Pipeline input and Layer Split Gpipe, PipeDream

개요

1. 이장의 주요 목표

o Pipeline Parallelism이 대표적인 기법인 Gpipe와 PipeDream의 소개

2. 주요 논의 내용

o Gpipe와 PipeDream의 특징 이해

3. 참고

- o GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism
 - o https://arxiv.org/pdf/1811.06965.pdf
- PipeDream: Generalized Pipeline Parallelism for DNN Training
 - o https://www.microsoft.com/en-us/research/uploads/prod/2019/08/pipedream.pdf

Model Parallelism

1. Intra-layer model parallelism

- 모델의 Tensor를 쪼개는 방식
- Tensor parallel

2. Inter-layer model parallelism

- 모델의 Layer를 기준으로 쪼개는 방식
- Pipeline parallel

Inter-Layer 병렬화

1. Inter-layer 병렬화의 비효율성

- Inter₩-layer 병렬화는 Layer wise하게 병렬화하기 때문에 Layer 단위로 순차적 연산 진행
- 하지만 이러한 순차적인 종속성 때문에 한 Layer가 연산을 수행중일 때 다른 Layer에 할당된
 GPU는 놀 수 밖에 없음

Pipeline Parallelism

1. Inter layer 병렬화의 비효율성 개선

- o Idle 상태의 GPU들을 줄일 수 없을까 하는 고민에서 시작
- o Mini-batch를 더 잘게 쪼개 micro-batch 단위(batch-splitting)로 연산 과정을 pipelining 함
- 결과적으로 idle 상태 (bubble time)을 줄일 수 있음

1. Bubble time

$$O(\frac{K-1}{M+K-1})$$

M : number of micro-steps

K: number of model partitions

2. Bubble time의 최소화

 \circ $M \geq 4K$ 일때 최소화

1. Training throughput

○ 같은 파티션 수에서 micro batch를 늘릴 수 록 학습량이 늘어남

TPU	AmoebaNet			Transformer		
K =	2	4	8	2	4	8
M=1	1	1.13	1.38	1	1.07	1.3
M=4	1.07	1.26	1.72	1.7	3.2	4.8
M = 32	1.21	1.84	3.48	1.8	3.4	6.3

GPU	AmoebaNet			Transformer		
K =	2	4	8	2	4	8
M = 32	1	1.7	2.7	1	1.8	3.3

• M : number of micro-steps

• K : number of model partitions

1. Activation Memory

- Neural Network 에서 BP를 계산할 때는 FP 과정에의 Activation function을 미분하기 위해 입력값이 필요
- 일반적으로, N개의 mini batch와 L개의 layer으로 이루어진 Neural에서는 BP를 위해 FP 이후에 N x L개의 activation input 값을 메모리에 유지

2. Gpipe Re-materialization

- GPipe는 하나의 단계(단계 = 여러 Layer들의 그룹)의 마지막 계층에 있는 Activation 값만 유지
- BP가 시작될 때마다 (마지막 계층부터) FP의 activation 값을 다시 계산하여 메모리에 유지 후 완료 되면 삭제
- o 이런 방식으로 단계당 하나의 output만 유지하게 되므로 메모리를 획기적으로 절약할 수 있음

1. Maximum model size

- o Naïve-1은 Gpipe를 사용하지 않음 pipeline-k는 k개의 파티션과 k개의 GPU로 Gpipe를 적용
- Pipeline 파티션이 증가시킴으로써 더 큰 모델 학습 가능

NVIDIA GPUs (8GB each)	Naive-1	Pipeline-1	Pipeline-2	Pipeline-4	Pipeline-8
AmoebaNet-D (L, D) # of Model Parameters Total Model Parameter Memory Peak Activation Memory	(18, 208)	(18, 416)	(18, 544)	(36, 544)	(72, 512)
	82M	318M	542M	1.05B	1.8B
	1.05GB	3.8GB	6.45GB	12.53GB	24.62GB
	6.26GB	3.46GB	8.11GB	15.21GB	26.24GB
Cloud TPUv3 (16GB each)	Naive-1	Pipeline-1	Pipeline-8	Pipeline-32	Pipeline-128
Transformer-L # of Model Parameters Total Model Parameter Memory Peak Activation Memory	3	13	103	415	1663
	282.2M	785.8M	5.3B	21.0B	83.9B
	11.7G	8.8G	59.5G	235.1G	937.9G
	3.15G	6.4G	50.9G	199.9G	796.1G

PipeDream

1. Gpipe의 개선점

- Gpipe는 하나의 weight 버전만 유지하며, 주기적으로 Pipeline Flush가 일어남
- o Pipeline Flush는 backward 연산을 통해 구해진 Gradient로 weight을 업데이트 하는 과정
- Flush 시간 동안 GPU는 FP, BP 연산을 하지 않아 효율이 떨어짐

PipeDream

1. PipeDream

○ PipeDream는 여러 버전의 weight를 운용함으로써 전체 flush 과정 없이 연산의 효율을 높임

PipeDream

1. PipeDream

- 그런데 각각의 weight 버전을 따로 운영하면 backward를 거치고 난다음 parameter 업데이트가 일어 나게 됨
- 4개 weight 버전을 운영할 때 5번째 microbatch가 연산 될때는 서로 다른 parameter를 통해 연산이
 일어나게 되어 학습에 문제가 발생
- 따라서 이렇게 각기 다르게 업데이트된 파라메터들을 저장할 별도의 메모리 공간을 할당

PipeDream vs Gpipe

1. PipeDream과 Gpipe 비교

o Gpipe : Memory 효율적, 연산 비효율적

o PipeDream : Memory 비효율적, 연산 효율적

End of Documents