CSCI E-82 Advanced Machine Learning, Data Mining & Artificial Intelligence Lecture 10

Outlier Analysis

Peter V. Henstock Fall 2018

© 2018 Peter V. Henstock

Rest of the semester...

- Homework 5 CNN due next week
- Exam the next weekend
- Project proposal 2 lines
- Paper presentations → (1-2 paragraphs or YouTube 5 min)
 - Paper reviews
- HW 6 on Shakespeare (reduced)
- Final project

Outliers

Outlier

"An observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism"

--Hawkins

General Categories

- Outlier score
 - Use algorithm to score to each observation
 - Threshold scores as outliers
- Binary yes/no
 - May generate label from outlier score
- Noise issue
 - Adds variance to measurements
 - Requires separation of noise ('weak') & 'strong' outliers

© 2018 Peter V. Henstoc

Types of Anomalies

- Point
 - Single instance or small group
- Contextual
 - Outlier is not typically an extreme value
 - Outlier relative to a standard behavior
 - Time-domain, spatial domain, etc.
 - Snow in July. Snow in Florida
- Collective
 - Irregular pattern such as missing heartbeat
 - Strong pattern

Types of Anomaly Detection

- Supervised: labels for normal & outliers
- Semi-supervised: Labels for normal only
- Unsupervised: no labels
 - Assume that outliers are rare

© 2018 Peter V. Henstock

Challenges

- High dimensional data
- Sparse data
- Heterogeneous data
- Categorical or ordered data
- Noise
- Contextual outliers (networks)

Statistical Approaches

© 2018 Peter V. Henstock

Central Limit Theorem (Strong)

- Sum of large number N of iid random variables with mean μ and stdev σ
- Sum converges to $N(\mu N, \sigma / sqrt(N))$
- So if have a sum variable, we can compute the probabilities of outliers based on a normal distribution
- Applicable to customer store visits
- Applicable to sports statistics

1D outlier

- $Z_i = |X_i \text{mean}| / \text{stdev}$
- If X ~ N(mean, stdev) then Z_i ~ Zipf
- Outliers assumed Z_i >= 3 perhaps
- What if don't have enough points to come up with a good estimate of mean and standard deviation?
 - Use Student t-distribution instead

© 2018 Peter V. Henstock

Dependence on model

- Could model as Gaussian in 1D or 2D
- Could model as 3 clusters
- Depends on understanding of the natural underlying patterns inherent to the domain

Thresholds for Outliers

- Markov Inequality (Weak)
 - Let X be random variable s.t. X>=0
 - \circ For α satisfying E[X] < α then
 - $P(X > \alpha) \le E[X] / \alpha$
- Chebychev Inequality (Weak)
 - Let X be random variable (no restrictions)
 - \circ P(|X E[X]| > α) <= Var[X] / α^2

Box-Whisker

- How does this compare to N() dist?
- Median ~ Mean if normal distribution
- Q1 ~ 0.667 stdev
- So IQR = 2*0.667 = 1.349
- Threshold = 0.667 + 1.349 = 2.7
- Corresponds to probability of 0.9965
- Note: there are other box-whisker types or conventions

© 2018 Peter V. Henstock

Going from 1-D to N-D

- What if you have an k-D set of data?
- For a single dimension, apply Z-value
- But, want to compute outlier score across multiple dimensions or z's
- Outlier score could be Σ Z_i²
- Distribution of Σ Z_i² ~ chi-sq(d)
 - d = degrees of freedom or d = "k"

SmartSifter

- Yamanishi 2000
- Online unsupervised outlier detection using finite mixtures with discounting learning algorithms
- Combination of data types:
 - Handles categorical with histogram
 - Handles continuous with mixture model
- Approach
 - Model full data set
 - For each point
 - · Leave-one-out statistical model
 - · Compute |p(full)-p(l-o-o)| as outlier value

Limitations of Probability Modeling

- Assumptions to distributions
- Number of parameters
- Fitting & over-fitting (cluster or EM)

© 2018 Peter V. Henstock

Classification (Supervised) Approaches

Supervised Methods

- Whenever you can, use a supervised method for outlier detection
 - More accurate
 - Gives insight on the class of outlier in some cases (like intrusion detection)
- Challenges:
 - Class imbalance
 - Contaminated labels
 - · Undetected spam may exist in a data set
 - Partial training available

Adaptive Re-sampling

- Sample training data to favor the outliers
 - Either with or without replacement or both
- Optimize weighted cost
 - Σ_i classError_i * cost_i
- Adaptive part: Sample proportional to size
 - Might take 2% of normal + all 1% of outlier
 - Variation: "Sequential Ensemble" correct predictions excluded in later iterations

© 2018 Peter V. Henstock

Under/Over-Sampling

- Undersampling option for normal class:
 - Smaller training sets are faster to train
 - Normal class is proportionally reduced
 - Faster training → more sets
- SMOTE (Synthetic Over-Sampling)
 - Far less common but interesting
 - Replicating outlier class→over-training
 - Create rare class samples for training
 - · Sample from k-NN of each outlier class sample
 - · Sample on line segment between point & neighbor
 - "SMOTEBoost" algorithm using boosting

How to Balance Data

- Increase number of outliers [Ling98]
 - Duplicate outliers until equal size
 - Changes only cost of misclassification
- Under-sample the non-outliers [Kubat97]
 - Emphasize the points closest to outliers
 - Under-sample distant points
- Create fake outliers
 - SMOTE (Synthetic Minority Over-sampling TEchnique) within outlier zone [Chawla 2002]
 - Use active learning to create outliers [Abe06]

© 2018 Peter V. Henstoc

Active Learning

Choose points with 2 criteria:

- 1) Low likelihood
 - Fit the models poorly, perhaps in tails
 - Special case for outlier detection
- 2) High uncertainty
 - Unclear which class they belong to
 - Standard practice for classification

Problems with one-class model

- Data is used for training and scoring
 - Outlier affects the model
 - As remove outliers, model changes
- No separate training/testing models
 - How to do prevent overfitting?
- How could you fix this?
 - Cross-validation

© 2018 Peter V. Henstock

1-class SVM = linear method

- Model data as 1 class
- Apply kernel transform
- Require assumption:
 - Origin (i.e. zero) of kernel-transformed data belongs to outlier class
- Create margin to the origin
 - Avoids overfitting
- Approach
 - \circ Take X data $\rightarrow \Phi(X)$ transform
 - ∘ W•Φ(X) b = 0

Ensemble Methods

- Very useful for outlier detection
- Outlier version different from traditional ensembles
 - No labels for outlier class typically
- Main benefits are still the bias/variance
 - Bias is more difficult to reduce w/o "outlier" label

Ensemble Types

- Approach to variation
 - Model-centric: multiple methods/parameters
 - Data-centric: multiple data samples
- Independence of variation
 - Independent (bagging)
 - Sequential (boosting)
- Score normalization:
 - Range norm: Output $x \rightarrow (x-min)/(max-min)$
 - Standardization: Output → (x-mean) / stdev
- Scoring:
 - Average of outputs
 - Max of outputs

© 2018 Peter V. Henstock

Distance or Geometric Approaches

Distance-Based Methods

- Compute k-NN for all points
- Take the largest 1% perhaps that have the largest distances
- Challenged to find outliers in high dimensions
- Assumes the density is equivalent

© 2018 Peter V. Henstock

Distance Methods

- Essentially k-NN
 - Score(Xi) = kth smallest dist to rest of X
- Highly granular: identify local outlier
- Assumes density is equal globally
- Can identify smaller outlier clusters of m
 - Need to se k > m (some say k>=m)
- Requires N² calculations if need score
- Faster approaches reduce computation if only need outlier/non-outlier decision

Distance Based

- Knorr & Ng 1997
- "Distance-based outliers: algorithms & applications"
- DB(D,p) = Outliers
- Object O in T is a DB(p,D) outlier if:
 - At least fraction p of objects in T lies greater than D distance from O
 - e.g. 90% of objects are at least 5 away
- O(kN²) for k dimensions, N points
- $O(c^k + N)$ for small c constant using cells

Clustering for Outlier Detection

- Advantages
 - Much faster than nearest neighbor
 - Optimizations readily available
 - Applicable to multiple types of variables
 - Intuitive
- Issues
 - Small data sets
 - Parameter choices change results
 - Noise vs. true outlier

Distance to Cluster

- Mahalanobis distance to cluster is useful metric for outliers $d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} \vec{y})^T S^{-1} (\vec{x} \vec{y})}$
 - Uses Euclidian-like distance
 - Weights features by variance
- What if the data is a spiral manifold or other non-Gaussian blob?
 - Nonlinear PCA works for global view
 - Problem is we don't necessarily want a global model for local outlier detection

© 2018 Peter V. Henstock

Mahalanobis Distance

Recall multivariate Gaussian distribution

$$f_{\mathbf{x}}(x_1,\ldots,x_k) = rac{\exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{\mathrm{T}}oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})
ight)}{\sqrt{(2\pi)^k|oldsymbol{\Sigma}|}}$$

- Mahalanobis(X, μ , Σ) = $\sqrt{(\mathbf{x} \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu})}$
- What if covariance is not invertible?
 - \circ Take inverse of Σ + λI for small λ
 - Considered a form of regularization

Characteristics of Mahalanobis

- Similar to Euclidian distance but utilizes correlations between features to normalize the results
- Similar to a PCA by taking the strength of the various axes into account
- No parameters!
- Computationally reasonable
 - ∘ O(k²) for the inverse where k=#dimensions
 - O(N) for number of points

© 2018 Peter V. Henstock

Geometric Method

- Eskin 2002 "Geometric Framework for unsupervised anomaly detection"
- Apply leader clustering with radius r
- Outliers = clusters with fewest members

Proximity-Based

- Multiple categories
 - Cluster-based
 - Distance-based (K-NN)
 - Density based
- Differ in performance
 - Cluster uses summarized representation that is potentially robust
 - Distance-based uses individual point with high granularity but O(N²)

© 2018 Peter V. Henstock

Curse of Dimensionality

- Affects many fields
- Outlier may occur in a 2D plot but when other variables are viewed, not an outlier
- Outliers will be apparent in very of many
 2D plots for N-dimensional space
 - Apparent means visually or computationally
- Noise of d-dimensional features may drown out the outlier on a few dimensions

High Dimensional Data

- Data become increasingly sparse
- Inter-point distances become somewhat equivalent

© 2018 Peter V. Henstock

Solution for the Curse

- Find the relevant subspaces
- But, number of possible projections to subspaces is exponential

Grid-Based Hi-Dim search

- Divide up each variable into bins of equal number of data points
- Let f = fraction of points in each bin
- If we assume independence, then
 - ∘ N*f^k = expected # in any N-dim bin
 - Sqrt(N*fk (1-fk) = stdev of points in N-dim bin
- For large N, we can assume a normal distribution rather than Bernoulli

© 2018 Peter V. Henstock

Genetic Algorithm on Grids

- Search is for subspace with rare combinations
- Encode bins across features "3" or "*" if don't care
- Fitness function is rare combinations

Convex Hull

- Compute a geometric "depth" as #rings
- Avoid distribution requirements
- Do until no points:
 - Find convex hull such that all lines connecting points are within the "hull"
 - Remove hull points
 - Increase depth by 1

© 2018 Peter V. Henstock

Computation of Depth

- Computing the convex hull can be fairly slow even for 2D or 3D yet alone ND
- Faster methods exist for this
 - ISODEPTH Ruts & Rousseeuw, 1996
 - Computes depth contours efficiently for 2D
 - Scales poorly < 5000 points
 - FDC Johnson, Kwok, NG 1998
 - Computes first k contours for 2D space
 - · Scales to 100K points at least
 - Quickhull for ND Barber et al. 1996
 - Divide & conquer approach using extreme points

Angle-Based Method

- Concept is for any triple of points
 - Angles for outlier to other points are similar
 - Angles for non-outlier vary widely
- Weighted cosine distance
 - \circ Wcos(YX, ZX) = (YX dot ZX) / $|YX|^2 |ZX|^2$
- Angle-Based outlier factor(X)
 - \circ ABOF(X) = $Var_{\{all\ Y,Z\}} Wcos(YX, ZX)$

© 2018 Peter V. Henstock

Computation of ABOF

- For all points is a lot of calculations
 - Could sample from the space
- Points with largest impact to ABOF(X) are closest points or the K-NN of X
 - $W\cos(YX, ZX) = (YX \det ZX) / [||YX||^2 ||ZX||^2]$
 - Basically due to the denominator

Issues with Angle Based

- Approach useful for boundary outliers but not outliers in the middle of blob
- Which points is a greater outlier?

High dimensional data

- Initially believed angles would be better
- Reality is they have inherent distance basis
- All triples turn into equilateral triangles 1018 Peter V. Henstock

ODIN: Reverse RNN

- K-NN alternative: use #reverse KNN
- p is reverse KNN of q iff q is among k-NN of p
- Outliers: reverse KNN < threshold
- Score = #reverse KNN
- Outlier Detection using In-degree Number (ODIN)
 - O(N²) algorithm

Reverse KNN

- p is reverse KNN of q iff q is among k-NN of p
 - B C R
- KNN(C) = BDE C revKNN D? Yes
- KNN(D) = BCG
- KNN(B) = CDG
- KNN(R) = AEG R revKNN anything?
- KNN(G) = DCE G revKNN C,D,E

© 2018 Peter V. Henstock

Model Approaches

Linear Modeling

- 1) Regression
- 2) Principal Component Analysis
- Assumption:
 - Data fits a linear model
 - Data fits a lower dimensional space
 - Normal distribution about model
- What's the main difference between 1 & 2? What does that imply?

© 2018 Peter V. Henstock

Regression

- $y = \sum_d w_i x_i + w_{d+1}$
- $Y = DW^T + error$
- Solution W^T= (D^TD) -1D^Ty
 - If the parens terms is not invertible, can use regularization W^T = (D^TD + αI)⁻¹D^Ty
- Different choices of variables will produce different fits and outliers
 - Normal residual assumption provides distribution for the outliers

Ensemble Methods

- Regression has circular logic
 - Fit the data to identify the outlier
 - Outlier can significantly change the fit
- Ensemble methods avoid this issue
 - Sample part of the data and assess fits
 - Repeat many times to score all points
 - Average the predicted outliers
- Concept applies to unsupervised
 - Treat arbitrary variable as dependent

© 2018 Peter V. Henstock

PCA

- Related to regression
- Finds optimal k-dimensional hyperplane that minimizes the squared projection error over the remaining d-k dimensions
- PCA minimizing projection error:
 - Outliers are deviations from the principal component axes
- Score(X) = $\Sigma_j [(X \mu)^* e_j]^2 / \lambda_j$
 - \circ X = point, μ = centroid, e_i = eigenvector
 - Note smaller eigenvalues weighed more
 - ~Mahalanobis distance except for e_i /_© λωβ Peter V. Henstock

PCA vs. Regression approaches

- PCA is more stable with few outliers
 - Focuses on optimal hyperplane
 - Regression focuses on optimizing against a single variable
- What if many outliers?
 - May need to run several rounds
 - Identify large outliers and remove them
 - Rerun the methods and identify mid-range outliers

© 2018 Peter V. Henstoc

PCA Methods

- PCA captures most variation
- Ideally, outliers won't be captured by the reduction in variance
- In reality, outliers really distort PCA
- Robust PCA methods
 - Optimize projection for <=50% non-outliers
 - Identify which points are outliers
- Alternative:
 - Find points governing low eigenvalue eigenvectors (opposite of PCA)

Tree Approaches

© 2018 Peter V. Henstock

Create Isolation Tree

- Candidate list = nodes to split initialized by root node
- Repeat until empty:
 - R = randomly select node from candidate list
 - Select random attribute
 - Choose random threshold using uniform distribution on attribute from min to max
 - Split data at threshold into R1 & R2 as children of R
 - Add R1 and R2 into candidate list if > 1 point

Isolation Forests ~ Random Forest

- Isolation forest =
 - Ensemble of isolation trees
- Isolation tree =
 - Axis-parallel cuts chosen at random to partition data across randomly selected attributes until node has one data point
- Score per ensemble: depth of tree
 - Outliers are in sparse regions so are in less deep nodes of the trees
- Average path depth across ensemble = full score
- Liu et al. ICDM 2008 "Isolation Forest"

Isolation Tree

- Relatively fast to compute
 - O(N) per tree
- No parameters!
- Can have a training & test phase by dividing data into two pieces randomly
 - Better diversity
 - Better computational efficiency
 - Average path lengths across trees

Connectivity Outlier Factor

- Local sparsity assessment around neighborhoods
- Find set based nearest path
 - Found ← {point a}
 - Repeat until have r points
 - Find closest point p to any in Found with dist edgeDist
 - · Add p to Found and record sequence of edgeDist
 - Chain = distances to points added
 - ACDist = $\sum_{i=1}^{r} edgeDist_{i} \frac{r(r-i)}{r(r-1)}$ low ACDist = denser
- COF(p) = $\frac{ACDist(p)}{\frac{1}{k}\sum_{o \in kNN(p)}ACDist(o)}$ normalized ACDist
- Comparing density of points against neighbors
 - If less dense, then more likely an outlier

© 2018 Peter V. Henstock

- Chains formed in order from each red point
- Chains will vary based on starting point
- Record distances in order of addition
- Weigh the first points more than later
- Outliers are relative to neighborhood