Surname	Centre Number	Candidate Number
First name(s)		2

GCE A LEVEL

1410U30-1

TUESDAY, 10 JUNE 2025 - MORNING

CHEMISTRY – A2 unit 3 Physical and Inorganic Chemistry

1 hour 45 minutes

Section A Section B

Question	Maximum Mark	Mark Awarded
1. to 6.	10	
7.	16	
8.	13	
9.	19	
10.	22	
Total	80	

ADDITIONAL MATERIALS

- · A calculator, pencil and ruler
- · Data Booklet supplied by WJEC

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions.

Section B Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in Q9(b)(iii).

® WJEC CBAC Ltd.

Examin

SECTION A

Answer all questions.

1195				
4	Complete the A	rehanius sau	ation halow	
	Complete the A	mnemus equ	ation below.	

[1]

2.	Give a reason why SiCl ₄ reacts vigorously with water whilst CCl ₄	does not.
----	--	-----------

[1]

ı			
į	3.	Many reactions use	heterogeneous catalysts

Para at the	
(a)	State what is meant by the term heterogeneous in this context.

[1]

(b) G	Give an example of a heterogeneous catalyst and the reaction it catalyses.	
-------	--	--

[1]

100							
4.	Ethanedioic acid,	(COOH)2,	can be	oxidised b	y acidified	manganate(VII) ions

Use the half-equations below to write the ionic equation for the reaction.

[1]

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O_4$$

$$(COOH)_2 \longrightarrow 2CO_2 + 2H^+ + 2e^- \times 5$$

5.	A metal halide gives a lilac flame test and the addition of concentrated sulfuric acid causes it
	to release coloured fumes and a smell of rotten eggs.

Identify the metal halide, giving reasons for your answer. [2]

6. Give the observation(s) expected when aqueous sodium hydroxide is added gradually to aqueous chromium(III) chloride until the sodium hydroxide is in excess.

The diagram shows the apparatus used to measure the standard electrode potential for the half-equation:

$$Cr_2O_7^{2-}$$
 + $14H^+$ + $6e^ \Longrightarrow$ $2Cr^{3+}$ + $7H_2O$

 $E^{\theta} = +1.33 \text{ V}$

Name parts A and B.

В_____

Label the diagram to show the direction of flow of electrons in the wire.

10

[1]

[1]

SECTION B

Answer all questions.

7. (a) Metal nitrates containing Group 2 metals decompose upon heating.

$$2M(NO_3)_2(s)$$
 \longrightarrow $2MO(s)$ + $4NO_2(g)$ + $O_2(g)$

Metal nitrate	Standard enthalpy change of reaction/kJ mol ⁻¹	Standard entropy change reaction/JK ⁻¹ mol ⁻¹	
Mg(NO ₃) ₂	444	411	
Ca(NO ₃) ₂		379	
Ba(NO ₃) ₂	936	397	

(i)	Give a reason why all the entropy changes are positive.	[1]
(ii)	The minimum temperature for decomposition of calcium nitrate is 1500 °C.	
	Find the standard enthaloy change for this reaction.	[3]

Standard enthalpy change = ____ kJ mol⁻¹

- (iii) Treatment of aqueous barium nitrate with sulfuric acid produces a white precipitate of barium sulfate, whilst addition of the same acid to aqueous magnesium nitrate does not give a precipitate.
 - Write the ionic equation for the formation of the precipitate, including state symbols.
 - II. Use the data below to explain why barium sulfate is insoluble in water whilst magnesium sulfate is soluble.
 [3]

	Standard enthalpy change/kJ mol ⁻¹
Lattice breaking enthalpy of MgSO ₄	2833
Lattice breaking enthalpy of BaSO ₄	2474
Hydration enthalpy of Mg ²⁺ ion	-1920
Hydration enthalpy of Ba ²⁺ ion	-1360
Hydration enthalpy of SO ₄ ²⁻ ion	-1059

4100331

(b) Ai	mmonium nitrate is a soluble salt. mmonium nitrate, giving a reason	Suggest the pH of an aqueous solution of for your answer.	[2]
12 120 120			
a C	dded.	ipitates when a variety of aqueous solutions are a	
	Solution added	Observation(s)	
	sulfuric acid		
1	potassium iodide	DEPOSITION D	

(d) Metal nitrates are often found in rocks mixed with materials such as limestone. A student is provided with a rock which contains a mixture of sodium nitrate and calcium carbonate. Heating the rock causes both substances to decompose according to the following equations.

$$2NaNO_3(s)$$
 \longrightarrow $2NaNO_2(s)$ + $O_2(g)$

The boiling temperatures of the gases produced are as follows.

Substance	O ₂	CO ₂
Boiling temperature/K	90	195

A sample of 81.3 g of the rock was heated until both substances decomposed completely. The volume of gas produced was measured at 1 atm pressure at two different temperatures.

Temperature/K	Volume of gas produced/cm ³
200	1.193 × 10 ⁴
100	1.028 × 10 ³

Find the percentage by mass of calcium carbonate in the rock.

[4]

Percentage calcium carbonate = _______ %

16

07

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

8.	(a)	Whe	en chlorine gas reacts with concentrated aqueous sodium hydroxide solution, it duces sodium chloride, sodium chlorate(V) and water.	
		(i)	Write an equation for this reaction.	[1
		(ii)	Use oxidation states to show why this reaction can be described as disproportionation.	[2]
	(b)	Chlo	orate(I) ions can oxidise bromide ions according to the following equation.	
			CIO (aq) + Br (aq) CI (aq) + BrO (aq)	
		(i)	One method of studying the rate of this reaction is by sampling and quenching	j.
			State how you would quench the samples.	[1]
		(ii)	The reaction is first order with respect to each reactant therefore second orde overall.	r
			A student states that this means that successive half-life values for each react will be constant. Is the student correct?	ant
			Give a reason for your answer.	[1]

(iii) A student follows the progress of the reaction at a temperature of 298 K.
She obtains the results shown in the graph.

rate of the reaction. [2]	Use the concentration of chloride ions to find the initial rate of	Le	
mol dm ⁻³ min ⁻¹	Rate =r		
g its unit. [4]	Find the value of the rate constant for the reaction, giving its un	II.	
	k =		
	Unit		
omate(I) ions formed	Another student chooses to plot the concentration of bromate(linstead of the concentration of chloride ions formed.	III.	
[2]	State the differences in their graphs, if any, giving a reason for		
	·		

13

Ethanoic acid can be produced in a reaction between iodomethane and carbon monoxide, followed by treatment with water.

Reaction 1

Reaction 2

(a) Use data from one of the tables below to calculate the more accurate value of the standard enthalpy change for reaction 1. Give a reason for your choice of data.

[3]

Bond	Bond energy /kJ mol ⁻¹
с-н	413
c-c	346
c-1	240
c=o	745
C≡O in carbon monoxide	1072

Substance	Standard enthalpy change of formation/kJ mol ⁻¹	
CH ₃ I	-14	
со	-111	
СН₃СОІ	-162	

Enthalpy change for reaction 1 =	kJ mol '

b) Re	eaction 2 produces a mixture of the weak acid CH ₃ COOH and the strong acid HI.	
(Suggest what effect the presence of HI will have on the dissociation of CH₃COOI in this mixture compared to an aqueous solution containing only CH₃COOH. 	
		2]
(ii		2]
	D. 250 Morain s.	4]
	pH =	

Examiner only

(iii)	A student is given 100 cm ³ of a solution of ethanoic acid of concentration
	0.100 mol dm ⁻³ and wishes to produce a buffer solution of pH 4.45. He has access
	to the full range of chemicals in a laboratory.

Describe how the buffer solution could be formed, calculating the amounts of any other substances required. Explain how the buffer solution works to keep the pH of the solution constant.

[6 QER]

PLEASE DO NOT WRITE ON THIS PAGE

(c) The complex [Ru(CO)₂(P(CH₃)₃)₂CH₃I] catalyses the reaction of iodomethane with carbon monoxide. One stage in the process is the reversible reaction below, with five of the ligands shown as L.

$$[RuL_5CH_3] + CO \rightleftharpoons [RuL_5COCH_3]$$

The values of the equilibrium constant for this process at different temperatures in methylbenzene solvent are listed in the table.

Temperature/°C	$K_{\rm c}/{\rm mol}^{-1}{\rm dm}^3$
34	1220
42	694
49	406
56	290
64	196
74	120

(i)	Suggest what information this table allows us to deduce about the energy changes during this reversible reaction. [2]
(ii)	A solution containing a mixture of complex $[RuL_5CH_3]$ of concentration $1.25 \times 10^{-3} \text{mol dm}^{-3}$ and carbon monoxide of concentration $7.55 \times 10^{-4} \text{mol dm}^{-3}$ is placed in a sealed tube, heated to a set temperature and the mixture allowed to reach equilibrium. The equilibrium mixture contains $1.37 \times 10^{-4} \text{mol dm}^{-3}$ of $[RuL_5COCH_3]$.
	Find the value of $K_{\rm c}$ and hence suggest the temperature used for the experiment. [4]
	V = mol ⁻¹ dm ²
	$K_c = $ mol ⁻¹ dm ³
	Temperature =°C

10	vaminar
It	xaminer
П	only

10.	Copper is	present in	a range	of alloys	including	those	listed	helow
10.	Copper 13	bieseur ii	arange	or alloys,	moluding	HOSE	noted	DEIOM

Alloy	Typical copper content (% by mass)	Other element(s) present
brass	65-95	zinc
cupronickel	60-90	nickel
bronze	85-90	tin
electrum	6-25	gold silver
leaded tin bronze	70-85	tin lead

One method of finding the copper content of an alloy is by treating the alloy with concentrated hydrochloric acid in the presence of air to form a solution containing metal ions and diluting this to a known volume. This solution can then be analysed by titration.

(a)	The class teacher notes that this method would not be suitable for analysing electru leaded tin bronze.	m or
	Suggest how the method could be changed to allow for the analysis of electrum and leaded tin bronze. Give your reasoning.	[2]
2		
(b)	Several of the metals added to copper to form these alloys are amphoteric.	
	Identify one amphoteric metal from the table and state what is meant by the term amphoteric.	[2]
;		

Examiner only

conta	'2g sample of an alloy was used to make 250 cm ³ of an aqueous solution aining copper and other metal ions. Samples of 25.0 cm ³ of the solution were sured out and the copper ions reacted with excess iodide ions to form iodine.	
0.05	odine was titrated using sodium thiosulfate solution of concentration 00 mol dm ⁻³ . The mean volume of sodium thiosulfate needed for complete reactio 33.05 cm ³ .	n
(i)	Write the equations for the following reactions:	
	 Cu²⁺(aq) with I⁻(aq) 	
	 I₂(aq) with S₂O₃²⁻(aq) 	
	Hence show that 1 mol of ${\rm S_2O_3}^2$ (aq) is equivalent to 1 mol of ${\rm Cu}^{2+}$ (aq) in the titration.	[
(ii)	Find the percentage by mass of copper in the alloy and hence identify which alloy(s) could be present in the sample.	0.50000
(ii)		3000000
(ii)		
(ii)		3F150
(ii)		
(ii)		0.000000
(ii)	alloy(s) could be present in the sample.	
(ii)		100000

(d)	(i)	Aqueous solutions formed from copper(II) compounds contain [Cu(H ₂ O) ₆] ²⁺ ions.
		Explain why these solutions are pale blue. [3]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]
	(ii)	Copper(I) compounds are often white solids. Give a reason why these compounds are not coloured. [1]

Examiner only

(iii) Many metal complexes change colour when a new ligand is added. The absorption spectra of two cobalt(II) complexes are given below.

Suggest which wavenumber, in cm $^{-1}$, should be used to study the conversion of $[Co(H_2O)_6]^{2+}$ into $[CoCI_4]^{2-}$. Give a reason for your selection. [2]

x	an	iner
	on	22.600.00

(e) The standard electrode potentials for some reactions of copper and thallium ions are given below.

Half-equation	Standard electrode potential E^{θ}/V	
Tl ³⁺ + 2e [−] ← Tl ⁺	+1.25	
Cu⁺ + e⁻ ← Cu	+0.52	
Cu ²⁺ + e [−] ← Cu ⁺	+0.16	
TI ⁺ + e [−] ← TI	-0.34	

(i)	When copper(I)	ions are formed	in solution,	the reaction	below occurs
-----	----------------	-----------------	--------------	--------------	--------------

	Use	the standard electrode potential values to explain why this reaction occurs. [2]
(ii)	12	Copper(I) ions can act as a reducing agent. Identify the final thallium containing species formed when copper(I) ions reduce thallium(III) ions. Use the standard electrode potential values to explain your answer. [2]
	11.	A student suggests that the more stable oxidation state of thallium can be predicted from its position in the Periodic Table.
		Suggest, giving a reason, which oxidation state of thallium will be more

END OF PAPER

22

[1]

stable.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1
		1

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
		1
		0.

