Zhang Caiqi

18085481D

1.

a.

First, we assume that S_k is the result at the end of the kth iteration.

$$S_k = x + (x+1) + \cdots + (x+k)$$

And if S_{k-1} is correct (2 \leq k \leq y-x), S_k is correct, because of the two statement within the while() loop.

Because of the same reason, we can say that if S_1 is correct, S_2 is correct and S_k is correct. Let us see whether S_1 and S_2 are correct:

In the first loop, nextNumber is (x+1), result is x + (x+1). $\rightarrow S_1$ is correct. In the second loop, nextNumber is (x+2), result is $x + (x+1) + (x+2) \rightarrow S_2$ is correct.

So, in the kth loop, nextNumber is (x+k), result is $x + (x+1) + \cdots + (x+k)$.

(loop invariance)

We can know that S_1 and S_2 are correct. Therefore, S_k is correct.

b.

We already known that $S_k = x + (x+1) + \cdots + (x+k)$.

So we can know that $S_n = x + (x+1) + \cdots + (x+n)$. n=y-x

We can know that the final result is correct because Sk is correct.

Thus, the function gives the correct result, which is $sum(n) = x + (x+1) + \cdots + y$

2.

a.

	0	1
0	00	01
1	01	10

b.

PROC1(a, b, c)

Inputs: a, b, c, three binary digits.

Output: de, a two-digit number which is the result of a + b + c. If a + b + c<10, d=0.

```
uv \leftarrow PROCO(a, b)

u_1v_1 \leftarrow PROCO(c, v)

if u=u_1=0,

d \leftarrow 0 and e \leftarrow v_1

else

d \leftarrow 1 and e \leftarrow v_1

return de
```

Explanation:

First, we should define a new function to give us the correct answer of natural numbers' factorial.

Next, a is 0 and e is 0. We enter the loop and do the loop until we add 1/fun(k) as the last item

Then we end the loop and get the value of e for $n = 0, 1, 2, \dots, k$, which is an estimate of \boldsymbol{e} .