Звіт до лабораторної роботи №2: «Побудова діаметра множини»

студента 1-го курсу магістратури факультету комп'ютерних наук та кібернетики Кравця Олексія

Зміст

1	Постановка задачі	2
2	Алгоритм 2	2
3	Алгоритм 3	2
4	Результати	4
5	Висновки	4
Література		4

1 Постановка задачі

Маємо множину точок на площині. Необхідно побудувати діаметр цієї множини трьома методами

- Алгоритм 1. Жадібний алгоритм. Перебір усіх пар точок.
- Алгоритм 2. Побудова опуклої оболонки та алгоритм [1, Rotating calipers].
- Алгоритм 3. Ідея [2] алгоритму у побудові клітин, що обмежують кількість точок для перебору.

Порівняти швидкість роботи методів.

2 Алгоритм 2

Проілюструємо роботу Алгоритму 2.

Рис. 1: Робота алгоритму 2

- Червоні відрізки та точки це відрізки та вершини опуклої оболонки множини.
- Сині точки точки з множини, що не є вершинами опуклої оболонки.
- Жовтий відрізок діаметр множини.

3 Алгоритм 3

Алгоритм розподіляє множину точок на клітини і викидає клітини, що точно не містять точок, що є вершинами діаметру множини. Такими клітинами є ті, що оточені іншими клітинами з усіх боків. Після цього алгоритм перебирає усі пари точок, що залишилися, для пошуку діаметра.

Продемонструємо послідовну роботу алгоритму.

Рис. 2: Послідовна робота алгоритму 3

Ми розділяємо прямокутник, що містить точки на два менші прямокутники, потім ділимо їх аналогічним чином. На кожному кроці ми ділимо усі клітини навпіл та викидаємо з розгляду ті, що точно не містять вершини діаметру множини.

Тепер можна розглянути, як виглядає алгоритм, якщо зробили 10 розподілів на клітини.

Рис. 3: Робота алгоритму 3

На рисунках ми бачимо

- Сині точки точки множини, що точно не є вершиною діаметра. Їх не будуть розглядати при переборі усіх пар точок.
- Сині хрести це точки серед яких буде проведений пошук діаметра з використанням жадібного алгоритму.
- Червоні прямокутники це клітини, що містять необхідні нам точки.
- Жовтий відрізок діаметр множини.

4 Результати

N – кількість точок у множині. Значення в таблиці вказані у секундах. Алгорит
м 3 виконував 10 ділень.

N	10	100	500	1000	5000
Алгоритм 1	0.0023	0.0806	2.0422	7.9989	199.628
Алгоритм 2	0.0016	0.011	0.0416	0.0628	0.3105
Алгоритм 3	0.0014	0.0107	0.0344	0.0556	2.0986

5 Висновки

За результатами видно, що найбільш ефективним виявився алгоритм 2. Також гарні результати показав алгоритм 3, його можна пришвидшити змінюючи кількість розподілів на клітини.

Література

- [1] Shamos, Michael (1978). "Computational Geometry". Yale University. pp. 76–81.
- [2] Sariel Har-Peled. A Practical Approach for Computing the Diameter of a Point Set. March 26, 2001
- [3] https://en.wikipedia.org/wiki/Rotating calipers