## **Analyse en Composantes Principales Mixte**

Rafik Abdesselam

#### **CREM UMR CNRS 6211**

Université de Caen, Esplanade de la Paix, F-14032 Caen, France rafik.abdesselam@unicaen.fr, http://www.unicaen.fr/crem/membres.php

**Résumé.** Le traitement simultané de données mixtes (quantitatives et qualitatives) ne peut pas se réaliser directement par les méthodes classiques de la statistique exploratoire multidimensionnelle. Dans ce travail, l'analyse factorielle sur données mixtes proposée est une analyse en composantes principales normée après transformation des indicatrices des variables qualitatives en variables quantitatives au travers de projections de nuages de points dans l'espace des individus correspondant à des analyses de la variance multivariée. La méthode est évaluée sur la base d'une application sur données réelles mixtes.

### 1 Introduction

Dans le cadre d'un traitement de données multidimensionnelles, il est très fréquent que le thème homogène de variables à analyser soit constitué de données mixtes (variables quantitatives et qualitatives). La méthodologie usuelle de traitement consiste, soit à mettre les variables qualitatives [resp. quantitatives] en éléments illustratifs dans une Analyse en Composantes Principales (ACP) [resp. Analyse des Correspondances Multiples (ACM)], soit encore de discrétiser les variables quantitatives du thème en variables qualitatives en vue d'une ACM, ce qui introduit très souvent un biais dû au choix du nombre de classes et de leurs amplitudes égales ou différentes, et qui occasionne une perte d'information. De nombreux chercheurs se sont intéressés à cette problématique et ont proposé des méthodes qui traitent simultanément les deux types de variables en éléments actifs : l'ACP avec indicatrices introduite par Tenenhaus (1977); Escofier et Pagès (1979); Saporta (1990); Young (1981); Pagès (2002) et plus récemment l'Analyse Factorielle de Données Mixtes (AFDM) proposée par Pagès (2004).

L'Analyse en Composantes Principales Mixte (ACPM) proposée est une ACP normée des variables quantitatives et des indicatrices des variables qualitatives transformées en variables combinaisons linéaires des variables quantitatives, à partir de projections orthogonales de nuages de points dans l'espace des individus muni d'un produit scalaire relationnel. Chaque variable qualitative est quantifiée séparément, puis traitée de la même façon que les variables quantitatives.

L'ACPM est formellement proche de l'AFDM en ce sens qu'elles consistent toutes les deux à quantifier les variables qualitatives en vue d'une ACP, mais elles se différencient toutefois par le type d'ACP et le choix de la tranformation.

## Transformation des données qualitatives en quantitatives

On dispose de p variables quantitatives centrées  $\{x^j; j=1, p\}$  et de m variables qualitatives  $(y_1,\ldots,y_l,\ldots,y_m)$  auxquelles sont associées au total  $q=\sum_{l=1}^m q_l$  variables indicatrices non centrées  $\{y_l^k; k = 1, q_l\}_{\{l=1, m\}}$ .

On utilisera les notations suivantes pour construire la matrice M associée au produit scalaire de référence dans l'espace des individus  $E = E_x \oplus E_y = R^{p+q}$ .

 $E_x = R^p$  étant le sous-espace des individus associé par dualité aux p variables quantitatives centrées  $\{x^j; j=1, p\},\$ 

 $E_y = \bigoplus \{E_{y_l}\}_{\{l=1,m\}} = R^q$  étant les m sous-espaces des individus associés aux m variables qualitatives  $(y_1, \ldots, y_l, \ldots, y_m)$ ,

 $E_{y_l}=R^{q_l}$  étant le sous-espace des individus associé par dualité aux  $q_l$  variables indicatrices non centrées des modalités de  $y_l$ ,

X est la matrice d'ordre (n, p) des données quantitatives associée aux p variables centrées  $\{x^j; j = 1, p\},\$ 

 $Y_l$  est la matrice des données qualitatives d'ordre  $(n, q_l)$  associée aux  $q_l$  indicatrices non centrées  $\{y_l^k; k=1, q_l\}$  de la  $l^{\grave{e}me}$  variable qualitative  $y_l$ , codage disjonctif complet,

 $M_{y_l}$  [resp.  $M_x$ ] est la matrice du produit scalaire dans l'espace  $E_{y_l}$  [resp.  $E_x$ ], isomorphe du sous-espace de même nom, via l'injection canonique,

 $D_{y_l}$  est la matrice diagonale des poids définie par  $[D_{y_l}]_{kk} = n_k/n$  pour tout k = 1 à  $q_l$ , où  $n_k$ est le nombre d'individus possédant la modalité k de  $y_l$ ,

 $N_x = \{x_i \in E_x ; i = 1, n\}$  est le nuage des individus associé au tableau de données X,

 $N_{y_l}=\{y_i\in E_{y_l}\,;\,i=1,n\}$  est le nuage des individus associé au tableau de données  $Y_l,P_{E_{y_l}}^M$  est l'opérateur de projection M-orthogonale sur  $E_{y_l}$ .

La transformation des données qualitatives en quantitatives se fait à l'aide de la construction statistique et géométrique de m nuages  $\hat{N}_x^{y_l} = \{P_{E_{y_l}}^M(x_i); x_i \in N_x\} \subset E_{y_l} \subset E$ . Pour tout l=1 à m, le sous-espace  $E_{y_l}$  est considéré comme sous-espace explicatif sur lequel est projeté M-orthogonalement le nuage  $N_x$  des données quantitatives du sous-espace à expliquer  $E_x$ .

Le produit scalaire M de référence dans l'espace  $E=E_x\oplus\{E_{y_l}\}_{\{l=1,m\}}=R^{p+q}$  des individus joue un rôle fondamental dans notre approche pour réaliser les m projections. A priori, pour tout l=1 à m, le produit scalaire  $M_{y_l}$  intra le sous-espace  $E_{y_l}$  sur lequel on projette, pourrait être quelconque (Abdesselam (2005)); le choix  $M_{y_l}=\chi^2_{y_l}=D_{y_l}^{-1}$  (distance du khideux) simplifie les calculs. Quant au produit scalaire  $M_x$ , intra le sous-espace  $E_x$ , on choisit  $M_x = V_x^+$  (distance de Mahalanobis) afin de maximiser le critère d'inertie expliquée.

La matrice M d'ordre (p+q) associée au produit scalaire partitionné et équilibré dans E, relativement à l'ensemble des couples de variables  $\{x^j; j=1,p\}$  et  $\{y_l{}^k; k=1,q_l\}_{l=1,m}$ , est telle que :

$$\begin{cases} M_x = V_x^+ & ; \quad M_{y_l} = \chi_{y_l}^2 \\ M_{xy_l} = M_x[(V_x M_x)]^+ V_{xy_l} M_{y_l}[(V_{y_l} M_{y_l})]^+ = V_x^+ V_{xy_l} \chi_{y_l}^2 \\ M_{y_l y_{l'}} = 0 & pour \ l = 1, m \\ pour \ l \neq l' \end{cases}$$

où  $V_{y_l}={}^tY_lDY_l$ ,  $V_x={}^tXDX$  et  $V_{xy_l}={}^tXDY_l$  désignent les matrices de variances-covariances,  $D=(1/n)I_n$  est la matrice diagonale des poids des n individus et  $I_n$  la matrice unité d'ordre n.  $[(V_xM_x)]^+]$  est l'inverse généralisée de Moore-Penrose de  $(V_xM_x)$ ]. L'introduction d'inverses généralisées est une conséquence de la singularité des matrices  $V_x$  et  $V_{y_l}$ , lorsque rang  $[V_x] < p$  et puisque rang  $[V_{y_l}] = q_l - 1$ .

Le produit scalaire M positionne les sous-espaces des individus  $E_x$  et  $\{E_{y_l}\}_{\{l=1,m\}}$  tel que l'on puisse traduire en terme d'inertie dans l'espace des individus E, la structure des associations observées entre les sous-espaces des variables  $F_x$  et  $F_y$  associés par dualité dans l'espace des variables  $F = R^n$  muni de la métrique diagonale des poids D.

Par ailleurs, il n'est pas indispensable de travailler dans l'espace E des individus, on peut tout aussi bien raisonner dans l'espace F des variables.

Par construction, le produit scalaire dans l'espace explicatif  $E_y = \bigoplus \{E_{y_l}\}_{\{l=1,m\}}$  est à effet relationnel nul. Ainsi, la projection M-orthogonale du nuage  $N_x$  sur  $E_y$  a pour coordonnées  $[\hat{X}^{y_1},\ldots,\hat{X}^{y_l},\ldots,\hat{X}^{y_m}]$ : juxtaposition de m tableaux  $\hat{X}^{y_l} = XV_x^+V_{xy_l}$  de données quantitatives d'ordre  $(n,q_l)$  associés aux m nuages de points  $\hat{N}_x^{y_l} = P_{E_{y_l}}^M(N_x) \subset E_{y_l}$ . On obtient ainsi l'ensemble des m projections : c'est là un des avantages pratiques du produit scalaire M dans l'espace E des individus.

**Remarque :** L'ACP du triplet  $(\hat{X}^{y_l}; \chi^2_{y_l}; D)$  est équivalente au MANOVA : l'analyse de la variance multivariée entre les p variables quantitatives et les  $q_l$  indicatrices associées aux niveaux du facteur explicatif  $y_l$ , et dont l'inertie expliquée,  $I(\hat{N}^{y_l}_x) = trace(V_{y_lx}V_x^+V_{xy_l}\chi^2_{y_l})$ , est égale à la trace de Pillai.

On note, pour tout l=1 à  $m,\ Z_l=Y_l-{}^tG_l$  la matrice des données d'ordre  $(n,q_l)$  associée au nuage  $N_{z_l}\subset E_{y_l}$  dont l'inertie  $I(N_{z_l})=q_l-1.\ G_l={}^t\hat{X}^{y_l}D\,1_n$  désigne le vecteur moyennes des variables de  $\hat{X}^{y_l}$  et  $1_n$  le vecteur unité d'ordre n.

**Définition :** L'ACPM du tableau de données mixtes  $[X, Y_1, \ldots, Y_l, \ldots, Y_m]$  d'ordre (n; p+q) consiste à effectuer l'ACP normée du tableau  $[X, Z_1, \ldots, Z_l, \ldots, Z_m]$  de données (quantitatives).

Ainsi, les m tableaux d'indicatrices non centrées  $[Y_1,\ldots,Y_l,\ldots,Y_m]$  associés aux m variables qualitatives sont centrés relativement aux m centres de gravité  $[G_1,\ldots,G_l,\ldots,G_m]$ , puis remplacés par les m tableaux  $[Z_1,\ldots,Z_l,\ldots,Z_m]$  de variables quantitatives via les m tableaux  $[\hat{X}^{y_1},\ldots,\hat{X}^{y_l},\ldots,\hat{X}^{y_m}]$  des m MANOVA séparées.

D'un point de vue méthodologique, l'ACPM se présente comme un enchaînement de deux procédures : une procédure de projection de nuages de points correspondant aux coordonnées de MANOVA afin de quantifier les données qualitatives, on tient ainsi compte des rapports de corrélation, puis une procédure d'ACP normée pour synthétiser les corrélations linéaires de l'ensemble des variables quantitatives et qualitatives transformées.

D'un point de vue pratique, il suffit simplement de centrer chaque tableau d'indicatrices  $Y_l$  par rapport au centre de gravité correspondant  $G_l = V_{y_lx}V_x^{+\ t}XD1_n$ , puis d'exécuter un programme classique d'ACP standardisée.

Cette analyse mixte réduit le nombre de dimensions des données passant d'un groupe de (p+q) variables initiales à un groupe plus petit dont l'inertie totale est égale et synthétisée par (p+q-m) composantes non corrélées : somme des inerties de l'ACP normée des variables quantitatives et de l'ACM des variables qualitatives.

### 2.1 Comparaison

L'ACPM coı̈ncide avec l'AFDM proposée dans Pagès (2004) qui consiste à effectuer l'ACP usuelle du tableau de données  $[X^{cr},Y_1/\sqrt{D_{y_l}},\dots,Y_l/\sqrt{D_{y_l}},\dots,Y_m/\sqrt{D_{y_m}}]$ : les variables quantitatives  $X^{cr}$  sont centrées et réduites, et les indicatrices des variables qualitatives sont affectées d'une pondération. Pour tout l=1 à m, cela revient à diviser les valeurs de l'indicatrice  $y_l^k$  de la variable  $y_l$  par  $\sqrt{\frac{n_k}{n}}$ ; codage ACP de l'indicatrice  $y_l^k$ .

L'objectif de l'ACPM est le même que celui de l'AFDM, à savoir rechercher les facteurs principaux, notés  $F^s$ , qui maximisent le critère mixte ci-dessous, proposé en termes de carrés de corrélations par Saporta (1990) et géométriquement en termes de cosinus carrés d'angles par Escofier (1979) :

$$\sum_{j=1}^{p} r^2(x^j, F^s) + \sum_{l=1}^{m} \eta^2(y_l, F^s) = \sum_{j=1}^{p} \cos^2 \theta_{js} + \sum_{l=1}^{m} \cos^2 \theta_{ls}$$

où  $r^2$  et  $\eta^2$  sont respectivement le carré du coefficient de corrélation linéaire des variables quantitatives et le rapport de corrélation des variables qualitatives avec le facteur de rang s, et  $\theta$  l'angle entre les vecteurs correspondants, les variables étant centrées et réduites.

# 3 Exemple d'application

Pour illustrer cette approche, nous reprenons les données publiées dans Lambin (1990) et reprises en annexe (tableau 7), elles portent sur un échantillon de 27 petites voitures du marché belge. On dispose d'un thème homogène de 9 variables mixtes dont p=6 caractétristiques continues : la cylindrée, la consommation urbaine, la vitesse maximum, le volume du coffre, le rapport poids/puissance et la longueur, et m=3 caractéristiques nominales : la puissance fiscale (4CV, 5CV, 6CV), la marque du constructeur (Française, Etrangère) et quatre classes de prix (CP1, CP2, CP3, CP4) totalisant q=9 modalités.

L'objectif est de synthétiser simultanément au sens des corrélations l'ensemble de ces caractéristiques mixtes.

| Libellé | Moyenne | E. Type | Min    | Max     | FISC  | MARQ  | PRIX  |
|---------|---------|---------|--------|---------|-------|-------|-------|
| CONS    | 7.14    | 1.12    | 5.60   | 9.30    | 0.809 | 0.009 | 0.636 |
| CYLI    | 1165.63 | 204.17  | 903.00 | 1597.00 | 0.843 | 0.002 | 0.846 |
| VITE    | 154.26  | 21.94   | 115.00 | 200.00  | 0.690 | 0.010 | 0.826 |
| VOLU    | 901.41  | 301.67  | 202.00 | 1200.00 | 0.136 | 0.168 | 0.029 |
| RP/P    | 18.65   | 5.42    | 10.20  | 33.10   | 0.562 | 0.042 | 0.660 |
| LONG    | 3.62    | 0.07    | 3.40   | 3.70    | 0.094 | 0.022 | 0.163 |

TAB. 1 – Statistiques sommaires - Rapports de corrélation.

Le tableau 1 récapitule les statistiques élémentaires des variables quantitatives ainsi que leurs rapports de corrélation avec les variables qualitatives considérées.

| $\overline{G_1}$ |       |       | $G_2$ |        | $G_3$  |       |       |       |
|------------------|-------|-------|-------|--------|--------|-------|-------|-------|
| 4CV              | 5CV   | 6CV   | FRAN  | ETRA   | CP1    | CP2   | CP3   | CP4   |
| -4.386           | 1.532 | 2.853 | 6.486 | -6.487 | -8.599 | 4.236 | 0.523 | 3.839 |

TAB. 2 – Moyennes pour le centrage des indicatrices.

Le tableau 2 présente les moyennes ayant servi à la transformation des indicatrices des trois variables qualitatives (puissance fiscale, marque du constructeur et prix) en variables quantitatives, étape préalable à l'application de l'ACP normée de l'ensemble des variables. Les données qualitatives transformées sont reprises en annexe (tableau 8).

|      | CONS | CYLI  | VITE  | VOLU  | RP/P   | LONG   | 4CV    | 5CV    | 6CV    | FRAN   | ETRA   | CP1    | CP2    | CP3    | CP4    |
|------|------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| CONS | 1    | 0.797 | 0.780 | 0.295 | -0.682 | 0.197  | -0.548 | -0.382 | 0.896  | -0.094 | 0.094  | -0.402 | -0.390 | 0.247  | 0.656  |
| CYLI |      | 1     | 0.832 | 0.112 | -0.779 | 0.290  | -0.838 | 0.061  | 0.837  | 0.043  | -0.043 | -0.677 | -0.290 | 0.481  | 0.619  |
| VITE |      |       | 1     | 0.022 | -0.938 | 0.155  | -0.660 | -0.145 | 0.819  | -0.100 | 0.100  | -0.603 | -0.297 | 0.325  | 0.727  |
| VOLU |      |       |       | 1     | 0.102  | -0.073 | -0.105 | -0.266 | 0.330  | 0.409  | -0.409 | -0.011 | -0.101 | -0.023 | 0.156  |
| RP/P |      |       |       |       | 1      | -0.098 | 0.609  | 0.108  | -0.735 | 0.204  | -0.204 | 0.547  | 0.309  | -0.390 | -0.580 |
| LONG |      |       |       |       |        | 1      | -0.306 | 0.165  | 0.188  | 0.149  | -0.149 | -0.402 | 0.125  | 0.231  | 0.113  |
| 4CV  |      |       |       |       |        |        | 1      | -0.459 | -0.681 | -0.125 | 0.125  | 0.796  | 0.113  | -0.625 | -0.402 |
| 5CV  |      |       |       |       |        |        |        | 1      | -0.337 | 0.227  | -0.227 | -0.366 | 0.264  | 0.317  | -0.199 |
| 6CV  |      |       |       |       |        |        |        |        | 1      | -0.054 | 0.054  | -0.542 | -0.337 | 0.401  | 0.590  |
| FRAN |      |       |       |       |        |        |        |        |        | 1      | -1.000 | -0.112 | 0.227  | -0.330 | 0.328  |
| ETRA |      |       |       |       |        |        |        |        |        |        | 1      | 0.112  | -0.227 | 0.330  | -0.328 |
| CP1  |      |       |       |       |        |        |        |        |        |        |        | 1      | -0.366 | -0.498 | -0.320 |
| CP2  |      |       |       |       |        |        |        |        |        |        |        |        | 1      | -0.309 | -0.199 |
| CP3  |      |       |       |       |        |        |        |        |        |        |        |        |        | 1      | -0.271 |
| CP4  |      |       |       |       |        |        |        |        |        |        |        |        |        |        | 1      |

TAB. 3 – Matrice de corrélation des caractéristiques des voitures.

Les principaux résultats de l'ACPM sont présentés dans les tableaux et graphiques ci-après, ils s'interprètent avec les règles classiques d'une ACP.

Le calcul de la matrice de corrélation des variables, présenté dans le tableau 3, donne des indications sur l'évolution simultanée des variables mixtes prises deux à deux.

|            | $F^1$ | $F^2$ | $F^3$ | $F^4$ | $F^5$ | $F^6$ | $F^7$ | <br>$F^{12}$ |
|------------|-------|-------|-------|-------|-------|-------|-------|--------------|
| Val.Propre | 6.154 | 2.756 | 2.349 | 1.210 | 0.937 | 0.808 | 0.308 | <br>0.023    |
| % Inertie  |       |       |       |       |       |       |       |              |
| % Cumulé   | 41.02 | 59.40 | 75.06 | 83.12 | 89.37 | 94.75 | 96.81 | <br>100.00   |

TAB. 4 – Valeurs propres issues de l'ACPM.

De même, le tableau 4 donne les valeurs propres de la matrice de corrélation, les proportions et les proportions cumulées de la variance expliquée par les composantes. Bien que l'inertie totale soit égale au nombre de variables p+q=15 (ACP sur matrice de corrélation ou normée), elle est résumée et synthétisée par p+q-m=12 moments principaux non nuls.



FIG. 1 – Représentation des variables mixtes dans le premier plan principal.

La figure 1 donne la représentation géométrique, cercle des corrélations, des variables quantitatives et qualitatives transformées. On peut ainsi interpréter simultanément et en éléments actifs les deux types de variables dans ce nouveau système de coordonnées.

Ainsi, par exemple, l'examen de la figure 1 fait apparaître une opposition entre la cylindrée, la vitesse, la consommation, un prix et une puissance fiscale élevés d'une part (corrélations positives importantes avec le premier axe) et le rapport poids/puissance, une puissance fiscale et un prix faibles d'autre part (corrélations négatives importantes avec le premier axe); l'axe 1 représente le degré de performance des voitures auquel sont associés le prix et la puissance fiscale. L'axe 2 est lié à la variable marque du constructeur, il oppose les voitures de marque française aux autres de marque étrangère.

|      | $F^1$ | $F^2$ | $F^3$ | $F^4$ | $F^5$ | $F^6$ | $F^7$ | <br>$F^{12}$ |
|------|-------|-------|-------|-------|-------|-------|-------|--------------|
| CONS | .859  | 118   | .346  | .036  | .167  | .038  | .190  | <br>004      |
| CYLI | .950  | .068  | 059   | .030  | 073   | .039  | .074  | <br>.020     |
| VITE | .928  | 101   | .103  | 226   | 101   | 049   | 122   | <br>.118     |
| VOLU | .152  | .375  | .477  | .618  | .280  | 275   | .081  | <br>003      |
| RP/P | 865   | .223  | 010   | .235  | .167  | .062  | .254  | <br>.065     |
| LONG | .292  | .270  | 335   | 070   | .506  | .675  | .004  | <br>.001     |
| 4CV  | 830   | 226   | .400  | 170   | .140  | .072  | 154   | <br>004      |
| 5CV  | 044   | .378  | 791   | .069  | 401   | .007  | .212  | <br>.006     |
| 6CV  | .916  | 072   | .228  | .123  | .182  | 082   | 012   | <br>001      |
| FRAN | 023   | .946  | .195  | .096  | 140   | .079  | 155   | <br>.005     |
| ETRA | .023  | 946   | 195   | 096   | .140  | 079   | .155  | <br>005      |
| CP1  | 702   | 302   | .505  | .155  | 221   | .256  | .052  | <br>.038     |
| CP2  | 307   | .451  | 362   | 455   | .436  | 411   | .013  | <br>.015     |
| CP3  | .490  | 299   | 593   | .520  | .018  | .008  | 189   | <br>014      |
| CP4  | .661  | .303  | .472  | 381   | 199   | .092  | .158  | <br>051      |

TAB. 5 – Corrélations variables - facteurs.

Pour évaluer la qualité de la représentation des variables mixtes, le tableau 5 résume les corrélations des facteurs principaux avec les variables initiales.

|       | $F^1$ | $F^2$ | $F^3$ | $F^4$ | $F^5$ | $F^6$ | $F^7$ | <br>$F^{12}$ | Somme |
|-------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|
| CONS  | .738  | .014  | .120  | .001  | .028  | .001  | .036  | <br>.000     | 1     |
| CYLI  | .903  | .005  | .004  | .001  | .005  | .002  | .006  | <br>.000     | 1     |
| VITE  | .862  | .010  | .011  | .051  | .010  | .002  | .015  | <br>.014     | 1     |
| VOLU  | .023  | .141  | .227  | .382  | .078  | .076  | .007  | <br>.000     | 1     |
| RP/P  | .748  | .050  | .000  | .055  | .028  | .004  | .065  | <br>.004     | 1     |
| LONG  | .085  | .073  | .112  | .005  | .256  | .456  | .000  | <br>.000     | 1     |
| FISC  | .918  | .146  | .628  | .029  | .163  | .007  | .049  | <br>.000     | 2     |
| MARQ  | .001  | .895  | .038  | .009  | .020  | .006  | .024  | <br>.000     | 1     |
| PRIX  | .929  | .364  | .705  | .498  | .219  | .186  | .048  | <br>.003     | 3     |
| Somme | 5.206 | 1.697 | 1.844 | 1.032 | .808  | .741  | .249  | <br>.022     | 12    |

TAB. 6 – Résultats du critère.

Outre les outils d'aide à l'interprétation d'une ACP, les résultats graphiques et numériques, le tableau 6 donne les carrés des corrélations linéaires des variables quantitatives et les rapports de corrélation des variables qualitatives avec les premières composantes principales de l'ACPM.

Si on prend en considération l'ensemble des composantes, la somme des carrés des corrélations étant égale à l'unité pour une variable quantititive, et la somme des rapports de corrélation étant égale à l'inertie totale du nuage associé à la variable qualitative considérée, ce tableau illustre la qualité de la représentation des variables quantitatives et qualitatives sur les axes principaux selon le critère mixte à maximiser.



FIG. 2 – Représentation des individus et des modalités.

Enfin, la figure 2 donne la représentation graphique classique, dans le premier plan factoriel défini par l'ensemble des variables mixtes initiales, des individus-voitures et des centres de gravité associés aux modalités des variables qualitatives.

## 4 Conclusion et perspectives

Dans ce travail, l'ACPM proposée semble bien prendre en compte l'équilibre des structures des deux types de variables : les corrélations linéaires entre les variables quantitatives, les associations entre les modalités des variables qualitatives ainsi que leurs rapports de corrélation.

Cette analyse factorielle mixte est facile à mettre en oeuvre à l'aide d'un simple programme d'ACP. Les résultats obtenus sont identiques à ceux de l'AFDM.

Il serait aussi intéressant de comparer les résultats de l'ACPM avec ceux d'une analyse canonique généralisée à (p+m) groupes de variables mixtes, en considérant chaque variable, quantitative ou qualitative, comme un groupe d'une seule variable.

Enfin, cette méthodologie de quantification de variables qualitatives permet d'élargir le champ d'application des techniques de classification aux données mixtes et d'étendre celui des méthodes factorielles, notamment décisionnelles, en mettant en oeuvre une analyse discriminante sur variables mixtes.

### Références

- Abascal-Fernandez, E., M.-I. Landaluce-Cluo, et I. Garcia-Laube (2003). Multiple factor analysis of mixed tables: a proposal for analysing problematic metric variables. *Proceeding of CARME meeting, Barcelona*.
- Abdesselam, R. (2005). *Dissymmetrical Multivariate ANalysis Of VAriance*. Classification and Data Analysis: In Book of Short Papers, Group of the Italian Statistical Society, Editors S. Zani and A. Cerioli, p. 189-192.
- Cazes, P. (1980). *Note sur les éléments supplémentaires en analyse des correspondances*. Cahier de l'analyse des données, 7(1) 9-23 et 7(2) 133-154.
- Escofier, B. et J. Pagès (1979). *Traitement simultané de variables quantitatives et qualitatives en analyse factorielle*. Cahier de l'analyse des données, , vol. 4(2), p. 137-146.
- Gifi, A. (1990). Nonlinear multivariate analysis. Leiden: Department of Data Theory.
- Kiers, H.-A.-L. (1988). Principal components analysis on a mixture of quantitative and qualitative data based on generalized correlation coefficients. M.G.H. Jansen, W.H. van Schuur (Eds).
- Lambin, J. (1990). La recherche marketing, Analyser Mesurer Prévoir. McGraw-Hill.
- Pagès, J. (2002). Analyse factorielle multiple appliquée aus variables qualitatives et aux données mixtes. *Revue de Statistique Appliquée L*(4), 5–37.
- Pagès, J. (2004). Analyse factorielle de données mixtes. *Revue de Statistique Appliquée LII(4)*, 5–37.
- Saporta, G. (1979). Pondération optimale de variables qualitatives en analyse des données. *Statistique et Analyse des Données 3*, 19–31.
- Saporta, G. (1990). Simultaneous analysis of qualitative and quantitative data. Atti XXXV Riunione Scientifica della Societa Italiana di Statistica, p. 63-72.
- Tenenhaus, M. (1977). Analyse en composantes principales d'un ensemble de variables nominales ou numériques. *Revue de Statistique Appliquée XXV*(2), 39–56.
- Tenenhaus, M. et F. Young (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. *Psychometrika* 50, 91–119.
- Young, F. (1981). Qualitative analysis of qualitative data. Psychometrika 46(4), 357–388.

## Annexe

| NOM         CONS         CYLI         VITE         VOLU         RP/P         LONG         FISO           AS2         6.20         998         140         955         23.20         3.40         4CV           CI4         5.60         954         145         1170         19.40         3.50         4CV           PE6         6.70         993         145         1151         20.80         3.61         4CV           FI3         6.30         999         140         1088         21.80         3.64         4CV | ETRA CP FRAN CP FRAN CP FRAN CP ETRA CP ETRA CP |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| CI4 5.60 954 145 1170 19.40 3.50 4CV<br>PE6 6.70 993 145 1151 20.80 3.61 4CV                                                                                                                                                                                                                                                                                                                                                                                                                                              | FRAN CP: FRAN CP: ETRA CP: ETRA CP:             |
| PE6 6.70 993 145 1151 20.80 3.61 4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FRAN CP: FRAN CP: FTRA CP: FTRA CP:             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ETRA CP                                         |
| FI3   6.30 999 140 1088 21.80 3.64   4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ETRA CP                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |
| FI5   6.20 999 145 968 21.50 3.64   4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| FI8   8.90   1301   200   968   11.00   3.64   6CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ETRA CP                                         |
| FID   7.70   1302   165   968   16.00   3.64   6CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ETRA CP                                         |
| FO1 7.00 1117 137 900 22.70 3.64 4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ETRA CP                                         |
| RE7 9.30 1597 180 973 12.00 3.64 6CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FRAN CP                                         |
| NI1 6.40 988 140 375 17.00 3.64 4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ETRA CP                                         |
| OP1 7.20 993 143 845 22.40 3.62 4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ETRA CP                                         |
| PE1 6.80 954 134 1200 23.80 3.70 4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FRAN CP                                         |
| PE3   5.80   1124   142   1200   21.40   3.70   5CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FRAN CP                                         |
| DA2 9.20 1360 170 1200 13.90 3.70 6CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ETRA CP                                         |
| PE9 8.70 1580 190 1200 11.20 3.70 6CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FRAN CP                                         |
| RE1 6.30 956 115 950 33.10 3.67 4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FRAN CP                                         |
| RE3 6.30 1108 120 950 28.40 3.67 5CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FRAN CP                                         |
| RE4 5.80 1108 143 915 20.60 3.59 5CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FRAN CP                                         |
| FO9 7.90 1397 167 915 13.80 3.59 6CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ETRA CP                                         |
| RE8 8.70 1397 200 915 10.20 3.59 6CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FRAN CP                                         |
| SE4 8.80 1461 175 1200 14.70 3.63 6CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ETRA CP                                         |
| SE9 7.30 903 131 1088 23.40 3.46 4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ETRA CP                                         |
| SZ2 6.40 993 145 400 18.40 3.58 4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ETRA CP                                         |
| SZ3 6.50 1324 163 400 14.00 3.58 5CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ETRA CP                                         |
| TO1 6.10 999 150 202 19.50 3.70 4CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ETRA CP                                         |
| TO3 6.80 1295 170 202 15.00 3.70 5CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ETRA CP                                         |
| VW3 7.80 1272 170 1040 14.30 3.65 6CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |

TAB. 7 – Données brutes relatives aux caractéristiques des voitures.

| NOM | 4CV   | 5CV    | 6CV    | FRAN   | ETRA  | CP1   | CP2    | CP3    | CP4    |
|-----|-------|--------|--------|--------|-------|-------|--------|--------|--------|
| AS2 | 5.386 | -1.532 | -2.853 | -6.486 | 7.487 | 9.599 | -4.236 | -0.523 | -3.839 |
| CI4 | 5.386 | -1.532 | -2.853 | -5.486 | 6.487 | 9.599 | -4.236 | -0.523 | -3.839 |
| PE6 | 5.386 | -1.532 | -2.853 | -5.486 | 6.487 | 8.599 | -3.236 | -0.523 | -3.839 |
| FI3 | 5.386 | -1.532 | -2.853 | -6.486 | 7.487 | 9.599 | -4.236 | -0.523 | -3.839 |
| FI5 | 5.386 | -1.532 | -2.853 | -6.486 | 7.487 | 8.599 | -3.236 | -0.523 | -3.839 |
| FI8 | 4.386 | -1.532 | -1.853 | -6.486 | 7.487 | 8.599 | -4.236 | -0.523 | -2.839 |
| FID | 4.386 | -1.532 | -1.853 | -6.486 | 7.487 | 8.599 | -4.236 | 0.477  | -3.839 |
| FO1 | 5.386 | -1.532 | -2.853 | -6.486 | 7.487 | 9.599 | -4.236 | -0.523 | -3.839 |
| RE7 | 4.386 | -1.532 | -1.853 | -5.486 | 6.487 | 8.599 | -4.236 | -0.523 | -2.839 |
| NI1 | 5.386 | -1.532 | -2.853 | -6.486 | 7.487 | 9.599 | -4.236 | -0.523 | -3.839 |
| OP1 | 5.386 | -1.532 | -2.853 | -6.486 | 7.487 | 9.599 | -4.236 | -0.523 | -3.839 |
| PE1 | 5.386 | -1.532 | -2.853 | -5.486 | 6.487 | 9.599 | -4.236 | -0.523 | -3.839 |
| PE3 | 4.386 | -0.532 | -2.853 | -5.486 | 6.487 | 8.599 | -4.236 | 0.477  | -3.839 |
| DA2 | 4.386 | -1.532 | -1.853 | -6.486 | 7.487 | 8.599 | -4.236 | 0.477  | -3.839 |
| PE9 | 4.386 | -1.532 | -1.853 | -5.486 | 6.487 | 8.599 | -4.236 | -0.523 | -2.839 |
| RE1 | 5.386 | -1.532 | -2.853 | -5.486 | 6.487 | 9.599 | -4.236 | -0.523 | -3.839 |
| RE3 | 4.386 | -0.532 | -2.853 | -5.486 | 6.487 | 8.599 | -3.236 | -0.523 | -3.839 |
| RE4 | 4.386 | -0.532 | -2.853 | -5.486 | 6.487 | 8.599 | -3.236 | -0.523 | -3.839 |
| FO9 | 4.386 | -1.532 | -1.853 | -6.486 | 7.487 | 8.599 | -4.236 | 0.477  | -3.839 |
| RE8 | 4.386 | -1.532 | -1.853 | -5.486 | 6.487 | 8.599 | -4.236 | -0.523 | -2.839 |
| SE4 | 4.386 | -1.532 | -1.853 | -6.486 | 7.487 | 8.599 | -4.236 | 0.477  | -3.839 |
| SE9 | 5.386 | -1.532 | -2.853 | -6.486 | 7.487 | 9.599 | -4.236 | -0.523 | -3.839 |
| SZ2 | 5.386 | -1.532 | -2.853 | -6.486 | 7.487 | 9.599 | -4.236 | -0.523 | -3.839 |
| SZ3 | 4.386 | -0.532 | -2.853 | -6.486 | 7.487 | 8.599 | -4.236 | 0.477  | -3.839 |
| TO1 | 5.386 | -1.532 | -2.853 | -6.486 | 7.487 | 8.599 | -3.236 | -0.523 | -3.839 |
| TO3 | 4.386 | -0.532 | -2.853 | -6.486 | 7.487 | 8.599 | -4.236 | 0.477  | -3.839 |
| VW3 | 4.386 | -1.532 | -1.853 | -6.486 | 7.487 | 8.599 | -4.236 | 0.477  | -3.839 |

TAB. 8 – Données qualitatives quantifiées.

## **Summary**

The processing of mixed data - quantitative and qualitative variables cannot be carry out directly by classical methods of data analysis. In this work, a factorial method which analyze simultaneously quantitative and qualitative data is described. The proposed Mixed Principal Component Analysis (MPCA) is a standardized principal component analysis of both quantitative variables and and quantified dummy variables associated to qualitative variables. For qualitative variables, the quantifications procedure is based on an orthogonal projection of configurations of statistical units in the individual-space, corresponding to Multivariate ANalysis of VAriance (MANOVA) coordinates. An example resulting from real mixed data illustrates the results of this method.