STA 2421 DERIVATIVE SECURITIES AND MARKETS (45 Contact Hours)

Pre-Requisites:

SMA 2231: Differential Equations & HBC 2320: Investment Analysis and Portfolio Theory

Co-Requisites

STA 2418: Stochastic Calculus

(a) Course Purpose

To introduce students to the fundamental concepts of the derivative market with varying complexities.

(b) Learning outcomes

By the end of this course the student should be able to;

- (1) Describe and interpret the general features of basic types of derivative securities, such as forward and futures contracts, swaps, options, and basic structured products.
- (2) Apply the No Arbitrage Principle to price derivatives in an efficient financial market.
- (3) Price derivative securities using mathematical models and numerical methods.
- (4) Design optimal strategies to use derivative instruments for financial risk management and for financial engineering.

(c) Course Description

Basics of forwards, futures including development of future markets, type and their applications in trading and hedging, swaps and options. Introduction to options and futures; determinants of option values; portfolio strategies using options; put - call parity, spot - futures parity, early exercise; Valuation via arbitrage arguments and their use. The perfect hedge. Risk neutral pricing binomial model; Black - Scholes model; option deltas and elasticitys; delta hedging, pitfalls of dynamic hedging; forward rate agreements (FRA), futures implied forward rates; motivations for swaps, interest rate swaps, cross currency swaps, equity swaps; combining derivatives to engineer new products: stripping, reconstitution. The Greeks: Delta, gamma, vega, theta and rho, delta hedging and risk analysis, Immunization Introduction to interest-rates derivative models and analysis of short rates.

(d) Teaching Methodology

Lectures, Assignments, Tutorials, Demonstrations, Case Studies, Class presentation, Group discussion, Practical.

(e) Instructional Material and Equipment

Marker boards, markers, dusters, computers and LCD projector.

(f) Course Assessment

Assignments (5%), Group work (10%), CATs (15%), End of Semester Examination (70%).

(g) Course Text Books

- [1] Hull, J.C., Options, Futures and other Derivatives, 5th Edition, Prentice Hall, ISBN-13: 978-0130090560, 2002.
- [2] Panjer, H.H., Financial Economics with Applications to Investments Insurance and Premiums, Actuarial Foundation, ISBN-10: 0938959484, 1998.
- [3] Elton E.J., Gruber, M.J., Brown S. J. & Goetzmann, W.N., Modern Portfolio Theory and Investment Analysis, John Wiley, ISBN-13: 978-0470388327, 2003.

(h) Course Journals

- [1] Review of Derivatives Research Published by Springer. ISSN: 1380-6645 (print version), ISSN: 1573-7144(electronic version).
- [2] Applied Financial Economics, ISSN: 0960-3107 (print version), ISSN: 1466-4305 (electronic version).
- [3] Applied Mathematical Finance: ISSN: 1350-486X.

(i) Reference Text Books

- [1] Taylor F., Mastering Derivatives Markets: A Step-by-Step Guide to the Products, Applications and Risks, 4th Edition, ISBN-13: 978-0273735670, 2011.
- [2] McDonald R.L., *Derivatives Markets*, 3rd edition, Pearson Series in Finance, ISBN-13: 978-0321543080, 2012.
- [3] Zastawniak T. & Capinski M., Mathematics for Finance: An Introduction to Financial Engineering, Springer Undergraduate Mathematics Series, 2nd Edition, ISBN-13: 978-0857290816, 2011.
- [4] Fabozzi, F. J., *Handbook of Fixed Income Derivatives*, 5th edition, Irwin, Chicago, 1997.

(j) Reference Journals

- [1] Annals of Finance, ISSN: 1614-2446(print version), ISSN: 1614-2454(electronic version).
- [2] Combinatorics Probability and Computing, ISSN: 0963-5483.
- [3] Computational Statistics and Data Analysis, ISSN: 0167-9473

