

OTIMIZANDO STARVZ PARA CARGA DE GRANDES VOLUMES DE DADOS

Alexandre Miyazaki

Orientador: Lucas Mello Schnorr

Especialização em Big Data & Data Science — 13 de Setembro de 2019

AGENDA

- Introdução
- 2. Ferramentas
- 3. Implementação
- 4. Avaliação e Resultados
- 5. Conclusão

- StarVZ é um arcabouço de análise de desempenho cujo objetivo é auxiliar na verificação de hipóteses sobre aplicações baseadas em tarefas.
- Este domínio carece de ferramentas de visualização voltadas para este tipo de aplicação, devido a dominância do modelo predecessor (BSP - Bulk-Synchronous Parallel).
- Ele é separado em duas fases sendo uma de pré-processamento e outra de visualização.

- Em estudos anteriores, analisou-se logs com 18 GB, derivados de uma pequena execução envolvendo poucos nós computacionais.
- A primeira fase do StarVZ levou cerca de 32 minutos para processar.
- Tal desempenho pode inviabilizar o uso do StarVZ para cargas de grandes volumes de dados.
- Houve uma tentativa de paralelizar o fluxo do StarVZ com Drake, biblioteca cujo foco é executar apenas as fases necessárias de um fluxo de processamento e análise.
- Não foi possível otimizar o fluxo com Drake, devido a cache de resultados intermediários da biblioteca ter um uso intensivo de disco.

INTRODUÇÃO OBJETIVO

Viabilizar o uso do StarVZ para análise de grandes volumes de dados utilizando ferramentas voltadas para este fim.

FERRAMENTAS HADOOP

- Arcabouço que permite o processamento de grandes volumes de dados.
- Organização em camadas.

- Engine unificada + conjunto de bibliotecas para processamento de dados distribuídos.
- Utilizado via biblioteca sparklyr.

- Otimizar processamento de tabelas.
- Utilizar equivalências entre sparklyr e dplyr, pois o fluxo de processamento do StarVZ é implementado em R.
- Processo foi facilitado pois a sparklyr é baseada na dplyr.

Operação dplyr	Operação sparklyr		
distinct	unique		
sort	sdf_sort		
gsub	regexp_replace		
rbind	union_all		
grepl	rlike		
separate	ft_regex_tokenizer + sdf_separate_column		

- Conjunto de dados pequeno (835 MB).
- Objetivo foi validar se o resultado da versão modificada era equivalente ao da original.
- Realizada por tabela.
- Diversos agrupamentos realizados em suas colunas.
- Comparação de resultados entre ambas as execuções.

avaliação e resultados PROJETO EXPERIMENTAL

Organização de ferramentas nos nós.

Parâmetro	Configuração		
Processador	2 x Intel Xeon, 2,5 GHz		
Núcleos Físicos	16		
Núcleos Lógicos	32		
Memória	64 GB DDR3		
Rede	10 Gigabit		

- Testes com 1 nó com versão sequencial.
- Testes com 1, 2 e 3 nós, instanciando 15 executores por nó na versão distribuída.
- ~30 repetições por teste.
- Entrada de 12 GB.

• Speedups de respectivamente 2,10, 3,23 e 3,86x em relação a aplicação original.

Teste de escalabilidade.

AVALIAÇÃO E RESULTADOS RESULTADOS

Etapa	1	15	15+15	15+15+15
State	873.31	215.93	142.15	119.20
Variable	210.77	21.17	10.44	7.50
Link	8.93	4.59	3.84	3.53
DAG	69.14	10.10	7.58	6.76
Entities	3.07	2.42	2.31	2.30
Events	89.87	42.68	22.65	15.91
GAPS	71.51	110.83	110.83	95.22
Write	162.19	211.06	125.40	102.87

• Quatro grupos identificados nos resultados por etapas.

- Apenas com as equivalências entre dplyr e sparklyr, foi possível atingir speedups totais de:
 - 2,10x com 1 nó / 15 executores;
 - 3,23x com 2 nós / 30 executores;
 - 3,86x com 3 nós / 45 executores.
- Portanto, conseguimos otimizar a etapa mais custosa do arcabouço StaVZ.
- Vale salientar que com o formato de execução distribuído, o StarVZ é capaz de processar mais dados do que o tamanho de memória de uma única máquina.

- Testes com com volume ainda maior de dados.
- Testes com arquivos de registro de outras aplicações.
- Incorporação ao pacote StarVZ.
- Otimização de demais etapas da fase de pré-processamento do StarVZ.

OBRIGADO! PERGUNTAS?

Alexandre Miyazaki Orientador: Lucas Mello Schnorr Instituto de Informática — UFRGS

