第二章 命题逻辑: Gentzen系统

今天内容

- 公理系统
- ② 矢列式
- Gentzen系统
- ❹ Gentzen系统的可靠性和完备性

命题逻辑的公理系统: 推导规则

逻辑公理: 设A, B, C是L上的公式,

(A1)
$$A \rightarrow (B \rightarrow C)$$
;

(A2)
$$A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C));$$

(A3)
$$(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$
.

推导规则: (MP, Modus Ponens): 由A和 $A \rightarrow B$, 推出B;

(*)
$$\vdash_{axiom} A \rightarrow A$$
.

(*)
$$\vdash_{axiom} A \rightarrow A$$
.

1.
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$
 (A2)

- A1. $A \rightarrow (B \rightarrow A)$;
- A2. $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C));$
- $A3. \quad (\neg A \to \neg B) \to (B \to A).$

(*)
$$\vdash_{axiom} A \rightarrow A$$
.

1.
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$
 (A2)

$$2. \quad A \to ((A \to A) \to A) \tag{A1}$$

- A1. $A \rightarrow (B \rightarrow A)$;
- A2. $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C));$
- $A3. \quad (\neg A \to \neg B) \to (B \to A).$

(*)
$$\vdash_{axiom} A \rightarrow A$$
.

1.
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$

2. $A \rightarrow ((A \rightarrow A) \rightarrow A)$

(*A*2 (*A*1

(MP, 1, 2)

3.
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$

A1.
$$A \rightarrow (B \rightarrow A)$$
;

A2.
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C));$$

A3. $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A).$

$$(*) \vdash_{axiom} A \rightarrow A.$$

1.
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$

(A1

(A)

(MP, 1, 2)

2.
$$A \rightarrow ((A \rightarrow A) \rightarrow A)$$

3.
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$

4. $A \rightarrow (A \rightarrow A)$

A1.
$$A \rightarrow (B \rightarrow A)$$
;

A2.
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C));$$

A3.
$$(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$
.

(*)
$$\vdash_{axiom} A \rightarrow A$$
.

1.
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$

2. $A \rightarrow ((A \rightarrow A) \rightarrow A)$

(A1)

(A1

(MP, 3, 4)

3.
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$

$$4. \quad A \to (A \to A)$$

5. $A \rightarrow A$

A1.
$$A \rightarrow (B \rightarrow A)$$
;

A2.
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C));$$

$$A3. \quad (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A).$$

证明和定理

一个公式序列

$A_1, ..., A_n$

是一个理论T的一个证明(proof), 如果每个 A_i 要么是命题逻辑的公理的事例, 要么是T中的公式, 要么由推导规则(MP)和前面的公式得到的.

- 一个公式A是T的定理(theorem), 记为 $T \vdash_{axiom} A$, 如果存在T的
- 一个证明 $A_1,...,A_n$ 使得 $A_n=A$.

证明和定理

记 $Th(T) = \{A : T \vdash_{axiom} A\}.$ 如果 $T = \emptyset$ 则 $Th(\emptyset)$ 称为命题演算. **命题.** 对任何理论T,

$$Th(\emptyset) \subseteq Th(T)$$
.

这是命题逻辑的单调性.

可靠性定理

定理. 命题演算的每个定理是逻辑永真的.

- 每个公理是永真的;
- 推导规则是保永真的.

规则说明

- 在自然推演系统中, $\Sigma \vdash A$ 称为矢列式(sequent);
- 在公理系统中, $\Sigma \vdash A$ 称为一个断言, Σ (公理)推出A.

推导定理

推导定理连接了形式推导系统和公理系统.

定理. 如果 Σ , $A \vdash_{axiom} B$ 则 $\Sigma \vdash_{axiom} A \to B$. 证. 设 Σ , $A \vdash_{axiom} B$ 的公理证明为:

$$C_1, ..., C_i (= B).$$

我们证明对每个 $k \leq i, \Sigma \vdash_{axiom} A \rightarrow C_k$. 当k = 1. 则要么 C_1 是一个公理, 要么 $C_1 \in \Sigma$, 要么 $C_1 = A$. 如果 C_1 是一个公理, 或者 $C_1 \in \Sigma$,则

$$C_1,\,C_1 o (A o C_1),A o C_1$$

是 Σ 的一个公理证明, 因此, Σ \vdash _{axiom} $A \rightarrow C_1$.

如果
$$C_1 = A$$
 则由(*), 有 $\vdash_{axiom} A \to A$, 更有 $\Sigma \vdash_{axiom} A \to A$.

如果 $C_1 = A$ 则由(*), 有 $\vdash_{axiom} A \rightarrow A$, 更有 $\Sigma \vdash_{axiom} A \rightarrow A$.

假设对每个 $k' < k, \Sigma \vdash_{axiom} A \rightarrow C_{k'}$. 则

- (1) C_k 是一个公理, 或者
- (2) $C_k \in \Sigma$, 或者
- (3) $C_k = A$, 或者
- (4) 存在n, m < k和公式D使得 $C_n = D \rightarrow C_k$ 并且 $C_m = D$.

由归纳假设, $\Sigma \vdash_{axiom} A \to (D \to C_k)$ 并且 $\Sigma \vdash_{axiom} A \to D$. 设公理证明分别为

$$D_1,...,D_r (= A \rightarrow (D \rightarrow C_k));$$

 $E_1,...,E_s (= A \rightarrow D).$

由归纳假设, $\Sigma \vdash_{axiom} A \to (D \to C_k)$ 并且 $\Sigma \vdash_{axiom} A \to D$. 设公理证明分别为

$$D_1, ..., D_r (= A \rightarrow (D \rightarrow C_k));$$

 $E_1, ..., E_s (= A \rightarrow D).$

则

$$D_1, ..., D_r, E_1, ..., E_s;$$

$$(A \to (D \to C_k)) \to ((A \to D) \to (A \to C_k)),$$

$$(A \to D) \to (A \to C_k),$$

$$A \to C_k$$

是 Σ 的一个公理证明. 因此, Σ \vdash _{axiom} $A \rightarrow C_k$.

根据公理和MP的形式可推导性, 得到: 如果 $\vdash_{axiom} A$ 则 $\vdash A$. 如果 $\Sigma \vdash_{axiom} A$ 则 $\Sigma \vdash A$.

$$\Sigma \vdash_{axiom} A$$
 蕴涵 $\vdash_{axiom} \Sigma \rightarrow A$
 蕴涵 $\vdash \Sigma \rightarrow A$
 蕴涵 $\Sigma \vdash A$.

注意:根据定义,可以直接得到:如果 $\Sigma \vdash_{axiom} A$ 则存在一个有限的集合 $\Sigma' \subseteq \Sigma$ 使得 $\Sigma' \vdash_{axiom} A$.

形式推导规则系统与公理系统的等价性

定理. 如果 $\Sigma \vdash A$ 则 $\Sigma \vdash_{axiom} A$. 证.

定理. 如果 $\Sigma \vdash A$ 则 $\Sigma \vdash_{axiom} A$. 证. 对形式推导 $\Sigma \vdash A$ 的证明作结构归纳. 对证明的最后一步用到的形式推导规则分情况讨论.

定理. 如果 $\Sigma \vdash A$ 则 $\Sigma \vdash_{axiom} A$.

证. 对形式推导 $\Sigma \vdash A$ 的证明作结构归纳. 对证明的最后一步用到的形式推导规则分情况讨论.

 (\rightarrow^-) : 假设 $\Sigma \vdash B \rightarrow A$ 并且 $\Sigma \vdash B$,则 $\Sigma \vdash A$. 由归纳假设, 存在 $B \rightarrow A$ 和B的 Σ 公理证明:

$$C_1, ..., C_i (= B \rightarrow A),$$

 $D_1, ..., D_j (= B).$

则

$$C_1, ..., C_i = B \rightarrow A, D_1, ..., D_j = B, A.$$

定理. 如果 $\Sigma \vdash A$ 则 $\Sigma \vdash_{axiom} A$. 证. (\rightarrow +): 假设 Σ , $B \vdash C$ 并且 $A = B \rightarrow C$,则 $\Sigma \vdash A$. 由归纳假设, 存在C的 $\Sigma \cup \{B\}$ 公理证明:

$$C_1, ..., C_i (= C).$$

我们证明对每个 $k \leq i, \Sigma \vdash_{axiom} B \rightarrow C_k$.

 (\to^+) : 假设 Σ , $B \vdash C$ 并且 $A = B \to C$,则 $\Sigma \vdash A$. 由归纳假设, 存在C的 $\Sigma \cup \{B\}$ 公理证明:

$$C_1, ..., C_i (= C).$$

我们证明对每个 $k \leq i, \Sigma \vdash_{axiom} B \rightarrow C_k$. 当k = 1. 则要么 C_1 是一个公理, 要么 $C_1 \in \Sigma$, 要么 $C_1 = B$.

 (\to^+) : 假设 Σ , $B \vdash C$ 并且 $A = B \to C$,则 $\Sigma \vdash A$. 由推导定理得出. **推导定理.** 如果 Σ , $B \vdash_{axiom} C$ 则 $\Sigma \vdash_{axiom} B \to C$.

形式推导规则系统与公理系统的等价性

 (\neg^-) 假设 Σ , $\neg A \vdash B$ 并且 Σ , $\neg A \vdash \neg B$,则 $\Sigma \vdash A$. 由归纳假设, 存在 $\neg A \to B$ 和 $\neg A \to \neg B$ 的 Σ 公理证明:

$$C_1, ..., C_i (= \neg A \rightarrow B),$$

 $D_1, ..., D_j (= \neg A \rightarrow \neg B).$

 (\neg^-) 假设 Σ , $\neg A \vdash B$ 并且 Σ , $\neg A \vdash \neg B$,则 $\Sigma \vdash A$. 由归纳假设, 存在 $\neg A \rightarrow B$ 和 $\neg A \rightarrow \neg B$ 的 Σ 公理证明:

$$C_1, ..., C_i (= \neg A \rightarrow B),$$

 $D_1, ..., D_j (= \neg A \rightarrow \neg B).$

则

$$C_1, ..., C_i = \neg A \rightarrow B, D_1, ..., D_j = \neg A \rightarrow \neg B,$$

 $(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A),$
 $(\neg A \rightarrow \neg B) \rightarrow A,$
 $A.$

是Σ的一个公理证明.

命题逻辑定理的基本性质

- 1. 定理的否定不是定理; 命题逻辑的定理集合是一个协调集合;
- 2. 存在一个公式使得该公式和其否定都不是定理. 因此, 命题逻辑的定理集合不是极大协调集合;
- 3. 定理的集合是可判定的.

矢列式

设 Γ , Δ 是公式集合. $\Gamma \Rightarrow \Delta$ 是一个矢列式。 有的书表示为 $\Gamma \vdash \Delta$.

矢列式中逗号的含义

```
\Gamma = \{A_0, ..., A_n, ...\}, 逗号是合取; \Delta = \{B_0, ..., B_m, ...\}, 逗号是析取。 如果\Gamma = \{A_1, ..., A_n\}, \Delta = \{B_1, ..., B_m\}是有限的公式集合,则\Gamma \Rightarrow \Delta意思为
```

$$A_1 \wedge \cdots \wedge A_n \Rightarrow B_1 \vee \cdots \vee B_m$$
.

原子矢列式

如果 Γ , Δ 是原子公式的集合, $\Gamma \Rightarrow \Delta$ 是一个原子矢列式。

矢列式的可满足性

给定一个赋值 $v,\Gamma \Rightarrow \Delta E v$ 下满足,记为 $v \models \Gamma \Rightarrow \Delta$,如果 $v \models \Gamma$ 蕴含 $v \models \Delta$,其中

- $v \models \Gamma$ 如果对**每个**公式 $A \in \Gamma, v \models A$;
- $v \models \Delta$ 如果对某个公式 $B \in \Delta, v \models B$;

例子

$$A,B,C\Rightarrow C,D,E$$
是一个矢列式,并且对任何赋值 v ,
$$v \models A,B,C\Rightarrow C,D,E.$$

永真的矢列式

一个矢列式
$$\Gamma \Rightarrow \Delta$$
是永真的,记为 $\models \Gamma \Rightarrow \Delta$,如果对任何赋值 v ,
$$v \models \Gamma \Rightarrow \Delta.$$

因此, $\models A, B, C \Rightarrow C, D, E$.

Gentzen推理系统

通过该系统,定义 \vdash $\Gamma \Rightarrow \Delta$,并且有

- 可靠性: $\vdash \Gamma \Rightarrow \Delta$ 蕴含 $\models \Gamma \Rightarrow \Delta$;
- 完备性: $\models \Gamma \Rightarrow \Delta$ 蕴含 $\vdash \Gamma \Rightarrow \Delta$.

Gentzen推理系统

Gentzen推理系统由一个公理和若干个推理规则组成。 公理:

$$\Gamma, p \Rightarrow p, \Delta,$$

其中 Γ , Δ 是命题变元的集合.

Gentzen推理系统: 推导规则

$$\begin{array}{ll} (\neg^{L}) \ \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} & (\neg^{R}) \ \frac{\Gamma, B \Rightarrow \Delta}{\Gamma \Rightarrow \neg B, \Delta} \\ (\wedge_{1}^{L}) \ \frac{\Gamma, A_{1} \Rightarrow \Delta}{\Gamma, A_{1} \Rightarrow \Delta} & (\wedge^{R}) \ \frac{\Gamma \Rightarrow B_{1}, \Delta}{\Gamma \Rightarrow B_{1}, \Delta} \ \Gamma \Rightarrow B_{2}, \Delta \\ (\wedge_{2}^{L}) \ \frac{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \Rightarrow \Delta} & (\wedge^{R}) \ \frac{\Gamma \Rightarrow B_{1}, \Delta}{\Gamma \Rightarrow B_{1} \wedge B_{2}, \Delta} \\ (\vee^{L}) \ \frac{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \vee A_{2} \Rightarrow \Delta} & (\vee_{1}^{R}) \ \frac{\Gamma \Rightarrow B_{1}, \Delta}{\Gamma \Rightarrow B_{2}, \Delta} \\ (\vee_{2}^{R}) \ \frac{\Gamma \Rightarrow B_{1} \vee B_{2}, \Delta}{\Gamma \Rightarrow B_{2}, \Delta} \end{array}$$

矢列式的可证性

一个矢列式 $\Gamma \Rightarrow \Delta$ 是可证的, 记为 $\Gamma \Rightarrow \Delta$ 如果存在一个序列 $\{\Gamma_1 \Rightarrow \Delta_1, ..., \Gamma_n \Rightarrow \Delta_n\}$

使得 $\Gamma_n \Rightarrow \Delta_n = \Gamma \Rightarrow \Delta$, 并且对每个 $1 \le i \le n$, $\Gamma_i \Rightarrow \Delta_i$ 要么是一个公理, 要么由此前的矢列式通过一个推导规则得到的.

可证的例子

$$\neg (A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D$$

可证的例子(111)

$$(111)\neg B, \neg A \Rightarrow \neg A, D, A \land \neg B$$

$$(111)\neg B, \neg A \Rightarrow \neg A, D, A \land \neg B$$

$$(111)\neg (A \land \neg B), \neg B, \neg A \Rightarrow \neg A, D$$

$$\neg (A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D$$

可证的例子(111)

$$(1111)\neg B, \neg C \Rightarrow \neg A, D, A$$

$$(111)\neg B, \neg C \Rightarrow \neg A, D, A \land \neg B$$

$$(112)\neg (A \land \neg B), \neg B, \neg C \Rightarrow \neg A, D$$

$$\neg (A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D$$

可证的例子(112)

$$(1112)\neg B, \neg C \Rightarrow \neg A, D, \neg B$$

$$(111)\neg B, \neg C \Rightarrow \neg A, D, A \land \neg B$$

$$(112)\neg (A \land \neg B), \neg B, \neg C \Rightarrow \neg A, D$$

$$\neg (A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D$$

可证的例子(121)

$$(121)\neg(A \land \neg B), \neg A, \neg A \Rightarrow \neg A, D$$
$$\neg(A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D$$

可证的例子(122)

$$(122)\neg(A \land \neg B), \neg A, \neg C \Rightarrow \neg A, D \neg(A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D$$

可证的例子(211)

$$(211)D \lor C, \neg B, \neg A \Rightarrow \neg A, D$$
$$\neg (A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D$$

可证的例子(2112)

$$\begin{array}{l} (2^{1}12)D, \neg B, \neg C \Rightarrow \neg A, D \\ (212)D \lor C, \neg B, \neg C \Rightarrow \neg A, D \\ \neg (A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D \end{array}$$

可证的例子(2212)

$$(2^{2}12)C, \neg B, \neg C \Rightarrow \neg A, D$$

$$(212)D \lor C, \neg B, \neg C \Rightarrow \neg A, D$$

$$\neg (A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D$$

可证的例子(221)

$$\begin{array}{l} (221)D \lor C, \neg A, \neg A \Rightarrow \neg A, D \\ \neg (A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D \end{array}$$

可证的例子(222)

$$(222)D \lor C, \neg A, \neg C \Rightarrow \neg A, D$$
$$\neg (A \land \neg B) \lor (D \lor C), \neg B \lor \neg A, \neg A \lor \neg C \Rightarrow \neg A \lor D$$

可证的直观

$$\begin{array}{l} (\wedge_1^L) \ \frac{\Gamma, A_1 \Rightarrow \Delta}{\Gamma, A_1 \wedge A_2 \Rightarrow \Delta} \\ (\wedge_2^L) \ \frac{\Gamma, A_2 \Rightarrow \Delta}{\Gamma, A_1 \wedge A_2 \Rightarrow \Delta} \end{array} \ \, (\wedge^R) \ \frac{\Gamma \Rightarrow B_1, \Delta \ \, \Gamma \Rightarrow B_2, \Delta}{\Gamma \Rightarrow B_1 \wedge B_2, \Delta}$$

可靠性

对任何矢列式 $\Gamma\Rightarrow\Delta$, 如果 $\vdash\Gamma\Rightarrow\Delta$ 则 $\models\Gamma\Rightarrow\Delta$.

证明. 我们证明每个公理是永真的以及每个推导规则保持永真性.

对任何赋值v, 假设 $v \models \Gamma$, p. 则, $v \models p$, 因而, $v \models p$, Δ . (\neg^L) 假设对任何赋值v, $v \models \Gamma \Rightarrow A$, Δ . 则对任何赋值v, 如果 $v \models \Gamma$ 则 $v \models A$, Δ . 对任何赋值w, 假设 $w \models \Gamma$, $\neg A$. 则 $w \models \Gamma$, 由归纳假设, $w \models A$, Δ . 因为 $w \models \neg A$, $w \models \Delta$. (\neg^R) 假设对任何赋值v, $v \models \Gamma$, $B \Rightarrow \Delta$. 则对任何赋值v, 如果 $v \models \Gamma$, B. 对任何赋值w, 假设 $w \models \Gamma$. 则存在两种情况: (i) $v \models B$. 由归纳假设, $v \models \Delta$, 因而, $v \models \neg A$, Δ ; (ii) $v \not\models A$. 则, $v \models \neg A$, 因而, $v \models \neg A$, Δ .

 (\wedge_1^L) 假设对任何赋值 $v, v \models \Gamma, A_1 \Rightarrow \Delta$. 则, 对任何赋值v, 如果 $v \models \Gamma, A_1 \wedge A_2$ 则 $v \models \Gamma, A_1$, 由归纳假设, $v \models \Delta$. 类似地讨论情况 (\wedge_2^L) . (\wedge^R) 假设对任何赋值 $v, v \models \Gamma \Rightarrow B_1, \Delta$ 并且 $v \models \Gamma \Rightarrow B_2, \Delta$. 则,对任何赋值v, 如果 $v \models \Gamma$ 则存在两种情况: $(i) v \not\models B_1$ 要么 $v \not\models B_2$. 由归纳假设, $v \models \Delta$; $(ii) v \models B_1$ 并且 $v \models B_2$. 则,

 $v \models A_1 \land A_2$, 因而, $v \models A_1 \land A_2$, Δ .

 (\vee^L) 假设对任何赋值 $v, v \models \Gamma, A_1 \Rightarrow \Delta$ 并且 $v \models \Gamma, A_2 \Rightarrow \Delta$. 则, 对任何赋值v, 如果 $v \models \Gamma, A_1 \vee A_2$ 则 $v \models \Gamma$ 且 $v \models A_1 \vee A_2$. 存在两种情况: 如果 $v \models A_1$ 则由归纳假设, $v \models \Delta$; 并且如果 $v \models A_2$ 则由归纳假设, $v \models \Delta$. (\vee_1^R) 假设对任何赋值 $v, v \models \Gamma \Rightarrow B_1, \Delta$. 则, 对任何赋值 $v, v \models R_1, \Delta$. 存在两种情况: $v \models B_1, \Delta$. 列 $v \models B_1, \Delta$. 表表,因而, $v \models B_1, \Delta$. 因而, $v \models B_1, \Delta$. 因而,

 $v \models B_1 \lor B_2, \Delta$. 类似地讨论情况(\lor_2^R).

完备性

完备性定理. 对任何矢列式 $\Gamma \Rightarrow \Delta$, 如果 $\models \Gamma \Rightarrow \Delta$ 则 $\vdash \Gamma \Rightarrow \Delta$.

$$\begin{array}{l} (\wedge_1^L) \ \frac{\Gamma, A_1 \Rightarrow \Delta}{\Gamma, A_1 \wedge A_2 \Rightarrow \Delta} \\ (\wedge_2^L) \ \frac{\Gamma, A_1 \wedge A_2 \Rightarrow \Delta}{\Gamma, A_1 \wedge A_2 \Rightarrow \Delta} \end{array}$$

$$\begin{array}{l} (\wedge_1^L) \ \frac{\Gamma, A_1 \Rightarrow \Delta}{\Gamma, A_1 \wedge A_2 \Rightarrow \Delta} \\ (\wedge_2^L) \ \frac{\Gamma, A_2 \Rightarrow \Delta}{\Gamma, A_1 \wedge A_2 \Rightarrow \Delta} \end{array}$$

$$(\wedge^R) \ \frac{\Gamma \Rightarrow B_1, \Delta}{\Gamma \Rightarrow B_1 \wedge B_2, \Delta}$$

变成

$$(\wedge^{L}) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} (\wedge^{R}) \frac{\Gamma \Rightarrow B_{1}, \Delta \Gamma \Rightarrow B_{2}, \Delta}{\Gamma \Rightarrow B_{1} \wedge B_{2}, \Delta}$$

给定一个矢列式 $\Gamma \Rightarrow \Delta$,将 Γ , Δ 中每个公式通过规则分解为若干 个原子矢列式。

如果每个原子矢列式是一个公理, 那么分解过程反过来

 $E\Gamma \Rightarrow \Delta$ 的一个证明:

如果有某个矢列式不是一个公理, 那么可以构造一个赋 值v是v \nvDash $\Gamma \Rightarrow \Delta$.

我们将构造一个树T 使得

- 要么T 是 $\Gamma \Rightarrow \Delta$ 的一个证明树
- 要么存在一个树枝 $\gamma \in T$ 和一个赋值 ν 使得每个 γ 中的矢列式 在赋值 ν 下是不满足的.

我们将构造一个树T 使得要么T 是 $\Gamma \Rightarrow \Delta$ 的一个证明树要么存在一个树枝 $\gamma \in T$ 和一个赋值 ν 使得每个 γ 中的矢列式在赋值 ν 下是不满足的.

$$(\wedge^L) \ \frac{\Gamma, A_1, A_2 \Rightarrow \Delta}{\Gamma, A_1 \wedge A_2 \Rightarrow \Delta} \quad (\wedge^R) \ \frac{\Gamma \Rightarrow B_1, \Delta \quad \Gamma \Rightarrow B_2, \Delta}{\Gamma \Rightarrow B_1 \wedge B_2, \Delta}$$

 $(\wedge^L), (\vee^R)$ 不分叉, $(\wedge^R), (\vee^L)$ 分叉. 每个叶节点上至少有一个矢列式是公理.

完备性定理证明:¬

任给一个T上的节点 $\Gamma' \Rightarrow \Delta'$.

完备性定理证明: /

Case (\neg^L) . 设 $\neg A_1, ..., \neg A_n$ 为 Γ' 中所有以 \neg 为主连接词的公式. 则, 设

$$\Gamma'' \Rightarrow A_1, ..., A_n, \Delta'$$

为 $\Gamma' \Rightarrow \Delta'$ 的一个直接子节点.

Case (\neg^R) . 设 $\neg B_1, ..., \neg B_n$ 为 Δ' 中所有以 \neg 为主连接词的公式. 则, 设

$$\Gamma', B_1, ..., B_n \Rightarrow \Delta''$$

为 Γ ′ ⇒ Δ ′的一个直接子节点.

完备性定理证明: /

Case (\wedge^L). 设 $A_1^1 \wedge A_1^2$,..., $A_n^1 \wedge A_n^2$ 为Γ'中所有以 \wedge 为主连接词的公式. 则, 设

$$\Gamma'', A_1^1, A_1^2, ..., A_n^1, A_n^2 \Rightarrow \Delta'$$

为 $\Gamma' \Rightarrow \Delta'$ 的一个直接子节点

Case (\wedge^R). 设 $B_1^1 \wedge B_1^2$,..., $B_n^1 \wedge B_n^2$ 为 Δ' 中所有以 \wedge 为主连接词的公式. 则, $\Gamma' \Rightarrow \Delta'$ 有 2^n -个直接子节点:

$$\Gamma' \Rightarrow B_1^{f(1)}, ..., B_n^{f(n)}, \Delta'',$$

其中f 是 $\{1,...,n\}$ 到 $\{1,2\}$ 的一个函数.

完备性定理证明:\/

Case (\vee^L). 设 $A_1^1 \vee A_1^2$,..., $A_n^1 \vee A_n^2$ 为 Γ' 中所有以 \vee 为主连接词的公式. 则, $\Gamma' \Rightarrow \Delta'$ 有 2^n 个直接子节点:

$$\Gamma'', A_1^{f(1)}, ..., A_n^{f(n)} \Rightarrow \Delta',$$

其中f 是 $\{1,...,n\}$ 到 $\{1,2\}$ 的一个函数.

Case (\vee^R). 设 $B_1^1 \vee B_1^2$, ..., $B_n^1 \vee B_n^2$ 为 Δ' 中所有以 \vee 为主连接词的 公式. 则. 设

$$\Gamma' \Rightarrow B_1^1, B_1^2, ..., B_n^1, B_n^2, \Delta''$$

为 Γ' ⇒ Δ' 的一个直接子节点.

如果T的每个叶节点是一个公理则很容易证明T是 $\Gamma \Rightarrow \Delta$ 的一个证明树;

否则,设 γ 为一个T的树枝其叶节点不是一个公理,则我们定义一个赋值 ν 使得每个 γ 上的矢列式是不满足的.

$$v(p) = \left\{ egin{array}{ll} 1 & \mathrm{如果} p \in \Gamma_0 \ 0 & \mathrm{如果} p \in \Delta_0 \ 0 & \mathrm{否则}. \end{array}
ight.$$

v 是良定的, 因为 $\Gamma_0 \cap \Delta_0 = \emptyset$; 并且 $v \not\models \Gamma_0 \Rightarrow \Delta_0$, 因为 $v \models \Gamma_0$ 并且 $v \not\models \Delta_0$.

```
对任何\Gamma' \Rightarrow \Delta' \in \gamma, 假设\nu \not\models \Gamma' \Rightarrow \Delta'. 如果\Gamma' \Rightarrow \Delta' = \Gamma \Rightarrow \Delta 则
显然: 否则. 存在一个\Gamma'' \Rightarrow \Delta'' \in \gamma 使得\Gamma' \Rightarrow \Delta' 是一
个\Gamma'' \Rightarrow \Delta''的子节点. \Gamma'' \Rightarrow \Delta''有下列情形.
Case 1.  \begin{cases} \Gamma' \Rightarrow \Delta' = \Gamma_1, B_1, ..., B_n \Rightarrow \Delta_1 \\ \Gamma'' \Rightarrow \Delta'' = \Gamma_1 \Rightarrow \neg B_1, ..., \neg B_n, \Delta_1. \end{cases} 
                                                                                                                由归纳假设.
v \not\models \Gamma_1, B_1, ..., B_n \Rightarrow \Delta_1, i.e., v \models \Gamma_1, B_1, ..., B_n 并且v \not\models \Delta_1. 因
此, v \models \Gamma_1, v \not\models \neg B_1, ..., \neg B_n, \Delta_1.
Case 2.  \begin{cases} \Gamma' \Rightarrow \Delta' = \Gamma_1 \Rightarrow A_1, ..., A_n, \Delta_1 \\ \Gamma'' \Rightarrow \Delta'' = \Gamma_1, \neg A_1, ..., \neg A_n \Rightarrow \Delta_1. \end{cases} 
                                                                                                                由归纳假设.
v \not\models \Gamma_1 \Rightarrow A_1, ..., A_n, \Delta_1, i.e., v \models \Gamma_1  并且v \not\models A_1, ..., A_n, \Delta_1. 因
此, v \models \Gamma, v \models \neg A_1, ..., \neg A_n, 并且v \not\models \Delta_1, 即.
v \models \Gamma_1, \neg A_1, ..., \neg A_n 并且v \not\models \Delta_1.
```

Case 3. $\begin{cases} \Gamma'\Rightarrow\Delta'=\Gamma_1,A_1^1,A_1^2,...,A_n^1,A_n^2\Rightarrow\Delta_1 \\ \Gamma''\Rightarrow\Delta''=\Gamma_1,A_1^1\wedge A_1^2,...,A_n^1\wedge A_n^2\Rightarrow\Delta_1. \end{cases}$ 由归纳假设, $v\not\models\Gamma_1,A_1^1,A_1^2,...,A_n^1,A_n^2\Rightarrow\Delta_1$,i.e., $v\models\Gamma_1,A_1^1,A_1^2,...,A_n^1,A_n^2$ 并且 $v\not\models\Delta_1$. 因此, $v\models\Gamma_1,A_1^1\wedge A_1^2,...,A_n^1\wedge A_n^2$,并且 $v\not\models\Delta$. Case 4. 存在一个函数 $f:\{1,...,n\}\to\{1,2\}$ 使得

$$\left\{ \begin{array}{l} \Gamma'\Rightarrow\Delta'=\Gamma_1\Rightarrow B_1^{f(1)},...,B_n^{f(n)},\Delta_1\\ \Gamma''\Rightarrow\Delta''=\Gamma_1\Rightarrow B_1^1\wedge B_1^2,...,B_n^1\wedge B_n^2,\Delta_1. \end{array} \right.$$

由归纳假设, $v \not\models \Gamma_1 \Rightarrow B_1^{f(1)}, ..., B_n^{f(n)}, \Delta_1$, i.e., $v \models \Gamma_1$ 并且 $v \not\models B_1^{f(1)}, ..., B_n^{f(n)}, \Delta_1$. Hence, $v \models \Gamma_1$, 并且 $v \not\models B_1^1 \land B_1^2, ..., B_n^1 \land B_n^2, \Delta$.

Case 5. 存在一个函数 $f: \{1, ..., n\} \rightarrow \{1, 2\}$ 使得

$$\left\{ \begin{array}{l} \Gamma'\Rightarrow\Delta'=\Gamma_1,A_1^{f(1)},...,A_n^{f(n)}\Rightarrow\Delta_1\\ \Gamma''\Rightarrow\Delta''=\Gamma_1,A_1^1\vee A_1^2,...,A_n^1\vee A_n^2\Rightarrow\Delta_1. \end{array} \right.$$

由归纳假设, $v \not\models \Gamma_1, A_1^{f(1)}, ..., A_n^{f(n)} \Rightarrow \Delta_1$, i.e., $v \models \Gamma_1, A_1^{f(1)}, ..., A_n^{f(n)},$ 并且 $v \not\models \Delta_1$. 因此, $v \models \Gamma_1, A_1^1 \lor A_1^2, ..., A_n^1 \lor A_n^2,$ 并且 $v \not\models \Delta$.

Case 6. $\begin{cases} \Gamma' \Rightarrow \Delta' = \Gamma_1 \Rightarrow B_1^1, B_1^2, ..., B_n^1, B_n^2, \Delta_1 \\ \Gamma'' \Rightarrow \Delta'' = \Gamma_1 \Rightarrow B_1^1 \lor B_1^2, ..., B_n^1 \lor B_n^2, \Delta_1 \end{cases}$ 由归纳假设, $v \not\models \Gamma_1 \Rightarrow B_1^1, B_1^2, ..., B_n^1, B_n^2, \Delta_1$, i.e., $v \models \Gamma_1$, 并且 $v \not\models B_1^1, B_1^2, ..., B_n^1, B_n^2, \Delta_1$. 因此, $v \models \Gamma_1$, 并且 $v \not\models B_1^1 \lor B_1^2, ..., B_n^1, V B_n^2, \Delta$.

Gentzen系统的特点

容易找到证明,情况组合很多。

逻辑的证明系统比较

系统	公理个数	推导规则数量	机械性
公理系统	多	少	低
自然系统	中	中	中
Gentzen系统	少	多	高