

南开大学

计算机学院

网络技术与应用课程报告

# 第一次实验报告

学号:1911584

姓名:袁贞芷

年级: 2019 级

专业:计算机科学与技术

# 一、 实验内容说明

## (一) 仿真环境下的共享式以太网组网

实验内容如下:

- 1. 学习虚拟仿真软件 Cisco Packet Tracer 的基本使用方法。
- 2. 在仿真环境下进行单集线器共享式以太网组网, 测试网络的连通性。
- 3. 在仿真环境下进行多集线器共享式以太网组网,测试网络的连通性。
- 4. 在仿真环境的"模拟"方式中观察数据包在共享式以太网中的传递过程,并进行分析。

### (二) 仿真环境下的交换式以太网组网和 VLAN 配置

实验内容如下:

- 1. 在仿真环境下进行单交换机以太网组网, 测试网络的连通性。
- 2. 在仿真环境下利用终端方式对交换机进行配置。
- 3. 在单台交换机中划分 VLAN, 测试同一 VLAN 中主机的连通性和不同 VLAN 中主机的连通性, 并对现象进行分析。
- 4. 在仿真环境下组建多集线器、多交换机混合式网络。划分跨越交换机的 VLAN,测试同一 VLAN 中主机的连通性和不同 VLAN 中主机的连通性,并对现象进行分析。
- 5. 在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并进行分析。
- 6. 学习仿真环境提供的简化配置方式。

# 二、 实验准备

# (一) 仿真环境下的共享式以太网组网

### 1. 单集线器以太网组网



图 1: 单集线器以太网组网拓扑图

IP 地址:

PC0: 192.168.0.1 PC1: 192.168.0.2

### 2. 多集线器以太网组网



图 2: 多集线器以太网组网拓扑图

IP 地址:

PC0: 192.168.0.1 PC1: 192.168.0.2 PC2: 192.168.0.3 PC3: 192.168.0.4

# (二) 仿真环境下的交换式以太网组网和 VLAN 配置



图 3: 交换式以太网组网拓扑图

IP 地址:

PC0: 192.168.0.1 PC1: 192.168.0.2 PC2: 192.168.0.3 PC3: 192.168.0.4 PC4: 192.168.0.5 PC5: 192.168.0.6 PC6: 192.168.0.7 PC7: 192.168.0.8 PC8: 192.168.0.9 PC9: 192.168.0.10 PC10: 192.168.0.11

交换机设置:

| Device Model: 2960- | 24TT |      |                    |                |
|---------------------|------|------|--------------------|----------------|
| Hostname: Switch    |      |      |                    |                |
| Port                | Link | VLAN | IP Address         | MAC Address    |
| FastEthernet0/1     | Up   | 4    |                    | 00E0.A384.9C01 |
| FastEthernet0/2     | Up   | 4    |                    | 00E0.A384.9C02 |
| FastEthernet0/3     | Up   | 1    |                    | 00E0.A384.9C03 |
| FastEthernet0/4     | Up   | 1    |                    | 00E0.A384.9C04 |
| FastEthernet0/5     | Up   | 3    |                    | 00E0.A384.9C05 |
| FastEthernet0/6     | Up   | 1    |                    | 00E0.A384.9C0  |
| FastEthernet0/7     | Up   | 1    |                    | 00E0.A384.9C07 |
| FastEthernet0/8     | Down | 1    |                    | 00E0.A384.9C08 |
| FastEthernet0/9     | Down | 1    |                    | 00E0.A384.9C09 |
| FastEthernet0/10    | Down | 1    |                    | 00E0.A384.9C0A |
| FastEthernet0/11    | Down | 1    |                    | 00E0.A384.9C0E |
| FastEthernet0/12    | Down | 1    |                    | 00E0.A384.9C00 |
| FastEthernet0/13    | Down | 1    |                    | 00E0.A384.9C0I |
| FastEthernet0/14    | Down | 1    |                    | 00E0.A384.9C0E |
| FastEthernet0/15    | Down | 1    |                    | 00E0.A384.9C0E |
| FastEthernet0/16    | Down | 1    |                    | 00E0.A384.9C10 |
| FastEthernet0/17    | Down | 1    |                    | 00E0.A384.9C11 |
| FastEthernet0/18    | Down | 1    |                    | 00E0.A384.9C12 |
| FastEthernet0/19    | Down | 1    |                    | 00E0.A384.9C13 |
| FastEthernet0/20    | Down | 1    |                    | 00E0.A384.9C14 |
| FastEthernet0/21    | Down | 1    |                    | 00E0.A384.9C15 |
| FastEthernet0/22    | Down | 1    |                    | 00E0.A384.9C16 |
| FastEthernet0/23    | Down | 1    |                    | 00E0.A384.9C17 |
| FastEthernet0/24    | Down | 1    |                    | 00E0.A384.9C18 |
| GigabitEthernet0/1  | Down | 1    |                    | 00E0.A384.9C19 |
| GigabitEthernet0/2  | Down | 1    |                    | 00E0.A384.9C1A |
| Vlan1               | Down | 1    | <not set=""></not> | 0060.5C14.8AD1 |

图 4: 交换机 Switch0 设置信息

Device Name: Switch1 Device Model: 2960-24TT Hostname: Switch

| Port               | Link | VLAN | IP Address         | MAC Address    |
|--------------------|------|------|--------------------|----------------|
| FastEthernet0/1    | Up   | 1    |                    | 0003.E4EA.9C01 |
| FastEthernet0/2    | Up   | 3    |                    | 0003.E4EA.9C02 |
| FastEthernet0/3    | Up   | 1    |                    | 0003.E4EA.9C03 |
| FastEthernet0/4    | Down | 1    |                    | 0003.E4EA.9C04 |
| FastEthernet0/5    | Down | 1    |                    | 0003.E4EA.9C05 |
| FastEthernet0/6    | Down | 1    |                    | 0003.E4EA.9C06 |
| FastEthernet0/7    | Down | 1    |                    | 0003.E4EA.9C07 |
| FastEthernet0/8    | Down | 1    |                    | 0003.E4EA.9C08 |
| FastEthernet0/9    | Down | 1    |                    | 0003.E4EA.9C09 |
| FastEthernet0/10   | Down | 1    |                    | 0003.E4EA.9C0A |
| FastEthernet0/11   | Down | 1    |                    | 0003.E4EA.9C0B |
| FastEthernet0/12   | Down | 1    |                    | 0003.E4EA.9C0C |
| FastEthernet0/13   | Down | 1    |                    | 0003.E4EA.9C0D |
| FastEthernet0/14   | Down | 1    |                    | 0003.E4EA.9C0E |
| FastEthernet0/15   | Down | 1    |                    | 0003.E4EA.9COF |
| FastEthernet0/16   | Down | 1    |                    | 0003.E4EA.9C10 |
| FastEthernet0/17   | Down | 1    |                    | 0003.E4EA.9C11 |
| FastEthernet0/18   | Down | 1    |                    | 0003.E4EA.9C12 |
| FastEthernet0/19   | Down | 1    |                    | 0003.E4EA.9C13 |
| FastEthernet0/20   | Down | 1    |                    | 0003.E4EA.9C14 |
| FastEthernet0/21   | Down | 1    |                    | 0003.E4EA.9C15 |
| FastEthernet0/22   | Down | 1    |                    | 0003.E4EA.9C16 |
| FastEthernet0/23   | Down | 1    |                    | 0003.E4EA.9C17 |
| FastEthernet0/24   | Down | 1    |                    | 0003.E4EA.9C18 |
| GigabitEthernet0/1 | Down | 1    |                    | 0003.E4EA.9C19 |
| GigabitEthernet0/2 | Down | 1    |                    | 0003.E4EA.9C1A |
| Vlan1              | Down | 1    | <not set=""></not> | 0001.4360.C629 |
|                    |      |      |                    |                |

图 5: 交换机 Switch1 设置信息

# 三、 实验过程

## (一) 仿真环境下的共享式以太网组网

### 1. 单集线器以太网组网

启动 Packet Tracer 仿真软件,使工作区处于逻辑工作模式。将一个集线器与两个 PC 放置到工作区。用直通双绞线分别将两台 PC 与集线器连接起来。进入主机 IP 配置界面,设置 PC0 的 IP 地址为"192.168.0.1",PC1 的 IP 地址为"192.168.0.2",在 Subnet Mask 文本框中填入"255.255.255.0"。

组装好的设备如下:



图 6: 单集线器以太网组网

完成网络连接后,进行连通性测试。在一台主机上使用 ping 命令 ping 另一个主机。如果信息正确返回,说明网络连通性没有问题。

在主机 PC1 的命令行界面中,输入"ping 192.168.0.1"命令 ping 主机 PC0,测试构建以太网的连通性。实验结果如下:



图 7: 主机 PC0 的命令行界面

#### 2. 多集线器以太网组网

将两个集线器与四个 PC 放置到工作区。用直通双绞线分别将 PC0、PC1 与集线器 Hub0 连接起来,将 PC2、PC3 与集线器 Hub1 连接起来。用交叉双绞线将两台集线器连接起来。进入主机 IP 配置界面,设置 PC0 的 IP 地址为"192.168.0.1",PC1 的 IP 地址为"192.168.0.2",PC2 的 IP 地址为"192.168.0.3",PC3 的 IP 地址为"192.168.0.4",在 Subnet Mask 文本框中填入"255.255.255.0"。

组装好的设备如下:



图 8: 多集线器以太网组网

完成网络连接后,进行连通性测试。在连接集线器 Hub0 的主机 PC0 上使用 ping 命令 ping 连接集线器 Hub1 的主机 PC2。在"模拟"模式下观察数据包的收发过程。

PC0 首先产生两个数据包 ICMP 和 ARP, 先向集线器 Hub0 发送数据包 ARP, Hub0 再将数据包发送给 Hub1 和 PC1, Hub1 将数据包再次发送给 PC2 和 PC3, 数据包到达 PC1 和 PC3 时都显示错号,说明不是目标地址,到达 PC2 时显示对号,说明找到了目标主机。PC2 再返回 ARP 给 PC0,这个数据包经过集线器 Hub1 和 Hub0 时又分别被广播给连接的所有主机。PC0 接收到 PC2 的数据包后重复之前的操作,发送 ICMP。

观察发现,集线器发送数据包都是通过广播形式,发送给连接的所有端口。



图 9: 数据包传输过程(部分)

## (二) 仿真环境下的交换式以太网组网和 VLAN 配置

#### 1. 配置终端控制台

将两台交换机,十一台 PC,两个集线器放置到工作区。将它们按如下拓扑图连接。PC6 是模拟真实环境下利用控制台配置交换机的主机。将 PC6 的 RS-232 串行口与交换机的 Console端口连接,在主机 PC6 的配置界面中选择 Desktop-terminal 启动终端控制程序。仿真环境的控制终端串行口也需要设置为 9600 波特、8 个数据位、1 个停止位。接下来就可以配置交换机了。而交换机 Switch1 则通过设备配置界面的命令行与 Config 进行配置。



图 10: 交换式以太网组网拓扑图

### 2. 查看以太网交换机的端口/MAC 映射表

配置完网络后,可以查看交换机的端口/MAC 地址映射表。在命令行中,输入"en"和"show mac-address-table",交换机会开始回送当前存储的端口-MAC 映射表。如下图所示:

| Switch | Switch#show mac-address-table<br>Mac Address Table |         |       |  |  |  |  |  |  |
|--------|----------------------------------------------------|---------|-------|--|--|--|--|--|--|
| Vlan   | Mac Address                                        | Type    | Ports |  |  |  |  |  |  |
|        |                                                    |         |       |  |  |  |  |  |  |
| 1      | 0003.e4ea.9c03                                     | DYNAMIC | Fa0/7 |  |  |  |  |  |  |
| 4      | 0002.4a17.c7a6                                     | DYNAMIC | Fa0/1 |  |  |  |  |  |  |
| 4      | 0006.2a53.d6c5                                     | DYNAMIC | Fa0/2 |  |  |  |  |  |  |
| Switch | #show mac-address-                                 | table   |       |  |  |  |  |  |  |
|        | Mac Address Table                                  |         |       |  |  |  |  |  |  |
|        |                                                    |         |       |  |  |  |  |  |  |
| Vlan   | Mac Address                                        | Type    | Ports |  |  |  |  |  |  |
|        |                                                    |         |       |  |  |  |  |  |  |
| 1      | 0001.9663.a520                                     | DYNAMIC | Fa0/7 |  |  |  |  |  |  |
| 1      | 0003.e4ea.9c03                                     | DYNAMIC | Fa0/7 |  |  |  |  |  |  |
| 1      | 000b.be08.9b67                                     | DYNAMIC | Fa0/4 |  |  |  |  |  |  |
| 1      | 000b.bele.belb                                     | DYNAMIC | Fa0/3 |  |  |  |  |  |  |
| 3      | 0001.9633.793b                                     | DYNAMIC | Fa0/5 |  |  |  |  |  |  |
| 3      | 000b.bele.30a9                                     | DYNAMIC | Fa0/5 |  |  |  |  |  |  |

图 11: 端口/MAC 映射表

### 3. 配置 VLAN

使用"show vlan"指令,交换机显示当前交换机配置的 VLAN 个数、VLAN 编号、VLAN 名字、VLAN 状态与每个 VLAN 包含的端口号。

| Swite             | :h>sho  | v vlan       |      |        |        |         |                              |           |         |        |
|-------------------|---------|--------------|------|--------|--------|---------|------------------------------|-----------|---------|--------|
| VLAN              | Name    |              |      |        | Stat   | tus I   | Ports                        |           |         |        |
|                   |         |              |      |        |        |         |                              |           |         |        |
|                   | default |              |      |        | act    | ive     | Fa0/3,                       | Fa0/4, Fa | 0/6, Fa | 7      |
|                   |         |              |      |        |        | 3       | Fa0/8, Fa0/9, Fa0/10, Fa0/11 |           |         |        |
|                   |         |              |      |        |        | 1       | Fa0/12,                      | Fa0/13,   | Fa0/14, | Fa0/15 |
|                   |         |              |      |        |        | 3       | Fa0/16,                      | Fa0/17,   | Fa0/18, | Fa0/19 |
|                   |         |              |      |        |        | 1       | Fa0/20,                      | Fa0/21,   | Fa0/22, | Fa0/23 |
|                   |         |              |      |        |        | 3       | Fa0/24,                      | Gig0/1, ( | Sig0/2  |        |
|                   | VLANO(  |              |      |        | act    |         |                              |           |         |        |
|                   | VLANO(  |              |      |        |        |         | Fa0/5                        |           |         |        |
|                   | VLANO(  |              |      |        |        | ive I   | Fa0/1,                       | Fa0/2     |         |        |
|                   |         | default      |      |        | act    |         |                              |           |         |        |
|                   |         | ring-defau   | lt   |        |        | active  |                              |           |         |        |
|                   |         |              |      |        |        | active  |                              |           |         |        |
| 1005              | trnet-  | -default     |      |        | act    | ive     |                              |           |         |        |
|                   |         | SAID         |      |        | RingNo | Bridgel | No Stp                       | BrdgMode  | Trans1  | Trans2 |
|                   |         | 100001       | 1500 |        |        |         |                              |           |         |        |
|                   | enet    | 100002       | 1500 |        |        |         |                              |           |         |        |
|                   | enet    |              |      |        |        |         |                              |           |         |        |
|                   |         |              |      |        |        |         |                              |           |         |        |
|                   |         | 101002       |      |        |        |         |                              |           |         |        |
|                   |         | 101003       |      |        |        |         |                              |           |         | 0      |
|                   |         | 101004       |      |        |        |         |                              |           |         | 0      |
| 1005              | trnet   | 101005       | 1500 |        |        |         | ibm                          |           | 0       | 0      |
| VLAN              | Type    | SAID         | MTU  | Parent | RingNo | Bridgel | No Stp                       | BrdgMode  | Trans1  | Trans2 |
|                   |         |              |      |        |        |         |                              |           |         |        |
| Remote SPAN VLANs |         |              |      |        |        |         |                              |           |         |        |
|                   |         |              |      |        |        |         |                              |           |         |        |
| Prima             | arv Sec | condary Type |      |        | Ports  |         |                              |           |         |        |
|                   |         |              |      |        |        |         |                              |           |         |        |
|                   |         |              |      |        |        |         |                              |           |         |        |

图 12: 交换机 Switch0 的 vlan

使用"vlan database"命令进入交换机的 VLAN 数据库维护模式。使用"vlan 0004 name VLAN0004"命令通知交换机建立一个编号为 0004、名字为 VLAN0004 的虚拟网络。

添加好 VLAN 后,为 VLAN 分配端口。使用"configure terminal"命令进入配置终端模式。使用"interface Fa0/1"命令通知交换机配置端口号为 1。使用"switchport mode access"和"switchport access vlan 0004"命令将 Fa0/1 端口分配给 VLAN0004。

按照如上方法,将交换机 Switch0 的 F0/1、F0/2 设为 VLAN 4, F0/5 连接的集线器设置为 VLAN 3, 其他端口设置为 VLAN 1。交换机 Switch1 的 F0/1、F0/3 端口设为 VLAN 1,F0/2 端口设为 VLAN 3。

#### 4. 测试网络连通性

首先进行单台交换机中同一 VLAN 和不同 VLAN 中主机的连通性。在 PC1 上使用 ping 命令 pingPC0,它们的 VLAN 都是 VLAN 4,可以相互连接。

```
Physical Config Deskiop Programming Attributes

Command Prompt

Packet Tracer PC Command Line 1.0
C:\Psimg 192.168.0.1 with 32 bytes of data:

Reply from 192.168.0.1 bytes=32 time<imm ITL=128
Reply from 192.168.0.1: bytes=32 time<imm ITL=128
Ping statistics for 192.168.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Oms, Average = Oms

C:\>
```

图 13: 主机 PC1 的命令行界面

在"模拟"模式下观察数据包的收发。PC1 开始产生两个数据包 ICMP 和 ARP, 并将 ARP 数据包发送给交换机,交换机直接将 ARP 数据包发给主机 PC0, 主机 PC0 收到后又将 ARP 发送给交换机,并由交换机发送给 PC1。然后 PC1 像之前一样发送 ICMP 数据包,这个数据包的传播路径同上一次传播的 ARP 包一致。这个包传输完一遍后,会产生一个 STP 包,这个包会被广播到和交换机相连的所有端口。完成这个包的传输后, PC1 继续发送 ICMP 包。

观察发现 ICMP 包只会经过发送设备、接收设备和交换机,而 STP 包被发送给所有终端。

| Vis. | Time(sec) | Last Device | At Device | Type   | ^ |
|------|-----------|-------------|-----------|--------|---|
|      | 0.000     |             | PC1       | ICMP   |   |
|      | 0.000     |             | PC1       | ARP    |   |
|      | 0.001     | PC1         | Switch0   | ARP    |   |
|      | 0.002     | Switch0     | PC0       | ARP    |   |
|      | 0.003     | PC0         | Switch0   | ARP    |   |
|      | 0.004     | Switch0     | PC1       | ARP    |   |
|      | 0.004     |             | PC1       | ICMP   |   |
|      | 0.005     | PC1         | Switch0   | ICMP   |   |
|      | 0.006     | Switch0     | PC0       | ICMP   |   |
|      | 0.007     | PC0         | Switch0   | ICMP   |   |
|      | 0.008     | Switch0     | PC1       | ICMP   |   |
|      | 0.488     |             | Switch0   | STP    |   |
|      | 0.489     | Switch0     | Hub0      | STP    |   |
|      | 0.490     | Hub0        | PC4       | STP    |   |
|      | 0.490     | Hub0        | PC5       | STP    |   |
|      | 0.402     |             | Switch1   | OTD OT | ~ |

图 14: 数据包传输过程(部分)

在 PC1 上使用 ping 命令 ping 主机 PC2, 测试它们的连通性。PC1 的 VLAN 是 VLAN 4, 而 PC2 的 VLAN 是 VLAN 1。它们不能相互通信。



图 15: 主机 PC1 的命令行界面

接下来进行多集线器、多交换机混合式网络连通性测试。在连接交换机 Switch0 的 PC2 上使用 ping 命令 ping 连接交换机 Switch1 的主机 PC9。观察是否信息正确返回。



图 16: 主机 PC2 的命令行界面

在"模拟"模式下观察数据包的收发。PC2 产生一个数据包 ICMP,将它发送给交换机 Switch0,交换机再将这个数据包发送给交换机 Switch1, Switch1 将它发送给 PC9。PC9 接收到数据包后,这个数据包又按原路返回。PC2 收到返回的数据包后,Switch1 产生了一个数据包 STP,并将它广播到连接的所有端口。

观察发现,本次连接没有发送 ARP 包。ICMP 包只会经过发送设备、接收设备和交换机,而 STP 包被发送给所有终端。

| Vis  | Time(see) | Time(sec) Last Device |           | Tupo | ^ |
|------|-----------|-----------------------|-----------|------|---|
| VIS. | rime(sec) | Last Device           | At Device | Туре |   |
|      | 0.000     |                       | PC2       | ICMP |   |
|      | 0.001     | PC2                   | Switch0   | ICMP |   |
|      | 0.002     | Switch0               | Switch1   | ICMP |   |
|      | 0.003     | Switch1               | PC9       | ICMP |   |
|      | 0.004     | PC9                   | Switch1   | ICMP |   |
|      | 0.005     | Switch1               | Switch0   | ICMP |   |
|      | 0.006     | Switch0               | PC2       | ICMP |   |
|      | 0.983     |                       | Switch1   | STP  |   |
|      | 0.984     | Switch1               | PC9       | STP  |   |
|      | 0.984     | Switch1               | Switch0   | STP  |   |
|      | 0.985     | Switch0               | Hub1      | STP  |   |
|      | 0.985     | Switch0               | PC2       | STP  |   |
|      | 0.985     | Switch0               | PC3       | STP  |   |
|      | 0.986     | Hub1                  | PC7       | STP  |   |
|      | 0.986     | Hub1                  | PC8       | STP  |   |
|      | 0 002     |                       | Switch    | STD  | ~ |

图 17: 数据包传输过程(部分)

如果使用连接交换机 Switch1 的 PC9 上使用 ping 命令 ping 连接交换机 Switch0 的 PC1, 它们 VLAN 不同,所以不能相互连接。



图 18: 主机 PC9 的命令行界面