- 1) No of ways to reach from (0,0) to (N-1), (M-1)
- 2) No of ways to reach from (0,0) to (N-1), (M-1) with blocked cells
- 3) Dungeons & Princers
- 4) Maximum Sum Subsequence vilhout adjacent elements

# Steps of Dynamic Programming:

- 1) Optimal Substructure
- 2) Overlapping Subproblems S

ASSUME

- 3) dP state dP[i] = ? (Assumption)
- 4) de expression (Main Logic)
- 5) de intidization (Base Condition)



3) dP state

$$dP[i][j] = No \text{ of ways to reach } (i, j)$$

4)  $dP \text{ exp ression}$ 
 $(i,j-1) \longrightarrow (i,j)$ 

dP[i][j] = dP[i-i][j] + dP[i][j-i]

base Condition 
$$+ i = 0 - 1$$
 $+ j = 0 - 1$ 

## for i=0 l j=0, formula fails

int dP[N][M]

for (int 
$$j = 0$$
;  $j < M$ ;  $j + +$ )  $\begin{cases} M-1 \\ + dP[o](j) = 1 \end{cases}$ 

$$\begin{cases} dP[o](j) = 1 \\ \frac{3}{2} \end{cases}$$

for (int 
$$i = 0$$
;  $i \times N$ ;  $i + 1$ )  $\stackrel{N-1}{\leftarrow} dP(i)[0] = 1$ 

$$dP(i)[0] = 1$$

for (int 
$$i = 1$$
;  $i \times N$ ;  $i + +$ )  $\begin{cases} TC:O(N*M) \\ SC:O(N*M) \end{cases}$ 

$$\begin{cases} for (int j = 1); j \times M; j + + ) \nleq \end{cases}$$

$$dP[i][j] = dP[i-1][j] + dP[i][j-1]$$

9 return dP[N-1][M-1]

|   | 0 | 2  | 3  |
|---|---|----|----|
| 0 | 0 |    |    |
| ١ |   |    |    |
| 2 |   |    |    |
| 3 |   |    |    |
| 4 |   |    | vo |
| 5 |   | 10 | 2  |

| P[][ | ] <sub>0</sub> | 1 | 2 | 3 |
|------|----------------|---|---|---|
| 0    | 1              | 1 | 1 | 1 |
| 1    | 1              |   |   |   |
| 2    | 1              |   |   |   |
| 3    | 1              |   |   |   |
| 4    | 1              |   |   |   |
| 5    | 1              |   |   |   |

```
int dP[N][M] = \{i = 1\}

int ways (int, int j) \{i\}

if (i = = 0) return 1

if (j = = 0) return 1

if (dP[i][j]! = -1) return dP[i][j];

else return dP[i][j] = ways(i,j-1) + ways(i-1,j);
```

d

20) Number of ways to go from  $(0,0) \rightarrow (BR case)$ 

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 |
| 2 | 1 | 1 | 1 | 1 |
| 3 | 1 | 1 | 1 | 1 |
| 4 | 1 | 0 | 1 | 1 |

- a) From cell  $\longrightarrow$  Right  $\downarrow$  Bottom
- b) '0' indicates blocked calls
  We cannot go from blocked call.

$$if(mat[i])j] = 0$$

$$dP(i)[j] = 0$$

$$else = dP[i][j] = dP[i-1][j] + dP[i][j-1]$$

$$3$$



int  $dP[N][M] = \{-1\}$ int ways (int, int j)  $\{$  if (i = 0 l l j = 0) return

if (mat[i][j] = 0) greturn 0;

if (i = 0) greturn ways (i, j - 1)if (j = 0) greturn ways (i - 1, j)if (dP[i][j]] = -1 greturn dP[i][j];

else greturn dP[i][j] = ways(i, j - 1) + ways(i - 1, j);

ways (N-1, M-1)

$$(N-1, M-1)$$

$$(5, 7)$$

$$(4, 8)$$

Iteration BoHom

## Base Condition:

| DWK BOGGO |   |   |   |   |  |
|-----------|---|---|---|---|--|
| mat       | 0 | 1 | 2 | 3 |  |
| 0         | 1 | 1 | 1 | 1 |  |
| 1         | 1 |   |   |   |  |
| 2         | 0 |   |   |   |  |
| 3         | 1 |   |   |   |  |
| 4         | 1 |   |   | 1 |  |

#### dP[N][M]

|   | 0 | 1 | 2          | 3 |
|---|---|---|------------|---|
| 0 | 1 | 1 | 1          | 1 |
| 1 | 1 | 0 | <u>J</u> _ | D |
| 2 | 0 | Ó | 1          | 1 |
| 3 | 0 | 0 | 1          | 2 |
| 4 | 0 | 0 | 1          | 3 |

for (int 
$$j=0$$
;  $j \times M$ ;  $j+1$ )  $= 0$ 

if (mat  $[0](j]=0$ )

beneat

else  $= 0$ 

dP $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $= 0$ 
 $=$ 

```
for(int i=0; ixN; i++) 2
    if (mat[i][0] == 0)
   break
3
else {
   | dp[i][0]=1
                                      Tc: O(N*M)
                                      Sc: O(N*M)
 for(int i=1; i < N; i++) {
     for (int j=1; j < M; j++) {
          if (mat(i)[j] = = 0) {
              dP(i)[j] = 0
           dP[i][j] = dP[i-i][j] + dP[i][j-i]
  return dP[N-1][M-1]
                                  Break of
```

8 Min



Find the minimum health level to Start with, So that you can save the princers.



the princes

dP state





het's fill the last now last col

final ans = dP[0][0]

$$n + mat()[] = dP[N-1)(j+1)$$

$$n =$$

```
int dp[N][M] = 2-13
int minHealth (int i, int j) &
    if (i 7= N 11 j 7= M) return 00
    if (i = = N-1 ll j = = M-1) &
       if (mat[N-1][M-1] > 0) retrom 1
       else return abs (mat[N-][M-])+1
    if (dP[i][j][= -1) return dP[i][j]
    int a = minHealth (i+1, j)
    int b = min Health (i, j+1)
    retion dP[i)[j] =
              max (1, min (a,b) - mat (i)[j])
```

|   | D   | 1   | 2  | 3  |
|---|-----|-----|----|----|
| 0 | -3  | +2  | +4 | -5 |
| 1 | -6  | +5  | -4 | +6 |
| 2 | -15 | -7  | +5 | -2 |
| 3 | +2  | +10 | -3 | -4 |

|   | $\mathcal{D}$ | 1 | 2 | ٣ |
|---|---------------|---|---|---|
| 0 |               |   |   |   |
| 1 |               |   |   |   |
| 2 |               |   |   |   |
| 3 |               |   |   |   |

Q4) Grivan N av [] elements, find max Subsequence Sum. Note-En a subsequence, 2 adjacent clements cannot be present. all ele 70 14 3 &: ans = 14 MSS [O 13 14 2 g come = 15 N = 8 MSSLO 1) Optimial Substructure 2) Overlapping Subproble. leave max & MSS[0 Pick Dick max { MSS[0 an[6] + MSS[0-4]} 2 MSS[0 4] an[5] +

## 3) dP state

dP[i] = MSS from [O i] Such that adjacent elements are not present



### 4) dl expression

$$dP[i] = max (dP[i-1], an[i] + dP[i-2])$$

5) Base Condition

$$\frac{i}{2^{N}} \frac{dP[5]}{dP[0]} = dP[4] \qquad dP[3]$$

$$\frac{dP[5]}{dP[0]} \times \frac{i}{dP[1]} \times \frac{i}{dP[2]} \times \frac{i}{d$$

```
185 , mg
  if (N==1) return ar (0)
                                       MSS [
c int dP[N];
                           \alpha
                                              dP[N-1]
                           Ь
a/dPlo) = anco]
                                                   MSSCO N-2)
b/ dP(1) = mex (w1(0), an(1))
                                               TC:0(N)
                                                Sc : O(N)
                                                Iterative
                                   max (22, 24+9)
                                          33
dP[
```

Ex 
$$19$$
  $\frac{1}{4}$   $13$   $\frac{1}{4}$   $\frac$ 

```
int dP[N] = \{ \{ \} \}

int MSS (int ar[], int i) \{ \}

Top Down

if (i = = 0) return ar[0]

if (i = = 1) return max(ar[0], ar[1])

if (dP[i]! = -1) \{ \} return dP[i] \{ \}

return dP[i] = max(MSS(ar, i-1), ar[i] + MSS(0, i-2))
```

MSS(291, N-1) : ans

X eus }

