# Cost Effective Quantum Moves a Step Closer

Kyle Romero 204747283 Laboratory 7: Zhaowei Tan

# What is quantum computing?

A branch of computer science that utilizes quantum-mechanical phenomena to complete data operations

# How does quantum computing differ from classical computing?

#### **Data**

Instead of using bits, quantum computers use superposition to store information in qubits (quantum bits).

#### **Operations**

Instead of logic gates, quantum computers use quantum gates to perform operations on quantum bits.

#### **Networking**

Allows for the transmission of qubits between physically separate quantum processors

#### **Quantum Supremacy**

The term **quantum supremacy** refers to the hypothetical speedup advantage that a quantum computer would have over a classical computer. [1]

# Quantum Key Distribution (QKD)

A method of performing a quantum cryptographic task that involves producing a shared, random key that can be used to encrypt and decrypt messages

# Quantum Key Distribution Procedure



#### 3. Encoding

The information is encoded using the key generated and a different encryption algorithm

#### 2. Key Distribution

This key is shared between parties on the quantum network

# How does QKD handle eavesdropping?

Any attempt by Eve to measure the key will inherently affect the quantum system and alert Alice and Bob that someone is eavesdropping.



This all sounds great...so then what's the problem?

# QKD is still vulnerable to quantum hacking...

The equipment used to generate the key could be targeted:

- Random Number Generator Attack
- Trojan Horse Attack

My article announces the development of a cost-effective measurement-device-independent quantum key distribution system.

## Related QKD Networks

| Major quantum network projects and QKD protocols implemented |         |                |               |       |       |       |
|--------------------------------------------------------------|---------|----------------|---------------|-------|-------|-------|
| Quantum network                                              | Start + | BB84 <b>\$</b> | BBM92 <b></b> | E91 + | DPS + | COW ÷ |
| DARPA QKD network                                            | 2001    | Yes            | No            | No    | No    | No    |
| SECOCQ QKD network in Vienna                                 | 2003    | Yes            | Yes           | No    | No    | Yes   |
| Tokyo QKD network                                            | 2009    | Yes            | Yes           | No    | Yes   | No    |
| Hierarchical network in Wuho, China                          | 2009    | Yes            | No            | No    | No    | No    |
| Geneva area network (SwissQuantum)                           | 2010    | Yes            | No            | No    | No    | Yes   |

Source: https://en.wikipedia.org/wiki/Quantum\_network

To date, there is no network connecting quantum processors that exists outside of the lab.[2]

Different protocols take advantage of different properties of quantum mechanics to accomplish the same general objective

#### Related Devices

Vulnerabilities in quantum key distribution systems have been recognized for awhile and potential solutions were found in:

Potential solutions were found in:

- Device-Independent QKD
- Semi-Device Independent QKD
- One-Sided Device Independent QKD

The best balance of practicality and performance was realized in measurement-device-independent QKD

# A cost-effective measurement-device-independent quantum key distribution system for quantum networks

Published in Quantum Science and Technology, Volume 2, Number 4

Main Idea: This measurement-device-independent QKD system relies on commercially available hardware such as distributed feedback lasers and field-programmable gate arrays.

# Components

- Qubit preparation module 3. BSM Module
- Control Modules

- 4. Time-tagging modules



# **Qubit Preparation Module**

- Uses random values on FPGA board to produce laser bursts that are modified by the phase modulator (PM) and intensity modulator (IM) to generate qubits
- Several protections against potential quantum hacking:
  - Optic Isolator on laser protects against Trojan Horse Attack
  - Phase modulation protects against unambiguous state discrimination



#### **Control Modules**

- In order for Charlie to function properly, we need stabilization of photons emitted by the lasers in all degrees of freedom (spatial, temporal, polarization, and spectral degrees)
- Feedback module allows for efficient key distribution, since they are not distributed at the same time that the feedback happens



#### **BSM Module**

- The two photons are combined at the polarization maintaining beam splitter (PMBS)
- Produces a key based on projections onto a specific bases used in quantum mechanics called the Bell State



# Time-tagging Modules

- Records Alice and Bob's qubit preparations and outputs from the BSM Module
- Knowing this information allows us to discern the properties of the two photons that were combined in the PMBS
- Detects eavesdropping and/or secure key generation



# Goals and Challenges

#### Goals:

- A QKD that is secure from most forms of quantum hacking
- Provide a cost-effective system without sacrificing performance
- Ability to perform accurately over long distances

#### Challenges:

- Multitudes of quantum hacking strategies already exist and are quite robust
- Physical systems are less ideal than theoretical systems
- Quantum mechanics is HARD

#### Results

- N = # of pairs of qubits emitted by Alice and Bob
- We can see that the secure key rate is very low; however, this clock runs at 20MHz so it takes ~1.4 hours for N=10^13 at a distance of close to 200km
- Researchers note that advancements in quantum processing could increase this speed by over 100x if the clock speed could be increased to 2 GHz



## **Implications**

#### Specific:

- Demonstrated cost-effective implementation of quantum key distribution system, that works over long distances
- Shown minimal impact on performance from using readily available components

#### Broad:

 Reliable quantum key distribution systems could provide secure information transfer for financial transactions, nuclear launch codes, medical records, etc.

### Impressions

- Reiterate: Quantum computing is <u>HARD</u>; Chemistry is scary
- I mainly found the cryptographic aspects more interesting than the quantum computing
- Applications are widespread—privacy is important to everyone
- I'm excited to see where this new technology heads in the future
- I would consider studying cryptography and quantum computing in the future

#### Sources

- [1] "Quantum key distribution." *Wikipedia*, Wikimedia Foundation, 26 Oct. 2017, en.wikipedia.org/wiki/Quantum\_key\_distribution.
- [2] "Quantum network." *Wikipedia*, Wikimedia Foundation, 29 Oct. 2017, en.wikipedia.org/wiki/Quantum\_network.
- [3] IOPPublishing. "Cost effective quantum moves a step closer." *EurekAlert!*, www.eurekalert.org/pub\_releases/2017-09/ip-ceq091817.php.
- [4] Raju Valivarthi et al 2017 Quantum Sci. Technol. 2 04LT01