

Números inteiros

FCŁ

- ➤Os computadores foram feitos para manusear dados
- ➤ Que números se podem guardar em N bits?
 - -Inteiros sem sinal:

$$0 \quad a \quad 2^{N} - 1$$

-Inteiros com sinal (complemento p/ 2)

a
$$2^{(N-1)} - 1$$

Representação de números inteiros FCL (com sinal)

- ➤ Sinal = bit de maior peso
 - 0 = positivo, 1 = negativo
- ➤ Complemento para um
 - Para negar, fazer complemento binário
- ➤ Complemento para dois
 - Para negar, fazer complemento binário e adicionar 1
 - Pode ser usado directamente em operações matemáticas

Outros números

- ➤E os outros números?
 - Números muito grandes: [seg./século]
 3,155,760,000₁₀ (3.15576₁₀ x 10⁹)
 - $\begin{array}{c} -\,\text{N\'umeros muito pequenos:} \\ 0.00000001_{10} & (1.0_{10}\,\text{x}\,10^{-8}) \end{array} \qquad \text{[d\'iâmetro at\'omico]}$
 - Números racionais: [padrões de repetição] $2/3_{10}$ (0.666666... $_{10}$)
 - Números irracionais: [sem padrões de repetição]
 2^{1/2} (1.414213562373...)
 - Números transcendentais: [e, π] e = 2.718... π = 3.1415926...
- ➤ Representáveis em notação científica (aprox.)

Notação científica

mantissa 6.02₁₀ x 10²³ expoente ponto decimal base

- ➤ Formato normalizado: um e um só dígito (≠0) à esquerda do ponto
- ➤ Alternativas para representar 1/1,000,000,000
 - Não normalizado: 0.1 x 10⁻⁸, 10.0 x 10⁻¹⁰
 - Normalizado: 1.0 x 10⁻⁹

Representação de números em vírgula flutuante

- Usados para representar números reais e grandes inteiros
- ➤ Usa-se a notação científica

$$n = m * 2 e$$

Norma IEEE 754

FCt

- ➤ Precisão simples (32 bits)
 - -1 bit sinal
 - -8 bits para expoente (excesso 127)
 - -23 bits para mantissa
- ➤ Dupla precisão (64 bits)
 - -1 bit sinal
 - -11 bits para expoente (excesso 1023)
 - -52 bits para mantissa

Formato normalizado para vírgula flutuante

- ➤ Um número binário normalizado começa necessariamente com um bit a 1
- ➤ Logo, pode-se assumir que existe sempre um bit a 1 seguido do ponto decimal
- ➤ Logo, apenas a parte fraccionária necessita de ser guardada
- Os expoentes mínimos e máximos não são usados nos números normalizados, estando reservados para significados especiais

Representação de números em vírgula flutuante 🖽

- >+1.xxxxxxxxx₂ * 2^{yyyy}₂
- ➤ Múltiplos tam. da palavra (e.g., 32 bits)

➤ Representa números tão pequenos como 2 x 10⁻³⁸ e tão grandes como 2 x 10³⁸

10

Representação de números em vírgula flutuante [2]

- ➤E se a operação resultar num número demasiado grande?
 - $(> 2.0 \times 10^{38})$
- **≻**Overflow
 - Expoente positivo é maior que o número representável nos 8 bits reservados para o efeito

Representação de números em vírgula flutuante [3]

- ➤E se a operação resultar num número muito pequeno?
 - $(> 0 e < 2.0x10^{-38})$
- >Underflow
 - Expoente negativo é menor que o número representável nos 8 bits reservados para o efeito

Representação de números em vírgula flutuante [4] Como evitar overflows e underflows? Utiliza-se dupla precisão -64 bits para representar o número 64 bits 1 bit 11 bits 52 bits Sinal = 0/1 Expoente = yyyy Mantissa = xxxxxxxx

Representação de números em vírgula flutuante [5]

	Precisão Simples	Dupla Precisão
Declaração em C	float	double
Tamanho	4 bytes	8 bytes
Maior número	≈±2.0 x 10 ³⁸	≈± 2.0 x 10 ³⁰⁸
Menor número	≈±2.0 x 10 ⁻³⁸	≈± 2.0 x 10 ⁻³⁰⁸

...

FCŁ

FCŁ

Norma IEEE 754 para números em vírgula flutuante [1]

- Mesmos princípios para precisão simples e dupla
- ➤ Bit de sinal: 1 = negativo 0 = positivo
- > Expoente: por excesso de 127 ou 1023
- ➤ Mantissa
 - Para englobar mais dígitos, o 1 inicial está implícito
 - 1+23 bits em precisão simples
 - 1+52 bits em dupla precisão
 - Corresponde sempre a um valor < 1

Norma IEEE 754 para números em vírgula flutuante [2]

- ≻O zero não tem 1 inicial!
 - Reserva-se o valor particular de expoente zero para representar o número 0
- ➤ Representação foi pensada para que os cálculos fossem eficientes mesmo sem FPU (Floating Point Unit)

10

Norma IEEE 754 para números em vírgula flutuante [3]

- ➤ Como comprar dois números VF sem FPU?
 - -Particiona-se o número em 3 partes: sinal | expoente | mantissa e comparam-se por esta ordem
- ➤Para ser rápido, deveria funcionar com comparação inteira (com sinal)

Norma IEEE 754 para números em vírgula flutuante [4]

- ≻Surgiu assim a convenção...
 - Bit de maior peso é o sinal (negativo < positivo)
 - Bits seguintes são o expoente(> expoente ⇒ > número)
 - Bits de menor peso contêm a mantissa(mesmo expoente, > mantissa ⇒ > número)

18

.,

FCŁ

Norma IEEE 754 para FCL números em vírgula flutuante [5]

- ➤ Expoente negativo! Como representar?
- ➤ Complemento para 2?

 $1.0 \times 2^{-1} \text{ vs. } 1.0 \times 2^{+1} \text{ (1/2 vs. 2)}$

➤Nesta notação, a comparação inteira deste números resulta em ½ > 2

Norma IEEE 754 para números em vírgula flutuante [6]

- ➤ Usar notação alternativa onde:
 - -0000 0001 é o menor negativo
 - -1111 1111 é o maior positivo

➤Nesta notação, a comparação inteira deste números resulta em ½ < 2

20

FCL

Norma IEEE 754 para números em vírgula flutuante [7]

- ➤ Chamada "Notação por excesso de N"
 - –IEEE 754 usa um excesso de 127 para precisão simples
 - Subtrai-se 127 ao campo expoente, para determinar o valor efectivo deste
 - O valor de 1023 é usado como excesso para precisão dupla

Norma IEEE 754 para números em vírgula flutuante [8]

➤ Resumo (precisão simples)

-(-1)^S x (1 + mantissa) x 2 (expoente - 127)

32 bits

1'bit 8 bits 23 ☐ Sinal = 0 / 1 ☐ Expoente = yyyy

Mantissa = xxxxxxxx

- ▶Precisão dupla
 - -Idêntico mas com excesso de 1023
 - (-1)^S x (1 + mantissa) x 2^(expoente 1023)

22

O "Pai" da norma IEEE 754

FC

FCŁ

Norma IEEE 754 para Aritmética Binária em Vírgula Flutuante

Prof. Kaha

www.cs.berkeley.edu/~wkahan/ .../ieee754status/754story.html

Compreendendo a mantissa [1]

- ➤ Método 1: usando fracções
 - -Em decimal:
 - 0.340_{10} → $340_{10}/1000_{10}$
 - **→** 34₁₀/100₁₀
 - –Em binário:
 - $0.110_2 \rightarrow 110_2/1000_2 = 6_{10}/8_{10}$
 - \rightarrow 11₂/100₂ = 3₁₀/4₁₀

Compreendendo a mantissa [2]

- FCŁ
- ➤ Método 2: calculando o valor
 - -Conversão da notação científica
 - Fm decimal:
 - $1.6732 = (1x10^{0}) + (6x10^{-1}) + (7x10^{-2}) +$ $(3x10^{-3}) + (2x10^{-4})$
 - Em binário.
 - $-1.1001 = (1x2^{0}) + (1x2^{-1}) + (0x2^{-2}) + (0x2^{-3}) +$ (1x2-4)
 - -Método bom para calcular rapidamente o valor da mantissa

Exemplo: números em v.f. Binário -> Decimal [1]

001101000101010101010000110101000010

sinal expoente

mantissa

- ➤ Sinal: 0 → Positivo
- > Expoente/01/10 10002 → 104₁₀
 - Ajuste do excesso: 104-127 = -23
- ≻ Mantisşa:
 - $-1 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3} + 0x2^{-4} + 1x2^{-5} + ...$ $= 1 + 2^{-1} + 2^{-3} + 2^{-5} + 2^{-7} + 2^{-9} + 2^{-14} + 2^{-15} + 2^{-17} + 2^{-22}$ = 1.0 + 0.666115
- ➤ Representa: $1.666115_{10} \times 2^{-23} \approx 1.986 \times 10^{-7}$ (aprox. 2/10,000,000)

FCŁ

Exemplo: números em v.f. Binário → Decimal [2]

- ➤ Caso simples
 - Número é representável por uma fracção cujo denominador é uma potência de dois
- ➤ Representação de -0.75
 - \bullet -0.75 = -3/4 = -11₂/100₂ = -0.11₂
 - Normalizado: -1.1₂ x 2⁻¹
 - (-1)^S x (1 + mantissa) x $2^{\text{(expoente-127)}}$
 - (-1)¹ x (1 + .100 0000 ... 0000) x 2⁽¹²⁶⁻¹²⁷⁾

sinal expoente

Exemplo: números em v.f. Binário → Decimal [3]

- ➤ Caso menos simples
 - Número não é representável por uma fracção cujo denominador é uma potência de dois
- > Então o número exacto não pode ser representado
- ➤ Usa-se uma aproximação do número
 - É agui que o número de bits da mantissa se torna importante
- ➤ Uma vez obtida a mantissa, é fácil normalizar o número e calcular o expoente
- ➤ Como obter a mantissa de um número?

Exemplo: números em v.f.

Binário → Decimal [5]

➤ Como representar 1/3?

 $= 0.33333..._{10}$

Exemplo: números em v.f. Binário → Decimal [4]

- > Todos os números racionais têm um padrão de repetição, quando escritos em decimal
- > A lei acima também é válida para números escritos em binário
- > Procedimento:
 - 1. Escrever o número em binário com o padrão de
 - 2. Cortar o bits em excesso (depende da precisão)
 - 3. Determinar o sinal, expoente e mantissa

≥1/3

- = 0.25 + 0.0625 + 0.015625 + 0.00390625 +0.0009765625 + ...
- = 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 + ...
- $= 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + 2^{-10} + \dots$

Exemplo: números em v.f. Binário → Decimal [6]

➤Sinal = 0

➤Expoente = -2 + 127 = 125₁₀ = = 01111101

➤ Mantissa = 0101010101...

..

Representação de +/- Infinito

>Em FP, a divisão por zero deveria resultar em +/- Infinito, não *overflow*

➤ Porquê?

É possível fazer mais computações com Infinito,
 e.g., (x/0 > y) pode ser uma comparação válida

➤ IEEE 754 representa +/- Infinito

- Maior expoente positivo reservado para representar Infinito
- Mantissa toda a zeros

32

Representação de Zero

- ➤Como representar 0?
- -Expoente a zeros
- -Mantissa também a zeros
- -E o sinal?
- ≻Porquê dois zeros?
 - -Ajuda na comparação de alguns limites
 - -0 ≠ +0 (zero negativo ≠ zero positivo)

Números em vírgula flutuante [1]

Item	Single precision	Double precision
Bits in sign	1	1
Bits in exponent	8	11
Bits in fraction	23	52
Bits, total	32	64
Exponent system	Excess 127	Excess 1023
Exponent range	-126 to +127	-1022 to +1023
Smallest normalized number	2-126	2-1022
Largest normalized number	approx. 2 ¹²⁸	approx. 2 ¹⁰²⁴
Decimal range	approx. 10 ⁻³⁸ to 10 ³⁸	approx. 10 ⁻³⁰⁸ to 10 ³⁰
Smallest denormalized number	approx. 10 ⁻⁴⁵	approx. 10 ⁻³²⁴

Figure B-5. Characteristics of IEEE floating-point numbers.

34

Exercício: Solução

mantissa

sinal expoente

►(-1)^S x (1 + mantissa) x 2^(expoente - excesso)

 \triangleright (-1)¹ x (1 + .111) x 2^(129 - 127)

>-1 x 1.111 x 2²

>-1 x 111.1

>-111.1₂

≻-7.5₁₀ (opção D:)

Tópicos a recordar

- ➤ Números em VF aproximam os números que queremos usar
- ➤Norma IEEE 754 reúne o maior consenso sobre como representar tais números
 - -Todos os computadores vendidos desde ~1997 usam esta convenção
- ➤Os dados não têm um tipo associado
- ➤Os bits só têm significado dado o seu contexto