fMRI experiments

Discussion: Why do we have a brain?

Task-based vs. Task-free approaches in Cognitive Neuroscience

Finn, TICS, 2021

What are task-based paradigms?

- · Participants perform tasks or are exposed to controlled stimuli.
- Used to investigate brain activity associated with assumed cognitive processes (e.g., attention).

Strong BOLD response and thus high statistical power, simple to analyze.

Limited range of questions, unrealistic, susceptible to habituation effects.

Broad range of questions, self-paced tasks, trial-by-trial variability, less habituation.

Lower statistical power, requires more sophisticated timing and analysis.

Tasks are performed through behavior → Behavior needs to be measured!

Ways to measure behavior & physiological signals in fMRI

Button boxes & joysticks

Basic behavioral responses

Eye tracking

Gaze behavior & pupil size

Microphones

Speech

Pneumagraphic belts

Breathing

Pulse oximeter

Blood oxygenation, Heart rate

Experimental considerations

e.g., Video games

Ways to present stimuli

Screen + Mirror

Standard setup for visual stimuli

Goggles & Headphones

3D stimuli, virtual reality, sounds, narratives, music...

Vibration devices

Tactile stimuli, touch

Galvanic stimulator

Vestibular stimuli, perceived movement

Gustometers & odor stimulators

Taste, smells, flavors

Brain stimulation

Magnetic or electrical stimulation

Task-based paradigms: Different experimental philosophies

Experimental control

,Naturalistic' conditions

Example: Mapping visual receptive fields

Example question: How does the brain map space?

Stimulus: Tightly controlled content, timing, location

Instruction: Don't move, look at the red dot

Example: Similar brain activity between movie viewing, narratives, and spoken recall

Zadbood et al. 2017

Example question: What and how to we remember?

Stimulus: Visually rich, dynamic movie with narrative

Instruction: Watch the movie, tell us about it later

Task-based paradigms: Different experimental philosophies

Experimental control

- $\qquad \qquad \longleftarrow$
- Clearer result interpretation
 (e.g., Factor A explains results, <u>not</u> Factor B)
- Many simple, feasible experiments & analyses
- Easier to standardize & replicate
- Analysis assumptions met through task design (e.g., covariance of predictors)
- Constrained & artificial conditions
- Results might not generalize to real world
- Solid interpretations require many controls
- Full control of behavior neither feasible,
 nor desirable for understanding the brain

- ,Naturalistic' conditions
- Closer to real life (Ecological validity),
 with better generalizability of results
- Interactions between factors can be studied
- Discovery of unexpected phenomena more likely
- Many engaging experiments (e.g., Games)
- Measuring rather than controlling behavior
- Result interpretation more difficult
- Invites unconstrained data exploration
- Analytical challenges (e.g., colinearity, missing data...)
- MRI experiments limited in terms of "naturalism"

Task-based paradigms: Different experimental philosophies

Experimental control

,Naturalistic' conditions

Most studies are not one or the other!

Your research question determines how much experimental control is optimal!

Typical experiment (>500 papers/year!): "Lie in the scanner and fixate at a dot (or close your eyes)"

Brain activity

Bhushan et al. 2016

MRI signal while participants rest in the scanner: Signal above average | below average

Default mode network (DMN)

Buckner et al. 2008

Rest > Task

Stronger signal during rest than during tasks

Large literature on mind wandering, memory etc.

Typical experiment (>500 papers/year!): "Lie in the scanner and fixate at a dot (or close your eyes)"

Functional connectivity Brain activity Covariation? Bhushan et al. 2016 Van Essen et al. 2019 Lateral Visual 2 Somatomotor Cingulo-Opercular Dors Attn Language Medial sleepy Fronto-Parietal Auditory Default Mode vMM, pMM, OA More sleepy MRI signal while participants rest in the scanner: Signal above average | below average Correlation matrix

Seed-based functional connectivity

Revealing "functionally connected" regions Take the signal of one "seed" voxel or region, and correlate with the one of all other voxels

Parcellation based on brain-wide

"connectivity fingerprints"

Grouping voxels with similar connectivity

Network-level perspective on mental processes

Fernandez et al. 2022

Eyes closed

Comparing connectivity estimates across conditions

Important: Behavioral tracking is essential for task-based AND task-free approaches!

Example 1: "Looking at nothing" effect

"Look at this picture"

"Think of the picture"

Technically a task here, but this likely happens during rest too!

Example 2: Eye movements predict activity during rest

Extensive discussion on tasks and behavioral tracking here:

Perspective | Published: 29 July 2024

Centering cognitive neuroscience on task demands and generalization

Matthias Nau ⁽¹⁾, Alexandra C. Schmid, Simon M. Kaplan, Chris I. Baker ⁽²⁾ & Dwight J. Kravitz ⁽²⁾

Nature Neuroscience 27, 1656-1667 (2024) Cite this article

Why study rest?

- Easy to perform (e.g., no task equipment required).
- Widely applicable in special populations (e.g., patient groups, elderly, children).
- Task-evoked responses often explain shockingly little variance (<5% of total signal).
- Fertile ground for the development of data-driven analysis tools.

Common criticism

- No control or measurement of what participants experience or do.
- Often difficult interpretation of results.
- **Imaging artifacts** (e.g., caused by motion) strongly affect connectivity results.
- Functional connectivity does NOT reflect anatomical connectivity.
- Resting state results are not very predictive of behavior.

NeuroImage

Volume 235, 15 July 2021, 117963

Movie-watching outperforms rest for functional connectivity-based prediction of behavior

Emily S. Finn ° b ≥ ⊠, Peter A. Bandettini °

Task-based paradigms with data-driven (rest-inspired) analyses

Example: Inter-subject correlation (ISC)

Correlate voxel time courses <u>across participants</u>, unlike (within-participant) functional connectivity

Reveals brain activity that is shared across people, illuminating «general principles»

ISC during movie watching

There are many variants of the ISC idea out there (e.g., hyperalignment, Haxby et al. 2020)

Example: Inter-species correlation

General take-aways

- Your research question decides which experimental approach is optimal for you
- Task-based approaches offer control and better interpretability, whereas resting state
 can be great for data-driven exploration (or integrated paradigms)
- Experiments often trade-off experimental control and ecological validity
- When you give up control, you need to measure more!
- Task design and analysis go hand in hand Think about analyses when designing tasks
- Behavioral tracking can help interpret data acquired under any and all tasks

Key terms to remember

- Task-based paradigms
- Task-free paradigms (i.e. Rest)
- Integrated paradigms
- Block designs
- Event-related designs
- Behavioral tracking
- Experimental control
- Naturalistic conditions
- Ecological validity
- Resting state
- Functional connectivity
- Activity covariation
- Anatomical connectivity

- Default mode network
- Seed-based connectivity
- Inter-subject correlation

