Осенний семестр 2006-2007 учебного года

ЗАДАЧИ К ЛЕКЦИЯМ

спецкурса кафедры физики элементарных частиц физического факультета МГУ "Диаграммы Фейнмана"

к.ф.-м.н. Никитин Николай Викторович (НИИЯФ МГУ)

Квантовая теория поля — наука "ручная", а не "ушная". То есть ни одни даже самые лучшие лекции прочитанные самыми искуссными преподавателями, не заменят вычислений, которые должен самостоятельно проделать каждый студент. Набить руку в самостоятельных вычислениях помогают задачи.

Данные задачи предназначены для решения студентами, которые слушают семестровый курс "Диаграммы Фейнмана" на кафедре физики элементарных частиц физического факультета МГУ. Небольшая часть задач подробно разбирается в ходе лекций, для большего числа в лекциях дается только идея вычислений. Задачи, помеченные знаком "*", для своего решения требуют знаний, превышающих средний уровень. Для допуска к зачету требуется правильно решить более половины задач, не помеченных знаком "*".

В электронном виде задачи, прозрачки и программу курса можно найти на сайте кафедры общей ядерной физики физфака МГУ: http://nuclphys.npi.msu.su/fdiag/. В осеннем семестре сайт регулярно обновляется.

Обо всех замеченных неточностях и опечатках просьба сообщать автору по телефону (495) 932–89–72 или по электронной почте nik679@monet.npi.msu.su. В заголовке письма необходимо ставить "QFT-4", чтобы данное письмо можно было отличить от спама.

Задачи к Лекции N1

Задача N1 Найти явное выражение для матрицы лоренцовского преобразования $\Lambda^{\mu}_{\nu}(\vec{v})$, если система отсчета A' движется относительно системы A со скоростью $\vec{v}=(v^1,v^2,v^3)$.

Задача N2 Какой вид имеет метрический тензор $g^{\mu\nu}$ в n-мерном евклидовом пространстве?

Задача N3 При помощи явного вида матрицы лоренцовского преобразования $\Lambda^{\mu}_{\nu}(\vec{v})$ (см. Задачу N1) показать, что скалярное произведение двух 4-векторов является лоренцовским инвариантом.

Задача N4 Показать, что для произвольного 4-вектора A^{μ} выполняется равенство

$$\partial A^{\mu}/\partial A_{\nu} = q^{\mu\nu}.$$

Задача N5 Пусть x^μ и p^ν - два 4-вектора. Найти $\partial^\mu e^{\mp\,i(px)}$ и $\partial^\mu\partial_\mu e^{\mp\,i(px)}$.

 ${f 3}$ адача ${f N6}$ Получить выражение для свертки ${f arepsilon}^{\mu
ulphaeta}{f arepsilon}_{\zeta\eta\xieta}.$

Задача N7 В системе $\hbar = c = 1$ проверить следующие пересчетные коэффициенты:

$$1 \Gamma 9B \approx 1,78 \times 10^{-24} \, \mathrm{гp} \approx 1,6 \times 10^{-10} \, \mathrm{Джc},$$

$$1 \Gamma_{9}B^{-1} \approx 6,58 \times 10^{-25} ce\kappa \approx 1,97 \times 10^{-14} cm.$$

Задача N8* В системе $\hbar = c = 1$ найти численные значения констант, характеризующих электромагнитное, слабое и гравитационное взаимодействия. Что можно сказать об иерархии этих констант? Отвечает ли она силе перечисленных выше взаимодействий в микромире?

Задача N9* Масса переносчиков сильного взаимодействия – глюонов – равна нулю, в то время как радиус сильных взаимодействий порядка 1 Фм. Не противоречит ли это "релятивизированному" соотношению неопределеннойстей $\Delta x \, \Delta E \, \geq \, 1$?

Задачи к Лекции N2

Задача N10 Вывести уравнения Лагранжа для движения классической частицы в потенциальном поле.

 ${f 3a}$ дача ${f N11}^*$ Найти величину классического действия для движения частицы из точки A в точку B в потенциале гармонического осциллятора.

Задача N12 Проверить, что в теории поля два лагранжиана, отличающиеся между собой на 4-дивергенцию некоторого 4-вектора (т.е. на величину $\partial_{\mu}V^{\mu}(x)$), приводят к одинаковым уравнениям Лагранжа.

Задача N13* Получить уравнения Лагранжа для лагранжиана вида $L(\phi_i(x), \partial^{\nu}\partial_{\nu}\phi_i(x))$ при условии, что на трехмерной поверхности Σ_3 вариации $\delta\phi_i(x)=0$ и $\delta\,\partial^{\nu}\phi_i(x)=0$.

Задача N14 Зная явный вид тензора напряженности электромагнитного поля $F^{\mu\nu}(x)$ получить явный вид $F_{\mu\nu}(x)$.

Задача N15 Вычислить свертки $F^{\mu\nu}F_{\mu\nu}$ и $\varepsilon_{\mu\nu\alpha\beta}F^{\mu\nu}F^{\alpha\beta}$ в терминах напряженностей электрического и магнитного полей.

Задачи к Лекции N3

Задача N16* Получить выражение для тензора энергии-импульса T^{μ}_{ν} свободного электромагнитного поля в произвольной калибровке.

Задача N17* Найти решение уравнений Максвелла для свободного электромагнитного поля в кулоновской $div \vec{A} = 0$ и аксиальной $(\vec{n}, \vec{A}) = 0$ калибровках, где div – обычная дивергенция в трехмерном пространстве, а \vec{n} – фиксированный единичный вектор в трехмерном пространстве.

Задача N18 Найти явные выражения для напряженностей электрического \vec{E} и магнитного \vec{H} полей через коэффициенты $c_{\vec{k}\,\lambda}$ и $c_{\vec{k}\,\lambda}^{\dagger}$.

Задача N19 В лекциях энергия и импульс свободного электромагнитного поля были найдены как компоненты тензора энергии—импульса. Однако возможен иной путь. Из общего курса физики известно, что энергия в единице объема для свободного электромагнитного поля имеет вид $(\vec{E}^2 + \vec{H}^2)/2$, а импульс поля в единице объема (вектор Пойнтинга) равен $\vec{E} \times \vec{H}$. Используя результат Задачи N18, получить выражения для энергии и импульса поля в терминах коэффициентов $c_{\vec{k}\lambda}$ и $c_{\vec{k}\lambda}^{\dagger}$.

Задачи к Лекции N4

Задача N20 Явными вычислениями показать, что:

$$D_{\pm}^{\mu\nu} = g_{\mu\nu} \left(\frac{i}{(2\pi)^2 x^2} \mp \frac{1}{4\pi} \delta(x^2) sign(x^0). \right)$$

Задача N21 Доказать, что пропагатор $D_c^{\mu\nu}$ электромагнитного поля является функцией Грина уравнения Даламберта, то есть для него выполняется равенство

$$\Box D_c^{\mu\nu}(x) = -g^{\mu\nu}\delta^4(x),$$

где $\square = \partial^{\mu}\partial_{\mu}$ – даламбертиан.

Задачи к Лекции N5

Задача N22 Привести примеры истинно нейтральных адронов, отличных от π^0 -мезона. Встречаются ли среди них барионы?

Задача N23 Показать, что для матриц Паули σ^i выполняются следующие соотношения:

$$Sp(\sigma^{i}\sigma^{j}\sigma^{k}) = 2i\varepsilon^{ijk},$$

$$Sp(\sigma^{i}\sigma^{j}\sigma^{k}\sigma^{l}) = 2(\delta^{ij}\delta^{kl} - \delta^{ik}\delta^{jl} + \delta^{il}\delta^{jk}),$$

$$\sigma^{i}\sigma^{j}\sigma^{k} = i\varepsilon^{ijk}\hat{1} + \delta^{ij}\sigma^{k} - \delta^{ik}\sigma^{j} + \delta^{jk}\sigma^{i},$$

где ε^{ijk} -абсолютно антисимметричный псевдотензор третьего ранга для которого $\varepsilon^{123}=+1$, δ^{ij} -символ Кронеккера, латинские индексы $\{i,j,k,l\}=\{1,2,3\}$.

Задача N24* Предполагая, что движение электрона в атоме водорода можно описать при помощи уравнения Клейна-Гордона-Фока с кулоновским взаимодействием, получить выражение для тонкой структуры спектра. Совпадает ли полученная формула с экспериментальными данными?

Задача N25 Найти унитарные матрицы переходов от стандартного к спинорному представлению и от спирального к спинорному представлению.

Задача N26 Предполагая, что движение электрона в атоме водорода можно описать при помощи уравнения Дирака с кулоновским взаимодействием, получить выражение для тонкой структуры спектра. В чем отличие полученной формулы от результата Задачи N24?

Задача N27* Найти явный вид $u(\vec{p},\lambda)$ в спиральном и спинорном представлениях.

Задачи к Лекции N6

Задача N28 Показать, что

$$\gamma^5 = \frac{i}{4!} \, \varepsilon_{\mu\nu\alpha\beta} \, \gamma^\mu \gamma^\nu \gamma^\alpha \gamma^\beta,$$

$$Sp\left(\gamma^{5}\gamma^{\mu}\gamma^{\nu}\gamma^{\alpha}\gamma^{\beta}\right) = 4i\,\varepsilon^{\mu\nu\alpha\beta},$$

$$\gamma^{\mu}\gamma^{\nu}\gamma^{5} = g^{\mu\nu}\gamma^{5} - \frac{i}{2}\,\varepsilon^{\mu\nu\alpha\beta}\gamma_{\alpha}\gamma_{\beta},$$

$$\gamma^{\mu}\gamma^{\nu}\gamma^{\zeta} = \left(g^{\mu\nu}g^{\alpha\zeta} - g^{\mu\alpha}g^{\nu\zeta} + g^{\mu\zeta}g^{\nu\alpha}\right)\gamma_{\alpha} - i\varepsilon^{\mu\nu\zeta\alpha}\gamma_{\alpha}\gamma^{5},$$

$$\gamma^{5}\sigma^{\mu\nu} = -\frac{i}{2}\,\varepsilon^{\mu\nu\alpha\beta}\sigma_{\alpha\beta},$$

$$\sigma^{\mu\nu}\sigma_{\mu\nu} = 12I,$$

$$\gamma^{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\gamma}\gamma_{\mu} = -2\,\gamma^{\gamma}\gamma^{\beta}\gamma^{\alpha},$$

$$O^{\mu}\gamma^{\nu}O_{\mu} = -4\,O^{\nu},$$

$$O^{\mu}\gamma^{\alpha}\gamma^{\beta}O_{\mu} = 0,$$

$$O^{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\gamma}O_{\mu} = -4\,\gamma^{\gamma}\gamma^{\beta}O^{\alpha},$$

где $O^{\mu}=\gamma^{\mu}(1-\gamma^5),\ \varepsilon^{\mu\nu\alpha\beta}$ – абсолютно антисимметричный псевдотензор четвертого ранга, такой что $\varepsilon^{0123}=-1$ и $\sigma^{\mu\nu}=i/2\,[\gamma^{\mu},\,\gamma^{\nu}].$

Задачи к Лекциям N7-N10

Задача N29 Доказать, что в стандартном представлении оператор зарядового сопряжения C обладает следующими свойствами:

$$C^{\dagger} = C^T = C^{-1} = -C, \qquad C^* = C.$$

Задача N30 Найти явный вид оператора зарядового сопряжения в спиральном и спинорном представлениях.

Задача N31* Найти явный вид $v(\vec{p},\lambda)$ в спиральном и спинорном представлениях.

Задача N32 Показать, что для свободной частицы релятивистский оператор трехмерного спина \vec{O} коммутирует с гамильтонианом H, то есть $\left[\vec{O},\,H\right]=0.$

Задача N33* Изменится ли оператор \vec{O} , если в представлении Фолди–Вутхайзена в качестве спинового оператора выбрать не оператор $\vec{S} = -\frac{1}{2}\,\gamma^5\vec{\gamma}$ (как в лекциях), а оператор $\vec{S} = -\frac{1}{2}\,\gamma^0\gamma^5\vec{\gamma}$? Каков явный вид обоих операторов в стандартном представлении?

Задача N34 В стандартном представлении для фермионов и антифермионов найти собственные функции проекционного оператора $\left(\vec{n}\,\vec{O}\right)$, отвечающие спиральностям $\lambda=\pm 1$.

Задача N35 Используя результат Задачи N34, показать, что:

$$\chi_{-\lambda}(-\vec{n}) = i \chi_{\lambda}(\vec{n});$$

$$\chi_{\lambda}(\vec{n}) = -i (\vec{n}\vec{\sigma}) \xi_{-\lambda}(\vec{n});$$

$$\xi_{\lambda}(\vec{n}) = (-\lambda) \chi_{-\lambda}(\vec{n}).$$

Задача N36* Для суммирования по спинам фермионов получить соотношение:

$$\sum_{\lambda = \pm 1} u(\vec{p}, \lambda) \bar{u}(\vec{p}, \lambda) = \gamma^{\mu} p_{\mu} + Im.$$

Задача N37 Показать, что в отсутствии внешнего поля из уравнения $(i\gamma^{\mu}\partial_{\mu}-Im)\,\psi^{c}(x)=0$ следует урвнение $i\partial_{\mu}\bar{\psi}(x)\gamma^{\mu}+\bar{\psi}(x)m=0.$

Задача N38 Показать, что тензор энергии-импульса свободного дираковского поля имеет вид

$$T^{\mu}_{\nu}(x) = \bar{\psi}(x) i \gamma^{\mu} \partial_{\nu} \psi(x).$$

Задача N39 Вычислить импульс и заряд свободного дираковского поля в терминах произведений $a_{\vec{p},\lambda}^{\dagger}a_{\vec{p},\lambda}$ и $b_{\vec{p},\lambda}b_{\vec{p},\lambda}^{\dagger}$.

Задача N40 Получить интегральное представление для функции

$$S_{-}(x - x') = - \langle 0 | \bar{\psi}^{(+)}(x')\psi^{(-)}(x) | 0 \rangle$$

в виде:

$$S_{-}(x) = -i \left(i \gamma^{\mu} \partial_{\mu} + Im \right) \int \frac{d\vec{p}}{(2\pi)^{3}} \frac{e^{ipx}}{2\varepsilon_{p}}.$$

Задача N41 Показать, что

$$\frac{e^{-i\varepsilon_p|t|}}{2\varepsilon_p} = i \int_{-\infty}^{+\infty} \frac{dp^0}{2\pi} \frac{e^{-ip^0t}}{p^2 - m^2 + i\varepsilon}.$$

Указание: вспомнить, что $\varepsilon_p^2 = |\vec{p}|^2 + m^2$ и провести вычисления интеграла при помощи теории вычетов аналогично тому, как это было сделано для электромагнитного поля.

Задача N42* Показать, что локальные калибровочные преобразования в КЭД допускают существование паулевского взаимодействия вида

$$\mathcal{L}_{Pauli}^{int}(x) = -\mu \bar{\psi}(x) \sigma^{\mu\nu} \psi(x) F_{\mu\nu}(x)$$

наравне с взаимодействием $\bar{\psi}(x)\gamma^{\mu}\psi(x)A_{\mu}(x)$.

Задача N43* Почему не имеет никакого физического смысла калибровочное преобразование электромагнитного поля вида $\tilde{A}^{\mu}(x) = A^{\mu}(x) \, e^{i\alpha(x)}$?

 ${f 3a}$ дача ${f N44}^*$ Найти явняй вид операторов пространственной четности P и обращения времени T для спирального и спинорного представлений.

Задача N45* Прямыми вычислениями показать, что C – четность электромагнитного тока отрицательна.

Задача N46 В стандартном представлении прямым вычислением показать, что лагранжиан КЭД инвариантен относительно CP–, PT–, CT– и CPT–преобразований.

Задачи к Лекции N11

Задача N47* Показать, что для заряженной частицы с 4-импульсом p^{μ} в поле плоской электромагнитной волны с волновым вектором k^{μ} и 4-потенциалом $A^{\mu}(\varphi)$ (где $\varphi=(kx)$) классическое действие записывается в виде:

$$S = -(px) - \int_0^{\varphi} d\tilde{\varphi} \left(\frac{e(A(\tilde{\varphi})p)}{(kp)} - \frac{e^2 A^2(\tilde{\varphi})}{2(kp)} \right).$$

Задача N48 Пусть $\Psi_{\vec{p},\lambda}(x,A^{\mu}(\varphi))$ и $\Phi_{\vec{p},\lambda}(x,A^{\mu}(\varphi))$ – решения Волкова уравнения Дирака в стандартном представлении для частицы и античастицы соответственно. Найти явные выражения для $\bar{\Psi}_{\vec{p},\lambda}(x,A^{\mu}(\varphi))$ и $\bar{\Phi}_{\vec{p},\lambda}(x,A^{\mu}(\varphi))$.

Задача N49 Записать решения Волкова для частицы и античастицы в случае, если 4потенциал электромагнитного поля имеет вид $A^{\mu}(\varphi) = a^{\mu}\cos(\varphi)$ и подчиняется условию Лоренца.

Задача N50* Показать, что среднее по времени значение обобщенного импульса для решения Волкова с 4-потенциалом $A^{\mu}(\varphi) = a^{\mu}\cos(\varphi)$ равно:

$$q^{\mu} = p^{\mu} - \frac{e^2 a^2}{4(kp)} k^{\mu}.$$

 ${f 3agaya}\ {f N51}^*$ Найти точное решение уравнения Дирака в постоянном однородном магнитном поле, направленном вдоль оси z.

Указание: для решения задачи потенциал электромагнитного поля удобно выбрать в виде $A^{\mu} = (0, -Hy/2, Hx/2, 0)$ и использовать стандартное представление матриц Дирака.

Задачи к Лекциям N12-N14

Задача N52* Доказать операторную формулу:

$$e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + \frac{1}{1!} \left[\hat{A}, \hat{B} \right] + \frac{1}{2!} \left[\hat{A}, \left[\hat{A}, \hat{B} \right] \right] + \dots$$

Задача N53 Показать, что если $\hat{A}^{(S)}$ и $\hat{A}^{(H)}$ – операторы одной и тойже наблюдаемой в представлении Шредингера и представлении Гейзенберга соответственно, то собственные значения обоих операторов совпадают. Как этот факт можно объяснить с физической, а не с математической точки зрения? Верно ли утверждение задачи не только для представления Гейзенберга, но и для представления взаимодействия?

Задача N54* Доказать, что комутационные соотношения в шредингеровском и гейзенберговском представлениях имеют один и тотже вид. Изменится ли вид комутаторов в представлении взаимодействия?

Задача N55* Какое преобразование осуществляет переход от представления Гейзенберга к представлению взаимодействия? Можно ли исходя из вида такого преобразования заключить, что $\hat{V}^{(I)} = \hat{V}^{(H)}$?

Задача N56 Получить уравнения движения для оператора $\hat{A}^{(I)}$ некоторой физической величины в представлении взаимодействия.

Задача N57 Из первых принципов получить выражения для амплитуды $\langle f | S^{(1)} | i \rangle$ в случае нефизических процессов $\gamma e^- \to e^-$ и $e^+ e^- \to \gamma$. Какой множитель в амплитуде отвечает за невозможность данных процессов?

Задача N58 Из первых принципов получить выражения для амплитуды $\langle f \left| S^{(2)} \right| i \rangle$ в случае $e^+e^- \to \gamma\gamma$ и $e^+e^- \to \mu^+\mu^-$. Проверить результат, применив правила Фейнмана.

Задачи к Лекции N15

Задача N59 Пусть имеется два 4-импульса, квадраты которых $p_1^2 = m_1^2$ и $p_2^2 = m_2^2$. Показать, что выполняется следующее неравенство для скалярного произведения этих 4-векторов: $p_1^{\mu}p_{2\mu} \geq m_1m_2$.

Задача N60* Пользуясь результатами Задачи N59, найти верхние и нижние границы для мандельстамовских переменных реакции $2 \to 2$ в различных каналах. Считать, что все четыре частицы имеют *разные* массы.

Задачи к Лекциям N16-N20

Задача N61 В терминах мандельстамовских переменных s и u вычислить функцию $g(s,u,m^2)$ для комптоновского рассеяния.

P.S. Определение функции $g(s, u, m^2)$ дано в лекциях на Прозрачке N108.

Задача N62 Найти угловые распределения электронов и фотонов для эффекта Комптона в системе центра масс сталкивающихся частиц и в системе покоя начального электрона.

Задача N63* Найти выражения для полного сечения эффекта Комптона в ультрарелятивистском и нерелятивистском случаях.

Задача N64 Не пренебрегая массами электрона и мюона вычислить сечение реакции $e^-\mu^- \to e^-\mu^-.$

Задача N65 В "скалярной КЭД" найти $\pi^+\pi^+\gamma$ – вершину.

Задача N66* В рамках "скалярной КЭД" вычислить дифференциальное сечение процесса $e^+e^- \to \pi^+\pi^-$.

Задача N67* В "скалярной КЭД" написать правило Фейнмана для $\pi\pi\gamma\gamma$ – вершины.

Задача N68 Показать, что релятивистские инварианты

$$\varepsilon^{\mu\nu\alpha\beta} p_{1\beta} \varepsilon_{\mu\nu\alpha\beta'} p_2^{\beta'}$$

И

$$\varepsilon^{\mu\nu\alpha\beta}\,p_{1\,\alpha}\,p_{2\,\beta}\,\varepsilon_{\mu\nu\alpha'\beta'}\,p_1^{\alpha'}\,p_2^{\beta'}$$

выражаются через $q^2 = (p_1 - p_2)^2$ и $M^2 = p_1^2 = p_2^2$.

Задача N69* Для пиона электромагнитный формфактор в координатном представлении хорошо апроксимируется функцией вида

$$F_{\pi}(r^2) = \alpha e^{-\beta r},$$

где α и β — некоторые действительные числа. Учтя, что $\langle r_\pi^2 \rangle = (0,44\pm0,02)~{\rm фm}^2$, найти $F_\pi(q^2)$.

Задача N70* Показать, что амплитуда излучения мягкого фотона факторизуется, если в начальном и конечном состоянии находятся не фермионы (как в лекции), а бесструктурные точечные пионы "скалярной КЭД".

Задача N71* Записать глобальные и локальные калибровочные преобразования в "скалярной КЭД". Показать, что из глобальных калибровочных преобразования следуют законы сохранения электромагнитного тока и электрического заряда.

Задачи к Лекциям N21-N24

Задача N72* Показать, что дифференцирование за счет "длинной производной" $D_{\mu}(x) = \partial_{\mu} - ig_s t^a B^a_{\mu}(x)$ в КХД не меняет свойств биспинора $q_i(x)$ относительно локальных калибровочных преобразований, то есть

$$D_{\mu} \left(e^{i t^a \alpha^a(x)} q_i(x) \right) = e^{i t^a \alpha^a(x)} D_{\mu} q_i(x).$$

Задача N73* Исходя только из определения структурных констант группы SU(N) через коммутатор генераторов группы доказать, что $f^{abc}=f^{cab}=-f^{cba}$.

Задача N74* Проверить, что лагранжиан глюонного поля в КХД может быть представлен в виде:

$$\mathcal{L}^{B}(x) = -\frac{1}{2} Tr \left(G^{\mu\nu}(x) G_{\mu\nu}(x) \right),$$

где $G_{\mu\nu}(x)=\,t^a\,G^a_{\mu\nu}(x)$ и $G^a_{\mu\nu}(x)$ – тензор напряженности глюонного поля.

Задача N75* Полагая, что компоненты тензора напряженности глюонного поля выражаются через напряженности хромоэлектрического и хромомагнитного полей абсолютно аналогично тому, как компоненты тензора напряженности электромагнитного поря выражаются через напряженности электрического и магнитного полей, написать аналог уравнений Максвелла в пустоте для хромоэлектрического и хромомагнитного полей.

3адача N76* Доказать, что

$$\begin{split} d^{abk}f^{kcd} &- d^{adk}f^{kbc} - f^{ack}d^{kdb} = 0; \\ f^{abk}d^{kcd} &+ f^{adk}d^{kbc} + f^{ack}d^{kdb} = 0; \\ d^{abc}d^{cdk} &+ d^{bdc}d^{ack} + d^{adc}d^{bck} = \frac{1}{N}\left(\delta^{ab}\delta^{dk} + \delta^{ad}\delta^{bk} + \delta^{ak}\delta^{bd}\right); \\ d^{abk}d^{kcd} &- d^{adk}d^{kbc} + f^{ack}f^{kdb} = \frac{2}{N}\left(\delta^{ad}\delta^{bc} - \delta^{ab}\delta^{cd}\right); \\ d^{akm}f^{blk}f^{cml} &= -\frac{N}{2}d^{abc}; \\ d^{akm}d^{blk}f^{cml} &= ?f^{abc}; \\ d^{akm}d^{blk}d^{cml} &= -\frac{1}{2}d^{abc}; \end{split}$$

Указание: см. работу Z.Zhang and L.Chang, Nucl. Phys. **B**291, pp.392-428 (1987).

Задача N77* Написать лагранжиан и получить правила Фейнмана "скалярной КХД".

Задача N78* В рамках "скалярной КХД" (то есть предполагая, что верна теория возмущений по константе α_s) найти дифференциальное снчение реакции $gg \to q_s \bar{q}_s$, где q_s – кварк со спином ноль ("скалярный кварк", аналогичный π^{\pm} – мезонам в "скалярной КЭД").