09/06/24, 1:20 PM house_price.ipynb - Colab

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTreeRegressor

 $from \ sklearn. ensemble \ import \ Random Forest Regressor, \ Gradient Boosting Regressor$

from sklearn.metrics import mean_absolute_percentage_error,r2_score,mean_squared_error

from sklearn.metrics import mean_absolute_error, mean_squared_error

df=pd.read_csv('/content/drive/MyDrive/project_files/house_price.csv')

		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_ab
	0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0	3	1
	1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4	5	٤
	2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0	4	1
	3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0	4	1
	4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0	4	
	4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0	4	1
	4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0	3	1
	4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0	3	\$
	4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0	3	1
	4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0	4	1

4600 rows × 18 columns

Generate code with df Next steps:

View recommended plots

df.head()

→		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	s
	0	2014- 05-02 00:00:00	313000.0	3.0	1.50	1340	7912	1.5	0	0	3	1340	
	1	2014- 05-02 00:00:00	2384000.0	5.0	2.50	3650	9050	2.0	0	4	5	3370	
	2	2014- 05-02 00:00:00	342000.0	3.0	2.00	1930	11947	1.0	0	0	4	1930	
	3	2014- 05-02 00:00:00	420000.0	3.0	2.25	2000	8030	1.0	0	0	4	1000	
	4	2014- 05-02 00:00:00	550000.0	4.0	2.50	1940	10500	1.0	0	0	4	1140	

Next steps:

Generate code with df

View recommended plots

df.tail()

→		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_a
	4595	2014- 07-09	202166 666667	3.0	1.75	1510	6360	1.0	0	0	4	
	4595	00:00:00	308166.666667	3.0	1.75	1510	6360	1.0	U	U	4	
	4500	2014-	50,4000,000000	0.0	0.50	1 100	7570	0.0	0	0	0	
	4596	07-09 00:00:00	534333.333333	3.0	2.50	1460	7573	2.0	0	0	3	
	4-0-	2014-				22.42						
	4597	07-09 00:00:00	416904.166667	3.0	2.50	3010	7014	2.0	0	0	3	
		2014-										
	4598	07-10 00:00:00	203400.000000	4.0	2.00	2090	6630	1.0	0	0	3	
		2014-										
	4599	07-10 00:00:00	220600.000000	3.0	2.50	1490	8102	2.0	0	0	4	

df.shape

→ (4600, 18)

df.columns

df.describe()

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition
count	4.600000e+03	4600.000000	4600.000000	4600.000000	4.600000e+03	4600.000000	4600.000000	4600.000000	4600.000000
mean	5.519630e+05	3.400870	2.160815	2139.346957	1.485252e+04	1.512065	0.007174	0.240652	3.451739
std	5.638347e+05	0.908848	0.783781	963.206916	3.588444e+04	0.538288	0.084404	0.778405	0.677230
min	0.000000e+00	0.000000	0.000000	370.000000	6.380000e+02	1.000000	0.000000	0.000000	1.000000
25%	3.228750e+05	3.000000	1.750000	1460.000000	5.000750e+03	1.000000	0.000000	0.000000	3.000000
50%	4.609435e+05	3.000000	2.250000	1980.000000	7.683000e+03	1.500000	0.000000	0.000000	3.000000
75%	6.549625e+05	4.000000	2.500000	2620.000000	1.100125e+04	2.000000	0.000000	0.000000	4.000000
max	2.659000e+07	9.000000	8.000000	13540.000000	1.074218e+06	3.500000	1.000000	4.000000	5.000000

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4600 entries, 0 to 4599 Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype								
0	date	4600 non-null	object								
1	price	4600 non-null	float64								
2	bedrooms	4600 non-null	float64								
3	bathrooms	4600 non-null	float64								
4	sqft_living	4600 non-null	int64								
5	sqft_lot	4600 non-null	int64								
6	floors	4600 non-null	float64								
7	waterfront	4600 non-null	int64								
8	view	4600 non-null	int64								
9	condition	4600 non-null	int64								
10	sqft_above	4600 non-null	int64								
11	sqft_basement	4600 non-null	int64								
12	yr_built	4600 non-null	int64								
13	<pre>yr_renovated</pre>	4600 non-null	int64								
14	street	4600 non-null	object								
15	city	4600 non-null	object								
16	statezip	4600 non-null	object								
17	country	4600 non-null	object								
dtype	es: float64(4),	int64(9), object	t(5)								
memo	memory usage: 647.0+ KB										

memory usage: 64/.0+ KB

$\mathsf{df}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}} \mathsf{dtypes}$

df.isna().sum()

→ date 0 0 price bedrooms 0 bathrooms 0 sqft_living 0 sqft_lot 0 0 floors waterfront 0 0 view condition 0 sqft_above 0 sqft_basement 0 0 yr_built yr_renovated 0 street 0 0 city 0 statezip 0 country dtype: int64

df.duplicated().sum()

→ 0

df.nunique(axis=0)

date 70 1741 price 10 bedrooms 26 bathrooms 566 sqft_living sqft_lot 3113 floors 6 2 waterfront 5 view 5 condition 511 sqft_above sqft_basement 207 115 yr_built 60 yr_renovated 4525 street 44 city 77 statezip 1 country dtype: int64

df.dropna(inplace=True)
(df.price == 0).sum()

→ 49

#df['price'].replace(0,np.NaN,inplace=True)
df.loc[df.price==0,'price']=np.NaN

(df.price == 0).sum()

→ 0

df.isna().sum()

→ date 0 49 price bedrooms 0 bathrooms 0 sqft living 0 0 sqft_lot floors 0 waterfront 0 0 view condition 0 0 sqft_above sqft_basement 0 0 yr_built yr_renovated 0 street 0 0 city 0 statezip 0 country dtype: int64

df['price']=df['price'].fillna(df['price'].mean())

lb=LabelEncoder()
df['street']=lb.fit_transform(df['street'])
df['city']=lb.fit_transform(df['city'])
df['statezip']=lb.fit_transform(df['statezip'])
df['country']=lb.fit_transform(df['country'])
df['date']=lb.fit_transform(df['date'])
df.dtypes

→ date int64 price float64 float64 bedrooms bathrooms float64 int64 sqft_living sqft_lot int64 floors float64 waterfront int64 int64 view condition int64 int64 sqft_above sqft_basement int64 yr_built int64 yr_renovated int64 street int64 city int64 int64 statezip country int64 dtype: object

plt.figure(figsize=(15,10))
sns.heatmap(df.corr(numeric_only=True),annot=True,linewidth=1)

date -	1	0.033	0.0058	0.019	0.029	-0.02	0.03	0.018	0.0058	0.0079	0.041	-0.015	0.0014	-0.018	-0.0051	-0.02	-0.0045
price -	0.033	1	0.21	0.34	0.44	0.051	0.15	0.14	0.24	0.039	0.38	0.22	0.022	-0.029	0.028	0.016	-0.044
bedrooms -	0.0058	0.21	1	0.55	0.59	0.069	0.18	-0.0035	0.11	0.025	0.48	0.33	0.14	-0.061	-0.036	-0.13	-0.15
bathrooms -	0.019	0.34	0.55	1	0.76	0.11	0.49	0.076	0.21	-0.12	0.69	0.3	0.46	-0.22	0.0072	-0.097	-0.19
sqft_living -	0.029	0.44	0.59	0.76	1	0.21	0.34	0.12	0.31	-0.063	0.88	0.45	0.29	-0.12	0.0064	-0.11	-0.2
sqft_lot -	-0.02	0.051	0.069	0.11	0.21	1	0.0037	0.017	0.074	0.0005€	0.22	0.035	0.051	-0.023	-0.023	-0.079	-0.13
floors -	0.03	0.15	0.18	0.49	0.34	0.0037	1	0.022	0.031	-0.28	0.52	-0.26	0.47	-0.23	0.056	0.078	-0.039
waterfront -	0.018	0.14	-0.0035	0.076	0.12	0.017	0.022	1	0.36	0.00035	0.079	0.098	-0.024	0.0086	0.035	0.0015	0.0079
view -	0.0058	0.24	0.11	0.21	0.31	0.074	0.031	0.36	1	0.063	0.17	0.32	-0.064	0.023	0.065	0.0013	0.079
condition -	0.0079	0.039	0.025	-0.12	-0.063	0.0005€	-0.28	0.00035	0.063	1	-0.18	0.2	-0.4	-0.19	-0.0055	-0.011	0.028
sqft_above -	0.041	0.38	0.48	0.69	0.88	0.22	0.52	0.079	0.17	-0.18	1	-0.039	0.41	-0.16	-0.014	-0.12	-0.25
sqft_basement -	-0.015	0.22	0.33	0.3	0.45	0.035	-0.26	0.098	0.32	0.2	-0.039	1	-0.16	0.043	0.039	0.0016	0.047
yr_built -	0.0014	0.022	0.14	0.46	0.29	0.051	0.47	-0.024	-0.064	-0.4	0.41	-0.16	1	-0.32	-0.067	-0.21	-0.34
yr_renovated -	-0.018	-0.029	-0.061	-0.22	-0.12	-0.023	-0.23	0.0086	0.023	-0.19	-0.16	0.043	-0.32	1	0.008	0.076	0.16
street -	-0.0051	0.028	-0.036	0.0072	0.0064	-0.023	0.056	0.035	0.065	0.0055	-0.014	0.039	-0.067	0.008	1	0.095	0.027
city -	-0.02	0.016	-0.13	-0.097	-0.11	-0.079	0.078	0.0015	0.0013	-0.011	-0.12	0.0016	-0.21	0.076	0.095	1	0.68
statezip -	0.0045	-0.044	-0.15	-0.19	-0.2	-0.13	-0.039	0.0079	0.079	0.028	-0.25	0.047	-0.34	0.16	0.027	0.68	1

sns.countplot(data=df,x=df['floors'])
plt.show()

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

sns.countplot(data=df,x=df['waterfront'])
plt.show()

sns.countplot(data=df,x=df['condition'])
plt.show()


```
#univariate analysis
plt.figure(figsize=(5,4))
sns.countplot(data = df,x = "bedrooms")
plt.grid(axis="y",color="grey",linestyle="--",linewidth=0.6)
plt.style.use("ggplot")
plt.show()
```



```
plt.figure(figsize=(12,4))
sns.countplot(data = df,x = "bathrooms")
plt.grid(axis="y",color="grey",linestyle="--",linewidth=0.4)
plt.yticks(range(0,1300,100))
plt.style.use("ggplot")
plt.show()
```



```
fig,axs = plt.subplots(2,1,figsize=(10,6))
plt.subplot(2,1,1)
sns.histplot(data=df,x="sqft_living",kde=True)
plt.ticklabel_format(style='plain', axis='x')
plt.subplot(2,1,2)
sns.scatterplot(data=df,x=df.index,y="sqft_living")
plt.ticklabel_format(style='plain', axis='y')
plt.show()
```


Removing skewness from data

print("Before transformation skew : ",df["sqft_living"].skew())
df["sqft_living"] = np.log(df["sqft_living"])
print("After transformation skew : ",df["sqft_living"].skew())

Before transformation skew : 1.723513270622118
 After transformation skew : −0.04949693742696049

```
fig,axs = plt.subplots(2,1,figsize=(10,6))
plt.subplot(2,1,1)
sns.histplot(data=df,x="sqft_basement",kde=True)
plt.ticklabel_format(style='plain', axis='x')

plt.subplot(2,1,2)
sns.scatterplot(data=df,x=df.index,y="sqft_basement")
plt.ticklabel_format(style='plain', axis='y')
plt.show()
```


Removing the skeness from data

print("Before transformation skew : ",df["sqft_basement"].skew())
df["sqft_basement"] = np.cbrt(df["sqft_basement"])
print("After transformation skew : ",df["sqft_basement"].skew())

Before transformation skew: 1.6427321922167097
After transformation skew: 0.5627140628962356

```
fig,axs = plt.subplots(2,1,figsize=(10,6))
plt.subplot(2,1,1)
sns.histplot(data=df,x="sqft_lot",kde=True)
plt.ticklabel_format(style='plain', axis='x')

plt.subplot(2,1,2)
sns.scatterplot(data=df,x=df.index,y="sqft_lot")
plt.ticklabel_format(style='plain', axis='y')
plt.show()
```


 $\ensuremath{\text{\#}}$ Removing the skewness from data

print("Before transformation skew : ",df["sqft_lot"].skew())
df["sqft_lot"] = np.log(df["sqft_lot"])
print("After transformation skew : ",df["sqft_lot"].skew())

Before transformation skew: 11.307138748782643
After transformation skew: 0.8416221290325118

```
fig,axs = plt.subplots(2,1,figsize=(10,6))
plt.subplot(2,1,1)
sns.histplot(data=df,x="sqft_above",kde=True)
plt.ticklabel_format(style='plain', axis='x')

plt.subplot(2,1,2)
sns.scatterplot(data=df,x=df.index,y="sqft_above")
plt.ticklabel_format(style='plain', axis='y')
plt.show()
```


Removing the skewness from data

print("Before transformation skew : ",df["sqft_above"].skew())
df["sqft_above"] = np.log(df["sqft_above"])
print("After transformation skew : ",df["sqft_above"].skew())

Before transformation skew: 1.4942107479829443
After transformation skew: 0.24540379930305353

```
fig,axs = plt.subplots(2,1,figsize=(10,6))
plt.subplot(2,1,1)
sns.histplot(data=df,x="price",kde=True)
plt.ticklabel_format(style='plain', axis='x')

plt.subplot(2,1,2)
sns.scatterplot(data=df,x=df.index,y="price")
plt.ticklabel_format(style='plain', axis='y')
plt.show()
```


print("Before transformation skew : ",df["price"].skew())
df["price"] = np.log(df["price"])
print("After transformation skew : ",df["price"].skew())

Before transformation skew: 25.158082239502786
After transformation skew: 0.3216824447420246

sns.histplot(data=df,x="view",kde=True)

5000000 -

Removing the skewness

print("Before transformation skew : ",df["view"].skew())
df["view"] = np.cbrt(df["view"])
print("After transformation skew : ",df["view"].skew())

Before transformation skew: 3.341586380673694
After transformation skew: 2.7633499389523744

sns.barplot(data=df,y="price",x="bedrooms", palette='Set1')
plt.ticklabel_format(style='plain', axis='y')

plt.show()

<ipython-input-139-6d700b4f6c53>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable

sns.barplot(data=df,y="price",x="bedrooms", palette='Set1')

09/06/24, 1:20 PM house_price.ipynb - Colab

sns.barplot(data=df,y="price",x="floors",palette='Set2') plt.ticklabel_format(style='plain', axis='y')

plt.show()

<ipython-input-140-3165d78db1b3>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable sns.barplot(data=df,y="price",x="floors",palette='Set2')

sns.barplot(data=df,y="price",x="waterfront",palette='Set3') plt.ticklabel_format(style='plain', axis='y')

<ipython-input-141-90507285bb24>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable sns.barplot(data=df,y="price",x="waterfront",palette='Set3')

09/06/24, 1:20 PM house_price.ipynb - Colab

sns.barplot(data=df,y="price",x="view",palette='Set2') plt.ticklabel_format(style='plain', axis='y')

plt.show()

<ipython-input-142-833f7590f7f8>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable

sns.barplot(data=df,y="price",x="condition",palette='Set3') plt.ticklabel_format(style='plain', axis='y') plt.show()

<ipython-input-143-e2287f8bcd8a>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable sns.barplot(data=df,y="price",x="condition",palette='Set3')

house_price.ipynb - Colab

```
df.drop(['date','street','country','statezip'],axis=1,inplace=True)
x= df.drop(columns='price',axis=1)
```

→		bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basement
	0	3.0	1.50	7.200425	8.976136	1.5	0	0.000000	3	7.200425	0.000000
	1	5.0	2.50	8.202482	9.110520	2.0	0	1.587401	5	8.122668	6.542133
	2	3.0	2.00	7.565275	9.388235	1.0	0	0.000000	4	7.565275	0.000000
	3	3.0	2.25	7.600902	8.990940	1.0	0	0.000000	4	6.907755	10.000000
	4	4.0	2.50	7.570443	9.259131	1.0	0	0.000000	4	7.038784	9.283178
	•••										
	4595	3.0	1.75	7.319865	8.757784	1.0	0	0.000000	4	7.319865	0.000000
	4596	3.0	2.50	7.286192	8.932345	2.0	0	0.000000	3	7.286192	0.000000
	4597	3.0	2.50	8.009695	8.855663	2.0	0	0.000000	3	8.009695	0.000000
	4598	4.0	2.00	7.644919	8.799360	1.0	0	0.000000	3	6.975414	10.066227
	4599	3.0	2.50	7.306531	8.999866	2.0	0	0.000000	4	7.306531	0.000000

4600 rows × 13 columns

```
Next steps:
             Generate code with \,\times\,
                                     View recommended plots
y=df['price']
    0
             12.653958
     1
             14.684290
     2
             12.742566
     3
             12.948010
             13.217674
     4595
             12.638396
     4596
             13.188775
     4597
             12.940612
     4598
             12.222930
     4599
             12.304106
    Name: price, Length: 4600, dtype: float64
```

Train/Test split

 $x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.30, random_state=0)$ x_train

→											
<u></u>		bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basement
	4452	3.0	1.00	6.946976	8.833463	2.0	0	0.00000	3	6.946976	0.000000
	2457	5.0	2.75	8.107720	10.075759	2.0	0	0.00000	4	7.691657	10.415804
	1390	3.0	2.25	7.770645	12.291332	2.0	0	0.00000	3	7.770645	0.000000
	3402	4.0	1.75	7.642524	12.068189	1.0	0	0.00000	3	7.383989	7.802454
	3197	4.0	2.50	7.803843	10.922100	2.0	0	0.00000	3	7.803843	0.000000
	1033	3.0	1.50	7.146772	7.274480	3.0	0	0.00000	3	7.146772	0.000000
	3264	2.0	1.00	6.877296	8.612503	1.0	0	0.00000	3	6.877296	0.000000
	1653	5.0	2.75	7.640123	9.487138	2.0	0	0.00000	3	7.640123	0.000000
	2607	4.0	2.50	8.029433	10.446161	1.0	0	1.44225	4	7.635304	10.000000
	2732	3.0	1.75	7.438384	9.039789	1.0	0	0.00000	3	7.114769	7.774980

Next steps:

3220 rows \times 13 columns

Generate code with x_train

x_test

→		bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basement	Y
	991	3.0	2.50	7.644919	8.455318	2.0	0	0.0	3	7.644919	0.000000	
	2824	4.0	2.50	7.878534	9.062420	2.0	0	0.0	3	7.878534	0.000000	
	1906	1.0	1.00	6.476972	9.639782	1.0	0	0.0	4	6.476972	0.000000	
	1471	4.0	2.00	7.828038	10.549045	1.0	0	0.0	3	7.828038	0.000000	
	1813	4.0	3.50	7.933797	9.222763	1.5	0	0.0	5	7.933797	0.000000	
	1523	2.0	2.50	6.956545	7.383368	2.0	0	0.0	3	6.956545	0.000000	
	144	3.0	3.00	7.359468	7.609367	3.0	0	0.0	3	7.359468	0.000000	
	388	4.0	2.25	8.349957	10.539244	2.0	0	0.0	3	8.349957	0.000000	
	4395	4.0	1.00	7.333023	8.881836	1.5	0	0.0	3	7.244228	5.065797	
	1669	2.0	1.00	7.098376	8.476371	1.0	0	0.0	3	6.966024	5.313293	

1380 rows × 13 columns

Next steps: Generate code with x_test

```
y_train
```

```
→ 4452
             11.909098
    2457
             13.341499
             13.282780
    1390
    3402
             13.241923
    3197
             13.337475
             12.994530
    1033
    3264
             12.254863
    1653
             13.197263
             14.467836
    2607
    2732
             13.071070
    Name: price, Length: 3220, dtype: float64
y_test
    991
             12.574182
    2824
             12.971308
    1906
             11.767568
    1471
             13.304685
    1813
             14.076335
    1523
             12.691580
    144
             12.812436
    388
             13.800397
    4395
             11.815496
    1669
             12.847927
    Name: price, Length: 1380, dtype: float64
```

Normalization

```
scaler=StandardScaler()
x_train=scaler.fit_transform(x_train)
x_test=scaler.fit_transform(x_test)
x_train
→ array([[-0.43585706, -1.46116072, -1.44531812, ..., -0.97908343,
             1.21146099, 0.77814633],
           [ 1.81508077, 0.76024509, 1.24451291, ..., 0.13894917,
            -0.82861952, 1.3632617 ],
           [-0.43585706, 0.12555772, 0.46339815, ..., 0.27446827,
             1.22676924, 0.44379469],
           [ 1.81508077, 0.76024509, 0.16093501, ..., 0.54550647,
             1.21248154, 0.61097051],
           [0.68961185, 0.44290141, 1.06309532, ..., -0.70804522,
             1.19513218, -0.3084965],
           [-0.43585706, -0.50912966, -0.30656301, ..., 0.20670872,
             1.21656374, 0.77814633]])
x_test
→ array([[-0.45368999, 0.40911564, 0.12981037, ..., 1.04166915,
            -0.81889088, -1.38368358,
            [ 0.59504064, 0.40911564,
                                       0.67863687, ...,
                                                         0.54525937
             1.22616715, 0.52929302],
            [-2.55115124, -1.52990983, -2.61402313, ..., -0.11662032,
            -0.81889088, -0.63512752],
            [ 0.59504064, 0.08594473, 1.78614127, ..., 0.61144734,
            -0.81889088, 1.36102198],
           [0.59504064, -1.52990983, -0.60292118, ..., -0.74540604,
             1.22003197, 0.77881171],
            [-1.50242061, -1.52990983, -1.15417337, \ldots, -0.67921807,
             1.23127979, 0.77881171]])
```

Model creation

Linear Regression

```
lr=LinearRegression()
lr.fit(x_train,y_train)
y_pred=lr.predict(x_test)
y_pred
→ array([12.97344108, 13.29009117, 12.0672723 , ..., 13.61302906,
            12.8589992 , 12.75376323])
y_test
             12.574182
    991
     2824
             12.971308
     1906
             11.767568
     1471
             13.304685
     1813
             14.076335
               . . .
    1523
             12.691580
    144
             12.812436
    388
             13.800397
             11.815496
     4395
    1669
             12.847927
    Name: price, Length: 1380, dtype: float64
mae=mean_absolute_error(y_test,y_pred)
mape=mean_absolute_percentage_error(y_test,y_pred)
mse=mean_squared_error(y_test,y_pred)
rmse=np.sqrt(mse)
r_score=r2_score(y_test,y_pred)
print("MAE:", mae)
print("MAPE", mape)
print("MSE:", mse)
print("RMSE:", rmse)
print("R2 Score:", r_score)
    MAE: 0.2846265705186637
    MAPE 0.021728867580299297
    MSE: 0.14006035188542187
    RMSE: 0.37424637858691684
     R2 Score: 0.5184802888077391
```

random forest regression

```
rf=RandomForestRegressor(n_estimators=300, random_state=0)
rf.fit(x_train,y_train)
y_pred=rf.predict(x_test)
y_pred

array([12.59002474, 13.05804781, 12.4172821 , ..., 13.56657173, 12.79312905, 12.86318677])
```

→ 991 12.574182 2824 12.971308 1906 11.767568 13.304685 1471 1813 14.076335 1523 12.691580 144 12.812436 388 13.800397 4395 11.815496 1669 12.847927 Name: price, Length: 1380, dtype: float64 print("MAE:", mean_absolute_error(y_test,y_pred)) print("MAPE", mean_absolute_percentage_error(y_test, y_pred)) print("MSE:",mean_squared_error(y_test,y_pred)) print("RMSE:", np.sqrt(mse)) print("R2 Score:", r2_score(y_test,y_pred)) MAE: 0.22647090576813672 MAPE 0.017262669925558055

y_test

Decision Tree Regression

MSE: 0.1091462311680321 RMSE: 0.37424637858691684 R2 Score: 0.6247613189437886

```
dt=DecisionTreeRegressor()
dt.fit(x_train,y_train)
y_pred=dt.predict(x_test)
y_pred
→ array([12.5776362 , 13.07107008, 12.60819885, ..., 12.91195094,
            13.23194559, 13.48422485])
y_test
    991
             12.574182
     2824
             12.971308
     1906
             11.767568
     1471
             13.304685
     1813
             14.076335
     1523
             12.691580
     144
             12.812436
     388
             13.800397
     4395
             11.815496
     1669
             12.847927
     Name: price, Length: 1380, dtype: float64
print("MAE:", mean_absolute_error(y_test,y_pred))
print("MAPE", mean_absolute_percentage_error(y_test, y_pred))
print("MSE:",mean_squared_error(y_test,y_pred))
print("RMSE:", np.sqrt(mse))
print("R2 Score:", r2_score(y_test,y_pred))
    MAE: 0.32709069418316755
    MAPE 0.024925561267985362
    MSE: 0.23550563025546045
     RMSE: 0.37424637858691684
```

Gradient boosting Regression

R2 Score: 0.1903447225555348

```
GBoost = GradientBoostingRegressor(n_estimators=5000, random_state =5)
GBoost.fit(x_train, y_train)
pred = GBoost.predict(x_test)
pred
→ array([12.51701353, 13.21149603, 12.02828778, ..., 13.51718549,
            13.04713368, 13.21249785])
Start coding or generate with AI.
⇒ array([12.51701353, 13.21149603, 12.02828778, ..., 13.51718549,
            13.04713368, 13.21249785])
print("MAE:", mean_absolute_error(y_test,pred))
print("MAPE", mean_absolute_percentage_error(y_test, pred))
print("MSE:",mean_squared_error(y_test,pred))
print("RMSE:", np.sqrt(mse))
print("R2 Score:", r2_score(y_test,pred))
MAE: 0.23258625989172707
    MAPE 0.017761748561780717
    MSE: 0.12089418475828281
    RMSE: 0.37424637858691684
```

R2 Score: 0.5843725069514749