

Q7	The state of the s		2 1 2	-4-2	07212	R4-,)P ₁		2	2327	5 U 1 2 2 1 4 2	2	×	24-24 2R2	P3 ->	7:0	2 3 1 7 7 0 0	OWERO	3R3 +	Rz	7000	250-2	ロマシン	
Pre-	3	0 0 0	2 5 W 1 0 1	0 - 2 - 4 0			obi	n	(n) =		3.							-					
and the second								1	34															-

(28) $U = \frac{1}{2}[(U+V) + (U-V)] = \frac{1}{2}(U+V) + \frac{1}{2}(U-V)$ Since U, V can be expressed by $(U+V), (U-V), V = \text{span}\{(U+V), (U-V)\}$ 2) $\frac{1}{2}$ suppose $C_1(U+V) \neq C_2(U+V) = 0$ $C_1+C_2 = 0$ since $C_1(U+V) = 0$ $C_1+C_2 = 0$ since

Qg.	1×1B=		<u>X</u> =	CIM +	C2 U2	+ 63	<u>U3</u> +	+	Cn	14			()	
	7 <u>4</u> 78 =	by by	3=	: b1 1/2 +	b2 <u>1</u> 32.	+	t bu	Un		*	-56			
	X+X=	(G+b1)	W1 + K2	tb2) 1	12+(3) U:		36	+ (Cn	t5n)	Un 7h	7	
	-1 7×+3	17B= I	[3] (3 +	[到]。	B. =	1	C2+ C2+ Cn+	b2	1	C ₃	+ +	br bn		

Q10. A $U = \begin{bmatrix} 12 & -2 \\ -2 & 15 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 24-2 \\ -4+15 \end{bmatrix} = \begin{bmatrix} 11 \\ 11 \end{bmatrix} = 11 \begin{bmatrix} 21 \\ 11 \end{bmatrix}$ A $V = \begin{bmatrix} 12-2 \\ 2 & 15 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -12-4 \\ 2+30 \end{bmatrix} = \begin{bmatrix} -16 \\ 32 \end{bmatrix} = 16 \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ A $W = \begin{bmatrix} -12-2 \\ -2 & 15 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -12-2 \\ -2+15 \end{bmatrix} = \begin{bmatrix} -14 \\ 13 \end{bmatrix} \neq \text{Insultiple of } \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \text{ so not an eigenvector.}$ L'is generators are $U = \begin{bmatrix} 11 \\ 1 \end{bmatrix}, V = \begin{bmatrix} -11 \\ 2 \end{bmatrix}$.

D) A collection of $X = \begin{bmatrix} 12 \\ 1 \end{bmatrix}, V = \begin{bmatrix} -12 \\ 2 \end{bmatrix}$.

D) A collection of $X = \begin{bmatrix} 12 \\ 1 \end{bmatrix}, V = \begin{bmatrix} -12 \\ 2 \end{bmatrix}$.

D) A collection of $X = \begin{bmatrix} 12 \\ 1 \end{bmatrix}, V = \begin{bmatrix} -12 \\ 2 \end{bmatrix}$.

Notice is true for $X = \begin{bmatrix} 12 \\ 12 \end{bmatrix}, V = \begin{bmatrix} -12 \\ 2 \end{bmatrix}$.

D X is a spanning set for $X = \begin{bmatrix} 12 \\ 12 \end{bmatrix}, V = \begin{bmatrix} -12 \\ 2 \end{bmatrix}$.

D X is a spanning true for $X = \begin{bmatrix} 12 \\ 12 \end{bmatrix}, V = \begin{bmatrix} -12 \\ 2 \end{bmatrix}$.

[1], [-1], for C, y + Gy = 0. $C_1 = C_2 = 0$ $C_1 = C_2 = 0$ So, [1], [2] can form a busis for R. C). Suppose CIU+ GV = b $\begin{bmatrix} 2 & -1 & | & 3 \\ 1 & 2 & | & 4 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & 2 & | & 4 \\ 0 & -5 & | & 5 \end{bmatrix} \xrightarrow{5R_2} \begin{bmatrix} 1 & 2 & | & 4 \\ 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 1 \end{bmatrix}$: c1=2 C2=1 $b = \begin{bmatrix} \frac{1}{4} \end{bmatrix} = 2 \begin{bmatrix} \frac{1}{1} \end{bmatrix} + \begin{bmatrix} \frac{1}{1} \end{bmatrix} = \begin{bmatrix} \frac{4}{1} \end{bmatrix} = \begin{bmatrix} \frac{4}{1} \end{bmatrix} = \begin{bmatrix} \frac{3}{1} \end{bmatrix}$ $b = 2 + 1 \cdot 2 = 2 + 1$ The formular for x(t) is 3(t) = (|e't[2] + Ge'bt[2] d). p_{10} t=0, we can get $\times (0) = c_1 \bar{l}_1^2 + c_2 \bar{l}_2^2$ Since $e^{\circ} = 1$ (260) = (11) + (21) = b = [3] $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{3}{4} & -\frac{1}{37} \\ \frac{3}{4} & \frac{3}{4} \end{bmatrix} \text{ we can solve to } \begin{cases} \frac{3}{4} & C_1 = 2 \\ \frac{3}{4} & C_2 = 1 \end{cases}$