Collaborative Learning of Discrete Distributions under Heterogeneity and Communication Constraints

Xinmeng Huang^{1*} , $\mathsf{Donghwan}\ \mathsf{Lee}^{1*}$, $\mathsf{Edgar}\ \mathsf{Dobriban}^2$, $\mathsf{Hamed}\ \mathsf{Hassani}^3$

¹AMCS@UPenn ²STATS@UPenn ³ESE@UPenn

NeurIPS 2022

Federated Analytics

Figure: Data analysis on users' devices, locally¹

Two main challenges:

- Small communication bandwidth
- Heterogeneity among users

 $^{^{1}}$ lmage credits to Prof. Ayfer Özgür

Distributed Estimation

We study learning discrete distributions under communication constraints and sparse heterogeneity

- T clusters $\{(X^{t,j})_{j\in[n]}\}_{t=1}^T$, each of which contains n datapoints
- ullet Each client has one local one-hot datapoint $X^{t,j} \in [d]$ following $\mathsf{Cat}(p^t)$
- Sparse heterogeneity: there is a global distribution p^* such that

$$||p^t - p^*||_0 \le s, \quad \forall \, 1 \le t \le T$$

- Communication constraint: b-bits ($b \ll \log_2(d)$) budget for each client to communicate with a central server
- ullet Goal: to design estimators $\widehat{p}^t:\{(Y^{t,j})_{j\in[n]}\}_{t=1}^T o\mathbb{R}^d$ to minimize

$$\mathbb{E}[\|\widehat{p}^t - p^t\|_2^2], \quad \forall \, 1 \le t \le T$$

- T clusters $\{(X^{t,j})_{j\in[n]}\}_{t=1}^T$, each of which contains n datapoints
- ullet Each client has one local one-hot datapoint $X^{t,j} \in [d]$ following $\mathsf{Cat}(p^t)$
- Sparse heterogeneity: there is a global distribution p^* such that

$$||p^t - p^*||_0 \le s, \quad \forall \, 1 \le t \le T$$

- Communication constraint: b-bits ($b \ll \log_2(d)$) budget for each client to communicate with a central server
- Goal: to design estimators $\widehat{p}^t:\{(Y^{t,j})_{j\in[n]}\}_{t=1}^T\to\mathbb{R}^d$ to minimize

$$\mathbb{E}[\|\widehat{p}^t - p^t\|_2^2], \quad \forall \, 1 \le t \le T$$

- T clusters $\{(X^{t,j})_{j\in[n]}\}_{t=1}^T$, each of which contains n datapoints
- ullet Each client has one local one-hot datapoint $X^{t,j} \in [d]$ following $\mathsf{Cat}(p^t)$
- Sparse heterogeneity: there is a global distribution p^* such that

$$||p^t - p^\star||_0 \le s, \quad \forall \, 1 \le t \le T$$

- Communication constraint: b-bits ($b \ll \log_2(d)$) budget for each client to communicate with a central server
- ullet Goal: to design estimators $\widehat{p}^t:\{(Y^{t,j})_{j\in[n]}\}_{t=1}^T
 ightarrow\mathbb{R}^d$ to minimize

$$\mathbb{E}[\|\widehat{p}^t - p^t\|_2^2], \quad \forall \, 1 \le t \le T$$

- T clusters $\{(X^{t,j})_{j\in[n]}\}_{t=1}^T$, each of which contains n datapoints
- ullet Each client has one local one-hot datapoint $X^{t,j} \in [d]$ following $\mathsf{Cat}(p^t)$
- Sparse heterogeneity: there is a global distribution p^* such that

$$||p^t - p^\star||_0 \le s, \quad \forall \, 1 \le t \le T$$

- Communication constraint: b-bits ($b \ll \log_2(d)$) budget for each client to communicate with a central server
- Goal: to design estimators $\widehat{p}^t: \{(Y^{t,j})_{j\in[n]}\}_{t=1}^T \to \mathbb{R}^d$ to minimize

$$\mathbb{E}[\|\widehat{p}^t - p^t\|_2^2], \quad \forall \, 1 \le t \le T$$

Big Picture

Figure: Learning distributions with heterogeneity and communication constraints

Algorithm: Uniform Hashing

Our algorithm is built upon uniform hashing:

(Encoding):

Send the message $Y^{t,j}=\boldsymbol{h}^{t,j}(\boldsymbol{X}^{t,j})$ encoded by a hash function

$$h^{t,j}:[d]\to [2^b]$$

(Decoding):

Count
$$N_k^t(Y^{t,[n]}) = |\{j \in [n]: h^{t,j}(k) = Y^{t,j}\}|$$
 and return $\widecheck{b}_k^t = N_k^t/n$

Algorithm: SHIFT

Algorithm 1 SHIFT: Sparse Heterogeneity Inspired Collaboration and Fine-Tuning

```
input: individual hashed estimates \check{b}^1,\dots,\check{b}^T, threshold parameter \alpha ▷ Stage I: Collaborative Learning

Estimate b^* via robust statistical methods: \check{b}^*\leftarrow \text{robust\_estimate}(\{\check{b}^t:t\in[T]\}) ▷ Stage II: Fine-Tuning

for k=1,\dots,d do

for t=1,\dots,T do

[\widehat{b}^t]_k\leftarrow [\check{b}^*]_k \text{ if } |[\check{b}^*]_k-[\check{b}^t]_k| \leq \sqrt{\alpha[\check{b}^t]_k/n}, \text{ else } [\check{b}^t]_k
[\widehat{p}^t]_k\leftarrow \text{Proj}_{[0,1]}(\frac{2^b[\widehat{b}^t]_k-1}{2^b-1})
end for
end for
output: estimates \widehat{p}^1,\dots,\widehat{p}^T
```

- robust_estimate can be any robust estimator, e.g., median, trimmed mean
- SHIFT requires the info. of cluster membership but is s-agnostic

Algorithm: SHIFT

Algorithm 1 SHIFT: $\underline{\mathbf{S}}$ parse $\underline{\mathbf{H}}$ eterogeneity $\underline{\mathbf{I}}$ nspired Collaboration and $\underline{\mathbf{F}}$ ine- $\underline{\mathbf{T}}$ uning

```
input: individual hashed estimates \check{b}^1,\ldots,\check{b}^T, threshold parameter \alpha > Stage I: Collaborative Learning

Estimate b^* via robust statistical methods: \check{b}^*\leftarrow \text{robust\_estimate}(\{\check{b}^t:t\in[T]\}) > Stage II: Fine-Tuning

for k=1,\ldots,d do

for t=1,\ldots,T do

[\widehat{b}^t]_k\leftarrow [\check{b}^*]_k \text{ if } |[\check{b}^*]_k-[\check{b}^t]_k| \leq \sqrt{\alpha[\check{b}^t]_k/n}, \text{ else } [\check{b}^t]_k
[\widehat{p}^t]_k\leftarrow \text{Proj}_{[0,1]}(\frac{2^b(\widehat{b}^t]_k-1}{2^b-1})
end for
end for
output: estimates \widehat{p}^1,\ldots,\widehat{p}^T
```

- robust_estimate can be any robust estimator, e.g., median, trimmed mean
- SHIFT requires the info. of cluster membership but is s-agnostic

Algorithm: SHIFT

Algorithm 1 SHIFT: Sparse Heterogeneity Inspired Collaboration and Fine-Tuning

```
input: individual hashed estimates \widecheck{b}^1,\ldots,\widecheck{b}^T, threshold parameter \alpha > Stage I: Collaborative Learning

Estimate b^* via robust statistical methods: \widecheck{b}^*\leftarrow \text{robust\_estimate}(\{\widecheck{b}^t:t\in[T]\}) > Stage II: Fine-Tuning

for k=1,\ldots,d do

for t=1,\ldots,T do

[\widehat{b}^t]_k\leftarrow[\widecheck{b}^*]_k \text{ if } |[\widecheck{b}^*]_k-[\widecheck{b}^t]_k| \leq \sqrt{\alpha[\widecheck{b}^t]_k/n}, \text{ else } [\widecheck{b}^t]_k
[\widehat{p}^t]_k\leftarrow \text{Proj}_{[0,1]}(\frac{2^b(\widecheck{b}^t]_k-1}{2^b-1})
end for
end for
output: estimates \widehat{p}^1,\ldots,\widehat{p}^T
```

- robust_estimate can be any robust estimator, e.g., median, trimmed mean
- SHIFT requires the info. of cluster membership but is s-agnostic

For the median-based SHIFT, robust_estimate($\{\check{b}^t:t\in[T]\}$) is taken as

$$\check{b}_k^{\star} = \operatorname{median}(\{\check{b}_k^t : t \in [T]\}), \quad \forall k \in [d].$$

Theorem

Suppose $n \geq 2^{b+6} \ln(n)$ and $\alpha = \Theta(\ln(n))$. Then, for the median-based SHIFT method, for any $1 \leq t \leq T$,

$$\mathbb{E}\left[\|\hat{p}^t - p^t\|_2^2\right] = \tilde{O}\left(\frac{\max\{2^b, s\}}{2^b n} + \frac{d}{2^b T n} + \frac{d}{n^2}\right)$$

For the median-based SHIFT, $\operatorname{robust_estimate}(\{\check{b}^t:t\in[T]\})$ is taken as

$$\check{b}_k^{\star} = \operatorname{median}(\{\check{b}_k^t : t \in [T]\}), \quad \forall k \in [d].$$

Theorem

Suppose $n \geq 2^{b+6} \ln(n)$ and $\alpha = \Theta(\ln(n))$. Then, for the median-based SHIFT method, for any $1 \leq t \leq T$,

$$\mathbb{E}\left[\|\widehat{p}^{t} - p^{t}\|_{2}^{2}\right] = \widetilde{O}\left(\frac{\max\{2^{b}, s\}}{2^{b} n} + \frac{d}{2^{b} T n} + \frac{d}{n^{2}}\right).$$

$$\bullet \ \ n = 2^b\Omega\left(\ln(n), \min\left\{T, \tfrac{d}{\max\{2^b, s\}}\right\}\right) \text{ results in } \tilde{O}\left(\tfrac{\max\{2^b, s\}}{2^b n} + \tfrac{d}{2^b T n}\right)$$

- \bullet Term $\tilde{O}\left(\frac{\max\{2^b,s\}}{2^bn}\right)$ is independent of d, benefiting from sparse heterogeneity, *i.e.*, when $s\ll d$
- Term $\tilde{O}\left(\frac{d}{2^bTn}\right)$, while relating to d, is T times smaller because of smart data collaboration
- In the paper, we also show that p* can be recovered when the heterogeneity is evenly distributed

$$\bullet \ \ n = 2^b\Omega\left(\ln(n), \min\left\{T, \tfrac{d}{\max\{2^b, s\}}\right\}\right) \text{ results in } \tilde{O}\left(\tfrac{\max\{2^b, s\}}{2^b n} + \tfrac{d}{2^b T n}\right)$$

- \bullet Term $\tilde{O}\left(\frac{\max\{2^b,s\}}{2^bn}\right)$ is independent of d, benefiting from sparse heterogeneity, *i.e.*, when $s\ll d$
- \bullet Term $\tilde{O}\left(\frac{d}{2^bTn}\right)$, while relating to d, is T times smaller because of smart data collaboration
- In the paper, we also show that p* can be recovered when the heterogeneity is evenly distributed

$$\bullet \ \ n = 2^b\Omega\left(\ln(n), \min\left\{T, \tfrac{d}{\max\{2^b, s\}}\right\}\right) \text{ results in } \tilde{O}\left(\tfrac{\max\{2^b, s\}}{2^b n} + \tfrac{d}{2^b T n}\right)$$

- Term $\tilde{O}\left(\frac{\max\{2^b,s\}}{2^bn}\right)$ is independent of d, benefiting from sparse heterogeneity, *i.e.*, when $s\ll d$
- Term $\tilde{O}\left(\frac{d}{2^bTn}\right)$, while relating to d, is T times smaller because of smart data collaboration
- In the paper, we also show that p* can be recovered when the heterogeneity is evenly distributed

$$\bullet \ \ n = 2^b\Omega\left(\ln(n), \min\left\{T, \tfrac{d}{\max\{2^b, s\}}\right\}\right) \text{ results in } \tilde{O}\left(\tfrac{\max\{2^b, s\}}{2^b n} + \tfrac{d}{2^b T n}\right)$$

- Term $\tilde{O}\left(\frac{\max\{2^b,s\}}{2^bn}\right)$ is independent of d, benefiting from sparse heterogeneity, *i.e.*, when $s\ll d$
- Term $\tilde{O}\left(\frac{d}{2^bTn}\right)$, while relating to d, is T times smaller because of smart data collaboration
- \bullet In the paper, we also show that p^{\star} can be recovered when the heterogeneity is evenly distributed

Theorem

$$\inf_{(W^{r,[n]},\hat{p}^r)_{r\in[T]}}\sup_{\|p^r-p^\star\|_0\leq s}\mathbb{E}[\|\widehat{p}^t-p^t\|_2^2] = \Omega\left(\frac{\max\{2^b,s\}}{2^bn} + \frac{d}{2^bTn}\right).$$

- The supremum is over all possible p^{\star} and $\{p^r\}_{r=1}^T$ with $\|p^r-p^{\star}\|_0 \leq s$
- The infimum is over all possible communication mechanisms and estimates
- Our median-based SHIFT is minimax optima

Theorem

$$\inf_{(W^{r,[n]},\hat{p}^r)_{r\in[T]}} \sup_{\|p^r-p^\star\|_0 \leq s} \mathbb{E}[\|\widehat{p}^t-p^t\|_2^2] = \Omega\left(\frac{\max\{2^b,s\}}{2^bn} + \frac{d}{2^bTn}\right).$$

- The supremum is over all possible p^{\star} and $\{p^r\}_{r=1}^T$ with $\|p^r-p^{\star}\|_0 \leq s$
- The infimum is over all possible communication mechanisms and estimates
- Our median-based SHIFT is minimax optima

Theorem

$$\inf_{(W^{r,[n]},\hat{p}^r)_{r\in[T]}} \sup_{\|p^r-p^\star\|_0 \leq s} \mathbb{E}[\|\widehat{p}^t-p^t\|_2^2] = \Omega\left(\frac{\max\{2^b,s\}}{2^bn} + \frac{d}{2^bTn}\right).$$

- The supremum is over all possible p^* and $\{p^r\}_{r=1}^T$ with $\|p^r p^*\|_0 \le s$
- The infimum is over all possible communication mechanisms and estimates
- Our median-based SHIFT is minimax optima

Theorem

$$\inf_{(W^{r,[n]},\hat{p}^r)_{r\in[T]}} \sup_{\|p^r-p^\star\|_0 \leq s} \mathbb{E}[\|\widehat{p}^t-p^t\|_2^2] = \Omega\left(\frac{\max\{2^b,s\}}{2^bn} + \frac{d}{2^bTn}\right).$$

- The supremum is over all possible p^\star and $\{p^r\}_{r=1}^T$ with $\|p^r-p^\star\|_0 \leq s$
- The infimum is over all possible communication mechanisms and estimates
- Our median-based SHIFT is minimax optimal

Experiments: Synthetic Data

Figure: Average ℓ_2 estimation error in synthetic experiment. (Left): Fixing $s=5,\ T=30$ and varying n. (Middle): Fixing $s=5,\ n=100,000$ and varying T. (Right): Fixing $T=30,\ n=100,000$ and varying s.

- SHIFT outperforms the baseline methods for most choices of n, T, s
- ullet The ℓ_2 error of SHIFT decreases as T and s increases

Experiments: Synthetic Data

Figure: Average ℓ_2 estimation error in synthetic experiment. (Left): Fixing $s=5,\ T=30$ and varying n. (Middle): Fixing $s=5,\ n=100,000$ and varying T. (Right): Fixing $T=30,\ n=100,000$ and varying s.

- ullet SHIFT outperforms the baseline methods for most choices of n,T,s
- ullet The ℓ_2 error of SHIFT decreases as T and s increases

Experiments: Synthetic Data

Figure: Average ℓ_2 estimation error in synthetic experiment. (Left): Fixing $s=5,\,T=30$ and varying n. (Middle): Fixing $s=5,\,n=100,000$ and varying T. (Right): Fixing $T=30,\,n=100,000$ and varying s.

- SHIFT outperforms the baseline methods for most choices of n, T, s
- ullet The ℓ_2 error of SHIFT decreases as T and s increases

Experiments: Shakespeare Data

k=2	b=2	b=4	b = 6	b = 8
Minimax (local)	640 ± 6.0	142 ± 1.2	40 ± 0.40	14 ± 0.13
Minimax (global)	33 ± 1.8	17 ± 0.37	14 ± 0.081	13 ± 0.037
SHIFT (median)	47 ± 2.4	21 ± 0.66	14 ± 0.17	11 ± 0.10
SHIFT (trimean)	36 ± 2.2	19 ± 0.51	13 ± 0.24	10 ± 0.062
k=3	b=2	b=4	b=6	b = 8
Minimax (local)	15000 ± 21	3000 ± 5.9	720 ± 2.1	180 ± 0.39
Minimax (global)	4400 ± 5.7	100 ± 1.4	38 ± 0.35	23 ± 0.090
SHIFT (median)	7300 ± 9.6	180 ± 2.1	53 ± 1.0	20 ± 0.18
SHIFT (trimean)	5100 ± 6.3	140 ± 2.3	43 ± 0.66	18 ± 0.18

Table: Average ℓ_2 error for estimating distributions of k-grams in the Shakespeare dataset. Numbers are scaled by 10^{-5} .

 SHIFT shows competitive performance on the empirical dataset, even though we do not rigorously know if the sparse heterogeneity model applies

Experiments: Shakespeare Data

k=2	b=2	b=4	b=6	b = 8
Minimax (local)	640 ± 6.0	142 ± 1.2	40 ± 0.40	14 ± 0.13
Minimax (global)	33 ± 1.8	17 ± 0.37	14 ± 0.081	13 ± 0.037
SHIFT (median)	47 ± 2.4	21 ± 0.66	14 ± 0.17	11 ± 0.10
SHIFT (trimean)	36 ± 2.2	19 ± 0.51	13 ± 0.24	10 ± 0.062
k=3	b=2	b=4	b=6	b = 8
Minimax (local)	15000 ± 21	3000 ± 5.9	720 ± 2.1	180 ± 0.39
Minimax (global)	4400 ± 5.7	100 ± 1.4	38 ± 0.35	23 ± 0.090
SHIFT (median)	7300 ± 9.6	180 ± 2.1	53 ± 1.0	20 ± 0.18
SHIFT (trimean)	5100 ± 6.3	140 ± 2.3	43 ± 0.66	18 ± 0.18

Table: Average ℓ_2 error for estimating distributions of k-grams in the Shakespeare dataset. Numbers are scaled by 10^{-5} .

 SHIFT shows competitive performance on the empirical dataset, even though we do not rigorously know if the sparse heterogeneity model applies

Conclusion

- Heterogeneity and communication matter in learning distributions from distributed data
- We propose the SHIFT method that leverages sparse heterogeneity smartly under communication constraints
- We provide the minimax lower bound to justify the optimality of SHIFT
- Experiments corroborate the excellent performance of SHIFT

Thanks you!