In the Claims:

1. (currently amended): An optical recording medium comprising a substrate, a reflecting layer and a recording layer, wherein the recording layer comprises a compound of formula $[L_1M^{r-4}L_2]_o[A^{m-}]_p[Z^{n+}]_q$ (I), $[L_1M^{r-3}L_3]_o[A^{m-}]_p[Z^{n+}]_q$ (II) or $[L_3M^{r-2}L_4]_o[A^{m-}]_p[Z^{n+}]_q$ (III), which compound of formula (I), (II) or (III) may also be in a mesomeric or tautomeric form, wherein

$$R_7$$
 R_8
 R_9
 R_9
 R_1
 R_2
 R_1
 R_2

L₁ and L₂ are each independently of the other

$$G_1$$
 N
 Q_3
 Q_1
 Q_1
 Q_2

 L_3 and L_4 are each independently of the other

M indicating the position of M^{r-4}, M^{r-3} or M^{r-2} in (I), (II) or (III), respectively;

 Q_1 is CR_1 or N, Q_2 is O, S, NR_{10} or $Q_5=Q_8$, Q_3 is CR_3 or N, Q_4 is O, S, NR_{10} or $Q_7=Q_8$, Q_5 is CR_5 or N, Q_6 is CR_6 or N, Q_7 is CR_7 or N, Q_8 is CR_8 or N, and Q_9 is O, S, NR_{10} or $Q_6=Q_8$, preferably either Q_4 is CR_4 and Q_3 is CR_3 or Q_4 and Q_3 are both N, and/or Q_8 in $Q_6=Q_8$, $Q_6=Q_8$ or $Q_7=Q_8$ is in the

β-position relative to the nitrogen atom of N^{-1} , and in the case of tautomers Q_1 may also be NR_1 and/or Q_3 may also be NR_3 ;

 R_{1} , R_{3} , R_{4} , R_{5} , R_{6} , R_{7} and R_{8} are each independently of the others H, halogen, OR_{9} , SR_{9} , $NR_{10}R_{15}$, $NR_{10}COR_{11}$, $NR_{10}COOR_{9}$, $NR_{10}CONR_{12}R_{13}$, $NR_{10}CN$, $OSiR_{10}R_{11}R_{14}$, COR_{10} , $CR_{10}OR_{11}OR_{14}$, $NR_{9}R_{12}R_{13}^{+}$, NO_{2} , CN, CO_{2}^{-} , $COOR_{9}$, SO_{3}^{-} , $CONR_{12}R_{13}$, $SO_{2}R_{10}$, $SO_{2}NR_{12}R_{13}$, $SO_{3}R_{9}$, PO_{3}^{-} , $PO(OR_{10})(OR_{11})$; C_{1} - C_{12} alkyl, C_{2} - C_{12} alkenyl, C_{2} - C_{12} alkynyl, C_{3} - C_{12} cycloalkyl, C_{3} - C_{12} cycloalkenyl or

 C_3 - C_{12} heterocycloalkyl each unsubstituted or mono- or poly-substituted by halogen, OR_9 , SR_9 , $NR_{10}R_{15}$, $NR_{10}COR_{11}$, $NR_{10}COOR_9$, $NR_{10}CONR_{12}R_{13}$, $NR_{10}CN$, $OSiR_{10}R_{11}R_{14}$, COR_{10} , $CR_{10}OR_{11}OR_{14}$, $NR_9R_{12}R_{13}^+$, NO_2 , CN, CO_2^- , $COOR_9$, SO_3^- , $CONR_{12}R_{13}$, SO_2R_{10} , $SO_2NR_{12}R_{13}$ and/or SO_3R_9 ; or C_7 - C_{12} aralkyl, C_6 - C_{10} aryl or C_5 - C_9 heteroaryl each unsubstituted or mono- or poly-substituted by R_{10} , halogen, OR_9 , SR_9 , $NR_{10}R_{15}$, $NR_{10}COR_{11}$, $NR_{10}COOR_9$, $NR_{10}CONR_{12}R_{13}$, $NR_{10}CN$, $OSiR_{10}R_{11}R_{14}$, COR_{10} , $CR_{10}OR_{11}OR_{14}$, $NR_9R_{12}R_{13}^+$, NO_2 , CN, CO_2^- , $COOR_9$, SO_3^- , $CONR_{12}R_{13}$, SO_2R_{10} , $SO_2NR_{12}R_{13}$, SO_3R_9 , PO_3^- , $PO(OR_{10})(OR_{11})$, $SiR_{10}R_{11}R_{14}$ and/or $SiOR_{10}OR_{11}OR_{14}$;

R₂ is OR₉, SR₉, NR₁₀R₁₅, NR₁₀COR₁₁, NR₁₀COOR₉, NR₁₀CONR₁₂R₁₃ or NR₁₀CN;

each R₉, independently of any other R₉, is R₁₅, COR₁₅, COOR₁₅, CONR₁₂R₁₃, CN or a negative charge, preferably H or a negative charge;

 R_{10} , R_{11} and R_{14} are each independently of the others hydrogen, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, $[C_2$ - C_8 alkylene-O- $]_k$ - R_{16} , $[C_2$ - C_8 alkylene- NR_{17} - $]_k$ - R_{16} or C_7 - C_{12} aralkyl, it being possible for R_{10} in $NR_{10}R_{15}$, $NR_{10}COR_{11}$, $NR_{10}COOR_9$, $NR_{10}CONR_{12}R_{13}$ or $NR_{10}CN$ additionally to be a delocalisable negative charge;

 R_{12} , R_{13} and R_{15} are each independently of the others H; C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkenyl or C_3 - C_{12} heterocycloalkyl each unsubstituted or mono- or polysubstituted by halogen, OR_{10} , SR_{10} , $NR_{10}COR_{11}$, $NR_{10}COOR_{11}$, $NR_{10}CONR_{11}R_{14}$, $OSiR_{10}R_{11}R_{14}$, COR_{10} , $CR_{10}OR_{11}OR_{14}$, $NR_{10}R_{11}R_{14}^+$, NO_2 , CN, CO_2^- , $COOR_{10}$, SO_3^- , $CONR_{11}R_{14}$, $SO_2NR_{11}R_{14}$, $SO_2NR_{11}R_{14}$, SO_2R_{10} , $NR_{11}R_{14}$ and/or SO_3R_{10} ; or C_7 - C_{12} aralkyl, C_8 - C_{12} aryl or C_5 - C_9 heteroaryl each unsubstituted or mono- or poly-substituted by R_{10} , halogen, OR_{10} , SR_{10} , $NR_{10}COR_{11}$, $NR_{10}COOR_{11}$, $NR_{10}CONR_{11}R_{14}$, $OSiR_{10}R_{11}R_{14}$, COR_{10} , $CR_{10}OR_{11}OR_{14}$, $NR_{10}R_{11}R_{14}^+$, NO_2 , CN, CO_2^- , $COOR_{14}$, SO_3^- , $CONR_{11}R_{141}$, SO_2R_{10} , $SO_2NR_{11}R_{14}$, SO_3R_{10} , PO_3^- , $PO(OR_{10})(OR_{11})$, $NR_{11}R_{14}$, $SiR_{10}R_{11}R_{14}$ and/or $SiOR_{10}OR_{11}OR_{14}$; or $NR_{12}R_{13}$, $NR_{11}R_{14}$ or $NR_{10}R_{15}$ is a five- or six-membered heterocycle which may contain a further N or O atom and which can be mono- or poly-substituted by C_1 - C_8 alkyl;

 R_{16} and R_{17} are each independently of the other mono- or poly-substituted C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkenyl, C_3 - C_{12} heterocycloalkyl, C_7 - C_{12} aralkyl, C_6 - C_{10} aryl or C_5 - C_9 heteroaryl;

M' is a transition metal cation having r positive charges;

A^{m-} is an inorganic, organic or organometallic anion, or a mixture thereof;

 Z^{n+} is a proton, a metal, ammonium or phosphonium cation, a positively charged organic or organometallic chromophore, or a mixture thereof;

it being possible once or more times radicals of the same or different ligands L_1 , L_2 , L_3 and/or L_4 , each selected from the group consisting of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{14} , R_{15} and R_{16} , to be bonded to one another in pairs by way of a direct bond or an -O-, -S- or -N(R_{17})- bridge, and/or for from 0 to p anions A^{m-} and/or from 0 to q cations Z^{n+} each to be bonded to any radical R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} or R_{17} of the same or different ligands L_1 , L_2 , L_3 and/or L_4 or to M^r by way of a direct bond or an -O-, -S- or -N(R_{17})- bridge;

k is an integer from 1 to 6;

m, n and r are each independently of the others an integer from 1 to 4; preferably m and n are 1 or 2 and r is 2 or 3; o is a number from 1 to 4; and

[[o,]] p and q are each a number from 0 to 4, the ratio of o, p and q to one another, according to the charge of the associated sub-structures, being such that in formula (I), (II) or (III) there is no resulting excess positive or negative charge;

and with the further proviso that when R_1 , R_3 , R_4 , R_5 , R_7 and R_8 are all H, R_2 is OH, R_6 is NO₂, M is Co and r is 3, $[Z^{n+}]_q$ does not have the formula

wherein R_{18} and R_{28} are each independently of the other hydrogen; C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkenyl or C_3 - C_{12} heterocycloalkyl each unsubstituted or mono- or polysubstituted by halogen, NO_2 , CN, $NR_{35}R_{36}$, $NR_{35}R_{36}R_{37}^+$, $NR_{35}COR_{36}$, $NR_{35}CONR_{35}R_{36}$, OR_{35} , SR_{35} , COO^- , COOH, $COOR_{35}$, CHO, $CR_{37}OR_{35}OR_{36}$, COR_{35} , SO_2R_{35} , SO_3^- , SO_3H , SO_3R_{35} or

OSiR₃₇R₃₈R₃₉; or C₇-C₁₈aralkyl, C₆-C₁₄aryl or C₄-C₁₂heteroaryl each unsubstituted or mono- or polysubstituted by halogen, NO₂, CN, NR₃₅R₃₆, NR₃₅R₃₆R₃₇⁺, NR₃₅COR₃₆, NR₃₇CONR₃₅R₃₆, R₃₅, OR₃₅, SR₃₅, CHO, CR₃₇OR₃₅OR₃₆, COR₃₅, SO₂R₃₅, SO₃⁻, SO₃R₃₅, SO₂NR₃₅R₃₆, COO⁻, COOR₃₅, CONR₃₅R₃₆, PO₃⁻, PO(OR₃₅)(OR₃₆), SiR₃₇R₃₈R₃₉, OSiR₃₇R₃₈R₃₉ or SiOR₃₇OR₃₈OR₃₉; but R₁₈ and R₂₈ are not simultaneously hydrogen;

 R_{19} , R_{20} , R_{26} and R_{27} are each independently of the others C_1 - C_{12} alkyl unsubstituted or mono- or polysubstituted by halogen, OR_{37} , SR_{37} , NO_2 , CN, $NR_{40}R_{41}$, COO^- , COOH, $COOR_{37}$, SO_3^- , SO_3H or SO_3R_{37} ,

it being possible for R_{19} and R_{20} and/or R_{26} and R_{27} and/or R_{31} and R_{32} and/or R_{33} and R_{34} to be so bonded to one another in pairs by way of a direct bond or an -O-, -S- or $-NR_{42}$ - bridge that together they form a 5- to 12-membered ring;

 R_{21} and R_{25} are each independently of the other C_1 - C_3 alkylene or C_1 - C_3 alkenylene each unsubstituted or mono- or poly-substituted by halogen, R_{42} , OR_{42} , SR_{42} , NO_2 , CN, $NR_{43}R_{44}$, COO^- , COOH, $COOR_{42}$, SO_3^- , SO_3H or SO_3R_{42} ;

 R_{22} , R_{24} , R_{29} and R_{30} are each independently of the others hydrogen, halogen, OR_{45} , SR_{45} , NO_2 , $NR_{45}R_{46}$; or C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, C_2 - C_{24} alkynyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkyl or C_7 - C_{18} aralkyl each unsubstituted or mono- or poly-substituted by halogen, OR_{45} , SR_{45} , NO_2 , CN or $NR_{45}R_{46}$;

 R_{23} is hydrogen; $(CH_2)_kCOO^-$, $(CH_2)_kCOOR_{47}$, C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, C_2 - C_{24} alkynyl, C_3 - C_{24} cycloalkyl or C_3 - C_{24} cycloalkenyl each unsubstituted or mono- or poly-substituted by halogen, $NR_{47}R_{48}$ or OR_{48} ; or C_7 - C_{18} aralkyl, C_6 - C_{14} aryl or C_5 - C_{13} heteroaryl each unsubstituted or mono- or poly-substituted by halogen, NO_2 , CN, $NR_{47}R_{48}$, SO_3^- , SO_3R_{47} , $SO_2NR_{47}R_{48}$, COO^- , $(CH_2)_kOR_{47}$, $(CH_2)_kOCOR_{47}$, $COOR_{47}$, $COOR_{47}$, $CONR_{47}R_{48}$, OR_{47} , SR_{47} , PO_3^- , $PO(OR_{47})(OR_{48})$ or $SiR_{37}R_{38}R_{39}$;

R₃₁, R₃₂, R₃₃ and R₃₄ are each independently of the others C₁-C₁₂alkyl unsubstituted or mono- or polysubstituted by halogen, OR₃₅, SR₃₅, NO₂, CN, NR₄₀R₄₁, COOR₃₇, SO₃⁻, SO₃H or SO₃R₃₅;

 R_{35} , R_{36} , R_{40} , R_{41} , R_{42} , R_{43} , R_{44} , R_{45} , R_{46} , R_{47} and R_{48} are each independently of the others hydrogen; C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkenyl or

C₃-C₁₂heterocycloalkyl each unsubstituted or mono- or poly-substituted by halogen, NO₂, CN, NR₃₇R₃₈, NR₃₇R₃₈R₃₉⁺, NR₃₇COR₃₈, NR₃₇CONR₃₈R₃₉, OR₃₇, SR₃₇, COO⁻, COOH, COOR₃₇, CHO, CR₃₇OR₃₈OR₃₉, COR₃₇, SO₂R₃₇, SO₃⁻, SO₃H, SO₃R₃₇ or OSiR₃₇R₃₈R₃₉; or C₇-C₁₈aralkyl, C₆-C₁₄aryl or C₅-C₁₃heteroaryl each unsubstituted or mono- or poly-substituted by halogen, NO₂, CN, NR₃₇R₃₈, NR₃₇R₃₈R₃₉⁺, NR₃₇COR₃₈, NR₃₇CONR₃₈R₃₉, R₃₇, OR₃₇, SR₃₇, CHO, CR₃₇OR₃₈OR₃₉, COR₃₇, SO₂R₃₇, SO₃⁻, SO₂NR₃₇R₃₈, COO⁻, COOR₃₉, CONR₃₇R₃₈, PO₃⁻, PO(OR₃₇)(OR₃₈), SiR₃₇R₃₈R₃₉, OSiR₃₇R₃₈R₃₉ or

SiOR₃₇OR₃₈OR₃₉;

or NR₃₅R₃₆, NR₄₀R₄₁, NR₄₃R₄₄, NR₄₅R₄₆ or NR₄₇R₄₈ are a five- or six-membered heterocycle which may contain a further N or O atom and which can be mono- or poly-substituted by C₁-C₈alkyl;

 R_{37} , R_{38} and R_{39} are each independently of the others hydrogen, C_1 - C_{20} alkyl, C_2 - C_{20} alkynyl or C_7 - C_{18} aralkyl, it being possible for R_{37} and R_{38} to be bonded to one another by way of a direct bond or an -O-, -S- or -NC₁-C₈alkyl- bridge so that together they form a five- or six-membered ring;

it being possible for from 1 to 4 radicals selected from the group consisting of R_{18} , R_{19} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{28} , R_{29} , R_{30} , R_{36} , R_{37} , R_{38} , R_{39} , R_{40} , R_{41} , R_{42} , R_{43} , R_{44} , R_{45} , R_{46} , R_{47} and R_{48} to be bonded to one another in pairs by way of a direct bond or an -O-, -S- or -N(G)- bridge or bonded singly to A^{m-} and/or Z^{n+} , wherein G is mono- or poly-substituted C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkenyl, C_3 - C_{12} heterocycloalkyl, C_7 - C_{18} aralkyl, C_6 - C_{14} aryl or C_5 - C_{13} heteroaryl.

- **2.** (original): An optical recording medium according to claim 1, wherein R₂ and R₄ are hydroxy, O⁻, mercapto or S⁻ and R₆ or R₇ is nitro or cyano; Zⁿ⁺ is a xanthene; and/or R₁₀ is methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl, tert-butyl, 3-pentyl, n-amyl, tert-amyl, neopentyl, 2,2-dimethyl-but-4-yl, 2,2,4-trimethyl-pent-5-yl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclobutylmethyl, cyclopentyl, cyclopentylmethyl, cyclohexyl, cyclohexylmethyl, cyclohex-4-enyl-methyl, 5-methyl-cyclohex-4-enyl-methyl or 2-ethyl-hexyl, each unsubstituted or mono- or poly-substituted by fluorine.
- 3. (currently amended): An optical recording medium according to claim 1-or-2, wherein M^{r+} is Co²⁺, Co³⁺, Cu⁺, Cu²⁺, Zn²⁺, Cr³⁺, Ni²⁺, Fe²⁺, Fe³⁺, Al³⁺, Ce²⁺, Ce³⁺, Mn²⁺, Mn³⁺, Si⁴⁺, Ti⁴⁺, V³⁺, V⁵⁺ or Zr⁴⁺.

- **4.** (currently amended): An optical recording medium according to claim 1, 2 or 3, additionally comprising a cyanine or xanthene cation. , preferably a benzoindocarbocyanine or rhodamine cation.
- **5.** (currently amended): A method for the optical recording, storage or playback of information, wherein a recording medium according to claim 1, 2, 3 or 4 is used.
- **6. (currently amended):** A method according to claim 5, wherein the recording and/or the playback take place in a wavelength range of from 600 to 700 nm., preferably from 630 to 690 nm, more especially from 640 to 680 nm, very especially from 650 to 670 nm, particularly at 658±5 nm.
- 7. (currently amended): A method of producing an optical recording medium, wherein a solution of a compound of formula (I), (II) or (III) according to claim 1, 2 or 3 in an organic solvent is applied to a substrate having depressions.
- **8.** (currently amended): A method for the optical recording, storage or playback of information, wherein a recording medium according to claim 1, 2 or 3 is used.
- **9.** (original): A method according to claim 8, wherein the recording and/or the playback take place in a wavelength range of from 600 to 700 nm.
- **10.** (currently amended): A compound of formula (II) or (III) according to claim 1, $\frac{2 \text{ or } 3}{2 \text{ or a}}$ or a tautomeric or mesomeric form thereof wherein R_2 is O^- , S^- , N^-COR_{11} , N^-COOR_9 , $N^-CONR_{12}R_{13}$ or N^-CN .
- 11.(new): An optical recording medium according to claim 1, wherein either Q_1 is CR_1 and Q_3 is CR_3 or Q_1 and Q_3 are both N, and/or Q_8 in $Q_5=Q_8$, $Q_6=Q_8$ or $Q_7=Q_8$ is in the β -position relative to the

$$G_{1}$$
 | G_{1} | N--

12. (new): An optical recording medium according to claim 2, wherein M^{r+} is Co²⁺, Co³⁺, Cu⁺, Cu²⁺, Zn²⁺, Cr³⁺, Ni²⁺, Fe²⁺, Fe³⁺, Al³⁺, Ce²⁺, Ce³⁺, Mn²⁺, Mn³⁺, Si⁴⁺, Ti⁴⁺, V³⁺, V⁵⁺ or Zr⁴⁺.

- **13.** (new): An optical recording medium according to claim 4, wherein the cyanine or xanthene cation is a benzoindocarbocyanine or rhodamine cation.
- **14. (new):** An optical recording medium according to claim 2 additionally comprising a cyanine or xanthene cation.
- **15.** (new): An optical recording medium according to claim 14, wherein the cyanine or xanthene cation is a benzoindocarbocyanine or rhodamine cation.
- **16.** (new): A method according to claim 5, wherein the recording and/or the playback take place in a wavelength range of from 630 to 690 nm.
- **17.** (new): A method according to claim 5, wherein the recording and/or the playback take place in a wavelength range of from 650 to 670 nm.
- **18.** (new): A method for the optical recording, storage or playback of information, wherein a recording medium according to claim 2 is used.
- **19.** (new): A method according to claim 18, wherein the recording and/or the playback take place in a wavelength range of from 600 to 700 nm.