Целта на този документ е с помощта на няколко задачи и примера да изясни основните идеи за построяването на минимален суфиксен автомат по дадена дума, [BBH⁺85].

Основните понятия, които използваме са:

Дефиниция 0.1 (Релация на Майхил – Нероуд). За език $L \subseteq \Sigma^*$ и думи $u, v \in \Sigma^*$:

$$u \equiv_L v \stackrel{def}{\iff} \forall \gamma \in \Sigma^* (u \circ \gamma \in L \leftrightarrow v \circ \gamma \in L).$$

Дефиниция 0.2. За дума $w \in \Sigma^*$ с Pref(w), Inf(w) и Suff(w) бележим съответно множествата от всички префикси, всички инфикси и всички суфикси на думата w.

Дефиниция 0.3 (end – pos_w). За дума $w = a_1 a_2 \dots a_n$, $a_i \in \Sigma$, u дума $u \in \Sigma^*$:

end-
$$pos_w(u) = \{i \mid 0 \le i \le n \& u = a_{i-|u|+1} \dots a_i\}.$$

Дефиниция 0.4 ((каноничен) представител). Ако $w \in \Sigma^*$ u $v \in Inf(w)$, то \overline{v} e найдългата дума в класа на еквивалентност $[v]_{\equiv Suff_{(w)}}$

Дефиниция 0.5 (slink). Ако $w \in \Sigma^*$ и $v \in \Sigma^+$, то $s = \mathrm{slink}_w(v)$ е най-дългият суфикс на v, за който $v \not\equiv_{Suff(w)} s$.

По дадена дума $w \in \Sigma^*$ искаме да намерим:

$$Q_w = \left\{ \frac{w}{v} \mid v \in Inf(w) \right\}$$

за всяко
$$v\in Q_w$$
 : $slink_w(v)$
за всяко $v\in Q_w$: $\delta_w(v,a)=\begin{cases} \frac{w}{\sqrt{va}}, \text{ ако } va\in Inf(w)\\ \neg !, \text{ иначе}, \end{cases}$

където $a \in \Sigma$.

Връзки между $end\text{-}pos_w(.)$ и $\equiv_{Suff(w)}$

Задача 1.1. $Heka\ w = bbacbba$. $Heka\ L = Suff(w)\ e\ eзикот\ om\ cyфикси\ на\ думата\ w$.

- 1. Onpedeneme end- $pos_w(a)$, end- $pos_w(ba)$ u end- $pos_w(bba)$.
- 2. Намерете елементите на класа на еквивалентност $[a]_{\equiv L}$.
- 3. Намерете end-pos_w(c), end-pos_w(aa) u end-pos_w(baa).

Задача 1.2. Докажете отново, че за всяка дума $w \in \Sigma^*$ и думи $u, v \in \Sigma^*$ следните са еквивалентни:

- 1. $u \equiv_{\boldsymbol{L}} v$,
- 2. $\frac{\text{end-pos}_{w}(u)}{\text{end-pos}_{w}(v)} = \frac{\text{end-pos}_{w}(v)}{\text{end-pos}_{w}(v)}$

Задача 1.3. $He \kappa a \ w = bbacbba \ u \ w' = w \circ a.$

- 1. Определете end- $pos_{w'}(a)$, end- $pos_{w'}(ba)$, end- $pos_{w'}(bba)$, end- $pos_{w'}(aa)$, end- $pos_{w'}(baa)$, end- $pos_{w'}(w')$ и сравнете получените резултати с тези от задача 1.
- 2. Сравнете end- $pos_w(bb)$ и end- $pos_{w'}(bb)$.

Задача 1.4. Нека $w \in \Sigma^*$, $a \in \Sigma$ и $w' = w \circ a$ са произволни. Докажете, че:

- 1. $Inf(w') \setminus Inf(w) \subseteq Suff(w')$.
- 2. $a \kappa o v \in Suff(w'), mo: end-pos_{w'}(v) = end-pos_{w}(v) \cup \{|w'|\}.$
- 3. $a \kappa o v \notin Suff(w')$, $mo: end-pos_{w'}(v) = end-pos_{w}(v)$.

2 Свойства на slink_w

Задача 2.1. *Heка* w = bbacbba u $w' = w \circ a$. *Hamepeme:*

- 1. $\operatorname{slink}_w(w)$, $\operatorname{slink}_w(bba)$, $\operatorname{slink}_w(a)$, $\operatorname{slink}_w(bbac)$, $\operatorname{slink}_w(bb)$, $\operatorname{slink}_w(b)$.
- 2. $\operatorname{slink}_{w'}(w)$, $\operatorname{slink}_{w'}(w')$, $\operatorname{slink}_{w'}(bba)$, $\operatorname{slink}_{w'}(a)$.

Задача 2.2. Нека $w \in \Sigma^*$, $a \in \Sigma$ и $w' = w \circ a$. Докажете, че ако $u, v \in Inf(w')$ са такива, че:

$$u \equiv_{Suff(w)} v \& u \not\equiv_{Suff(w')} v,$$

то поне една от двете думи и и v е еквивалентна на w' или $\mathrm{slink}_{w'}(w')$ относно $\equiv_{\mathrm{Suff}(w')}$. Заключете, че:

$$ind(\equiv_{Suf\!f(w)})+1\leq ind(\equiv_{Suf\!f(w')}\leq ind(\equiv_{Suf\!f(w)})+2.$$

Задача 2.3. За думите w = bbacbba и $w' = w \circ a$ намерете Q_w и $Q_{w'}$.

Задача 2.4. Докажете, че за всеки $w \in \Sigma^*$, $a \in \Sigma$ и $w' = w \circ a$ е в сила:

$$Q_{w'} = Q_w \cup \{w', slink_{w'}(w')\}.$$

3 Пресмятане на $slink_{wa}(wa)$

Задача 3.1. *Heка* w = bbacbba u $w' = w \circ a$ намерете:

- 1. всички $v \in Q_w$, за които $v \circ a \in Inf(w)$.
- 2. всички $v \in Suff(w)$, за които $v \circ a \in Inf(w)$.
- 3. всички $v \in Suff(w) \in Q_w$, за които $v \circ a \in Inf(w)$.

```
NewSlink(Q, slink, \delta, u, w', a)
FindStem(Q, slink, \delta, w, w', a)
                                                                                        v \leftarrow \delta(u, a), s \leftarrow u \circ a
                                                                                        Q \leftarrow Q \cup \{s\}
                                                                                        slink(s) \leftarrow slink(v)
        while u \neq NULL and \neg!\delta(u,a)
@2
@3
             \delta(u,a) \leftarrow w'
                                                                                @4
                                                                                        slink(v) \leftarrow s
             u \leftarrow slink(u)
                                                                                        slink(w') \leftarrow s
@4
                                                                                @5
                                                                                        for b \in \Sigma: \delta(v,b) \neq NULL do
@5
                                                                                @6
        done
                                                                                @7
        return u
                                                                                             \delta(s,b) \leftarrow \delta(v,b)
                                                                                08
                                                                                        {\tt return} \ s
```

Задача 3.2. Нека $w \in \Sigma^*$, $a \in \Sigma$ u $w' = w \circ a$. Да разгледаме процедурата $\mathit{FindStem}^1$, в която предполагаме, че $Q = Q_w \cup \{w'\}$, $\mathit{slink} = \mathit{slink}_w$ u $\delta = \delta_w$. Нека u e резултатът от изпълнението на $\mathit{FindStem}$.

Докажете, че:

1.
$$slink_{w'}(w') = \begin{cases} \varepsilon & ako \ u = NULL \\ u \circ a & unaue. \end{cases}$$

- 2. aro $u \neq NULL$ u $u \circ a \neq \delta_w(u, a)$, mo $|\delta_w(u, a)| > |u| + 1$.
- 3. при предположенията на предишната подточка докажете, че след изпълнението на $NewSlink^2$ функцията $slink = slink_{w'}$.

4 Конструирането на преходите $\delta_{w'}$

Задача 4.1. Нека $w \in \Sigma^*$, $a \in \Sigma$ и $w' = w \circ a$. Нека и е дефинирано както в задача 3.2, а $v \in Q_w \cup \{slink_{w'}(w')\}$ е произволно. Докажете, че ако $a \neq b \in \Sigma$, то:

- 1. $\delta_{w'}(w',b)$ не е дефинирано.
- 2. $\delta_{w'}(v,b) = \delta_w(v,b)$ sa $v \in Q_w$.
- 3. $\delta_{w'}(v,b) = \delta_w(\delta_w(u,a),b)$ are $v = \operatorname{slink}_{w'}(w') \notin Q_w$.

Задача 4.2. Нека $w \in \Sigma^*$, $a \in \Sigma$ и $w' = w \circ a$. Нека и е дефинирано както в задача 3.2, а $v \in Q_w \cup \{slink_{w'}(w')\}$ е произволно. Докажете, че:

- 1. $\delta_{w'}(v, a) = \delta_w(v, a)$ are $v \notin Suff(w)$.
- 2. $\delta_{w'}(v,a) = w'$, and $v \in Suff(w) \cap Q_w$, |v| > |u|,
- 3. $\delta_{w'}(v,a) = \delta_{w'}(\delta_w(u,a),a)$, and $v = \operatorname{slink}_{w'}(w') \notin Q_w$.

Задача 4.3. Разгледайте процедурата InsertNextChar, която се изпълнява с $Q=Q_w$, $slink=slink_w$ и $\delta=\delta_w$. Докажете, че ако се изпълни ред @11, то непосредствено след това:

- 1. $Q = Q_{w'}$, където $w' = w \circ a$,
- 2. $slink = slink_{w'}$,

 $^{^1 \}mbox{Може да се абстрахирате засега от ред @3.$

 $^{^2 \}mbox{Може да се абстрахирате засега от редове @6 и @7.}$

3. $\delta(v,b) = \delta_{w'}(v,b)$ за всички състояния $v \in Q$ и $b \in \Sigma$ с изключение може би на b = a и $v \in Suff(w)$ с $|v| \le |u|$.

Задача 4.4. Нека $w \in \Sigma^*$, $a \in \Sigma$ u $w' = w \circ a$. Нека u e дефинирано както в задача 3.2, a $v \in Suff(w)$ c $|v| \le |u|$ e произволно. Тогава $\delta_{w'}(v,a) = \begin{cases} slink_{w'}(w') \text{ ако } \delta_w(v,a) = \delta_w(u,a) \\ \delta_w(v,a), \text{ иначе.} \end{cases}$

Задача 4.5. Докажете, че ако $Q=Q_w$, $slink=slink_w$ и $\delta=\delta_w$ за някоя дума $w\in\Sigma^*$, то след изпълнението на InsertNextChar $Q=Q_{w\circ a}$, $slink=slink_{w\circ a}$ и $\delta=\delta_{w\circ a}$ като резултатът е $w\circ a$.

```
InsertNextChar(Q, slink, \delta, w, a)
                                                                            w' \leftarrow w \circ a
                                                                             Q \leftarrow Q \cup \{w'\}
                                                                     @3
                                                                             u \leftarrow FindStem(Q, slink, \delta, w, w', a)
Redirect(Q, slink, \delta, u, s, a)
                                                                             \quad \text{if } u = NULL \ \text{then} \\
                                                                     @4
       v \leftarrow \delta(u, a)
                                                                                  slink(w') \leftarrow \varepsilon
                                                                     @5
       while u is defined and
                                                                                 return w'
                                                                     06
                      \delta(u,a) = v do
                                                                     @7
                                                                             v \leftarrow \delta(u, a)
@3
            \delta(u,a) \leftarrow s
                                                                             if |v| = |u| + 1 then
                                                                     08
@4
            u \leftarrow slink(u)
                                                                     @9
                                                                                 slink(w') \leftarrow v
@5
       done
                                                                     @10
                                                                                  return w'
                                                                     @11
                                                                              s \leftarrow NewSlink(Q, slink, \delta, u, w', a)
                                                                              Redirect(Q, slink, \delta, u, s, a)
                                                                     @12
                                                                     @13
                                                                              return w'
```

Литература

[BBH⁺85] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas. The smallest automation recognizing the subwords of a text. *Theoretical Computer Science*, 40:31 – 55, 1985. Eleventh International Colloquium on Automata, Languages and Programming.

Упътвания към някои от задачите

Упътване 4.1 (Упътване за задача 2.2). Използвайте задачи 1.2 и 1.4.

Тъй като $u \equiv_{Suff(w)} v$, но $u \not\equiv_{Suff(w')} v$, то една от думите u и v е суфикс на w', а другата – не, защото техните $end\text{-}pos_{w'}(.)$ множества могат да се различават единствено по елемента |w'|. Ако $|w'| \in end\text{-}pos_{w'}(v) \setminus end\text{-}pos_{w'}(u)$, разгледайте два случая:

- 1. $end\text{-}pos_{w'}(v) = \{|w'|\}$. Тогава $v \equiv_{Suff(w')} w'$ като обърнете внимание, че $end\text{-}pos_{w'}(u) = \emptyset$. Тази ситуация може да интерпретираме като $u \notin Inf(w')$ и v се среща един единствен път в w' при това като суфикс.
- 2. $|w'| \subsetneq end\text{-}pos_{w'}(v)$. Тогава има позиция $k \neq |w'|$, за която $k \in end\text{-}pos_{w'}(v)$. Оттук k < |w'| и следователно $v \not\equiv_{w'} w'$ и $v \in Inf(w)$. Нека $v \equiv_{Suff(w')} v$ е най-дългият представител в класа на v относно $v \equiv_{Suff(w')} v$. Тогава $v \equiv_{Suff(w')} v$ завършва на позиция |w'| в w',

следователно е суфикс на w'. Аналогично, тъй като $\overset{\leftarrow}{v}$ завършва и на позиция k в w. Тъй като u също завършва на позиция k в w, но не и на позиция |w'| в w', то:

$$u = \alpha \circ b \circ \overleftarrow{v}$$
 if $w' = \beta \circ c \circ \overleftarrow{v}$.

В w имаме, че $end\text{-}pos_w(\overleftarrow{v}) = end\text{-}pos_w(v) = end\text{-}pos_w(u)$. Оттук получаваме, че $end\text{-}pos_w(\overleftarrow{v}) = end\text{-}pos_w(b \circ \overleftarrow{v})$, но тогава $c \circ \overleftarrow{v} \not\in Inf(w)$, откъдето наистина $\overleftarrow{v} = slink_{w'}(w')$.

Упътване 4.2 (Упътване за задача 2.4). Използвайте задача 2.2 и разсъжденията от нея.

Упътване 4.3 (за задача 4.1). Забележете, че ако $b \neq a$ то end- $pos_w(v \circ b) = end$ - $pos_{w'}(v \circ b)$. Сега използвайте задача 1.4

Упътване 4.4 (за задача 4.2). Отново използвайте задача 1.4.

Упътване 4.5 (за задача 4.4). Забележете, че ако v е както в условието и $\delta_w(v,a) \neq \delta_w(u,a)$, то позицията |w|+1=|w'| се добавя към всички елементи от класа на еквивалентност $[v\circ a]_{Suff(w)}$. Тогава той остава непроменен.

Относно тези v, за които $\delta_w(v,a)=\delta_w(u,a)$. За тях имаме, че $v\circ a\equiv_{Suff(w)}u\circ a$ и тъй като $v\circ a$ е суфикс и на w' както и $u\circ a=slink_{w'}(w')$, то $v\circ a\equiv_{Suff(w')}u\circ a$.