Wed, Apr 30 Lecture 26 Nonlinear differential equations describe most of the physical world. Linear equations are usually approximations e.g. spring close to rest length; small deflections of a beam; constant g' for growity. The number of dimensions of phase space needed to describe neal systems dynamics can get very large. (degrees of freedom) Explicit time dependence adds another dimension to phase space. Most differential equations in physics are 2th or 4th order. Nonlinearity + "high"-dimensionality -> possibility of chaos. How nonlinear? A pendulum to large angles 0-sind How high-dimensional? n >2 is enough. -> Partial differential equations are 100-dimensional ordinary differential equations -> In the 19th century, it was thought that physics, in principle, had been solved. Initial conditions and differential egns in _____ future behavior out. "Laplace's Deman"

Instructor: Emad Masroor

→	Que	anti	M	pl	wsi	دح	Or	nd	94	nera	l	ne	lativ	ity	C	omp	lica	ted	
	fhi	3	picl	ure	a	t	٧٠	sma	U	ano	l	٧٠ ٨	Lage	-	SCO	les	Bo	ut	
					disc														
					tha														egir
	ÌS		ba	sed	,	did	2	NOF		suf	fer	fr	m	•	Suc	4	Spn C	oble	ms.
->	The	2 (disc	Cove	sy	0	F	z hod	0s ·		stri	ctly	a	٨	estl	ıem	atic	al	
	ph	ens	me	v ev	\ <u>'</u> _	- i	n	num	ero	us	p	hysi	calle	ì	mpa	rton	t	eguo	Lions
																			ns ou
					ad														
					ougl														
	fu	itur	e	6	ehou	nein.	_	- e	ver	if		you		500	W	th.	و ،	901	SNIVE
	eg	yua	fior	15	and		Hei		sol	utis	ns	Our	ع	940	Von	red	12	,	
_	<u>و</u> ۲	rist	(and	60	2	uni	gve	•										
→	The	2	degl	re	9	f	unp	red	icta	bilig	ty	15	so	gn	eat	th	at	Chan	lic
	sy	sle	MS		- di	espi	le	bei	ng	def	e w	mis	fic,	nof	<u> [0</u>	nda	м -		-
	sh	9 W	C	erfo	in	fe	atu	res	0	f	ron	don	1	proc	esse	S.	e.g.	Lon	g-fim
	_																		ialks.
_																			

Instructor: Emad Masroor

therefore learn that there is often an how long we can predict limit for even if the physics is well-understood phenomena Small uncertainties in measurement will propagate exponentially. Better measurement tools only delay inevitable divergence of initially nearby trajectories very Slightly. So, the guestian of whether we live in a deterministic would is complicated by the presence of chars equations that we know to be good models physical phenomena. (Sometimes, even in the simplest the world is deterministic — i.e. even if a function of current state of the world is - if often appears to behave the world if choos is present in the governing equations. randomly

Instructor: Emad Masroor