

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Exercício Programa 2 de Cálculo Numérico (MAP3121)

Turma 2 No. USP

Lucas Haug 10773565

Renzo Armando dos Santos

10772414

Abensur

São Paulo 2020

Lucas Haug Renzo Armando dos Santos Abensur

Exercício Programa 2 de Cálculo Numérico (MAP3121)

Relatório apresentado como requisito para avaliação na disciplina MAP3121 - Métodos Numéricos e Aplicações, no curso de Engenharia Elétrica oferecido pela Escola Politécnica da Universidade de São Paulo.

Professor: Nelson Mugayar Kuhl

São Paulo

SUMÁRIO

1. Introdução	4
2. Desenvolvimento	6
2.1 Primeira tarefa	7
2.2 Segunda tarefa	8
2.3 Terceira tarefa	9
3. Testes	11
3.1 Teste a	11
3.1.1 Dados do problema	11
3.1.2 Resultados	12
3.1.2.1 Gráfico	12
3.1.2.2 Coeficiente	12
3.1.2.3 Erro Quadrático	12
3.1.3 Discussão	12
3.2 Teste b	13
3.2.1 Dados do problema	13
3.2.2 Resultados	13
3.2.2.1 Gráfico	13
3.2.2.2 Coeficientes	14
3.2.2.3 Erro Quadrático	14
3.2.3 Discussão	14
3.3 Teste c	15
3.3.1 Dados do problema	15
3.3.2 Resultados	15
3.3.2.1 Gráficos	15
3.3.2.2 Coeficientes	18
3.3.2.3 Erro Quadrático	19
3.3.3 Discussão	19
3.4 Teste d	20
3.4.1 Dados do problema	20
3.4.2 Resultados	20
3.4.2.1 Gráficos	20
3.4.2.2 Coeficientes	24
3.4.2.3 Erro Quadrático	25
3.4.3 Discussão	26
4. Conclusão	26

1. Introdução

Este relatório procura especificar a resolução encontrada para o segundo exercício programa da disciplina MAP3121 - Métodos Numéricos e Aplicações, no primeiro semestre de 2020.

O exercício programa procura, a partir do conhecimento da distribuição final da temperatura no instante T, determinar a intensidade das fontes de calor aplicadas em posições conhecidas da barra.

Para isso, foram consideradas as forçantes da seguinte forma:

$$f(t,x) = r(t) \sum_{k=1}^{nf} a_k g_h^k(x)$$
,

sendo $g_h^k(x)$ as forçantes pontuais ao longo da barra, a_k as intensidades dessas forçantes e r(t) uma função que descreve a variação temporal das forçantes que nesse exercício programa será considerada como r(t) = $10(1 + \cos(5t))$.

Devida à linearidade das equações (considerando as condições iniciais e de contorno nulas) pode ser feito o seguinte equacionamento:

$$u_T(x) = \sum_{k=1}^{nf} a_k u_k(T, x) .$$

Onde nf é o número de fontes pontuais.

Dessa forma, como $u_T(x)$ é conhecida e como as funções $u_k(T,x)$ podem ser aproximadas resolvendo-se as equações abaixo por meio do método de Crank-Nicolson, é possível determinar os coeficientes a_k com o método dos mínimos quadrados.

$$\begin{aligned} u_t(t,x) &= u_{xx}(t,x) + f(t,x) \text{ em } [0,T] \times [0,1], \\ u(0,x) &= u_0(x) \text{ em } [0,1] \\ u(t,0) &= g_1(t) \text{ em } [0,T] \\ u(t,1) &= g_2(t) \text{ em } [0,T]. \end{aligned}$$

Para a resolução do exercício programa foi elaborado em python 3, sendo separado em arquivos diferentes para melhor organizar o código.

2. Desenvolvimento

O exercício programa foi dividido em vários arquivos para facilitar a compreensão do código. Dessa forma foram feitos os seguintes arquivos:

- plotter.py → função para criar os gráficos
- crank_nicolson.py → funções relacionadas à resolução pro problema direto pelo método de Crank-Nicolson (retirado e ligeiramente alterado do EP1).
- mmq.py → funções relacionadas ao método dos mínimos quadrados, incluindo resolução de sistemas lineares necessárias para o método.
- tests.py → funções que retornam os dados específicos de cada um dos testes a, b, c e d.
- main.py \rightarrow interage com o usuário, sendo possível ser feita a escolha de qual teste se irá fazer, além de se fazer a chamada de todas as funções necessárias para o cálculo das intensidades a_k e o erro quadrático.

Dessa forma para a resolução do problema do cálculo das intensidades, primeiramente foram calculados os vetores $u_k(T,\,x_i)$ (primeira tarefa), com eles, conhecido o valor de $u_T(x_i)$, foi montado o sistema normal para o problema de mínimos quadrados (segunda tarefa), então, utilizando-se a decomposição LDL^t da matriz simétrica do sistema normal, foi resolvido o sistema linear e foram calculadas as intensidades a_k e o erro quadrático da solução.

Para o cálculo do erro quadrático foi utilizada a seguinte equação:

$$E_2 = \sqrt{\Delta x \sum_{i=1}^{N-1} \left(u_T(x_i) - \sum_{k=1}^{nf} a_k u_k(T, x_i) \right)^2}$$

Para o cálculo do erro discreto então se considerou uma função $f(x_i)$ genérica da seguinte forma:

$$f(x_i) = a_0 \cdot g_0(x_i), + a_1 \cdot g_1(x_i), + ... + a_k \cdot g_k(x_i), (i = 1, ..., N-1),$$

Dessa forma, foi feito o seguinte código onde, para o problema a ser solucionado, f_array representa os valores conhecidos da função $u_T(x_i)$, g_matrix o vetor de vetores (matriz) $u_k(T, x_i)$ e a_k as intensidades das fontes pontuais.

```
def squared_error_calculation(f_array, g_matrix, coeficients_array):
    """

Cálculo discreto do erro quadrático.
    """

num_of_xs = len(f_array)
    f_approx_array = f_approximation(g_matrix, coeficients_array)

error_sum = 0

for i in range(0, num_of_xs):
    error_sum += ((f_array[i] - f_approx_array[i])**2)

error_sum /= num_of_xs

error = np.sqrt(error_sum)
    return error
```

2.1 Primeira tarefa

Para a primeira tarefa, gerar os vetores $u_k(T, x_i)$, i = 1, ..., N - 1, foi retirado o método de Crank-Nicolson desenvolvido do EP1 e foi desenvolvida a seguinte função:

```
def generate_uk(heat_sources_positions_array, N):
    """

Gera os vetores uk(T, xi), i = 0, ..., N
    """

nf = len(heat_sources_positions_array)

uk_matrix = np.zeros((nf, N + 1))

for k in range(0, nf):
    uk_matrix[k], scale_array = solve_heat_equation(heat_sources_positions_array[k], N)

return uk_matrix, scale_array
```

Essa função resolve a equação de calor dependendo do número de fontes de calor pontuais, a partir do método de Crank-Nicolson (função solve_heat_equation), gera um vetor de vetores $u_k(T, x_i)$ (uma matriz), retornando-o.

2.2 Segunda tarefa

Para a segunda tarefa foi desenvolvida uma função genérica que dada a função

$$f(x_i) = a_0 \cdot g_0(x_i)$$
, + $a_1 \cdot g_1(x_i)$, + ... + $a_k \cdot g_k(x_i)$, (i = 1, ..., N - 1),

monta a matriz e o sistema normal do problema de mínimos quadrados para o cálculo do coeficientes $a_{{\scriptscriptstyle k}}$.

Para isso foi elaborada a seguinte função:

```
def generate_linear_system(f_array, g_matrix):
"""

Dado f(x) = a0 * g0(x) + a1 * g1(x) + ... + ak * gk(x)

Retorna a matriz A e b do sistema normal A * x = b, gerados
a partir de f(x) e os vetores g.
"""

num_of_coeficients = len(g_matrix)
a_matrix = np.zeros((num_of_coeficients, num_of_coeficients), dtype=float)
b_array = np.zeros(num_of_coeficients, dtype=float)

for k in range(0, num_of_coeficients):
   b_array[k] = np.inner(f_array, g_matrix[k])

for i in range(0, num_of_coeficients):
   for j in range(i, num_of_coeficients):
        inner_product = np.inner(g_matrix[i], g_matrix[j])
        a_matrix[i][i] = inner_product

if i != j:
        a_matrix[j][i] = inner_product
```

2.3 Terceira tarefa

Para a terceira tarefa, foi implementada a seguinte função que faz a decomposição LDL^t de uma matriz A simétrica não esparsa:

```
def matrix_decomposition(a_matrix):
  Decompõe uma matrix A simétrica em três matrizes L, D e
  Lt, retornando apenas dois vetores que representam as
  matrizes L e D.
  Aviso: A matriz A é mudada dentro da função.
  matrix_dimension = len(a_matrix)
  I_matrix = np.zeros((matrix_dimension, matrix_dimension), dtype=float)
  d_matrix = np.zeros((matrix_dimension, matrix_dimension), dtype=float)
  for f in range(0, matrix_dimension):
     # Generate L matrix
    for I in range(f, matrix_dimension):
       l_matrix[l][f] = a_matrix[l][f] / a_matrix[f][f]
    # Generate the new matrix A
    for c in range(0, matrix_dimension):
       for I in range(f + 1, matrix_dimension):
          a_matrix[l][c] = a_matrix[l][c] - l_matrix[l][f] * a_matrix[f][c]
  # Generate D matrix
  for I in range(0, matrix_dimension):
     d_{matrix[l][l]} = a_{matrix[l][l]}
  return I_matrix, d_matrix
```

Além disso foi desenvolvida a seguinte função que utiliza a decomposição LDL^t para resolver um sistema linear:

```
def solve_linear_system(a_matrix, b_array):
  Soluciona um sistema Ax = b, onde A é uma matrix simétrica.
  Para a resolução do sistema, é feita a decomposição de A para L*D*Lt.
  É feita a divisão do problema em três sistemas menores:
  L * y = b
  D * z = y
  Lt * x = z
  matrix_dimension = len(a_matrix)
  l_matrix, d_matrix = matrix_decomposition(a_matrix)
  y_array = np.zeros(matrix_dimension, dtype=float)
  y_{array}[0] = b_{array}[0]
  for I in range(1, matrix_dimension):
     y_array[l] = b_array[l]
    for m in range(0, I):
       y_array[l] = y_array[l] - y_array[m] * l_matrix[l][m]
  z_array = np.zeros(matrix_dimension, dtype=float)
  for I in range(0, matrix_dimension):
     z_array[l] = y_array[l] / d_matrix[l][l]
  # Third system solution -> Lt * x = z
  x_array = np.zeros(matrix_dimension, dtype=float)
  x_{array}[-1] = z_{array}[-1]
```

```
for I in range(matrix_dimension - 2, -1, -1):
    x_array[l] = z_array[l]

for m in range(matrix_dimension - 1, I, -1):
    x_array[l] = x_array[l] - x_array[m] * np.transpose(l_matrix)[l][m]

return x_array
```

Essa função recebe a matriz A simétrica e um vetor b para achar a solução da equação Ax = b e através da decomposição da matriz A simétrica por meio da função "matrix_decomposition" implementada acima, resolve o problema, quebrando-o em três sistemas menores para facilitar a resolução:

$$L \times y = b$$
$$D \times z = y$$
$$Lt \times x = z$$

Para então retornar o valor do vetor x que representa a solução do problema.

3. Testes

Os dados de cada teste foram organizados no arquivo tests.py, onde há uma função que retorna o valor do vetor $u_T(x_i)$, o vetor de vetores $u_k(T,\,x_i)$, os valores x_i e o valor de N utilizados para o teste escolhido.

Em todos os testes utilizaremos T = 1 e r(t) = 10(1 + cos(5t)).

3.1 Teste a

3.1.1 Dados do problema

Para o teste a foi considerado N = 128, nf = 1 e p_1 = 0.35. Além de se calcular $u_T(x_i)$ da seguinte forma:

$$u_T(x_i) = 7 \cdot u_1(T, x_i)$$

3.1.2 Resultados

3.1.2.1 Gráfico

Para o teste em questão foi obtido o seguinte gráfico de $u_T(x_i)$, sendo mostrado o valor medido e o valor calculado aproximado.

Gráfico 1 - Teste a com N = 128

3.1.2.2 Coeficiente

Para o teste a, o coeficiente 7 foi recuperado, obtendo-se precisamente 7.0.

3.1.2.3 Erro Quadrático

O erro obtido para o teste foi de 0.

3.1.3 Discussão

Para o teste a, como esperado o coeficiente obtido foi 7 e como era um sistema simples, não houveram muitos erros de aproximação, dessa forma se obteve o valor exato 7 com erro quadrático 0.

3.2 Teste b

3.2.1 Dados do problema

Para o teste b foi considerado N = 128, então foram utilizadas 4 fontes pontuais (nf = 4) sendo as posições de cada uma as seguintes: p_1 = 0.15, p_2 = 0.3, p_3 = 0.7 e p_4 = 0.8.

Além disso, o cálculo de $u_T(x_i)$ foi feito da seguinte forma:

$$u_T(x_i) = 2.3 \cdot u_1(T, x_i) + 3.7 \cdot u_2(T, x_i) + 0.3 \cdot u_3(T, x_i) + 4.2 \cdot u_4(T, x_i)$$

3.2.2 Resultados

3.2.2.1 Gráfico

Para o teste em questão foi obtido o seguinte gráfico de $u_T(x_i)$, sendo mostrado o valor medido e o valor calculado aproximado.

Gráfico 2 - Teste b com N = 128

3.2.2.2 Coeficientes

Foram obtidos os seguintes coeficientes:

Intensidades	N = 128
a_0	2.3000000000000496
a_1	3.699999999999615
a_2	0.30000000000004867
a_3	4.199999999999496

Tabela 1 - Intensidades do teste b com N = 128

3.2.2.3 Erro Quadrático

Para o teste em questão foi obtido o seguinte erro quadrático:

	N = 128
Erro	1.5499605530411918e-14

Tabela 2 - Erro quadrático do teste b com N = 128

3.2.3 Discussão

Para o problema, os coeficientes dados eram de a_0 = 2,3 , a_1 = 3,7, a_2 = 0,3 e a_3 = 4,2, fazendo-se os cálculos com o programa os coeficientes obtidos resultaram em valores um pouco diferente dos valores esperados, isso pode ser justificado visto que, durante o execução do programa, ocorrem diversos arredondamentos. Contudo, podemos verificar que o erro quadrático associado (Erro = 1,5499605530411918e-14), é relativamente pequeno, então pode-se considerar que foram recuperados os coeficientes dados para o problema. Além disso, pode-se ver no gráfico de $u_T(x_i)$ como cada uma das fontes pontuais influencia na distribuição da temperatura.

3.3 Teste c

3.3.1 Dados do problema

Para o teste c foram utilizados os dados disponibilizados no arquivo teste.txt fornecido. Além disso, foram utilizados diferentes valores de N, sendo eles 128, 256, 512, 1024 e 2048. Porém para a construção da malha foi utilizado, independente do valor de N, $\Delta x = 1/2048$.

3.3.2 Resultados

3.3.2.1 Gráficos

Para o teste em questão foram obtidos os seguintes gráficos de $u_T(x_i)$, para diferentes valores de N, sendo mostrado o valor medido e o valor calculado aproximado.

Gráfico 3 - Teste c com N = 128

Gráfico 4 - Teste c com N = 256

Gráfico 5 - Teste c com N = 512

Gráfico 6 - Teste c com N = 1024

0.6

0.8

1.0

0.4

0.2

0.0

Gráfico 7 - Teste c com N = 2048

3.3.2.2 Coeficientes

Para o teste c foram obtidos os seguintes valores das intensidades para diferentes valores de N:

Intensidades	N = 128	N = 256	N= 512	N = 1024	N = 2048
a_0	1.20912317	0.9045010343	0.928687995401	1.0072811320	0.999999999
	92041466	18792	3925	381456	4974251
a_1	4.83925871	5.0775726355	5.053708843340	4.9924435219	5.000000001
	5747438	59471	618	35543	346006
a_2	1.88724085	2.1008535954	2.043694188439	1.9858733479	1.999999991
	57555072	811185	7672	945263	242201
a_3	1.58339993	1.4141556850	1.467679034237	1.5132625788	1.500000012
	18648742	867802	7668	409024	1757147
a_4	2.21450404	2.2292450130	2.196760623033	2.1926914902	2.199999992
	62885293	542063	9065	72952	1992055
a_5	3.12129477	3.1046138569	3.091132037680	3.0951533063	3.100000004
	87756202	9006	2847	72225	782977
a_6	0.37734028	0.5094525973	0.637587121782	0.6523264491	0.599999997
	637430606	94451	3657	115244	7690007
a_7	1.49234828	1.3865087904	1.271687421732	1.2537899951	1.300000001
	81207946	549664	9952	697167	217759
a_8	3.97513880	3.9498786461	3.878094855744	3.8796670512	3.89999999
	15992326	5312	8465	795735	950573
a_9	0.40414515	0.4148931283	0.530556784760	0.5297366283	0.500000000
	36483273	302513	6538	025545	0401839

Tabela 3 - Intensidades do teste c

3.3.2.3 Erro Quadrático

Para o teste c foram obtidos os seguintes valores de erros quadráticos para diferentes valores de N:

N	Erro Quadrático
128	0.02454948827120726
256	0.0123876824149804
512	0.0084850419037757
1024	0.0037812111602405283
2048	3.6214249335228157e-06

Tabela 4 - Erros quadráticos do teste c

Gráfico 8 - Erro Quadrático do teste c em escala logarítmica

3.3.3 Discussão

Fazendo-se os cálculos, dos coeficientes a_0 a a_9 obtidos pelos valores dados para o teste c, percebe-se que com o aumento do número N o valores de a_0 a

 a_9 tendem a variar, porém tendendo para um número, além de diminuir o erro quadrático resultante.

Além disso, percebe-se que até N = 1024, ao se dobrar o valor do N, o valor do erro diminui duas vezes, porém, ao se utilizar N = 2048, o erro diminui drasticamente, chegando a valores de ordem de grandeza muito pequenos, podendo se dizer que os coeficientes das intensidades das fontes pontuais foram praticamente recuperados. Dessa maneira com o N = 2048 podemos verificar o valores de a_0 a a_9 com o menor erro (3.6214249335228157e-06).

Olhando-se os gráficos também, pode-se ver picos de intensidade nas posições de cada uma das fontes, podendo-se ver como cada uma delas contribui para a distribuição final de temperatura.

3.4 Teste d

3.4.1 Dados do problema

Para o teste d se utilizou os mesmo dados do teste c, porém se teve a introdução de ruído nos dados. Para isso cada valor de $u_T(x_i)$ foi multiplicado por (1 + r * ϵ) com ϵ = 0.01 e r um número randômico entre -1 e 1.

3.4.2 Resultados

3.4.2.1 Gráficos

Para o teste em questão foram obtidos os seguintes gráficos de $u_T(x_i)$, para diferentes valores de N, sendo mostrado o valor medido e o valor calculado aproximado.

Gráfico 9 - Teste d com N = 128

Gráfico 10 - Teste d com N = 256

Gráfico 11 - Teste d com N = 512

Gráfico 12 - Teste d com N = 1024

Gráfico 13 - Teste d com N = 2048

3.4.2.2 Coeficientes

Para o teste c foram obtidos os seguintes valores das intensidades para diferentes valores de N:

Intensidades	N = 128	N = 256	N = 512	N = 1024	N = 2048
a_0	1.204692765	0.837289338	0.987815091	1.0729881673	0.96596529942
	0712487	0522903	9591802	893633	90262
a_1	4.769597419	5.194408471	5.012869427	4.9408225387	5.05838922823
	108453	146296	378172	772085	357
a_2	1.882915262	2.069683839	1.903014221	1.9655148921	1.93752083953
	8819643	298919	5216879	169356	06034
a_3	1.733843720	1.378896936	1.608617522	1.5245601336	1.53895063694
	2982764	5607349	686563	553776	24133
a_4	2.006913671	2.195417367	2.139065658	2.2109704246	2.21090122835
	3108247	4055353	2477465	86664	01555
a_5	3.277295694	3.229055599	3.198746824	3.0637753778	3.05947586966
	5725347	70177	938859	394687	67244
a_6	0.442567152	0.369621728	0.609526628	0.7611281280	0.68103518571
	8787132	4377943	8152521	683329	0432
a_7	1.340038528	1.453260447	1.196061625	1.1572746890	1.24695644654
	6258274	050182	298448	322403	16578
a_8	4.023978825	3.993554776	3.928029087	3.9150923586	3.91836154422
	8021045	12961	144553	50008	3834
a_9	0.421245170	0.361229678	0.508871153	0.4935130224	0.48273808900
	09434365	7245346	0737177	153365	082815

Tabela 5 - Intensidades do teste d

3.4.2.3 Erro Quadrático

Para o teste c foram obtidos os seguintes valores de erros quadráticos para diferentes valores de N:

N	Erro Quadrático
128	0,09747232473795191
256	0,09942841368817505
512	0,09944421369275477
1024	0,10555015880944923
2048	0,10247095936636426

Tabela 6 - Erros quadráticos do teste d

Gráfico 14 - Erro Quadrático do teste d em escala logarítmica

3.4.3 Discussão

Fazendo-se os cálculos para o teste d, percebe-se que os coeficientes a_0 a a_9 obtidos são muito próximos dos obtidos com o teste c, porém com um erro relativamente muito maior, sendo o maior erro do teste c quatro vezes maior que o menor erro do teste d.

Além disso, podemos verificar que ao contrário do que o ocorre com o teste c, com o aumento do N o erro quadrático tende a aumentar, isso se deve principalmente devido ao acréscimo do ruído ao teste d, uma vez que com o aumento do N também há um aumento do ruído gerado.

Olhando-se os gráficos, é possível ver a forma como o ruído influencia na temperatura medida, fazendo-a oscilar, porém pode-se ver picos de intensidade nas posições de cada uma das fontes, assim como no teste c.

4. Conclusão

Após a implementação do exercício programa e observação do seu comportamento nos testes a, b, c, e d. Podemos concluir que é possível encontrar os valores de dos coeficientes a_0 a a_9 através do métodos dos mínimos quadráticos.

Além disso podemos observar pelos testes dos itens c que com o aumento o N temos uma diminuição do erro quadrático dos coeficientes, contudo pelo teste d podemos verificar que ao adicionarmos um ruído ao sistema, representando um erro na medição da temperatura, o erro quadrático sofre o comportamento contrário do esperado pelos teste c, uma vez que, com o aumento do N o erro também aumenta ligeiramente, por tanto devemos levar este fator em consideração, quando analisarmos o comportamento de da distribuição da temperatura no espaço.