Course code		LARGE SCALE I	DATA PROCESSING	L T P J C
CSE3025				2 0 2 4 4
Pre-requisite		-		Syllabus version
				v. xx.xx
Course Objecti				
Objectives of the				
		ferent characteristics of big data		
		e requirement of big data framework	S	
		epts of distributed file system		
		educe programming environment	4	
• Unders	stand ne	ed of inverted indexing and graph da	ua analytics	
Expected Cour	se Outo	come:		
		oleting the course the student should	be able to	
(1) Define	the cha	racteristics of big data and explain th	ne data science life cycle.	
(2) Differe	entiate	between conventional and conte	mporary distributed framewor	rk.
(3) Charac	terize st	orage and processing of large data.		
(4) Implen	nent an	d demonstrate the use of the had-	oop eco- system.	
(5) Compa	re scala	ble frameworks for large data.		
		endent tasks in a program that m	ay be parallelized.	
		problem into map and reduce operation	-	
, ,	-	erent input output formats for map	-	
` '		ns to analyze large scale text data.	r	
		ems suitable for use of graph mining	in large data processing.	
(10) 1001111) proore	in survive for use of graph mining	in range data processing.	
Student Learni	ing Out	comes (SLO): 2,11,17		
		DUCTION TO BIG DATA AND		SLO:2
Big Data Over	view	 Characteristics of Big Data 	Business Intelligence vs Da	ata Analytics
Module:2	NEED	OF DATA ANALYTICS	4 hours	SLO: 11
Data Analytics		Cycle – Data Analytics in	Industries Exploring Big data	
Big Data	Line	Cycle Bata I maryties in	moustres Exploring Big date	chancinges in handring
Module:3	Big Dat	a Tools	4 hours	SLO: 17
		- understanding distributed system		paring SQL databases and
		System - Distributed File System: H		
of HDFS – writi	ing files	to HDFS – Reading files from HDF	<u>'S</u>	
Module:4	Hadoor	Architecture	6 hours	SLO: 11
Hadoop Daemo		Hadoop Cluster Architecture–		
•		•		
		ction to MapReduce	6 hours	SLO: 11
		ice Program - Anatomy of Map I		ice Program - counting
		shuffle and sort - Reduce Phase		
architecture –J	ob Proc	essing in hadoop – Map Reduce Pip	elining	
Module:	Mor P	duo Duoguommina Consent	2 h	CI O. 17
Module:6	мар Ко	educe Programming Concepts	3 hours	SLO: 17

	of Combiner - Block vs Split Size - working with Input and output for	nat – Key,Text, Sec	quence, NLine file
form	nat, XML file format.		
	lule:7 Inverted Indexing and Graph Analytics	3 hours	SLO: 17
Web	crawling - inverted index - Baseline and revised implementation - Gr	aph Representation	- Parallel Breadth first
searc	ch – page rank – issues with graph processing.		
	Total Lecture hours:	30 hours	
TIT.	(D. 1/)		
	t Book(s)		
1.	Tom White, Hadoop The Definitive Guide, O'Reilly, 4 th Edition, 2015		
	erence Books		
1.	Alex Holmes, Hadoop in Practice, Manning Shelter Island, 2012		
2.	Chuck Lam, Hadoop in Action. Manning Shelter Island, 2011	D 1 2010	
3.	Jimmy Lin and Chris Dyer, Data-Intensive Text Processing with Map	Reduce, 2010	
Mod	le of Evaluation:		
MOU	e of Evaluation.		
List	of Challenging Experiments (Indicative)	SL	O: 14,17
1.	Setting up Hadoop in Single node / Multinode environment	~_	X hours
2.	Command line interface with HDFS		X hours
3.	Counting things using MapReduce		X hours
4.	Map Reduce Program to show the need of Combiner	X hours	
5.	Map Reduce I/O Formats – key- value, Text		X hours
6.	Map Reduce I/O Formats – N line		74 Hours
7.	Multiline I/O		
8.	Parallel Breadth First Search		
о.	Taranci Bicadui First Scarcii		
9.	Sequence file Input / Output Formats		
10.	Baseline Inverted Indexing using Map Reduce		
11.	Revised Inverted Indexing using Map Reduce		
12	Matrix Factorization using Map Reduce		
13	Video Processing using Map Reduce		
14	BioInformatics (Protein/Gene Sequence etc) processing with MapRed	lice	
17		otal Laboratory Ho	urs X hours
Proje		otal Eaboratory 110	urs 74 nours
	enerally a team project [5 to 10 members]		
	oncepts studied in XXXX should have been used		
	own to earth application and innovative idea should have been attempted	1	
	port in Digital format with all drawings using software package to be su		
	gn of a traffic light system using sequential circuits OR 2. Design of dig		
	sessment on a continuous basis with a min of 3 reviews.	Situr Crockj	
10.			
Proi	ects may be given as group projects		
1105	may so given as group projects		
The	following is the sample project that can be given to students to be imple	emented in the	
	oop environment using appropriate tools.		
	1 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1.	Implementing association rule mining		
2.	Implementing closed item set mining		
3.	Implementing maximal item set mining		

4. Solving sequence alignment pro5. Solving Data Science problems							
Mode of evaluation:							
Recommended by Board of Studies DD-MM-YYYY							
Approved by Academic Council No. xx Date DD-MM-YYYY							

CO-PO MAPPING:

	PO 2	PO 3	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 15	PO 16	PO 18	PO 20
CO1												
CO2												
CO3												
CO4												
CO5												
CO6												
CO7												

2. Knowledge Areas that contain topics and learning outcomes covered in the course [Kindly refer ACM Computer Science Recommendation (CS 2013)- and ACM Computer Engineering Recommendation CE 2004.]

Knowledge Area	Total Hours of Coverage [Theory+Practical]
CS: IM(Information Management)	4+8
CS: PD(Parallel and Distributed Computing)	20 +4
CS: SF(System Fundamental)	6 + 18
Total	60 Hours [30 + 30]
1 otat	

2.1 Body of Knowledge coverage

[List the Knowledge Units covered in whole in the course. This section will likely be the most time-consuming to complete, but is the most valuable for educators planning to adopt the CS2013/CE 2004 guidelines.]

KA	Knowledge Unit	Topics Covered	Hours
CS:	IM/Indexing	Web crawling	4
IM		inverted index	
		Baseline and revised implementation	
		page rank	
CS:	Parallel Algorithms,	Move the computation , Parallel Graphs, MapReduce	4
PD	Analysis, and		
	Programming,		
CS:	Parallel	Distributed File System	2
PD	Decomposition,	Cluster Architecture	
		Independence and partitioning, Data and task	
		decomposition,	
CS: SF	SF / Parallelism,	Task parallelism, MapReduce,	4

3. Where does the course fit in the curriculum?

[In what year do students commonly take the course? Is it compulsory? Does it have prerequisites, required following courses? How many students take it?]

This course is a

- Elective Course.
- Suitable from 5th semester onwards.
- Knowledge of any one programming language is essential.

4. What is covered in the course?

[A short description, and/or a concise list of topics - possibly from your course syllabus.(This is likely to be your longest answer)]

4.1 Part 1: Introduction to Big Data

It introduces what is big data and its life cycle, challenges in big data analytics and handling large scale data.

4.2 Part II: Big data tools and architecture

This section covers the need of big data tools, hand-on exposure to store and process the data using Hadoop Distributed File System and MapReduce programming respectively. Hadoop daemons and YARN architecture is discussed.

4.3 Part III: Inverted Indexing and Graph Analytics

This section deals with storing and processing text data, introduces graph algorithms for analytics, discusses pagerank algorithms as a case study.

5. What is the format of the course?

[Is it face to face, online or blended? How many contact hours? Does it have lectures, lab sessions, discussion classes?]

This Course is designed with 100 minutes of in-classroom sessions per week, 60 minutes of video/reading instructional material per week, 100 minutes of lab hours per week, as well as 200 minutes of non-contact time spent on implementing course related project. Generally this course have the combination of lectures, in-class discussion, case studies, guest-lectures, mandatory off-class reading material, quizzes.

6. How are students assessed?

[What type, and number, of assignments are students are expected to do? (papers, problem sets, programming projects, etc.). How long do you expect students to spend on completing assessed work?]

- Students are assessed on a combination group activities, classroom discussion, projects, and continuous, final assessment tests.
- Additional weightage will be given based on their rank in crowd sourced projects/ Kaggle like competitions.
- Students can earn additional weightage based on certificate of completion of a related MOOC course.

7. Session wise plan

Student Outcomes Covered: 2, 11, 17

Sl.	Topic Covered	Class	Lab	levels of	Reference	Remarks
No		Hour	Hour	mastery	Book	
1	Big Data Overview –	2		Usage	1	
	Characteristics of Big Data					
	_					
2	Business Intelligence vs	2		Usage	1,	
	Data Analytics					
3	Need of Data Analytics –	2		Usage	1	
	Data Analytics Life Cycle					
	 Data Analytics in 					
	Industries –Exploring Big					
	data –					
4	Challenges in handling Big	2		Usage	1	
	Data					
5	Need of Big data tools -	2		Familiarity	1	
	understanding distributed					
	systems –					
6	Overview of Hadoop –	2		Usage	1	
	comparing SQL databases					
	and Hadoop – Hadoop Eco					
	System					
7	Distributed File System:		4	Familiarity	1	LAB

	HDFS, – Design of HDFS					Component
	– writing files to HDFS –					
	Reading files from HDFS					
8	Hadoop Daemons -	3		Usage	1	
	Hadoop Cluster					
	Architecture – YARN –					
	Advantages of YARN –					
9	Developing MapReduce	3	4	Usage	1	LAB
	Program – Anatomy of					Component
	MR Code - Simple Map					
	Reduce Program -					
	counting things					
10	Map Phase – shuffle and	3	2	Usage	1	LAB
	sort - Reduce Phase –					Component
	Master slave architecture –					
	Job Processing in hadoop					
	– Map Reduce Pipelining					
11	MapReduce Programming	2	4	Usage	1	LAB
	Concepts– Use of					Component
	Combiner - Block vs Split					
	Size					
12	working with Input and		4		1,2,3	LAB
	output format – Key,Text,					Component
	MapReduce Programming Concepts— Use of Combiner - Block vs Split Size working with Input and	2		Usage		Compone

13	Sequence, NLine file		4	Assessment	1,2,3	LAB
	format, XML file format					Component
14	Web crawling – inverted	2	4	Usage	4	LAB
	index – Baseline and					Component
	revised implementation					
15	- Graph Representation –	3		Usage	4	
	Parallel Breadth first					
	search –					
16	page rank – issues with	2	4	Usage	4	LAB
	graph processing					Component
Tota	l hours covered	30 Hours	30			
		(2 Credit	Hours			
		hours	(2			
		/week	Credit			
		15	hours /			
		Weeks	week)			
		schedule)				