PadhAl: Backpropagation - the full version

One Fourth Labs

Computing derivatives w.r.t Output Layer Part 2

- 1. Continuing from where we left off $\frac{\partial L(\theta)}{\partial a_{Li}}=\frac{-1}{\hat{y}_l}\frac{\partial \hat{y}_l}{\partial a_{Li}}$
- 2. Here, we know that $\hat{y}_l = \frac{e^{a_{Ll}}}{\sum_i a^{Li}}$ (taking the l-th entry of the softmax function applied to vector
- 3. $\frac{\partial L(\theta)}{\partial a_{Li}} = \frac{-1}{\hat{y}_l} \frac{\partial softmax(a_L)_l}{\partial a_{Li}} \text{ where } a_L = [a_{L1}, a_{L2} \dots a_{Lk}]$
 - a. Where $softmax(a_L) = \left[\frac{e^{a_{L1}}}{\sum_i e^{a_{Li}}}, \frac{e^{a_{L2}}}{\sum_i e^{a_{Li}}} \dots \frac{e^{a_{Lk}}}{\sum_i e^{a_{Li}}}\right]$
 - b. Selecting the I-th entry would give us the value $softmax(a_L)_l = \frac{exp(a_L)_l}{\sum_i exp(a_I)i}$
- 4. $\frac{\partial L(\theta)}{\partial a_{Li}} = \frac{-1}{\hat{y}_l} \frac{\partial}{\partial a_{Li}} \frac{exp(a_L)_l}{\sum_{i'} exp(a_L)_{i'}}$
 - a. This is of the form $\frac{g(x)}{h(x)}$ which gives derivatives $\frac{\partial \frac{g(x)}{h(x)}}{\partial x} = \frac{\partial g(x)}{\partial x} \frac{1}{h(x)} \frac{g(x)}{h(x)^2} \frac{\partial h(x)}{\partial x}$
 - b. Here $g(x) = exp(a_L)_l$ and $h(x) = \sum_{i'} exp(a_L)_{i'}$
 - c. Substitute the values and expand the formula
- 5. $\frac{\partial L(\theta)}{\partial a_{Li}} = \frac{-1}{\hat{y}_l} \left(\frac{\frac{\partial}{\partial a_{Li}} exp(a_L)_l}{\sum_{i'} exp(a_L)_{i'}} \frac{exp(a_L)_l \left(\frac{\partial}{\partial a_{Li}} \sum_{i'} exp(a_L)_{i'}\right)}{\left(\sum_{i'} exp(a_L)_{i'}\right)^2} \right)$
 - a. Here, consider $\frac{\partial}{\partial a_{Li}} exp(a_L)_l$, this value is 0 for all values of i : 0 to k except for when i = l
 - b. Thus, we use an indicator variable $1_{(l=i)} \exp(a_L)_l$ to denote that all other values except i=l resolve to 0
 - c. Now consider $\frac{\partial}{\partial a_{Li}} \sum_{i'} exp(a_L)_{i'}$, here i' ranges from 1 to k. When taking the derivative, only the index i=i' remains, which is simply a derivative of an exponent.
- 6. $\frac{\partial L(\theta)}{\partial a_{Li}} = \frac{-1}{\hat{y}_l} \left(\frac{1_{(l=i)} \exp(a_L)_l}{\sum_{l'} \exp(a_L)_{i'}} \frac{\exp(a_L)_l}{\sum_{l'} \exp(a_L)_{i'}} \frac{\exp(a_L)_i}{\sum_{l'} \exp(a_L)_{i'}} \right)$
 - a. This is can be rewritten in terms of the softmax function for the different variables
- 7. $\frac{\partial L(\theta)}{\partial a_{Li}} = \frac{-1}{\hat{y}_l} (\mathbf{1}_{(l=i)} softmax(a_L)_l softmax(a_L)_l softmax(a_L)_i$
 - a. We know that the Softmax function is ŷ, so we rewrite it.
- 8. $\frac{\partial L(\theta)}{\partial a_{Li}} = \frac{-1}{\hat{y}_l} (\mathbf{1}_{(l=i)} \hat{y}_l \hat{y}_l \hat{y}_i)$
- 9. After cancellation $\frac{\partial L(\theta)}{\partial a_{Li}} = -(\mathbf{1}_{(l=i)} \hat{y}_i)$