General information

Except as otherwise noted near each table and summarized in the last two spreadsheets ("CFMIP output" and "other output"), each output field should be saved for the entire duration of each and every run.

The specifications for archiving model output, as described in the following tables, assume the following (please advise us if the assumptions are incorrect):

- 1. Sea ice fields and ocean biogeochemistry fields will be archived on the same grid as ocean fields.
- 2. Land fields (including ice and snow on land) and land biogeochemistry fields will be archived on the same grid as the atmosphere.

The following rules and recommendations for how to calculate quantities should be followed unless a different method is explicitly indicated in the notes that appear in the following tables.

- 1. It is recommended that ocean and sea-ice output (including Oclim, Oyr, Omon, and OImon) be reported on the ocean's native grid. Unless noted otherwise in the tables, all other output should be reported on the atmospheric grid.
- 2. Unless otherwise specified, the ocean and sea-ice output (including Oclim, Oyr, Omon, and OImon) represents a mean over only the sea portion of each grid cell (i.e., it is interpreted as "where ocean over ocean"), and a value of 0.0 should be reported where the sea fraction is 0.
- 3. Unless otherwise specified, the land output (in the Lmon and Llmon tables) represents a mean over only the land portion of each grid cell (i.e., it is interpreted as "where land over land"), and a value of 0.0 should be reported where the land fraction is 0.
- 4. The default interpretation of a OImon field is that the quantity is averaged over the entire ocean portion of each grid-cell (with a value of zero applying anywhere the quantity is absent in this portion of the cell) and then averaged in time.
- 4. The default interpretation of a LImon field is that the quantity is averaged over the entire land portion of each grid-cell (with a value of zero applying anywhere the quantity is absent in this portion of the cell) and then averaged in time.

A note on priorities.

The priorities noted in the tables have been largely set by scientists who have participated in model intercomparison activities and have needed these variables in their own research. Since the priorities in different tables were set by different groups of scientists, the priorities in one table may have a different meaning from the priorities in another table. We hope that the vast majority of fields listed in all the tables will be archived by all the modeling groups, but in many cases where a group has not saved a particular field in the past, this may require non-trivial effort. The priorities listed here, along with the participating group's expert judgement should be considered when deciding which fields to save. Please make every effort to save as many of the fields as possible. For lower priority variables, if you can't save them for all the experiments and realizations, please consider saving them for a subset that you think might be of most interest.

CMOR Dimensions

output CMOR dimension index stored CMOR table(s) dimension standard name units axis? direction name description long name axis coords_attrib bounds? fx, Amon, Lmon, LImon, OImon, aero, day, 6hrLev degrees_ 6hrPlev, 3hr, X increasing longitude lon longitude longitude yes east Oclim, Oyr, Omon, cfMon, cfOff, cfDay, cf3hr fx, Amon, Lmon. LImon, OImon, aero, day, 6hrLev, degrees_ 6hrPlev, 3hr, latitude lat latitude latitude increasing yes north Oclim, Oyr, Omon, cfMon, cfOff, cfDay, cf3hr There are 17 mandatory levels and up to 6 Amon plevs plev additional levels requested of models with air_pressure pressure Z Pa decreasing no sufficient resolution in the stratosphere. day plev8 plev air_pressure pressure Z Pa decreasing no 6hrPlev plev3 plev Z Pa air_pressure decreasing pressure no Z cfMon, cfDay 7 pressure layers defined by ISCCP simulator Pa plev7 plev air_pressure pressure yes decreasing Z cfDay p500 plev 500 hPa air_pressure pressure Pa no decreasing p700 700 hPa Z Pa cfDay plev air_pressure pressure no decreasing pressure layer of high-level cloud in ISCCP cfMon, cfOff, cf3hr p220 plev air_pressure pressure Z Pa decreasing no pressure layer of mid-level cloud in ISCCP cfMon, cfOff, cf3hr p560 Z Pa plev air_pressure pressure no decreasing simulator pressure layer of low-level cloud in ISCCP cfMon, cfOff, cf3hr p840 Z Pa decreasing plev air_pressure pressure no simulator Amon, aero, 6hrLev, cfMon, generic atmospheric model vertical coordinate Z ok alevel lev atmospheric model level yes cfDay, cf3hr, (nondimensional or dimensional) cfSites Amon, cfMon, atmospheric model half-Z cfDay, cf3hr, alevhalf lev atmospheric model "half" level ok no level cfSites lowest atmospheric model alev1 lev atmospheric model's lowest level Z ok aero yes

level

valid_ min	_ valid_ max	type	positive	value	bounds _values	requested	bounds_ requested	tol_on_requests: variance from requested values that is tolerated	grid?
0	360	double							
-90	90	double							
		double	down			100000. 92500. 85000. 70000. 60000. 50000. 40000. 30000. 25000. 20000. 15000. 10000. 7000. 5000. 3000.		0.001	
						2000. 1000.			
		double	down			100000. 85000. 70000. 50000. 25000. 10000. 5000. 1000.		0.001	
		double	down			85000. 50000. 25000.		0.001	
		double	down			90000. 74000. 62000. 50000. 37500. 24500. 9000.	100000. 80000. 80000. 68000. 68000. 56000. 56000. 44000. 44000. 31000. 31000. 18000. 18000. 0.	0.001	
		double	down	50000.					
		double	down	70000.					
		double	down	22000.	44000. 0.0				
		double	down	56000.	68000. 44000.				
		double	down	84000.	100000. 68000.				
					00000.				
		double	up						
		double	up						
		double							

cfMon, cfOff, cfDay, cf3hr	alt40	alt40	CloudSat vertical coordinate heights	altitude	altitude	z	m			yes	increasing
Oyr, Amon, Lmon, LImon, Olmon, aero, day, 3hr, Omon, cfMon, cfOff, cfDay, cf3hr	time	time	for time-mean fields	time	time	Т	days since ?			yes	increasing
6hrLev, 6hrPlev, 3hr, cf3hr, cfSites	time1	time	synoptic times (for fields that are not time-means)	time	time	T	days since ?			no	increasing
Oclim, Amon	time2	time	climatological times	time	time	Т	days since ?			yes	increasing
Amon, day, 3hr, cf3hr, cfSites	height2m	height	~2 m standard surface air temperature and surface humidity height	height	height	Z	m			no	increasing
Amon, day, 3hr, cf3hr, cfSites	height10m	height	~10 m standard wind speed height	height	height	Z	m			no	increasing
Lmon, LImon	sdepth	depth	coordinate values for soil layers (depth)	depth	depth	Z	m			yes	increasing
Lmon, day, 3hr	sdepth1	depth	coordinate value for topmost 0.1 meter layer of soil	depth	depth	Z	m			yes	increasing
cfMon, cfDay	tau	tau	isccp optical depth categories	atmosphere_optical_thickness_ due_to_cloud	cloud optical thickness		1			yes	increasing
cfOff, cf3hr	scatratio	scatratio	15 bins of scattering ratio for the CALIPSO simulator CFAD	backscattering_ratio	lidar backscattering ratio		1			yes	increasing
cfOff, cf3hr	dbze	dbze	15 bins of radar reflectivity for CloudSat simulator CFAD	equivalent_reflectivity_factor	CloudSat simulator equivalent radar reflectivity factor		dBZ			yes	increasing
cfMon, cfOff, cfDay, cf3hr	sza5	sza	5 solar zenith angles for PARASOL reflectances	solar_zenith_angle	solar zenith angle		degree			no	increasing
cfSites	site	site	an integer assigned to each of 119 stations (standard) and 73 stations (aquaplanet)		site index		1	ok		no	
Omon	basin	basin		region	ocean basin		1		region	no	
Omon	rho	rho	density? Potential density++++? Check units		density++++?	Z	kg m ⁻³			yes	decreasing
fx, Oclim, Oyr, Omon	olevel	lev	generic ocean model vertical coordinate (nondimensional or dimensional)		ocean model level	Z		ok		yes	

		double	up					0.001	
		double							
		double							
		double							
1	10	double	up	2.					
1	30	double	up	10.					
0	200	double	down						
0	0.2	double	down	0.05	0.0 0.1				
		double				0 15 0 8 7 45 6 5 16 7 41 5 100	0.0 0.3 0.3 1.3 1.3 3.6 3.6 9.4 9.4 23.0 23.0 60.0 60.0 1000000.	0.001	
		double				0.0605 2.1 4. 6. 8.5 12.5 17.5 22.5 27.5 35. 45. 55. 70. 539.5 1004.	0.01 1.2 1.2 3. 3. 5. 5. 7. 7. 10. 10. 15. 15. 20. 20. 25. 25. 30. 30. 40. 40. 50. 50. 60. 60. 80. 80. 999. 999. 1009.	0.001	
		double					-504545404035353030 252520201515101055. 0. 0. 5. 5. 10. 10. 15. 15. 20. 20. 25.	0.001	
		double				0. 20. 40. 60. 80.		0.001	
		integer							yes
		character				atlantic_arctic_ocean indian_pacific_ocean global_ocean			
		double	down						
		double	down						

Omon	oline	line	opening, passage, strait, channel, etc.	region	ocean passage		1		passage	no	
cf3hr	location	loc	COSP profile in instantaneous curtain mode		location index		1	ok		no	increasing
Lmon	vegtype	type	plant functional type. Several plant functional types have been defined in the area_type table available at: cf-pcmdi.llnl.gov/documents/cf-standard-names/area-type-table/current/	area_type	plant functional type		1	OK.	type_description	no	mercasing
Lmon	typebare	type	₹ 8	area_type	surface type		1		type_description	no	
Lmon	typepdec	type		area_type	surface type		1		type_description	no	
Lmon	typepever	type		area_type	surface type		1		type_description	no	
Lmon	typesdec	type		area_type	surface type		1		type_description	no	
Lmon	typesever	type		area_type	surface type		1		type_description	no	
Lmon	typec3pft	type		area_type	surface type		1		type_description	no	
Lmon	typec4pft	type		area_type	surface type		1		type_description	no	
Omon	olayer100m	depth	coordinate for 100 m ocean surface layer	depth	depth	Z	m			no	increasing
Omon	depth100m	depth	coordinate value for 100 m ocean depth	depth	depth	Z	m			no	increasing
Omon	depth0m	depth	vertical coordinate for ocean surface	depth	depth	Z	m			no	increasing

		character			barents_opening bering_strait canadian_archipelago denmark_strait drake_passage english_channel pacific_equatorial_undercurrent faroe_scotland_channel florida_bahamas_strait fram_strait iceland_faroe_channel	
		·			indonesian_thoughflow mozambique_channel taiwan_luzon_straits windward_passage	
		integer				yes
		character				
		character		bare_ground		
		character		primary_deciduous_trees		
		character		primary_evergreen_trees		
		character		secondary_decidous_trees		
		character		secondary_evergreen_trees		
		character		c3_plant_functional_types		
		character		c4_plant_functional_types		
				_,		
0	100	double	down	50.	0. 100.	
80	120	double	down	100.		
0	100	double	down	0.		

CMOR Table fx: Time-Invariant Fields

fx

fx

on atmospheric grid

Atmospheric and land fields may be submitted on a (single) grid of the modeling group's choosing. We expect most groups will elect to save output on the native grid. If data is "interpolated" to a different grid, it is important to preserve certain global mean properties (e.g., the total surface fluxes of heat, momentum, and water mass).

Priorit	•				output variable	
Ĭ	long name	units	comment	questions	name	standard name
1	Atmosphere Grid-Cell Area	m ²	For atmospheres with more than 1 mesh (e.g., staggered grids), report areas that apply to surface vertical fluxes of energy.		areacella	cell_area
1	Surface Altitude	m	height above the geoid; as defined here, "the geoid" is a surface of constant geopotential that, if the ocean were at rest, would coincide with mean sea level. Under this definition, the geoid changes as the mean volume of the ocean changes (e.g., due to glacial melt, or global warming of the ocean). Report here the height above the present-day geoid. Over ocean, report as 0.0		orog	surface_altitude
1	Land Area Fraction	%	For atmospheres with more than 1 mesh (e.g., staggered grids), report areas that apply to surface vertical fluxes of energy.		sftlf	land_area_fraction
1	Fraction of Grid Cell Covered with Glacier	%	fraction of grid cell occupied by "permanent" ice (i.e., glaciers). If time varying, report annual values for each year of simulation. For atmospheres with more than 1 mesh (e.g., staggered grids), report areas that apply to surface vertical fluxes of energy.		sftgif	land_ice_area_fraction
1	Capacity of Soil to Store Water	kg m ⁻²	"where land": divide the total water holding capacity of all the soil in the grid cell by the land area in the grid cell; report as "missing" where the land fraction is 0.		mrsofc	soil_moisture_content_at_field_capacity
1	Maximum Root Depth	m	report the maximum soil depth reachable by plant roots (if defined in model), i.e., the maximum soil depth from which they can extract moisture; report as "missing" where the land fraction is 0.		rootd	root_depth

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
m2			real	longitude latitude	areacella	atmos land				
m			real	longitude latitude	orog	atmos		area: areacella		
%			real	longitude latitude	sftlf	atmos		area: areacella		
%			real	longitude latitude	sftgif	land		area: areacella		
kg m-2			real	longitude latitude	mrsofc	land		area: areacella		
m			real	longitude latitude	rootd	land		area: areacella		

on ocean grid

The WGOMD has recommended that all ocean fields be saved on the model's native ocean grid. Many groups will also elect to save the sea ice fields on the ocean grid. (The alternative is to save sea ice fields on the atmosphere grid.) If data is "interpolated" from its native grid, it is important to preserve certain global mean properties (e.g., the total surface fluxes of heat, momentum, and water mass into the ocean).

Priority					output variable	
E	long name	units	comment	questions	name	standard name
1 Sea Flo	oor Depth	m	Ocean bathymetry. Report here the sea floor depth for present day. Report as missing for land grid cells.		deptho	sea_floor_depth_below_geoid
1 Ocean	Grid-Cell Volume	m	3-D field: grid-cell volume ca. 2000. For oceans with more than 1 mesh, report for on grid that applies to temperature		volcello	ocean_volume
1 Ocean	Grid-Cell Area	m^2	For oceans with more than 1 mesh (e.g., staggered grids), report areas that apply to surface vertical fluxes of energy.		areacello	cell_area
1 Sea Are	ea Fraction		Report on the same grid that ocean fields are reported (i.e., the ocean native grid, or the grid that ocean data has been provided to CMIP. For completeness, provide this even if the ocean grid is the same as the atmospheric grid. This is the area fraction at the ocean surface.	Should this be recorded as a function of depth?	sftof	sea_area_fraction
1 Region	Selection Index	1	Report on the same grid as the temperature field. flag_values=0,1,2,3,4,5,6,7,8,9,10 corresponding to flag_meanings=global_land, southern_ocean, atlantic_ocean, pacific_ocean, arctic_ocean, indian_ocean, mediterranean_sea, black_sea, hudson_bay, baltic_sea, red_sea. Report on the grid used for the temperature field.		basin	region
			eliminated basinv because it can be estimated from basin; also some models would also need a basinu for completeness			

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
m			real	longitude latitude	deptho	ocean		area: areacello		
m3			real	longitude latitude olevel	volcello	ocean				
m2			real	longitude latitude	areacello	ocean				
%			real	longitude latitude	sftof	ocean		area: areacello		
1			integer	longitude latitude	basin	ocean		area: areacello	01234567 8910	global_land southern_ocean atlantic_ocean pacific_ocean arctic_ocean indian_ocean mediterranean_sea black_sea hudson_bay baltic_sea red_sea

CMOR Table Oclim: Monthly Mean Ocean Climatology (Jan. 1986-Dec. 2005 of historical run) (All Saved on the Ocean Grid)

Oclim

monClim

Further explanation of the fields in the following tables can be found in Griffies et al., available at http://eprints.soton.ac.uk/65415/01/137_WGOMD_ModelOutput.pdf . Some of the information in that document will be transcribed into the "comment" column of this spreadsheet.

In CMOR Table Oclim: WGOMD Table 2.9

Priorie	\$				output variabl	e
pri	long name	units	comment	questions	name	standard name
	Ocean Vertical Heat Diffusivity	m ² s ⁻¹			difvho	ocean_vertical_heat_diffusivity
3	Ocean Vertical Salt Diffusivity	$m^2 s^{-1}$			difvso	ocean_vertical_salt_diffusivity
3	Ocean Vertical Tracer Diffusivity due to Background	$m^2 s^{-1}$			difvtrbo	ocean_vertical_tracer_diffusivity_due_to_background
3	Ocean Vertical Tracer Diffusivity due to Tides	$m^2 s^{-1}$			difvtrto	ocean_vertical_tracer_diffusivity_due_to_tides
3	Tendency of Ocean Potential Energy Content	W m ⁻²			tnpeo	tendency_of_ocean_potential_energy_content
3	Tendency of Ocean Potential Energy Content due to Tides	W m ⁻²			tnpeot	tendency_of_ocean_potential_energy_content_due_to_t ides
3	Tendency of Ocean Potential Energy Content due to Background	W m ⁻²			tnpeotb	tendency_of_ocean_potential_energy_content_due_to_ background
3	Ocean Vertical Momentum Diffusivity	$m^2 s^{-1}$			difvmo	ocean_vertical_momentum_diffusivity
3	Ocean Vertical Momentum Diffusivity due to Background	$m^2 s^{-1}$			difvmbo	ocean_vertical_momentum_diffusivity_due_to_backgr ound

\

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
m2 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	difvho	ocean		area: areacello volume: volcello		
m2 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	difvso	ocean		area: areacello volume: volcello		
m2 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	difvtrbo	ocean		area: areacello volume: volcello		
m2 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	difvtrto	ocean		area: areacello volume: volcello		
W m-2	time: mean within years time: mean over years		real	longitude latitude olevel time2	tnpeo	ocean		area: areacello volume: volcello		
W m-2	time: mean within years time: mean over years		real	longitude latitude olevel time2	tnpeot	ocean		area: areacello volume: volcello		
W m-2	time: mean within years time: mean over years		real	longitude latitude olevel time2	tnpeotb	ocean		area: areacello volume: volcello		
m2 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	difvmo	ocean		area: areacello volume: volcello		
m2 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	difvmbo	ocean		area: areacello volume: volcello		

Ocean Vertical Momentum Diffusivity due to Tides	$\mathrm{m^2s^{-1}}$	difvmto	ocean_vertical_momentum_diffusivity_due_to_tides
Ocean Vertical Momentum Diffusivity due to Form Drag	$m^2 s^{-1}$	difvmfdo	ocean_vertical_momentum_diffusivity_due_to_form_d rag
Ocean Kinetic Energy Dissipation Per Unit Area due to Vertical Friction	$\mathrm{W}\mathrm{m}^{-2}$	dispkevfo	ocean_kinetic_energy_dissipation_per_unit_area_due_t o_vertical_friction

m2 s-1	time: mean within years time: mean over years	real	longitude latitude olevel time2	difvmto	ocean	area: areacello volume: volcello
m2 s-1	time: mean within years time: mean over years	real	longitude latitude olevel time2	difvmfdo	ocean	area: areacello volume: volcello
W m-2	time: mean within years time: mean over years	real	longitude latitude olevel time2	dispkevfo	ocean	area: areacello volume: volcello

In CMOR Table Oclim: WGOMD Table 2.10

Drie.	E. long name	units	comment	output varial questions name	ole standard name
	Ocean Tracer Bolus Laplacian Diffusivity	m ² s ⁻¹	3-d time dependent field	diftrblo	ocean_tracer_bolus_laplacian_diffusivity
3	Ocean Tracer Bolus Biharmonic Diffusivity	$m^4 s^{-1}$	3-d time dependent field	diftrbbo	ocean_tracer_bolus_biharmonic_diffusivity
3	Ocean Tracer Epineutral Laplacian Diffusivity	$m^2 s^{-1}$	3-d time dependent field	diftrelo	ocean_tracer_epineutral_laplacian_diffusivity
3	Ocean Tracer Epineutral Biharmonic Diffusivity	$m^4 s^{-1}$	3-d time dependent field	diftrebo	ocean_tracer_epineutral_biharmonic_diffusivity
3	Ocean Tracer XY Laplacian Diffusivity	$m^2 s^{-1}$	3-d time dependent field	diftrxylo	ocean_tracer_xy_laplacian_diffusivity
3	Ocean Tracer XY Biharmonic Diffusivity	$m^4 s^{-1}$	3-d time dependent field	diftrxybo	ocean_tracer_xy_biharmonic_diffusivity
3	Tendency of Ocean Eddy Kinetic Energy Content due to Bolus Transport	W m ⁻²	3-d time dependent field	tnkebto	tendency_of_ocean_eddy_kinetic_energy_content_due_ to_bolus_transport
3	Ocean Momentum XY Laplacian Diffusivity	$m^2 s^{-1}$	3-d time dependent field	difmxylo	ocean_momentum_xy_laplacian_diffusivity
3	Ocean Momentum XY Biharmonic Diffusivity	$m^4 s^{-1}$	3-d time dependent field	difmxybo	ocean_momentum_xy_biharmonic_diffusivity
3	Ocean Kinetic Energy Dissipation Per Unit Area due to XY Friction	W m ⁻²	3-d time dependent field	dispkexyfo	ocean_kinetic_energy_dissipation_per_unit_area_due_t o_xy_friction

unformatted				GMOD II	CMOR variable					
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
m2 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	diftrblo	ocean		area: areacello volume: volcello		
m4 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	diftrbbo	ocean		area: areacello volume: volcello		
m2 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	diftrelo	ocean		area: areacello volume: volcello		
m4 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	diftrebo	ocean		area: areacello volume: volcello		
m2 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	diftrxylo	ocean		area: areacello volume: volcello		
m4 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	diftrxybo	ocean		area: areacello volume: volcello		
W m-2	time: mean within years time: mean over years		real	longitude latitude olevel time2	tnkebto	ocean		area: areacello volume: volcello		
m2 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	difmxylo	ocean		area: areacello volume: volcello		
m4 s-1	time: mean within years time: mean over years		real	longitude latitude olevel time2	difmxybo	ocean		area: areacello volume: volcello		
W m-2	time: mean within years time: mean over years		real	longitude latitude olevel time2	dispkexyfo	ocean		area: areacello volume: volcello		

3 Ocean Tracer Bolus Laplacian Diffusivity	$m^2 s^{-1}$	2-d time dependent field	diftrblo	ocean_tracer_bolus_laplacian_diffusivity
Ocean Tracer Bolus Biharmonic Diffusivity	$\mathrm{m^4~s^{-1}}$	2-d time dependent field	diftrbbo	ocean_tracer_bolus_biharmonic_diffusivity
Ocean Tracer Epineutral Laplacian Diffusivity	$m^2 s^{-1}$	2-d time dependent field	diftrelo	ocean_tracer_epineutral_laplacian_diffusivity
Ocean Tracer Epineutral Biharmonic Diffusivity	$\mathrm{m^4~s^{-1}}$	2-d time dependent field	diftrebo	ocean_tracer_epineutral_biharmonic_diffusivity
3 Ocean Tracer XY Laplacian Diffusivity	$m^2 s^{-1}$	2-d time dependent field	diftrxylo	ocean_tracer_xy_laplacian_diffusivity
3 Ocean Tracer XY Biharmonic Diffusivity	m ⁴ s ⁻¹	2-d time dependent field	diftrxybo	ocean_tracer_xy_biharmonic_diffusivity
Tendency of Ocean Eddy Kinetic Energy Content due to Bolus Transport	W m ⁻²	2-d time dependent field	tnkebto	tendency_of_ocean_eddy_kinetic_energy_content_due_ to_bolus_transport
Ocean Momentum XY Laplacian Diffusivity	$m^2 s^{-1}$	2-d time dependent field	difmxylo	ocean_momentum_xy_laplacian_diffusivity
Ocean Momentum XY Biharmonic Diffusivity	$m^4 s^{-1}$	2-d time dependent field	difmxybo	ocean_momentum_xy_biharmonic_diffusivity
Ocean Kinetic Energy Dissipation Per Unit Area due to XY Friction	W m ⁻²	2-d time dependent field	dispkexyfo	ocean_kinetic_energy_dissipation_per_unit_area_due_t o_xy_friction

m2 s-1	time: mean within years time: mean over years	real	longitude latitude olevel time2	diftrblo2d	ocean	area: areacello	
m4 s-1	time: mean within years time: mean over years	real	longitude latitude olevel time2	diftrbbo2d	ocean	area: areacello	
m2 s-1	time: mean within years time: mean over years	real	longitude latitude olevel time2	diftrelo2d	ocean	area: areacello	
m4 s-1	time: mean within years time: mean over years	real	longitude latitude olevel time2	diftrebo2d	ocean	area: areacello	
m2 s-1	time: mean within years time: mean over years	real	longitude latitude olevel time2	diftrxylo2d	ocean	area: areacello	
m4 s-1	time: mean within years time: mean over years	real	longitude latitude olevel time2	diftrxybo2d	ocean	area: areacello	
W m-2	time: mean within years time: mean over years	real	longitude latitude olevel time2	tnkebto2d	ocean	area: areacello	
m2 s-1	time: mean within years time: mean over years	real	longitude latitude olevel time2	difmxylo2d	ocean	area: areacello	
m4 s-1	time: mean within years time: mean over years	real	longitude latitude olevel time2	difmxybo2d	ocean	area: areacello	
W m-2	time: mean within years time: mean over years	real	longitude latitude olevel time2	dispkexyfo2d	ocean	area: areacello	

CMOR Table Oyr: Annual Mean Ocean Fields, Including Biogechemical Fields

Oyr

yr

(All Saved on the Ocean Grid)

In CMOR Table Oyr: 3-D Marine Biogeochemical Tracer Fields

Priorit	÷					
.õ					output variable	
<u> </u>		units	comment	questions	name	standard name
1	Dissolved Inorganic Carbon Concentration	mol m ⁻³	Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration		dissic	mole_concentration_of_dissolved_inorganic_carbon_in _sea_water
2	Dissolved Organic Carbon Concentration	mol m ⁻³	Dissolved organic carbon concentration		dissoc	mole_concentration_of_dissolved_organic_carbon_in_ sea_water
2	Phytoplankton Carbon Concentration	mol m ⁻³	sum of phytoplankton carbon component concentrations. In most (all?) cases this is the sum of phycdiat and phycmisc (i.e., "Diatom Carbon Concentration" and "Non-Diatom Phytoplankton Carbon Concentration"		phyc	mole_concentration_of_phytoplankton_expressed_as_c arbon_in_sea_water
2	Zooplankton Carbon Concentration	mol m ⁻³	sum of zooplankton carbon component concentrations		zooc	mole_concentration_of_zooplankton_expressed_as_car bon_in_sea_water
3	Bacterial Carbon Concentration	mol m ⁻³	sum of bacterial carbon component concentrations		bacc	mole_concentration_of_bacteria_expressed_as_carbon _in_sea_water
2	Detrital Organic Carbon Concentration	mol m ⁻³	sum of detrital organic carbon component concentrations		detoc	mole_concentration_of_organic_detritus_expressed_ascarbon_in_sea_water
2	Calcite Concentration	mol m ⁻³	sum of particulate calcite component concentrations (e.g. Phytoplankton, Detrital, etc.)		calc	mole_concentration_of_calcite_expressed_as_carbon_i n_sea_water
2	Aragonite Concentration	mol m ⁻³	sum of particulate aragonite components (e.g. Phytoplankton, Detrital, etc.)		arag	mole_concentration_of_aragonite_expressed_as_carbo n_in_sea_water
3	Mole Concentration of Diatoms expressed as Carbon in Sea Water	mol m ⁻³	carbon from the diatom phytoplankton component concentration alone		phydiat	mole_concentration_of_diatoms_expressed_as_carbon _in_sea_water
3	Mole Concentration of Diazotrophs Expressed as Carbon in Sea Water	mol m ⁻³	carbon concentration from the diazotrophic phytoplankton component alone		phydiaz	mole_concentration_of_diazotrophs_expressed_as_car bon_in_sea_water
3	Mole Concentration of Calcareous Phytoplankton expressed as Carbon in Sea Water	mol m ⁻³	carbon concentration from calcareous (calcite-producing) phytoplankton component alone		phycalc	mole_concentration_of_calcareous_phytoplankton_exp ressed_as_carbon_in_sea_water
3	Mole Concentration of Picophytoplankton expressed as Carbon in Sea Water	mol m ⁻³	carbon concentration from the picophytoplankton ($<$ 2 um) component alone		phypico	$mole_concentration_of_picophytoplankton_expressed_\\ as_carbon_in_sea_water$
3	Mole Concentration of Miscellaneous Phytoplankton expressed as Carbon in Sea Water	mol m ⁻³	carbon concentration from additional phytoplankton component alone		phymisc	mole_concentration_of_miscellaneous_phytoplankton_ expressed_as_carbon_in_sea_water
3	Mole Concentration of Microzooplankton expressed as Carbon in Sea Water	mol m ⁻³	carbon concentration from the microzooplankton (<20 um) component alone		zmicro	mole_concentration_of_microzooplankton_expressed_ as_carbon_in_sea_water
3	Mole Concentration of Mesozooplankton expressed as Carbon in Sea Water	mol m ⁻³	carbon concentration from mesozooplankton (20-200 um) component alone		zmeso	mole_concentration_of_mesozooplankton_expressed_a s_carbon_in_sea_water

					CMOR					
unformatted					variable					
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	dissic	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	dissoc	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	phyc	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	zooc	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	bacc	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	detoc	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	calc	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	arag	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	phydiat	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	phydiaz	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	phycalc	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	phypico	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	phymisc	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	zmicro	ocnBgchem		area: areacello volume: volcello		
mol m-3	time: mean area: mean where sea		real	longitude latitude olevel time	zmeso	ocnBgchem		area: areacello volume: volcello		

3 Other Zooplankton Carbon Concentration	mol m ⁻³	carbon from additional zooplankton component concentrations alone (e.g. Micro, meso). Since the models all have different numbers of components, this variable has been included to provide a check for intercomparison between models since some phytoplankton groups are supersets.	zoocmisc	mole_concentration_of_miscellaneous_zooplankton_ex pressed_as_carbon_in_sea_water
1 Total Alkalinity	mol m ⁻³	total alkalinity equivalent concentration (including carbonate, nitrogen, silicate, and borate components)	talk	sea_water_alkalinity_expressed_as_mole_equivalent
1 pH	1	negative log of hydrogen ion concentration with the concentration expressed as mol H kg-1.	ph	sea_water_ph_reported_on_total_scale
1 Dissolve Oxygen Concentration	mol m ⁻³	dissolved oxygen gas concentration in sea water	o2	mole_concentration_of_molecular_oxygen_in_sea_wat er
1 Dissolved Nitrate Concentration	mol m ⁻³	dissolved nitrate concentration in sea water	no3	mole_concentration_of_nitrate_in_sea_water
2 Dissolved Ammonium Concentration	mol m ⁻³	dissolved ammonium concentration in sea water	nh4	mole_concentration_of_ammonium_in_sea_water
1 Dissolved Phosphate Concentration	mol m ⁻³	dissolved Phosphate concentration in sea water	po4	$mole_concentration_of_phosphate_in_sea_water$
1 Dissolved Iron Concentration	mol m ⁻³	dissolved iron in sea water is meant to include both Fe2+ and Fe3+ ions (but not, e.g., particulate detrital iron)	dfe	mole_concentration_of_dissolved_iron_in_sea_water
1 Dissolved Silicate Concentration	mol m ⁻³	dissolved silicate concentration in sea water	si	mole_concentration_of_silicate_in_sea_water
1 Total Chlorophyll Mass Concentration	kg m ⁻³	sum of chlorophyll from all phytoplankton group concentrations. In most models this is equal to chldiat+chlmisc, that is the sum of "Diatom Chlorophyll Mass Concentration" plus "Other Phytoplankton Chlorophyll Mass Concentration"	chl	mass_concentration_of_phytoplankton_expressed_as_c hlorophyll_in_sea_water
3 Diatom Chlorophyll Mass Concentration	kg m ⁻³	chlorophyll from diatom phytoplankton component concentration alone	chldiat	mass_concentration_of_diatoms_expressed_as_chlorop hyll_in_sea_water
Mass Concentration of Diazotrophs expressed as Chlorophyll in Sea Water	kg m ⁻³	chlorophyll concentration from the diazotrophic phytoplankton component alone	chldiaz	mass_concentration_of_diazotrophs_expressed_as_chl orophyll_in_sea_water
Mass Concentration of Calcareous 3 Phytoplankton expressed as Chlorophyll in Sea Water	kg m ⁻³	chlorophyll concentration from the calcite-producing phytoplankton component alone	chlcalc	mass_concentration_of_calcareous_phytoplankton_exp ressed_as_chlorophyll_in_sea_water
Mass Concentration of Picophytoplankton expressed as Chlorophyll in Sea Water	kg m ⁻³	chlorophyll concentration from the picophytoplankton (<2 um) component alone	chlpico	mass_concentration_of_picophytoplankton_expressed_ as_chlorophyll_in_sea_water
Other Phytoplankton Chlorophyll Mass Concentration	kg m ⁻³	chlorophyll from additional phytoplankton component concentrations alone	chlmisc	mass_concentration_of_miscellaneous_phytoplankton_ expressed_as_chlorophyll_in_sea_water
Particulate Organic Nitrogen Concentration	mol m ⁻³	sum of particulate organic nitrogen component concentrations	pon	mole_concentration_of_particulate_organic_matter_ex pressed_as_nitrogen_in_sea_water
Particulate Organic Phosphorus Concentration	mol m ⁻³	sum of particulate organic phosphorus component concentrations	pop	mole_concentration_of_particulate_organic_matter_ex pressed_as_phosphorus_in_sea_water
3 Particulate Biogenic Iron Concentration	mol m ⁻³	sum of particulate organic iron component concentrations	bfe	mole_concentration_of_particulate_organic_matter_ex pressed_as_iron_in_sea_water
3 Particulate Biogenic Silica Concentration	mol m ⁻³	sum of particulate silica component concentrations	bsi	mole_concentration_of_particulate_matter_expressed_ as_silicon_in_sea_water
3 Phytoplankton Nitrogen Concentration	mol m ⁻³	sum of phytoplankton nitrogen component concentrations	phyn	mole_concentration_of_phytoplankton_expressed_as_n itrogen_in_sea_water
3 Phytoplankton Phosphorus Concentration	mol m ⁻³	sum of phytoplankton phosphorus components	phyp	mole_concentration_of_phytoplankton_expressed_as_p hosphorus_in_sea_water

mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	zoocmisc	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	talk	ocnBgchem	area: areacello volume: volcello
1	mean where sea	real	longitude latitude olevel time	ph	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	o2	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	no3	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	nh4	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	po4	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	dfe	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	si	ocnBgchem	area: areacello volume: volcello
kg m-3	time: mean area: mean where sea	real	longitude latitude olevel time	chl	ocnBgchem	area: areacello volume: volcello
kg m-3	time: mean area: mean where sea	real	longitude latitude olevel time	chldiat	ocnBgchem	area: areacello volume: volcello
kg m-3	time: mean area: mean where sea	real	longitude latitude olevel time	chldiaz	ocnBgchem	area: areacello volume: volcello
kg m-3	time: mean area: mean where sea	real	longitude latitude olevel time	chlcalc	ocnBgchem	area: areacello volume: volcello
kg m-3	time: mean area: mean where sea	real	longitude latitude olevel time	chlpico	ocnBgchem	area: areacello volume: volcello
kg m-3	time: mean area: mean where sea	real	longitude latitude olevel time	chlmisc	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	pon	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	pop	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	bfe	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	bsi	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	phyn	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	phyp	ocnBgchem	area: areacello volume: volcello

3 Phytoplankton Iron Concentration	mol m ⁻³	sum of phytoplankton iron component concentrations	phyfe	mole_concentration_of_phytoplankton_expressed_as_i ron_in_sea_water
3 Phytoplankton Silica Concentration	mol m ⁻³	sum of phytoplankton silica component concentrations	physi	mole_concentration_of_phytoplankton_expressed_as_s ilicon_in_sea_water
3 Dimethyl Sulphide Concentration	mol m ⁻³	dimethyl sulphide concentration	dms	mole_concentration_of_dimethyl_sulfide_in_sea_water
2 Mole Concentration of Carbonate expressed as Carbon in Sea Water	mol m ⁻³	carbonate ion concentration	со3	mole_concentration_of_carbonate_expressed_as_carbo
Mole Concentration of Calcite expressed as Carbon in Sea Water at Saturation	mol m ⁻³	carbonate ion concentration at calcite solution saturation	co3satcalc	mole_concentration_of_calcite_expressed_as_carbon_i n_sea_water_at_saturation
Mole Concentration of Aragonite 2 expressed as Carbon in Sea Water at Saturation	mol m ⁻³	carbonate ion concentration at aragonite solution saturation	co3satarag	mole_concentration_of_aragonite_expressed_as_carbo n_in_sea_water_at_saturation

mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	phyfe	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	physi	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	dms	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	co3	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	co3satcalc	ocnBgchem	area: areacello volume: volcello
mol m-3	time: mean area: mean where sea	real	longitude latitude olevel time	co3satarag	ocnBgchem	area: areacello volume: volcello

In CMOR Table Oyr: Marine Biogeochemical 3-D Fields: Rates of Production and Removal

Pinnary Carbon Production by Pinnary Carbon Production Pinnary Car	-	<u> </u>					
Primary Carbon Production by Phytoplankton and many of Phytoplankton	ij	Jan 2				•	
3 Phytoplankton mol m ³ s ¹ Primary Carbon Production by Primary Carbon Production by Primary Carbon Production by Primary Carbon Production by Primary Carbon Production mol m ³ s ¹ Brogenic from Production mol m ³ s ² Brogenic from Production mol m ³ s ² Brogenic from Production mol m ³ s ² Calcite Production mol m ³ s ² Staking Particulate Organic Carbon Flux Staking Particulate Organic Carbon Flux Staking Particulate Organic Prophetors Staking Particulate Organic Propheto	- Q		units	comment	questions	name	
Primary Carbon Production by Primary Carbon Production To lingeric from Production To linger from Production To lingeric from Pro	3	·	mol m ⁻³ s ⁻¹	total primary (organic carbon) production by phytoplankton		pp	
3 Phytoplankson due to Nitrate Uptake Ahme mol m ³ s ³ Biogenic Iron Production mol m ³ s ³ Biogenic Poduction mol m ³ s ³ Calcite Production mol m ³ s ³ Calcite Production mol m ³ s ³ Aragonite production mol m ³ s ³ sinking Particulate Organic Carbon Flux Sinking Particulate Organic Carbon Flux Sinking Particulate Organic Production mol m ³ s ³ sinking Particulate Organic Production mol m ³ s ³ sinking Particulate Organic Production mol m ³ s ³ sinking Particulate Organic Production mol m ³ s ³ sinking Particulate Organic Production mol m ³ s ³ sinking Particulate Organic Production sinking mol may see sinking mole flux organic matter, expressed as carbon, in sea, water expressed, sea, carbon, in sea, water deep no biological product in trademy, of mole concentration of a argonite expressed sea, carbon, in sea, water deep no biological product in trademy, of mole concentration of a argonite expressed sea, carbon, in sea, water deep no biological product in trademy, of mole concentration of a argonite expressed sea, carbon, in sea, water sea, biological product in trademy, of mole concentration of a argonic expressed sea, carbon, in sea, water sea, biological product in mol m ³ s ³ sinking Particulate Organic Production sinking mole flux of practiculate organic phosphorus mol m ³ s ³ sinking Particulate Organic Production mol m ³ s ³ sinking Particulate Organic Production mol m ³ s ³ sinking flux of argonic phosphorus mol m ³ s ³ sinking flux of argonic carbon phosphorus mol m ³ s ³ sinking flux of argonic carbon production by the diaton component aton mol m ³ s ³ primary Organic carbon) production by the diaton component aton mol m ³ s ³ p		Phytopiankton					net_primary_production
Alone Second Silice Production Mode M			2 1	Primary (organic carbon) production by phytoplankton due to			
Biogenic Iron Production mol m ³ s ¹ Biogenic iron production mol m ³ s ¹ Biogenic silica production mol m ³ s ¹ Calcite production production mol m ³ s ¹ anagonite production mol m ³ s ¹ sinking Particulate Organic Carton Flux mol m ³ s ¹ sinking Particulate Organic Carton Flux mol m ³ s ¹ sinking Particulate Organic Carton Flux mol m ³ s ¹ sinking Particulate Organic Carton Flux mol m ³ s ¹ sinking Particulate Organic Carton Flux mol m ³ s ¹ sinking Particulate Organic Production mol m ³ s ¹ sinking Particulate Organic Production mol m ³ s ¹ sinking Particulate Organic Production mol m ³ s ¹ sinking Particulate Organic Production mol m ³ s ¹ sinking Particulate Organic Production mol m ³ s ¹ sinking Particulate Organic Production mol m ³ s ² sinking Particulate Organic Production mol m ³ s ² sinking Particulate Organic Production mol m ³ s ³ sinking Particulate Silica Flux mol m ³ s ² sinking Particulate Silica Flux mol m ³ s ³ sinking Particulate Silica Flux mol m ³ s ³ sinking Particulate Silica Flux mol m ³ s ³ sinking Particulate Silica Flux mol m ³ s ³ sinking Particulate Silica Flux mol m ³ s ³ sinking Particulate Silica Flux mol m ³ s ³ sinking Particulate Silica Flux mol m ³ s ³ sinking flux of calcite expressed as carbon in sea, water sinking mole flux of particulate silica Flux mol m ³ s ³ sinking flux of calcite expressed as carbon in sea, water sinking mole flux of particulate silica flux of particulate silica flux of particulate silica flux of particulate silica flux of particulate of the Calcite Dissolution mol m ³ s ⁴ Primary (organic carbon) production by the diazotrophic phrimary Particulat	3	* *	mol m ⁻³ s ⁻¹			pnitrate	
Biogenic International mol m*s* Biogenic Silica Production mol m*s* Biogenic Silica Production mol m*s* Biogenic Silica Production mol m*s* Calcite Production mol m*s* Calcite Production mol m*s* Calcite Production mol m*s* Calcite Production mol m*s* Angonite Production mol m*s* Angonite Production mol m*s* Angonite Production mol m*s* Sinking Particulate Organic Carbon Plux mol m*s* Sinking Particulate Organic Carbon Plux mol m*s* Sinking Particulate Organic Nitrogen Flux mol m*s* Sinking Particulate Organic Phosphorus Flux mol m*s* Sinking Particulate Organic Phosphorus mol m*s* Sinking Particulate Organic Phosphorus mol m*s* Sinking Particulate Organic Phosphorus mol m*s* Sinking Particulate Silica Flux mol m*s* Sinking Dus Organic Silica Flux mol m*s*			2 1				—
Biogene Shica Production mol m ³ s ³ Calcite Production mol m ³ s ⁴ Argonite Production mol m ³ s ⁴ Argonite Production mol m ³ s ⁴ Sinking Particulate Organic Carbon Flux mol m ³ s ⁴ Sinking Particulate Organic Carbon Flux mol m ³ s ⁴ Sinking Particulate Organic Carbon Flux mol m ³ s ⁴ Sinking Particulate Organic Production mol m ³ s ⁴ Sinking Particulate Organic Production mol m ³ s ⁴ Sinking Particulate Organic Production mol m ³ s ⁴ Sinking Particulate Organic Phosphorus plux Mol m ² s ⁴ Sinking Particulate Organic Phosphorus mol m ³ s ⁴ Sinking Particulate In Plux Mol m ³ s ⁴ Sinking Particulate Organic Phosphorus mol m ³ s ⁴ Sinking Particulate Organic Phosphorus mol m ³ s ⁴ Sinking Particulate In Plux Mol m ³ s ⁴ Sinking Particulate Silica Flux Mol m ³ s ⁴ Sinking Particulate Silica Flux Mol m ³ s ⁴ Sinking Aragonite Flux Mol m ³ s ⁴ Sinking Aragonite Flux Mol m ³ s ⁴ Sinking Calcite Flux Mol m ³ s ⁴ Sinking Aragonite Flux Mol m ³ s ⁴ Sinking Aragonite Flux Mol m ³ s ⁴ Sinking Aragonite Flux Mol m ³ s ⁴ Sinking flux of aragonite Mol m ³ s ⁴ Sinking Aragonite Flux Mol m ³ s ⁴ Sinking Aragonite Flux Mol m ³ s ⁴ Sinking flux of silica Sinking Aragonite Flux Mol m ³ s ⁴ Sinking flux of aragonite Mol m ³ s ⁴ Sinking flux of aragonite Mol m ³ s ⁴ Sinking flux of aragonite Mol m ³ s ⁴ Sinking flux of aragonite Mol m ³ s ⁴ Sinking flux of aragonite Mol m ³ s ⁴ Sinking flux of aragonite Mol m ³ s ⁴ Sinking flux of aragonite Mol m ³ s ⁴ Sinking flux of mol m ³ s ⁴ Sinking flux of aragonite Mol m ³ s ⁴ Sinking flux of mol m ³ s ⁴ Sinking flux of aragonite Mol m ³ s ⁴ Sinking flux of m	3	Biogenic Iron Production	mol m ⁻³ s ⁻¹	Biogenic iron production		pbfe	•= = = = = = = =
3 Calcite Production mol m ³ s ⁴ calcite production peak register, of mole, concentration of calcite, expressed as carbon in sea water due to Net primary Carbon Production mol m ³ s ⁴ a reginite Production mol m ³ s ⁴ calcite production mol m ³ s ⁴ argonite Production paragonite, expressed as carbon in sea water due to Net primary Carbon Production mol m ³ s ⁴ argonite Dissolution mol m ³ s ⁴ argonite Carbon Production mol m ³ s ⁴ argonite Carbon Production mol m ³ s ⁴ argonite Dissolution mol m ³ s ⁴ argonite Dissolution mol m ³ s ⁴ argonite Carbon Production mol m ³ s ⁴ argonite Carbon Production mol m ³ s ⁴ argonite Dissolution mol m ³ s ⁴ argonite Carbon Production by Diazonorphs 3 Diatom Primary Carbon Production mol m ³ s ⁴ argonite carbon production by the diatom component alone 4 Diatom Primary Carbon Production mol m ³ s ⁴ argonite carbon production by the diazonorphic mol mol m ³ s ⁴ argonite Carbon mass a water due to Net primary production by diazonorphic accommendation of Organic Carbon in Sea Water due to Net primary production by diazonorphic accommendation of Organic Carbon in Sea Water due to Net primary production by diazonorphic accommend	3	Biogenic Silica Production	mol m ⁻³ s ⁻¹	Biogenic silica production		pbsi	•
2 Calcite Production mol m ³ s ⁻¹ calcite production pure ass_carbon_in_sea_water_due_to_iological_production pure tendency_of_mole_concentration_of_angonite_express ed_as_carbon_in_sea_water associate_to_sea_water_due_to_iological_production pure tendency_of_mole_concentration_of_angonite_express ed_as_carbon_in_sea_water_due_to_iological_production on mol m ³ s ⁻¹ sinking Puriculate Organic Carbon Flux mol m ² s ⁻¹ sinking flux of organic carbon organic natrogen expressed_as_carbon_in_sea_water organic_matter_expressed_as_carbon_in_sea_water organic_matter_expressed_as_carbon_in_sea_water_organic_matter_expressed_as_carbon_in_sea_water_organic_matter_expressed_as_carbon_in_sea_water_organic_matter_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_organic_expressed_as_carbon_in_sea_water_orga				G		F	
Aragonite Production mol m ³ s ³ aragonite production mol m ³ s ⁴ aragonite production paragonite paragonite production producti	3	Calcite Production	mol m ⁻³ s ⁻¹	calcite production		peale	· ·
a Argonite Production			morm s			P	on
Sinking Particulate Organic Carbon Flux mol m ² s ¹ sinking flux of organic carbon sinking production by Dariculate Organic Carbon Flux mol m ² s ¹ sinking flux of organic introgen sinking flux of organic introgen sinking flux of organic introgen, in			2 1				·
3 Sinking Particulate Organic Carbon Flux mol m ² s ³ sinking flux of organic carbon exp sinking mole flux of particulate organic introgen in sinking mole flux of particulate organic introgen in sinking mole flux of particulate organic introgen in sea. water sinking mole flux of particulate organic introgen in sea. water sinking mole flux of particulate organic phosphorus in sea. water sinking mole flux of particulate organic phosphorus in sea. water sinking mole flux of particulate organic phosphorus in sea. water sinking mole flux of particulate organic phosphorus in sea. water sinking mole flux of particulate organic phosphorus in sea. water sinking mole flux of particulate in sinking mole flux of a sinking mole flux of particulate in sinking mole flux of a sinking mole f	3	Aragonite Production	mol m ⁻³ s ⁻¹	aragonite production		parag	
Sinking Particulate Organic Carbon Hux mol m ² s ² Sinking Particulate Organic Nitrogen Flux Sinking Particulate Organic Nitrogen Flux Sinking Particulate Organic Phosphorus Plux mol m ² s ² Sinking Particulate Organic Phosphorus Plux mol m ² s ² Sinking Particulate Iron Flux mol m ² s ² Sinking Particulate Iron Flux mol m ² s ² Sinking Particulate Silica Flux mol m ² s ² Sinking Particulate Silica Flux mol m ² s ² Sinking Particulate Silica Flux mol m ² s ³ Sinking Particulate Silica Flux mol m ² s ³ Sinking Particulate Silica Flux mol m ² s ³ Sinking Particulate Silica Flux mol m ² s ³ Sinking Particulate Silica Flux mol m ² s ³ Sinking Particulate Silica Flux mol m ² s ³ Sinking Particulate Silica Flux mol m ² s ³ Sinking Particulate Silica Flux mol m ² s ³ Sinking Particulate Silica Flux mol m ² s ³ Sinking Particulate Organic Anton, in Sea, water sinking mole flux, of particulate jorgan, in Sea, water sinking mole flux, of particulate jorgan, in Sea, water sinking mole flux, of particulate jorgan, in Sea, water sinking mole flux, of particulate jorgan, in Sea, water sinking mole flux, of particulate organ in Sea, water sinking mole flux, of particulate organ in Sea, water sinking mole flux, of particulate jorgan in Sea, water sinking mole flux, of particulate jorgan in Sea, water sinking mole flux, of particulate jorgan in Sea, water sinking mole flux, of particulate jorgan in Sea, water sinking mole flux, of particulate jorgan in Sea, water due to Met particulate jorgan in Sea, water due to Met particulate jorgan in Sea, water due to Net particulate jorgan in Sea, water due to Net primary production by Diazotrophis Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net primary production by the diazotrophic phytoplankton component alone Primary Production by Diazotrophis Tendency of Mole Concentration of Organic carbon j production by the calcite-producing dpoordicale in mater_expressed_as_carbon_in_is.ea,							The state of the s
Sinking Particulate Organic Phosphorus mol m*s* sinking flux of organic antrogen Sinking Particulate Organic Phosphorus mol m*s* sinking flux of organic phosphorus mol m*s* sinking flux of organic phosphorus is sinking flux of organic phosphorus is sinking particulate. Flux mol m*s* sinking flux of iron experte sinking mole flux of particulate iron, in_sea_water sinking mole flux of particulate. Flux mol m*s* sinking flux of silica expsi sinking mole flux of particulate iron, in_sea_water sinking mole flux of particulate. Silicon in_sea_water sinking mole flux of particulate is silicon in_sea_water sinking mole flux of particulate. Silicon in_sea_water sinking mole flux of particulate silicon in_sea_water sinking mole flux of particulate. Silicon in_sea_water sinking mole flux. Of particulate. Silicon in_sea_water due to flux of particulate. Silicon in_sea_water due to flux of particulate. Organ in_sea_water due to Net sinking mole flux of silicon in_sea_water due to Net silicon in_sea_water du	3	Sinking Particulate Organic Carbon Flux	mol m ⁻² s ⁻¹	sinking flux of organic carbon		expc	
Sinking Particulate Organic Phosphorus Sinking Particulate Flox mol m² s² sinking flux of organic phosphorus sinking flux of organic phosphorus sinking flux of organic phosphorus n, sea_water	3	Sinking Particulate Organic Nitrogen Flux	mol m ⁻² e ⁻¹	sinking flux of organic nitrogen		evnn	$sinking_mole_flux_of_particulate_organic_nitrogen_in$
Sinking Particulate Iron Flux mol m s sinking flux of iron expect sinking mole_flux_of_particulate_iron_in_sea_water	3			Shiking hav of organic introgen		САРП	
3 Sinking Particulate Iron Flux mol m ² s ⁻¹ sinking flux of iron expect sinking mole flux of particulate iron in sea_water sinking mole flux of particulate iron in sea_water mol m ² s ⁻¹ sinking flux of silica expressed as_carbon_in_sea_water sinking mole flux of calcite expressed as_carbon_in_sea_water sinking mole flux of calcite expressed as_carbon_in_sea_water expect sinking mole flux of calcite expressed as_carbon_in_sea_water expressed_as_carbon_in_sea_water expressed_as_carbon_i	3		mol m ⁻² s ⁻¹	sinking flux of organic phosphorus		expp	
sinking Particulate Silica Flux mol m² s¹ sinking flux of silica sinking Particulate Silica Flux mol m² s¹ sinking flux of silica sinking Calcite Flux mol m² s¹ sinking flux of calcite sinking mole_flux_of_calcite_expressed_as_carbon_in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon_in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon_in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon_in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon_in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon in_sea_water sinking_mole_flux_of_carcite_expressed_as_carbon in_sea_w	2		2 -1	sighing flow of inco			
Sinking Particulate Sinca Flux mol m ⁻² s ⁻¹ sinking flux of salicit sinking and of salicit flux mol m ⁻² s ⁻¹ sinking flux of calcite sea water sinking anoie flux of aragonite expressed as carbon_in sea_water sinking mole_flux_of_aragonite_expressed_as_carbon_in sea_water sinking mole_flux_of_aragonite_expressed_as_carbon_in_sea_water sinking mole_flux_of_aragonite_expressed_as_carbon_in_sea_water sinking mole_flux_of_aragonite_expressed_as_carbon_in_sea_water tendency_of_mole_concentration_of_calcite_expressed_as_carbon_in_sea_water_due_to_dissolution 3 Aragonite Dissolution mol m ⁻³ s ⁻¹ aragonite dissolution darag tendency_of_mole_concentration_of_aragonite_expressed_as_carbon_in_sea_water_due_to_dissolution pdi tendency_of_mole_concentration_of_particulate_organ ic_matter_expressed_as_carbon_in_sea_water_due_to_ net_primary_production_by_diatoms tendency_of_mole_concentration_of_particulate_organ ic_matter_expressed_as_carbon_in_sea_water_due_to_ net_primary_production_by_diatoms tendency_of_mole_concentration_of_particulate_organ ic_matter_expressed_as_carbon_in_sea_water_due_to_ net_primary_production_by_diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Primary (organic carbon) production by the diazotrophic phytoplankton component alone Primary (organic carbon) production by the calcite-producing about only in sea_water_due_to_ net_primary_production_by_diazotrophic phytoplankton component alone phytoplankton component al	3	Sinking Particulate from Flux	mol m s	SINKING TIUX OF IFON		expcie	<u> </u>
sinking flux of eacite Sinking Aragonite Flux mol m ⁻² s ⁻¹ sinking flux of aragonite expressed sinking mole flux of aragonite expressed sinking mole flux of aragonite sea_water	3	Sinking Particulate Silica Flux	mol m ⁻² s ⁻¹	sinking flux of silica		expsi	sinking_mole_flux_of_particulate_silicon_in_sea_wate
sinking flux of eacite Sinking Aragonite Flux mol m ⁻² s ⁻¹ sinking flux of aragonite expressed sinking mole flux of aragonite expressed sinking mole flux of aragonite sea_water			2 1				sinking mole flux of calcite expressed as carbon in
Sinking Aragonite Flux mol m ⁻¹ s sinking flux of aragonite sinking flux of aragonite flux mol m ⁻¹ s sinking flux of aragonite sinking flux of aragonite flux mol m ⁻¹ s sinking flux of aragonite fl	3	Sinking Calcite Flux	mol m ⁻² s ⁻¹	sinking flux of calcite		expcalc	
3 Calcite Dissolution mol m ⁻³ s ⁻¹ calcite dissolution dealer tendency_of_mole_concentration_of_calcite_expressed _as_carbon_in_sea_water_due_to_dissolution 3 Aragonite Dissolution mol m ⁻³ s ⁻¹ aragonite dissolution darag tendency_of_mole_concentration_of_aragonite_express ed_as_carbon_in_sea_water_due_to_dissolution 3 Diatom Primary Carbon Production mol m ⁻³ s ⁻¹ Primary (organic carbon) production by the diatom component alone phit organic Carbon in Sea Water due to Net Primary Production by Diazotrophs 4 Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs 5 Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs 6 Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs 7 Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs 8 Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Net Primary Production by Diazotrophs 9 Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Net Primary Production by Diazotrophs 1 Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Net Net Primary Production by Diazotrophs 1 Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net	3	Sinking Aragonite Flux	mol m ⁻² s ⁻¹	sinking flux of aragonite		exparag	
Aragonite Dissolution mol m ⁻³ s ⁻¹ aragonite dissolution darag tendency_of_mole_concentration_of_aragonite_express ed_as_carbon_in_sea_water_due_to_dissolution 3 Aragonite Dissolution mol m ⁻³ s ⁻¹ aragonite dissolution darag tendency_of_mole_concentration_of_aragonite_express ed_as_carbon_in_sea_water_due_to_dissolution 3 Diatom Primary Carbon Production mol m ⁻³ s ⁻¹ Primary (organic carbon) production by the diatom component alone discontinuous discontinuous discontinuous discontinuous discontinuous discontinuous darag tendency_of_mole_concentration_of_particulate_organ in_sea_water_due_to_net_primary_production_by_diatoms Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the calcite-producing of Organic Carbon in Sea Water due to Net primary_production_by_diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net mol m ⁻³ s ⁻¹ Primary (organic carbon) production by the calcite-producing of primary_production_by_diazotrophs discontinuous depocation in Sea Water due to Net mol m ⁻³ s ⁻¹ Primary (organic carbon) production by the calcite-producing organic carbon in Sea Water due to Net mol m ⁻³ s ⁻¹ primary (organic carbon) production by the calcite-producing organic carbon in sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_production_sea_water_due_to_net_primary_product		Diming Pragome Par	morm 3	similar of diagonate		chung	_in_sea_water
3 Aragonite Dissolution mol m ⁻³ s ⁻¹ aragonite dissolution darag tendency_of_mole_concentration_of_aragonite_express ed_as_carbon_in_sea_water_due_to_dissolution tendency_of_mole_concentration_of_aragonite_express ed_as_carbon_in_sea_water_due_to_dissolution tendency_of_mole_concentration_of_particulate_organ ic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_diatoms Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the diazotrophic phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the calcite-producing ic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_of_particulate_organ ic_matter_expressed_as_carbon_in_sea_water_due	3	Calcite Dissolution	mol m ⁻³ s ⁻¹	calcite dissolution		deale	· ·
Aragonite Dissolution mol m ⁻³ s ⁻¹ aragonite dissolution darag ed_as_carbon_in_sea_water_due_to_dissolution Diatom Primary Carbon Production mol m ⁻³ s ⁻¹ Primary (organic carbon) production by the diatom component alone primary_production_by_diatoms Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the diazotrophic phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net organic carbon production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net organic carbon production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net organic carbon production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic carbon production by the calcite-producing organic carbon in Sea Water due to Net organic carbon in Sea Water due to N	3	Carette Bissoration	morm 3	culcite dissolution		detile	_as_carbon_in_sea_water_due_to_dissolution
Aragonite Dissolution mol m ⁻³ s ⁻¹ aragonite dissolution darag ed_as_carbon_in_sea_water_due_to_dissolution Diatom Primary Carbon Production mol m ⁻³ s ⁻¹ Primary (organic carbon) production by the diatom component alone primary_production_by_diatoms Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the diazotrophic phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net organic carbon production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net organic carbon production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net organic carbon production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic carbon production by the calcite-producing organic carbon in Sea Water due to Net organic carbon in Sea Water due to N							tendency of mole concentration of aragonite express
Diatom Primary Carbon Production mol m ⁻³ s ⁻¹ Primary (organic carbon) production by the diatom component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the diazotrophic phytoplankton component alone Primary (organic carbon) production by the diazotrophic phytoplankton component alone Primary (organic carbon) production by the diazotrophic ic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_diazotrophs tendency_of_mole_concentration_of_particulate_organ ic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_diazotrophs	3	Aragonite Dissolution	mol m ⁻³ s ⁻¹	aragonite dissolution		darag	
Diatom Primary Carbon Production mol m ⁻³ s ⁻¹ Primary (organic carbon) production by the diatom component alone pdi ic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_diatoms Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the diazotrophic phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the calcite-producing phytoplankton component alone Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the calcite-producing ic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_carbon_in_sea_water_due_to_net_primary_production_organic_ca							tendency of mole concentration of particulate organ
Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Or	3	Diatom Primary Carbon Production	mol m ⁻³ s ⁻¹	* · · *		pdi	
Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the diazotrophic objection by the diazotrophic objection by the diazotrophic objection by the diazotrophic objection by Diazotrophic objection of organic Carbon in Sea Water due to Net objection by the diazotrophic objection by the diazotrophic objection by the diazotrophic objection by the diazotrophic objection by Diazotrophic objection objection by Diazotrophic objection objection by Diazotrophic objection		•		component alone			net_primary_production_by_diatoms
Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Diazotrophs Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary (organic carbon) production by the calcite-producing of dpocdtcalc ic_matter_expressed_as_carbon_in_sea_water_due_to_phytoplankton component alone Primary (organic carbon) production by the calcite-producing of dpocdtcalc ic_matter_expressed_as_carbon_in_sea_water_due_to_phytoplankton component alone		Tendency of Mole Concentration of					tendency_of_mole_concentration_of_particulate_organ
Tendency of Mole Concentration of 3 Organic Carbon in Sea Water due to Net mol m ⁻³ s ⁻¹ Primary Production by Diazotrophs tendency of Mole Concentration of tendency_of_mole_concentration_of_particulate_organ in_sea_water_due_to_phytoplaykton_component_alone.	3		mol m ⁻³ s ⁻¹			dpocdtdiaz	ic_matter_expressed_as_carbon_in_sea_water_due_to_
3 Organic Carbon in Sea Water due to Net mol m ⁻³ s ⁻¹ mol m		Primary Production by Diazotrophs		phytopiankton component arone			net_primary_production_by_diazotrophs
3 Organic Carbon in Sea Water due to Net mol m ⁻³ s ⁻¹ mol m		Tendency of Mole Concentration of					tendency of mole concentration of particulate organ
	3	•	mol m ⁻³ s ⁻¹			dpocdtcalc	
		Primary Production by Picophytoplankton		phytopiankton component alone			net_primary_production_by_calcareous_phytoplankton

					CMOR					
unformatted units	cell_methods	positive	type	CMOR dimensions	variable name	realm	frequency	cell_measures	flag_values	flag_meanings
mol m-3 s-1	time: mean area: mean where sea	•	real	longitude latitude olevel time	pp	ocnBgchem		area: areacello volume: volcello		<u> </u>
mol m-3 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	pnitrate	ocnBgchem		area: areacello volume: volcello		
mol m-3 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	pbfe	ocnBgchem		area: areacello volume: volcello		
mol m-3 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	pbsi	ocnBgchem		area: areacello volume: volcello		
mol m-3 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	pcalc	ocnBgchem		area: areacello volume: volcello		
mol m-3 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	parag	ocnBgchem		area: areacello volume: volcello		
mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude olevel time	expc	ocnBgchem		area: areacello volume: volcello		
mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude olevel time	expn	ocnBgchem		area: areacello volume: volcello		
mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude olevel time	expp	ocnBgchem				
mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude olevel time	expcfe	ocnBgchem				
mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude olevel time	expsi	ocnBgchem		area: areacello volume: volcello		
mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude olevel time	expcalc	ocnBgchem		area: areacello volume: volcello		
mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude olevel time	exparag	ocnBgchem		area: areacello volume: volcello		
mol m-3 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	deale	ocnBgchem		area: areacello volume: volcello		
mol m-3 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	darag	ocnBgchem		area: areacello volume: volcello		
mol m-3 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	pdi	ocnBgchem		area: areacello volume: volcello		
mol m-3 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	dpocdtdiaz	ocnBgchem		area: areacello volume: volcello		
mol m-3 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	dpocdtcalc	ocnBgchem		area: areacello volume: volcello		

Tendency of Mole Concentration of Organic Carbon in Sea Water due to Net Primary Production by Picophytoplankton	mol m ⁻³ s ⁻¹	Primary (organic carbon) production by the picophytoplankton (<2 um) component alone		dpocdtpico	tendency_of_mole_concentration_of_particulate_organ ic_matter_expressed_as_carbon_in_sea_water_due_to_ net_primary_production_by_picophytoplankton
3 Other Phytoplankton Carbon Production	mol m ⁻³ s ⁻¹	Primary (organic carbon) production by other phytoplankton components alone	I think this variable is unnecessary since it can be gotten by subtracting diatom primary carbon production from pp.	phypmisc	tendency_of_mole_concentration_of_particulate_organ ic_matter_expressed_as_carbon_in_sea_water_due_to_ net_primary_production_by_miscellaneous_phytoplank ton
Rate of Change of Dissolved Inorganic Carbon due to Biological Activity	$mol\ m^{-3}\ s^{-1}$	Net of biological terms in time rate of change of dissolved inorganic carbon		bddtdic	$tendency_of_mole_concentration_of_dissolved_inorga\\ nic_carbon_in_sea_water_due_to_biological_processes$
Rate of Change of Nitrogen Nutrient due to Biological Activity	mol m ⁻³ s ⁻¹	Net of biological terms in time rate of change of nitrogen nutrients (e.g. NO3+NH4)		bddtdin	tendency_of_mole_concentration_of_dissolved_inorga nic_nitrogen_in_sea_water_due_to_biological_process es
Rate of Change of Dissolved Phosphate due to Biological Activity	$mol\ m^{\text{-}3}\ s^{\text{-}1}$	Net of biological terms in time rate of change of dissolved phosphate		bddtdip	tendency_of_mole_concentration_of_dissolved_inorga nic_phosphate_in_sea_water_due_to_biological_proces ses
Rate of Change of Dissolved Inorganic Iron due to Biological Activity	mol m ⁻³ s ⁻¹	Net of biological terms in time rate of change of dissolved inorganic iron		bddtdife	tendency_of_mole_concentration_of_dissolved_inorga nic_iron_in_sea_water_due_to_biological_processes
Rate of Change of Dissolved Inorganic Silicate due to Biological Activity	mol m ⁻³ s ⁻¹	Net of biological terms in time rate of change of dissolved inorganic silicate		bddtdisi	tendency_of_mole_concentration_of_dissolved_inorga nic_silicate_in_sea_water_due_to_biological_processes
Rate of Change of Alkalinity due to Biological Activity	mol m ⁻³ s ⁻¹	Net of biological terms in time rate of change of alkalinity		bddtalk	tendency_of_sea_water_alkalinity_expressed_as_mole_ equivalent_due_to_biological_processes
3 Nonbiogenic Iron Scavenging	$mol\ m^{-3}\ s^{-1}$	Dissolved Fe removed through nonbiogenic scavenging onto particles		fescav	tendency_of_mole_concentration_of_dissolved_iron_in _sea_water_due_to_scavenging_by_inorganic_particles
3 Particle Source of Dissolved Iron	mol m ⁻³ s ⁻¹	Dissolution, remineralization and desorption of iron back to the dissolved phase		fediss	tendency_of_mole_concentration_of_dissolved_iron_in _sea_water_due_to_dissolution_from_inorganic_partic les
Total Grazing of Phytoplankton by Zooplankton	mol m ⁻³ s ⁻¹	Total grazing of phytoplankton by zooplankton		graz	tendency_of_mole_concentration_of_dissolved_iron_in _sea_water_due_to_grazing_of_phytoplankton

mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	dpocdtpico	ocnBgchem	area: areacello volume: volcello
mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	phypmisc	ocnBgchem	area: areacello volume: volcello
mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	bddtdic	ocnBgchem	area: areacello volume: volcello
mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	bddtdin	ocnBgchem	area: areacello volume: volcello
mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	bddtdip	ocnBgchem	area: areacello volume: volcello
mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	bddtdife	ocnBgchem	area: areacello volume: volcello
mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	bddtdisi	ocnBgchem	area: areacello volume: volcello
mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	bddtalk	ocnBgchem	area: areacello volume: volcello
mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	fescav	ocnBgchem	area: areacello volume: volcello
mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	fediss	ocnBgchem	area: areacello volume: volcello
mol m-3 s-1	time: mean area: mean where sea	real	longitude latitude olevel time	graz	ocnBgchem	area: areacello volume: volcello

CMOR Table Amon: Monthly Mean Atmospheric Fields and Some Surface Fields

Amon

mon

(All Saved on the Atmospheric Grid)

In CMOR Table Amon: 2-D fields on atmospheric grid

iong name				output variable	
long name	units	comment	questions	name	standard name
Near-Surface Air Temperature	K	near-surface (usually, 2 meter) air temperature.		tas	air_temperature
Surface Temperature	K	"skin" temperature (i.e., SST for open ocean)		ts	surface_temperature
Daily Minimum Near-Surface Air Temperature	K	monthly mean of the daily-minimum near-surface (usually, 2 meter) air temperature.		tasmin	air_temperature
Daily Maximum Near-Surface Air Temperature	K	monthly mean of the daily-maximum near-surface (usually, 2 meter) air temperature.		tasmax	air_temperature
Sea Level Pressure	Pa	not, in general, the same as surface pressure		psl	air_pressure_at_sea_level
Surface Air Pressure	Pa	not, in general, the same as mean sea-level pressure		ps	surface_air_pressure
Eastward Near-Surface Wind	m s ⁻¹	near-surface (usually, 10 meters) eastward component of wind.		uas	eastward_wind
Northward Near-Surface Wind	m s ⁻¹	near-surface (usually, 10 meters) northward component of wind.		vas	northward_wind
Near-Surface Wind Speed	m s ⁻¹	near-surface (usually, 10 meters) wind speed. This is the mean of the speed, not the speed computed from the mean u and v components of wind		sfcWind	wind_speed
Near-Surface Relative Humidity	%	near-surface (usually, 2meters) relative humidity expressed as a percentage. This is the relative humidity with respect to liquid water for T>0 C, and with respect to ice for T<0 C.		hurs	relative_humidity
Near-Surface Specific Humidity	1	near-surface (usually, 2 meters) specific humidity.		huss	specific_humidity
Precipitation	kg m ⁻² s ⁻¹	at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective)		рг	precipitation_flux
Snowfall Flux	$kg m^{-2} s^{-1}$	at surface; includes precipitation of all forms of water in the solid phase		prsn	snowfall_flux
Convective Precipitation	kg m ⁻² s ⁻¹	at surface; includes both liquid and solid phases.		prc	convective_precipitation_flux
Evaporation	kg m ⁻² s ⁻¹	at surface; flux of water into the atmosphere due to conversion of both liquid and solid phases to vapor (from underlying surface and vegetation)		evspsbl	water_evaporation_flux
Surface Snow and Ice Sublimation Flux	kg m ⁻² s ⁻¹	The snow and ice sublimation flux is the loss of snow and ice mass from the surface resulting from their conversion to water vapor that enters the atmosphere. This differs from sbl appearing in table Limon in that the flux is averaged over the entire grid cell, not just the land portion.		sbl	water_sublimation_flux
Surface Downward Eastward Wind Stres	s Pa			tauu	surface_downward_eastward_stress

unformatted	on on the 3		4	CMOP I'	CMOR variable	1.	C		G l	G
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
K	time: mean		real	longitude latitude time height2m	tas	atmos		area: areacella		
K	time: mean time: minimum		real	longitude latitude time	ts	atmos		area: areacella		
K	within days time: mean over days		real	longitude latitude time height2m	tasmin	atmos		area: areacella		
K	time: maximum within days time: mean over days		real	longitude latitude time height2m	tasmax	atmos		area: areacella		
Pa	time: mean		real	longitude latitude time	psl	atmos		area: areacella		
Pa	time: mean		real	longitude latitude time	ps	atmos		area: areacella		
m s-1	time: mean		real	longitude latitude time height10m	uas	atmos				
m s-1	time: mean		real	longitude latitude time height10m	vas	atmos				
m s-1	time: mean		real	longitude latitude time height10m	sfcWind	atmos				
%	time: mean		real	longitude latitude time height2m	hurs	atmos		area: areacella		
1	time: mean		real	longitude latitude time height2m	huss	atmos		area: areacella		
						atmos		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	pr	atmos		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	prsn	atmos		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	prc	atmos		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	evspsbl	atmos		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	sbl	atmos		area: areacella		
						atmos		area: areacella		
Pa	time: mean	down	real	longitude latitude time	tauu	atmos				

1 Surface Downward Northward Wind Stress	Pa		tauv	surface_downward_northward_stress
1 Surface Upward Latent Heat Flux	W m ⁻²	includes both evaporation and sublimation	hfls	surface_upward_latent_heat_flux
1 Surface Upward Sensible Heat Flux	W m ⁻²	·	hfss	surface_upward_sensible_heat_flux
Surface Downwelling Longwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-2}}$		rlds	surface_downwelling_longwave_flux_in_air
1 Surface Upwelling Longwave Radiation	W m ⁻²		rlus	surface_upwelling_longwave_flux_in_air
Surface Downwelling Shortwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-2}}$		rsds	$surface_downwelling_shortwave_flux_in_air$
1 Surface Upwelling Shortwave Radiation	W m ⁻²		rsus	surface_upwelling_shortwave_flux_in_air
Surface Downwelling Clear-Sky Shortwave Radiation	W m ⁻²		rsdscs	surface_downwelling_shortwave_flux_in_air_assumin g_clear_sky
Surface Upwelling Clear-Sky Shortwave Radiation	W m ⁻²		rsuscs	surface_upwelling_shortwave_flux_in_air_assuming_c lear_sky
Surface Downwelling Clear-Sky Longwave Radiation	W m ⁻²		rldscs	surface_downwelling_longwave_flux_in_air_assuming _clear_sky
1 TOA Incident Shortwave Radiation	W m ⁻²	incident shortwave at the top of the atmosphere	rsdt	toa_incoming_shortwave_flux
1 TOA Outgoing Shortwave Radiation	W m ⁻²	at the top of the atmosphere	rsut	toa_outgoing_shortwave_flux
1 TOA Outgoing Longwave Radiation	W m ⁻²	at the top of the atmosphere (to be compared with satellite measurements)	rlut	toa_outgoing_longwave_flux
TOA Outgoing Clear-Sky Longwave Radiation	W m ⁻²		rlutes	toa_outgoing_longwave_flux_assuming_clear_sky
TOA Outgoing Clear-Sky Shortwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-2}}$		rsutcs	toa_outgoing_shortwave_flux_assuming_clear_sky
1 Water Vapor Path	kg m ⁻²	vertically integrated through the atmospheric column	prw	atmosphere_water_vapor_content
1 Total Cloud Fraction	%	for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Include both large-scale and convective cloud.	clt	cloud_area_fraction
1 Condensed Water Path	kg m ⁻²	calculate mass of condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.	clwvi	atmosphere_cloud_condensed_water_content
1 Ice Water Path	kg m ⁻²	calculate mass of ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Include precipitating frozen hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.	clivi	atmosphere_cloud_ice_content
Net Downward Flux at Top of Model	W m ⁻²	i.e., at the top of that portion of the atmosphere where dynamics are explicitly treated by the model. Report only if this differs from the net downward radiative flux at the top of the atmosphere.	rtmt	net_downward_radiative_flux_at_top_of_atmosphere_ model
1 Air Pressure at Convective Cloud Base	Pa		ccb	air_pressure_at_convective_cloud_base
1 Air Pressure at Convective Cloud Top	Pa		cct	air_pressure_at_convective_cloud_top

Pa	time: mean	down	real	longitude latitude time	tauv	atmos	
W 0	.•		,	1 1 1 1 1 1 1	1.01	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	hfls	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	hfss	atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rlds	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rlus	atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rsds	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rsus	atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rsdscs	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rsuscs	atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rldscs	atmos	area: areacella
W 2		,	,	1 1 1 1 1 1 1	1.	atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rsdt	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rsut	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rlut	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rlutes	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rsutcs	atmos	area: areacella
			real			atmos	area: areacella
kg m-2	time: mean		real	longitude latitude time	prw	atmos	area: areacella
%	time: mean		real	longitude latitude time	clt	atmos	area: areacella
kg m-2	time: mean		real	longitude latitude time	clwvi	atmos	area: areacella
kg m-2	time: mean		real	longitude latitude time	clivi	atmos	area: areacella
						atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rtmt	atmos	area: areacella
Pa	time: mean		real	longitude latitude time	ccb	atmos	area: areacella
Pa	time: mean		real	longitude latitude time	cct	atmos	area: areacella

1 Fraction of Time Convection Occurs	1	Fraction of time that convection occurs in the grid cell.	ci	convection_time_fraction
1 Fraction of Time Shallow Convection Occurs	1	Fraction of time that shallow convection occurs in the grid cell. (For models with a distinct shallow convection scheme only)	sci	shallow_convection_time_fraction
Carbon Mass Flux into Atmosphere Due to All Anthropogenic Emissions of CO2 kg	g m ⁻² s ⁻¹	This is requested only for the emission-driven coupled carbon climate model runs. Do not include natural fire sources, but include all anthropogenic sources, including fossil fuel use, cement production, agricultural burning, and sources associated with anthropogenic land use change excluding forest regrowth.	fco2antt	tendency_of_atmosphere_mass_content_of_carbon_dio xide_expressed_as_carbon_due_to_anthropogenic_emi ssion
Carbon Mass Flux into Atmosphere Due to Fossil Fuel Emissions of CO2 kg	g m ⁻² s ⁻¹	This is requested only for the emission-driven coupled carbon climate model runs. Report the prescribed anthropogenic CO2 flux from fossil fuel use, including cement production, and flaring (but not from land-use changes, agricultural burning, forest regrowth, etc.)	fco2fos	tendency_of_atmosphere_mass_content_of_carbon_dio xide_expressed_as_carbon_due_to_emission_from_fos sil_fuel_combustion
Surface Carbon Mass Flux into the Atmosphere Due to Natural Sources kg	g m ⁻² s ⁻¹	Report from all simulations (both emission-driven and concentration-driven) performed by models with fully interactive and responsive carbon cycles. This is what the atmosphere sees (on its own grid). This field should be equivalent to the combined natural fluxes of carbon (requested in the L_mon and O_mon tables) that account for natural exchanges between the atmosphere and land or ocean reservoirs (i.e., "net ecosystem biospheric productivity", for land, and "air to sea CO2 flux", for ocean.)	fco2nat	surface_upward_mass_flux_of_carbon_dioxide_expres sed_as_carbon_due_to_emission_from_natural_source s

1	time: mean		real	longitude latitude time	ci	atmos	area: areacella	
1	time: mean		real	longitude latitude time	sci	atmos	area: areacella	
							area: areacella	
kg m-2 s-1	time: mean	up	real	longitude latitude time	fco2antt	atmos	area: areacella	
kg m-2 s-1	time: mean	up	real	longitude latitude time	fco2fos	atmos	area: areacella	
kg m-2 s-1	time: mean	up	real	longitude latitude time	fco2nat	atmos	area: areacella	

In CMOR Table Amon: Atmospheric 3-D fields on standard pressure levels, except 4 cloud fields which are on model levels.

Include the following mandatory pressure levels (which are available from all available reanalyses and CMIP3): 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa; Also include, when appropriate, output on the following additional pressure levels: 7, 5, 3, 2, 1 and 0.4 hPa.

2	\$					
Priorit	₹				output variable	
_ <u> </u>	long name	units	comment	questions	name	standard name
1	Cloud Area Fraction	%	Report on model layers (not standard pressures). Include both large-scale and convective cloud.		cl	cloud_area_fraction_in_atmosphere_layer
1	Mass Fraction of Cloud Liquid Water	1	Report on model layers (not standard pressures). Include both large-scale and convective cloud. Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cells. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.		clw	mass_fraction_of_cloud_liquid_water_in_air
1	Mass Fraction of Cloud Ice	1	Report on model layers (not standard pressures). Include both large-scale and convective cloud. Calculate as the mass of cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.		cli	mass_fraction_of_cloud_ice_in_air
1	Convective Mass Flux	$kg m^{-2} s^{-1}$	Report on model half-levels (i.e., model layer bounds and not standard pressures). The net mass flux should represent the difference between the updraft and downdraft components. The flux is computed as the mass divided by the area of the grid cell.		mc	atmosphere_net_upward_convective_mass_flux
1	Air Temperature	K			ta	air_temperature
1	Eastward Wind	m s ⁻¹			ua	eastward_wind
1	Northward Wind	m s ⁻¹			va	northward_wind
1	Specific Humidity	1			hus	specific_humidity
1	Relative Humidity	%	This is the relative humidity with respect to liquid water for $T > 0$ C, and with respect to ice for $T < 0$ C.		hur	relative_humidity
1	omega (=dp/dt)	Pa s ⁻¹	commonly referred to as "omega", this represents the vertical component of velocity in pressure coordinates (positive down)		wap	lagrangian_tendency_of_air_pressure
1	Geopotential Height	m			zg	geopotential_height

unformatted					CMOR variable					
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
%	time: mean		real	longitude latitude alevel time	cl	atmos		area: areacella		
1	time: mean		real	longitude latitude alevel time	clw	atmos		area: areacella		
1	time: mean		real	longitude latitude alevel time	cli	atmos		area: areacella		
kg m-2 s-1	time: mean	up	real	longitude latitude alevhalf time	mc	atmos		area: areacella		
K	time: mean		real	longitude latitude plevs time	ta	atmos		area: areacella		
m s-1	time: mean		real	longitude latitude plevs time	ua	atmos				
m s-1	time: mean		real	longitude latitude plevs time	va	atmos				
1	time: mean		real	longitude latitude plevs time	hus	atmos		area: areacella		
%	time: mean		real	longitude latitude plevs time	hur	atmos		area: areacella		
Pa s-1	time: mean		real	longitude latitude plevs time	wap	atmos		area: areacella		
m	time: mean		real	longitude latitude plevs time	zg	atmos		area: areacella		

1 Mole Fraction of O3	1e-9	If this does not change over time (except possibly to vary identically over each annual cycle), report instead the variable described in the next table entry.	Are these the preferred units or should it be a unitless fraction? Should this field be reported instead on model levels? Or should we also require either the vertically integrated mole fraction (or mass?) of this species or the vertically integrated globally averaged mole fraction (or mass?)?	tro3	mole_fraction_of_ozone_in_air
1 Mole Fraction of O3	1e-9	If O3 does not vary from one year to the next, report 12 months, starting with January. (Note: include all 12 months even if the values don't vary seasonally.) When calling CMOR, identify this variable as tro3Clim, not tro3. If the O3 varies from one year to the next, then report instead the field described in the previous table entry.	levels? Or should we also require either the vertically integrated mole	tro3	mole_fraction_of_ozone_in_air
1 Mole Fraction of CO2	1e-6	For some simulations (e.g., prescribed concentration picontrol run), this will not vary from one year to the next, and so report instead the variable described in the next table entry. If spatially uniform, omit this field, but report Total Atmospheric Mass of CO2 (see the table entry after the next one).	Are these the preferred units or should it be a unitless fraction? Should this field be reported instead on model levels? Or should we also require either the vertically integrated mole fraction (or mass?) of this species or the vertically integrated globally averaged mole fraction (or mass?)?	co2	mole_fraction_of_carbon_dioxide_in_air
1 Mole Fraction of CO2	1e-6	Report only for simulations (e.g., prescribed concentration picontrol run), in which the CO2 does not vary from one year to the next. Report 12 monthly values, starting with January, even if the values don't vary seasonally. When calling CMOR, identify this variable as co2Clim, not co2. If CO2 is spatially uniform, omit this field, but report Total Atmospheric Mass of CO2 (see the table entry after the next).	Are these the preferred units or should it be a unitless fraction? Should this field be reported instead on model levels? Or should we also require either the vertically integrated mole fraction (or mass?) of this species or the vertically integrated globally averaged mole fraction (or mass?)?	co2	mole_fraction_of_carbon_dioxide_in_air
1 Total Atmospheric Mass of CO2	kg	For some simulations (e.g., prescribed concentration picontrol run), this will not vary from one year to the next, and so report instead the variable described in the next table entry. If CO2 is spatially nonuniform, omit this field, but report Mole Fraction of CO2 (see the table entry before the previous one).		co2mass	atmosphere_mass_of_carbon_dioxide
1 Total Atmospheric Mass of CO2	kg	Report only for simulations (e.g., prescribed concentration picontrol run), in which the CO2 does not vary from one year to the next. Report 12 monthly values, starting with January, even if the values don't vary seasonally. When calling CMOR, identify this variable as co2massClim, not co2mass. If CO2 is spatially nonuniform, omit this field, but report Mole Fraction of CO2 (see the table entry before the previous one).		co2mass	atmosphere_mass_of_carbon_dioxide

le-9	time: mean	real	longitude latitude plevs time	tro3	atmos atmosChem		area: areacella		
1e-9	time: mean within years time: mean over years	real	longitude latitude plevs time2	tro3Clim	atmos atmosChem	monClim	area: areacella		
le-6	time: mean	real	longitude latitude plevs time	co2	atmos		area: areacella		
le-6	time: mean within years time: mean over years	real	longitude latitude plevs time2	co2Clim	atmos	monClim	area: areacella		
kg	time: mean	real	time	co2mass	atmos				
kg	time: mean within years time: mean over years	real	time2	co2massClim	atmos	monClim			

1 Mole Fraction of CH4	1e-9	so report instead the variable described in the next table entry.	either the vertically integrated mole	ch4	mole_fraction_of_methane_in_air
1 Mole Fraction of CH4	1e-9	Report only for simulations (e.g., prescribed concentration picontrol run), in which the CH4 does not vary from one year to the next. Report 12 monthly values, starting with January, even if the values don't vary seasonally. When calling CMOR, identify this variable as ch4global, not ch4. If CH4 is spatially uniform, omit this field, but report Global Mean Mole Fraction of CH4 (see the table entry after the next).	Are these the preferred units or should it be a unitless fraction? Should this field be reported instead on model levels? Or should we also require either the vertically integrated mole fraction (or mass?) of this species or the vertically integrated globally averaged mole fraction (or mass?)?	ch4	mole_fraction_of_methane_in_air
1 Global Mean Mole Fraction of CH4	1e-9	For some simulations (e.g., prescribed concentration picontrol run), this will not vary from one year to the next, and so report instead the variable described in the next table entry. If CH4 is spatially nonuniform, omit this field, but report Mole Fraction of CH4 (see the table entry before the previous one).	either the vertically integrated mole	ch4global	mole_fraction_of_methane_in_air
1 Global Mean Mole Fraction of CH4	1e-9	Report only for simulations (e.g., prescribed concentration picontrol run), in which the CH4 does not vary from one year to the next. Report 12 monthly values, starting with January, even if the values don't vary seasonally. When calling CMOR, identify this variable as ch4globalClim, not ch4global. If CH4 is spatially nonuniform, omit this field, but report Global Mean Mole Fraction of CH4 (see the table entry before the previous one).	it be a unitless fraction? Should this field be reported instead on model levels? Or should we also require either the vertically integrated mole t fraction (or mass?) of this species or	ch4global	mole_fraction_of_methane_in_air
1 Mole Fraction of N2O	1e-9	For some simulations (e.g., prescribed concentration picontrol run), this will not vary from one year to the next, and so report instead the variable described in the next table entry. If N2O is spatially uniform, omit this field, but report Global Mean Mole Fraction of N2O (see the table entry after the next one).	either the vertically integrated mole	n2o	mole_fraction_of_nitrous_oxide_in_air

1e-9	time: mean	real	longitude latitude plevs time	ch4	atmos atmosChem		area: areacella		
1e-9	time: mean within years time: mean over years	real	longitude latitude plevs time2	ch4Clim	atmos atmosChem	monClim	area: areacella		
1e-9	time: mean	real	time	ch4global	atmos atmosChem				
1e-9	time: mean within years time: mean over years	real	time2	ch4globalClim	atmos atmosChem	monClim			
1e-9	time: mean	real	longitude latitude plevs time	n2o	atmos atmosChem		area: areacella		

1 Mole Fraction of N2O	1e-9	control run), in which the N2O does not vary from one year to the next. Report 12 monthly values, starting with January, even if the values don't vary seasonally. When calling CMOR, identify this variable as n2oglobal, not n2o. If N2O is spatially uniform, omit this field, but report Global Mean Mole Exection of N2O (see the table entry after the part).	Are these the preferred units or should it be a unitless fraction? Should this field be reported instead on model levels? Or should we also require either the vertically integrated mole fraction (or mass?) of this species or the vertically integrated globally averaged mole fraction (or mass?)?	n2o	mole_fraction_of_nitrous_oxide_in_air
1 Global Mean Mole Fraction of N2O	1e-9	For some simulations (e.g., prescribed concentration picontrol run), this will not vary from one year to the next, and is so report instead the variable described in the next table entry. If N2O is spatially nonuniform, omit this field, but report Mole Fraction of N2O (see the table entry before the previous tone).	either the vertically integrated mole	n2oglobal	mole_fraction_of_nitrous_oxide_in_air
1 Global Mean Mole Fraction of N2O	1e-9	even if the values don't vary seasonally. When calling CMOR, identify this variable as ch4globalClim, not ch4global. If N2O is spatially nonuniform, omit this field, but report Global Mean Mole Fraction of N2O (see the table		n2oglobal	mole_fraction_of_nitrous_oxide_in_air
3 Global Mean Mole Fraction of CFC11	1e-12			cfc11global	mole_fraction_of_cfc11_in_air
3 Global Mean Mole Fraction of CFC12	1e-12			cfc12global	mole_fraction_of_cfc12_in_air
3 Global Mean Mole Fraction of HCFC22	1e-12			hcfc22global	mole_fraction_of_hcfc22_in_air
3 Global Mean Mole Fraction of CFC113	1e-12			cfc113global	mole_fraction_of_cfc113_in_air
Mole Fraction of Other Radiatively 1 Important Trace Gases (That Are Evolving in Time).	1	to the next, and so report values for only 12 months (starting	Please let me know what (if any) other trace gas concentrations should be included.		

In CMOR Table Amon: Climatological atmospheric 3-D pressure fields

1e-9	time: mean within years time: mean over years	real	longitude latitude plevs time2	n2oClim	atmos atmosChem	monClim	area: areacella
1e-9	time: mean	real	time	n2oglobal	atmos atmosChem		
le-9	time: mean within years time: mean over years	real	time2	n2oglobalClim	atmos atmosChem	monClim	
1e-12	time: mean	real	time	cfc11global	atmos atmosChem		
1e-12	time: mean	real	time	cfc12global	atmos atmosChem		
1e-12	time: mean	real	time	hcfc22global	atmos atmosChem		
1e-12	time: mean	real	time	cfc113global	atmos atmosChem		
1		real l	ongitude latitude plevs time	0	atmos atmosChem		area: areacella

These field are requested *only for models in which the pressure can't be calculated from the vertical coordinate information stored already for each variable*. Thus, the pressures on each model level are needed for height or theta-coordinate models, for example, but not sigma- or eta-coordinate models. The annual cycle climatology (computed from an appropriate segment of the pre-industrial control run) should be reported on model levels and half levels. DO *NOT* REPORT ALL MONTHS FOR ALL EXPERIMENTS: Report only 12 months of data representing the climatology of the pre-industrial control run.

in long name	units	comment	questions	output variable name	standard name
1 Pressure on Model Levels	Pa		1	pfull	air_pressure
1 Pressure on Model Half-Levels	Pa			phalf	air_pressure

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
Pa	time: mean within years time: mean over years		real	longitude latitude alevel time2	pfull	atmos	monClim	area: areacella		
Pa	time: mean within years time: mean over years		real	longitude latitude alevhalf time2	phalf	atmos	monClim	area: areacella		

CMOR Table Omon: Monthly Mean Ocean Fields, Including Biogechemical Fields

Omon

mon

(All Saved on the Ocean Grid)

In CMOR Table Omon: Marine Biogeochemical 2-D Fields

Priorit				output variable	
prio	long name	units	comment	questions name	standard name
2	Surface Concentration of (+name of tracer)	or 1, consistent	Concentrations of all 3D tracers in the uppermost ocean layer. See first table in Oyr for a complete list of these tracers. "Tracer" concentations should be reported even if they are diagnosed rather than prognostically calculated.	include Oyr 3D tracers	
1	Primary Organic Carbon Production by All Types of Phytoplankton	mol m ⁻² s ⁻¹	Vertically integrated total primary (organic carbon) production by phytoplankton. This should equal the sum of intpdiat+intpphymisc, but those individual components may be unavailable in some models.	intpp	net_primary_mole_productivity_of_carbon_by_phytopl ankton
2	Primary Organic Carbon Production by Phytoplankton Based on Nitrate Uptake Alone	mol m ⁻² s ⁻¹	Vertically integrated primary (organic carbon) production by phytoplankton based on nitrate uptake alone	intpnitrate	net_primary_mole_productivity_of_carbon_due_to_nitr ate_utilization
2	Primary Organic Carbon Production by Diatoms	mol m ⁻² s ⁻¹	Vertically integrated primary (organic carbon) production by the diatom phytoplankton component alone	intpdiat	net_primary_mole_productivity_of_carbon_by_diatom s
3	Net Primary Mole Productivity of Carbon by Diazotrophs	mol m ⁻² s ⁻¹		intpdiaz	net_primary_mole_productivity_of_carbon_by_diazotr ophs
3	Net Primary Mole Productivity of Carbon by Calcareous Phytoplankton	$mol\ m^{-2}s^{-1}$		intpcalc	$net_primary_mole_productivity_of_carbon_by_calcare\\ous_phytoplankton$
3	Net Primary Mole Productivity of Carbon by Picophytoplankton	mol m ⁻² s ⁻¹		intppico	net_primary_mole_productivity_of_carbon_by_picophy toplankton
3	Primary Organic Carbon Production by Other Phytoplankton	$mol\ m^{-2}\ s^{-1}$	Vertically integrated total primary (organic carbon) production by other phytoplankton components alone	intpmisc	net_primary_mole_productivity_of_carbon_by_miscell aneous_phytoplankton
3	Iron Production	$mol\ m^{-2}\ s^{-1}$	Vertically integrated biogenic iron production	intpbfe	tendency_of_ocean_mole_content_of_iron_due_to_biol ogical_production
3	Silica Production	mol m ⁻² s ⁻¹	Vertically integrated biogenic silica production	intpbsi	tendency_of_ocean_mole_content_of_silicon_due_to_b iological_production
3	Calcite Production	$mol\ m^{-2}\ s^{-1}$	Vertically integrated calcite production	intpcalcite	tendency_of_ocean_mole_content_of_calcite_expresse d_as_carbon_due_to_biological_production
3	Aragonite Production	mol m ⁻² s ⁻¹	Vertically integrated aragonite production	intparag	tendency_of_ocean_mole_content_of_aragonite_expres sed_as_carbon_due_to_biological_production
1	Downward Flux of Particle Organic Carbon at 100M	mol m ⁻² s ⁻¹	sinking flux of organic carbon at 100m	epc100	sinking_mole_flux_of_particulate_organic_matter_exp ressed_as_carbon_in_sea_water
3	Downward Flux of Particulate Iron at 100M	mol m ⁻² s ⁻¹	sinking flux of biogenic and scavenged iron at 100m	epfe100	sinking_mole_flux_of_particulate_iron_in_sea_water
3	Downward Flux of Particulate Silica at 100M	$mol\ m^{-2}\ s^{-1}$	sinking flux of biogenic silica at 100m	epsi100	sinking_mole_flux_of_particulate_silicon_in_sea_wate r
1	Downward Flux of Calcite at 100M	mol m ⁻² s ⁻¹	sinking flux of calcite at 100m	epcalc100	sinking_mole_flux_of_calcite_expressed_as_carbon_in _sea_water

unformatted					CMOR variable					
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
mol m-3 or kg m- 3 or 1, consistent with first table in Oyr	time: mean area: mean where sea		real	longitude latitude time depth0m		ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	intpp	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: where sea		real	longitude latitude time	intpnitrate	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	intpdiat	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: where sea		real	longitude latitude time	intpdiaz	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: where sea		real	longitude latitude time	intpcalc	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: where sea		real	longitude latitude time	intppico	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: where sea		real	longitude latitude time	intpmisc	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	intpbfe	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: where sea		real	longitude latitude time	intpbsi	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	intpcalcite	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: where sea		real	longitude latitude time	intparag	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude time depth100m	epc100	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: where sea	down	real	longitude latitude time depth100m	epfe100	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude time depth100m	epsi100	ocnBgchem		area: areacello		
mol m-2 s-1	time: mean area: where sea	down	real	longitude latitude time depth100m	epcalc100	ocnBgchem		area: areacello		

1 Downward Flux of Aragonite at 100M	mol m ⁻² s ⁻¹	sinking flux of aragonite at 100m		eparag100	sinking_mole_flux_of_aragonite_expressed_as_carbon _in_sea_water
2 Dissolved Inorganic Carbon Content	kg m ⁻²	Vertically integrated DIC		intdic	ocean_mass_content_of_dissolved_inorganic_carbon
1 Surface Aqueous Partial Pressure of CO2	Pa	Surface aqueous partial pressure of CO2		spco2	surface_partial_pressure_of_carbon_dioxide_in_sea_w ater
3 Delta PCO2	Pa	Difference between atmospheric and oceanic partial pressure of CO2 (positive meaning ocean > atmosphere)		dpco2	surface_carbon_dioxide_partial_pressure_difference_b etween_sea_water_and_air
3 Delta PO2	Pa	Difference between atmospheric and oceanic partial pressure of O2 (positive meaning ocean > atmosphere)		dpo2	surface_molecular_oxygen_partial_pressure_difference _between_sea_water_and_air
1 Surface Downward CO2 Flux	kg m ⁻² s ⁻¹	Gas exchange flux of CO2 (positive into ocean)	For consistency with other fluxes, shouldn't this have units of mol m ⁻² s ⁻¹ . No it is better in these units for direct comparison with surface fluxes of CO2 on land	fgco2	surface_downward_mass_flux_of_carbon_dioxide_exp ressed_as_carbon
1 Surface Downward O2 Flux	$mol\ m^{-2}\ s^{-1}$	Gas exchange flux of O2 (positive into ocean)		fgo2	surface_downward_mole_flux_of_molecular_oxygen
3 Surface Upward DMS Flux	$mol\ m^{-2}\ s^{-1}$	Gas exchange flux of DMS (positive into atmosphere)		fgdms	surface_upward_mole_flux_of_dimethyl_sulfide
Flux of Carbon Into Ocean Surface by Runoff and Sediment Dissolution	$mol\ m^{-2}\ s^{-1}$	Carbon supply to ocean through runoff and sediment dissolution (neglects gas exchange)		fsc	tendency_of_ocean_mole_content_of_carbon_due_to_r unoff_and_sediment_dissolution
3 Downward Carbon Flux at Ocean Bottom	$mol\ m^{-2}\ s^{-1}$	Carbon loss to sediments		frc	tendency_of_ocean_mole_content_of_carbon_due_to_s edimentation
3 Nitrogen Fixation Rate in Ocean	$mol\ m^{-2}\ s^{-1}$	Vertically integrated nitrogen fixation		intpn2	tendency_of_ocean_mole_content_of_elemental_nitrog en_due_to_fixation
3 Surface Downward Net Flux of Nitrogen	mol m ⁻² s ⁻¹	N supply through deposition flux onto sea surface, nitrogen fixation, and runoff		fsn	tendency_of_ocean_mole_content_of_elemental_nitrog en_due_to_deposition_and_fixation_and_runoff
Nitrogen Loss to Sediments and through Denitrification	mol m ⁻² s ⁻¹	N loss to sediment and water column denitrification		frn	tendency_of_ocean_mole_content_of_elemental_nitrog en_due_to_denitrification_and_sedimentation
3 Surface Downward Net Flux of Iron	$mol m^{-2} s^{-1}$	Iron supply through deposition flux onto sea surface, runoff, coasts, sediments, etc		fsfe	tendency_of_ocean_mole_content_of_iron_due_to_dep osition_and_runoff_and_sediment_dissolution
3 Iron Loss to Sediments	$mol m^{-2} s^{-1}$	Iron loss to sediments		frfe	tendency_of_ocean_mole_content_of_iron_due_to_sed imentation
3 Oxygen Minimum Concentration	mol m ⁻³	Vertical minimum concentration of dissolved oxygen gas		o2min	mole_concentration_of_dissolved_molecular_oxygen_i n_sea_water_at_shallowest_local_minimum_in_vertica l_profile
3 Depth of Oxygen Minimum Concentration	m	Depth of vertical minimum concentration of dissolved oxygengas (if two, then the shallower)		zo2min	depth_at_shallowest_local_minimum_in_vertical_profi le_of_mole_concentration_of_dissolved_molecular_ox
3 Calcite Saturation Depth	m	Depth of calcite saturation horizon (0 if < surface, "missing" if > bottom, if two, then the shallower)		zsatcalc	minimum_depth_of_calcite_undersaturation_in_sea_w ater
3 Aragonite Saturation Depth	m	Depth of aragonite saturation horizon (0 if < surface, "missing" if > bottom, if two, then the shallower)		zsatarag	minimum_depth_of_aragonite_undersaturation_in_sea _water
Rate of Change in Upper 100 m of Net Dissolved Inorganic Carbon	mol m ⁻² s ⁻¹	Net time rate of change of dissolved inorganic carbon in upper 100m		fddtdic	tendency_of_ocean_mole_content_of_dissolved_inorga nic_carbon
Rate of Change in Upper 100 m of Net Dissolved Inorganic Nitrogen	mol m ⁻² s ⁻¹	Net time rate of change of nitrogen nutrients (e.g. NO3+NH4) in upper 100m		fddtdin	tendency_of_ocean_mole_content_of_dissolved_inorga nic_nitrogen
Rate of Change in Upper 100 m of Net Dissolved Inorganic Phosphate	mol m ⁻² s ⁻¹	vertical integral of net time rate of change of phosphate in upper 100m		fddtdip	tendency_of_ocean_mole_content_of_dissolved_inorga nic_phosphorus
Rate of Change in Upper 100 m of Net Dissolved Inorganic Iron	mol m ⁻² s ⁻¹	vertical integral of net time rate of change of dissolved inorganic iron in upper 100m		fddtdife	tendency_of_ocean_mole_content_of_dissolved_inorga nic_iron

mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude time depth100m	eparag100	ocnBgchem	area: areacello	
kg m-2	time: mean area: where sea		real	longitude latitude time	intdic	ocnBgchem	area: areacello	
Pa	time: mean area: mean where sea		real	longitude latitude time	spco2	ocnBgchem	area: areacello	
Pa	time: mean area: where sea		real	longitude latitude time	dpco2	ocnBgchem	area: areacello	
Pa	time: mean area: mean where sea		real	longitude latitude time	dpo2	ocnBgchem	area: areacello	
kg m-2 s-1	time: mean area: where sea	down	real	longitude latitude time	fgco2	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude time	fgo2	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: where sea	up	real	longitude latitude time	fgdms	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	fsc	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: where sea	down	real	longitude latitude time	frc	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	intpn2	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: where sea	down	real	longitude latitude time	fsn	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	frn	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: where sea	down	real	longitude latitude time	fsfe	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	frfe	ocnBgchem	area: areacello	
mol m-3	time: mean area: where sea depth: minimum		real	longitude latitude time	o2min	ocnBgchem	area: areacello	
m	time: mean area: mean where sea		real	longitude latitude time	zo2min	ocnBgchem	area: areacello	
m	time: mean area: where sea		real	longitude latitude time	zsatcalc	ocnBgchem	area: areacello	
m	time: mean area: mean where sea		real	longitude latitude time	zsatarag	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: where sea		real	longitude latitude time olayer100m	fddtdic	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea		real	longitude latitude time olayer100m	fddtdin	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: where sea		real	longitude latitude time olayer100m	fddtdip	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea		real	longitude latitude time olayer100m	fddtdife	ocnBgchem	area: areacello	

3	Rate of Change in Upper 100 m of Net Dissolved Inorganic Silicate	mol m ⁻² s ⁻¹	vertical integral of net time rate of change of dissolved inorganic silicate in upper 100m	fddtdisi	tendency_of_ocean_mole_content_of_dissolved_inorga nic_silicon
3	Rate of Change in Upper 100 m of Alkalinity	$mol\ m^{\text{-}2}\ s^{\text{-}1}$	vertical integral of net time rate of change of alkalinity in upper 100m	fddtalk	integral_wrt_depth_of_tendency_of_sea_water_alkalini ty_expressed_as_mole_equivalent
3	Rate of Change in Upper 100 m of Dissolved Inorganic Carbon due to Biological Activity	mol m ⁻² s ⁻¹	vertical integral of net biological terms in time rate of change of dissolved inorganic carbon in upper 100m	fbddtdic	tendency_of_ocean_mole_content_of_dissolved_inorga nic_carbon_due_to_biological_processes
3	Rate of Change in Upper 100 m of Dissolved Inorganic Nitrogen due to Biological Activity	$mol\ m^{-2}s^{-1}$	vertical integral of net biological terms in time rate of change of nitrogen nutrients (e.g. NO3+NH4) in upper 100m	fbddtdin	tendency_of_ocean_mole_content_of_dissolved_inorga nic_nitrogen_due_to_biological_processes
3	Rate of Change in Upper 100 m of Dissolved Inorganic Phosphate due to Biological Activity	mol m ⁻² s ⁻¹	vertical integral of net biological terms in time rate of change of phosphate in upper 100m	fbddtdip	tendency_of_ocean_mole_content_of_dissolved_inorga nic_phosphorus_due_to_biological_processes
3	Rate of Change in Upper 100 m of Dissolved Inorganic Iron due to Biological Activity	$mol\ m^{-2}\ s^{-1}$	vertical integral of net biological terms in time rate of change of dissolved inorganic iron in upper 100m	fbddtdife	tendency_of_ocean_mole_content_of_dissolved_inorga nic_iron_due_to_biological_processes
3	Rate of Change in Upper 100 m of Dissolved Inorganic Silicate due to Biological Activity	mol m ⁻² s ⁻¹	vertical integral of net biological terms in time rate of change of dissolved inorganic silicate in upper 100m	fbddtdisi	tendency_of_ocean_mole_content_of_dissolved_inorga nic_silicon_due_to_biological_processes
3	Rate of Change in Upper 100 m of Biological Alkalinity due to Biological Activity	mol m ⁻² s ⁻¹	vertical integral of net biological terms in time rate of change of alkalinity in upper 100m	fbddtalk	integral_wrt_depth_of_tendency_of_sea_water_alkalini ty_expressed_as_mole_equivalent_due_to_biological_p rocesses

mol m-2 s-1	time: mean area: where sea	real	longitude latitude time olayer100m	fddtdisi	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea	real	longitude latitude time olayer100m	fddtalk	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: where sea	real	longitude latitude time olayer100m	fbddtdic	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea	real	longitude latitude time olayer100m	fbddtdin	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: where sea	real	longitude latitude time olayer100m	fbddtdip	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea	real	longitude latitude time olayer100m	fbddtdife	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: where sea	real	longitude latitude time olayer100m	fbddtdisi	ocnBgchem	area: areacello	
mol m-2 s-1	time: mean area: mean where sea	real	longitude latitude time olayer100m	fbddtalk	ocnBgchem	area: areacello	

Further explanation of the fields in the following tables can be found in Griffies et al., available at $http://eprints.soton.ac.uk/65415/01/137_WGOMD_ModelOutput.pdf\;.$

ity	,					
<i>Priority</i>	long name	units	comment	questions	output variable name	standard name
1	Sea Water Mass	kg			masso	sea_water_mass
1	Sea Water Pressure at Sea floor	dbar			pbo	sea_water_pressure_at_sea_floor
2	Sea Water Pressure at Sea Water Surface	dbar			pso	sea_water_pressure_at_sea_water_surface
1	Sea Water Volume	m^3			volo	sea_water_volume
	Sea Surface Height Above Geoid	m			zos	sea_surface_height_above_geoid
1	Square of Sea Surface Height Above Geoid	m^2			zossq	square_of_sea_surface_height_above_geoid
1	Global Average Sea Level Change	m			zosga	global_average_sea_level_change
1	Global Average Steric Sea Level Change	m			zossga	global_average_steric_sea_level_change
	Global Average Thermosteric Sea Level Change	m			zostoga	global_average_thermosteric_sea_level_change
1	Sea Water Mass Per Unit Area	kg m ⁻²			masscello	sea_water_mass_per_unit_area
1	Ocean Model Cell Thickness	m			thkcello	cell_thickness
1	Sea Water Potential Temperature	K			thetao	sea_water_potential_temperature
	Global Average Sea Water Potential Temperature	K			thetaoga	sea_water_potential_temperature
2	Sea Surface Temperature	K	this may differ from "surface temperature" in regions of sea ice.		tos	sea_surface_temperature
3	Square of Sea Surface Temperature	K ²			tossq	square_of_sea_surface_temperature
1	Sea Water Salinity	psu			so	sea_water_salinity
1	Global Mean Sea Water Salinity	psu			soga	sea_water_salinity
2	Sea Surface Salinity	psu			sos	sea_surface_salinity
3	Sea Water Potential Density	kg m ⁻³			rhopoto	sea_water_potential_density
3	Sea Water Age Since Surface Contact	yr			agessc	sea_water_age_since_surface_contact
4	Moles Per Unit Mass of CFC-11 in Sea Water	mol kg ⁻¹			cfc11	moles_of_cfc11_per_unit_mass_in_sea_water

unformatted units	cell methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell measures	flag_values	flag meanings
kg	time: mean area:	positive	real	time	masso	ocean	requericy	cen_measures	nag_values	nag_incanings
dbar	time: mean		real	longitude latitude time	pbo	ocean		area: areacello		
dbar	time: mean		real	longitude latitude time	pso	ocean		area: areacello		
m3	time: mean area: sum where sea		real	time	volo	ocean				
m	time: mean		real	longitude latitude time	zos	ocean		area: areacello		
m2	time: mean		real	longitude latitude time	zossq	ocean		area: areacello		
m	time: mean area: mean where sea		real	time	zosga	ocean				
m	time: mean area: mean where sea		real	time	zossga	ocean				
m	time: mean area: mean where sea		real	time	zostoga	ocean				
kg m-2	time: mean		real	longitude latitude olevel time	masscello	ocean		area: areacello volume: volcello		
m	time: mean		real	longitude latitude olevel time	thkcello	ocean		area: areacello volume: volcello		
K	time: mean		real	longitude latitude olevel time	thetao	ocean		area: areacello volume: volcello		
K	time: mean area: mean where sea		real	time	thetaoga	ocean				
K	time: mean		real	longitude latitude time	tos	ocean		area: areacello		
K2	time: mean		real	longitude latitude time	tossq	ocean		area: areacello		
psu	time: mean		real	longitude latitude olevel time	so	ocean		area: areacello volume: volcello		
psu	time: mean area: mean where sea		real	time	soga	ocean				
psu	time: mean		real	longitude latitude time	sos	ocean		area: areacello		
kg m-3	time: mean		real	longitude latitude olevel time	rhopoto	ocean		area: areacello volume: volcello		
yr	time: mean		real	longitude latitude olevel time	agessc	ocean		area: areacello volume: volcello		
mol kg-1	time: mean		real	longitude latitude olevel time	cfc11	ocean		area: areacello volume: volcello		

3 Ocean Barotropic Mass Streamfunction	kg s ⁻¹	differs from CMIP3 because it includes mass.	msftbarot	ocean_barotropic_mass_streamfunction
Ocean Mixed Layer Thickness Defined by Sigma T	m		mlotst	ocean_mixed_layer_thickness_defined_by_sigma_t
Square of Ocean Mixed Layer Thickness Defined by Sigma T	m^2		mlotstsq	square_of_ocean_mixed_layer_thickness_defined_by_s igma_t
Mean Daily Maximum Ocean Mixed 3 Layer Thickness Defined by Mixing Scheme	m		omldamax	ocean_mixed_layer_thickness_defined_by_mixing_sch eme
Monthly Maximum Ocean Mixed Layer Thickness Defined by Mixing Scheme	m		omlmax	ocean_mixed_layer_thickness_defined_by_mixing_sch eme

.;	÷					
Priorit	long name	units	comment	questions	output variable name	standard name
	Sea Water X Velocity	m s ⁻¹	Comment	questions	uo	sea_water_x_velocity
1	Sea Water Y Velocity	m s ⁻¹			vo	sea_water_y_velocity
1	Upward Ocean Mass Transport	kg s ⁻¹	differs from CMIP3, which only had upward velocity.		wmo	upward_ocean_mass_transport
1	Square of Upward Ocean Mass Transport	$kg^2 s^{-2}$			wmosq	$square_of_upward_ocean_mass_transport$
2	Ocean Mass X Transport	kg s ⁻¹			umo	ocean_mass_x_transport
2	Ocean Mass Y Transport	kg s ⁻¹			vmo	ocean_mass_y_transport
2	Ocean Meridional Overturning Mass Streamfunction	kg s ⁻¹	function of latitude, Z, basin. differs from CMIP3 because it includes mass. For a model with a cartesian latxlon grid, this is the same as the "Ocean Y Overturning Mass Streamfunction", listed a few lines down, which should in this case be omitted. For other models, this transport should be approximated as the transport along zig-zag paths corresponding to latitudes with spacing between latitudes appropriate to the model's resolution.		msftmyz	ocean_meridional_overturning_mass_streamfunction
2	Ocean Meridional Overturning Mass Streamfunction	kg s ⁻¹	function of of latitude, rho, basin. Also see note above.		msftmrhoz	$ocean_meridional_over turning_mass_stream function$
2	Ocean Y Overturning Mass Streamfunction	kg s ⁻¹	function of Y, Z, basin. Also see note above.		msftyyz	ocean_y_overturning_mass_streamfunction
2	Ocean Y Overturning Mass Streamfunction	kg s ⁻¹	function of Y, rho, basin. Also see note above.		msftyrhoz	ocean_y_overturning_mass_streamfunction
3	Ocean Meridional Overturning Mass Streamfunction due to Bolus Advection	kg s ⁻¹	function of latitude, Z, basin. Also see note above.		msftmyzba	ocean_meridional_overturning_mass_streamfunction_d ue_to_bolus_advection
3	Ocean Meridional Overturning Mass Streamfunction due to Bolus Advection	kg s ⁻¹	function of latitude, rho, basin. Also see note above.		msftmrhozba	ocean_meridional_overturning_mass_streamfunction_d ue_to_bolus_advection
3	Ocean Y Overturning Mass Streamfunction due to Bolus Advection	kg s ⁻¹	function of Y, Z, basin. Also see note above.		msftyyzba	ocean_y_overturning_mass_streamfunction_due_to_bo lus_advection
3	Ocean Y Overturning Mass Streamfunction due to Bolus Advection	kg s ⁻¹	function of Y, rho, basin. Also see note above.		msftyrhozba	ocean_y_overturning_mass_streamfunction_due_to_bo lus_advection

kg s-1	time: mean	real	longitude latitude time	msftbarot	ocean	area: areacello
m	time: mean	real	longitude latitude time	mlotst	ocean	area: areacello
m2	time: mean	real	longitude latitude time	mlotstsq	ocean	area: areacello
m	time: maximum within days time: mean over days	real	longitude latitude time	omldamax	ocean	area: areacello
m	time: maximum	real	longitude latitude time	omlmax	ocean	area: areacello

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
m s-1	time: mean		real	longitude latitude olevel time	uo	ocean				
m s-1	time: mean		real	longitude latitude olevel time	vo	ocean				
kg s-1	time: mean		real	longitude latitude olevel time	wmo	ocean		area: areacello volume: volcello		
kg2 s-2	time: mean		real	longitude latitude olevel time	wmosq	ocean		area: areacello volume: volcello		
kg s-1	time: mean		real	longitude latitude olevel time	umo	ocean				
kg s-1	time: mean		real	longitude latitude olevel time	vmo	ocean				
kg s-1	time: mean longitude: mean		real	latitude olevel basin time	msftmyz	ocean				
kg s-1	time: mean longitude: mean		real	latitude rho basin time	msftmrhoz	ocean				
kg s-1	time: mean longitude: mean		real	latitude olevel basin time	msftyyz	ocean				
kg s-1	time: mean longitude: mean		real	latitude rho basin time	msftyrhoz	ocean				
kg s-1	time: mean longitude: mean		real	latitude olevel basin time	msftmyzba	ocean				
kg s-1	time: mean longitude: mean		real	latitude rho basin time	msftmrhozba	ocean				
kg s-1	time: mean longitude: mean		real	latitude olevel basin time	msftyyzba	ocean				
kg s-1	time: mean longitude: mean		real	latitude rho basin time	msftyrhozba	ocean				

2	Northward Ocean Heat Transport	W	For a model with a cartesian latxlon grid, this is the same as the "Ocean Heat Y Transport", listed a few lines down, which should in this case be omitted. For other models, this transport should be approximated as the transport along zigzag paths corresponding to latitudes with spacing between latitudes appropriate to the model's resolution.	hfnorth	northward_ocean_heat_transport
3	Northward Ocean Heat Transport due to Bolus Advection	W	see note above.	hfnorthba	northward_ocean_heat_transport_due_to_bolus_advect ion
3	Northward Ocean Heat Transport due to Diffusion	W	see note above.	hfnorthdiff	northward_ocean_heat_transport_due_to_diffusion
2	Ocean Heat X Transport	W		hfx	ocean_heat_x_transport
2	Ocean Heat Y Transport	W	For a model with a cartesian latxlon grid, this is the same as the "Northward Ocean Heat Transport", listed a few lines above, which should be saved instead of this.	hfy	ocean_heat_y_transport
3	Ocean Heat Y Transport due to Bolus Advection	W	see note above.	hfyba	ocean_heat_y_transport_due_to_bolus_advection
3	Ocean Heat Y Transport due to Diffussion	W	see note above.	hfydiff	ocean_heat_y_transport_due_to_diffusion
3	Ocean Heat X Transport due to Bolus Advection	W		hfxba	ocean_heat_x_transport_due_to_bolus_advection
3	Ocean Heat X Transport due to Diffusion	W		hfxdiff	ocean_heat_x_transport_due_to_diffusion
2	Northward Ocean Heat Transport	W	This differs from a similar, previous entry in that northward transport across individual basins is called for, rather than the fully gridded fields	hfbasin	northward_ocean_heat_transport
3	Northward Ocean Heat Transport due to Bolus Advection	W		hfbasinba	northward_ocean_heat_transport_due_to_bolus_advect ion
3	Northward Ocean Heat Transport due to Diffussion	W		hfbasindiff	northward_ocean_heat_transport_due_to_diffusion
2	Northward Ocean Heat Transport due to Gyre	W	function of latitude, basin	htovgyre	northward_ocean_heat_transport_due_to_gyre
2	Northward Ocean Heat Transport due to Overturning	W	function of latitude, basin	htovovrt	northward_ocean_heat_transport_due_to_overturning
2	Northward Ocean Salt Transport due to Gyre	kg s ⁻¹	function of latitude, basin	sltovgyre	northward_ocean_salt_transport_due_to_gyre
2	Northward Ocean Salt Transport due to Overturning	kg s ⁻¹	function of latitude, basin	sltovovrt	northward_ocean_salt_transport_due_to_overturning

w	time: mean	real	longitude latitude time	hfnorth	ocean		
W	time: mean	real	longitude latitude time	hfnorthba	ocean		
W	time: mean	real	longitude latitude time	hfnorthdiff	ocean		
W	time: mean	real	longitude latitude time	hfx	ocean		
W	time: mean	real	longitude latitude time	hfy	ocean		
W	time: mean	real	longitude latitude time	hfyba	ocean		
W	time: mean	real	longitude latitude time	hfydiff	ocean		
W	time: mean	real	longitude latitude time	hfxba	ocean		
W	time: mean	real	longitude latitude time	hfxdiff	ocean		
W	time: mean longitude: mean	real	latitude basin time	hfbasin	ocean		
W	time: mean longitude: mean	real	latitude basin time	hfbasinba	ocean		
W	time: mean longitude: mean	real	latitude basin time	hfbasindiff	ocean		
W	time: mean longitude: mean	real	latitude basin time	htovgyre	ocean		
W	time: mean longitude: mean	real	latitude basin time	htovovrt	ocean		
kg s-1	time: mean longitude: mean	real	latitude basin time	sltovgyre	ocean		
kg s-1	time: mean longitude: mean	real	latitude basin time	sltovovrt	ocean		

sea water transport through (or associated with) the following straits, openings, channels, passages, etc.: barents_opening, bering_strait, canadian_archipelago, denmark_strait, drake_passage, english_channel, pacific_equatorial_undercurrent, faroe_scotland_channel, florida_bahamas_strait, fram_strait, iceland_faroe_channel, indonesian_thoughflow, mozambique_channel, taiwan_luzon_straits, and windward_passage. For definitions see WGOMD document referenced above. All transports will be stored in a single variable with a dimension that covers the set of regions listed here.

ority					output variable	
ã	long name	units	comment	questions	name	standard name
2 Sea W	ater Transport	kg s ⁻¹			mfo	sea_water_transport_across_line

Dries					utput variable	
a	long name	units	comment	questions	name	standard name
2	Rainfall Flux where Ice Free Ocean over Sea	kg m ⁻² s ⁻¹	compute as the total mass of liquid water falling as liquid rain into the ice-free portion of the ocean divided by the area of the ocean portion of the grid cell.		pr	rainfall_flux
2	Snowfall Flux where Ice Free Ocean over Sea	kg m ⁻² s ⁻¹	compute as the total mass of ice directly falling as snow into the ice-free portion of the ocean divided by the area of the ocean portion of the grid cell.		prsn	snowfall_flux
2	Water Evaporation Flux Where Ice Free Ocean over Sea	kg m ⁻² s ⁻¹	compute as the total mass of water vapor evaporating from the ice-free portion of the ocean divided by the area of the ocean portion of the grid cell.		evs	water_evaporation_flux
2	Water Flux into Sea Water From Rivers	kg m ⁻² s ⁻¹	compute as the river flux of water into the ocean divided by the area of the ocean portion of the grid cell.		friver	water_flux_into_sea_water_from_rivers
2	Water Flux into Sea Water From Icebergs	kg m ⁻² s ⁻¹	compute as the iceberg melt water flux into the ocean divided by the area of the ocean portion of the grid cell.		ficeberg	water_flux_into_sea_water_from_icebergs
1	Water Flux into Sea Water due to Sea Ice Thermodynamics	kg m ⁻² s ⁻¹		ne priority set by the WGOMD was 2 r this field. The sea-ice folks quested that the priority be raised to	fsitherm	water_flux_into_sea_water_due_to_sea_ice_thermodyn amics
2	Water Flux into Sea Water	kg m ⁻² s ⁻¹	compute as the water flux into the ocean divided by the area of the ocean portion of the grid cell. This is the sum of the next two variables in this table.		wfo	water_flux_into_sea_water
2	Water Flux into Sea Water Without Flux Correction	kg m ⁻² s ⁻¹	compute as the water flux (without flux correction) into the ocean divided by the area of the ocean portion of the grid cell. This is the sum of the first 6 variables in this table?		wfonocorr	water_flux_into_sea_water_without_flux_correction

unformatted					CMOR variable					
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
kg s-1	time: mean		real	oline time	mfo	ocean				

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
kg m-2 s-1	time: mean area: mean where ice_free_sea over sea		real	longitude latitude time	pr	ocean		area: areacello	<u> </u>	<u> </u>
kg m-2 s-1	time: mean area: mean where ice_free_sea over sea		real	longitude latitude time	prsn	ocean		area: areacello		
kg m-2 s-1	time: mean area: mean where ice_free_sea over sea		real	longitude latitude time	evs	ocean		area: areacello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	friver	ocean		area: areacello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude olevel time	ficeberg	ocean		area: areacello volume: volcello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	fsitherm	ocean seaIce		area: areacello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	wfo	ocean		area: areacello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	wfonocorr	ocean		area: areacello		

2 Water Flux Correction	kg m ⁻² s ⁻¹	If this does not vary from one year to the next, report only a single year. Positive flux implies correction adds water to	wfcorr	water_flux_correction
		ocean.		

riority	>				output variable	e
Prić	long name	units	comment	questions	name	standard name
2	Virtual Salt Flux into Sea Water due to Rainfall	kg m ⁻² s ⁻¹			vsfpr	virtual_salt_flux_into_sea_water_due_to_rainfall
2	Virtual Salt Flux into Sea Water due to Evaporation	$kg\ m^{\text{-}2}\ s^{\text{-}1}$			vsfevap	virtual_salt_flux_into_sea_water_due_to_evaporation
2	Virtual Salt Flux into Sea Water From Rivers	$kg m^{-2} s^{-1}$			vsfriver	virtual_salt_flux_into_sea_water_from_rivers
1	Virtual Salt Flux into Sea Water due to Sea Ice Thermodynamics	kg m ⁻² s ⁻¹	This variable measures the virtual salt flux into sea water due to the melting of sea ice. It is set to zero in models which receive a real water flux.	The priority set by the WGOMD was 2 for this field. The sea-ice folks requested that the priority be raised to 1.	vsfsit	virtual_salt_flux_into_sea_water_due_to_sea_ice_ther modynamics
2	Virtual Salt Flux into Sea Water	kg m ⁻² s ⁻¹	If this does not vary from one year to the next, report only a single year. Positive flux implies correction increases salinity of water. This includes all virtual salt flux, including that due to a salt flux correction.		vsf	virtual_salt_flux_into_sea_water
2	Virtual Salt Flux Correction	$kg\ m^{\text{-}2}\ s^{\text{-}1}$			vsfcorr	virtual_salt_flux_correction
1	Downward Sea Ice Basal Salt Flux	kg m ⁻² s ⁻¹	This field is physical, and it arises since sea ice has a nonzero salt content, so it exchanges salt with the liquid ocean upon melting and freezing.	The priority set by the WGOMD was 2 for this field. The sea-ice folks requested that the priority be raised to 1.	sfdsi	downward_sea_ice_basal_salt_flux
2	Salt Flux into Sea Water from Rivers	kg m $^{-2}$ s $^{-1}$			sfriver	salt_flux_into_sea_water_from_rivers

kg m-2 s-1	time: mean area: mean where sea	down	real	longitude latitude time	wfcorr	ocean	area: areacello	
------------	------------------------------------	------	------	-------------------------	--------	-------	-----------------	--

unformatted units	cell methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell measures	flag_values	flag meanings
kg m-2 s-1	time: mean area: mean where sea	•	real	longitude latitude time	vsfpr	ocean		area: areacello	<u> </u>	<u> </u>
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	vsfevap	ocean		area: areacello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	vsfriver	ocean		area: areacello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	vsfsit	ocean seaIce		area: areacello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	vsf	ocean		area: areacello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	vsfcorr	ocean		area: areacello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	sfdsi	ocean seaIce		area: areacello		
kg m-2 s-1	time: mean area: mean where sea		real	longitude latitude time	sfriver	ocean		area: areacello		

Priori	A Company of the Comp			output variable	
		units	comment questions	name	standard name
2	Upward Geothermal Heat Flux at Sea Floor	W m ⁻²		hfgeou	upward_geothermal_heat_flux_at_sea_floor
2	Temperature Flux due to Rainfall Expressed as Heat Flux into Sea Water	W m ⁻²	This is defined as "where ice_free_sea over sea"; i.e., compute the total flux (considered here) entering the ice-free portion of the grid cell divided by the area of the ocean portion of the grid cell.	hfrainds	temperature_flux_due_to_rainfall_expressed_as_heat_f lux_into_sea_water
2	Temperature Flux due to Evaporation Expressed as Heat Flux Out of Sea Water	W m ⁻²	This is defined as "where ice_free_sea over sea"	hfevapds	temperature_flux_due_to_evaporation_expressed_as_h eat_flux_out_of_sea_water
2	Temperature Flux due to Runoff Expressed as Heat Flux into Sea Water	W m ⁻²	In general this should be reported as a function of depth, (i.e., it will be a function of the generic "XYZ" dimensions). Include enough depth levels to represent the non-zero values of this field everywhere on the globe.	hfrunoffds	temperature_flux_due_to_runoff_expressed_as_heat_fl ux_into_sea_water
2	Heat Flux into Sea Water due to Snow Thermodynamics	W m ⁻²	In general this should be reported as a function of depth, (i.e., it will be a function of the generic "XYZ" dimensions). Include enough depth levels to represent the non-zero values of this field everywhere on the globe.	hfsnthermds	heat_flux_into_sea_water_due_to_snow_thermodynam ics
1	Heat Flux into Sea Water due to Frazil Ice Formation	W m ⁻²	As of May 2010, the WGOMD document recommends that this field should be saved instead of the field listed immediately below. In general this should be reported as a function of depth, (i.e., it will be a function of the generic "XYZ" dimensions). Include enough depth levels to represent the non-zero values of this field everywhere on the globe.	hfsifrazil	heat_flux_into_sea_water_due_to_freezing_of_frazil_i ce
1	Heat Flux into Sea Water due to Sea Ice Thermodynamics	W m ⁻²	As of May 2010, the WGOMD document recommends that instead of saving this field, the field listed immediately above should be saved instead. In general this should be reported as a function of depth, (i.e., it will be a function of the generic requested that the priority be raised to "XYZ" dimensions). Include enough depth levels to represent 1. the non-zero values of this field everywhere on the globe.	hfsithermds	heat_flux_into_sea_water_due_to_sea_ice_thermodyna mics
2	Heat Flux into Sea Water due to Iceberg Thermodynamics	W m ⁻²	In general this should be reported as a function of depth, (i.e., it will be a function of the generic "XYZ" dimensions). Include enough depth levels to represent the non-zero values of this field everywhere on the globe.	hfibthermds	heat_flux_into_sea_water_due_to_iceberg_thermodyna mics
2	Surface Net Downward Longwave Radiation	W m ⁻²	This is defined as "where ice_free_sea over sea"	rlds	surface_net_downward_longwave_flux
2	Surface Downward Latent Heat Flux	W m ⁻²	This is defined as "where ice_free_sea over sea"	hfls	surface_downward_latent_heat_flux

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
W m-2	time: mean area: whre sea	up	real	longitude latitude time	hfgeou	ocean		area: areacello		
W m-2	time: mean area: mean where ice_free_sea over sea	down	real	longitude latitude time	hfrainds	ocean		area: areacello		
W m-2	time: mean area: mean where ice_free_sea over sea	up	real	longitude latitude time	hfevapds	ocean		area: areacello		
W m-2	time: mean area: mean where sea		real	longitude latitude olevel time	hfrunoffds	ocean		area: areacello volume: volcello		
W m-2	time: mean area: mean where sea		real	longitude latitude olevel time	hfsnthermds	ocean		area: areacello volume: volcello		
W m-2	time: mean area: mean where sea		real	longitude latitude olevel time	hfsifrazil	ocean sealce		area: areacello volume: volcello		
W m-2	time: mean area: mean where sea		real	longitude latitude olevel time	hfsithermds	ocean sealce		area: areacello volume: volcello		
W m-2	time: mean area: mean where sea		real	longitude latitude olevel time	hfibthermds	ocean		area: areacello volume: volcello		
W m-2	time: mean area: mean where ice_free_sea over sea	down	real	longitude latitude time	rlds	ocean		area: areacello		
W m-2	time: mean area: mean where ice_free_sea over sea	down	real	longitude latitude time	hfls	ocean		area: areacello		

2 Surface Downward Sensible Heat Flux	W m ⁻²	This is defined as "where ice_free_sea over sea"	hfss	surface_downward_sensible_heat_flux
Net Downward Shortwave Radiation at Sea Water Surface	W m ⁻²	This is the flux into the surface of liquid sea water only. This excludes shortwave flux absorbed by sea ice, but includes any light that passes through the ice and is absorbed by the ocean.	rsntds	net_downward_shortwave_flux_at_sea_water_surface
Downwelling Shortwave Radiation in Sea Water	W m ⁻²	In general the shortwave flux should be reported as a function of ocean depth, (i.e., it will be a function of the generic "XYZ" dimensions). Include enough depth levels to represent the non-zero values of this field everywhere on the globe.	rsds	downwelling_shortwave_flux_in_sea_water
2 Heat Flux Correction	W m ⁻²	If this does not vary from one year to the next, report only a single year. Positive indicates correction adds heat to ocean.	hfcorr	heat_flux_correction
Downward Heat Flux at Sea Water Surface	W m ⁻²	This is the net flux of heat entering the liquid water column through its upper surface (excluding any "flux adjustment").	hfds	surface_downward_heat_flux_in_sea_water

iority					output variable	
ă	long name	units	comment	questions	name	standard name
2 Su	urface Downward X Stress	N m ⁻²	This is the stress on the liquid ocean from overlying atmosphere, sea ice, ice shelf, etc.		tauuo	surface_downward_x_stress
2 Su	urface Downward Y Stress	$N m^{-2}$	This is the stress on the liquid ocean from overlying atmosphere, sea ice, ice shelf, etc.		tauvo	surface_downward_y_stress
2 Su	urface Downward X Stress Correction	N m ⁻²	This is the stress on the liquid ocean from overlying atmosphere, sea ice, ice shelf, etc. If this does not vary from one year to the next, report only a single year.		tauucorr	surface_downward_x_stress_correction
2 Su	urface Downward Y Stress Correction	N m ⁻²	This is the stress on the liquid ocean from overlying atmosphere, sea ice, ice shelf, etc. If this does not vary from one year to the next, report only a single year.		tauvcorr	surface_downward_y_stress_correction

W m-2	time: mean area: mean where ice_free_sea over sea	down	real	longitude latitude time	hfss	ocean	area: areacello	
W m-2	time: mean area: mean where sea	down	real	longitude latitude time	rsntds	ocean	area: areacello	
W m-2	time: mean area: mean where sea	down	real	longitude latitude olevel time	rsds	ocean	area: areacello volume: volcello	
W m-2	time: mean area: mean where sea	down	real	longitude latitude time	hfcorr	ocean	area: areacello	
W m-2	time: mean area: mean where sea	down	real	longitude latitude time	hfds	ocean	area: areacello	

unformatted units	cell_methods	positive	tuno	CMOR dimensions	CMOR variable name	realm	fraguanay	cell_measures	flag values	flog moonings
N m-2	time: mean area: mean where sea	down	real	longitude latitude time	tauuo	ocean	frequency	cen_measures	flag_values	flag_meanings
N m-2	time: mean area: mean where sea	down	real	longitude latitude time	tauvo	ocean				
N m-2	time: mean area: mean where sea	down	real	longitude latitude time	tauucorr	ocean				
N m-2	time: mean area: mean where sea	down	real	longitude latitude time	tauvcorr	ocean				

CMOR Table Lmon: Monthly Mean Land Fields, Including

Lmon

mon

Physical, Vegetation, Soil, and Biogeochemical Variables

(All fields should be saved on the atmospheric grid; unless otherwise indicated, values are averaged over only the land portion of each grid cell and report 0.0 where land fraction is 0.)

A long name				outnut vonichle	
long name	units	comment	questions	output variable name	standard name
1 Moisture in Upper 0.1 m of Soil Colum	nn kg m ⁻²	Compute the mass of water in all phases in the upper 0.1 meters of soil.	•	mrsos	moisture_content_of_soil_layer
1 Total Soil Moisture Content	kg m ⁻²	Compute the mass per unit area (summed over all soil layers) of water in all phases.		mrso	soil_moisture_content
1 Soil Frozen Water Content	kg m ⁻²	Compute the mass (summed over all all layers) of frozen water.		mrfso	soil_frozen_water_content
1 Surface Runoff	$kg m^{-2} s^{-1}$	Compute the total surface runoff leaving the land portion of the grid cell.		mrros	surface_runoff_flux
1 Total Runoff	$kg m^{-2} s^{-1}$	compute the total runoff (including "drainage" through the base of the soil model) leaving the land portion of the grid cell.		mrro	runoff_flux
2 Precipitation onto Canopy	kg m ⁻² s ⁻¹	Report the precipitation flux that is intercepted by the vegetation canopy (if present in model) before reaching the ground.		prveg	precipitation_flux_onto_canopy
1 Evaporation from Canopy	kg m ⁻² s ⁻¹	Report the canopy evaporation+sublimation (if present in model).		evspsblveg	water_evaporation_flux_from_canopy
1 Water Evaporation from Soil	kg m ⁻² s ⁻¹	includes sublimation.		evspsblsoi	water_evaporation_flux_from_soil
1 Transpiration	kg m ⁻² s ⁻¹			tran	transpiration_flux
1 Water Content of Soil Layer	kg m ⁻²	in each soil layer, the mass of water in all phases, including ice.		mrlsl	moisture_content_of_soil_layer
2 Temperature of Soil	K	Temperature of each soil layer. Report as "missing" for grid cells occupied entirely by "sea".		tsl	soil_temperature
1 Tree Cover Fraction	%	fraction of entire grid cell that is covered by trees.	add scalar coordinate typetree and add "tree" to the CF area type table.	treeFrac	area_fraction
1 Natural Grass Fraction	%	fraction of entire grid cell that is covered by natural grass.	add scalar coordinate typegrass and add "natural_grass" to the CF area type table.	grassFrac	area_fraction
1 Shrub Fraction	%	fraction of entire grid cell that is covered by shrub.	add scalar coordinate typeshrub and add "shrub" to the CF area type table.	shrubFrac	area_fraction
1 Crop Fraction	%	fraction of entire grid cell that is covered by crop.	add scalar coordinate typecrop and add "crop" to the CF area type table.	cropFrac	area_fraction
1 Anthropogenic Pasture Fraction	%	fraction of entire grid cell that is covered by anthropogenic pasture.	add scalar coordinate typepasture and add "pasture" to the CF area type table.	pastureFrac	area_fraction
1 Bare Soil Fraction	%	fraction of entire grid cell that is covered by bare soil.		baresoilFrac	area_fraction

					CMOR					
unformatted					variable					
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
kg m-2	time: mean area: mean where land		real	longitude latitude time sdepth1	mrsos	land		area: areacella		
kg m-2	time: mean area: mean where land		real	longitude latitude time	mrso	land		area: areacella		
kg m-2	time: mean area: mean where land		real	longitude latitude time	mrfso	land landIce		area: areacella		
kg m-2 s-1	time: mean area: mean where land		real	longitude latitude time	mrros	land		area: areacella		
kg m-2 s-1	time: mean area: mean where land		real	longitude latitude time	mrro	land		area: areacella		
kg m-2 s-1	time: mean area: mean where land		real	longitude latitude time	prveg	land		area: areacella		
kg m-2 s-1	time: mean area: mean where land	up	real	longitude latitude time	evspsblveg	land		area: areacella		
								area: areacella		
kg m-2 s-1	time: mean area: mean where land	up	real	longitude latitude time	evspsblsoi	land		area: areacella		
kg m-2 s-1	time: mean area: mean where land	up	real	longitude latitude time	tran	land		area: areacella		
kg m-2	time: mean area: mean where land		real	longitude latitude sdepth time	mrlsl	land		area: areacella		
K	time: mean		real	longitude latitude sdepth time	tsl	land		area: areacella		
%	time: mean		real	longitude latitude time	treeFrac	land		area: areacella		
%	time: mean		real	longitude latitude time	grassFrac	land		area: areacella		
%	time: mean		real	longitude latitude time	shrubFrac	land		area: areacella		
%	time: mean		real	longitude latitude time	cropFrac	land		area: areacella		
%	time: mean		real	longitude latitude time	pastureFrac	land		area: areacella		
%	time: mean		real	longitude latitude time typebare	baresoilFrac	land		area: areacella		

1	Fraction of Grid Cell that is Land but Neither Vegetation-Covered nor Bare Soil	%	fraction of entire grid cell that is land and is covered by "non-vegetation" and "non-bare-soil" (e.g., urban, ice, lakes, etc.)	add scalar coordinate type???and add "???" to the CF area type table.	residualFrac	area_fraction
1	Burnt Area Fraction	%	fraction of entire grid cell that is covered by burnt vegetation.	add scalar coordinate typeburnt and add "burnt_vegetation" to the CF area type table.	burntArea	area_fraction
	Land Carbon & Biogeochemistry					
1	Carbon Mass in Vegetation	kg m ⁻²			cVeg	vegetation_carbon_content
1	Carbon Mass in Litter Pool	kg m ⁻²			cLitter	litter_carbon_content
1	Carbon Mass in Soil Pool	kg m ⁻²			cSoil	soil_carbon_content
1	Carbon Mass in Products of Land Use Change	kg m ⁻²			cProduct	carbon_content_of_products_of_anthropogenic_land_u se_change
1	Leaf Area Index	1	projected leaf area per unit of ground area (i.e., only the land portion of the grid cell), expressed as a proper fraction (not a percentage)		lai	leaf_area_index
1	Carbon Mass Flux out of Atmosphere due to Gross Primary Production on Land	kg m ⁻² s ⁻¹			gpp	gross_primary_productivity_of_carbon
1	Carbon Mass Flux into Atmosphere due to Autotrophic (Plant) Respiration on Land	kg m ⁻² s ⁻¹			ra	plant_respiration_carbon_flux
1	Carbon Mass Flux out of Atmosphere due to Net Primary Production on Land	kg m ⁻² s ⁻¹	needed for models that do not compute GPP (if any)	should this be "into Atmosphere " rather than "out of Atmosphere"?	npp	net_primary_productivity_of_carbon
1	Carbon Mass Flux into Atmosphere due to Heterotrophic Respiration on Land	kg m ⁻² s ⁻¹			rh	heterotrophic_respiration_carbon_flux
1	Carbon Mass Flux into Atmosphere due to CO2 Emission from Fire	kg m ⁻² s ⁻¹	CO2 emissions (expressed as a carbon mass flux) from natural fires + human ignition fires as calculated by the fire module of the DGVM, but excluding any CO2 flux from fire included in fLuc, defined below (CO2 Flux to Atmosphere from Land Use Change).		fFire	surface_upward_mass_flux_of_carbon_dioxide_expres sed_as_carbon_due_to_emission_from_fires_excluding _anthropogenic_land_use_change
1	Carbon Mass Flux into Atmosphere due to Grazing on Land	kg m ⁻² s ⁻¹			fGrazing	surface_upward_mass_flux_of_carbon_dioxide_expres sed_as_carbon_due_to_emission_from_grazing
1	Carbon Mass Flux into Atmosphere due to Crop Harvesting	kg m ⁻² s ⁻¹			fHarvest	surface_upward_mass_flux_of_carbon_dioxide_expres sed_as_carbon_due_to_emission_from_crop_harvestin g
1	Net Carbon Mass Flux into Atmosphere due to Land Use Change	kg m ⁻² s ⁻¹	human changes to land (excluding forest regrowth) accounting possibly for different time-scales related to fate of the wood, for example.		fLuc	surface_net_upward_mass_flux_of_carbon_dioxide_ex pressed_as_carbon_due_to_emission_from_anthropoge nic_land_use_change
1	Carbon Mass Flux out of Atmosphere due to Net Biospheric Production on Land	kg m ⁻² s ⁻¹	This is the net mass flux of carbon between land and atmosphere calculated as photosynthesis MINUS the sum of plant and soil respiration, carbonfluxes from fire, harvest, grazing and land use change. Positive flux is into the land.		nbp	surface_net_downward_mass_flux_of_carbon_dioxide _expressed_as_carbon_due_to_all_land_processes
1	Total Carbon Mass Flux from Vegetation to Litter	kg m ⁻² s ⁻¹			fVegLitter	litter_carbon_flux
1	Total Carbon Mass Flux from Litter to Soil	kg m ⁻² s ⁻¹			fLitterSoil	carbon_mass_flux_into_soil_from_litter

%	time: mean		real	longitude latitude time	residualFrac	land	area: areacella
%	time: mean		real	longitude latitude time	burntArea	land	area: areacella
						land	area: areacella
kg m-2	time: mean area: mean where land		real	longitude latitude time	cVeg	land	area: areacella
kg m-2	time: mean area: mean where land		real	longitude latitude time	cLitter	land	area: areacella
kg m-2	time: mean area: mean where land		real	longitude latitude time	cSoil	land	area: areacella
kg m-2	time: mean area: mean where land		real	longitude latitude time	cProduct	land	area: areacella
1	time: mean area: mean where land		real	longitude latitude time	lai	land	area: areacella
kg m-2 s-1	time: mean area: mean where land	down	real	longitude latitude time	gpp	land	area: areacella
kg m-2 s-1	time: mean area: mean where land	up	real	longitude latitude time	ra	land	area: areacella
kg m-2 s-1	time: mean area: mean where land	down	real	longitude latitude time	npp	land	area: areacella
kg m-2 s-1	time: mean area: mean where land	up	real	longitude latitude time	rh	land	area: areacella
kg m-2 s-1	time: mean area: mean where land	up	real	longitude latitude time	fFire	land	area: areacella
kg m-2 s-1	time: mean area: mean where land	up	real	longitude latitude time	fGrazing	land	area: areacella
kg m-2 s-1	time: mean area: mean where land	up	real	longitude latitude time	fHarvest	land	area: areacella
kg m-2 s-1	time: mean area: mean where land	up	real	longitude latitude time	fLuc	land	area: areacella
kg m-2 s-1	time: mean area: mean where land	down	real	longitude latitude time	nbp	land	area: areacella
kg m-2 s-1	time: mean area: mean where land		real	longitude latitude time	fVegLitter	land	area: areacella
kg m-2 s-1	time: mean area: mean where land		real	longitude latitude time	fLitterSoil	land	area: areacella

Total Carbon Mass Flux from Vegetation Directly to Soil	kg m ⁻² s ⁻¹	In some models part of carbon (e.g., root exudate) can go directly into the soil pool without entering litter.		fVegSoil	carbon_mass_flux_into_soil_from_vegetation_excludin g_litter
2 Carbon Mass in Leaves	kg m ⁻²	1	This field and some of the following may sum to yield some of the more generic carbon pool totals given above.	cLeaf	leaf_carbon_content
2 Carbon Mass in Wood	kg m ⁻²	including sapwood and hardwood.		cWood	wood_carbon_content
2 Carbon Mass in Roots	kg m ⁻²	including fine and coarse roots.		cRoot	root_carbon_content
2 Carbon Mass in Other Living Compartments on Land	kg m ⁻²	e.g., labile, fruits, reserves, etc.		cMisc	miscellaneous_living_matter_carbon_content
2 Carbon Mass in Coarse Woody Debris	kg m ⁻²			cCwd	wood_debris_carbon_content
2 Carbon Mass in Above-Ground Litter	kg m ⁻²			cLitterAbove	surface_litter_carbon_content
2 Carbon Mass in Below-Ground Litter	kg m ⁻²			cLitterBelow	subsurface_litter_carbon_content
2 Carbon Mass in Fast Soil Pool	kg m ⁻²	fast is meant as lifetime of less than 10 years for reference climate conditions (20 C, no water limitations).		cSoilFast	fast_soil_pool_carbon_content
2 Carbon Mass in Medium Soil Pool	kg m ⁻²	medium is meant as lifetime of more than than 10 years and less than 100 years for reference climate conditions (20 C, no water limitations)		cSoilMedium	medium_soil_pool_carbon_content
2 Carbon Mass in Slow Soil Pool	kg m ⁻²	fast is meant as lifetime of more than 100 years for reference climate conditions (20 C, no water limitations)		cSoilSlow	slow_soil_pool_carbon_content
2 Plant Functional Type Grid Fraction	%	using each individual ESM PFT definition. This includes natural PFTs, anthropogenic PFTs, bare soil, lakes, urban areas, etc. Sum of all should equal the fraction of the grid-cell that is land. Note that the "types" will be model dependent and for each type there should be a full description of the PFT (plant functional type). To facilitate model comparison, it is also requested that the aggregated land cover types called for in lines 28 to 35 be archived (but not in this variable).	need to explain how to define vegtype.	landCoverFrac	area_fraction
2 Total Primary Deciduous Tree Fraction	%	Agregation of model PFTs as defined in 1st priority to aid model intercomparison. This is the fraction of the entire grid cell that is covered by "total primary deciduous trees."		treeFracPrimDec	area_fraction
2 Total Primary Evergreen Tree Cover Fraction	%	fraction of entire grid cell that is covered by primary evergreen trees.		treeFracPrimEver	area_fraction
Total Secondary Deciduous Tree Cover Fraction	%	fraction of entire grid cell that is covered by secondary deciduous trees.		treeFracSecDec	area_fraction
Total Secondary Evergreen Tree Cover Fraction	%	fraction of entire grid cell that is covered by secondary evergreen trees.		treeFracSecEver	area_fraction
2 Total C3 PFT Cover Fraction	%	fraction of entire grid cell that is covered by C3 PFTs (including grass, crops, and trees).		c3PftFrac	area_fraction
2 Total C4 PFT Cover Fraction	%	fraction of entire grid cell that is covered by C4 PFTs (including grass and crops).		c4PftFrac	area_fraction
Carbon Mass Flux into Atmosphere due 2 to Growth Autotrophic Respiration on Land	kg m ⁻² s ⁻¹	This flux and the one in the following row provide a breakdown of the higher priority "Autotrophic (Plant) Respiration" in an earlier row of this table; thus the sum should be identical to that.		rGrowth	surface_upward_carbon_mass_flux_due_to_plant_resp iration_for_biomass_growth

kg m-2 s-1	time: mean area: mean where land	real	longitude latitude time	fVegSoil	land	area: areacella
kg m-2	time: mean area: mean where land	real	longitude latitude time	cLeaf	land	area: areacella
kg m-2	time: mean area: mean where land	real	longitude latitude time	cWood	land	area: areacella
kg m-2	time: mean area: mean where land	real	longitude latitude time	cRoot	land	area: areacella
kg m-2	time: mean area: mean where land	real	longitude latitude time	cMisc	land	area: areacella
kg m-2	time: mean area: mean where land	real	longitude latitude time	cCwd	land	area: areacella
kg m-2	time: mean area: mean where land	real	longitude latitude time	cLitterAbove	land	area: areacella
kg m-2	time: mean area: mean where land	real	longitude latitude time	cLitterBelow	land	area: areacella
kg m-2	time: mean area: mean where land	real	longitude latitude time	cSoilFast	land	area: areacella
kg m-2	time: mean area: mean where land	real	longitude latitude time	cSoilMedium	land	area: areacella
kg m-2	time: mean area: mean where land	real	longitude latitude time	cSoilSlow	land	area: areacella
%	time: mean	real	longitude latitude vegtype time	landCoverFra c	land	area: areacella
%	time: mean	real	longitude latitude time typepdec	treeFracPrim Dec	land	area: areacella
%	time: mean	real	longitude latitude time typepever	treeFracPrim Ever	land	area: areacella
%	time: mean	real	longitude latitude time typesdec	treeFracSecD ec	land	area: areacella
%	time: mean	1	longitude latitude time	treeFracSecE	land	area: areacella
		real	typesever	ver		
%	time: mean	real	typesever longitude latitude time typec3pft	ver c3PftFrac	land	area: areacella
%			longitude latitude time		land land	area: areacella

Carbon Mass Flux into Atmosphere due 2 to Maintenance Autotrophic Respiration on Land	kg m ⁻² s ⁻¹	This flux and the one in the previous row provide a breakdown of the higher priority "Autotrophic (Plant) Respiration" in an earlier row of this table; thus the sum should be identical to that.	rMaint	surface_upward_carbon_mass_flux_due_to_plant_resp iration_for_biomass_maintenance
2 Carbon Mass Flux due to NPP Allocation to Leaf	kg m ⁻² s ⁻¹	This is the rate of carbon uptake by leaves due to NPP	nppLeaf	net_primary_productivity_of_carbon_accumulated_in_l eaves
2 Carbon Mass Flux due to NPP Allocation to Wood	kg m ⁻² s ⁻¹	This is the rate of carbon uptake by wood due to NPP	nppWood	net_primary_productivity_of_carbon_accumulated_in_ wood
2 Carbon Mass Flux due to NPP Allocation to Roots	kg m ⁻² s ⁻¹	This is the rate of carbon uptake by roots due to NPP	nppRoot	net_primary_productivity_of_carbon_accumulated_in_ roots
Net Carbon Mass Flux out of Atmophere 1 due to Net Ecosystem Productivity on Land.	kg m ⁻² s ⁻¹	Natural flux of CO2 (expressed as a mass flux of carbon) from the atmosphere to the land calculated as the difference between uptake associated will photosynthesis and the release of CO2 from the sum of plant and soil respiration and fire. Positive flux is into the land. emissions from natural fires + human ignition fires as calculated by the fire module of the DGVM, but excluding any CO2 flux from fire included in fLuc, defined below (CO2 Flux to Atmosphere from Land Use Change).	пер	surface_net_downward_mass_flux_of_carbon_dioxide _expressed_as_carbon_due_to_all_land_processes_exc luding_anthropogenic_land_use_change

kg m-2 s-1	time: mean area: mean where land	up	real	longitude latitude time	rMaint	land	area: areacella	
kg m-2 s-1	time: mean area: mean where land	down	real	longitude latitude time	nppLeaf	land	area: areacella	
kg m-2 s-1	time: mean area: mean where land	down	real	longitude latitude time	nppWood	land	area: areacella	
kg m-2 s-1	time: mean area: mean where land	down	real	longitude latitude time	nppRoot	land	area: areacella	
kg m-2 s-1	time: mean area: mean where land	down	real	longitude latitude time	nep	land	area: areacella	

CMOR Table LImon: Monthly Mean Land Cryosphere Fields

LImon

mon

(All fields should be saved on the atmospheric grid; unless otherwise indicated, values are averaged over only the land portion of each grid cell and report 0.0 where land fraction is 0.)

A) Log d long name				output voriable	
long name	units	comment	questions	output variable name	standard name
Snow Area Fraction	%	Fraction of each grid cell that is occupied by snow that rests on land portion of cell.		snc	surface_snow_area_fraction
Surface Snow Amount	kg m ⁻²	Compute as the mass of surface snow on the land portion of the grid cell divided by the land area in the grid cell; report as 0.0 where the land fraction is 0; exclude snow on vegetation canopy or on sea ice.		snw	surface_snow_amount
Snow Depth	m	where land over land. Compute the mean thickness of snow in the land portion of the grid cell (averaging over the entire land portion, including the snow-free fraction. Report as 0.0 where the land fraction is 0.		snd	surface_snow_thickness
Liquid Water Content of Snow Layer	kg m ⁻²	where land over land: compute the total mass of liquid water contained interstitially within the snow layer of the land portion of a grid cell divided by the area of the land portion of the cell.		lwsnl	liquid_water_content_of_snow_layer
Snow Soot Content	kg m ⁻²	Consider the entire land portion of the grid cell, with snow soot content set to 0.0 in regions free of snow.		sootsn	soot_content_of_surface_snow
Snow Age	day	When computing the time-mean here, the time samples, weighted by the mass of snow on the land portion of the grid cell, are accumulated and then divided by the sum of the weights. Report as "missing in regions free of snow on land.		agesno	age_of_surface_snow
Snow Internal Temperature	K	This temperature is averaged over all the snow in the grid cell that rests on land or land ice. When computing the timemean here, the time samples, the weighted by the mass of snow on the land portion of the grid cell, are accumulated and then divided by the sum of the weights. Report as "missing in regions free of snow on land.		tsn	temperature_in_surface_snow
Surface Snow Melt	kg m ⁻² s ⁻¹	Compute as the total surface melt water on the land portion of the grid cell divided by the land area in the grid cell; report as 0.0 for snow-free land regions; report as 0.0 where the land fraction is 0.		snm	surface_snow_melt_flux
Surface Snow and Ice Sublimation Flux	kg m ⁻² s ⁻¹	The snow and ice sublimation flux is the loss of snow and ice mass resulting from their conversion to water vapor. Compute as the total sublimation on the land portion of the grid cell divided by the land area in the grid cell; report as 0.0 for snow-free land regions; report as 0.0 where the land fraction is 0.		sbl	surface_snow_and_ice_sublimation_flux

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
%	time: mean		real	longitude latitude time	snc	landIce land		area: areacella		
kg m-2	time: mean area: mean where land		real	longitude latitude time	snw	landIce land		area: areacella		
m	time: mean area: mean where land		real	longitude latitude time	snd	landIce land		area: areacella		
kg m-2	time: mean area: mean where land		real	longitude latitude time	lwsnl	landIce land		area: areacella		
								area: areacella		
kg m-2	time: mean area: mean where land		real	longitude latitude time	sootsn	landIce land		area: areacella		
day	time: mean (with samples weighted by snow mass) area: mean where land		real	longitude latitude time	agesno	landIce land		area: areacella		
K	time: mean (with samples weighted by snow mass) area: mean where land		real	longitude latitude time	tsn	landIce land		area: areacella		
								area: areacella		
kg m-2 s-1	time: mean area: mean where land		real	longitude latitude time	snm	landIce land		area: areacella		
kg m-2 s-1	time: mean area: mean where land		real	longitude latitude time	sbl	landIce land		area: areacella		

Downward Heat Flux into Snow Where Land over Land	W m ⁻²	Compute the net downward heat flux from the atmosphere into the snow that lies on land divided by the land area in the grid cell; report as 0.0 for snow-free land regions or where the land fraction is 0.		hfdsn	surface_downward_heat_flux_in_snow	
3 Permafrost Layer Thickness	m	where land over land. Compute the mean thickness of the permafrost layer in the land portion of the grid cell. Report as 0.0 in permafrost-free regions.		tpf	permafrost_layer_thickness	
3 Liquid Water Content of Permafrost Layer	kg m ⁻²	where land over land", i.e., this is the total mass of liquid water contained within the permafrost layer within the land portion of a grid cell divided by the area of the land portion of the cell	Why do you want to know mass of liquid water? Are you studying the seaasonal melting/freezing cycle? Don't you care about how much frozen water is tied up as permafrost?	pflw	liquid_water_content_of_permafrost_layer	

W m-2	time: mean area: mean where land	down	real	longitude latitude time	hfdsn	landIce land	area: areacella	
m	time: mean area: mean where land		real	longitude latitude time	tpf	landIce land	area: areacella	
kg m-2	time: mean area: mean where land		real	longitude latitude time	pflw	landIce land	area: areacella	

CMOR Table Olmon: Monthly Mean Ocean Cryosphere Fields

OImon

mon

(All saved on the ocean grid; unless otherwise indicated, values are averaged over only the ocean portion of each grid cell and report 0.0 where ocean fraction is 0.)

Priori					output variable	
ğ	long name	units	comment	questions	name	standard name
1	Sea Ice Area Fraction	%	fraction of grid cell covered by sea ice.	-	sic	sea_ice_area_fraction
1	Sea Ice Thickness	m	Compute the mean thickness of sea ice in the ocean portion of the grid cell (averaging over the entire ocean portion, including the ice-free fraction). Report as 0.0 in regions free of sea ice.		sit	sea_ice_thickness
1	Sea Ice Plus Surface Snow Amount	kg m ⁻²	Compute the mass per unit area of sea ice plus snow in the ocean portion of the grid cell (averaging over the entire ocean portion, including the ice-free fraction). Report as 0.0 in regions free of sea ice.		sim	sea_ice_and_surface_snow_amount
1	Water Evaporation Flux from Sea Ice	$kg m^{-2} s^{-1}$	Compute the average rate that water mass evaporates (or sublimates) from the sea ice surface (i.e., kg/s) divided by the area of the ocean (i.e., open ocean + sea ice) portion of the grid cell. This quantity multiplied both by the oean area of the grid cell and by the length of the month should yield the total mass of water evaporated (or sublimated) from the sea ice. Report as 0.0 in regions free of sea ice. [This was computed differently in CMIP3		evap	water_evaporation_flux
1	Snow Depth	m	Compute the mean thickness of snow in the ocean portion of the grid cell (averaging over the entire ocean portion, including the snow-free ocean fraction). Report as 0.0 in regions free of snow-covered sea ice.		snd	surface_snow_thickness
2	Surface Snow Area Fraction	%	Fraction of entire grid cell covered by snow that lies on sea ice; exclude snow that lies on land or land ice.		snc	surface_snow_area_fraction
1	Sea Ice Albedo	1	Report as "missing" if there is no sunlight or if a region is free of sea ice.	This variable may be omitted unless the answers to the following questions are obvious: Will this vary from year to year or is it a property of "bare sea ice" and sun angle? How is the time-mean calculated?	ialb	sea_ice_albedo
3	Sea Ice Salinity	psu	When computing the time-mean here, the time-samples, weighted by the mass of sea ice in the grid cell, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.		ssi	sea_ice_salinity
1	Surface Temperature of Sea Ice	K	When computing the time-mean here, the time-samples, weighted by the area of sea ice in the grid cell, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice. Note this will be the surface snow temperature in regions where snow covers the sea ice.		tsice	surface_temperature

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
%	time: mean	<u> </u>	real	longitude latitude time	sic	seaIce ocean	1	area: areacello	<u></u>	
m	time: mean area: mean where sea		real	longitude latitude time	sit	seaIce ocean		area: areacello		
kg m-2	time: mean area: mean where sea		real	longitude latitude time	sim	seaIce ocean		area: areacello		
kg m-2 s-1	time: mean area: mean where sea_ice over sea	up	real	longitude latitude time	evap	sealce		area: areacello		
m	time: mean area: mean where sea		real	longitude latitude time	snd	seaIce		area: areacello		
%	time: mean		real	longitude latitude time	snc	seaIce		area: areacello		
1	time: mean area: mean where sea_ice		real	longitude latitude time	ialb	seaIce		area: areacello		
								area: areacello		
psu	time: mean (weighted by mass of sea ice)		real	longitude latitude time	ssi	seaIce		area: areacello		
K	time: mean (weighted by area of sea ice)		real	longitude latitude time	tsice	seaIce		area: areacello		

Temperature at Interface Between Sea Ice and Snow	K	When computing the time-mean here, the time-samples, weighted by the area of snow-covered sea ice in the grid cell, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of snow-covered sea ice.	tsnint	sea_ice_surface_temperature
Surface Rainfall Rate into the Sea Ice Portion of the Grid Cell	kg m ⁻² s ⁻¹	where sea ice over sea: compute the the water mass per unit time falling as rain onto the sea ice portion of a grid cell divided by the area of the ocean portion of the grid cell (including both ice-free and sea-ice covered fractions). Report as 0. in regions free of sea ice.	pr	rainfall_flux
Surface Snowfall Rate into the Sea Ice Portion of the Grid Cell	kg m ⁻² s ⁻¹	where sea ice over sea: compute the the water mass per unit time falling as snow onto the sea ice portion of a grid cell divided by the area of the ocean portion of the grid cell (including both ice-free and sea-ice covered fractions). Report as 0. in regions free of sea ice.	prsn	snowfall_flux
3 Age of Sea Ice	years	When computing the time-mean here, the time samples, weighted by the mass of sea ice in the grid cell, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.	ageice	age_of_sea_ice
1 Frazil Sea Ice Growth (Leads) Rate	kg m ⁻² s ⁻¹	Compute the rate of change of sea ice mass due to frazil sea ice formation divided by the area of the ocean portion of the grid cell. Report as 0.0 in regions free of sea ice.	grFrazil	tendency_of_sea_ice_amount_due_to_frazil_ice_accu mulation_in_leads
1 Congelation Sea Ice Growth Rate	$kg m^{-2} s^{-1}$	Compute the rate of change of sea ice mass due to congelation sea ice divided by the area of the ocean portion of the grid cell. Report as 0.0 in regions free of sea ice.	grCongel	tendency_of_sea_ice_amount_due_to_congelation_ice_ accumulation
Lateral Sea Ice Growth Rate	kg m ⁻² s ⁻¹	Compute the rate of change of sea ice mass due to lateral growth alone of the sea ice divided by the area of the ocean portion of the grid cell. Report as 0.0 in regions free of sea ice.	grLateral	tendency_of_sea_ice_amount_due_to_lateral_growth_o f_ice_floes
1 Snow-Ice Formation Rate	kg m ⁻² s ⁻¹	Compute the rate of change of sea ice mass due to transformation of snow to sea ice, divided by the area of the ocean portion of the grid cell. Report as 0.0 in regions free of snow-covered sea ice.	snoToIce	tendency_of_sea_ice_amount_due_to_snow_conversio n
1 Snow Melt Rate	kg m ⁻² s ⁻¹	Compute the rate of change of snow mass due to melting, divided by the area of the ocean portion of the grid cell. Report as 0.0 in regions free of sea ice. Include falling snow that melts on impact with the surface.	snomelt	surface_snow_melt_flux
1 Rate of Melt at Upper Surface of Sea Ice	kg m ⁻² s ⁻¹	Compute the rate of change of sea ice mass due to melting at its upper surface, divided by the area of the ocean portion of the grid cell. Report as 0.0 in regions free of sea ice. Do not include rate of change of snow mass.	tmelt	tendency_of_sea_ice_amount_due_to_surface_melting
1 Rate of Melt at Sea Ice Base	kg m ⁻² s ⁻¹	Compute the rate of change of sea ice mass due to melting at its lower surface, divided by the area of the ocean portion of the grid cell. Report as 0.0 in regions free of sea ice.	bmelt	tendency_of_sea_ice_amount_due_to_basal_melting

К	time: mean (weighted by area of snow-covered sea ice)	real	longitude latitude time	tsnint	seaIce	area: areacello	
kg m-2 s-1	time: mean area: mean where sea_ice over sea	real	longitude latitude time	pr	seaIce	area: areacello	
kg m-2 s-1	time: mean area: mean where sea_ice over sea	real	longitude latitude time	prsn	sealce	area: areacello	
years	time: mean (weighted b mass of sea ice)	real	longitude latitude time	ageice	seaIce	area: areacello	
kg m-2 s-1	time: mean area: mean where sea	real	longitude latitude time	grFrazil	seaIce	area: areacello	
kg m-2 s-1	time: mean area: mean where sea	real	longitude latitude time	grCongel	seaIce	area: areacello	
kg m-2 s-1	time: mean area: mean where sea	real	longitude latitude time	grLateral	seaIce	area: areacello	
kg m-2 s-1	time: mean area: mean where sea	real	longitude latitude time	snoToIce	seaIce	area: areacello	
kg m-2 s-1	time: mean area: mean where sea	real	longitude latitude time	snomelt	seaIce	area: areacello	
kg m-2 s-1	time: mean area: mean where sea	real	longitude latitude time	tmelt	seaIce	area: areacello	
kg m-2 s-1	time: mean area: mean where sea	real	longitude latitude time	bmelt	seaIce	area: areacello	

2 Sea Ice Heat Content	J m ⁻²	Ice at 0 Celsius is assumed taken to have a heat content of 0 J When averaging over time, this quantity is weighted by the mass of sea ice. Report as "missing in regions free of sea ice. Do not include heat content of snow.		hcice	integral_of_sea_ice_temperature_wrt_depth_expressed _as_heat_content
1 Downward Shortwave over Sea Ice	W m ⁻²	Compute the downward shortwave flux in regions of sea ice divided by the area of the ocean portion of the grid cell.	priority was raised from 2 to 1 because snow albedo was deleted.	rsdssi	surface_downwelling_shortwave_flux_in_air
1 Upward Shortwave over Sea Ice	W m ⁻²	Compute the upward shortwave flux in regions of sea ice divided by the area of the ocean portion of the grid cell.	priority was raised from 2 to 1 because snow albedo was deleted.	rsussi	surface_upwelling_shortwave_flux_in_air
2 Downward Long Wave over Sea Ice	W m ⁻²	Compute the downward longwave flux in regions of sea ice divided by the area of the ocean portion of the grid cell.		rldssi	surface_downwelling_longwave_flux_in_air
2 Upward Long Wave over Sea Ice	W m ⁻²	Compute the upward longwave flux in regions of sea ice divided by the area of the ocean portion of the grid cell.		rlussi	surface_upwelling_longwave_flux_in_air
Surface Upward Sensible Heat Flux over Sea Ice	W m ⁻²	Compute the upward sensible heat flux in regions of sea ice divided by the area of the ocean portion of the grid cell.		hfssi	surface_upward_sensible_heat_flux
2 Surface Upward Latent Heat Flux over Sea Ice	W m ⁻²	Compute the upward latent heat flux in regions of sea ice divided by the area of the ocean portion of the grid cell.		hflssi	surface_upward_latent_heat_flux
2 Sublimation over Sea Ice	kg m ⁻² s ⁻¹	Compute the upward flux of water vapor to the atmosphere due to sublimation of snow and sea ice in regions of sea ice divided by the area of the ocean portion of the grid cell.		sblsi	surface_snow_and_ice_sublimation_flux
1 X-Component of Sea Ice Mass Transport	kg s ⁻¹	The sea ice mass transport is 0.0 in ice-free regions of the ocean. Include snow in calculation of mass.		transix	sea_ice_x_transport
1 Y-Component of Sea Ice Mass Transport	kg s ⁻¹	The sea ice mass transport is 0.0 in ice-free regions of the ocean. Include snow in calculation of mass.		transiy	sea_ice_y_transport
2 Sea Ice Mass Transport Through Fram Strait	kg s ⁻¹			transifs	sea_ice_transport_across_line
2 X-Component of Atmospheric Stress On Sea Ice	N m ⁻²	When computing the time-mean here, the time samples, weighted by the area of sea ice, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.		strairx	surface_downward_x_stress
2 Y-Component of Atmospheric Stress On Sea Ice	N m ⁻²	When computing the time-mean here, the time samples, weighted by the area of sea ice, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.		strairy	surface_downward_y_stress
2 X-Component of Ocean Stress On Sea Ice	N m ⁻²	When computing the time-mean here, the time samples, weighted by the area of sea ice, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.		strocnx	upward_x_stress_at_sea_ice_base
2 Y-Component of Ocean Stress On Sea Ice	N m ⁻²	When computing the time-mean here, the time samples, weighted by the area of sea ice, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.		strocny	upward_y_stress_at_sea_ice_base
2 Compressive Sea Ice Strength	N m ⁻¹	When computing the time-mean here, the time samples, weighted by the area of sea ice, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.		streng	compressive_strength_of_sea_ice

J m-2	time: mean (weighted by mass of sea ice)		real	longitude latitude time	hcice	seaIce	area: areacello	
W m-2	time: mean area: mean where sea_ice over sea	down	real	longitude latitude time	rsdssi	seaIce	area: areacello	
W m-2	time: mean area: mean where sea_ice over sea	up	real	longitude latitude time	rsussi	seaIce	area: areacello	
W m-2	time: mean area: mean where sea_ice over sea	down	real	longitude latitude time	rldssi	seaIce	area: areacello	
W m-2	time: mean area: mean where sea_ice over sea	up	real	longitude latitude time	rlussi	seaIce	area: areacello	
W m-2	time: mean area: mean where sea_ice over sea	up	real	longitude latitude time	hfssi	seaIce	area: areacello	
W m-2	time: mean area: mean where sea_ice over sea	up	real	longitude latitude time	hflssi	seaIce	area: areacello	
kg m-2 s-1	time: mean area: mean where sea_ice over sea	up	real	longitude latitude time	sblsi	sealce	area: areacello	
kg s-1	time: mean		real	longitude latitude time	transix	seaIce		
kg s-1	time: mean		real	longitude latitude time	transiy	seaIce		
kg s-1	time: mean		real	time	transifs	seaIce		
N m-2	time: mean (weighted by area of sea ice)	down	real	longitude latitude time	strairx	seaIce		
N m-2	time: mean (weighted by area of sea ice)	down	real	longitude latitude time	strairy	seaIce		
N m-2	time: mean (weighted by area of sea ice)		real	longitude latitude time	strocnx	seaIce ocean		
N m-2	time: mean (weighted by area of sea ice)		real	longitude latitude time	strocny	seaIce ocean		
N m-1	time: mean (weighted by area of sea ice)		real	longitude latitude time	streng	seaIce	area: areacello	

2 Strain Rate Divergence of Sea Ice	s ⁻¹	When computing the time-mean here, the time samples, weighted by the area of sea ice, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.	divice	divergence_of_sea_ice velocity
Eastward Derivative of Northward Sea Ice Velocity	s ⁻¹	When computing the time-mean here, the time samples, weighted by the area of sea ice, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.	eshrice	eastward_derivative_of_northward_sea_ice_velocity
Northward Derivative of Eastward Sea Ice Velocity	s ⁻¹	When computing the time-mean here, the time samples, weighted by the area of sea ice, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.	nshrice	northward_derivative_of_eastward_sea_ice_velocity
2 Sea Ice Ridging Rate	s ⁻¹	When computing the time-mean here, the time samples, weighted by the area of sea ice, are accumulated and then divided by the sum of the weights. Report as "missing" in regions free of sea ice.	ridgice	tendency_of_sea_ice_area_fraction_due_to_ridging

s-1	time: mean (weighted by area of sea ice)	real	longitude latitude time	divice	seaIce	area: areacello	
s-1	time: mean (weighted by area of sea ice)	real	longitude latitude time	eshrice	seaIce	area: areacello	
s-1	time: mean (weighted by area of sea ice)	real	longitude latitude time	nshrice	seaIce	area: areacello	
s-1	time: mean (weighted by area of sea ice)	real	longitude latitude time	ridgice	seaIce	area: areacello	

CMOR Table aero: Monthly Mean Aerosol-Related Fields (All Saved on the Atmospheric Grid)

aero mon

In CMOR Table aero: 2-D fields on atmospheric grid

Priorit					output variabl	0
pric	long name	units	comment	questions	name	standard name
	Aerosol Optics			•		
1	Ambient Aerosol Optical Thickness at 550 nm	1	AOD from the ambient aerosls (i.e., includes aerosol water). Does not include AOD from stratospheric aerosols if these are prescribed but includes other possible background aerosol types.		od550aer	atmosphere_optical_thickness_due_to_ambient_aeroso l
1	Ambient Fine Aerosol Optical Thickness at 550 nm	1	od550 due to particles with wet diameter less than 1 um ("ambient" means "wetted"). When models do not include explicit size information, it can be assumed that all anthropogenic aerosols and natural secondary aerosols have diameter less than 1 um.		od550lt1aer	atmosphere_optical_thickness_due_to_pm1_ambient_a erosol
1	Ambient Aerosol Absorption Optical Thickness at 550 nm	1			abs550aer	atmosphere_absorption_optical_thickness_due_to_amb ient_aerosol
2	Ambient Aerosol Optical Thickness at 870 nm	1	AOD from the ambient aerosls (i.e., includes aerosol water). Does not include AOD from stratospheric aerosols if these are prescribed but includes other possible background aerosol types.		od870aer	atmosphere_optical_thickness_due_to_ambient_aeroso l
	Aerosol Budgets		•			
1	Rate of Emission and Production of Dry Aerosol Total Organic Matter	kg m ⁻² s ⁻¹	tendency of atmosphere mass content of organic matter dry aerosol due to net production and emission. This is the sum of total emission of POA and total production of SOA (see next two entries), and it should only be reported if POA and SOA cannot be separately reported. "Mass" refers to the mass of organic matter, not mass of organic carbon alone.		emioa	tendency_of_atmosphere_mass_content_of_particulate _organic_matter_dry_aerosol_due_to_net_chemical_pr oduction_and_emission
1	Emission Rate of Dry Aerosol Primary Organic Matter	kg m ⁻² s ⁻¹	tendency of atmosphere mass content of primary organic aerosol due to emission: "mass" refers to the mass of primary organic matter, not mass of organic carbon alone.	In a previous message you said production referred to SOA, not POA, so I've removed "production" here and only use "emission". Is this o.k.?	emipoa	tendency_of_atmosphere_mass_content_of_primary_pa rticulate_organic_matter_dry_aerosol_due_to_emission
1	Production Rate of Dry Aerosol Secondary Organic Matter	kg m ⁻² s ⁻¹	tendency of atmosphere mass content of secondary organic matter_dry aerosol due to net production: If model lumps SOA emissions with POA, then report the sum of POA and SOA emissions as POA emissions. "mass" refers to the mass of primary organic matter, not mass of organic carbon alone.		chepsoa	tendency_of_atmosphere_mass_content_of_secondary_ particulate_organic_matter_dry_aerosol_due_to_net_ch emical_production
1	Emission Rate of Black Carbon Aerosol Mass	kg m ⁻² s ⁻¹			emibc	tendency_of_atmosphere_mass_content_of_black_carb on_dry_aerosol_due_to_emission
3	Dry Deposition Rate of Dry Aerosol Organic Matter	kg m ⁻² s ⁻¹	tendency of atmosphere mass content of organic dry aerosol due to dry deposition: This is the sum of dry deposition of POA and dry deposition of SOA (see next two entries), and it should only be reported if POA and SOA cannot be separately reported. "Mass" refers to the mass of organic matter, not mass of organic carbon alone.		dryoa	tendency_of_atmosphere_mass_content_of_particulate _organic_matter_dry_aerosol_due_to_dry_deposition

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
1	time: mean		real	longitude latitude time	od550aer	aerosol		area: areacella		
1	time: mean		real	longitude latitude time	od550lt1aer	aerosol		area: areacella		
1	time: mean		real	longitude latitude time	abs550aer	aerosol		area: areacella		
1	time: mean		real	longitude latitude time	od870aer	aerosol		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	emioa	aerosol		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	emipoa	aerosol		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	chepsoa	aerosol		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	emibc	aerosol		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	dryoa	aerosol		area: areacella		

Page					
3 Dy Deposition Rate of Black Carbon Aeronol Mass Sg m^2 s^2		kg m ⁻² s ⁻¹		drypoa	* * *
Procession Rate of Black Carbon Acrossed Mass kg m ² s ² sendancy of atmosphere mass content of organic matter day acrossle due to well deposition of FOA and word deposition o		kg m ⁻² s ⁻¹		drysoa	particulate_organic_matter_dry_aerosol_due_to_dry_d
well Deposition Rate of Dry Aerosol Seg m ² s ¹		kg m ⁻² s ⁻¹		drybc	tendency_of_atmosphere_mass_content_of_black_carb
Wet Deposition Rate of Dry Aerosol Primary Organic Matter Market of Dry Aerosol Scoolary Organic Matter Market of Dry Aerosol Mass Mark		kg m ⁻² s ⁻¹	aerosols due to wet deposition: This is the sum of wet deposition of POA and wet deposition of SOA (see next two entries), and it should only be reported if POA and SOA cannot be separately reported. "Mass" refers to the mass of	wetoa	* * * * * * * * * * * * * * * * * * * *
Wet Deposition Rate of Dry Aerosol kg m² s² wet Deposition Rate of Dry Aerosol kg m² s² wet Deposition Rate of Dry Aerosol Mass kg m² s² wet Deposition Rate of Dry Deposition Rate of SO2 kg m² s² tendency of atmosphere mass content of primary organic matter day aerosol due to emission: This does not include sources of secondary aerosols from biomass burning aerosols. tendency of atmosphere, mass, content, of primary particulate, organic matter day aerosol due, to, emission are does not include sources of secondary aerosols from biomass burning aerosols. tendency of, atmosphere, mass, content, of primary, particulate, organic matter day aerosol due, to, emission are does not include sources of secondary aerosols from biomass burning aerosols. tendency of, atmosphere, mass, content, of, auftur, diox ide, due, to, emission are does not include sources of secondary surfact production. tendency of, atmosphere, mass, content, of, sulfur, diox ide, due, to, emission are does not include secondary sulfate production. tendency of, atmosphere, mass, content, of, sulfur, diox ide, due, to, organic matter, day aerosol, due, to, dry sulfur, diox ide, due, to, organic matter day aerosol, due, to, dry sulfur, diox ide, due, to, organic matter day aerosol, due, to, dry sulfur, diox ide, due, to, organic matter, day aerosol, due, to, dry sulfur, diox ide, due, to, organic matter, day aerosol, due, to, dry sulfur, diox ide, due, to, organic matter, day aerosol, due, to, dry sulfur, diox ide, due, to, organic matter, day aerosol, due, to, dry sulfur, diox ide, due, to, organic matter, day aerosol, due, to, dry sulfur, diox ide, due, to, organic matter, day aerosol, due, to, dry deposition are does not include secondary sulfate production.		kg m ⁻² s ⁻¹		wetpoa	rticulate_organic_matter_dry_aerosol_due_to_wet_dep
serious Mass kg m²s² tendency of atmosphere mass content of primary organic matter dry aerosol due to emission: This does not include sources of secondary aerosols from biomass burning aerosols, and as SO2 or SOA. 1 Total Emission Rate of SO2 kg m²s² tendency of atmosphere mass content of SO4, brief emission: This does not include sources of secondary aerosols from biomass burning aerosols, and as SO2 or SOA. 1 Total Emission Rate of SO2 kg m²s² tendency of atmosphere mass content of SO4, brief emission are of SO4 kg m²s² tendency of atmosphere mass content of SO4, brief emission Rate of SO2 kg m²s² tendency of atmosphere mass content of SO4, brief emission Rate of SO2 kg m²s² tendency of atmosphere mass content of SO4, brief emission Rate of SO2 kg m²s² tendency of atmosphere mass content of SO4, brief emission Rate of SO2 kg m²s² tendency of atmosphere mass content of SO4, brief emission Rate of SO2 kg m²s² tendency of atmosphere mass content of SO4, brief emission Rate of SO4 kg m²s² tendency of atmosphere mass content of SO4, brief emission Rate of SO4 kg m²s² tendency of atmosphere mass content of sO4, are soal, due to denote of atmosphere mass content of soalfare, dry aerosol, due to denote of atmosphere mass content of soalfare, dry aerosol, due to denote of atmosphere mass content of soalfare, dry aerosol, due to denote of atmosphere mass content of soalfare, dry aerosol, due to denote of atmosphere mass content of soalfare, dry aerosol, due to denote of atmosphere mass content of atmosphere mass c		kg m ⁻² s ⁻¹		wetsoa	particulate_organic_matter_dry_aerosol_due_to_wet_d
Total Emission of Primary Aerosol from Biomass Burning matter day aerosol due to emission: This does not include sources of secondary aerosol, due to emission sucres of secondary aerosol due to emission of titulate organic matter dry aerosol due to emission sucres of secondary aerosol due to emission sucres of social sucres of SO4. Total Emission Rate of SO4 kg m² s¹ Dry Deposition Rate of SO2 kg m² s¹ Wet Deposition Rate of SO4 kg m² s² Wet Deposition Rate of SO4 kg		kg m ⁻² s ⁻¹		wetbc	
todal Emission Rate of SO2 kg m² s² corposed as a tendency of atmosphere mass content of SO4. Total Direct Emission Rate of SO4 kg m² s² corposed as a tendency of atmosphere mass content of SO4. Direct emission does not include secondary sulfate production. Emission Rate of DMS kg m² s² corposed as a tendency of atmosphere mass content of gliefle, due to emission tendency of atmosphere, mass content, of dimethyl so ulfide, due to emission tendency of atmosphere, mass content, of sulfate dry sold tendency of atmosphere, mass content, of sulfate dry sold tendency of atmosphere, mass content, of sulfate dry across due, to, dry, deposition tendency of atmosphere, mass content, of sulfate dry across due, to, dry, deposition tendency of atmosphere, mass content, of dimethyl sold drysod The total Emission Rate of SO4 kg m² s² content of sulfate dry across due, to, dry, deposition tendency, of atmosphere, mass content, of dimethyl sold drydms The total Emission Rate of DMS kg m² s² content of sold kg m² s² co		kg m ⁻² s ⁻¹	matter dry aerosol due to emission: This does not include sources of secondary aerosols from biomass burning aerosols,	emibb	
1 Total Direct Emission Rate of SO4 kg m² s¹ Direct emission does not include secondary sulfate production. 1 Total Emission Rate of DMS kg m² s¹ Direct emission does not include secondary sulfate production. 2 Dry Deposition Rate of SO2 kg m² s¹ Dry Deposition Rate of SO2 kg m² s¹ Dry Deposition Rate of SO4 kg m² s¹ Dry Deposition Rate of SO4 kg m² s¹ Dry Deposition Rate of DMS kg m² s¹ Dry Deposition Rate of DMS kg m² s¹ Dry Deposition Rate of DMS kg m² s¹ Dry Deposition Rate of SO4 kg m²	1 Total Emission Rate of SO2	kg m ⁻² s ⁻¹		emiso2	* *
1 Total Emission Rate of DMS kg m² s² dryso2 tendency_of_atmosphere_mass_content_of_sulfur_diox ide_due_to_dry_deposition are for SO4 kg m² s² dryso4 tendency_of_atmosphere_mass_content_of_sulfur_diox ide_due_to_dry_deposition deposition are for SO4 kg m² s² dryso4 tendency_of_atmosphere_mass_content_of_sulfur_diox ide_due_to_dry_deposition deposition are for SO4 kg m² s² dryso4 tendency_of_atmosphere_mass_content_of_sulfur_diox ide_due_to_dry_deposition dryso4 tendency_of_atmosphere_mass_content_of_sulfur_diox ide_due_to_dry_deposition dryso4 dryso4 dryso4 dryso4 tendency_of_atmosphere_mass_content_of_sulfur_diox ide_due_to_dry_deposition dryso4 dryso	1 Total Direct Emission Rate of SO4	kg m ⁻² s ⁻¹	Direct emission does not include secondary sulfate	emiso4	
ide_due_to_dry_deposition log peposition Rate of SO4 kg m² s¹ omit if DMS is not dry deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not dry deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not dry deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not dry deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not dry deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO2 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposited in the model. log peposition Rate of SO4 kg m² s¹ omit if DMS is not wet deposition Rate of SO4 kg m²	1 Total Emission Rate of DMS	kg m ⁻² s ⁻¹		emidms	
Dry Deposition Rate of SO4 kg m² s² omit if DMS is not dry deposited in the model. Dry Deposition Rate of DMS kg m² s²¹ omit if DMS is not dry deposited in the model. Dry Deposition Rate of SO4 kg m² s²¹ omit if DMS is not dry deposited in the model. Dry Deposition Rate of SO2 kg m² s²¹ omit if DMS is not wet deposited in the model. Dry Deposition Rate of SO2 kg m² s²¹ omit if DMS is not wet deposited in the model. Dry Deposition Rate of NH3 kg m² s²¹ omit if DMS is not wet deposited in the model. Dry Deposition Rate of NH3 kg m² s²¹ omit if DMS is not wet deposited in the model. Dry Deposition Rate of NH3 kg m² s²¹ omit if DMS is not wet deposited in the model. Dry Deposition Rate of NH3 kg m² s²¹ omit if DMS is not wet deposited in the model. Dry Deposition Rate of NH3 kg m² s²¹ omit if DMS is not wet deposited in the model. Dry Deposition Rate of NH4 kg m² s²¹ omit if DMS is not wet deposited in the model.	3 Dry Deposition Rate of SO2	kg m ⁻² s ⁻¹		dryso2	
multifle_due_to_deposition Wet Deposition Rate of SO4 kg m² s¹ Wet Deposition Rate of SO2 kg m² s¹ Wet Deposition Rate of SO2 kg m² s¹ Wet Deposition Rate of DMS kg m² s¹ Wet Deposition Rate of SO2 kg m² s¹ Wet Deposition Rate of DMS kg m² s¹ Dry Deposition Rate of NH3 kg m² s¹ Dry Deposition Rate of NH3 kg m² s¹ Dry Deposition Rate of NH3 kg m² s¹ Dry Deposition Rate of NH4 kg m² s² Dry Deposition Rate	1 Dry Deposition Rate of SO4	$kg m^{-2} s^{-1}$		dryso4	* *
Wet Deposition Rate of SO2 kg m ⁻² s ⁻¹ Wet Deposition Rate of SO2 kg m ⁻² s ⁻¹ Wet Deposition Rate of DMS kg m ⁻² s ⁻¹ Total Emission Rate of NH3 kg m ⁻² s ⁻¹ Dry Deposition Rate of NH3 kg m ⁻² s ⁻¹ Wet Deposition Rate of NH4 kg m ⁻² s ⁻¹ Dry Deposition Rate of NH4 kg m ⁻² s ⁻¹ Wet Deposition Rate of SO2 kg m ⁻² s ⁻¹ Wet Deposition Rate of SO2 kg m ⁻² s ⁻¹ Wet Deposition Rate of DMS kg m ⁻² s ⁻¹ Omit if DMS is not wet deposition the model. Wet Deposition Rate of DMS kg m ⁻² s ⁻¹ Wet Deposition Rate of	3 Dry Deposition Rate of DMS	kg m ⁻² s ⁻¹	omit if DMS is not dry deposited in the model.	drydms	·
Wet Deposition Rate of SO2 kg m ⁻² s ⁻¹ Wet Deposition Rate of DMS kg m ⁻² s ⁻¹ Total Emission Rate of NH3 kg m ⁻² s ⁻¹ Dry Deposition Rate of NH3 kg m ⁻² s ⁻¹ Dry Deposition Rate of NH4 kg m ⁻² s ⁻¹ Total Emission Rate of NH3 kg m ⁻² s ⁻¹ Dry Deposition Rate of NH4 kg m ⁻² s ⁻¹ Dry Deposition Rate of NH	1 Wet Deposition Rate of SO4	$kg m^{-2} s^{-1}$		wetso4	
wet Deposition Rate of DMS kg m s omit if DMS is not wet deposited in the model. 1 Total Emission Rate of NH3 kg m s omit if DMS is not wet deposited in the model. 2 Dry Deposition Rate of NH3 kg m s omit if DMS is not wet deposited in the model. 3 Dry Deposition Rate of NH3 kg m s omit if DMS is not wet deposited in the model. 4 tendency_of_atmosphere_mass_content_of_ammonia_due_to_emission 5 drynh3 tendency_of_atmosphere_mass_content_of_ammonia_due_to_dry_deposition 6 drynh4 tendency_of_atmosphere_mass_content_of_ammonium	3 Wet Deposition Rate of SO2	kg m ⁻² s ⁻¹		wetso2	· ·
1 Total Emission Rate of NH3 kg m s due_to_emission 3 Dry Deposition Rate of NH3 kg m s due_to_emission 4 drynh3 tendency_of_atmosphere_mass_content_of_ammonia_due_to_dry_deposition 1 Dry Deposition Rate of NH4 kg m s due_to_dry_deposition 4 drynh4 tendency_of_atmosphere_mass_content_of_ammonium	3 Wet Deposition Rate of DMS	$kg m^{-2} s^{-1}$	omit if DMS is not wet deposited in the model.	wetdms	
3 Dry Deposition Rate of NH3 kg m ⁻² s ⁻¹ 1 Dry Deposition Rate of NH4 kg m ⁻² s ⁻¹ tendency_of_atmosphere_mass_content_of_ammonium	1 Total Emission Rate of NH3	kg m ⁻² s ⁻¹		eminh3	due_to_emission
1 Dry Denocition Rate of NH/1 $\frac{1}{2}$ $\frac{1}{2}$	3 Dry Deposition Rate of NH3	kg m ⁻² s ⁻¹		drynh3	due_to_dry_deposition
	1 Dry Deposition Rate of NH4	kg m ⁻² s ⁻¹		drynh4	*= =

kg m-2 s-1	time: mean	real	longitude latitude time	drypoa	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	drysoa	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	drybc	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	wetoa	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	wetpoa	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	wetsoa	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	wetbc	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	emibb	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	emiso2	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	emiso4	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	emidms	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	dryso2	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	dryso4	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	drydms	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	wetso4	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	wetso2	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	wetdms	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	eminh3	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	drynh3	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	drynh4	aerosol	area: areacella	

1 Wet Deposition Rate of NH4+NH3	$kg m^{-2} s^{-1}$			wetnh4	tendency_of_atmosphere_mass_content_of_ammonium _dry_aerosol_due_to_wet_deposition
1 Total Emission Rate of Seasalt	kg m ⁻² s ⁻¹			emiss	tendency_of_atmosphere_mass_content_of_seasalt_dry _aerosol_due_to_emission
3 Dry Deposition Rate of Seasalt	kg m ⁻² s ⁻¹			dryss	tendency_of_atmosphere_mass_content_of_seasalt_dry _aerosol_due_to_dry_deposition
3 Wet Deposition Rate of Seasalt	kg m ⁻² s ⁻¹			wetss	tendency_of_atmosphere_mass_content_of_seasalt_dry _aerosol_due_to_wet_deposition
1 Total Emission Rate of Dust	kg m ⁻² s ⁻¹			emidust	tendency_of_atmosphere_mass_content_of_dust_dry_a erosol_due_to_emission
1 Dry Deposition Rate of Dust	kg m ⁻² s ⁻¹			drydust	tendency_of_atmosphere_mass_content_of_dust_dry_a erosol_due_to_dry_deposition
1 Wet Deposition Rate of Dust	kg m ⁻² s ⁻¹			wetdust	tendency_of_atmosphere_mass_content_of_dust_dry_a erosol_due_to_wet_deposition
Aerosol Loads					
1 Load of Dry Aerosol Organic Matter	kg m ⁻²	atmosphere dry organic content: This is the vertically integrated sum of atmosphere_primary_organic_content and atmosphere_secondary_organic_content (see next two table entries), and therefore should only be reported if those two components cannot be separately reported.		loadoa	atmosphere_mass_content_of_particulate_organic_mat ter_dry_aerosol
Load of Dry Aerosol Primary Organic Matter	kg m ⁻²			loadpoa	atmosphere_mass_content_of_primary_particulate_org anic_matter_dry_aerosol
Load of Dry Aerosol Secondary Organic Matter	kg m ⁻²			loadsoa	atmosphere_mass_content_of_secondary_particulate_o rganic_matter_dry_aerosol
1 Load of Black Carbon Aerosol	kg m ⁻²			loadbc	atmosphere_mass_content_of_black_carbon_dry_aeros ol
1 Load of SO4	kg m ⁻²		Is this "dry" or "ambient"?	loadso4	atmosphere_mass_content_of_sulfate_dry_aerosol
1 Load of Dust	kg m ⁻²			loaddust	atmosphere_mass_content_of_dust_dry_aerosol
1 Load of Seasalt	kg m ⁻²			loadss	atmosphere_mass_content_of_seasalt_dry_aerosol
1 Load of NO3	kg m ⁻²			loadno3	atmosphere_mass_content_of_nitrate_dry_aerosol
3 Load of NH4	kg m ⁻²			loadnh4	atmosphere_mass_content_of_ammonium_dry_aerosol

kg m-2 s-1	time: mean	real	longitude latitude time	wetnh4	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	emiss	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	dryss	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	wetss	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	emidust	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	drydust	aerosol	area: areacella	
kg m-2 s-1	time: mean	real	longitude latitude time	wetdust	aerosol	area: areacella	
kg m-2	time: mean	real	longitude latitude time	loadoa	aerosol	area: areacella	
kg m-2	time: mean	real	longitude latitude time	loadpoa	aerosol	area: areacella	
kg m-2	time: mean	real	longitude latitude time	loadsoa	aerosol	area: areacella	
kg m-2	time: mean	real	longitude latitude time	loadbc	aerosol	area: areacella	
kg m-2	time: mean	real	longitude latitude time	loadso4	aerosol	area: areacella	
kg m-2	time: mean	real	longitude latitude time	loaddust	aerosol	area: areacella	
kg m-2	time: mean	real	longitude latitude time	loadss	aerosol	area: areacella	
kg m-2	time: mean	real	longitude latitude time	loadno3	aerosol	area: areacella	
kg m-2	time: mean	real	longitude latitude time	loadnh4	aerosol	area: areacella	

Surface Concentrations				
Surface Concentrations		mass concentration of particulate organic matter dry aerosol		
3 Surface Concentration of Dry Aerosol Organic Matter	kg m ⁻³	in air in model lowest layer (The location of the model's lowest layer should be recorded in the netCDF output file). This is the sum of concentrations of primary and secondary organic aerosol (see next two table entries), and therefore should only be reported if those two components cannot be separately reported.	sconcoa	mass_concentration_of_particulate_organic_matter_dry _aerosol_in_air
3 Surface Concentration of Dry Aerosol Primary Organic Matter	kg m ⁻³	mass concentration of primary particulate organic matter dry aerosol in air in model lowest layer (The location of the model's lowest layer should be recorded in the netCDF output file).	sconcpoa	mass_concentration_of_primary_particulate_organic_ matter_dry_aerosol_in_air
3 Surface Concentration of Dry Aerosol Secondary Organic Matter	kg m ⁻³	mass concentration of secondary particulate organic matter dry aerosol in air in model lowest layer (The location of the model's lowest layer should be recorded in the netCDF output file). If the model lumps SOA with POA, then report their sum as POA.	sconcsoa	mass_concentration_of_secondary_particulate_organic _matter_dry_aerosol_in_air
3 Surface Concentration of Black Carbon Aerosol	kg m ⁻³	mass concentration of black carbon dry aerosol in air in model lowest layer (The location of the model's lowest layer should be recorded in the netCDF output file).	sconebe	mass_concentration_of_black_carbon_dry_aerosol_in_ air
3 Surface Concentration of SO4	kg m ⁻³	mass concentration of sulfate dry aerosol in air in model lowest layer (The location of the model's lowest layer should be recorded in the netCDF output file).	sconcso4	mass_concentration_of_sulfate_dry_aerosol_in_air
3 Surface Concentration of Dust	kg m ⁻³	mass concentration of dust dry aerosol in air in model lowest layer (The location of the model's lowest layer should be recorded in the netCDF output file).	sconcdust	mass_concentration_of_dust_dry_aerosol_in_air
3 Surface Concentration of Seasalt	kg m ⁻³	mass concentration of seasalt dry aerosol in air in model lowest layer (The location of the model's lowest layer should be recorded in the netCDF output file).	sconcss	mass_concentration_of_seasalt_dry_aerosol_in_air
3 Surface Concentration of NO3	kg m ⁻³	Mass concentration in model lowest layer (The location of the model's lowest layer should be recorded in the netCDF output file).	sconcno3	mass_concentration_of_nitrate_dry_aerosol_in_air
3 Surface Concentration of NH4	kg m ⁻³	Mass concentration in model lowest layer (The location of the model's lowest layer should be recorded in the netCDF output file).	sconcnh4	mass_concentration_of_ammonium_dry_aerosol_in_ai r
Clouds and Radiation				
2 Surface Diffuse Downward Shortwave Radiation	W m ⁻²	$downwelling_diffuse_shortwave_flux_in_air$	rsdsdiff	diffuse_downwelling_shortwave_flux_in_air
2 Surface Diffuse Downward Clear Sky Shortwave Radiation	W m ⁻²	downwelling_diffuse_shortwave_flux_in_air_assuming_clear _sky	rsdscsdiff	diffuse_downwelling_shortwave_flux_in_air_assuming _clear_sky
1 Cloud-Top Effective Droplet Radius	m	Droplets are liquid only. Report effective radius "as seen from space" over liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean.	reffclwtop	effective_radius_of_cloud_liquid_water_particle_at_liq uid_water_cloud_top

kg m-3	time: mean	real	longitude latitude alev1 time	sconcoa	aerosol	area: areacella	
kg m-3	time: mean	real	longitude latitude alev1 time	sconcpoa	aerosol	area: areacella	
kg m-3	time: mean	real	longitude latitude alev1 time	sconcsoa	aerosol	area: areacella	
kg m-3	time: mean	real	longitude latitude alev1 time	sconcbc	aerosol	area: areacella	
kg m-3	time: mean	real	longitude latitude alev1 time	sconcso4	aerosol	area: areacella	
kg m-3	time: mean	real	longitude latitude alev1 time	sconcdust	aerosol	area: areacella	
kg m-3	time: mean	real	longitude latitude alev1 time	sconcss	aerosol	area: areacella	
kg m-3	time: mean	real	longitude latitude alev1 time	sconcno3	aerosol	area: areacella	
kg m-3	time: mean	real	longitude latitude alev1 time	sconcnh4	aerosol	area: areacella	
W m-2	time: mean	real	longitude latitude time	rsdsdiff	aerosol land	area: areacella	
W m-2	time: mean	real	longitude latitude time	rsdscsdiff	aerosol land	area: areacella	
m	time: mean	real	longitude latitude time	reffclwtop	aerosol	area: areacella	

Cloud Droplet Number Concentration of Cloud Tops	m ⁻³	Droplets are liquid only. Report concentration "as seen from space" over liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean.	cldncl	number_concentration_of_cloud_liquid_water_particle s_in_air_at_liquid_water_cloud_top
Ice Crystal Number Concentration of Cloud Tops	m ⁻³	Report concentration "as seen from space" over ice-cloud portion of grid cell. This is the value from uppermost model layer with ice cloud or, if available, it is better to sum over all ice cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total ice cloud top fraction (as seen from TOA) of each time sample when computing monthly mean.	cldnci	number_concentration_of_ice_crystals_in_air_at_ice_c loud_top
Column Integrated Cloud Droplet Number	m ⁻²	Droplets are liquid only. Weight by liquid cloud fraction in each layer when vertically integrating. Weight by total liquid cloud fraction (as seen from TOA) when reporting monthly mean	cldnvi	atmosphere_number_content_of_cloud_droplets

m-3	time: mean	real	longitude latitude time	cldncl	aerosol	area: areacella	
m-3	time: mean	real	longitude latitude time	cldnci	aerosol	area: areacella	
m-2	time: mean	real	longitude latitude time	cldnvi	aerosol	area: areacella	

In CMOR Table aero: 3-D aerosol-related concentrations and properties on model levels

Report 1-year samples for years: 1850, 1870, 1890, ..., 1950, 1960, 1970, ... 2000 of the historical run, and 2010, 2020, 2040, 2060, 2080, 2100 of the RCP runs. For AMIP runs, report 1-year samples every 10 years (1980, 1990, ..., 2010). For 2030 time-slice run, report 1-year sample for year 2035. For decadal runs, report 10th year only for 10-year predictions or hindcasts, and report year 10, 20, and 30 for 30-year predictions and hindcasts. Also report years 2010, 2011, and 2012 for years with hypothetical volcanic eruption in 2010. For the preindustrial control, report the years that correspond to years 1850, 1870, 1890, ..., 1950, 1960, 1970, ... 2000 of the historical run and years 2010, 2040, 2060, 2080, & 2100 of the RCP runs.

rit	•				utput variable	
priorit	long name	units	comment	questions	name	standard name
1	Ambient Aerosol Extinction at 550 nm	m ⁻¹	atmosphere_extinction_due_to_ambient_aerosol: "ambient" means "wetted". This and other fields in this table are 3-D.		ec550aer	
1	Concentration of Dry Aerosol Organic Matter	kg m ⁻³	mass_concentration_of_organic_matter_dry_aerosol_in_air mass concentration of organic matter dry aerosol in air: This is the sum of concentrations of primary and secondary organic aerosols (see next two table entries), and therefore should only be reported if those two components cannot be separately reported.		concoa	mass_concentration_of_particulate_organic_matter_dry _aerosol_in_air
1	Concentration of Dry Aerosol Primary Organic Matter	kg m ⁻³			concpoa	mass_concentration_of_primary_particulate_organic_ matter_dry_aerosol_in_air
1	Concentration of Dry Aerosol Secondary Organic Matter	kg m ⁻³	mass concentration of secondary particulate organic matter dry aerosol in air: If the model lumps SOA with POA, then report their sum as POA.		concsoa	mass_concentration_of_secondary_particulate_organic _matter_dry_aerosol_in_air
1	Concentration of Biomass Burning Aerosol	kg m ⁻³	mass_concentration_of_biomass_burning_dry_aerosol_in_air		concbb	mass_concentration_of_biomass_burning_dry_aerosol _in_air
1	Concentration of Black Carbon Aerosol	kg m ⁻³			concbc	mass_concentration_of_black_carbon_dry_aerosol_in_ air
1	Concentration of Aerosol Water	kg m ⁻³	mass concentration of water in ambient aerosol in air: "ambient" means "wetted"		concaerh2o	mass_concentration_of_water_in_ambient_aerosol_in_ air
1	Concentration of SO4	kg m ⁻³			concso4	$mass_concentration_of_sulfate_dry_aerosol_in_air$
1	Mole Fraction of SO2	1			concso2	mole_fraction_of_sulfur_dioxide_in_air
1	Mole Fraction of DMS	1			concdms	mole_fraction_of_dimethyl_sulfide_in_air
1	Concentration of NO3 Aerosol	kg m ⁻³			concno3	$mass_concentration_of_nitrate_dry_aerosol_in_air$
1	Concentration of NH4	kg m ⁻³			concnh4	mass_concentration_of_ammonium_dry_aerosol_in_ai r
1	Concentration of Seasalt	kg m ⁻³			concss	$mass_concentration_of_seasalt_dry_aerosol_in_air$
1	Concentration of Dust	kg m ⁻³			concdust	mass_concentration_of_dust_dry_aerosol_in_air
2	Aerosol Number Concentration	m ⁻³	number_concentration_of_ambient_aerosol_in_air		concen	number_concentration_of_ambient_aerosol_in_air

e 44 1					CMOR					
unformatted units	cell_methods	positive	type	CMOR dimensions	variable name	realm	frequency	cell_measures	flag_values	flag_meanings
m-1	time: mean			longitude latitude alevel time	ec550aer	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concoa	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concpoa	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concsoa	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concbb	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concbc	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concaerh2o	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concso4	aerosol		area: areacella		
1	time: mean			longitude latitude alevel time	concso2	aerosol		area: areacella		
1	time: mean			longitude latitude alevel time	concdms	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concno3	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concnh4	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concss	aerosol		area: areacella		
kg m-3	time: mean			longitude latitude alevel time	concdust	aerosol		area: areacella		
m-3	time: mean			longitude latitude alevel time	concen	aerosol		area: areacella		

3 Number Concentration of Nucleation Mode Aerosol	m ⁻³	number_concentration_of_ambient_aerosol_in_nucleation_n ode_in_air: include all particles with diameter smaller than 3 nm		concnmen	number_concentration_of_nucleation_mode_ambient_ aerosol_in_air
Number Concentration Coarse Mode Aerosol	m ⁻³	number_concentration_of_ambient_aerosol_in_coarse_mode _in_air: include all particles with diameter larger than 1 micron	,	concemen	number_concentration_of_coarse_mode_ambient_aero sol_in_air
1 Stratiform Cloud Droplet Effective Radius	m	Droplets are liquid. The effective radius is defined as the ratio of the third moment over the second moment of the particle size distribution and the time-mean should be calculated, weighting the individual samples by the cloudy fraction of the grid cell.		reffclws	effective_radius_of_stratiform_cloud_liquid_water_par ticle
Convective Cloud Droplet Effective Radius	m	Droplets are liquid. The effective radius is defined as the ratio of the third moment over the second moment of the particle size distribution and the time-mean should be calculated, weighting the individual samples by the cloudy fraction of the grid cell.		reffclwc	effective_radius_of_convective_cloud_liquid_water_pa rticle
1 Cloud Droplet Number Concentration	m ⁻³	Cloud droplet number concentration in liquid clouds	Weighted by the liquid cloud fraction.	cdnc	number_concentration_of_cloud_liquid_water_particle
1 Ice Crystal Number Concentration	m ⁻³	Ice Crystal number concentration in ice clouds	Weighted by the ice cloud fraction.	inc	number_concentration_of_ice_crystals_in_air

m-3	time: mean	longitude latitude alevel time co	oncnmen aeroso	area: areacella	
m-3	time: mean	longitude latitude alevel time co	oncemen aeroso	area: areacella	
m	time: mean	longitude latitude alevel time re	reffclws aerosol	area: areacella	
m	time: mean	longitude latitude alevel time re	reffclwc aerosol	area: areacella	
m-3	time: mean	longitude latitude alevel time	cdnc aerosol	area: areacella	
m-3	time: mean	longitude latitude alevel time	inc aerosol	area: areacella	

CMOR Table day: Daily Mean Atmosphere, Ocean and Surface Fields

day day

(saved on the model's atmospheric or ocean grid, as appropriate)

In CMOR Table day: 2-D daily mean atmospheric and surface fields

The following daily mean variables should be collected for all simulations (for each ensemble member and the full duration of each experiment).

jorite.					output variable	,
<u> </u>	long name	units	comment	questions	name	standard name
1	Near-Surface Specific Humidity	1	near-surface (usually, 2 meter) specific humidity.		huss	specific_humidity
1	Daily Minimum Near-Surface Air Temperature	K	daily-minimum near-surface (usually, 2 meter) air temperature.		tasmin	air_temperature
1	Daily Maximum Near-Surface Air Temperature	K	daily-maximum near-surface (usually, 2 meter) air temperature.		tasmax	air_temperature
1	Near-Surface Air Temperature	K	daily-mean near-surface (usually, 2 meter) air temperature.		tas	air_temperature
1	Precipitation	kg m ⁻² s ⁻¹	at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective)		pr	precipitation_flux
1	Sea Level Pressure	Pa			psl	air_pressure_at_sea_level
1	Daily-Mean Near-Surface Wind Speed	m s ⁻¹	near-surface (usually, 10 meters) wind speed.		sfcWind	wind_speed
1	Square of Sea Surface Temperature	K^2	square of temperature of liquid ocean, averaged over the day. Report on the ocean grid. This variable appears in WGOMD Table 2.2		tossq	square_of_sea_surface_temperature
1	Sea Surface Temperature	K	temperature of liquid ocean. Report on the ocean grid. This variable appears in WGOMD Table 2.2		tos	surface_temperature
1	Daily Maximum Ocean Mixed Layer Thickness Defined by Mixing Scheme	m	Report on the ocean grid. This variable appears in WGOMD Table 2.2		omldamax	ocean_mixed_layer_thickness_defined_by_mixing_sch eme

unformatted					CMOR variable					
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
1	time: mean		real	longitude latitude time height2m	huss	atmos		area: areacella		
K	time: minimum		real	longitude latitude time height2m	tasmin	atmos		area: areacella		
K	time: maximum		real	longitude latitude time height2m	tasmax	atmos		area: areacella		
K	time: mean		real	longitude latitude time height2m	tas	atmos		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	pr	atmos		area: areacella		
Pa	time: mean		real	longitude latitude time	psl	atmos		area: areacella		
m s-1	time: mean		real	longitude latitude time height10m	sfcWind	atmos				
K2	time:mean		real	longitude latitude time	tossq	ocean		area: areacello		
K	time: mean		real	longitude latitude time	tos	ocean		area: areacello		
m	time: maximum		real	longitude latitude time	omldamax	ocean		area: areacello		

The rest of the daily mean fields on this spreadsheet should be collected only for a single ensemble member of the following experiments.

experiment	time-period requested
pre-industrial controls	20 years, preferably corresponding to years 1986-2005 of the historical run
historical	Jan 1950 Dec 2005
future simulations driven by RCP concentrations or	only years 2006-2100, 2181-2200,
emissions	and 2281-2300
AMIP & 2030 time-slice run	all years

CMOR Table day: 2-D daily-mean atmospheric and surface fields (All fields should be reported on the atmospheric grid except (as noted below) the sea ice fields, which should be reported on the ocean grid.)

in in it is a second of the interest of the in					output variable	
long na	me	units	comment	questions	name	standard name
1 Moisture in Upper 0.1 m	n of Soil Column	kg m ⁻²	Compute the mass of water in all phases in the upper 0.1 meters of soil.		mrsos	moisture_content_of_soil_layer
1 Near-Surface Relative H	lumidity	%	near-surface (usually, 2 meter) relative humidity. This is the relative humidity with respect to liquid water for $T > 0$ C, and with respect to ice for $T < 0$ C.		rhs	relative_humidity
Surface Daily Minimum Humidity	Relative	%	near-surface (usually, 2 meter) minimum relative humidity. This is the relative humidity with respect to liquid water for T>0 C, and with respect to ice for T<0 C.		rhsmin	relative_humidity
1 Surface Daily Maximum Humidity	n Relative	%	near-surface (usually, 2 meter) maximum relative humidity. This is the relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T< 0 C.		rhsmax	relative_humidity
1 Snow Area Fraction		%			snc	surface_snow_area_fraction
1 Total Cloud Fraction		%	for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Include both large-scale and convective cloud.		clt	cloud_area_fraction
1 Surface Temperature W Ice	here Land or Sea	K	"skin" temperature of all surfaces except open ocean.		tslsi	surface_temperature
1 Surface Snow Amount		kg m ⁻²	Compute as the mass of surface snow on the land portion of the grid cell divided by the land area in the grid cell; report 0.0 where the land fraction is 0; exclude snow on vegetation canopy or on sea ice.		snw	surface_snow_amount
1 Convective Precipitation	1	kg m ⁻² s ⁻¹	at surface; includes both liquid and solid phases.		prc	convective_precipitation_flux
1 Solid Precipitation		kg m ⁻² s ⁻¹	at surface; includes precipitation of all forms of water in the solid phase		prsn	snowfall_flux
1 Total Runoff		kg m ⁻² s ⁻¹	compute as the total runoff (including "drainage" through the base of the soil model) leaving the land portion of the grid cell divided by the land area in the grid cell.		mrro	runoff_flux
1 Eastward Near-Surface	Wind	m s ⁻¹	near-surface (usually, 10 meters) eastward component of wind.		uas	eastward_wind
1 Northward Near-Surface	e Wind	m s ⁻¹	near-surface (usually, 10 meters) northward component of wind.		vas	northward_wind

unformatted					CMOR variable					
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
kg m-2	time: mean area: mean where land		real	longitude latitude time sdepth1	mrsos	land		area: areacella		
%	time: mean		real	longitude latitude time height2m	rhs	atmos		area: areacella		
%	time: minimum		real	longitude latitude time height2m	rhsmin	atmos		area: areacella		
%	time: maximum		real	longitude latitude time height2m	rhsmax	atmos		area: areacella		
%	time: mean		real	longitude latitude time	snc	atmos		area: areacella		
%	time: mean		real	longitude latitude time	clt	atmos		area: areacella		
K	time: mean		real	longitude latitude time	tslsi	land		area: areacella		
kg m-2	time: mean area: mean where land		real	longitude latitude time	snw	land		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	prc	atmos		area: areacella		
kg m-2 s-1	time: mean		real	longitude latitude time	prsn	atmos		area: areacella		
kg m-2 s-1	time: mean area: mean where land		real	longitude latitude time	mrro	land		area: areacella		
m s-1	time: mean		real	longitude latitude time height10m	uas	atmos				
m s-1	time: mean		real	longitude latitude time height10m	vas	atmos				

, Daily Maximum Near-Surface Wind	-1			
Speed	m s ⁻¹	near-surface (usually, 10 meters) wind speed.	sfcWindmax	wind_speed
1 Surface Upward Latent Heat Flux	W m ⁻²		hfls	surface_upward_latent_heat_flux
1 Surface Upward Sensible Heat Flux	W m ⁻²		hfss	surface_upward_sensible_heat_flux
Surface Downwelling Longwave Radiation	W m ⁻²		rlds	surface_downwelling_longwave_flux_in_air
1 Surface Upwelling Longwave Radiation	W m ⁻²		rlus	surface_upwelling_longwave_flux_in_air
Surface Downwelling Shortwave Radiation	W m ⁻²		rsds	surface_downwelling_shortwave_flux_in_air
1 Surface Upwelling Shortwave Radiation	W m ⁻²		rsus	surface_upwelling_shortwave_flux_in_air
1 TOA Outgoing Longwave Radiation	$W m^{-2}$	at the top of the atmosphere.	rlut	toa_outgoing_longwave_flux
1 X-Component of Sea Ice Velocity	m s ⁻¹	Report on ocean's grid. Report as "missing" in regions free of sea ice.	usi	sea_ice_x_velocity
1 Y-Component of Sea Ice Velocity	m s ⁻¹	Report on ocean's grid. Report as "missing" in regions free of sea ice.	vsi	sea_ice_y_velocity
1 Sea Ice Area Fraction	%	fraction of grid cell covered by sea ice. Report on ocean's grid.	sic	sea_ice_area_fraction
1 Sea Ice Thickness	m	Report on ocean's grid. Compute the mean thickness of sea ice in the ocean portion of the grid cell (averaging over the entire ocean portion, including the ice-free fraction). Report as 0.0 in regions free of sea ice.	sit	sea_ice_thickness

m s-1	time: maximum		real	longitude latitude time height10m	sfcWindmax	atmos	
W m-2	time: mean	up	real	longitude latitude time	hfls	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	hfss	atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rlds	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rlus	atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rsds	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rsus	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rlut	atmos	area: areacella
m s-1	time: mean		real	longitude latitude time	usi	seaIce ocean	
m s-1	time: mean		real	longitude latitude time	vsi	seaIce ocean	
%	time: mean		real	longitude latitude time	sic	seaIce ocean	area: areacella
m	time: mean area: mean where sea		real	longitude latitude time	sit	seaIce ocean	area: areacella

In CMOR Table day: daily mean 3-D atmospheric fields on the following pressure surfaces: 1000, 850, 700, 500, 250, 100, 50, and 10 hPa

y y				output variable	
E long name	units	comment	questions	name	standard name
1 Air Temperature	K			ta	air_temperature
1 Relative Humidity		This is the relative humidity with respect to liquid water for $I > 0$ C, and with respect to ice for $I < 0$ C.		hur	relative_humidity
1 Specific Humidity	1			hus	specific_humidity
1 omega (=dp/dt)	Pa s ⁻¹	commonly referred to as "omega", this represents the vertical component of velocity in pressure coordinates (positive lown)		wap	lagrangian_tendency_of_air_pressure
1 Northward Wind	$\mathrm{ms}^{\text{-1}}$			va	northward_wind
1 Eastward Wind	ms^{-1}			ua	eastward_wind
2 Geopotential Height	m			zg	geopotential_height

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
K	time: mean		real	longitude latitude plev8 time	ta	atmos		area: areacella		
%	time: mean		real	longitude latitude plev8 time	hur	atmos		area: areacella		
1	time: mean		real	longitude latitude plev8 time	hus	atmos		area: areacella		
Pa s-1	time: mean		real	longitude latitude plev8 time	wap	atmos		area: areacella		
m s-1	time: mean		real	longitude latitude plev8 time	va	atmos				
m s-1	time: mean		real	longitude latitude plev8 time	ua	atmos				
m	time: mean		real	longitude latitude plev8 time	zg	atmos		area: areacella		

CMOR Table 6hrLev: Fields (Sampled Every 6 Hours) for Driving Regional Models

6hrLev

6hr

The 6-hourly data on model levels should be sampled as "snapshots" (not as 6-hour means) at 0Z, 6Z, 12Z, and 18Z and should be collected only for the following experiments and years:

experiment	reporting time-period	ensemble size	priority
historical	Jan 1950 - Dec 2005	1	highest
AMIP	all years	1	highest
RCP4.5 and RCP8.5	Jan 2006 - Dec 2100	1 for each expt.	highest
decadal hindcasts/forecasts runs inititalized in late 2005		3 for each period lower	
and late 1980	Dec 2010		
decadal hindcasts/forecasts runs inititalized in late 1990	all years	3	lower

iority	•				output variable	
<u>ă</u>	long name	units	comment	questions	name	standard name
1 .	Air Temperature	K	on all model levels		ta	air_temperature
1	Eastward Wind	$\mathrm{m}\;\mathrm{s}^{\text{-1}}$	on all model levels		ua	eastward_wind
1	Northward Wind	m s ⁻¹	on all model levels		va	northward_wind
1	Specific Humidity	1	on all model levels		hus	specific_humidity
1	Surface Air Pressure	Pa	surface pressure, not mean sea level pressure		ps	surface_air_pressure

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
K			real	longitude latitude alevel time1	ta	atmos		area: areacella		
m s-1			real	longitude latitude alevel time1	ua	atmos				
m s-1			real	longitude latitude alevel time1	va	atmos				
1			real	longitude latitude alevel time1	hus	atmos		area: areacella		
Pa			real	longitude latitude time1	ps	atmos		area: areacella		

CMOR Table 6hrPlev: Fields (Sampled Every 6 Hours) for Storm-Track Analysis and other Advanced Diagnostic Applications

6hrPlev

6hr

The 6-hourly data on pressure levels should be sampled as "snapshots" (not as 6-hour means) at 0Z, 6Z, 12Z, and 18Z and should be collected only for the following experiments and years.

experiment	time-period requested
decadal hindcasts/forecasts	all years
historical	Jan 1950 - Dec 2005
AMIP & 2030 time-slice	all years
RCP4.5 and RCP8.5	Jan 2006 - Dec 2100
preindustrial control	30 years preferably corresponding to years 1979-2008 of the historical run
Last glacial maximum paleo-run	last 30 years
mid-Holocene paleo- run	last 30 years

iorit _s				output variable	
E long nar	me units	comment	questions	name	standard name
1 Eastward Wind	m s ⁻¹	on the following pressure levels: 850, 500, 250 hPa		ua	eastward_wind
1 Northward Wind	$\mathrm{m}\;\mathrm{s}^{\text{-1}}$	on the following pressure levels: 850, 500, 250 hPa		va	northward_wind
1 Air Temperature	K	on the following pressure levels: 850, 500, 250 hPa		ta	air_temperature
1 Sea Level Pressure	Pa			psl	air_pressure_at_sea_level

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
m s-1			real	longitude latitude plev3 time1	ua	atmos				
m s-1			real	longitude latitude plev3 time1	va	atmos				
K			real	longitude latitude plev3 time1	ta	atmos		area: areacella		
Pa			real	longitude latitude time1	psl	atmos		area: areacella		

CMOR Table 3hr: 2-D Atmospheric and Surface Fields Sampled Every 3 Hours

3hr 3hr

All fields are saved on the atmospheric grid. Precipitation, clouds, and all flux variables are averaged over 3-hour intervals (0-3Z, 3-6Z, 6-9Z, 9-12Z, 12-15Z, 15-18Z, 18-21Z, 21-24Z). All other fields are sampled synoptically at 0Z, 3Z, 6Z, 9Z, 12Z, 15Z, 18Z, and 21Z.

The 3-hourly data should be collected only for the following experiments and years:

experiment	time-period requested
decadal hindcasts/forecasts	all years
historical	Jan 1960 - Dec 2005
AMIP & future 2030 time-slice	all years
future simulations driven by RCP concentrations or emissions	Jan 2026 - Dec 2045, Jan 2081-Dec 2100, 2181-2200, and 2281-2300
pre-industrial control	30 years (ideally the years corresponding to the last 30 years of abrupt 4xCO2 run)
1 percent per year CO2	last 30 years
control SST climatology (6.2a)	all years
CO2 forcing (6.2b), anthropogenic aerosol forcing (6.4a), and sulfate aerosol forcing (6.4b)	all years
abrupt 4XCO2 (6.3)	first 5 years and last 30 years
abrupt 4XCO2 ensemble (6.3-E)	all years

priority 10					output variable	
Ē l	ong name	units	comment	questions	name	standard name
1 Precipitation		kg m ⁻² s ⁻¹	at surface; includes both liquid and solid phases. This is the 3- hour mean precipitation flux.		pr	precipitation_flux
1 Air Temperature	:	K	near-surface (usually, 2 meter) air temperature, sampled synoptically.		tas	air_temperature
1 Surface Upward	Latent Heat Flux	W m ⁻²	This is the 3-hour mean flux.		hfls	surface_upward_latent_heat_flux
1 Surface Upward	Sensible Heat Flux	W m ⁻²	This is the 3-hour mean flux.		hfss	surface_upward_sensible_heat_flux
1 Surface Downw Radiation	elling Longwave	W m ⁻²	This is the 3-hour mean flux.		rlds	surface_downwelling_longwave_flux_in_air
1 Surface Upwelli	ng Longwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-}2}$	This is the 3-hour mean flux.		rlus	surface_upwelling_longwave_flux_in_air
1 Surface Downw Radiation	elling Shortwave	W m ⁻²	This is the 3-hour mean flux.		rsds	surface_downwelling_shortwave_flux_in_air
1 Surface Upwelli	ng Shortwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-}2}$	This is the 3-hour mean flux.		rsus	surface_upwelling_shortwave_flux_in_air
1 Eastward Near-S	Surface Wind Speed	$m s^{-1}$	sampled synoptically.		uas	eastward_wind
1 Northward Near	-Surface Wind Speed	m s ⁻¹	sampled synoptically.		vas	northward_wind

unformatted					CMOR variable					
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
kg m-2 s-1	time:mean		real	longitude latitude time	pr	atmos		area: areacella		
K	time: point		real	longitude latitude time1 height2m	tas	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	hfls	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	hfss	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude time	rlds	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	rlus	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude time	rsds	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	rsus	atmos		area: areacella		
						atmos		area: areacella		
m s-1	time: point		real	longitude latitude time1 height2m	uas	atmos				
m s-1	time: point		real	longitude latitude time1 height2m	vas	atmos				

1 Near-Surface Specific Humidity	1	near-surface (usually 2 m) specific humidity, sampled synoptically.	huss	specific_humidity
1 Moisture in Upper 0.1 m of Soil Column	kg m ⁻²	Compute the mass of water in all phases in the upper 0.1 meters of soil.	mrsos	moisture_content_of_soil_layer
Surface Temperature Where Land or Sea Ice	K	"skin" temperature of all surfaces except open ocean, sampled synoptically.	tslsi	surface_temperature
1 Sea Surface Temperature	K	temperature of surface of open ocean, sampled synoptically.	tso	sea_surface_temperature
1 Convective Precipitation	kg m ⁻² s ⁻¹	at surface. This is a 3-hour mean convective precipitation flux.	pre	convective_precipitation_flux
1 Snowfall Flux	kg m ⁻² s ⁻¹	at surface. Includes all forms of precipitating solid phase of water. This is the 3-hour mean snowfall flux.	prsn	snowfall_flux
1 Total Runoff	kg m ⁻² s ⁻¹	compute the total runoff (including "drainage" through the base of the soil model) leaving the land portion of the grid cell divided by the land area in the grid cell, averaged over the 3-hour interval.	mrro	runoff_flux
Surface Downwelling Clear-Sky Longwave Radiation	W m ⁻²	This is a 3-hour mean flux.	rldscs	downwelling_longwave_flux_in_air_assuming_clear_s ky
Surface Downwelling Clear-Sky Shortwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-}2}$	This is a 3-hour mean flux.	rsdscs	surface_downwelling_shortwave_flux_in_air_assumin g_clear_sky
Surface Upwelling Clear-Sky Shortwave Radiation	W m ⁻²	This is a 3-hour mean flux.	rluscs	surface_upwelling_shortwave_flux_in_air_assuming_c lear_sky
1 Surface Pressure	Pa	sampled synoptically to diagnose atmospheric tides, this is better than mean sea level pressure.	ps	surface_air_pressure
1 Total Cloud Fraction	%	for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Include both large-scale and convective cloud. This is a 3-hour mean.	clt	cloud_area_fraction
Surface Downward Diffuse Shortwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-}2}$	This is a 3-hour mean flux.	rsdsdiff	surface_diffuse_downwelling_shortwave_flux_in_air

1	time: point		real	longitude latitude time1 height2m	huss	atmos	area: areacella
kg m-2	time: point area: mean where land		real	longitude latitude time1 sdepth1	mrsos	land	area: areacella
K	time: point		real	longitude latitude time1	tslsi	land	area: areacella
K	time: point area: mean where sea		real	longitude latitude time1	tso	ocean	area: areacella
kg m-2 s-1	time:mean		real	longitude latitude time	prc	atmos	area: areacella
kg m-2 s-1	time:mean		real	longitude latitude time	prsn	atmos	area: areacella
kg m-2 s-1	time: mean area: mean where land		real	longitude latitude time	mrro	land	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rldscs	atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rsdscs	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rluscs	atmos	area: areacella
Pa	time: point		real	longitude latitude time1	ps	atmos	area: areacella
%	time: mean		real	longitude latitude time	clt	atmos	area: areacella
W m-2	time: mean		real	longitude latitude time	rsdsdiff	atmos	area: areacella

CMOR Table cfMon: CFMIP Monthly-Mean Cloud Diagnostic Fields

cfMon

mon

(All Saved on the Atmospheric Grid)

For further guidance, please see http://www.cfmip.net

The spread sheet "CFMIP output" specifies the simulations and time-periods for which the cloud diagnostic fields listed on this spread sheet should be saved.

In CMOR Table cfMon: "CFMIP monthly 3D"-- mon thly mean 3-D fields on model levels (or half levels in the case of fluxes). Different GCMs will have different cloud tendency terms due to different model formulations. Please submit the terms which are necessary to close the stratiform cloud water budget of your model. If your model contains terms not listed here, please email mark.webb@metoffice.gov.uk to request an update to the table.

Prioris					output variable	
Prio	long name	units	comment	questions	name	e standard name
	Upwelling Longwave Radiation	W m ⁻²	Include also the fluxes at the surface and TOA.	-	rlu	upwelling_longwave_flux_in_air
1	Upwelling Shortwave Radiation	W m ⁻²	Include also the fluxes at the surface and TOA.		rsu	upwelling_shortwave_flux_in_air
1	Downwelling Longwave Radiation	W m ⁻²	Include also the fluxes at the surface and TOA.		rld	downwelling_longwave_flux_in_air
1	Downwelling Shortwave Radiation	W m ⁻²	Include also the fluxes at the surface and TOA.		rsd	downwelling_shortwave_flux_in_air
1	Upwelling Clear-Sky Longwave Radiation	W m ⁻²	Include also the fluxes at the surface and TOA.		rlucs	upwelling_longwave_flux_in_air_assuming_clear_sky
1	Upwelling Clear-Sky Shortwave Radiation	W m ⁻²	Include also the fluxes at the surface and TOA.		rsucs	upwelling_shortwave_flux_in_air_assuming_clear_sky
1	Downwelling Clear-Sky Longwave Radiation	W m ⁻²	Include also the fluxes at the surface and TOA.		rldcs	downwelling_longwave_flux_in_air_assuming_clear_s ky
1	Downwelling Clear-Sky Shortwave Radiation	W m ⁻²	Include also the fluxes at the surface and TOA.		rsdcs	downwelling_shortwave_flux_in_air_assuming_clear_s ky
1	Air Temperature	K			ta	air_temperature
1	Tendency of Air Temperature	K s ⁻¹			tnt	tendency_of_air_temperature
1	Tendency of Air Temperature due to Advection	$K s^{-1}$			tnta	$tendency_of_air_temperature_due_to_advection$
1	Tendency of Air Temperature due to Diabatic Processes	K s ⁻¹			tntmp	$tendency_of_air_temperature_due_to_model_physics$
1	Tendency of Air Temperature Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing	K s ⁻¹			tntscpbl	tendency_of_air_temperature_due_to_stratiform_cloud _and_precipitation_and_boundary_layer_mixing
1	Tendency of Air Temperature due to Radiative Heating	K s ⁻¹			tntr	tendency_of_air_temperature_due_to_radiative_heating
1	Tendency of Air Temperature due to Moist Convection	K s ⁻¹			tntc	tendency_of_air_temperature_due_to_convection

					CMOR					
unformatted					variable					
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
W m-2	time: mean	up	real	longitude latitude alevhalf time	rlu	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude alevhalf time	rsu	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude alevhalf time	rld	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude alevhalf time	rsd	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude alevhalf time	rlucs	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude alevhalf time	rsucs	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude alevhalf time	rldcs	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude alevhalf time	rsdcs	atmos		area: areacella		
K	time: mean		real	longitude latitude alevel time	ta	atmos		area: areacella		
K s-1	time: mean		real	longitude latitude alevel time	tnt	atmos		area: areacella		
K s-1	time: mean		real	longitude latitude alevel time	tnta	atmos		area: areacella		
K s-1	time: mean		real	longitude latitude alevel time	tntmp	atmos		area: areacella		
K s-1	time: mean		real	longitude latitude alevel time	tntscpbl	atmos		area: areacella		
K s-1	time: mean		real	longitude latitude alevel time	tntr	atmos		area: areacella		
K s-1	time: mean		real	longitude latitude alevel time	tntc	atmos		area: areacella		

1 Specific Humidity	1		hus	specific_humidity
1 Tendency of Specific Humidity	s^{-1}		tnhus	tendency_of_specific_humidity
Tendency of Specific Humidity due to Advection	s^{-1}		tnhusa	$tendency_of_specific_humidity_due_to_advection$
Tendency of Specific Humidity due to Convection	s ⁻¹		tnhusc	tendency_of_specific_humidity_due_to_convection
Tendency of Specific Humidity due to Diffusion	s^{-1}		tnhusd	$tendency_of_specific_humidity_due_to_diffusion$
Tendency of Specific Humidity due to Stratiform Cloud Condensation and Evaporation	s ⁻¹		tnhusscpbl	tendency_of_specific_humidity_due_to_stratiform_clo ud_and_precipitation_and_boundary_layer_mixing
Tendency of Specific Humidity due to Model Physics	s ⁻¹	This should include sources and sinks from parametrized physics (e.g. convection, stratiform condensation/evaporation, etc.) and should exclude sources and sinks from resolved dynamics and diffusion.	tnhusmp	tendency_of_specific_humidity_due_to_model_physics
Eddy Viscosity Coefficients for Momentum	$m^2 s^{-1}$		eviscu	atmosphere_momentum_diffusivity
1 Eddy Diffusivity Coefficients for Temperature	$m^2 s^{-1}$		evisct	atmosphere_heat_diffusivity
2 Convective Cloud Area Fraction	%		clc	convective_cloud_area_fraction_in_atmosphere_layer
2 Mass Fraction of Convective Cloud Liquid Water	1	Calculate as the mass of convective cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.	clwc	mass_fraction_of_convective_cloud_liquid_water_in_a ir
2 Mass Fraction of Convective Cloud Ice	1	Calculate as the mass of convective cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.	clic	mass_fraction_of_convective_cloud_ice_in_air
2 Stratiform Cloud Area Fraction	%		cls	$stratiform_cloud_area_fraction_in_atmosphere_layer$
2 Mass Fraction of Stratiform Cloud Liquid Water	1	Calculate as the mass of stratiform cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.	clws	mass_fraction_of_stratiform_cloud_liquid_water_in_ai r
2 Mass Fraction of Stratiform Cloud Ice	1	Calculate as the mass of stratiform cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.	clis	mass_fraction_of_stratiform_cloud_ice_in_air

1	time: mean	real	longitude latitude alevel time	hus	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnhus	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnhusa	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnhusc	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnhusd	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnhusscpbl	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnhusmp	atmos	area: areacella
	time: mean					
m2 s-1	time: mean	real	longitude latitude alevel time	eviscu	atmos	area: areacella
m2 s-1	time: mean	real	longitude latitude alevel time	evisct	atmos	area: areacella
			1			area: areacella
%	time: mean	real	longitude latitude alevel time	clc	atmos	area: areacella
1	time: mean	real	longitude latitude alevel time	clwc	atmos	area: areacella
1	time: mean	real	longitude latitude alevel time	clic	atmos	area: areacella
%	time: mean	real	longitude latitude alevel time	cls	atmos	area: areacella
1	time: mean	real	longitude latitude alevel time	clws	atmos	area: areacella
1	time: mean	real	longitude latitude alevel time	clis	atmos	area: areacella

2 Updraft Convective Mass Flux	kg m ⁻² s ⁻¹	Report on model half-levels (i.e., model layer bounds and not standard pressures). Calculate as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud).	mcu	atmosphere_updraft_convective_mass_flux
2 Downdraft Convective Mass Flux	kg m ⁻² s ⁻¹	Report on model half-levels (i.e., model layer bounds and not standard pressures). Calculate as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud).	mcd	atmosphere_downdraft_convective_mass_flux
2 Shallow Convective Mass Flux	kg m ⁻² s ⁻¹	Report on model half-levels (i.e., model layer bounds and not standard pressures). The net mass flux should represent the difference between the updraft and downdraft components. For models with a distinct shallow convection scheme, calculate as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud).	smc	atmosphere_net_upward_shallow_convective_mass_flu x
2 Deep Convective Mass Flux	kg m ⁻² s ⁻¹	Report on model half-levels (i.e., model layer bounds and not standard pressures). The net mass flux should represent the difference between the updraft and downdraft components. Calculate as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud).	dmc	atmosphere_net_upward_deep_convective_mass_flux
Tendency of Mass Fraction of Stratiform Cloud Liquid Water In Air	s ⁻¹		tnsclw	tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air
Tendency of Mass Fraction of Stratiform 2 Cloud Liquid Water In Air Due To Cloud Microphysics	s ⁻¹		tnsclwcm	tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_cloud_microphysics
Tendency of Mass Fraction of Stratiform 2 Cloud Liquid Water In Air Due To Boundary Layer Mixing	s ⁻¹		tnsclwbl	tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_boundary_layer_mixing
Tendency of Mass Fraction of Stratiform Cloud Liquid Water In Air Due To Bergeron Findeisen Process To Cloud Ice	s ⁻¹		tnsclwbfpcli	tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_bergeron_findeisen_process_to_ cloud_ice
Tendency of Mass Fraction of Stratiform Cloud Liquid Water due to Condensation and Evaporation	s^{-1}		tnsclwce	tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_condensation_and_evaporation
Tendency of Mass Fraction of Stratiform Cloud Liquid Water Due to Convective Detrainment	s ⁻¹		tnsclwcd	tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_convective_detrainment
Tendency of Mass Fraction of Stratiform Cloud Liquid Water due to Homogeneous Nucleation	s ⁻¹		tnsclwhon	tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_homogeneous_nucleation
Tendency of Mass Fraction of Stratiform 2 Cloud Liquid Water due to Heterogeneous Nucleation	s ⁻¹		tnsclwhen	tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_heterogeneous_nucleation
Tendency of Mass Fraction of Stratiform Cloud Liquid Water due to Riming	s^{-1}		tnsclwri	tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_riming
Tendency of Mass Fraction of Stratiform Cloud Liquid Water due to Accretion to Rain	s ⁻¹		tnsclwar	tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_accretion_to_rain

kg m-2 s-1	time: mean	up	real	longitude latitude alevhalf time	mcu	atmos	area: areacella
kg m-2 s-1	time: mean	down	real	longitude latitude alevhalf time	mcd	atmos	area: areacella
kg m-2 s-1	time: mean	up	real	longitude latitude alevhalf time	smc	atmos	area: areacella
kg m-2 s-1	time: mean	up	real	longitude latitude alevhalf time	dmc	atmos	area: areacella
s-1	time: mean		real	longitude latitude alevel	tnsclw	atmos	area: areacella
s-1	time: mean		real	time longitude latitude alevel time	tnsclwcm	atmos	area: areacella
s-1	time: mean		real	longitude latitude alevel time	tnsclwbl	atmos	area: areacella
s-1	time: mean		real	longitude latitude alevel time	tnsclwbfpcli	atmos	area: areacella
s-1	time: mean		real	longitude latitude alevel time	tnsclwce	atmos	area: areacella
s-1	time: mean		real	longitude latitude alevel time	tnsclwcd	atmos	area: areacella
s-1	time: mean		real	longitude latitude alevel time	tnsclwhon	atmos	area: areacella
s-1	time: mean		real	longitude latitude alevel time	tnsclwhen	atmos	area: areacella
s-1	time: mean		real	longitude latitude alevel time	tnsclwri	atmos	area: areacella
s-1	time: mean		real	longitude latitude alevel time	tnsclwar	atmos	area: areacella

Tendency of Mass Fraction of Stratiform Cloud Liquid Water due to Accretion to Snow	s ⁻¹	tnsclwas tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_accretion_to_snow
Tendency of Mass Fraction of Stratiform 2 Cloud Liquid Water due to Melting From Cloud Ice	s ⁻¹	tnsclwmi tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_melting_from_cloud_ice
Tendency of Mass Fraction of Stratiform 2 Cloud Liquid Water due to Autoconversion	s ⁻¹	tnsclwac tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_autoconversion
Tendency of Mass Fraction of Stratiform Cloud Liquid Water due to Advection	s ⁻¹	tnsclwa tendency_of_mass_fraction_of_stratiform_cloud_liquid _water_in_air_due_to_advection
Tendency of Mass Fraction of Stratiform Cloud Ice In Air	s ⁻¹	tnscli tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air
Tendency of Mass Fraction of Stratiform 2 Cloud Ice In Air Due To Cloud Microphysics	s ⁻¹	tnsclicm tendency_of_mass_fraction_of_stratiform_cloud_ice_i
Tendency of Mass Fraction of Stratiform Cloud Ice In Air Due To Boundary Layer Mixing	s ⁻¹	tnsclibl tendency_of_mass_fraction_of_stratiform_cloud_ice_i
Tendency of Mass Fraction of Stratiform Cloud Ice In Air Due To Bergeron Findeisen Process from Cloud Liquid	s ⁻¹	tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_bergeron_findeisen_process_from_cloud tnsclibfpclliquid
Tendency of Mass Fraction of Stratiform Cloud Ice Due Convective Detrainment	S ⁻¹ Tendency of Mass Fraction of Stratiform Cloud Ice Due to Convective Detrainment	tnsclicd tendency_of_mass_fraction_of_stratiform_cloud_ice_i
	e ·	INSCHOOL
Cloud Ice Due Convective Detrainment Tendency of Mass Fraction of Stratiform Cloud Ice due to Homogeneous	Convective Detrainment	tnsclide n_air_due_to_convective_detrainment tendency_of_mass_fraction_of_stratiform_cloud_ice_i
 Cloud Ice Due Convective Detrainment Tendency of Mass Fraction of Stratiform Cloud Ice due to Homogeneous Nucleation Tendency of Mass Fraction of Stratiform Cloud Ice due to Heterogeneous 	S Convective Detrainment S-1	tnsclied n_air_due_to_convective_detrainment tnsclihon tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_homogeneous_nucleation tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_heterogeneous_nucleation_from_cloud_l
Cloud Ice Due Convective Detrainment Tendency of Mass Fraction of Stratiform Cloud Ice due to Homogeneous Nucleation Tendency of Mass Fraction of Stratiform Cloud Ice due to Heterogeneous Nucleation From Cloud Liquid Tendency of Mass Fraction of Stratiform Cloud Ice due to Heterogeneous	S Convective Detrainment S 1 S -1	tnscliden tnscliden tnsclihon tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_homogeneous_nucleation tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_heterogeneous_nucleation_from_cloud_l iquid_water tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_heterogeneous_nucleation_from_cloud_ice_i n_air_due_to_heterogeneous_nucleation_from_water_v
2 Cloud Ice Due Convective Detrainment Tendency of Mass Fraction of Stratiform 2 Cloud Ice due to Homogeneous Nucleation Tendency of Mass Fraction of Stratiform 2 Cloud Ice due to Heterogeneous Nucleation From Cloud Liquid Tendency of Mass Fraction of Stratiform 2 Cloud Ice due to Heterogeneous Nucleation From Water Vapor Tendency of Mass Fraction of Stratiform 2 Cloud Ice due to Riming From Cloud	S Convective Detrainment S-1 S-1 S-1	tnsclided n_air_due_to_convective_detrainment tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_homogeneous_nucleation tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_heterogeneous_nucleation_from_cloud_l iquid_water tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_heterogeneous_nucleation_from_water_v apor tendency_of_mass_fraction_of_stratiform_cloud_ice_i tendency_of_mass_fraction_of_stratiform_cloud_ice_i tendency_of_mass_fraction_of_stratiform_cloud_ice_i
Cloud Ice Due Convective Detrainment Tendency of Mass Fraction of Stratiform Cloud Ice due to Homogeneous Nucleation Tendency of Mass Fraction of Stratiform Cloud Ice due to Heterogeneous Nucleation From Cloud Liquid Tendency of Mass Fraction of Stratiform Cloud Ice due to Heterogeneous Nucleation From Water Vapor Tendency of Mass Fraction of Stratiform Cloud Ice due to Riming From Cloud Liquid Tendency of Mass Fraction of Stratiform	S Convective Detrainment S-1 S-1 S-1 S-1	tnscliden tnsclihon tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_homogeneous_nucleation tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_heterogeneous_nucleation_from_cloud_l iquid_water tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_heterogeneous_nucleation_from_water_v apor tnscliricl tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_heterogeneous_nucleation_from_water_v apor tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_riming_from_cloud_liquid_water tendency_of_mass_fraction_of_stratiform_cloud_ice_i tendency_of_mass_fraction_of_stratiform_cloud_ice_i

s-1	time: mean	real	longitude latitude alevel time	tnsclwas	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclwmi	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclwac	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclwa	atmos	area: areacella	
			longitude latitude alevel				
s-1	time: mean	real	time	tnscli	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclicm	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclibl	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclibfpcl	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclicd	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclihon	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclihencl	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclihenv	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnscliricl	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclirir	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnsclids	atmos	area: areacella	
s-1	time: mean	real	longitude latitude alevel time	tnscliag	atmos	area: areacella	

2	Tendency of Mass Fraction of Stratiform Cloud Ice due to Accretion to Snow	s ⁻¹		tnsclias	tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_accretion_to_snow
2	Tendency of Mass Fraction of Stratiform Cloud Ice due to Evaporation of Melting Ice	s^{-1}		tnscliemi	tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_evaporation_of_melting_ice
2	Tendency of Mass Fraction of Stratiform Cloud Ice due to Melting to Rain	s ⁻¹		tnsclimr	tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_melting_to_rain
2	Tendency of Mass Fraction of Stratiform Cloud Ice due to Melting to Cloud Liquid	s^{-1}		tnsclimcl	tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_melting_to_cloud_liquid_water
2	Tendency of Mass Fraction of Stratiform Cloud Ice due to Icefall	s ⁻¹		tnscliif	tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_icefall
2	Tendency of Mass Fraction of Stratiform Cloud Ice due to Advection	s ⁻¹		tnsclia	tendency_of_mass_fraction_of_stratiform_cloud_ice_i n_air_due_to_advection
2	Tendency of Mass Fraction of Stratiform Cloud Condensed Water In Air	s ⁻¹		tnsccw	tendency_of_mass_fraction_of_stratiform_cloud_conde nsed_water_in_air
2	Tendency of Mass Fraction of Stratiform Cloud Condensed Water In Air Due To Cloud Microphysics	s ⁻¹		tnsccwcm	tendency_of_mass_fraction_of_stratiform_cloud_conde nsed_water_in_air_due_to_cloud_microphysics
2	Tendency of Mass Fraction of Stratiform Cloud Condensed Water In Air Due To Boundary Layer Mixing	s ⁻¹		tnsccwbl	tendency_of_mass_fraction_of_stratiform_cloud_conde nsed_water_in_air_due_to_boundary_layer_mixing
2	Tendency of Mass Fraction of Stratiform Cloud Condensed Water due to Condensation and Evaporation	s^{-1}	condensed water includes both liquid and ice.	tnsccwce	tendency_of_mass_fraction_of_stratiform_cloud_conde nsed_water_in_air_due_to_condensation_and_evaporat ion
2	Tendency of Mass Fraction of Stratiform Cloud Condensed Water due to Autoconversion to Rain	s ⁻¹	condensed water includes both liquid and ice.	tnsccwacr	$tendency_of_mass_fraction_of_stratiform_cloud_conde\\ nsed_water_in_air_due_to_autoconversion_to_rain$
2	Tendency of Mass Fraction of Stratiform Cloud Condensed Water due to Autoconversion to Snow	s ⁻¹	condensed water includes both liquid and ice.	tnsccwacs	$tendency_of_mass_fraction_of_stratiform_cloud_conde\\ nsed_water_in_air_due_to_autoconversion_to_snow$
2	Tendency of Mass Fraction of Stratiform Cloud Condensed Water due to Icefall	s ⁻¹	condensed water includes both liquid and ice.	tnsccwif	tendency_of_mass_fraction_of_stratiform_cloud_conde nsed_water_in_air_due_to_icefall
2	Tendency of Mass Fraction of Stratiform Cloud Condensed Water due to Advection	s ⁻¹	condensed water includes both liquid and ice.	tnsccwa	tendency_of_mass_fraction_of_stratiform_cloud_conde nsed_water_in_air_due_to_advection

s-1	time: mean	real	longitude latitude alevel time	tnsclias	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnscliemi	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnsclimr	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnsclimcl	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnscliif	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnsclia	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnsccw	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnscewem	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnsccwbl	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnsccwce	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnscewacr	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnscewacs	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnsccwif	atmos	area: areacella
s-1	time: mean	real	longitude latitude alevel time	tnsccwa	atmos	area: areacella

In CMOR Table cfMon: "CFMIP monthly 4xCO2 2D" -- monthly mean 2D TOA radiative fluxes calculated by instantaneously quadrupling CO2.

	\$				output variable	
a	long name	units	comment	questions	name	standard name
1	TOA Outgoing Shortwave Radiation in 4XCO2 Atmosphere	W m ⁻²			rsut4co2	toa_outgoing_shortwave_flux
1	TOA Outgoing Longwave Radiation 4XCO2 Atmosphere	W m ⁻²			rlut4co2	toa_outgoing_longwave_flux
1	TOA Outgoing Clear-Sky Shortwave Radiation 4XCO2 Atmosphere	W m ⁻²			rsutcs4co2	toa_outgoing_shortwave_flux_assuming_clear_sky
1	TOA Outgoing Clear-Sky Longwave Radiation 4XCO2 Atmosphere	W m ⁻²			rlutcs4co2	toa_outgoing_longwave_flux_assuming_clear_sky

In CMOR Table cfMon: "CFMIP monthly 4xCO2 3D" -- monthly mean 3-D radiative fluxes calculated by instantaneously quadrupling CO2. On model half levels, including the surface and the Top of the Atmosphere.

iority					output variabl	e
þ	long name	units	comment	questions	name	standard name
1	Upwelling Longwave Radiation 4XCO2 Atmosphere	W m ⁻²			rlu4co2	upwelling_longwave_flux_in_air
1	Upwelling Shortwave Radiation 4XCO2 Atmosphere	$\mathrm{W}~\mathrm{m}^{-2}$			rsu4co2	upwelling_shortwave_flux_in_air
1	Downwelling Longwave Radiation 4XCO2 Atmosphere	W m ⁻²			rld4co2	downwelling_longwave_flux_in_air
1	Downwelling Shortwave Radiation 4XCO2 Atmosphere	W m ⁻²			rsd4co2	downwelling_shortwave_flux_in_air
1	Upwelling Clear-Sky Longwave Radiation 4XCO2 Atmosphere	W m ⁻²			rlucs4co2	upwelling_longwave_flux_in_air_assuming_clear_sky
1	Upwelling Clear-Sky Shortwave Radiation 4XCO2 Atmosphere	W m ⁻²			rsucs4co2	upwelling_shortwave_flux_in_air_assuming_clear_sky
1	Downwelling Clear-Sky Longwave Radiation 4XCO2 Atmosphere	W m ⁻²			rldcs4co2	downwelling_longwave_flux_in_air_assuming_clear_s ky
1	Downwelling Clear-Sky Shortwave Radiation 4XCO2 Atmosphere	W m ⁻²			rsdcs4co2	downwelling_shortwave_flux_in_air_assuming_clear_s ky

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
W m-2	time: mean	up	real	longitude latitude time	rsut4co2	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	rlut4co2	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	rsutcs4co2	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	rlutcs4co2	atmos		area: areacella		

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
W m-2	time: mean	up	real	longitude latitude alevhalf time	rlu4co2	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude alevhalf time	rsu4co2	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude alevhalf time	rld4co2	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude alevhalf time	rsd4co2	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude alevhalf time	rlucs4co2	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude alevhalf time	rsucs4co2	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude alevhalf time	rldcs4co2	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude alevhalf time	rsdcs4co2	atmos		area: areacella		

In CMOR Table cfMon: "CFMIP monthly inline" -- monthly mean in line ISCCP and CALIPSO/PARASOL simulator output

ito ita long name				output variable	
Š long name	units	comment	questions	name	standard name
1 ISCCP Total Cloud Fraction	%		•	cltisccp	cloud_area_fraction
1 ISCCP Mean Cloud Albedo	1	When computing time-means, weight by the ISCCP Total Cloud Fraction - see http://www.cfmip.net/README		albiscep	cloud_albedo
1 ISCCP Mean Cloud Top Pressure	Pa	When computing time-means, weight by the ISCCP Total Cloud Fraction - see http://www.cfmip.net/README		ctpiscep	air_pressure_at_cloud_top
1 ISCCP Cloud Area Fraction	%	7 levels x 7 tau		clisccp	isccp_cloud_area_fraction
1 CALIPSO Total Cloud Fraction	%			cltcalipso	cloud_area_fraction
1 CALIPSO Low Level Cloud Fraction	%			cllcalipso	cloud_area_fraction_in_atmosphere_layer
1 CALIPSO Mid Level Cloud Fraction	%			clmcalipso	cloud_area_fraction_in_atmosphere_layer
1 CALIPSO High Level Cloud Fraction	%			clhcalipso	cloud_area_fraction_in_atmosphere_layer
1 CALIPSO Cloud Fraction	%	40 height levels		clcalipso	cloud_area_fraction_in_atmosphere_layer
1 PARASOL Reflectance	ſ	5 bins of solar zenith angle. This is reflectance as seen at the top of the atmosphere.		parasolRefl	toa_bidirectional_reflectance

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
%	time: mean	-	real	longitude latitude time	cltisccp	atmos		area: areacella		
1	time: mean		real	longitude latitude time	albisccp	atmos		area: areacella		
Pa	time: mean		real	longitude latitude time	ctpisccp	atmos		area: areacella		
%	time: mean		real	longitude latitude plev7 tau time	cliscep	atmos		area: areacella		
								area: areacella		
%	time: mean		real	longitude latitude time	cltcalipso	atmos		area: areacella		
%	time: mean		real	longitude latitude time p840	cllcalipso	atmos		area: areacella		
%	time: mean		real	longitude latitude time p560	clmcalipso	atmos		area: areacella		
%	time: mean		real	longitude latitude time p220	clhcalipso	atmos		area: areacella		
%	time: mean		real	longitude latitude alt40 time	clcalipso	atmos		area: areacella		
1	time: mean		real	longitude latitude sza5 time	parasolRefl	atmos		area: areacella		

CMOR Table cfOff: "CFMIP monthly offline" Cloud Diagnostic Fields

cfOff

mon

(All Saved on the Atmospheric Grid)

For further guidance, please see http://www.cfmip.net

The spread sheet "CFMIP output" specifies the simulations and time-periods for which the cloud diagnostic fields listed on this spread sheet should be saved.

CMOR Table cfOff: "CFMIP monthly offline" -- monthly mean CloudSat/CALIPSO/PARASOL simulator output

(Calculate monthly means by averaging the orbital curtain output from CFMIP_orbital_offline. The difference between similar variables appearing in this and the previous table is in the spatial sampling and time period requested. The previous table builds monthly means from global fields, whereas this table below uses only data along the satellite track for a short period of time (one year). This will enable studies of the impact of the satellite sampling in the comparisons.)

iority					output variable	,
br	long name	units	comment	questions	name	standard name
1	CALIPSO Cloud Fraction	%	(40 height levels)		clcalipso	cloud_area_fraction_in_atmosphere_layer
1	CALIPSO Cloud Fraction Undetected by CloudSat	%	(40 height levels) Clouds detected by CALIPSO but below the detectability threshold of CloudSat		clcalipso2	cloud_area_fraction_in_atmosphere_layer
1	CloudSat Radar Reflectivity	1	CFADs (Cloud Frequency Altitude Diagrams) are joint height - radar reflectivity (or lidar scattering ratio) distributions (40 levelsx15 bins).		cfadDbze94	histogram_of_equivalent_reflectivity_factor_over_heig ht_above_reference_ellipsoid
1	CALIPSO Scattering Ratio	1	CFADs (Cloud Frequency Altitude Diagrams) are joint height - radar reflectivity (or lidar scattering ratio) distributions (40 levelsx15 bins).		cfadLidarsr532	histogram_of_backscattering_ratio_over_height_above _reference_ellipsoid
1	PARASOL Reflectance	1	Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees).		parasolRefl	toa_bidirectional_reflectance
1	CALIPSO Total Cloud Fraction	%			cltcalipso	cloud_area_fraction
1	CALIPSO Low Level Cloud Fraction	%			cllcalipso	cloud_area_fraction_in_atmosphere_layer
1	CALIPSO Mid Level Cloud Fraction	%			clmcalipso	cloud_area_fraction_in_atmosphere_layer
1	CALIPSO High Level Cloud Fraction	%			clhcalipso	cloud_area_fraction_in_atmosphere_layer

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
%	time: mean		real	longitude latitude alt40 time	clcalipso	atmos		area: areacella		<u> </u>
%	time: mean		real	longitude latitude alt40 time	clcalipso2	atmos		area: areacella		
1	time: mean		real	longitude latitude alt40 dbze time	cfadDbze94	atmos		area: areacella		
1	time: mean		real	longitude latitude alt40 scatratio time	cfadLidarsr53	atmos		area: areacella		
1	time: mean		real	longitude latitude sza5 time	parasolRefl	atmos		area: areacella		
%	time: mean		real	longitude latitude time	cltcalipso	atmos		area: areacella		
%	time: mean		real	longitude latitude time p840	cllcalipso	atmos		area: areacella		
%	time: mean		real	longitude latitude time p560	clmcalipso	atmos		area: areacella		
%	time: mean		real	longitude latitude time p220	clhcalipso	atmos		area: areacella		

CMOR Table cfDay: CFMIP Daily-Mean Cloud Diagnostic Fields

cfDay day

(All Saved on the Atmospheric Grid)

For further guidance, please see http://www.cfmip.net

The spread sheet "CFMIP output" specifies the simulations and time-periods for which the cloud diagnostic fields listed on this spread sheet should be saved.

In CMOR Table cfDay: "CFMIP daily 2D" -- daily mean 2-D fields including inline ISCCP/CloudSat/CALIPSO/ PARASOL simulator output

ì	\$					
Priorit	long name	units	comment	questions	output variable name	standard name
1	Surface Air Pressure	Pa		•	ps	surface_air_pressure
1	TOA Incident Shortwave Radiation	W m ⁻²			rsdt	toa_incoming_shortwave_flux
1	TOA Outgoing Shortwave Radiation	W m ⁻²			rsut	toa_outgoing_shortwave_flux
1	Surface Downwelling Clear-Sky Shortwave Radiation	W m ⁻²			rsdscs	surface_downwelling_shortwave_flux_in_air_assumin g_clear_sky
1	Surface Upwelling Clear-Sky Shortwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-}2}$			rsuscs	surface_upwelling_shortwave_flux_in_air_assuming_c lear_sky
1	Surface Downwelling Clear-Sky Longwave Radiation	$\mathrm{W}~\mathrm{m}^{-2}$			rldscs	surface_downwelling_longwave_flux_in_air_assuming _clear_sky
1	TOA Outgoing Clear-Sky Longwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-}2}$			rlutes	toa_outgoing_longwave_flux_assuming_clear_sky
1	TOA Outgoing Clear-Sky Shortwave Radiation	$\mathrm{W} \; \mathrm{m}^{\text{-}2}$			rsutcs	toa_outgoing_shortwave_flux_assuming_clear_sky
1	Total Cloud Fraction	%	for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Include both large-scale and convective cloud.		clt	cloud_area_fraction
1	Condensed Water Path	kg m ⁻²	calculate mass of condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.		clwvi	atmosphere_cloud_condensed_water_content
1	Ice Water Path	kg m ⁻²	calculate mass of ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Include precipitating frozen hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.		clivi	atmosphere_cloud_ice_content
1	omega (=dp/dt)	Pa s ⁻¹	at 500 hPa level; commonly referred to as "omega", this represents the vertical component of velocity in pressure coordinates (positive down)		wap500	lagrangian_tendency_of_air_pressure
1	Air Temperature	K	at 700 hPa level		ta700	air_temperature
1	Air Pressure at Convective Cloud Base	Pa			ccb	air_pressure_at_convective_cloud_base
1	Air Pressure at Convective Cloud Top	Pa			cct	air_pressure_at_convective_cloud_top

					CMOR					
unformatted			4	CMOD Parada	variable		C		6	<u> </u>
units	cell_methods	positive	type	CMOR dimensions	name	realm	frequency	cell_measures	flag_values	flag_meanings
Pa	time: mean	1	real	longitude latitude time	ps	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude time	rsdt	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	rsut	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude time	rsdscs	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	rsuscs	atmos		area: areacella		
W m-2	time: mean	down	real	longitude latitude time	rldscs	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	rlutes	atmos		area: areacella		
W m-2	time: mean	up	real	longitude latitude time	rsutcs	atmos		area: areacella		
%	time: mean		real	longitude latitude time	clt	atmos		area: areacella		
kg m-2	time: mean		real	longitude latitude time	clwvi	atmos		area: areacella		
kg m-2	time: mean		real	longitude latitude time	clivi	atmos		area: areacella		
Pa s-1	time: mean		real	longitude latitude time p500	wap500	atmos		area: areacella		
K	time: mean		real	longitude latitude time p700	ta700	atmos		area: areacella		
Pa	time: mean		real	longitude latitude time	ccb	atmos		area: areacella		
Pa	time: mean		real	longitude latitude time	cct	atmos		area: areacella		

1 Convective Precipitation	kg m ⁻² s ⁻¹		prc	convective_precipitation_flux
1 Surface Upward Latent Heat Flux	W m ⁻²		hfls	surface_upward_latent_heat_flux
1 Surface Upward Sensible Heat Flux	W m ⁻²		hfss	surface_upward_sensible_heat_flux
Surface Downwelling Longwave Radiation	W m ⁻²		rlds	surface_downwelling_longwave_flux_in_air
1 Surface Upwelling Longwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-}2}$		rlus	$surface_upwelling_longwave_flux_in_air$
Surface Downwelling Shortwave Radiation	W m ⁻²		rsds	surface_downwelling_shortwave_flux_in_air
1 Surface Upwelling Shortwave Radiation	$W m^{-2}$		rsus	$surface_upwelling_shortwave_flux_in_air$
1 TOA Outgoing Longwave Radiation	W m ⁻²		rlut	toa_outgoing_longwave_flux
1 ISCCP Total Total Cloud Fraction	%		cltiscep	cloud_area_fraction
1 ISCCP Mean Cloud Albedo	1	When computing time-means, weight by the ISCCP Total Cloud Fraction - see http://www.cfmip.net/README	albiscep	cloud_albedo
1 ISCCP Mean Cloud Top Pressure	Pa	When computing time-means, weight by the ISCCP Total Cloud Fraction - see http://www.cfmip.net/README	pctiscep	air_pressure_at_cloud_top
1 PARASOL Reflectance	1	Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees).	parasolRefl	toa_bidirectional_reflectance
1 CALIPSO Total Cloud Fraction	%		cltcalipso	cloud_area_fraction
1 CALIPSO Low Level Cloud Fraction	%		cllcalipso	cloud_area_fraction_in_atmosphere_layer
1 CALIPSO Mid Level Cloud Fraction	%		clmcalipso	cloud_area_fraction_in_atmosphere_layer
1 CALIPSO High Level Cloud Fraction	%		clhcalipso	cloud_area_fraction_in_atmosphere_layer

In CMOR Table cfDay: "CFMIP daily 3D" --daily mean 3-D fields on model levels plus CALIPSO and ISCCP cloud fractions

ority					output variable	
<u>pri</u>	long name	units	comment	questions	name	standard name
1 Eastwa	rd Wind	m s ⁻¹			ua	eastward_wind
1 Northw	ard Wind	$\mathrm{m}\;\mathrm{s}^{\text{-1}}$			va	northward_wind
1 Air Tei	nperature	K			ta	air_temperature
1 Specifi	e Humidity	1			hus	specific_humidity
1 omega	(=dp/dt)	Pa s ⁻¹	commonly referred to as "omega", this represents the vertical component of velocity in pressure coordinates (positive down)		wap	lagrangian_tendency_of_air_pressure
1 Geopot	ential Height	m			zg	geopotential_height
1 Relativ	e Humidity	%	This is the relative humidity with respect to liquid water for $T>0$ C, and with respect to ice for $T<0$ C.		hur	relative_humidity
1 Cloud	Area Fraction in Atmosphere Layer	%			cl	cloud_area_fraction_in_atmosphere_layer

kg m-2 s-1	time: mean		real	longitude latitude time	prc	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	hfls	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	hfss	atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rlds	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rlus	atmos	area: areacella
W m-2	time: mean	down	real	longitude latitude time	rsds	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rsus	atmos	area: areacella
W m-2	time: mean	up	real	longitude latitude time	rlut	atmos	area: areacella
%	time: mean		real	longitude latitude time	cltisccp	atmos	area: areacella
1	time: mean		real	longitude latitude time	albisccp	atmos	area: areacella
Pa	time: mean		real	longitude latitude time	pctisccp	atmos	area: areacella
1	time: mean		real	longitude latitude sza5 time	parasolRefl	atmos	area: areacella
%	time: mean		real	longitude latitude time	cltcalipso	atmos	area: areacella
%	time: mean		real	longitude latitude time	cllcalipso	atmos	area: areacella
%	time: mean		real	longitude latitude time	clmcalipso	atmos	area: areacella
%	time: mean		real	longitude latitude time	clhcalipso	atmos	area: areacella

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
m s-1	time: mean		real	longitude latitude alevel time	ua	atmos				
m s-1	time: mean		real	longitude latitude alevel time	va	atmos				
K	time: mean		real	longitude latitude alevel time	ta	atmos		area: areacella		
1	time: mean		real	longitude latitude alevel time	hus	atmos		area: areacella		
Pa s-1	time: mean		real	longitude latitude alevel time	wap	atmos		area: areacella		
m	time: mean		real	longitude latitude alevel time	zg	atmos		area: areacella		
%	time: mean		real	longitude latitude alevel time	hur	atmos		area: areacella		
%	time: mean		real	longitude latitude alevel time	cl	atmos		area: areacella		

1 Mass Fraction of Cloud Liquid Water	1	Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.	clw	mass_fraction_of_cloud_liquid_water_in_air
1 Mass Fraction of Cloud Ice	1	Calculate as the mass of cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.	cli	mass_fraction_of_cloud_ice_in_air
1 Convective Mass Flux	kg m ⁻² s ⁻¹	Report on model half-levels (i.e., model layer bounds and not standard pressures). The net mass flux should represent the difference between the updraft and downdraft components. Calculate as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud).	mc	atmosphere_net_upward_convective_mass_flux
1 CALIPSO Cloud Fraction	%	40 levels	clcalipso	cloud_area_fraction_in_atmosphere_layer
1 ISCCP Cloud Area Fraction	%	7 levels x 7 tau	cliscop	cloud_area_fraction_in_atmosphere_layer
	70	, 2003 10 1111	спасер	
1 Pressure on Model Levels	Pa	This field is needed only for models in which the pressure can't be calculated from the vertical coordinate information stored already for each variable. Thus, the pressures are needed for height or theta-coordinate models, for example, but not sigma- or eta-coordinate models.	pfull	air_pressure

1	time: mean		real	longitude latitude alevel time	clw	atmos	area: areacella
1	time: mean		real	longitude latitude alevel time	cli	atmos	area: areacella
kg m-2 s-1	time: mean	up	real	longitude latitude alevhalf time	mc	atmos	area: areacella
%	time: mean		real	longitude latitude alt40 time	clcalipso	atmos	area: areacella
%	time: mean		real	longitude latitude tau plev7 time	clisccp	atmos	area: areacella
Pa	time: mean		real	longitude latitude alevel time	pfull	atmos	area: areacella
Pa	time: mean		real	longitude latitude alevhalf time	phalf	atmos	area: areacella

CMOR Table cf3hr: CFMIP 3-Hourly Cloud Diagnostic Fields

cf3hr

3hr

(All Saved on the Atmospheric Grid)

For further guidance, please see http://www.cfmip.net

The spread sheet "CFMIP output" specifies the simulations and time-periods for which the cloud diagnostic fields listed on this spread sheet should be saved.

In CMOR Table cf3hr: "CFMIP 3-hourly orbital offline" -- CloudSat/CALIPSO/PARASOL simulator output in orbital curtain format

(For most of these variables, extract simulator input variables from models along A-train orbits, and run COSP on these in 'offline' mode.)

Brie.	A Company of the Comp				output variable	·
Ď.	long name	units	comment	questions	name	standard name
1	CALIPSO Cloud Area Fraction	%	(40 height levels)		clcalipso	cloud_area_fraction_in_atmosphere_layer
1	CALIPSO Cloud Fraction Undetected by CloudSat	%	(40 height levels) Clouds detected by CALIPSO but below the detectability threshold of CloudSat		clcalipso2	cloud_area_fraction_in_atmosphere_layer
1	CloudSat Radar Reflectivity CFAD	1	CFADs (Cloud Frequency Altitude Diagrams) are joint height - radar reflectivity (or lidar scattering ratio) distributions (40 levelsx15 bins).		cfadDbze94	histogram_of_equivalent_reflectivity_factor_over_heig ht_above_reference_ellipsoid
1	CALIPSO Scattering Ratio CFAD	1	CFADs (Cloud Frequency Altitude Diagrams) are joint height - radar reflectivity (or lidar scattering ratio) distributions (40 levelsx15 bins).		cfadLidarsr532	histogram_of_backscattering_ratio_over_height_above reference_ellipsoid
1	PARASOL Reflectance	1	Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees).		parasolRefl	toa_bidirectional_reflectance
1	CALIPSO Total Cloud Fraction	%			cltcalipso	cloud_area_fraction
1	CALIPSO Low Level Cloud Fraction	%			cllcalipso	cloud_area_fraction_in_atmosphere_layer
1	CALIPSO Mid Level Cloud Fraction	%			clmcalipso	cloud_area_fraction_in_atmosphere_layer
1	CALIPSO High Level Cloud Fraction	%			clhcalipso	cloud_area_fraction_in_atmosphere_layer
1	Longitude	degrees_east	is a function of time. Note that the CF convention and CMOR2 require that this field will be included in each file that contains a variable that is a function of the "location" dimension, so there is no need to save this field by itself.		lon	longitude
1	Latitude	degrees_north	the above comment also applies to latitude.		lat	latitude
1	Offset Time	day	this "offset time" should be added to the value stored in the "time dimension" to get the actual time. This actual time is the time (UTC) of the corresponding point in the satellite orbit used to extract the model data.		toffset	time

unformatted units	cell methods	positive	tuno	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
wints %	time: point	positive	type real	location alt40 time1	clcalipso	atmos	rrequency	cen_measures	nag_values	mag_meanings
%	time: point		real	location alt40 time1	clcalipso2	atmos				
1	time: point		real	location alt40 dbze time1	cfadDbze94	atmos				
1	time: point		real	location alt40 scatratio time1	cfadLidarsr53	atmos				
1	time: point		real	location sza5 time1	parasolRefl	atmos				
%	time: point		real	location time1	cltcalipso	atmos				
%	time: point		real	location time1 p840	cllcalipso	atmos				
%	time: point		real	location time1 p560	clmcalipso	atmos				
%	time: point		real	location time1 p220	clhcalipso	atmos				
degrees_east	time: point		real	location time1	longitude	atmos				
degrees_north	time: point		real	location time1	latitude	atmos				
day			real	location time1	toffset	atmos				

In CMOR Table cf3hr: "CFMIP 3-hourly inline" -- 2-D fields as specified in the Amon table plus convective cloud fraction and 3-D fields on model levels (or half levels, as indicated) sampled synoptically every 3 hours (i.e., not time-mean) at 0Z, 3Z, 6Z, 9Z, 12Z, 15Z, 18Z, and 21Z.

Drios					output variable	
a	long name	units	comment	questions	name	standard name
1	(use names for Amon 2D table)		This table includes all the 2-D variables listed in the Amon table, omitting, however, the daily maximum and minimum temperatures. All variables should be reported as synoptic fields, not daily means.		include Amon 2D	
1	Convective Cloud Fraction	%	for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Include only convective cloud. Besides the quantities from the Amon table, this is the only other 2-D field in this table.		cltc	convective_cloud_area_fraction
2	Altitude of Model Full-Levels	m	This is actual height above mean sea level, not geopotential height		zfull	height_above_reference_ellipsoid
2	Altitude of Model Half-Levels	m	This is actual height above mean sea level, not geopotential height. This is actual height above mean sea level, not geopotential height. Include both the top of the model atmosphere and surface levels.		zhalf	height_above_reference_ellipsoid
2	Pressure at Model Full-Levels	Pa	provide this field for models in which the pressure can't be calculated from the vertical coordinate information stored already for each variable. Thus, the pressures are needed for height or theta-coordinate models, for example, but not sigma-or eta-coordinate models.		pfull	air_pressure
2	Pressure at Model Half-Levels	Pa	provide this field for models in which the pressure can't be calculated from the vertical coordinate information stored already for each variable. Thus, the pressures are needed for height or theta-coordinate models, for example, but not sigma-or eta-coordinate models.		phalf	air_pressure
2	Air Temperature	K			ta	air_temperature
2	Mass Fraction of Water	1	include all phases of water		h2o	mass_fraction_of_water_in_air
2	Mass Fraction of Stratiform Cloud Liquid Water	1	Calculate as the mass of stratiform cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.		clws	nass_fraction_of_stratiform_cloud_liquid_water_in_air
2	Mass Fraction of Stratiform Cloud Ice	1	Calculate as the mass of stratiform cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.		clis	mass_fraction_of_stratiform_cloud_ice_in_air
2	Mass Fraction of Convective Cloud Liquid Water	1	Calculate as the mass of convective cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.		clwc n	nass_fraction_of_convective_cloud_liquid_water_in_a ir

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
	time: point		real	longitude latitude time1		atmos		area: areacella		
%	time: point		real	longitude latitude time1	cltc	atmos		area: areacella		
m	time: point		real	longitude latitude alevel time1	zfull	atmos		area: areacella		
m	time: point		real	longitude latitude alevhalf time1	zhalf	atmos		area: areacella		
Pa	time: point		real	longitude latitude alevel time1	pfull	atmos		area: areacella		
Pa	time: point		real	longitude latitude alevhalf time1	phalf	atmos		area: areacella		
K	time: point		real	longitude latitude alevel time1	ta	atmos		area: areacella		
1	time: point		real	longitude latitude alevel time1	h2o	atmos		area: areacella		
1	time: point		real	longitude latitude alevel time1	clws	atmos		area: areacella		
1	time: point		real	longitude latitude alevel time l	clis	atmos		area: areacella		
1	time: point		real	longitude latitude alevel time1	clwc	atmos		area: areacella		

2 Mass Fraction of Convective Cloud Ice	1	Calculate as the mass of convective cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.	clic	mass_fraction_of_convective_cloud_ice_in_air
2 Hydrometeor Effective Radius of Stratiform Cloud Liquid Water	m	This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell).	reffclws	effective_radius_of_stratiform_cloud_liquid_water_par ticle
2 Hydrometeor Effective Radius of Stratiform Cloud Ice	m	This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell).	reffclis	effective_radius_of_stratiform_cloud_ice_particle
2 Hydrometeor Effective Radius of Convective Cloud Liquid Water	m	This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell).	reffclwc	effective_radius_of_convective_cloud_liquid_water_pa rticle
2 Hydrometeor Effective Radius of Convective Cloud Ice	m	This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell).	reffclic	effective_radius_of_convective_cloud_ice_particle
2 Stratiform Graupel Flux	$kg m^{-2} s^{-1}$	report on model half-levels	grpllsprof	large_scale_graupel_flux
2 Convective Rainfall Flux	kg m ⁻² s ⁻¹	report on model half-levels	prcprof	convective_rainfall_flux
2 Stratiform Rainfall Flux	kg m ⁻² s ⁻¹	report on model half-levels	prlsprof	large_scale_rainfall_flux
2 Convective Snowfall Flux	kg m ⁻² s ⁻¹	report on model half-levels	prsnc	convective_snowfall_flux
2 Stratiform Snowfall Flux	kg m ⁻² s ⁻¹	report on model half-levels	prlsns	large_scale_snowfall_flux
2 Hydrometeor Effective Radius of Stratiform Graupel	m	This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell).	reffgrpls	effective_radius_of_stratiform_cloud_graupel_particle
2 Hydrometeor Effective Radius of Convective Rainfall	m	This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell).	reffrainc	effective_radius_of_convective_cloud_rain_particle
2 Hydrometeor Effective Radius of Stratiform Rainfall	m	This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell).	reffrains	effective_radius_of_stratiform_cloud_rain_particle
2 Hydrometeor Effective Radius of Convective Snowfall	m	This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell).	reffsnowc	effective_radius_of_convective_cloud_snow_particle
2 Hydrometeor Effective Radius of Stratiform Snowfall	m	This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell).	reffsnows	effective_radius_of_stratiform_cloud_snow_particle
Stratiform Cloud Optical Depth	1	This is the in-cloud optical depth obtained by considering only the cloudy portion of the grid cell.	dtaus	atmosphere_optical_thickness_due_to_stratiform_clou d

1	time: point	real	longitude latitude alevel time1	clic	atmos	area: areacella
m	time: point	real	longitude latitude alevel time1	reffclws	atmos	area: areacella
m	time: point	real	longitude latitude alevel time1	reffclis	atmos	area: areacella
m	time: point	real	longitude latitude alevel time1	reffclwc	atmos	area: areacella
m	time: point	real	longitude latitude alevel time1	reffclic	atmos	area: areacella
kg m-2 s-1	time: point	real	longitude latitude alevel time1	grpllsprof	atmos	area: areacella
kg m-2 s-1	time: point	real	longitude latitude alevel time1	preprof	atmos	area: areacella
kg m-2 s-1	time: point	real	longitude latitude alevel time1	prlsprof	atmos	area: areacella
kg m-2 s-1	time: point	real	longitude latitude alevel time1	prsnc	atmos	area: areacella
kg m-2 s-1	time: point	real	longitude latitude alevel time1	prlsns	atmos	area: areacella
m	time: point	real	longitude latitude alevel time1	reffgrpls	atmos	area: areacella
m	time: point	real	longitude latitude alevel time1	reffrainc	atmos	area: areacella
m	time: point	real	longitude latitude alevel time1	reffrains	atmos	area: areacella
m	time: point	real	longitude latitude alevel time1	reffsnowc	atmos	area: areacella
m	time: point	real	longitude latitude alevel time1	reffsnows	atmos	area: areacella
1	time: point	real	longitude latitude alevel time1	dtaus	atmos	area: areacella

2 Convective Cloud Optical Depth	1	This is the in-cloud optical depth obtained by considering only the cloudy portion of the grid cell	dtauc	atmosphere_optical_thickness_due_to_convective_clou
2 Stratiform Cloud Emissivity	1	This is the in-cloud emissivity obtained by considering only the cloudy portion of the grid cell.	dems	$stratiform_cloud_longwave_emissivity$
2 Convective Cloud Emissivity	1	This is the in-cloud emissivity obtained by considering only the cloudy portion of the grid cell.	demc	convective_cloud_longwave_emissivity
2 Convective Cloud Area Fraction	%		clc	convective_cloud_area_fraction_in_atmosphere_layer
2 Stratiform Cloud Area Fraction	%		cls	stratiform_cloud_area_fraction_in_atmosphere_layer

1	time: point	real	longitude latitude alevel time1	dtauc	atmos	area: areacella	
1	time: point	real	longitude latitude alevel time1	dems	atmos	area: areacella	
1	time: point	real	longitude latitude alevel time1	demc	atmos	area: areacella	
%	time: point	real	longitude latitude alevel time1	clc	atmos	area: areacella	
%	time: point	real	longitude latitude alevel time1	cls	atmos	area: areacella	

CMOR Table cfSites: CFMIP high frequency Cloud Diagnostic Fields

cfSites

subhr

(sampled only at specified locations)

For further guidance, please see http://www.cfmip.net

The spread sheet "CFMIP output" specifies the simulations and time-periods for which the cloud diagnostic fields listed on this spread sheet should be saved.

CMOR Table cfSites: "CFMIP Timestep Station Data" -- 2-D fields from the Amon table and 3-D fields on model levels sampled at 20 to 30 minute intervals at 73 specified locations for aquaplanet experiments and 119 specified locations for other experiments (see http://cfmip.metoffice.com/cfmip2/pointlocations.txt). Note that the column labeled "CMOR dimensions" indicates that these variables are a function of longitude and latitude. When writing the data to the netCDF file, however, the axis for the 119 (or 73) locations will be a simple index named "site", and CMOR defines this as a "grid axis" that has associated longitudes and latitudes. See CMOR documentation for instructions on defining a 1-dimensional grid axis of this kind.

The sampling interval should be the integer multiple of the model time-step that is nearest to 30 minutes and divides into 60 minutes with no remainder. e.g. (30->30,20->20,15->30,10->30). Outputs should be instantaneous (not time mean) and from nearest gridbox (no spatial interpolation.) Note that except for the quantities appearing in the Amon spreadsheet (first line of table below), all other fields are 3-D.

Priorit					output variable	
<u> </u>	long name	units	comment	questions	name	standard name
1	(use names from Amon 2D table)		This table includes the 2-D variables listed in the "Amon" spreadsheet, omitting, however, the daily maximum and minimum temperatures. All variables should be reported as synoptic fields, not daily means.		include Amon 2D	
1	Cloud Area Fraction	%	Include both large-scale and convective cloud.		cl	cloud_area_fraction_in_atmosphere_layer
1	Mass Fraction of Cloud Liquid Water	1	Include both large-scale and convective cloud. Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.		clw	mass_fraction_of_cloud_liquid_water_in_air
1	Mass Fraction of Cloud Ice	1	Include both large-scale and convective cloud. Calculate as the mass of cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. Include precipitating hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model.		cli	mass_fraction_of_cloud_ice_in_air
1	Convective Mass Flux	kg m ⁻² s ⁻¹	Report on model half-levels (i.e., model layer bounds and not standard pressures). The net mass flux should represent the difference between the updraft and downdraft components. Calculate as the convective mass flux divided by the area of the whole grid cell (not just the area of the updrafts).		mc	atmosphere_net_upward_convective_mass_flux
1	Air Temperature	K			ta	air_temperature

unformatted units	cell_methods	positive	type	CMOR dimensions	CMOR variable name	realm	frequency	cell_measures	flag_values	flag_meanings
	time: point		real	site time1		atmos				
%	time: point		real	alevel site time1	cl	atmos				
1	time: point		real	alevel site time1	clw	atmos				
1	time: point		real	alevel site time1	cli	atmos				
kg m-2 s-1	time: point	ир	real	alevhalf site time1	mc	atmos				
K	time: point		real	alevel site time1	ta	atmos				

1 Eastward Wind	m s ⁻¹		ua	eastward_wind
1 Northward Wind	m s ⁻¹		va	northward_wind
1 Specific Humidity	111 8		hus	specific_humidity
1 Relative Humidity	%	This is the relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C.	hur	relative_humidity
1 omega (=dp/dt)	Pa s ⁻¹	commonly referred to as "omega", this represents the vertical component of velocity in pressure coordinates (positive down)	wap	lagrangian_tendency_of_air_pressure
1 Geopotential Height	m		zg	geopotential_height
1 Upwelling Longwave Radiation	W m ⁻²		rlu	upwelling_longwave_flux_in_air
1 Upwelling Shortwave Radiation	W m ⁻²		rsu	upwelling_shortwave_flux_in_air
1 Downwelling Longwave Radiation	W m ⁻²		rld	downwelling_longwave_flux_in_air
1 Downwelling Shortwave Radiation	W m ⁻²		rsd	downwelling_shortwave_flux_in_air
1 Upwelling Clear-Sky Longwave Radiation	W m ⁻²		rlucs	upwelling_longwave_flux_in_air_assuming_clear_sky
Upwelling Clear-Sky Shortwave Radiation	$\mathrm{W}~\mathrm{m}^{\text{-}2}$		rsucs	upwelling_shortwave_flux_in_air_assuming_clear_sky
Downwelling Clear-Sky Longwave Radiation	W m ⁻²		rldcs	downwelling_longwave_flux_in_air_assuming_clear_s ky
Downwelling Clear-Sky Shortwave Radiation	$\mathrm{W} \; \mathrm{m}^{\text{-}2}$		rsdcs	downwelling_shortwave_flux_in_air_assuming_clear_s ky
1 Tendency of Air Temperature	$K s^{-1}$		tnt	tendency_of_air_temperature
Tendency of Air Temperature due to Advection	$K s^{-1}$		tnta	tendency_of_air_temperature_due_to_advection
Tendency of Air Temperature due to Diabatic Processes	K s ⁻¹		tntmp	tendency_of_air_temperature_due_to_model_physics
Tendency of Air Temperature due to 1 Stratiform Cloud Condensation and Evaporation	K s ⁻¹		tntscpbl	tendency_of_air_temperature_due_to_stratiform_cloud _and_precipitation_and_boundary_layer_mixing
Tendency of Air Temperature due to Radiative Heating	K s ⁻¹		tntr	tendency_of_air_temperature_due_to_radiative_heating
Tendency of Air Temperature due to Moist Convection	$K s^{-1}$		tntc	tendency_of_air_temperature_due_to_convection
1 Tendency of Specific Humidity	s^{-1}		tnhus	tendency_of_specific_humidity
Tendency of Specific Humidity due to Advection	s^{-1}		tnhusa	$tendency_of_specific_humidity_due_to_advection$
Tendency of Specific Humidity due to Convection	s ⁻¹		tnhusc	tendency_of_specific_humidity_due_to_convection
Tendency of Specific Humidity due to Diffusion	s ⁻¹		tnhusd	tendency_of_specific_humidity_due_to_diffusion
Tendency of Specific Humidity due to 1 Stratiform Cloud Condensation and Evaporation	s ⁻¹		tnhusscpbl	tendency_of_specific_humidity_due_to_stratiform_clo ud_and_precipitation_and_boundary_layer_mixing
Tendency of Specific Humidity due to Model Physics	s ⁻¹		tnhusmp	tendency_of_specific_humidity_due_to_model_physics
1 Eddy Viscosity Coefficient for Momentum Variables	$m^2 s^{-1}$		evu	atmosphere_momentum_diffusivity
Eddy Diffusivity Coefficient for Temperature Variable	$m^2 s^{-1}$		edt	atmosphere_heat_diffusivity

m s-1	time: point		real	alevel site time1	ua	atmos	
m s-1	time: point		real	alevel site time1	va	atmos	
1	time: point		real	alevel site time1	hus	atmos	
%	time: point		real	alevel site time1	hur	atmos	
Pa s-1	time: point		real	alevel site time1	wap	atmos	
m	time: point		real	alevel site time1	zg	atmos	
W m-2	time: point	up	real	alevel site time1	rlu	atmos	
W m-2	time: point	up	real	alevel site time1	rsu	atmos	
W m-2	time: point	down	real	alevel site time1	rld	atmos	
W m-2	time: point	down	real	alevel site time1	rsd	atmos	
W m-2	time: point	up	real	alevel site time1	rlucs	atmos	
W m-2	time: point	up	real	alevel site time1	rsucs	atmos	
vv 111-∠	ume. pomi	up	rear	alevel site tillet	ISUCS	aunos	
W m-2	time: point	down	real	alevel site time1	rldcs	atmos	
W m-2	time: point	down	rool	alevel site time1	rsdcs	atmos	
	time: point	uown	real			atmos	
K s-1	time: point		real	alevel site time1	tnt	atmos	
K s-1	time: point		real	alevel site time1	tnta	atmos	
K s-1	time: point		real	alevel site time1	tntmp	atmos	
12.5-1	time. point		Total	ulever site timer	шшр	umos	
K s-1	time: point		real	alevel site time1	tntscpbl	atmos	
K s-1	time: point		real	alevel site time1	tntr	atmos	
K s-1	time: point		real	alevel site time1	tntc	atmos	
s-1	time: point		real	alevel site time1	tnhus	atmos	
s-1	time: point		real	alevel site time1	tnhusa	atmos	
s-1	time: point		real	alevel site time1	tnhusc	atmos	
s-1	time: point		real	alevel site time1	tnhusd	atmos	
	•						
s-1	time: point		real	alevel site time1	tnhusscpbl	atmos	
s-1	time: point		real	alevel site time1	tnhusmp	atmos	
2 1	4:		1	alassal aita tima 1		-4	
m2 s-1	time: point		real	alevel site time1	evu	atmos	
m2 s-1	time: point		real	alevel site time1	edt	atmos	

1	Pressure on Model Levels	Pa	This field is needed only for models in which the pressure can't be calculated from the vertical coordinate information stored already for each variable. Thus, the pressures are needed for height or theta-coordinate models, for example, but not sigma- or eta-coordinate models.	pfull	air_pressure
1	Pressure on Model Half-Levels	Pa	This field is needed only for models in which the pressure can't be calculated from the vertical coordinate information stored already for each variable. Thus, the pressures are needed for height or theta-coordinate models, for example, but not sigma- or eta-coordinate models.	phalf	air_pressure
1	Longitude	degrees_east	Note that the CF convention and CMOR2 require that this field will be included in each file that contains a variable that is a function of the "site" dimension, so there is no need to save this field by itself. It is included here simply to indicate that longitudes should be stored for the site grid in each file written.	lon	longitude
1	Latitude	degrees north	the above comment also applies to latitude.	lat	latitude

Pa	time: point	real	alevel site time1	pfull	atmos	
Pa	time: point	real	alevel site time1	phalf	atmos	
degrees_east	0	real	site	longitude	atmos	
degrees_north	-90	real	site	latitude	atmos	

Requested output: years requested for each expt./output table combination (see CFMIP output sheet for information on time-periods for saving the special CFMIP-focused output.

red font means output should be reported for only a single member in the case of an ensemble of simulations

blue font means this is a lower priority request

If a cell is shaded yellow, none of the variables will be part of the subset of model output that will be replicated at several locations (except, as noted by * or ** -- see note at right-- this may apply only to lower priority variables)

"all*" indicates that although all *years* will be included in the "replicat medium priority *variables* will be included in the replicated subset. "all**" indicates that although all *years* will be included in the "replicated priority *variables* will be included in the replicated subset

"decadal" predic	ction experiments		Oclim	Oyr	Amon	Om	on	Lmon	Limon	Oimon	
Experiment	Description	Expt. #				lon x lat x olev	other				lon x lat
10-year predictions	10-year hindcasts/predictions	1.1		all*	all	all**	all	all	all	all	all
30-year predictions	30-year hindcasts/predictions	1.2		all*	all	all**	all	all	all	all	all
10-year predictions	increased ensemble size of 1.1	1.1-E		all*	all	all**	all	all	all	all	all
30-year predictions	increased ensemble size of 1.2	1.2-E		all*	all	all**	all	all	all	all	all
10-year predictions	additional start dates for expts. 1.1	1.1-I		all*	all	all**	all	all	all	all	all
AMIP	AMIP (1979-2008)	3.3			all			all	all	all	all
pre-industrial control	control run, but possibly as short as 100 years	3.1-S		all*	all	all**	all	all	all	all	all
1 percent per year CO2	1% per year CO2 rise imposed	6.1-S		all*	all	all**	all	all	all	all	
volcano-free hindcasts	hindcasts but without volcanoes	1.3		all*	all	all**	all	all	all	all	all
prediction with 2010 volcano	Pinatubo-like eruption imposed	1.4		all*	all	all**	all	all	all	all	all
initialization alternatives	experiments to explore impact of different initialization procedures	1.5		all*	all	all**	all	all	all	all	all
chemistry-focused runs	near-term runs with enhanced chemistry/aerosol models	1.6									

ted" subset, only the high and ated" subset, only the highest

aero	day		6hrLev	6hrPlev	3hr
lon x lat x alev	subset of fields saved for selected expts.	other			lon x lat
year 10		all	for expts. initialized in late 1980, 1990, and 2005, all years	all	all
years 10, 20, & 30		all	for expts. initialized in late 1980 and 2005, all years	all	all
year 10		all	Ž	all	all
years 10, 20, & 30		all		all	all
year 10		all		all	all
years 1980, 1990, 2000, & possibly 2010	all	all	all	all	all
years 20, 40, 60, 80, & 100		all			30
		all			last 30
year 10		all		all	all
years 2010, 2011, 2012, and 2015		all		all	all
year 10		all		all	all

experiments focusing on the "longer-term"			Oclim	Oyr	Amon	Om	on	Lmon	Limon	Oimon	
Experiment	Description	Expt. #				lon x lat x olev	other				lon x lat
pre-industrial control	coupled atmosphere/ocean control run	3.1		all*	all	all**	all	all	all	all	all
historical	simulation of recent past (1850-2005)	3.2	1986-2005 monthly climatology	all*	all	all**	all	all	all	all	all
AMIP	AMIP (1979-2008)	3.3			all			all	all	all	all
historical	increase ensemble size of expt. 3.2	3.2-E		all*	all	all**	all	all	all	all	all
AMIP	increase ensemble size of expt. 3.3	3.3-E			all			all	all	all	all
mid-Holocene	consistent with PMIP, impose Mid-Holocene conditions	3.4		all*	all	all**	all	all	all	all	all
last glacial maximum	consistent with PMIP, impose last glacial maximum conditions	3.5		all*	all	all**	all	all	all	all	all
last millennium	consistent with PMIP, impose forcing for 850-1850	3.6		all*	all	all**	all	all	all	all	all
RCP4.5	future projection (2006-2100) forced by RCP4.5	4.1		all*	all	all**	all	all	all	all	all
RCP8.5	future projection (2006-2100) forced by RCP8.5	4.2		all*	all	all**	all	all	all	all	all
RCP2.6	future projection (2006-2100) forced by RCP2.6	4.3		all*	all	all**	all	all	all	all	all
RCP6	future projection (2006-2100) forced by RCP6	4.4		all*	all	all**	all	all	all	all	all
RCP4.5	extension of expt. 4.1 through 2300	4.1-L		all*	all	all**	all	all	all	all	all
RCP8.5	extension of expt. 4.2 through 2300	4.2-L		all*	all	all**	all	all	all	all	all
RCP2.6	extension of expt. 4.3 through 2300	4.3-L		all*	all	all**	all	all	all	all	all

aero	day		6hrLev	6hrPlev	3hr
lon x lat x alev	subset of fields saved for selected expts.	other			
years corresponding to years 1850, 1870, 1890, , 1950, 1960, 1970, , 2000 of only 1 member of the ensemble of historical run and years 2010, 2020, 2040, 2060, 2080, & 2100 of only 1 member of the ensemble of each of the RCP cases	20 years corresponding to years 1986-2005 of only 1 member of the ensemble of historical runs	all		30 years corresponding to 1979-2008 of historical run	30 years corresponding to years 111-140 of 1pctCO2
years 1850, 1870, 1890, , 1950, 1960, 1970, , 2000	1950-2005	all	1950-2005	1950-2005	1960-2005
1980, 1990, 2000, & possibly 2010	all	all	all	all	all
years 1850, 1870, 1890,, 1950, 1960, 1970,, 2000		all		1950-2005	1960-2005
1980, 1990, 2000, & possibly 2010		all		all	all
		all		last 30 years	
		all		last 30 years	
		all			
2010, 2020, 2040, 2060, 2080, & 2100	all	all	all	all	2026-2045, 2081- 2100
2010, 2020, 2040, 2060, 2080, & 2100	all	all	all	all	2026-2045, 2081- 2100
2010, 2020, 2040, 2060, 2080, & 2100	all	all			2026-2045, 2081- 2100
2010, 2020, 2040, 2060, 2080, & 2100	all	all			2026-2045, 2081- 2100
2010, 2020, 2040, 2060, 2080, & 2100	2181-2200, 2281- 2300	all			2181-2200, 2281- 2300
2010, 2020, 2040, 2060, 2080, & 2100	2181-2200, 2281- 2300	all			2181-2200, 2281- 2300
2010, 2020, 2040, 2060, 2080, & 2100	2181-2200, 2281- 2300	all			2181-2200, 2281- 2300

ESM pre-industrial control	as in expt. 3.1, but atmospheric CO2 determined by model	5.1	all*	all	all**	all	all	all	all	all
Emission-driven historical	as in expt. 3.2, but with atmospheric CO2 determined by model	5.2	all*	all	all**	all	all	all	all	all
emission-driven RCP8.5	as in expt. 4.2, but with atmospheric CO2 determined by model	5.3	all*	all	all**	all	all	all	all	all
ESM fixed climate 1	radiation code "sees" control CO2, but carbon cycle sees 1%/yr rise	5.4-1	all*	all	all**	all	all	all	all	all
ESM fixed climate 2	radiation code "sees" control CO2, but carbon cycle sees historical followed by RCP4.5 rise in CO2	5.4-2	all*	all	all**	all	all	all	all	all
ESM feedback 1	carbon cycle "sees" control CO2, but radiatation sees 1%/yr rise	5.5-1	all*	all	all**	all	all	all	all	all
ESM feedback 2	carbon cycle "sees" control CO2, but radiatation sees historical followed by RCP4.5 rise in CO2	5.5-2	all*	all	all**	all	all	all	all	all
1 percent per year CO2	imposed 1%/yr increase in CO2 to quadrupling	6.1	all*	all	all**	all	all	all	all	
control SST climatology	An atmosphere-only run driven by prescribed climatological SST and sea ice.	6.2a		all			all	all	all	all
CO2 forcing	as in expt. 6.2a, but with 4XCO2 imposed	6.2b		all			all	all	all	
abrupt 4XCO2	impose an instantaneous quadrupling of CO2, then hold fixed	6.3		all	all**	all	all	all	all	
abrupt 4XCO2	generate an ensemble of runs like expt. 6.3, initialized in different months, and terminated after 5 years	6.3-E		all	all**	all	all	all	all	
anthropogenic aerosol forcing	as in expt. 6.2a, but with anthropogenic aerosols from year 2000 of expt. 3.2	6.4a		all			all	all	all	all
sulfate aerosol forcing	as in expt. 6.2a, but with sulfate aerosols from year 2000 of expt. 3.2	6.4b		all			all	all	all	all
Cloud response to imposed 4xCO2	consistent with CFMIP, impose AMIP (1979-2008) conditions (expt. 3.3) but with 4xCO2	6.5		all			all	all	all	
Cloud response to an imposed change in SST pattern	consistent with CFMIP, add a patterned SST perturbation to AMIP SSTs of expt. 3.3.	6.6		all			all	all	all	
aqua planet: control run	consistent with CFMIP, impose zonally uniform SSTs on a planet without continents	6.7a		all						
aqua planet: cloud response to imposed 4xCO2	Consistent with CFMIP requirements, impose $4xCO_2$ on the zonally uniform SSTs of expt. 6.7a	6.7b		all						
Aqua-planet: cloud response to an imposed uniform change in SST.	Consistent with CFMIP requirements, add a uniform +4K to the zonally uniform SSTs of expt. 6.7a (which is the control for this run).	6.7c		all						

years corresponding to years 1850, 1870, 1890,, 1950, 1960, 1970,, 2000 of the historical run and years 2010, 2020, 2040, 2060, 2080, & 2100 of the RCP run	20 years corresponding to years 1986-2005 of historical run	all		
years 1850, 1870, 1890,, 1950, 1960, 1970,, 2000	1950-2005	all		1960-2005
2010, 2020, 2040, 2060, 2080, & 2100	all	all		2026-2045, 2081- 2100
		all		
		all		last 30
		all		all
		all		all
		all		first 20 years and years 121-140
		all		all
		all		all
		all		all
		all		

other output

Cloud response to an imposed uniform change in SST	Consistent with CFMIP requirements, add a uniform +4 K SST to the AMIP SSTs of expt. 3.3 (which is the "control" for this run).	6.8		all			all	all	all	
natural-only	historical simulation but with natural forcing only	7.1	all*	all	all**	all	all	all	all	all
GHG-only	historical simulation but with greenhouse gas forcing only	7.2	all*	all	all**	all	all	all	all	
other-only	historical simulation but with other individual forcing agents	7.3	all*	all	all**	all	all	all	all	all
natural-only	increase ensemble size of expt. 7.1	7.1-E	all*	all	all**	all	all	all	all	all
GHG-only	increase ensemble size of expt. 7.2	7.2-E	all*	all	all**	all	all	all	all	
other-only	increase ensemble size of expt. 7.3	7.3-E	all*	all	all**	all	all	all	all	all

all		
all		

atmosphere-onl	y experiments	Oclim	Oyr	Amon	Omon	Lmon	Limon	Oimon		
Experiment	Description	Expt. #				lon x lat x olev other				lon x lat
AMIP	AMIP (1979-2008)	3.3			all		all	all	all	all
2030 time-slice	conditions for 2026-2035 imposed	2.1			all		all	all	all	all
AMIP	increase ensemble size of expt. 3.3	3.3-E			all		all	all	all	all
2030 time-slice	increase ensemble size of expt. 2.1	2.1-E			all		all	all	all	all
Cloud response to imposed 4xCO2	consistent with CFMIP, impose AMIP (1979-2008) conditions (expt. 3.3) but with 4xCO2	6.5			all		all	all	all	
Cloud response to an imposed change in SST pattern	consistent with CFMIP, add a patterned SST perturbation to AMIP SSTs of expt. 3.3.	6.6			all		all	all	all	
aqua planet: control run	consistent with CFMIP, impose zonally uniform SSTs on a planet without continents	6.7a			all					
aqua planet: cloud response to imposed 4xCO2	Consistent with CFMIP requirements, impose $4xCO_2$ on the zonally uniform SSTs of expt. 6.7a	6.7b			all					
Aqua-planet: cloud response to an imposed uniform change in SST.	Consistent with CFMIP requirements, add a uniform +4K to the zonally uniform SSTs of expt. 6.7a (which is the control for this run).	6.7c			all					
Cloud response to an imposed uniform change in SST	Consistent with CFMIP requirements, add a uniform +4 K SST to the AMIP SSTs of expt. 3.3 (which is the "control" for this run).	6.8			all		all	all	all	

aero	day		6hrLev	6hrPlev	3hr
	subset of fields saved for selected				
lon x lat x alev	expts.	other			
years 1980, 1990, 2000, & possibly 2010	all	all	all	all	all
year 2035	all	all		all	all
years 1980, 1990, 2000, & possibly 2010		all		all	all
year 2035		all			
		all			

If a cell is shaded yellow/tan, none of the variables will be part of the subset of model output that will be replicated at several locations.

Reqeusted periods j	appearing in cfMo								
Experiment Name	Experiment Description	Experiment number Grant Agent		CHART HOURSHAR COLLED					
pre-industrial control	coupled atmosphere/ocean control run	3.1			1*	20*			
pre-industrial control	coupled atmosphere/ocean control run	3.1							
historical	simulation of recent past (1850-2005)	3.2							
AMIP	AMIP (1979-at least 2008)	3.3	1979	2008	1979	2008	1979	2008	
ESM fixed climate 1	radiation code "sees" control CO2, but carbon cycle sees 1%/yr rise	5.4-1							
ESM feedback 1	carbon cycle "sees" control CO2, but radiatation sees 1%/yr rise	5.5-1							
1 percent per year CO2	impose a 1%/yr increase in CO2 to quadrupling	6.1							
control SST climatology	control run climatological SSTs & sea ice imposed.	6.2a			1	30			
CO2 forcing	as in expt. 6.2a, but with 4XCO2 imposed	6.2b							
abrupt 4XCO2	impose an instantaneous quadrupling of CO2, then hold fixed	6.3							
abrupt 4XCO2	impose an instantaneous quadrupling of CO2, then hold fixed	6.3							
abrupt 4XCO2	generate an ensemble of runs like expt. 6.3, initialized in different months, and terminated after 5 years	6.3-E							
all aerosol forcing	as in expt. 6.2a, but with aerosols from year 2000 of expt. 3.2	6.4a							
sulfate aerosol forcing	as in expt. 6.2a, but with sulfate aerosols from year 2000 of expt. 3.2	6.4b							
4xCO2 AMIP	AMIP (1979-2008) conditions (expt. 3.3) but with 4xCO2	6.5	1979	2008					
AMIP plus patterned anomaly	consistent with CFMIP, patterned SST anomalies added to AMIP conditions (expt. 3.3)	6.6	1979	2008					
aqua planet control	consistent with CFMIP, zonally uniform SSTs for ocean-covered earth	6.7a	1	5	1	5	1	5	
4xCO2 aqua planet	as in expt. 6.7a, but with 4XCO2	6.7b	1	5					
aqua planet plus 4K anomaly	as in expt. 6.7a, but with a uniform 4K increase in SST	6.7c	1	5					
AMIP plus 4K anomaly	as in expt. 3.3, but with a uniform 4K increase in SST	6.8	1979	2008					

		appearing	in cfOff		appearing in cfDay				appearing	appearing in cfSites			
CFMR*	profit diffe			Challe feith	A Parch	CANTR BEST	30 (Alth Asi	CEME SH	outh of the last o	CENTY 3 HOS	de la	CRMR time.	gel has
1*	20*			1*	20*								
121* 1979	140* 2005			121* 1979	140* 2005	121*	140*						
1979	2003	2008	2008	1979	2008	1979	2008	2008	2008	2008	2008	1979	2008
121	140			121	140								
121	140			121	140								
121	140			121	140	121	140						
1	30			1	30								
1	30			1	30								
1 121	20 140			1 121	20 140	121	140						
				121		121	140						
1	5			1	5								
1	30			1	30								
1	30			1	30								
1979	2008	2008	2008	1979	2008	1979	2008	2008	2008			1979	2008
1979	2008	2008	2008	1979	2008	1979	2008	2008	2008			1979	2008
1	5			1	5	1	5					1	5
1	5			1	5	1	5					1	5
1	5			1	5	1	5					1	5
1979	2008	2008	2008	1979	2008	1979	2008	2008	2008			1979	2008

* The years specified for the pre-industrial experiment are relative to the point in the control where expts. 6.1 and 6.3 were initiated. 6.1 and 6.3 should be initiated from the same point in the control run, so that the control run sampled output can be compared directly to each of these runs, and any drift in the control can be accounted for.