Chapter 4

- 1.) Consider the following sets under addition:
 - 1. $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ For all $a \in \mathbb{Z}_6$, there exist $n_1, n_2 \in \mathbb{Z}$ where $a = 1^{n_1} = 5^{n_2}$.
 - 2. $\mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ For all $a \in \mathbb{Z}_8$, there exist $n_1, n_2, n_3, n_4 \in \mathbb{Z}$ where $a = 1^{n_1} = 3^{n_2} = 5^{n_3} = 7^{n_4}$.
 - 3. $\mathbb{Z}_{20} = \{0, 1, \dots, 19, 20\}$ For all $a \in \mathbb{Z}_{20}$, there exist $n_1, \dots, n_8 \in \mathbb{Z}$ where $a = u_i^{n_i}$. Given $u_i \in U_{20}$.
- 3.) In \mathbb{Z}_{30} , $\langle 20 \rangle = \{20, 10, 0\}$, and $\langle 10 \rangle = \{10, 20, 0\}$. Suppose $a \in \mathbb{Z}_{30}$ where |a| = 30, thus $a^{40} = a^{30}a^{10} = a^{10}$ and $a^{60} = (a^{30})^2 = e$, thus $\langle a^{20} \rangle = \{a^{20}, a^{10}, e\}$ and $\langle a^{10} \rangle = \{a^{10}, a^{20}, e\}$.
- 9.) For all $k \in \mathbb{N}$ where $k \mid 20$, $\langle k \rangle$ is a subgroup of \mathbb{Z}_{20} under addition, thus the subgroups of \mathbb{Z}_{20} are $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 4 \rangle$, $\langle 5 \rangle$, $\langle 10 \rangle$, and $\langle 20 \rangle$ with generators 1, 2, 4, 5, 10, and 20 respectively. Given a group $G = \langle a \rangle$ where |a| = 20, the subgroups of G are given by $\langle a^{kn} \rangle$ where $k \mid 20$ and $n \in \mathbb{N}$, thus there are 6 subgroups of G. Each of these subgroups has a generator of a^k .
- 22.) Let G be a group with order 3 where $G = \{e, x, y\}$, and consider $x \in G$. If $x^2 = e$, then $x^3 = ex = x$, thus x would not be a generator. If $x^2 = x$, then $x^3 = x^2 = e$, thus x would not be a generator. Finally, if $x^2 = y$, then $x^3 = xy$. If $xy = x^2$, then y = x, thus $x^3 \neq xy$. If $x^3 = x$, then $x^2 = e$, thus $x^2 \neq e$. Thus we can conclude that $x^3 = e$, thus $x^1 = x$, $x^2 = y$, and $x^3 = e$, thus $G = \langle x \rangle$, thus G is cyclic.
- 31.) Let G be a finite group and N = |G|. Since the order of any $a \in G$ divides N, then given |a| = k, $a^N = a^{kn} = (a^k)^n = e^n = e$, thus there exists a suitable $N \in \mathbb{N}$.