Final Question 2

Assumptions

Ignore Ise, Isi, Ibse

uniform s/c so Ic = 0

ions cannot impact wake side

eclipse Iph=0

Liam Hood clear; close all; clc; % Given rad = 1 ;z = 400 ;Tplas = 3500 ;denplas = 1e12 ; sacol = pi ; % area ions are collected over vsc = sqrt(398600 / (z + 6378))*1000 ;kb = 1.3806e-23; qe = 1.60217662e-19; me = 9.10938356e-31; disp('Assumptions ') Ignore Ise, Isi, Ibse ') disp(' disp(' eclipse Iph=0 ') disp(' uniform s/c so Ic = 0 ') disp(' ions cannot impact wake side') quasi-neutral so ne = ni ') disp(' disp(' single ions only so charge of electron is same a charge of ion ') disp(' ') V = linspace(-5, -1, 1e2);Ie = .25*qe*denplas*(8*kb*Tplas/(pi*me))*sacol*4*exp(qe*V/ (kb*Tplas)); Ii = qe*denplas*vsc*sacol ; Ii = ones(100, 1)*Ii;figure subplot(2 , 1 , 1) semilogy(V , Ie) title('Electron Current') xlabel('Potential (V)') ylabel('Current') subplot(2 , 1 , 2) plot(V , Ii) title('Ion Current') xlabel('Potential (V)') ylabel('Current') Vfloat = (kb*Tplas)/(qe) * log(vsc*sqrt((pi*me)/(8*kb*Tplas))) ;disp(['The voltage will drift to ' , num2str(Vfloat) , ' Volts'])

quasi-neutral so ne = ni single ions only so charge of electron is same a charge of ion

The voltage will drift to -1.1671 Volts

Published with MATLAB® R2018b