Théorème d'HADAMARD-LÉVY

Clarence Kineider

Leçons: 203, 214, 220

Référence(s): Zuily, Queffélec, Analyse pour l'agrégation.

Théorème: Soit $f: \mathbf{R}^n \to \mathbf{R}^n$ de classe \mathcal{C}^2 . Alors f est un \mathcal{C}^2 -difféomorphisme global si et seulement si f est propre (l'image réciproque d'un compact est compacte) et $\forall x \in \mathbf{R}^n \ df(x)$ est inversible.

Démonstration: L'implication directe est immédiate.

Pour le sens réciproque, il suffit de montrer que f est bijective et on aura le résultat par le théorème de \mathcal{C}^k difféomorphisme global.

Soit $y \in \mathbf{R}^n$ et $g: x \mapsto f(x) - y$. L'application g a les mêmes propriétés que f (elle est propre, \mathcal{C}^2 et sa différentielle est partout inversible). Soit $S = \{x \in \mathbf{R}^n | g(x) = 0\}$. On va montrer que S est un singleton, on aura alors montré la bijectivité de f. Pour cela, on va utiliser une version continue de la méthode de Newton.

Soit
$$F: x \mapsto dg(x)^{-1}.g(x)$$
. Pour $q \in \mathbf{R}^n$, on pose $(E_q): \begin{cases} \forall t \geq 0, x'(t) = -F(x(t)) \\ x(0) = q \end{cases}$.

Puisque g est \mathcal{C}^2 , on a F de classe \mathcal{C}^1 , donc localement lipschitzienne. Par le théorème de Cauchy-Lipschitz, pour tout $q \in \mathbf{R}^n$ il existe une unique solution maximale à (E_q) , on la note x_q .

Montrons que pour tout $q \in \mathbf{R}^n$, x_q est globale. Soit [0, T[son intervalle de définition. Pour $t \in [0, T[$, on a

$$(g \circ x_q)'(t) = dg(x_q(t)).x'_q(t) = -g(x_q(t)).$$

Alors $g \circ x_q$ vérifie l'équation différentielle y' = -y, donc pour $t \in [0, T[$, on a $g(x_q(t)) = g(q)e^{-t}$, donc $||g(x_q(t))|| \le ||g(q)||$. Alors pour tout $t \in [0, T[$, on a $x_q(t) \in g^{-1}(\overline{B}(0, ||g(q)||))$ qui est compacte car g est propre. Par le théorème d'explosion en temps fini, on a donc $T = +\infty$.

Montrons maintenant que tous les points de S sont des équilibres asymptotiquement stables. Soit $x \in S$. On a F(x) = 0 donc x est un point d'équilibre. De plus,

$$dF(x) = d(x \mapsto dg(x)^{-1}).g(x) + dg(x)^{-1}.g(x) = Id.$$

Les valeurs propres de -dF(x) sont toutes de partie réelle strictement négative, donc par le théorème de Lyapounov, x est asymptotiquement stable. Soit $W_x = \{q \in \mathbf{R}^n | x_q(t) \underset{t \to +\infty}{\longrightarrow} x\}$ son bassin d'attraction.

Montrons que $\mathbf{R}^n = \bigsqcup_{x \in S} W_x$. Soit $q \in \mathbf{R}^n$. On a montré que la trajectoire x_q est bornée. Donc il existe $(t_k)_{k \in \mathbf{N}}$ telle que $t_k \underset{k \to +\infty}{\longrightarrow} +\infty$ et $x_q(t_k) \underset{k \to +\infty}{\longrightarrow} l \in \mathbf{R}^n$. En appliquant g à la limite précédente (on a montré que $g(x_q(t)) \underset{t \to +\infty}{\longrightarrow} 0$),

on obtient g(l) = 0, donc $l \in S$ et $q \in W_l$.

Montrons enfin que les W_x sont ouverts. Soit $x \in S$. Puisque x est asymptotiquement stable, il existe $\epsilon > 0$ tel que $B(x,\epsilon) \subset W_x$. Soit $q_0 \in W_x$ et $t_0 \ge 0$ tel que $x_{q_0}(t_0) \in B\left(x,\frac{\epsilon}{2}\right)$. Par continuité selon q de la solution à (E_q) en t_0 , il existe $\eta > 0$ tel que pour tout $q \in B(q_0,\eta), x_q(t_0) \in B(x_{q_0}(t_0),\frac{\epsilon}{2})$. Par inégalité triangulaire, on a alors $x_q(t_0) \in B(x,\epsilon)$, donc $q \in W_x$. Donc $B(q_0,\eta) \subset W_x$, donc W_x est ouvert.

On a donc $\mathbf{R}^n = \bigsqcup_{x \in S} W_x$ avec les W_x ouverts. Il y a donc au moins un élément dans S (sinon $\mathbf{R}^n = \emptyset$), et au plus un élément (sinon \mathbf{R}^n n'est pas connexe). Donc S est un singleton et le résultat est démontré.

Remarques:

- Le résultat est vrai pour f de classe C^1 seulement, la démonstration a la même structure, mais on ne peut pas utiliser Cauchy-Lipschitz pour avoir l'unicité de la solution et la continuité du flot. Il faut donc montrer tout ça à la main, et c'est long et pas facile.
- C'est un développement long, je l'ai raccourci autant que j'ai pu par rapport à la version du Zuily-Queffélec : pas besoin de montrer que S est fini, on montre directement la bijectivité plutôt que surjectif puis injectif (merci à Thomas Cavalazzi pour cette astuce!), et j'utilise le théorème de Lyapounov pour gagner un peu de temps pour montrer que les équilibres sont asymptotiquement stables.