^k$ és $det(\mathbf{A}^{-1}) = \frac{1}{det(\mathbf{A})}$

1.5.6 Szinguláris/Reguláris Mátrixok

Egy $A \in \mathbb{R}^{n \times n}$ mátrix akkor szinguláris, ha a determinánsa 0. Egy mátrix akkor reguláris, ha a determinánsa nem 0.

- 1. Ha egy mátrix szinguláris, akkor nem invertálható.
- 2. Ha egy mátrix szinguláris, akkor $rank(\mathbf{A}) < n$ Ha reguláris akkor $dim(\mathbf{A}) = rank(\mathbf{A})$.
- 3. Ha a mátrix szinguláris, akkor az $\mathbf{A}\underline{x} = \underline{b}$ egyenletrendszernek vagy végtelen sok megoldása van, vagy nem létezik megoldása. Ha a mátrix reguláris, akkor az egyenletrendszernek pontosan egy megoldása van.

1.5.7 Cramer-szabály

Ha egy $\mathbf{A} \in \mathbb{R}^{n \times n}$ mátrix reguláris, akkor az $\mathbf{A}\underline{x} = \underline{b}$ egyenletrendszer megoldása a következőképpen számítható:

$$x_i = \frac{\det \mathbf{A}_i}{\det \mathbf{A}}$$

ahol A_i az A mátrix, az i-edik oszlopát \underline{b} -vel helyettesítve.

1.5.8 Sajátvektor és Sajátérték

Egy $\mathbf{A} \in \mathbb{R}^{n \times n}$ mátrix sajátvektora $v \ (v \neq 0)$ és sajátértéke λ , ha:

$$\mathbf{A}v = \lambda v$$

A sajátértékek számítása (karakterisztikus egyenlet):

$$det(\mathbf{A} - \lambda I) = 0$$

Ennek az egyenletnek a megoldásai lesznek a sajátértékek. Az alábbi egyenletbe behelyettesítve a sajátértékeket, és megoldva az egyenletrendszert, megkapjuk a sajátvektorokat.

$$(\mathbf{A} - \lambda I)\underline{v} = \underline{0}$$

Mivel végtelen sok megoldása lehet az egyenletrendszereknek, a sajátvektorokat paraméteresen kapjuk meg. A paraméter sosem lehet 0, mert a sajátvektor nem lehet 0.

1.5.9 Diagonalizálhatóság

Egy $\mathbf{A} \in \mathbb{R}^{n \times n}$ mátrix akkor diagonalizálható, ha a mátrixnak van n darab lineárisan független sajátvektora. Ekkor a mátrixot a sajátértékekkel és sajátvektorokkal felírhatjuk a következőképpen:

$$\mathbf{D} = diag(\mathbf{A}) = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$$

Ahol a $diag(\mathbf{A})$ a mátrix diagonális alakja, \mathbf{P} a sajátvektorokból álló mátrix.

$$\mathbf{D} = diag(\mathbf{A}) = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} \underline{v}_1 & \underline{v}_2 & \dots & \underline{v}_n \end{bmatrix}$$

Az A mátrix sajátfelbontása:

$$\mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$$

Ezt fel tudjuk használni a mátrix egyszerűbb hatványozására is:

$$\mathbf{A}^k = \mathbf{P}\mathbf{D}^k\mathbf{P}^{-1} = \mathbf{P} \begin{bmatrix} \lambda_1^k & 0 & \dots & 0 \\ 0 & \lambda_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^k \end{bmatrix} \mathbf{P}^{-1}$$

1.6 Lineáris leképezések

1.6.1 Definíció

Legyen V és W két vektortér. Egy $\phi: \mathbf{V} \to \mathbf{W}$ akkor lineáris leképzezés, ha:

$$\forall \underline{v}, \underline{w} \in V : \phi(\underline{v} + \underline{w}) = \phi(\underline{v}) + \phi(\underline{w})$$
$$\forall \lambda \in F, \forall v \in V : \phi(\lambda v) = \lambda \phi(v)$$

Ilyenkor nem biztos, hogy a teljes W vektortér előáll képekként. W azon elemei, amelyek előállnak a leképezés során, a ϕ képtere, vagyis $\mathbf{Im}(\phi)$. A ϕ leképezés magtere a ϕ leképezésnek azon elemei, amelyek a nullvektorra képződnek le, azaz $\mathbf{Ker}(\phi)$.

$$\mathbf{Ker}(\phi) \le V \text{ \'es } \mathbf{Im}(\phi) \le W,$$

 $\dim(\mathbf{Ker}(\phi)) + \dim(\mathbf{Im}(\phi)) = \dim(V).$

1.6.2 Lineáris leképezések további tulajdonságai

- 1. Ha ϕ lineáris leképezés, akkor $\phi(0) = 0$.
- 2. Ha ϕ lineáris leképezés, akkor $\phi(-\underline{v}) = -\phi(\underline{v})$.
- 3. Ha ϕ lineáris leképezés, akkor $\phi(\underline{v}_1-\underline{v}_2)=\phi(\underline{v}_1)-\phi(\underline{v}_2).$

1.6.3 Lineáris leképezések mátrixa és inverze

Egy $\phi: \mathbf{V} \to \mathbf{W}$ lineáris leképezés mátrixa a következőképpen számítható:

$$\mathbf{A} = \begin{bmatrix} \phi(\underline{e}_1) & \phi(\underline{e}_2) & \dots & \phi(\underline{e}_n) \end{bmatrix}$$

ahol $\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_n$ a V vektortér bázisvektorai.

Minden lineáris leképezés egy mátrixszal való szorzásnak felel meg. Legyen $\underline{v} \in \mathbf{V}.$ Ekkor:

$$\phi(\underline{v}) = \mathbf{A}\underline{v}$$

Az inverz leképezés mátrixa a következőképpen számítható:

$$\mathbf{A}^{-1} = \begin{bmatrix} \phi^{-1}(\underline{e}_1) & \phi^{-1}(\underline{e}_2) & \dots & \phi^{-1}(\underline{e}_n) \end{bmatrix}$$

Tehát:

$$\phi^{-1}(\underline{v}) = \mathbf{A}^{-1}\underline{v}$$

Ezért egy leképezésnek akkor létezik inverze, ha a leképezés mátrixa invertálható.

1.6.4 Lineáris leképezések kompozíciója

Legyen $\phi: \mathbf{V} \to \mathbf{W}$ és $\psi: \mathbf{W} \to \mathbf{U}$ két lineáris leképezés. Ekkor a két leképezés kompozíciója a következőképpen számítható:

$$\psi \circ \phi : \mathbf{V} \to \mathbf{U} = \psi(\phi(\underline{v})) = \psi(\mathbf{A}\underline{v}) = \mathbf{B}(\mathbf{A}\underline{v})$$

Ezért a két leképezés kompozíciója egy újabb lineáris leképezés, aminek a mátrixa a két leképezés mátrixainak a szorzata.

$$C = BA$$

$$\psi \circ \phi(\underline{v}) = \psi(\phi(\underline{v})) = \mathbf{B}(\mathbf{A}\underline{v}) = \mathbf{C}\underline{v}$$

1.6.5 Áttérés másik bázisba

Egy $\phi: \mathbf{V} \to \mathbf{W}$ lineáris leképezésének b_1, b_2, \dots, b_n bázisban felírt mátrixát úgy kapjuk meg, mint a bázisvektorokra való képzésnél:

$$\mathbf{B} = \begin{bmatrix} \phi(\underline{b}_1) & \phi(\underline{b}_2) & \dots & \phi(\underline{b}_n) \end{bmatrix}$$

Ha egy újabb a_1,a_2,\ldots,a_n bázisban szeretnénk felírni a mátrixot, akkor a következőképpen számítható:

$$\mathbf{A} = \begin{bmatrix} \phi(\underline{a}_1) & \phi(\underline{a}_2) & \dots & \phi(\underline{a}_n) \end{bmatrix}$$

Ha egyenesen az első bázisból szeretnénk a lineáris leképezést a másodikba, akkor a következőképpen számítható az új mátrix:

$$\mathbf{A} = \mathbf{P}^{-1}\mathbf{B}\mathbf{P}$$

Ahol P az (régi bázis szerinti) új bázisvektorokat tartalmazó mátrix. Tehát a leképezés $\underline{v} \in \mathbf{V}$ vektorra a következőképpen számítható:

$$\phi(v) = \mathbf{A}v = (\mathbf{P}^{-1}\mathbf{B}\mathbf{P})v$$

Itt A és B ugyannak a leképezésnek más bázisban való mátrixai.

1.6.6 Nevezetes lineáris leképezések

A forgatások mátrixai tengelyek szerint 3D-ben (θ szögben, λ nyújtással):

$$\mathbf{R}_x = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_y = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & \lambda & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_z = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & \lambda \end{bmatrix}$$

Vetítés mátrixa \underline{n} normálvektorú egyenesre (\mathbf{P}):

$$\mathbf{P} = \frac{\underline{n} \circ \underline{n}}{\|\underline{n}\|^2} = \frac{1}{\|\underline{n}\|^2} \begin{bmatrix} n_1^2 & n_1 n_2 & n_1 n_3 \\ n_1 n_2 & n_2^2 & n_2 n_3 \\ n_1 n_3 & n_2 n_3 & n_3^2 \end{bmatrix}$$

Vetítés mátrixa \underline{n} normálvektorú síkra (\mathbf{A}):

$$\mathbf{A} = \mathbf{I} - \mathbf{P} = \mathbf{I} - \frac{\underline{n} \circ \underline{n}}{\|\underline{n}\|^2}$$

Tükrözés mátrixa egy \underline{n} normálvektorú egyenesre (\mathbf{M}):

$$\mathbf{M} = 2\mathbf{P} - \mathbf{I} = 2\frac{\underline{n} \circ \underline{n}}{\|n\|^2} - \mathbf{I}$$

Tükrözés mátrixa egy \underline{n} normálvektorú síkra (**N**):

$$\mathbf{N} = \mathbf{I} - 2\mathbf{P} = \mathbf{I} - 2\frac{\underline{n} \circ \underline{n}}{\|\underline{n}\|^2}$$

1.7 Euklideszi terek

1.7.1 Skalárszorzások

Euklideszi tereknek nevezzük azokat a vektortereket ${f T}$ számtest felett, amikre a vektorréraxiómákon kívül teljesül a következő skaláris szorzat definíciója:

- 1. $\forall \underline{v}, \underline{w} \in V : (\underline{v}, \underline{w}) : \mathbf{V} \times \mathbf{V} \to \mathbf{T}$
- 2. $\forall \underline{v} \in V : \langle \underline{v}, \underline{v} \rangle = 0 \Leftrightarrow \underline{v} = \underline{0}$
- 3. $\forall \underline{v},\underline{w} \in V: \langle \underline{v},\underline{w} \rangle = \overline{\langle \underline{w},\underline{v} \rangle}$ (komplex konjugált, ha $T=\mathbb{R}$, akkor kommutatív).
- 4. $\forall \underline{v}, \underline{w} \in V, \forall \lambda \in T : \langle \lambda \underline{v}, \underline{w} \rangle = \lambda \langle \underline{v}, \underline{w} \rangle$
- 5. $\forall \underline{v}, \underline{w} \in V, \forall \lambda \in T : \langle \underline{v}, \lambda \underline{w} \rangle = \overline{\lambda} \langle \underline{v}, \underline{w} \rangle$
- 6. $\forall \underline{u}, \underline{v}, \underline{w} \in V : \langle \underline{u} + \underline{v}, \underline{w} \rangle = \langle \underline{u}, \underline{w} \rangle \langle \underline{v}, \underline{w} \rangle$

Minden euklideszi térben van egyfajta hossz definíció, amit **euklideszi normának** hívunk ezt a következőképpen kapjuk meg:

$$\|\underline{a}\| = \sqrt{\langle \underline{a}, \underline{a} \rangle}$$

1.7.2 Cauchy-Schwarz egyenlőtlenség

Minden euklideszi térben teljesül a Cauchy-Schwarz egyenlőtlenség:

$$|\langle \underline{v}, \underline{w} \rangle| \le ||\underline{v}|| \cdot ||\underline{w}||$$

Az egyenlőség csak akkor áll fent ha \underline{v} és \underline{w} lineárisan összefüggő.

2 Végtelen sorok, sorbafejtések

2.1 Sorok konvergenciája

2.1.1 Definíció

Egy $\sum_{n=1}^{\infty} a_n$ sor konvergens, ha létezik olyan $A \in \mathbb{R}$, hogy az $S_n = \sum_{k=1}^n a_k$ sorozat konvergál A-hoz, azaz:

$$\lim_{n \to \infty} S_n = A$$

2.1.2 Geometriai sor

A geometriai sor akkor konvergens, ha |q| < 1. Ez esetben:

$$\sum_{n=0}^{\infty} a_1 q^n = \frac{a_1}{1-q} \text{ ha } |q| < 1$$

Ahol az a_1 az első tag, q a hányados. Ha $|q| \ge 1$, akkor a sor divergens.

2.2 Konvergencia kritériumok

2.2.1 Konvergencia szükséges feltétele

Ha $\lim_{n\to\infty} a_n \neq 0$, akkor $\sum_{n=1}^{\infty} a_n$ divergens.

2.2.2 Leibniz-féle konvergencia kritérium

Ha az a_n sorozat monoton csökkenő és $\lim_{n\to\infty} a_n = 0$, akkor a $\sum_{n=1}^{\infty} (-1)^n a_n$ sor konvergens.

2.2.3 Abszolút konvergencia

Egy $\sum_{n=1}^{\infty} a_n$ sor abszolút konvergens, ha a $\sum_{n=1}^{\infty} |a_n|$ sor konvergens. Fontos, hogy egy sor lehet konvergens akkor is, ha nem abszolút konvergens, ilyenkor **feltételesen konvergens**.

2.2.4 Gyök kritérium

Egy $\sum_{n=1}^{\infty} a_n$ sorra, ha létezik olyan $q \in \mathbb{R}$, hogy $\lim_{n \to \infty} \sqrt[n]{|a_n|} = q$, akkor:

- 1. Ha q < 1, akkor a sor abszolút konvergens.
- 2. Ha q > 1, akkor a sor divergens.
- 3. Ha q=1, akkor a sor konvergencia szempontjából nem dönthető el.

2.2.5 Hányados kritérium

Egy $\sum_{n=1}^\infty a_n$ sorra, ha létezik olyan $q\in\mathbb{R},$ hogy $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=q,$ akkor:

- 1. Ha q < 1, akkor a sor abszolút konvergens.
- 2. Ha q > 1, akkor a sor divergens.
- 3. Ha $q=1,\,\mathrm{akkor}$ a sor konvergencia szempontjából nem dönthető el.

2.2.6 Összehasonlítási kritérium

Legyen $\sum_{n=1}^{\infty}a_n$ és $\sum_{n=1}^{\infty}b_n$ két sor. Ha $0\leq a_n\leq b_n$ minden n-re:

Majoráns kritérium:

$$\sum_{n=1}^{\infty} b_n \text{ konvergens} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ konvergens}$$

Minoráns kritérium:

$$\sum_{n=1}^{\infty} a_n \text{ divergens} \Rightarrow \sum_{n=1}^{\infty} b_n \text{ divergens}$$

Különleges eset (hasznos ennél a kritériumnál, ha a polinom/polinom eset van):

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
konvergens ha $\alpha>1$ és divergens ha $\alpha\leq 1$

2.2.7 Integrál kritérium

Legyen $f:[1,\infty)\to\mathbb{R}$ monoton csökkenő és pozitív függvény. Ekkor:

$$\sum_{n=1}^{\infty} f(n) \text{ konvergens} \Leftrightarrow \exists \int_{1}^{\infty} f(x) dx \text{ és véges}$$

2.3 Sorok összege

2.3.1 Teleszkopikus sorok összege

A teleszkopikus sorok olyan sorok, amiknél ki kell bontani az összeget, és a legtöbb tag kiesik. Ilyenkor érdemes felsorolni az első és az utolsó pár tagot. Példa:

$$\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} \right) = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}$$
$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1$$

Ilyenkor szükség lehet a parciális törtekre bontásra, ugyanúgy mint az integrálásnál.

2.4 Hatványsorok

2.4.1 Definíció

Egy $\sum_{n=0}^\infty a_n(x-x_0)^n$ sor a hatványsor, ahol a_n konstansok, xa változó, x_0 pedig a hatványsor középpontja.

2.4.2 Konvergencia tartomány

Általában hatványsorok konvergenciatartományát a gyökkritériummal számoljuk ki. Ha végigcsináljuk gyökkritériummal és behelyettesítjük az x_0 középpontot, akkor a konvergencia tartományt kapjuk meg.

A konvergenciasugár (r) a következőképpen számítható:

$$r = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

A hatványsor konvergencia tartománya (R) a következőképpen is számítható (Cauchy-Hadamard-tétel):

$$R = r^{-1} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

A hatványsor konvergencia tartománya (R) a következőképpen számítható (hányados kritérium):

$$R = r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

Ahol R a konvergencia tartomány, ha x_0 a középpont.

A konvergencia tartomány szélein külön meg kell vizsgálni, az eredeti sorba behelyettesítve az $x_0\pm R$ értékeket az x-helyére. A tartományon belül mindenhol abszolút konvergens a sor.

A konvergenciasugár lehet végtelen is, ilyenkor a sor minden valós számra konvergens. Ekkor a konvergencia tartomány a valós számok halmaza.

2.5 Taylor sorok, Mclarin sorok

2.5.1 Definíció

Egy f(x) függvény Taylor sorfejtése a következőképpen számítható:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Ahol $f^{(n)}(x_0)$ az n-edik derivált értéke az x_0 pontban. A **Mclarin sorok** a Taylor sorok speciális esetei, ahol $x_0 = 0$.

2.5.2 Nevezetes Taylor sorok x_0 körül

$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} (x - x_{0})^{n}$$

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} (x - x_{0})^{2n+1}$$

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} (x - x_{0})^{2n}$$

$$\ln(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x - x_{0})^{n}$$

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\alpha}{n} x^{n}$$

$$\cosh(x) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} (x - x_{0})^{2n}$$

$$\sinh(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} (x - x_{0})^{2n+1}$$

2.5.3 Taylor sorok előállítása deriválással

Ha egy olyan függvényt kell sorba fejteni aminek nem tudjuk a Taylor sorát, de a deriváltjáét tudjuk, akkor a következőképpen számítható a sor:

$$f(x) = \int_0^x f'(t)dt = \sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Erre a módszerre példa a $f(x) = \arcsin(x)$ függvény sorba fejtése ($x_0 = 0$ körül):

$$f'(x) = \frac{1}{\sqrt{1 - x^2}} \Rightarrow f(x) = \int_0^x \frac{1}{\sqrt{1 - t^2}} dt = \int_0^x \sum_{n=0}^\infty {\binom{-1/2}{n}} t^n dt$$
$$= \sum_{n=0}^\infty {\binom{-1/2}{n}} \int_0^x t^n dt = \sum_{n=0}^\infty {\binom{-1/2}{n}} \frac{x^{n+1}}{n+1}$$

2.6 Fourier Sorok

2.6.1 Hasznos Trigonometria alapok

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}\left(\sin(\alpha+\beta) + \sin(\alpha-\beta)\right)$$

$$\cos(\alpha)\sin(\beta) = \frac{1}{2}\left(\sin(\alpha+\beta) - \sin(\alpha-\beta)\right)$$

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}\left(\cos(\alpha-\beta) - \cos(\alpha+\beta)\right)$$

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}\left(\cos(\alpha-\beta) + \cos(\alpha+\beta)\right)$$

$$\sin(\alpha) = \frac{e^{i\alpha} - e^{-i\alpha}}{2i}$$

$$\cos(\alpha) = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$$

$$\int_{-\pi}^{\pi} \sin(kx)dx = 0$$

$$\int_{-\pi}^{\pi} \cos(kx)dx = \int_{a-\pi}^{a+\pi} f(x)\cos(kx)dx \text{ (tetszőleges a-ra)}$$

$$\int_{-\pi}^{\pi} f(x)\sin(kx)dx = \int_{a-\pi}^{a+\pi} f(x)\sin(kx)dx \text{ (tetszőleges a-ra)}$$

Trükk az addíciós tételek megjegyzésére: Vegyük 2D-ben az α és β szögekkel való forgatás mátrixát.

$$\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{bmatrix} = \begin{bmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{bmatrix}$$

Ekkor a szorzást levezetve megkapjuk az addíciós tételeket kifejtve.

2.6.2 Definíció

A $\cos(kx)$ és a $\sin(kx)$ ortonormált bázist alkotnak a $[-\pi,\pi]$ intervallumon. Tehát bármely f(x) függvényt le tudunk írni ezen függvények lineáris kombinációjaként:

$$f(x) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right)$$

Ahol az a_k és b_k együtthatókat a következőképpen számíthatjuk (C egy általunk választott konstans, ahol a függvény ismert, általában $-\pi$):

$$a_0 = \frac{1}{2\pi} \int_C^{C+2\pi} f(x) dx$$

$$b_0 = \frac{1}{2}$$

$$a_k = \frac{1}{\pi} \int_C^{C+2\pi} f(x) \cos(kx) dx$$

$$b_k = \frac{1}{\pi} \int_C^{C+2\pi} f(x) \sin(kx) dx$$

Ha f(x) páros, akkor a b_k együtthatók 0-k lesznek, mert a $\sin(kx)$ függvény páratlan, és a páros függvényekkel való szorzatuk integrálja 0.

Ha f(x) páratlan, akkor a a_k együtthatók 0-k lesznek, mert a $\cos(kx)$ függvény páros, és a páratlan függvényekkel való szorzatuk integrálja 0.

2.6.3 Fourier sorok komplex alakja

A Fourier sorokat komplex alakban is fel lehet írni a következőképpen:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \frac{e^{ikx} + e^{-ikx}}{2} + b_k \frac{e^{ikx} - e^{-ikx}}{2i}$$
$$= \sum_{k=-\infty}^{\infty} c_k e^{ikx}$$

Ahol a c_k együtthatókat a következőképpen számíthatjuk:

$$c_{k} = \frac{1}{2} (a_{k} - ib_{k}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx}dx$$
$$c_{-k} = \frac{1}{2} (a_{k} + ib_{k})$$

3 Többváltozós analízis

3.1 Definíció, Ábrázolás

Egy $f: \mathbb{R}^n \to \mathbb{R}$ függvényt többváltozós függvénynek hívunk. Az n=2 esetben a függvényt ábrázolhatjuk 3D-ben, az n=3 esetben 4D-ben.

Ábrázolásnál színskálával is ábrázolhatjuk a függvény értékeit, ahol a színek a függvény értékét jelzik., de akár wireframe-el is ábrázolhatjuk a függvényt.

3.2 Parciális deriváltak

Egy $f: \mathbb{R}^n \to \mathbb{R}$ függvény parciális deriváltjait a következőképpen számíthatjuk:

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_i + h, \dots, x_n) - f(x_1, x_2, \dots, x_i, \dots, x_n)}{h}$$

Lényegében a parciális deriváltak a függvény értékének a változását mutatják az adott változó szerint. A deriváláskor a többi változót konstansnak tekintjük, és eszerint deriválunk.

Erre egy példa a $f(x,y) = yx^2 + y^2$ függvényre:

$$\frac{\partial f}{\partial x} = 2yx$$

$$\frac{\partial f}{\partial y} = x^2 + 2y$$

3.2.1 Első- és másodrendű parciális deriváltak

Az elsőrendű parciális deriváltakat a következőképpen jelöljük:

$$f'_{x} = \frac{\partial f}{\partial x}$$

$$f'_{y} = \frac{\partial f}{\partial y}$$

A másodrendű deriváltakat a következőképpen jelöljük:

$$f''_{xx} = \frac{\partial^2 f}{\partial x^2}$$

$$f''_{yy} = \frac{\partial^2 f}{\partial y^2}$$

$$f''_{xy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Az első kettő a tisztán másodrendű parciális derivált, az utolsó pedig a vegyes másodrendű parciális derivált.

Ha a vegyes másodrendű parciális deriváltak megegyeznek, akkor a függvény kétszer totálisan deriválható (Young-tétel).

3.3 Lokális szélsőértéktípusok

Szélsőérték típusokból 3 féle létezik:

- 1. Lokális minimum
- 2. Lokális maximum
- 3. Nyereg-pont

Ezek rendre a következőképpen néznek ki:

Figure 1: Lokális szélsőértéktípusok

3.3.1 Hesse-mátrix

A Hesse-mátrix a következőképpen számítható:

$$\mathbf{H}(\mathbf{f}) = \begin{bmatrix} f_{xx}^{"} & f_{xy}^{"} \\ f_{yx}^{"} & f_{yy}^{"} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

A Hesse mátrix determinánsa a következőket árulja el a szélsőértékről:

- 1. Ha a determináns pozitív, akkor szélsőértéke van
- 2. Ha a determináns negatív, akkor nyeregpontja van.
- 3. Ha a determináns 0, akkor nem dönthető el, további vizsgálat kell.

Hesse mátrix n változós függvényekre:

$$\mathbf{H}(\mathbf{f}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

3.3.2 Lokális szélsőértékek megtalálása

A lokális szélsőértékeket a következőképpen számíthatjuk:

- 1. Számítsuk ki a függvény parciális deriváltjait.
- 2. Rendezzük egy homogén egyenletrendszerbe a parciális deriváltakat, és oldjuk meg.
- Az így kapott pontok a stancionárius pontok, ahol a függvény szélsőértékei lehetnek.
- 4. A stancionárius pontokat helyettesítsük a Hesse-mátrixba.
- 5. Ha az első sarokfőminor ($\mathbf{H_{11}}$) és a második sarokfőminor (determináns) is pozitív, akkor **lokális minimumja van**.
- 6. Ha az első sarokfőminor ($\mathbf{H_{11}}$) negatív és a második sarokfőminor (determináns) pozitív, akkor **lokális maximumja van**.
- 7. Ha a determináns 0, akkor nem dönthető el, további vizsgálat kell.

3.3.3 Feltételes szélsőértékek megtalálása, Lagrange multiplikátor módszer

Ha egy függvénynek egy feltétel szerint keressük a szélsőértékeit, akkor a következőképpen számíthatjuk ki:

Legyen f(x,y) a függvényünk, és legyen g(x,y) a feltételünk. Ekkor a Lagrange-függvény a következőképpen néz ki:

$$L(x, y, \lambda) = f(x, y) - \lambda g(x, y)$$

Ezután a szélsőértékeket a következőképpen számíthatjuk:

- 1. Számítsuk ki a Lagrange-függvény parciális deriváltjait.
- 2. Rendezzük egy homogén egyenletrendszerbe a parciális deriváltakat, és oldjuk meg.
- 3. Így eggyel kevesebb egyenlet van mint változó ezért a feltétel egyenletét is felhasználjuk.
- 4. Megkapjuk a stancionárius pontokat, ahol az $L(x,y,\lambda)$ függvény feltétel szerinti szélsőértékei lehetnek.
- 5. Behelyettesítjük a Hesse-mátrixba a stancionárius pontoka és kiértékeljük a szélsőértékeket.

3.4 Szintvonalak

Egy többváltozós függvényt szintvonalakkal is le tudunk írni. A szintvonalak a következőképpen néznek ki:

$$f(x,y) = C$$
 ahol C egy konstans

A szintvonalakat ábrázolva a függvény értékei egyenlőek lesznek a szintvonalakon, hiszen egy síkidom egyenletét írják le.

Ha a szintvonalak belülről kifele sűrűsödnek, és a függvény belefe növekedik, akkor a függvény konkáv, ha kifele növekedik, akkor konvex, ha egyenletesen sűrűsödnek, akkor egyik sem (lineáris).

Lehetséges hogy egy szintvonal nem létezik, vagy nincs ott megoldása a függvénynek, ekkor ott a függvény nem értelmezhető.

3.5 Érintősík

Míg egyváltozós függvényeknél érintőt kerestünk, kétváltozósnál érintősíkot kerestünk. Az érintősík egy adott pontban érinti a függvényt, és a függvény értékének a változását mutatja az adott pontban.

Az érintősík egyenlete a következőképpen számítható $P(x_0, y_0, z_0)$ pontban:

$$z = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$$

Ezt nullára rendezve megkapjuk az érintősík egyenletét. Az érintősík normálvektora a következőképpen számítható:

$$\mathbf{n} = \begin{bmatrix} f_x'(x_0, y_0) \\ f_y'(x_0, y_0) \\ -1 \end{bmatrix}$$

3.6 Gradiens

A gradiens egy olyan vektor, ami a függvény értékének a változását mutatja az adott pontban. A gradiens a következőképpen számítható:

$$\underline{\nabla} f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

A gradiens iránya a legnagyobb növekedés iránya, a gradiens hossza pedig a legnagyobb növekedés mértéke.

Az iránymenti deriváltakat a gradiens segítségével számíthatjuk:

$$\frac{\partial f}{\partial \mathbf{v}} = \underline{\nabla} f \cdot \underline{v}$$

Ahol \underline{v} a vizsgált irány vektora. Ha \underline{v} nem egységnyi hosszú, akkor el kell osztani a saját hosszával:

$$\frac{\partial f}{\partial \mathbf{v}} = \frac{\nabla f \cdot \underline{v}}{\|\underline{v}\|}$$

3.7 Implicit függvények deriválása

Egy F(x,y)=0 implicit függvény deriválását a következőképpen számíthatjuk:

$$y' = \frac{\partial y}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

$$x' = \frac{\partial x}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial x}}$$

Fontos hogy F(x,y)=0 nem kétváltozós függvény, hanem egyenlet, ezért a deriválásnál figyelni kell a változókra. Tehát ezzel a módszerrel a Matematika 1.-ben tanult implicit deriválást tudjuk alkalmazni egyszerűbben.

Ez akár n változós implicit függvényekre is alkalmazható:

$$x_i' = \frac{\partial x_i}{\partial x_j} = -\frac{\frac{\partial F}{\partial x_j}}{\frac{\partial F}{\partial x_i}}$$