Proyección de afiliados por provincia

Dirección Actuarial

Febrero 2016

1. Información

La información proporcionada para el análisis corresponde al total de afiliados por provincia en el periodo 2006 - 2015, adicionalmente, se nos proporcionó las estimaciones del total de afiliados a nivel nacional para el periodo 2006 - 2053.

2. Metodología

El siguiente paso consiste en ajustar un modelo de series de temporales a la sucesión estimada de afiliados por provincia utilizando la metodología Box-Jenkins que permita obtener predicciones.

Afiliados históricos

Afiliados históricos

Afiliados históricos

Afiliados históricos

Al observar las gráficas de las series se evidencia que las mismas no son estacionarias pues presentan una tendencia estocástica.

2014

La no estacionariedad se debe a la existencia de raíces unitarias en las series de afiliados, generalmente para obtener una serie estacionaria en media se procede a diferenciar la serie y seguido aplicar una prueba estadística que nos garantice la estacionariedad en varianza.

Implementaremos la prueba de estacionariedad de Kwiatkowski-Phillips-Schmidt-Shin (KPSS), la cual a diferencia de la prueba de raíz unitaria de Dickey Fuller, nos proporciona la prueba directa de la hipótesis nula de estacionariedad frente a la hipótesis alternativa de existencia de una raíz unitaria. La hipótesis nula y alternativa de la prueba KPSS es la siguiente:

```
\begin{cases} H_0: \text{ La serie es estacionaria} \\ H_1: \text{ Existen raíces unitarias} \end{cases}
```

2.1. Ajuste de afiliados Guayas

```
##
## KPSS Test for Level Stationarity
##
## data: data[, 10]
## KPSS Level = 1.0166, Truncation lag parameter = 0, p-value = 0.01
```

Dado que los valores de p-value son menores al nivel de significancia 0,05, se rechaza la hipótesis nula, por tanto, existen raíces unitarias lo cual ocasiona la no estacionariedad.

De esta forma procedemos a diferencias la serie con el objetivo de obtener estacionariedad:

La prueba KPSS sobre la serie diferenciada nos lleva a aceptar la hipótesis nula, es decir la serie diferenciada es estacionaria.

```
##
## KPSS Test for Level Stationarity
##
## data: diff(data[, 10])
## KPSS Level = 0.19251, Truncation lag parameter = 0, p-value = 0.1
```

En vista que la serie diferenciada es estacionaria y las funciones de correlación se encuentran bajo control concluimos que el modelo estimado para la serie es:

$$A_t = B + A_{t-1} + \sigma_t$$

donde:

- \blacksquare B: Constante.
- A_t : Número de afiliados en el año t.
- A_{t-1} : Número de afiliados en el año t-1.
- σ_t : Valor aleatorio (aleatoriedad) con distribución normal.

Para estimar la constante B procedemos a evaluar el modelo ARIMA(0,1,0) sobre la serie de afiliados de Guayas.

```
## Series: data[, 10]
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 52170.667
## s.e. 8249.097
##
## sigma^2 estimated as 612422694: log likelihood=-103.82
## AIC=211.64 AICc=213.64 BIC=212.03
```

La estimación del número de afiliados en Guayas está dada por la expresión:

$$A_t = 52170,667 + A_{t-1} + \sigma_t$$

Guayas

Observamos que el ajuste provisto por el modelo ARIMA(0,1,0) es netamente lineal, lo cual no es correcto para los años futuros debido a la presencia de varios factores que generan una desaceleración en el incremento de los afiliados: crecimiento población, PEA, etc.

Una recomendación para frenar el crecimiento lineal en los años futuros es incluir una función de pesos, la cual a medida que transcurren los años va disminuyendo su valor, por tanto controla el crecimiento desmesurado:

$$A_t = A_{t-1} + (B + \sigma_t) * \phi$$

 $\cos\,\phi = \frac{2,5}{1+e^{t/24}}, \text{ donde } t \text{ corresponde al número de años transcurridos desde el 2015, es decir, } t \in [1,25]. \text{ A continuación, comparamos las curvas obtenidas.}$

Guayas

