

开关型多节多类型锂电池充电电路

概述

特性

SLM6900是一款支持多类型锂电池或磷酸铁锂电池的充电电路,它预置了三节或四节锂电池充电模式,同时也支持通过外围分压电阻调节的其它输出电压模式。它是采用300kHz固定频率的同步降压型转换器,因此具有很高的充电效率,自身发热量极小。

SLM6900包括完整的充电终止电路、自动再充电和一个精确度达±1.0%的充电电压控制电路,内部集成了输入低电压保护、输出短路保护、电池温度保护等多种功能。

SLM6900采用TSSOP-14L封装,外围应用简单, 作为大容量电池的高效充电器。

- 宽电压输入范围
- 300kHz固定开关频率
- 预设三节或四节锂电池输出电压 或充饱电压通过外围分压电阻设置
- 输出电压精度达到±1.0%
- 充电状态双输出、无电池和故障状态显示
- 低电压涓流充电功能
- 软启动限制了浪涌电流
- 电池温度监测功能
- 极高的防浪涌电压能力
- 采用TSSOP-14L封装

最大额定值

应用

- COMP: -0.3V~7.5V
- V_{IN}: -0.3V~45V(瞬时)、 -0.3V~30V(连续)
- 其它脚: -0.3V~V_{IN}+0.3V
- BAT短路持续时间:连续
- 最大结温: 145℃
- 工作环境温度范围: -40℃~85℃
- 贮存温度范围: -65℃~125℃
- 引脚温度(焊接时间10秒): 260℃

- 手持设备
- 笔记本电脑
- 便协式工业或医疗设备
- 电动工具
- 锂电池或磷酸铁锂电池

www.sola-ic.com 1 / 11 Ver 1.3

SLM6900 开关型多节多类型锂电池充电电路

引脚功能表

图 1. 引脚封装图

引脚	名称	说明	
1	DRV	驱动管栅驱动	
2	PVCC	驱动管驱动电压输入	
3	VCC	芯片电源输入	
4	NCHRG	电池充电指示	
5	NSTDBY	电池完成指示	
6	NTC	电池温度检测	
7	SEL	充饱电压方案选择	
8	COMP	环路稳定性补偿	
9	FB	电池电压反馈	
10	ISN	充电电流检测负端	
11	ISP	充电电流检测正端	
12	GND	小信号地	
13	PGND	驱动管驱动地	
14	GVC	驱动管栅电压钳位	

SLM6900 开关型多节多类型锂电池充电电路

引脚说明

DRV(引脚 1): 外接 PMOS 管栅极驱动端。此端电压被 GVC 钳制在 V_{IN} -6.3V 范围之内,使外接 PMOS 管可选用低 V_{GS} 的型号,以提高充电效率,降低成本。

PVCC(引脚 2): 驱动管电源正输入端。

VCC(引脚 3): 模拟电源正输入端

NCHRG(引脚 4): 充电状态指示端。当充电器向电池充电时,该管脚被内部开关拉至低电平,表示充电正在进行;否则该管脚处于高阻态。

NSTDBY(引脚 5): 电池充饱指示端。当电池已经充饱时,该管脚被内部开关拉至低电平,否则该管脚处于高阻态。

NTC(引脚 6): 电池温度检测端,将此端接到电池的负温度系数的热敏电阻,若不用这功能,则悬空或接 VCC,接地则关闭充电功能。

SEL(引脚 7): 电池输出电压方案选择端。若此端接地,则选择为三节锂电池方案;若接 VCC 端,则为四节锂电池方案;若悬空,则电池充饱电压由外接分压电阻决定。

COMP(引脚 8): 充电环路稳定性补偿端。接一个串联的电阻和电容到地。

FB(引脚 9): 电池电压反馈端。在 SEL 接 GND 或 VCC 端时,可串联电阻稍微提高充饱电压,以补偿线路和电池内阻损耗,在 SEL 悬空时,FB 端固定为 1.205V,由外接分压电阻决定电池充饱电压。

*注: 当用户选择将 SEL 悬空,使用外围分压电阻调节的其它输出电压模式时,需特别咨询我司销售部门。

ISN(引脚 10): 充电电流检测负端。将此端接到充电电流设置电阻的负端。

ISP(引脚 11): 充电电流检测正端。将此端接到充电电流设置电阻的正端。

GND(引脚 12): 模拟地。

PGND(引脚 13): 驱动管地。

GVC(引脚 14): 驱动管栅电压钳位。此端跟 VCC 端之间接个 100nF 的电容,使外接驱动管栅电压钳制在不低于 V_{IN} -6.3V 的范围内。

SLM6900 *开关型多节多类型锂电池充电电路*

直流	Ħ	胜	脞
	щ,	177	/T:

(如无特别说明, V_{IN}=15V±5%, T_A = 25℃)

符号	参数	条件	最小值	典型值	最大值	单位
V _{IN}	输入电源电压		6.8		28	V
	待机模式 (充电终止)		0.75	1.5	mA	
Icc	输入电源电流	停机模式(V _{IN} <v<sub>BAT或 V_{IN}<v<sub>UV,或NTC接地)</v<sub></v<sub>			35	uA
	75 户 45 D / 200 子 \ 上 E	SEL接地	12.47	12.60	12.73	V
V_{FLOAT}	稳定输出(浮充)电压 	SEL接高,V _{IN} =20V	16.63	16.80	16.97	V
V _{FB}		SEL悬空	1.193	1.205	1.217	V
		V _{BAT} =V _{FLOAT} + 0.2V		10	15	uA
I _{BAT}	BAT脚漏电流	停机模式(V _{IN} <v<sub>BAT或 V_{IN}<v<sub>UV或NTC接地)</v<sub></v<sub>			15	uA
I _{CHRG}	快充充电电流	V _{BAT} >V _{TRIKL} , R _S =0.05Ω,电流模式	2.2	2.4	2.6	А
I _{TRIKL}	涓流充电电流	V _{BAT} <v<sub>TRIKL, R_S=0.05Ω,电流模式</v<sub>		550		mA
		V _{BAT} 上升(SEL接地)		8.4		V
V_{TRIKL}	 涓流充电门限电压	V _{BAT} 上升, V _{IN} =20V(SEL接高)		11.2		V
		V _{BAT} 上升(SEL悬空)		66		%V _{FB}
V _{TRHYS}	涓流充电迟滞电压		60	100	150	mV
V _{UV}	Vin欠压闭锁门限	从V _{IN} 低至高		7.2		V
V _{UV_HYS}	V _{IN} 欠压闭锁迟滞			400		mV
W	V _{IN} -V _{BAT} 闭锁门限电压	V _{IN} 从低至高	50	250	350	mV
V_{ASD}	VIN-VBAT/闪坝门顶电压	V _{IN} 从高到低 20		150	250	mV
I _{TERM}	充电终止电流门限	R _S =0.05Ω	100	200	300	mA
V _{NCHRG}	NCHRG引脚输出低电压	I _{NCHRG} =5mA		0.3	0.6	V
V _{NSTDBY}	NSTDBY引脚输出低电平	I _{NSTDBY} =5mA		0.3	0.6	V
I _{NTC}	NTC脚电流		45	50	55	uA
V _{NTCH}	NTC脚高端翻转电压			1.46		V

51/1/1 开关型多节多类型锂电池充电电路

V _{NTCH_HYS}	NTC脚高端翻转电压迟滞			100		mV
V _{NTCL}	NTC脚低端翻转电压			190		mV
V _{NTCL_HYS}	NTC脚低端翻转电压迟滞			40		mV
		SEL接低		450		mV
ΔV_{RECHRG}	再充电电池门限电压	SEL接高,V _{IN} =20V		600		mV
		SEL悬空		3.6		%V _{FB}
FREQ	振荡频率		250	300	350	kHz
D _{MAX}	最大占空比			95		%
V_{DRV_H}	DRV高电平	V _{IN} -V _{DRV}		60		mV
V _{DRV_L}	DRV低电平	V _{IN} -V _{DRV}		6.5	7.5	V
t _r	DRV上升时间	C _{LOAD} =1.5nF		30		ns
t _f	DRV下降时间	C _{LOAD} =1.5nF		30		ns
tss	软启动时间			30		ms
t _{RECHRG}	再充电比较器滤波时间			10		ms
t _{TERM}	充饱截止比较器滤波时间			10		ms

开关型多节多类型锂电池充电电路

工作原理

SLM6900 是一款支持多类型锂电池或磷酸铁锂电池的充电电路,它预置了三节或四节锂电池充电模式。同时也支持通过外围分压电阻调节的其它输出电压模式。它是采用300kHz固定频率的同步降压型转换器,具有极高的充电效率,支持大功率充电,自身发热量极小。

SLM6900 包含两个漏极开路输出的状态指示端,充电状态指示端NCHRG和充电满状态指示端NSTDBY。

当输入电压大于电源低电压检测阈值, SLM6900 开始对电池充电,NCHRG管脚输出低电平,表示充电正在进行。如果电池电压低于VTRIKL,充电器用小电流对电池进行涓流预充电。恒流模式对电池充电时,充电电流由电阻Rs确定。当电池电压接近VFLOAT时,充电电流将逐渐减小,SLM6900 进入恒压模式。当充电电流减小到充电结束阈值时,充电周期结束,NCHRG端输出高阻态,NSTDBY端输出低电平。充电截止电流阈值是ITERM。

当电池电压降到再充电阈值以下时,SLM6900 自动开始新的充电周期。芯片内部的高精度的电压基 准源,误差放大器和电阻分压网络确保电池端调制电 压的精度在1%以内,满足了锂离子电池和锂聚合物 电池精确充电的要求。当输入电压掉电或者输入电压 低于电池电压时,充电器进入低功耗的睡眠模式,电 池端消耗的电流小于15uA,从而增加了待机时间。

充电电流的设定

电池充电的电流 I_{BAT} ,由连接在ISP和ISN端的外部电流检测电阻 R_S 确定,其阻值与 I_{BAT} 的关系如表1所示。 R_S 可由该电阻两端的调整阈值电压 V_S 和恒流充电电流的比值来确定,恒流状态下 R_S 两端的电压 V_S 为120mV。

设定电阻器和充电电流采用下列公式来计算:

$$I_{BAT} = 0.12 \div R_{S}$$

举例:需要设置充电电流1.2A,带入公式计算得 $R_s=0.1R$ 。

Rs	I _{BAT}	
0.1R	1.2A	
0.067R	1.8A	
0.05R	2.4A	
0.033R	3.6A	

表1. Rs与充电电流对应关系

电池充饱电压设置

SLM6900芯片内部预置了三节或四节充电锂电池模式,可以通过SEL引脚设置。当SEL接地时,SLM6900工作在三节锂电池输出模式,典型充饱电压为12.6V,当SEL接VIN时,SLM6900工作为四节锂电池输出模式,典型充饱电压为16.8V。同时,在三节或四节预置模式下,为了进一步提升充饱电压以补偿寄生电阻引起的充电不足,可以在FB端串联一个电阻,如图2中R4_OPT所示,具体补偿电压大小可用如下式子估算:

$$\Delta V = R4 _OPT \times 0.00001$$

如果SEL悬空,则SLM6900的输出充饱电压将由外接的分压电阻决定,应用图如图3所示,具体充饱电压可按如下式子计算:

$$V_{\text{FLOAT}} = 1.205 \times \frac{R4 + R5}{R5}$$

在该模式下,其输出电压有极大的自由度,可以满足5V至 V_{IN} 电压以内的各种要求,可以用于锂电池、磷酸铁锂电池、三元锂电池等各型可充电池充电,R4+R5> $1M\Omega$ 。

开关型多节多类型锂电池充电电路

充电终止

电池过温监测

当充电电流在达到最终充满电压之后降至约 I_{TERM}时,充电循环被终止。

芯片内部含有充电电压电流监测模块,当监测到充电电压达到VFLOAT,充电电流低于ITERM时,SLM6900即终止充电循环,在这种状态下,BAT引脚上的所有负载都必须由电池来供电。

在充满待机模式中,SLM6900对BAT引脚电压进行连续监控。如果该引脚电压降到比V_{FLOAT}电压低ΔV_{RECHRG}的再充电门限以下时,则另一个充电循环开始并再次向电池供应电流。

充电状态指示

SLM6900有两个漏极开路状态指示输出端,NCHRG和NSTDBY,一般情况下,NCHRG接红灯,NSTDBY接绿灯。当充电器处于充电状态时,NCHRG被拉至低电平,NSTDBY处于高阻态,即红灯亮,绿灯不亮;当处于充饱状态时,NSTDBY被拉至低电平,NCHRG处于高阻态,绿灯亮,红灯不亮;当充电状态异常时,NCHRG和NSTDBY都处于高阻态,双灯均不亮。

当电池未接时,NCHRG脚输出脉冲信号。当BAT管脚的外接电容为10uF时NCHRG闪烁频率约1-4Hz。当不需要指示功能时,将不用的状态指示输出接到地。

119 11111111111111111111111111111111111					
充电状态	红灯	绿灯			
11. 电状态	NCHRG	NSTDBY			
充电	亮	灭			
电池充满	灭	亮			
欠压,电池温度过高 或过低,电池短路	灭	灭			
电池未连接,BAT 脚连接 10uF 电容	绿灯亮,	红灯闪烁			

表2: 充电状态与指示灯对应关系

为了防止温度过高或者过低对电池造成损坏, SLM6900 内部集成有电池温度监测电路。

电池温度监测通过监测紧贴电池的负温度系数的热敏电阻实现。该热敏电阻连接在NTC与GND之间。

芯片内部,NTC管脚连接到两个电压比较器的输入端,其低电压阈值为190mV,对应正常温度范围的上限温度点;高电压阈值为1.46V,对应正常温度范围的下限温度点。如果NTC管脚的电压处于这个范围之内,则芯片正常充电,否则表示电池的温度太高或者太低,充电过程将被暂停。

NTC管脚的上拉电流为50uA,所以负温度系数的热敏电阻值在25℃是应该为10kΩ,在上限温度点时其值约为3.8kΩ(约对应52℃),下限温度点时其值约为29kΩ(约对应-1℃)。用户可以根据具体需要选择合适的型号。

如果需要调整上限温度或下限温度保护点,用户可以通过同热敏电阻并联或串联一个普通电阻来实现。

如果电池温度监测功能不需要,可以使NTC脚悬空,或者接到VCC端。

片外功率管选择

SLM6900 的 DRV 管 脚用于驱动片外功率型 PMOS场效应晶体管。该PMOS管的性能,会直接影响到电池的充电效率和稳定性。

SLM6900 内部设有PMOS晶体管栅电压钳位电路,能把片外功率管的栅电压开启电压V_{GS}钳制在6.5V左右,因此,片外功率管可以选用低V_{GS}的型号,而不用担心由于输入电压远超栅耐压而损坏外设。一般情况下,低V_{GS}型号的MOS管,具有更低的价格和更高的导通性能,从而使充电效率更高。

开关型多节多类型锂电池充电电路

____ *输入、输出电容*

输入和输出的电容会直接影响到充电电路工作的稳定性。输入电容对输入电压起滤波作用,需要吸收SLM6900 工作时PMOS管开关产生的较大纹波电流,因此输入电容必须要有足够的滤波能力。建议用多个低ESR的陶瓷电容并联,以获得更好的滤波效果。

输出电容可以降低输出端的纹波电压、改善瞬态特性,一般情况下,10uF~22uF的陶瓷电容即可满足应用要求。

电感选择

为了保证系统稳定性,在预充电和恒流充电 阶段,系统需要保证工作在连续模式(CCM)。根 据电感电流公式:

$$\Delta I = \frac{1}{L \times F} \left(\frac{V_{IN} - V_{BAT}}{V_{IN}} \right) \times V_{BAT}$$

其中ΔI为电感纹波、F为开关频率,为了保证在 预充电和恒流充电均处于CCM模式,ΔI取预充电电 流值,即为恒流充电的1/10,根据输入电压要求可以 计算出电感值。

电感取值10uH~20uH。

电感额定电流选用大于充电电流,内阻较小的功率电感,同时为保证有较低的电磁辐射,电感最好为贴片式屏蔽电感。

二极管选择

典型应用图中的D1和D2均为肖特基二极管。D1的作为是防止电池电流反灌到输入端,D2是电感的续流二极管。这两个二极管的电流能力均至少要比充电电流大,耐压也要大于最高输入电压。

如果不用防反灌二极管D1,充电电路也能正常工作,并且由于减去了D1上的功耗,充电效率会更高,但是由于无防反灌功能,在V_{IN}不接时,会有40uA的漏电流从电池通过片外PMOS管流入到VCC,这会加大电池的待机功耗,影响待机时间,用户可终合各种因素考虑。

PCB 布板考虑

良好的PCB设计对于保证SLM6900 充电电路 长期稳定工作非常重要。

SLM6900 在充电时,DRV脚处于不断的开关状态,为了使EMI最小,输入电容、片外PMOS场效应管、两个肖特基二极管、电感等的走线必须尽可能短,输入电容应该靠近PMOS管的源极。同时为了减小开关纹波对SLM6900 的干扰,在VCC与GND之间也应该布一个电容,这个电容要靠近SLM6900。

连接COMP引脚的补偿电容应该在SLM6900的GND返回或离它尽可能近,这样会防止GND、PGND噪声扰乱环路的稳定性。

作为电流检测脚,ISP和ISN应该直接接到Rs电阻两端,以获得最精确的充电电流监测结果。

SLM6900 芯片本身发热量极小,但是片外功率型器件如PMOS、二极管、电感等,会在大功率充电时产生较大的热量,PCB板的面积必须考虑要拥有足够的散热能力,以满足长时间稳定可靠的工作。

开关型多节多类型锂电池充电电路

典型应用

图2. 典型应用电路 (预置三节及四节锂电池充电模式)

开关型多节多类型锂电池充电电路

扩展应用

图3. 扩展应用电路(外围分压电阻调节的其它输出电压模式)

开关型多节多类型锂电池充电电路

封装描述

TSSOP14 封装外形尺寸(单位 mm)

SYMBOL	14-PIN			
DESIG	MIN	NOM	MAX	
А	0.65 BSC			
В	4.30	4.40	4.50	
С		6.40 BSC	;	
D	0.19		0.30	
E		1.00		
F		1.00		
G	4.90	5.00	5.10	
Н			1.10	
J	0.85	0.90	0.95	
K	0.05		0.15	
L	12 REF			
М	12 REF			
Ν	0		8	
0	1.00 REF			
Р	0.50	0.60	0.75	
Q	0.20			
R	0.09			
R1	0.09			