Categories

December 27, 2023

Create tags (see [MSE 350788] for some of these):

- 1. ??
- 2. ??
- 3. ??
- 4. ??
- 5. ??
- 6. ??
- 7. ??
- 8. write material on sections and retractions
- 9. define bicategory Adj(C)
- 10. https://www.google.com/search?q=category+of+categories+is+no t+locally+cartesian+closed
- 11. https://math.stackexchange.com/questions/2864916/are-there-i
 mportant-locally-cartesian-closed-categories-that-actually-a
 re-not-ca
- 12. Cats is not locally Cartesian closed: f^* does have a left adjoint (the proof for fibred sets seems to apply for any category with pullbacks), but does not have a right adjoint, as proved in example 1.7 of https://sinhp.github.io/files/CT/notes_on_lcccs.pdf
- 13. internal **Hom** in categories of co/Cartesian fibrations

Contents 2

14.	https://mathoverflow.net/questions/460146/universal-propert
	y-of-isbell-duality

- 15. http://www.tac.mta.ca/tac/volumes/36/12/36-12abs.html
- 16. Cartesian closed categories and locally Cartesian closed categories
 - (a) https://ncatlab.org/nlab/show/locally+cartesian+closed+f unctor
 - (b) https://ncatlab.org/nlab/show/cartesian+closed+functor
 - (c) https://ncatlab.org/nlab/show/locally+cartesian+closed+c ategory
 - (d) https://ncatlab.org/nlab/show/Frobenius+reciprocity
- 17. https://math.stackexchange.com/questions/3657046/the-inverse -of-a-natural-isomorphism-is-a-natural-isomorphism to justify adjunctions via homs
- 18. https://ncatlab.org/nlab/show/enrichment+versus+internalisation
- 19. https://mathoverflow.net/questions/382239/proof-that-a-carte sian-category-is-monoidal

Contents

1	Categories			
	1.1	Foundations	4	
	1.2	Examples of Categories	6	
	1.3	Subcategories	9	
	1.4	Skeletons of Categories	10	
	1.5	Precomposition and Postcomposition	10	
	1.0			
2	The	e Quadruple Adjunction With Sets	12	
2	The 2.1	e Quadruple Adjunction With Sets	12	
2	The 2.1 2.2	e Quadruple Adjunction With Sets	12 12 14	
2	The 2.1 2.2 2.3	e Quadruple Adjunction With Sets	12 12 14 14	
2	The 2.1 2.2 2.3 2.4	Connected Components of Categories Sets of Connected Components of Categories	12 12 14 14 16	

Contents 3

3	Gro	oupoids	19
	3.1	Foundations	19
	3.2	The Groupoid Completion of a Category	19
	3.3	The Core of a Category	22
4	Fur	nctors	2 5
	4.1	Foundations	25
	4.2	Faithful Functors	28
	4.3	Full Functors	29
	4.4	Fully Faithful Functors	30
	4.5	Essentially Surjective Functors	30
	4.6	Conservative Functors	30
	4.7	Equivalences of Categories	31
	4.8	Isomorphisms of Categories	34
	4.9	The Natural Transformation Associated to a Functor	34
5	Nat	tural Transformations	36
	5.1	Foundations	36
	5.2	Vertical Composition of Natural Transformations	38
	5.3	Horizontal Composition of Natural Transformations	41
	5.4	Properties of Natural Transformations	45
	5.5	Natural Isomorphisms	46
6	Cat	egories of Categories	48
	6.1	Functor Categories	48
	6.2	The Category of Categories and Functors	51
	6.3	The 2-Category of Categories, Functors, and Natural Transfor-	
m	ation	S	52
	6.4	The Category of Groupoids	53
	6.5	The 2-Category of Groupoids	53
7	Mis	scellany	5 3
	7.1	Concrete Categories	53
	7.2	Balanced Categories	53
	7.3	Monoid Actions on Objects of Categories	
	7.4	Group Actions on Objects of Categories	54
8	Mis	scellany on Presheaves	54
	8.1	Limits and Colimits of Presheaves	54
	8 2	Injective and Surjective Morphisms of Presheaves	55

		Subpresheaves The Image Presheaf	
A	Oth	ner Chapters	59

1 Categories

1.1 Foundations

Definition 1.1.1.1. A category $(C, \circ^C, \mathbb{F}^C)$ consists of 1,2

- Objects. A class Obj(C) of **objects**;
- Morphisms. For each $A, B \in \text{Obj}(C)$, a class $\text{Hom}_C(A, B)$, called the class of morphisms of C from A to B;
- Identities. For each $A \in \text{Obj}(\mathcal{C})$, a map of sets

$$\mathbb{F}_A^C \colon \mathrm{pt} \to \mathrm{Hom}_C(A,A),$$

called the **unit map of** C **at** A, determining a morphism

$$id_A : A \to A$$

of C, called the **identity morphism of** A;

• Composition. For each $A, B, C \in \text{Obj}(C)$, a map of sets

$$\circ_{A,B,C}^{\mathcal{C}} \colon \mathrm{Hom}_{\mathcal{C}}(B,C) \times \mathrm{Hom}_{\mathcal{C}}(A,B) \to \mathrm{Hom}_{\mathcal{C}}(A,C),$$

called the **composition map of** C **at** (A, B, C);

such that the following conditions are satisfied:

Further Notation: We also write C(A, B) for $Hom_C(A, B)$.

² Further Notation: We write Mor(C) for the class of all morphisms of C.

1.1 Foundations 5

1. Associativity. The diagram

commutes, i.e. for each composable triple (f, g, h) of morphisms of C, we have

$$(f\circ g)\circ h=f\circ (g\circ h).$$

2. Left Unitality. The diagram

$$\begin{array}{c|c} \operatorname{pt} \times \operatorname{Hom}_{\mathcal{C}}(A,B) \\ & \stackrel{\lambda_{\operatorname{Hom}_{\mathcal{C}}(A,B)}}{\nearrow} \end{array} & \stackrel{\lambda_{\operatorname{Hom}_{\mathcal{C}}(A,B)}}{\nearrow} \\ \operatorname{Hom}_{\mathcal{C}}(B,B) \times \operatorname{Hom}_{\mathcal{C}}(A,B) & \xrightarrow{\circ^{\mathcal{C}}_{A,B,B}} \operatorname{Hom}_{\mathcal{C}}(A,B) \end{array}$$

commutes, i.e. for each morphism $f \colon A \to B$ of \mathcal{C} , we have

$$id_B \circ f = f$$
.

3. Right Unitality. The diagram

$$\begin{array}{c} \operatorname{Hom}_{\mathcal{C}}(A,B) \times \operatorname{pt} \\ \\ \operatorname{id}_{\operatorname{Hom}_{\mathcal{C}}(A,B)} \times \mathbb{F}_{A}^{\mathcal{C}} \\ \end{array} \downarrow \begin{array}{c} \rho^{\mathsf{Sets}}_{\operatorname{Hom}_{\mathcal{C}}(A,B)} \\ \\ \sim \\ \\ \operatorname{Hom}_{\mathcal{C}}(A,B) \times \operatorname{Hom}_{\mathcal{C}}(A,A) \xrightarrow{\circ^{\mathcal{C}}_{A,A,B}} \operatorname{Hom}_{\mathcal{C}}(A,B) \end{array}$$

commutes, i.e. for each morphism $f: A \to B$ of \mathcal{C} , we have

$$f \circ id_A = f$$
.

Definition 1.1.1.2. Let κ be a regular cardinal. A category $\mathcal C$ is

- 1. Locally small if, for each $A, B \in \mathrm{Obj}(\mathcal{C})$, the class $\mathrm{Hom}_{\mathcal{C}}(A, B)$ is a set.
- 2. Locally essentially small if, for each $A, B \in \text{Obj}(\mathcal{C})$, the class

$$\operatorname{Hom}_{\mathcal{C}}(A,B)/\{\text{isomorphisms}\}$$

is a set.

- 3. Small if C is locally small and Obj(C) is a set.
- 4. κ -Small if C is locally small, $\mathrm{Obj}(C)$ is a set, and we have $\#\mathrm{Obj}(C) < \kappa$.

1.2 Examples of Categories

Example 1.2.1.1. The punctual category³ is the category pt where

• Objects. We have

$$Obj(\mathsf{pt}) \stackrel{\text{def}}{=} \{\star\};$$

• Morphisms. The unique Hom-set of pt is defined by

$$\operatorname{Hom}_{\mathsf{pt}}(\star,\star) \stackrel{\scriptscriptstyle \operatorname{def}}{=} \{\operatorname{id}_{\star}\};$$

• *Identities*. The unit map

$$\mathbb{F}^{\mathsf{pt}}_{\star} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathsf{pt}}(\star, \star)$$

of pt at \star is defined by

$$\mathrm{id}_{\star}^{\mathsf{pt}} \stackrel{\mathrm{def}}{=} \mathrm{id}_{\star};$$

• Composition. The composition map

$$\circ_{\star,\star,\star}^{\mathsf{pt}} \colon \mathrm{Hom}_{\mathsf{pt}}(\star,\star) \times \mathrm{Hom}_{\mathsf{pt}}(\star,\star) \to \mathrm{Hom}_{\mathsf{pt}}(\star,\star)$$

of pt at (\star, \star, \star) is given by the bijection pt \times pt \cong pt.

³Further Terminology: Also called the **singleton category**.

Example 1.2.1.2. We have an isomorphism of categories⁴

$$\mathsf{Mon} \cong \mathsf{pt} \underset{\mathsf{Sets}}{\times} \mathsf{Cats}, \qquad \begin{matrix} \mathsf{Mon} \longrightarrow \mathsf{Cats} \\ & & & \\ & & & \\ & \mathsf{pt} \xrightarrow{} \boxed{[\mathsf{pt}]} \mathsf{Sets} \end{matrix}$$

via the delooping functor B: Mon \rightarrow Cats of ?? of ??.

Proof. Omitted. \Box

Example 1.2.1.3. The **empty category** is the category \emptyset_{cat} where

• Objects. We have

$$\mathrm{Obj}(\emptyset_{\mathsf{cat}}) \stackrel{\scriptscriptstyle\mathrm{def}}{=} \emptyset;$$

• Morphisms. We have

$$\operatorname{Mor}(\emptyset_{\mathsf{cat}}) \stackrel{\mathrm{def}}{=} \emptyset;$$

• Identities and Composition. Having no objects, \emptyset_{cat} has no unit nor composition maps.

Example 1.2.1.4. The *n*th ordinal category is the category \ltimes where⁵

• Objects. We have

$$Obj(\ltimes) \stackrel{\text{def}}{=} \{ [0], \dots, [n] \};$$

$$\mathsf{Mon}_{\mathsf{2-disc}} \cong \mathsf{pt}_{\mathsf{bi}} \underset{\mathsf{Sets}_{\mathsf{2-disc}}}{\times} \mathsf{Cats}_{\mathsf{2},*}, \qquad \begin{matrix} & \mathsf{Mon}_{\mathsf{2-disc}} \to \mathsf{Cats}_{\mathsf{2},*} \\ & & & & \\ & & \downarrow & & \\ & & \mathsf{pt}_{\mathsf{bi}} \xrightarrow{} \mathsf{[pt]} \mathsf{Sets}_{\mathsf{2-disc}} \end{matrix}$$

between the discrete 2-category $\mathsf{Mon}_{2-\mathsf{disc}}$ on Mon and the 2-category of pointed categories with one object.

⁵In other words, κ is the category associated to the poset

$$[0] \rightarrow [1] \rightarrow \cdots \rightarrow [n-1] \rightarrow [n].$$

The category \ltimes for $n \geq 2$ may also be defined in terms of $\not\vdash$ and joins: we have isomorphisms

⁴This can be enhanced to an isomorphism of 2-categories

• Morphisms. For each $[i], [j] \in \text{Obj}(\ltimes)$, we have

$$\operatorname{Hom}_{\ltimes}([i],[j]) \stackrel{\text{def}}{=} \begin{cases} \left\{ \operatorname{id}_{[i]} \right\} & \text{if } [i] = [j], \\ \left\{ [i] \to [j] \right\} & \text{if } [j] < [i], \\ \emptyset & \text{if } [j] > [i]; \end{cases}$$

• *Identities.* For each $[i] \in \text{Obj}(\ltimes)$, the unit map

$$\mathbb{F}_{[i]}^{\ltimes} \colon \mathrm{pt} \to \mathrm{Hom}_{\ltimes}([i],[i])$$

of \ltimes at [i] is defined by

$$\mathrm{id}_{[i]}^{\ltimes}\stackrel{\mathrm{def}}{=}\mathrm{id}_{[i]};$$

• Composition. For each $[i],[j],[k]\in \mathrm{Obj}(\ltimes),$ the composition map

$$\circ_{[i],[j],[k]}^{\ltimes} \colon \mathrm{Hom}_{\ltimes}([j],[k]) \times \mathrm{Hom}_{\ltimes}([i],[j]) \to \mathrm{Hom}_{\ltimes}([i],[k])$$

of \ltimes at ([i],[j],[k]) is defined by

$$id_{[i]} \circ id_{[i]} = id_{[i]},$$

 $([j] \to [k]) \circ ([i] \to [j]) = ([i] \to [k]).$

Example 1.2.1.5. Here we list all the other categories that appear throughout this work.

• The category Sets_{*} of pointed sets of Pointed Sets, ??.

of categories

$$\begin{aligned}
\mathbb{F} &\cong \mathbb{F} \star \mathbb{F}, \\
\mathbb{F} &\cong \mathbb{F} \star \mathbb{F} \\
&\cong (\mathbb{F} \star \mathbb{F}) \star \mathbb{F}, \\
\mathbb{F} &\cong \mathbb{F} \star \mathbb{F} \\
&\cong (\mathbb{F} \star \mathbb{F}) \star \mathbb{F} \\
&\cong (\mathbb{F} \star \mathbb{F}) \star \mathbb{F}, \\
\mathbb{F} &\cong \mathbb{F} \star \mathbb{F} \\
&\cong (\mathbb{F} \star \mathbb{F}) \star \mathbb{F}, \\
&\cong (\mathbb{F} \star \mathbb{F}) \star \mathbb{F} \\
&\cong ((\mathbb{F} \star \mathbb{F}) \star \mathbb{F}) \star \mathbb{F}, \\
&\cong ((\mathbb{F} \star \mathbb{F}) \star \mathbb{F}) \star \mathbb{F}, \\
&\cong ((\mathbb{F} \star \mathbb{F}) \star \mathbb{F}) \star \mathbb{F}, \\
&\cong (\mathbb{F} \star$$

and so on.

- The category Rel of sets and relations of Relations, ??.
- The category $\mathsf{Span}(A,B)$ of spans from a set A to a set B of Spans, \ref{Spans} ?
- The category $\mathsf{ISets}(K)$ of K-indexed sets of Indexed Sets, ??.
- The category ISets of indexed sets of Indexed Sets, ??.
- The category FibSets(K) of K-fibred sets of Fibred Sets, ??.
- The category FibSets of fibred sets of Fibred Sets, ??.

1.3 Subcategories

Let C be a category.

Definition 1.3.1.1. A **subcategory** of C is a category \mathcal{A} satisfying the following conditions:

- 1. Objects. We have $Obj(\mathcal{A}) \subset Obj(\mathcal{C})$.
- 2. Morphisms. For each $A, B \in \text{Obj}(\mathcal{A})$, we have

$$\operatorname{Hom}_{\mathcal{A}}(A,B) \subset \operatorname{Hom}_{\mathcal{C}}(A,B).$$

3. *Identities*. For each $A \in \text{Obj}(\mathcal{A})$, we have

$$\mathbb{F}_A^{\mathcal{A}} = \mathbb{F}_A^{\mathcal{C}}$$
.

4. Composition. For each $A, B, C \in \text{Obj}(\mathcal{A})$, we have

$$\circ_{A,B,C}^{\mathcal{R}} = \circ_{A,B,C}^{\mathcal{C}}.$$

Definition 1.3.1.2. A subcategory \mathcal{A} of C is **full** if the canonical inclusion functor $\mathcal{A} \to C$ is full, i.e. if, for each $A, B \in \text{Obj}(\mathcal{A})$, the inclusion

$$\iota_{A,B} \colon \operatorname{Hom}_{\mathcal{A}}(A,B) \hookrightarrow \operatorname{Hom}_{\mathcal{C}}(A,B)$$

is surjective (and thus bijective).

Definition 1.3.1.3. A subcategory \mathcal{A} of a category C is **strictly full** if it satisfies the following conditions:

1. Fullness. The subcategory \mathcal{A} is full.

2. Closedness Under Isomorphisms. The class $\mathrm{Obj}(\mathcal{A})$ is closed under isomorphisms.⁶

Definition 1.3.1.4. A subcategory \mathcal{A} of C is wide⁷ if $Obj(\mathcal{A}) = Obj(C)$.

1.4 Skeletons of Categories

Definition 1.4.1.1. A⁸ **skeleton** of a category C is a full subcategory Sk(C) with one object from each isomorphism class of objects of C.

Definition 1.4.1.2. A category C is skeletal if $C \cong Sk(C)$.

Proposition 1.4.1.3. Let C be a category.

- 1. Existence. Assuming the axiom of choice, $\mathsf{Sk}(C)$ always exists.
- 2. Pseudofunctoriality. The assignment $C \mapsto \mathsf{Sk}(C)$ defines a pseudofunctor

$$\mathsf{Sk} \colon \mathsf{Cats}_2 \to \mathsf{Cats}_2.$$

- 3. Uniqueness Up to Equivalence. Any two skeletons of C are equivalent.
- 4. Inclusions of Skeletons Are Equivalences. The inclusion

$$\iota_C \colon \mathsf{Sk}(C) \hookrightarrow C$$

of a skeleton of C into C is an equivalence of categories.

Proof. Item 1, Existence: See [nLab23, Section "Existence of Skeletons of Categories"].

Item 2, Pseudofunctoriality: See [nLab23, Section "Skeletons as an Endo-Pseudofunctor on Cat"].

Item 3, Uniqueness Up to Equivalence: Clear.

Item 4, Inclusions of Skeletons Are Equivalences: Clear.

1.5 Precomposition and Postcomposition

Let C be a category and let $A, B, C \in \text{Obj}(C)$.

⁶That is, given $A \in \text{Obj}(\mathcal{A})$ and $C \in \text{Obj}(\mathcal{C})$, if $C \cong A$, then $C \in \text{Obj}(\mathcal{A})$.

⁷Further Terminology: Also called **lluf**.

⁸Due to Item 3 of Proposition 1.4.1.3, we often refer to any such full subcategory Sk(C) of C as the skeleton of C.

 $^{^9}$ That is, C is **skeletal** if isomorphic objects of C are equal.

Definition 1.5.1.1. Let $f: A \to B$ and $g: B \to C$ be morphisms of C.

• The precomposition function associated to f is the function

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, C) \to \operatorname{Hom}_{\mathcal{C}}(A, C)$$

defined by

$$f^*(\phi) \stackrel{\text{def}}{=} \phi \circ f$$

for each $\phi \in \text{Hom}_{\mathcal{C}}(B, \mathcal{C})$.

• The postcomposition function associated to g is the function

$$g_* \colon \operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{C}}(A, C)$$

defined by

$$g_*(\phi) \stackrel{\text{def}}{=} g \circ \phi$$

for each $\phi \in \text{Hom}_{\mathcal{C}}(A, B)$.

Proposition 1.5.1.2. Let $A, B, C, D \in \text{Obj}(C)$ and let $f: A \to B$ and $g: B \to C$ be morphisms of C.

1. Interaction Between Precomposition and Postcomposition. We have

$$g_* \circ f^* = f^* \circ g_*, \qquad f^* \downarrow \qquad \qquad \downarrow_{f^*} \downarrow \\ \operatorname{Hom}_{\mathcal{C}}(A, C) \xrightarrow{g_*} \operatorname{Hom}_{\mathcal{C}}(A, D).$$

2. Interaction With Composition I. We have

$$(g \circ f)^* = f^* \circ g^*,$$

$$(g \circ f)^* = f^* \circ g^*,$$

$$(g \circ f)_* \longrightarrow \text{Hom}_{\mathcal{C}}(X, B)$$

$$\text{Hom}_{\mathcal{C}}(X, C),$$

$$\text{Hom}_{\mathcal{C}}(C, X) \xrightarrow{g^*} \text{Hom}_{\mathcal{C}}(B, X)$$

$$(g \circ f)_* = g_* \circ f_*,$$

$$(g \circ f)^* \longrightarrow \text{Hom}_{\mathcal{C}}(A, X).$$

3. Interaction With Composition II. We have

$$\operatorname{pt} \xrightarrow{[g]} \operatorname{Hom}_{\mathcal{C}}(A,B) \qquad \operatorname{pt} \xrightarrow{[g]} \operatorname{Hom}_{\mathcal{C}}(B,C)$$

$$\downarrow^{g_{*}} \qquad [g \circ f] = g_{*} \circ [f], \qquad \downarrow^{f^{*}}$$

$$\downarrow^{g_{*}} \qquad [g \circ f] = f^{*} \circ [g], \qquad \operatorname{Hom}_{\mathcal{C}}(A,C)$$

$$\operatorname{Hom}_{\mathcal{C}}(A,C)$$

4. Interaction With Composition III. We have

$$f^* \circ \circ_{A,B,C}^{\mathcal{C}} = \circ_{X,B,C}^{\mathcal{C}} \circ (f^* \times \operatorname{id}), \qquad \lim_{\operatorname{id} \times f^*} \downarrow \qquad \qquad \downarrow_{f^*} \downarrow \qquad \downarrow_{f^*} \downarrow \qquad \downarrow_{f^*} \downarrow \qquad \qquad \downarrow_{f^*} \downarrow \qquad \qquad \downarrow_{f^*} \downarrow \qquad \downarrow_{$$

5. Interaction With Identities. We have

$$(\mathrm{id}_A)^* = \mathrm{id}_{\mathrm{Hom}_C(A,B)},$$

$$(\mathrm{id}_B)_* = \mathrm{id}_{\mathrm{Hom}_C(A,B)}.$$

Proof. Item 1, Interaction Between Precomposition and Postcomposition: Clear.

Item 2, Interaction With Composition I: Clear.

Item 3, Interaction With Composition II: Clear.

Item 4, Interaction With Composition III: Clear.

Item 5, Interaction With Identities: Clear.

2 The Quadruple Adjunction With Sets

2.1 Statement

Let C be a category.

2.1 Statement 13

Proposition 2.1.1.1. We have a quadruple adjunction

$$(\pi_0 \dashv (-)_{\mathsf{disc}} \dashv \mathsf{Obj} \dashv (-)_{\mathsf{indisc}})$$
: Sets \bot $\mathsf{Cats},$ Obj \bot $\mathsf{Cats},$

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathsf{Sets}}(\pi_0(\mathcal{C}), X) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C}, X_{\mathsf{disc}}),$$

 $\operatorname{Hom}_{\mathsf{Cats}}(X_{\mathsf{disc}}, \mathcal{C}) \cong \operatorname{Hom}_{\mathsf{Sets}}(X, \operatorname{Obj}(\mathcal{C})),$
 $\operatorname{Hom}_{\mathsf{Sets}}(\operatorname{Obj}(\mathcal{C}), X) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C}, X_{\mathsf{indisc}}),$

natural in $C \in \text{Obj}(\mathsf{Cats})$ and $X \in \text{Obj}(\mathsf{Sets})$, where

• The functor

$$\pi_0 \colon \mathsf{Cats} \to \mathsf{Sets},$$

the **connected components functor**, is the functor sending a category to its set of connected components of Definition 2.3.1.1.

• The functor

$$(-)_{\sf disc} \colon \mathsf{Sets} \to \mathsf{Cats},$$

the **discrete category functor**, is the functor sending a set to its associated discrete category of Definition 2.5.1.1.

• The functor

Obj: Cats
$$\rightarrow$$
 Sets,

the **object functor**, is the functor sending a category to its set of objects.

• The functor

$$(-)_{\mathsf{indisc}} \colon \mathsf{Sets} \to \mathsf{Cats},$$

the **indiscrete category functor**, is the functor sending a set to its associated indiscrete category of Definition 2.6.1.1.

Proof. Omitted. \Box

2.2 Connected Components of Categories

Let C be a category.

Definition 2.2.1.1. A **connected component** of C is a full subcategory I of C satisfying the following conditions:¹⁰

- 1. Non-Emptiness. We have $Obj(I) \neq \emptyset$.
- 2. Connectedness. There exists a zigzag of arrows between any two objects of \mathcal{I} .

2.3 Sets of Connected Components of Categories

Let C be a category.

Definition 2.3.1.1. The set of connected components of C is the set $\pi_0(C)$ whose elements are the connected components of C.

Proposition 2.3.1.2. Let C be a category.

1. Functoriality. The assignment $C \mapsto \pi_0(C)$ defines a functor

$$\pi_0 \colon \mathsf{Cats} \to \mathsf{Sets}.$$

2. Adjointness. We have a quadruple adjunction

$$(\pi_0\dashv(-)_{\mathsf{disc}}\dashv\mathrm{Obj}\dashv(-)_{\mathsf{indisc}})$$
: Sets $(-)_{\mathsf{indisc}}$ Cats $(-)_{\mathsf{indisc}}$

3. Interaction With Groupoids. If C is a groupoid, then we have an isomorphism of categories

$$\pi_0(\mathcal{C}) \cong \mathrm{K}(\mathcal{C}),$$

where K(C) is the set of isomorphism classes of C of ??.

The other words, a **connected component** of C is an element of the set $\mathrm{Obj}(C)/\sim$ with \sim the equivalence relation generated by the relation \sim' obtained by declaring $A \sim' B$ iff there exists a morphism of C from A to B.

4. Preservation of Colimits. The functor π_0 of Item 1 preserves colimits. In particular, we have bijections of sets

$$\pi_0(C \coprod \mathcal{D}) \cong \pi_0(C) \coprod \pi_0(\mathcal{D}),$$

$$\pi_0(C \coprod_{\mathcal{E}} \mathcal{D}) \cong \pi_0(C) \coprod_{\pi_0(\mathcal{E})} \pi_0(\mathcal{D}),$$

$$\pi_0\left(\operatorname{CoEq}\left(C \overset{F}{\underset{G}{\Longrightarrow}} \mathcal{D}\right)\right) \cong \operatorname{CoEq}\left(\pi_0(C) \overset{\pi_0(F)}{\underset{\pi_0(G)}{\Longrightarrow}} \pi_0(\mathcal{D})\right),$$

natural in $C, \mathcal{D}, \mathcal{E} \in \text{Obj}(\mathsf{Cats})$.

5. Symmetric Strong Monoidality With Respect to Coproducts. The connected components functor of Item 1 has a symmetric strong monoidal structure

$$\left(\pi_0, \pi_0^{\coprod}, \pi_{0|\mathbb{K}}^{\coprod}\right) \colon (\mathsf{Cats}, \coprod, \emptyset_{\mathsf{cat}}) \to (\mathsf{Sets}, \coprod, \emptyset),$$

being equipped with isomorphisms

$$\pi_{0|C,\mathcal{D}}^{\coprod} \colon \pi_0(C) \coprod \pi_0(\mathcal{D}) \xrightarrow{\cong} \pi_0(C \coprod \mathcal{D}),$$
$$\pi_{0|\mathcal{F}}^{\coprod} \colon \emptyset \xrightarrow{\cong} \pi_0(\emptyset_{\mathsf{cat}}),$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$.

6. Symmetric Strong Monoidality With Respect to Products. The connected components functor of Item 1 has a symmetric strong monoidal structure

$$(\pi_0, \pi_0^{\otimes}, \pi_{0|\mathbb{F}}^{\otimes}) \colon (\mathsf{Cats}, \times, \mathsf{pt}) \to (\mathsf{Sets}, \times, \mathsf{pt}),$$

being equipped with isomorphisms

$$\pi_{0|C,\mathcal{D}}^{\otimes} \colon \pi_0(C) \times \pi_0(\mathcal{D}) \xrightarrow{\cong} \pi_0(C \times \mathcal{D}),$$
$$\pi_{0|\mathcal{F}}^{\otimes} \colon \mathrm{pt} \xrightarrow{\cong} \pi_0(\mathsf{pt}),$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 2.1.1.1.

Item 3, Interaction With Groupoids: Clear.

Item 4, Preservation of Colimits: This follows from Item 2 and ?? of ??.

Item 5, Symmetric Strong Monoidality With Respect to Coproducts: Omitted.

Item 6, Symmetric Strong Monoidality With Respect to Products: Omitted.

2.4 Connected Categories

Definition 2.4.1.1. A category C is connected if $\pi_0(C) \cong \operatorname{pt.}^{11,12}$

2.5 Discrete Categories

Let X be a set.

Definition 2.5.1.1. The discrete category on a set X is the category $X_{\sf disc}$ where

• Objects. We have

$$Obj(X_{\mathsf{disc}}) \stackrel{\text{def}}{=} X;$$

• Morphisms. For each $A, B \in \text{Obj}(X_{\mathsf{disc}})$, we have

$$\operatorname{Hom}_{X_{\operatorname{disc}}}(A,B) \stackrel{\text{def}}{=} \begin{cases} \operatorname{id}_A & \text{if } A = B, \\ \emptyset & \text{if } A \neq B; \end{cases}$$

• *Identities*. For each $A \in \text{Obj}(X_{\mathsf{disc}})$, the unit map

$$\mathbb{F}_A^{X_{\mathsf{disc}}} \colon \mathsf{pt} \to \mathrm{Hom}_{X_{\mathsf{disc}}}(A,A)$$

of $X_{\sf disc}$ at A is defined by

$$\operatorname{id}_A^{X_{\operatorname{\mathsf{disc}}}} \stackrel{\operatorname{def}}{=} \operatorname{id}_A;$$

• Composition. For each $A, B, C \in \text{Obj}(X_{\text{disc}})$, the composition map

$$\circ_{A,B,C}^{X_{\mathsf{disc}}} \colon \mathrm{Hom}_{X_{\mathsf{disc}}}(B,C) \times \mathrm{Hom}_{X_{\mathsf{disc}}}(A,B) \to \mathrm{Hom}_{X_{\mathsf{disc}}}(A,C)$$

of X_{disc} at (A, B, C) is defined by

$$id_A \circ id_A \stackrel{\text{def}}{=} id_A.$$

Proposition 2.5.1.2. Let X be a set.

1. Functoriality. The assignment $X \mapsto X_{\mathsf{disc}}$ defines a functor

$$(-)_{\mathsf{disc}} \colon \mathsf{Sets} \to \mathsf{Cats}.$$

¹¹ Further Terminology: A category is **disconnected** if it is not connected.

¹² Example: A groupoid is connected iff any two of its objects are isomorphic.

2. Adjointness. We have a quadruple adjunction

$$(\pi_0\dashv(-)_{\mathsf{disc}}\dashv \mathsf{Obj}\dashv(-)_{\mathsf{indisc}})$$
: Sets $(-)_{\mathsf{disc}}$ Cats.

3. Symmetric Strong Monoidality With Respect to Coproducts. The functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)_{\mathsf{disc}},(-) {\displaystyle\coprod_{\mathsf{disc}}},(-) {\displaystyle\coprod_{\mathsf{disc}}} \right) \colon (\mathsf{Sets}, {\displaystyle\coprod}, \emptyset) \to (\mathsf{Cats}, {\displaystyle\coprod}, \emptyset_{\mathsf{cat}}),$$

being equipped with isomorphisms

$$(-)^{\coprod_{\mathsf{disc}|X,Y}} \colon X_{\mathsf{disc}} \coprod Y_{\mathsf{disc}} \xrightarrow{\cong} (X \coprod Y)_{\mathsf{disc}},$$
$$(-)^{\coprod_{\mathsf{disc}|\mathbb{H}}} \colon \emptyset_{\mathsf{cat}} \xrightarrow{\cong} \emptyset_{\mathsf{disc}},$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

4. Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)_{\mathsf{disc}},(-)_{\mathsf{disc}}^{\otimes},(-)_{\mathsf{disc}|\mathbb{F}}^{\otimes}\right) \colon (\mathsf{Sets},\times,\mathrm{pt}) \to (\mathsf{Cats},\times,\mathsf{pt}),$$

being equipped with isomorphisms

$$(-)_{\mathrm{disc}|X,Y}^{\otimes} \colon X_{\mathrm{disc}} \times Y_{\mathrm{disc}} \xrightarrow{\cong} (X \times Y)_{\mathrm{disc}},$$
$$(-)_{\mathrm{disc}|\mathscr{V}}^{\otimes} \colon \mathsf{pt} \xrightarrow{\cong} \mathsf{pt}_{\mathrm{disc}},$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 2.1.1.1.

Item 3, Symmetric Strong Monoidality With Respect to Coproducts: Omitted.

Item 4, Symmetric Strong Monoidality With Respect to Products: Omitted.

2.6 Indiscrete Categories

Definition 2.6.1.1. The indiscrete category on a set X^{13} is the category X_{indisc} where

• Objects. We have

$$Obj(X_{indisc}) \stackrel{\text{def}}{=} X;$$

• Morphisms. For each $A, B \in \text{Obj}(X_{\text{indisc}})$, we have

$$\operatorname{Hom}_{X_{\operatorname{disc}}}(A,B) \stackrel{\text{def}}{=} \{ [A] \to [B] \};$$

• Identities. For each $A \in \text{Obj}(X_{\text{indisc}})$, the unit map

$$\mathbb{H}_A^{X_{\mathsf{indisc}}} \colon \mathsf{pt} \to \mathrm{Hom}_{X_{\mathsf{indisc}}}(A,A)$$

of X_{indisc} at A is defined by

$$\mathrm{id}_A^{X_{\mathrm{indisc}}} \stackrel{\mathrm{def}}{=} \{ [A] \to [A] \};$$

• Composition. For each $A, B, C \in \text{Obj}(X_{\text{indisc}})$, the composition map

$$\circ_{A,B,C}^{X_{\mathsf{indisc}}} \colon \mathrm{Hom}_{X_{\mathsf{indisc}}}(B,C) \times \mathrm{Hom}_{X_{\mathsf{indisc}}}(A,B) \to \mathrm{Hom}_{X_{\mathsf{indisc}}}(A,C)$$

of X_{disc} at (A, B, C) is defined by

$$([B] \to [C]) \circ ([A] \to [B]) \stackrel{\text{def}}{=} ([A] \to [C]).$$

Proposition 2.6.1.2. Let X be a set.

1. Functoriality. The assignment $X \mapsto X_{\mathsf{indisc}}$ defines a functor

$$(-)_{\mathsf{indisc}} \colon \mathsf{Sets} \to \mathsf{Cats}.$$

2. Adjointness. We have a quadruple adjunction

$$(\pi_0\dashv(-)_{\mathsf{disc}}\dashv \mathsf{Obj}\dashv(-)_{\mathsf{indisc}})$$
: Sets \bot Cats.

¹³ Further Terminology: Also called the **chaotic category on** X.

3. Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)_{\mathsf{indisc}},(-)_{\mathsf{indisc}}^{\otimes},(-)_{\mathsf{indisc}|\mathscr{W}}^{\otimes}\right) \colon (\mathsf{Sets},\times,\mathrm{pt}) \to (\mathsf{Cats},\times,\mathsf{pt}),$$

being equipped with isomorphisms

$$\begin{split} (-)_{\mathsf{indisc}|X,Y}^{\otimes} \colon X_{\mathsf{indisc}} \times Y_{\mathsf{indisc}} & \xrightarrow{\cong} (X \times Y)_{\mathsf{indisc}}, \\ (-)_{\mathsf{indisc}|\mathscr{V}}^{\otimes} \colon \mathsf{pt} & \xrightarrow{\cong} \mathsf{pt}_{\mathsf{indisc}}, \end{split}$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 2.1.1.1.

Item 3, Symmetric Strong Monoidality With Respect to Products: Omitted.

3 Groupoids

3.1 Foundations

Let C be a category.

Definition 3.1.1.1. A morphism $f: A \to B$ of C is an **isomorphism** if there exists a morphism $f^{-1}: B \to A$ of C such that

$$f \circ f^{-1} = \mathrm{id}_B,$$

 $f^{-1} \circ f = \mathrm{id}_A.$

Definition 3.1.1.2. A **groupoid** is a category in which every morphism is an isomorphism.

3.2 The Groupoid Completion of a Category

Let C be a category.

Definition 3.2.1.1. The groupoid completion of C^{14} is the pair $(K_0(C), \iota_C)$ consisting of

 $^{^{14}}$ Further Terminology: Also called the **Grothendieck groupoid of** C or the **Grothendieck groupoid completion of** C.

- A groupoid $K_0(C)$;
- A functor $\iota_C \colon C \to \mathrm{K}_0(C)$;

satisfying the following universal property:¹⁵

(UP) Given another such pair (\mathcal{G}, i) , there exists a unique functor $K_0(\mathcal{C}) \xrightarrow{\exists !} \mathcal{G}$ making the diagram

commute.

Proposition 3.2.1.2. Let C be a category.

1. Functoriality. The assignment $C \mapsto K_0(C)$ defines a functor

$$K_0 \colon \mathsf{Cats} \to \mathsf{Grpd}.$$

2. 2-Functoriality. The assignment $C \mapsto K_0(C)$ defines a 2-functor

$$K_0 : \mathsf{Cats}_2 \to \mathsf{Grpd}_2$$
.

3. Adjointness. We have an adjunction

$$(K_0\dashv\iota)\text{:}\quad \mathsf{Cats}\underset{\iota}{\xrightarrow{K_0}} \mathsf{Grpd},$$

witnessed by a bijection of sets

$$\operatorname{Hom}_{\mathsf{Grpd}}(\mathrm{K}_0(\mathcal{C}),\mathcal{G}) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C},\mathcal{G}),$$

natural in $C \in \text{Obj}(\mathsf{Cats})$ and $G \in \text{Obj}(\mathsf{Grpd})$, forming, together with the functor Core of Item 1 of Proposition 3.3.1.3, a triple adjunction

$$(K_0\dashv \iota \dashv \mathsf{Core}) : \quad \mathsf{Cats} \underset{\mathsf{Core}}{\underbrace{\overset{K_0}{\bot}}} \mathsf{Grpd},$$

¹⁵See Item 5 of Proposition 3.2.1.2 for an explicit construction.

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathsf{Grpd}}(\mathrm{K}_0(\mathcal{C}),\mathcal{G}) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C},\mathcal{G}),$$

 $\operatorname{Hom}_{\mathsf{Cats}}(\mathcal{G},\mathcal{D}) \cong \operatorname{Hom}_{\mathsf{Grpd}}(\mathcal{G},\mathsf{Core}(\mathcal{D})),$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$ and $G \in \text{Obj}(\mathsf{Grpd})$.

4. 2-Adjointness. We have a 2-adjunction

$$(K_0 \dashv \iota)$$
: Cats $\xrightarrow{K_0}$ Grpd,

witnessed by an isomorphism of categories

$$\operatorname{\mathsf{Fun}}(\mathrm{K}_0(\mathcal{C}),\mathcal{G})\cong\operatorname{\mathsf{Fun}}(\mathcal{C},\mathcal{G}),$$

natural in $C \in \text{Obj}(\mathsf{Cats})$ and $G \in \text{Obj}(\mathsf{Grpd})$, forming, together with the 2-functor Core of Item 2 of Proposition 3.3.1.3, a triple 2-adjunction

$$(\mathrm{K}_0\dashv \iota\dashv\mathsf{Core})\text{:}\quad \mathsf{Cats}\underset{\mathsf{Core}}{\underbrace{\overset{\mathrm{K}_0}{\bot_2}}}\mathsf{Grpd},$$

witnessed by isomorphisms of categories

$$\mathsf{Fun}(\mathrm{K}_0(\mathcal{C}),\mathcal{G}) \cong \mathsf{Fun}(\mathcal{C},\mathcal{G}),$$
$$\mathsf{Fun}(\mathcal{G},\mathcal{D}) \cong \mathsf{Fun}(\mathcal{G},\mathsf{Core}(\mathcal{D})),$$

natural in $\mathcal{C}, \mathcal{D} \in \mathrm{Obj}(\mathsf{Cats})$ and $\mathcal{G} \in \mathrm{Obj}(\mathsf{Grpd})$.

5. Interaction With Classifying Spaces. We have an isomorphism of groupoids

$$K_0(\mathcal{C}) \cong \Pi_{<1}(|N_{\bullet}(\mathcal{C})|),$$

natural in $C \in \text{Obj}(\mathsf{Cats})$; i.e. the diagram

$$\begin{array}{c|c} \mathsf{Cats} & \xrightarrow{K_0} & \mathsf{Grp} \\ N_{\bullet} & & \stackrel{\uparrow}{\bigvee} & & & \\ N_{\bullet} & & \stackrel{\uparrow}{\bigvee} & & & \\ \mathsf{sSets} & \xrightarrow{|-|} & \mathsf{Top} \end{array}$$

commutes up to natural isomorphism.

6. Symmetric Strong Monoidality With Respect to Coproducts. The groupoid completion functor of Item 1 has a symmetric strong monoidal structure

$$\left(K_0,K_0^{\coprod},K_{0|\!\!\mid\!\!\!\!\perp}^{\coprod}\right)\colon (\mathsf{Cats}, \coprod,\emptyset_{\mathsf{cat}}) \to (\mathsf{Grpd}, \coprod,\emptyset_{\mathsf{cat}})$$

being equipped with isomorphisms

$$\begin{split} \mathrm{K}^{\coprod}_{0\mid\mathcal{C},\mathcal{D}} \colon \mathrm{K}_{0}(\mathcal{C}) & \coprod \mathrm{K}_{0}(\mathcal{D}) \xrightarrow{\cong} \mathrm{K}_{0}(\mathcal{C} \coprod \mathcal{D}), \\ \mathrm{K}^{\coprod}_{0\mid\mathcal{V}} \colon \emptyset_{\mathsf{cat}} \xrightarrow{\cong} \mathrm{K}_{0}(\emptyset_{\mathsf{cat}}), \end{split}$$

natural in $\mathcal{C}, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$.

7. Symmetric Strong Monoidality With Respect to Products. The groupoid completion functor of Item 1 has a symmetric strong monoidal structure

$$\left(\mathrm{K}_0,\mathrm{K}_0^\times,\mathrm{K}_{0|\mathbb{F}}^\times\right)\colon(\mathsf{Cats},\times,\mathsf{pt})\to(\mathsf{Grpd},\times,\mathsf{pt})$$

being equipped with isomorphisms

$$\begin{split} \mathrm{K}_{0|\mathcal{C},\mathcal{D}}^{\times} \colon \mathrm{K}_{0}(\mathcal{C}) \times \mathrm{K}_{0}(\mathcal{D}) &\xrightarrow{\cong} \mathrm{K}_{0}(\mathcal{C} \times \mathcal{D}), \\ \mathrm{K}_{0|\mathbb{H}}^{\times} \colon \mathsf{pt} &\xrightarrow{\cong} \mathrm{K}_{0}(\mathsf{pt}), \end{split}$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$.

Proof. Item 1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: Omitted.

Item 4, 2-Adjointness: Omitted.

Item 5, Interaction With Classifying Spaces: See Corollary 18.33 of https:

//web.ma.utexas.edu/users/dafr/M392C-2012/Notes/lecture18.pdf.

Item 6, Symmetric Strong Monoidality With Respect to Coproducts: Omitted.

Item 7, Symmetric Strong Monoidality With Respect to Products: Omitted.

3.3 The Core of a Category

Let C be a category.

Definition 3.3.1.1. The **core** of *C* is the pair $(Core(C), \iota_C)^{16}$ consisting of

- 1. A groupoid Core(C);
- 2. A functor $\iota_C : \mathsf{Core}(C) \hookrightarrow C$;

satisfying the following universal property:

(UP) Given another such pair (\mathcal{G}, i) , there exists a unique functor $\mathcal{G} \xrightarrow{\exists !}$ Core(\mathcal{C}) making the diagram

commute.

Construction 3.3.1.2. The core of C is the wide subcategory of C spanned by the isomorphisms of C, i.e. the category Core(C) where¹⁷

1. Objects. We have

$$\mathrm{Obj}(\mathsf{Core}(\mathcal{C})) \stackrel{\mathrm{def}}{=} \mathrm{Obj}(\mathcal{C});$$

2. Morphisms. The morphisms of Core(C) are the isomorphisms of C.

Proof. This follows from the fact that functors preserve isomorphisms. \Box

Proposition 3.3.1.3. Let C be a category.

1. Functoriality. The assignment $C \mapsto \mathsf{Core}(C)$ defines a functor

Core: Cats
$$\rightarrow$$
 Grpd.

2. 2-Functoriality. The assignment $C \mapsto \mathsf{Core}(C)$ defines a 2-functor

Core:
$$Cats_2 \rightarrow Grpd_2$$
.

¹⁶ Further Notation: Also written C^{\simeq} .

¹⁷ Slogan: The groupoid Core(C) is the maximal subgroupoid of C.

3. Adjointness. We have an adjunction

$$(\iota \dashv \mathsf{Core})$$
: Grpd $\overset{\iota}{\underbrace{\qquad}}$ Cats,

witnessed by a bijection of sets

$$\operatorname{Hom}_{\mathsf{Cats}}(\mathcal{G}, \mathcal{D}) \cong \operatorname{Hom}_{\mathsf{Grpd}}(\mathcal{G}, \mathsf{Core}(\mathcal{D})),$$

natural in $\mathcal{G} \in \mathrm{Obj}(\mathsf{Grpd})$ and $\mathcal{D} \in \mathrm{Obj}(\mathsf{Cats})$, forming, together with the functor K_0 of Item 1 of Proposition 3.2.1.2, a triple adjunction

$$(\mathrm{K}_0\dashv \iota\dashv \mathsf{Core})\text{:}\quad \mathsf{Cats}\underset{\mathsf{Core}}{\underbrace{\overset{\mathrm{K}_0}{\bot}}}\mathsf{Grpd},$$

witnessed by bijections of sets

$$\begin{split} \operatorname{Hom}_{\mathsf{Grpd}}(\mathrm{K}_0(\mathcal{C}),\mathcal{G}) &\cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C},\mathcal{G}), \\ \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{G},\mathcal{D}) &\cong \operatorname{Hom}_{\mathsf{Grpd}}(\mathcal{G},\mathsf{Core}(\mathcal{D})), \end{split}$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$ and $G \in \text{Obj}(\mathsf{Grpd})$.

4. 2-Adjointness. We have an adjunction

$$(\iota \dashv \mathsf{Core})$$
: Grpd $\underbrace{\perp_2}_{\mathsf{Core}}$ Cats,

witnessed by an isomorphism of categories

$$\operatorname{\mathsf{Fun}}(\mathcal{G},\mathcal{D})\cong\operatorname{\mathsf{Fun}}(\mathcal{G},\operatorname{\mathsf{Core}}(\mathcal{D})),$$

natural in $\mathcal{G} \in \mathrm{Obj}(\mathsf{Grpd})$ and $\mathcal{D} \in \mathrm{Obj}(\mathsf{Cats})$, forming, together with the 2-functor K_0 of Item 2 of Proposition 3.2.1.2, a triple 2-adjunction

$$(\mathrm{K}_0\dashv\iota\dashv\mathsf{Core})\text{:}\quad \mathsf{Cats}\underset{\mathsf{Core}}{\underbrace{\overset{\mathrm{K}_0}{\bot_2}}}\mathsf{\mathsf{Grpd}},$$

witnessed by isomorphisms of categories

$$\begin{aligned} \mathsf{Fun}(\mathrm{K}_0(\mathcal{C}),\mathcal{G}) &\cong \mathsf{Fun}(\mathcal{C},\mathcal{G}), \\ \mathsf{Fun}(\mathcal{G},\mathcal{D}) &\cong \mathsf{Fun}(\mathcal{G},\mathsf{Core}(\mathcal{D})), \end{aligned}$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$ and $G \in \text{Obj}(\mathsf{Grpd})$.

5. Symmetric Strong Monoidality With Respect to Products. The core functor of Item 1 has a symmetric strong monoidal structure

$$\left(\mathsf{Core},\mathsf{Core}^{\times},\mathsf{Core}_{\not k}^{\times}\right) \colon (\mathsf{Cats},\times,\mathsf{pt}) \to (\mathsf{Grpd},\times,\mathsf{pt})$$

being equipped with isomorphisms

$$\begin{split} \mathsf{Core}_{\mathcal{C},\mathcal{D}}^{\times} \colon \mathsf{Core}(\mathcal{C}) \times \mathsf{Core}(\mathcal{D}) &\xrightarrow{\cong} \mathsf{Core}(\mathcal{C} \times \mathcal{D}), \\ \mathsf{Core}_{\mathbb{F}}^{\times} \colon \mathsf{pt} &\xrightarrow{\cong} \mathsf{Core}(\mathsf{pt}), \end{split}$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$.

6. Symmetric Strong Monoidality With Respect to Coproducts. The core functor of Item 1 has a symmetric strong monoidal structure

$$\left(\mathsf{Core},\mathsf{Core}^{\coprod},\mathsf{Core}^{\coprod}_{\not \models}\right)\colon (\mathsf{Cats}, {\mathrel{\coprod}}, \emptyset_{\mathsf{cat}}) \to (\mathsf{Grpd}, {\mathrel{\coprod}}, \emptyset_{\mathsf{cat}})$$

being equipped with isomorphisms

$$\mathsf{Core}^{\coprod}_{\mathcal{C},\mathcal{D}}\colon \mathsf{Core}(\mathcal{C}) \coprod \mathsf{Core}(\mathcal{D}) \xrightarrow{\cong} \mathsf{Core}(\mathcal{C} \coprod \mathcal{D}),$$
$$\mathsf{Core}^{\coprod}_{\mathbb{K}}\colon \emptyset_{\mathsf{cat}} \xrightarrow{\cong} \mathsf{Core}(\emptyset_{\mathsf{cat}}),$$

natural in $\mathcal{C}, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$.

Proof. Item 1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: The adjunction $(K_0 \dashv \iota)$ follows from the universal property of the Gabriel–Zisman localisation of a category with respect to a class of morphisms $(\ref{morphisms})$, while the adjunction $(\iota \dashv \mathsf{Core})$ is a reformulation of the universal property of the core of a category (Definition 3.3.1.1).

Item 4, 2-Adjointness: Omitted.

Item 5, Symmetric Strong Monoidality With Respect to Products: Omitted.

Item 6, Symmetric Strong Monoidality With Respect to Coproducts: Omitted.

4 Functors

4.1 Foundations

Let \mathcal{C} and \mathcal{D} be categories.

¹⁸Reference: [Rie17, Example 4.1.15]

4.1 Foundations 26

Definition 4.1.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ from \mathcal{C} to \mathcal{D}^{19} consists of \mathcal{D}^{20}

1. Action on Objects. A map of sets

$$F \colon \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D}),$$

called the **action on objects of** F;

2. Action on Morphisms. For each $A, B \in \text{Obj}(\mathcal{C})$, a map

$$F_{A,B} : \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F_A,F_B),$$

called the **action on morphisms of** F **at** $(A, B)^{21}$;

satisfying the following conditions:

1. Preservation of Identities. For each $A \in \text{Obj}(\mathcal{C})$, the diagram

commutes, i.e. we have

$$F(\mathrm{id}_A) = \mathrm{id}_{F_A}$$
.

2. Preservation of Composition. For each $A, B, C \in \text{Obj}(C)$, the diagram

$$\operatorname{Hom}_{\mathcal{C}}(B,C) \times \operatorname{Hom}_{\mathcal{C}}(A,B) \xrightarrow{\circ_{A,B,C}^{\mathcal{C}}} \operatorname{Hom}_{\mathcal{C}}(A,C)$$

$$\downarrow^{F_{B,C} \times F_{A,B}} \qquad \qquad \downarrow^{F_{A,C}}$$

$$\operatorname{Hom}_{\mathcal{D}}(F_{B},F_{C}) \times \operatorname{Hom}_{\mathcal{D}}(F_{A},F_{B}) \xrightarrow{\circ_{A,B,C}^{\mathcal{C}}} \operatorname{Hom}_{\mathcal{D}}(F_{A},F_{C})$$

commutes, i.e. for each composable pair (g, f) of morphisms of \mathcal{C} , we have

$$F(g \circ f) = F(g) \circ F(f).$$

¹⁹ Further Terminology: Also called a **covariant functor**.

²⁰ Further Notation: Given functors $F: C \to \mathcal{D}$ and $G: C^{op} \to \mathcal{D}$, we will sometimes write F_A for F(A) (resp. G^A for G(A)) and F_f for F(f) (resp. G^f for G(f)). This has been called Einstein notation in the literature.

²¹Further Terminology: Also called **action on Hom-sets of** F **at** (A, B).

4.1 Foundations 27

Example 4.1.1.2. The **identity functor** of a category C is the functor $id_C : C \to C$ where

1. Action on Objects. For each $A \in \text{Obj}(\mathcal{C})$, we have

$$id_{\mathcal{C}}(A) \stackrel{\text{def}}{=} A;$$

2. Action on Morphisms. For each $A, B \in \text{Obj}(\mathcal{C})$, the action on morphisms map

$$(\mathrm{id}_C)_{A,B} \colon \mathrm{Hom}_C(A,B) \to \underbrace{\mathrm{Hom}_C(\mathrm{id}_C(A),\mathrm{id}_C(B))}_{\overset{\mathrm{def}}{=} \mathrm{Hom}_C(A,B)}$$

of $id_{\mathcal{C}}$ at (A, B) is defined by

$$(\mathrm{id}_{\mathcal{C}})_{A,B} \stackrel{\mathrm{def}}{=} \mathrm{id}_{\mathrm{Hom}_{\mathcal{C}}(A,B)}.$$

Proof. Preservation of Identities: We have $id_C(id_A) \stackrel{\text{def}}{=} id_A$ for each $A \in Obj(C)$ by definition.

Preservation of Compositions: For each composable pair $A \xrightarrow{f} B \xrightarrow{g} B$ of morphisms of C, we have

$$id_{\mathcal{C}}(g \circ f) \stackrel{\text{def}}{=} g \circ f$$
$$\stackrel{\text{def}}{=} id_{\mathcal{C}}(g) \circ id_{\mathcal{C}}(f).$$

This finishes the proof.

Definition 4.1.1.3. The **composition** of two functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$ is the functor $G \circ F$ where

• Action on Objects. For each $A \in \text{Obj}(\mathcal{C})$, we have

$$[G\circ F](A)\stackrel{\mathrm{def}}{=} G(F(A));$$

• Action on Morphisms. For each $A, B \in \text{Obj}(C)$, the action on morphisms map

$$(G \circ F)_{A,B} \colon \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{E}}(G_{F_A},G_{F_B})$$

of $G \circ F$ at (A, B) is defined by

$$[G\circ F](f)\stackrel{\mathrm{def}}{=} G(F(f)).$$

Proof. Preservation of Identities: For each $A \in \text{Obj}(C)$, we have

$$G_{F_{\mathrm{id}_A}} = G_{\mathrm{id}_{F_A}}$$
 (functoriality of F)
= $\mathrm{id}_{G_{F_A}}$. (functoriality of G)

Preservation of Composition: For each composable pair (g, f) of morphisms of C, we have

$$G_{F_{g \circ f}} = G_{F_g \circ F_f}$$
 (functoriality of F)
= $G_{F_g} \circ G_{F_f}$. (functoriality of G)

This finishes the proof.

Proposition 4.1.1.4. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

1. Preservation of Isomorphisms. If f is an isomorphism in C, then F(f) is an isomorphism in \mathcal{D} .

Proof. Item 1, Preservation of Isomorphisms: Indeed, we have

$$F(f)^{-1} \circ F(f) = F(f^{-1} \circ f)$$
$$= F(id_A)$$
$$= id_{F(A)}$$

and

$$F(f) \circ F(f)^{-1} = F(f \circ f^{-1})$$
$$= F(\mathrm{id}_A)$$
$$= \mathrm{id}_{F(A)},$$

showing F(f) to be an isomorphism.

4.2 Faithful Functors

Let \mathcal{C} and \mathcal{D} be categories.

Definition 4.2.1.1. A functor $F: C \to \mathcal{D}$ is **faithful** if, for each $A, B \in \text{Obj}(C)$, the action on morphisms map

$$F_{A,B} \colon \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F_A,F_B)$$

of F at (A, B) is injective.

²²When the converse holds, we call F conservative, see Definition 4.6.1.1.

4.3 Full Functors 29

Proposition 4.2.1.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor

- 1. Characterisations. The following conditions are equivalent:
 - (a) The functor $F: \mathcal{C} \to \mathcal{D}$ is faithful.
 - (b) For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is faithful.

(c) For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is faithful.

Proof. Item 1, Characterisations: Omitted.

4.3 Full Functors

Let \mathcal{C} and \mathcal{D} be categories.

Definition 4.3.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is **full** if, for each $A, B \in \text{Obj}(\mathcal{C})$, the action on morphisms map

$$F_{A,B} \colon \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F_A,F_B)$$

of F at (A, B) is surjective.

Proposition 4.3.1.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor

- 1. Characterisations. The following conditions are equivalent:
 - (a) The functor $F: \mathcal{C} \to \mathcal{D}$ is full.
 - (b) For each $X \in \mathrm{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is full.

(c) For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is full.

Proof. Item 1, Characterisations: Omitted.

4.4 Fully Faithful Functors

Let \mathcal{C} and \mathcal{D} be categories.

Definition 4.4.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is **fully faithful** if F is full and faithful, i.e. if, for each $A, B \in \text{Obj}(\mathcal{C})$, the action on morphisms map

$$F_{A,B} : \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F_A,F_B)$$

of F at (A, B) is bijective.

Proposition 4.4.1.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor

- 1. Characterisations. The following conditions are equivalent:
 - (a) The functor $F: \mathcal{C} \to \mathcal{D}$ is fully faithful.
 - (b) For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is fully faithful.

(c) For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is fully faithful.

2. Conservativity. If F is fully faithful, then F is conservative.

Proof. Item 1, Characterisations: Omitted.

Item 2, Conservativity: This is proved in Item 2 of Proposition 4.6.1.2. □

4.5 Essentially Surjective Functors

Let \mathcal{C} and \mathcal{D} be categories.

Definition 4.5.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is **essentially surjective** if, for each $D \in \text{Obj}(\mathcal{D})$, there exists some object A of \mathcal{C} with $F(A) \cong D$.

4.6 Conservative Functors

Let \mathcal{C} and \mathcal{D} be categories.

Definition 4.6.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is **conservative** if it satisfies the

following condition:

(*) For each $f \in \text{Mor}(\mathcal{C})$, if F(f) is an isomorphism in \mathcal{D} , then f is an isomorphism in \mathcal{C} .

Proposition 4.6.1.2. Let $F: C \to \mathcal{D}$ be a functor.

- 1. Characterisations. The following conditions are equivalent:
 - (a) The functor F is conservative.
 - (b) For each $f \in \text{Mor}(C)$, the morphism F(f) is an isomorphism in \mathcal{D} iff f is an isomorphism in C.
- 2. Interaction With Fully Faithfulness. Every fully faithful functor is conservative.

Proof. Item 1, Characterisations: This follows from Item 1 of Proposition 4.1.1.4.

Item 2, Interaction With Fully Faithfulness: Let $F: C \to \mathcal{D}$ be a fully faithful functor, let $f: A \to B$ be a morphism of C, and suppose that F_f is an isomorphism. We have

$$F(\mathrm{id}_B) = \mathrm{id}_{F(B)}$$
$$= F(f) \circ F(f)^{-1}$$
$$= F(f \circ f^{-1}).$$

Similarly, $F(\mathrm{id}_A) = F(f^{-1} \circ f)$. But since F is fully faithful, we must have

$$f \circ f^{-1} = \mathrm{id}_B,$$

 $f^{-1} \circ f = \mathrm{id}_A,$

showing f to be an isomorphism. Thus F is conservative.

4.7 Equivalences of Categories

Definition 4.7.1.1. Let C and D be categories.

• An equivalence of categories between $\mathcal C$ and $\mathcal D$ consists of a pair of functors

$$F: \mathcal{C} \to \mathcal{D},$$

 $G: \mathcal{D} \to \mathcal{C}$

together with natural isomorphisms

$$\eta: \mathrm{id}_C \stackrel{\cong}{\Longrightarrow} G \circ F,$$
 $\epsilon: F \circ G \stackrel{\cong}{\Longrightarrow} \mathrm{id}_D.$

• An adjoint equivalence of categories between C and D is an equivalence (F, G, η, ϵ) between C and D which is also an adjunction.

Proposition 4.7.1.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

- 1. Characterisations. If C and D are small²³, then the following conditions are equivalent:²⁴
 - (a) The functor F is an equivalence of categories.
 - (b) The functor F is fully faithful and essentially surjective.
 - (c) The induced functor

$$F|_{\mathsf{Sk}(\mathcal{C})} \colon \mathsf{Sk}(\mathcal{C}) \to \mathsf{Sk}(\mathcal{D})$$

is an *isomorphism* of categories.

2. Two-Out-of-Three. Let

$$C \xrightarrow{G \circ F} \mathcal{E}$$

$$f \nearrow_{G}$$

be a diagram in Cats. If two out of the three functors among F, G, and $G \circ F$ are equivalences of categories, then so is the third.

3. Stability Under Composition. Let

$$C \stackrel{F}{\underset{G}{\longleftrightarrow}} \mathcal{D} \stackrel{F'}{\underset{G'}{\longleftrightarrow}} \mathcal{E}$$

be a diagram in Cats. If (F, G) and (F', G') are equivalences of categories, then so is their composite $(F' \circ F, G' \circ G)$.

²³Otherwise there will be size issues. One can also work with large categories and universes, or require F to be *constructively* essentially surjective; see [MSE1465107].

²⁴In ZFC, the equivalence between Item 1a and Item 1b is equivalent to the axiom of choice; see [MO 119454].

- 4. Equivalences vs. Adjoint Equivalences. Every equivalence of categories can be promoted to an adjoint equivalence. ²⁵
- 5. Interaction With Groupoids. If C and D are groupoids, then the following conditions are equivalent:
 - (a) The functor F is an equivalence of groupoids.
 - (b) The following conditions are satisfied:
 - i. The functor F induces a bijection

$$\pi_0(F) \colon \pi_0(\mathcal{C}) \to \pi_0(\mathcal{D})$$

of sets.

ii. For each $A \in \mathrm{Obj}(\mathcal{C})$, the induced map

$$F_{x,x} : \operatorname{Aut}_{\mathcal{C}}(A) \to \operatorname{Aut}_{\mathcal{D}}(F_A)$$

is an isomorphism of groups.

Proof. Item 1, Characterisations: We claim that Items 1a to 1c are indeed equivalent:

- 1. Item $1a \Longrightarrow Item \ 1b$. Clear.
- 2. Item $1b \Longrightarrow Item \ 1a$. Since F is essentially surjective and C and D are small, we can choose, using the axiom of choice, for each $B \in \text{Obj}(D)$, an object j_B of C and an isomorphism $i_B \colon B \to F_{j_B}$ of D.

Since F is fully faithful, we can extend the assignment $B \mapsto j_B$ to a unique functor $j \colon \mathcal{D} \to C$ such that the isomorphisms $i_B \colon B \to F_{j_B}$ assemble into a natural isomorphism $\eta \colon \mathrm{id}_{\mathcal{D}} \stackrel{\cong}{\Longrightarrow} F \circ j$, with a similar natural isomorphism $\epsilon \colon \mathrm{id}_{\mathcal{C}} \stackrel{\cong}{\Longrightarrow} j \circ F$. Hence F is an equivalence.

- 3. Item $1a \Longrightarrow Item 1c$. This follows from ??.
- Item 2, Two-Out-of-Three: Omitted.
- Item 3, Stability Under Composition: Clear.
- Item 4, Equivalences vs. Adjoint Equivalences: See [Rie17, Proposition 4.4.5].
- Item 5, Interaction With Groupoids: See [nLa24, Proposition 4.4].

In Univalent Foundations, this is true without requiring neither the axiom of choice nor the law of the excluded middle.

²⁵More precisely, we can promote an equivalence of categories (F,G,η,ϵ) to adjoint

4.8 Isomorphisms of Categories

Definition 4.8.1.1. An **isomorphism of categories** is a pair of functors

$$F \colon \mathcal{C} \to \mathcal{D}$$
,

$$G \colon \mathcal{D} \to \mathcal{C}$$

such that we have

$$G \circ F = \mathrm{id}_C$$

$$F \circ G = \mathrm{id}_{\mathcal{D}}$$
.

Example 4.8.1.2. Categories can be equivalent but non-isomorphic. For example, the category consisting of two isomorphic objects is equivalent to pt, but not isomorphic to it.

Proposition 4.8.1.3. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

- 1. Characterisations. If C and $\mathcal D$ are small, then the following conditions are equivalent:
 - (a) The functor F is an isomorphism of categories.
 - (b) The functor F is fully faithful and a bijection on objects.

Proof. Item 1, Characterisations: Omitted, but similar to Item 1 of Proposition 4.7.1.2.

4.9 The Natural Transformation Associated to a Functor

Definition 4.9.1.1. Every functor $F: \mathcal{C} \to \mathcal{D}$ defines a natural transformation

$$F^{\dagger} \colon \mathrm{Hom}_{\mathcal{C}} \Longrightarrow \mathrm{Hom}_{\mathcal{D}} \circ (F^{\mathsf{op}} \times F), \qquad \begin{array}{c} C^{\mathsf{op}} \times C & \xrightarrow{F^{\mathsf{op}} \times F} \mathcal{D}^{\mathsf{op}} \times \mathcal{D} \\ & & \\ \mathrm{Hom}_{\mathcal{C}} & & & \\ & & & \\ \mathrm{Sets}, & & \\ \end{array}$$

called the **natural transformation associated to** F, consisting of the collection

$$\left\{F_{A,B}^{\dagger} \colon \mathrm{Hom}_{\mathcal{C}}(A,B) \to \mathrm{Hom}_{\mathcal{D}}(F_A,F_B)\right\}_{(A,B) \in \mathrm{Obj}(\mathcal{C}^{\mathsf{op}} \times \mathcal{C})}$$

with

$$F_{A,B}^{\dagger} \stackrel{\text{def}}{=} F_{A,B}$$
.

Proof. The naturality condition for F^{\dagger} is the requirement that for each morphism

$$(\phi, \psi) \colon (X, Y) \to (A, B)$$

of $C^{op} \times C$, the diagram

$$\operatorname{Hom}_{C}(X,Y) \xrightarrow{\phi^{*} \circ \psi_{*} = \psi_{*} \circ \phi^{*}} \operatorname{Hom}_{C}(A,B)$$

$$\downarrow^{F_{X,Y}} \qquad \qquad \downarrow^{F_{A,B}}$$

$$\operatorname{Hom}_{\mathcal{D}}(F_{X},F_{Y}) \xrightarrow{F(\phi)^{*} \circ F(\psi)_{*} = F(\psi)_{*} \circ F(\phi)^{*}} \operatorname{Hom}_{\mathcal{D}}(F_{A},F_{B})$$

acting on elements as

$$f \longmapsto \psi \circ f \circ \phi$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(f) \longmapsto F(\psi) \circ F(f) \circ F(\psi) = F(\psi \circ f \circ \phi)$$

commutes, which follows from the functoriality of F.

Proposition 4.9.1.2. Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors.

- 1. Interaction With Natural Isomorphisms. The following conditions are equivalent:
 - (a) The natural transformation $F^{\dagger} \colon \operatorname{Hom}_{\mathcal{C}} \Longrightarrow \operatorname{Hom}_{\mathcal{D}} \circ (F^{\mathsf{op}} \times F)$ associated to F is a natural isomorphism.
 - (b) The functor F is fully faithful.
- 2. Interaction With Composition. We have an equality of pasting diagrams

in $Cats_2$, i.e. we have

$$(G \circ F)^{\dagger} = \left(G^{\dagger} \star \mathrm{id}_{F^{\mathrm{op}} \times F}\right) \circ F^{\dagger}.$$

3. Interaction With Identities. We have

$$\mathrm{id}_{\mathcal{C}}^{\dagger} = \mathrm{id}_{\mathrm{Hom}_{\mathcal{C}}(-1,-2)},$$

i.e. the natural transformation associated to id_C is the identity natural transformation of the functor $Hom_C(-1, -2)$.

Proof. Item 1, Interaction With Natural Isomorphisms: Clear.

Item 2, Interaction With Composition: Clear.

Item 3, Interaction With Identities: Clear.

5 Natural Transformations

5.1 Foundations

Let C and \mathcal{D} be categories and $F,G:C \Rightarrow \mathcal{D}$ be functors.

Definition 5.1.1.1. A transformation 26,27 $\alpha \colon F \stackrel{\text{unnat}}{\Longrightarrow} G$ from F to G is a collection

$$\{\alpha_A \colon F(A) \to G(A)\}_{A \in \mathrm{Obj}(\mathcal{C})}$$

of morphisms of \mathcal{D} .

Definition 5.1.1.2. A natural transformation²⁸ $\alpha: F \Longrightarrow G$ from F to G is a transformation

$$\{\alpha_A \colon F(A) \to G(A)\}_{A \in \mathrm{Obj}(C)}$$

²⁸Pictured in diagrams as

equivalences (F, G, η', ϵ) and (F, G, η, ϵ') .

²⁶ Further Terminology: Also called an unnatural transformation for emphasis.

 $^{^{27}}Further\ Notation:$ We write $\mathrm{UnNat}(F,G)$ for the set of unnatural transformations from F to G.

5.1 Foundations 37

from F to G such that, for each morphism $f: A \to B$ of C, the diagram

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\alpha_A \downarrow \qquad \qquad \downarrow \alpha_B$$

$$G(A) \xrightarrow{G(f)} G(B)$$

commutes.^{29,30}

Example 5.1.1.3. The identity natural transformation $id_F : F \Longrightarrow F$ of F is the natural transformation consisting of the collection

$$\left\{ \mathrm{id}_{F(A)} \colon F(A) \to F(A) \right\}_{A \in \mathrm{Obj}(C)}$$
.

Proof. The naturality condition for id_F is the requirement that, for each morphism $f:A\to B$ of C, the diagram

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\operatorname{id}_{F(A)} \downarrow \qquad \qquad \operatorname{id}_{F(B)}$$

$$F(A) \xrightarrow{F(f)} F(B)$$

commutes, which follows from unitality of the composition of C.

Definition 5.1.1.4. Two natural transformations $\alpha, \beta \colon F \Longrightarrow G$ are equal if we have

$$\alpha_A = \beta_A$$

for each $A \in \mathrm{Obj}(\mathcal{C})$.

 $^{^{30}\}mathit{Further\ Notation:}$ We write $\mathrm{Nat}(F,G)$ for the set of natural transformations from F to G.

5.2 Vertical Composition of Natural Transformations

Definition 5.2.1.1. The **vertical composition** of two natural transformations $\alpha \colon F \Longrightarrow G$ and $\beta \colon G \Longrightarrow H$ as in the diagram

$$C \xrightarrow{G} \mathcal{D}$$

$$\downarrow H$$

is the natural transformation $\beta \circ \alpha \colon F \Longrightarrow H$ consisting of the collection

$$\{(\beta \circ \alpha)_A \colon F(A) \to H(A)\}_{A \in \mathrm{Obi}(C)}$$

with

$$(\beta \circ \alpha)_A \stackrel{\text{def}}{=} \beta_A \circ \alpha_A$$

for each $A \in \text{Obj}(\mathcal{C})$.

Proof. The naturality condition for $\beta \circ \alpha$ is the requirement that the boundary of the diagram

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\alpha_A \downarrow \qquad (1) \qquad \downarrow \alpha_B$$

$$G(A) - G(f) \to G(B)$$

$$\beta_A \downarrow \qquad (2) \qquad \downarrow \beta_B$$

$$H(A) \xrightarrow{H(f)} H(B)$$

commutes. Since

- 1. Subdiagram (1) commutes by the naturality of α ;
- 2. Subdiagram (2) commutes by the naturality of β ;

so does the boundary diagram. Hence $\beta \circ \alpha$ is a natural transformation. \square

Proposition 5.2.1.2. Let C, \mathcal{D} , and \mathcal{E} be categories.

1. Functionality. The assignment $(\beta, \alpha) \mapsto \beta \circ \alpha$ defines a function

$$\circ_{F,G,H} : \operatorname{Nat}(G,H) \times \operatorname{Nat}(F,G) \to \operatorname{Nat}(F,H).$$

2. Associativity. Let $F,G,H,K\colon C\stackrel{\rightrightarrows}{\Rightarrow} \mathcal{D}$ be functors. The diagram

commutes, i.e. given natural transformations

$$\alpha \colon F \Longrightarrow G,$$

 $\beta \colon G \Longrightarrow H,$
 $\gamma \colon H \Longrightarrow K,$

we have

$$(\gamma \circ \beta) \circ \alpha = \gamma \circ (\beta \circ \alpha).$$

- 3. Unitality. Let $F, G: \mathcal{C} \rightrightarrows \mathcal{D}$ be functors.
 - (a) Left Unitality. The diagram

$$\begin{array}{c|c} \operatorname{pt} \times \operatorname{Nat}(F,G) \\ [\operatorname{id}_G] \times \operatorname{id}_{\operatorname{Nat}(F,G)} \\ & & & & \\ \operatorname{Nat}(G,G) \times \operatorname{Nat}(F,G) \xrightarrow{\circ_{F,G,G}} \operatorname{Nat}(F,G) \end{array}$$

commutes, i.e. given a natural transformation $\alpha \colon F \Longrightarrow G$, we have

$$id_G \circ \alpha = \alpha.$$

(b) Right Unitality. The diagram

commutes, i.e. given a natural transformation $\alpha \colon F \Longrightarrow G$, we have

$$\alpha \circ \mathrm{id}_F = \alpha.$$

4. Middle Four Exchange. Let $F_1, F_2, F_3 \colon \mathcal{C} \to \mathcal{D}$ and $G_1, G_2, G_3 \colon \mathcal{D} \to \mathcal{E}$ be functors. The diagram

 $(\operatorname{Nat}(G_2,G_3)\times\operatorname{Nat}(G_1,G_2))\times(\operatorname{Nat}(F_2,F_3)\times\operatorname{Nat}(F_1,F_2)) \stackrel{\iota_1}{\longleftarrow} \stackrel{\iota_4}{\longleftarrow} \cdots \rightarrow (\operatorname{Nat}(G_2,G_3)\times\operatorname{Nat}(F_2,F_3))\times(\operatorname{Nat}(G_1,G_2)\times\operatorname{Nat}(F_1,F_2))$ $\circ_{G_1,G_2,G_3}\times\circ_{F_1,F_2,F_3}$ $\operatorname{Nat}(G_1,G_3)\times\operatorname{Nat}(F_1,F_3)$ $\operatorname{Nat}(G_2\circ F_2,G_3\circ F_3)\times\operatorname{Nat}(G_1\circ F_1,G_2\circ F_2,G_3\circ F_3)$ $\operatorname{Nat}(G_1\circ F_1,G_2\circ F_2,G_3\circ F_3)$

commutes, i.e. given a diagram

in $Cats_2$, we have

$$(\beta' \star \alpha') \circ (\beta \star \alpha) = (\beta' \circ \beta) \star (\alpha' \circ \alpha).$$

Proof. Item 1, Functionality: Clear. Item 2, Associativity: Indeed, we have

$$((\gamma \circ \beta) \circ \alpha)_A = (\gamma_A \circ \beta_A) \circ \alpha_A$$
$$= \gamma_A \circ (\beta_A \circ \alpha_A)$$
$$= (\gamma \circ (\beta \circ \alpha))_A$$

for each $A \in \text{Obj}(C)$, showing the desired equality. *Item 3, Unitality*: We have

$$(\mathrm{id}_G \circ \alpha)_A = \mathrm{id}_G \circ \alpha_A$$
$$= \alpha_A,$$
$$(\alpha \circ \mathrm{id}_F)_A = \alpha_A \circ \mathrm{id}_F$$
$$= \alpha_A$$

for each $A \in \mathrm{Obj}(C)$, showing the desired equality.

Item 4, Middle Four Exchange: This is proved in Item 4 of Proposition 5.3.1.2.

5.3 Horizontal Composition of Natural Transformations

Definition 5.3.1.1. The horizontal composition^{31,32} of two natural transformations $\alpha \colon F \Longrightarrow G$ and $\beta \colon H \Longrightarrow K$ as in the diagram

$$C \stackrel{F}{\underset{G}{\overset{}{\bigcirc}}} \mathcal{D} \stackrel{H}{\underset{K}{\overset{}{\bigcirc}}} \mathcal{E}$$

of α and β is the natural transformation

$$\beta \star \alpha \colon (H \circ F) \Longrightarrow (K \circ G),$$

as in the diagram

$$C \xrightarrow{\beta \star \alpha} \mathcal{E},$$

consisting of the collection

$$\{(\beta\star\alpha)_A\colon H(F(A))\to K(G(A))\}_{A\in \mathrm{Obj}(\mathcal{C})},$$

$$\star_{(F,H),(G,K)} : \operatorname{Nat}(H,K) \times \operatorname{Nat}(F,G) \to \operatorname{Nat}(H \circ F, K \circ G).$$

³¹ Further Terminology: Also called the **Godement product** of α and β .

³²Horizontal composition forms a map

of morphisms of \mathcal{E} with

$$(\beta \star \alpha)_{A} \stackrel{\text{def}}{=} \beta_{G(A)} \circ H(\alpha_{A})$$

$$= K(\alpha_{A}) \circ \beta_{F(A)},$$

$$H(F(A)) \xrightarrow{H(\alpha_{A})} H(G(A))$$

$$\beta_{F(A)} \downarrow \qquad \qquad \downarrow \beta_{G(A)}$$

$$K(F(A)) \xrightarrow{K(\alpha_{A})} K(G(A)).$$

Proof. First, we claim that we indeed have

$$\beta_{G(A)} \circ H(\alpha_A) = K(\alpha_A) \circ \beta_{F(A)}, \quad \beta_{F(A)} \downarrow \qquad \qquad \downarrow \beta_{G(A)}$$

$$K(F(A)) \xrightarrow{K(\alpha_A)} K(G(A)).$$

This is, however, simply the naturality square for β applied to the morphism $\alpha_A \colon F(A) \to G(A)$. Next, we check the naturality condition for $\beta \star \alpha$, which is the requirement that the boundary of the diagram

$$H(F(A)) \xrightarrow{H(F(f))} H(F(B))$$

$$H(\alpha_A) \downarrow \qquad (1) \qquad \qquad \downarrow H(\alpha_B)$$

$$H(G(A)) - H(G(f)) \to H(G(B))$$

$$\beta_{G(A)} \downarrow \qquad (2) \qquad \qquad \downarrow \beta_{G(B)}$$

$$K(G(A)) \xrightarrow{K(G(f))} K(G(B))$$

commutes. Since

- 1. Subdiagram (1) commutes by the naturality of α ;
- 2. Subdiagram (2) commutes by the naturality of β ;

so does the boundary diagram. Hence $\beta \circ \alpha$ is a natural transformation.³³

³³Reference: [Bor94, Proposition 1.3.4].

Proposition 5.3.1.2. Let C, \mathcal{D} , and \mathcal{E} be categories.

1. Functionality. The assignment $(\beta, \alpha) \mapsto \beta \star \alpha$ defines a function

$$\star_{(F,G),(H,K)} : \operatorname{Nat}(H,K) \times \operatorname{Nat}(F,G) \to \operatorname{Nat}(H \circ F, K \circ G).$$

2. Associativity. Let

$$C \overset{F_1}{\underset{G_1}{
ightarrow}} \mathcal{D} \overset{F_2}{\underset{G_2}{
ightarrow}} \mathcal{E} \overset{F_3}{\underset{G_3}{
ightarrow}} \mathcal{F}$$

be a diagram in Cats₂. The diagram

$$\begin{split} \operatorname{Nat}(F_3,G_3) \times \operatorname{Nat}(F_2,G_2) \times \operatorname{Nat}(F_1,G_1) & \xrightarrow{\star_{(F_2,G_2),(F_3,G_3)} \times \operatorname{id}} \operatorname{Nat}(F_3 \circ F_2,G_3 \circ G_2) \times \operatorname{Nat}(F_1,G_1) \\ & \downarrow \\ \operatorname{Id} \times \star_{(F_1,G_1),(F_2,G_2)} & \downarrow \\ \operatorname{Nat}(F_3,G_3) \times \operatorname{Nat}(F_2 \circ F_1,G_2 \circ G_1) & \xrightarrow{\star_{(F_2 \circ F_1),(G_2 \circ G_1,F_3,G_3)}} \operatorname{Nat}(F_3 \circ F_2 \circ F_1,G_3 \circ G_2 \circ G_1) \end{split}$$

commutes, i.e. given natural transformations

$$\mathcal{C} \stackrel{F_1}{\underbrace{\bigcirc}} \mathcal{D} \stackrel{F_2}{\underbrace{\bigcirc}} \mathcal{E} \stackrel{F_3}{\underbrace{\bigcirc}} \mathcal{F},$$

we have

$$(\gamma \star \beta) \star \alpha = \gamma \star (\beta \star \alpha).$$

3. Interaction With Identities. Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors. The diagram

$$\begin{array}{ccc} \operatorname{pt} \times \operatorname{pt} & \xrightarrow{[\operatorname{id}_G] \times [\operatorname{id}_F]} & \operatorname{Nat}(G,G) \times \operatorname{Nat}(F,F) \\ & & & \downarrow^{\star_{(F,F),(G,G)}} \\ & & \operatorname{pt} & \xrightarrow{[\operatorname{id}_{G \circ F}]} & \operatorname{Nat}(G \circ F,G \circ F) \end{array}$$

commutes, i.e. we have

$$\mathrm{id}_G\star\mathrm{id}_F=\mathrm{id}_{G\circ F}.$$

4. Middle Four Exchange. Let $F_1, F_2, F_3 \colon \mathcal{C} \to \mathcal{D}$ and $G_1, G_2, G_3 \colon \mathcal{D} \to \mathcal{E}$ be functors. The diagram

commutes, i.e. given a diagram

in $Cats_2$, we have

$$(\beta' \star \alpha') \circ (\beta \star \alpha) = (\beta' \circ \beta) \star (\alpha' \circ \alpha).$$

Proof. Item 1, Functionality: Clear.

Item 2, Associativity: Omitted.

Item 3, Interaction With Identities: We have

$$(\mathrm{id}_G \star \mathrm{id}_F)_A \stackrel{\mathrm{def}}{=} (\mathrm{id}_G)_{F_A} \circ G_{(\mathrm{id}_F)_A}$$

$$\stackrel{\mathrm{def}}{=} \mathrm{id}_{G_{F_A}} \circ G_{\mathrm{id}_{F_A}}$$

$$= \mathrm{id}_{G_{F_A}} \circ \mathrm{id}_{G_{F_A}}$$

$$= \mathrm{id}_{G_{F_A}}$$

$$\stackrel{\mathrm{def}}{=} (\mathrm{id}_{G \circ F})_A$$

for each $A \in \text{Obj}(\mathcal{C})$, showing the desired equality.

Item 4, Middle Four Exchange: Let $A \in \text{Obj}(C)$ and consider the diagram

The top composition is $((\beta' \circ \beta) \star (\alpha' \circ \alpha))_A$ and the bottom composition is $((\beta' \star \alpha') \circ (\beta \star \alpha))_A$. Since Subdiagram (1) commutes, they are equal. \Box

5.4 Properties of Natural Transformations

Proposition 5.4.1.1. Let $F,G:\mathcal{C}\rightrightarrows\mathcal{D}$ be functors. The following data are equivalent:³⁴

- 1. A natural transformation $\alpha \colon F \Longrightarrow G$.
- 2. A functor $[\alpha]: \mathcal{C} \to \mathcal{D}^{\mathbb{H}}$ filling the diagram

3. A functor $[\alpha]: \mathcal{C} \times \mathbb{H} \to \mathcal{D}$ filling the diagram

³⁴Taken from [MO MO64365].

Proof. From Item 1 to Item 2 and Back: We may identify $\mathcal{D}^{\mathbb{H}}$ with $\mathsf{Arr}(\mathcal{D})$. Given a natural transformation $\alpha \colon F \Longrightarrow G$, we have a functor

$$[\alpha]: C \longrightarrow \mathcal{D}^{F}$$

$$A \longmapsto \alpha_{A}$$

$$(f: A \to B) \longmapsto \begin{pmatrix} F_{A} & \xrightarrow{F_{f}} & F_{B} \\ & & \downarrow \\ & & \downarrow \\ & & G_{A} & \xrightarrow{G_{f}} & G_{B} \end{pmatrix}$$

making the diagram in Item 2 commute. Conversely, every such functor gives rise to a natural transformation from F to G, and these constructions are inverse to each other.

From Item 2 to Item 3 and Back: This follows from Item 3 of Proposition 6.1.1.2.

5.5 Natural Isomorphisms

Definition 5.5.1.1. A natural transformation $\alpha \colon F \Longrightarrow G$ between functors $F,G\colon \mathcal{C}\to\mathcal{D}$ between categories \mathcal{C} and \mathcal{D} is a **natural isomorphism** if there exists a natural transformation $\alpha^{-1}\colon G\Longrightarrow F$ such that

$$\alpha^{-1} \circ \alpha = \mathrm{id}_F,$$

 $\alpha \circ \alpha^{-1} = \mathrm{id}_G.$

Proposition 5.5.1.2. Let $\alpha \colon F \Longrightarrow G$ be a natural transformation.

- 1. Characterisations. The following conditions are equivalent:
 - (a) The natural transformation α is a natural isomorphism.
 - (b) For each $A \in \text{Obj}(C)$, the morphism $\alpha_A \colon F_A \to G_A$ is an isomorphism.
- 2. Componentwise Inverses of Natural Transformations Assemble Into Natural Transformations. Let $\alpha^{-1} : G \Longrightarrow F$ be a transformation such that, for each $A \in \mathrm{Obj}(\mathcal{C})$, we have

$$\alpha_A^{-1} \circ \alpha_A = \mathrm{id}_{F(A)},$$

 $\alpha_A \circ \alpha_A^{-1} = \mathrm{id}_{G(A)}.$

Then α^{-1} is a natural transformation.

Proof. Item 1, Characterisations: The implication Item 1a \Longrightarrow Item 1b is clear, whereas the implication Item 1b \Longrightarrow Item 1a follows from Item 2. Item 2, Componentwise Inverses of Natural Transformations Assemble Into Natural Transformations: The naturality condition for α^{-1} corresponds to the commutativity of the diagram

$$G(A) \xrightarrow{G(f)} G(B)$$

$$\alpha_A^{-1} \downarrow \qquad \qquad \downarrow^{\alpha_B^{-1}}$$

$$F(A) \xrightarrow{F(f)} F(B)$$

for each $A, B \in \text{Obj}(\mathcal{C})$ and each $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Considering the diagram

$$G(A) \xrightarrow{G(f)} G(B)$$

$$\alpha_A^{-1} \downarrow \qquad (1) \qquad \qquad \downarrow \alpha_B^{-1}$$

$$F(A) - F(f) \to F(B)$$

$$\alpha_A \downarrow \qquad (2) \qquad \qquad \downarrow \alpha_B$$

$$G(A) \xrightarrow{G(f)} G(B),$$

where the boundary diagram as well as Subdiagram (2) commute, we have

$$G(f) = G(f) \circ id_{G(A)}$$

$$= G(f) \circ \alpha_A \circ \alpha_A^{-1}$$

$$= \alpha_B \circ F(f) \circ \alpha_A^{-1}.$$

Postcomposing both sides with α_B^{-1} , we get

$$\alpha_B^{-1} \circ G(f) = \alpha_B^{-1} \circ \alpha_B \circ F(f) \circ \alpha_A^{-1}$$
$$= id_{F(B)} \circ F(f) \circ \alpha_A^{-1}$$
$$= F(f) \circ \alpha_A^{-1},$$

which is the naturality condition we wanted to show. Thus α^{-1} is a natural transformation. \Box

6 Categories of Categories

6.1 Functor Categories

Let \mathcal{C} be a category and \mathcal{D} be a small category.

Definition 6.1.1.1. The category of functors from C to \mathcal{D}^{35} is the category $\operatorname{Fun}(C,\mathcal{D})^{36}$ where

- Objects. The objects of $Fun(C, \mathcal{D})$ are functors from C to \mathcal{D} ;
- Morphisms. For each $F, G \in \text{Obj}(\mathsf{Fun}(\mathcal{C}, \mathcal{D}))$, we have

$$\operatorname{Hom}_{\operatorname{\mathsf{Fun}}(C,\mathcal{D})}(F,G) \stackrel{\text{def}}{=} \operatorname{Nat}(F,G);$$

• *Identities.* For each $F \in \text{Obj}(\mathsf{Fun}(\mathcal{C}, \mathcal{D}))$, the unit map

$$\mathbb{F}_F^{\mathsf{Fun}(\mathcal{C},\mathcal{D})} \colon \mathrm{pt} \to \mathrm{Nat}(F,F)$$

of $\operatorname{\mathsf{Fun}}(\mathcal{C},\mathcal{D})$ at F is given by

$$\operatorname{id}_F^{\operatorname{\mathsf{Fun}}(\mathcal{C},\mathcal{D})} \stackrel{\text{def}}{=} \operatorname{id}_F,$$

where $id_F: F \Longrightarrow F$ is the identity natural transformation of F of Example 5.1.1.3;

• Composition. For each $F, G, H \in \mathrm{Obj}(\mathsf{Fun}(\mathcal{C}, \mathcal{D})),$ the composition map

$$\circ^{\mathsf{Fun}(\mathcal{C},\mathcal{D})}_{F,G,H} \colon \mathrm{Nat}(G,H) \times \mathrm{Nat}(F,G) \to \mathrm{Nat}(F,H)$$

of $\operatorname{\mathsf{Fun}}(\mathcal{C},\mathcal{D})$ at (F,G,H) is given by

$$\beta \circ^{\operatorname{Fun}(C,\mathcal{D})}_{F,G,H} \alpha \stackrel{\text{\tiny def}}{=} \beta \circ \alpha,$$

where $\beta \circ \alpha$ is the vertical composition of α and β of Item 1 of Proposition 5.2.1.2.

Proposition 6.1.1.2. Let \mathcal{C} and \mathcal{D} be categories and let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

³⁵ Further Terminology: Also called the **functor category** $Fun(C, \mathcal{D})$.

³⁶ Further Notation: Also written $\mathcal{D}^{\mathcal{C}}$ and $[\mathcal{C}, \mathcal{D}]$.

1. Functoriality. The assignments $C, \mathcal{D}, (C, \mathcal{D}) \mapsto \mathsf{Fun}(C, \mathcal{D})$ define functors

$$\begin{aligned} &\mathsf{Fun}(\mathcal{C}, -_2) \colon \mathsf{Cats} \to \mathsf{Cats}, \\ &\mathsf{Fun}(-_1, \mathcal{D}) \colon \mathsf{Cats}^\mathsf{op} \to \mathsf{Cats}, \\ &\mathsf{Fun}(-_1, -_2) \colon \mathsf{Cats}^\mathsf{op} \times \mathsf{Cats} \to \mathsf{Cats}. \end{aligned}$$

2. 2-Functoriality. The assignments $C, \mathcal{D}, (C, \mathcal{D}) \mapsto \mathsf{Fun}(C, \mathcal{D})$ define 2-functors

$$\begin{aligned} &\mathsf{Fun}(C,-_2)\colon \mathsf{Cats}_2 \to \mathsf{Cats}_2, \\ &\mathsf{Fun}(-_1,\mathcal{D})\colon \mathsf{Cats}_2^\mathsf{op} \to \mathsf{Cats}_2, \\ &\mathsf{Fun}(-_1,-_2)\colon \mathsf{Cats}_2^\mathsf{op} \times \mathsf{Cats}_2 \to \mathsf{Cats}_2. \end{aligned}$$

3. Adjointness. We have adjunctions

$$(C \times - \dashv \operatorname{\mathsf{Fun}}(C, -))$$
: $\operatorname{\mathsf{Cats}} \underbrace{\bot}_{\operatorname{\mathsf{Fun}}(C, -)} \operatorname{\mathsf{Cats}},$
 $(- \times \mathcal{D} \dashv \operatorname{\mathsf{Fun}}(\mathcal{D}, -))$: $\operatorname{\mathsf{Cats}} \underbrace{\bot}_{\operatorname{\mathsf{Fun}}(\mathcal{D}, -)} \operatorname{\mathsf{Cats}},$

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C} \times \mathcal{D}, \mathcal{E}) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{D}, \mathsf{Fun}(\mathcal{C}, \mathcal{E})),$$

 $\operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C} \times \mathcal{D}, \mathcal{E}) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C}, \mathsf{Fun}(\mathcal{D}, \mathcal{E})),$

natural in $\mathcal{C}, \mathcal{D}, \mathcal{E} \in \text{Obj}(\mathsf{Cats})$.

4. 2-Adjointness. We have 2-adjunctions

$$(\mathcal{C} \times - \dashv \mathsf{Fun}(\mathcal{C}, -)) \colon \ \ \mathsf{Cats}_2 \underbrace{\downarrow_2}_{\mathsf{Fun}(\mathcal{C}, -)} \mathsf{Cats}_2,$$

$$(- \times \mathcal{D} \dashv \mathsf{Fun}(\mathcal{D}, -)) \colon \ \ \mathsf{Cats}_2 \underbrace{\downarrow_2}_{\mathsf{Fun}(\mathcal{D}, -)} \mathsf{Cats}_2,$$

witnessed by isomorphisms of categories

$$\begin{split} &\mathsf{Fun}(\mathcal{C}\times\mathcal{D},\mathcal{E})\cong\mathsf{Fun}(\mathcal{D},\mathsf{Fun}(\mathcal{C},\mathcal{E})),\\ &\mathsf{Fun}(\mathcal{C}\times\mathcal{D},\mathcal{E})\cong\mathsf{Fun}(\mathcal{C},\mathsf{Fun}(\mathcal{D},\mathcal{E})), \end{split}$$

natural in $\mathcal{C}, \mathcal{D}, \mathcal{E} \in \text{Obj}(\mathsf{Cats}_2)$.

5. Trivial Functor Categories. We have a canonical isomorphism of categories

$$\operatorname{\mathsf{Fun}}(\operatorname{\mathsf{pt}},\mathcal{C})\cong\mathcal{C},$$

natural in $C \in \text{Obj}(\mathsf{Cats})$.

6. Objectwise Computation of Co/Limits. Let

$$D \colon \mathcal{I} \to \mathsf{Fun}(\mathcal{C}, \mathcal{D})$$

be a diagram in $\operatorname{\mathsf{Fun}}(\mathcal{C},\mathcal{D})$. We have isomorphisms

$$\lim(D)_A \cong \lim_{i \in I} (D_i(A)),$$
$$\operatorname{colim}(D)_A \cong \operatorname{colim}_{i \in I} (D_i(A)),$$

naturally in $A \in \text{Obj}(C)$.

- 7. Bicompleteness. If \mathcal{E} is co/complete, then so is $\operatorname{Fun}(\mathcal{C}, \mathcal{E})$.
- 8. Abelianness. If \mathcal{E} is abelian, then so is $Fun(\mathcal{C}, \mathcal{E})$.
- 9. Monomorphisms and Epimorphisms. Let $\alpha \colon F \Longrightarrow G$ be a morphism of $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$. The following conditions are equivalent:
 - (a) The natural transformation

$$\alpha \colon F \Longrightarrow G$$

is a monomorphism (resp. epimorphism) in $Fun(C, \mathcal{D})$.

(b) For each $A \in \text{Obj}(\mathcal{C})$, the morphism

$$\alpha_A \colon F_A \to G_A$$

is a monomorphism (resp. epimorphism) in \mathcal{D} .

Proof. Item 1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: Omitted.

Item 4, 2-Adjointness: Omitted.

Item 5, Trivial Functor Categories: Omitted.

Item 6, Objectwise Computation of Co/Limits: Omitted.

Item 7, Bicompleteness: This follows from ??.

Item 8, Abelianness: Omitted.

Item 9, Monomorphisms and Epimorphisms: Omitted.

6.2 The Category of Categories and Functors

Definition 6.2.1.1. The category of (small) categories and functors is the category Cats where

- Objects. The objects of Cats are small categories;
- Morphisms. For each $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$, we have

$$\operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C}, \mathcal{D}) \stackrel{\text{def}}{=} \operatorname{Obj}(\mathsf{Fun}(\mathcal{C}, \mathcal{D}));$$

• *Identities*. For each $C \in \text{Obj}(\mathsf{Cats})$, the unit map

$$\mathbb{F}_{\mathcal{C}}^{\mathsf{Cats}} \colon \mathrm{pt} \to \mathrm{Hom}_{\mathsf{Cats}}(\mathcal{C}, \mathcal{C})$$

of Cats at C is defined by

$$id_C^{\mathsf{Cats}} \stackrel{\text{def}}{=} id_C$$

where $id_C: C \to C$ is the identity functor of C of Example 4.1.1.2;

• Composition. For each $C, \mathcal{D}, \mathcal{E} \in \text{Obj}(\mathsf{Cats})$, the composition map

$$\circ^{\mathsf{Cats}}_{\mathcal{C},\mathcal{D},\mathcal{E}} \colon \mathrm{Hom}_{\mathsf{Cats}}(\mathcal{D},\mathcal{E}) \times \mathrm{Hom}_{\mathsf{Cats}}(\mathcal{C},\mathcal{D}) \to \mathrm{Hom}_{\mathsf{Cats}}(\mathcal{C},\mathcal{E})$$

of Cats at $(C, \mathcal{D}, \mathcal{E})$ is given by

$$G\circ^{\mathsf{Cats}}_{C,\mathcal{D},\mathcal{E}}F\stackrel{\scriptscriptstyle\rm def}{=} G\circ F,$$

where $G \circ F : C \to \mathcal{E}$ is the composition of F and G of Definition 4.1.1.3.

Proposition 6.2.1.2. Let C be a category.

- 1. Co/Completeness. The category Cats is complete and cocomplete.
- 2. Cartesian Monoidal Structure. The quadruple $(Cats, \times, pt, Fun)$ is a Cartesian closed monoidal category.

Proof. Item 1, Co/Completeness: This follows from Item 2, Cartesian Monoidal Structure: Omitted.

6.3 The 2-Category of Categories, Functors, and Natural Transformations

Definition 6.3.1.1. The 2-category of (small) categories, functors, and natural transformations is the 2-category Cats₂ where

- Objects. The objects of Cats₂ are small categories;
- Hom-Categories. For each $C, \mathcal{D} \in \mathrm{Obj}(\mathsf{Cats}_2)$, we have

$$\mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{C},\mathcal{D}) \stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathsf{Fun}(\mathcal{C},\mathcal{D});$$

• *Identities*. For each $C \in \text{Obj}(\mathsf{Cats}_2)$, the unit functor

$$\mathbb{F}_{\mathcal{C}}^{\mathsf{Cats}_2} \colon \mathsf{pt} \to \mathsf{Fun}(\mathcal{C},\mathcal{C})$$

of Cats₂ at C is the functor picking the identity functor $id_C: C \to C$ of C;

• Composition. For each $C, \mathcal{D}, \mathcal{E} \in \mathrm{Obj}(\mathsf{Cats}_2)$, the composition bifunctor

$$\circ^{\mathsf{Cats}_2}_{\mathcal{C}.\mathcal{D}.\mathcal{E}} \colon \mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{D},\mathcal{E}) \times \mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{C},\mathcal{D}) \to \mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{C},\mathcal{E})$$

of Cats₂ at $(\mathcal{C}, \mathcal{D}, \mathcal{E})$ is the functor where

- Action on Objects. For each object $(G, F) \in \text{Obj}(\mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{D}, \mathcal{E}) \times \mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{C}, \mathcal{D}))$, we have

$$\circ^{\mathsf{Cats}_2}_{\mathcal{C},\mathcal{D},\mathcal{E}}(G,F) \stackrel{\scriptscriptstyle\rm def}{=} G \circ F;$$

- Action on Morphisms. For each morphism (β, α) : $(K, H) \Longrightarrow (G, F)$ of $\mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{D}, \mathcal{E}) \times \mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{C}, \mathcal{D})$, we have

$$\circ_{\mathcal{C},\mathcal{D},\mathcal{E}}^{\mathsf{Cats}_2}(\beta,\alpha) \stackrel{\mathrm{def}}{=} \beta \star \alpha,$$

where $\beta \star \alpha$ is the horizontal composition of α and β of Definition 5.3.1.1.

Proposition 6.3.1.2. Let C be a category.

1. 2-Categorical Co/Completeness. The 2-category Cats₂ is complete and cocomplete as a 2-category, having all 2-categorical and bicategorical co/limits.

Proof. Item 1, Co/Completeness: This follows from

6.4 The Category of Groupoids

Definition 6.4.1.1. The **category of (small) groupoids** is the full subcategory **Grpd** of **Cats** spanned by the groupoids.

6.5 The 2-Category of Groupoids

Definition 6.5.1.1. The 2-category of (small) groupoids is the full sub-2-category Grpd₂ of Cats₂ spanned by the groupoids.

7 Miscellany

7.1 Concrete Categories

Definition 7.1.1.1. A category C is **concrete** if there exists a faithful functor $F: C \to \mathsf{Sets}$.

7.2 Balanced Categories

Definition 7.2.1.1. A category is **balanced** if every morphism which is both a monomorphism and an epimorphism is an isomorphism.

7.3 Monoid Actions on Objects of Categories

Let A be a monoid, let C be a category, and let $X \in \text{Obj}(C)$.

Definition 7.3.1.1. An A-action on X is a functor $\lambda \colon \mathsf{B}A \to \mathcal{C}$ with $\lambda(\star) = X$.

Remark 7.3.1.2. In detail, an A-action on X is an A-action on $\operatorname{End}_{\mathcal{C}}(X)$, consisting of a morphism

$$\lambda \colon A \to \underbrace{\operatorname{End}_{\mathcal{C}}(X)}_{\overset{\operatorname{def}}{=} \operatorname{Hom}_{\mathcal{C}}(X,X)}$$

satisfying the following conditions:

1. Preservation of Identities. We have

$$\lambda_{1_A} = \mathrm{id}_X$$
.

2. Preservation of Composition. For each $a, b \in A$, we have

$$\lambda_b \circ \lambda_a = \lambda_{ab}, \qquad X \xrightarrow{\lambda_a} X$$

$$\lambda_{ab} \downarrow \lambda_b$$

$$X$$

7.4 Group Actions on Objects of Categories

Let G be a group, let C be a category, and let $X \in \text{Obj}(C)$.

Definition 7.4.1.1. A *G*-action on *X* is a functor $\lambda \colon \mathsf{B}G \to \mathcal{C}$ with $\lambda(\star) = X$.

Remark 7.4.1.2. In detail, a *G*-action on *X* is a *G*-action on $Aut_C(X)$, consisting of a morphism

$$\lambda \colon G \to \underbrace{\operatorname{End}_{\mathcal{C}}(X)}_{\stackrel{\mathrm{def}}{=} \operatorname{Hom}_{\mathcal{C}}(X,X)}$$

satisfying the following conditions:

1. Preservation of Identities. We have

$$\lambda_{1_A} = \mathrm{id}_X.$$

2. Preservation of Composition. For each $a, b \in A$, we have

$$\lambda_b \circ \lambda_a = \lambda_{ab}, \qquad X \xrightarrow{\lambda_a} X \\ \downarrow^{\lambda_b} \\ X.$$