[Spring 2023] DATA MINING THEORY AND APPLICATION (IIE 4102)

Practice-HW2 Principal Component Analysis / Factor Analysis

논문참조 강세정, 김규현, 신재욱, 장현우

01

Introduction

Research Objective

Data

02

Body

PCA

FA

03

Conclusion

Result

Limitation & Development

01. Research Objective

- PCA와 FA를 모두 사용하여 날씨와 관련된 변수들의 영향을 조사하고, 이를 공유자전거 대여량 예측 모델에 반영하여 높은 예측 정확도를 달성하는 것이 목표
- 이를 통해, 효율적인 공유자전거 운영을 위한 정책적 제언을 제공할 수 있을 것으로 예상됨

02. Data

저번 주 Variable Selection에서 성능이 좋았던 따름이 예측 관련 데이터 사용

※ 추가 설명

- 진행하려는 연구와 관련된 이론적인 배경·선행 연구 사례를 찾기 위해 논문을 참고해 어떠한 변수들이 고려되어야 하는지, 어떠한 방법론 을 사용을 했는지 검토하고, 이를 기반으로 데이터에 대한 전반적인

기초통계량을 확인하는 과정을 거침

(김동준 신희철 et al. 박준식 임형준 "날씨가 자전거 이용에 미치는 영향 분석 - 고양시 공공자전거를 대상으로 -" 교통연구 19.3 pp. 77-88 (2012): 77.)

PCA

01. PCA의 factor 수 결정

① 방안 1. Eigen value > 1일 때까지 선택: 6개

elgen value: [5,87781440e+00.5.15527338e+00.2.60494066e+00.1.59853256e+01.1.08539546e+00.1.0854570e+00.9.3085746e+01.6.55277111e-01.50857556e+01.50857556e+0.3085746e+01.6.55277111e-01.50857566e+0.3085956e+01.5085956e+01.5085756e+01.5085756e+01.5085756e+01.5085756e+01.5085756e+01.5085756e+01.5085756e+01.5085756e+01.5085956e+01.5085756e+01.50856e+01.5085756e+01.5086e+01.50856e+01.5086e

- ② 방안 2. Scree plot 그래프 기울기가 완만해지기 전의 값까지 선택: 5개
- 5번째 factor에서 6번째 factor로 갈 때 기울기가 완만해짐
- 따라서 기울기가 완만해지기 전인 5번째 factor까지 사용

- ③ 방안 3. 약 80% 이상의 분산을 설명하는 PC 건수 채택: 6개
- ▶ 그래프의 기울기가 완만해지는 지점은 5번째 factor이나, 6번째 factor까지 eigenvalue가 1 이상의 값을 가지며 또한 6번째 factor까지 포함했을 때 설명 가능한 분산의 비율이 0.8 이상이 되므로 factor 수 = 6개로 설정

누적 분산 설명 비율:
[0.27989592 0.52443275 0.64847754 0.72401527 0.77560572 0.8245738
0.86900646 0.90035299 0.92448992 0.94161838 0.95566771 0.96633211
0.97539198 0.98178089 0.9868891 0.99063253 0.99397208 0.9967524
0.99886972 0.9986106 1.

02. PCA 진행

① PCA 진행

	PC1	PC2	PC3	PC4	PC5	PC6
이산화질소농도(ppm)	0.346618	0.062099	-0.197529	-0.089846	-0.129862	-0.016841
오존농도(ppm)	-0.179636	-0.251962	-0.115598	0.365387	0.174302	-0.024036
이산화탄소동도(ppm)	0.348779	0.069645	-0.223789	0.082868	-0.034904	0.080598
아랑산가스(ppm)	0.276826	-0.090698	-0.182169	0.203521	-0.103159	-0.037892
미세먼지(µg/m²)	0.283449	-0.013585	-0.243908	0.403272	0.051624	0.052131
초미세먼지(µg/m²)	0.269638	0.021873	-0.295821	0.385436	0.092993	0.055959
평균기운(°C)	-0.339944	-0.050321	-0.280908	0.053786	0.019117	0.037544
최고기온(°C)	-0.322360	-0.096698	-0.296479	0.040739	-0.006377	0.049856
일강수량(mm)	-0.151558	0.236310	-0.002519	0.148141	-0.480592	-0.050012
최대 중속(m/s)	-0.029676	-0.069268	0.432503	0.472617	0.028518	0.051502
평균 풍숙(m/s)	-0.054174	-0.032440	0.481466	0.390777	0.081496	0.090424
최소 상대습도(%)	-0.204510	0.325643	-0.097950	0.063967	0.055686	0.109269
평균 상대습도(%)	-0.199349	0.306431	-0.121444	0.062382	0.128271	0.116443
가조시간(hr)	-0.321821	-0.124420	-0.253489	0.133622	0.078886	-0.058629
합계 일조시간(hr)	0.024418	-0.400196	0.024927	-0.083608	-0.179506	0.051071
1시간 최다일사랑(MJ/m2)	-0.098298	-0.397282	-0.094004	-0.007664	-0.052863	0.031399
합계 일사량(MJ/m2)	-0.113976	-0.401095	-0.116281	0.013290	-0.070923	0.007939
일 최심적설(cm)	0.036772	0.064923	0.012708	-0.033029	0.484251	-0.549180
평균 전문량(1/10)	-0.141227	0.312524	-0.138954	0.117806	0.210962	-0.058575
9-9강수(mm)	-0.141775	0.216036	-0.024563	0.189145	-0.536990	-0.081027
안개 계속시간(hr)	0.014666	0.049952	0.003954	-0.112082	0.239930	0.789901

② 누적 분산 설명 비율

PC 수	누적 분산 설명 비율
1	0.20537245
2	0.3154477
3	0.40115552
4	0.47524658
5	0.53716937
6	0.57996796

③ 정규화된 observation에 미치는 각 PC의 영향력

	PC1	PC2	PC3	PC4	PC5	PC6
0	2.271962	0.859127	1.955583	-0.805607	-0.053974	-0.042886
1	3.419612	-0.245713	1.215544	-1.742047	-0.936706	-0.205647
2	3.511271	-0.248265	0.587579	-2.433296	-1.125087	-0.332426
3	4.965181	2.174880	-1.489308	-1.055540	-0.526938	-0.058662
4	3.437423	-0.471820	1.374651	-0.059552	-0.493292	-0.020124
360	2.345956	-0.300279	2.019338	-1.157044	-0.535905	-0.032629
361	2.873856	1.034874	0.806869	-1.155156	-0.439519	-0.056182
362	2.136826	3.229242	1.719310	0.217015	0.553901	0.002616
363	1.323629	3.261106	3.182388	1.498414	0.990926	0.301557
364	1.307547	-0.810679	5.141601	0.842221	-0.008309	0.057114
265	uus v 6 sal	umana				

④ PCA 적용 결과 분석

- PCA 적용 전

- PCA 적용 후

Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. -----PCA 적용 후------훈련 세트의 정확도 : 0.68 테스트 세트의 정확도 : 0.70

-----PCA 적용 전------훈련 세트의 정확도 : 0.82 테스트 세트의 정확도 : 0.83

-----PCA 적용 후-----r2_score : 0.70

-----PCA 적용 전-----

r2_score : 0.83 MAE : 8925.71 MSE : 134538299.2

MAE: 12219.00

MSE: 235121530.66

▶ feature의 수 감소에
 따라 사진과 같은 차이만큼
 의 원 데이터의 정보(분산)
 의 손실 발생

Contents

PCA(CONT.)

03. PCA PLOT(CONT.)

1 ScorePlot

Principal Component Pattern Plot: 2D / 3D

▶ 주성분 (PC1, PC2 / PC1, PC2, PC3)과 원데이터 간 관계 파악 가능

2 Biplot

- ▶ 주성분 (PC1과 PC2)과 원데이터의 변수 간의 상관 관계 파악 가능
- 이산화탄소농도(ppm), 합계 일사량(MJ/m2)가 PC1, PC2에 영향을 가장 많이 주는 변수
- 각 빨간 선의 길이는 원변수의 분산을 표현. 길이가 길수록 분산이 큼
- 각 빨간 선이 가까울수록 서로 상관관계 높음

FA

01. 요인 분석 전 검정

① KMO Test

0.78: 요인분석을 위한 변수 선정이 적당함

② Bartlett Test

 $chi_square_value = 9522.41, \, p_value = 0.0 < 0.05$

→ 귀무가설 기각 → 요인분석 모델 사용가능

PCA / FA

02. Factor 수 결정

PCA에서 6개의 factors를 선택하였으므로, FA에서도 동일하게 6개의 factors 선택

03. Factor Analysis 시행: Rotation 방식 비교 *절됐고준

① varimax

Factor 1 : 기온

Factor 2 : 미세먼지 및 대기질

Factor 3: 일조시간 및 일사량

Factor 4 : 풍속

Factor 5 : 강수

Factor 6 : 습도

	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
SS Loadings	3.979419	3.509280	3.270060	1.909546	1.880331	1.381277
Proportion Var	0.189496	0.167109	0.155717	0.090931	0.089540	0.065775
Cumulative Var	0.189496	0.356605	0.512322	0.603253	0.692792	0.758567

⁻ 모든 Factor에서 높은 적재량을 가진 특징적인 값이 존재하므로, 6개의 요인 모두 최종 선택

FA(CONT.)

03. Factor Analysis 시행: Rotation 방식 비교(CONT.) *절됐기준

② oblimax

Factor 1 : 기온, 미세먼지 및 대기질

Factor 2: 습도, 일조시간 및 일사량

Factor 3: 풍속

Factor 4:-

Factor 5: 강수

Factor 6:-

- Varimax 방식에 비해 각 factor의 원인이 명확히 분류되지 않으며, factors 4 / 6에서는 특징적인 값이 보이지 않음

oblimin

Factor 1 : 미세먼지 및 대기질

Factor 2 : 기온

Factor 3: 일조시간 및 일사량

Factor 4 : 습도

Factor 5 : 풍속

Factor 6 : 강수

- varimax와 비교했을 때 factor가 의미하는 요인은 동일하지만, factor의 순서가 변함

③ promax

Factor 1 : 기온

Factor 2 : 미세먼지 및 대기질

Factor 3: 일조시간 및 일사량

Factor 4 : 풍속

Factor 5 : 강수

Factor 6 : 습도

- varimax와 동일한 결과를 보임

⑤ quartimax

Factor 1 : 일조시간 및 일사량, 습도

Factor 2 : 기온

Factor 3 : 미세먼지 및 대기질

Factor 4 : 풍속

Factor 5 : 강수량

Factor 6:-

- varimax와 비교했을 때 일조시간과 습도가 모두 Factor 1을 설명하여 Factor 6을 설명하는 유의미한 변수가 존재하지 않음

Body / Conclusion

Contents

PCA / FA

FA(CONT.)

04. Result

	Factor1	Factor2	Factor3	Factor4	Factor5	Fact or 6
SS Loadings	3.979419	3.509280	3.270060	1.909546	1.880331	1.381277
Proportion Var	0.189496	0.167109	0.155717	0.090931	0.089540	0.065775
Cumulative Var	0.189496	0.356605	0.512322	0.603253	0.692792	0.758567

가장 분산을 잘 설명하는(75.86%) Varimax rotation 사용

(1) Naming 결과

Factor 1: Temperature (기온)

Factor 2: FineDust (미세먼지 및 대기질)

Factor 3: Sunshine (일조시간 및 일사량)

Factor 4: Wind (풍속)

Factor 5: Rain (강수)

Factor 6: Humidity (습도)

	Temperature	FineDust	Sunshine	Wind	Rain	Humidity
0	-1.760737	-0.218244	0.208757	0.352227	-0.162400	0.280749
1	-1.882598	-0.251930	0.350146	-0.598990	-0.217219	-0.492100
2	-2.029454	-0.346760	0.335377	-1.240361	-0.161482	-0.709403
3	-1.521864	1.147924	-0.660044	-1.588139	-0.117820	0.028627
4	-1.318566	0.518779	0.267412	0.456086	-0.308061	-0.347788
360	-1.642482	-0.306126	0.508599	0.189706	-0.224694	0.038111
361	-1.551791	-0.026201	-0.226642	-0.374405	-0.243240	0.118795
362	-1.069277	0.219879	-1.666225	0.707326	-0.331706	-0.194285
363	-1.011370	0.136085	-1.685760	1.940966	-0.393466	0.434639
364	-1.556918	-0.704649	0.413439	2.508610	-0.379592	-0.422040
365 r	ows × 6 columns	5				

Factor Analysis가 적용된 dataset (scaled)

(2) Score Plot: 2D / 3D

신뢰도계수 (Cronbach's alpha 계산)

- Factor 1,2,4,5,6의 Cronbach's Alpha값 매우 우수

Temperature N 908648960016989

FineDust 0.9177120574354731

Sunshine 0.381401843036471

Wind 0.8996742390902774

Rain 0.8036690314200539

Humidity 0.9456331525643407

Conclusion

01. Result

- (1) 날씨와 관련된 변수들 간의 상호작용 및 공유자전거 대여량에 영향을 미치는 요인들을 파악함
- 공유자전거 대여량 예측에 있어서 PCA와 FA가 유용한 분석 방법이며, 날씨와 관련된 변수들이 공유자전거 대여량 예측에 중요한 역할을 하는 것을 확인
- (2) 차원 축소된 결과로 공유자전거 대여량을 적은 정보 손실로 예측함
- 변수: 21개 → 6개, R_squared: 0.83 → 0.7
- (3) FA를 통해 변수 간 상관 구조를 설명하기 위한 공통 요인을 추출
- 기온, 미세먼지, 일조시간, 풍속, 강수 및 습도와 같은 요소가 공유자전거 대여량에 영향을 미치는 것으로 확인
- (4) 공유자전거 운영 기관 등에게 유용한 정보를 제공 가능
- 날씨 정보를 실시간으로 모니터링하고, 이를 바탕으로 공유자전거 대여량을 예측하는 시스템을 도입하면 효율적인 운영 가능
- (5) 효율적인 공유자전거 운영을 위한 정책적 제언 제공 가능
- 날씨에 따른 공유자전거 대여요금 차등 적용 등

02. Limitation & Development

- (1) 대여량 데이터의 시계열적 특성을 고려하지 않음
- → 시간에 따른 대여량의 변화를 고려할 수 있는 기법 적용 / 데이터 확보 필요
- (2) 날씨 이외의 공유자전거 대여량에 영향을 미치는 다른 변수들이 분명히 존재(대여 요금, 지역별 특성, 이벤트 등)
- → 이러한 변수들을 고려한다면 개선된 예측 정확도 및 변수 관계 파악 가능

Data Source

[데이터 출처]

- (1) 서울 열린 데이터 광장
- 서울시 일별 평균 대기오염도 정보 http://data.seoul.go.kr/dataList/OA-2218/S/1/datasetView.do#
- 서울시 공공자전거 이용현황 https://data.seoul.go.kr/dataList/OA-14994/F/1/datasetView.do
- (2) 기상청
- 일별 종관기상관측(ASOS) 자료 https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36
- (3) 2016 ~ 19년 공휴일 데이터
- https://superkts.com/day/holiday/2019

[참고 문헌]

(1) 김동준 신희철 et al. 박준식 임형준 "날씨가 자전거 이용에 미치는 영향 분석 - 고양시 공공자전거를 대상으로 -" 교통연구 19.3 pp. 77-88 (2012): 77.