FoSSaCS 2022

Parameterized Analysis of Reconfigurable Broadcast Networks

A. R. Balasubramanian, Lucie Guillou, <u>Chana Weil-Kennedy</u> *Technical University of Munich* and *ENS Rennes*

Established by the European Commission

Broadcast communication used in networks of identical, finite-state nodes that run the same protocol

as in cache coherence protocols, or communication protocols on ad-hoc networks

Broadcast communication used in networks of identical, finite-state nodes that run the same protocol

as in cache coherence protocols, or communication protocols on ad-hoc networks

Broadcast network = shared broadcast protocol + communication topology

finite automaton with transitions labeled by sends or receives

agents send to their neighbors

Broadcast communication used in networks of identical, finite-state nodes that run the same protocol

as in cache coherence protocols, or communication protocols on ad-hoc networks

Broadcast network = shared broadcast protocol + communication topology

finite automaton with transitions labeled by sends or receives

agents send to their neighbors

Broadcast communication used in networks of identical, finite-state nodes that run the same protocol

as in cache coherence protocols, or communication protocols on ad-hoc networks

Broadcast network = shared broadcast protocol + communication topology

finite automaton with transitions labeled by sends or receives

agents send to their neighbors

 Parameterized systems: properties should hold independently of number of agents

E.g.: Control state reachability - does there exist an initial configuration which can reach a configuration putting an agent in the control state?

 Parameterized systems: properties should hold independently of number of agents

E.g.: Control state reachability - does there exist an initial configuration which can reach a configuration putting an agent in the control state?

Undecidable

[Delzanno, Sangnier, Zavattaro, CONCUR'10]

 Parameterized systems: properties should hold independently of number of agents

E.g.: Control state reachability - does there exist an initial configuration which can reach a configuration putting an agent in the control state?

Undecidable

[Delzanno, Sangnier, Zavattaro, CONCUR'10]

introduce **reconfigurable** broadcast networks

communication topology can change

 Parameterized systems: properties should hold independently of number of agents

E.g.: Control state reachability - does there exist an initial configuration which can reach a configuration putting an agent in the control state?

Undecidable

[Delzanno, Sangnier, Zavattaro, CONCUR'10]

introduce **reconfigurable** broadcast networks

communication topology can change

 Parameterized systems: properties should hold independently of number of agents

E.g.: Control state reachability - does there exist an initial configuration which can reach a configuration putting an agent in the control state?

Undecidable

[Delzanno, Sangnier, Zavattaro, CONCUR'10]

introduce **reconfigurable** broadcast networks

communication topology can change

 Parameterized systems: properties should hold independently of number of agents

E.g.: Control state reachability - does there exist an initial configuration which can reach a configuration putting an agent in the control state?

Undecidable

[Delzanno, Sangnier, Zavattaro, CONCUR'10]

introduce reconfigurable broadcast networks

communication topology can change

 Models channel reconfiguration / message loss / adversary picking the receiving nodes

 Parameterized systems: properties should hold independently of number of agents

E.g.: Control state reachability - does there exist an initial configuration which can reach a configuration putting an agent in the control state?

Undecidable

[Delzanno, Sangnier, Zavattaro, CONCUR'10]

introduce reconfigurable broadcast networks

communication topology can change

- Models channel reconfiguration / message loss / adversary picking the receiving nodes
- Control state reachability solvable in P-TIME

[Delzanno et al, FSTTCS'12]

- agents communicate by selective broadcast
- broadcast and receives happen at the same time
- multiple receives happen simultaneously

A **cube** is a boolean combination of constraints $a \le \#q \le b$ $\in \mathbb{N} \cup \infty$

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

A **cube** is a boolean combination of constraints $a \le \#q \le b$ $\in \mathbb{N} \cup \infty$

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

• control state reachability from cube \mathscr{C}_{init} to state final:

A **cube** is a boolean combination of constraints $a \le \#q \le b$

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

• control state reachability from cube \mathscr{C}_{init} to state final:

$$post^*(\mathscr{C}_{init}) \cap (1 \leq \#final) \neq \emptyset$$

A **cube** is a boolean combination of constraints $a \le \#q \le b$

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

• control state reachability from cube $\mathscr{C}_{\mathit{init}}$ to state final :

$$post^*(\mathscr{C}_{init}) \cap (1 \leq \#final) \neq \emptyset$$

• reachability from cube \mathscr{C} to cube \mathscr{C}' : $post^*(\mathscr{C}) \cap \mathscr{C}' \neq \varnothing$

A **cube** is a boolean combination of constraints $a \le \#q \le b$

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

• control state reachability from cube \mathscr{C}_{init} to state final:

$$post^*(\mathscr{C}_{init}) \cap (1 \leq \#final) \neq \emptyset$$

- reachability from cube \mathscr{C} to cube \mathscr{C}' : $post^*(\mathscr{C}) \cap \mathscr{C}' \neq \varnothing$
- $\bullet \ \ \text{almost-sure reachability from cube} \ \mathscr{C}_{\mathit{init}} \ \text{to cube} \ \mathscr{C}_{\mathit{final}} \text{:} \ \ \mathit{post*}(\mathscr{C}_{\mathit{init}}) \ \subseteq \ \mathit{pre*}(\mathscr{C}_{\mathit{final}})$

Result

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

PSPACE

Result

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

PSPACE

Previous results:

[Esparza, Raskin, W.-K., PN'19]

PSPACE-hardness result for RBN reachability and configuration-coverability

Result

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

PSPACE

Previous results:

[Esparza, Raskin, W.-K., PN'19]

- PSPACE-hardness result for RBN reachability and configuration-coverability
- [Delzanno et al., FSTTCS'12]
 - Control-state reachability in PTIME
 - Reachability from the initial cube to any cube is PSPACE-complete

Result

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

PSPACE

Previous results:

[Esparza, Raskin, W.-K., PN'19]

- PSPACE-hardness result for RBN reachability and configuration-coverability
- [Delzanno et al., FSTTCS'12]
 - Control-state reachability in PTIME
 - Reachability from the initial cube to any cube is PSPACE-complete
- Almost-sure reachability is in EXPSPACE and is PSPACE-hard [Bouyer et al., ICALP'16]

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

PSPACE

post* (or pre*) of a cube is a "small" cube

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

PSPACE

post* (or pre*) of a cube is a "small" cube

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

PSPACE

post* (or pre*) of a cube is a "small" cube

- $post^*(\mathscr{C}) \cap \mathscr{C}'$ is small cube
- if non-empty, $post^*(\mathscr{C}) \cap \mathscr{C}'$ contains a small configuration

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

PSPACE

post* (or pre*) of a cube is a "small" cube

if non-empty, $post^*(\mathscr{C}) \cap \mathscr{C}'$ contains a small configuration

Algorithm for checking if \mathscr{C}' is reachable from \mathscr{C}

- guess two small configurations M in $\mathscr C$ and M' in $\mathscr C'$ of same size
- guess a path from M to M'

parameterized problems: emptiness and membership of sets described by boolean operators, pre^* and $post^*$ over cubes

PSPACE

post* (or pre*) of a cube is a "small" cube

if non-empty, $post^*(\mathscr{C}) \cap \mathscr{C}'$ contains a small configuration

Algorithm for checking if \mathscr{C}' is reachable from \mathscr{C}

- guess two small configurations M in $\mathscr C$ and M' in $\mathscr C'$ of same size
- guess a path from M to M'

Savitch: NPSPACE = PSPACE

• A symbolic configuration represents an infinite set of "real" configurations

position of k agents
 v, S
 A symbolic configuration represents an infinite set of "real" configurations

- Transitions coherent with "real" transitions
- Run in RBN ⇒ run in symbolic graph

Run in RBN ⇒ run in symbolic graph

position of k agents
 v, S
 A symbolic configuration represents an infinite set of "real" configurations
 Transitions coherent with "real" transitions

$$\exists N \text{ such that } \forall \begin{array}{c} V', S' \\ V', S' \end{array} \forall C' \text{ with } \begin{cases} C'(q) \geq v'(q) + N \text{ if } q \in S' \\ C'(q) = v'(q) & \text{if } q \notin S' \end{cases} \qquad C' \in post^*(\mathscr{C})$$

$$\exists N \text{ such that } \forall \begin{array}{c} V', S' \\ V', S' \end{array} \forall C' \text{ with } \begin{cases} C'(q) \geq v'(q) + N \text{ if } q \in S' \\ C'(q) = v'(q) & \text{if } q \notin S' \end{cases} \qquad C' \in \underset{}{post*}(\mathscr{C})$$

$$post*(\mathscr{C}) =$$

is a finite union of cubes

is a finite union of cubes

 $C' \in post^*(\mathscr{C})$

exponential in $\mathscr C$ and RBN is a finite union of exponential cubes

[Esparza, Ganty & Majumdar, CAV '13]

[Esparza, Ganty & Majumdar, CAV '13]

Asynchronous shared-memory systems are equivalent to RBN for these parameterized problems [A. R. B., W.-K., Gandalf'21]

[Esparza, Ganty & Majumdar, CAV '13]

Asynchronous shared-memory systems are equivalent to RBN for these parameterized problems [A. R. B., W.-K., Gandalf'21]

communication by writing to a shared register

→ close the [Bouyer et al., ICALP'16] PSPACE-EXPSPACE complexity gap for almost-sure reachability

Host of parameterized problems for RBN can be solved in PSPACE

Host of parameterized problems for RBN can be solved in PSPACE

• Tight result: reachability and coverability are already PSPACE-hard

Host of parameterized problems for RBN can be solved in PSPACE

Tight result: reachability and coverability are already PSPACE-hard

Complexity jump: in static broadcast network, these parameterized problems are undecidable

- Host of parameterized problems for RBN can be solved in PSPACE
- Tight result: reachability and coverability are already PSPACE-hard
- Complexity jump: in static broadcast network, these parameterized problems are undecidable
- Results spread: to asynchronous shared-memory systems

- Host of parameterized problems for RBN can be solved in PSPACE
- Tight result: reachability and coverability are already PSPACE-hard
- Complexity jump: in static broadcast network, these parameterized problems are undecidable
- Results spread: to asynchronous shared-memory systems

thank you!