週間進捗報告

権藤陸

2022年7月21日

1 進捗報告

- レンジドップラーマップの実装
- 情報工学輪講の準備

2 レンジドップラーマップ

過去に本研究室で行われた実験データから,レンジドップラーマップを生成するコードを実装しました.以下に実験諸元を示します.レーダ自体は送信×受信が 3×4 のアンテナですが,今回はそのうち 1 つの送信アンテナから 1 つの受信アンテナへの信号を切り出し,Range FFT と 2D FFT を行いました.簡単のために,窓関数をかけたり,(受信アンテナが 1 つのため)ビームフォーミングはまだ行っておりません.

表 1 実験諸元

送信アンテナ数	1
受信アンテナ数	1
中心周波数	$79~\mathrm{GHz}$
帯域幅	$3.4391~\mathrm{GHz}$
サンプリングレート	$153.8~\mathrm{Hz}$
1 チャープあたりのサンプル数	240
1フレームあたりのチャープ数	16
被験者位置	約 2.5m, 約 5.0m
壁の位置	約 6.0m

図 1 初めの 1 フレーム中の $Tx1 \rightarrow Rx1$ への信号に対する Range FFT 結果

図 1 に送信アンテナ 1 から受信アンテナ 1 への FMCW レーダで得られた信号のうち、初めの 1 フレーム の Range FFT の結果を示しました。期待される信号のピークは、2.5m、5.0m、6.0m のあたりに現れること ですが、所望のスペクトルを得ることはできませんでした。原因としては、

- 最初の1フレームのみを使用した
- 複数アンテナを使用していない
- 適切な窓関数や CFAR 処理を行っていない
- 正しいコードではない

等が考えられます。何度かコードを修正したり、フレーム数などの条件を変更し、遠藤さんに相談しながら実装・実行を行ってみているのですが、今のところ期待する結果は得られていない状態です。ただし、期待したスペクトルが得られていないだけで、私の使用した初めの1フレームに対するFFT 処理(コード)と出力は間違っていない可能性があり、お手本となるものがないため、引き続き試行錯誤の必要があると考えています。また、複数アンテナに対する処理や CFAR 処理などの実装も行いたいと思います。

図 2 初めの 1 フレーム中の Tx1 → Rx1 への信号に対する Range Doppler Map

図 2 にはレンジドップラーマップを示しました。条件は図 1 と同様です。また,Range 軸に対して,期待した出力ではないのも同様となっています。 横軸はドップラー速度となっていますが,こちらは軸の値の決め方が分からず,github 上のサンプルコード [1] を参考に,仮に-1 m/s 1 m/s としました。FFT シフトを行い,ゼロ周波数成分をスペクトルの中心に移動しているため,軸の中央の値が 0 m/s になると理解しています。被験者は椅子の上に座って静止しているはずですので,ドップラー速度軸に関しては,ほぼ期待通りの出力と言えると考えられます。

3 情報工学輪講

7/30 の輪講発表本番では、研究室内発表の 2 回目で発表した、"Deep generative model with domain adversarial training for predicting arterial blood pressure waveform fromphotoplethysmogram signal"[2] を用いたいと思っております。

情報工学輪講の発表時間は10分だと思いますので、発表用スライドを見直し、短くまとめました.

4 計画

- 情報工学輪講に向けてスライド仕上げとプレゼン練習をする.
- RDM に対し、ハミング窓、ビームフォーミング、CFAR、Angle FFT などを実装していく.

参考文献

[1] https://github.com/Ram-Godavarthi/Sensor_Fusion_Radar_Target_Generation_and_ Detection