

NIHAL AWASTHI nihalawasthi498@gmail.com

### INTRODUCTION

The phablet() encryption algorithm is an intricate and robust multi-layered encryption scheme designed to safeguard plaintext data. It encompasses a series of sequential steps, integrating various sophisticated cryptographic techniques such as substitution-permutation networks (SPNs), Feistel Networks, bitwise operations, custom block ciphers, and the RSA encryption scheme.

This algorithm follows a meticulous process divided into distinct encryption layers, each layer contributing unique operations to enhance the security of the plaintext data.



At its core, the phablet() algorithm emphasizes several fundamental aspects:

#### 1. Multi-layered Security:

Employing a multi-layered approach, the algorithm incorporates several encryption layers, augmenting the overall security of the data.

#### 2. Diverse Cryptographic Techniques:

Utilizes an array of cryptographic methods including substitution-permutation networks (SPNs), Feistel Networks, bitwise operations, custom block ciphers, and RSA encryption, ensuring a complex and diverse approach to encryption.

#### 3. Key Management:

Combines fixed keys and user-provided keys for different stages of encryption, emphasizing key management and its role in securing data.

#### 4. Complex Operations:

Implements custom block ciphers, bitwise manipulations, predefined tables for substitution and permutation, and data conversion between ASCII, hexadecimal, and binary formats, enhancing the complexity of the encryption mechanism.

#### 5. Final Encryption Stage:

Culminates in a final encryption stage utilizing the RSA encryption scheme, leveraging modular exponentiation and prime-related functions to further fortify the security of the encrypted data.

### ALGORITHM STEPS

initial Encryption (Encryption 1):

Using Feistel network encryption with keys and S-box transformations (key2 and specific constants) on the previously generated encoded text.

Secondary Encryption (Encryption 2):

Utilizing round keys and specific operations (key3 and Feistel network) to further encrypt the data.

Tertiary Encryption (Encryption 3):

Employing another encryption round with additional keys and bit manipulations (key4, RoundKeys, Permutation, and SBox).

Quaternary Encryption (Encryption 4):

Applying block encryption using a key (key5), performing Feistel encryption on 64-bit blocks of data.

Quinary Encryption (Encryption 5):

Performing bitwise operations, rotation, and XOR operations on blocks of data based on specific keys (key5).

Final Encryption (RSA Encryption):

Utilizing RSA encryption (key6 and n) on the binary representation of the data, transforming each character of the encrypted text.



## 



```
\mathbf{0} \mathbf{0} \mathbf{0}
generateRoundKeys(key3)
state = encryption_2
for i in range(31):
    state = state ^ RoundKeys[i % 10]
    state = (state >> 4) | (state << 64)
    state = sum(((state >> j) \& 0x1) << Permutation[j] for j in range(64))
state = state ^ RoundKeys[9]
ciphertext = hex(int(state))
ciphertext = ciphertext[2:]
encryption_3 = int(ciphertext, 16)
hex_string = hex(encryption_3)[2:]
if len(hex_string) % 2 != 0:
    hex_string = '0' + hex_string
data = [int(hex_string[i:i + 2], 16) for i in range(0, len(hex_string), 2)]
subkeys = generate_subkeys(key4)
ciphertext = []
for i in range(0, len(data), 2):
    if i + 1 < len(data):</pre>
        block = [data[i], data[i + 1]]
        encrypted_block = encrypt_block(block, subkeys)
        ciphertext.extend(encrypted_block)
c_data = int(''.join(hex(i)[2:].zfill(4) for i in ciphertext), 16)
c_data = c_data % 65536
c_data = ''.join(format(ord(x), '08b') for x in str(c_data))
encryption_4 = str(c_data)
```

# CONCLUSION

The `phablet()` encryption algorithm applies a multi-stage process involving diverse cryptographic techniques to secure plaintext data. Each step performs distinct operations contributing to a complex encryption mechanism. However, the effectiveness and security of this algorithm depend on the strength of the employed techniques and the keys used in each stage.

