

Experiment No- 2.4

Student Name: Yash Kumar UID: 20BCS9256

Branch: CSE Section/Group: 616-B

Semester: 5 Date of Performance: 10-10-22

Subject Name: Machine Learning Subject Code: 20CSP -317

1. Aim/Overview of the practical: Implementing Decision Tree on any dataset and analyse the accuracy.

2. Task to be done/ Which logistics used: Analysing accuracy by implementing the Decision Tree on any dataset.

3. Steps of experiment/Code:

1. Importing libraries such as panda and reading the dataset "data.csv".

<pre>import pandas df= pandas.read_csv("data.csv") print(df)</pre>								
0	36	10	9	UK	NO			
1	42	12	4	USA	NO			
2	23	4	6	N	NO			
3	52	4	4	USA	NO			
4	43	21	8	USA	YES			
5	44	14	5	UK	NO			
6	66	3	7	N	YES			
7	35	14	9	UK	YES			
8	52	13	7	N	YES			
9	35	5	9	N	YES			
10	24	3	5	USA	NO			
11	18	3	7	UK	YES			
12	45	9	9	UK	YES			

2. Mapping categorical values to numerical value:

```
d = {'UK': 0, 'USA':1, 'N':2}
df['Nationality'] = df['Nationality'].map(d)
d= {'YES':1 , 'NO':0}
df['Go'] = df['Go'].map(d)
print(df)
  Age Experience Rank Nationality Go
   36 10 9
0
                  0 0
1
  42
           4 6
  23
           4 4
3
  52
                         1 0
               8
          21
4
                         1 1
  43
5
   44
           14 5
                         0 0
           3 7
                         2 1
6
 66
7 35
          14 9
          13 7
8 52
                         2 1
9
  35
           5 9
                         2 1
           3 5
3 7
                         1 0
10 24
11 18
                         0 1
12 45
           9 9
                         0 1
```

3. Assigning one feature to variable y and other features to variable x.

4. Implementing Decision Tree Classifier:

Discover. Learn. Empower.

```
import pandas
import numpy as np
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
df= pandas.read_csv("data.csv")
d = {'UK': 0, 'USA':1, 'N':2}
df['Nationality'] = df['Nationality'].map(d)
d= {'YES':1 , 'NO':0}
df['Go'] = df['Go'].map(d)
features =['Age','Experience', 'Rank','Nationality']
x= df[features]
y= df['Go']
dtree = DecisionTreeClassifier()
dtree = dtree.fit(x,y)
tree.plot_tree(dtree, feature_names= features)
Text(200.8800000000000002, 152.208, 'Nationality <= 0.5\ngini = 0.219\nsamples = 8\nvalue = [1, 7]'),
Text(133.92000000000002, 108.72, 'Age <= 35.5\ngini = 0.375\nsamples = 4\nvalue = [1, 3]'),
Text(66.96000000000001, 65.232, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]'),
  Text(200.880000000000000, 65.232, 'Age < 40.5\ngini = 0.5\nsamples = 2\nvalue = [1, 1]'),
Text(133.9200000000000, 21.744, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
Text(267.8400000000003, 21.744, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
Text(267.8400000000003, 108.72, 'gini = 0.0\nsamples = 4\nvalue = [0, 4]')]
                            Rank <= 6.5
gini = 0.497
samples = 13
value = [6, 7]
                                           lationality <= 0.5
gini = 0.219
samples = 8
value = [1, 7]
           gini = 0.0
samples = 5
value = [5, 0]
                            Age <= 35.5
gini = 0.375
samples = 4
value = [1, 3]
                                                            gini = 0.0
samples = 4
value = [0, 4]
                                            Age <= 40.5
           gini = 0.0
samples = 2
value = [0, 2]
                                            gini = 0.5
samples = 2
                                            value = [1, 1]
                                                           gini = 0.0
samples = 1
value = [0, 1]
                            gini = 0.0
samples = 1
                            value = [1, 0]
```

5. Predicting the values.

```
: print(dtree.predict([[40,10,7,1]]))
[1]
: print(dtree.predict([[40,10,6,1]]))
[0]
```

Learning Outcomes (What I have learnt):

- 1. I have learnt about implementing Decision Tree classifier on any dataset.
- 2. I have learnt about assigning few features to one variable and rest to other.
- 3. I have learnt about various libraries which are supported by python such as sklearn, pandas, matplotlib.
- 4. I have learnt about the various functions provided by various libraries.
- 5. I have understood the experiment very well.

Evaluation Grid:

	Parameters	Marks Obtained	Maximum Marks
1.	Student Performance		12
	(Conduct of experiment)		
	objectives/Outcomes.		
2.	Viva Voce		10
3.	Submission of Work Sheet		8
	(Record)		
	Total		30