

PROGRAMA DE ASIGNATURA¹

NOMBRE ASIGNATURA: Acústica Computacional con Python

Código: m36

Identificación general								
Docente responsable Correo electrónico	Víctor Poblete Ramírez vpoblete@uach.cl	Alumno ayudante Correo electrónico	Diego Espejo A. diego.espejo@alumnos.uach.cl					
Horario y sala de clases	Por defnir Sala Multimedia, Instituto de Acústica.							
Año y semestre	2020 – Semestre Primavera							

Antecedentes de la asignatura, según proyecto curricular de la carrera										
Unidad Académica	Instituto de Ac	ústica	Carrera Ingeniería civil acústica				Semestre en plan de estudios			
Asignaturas- requisito (con código)	Programación	Programación (INFO058)					Créditos SCT-Chile		4	
Horas cronológicas semestre	Teóricas presenciales	25,5	Práctic		25,5	Trabajo Autónomo	51	51 Total		102
Ciclo formativo	Bachillerato		Licenci	atura	X	Profesional				
Área de formación	Especialidad		Genera	al		Vinculante- profesional		Optativa		X
Descripción de la asignatura	La asignatura "Acústica Computacional con Python" tiene como propósito que las y los estudiantes utilicen métodos acústicos basados en lenguaje matemático y los apliquen a través de códigos de programación, para que analicen comportamientos de sistemas acústicos, interpreten gráficamente cambios en las variables acústicas que intervienen y evalúen numéricamente resultados.									

Competencias	Nivel de dominio que alcanza la competencia en la asignatura						
	Básico	Medio		Superior	Avanzado		
Desarrollar habilidades para el manejo autónomo y adecuado de las herramientas y las tecnologías relacionadas a sistemas de audio profesional, grabación, post producción y sonido creativo			X				
- Especificas:			Х				
Nº1 Modelar problemas en sistemas y procesos, haciendo uso de las ciencias básicas y ciencias de la ingeniería.							
N°4 Diseñar soluciones para el control de ruido y vibraciones con enfoque multidisciplinar e innovador elaborando el correspondiente informe, en el ámbito de la construcción, industria y el medio socio-ambiental.							
- Sello UACh			X				
N°4. Evidenciar habilidades para trabajar en forma autónoma, en el contexto formativo del desarrollo personal y profesional de la Ingeniera/ el Ingeniero Civil Acústico con Sello UACh.							
- Genéricas			x				
N°3. Trabajar en equipo integrando y colaborando en el logro de metas y acciones comunes a la organización, en el contexto profesional e interprofesional.							
N°4. Manifestar una actitud innovadora, emprendedora y de adaptación al cambio en contextos globales y locales.							

Programación por Unidades de Aprendizaje								
Unidades de Aprendizaje	Resultados de aprendizaje Es capaz de	Estrategias de enseñanza y aprendizaje	Estrategias de evaluación de los aprendizajes y ponderación	Horas presenciales	Horas de trabajo autónomo			
Unidad 1: Entornos de Trabajo Instalación de Python3, miniconda y Jupyter Notebook. Repaso Python3: Operadores Lógicos Objetos Paquetes y Librerías Lectura de archivos. 3.Utilidad Jupyter Notebook. 4. Uso básico de controlador de versiones Git. 5. Uso básico de ambientes virtuales.	 Montar un ambiente de trabajo con lenguaje Python3. Crear rutinas de Python3. Usar un repositorio Github. Realizar cambios de rutinas (códigos), administra los cambios de versiones y enviarlos a Github. Trabajar con rutinas en proyectos desde cualquier lugar. Usar proyectos en plataforma de controlador de versiones (Github). 	 Clases expositivas, presentación de contenido mediante ejemplos en formato de cuadernillo interactivo de Jupyter. Clases practicas guiadas mediante tutoriales y ejercicios en formato de cuadernillo interactivo de Jupyter Uso de repositorio en Github para almacenamiento y actualización de las clases del curso. Uso de aplicación Slack como medio oficial de comunicación. 	 Resolver 3 Tareas (t1, t2, t3), alojarlas en un repositorio privado del alumno y dar acceso mediante colaboración a profesor y ayudante.(25%). Se espera que el alumno pueda crear sus propias rutinas de Python. 	15 horas	15 horas			
Unidad 2 Acústica Computacional	 Usar métodos de acústica basados en lenguaje matemático y representarlos en rutinas 	Clases expositivas, presentación de contenido mediante ejemplos en formato	Plantear un proyecto (P1) de una rama de la acústica, alojarlo en el	15 horas	15 horas			

 ¿Que es la acústica computacional? Razonamiento matemático versus planteamiento de la programación Acústica Computacional, una rama de la ciencia computacional. 1 Interdisciplina 2 Comunicación 3 Buenas practicas en la computación científica 	basadas en ciencia computacional. • Aplicar razonamiento matemático para implementación de algoritmos de programación. • Comunicar de manera correcta con otras áreas de especialización de las ciencias básicas y ciencias de la ingeniería.	de cuadernillo interactivo de Jupyter. • Clases practicas guiadas mediante tutoriales y ejercicios en formato de cuadernillo interactivo de Jupyter • Uso de repositorio en Github para almacenamiento y actualización de las clases del curso. • Uso de aplicación Slack como medio oficial	repositorio privado del alumno. (35%). • Se espera que el alumno pueda investigar y modelar en lenguaje Python un problema de la acústica.		
Unidad 3 Desarrollo en acústica de aplicaciones computacionales: - Data Science - Machine Learning: - Modeling - Computer music - Otros: + PyRooms Acoustics + Computational Acoustics FEM. + libAcoustics	 Desarrollar habilidades de trabajo en equipo, usar literatura y modelar sistemas a través de acústica computacional. Proponer un proyecto de acústica que aborde aspectos innovadores y use tecnologías, algoritmos y sub-áreas pertenecientes a la computación científica. Usar tecnologías y algortimos para 	 Clases practicas guiadas mediante tutoriales y ejercicios en formato de cuadernillo interactivo de Jupyter Clases expositivas, presentación de contenido mediante ejemplos en formato de cuadernillo interactivo de Jupyter. 	 Proponer un trabajo grupal (TG1) maximo 2 personas, de un proyecto de una rama de la acústica a elección,, alojarlo en el repositorio privado del alumno(s).(40%). Se espera que el/los alumno(s) pueda(n): - investigar y modelar en lenguaje Python 	21horas	21horas

+ pytorch-wavenet + AI-Song-Writer	desarrolar sus proyectos de acústica basados en	•		
+ Al-Oolig-Willel	contextos globales y	almacenamiento y		
	locales.	actualización de las	- Trabajar en equipo	
		clases del curso.	integrando y	
	Investigar y modelar un	. Llos de enligación	colaborando en el	
	sistema acústico y formularlos en rutinas de	 Uso de aplicación Slack como medio 	contexto profesional	
	lenguaje Python.	oficial de	e interprofesional.	
	3.27.	comunicación.		
	 Considerar los cambios 			
	tecnológicos en sus			
	futuros desarrollos			
	profesionales en			
	contextos globales y			
	locales.			

Requisitos de aprobación

- % de asistencia Libre
- Evaluaciones (fechas y ponderaciones)

La nota final se calcula: NF=0.25*(t1+t2+t3)+0.35*P1+0.4*TG

Por cada unidad al final de la 5ta semana se entrega la evaluación, a excepción de la unidad 3 que se debe entregar a la 6ta semana. Se descontara 1 punto por cada día de atraso.

Recursos de aprendizaje

Bibliografía

Obligatoria:

Greg, W. et al. 2014. Best practices for scientific computing. PLOS Biology. Vol. 12 (1), e1001745. (Artículo científico disponible en bases de datos Web of Science a través de Biblioteca UACh.)

Kaltenbacher, M. 2017. Computational Acoustics. Springer; Edición: 1era ed. 2018 (11 de julio de 2017). Suiza.

Stephenson, B. 2014 The Python Workbook. Springer 1era ed. 2014. Suiza.

Complementaria:

Hunt, J. 2019. A Beginners Guide to Python 3 Programming. Springer 1era ed. 2020. UK. Hunt, J. 2019. Advanced Guide to Python 3 Programming. Springer 1era ed. 2019. UK.

Sugerida
 Nolasco, J. 2018 Python Aplicaciones prácticas. Ra-Ma, 1era ed 2018. España.

Otros recursos

Lenguaje: Python 3.8.2 documentation

Ambiente: Jupyter

Librerías para computación científica: Numpy, Scipy

Librerías para visualización: Matplotlib

Librerías para análisis de audio y música: LibROSA

Tutorial introducción para Markdown y GitHub Markdown Help, LaTeX

Repositorio del curso: https://github.com/vpobleteacustica/acustica-computacional-con-python