ICE Telescope

A ROS package

Biel Artigues Aguilo

November 5, 2015 Version 0.1.1

Abstract

ice_telescope is a ROS package to operate and remote control the telescope system at the ICE building in the UAB Campus. The full system is composed of a Meade LX200GPS telescope, an SBIG ST-7 CCD camera and a Baader Planetarium dome.

1 Synopsis

ROS

roscore

Server

rosrun ice_telescope ice_telescope_node

Client

rosrun ice_telescope ice_telescope_node action [params]

2 Description

ice_telescope is composed of several nodes -ice_telescope_node- that allow the control of the telescope system. In addition to the server to control all devices ice_tel_server, each of the system components (telescope, dome, ccd) has a pair of client-server nodes following the naming convention brand_server and brand_client:

 $\textbf{Full-Server} \ \ ice_tel_server.$

Telescope meade_server and meade_client.

CCD sbig_server and sbig_client.

Dome baader_server and baader_client.

Note: The *brand_server* servers are there for your convenience but only the *ice_tel_server* is necessary to control them all.

The server node runs continuously waiting for petitions from the client node. When a client node's petition is received by the server node, the server processes the petition, sends a response back to the client and returns to the waiting mode. The client waits for the server response and finishes the execution.

Client node

The **action** parameter issues the desired order to the server.

[params] will depend on the system component and the selected action.

Note: roscore must be running at all times for node communication and interoperation.

3 Servers

The servers for all the system elements are executed without additional parameters and they must be running to listen to the clients commands.

Full-Server

rosrun ice_telescope ice_tel_server

Telescope

rosrun ice_telescope meade_server

CCD

rosrun ice_telescope sbig_server

Dome

rosrun ice_telescope baader_server

4 Telescope client

The telescope client issues the user's desired actions to perform with the Meade LX200GPS Telescope.

```
rosrun ice_telescope meade_client action [params]
rosrun ice_telescope meade_client.py action [params]
```

4.1 Options

The *action* parameter is the command to be sent to the server. The *action* can be one of the following:

goto Point the telescope to the specified coordinates.

rosrun ice_telescope meade_client goto ra dec

- ra Right ascension as a double value.
- dec Declination as a double value.

messier Point the telescope to the selected catalog object.

star rosrun ice_telescope meade_client messier objectNum

deepsky rosrun ice_telescope meade_client star objectNum
rosrun ice_telescope meade_client deepsky objectNum

• objectNum The catalog number for the desired object.

gps Update the system's gps. Note: The dome must be open for the gps sync.

rosrun ice_telescope meade_client gps

getobjradec Get the coordinates of the currently selected object.

 $rosrun\ ice_telescope\ meade_client\ getobjradec$

gettelradec Get the telescope's current pointing coordinates.

rosrun ice_telescope meade_client gettelradec

getdatetime Get the telescope's current date and time.

 $rosrun\ ice_telescope\ meade_client\ get date time$

setdatetime Set the telescope's date and time to the current ones.

 $rosrun\ ice_telescope\ meade_client\ set date time$

getlation Get the telescope's latitude and longitude.

rosrun ice_telescope meade_client getlatlon

setlation Set the telescope's latitude and longitude.

rosrun ice_telescope meade_client setlatlon lat lon

- lat The current latitude as a double value.
- lon The current longitude as a double value.

focus Move the telescope's focus (in/out). WORK IN PROGRESS.

5 CCD client

The CCD client issues the user's desired actions to perform with the SBIG ST-7 CCD.

rosrun ice_telescope sbig_client action [params] rosrun ice_telescope sbig_client.py action [params]

5.1 Options

The *action* parameter is the command to be sent to the server. The *action* can be one of the following:

capture Start an exposure and save the result to file.

 $rosrun\ ice_telescope\ sbig_client\ capture\ filePath\ fileType\ imgCount\ imgType\ expTime\ readoutMode\ top\ left\ width\ height\ fastReadout\ dualReadoutChannel$

- filePath: The path for the saved image files.
- fileType: FITS or SBIG file formats.
- imgCount: Number of exposures to take.
- **imgType**: LF (light frame) or DF (dark frame).
- **expTime**: Number of seconds (or fraction of second) of exposure.
- readoutMode: Binning. Options: 1x1, 2x2, 3x3.
- top: Starting position in the 'Y' axis.
- left: Starting position in the 'X' axis.
- width: Image width in pixels.
- height: Image height in pixels.

Note: If all params (top, left, width and height) are zero, the full size of the CCD image is used.

- fastReadout: 1 for fast readout and 0 for normal readout.
- dualReadoutChannel: 1 for dual channel readout an 0 for single channel readout.

settemp Enable or disable the cooler to achieve the desired temperature for the CCD.

rosrun ice_telescope sbig_client settemp enable temperature

- enable: 1 to enable and 0 to disable.
- temperature: double value with the desired temperature

gettemp Query the CCD temperature. The server returns the temperature, the power applied to the CCD as a percentage (0-1) and the cooler status (enabled/disabled).

rosrun ice_telescope sbiq_client gettemp

6 Dome client

The dome client issues the user's desired actions to perform with the Baader Planetarium Dome.

```
rosrun ice_telescope baader_client action
rosrun ice_telescope baader_client.py action
```

6.1 Options

The *action* parameter is the command to be sent to the server. The *action* can be one of the following:

open Open the dome.
 rosrun ice_telescope baader_client open
 close Close the dome.
 rosrun ice_telescope baader_client close

status Query the dome status. The possible states for the dome are: open, closed, moving and unknown.

rosrun ice_telescope baader_client status

7 Files

ice_tel_server C++ implementation of the server to control all devices. C++ implementation of the telescope server. meade_server C++ implementation of the telescope client. $meade_client$ meade_client.py Python implementation for the telescope client. sbig_server C++ implementation of the CCD server. sbig_client C++ implementation of the CCD client. Python implementation for the CCD client. sbig_client.py baader_server C++ implementation of the dome server. baader_client C++ implementation of the dome client. baader_client.py Python implementation for the dome client.

8 Example

```
$ roscore &

$ rosrun ice_telescope ice_tel_server &

$ rosrun ice_telescope baader_client open
$ rosrun ice_telescope sbig_client settemp 1 10.0

$ rosrun ice_telescope meade_client gps
$ rosrun ice_telescope meade_client setdatetime
$ rosrun ice_telescope meade_client messier 31
$ rosrun ice_telescope sbig_client capture /img/ FITS 10 LF 30.0 1x1 0 0 0 0 1 1
$ rosrun ice_telescope baader_client close
```

9 See Also

ROS, rosrun, roscd, rosls, catkin_make.

10 Requirements

ROS Environment $ice_telescope$ requires ROS version >= 1.11.13 (>= Indigo distribution).

ROS Workspace If you want to compile or install the distributed system, you need a *catkin* workspace.

Libraries:

- libusb-1.0.
- cfitsio.
- libsbigudry. This library can be downloaded from http://archive.sbig.com/sbwhtmls/devswframe.htm.

11 Changes

Please check the file CHANGELOG for the list of changes and acknowledgment to people contributing bugfixes or enhancements.

12 Version

Version: 0.1.1 of November 5, 2015.

13 License and Copyright

Copyright © 2015, Biel Artigues Aguilo, ICE Building, Campus UAB, Bellaterra, Catalunya artigues@ice.cat

The actual version of *ice_telescope* may be found on the following link https://baiels.redkaos.org/index.php/s/H4i9a87jyLQ4BMc.

License This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

14 Author

Biel Artigues Aguilo Email: artigues@ice.cat

Web: http://www.ice.csic.es/.