WORKSHEET 1 SETS AND COUNTING

- 1. Set A is $\{1, 2, 3, 4, 5\}$.
 - (a) What is the formal notation for the set of all sequences of three elements from A?
 - (b) How many such sequences are there?

Solution:

- (a) The set of all sequences of three elements from A denoted $A^3 = A * A * A$
- (b) There are $5^3 = 125$ sequences.
- **2**. Let A and B be sets with |A| = 5 and |B| = 7.
 - (a) What is the largest size $A \bigcup B$ could possibly have?
 - (b) What is the smallest size $A \bigcup B$ could have?
 - (c) What is the largest size $A \cap B$ could have?
 - (d) What is the smallest size $A \cap B$ could have?

Solution:

- (a) The largest size of $A \bigcup B$ is **12** obtained when $A \cap B = \emptyset$.
- (b) The smallest size of $A \bigcup B$ is 7 obtained when $A \cap B = 5$.
- (c) The largest size of $A \cap B$ is 5 when A of size 5 is a subset of B of size 7.
- (d) The smallest size of $A \cap B$ is **0** obtained when $A \cap B = \emptyset$
- 3. How many binary sequences of length 10 are there?

Solution:

There are 2^{10} binary sequences of length 10.

4. An ice-cream parlor lets you choose 3 of their 10 available flavors. How many choices do you have?

Solution:

Since the order doesn't matter, there are $\binom{10}{3} = 120$ choices.

5. You have six sports trophies, and you want to choose three of them and line them up on your mantelpiece. How many different arrangements can you make?

Solution:

Apparently, the order of trophies matters, there are $\binom{6}{3} = 20$ ways to select three trophies, and 3! = 6 ways to permuted three trophies, so the total different arrangements can be make is $\binom{6}{3} \times 6 = 120$.