Lembar Jawaban

Nama	:	Muhammad Hargi Muttaqin
NIM	:	191524027
Kelas	:	D4-2A
Durasi mengerjakan	:	6
(jam)		

No	Sub	Jawahan
No.	No.	Jawaban
1	a.	Suatu himpunan yang beranggotakan angka berdasarkan aturan tertentu
	b.	Jumlah dari elemen elemen yang ada di suatu himpunan berdasarkan aturan tertentu
	C.	Suatu himpunan yang beranggotakan angka berdasarkan aturan tertentu namun jumlahnya tidak hingga
	d.	Jumlah dari elemen elemen pada deret yang jumlahnya sukunya tak hingga
	e.	Konvergensi barisan tak hingga adalah suatu barisan tak hingga yang nilai limitnya ada (tidak ∞)
	f.	Konvergensi deret tak hingga adalah suatu deret tak hingga yang nilai limitnya ada (tidak ∞)
	g.	Uji deret positif adalah uji deret yang dimana limit an->∞=0 yang digunakan untuk menentukan apakah konvergen atau divergen, di deret postifi terdapat tes integral, tes deret p, tes banding deret, tes banding limit, tes hasil bagi, tes akar.
2	a.	Pertama tentukan pola dari deret tersebut, setelah deret tersebut diketahui polanya maka masukan ke rumus lim n->∞ setelah itu dihitung dan jika nilainya ada maka konvergen dan jika imajiner (∞) maka divergen
	b.	Gunakan pemisalan sn yang menyatakn jumlah parsial ke-n, jika barisan jumlah jumlah parsial konvergen ke s maka konvergen, begitu juga sebaliknya
	C.	Jika nilai lim n -> ∞ = 0 maka harus di uji dengan deret positif, dan jika deret tersebut memiliki pola yang sudah jelas dan dikecualikan seperti deret harmonik
3	a.	$an = 2n$ $\lim_{n \to \infty} 2n$ $\lim_{n \to \infty} 2 \infty$ $n = \infty$ Konvergen
	b.	$an = 2n + n^{2}$ $\lim_{n \to \infty} 2n + n^{2}$ $2\infty + \infty^{2}$ ∞
	C.	$an. bn; an = 3n, bn = \frac{2}{3n^2}$ $3n. \frac{2}{3n^2} = \frac{2}{n}$ $\lim_{n \to \infty} \frac{2}{n} = 0$
	d.	$an. bn; an = \frac{3}{n} + 1, bn = \frac{2}{3n^2}$ $\frac{3}{n} + 1. \frac{2}{3n^2} = \frac{2}{n^3} + \frac{2}{3n^2} = \frac{6n^2 + 2n^3}{3n^5}$ $\lim_{n \to \infty} \frac{6n^2 + 2n^3}{3n^5}$

	1	
		$\lim_{n \to \infty} \frac{\frac{6n^2}{n^3} + \frac{2n^3}{n^3}}{\frac{3n^5}{n^5}}$ $\lim_{n \to \infty} \frac{\frac{6}{n} + 2}{3} = \frac{2}{3}$ Here we have $\frac{1}{3} = \frac{2}{3}$
		$\lim_{n \to \infty} \frac{n^3 + n^3}{n^3}$
		$n \to \infty$ $3n^5$
		n^5
		$\frac{6}{1}$ + 2 2
		$\lim \frac{n}{n} = \frac{2}{n}$
		$n \rightarrow \infty$ 3 3
		Konvergen Ke 2/3
	e.	$n \to \infty 3 3$ Konvergen ke 2/3 $an = \frac{n}{n+1}$ $\lim_{n \to \infty} \frac{n}{n+1}$ $\lim_{n \to \infty} \frac{n}{n} = \frac{1}{1+\frac{1}{n}} = 1$
		n+1
		$\lim \frac{\pi}{1+4}$
		$n \to \infty $ $n+1$
		$\frac{1}{n}$ 1
		$\lim_{n\to\infty}\frac{1}{n+1}=\frac{1}{n+1}=1$
		$\frac{\overline{n}+1}{n}+\frac{1}{n}$
		Konvergen ke 1
	f.	Konvergen ke 1 $a_n = 2^{n-2} = \lim_{n \to \infty} 2^{n-2} = \infty$
		$\mu \rightarrow \omega$
	g.	Konvergen karena polanya tidak jelas dan tidak bisa di analisis
<u> </u>		
4	a.	Notasi
	b.	Bentuk eksplisit suku ke-n
	C.	Deret harmonik
	d.	Bentuk Rekursi
	e.	С
	f.	С
	g.	C
	h.	D
		F
	i.	
	J.	N
	k.	С
	l.	С
	m.	D
	n.	D
	0.	D
	p.	Uji Positif
	q.	N
	r.	$\int_{1}^{\infty} f(x)d(x)$ Divergen
	-	J ₁ J(x)u(x)Divergen
	S.	M
	t.	Н
	u.	L
L	v.	I
	w.	Uji suku ke-n
	X.	В
	y.	Menuju satu titik
	Z.	
5	a.	$->an = -\frac{16}{(-4)^n}, an - 1 = -\frac{16}{(-4)^{n-1}}$ $\frac{an}{an - 1} = -\frac{16}{(-4)^n}$ $\lim_{n \to \infty} -\frac{16}{(-4)^n} = 0$
	α.	$->an = -\frac{1}{(-4)^n}$, $an - 1 = -\frac{1}{(-4)^{n-1}}$
		16
		$(-4)^n$
		$\frac{an}{16} = -\frac{16}{16}$
		$ an-1 (-4)^{n-1}$
		$\lim_{n \to \infty} \frac{16}{n} = 0$
		$\begin{vmatrix} \prod_{n\to\infty} & (-4)^n - 0 \end{vmatrix}$
		Konvergen menuju u
	b.	Dengan uji banding deret lain $\frac{1}{n(n+1)(n+2)}$, deret lain $\frac{1}{n^3}$ karena an \leq bn sehingga
		konvergen menuju 0
	c.	Menggunakan uji substitusi $\lim_{n\to\infty}\frac{1}{n^3}=\frac{1}{\infty^3}=0$
	1	$n \to \infty n^3 - \infty^3$

	d.	Dengan uji banding deret lain $a_n = \frac{1}{n^3 + 2}$, $bn = \frac{1}{n^3}$ karena an \leq bn maka
		konvergen menuju 0
	e.	$an = \frac{n!}{3^n}$, $bn = \frac{(n+1)!}{3^{n+1}}$
		Gunakan hasil bagi
		$\lim_{n \to \infty} \frac{n!}{3^n} = \frac{3^n (n+1)!}{3^{n+1} n!} = \frac{n+1}{3} = \frac{\infty+1}{3} = \infty$
		$\frac{(n+1)!}{3^{n+1}}$
6	a.	Deret Harmonik = Deret yang divergen $\frac{1}{n}$
	b.	Deret Ganti Tanda = Deret yang tandanya bergantian contoh : deret harmonik
		ganti tanda : ½-⅓+¼-⅓
	c.	Deret Taylor = Deret yang suku-suku yang nilainya dihitung dari turunan fungsi
		tersebut di suatu titik $f(x) = f(x_0) \frac{f(x-x_0)}{1!} + f'(x_0) \frac{f(x-x_0)^2}{2!} + \dots + f^{(m)}(x_0) \frac{f(x-x_0)^m}{m!}$
	d.	Deret Mclaurin = Deret Taylor baku
	e.	Deret Fourier = Penguraian fungsi periodik menjadi jumlahan fungsi-fungsi sin,
		$\cos, \tan a_0 = \frac{1}{\pi} f(x) dx$