Reliable Real-time Lip Reading

with no sound and minimal ado

wasn't quite sure what to do with this birthday present

Apps take too long to open

I am not a computer person

Long Term Plan

Why Machine Learning?

- Project requirements might change in future
 - Include audio
 - Add more color options
 - Add functionality for other devices
- Data may change
 - New camera
 - New desk location → new lighting conditions

Implementation

Implementation

Viola Jones Boosted Haar Cascade

Crop

(Unsupervised)
Variational
Convolution
Neural Net
Autoencoder

(Supervised) Recurrent Neural Net

Neural Net

Neural Net can Implement Logic

Neural Net can Implement Logic

Neural Net can Implement Logic

Step 1: Detect and Crop

Step 1: Detect and Crop

Even Lighting (easy)

Uneven Lighting (difficult)

Step 2: Encode

Training

(Variational Autoencoder)

- 20,000 images (32x32x3) taken during Skype conversations
- 11,966,848 parameter model
 - 500x as many parameters as independent inputs!
 - Only 20mil pixels in training set!
- Projected 7 months for model to converge on modest laptop cpu
- ~14 hours on TACC gpu

Training

Training: 300epoch (6mil iter) later...

Allows for generation of new images, which is nice

Algorithm Imagined or "Hallucinated" images

Just for fun: Image Inpainting and Artifact correction

Step 3: Predict Color with vector sequence

Recurrent Network

Let "A" Represent a single layer neural network

Recurrent Network

Recurrent Network

 Model motivation: pass on a "memory" vector of output of previous frames to influence how the next frame is interpreted

- Color outputs { red, purple, yellow }
 - Purple is similar to two syllables of red
 - Yellow could potentially be predicted by a single wide-mouth frame alone

Recurrent Network: training

- ~300 training examples of each color
 - 903 total
 - 16-25 time points each example (variable!)
 - 512 dim vector "code" for each frame
- A modest 2,099,200 variables
- Training takes ~1hr (gpu)

- Randomly choose 90%/10% split :
 - 803 for training: 90 for testing

A Surprise! A Perfect Classifier

- Quickly achieve 0% error on both training and test set (all colors)
- Rare feat in computer vision
- Probably would not be flawless with 10x more examples