Physics 231

Lecture 2: Resistor Circuits

Eric Landahl

DePaul University Physics Department

April 6, 2025

Table of Contents

Single Resistor Circuit

Measuring Voltage Measuring Current Measuring Voltage and Current

Equivalent Resistor Circuits

Resistors in Series Resistors in Parallel Loaded Voltage Divider

Equivalent Circuits

Voltage Divider

Physics 231

Lecture 2: Resistor Circuits

Eric Landahl

DePaul University Physics Department

April 6, 2025

Single Resistor Circuit:

$$V_{in} \circ \longrightarrow R_1$$

$$V = IR \tag{1}$$

$$P = IV (2)$$

Single Resistor Circuit: Measuring Voltage

Single Resistor Circuit: Measuring Current

Single Resistor Circuit: Measuring Voltage and Current

Equivalent Resistor Circuits: Resistors in Series

Equivalent Resistor Circuits: Resistors in Series

1. Convert a more complicated arrangement or resistors into a simpler arrangement for easier calculations.

$$R_{eq} = R_1 + R_2 \tag{3}$$

$$I = \frac{V_{in}}{R_{eq}} \tag{4}$$

Equivalent Resistor Circuits: Resistors in Series

2. Apply these results to the more complex configuration.

$$V_1 = IR_1 = \left(\frac{V_{in}}{R_{eq}}\right)R_1 = \frac{R_1}{R_1 + R_2}V_{in}$$
 (5)

$$V_2 = IR_2 = \left(\frac{V_{in}}{R_{eq}}\right)R_2 = \frac{R_2}{R_1 + R_2}V_{in} \tag{6}$$

The voltage is the same across both resistors, but each has a different current.

Convert the parallel resistor configuration into a single equivalent resistor.

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \tag{7}$$

Calculate the current through the entire circuit.

$$I = \frac{V_{in}}{R_{eq}} = V_{in} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \tag{8}$$

Use the fact that all voltages are the same to calculate the current through each resistor.

$$V_{in} = I_1 R_1 = I_2 R_2 = I R_{eq} (9)$$

and therefore

$$I_1 = I \frac{R_{eq}}{R_1} = \frac{V_1}{R_1}, \quad I_2 = I \frac{R_{eq}}{R_2} = \frac{V_2}{R_2}$$
 (10)

Verify that the currents add up: $I = I_1 + I_2$.

Equivalent Resistor Circuits: Loaded Voltage Divider

Goal: Determine current and voltage (and power dissipation) through each resistor with and without the load resistor connected.

Equivalent Resistor Circuits: Loaded Voltage Divider

Case I: Unloaded (refer back to Resistors in Series)

Equivalent Resistor Circuits: Loaded Voltage Divider

Case II: Loaded (refer back to Resistors in Parallel, *then* Resistors in Series)

Equivalent Circuits: Voltage Divider

Replace the entire source with a "black box" with an equivalent voltage and an equivalent resistance in series.

Equivalent Circuits: Voltage Divider

The "Thevenin Equivalent" Circuit is defined to be the one where the output voltage $V_{out} = \frac{V_{th}}{2}$ when connected to a load $R_{Load} = R_{th}$. Every power supply has a V_{th} and R_{th} .

Equivalent Circuits: Voltage Divider

Questions:

- 1. What is the V_{th} and R_{th} for the simple voltage divider power supply?
- 2. What is R_{th} for a "good supply"?
- 3. What is R_{Load} for a "good load"?
- 4. What is a disadvantage of a "good supply" made with simple voltage divider?