Simple Linear Regression

##		State	Metropolitan.Residence	White	Graduates	Poverty	Percent
##	1	Alabama	55.4	71.3	79.9	14.6	14.2
##	2	Alaska	65.6	70.8	90.6	8.3	10.8
##	3	Arizona	88.2	87.7	83.8	13.3	11.1
##	4	Arkansas	52.5	81.0	80.9	18.0	12.1
##	5	California	94.4	77.5	81.1	12.8	12.6
##	6	Colorado	84.5	90.2	88.7	9.4	9.6
##	7	Connecticut	87.7	85.4	87.5	7.8	12.1
##	8	Delaware	80.1	76.3	88.7	8.1	13.1

Simple Linear Regression: $W_1 \sim W_2$

The Correlation Coefficient

The Correlation Coefficient in R

The Linear Model

The Linear Model in R

Residuals

Residuals in R

##

19

20

```
m1 <- lm(Graduates ~ Poverty, data = poverty)</pre>
attributes(m1)
## $names
## [1] "coefficients"
                      "residuals"
                                     "effects"
                      "ar"
                                     "df.residual"
                                                     11
## [6] "assign"
## [11] "terms"
                      "model"
##
## $class
## [1] "lm"
m1$fitted
##
     1 2 3 4 5 6 7 8 9
                                               10
                                                    11
```

29 ## 80.9 86.1 89.6 87.6 87.0 90.4 80.4 87.6 83.9 87.7 88.7 38 39 40 41 42 43 44 45 46 12/1447 ## 37

83.1 88.7 84.3 80.0 84.7 87.8 89.2 88.9 81.1 85.3 85.3

21 22 23 24 25 26 27 28

Residuals in R, cont.

m1\$residuals

```
##
## -3.1927 1.8505 -0.4600 0.8602 -3.6089 0.9382 -1.698
##
     12 13
                 14 15
                             16
                                   17
  1.8157 2.5932 -0.2456 -1.9903 0.9505 0.8382 -1.639
##
##
     23 24 25
                       26 27 28
                                        2
## 0.6463 1.2342 0.8011 0.7178 6.1992 3.1280 -3.149
##
     34 35
                 36 37
                             38 39
                                        4
##
  -3.0395 4.1830 0.0667 2.6971 0.7544 -1.9414 -5.953
                                        5
## 45 46 47 48 49 50
## 1.5484 1.5871 -0.5903 2.5953 -3.1356 0.1199 3.228
```

Residual plot

```
m1 <- lm(Graduates ~ Poverty, data = poverty)
plot(m1, 1)</pre>
```