Chapitre 5 : Fonctions dérivées

Cours 2 : Opérations sur les fonctions dérivées

R. KHODJAOUI

Lycée J.J. HENNER - Première D

Samedi 16 novembre 2019

Sommaire

- Dérivée d'une somme
- 2 Dérivée d'une produit par une constante
- Dérivée d'une produit
- 4 Dérivée d'un quotient
- **5** Dérivée de $x \mapsto g(ax + b)$

Dérivée d'une somme

Propriété

Soient u et v deux fonctions dérivables sur un intervalle I et si f=u+v Alors :

Dérivée d'une somme

Propriété

Soient u et v deux fonctions dérivables sur un intervalle I et si f=u+v Alors :

- $\ \, extstyle \triangle$ La fonction f est dérivable sur I.
- $\not = f' = u' + v'$, autrement dit, pour tout x de I, f'(x) = u'(x) + v'(x).

Exemple

▶ Les fonction $u: x \mapsto x^2$ et $v: x \mapsto x^3$ sont dérivables sur \mathbb{R} donc la fonction $f: x \mapsto x^3 + x^2$ est dérivable sur \mathbb{R} et pour tout réel $x: f'(x) = 3x^2 + 2x$.

Dérivée d'une somme

Propriété

Soient u et v deux fonctions dérivables sur un intervalle I et si f=u+v Alors :

- $\not = f' = u' + v'$, autrement dit, pour tout x de I, f'(x) = u'(x) + v'(x).

Exemple

▶ Les fonction $u: x \mapsto x^2$ et $v: x \mapsto x^3$ sont dérivables sur \mathbb{R} donc la fonction $f: x \mapsto x^3 + x^2$ est dérivable sur \mathbb{R} et pour tout réel $x: f'(x) = 3x^2 + 2x$.

Exercice

On considère la fonction $f: x \mapsto \sqrt{x} + 5$ définie sur \mathbb{R} .

- \blacksquare Déterminer en justifiant l'ensemble de dérivabilité de f.
- 2 Calculer la dérivée de f.

Dérivée d'une produit par une constante

Propriété

Soient u une fonction dérivable sur un intervalle I et λ une constante réelle. Si $f=\lambda u$ Alors :

 $\ \ \, \ \ \, \ \ \, \ \, \ \,$ La fonction f est dérivable sur I.

 $\not = \lambda u'$, autrement dit, pour tout x de I, $f'(x) = \lambda u'(x)$.

Dérivée d'une produit par une constante

Propriété

Soient u une fonction dérivable sur un intervalle I et λ une constante réelle. Si $f = \lambda u$ Alors :

- $\not = f' = \lambda u'$, autrement dit, pour tout x de I, $f'(x) = \lambda u'(x)$.

Exemple

Soit $f: x \mapsto 5x^2$.

- ➤ La fonction $u: x \mapsto x^2$ est dérivable sur \mathbb{R} donc la fonction $f: x \mapsto 5x^2$ est dérivable sur \mathbb{R} .
- ➤ Pour tout réel $x: f'(x) = 5 \times 2x = 10x$

Dérivée d'une produit par une constante

Propriété

Soient u une fonction dérivable sur un intervalle I et λ une constante réelle. Si $f=\lambda u$ Alors :

Exemple

Soit $f: x \mapsto 5x^2$.

- ▶ La fonction $u: x \mapsto x^2$ est dérivable sur \mathbb{R} donc la fonction $f: x \mapsto 5x^2$ est dérivable sur \mathbb{R} .
- ➤ Pour tout réel $x: f'(x) = 5 \times 2x = 10x$

Exercice

On considère la fonction $f: x \mapsto \frac{5}{x} + 1$ définie sur \mathbb{R}^* .

- \blacksquare Déterminer en justifiant l'ensemble de dérivabilité de f.
- $\mathbf{2}$ Calculer la dérivée de f.

Dérivée d'une produit

Propriété

Soient u et v deux fonctions dérivables sur un intervalle I et si f = uv Alors :

- $\not L$ f' = u'v + uv', autrement dit, pour tout x de I, f'(x) = u'(x)v(x) + u(x)v'(x).

Dérivée d'une produit

Exemple

Soit $f: x \mapsto x\sqrt{x}$ définie sur \mathbb{R}_+

Alors f = uv avec u(x) = x et $v(x) = \sqrt{x}$. Ces deux fonctions sont dérivables sur $]0; +\infty[$ donc f est dérivable sur $]0; +\infty[$.

Calculons sa dérivée f':

$$u'(x) = 1$$
 et $v'(x) = \frac{1}{2\sqrt{x}}$. Ainsi, pour tout $x \in]0; +\infty[$

$$f'(x) = u'(x)v(x) + u(x)v'(x)$$

$$= 1 \times \sqrt{x} + x \times \frac{1}{2\sqrt{x}}$$

$$= \sqrt{x} + \frac{x}{2\sqrt{x}}$$

$$= \sqrt{x} + \frac{\sqrt{x} \times \sqrt{x}}{2\sqrt{x}}$$

$$= \frac{3}{2}\sqrt{x}.$$

Chapitre 5

Dérivée d'une produit

Exercice

On considère la fonction $f: x \mapsto (1+x^2)(x^3-x+2)$ définie sur \mathbb{R} .

- **1** Déterminer en justifiant l'ensemble de dérivabilité de f.

Dérivée d'un quotient

Propriété

Soient u et v deux fonctions dérivables sur un intervalle I telles que $v(x) \neq 0$ pour tout x de I. Alors,

$$\not = f' = \frac{u'v - uv'}{v^2}$$
, autrement dit, pour tout x de I,
$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}.$$

Dérivée d'un quotient

Exemple

Soit
$$f: x \mapsto \frac{2x^2 - 5x + 1}{x - 1}$$
 définie sur $\mathbb{R} \setminus \{1\}$.
Alors $f = \frac{u}{v}$ avec $u(x) = 2x^2 - 5x + 1$ et $v(x) = x - 1$.

Alors
$$f = \frac{u}{v}$$
 avec $u(x) = 2x^2 - 5x + 1$ et $v(x) = x - 1$

Ces deux fonctions sont dérivables sur $\mathbb{R}\setminus\{1\}$ et v ne s'annule pas sur cet ensemble donc f est dérivable sur $\mathbb{R}\setminus\{1\}$.

Calculons sa dérivée f':

$$u'(x) = 4x - 5$$
 et $v'(x) = 1$. Ainsi, pour tout $x \in \mathbb{R} \setminus \{-1\}$:

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$$

$$= \frac{(4x - 5)(x - 1) - (2x^2 - 5x + 1) \times 1}{(x - 1)^2}$$

$$= \frac{4x^2 - 4x - 5x + 5 - 2x^2 + 5x - 1}{(x - 1)^2}$$

$$= \frac{2x^2 - 4x + 4}{(x - 1)^2}$$

Dérivée d'un quotient

Exercice

On considère la fonction $f: x \mapsto \frac{x+5}{x^2+4x-5}$.

- \blacksquare Déterminer en justifiant l'ensemble de dérivabilité de f.

Dérivée de $x \mapsto g(ax + b)$

Propriété

Soit g est une fonction dérivable sur un intervalle J.

Soient a et b deux nombres réels tels que quel que soit $x \in I, ax + b \in J$, alors :

Dérivée de $x \mapsto g(ax + b)$

Propriété

Soit g est une fonction dérivable sur un intervalle J.

Soient a et b deux nombres réels tels que quel que soit $x \in I, ax + b \in J$, alors :

Exemple

On considère la fonction f définie sur $[2; +\infty[$ par $f(x) = \sqrt{2x-4}.$

On voit que f(x) = g(2x - 4) où g est la fonction racine carrée dérivable sur $J = |0; +\infty[$.

$$2x-4 \in J \Leftrightarrow 2x-4 > 0 \Leftrightarrow x > 2$$
, c'est-à-dire $x \in]2; +\infty[$.

Ainsi, f est dérivable sur $I =]2; +\infty[$ et , pour tout

$$x \in I, f'(x) = 2 \times \frac{1}{2\sqrt{2x-4}} = \frac{1}{\sqrt{2x-4}}$$

Dérivée de $x \mapsto g(ax + b)$

Propriété

Soit g est une fonction dérivable sur un intervalle J.

Soient a et b deux nombres réels tels que quel que soit $x \in I, ax + b \in J,$ alors :

${\bf Exemple}$

On considère la fonction f définie sur $[2; +\infty[$ par $f(x) = \sqrt{2x-4}.$

On voit que f(x) = g(2x - 4) où g est la fonction racine carrée dérivable sur J =]0; $+\infty[$.

$$2x - 4 \in J \Leftrightarrow 2x - 4 > 0 \Leftrightarrow x > 2$$
, c'est-à-dire $x \in]2; +\infty[$.

Ainsi, f est dérivable sur $I =]2\,; +\infty[$ et , pour tout

$$x \in I, f'(x) = 2 \times \frac{1}{2\sqrt{2x-4}} = \frac{1}{\sqrt{2x-4}}$$

Exercice

Soit $f: x \mapsto \sqrt{x+2}$. Prouver que f est dérivable sur]-2; $+\infty[$ et calculer la dérivée de f.

FIN

Revenir au début

