F.CS213 Биоалгоритм

Probabilistic Motifs and Stochastic Algorithms

Магадлалт мотиф ба Санамсаргүй алгоритмууд

Лекц 10

Лекцийн агуулга

- Магадлалт мотиф
 - Алгоритм
 - Визуйл дүрслэл
- Стохастик алгоритм
 - Expectation-Maximization
 - Алгоритм
- Гиббсийн түүвэрлэлтийн арга
 - Алгоритм
- BioPython магадлалт мотиф

Магадлалт мотифыг ерөнхийдөө Магадлалт жингийн матриц (Probabilistic Weight Matrices — PWM) -аар дүрсэлдэг.

- Магадлалт жингийн матриц (Templates / Profiles)
 - Мөр: Тэмдэгт (нуклеотид/амин хүчлүүд),
 - Багана: Мотиф дээрх байрлал.
 - P_{ij} нь P мотифын j байрлал дээр илрэх i нуклеотидын магадлал.
- N урттай $S = S_1 S_2 \dots S_N$ дарааллын P PWM-ээр танигдах магадлал:

	N
p(S, P) =	$\prod P(S_i,i)$
i	=1

	1	2	 N
Α	P _{A1}	P_{A2}	 P_{An}
Т	P _{T1}	P_{T2}	 \mathbf{P}_{Tn}
С	P _{C1}	P_{C2}	 \mathbf{P}_{Cn}
G	P_{G1}	P_{G2}	 P_Gn

N хэмжээтэй ДНХ-ийн мотифын PWM.

- Давтамжыг оноо руу хөрүлүүлсэн *Байрлалд суурилсан онооны матриц (Position Specific Scoring Matrices PSSM)* үүсгэнэ.
 - Элемент: S-ийн P-ээр танигдах магадлалын оноо:

$$score(S, P) = \sum_{i=1}^{N} log P(S_i, i)$$

МАГАДЛАЛТ МОТИФ

Илрүүлэх тооцоолол

GATCAT GATGAT			1	2	3	4	5	6
GAAGAA		A	1/8	5/8	5/8	1/8	6/8	1/8
CAAGAC	$\qquad \Longrightarrow \qquad$	т	0	1/8	3/8	0	1/8	5/8
AAACTT	r	_	1/8	1/8	0	4/8	1/8	1/8
GGACCT		С	170	1,0	Ů	4,70	1,0	1,0
GCAAAG		G	5/8	1/8	1/8	3/8	0	1/8
CTGCAT								

- 8 дарааллын багц дээрх PWM.
- a = GATCAT дарааллын P мотифт танигдах магадлалыг түүний бүх байрлалын магадлалыг үржүүлнэ.

•
$$p(GATCAT|P) = \frac{5}{8} \times \frac{7}{8} \times \frac{3}{8} \times \frac{4}{8} \times \frac{6}{8} \times \frac{5}{8} = 0.03433$$

S = GCGGATCATCAA

Scanned Sequence	Probability calculation	p(a P)
GCGGATCATCAA	5/8 x 1/8 x 1/8 x 3/8 x 6/8 x 1/8	3.4x10 ⁻⁴
G CGGATC ATCAA	1/8 x 1/8 x 1/8 x 5/8 x 1/8 x 1/8	3.8x10 ⁻⁶
GC GGATCA TCAA	5/8 x 1/8 x 5/8 x 0 x 1/8 x 1/8	0
GCGGATCATCAA	5/8 x 5/8 x 3/8 x 4/8 x 6/8 x 5/8	0.03433
GCGGATCATCAA	1/8 x 1/8 x 0 x 1/8 x 1/8 x 1/8	0
GCGGA TCATCA A	0 x 1/8 x 5/8 x 0 x 1/8 x 1/8	0
GCGGATCATCAA	1/8 x 5/8 x 3/8 x 4/8 x 6/8 x 1/8	1.4x10 ⁻³

- S дараалал болон P PWM өгөгдсөн байг
 - S дээрх P-ээр танигдах хамгийн өндөр магадлалтай N урттай дэд дарааллыг тооцоолно.
 - $\it N$ урттай шилжигч цонх ашиглан $\it S$ -г сканнердана.

магадлалт мотиф > Алгоритм

```
from MySeq import MySeq
seq1 = MySeq("AAAGTT")
seq2 = MySeq("CACGTG")
seq3 = MySeq("TTGGGT")
seq4 = MySeq("GACCGT")
seq5 = MySeq("AACCAT")
seq6 = MySeq("AACCCT")
seq7 = MySeq("AAACCT")
```

- Эхлээд мотиф үүсгэх 8 дарааллыг авч тоо ширхэг болон давтамжийн матрицыг дүрслэнэ.
- Дундаж болон максласан дундаж мотифыг олно.
- Магадлалын тооцооллыг хэд хэдэн оролтын дараалал дээр гүйцэтгэнэ.

```
lseqs = [seq1, seq2, seq3, seq4, seq5, seq6, seq7, seq8]
motifs = MyMotifs(lseqs)
print ("Counts matrix")
print_matrix (motifs.counts)
print ("PWM")
print_matrix (motifs.pwm)
print ("Sequence alphabet")
print(motifs.alphabet)
[print(s) for s in lseqs]
print ("Consensus sequence")
print(motifs.consensus())
print ("Masked Consensus sequence")
print(motifs.masked_consensus())
print(motifs.probability_sequence("AAACCT"))
print(motifs.probability_sequence("ATACAG"))
print(motifs.most_probable_sequence("CTATAAACCTTACATC"))
```

```
class MyMotifs:
   """Class to handle Probabilistic Weighted Matrix"""
   def __init__(self, seqs = [], pwm = [], alphabet = None):
        if segs:
            self.size = len(seqs[0])
            self.seqs = seqs # objet from class MySeq
            self.alphabet = seqs[0].alphabet()
            self.do_counts()
            self.create_pwm()
        else:
                                    def do_counts(self):
            self.pwm = pwm
            self.size = len(pwm[0])
```

do_counts болон create_pwm функцуудээр үндсэн аттрибутуудыг байгуулна.

- PWM загварт ашигласан дарааллууд;
- Дарааллын нийт тоо;
- III. Цагаан толгой;
- IV. Тоо ширхэгийн матриц
- Мотифын байрлал бүр дээрх тэмдэгтийн давтамжын матриц.

MyMotifs класс

- PWM үүсгэх,
- Мотифын детерминистик дүрслэлүүдийг гаргаж авах,
- Дараалал дээр мотиф илрэх магадлалыг тодорхойлох

```
self.counts = create_matrix_zeros(len(self.alphabet), self.size)
                          for s in self.segs:
self.alphabet = alphabe
                              for i in range(self.size):
                                  lin = self.alphabet.index(s[i])
                                   self.counts[lin][i] += 1
                      def create_pwm(self):
                          if self.counts == None: self.do_counts()
                          self.pwm = create_matrix_zeros(len(self.alphabet), self.size)
                          for i in range(len(self.alphabet)):
                              for j in range(self.size):
                                   self.pwm[i][j] = float(self.counts[i][j]) / len(self.seqs)
```

Мотифын детерминистик дүрслэлүүд

```
def masked_consensus(self):
    """ returns the sequence motif obtained with the symbol that
occurs in at least 50% of the input sequences"""
   res = ""
                                             def consensus(self):
   for j in range(self.size):
                                                 """ returns the sequence motif obtained with the most
       maxcol = self.counts[0][j]
                                            frequent symbol at each position of the motif"""
       maxcoli = 0
                                                 res = ""
       for i in range(1, len(self.alphabet)):
           if self.counts[i][j] > maxcol:
                                                 for j in range(self.size):
              maxcol = self.counts[i][i]
                                                      maxcol = self.counts[0][j]
              maxcoli = i
                                                     maxcoli = 0
       if maxcol > len(self.seqs) / 2:
                                                      for i in range(1, len(self.alphabet) ):
           res += self.alphabet[maxcoli]
                                                          if self.counts[i][j] > maxcol:
       else:
           res += "-"
                                                               maxcol = self.counts[i][j]
   return res
                                                              maxcoli = i
                                                      res += self.alphabet[maxcoli]
                                                 return res
```

Мотифын байрлал бүрт хамгийн их илэрсэн тэмдэгт бүхий дундаж дүрслэлийг PWM-ээс үүсгэнэ.

- consensus: Мотифын байрлал бүрийг сканнердаж, байрлал бүрт хамгийн олон давтамжтай тэмдэгтийг сонгоно.
- masked_consensus: Төстэй байдлаар ажилладаг боловч байрлал бүрийн давтамж нь 50% -иас бага бол "-", үгүй бол цагаан толгойн тэмдэгтийг гаргадаг.

```
def probability_sequence(self, seq):
    res = 1.0
    for i in range(self.size):
                                                   УРЖВЭР.
        lin = self.alphabet.index(seq[i])
        res *= self.pwm[lin][i]
    return res
def probability_all_positions(self, seq):
    maximum = -1.0
    maxind = -1
    for k in range(len(seq)-self.size):
        p = self.probability_sequence(seq[k:k+ self.size])
        if(p > maximum):
            maximum = p
            maxind = k
    return maxind
def create_motif(self, seqs):
    from MySeq import MySeq
    1 = []
    for s in seqs:
        ind = self.most_probable_sequence(s.seq)
        subseq = MySeq ( s[ind:(ind+self.size)], s. get_seq_biotype() )
        1.append(subseq)
    return MyMotifs(1)
```

- probability_sequence болон probability_all_positions
 - Тухайн байрлалд илрэх бүх тэмдэгтийн магадлалуулын
 - Урт дараалал даар илрэх N урттай дэд дараалал бүр дээр мотиф илрэх магадлал.
 - Эхний индексээс |S| N + 1 байрлалд хүртэл скан хийнэ.
 - Дэд дараалал бүрийн магадлалыг жагсаалтад хадгална.

most_probable_sequence

- Мотифт тохирох хамгийн өндөр магадлалтай дэд дарааллыг олно.
- Энэ нь мотифыг шинэчлэх, сайжруулах боломжийг олгоно

Create motif

- Оролтын дарааллуудыг сканнердаж, MyMotifs классын объектыг буцаана
- Шинэ мотифыг байгуулах хамгийн боломжит дэд дарааллуудыг сонгоно.

магадлалт мотиф Визуал дүрслэл

- PWM загвар нь дарааллын байрлал дээрх тэмдэгт бүрийн давтамжийг тооцон мотифын магадлалыг дүрсэлдэг.
 - Оролтын дарааллууд доторх мотифуудын шинэ илрэлүүдийн хайхад PWM-ийг ашиглах
 - Өндөр оноотой илрэлүүдийг мотиф загварт нэгтгэн сайжруулж болно.
- PWM загварт тохирох дэд дарааллын тоо харьцангуй бага бол зарим тэмдэгт зарим байрлалд тооцогдохгүй байх боломжтой, ө.х давтамж нь 0 байж болно.
 - Энэ нь үүсэх мотифын магадлал 0 байх нөхцөлд хүргэнэ.
 - Тиймээс, тоо ширхэгийн нөлөөг ихэсгэхийн тулд PWM утгууд дээр *псевдо-тоололт (pseudo-count)*-ыг нэмдэг.
- PWM-ийг дүрслэх нэг нийтлэг арга бол **Дарааллын лого**
 - 1990 онд Шнайдер, Стефенс нар танилцуулсан.
 - Мотифын байрлалын хадгалалтын түвшинтэй пропорционал өндөртэй үсгүүдийн стекээр дүрсэлдэг.
 - Weblogo хэрэгслэл нь PWM-ийн "гоё" дүрслэлийг хялбархан үүсгэнэ.

$$I_i = 2 + \sum_b P_{b,i} \times log_2 P_{b,i}$$

Дараалсан логоны b тэмдэгт бүрийн i байрлал дээрх мэдээллийг тооцоолох томьёо.

8 дэд дарааллын Weblogo

Стохастик алгоритм

- Оролтын дарааллууд дээрх мотифын хамгийн сайн байршилд зоруулагдсан сайн таамаглалыг илэрхийлсэн дэд дарааллын багц өгөгдсөн байг.
 - Эдгээр дэд дарааллаас мотифын онцлогийг агуулсан PWM-ийг гаргаж авна.
 - Гэхдээ энэ мэдээлэл нь ихэндээ урьдчилж мэдэгддэггүй.
 - Тиймээс мотиф илрүүлэх аргыг хэрэгжүүлсэн байх шаардлагатай.
- Мотифыг илрүүлэх асуудлын тодорхойлолтоос харахад
 - *Оролт:* L урттай t ширхэг дараалал бүхий D олонлог, Мотифын урт N.
 - *Гаралт:* score(s, D) функцийн утгыг хамгийн их байлгах D доторх дэд дарааллуудын анхдагч байрлалуудыг агуулсан t урттай s вектор (мотифын чанарыг хамгийн сайн байлгах зорилготой функц).
- Детерминистик болон магадлалт мотифын хувьд тавигдах нөхцөл нь ижил ч хайлтын боломжийг шүүх арга нь өөр.
 - Exhaustive хайлтанд тооллогын аргыг хэрэглэх, зарим хьюристик хандлага нь уг хайлтын үр ашгийг нэмэгдүүлдэг.
 - Мотифын хамгийн боломжит шийдлүүдийг олоход чиглэдэг
 - Хайлтын тоологдом орон зайг баримжаалахын тулд загварын тусгай хийсвэрлэлийг шаарддаг
 - Тиймээс бүдэг (илүү гажсан) мотифыг орхиж болно.
- *Expectation-Maximization (EM)* дээр суурилсан алгоритмууд нь хайлтын орон зайг шалган нэвтрэх болон мотифыг оновчлох аргаар уг асуудлыг шийдэх боломжтой.
 - Давталтын явцад хамгийн сайн дүрслэгдсэн дэд дарааллуудыг тодорхойлон мотифын загварыг сайжруулах, шинэчлэхэд хэрэглэдэг.

СТОХАСТИК АЛГОРИТМ

Expectation-Maximization

- ЕМ алгоритм нь L урттай мотифын хувьд :
 - Оролтын дарааллууд дээрх L урттай дэд дараалал бүрийг сканнердана
 - Тухайн дэд дарааллын тэмдэгтүүдийг маш бага суурь давтамжтай байх PWM-ийг эхлүүлнэ
 - Эдгээр дэд дараалал бүрийн хувьд мотифоор үүсгэгдсэн байх магадлалыг тооцоолдог.
 - Ингэсэн нь оролтын дарааллууд дээрх санамсаргүй загвараас илүү байдаг
 - Сонгосон бүх дэд дарааллын давтамжийг дундажлан мотифыг сайжруулахад ашигладаг.
 - Онооны өсөлт нь 0 (хамгийн бага) бол процедур зогсдог.
- Энэ арга нь ерөнхийдөө оновчтой шийдэлд ойртдог.
 - Мотифын хамгийн сайн тохиолдлын дараалал дээр маск хэрэглэн (тэмдэгтүүдийг солих), давтан ажиллуулах замаар бусад мотифыг илрүүлнэ.
 - The MEME Suite: Motif-based sequence analysis tools.
- Зурагт мотифыг эхлүүлэх ЕМ процессийг үзүүлсэн
 - Нуклеотидын жигд тархалтын 20%-ийг авч үзнэ.
 - Мотифын загвар нь шинэ сайн тохиодлыг тооцсон давталтаар сайжирдаг.

- EM алгоритм нь оролтын дээрх L урттай бүх дэд дарааллыг сканнердсанаар детерминистик оновчлолыг гүйцэтгэдэг.
 - Ерөнхийдөө оновчтой шийдэд ойртдог ч энэ нь бүх анхдагч дад дарааллуудыг exhaustive тоочихыг шаарддаг.
 - Хайлтанд стохастик компонентийг оруулснаар хайлтын процессыг оновчтой болгож болно.
 - Жнь, мотифыг үүсгэхэд ашигласан анхдагч дэд дарааллуудыг санамсаргүй сонгох.
- Стохастик хьюристик хайлт дээр суурилсан алгоритмын үндсэн алхмууд:
 - 1. Оролтын D дарааллын дагуу $s=(s_1,...,s_t)$ анхны байрлалуудыг санамсаргүй байдлаар сонгож эхэлнэ.
 - 2. 1-р алхамд үүсгэсэн дарааллаас P PWM профайл үүсгэгдэнэ.
 - 3. D-д хамгийн их магадлалтай n дэд дарааллыг хайхад P мотифыг хэрэглэнэ. n-ийн дагуу s вектор дээрх шинэ анхдагч байрлалуудад өөрчлөлт орсон байна.
 - 4. 3-р алхамд тооцсон байрлалуудыг ашиглан шинэ P PWM профайлыг үүсгэсэн. 3 ба 4-р алхмуудыг score(s, D) өсөхөө больтол давтана.

СТОХАСТИК АЛГОРИТМ

Хэрэгжүүлэлт

```
def create_motif_from_indexes(self, indexes):
   pseqs = []
    for i,ind in enumerate(indexes):
        pseqs.append( MySeq(self.seqs[i][ind:(ind+self.motif_size)], self.seqs[i].get_seq_biotype()) )
    return MyMotifs(pseqs)
def heuristic_stochastic (self):
        from random import randint
        s = [0] * len(self.seqs)
        for k in range(len(s)):
            s[k] = randint(0, self.seq_size(k)- self.motif_size)
        motif = self.create_motif_from_indexes(s)
        motif.create_pwm()
        sc = self.score_multiplicative(s)
        bestsol = s
        improve = True
        while(improve):
            for k in range(len(s)):
                s[k] = motif.most_probable_sequence(self.seqs[k])
            if self.score_multiplicative(s) > sc:
                sc = self.score_multiplicative(s)
                bestsol = s
                motif = self.create_motif_from_indexes(s)
                motif.create_pwm()
            else: improve = False
        return bestsol
```

EM

MotifFinding класс (Бүлэг 10).

create motif from indexes

Мотифын загварыг бүтээхэд ашигласан дэд дарааллын анхдагч байрлалыг агуулсан индексүүдийн жагсаалтыг авч MyMotifs төрлийн магадлалын мотиф үүсгэдэг

heuristic stochastic

Оролтын дарааллууд дээрх санамсаргүй сонгосон анхдагч байрлалууд болон харгалзах PWM (үржүүлсэн оноо) –ээр мотиф үүсгэдэг.

- Лоуренс нар: Гиббсын түүвэр (Gibbs sampling)
 - Хэд хэдэн мотиф олох алгоритмд хьюристик аргачлал болгон ашигладаг
 - Хамгийн сайн шийдлийг баталгаажуулдаггүй ч практикт давталтаар ажиллуулахад сайн үр дүнтэй.
- Мотиф загварыг санамсаргүй байдлаар сонгосон дэд дарааллаар эхлүүлж, улмаар анхны загвартай харьцуулсан оноог тооцдог.
- Давталт бүрийн хувьд
 - Мотифын аль нэг илрэлийг шинэчлэх эсэх магадлалаар локал хайлт хийдэг.
 - Өгөгдсөн оролтын дарааллуудаас мотифыг загварчлахад ашигласан дэд дарааллыг арилгана.
 - Сүүлд нь өөр дэд дарааллаар солихыг оролдох, Мотифын оноог тооцоолох, Сайжруулалтыг хадгалах эсэхийг шийддэх.

ГИББСИЙН ТҮҮВЭРЛЭЛТ

Схемчилсэн дүрслэл

Гиббсийн түүвэрийн аргын алхмууд.

- 1. Оролтын D дарааллуудаас $s=(s_1,...,s_t)$ анхдагч байрлалуудыг санамсаргүйгээр сонгоно.
- $2. \quad D$ -ээс i гэсэн дарааллыг санамсаргүй байдлаар сонгоно.
- 3. 2-р алхам дээр сонгосон дэд дарааллыг s- дарааллаас хасч P PWM үүсгэнэ.
- 4. i дарааллын p байрлал бүрийн хувьд, P- ээр үүсгэгдэж буй L урттай p байрлалаас эхэлсэн байх дэд дарааллын магадлалыг тооцоолно.
- 5. 4-р алхамд тооцсон магадлалын дагуу p-г стохастик аргаар сонгоно.
- 6. P мотиф дэх s-ийн оноо улам сайжрах хүртэл 2-5-р алхамуудыг давтана.

Repeat the procedure for every iteration j until: $score(P_{i+1}) - score(P_i) \approx 0$.

АНХААРАЛ ТАВЬСАНД БАЯРЛАЛАА