Algorithm 1 Pseudeocode of the Proposed Method

- 1: Establish a pair of DQNs (a trained DQN with weights θ and a target DQN with weights θ^-) and an empty experience pool M for all CUs;
- 2: Initialize the trained DQN wih random weights; set $\theta^- = \theta$;
- 3: In time slot $t(M \leq M_b)$, CU takes action randomly and stores the corresponding experience $\langle s, a, r, s' \rangle$ in its experience pool.
- 4: repeat
- 5: CU k observe its state s_k in time slot $t, \forall k \in K$;
- 6: In time slot $t(t > M_b)$ CU k chooses an action a_k according to ϵ -greedy policy; agnet k chooses an action $a_k = \arg \max_{a \in A} q(s_k, a; \theta_k)$ with probability (1ϵ) , or randomly chooses an action $a_k \in A$ with probability ϵ , $\forall k \in K$;
- 7: CU k executes the chosen action a_k , then gets an immediate reward $r_k = R(s_k, a_k)$, $\forall k \in K$:
- 8: CU k observes a new state s'_k in time slot $t+1, \forall k \in K$;
- 9: CU k saves its new experience $\langle s_k, a_k, r_k, s'_k \rangle$ into experience pool;
- 10: Samples a mini-batch consisting of M_b experiences from experience pool M;
- 11: Updates the weights θ of trained DQN according to BP base on difference between reward in experience pool and output Q-value of target DQN;
- 12: Updates θ^- with θ every T_{step} time slots;
- 13: **until** $R(t) R(t-1) < \gamma$