Session 10: Linear regression

Optimization and Computational Linear Algebra for Data Science

Textbook: Boyd & Vandenberghe: Introduction to applied linear algebra - Chaps 12 & 13

Marylou Gabrié (based on material by Léo Miolane)

Contents

- 1. Ordinary least squares
- 2. Penalized linear regression
- 3. Matrix norms

Introduction

- example 1 output y; diabete stage d'feature
- We have n « feature vectors » $a_1, \ldots, a_n \in \mathbb{R}^d$.
- Each point a_i comes with a « target variable » $y_i \in \mathbb{R}$.
- **Goal.** Find a linear relation between the a_i s and the y_i s:

Prediction: New a E IRd y= <2, a>

Can we have an intercept?

Solving Ax = y is a bad idea

From now on "no interapt"

The system Ax = y may have:

- No solution. " " water (n > d)
 - => dim Im(A) { d < m
 - =) y \in IR n is unlikely to belong to Im (A) \subsection IR n.
- Infinitely many solutions.
- redample: A is a fat matrix (d>n)

dim(Ker(A)) > d-m>0

=> typically infinitely many solutions

1. Ordinary least squares

1. Ordinary least squares 4/20

Least squares problem

(LS) Minimize
$$f(x) = \|Ax - y\|^2$$
 with respect to $x \in \mathbb{R}^d$.

If is convex $(HW9)$ therefore:

 $X = \text{minimize}$ $f(x) = 0$
 $f(x) = 0$

The Moore-Penrose pseudo-inverse

What if $A^{\top}A$ is not invertible?

What if A is not invertible? "dagger" Definition Let $A = U\Sigma V^\mathsf{T}$ be the SVD of A. The matrix $A^\dagger \stackrel{\mathrm{def}}{=} V\Sigma' U^\mathsf{T}$ is called the (Moore-Penrose) pseudo-inverse of A, where $\Sigma' \in \mathbb{R}^{d \times n}$ is

$$\Sigma'_{i,i} = \begin{cases} 1/\Sigma_{i,i} & \text{if } \Sigma_{i,i} \neq 0 \\ 0 & \text{otherwise} \end{cases}$$
, and $\Sigma'_{i,j} = 0$ for $i \neq j$

$$A = 0 \begin{pmatrix} 6^{\Lambda} \\ 6^{\Lambda$$

Exercise: Check that if A is invertible then $A^{-1} = A^{\dagger}$.

Solving $A^{\mathsf{T}}Ax = A^{\mathsf{T}}y$

Claim: The vector $x^{LS} \stackrel{\text{def}}{=} A^{\dagger}y$ is a solution of $A^{T}Ax = A^{T}y$ $A^{T}Ax^{LS} = V \Sigma^{T}U^{T}U\Sigma^{T}V \Sigma^{T}U^{T}Y = V \Sigma^{T}U^{T}Y = A^{T}Y.$

Theorem

The set of the minimizers of $f(x) = ||Ax - y||^2$ is

$$\left\{ x^{\mathrm{LS}} + v \,\middle|\, v \in \mathrm{Ker}(A) \right\}.$$

Ker (ATA)

2. Penalized least squares

2. Penalized least squares

Ridge regression

Ridge regression consists in adding a « ℓ_2 penalty » :

(Ridge) Minimize
$$f(x) = ||Ax - y||^2 + \frac{\lambda}{\lambda} ||x||^2$$
 w.r.t. $x \in \mathbb{R}^d$.

for some fixed $\lambda > 0$.

· WHY l2 penalty?

2. Penalized least squares

Lasso

 $\|x\|_1 = \sum_{i=1}^{\infty} |x_i|$ The Lasso adds a « ℓ_1 penalty » :

 $x \in \mathbb{R}^d$. (Lasso) Minimize $f(x) = ||Ax - y||^2 + \lambda ||x||_1$ w.r.t.

for some fixed $\lambda > 0$.

· CONVEXITY: f is not strictly convex, no unique minimizer in general.

In practice, LASSO minimizer is still unique.

. WHY RA PENALTY:

x will have · promotes spaise vectors: "a lot" of wordinate

-> Features selection.

2. Penalized least squares

· Tradeoff.

2 LASSO 22 20 0 10/

equal to 0

Intuition behind feature selection

Lemma

Let x^{Lasso} be a minimizer of the Lasso cost function and let $r = \|x^{\mathrm{Lasso}}\|_1$. Then x^{Lasso} is a solution to the constrained optimization problem:

minimize $||Ax - y||^2$ subject to $||x||_1 \le r$.

Consider a data set with n=442 patients, with d=10 dimensions feature vectors and the prediction of diabetese disease progression

Consider a data set with n=442 patients, with d=10 dimensions feature vectors and the prediction of diabetese disease progression

Consider a data set with n=442 patients, with d=10 dimensions feature vectors and the prediction of diabetese disease progression

Consider a data set with n=442 patients, with d=10 dimensions

https://scikit-learn.org/stable/datasets/toy_dataset.html

2. Penalized least squares

3. Matrix norms

3. Matrix norms

Frobenius norm

Definition

The Frobenius norm of a matrix $A \in \mathbb{R}^{n \times m}$ is defined as

$$\|A\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m A_{i,j}^2} = \sqrt{\mathrm{Tr}\left(A^{\mathsf{T}}A\right)}$$

Proposition

$$||A||_F = \sqrt{\sum_{i=1}^{\min(n,m)} \sigma_i(A)^2}$$

3. Matrix norms

The spectral norm

Definition

The spectral norm of a matrix $A \in \mathbb{R}^{n \times m}$ is defined as

$$\|A\|_{\text{Sp}} = \max_{\|x\|=1} \|Ax\|.$$

$$||A||_{\mathrm{Sp}} = \sigma_1(A).$$

largest singular values

Proof:
$$||A||_{Sp}^2 = \max_{||\alpha|| = 1} ||Ax||^2$$

= $\max_{||\alpha|| = 1} ||x^TA^TA||$

$$\max \text{ eigenvalue of ATA} = \lambda_1 (A^TA) = 6_1^2 (A)$$

The nuclear norm

Definition

The nuclear norm of a matrix $A \in \mathbb{R}^{n \times m}$ is defined as

19/20

Application to matrix completion

We have a data matrix $M\in\mathbb{R}^{n imes m}$ that we only observe partially. That is we only have access to $M_{i,j} \quad \text{for } (i,j)\in\Omega,$ where $\Omega \subset \{1, \dots, n\} \times \{1, \dots m\}$ is a subset of the complete set Ly minimize rank(X) w.r.t X EIR nxm (such that) — Tijj= Xijj of the entries. for all (i, j) ESZ - NP-HAKD → Instead minimize IIXII* W.N.t XEIR S.t Tij= Xiji
Solve for all (i,j)
€ I.

3. Matrix norms

A	p	ol	ic	at	tic	or	n t	0	n	1a	iti	riz	X (CO	n	np	et	io	n	

20/20

3. Matrix norms

Questions?											

21/20

Questions?											

21/20