Minimum Spanning Trees

Dr. G P Gupta

Minimum Spanning Trees

- Find a minimum-cost set of edges that connect all vertices of a graph
- Applications
 - Connect "nodes" with a minimum of "wire"
 - Networking
 - Circuit design

Minimum Spanning Trees

- Find a minimum-cost set of edges that connect all vertices of a graph
- · Applications
 - Collect nearby nodes
 - Clustering, taxonomy construction

Minimum Spanning Trees

- Find a minimum-cost set of edges that connect all vertices of a graph
- Applications
 - Approximating graphs

Minimum Spanning Trees

- · A tree is an acyclic, undirected, connected graph
- A <u>spanning tree</u> of a graph is a tree containing all vertices from the graph
- A minimum spanning tree is a spanning tree, where the sum of the weights on the tree's edges are minimal

Minimum Spanning Trees

 A minimum spanning tree is a spanning tree, where the sum of the weights on the tree's edges are minimal

Minimum Spanning Trees

- · Problem formulation
 - Given an undirected, weighted graph G=(V,E) with weights w(u,v) for each edge $(u,v)\in E$
 - Find an acyclic subset $T\subseteq E$ that connects all of the vertices V and minimizes the total weight:

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$

- The minimum spanning tree is $(V\!,T)$
 - Minimum spanning tree may be not unique (can be more than one)

Minimum Spanning Trees

- · Kruskal's Algorithms and
- · Prim's Algorithms
- Both Kruskal's and Prim's Algorithms work with undirected graphs
- Both are greedy algorithms that produce optimal solutions
 - The greedy strategy advocates making the choice that is the best at the moment

Kruskal's algorithm

 $\mathsf{MST}\text{-}\mathsf{KRUSKAL}(G,w)$

- $1 \quad A = \emptyset$
- 2 for each vertex $v \in G.V$
- 3 MAKE-SET(v)
- 4 sort the edges of G.E into nondecreasing order by weight w
- 5 for each edge $(u, v) \in G.E$, taken in nondecreasing order by weight
- 6 if FIND-SET(u) \neq FIND-SET(v)
- $A = A \cup \{(u, v)\}$
- Union(u, v)
- 9 return A

Kruskal's algorithm – Two steps:

- Sort edges by increasing edge weight
- Select the first |V| 1 edges that do not generate a cycle

Kruskal's algorithm: Example

Sort the edges by increasing edge weigh

edge	d_r	edge	d,
(D,E)	1	(B,E)	4
(D,G)	2	(B,F)	4
(E,G)	3	(B,H)	4
(C,D)	3	(A,H)	5
(G,H)	3	(D,F)	6
(C,F)	3	(A,B)	8
(B,C)	4	(A,F)	10

Kruskal's algorithm: Example

Select first |V|-1 edges which do not generate a cycle

generate a cycle							
edge	d,		edge	d_{r}	ī		
(D,E)	1	V	(B,E)	4			
(D,G)	2		(B,F)	4			
(E,G)	3		(B,H)	4	П		
(C,D)	3		(A,H)	5			
(G,H)	3		(D,F)	6			
(C,F)	3		(A,B)	8			
(B,C)	4		(A,F)	10			

Analysis of Kruskal's algorithm

• Depends on how we implement the disjointset data structure.

Kruskal's algorithm

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G, V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

Analysis of Kruskal

- Lines 1-3 (initialization): O(V)
- Line 4 (sorting): O(E lg E)
- Lines 6-8 (set-operation): O(E log E)
- Total: O(E log E)

Prim's algorithm

· Work with nodes (instead of edges)

Two steps

- · Select node with minimum distance
- Update distances of adjacent, unselected nodes

the attribute ν , key is the minimum weight of any edge connecting ν to a vertex in the tree; by convention, ν . $key=\infty$ if there is no such edge.

attribute ν . π names the parent of ν in the tree.

Prim's algorithm

```
\begin{aligned} \text{MST-PRIM}(G, w, r) \\ 1 & \text{ for } \operatorname{each} u \in G.V \\ 2 & u.key = \infty \\ 3 & u.\pi = \operatorname{NIL} \\ 4 & r.key = 0 \\ 5 & Q = G.V \\ 6 & \text{ while } Q \neq \emptyset \\ 7 & u = \operatorname{EXTRACT-MIN}(Q) \\ 8 & \text{ for } \operatorname{each} v \in G.Adj[u] \\ 9 & \text{ if } v \in Q \text{ and } w(u, v) < v.key \\ 10 & v.\pi = u \\ 11 & v.key = w(u, v) \end{aligned}
```

Prim's algorithm: Example

Prim's algorithm: Example

Prim's algorithm: Example

At the end, $\{(v, \pi[v])\}$ forms the MST.

Analysis of Prim

- Extracting the vertex from the queue: $O(\lg n)$
- For each incident edge, decreasing the key of the neighboring vertex: $O(\lg n)$ where n = |V|
- The other steps are constant time.
- The overall running time is, where e = |E|

$$T(n) = \sum_{u \in V} (\lg n + \deg(u) \lg n) = \sum_{u \in V} (1 + \deg(u)) \lg n$$

= $\lg n (n + 2e) = O((n + e) \lg n)$

Essentially same as Kruskal's: $O((n+e) \lg n)$ time