

MINISTÉRIO DA EDUCAÇÃO EDUCAÇÃO, CIÊNCIA E TECNOLOGIA INSTITUTO FEDERAL SUL-RIO-GRANDENSE SUL-RIO-GRANDENSE Campus Camaquã CAMPUS CAMAQUÃ

PLANO DE ENSINO

1. DADOS DE IDENTIFICAÇÃO				
NOME DO CURSO: TADS	TURMA: 52615 - SUP.0205			
TURNO: Noturno	REGIME: Semestral			
PROFESSOR: Vinícius Alves Hax				
DISCIPLINA: Sistemas Distribuídos				
Vigência: Outubro de 2024 a fevereiro de 2025	Período Letivo: 2024/2			
Carga Horária Semanal: 4 h/a	Carga Horária Total: 80 horas			

Ementa: Estudo dos conceitos e principais problemas dos sistemas distribuídos e computação paralela. Demonstração da tecnologia de comunicação em sistemas distribuídos, com invocação de método remoto e infraestrutura para objetos distribuídos.

2. OBJETIVOS

2.1 Objetivos gerais

Compreender os fundamentos de sistemas distribuídos: Proporcionar aos estudantes uma visão abrangente dos conceitos, características e desafios inerentes aos sistemas distribuídos e à computação paralela. Desenvolver competências técnicas em comunicação e infraestrutura distribuída: Capacitar os alunos a projetar, implementar e gerenciar soluções baseadas em sistemas distribuídos, com foco em tecnologias modernas. Fomentar a capacidade de resolver problemas complexos: Desenvolver habilidades analíticas para identificar e resolver problemas comuns em sistemas distribuídos, como concorrência, falhas e escalabilidade.

2.2 Objetivos Específicos:

- 1. Conceituar sistemas distribuídos e paralelos: Apresentar os conceitos fundamentais, incluindo a definição, características e aplicações.
- 2. Analisar problemas em sistemas distribuídos: Identificar e explorar os principais desafios, como sincronização, consistência, tolerância a falhas e segurança.
- 3. Estudar tecnologias de comunicação: Demonstrar como os sistemas distribuídos utilizam mecanismos de comunicação modernos. Abordar a implementação e o uso de plataformas para objetos distribuídos, como CORBA, RMI e gRPC.
- 4. Introduzir ferramentas práticas: Proporcionar experiências práticas em frameworks e tecnologias para computação distribuída, como Apache Kafka, Hadoop ou Kubernetes.
- 5. Projetar e implementar soluções distribuídas: Estudar metodologias que permitam desenvolver aplicações práticas que utilizem os conceitos de comunicação e infraestrutura abordados no curso.
- 6. Fomentar boas práticas: Ensinar práticas como design para escalabilidade, manutenibilidade e tolerância a falhas.
- 7. Contextualizar sistemas distribuídos na indústria: Mostrar exemplos reais de aplicação em ambientes corporativos, como microserviços e computação em nuvem.

3. CONTEÚDOS

UNIDADE I – Conceitos Fundamentais de Sistemas Distribuídos

- 1.1 Conceitos básicos
- 1.2 Definição
- 1.3 Modelos
- 1.4 Vantagens e desvantagens

UNIDADE II - Comunicação nos Sistemas Distribuídos

- 2.1 Comunicação cliente-servidor
- 2.2 Comunicações em grupo
- 2.3 Chamadas de procedimento remoto

UNIDADE III - Processos e Processadores

- 3.1 Linhas de controle
- 3.2 Alocação de processadores
- 3.3 Modelos de sistema

UNIDADE IV - Sincronização em Sistemas Distribuídos

- 4.1 Sincronização de relógios
- 4.2 Exclusão mútua
- 4.3 Algoritmos eletivos
- 4.4 Transações atômicas
- 4.5 Deadlock em sistemas distribuídos

4. Metodologia:

A disciplina pode começar com aulas expositivas e dialogadas, apresentando os conceitos teóricos fundamentais, como arquitetura de sistemas distribuídos, comunicação e consistência. Essas aulas utilizam recursos visuais, como slides e quadros digitais, além de materiais audiovisuais para enriquecer o aprendizado. Durante as aulas, é promovida a interação dos alunos por meio de perguntas e discussões, com o objetivo de consolidar a compreensão dos temas abordados.

Para conectar teoria à prática, a metodologia inclui estudos de caso e exemplos reais de sistemas distribuídos aplicados na indústria, como Netflix, Google e aplicações baseadas em blockchain. Essas análises permitem que os alunos compreendam os desafios enfrentados e as soluções implementadas, promovendo discussões em sala de aula sobre a aplicabilidade dos conceitos estudados em situações reais.

Também serão realizadas atividades práticas permitindo que os alunos implementem e experimentem os conceitos discutidos em aula. Nos laboratórios, os estudantes irão configurar ambientes distribuídos utilizando ferramentas como Docker e Kubernetes; desenvolver sistemas com tecnologias como, por exemplo, RPC, RMI ou gRPC. Sempre que possível essas atividades envolverão de plataformas de computação em nuvem, como AWS e Google Cloud.

Será incentivado o aprendizado autônomo e o uso de recursos adicionais, como livros, artigos e vídeos, para aprofundamento. Plataformas como GitHub ou Stack Overflow são sugeridas para colaboração e resolução de dúvidas. Assim, a disciplina busca integrar teoria, prática e aplicação real, promovendo uma formação sólida e relevante para o mercado.

5. AVALIAÇÃO

Na primeira etapa serão desenvolvidos dois trabalhos de ordem prática, um deles individual e outro em grupo. Na segunda etapa haverá duas avaliações: uma pesquisa sobre um tema relacionado à disciplina com posterior apresentação para o restante da turma; a outra avaliação consistirá em um relatório buscando resumir os conhecimentos aprendidos na disciplina com a experiência profissional e do TCC dos alunos.

Cada uma das avaliações terá peso 5,0.

A reavaliação aos alunos que não demonstrarem atingir as competências mínimas será feita na forma de uma prova escrita ao final do período letivo.

6. RELAÇÕES DAS DISCIPLINAS COM AS DEMAIS ÁREAS

A disciplina de Sistemas Distribuídos desempenha um papel integrador no curso de Análise e Desenvolvimento de Sistemas, estabelecendo conexões relevantes com diversas outras disciplinas, devido ao seu foco em soluções complexas e modernas para sistemas escaláveis e eficientes.

7. OBSERVAÇÕES

Sem observações.

8. CRONOGRAMA DE CONTEÚDOS E ATIVIDADES

Semana	Conteúdos/Atividades	Quantidade de períodos
	Atividades síncronas	
03/10	Introdução aos sistemas distribuídos	4
10/10	Git: exemplo de sistema distribuído	4
17/10	Tipos de sistemas distribuídos	4
24/10	Tipos de sistemas distribuídos (2)	4
31/10	Arquiteturas de sistemas distribuídos	4
07/11	Arquiteturas de sistemas distribuídos (2)	4
14/11	Comunicação nos sistemas distribuídos	4
21/11	Comunicação nos sistemas distribuídos (2)	4
28/11	Linhas de controle	4
05/12	Alocação de processadores	4
12/12	Modelos de sistema	4
19/12	Avaliação	4
30/01/25	Sincronização de relógios / Exclusão mútua	4
06/02/25	Algoritmos eletivos / Transações atômicas	4
13/02/25	Deadlock em sistemas distribuídos	4
20/02/25	Avaliação	4
27/02/25	Reavaliação	4
	Total de períodos síncronos	68
	Atividades assíncronas	
14/11	Desenvolvimento de atividade avaliativa #1	4
19/12	Desenvolvimento de atividade avaliativa #2	4
08/02/25	Desenvolvimento de atividade avaliativa #3	4
	Total de períodos assíncronos	12
	Total de períodos	80
	Total de horas aula (Períodos x 0,75)	60 h.a.

9. Referências Bibliográficas Básicas

MACHADO, Francis Berenger; MAIA, Luiz Paulo. Arquitetura de sistemas operacionais. 4. ed. Rio de Janeiro: LTC, 2007. 308 p.

TANENBAUM, Andrew S. Sistemas operacionais modernos. 3. ed. São Paulo: Pearson Education, 2010. 653 p.

TANENBAUM, Andrew S.; Steen, Maarten Van. Sistemas Distribuídos: princípios e paradigmas. 2. ed. São Paulo: Pearson, 2007.

TANENBAUM, Andrew S.; WOODHULL, Albert S. Sistemas operacionais: projeto e implementação. 3. ed. Porto Alegre: Bookman, 2008. 990 p.

Bibliografia complementar

OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas operacionais. 4. ed. Porto Alegre: Bookman, 2010. 374 p. SILBERSCHATZ, Abraham; GALVIN, Peter Baer; GAGNE, Greg. Fundamentos de sistemas operacionais. 8. ed. Rio de Janeiro, RJ: LTC, 2010. 515 p. SIQUEIRA, Luciano Antônio. Máquinas virtuais com Virtual Box. 2. ed. São Paulo: Linux New Media do Brasil, 2011. 103 p. TANENBAUM, Andrew S.; Herbert. C: completo e total. 3. ed. São Paulo:

Pearson Makron Books, 1997. 827 p.

-	Assinatura Professor (a Data: 28/03/202
	Data. 20/03/202
-	Assinatura Supervisor Escola
	Assinatura Supervisor Escora
	Data:/

Observações da Direção de Ensino e/ ou Supervisão:					