$$P 24. \quad D_{4} = \langle r, s | r^{4} = s^{2} = (rs)^{2} = 4 \rangle$$

$$= \{ 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{3}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{3}, s, rs, r^{2}s, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{2}, r^{2}, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{2}, r^{2}, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{2}, r^{2}, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{2}, r^{2}, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{2}, r^{2}, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{2}, r^{2}, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{2}, r^{2}, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{2}, r^{2}, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{2}, r^{2}, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^{2}, r^{2}, r^{2}, r^{2}s, r^{2}s \end{cases}$$

$$= \begin{cases} 1, r, r^$$

 $C_1 = 1$; $C_2 = r + r^3$; $C_3 = r^2$; $C_4 = s + r^2 s$; $C_5 = rs + r^3 s$

(2)		C	Cz	Сş	C+	۲-
	د ،	C,	C2	C_{ζ}	Ch	Cs
	c,		20,+24,	C_2	2 Cs	204
	Ci			C,	Сų	\mathcal{C}_{S}
	c,				20,+20,	
	C5					20,+203

(3) Lik = 7 Cij y

 $\lambda_{a} = y' - y^{3} \qquad m_{1} = 1$ $\lambda_{b} = y' + 2y' + y'^{3} - 2y' - 2y'^{5} \qquad m_{2} = 2$ $\lambda_{c} = y' - 2y'^{2} + y'^{3} + 2y'^{4} - 2y'^{5} \qquad m_{3} = 1$ $\lambda_{d} = y' - 2y'^{2} + y'^{3} - 2y'^{4} + 2y'^{5} \qquad m_{5} = 2$ $\lambda_{e} = y' + 2y'^{2} + y'^{3} + 2y'^{4} + 2y'^{5} \qquad m_{5} = 2$

$$\lambda_{\mu} = \frac{1}{n_{\mu}} \sum_{i=1}^{r} m_{i} x_{\mu}(ECJ) y^{i} = \Sigma$$

$$\chi_{\alpha} = n_{\alpha} (1, 0, -1, 0)$$

$$\chi_{b} = n_{b} (1, 1, 1, -1, -1)$$

$$\chi_{c} = n_{c} (1, -1, 1, 1, -1, 1)$$

$$\chi_{d} = n_{d} (1, -1, 1, 1, 1)$$

$$\chi_{e} = n_{e} (1, 1, 1, 1, 1)$$

$$n_{\mu} = \left[\frac{(GI)}{\sum_{m \in I} x_{\mu}(ECJ)} \right]^{2} \xrightarrow{J^{\frac{1}{2}}} \qquad n_{\alpha} = 2$$

$$n_{\mu} = \left[\frac{(G)}{\sum_{i=1}^{r} m_{i} \left(\frac{X_{\mu}(CG)}{n_{\mu}} \right)^{2}} \right]^{\frac{1}{2}} \implies n_{a} = 2$$

$$n_{b} = n_{c} = n_{d} = n_{e} = 1$$

identify Ir] = C4A), [r2] = C2(b), [5] = C2, [rs]=C2"

We recover the character table:

Character table for point group D ₄								
D ₄	Е	2C ₄ (z)	C ₂ (z)	2C'2	2C"2	linear functions, rotations	quadratic functions	cubic functions
A_1	+1	+1	+1	+1	+1	-	x2+y2, z2	-
A ₂	+1	+1	+1	-1	-1	z, R _z	-	z^3 , $z(x^2+y^2)$
В1	+1	-1	+1	+1	-1	-	x ² -y ²	xyz
В2	+1	-1	+1	-1	+1	-	xy	$z(x^2-y^2)$
Е	+2	0	-2	0	0	$(x, y) (R_x, R_y)$	(xz, yz)	$(xz^2, yz^2) (xy^2, x^2y) (x^3, y^3)$

http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=304&option=4