TUGAS 3 EXPLORATORY DATA ANALYSIS

Dosen Pengampu:

Dr. Wahyudi Setiawan, M. Pd.

Disusun Oleh

Giraldo Nainggolan (220441100064)

Wisnu Ary Swadana (220441100121)

Abib MaulanaAan Nafudi (220441100118)

Fairuz Abdullah (220441100070)

KELAS 4B PROGRAM STUDI SISTEM INFORMASI FAKULTAS TEKNIK UNIVERSITAS TRUNOJOYO MADURA

TAHUN 2023/2024

Studi Kasus: Data Tips Restaurant

Sebuah dataset dari suatu Restaurant memuat variabel-variabel berikut:

- total_bill: Total bill (cost of the meal), including tax, in US dollars
- tip: Tip (gratuity) in US dollars
- sex: Sex of person paying for the meal (0=male, 1=female)
- smoker: Smoker in party? (0=No, 1=Yes)
- day: 3=Thur, 4=Fri, 5=Sat, 6=Sun
- time: 0=Day, 1=Nightsize: Size of the party

Sumber Data: https://www.kaggle.com/ranjeetjain3/seaborn-tips-dataset

SOAL:

- 1. Adakah tipe variabel yang kurang tepat di data tersebut?
- 2. Apakah data numeriknya cenderung berdistribusi normal?
- 3. Apakah ada outlier, noise, missing values, dan-atau duplikasi data?
- 4. Apakah pelanggan pria dan wanita cenderung proporsional (balance)?
- 5. Dari data yang ada apakah Pria atau wanita ada kecenderungan memberi tips lebih besar?
- 6. Dari data yang ada apakah ada kecenderungan tips lebih besar di hari-hari tertentu?
- 7. Dari data yang ada apakah customer perokok cenderung memberi tips lebih besar?
- 8. Apakah pola di nomer 5 dan 7 dipengaruhi hari?
- 9. Pola apalagi yang dapat anda temukan? (misal, bisakah anda menyarankan tata letak kursi/meja restaurant dari data ini?)
- 10. dari hasil EDA anda saran apa saja yang akan anda berikan ke pemilik restaurant?
- 11. Skills/kompetensi apa yang terasa sangat diperlukan dari latihan ini?

Jawaban:

1.

```
print("Tipe variabel:")
print(df.dtypes)
Tipe variabel:
total_bill float64
        float64
tip
         object
sex
            object
smoker
          object
day
          object
time
size
          int64
dtype: object
```

2.

```
plt.figure(figsize=(10, 8))
sns.pairplot(df)
plt.title("Pairplot untuk Melihat Distribusi Variabel Numerik")
plt.show()
```



```
plt.figure(figsize=(10, 8))
sns.boxplot(data=df[['total_bill', 'tip']])
plt.title("Box Plot untuk Melihat Outlier")
plt.xlabel("Variabel")
plt.ylabel("Value")
plt.show()

# Cek missing values
print("Missing values:")
print(df.isnull().sum())

# Cek duplikasi data
print("Duplikasi data:")
print(df.duplicated().sum())
```



```
Missing values:

total_bill 0

tip 0

sex 0

smoker 0

day 0

time 0

size 0

dtype: int64
```

4.

```
plt.figure(figsize=(8, 6))
sns.countplot(data=df, x="sex")
plt.title("Perbandingan Proporsi Pelanggan Pria dan Wanita")
plt.xlabel("Sex (0=Male, 1=Female)")
plt.ylabel("Count")
plt.show()
```


5.

```
print("Rata-rata tips berdasarkan jenis kelamin:")
print(df.groupby("sex")["tip"].mean())

Rata-rata tips berdasarkan jenis kelamin:
sex
Female 2.833448
Male 3.089618
Na
me: tip, dtype: float64
```

```
print("Rata-rata tips berdasarkan hari:")
print(df.groupby("day")["tip"].mean())
```

```
Rata-rata tips berdasarkan hari:
day
Fri 2.734737
Sat 2.993103
Sun 3.255132
Thur 2.771452
Name: tip, dtype: float64
```

7.

```
print("Rata-rata tips berdasarkan status perokok:")
print(df.groupby("smoker")["tip"].mean())
```

```
Rata-rata tips berdasarkan status perokok:
smoker
No 2.991854
Yes 3.008710
Name: tip, dtype: float64
```

print("Rata-rata tips berdasarkan jenis kelamin dan hari:")

```
Rata-rata tips berdasarkan jenis kelamin dan hari:
sex day
Female Fri  2.781111
    Sat  2.801786
    Sun  3.367222
    Thur  2.575625
Male Fri  2.693000
    Sat  3.083898
    Sun  3.220345
    Thur  2.980333
Name: tip, dtype: float64
```

```
9.
plt.figure(figsize=(10, 8))
sns.scatterplot(data=df, x="total_bill", y="tip")
plt.title("Hubungan antara Total Bill dan Tip")
plt.xlabel("Total Bill (US dollars)")
plt.ylabel("Tip (US dollars)")
plt.show()
```


10. Menyarankan untuk meningkatkan pelayanan di hari-hari tertentu yang memiliki rata-rata tips lebih rendah.

```
# Membuat DataFrame contoh
data = {
    'total_bill': [20.5, 30.25, 40.75, 25.50, 35.00],
    'tip': [5.0, 7.5, 8.25, 4.0, 5.5],
    'day': ['Sun', 'Sat', 'Sun', 'Sat', 'Sun']
}

df = pd.DataFrame(data)

# Menghitung rata-rata tips per hart
avg_tips_per_day = df.groupby('day')['tip'].mean()

# Menampilkan rata-rata tips per hart
print("Rata-rata tips per hari:")
print(avg_tips_per_day)

# Menemukan hart dengan rata-rata tips terendah
min_avg_tip_day = avg_tips_per_day.idxmin()

print("\nHart dengan rata-rata tips terendah:", min_avg_tip_day)

# Menyusun rekomendast
print("\nRekomendast: Peningkatan pelayanan disarankan pada hari", min_avg_tip_day)
```

11. Kemampuan analisis data, pemahaman statistik deskriptif, kemampuan visualisasi data, dan kemampuan komunikasi hasil analisis.

```
# Membuat DataFrame contoh
data = {
    'total_bill': [20.5, 30.25, 40.75, 25.50, 35.00],
    'tip': [5.0, 7.5, 8.25, 4.0, 5.5],
    'day': ['Sun', 'Sat', 'Sun', 'Sat', 'Sun']
}

df = pd.DataFrame(data)

# Analisis deskriptif
descriptive_stats = df.describe()
print("Statistik beskriptif:")
print(descriptive_stats)

# Visualisasi data: Boxplot
plt.figure(figsize=(8, 6))
sns.boxplot(x='day', y='tip', data=df)
plt.title('Boxplot of Tips by Day')
plt.xlabel('Day')
plt.xlabel('Tip')
plt.show()

# Komunikasi hasil analisis
min_tip_day = df.groupby('day')['tip'].mean().idxmin()
print("\nBerdasarkan analisis, rata-rata tips terendah adalah pada hari", min_tip_day)
print("Sebaiknya dilakukan peningkatan pelayanan pada hari tersebut.")
```