

**(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)**

**(19) Organisation Mondiale de la Propriété
Intellectuelle**
Bureau international

(43) Date de la publication internationale
27 septembre 2001 (27.09.2001)

PCT

(10) Numéro de publication internationale
WO 01/71356 A2

(51) Classification internationale des brevets⁷ :
**G01N 33/68, C07K 14/195, 14/435, C12N 15/12, 15/31,
G01N 33/68, C12N 15/31, 15/12, C07K 14/195, 14/47**

(FR). NOIREAUX, Vincent [FR/FR]; 4, rue de la Ridenne, F-41120 Cormeay (FR). SYKES, Cécile [FR/FR]; 3, villa Coeur de Vey, F-75014 Paris (FR).

(21) Numéro de la demande internationale :
PCT/FR01/00843

(74) Mandataires : DEMACHY, Charles etc.; Grosset-Fournier & Demachy SARL, 20, rue de Maubeuge, F-75009 Paris (FR).

(22) Date de dépôt international : 21 mars 2001 (21.03.2001)

(25) Langue de dépôt : français

BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GR, GE, GU, GM, HR

(26) Langue de publication : français

HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ

(30) Données relatives à la priorité :
00/03637 22 mars 2000 (22.03.2000) FR

TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(71) Déposants (*pour tous les États désignés sauf US*) :
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen

(72) Inventeurs; et
(75) Inventeurs/Déposants (*pour US seulement*) :
FRADELIZI, Julie [FR/FR]; 88bis, boulevard de
Port-Royal, F-75005 Paris (FR). FRIEDERICH, Evelyne
[LU/LD]; 13, rue Bessemér Eschiallette, L-4032 Luxem-

Publiée :

- sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations

Publiée :

— sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: PEPTIDE SEQUENCES COMPRISING ONE OR SEVERAL PROTEIN BINDING UNITS OF THE ENA/VASP FAMILY, AND USES THEREOF

(54) Titre : SEQUENCES PEPTIDIQUES COMPRENNANT UN OU PLUSIEURS MOTIFS DE LIAISON AUX PROTEINES DE LA FAMILLE Ena/VASP, ET LEURS UTILISATIONS

(57) Abstract: The invention concerns the use of proteins or peptides comprising one or several protein binding units of the Ena/VASP family, said proteins or peptides not binding with the Arp2/3 protein complex, in particular fragments of the ActA protein of *Listeria monocytogenes*, or proteins of the zyxin family, for preparing reagents for use in implementing a process detecting and screening molecules having an inhibiting or stimulating effect on the formation of actin cytoskeleton.

(57) Abrégé : La présente invention a pour objet l'utilisation de protéines ou peptides comprenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdites protéines ou peptides ne se liant pas au complexe protéique Arp2/3, notamment de fragments de la protéine ActA de *Listeria monocytogenes*, ou de protéines de la famille de la zyxine, pour la préparation de réactifs utilisables dans le cadre de la mise en oeuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine.

SEQUENCES PEPTIDIQUES COMPRENANT UN OU PLUSIEURS MOTIFS DE LIAISON AUX PROTEINES DE LA FAMILLE Ena/VASP, ET LEURS UTILISATIONS

5

La présente invention a pour objet des séquences peptidiques comprenant au moins un motif de liaison aux protéines de la famille Ena/VASP, ainsi que l'utilisation de telles séquences notamment dans le cadre de procédés de détection de molécules ayant un effet d'inhibition ou de stimulation de la formation de cytosquelette d'actine.

10

Les cellules de notre corps sont capables de se déplacer et, parfois, elles s'arrondissent et se divisent en deux cellules sœur. Tous ces mouvements sont basés sur le cytosquelette d'actine. A un stade multicellulaire, le cytosquelette joue un rôle essentiel pour l'organisation du corps et pour l'homéostasie. Par exemple, la migration cellulaire est essentielle dans l'embryogenèse et la réponse immunitaire ainsi que lors de la réparation de blessures où les cellules migrent vers les régions endommagées. Ces mouvements sont dépendants du fonctionnement normal du cytosquelette d'actine. Les conséquences de la perturbation du fonctionnement du cytosquelette peuvent être désastreuses pour l'organisme. Dans les processus métastatiques, par exemple, l'absence de contrôle du cytosquelette des cellules tumorales peut provoquer leur migration en dehors de leur localisation normale, leur permettant de proliférer dans d'autres parties du corps, ce qui rend le traitement du cancer extrêmement difficile.

15

La caractérisation des protéines capables de polymériser l'actine, et la compréhension du mécanisme par lequel cette polymérisation génère une force, représentent les éléments clés pour comprendre le fonctionnement du cytosquelette dans la cellule. Toutefois, les propriétés dynamiques du cytosquelette rendent son étude extrêmement difficile. De plus, les approches actuellement disponibles pour analyser le cytosquelette sont compliquées ou fastidieuses.

20

La première étape de tous les processus dépendants du cytosquelette, tel que le mouvement, est la production de filaments d'actine, ou F-actine. Le mécanisme de la formation de ces polymères biologiques dans la cellule n'est toujours pas connu, malgré l'identification de nombreuses protéines liant l'actine et l'étude extensive de la polymérisation de l'actine *in vitro*.

Le syndrome de Wiskott-Aldrich est une maladie du cytosquelette. La protéine WASP humaine, exprimée à partir du gène WAS qui est muté chez les patients affectés par ce syndrome, de même que le protéine N-WASP d'origine bovine (qui a environ 45% d'identité de séquence avec la protéine WASP humaine), ont donc fait l'objet d'études dans le but d'éclaircir le mécanisme du fonctionnement du cytosquelette dans la cellule (Yarar et al., Current Biology, 9 : 555 - 558 (1999); Rohatgi et al., Cell, 97 : 221 - 231 (1999); Miki et al., The EMBO Journal, 15(19) : 5326 - 5335 (1996)).

Il a été montré que ces protéines WASP et N-WASP interagissent avec le complexe Arp2/3 (complexe protéique impliqué dans la polymérisation de l'actine), et induisent ainsi la polymérisation de l'actine.

A ce titre, il a été démontré que la protéine WASP est suffisante pour agir sur la motilité cellulaire basée sur l'actine, et que cette fonction est sous la dépendance du complexe Arp2/3 (Yarar et al. 1999 susmentionné). Pour effectuer cette démonstration, les auteurs de cet article ont préparé des microsphères recouvertes de protéine WASP et ont démontré que ces microsphères polymérisent l'actine, forment des queues d'actine, et sont douées d'une motilité basée sur l'actine dans des extraits cellulaires. Dans les extraits cellulaires dans lesquels le complexe Arp2/3 a été supprimé, les microsphères recouvertes de protéine WASP n'ont plus de motilité et possèdent seulement une activité résiduelle de polymérisation de l'actine.

Par ailleurs, de nombreux micro-organismes unicellulaires ont leurs propres moyens indépendants de mouvement mais certaines bactéries et virus pathogènes deviennent mobiles en utilisant des composants des cellules qu'ils infectent.

La bactérie *Listeria monocytogenes* qui infecte l'homme par contamination alimentaire, est un de ces pathogènes.

La *Listeria* pénètre dans les cellules, puis recrute des monomères d'actine à sa surface, leur permettant ainsi de former des "comètes" riches en actine F et de bouger (Sanger et al., Infection and Immunity, 60, 3609-3619 (1992); Tilney, L.G., DeRosier, D.J., Weber, A., and Tilney, M.S. (1992) Journal of Cell Biology, 118, 83-93).

L'analyse du cytosquelette d'actine humain a été extrêmement facilitée par l'étude de cette *Listeria* (Beckerle, M.C., Cell 95, 741-748 (1998) ; Cossart P and Lecuit M., EMBO Journal 17, 3797-3806 (1998)).

ActA est une protéine de surface de *Listeria* qui est essentielle pour sa mobilité (Domann et al., EMBO Journal 11, 1981-1990 (1992); Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H., and Cossart, P. (1992) Cell, 68, 521-531). Il a été montré que des billes de polystyrène enduites de protéine ActA et placées dans un extrait cytoplasmique d'œufs de *Xenopus laevis*, étaient capables de se déplacer (Cameron et al., P.N.A.S. 96, 4908-4913 (1999)). Cette protéine ActA est composée d'un domaine N-terminal (délimité par les acides aminés situés aux positions 1 et 234 de la figure 1) qui interagit avec le complexe Arp 2/3 pour induire une activité de nucléation de l'actine (Welch M.D. et al, Science 281, 105-108 (1998)), suivi d'un grand domaine riche en proline (délimité par les acides aminés situés aux positions 235 et 584 de la séquence peptidique représentée sur la figure 1) dont on suppose qu'il joue également un rôle dans le cadre de l'accélération du taux d'assemblage d'actine (Golsteyn R.M. et al., Journal of Cell Science, 110 : 1893-1906 (1997)).

La zyxine humaine représente une protéine dont la caractérisation a été facilitée par les connaissances acquises au cours des études menées sur la *Listeria* (Beckerle, M.C., Bio Essays 19, 949-957 (1997)).

La zyxine représente le prototype d'une nouvelle famille de protéines qui est localisée dans des sites riches en actine dans les cellules des eucaryotes supérieurs (Petit, M.M., Mois, R., Schoenmakers E.F., Mandahl N., Van De Ven W.J. (1996) Genomic, 36, 118-129). Par analyse de séquences, d'autres protéines de cette famille ont été identifiées, telles que la protéine LPP (Lipoma Preferred Partner) dont le pourcentage d'homologie avec la zyxine est d'environ 40% (Petit M. et al., Molecular Biology of the Cell, 11 : 117-129), et la protéine TRIP6 dont le pourcentage d'homologie avec la zyxine est d'environ 35% (Yi, J., and Beckerle, M.C., Genomics 49, 314-316 (1998)).

Ces protéines de la famille de la zyxine comprennent un domaine riche en résidus proline d'environ 380 à 420 acides aminés présentant un pourcentage d'homologie d'environ 20 à environ 25 % avec le domaine riche en proline susmentionné de la protéine ActA.

La protéine ActA et les protéines de la famille de la zyxine susmentionnée, se lient par l'intermédiaire de leur domaine riche en proline aux membres de la famille des protéines Ena/VASP, qui comprend notamment la protéine VASP (vasodilatator stimulated phosphoprotein, ou phosphoprotéine stimulée vasodilatatrice), les protéines Ena (chez la drosophile) et Mena (équivalent de la protéine Ena chez les mammifères),

ainsi que la protéine Evl (Chakraborty T. et al., EMBO Journal 14, 1314-1321 (1995); Reinhard M. et al, P.N.A.S. 92, 7956-7960 (1995)) ; Gertler F.B. et al, Cell 87 : 227-239 (1996)).

5 La protéine VASP serait impliquée dans l'organisation du cytosquelette car elle se lie à l'actine F et à la profiline, une protéine de 14 kDa qui forme des complexes avec l'actine G (Reinhard M. et al., EMBO Journal 14, 1583-1589 (1995)), mais ce mécanisme d'action n'est pas complètement élucidé.

10 Le rôle des protéines Ena/VASP, ainsi que celui de la zyxine et autres protéines de la famille de la zyxine dans les cellules des mammifères n'est pas clarifié à l'heure actuelle.

La présente invention découle de la mise en évidence par les Inventeurs du fait qu'il existe dans les cellules de l'organisme un autre mécanisme de polymérisation de l'actine que celui faisant intervenir la liaison de protéines, telles que celles de la famille WASP, au complexe Arp2/3.

15 En effet, les Inventeurs ont mis en évidence que des protéines ou fragments de protéines se liant spécifiquement aux protéines de la famille Ena/VASP, mais ne se liant pas au complexe Arp2/3, sont capables de polymériser l'actine, et permettent la formation du cytosquelette d'actine dans des extraits cellulaires lorsque ces protéines ou fragments de protéines sont adsorbés sur un support solide approprié telles que des microsphères.

20 Par opposition aux effets mesurés avec les billes enduites de protéines se liant au complexe Arp2/3, notamment avec des billes enduites de protéines de la famille WASP susmentionnées, les billes enduites de protéines ou fragments de protéines se liant spécifiquement aux protéines de la famille Ena/VASP selon l'invention, et placées dans des surnageants de cellules lysées de mammifères, notamment humaines, ont permis aux inventeurs de mettre en évidence que :

30 - la polymérisation de l'actine détectée à l'aide des billes de l'invention est inhibée par les protéines ou fragments de protéines se liant spécifiquement aux protéines de la famille Ena/VASP (notamment par le fragment de la protéine ActA désigné ci-après ActA-Pro), tandis que la polymérisation de l'actine détectée à l'aide des billes enduites de protéine WASP n'est pas inhibée par les protéines ou fragments de protéines susmentionnés,

- la polymérisation de l'actine détectée à l'aide des billes de l'invention n'est pas inhibée par les protéines WASP ou N-WASP, tandis que les billes enduites de protéine WASP sont inhibées par les protéines WASP ou N-WASP,

5 - la présence du complexe Arp2/3 dans les surnageants de cellules lysées susmentionnés, n'apparaît pas essentielle pour obtenir l'effet de polymérisation de l'actine sur les billes de l'invention, tandis qu'elle est obligatoire dans le cas des billes enduites de protéine WASP,

10 - la présence de protéines de la famille Ena/VASP dans les surnageants de cellules lysées susmentionnés, est nécessaire pour obtenir l'effet de polymérisation de l'actine sur les billes de l'invention, tandis qu'elle n'apparaît pas essentielle dans le cas des billes enduites de protéine WASP,

15 - les billes de l'invention ne sont pas susceptibles de se déplacer sous l'effet du mécanisme de polymérisation de l'actine faisant intervenir les protéines de la famille Ena/VASP, tandis que les billes enduites de protéine WASP sont capables de se déplacer sous l'effet du mécanisme de polymérisation de l'actine faisant intervenir le complexe Arp2/3.

Par ailleurs, puisque de nombreux processus dépendant de la polymérisation d'actine nécessitent le recrutement et l'activation du complexe Arp2/3, les Inventeurs ont recherché la présence de ce complexe au niveau des mitochondries portant la zyxine à leur surface. Aucune accumulation des protéines Arp2/3 n'a été observée au niveau des mitochondries, et de plus, la protéine WASP n'inhibe pas la polymérisation au niveau des mitochondries dans ce test. Ces résultats permettent aux Inventeurs de conclure sur le fait que les protéines de la famille zyxine sont suffisantes pour créer des sites de polymérisation, cette polymérisation nécessitant la présence de VASP.

25 La présente invention a pour but de fournir de nouveaux fragments, ou polypeptides dérivés, des protéines ActA et de la famille de la zyxine, ainsi que les séquences nucléotidiques codant pour ces fragments.

30 L'invention a également pour but de fournir de nouveaux procédés de détection ou de criblage de molécules ayant un effet sur la formation du cytosquelette issu du mécanisme d'interaction des protéines de la famille Ena/VASP avec les protéines ActA et celles de la famille de la zyxine, notamment de molécules cytotoxiques ou de

médicaments utilisables dans le cadre du traitement de pathologies liées à un développement anormal du cytosquelette.

L'invention a également pour but de fournir de nouveaux réactifs et kits pour la mise en œuvre des procédés susmentionnés.

5 La présente invention a pour objet l'utilisation de protéines ou peptides comprenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdites protéines ou peptides ne se liant pas au complexe protéique Arp2/3, et étant capables d'induire *in vitro* la polymérisation de l'actine (à savoir d'induire la formation de filaments d'actine F dans des extraits cellulaires ou dans des milieux comparables, et ce même en absence du complexe Arp2/3 dans ces extraits ou milieux, mais en présence de protéines de la famille Ena/VASP), pour la préparation de réactifs utilisables dans le cadre de la mise en œuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine.

10 15 L'invention a également pour objet l'utilisation de protéines ou peptides susmentionnés, dans le cadre de la mise en œuvre d'un procédé de détection ou de criblage de molécules susceptibles de pouvoir être utilisées en tant que médicaments dans le traitement de pathologies liées à un dysfonctionnement du processus de polymérisation de l'actine dans le cadre de la formation du cytosquelette d'actine.

20 L'invention a plus particulièrement pour objet l'utilisation des fragments peptidiques ou des séquences dérivées susmentionnés, dans le cadre de la mise en œuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition de la formation du cytosquelette d'actine, lesdites molécules étant susceptibles d'être utilisées :

- 25 - en tant que médicaments dans le traitement de cancers métastatiques,
- ou en tant qu'antibiotiques anti-parasitaires.

30 L'invention a plus particulièrement pour objet l'utilisation des fragments peptidiques ou des séquences dérivées susmentionnés, dans le cadre de la mise en œuvre d'un procédé de détection d'effets secondaires de molécules, notamment de médicaments ou de molécules de l'environnement, à savoir d'un procédé de détection de molécules susceptibles d'avoir un effet cytotoxique correspondant à une inhibition ou une stimulation de la formation du cytosquelette d'actine.

Avantageusement, les protéines ou peptides susmentionnés utilisés dans le cadre de la présente invention, contiennent un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdits motifs comprenant au moins 5 jusqu'à environ 10 acides aminés dont au moins 3 résidus proline et, de préférence, un résidu phénylalanine.

5 Avantageusement encore, les protéines ou peptides susmentionnés comprennent au moins deux motifs de liaison aux protéines de la famille Ena/VASP.

L'invention a plus particulièrement pour objet l'utilisation susmentionnée de protéines ou peptides définis ci-dessus, comprenant, à titre de motifs de liaison aux protéines de la famille Ena/VASP, un ou plusieurs motifs de formule (I) suivante :

dans laquelle :

- $n = 0$ ou 1 ,
- X_1 représente un résidu proline ou leucine,
- X_2 représente un résidu proline, leucine, ou sérine,
- X_3 représente un résidu proline, isoleucine, ou alanine,
- X_4 représente un résidu proline, leucine, ou thréonine,

15 sous réserve que lorsque $n = 0$, deux au moins de X_1 , X_2 , X_3 représentent un résidu proline, et lorsque $n = 1$, deux au moins de X_1 , X_2 , X_3 , et X_4 représentent un résidu proline.

20 Avantageusement les protéines ou peptides susmentionnés utilisés dans le cadre de la présente invention comprennent deux à quatre motifs de formule (I) définie ci-dessus.

25 Avantageusement encore, les protéines ou peptides susmentionnés utilisés dans le cadre de la présente invention interagissent, par le biais des motifs définis ci-dessus, avec les protéines de la famille Ena/VASP, à savoir la protéine VASP, et/ou la protéine Ena, et/ou la protéine Mena, et/ou la protéine Ev1 susmentionnées, dans le cadre de la polymérisation de l'actine dans les cellules eucaryotes, notamment les cellules humaines ou d'autres mammifères, ou les cellules d'insectes.

30 L'invention concerne plus particulièrement l'utilisation susmentionnée de protéines ou peptides choisis parmi :

- les fragments de la protéine ActA de *Listeria monocytogenes*, lesdits fragments de la protéine ActA ne se liant pas au complexe protéique Arp2/3, et ayant la

propriété de la protéine ActA de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine, ou les séquences dérivées de ces fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété de la protéine ActA de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine, et/ou

5 - les protéines de la famille de la zyxine, ou les fragments de ces dernières, ou les séquences dérivées de ces protéines ou fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces protéines ou fragments, lesdits fragments ou séquences dérivées ayant la propriété des protéines de la famille de la zyxine de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine, et/ou

10 - la vinculine des mammifères, notamment la vinculine humaine, ou les fragments de ces dernières, ou les séquences dérivées de cette protéine ou fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces protéines ou fragments, lesdits fragments ou séquences dérivées ayant la propriété des protéines de la famille de la vinculine de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine.

15 Par liaison à la protéine VASP dans ce qui précède et ce qui suit, on entend principalement des liaisons du type électrostatique, ainsi que les forces de Van der Waal.

20 L'invention a plus particulièrement pour objet l'utilisation susmentionnée de fragments de la protéine ActA de *Listeria monocytogenes*, désignée SEQ ID NO 2 dans la liste de séquences ci-après, dont la partie aminoterminal se liant au complexe Arp2/3, à savoir la séquence correspondant aux 235 premiers acides aminés environ de SEQ ID NO 2, est supprimée ou modifiée par substitution ou suppression d'un ou plusieurs acides aminés, de sorte que les fragments en question ne puissent pas se lier 25 au complexe Arp2/3.

25 A ce titre, l'invention concerne plus particulièrement l'utilisation susmentionnée :
- de la séquence SEQ ID NO 4, correspondant au fragment de 376 acides aminés délimité par les acides aminés situés aux positions 235 et 610 de la séquence SEQ ID

30 NO 2,

- de la séquence SEQ ID NO 6, correspondant au fragment de 350 acides aminés délimité par les acides aminés situés aux positions 235 et 584 de la séquence SEQ ID NO 2.

L'invention a également pour objet l'utilisation susmentionnée de protéines de la famille de la zyxine choisies parmi :

- la protéine zyxine de mammifères, notamment la zyxine murine représentée par SEQ ID NO 8, la zyxine de poulet représentée par SEQ ID NO 10, et la zyxine humaine représentée par SEQ ID NO 12,

5 - la protéine LPP de mammifères, notamment la LPP humaine représentée par SEQ ID NO 14,

- la protéine TRIP6 de mammifères, notamment la TRIP6 humaine représentée par SEQ ID NO 16, et la TRIP6 murine représentée par SEQ ID NO 18.

10 L'invention a plus particulièrement pour objet l'utilisation susmentionnée de fragments tels que définis ci-dessus de protéines de la famille de la zyxine susmentionnées, et notamment des fragments choisis parmi :

- la séquence SEQ ID NO 20, correspondant au fragment de 374 acides aminés délimité par les acides aminés situés aux positions 2 et 375 de la séquence SEQ ID NO 8,

15 - la séquence SEQ ID NO 22, correspondant au fragment de 351 acides aminés délimité par les acides aminés situés aux positions 1 et 351 de la séquence SEQ ID NO 10,

- la séquence SEQ ID NO 24, correspondant au fragment de 380 acides aminés délimité par les acides aminés situés aux positions 1 et 380 de la séquence SEQ ID NO 12,

20 - la séquence SEQ ID NO 26, correspondant au fragment de 412 acides aminés délimité par les acides aminés situés aux positions 3 et 414 de la séquence SEQ ID NO 14,

- ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, telles que définies ci-dessus.

25 L'invention a plus particulièrement pour objet encore l'utilisation susmentionnée de la zinculine humaine désignée SEQ ID NO 28 dans la liste de séquences ci-après, ou des fragments tels que définis ci-dessus de cette dernière, notamment la séquence SEQ ID NO 30, correspondant au fragment de 227 acides aminés délimité par les acides aminés situés aux positions 840 et 1066 de la séquence SEQ ID NO 28.

30 L'invention a également pour objet l'utilisation susmentionnée de protéines ou peptides, ou de séquences dérivées de ces derniers, tels que définis ci-dessus, fusionnés du côté N-terminal ou C-terminal avec une ou plusieurs séquences peptidiques facilitant la détection et la purification des fragments peptidiques ou séquences dérivées susmentionnés, sans pour autant affecter la propriété

5 susmentionnée de ces derniers de polymériser l'actine. Parmi de telles séquences peptidiques fusionnées aux fragments peptidiques, ou aux séquences dérivées de ces derniers, de l'invention, on peut citer celle de la glutathione-S-transférase (GST, décrit dans Smith D.B. and Johnson K.S., Gene 67 : 31-41 (1988)) fusionnée à la partie N-terminale des protéines ou peptides ou séquences dérivées susmentionnés, ou celles d'épitopes reconnus par des anticorps spécifiques, telle que celle de l'épitope myc9E10 (décrit dans Evan G.I. et al., Molecular and Cellular Biology 5 : 3610-3616 (1985)) fusionnée à la partie C-terminale des protéines ou peptides ou séquences dérivées susmentionnés.

10 L'invention concerne également les fragments peptidiques susmentionnés en tant que tels, à savoir plus particulièrement les séquences SEQ ID NO 4, SEQ ID NO 6, SEQ ID NO 20, SEQ ID NO 22, SEQ ID NO 24, SEQ ID NO 26, et SEQ ID NO 30, ainsi que les séquences peptidiques dérivées des fragments peptidiques susmentionnés, telles que définies ci-dessus.

15 L'invention concerne également les séquences nucléotidiques codant pour les fragments peptidiques susmentionnés, ou pour les séquences peptidiques dérivées de ces derniers, ou encore pour les protéines de fusion telles que décrites ci-dessus.

20 L'invention a plus particulièrement pour objet les séquences nucléotidiques suivantes :

- la séquence SEQ ID NO 3 codant pour SEQ ID NO 4, la séquence SEQ ID NO 5 codant pour SEQ ID NO 6, la séquence SEQ ID NO 19 codant pour SEQ ID NO 20, la séquence SEQ ID NO 21 codant pour SEQ ID NO 22, la séquence SEQ ID NO 23 codant pour SEQ ID NO 24, la séquence SEQ ID NO 25 codant pour SEQ ID NO 26, la séquence SEQ ID NO 29 codant pour SEQ ID NO 30.

25 - les séquences nucléotidiques dérivées par dégénérescence du code génétique des séquences nucléotidiques susmentionnées, et codant pour les protéines ou peptides susmentionnés,

30 - les séquences nucléotidiques dérivées des séquences nucléotidiques susmentionnées, et codant pour les séquences dérivées desdits protéines ou peptides telles que définies ci-dessus.

L'invention a également pour objet les vecteurs, notamment les plasmides, contenant une séquence nucléotidique telle que définie ci-dessus.

L'invention concerne également les cellules hôtes transformées par un vecteur susmentionné, lesdites cellules exprimant les fragments peptidiques susmentionnés, ou les séquences dérivées décrites ci-dessus, sous forme recombinante. Avantageusement, les cellules hôtes susmentionnées sont choisies parmi les suivantes : *Escherichia coli* DH5 α et *Escherichia coli* BL21.

L'invention a également pour objet des réactifs pour la mise en œuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit réactif comprenant au moins une protéine ou peptide tel(le) que défini(e) ci-dessus, lié(e) ou adsorbé(e) à un support susceptible de permettre la polymérisation de l'actine, lorsque ledit support lié audit peptide est placé dans un milieu contenant les éléments nécessaires à la polymérisation de l'actine, notamment lorsque ledit support est ajouté à un extrait préparé à partir de surnageants de cellules lysées de mammifères, ou dans un milieu contenant principalement les protéines de la famille Ena/VASP, la cofiline, et des protéines de coiffage, mais ne contenant pas obligatoirement le complexe Arp2/3.

L'invention a plus particulièrement pour objet les réactifs tels que définis ci-dessus, choisis parmi les microsphères dont le diamètre est compris entre environ 100 et environ 10 000 nm, le matériau constituant les microsphères étant lui même choisi parmi les polystyrènes ou le latex, lesdites microsphères contenant chacune environ 5 000 à environ 50 000 molécules de protéine ou peptide susmentionné ou d'une séquence dérivée selon l'invention.

Avantageusement la protéine ou le peptide susmentionné, ou leur séquence dérivée, sont adsorbés ou liés de façon covalente avec un site réactif à la surface desdites microsphères, ledit réactif étant obtenu par simple mélange desdites microsphères à la protéine ou au peptide ou à leur séquence dérivée.

L'invention a également pour objet un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit procédé comprenant :

- une étape de mise en présence de la molécule testée avec un réactif tel que défini ci-dessus, dans un milieu contenant de l'actine et les éléments nécessaires à la polymérisation de l'actine définis ci-dessus, notamment dans un extrait de surnageant de cellules lysées,

- suivie de la détection éventuelle d'une inhibition ou d'une activation du processus de polymérisation de l'actine à la surface dudit réactif, par rapport à un témoin (à savoir un milieu tel que décrit ci-dessus ne contenant pas la molécule testée, et dans lequel se trouve ledit réactif), correspondant respectivement à un effet d'inhibition ou de stimulation de la molécule testée sur la formation du cytosquelette d'actine par le mécanisme faisant intervenir la liaison de la protéine ou du peptide ou de leur séquence dérivée susmentionnés, avec une protéine de la famille Ena/VASP.

Avantageusement, le milieu susmentionné dans lequel la molécule testée est mise en présence dudit réactif, contient un composé marqué notamment par fluorescence, permettant de détecter la polymérisation de l'actine sur ledit réactif. A titre d'illustration, le composé marqué susmentionné est un dérivé fluorescent de l'actine, telle que l'actine-rhodamine (disponible commercialement), permettant de visualiser la polymérisation de l'actine par microscopie à épifluorescence.

L'invention concerne également un procédé tel que défini ci-dessus, de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit procédé comprenant en plus des étapes du procédé défini ci-dessus :

- une étape de mise en présence, dans un milieu contenant de l'actine et les éléments nécessaires à la polymérisation de l'actine dont le complexe Arp2/3, notamment dans un extrait de surnageant de cellules lysées, de la molécule testée avec un réactif comprenant des protéines de la famille WASP chez les cellules eucaryotes, notamment les cellules humaines ou d'autres mammifères, ou les cellules d'insectes, ou de micro-organismes telles que les levures, ou des fragments peptidiques de ces protéines de la famille WASP, lesdits fragments peptidiques ayant la propriété des protéines de la famille WASP de polymériser l'actine en induisant la motilité cellulaire, ou des séquences peptidiques dérivées des protéines de la famille WASP ou des fragments peptidiques susmentionnés, notamment par substitution d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété susmentionnée des protéines de la famille WASP et desdits fragments de ces dernières, lesdites protéines de la famille WASP, ou fragments peptidiques ou séquences dérivées susmentionnées, étant liés ou adsorbés à un support tel que défini ci-dessus,

- suivie de la détection éventuelle d'une inhibition ou d'une activation du processus de polymérisation de l'actine à la surface dudit réactif, par rapport à un témoin, correspondant respectivement à un effet d'inhibition ou de stimulation de la molécule testée sur la formation du cytosquelette d'actine par le mécanisme faisant intervenir la liaison desdites protéines de la famille WASP, ou fragments peptidiques ou séquences dérivées susmentionnées, avec le complexe Arp2/3.

5 Par protéines de la famille WASP, on entend, dans ce qui précède et ce qui suit, la protéine produite par le gène WAS muté dans le cadre du syndrome de Wiskott-Aldrich chez l'homme, ainsi que les protéines d'origine humaine ou non, présentant au moins environ 45% d'homologie avec la protéine WASP humaine susmentionnée, et étant impliquée dans le processus de polymérisation de l'actine cellulaire, et, le cas échéant, de la motilité cellulaire.

10 Les protéines susmentionnées de la famille WASP possèdent également la caractéristique commune de posséder au moins trois domaines majeurs :

15 - un domaine WH1/Scar dans la partie N-terminale ; ce domaine a des caractéristiques structurales similaires à un domaine d'homologie à la pleckstrine (ou domaine pH), et est supposé interagir avec l'actine polymérisée et avec les phospholipides,

20 -un domaine riche en proline,

- un domaine WH2/A qui est divisé en trois sous-domaines, à savoir le sous-domaine d'homologie à la verproline, le sous-domaine d'homologie à la cofiline, et un sous-domaine acide.

25 Avantageusement, les protéines susmentionnées de la famille WASP et les fragments peptidiques de ces dernières utilisés dans le cadre du procédé susmentionné de la présente invention, sont choisis parmi les protéines WASP, N-WASP, Scar et Las17, ou leurs fragments, ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés telles que définies ci-dessus.

30 L'invention a plus particulièrement pour objet le procédé susmentionné dans lequel les fragments peptidiques des protéines de la famille WASP sont choisis parmi les fragments :

- de la protéine WASP humaine, ou d'autres mammifères, notamment la protéine WASP bovine ou murine,

- de la protéine N-WASP humaine, ou d'autres mammifères, notamment la protéine N-WASP bovine, ou de rat,
 - des protéines de la sous-famille Scar, telle que la protéine Scar1/WAVE de *Dictyostellium discoideum*, ou de *Caenorhabditis elegans*, ou de *Drosophila melanogaster*, de souris, ou humaine,
- 5 - des protéines de la sous-famille Las17 des micro-organismes, notamment des levures, telle que la protéine Las17/Bee1 de *Saccharomyces cerevisiae*, ou la protéine homologue WASP (Wsp1p) de *Schizosaccharomyces pombe*.

10 Avantageusement, les fragments peptidiques susmentionnés sont choisis parmi ceux comprenant :

- le domaine d'homologie avec la verproline contenu dans les protéines de la famille WASP, ou dans une protéine dérivée de ces dernières, ou au moins une des deux séquences homologues à la verproline lorsque lesdites protéines de la famille WASP contiennent deux de ces séquences, ou une séquence peptidique dérivée du domaine susmentionné, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés, et conservant la propriété de ce domaine de se lier à l'actine,
- et le domaine d'homologie avec la cofiline contenu dans les protéines de la famille WASP ou dans une protéine dérivée de ces dernières, ou une séquence peptidique dérivée du domaine susmentionné, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés, et conservant la propriété de ce domaine d'intervenir dans le cadre de la polymérisation de l'actine.

15 Le cas échéant, les fragments peptidiques susmentionnés utilisés dans le cadre de la présente invention, contiennent également le segment acide C-terminal desdites protéines WASP ou dérivées.

20 Avantageusement les fragments peptidiques susmentionnés ne contiennent pas le domaine d'homologie avec la plekstrine, et/ou le domaine de liaison à Cdc42, et/ou la région riche en proline, définis ci-dessus desdites protéines de la famille WASP.

25 L'invention a plus particulièrement pour objet l'utilisation susmentionnée dans le procédé défini ci-dessus, de fragments peptidiques des protéines de la famille WASP d'origine humaine.

Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine humaine sont choisis parmi les fragments de la protéine WASP humaine comprenant :

5 . le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 430 et 446 de la séquence peptidique de la protéine WASP humaine représentée par SEQ ID NO 31, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

10 . et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 469 et 487 de la séquence peptidique de la protéine WASP humaine représentée par SEQ ID NO 31, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus.

De préférence, les fragments de la protéine WASP humaine susmentionnés sont choisis parmi les suivants :

15 * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 404 à 430 de SEQ ID NO 31, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 487 à 502 de SEQ ID NO 31,

* le fragment de 99 acides aminés délimité par les acides aminés situés aux positions 404 et 502 de SEQ ID NO 31,

20 * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 404 et 487 de SEQ ID NO 31,

* le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 430 et 502 de SEQ ID NO 31,

* le fragment de 58 acides aminés délimité par les acides aminés situés aux positions 430 et 487 de SEQ ID NO 31,

25 * ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété définies ci-dessus des protéines de la famille WASP et desdits fragments de ces dernières.

30 Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine humaine utilisés dans le procédé défini ci-dessus, sont choisis parmi les fragments de la protéine N-WASP humaine comprenant :

. la séquence homologue à la verproline délimitée par les acides aminés situés aux positions 405 et 421 de la séquence peptidique de la protéine N-WASP humaine représentée par SEQ ID NO 32, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

5 . et/ou la séquence homologue à la verproline délimitée par les acides aminés situés aux positions 433 et 449 de la séquence peptidique de la protéine N-WASP humaine représentée par SEQ ID NO 32, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

10 . et le domaine d'homologie avec la cofilin contenu dans la protéine N-WASP susmentionnée, à savoir le domaine délimité par les acides aminés situés aux positions 470 et 488 de la séquence peptidique de la protéine N-WASP humaine représentée par SEQ ID NO 32, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus.

15 De préférence, les fragments de la protéine N-WASP humaine susmentionnés sont choisis parmi les suivants :

* les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 392 à 433 de SEQ ID NO 32, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 488 à 505 de SEQ ID NO 32,

20 * le fragment de 114 acides aminés délimité par les acides aminés situés aux positions 392 et 505 de SEQ ID NO 32,

* le fragment de 97 acides aminés délimité par les acides aminés situés aux positions 392 et 488 de SEQ ID NO 32,

* le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 405 et 505 de SEQ ID NO 32,

25 * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 405 et 488 de SEQ ID NO 32,

* le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 433 et 505 de SEQ ID NO 32,

30 * le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 32,

* ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, notamment par substitution, addition ou suppression d'un ou plusieurs

acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété définies ci-dessus des protéines de la famille WASP et desdits fragments de ces dernières.

Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine humaine utilisés dans le procédé défini ci-dessus, sont choisis parmi les fragments de la protéine Scar1 humaine comprenant :

5 . le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 497 et 513 de la séquence peptidique de la protéine Scar1 humaine représentée par SEQ ID NO 33, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

10 . et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 531 et 546 de la séquence peptidique de la protéine Scar1 humaine représentée par SEQ ID NO 33, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus.

15 De préférence, les fragments de la protéine Scar1 humaine susmentionnés sont choisis parmi les suivants :

* les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 443 à 497 de SEQ ID NO 33, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 546 à 559 de SEQ ID NO 33,

20 * le fragment de 117 acides aminés délimité par les acides aminés situés aux positions 443 et 559 de SEQ ID NO 33,

* le fragment de 104 acides aminés délimité par les acides aminés situés aux positions 443 et 546 de SEQ ID NO 33,

* le fragment de 63 acides aminés délimité par les acides aminés situés aux positions 497 et 559 de SEQ ID NO 33,

25 * le fragment de 50 acides aminés délimité par les acides aminés situés aux positions 497 et 546 de SEQ ID NO 33,

* ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété définies ci-dessus des protéines de la famille WASP et desdits fragments de ces dernières.

L'invention a plus particulièrement pour objet l'utilisation susmentionnée de fragments peptidiques des protéines de la famille WASP d'origine non humaine.

Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine non humaine utilisés dans le procédé défini ci-dessus, sont choisis parmi les fragments des protéines de la famille WASP de mammifères non humains, tels que :

- les fragment de la protéine WASP murine, eux-mêmes choisis parmi :

5

* ceux comprenant :

. le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 448 et 465 de la séquence peptidique de la protéine WASP murine représentée par SEQ ID NO 34, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

10

. et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 487 et 505 de la séquence peptidique de la protéine WASP murine représentée par SEQ ID NO 34, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

15

* les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 420 à 448 de SEQ ID NO 34, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 505 à 520 de SEQ ID NO 34,

* le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 420 et 520 de SEQ ID NO 34,

20

* le fragment de 86 acides aminés délimité par les acides aminés situés aux positions 420 et 505 de SEQ ID NO 34,

* le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 448 et 520 de SEQ ID NO 34,

* le fragment de 58 acides aminés délimité par les acides aminés situés aux positions 448 et 505 de SEQ ID NO 34,

25

- les fragments de la protéine N-WASP de rat, eux-mêmes choisis parmi :

* ceux comprenant :

. la séquence homologue à la verproline délimitée par les acides aminés situés aux positions 401 et 417 de la séquence peptidique de la protéine N-WASP de rat représentée par SEQ ID NO 35, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

30

. et/ou la séquence homologue à la verproline délimitée par les acides aminés situés aux positions 429 et 444 de la séquence peptidique de la protéine

N-WASP de rat représentée par SEQ ID NO 35, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

5 . et le domaine d'homologie avec la cofiline contenu dans la protéine N-WASP susmentionnée, à savoir le domaine délimité par les acides aminés situés aux positions 466 et 484 de la séquence peptidique de la protéine N-WASP de rat représentée par SEQ ID NO 35, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

10 * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 401 à 429 de SEQ ID NO 35, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 484 à 501 de SEQ ID NO 35,

* le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 401 et 501 de SEQ ID NO 35,

* le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 401 et 484 de SEQ ID NO 35,

15 * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 429 et 501 de SEQ ID NO 35,

* le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 429 et 484 de SEQ ID NO 35,

20 - les fragments de la protéine N-WASP bovine, eux-mêmes choisis parmi :
* ceux comprenant :

. le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 405 et 421 de la séquence peptidique de la protéine N-WASP bovine représentée par SEQ ID NO 36, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

25 . et/ou le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 433 et 488 de la séquence peptidique de la protéine N-WASP bovine représentée par SEQ ID NO 36, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

30 . et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 470 et 488 de la séquence peptidique de la protéine N-WASP bovine représentée par SEQ ID NO 36, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

- * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 405 à 433 de SEQ ID NO 36, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 488 à 505 de SEQ ID NO 36,
 - 5 * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 405 et 505 de SEQ ID NO 36,
 - * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 405 et 488 de SEQ ID NO 36,
 - 10 * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 36,
 - * le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 36,
- Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine non humaine utilisés dans le procédé défini ci-dessus, sont choisis parmi les fragments des protéines de la famille WASP de micro-organismes, tels que :
- 15 - les fragment de la protéine Las17 de *Saccharomyces cerevisiae*, eux-mêmes choisis parmi :
 - * ceux comprenant :
 - . le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 447 et 466 de la séquence peptidique de la protéine Las17
20 représentée par SEQ ID NO 37, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,
 - . et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 607 et 624 de la séquence peptidique de la protéine Las17 représentée par SEQ ID NO 37, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,
 - 25 * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 422 à 447 de SEQ ID NO 37, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 624 à 633 de SEQ ID NO 37,
 - * le fragment de 212 acides aminés délimité par les acides aminés situés aux positions 422 et 633 de SEQ ID NO 37,
 - 30 * le fragment de 203 acides aminés délimité par les acides aminés situés aux positions 422 et 624 de SEQ ID NO 37,

* le fragment de 187 acides aminés délimité par les acides aminés situés aux positions 447 et 633 de SEQ ID NO 37,

* le fragment de 178 acides aminés délimité par les acides aminés situés aux positions 447 et 624 de SEQ ID NO 37,

5 - les fragments de la protéine homologue WASP (Wsp1p) de *Schizosaccharomyces pombe*, eux-mêmes choisis parmi :

* ceux comprenant :

10 . le domaine d'homologie avec la verproline délimité par les acides aminés situés aux positions 501 et 517 de la séquence peptidique de la protéine homologue WASP (Wsp1p) de *Schizosaccharomyces pombe* représentée par SEQ ID NO 38, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

15 . et le domaine d'homologie avec la cofiline délimité par les acides aminés situés aux positions 548 et 565 de la séquence peptidique de la protéine homologue WASP (Wsp1p) de *Schizosaccharomyces pombe* représentée par SEQ ID NO 38, ou une séquence peptidique dérivée du domaine susmentionné telle que définie ci-dessus,

20 * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 477 à 501 de SEQ ID NO 38, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 565 à 574 de SEQ ID NO 38,

* le fragment de 98 acides aminés délimité par les acides aminés situés aux positions 477 et 574 de SEQ ID NO 38,

* le fragment de 89 acides aminés délimité par les acides aminés situés aux positions 477 et 565 de SEQ ID NO 38,

25 * le fragment de 74 acides aminés délimité par les acides aminés situés aux positions 501 et 574 de SEQ ID NO 38,

- le fragment de 65 acides aminés délimité par les acides aminés situés aux positions 501 et 565 de SEQ ID NO 38.

30 Avantageusement, les fragments peptidiques des protéines de la famille WASP d'origine humaine ou non utilisés dans le procédé défini ci-dessus, sont choisis parmi les séquences peptidiques dérivées des fragments peptidiques susmentionnés, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés

de ces fragments, lesdites séquences dérivées ayant la propriété définies ci-dessus des protéines de la famille WASP et desdits fragments de ces dernières.

L'invention a également pour objet l'application du procédé tel que défini ci-dessus, à la détection ou au criblage de molécules :

5 - susceptibles de pouvoir être utilisées en tant que médicaments dans le traitement de pathologies liées à un dysfonctionnement du processus de polymérisation de l'actine dans le cadre de la formation du cytosquelette d'actine, notamment en tant que médicaments dans le traitement de cancers métastatiques, ou en tant qu'antibiotiques anti-parasitaires,

10 - ou susceptibles d'avoir un effet cytotoxique correspondant à une inhibition ou une stimulation de la formation du cytosquelette d'actine.

L'invention a également pour objet une trousse ou kit pour la mise en œuvre d'un procédé susmentionné, comprenant

- un réactif tel que défini ci-dessus,,

15 - le cas échéant un réactif comprenant des protéines de la famille WASP chez les cellules eucaryotes, ou des séquences peptidiques dérivées des protéines de la famille WASP ou des fragments peptidiques définis ci-dessus de ces protéines ou séquences dérivées, liés ou adsorbés à un support tel que défini ci-dessus,

20 - le cas échéant un composé marqué permettant de visualiser la polymérisation de l'actine, notamment de l'actine marquée par fluorescence,

- le cas échéant un milieu approprié contenant les éléments nécessaires à la polymérisation de l'actine, notamment un extrait de cellules lysées.

25 L'invention sera davantage illustrée à l'aide de la description détaillée qui suit de la préparation de microsphères enduites d'un fragment peptidique de la protéine ActA, et de la détection de la polymérisation de l'actine à la surface de ces microsphères dans un extrait de surnageant cellulaire.

I) Préparation des billes GST-ActA-Pro

30 La séquence codant pour le domaine amino-terminale (1-234) de l'ADNc codant pour la protéine ActA de la bactérie *Listeria monocytogenes* a été supprimée, ainsi que la partie codant pour les 20 derniers acides aminés du domaine carboxy-terminal (ancrage transmembranaire de la protéine). La séquence d'ADN restante, codant pour la

partie centrale (riche en proline) et la partie carboxy-terminale d'ActA, a été introduite dans le vecteur pGEX2T (Pharmacia), en aval de la séquence codant pour la glutathione-S-transferase (GST), générant le plasmide pGEX2T-ActA-Pro. Le domaine GST a été choisi car il facilite la purification de la protéine. Cette protéine recombinante est composée de domaines GST (237 résidus) et des parties centrale riche en proline et carboxy-terminale d'ActA (350 résidus correspondant à SEQ ID NO 6).

II) Purification et caractérisation de la protéine GST-ActA-Pro.

Des bactéries *E. coli* (souche BL21) ont été transformées avec le plasmide pGEX2T-ActA-Pro. Les bactéries ont été cultivées dans du milieu LB standard contenant l'antibiotique ampicilline pour maintenir sous pression de sélection les bactéries comportant le plasmide. Les bactéries ont été cultivées en suspension à 37°C jusqu'à ce que la culture atteigne une densité optique de 0.6 à 600 nm. Ensuite, l'isopropylthio- β -D-galactoside (IPTG) a été ajouté au milieu à une concentration finale de 1 mM pour induire la production de la protéine. Après 1 heure, les bactéries ont été collectées par centrifugation et les culots ont été stockés à -80°C. Les culots ont été décongelés et ajoutés à du tampon d'extraction (solution saline tamponnée au phosphate pH 8, 300 mM NaCl, 2 mM EDTA (acide ethylènediamine tetra acide), 1 mM DTT, 0,5% Triton X-100, contenant 1 µg/ml de chacun des inhibiteurs de protéase suivants, leupeptine, benzamidine, pepstatine, à un rapport de 1 gr de culot par 10 volumes de tampon d'extraction. La suspension a été soniquée jusqu'à ce que elle ne soit plus visqueuse. L'extrait a été centrifugé à 20.000 x g pendant 10 minutes à 4°C et le surnageant contenant la protéine GST-ActA-Pro a été conservé. La protéine ActA-Pro a été purifiée à partir de l'extrait bactérien par chromatographie d'affinité sur résine couplée à la Glutathione (Pharmacia) et éluée avec 10 mM glutathione réduit selon les recommandations des fabricants. La purification a été confirmée par analyse de la GST-Acta-Pro par électrophorèse sur gel d'acrylamide.

La protéine GST-ActA-Pro a été adsorbée sur des billes latex de 500 nm (Polyscience Inc, 400 Valley Road, Warrington Pa, USA) suivant les instructions des fabricants. Ces billes, ajoutées aux extraits préparés à partir de cellules, sont capables de nucléer l'actine.

REVENDICATIONS

1. Utilisation de protéines ou peptides comprenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdites protéines ou peptides ne se liant pas au complexe protéique Arp2/3, et étant capables d'induire *in vitro* la polymérisation de l'actine, pour la préparation de réactifs utilisables dans le cadre de la mise en œuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine.
- 5
- 10 2. Utilisation de protéines ou peptides selon la revendication 1, contenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdits motifs comprenant au moins 5 jusqu'à environ 10 acides aminés dont au moins 3 résidus proline.
- 15 3. Utilisation de protéines ou peptides selon la revendication 1 ou 2, contenant un ou plusieurs motifs de liaison aux protéines de la famille Ena/VASP, lesdits motifs comprenant au moins 5 jusqu'à environ 10 acides aminés dont au moins 3 résidus proline et un résidu phénylalanine.
- 20 4. Utilisation de protéines ou peptides selon l'une des revendications 1 à 3, comprenant au moins deux motifs de liaison aux protéines de la famille Ena/VASP.
5. Utilisation de protéines ou peptides selon l'une des revendications 1 à 4, comprenant un ou plusieurs motifs de formule (I) suivante :
- 25 Phe-X₁-X₂-X₃-Pro-(X₄)_n (I)
- dans laquelle :
- 30 - n = 0 ou 1,
- X₁ représente un résidu proline ou leucine,
- X₂ représente un résidu proline, leucine, ou sérine,
- X₃ représente un résidu proline, isoleucine, ou alanine,
- X₄ représente un résidu proline, leucine, ou thréonine,

sous réserve que lorsque $n = 0$, deux au moins de X_1 , X_2 , X_3 représentent un résidu proline, et lorsque $n = 1$, deux au moins de X_1 , X_2 , X_3 , et X_4 représentant un résidu proline.

5 6. Utilisation selon l'une des revendications 1 à 5 de peptides choisis parmi :

- les fragments de la protéine ActA de *Listeria monocytogenes*, lesdits fragments de la protéine ActA ne se liant pas au complexe protéique Arp2/3, et ayant la propriété de la protéine ActA de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine, ou les séquences dérivées de ces fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété de la protéine ActA de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine, et/ou

10 - les protéines de la famille de la zyxine, ou les fragments de ces dernières, ou les séquences dérivées de ces protéines ou fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces protéines ou fragments, lesdits fragments ou séquences dérivées ayant la propriété des protéines de la famille de la zyxine de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine,..

15 - la vinculine des mammifères, notamment la vinculine humaine, ou les fragments de ces dernières, ou les séquences dérivées de cette protéine ou fragments, notamment par substitution addition ou suppression d'un ou plusieurs acides aminés de ces protéines ou fragments, lesdits fragments ou séquences dérivées ayant la propriété des protéines de la famille de la vinculine de se lier aux protéines de la famille Ena/VASP et de polymériser l'actine.

20

25 7. Utilisation selon l'une des revendications 1 à 6, de peptides choisis parmi les fragments peptidiques suivants :

- la séquence SEQ ID NO 4, correspondant au fragment de 376 acides aminés délimité par les acides aminés situés aux positions 235 et 610 de la séquence SEQ ID NO 2,

- la séquence SEQ ID NO 6, correspondant au fragment de 350 acides aminés délimité par les acides aminés situés aux positions 235 et 584 de la séquence SEQ ID NO 2,
- 5 - la séquence SEQ ID NO 20, correspondant au fragment de 374 acides aminés délimité par les acides aminés situés aux positions 2 et 375 de la séquence SEQ ID NO 8,
- la séquence SEQ ID NO 22, correspondant au fragment de 351 acides aminés délimité par les acides aminés situés aux positions 1 et 351 de la séquence SEQ ID NO 10,
- 10 - la séquence SEQ ID NO 24, correspondant au fragment de 380 acides aminés délimité par les acides aminés situés aux positions 1 et 380 de la séquence SEQ ID NO 12,
- la séquence SEQ ID NO 26, correspondant au fragment de 412 acides aminés délimité par les acides aminés situés aux positions 3 et 414 de la séquence SEQ ID NO 14,
- 15 - la séquence SEQ ID NO 30, correspondant au fragment de 227 acides aminés délimité par les acides aminés situés aux positions 840 et 1066 de la séquence SEQ ID NO 28,
- ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, telles que définies dans la revendication 6.

20
25
30

8. Réactif pour la mise en œuvre d'un procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit réactif comprenant au moins une protéine ou peptide tel que défini dans l'une des revendications 1 à 7, lié ou adsorbé à un support susceptible de permettre la polymérisation de l'actine, lorsque ledit support lié à ladite protéine ou audit peptide est placé dans un milieu contenant les éléments nécessaires à la polymérisation de l'actine, notamment lorsque ledit support est ajouté à un extrait préparé à partir de surnageants de cellules lysées de mammifères.

9. Réactif selon la revendication 8, caractérisé en ce qu'il est choisi parmi les microsphères dont le diamètre est compris entre environ 100 et environ 10 000 nm, le

matériau constituant les microsphères étant lui même choisi parmi les polystyrènes ou le latex, lesdites microsphères contenant chacune environ 5 000 à environ 50 000 molécules de peptide ou séquence dérivée définis dans l'une des revendications 1 à 7.

5 **10.** Procédé de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit procédé comprenant :

- une étape de mise en présence de la molécule testée avec un réactif selon la revendication 8 ou 9, dans un milieu contenant de l'actine et les éléments nécessaires à la polymérisation de l'actine, notamment dans un extrait de surnageant de cellules lysées,
- suivie de la détection éventuelle d'une inhibition ou d'une activation du processus de polymérisation de l'actine à la surface dudit réactif, par rapport à un témoin, correspondant respectivement à un effet d'inhibition ou de stimulation de la molécule testée sur la formation du cytosquelette d'actine par le mécanisme faisant intervenir la liaison de la protéine ou du peptide ou de leur séquence dérivée susmentionnés, avec une protéine de la famille Ena/VASP.

20 **11.** Procédé selon la revendication 10, de détection ou de criblage de molécules ayant un effet d'inhibition ou de stimulation de la formation du cytosquelette d'actine, ledit procédé comprenant en plus des étapes du procédé défini dans la revendication 10 :

- une étape de mise en présence, dans un milieu contenant de l'actine et les éléments nécessaires à la polymérisation de l'actine dont le complexe Arp2/3, notamment dans un extrait de surnageant de cellules lysées, de la molécule testée avec un réactif comprenant des protéines de la famille WASP chez les cellules eucaryotes, notamment les cellules humaines ou d'autres mammifères, ou les cellules d'insectes, ou de micro-organismes telles que les levures, ou des fragments peptidiques de ces protéines de la famille WASP, lesdits fragments peptidiques ayant la propriété des protéines de la famille WASP de polymériser l'actine en induisant la motilité cellulaire, ou des séquences peptidiques dérivées des protéines de la famille WASP ou des fragments peptidiques susmentionnés, notamment par substitution d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la

propriété susmentionnée des protéines de la famille WASP et desdits fragments de ces dernières, lesdites protéines de la famille WASP, ou fragments peptidiques ou séquences dérivées susmentionnées, étant liés ou adsorbés à un support tel que défini ci-dessus,

- 5 - suivie de la détection éventuelle d'une inhibition ou d'une activation du processus de polymérisation de l'actine à la surface dudit réactif, par rapport à un témoin, correspondant respectivement à un effet d'inhibition ou de stimulation de la molécule testée sur la formation du cytosquelette d'actine par le mécanisme faisant intervenir la liaison desdites protéines de la famille WASP, ou fragments peptidiques ou séquences dérivées susmentionnées, avec le complexe Arp2/3.
- 10

12. Procédé selon la revendication 11, caractérisé en ce que les protéines de la famille WASP utilisées sont choisies parmi :

- 15 - la protéine WASP humaine, ou d'autres mammifères, telle que la protéine WASP bovine ou murine,
- la protéine N-WASP humaine, ou d'autres mammifères, telle que la protéine N-WASP bovine, ou de rat,
- 20 - les protéines de la sous-famille Scar, telle que la protéine Scar1/WAVE de *Dictyostellium discoideum*, ou de *Caenorhabditis elegans*, ou de *Drosophila melanogaster*, de souris, ou humaine,
- les protéines de la sous-famille Las17 des micro-organismes, notamment des levures, telle que la protéine Las17/Beel de *Saccharomyces cerevisiae*, ou la protéine homologue WASP (Wsp1p) de *Schizosaccharomyces pombe*.
- 25 - ou les séquences peptidiques dérivées des protéines susmentionnées telles que définies dans la revendication 11.

13. Procédé selon la revendication 11, caractérisé en ce que les fragments des protéines de la famille WASP utilisés sont choisis parmi :

- 30 - les fragments de la protéine WASP humaine suivants :
* les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 404 à 430 de SEQ ID NO 31, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 487 à 502 de SEQ ID NO 31,

- * le fragment de 99 acides aminés délimité par les acides aminés situés aux positions 404 et 502 de SEQ ID NO 31,
- * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 404 et 487 de SEQ ID NO 31,
- 5 * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 430 et 502 de SEQ ID NO 31,
- * le fragment de 58 acides aminés délimité par les acides aminés situés aux positions 430 et 487 de SEQ ID NO 31,
- les fragments de la protéine N-WASP humaine suivants :
 - 10 * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 392 à 433 de SEQ ID NO 32, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 488 à 505 de SEQ ID NO 32,
 - * le fragment de 114 acides aminés délimité par les acides aminés situés aux positions 392 et 505 de SEQ ID NO 32,
- 15 * le fragment de 97 acides aminés délimité par les acides aminés situés aux positions 392 et 488 de SEQ ID NO 32,
- * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 405 et 505 de SEQ ID NO 32,
- * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 405 et 488 de SEQ ID NO 32,
- 20 * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 433 et 505 de SEQ ID NO 32,
- * le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 32,
- les fragments de la protéine Scar1 humaine suivants :
 - 25 * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 443 à 497 de SEQ ID NO 33, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 546 à 559 de SEQ ID NO 33,
 - * le fragment de 117 acides aminés délimité par les acides aminés situés aux positions 443 et 559 de SEQ ID NO 33,
- 30 * le fragment de 104 acides aminés délimité par les acides aminés situés aux positions 443 et 546 de SEQ ID NO 33,

* le fragment de 63 acides aminés délimité par les acides aminés situés aux positions 497 et 559 de SEQ ID NO 33,

* le fragment de 50 acides aminés délimité par les acides aminés situés aux positions 497 et 546 de SEQ ID NO 33,

5 - les fragments de la protéine WASP murine suivants :

* les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 420 à 448 de SEQ ID NO 34, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 505 à 520 de SEQ ID NO 34,

10 * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 420 et 520 de SEQ ID NO 34,

* le fragment de 86 acides aminés délimité par les acides aminés situés aux positions 420 et 505 de SEQ ID NO 34,

* le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 448 et 520 de SEQ ID NO 34,

15 * le fragment de 58 acides aminés délimité par les acides aminés situés aux positions 448 et 505 de SEQ ID NO 34,

- les fragments de la protéine N-WASP de rat suivants :

* les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 401 à 429 de SEQ ID NO 35, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 484 à 501 de SEQ ID NO 35,

* le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 401 et 501 de SEQ ID NO 35,

* le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 401 et 484 de SEQ ID NO 35,

25 * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 429 et 501 de SEQ ID NO 35,

* le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 429 et 484 de SEQ ID NO 35,

- les fragments de la protéine N-WASP bovine suivants :

30 * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 405 à 433 de SEQ ID NO 36, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 488 à 505 de SEQ ID NO 36,

- * le fragment de 101 acides aminés délimité par les acides aminés situés aux positions 405 et 505 de SEQ ID NO 36,
- * le fragment de 84 acides aminés délimité par les acides aminés situés aux positions 405 et 488 de SEQ ID NO 36,
- 5 * le fragment de 73 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 36,
- * le fragment de 56 acides aminés délimité par les acides aminés situés aux positions 433 et 488 de SEQ ID NO 36,
- les fragments de la protéine Las17 de *Saccharomyces cerevisiae* suivants :
 - 10 * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 422 à 447 de SEQ ID NO 37, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 624 à 633 de SEQ ID NO 37,
 - * le fragment de 212 acides aminés délimité par les acides aminés situés aux positions 422 et 633 de SEQ ID NO 37,
 - 15 * le fragment de 203 acides aminés délimité par les acides aminés situés aux positions 422 et 624 de SEQ ID NO 37,
 - * le fragment de 187 acides aminés délimité par les acides aminés situés aux positions 447 et 633 de SEQ ID NO 37,
 - * le fragment de 178 acides aminés délimité par les acides aminés situés aux positions 447 et 624 de SEQ ID NO 37,
 - 20 - les fragments de la protéine homologue WASP (Wsp1p) de *Schizosaccharomyces pombe* suivants :
 - 25 * les fragments dont l'acide aminé N-terminal correspond à celui situé à l'une des positions 477 à 501 de SEQ ID NO 38, et l'acide aminé C-terminal correspond à celui situé à l'une des positions 565 à 574 de SEQ ID NO 38,
 - * le fragment de 98 acides aminés délimité par les acides aminés situés aux positions 477 et 574 de SEQ ID NO 38,
 - * le fragment de 89 acides aminés délimité par les acides aminés situés aux positions 477 et 565 de SEQ ID NO 38,
 - 30 * le fragment de 74 acides aminés délimité par les acides aminés situés aux positions 501 et 574 de SEQ ID NO 38,

- le fragment de 65 acides aminés délimité par les acides aminés situés aux positions 501 et 565 de SEQ ID NO 38,

5 - ou les séquences peptidiques dérivées des fragments peptidiques susmentionnés, notamment par substitution, addition ou suppression d'un ou plusieurs acides aminés de ces fragments, lesdites séquences dérivées ayant la propriété définie dans la revendication 11 des protéines de la famille WASP et desdits fragments de ces dernières.

10 14. Procédé selon l'une des revendications 11 à 13, appliqué à la détection ou au criblage de molécules :

15 - susceptibles de pouvoir être utilisées en tant que médicaments dans le traitement de pathologies liées à un dysfonctionnement du processus de polymérisation de l'actine dans le cadre de la formation du cytosquelette d'actine, notamment en tant que médicaments dans le traitement de cancers métastatiques, ou en tant qu'antibiotiques anti-parasitaires,

- ou susceptibles d'avoir un effet cytotoxique correspondant à une inhibition ou une stimulation de la formation du cytosquelette d'actine.

20 15. Trousse ou kit pour la mise en œuvre d'un procédé selon l'une des revendications 10 à 13, comprenant

25 - un réactif selon la revendication 8 ou 9,
- le cas échéant un réactif comprenant des protéines de la famille WASP chez les cellules eucaryotes, ou des séquences peptidiques dérivées des protéines de la famille WASP ou des fragments peptidiques définis dans l'une des revendications 11 à 13, liés ou adsorbés à un support tel que défini dans la revendication 8 ou 9,
- le cas échéant un composé marqué permettant de visualiser la polymérisation de l'actine, notamment de l'actine marquée par fluorescence,
- le cas échéant un milieu approprié contenant les éléments nécessaires à la polymérisation de l'actine, notamment un extrait de cellules lysées.

30

16. Séquences peptidiques SEQ ID NO 4, SEQ ID NO 6, SEQ ID NO 20, SEQ ID NO 22, SEQ ID NO 24, SEQ ID NO 26, et SEQ ID NO 30, ainsi que les

séquences peptidiques dérivées des fragments peptidiques susmentionnés, telles que définies dans la revendication 6.

17. Séquences nucléotidiq[ues] codant pour les séquences peptidiques selon la revendication 16, et correspondant aux séquences nucléotidiq[ues] suivantes :

5 - la séquence SEQ ID NO 3 codant pour SEQ ID NO 4, la séquence SEQ ID NO 5 codant pour SEQ ID NO 6, la séquence SEQ ID NO 19 codant pour SEQ ID NO 20, la séquence SEQ ID NO 21 codant pour SEQ ID NO 22, la séquence SEQ ID NO 23 codant pour SEQ ID NO 24, la séquence SEQ ID NO 25 codant pour SEQ ID NO 26, la séquence SEQ ID NO 29 codant pour SEQ ID NO 30,

10 - les séquences nucléotidiq[ues] dérivées par dégénérescence du code génétique des séquences nucléotidiq[ues] susmentionnées, et codant pour les séquences peptidiques susmentionnées,

15 - les séquences nucléotidiq[ues] dérivées des séquences nucléotidiq[ues] susmentionnées, et codant pour les séquences dérivées desdites séquences peptidiques telles que définies ci-dessus.

LISTE DE SEQUENCES

<110> CNRS
INSTITUT CURIE

<120> SEQUENCES PEPTIDIQUES COMPRENANT UN OU PLUSIEURS MOTIFS
DE LIAISON AUX PROTEINES DE LA FAMILLE Ena/VASP, ET
LEURS UTILISATIONS

<130> IFB 99 BM CNR ACTA

<140>
<141>

<160> 30

<170> PatentIn Ver. 2.1

<210> 1

<211> 1830

<212> ADN

<213> Listeria monocytogenes

<220>

<221> CDS

<222> (1)..(1830)

<400> 1

gcg aca gat agc gaa gat tct agt cta aac aca gat gaa tgg gaa gaa	48
Ala Thr Asp Ser Glu Asp Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu	
1 5 10 15	

gaa aaa aca gaa gag caa cca agc gag gta aat acg gga cca aga tac	96
Glu Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr	
20 25 30	

gaa act gca cgt gaa gta agt tca cgt gat att aaa gaa cta gaa aaa	144
Glu Thr Ala Arg Glu Val Ser Ser Arg Asp Ile Lys Glu Leu Glu Lys	
35 40 45	

tcg aat aaa gtg aga aat acg aac aaa gca gac cta ata gca atg ttg	192
Ser Asn Lys Val Arg Asn Thr Asn Lys Ala Asp Leu Ile Ala Met Leu	
50 55 60 65	

aaa gaa aaa gca gaa aaa ggt cca aat atc aat aat aac aac agt gaa	240
Lys Glu Lys Ala Glu Lys Gly Pro Asn Ile Asn Asn Asn Ser Glu	
65 70 75 80	

caa act gag aat gcg gct ata aat gaa gag gct tca gga gcc gac cga	288
Gln Thr Glu Asn Ala Ala Ile Asn Glu Ala Ser Gly Ala Asp Arg	
85 90 95	

cca gct ata caa gtg gag cgt cgt cat cca gga ttg cca tcg gat agc	336
Pro Ala Ile Gln Val Glu Arg Arg His Pro Gly Leu Pro Ser Asp Ser	
100 105 110	

gca gcg gaa att aaa aaa aga agg aaa gcc ata gca tca tcg gat agt	384
Ala Ala Glu Ile Lys Lys Arg Arg Lys Ala Ile Ala Ser Ser Asp Ser	
115 120 125	

gag ctt gaa agc ctt act tat ccg gat aaa cca aca aaa gta aat aag Glu Leu Glu Ser Leu Thr Tyr Pro Asp Lys Pro Thr Lys Val Asn Lys 130 135 140	432
aaa aaa gtg gcg aaa gag tca gtt gcg gat gct tct gaa agt gac tta Lys Lys Val Ala Lys Glu Ser Val Ala Asp Ala Ser Glu Ser Asp Leu 145 150 155 160	480
gat tct agc atg cag tca gca gat gag tct tca cca caa cct tta aaa Asp Ser Ser Met Gln Ser Ala Asp Glu Ser Ser Pro Gln Pro Leu Lys 165 170 175	528
gca aac caa caa cca ttt ttc cct aaa gta ttt aaa aaa ata aaa gat Ala Asn Gln Gln Pro Phe Phe Pro Lys Val Phe Lys Lys Ile Lys Asp 180 185 190	576
gcg ggg aaa tgg gta cgt gat aaa atc gac gaa aat cct gaa gta aag Ala Gly Lys Trp Val Arg Asp Lys Ile Asp Glu Asn Pro Glu Val Lys 195 200 205	624
aaa gcg att gtt gat aaa agt gca ggg tta att gac caa tta tta acc Lys Ala Ile Val Asp Lys Ser Ala Gly Leu Ile Asp Gln Leu Leu Thr 210 215 220	672
aaa aag aaa agt gaa gag gta aat gct tcg gac ttc ccg cca cca cct Lys Lys Lys Ser Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro 225 230 235 240	720
acg gat gaa gag tta aga ctt gct ttg cca gag aca cca atg ctt ctt Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro Met Leu Leu 245 250 255	768
ggg ttt aat gct cct gct aca tca gaa ccg agc tca ttc gaa ttt cca Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro Ser Ser Phe Glu Phe Pro 260 265 270	816
cca cca cct acg gat gaa gag tta aga ctt gct ttg cca gag acg cca Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro 275 280 285	864
atg ctt ctt ggt ttt aat gct cct gct aca tcg gaa ccg agc tcg ttc Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro Ser Ser Phe 290 295 300	912
gaa ttt cca ccg cct cca aca gaa gat gaa cta gaa atc atc ccg gaa Glu Phe Pro Pro Pro Thr Glu Asp Glu Leu Glu Ile Ile Arg Glu 305 310 315 320	960
aca gca tcc tcg cta gat tct agt ttt aca aga ggg gat tta gct agt Thr Ala Ser Ser Leu Asp Ser Ser Phe Thr Arg Gly Asp Leu Ala Ser 325 330 335	1008
ttg aga aat gct att aat cgc cat agt caa aat ttc tct gat ttc cca Leu Arg Asn Ala Ile Asn Arg His Ser Gln Asn Phe Ser Asp Phe Pro 340 345 350	1056
cca atc cca aca gaa gaa gag ttg aac ggg aga ggc ggt aga cca aca Pro Ile Pro Thr Glu Glu Leu Asn Gly Arg Gly Arg Pro Thr 355 360 365	1104

tct gaa gaa ttt agt tcg ctg aat agt ggt gat ttt aca gat gac gaa		1152	
Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly Asp Phe Thr Asp Asp Glu			
370	375	380	
aac agc gag aca aca gaa gaa att gat cgc cta gct gat tta aga		1200	
Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp Arg Leu Ala Asp Leu Arg			
385	390	395	400
gat aga gga aca gga aaa cac tca aga aat gcg ggt ttt tta cca tta		1248	
Asp Arg Gly Thr Gly Lys His Ser Arg Asn Ala Gly Phe Leu Pro Leu			
405	410	415	
aat ccg ttt gct agc agc ccg gtt cct tcg tta agt cca aag gta tcg		1296	
Asn Pro Phe Ala Ser Ser Pro Val Pro Ser Leu Ser Pro Lys Val Ser			
420	425	430	
aaa ata agc gca ccg gct ctg ata agt gac ata act aaa aaa acg cca		1344	
Lys Ile Ser Ala Pro Ala Leu Ile Ser Asp Ile Thr Lys Lys Thr Pro			
435	440	445	
ttt aag aat cca tca cag cca tta aat gtg ttt aat aaa aaa act aca		1392	
Phe Lys Asn Pro Ser Gln Pro Leu Asn Val Phe Asn Lys Lys Thr Thr			
450	455	460	
acg aaa aca gtg act aaa aaa cca acc cct gta aag acc gca cca aag		1440	
Thr Lys Thr Val Thr Lys Lys Pro Thr Pro Val Lys Thr Ala Pro Lys			
465	470	475	480
cta gca gaa ctt cct gcc aca aaa cca caa gaa acc gta ctt agg gaa		1488	
Leu Ala Glu Leu Pro Ala Thr Lys Pro Gln Glu Thr Val Leu Arg Glu			
485	490	495	
aat aaa aca ccc ttt ata gaa aaa caa gca gaa aca aac aag cag tca		1536	
Asn Lys Thr-Pro Phe Ile Glu Lys Gln Ala Glu Thr Asn Lys Gln Ser			
500	505	510	
att aat atg ccg agc cta cca gta atc caa aaa gaa gct aca gag agc		1584	
Ile Asn Met Pro Ser Leu Pro Val Ile Gln Lys Glu Ala Thr Glu Ser			
515	520	525	
gat aaa gag gaa atg aaa cca caa acc gag gaa aaa atg gta gag gaa		1632	
Asp Lys Glu Glu Met Lys Pro Gln Thr Glu Glu Lys Met Val Glu Glu			
530	535	540	
agc gaa tca gct aat aac gca aac gga aaa aat cgt tct gct ggc att		1680	
Ser Glu Ser Ala Asn Asn Ala Asn Gly Lys Asn Arg Ser Ala Gly Ile			
545	550	555	560
gaa gaa gga aaa cta att gct aaa agt gca gaa gac gaa aaa gcg aag		1728	
Glu Glu Gly Lys Leu Ile Ala Lys Ser Ala Glu Asp Glu Lys Ala Lys			
565	570	575	
gaa gaa cca ggg aac cat acg acg tta att ctt gca atg tta gct att		1776	
Glu Glu Pro Gly Asn His Thr Thr Leu Ile Leu Ala Met Leu Ala Ile			
580	585	590	
ggc gtg ttc tct tta ggg gcg ttt atc aaa att att caa tta aga aaa		1824	
Gly Val Phe Ser Leu Gly Ala Phe Ile Lys Ile Ile Gln Leu Arg Lys			
595	600	605	

aat aat		1830
Asn Asn		
610		

<210> 2						
<211> 610						
<212> PRT						
<213> Listeria monocytogenes						
<400> 2						
Ala Thr Asp Ser Glu Asp Ser Ser Leu Asn Thr Asp Glu Trp Glu Glu						
1	5	10			15	
Glu Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg Tyr						
20		25		30		
Glu Thr Ala Arg Glu Val Ser Ser Arg Asp Ile Lys Glu Leu Glu Lys						
35		40		45		
Ser Asn Lys Val Arg Asn Thr Asn Lys Ala Asp Leu Ile Ala Met Leu						
50		55		60		
Lys Glu Lys Ala Glu Lys Gly Pro Asn Ile Asn Asn Asn Ser Glu						
65		70		75		80
Gln Thr Glu Asn Ala Ala Ile Asn Glu Glu Ala Ser Gly Ala Asp Arg						
85		90		95		
Pro Ala Ile Gln Val Glu Arg Arg His Pro Gly Leu Pro Ser Asp Ser						
100		105		110		
Ala Ala Glu Ile Lys Lys Arg Arg Lys Ala Ile Ala Ser Ser Asp Ser						
115		120		125		
Glu Leu Glu Ser Leu Thr Tyr Pro Asp Lys Pro Thr Lys Val Asn Lys						
130		135		140		
Lys Lys Val Ala Lys Glu Ser Val Ala Asp Ala Ser Glu Ser Asp Leu						
145		150		155		160
Asp Ser Ser Met Gln Ser Ala Asp Glu Ser Ser Pro Gln Pro Leu Lys						
165		170		175		
Ala Asn Gln Gln Pro Phe Phe Pro Lys Val Phe Lys Lys Ile Lys Asp						
180		185		190		
Ala Gly Lys Trp Val Arg Asp Lys Ile Asp Glu Asn Pro Glu Val Lys						
195		200		205		
Lys Ala Ile Val Asp Lys Ser Ala Gly Leu Ile Asp Gln Leu Leu Thr						
210		215		220		
Lys Lys Lys Ser Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro						
225		230		235		240
Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro Met Leu Leu						
245		250		255		
Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro Ser Ser Phe Glu Phe Pro						
260		265		270		

Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro Glu Thr Pro
 275 280 285
 Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro Ser Ser Phe
 290 295 300
 Glu Phe Pro Pro Pro Thr Glu Asp Glu Leu Glu Ile Ile Arg Glu
 305 310 315 320
 Thr Ala Ser Ser Leu Asp Ser Ser Phe Thr Arg Gly Asp Leu Ala Ser
 325 330 335
 Leu Arg Asn Ala Ile Asn Arg His Ser Gln Asn Phe Ser Asp Phe Pro
 340 345 350
 Pro Ile Pro Thr Glu Glu Glu Leu Asn Gly Arg Gly Arg Pro Thr
 355 360 365
 Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly Asp Phe Thr Asp Asp Glu
 370 375 380
 Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp Arg Leu Ala Asp Leu Arg
 385 390 395 400
 Asp Arg Gly Thr Gly Lys His Ser Arg Asn Ala Gly Phe Leu Pro Leu
 405 410 415
 Asn Pro Phe Ala Ser Ser Pro Val Pro Ser Leu Ser Pro Lys Val Ser
 420 425 430
 Lys Ile Ser Ala Pro Ala Leu Ile Ser Asp Ile Thr Lys Lys Thr Pro
 435 440 445
 Phe Lys Asn Pro Ser Gln Pro Leu Asn Val Phe Asn Lys Lys Thr Thr
 450 455 460
 Thr Lys Thr Val Thr Lys Lys Pro Thr Pro Val Lys Thr Ala Pro Lys
 465 470 475 480
 Leu Ala Glu Leu Pro Ala Thr Lys Pro Gln Glu Thr Val Leu Arg Glu
 485 490 495
 Asn Lys Thr Pro Phe Ile Glu Lys Gln Ala Glu Thr Asn Lys Gln Ser
 500 505 510
 Ile Asn Met Pro Ser Leu Pro Val Ile Gln Lys Glu Ala Thr Glu Ser
 515 520 525
 Asp Lys Glu Glu Met Lys Pro Gln Thr Glu Glu Lys Met Val Glu Glu
 530 535 540
 Ser Glu Ser Ala Asn Asn Ala Asn Gly Lys Asn Arg Ser Ala Gly Ile
 545 550 555 560
 Glu Glu Gly Lys Leu Ile Ala Lys Ser Ala Glu Asp Glu Lys Ala Lys
 565 570 575
 Glu Glu Pro Gly Asn His Thr Thr Leu Ile Leu Ala Met Leu Ala Ile
 580 585 590

Gly Val Phe Ser Leu Gly Ala Phe Ile Lys Ile Ile Gln Leu Arg Lys
 595 600 605

Asn Asn
 610

<210> 3

<211> 1128

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle: fragment
 de la protéine ActA de Listeria monocytogenes

<220>

<221> CDS

<222> (1)..(1128)

<400> 3

gac ttc ccg cca cca cct acg gat gaa gag tta aga ctt gct ttg cca	48
Asp Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro	
1 5 10 15	

gag aca cca atg ctt ctt ggt ttt aat gct cct gct aca tca gaa ccg	96
Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro	
20 25 30	

agc tca ttc gaa ttt cca cca cca cct acg gat gaa gag tta aga ctt	144
Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu	
35 40 45	

gct ttg cca gag acg cca atg ctt ctt ggt ttt aat gct cct gct aca	192
Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr	
50 55 60	

tcg gaa ccg agc tcg ttc gaa ttt cca ccg cct cca aca gaa gat gaa	240
Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp Glu	
65 70 75 80	

cta gaa atc atc cgg gaa aca gca tcc tcg cta gat tct agt ttt aca	288
Leu Glu Ile Ile Arg Glu Thr Ala Ser Ser Leu Asp Ser Ser Phe Thr	
85 90 95	

aga ggg gat tta gct agt ttg aga aat gct att aat cgc cat agt caa	336
Arg Gly Asp Leu Ala Ser Leu Arg Asn Ala Ile Asn Arg His Ser Gln	
100 105 110	

aat ttc tct gat ttc cca cca atc cca aca gaa gaa gag ttg aac ggg	384
Asn Phe Ser Asp Phe Pro Pro Ile Pro Thr Glu Glu Glu Leu Asn Gly	
115 120 125	

aga ggc ggt aga cca aca tct gaa gaa ttt agt tcg ctg aat agt ggt	432
Arg Gly Gly Arg Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly	
130 135 140	

gat ttt aca gat gac gaa aac agc gag aca aca gaa gaa att gat	480
Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp	
145 150 155 160	

cgc cta gct gat tta aga gat aga gga aca gga aaa cac tca aga aat		528
Arg Leu Ala Asp Leu Arg Asp Arg Gly Thr Gly Lys His Ser Arg Asn		
165	170	175
gct ggt ttt tta cca tta aat ccg ttt gct agc agc ccg gtt cct tcg		576
Ala Gly Phe Leu Pro Leu Asn Pro Phe Ala Ser Ser Pro Val Pro Ser		
180	185	190
tta agt cca aag gta tcg aaa ata agc gca ccg gct ctg ata agt gac		624
Leu Ser Pro Lys Val Ser Lys Ile Ser Ala Pro Ala Leu Ile Ser Asp		
195	200	205
ata act aaa aaa acg cca ttt aag aat cca tca cag cca tta aat gtg		672
Ile Thr Lys Lys Thr Pro Phe Lys Asn Pro Ser Gln Pro Leu Asn Val		
210	215	220
ttt aat aaa aaa act aca acg aaa aca gtg act aaa aaa cca acc cct		720
Phe Asn Lys Lys Thr Thr Lys Thr Val Thr Lys Lys Pro Thr Pro		
225	230	235
240		
gta aag acc gca cca aag cta gca gaa ctt cct gcc aca aaa cca caa		768
Val Lys Thr Ala Pro Lys Leu Ala Glu Leu Pro Ala Thr Lys Pro Gln		
245	250	255
gaa acc gta ctt agg gaa aat aaa aca ccc ttt ata gaa aaa caa gca		816
Glu Thr Val Leu Arg Glu Asn Lys Thr Pro Phe Ile Glu Lys Gln Ala		
260	265	270
gaa aca aac aag cag tca att aat atg ccg agc cta cca gta atc caa		864
Glu Thr Asn Lys Gln Ser Ile Asn Met Pro Ser Leu Pro Val Ile Gln		
275	280	285
aaa gaa gct aca gag agc gat aaa gag gaa atg aaa cca caa acc gag		912
Lys Glu Ala Thr Glu Ser Asp Lys Glu Glu Met Lys Pro Gln Thr Glu		
290	295	300
gaa aaa atg gta gag gaa agc gaa tca gct aat aac gca aac gga aaa		960.
Glu Lys Met Val Glu Glu Ser Glu Ser Ala Asn Asn Ala Asn Gly Lys		
305	310	315
320		
aat cgt tct gct ggc att gaa gaa gga aaa cta att gct aaa agt gca		1008
Asn Arg Ser Ala Gly Ile Glu Glu Gly Lys Leu Ile Ala Lys Ser Ala		
325	330	335
gaa gac gaa aaa gcg aag gaa gaa cca ggg aac cat acg acg tta att		1056
Glu Asp Glu Lys Ala Lys Glu Glu Pro Gly Asn His Thr Thr Leu Ile		
340	345	350
ctt gca atg tta gct att ggc gtg ttc tct tta ggg gcg ttt atc aaa		1104
Leu Ala Met Leu Ala Ile Gly Val Phe Ser Leu Gly Ala Phe Ile Lys		
355	360	365
att att caa tta aga aaa aat aat		1128
Ile Ile Gln Leu Arg Lys Asn Asn		
370	375	

<210> 4
<211> 376
<212> PRT

<213> Séquence artificielle

<223> Description de la séquence artificielle: fragment
de la protéine ActA de Listeria monocytogenes

<400> 4

Asp	Phe	Pro	Pro	Pro	Pro	Thr	Asp	Glu	Glu	Leu	Arg	Leu	Ala	Leu	Pro
1															15
Glu	Thr	Pro	Met	Leu	Leu	Gly	Phe	Asn	Ala	Pro	Ala	Thr	Ser	Glu	Pro
			20					25							30
Ser	Ser	Phe	Glu	Phe	Pro	Pro	Pro	Pro	Thr	Asp	Glu	Glu	Leu	Arg	Leu
															45
Ala	Leu	Pro	Glu	Thr	Pro	Met	Leu	Leu	Gly	Phe	Asn	Ala	Pro	Ala	Thr
						50		55							60
Ser	Glu	Pro	Ser	Ser	Phe	Glu	Phe	Pro	Pro	Pro	Pro	Thr	Glu	Asp	Glu
															80
Leu	Glu	Ile	Ile	Arg	Glu	Thr	Ala	Ser	Ser	Leu	Asp	Ser	Ser	Phe	Thr
										85		90			95
Arg	Gly	Asp	Leu	Ala	Ser	Leu	Arg	Asn	Ala	Ile	Asn	Arg	His	Ser	Gln
										100		105			110
Asn	Phe	Ser	Asp	Phe	Pro	Pro	Ile	Pro	Thr	Glu	Glu	Leu	Asn	Gly	
										115		120			125
Arg	Gly	Gly	Arg	Pro	Thr	Ser	Glu	Glu	Phe	Ser	Ser	Leu	Asn	Ser	Gly
										130		135			140
Asp	Phe	Thr	Asp	Asp	Glu	Asn	Ser	Glu	Thr	Thr	Glu	Glu	Ile	Asp	
										145		150			160
Arg	Leu	Ala	Asp	Leu	Arg	Asp	Arg	Gly	Thr	Gly	Lys	His	Ser	Arg	Asn
										165		170			175
Ala	Gly	Phe	Leu	Pro	Leu	Asn	Pro	Phe	Ala	Ser	Ser	Pro	Val	Pro	Ser
										180		185			190
Leu	Ser	Pro	Lys	Val	Ser	Lys	Ile	Ser	Ala	Pro	Ala	Leu	Ile	Ser	Asp
										195		200			205
Ile	Thr	Lys	Lys	Thr	Pro	Phe	Lys	Asn	Pro	Ser	Gln	Pro	Leu	Asn	Val
										210		215			220
Phe	Asn	Lys	Lys	Thr	Thr	Lys	Thr	Val	Thr	Lys	Lys	Pro	Thr	Pro	
										225		230			240
Val	Lys	Thr	Ala	Pro	Lys	Leu	Ala	Glu	Leu	Pro	Ala	Thr	Lys	Pro	Gln
										245		250			255
Glu	Thr	Val	Leu	Arg	Glu	Asn	Lys	Thr	Pro	Phe	Ile	Glu	Lys	Gln	Ala
										260		265			270
Glu	Thr	Asn	Lys	Gln	Ser	Ile	Asn	Met	Pro	Ser	Leu	Pro	Val	Ile	Gln
										275		280			285
Lys	Glu	Ala	Thr	Glu	Ser	Asp	Lys	Glu	Glu	Met	Lys	Pro	Gln	Thr	Glu
										290		295			300

Glu Lys Met Val Glu Glu Ser Glu Ser Ala Asn Asn Ala Asn Gly Lys
 305 310 315 320

Asn Arg Ser Ala Gly Ile Glu Glu Gly Lys Leu Ile Ala Lys Ser Ala
 325 330 335

Glu Asp Glu Lys Ala Lys Glu Glu Pro Gly Asn His Thr Thr Leu Ile
 340 345 350

Leu Ala Met Leu Ala Ile Gly Val Phe Ser Leu Gly Ala Phe Ile Lys
 355 360 365

Ile Ile Gln Leu Arg Lys Asn Asn
 370 375

<210> 5

<211> 1050

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle: fragment
 de la protéine ActA de Listeria monocytogenes

<220>

<221> CDS

<222> (1)..(1050)

<400> 5

gac ttc ccg cca cca cct acg gat gaa gag tta aga ctt gct ttg cca	48
Asp Phe Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu Pro	
1 5 10 15	

gag aca cca atg ctt ctt ggt ttt aat gct cct gct aca tca gaa ccg	96
Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu Pro	
20 25 30	

agc tca ttc gaa ttt cca cca cca cct acg gat gaa gag tta aga ctt	144
Ser Ser Phe Phe Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu	
35 40 45	

gct ttg cca gag acg cca atg ctt ctt ggt ttt aat gct cct gct aca	192
Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr	
50 55 60	

tcg gaa ccg agc tcg ttc gaa ttt cca ccg cct cca aca gaa gat gaa	240
Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Thr Glu Asp Glu	
65 70 75 80	

cta gaa atc atc ccg gaa aca gca tcc tcg cta gat tct agt ttt aca	288
Leu Glu Ile Ile Arg Glu Thr Ala Ser Ser Leu Asp Ser Ser Phe Thr	
85 90 95	

aga ggg gat tta gct agt ttg aga aat gct att aat cgc cat agt caa	336
Arg Gly Asp Leu Ala Ser Leu Arg Asn Ala Ile Asn Arg His Ser Gln	
100 105 110	

aat ttc tct gat ttc cca cca atc cca aca gaa gaa gag ttg aac ggg Asn Phe Ser Asp Phe Pro Pro Ile Pro Thr Glu Glu Glu Leu Asn Gly 115 120 125	384
aga ggc ggt aga cca aca tct gaa gaa ttt agt tcg ctg aat agt ggt Arg Gly Gly Arg Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly 130 135 140	432
gat ttt aca gat gac gaa aac agc gag aca aca gaa gaa att gat Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp 145 150 155 160	480
cgc cta gct gat tta aga gat aga gga aca gga aaa cac tca aga aat Arg Leu Ala Asp Leu Arg Asp Arg Gly Thr Gly Lys His Ser Arg Asn 165 170 175	528
gcg ggt ttt tta cca tta aat ccg ttt gct agc agc ccg gtt cct tcg Ala Gly Phe Leu Pro Leu Asn Pro Phe Ala Ser Ser Pro Val Pro Ser 180 185 190	576
tta agt cca aag gta tcg aaa ata agc gca ccg gct ctg ata agt gac Leu Ser Pro Lys Val Ser Lys Ile Ser Ala Pro Ala Leu Ile Ser Asp 195 200 205	624
ata act aaa aaa acg cca ttt aag aat cca tca cag cca tta aat gtg Ile Thr Lys Lys Thr Pro Phe Lys Asn Pro Ser Gln Pro Leu Asn Val 210 215 220	672
ttt aat aaa aaa act aca acg aaa aca gtg act aaa aaa cca acc cct Phe Asn Lys Lys Thr Thr Lys Thr Val Thr Lys Lys Pro Thr Pro 225 230 235 240	720
gta aag acc gca cca aag cta gca gaa ctt cct gcc aca aaa cca caa Val Lys Thr Ala Pro Lys Leu Ala Glu Leu Pro Ala Thr Lys Pro Gln 245 250 255	768
gaa acc gta ctt agg gaa aat aaa aca ccc ttt ata gaa aaa caa gca Glu Thr Val Leu Arg Glu Asn Lys Thr Pro Phe Ile Glu Lys Gln Ala 260 265 270	816
gaa aca aac aag cag tca att aat atg ccg agc cta cca gta atc caa Glu Thr Asn Lys Gln Ser Ile Asn Met Pro Ser Leu Pro Val Ile Gln 275 280 285	864
aaa gaa gct aca gag agc gat aaa gag gaa atg aaa cca caa acc gag Lys Glu Ala Thr Glu Ser Asp Lys Glu Met Lys Pro Gln Thr Glu 290 295 300	912
gaa aaa atg gta gag gaa agc gaa tca gct aat aac gca aac gga aaa Glu Lys Met Val Glu Ser Glu Ser Ala Asn Asn Ala Asn Gly Lys 305 310 315 320	960
aat cgt tct gct ggc att gaa gaa gga aaa cta att gct aaa agt gca Asn Arg Ser Ala Gly Ile Glu Glu Gly Lys Leu Ile Ala Lys Ser Ala 325 330 335	1008
gaa gac gaa aaa gcg aag gaa gaa cca ggg aac cat acg acg Glu Asp Glu Lys Ala Lys Glu Glu Pro Gly Asn His Thr Thr 340 345 350	1050

<210> 6
 <211> 350

<212> PRT

<213> Séquence artificielle

<223> Description de la séquence artificielle: fragment
 de la protéine ActA de Listeria monocytogenes

<400> 6

Asp	Phe	Pro	Pro	Pro	Pro	Thr	Asp	Glu	Glu	Leu	Arg	Leu	Ala	Leu	Pro
1															15

Glu	Thr	Pro	Met	Leu	Leu	Gly	Phe	Asn	Ala	Pro	Ala	Thr	Ser	Glu	Pro
															30
20								25							

Ser	Ser	Phe	Glu	Phe	Pro	Pro	Pro	Pro	Thr	Asp	Glu	Glu	Leu	Arg	Leu
															45
35								40							

Ala	Leu	Pro	Glu	Thr	Pro	Met	Leu	Leu	Gly	Phe	Asn	Ala	Pro	Ala	Thr
															60
50								55							

Ser	Glu	Pro	Ser	Ser	Phe	Glu	Phe	Pro	Pro	Pro	Pro	Thr	Glu	Asp	Glu
															80
65								70				75			

Leu	Glu	Ile	Ile	Arg	Glu	Thr	Ala	Ser	Ser	Leu	Asp	Ser	Ser	Phe	Thr
															95
85								90							

Arg	Gly	Asp	Leu	Ala	Ser	Leu	Arg	Asn	Ala	Ile	Asn	Arg	His	Ser	Gln
															110
100								105							

Asn	Phe	Ser	Asp	Phe	Pro	Pro	Ile	Pro	Thr	Glu	Glu	Glu	Leu	Asn	Gly
															125
115								120							

Arg	Gly	Gly	Arg	Pro	Thr	Ser	Glu	Glu	Phe	Ser	Ser	Leu	Asn	Ser	Gly
															140
130								135							

Asp	Phe	Thr	Asp	Asp	Glu	Asn	Ser	Glu	Thr	Thr	Glu	Glu	Glu	Ile	Asp
															160
145					150				155						

Arg	Leu	Ala	Asp	Leu	Arg	Asp	Arg	Gly	Thr	Gly	Lys	His	Ser	Arg	Asn
															175
165					165				170						

Ala	Gly	Phe	Leu	Pro	Leu	Asn	Pro	Phe	Ala	Ser	Ser	Pro	Val	Pro	Ser
															180
180								185							

Leu	Ser	Pro	Lys	Val	Ser	Lys	Ile	Ser	Ala	Pro	Ala	Ile	Ser	Asp
195					200				205					

Ile	Thr	Lys	Lys	Thr	Pro	Phe	Lys	Asn	Pro	Ser	Gln	Pro	Leu	Asn	Val
															210
								215							220

Phe	Asn	Lys	Lys	Thr	Thr	Lys	Thr	Val	Thr	Lys	Lys	Pro	Thr	Pro	
															225
								230				235			240

Val	Lys	Thr	Ala	Pro	Lys	Leu	Ala	Glu	Leu	Pro	Ala	Thr	Lys	Pro	Gln
															245
									250				255		

Glu	Thr	Val	Leu	Arg	Glu	Asn	Lys	Thr	Pro	Phe	Ile	Glu	Lys	Gln	Ala
															260
									265				270		

Glu	Thr	Asn	Lys	Gln	Ser	Ile	Asn	Met	Pro	Ser	Leu	Pro	Val	Ile	Gln
															275
									280				285		

Lys Glu Ala Thr Glu Ser Asp Lys Glu Glu Met Lys Pro Gln Thr Glu
 290 295 300
 Glu Lys Met Val Glu Glu Ser Glu Ser Ala Asn Asn Ala Asn Gly Lys
 305 310 315 320
 Asn Arg Ser Ala Gly Ile Glu Glu Gly Lys Leu Ile Ala Lys Ser Ala
 325 330 335
 Glu Asp Glu Lys Ala Lys Glu Glu Pro Gly Asn His Thr Thr
 340 345 350

<210> 7
<211> 1695
<212> ADN
<213> Mus musculus

<220>
<221> CDS
<222> (1)..(1695)

<400> 7
atg gcg gcc ccc cgc ccg cct ccc gcg atc tcc gtc tcc gtc tcg gcc 48
Met Ala Ala Pro Arg Pro Pro Ala Ile Ser Val Ser Val Ser Ala
 1 5 10 15
ccc gcg ttt tac gcc ccg cag aag aag ttc gcc ccg gtt gtg gcc cca 96
Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Ala Pro Val Val Ala Pro
 20 25 30
aag ccc aaa gtg aat cct ttc cgg cct ggg gac agc gag cct cct gta 144
Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Val
 35 40 45
gca gcc ggg gcc caa aga gcg cag atg ggt cgg gtg ggc gag atc cca 192
Ala Ala Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro
 50 55 60
cca cca ccc ccg gaa gac ttt cct ttg ccc cct cct ccc ctt att ggg 240
Pro Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Leu Ile Gly
 65 70 75 80
gag ggc gac gac tca gag ggt gcc ctg gga ggt gcc ttc cca cct cca 288
Glu Gly Asp Asp Ser Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro
 85 90 95
cct ccc ccg atg atc gag gaa cca ttc ccc cct gct cct ctg gag gag 336
Pro Pro Pro Met Ile Glu Glu Pro Phe Pro Pro Ala Pro Leu Glu Glu
 100 105 110
gac atc ttc ccc tcc cct cca cct ctg gag gag gag gga ggg cct 384
Asp Ile Phe Pro Ser Pro Pro Pro Leu Glu Glu Gly Gly Pro
 115 120 125
gag gcc cct acc cag ctc cca ccg cag ccc agg gag aaa gtg tgc agt 432
Glu Ala Pro Thr Gln Leu Pro Pro Gln Pro Arg Glu Lys Val Cys Ser
 130 135 140

att gac ctg gag att gac tct ctg tcc tca ctg ctg gac gac atg acc	480
Ile Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr	
145 150 155 160	
aag aac gat ccc ttc aaa gcc cggtt gta tca tcc gga tat gta ccc cca	528
Lys Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro	
165 170 175	
cca gtt gcc act cca ttt gtt ccc aag cct agt acc aaa cct gcc cct	576
Pro Val Ala Thr Pro Phe Val Pro Lys Pro Ser Thr Lys Pro Ala Pro	
180 185 190	
ggg ggc aca gca ccc ttg cct ctt tgg aag acc cct tct agc tcc cag	624
Gly Gly Thr Ala Pro Leu Pro Pro Trp Lys Thr Pro Ser Ser Ser Gln	
195 200 205	
cca cca cct cag ccg cag gcc aag cct cag gtc cag ctc cat gtc cag	672
Pro Pro Pro Gln Pro Gln Ala Lys Pro Gln Val Gln Leu His Val Gln	
210 215 220	
cct cag gcc aag ccc cat gtc caa ccc cag cct gtg tct tct got aat	720
Pro Gln Ala Lys Pro His Val Gln Pro Gln Pro Val Ser Ser Ala Asn	
225 230 235 240	
aca cag ccc ccg ggt ccc ctt tct cag gca act cca gca cct aag	768
Thr Gln Pro Arg Gly Pro Leu Ser Gln Ala Pro Thr Pro Ala Pro Lys	
245 250 255	
ttt gct cca gtg gct cct aaa ttt act ccc gtg gtt tcc aag ttc agc	816
Phe Ala Pro Val Ala Pro Lys Phe Thr Pro Val Val Ser Lys Phe Ser	
260 265 270	
cct ggt gct cca agt gga cct ggg cca cag ccc aat caa aaa atg gtg	864
Pro Gly Ala Pro Ser Gly Pro Gly Pro Gln Pro Asn Gln Lys Met Val	
275 280 285	
cct ccg gat gct cct tct gtg agc aca ggc tcc cct cag ccc cct	912
Pro Pro Asp Ala Pro Ser Ser Val Ser Thr Gly Ser Pro Gln Pro Pro	
290 295 300	
agc ttc acc tat gct cag cag aag gag aag ccc cta gtt caa gag aag	960
Ser Phe Thr Tyr Ala Gln Gln Lys Glu Lys Pro Leu Val Gln Glu Lys	
305 310 315 320	
cag cac cca cag cct cca cca gct caa aac caa aac cag gta cgc tct	1008
Gln His Pro Gln Pro Pro Ala Gln Asn Gln Asn Gln Val Arg Ser	
325 330 335	
cct gga ggc cca ggc ccc ttg acc ctg aag gag gta gag gag ttg gag	1056
Pro Gly Gly Pro Gly Pro Leu Thr Leu Lys Glu Val Glu Glu Leu Glu	
340 345 350	
cag ctg acc cag cag ctg atg cag gac atg gaa cac cct cag agg cag	1104
Gln Leu Thr Gln Gln Leu Met Gln Asp Met Glu His Pro Gln Arg Gln	
355 360 365	
agc gtg gca gtg aat gag tcc tgt ggc aaa tgc aat cag cca ctg gcc	1152
Ser Val Ala Val Asn Glu Ser Cys Gly Lys Cys Asn Gln Pro Leu Ala	
370 375 380	

cgt gca cag cct gcg gtt cgt gca ctg gga caa ctg ttc cac atc acc Arg Ala Gln Pro Ala Val Arg Ala Leu Gly Gln Leu Phe His Ile Thr 385 390 395 400	1200
tgc ttc act tgc cat cag tgt cag cag cag ctg cag gga cag cag ttc Cys Phe Thr Cys His Gln Cys Gln Gln Leu Gln Gly Gln Gln Phe 405 410 415	1248
tat agc ctg gag gga gca cca tat tgt gag ggc tgc tac acc gac act Tyr Ser Leu Glu Gly Ala Pro Tyr Cys Glu Gly Cys Tyr Thr Asp Thr 420 425 430	1296
ttg gag aag tgc aac acc tgt ggg cag ccc atc act gac cgc atg ctg Leu Glu Lys Cys Asn Thr Cys Gly Gln Pro Ile Thr Asp Arg Met Leu 435 440 445	1344
agg gcc act ggc aaa gcc tac cac cca cag tgc ttc acc tgt gtg gtc Arg Ala Thr Gly Lys Ala Tyr His Pro Gln Cys Phe Thr Cys Val Val 450 455 460	1392
tgc gcc tgt ccc ctg gag ggc acc tcc ttc att gtg gac cag gcc aat Cys Ala Cys Pro Leu Glu Gly Thr Ser Phe Ile Val Asp Gln Ala Asn 465 470 475 480	1440
cag ccc cac tgt gtc cct gac tat cac aag caa tac gct cca agg tgc Gln Pro His Cys Val Pro Asp Tyr His Lys Gln Tyr Ala Pro Arg Cys 485 490 495	1488
tcc gtc tgc tcg gag cca atc atg cct gag cct ggc cga gac gag act Ser Val Cys Ser Glu Pro Ile Met Pro Glu Pro Gly Arg Asp Glu Thr 500 505 510	1536
gtg cga gta gtg gcg ctg gat aag aac ttt cat atg aag tgt tac aag Val Arg Val Val Ala Leu Asp Lys Asn Phe His Met Lys Cys Tyr Lys 515 520 525	1584
tgt gag gac tgt ggg aaa cct ctg tcc att gag gca gat gac aac ggc Cys Glu Asp Cys Gly Lys Pro Leu Ser Ile Glu Ala Asp Asp Asn Gly 530 535 540	1632
tgt ttc cct ctg gat ggc cac gtc ctt tgt cggt aag tgc cac tcc gct Cys Phe Pro Leu Asp Gly His Val Leu Cys Arg Lys Cys His Ser Ala 545 550 555 560	1680
aga gcc cag acc tga Arg Ala Gln Thr 565	1695
<210> 8	
<211> 564	
<212> PRT	
<213> Mus musculus	
<400> 8	
Met Ala Ala Pro Arg Pro Pro Ala Ile Ser Val Ser Val Ser Ala 1 5 10 15	
Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Ala Pro Val Val Ala Pro 20 25 30	

Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Val
 35 40 45
 Ala Ala Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro
 50 55 60
 Pro Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Leu Ile Gly
 65 70 75 80
 Glu Gly Asp Asp Ser Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro
 85 90 95
 Pro Pro Pro Met Ile Glu Glu Pro Phe Pro Pro Ala Pro Leu Glu Glu
 100 105 110
 Asp Ile Phe Pro Ser Pro Pro Pro Leu Glu Glu Gly Gly Pro
 115 120 125
 Glu Ala Pro Thr Gln Leu Pro Pro Gln Pro Arg Glu Lys Val Cys Ser
 130 135 140
 Ile Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr
 145 150 155 160
 Lys Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro
 165 170 175
 Pro Val Ala Thr Pro Phe Val Pro Lys Pro Ser Thr Lys Pro Ala Pro
 180 185 190
 Gly Gly Thr Ala Pro Leu Pro Pro Trp Lys Thr Pro Ser Ser Ser Gln
 195 200 205
 Pro Pro Pro Gln Pro Gln Ala Lys Pro Gln Val Gln Leu His Val Gln
 210 215 220
 Pro Gln Ala Lys Pro His Val Gln Pro Gln Pro Val Ser Ser Ala Asn
 225 230 235 240
 Thr Gln Pro Arg Gly Pro Leu Ser Gln Ala Pro Thr Pro Ala Pro Lys
 245 250 255
 Phe Ala Pro Val Ala Pro Lys Phe Thr Pro Val Val Ser Lys Phe Ser
 260 265 270
 Pro Gly Ala Pro Ser Gly Pro Gly Pro Gln Pro Asn Gln Lys Met Val
 275 280 285
 Pro Pro Asp Ala Pro Ser Ser Val Ser Thr Gly Ser Pro Gln Pro Pro
 290 295 300
 Ser Phe Thr Tyr Ala Gln Gln Lys Glu Lys Pro Leu Val Gln Glu Lys
 305 310 315 320
 Gln His Pro Gln Pro Pro Pro Ala Gln Asn Gln Asn Gln Val Arg Ser
 325 330 335
 Pro Gly Gly Pro Gly Pro Leu Thr Leu Lys Glu Val Glu Leu Glu
 340 345 350

Gln Leu Thr Gln Gln Leu Met Gln Asp Met Glu His Pro Gln Arg Gln
 355 360 365
 Ser Val Ala Val Asn Glu Ser Cys Gly Lys Cys Asn Gln Pro Leu Ala
 370 375 380
 Arg Ala Gln Pro Ala Val Arg Ala Leu Gly Gln Leu Phe His Ile Thr
 385 390 395 400
 Cys Phe Thr Cys His Gln Cys Gln Gln Leu Gln Gly Gln Gln Phe
 405 410 415
 Tyr Ser Leu Glu Gly Ala Pro Tyr Cys Glu Gly Cys Tyr Thr Asp Thr
 420 425 430
 Leu Glu Lys Cys Asn Thr Cys Gly Gln Pro Ile Thr Asp Arg Met Leu
 435 440 445
 Arg Ala Thr Gly Lys Ala Tyr His Pro Gln Cys Phe Thr Cys Val Val
 450 455 460
 Cys Ala Cys Pro Leu Glu Gly Thr Ser Phe Ile Val Asp Gln Ala Asn
 465 470 475 480
 Gln Pro His Cys Val Pro Asp Tyr His Lys Gln Tyr Ala Pro Arg Cys
 485 490 495
 Ser Val Cys Ser Glu Pro Ile Met Pro Glu Pro Gly Arg Asp Glu Thr
 500 505 510
 Val Arg Val Val Ala Leu Asp Lys Asn Phe His Met Lys Cys Tyr Lys
 515 520 525
 Cys Glu Asp Cys Gly Lys Pro Leu Ser Ile Glu Ala Asp Asp Asn Gly
 530 535 540
 Cys Phe Pro Leu Asp Gly His Val Leu Cys Arg Lys Cys His Ser Ala
 545 550 555 560
 Arg Ala Gln Thr

<210> 9
 <211> 1626
 <212> ADN
 <213> Gallus gallus

<220>
 <221> CDS
 <222> (1)..(1626)

<400> 9
 atg gct tct cca ggt acc cca ggg acc cgt atg aca acc aca gtc agt 48
 Met Ala Ser Pro Gly Thr Pro Gly Thr Arg Met Thr Thr Thr Val Ser
 1 5 10 15
 atc aac att tcc aca ccg tcc ttt tac aac cca cag aag aaa ttt gca 96
 Ile Asn Ile Ser Thr Pro Ser Phe Tyr Asn Pro Gln Lys Lys Phe Ala
 20 25 30

ccc gtg gtt gcc cct aaa ccc aag gtg aat ccc ttc aag act ggg ggt	144
Pro Val Val Ala Pro Lys Pro Lys Val Asn Pro Phe Lys Thr Gly Gly	
35	40
45	
aca tcg gag tca tcg cag cca cag cct cct gga act ggt gcc cag cgt	192
Thr Ser Glu Ser Ser Gln Pro Gln Pro Pro Gly Thr Gly Ala Gln Arg	
50	55
60	
gcc cag ata ggg aga gtg gga gag atc ccc gta tct gtg aca gca gaa	240
Ala Gln Ile Gly Arg Val Gly Glu Ile Pro Val Ser Val Thr Ala Glu	
65	70
75	80
gag ctg ccg ctg cca cct cct ccc cca cct gga gag gag cta agt ttc	288
Glu Leu Pro Leu Pro Pro Pro Pro Gly Glu Glu Leu Ser Phe	
85	90
95	
tcc tca aac tgt gct ttt cct cca ccc cca ccc ttt gaa gag cct	336
Ser Ser Asn Cys Ala Phe Pro Pro Pro Pro Phe Glu Glu Pro	
100	105
110	
ttc cca cca gcc cca gat gaa gct ttt cct tct cct cca cct cct	384
Phe Pro Pro Ala Pro Asp Glu Ala Phe Pro Ser Pro Pro Pro Pro	
115	120
125	
cca cca atg ttt gat gaa gga cct gcc cta cag ata cct cca gga tcc	432
Pro Pro Met Phe Asp Glu Gly Pro Ala Leu Gln Ile Pro Pro Gly Ser	
130	135
140	
acg ggt tct gtg gag aaa ccg ttg gcc cca aaa gct cac gtg gaa atc	480
Thr Gly Ser Val Glu Lys Pro Leu Ala Pro Lys Ala His Val Glu Ile	
145	150
155	160
tca tct gca ccc aga gat cct act cct cct ttt cct tcc aag ttc act	528
Ser Ser Ala Pro Arg Asp Pro Thr Pro Pro Phe Pro Ser Lys Phe Thr	
165	170
175	
cca aag cca agt ggt acc tta tct tcc aag ccc cct gga ttg gat tca	576
Pro Lys Pro Ser Gly Thr Leu Ser Ser Lys Pro Pro Gly Leu Asp Ser	
180	185
190	
act cct gcc cca gct cca tgg gca gct cca cag cag cgc aag gag ccc	624
Thr Pro Ala Pro Ala Pro Trp Ala Ala Pro Gln Gln Arg Lys Glu Pro	
195	200
205	
cta gcc tca gtc cct cca ccc ccc tct ctc cct tct cag cct act gct	672
Leu Ala Ser Val Pro Pro Pro Ser Leu Pro Ser Gln Pro Thr Ala	
210	215
220	
aaa ttc aca cca ccc cct gtt gcc agc tct cct gga tcc aaa cca ggt	720
Lys Phe Thr Pro Pro Val Ala Ser Ser Pro Gly Ser Lys Pro Gly	
225	230
235	240
gcc act gtt ccc atg gct cct tca aac tct aca aga tat cct aca tcc	768
Ala Thr Val Pro Met Ala Pro Ser Asn Ser Thr Arg Tyr Pro Thr Ser	
245	250
255	
ctt cag act cag ttc act gcc cct tca ccc tcc ggt ccc ttg tct cga	816
Ieu Gln Thr Gln Phe Thr Ala Pro Ser Pro Ser Gly Pro Leu Ser Arg	
260	265
270	

cct cag cct ccc aat ttc acc tat gct cag cag tgg gaa aga cct cag		864
Pro Gln Pro Pro Asn Phe Thr Tyr Ala Gln Gln Trp Glu Arg Pro Gln		
275	280	285
gtg cag gag aaa cct gtt ccc act gaa aaa tct gct gta aaa gac		912
Val Gln Glu Lys Pro Val Pro Thr Glu Lys Ser Ala Ala Val Lys Asp		
290	295	300
atg cgt aga ccc act gca gat ccg cct aag gga aac tct cct ctg acc		960
Met Arg Arg Pro Thr Ala Asp Pro Pro Lys Gly Asn Ser Pro Leu Thr		
305	310	315
320		
atg aag gag gta gaa gag ctg gag ctg ttg acc cag aaa cta atg aag		1008
Met Lys Glu Val Glu Leu Glu Leu Leu Thr Gln Lys Leu Met Lys		
325	330	335
gat atg gat cat cca cct cca gta gaa gct gct act tct gag ctc tgt		1056
Asp Met Asp His Pro Pro Pro Val Glu Ala Ala Thr Ser Glu Leu Cys		
340	345	350
ggc ttc tgt cgg aag ccc ctg tca cgg acc cag cca gct gtg aga gct		1104
Gly Phe Cys Arg Lys Pro Leu Ser Arg Thr Gln Pro Ala Val Arg Ala		
355	360	365
ctg gac tgc ctt ttc cac gtg gag tgc ttc acc tgc ttc aag tgt gag		1152
Leu Asp Cys Leu Phe His Val Glu Cys Phe Thr Cys Phe Lys Cys Glu		
370	375	380
aag cag ctg cag ggg cag cag ttc tac aat gtg gat gaa aag ccc ttc		1200
Lys Gln Leu Gln Gly Gln Phe Tyr Asn Val Asp Glu Lys Pro Phe		
385	390	395
400		
tgc gag gac tgc tat gct gga acc ctg gaa aag tgc agt gtc tgc aaa		1248
Cys Glu Asp Cys Tyr Ala Gly Thr Leu Glu Lys Cys Ser Val Cys Lys		
405	410	415
cag act atc aca gac agg atg ctg aag gcc acc ggt aac tca tac cat		1296
Gin Thr Ile Thr Asp Arg Met Leu Lys Ala Thr Gly Asn Ser Tyr His		
420	425	430
cct cag tgc ttc acc tgt gtg atg tgc cat act cct ctg gag ggg gcc		1344
Pro Gln Cys Phe Thr Cys Val Met Cys His Thr Pro Leu Glu Gly Ala		
435	440	445
tcc ttc ata gtg gac cag gcc aac cag cct cac tgt gtg gat gac tac		1392
Ser Phe Ile Val Asp Gln Ala Asn Gln Pro His Cys Val Asp Asp Tyr		
450	455	460
cac agg aag tat gct cca cgc tgc tca gta tgt agt gaa cct atc atg		1440
His Arg Lys Tyr Ala Pro Arg Cys Ser Val Cys Ser Glu Pro Ile Met		
465	470	475
480		
cca gag cct ggg aaa gat gag aca gtg cgt gtg gca ctg gag aaa		1488
Pro Glu Pro Gly Lys Asp Glu Thr Val Arg Val Val Ala Leu Glu Lys		
485	490	495
aac ttc cac atg aaa tgt tac aag tgt gag gac tgt ggg agg ccc tta		1536
Asn Phe His Met Lys Cys Tyr Lys Cys Glu Asp Cys Gly Arg Pro Leu		
500	505	510

tct att gag gct gat gaa aat ggc tgc ttt cca ctg gat ggg cac gta 1584
 Ser Ile Glu Ala Asp Glu Asn Gly Cys Phe Pro Leu Asp Gly His Val
 515 520 525

cta tgt atg aaa tgt cac act gtt cgt gct aaa aca gcg tgc 1626
 Leu Cys Met Lys Cys His Thr Val Arg Ala Lys Thr Ala Cys
 530 535 540

<210> 10
 <211> 542
 <212> PRT
 <213> Gallus gallus

<400> 10
 Met Ala Ser Pro Gly Thr Pro Gly Thr Arg Met Thr Thr Thr Val Ser
 1 5 10 15

Ile Asn Ile Ser Thr Pro Ser Phe Tyr Asn Pro Gln Lys Lys Phe Ala
 20 25 30

Pro Val Val Ala Pro Lys Pro Lys Val Asn Pro Phe Lys Thr Gly Gly
 35 40 45

Thr Ser Glu Ser Ser Gln Pro Gln Pro Pro Gly Thr Gly Ala Gln Arg
 50 55 60

Ala Gln Ile Gly Arg Val Gly Glu Ile Pro Val Ser Val Thr Ala Glu
 65 70 75 80

Glu Leu Pro Leu Pro Pro Pro Pro Pro Gly Glu Glu Leu Ser Phe
 85 90 95

Ser Ser Asn Cys Ala Phe Pro Pro Pro Pro Pro Phe Glu Glu Pro
 100 105 110

Phe Pro Pro Ala Pro Asp Glu Ala Phe Pro Ser Pro Pro Pro Pro
 115 120 125

Pro Pro Met Phe Asp Glu Gly Pro Ala Leu Gln Ile Pro Pro Gly Ser
 130 135 140

Thr Gly Ser Val Glu Lys Pro Leu Ala Pro Lys Ala His Val Glu Ile
 145 150 155 160

Ser Ser Ala Pro Arg Asp Pro Thr Pro Pro Phe Pro Ser Lys Phe Thr
 165 170 175

Pro Lys Pro Ser Gly Thr Leu Ser Ser Lys Pro Pro Gly Leu Asp Ser
 180 185 190

Thr Pro Ala Pro Ala Pro Trp Ala Ala Pro Gln Gln Arg Lys Glu Pro
 195 200 205

Leu Ala Ser Val Pro Pro Pro Pro Ser Leu Pro Ser Gln Pro Thr Ala
 210 215 220

Lys Phe Thr Pro Pro Pro Val Ala Ser Ser Pro Gly Ser Lys Pro Gly
 225 230 235 240

Ala Thr Val Pro Met Ala Pro Ser Asn Ser Thr Arg Tyr Pro Thr Ser
 245 250 255

 Leu Gln Thr Gln Phe Thr Ala Pro Ser Pro Ser Gly Pro Leu Ser Arg
 260 265 270

 Pro Gln Pro Pro Asn Phe Thr Tyr Ala Gln Gln Trp Glu Arg Pro Gln
 275 280 285

 Val Gln Glu Lys Pro Val Pro Thr Glu Lys Ser Ala Ala Val Lys Asp
 290 295 300

 Met Arg Arg Pro Thr Ala Asp Pro Pro Lys Gly Asn Ser Pro Leu Thr
 305 310 315 320

 Met Lys Glu Val Glu Glu Leu Glu Leu Leu Thr Gln Lys Leu Met Lys
 325 330 335

 Asp Met Asp His Pro Pro Pro Val Glu Ala Ala Thr Ser Glu Leu Cys
 340 345 350

 Gly Phe Cys Arg Lys Pro Leu Ser Arg Thr Gln Pro Ala Val Arg Ala
 355 360 365

 Leu Asp Cys Leu Phe His Val Glu Cys Phe Thr Cys Phe Lys Cys Glu
 370 375 380

 Lys Gln Leu Gln Gly Gln Gln Phe Tyr Asn Val Asp Glu Lys Pro Phe
 385 390 395 400

 Cys Glu Asp Cys Tyr Ala Gly Thr Leu Glu Lys Cys Ser Val Cys Lys
 405 410 415

 Gln Thr Ile Thr Asp Arg Met Leu Lys Ala Thr Gly Asn Ser Tyr His
 420 425 430

 Pro Gln Cys Phe Thr Cys Val Met Cys His Thr Pro Leu Glu Gly Ala
 435 440 445

 Ser Phe Ile Val Asp Gln Ala Asn Gln Pro His Cys Val Asp Asp Tyr
 450 455 460

 His Arg Lys Tyr Ala Pro Arg Cys Ser Val Cys Ser Glu Pro Ile Met
 465 470 475 480

 Pro Glu Pro Gly Lys Asp Glu Thr Val Arg Val Val Ala Leu Glu Lys
 485 490 495

 Asn Phe His Met Lys Cys Tyr Lys Cys Glu Asp Cys Gly Arg Pro Leu
 500 505 510

 Ser Ile Glu Ala Asp Glu Asn Gly Cys Phe Pro Leu Asp Gly His Val
 515 520 525

 Leu Cys Met Lys Cys His Thr Val Arg Ala Lys Thr Ala Cys
 530 535 540

<210> 11
 <211> 1716

<212> ADN
<213> *Homo sapiens*

<220>
<221> CDS
<222> (1)..(1716)

<400> 11
atg gcg gcc ccc cgc ccg tct ccc gcg atc tcc gtt tcg gtc tcg gct 48
Met Ala Ala Pro Arg Pro Ser Pro Ala Ile Ser Val Ser Val Ser Ala
1 5 10 15

```

ccg gct ttt tac gcc ccg cag aag aag ttc ggc cct gtg gtg gcc cca 96
Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Gly Pro Val Val Ala Pro
          20           25           30

```

aag ccc aaa gtg aat ccc ttc cg³⁵ ggg ccc gac agc gag cct ccc ccg 144
 Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Pro
⁴⁰ 45

gca ccc ggg gcc cag cgc gca cag atg ggc cg ^g gtg ggc gag att ccc	192	
Ala Pro Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro		
50	55	60

ccg ccg ccc ccg gaa gac ttt ccc ctg cct cca cct ccc ctt gct ggg 240
 Pro Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Pro Leu Ala Gly
 65 70 75 80

gat ggc gac gat gca gag ggt gct ctg gga ggt gcc ttc ccg ccg ccc 288
 Asp Gly Asp Asp Ala Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro
 85 90 95

cct ccc ccg atc gag gaa tca ttt ccc cct gcg cct ctg gag gag gag 336
 Pro Pro Pro Ile Glu Glu Ser Phe Pro Pro Ala Pro Leu Glu Glu Glu
 100 105 110

atc ttc cct tcc ccg ccg cct cct ccg gag gag gag gga ggg cct gag 384
 Ile Phe Pro Ser Pro Pro Pro Pro Pro Glu Glu Glu Gly Gly Pro Glu
 115 120 125

```

gcc ccc ata ccg ccc cca cca cag ccc agg gag aag gtg agc agt att 432
Ala Pro Ile Pro Pro Pro Gln Pro Arg Glu Lys Val Ser Ser Ile
    130          135          140

```

```

gat ttg gag atc gac tct ctg tcc tca ctg ctg gat gac atg acc aag 480
Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys
145          150          155          160

```

```

aat gat cct ttc aaa gcc cggtgtcatacttgcgtccca 528
Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro
165. 170. 175.

```

gtg gcc act cca ttc agt tcc aag tcc agt acc aag cct gca gcc ggg 576
Val Ala Thr Pro Phe Ser Ser Lys Ser Ser Thr Lys Pro Ala Ala Gly
180 185 190

```

ggc aca gca ccc ctg cct cct tgg aag tcc cct tcc agc tcc cag cct 624
Gly Thr Ala Pro Leu Pro Pro Trp Lys Ser Pro Ser Ser Ser Gln Pro
          195           200           205

```

ctg ccc cag gtt ccg gct ccg gct cag agc cag aca cag ttc cat gtt		672
Leu Pro Gln Val Pro Ala Pro Ala Gln Ser Gln Thr Gln Phe His Val		
210	215	220
cag ccc cag ccc cag ccc aag cct cag gtc caa ctc cat gtc cag tcc		720
Gln Pro Gln Pro Gln Pro Lys Pro Gln Val Gln Leu His Val Gln Ser		
225	230	235
240		
cag acc cag cct gtg tct ttg gct aac acc cag ccc cga ggg ccc cca		768
Gln Thr Gln Pro Val Ser Leu Ala Asn Thr Gln Pro Arg Gly Pro Pro		
245	250	255
gcc tca tct ccg gct cca gcc cct aag ttt tct cca gtg act cct aag		816
Ala Ser Ser Pro Ala Pro Ala Pro Lys Phe Ser Pro Val Thr Pro Lys		
260	265	270
ttt act cct gtg gct tcc aag ttc agt cct gga gcc cca ggt gga tct		864
Phe Thr Pro Val Ala Ser Lys Phe Ser Pro Gly Ala Pro Gly Gly Ser		
275	280	285
ggg tca caa cca aat caa aaa ttg ggg cac ccc gaa gct ctt tct gct		912
Gly Ser Gln Pro Asn Gln Lys Leu Gly His Pro Glu Ala Leu Ser Ala		
290	295	300
ggc aca ggc tcc cct caa cct ccc agc ttc acc tat gcc cag cag agg		960
Gly Thr Gly Ser Pro Gln Pro Pro Ser Phe Thr Tyr Ala Gln Gln Arg		
305	310	315
320		
gag aag ccc cga gtg cag gag aag cag cac ccc gtg ccc cca ccg gct		1008
Glu Lys Pro Arg Val Gln Glu Lys Gln His Pro Val Pro Pro Ala		
325	330	335
cag aac caa aac cag gtg cgc tcc cct ggg gcc cca ggg ccc ctg act		1056
Gln Asn Gln Gln Val Arg Ser Pro Gly Ala Pro Gly Pro Leu Thr		
340	345	350
ctg aag gag gtg gag gag ctg gag cag ctg acc cag cta atg cag		1104
Leu Lys Glu Val Glu Leu Glu Gln Leu Thr Gln Gln Leu Met Gln		
355	360	365
gac atg gag cat cct cag agg cag aat gtg gct gtc aac gaa ctc tgc		1152
Asp Met Glu His Pro Gln Arg Gln Asn Val Ala Val Asn Glu Leu Cys		
370	375	380
1		
ggc cga tgc cat caa ccc ctg gcc cgg gcg cag cca gcc gtc cgc gct		1200
Gly Arg Cys His Gln Pro Leu Ala Arg Ala Gln Pro Ala Val Arg Ala		
385	390	395
400		
cta ggg cag ctg ttc cac atc gcc tgc ttc acc tgc cac cag tgt gcg		1248
Leu Gly Gln Leu Phe His Ile Ala Cys Phe Thr Cys His Gln Cys Ala		
405	410	415
cag cag ctc cag ggc cag cag ttc tac agt ctg gag ggg gcg ccg tac		1296
Gln Gln Leu Gln Gly Gln Gln Phe Tyr Ser Leu Glu Gly Ala Pro Tyr		
420	425	430
tgc gag ggc tgt tac act gac acc ctg gag aag tgt aac acc tgc ggg		1344
Cys Glu Gly Cys Tyr Thr Asp Thr Leu Glu Lys Cys Asn Thr Cys Gly		
435	440	445

gag ccc atc act gac cgc atg ctg agg gcc acg ggc aag gcc tat cac . 1392
 Glu Pro Ile Thr Asp Arg Met Leu Arg Ala Thr Gly Lys Ala Tyr His
 450 455 460

ccg cac tgc ttc acc tgt gtg gtc tgc gcc cgc ccc ctg gag ggc acc 1440
 Pro His Cys Phe Thr Cys Val Val Cys Ala Arg Pro Leu Glu Gly Thr
 465 470 475 480

tcc ttc atc gtg gac cag gcc aac cgg ccc cac tgt gtc ccc gac tac 1488
 Ser Phe Ile Val Asp Gln Ala Asn Arg Pro His Cys Val Pro Asp Tyr
 485 490 495

cac aag cag tac gcc ccg agg tgc tcc gtc tgc tct gag ccc atc atg 1536
 His Lys Gln Tyr Ala Pro Arg Cys Ser Val Cys Ser Glu Pro Ile Met
 500 505 510

cct gag cct ggc cga gat gag act gtg cga gtg gtc gcc ctg gac aag 1584
 Pro Glu Pro Gly Arg Asp Glu Thr Val Arg Val Val Ala Leu Asp Lys
 515 520 525

aac ttc cac atg aag tgt tac aag tgt gag gac tgc ggg aag ccc ctg 1632
 Asn Phe His Met Lys Cys Tyr Lys Cys Glu Asp Cys Gly Lys Pro Leu
 530 535 540

tcg att gag gca gat gac aat ggc tgc ttc ccc ctg gac ggt cac gtg 1680
 Ser Ile Glu Ala Asp Asn Gly Cys Phe Pro Leu Asp Gly His Val
 545 550 555 560

ctc tgt cgg aag tgc cac act gct aga gcc cag acc 1716
 Leu Cys Arg Lys Cys His Thr Ala Arg Ala Gln Thr
 565 570

<210> 12
<211> 572
<212> PRT
<213> Homo sapiens

<400> 12
Met Ala Ala Pro Arg Pro Ser Pro Ala Ile Ser Val Ser Val Ala
 1 5 10 15

Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Gly Pro Val Val Ala Pro
 20 25 30

Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Pro
 35 40 45

Ala Pro Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro
 50 55 60

Pro Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Leu Ala Gly
 65 70 75 80

Asp Gly Asp Asp Ala Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro
 85 90 95

Pro Pro Pro Ile Glu Glu Ser Phe Pro Pro Ala Pro Leu Glu Glu
 100 105 110

Ile Phe Pro Ser Pro Pro Pro Pro Glu Glu Glu Gly Gly Pro Glu
 115 120 125

Ala Pro Ile Pro Pro Pro Gln Pro Arg Glu Lys Val Ser Ser Ile
 130 135 140

Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys
 145 150 155 160

Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro
 165 170 175

Val Ala Thr Pro Phe Ser Ser Lys Ser Ser Thr Lys Pro Ala Ala Gly
 180 185 190

Gly Thr Ala Pro Leu Pro Pro Trp Lys Ser Pro Ser Ser Gln Pro
 195 200 205

Leu Pro Gln Val Pro Ala Pro Ala Gln Ser Gln Thr Gln Phe His Val
 210 215 220

Gln Pro Gln Pro Gln Pro Lys Pro Gln Val Gln Leu His Val Gln Ser
 225 230 235 240

Gln Thr Gln Pro Val Ser Leu Ala Asn Thr Gln Pro Arg Gly Pro Pro
 245 250 255

Ala Ser Ser Pro Ala Pro Ala Pro Lys Phe Ser Pro Val Thr Pro Lys
 260 265 270

Phe Thr Pro Val Ala Ser Lys Phe Ser Pro Gly Ala Pro Gly Gly Ser
 275 280 285

Gly Ser Gln Pro Asn Gln Lys Leu Gly His Pro Glu Ala Leu Ser Ala
 290 295 300

Gly Thr Gly Ser Pro Gln Pro Pro Ser Phe Thr Tyr Ala Gln Gln Arg
 305 310 315 320

Glu Lys Pro Arg Val Gln Glu Lys Gln His Pro Val Pro Pro Pro Ala
 325 330 335

Gln Asn Gln Asn Gln Val Arg Ser Pro Gly Ala Pro Gly Pro Leu Thr
 340 345 350

Leu Lys Glu Val Glu Glu Leu Glu Gln Leu Thr Gln Gln Leu Met Gln
 355 360 365

Asp Met Glu His Pro Gln Arg Gln Asn Val Ala Val Asn Glu Leu Cys
 370 375 380

Gly Arg Cys His Gln Pro Leu Ala Arg Ala Gln Pro Ala Val Arg Ala
 385 390 395 400

Leu Gly Gln Leu Phe His Ile Ala Cys Phe Thr Cys His Gln Cys Ala
 405 410 415

Gln Gln Leu Gln Gly Gln Gln Phe Tyr Ser Leu Glu Gly Ala Pro Tyr
 420 425 430

Cys Glu Gly Cys Tyr Thr Asp Thr Leu Glu Lys Cys Asn Thr Cys Gly
 435 440 445

Glu Pro Ile Thr Asp Arg Met Leu Arg Ala Thr Gly Lys Ala Tyr His
 450 455 460

Pro His Cys Phe Thr Cys Val Val Cys Ala Arg Pro Leu Glu Gly Thr
 465 470 475 480

Ser Phe Ile Val Asp Gln Ala Asn Arg Pro His Cys Val Pro Asp Tyr
 485 490 495

His Lys Gln Tyr Ala Pro Arg Cys Ser Val Cys Ser Glu Pro Ile Met
 500 505 510

Pro Glu Pro Gly Arg Asp Glu Thr Val Arg Val Val Ala Leu Asp Lys
 515 520 525

Asn Phe His Met Lys Cys Tyr Lys Cys Glu Asp Cys Gly Lys Pro Leu
 530 535 540

Ser Ile Glu Ala Asp Asp Asn Gly Cys Phe Pro Leu Asp Gly His Val
 545 550 555 560

Leu Cys Arg Lys Cys His Thr Ala Arg Ala Gln Thr
 565 570

<210> 13
<211> 1836
<212> ADN
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(1836)

<400> 13
atg tct cac cca tct tgg ctg cca ccc aaa agc act ggt gag ccc ctc 48
Met Ser His Pro Ser Trp Leu Pro Pro Lys Ser Thr Gly Glu Pro Leu
1 5 10 15

ggc cat gtg cct gca cgg atg gag acc acc cat tcc ttt ggg aac ccc 96
Gly His Val Pro Ala Arg Met Glu Thr Thr His Ser Phe Gly Asn Pro
20 25 30

agc att tca gtg tct aca caa cag cca ccc aaa aag ttt gcc ccg gta 144
Ser Ile Ser Val Ser Thr Gln Gln Pro Pro Lys Lys Phe Ala Pro Val
35 40 45

gtt gct cca aaa cct aag tac aac cca tac aaa caa cct gga ggt gag 192
Val Ala Pro Lys Pro Lys Tyr Asn Pro Tyr Lys Gln Pro Gly Gly Glu
50 55 60

ggt gat ttt ctt cca ccc cca cct cca cct cta gat gat tcc agt gcc 240
Gly Asp Phe Leu Pro Pro Pro Pro Leu Asp Asp Ser Ser Ala
65 70 75 80

ctt cca tct atc tct gga aac ttt cct cct cca cca cct ctt gat gaa	288		
Leu Pro Ser Ile Ser Gly Asn Phe Pro Pro Pro Pro Pro Leu Asp Glu			
85	90	95	
gag gct ttc aaa gta cag ggg aat ccc gga ggc aag aca ctt gag gag	336		
Glu Ala Phe Lys Val Gln Gly Asn Pro Gly Gly Lys Thr Leu Glu Glu			
100	105	110	
agg cgc tcc agc ctg gac gct gag att gac tcc ttg acc agc atc ttg	384		
Arg Arg Ser Ser Leu Asp Ala Glu Ile Asp Ser Leu Thr Ser Ile Leu			
115	120	125	
gct gac ctt gag tgc agc tcc ccc tat aag cct cgg cct cca cag agc	432		
Ala Asp Leu Glu Cys Ser Ser Pro Tyr Lys Pro Arg Pro Pro Gln Ser			
130	135	140	
tcc act ggt tca aca gcc tct cct cca gtt tcg acc cca gtc aca gga	480		
Ser Thr Gly Ser Thr Ala Ser Pro Pro Val Ser Thr Pro Val Thr Gly			
145	150	155	160
cac aag aga atg gtc atc ccg aac caa ccc cct cta aca gca acc aag	528		
His Lys Arg Met Val Ile Pro Asn Gln Pro Pro Leu Thr Ala Thr Lys			
165	170	175	
aag tct aca ttg aaa cca cag cct gca ccc cag gct gga ccc atc cct	576		
Lys Ser Thr Leu Lys Pro Gln Pro Ala Pro Gln Ala Gly Pro Ile Pro			
180	185	190	
gtg gct cca atc gga aca ctc aaa ccc cag cct cag cca gtc cca gcc	624		
Val Ala Pro Ile Gly Thr Leu Lys Pro Gln Pro Gln Pro Val Pro Ala			
195	200	205	
tcc tac acc acg gcc tcc act tct tca agg cct acc ttt aat gtg cag	672		
Ser Tyr Thr Thr Ala Ser Thr Ser Ser Arg Pro Thr Phe Asn Val Gln			
210	215	220	
gtg aag tca gcc cag ccc agc cct cat tat atg gct gcc cct tca tca	720		
Val Lys Ser Ala Gln Pro Ser Pro His Tyr Met Ala Ala Pro Ser Ser			
225	230	235	240
gga caa att tat ggc tca ggg ccc cag ggc tat aac act cag cca gtt	768		
Gly Gln Ile Tyr Gly Ser Gly Pro Gln Gly Tyr Asn Thr Gln Pro Val			
245	250	255	
cct gtc tct ggg cag tgt cca cct cct tca aca cgg gga ggc atg gat	816		
Pro Val Ser Gly Gln Cys Pro Pro Ser Thr Arg Gly Gly Met Asp			
260	265	270	
tat gcc tac att cca cca cca gga ctt cag ccg gag cct ggg tat ggg	864		
Tyr Ala Tyr Ile Pro Pro Gly Leu Gln Pro Glu Pro Gly Tyr Gly			
275	280	285	
tat gcc ccc aac cag gga cgc tat tat gaa ggc tac tat gca gca ggg	912		
Tyr Ala Pro Asn Gln Gly Arg Tyr Tyr Glu Gly Tyr Tyr Ala Ala Gly			
290	295	300	
cca ggc tat ggg ggc aga aat gac tct gac cct acc tat ggt caa caa	960		
Pro Gly Tyr Gly Gly Arg Asn Asp Ser Asp Pro Thr Tyr Gly Gln Gln			
305	310	315	320

ggt cac cca aat acc tgg aaa cg ^g gaa cca ggg tac act cct cct gga		1008
Gly His Pro Asn Thr Trp Lys Arg Glu Pro Gly Tyr Thr Pro Pro Gly		
325	330	335
gca ggg aac cag aac cct cct ggg atg tat cca gtc act ggt ccc aag		1056
Ala Gly Asn Gln Asn Pro Pro Gly Met Tyr Pro Val Thr Gly Pro Lys		
340	345	350
aag acc tat atc aca gat cct gtt tca gcc ccc tgt gcg cca cca ttg		1104
Lys Thr Tyr Ile Thr Asp Pro Val Ser Ala Pro Cys Ala Pro Pro Leu		
355	360	365
cag cca aag ggt ggc cat tca ggg caa ctg ggg cct tcg tca gtt gcc		1152
Gln Pro Lys Gly Gly His Ser Gly Gln Leu Gly Pro Ser Ser Val Ala		
370	375	380
cct tca ttc cgc cca gag gat gag ctt gag cac ctg acc aaa aag atg		1200
Pro Ser Phe Arg Pro Glu Asp Glu Leu Glu His Leu Thr Lys Lys Met		
385	390	395
400		
ctg tat gac atg gaa aat cca cct gct gac gaa tac ttt ggc cgc tgt		1248
Leu Tyr Asp Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg Cys		
405	410	415
gct cgc tgt gga gaa aac gta gtt ggg gaa ggt aca gga tgc act gcc		1296
Ala Arg Cys Gly Glu Asn Val Val Gly Glu Gly Thr Gly Cys Thr Ala		
420	425	430
atg gat cag gtc ttc cac gtg gat tgt ttt acc tgc atc atc tgc aac		1344
Met Asp Gln Val Phe His Val Asp Cys Phe Thr Cys Ile Ile Cys Asn		
435	440	445
aac aag ctc cga ggg cag cca ttc tat gct gtg gaa aag aaa gca tac		1392
Asn Lys Leu Arg Gly Gln Pro Phe Tyr Ala Val Glu Lys Lys Ala Tyr		
450	455	460
tgc gag ccc tgc tac att aat act ctg gag cag tgc aat gtg tgt tcc		1440
Cys Glu Pro Cys Tyr Ile Asn Thr Leu Glu Gln Cys Asn Val Cys Ser		
465	470	475
480		
aag ccc atc atg gag cgg att ctc cga gcc acc ggg aag gcc tat cat		1488
Lys Pro Ile Met Glu Arg Ile Leu Arg Ala Thr Gly Lys Ala Tyr His		
485	490	495
cct cac tgt ttc acc tgc gtg atg tgc cac cgc agc ctg gat ggg atc		1536
Pro His Cys Phe Thr Cys Val Met Cys His Arg Ser Leu Asp Gly Ile		
500	505	510
cca ttc act gtg gat gct ggc ggg ctc att cac tgc att gag gac ttc		1584
Pro Phe Thr Val Asp Ala Gly Gly Leu Ile His Cys Ile Glu Asp Phe		
515	520	525
cac aag aaa ttt gcc ccg cgg tgt tct gtg tgc aag gag cct att atg		1632
His Lys Lys Phe Ala Pro Arg Cys Ser Val Cys Lys Glu Pro Ile Met		
530	535	540
cca gcc ccg ggc cag gag gag act gtc cgt att gtg gct ttg gat cga		1680
Pro Ala Pro Gly Gln Glu Glu Thr Val Arg Ile Val Ala Leu Asp Arg		
545	550	555
560		

gat ttc cat gtt cac tgc tac cga tgc gag gat tgc ggt ggt ctc ctg 1728
 Asp Phe His Val His Cys Tyr Arg Cys Glu Asp Cys Gly Gly Leu Leu
 565 570 575

tct gaa gga gat aac caa ggc tgc tac ccc ttg gat ggg cac atc ctc 1776
 Ser Glu Gly Asp Asn Gln Gly Cys Tyr Pro Leu Asp Gly His Ile Leu
 580 585 590

tgc aag acc tgc aac tct gcc cgc atc agg gtg ttg acc gcc aag gcg 1824
 Cys Lys Thr Cys Asn Ser Ala Arg Ile Arg Val Leu Thr Ala Lys Ala
 595 600 605

agc act gac ctt 1836
 Ser Thr Asp Leu
 610

<210> 14
<211> 612
<212> PRT
<213> Homo sapiens

<400> 14
Met Ser His Pro Ser Trp Leu Pro Pro Lys Ser Thr Gly Glu Pro Leu
1 5 10 15

Gly His Val Pro Ala Arg Met Glu Thr Thr His Ser Phe Gly Asn Pro
20 25 30

Ser Ile Ser Val Ser Thr Gln Gln Pro Pro Lys Lys Phe Ala Pro Val
35 40 45

Val Ala Pro Lys Pro Lys Tyr Asn Pro Tyr Lys Gln Pro Gly Gly Glu
50 55 60

Gly Asp Phe Leu Pro Pro Pro Pro Pro Leu Asp Asp Ser Ser Ala
65 70 75 80

Leu Pro Ser Ile Ser Gly Asn Phe Pro Pro Pro Pro Leu Asp Glu
85 90 95

Glu Ala Phe Lys Val Gln Gly Asn Pro Gly Gly Lys Thr Leu Glu Glu
100 105 110

Arg Arg Ser Ser Leu Asp Ala Glu Ile Asp Ser Leu Thr Ser Ile Leu
115 120 125

Ala Asp Leu Glu Cys Ser Ser Pro Tyr Lys Pro Arg Pro Pro Gln Ser
130 135 140

Ser Thr Gly Ser Thr Ala Ser Pro Pro Val Ser Thr Pro Val Thr Gly
145 150 155 160

His Lys Arg Met Val Ile Pro Asn Gln Pro Pro Leu Thr Ala Thr Lys
165 170 175

Lys Ser Thr Leu Lys Pro Gln Pro Ala Pro Gln Ala Gly Pro Ile Pro
180 185 190

Val Ala Pro Ile Gly Thr Leu Lys Pro Gln Pro Gln Pro Val Pro Ala
195 200 205

Ser Tyr Thr Thr Ala Ser Thr Ser Ser Arg Pro Thr Phe Asn Val Gln
 210 215 220

Val Lys Ser Ala Gln Pro Ser Pro His Tyr Met Ala Ala Pro Ser Ser
 225 230 235 240

Gly Gln Ile Tyr Gly Ser Gly Pro Gln Gly Tyr Asn Thr Gln Pro Val
 245 250 255

Pro Val Ser Gly Gln Cys Pro Pro Pro Ser Thr Arg Gly Gly Met Asp
 260 265 270

Tyr Ala Tyr Ile Pro Pro Gly Leu Gln Pro Glu Pro Gly Tyr Gly
 275 280 285

Tyr Ala Pro Asn Gln Gly Arg Tyr Tyr Glu Gly Tyr Tyr Ala Ala Gly
 290 295 300

Pro Gly Tyr Gly Gly Arg Asn Asp Ser Asp Pro Thr Tyr Gly Gln Gln
 305 310 315 320

Gly His Pro Asn Thr Trp Lys Arg Glu Pro Gly Tyr Thr Pro Pro Gly
 325 330 335

Ala Gly Asn Gln Asn Pro Pro Gly Met Tyr Pro Val Thr Gly Pro Lys
 340 345 350

Lys Thr Tyr Ile Thr Asp Pro Val Ser Ala Pro Cys Ala Pro Pro Leu
 355 360 365

Gln Pro Lys Gly Gly His Ser Gly Gln Leu Gly Pro Ser Ser Val Ala
 370 375 380

Pro Ser Phe Arg Pro Glu Asp Glu Leu Glu His Leu Thr Lys Lys Met
 385 390 395 400

Leu Tyr Asp Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg Cys
 405 410 415

Ala Arg Cys Gly Glu Asn Val Val Gly Glu Gly Thr Gly Cys Thr Ala
 420 425 430

Met Asp Gln Val Phe His Val Asp Cys Phe Thr Cys Ile Ile Cys Asn
 435 440 445

Asn Lys Leu Arg Gly Gln Pro Phe Tyr Ala Val Glu Lys Lys Ala Tyr
 450 455 460

Cys Glu Pro Cys Tyr Ile Asn Thr Leu Glu Gln Cys Asn Val Cys Ser
 465 470 475 480

Lys Pro Ile Met Glu Arg Ile Leu Arg Ala Thr Gly Lys Ala Tyr His
 485 490 495

Pro His Cys Phe Thr Cys Val Met Cys His Arg Ser Leu Asp Gly Ile
 500 505 510

Pro Phe Thr Val Asp Ala Gly Gly Leu Ile His Cys Ile Glu Asp Phe
 515 520 525

His	Lys	Lys	Phe	Ala	Pro	Arg	Cys	Ser	Val	Cys	Lys	Glu	Pro	Ile	Met
530															
															540
Pro	Ala	Pro	Gly	Gln	Glu	Glu	Thr	Val	Arg	Ile	Val	Ala	Leu	Asp	Arg
545															560
Asp	Phe	His	Val	His	Cys	Tyr	Arg	Cys	Glu	Asp	Cys	Gly	Gly	Leu	Leu
565															575
Ser	Glu	Gly	Asp	Asn	Gln	Gly	Cys	Tyr	Pro	Leu	Asp	Gly	His	Ile	Leu
580															590
Cys	Lys	Thr	Cys	Asn	Ser	Ala	Arg	Ile	Arg	Val	Leu	Thr	Ala	Lys	Ala
595															605
Ser	Thr	Asp	Leu												
610															

<210> 15
<211> 1431
<212> ADN
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(1431)

<400> 15																
atg	tcg	ggg	ccc	acc	tgg	ctg	ccc	ccg	aag	cag	ccg	gag	ccc	gcc	aga	48
Met	Ser	Gly	Pro	Thr	Trp	Leu	Pro	Pro	Lys	Gln	Pro	Glu	Pro	Ala	Arg	
1															15	
gcc	cct	cag	ggg	agg	.gcg	atc	ccc	ccg	ggc	acc	ccg	ggg	cca	cca	ccg	96
Ala	Pro	Gln	Gly	Arg	Ala	Ile	Pro	Arg	Gly	Thr	Pro	Gly	Pro	Pro	Pro	
20															30	
gcc	cac	gga	gca	gca	ctc	cag	ccc	cac	ccc	agg	gtc	aat	ttt	tgc	ccc	144
Ala	His	Gly	Ala	Ala	Leu	Gln	Pro	His	Pro	Arg	Val	Asn	Phe	Cys	Pro	
35															45	
ctt	cca	tct	gag	cag	tgt	tac	cag	gcc	cca	ggg	gga	ccg	gag	gat	cgg	192
Leu	Pro	Ser	Glu	Gln	Cys	Tyr	Gln	Ala	Pro	Gly	Gly	Pro	Glu	Asp	Arg	
50															60	
ggg	ccg	gcg	tgg	gtg	ggg	tcc	cat	gga	gta	ctc	cag	cac	acg	cag	ggg	240
Gly	Pro	Ala	Trp	Val	Gly	Ser	His	Gly	Val	Leu	Gln	His	Thr	Gln	Gly	
65															80	
ctc	cct	gca	gac	agg	ggg	ggc	ctt	cgc	cct	gga	agc	ctg	gac	gcc	gag	288
Leu	Pro	Ala	Asp	Arg	Gly	Gly	Leu	Arg	Pro	Gly	Ser	Leu	Asp	Ala	Glu	
85															95	
ata	gac	ttg	ctg	agc	agc	acg	ctg	gcc	gag	ctg	aat	ggg	ggt	cgg	ggt	336
Ile	Asp	Leu	Leu	Ser	Ser	Thr	Leu	Ala	Glu	Leu	Asn	Gly	Gly	Arg	Gly	
100															110	

cat	gct	tca	cgg	cga	cca	gac	cga	cag	gca	tat	gag	ccc	ccg	cca	cct	384
His	Ala	Ser	Arg	Arg	Pro	Asp	Arg	Gln	Ala	Tyr	Glu	Pro	Pro	Pro	Pro	
115					120					125						
cct	gcc	tac	cgc	acg	ggc	tgc	ctg	aag	cca	aat	cca	gcc	tcg	ccg	ctc	432
Pro	Ala	Tyr	Arg	Thr	Gly	Cys	Leu	Lys	Pro	Asn	Pro	Ala	Ser	Pro	Leu	
130					135					140						
cca	gct	tct	ccc	tat	ggg	ggc	ccc	act	cca	gcc	tct	tac	act	acc	gcc	480
Pro	Ala	Ser	Pro	Tyr	Gly	Gly	Gly	Pro	Thr	Pro	Ala	Ser	Tyr	Thr	Thr	
145					150					155			160			
agc	acc	ccg	gct	ggc	cca	gcc	ttc	ccc	gtg	caa	gtg	aag	gtg	gca	cag	528
Ser	Thr	Pro	Ala	Gly	Pro	Ala	Phe	Pro	Val	Gln	Val	Lys	Val	Ala	Gln	
					165					170			175			
cca	gtg	agg	ggc	tgc	ggc	cca	ccc	agg	cg	gg	gcc	tct	cag	gcc	tct	576
Pro	Val	Arg	Gly	Cys	Gly	Pro	Pro	Arg	Arg	Gly	Ala	Ser	Gln	Ala	Ser	
					180					185			190			
ggg	ccc	ctc	ccg	ggc	ccc	cac	ttt	cct	ctc	cca	ggc	cga	ggt	gaa	gtc	624
Gly	Pro	Leu	Pro	Gly	Pro	His	Phe	Pro	Leu	Pro	Gly	Arg	Gly	Glu	Val	
					195					200			205			
tgg	ggg	cct	ggc	tat	agg	agc	cag	aga	gag	cca	ggg	cca	ggg	gcc	aaa	672
Trp	Gly	Pro	Gly	Tyr	Arg	Ser	Gln	Arg	Glu	Pro	Gly	Pro	Gly	Ala	Lys	
					210					215			220			
gag	qaa	gct	gct	ggg	gtc	tct	ggc	cct	gca	gga	aga	gga	aga	gga	ggc	720
Glu	Glu	Ala	Ala	Gly	Val	Ser	Gly	Pro	Ala	Gly	Arg	Gly	Arg	Gly	Gly	
					225					230			235		240	
gag	cac	ggg	ccc	cag	gtg	ccc	ctg	agc	cag	cct	cca	gag	gat	gag	ctg	768
Glu	His	Gly	Pro	Gln	Val	Pro	Leu	Ser	Gln	Pro	Pro	Glu	Asp	Glu	Leu	
					245					250			255			
gat	agg	ctg	acg	aag	aag	ctg	gtt	cac	gac	atg	aac	cac	ccg	ccc	agc	816
Asp	Arg	Leu	Thr	Lys	Lys	Leu	Val	His	Asp	Met	Asn	His	Pro	Pro	Ser	
					260					265			270			
ggg	gag	tac	ttt	ggc	cag	tgt	ggt	ggc	tgc	gga	gaa	gat	gtg	gtt	ggg	864
Gly	Glu	Tyr	Phe	Gly	Gln	Cys	Gly	Gly	Cys	Gly	Gly	Glu	Asp	Val	Val	
					275					280			285			
gat	ggg	gct	ggg	gtt	gtg	gcc	ctt	gat	cg	gtc	ttt	cac	gtg	ggc	tgc	912
Asp	Gly	Ala	Gly	Val	Val	Ala	Leu	Asp	Arg	Val	Phe	His	Val	Gly	Cys	
					290					295			300			
ttt	gta	tgt	tct	aca	tgc	cg	gcc	cag	ctt	cg	ggc	cag	cat	ttc	tac	960
Phe	Val	Cys	Ser	Thr	Cys	Arg	Ala	Gln	Leu	Arg	Gly	Gln	His	Phe	Tyr	
					305					310			315		320	
gcc	gtg	gag	agg	agg	gca	tat	tgc	gag	ggc	tgc	tac	gtg	gcc	acc	ctg	1008
Ala	Val	Glu	Arg	Arg	Ala	Tyr	Cys	Glu	Gly	Cys	Tyr	Val	Ala	Thr	Leu	
325										330			335			
gag	aaa	tgt	gcc	acg	tgc	tcc	cag	ccc	atc	ctg	gac	cg	atc	ctg	cg	1056
Glu	Lys	Cys	Ala	Thr	Cys	Ser	Gln	Pro	Ile	Leu	Asp	Arg	Ile	Leu	Arg	
					340					345			350			

gct atg ggg aag gcc tac cac cct ggc tgc ttc acc tgc gtg gtg tgt		1104
Ala Met Gly Lys Ala Tyr His Pro Gly Cys Phe Thr Cys Val Val Cys		
355	360	365
cac cgc ggc ctc gac ggc atc ccc ttc aca gtg gat gct acg agc cag		1152
His Arg Gly Leu Asp Gly Ile Pro Phe Thr Val Asp Ala Thr Ser Gln		
370	375	380
atc cac tgc att gag gac ttt cac agg aag ttt gcc cca aga tgc tca		1200
Ile His Cys Ile Glu Asp Phe His Arg Lys Phe Ala Pro Arg Cys Ser		
385	390	395
gtg tgc ggt ggg gcc ata atg cct gag cca ggt cag gag gag act gtg		1248
Val Cys Gly Gly Ala Ile Met Pro Glu Pro Gly Gln Glu Glu Thr Val		
405	410	415
aga att gtt gct ctg gat cga agt ttt cac att ggc tgt tac aag tgc		1296
Arg Ile Val Ala Leu Asp Arg Ser Phe His Ile Gly Cys Tyr Lys Cys		
420	425	430
gag gag tgt ggg ctg ctg ctc tcc tct gag ggc gag tgt cag ggc tgc		1344
Glu Glu Cys Gly Leu Leu Leu Ser Ser Glu Gly Glu Cys Gln Gly Cys		
435	440	445
tac ccg ctg gat ggg cac atc ttg tgc aag gcc tgc agc gcc tgg cgc		1392
Tyr Pro Leu Asp Gly His Ile Leu Cys Lys Ala Cys Ser Ala Trp Arg		
450	455	460
atc cag gag ctc tca gcc acc gtc acc act gac tgc tga		1431
Ile Gln Glu Leu Ser Ala Thr Val Thr Thr Asp Cys		
465	470	475
<210> 16		
<211> 476		
<212> PRT		
<213> Homo sapiens		
<400> 16		
Met Ser Gly Pro Thr Trp Leu Pro Pro Lys Gln Pro Glu Pro Ala Arg		
1	5	10
15		
Ala Pro Gln Gly Arg Ala Ile Pro Arg Gly Thr Pro Gly Pro Pro Pro		
20	25	30
Ala His Gly Ala Ala Leu Gln Pro His Pro Arg Val Asn Phe Cys Pro		
35	40	45
Leu Pro Ser Glu Gln Cys Tyr Gln Ala Pro Gly Gly Pro Glu Asp Arg		
50	55	60
Gly Pro Ala Trp Val Gly Ser His Gly Val Leu Gln His Thr Gln Gly		
65	70	75
80		
Leu Pro Ala Asp Arg Gly Gly Leu Arg Pro Gly Ser Leu Asp Ala Glu		
85	90	95
Ile Asp Leu Leu Ser Ser Thr Leu Ala Glu Leu Asn Gly Gly Arg Gly		
100	105	110

His Ala Ser Arg Arg Pro Asp Arg Gln Ala Tyr Glu Pro Pro Pro Pro
 115 120 125
 Pro Ala Tyr Arg Thr Gly Cys Leu Lys Pro Asn Pro Ala Ser Pro Leu
 130 135 140
 Pro Ala Ser Pro Tyr Gly Gly Pro Thr Pro Ala Ser Tyr Thr Thr Ala
 145 150 155 160
 Ser Thr Pro Ala Gly Pro Ala Phe Pro Val Gln Val Lys Val Ala Gln
 165 170 175
 Pro Val Arg Gly Cys Gly Pro Pro Arg Arg Gly Ala Ser Gln Ala Ser
 180 185 190
 Gly Pro Leu Pro Gly Pro His Phe Pro Leu Pro Gly Arg Gly Glu Val
 195 200 205
 Trp Gly Pro Gly Tyr Arg Ser Gln Arg Glu Pro Gly Pro Gly Ala Lys
 210 215 220
 Glu Glu Ala Ala Gly Val Ser Gly Pro Ala Gly Arg Gly Arg Gly Gly
 225 230 235 240
 Glu His Gly Pro Gln Val Pro Leu Ser Gln Pro Pro Glu Asp Glu Leu
 245 250 255
 Asp Arg Leu Thr Lys Lys Leu Val His Asp Met Asn His Pro Pro Ser
 260 265 270
 Gly Glu Tyr Phe Gly Gln Cys Gly Gly Cys Gly Glu Asp Val Val Gly
 275 280 285
 Asp Gly Ala Gly Val Val Ala Leu Asp Arg Val Phe His Val Gly Cys
 290 295 300
 Phe Val Cys Ser Thr Cys Arg Ala Gln Leu Arg Gly Gln His Phe Tyr
 305 310 315 320
 Ala Val Glu Arg Arg Ala Tyr Cys Glu Gly Cys Tyr Val Ala Thr Leu
 325 330 335
 Glu Lys Cys Ala Thr Cys Ser Gln Pro Ile Leu Asp Arg Ile Leu Arg
 340 345 350
 Ala Met Gly Lys Ala Tyr His Pro Gly Cys Phe Thr Cys Val Val Cys
 355 360 365
 His Arg Gly Leu Asp Gly Ile Pro Phe Thr Val Asp Ala Thr Ser Gln
 370 375 380
 Ile His Cys Ile Glu Asp Phe His Arg Lys Phe Ala Pro Arg Cys Ser
 385 390 395 400
 Val Cys Gly Gly Ala Ile Met Pro Glu Pro Gly Gln Glu Glu Thr Val
 405 410 415
 Arg Ile Val Ala Leu Asp Arg Ser Phe His Ile Gly Cys Tyr Lys Cys
 420 425 430

Glu Glu Cys Gly Leu Leu Leu Ser Ser Glu Gly Glu Cys Gln Gly Cys
 435 440 445

Tyr Pro Leu Asp Gly His Ile Leu Cys Lys Ala Cys Ser Ala Trp Arg
 450 455 460

Ile Gln Glu Leu Ser Ala Thr Val Thr Thr Asp Cys
 465 470 475

<210> 17
 <211> 1443
 <212> ADN
 <213> Mus musculus

<220>
 <221> CDS
 <222> (1)...(1443)

<400> 17
 atg tcc ggg ccc acc tgg ctt ccc ccg aag cag cca gaa ccc tcc aga 48
 Met Ser Gly Pro Thr Trp Leu Pro Pro Lys Gln Pro Glu Pro Ser Arg
 1 5 10 15

ctc cct cag ggg aga tcg ctg ccc aga ggc gcc ctg ggc ccg cca acg 96
 Leu Pro Gln Gly Arg Ser Leu Pro Arg Gly Ala Leu Gly Pro Pro Thr
 20 25 30

gcc cac gga gca aca ctc cag cct cac ccc agg gtc aac ttt tgc ccc 144
 Ala His Gly Ala Thr Leu Gln Pro His Pro Arg Val Asn Phe Cys Pro
 35 40 45

ctc ccg cct gaa cac tgt tat cag cct ccg ggg gta ccg gaa gat ccg 192
 Leu Pro Pro Glu His Cys Tyr Gln Pro Pro Gly Val Pro Glu Asp Arg
 50 55 60

ggg cct act tgg gtg gga tcc cat gga aca ccc cag cgc ctg cag ggg 240
 Gly Pro Thr Trp Val Gly Ser His Gly Thr Pro Gln Arg Leu Gln Gly
 65 70 75 80

ctc cct cca gac agg ggg atc atc cgc cct ggc agt ctg gat gct gag 288
 Leu Pro Pro Asp Arg Gly Ile Ile Arg Pro Gly Ser Leu Asp Ala Glu
 85 90 95

ata gat tcg ctc acc agc atg ttg gct gat ctg gac ggg ggt cgc agt 336
 Ile Asp Ser Leu Thr Ser Met Leu Ala Asp Leu Asp Gly Gly Arg Ser
 100 105 110

cat gca cct agg cgg cca gac aga cag gct ttt gag gct ccc cca ccc 384
 His Ala Pro Arg Arg Pro Asp Arg Gln Ala Phe Glu Ala Pro Pro Pro
 115 120 125

cat gct tac cgc gga ggc tcc ctg aag ccc agt gga ggt gct gtt cca 432
 His Ala Tyr Arg Gly Gly Ser Leu Lys Pro Ser Gly Gly Ala Val Pro
 130 135 140

acc ccg atg ctc cca gca tcc cac tat ggt gga cct acc cca gcc tcc 480
 Thr Pro Met Leu Pro Ala Ser His Tyr Gly Gly Pro Thr Pro Ala Ser
 145 150 155 160

tat gct acc gcg agc acg cca gct ggc cct gct ttc cct gta caa gtg	528		
Tyr Ala Thr Ala Ser Thr Pro Ala Gly Pro Ala Phe Pro Val Gln Val			
165	170	175	
aag gtg gct caa cct gtg aga ggc tgt gga ctg ccc agg cga ggg gcc	576		
Lys Val Ala Gln Pro Val Arg Gly Cys Gly Leu Pro Arg Arg Gly Ala			
180	185	190	
tct cag gcc tct ggg cct ctt cca ggc ccc cac ttt cct ctg aca ggt	624		
Ser Gln Ala Ser Gly Pro Leu Pro Gly Pro His Phe Pro Leu Thr Gly			
195	200	205	
cgt ggt gaa gtc tgg ggg gct ggc tat agg agc cac cga gag cca gga	672		
Arg Gly Glu Val Trp Gly Ala Gly Tyr Arg Ser His Arg Glu Pro Gly			
210	215	220	
ccg ggg gtt ccg gag gga cct tct gga gta cat atc cct gca gga gga	720		
Pro Gly Val Pro Glu Gly Pro Ser Gly Val His Ile Pro Ala Gly Gly			
225	230	235	240
ggg aga gga ggt ggg cat gag cct cag ggc ccc tta ggc caa cct cct	768		
Gly Arg Gly Gly His Glu Pro Gln Gly Pro Leu Gly Gln Pro Pro			
245	250	255	
gaa gag gaa ctg gag aga ctg acc aag aaa ctg gtg cat gac atg agc	816		
Glu Glu Glu Leu Glu Arg Leu Thr Lys Lys Leu Val His Asp Met Ser			
260	265	270	
cac cct ccc agt ggg gag tac ttt ggt cgg tgt ggt ggc tgt ggc gaa	864		
His Pro Pro Ser Gly Glu Tyr Phe Gly Arg Cys Gly Cys Gly Glu			
275	280	285	
gat gtg gtg ggc gat gga gct ggg gtt gtg gcc ctg gac cgt gtc ttc	912		
Asp Val Val Gly Asp Gly Ala Gly Val Val Ala Leu Asp Arg Val Phe			
290	295	300	
cat att ggt tgc ttt gtg tgt tct acc tgt cgg gcc cag ctc cgg ggc	960		
His Ile Gly Cys Phe Val Cys Ser Thr Cys Arg Ala Gln Leu Arg Gly			
305	310	315	320
cag cac ttc tat gct gtg gag agg cgg gca tat tgt gag agc tgc tat	1008		
Gln His Phe Tyr Ala Val Glu Arg Arg Ala Tyr Cys Glu Ser Cys Tyr			
325	330	335	
gtg gcc acc ctg gag aaa tgt tcc aca tgc tct gaa ccc atc ctg gac	1056		
Val Ala Thr Leu Glu Lys Cys Ser Thr Cys Ser Glu Pro Ile Leu Asp			
340	345	350	
cga atc ctg agg gct atg ggg aag gcg tac cac cct ggt tgc ttc acc	1104		
Arg Ile Leu Arg Ala Met Gly Lys Ala Tyr His Pro Gly Cys Phe Thr			
355	360	365	
tgt gtg gta tgc cac cgt ggt ctt gat ggc atc cgg ttc aca gtg gac	1152		
Cys Val Val Cys His Arg Gly Leu Asp Gly Ile Pro Phe Thr Val Asp			
370	375	380	
gcc acc agc cag atc cac tgc att gaa gat ttc cac agg aaa ttt gcc	1200		
Ala Thr Ser Gln Ile His Cys Ile Glu Asp Phe His Arg Lys Phe Ala			
385	390	395	400

cca cga tgc tca gtg tgt ggt ggg gcc atc atg ccg gaa cca ggt cag Pro Arg Cys Ser Val Cys Gly Gly Ala Ile Met Pro Glu Pro Gly Gln 405 410 415	1248
gag gag acg gtg aga atc gtt gct ctg gat cga agt ttc cac atc ggc Glu Glu Thr Val Arg Ile Val Ala Leu Asp Arg Ser Phe His Ile Gly 420 425 430	1296
tgt tac aag tgt gag gag tgt ggg ctg ctg ctg tcc tct gag gga gag Cys Tyr Lys Cys Glu Cys Gly Leu Leu Leu Ser Ser Glu Gly Glu 435 440 445	1344
tgt caa ggc tgc tac ccg ctg gat ggg cac atc ttg tgc aag gct tgc Cys Gln Gly Cys Tyr Pro Leu Asp Gly His Ile Leu Cys Lys Ala Cys 450 455 460	1392
agc gcc tgg cgt atc caa gag ctc tca gcc act gtc acc act gat tgt Ser Ala Trp Arg Ile Gln Glu Leu Ser Ala Thr Val Thr Thr Asp Cys 465 470 475 480	1440
tga	1443

<210> 18			
<211> 480			
<212> PRT			
<213> Mus musculus			
<400> 18			
Met Ser Gly Pro Thr Trp Leu Pro Pro Lys Gln Pro Glu Pro Ser Arg			
1 5 10 15			
Leu Pro Gln Gly Arg Ser Leu Pro Arg Gly Ala Leu Gly Pro Pro Thr			
20 25 30			
Ala His Gly Ala Thr Leu Gln Pro His Pro Arg Val Asn Phe Cys Pro			
35 40 45			
Leu Pro Pro Glu His Cys Tyr Gln Pro Pro Gly Val Pro Glu Asp Arg			
50 55 60			
Gly Pro Thr Trp Val Gly Ser His Gly Thr Pro Gln Arg Leu Gln Gly			
65 70 75 80			
Leu Pro Pro Asp Arg Gly Ile Ile Arg Pro Gly Ser Leu Asp Ala Glu			
85 90 95			
Ile Asp Ser Leu Thr Ser Met Leu Ala Asp Leu Asp Gly Gly Arg Ser			
100 105 110			
His Ala Pro Arg Arg Pro Asp Arg Gln Ala Phe Glu Ala Pro Pro Pro			
115 120 125			
His Ala Tyr Arg Gly Gly Ser Leu Lys Pro Ser Gly Gly Ala Val Pro			
130 135 140			
Thr Pro Met Leu Pro Ala Ser His Tyr Gly Gly Pro Thr Pro Ala Ser			
145 150 155 160			

Tyr Ala Thr Ala Ser Thr Pro Ala Gly Pro Ala Phe Pro Val Gln Val
 165 170 175
 Lys Val Ala Gln Pro Val Arg Gly Cys Gly Leu Pro Arg Arg Gly Ala
 180 185 190
 Ser Gln Ala Ser Gly Pro Leu Pro Gly Pro His Phe Pro Leu Thr Gly
 195 200 205
 Arg Gly Glu Val Trp Gly Ala Gly Tyr Arg Ser His Arg Glu Pro Gly
 210 215 220
 Pro Gly Val Pro Glu Gly Pro Ser Gly Val His Ile Pro Ala Gly Gly
 225 230 235 240
 Gly Arg Gly Gly His Glu Pro Gln Gly Pro Leu Gly Gln Pro Pro
 245 250 255
 Glu Glu Glu Leu Glu Arg Leu Thr Lys Lys Leu Val His Asp Met Ser
 260 265 270
 His Pro Pro Ser Gly Glu Tyr Phe Gly Arg Cys Gly Gly Cys Gly Glu
 275 280 285
 Asp Val Val Gly Asp Gly Ala Gly Val Val Ala Leu Asp Arg Val Phe
 290 295 300
 His Ile Gly Cys Phe Val Cys Ser Thr Cys Arg Ala Gln Leu Arg Gly
 305 310 315 320
 Gln His Phe Tyr Ala Val Glu Arg Arg Ala Tyr Cys Glu Ser Cys Tyr
 325 330 335
 Val Ala Thr Leu Glu Lys Cys Ser Thr Cys Ser Glu Pro Ile Leu Asp
 340 345 350
 Arg Ile Leu Arg Ala Met Gly Lys Ala Tyr His Pro Gly Cys Phe Thr
 355 360 365
 Cys Val Val Cys His Arg Gly Leu Asp Gly Ile Pro Phe Thr Val Asp
 370 375 380
 Ala Thr Ser Gln Ile His Cys Ile Glu Asp Phe His Arg Lys Phe Ala
 385 390 395 400
 Pro Arg Cys Ser Val Cys Gly Gly Ala Ile Met Pro Glu Pro Gly Gln
 405 410 415
 Glu Glu Thr Val Arg Ile Val Ala Leu Asp Arg Ser Phe His Ile Gly
 420 425 430
 Cys Tyr Lys Cys Glu Glu Cys Gly Leu Leu Leu Ser Ser Glu Gly Glu
 435 440 445
 Cys Gln Gly Cys Tyr Pro Leu Asp Gly His Ile Leu Cys Lys Ala Cys
 450 455 460
 Ser Ala Trp Arg Ile Gln Glu Leu Ser Ala Thr Val Thr Thr Asp Cys
 465 470 475 480

<210> 19

<211> 1122

<212> ADN

<213> Séquence artificielle

<220>

<221> CDS

<222> (1)..(1122)

<220>

<223> Description de la séquence artificielle: fragment
de la protéine zyxine murine

<400> 19

gcg gcc ccc ccc ccc cct ccc gcg atc tcc gtc tcc gtc tcg gcc ccc	48
Ala Ala Pro Arg Pro Pro Ala Ile Ser Val Ser Val Ser Ala Pro	
1 5 10 15	

gcg ttt tac gcc ccg cag aag aag ttc gcc ccg gtt gtg gcc cca aag	96
Ala Phe Tyr Ala Pro Gln Lys Lys Phe Ala Pro Val Val Ala Pro Lys	
20 25 30	

ccc aaa gtg aat cct ttc cgg cct ggg gac agc gag cct cct gta gca	144
Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Val Ala	
35 40 45	

gcc ggg gcc caa aga gcg cag atg ggt cgg gtg ggc gag atc cca cca	192
Ala Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro Pro	
50 55 60	

cca ccc ccg gaa gac ttt cct ttg ccc cct cct ccc ctt att ggg gag	240
Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Leu Ile Gly Glu	
65 70 75 80	

ggc gac gac tca gag ggt gcc ctg gga ggt gcc ttc cca cct cca cct	288
Gly Asp Asp Ser Glu Gly Ala Leu Gly Ala Phe Pro Pro Pro Pro	
85 90 95	

ccc ccg atg atc gag gaa cca ttc ccc cct gct cct ctg gag gag gac	336
Pro Pro Met Ile Glu Glu Pro Phe Pro Pro Ala Pro Leu Glu Glu Asp	
100 105 110	

atc ttc ccc tcc cct cca cct cca ctg gag gag gag gga ggg cct gag	384
Ile Phe Pro Ser Pro Pro Pro Leu Glu Glu Gly Gly Pro Glu	
115 120 125	

gcc cct acc cag ctc cca ccg cag ccc agg gag aaa gtg tgc agt att	432
Ala Pro Thr Gln Leu Pro Pro Gln Pro Arg Glu Lys Val Cys Ser Ile	
130 135 140	

gac ctg gag att gac tct ctg tcc tca ctg ctg gac gac atg acc aag	480
Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys	
145 150 155 160	

aac gat ccc ttc aaa gcc cgg gta tca tcc gga tat gta ccc cca cca	528
Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro	
165 170 175	

gtt gcc act cca ttt gtt ccc aag cct agt acc aaa cct gcc cct ggg	576
Val Ala Thr Pro Phe Val Pro Lys Pro Ser Thr Lys Pro Ala Pro Gly	
180	185
185	190
ggc aca gca ccc ttg cct cct tgg aag acc cct tct agc tcc cag cca	624
Gly Thr Ala Pro Leu Pro Pro Trp Lys Thr Pro Ser Ser Ser Gln Pro	
195	200
200	205
cca cct cag ccg cag gcc aag cct cag gtc cag ctc cat gtc cag cct	672
Pro Pro Gln Pro Gln Ala Lys Pro Gln Val Gln Leu His Val Gln Pro	
210	215
215	220
cag gcc aag ccc cat gtccaa ccc cag cct gtg tct tct gct aat aca	720
Gln Ala Lys Pro His Val Gln Pro Gln Pro Val Ser Ser Ala Asn Thr	
225	230
230	235
235	240
cag ccc cgg ggt ccc ctt tct cag gca cca act cca gca cct aag ttt	768
Gln Pro Arg Gly Pro Leu Ser Gln Ala Pro Thr Pro Ala Pro Lys Phe	
245	250
250	255
gct cca gtg gct aaa ttt act ccc gtg gtt tcc aag ttc agc cct	816
Ala Pro Val Ala Pro Lys Phe Thr Pro Val Val Ser Lys Phe Ser Pro	
260	265
265	270
ggt gct cca agt gga cct ggg cca cag ccc aat caa aaa atg gtg cct	864
Gly Ala Pro Ser Gly Pro Gly Pro Gln Pro Asn Gln Lys Met Val Pro	
275	280
280	285
ccg gat gct cct tct gtg agc aca ggc tcc cct cag ccc cct agc	912
Pro Asp Ala Pro Ser Ser Val Ser Thr Gly Ser Pro Gln Pro Pro Ser	
290	295
295	300
ttc acc tat gct cag cag aag gag aag ccc cta gtt caa gag aag cag	960
Phe Thr Tyr Ala Gln Gln Lys Glu Lys Pro Leu Val Gln Glu Lys Gln	
305	310
310	315
315	320
cac cca cag cct cca cca gct caa aac caa aac cag gta cgc tct cct	1008
His Pro Gln Pro Pro Ala Gln Asn Gln Asn Gln Val Arg Ser Pro	
325	330
330	335
gga ggc cca ggc ccc ttg acc ctg aag gag gta gag gag ttg gag cag	1056
Gly Gly Pro Gly Pro Leu Thr Leu Lys Glu Val Glu Glu Leu Glu Gln	
340	345
345	350
ctg acc cag cag ctg atg cag gac atg gaa cac cct cag agg cag agc	1104
Leu Thr Gln Gln Leu Met Gln Asp Met Glu His Pro Gln Arg Gln Ser	
355	360
360	365
gtg gca gtg aat gag tcc	1122
Val Ala Val Asn Glu Ser	
370	

<210> 20

<211> 374

<212> PRT

<213> Séquence artificielle

<223> Description de la séquence artificielle: fragment
de la protéine zyxine murine

<400> 20

Ala Ala Pro Arg Pro Pro Pro Ala Ile Ser Val Ser Val Ser Ala Pro
 1 5 10 15
 Ala Phe Tyr Ala Pro Gln Lys Lys Phe Ala Pro Val Val Ala Pro Lys
 20 25 30
 Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Val Ala
 35 40 45
 Ala Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro Pro
 50 55 60
 Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Leu Ile Gly Glu
 65 70 75 80
 Gly Asp Asp Ser Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro Pro
 85 90 95
 Pro Pro Met Ile Glu Glu Pro Phe Pro Pro Ala Pro Leu Glu Glu Asp
 100 105 110
 Ile Phe Pro Ser Pro Pro Pro Leu Glu Glu Gly Gly Pro Glu
 115 120 125
 Ala Pro Thr Gln Leu Pro Pro Gln Pro Arg Glu Lys Val Cys Ser Ile
 130 135 140
 Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys
 145 150 155 160
 Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro
 165 170 175
 Val Ala Thr Pro Phe Val Pro Lys Pro Ser Thr Lys Pro Ala Pro Gly
 180 185 190
 Gly Thr Ala Pro Leu Pro Pro Trp Lys Thr Pro Ser Ser Ser Gln Pro
 195 200 205
 Pro Pro Gln Pro Gln Ala Lys Pro Gln Val Gln Leu His Val Gln Pro
 210 215 220
 Gln Ala Lys Pro His Val Gln Pro Gln Pro Val Ser Ser Ala Asn Thr
 225 230 235 240
 Gln Pro Arg Gly Pro Leu Ser Gln Ala Pro Thr Pro Ala Pro Lys Phe
 245 250 255
 Ala Pro Val Ala Pro Lys Phe Thr Pro Val Val Ser Lys Phe Ser Pro
 260 265 270
 Gly Ala Pro Ser Gly Pro Gly Pro Gln Pro Asn Gln Lys Met Val Pro
 275 280 285
 Pro Asp Ala Pro Ser Ser Val Ser Thr Gly Ser Pro Gln Pro Pro Ser
 290 295 300
 Phe Thr Tyr Ala Gln Gln Lys Glu Lys Pro Leu Val Gln Glu Lys Gln
 305 310 315 320

His Pro Gln Pro Pro Ala Gln Asn Gln Asn Gln Val Arg Ser Pro
325 330 335

Gly Gly Pro Gly Pro Leu Thr Leu Lys Glu Val Glu Glu Leu Glu Gln
340 345 350

Leu Thr Gln Gln Leu Met Gln Asp Met Glu His Pro Gln Arg Gln Ser
355 360 365

Val Ala Val Asn Glu Ser
370

<210> 21
<211> 1053
<212> ADN
<213> Séquence artificielle

<220>
<221> CDS
<222> (1)..(1053)

<220>
<223> Description de la séquence artificielle: fragment
de la protéine zyxine de poulet

<400> 21
atg gct tct cca ggt acc cca ggg acc cgt atg aca acc aca gtc agt 48
Met Ala Ser Pro Gly Thr Pro Gly Thr Arg Met Thr Thr Thr Val Ser
1 5 10 15

atc aac att tcc aca ccg tcc tt tac aac cca cag aag aaa ttt gca 96
 Ile Asn Ile Ser Thr Pro Ser Phe Tyr Asn Pro Gln Lys Lys Phe Ala
 20 25 30

ccc gtg gtt gcc cct aaa ccc aag gtg aat ccc ttc aag act ggg ggt 144
 Pro Val Val Ala Pro Lys Pro Lys Val Asn Pro Phe Lys Thr Gly Gly
 35 40 45

aca tcg gag tca tcg cag cca cag cct cct gga act ggt gcc cag cgt 192
Thr Ser Glu Ser Ser Gln Pro Gln Pro Pro Gly Thr Gly Ala Gln Arg
50 55 60 .

gcc cag ata ggg aga gtg gga gag atc ccc gta tot gtg aca' gca gaa 240
 Ala Gln Ile Gly Arg Val Gly Glu Ile Pro Val Ser Val Thr Ala Glu
 65 70 75 80

gag ctg ccg ctg cca cct cct ccc cca cct gga gag gag cta agt ttc 288
 Glu Leu Pro Leu Pro Pro Pro Pro Pro Gly Glu Glu Leu Ser Phe
 85 90 95

```

tcc tca aac tgt gct ttt cct cca ccc cca cca ccc ttt gaa gag gag cct 336
Ser Ser Asn Cys Ala Phe Pro Pro Pro Pro Pro Pro Phe Glu Glu Pro
          100           105           110

```

ttc cca cca gcc cca gat gaa gct ttt cct tct cct cct cca cct cct 384
 Phe Pro Pro Ala Pro Asp Glu Ala Phe Pro Ser Pro Pro Pro Pro Pro
 115 120 125

cca cca atg ttt gat gaa gga cct gcc cta cag ata cct cca gga tcc		432	
Pro Pro Met Phe Asp Glu Gly Pro Ala Leu Gln Ile Pro Pro Gly Ser			
130	135	140	
acg ggt tct gtg gag aaa ccg ttg gcc cca aaa gct cac gtg gaa atc		480	
Thr Gly Ser Val Glu Lys Pro Leu Ala Pro Lys Ala His Val Glu Ile			
145	150	155	160
tca tct gca ccc aga gat cct act cct cct ttt cct tcc aag ttc act		528	
Ser Ser Ala Pro Arg Asp Pro Thr Pro Pro Phe Pro Ser Lys Phe Thr			
165	170	175	
cca aag cca agt ggt acc tta tct tcc aag ccc cct gga ttg gat tca		576	
Pro Lys Pro Ser Gly Thr Leu Ser Ser Lys Pro Pro Gly Leu Asp Ser			
180	185	190	
act cct gcc cca gct cca tgg gca gct cca cag cag cgc aag gag ccc		624	
Thr Pro Ala Pro Ala Pro Trp Ala Ala Pro Gln Gin Arg Lys Glu Pro			
195	200	205	
cta gcc tca gtc cct cca ccc ccc tct ctc cct tct cag cct act gct		672	
Leu Ala Ser Val Pro Pro Pro Ser Leu Pro Ser Gln Pro Thr Ala			
210	215	220	
aaa ttc aca cca ccc cct gtt gcc agc tct cct gga tcc aaa cca ggt		720	
Lys Phe Thr Pro Pro Pro Val Ala Ser Ser Pro Gly Ser Lys Pro Gly			
225	230	235	240
gcc act gtt ccc atg gct cct tca aac tct aca aga tat cct aca tcc		768	
Ala Thr Val Pro Met Ala Pro Ser Asn Ser Thr Arg Tyr Pro Thr Ser			
245	250	255	
ctt cag act cag ttc act gcc cct tca ccc tcc ggt ccc ttg tct cga		816	
Leu Gln Thr Gln Phe Thr Ala Pro Ser Pro Ser Gly Pro Leu Ser Arg			
260.	265	270	
cct cag cct ccc aat ttc acc tat gct cag cag tgg gaa aga cct cag		864	
Pro Gln Pro Pro Asn Phe Thr Tyr Ala Gln Gln Trp Glu Arg Pro Gln			
275	280	285	
gtg cag gag aaa cct gtt ccc act gaa aaa tct gct gct gta aaa gac		912	
Val Gln Glu Lys Pro Val Pro Thr Glu Lys Ser Ala Ala Val Lys Asp			
290	295	300	
atg cgt aga ccc act gca gat ccg cct aag gga aac tct cct ctg acc		960	
Met Arg Arg Pro Thr Ala Asp Pro Pro Lys Gly Asn Ser Pro Leu Thr			
305	310	315	320
atg aag gag gta gaa gag ctg gag ctg ttg acc cag aaa cta atg aag		1008	
Met Lys Glu Val Glu Glu Leu Glu Leu Leu Thr Gln Lys Leu Met Lys			
325	330	335	
gat atg gat cat cca cct cca gta gaa gct gct act tct gag ctc		1053	
Asp Met Asp His Pro Pro Val Glu Ala Ala Thr Ser Glu Leu			
340	345	350	

<210> 22

<211> 351

<212> PRT

<213> Séquence artificielle

<223> Description de la séquence artificielle: fragment de la protéine zyxine de poulet

<400> 22

Met Ala Ser Pro Gly Thr Pro Gly Thr Arg Met Thr Thr Thr Val Ser			
1	5	10	15
Ile Asn Ile Ser Thr Pro Ser Phe Tyr Asn Pro Gln Lys Lys Phe Ala			
20	25	30	
Pro Val Val Ala Pro Lys Pro Lys Val Asn Pro Phe Lys Thr Gly Gly			
35	40	45	
Thr Ser Glu Ser Ser Gln Pro Gln Pro Pro Gly Thr Gly Ala Gln Arg			
50	55	60	
Ala Gln Ile Gly Arg Val Gly Glu Ile Pro Val Ser Val Thr Ala Glu			
65	70	75	80
Glu Leu Pro Leu Pro Pro Pro Pro Pro Gly Glu Glu Leu Ser Phe			
85	90	95	
Ser Ser Asn Cys Ala Phe Pro Pro Pro Pro Pro Phe Glu Glu Pro			
100	105	110	
Phe Pro Pro Ala Pro Asp Glu Ala Phe Pro Ser Pro Pro Pro Pro Pro			
115	120	125	
Pro Pro Met Phe Asp Glu Gly Pro Ala Leu Gln Ile Pro Pro Gly Ser			
130	135	140	
Thr Gly Ser Val Glu Lys Pro Leu Ala Pro Lys Ala His Val Glu Ile			
145	150	155	160
Ser Ser Ala Pro Arg Asp Pro Thr Pro Pro Phe Pro Ser Lys Phe Thr			
165	170	175	
Pro Lys Pro Ser Gly Thr Leu Ser Ser Lys Pro Pro Gly Leu Asp Ser			
180	185	190	
Thr Pro Ala Pro Ala Pro Trp Ala Ala Pro Gln Gln Arg Lys Glu Pro			
195	200	205	
Leu Ala Ser Val Pro Pro Pro Ser Leu Pro Ser Gln Pro Thr Ala			
210	215	220	
Lys Phe Thr Pro Pro Pro Val Ala Ser Ser Pro Gly Ser Lys Pro Gly			
225	230	235	240
Ala Thr Val Pro Met Ala Pro Ser Asn Ser Thr Arg Tyr Pro Thr Ser			
245	250	255	
Leu Gln Thr Gln Phe Thr Ala Pro Ser Pro Ser Gly Pro Leu Ser Arg			
260	265	270	
Pro Gln Pro Pro Asn Phe Thr Tyr Ala Gln Gln Trp Glu Arg Pro Gln			
275	280	285	
Val Gln Glu Lys Pro Val Pro Thr Glu Lys Ser Ala Ala Val Lys Asp			
290	295	300	

Met Arg Arg Pro Thr Ala Asp Pro Pro Lys Gly Asn Ser Pro Leu Thr
 305 310 315 320

Met Lys Glu Val Glu Glu Leu Leu Leu Thr Gln Lys Leu Met Lys
 325 330 335

Asp Met Asp His Pro Pro Pro Val Glu Ala Ala Thr Ser Glu Leu
 340 345 350

<210> 23

<211> 1140

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle: fragment
 de la protéine zyxine humaine

<220>

<221> CDS

<222> (1)..(1140)

<400> 23

atg	gct	gcc	ccc	cgc	ccg	tct	ccc	gct	atc	tcc	gtt	tcg	gtc	tcg	gct		48
Met	Ala	Ala	Pro	Arg	Pro	Ser	Pro	Ala	Ile	Ser	Val	Ser	Val	Ser	Ala		
1	5							10				15					

ccg	gct	ttt	tac	gcc	ccg	cag	aag	aag	ttc	ggc	cct	gtg	gtg	gcc	cca		96
Pro	Ala	Phe	Tyr	Ala	Pro	Gln	Lys	Lys	Phe	Gly	Pro	Val	Val	Ala	Pro		
20		25							30								

aag	ccc	aaa	gtg	aat	ccc	ttc	ccg	ccc	ggg	gac	agc	gag	cct	ccc	ccg		144
Lys	Pro	Lys	Val	Asn	Pro	Phe	Arg	Pro	Gly	Asp	Ser	Glu	Pro	Pro	Pro		
35			40						45								

gca	ccc	ggg	gcc	cag	cgc	gca	cag	atg	ggc	ccg	gtg	ggc	gag	att	ccc		192
Ala	Pro	Gly	Ala	Gln	Arg	Ala	Gln	Met	Gly	Arg	Val	Gly	Glu	Ile	Pro		
50			55					60									

ccg	ccg	ccc	ccg	gaa	gac	ttt	ccc	ctg	cct	cca	cct	ccc	ctt	gct	ggg		240
Pro	Pro	Pro	Pro	Glu	Asp	Phe	Pro	Leu	Pro	Pro	Pro	Pro	Leu	Ala	Gly		
65				70				75						80			

gat	ggc	gac	gat	gca	gag	ggt	gct	ctg	gga	ggt	gcc	ttc	ccg	ccg	ccc		288
Asp	Gly	Asp	Asp	Ala	Glu	Gly	Ala	Leu	Gly	Gly	Ala	Phe	Pro	Pro	Pro		
85				90					95								

cct	ccc	ccg	atc	gag	gaa	tca	ttt	ccc	cct	gct	ctg	gag	gag	gag		336
Pro	Pro	Pro	Ile	Glu	Ser	Phe	Pro	Pro	Ala	Pro	Leu	Glu	Glu			
100			105						110							

atc	tcc	cct	tcc	ccg	ccg	cct	ccg	gag	gag	gag	gag	gga	ggg	cct	gag		384
Ile	Phe	Pro	Ser	Pro	Glu	Glu	Gly	Gly	Pro								
115				120								125					

gcc	ccc	ata	ccg	ccc	cca	cag	ccc	agg	gag	aag	gtg	agc	agt	att		432
Ala	Pro	Ile	Pro	Pro	Pro	Pro	Gln	Pro	Arg	Glu	Lys	Val	Ser	Ser	Ile	
130				135					140							

gat ttg gag atc gac tct ctg tcc tca ctg ctg gat gac atg acc aag 480
 Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys
 145 150 155 160

aat gat cct ttc aaa gcc cggtgtc tct gga tat gtgc ccc cca cca 528
 Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro
 165 170 175

gtg gcc act cca ttc agt tcc aag tcc agt acc aag cct gca gcc ggg 576
 Val Ala Thr Pro Phe Ser Ser Lys Ser Ser Thr Lys Pro Ala Ala Gly
 180 185 190

ggc aca gca ccc ctg cct cct tgg aag tcc cct tcc agc tcc cag cct 624
 Gly Thr Ala Pro Leu Pro Pro Trp Lys Ser Pro Ser Ser Gln Pro
 195 200 205

ctg ccc cag gtt ccg gct ccg gct cag agc cag aca cag ttc cat gtt 672
 Leu Pro Gln Val Pro Ala Pro Ala Gln Ser Gln Thr Gln Phe His Val
 210 215 220

cag ccc cag ccc cag ccc aag cct cag gtc caa ctc cat gtc cag tcc 720
 Gln Pro Gln Pro Gln Pro Lys Pro Gln Val Gln Leu His Val Gln Ser
 225 230 235 240

cag acc cag cct gtg tct ttg gct aac acc cag ccc cga ggg ccc cca 768
 Gln Thr Gln Pro Val Ser Leu Ala Asn Thr Gln Pro Arg Gly Pro Pro
 245 250 255

gcc tca tct ccg gct cca gcc cct aag ttt tct cca gtg act cct aag 816
 Ala Ser Ser Pro Ala Pro Ala Pro Lys Phe Ser Pro Val Thr Pro Lys
 260 265 270

ttt act cct gtg gct tcc aag ttc agt cct gga gcc cca ggt gga tct 864
 Phe Thr Pro Val Ala Ser Lys Phe Ser Pro Gly Ala Pro Gly Gly Ser
 275 280 285

ggg tca caa cca aat caa aaa ttg ggg cac ccc gaa gct ctt tct gct 912
 Gly Ser Gln Pro Asn Gln Lys Leu Gly His Pro Glu Ala Leu Ser Ala
 290 295 300

ggc aca ggc tcc cct caa cct ccc agc ttc acc tat gcc cag cag agg 960
 Gly Thr Gly Ser Pro Gln Pro Pro Ser Phe Thr Tyr Ala Gln Gln Arg
 305 310 315 320

gag aag ccc cga gtg cag gag aag cag cac ccc gtg ccc cca ccg gct 1008
 Glu Lys Pro Arg Val Gln Glu Lys Gln His Pro Val Pro Pro Ala
 325 330 335

cag aac caa aac cag gtg cgc tcc cct ggg gcc cca ggg ccc ctg act 1056
 Gln Asn Gln Asn Gln Val Arg Ser Pro Gly Ala Pro Gly Pro Leu Thr
 340 345 350

ctg aag gag gtg gag gag cag ctg acc cag cag cta atg cag 1104
 Leu Lys Glu Val Glu Glu Leu Glu Gln Leu Thr Gln Gln Leu Met Gln
 355 360 365

gac atg gag cat cct cag agg cag aat gtg gct gtc 1140
 Asp Met Glu His Pro Gln Arg Gln Asn Val Ala Val
 370 375 380

<210> 24
<211> 380

<212> PRT

<213> Séquence artificielle

<223> Description de la séquence artificielle: fragment
de la protéine zyxine humaine

<400> 24

Met Ala Ala Pro Arg Pro Ser Pro Ala Ile Ser Val Ser Val Ser Ala	
1	5
10	15

Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Gly Pro Val Val Ala Pro	
20	25
30	

Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Pro	
35	40
45	

Ala Pro Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro	
50	55
60	

Pro Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Leu Ala Gly	
65	70
75	80

Asp Gly Asp Asp Ala Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro	
85	90
95	

Pro Pro Pro Ile Glu Glu Ser Phe Pro Pro Ala Pro Leu Glu Glu Glu	
100	105
110	

Ile Phe Pro Ser Pro Pro Pro Pro Glu Glu Glu Gly Gly Pro Glu	
115	120
125	

Ala Pro Ile Pro Pro Pro Gln Pro Arg Glu Lys Val Ser Ser Ile	
130	135
140	

Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys	
145	150
155	160

Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro	
165	170
175	

Val Ala Thr Pro Phe Ser Ser Lys Ser Ser Thr Lys Pro Ala Ala Gly	
180	185
190	

Gly Thr Ala Pro Leu Pro Pro Trp Lys Ser Pro Ser Ser Gln Pro	
195	200
205	

Leu Pro Gln Val Pro Ala Pro Ala Gln Ser Gln Thr Gln Phe His Val	
210	215
220	

Gln Pro Gln Pro Gln Pro Lys Pro Gln Val Gln Leu His Val Gln Ser	
225	230
235	240

Gln Thr Gln Pro Val Ser Leu Ala Asn Thr Gln Pro Arg Gly Pro Pro	
245	250
255	

Ala Ser Ser Pro Ala Pro Ala Pro Lys Phe Ser Pro Val Thr Pro Lys	
260	265
270	

Phe Thr Pro Val Ala Ser Lys Phe Ser Pro Gly Ala Pro Gly Gly Ser	
275	280
285	

Gly Ser Gln Pro Asn Gln Lys Leu Gly His Pro Glu Ala Leu Ser Ala
 290 295 300

Gly Thr Gly Ser Pro Gln Pro Pro Ser Phe Thr Tyr Ala Gln Gln Arg
 305 310 315 320

Glu Lys Pro Arg Val Gln Glu Lys Gln His Pro Val Pro Pro Ala
 325 330 335

Gln Asn Gln Asn Gln Val Arg Ser Pro Gly Ala Pro Gly Pro Leu Thr
 340 345 350

Leu Lys Glu Val Glu Glu Leu Glu Gln Leu Thr Gln Gln Leu Met Gln
 355 360 365

Asp Met Glu His Pro Gln Arg Gln Asn Val Ala Val
 370 375 380

<210> 25

<211> 1236

<212> ADN

<213> Séquence artificielle

<220>

<223> Description de la séquence artificielle: fragment
 de la protéine LPP humaine

<220>

<221> CDS

<222> (1)..(1236)

<400> 25

cca tct tgg ctg cca ccc aaa agc act ggt gag ccc ctc ggc cat gtg 48
 Pro Ser Trp Leu Pro Pro Lys Ser Thr Gly Glu Pro Leu Gly His Val
 1 5 10 15

cct gca cgg atg gag acc acc cat tcc ttt ggg aac ccc agc att tca 96
 Pro Ala Arg Met Glu Thr Thr His Ser Phe Gly Asn Pro Ser Ile Ser
 20 25 30

gtg tct aca caa cag cca ccc aaa aag ttt gcc ccg gta gtt gct cca 144
 Val Ser Thr Gln Gln Pro Pro Lys Lys Phe Ala Pro Val Val Ala Pro
 35 40 45

aaa cct aag tac aac cca tac aaa caa cct gga ggt gag ggt gat ttt 192
 Lys Pro Lys Tyr Asn Pro Tyr Lys Gln Pro Gly Gly Glu Gly Asp Phe
 50 55 60

ctt cca ccc cca cct cca cct cta gat gat tcc agt gcc ctt cca tct 240
 Leu Pro Pro Pro Pro Leu Asp Asp Ser Ser Ala Leu Pro Ser
 65 70 75 80

atc tct gga aac ttt cct cct cca cca cct ctt gat gaa gag gag gct ttc 288
 Ile Ser Gly Asn Phe Pro Pro Pro Pro Leu Asp Glu Glu Ala Phe
 85 90 95

aaa gta cag ggg aat ccc gga ggc aag aca ctt gag gag agg cgc tcc	336
Lys Val Gln Gly Asn Pro Gly Gly Lys Thr Leu Glu Glu Arg Arg Ser	
100	105
105	110
agc ctg gac gct gag att gac tcc ttg acc agc atc ttg gct gac ctt	384
Ser Leu Asp Ala Glu Ile Asp Ser Leu Thr Ser Ile Leu Ala Asp Leu	
115	120
120	125
gag tgc agc tcc ccc tat aag cct cgg cct cca cag agc tcc act ggt	432
Glu Cys Ser Ser Pro Tyr Lys Pro Arg Pro Pro Gln Ser Ser Thr Gly	
130	135
135	140
tca aca gcc tct cct cca gtt tcg acc cca gtc aca gga cac aag aga	480
Ser Thr Ala Ser Pro Pro Val Ser Thr Pro Val Thr Gly His Lys Arg	
145	150
150	155
155	160
atg gtc atc ccg aac caa ccc cct cta aca gca acc aag aag tct aca	528
Met Val Ile Pro Asn Gln Pro Pro Leu Thr Ala Thr Lys Lys Ser Thr	
165	170
170	175
ttg aaa cca cag cct gca ccc cag gct gga ccc atc cct gtg gct cca	576
Leu Lys Pro Gln Pro Ala Pro Gln Ala Gly Pro Ile Pro Val Ala Pro	
180	185
185	190
atc gga aca ctc aaa ccc cag cct cag cca gtc cca gcc tcc tac acc	624
Ile Gly Thr Leu Lys Pro Gln Pro Val Pro Ala Ser Tyr Thr	
195	200
200	205
acg gcc tcc act tct tca agg cct acc ttt aat gtg cag gtg aag tca	672
Thr Ala Ser Thr Ser Arg Pro Thr Phe Asn Val Gln Val Lys Ser	
210	215
215	220
gcc cag ccc agc cct cat tat atg gct gcc cct tca tca gga caa att	720
Ala Gln Pro Ser Pro His Tyr Met Ala Ala Pro Ser Ser Gly Gln Ile	
225	230
230	235
235	240
tat ggc tca ggg ccc cag ggc tat aac act cag cca gtt cct gtc tct	768
Tyr Gly Ser Gly Pro Gln Gly Tyr Asn Thr Gln Pro Val Pro Val Ser	
245	250
250	255
ggg cag tgt cca cct cct tca aca cgg gga ggc atg gat tat gcc tac	816
Gly Gln Cys Pro Pro Ser Thr Arg Gly Gly Met Asp Tyr Ala Tyr	
260	265
265	270
att cca cca cca gga ctt cag ccg gag cct ggg tat ggg tat gcc ccc	864
Ile Pro Pro Pro Gly Leu Gln Pro Glu Pro Gly Tyr Gly Tyr Ala Pro	
275	280
280	285
aac cag gga cgc tat tat gaa ggc tac tat gca gca ggg cca ggc tat	912
Asn Gln Gly Arg Tyr Tyr Glu Gly Tyr Tyr Ala Ala Gly Pro Gly Tyr	
290	295
295	300
ggg ggc aga aat gac tct gac acc tat ggt caa caa ggt cac cca	960
Gly Gly Arg Asn Asp Ser Asp Pro Thr Tyr Gly Gln Gln Gly His Pro	
305	310
310	315
315	320
aat acc tgg aaa cgg gaa cca ggg tac act cct cct gga gca ggg aac	1008
Asn Thr Trp Lys Arg Glu Pro Gly Tyr Thr Pro Pro Gly Ala Gly Asn	
325	330
330	335

cag aac cct cct ggg atg tat cca gtc act ggt ccc aag aag acc tat	1056																																	
Gln Asn Pro Pro Gly Met Tyr Pro Val Thr Gly Pro Lys Lys Thr Tyr																																		
340	345	350		atc aca gat cct gtt tca gcc ccc tgt gcg cca cca ttg cag cca aag	1104	Ile Thr Asp Pro Val Ser Ala Pro Cys Ala Pro Pro Leu Gln Pro Lys		355	360	365		ggt ggc cat tca ggg caa ctg ggg cct tcg tca gtt gcc cct tca ttc	1152	Gly Gly His Ser Gly Gln Leu Gly Pro Ser Ser Val Ala Pro Ser Phe		370	375	380		cgc cca gag gat gag ctt gag cac ctg acc aaa aag atg ctg tat gac	1200	Arg Pro Glu Asp Glu Leu Glu His Leu Thr Lys Lys Met Leu Tyr Asp		385	390	395	400	atg gaa aat cca cct gct gac gaa tac ttt ggc cgc	1236	Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg		405	410	
350																																		
atc aca gat cct gtt tca gcc ccc tgt gcg cca cca ttg cag cca aag	1104																																	
Ile Thr Asp Pro Val Ser Ala Pro Cys Ala Pro Pro Leu Gln Pro Lys																																		
355	360	365		ggt ggc cat tca ggg caa ctg ggg cct tcg tca gtt gcc cct tca ttc	1152	Gly Gly His Ser Gly Gln Leu Gly Pro Ser Ser Val Ala Pro Ser Phe		370	375	380		cgc cca gag gat gag ctt gag cac ctg acc aaa aag atg ctg tat gac	1200	Arg Pro Glu Asp Glu Leu Glu His Leu Thr Lys Lys Met Leu Tyr Asp		385	390	395	400	atg gaa aat cca cct gct gac gaa tac ttt ggc cgc	1236	Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg		405	410									
365																																		
ggt ggc cat tca ggg caa ctg ggg cct tcg tca gtt gcc cct tca ttc	1152																																	
Gly Gly His Ser Gly Gln Leu Gly Pro Ser Ser Val Ala Pro Ser Phe																																		
370	375	380		cgc cca gag gat gag ctt gag cac ctg acc aaa aag atg ctg tat gac	1200	Arg Pro Glu Asp Glu Leu Glu His Leu Thr Lys Lys Met Leu Tyr Asp		385	390	395	400	atg gaa aat cca cct gct gac gaa tac ttt ggc cgc	1236	Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg		405	410																	
380																																		
cgc cca gag gat gag ctt gag cac ctg acc aaa aag atg ctg tat gac	1200																																	
Arg Pro Glu Asp Glu Leu Glu His Leu Thr Lys Lys Met Leu Tyr Asp																																		
385	390	395	400	atg gaa aat cca cct gct gac gaa tac ttt ggc cgc	1236	Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg		405	410																									
395	400																																	
atg gaa aat cca cct gct gac gaa tac ttt ggc cgc	1236																																	
Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg																																		
405	410																																	

<210> 26

<211> 412

<212> PRT

<213> Séquence artificielle

<223> Description de la séquence artificielle: fragment
de la protéine LPP humaine

<400> 26

Pro Ser Trp Leu Pro Pro Lys Ser Thr Gly Glu Pro Leu Gly His Val

1

5

10

15

Pro Ala Arg Met Glu Thr Thr His Ser Phe Gly Asn Pro Ser Ile Ser

20

25

30

Val Ser Thr Gln Gln Pro Pro Lys Lys Phe Ala Pro Val Val Ala Pro

35

40

45

Lys Pro Lys Tyr Asn Pro Tyr Lys Gln Pro Gly Gly Glu Gly Asp Phe

50

55

60

Leu Pro Pro Pro Pro Pro Leu Asp Asp Ser Ser Ala Leu Pro Ser

65

70

75

80

Ile Ser Gly Asn Phe Pro Pro Pro Pro Leu Asp Glu Glu Ala Phe

85

90

95

Lys Val Gln Gly Asn Pro Gly Gly Lys Thr Leu Glu Glu Arg Arg Ser

100

105

110

Ser Leu Asp Ala Glu Ile Asp Ser Leu Thr Ser Ile Leu Ala Asp Leu

115

120

125

Glu Cys Ser Ser Pro Tyr Lys Pro Arg Pro Pro Gln Ser Ser Thr Gly

130

135

140

Ser Thr Ala Ser Pro Pro Val Ser Thr Pro Val Thr Gly His Lys Arg

145

150

155

160

Met Val Ile Pro Asn Gln Pro Pro Leu Thr Ala Thr Lys Lys Ser Thr

165

170

175

Leu Lys Pro Gln Pro Ala Pro Gln Ala Gly Pro Ile Pro Val Ala Pro
 180 185 190
 Ile Gly Thr Leu Lys Pro Gln Pro Gln Pro Val Pro Ala Ser Tyr Thr
 195 200 205
 Thr Ala Ser Thr Ser Ser Arg Pro Thr Phe Asn Val Gln Val Lys Ser
 210 215 220
 Ala Gln Pro Ser Pro His Tyr Met Ala Ala Pro Ser Ser Gly Gln Ile
 225 230 235 240
 Tyr Gly Ser Gly Pro Gln Gly Tyr Asn Thr Gln Pro Val Pro Val Ser
 245 250 255
 Gly Gln Cys Pro Pro Pro Ser Thr Arg Gly Gly Met Asp Tyr Ala Tyr
 260 265 270
 Ile Pro Pro Pro Gly Leu Gln Pro Glu Pro Gly Tyr Gly Tyr Ala Pro
 275 280 285
 Asn Gln Gly Arg Tyr Tyr Glu Gly Tyr Tyr Ala Ala Gly Pro Gly Tyr
 290 295 300
 Gly Gly Arg Asn Asp Ser Asp Pro Thr Tyr Gly Gln Gln Gly His Pro
 305 310 315 320
 Asn Thr Trp Lys Arg Glu Pro Gly Tyr Thr Pro Pro Gly Ala Gly Asn
 325 330 335
 Gln Asn Pro Pro Gly Met Tyr Pro Val Thr Gly Pro Lys Lys Thr Tyr
 340 345 350
 Ile Thr Asp Pro Val Ser Ala Pro Cys Ala Pro Pro Leu Gln Pro Lys
 355 360 365
 Gly Gly His Ser Gly Gln Leu Gly Pro Ser Ser Val Ala Pro Ser Phe
 370 375 380
 Arg Pro Glu Asp Glu Leu Glu His Leu Thr Lys Lys Met Leu Tyr Asp
 385 390 395 400
 Met Glu Asn Pro Pro Ala Asp Glu Tyr Phe Gly Arg
 405 410

<210> 27
 <211> 3201
 <212> ADN
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (1)..(3201)

<400> 27
 atg cca gtg ttt cat acg cgc acg atc gag agc atc ctg gag ccg gtg 48
 Met Pro Val Phe His Thr Arg Thr Ile Glu Ser Ile Leu Glu Pro Val
 1 5 10 15

gca cag cag atc tcc cac ctg gtg ata atg cac gag gag ggc gag gtg Ala Gln Gln Ile Ser His Leu Val Ile Met His Glu Glu Gly Glu Val	96
20 25 30	
gac ggc aaa gcc att cct gac ctc acc gcg ccc gtg gcc gcc gtg cag Asp Gly Lys Ala Ile Pro Asp Leu Thr Ala Pro Val Ala Ala Val Gln	144
35 40 45	
gcg gcc gtc agc aac ctc gtc cgg gtt gga aaa gag act gtt caa acc Ala Ala Val Ser Asn Leu Val Arg Val Gly Lys Glu Thr Val Gln Thr	192
50 55 60	
act gag gat cag att ttg aag aga gat atg cca cca gca ttt att aag Thr Glu Asp Gln Ile Leu Lys Arg Asp Met Pro Pro Ala Phe Ile Lys	240
65 70 75 80	
gtt gag aat gct tgc acc aag ctt gtc cag gca gct cag atg ctt cag Val Glu Asn Ala Cys Thr Lys Leu Val Gln Ala Ala Gln Met Leu Gln	288
85 90 95	
tca gac cct tac tca gtg cct gct cga gat tat cta att gat ggg tca Ser Asp Pro Tyr Ser Val Pro Ala Arg Asp Tyr Leu Ile Asp Gly Ser	336
100 105 110	
agg ggc atc ctc tct gga aca tca gac ctg ctc ctt acc ttc gat gag Arg Gly Ile Leu Ser Gly Thr Ser Asp Leu Leu Leu Thr Phe Asp Glu	384
115 120 125	
gct gag gtc cgt aaa att att aga gtt tgc aaa gga att ttg gaa tat Ala Glu Val Arg Lys Ile Ile Arg Val Cys Lys Gly Ile Leu Glu Tyr	432
130 135 140	
ctt aca gtg gca gag gtg gtg gag act atg gaa gat ttg gtc act tac Leu Thr Val Ala Glu Val Val Glu Thr Met Glu Asp Leu Val Thr Tyr	480
145 150 155 160	
aca aag aat ctt ggg cca gga atg act aag atg gcc aag atg att gac Thr Lys Asn Leu Gly Pro Gly Met Thr Lys Met Ala Lys Met Ile Asp	528
165 170 175	
gag aga cag cag gag ctc act cac cag gag cac cga gtg atg ttg gtg Glu Arg Gln Gln Glu Leu Thr His Gln Glu His Arg Val Met Leu Val	576
180 185 190	
aac tcg atg aac acc gtg aaa gag ttg ctg cca gtt ctc att tca gct Asn Ser Met Asn Thr Val Lys Glu Leu Leu Pro Val Leu Ile Ser Ala	624
195 200 205	
atg aag att ttt gta aca act aaa aac tca aaa aac caa ggc ata gag Met Lys Ile Phe Val Thr Thr Lys Asn Ser Lys Asn Gln Gly Ile Glu	672
210 215 220	
gaa gct tta aaa aat cgc aat ttt act gta gaa aaa atg agt gct gaa Glu Ala Leu Lys Asn Arg Asn Phe Thr Val Glu Lys Met Ser Ala Glu	720
225 230 235 240	
att aat gag ata att cgt gtg tta caa ctc acc tct tgg gat gaa gat Ile Asn Glu Ile Ile Arg Val Leu Gln Leu Thr Ser Trp Asp Glu Asp	768
245 250 255	

gcc tgg gcc agc aag gac act gaa gcc atg aag aga gca ttg gcc tcc		816	
Ala Trp Ala Ser Lys Asp Thr Glu Ala Met Lys Arg Ala Leu Ala Ser			
260	265	270	
ata gac tcc aaa ctg aac cag gcc aaa ggt tgg ctc cgt gac cct agt		864	
Ile Asp Ser Lys Leu Asn Gln Ala Lys Gly Trp Leu Arg Asp Pro Ser			
275	280	285	
gcc tcc cca ggg gat gct ggt gag cag gcc atc aga cag atc tta gat		912	
Ala Ser Pro Gly Asp Ala Gly Glu Gln Ala Ile Arg Gln Ile Leu Asp			
290	295	300	
gaa gct gga aaa gtt ggt gaa ctc tgt gca ggc aaa gaa cgc agg gag		960	
Glu Ala Gly Lys Val Gly Glu Leu Cys Ala Gly Lys Glu Arg Arg Glu			
305	310	315	320
att ctg gga act tgc aaa atg cta ggg cag atg act gat caa gtg gct		1008	
Ile Leu Gly Thr Cys Lys Met Leu Gly Gln Met Thr Asp Gln Val Ala			
325	330	335	
gac ctc cgt gcc aga gga caa gga tcc tca ccg gtg gcc atg cag aaa		1056	
Asp Leu Arg Ala Arg Gly Gln Gly Ser Ser Pro Val Ala Met Gln Lys			
340	345	350	
gct cag cag gta tct cag ggt ctg gat gtg ctc aca gca aaa gtg gaa		1104	
Ala Gln Gln Val Ser Gln Gly Leu Asp Val Leu Thr Ala Lys Val Glu			
355	360	365	
aat gca gct cgc aag ctg gaa gcc atg acc aac tca aag cag agc att		1152	
Asn Ala Ala Arg Lys Leu Glu Ala Met Thr Asn Ser Lys Gln Ser Ile			
370	375	380	
gca aag aag atc gat gct gct cag aac tgg ctt gca gat cca aat ggt		1200	
Ala Lys Lys Ile Asp Ala Ala Gln Asn Trp Leu Ala Asp Pro Asn Gly			
385	390	395	400
gga ccg gaa gga gaa gag cag att cga ggt gct ttg gct gaa gct cgg		1248	
Gly Pro Glu Gly Glu Gln Ile Arg Gly Ala Leu Ala Glu Ala Arg			
405	410	415	
aaa ata gca gaa tta tgt gat gat cct aaa gaa aga gat gac att cta		1296	
Lys Ile Ala Glu Leu Cys Asp Asp Pro Lys Glu Arg Asp Asp Ile Leu			
420	425	430	
cgt tcc ctt ggg gaa ata tct gct ctg act tct aaa tta gca gat cta		1344	
Arg Ser Leu Gly Glu Ile Ser Ala Leu Thr Ser Lys Leu Ala Asp Leu			
435	440	445	
cga aga cag ggg aaa gga gat tct cca gag gct cga gcc ttg gcc aaa		1392	
Arg Arg Gln Gly Lys Gly Asp Ser Pro Glu Ala Arg Ala Leu Ala Lys			
450	455	460	
cag gtg gcc acg gcc ctg cag aac ctg cag acc aaa acc aac cgg gct		1440	
Gln Val Ala Thr Ala Leu Gln Asn Leu Gln Thr Lys Thr Asn Arg Ala			
465	470	475	480
gtg gcc aac agc aga ccg gcc aaa gca gct gta cac ctt gag ggc aag		1488	
Val Ala Asn Ser Arg Pro Ala Lys Ala Ala Val His Leu Glu Gly Lys			
485	490	495	

att gag caa gca cag cg ^g tgg att gat aat ccc aca gtg gat gac cgt Ile Glu Gln Ala Gln Arg Trp Ile Asp Asn Pro Thr Val Asp Asp Arg	1536
500 505 510	
 gga gtc ggt cag gct gcc atc cg ^g ggg ctt gtg gcc gaa ggg cat cgt Gly Val Gly Gln Ala Ala Ile Arg Gly Leu Val Ala Glu Gly His Arg	1584
515 520 525	
 ctg gct aat gtt atg atg ggg cct tat cg ^g caa gat ctt ctc gcc aag Leu Ala Asn Val Met Met Gly Pro Tyr Arg Gln Asp Leu Leu Ala Lys	1632
530 535 540	
 tgt gac cga gtg gac cag ctg aca gcc cag ctg gct gac ctg gct gcc Cys Asp Arg Val Asp Gln Leu Thr Ala Gln Leu Ala Asp Leu Ala Ala	1680
545 550 555 560	
 aga ggg gaa ggg gag agt cct cag gca cga gca ctt gca tct cag ctc Arg Gly Glu Gly Ser Pro Gln Ala Arg Ala Leu Ala Ser Gln Leu	1728
565 570 575	
 caa gac tcc tta aag gat cta aaa gct cg ^g atg cag gag gcc atg act Gln Asp Ser Leu Lys Asp Leu Lys Ala Arg Met Gln Glu Ala Met Thr	1776
580 585 590	
 cag gaa gtg tca gat gtt ttc agc gat acc aca act ccc atc aag ctg Gln Glu Val Ser Asp Val Phe Ser Asp Thr Thr Pro Ile Lys Leu	1824
595 600 605	
 ttg gca gtg gca gcc acg gcg cct cct gat gcg cct aac agg gaa gag Leu Ala Val Ala Ala Thr Ala Pro Pro Asp Ala Pro Asn Arg Glu Glu	1872
610 615 620	
 gta ttt gat gag agg gca gct aac cat tca qga aag ctt Val Phe Asp Glu Arg Ala Ala Asn Phe Glu Asn His Ser Gly Lys Leu	1920
625 630 635 640	
 ggt gct acg gcc gag aag gcg gct gcg gtt ggt act gct aat aaa tca Gly Ala Thr Ala Glu Lys Ala Ala Val Gly Thr Ala Asn Lys Ser	1968
645 650 655	
 aca gtg gaa ggc att cag gcc tca gtg aag acg gcc cga gaa ctc aca Thr Val Glu Gly Ile Gln Ala Ser Val Lys Thr Ala Arg Glu Leu Thr	2016
660 665 670	
 ccc cag gtg gtc tcg gct gct cgt atc tta ctt agg aac cct gga aat Pro Gln Val Val Ser Ala Ala Arg Ile Leu Leu Arg Asn Pro Gly Asn	2064
675 680 685	
 caa gct gct tat gaa cat ttt gag acc atg aag aac cag tgg atc gat Gln Ala Ala Tyr Glu His Phe Glu Thr Met Lys Asn Gln Trp Ile Asp	2112
690 695 700	
 aat gtt gaa aaa atg aca ggg ctg gtg gac gaa gcc att gat acc aaa Asn Val Glu Lys Met Thr Gly Leu Val Asp Glu Ala Ile Asp Thr Lys	2160
705 710 715 720	
 tct ctg ttg gat gct tca gaa gca att aaa aaa gac ctg gac aag Ser Leu Leu Asp Ala Ser Glu Glu Ala Ile Lys Lys Asp Leu Asp Lys	2208
725 730 735	

tgc aag gta gct atg gcc aac att cag cct cag atg ctg gtt gct ggg Cys Lys Val Ala Met Ala Asn Ile Gln Pro Gln Met Leu Val Ala Gly	2256
740 745 750	
gca acc agt att gct cgt cgcc aac cgcc atc ctg ctg gtg gct aag Ala Thr Ser Ile Ala Arg Arg Ala Asn Arg Ile Leu Leu Val Ala Lys	2304
755 760 765	
agg gag gtg gag aat tcc gag gat ccc aag ttc cgt gag gct gtg aaa Arg Glu Val Glu Asn Ser Glu Asp Pro Lys Phe Arg Glu Ala Val Lys	2352
770 775 780	
gct gcc tct gat gaa ttg agc aaa acc atc tcc cca atg gtg atg gat Ala Ala Ser Asp Glu Leu Ser Lys Thr Ile Ser Pro Met Val Met Asp	2400
785 790 795 800	
gca aaa gct gtg gct gga aac att tcc gac cct gga ctg caa aag agc Ala Lys Ala Val Ala Gly Asn Ile Ser Asp Pro Gly Leu Gln Lys Ser	2448
805 810 815	
ttc ctg gac tca gga tat cgg atc ctg gga gct gtg gcc aag gtc aga Phe Leu Asp Ser Gly Tyr Arg Ile Leu Gly Ala Val Ala Lys Val Arg	2496
820 825 830	
gaa gcc ttc caa cct cag gag cct gac ttc ccg ccg cct cca cca gac Glu Ala Phe Gln Pro Gln Glu Pro Asp Phe Pro Pro Pro Pro Asp	2544
835 840 845	
ctt gaa caa ctc cga cta aca gat gag ctt gct cct ccc aaa cca cct Leu Glu Gln Leu Arg Leu Thr Asp Glu Leu Ala Pro Pro Lys Pro Pro	2592
850 855 860	
ctg cct gaa ggt gag gtc cct cca cct agg cct cca cca cca gag gaa Leu Pro Glu Gly Glu Val Pro Pro Pro Arg Pro Pro Pro Pro Glu Glu	2640
865 870 875 880	
aag gat gaa gag ttc cct gag cag aag gcc ggg gag gtg att aac cag Lys Asp Glu Glu Phe Pro Glu Gln Lys Ala Gly Glu Val Ile Asn Gln	2688
885 890 895	
cca atg atg atg gct gcc aga cag ctc cat gat gaa gct cgc aaa tgg Pro Met Met Met Ala Ala Arg Gln Leu His Asp Glu Ala Arg Lys Trp	2736
900 905 910	
tcc agc aag ggc aat gac atc att gca gca gcc aag cgc atg gct ctg Ser Ser Lys Gly Asn Asp Ile Ile Ala Ala Lys Arg Met Ala Leu	2784
915 920 925	
ctg atg gct gag atg tct cgg ctg gta aga ggg ggc agt ggt acc aag Leu Met Ala Glu Met Ser Arg Leu Val Arg Gly Gly Ser Gly Thr Lys	2832
930 935 940	
cgg gca ctc att cag tgt gcc aag gac atc gcc aag gcc tca gat gag Arg Ala Leu Ile Gln Cys Ala Lys Asp Ile Ala Lys Ala Ser Asp Glu	2880
945 950 955 960	
gtg act cgg ttg gcc aag gag gtt gcc aag cag tgc aca gat aaa cgg Val Thr Arg Leu Ala Lys Glu Val Ala Lys Gln Cys Thr Asp Lys Arg	2928
965 970 975	

att aga acc aac ctc tta cag gta tgt gag cga atc cca acc ata agc 2976
 Ile Arg Thr Asn Leu Leu Gin Val Cys Glu Arg Ile Pro Thr Ile Ser
 980 985 990

 acc cag ctc aaa atc ctg tcc aca gtg aag gcc acc atg ctg ggc cg 3024
 Thr Gln Leu Lys Ile Leu Ser Thr Val Lys Ala Thr Met Leu Gly Arg
 995 1000 1005

 acc aac atc agt gat gag gag tct gag cag gcc aca gag atg ctg gtt 3072
 Thr Asn Ile Ser Asp Glu Glu Ser Glu Gln Ala Thr Glu Met Leu Val
 1010 1015 1020

 cac aat gcc cag aac ctc atg cag tct gtg aag gag act gtg cg 3120
 His Asn Ala Gln Asn Leu Met Gln Ser Val Lys Glu Thr Val Arg Glu
 1025 1030 1035 1040

 gct gaa gct gct tca atc aaa att cga aca gat gct gga ttt aca ctg 3168
 Ala Glu Ala Ala Ser Ile Lys Ile Arg Thr Asp Ala Gly Phe Thr Leu
 1045 1050 1055

 cgc tgg gtt aga aag act ccc tgg tac cag tag 3201
 Arg Trp Val Arg Lys Thr Pro Trp Tyr Gln
 1060 1065

 <210> 28
 <211> 1066
 <212> PRT
 <213> Homo sapiens

 <400> 28
 Met Pro Val Phe His Thr Arg Thr Ile Glu Ser Ile Leu Glu Pro Val 1 5 10 15

 Ala Gln Gln Ile Ser His Leu Val Ile Met His Glu Glu Gly Glu Val 20 25 30

 Asp Gly Lys Ala Ile Pro Asp Leu Thr Ala Pro Val Ala Ala Val Gln 35 40 45

 Ala Ala Val Ser Asn Leu Val Arg Val Gly Lys Glu Thr Val Gln Thr 50 55 60

 Thr Glu Asp Gln Ile Leu Lys Arg Asp Met Pro Pro Ala Phe Ile Lys 65 70 75 80

 Val Glu Asn Ala Cys Thr Lys Leu Val Gln Ala Ala Gln Met Leu Gln 85 90 95

 Ser Asp Pro Tyr Ser Val Pro Ala Arg Asp Tyr Leu Ile Asp Gly Ser 100 105 110

 Arg Gly Ile Leu Ser Gly Thr Ser Asp Leu Leu Leu Thr Phe Asp Glu 115 120 125

 Ala Glu Val Arg Lys Ile Ile Arg Val Cys Lys Gly Ile Leu Glu Tyr 130 135 140

 Leu Thr Val Ala Glu Val Val Glu Thr Met Glu Asp Leu Val Thr Tyr 145 150 155 160

Thr Lys Asn Leu Gly Pro Gly Met Thr Lys Met Ala Lys Met Ile Asp
 165 170 175
 Glu Arg Gln Gln Glu Leu Thr His Gln Glu His Arg Val Met Leu Val
 180 185 190
 Asn Ser Met Asn Thr Val Lys Glu Leu Leu Pro Val Leu Ile Ser Ala
 195 200 205
 Met Lys Ile Phe Val Thr Thr Lys Asn Ser Lys Asn Gln Gly Ile Glu
 210 215 220
 Glu Ala Leu Lys Asn Arg Asn Phe Thr Val Glu Lys Met Ser Ala Glu
 225 230 235 240
 Ile Asn Glu Ile Ile Arg Val Leu Gln Leu Thr Ser Trp Asp Glu Asp
 245 250 255
 Ala Trp Ala Ser Lys Asp Thr Glu Ala Met Lys Arg Ala Leu Ala Ser
 260 265 270
 Ile Asp Ser Lys Leu Asn Gln Ala Lys Gly Trp Leu Arg Asp Pro Ser
 275 280 285
 Ala Ser Pro Gly Asp Ala Gly Glu Gln Ala Ile Arg Gln Ile Leu Asp
 290 295 300
 Glu Ala Gly Lys Val Gly Glu Leu Cys Ala Gly Lys Glu Arg Arg Glu
 305 310 315 320
 Ile Leu Gly Thr Cys Lys Met Leu Gly Gln Met Thr Asp Gln Val Ala
 325 330 335
 Asp Leu Arg Ala Arg Gly Gln Gly Ser Ser Pro Val Ala Met Gln Lys
 340 345 350
 Ala Gln Gln Val Ser Gln Gly Leu Asp Val Leu Thr Ala Lys Val Glu
 355 360 365
 Asn Ala Ala Arg Lys Leu Glu Ala Met Thr Asn Ser Lys Gln Ser Ile
 370 375 380
 Ala Lys Lys Ile Asp Ala Ala Gln Asn Trp Leu Ala Asp Pro Asn Gly
 385 390 395 400
 Gly Pro Glu Gly Glu Glu Gln Ile Arg Gly Ala Leu Ala Glu Ala Arg
 405 410 415
 Lys Ile Ala Glu Leu Cys Asp Asp Pro Lys Glu Arg Asp Asp Ile Leu
 420 425 430
 Arg Ser Leu Gly Glu Ile Ser Ala Leu Thr Ser Lys Leu Ala Asp Leu
 435 440 445
 Arg Arg Gln Gly Lys Gly Asp Ser Pro Glu Ala Arg Ala Leu Ala Lys
 450 455 460
 Gln Val Ala Thr Ala Leu Gln Asn Leu Gln Thr Lys Thr Asn Arg Ala
 465 470 475 480

Val Ala Asn Ser Arg Pro Ala Lys Ala Ala Val His Leu Glu Gly Lys
 485 490 495
 Ile Glu Gln Ala Gln Arg Trp Ile Asp Asn Pro Thr Val Asp Asp Arg
 500 505 510
 Gly Val Gly Gln Ala Ala Ile Arg Gly Leu Val Ala Glu Gly His Arg
 515 520 525
 Leu Ala Asn Val Met Met Gly Pro Tyr Arg Gln Asp Leu Leu Ala Lys
 530 535 540
 Cys Asp Arg Val Asp Gln Leu Thr Ala Gln Leu Ala Asp Leu Ala Ala
 545 550 555 560
 Arg Gly Glu Gly Glu Ser Pro Gln Ala Arg Ala Leu Ala Ser Gln Leu
 565 570 575
 Gln Asp Ser Leu Lys Asp Leu Lys Ala Arg Met Gln Glu Ala Met Thr
 580 585 590
 Gln Glu Val Ser Asp Val Phe Ser Asp Thr Thr Thr Pro Ile Lys Leu
 595 600 605
 Leu Ala Val Ala Ala Thr Ala Pro Pro Asp Ala Pro Asn Arg Glu Glu
 610 615 620
 Val Phe Asp Glu Arg Ala Ala Asn Phe Glu Asn His Ser Gly Lys Leu
 625 630 635 640
 Gly Ala Thr Ala Glu Lys Ala Ala Ala Val Gly Thr Ala Asn Lys Ser
 645 650 655
 Thr Val Glu Gly Ile Gln Ala Ser Val Lys Thr Ala Arg Glu Leu Thr
 660 665 670
 Pro Gln Val Val Ser Ala Ala Arg Ile Leu Leu Arg Asn Pro Gly Asn
 675 680 685
 Gln Ala Ala Tyr Glu His Phe Glu Thr Met Lys Asn Gln Trp Ile Asp
 690 695 700
 Asn Val Glu Lys Met Thr Gly Leu Val Asp Glu Ala Ile Asp Thr Lys
 705 710 715 720
 Ser Leu Leu Asp Ala Ser Glu Glu Ala Ile Lys Lys Asp Leu Asp Lys
 725 730 735
 Cys Lys Val Ala Met Ala Asn Ile Gln Pro Gln Met Leu Val Ala Gly
 740 745 750
 Ala Thr Ser Ile Ala Arg Arg Ala Asn Arg Ile Leu Leu Val Ala Lys
 755 760 765
 Arg Glu Val Glu Asn Ser Glu Asp Pro Lys Phe Arg Glu Ala Val Lys
 770 775 780
 Ala Ala Ser Asp Glu Leu Ser Lys Thr Ile Ser Pro Met Val Met Asp
 785 790 795 800

Ala Lys Ala Val Ala Gly Asn Ile Ser Asp Pro Gly Leu Gln Lys Ser
 805 810 815
 Phe Leu Asp Ser Gly Tyr Arg Ile Leu Gly Ala Val Ala Lys Val Arg
 820 825 830
 Glu Ala Phe Gln Pro Gln Glu Pro Asp Phe Pro Pro Pro Pro Asp
 835 840 845
 Leu Glu Gln Leu Arg Leu Thr Asp Glu Leu Ala Pro Pro Lys Pro Pro
 850 855 860
 Leu Pro Glu Gly Glu Val Pro Pro Pro Arg Pro Pro Pro Glu Glu
 865 870 875 880
 Lys Asp Glu Glu Phe Pro Glu Gln Lys Ala Gly Glu Val Ile Asn Gln
 885 890 895
 Pro Met Met Met Ala Ala Arg Gln Leu His Asp Glu Ala Arg Lys Trp
 900 905 910
 Ser Ser Lys Gly Asn Asp Ile Ile Ala Ala Ala Lys Arg Met Ala Leu
 915 920 925
 Leu Met Ala Glu Met Ser Arg Leu Val Arg Gly Gly Ser Gly Thr Lys
 930 935 940
 Arg Ala Leu Ile Gln Cys Ala Lys Asp Ile Ala Lys Ala Ser Asp Glu
 945 950 955 960
 Val Thr Arg Leu Ala Lys Glu Val Ala Lys Gln Cys Thr Asp Lys Arg
 965 970 975
 Ile Arg Thr Asn Leu Leu Gln Val Cys Glu Arg Ile Pro Thr Ile Ser
 980 985 990
 Thr Gln Leu Lys Ile Leu Ser Thr Val Lys Ala Thr Met Leu Gly Arg
 995 1000 1005
 Thr Asn Ile Ser Asp Glu Glu Ser Glu Gln Ala Thr Glu Met Leu Val
 1010 1015 1020
 His Asn Ala Gln Asn Leu Met Gln Ser Val Lys Glu Thr Val Arg Glu
 1025 1030 1035 1040
 Ala Glu Ala Ala Ser Ile Lys Ile Arg Thr Asp Ala Gly Phe Thr Leu
 1045 1050 1055
 Arg Trp Val Arg Lys Thr Pro Trp Tyr Gln
 1060 1065

<210> 29
 <211> 681
 <212> ADN
 <213> Séquence artificielle

<220>
 <221> CDS
 <222> (1)...(681)

<220>

<223> Description de la séquence artificielle: fragment de la vinculine humaine

<400> 29

cct gac ttc ccg ccg cct cca cca gac ctt gaa caa ctc cga cta aca 48
 Pro Asp Phe Pro Pro Pro Pro Asp Leu Glu Gln Leu Arg Leu Thr
 1 5 10 15

gat gag ctt gct cct ccc aaa cca cct ctg cct gaa ggt gag gtc cct 96
 Asp Glu Leu Ala Pro Pro Lys Pro Pro Leu Pro Glu Gly Glu Val Pro
 20 25 30

cca cct agg cct cca cca gag gaa aag gat gaa gag ttc cct gag 144
Pro Pro Arg Pro Pro Pro Glu Glu Lys Asp Glu Glu Phe Pro Glu
35 40 45

cag aag gcc ggg gag gtg att aac cag cca atg atg atg gct gcc aga 192
 Gln Lys Ala Gly Glu Val Ile Asn Gln Pro Met Met Met Ala Ala Arg
 50 55 60

cag ctc cat gat gaa gct cgc aaa tgg tcc agc aag ggc aat gac atc	240
Gln Leu His Asp Glu Ala Arg Lys Trp Ser Ser Lys Gly Asn Asp Ile	
65 70 75 80	

att gca gca gcc aag cgc atg gct ctg ctg atg gag atg tct cg 288
Ile Ala Ala Ala Lys Arg Met Ala Leu Leu Met Ala Glu Met Ser Arg
85 90 95

ctg gta aga ggg ggc agt ggt acc aag cgg gca ctc att cag tgt gcc 336
 Leu Val Arg Gly Gly Ser Gly Thr Lys Arg Ala Leu Ile Gln Cys Ala
 100 105 110

```

aag gac atc gcc aag gcc tca gat gag gtg act cgg ttg gcc aag gag 384
Lys Asp Ile Ala Lys Ala Ser Asp Glu Val Thr Arg Leu Ala Lys Glu
          115           120           125

```

gtt gcc aag cag tgc aca gat aaa cg^g att aga acc aac ctc tta cag 432
 Val Ala Lys Gln Cys Thr Asp Lys Arg Ile Arg Thr Asn Leu Leu Gln
 130 135 140

gta tgt gag cga atc cca acc ata agc acc cag ctc aaa atc ctg tcc	480
Val Cys Glu Arg Ile Pro Thr Ile Ser Thr Gln Leu Lys Ilé Leu Ser	
145 150 155 160	

aca gtg aag gcc acc atg ctg ggc cg^g acc aac atc agt gat gag gag 528
 Thr Val Lys Ala Thr Met Leu Gly Arg Thr Asn Ile Ser Asp Glu Glu
 165 170 175

tct gag cag gcc aca gag atg ctg gtt cac aat gcc cag aac ctc atg	576	
Ser Glu Gln Ala Thr Glu Met Leu Val His Asn Ala Gln Asn Leu Met		
180	185	190

cag tct gtg aag gag act gtg cg^g gaa gct gaa gct gct tca atc aaa 624
Gln Ser Val Lys Glu Thr Val Arg Glu Ala Glu Ala Ala Ser Ile Lys
195 200 205

att cga aca gat gct gga ttt aca ctg cgc tgg gtt aga aag act ccc 672
 Ile Arg Thr Asp Ala Gly Phe Thr Leu Arg Trp Val Arg Lys Thr Pro
 210 215 220

tgg tac cag
Trp Tyr Gln
225

681

<210> 30
<211> 227
<212> PRT
<213> Séquence artificielle
<223> Description de la séquence artificielle: fragment
de la vinculine humaine

<400> 30
Pro Asp Phe Pro Pro Pro Pro Asp Leu Glu Gln Leu Arg Leu Thr
1 5 10 15

Asp Glu Leu Ala Pro Pro Lys Pro Pro Leu Pro Glu Gly Glu Val Pro
20 25 30

Pro Pro Arg Pro Pro Pro Glu Glu Lys Asp Glu Glu Phe Pro Glu
35 40 45

Gln Lys Ala Gly Glu Val Ile Asn Gln Pro Met Met Met Ala Ala Arg
50 55 60

Gln Leu His Asp Glu Ala Arg Lys Trp Ser Ser Lys Gly Asn Asp Ile
65 70 75 80

Ile Ala Ala Ala Lys Arg Met Ala Leu Leu Met Ala Glu Met Ser Arg
85 90 95

Leu Val Arg Gly Gly Ser Gly Thr Lys Arg Ala Leu Ile Gln Cys Ala
100 105 110

Lys Asp Ile Ala Lys Ala Ser Asp Glu Val Thr Arg Leu Ala Lys Glu
115 120 125

Val Ala Lys Gln Cys Thr Asp Lys Arg Ile Arg Thr Asn Leu Leu Gln
130 135 140

Val Cys Glu Arg Ile Pro Thr Ile Ser Thr Gln Leu Lys Ile Leu Ser
145 150 155 160

Thr Val Lys Ala Thr Met Leu Gly Arg Thr Asn Ile Ser Asp Glu Glu
165 170 175

Ser Glu Gln Ala Thr Glu Met Leu Val His Asn Ala Gln Asn Leu Met
180 185 190

Gln Ser Val Lys Glu Thr Val Arg Glu Ala Glu Ala Ala Ser Ile Lys
195 200 205

Ile Arg Thr Asp Ala Gly Phe Thr Leu Arg Trp Val Arg Lys Thr Pro
210 215 220

Trp Tyr Gln
225

<210> 31
<211> 502
<212> PRT
<213> Homo sapiens

<400> 31
Met Ser Gly Gly Pro Met Gly Gly Arg Pro Gly Gly Arg Gly Ala Pro
1 5 10 15
Ala Val Gln Gln Asn Ile Pro Ser Thr Leu Leu Gln Asp His Glu Asn
20 25 30
Gln Arg Leu Phe Glu Met Leu Gly Arg Lys Cys Leu Thr Leu Ala Thr
35 40 45
Ala Val Val Gln Leu Tyr Leu Ala Leu Pro Pro Gly Ala Glu His Trp
50 55 60
Thr Lys Glu His Cys Gly Ala Val Cys Phe Val Lys Asp Asn Pro Gln
65 70 75 80
Lys Ser Tyr Phe Ile Arg Leu Tyr Gly Leu Gln Ala Gly Arg Leu Leu
85 90 95
Trp Glu Gln Glu Leu Tyr Ser Gln Leu Val Tyr Ser Thr Pro Thr Pro
100 105 110
Phe Phe His Thr Phe Ala Gly Asp Asp Cys Gln Ala Gly Leu Asn Phe
115 120 125
Ala Asp Glu Asp Glu Ala Gln Ala Phe Arg Ala Leu Val Gln Glu Lys
130 135 140
Ile Gln Lys Arg Asn Gln Arg Gln Ser Gly Asp Arg Arg Gln Leu Pro
145 150 155 160
Pro Pro Pro Thr Pro Ala Asn Glu Glu Arg Arg Gly Gly Leu Pro Pro
165 170 175
Leu Pro Leu His Pro Gly Gly Asp Gln Gly Gly Pro Pro Val Gly Pro
180 185 190
Leu Ser Leu Gly Leu Ala Thr Val Asp Ile Gln Asn Pro Asp Ile Thr
195 200 205
Ser Ser Arg Tyr Arg Gly Leu Pro Ala Pro Gly Pro Ser Pro Ala Asp
210 215 220
Lys Lys Arg Ser Gly Lys Lys Ile Ser Lys Ala Asp Ile Gly Ala
225 230 235 240
Pro Ser Gly Phe Lys His Val Ser His Val Gly Trp Asp Pro Gln Asn
245 250 255
Gly Phe Asp Val Asn Asn Leu Asp Pro Asp Leu Arg Ser Leu Phe Ser
260 265 270
Arg Ala Gly Ile Ser Glu Ala Gln Leu Thr Asp Ala Glu Thr Ser Lys
275 280 285

Leu Ile Tyr Asp Phe Ile Glu Asp Gln Gly Gly Leu Glu Ala Val Arg
 290 295 300
 Gln Glu Met Arg Arg Gln Glu Pro Leu Pro Pro Pro Pro Pro Ser
 305 310 315 320
 Arg Gly Gly Asn Gln Leu Pro Arg Pro Pro Ile Val Gly Gly Asn Lys
 325 330 335
 Gly Arg Ser Gly Pro Leu Pro Pro Val Pro Leu Gly Ile Ala Pro Pro
 340 345 350
 Pro Pro Thr Pro Arg Gly Pro Pro Pro Gly Arg Gly Gly Pro Pro
 355 360 365
 Pro Pro Pro Pro Ala Thr Gly Arg Ser Gly Pro Leu Pro Pro Pro
 370 375 380
 Pro Pro Gly Ala Gly Gly Pro Pro Met Pro Pro Pro Pro Pro Pro Pro
 385 390 395 400
 Pro Pro Pro Pro Ser Ser Gly Asn Gly Pro Ala Pro Pro Pro Leu Pro
 405 410 415
 Pro Ala Leu Val Pro Ala Gly Gly Leu Ala Pro Gly Gly Arg Gly
 420 425 430
 Ala Leu Leu Asp Gln Ile Arg Gln Gly Ile Gln Leu Asn Lys Thr Pro
 435 440 445
 Gly Ala Pro Glu Ser Ser Ala Leu Gln Pro Pro Pro Gln Ser Ser Glu
 450 455 460
 Gly Leu Val Gly Ala Leu Met His Val Met Gln Lys Arg Ser Arg Ala
 465 470 475 480
 Ile His Ser Ser Asp Glu Gly Glu Asp Gln Ala Gly Asp Glu Asp Glu
 485 490 495
 Asp Asp Glu Trp Asp Asp
 500

<210> 32
 <211> 505
 <212> PRT
 <213> Homo sapiens

<400> 32
 Met Ser Ser Val Gln Gln Pro Pro Pro Pro Arg Arg Val Thr Asn
 1 5 10 15
 Val Gly Ser Leu Leu Leu Thr Pro Gln Glu Asn Glu Ser Leu Phe Thr
 20 25 30
 Phe Leu Gly Lys Lys Cys Val Thr Met Ser Ser Ala Val Val Gln Leu
 35 40 45
 Tyr Ala Ala Asp Arg Asn Cys Met Trp Ser Lys Lys Cys Ser Gly Val
 50 55 60

Ala Cys Leu Val Lys Asp Asn Pro Gln Arg Ser His Phe Leu Arg Ile
 65 70 75 80

 Phe Asp Ile Lys Asp Gly Lys Leu Leu Trp Glu Gln Glu Leu Tyr Asn
 85 90 95

 Asn Phe Val Tyr Asn Ser Pro Arg Gly Tyr Phe His Thr Phe Ala Gly
 100 105 110

 Asp Thr Cys Gln Val Ala Leu Asn Phe Ala Asn Glu Glu Ala Lys
 115 120 125

 Lys Phe Arg Lys Ala Val Thr Asp Leu Leu Gly Arg Arg Gln Arg Lys
 130 135 140

 Ser Glu Lys Arg Arg Asp Pro Pro Asn Gly Pro Asn Leu Pro Met Ala
 145 150 155 160

 Thr Val Asp Ile Lys Asn Pro Glu Ile Thr Thr Asn Arg Phe Tyr Gly
 165 170 175

 Pro Gln Val Asn Asn Ile Ser His Thr Lys Glu Lys Lys Gly Lys
 180 185 190

 Ala Lys Lys Lys Arg Leu Thr Lys Gly Asp Ile Gly Thr Pro Ser Asn
 195 200 205

 Phe Gln His Ile Gly His Val Gly Trp Asp Pro Asn Thr Gly Ser Asp
 210 215 220

 Leu Asn Asn Leu Asp Pro Glu Leu Lys Asn Leu Phe Asp Met Cys Gly
 225 230 235 240

 Ile Leu Glu Ala Gln Leu Lys Glu Arg Glu Thr Leu Lys Val Ile Tyr
 245 250 255

 Asp Phe Ile Glu Lys Thr Gly Gly Val Glu Ala Val Lys Asn Glu Leu
 260 265 270

 Arg Arg Gln Ala Pro Pro Pro Pro Pro Ser Arg Gly Gly Pro Pro
 275 280 285

 Pro Pro Pro Pro Pro His Ser Ser Gly Pro Pro Pro Pro Pro Ala
 290 295 300

 Arg Gly Arg Gly Ala Pro Pro Pro Pro Ser Arg Ala Pro Thr Ala
 305 310 315 320

 Ala Pro Pro Pro Pro Pro Ser Arg Pro Ser Val Glu Val Pro Pro
 325 330 335

 Pro Pro Pro Asn Arg Met Tyr Pro Pro Pro Pro Pro Ala Leu Pro Ser
 340 345 350

 Ser Ala Pro Ser Gly Pro Pro Pro Pro Pro Ser Val Leu Gly Val
 355 360 365

 Gly Pro Val Ala Pro Gly
 370 375 380

Pro Pro Pro Pro Pro Gly Leu Pro Ser Asp Gly Asp His Gln Val Pro
 385 390 395 400
 Thr Thr Ala Gly Asn Lys Ala Ala Leu Leu Asp Gln Ile Arg Glu Gly
 405 410 415
 Ala Gln Leu Lys Lys Val Glu Gln Asn Ser Arg Pro Val Ser Cys Ser
 420 425 430
 Gly Arg Asp Ala Leu Leu Asp Gln Ile Arg Gln Gly Ile Gln Leu Lys
 435 440 445
 Ser Val Ala Asp Gly Gln Glu Ser Thr Pro Pro Thr Pro Ala Pro Thr
 450 455 460
 Ser Gly Ile Val Gly Ala Leu Met Glu Val Met Gln Lys Arg Ser Lys
 465 470 475 480
 Ala Ile His Ser Ser Asp Glu Asp Glu Asp Glu Asp Asp Glu Glu Asp
 485 490 495
 Phe Glu Asp Asp Asp Glu Trp Glu Asp
 500 505

<210> 33
 <211> 559
 <212> PRT
 <213> Homo sapiens

<400> 33
 Met Pro Leu Val Lys Arg Asn Ile Asp Pro Arg His Leu Cys His Thr
 1 5 10 15
 Ala Leu Pro Arg Gly Ile Lys Asn Glu Leu Glu Cys Val Thr Asn Ile
 20 25 30
 Ser Leu Ala Asn Ile Ile Arg Gln Leu Ser Ser Leu Ser Lys Tyr Ala
 35 40 45
 Glu Asp Ile Phe Gly Glu Leu Phe Asn Glu Ala His Ser Phe Ser Phe
 50 55 60
 Arg Val Asn Ser Leu Gln Glu Arg Val Asp Arg Leu Ser Val Ser Val
 65 70 75 80
 Thr Gln Leu Asp Pro Lys Glu Glu Leu Ser Leu Gln Asp Ile Thr
 85 90 95
 Met Arg Lys Ala Phe Arg Ser Ser Thr Ile Gln Asp Gln Gln Leu Phe
 100 105 110
 Asp Arg Lys Thr Leu Pro Ile Pro Leu Gln Glu Thr Tyr Asp Val Cys
 115 120 125
 Glu Gln Pro Pro Pro Leu Asn Ile Leu Thr Pro Tyr Arg Asp Asp Gly
 130 135 140
 Lys Glu Gly Leu Lys Phe Tyr Thr Asn Pro Ser Tyr Phe Phe Asp Leu
 145 150 155 160

Trp Lys Glu Lys Met Leu Gln Asp Thr Glu Asp Lys Arg Lys Glu Lys
 165 170 175
 Arg Lys Gln Lys Gln Lys Asn Leu Asp Arg Pro His Glu Pro Glu Lys
 180 185 190
 Val Pro Arg Ala Pro His Asp Arg Arg Glu Trp Gln Lys Leu Ala
 195 200 205
 Gln Gly Pro Glu Leu Ala Glu Asp Asp Ala Asn Leu Leu His Lys His
 210 215 220
 Ile Glu Val Ala Asn Gly Pro Ala Ser His Phe Glu Thr Arg Pro Gln
 225 230 235 240
 Thr Tyr Val Asp His Met Asp Gly Ser Tyr Ser Leu Ser Ala Leu Pro
 245 250 255
 Phe Ser Gln Met Ser Glu Leu Leu Thr Arg Ala Glu Glu Arg Val Leu
 260 265 270
 Val Arg Pro His Glu Pro Pro Pro Pro Pro Met His Gly Ala Gly
 275 280 285
 Asp Ala Lys Pro Ile Pro Thr Cys Ile Ser Ser Ala Thr Gly Leu Ile
 290 295 300
 Glu Asn Arg Pro Gln Ser Pro Ala Thr Gly Arg Thr Pro Val Phe Val
 305 310 315 320
 Ser Pro Thr Pro Pro Pro Pro Pro Pro Leu Pro Ser Ala Leu Ser
 325 330 335
 Thr Ser Ser Leu Arg Ala Ser Met Thr Ser Thr Pro Pro Pro Pro Val
 340 345 350
 Pro Pro Pro Pro Pro Pro Ala Thr Ala Leu Gln Ala Pro Ala Val
 355 360 365
 Pro Pro Pro Pro Ala Pro Leu Gln Ile Ala Pro Gly Val Leu His Pro
 370 375 380
 Ala Pro Pro Pro Ile Ala Pro Pro Leu Val Gln Pro Ser Pro Pro Val
 385 390 395 400
 Ala Arg Ala Ala Pro Val Cys Glu Thr Val Pro Val His Pro Leu Pro
 405 410 415
 Gln Gly Glu Val Gln Gly Leu Pro Pro Pro Pro Pro Pro Pro Leu
 420 425 430
 Pro Pro Pro Gly Ile Arg Pro Ser Ser Pro Val Thr Val Thr Ala Leu
 435 440 445
 Ala His Pro Pro Ser Gly Leu His Pro Thr Pro Ser Thr Ala Pro Gly
 450 455 460
 Pro His Val Pro Leu Met Pro Pro Ser Pro Pro Ser Gln Val Ile Pro
 465 470 475 480

Ala Ser Glu Pro Lys Arg His Pro Ser Thr Leu Pro Val Ile Ser Asp
485 490 495

Ala Arg Ser Val Leu Leu Glu Ala Ile Arg Lys Gly Ile Gln Leu Arg
500 505 510

Lys Val Glu Glu Gln Arg Glu Gln Glu Ala Lys His Glu Arg Ile Glu
515 520 525

Asn Asp Val Ala Thr Ile Leu Ser Arg Arg Ile Ala Val Glu Tyr Ser
530 535 540

Asp Ser Glu Asp Asp Ser Glu Phe Asp Glu Val Asp Trp Leu Glu
 545 550 555

<210> 34
<211> 520
<212> PRT
<213> *Mus musculus*

<400> 34
Met Asn Ser Gly Pro Gly Pro Val Gly Gly Arg Pro Gly Gly Arg Gly
1 5 10 15

Gly Pro Ala Val Gln Gln Asn Ile Pro Ser Asn Leu Leu Gln Asp His
20 25 30

Glu Asn Gln Arg Leu Phe Glu Leu Leu Gly Arg Lys Cys Trp Thr Leu
35 40 45

Ala Thr Thr Val Val Gln Leu Tyr Leu Ala Leu Pro Pro Gly Ala Glu
50 55 60

His Trp Thr Met Glu His Cys Gly Ala Val Cys Phe Val Lys Asp Asn
65 70 75 80

Pro Gln Lys Ser Tyr Phe Ile Arg Leu Tyr Ala Leu Gln Ala Gly Arg
85 90 95

Leu Leu Trp Glu Gln Glu Leu Tyr Ser Gln Leu Val Tyr Leu Thr Pro
..... 100 105 110

Thr Pro Phe Phe His Thr Phe Ala Gly Asp Asp Cys Gln Val Gly Leu
115 120 125

Asn Phe Ala Asp Glu Ser Glu Ala Gln Ala Phe Arg Ala Leu Val Gln
130 135 140

Glu Lys Ile Gln Lys Arg Asn Gln Arg Gln Ser Gly Glu Arg Arg Gln
145 150 155 160

Leu Pro Pro Pro Ala Pro Ile Asn Glu Glu Arg Arg Gly Gly Leu
165 170 175

Pro Pro Val Pro Pro His Pro Gly Gly Asp His Gly Gly Pro Ser Gly
180 185 190

Gly Pro Leu Ser Leu Gly Leu Val Thr Val Asp Ile Gln Asn Pro Asp
125 200 305

Ile Thr Ser Ser Arg Tyr Arg Gly Leu Pro Ala Pro Gly Pro Gly Pro
 210 215 220

Thr Asp Lys Lys Arg Ser Gly Lys Lys Ile Ser Lys Ala Asp Ile
 225 230 235 240

Gly Ala Pro Ser Gly Phe Lys His Val Ser His Val Gly Trp Asp Pro
 245 250 255

Gln Asn Gly Phe Asp Val Asn Asn Leu Asp Pro Asp Leu Arg Ser Leu
 260 265 270

Phe Ser Arg Ala Gly Ile Ser Glu Ala Gln Leu Thr Asp Ala Glu Thr
 275 280 285

Ser Lys Leu Ile Tyr Asp Phe Ile Glu Asp Gln Gly Gly Leu Glu Ala
 290 295 300

Val Arg Gln Glu Met Arg Arg Gln Glu Pro Leu Pro Pro Pro Pro Pro
 305 310 315 320

Pro Cys Arg Gly
 325 330 335

Gly Gly Gly Gly Gln Pro Leu Arg Pro Pro Val Leu Gly Ser Asn
 340 345 350

Lys Gly Arg Ser Pro Pro Leu Pro Pro Val Pro Met Gly Gly Ala Pro
 355 360 365

Pro Pro Pro Thr Pro Arg Gly Pro Pro Pro Pro Gly Arg Gly Gly Pro
 370 375 380

Pro Pro Pro Pro Pro Ala Thr Gly Arg Ser Gly Pro Pro Pro Pro Pro
 385 390 395 400

Pro Leu Pro Gly Ala Gly Gly Pro Pro Ala Pro Pro Pro Pro Pro Pro
 405 410 415

Pro Pro Pro Pro Pro Cys Pro Gly Ser Gly Pro Ala Pro Pro Pro
 420 425 430

Leu Pro Pro Thr Pro Val Ser Gly Gly Ser Pro Ala Pro Gly Gly Gly
 435 440 445

Arg Gly Ala Leu Leu Asp Gln Ile Arg Gln Gly Ile Gln Leu Asn Lys
 450 455 460

Thr Pro Gly Ala Leu Glu Asn Ser Val Gln Gln Pro Pro Ala Gln Gln
 465 470 475 480

Ser Glu Gly Leu Val Gly Ala Leu Met His Val Met Gln Lys Arg Ser
 485 490 495

Arg Val Ile His Ser Ser Asp Glu Gly Glu Asp Gln Thr Gly Glu Asp
 500 505 510

Glu Glu Asp Asp Glu Trp Asp Asp
 515 520

<210> 35
<211> 501
<212> PRT
<213> Rattus rattus

<400> 35
Met Ser Ser Gly Gln Gln Pro Pro Arg Arg Val Thr Asn Val Gly Ser
1 5 10 15
Leu Leu Leu Thr Pro Gln Glu Asn Glu Ser Leu Phe Ser Phe Leu Gly
20 25 30
Lys Lys Cys Val Thr Met Ser Ser Ala Val Val Gln Leu Tyr Ala Ala
35 40 45
Asp Arg Asn Cys Met Trp Ser Lys Lys Cys Ser Gly Val Ala Cys Leu
50 55 60
Val Lys Asp Asn Pro Gln Arg Ser Tyr Phe Leu Arg Ile Phe Asp Ile
65 70 75 80
Lys Asp Gly Lys Leu Leu Trp Glu Gln Glu Leu Tyr Asn Asn Phe Val
85 90 95
Tyr Asn Ser Pro Arg Gly Tyr Phe His Thr Phe Ala Gly Asp Thr Cys
100 105 110
Gln Val Ala Leu Asn Phe Ala Asn Glu Glu Glu Ala Lys Lys Phe Arg
115 120 125
Lys Ala Val Thr Asp Leu Leu Gly Arg Arg Gln Arg Lys Ser Glu Lys
130 135 140
Arg Arg Asp Ala Pro Asn Gly Pro Asn Leu Pro Met Ala Thr Val Asp
145 150 155 160
Ile Lys Asn Pro Glu Ile Thr Thr Asn Arg Phe Tyr Ser Ser Gln Val
165 170 175
Asn Asn Ile Ser His Thr Lys Glu Lys Lys Gly Lys Ala Lys Lys
180 185 190
Lys Arg Leu Thr Lys Ala Asp Ile Gly Thr Pro Ser Asn Phe Gln His
195 200 205
Ile Gly His Val Gly Trp Asp Pro Asn Thr Gly Phe Asp Leu Asn Asn
210 215 220
Leu Asp Pro Glu Leu Lys Asn Leu Phe Asp Met Cys Gly Ile Ser Glu
225 230 235 240
Ala Gln Leu Lys Asp Arg Glu Thr Ser Lys Val Ile Tyr Asp Phe Ile
245 250 255
Glu Lys Thr Gly Gly Val Glu Ala Val Lys Asn Glu Leu Arg Arg Gln
260 265 270
Ala Pro Pro Pro Pro Pro Ser Arg Gly Gly Pro Pro Pro Pro Pro
275 280 285

Pro Pro Pro His Ser Ser Gly Pro Pro Pro Pro Pro Ala Arg Gly Arg
 290 295 300
 Gly Ala Pro Pro Pro Pro Pro Ser Arg Ala Pro Thr Ala Ala Pro Pro
 305 310 315 320
 Pro Pro Pro Pro Ser Arg Pro Gly Val Val Val Pro Pro Pro Pro Pro
 325 330 335
 Asn Arg Met Tyr Pro Pro Pro Pro Ala Leu Pro Ser Ser Ala Pro
 340 345 350
 Ser Gly Pro Pro Pro Pro Pro Leu Ser Met Ala Gly Ser Thr Ala
 355 360 365
 Pro Gly Pro Pro Pro Pro
 370 375 380
 Pro Gly Leu Pro Ser Asp Gly Asp His Gln Val Pro Ala Ser Ser Gly
 385 390 395 400
 Asn Lys Ala Ala Leu Leu Asp Gln Ile Arg Glu Gly Ala Gln Leu Lys
 405 410 415
 Lys Val Glu Gln Asn Ser Arg Pro Val Ser Cys Ser Gly Arg Asp Ala
 420 425 430
 Leu Leu Asp Gln Ile Arg Gln Gly Ile Gln Leu Lys Ser Val Ser Asp
 435 440 445
 Gly Gln Glu Ser Thr Pro Pro Thr Pro Ala Pro Thr Ser Gly Ile Val
 450 455 460
 Gly Ala Leu Met Glu Val Met Gln Lys Arg Ser Lys Ala Ile His Ser
 465 470 475 480
 Ser Asp Glu Asp Glu Asp Asp Asp Glu Glu Asp Phe Gln Asp Asp
 485 490 495
 Asp Glu Trp Glu Asp
 500

<210> 36
 <211> 505
 <212> PRT
 <213> Bos taurus

<400> 36
 Met Ser Ser Gly Gln Gln Pro Pro Pro Pro Arg Arg Val Thr Asn
 1 5 10 15
 Val Gly Ser Leu Leu Leu Thr Pro Gln Glu Asn Glu Ser Leu Phe Thr
 20 25 30
 Phe Leu Gly Lys Lys Cys Val Thr Met Ser Ser Ala Val Val Gln Leu
 35 40 45
 Tyr Ala Ala Asp Arg Asn Cys Met Trp Ser Lys Lys Cys Ser Gly Val
 50 55 60

Ala Cys Leu Val Lys Asp Asn Pro Gln Arg Ser Tyr Phe Leu Arg Ile
 65 70 75 80

 Phe Asp Ile Lys Asp Gly Lys Leu Leu Trp Glu Gln Glu Leu Tyr Asn
 85 90 95

 Asn Phe Val Tyr Asn Ser Pro Arg Gly Tyr Phe His Thr Phe Ala Gly
 100 105 110

 Asp Thr Cys Gln Val Ala Leu Asn Phe Ala Asn Glu Glu Ala Lys
 115 120 125

 Lys Phe Arg Lys Ala Val Thr Asp Leu Leu Gly Arg Arg Gln Arg Lys
 130 135 140

 Ser Glu Lys Arg Arg Asp Pro Pro Asn Gly Pro Asn Leu Pro Met Ala
 145 150 155 160

 Thr Val Asp Ile Lys Asn Pro Glu Ile Thr Thr Asn Arg Phe Tyr Gly
 165 170 175

 Pro Gln Ile Asn Asn Ile Ser His Thr Lys Glu Lys Lys Gly Lys
 180 185 190

 Ala Lys Lys Lys Arg Leu Thr Lys Ala Asp Ile Gly Thr Pro Ser Asn
 195 200 205

 Phe Gln His Ile Gly His Val Gly Trp Asp Pro Asn Thr Gly Phe Asp
 210 215 220

 Leu Asn Asn Leu Asp Pro Glu Leu Lys Asn Leu Phe Asp Met Cys Gly
 225 230 235 240

 Ile Ser Glu Ala Gln Leu Lys Asp Arg Glu Thr Ser Lys Val Ile Tyr
 245 250 255

 Asp Phe Ile Glu Lys Thr Gly Gly Val Glu Ala Val Lys Asn Glu Leu
 260 265 270

 Arg Arg Gln Ala Pro Pro Pro Pro Pro Pro Ser Arg Gly Gly Pro Pro
 275 280 285

 Pro Pro Pro Pro Pro His Ser Ser Gly Pro Pro Pro Pro Pro Ala
 290 295 300

 Arg Gly Arg Gly Ala Pro Pro Pro Pro Pro Ser Arg Ala Pro Thr Ala
 305 310 315 320

 Ala Pro Pro Pro Pro Pro Ser Arg Pro Gly Val Gly Ala Pro Pro
 325 330 335

 Pro Pro Pro Asn Arg Met Tyr Pro Pro Pro Leu Pro Ala Leu Pro Ser
 340 345 350

 Ser Ala Pro Ser Gly Pro Pro Pro Pro Pro Pro Leu Ser Val Ser
 355 360 365

 Gly Ser Val Ala Pro Gly
 370 375 380

Pro Pro Pro Pro Pro Gly Leu Pro Ser Asp Gly Asp His Gln Val Pro
 385 390 395 400
 Thr Pro Ala Gly Ser Lys Ala Ala Leu Leu Asp Gln Ile Arg Glu Gly
 405 410 415
 Ala Gln Leu Lys Lys Val Glu Gln Asn Ser Arg Pro Val Ser Cys Ser
 420 425 430
 Gly Arg Asp Ala Leu Leu Asp Gln Ile Arg Gln Gly Ile Gln Leu Lys
 435 440 445
 Ser Val Thr Asp Ala Pro Glu Ser Thr Pro Pro Ala Pro Ala Pro Thr
 450 455 460
 Ser Gly Ile Val Gly Ala Leu Met Glu Val Met Gln Lys Arg Ser Lys
 465 470 475 480
 Ala Ile His Ser Ser Asp Glu Asp Glu Asp Glu Asp Asp Glu Asp
 485 490 495
 Phe Glu Asp Asp Asp Glu Trp Glu Asp
 500 505

<210> 37
 <211> 633
 <212> PRT
 <213> *Saccharomyces cerevisiae*

<400> 37
 Met Gly Leu Leu Asn Ser Ser Asp Lys Glu Ile Ile Lys Arg Ala Leu
 1 5 10 15
 Pro Lys Ala Ser Asn Lys Ile Ile Asp Val Thr Val Ala Arg Leu Tyr
 20 25 30
 Ile Ala Tyr Pro Asp Lys Asn Glu Trp Gln Tyr Thr Gly Leu Ser Gly
 35 40 45
 Ala Leu Ala Leu Val Asp Asp Leu Val Gly Asn Thr Phe Phe Leu Lys
 50 55 60
 Leu Val Asp Ile Asn Gly His Arg Gly Val Ile Trp Asp Gln Glu Leu
 65 70 75 80
 Tyr Val Asn Phe Glu Tyr Tyr Gln Asp Arg Thr Phe Phe His Thr Phe
 85 90 95
 Glu Met Glu Glu Cys Phe Ala Gly Leu Leu Phe Val Asp Ile Asn Glu
 100 105 110
 Ala Ser His Phe Leu Lys Arg Val Gln Lys Arg Glu Arg Tyr Ala Asn
 115 120 125
 Arg Lys Thr Leu Leu Asn Lys Asn Ala Val Ala Leu Thr Lys Lys Val
 130 135 140
 Arg Glu Glu Gln Lys Ser Gln Val Val His Gly Pro Arg Gly Glu Ser
 145 150 155 160

Leu Ile Asp Asn Gln Arg Lys Arg Tyr Asn Tyr Glu Asp Val Asp Thr
 165 170 175
 Ile Pro Thr Thr Lys His Lys Ala Pro Pro Pro Pro Pro Pro Thr Ala
 180 185 190
 Glu Thr Phe Asp Ser Asp Gln Thr Ser Ser Phe Ser Asp Ile Asn Ser
 195 200 205
 Thr Thr Ala Ser Ala Pro Thr Thr Pro Ala Pro Ala Leu Pro Pro Ala
 210 215 220
 Ser Pro Glu Val Arg Lys Glu Glu Thr His Pro Lys His Ser Leu Pro
 225 230 235 240
 Pro Leu Pro Asn Gln Phe Ala Pro Leu Pro Asp Pro Pro Gln His Asn
 245 250 255
 Ser Pro Pro Gln Asn Asn Ala Pro Ser Gln Pro Gln Ser Asn Pro Phe
 260 265 270
 Pro Phe Pro Ile Pro Glu Ile Pro Ser Thr Gln Ser Ala Thr Asn Pro
 275 280 285
 Phe Pro Phe Pro Val Pro Gln Gln Phe Asn Gln Ala Pro Ser Met
 290 295 300
 Gly Ile Pro Gln Gln Asn Arg Pro Leu Pro Gln Leu Pro Asn Arg Asn
 305 310 315 320
 Asn Arg Pro Val Pro Pro Pro Pro Met Arg Thr Thr Thr Glu Gly
 325 330 335
 Ser Gly Val Arg Leu Pro Ala Pro Pro Pro Pro Arg Arg Gly Pro
 340 345 350
 Ala Pro Pro Pro Pro His Arg His Val Thr Ser Asn Thr Leu Asn
 355 360 365
 Ser Ala Gly Gly Asn Ser Leu Leu Pro Gln Ala Thr Gly Arg Arg Gly
 370 375 380
 Pro Ala Pro Pro Pro Pro Pro Arg Ala Ser Arg Pro Thr Pro Asn Val
 385 390 395 400
 Thr Met Gln Gln Asn Pro Gln Gln Tyr Asn Asn Ser Asn Arg Pro Phe
 405 410 415
 Gly Tyr Gln Thr Asn Ser Asn Met Ser Ser Pro Pro Pro Pro Pro Val
 420 425 430
 Thr Thr Phe Asn Thr Leu Thr Pro Gln Met Thr Ala Ala Thr Gly Gln
 435 440 445
 Pro Ala Val Pro Leu Pro Gln Asn Thr Gln Ala Pro Ser Gln Ala Thr
 450 455 460
 Asn Val Pro Val Ala Pro Pro Pro Pro Ala Ser Leu Gly Gln Ser
 465 470 475 480

Gln Ile Pro Gln Ser Ala Pro Ser Ala Pro Pro Pro Thr Leu Pro
 485 490 495

 Ser Thr Thr Ser Ala Ala Pro Pro Pro Pro Ala Phe Leu Thr Gln
 500 505 510

 Gln Pro Gln Ser Gly Gly Ala Pro Ala Pro Pro Pro Gln Met
 515 520 525

 Pro Ala Thr Ser Thr Ser Gly Gly Ser Phe Ala Glu Thr Thr Gly
 530 535 540

 Asp Ala Gly Arg Asp Ala Leu Leu Ala Ser Ile Arg Gly Ala Gly Gly
 545 550 555 560

 Ile Gly Ala Leu Arg Lys Val Asp Lys Ser Gln Leu Asp Lys Pro Ser
 565 570 575

 Val Leu Leu Gln Glu Ala Arg Gly Glu Ser Ala Ser Pro Pro Ala Ala
 580 585 590

 Ala Gly Asn Gly Gly Thr Pro Gly Gly Pro Pro Ala Ser Leu Ala Asp
 595 600 605

 Ala Leu Ala Ala Ala Leu Asn Lys Arg Lys Thr Lys Val Gly Ala His
 610 615 620

 Asp Asp Met Asp Asn Gly Asp Asp Trp
 625 630

<210> 38
 <211> 574
 <212> PRT
 <213> Schizosaccharomyces pombe

<400> 38
 Met Pro Pro Ser Ser Ser Ile Thr Gln Glu Asp Lys Ala Thr Ile Arg
 1 5 10 15

Lys Tyr Ile Pro Lys Ser Thr Asn Lys Ile Ile Ala Ala Val Val
 20 25 30

Lys Leu Tyr Val Ala Tyr Pro Asp Pro Asn Lys Trp Asn Tyr Thr Gly
 35 40 45

Leu Cys Gly Ala Leu Val Leu Ser Tyr Asp Thr Thr Ala Lys Cys Cys
 50 55 60

Trp Phe Lys Leu Val Asp Val Val Asn Asn Ser Gly Ile Ile Trp Asp
 65 70 75 80

Gln Glu Leu Tyr Gln Asn Met Asp Tyr Arg Gln Asp Arg Thr Phe Phe
 85 90 95

His Ser Phe Glu Leu Asp Lys Cys Leu Ala Gly Phe Ser Phe Ala Asn
 100 105 110

Glu Thr Asp Ala Gln Lys Phe Tyr Lys Lys Val Leu Asp Lys Gly Cys
 115 120 125

His Pro Glu Ser Ile Glu Asn Pro Val Leu Ser Phe Ile Thr Arg Lys
 130 135 140

Gly Ser Ser Arg His Ala Pro Asn Asn Ser Asn Ile Gln Pro Pro Ser
 145 150 155 160

Ala Ala Pro Pro Val Pro Gly Lys Glu Asn Tyr Asn Ala Val Gly Ser
 165 170 175

Lys Ser Pro Asn Glu Pro Glu Leu Leu Asn Ser Leu Asp Pro Ser Leu
 180 185 190

Ile Asp Ser Leu Met Lys Met Gly Ile Ser Gln Asp Gln Ile Ala Glu
 195 200 205

Asn Ala Asp Phe Val Lys Ala Tyr Leu Asn Glu Ser Ala Gly Thr Pro
 210 215 220

Thr Ser Thr Ser Ala Pro Pro Ile Pro Pro Ser Ile Pro Ser Ser Arg
 225 230 235 240

Pro Pro Glu Arg Val Pro Ser Val Ser Ala Pro Ala Pro Pro Pro Ile
 245 250 255

Pro Pro Pro Ser Asn Gly Thr Val Ser Ser Pro Pro Asn Ser Pro Pro
 260 265 270

Arg Pro Ile Ala Pro Val Ser Met Asn Pro Ala Ile Asn Ser Thr Ser
 275 280 285

Lys Pro Pro Leu Pro Pro Pro Ser Ser Arg Val Ser Ala Ala Ala Leu
 290 295 300

Ala Ala Asn Lys Lys Arg Pro Pro Pro Pro Pro Pro Ser Arg Arg
 305 310 315 320

Asn Arg Gly Lys Pro Pro Ile Gly Asn Gly Ser Ser Asn Ser Ser Leu
 325 330 335

Pro Pro Pro Pro Pro Pro Arg Ser Asn Ala Ala Gly Ser Ile Pro
 340 345 350

Leu Pro Pro Gln Gly Arg Ser Ala Pro Pro Pro Pro Pro Arg Ser
 355 360 365

Ala Pro Ser Thr Gly Arg Gln Pro Pro Pro Leu Ser Ser Ser Arg Ala
 370 375 380

Val Ser Asn Pro Pro Ala Pro Pro Pro Ala Ile Pro Gly Arg Ser Ala
 385 390 395 400

Pro Ala Leu Pro Pro Leu Gly Asn Ala Ser Arg Thr Ser Thr Pro Pro
 405 410 415

Val Pro Thr Pro Pro Ser Leu Pro Pro Ser Ala Pro Pro Ser Leu Pro
 420 425 430

Pro Ser Ala Pro Pro Ser Leu Pro Met Gly Ala Pro Ala Ala Pro Pro
 435 440 445

Leu Pro Pro Ser Ala Pro Ile Ala Pro Pro Leu Pro Ala Gly Met Pro
450 455 460

Ala Ala Pro Pro Leu Pro Pro Ala Ala Pro Ala Pro Pro Pro Ala Pro
465 470 475 480

Ala Pro Ala Pro Ala Ala Pro Val Ala Ser Ile Ala Glu Leu Pro Gln
485 490 495

Gln Asp Gly Arg Ala Asn Leu Met Ala Ser Ile Arg Ala Ser Gly Gly
500 505 510

Met Asp Leu Leu Lys Ser Arg Lys Val Ser Ala Ser Pro Ser Val Ala
515 520 525

Ser Thr Lys Thr Ser Asn Pro Pro Val Glu Ala Pro Pro Ser Asn Asn
530 535 540

Leu Met Asp Ala Leu Ala Ser Ala Leu Asn Gln Arg Lys Thr Lys Val
545 550 555 560

Ala Gln Ser Asp Glu Glu Asp Glu Asp Asp Asp Glu Trp Asp
565 570