Meta-heurística Simulated Annealing aplicada ao problema de corte bidimensional não-guilhotinado

Lívia de Azevedo da Silva

Autores

Gelinton Pablo Mariano

Mestrando em Informática - Universidade Federal do Espírito Santo

André Renato Sales Amaral

Programa de Pós-Graduação em Informática - Universidade Federal do Espírito Santo

Publicação

XLVII Simpósio Brasileiro de Pesquisa Operacional - 2015

Sumário

- Problema abordado;
- Ideia de solução:
 - Heurística construtiva da solução inicial;
 - Movimentos de destruição de parte da solução e de reconstrução;
 - Solução proposta: Simulated Annealing;
- Resultados computacionais;
- Bibliografia.

- O problema de corte bidimensional não-guilhotinado consiste em cortar um dado conjunto finito de pequenos retângulos de um grande retângulo de dimensões fixas obtendo o máximo lucro:
 - o Cada item(retângulo) possui um valor de utilidade v, e a sua quantidade utilizada x;
 - É um problema NP-Difícil;
- É um dos problemas da classe "Problemas de Corte e Empacotamento":
 - Motivação: Grande importância em sistemas de produções industriais;
 - Otimizar o processo de corte dos materiais (matérias-primas).

- Exemplos de aplicações nos sistemas de produção industriais:
 - o Problemas unidimensionais:
 - Corte de bobinas de papel;
 - Problemas bidimensionais:
 - Corte de chapas de metal;
 - Corte de chapas de madeira;
 - Corte de peças de couro.
 - Problemas tridimensionais:
 - Corte de espumas para colchões ou isopor.

- Outras classificações necessárias para o artigo:
 - Com relação ao tipo de corte:
 - Guilhotinado;
 - Não-guilhotinado.
 - Com relação a limitação da quantidade dos itens:
 - Irrestrito;
 - Restrito;
 - Duplamente restrito.
 - Com relação a rotação dos itens:
 - Com rotação;
 - Sem rotação.

Problema abordado: Exemplo

Ideia de solução

Heurística construtiva da solução inicial

- Duas listas: P e B;
 - Lista P em ordem decrescente por (v_i / l_i * w_i) antes da criação da solução inicial.
- Pontos candidatos por peça:
 - Mais a direita e acima;
 - Mais a esquerda e abaixo.
- Análise dos pontos no retângulo para inserção;
- Inserção de um tipo de peça por vez.

Movimentos destruição de parte da solução e de reconstrução

- Definição do espaço de busca (soluções vizinhas);
- Percentual de destruição aleatória: 35%;
- Desloca todos os itens restantes para esquerda e em seguida para cima;
- Chama a heurística construtiva em cima desta solução (reconstrução).

Solução proposta: Simulated Annealing

- Usou-se o Simulated Annealing:
 - Simula o processo físico de recozimento de metais;
 - Pode aceitar soluções piores durante a execução do algoritmo;
 - Solução inicial e soluções novas criadas com base nos métodos anteriores.

Parâmetro	Descrição	Valor		
T	Temperatura inicial	1000		
T_c	Temperatura de congelamento	0,11		
It_{max}	Número máximo de iterações	700		
α	Taxa de resfriamento	0,98		

Resultados computacionais

Resultados computacionais

- Testou-se 21 instâncias da literatura disponíveis;
- Cada instância foi executada 10 vezes e retirado a média entre os resultados de cada uma;
- Especificações:
 - Intel Core 2 Dual de 2,4 Ghz;
 - 3 GB de memória RAM;
 - Windows 8.1;
 - Linguagem C++.

	Problema				Solução			SA		
#	L	W	Q_i	Ótimo	Beasley	GRASP	TABU	Melhor	Média	D.P.1
1	10	10	5	164	164	164	164	164	164	0
2	10	10	7	230	230	230	230	230	230	0
3	10	10	10	247	247	247	247	247	247	0
4	15	10	5	268	268	268	268	268	268	0
5	15	10	7	358	358	358	358	358	358	0
6	15	10	10	289	289	289	289	289	289	0
7	20	20	5	430	430	430	430	430	430	0
8	20	20	7	834	834	834	834	834	834	0
9	20	20	10	924	924	924	924	924	924	0
10	30	30	5	1452	1452	1452	1452	1452	1452	0
11	30	30	7	1688	1688	1688	1688	1688	1688	0
12	30	30	10	1865	1801	1865	1865	1865	1865	0
13	30	30	7	1178	1178	1178	1178	1178	1178	0
14	30	30	15	1270	1270	1270	1270	1270	1270	0
15	70	40	20	2726	2721	2726	2726	2716	2715	2,11
16	40	70	20	1860	1720	1860	1860	1840	1826	9,66
17	100	100	15	27718	27486	27589	27718	27718	27596,9	45,36
18	100	100	30	22502	21976	21976	22502	22502	22028,6	166,33
19	100	100	30	24019	23743	23743	24019	23789	23747	14,81
20	100	100	33	32893	31269	32893	32893	32893	32893	0
21	100	100	29	27923	26332	27923	27923	27923	27923	0
Nº So	ol. Ótii	n. (de	21)		13	18	21	18		
	¹ D.P.: Desvio Padrão.									

Bibliografia

- TEMPONI, Elias Carlos Correa. Uma proposta de resolução do problema de corte bidimensional via abordagem metaheurística. Dissertação de Mestrado, Centro Federal de Educação Tecnológica de Minas Gerais CEFET/MG.
- GAMPERT, Gilberto. Problema de Corte Bidimensional. Programa de Pós-Graduação em Computação Aplicada, Instituto de Ciências Exatas e Geociências, Universidade de Passo Fundo(RS).
- CINTRA, Clauber Ferreira. Algoritmos para Problemas de Corte de Guilhotina Bidimensional. Tese de Doutorado, Universidade de São Paulo.

Bibliografia

- Alvarez-Valdes, R. Parreño, F. Tamarit, J.M. A tabu search algorithm for a two-dimensional non-guillotine cutting problem, European Journal of Operational Research 183(3),1167-1182, 2007.
- Bortfeldt, A.; Winter, T. A genetic algorithm for the two-dimensional knapsack problem with rectangular pieces. International Transactions in Operational Research, Oxford, v. 16, p. 685–713, 2009.