Publications of L.D. Faddeev

Книги / Books

[B1] L.D. Faddeev,

Mathematical aspects of the three-body problem in the quantum scattering theory. (D.Darey & Co., London-NY, 1965), 110 pp. [Translation of the dissertation [16]]

[В2] А.А. Славнов и Л.Д. Фаддеев,

Введение в квантовую теорию калибровочных полей.

(М.: Наука, 1978), 239 с. [Изд. 1-е]

(М.: Наука, 1988), 270 с. [Изд. 2-е]

L.D. Faddeev and A.A. Slavnov

Gauge fields: Introduction to quantum theory.

(Benjamin/Cummings Publ., Reading, Mass., 1980), 232 pp. [1st edition]

(Addison-Wesley, Redwood City, CA, 1991), 217 pp. [2nd edition]

[ВЗ] Л.Д. Фаддеев и О.А. Якубовский,

Лекции по квантовой механике для студентов-математиков.

(Л.: Изд-во ЛГУ, 1980), 200 с. (Изд. 1-е)

(М.: НИТС, Регулярная и хаотическая динамика, 2001), 256 с. (Изд. 2-е)

L.D. Faddeev, O.A. Yakubovskii. *Lectures on quantum mechanics for mathematics students*. (AMS, Providence, RI, 2009), 234 pp.

[В4] С.П. Меркурьев и Л.Д. Фаддеев,

Квантовая теория рассеяния для систем нескольких частии.

(М.: Наука, 1985), 399 с.

L.D. Faddeev and S.P. Merkuriev,

Quantum scattering theory for several particle systems.

(Kluwer Academic Publ., Dordrecht, 1993), 404 pp.

[В5] Л.А. Тахтаджян и Л.Д. Фаддеев,

Гамильтонов подход в теории солитонов.

(М.: Наука, 1986), 528 с.

L.D. Faddeev and L.A. Takhtajan,

Hamiltonian methods in the theory of solitons.

(Springer-Verlag, Berlin, 1987), 592 pp. [1st edition]

(Springer-Verlag, Berlin, 2007), 592 pp. [reprinted edition]

[B6] L.D. Faddeev,

40 years in mathematical physics.

(World Scientific Publ., Singapore, 1995), 471 pp.

Статьи и обзоры / Articles and reviews

[1] Л.Д. Фаддеев,

Единственность решения обратной задачи рассеяния. Вестник ЛГУ. Сер. мат. мех. астрон. 11 no. 7 (1956) 126–130.

[2] Л.Д. Фаддеев,

О разложении произвольных функций по собственным функциям оператора Шредингера.

Вестник ЛГУ. Сер. мат. мех. астрон. 12 по. 7 (1957) 164–172.

[3] Л.Д. Фаддеев,

О выражении для следа разности двух сингулярных дифференциальных операторов типа Штурма—Лиувилля.

Доклады АН СССР **115** no. 5 (1957) 878–881.

[4] Л.Д. Фаддеев,

О дисперсионных соотношениях в нерелятивистской теории рассеяния.

Журнал эксперим. и теорет. физики **35** по. 2 (1958) 433–439.

L.D. Faddeev,

Dispersion relations in non-relativistic scattering theory.

Soviet Physics JETP 8 (1959) 299–303.

[5] О.А. Ладыженская и Л.Д. Фаддеев,

К теории возмущений непрерывного спектра.

Доклады АН СССР **120** no. 6 (1958) 1187–1190.

[6] Л.Д. Фаддеев,

О связи S-матрицы и потенциала для одномерного оператора Шредингера.

Доклады АН СССР **121** no. 1 (1958) 63-66.

L.D. Faddeev,

The relation between S-matrix and potential for the one-dimensional Schrödinger operator.

Soviet Physics Doklady 3 (1959) 747–751.

[7] Л.Д. Фаддеев,

Обратная задача квантовой теории рассеяния.

Успехи мат. наук **14** no. 4 (1959) 57–119.

L.D. Faddeev,

The inverse problem in the quantum theory of scattering.

J. Math. Phys. 4 (1963) 72–104.

[8] Л.Д. Фаддеев,

Свойства S-матрицы для рассеяния на локальном потенциале.

Автореферат дисс. на соиск. учен. степени канд. физ.-мат. наук (Л.: ЛГУ, 1959), 6 с.

[9] Л.Д. Фаддеев,

Теория рассеяния для системы из трех частиц.

Журнал эксперим. и теорет. физики 39 по. 5 (1960) 1459–1467.

L.D. Faddeev.

Scattering theory for a three–particle system.

Soviet Physics JETP 12 (1960) 1014–1019.

[10] В.С. Буслаев и Л.Д. Фаддеев,

О формулах следов для дифференциального сингулярного оператора типа Штурма— Лиувилля.

Доклады АН СССР **132** no. 1 (1960) 13–16.

V.S. Buslaev and L.D. Faddeev,

Formulas for traces for a singular Sturm–Liouville differential operator.

Soviet Math. Doklady 1 (1960) 451–454.

[11] Р.А. Минлос и Л.Д. Фаддеев,

Замечание о задаче трех частиц с точечным взаимодействием.

Журнал эксперим. и теорет. физики 41 no. 6 (1961) 1850-1851.

R.A. Minlos and L.D. Faddeev,

Comment on the problem of three particles with point interactions.

Soviet Physics JETP 14 (1962) 1315–1316.

[12] Ф.А. Березин и Л.Д. Фаддеев,

Замечание об уравнении Шредингера с сингулярным потенциалом.

Доклады АН СССР **137** no. 5 (1961) 1011–1014.

F.A. Berezin and L.D. Faddeev,

Remark on the Schrödinger equation with singular potential.

Soviet Math. Doklady 2 (1961) 372–375.

[13] Л.Д. Фаддеев,

Строение резольвенты оператора Шредингера системы трех частиц с парным взаимодействием.

Доклады АН СССР **138** no. 3 (1961) 565–567.

L.D. Faddeev,

The resolvent of the Schrödinger operator for a system of three particles interacting in pairs.

Soviet Physics Doklady 6 (1961) 384–386.

[14] Р.А. Минлос и Л.Д. Фаддеев,

О точечном взаимодействии для системы из трех частиц в квантовой механике.

Доклады АН СССР **141** no. 6 (1961) 1335–1338.

R.A. Minlos and L.D. Faddeev,

On the point interaction for a three–particle system in quantum mechanics.

Soviet Physics Doklady 6 (1962) 1072–1074.

[15] Л.Д. Фаддеев,

Строение резольвенты оператора Шредингера системы трех частиц и задача рассеяния

Доклады АН СССР **145** no. 2 (1962) 301–304.

L.D. Faddeev,

The construction of the resolvent of the Schrödinger operator for a three–particle system, and the scattering problem.

Soviet Physics Doklady 7 (1963) 600–602.

[16] Л.Д. Фаддеев,

Математические вопросы квантовой теории рассеяния для системы трех частиц.

Труды Мат. Инст. Стеклова 69 (1963) 1–122.

[For English translation see the book [B1]]

[17] Л.Д. Фаддеев,

Математические вопросы квантовой теории рассеяния для системы трех частиц. Автореферат дисс. на соиск. учен. степени докт. физ.—мат. наук (М.: МИАН СССР, 1963), 16 с.

[18] Л.Д. Фаддеев,

О разделении эффектов самодействия и рассеяния по теории возмущений. Доклады АН СССР **152** no. 3 (1963) 573–576.

L.D. Faddeev,

On the separation of self-action and scattering effects in perturbation theory. Soviet Physics Doklady 8 (1964) 881–883.

[19] Л.Д. Фаддеев,

О модели Фридрихса в теории возмущений непрерывного спектра.

Труды Мат. Инст. Стеклова 73 (1964) 292–313.

L.D. Faddeev,

On a model of Friedrichs in the theory of perturbations of the continuous spectrum. *Am. Math. Soc.*, *Transl.*, *II. Ser.* **62** (1967) 177–203.

[20] Л.Д. Фаддеев,

Свойства S-матрицы одномерного уравнения Шредингера.

Труды Мат. Инст. Стеклова 73 (1964) 314–336.

L.D. Faddeev,

Properties of the S-matrix of the one-dimensional Schrödinger equation.

Am. Math. Soc., Transl., II. Ser. 65 (1967) 139–166.

[21] В.Н. Попов и Л.Д. Фаддеев,

Об одном подходе к теории бозе-газа при низких температурах.

Журнал эксперим. и теорет. физики 47 по. 4 (1964) 1315–1321.

V.N. Popov and L.D. Faddeev,

An approach to the theory of the low-temperature Bose gas.

Soviet Physics JETP 20 (1965) 890-893.

[22] Л.Д. Фаддеев,

Операторы квантовой механики.

В кн.: Функциональный анализ. (Справочная мат. б-ка) (М.: Наука, 1964), 279–322.

В кн.: *Функциональный анализ*. (Справочная мат. б–ка) (М.: Наука, 1972), 423–454. (Изд. 2–е, перераб. и доп.)

In: Functional analysis (Wolters-Noordhoff Publ., Groningen, 1972) (2nd edition) .

[23] Ф.А. Березин, Р.А. Минлос и Л.Д. Фаддеев,

Некоторые математические вопросы квантовой механики систем с большим числом степеней свободы.

В кн.: *Труды IV Всесоюзн. матем. съезда* (Л.: Наука, 1964), т. 2, 532–541.

[24] Л.Д. Фаддеев,

Растущие решения уравнения Шредингера.

Доклады АН СССР **165** no. 3 (1965) 514–517.

L.D. Faddeev,

Increasing solutions of the Schrödinger equation.

Soviet Physics Doklady **10** (1966) 1033–1035.

[25] Л.Д. Фаддеев,

Факторизация S-матрицы многомерного оператора Шредингера.

Доклады АН СССР **167** no. 1 (1966) 69–72.

L.D. Faddeev,

Factorization of the S-matrix for the multidimensional Schrödinger operator.

Soviet Physics Doklady 11 (1966) 209–211.

[26] Л.Д. Фаддеев,

Разложение по собственным функциям оператора Лапласа на фундаментальной области дискретной группы на плоскости Лобачевского.

Труды Моск. мат. общества 17 (1967) 323–350.

L.D. Faddeev,

Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobachevski plane.

Transl. Moscow Math. Soc. 17 (1969) 357–386.

[27] В.Н. Попов и Л.Д. Фаддеев,

Теория возмущений для калибровочно-инвариантных полей.

Препринт ИТФ-67-036 (Киев, 1967), 28 с.

V. N. Popov and L.D. Faddeev

Perturbation theory for gauge—invariant fields.

Preprint NAL-THY-57 (National Acceleration Laboratory, 1972), 36p.

Reprinted in: Gauge theory of weak and electromagnetic interactions (ed. by C.H.Lai) (1980), 213–233.

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, 31–51. See the book [B6].

Reprinted in: 50 years of Yang-Mills theory (World Scientific, 2005) 39-64.

[28] Л.Д. Фаддеев,

О поле Янга-Миллса.

В кн.: Физика высоких энергий и теория элементарных частиц (Труды Междунар. школы по теор. физике, Ялта, 1966) (Киев, Наукова думка, 1967), 766–769.

[29] Л.Д. Фаддеев,

Интегральные уравнения теории рассеяния для системы N частиц.

В кн.: Труды проблемного симпозиума по физике ядра, Тбилиси, 1967) (М., 1967), т. 1, 43–56.

[30] L.D. Faddeev,

Integral equations for the three–particle scattering problem.

In: The physics of electronic and atomic collisions (Leningrad, 1967), 145–149.

[31] L.D. Faddeev and V.N. Popov,

Feynman diagrams for the Yang-Mills field.

Phys. Lett. **B25** (1967) 29–30.

Reprinted in: *Theory of gauge fields* (Ser. Select. Papers in Phys., Phys. Soc. Japan **70**) (Tokyo, 1970), 45–46.

[32] Л.Д. Фаддеев,

Гамильтонова формулировка теории тяготения.

В кн.: Тезисы докладов 5-й Междунар. конф. по гравитации и теории относительности (Изд-во Тбил. ун-та, Тбилиси, 1968), 229–235.

[33] А.А. Абрикосов, Л.Д. Фаддеев и И.М. Халатников,

Проблемы современной физики.

Вестник АН СССР 12 (1968) 85–88.

[34] D. Brill, S. Deser, and L.D. Faddeev,

Sign of gravitational energy.

Phys. Lett. **A26** (1968) 538–539.

[35] Л.Д. Фаддеев,

Интеграл Фейнмана для сингулярных лагранжианов.

Теорет. и мат. физика 1 no. 1 (1969) 3–18.

L.D. Faddeev,

The Feynman integral for singular Lagrangians.

Theor. Math. Phys. 1 (1969) 1-13.

Reprinted in: *Theory of gauge fields* (Ser. Select. Papers in Phys., Phys. Soc. Japan **70**) (Tokyo, 1970), 32–44.

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, 52–64. See the book [B6].

[36] Л.Д. Фаддеев,

Квантовая теория калибровочных полей

В кн.: Векторные мезоны и электромагнитные взаимодействия (Труды Межд. семинара, Дубна, 1969) (Дубна: ОИЯИ, 1969), 13–26.

[37] А.А. Славнов и Л.Д. Фаддеев,

Безмассовое и массивное поле Янга-Миллса.

Теорет. и мат. физика **3** no. 1 (1970) 18–23.

A.A. Slavnov and L.D. Faddeev,

Massless and massive Yang-Mills field.

Theor. Math. Phys. 3 (1970) 312–316.

[38] П.П. Кулиш и Л.Д. Фаддеев,

Асимптотические условия и инфракрасные расходимости в квантовой электродинамике

Теорет. и мат. физика 4 по. 2 (1970) 153–170.

P.P. Kulish and L.D. Faddeev,

Asymptotic conditions and infrared divergencies in quantum electrodynamics.

Theor. Math. Phys. 4 (1970) 745-757.

Reprinted in: Quantum electrodynamics (Ser. Select. Papers in Phys., Phys. Soc. Japan 65) (Tokyo, 1976), 248–260.

[39] L.D. Faddeev,

Recent developments in the integral equations treatment of the few-body scattering problem.

In: Three body problem in nuclear and particle physics (North Holland, Amsterdam–London, 1970), 154–167.

[40] А.А. Славнов и Л.Д. Фаддеев,

Инвариантная теория возмущений для нелинейных киральных лангражианов.

Теорет. и мат. физика 8 по. 3 (1971) 297–307.

A.A. Slavnov and L.D. Faddeev,

Invariant perturbation theory for nonlinear chiral Lagrangians.

Theor. Math. Phys. 8 (1971) 843-850.

[41] В.Е. Захаров и Л.Д. Фаддеев,

Уравнение Кортвега—де Фриса — вполне интегрируемая гамильтонова система. *Функц. анализ и его прил.* **5** no. 4 (1971) 18–27.

V.E. Zakharov and L.D. Faddeev,

Korteweg-de Vries equation: a completely integrable Hamiltonian system.

Funct. Anal. Appl. 5 (1971) 280–287.

Reprinted in: *Exact solutions* (Ser. Select. Papers in Phys., Phys. Soc. Japan **59**) (Tokyo, 1972), 175–182.

[42] Л.Д. Фаддеев,

К теории устойчивости стационарных плоско-параллельных течений идеальной жидкости.

Записки научн. семин. ЛОМИ 21 (1971) 164–172.

L.D. Faddeev,

On the theory of the stability of stationary plane parallel flows of an ideal fluid.

J. Soviet Math. 1 (1973) 518–525.

[43] Л.Д. Фаддеев,

Метод интегральных уравнений в теории рассеяния для трех и более частии. Конспекты лекций (М.: МИФИ, 1971), 50 с.

[44] Л.Д. Фаддеев,

Интегральные уравнения теории рассеяния и малонуклонные системы.

В кн.: Проблемы современной ядерной физики (Сб. докл. на 2-м проблемном симпозиуме по физике ядра, Новосибирск, 1970) (М.: Наука, 1971), 5–18.

[45] В.Н. Попов и Л.Д. Фаддеев,

Ковариантное квантование гравитационного поля при помощи интеграла Фейнмана.

В кн.: Функциональные методы в квантовой теории поля и статистике (М., 1971), ч. 2, с. 9.

[46] L.D. Faddeev,

Symplectic structure and quantization of the Einstein gravitation theory.

In: Actes du Congrès International des Mathématiciens (Nice, 1970) (Gauthier-Villars, Paris. 1971), vol. 3, 35–39.

То же. На рус. яз.: Симплектическая структура и квантование теории тяготения Эйнштейна.

В кн.: Международный конгресс математиков (Ницца, 1970) (М.: Наука, 1972), 328—333.

[47] L.D. Faddeev,

Three-dimensional inverse problem in the quantum theory of scattering.

Preprint ITP-71-106E (Kiev, 1971), 28 pp.

То же. На рус. яз.: Трехмерная обратная задача квантовой теории рассеяния.

В кн.: Обратные задачи для дифференциальных уравнений. (Труды Всесоюзн. симпоз., Новосибирск, 1971) (Новосибирск, 1972), 14–30.

[48] Б.С. Павлов и Л.Д. Фаддеев,

Теория рассеяния и автоморфные функции.

Записки научн. семин. ЛОМИ 27 (1972) 161–193.

B.S. Pavlov and L.D. Faddeev,

Scattering theory and automorphic functions.

J. Soviet Math. 3 (1975) 522–548.

Reprinted in: Лакс П.Д., Филлипс Р.С. *Теория рассеяния для автоморфных функций* (М.: Мир, 1979), Приложение 1, 253–283.

[49] Дифференциальная геометрия и лагранжева механика со связями,

А.М. Вершик и Л.Д. Фаддеев.

Доклады АН СССР **202** no. 3 (1972) 555–557.

A.M. Vershik and L.D. Faddeev,

Differential geometry and Lagrangian mechanics with constraints.

Soviet Physics Doklady 17 (1972) 34–36.

[50] L.D. Faddeev,

Asymptotic conditions and infrared divergencies in quantum electrodynamics. (New developments in the relativistic quantum field theory and its applications).

Acta Univ. Bratislaviensis 1 no. 164 (1972) 69-78.

[51] В.Н. Попов и Л.Д. Фаддеев,

Ковариантное квантование гравитационного поля.

Успехи физ. наук 111 по. 3 (1973) 427–450.

L.D. Faddeev and V.N. Popov,

Covariant quantization of the gravitational field.

Soviet Phys. Uspekhi 16 (1974) 777–788.

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, 65–76. See the book [B6].

[52] А.Б. Венков, В.Л. Калинин и Л.Д. Фаддеев,

Неарифметический вывод формулы следа Сельберга.

Записки научн. семин. ЛОМИ 37 (1973) 5-42.

A.B. Venkov, V.L. Kalinin and L.D. Faddeev,

A nonarithmetic derivation of the Selberg trace formula.

J. Soviet Math. 8 (1977) 171-199.

[53] Л.Д. Фаддеев,

Калибровочно-инвариантная модель электромагнитного и слабого взаимодействия лептонов.

Доклады АН СССР **210** no. 4 (1973) 807–810.

L.D. Faddeev,

Gauge—invariant model of electromagnetic and weak lepton interactions.

Soviet Physics Doklady 18 (1973) 382.

[54] L.D. Faddeev and A.A. Slavnov,

Higher orders in the invariant perturbation theory for chiral Lagrangians.

Lett. Nuovo Cimento 8 (1973) 117-120.

[55] Л.Д. Фаддеев,

Обратная задача квантовой теории рассеяния. II

В кн.: Современные проблемы математики (Итоги науки и техники) (М.: ВИНИТИ, 1974), т. 3, 93–181.

L.D. Faddeev

The inverse problem in the quantum theory of scattering. II

J. Soviet Math. 5 (1976) 334–396

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, 121–183. See the book [B6].

[56] Л.А. Тахтаджян и Л.Д. Фаддеев,

Существенно-нелинейная одномерная модель классической теории поля.

Теорет. и мат. физика **21** no. 2 (1974) 160–174.

L.D. Faddeev and L.A. Takhtajan,

Essentially nonlinear one-dimensional model of the classical field theory.

Theor. Math. Phys. 21 (1975) 1046–1057.

Reprinted in: *Problems of elementary particle physics* (Proc. of Yerevan, 1975) vol. 2 (Yerevan 1976), 432–457.

[57] И.Я. Арефьева, А.А. Славнов и Л.Д. Фаддеев,

Производящий функционал для S-матрицы в калибровочно-инвариантных теориях.

Теорет. и мат. физика **21** no. 3 (1974) 311–321.

I.Ya. Arefeva, L.D. Faddeev, and A.A. Slavnov,

Generating functional for the S matrix in gauge theories.

Theor. Math. Phys. 21 (1975) 1165-1172.

[58] Л.А. Тахтаджян и Л.Д. Фаддеев,

Частицы для уравнения Сайн-Гордон.

Успехи мат. наук **28** no. 3 (1974) 249–250

[59] Л.Д. Фаддеев,

Об одном подходе к объединению электромагнитного и слабого взаимодействия лептонов

В кн.: Труды семинара по μ -е проблеме (М.: Наука, 1974), 158–161.

[60] В.Е. Захаров, Л.А. Тахтаджян и Л.Д. Фаддеев,

Полное описание решений "sine-Gordon" уравнения.

Доклады АН СССР **219** no. 6 (1974) 1334–1337.

V.E. Zakharov, L.A. Takhtadjan and L.D. Faddeev,

Complete description of solutions of the sine–Gordon equation.

Soviet Physics Doklady **19** (1975) 824–826.

[61] L.D. Faddeev,

Vortex-like solutions in a unified model of electromagnetic and weak interactions of leptons. Preprint MPI-PAE/PTh 16 (München, 1974), 9 pp.

[62] А.М. Вершик и Л.Д. Фаддеев,

Лагранжева механика в инвариантом изложении.

В кн.: Проблемы теоретической физики. (Т. 2. Теория ядра. Функциональные методы в квант. теории поля и стат. физике. Мат. физика.) (Л.: Изд–во ЛГУ, 1975), 129–141.

A.M. Vershik and L.D. Faddeev,

Lagrangian mechanics in invariant formulation.

Selecta Math. Soviet 1, no. 4 (1981), 339–350.

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, . See the book [B6].

[63] Л.А. Тахтаджян и Л.Д. Фаддеев,

Существенно-нелинейная одномерная модель классической теории поля. (Дополнение).

Teopem. и мат. физика **22** no. 1 (1975) 143.

L.D. Faddeev and L.A. Takhtajan,

Essentially nonlinear one—dimensional model of the classical field theory. (Addendum). *Theor. Math. Phys.* **22** (1975) 100.

[64] Л.Д. Фаддеев,

Адроны из лептонов?.

 Πuc ьма в $X \ni T \Phi$ **21** no. 2 (1975) 141–144.

L.D. Faddeev,

Hadrons from leptons?.

JETP Letters **21** (1975) 64–65.

[65] L.D. Faddeev,

Quantization of solitons.

Preprint IAS Print-75-QS70 (Inst. Advanced Study, Princeton, NJ, 1975), 32 pp.

[66] В.Е. Корепин, П.П. Кулиш и Л.Д. Фаддеев,

Квантование солитонов.

 $\Pi u c$ ыма в $\mathcal{K} \ni T \Phi$ **21** no. 5 (1975) 302–305.

L.D. Faddeev, V.E. Korepin and P.P. Kulish,

Quantization of solitons.

JETP Letters 21 (1975) 138-139.

[67] В.Е. Корепин и Л.Д. Фаддеев,

Квантование солитонов.

Teopem. и мат. физика **25** no. 2 (1975) 147–163.

V.E. Korepin and L.D. Faddeev,

Quantization of solitons.

Theor. Math. Phys. 25 (1975) 1039–1049.

[68] Л.Д. Фаддеев,

Дифференциально-геометрические структуры и квантовая теория поля.

Труды Мат. Инст. Стеклова 135 (1975) 218–223.

L.D. Faddeev,

Differential-geometric structures, and quantum field theory.

Proc. Steklov Math. Inst. 1 (1978) 223-228.

[69] А.Г. Рейман и Л.Д. Фаддеев,

Об одном классе бесконечномерных динамических систем.

Вестник ЛГУ. Сер. мат. мех. астрон. 1 вып. 1 (1975) 138-142.

A.G. Reyman and L.D. Faddeev,

On a class of infinite-dimensional dynamical systems.

Vestnik Leningrad Univ., Math. 8 (1980) 145-150.

[70] Л.Д. Фаддеев,

Эквивалентность канонического и ковариантного подходов к квантованию асимптотически плоского поля тяготения Эйнштейна.

В кн.: Проблемы гравитации (Докл. 3-й Сов. гравитационной конф., Ереван, 1972) (Ереван: Изд-во Ереванск. ун-та, 1975), 90–103.

[71] П.П. Кулиш, С.В. Манаков и Л.Д. Фаддеев,

Сравнение точных квантовых и квазиклассических ответов для нелинейного уравнения Шредингера.

Теорет. и мат. физика 28 (1976) 38-45.

P.P. Kulish, S.V. Manakov, and L.D. Faddeev,

Comparison of the exact quantum and quasiclassical results for the nonlinear Schrödinger equation.

Theor. Math. Phys. 28 (1976) 615-620.

[72] Л.А. Тахтаджян и Л.Д. Фаддеев,

Гамильтонова система, связанная с уравнением $u_{\xi\eta} + \sin u = 0$.

Труды Мат. Инст. Стеклова **142** (1976) 254–266.

L.A. Takhtajan and L.D. Faddeev,

The Hamiltonian system connected with the equation $u_{\xi\eta} + \sin u = 0$.

Proc. Steklov Inst. Math. 142 (1979) 277–289.

[73] D. Brill, S. Deser, and L.D. Faddeev,

Positive definiteness of gravitational field energy.

В кн.: *Проблемы гравитации* (Труды V Междунар. конф. по гравитации и теории относительности. Тбилиси, 1968). (Тбилиси, 1976), 32–42.

[74] В.Н. Попов и Л.Д. Фаддеев,

Континуальный интеграл Фейнмана в теории тяготения.

В кн.: *Проблемы гравитации* (Труды V Междунар. конфер. по гравитации и теории относительности. Тбилиси, 1968). (Тбилиси, 1976), 500–510.

[75] Л.Д. Фаддеев,

Гамильтонова формулировка теории тяготения Эйнштейна.

В кн.: *Проблемы гравитации* (Труды V Междунар. конф. по гравитации и теории относительности. Тбилиси, 1968). (Тбилиси, 1976), 676–688.

[76] Л.Д. Фаддеев,

В поисках многомерных солитонов.

В кн.: *Нелокальные, нелинейные и неренормируемые теории поля* (Материалы IV Междунар. совещ. по нелокальным теориям поля, Алушта, 1976) (Дубна, 1976), 207–223.

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, 369–381. See the book [B6].

[77] L.D. Faddeev,

Introduction to the functional methods.

In: Methods in field theory (Proc. of Les Houches, Session XXVIII, 1975) (North-Holland, Amsterdam, 1976), 3–40.

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, 79–119. See the book [B6].

[78] L.D. Faddeev,

Localized solutions of nonlinear classical field equations and their quantum interpretation. In: *Methods in field theory* (Proc. of Les Houches, Session XXVIII, 1975) (North-Holland, Amsterdam, 1976), 253–254.

[79] L.D. Faddeev,

Some comments on the many dimensional solitons.

Lett. Math. Phys. 1 (1976) 289–293.

[80] L.D. Faddeev and V.E. Korepin,

About the zero mode problem in the quantization of solitons.

Phys. Lett. **B63** (1976) 435–438.

[81] Л.Д. Фаддеев,

Метод обратной задачи рассеяния для решения эволюционных уравнений математической физики. (Материалы VIII Дальневост. мат. школы, Владивосток, 1976) Препринт по. 1–77 (АН СССР. ДВНЦ, Хабаровск. комплексный НИИ, 1977), 39 с.

[82] М.А. Семенов-Тян-Шанский и Л.Д. Фаддеев,

К теории нелинейных киральных полей.

Вестник ЛГУ. Сер. мат. мех. астрон. 13 вып. 3 (1977) 81–88.

M.A. Semenov-Tian-Shansky and L.D. Faddeev,

On the theory of nonlinear chiral fields.

Vestnik Leningrad Univ., Math. 10 (1982) 319–327.

[83] L.D. Faddeev,

Quantization of solitons.

В кн.: Труды Международной конференции по физике высоких энергий. (Тбилиси, 1976). (Дубна: ОИЯИ, 1977), т. 2, 751–752.

[84] В.Е. Корепин и Л.Д. Фаддеев,

Квантование солитонов.

В кн.: Φ изика элементарных частиц (Материалы XII Зимней школы ЛИЯ Φ). (Л., 1977), 130–146.

[85] L.D. Faddeev and V.E. Korepin,

Quantum theory of solitons.

Physics Reports C42 no. 1 (1978) 1–87.

[86] L.D. Faddeev and P.P. Kulish,

Quantization of particle—like solutions in field theory.

Lecture Notes in Phys. 80 (1978) 270–278.

[87] Е.К. Склянин и Л.Д. Фаддеев,

Квантовомеханический подход к вполне интегрируемым моделям теории поля.

Доклады АН СССР **243** no. 6 (1978) 1430–1433.

E.K. Sklyanin and L.D. Faddeev,

Quantum mechanical approach to completely integrable field theory models.

Soviet Physics Doklady 23 (1978) 902–904.

[88] Б.С. Павлов и Л.Д. Фаддеев,

Нуль-множества операторных функций с положительной мнимой частью.

Записки научн. семин. ЛОМИ 81 (1978) 85-88.

B.S. Pavlov and L.D. Faddeev,

Zero sets of operator functions with a positive imaginary part.

Lecture Notes in Math. 1043 (1984) 124–128.

[89] Л.Д. Фаддеев,

Работы В.А. Фока по математической физике.

 $Tруды \ onmuческого \ uн-ma \ (\Gamma O II) \ 43 \ вып. \ 177 \ (1978) \ 37-39.$

[90] L.D. Faddeev,

Introduction to the functional methods in quantum field theory.

In: Proc. of the III School on elementary particles and high energy physics. (Primorsko, Bulgaria, 1977). (Sofia, 1978), 193–238.

[91] Л.Д. Фаддеев,

Квантовые вполне интегрируемые модели теории поля.

Препринт ЛОМИ Р-79-02 (1979), 57 с.

То же. В кн.: *Проблемы квантовой теории поля* (Материалы V междунар. совещ. по нелокальным теориям поля, Алушта, 1979) (Дубна, 1979), 249–299.

[92] Е.К. Склянин, Л.А. Тахтаджян и Л.Д. Фаддеев,

Квантовый метод обратной задачи. І.

Teopem. и мат. физика **40** no. 2 (1979) 194–220.

E.K. Sklyanin, L.A. Takhtajan, and L.D. Faddeev,

Quantum inverse problem method. I.

Theor. Math. Phys. 40 (1979) 688-706.

Reprinted in: *Solitons in solids* (Ser. Select. Papers in Phys., Phys. Soc. Japan **75**) (Tokyo, 1980), 78–96.

[93] Л.А. Тахтаджян и Л.Д. Фаддеев,

Квантовый метод обратной задачи и ХҮХ-модель Гейзенберга.

Успехи мат. наук **34** no. 5 (1979) 13–63.

L.A. Takhtajan and L.D. Faddeev,

The quantum method for the inverse problem and the XYZ Heisenberg model.

Russian Math. Surveys **34** (1979) 11–68.

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, . See the book [B6].

[94] А.Г. Изергин, В.Е. Корепин, М.А. Семенов-Тян-Шанский и Л.Д. Фаддеев, О калибровочных условиях для поля Янга-Миллса.

Теорет. и мат. физика 38 по. 1 (1979) 3-14.

A.G. Izergin, V.E. Korepin, M.A. Semenov-Tian-Shansky, and L.D. Faddeev,

Gauge conditions for a Yang-Mills field.

Theor. Math. Phys. 38 (1979) 1–9.

[95] L.D. Faddeev,

Einstein and several contemporary tendencies in the theory of elementary particles.

In: Relativity, quanta, and cosmology in the development of the scientific thought of A. Einstein (Johnson Repr. Corp., NY, 1979), vol. 1, 247–266.

Reprinted in: Astrofisica e cosmologia, gravitazione, quanti e relativita. Negli sviluppi del pensiero scientifico di A. Einstein (Giunti Barbera, Firenze, 1979), 765–793.

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, 441–461. See the book [B6].

[96] L.D. Faddeev,

Quantum completely integrable models in field theory.

In: Mathematical physics reviews. Sect. C.: Mathematical physics (Harwood Acad. Publ., Chur, 1980), vol. 1, 107–155.

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, 187–235. See the book [B6].

[97] L.D. Faddeev,

A Hamiltonian interpretation of the inverse scattering method.

In: Solitons (Springer, Berlin-NY, 1980), 339–354.

Л.Д. Фаддеев, в кн.: Солитоны (М.: Мир, 1983), 363–379 (Russ. transl.).

[98] L.D. Faddeev and P.P. Kulish,

Development of the quantum inverse problem method.

In: Workshop on nonlinear evolution equations and dynamical systems. (Crete, 1980) (Orthodox Acad. of Crete, Chania, 1980), 121.

[99] Л.Д. Фаддеев,

Квантование солитонов.

Препринт (Владивосток: АН СССР. ДВНЦ, Хабаровск. комплексный НИИ, 1981), 42 с.

[100] L.D. Faddeev,

Two-dimensional integrable models in quantum field theory.

Physica Scripta 24 no. 5 (1981) 832–835.

[101] L.D. Faddeev and L.A. Takhtajan,

What is the spin of a spin wave?.

Phys. Lett. A85 (1981) 375–377.

[102] А.М. Веселова и Л.Д. Фаддеев,

Особенность в кулоновском трехчастичном рассеянии на пороге ионизации.

Вестник ЛГУ. Сер. физ. хим. **22** вып. 4 (1981) 42–46.

A.M. Veselova and L.D. Faddeev,

A singularity in Coulomb three–particle scattering on the threshold of ionization.

Studia Logica 40 (1981) no. 3, 42–46.

[103] Л.Д. Фаддеев и О.А. Якубовский,

О мнимых парадоксах в теории рассеяния нескольких частиц.

Ядерная физика **33** вып. 3 (1981) 634–636.

L.D. Faddeev and O.A. Yakubovski,

On imaginary paradoxes in few-particle scattering theory.

Soviet J. Nucl. Phys. **33** (1981) 331–332.

[104] Л.А. Тахтаджян и Л.Д. Фаддеев,

Спектр и рассеяние возбуждений в одномерном изотропном магнетике Гейзенберга. Записки научн. семин. ЛОМИ **109** (1981) 134–178.

L.A. Takhtajan and L.D. Faddeev,

The spectrum and scattering of excitations in the one–dimensional isotropic Heisenberg model.

J. Soviet Math. 24 (1984) 241–267.

[105] Л.Д. Фаддеев,

Проблема энергии в теории тяготения Эйнштейна.

Успехи физ. наук **136** (1982) 435–457.

L.D. Faddeev,

The energy problem in Einstein's theory of gravitation.

Soviet Phys. Uspekhi **25** (1982) 130–142.

[106] Л.А. Тахтаджян и Л.Д. Фаддеев,

Простая связь геометрического и гамильтонова представлений интегрируемых нелинейных уравнений.

Записки научн. семин. ЛОМИ 115 (1982) 264-273.

L.A. Takhtajan and L.D. Faddeev,

A simple connection between geometric and Hamiltonian representations of integrable nonlinear equations.

J. Soviet Math. 28 (1985) 800–806.

[107] L.D. Faddeev,

Recent development of quantum spectral transform (QST).

In: Recent development in gauge theory and integrable systems (Kyoto Univ., RIMS, 1982), 53–71.

Reprinted in: VII Brazilian symposium on theoretical physics, Rio de Janeiro, 1982 (CNPq, Brasilia, 1984), 257–274.

[108] L.D. Faddeev,

Quantum scattering transformation.

In: Structural elements in particle physics and statistical mechanics (NATO ASI series. Ser. B: Physics 82) (Plenum Press, NY-London, 1983), 93–114.

[109] Л.Д. Фаддеев,

Замечание о статье В.И. Денисова, В.О. Соловьева.

Теорет. и мат. физика **56** по. 2 (1983) 315–316.

L.D. Faddeev,

Note on the paper by V.I. Denisov and V.O. Solov'ev.

Theor. Math. Phys. 56 (1983) 842.

[110] Н.Ю. Решетихин и Л.Д. Фаддеев,

Гамильтоновы структуры для интегрируемых моделей теории поля.

Теорет. и мат. физика **56** no. 3 (1983) 323–343.

N.Yu. Reshetikhin and L.D. Faddeev,

Hamiltonian structures for integrable field theory models.

Theor. Math. Phys. 56 (1983) 847-862.

[111] В.О. Тарасов, Л.А. Тахтаджян и Л.Д. Фаддеев,

Локальные гамильтонианы для интегрируемых квантовых моделей на решетке.

Теорет. и мат. физика **57** no. 2 (1983) 163–181.

V.O. Tarasov, L.A. Takhtajan, and L.D. Faddeev,

Local Hamiltonians for integrable quantum models on a lattice.

Theor. Math. Phys. 57 (1983) 1059–1073.

[112] L.D. Faddeev and L.A. Takhtajan,

Integrability of quantum O(3) nonlinear σ -model.

Preprint LOMI E-4-83 (1983), 19 pp.

[113] L.D. Faddeev,

Integrable models in (1+1)-dimensional quantum field theory.

In: Recent advances in field theory and statistical mechanics (Proc. of Les Houches, Session XXXIX, 1982) (North-Holland, Amsterdam, 1984), 561–608.

Reprinted in: L.D. Faddeev, 40 years in mathematical physics, 294–341. See the book [B6].

[114] L.D. Faddeev,

General properties of field theory: Introductory remarks.

In: *High energy physics* (Proc. of 22th Int. conf. on high energy physics, Leipzig, 1984) (Berlin–Zeutchen, 1984), vol. 1, 121.

[115] L.D. Faddeev,

Operator anomaly for the Gauss law.

Phys. Lett. **B145** (1984) 81–84.

[116] Н.Ю. Решетихин и Л.Д. Фаддеев,

Интегрируемость квантовой модели главного кирального поля.

В кн.: Труды VII Междунар. совещ. по проблемам квантовой теориям поля, Алушта, 1984 (Дубна, 1976), 37–55.

[117] Л.Д. Фаддеев и С.Л. Шаташвили,

Алгебраические и гамильтоновы методы в теории неабелевых аномалий.

Теорет. и мат. физика **60** no. 2 (1984) 206–217.

L.D. Faddeev and S.L. Shatashvili,

Algebraic and Hamiltonian methods in the theory of nonabelian anomalies.

Theor. Math. Phys. 60 (1985) 770-778.

[118] А.Г. Рейман, М.А. Семенов-Тян-Шанский и Л.Д. Фаддеев,

Квантовые аномалии и коциклы на калибровочных группах.

Функц. анализ и его прил. 18 по. 4 (1984) 64–72.

A.G. Reyman, M.A. Semenov-Tian-Shansky, and L.D. Faddeev,

Quantum anomalies and cocycles on gauge groups.

Funct. Anal. Appl. 18 (1984) 319–326.

[119] L.D. Faddeev and N.Yu. Reshetikhin,

Evaluation of an infinite product of special matrices.

Lecture Notes in Math. 1043 (1984) 177-179.

[120] L.D. Faddeev,

Classical and quantum L-matrices.

Lecture Notes in Phys. **242** (1985) 158–174.

[121] Л.Д. Фаддеев,

Коциклы группы токов и квантовая теория полей Янга-Миллса.

Успехи мат. наук **40** no. 4 (1985) 117–120.

L.D. Faddeev,

Cocycles of the current group and the quantum theory of Yang-Mills fields.

Russian Math. Surveys 40 (1985) no. 4, 129–133.

[122] L.D. Faddeev and L.A. Takhtajan,

Poisson structure for the KdV equation.

Lett. Math. Phys. 10 (1985) 183–188.

[123] V.S. Buslaev, L.D. Faddeev, and L.A. Takhtajan,

Scattering theory for the Korteweg–de Vries (KdV) equation and its Hamiltonian interpretation.

Physica **D18** (1986) 255–266.

[124] L.Faddeev,

Can theories with anomalies be quantized?

In: Supersymmetry and its applications: superstrings, anomalies, and supergravity (Cambridge Univ. Press, Cambridge, 1986), 41–53.

[125] L.D. Faddeev and N.Yu. Reshetikhin,

Integrability of the principal chiral field model in 1+1 dimension.

Ann. Physics 167 (1986) 227–256.

[126] L.D. Faddeev and L.A. Takhtajan,

Liouville model on the lattice.

Lecture Notes in Phys. **246** (1986) 166–179.

[127] L.D. Faddeev and S.L. Shatashvili,

Realization of the Schwinger term in the Gauss law and the possibility of correct quantization of a theory with anomalies.

Phys. Lett. **B167** (1986) 225–228.

[128] А.Ю. Алексеев, Я. Мадайчик, Л.Д. Фаддеев и С.Л. Шаташвили,

Вывод аномального коммутатора в формализме функционального интеграла.

Teopem. и мат. физика **73** no. 2 (1987) 187–190.

A.Yu. Alekseev, Ya. Madaichik, L.D. Faddeev, and S.L. Shatashvili,

Derivation of an anomalous commutator in the formalism of a functional integral.

Theor. Math. Phys. **73** (1988) 1149–1151.

[129] А.М. Веселова, С.П. Меркурьев и Л.Д. Фаддеев,

Кулоновская S-матрица и многократное рассеяние.

В кн.: Дифракционное взаимодействие адронов с ядрами. (Киев: АН УССР. Инст. теорет. физики, 1987), 107–114.

[130] L.D. Faddeev,

Hamiltonian approach to the theory of anomalies.

In: Recent Development in Mathematical Physics (Proc. of XXVI Int. Universitätswochen für Kernphysik, Schladming, Austria, 1987) (Springer-Verlag, Berlin, 1987), 137–159.

Reprinted in L.D. Faddeev, 40 years in mathematical physics, 385–407. See the book [B6].

[131] Л.Д. Фаддеев,

Тридцать лет в математической физике.

Труды Мат. Инст. Стеклова 176 (1987) 4-29.

L.D. Faddeev,

Thirty years in mathematical physics.

Proc. Steklov Inst. Math. 176 (1988) 3–28.

Reprinted in L.D. Faddeev, 40 years in mathematical physics, 3–28. See the book [B6].

[132] L.Faddeev and R. Jackiw,

Hamiltonian reduction of unconstrained and constrained systems.

Phys. Rev. Lett. **60** (1988) 1692–1694.

[133] A. Alekseev, L. Faddeev, and S. Shatashvili,

Quantization of symplectic orbits of compact Lie groups by means of the functional integral. J. Geom. Phys. 5 (1988) 391–406.

[134] L.D. Faddeev, N.Yu. Reshetikhin, and L.A. Takhtajan,

Quantization of Lie groups and Lie algebras.

In: Algebraic analysis (Academic Press, Boston, MA, 1988), vol. 1, 129–139.

Reprinted in: Yang-Baxter equation in integrable systems (World Sci. Publ., Singapore, 1990), 299–309.

[135] L. Faddeev, N. Reshetikhin, and L. Takhtajan,

Quantum groups.

In: Braid group, knot theory and statistical mechanics (World Sci. Publ., Singapore, 1989), 97–110.

[136] L.D. Faddeev,

Quantum groups.

Bull. Brasil Math. Soc. (N.S.) 20 no. 1 (1989) 47–54.

Reprinted in: Frontiers of physics (Proc. of Landau memorial conf., Tel Aviv, 1988) (Pergamon Press, Oxford, 1990), 113–120.

[137] Н.Ю. Решетихин, Л.А. Тахтаджян и Л.Д. Фаддеев,

Квантование групп Ли и алгебр Ли.

Алгебра и анализ **1** no. 1 (1989) 178–206.

N.Yu. Reshetikhin, L.A. Takhtajan, and L.D. Faddeev,

Quantization of Lie groups and Lie algebras.

Leningrad Math. J. 1 (1990) 193–225.

[138] Л.Д. Фаддеев,

Математический взгляд на эволюцию физики.

Природа (1989) по. 5, с. 11–16.

L.D. Faddeev,

A mathematician's view of the development of physics.

In: Frontiers in physics, high technology, and mathematics (Proc. of Trieste, 1989) (World Sci. Publ., Singapore, 1990), 238–246.

Reprinted in: *Miscellanea Mathematica* (Springer-Verlag, Berlin-Heidelberg, 1991), 119–127 and in: *Les relations entre les mathématiques et la physique théorique* (Inst. Hautes Études Sci., Bures-Sur-Yvette, 1998), 73–79.

[139] L.D. Faddeev,

Lectures on quantum inverse scattering method.

In: Integrable systems (Nankai Lectures Math. Phys., Tianjin, 1987) (World Sci. Publ., Singapore, 1990), 23–70.

Reprinted in: New problems, methods and techniques in quantum field theory and statistical mechanics (World Sci. Publ., Singapore, 1990), 7–54.

[140] L.D. Faddeev,

On the exchange matrix for WZNW model. Commun. Math. Phys. 132 (1990) 131–138.

[141] L.D. Faddeev,

From integrable models to quantum groups.

In: Fields and particles (Proc. of XXIX Int. Universitätswochen für Kernphysik, Schladming, Austria, 1990) (Springer, Berlin, 1990), 89–116.

[142] A.Yu. Alekseev and L.D. Faddeev,

 $(T^*G)_t$: a toy model for conformal field theory.

Commun. Math. Phys. 141 (1991) 413-422.

[143] A. Yu. Alekseev, L.D. Faddeev, M.A. Semenov-Tian-Shansky, A.Yu. Volkov, The unravelling of the quantum group structure in the WZNW theory. Preprint CERN-TH-5981-91 (1991), 16 pp.

[144] A. Alekseev, L. Faddeev, and M. Semenov-Tian-Shansky,

Hidden quantum groups inside Kac-Moody algebra.

Commun. Math. Phys. 149 (1992) 335–345.

Reprinted in: *Lecture Notes in Math.* **1510** (1992) 148–158.

[145] А.Ю. Алексеев и Л.Д. Фаддеев,

Инволюция и динамика q-деформированного квантового волчка.

Записки научн. семин. ЛОМИ 200 (1992) 3–16.

A.Yu. Alekseev and L.D. Faddeev,

Involution and dynamics for the q-deformed quantum top.

J. Math. Sci. 77 (1995) 3137–3145.

[hep-th/9406196]

[146] L.D. Faddeev,

Hamiltonian methods in conformal field theory.

In: Mathematical physics, X (Proc. of Xth Congr. on math. phys., Leipzig, 1991) (Springer, Berlin, 1992), 123–135.

[147] L.D. Faddeev,

Quantum symmetry in conformal field theory by Hamiltonian methods.

In: New symmetry principles in quantum field theory (NATO ASI series. Ser. B: Physics **295**) (Plenum, NY–London, 1992), 159–175.

Reprinted in: *Braid group, knot theory and statistical mechanics, II* (World Sci. Publ., River Edge, NJ, 1994), 108–129.

[148] L.D. Faddeev,

Integrable models, quantum groups and conformal field theory.

Preprint SFB288–01 (Freie Univ., Berlin, 1992), 36 pp.

[149] А.Ю. Волков и Л.Д. Фаддеев,

Квантовый метод обратной задачи на дискретном пространстве-времени.

Теорет. и мат. физика **92** no. 2 (1992) 207–214.

A.Yu. Volkov and L.D. Faddeev,

Quantum inverse scattering method on space-time lattice.

Theor. Math. Phys. 92 (1992) 837–842.

[150] L.D. Faddeev,

From integrable models to conformal field theory via quantum groups.

In: Integrable systems, quantum groups, and quantum field theories (NATO ASI series.

Ser. C: Math. phys. sci. **409**) (Kluwer, Dordrecht, 1993), 1–24. Reprinted in: L.D. Faddeev, 40 years in mathematical physics, 342–365. See the book [B6].

[151] L.D. Faddeev,

The Bethe ansatz. (Andrejewski lectures.) Preprint SFB288-70 (Freie Univ., Berlin, 1993), 39 pp.

[152] L. Faddeev and A.Yu. Volkov,

Abelian current algebra and the Virasoro algebra on the lattice.

 $Phys.\ Lett.\ {\bf B315}\ \ (1993)\ 311-318.$

[hep-th/9307048]

[153] L. Faddeev and A.Yu. Volkov,

Hirota equation as an example of an integrable symplectic map.

Lett. Math. Phys. **32** (1994) 125–135.

[hep-th/9405087]

[154] L. Faddeev and A.Yu. Volkov,

The new results on lattice deformation of current algebra.

Lect. Notes Phys. 436 (1994) 1-10.

Reprinted in: Infinite-dimensional geometry, noncommutative geometry, operator algebras, fundamental interactions (Proc. of Saint-François, 1993) (World Sci. Publ., River Edge, NJ, 1995), 46–56.

[155] L.D. Faddeev and R.M. Kashaev,

Quantum dilogarithm.

Modern Phys. Lett. A9 (1994) 427–434.

[hep-th/9310070]

[156] L.D. Faddeev, G.P. Korchemsky, and L.N. Lipatov,

Multi-color QCD at high energies and one-dimensional Heisenberg magnet.

In: Continuous advances in QCD (Minneapolis, 1994), 32–41.

[157] L.D. Faddeev and G.P. Korchemsky,

High energy QCD as a completely integrable model.

Phys. Lett. **B342** (1995) 311–322.

[hep-th/9404173]

[158] L.D. Faddeev,

Instructive history of the quantum inverse scattering method.

Acta Appl. Math. 39 (1995) 69-84.

[159] L.D. Faddeev,

Algebraic aspects of the Bethe ansatz.

Int. J. Modern Phys. A10 (1995) 1845–1878.

[hep-th/9404013]

[160] L.D. Faddeev,

Discrete Heisenberg-Weyl group and modular group.

Lett. Math. Phys. **34** (1995) 249–254.

[hep-th/9504111]

[161] А.Ю. Волков и Л.Д. Фаддеев,

Янг-Бакстеризация квантового дилогарифма.

Записки научн. семин. ЛОМИ 224 (1995) 146-154.

A.Yu. Volkov and L.D. Faddeev,

Yang-Baxterization of quantum dilogarithm.

J. Math. Sci. 88 (1998) 202-207.

[162] L.D. Faddeev and R.M. Kashaev,

Generalized Bethe ansatz equations for Hofstadter problem.

Commun. Math. Phys. 169 (1995) 181–191.

[hep-th/9312133]

[163] L.D. Faddeev and O. Tirkkonen,

Connections of the Liouville model and XXZ spin chain.

Nuclear Phys. **B453** (1995) 647–669.

[hep-th/9506023]

[164] L.D. Faddeev,

Integrable models on space—time lattice.

In: Proceedings of the XIth Int. Congress on mathematical physics, Paris, 1994. (Internat. Press, Cambridge, MA, 1995), 513–520.

[165] L.D. Faddeev

Traces of integrability in high energy QCD.

In: Proceedings of the XIth Int. Congress on mathematical physics, Paris, 1994. (Internat. Press, Cambridge, MA, 1995), 722.

[166] L. Faddeev,

Current–like variables in massive and massless integrable models.

In: Quantum groups and their applications in physics (Proc. Varenna, 1994). (IOS Press, Amsterdam, 1996), 117–135.

[hep-th/9408041]

[167] A.G. Bytsko and L.D. Faddeev,

 $(T^*B)_q$, q-analog of model space and the Clebsch-Gordan coefficients generating matrices. J. Math. Phys. **37** (1996) 6324-6348.

[q-alg/9508022]

[168] L.D. Faddeev,

Large new applications of Bethe ansatz.

Lecture Notes in Phys. **469** (1996) 51–70.

[169] L.D. Faddeev and P.N. Pyatov,

The differential calculus on quantum linear groups.

In: Contemporary mathematical physics (AMS Transl. Ser. 2, vol. 175) (AMS, Providence, RI, 1996), 35–47.

[hep-th/9402070]

[170] L.D. Faddeev,

How algebraic Bethe ansatz works for integrable models.

In: Symétries quantiques (Proc. of Les Houches, Session LXIV 1995) (North-Holland, 1998), 149–219.

[hep-th/9605187]

[171] L. Faddeev and A. Volkov,

Quantum integrable models on 1 + 1 discrete space time.

In: Quantum fields and quantum space time (NATO ASI series. Ser. B: Physics **364**) (Plenum, NY, 1997), 73–91.

[172] L. Faddeev and A. Volkov,

Shift operator for the discrete SL(2) current algebra.

In: Deformation theory and symplectic geometry (Mathematical Physics Studies 20) (Kluwer Acad. Publ., Dordrecht, 1997), 35–42.

[173] L. Faddeev and A. Volkov,

Shift operator for nonabelian lattice current algebra.

Preprint hep-th/9606088 (1996).

Modified version published in: *Publ. Res. Inst. Math. Sci.* **40**, 1113–1125 (Kyoto U., RIMS, 2004).

[174] L.D. Faddeev and A.J. Niemi,

Stable knot-like structures in classical field theory.

Nature **387** (1997) 58–61.

[hep-th/9610193]

[175] L.D. Faddeev and A.J. Niemi,

Toroidal configurations as stable solitons.

Preprint hep-th/9705176 (1997), 21 pp.

[176] L.D. Faddeev and A.J. Niemi,

Knots as solitons.

APCTP Bull. 1 (1998) 18–22.

[177] A.Yu. Alekseev, L.D. Faddeev, J. Fröhlich, and V. Schomerus,

Representation theory of lattice current algebras.

Commun. Math. Phys. 191 (1998) 31–60.

[q-alg/9604017]

[178] L.D. Faddeev,

Instructive history of the quantum inverse scattering method.

In: Quantum field theory: perspective and prospective (Proc. of Les Houches, 1998), (NATO ASI series. Ser. C: Math. phys. sci. **530**) (Kluwer Acad. Publ., Dordrecht, 1999), 161–176.

[179] L.D. Faddeev and A.J. Niemi,

Decomposing the Yang–Mills field.

Phys. Lett. **B464** (1999) 90–93.

[hep-th/9907180]

[180] L.D. Faddeev and A.J. Niemi,

Partial duality in SU(N) Yang–Mills theory.

Phys. Lett. **B449** (1999) 214–218.

[hep-th/9812090]

[181] L.D. Faddeevand A.J. Niemi,

Partially dual variables in SU(2) Yang–Mills theory.

Phys. Rev. Lett. 82 (1999) 1624–1627.

[hep-th/9807069]

[182] L.D. Faddeev,

Elementary introduction to quantum field theory.

In: Quantum fields and strings: a course for mathematicians. (AMS, 1999), vol. 1, 513–550.

[183] L.D. Faddeev and A.Yu. Volkov,

Algebraic quantization of integrable models in discrete space—time.

In: Discrete integrable geometry and physics (Clarendon Press, Oxford, 1999), 301–319.

[hep-th/9710039]

[184] Л.Д. Фаддеев,

Что такое современная матматическая физика?.

Труды Мат. Инст. Стеклова **226** (1999) 7–10.

L.D. Faddeev,

What is modern mathematical physics?.

Proc. Steklov Inst. Math. 226 (1999) 1-4.

[185] L.D. Faddeev,

Modern mathematical physics: what it should be.

In: Mathematical physics 2000. International congress, London, GB, 2000. (Imperial College Press, London, 2000), 1–8.

[math-ph/0002018]

Reprinted in: Mathematical events of the twentieth century. (Springer, Berlin, 2006), 75–84.

[186] L.D. Faddeev,

On the relation between mathematics and physics.

In: Integrable systems (Nankai Lectures Math. Phys., Tianjin, 1987) (World Sci. Publ., Singapore, 1990), 3–9.

[187] L.D. Faddeev,

Modular double of a quantum group.

In: Quantization, deformation, and symmetries. Mathematical Physics Studies 21 (Kluwer Acad. Publ., 2000), 149–156.

[math/9912078]

[188] L.D. Faddeev and A.J. Niemi,

Magnetic geometry and the confinement of electrically conducting plasmas.

Phys. Rev. Lett. 85 (2000) 3416–3419.

[physics/0003083]

[189] L.D. Faddeev,

From Yang-Mills field to solitons and back again.

In: From the Planck length to the Hubble radius (Proc. of XXXVI Summer school on subnuclear physics, Erice, Italy, 1998), 673-685 [hep-th/9901037]

[190] L.D. Faddeev, R.M. Kashaev and A.Yu. Volkov,

Strongly coupled quantum discrete Liouville theory. I. Algebraic approach and duality. Commun. Math. Phys. $\bf 219$ (2001) 199–219.

[hep-th/0006156]

[191] L.D. Faddeev,

Knotted solitons and their physical applications.

Roy. Soc. Lond. Philos. Trans., Ser. A Math. Phys. Eng. Sci. 359 (2001) 1399–1403.

[192] L.D. Faddeev,

Quantizing the Yang–Mills fields.

In: At the frontier of particle physics. Handbook of QCD. (Boris Ioffe Festschrift). Vol. 1–3. (World Scientific Publ., Singapore, 2001), 80–88.

[193] L.D. Faddeev,

Knotted solitons.

In: Proc. of the Int. Congr. of Mathematicians (Beijing, 2002) (Higher Education Press, Beijing, 2002), vol. 1, 235–244.

[math-ph/0212079]

[194] L.D. Faddeev,

Mass in quantum Yang–Mills theory (comment on a Clay millenium problem).

Bull. Brazil Math. Soc. (N.S.) 33 no. 2 (2002) 201–212.

Modified version reprinted in: *Perspectives in analysis* Mathematical Physics Studies **27** (Springer, 2005), 63–72.

[195] L.D. Faddeev and R.M. Kashaev,

Strongly coupled quantum discrete Liouville theory. II Geometric interpretation of the evolution operator.

J. Phys. **A35** (2002) 4043–4048.

[hep-th/0201049]

[196] L.D. Faddeev, L. Freyhult, A.J. Niemi, and P. Rajan,

Shafranov's virial theorem and magnetic plasma confinement.

J. Phys. **A35** (2002) L133–L139.

[physics/0009061]

[197] L.D. Faddeev and A.J. Niemi,

Aspects of electric and magnetic variables in SU(2) Yang–Mills theory.

Phys. Lett. **B525** (2002) 195–200.

[hep-th/0101078]

[198] L.D. Faddeev,

Advent of the Yang–Mills field.

In: *Highlights of mathematical physics*. (Proc. of Congr. Math. Phys., London, 2000) (AMS, 2002), 133–141.

[199] E. Babaev, L.D. Faddeev, and A.J. Niemi,

Hidden symmetry and knot solitons in a charged two-condensate Bose system.

Phys. Rev. **B65** (2002) 100512.

[cond-mat/0106152]

[200] L.D. Faddeev, A.J. Niemi, and W. Ulrich,

Glueballs, closed fluxtubes, and eta(1440).

Phys. Rev. **D70** (2004) 114033.

[hep-ph/0308240]

[201] Т.А. Болохов и Л.Д. Фаддеев,

Инфракрасные переменные для SU(3) поля Янга-Миллса.

Теорет. и мат. физика **139** no. 2 (2004) 276–290.

T.A. Bolokhov and L.D. Faddeev,

Infrared variables for the SU(3) Yang–Mills field.

Theor. Math. Phys. 139 (2004) 679-692.

[202] L.D. Faddeev,

What is complete integrability in quantum mechanics.

In: Proc. of the Symposium H. Poincaré (Solvay Institute, Brussels, 2004), 9 pp.

In: Nonlinear equations and spectral theory. AMS Transl. Ser. 2, v. 220 (AMS, 2007), 83–90.

[203] L.D. Faddeev,

Algebraic lessons from the theory of quantum integrable models.

In: The unity of mathematics: In honor of the ninetieth birthday of I.M. Gelfand, Progress in Mathematics **224** (Birkhäuser, 2006), 305–320.

[204] L.D. Faddeev,

History and perspectives of quantum groups (Leonardo da Vinci lecture, 2005).

Milan Journal of Mathematics 74 (2006) 279–294.

[205] Л.Д. Фаддеев,

Замечания о расходимостях и размерной трансмутации в теории Янга—Миллса. *Теорет. и мат. физика* **148** по. 1 (2006) 133–142.

L.D. Faddeev,

Notes on divergences and dimensional transmutation in Yang–Mills theory. *Theor. Math. Phys.* **148** (2006) 986–994.

[206] L.D. Faddeev,

Discretized Virasoro algebra.

In: Noncommutative geometry and representation theory in mathematical physics. Contemporary Mathematics **391** (AMS, 2006), 59–67.

[207] L.D. Faddeev and A.J. Niemi,

Spin–charge separation, conformal covariance, and the SU(2) Yang-Mills theory. Nuclear Phys. B776 (2007) 38–65. [hep–th/0608111]

[208] Л.Д. Фаддеев,

Дискретная серия представлений модулярного дубля $U_q(sl(2,\mathbb{R}))$. Функц. анализ и его прил. **42** no. 4 (2008) 98–104.

L.D. Faddeev,

Discrete series of representations for the modular double of $U_q(sl(2,\mathbb{R}))$.

Funct. Anal. Appl. 42 (2008) 330-335.

arXiv: 0712.2747 [math.QA]

[209] L.D. Faddeev and A.Yu. Volkov,

Discrete evolution for the zero-modes of the quantum Liouville model.

J. Phys. A: Math. Theor. 41 (2008) 194003.

arXiv: 0803.0230 [hep-th]

[210] M.N. Chernodub, L.D. Faddeev, and A.J. Niemi,

Non-abelian supercurrents and de Sitter ground state in electroweak theory.

Journal of High Energy Physics 12 (2008) 014.

arXiv: 0804.1544 [hep-th]

[211] L.D. Faddeev,

Knots as possible excitations of the quantum Yang–Mills fields.

In: Quantum field theory and beyond: Essays in honor of Wolfhart Zimmermann. (World Scientific, 2008), 156–166.

arXiv: 0805.1624 [hep-th]

[212] L.D. Faddeev,

An alternative interpretation of the Weinberg-Salam model.

In: Progress in high energy physics and nuclear safety (NATO Science for Peace and Security Series B: Physics and Biophysics, 2009), 3–8.

arXiv: 0811.3311 [hep-th]

[213] L.D. Faddeev,

New action for the Hilbert–Einstein equations. preprint arXiv: 0906.4639 (2009), 1-6.

[214] L.D. Faddeev,

Faddeev-Popov ghosts.

Int. J. Mod. Phys. A 25 (2010) 1079–1089.

[215] L.D. Faddeev,

Separation of scattering and selfaction revisited.

In: Subtleties in quantum field theory (Lev Lipatov Festschrift, ed. D. Diakonov) (Petersburg Nuclear Physics Institute, Gatchina, 2010), 1–6.

[216] L.D. Faddeev,

3+1 decomposition in the new action for the Einstein theory of gravitation. preprint arxiv: 1003.2311 (2010), 1–9.

[217] Л.Д. Фаддеев,

Новые динамические переменные теории тяготения Эйнштейна.

Теорет. и мат. физика **166** no. 3 (2011) 323–335.

L.D. Faddeev,

New dynamical variables in Einstein's theory of gravity.

Theor. Math. Phys. 166 (2011) 279–290.

arXiv: 0911.0282 [hep-th]

[218] Л.Д. Фаддеев,

Пентагон Волкова для модулярного квантового дилогарифма.

Функц. анализ и его прил. **45** no. 4 (2011) 65–71.

L.D. Faddeev,

Volkov pentagon for the modular quantum dilogarithm.

Funct. Anal. Appl. 45 (2011) 291–296.

arXiv: 1201.6464 [math.QA]

[219] S.E. Derkachov and L.D. Faddeev,

3j-symbol for the modular double of $SL_q(2,\mathbb{R})$ revisited.

preprint arXiv: 1302.5400 (2013), 1–16.

[220] Л.Д. Фаддеев,

Новая жизнь полной интегрируемости.

Успехи физ. наук **183** no. 5 (2013) 487–495.

L.D. Faddeev,

The new life of complete integrability.

Physics-Uspekhi 56 (2013) n.5, 465.

[221] Л.Д. Фаддеев,

Примеры гамильтоновых структур в теории интегрируемых моделей и их квантование.

Алгебра и анализ **25** no. 2 (2013) 193–202.

· () .