Einsatzziele & Rahmenbedingungen	Anforderungen	
Raum K004a als Umgebung	– Die Anpassung der Anlage an K004a.	
Minimaler baulicher Aufwand	 Die Nutzung bestehender Heizkörper anstatt einer Klimatisierung des Raumes. 	
Minimaler finanzieller Aufwand	 Die Beschränkung auf eine minimale Funktionalität und Anzahl der einzelnen Komponenten. 	
Modellprädiktive Regelung mit JModelica.org und CasADi	 Die Modellbildung erfolgt in Modelica. Die Ansteuerung und Kommunikation innerhalb der Anlage soll in Python stattfinden. 	
Einsatz der Modbus Kommunikationstechnologie	 Die Kommunikation der Anlage erfolgt gemäß den Modbus RTU und TCP Protokollspezifikationen. über Modbus TCP soll die Ansteuerung der Anlage 	
Flexible Ansteuerung der Anlage	innerhalb des gesamten lokalen Netzwerks möglich sein.	
Einarbeitung in die Thematiken: – Modellbildung,		
- Kommunikation technischer Systeme,	 Komplexität ist notwendig, darf jedoch nicht zu hoch sein. 	
- und Modellprädiktive Regelung.	 Es sind möglichst wenige thematische überschneidungen erwünscht, daher wird eine klare Struktur 	
Know-how für Kommunikation technischer Systeme	mit möglichst scharfer Trennung benötigt.	
Vergleich von Ergebnissen durch: - die Variation von Steuerungsparametern, - den Einsatz verschiedener Regelungsmethodiken, - und den Einsatz verschiedener Algorithmen.	 Die Reaktion des Systems muss schnell sowie günstig und einfach zu erfassen sein. Der Einsatz von robusten und einfachen Bauteile. Nutzung eines wartungsarmen Systems. Eine einfache, modulare Erweiterbarkeit des Systems für weitere Schritte muss gegeben sein. 	
Hohe Funktionalität und Robustheit		
Erweiterbarkeit der Anlage		

Tab. 3.1: Umsetzung der Ziele in Anforderungen der Anlage

Die grundlegendste Anforderung an die Planung, ist die Anpassung an die Lage und die Gegebenheiten des Raumes K004a, welche in Abb. 3.1 skizziert sind. Der Raum befindet auf dem Campus der Hochschule Karlsruhe, an der südwestlichen Ecke des K Gebäudes im Erdgeschoss. Die südliche und westliche Wand teilt sich der Raum mit der Außenumgebung und wird im Folgenden als Außenwand bezeichnet. Die östliche und nördliche Wand sowie die Decke und der Boden des Raumes grenzen an andere Räume im K Gebäude. Außerdem ist in der südlichen Außenwand eine Fensterfront mit

Abb. 3.1: Raumskizze K004A vom K Gebäude der Hochschule Karlsruhe – Technik und Wirtschaft

Jalousien zur Verschattung eingebaut und direkt darunter ein Heizkörper installiert.

Durch die Raumwahl werden bereits zwei wichtige Anforderungen erfüllt, denn durch die Fensterfront kann der Einfluss der Sonneneinstrahlung auf die Raumtemperatur untersucht werden und der bestehende Heizkörper kann in die Anlage integriert werden, um einen minimalen baulichen Aufwand sicherzustellen. Damit wird zunächst eine Klimatisierung zur Temperaturregelung des Raumes ausgeschlossen, weil diese mit einem erheblichen finanziellen und baulichen Aufwand verbunden ist. Um der Forderung nach einer Erweiterbarkeit nachzukommen, wird jedoch die Möglichkeit der Nachrüstung einer Klimatisierung und der Ansteuerung der Jalousien bei der Planung explizit berücksichtigt.

Durch die Nutzung des Raumes als Büro für wissenschaftliche Mitarbeiter befinden sich in K004a sechs Computerarbeitsplätze sowie das typische Büro-Mobiliar, wie in Abb. 3.1 abgebildet. Damit wird auch die Anforderung einer anwendungsnahen Umgebung erfüllt und durch die Menschen und Rechner sind verschiedene Störgrößen zu berücksichtigen.

Eine weitere, sehr einschränkende Vorgabe ist es, dass die Modellprädiktive Regelung unter Zuhilfenahme der Plattform JMODELICA.ORG erfolgen soll. JMODELICA.ORG ist eine kostenlose Open-Source Plattform zur Analyse, Simulation und Optimierung von komplexen, dynamischen Systemen, die auf der Modellierungssprache Modelica basiert. Aufbauend auf den mathematischen Modellen physikalischer Systeme in Modelica, lassen sich, dank der Unterstützung der Spracherweiterung Optimica, Optimierungsprobleme durch einfache Konstrukte das Optimierungsintervall, die Kostenfunktion

und die Nebenbedingungen einfach formulieren. JModelica.org wird über eine Python Nutzerschnittstelle genutzt und besitzt eine eigene Klasse für die Modellprädiktive Regelung, auch wenn diese bisher noch experimenteller Art ist [AB, 2015, S. 1f.]. Der Compiler kann die Modelle und Optimierungsprobleme in verschiedene Formate übersetzen. Zum einen in direkt ausführbaren C Code, der die Modellgleichungen und Optimierungsparameter enthält, und ein XML Code, der die Meta-Daten des Modells enthält. Zum anderen kann das Modell aber auch in ein *OptimizationProblem* Objekt transferiert werden, welches eine symbolische Repräsentation des Optimierungsproblems ist [AB, 2015, S. 12ff.].

Die OptimizationProblem Objekte können anschließend direkt mit den Optimierungswerkzeugen von Casadi bearbeitet und damit zur Lösung des Optimierungsproblems eingesetzt werden. Casadi ist ein Open-Source Softwaretool, das einzelne Bausteine für die numerische Optimierung im Allgemeinen und für die Optimalsteuerung im Speziellen zur Verfügung stellt. Es eignet sich besonders für die gradientenbasierte, numerische Optimierung von nichtlinearen Problemen, aufgrund seiner effizienten Ableitungserzeugung durch die Algorithmische Differentiation und und der Möglichkeit zur Integration von gewöhnlichen Differenzialgleichungen und differential-algebraischer Gleichungen. Die Interaktion mit dem Nutzer soll aus Stabilitätsgründen über die Python Schnittstelle erfolgen [Joel Andersson, 2015, S. 5f.]. Daraus resultieren weitere Anforderungen an das Modell, welche vor Beginn der Modellbildung im Kapitel 4 erörtert werden.

Weil die vorgegebene Softwareplattform zur Modellprädiktiven Regelung und deren Komponenten eine allesamt eine Schnittstelle für Python besitzen, soll die Ansteuerung und Kommunikation der gesamten Anlage in Python erfolgen. Python eignet sich hervorragend für diese Aufgabe, da es frei erhältlich und modular aufgebaut ist. Durch die Open-Source Lizenzierung ist es frei nutzbar und bietet sowohl durch die Standardbibliothek als auch durch eine Vielzahl an nutzerentwickelten Bibliotheken, die auch als Pakete bezeichnet werden, unzählige Anwendungsmöglichkeiten, zum Beispiel das pysolar Paket, das im Rahmen der Modellbildung eine Umrechnung der gemessenen Solarstrahlung in die wirkende am Fenster ermöglicht [van Rossum u. the Python development team, 2016, S. 2f.].

Der Vorgabe der Modbus Kommunikationsprotokolle für die Kommunikation ist von ebenfalls von großer Relevanz, da die komplementäre Forschungsanlage zur solaren Klimatisierung dasselbe Kommunikationsprotokoll unterstützt und durch die gewonnenen Erkenntnisse eine beschleunigte Inbetriebnahme erfolgen kann. Um das Know-how breit zu fächern, sollen die beiden Modbus RTU und Modbus TCP Protokolle Anwendung finden. Außerdem soll das Kommunikationsnetzwerk aus mehreren Subnetzwerken aufgebaut sein, die durch verschiedene elektrische und mechanische Schnittstellen implementiert werden. Für die Kommunikation über Modbus werden in den Python Paketen pymodbus, minimalmodbus und modbus-tk bereits Bausteine zur Verfügung gestellt.

Die Anlage sollte möglichst wenig Komplexität aufweisen, damit die Einarbeitung in die einzelnen Themengebiete Modellbildung, Kommunikation von technischen Systemen und Modellprädiktive Regelung vereinfacht wird. Dies soll durch eine klare Abgrenzung der verschiedenen Anlagenteile und deren Funktionen sowie durch die Strukturierung und den Aufbau der Anlage erreicht werden. Im Gegensatz dazu steht die Forderung nach dem Aufbau von Know-how auf dem Gebiet der Kommunikation technischer Systeme. Deshalb muss ein Kompromiss zwischen Verständlichkeit und Komplexität gefunden werden, um beiden Anforderungen gerecht zu werden. Dieser besteht darin, dass die Kommunikation nur über Modbus stattfindet, jedoch unter Nutzung von verschiedenen Hard- und Software-Schnittstellen, um einen gewissen Grad an Komplexität zu erreichen. Zudem können dadurch bereits Erfahrungen gesammelt werden, die für die Inbetriebnahme der solaren Klimatisierungsanlage sehr nützlich sind.

Um das Vergleichen von Ergebnissen zu ermöglichen, soll das System auf eine änderung der Steuergrößen schnell¹⁰ reagieren und die Reaktionen sollen möglichst einfach messbar sein. Konkret lässt sich daraus ableiten, dass die Aktorik auf Steuersignale möglichst ohne zeitliche Verzögerung agieren sowie die gesamte Anlage einen möglichst direkten Einfluss auf die Raumtemperatur haben soll. Die Messung der Raumtemperatur kann durch einfache Temperatursensoren erfolgen die ohne großen technischen und monetären Aufwand auskommen und damit die Anforderung erfüllen.

Es soll außerdem eine hohe Funktionalität erreicht werden, um die wissenschaftliche Arbeit – durch den Ausschluss von Fehlerquellen außerhalb der Forschung – zu erleichtern. Zusätzlich ist eine Robustheit gegenüber Bedienungsfehlern und Beschädigungen erforderlich, da durch den Test- und Entwicklungsauftrag der Anlage hierzu eine erhöhte Gefahr besteht. Dies lässt sich durch wartungsarme, robuste und einfache Bauteile sowie den Aufbau der Anlage berücksichtigen, was wiederum im Einklang mit der Forderung nach einer minimalen finanziellen Belastung steht.

Wie an passender Stelle bereits erwähnt, stellt Python Schnittstellen und Funktionalitäten für die Aufgaben der Anlage zur Verfügung. Darüberhinaus bietet sich Python, durch die weitgehende Unabhängigkeit vom Betriebssystem, als zentrales Steuerungstool an, um den Controller in einem nächsten Schritt durch einen vergleichsweise günstigen Einplatinenrechner zu realisieren, wie zum Beispiel ein Raspberry Pi. Daher basiert die folgende Planung und Auslegung der Anlage auf einer zentralen Steuerung in Python.

¹⁰ Im Kontrast zu den langsamen Reaktionen der solaren Klimatisierungsanlage, welche im oberen Minutenbereich liegen, bedeutet schnell in diesem Kontext im unteren Minutenbereich.

3.2 Ziel und die Idee der Anlage

3.2.1 Aufgabe der Anlage

Das Ziel ist es, die Temperatur innerhalb eines Raumes mit Hilfe eines technischen Systems zu regeln, welches den zuvor ausgeführten Anforderungen genügt.

Dazu gilt es zunächst, die Raumtemperatur über einfache Raumtemperaturfühler zu erfassen. Ist die Raumtemperatur bekannt so soll diese mit Hilfe eines Heizkörpers beeinflusst werden, damit sie einer vorgegebener Temperaturkurve folgen kann.

Die Heizleistung wiederum hängt von weiteren Eigenschaften des Heizkörpers ab und wird über das Einlassventil gesteuert. Sie wird von einem Wärmemengenzähler gemessen und indirekt über den Massenstrom und die Temperaturen des Heizwassers am Ein- und Auslass bestimmt. Dazu werden ein Durchflusssensor sowie zwei Temperatursensoren an den jeweiligen Enden des Heizkörpers eingesetzt. Um die Heizleistung zu steuern, muss also der Massenstrom gemessen und gesteuert werden sowie beide Temperaturen am Heizkörper bekannt sein. über das Ventil kann der Massenstrom mit Hilfe eines Stellantriebs eingestellt werden. Zusammen mit der Temperatur am Einlass und den Eigenschaften des Heizkörpers, lässt sich die Temperatur am Auslass und damit die aktuelle Heizleistung bestimmen. Dadurch wird eine gezielte Beeinflussung der Raumtemperatur ermöglicht.

Nachdem die Raumtemperatur bekannt ist und eine Möglichkeit für deren Manipulation besteht, wird weiterhin eine intelligentee Steuerung benötigt. Dieser soll den Heizkörper möglichst ressourcenschonend einsetzen, um das Ziel der Temperaturregelung zu erreichen.

3.2.2 Idee der Anlage

Diese umfassende Aufgabe wird von einer Anlage übernommen, die sich dazu grob in drei Teile gliedern lässt. Den größten Umfang besitzt die Sensorik, die zur quantitativen Erfassung der Zuständsgrößen dient. Die aktive Beeinflussung dieser Größen erfolgt durch die Aktorik. Die Regelungsaufgabe wird von einem Controller durch seine interne Logik und der Koordination des Zusammenspiels zwischen Sensorik und Aktorik gelöst.

Um den Anforderungen gerecht zu werden, muss der logische Controller als zentrale Komponente der Anlage Python unterstützen und die gesamten Steuerungs- und Kommunikationsaufgaben übernehmen. Weiterhin müssen im Rahmen der Modellprädiktiven Regelung in regelmäßigen Zeitabständen wiederholt Optimalsteuerungsprobleme gelöst werden, weshalb eine ausreichende große Rechenkapazität benötigt wird. Um diesen Aufgaben übernehmen zu können und um keinen zusätzlichen finanziellen Aufwand zu generieren, wird zunächst ein freier Rechner der Hochschule Karlsruhe als Controller genutzt.

Abb. 3.2: Prinzipskizze eines technischen Systems zur Raumtemperaturregelung des Raumes K004b

Wie bereits beschrieben hat die Sensorik den größten Umfang, da sie neben der Raumtemperatur auch den Massenstrom und die Temperaturen am Heizkörper erfasst. Die Temperatur innerhalb des Raumes wird durch mehrere Sensoren erfasst, um die unterstellte Homogenität zu überprüfen und für die Modellberechnungen herzustellen. Für die Erfassung der Heizleistung wird ein Wärmemengenzähler eingesetzt, der wiederum aus einem Rechenwerk, zwei weiteren Temperatursensoren und einem Durchflusssensor aufgebaut ist. Für die Modellprädiktive Regelung werden die einzelnen Werte aller Sensoren benötigt, weshalb das Rechenwerk einen Zugriff darauf ermöglichen muss.

Die Aktorik umfasst lediglich die Ansteuerung des Heizungsventils. Wie zuvor bereits erwähnt wird dazu ein Stellantrieb genutzt, um das Ventil stufenlos zu öffnen und zu Schließen und damit den Massenstrom bis hin zu einem Maximalwert zu steuern.

Eine Prinzipskizze dieser Idee ist in Abb. 3.2 graphisch dargestellt.

3.3 Konzept und Planung

Das folgende Konzept erfüllt die in Abschnitt 3.1 definierten Anforderungen und konkretisiert die zuvor geschilderte Idee. Zunächst das Netzwerk, dann xxx bis xxx

Abb. 3.3: Aufbau des Netzwerks

3.3.1 Netzwerkarchitektur

Der Rechner stellt das Zentrum der Anlage dar, deshalb werden darauf aufbauend die Kommunikationsleitungen und der Aufbau des Netzwerk geplant. Die Kommunikation erfolgt gemäß den Spezifikationen der beiden Modbus Protokolle RTU und TCP, deren Besonderheiten im Abschnitt 2.2.3 beschrieben wurden. Da der Rechner standardmäßig mit einem Ethernet-Netzwerkanschluss ausgestattet ist, wird der Rechner über ein Netzwerkkabel mit dem ersten Subnetzwerk verbunden. Das erste Netzwerk ist also ein lokales Netzwerk, das gemäß dem Ethernet/IP Protokoll ausgeführt ist und damit die Kommunikation über das Modbus TCP Protokoll ermöglicht.

Das zweite Subnetz ist ein serielles RS 485 Netzwerk und erlaubt somit den Einsatz des Modbus RTU Protokolls. Die beiden Netzwerke werden durch ein Gateway miteinander verbunden, welches die Übersetzung der Kommunikation in beiderlei Richtungen übernimmt. Die Übersetzung beinhaltet im Detail das Umwandeln der elektrischen Signale und der verschiedenen Modbus Telegrammformate ineinander.

Das eingesetzte EX9132C-2-MTCP Gateway von ExpertDAQ bietet hierzu eine einfache und kostengünstige Möglichkeit, um von einem Modbus TCP/IP Clienten aus mit Modbus RTU Servern zu kommunizieren. Es verfügt über zwei serielle Ports verfügt, jeweils ein EIA-232 und ein EIA 485 Port. Die genauen Spezifikationen können dem Datenblatt im Anhang ?? entnommen werden.

Im dritten Subnetz wird über analoge Spannungssignale ud Stromsignale kommuniziert, welche von einem Signalwandler erzeugt werden. Der Signalwandler wiederum ist kein Gateway, da die Spannungssignale nicht implizit übersetzt, sondern explizit durch Modbus RTU Befehlstelegramme festgelegt werden. Eine graphische Zusammenfassung der Netzwerkarchitektur ist in Abb. 3.3 abgebildet.

3.3.2 Erfassung der Raumtemperatur

Die Raumtemperatur kann einfach und günstig mit Raumtemperaturfühlern gemessen werden. Zudem soll der gemessene Wert über eine der beiden Modbus Schnittstellen dem Controller zur Verfügung gestellt werden. Innerhalb der Anlage kommen zwei THERMASGARD RTM1-Modbus Raumtemperaturfühler ohne Display von S+S REGELTECHNIK zum Einsatz, weil sich diese durch weitere Eigenschaften, wie zum Beispiel der Kalibrierfähigkeit, auszeichnen. Die detaillierten Funktionen und Daten können dem Datenblatt im Anhang ?? entnommen werden.

Abb. 3.4: Verteilung der Raumtemperaturfühler

Ursprünglich sollten die beiden Temperatursensoren auf einer mittig gedachten Achse im Raum in nord-südlicher Richtung platziert werden, jeweils am Ende des mittigen Schreibtischs. Jedoch wurden während der Installation der Anlage noch vier weitere Temperatursensoren zusammen mit einem Messumformer von Seiten der Hochschule Karlsruhe zur Verfügung gestellt. Bei den Sensoren handelt es sich um vier PT1000 Temperatursensoren die über den Webthermograph 8x von WuT die Messwerte zur Verfügung stellen. Der Webthermograph besitzt keine Modbus Schnittstelle, jedoch kann er über ein Netzwerkkabel in das Ethernet Netzwerk integriert werden und unter Verwendung des HTTP Protokolls vom Controller ausgelesen werden. Um die Messwerte mit dem Controller auszulesen, bietet sich das Python Paket httplib an, welches das HTTP Protokoll implementiert und einfache Funktionen zur Verfügung stellt. Die Anordnung der Temperatursensoren wurde daher angepasst, sodass jeweils drei Sensoren an gegenüberliegenden Wänden angeordnet sind. Die Sensoren wurden entlang der westlichen Außenwand und der östlichen Innenwand gleichmäßig verteilt und auf einer Höhe von 2 m installiert. Die Identifizierung der Sensoren erfolgt über ID's, die zusammen mit der Anordnung in Abb. 3.4 visualisiert sind.

3.3.3 Steuerung des Heizkörpers

Um die Heizung mit den benötigten Sensoren auszustatten, bietet sich wie bereits erwähnt ein Wärmemengenzähler an. Die Temperaturmessung am Ein- und Auslass der Heizung gestaltet sich jedoch etwas aufwendiger als zuvor. Dazu werden Tauchhülsen im Vor- und Rücklauf des Heizkörpers benötigt, welche vom Heizwasser

direkt umflossen werden. Die Tauchhülsen bedingen geringe bauliche Änderungen und können beispielsweise in einen Kugelhahn eingeschraubt werden. Sie sind jeweils mit einem Temperaturfühler bestückt und ermöglichen dadurch die Messung der Heizwassertemperatur. Der Einbau des Durchflusssensors erfordert ebenfalls bauliche Maßnahmen. Dazu wird im Vor- oder Rücklauf, je nach Spezifikation Herstellers, ein Stück Rohrleitung entfernt und durch den Durchflusssensor ersetzt. Dieser wird beim Einbau entweder fest integriert oder kann durch eine Anschlussverschraubung beziehungsweise einen Flanschanschluss einfach demontierbar sein.

In der Anlage kommt der Wärmemengenzähler MULTICAL 602 von KAMSTRUP zum Einsatz, da er neben einem geforderten Modbus Kommunikationsmodul weitere besondere Eigenschaften mit sich bringt. Die berechneten und gemessenen Werte können damit einfach einzeln ausgelesen werden. PT500 Sensoren Zum einen ist er kostengünstig und umfasst alle aufeinander abgestimmte Komponenten/Sensoren, zum anderen ist er wartungsfrei, da der Durchfluss über Ultraschall gemessen wird. Der Durchflusssensor ULTRAFLOW 54 ist bereits mit einer Tauchhülse ausgestattet, sodass lediglich eine weitere Tauchhülse montiert werden muss. Der ULTRAFLOW 54 ermittelt den Durchfluss, indem er die Laufzeitdifferenz zwischen wechselseitig gesendeten und empfangenen Signalen zweier integrierter Ultraschallsensoren auswertet.

Die Steuerung des Durchflusses im Heizkörper erfolgt über das Heizungsventil, welches mit Hilfe eines Stellantriebs geöffnet und geschlossen wird. Dazu kann ein Elektromotor eingesetzt werden, der sich durch eine schnelle Reaktion auszeichnet jedoch gleichzeitig mit hohen Anschaffungskosten verbunden ist. Außerdem kann auch ein thermoelektrisches Element als Antrieb genutzt werden, welches sich durch geringe Anschaffungskosten auszeichnet jedoch eine langsamere Reaktionszeit besitzt. Die Ansteuerung des Stellantriebs erfolgt üblicherweise unabhängig von der Ausführung durch ein digitales oder analoges Spannungs- oder Stromsignal.

Um dem Controller die Steuerung zu ermöglichen, wird ein Signalwandler eingesetzt der Modbustelegramme in elektrische Signale umwandeln kann. Dazu wird innerhalb der Anlage das EX9024-M Modul von ExpertDAQ eingesetzt, welches sich leicht in ein serielles RS485-Netzwerk einbinden lässt. Das Modul ist Modbus RTU-fähig und hat vier analoge Ausgänge die Spannungen und Ströme in verschiedenen Bereichen ausgeben können. Da für den Stellantrieb lediglich ein Ausgang genutzt wird, besteht explizit die Möglichkeit einer einfachen Erweiterung der Anlage um 3 weitere analoge Komponenten, beispielsweise um die Jalousien zu bedienen. Der thermoelektrische Stellantrieb ABNM-LIN von Danfoss wird zur stufenlosen Betätigung des Ventils eingesetzt. Die Ansteuerung erfolgt über ein 0-10 V Signal, innerhalb der Anlage vom EX9024-M bereitgestellt wird, welches Signal in einen proportionalen, linearen Stellweg umwandelt.

Dieses Konzept bietet durch immer darauf hingewiesen die explizite Möglichkeit zur Erweitunrng auch die offene Architektur und die gewählten Komponenten langfristig

auch die Möglichkeit die Anlage durch eine Klimatisierung zu erweitern, um die Raumtemperatur ganzjährig beziehungsweise in beide Richtungen zu regeln zu können. Außerdem besteht die Möglichkeit in diesem Zuge auch das öffnen und Schließen der Jalousien ebenfalls von der Anlage aus gesteuert werden kann.

Damit ist die Idee der Anlage umrissen und im nächsten Abschnitt wird ein Konzept vorgestellt, dass diese Idee implementiert.

3.4 Umsetzung und Installation

3.5 Software

"Das beste Modell für eine Katze ist eine Katze; möglichst dieselbe Katze." — Norbert Wiener

4 Modellbildung des Raumes

Ziel dieses Kapitels ist es, ein hinreichend exaktes Modell zur Berechnung der Raumtemperatur, basierend auf den thermodynamischen Prozessen mit dessen Umgebung und der Anlage aus Kapitel 3, zu bilden, um damit und unter Zuhilfenahme der Anlage Modellpräditive Regelung zu ermöglichen. Dazu wird zunächst ein einfaches Grundmodell für einen hypothetischen Raum gebildet, dass anschließend schrittweise an den bestehenden Raum erweitert angepasst wird, bis eine die Qualität des Modells ausreichend ist.

Physikalisch motiviert. Anhand von Zustand, Steuergröße und Parameter/Eigenschaft

4.1 Anforderungen an das Raummodell

Da MPC die Lösung von Nichtlinearen Gleichungssystemen erfordert wird ein erhöhter Rechenbedarf benötigt. Daher sollte das Modell so einfach wie möglich gehalten werden. Die Krux liegt also darin, einen geeigneten Kompromiss zwischen Komplexität und Genauigkeit des Modells zu finden, der eine sinnvolle MPC Regelung ermöglicht. Des Weiteren werden gradientenbasierte Ableitungen zweifach bei der Optmierung/Lösung des LGS generiert weshalb auch keine Unstetigkeiten im Modell vorkommen dürfen. Die triviale Aufgabe ist die hinreichend genaue Beschreibung der Realität bzw realen Vorgänge. hinreichend definieren. Damit eine Steuerung mit Hilfe von Modellprädiktiver Regelung möglich ist, darf das Modell keine hohe Kompliziertheit aufweisen und sollte durch möglichst wenig Gleichunge trotzdem ein möglichst genaues Abbild der Realität abbilden. Das Modell soll zunächst so simpel wie möglich gestaltet werden um eine Optimierung mit Hilfe von MPC zu ermöglichen. Dessen Verfahren zur Optimierung sind gradientenbasiert und erfordern damit die Erzeugung von stetigen Ableitungen bis zum zweiten Grad. Daher soll die Komlpexität des Modells zunöchgst sehr gering gehalten werdeen und dann Stück für Stück erhöht werden und die damit die Geanuiogkeit des modells erhöht werden Die Optimalsteuerung stellt in diesem Fall den begrenzenden Faktor dar, da die Optimierungsumgebund CasADi für dynamische Systeme nur unter JModelica.org läuft. Daher wird darauf aufbauend das benötigte Modell für die MPC in Modelica gebildet unter Berücksichtigung der Restriktionen bezüglich JModelica.

Abb. 4.1: Grundmodell eines Raumes

4.2 Das Grundmodell des Raumes

Um ein möglichst einfaches Grundmodell zu erhalten, wird zunächst ein hypothetischer Raum betrachtet. Dieser Raum bildet zusammen mit der ihn umgebenden Luft ein abgeschlossenes thermodynamisches System, wie in Kapitel 2.3 beschrieben. Der Raum ist selbst mit Luft gefüllt und wird zu allen sechs Seiten hin durch Wände begrenzt. Damit bildet der Raum ein geschlossenes System, da keine Massenströme über die Grenzen hinweg fließen können. An den Grenzflächen kann also lediglich Wärme zwischen der Umgebung und dem Raum ausgetauscht werden. Des Weiteren wird eine homogene Temperatur innerhalb des Raumes und der Umgebung angenommen, welche in der Realität eingeschwungenen Gleichgewichtszuständen innerhalb der beiden Teilsysteme entspricht. Um die Annahme für den Raum zu überprüfen, muss noch festgestellt werden auf welcher zeitlichen Skala der Einschwingvorgang für eine homogene Temperatur innerhalb des Raumes stattfindet und ob dieser damit eine Relevanz für die Modellbildung besitzt.

Zur Bestimmung der Temperatur innerhalb des Raumes, ausgehend von einer initialen Raumtemperatur und dem externen Steuerungsparameter der Umgebungstemperatur, muss der Ausgleichsprozess zwischen Raum und Umgebung untersucht werden, konkret der ausgetauschte Wärmestrom. Um diesen nach Gl. 4 zu berechnen, müssen zunächst die verschiedene modellrelevanten Eigenschaften des Raumes durch physikalische Größen und Variablen beschrieben werden. Zur Berechnung der Austauschoberfläche wird die Raumbreite, -länge und -höhe benötigt und weiterhin sind der U-Wert einer Betonwand, die spezifische Wärmekapazität und Dichte von Luft für die Bestimmung des Wärmestroms relevant. Diese modellrelevanten Eigenschaften sind allesamt mit ihren Zahlenwerten in Tabelle Tab. 4.1 zusammengefasst.

Modellrelevante Eigenschaften	Wert	Einheit
Raumbreite	7,811)	[m]
Raumlänge	$5,78^{1)}$	[m]
Raumhöhe	$2,99^{1)}$	[m]
Wärmedurchgangskoeffizient Betonwand	$2,0^{2)}$	$\left[\frac{W}{m^2*K}\right]$
Spezifische Wärmekapazität von Luft	$1.000,0^{3)}$	$\left[\frac{J}{kg*K}\right]$
Dichte von Luft	$1,25^{-3)}$	$\left[rac{kg}{m^3} ight]$

 $^{^{1)} \}mbox{Werte}$ durch eigene Vermessung des Raumes K
004b vom 07.12.2015.

Tab. 4.1: Eigenschaften des Raummodells

Erfolgt nun die Bilanzierung des Raumes mit Hilfe des ersten Hauptsatzes der Thermodynamik nach Gl. 3 und die Berechnung der inneren Energie des Raumes nach Gl. 2 ergibt sich folgendes, einfaches Gleichungssystem zur Bestimmung der Raumtemperatur in Abhängigkeit vom Steuergrößen Außentemperatur im Grundmodell in Modelica:

```
lequation
    /* calculate room volume */
    room_volume = room_length * room_height * room_breadth;
    /* calculate room mass */
    room_mass = room_volume * rho_air;
    /* calculate surface of heat exchange */
    exchange_surface = 2 * (room_length * room_breadth) + 2 * (room_length * room_height) + 2
        * (room_breadth * room_height);
    /* calculate inner energy*/
    room_u = room_mass * cp_air * room_temperature;
    /* calculate derivative of the inner energy */
    der(room_u) = environment_qdot;
    /* calculate heatflow between room and environment */
    environment_qdot = u_wall * exchange_surface * (environment_temperature - room_temperature );
```

Listing 4.1: Einfaches Gleichungssystem für das Grundmodell des Raumes in Modelica

Damit ist ein Grundmodell für einen Raum gebildet, wie in Abb. 4.1 graphisch dargestellt, um die Temperatur innerhalb eines Raumes zu berechnen. Dieses wird im Folgenden nun schrittweise erweitert und zum Abschluss überprüft, ob es der Realität genüge zu trägt.

4.3 Modellerweiterung durch Berücksichtigung der realen Umgebung

Im nächsten Schritt wird das einfache Raummodell zunächst an die reale Umgebung des Raums K004b angepasst. Die Lage von K00b ist in Abb. 3.1 ersichtlich und es ist zu

²⁾Schätzwert, geschätzt nach [Recknagel, 2013, S. 409] mit Richtwerten aus [Recknagel, 2013, S. 194ff.].

 $^{^{3)}}$ Tabellenwert aus [Peter Häupl, 2013, S. 139].

erkennen, dass der Raum lediglich zwei Außenwände besitzt, die an die Umgebungsluft grenzen: Die Wände in Richtung Süden und Westen. Die anderen beiden Wände, sowie die Decke und der Boden, grenzen an weitere Gebäudeteile des K-Gebäudes. Somit entspricht der Raum im Modell nach wie vor einem geschlossenen System und bildet weiterhin, zusammen mit dem umgebenden K-Gebäude und der Umgebungsluft, ein abgeschlossenes System. Jedoch müssen nun potenziell verschiedene Wärmeströme zwischen dem Raum und der Außenumgebung sowie dem Raum und dem K-Gebäude betrachtet werden. Da die fließenden Wärmeströme im Vergleich zur sehr großen Energie innerhalb des gesamten K-Gebäudes und der Umgebung nur verschwindend gering sind, wird der erwärmende beziehungsweise kühlende Effekt der Wärmeströme auf die beiden Teilsysteme vernachlässigt und es wird von konstanten, homogenen Temperaturen beider ausgegangen.

Durch diese Erweiterung des Modells hängt die Raumtemperatur nun von zwei Wärmeströmen und damit indirekt von zwei externen Steuergrößen, den Temperaturen in der Umgebung und im K-Gebäude, ab. Um die Wärmeströme separat berechnen zu können, wird die gesamte Oberfläche zum Wärmeaustausch aufgeteilt in die Austauschoberfläche mit der Umgebung und die Austauschoberfläche mit dem K-Gebäude. Des Weiteren werden im Modell die Temperatur der Außenumgebung und die Temperatur innerhalb des K-Gebäudes als externe Steuergrößen berücksichtigt. Das Gleichungssystem des Grundmodells in 4.1 erweitert sich also um folgende Änderungen:

```
lequation
[...]
3  /* calculate surface of heat exchange with the environment */
    environment_surface = room_length * room_height + room_breadth * room_height;
5  /* calculate surface of heat exchange with the remaining building */
    building_surface = 2 * (room_length * room_breadth) + room_length * room_height +
        room_breadth * room_height;
7  /* calculate derivative of the inner energy */
    der(room_u) = environment_qdot + building_qdot;
9  /* calculate heatflow between room and environment */
    environment_qdot = u_wall * environment_surface * (environment_temperature -
        room_temperature);
11  /* calculate heatflow between room and building */
    building_qdot = u_wall * building_surface * (building_temperature - room_temperature);
```

Listing 4.2: Erweitertes Gleichungssystem Modell des Raumes unter Berücksichtigung der realen Umgebung in Modelica

Damit wurde das Raummodell an die reale Umgebung angepasst und um die Temperatur innerhalb des Raumes zu bestimmen, wird nun neben der Ausgangstemperatur im Raum und der Umgebungstemperatur noch die Temperatur innerhalb des restlichen K-Gebäudes berücksichtigt. Im nächsten Schritt werden die realen, räumlichen Gegebenheiten im Modell abgebildet.

4.4 Modellerweiterung durch Berücksichtigung der räumlichen Gegebenheiten

Um das Modell an die realen Gegebenheiten des Raumes K004b anzupassen, müssen zwei bauliche Gegebenheiten beachtet werden. Wie in Abb. 3.1 dargestellt ist, ist in der südlichen Außenwand eine Fensterfront vorhanden. Da der U-Wert eines Fensters erheblich von dem U-Wert einer Wand abweicht, entsteht ein zusätzlicher Wärmestrom zwischen dem Raum und der Umgebung durch das Fenster hindurch. Das Öffnen und Schließen der Fenster mit daraus resultieren Massenströmen wird jedoch zunächst nicht explizit berücksichtigt, weshalb das Raummodell weiterhin als geschlossenes System betrachtet wird. Des Weiteren ist es möglich, den Raum über einen Heizkörper zu beheizen. Mit dem Heizkörper, der zunächst als einfache Wärmequelle im Modell ergänzt wird, erhöht sich die Anzahl der externen Steuergrößen erneut, da die Temperatur innerhalb des Raumes auch von dieser abhängig ist.

Durch diese Erweiterungen werden auch weitere physikalische Größen zur Beschreibung der Eigenschaften des Raummodells benötigt. Wie bereits erwähnt werden die Eigenschaften um den U-Wert eines Fensters, sowie die Breite und Höhe der Fensterfront ergänzt wie in Tabelle Tab. 4.2 zusammengefasst.

Modellrelevante Eigenschaften	Wert	Einheit
Fensterbreite	$7,0^{1)}$	[m]
Fensterhöhe	$2,08^{1)}$	[m]
Wärmedurchgangskoeffizient Glas	$4,0^{2)}$	$\left[\frac{W}{m^2*K}\right]$

 $^{^{1)} \}mathrm{Werte}$ durch eigene Vermessung des Raumes K
004b vom 07.12.2015.

Tab. 4.2: Weitere Eigenschaften des Raummodells

Durch diese Anpassung verändert sich die Austauschoberfläche mit der Umgebung, die sich nun auf zwei Flächen mit verschiedenen Wärmedurchgangskoeffizienten verteilt. Des Weiteren wird eine Wärmequelle für die Heizung ergänzt, so dass sich folgende Änderungen des Gleichungssystems im Vergleich zum bisherigen Modell in 4.1 ergeben:

²⁾Tabellenwert, geschätzt nach [Hauser, 2000, S. 270ff.].

Abb. 4.2: Erweitertes Raummodell

Listing 4.3: Erweitertes Gleichungssystem Modell des Raumes unter Berücksichtigung der räumlichen Gegebenheiten in Modelica

Damit ist das Modell auch an die räumlichen Gegebenheiten angepasst und beschreibt dadurch in groben Zügen die realen Zusammenhänge. Allerdings kann eine Steuerung/Regelung eine Heizung nicht einfach beliebig als einfache Wärmequelle einsetzen, weshalb eine detailliertere, physikalisch motivierte Modellierung folgen wird. Die bisherigen Zusammenhänge des Modells sind in Abb. 4.2 graphisch dargestellt.

Bereits bei den Einsatzzielen der Anlage in 3.1 war gefordert, den Zusammenhang zwischen der Sonneneinstrahlung und der Raumtemperatur zu untersuchen sowie Störgrößen explizit in Kauf zu nehmen. Daher ist es passend, dass die Fensterfront in Richtung Süden ausgerichtet ist und der Raum K004b als Büro genutzt wird. Daher wird im nächsten Abschnitt das Modell an diese beiden Faktoren angepasst.

Abb. 4.3: Erweitertes Raummodell

4.5 Modellerweiterung durch Berücksichtigung von Störgrößen und der Sonneneinstrahlung

Der Raum K004b wird regulär als Büro genutzt, weshalb verschiedene Faktoren als Störgrößen in Bezug auf die Raumtemperatur betrachtet werden können. Zum einen wird durch die Menschen und deren Rechner weitere Wärme in den Raum eingebracht und zum Anderen werden die Fenster und die Türen manchmal geöffnet. Des Weiteren trifft insbesondere auf die südseitigen Fenster Sonnenstrahlung, welche ebenfalls Wärme in den Raum einbringen und damit einen Einfluss auf die Raumtemperatur haben.

Listing 4.4: Erweitertes Gleichungssystem Modell des Raumes unter Berücksichtigung der Sonneneinstrahlung und Störgrößen

4.6 Validierung des Modells

4.7 Anpassung des Modells mit Parameterschätzung

"Knowing where things are, and why, is essential to rational decision making."

— Jack Dangermond, Esri

5 Schlussbetrachtung

5.1 Fazit

5.2 Ausblick und Ansatzpunkte für weitere Arbeiten

Welchge art der Verwendung? MPC mit JModelica.org also deren mpc klasse eigene in casadi etc?

Vergleich mit bestehenden Modellen möglich z.B. das THERAKLES Modell

Literaturverzeichnis 52

Literaturverzeichnis

- [pys] Pysolar by pingswept
- [osi 1996] International Organization for Standardization: ISO 7498-1: Information technology Open Systems Interconnection Basic Reference Model: The basic model. Genf, Switzerland, März 1996. ISO 7498-1 Standard
- [mod 2006a] Modbus Organization: Modbus messaging on TCP/IP implementation guide v1.0b. Hopkinton, USA, Oktober 2006. Forschungsbericht
- [mod 2006b] Modbus Organization: Modbus over serial line specification and implementation guide V1.02. Hopkinton, USA, Dezember 2006. Forschungsbericht
- [mod 2012] Modbus Organization: Modbus application protocol specification v1.1b3. Hopkinton, USA, April 2012. Forschungsbericht
- [AB 2015] AB, Modelon (Hrsg.): *JModelica.org User Guide Version 1.17*. Ideon Science Park, SE-223 70 Lund: Modelon AB, 2015
- [Baehr u. Kabelac 2012] BAEHR, Hans; KABELAC, Stephan: Thermodynamik: Grundlagen und technische Anwendungen. 15. Auflage 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012
- [Bertrand Blanc 2005] BERTRAND BLANC, Bob M.: Endianness or Where is Byte 0? http://3bc.bertrand-blanc.com/endianness05.pdf, December 2005
- [Böckh u. Wetzel 2014] Böckh, Peter v.; Wetzel, Thomas: Wärmeübertragung: Grundlagen und Praxis. 5. überarbeitete und erweiterte Auflage 2014. Berlin, Heidelberg: Springer Vieweg, 2014
- [Furrer 2003] Furrer, Frank J.: ndustrieautomation mit Ethernet-TCP/IP und Web-Technologie. 3. neu bearbeitete und erweiterte Auflage. Heidelberg: Hüthig, 2003
- [Hauser 2000] HAUSER, Höttges K G.: Bauphysik in Kürze: U-Werte von Fenstern. In: Bauphysik 22 (2000), S. S.270–273
- [Joel Andersson 2015] JOEL ANDERSSON, Moritz D. Joris Gillis G. Joris Gillis: User Documentation for CasADi v2.2.0+1.cf4be18. Joel Andersson, Joris Gillis, Moritz Diehl, 2015
- [Kaltschmitt 2013] Kaltschmitt, Wolfgang; Wiese A. Martin; Streicher; Martin; Streicher: Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. 5. erweiterte Auflage. Springer Berlin Heidelberg, 2013
- [MODICON 96] MODICON, Inc.: Modicon Modbus Protocol Reference Guide. One High Street, North Andover, Massachusetts 01845: MODICON, Inc., Industrial Automation Systems, June 96
- [Nicolai 2013] NICOLAI, Dr. A.: Physikalische Grundlagen des thermischen Raummodells THE-RAKLES / Technische Universität Dresden, Fakultät Architektur, Institut für Bauklimatik. 2013. – Forschungsbericht

Literaturverzeichnis 53

[Peter Häupl 2013] Peter Häupl, Christian Kölzow Olaf Riese Anton Maas Gerrit Höfker Christian N. Martin Homann; Willems, Wolfgang (Hrsg.): Lehrbuch der Bauphysik: Schall - Wärme - Feuchte - Licht - Brand - Klima. Springer Vieweg, 2013

- [Quaschning 2011] QUASCHNING, Volker: Regenerative Energiesysteme: Technologie, Berechnung, Simulation. Bd. 7. aktualisierte Auflage. München: Hanser, 2011
- [Recknagel 2013] Recknagel, Schramek Sprenger: (Taschenbuch für Heizung + Klimatechnik) : 76.2013/14. Oldenbourg Industrieverlag, 2013
- [Reda 2008] REDA, A. I.; A. I.; Andreas: Solar Position Algorithm for Solar Radiation Applications (Revised) / National Renewable Energy Laboratory (NREL), Golden, CO. 2008. – Forschungsbericht
- [van Rossum u. the Python development team 2016] Rossum, Guido van; TEAM the Python d.: Python Frequently Asked Questions. Release 2.7.11. Python Software Foundation, 2016
- [Sack 2004] SACK, Dipl.-Phys. N.: Von k zu U Was ändert sich bei Fensterrahmen und -profilen? / ift Rosenheim Bauphysik. 2004. Forschungsbericht
- [Schleicher 2008] Schleicher, Manfred: Digitale Schnittstellen und Bussysteme. JUMO, 2008
- [Schnell u. Wiedemann 2006] Schnell, Gerhard; Wiedemann, Bernhard: Bussysteme in der Automatisierungs- und Prozesstechnik: Grundlagen, Systeme und Trends der industriellen Kommunikation. 6. überarbeitete und aktualisierte Auflage. Wiesbaden: Vieweg+Teubner, 2006

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur unter Benutzung der angegebenen Quellen und Hilfsmittel angefertigt habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Quellen entnommen wurden, sind als solche kenntlich gemacht. Die Arbeit hat in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegen.

Kandel, den 25. März 2016	
	Daniel Johannes Mayer