Particle Physics & Cosmology Physics 457 at University of Michigan

EVAN CARPENTER

Winter Semester 2022

Jar	5th	Lecture 1:	First Dayp.	2
			Second Dayp.	
Jar	12th	Lecture 3:	Finishing Special Relativityp.	2
Jar	14th	Lecture 4:	Fundamental Forcesp.	2

Lecture 1. (Jan 5th) First Day

eV is energy required to move 1 e^- through 1 V

We can set $c, \hbar, k_B = 1$ A result of that is being able to describe all quantities in terms of energies or inverse energies.

Lecture 2. (Jan 7th) Second Day

eV are a thing Natural units are thing

Dimension	SI	Planck	Natural
Energy	$1.602 \times 10^{-10} \text{ J}$	1 GeV	1 GeV
Mass	$1.783 \times 10^{-27} \text{ kg}$	$1 \text{ GeV}/c^2$	1 GeV
Momentum	$5.33 \times 10^{-19} \text{ kg*m/s}$	1 GeV/c	1 GeV
Distance	$1.973 \times 10^{-16} \text{ m}$	ħc GeV	$1 \; \mathrm{GeV^{-1}}$
Time	$5.33 \times 10^{-19} \text{ kg*m/s}$	$1 \; \mathrm{GeV/c}$	1 GeV^{-1}
Mass Density	$2.322 \times 10^{20} kg/m^3$		1 GeV^4

Table 1: Units

Proper time is Δt_0 with the clock at rest in that frame Time dilation is $\Delta t = \gamma \Delta t_0$ in the frame Proper length is Δx_0 with the clock at rest in that frame Length Contraction is $\Delta x = \Delta x_0/\gamma$ in the frame

Lecture 3. (Jan 12th) Finishing Special Relativity

Invariant vs constant and how they are different.

Different relationships for beta and gamma

Lorentz transform in matrix form as boost.

E from beam at target and from two beams: pros and cons of cost and statistics and max energy.

Lecture 4. (Jan 14th) Fundamental Forces

Stable particles! Proton is only quark combo that's stable! Possibly make baryon template for Tikz? Baryon has odd number of valence (?) quarks