

VHL Subtypes

- Clinical and allelic heterogeneity are hallmarks of VHL
- 4 phenotypes described based on frequency of pheochromocytoma (pheo) and renal cell carcinoma (RCC)
 Pheo risk: <5% type 1; >60% type 2

VHL subtype	VHL mutation	НВ	RCC	Pheo	
1	Deletion, Insertion, Nonsense, Missense	High risk	High risk	Low risk	
2A	Missense	High risk	Low risk	High risk	
2B	Missense	High risk	High risk	High risk	
2C	Missense	Low risk	Low risk	High risk	
HB, hemangioblastoma; RCC, renal cell carcinoma; Pheo, pheochromocytoma					

VHL Type 2A

- CNS hemangioblastoma (HB)
- Retinal angioma (RA)
- Rarely renal cell carcinoma (RCC)

Genetics of VHL Stricture Stric

VHL Type 2A Families

- Family 1
 - □Y112H
 - □ First described in 1962 by S.A.T. (complete phenotypic characterization in 1993)
 - □ Originate from east-central Germany (Leipzig)
 - □Currently largest kindred with pheochromocytoma in literature (24 cases of pheo)

VHL Type 2A Families

- Family 2
 - □Y98H
 - □ Black Forest founder mutation
 - □ Partially evaluated through NIH
 - □ Never described independently in literature
 - Large family, and even more cases of pheo than Family 1

Hypothesis

- Genetic differences between 2 families may correlate with differences in disease expression
 - ☐ Particularly related to pheochromocytoma, the most frequent manifestation in both families

Methods

- 1) IRB to establish Inherited Endocrine Tumor Database
- 2) Pedigree construction
- 3) Patient contact
- 4) Tabulate all family members with VHL
- 5) Analyze pheo data
- 6) Statistical analysis

Summary of Findings

- Expression of VHL type 2A similar between 2 families
- High rate of pheo, low rate of RCC

Summary of Findings

- 2nd most common manifestation

 □RA in Family 1

 □HB in Family 2
- Compliance and delivery of medical care
- Genetic and environmental factors

Clinical Take Home Points

- Importance of screening for pheo in childhood in pts genetically at-risk
- Children with pheo/paraganglioma should be tested for VHL/SDHD mutations
- Patients with Y98H mutation should have MIBG scan for tumor localization
- Lower threshold for converting from laparoscopic to open resection in individuals with Y112H mutations
- Screening for RCC is unnecessary in VHL type 2A pts
- Biochemical screening is the standard of care for asymptomatic, normotensive pts

Psychosocial Issues Family 1 Family 2 Size Less knowledgeable Educated about VHL about VHL & family & family history history Minimized seriousness of disease Inconsistent Consistent follow-up follow-up

Acknowledgments

- Study participants
- Sally E. Carty, MD
- Darcy L. Thull, MS, CGC
- Michaele Armstrong, PhD
- James R. Gnarra, PhD
- Samuel A. Tisherman, MD
- Wendy S. Rubinstein, MD, PhD
- Eleanor Feingold, PhD
- Linwah Yip, MD
- Adrienne Melck, MD
- Endocrine Surgery Staff

Thank you! Questions?	