Deskriptive Statistik

Contents

1	Gra	aphische Darstellung	1
	1.1	Stamm-Blatt-Diagramm	-
	1.2	Histogramme	-
		1.2.1 Häufigkeiten]
		1.2.2 Klassen, Klassenbreite	4
	1.3	Stabdiagramm	4
2	Arl	peiten mit Quartilen	2
	2.1	1. Quartil	
	2.2	2. Quartil (Median)	•
	$^{2.3}$	3. Quartil	•
	$^{2.3}$	2. Quartil (Median)	

1 Graphische Darstellung

1.1 Stamm-Blatt-Diagramm

4		3,4,6,1,2,3,8,7,8,8	1	77 <i>→</i>	0177	$\longrightarrow 0 8$
5		4,7,6			1	1
6	i	1,2,5,4,3,3		$104 \Rightarrow$	1 04	\longrightarrow 1 0
7	i	9,0,0,2,1,8,4		$132 \Rightarrow$		
8		1 9		$227 \Rightarrow$	2 27	$\longrightarrow 2 3$

1.2 Histogramme

1.2.1 Häufigkeiten

Umfang der Stichprobe: n absolute Häufigkeit: $h(a_j)=$ Anzahl der Ausprägungen in der Beobachtungsmenge relative Häufigkeit: $f(a_j)=\frac{Anzahl\ der\ Ausprägungen\ in\ der\ Beobachtungsmenge}{Grösse\ der\ Beobachtungsmenge\ (Umfang\ der\ Stichprobe)}=\frac{h(a_j)}{n}$ absolute Summenhäufigkeit: $G(x)=\sum_i^n h(x)$ Verteilungsfunktion: $H(x)=\sum f(x)=\frac{1}{n}\sum h(x)=\frac{G(x)}{n}$

Beispiel

Zwei Würfel werden 1000 mal geworfen:

Ausprägung x	Häufigkeit $h(x)$	relative Häu-	absolute Summen-	Verteilungsfunktion
		figkeit $f(x)$	häufigkeit $G(x)$	H(x)
2	12	0.012	12	0.012
3	46	0.046	58	0.058
4	83	0.083	141	0.141
5	103	0.103	244	0.244
6	160	0.160	404	0.404
7	180	0.180	584	0.584
8	159	0.159	743	0.743
9	125	0.125	868	0.868
10	77	0.077	945	0.945
11	43	0.043	988	0.988
12	12	0.012	1000	1.000

1.2.2 Klassen, Klassenbreite

Umfang der Stichprobe: n

Anzahl Klassen: \sqrt{n}

Klassenbreite: \sqrt{n} oder $10log_{10}(n)$

1.3 Stabdiagramm

2 Arbeiten mit Quartilen

Quartile teilen die Grundgesamtheit in 4 gleich grosse Teile.

2.1 1. Quartil

$$Q_1 = \frac{1}{2} \cdot (1 + \frac{n+1}{2}) = \frac{n+3}{4}$$

Sollte das Quartil zwischen zwei Indizes liegen $(n_1 \leq Q_1 \leq n_2)$ so gilt:

$$Q_1 = (x_{n2} - x_{n1}) \cdot \frac{n+3}{4} + x_{n1} \cdot n_2 - x_{n2} \cdot n_1$$

2.2 2. Quartil (Median)

n gerade:

$$Q_2 = \frac{1}{2} \cdot (x_{\frac{n}{2}} + x_{\frac{n}{2}+1})$$

n ungerade:

$$Q_2 = x_{\frac{n+1}{2}}$$

2.3 3. Quartil

$$Q_2 = \frac{1}{2} \cdot (\frac{n+1}{2} + n) = \frac{3n+1}{4}$$

Sollte das Quartil zwischen zwei Indizes liegen $(n_1 \le Q_3 \le n_2)$ so gilt:

$$Q_1 = (x_{n2} - x_{n1}) \cdot \frac{3n+1}{4} + x_{n1} \cdot n_2 - x_{n2} \cdot n_1$$

2.4 Boxplot

3 Statistische Masszahlen

Quantile / Quartile

Arithmetisches Mittel: $\bar{x} = \frac{1}{n} \sum x_i = \sum f(a_i)$