

时序差分法

引言

- ▶在未知环境模型的情况下,虽然蒙特卡洛法能够求解 MDP问题,但需要等到一个情节结束后才能够更新值函数;
- ▶在实际场景中,有些任务没有终止状态或者难以到达终 止状态;
- ▶结合DP的自举性和MC的采样性,学习由时间间隔产生的差分数据,通过迭代更新来求解未知环境模型的MDP问题的方法(时序差分法)。

目 录

- 6.1 时序差分预测
- 6.2 时序差分控制
- 最大化偏差与Double Q-Learning
- 6.4 DP、MC和TD算法的关系
- 6.5 小结

6.1 时序差分预测 (1)

> 利用时序差分解决预测问题:

状态值函数增量式更新递归式为:

$$V(S_t) \leftarrow V(S_t) + \alpha[G_t - V(S_t)]$$

在时序差分预测中,每前进1-步或*n*-步,就可以直接计算状态值(动作值)函数。本章仅讨论单步情况的时序差分算法,即TD(0)(单步TD)。

TD(0) 算法是n -步TD 算法的特列,适用于小批量状态的更新方法。其中"0"表示向前行动1步。

6.1 时序差分预测 (2)

TD(0)算法的核心思想是向前行动1步后,使用得到的立即奖赏 R_{t+1} 和下一个状态的状态值函数的估计值 $V(S_{t+1})$ 来进行更新。这也是TD(0)被称为单步TD方法的原因。更新递归式为: $V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$

- ✓ $R_{t+1} + \gamma V(S_{t+1})$ 表示根据样本得到的时序差分目标值, $V(S_{t+1})$ 表示 t+1 时刻状态值函数的估计值;
- ✓ 右侧的 $V(S_t)$ 表示 t 时刻的状态值函数 $v_{\pi}(s)$ 的估计值,通过迭代收敛来逼近真实状态值函数;
- ✓ $R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ 为时序差分误差(TD error)。 记为 δ_t ,表示t 时刻的估计误差。

6.1 时序差分预测 (3)

(1) 对于DP、MC与DP的更新图比较

MC和TD算法对值函数的更新方法称为采样更新或样本更新。所谓的采样更新是通过采样得到一个即时后继状态(或状态-动作对),并使用即时后继状态的价值和迁移得到的奖赏来计算目标值,然后更新值函数估计值。

MC和TD算法的采样更新与DP法的期望更新思想不同,采样更新利用下一时刻单一的样本转换,而期望更新利用所有可能的下一状态的分布。

6.1 时序差分预测 (4)

6.1 时序差分预测 (5)

(2)对DP、MC、TD的误差来源进行分析。根据值函数 计算公式与贝尔曼方程可知:

$$\begin{aligned} \mathbf{v}_{\pi}(s) &= \mathbb{E}_{\pi}(G_{t} \mid S_{t} = s) & \mathbf{MC} \\ &= \mathbb{E}_{\pi}(R_{t+1} + \gamma G_{t+1} \mid S_{t} = s) \\ &= \mathbb{E}_{\pi}(R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s) & \mathbf{DP} \end{aligned}$$

- ➤ DP算法具有自举性。通常使用估计值来代替真实函数。
- ➤ 在MC算法中,通过采样回报的<mark>期望</mark>代替真实回报。
- ho 在**TD**算法中,**TD**误差是由采样获得的,另外由于自举特性 $v_{\pi}(S_{t+1})$ 也是未知的。

6.1 时序差分预测 (6)

(3) 有偏估计和无偏估计:

- ightharpoonup 无偏估计指估计量 $\hat{\theta}$ 的数学期望等于被估计参数 θ 的真实值,则称此估计量 为被估计参数 的无偏估计,即 $\mathbb{E}(\hat{\theta}) = \theta$ 。
- ightharpoonup 有偏估计指样本求得的的估计参数不等于待估计参数的真实值, $\mathbb{E}(\hat{\theta}) \neq \theta$ 。
- ► MC算法是高方差的无偏估计。因为它是以真实回报作为目标值。但是它的方差较高。
- ➤ TD算法是低方差的有偏估计。因为TD算法使用了自举思想。

6.1 时序差分预测 (7)

(4) MC误差与TD误差:

在一个情节中,当状态值函数估计值 没有发生变化时,MC误差可写为TD误差之和:

$$\begin{split} G_{t} - V(S_{t}) &= R_{t+1} + \gamma G_{t+1} - V(S_{t}) + \gamma V(S_{t+1}) - \gamma V(S_{t+1}) \\ &= \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_{t}) \right) + \gamma G_{t+1} - \gamma V(S_{t+1}) \\ &= \delta_{t} + \gamma \left(G_{t+1} - V(S_{t+1}) \right) \\ &= \delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \left(G_{t+2} - V(S_{t+2}) \right) \\ &= \delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \delta_{t+2} + \dots + \gamma^{T-t-1} \delta_{T-1} + \gamma^{T-t} \left(G_{T} - V(S_{T}) \right) \\ &= \delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \delta_{t+2} + \dots + \gamma^{T-t-1} \delta_{T-1} + \gamma^{T-t} \left(0 - 0 \right) \quad \text{终此状态没有奖赏,} \quad G_{T} = 0 \quad V(S_{T}) = 0 \\ &= \sum_{k=1}^{T-1} \gamma^{k-t} \delta_{k} \end{split}$$

6.1 时序差分预测 (8)

(5) TD(0) 伪代码:

算法6.1用于估计 ν_{π} 的表格型 $\mathrm{TD}(0)$ 算法

输 入:

待评估的策略 π , 折扣因子 γ , 学习率 { α_k } $_{k=0}^{\infty} \in [0,1]$

初始化:

- 1. 对任意 $s \in S$; 初始化状态值函数,如 $V(s) \leftarrow \mathbb{R}; V(s^T) \leftarrow 0$
- 2. **repeat** 对每个情节 $k = 0,1,2,\cdots$
- 3. 初始状态*S*
- 4. while
- 5. 根据策略 π ,选择动作A
- 6. 在状态S下执行动作A,到达下一状态S',并得到奖赏R
- 7. $V(S) \leftarrow V(S) + \alpha_k [R + \gamma V(S') V(S)]$
- 8. $S \leftarrow S'$
- 9. **until** $S = S^T$

输 出: $v_{\pi} = V$

目 录

- 6.1 时序差分预测
- 6.2 时序差分控制
- 6.2.1 Sarsa算法
- 6.2.2 Q-Learning算法
- 6.2.3 期望Sarsa算法
- 6.2.4 Double Q-leaning算法

6.2 时序差分控制 (1)

TD控制算法和MC控制算法的共同点:

- ➤ 都遵循GPI;
- > 评估的目标都是状态-动作对的最优动作值函数。

为了平衡探索与利用,TD控制算法分为:

- ➤ 基于策略迭代的同策略Sarsa算法;
- ➤ 基于值迭代的异策略Q-Learning算法。

Sarsa算法与Q-Learning算法都属于TD(0)算法,它们的收敛性同样遵循MC增量式中的随机近似条件。

目 录

- 6.1 时序差分预测
- 6.2 时序差分控制
- 6.2.1 Sarsa算法
- 6.2.2 Q-Learning算法
- 6.2.3 期望Sarsa算法
- 6.2.4 Double Q-leaning算法

6.2.1 Sarsa算法 (1)

> Sarsa算法

Sarsa算法的动作值函数更新迭代式为:

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_{t}, A_{t}) \right]$$

- ✓ 目标值: $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$
- **TD误差:** $\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) Q(S_t, A_t)$
- ➤ 称作Sarsa算法的原因:
 - ✔ 每次更新都需要获取五元组:

6.2.1. Sarsa算法 (2)

>Sarsa算法

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in S^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]
S \leftarrow S'; A \leftarrow A';

until S is terminal
```

注: Sarsa算法是同策略时序差分法,更新策略与行动

6.2.1. Sarsa 算法 (3)

- ightharpoonup 为了能收敛到最优Q值函数 q_* 和最优策略 π_* ,Sarsa算法要求以一定的概率进行探索的同时,探索策略必须逐渐变得贪心。例如在使用 ε –贪心策略时,其探索概率 ε 逐渐衰减到 $\mathbf{0}$ (用 $\{\varepsilon_k\}_{k=0}^{\infty}$ 表示衰减过程)。
- 如果使用Boltzmann探索,其探索温度参数τ_k逐渐衰减到0。这样当Sarsa算法使用具有贪心性质的策略时也会逐渐变得贪心。

6.2.1. Sarsa算法 (4)

▶ 使用Sarsa算法解决确定环境扫地机器人问题

初始化:

- ✓ 动作值函数: 24×4 的二维数组,且初值都为0
- ✓ 学习率参数 α_0 : 0.05
- \checkmark γ : 0.8
- \checkmark ε -贪心策略: ε_0 =0.5

18

6.2.1. Sarsa 算法 (5)

基于Sarsa算法的确定环境扫地机器人问题的Q值迭代过程

Q_k 状态	${\cal E}$	α	S_{16}	•••	S_{20}	S_{21}	S_{22}	•••
Q_0	0.500	0.050	0.000 0.000; 0.000 0.000	•••	*.*** *.***; 0.000 0.000	*.*** 0.000; 0.000 0.000	*.*** 0.000; 0.000 0.000	•••
Q_1	0.500	0.050	0.000 0.000; 0.000 0.000	•••	*.*** *.***; 0.000 0.000	*.*** 0.000; 0.000 0.000	*.*** 0.000; 0.000 0.000	• • •
	:	•	:	:	:	:	:	•••
Q_{3000}	0.425	0.0425	0.706 0.566; 1.379 0.509	•••	*.*** *.***; 0.787 0.565	*.*** 0.557; 1.086 0.872	*.*** 0.704;1.483 1.365	• • •
Q ₃₀₀₁	0.425	0.0425	0.706 0.566; 1.379 0.509		*.*** *.***; 0.777 0.565	*.*** 0.872	*.*** 0.704; 1.486 1.365	• • •

20	21	22	23	24
15	16	17	18	9
10	11	12	13	14
5	6	7	8	9
₽ O [†]	1	2	3	4

6.2.1. Sarsa算法 (6)

20	21	22	23	24
15	16	17	18	
10	11	12	13	14
5	6	7	8	9
₽ †	1	2	3	4

基于Sarsa算法的确定环境扫地机器人问题的Q值迭代过程(续)

Q_k $\#$	${\cal E}$	α	S ₁₆	• • •	S_{20}	S_{21}	S_{22}	•••
	:	•••	:	:	•	:	:	•••
Q_{19999}	0.000	0.000	1.053 0.898; 1.805 0.781	•••	*.*** *.***; 1.205 1.019	*.*** 0.897; 1.518 1.352	*.*** 1.127; 1.907 1.734	•••
π_{19999}	0.000	0.000	0.000 0.000; 0.000 1.000	:	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	•••
Q_{20000}	0.000	0.000	1.053 0.898; 1.805 0.781	•••	*.*** *.***; 1.205 1.019	*.*** 0.897; 1.518 1.352	*.*** 1.127; 1.907 1.734	• • •
π_{20000}	0.000	0.000	0.000 0.000; 0.000 1.000	•••	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	•••
π_*	0.000	0.000	0.000 0.000; 0.000 1.000	•••	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	

目 录

- 6.1 时序差分预测
- 6.2 时序差分控制
- 6.2.1 Sarsa算法
- 6.2.2 Q-Learning算法
- 6.2.3 期望Sarsa算法
- 6.2.4 Double Q-leaning算法

6.2.2. Q-Learning算法 (1)

➤ Q-Learning算法

Q-Learning算法的动作值函数更新迭代式为:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

- ✓动作值函数Q的更新方向是最优动作值函数 Q_* ,而与Agent 所遵循的行为策略b无关。
- \checkmark 在这里评估动作值函数Q时,更新目标值为最优动作值函数Q*的直接近似,故需要遍历当前状态的所有动作。

6.2.2. Q-Learning算法 (2)

➤ Q-Learning算法

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma \max_a Q(S',a) - Q(S,A) \big]
S \leftarrow S'
until S is terminal
```

6.2.2. Q-Learning算法 (3)

➤ 使用Q-Learning算法解决确定环境扫地机器人问题

初始化:

- ✓ 动作值函数: 24×4 的二维数组,且初值都为0
- ✓ 学习率参数 α_0 : 0.05
- \checkmark γ : 0.8
- ✓ ε -贪心策略: ε_0 =0.5

6.2.2. Q-Learning算法 (4)

基于Q-Learning算法的确定环境扫地机器人问题的Q值迭代过程

Q_k 状态	${\cal E}$	α	S_{10}	• • •	S ₁₅	S ₁₆	S_{20}	• • •
Q_0	0.500	0.050	0.000 *.***; 0.000 0.000	• • •	0.000 *.***; 0.000 0.000	0.000 0.000; 0.000 0.000	*,*** *,***; 0.000 0.000	•••
Q_1	0.500	0.050	0.000 *.***; 0.000 0.000	•••	0.000 *.***; 0.000 0.000	0.000 0.000; 0.000 0.000	*.*** *.***; 0.000 0.000	•••
•	•••	•••	:	:	•	•••	•••	•
Q_{10999}	0.280	0.028	1.229 *.***; 1.228 0.800	• • •	0.983 *.***; 1.536 0.983	1.229 1.229; 1.920 1.229	*.*** *.***; 1.229 1.229	•••
Q_{11000}	0.280	0.028	1.229 *.***; 1.228 0.800	•••	0.983	1,229 1,229; 1,920 1,229	*.*** *.***; 1.229 1.229	•••

20	21	22	23	24
15	16	17	18	19
10	11	12	13	14
5	6	7	8	9
10 †	1	2	3	4

6.2.2. Q-Learning算法 (5)

20	21	22	23	24
15	16	17	18	
10	11	12	13	14
5	6	7	8	9
₽ †	1	2	3	4

基于Q-Learning算法的确定环境扫地机器人问题的Q值迭代过程(续)

Q_k $\#\&$	${\cal E}$	α	S_{16}	•••	S ₂₀	S_{21}	S ₂₂	•••
	•	•••	:	:	•	:	:	•••
Q_{24999}	0.000	0.000	1.229 *.***; 1.228 0.800	•••	0.983 *.***; 1.536 0.983	1.229 1.229; 1.920 1.229	*.*** *.***; 1.229 1.229	•••
b_{24999}	0.000	0.000	1.000 0.000; 0.000 0.000	:	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	•••
Q_{25000}	0.000	.000.000	1.229 *.***; 1.228 0.800	•••	0.983 *.***; 1.536 0.983	1,229 1,229; 1,920 1,229	*.*** *.***; 1.229 1.229	• • •
b_{25000}	0.000		1.000 0.000; 0.000 0.000	•••	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	• • •
π_*	0.000	0.000	1.000 0.000; 0.000 0.000	•••	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	0.000 0.000; 1.000 0.000	

目 录

- 6.1 时序差分预测
- 6.2 时序差分控制
- 6.2.1 Sarsa算法
- 6.2.2 Q-Learning算法
- 6.2.3 期望Sarsa算法
- 6.2.4 Double Q-leaning算法

6.2.3.期望Sarsa算法 (1)

▶ 期望Sarsa的目标值为:

$$G_{t} = R_{t+1} + \gamma \mathbb{E} [Q(S_{t+1}, A_{t+1}) | S_{t+1}]$$

$$= R_{t+1} + \gamma \sum_{a} \pi(a | S_{t+1}) Q(S_{t+1}, a)$$

▶ 期望Sarsa动作值函数的更新递归式为:

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \right]$$

- ▶ 期望Sarsa优于Sarsa;
- ➤ 期望Sarsa还可以使用异策略方法,将Q-Learning进行推 广,并提升性能。

6.2.3.期望Sarsa算法 (2)

Q-Learning更新图

期望Sarsa更新图

6.2.3.期望Sarsa算法 (3)

▶ 使用期望Sarsa算法解决确定环境扫地机器人问题

初始化:

- ✓ 动作值函数: 24×4 的二维数组,且初值都为0
- ✓ 学习率参数 α_0 : 0.05
- \checkmark γ : 0.8
- \checkmark ε -贪心策略: ε_0 =0.5

6.2.3.期望Sarsa算法 (4)

基于期望Sarsa算法的确定环境扫地机器人问题的Q值迭代过程

Q_k 状态	${\cal E}$	α	S_{10}	• • •	S_{15}	S_{16}	S_{20}	• • •
			•••	•••				•••
Q_{6001}	0.250	0.025	0.533 *.***; 0.440 0.699	•••	0.644 *.***; 1.013 (0.507)	0.879 0.683; 1.471 0.606	*.*** *.***; 0.919 0.723	•••
π_{6001}	0.350	0.035	0.117 *.***; 0.117 0.767	•••	0.117 *.***; 0.767 0.117	0.087 0.087; 0.738 0.087	*.*** *.***; 0.825 0.175	

$$Q(S_{15}, \text{Down}) = Q(S_{15}, \text{Down}) + \alpha_{6001} \times \left(R + \gamma \times \sum_{a \in A(10)} \left(\text{prob}[a] \times \left(Q(S_{10}, a)\right)\right) - Q(S_{15}, \text{Down})\right)$$

$$= Q(S_{15}, \text{Down}) + \alpha_{6000} \times \left(R + \gamma \times \left(\text{prob}[\text{Up}] \times Q(S_{10}, \text{Up}) + \text{prob}[\text{Down}] \times Q(S_{10}, \text{Down}) + \text{prob}[\text{Right}] \times Q(S_{10}, \text{Right})\right) - Q(S_{15}, \text{Down})\right)$$

$$= 0.506 + 0.035 \times \left(0 + 0.8 \times (0.117 \times 0.533 + 0.767 \times 0.699 + 0.117 \times 0.440) - 0.506\right)$$

$$\approx 0.507$$

20	21	22	23	24
15	16	17	18	19
10	11	12	13	14
5	6	7	8	9
10 †	1	2	3	4

目 录

- 6.1 时序差分预测
- 6.2 时序差分控制
- 6.2.1 Sarsa算法
- 6.2.2 Q-Learning算法
- 6.2.3 期望Sarsa算法
- 6.2.4 Double Q-leaning算法

6.2.4. Double Q-Learning算法(1)

- Sarsa和Q-Learning算法都是采用目标策略最大化的思想,即采用基于ε-贪心策略(Sarsa)或贪心策略(Q-Learning),产生最大化偏差。
- 最大化偏差不会导致算法失败,但是会让收敛速度变慢。

6.2.4. Double Q-Learning算法 (2)

```
Double Q-learning, for estimating Q_1 \approx Q_2 \approx q_*
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0
Initialize Q_1(s, a) and Q_2(s, a), for all s \in S^+, a \in A(s), such that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Choose A from S using the policy \varepsilon-greedy in Q_1 + Q_2
       Take action A, observe R, S'
       With 0.5 probability:
           Q_1(S,A) \leftarrow Q_1(S,A) + \alpha \left(R + \gamma Q_2(S', \operatorname{arg\,max}_a Q_1(S',a)) - Q_1(S,A)\right)
       else:
          Q_2(S, A) \leftarrow Q_2(S, A) + \alpha \left(R + \gamma Q_1(S', \operatorname{arg\,max}_a Q_2(S', a)) - Q_2(S, A)\right)
       S \leftarrow S'
   until S is terminal
```

6.2.4. Double Q-Learning算法 (3)

➤ 使用Double Q-Learning算法解决确定环境扫地机器人问题

初始化:

- ✓ 动作值函数: 24×4 的二维数组,且初值都为0
- ✓ 学习率参数 α_0 : 0.05
- \checkmark γ : 0.8
- ✓ ε -贪心策略: ε_0 =0.5

6.2.4. Double Q-Learning算法 (4)

基于Double Q-Lerning算法的确定环境扫地机器人问题的Q值迭代过程

Q_k $\#$	${\cal E}$	α	S_{10}	• • •	S ₁₅	S_{16}	S_{20}	•••
•••			• • •	• • •				•••
Q_{8640}^1			1.228 *.***; 0.973 0.800	•••	0.983 *.***; 1.536 (0.981)	1.228 1.229; 1.920 1.227	*.*** *.***; 1,229 1,229	
Q_{8640}^2	0.392	0.0392	1.229 *.***; 1.100 0.800	:	0.983 *.***; 1.536 0.981	1,229 1,229; 1,920 1,225	*.*** *.***; 1.229 1.229	
π_{6001}			0.739 0.000; 0.131 0.131		0.131 0.000; 0.739 0.131	0.098 0.098; 0.706 0.098	0.000 0.000; 0.196 0.804	

-0.981+0.0392 × (0+0.8 × 1.229-0.98

≈ 0.981

20	21	22	23	24
15	16	17	18	19
10	11	12	13	14
5	6	7	8	9
10 †	1	2	3	4

习题 (1)

- 1. 在TD控制算法中,Sarsa和Q-Learning分别是同策略算法还是异策略算法,为什么?
- 2. 举例说明在什么情况下使用TD算法通常优于MC算法和DP算法。
- 3. 在TD算法中,步长会影响收敛速度和收敛效果吗?请简述理由。
- 4. 从估计值、自举和采样等方面,对DP、MC和TD三种方法进行对比,并说明其中哪些方法是有偏估计,哪些是无偏估计。

习题 (2)

5. (编程)通过TD算法计算:第3章习题2(图3.12)扫地机器人在折扣率 $\gamma = 0.8$ 、初始策略为等概率策略的情况下,分别利用Sarsa算法和Q-Learning算法,计算每个状态的最优策略。

The End