

Institute of Primate Research

STANDARD OPERATING PROCEDURE (SOP) DOCUMENT

Predictive modelling and ensemble modelling

SOP No.	Issue Number	Issue Date	Revision Status	Revision Date
SOP/KIPRE/RPD/DSAS/3.1.76	Version 01	October 2025	-	-

Approvals			
	Name	Signature	Date
Developed by:	_Patrick Waweru Mwaura_		
Reviewed by:			
Approved by:			

Table of Contents 4 1. PURPOSE 4 2. SCOPE 4 3. PERSONS RESPONSIBLE: 4 4. FREQUENCY 4 5. MATERIALS 4 6. PROCEDURE 4 7. REFERENCES 4

1. PURPOSE

To establish a standardized framework for developing, validating, and applying predictive and ensemble models in DS&AS-supported research, ensuring accuracy, transparency, and compliance with ethical and regulatory standards.

2. SCOPE

Covers all DS&AS projects involving statistical or machine learning predictive modelling, including epidemiology, biomedical outcomes, ecological monitoring, and conservation forecasting.

3. PERSONS RESPONSIBLE:

- Data Scientist / Biostatistician: Designs and implements models.
- Computational Biologist (if genomic/proteomic data): Applies specialized methods.
- **Head of DS&AS:** Reviews and approves modelling frameworks.

4. FREQUENCY

- Mandatory **before deployment** of any predictive model.
- Model re-validation when new data or methods become available.

5. MATERIALS

- Statistical software (R, SAS, Python/Scikit-learn, TensorFlow, PyTorch).
- Model validation datasets.
- Documentation templates (model specification, assumptions, and metrics).

6. PROCEDURE

- 1. **Model Selection:** Identify candidate models (regression, decision trees, random forests, boosting, and deep learning).
- 2. **Data Preparation:** Clean, partition (train/validation/test), and preprocess datasets.
- 3. **Model Development:** Train models using cross-validation; tune hyperparameters.
- 4. Validation: Assess performance (AUC, RMSE, calibration plots, sensitivity analyses).
- 5. **Ensemble Modelling:** Combine models using bagging, boosting, or stacking where appropriate.
- 6. **Documentation:** Archive all code, parameters, and validation results.
- 7. **Deployment:** Deploy validated model with monitoring mechanisms.

7. REFERENCES