Коллоквиум по мат. анализу №1

28 октября 2020 г.

1 Билет

- Рациональные числа числа вида $\frac{p}{q}$, где q натуральное число, а p целое. Считается, что две записи $\frac{p_1}{q_1}$ и $\frac{p_2}{q_2}$ задают одно и то же рациональное число, если $p_1q_2=p_2q_1$. Обратим внимание на то, что рациональных чисел не достаточно для естественных потребностей математики.
- Вещественные числа множество всех бесконечно десятичных дробей вида $\pm a_0 a_1 a_2 ...$, где $a_0 \in N \vee 0, a_j \in 0...9$ (Записи, в которых с какого-то момента стоят только 9-ки запрещены);

Число $\pm 0,000...$ называется нулём и совпадает с числом 0;

Нунелевое число: - положительное, если в его записи стоит знак '+'; - отрицательное, если в его записи стоят знак '-';

В вещественные числа вложены рациональные естественным образом. У вещественных чисел также определены операции сложения и умножения для которых справедливы все их естественные свойства.

Отношение порядка у вещественных чисел задано лексикографическим порядком. $(a_0a_1a_2... \le b_0b_1b_2...\exists k: a_0=b_0,...a_{k-1}=b_{k-1},a_k \le b_k)$, который естественным обращом переносится на отрицательные.

Для вещественных чисел определён модуль числа a, т.е. такое вещественное число, что |a|=a, если $a\geq 0$ и |a|=-a, если a<0. Также, для модуля выполняется неравенство треугольника $|a+b|\leq |a|+|b|$. Из неравенства треугольника следует, что $||a|-|b||\leq |a+b|$. Самое важное свойство - выполняется принцип полноты;

• Десятичные дроби. Рациональное число может быть представлено в виде конечной или периодической десятичной дроби $(\frac{1}{10} =$

 $0.1; \frac{1}{6} = 0.1(6); \frac{1}{7} = 0.(142857)$. Можно не рассматривать десятичные записи с периодом 9, т.к. 0.(9) = 1 (Если 0.(9) = x, то 10x = 9 + x - истина, октуда x = 1.

• Принцип полноты. Принцип полноты выполняется, если для произвольных непустых A левее B найдется разделяющий их элемент.

Принцип полноты не выполняется для рациоональных чисел.

Принцип полноты выполняется на множестве вещественных чисел (теорема).

Доказательство:

Пусть A и B - непустые множества. A левее B. Если A состоит только из неположительных чисел, а B только из неоотрицательных, то нуль разделяет A и B. Пусть в A имеется положительный элемент, тогда B состоит только из положительных чисел (обратный случай аналогичен). Построим число $c = c_0 c_1 c_2 ...$, разделяющее A и B.

Рассмотрим множество натуральных чисел, с которых начинаются элементы множества B. Пусть b_0 - наименьшее из таких и пусть $b_0=c_0$. Затем рассмотрим все числа множестве B_1 , начинающиеся с b_0 и найдем у них наименьшую первую цифру после запятой и предположим, что $b_1=_1$ (где b_1 - эта цифра) и т.д. получим бесконечную десятичную дробь $c_0c_1c_2...$ Покажем, что построенное число рязделяет множества A и B. Во-первых, по построению $c \leq b$ для каждого $b \in B$. Действительно, либо b = c, либо $b \neq c$. Во втором случае пусть $b_0 = c_0,...,b_{k-1} = c_{k-1}$ и $b_k \neq c_k$. Тогда по построению числа c, $c_k < b_k \Rightarrow c < b$.

Покажем, что для каждого $a \in A$ $a \le c$. Предположим, что a > c, т.е. $a \ge c$ и $a \ne c$. Тогда найдется позиция k, для которой $a_0 = c_0, ..., a_{k-1} = c_{k-1}$ и $a_k > c_k$. Но по построению числа c есть такой $b \in B$, что $b_0 = c_0, b_k = c_k$, значит $a_k > b_k$, что противоречит условию A левее B.

• Рациональных решений уравнение $x^2=2$ не существует. Действительно, пусть $\frac{p}{q}$ - такое решение и p и q не имеют общих делителей. Тогда $\frac{p^2}{q^2}=2 \Rightarrow p^2=2q^2 \Rightarrow p^2$ - четное $\Rightarrow p$ - четное $\Rightarrow p=2k, 4k^2=2q^2 \Rightarrow 2k^2=q^2 \Rightarrow q^2$ - четное $\Rightarrow q$ - четное \Rightarrow числа p и q имеют общий делитель. Противоречие.

2 Билет

• Предел последовательности

Если каждому числу $n \in N$ поставлено в соответствие некоторое число a_n , то говорим, что задана числовая последовательность $\{a_n\}_{n=1}^{\infty}$

Говорят, что последовательность $\{a_n\}_{n=1}^{\infty}$ сходится к числу a, если для каждого $\varepsilon > 0$ найдется такой номер $N_{\varepsilon} \in N$, что $|a_n - a| < \varepsilon$ при каждом $n > N_{\varepsilon}$.

$$orall arepsilon>0 \exists N_arepsilon\in N: orall_n>N_arepsilon|a_n-a| или $a_n o a$ при $n o\infty$$$

• Единственность предела Пусть $\lim_{n\to\infty} a_n = a$ и $\lim_{n\to\infty} b_n = b$, тогда a = b.

Доказательство: Если $a \neq b$, то $|a - b| = \varepsilon_0 > 0$. Но по определению найдется номер N_1 , для которого $|a_n-a|<rac{arepsilon_0}{2}$ при $n>N_1$ и найдется номер N_2 , для которого $|a_n-b|<\frac{\varepsilon_0}{2}$ при $n>N_2$. Тогда при n> $max\{N_1, N_2\}: \varepsilon_0 = |a - b| = |a - a_n + a_n - b| \le |a - a_n| + |a_n - b| < \varepsilon_0.$ Противоречие.

• Арифметика предела. $\lim_{n\to\infty} a_n = a \lim_{n\to\infty} b_n = b$

- 1) $\lim_{n\to\infty} (\lambda a_n + \beta b_n) = \lambda a + \beta b \ \forall a,b \in R$
- $2)\lim_{n\to\infty} a_n b_n = ab$

3) Если $b\neq 0, b_n\neq 0$, то $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}$. Доказательство: Пусть $\varepsilon>0$ - произвольное число. Тогда найдется номер N_1 , для которого $|a_n - a| < \varepsilon$, и найдется номер N_2 , для которого $|b_n - b| < \varepsilon$

- 1) При $n > N = max\{N_1, N_2\} : |\lambda a_n + \beta b_n (\lambda a + \beta b)| = |\lambda(a_n a) + \beta b_n|$ $|\beta(b_n - b)| \le |\lambda||a_n - a| + |\beta||b_n - b| < (|\lambda| + |\beta|)\varepsilon$
- 2) Заметит, что $|a_n b_n ab| = |a_n b_n ab_n + ab_n ab| \le |b_n| |a_n ab|$ $|a| + |a| |b_n - b|$. Т.к. сходящаяся последовательность ограничена, то найдется M > 0, для которого $|b_n| \leq M$, поэтому при n > N = $\max\{N_1,N_2\}$ выполнено $|a_nb_n-ab|\leq (M+|a|)\varepsilon$ 3) Достаточно проверить, что $\frac{1}{b_n}\to \frac{1}{b}$ при $n\to\infty$. Заметим, что по
- условию $b \neq 0$, поэтому найдется номер $N_3 \in N$, для которого при $n > N_3$ выполнено $|b_n| > \frac{|b|}{2}$. Тогда при $N > max\{N_1, N_2\}$ выполне-HO $\left| \frac{1}{b_n} - \frac{1}{b} \right| = \frac{b_n - b}{|b_n||b|} \le \frac{2}{|b|^2} * \varepsilon$

• Ограниченность сходящейся последовательности:

Утверждение: сходящаяся последовательность ограничена

Доказательство: Если $\lim_{n\to\infty}a_n=a$, то для каждого $n\in N$ выполнено $|a_n-a|<1$ при $n>N\Rightarrow |a_n|=|a_n-a+a|\leq |a_n-a|+|a|<1+|a|$ при n>N. Значит $|a_n|\leq M=\max\{1+|a|,|a_1|,|a_2|,...,|a_N|\}$, т. е. $M=c\leq a_n\leq C=M$.

• Определенность: Если $a_n \to a$ и $a \neq 0$, то найдется номер $n \in N$, для которого $|a_n| > \frac{|a|}{2} > 0$ при n > N.

Доказательство: Взяв $\varepsilon = \frac{|a|}{2}$ в определении сходимости последовательности к числу a, получаем номер $n \in N$, для которого $|a_n - a| < \frac{|a|}{2}$ при n > N. Тогда при n > N, выполнено $|a| - |a_n| \le |a_n - a| < \frac{|a|}{2}$, что равносильно тому, что мы доказываем.

3 Билет

• Переход к пределу в неравенствах

Пусть $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. Если для некоторого номера N выполнено $a_n \leq b_n$ при n > N, то и $a \leq b$;

Доказательство: Предположим, что $a-b=\varepsilon>0$. Тогда найдутся номера $N_1\in N$ и $N_2\in N$, для которых $|a_n-a|<\frac{\varepsilon}{2}$ при $n>N_1$, и $|b_n-b|<\frac{\varepsilon}{2}$ при $n>N_2$. Тогда $\varepsilon=a-b=a-a_n+a_n-b_n+b_n-b\leq a-a_n+b_n-b<\varepsilon$. Противоречие.

• Лемма о зажатой последоовательности

Пусть $\lim_{n\to\infty}a_n=a$ и $\lim_{n\to\infty}b_n=b$ и для некоторого $n\in N$ выполнено неравенство: $a_n\le c_n\le b_n$ при n>N. Тогда $\lim_{n\to\infty}c_n=a$. Доказательство: Для каждого $\varepsilon>0$ найдутся номера $N_1\in N$ и $N_2\in N$, для которых $|a_n-a|<\varepsilon$ и $|b_n-b|<\varepsilon$. Тогда при $n>\max\{N,N_1,N_2\}$ выполнено: $a-\varepsilon< a_n\le c_n\le b_n< b+\varepsilon$.

• Принцип вложенных отрезков

Пусть $a, b \in R$ и a < b. Множества $[a; b] := \{x \in R : a \le x \le b\}$, $(a; b) := \{x \in R : a < x < b\}$ называются отрезком и интервалом соответственно. Длиной отрезка (интервала) называется величина b - a.

Теорема: Всякая последовательность $\{[a_n,b_n]\}_{n=1}^{\infty}$ вложенных отрезков (т.е. $[a_{n+1};b_{n+1}]\subset [a_n;b_n]$) имеет общую точку. Кроме того, если длины отрезков стремятся к нулю, т.е. $b_n-a_n\longrightarrow 0$, то такая общая точка только одна.

Доказательство: по условию $[a_{n+1};b_{n+1}]\subset [a_n;b_n]$, откуда $a_{n+1}\leq a_n\leq b_n\leq b_{n+1}$. Заметим, что при n< m выполнено $a_n\leq a_m\leq b_m$,

а при n>m выполнено $a_n\leq b_n\leq b_m$. Таким образом, если $A:=\{a_n,n\in N\}$ и $B:=\{b_m,m\in N\}$, то A левее B, а значит по принципу полноты найдется такое число $c\in R$, что $a_n\leq c\leq b_m$ для произвольных $n,m\in N$, в частности $a_n\leq c\leq b_n$ т.е. $c\in [a_n;b_n]$. Пусть общих точек две: c и c'. Не ограничивая ообщности c< c'. Тогда $a_n\leq c< c'\leq b_n$ и $c'-c\leq b_n-a_n$, что противоречит тому, что $\lim_{n\to\infty} (b_n-a_n)=0$. Действительно, найдется номер N, для которого $b_n-a_n< c'-c$ при каждом n>N.

• Геометрическая интерпретация вещественных чисел, вещественная прямая.

Доказанная выше теорема позволяет дать вещественным числам следующую геометрическую интерпретацию. Сопоставим десятичной дроби $0.a_1a_2...$ последовательность вложенных отрезков по следующему правилу:

Разделим отрезок [0;1] на 10 равных частей и выберем из получившихся 10 отрезков (a_1+1) -ый по счету. Делаем то же самое и выбираем (a_2+1) -ый по счету и т.д. Получаем последовательность вложенных отрезков, причем длина отрезка на n-ом шаге равна 10^{-n} . По доказанной теореме сущестует единственная общая точка построенной последовательности вложенных оторезков, которая как раз и совпадает с $0.a_1a_2...$

4 Билет

- Точные верхние и нижние грани. Пусть A непустое подмножество вещественных чисел. Число b называется верхней гранью множества A, если $a \le b$ верно для каждого числа $a \in A$. Если есть хоть одна грань, то множество называют ограниченным сверху. Наименьшая из верхних граней множества A называется точной верхней гранью множества A и обозначается $\sup(A)$ (супремум). Число b называется нижней гранью множества A, если $b \le a$ верно для каждого числа $a \in A$. Ели есть хотя бы одна нижняя грань, то множество называется ограниченным снизу. Наибольшая из нижних граней множества A называется точной нижней гранью множества A и обозначается $\inf(A)$ (инфинум)
 - Ограниченное и сверху и снизу множество называется ограниченным.
- Теорема Вейерштрассе о пределе монотонной ограниченной последовательности.

Пусть последовательность $\{a_n\}_{n=1}^{\infty}$ не убывает $(a_n \leq a_{n+1})$ и ограничена сверху. Тогда эта последовательность сходится к своему супремуму.

Анологично, пусть поседовательность $\{a_n\}_{n=1}^{\infty}$ не возрастает $(a_{n+1} \le a_n)$ и ограничена снизу. Тогда эта последовательность сходится к своему инфинуму.

Доказательство: Пусть $M=\sup\{a_n:n\in N\}=\sup(a_n)$. Тогда для каждого $\varepsilon>0$ найдется номер $n\in N$, для которого $M-\varepsilon< a_n, n\in N$ иначе $M-\varepsilon$ - верхняя грань, чего не может быть. В силу того, что последовательность неубывающая, при каждой n>N выполнено $M-\varepsilon< a_N \le a_n \le M \le M+\varepsilon$

Тем самым, по определению $M = \lim a_n$

Случай с невозрастающей последовательностью рассматривается аналогично.

• Пример рекуррентной формулы для вычисления $\sqrt{2}$ Пусть $a_{n+1}=\frac{1}{2}(a_n+\frac{2}{a_n}), a_1=2$. Заметим, что $a_{n+1}=\frac{1}{2}(a_n)+\frac{2}{a_n})\geq \frac{1}{2}(a_n+\frac{2}{a_n})^{\frac{1}{2}}=\sqrt{2}$

Поэтому $a_n \ge \sqrt{2}$. Кроме того, $a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n}) \le \frac{1}{2}(a_n + \frac{a_n}{a_n}) = a_n$. По доказанной Теореме у последовательности $\{a_n\}_{n=1}^{\infty}$ существует предел a. Т. к. $a_n \ge 0$, то и a > 0.

Тогда по арифметике предела получаем $a = \frac{1}{2}(a + \frac{2}{a})$, откуда $a = \sqrt{2}$.