Examen, 05 mai 2006

Durée 3 heures. Documents interdits, calculettes autorisées.

Exercice 1 – Soit N=143 et $\mathcal{B}=\{2,3,5\}$. On remarque que dans $\mathbb{Z}/N\mathbb{Z}$, on a $17^2=3$, $19^2=3\times 5^2$ et $21^2=2^2\times 3$. En *déduire* une identité $x^2=y^2$ exhibant un facteur non trivial de N

Exercice 2 – Trouver les solutions dans \mathbb{Z}^2 du système d'équations

$$\begin{cases} 3x + 2y \equiv 1 \pmod{9}, \\ 2x + 5y \equiv 0 \pmod{12}. \end{cases}$$

Exercice 3 – Soit N > 1 un entier.

- 1) Soit $p \mid N-1$ un nombre premier et $e := v_p(N-1)$. On suppose qu'il existe $a \in \mathbb{Z}$ vérifiant
 - $a^{N-1} \equiv 1 \pmod{N}$,
 - $\operatorname{pgcd}(a^{(N-1)/p} 1, N) = 1$.

Montrer que tout diviseur d de N vérifie $d \equiv 1 \pmod{p^e}$. [On peut supposer d premier; introduire l'ordre de a dans $(\mathbb{Z}/d\mathbb{Z})^*$.]

- 2) On suppose que N-1=FU, où $F\geqslant \sqrt{N}$ est un facteur dont tous les diviseurs premiers sont connus, et que pour chaque $p\mid F$, on connaît a(p) vérifiant les propriétés du 1). Soit d>1 un diviseur de N.
 - a) Montrer que $d \equiv 1 \pmod{F}$.
 - b) En déduire que $d > \sqrt{N}$, puis que N est premier.
- 3) On suppose N premier, et on fixe $p \mid N-1$. Tirant a uniformément au hasard dans [1, N], quelle est la probabilité de trouver un a(p) convenable?

Problème (Multi-évaluation)

Dans les estimations de complexité, on utilisera la notation \widetilde{O} pour ne pas avoir à tenir compte des facteurs logarithmiques ou des constantes. On rappelle qu'une opération $(+,\times,$ division euclidienne ou pgcd) sur deux polynômes de degré $\leqslant n$ dans K[X] utilise $\widetilde{O}(n)$ opérations élémentaires dans K. Une opération sur deux entiers de valeur absolue $\leqslant 2^n$ utilise $\widetilde{O}(n)$ opérations élémentaires sur des chiffres. Dans les deux cas, on dira « en temps $\widetilde{O}(n)$ » au lieu de « en utilisant $\widetilde{O}(n)$ opérations élémentaires ». On note $a \mod b$ le reste de la division euclidienne de a par b.

- 1) Soit $P \in K[X]$ non constant, et $\mathcal{L} = [x_0, \dots, x_{n-1}] \in K^n$ une liste d'éléments de K.
 - a) Écrire une procédure MAPLE qui teste si $P(x_i) \neq 0$ pour tout $0 \leq i < n$.
 - b) Majorer la complexité de cette procédure, en fonction de $\deg P$ et n.

- 2) Soit N > 0 un entier et $\mathcal{L} = [x_0, \dots, x_{n-1}] \in \mathbb{Z}^n$ une liste de n entiers > 1.
 - a) Ecrire une procédure MAPLE qui teste si N n'est divisible par aucun $x \in \mathcal{L}$.
- b) Expliquer pourquoi on peut supposer que les éléments de \mathcal{L} sont inférieurs à N. Majorer la complexité de cette procédure, en fonction de $\log N$ et n.
- 3) Expliquer en quoi les deux questions précédentes résolvent essentiellement le même problème.
- 4) On se concentre désormais sur le cas $N \in \mathbb{Z}$, $\mathcal{L} \in \mathbb{Z}^n$, plus facile à décrire, et on s'intéresse plus généralement à l'ensemble des $N \mod \mathcal{L}[i]$. On suppose dans toute la suite que $\#\mathcal{L} = n = 2^k$ est une puissance de 2.
 - a) Montrer que l'on peut toujours se ramener à $n=2^k$.
 - b) Pour $0 \le i \le k$ et $0 \le j < 2^{k-i}$, on pose

$$M_{i,j} = \prod_{0 \le \ell < 2^i} \mathcal{L}[j2^i + \ell].$$

Si k = 3, dessiner l'arbre binaire naturel dont les noeuds sont les $M_{i,j}$ et tel que chaque noeud contienne le produit de ses deux fils.

- c) Montrer que l'ensemble des $M_{i,j}$ se calculent en temps $\widetilde{O}(\log \mathcal{L})$, où la taille totale $\log \mathcal{L}$ de la liste \mathcal{L} est définie par $\log \mathcal{L} := \sum_{i \leq n} \log \mathcal{L}[i]$.
 - d) Écrire une procédure MAPLE calculant tous les $M_{i,j}$.
- 5) On suppose que les $M_{i,j}$ sont précalculés, stockés sur un arbre organisé de telle sorte que l'on puisse détacher le sous-arbre gauche ou droit de la racine, respectivement associés à la première ou deuxième moitié de \mathcal{L} , en temps négligeable. On ne s'intéressera pas à l'implantation de l'arbre¹. On considère l'algorithme suivant

Entrées: $N \in \mathbb{Z}_{>0}$, un arbre des $M_{i,j}$ associé à une liste $\mathcal{L} \in \mathbb{Z}^n$. On suppose que $\log N < \log \mathcal{L}$ et $n = 2^k$.

Sorties: La liste des $N \mod \mathcal{L}[i]$, $0 \le i < n$.

- 1: Si n = 1, retourner N.
- 2: Soit $r_0 \leftarrow N \mod M_{k-1,0}$. Calculer récursivement les $r_0 \mod \mathcal{L}[i]$, $0 \leq i < n/2$.
- 3: Soit $r_1 \leftarrow N \mod M_{k-1,1}$. Calculer récursivement les $r_1 \mod \mathcal{L}[i]$, $n/2 \leqslant i < n$.
- 4: Renvoyer la concaténation des résultats.
- a) Détailler le passage « Calculer récursivement. . . ». Avec quelles entrées rappelle-t-on la fonction ?
 - b) Montrer que l'algorithme est correct et calcule les $N \mod \mathcal{L}[i]$ en temps $\widetilde{O}(\log \mathcal{L})$.
- **6)** On rappelle que le crible d'Ératosthène calcule $\mathcal{L} := \{p \leq x : p \text{ premier}\}$ en temps $\widetilde{O}(x)$, et que $\log \mathcal{L} = \sum_{p \leq x} \log p \sim x$ quand $x \to \infty$.
- a) Montrer que l'on peut trouver tous les facteurs premiers de N inférieurs à $\log N$ en temps $\widetilde{O}(\log N)$.
- b) Comparer avec la méthode naïve de division successive par les éléments de \mathcal{L} . Utilisant la méthode récursive, à quel coût détecte-t-on *tous* les facteurs premiers de N (dans le cas le pire)?

 $^{^{1}}$ La représentation standard de la structure de tas par un tableau unidimensionnel convient.