CORRIGIÓ:..... REVISÓ:.....

Teóricos				Prácticos				Calificación
1		2		1	2	3	4	

Condición mínima para aprobar con calificación 6(SEIS): 3 (tres) ítems bien resueltos, uno de "T1 o T2" y dos de "P1), P2),P3) o P4)"

T1. Indique si las siguientes proposiciones son verdaderas o falsas justificando claramente la respuesta.

a. "El plano $\,z=0\,$ es tangente al gráfico de la función definida por

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$
 en el punto (0,0)"

- b. "El flujo del campo vectorial dado por $\vec{g}(x,y,z)=(2yz+x^3y$, $7y-\frac{3}{2}x^2y^2$, 4z) a través de la superficie abierta $x^2+y^2+z^2=4y+2z$ con $z\geq 1$ orientada con campo de vectores normales apuntando hacia el eje z positivo, es un número menor que cero"
- T2. a. Indique las condiciones suficientes para que una ecuación $F(x,y,z)=0\,$ defina en el entorno del punto (x_0,y_0) a una única función z=f(x,y)
 - a. Muestre que la ecuación $6e^{xz}-yz=0$ define en un entorno del punto $(0,2,z_0)$ a z=f(x,y). Luego, halle la ecuación de la recta normal al gráfico de f en el punto $(0,2,z_0)$
- P1. Para el campo vectorial $\vec{f}(x,y)=(4xy^2-3y+8$, $5x+3y^2+4x^2y)$, calcule $\int_{\gamma^+} \vec{f} \cdot d\vec{s}$ siendo γ la trayectoria ortogonal a la familia de curvas $x^2+Cy=0$ que pasa por el punto (2,2).
- P2. Calcule el flujo de $rot \ \vec{h}$ a través de la superficie abierta S: $z=2-(x-1)^2-y^2$ con $z\geq 0$, si el campo vectorial $\vec{h}(x,y,z)=\left(3y+1\,,6x-2\,,f(x,y,z)\right)$ con $f\in C^2(R^3)$. Indique claramente cómo ha orientado la superficie.
- P3. Analice la existencia de extremos locales de la función definida por $h(x,y) = x^2y x^2 + \frac{1}{2}y^2 5y$.
- P4. Calcule, empleando integrales de línea, el área del triángulo cuyos vértices (en \mathbb{R}^2) son los puntos en los que el plano tangente a la superficie de ecuación $g(x,y)=2y^2+4x^2y-16y+8$ es paralelo al plano xy.