A Computational Model of Afterimages

Tobias Ritschel Elmar Eisemann Télécom ParisTech (ENST) / CNRS, Paris

Eurographics 2012, Cagliari / Italy, 13—18 May 2012

EXAMPLE

EXAMPLE

Cadik et al.: Evaluation of tone-mapping operatos, Proc. Pacific Graphics (2006)

MOTIVATION

LDR Afterimages

Our Afterimages

MOTIVATION

Division-by-maximum

Clipping

Exponential

TONE MAPPING

Ward, 1992

Ward et al. 1997

TONEMAPPING

Patanaik et al.: A multiscale model of adaptation and spatial vision for realistic image display, Proc. SIGGRAPH

ADAPTATION

Pajak et al.: Visual maladaptation in contrast domain Proc. SPIE (2010)

MALADAPTATION

Gutierrez et al.: Perception-based rendering: Eyes wide bleached, Eurographics Short Papers (2005)

BLEACHING

QUALITATIVE: COLOR

QUALITATIVE: LOSS

QUALITATIVE: LOSS

QUALITATIVE: LOSS

QUALITATIVE: GAIN

HUMAN VISUAL CVCTEM

Retina

Photoreceptor cell

Visual cortex

BLEACHING

PHOTORECEPTORS

BLEACHING

 $\dot{r}(\mathbf{x}, t)$ Concentration of opsin in space \mathbf{x} and time t

 $r(\mathbf{x}, t)$ Concentration of opsin in space \mathbf{x} and time t $\dot{r}(\mathbf{x}, t)$ Change of opsin concentration in space \mathbf{x} and time t

Concentration at time t

 $\dot{r}(t)$ L(t)

Change concentration at time t Retinal radiance [Trolands]

Time t r(0) r(1) r(1) Loss Gain L(0) $Rel. \longrightarrow$ $Inv. Rel. \cdots \longrightarrow$

r(t) Concentration at time t

 $\dot{r}(t)$ L(t)

Change concentration at time t Retinal radiance [Trolands]

Time t r(0) Low r(1) Loss Gain L(0)

Concentration at time t

 $\dot{r}(t)$ L(t)

Change concentration at time t Retinal radiance [Trolands]

Time t r(0) Low r(1) Loss High L(0) $Rel. \longrightarrow$ $Inv. Rel. \cdots \longrightarrow$

Concentration at time t

 $\dot{r}(t)$ L(t)

Change concentration at time t Retinal radiance [Trolands]

Time t r(0) High Loss Low Low L(0) $Rel. \longrightarrow$ $Inv. Rel. \cdots \longrightarrow$

Concentration at time t

 $\dot{r}(t)$ L(t)

Change concentration at time t Retinal radiance [Trolands]

Time t r(0) High Loss Gain L(0) Loss Loss

Concentration at time t

 $\dot{r}(t)$ L(t)

Change concentration at time t Retinal radiance [Trolands]

$$\dot{r}(\mathbf{x}, t) = c_{\mathrm{a}} L(\mathbf{x}, t) (1 - r(\mathbf{x}, t)) - c_{\mathrm{d}} r(\mathbf{x}, t)$$

WHY KINETICS?

Martinez-Conde et al.: The role of fixational eye movements in visual perception. Nature Rev. Neurosc. 5(3),

EFFECTIVE RADIANCE


```
for i=1...n

for each r_j in \mathcal{R} parallel

\dot{r}_j \leftarrow c_a \mathcal{L}_j (1-r_j) - c_d r_j

r_j \leftarrow r_j + \frac{s}{n} \dot{r}_j

for each r_j in \mathcal{R} parallel

r_j \leftarrow \text{convolve}(\mathcal{R}, \mathcal{N}_{\sigma})_j
```

(GPU) SOLVER

DIFFUSION

COMPOSITING

Shuey: The flight of colors. Am J Psych 35(4)

FLIGHT OF COLORS

RESULTS

Samsung RZ 2233 display

120 Hz 1680 x 1920

 $250 \text{ cd/m}^2 \text{ (high)}$

2-Answer forced-choice

Two circular patches 200 ms

Afterimages close-to-threshold: Get faint very quick

Result

9 subjects 2700 trials

57.3 % Afterimages was brighter

(Significant, but ...)

Adjustment

Two circular patches 200 ms

Afterimages close-to-threshold: Get faint very quick

Result

6 subjects 42 trials

Avg. factor 1.83 Std. dev. 0.23

- Computational model of afterimages
- Empirical but also well-grounded in retinal kinetics
- A simple shader with a texture
- Study to validate that it is perceived brighter
- Future work:
 - Eye tracking
 - Proper colors
 - More after-effects

CONCLUSION

Acknowledgements

Hans Brettel
Tamy Boubekeur
Martin Cadik
David Pajak
Karol Myszkowski
Sirko Straube

Télécom ParisTech Télécom ParisTech MPI Informatik Nvidia MPI Informatik

THANK YOU!