Example equation (MINIMIZATION):

C = 5 x + 4 y + 3 z

 $x \le 200$ (Mixture X constraint)

 $y \ge 300$ (Mixture Y constraint)

 $z \le 400$ (Mixture Z constraint)

x + y + z = 1000 (Total Mixture constraint)

 $x, y, z \ge 0$

Simplex Method in LPP:

- 1. First of all, you must have all the equations needed to start simplex method
 - a. Decision Variables
 - b. Objective function
 - c. Constraints
- 2. Now, you need to convert inequalities into equalities by adding slack, surplus or artificial variables.
 - a. For less than equals to <=
 - Adding a slack variable
 - b. For greater than equals to >=
 - Subtracting surplus variable
 - Adding artificial variable
 - c. For equals to sign =
 - Adding artificial variable
 - d. Eg:
- $x + S_1 = 200$ (LTE so slack variable)
- $y S_2 + A_1 = 300$ (GTE so <u>surplus and artificial</u> variables)
- $z + S_3 = 400$ (LTE so <u>slack</u> variable)
- $x + y + z + A_2 = 1000$ (Equals to so <u>artificial</u> variable)
- 3. Now, convert all these equalities and objective function into standard equation
 - a. Standard equation must have all the variables on left hand side and constants on right hand side.
 - b. For objective function, moving all the variables on left side,
 - C 5 x 4 y 3 z = 0
 - Now convert it into standard equation by showing all the variables even that does not contain in the equation
 - <u>Note</u>: For artificial variables they must have coefficients 10/100/... and positive/negative sign depending on the question
 - For, maximization problem Coeff. is positive and for minimization problem Coeff. Is negative.
 - <u>Note:</u> For the value of Coeff. Of artificial variable we must check the maximum Coeff. In the main objective equation which is 5 in this case. As, the is max. <u>Coeff. is a single</u>

digit the Coeff. of artificial variable will be 10, if it was 2 digit it would have been 100.

• Eg:
$$1 \text{ C} - 5 \text{ x} - 4 \text{ y} - 3 \text{ z} + 0 \text{ S}_1 + 0 \text{ S}_2 - 10 \text{ A}_1 - 10 \text{ A}_2 = 0$$

4. Now, change all the other equations to standard equations

a.
$$0C + 1x + 0y + 0z + 1S_1 + 0S_2 + 0S_3 + 0A_1 + 0A_2 = 200$$

b.
$$0C + 0x + 1y + 0z + 0S_1 - 1S_2 + 0S_3 + 1A_1 + 0A_2 = 300$$

c.
$$0C + 0x + 0y + 1z + 0S_1 + 0S_2 + 1S_3 + 0A_1 + 0A_2 = 400$$
 (LTE so slack variable)

d.
$$0C + 1x + 1y + 1z + 0S_1 + 0S_2 + 0S_3 + 0A_1 + 1A_2 = 1000$$

5. Make the table

Simplex table 1

	Z'	X	y	Z	S_1	S_2	S_3	A_1	A_2	Const.
R_0	1	-5	-4	-3	0	0	0	-10	-10	0
R_1	0	1	0	0	1	0	0	0	0	200
R_2	0	0	1	0	0	-1	0	1	0	300
R_3	0	0	0	1	0	0	1	0	0	400
R ₄	0	1	1	1	0	0	0	0	1	1000

First of all, as the value of A_1 and A_2 in R_0 is not 0 so first of all we adjust this row to 0

To make that 0 we need to change R_0 to, $R_0 + 10 * (R_1 + R_2 + R_3 + R_4)$

- 6. After doing so we need to adjust the rows by finding the key column, key row and key element.
 - a. Key Column ---
 - Maximization: Check for the value in R₀ with the highest negative
 - Minimization: <u>Check for the value in R₀ with the highest positive</u>
 - b. Key Row -
 - Check the ratios Ratio = Constant / Value in Key Column
 - The Minimum Positive Ratio will be the key row.
 - c. Key element
 - The element which is both in key row and key column
- 7. Adjust the rows
 - a. Key row: old value / Key Element
 - b. Other rows: Lets take an element with Row = RR and Column = CC
 - Old Value from RR (Value of Key Column in RR) * (Adjusted value of Key Row in column CC)

8. Check if $R \le 0$, as this is a minimization problem. And Check

If not then again start from step 6

Work on this process by adjusting the values until you reach the optimal solution which is when $R_0 \le 0$ for minimization problem ($R_0 \ge 0$ for maximization problem).

- 9. When the optimal solution is reached check for the values in the column of variables -x,y,z.
 - a. If there is only one '1' and all the other elements '0' then the optimal solution value of x is in the Constant column and the Row which has '1' in the column of x

X	Constant
0	200
1	300
0	100

- Here the value of x = 300
- b. If the above condition is not fulfilled then the optimal solution of X will be 0.

X	Constant				
34	200				
20	300				
-10	100				

• Here the value of x = 0

Thank You

If you have any queries then please let me know.