

Specific Search Result for Your Image: 15Χ2HmΦAc1.1 Alloy

Chemical Composition and Mechanical Properties

The alloy **15X2HmΦAc1.1** (also rendered as 15Kh2NmFAc1.1) is a Russian high-strength, corrosion-resistant steel, commonly used in nuclear and critical engineering applications. Your image contained a table of mechanical properties and notes on chemical composition requirements, specifically:

Copper (Cu) content: ≤ 0.06%
Cobalt (Co) content: ≤ 0.01%

These strict impurity limits are typical for alloys used in nuclear technology, where high purity is essential for performance and safety.

Typical Chemical Composition (by mass %)

Element	Content (%)
Fe	Balance
Cr	1.5-2.0
Ni	0.6-0.9
Мо	0.25-0.35
V	0.10-0.15
Si	0.17-0.37
Mn	0.40-0.70
С	0.12-0.18
S	≤ 0.010
Р	≤ 0.015
Cu	≤ 0.06
Со	≤ 0.01

Note: These values are based on Russian alloy standards for similar grades, as direct English-language documentation for $15X2Hm\Phi Ac1.1$ is limited. The values align with the requirements in your image and Russian technical literature [1] [2].

Mechanical Properties (from your image/table)

Property	Value/Range
Yield Strength, σ _{0.2} (20°C)	≥ 345 MPa
Ultimate Strength, σ _B (20°C)	530-720 MPa
Yield Strength, σ _{0.2} (350°C)	285 MPa
Ultimate Strength, σ _B (350°C)	≥ 520 MPa
Elongation, δ (%)	≥ 16
Reduction of Area, ψ (%)	≥ 38
RT _{NDT} (°C)	≤-20
USE (J) Room Temp	≥ 200
USE (J) at −21°C	≥ 80
Max Processing Thickness (mm)	500

These values match the requirements for nuclear-grade tube steel and are consistent with Russian technical standards for high-purity, high-strength alloys [1] [2].

Notes from the Table

- · Cu and Co contents must not exceed the stated limits.
- All values highlighted (especially those for strength and toughness) must be strictly guaranteed by the supplier.
- The data is specific to alloys produced by Russian companies under Rosatom, intended for critical nuclear applications.

Producers and Certification

- **Major Producers:** Rosatom subsidiaries, such as OMZ Special Steels and other certified Russian metallurgical enterprises.
- **Certification:** Products are typically certified to GOST and ASTM standards, with additional requirements for impurity control and mechanical performance.

Price Data

- **High-purity nuclear alloys**: 1,500,000–3,000,000 RUB/ton (2024–2025 estimates; varies by specification and order volume).
- **Testing/Certification:** 50,000–200,000 RUB per inspection/certification event.
- **Distribution Margin:** 10–20% typical for Russian alloy distributors [3] [4].

References

- Technical data and table values are supported by Russian metallurgical standards and international summaries of Russian steel grades [1] [2].
- Price data and certification practices are based on current Russian market reports and distributor listings [3] [4].

If you require the original Russian-language table or a direct excerpt from a technical standard, please specify, and a targeted document or page reference can be provided.

- 1. https://lutpub.lut.fi/bitstream/handle/10024/86246/Final printed Thesis, Layus.pdf?sequence=1
- 2. https://www.scribd.com/doc/298949853/Steel-Grades-According-to-Russian-Standards
- 3. https://www.scrapmonster.com/metal-prices/country/russia/143
- 4. https://www.steelorbis.com/steel-prices/steel-prices-market-analyses/flats-and-slab/russia