

Model Optimization and Tuning Phase Template

Date	15 March 2024
Team ID	xxxxxx
Project Title	Human Resource Management: Predicting Employee Promotions Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	<pre># Function to train and evaluate a Decision Tree model with hyperparameter tuning def decisionTree(X_train, X_test, y_train, y_test): # Define the parameter grid param grid = { 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 10, 20], 'min_samples_leaf': [1, 5, 10], 'criterion': ['gini', 'entropy'] } }</pre>	Best Parameters found by GridSearch(I): ('criterion': 'entropy', 'max_depth': 40, 'min_samples_leaf': 1, 'min_samples_split': 2) Accuracy: 0.94
Random Forest	<pre># Function to train and evaluate a Random Forest model def randomForest(X_train, X_test, y_train, y_test): # Define the parameter grid param_grid = { 'n_estimators': [100, 200, 300], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'bootstrap': [True, False] }</pre>	Sect Parameters found by GridSecrotCO: ["tootstrap": False, 'max depth": Nove, 'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimeters': 180] Accuracy: 0.96

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric		
Decision Tree	Confusion Matrix: [[8668 612] [453 8809]] Classification Report:		

Final Model	Reasoning
	I chose the Random Forest model as the final model for predicting employee
	promotions due to its superior accuracy (96%) compared to other models
	like Decision Tree, KNN, and Gradient Boosting. Random Forest is robust,
	handles overfitting well, and provides insights into feature importance. It
	captures complex, non-linear relationships within the data and is scalable for
	large datasets. Additionally, hyperparameter tuning further optimized its
Random Forest	performance, making it a reliable and efficient choice for this task