A STUDY OF SOME PROPERTIES OF ANT-Q

Arman Akbari, Arash Akbari

Bio-inspired computation - Dr. BabaAli

Agent and Environment

Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The discount $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward R after k+1 time-steps is $\gamma^k R$.
- This values immediate reward above delayed reward.
 - $ightharpoonup \gamma$ close to 0 leads to "myopic" evaluation
 - $lue{\gamma}$ close to 1 leads to "far-sighted" evaluation

Value function

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}\left[G_t \mid S_t = s\right]$$

Policies

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are *stationary* (time-independent), $A_t \sim \pi(\cdot|S_t), \forall t > 0$

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

Definition

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a \right]$$

Bellman Expectation Equation

The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$v_{\pi}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

The action-value function can similarly be decomposed,

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

Bellman Expectation Equation for q

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

Bellman Expectation Equation for Q

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$

Optimal values

Definition

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Bellman Optimality equation for Q

$$q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} q_*(s', a')$$

Off Policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $\nu_{\pi}(s)$ or $q_{\pi}(s,a)$
- While following behaviour policy $\mu(a|s)$

$$\{S_1, A_1, R_2, ..., S_T\} \sim \mu$$

- Why is this important?
- Learn from observing humans or other agents
- Re-use experience generated from old policies $\pi_1, \pi_2, ..., \pi_{t-1}$
- Learn about optimal policy while following exploratory policy
- Learn about multiple policies while following one policy

Q Learning

- We now consider off-policy learning of action-values Q(s, a)
- No importance sampling is required
- Next action is chosen using behaviour policy $A_{t+1} \sim \mu(\cdot|S_t)$
- But we consider alternative successor action $A' \sim \pi(\cdot|S_t)$
- \blacksquare And update $Q(S_t, A_t)$ towards value of alternative action

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t) \right)$$

Off-policy Control with Q learning

- We now allow both behaviour and target policies to improve
- The target policy π is greedy w.r.t. Q(s, a)

$$\pi(S_{t+1}) = \operatorname*{argmax}_{a'} Q(S_{t+1}, a')$$

- The behaviour policy μ is e.g. ϵ -greedy w.r.t. Q(s, a)
- The Q-learning target then simplifies:

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

= $R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax}_{a'} Q(S_{t+1}, a'))$
= $R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$

Q Learning Control Algorithm

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A)\right)$$

Theorem

Q-learning control converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$

	Full Backup (DP)	Sample Backup (TD)	
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$		
Equation for $v_{\pi}(s)$	Iterative Policy Evaluation	TD Learning	
Bellman Expectation	$q_{\pi}(s,a) \longleftrightarrow s,a$ r s' $q_{\pi}(s',a') \longleftrightarrow a'$	S,A R S' A'	
Equation for $q_{\pi}(s, a)$	Q-Policy Iteration	Sarsa	
Bellman Optimality Equation for $q_*(s, a)$	$q_*(s,a) \leftrightarrow s,a$ $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning	

Introduction

- what is Ant-Q?
 - A family of algorithms which strengthen the connection between RL, in particular Q-learning, and AS
 - AS (Ant System)
 - Q-learning algorithm

The Ant-Q Approach to Combinatorial Optimization

- Let k be an ant whose task is to make a tour
- Associated to k there is the list J k(r) of cities still to be visited, where r
 is the current
 city

$$S = \begin{cases} arg \max_{u \in J_k(r)} \left[AQ(r, u) \right]^{\delta} \cdot \left[HE(r, u) \right]^{\beta} & \text{if } q \leq q_0 \\ S & \text{otherwise} \end{cases}$$

A value chosen randomly with uniform probability in [0,1]

The action choice rule

- The Pseudo-random rule
- The pseudo-random-proportional rule

$$p_{k}(r,s) = \begin{cases} \frac{\left[AQ(r,s)\right]^{\delta} \cdot \left[HE(r,s)\right]^{\beta}}{\sum_{z \in J_{k}(r)} \left[AQ(r,z)\right]^{\delta} \cdot \left[HE(r,z)\right]^{\beta}} & \text{if } s \in J_{k}(r) \\ 0 & \text{otherwise} \end{cases}$$

• The random-proportional rule (the same as AS) \rightarrow q_0 = 0

$$AQ(r,s) \leftarrow (1-\alpha) \cdot AQ(r,s) + \alpha \cdot \left(\Delta AQ(r,s) + \gamma \cdot \underset{z \in J(s)}{Max} AQ(s,z) \right)$$

Can be <u>local</u> or <u>global</u>:

the same as in Q-learning, except that the set of available actions in state s, Jk(s), is a function of the previous history of agent k

the length of the tour done by the best ant

1. Global-best

2. Iteration-best

$$\Delta AQ(r,s) = \begin{cases} \frac{W}{L_{Best}} & \text{if } (r,s) \in \text{ tour done by the best agent} \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta AQ(r,s) = \begin{cases} \frac{W}{L_{k_{ib}}} & \text{if } (r,s) \in \text{ tour done by agent } k_{ib} \\ 0 & \text{otherwise} \end{cases}$$

K_ib is the agent who made the best tour in the current iteration of the trial

```
Ant-Q algorithm

/* Initialization phase */
   Set an initial value for AQ-values

/* Main algorithm */
Loop /* This loop is an iteration of the algorithm */

1. /* Initialization of ants data structures */
   Choose a starting city for ants
```

- 2. /* In this step ants build tours and locally update AQ-values */ Each ant applies the state transition rule (1) to choose the city to go to, updates the set J_k and applies formula (3) to locally update AQ-values (in formula (3) Δ AQ(r,s)=0)
- 3. /* In this step ants globally update AQ-values */ The edges belonging to the tour done by the best ant are updated using formula (3) where Δ AQ(r,s) is given by formula (4)

Until (End condition = True)

Conclusion

Table 4: Comparisons on average result obtained on five 50-city problems. EN = elastic net, SA = simulated annealing, SOM = self organizing map, FI = farthest insertion, FI+2-opt = best solution found by FI and many distinct runs of 3-opt. Results on EN, SA, and SOM are from Durbin and Willshaw (1989), and Potvin (1993). FI results are averaged over 15 trials starting from different initial cities. Ant-Q used pseudo-random-proportional action choice and iteration-best delayed reinforcement. It was run for 500 iterations and the results are averaged over 15 trials.

City	EN	SA	SOM	FI	FI	FI	Ant-Q
set					+ 2-opt	+ 3-opt	
1	5.98	5.88	6.06	6.03	5.99	5.90	5.87
2	6.03	6.01	6.25	6.28	6.20	6.07	6.06
3	5.70	5.65	5.83	5.85	5.80	5.63	5.57
4	5.86	5.81	5.87	5.96	5.96	5.81	5.76
5	6.49	6.33	6.70	6.71	6.61	6.48	6.18