Topology Homework 06

Ethan Jensen, Luke Lemaitre, Kasandra Lassagne March 11, 2020

EXERCISE 3.1 Let $X = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R}\}$, the x-axis in the plane. Describe the topology that X inherits as a subspace of \mathbb{R}^2 with the standard topology.

X inherits the standard topology on \mathbb{R} .

EXERCISE 3.2 Let Y = [-1, 1] has the standard topology. Which of the following sets are open in Y and which are open in \mathbb{R} ?

$$A = (-1, -1/2) \cup (1/2, 1)$$

$$B = (-1, -1/2] \cup [1/2, 1)$$

$$C = [-1, -1/2] \cup (1/2, 1]$$

$$D = [-1, -1/2] \cup [1/2, 1]$$

$$E = \bigcup_{n=1}^{\infty} (\frac{1}{1+n}, \frac{1}{n})$$

A, C, and E are open in Y

A and E are open in \mathbb{R}

EXERCISE 3.3 Prove Theorem 3.4: Let X be a topological space, and let $Y \subseteq X$ have the subspace topology. Then $C \subseteq Y$ is closed in Y if and only if $C = D \cap Y$ for some closed set D in X.

Proof.

 (\rightarrow) Assume C is closed in Y.

Let L_Y be the set of limit points of C in Y.

Let L_X be the set of limit points of C in X.

By Theorem 2.8, Cl(C) in $Y = C \cup L_Y$ and Cl(C) in $X = C \cup L_X$.

Since $Y \subseteq X$, $L_Y = L_X \cap Y$.

Let D be Cl(C) in X. This makes D closed in X.

Notice that $D \cap Y = (C \cup L_X) \cap Y = (C \cap Y) \cup (L_X \cap Y) = C \cup L_Y$

This means $D \cap Y = Cl(C)$ in Y.

Since C is closed in Y, Cl(C) = C.

Thus, $C = D \cap Y$ for some closed set D in X.

 (\leftarrow) Assume $C = D \cap Y$ for some closed set D in X.

Since D is closed in X, X - D is open in X.

By the definition of the subspace topology, $(X - D) \cap Y$ is open in Y.

So Y - D is open in Y, so its complement, $D \cap Y$, is closed in Y.

Thus, C is closed in Y.

 $\therefore C \subseteq Y$ is closed in Y if and only if $C = D \cap Y$ for some closed set D in X

EXERCISE 3.4 Let Y = (0, 5]. In each case, is the set open, closed, both or neither in Y in the standard topology?

(a)
$$(0,1)$$
 (b) $(0,1]$ (c) $\{1\}$ (d) $(0,5]$ (e) $(1,2)$

- (a) Open
- (b) Closed
- (c) Closed
- (d) Open and Closed
- (e) Open
- (f) Neither
- (g) Neither
- (h) Open
- (i) Open and Closed
- (j) Closed

EXERCISE 3.5 Let Y = (0, 5] have the subspace topology inherited from \mathbb{R} with the lower limit topology. In each case, is the set open, closed, both or neither in Y in this topology?

$$(\mathbf{a})(0,1)$$
 $(\mathbf{b})(0,1]$ $(\mathbf{c})\{1\}$ $(\mathbf{d})(0,5]$ $(\mathbf{e})(1,2)$

- (a) Open
- (b) Closed
- (c) Closed
- (d) Open and Closed
- (e) Open
- (f) Open and Closed
- (g) Neither
- (h) Open
- (i) Open and Closed
- (j) Open and Closed

EXERCISE 3.6 Let $Y = (0, 4] \cup \{5\}$, In each case, is the set open, closed, both or neither in Y in the standard topology?

$$(a)(0,1)$$
 $(b)(0,1]$ $(c){1}$ $(d)(0,4]$ $(e)(1,2)$

- (a) Open
- (b) Closed
- (c) Closed
- (d) Open and Closed
- (e) Open
- (f) Neither
- (g) Open
- (h) Closed
- (i) Closed
- (j) Closed

EXERCISE 3.7 Let X be a Hausdorff topological space, and Y be a subset of X. Prove that the subspace topology on Y is Hausdorff.

Proof.

Let X be a Hausdorf topological space and let Y be a subset of x. Consider two distinct points p and q in Y.

Since X is Hausdorf, there exist two disjoint open sets U_p and U_q in X such that $p \in U_p$ and $q \in U_q$.

Let $V_p = U_p \cap Y$ and $V_q = U_q \cap Y$. V_p and V_q are thus open sets in the subspace topology on Y. Since $V_p \subseteq U_p$ and $V_q \subseteq U_q$, V_p and V_q must be disjoint.

Thus, for every distict points p and q, there exist two disjoint neighborhoods of p and q in the subspace topology on Y.

Thus, the subspace topology on Y is Hausdorff.

... If X is a Hausdorrf space and $Y\subseteq X,$ then the subspace topology on Y is Hausdorff.

EXERCISE 3.8 Let X be a topological space, and let $Y \subseteq X$ have the subspace topology.

- (a) If A is open in Y, and Y is open in X, show that A is open in X.
- (b) If A is closed in Y, and Y is closed in X, show that A is closed in X.
- (a) Since A is open in Y, $A = B \cap Y$ for some open set $B \subseteq X$. Since B and Y are both open in X, $B \cap Y$ is open in X. Thus, A is open in X.

(b) A is closed in Y, so $A = B \cap Y$ for a closed set $B \subseteq X$ by Theorem 3.4. Since B and Y are both closed in X, $B \cap Y$ is closed in X. Thus, A is closed in X.

EXERCISE 3.9

- (a) Let $K = \{\frac{1}{n} \in \mathbb{R} | n \in \mathbb{Z}_+\}$. Show that the standard topology on K is the discrete topology.
- (b) Let $K^* = k \cup \{0\}$. Show that the standard topology on K^* is not the discrete topology.
- (a) Consider a singleton set $\{\frac{1}{n}\}\subseteq K$ for some $n\in\mathbb{Z}$.

Let
$$a_n = \operatorname{avg}(\frac{1}{n+1}, \frac{1}{n}) = \frac{n+1/2}{n(n+1)}$$
.
Let $b_n = \operatorname{avg}(\frac{1}{n}, \frac{1}{n-1}) = \frac{n-1/2}{n(n-1)}$.

Let
$$\theta_n = \operatorname{avg}(\frac{1}{n}, \frac{1}{n-1}) = \frac{1}{n(n-1)}$$

 $(a_n, b_n) \cap K = \{\frac{1}{n}\}.$ So $\{\frac{1}{n}\}$ is an open set in the standard topology on K.

So every singleton set in K is an open set.

Consider a set $U \subset K$.

By the Union lemma, $U = \bigcup_{x \in U} \{x\}.$

Since U is a union of open sets, U is an open set.

So all subsets of K are open sets.

- ... The standard topology on K is the discrete topology.
- (b) Consider $\{0\} \subseteq K^*$.

Consider a neighborhood of $(a, b) \subseteq K^*$ such that $0 \in (a, b)$.

Thus, we have a < 0 < b.

Between any two real numbers is a rational number.

Thus, $\exists m, n \in \mathbb{Z} \ni a < \frac{m}{n} < 0$.

So
$$\exists n, \in \mathbb{Z} \ni a < \frac{1}{n} < 0.$$

So
$$\frac{1}{n} \in (a, b)$$
.

Thus, all open sets containing 0 have more than one element.

So $\{0\}$ is not an open set in K^* .

 \therefore The standard topology on K^* is not the discrete topology.

9

EXERCISE 3.10 Show that the standard topology on \mathbb{Q} , the set of rational numbers is not the discrete topology.

Let (a, b) be an open set containing 0. Between any two real numbers is a rational number. Thus, $\exists m, n \in \mathbb{Z} \ni a < \frac{m}{n} < 0$. So $\exists n, \in \mathbb{Z} \ni a < \frac{1}{n} < 0$. So $\frac{1}{n} \in (a, b)$.

Thus, all open sets containing 0 have more than one element. So $\{0\}$ is not an open set in \mathbb{Q} .

 \therefore The standard topology on \mathbb{Q} is not the discrete topology.

EXERCISE 3.12 Is the finite complement topology on \mathbb{R}^2 the same as the product topology on \mathbb{R}^2 that results from taking the product $\mathbb{R}_{fc} \times \mathbb{R}_{fc}$, where \mathbb{R}_{fc} is \mathbb{R} in the finite complement topology? Justify your answer.

Those two topologies are not the same.

Consider the set $U = \mathbb{R} - \{0\}\mathbb{R}$. U is open in the product topology on \mathbb{R}^2 that results from taking the product $\mathbb{R}_{fc} \times \mathbb{R}_{fc}$ by Definition 3.6.

It is easy to see that U does not have a finite complement and thus is not open in the finite complement topology on \mathbb{R}^2 .

Since the toplogies do not share all elements, they are not the same.

EXERCISE 3.13 Let $X = PP\mathbb{R}^2_{(0,0)}$, the particular point topology on \mathbb{R}^2 with the origin serving as the particular point. Is X the same as the topology that results from taking the product of \mathbb{R} with itself, where each \mathbb{R} has the particular point topology $PP\mathbb{R}_0$? Justify your answer.

X is the same topology.

Consider an open set $U \times V$ in the product topology formed by $PP\mathbb{R}_0$ crossed with itself.

 $0 \in U$ and $0 \in V$, so $(0,0) \in U \times V$.

Thus, the product topology with $PP\mathbb{R}_0$ is a subset of $PP\mathbb{R}_{(0,0)}$.

Consider an open set U in X.

For every point $(x, y) \in U$ let $V_{(x,y)} = \{x, 0\} \times \{y, 0\}$.

By the union lemma, $U = \bigcup_{(x,y) \in W} V_{(x,y)}$.

This is also a union of open sets in the product topology formed by $PP\mathbb{R}_0$ crossed with itself, which is an open set in said topology.

Thus, X is a subset of the product topology with $PP\mathbb{R}_0$.

Therefore, the product topology with $PP\mathbb{R}_0$ is the same as X.

EXERCISE 3.16 Let S^2 be the sphere, D be the disk, T be the torus, S^1 be the circle, and I = [0,1] with the standard topology. Draw pictures of the product spaces $S^2 \times I$, $T \times I$, $S^1 \times I \times I$, and $S^1 \times D$.

EXERCISE 3.17 If L is a line in the plane, describe the subspace topology it inherits from $\mathbb{R}_l \times \mathbb{R}$ and from $\mathbb{R}_l \times \mathbb{R}_l$, where \mathbb{R}_l is the real line in the lower limit topology. Note that the result depends on the slope of the line. In all cases, it is a familiar topology.

If L is a vertical line, it inherits the standard topology on \mathbb{R} from $\mathbb{R}_l \times \mathbb{R}$. Otherwise, it inherits \mathbb{R}_l . Unions of open intervals as well as interals closed at the lower limit are open sets in these non-vertical lines, all of which are open in the lower limit topology.

L inherits \mathbb{R}_l from $\mathbb{R}_l \times \mathbb{R}_l$ in all cases.

EXERCISE 3.18 Show that if X and Y are Hausdorff spaces, then so is the product space $X \times Y$.

Let X and Y be Hausdorff spaces.

Consider two distinct points (x_1, y_1) and (x_2, y_2) in the product space $X \times Y$.

Since the points are distinct, either $x_1 \neq x_2$ or $y_1 \neq y_2$.

Without loss of generality, let $x_1 \neq x_2$.

Since X is Hausdorff $\exists U, V \in X \ni x \in U$ and $y \in V$.

Let $U' = U \times Y$ and $V' = V \times Y$.

 $(x_1, y_1) \in U'$ and $(x_2, y_2) \in V'$

Since U and V are disjoint, U' and V' are disjoint.

Thus, for any two distinct points in the product space $X \times Y$, there exist disjoint subsets that contain those points.

Therefore, the product space $X \times Y$ is Hausdorff.

EXERCISE 3.19 Show that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.

For sake of readability, let 'denote the complement of a set.

Assume A and B are closed in X and Y respectively.

A' and B' are both open in X and Y.

So $A' \times Y$ and $X' \times B$ are open in $X \times Y$.

This means $(A' \times Y)'$ and $(X' \times B)'$ are both closed in $X \times Y$.

Thus, $(A' \times Y)' \cap (X' \times B)'$ is closed in $X \times Y$.

$$A \times B = A \times Y \cap X \times B$$

$$A \times B = (A' \times Y)' \cap (X' \times B)'$$

 $\therefore A \times B$ is closed in $X \times Y$

EXERCISE 3.20 Show that if $A \subseteq X$ and $B \subseteq Y$, then $Cl(A \times B) = Cl(A) \times Cl(B)$.

In Exercise 3.19, we have shown that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.

Since $A \subseteq Cl(A)$ and $B \subseteq Cl(B)$ $A \times B \subseteq Cl(A) \times Cl(B)$.

Cl(A) and Cl(B) are both closed, so $Cl(A) \times Cl(B)$ is closed in $X \times Y$.

Thus, $Cl(A \times B) \subseteq Cl(A) \times Cl(B)$.

Let $(x, y) \in Cl(A) \times Cl(B)$.

Let H be an open set in $X \times Y$ containing (x, y).

Since H is open, it can be written as $U \times V$, where U and V are open in X and Y respectively.

Since $x \in Cl(A)$, U has to intersect A at a point other than x, by Theorem 2.8. Call it x'. (Axiom of choice)

Thus, H intersects $A \times B$ at (x', y).

So for every open set H containing (x, y), H intersects $A \times B$ at a point other than (x, y).

That makes (x, y) a limit point of $A \times B$.

So, by Theorem 2.8, $(x, y) \in Cl(A \times B)$.

Thus, $Cl(A) \times Cl(B) \subset Cl(A \times B)$.

 \therefore Cl $(A \times B) =$ Cl $(A) \times$ Cl(B).