Week 2

Greedy Algorithm

Recall

- Divide and conquer
- 1) Binary Search
- 2) Merge Sort
- 3) Powering a number
- 4) Multiplying 2 numbers
- 5) Matrix Multiplication
- 6) Embedding a complete binary tree into a circuit

Complete binary tree

• Define: A complete binary tree is a binary tree is a binary tree that has 2^n nodes in level i (provided root is at level 0)

Full binary tree

• A full binary tree is called full if every internal node has two children

Fact: A complete binary tree is full, but not vise versa

7) Fibonacci Sequence

- $F_1 = 1$
- $F_2 = 1$
- $F_{n+1} = F_n + F_{n-1}$, n > 2

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Q: How to compute the n^{th} Fibonacci number?

$$f_1 = 1, f_2 = 1$$

for $i = 3:n$
 $f_i = f_{i-1} + f_{i-2}$
return f_n

Bottom-up Approach

```
F[0] = 1
F[1] = 1
for i = 2:n
F[i] = F[i-1] + F[i]
```

Mathematical Formula

Claim: for every $n \ge 2$

$$\begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n$$

Strassen's Algorithm: $A_{n\times n}\times B_{n\times n}$

Prove the claim by induction

Prove the claim by induction(continued)

Claim: Every horse in the world if of the same color

Proof: By induction on the number of horses, say n

Base Case: n = 1

Inductive Hypothesis:

Assume the result holds for n_0 horses(i.e. any set of n_0 horses has the same color)

Inductive Step:

Show that every set of $n_0 + 1$ horses has the same color

II. Greedy Algorithm

Example 1: Interval Scheduling

Given: A set $R = \{r_1, r_2, \dots, r_n\}$ of requests, each with a starting time b_{r_i} and an ending time t_{r_i}

Goal: Schedule the maximum number of jobs possible

(There is only one resource)

Greedy Approach

Define sample rule to decide which request to pick next

Sample rule I:

Pick the job that has the smallest duration (i.e. $t_{r_i} - s_{r_i}$) is minimum

Sample rule II:

Pick the job that starts earliest

Sample rule III:

Pick the job that ends earlist

Generic Approaches

- I. "Stay Ahead Approach"
- II. "Exchange Argument Approach"
- III. "Lower Bound" Approach

Algorithm

```
Sort the requests R by their end time
```

Set A = empty

while *R* is not *empty*

Pick the 1st element $r \in R$

Add r to A

Remove $r \neq \text{every other request in } R$ that overlaps with r

end while

return A

Proof

Let θ be an optimal solution

Want to show:
$$|A| = |\theta|$$

$$A = \{i_1, i_2, ..., i_k\} \ |A| = k$$

$$\theta = \{j_1, j_2, ..., j_m\} \ |\theta| = m$$

Claim 1

• For $s = 1, \dots, k$, $t_{i_s} \le t_{j_s}$

Proof: (by induction on *s*)

Base Case: s = 1

By the way, the greedy algorithm picked the first job, $t_{i_1} \leq t_{j_1}$

Inductive Hypothesis: Assumer the result holds for $s_0, t_{i_{s_0}} \leq t_{j_{s_0}}$

Inductive Step: $s_0 + 1$

To show: $t_{i_{s_0+1}} \le t_{j_{s_0+1}}$

Claim 1 (continued)

The next job that the greed algorithm picks is the one that ends soonest among the remaining non-overlapping requests

```
j_{S_0+1} is one such request is non-overlapping with i_{S_0}
```

Claim 2

Greedy Algorithm gives an optimal solution

Proof:
$$A = \{i_1, i_2, \dots, i_k\}$$

 $|A| = k$
 $\theta = \{j_1, j_2, \dots, j_k\}$
 $|\theta| = m$
WTS: $k = m$

Claim 2 (continued)

Proof by contradiction

Assume $k \neq m \Rightarrow m > k$ Apply Claim 1 to s = kWe know $t_{i_k} \leq t_{j_k}$

Consider j_{k+1}

So, j_{k+1} is non-overlapping with i_k , and therefore, $j_{k+1} \in R$ when i_k and its overlapping requests are removed from R

$$\Rightarrow R \neq \phi$$

Weighted Interval Scheduling

Every job has a priority/weight

Schedule All Intervals

- Multiple resources
- Goal: to schedule all requests using as few resources as possible (KT)

Example 2: Huffman Coding and Data Compression

• Text in some alphabet

```
S = \{a, b, c, d, e\}
aaebccae
```

Goal: Encode the text in minimum number of bits

S has 32 letters

```
→ So use five bits
```

 $a \rightarrow 00000$

 $b \rightarrow 00001$

 $c \rightarrow 00010$

.... 0 1-44

Text: 8 letters

Total number of bits = $8 \times 5 = 40$

Variable Length Encoding

- $a \rightarrow 0$
- $b \rightarrow 10$
- $c \rightarrow 01$

 $n \to 00001111$

Frequency of Letters in the text

- $x \in S$
- f_x = function of times x occurs in the text

Let the size of the text be *n*

Then x occurs nf_x times

Let $\gamma: S \to \text{set of codes}$

$$\gamma(n) = \text{code of } x$$

Total length of encoding of the text = $\sum_{x \in S} nf_x \cdot |\gamma(x)|$

Average number of bits per letter

$$ABL(\gamma) = \sum_{x \in S} f_x \cdot |\gamma(x)|$$

Frequency of Letters in the text (continued)

Goal: Come up with an encoding γ such that $ABL(\gamma)$ is minimum possible

$$a \rightarrow 0$$

$$b \rightarrow 1$$

$$c \rightarrow -1$$

a is part(prefix) of c

Define: A prefix code γ for S is an encoding such that for any two letter $x, y \in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$

Binary Tree

Notes

Let T^* is an optimal tree

Claim: Suppose u of v are two leaves of T^*

leaf u is labeled with x, and leaf v is labeled with y

Then,
$$f_x \ge f_y$$

Algorithm:

if *S* has 2 letters *x* and *y*

then
$$x \to 0, y \to 1$$

else

Let y^* and z^* be two lowest frequency letters

Form a new letter w and $S' \coloneqq S \cup \{w\} \setminus \{y^*, z^*\}$ with $f_w \coloneqq f_{y^*} + f_{z^*}$

Recursively construct a prefix code γ' for s' with tree T'

Define a prefix code for *S* as follows:

Start with *T'*

Take the leaf labelled *w*

Add 2 children to that node, label them as y^* and z^*

End if

Notes