1. Compute the *lengths* of the following:

(a)
$$y = \frac{1}{3}(x^2 + 2)^{3/2}$$
 from $x = 0$ to $x = 3$

(b)
$$y = x^{3/2}$$
 from $(0,0)$ to $(4,8)$

(c)
$$9x^2 = 4y^3$$
 from $(0,0)$ to $(2\sqrt{3},3)$

(d)
$$y = \frac{1}{3}x^3 + \frac{1}{4x}$$
 from $x = 1$ to $x = 3$

(e)
$$x = \frac{1}{4}y^4 + \frac{1}{8y^2}$$
 from $y = 1$ to $y = 2$

(f)
$$y = \frac{e^x + e^{-x}}{2}$$
 from $x = -\ln 2$ to $x = \ln 2$

(g)
$$x^{2/3} + y^{2/3} = 1$$
 (a famous example of an *astroid*)

2. Compute the *area* of the surface generated by revolving the given curve about the indicated axis:

(a)
$$y = \frac{x}{2}$$
, $0 \le x \le 4$, about the x-axis

(b)
$$y = \frac{x}{2}$$
, $0 \le x \le 4$, about the y-axis

(c)
$$y = x^3$$
, $1 \le x \le 2$, about the x-axis

(d)
$$y = \sqrt{2x - x^2}$$
, $0 \le x \le 2$, about the x-axis

(e)
$$y = x^2$$
, $0 \le x \le \sqrt{2}$, about the y-axis

(f)
$$y = \cos x$$
, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, about the x-axis

(g)
$$y = \frac{2}{3}x^{3/2}$$
, $1 \le x \le 2$, about the *y*-axis

(h) the astroid in
$$1(g)$$
, about the x -axis

3. Use the shell method to compute the *volume* of the solid generated by revolving the region bounded by the given curves about the indicated axis:

(a)
$$y = 25 - x^2$$
, $y = 0$ about the *y*-axis

(b)
$$y = x^2$$
, $y = 8 - x^2$ about the y-axis

(c)
$$x = 9 - y^2$$
, $x = 0$ about the x-axis

(d)
$$y = 2x^2$$
, $y^2 = 4x$ about the x-axis

(e)
$$y = \sqrt{x}$$
, $y = 0$, $x = 4$ about the y-axis

(f)
$$x = 2y - y^2$$
, $x = 0$ about the x-axis

(g)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 about the y-axis