Дядя Валера собрался открыть IT компанию. Он решил, что все программы в его компании должны быть самыми надежными и быстрыми. Так как у дяди Валеры на компьютере установлен MS-DOS, он решил, что разработка будет вестись именно под эту операционную систему. В качестве языка программирования дядя Валера конечно же выбрал ассемблер (Turbo Assembler).

К сожалению, у дяди Валеры возникли проблемы с наймом сотрудников, а разрабатывать программы уже нужно, поэтому он решил обратиться к вам за помощью.

Помогите дяде Валере реализовать следующую программу:

Входные данные

В первой строке задано число а. Во второй строке задано число b. В третьей строке задано число с. В четвертой строке задано число d.

$$-100 \le a$$
, b, c, d ≤ 100

Выходные данные

Выведите единственное целое число - результат вывода программы. Гарантируется, что результат находится в пределах [-30000; 30000].

Вариант 1.

```
if (a > b) and (c < d):
    print((a - b) * c + d)
else:
    if ((d + a) > (b - c)) or (a == b):
        print((d + a) - (b - c))
    else:
        print(b * a - c * d + 4)
```

Вариант 2.

```
if (a < b) and (c > d):
    print(a + b * (c - d))
else:
    if ((b - c) < (a + d)) or (c == d):
        print(b * (-c) + a + d)
    else:
        print(a + b + c + d - 1)</pre>
```

Вариант 3.

```
if ((a * c) == (b - d)) or (a > d):
    print(a + b * (c - d))
else:
    if ((b - c) > (a + d)) and (a < b):
        print(a * a - b + c)</pre>
```

```
else:
        print(2 * c + 3 * d - 5)
Вариант 4.
if ((a * c) == (b - d)) or (a < d):
    print(a + b * (c - d))
else:
    if ((b + c) > (a - d)) and (a > b):
        print(a * a - b + c)
    else:
        print(3 * c + 2 * d + 8)
Вариант 5.
if ((b * c) != (d - a)) or (b < c):
    print(3 * a + b * (c - d))
else:
    if ((a - d) < (b + c)) and (a < b):
        print(a * a - b + c)
    else:
        print(2 * b - 5 * d + 3)
Вариант 6.
if (a > b) and (c < d):
    print((a - b) * c + d)
else:
    if ((d + a) > (b - c)) or (a != b):
        print((d + a) - (b - c))
    else:
        print(3 * b * a - c * d + 7)
Вариант 7.
if (a < b) and (c < d):
   print(a - b * (c + d))
else:
    if ((b - c) > (a + d)) or (c != d):
        print(d * (-a) + b + c)
    else:
        print(a + b + c + d - 3)
Вариант 8.
if ((a * c) != (b - d)) or (a > d):
    print(a - b * (c + d))
else:
    if ((b - c) > (a + d)) and (a < b):
        print(b * b - d + c)
    else:
        print(2 * c + 3 * d - 5)
```

Вариант 9.

```
if ((a * c) == (b - d)) or (a < d):
    print(a + b * (c - d))
else:
    if ((b + c) > (a - d)) and (a > b):
        print(c * c - b + c)
    else:
        print(2 * d + 3 * a + 2)
```

Вариант 10.

```
if ((a * c) != (b - d)) or (a < d):
    print(a + b * (c - d))
else:
    if ((b + c) < (a - d)) and (a < b):
        print(c * c + a * 3 + d - 4)
    else:
        print(2 * b - 5 * a + 8)</pre>
```

После вашего успеха в выполнении первой лабораторной работы, дядя Валера решил обратиться к вам с более трудной задачей, связанной с выполнением сложнейших математических операций.

На вход программе подается одно число ${\tt N},$ а результат выполнения - также одно число ${\tt A}.$

Входные данные

В единственной строке задано число N.

$$1 <= N <= 100$$

Выходные данные

Выведите единственное число - результат выполнения программы.

Вариант 1.

Выведите минимальный делитель числа N (A > 1).

Вариант 2.

Выведите максимальный делитель числа $N \ (A < N)$.

Вариант 3.

Выведите максимальное число, квадрат которого меньше числа N.

Вариант 4.

Выведите минимальное число, квадрат которого больше числа N.

Вариант 5.

Выведите сумму различных положительных делителей числа N, за исключением 1 и N.

Вариант 6.

Выведите сумму простых чисел, являющихся разложением числа N на простые множители.

Вариант 7.

Выведите максимальный простой делитель числа $N \ (A <= N)$.

Вариант 8.

Выведите количество различных положительных делителей числа ${\tt N},$ за исключением ${\tt 1}$ и ${\tt N}.$

В данной лабораторной работе вам предстоит работа со строками. Формат входных и выходных данных будет зависеть от варианта лабораторной работы.

Входные данные

Внимание! Во входных условиях могут быть данные, не соответствующие формату. В таком случае необходимо выводить ошибку.

Входные данные зависят от варианта.

Выходные данные

Если входные данные не соответствуют формату входных данных, вам необходимо вывести единственную строку: «Bad input».

Выходные данные зависят от варианта.

Вариант 1.

Дана строка s. Необходимо упорядочить символы строки в лексикографическом порядке.

Входные данные

Вам задана единственная строка s, состоящая только из символов латинского алфавита (как строчных, так и прописных), длина строки положительная и не превышает 200 символов.

Выходные данные

Выведите единственную строку в соответствии с условием вашего варианта.

Вариант 2.

Вам даны две строки s и t. Необходимо определить, является ли строка s подстрокой строки t.

Входные данные

Вам заданы две строки s и t через пробел. Каждая строка состоит только из символов латинского алфавита (как строчных, так и прописных), длина каждой строки положительная. Суммарная длина строк не превышает 200 символов.

Выходные данные

Выведите единственную строку «Yes», если строка s является подстрокой строки t. В противном случае выведите «No».

Вариант 3.

Вам даны две строки s и t. Необходимо удалить символы из строки s, которые находятся в строке t и вывести полученный результат.

Входные данные

Вам заданы две строки s и t через пробел. Каждая строка состоит только из символов латинского алфавита (как строчных, так и прописных), длина каждой строки положительная. Суммарная длина строк не превышает 200 символов.

Выходные данные

Выведите единственную строку полученную в результате удаления символов из строки s.

Вариант 4.

Вам даны две строки s и t. Необходимо заменить все символы из строки s, которые находятся в строке t на символы с противоположным регистром (строчные заменить прописными, прописные строчными).

Входные данные

Вам заданы две строки s и t через пробел. Каждая строка состоит только из символов латинского алфавита (как строчных, так и прописных), длина каждой строки положительная. Суммарная длина строк не превышает 200 символов.

Выходные данные

Выведите единственную строку полученную в результате изменения регистра символов строки s.

Вариант 5.

Дана строка s. Необходимо определить является ли строка палиндромом **без учета регистра**. Строка считается палиндромом, если она одинаково читается слева-направо и справа-налево.

Входные данные

Вам задана единственная строка s, состоящая только из символов латинского алфавита (как строчных, так и прописных), длина строки положительная и не превышает 200 символов.

Выходные данные

Выведите единственную строку «Yes», если строка s является палиндромом. В противном случае выведите «No».

Вариант 6.

Дана строка s. Необходимо найти наибольшую по длине подстроку, состоящую из одинаковых символов **без учета регистра** и вывести ее. Если таких строк несколько, то необходимо вывести самую левую.

Входные данные

Вам задана единственная строка s, состоящая только из символов латинского алфавита (как строчных, так и прописных), длина строки положительная и не превышает 200 символов.

Выходные данные

Выведите единственную строку являющуюся подстрокой строки s, состоящую из одинаковых символов без учета регистра (при этом регистр необходимо сохранить неизменным).

В данной лабораторной работе предстоит работа с двумерными массивами данных.

Входные данные

В первой строке задано два целых числа n и m, записанных через пробел. Далее идет n строк по m чисел записанных через пробел - матрица a.

$$1 \le n, m \le 100$$

-100 \le A[i,j] \le 100

Выходные данные

Если входные данные не соответствуют формату входных данных, вам необходимо вывести единственную строку: «Bad input».

Выведите единственное число - результат выполнения программы.

Вариант 1.

Необходимо найти наибольший по значению элемент в матрице А. В качестве ответа вычислите сумму номера строки и номера столбца этого элемента (нумерация идет с 1).

Если ответов несколько, то необходимо вывести наименьший.

Вариант 2.

Необходимо найти наименьший по значению элемент в матрице А. В качестве ответа необходимо вывести сумму номера строки и номера столбца этого элемента (нумерация идет с 1).

Если ответов несколько, то необходимо вывести наименьший.

Вариант 3.

Необходимо определить максимальное значение для каждой строки и каждого столбца матрицы. В качестве результата вычислите сумму полученных значений.

Вариант 4.

Необходимо определить минимальное значение для каждой строки и каждого столбца матрицы. В качестве результата вычислите сумму полученных значений.

Вариант 5.

Поверните матрицу А на 90 градусов по часовой стрелке.

Вариант 6.

Поверните матрицу А на 90 градусов против часовой стрелки.

33

123

456

789

Внимание! Вариант который будет доступен в системе может незначительно отличаться от текущего условия лабораторной работы.

В данной лабораторной работе вам необходимо реализовать резидентную программу с установкой обработчика прерывания.

Вариант 1.

Реализуйте резидентную программу, которая при выполнении устанавливает обработчик, делающий циклический сдвиг цифр на заданное число в аргументе (аргумент опциональный, если не указан, считайте сдвиг равен 5). Значение аргумента находится в пределах [-100; 100].

Пример:

Выполняем команду:

MYPROGRAM 3

Выполнение завершается.

Далее осуществляем ввод:

ввод 0 -> на экране 3

ввод X -> на экране 3Х

ввод 9 -> на экране 3X2

ввод у -> на экране 3Х2у

При повторном выполнении команды обработчик должен быть снят.

Вариант 2.

Реализуйте резидентную программу, которая при выполнении устанавливает обработчик, делающий циклический сдвиг строчных букв латинского алфавита на заданное число в аргументе (аргумент опциональный, если не указан, считайте сдвиг равен 13).

Пример:

Выполняем команду:

MYPROGRAM 3

Выполнение завершается.

Далее осуществляем ввод:

ввод а -> на экране d

ввод z -> на экране dc

ввод X -> на экране dcX

ввод 1 -> на экране dcX1

При повторном выполнении команды обработчик должен быть снят.

В данной лабораторной работе вам предстоит реализовать программу на C++ с использованием WinAPI.

Вам необходимо реализовать приложение для рисования изображений.

Базовая функциональность:

- 1. Инструмент кисть.
- 2. Инструмент ластик.
- 3. Кнопка полной очистки изображения.

Для инструмента кисть поддержать выбор цветов (не менее 3 цветов) и толщины (не менее 3 различных значений). Для цветов рекомендуется использовать палитру, а для толщины ползунок.

Базовая функциональность оценивается в 4 балла.

Дополнительные баллы:

- 1. Инструмент заливки непрерывной области одного цвета.
- 2. Инструмент фигура (не менее 3). У фигуры должна быть возможность выбирать цвет контура и заливки.
- 3. В инструмент фигура добавить выбор заливки градиентом (линейной либо радиальной).
- 4. Поддержать сохранение и загрузку изображений в любом формате (можно использовать собственный).
- 5. Поддержать возможность отменить последние действия (поддержка истории).
- 6. Поддержать инструмент размытие. Он должен поддерживать выбор толщины, а также опционально выбор интенсивности размытия.