

Aula 6: Análise de desempenho

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos a serem abordados

- Avaliação de desempenho de algoritmos/modelos
- Desempenho preditivo
 - o Regressão
 - Classificação
- Medidas de desempenho preditivo
 - Matriz de confusão
 - Duas classes
 - Mais que duas classes

Desempenho preditivo

- Capacidade preditiva
 - Tarefa de classificação
 - Tarefa de regressão
 - Algoritmo e/ou modelo
- Custo
 - Tempo de processamento
 - Espaço de memória
- Interpretabilidade

Medidas de desempenho preditivo em regressão

Soma dos quadrados dos erros (SSE)

$$SSE = \sum_{i=1}^{n} (y^{i} - f(x^{i}))^{2}$$
 ou $SSE = \frac{1}{2} \sum_{i=1}^{n} (y^{i} - f(x^{i}))^{2}$ Menor, melhor

Erro quadrático médio (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y^i - f(x^i))^2$$
 ou $MSE = \frac{1}{2n} \sum_{i=1}^{n} (y^i - f(x^i))^2$ Menor, melhor

o Ao elevar o erro ao quadrado, interpretação do erro se torna mais difícil

Medidas de desempenho preditivo em regressão

Raiz do erro quadrático médio (RMSE)

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y^{i} - f(x^{i}))^{2}}$$

- $RMSE = \sqrt{MSE} = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y^{i} f(x^{i}))^{2}$ Menor, melhor

 o Por ter a mesma unidade de medida que o valor a ser predito, y, é mais fácil de interpretar que MSE
- Erro absoluto médio (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y^i - f(x^i)|$$

Também tem a mesma unidade de medida que y

Medidas de desempenho preditivo em regressão

Coeficiente de determinação (R²)

$$R^2 = 1 - \frac{MSE}{Var(y)}$$

- Versão padronizada do MSE, mas fácil de interpretar por ter mesma unidade de valor que y
- Erro percentual absoluto médio (MAPE)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y^i - f(x^i)|}{y^i}$$
 ou $MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \frac{|y^i - f(x^i)|}{y^i}$

Mede a acurácia de um regressor em %

Classificação binária

- Duas classes: positiva (P) e negativa (N)
 - o Classe de interesse é geralmente a classe positiva
- Dois tipos de erro:
 - Classificação de um exemplo da classe N como sendo da classe P
 - Falso positivo (alarme falso)
 - Ex.: Diagnosticado alguém como doente, quando está saudável
 - Classificação de um exemplo da classe P como sendo da classe N
 - Falso negativo
 - Ex.: Diagnosticado como saudável, mas está doente

Classificação binária

Classificação binária

- Classe positiva
- Classe negativa

Desempenho preditivo

- Uma matriz de confusão (tabela de contingência) pode ser utilizada para distinguir os erros
 - o Base de várias medidas de desempenho preditivo
 - Pode ser utilizada com 2 ou mais classes

Classe predita			
	1	2	3
1	25	0	5
2	10	40	0
3	0	0	20
		1 1 25 2 10	1 2 1 25 0 2 10 40

Classe predita

Matriz de confusão para 200 exemplos divididos em 2 classes

Medidas de avaliação

Taxa de FP (TFP) =
$$\frac{FP}{FP+VN}$$

(Alarmes falsos)

Taxa de FN (TFN) = $\frac{FN}{VP + FN}$

Erro do tipo I

Erro do tipo II

Medidas de avaliação

Taxa de FP (TFP) =
$$\frac{FP}{FP + VN}$$
 Taxa de VP (TVP) = $\frac{VP}{FN + VP}$

Taxa de VP (TVP) =
$$\frac{VP}{FN + VP}$$

Custo

Classe verdadeira Classe predita

Benefício

Avaliação de 3 classificadores

eira	Cl	asse p	oredit	tá
aq		р	n	
verd	Р	20	30	
lasse ¹	Ν	15	35	
()				

Avaliação de 3 classificadores

VP	FP	
$\overline{VP + FN}$	$\overline{FP + VN}$	

deira	Cla	٠	oredit
ad		р	<u>n</u>
Verd	Р	20	30
lasse	Ν	15	35
\cup	'		

Avaliação de 3 classificadores

$$\frac{\mathit{VP}}{\mathit{VP} + \mathit{FN}} \quad \frac{\mathit{FP}}{\mathit{FP} + \mathit{VN}}$$

eira	Cl	asse þ	oredit
aq		р	n
verd	Р	20	30
lasse	Ν	15	35
\cup	1		

Classificador 1 TVP = 0.4 TFP = 0.3

Medidas de avaliação

 $\frac{FP}{FP + VN}$

Taxa de falso positivo (TFP) = 1-

TVN

 $\frac{FN}{VP + FN}$

Taxa de falso negativo (TFN) =

1-TVP

 $\frac{VP}{VP + FP}$

Valor predito positivo (VPP), precisão

 $\frac{VN}{VN + FN}$

Valor predito negativo

(VPN)

 $\frac{VP}{VP + FN}$

Taxa de verdadeiro positivo (TVP), Sensibilidade ou Revocação (Recall) $\frac{VP + VN}{VP + VN + FP + FN}$

Acurácia

 $\frac{VN}{VN + FP}$

Taxa de verdadeiro negativo (TVN), especificidade

 $\frac{2}{1/\operatorname{prec.}+1/\operatorname{revoc.}}$

Medida-F1

Medida-F

Média harmônica ponderada da precisão e da revocação

$$\frac{(1+\alpha)\times(prec\times rev)}{\alpha\times prec+rev}$$

- Medida-F1
 - Precisão e revocação têm o mesmo peso

$$\frac{2 \times (prec \times rev)}{prec + rev} = \frac{2}{1/prec + 1/rev}$$

Observação

- Seja um classificador com a seguinte matriz de confusão, qual destas medidas apresentará o maior valor?
 - Acurácia
 - o Precisão
 - Revocação
 - Especificidade

Acurácia =
$$\frac{VP + VN}{VP + VN + FP + FN}$$

Precisão =
$$\frac{VP}{VP + FP}$$

Revocação =
$$\frac{VP}{VP + FN}$$

Especificidade =
$$\frac{VN}{VN + FP}$$

Acurácia =
$$\frac{VP + VN}{VP + VN + FP + FN}$$
 = (70 + 60) / (70 + 30 + 40 + 60) = 0.65

Precisão =
$$\frac{VP}{VP + FP}$$
 = 70/(70+40) = 0.64

Revocação =
$$\frac{VP}{VP + FN}$$
 = 7/(70+30) = 0.70

Especificidade =
$$\frac{VN}{VN + FP}$$
 = 60/(40+60) = 0.60

Outras medidas

- Para classificação de dados desbalanceados, a sensibilidade pode ser mais interessante que a especificidade
 - Elas podem ser combinadas em uma medida simples, que busca attender as duas demandas
 - o Média geométrica (G-mean)
 - Para duas classes: G-mean = $\sqrt{\text{revocação} \times \text{especificidade}}$
 - Para mais de duas classes: G-mean = $\left(\prod_{i=1}^{C} Revocação_i\right)^{\frac{1}{C}}$
 - o Acurácia balanceada
 - Para duas classes: Acurácia balanceada = $\frac{Especificidade + Sensibilidade}{2}$

Gráficos ROC

- Do inglês, Receiver operating characteristics
- Medida de desempenho originária da área de processamento de sinais
 - o Muito utilizada nas áreas médica e biológica
 - Mostra relação entre custo (TFP) e benefício (TVP)

• Colocar no gráfico ROC os 3 classificadores do exemplo anterior

Classificador 1

TFP = 0.3

TVP = 0.4

Classificador2

TFP = 0.5

TVP = 0.7

Classificador 3

TFP = 0.2

TVP = 0.6

Gráficos ROC

Gráficos ROC

Área sob a Curva ROC

Área sob a curva ROC (AUC)

- Fornece uma estimativa do desempenho de classificadores
- Gera um valor continuo no intervalo [0, 1]
 - Quanto maior melhor
 - Adição de áreas de sucessivos trapezóides
- Um classificador com maior AUC pode apresentar AUC pior em trechos da curva
- É mais confiável utilizar médias de AUCs

Área sob Curvas ROC (AUC)

Gráficos precisão-revocação

Curva precisão-revocação

 Mostra relação entre precisão e revocação para diferentes cortes (thresholds)

Curva precisão-revocação

 Mostra relação entre precisão e revocação para diferentes cortes (thresholds)

Busca minimizar FPs

Área sob a Curva Precisão-Revocação

- Quando um conjunto de dados tem mais de duas classes:
 - Sejam 3 classes, A, B e C
 - Matriz de confusão:

Classe predita			
	Α	В	С
Α	11	1	3
В	1	4	0
С	2	1	6
	В	A A B 1	A B A 11 1 B 1 4

Classo prodita

- Quando um conjunto de dados tem mais de duas classes:
 - Uma avaliação para cada classe
 - Considera ela a classe positiva (+) e as demais formam a classe negativa (-)
 - Ex. Sejam 3 classes: A, B e C

- Quando um conjunto de dados tem mais de duas classes:
 - Uma avaliação para cada classe
 - Considera ela a classe positiva (+) e as demais formam a classe negativa (-)
 - Ex. Sejam 3 classes: A, B e C

Precisão (A) = 11/14 Revocação (A) = 11/15

- Quando um conjunto de dados tem mais de duas classes:
 - Uma avaliação para cada classe
 - Considera ela a classe positiva (+) e as demais formam a classe negativa (-)
 - Ex. Sejam 3 classes: A, B e C

Precisão (A) = 4/6 Revocação (A) = 4/5

- Quando um conjunto de dados tem mais de duas classes:
 - Uma avaliação para cada classe
 - Considera ela a classe positiva (+) e as demais formam a classe negativa (-)
 - Ex. Sejam 3 classes: A, B e C
 - Exercício: Repetir o exemplo para a classe C

- Quando um conjunto de dados tem mais de duas classes:
 - Uma avaliação para cada classe
 - Considera ela a classe positiva (+) e as demais formam a classe negativa (-)
 - Ex. Sejam 3 classes: A, B e C

Precisão (A) = 6/9 Revocação (A) = 6/9

Considerações finais

- Avaliação do desempenho e compreensão
 - o Erro
 - o Tempo de resposta
 - Memória
 - Interpretabilidade
- Medidas de desempenho preditivo
 - Classificação
 - Duas classes
 - Mais que duas classes

Final da

Spresentação

