ชิตอู ® ผิซิตซิ ซุซริติซิ/เบเนูบ์ บุฐเบนุทิดเบนุดา บรูม/All Rights Reserved)

දී ලංකා විතත දෙපාර්තමේන්තුව ලී ලංකා විතාන දෙපාර්තමේ**ල් යන**ෑවේ**රාහන් දෙපාර්තමේන්තුව** විතාන දෙපාර්තමේන්තුව ලී ලංකා විතාන දෙපාර්තමේන්තුව ශිරුම්ගත්ව பුර්ධකාවේ නිකානස්යන්ගට ශිරුම්ගත්ව ප්රධාන දීම නිකානස්යන්ගට පුරුම් සිතුන්වේ වුර්ධකාවේ වුර්ධකාවේ වුර්ධකාවේවට ප්රධාන විතානස්යන්ගට ප්රධාන විතාන දෙපාර්තමේන්තුව ලී ලංකා විතාන දෙපාර්තමේන්තුව සිතුන් ප්රධාන විතානස්යන්ගේ ප්රධාන විතානස්යන්ගේ ප්රධාන විතානස්යන්ගට ප්රධාන දෙපාර්තමේන්තුව සිතුන් ස

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) සබාබ්ධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

ගණිතය I සණ්ඩුපාර **I** Mathematics **I**

07 S I

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය				
------------	--	--	--	--

උපදෙස් :

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

යියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටකට ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංකය	ලකුණු
7	1	
	2	- 4
	3	
	4	
A	5	C
**	6	
	7	
Ī	8	11
	9	
	10	. And the second
	11	
	12	
	13	
В	14	i\$
	15	
ſ	16	
	17	
	එකතුව	

		-
200	-	6
	വ	C

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්ෂ	ක		
පරීක්ෂා කළේ:	1 2	51) 	
අධීක්ෂණය කළේ:		900 V -	

${f A}$ කොටස

1.	$A = \left\{ x \in \mathbb{R} : x+2 < 4 \right\}$ හා $B = \left\{ x \in \mathbb{R} : x+1 \ge 5 \right\}$ යැයි ගනිමු. $A \cap B, A \cap B'$ හා $A' \cup B$ සොයන්න.
2.	A හා B යනු S සර්වතු කුලකයක උපකුලක යැයි ගනිමු. $A \cup ig(A \cup B'ig)' = A \cup B$ බව පෙන්වන්න.
	$A \cup B$ හා $ig(A \cup B'ig)'$ කුලක වෙන් සටහන් දෙකක වෙන වෙනම නිරූපණය කරන්න.

ΑL	/2021(2022)/07/S-I	- 3 -	විභාග අංකය :
3.	$(p \land \sim\!\! q) \!\Rightarrow\!\! r$ යන සංයුක්ත පුස්තුතය හා $(\sim\!\! p \lor q) \lor r$	" යන සංයු	අක්ත පුස්තුතය තර්කානුසාරීව තුලා බව පෙන්වන්න.
		•••••	
		•••••	
		•••••	
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

	••••••	• • • • • • • • • • • • • • • • • • • •	
4.	$m,n\in \mathbb{Z}$ යැයි ගනිමු. විසංවාද කුමය භාවිතයෙන්, n බව සාධනය කරන්න.	$n(n^2 + 2n)$	n) ඔක්තේ චේ නම්, m හා n යන දෙකම ඔත්තේ වන
			••••

	•••••	••••••	
			•••••••••••••••••••••••••••••••••••••••
	•••••		
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	

5.	. පාදය වෙනස් කිරීමේ සූතුය භාවිත කර, $\log_{x^2} 4 = rac{1}{2} \log_x 4$ බව පෙන්වන්න.
	ඒ නයින්, x සඳහා $\log_x 4 + \log_{x^2} 4 = 3$ සමීකරණය විසඳන්න.
6.	$\frac{x-6}{2-x} \leq x$ අසමානතාව සපුරාලන x හි සියලුම තාත්ත්වික අගයන් සොයන්න.

7.	$f(x)=2(x-2)^2+3$ හි පුස්තාරය රූපසටහනෙහි දැක්වේ. a හා b හි අගයන් ද f හි පරාසය ද ලියා දක්වන්න.
	$x \leq k$ සඳහා f ට පුතිලෝම ශුිතයක් පවතින පරිදි k හි විශාලතම අගය පුකාශ කරන්න.
	k හි මෙම අගය සඳහා $f^{-1}(x)$ සොයන්න.
	y
	b
	$a \rightarrow x$
8.	
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. මූල ලක්ෂායේ සිට ඇති දුර ඒකක 1 ක් වන පරිදි l මත වූ ලක්ෂාවල x –ඛණ්ඩාංක සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	$A\equiv (3,6)$ හා $B\equiv (-5,2)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.

9.	ගෝලාකාර බැලූනයක් පුසාරණය වේ. කාලය තත්පර t හි දී එහි අරය r cm වේ. එහි පරිමාව, $2~{ m cm}^3~{ m s}^{-1}$ ක නියත
	ශීඝුතාවකින් වැඩි වේ. $rac{\mathrm{d}r}{\mathrm{d}t} = rac{1}{2\pi r^2}$ බව පෙන්වන්න.
	$r=8$ වන විට, බැලූනයේ පෘෂ්ඨ වර්ගඑලය $0.5~ m cm^2s^{-1}$ ශීඝුතාවකින් වැඩි වන බව ද පෙන්වන්න.
10.	$y=x^4-1$ හා $y=1-x^2$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය සොයන්න.
	$y=x^4-1$
	$y = 1 - x^2 / $

கிஷ ම හිමිකම් ඇව්රිණ් /முழுப் பதிப்புரிமையுடையது/All Rights Reserved}

§ ලංකා විභාත දෙපාර්තමේන්තුව ලී ලංකා විභාන දෙපාර්තමේන්තුව යි. ලෙසා විභාන දෙපාර්තමේන්තුව කි. ලෙසා විභාන දෙපාර්තමේන්තුව මුහස්කයට பුරිුකණේ නිකානයිස්තාර මුහස්කයට பුරික්වේ මුහස්ක්වේ මුහස්ක්වේ විස්තාර්තාර නිකානයිස්තාර මුහස්කයට பුරිකණේ නිකානයිස්තාර Department of Examinations, Sri La*n*ka Department o **මුහාස්තාය**ය. **විර්**ඩක්වේ මුහස්ක්වේ විස්තාර්තමේන්තුව ලී ලංකා විභාන දෙපාර්තමේන්තුව මුහස්කයට ප්රධානයට ප්රධාන

<mark>ගණිතය I</mark> සණෝළුග් I Mathematics I

B කොටස

* පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න.

- 11. (a) කි්ඩා සමාජයකට බැඳීම සඳහා කි්ඩකයකු ශාරීරික යෝගාතා පරීක්ෂණ දෙකක් සමත් විය යුතු ය. කි්ඩකයන් 120 ක් මෙම පරීක්ෂණ දෙකටම මුහුණ දෙන ලදී. පළමු පරීක්ෂණය සමත් වූ කි්ඩකයන්ගේ ගණන, පරීක්ෂණ දෙකම සමත් වූ කීඩකයන් ගණන මෙන් තුන් ගුණයක් වන අතර දෙවන පරීක්ෂණය සමත් වූ කීඩකයන්ගේ ගණන, පරීක්ෂණ දෙකම අසමත් වූ කි්ඩකයන්ගේ ගණන මෙන් දෙගුණයක් බව සොයාගන්නා ලදී. එක් පරීක්ෂණයක් පමණක් සමත් වූ කි්ඩකයන් ගණන 75 කි.
 - (i) පරීක්ෂණ දෙකම අසමත්
 - (ii) පරීක්ෂණ දෙකම සමත්
 - (iii) පළමු පරීක්ෂණය සමත්

කීඩකයන් ගණන සොයන්න.

- (b) සතානා වගු භාවිත කර, පහත දැක්වෙන එක් එක් සංයුක්ත පුස්තුත පුනරුක්තියක් දැයි හෝ විසංවාදයක් දැයි නිර්ණය කරන්න.
 - (i) $\sim (p \rightarrow q) \vee (\sim p \vee (p \wedge q))$
 - (ii) $(p \rightarrow q) \land (q \rightarrow r) \land (p \land \sim r)$
- $oldsymbol{12.}$ (a) **ගණිත අහසුහන මූලධර්මය** භාවිතයෙන්, සියලු $n\!\in\! {f Z}^{^+}$ සඳහා

$$\sum_{r=1}^{n} \left(6r^2 + 1 \right) = n \left(2n^2 + 3n + 2 \right)$$
 බව සාධනය කරන්න.

$$(b)$$
 $r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{3}{(3r-1)(3r+2)}$ යැයි ගනිමු.

$$r \in \mathbb{Z}^+$$
 සඳහා $U_r = \frac{1}{3r-1} - \frac{1}{3r+2}$ බව සතපාපනය කරන්න.

$$n\in \mathbb{Z}^+$$
 සඳහා $\sum_{r=1}^n U_r=rac{1}{2}-rac{1}{3n+2}$ බව පෙන්වන්න.

ඒ නයින්, $\sum_{r=1}^\infty U_r$ අභිසාරී වන බව පෙන්වා එහි ඓකාසය සොයන්න.

$$\sum_{r+1}^{\infty} U_{r+1} = rac{1}{5}$$
 බව **අපෝහනය** කරන්න.

More Past Papers at tamilguru.lk

(a) k $\left(\neq -\frac{1}{2}\right)$ යනු නාත්ත්වික නියතයක් යැයි ගනිමු.

 $(2k+1)x^2 - 2x - k = 0$ යන වර්ගජ සමීකරණයට පුහින්න තාත්ක්වික මූල ඇති බව පෙන්වන්න. p=2lpha+eta හා q=lpha+2eta යැයි ගනිමු; මෙහි lpha හා eta යනු ඉහත සමීකරණයෙහි මූල වේ. p+q හා pq යන ඒවා k ඇසුරින් පුකාශ කර, p හා q මූල වන වර්ගජ සමීකරණය සොයන්න.

- (b) $p(x)=x^4+5x+a$ යැයි ගනිමු; මෙහි a යනු තාක්ත්වික නියතයකි. p(x) යන්න x^2-x+3 න් බෙදේ නම්, a හි අගය සොයා p(x) සම්පූර්ණයෙන් සාධකවලට වෙන් කරන්න. **ඒ නයින්**, p(x)=0 සමීකරණයෙහි සියලු තාත්ත්වික මූල සොයන්න.
- (a) $k\in\mathbb{R}$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(k+x)^8$ හි පුසාරණයේ පළමු පද $4,\,k$ ඇසුරින් සොයන්න. 14. මෙම පුසාරණයේ x^2 හා x^3 පදවල සංගුණක සමාන යැයි දී ඇති විට, k හි අගය සොයන්න.
 - (b) සමාගමක් $2020\,$ වර්ෂයේදී රු. $20\,000\,000$ ක ලාභයක් උපයා ඇත. ලාභ වැඩි කරගැනීම සඳහා සමාගම A සැලසුම හා B සැලසුම නම් වූ සැලසුම් දෙකක් සලකා බලන ලදී. A සැලසුම යටතේ, සෑම වසරකම වාර්ෂික ලාභය කලින් වසරේ ලාභය මෙන් 5% කින් වැඩි විය යුතු ය. මෙම සැලසුම යටතේ 2020 සිට 2029 දක්වා වසර 10 තුළ ලැබෙන මුළු ලාභය සොයන්න.

B සැලසුම යටතේ, සෑම වසරකම වාර්ෂික ලාභය නියත රු.D පුමාණයකින් වැඩි විය යුතු ය. 2020 සිට 2029 දක්වා වසර 10 තුළ මුළු ලාභය සැලසුම් දෙකෙහි සමාන වන පරිදි වූ D හි අගය සොයන්න.

15. $A\equiv (1,a), B\equiv (-3,b)$ හා $M\equiv (c,1)$ යැයි ගනිමු; මෙහි $a,b,c\in \mathbb{R}$ ද M යනු AB හි මධාා ලක්ෂාය ද වේ. c හි අගය සොයා $C\equiv (a-2,\,b-1)$ යන ලක්ෂාය $l\colon x+y+1=0$ රේඛාව මත පිහිටන බව පෙන්වන්න. AB,l ට සමාන්තර බව දී ඇත.

a හා b හි අගයන් සොයන්න.

a,b හා c සඳහා ඉහත අගයන් ඇතිව

- (i) ABCD සමාන්තරාසුයක් වන පරිදි D ලක්ෂායේ ඛණ්ඩාංක ද,
- (ii) ABCD සමාන්තරාසුයේ වර්ගඵලය ද

සොයන්න.

m යනු 2x+y=3 රේඛාව යැයි ගනිමු. l හා m හි ඡේදන ලක්ෂාය හරහා යන BD ට ලම්බ රේඛාවේ සමීකරණය සොයන්න.

- (a) $\lim_{x\to 2} \frac{(x^2-4)^3}{(x-2)} \cdot \frac{2}{(\sqrt{x}-\sqrt{2})^2}$ අගයන්න. 16.
 - (b) පහත එක එකක් x විෂයයෙන් අවකලනය කරන්න.

(i)
$$\frac{3x^2+1}{x^2+3}$$

(ii)
$$x^8 \ln x + \frac{(x+1)}{\ln x}$$
 (iii) $\sqrt{(e^{2x}+1)^2+1}$

(iii)
$$\sqrt{(e^{2x}+1)^2+1}$$

(c) පරිමාව $128\pi~{
m cm}^3$ ක් වූ සංවෘත සිලින්ඩරාකාර භාජනයක් තැනිය යුතුව ඇත. රූපයේ පෙන්වා ඇති පරිදි එහි අරය $r~{
m cm}$ හා උස $h~{
m cm}$ යැයි ගනිමු. r>0 සඳහා, භාජනයේ මුළු පෘෂ්ඨ වර්ගඵලය $S~{
m cm}^2$,

 $S = 2\pi \left(r^2 + \frac{128}{r}\right)$ මගින් ලබාදෙන බව පෙන්වත්න.

S අවම වන r හි අගය සොයන්න.

- 17. (a) **හින්න භාග** කුමය භාවිතයෙන්, $\int \frac{1}{(x-1)(x-2)^2} \, \mathrm{d}x$ සොයන්න.
 - (b) **කොටස් වශයෙන් අනුකලනය** කිරීමේ කුමය භාවිතයෙන්, $\int x \Big(e^x + 2e^{2x}\Big) \mathrm{d}x$ සොයන්න.
 - (c) පහත වගුවෙන්, 0 හා 1 අතර, දිග 0.25 ක් වූ පුාන්තරවලදී x හි අගයන් සඳහා $f(x)=xe^{x^2}$ යන ශිතයෙහි අගයන් දශමස්ථාන තුනකට නිවැරදිව දෙයි.

x	0	0.25	0.5	0.75	1	
f(x)	0	0.266	0.642	1.316	2.718	

සීම්සන් නීතිය භාවිතයෙන්, $I=\int\limits_0^1 xe^{x^2}\,\mathrm{d}x$ සඳහා ආසන්න අගයක් සොයන්න.

ඒ නයින්. e සඳහා ආසන්න අගයක් සොයන්න.

සියලු ම හිමිකම් ඇව්ටිනි / $oldsymbol{eta}$ $oldsymbol{eta}$

ල් ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව රාක්ෂය පළමුවේන්තුව විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව இත්තනෙස් පාර්යක්ෂේ නිකාශක්ෂයාග இත්තනෙස් පාර්යක්ෂ් නිකාශක්ෂයාගම්මේක්ෂය පාර්යක්ෂේ නිකාශක්ෂයාග මුත්තනය් පාර්යක්ෂේ නිකාශක්ෂයාග විභාග වෙසාර්තමේන්තුව විභාග දෙපාර්තමේන්තුව විභාග දෙපාර්තමේන්තුව නිකාශක්ෂයාග විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව නිකාශක්ෂයාග මුත්තනයා පාර්යක්ෂේ ලේකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව නිකාශක්ෂයාග මුත්තනයා පාර්යක්ෂේ ලේකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව ල්ලාත්තනයා ප්රධාන දෙපාර්තමේන්තුව ල්ලාක්ෂය ප්රධාන දෙපාර ප්රධාන දෙපාර දෙපාර්තමේන්තුව ල්ලාක්ෂය ප්රධාන දෙපාර ප්රධාන දෙපාර දෙපාර ල්ලාක්ෂය ප්රධාන දෙපාර දෙපාර ල්ලාක්ෂය ප්රධාන දෙපාර දෙපාර දෙපාර ල්ලාක්ෂය ප්රධාන දෙපාර දෙපාර ල්ලාක්තමේන්තුව ල්ලාක්ෂය ප්රධාන දෙපාර දෙපාර දෙපාර ල්ලාක්ෂය ප්රධාන දෙපාර දෙපාර ල්ලාක්ෂය ප්රධාන දෙපාර ල්ලාක්ෂය ප්රධා

ுறைக II கணிதம் II Mathematics II

07 S II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය

- මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம்

10 நிமிடங்கள்

Additional Reading Time

- 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

ව්භාග අංකය				
Canor dama				J

උපදෙස්:

💥 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

A කොටස:

සීයලු ම පුශ්තවලට පිළිතුරු සපයන්න. එක් එක් පුශ්තය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

B කොටස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- 🔆 සංඛාහන වගු සපයනු ලැබේ.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(07) ගුණිතය II							
කොටස	පුශ්න අංකය	ලකුණු					
	1						
	2						
	3						
	4						
A	5						
	6						
	7						
	8						
	9						
	10						
	11						
1	12						
	13						
В	14						
	15						
	16						
	17						
	එකතුව						

	U -
ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

1
2

A කොටස

1.	a^2	b^2	$b^2 + ab$ ab b^2					•				
	$a^2 + ab$	b^2	ab	$=4a^2b^4$	බව පෙන්	වින්න;	මෙහි $a,$	$b \in \mathbb{R}$	වේ.			
	ab	$2b^2$	b^2									
	*********			•••••		•••••				•••••		
	•••••		• • • • • • • • • • • • • • • • • • • •		••••••	• • • • • • •	********	• • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •
			•••••		• • • • • • • • • • •							•••••
		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••					• • • • • • • • • • • • • • • • • • • •	•••••
			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	•••••			•••••	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
		******	**********	•••••							• • • • • • • • • • • • • • • • • • • •	
			•••••	•••••		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •					•••••
			•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • •	•••••	· · · · · · · · · ·			• • • • • • • • • • • • • •	
	•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •								
	••••••	•••••	********			• • • • • • • •		• • • • • • • •		******		********
	*********	•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••		• • • • • • • • • • • • • • • • • • • •
		•••••	••••••	•••••		• • • • • • •	• • • • • • • • • • • • • • • • • • • •			••••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •								•••••
2.	$\mathbf{A} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\mathbf{B} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 2 \end{pmatrix}$ so $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$C = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 5 \end{pmatrix}$	යැයි ගනිමු	ු. AB ෂ	oo A(2B	– C) සො	ායන්න.	
	2AB – AC	C = A((2B – C) a)ව සතහාප	නය කරු	න්න.						
						<i></i> .						
		• • • • • • •			********		• • • • • • • • • • •	•••••	*********		••••••	
	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	*********			
	************	• • • • • • • •	••••••	**********					••••••	• • • • • • • • • • •		•••••
	•••••	• • • • • • •					• • • • • • • • • • •					• • • • • • • • • • •
		· · · · · · · · · · · · · · · · · · ·		•••••				•••••	•••••	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		•••••	•••••				••••••	•••••			•••••
		• • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • •			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
	**********			**********		• • • • • • • •				• • • • • • • • • •		
	*********	• • • • • • •	************	**********							***********	
	***********	• • • • • • •	•••••	•••••								
	•••••	•••••	•••••	•••••			•••••	•;•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •
	******	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••					• • • • • • • • • •		••••••	

- 3 -

3.	දින 5 ක දෛනික වර්ෂාපතන මිනුම් නිරීක්ෂණය කරන ලදී. එම මිනුම්වල එකතුව හා වර්ගවල එකතුව පිළිවෙළින් $45~\mathrm{ml}$ හා $650~\mathrm{ml}^2$ වේ. වර්ෂාපතන මිනුම්වල මධානාසය හා සම්මත අපගමනය සොයන්න. ඊළඟ දින දෙකෙහි දෛනික වර්ෂාපතන මිනුම් ද නිරීක්ෂණය කරන ලද අතර එම අගයන් $10~\mathrm{ml}$ හා $8~\mathrm{ml}$ වේ. මධානායේ නව අගය සොයන්න.
4.	පිටු 200 ක් ඇති පොතක මුදුණ දෝෂ 20 ක් ඇති අතර එම දෝෂ සසම්භාවී ලෙස වාහප්තව ඇත. පිටුවකට ඇති දෝෂ ගණනට පුවාසොත් වහාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක් තිබීමේ සම්භාවිතාව සොයන්න.
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්
4.	ඇති දෝෂ ගණනට පුවාසොන් ව $oldsymbol{n}$ ාප්තියක් ඇත. සසම්භාවී ලෙස තේරාගත් පිටු 10 ක එක් දෝෂයක් පමණක්

F==49-8 809 85-4-

5.	ලෙස පුමතව වාාාප්තව ඇත. වේතනවලින් අඩුතම 10% ලබාගන්නා සේවකයන් හට සමාගම නොමීලේ පුවාහන
	පහසුකම් සපයයි. නොමිලේ දෙන පුවාහන පහසුකම් සඳහා සුදුසුකම් ඇති සේවකයන් විසින් උපයාගනු ලබන වැඩිතම වේතනය සොයන්න.
6.	එක්තරා දුරස්ථ පාලක වර්ගයකින් 15% ක් එහි නිෂ්පාදනයෙන් පළමු වසර තුළ කියාවිරහිත වන බව සමීක්ෂණ වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්,
5.	en de la companya de
6.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්,
5.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
6.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
5.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
6.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
б.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
5.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
5.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
5.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
5.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
6.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
6.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
6.	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,
	වාර්තාවක සඳහන් වේ. එම වර්ගයේ දුරස්ථ පාලක 5 ක් සසම්භාවී ලෙස තෝරාගනු ලැබුවහොත්, (i) ඒවායින් 3 ක් පළමු වසර තුළ කිුිිියාවිරහිත වීමේ, (ii) ඒවායින් 2 කට වඩා පළමු වසර තුළ කිුිිියාවිරහිත වීමේ,

7.	පුද්ගලයකුට ඔහු අයදුම් කළ පළමු හා දෙවැනි රැකියාව ලැබීමේ සම්භාවිතාවන් පිළිවෙළින් 0.5 හා 0.3 වේ. ඔහු අයදුම් කළ රැකියා දෙකම ලැබීමේ සම්භාවිතාව 0.4 වේ.
	(i) අඩු තරමින් ඔහු අයදුම් කළ රැකියාවලින් එකක් හෝ ලැබීමේ,
	(ii) අයදුම් කළ පළමු රැකියාව ලැබුණ බව දී ඇති විට, ඔහු අයදුම් කළ දෙවැනි රැකියාව ලැබීමේ,
	සම්භාවිතාව සොයන්න.
	······································
8.	A හා B යනු $P(A)=rac{1}{4}$, $P(A'\cap B)=rac{1}{2}$ හා $P(B A)=rac{4}{5}$ වන පරිදි වූ S නියැදි අවකාශයක සිද්ධීන් දෙකක් යැයි
8.	A හා B යනු $P(A)=rac{1}{4}$, $P(A'\cap B)=rac{1}{2}$ හා $P(B\mid A)=rac{4}{5}$ වන පරිදි වූ S නියැදි අවකාශයක සිද්ධීන් දෙකක් යැයි ගනිමු. (i) $P(A\cup B)$, (ii) $P(A\cap B)$ හා (iii) $P(B)$ සොයන්න.
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	
8.	

පසුගිය වාර්	තාවලට අතු	ුව, පන්තියඃ	තට පුමාද	වී පැමිණි සි	සුත් ගණන	<i>X</i> ⊗ ₁	සම්භාවිතා	වාහප්තිය	පහත දී අ
k	0	1	2	3	4				
P(X=k)	. p	0.3	3 <i>p</i>	0.2	p				
	•	යො, <i>E(X)</i> = නු ලබන සං 	සම්භාවී විදි			•••••			
••••••		• • • • • • • • • • • • • • • • • • • •	••••••						
	•••••		•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • •			
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •						
		• • • • • • • • • • • • • • • • • • • •	•••••				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •				
					•••••	•••••			
	• • • • • • • • • • • • • • • • • • • •		•••••					********	• • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •					• • • • • • •		********	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • •		••••	
	••••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •				
X යන සන්¤	ාතික සසම් _{ජි}	ාාවී විචලාසය	කට						
· 2	$ax-3bx^2$	0 < r <	1 තුම්						
$f(x) = \begin{cases} -x \\ 0 \end{cases}$	0	, 0≤ <i>x</i> ≤ , එසේ වැ	ාවන විට,	,					
•		සම්භාවිතා ඝ			හි <i>a</i> හා <i>b</i> නි	යත ම	$E(X^2)$	$=\frac{1}{4}$ බව	දී ඇත.
a හා <i>b</i> හි අ	ගය න් සො ය	න්න.	Ŭ	12			, ,	4	
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •				

*******								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

	·								
		* * * * * * * * * * * * * * * * * * * *							
		••••••			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			************	
***************************************		************	•••••			· • • • • • • • • • • • • • • • • • • •		**********	
		************		•••••	• • • • • • • • • • • • • • • • • • • •		••••		
•••••	************		• • • • • • • • • • • • • • • • • • • •	*******	• • • • • • • • • • • • • • • • • • • •		••••••		

ලි ලංකා විශාශ දෙපාර්තමේන්තුව ලී ලංකා විශාශ දෙපාර්තමේන්තුව කියි. මුදාර්තමේන්තුව ලී ලංකා විභාශ දෙපාර්තමේන්තුව ඉහතිනසර පාර්යාපේ නිකාශ්යයහාර ඉහතිනසර පාර්යාප්ථා ලියා විශාශ ප්රචාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව

ගණිතය II கணிதம் II Mathematics II

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

11. සුපිරි වෙළඳසැලක් වර්ග 3 ක තෑගි මලු සාදයි: මූලික, පුමිත හා සුබෝපභෝගී යනුවෙනි.

සෑම මූලික තෑගි මල්ලකම පැකට්ටු 6 ක්, බෝතල් 9 ක් හා ටින් 6 ක් බැගින් ϵ ,

සෑම පුමිත තෑගි මල්ලකම පැකට්ටු 9 ක්, බෝතල් 6 ක් හා ටින් 8 ක් බැගින් ද,

සෑම සුබෝපහෝගී තෑගි මල්ලකම පැකට්ටු 9 ක්, බෝතල් 9 ක් හා ටින් 10 ක් බැගින් ද ඇත.

සෑම දිනකම, සුපිරි වෙළඳසැල අඩුම තරමේ පැකට්ටු 720 කුත්, අඩුම තරමේ බෝතල් 720 කුත් යොදාගත යුතු අතර, යොදාගත හැකි උපරිම ටීන් ගණන 900 කි.

එක්තරා දිනයක, සුපිරි වෙළඳසැල පුමිත හා සුබෝපභෝගී තෑගි මලු සමාන ගණනක් අසුරයි.

සුපිරි වෙළඳසැල, මූලික, පුමිත හා සුඛෝපභෝගී යන එක් එක් තෑගි මල්ලකින් රු. 100, රු. 200, හා රු. 500, බැගින් ලාභ ලබයි නම් හා මුළු ලාභය උපරිම කරගැනීමට බලාපොරොත්තු වේ නම්,

- (i) මෙය රේඛීය පුකුමණ ගැටලුවක් ලෙස සූතුගත කරන්න.
- (ii) ශකාතා පෙදෙසෙහි දළ සටහනක් අඳින්න.
- (iii) පුස්තාරික කුමය භාවිතයෙන්, ඉහත (i) කොටසෙහි සූතුගත කරන ලද ගැටලුවෙහි විසඳුම සොයන්න.

$$egin{aligned} \mathbf{12.}(a) & \mathbf{A} = \left(egin{array}{ccc} a & 0 & 2 \ 2 & b & 0 \end{array}
ight)$$
යැයි ගනිමු.

a හා b ඇසුරෙන් $\mathbf{A}\mathbf{A}^{\mathrm{T}}$ සොයන්න.

$$\mathbf{A}\mathbf{A}^{\mathrm{T}}=\left(egin{array}{cc} 5 & 2 \ 2 & 8 \end{array}
ight)$$
 නම් $a=1$ හා $b=2$ බව පෙන්වන්න.

 $\mathbf{C} = \mathbf{A}\mathbf{A}^{\mathrm{T}} - \mathbf{8}\mathbf{I}$ යැයි ගනිමු. \mathbf{C}^{-1} සොයන්න.

 ${
m CD}=8{
m C}+{
m I}$ වන පරිදි ${
m D}$ නාහසය සොයන්න; මෙහි ${
m I}$ යනු ගණය 2 වන ඒකක නාහසය වේ.

More Past Papers at

tamilguru.lk

(b) $a, b \in \mathbb{R}$ යැයි ගනිමු.

$$ax + (b-1)y = 2$$
$$x - y = -4$$

යන සමගාමී සමීකරණ යුගලය $\mathbf{P}\mathbf{X}=\mathbf{Q}$ ආකාරයෙන් ලියා දක්වන්න; මෙහි $\mathbf{X}=\begin{pmatrix}x\\y\end{pmatrix}$ ද, \mathbf{P} හා \mathbf{Q} යනු නිර්ණය කළ යුතු නාහස ද වේ.

$$\mathbf{X}=\left(egin{array}{c} -2 \ 2 \end{array}
ight)$$
 යන්න $\mathbf{P}\mathbf{X}=\mathbf{Q}$ සඳහා විසඳුමක් බව දී ඇත. $b=a+2$ බව පෙන්වන්න.

ඉහත සමීකරණ යුගලයට

- (i) $a \neq -\frac{1}{2}$ වීට අනනා විසඳුමක් ඇති බවත්,
- (ii) $a = -\frac{1}{2}$ විට විසඳුම් අපරිමිත සංඛාහවක් ඇති බවත්, පෙන්වන්න.
- ${f 13.}(a)$ නොනැඹුරු කාසි දෙකක් හා නොනැඹුරු ඝනකාකාර දාදු කැටයක් උඩ දමනු ලැබේ. කාසි දෙකේම හිස ලැබීම A සිද්ධිය යැයි ද දාදු කැටයේ ඉරට්ටේ සංඛ්‍යාවක් ලැබීම B සිද්ධිය යැයි ද ගනිමු. P(A),P(B) හා $P(A\cup B)$ සොයන්න.
 - (b) පළමු හා දෙවන සංඛාහංක පිළිවෙළින් 3 හා 5 වන පරිදි සහ කිසිඳු සංඛාහංකයක් පුනරාවර්තනය නොවන පරිදි, සංඛාහංක 6 ක දුරකතන අංක කොපමණක් සැදිය හැකි ද? මෙම දුරකතන අංකවලින් කොපමණක් ඔත්තේ සංඛාහංකයකින් අවසන් වේ ද?
 - (c) කණ්ඩායමක පිරිමි 8 දෙනෙක් හා ගැහැණු 10 දෙනෙක් සිටී. මෙම කණ්ඩායමෙන්,
 - (i) පිරිමි 5 දෙනෙකු හා ගැහැණු 6 දෙනෙකුගෙන්
 - (ii) අඩුම තරමින් පිරිමි 3 දෙනෙක් සහිත සාමාජිකයන් 6 දෙනෙකුගෙන් සමන්විතව, විධි කීයකට කමිටුවක් සෑදිය හැකි ද?
- 14. පෙට්ටියක, පාටින් හැර අන් සෑම අයුරකින්ම සමාන වූ කොළ පාට බෝල 3 ක් ද, නිල් පාට බෝල 2 ක් ද අඩංගු වේ. සසම්භාවී ලෙස බෝලයක් පෙට්ටියෙන් ඉවතට ගනු ලැබේ. ඉවතට ගත් බෝලය කොළ පාට එකක් නම්, එය පුතිස්ථාපනය නොකර වෙනත් නිල් පාට බෝල 2 ක් පෙට්ටියට එකතු කරනු ලබන අතර ඉවතට ගත් බෝලය නිල් පාට එකක් නම්, එය පුතිස්ථාපනය නොකර වෙනත් කොළ පාට බෝල 2 ක් පෙට්ටියට එකතු කරනු ලැබේ. දැන්, සසම්භාවී ලෙස දෙවන බෝලයක් ඉවතට ගනු ලැබේ.
 - (i) ඉවතට ගන්නා ලද බෝල දෙකම කොළ පාට ඒවා වීමේ,
 - (ii) අඩුම තරමින් ඉවතට ගන්නා ලද එක බෝලයක්වත් කොළ පාට එකක් වීමේ,
 - (iii) ඉවතට ගන්නා ලද එක බෝලයක් කොළ පාට එකක් බව දී ඇති විට, ඉවතට ගත් බෝල දෙකම කොළ පාට ඒවා වීමේ,
 - (iv) ඉවතට ගත් බෝල වෙනස් වර්ණවල ඒවා වීමේ,සම්භාවිතාව සොයන්න.

15. Y සන්තතික සසම්භාවී විචලායක්,

මගින් දෙනු ලබන f(y) සම්භාවිතා ඝනත්ව ශිුතයක් සහිත ඝාතීය වාාප්තියක් අනුගමනය කරයි; මෙහි $\lambda>0$ පරාමිතියකි.

Yහි මධයනාය, විචලතාව හා සමූහිත ඝනත්ව ශිුතය සොයන්න.

රෝගියකුට පුතිකාර කිරීමට වෛදාාවරයකුට ගතවන කාලය, මධානාය මිනිත්තු 10 ක් වූ සාතීය වාාප්තියක් යැයි ගනිමු. පහත එක එකක් සොයන්න. (පිළිතුරු සුළු කිරීම අවශා නැත)

- (i) වෛදාපවරයා රෝගියකුට පුතිකාර කිරීමට ගන්නා කාලයේ 50 වන පුතිශතකය
- (ii) රෝගියකුට පුතිකාර කිරීමට වෛදාවරයා මිනිත්තු 8 කට වඩා ගන්නා සම්භාවිතාව
- (iii) වෛදාවරයා දැනටමත් රෝගියකුට පුතිකාර කිරීමට මිනිත්තු 10 කට වඩා ගතකර ඇත්නම්, ඔහු මිනිත්තු 15 කට අඩු කාලයකදී මෙම රෝගියාට පුතිකාර කර අවසන් කරන සම්භාවිතාව

 ${f 16.}(a)$ මසක් ඇතුළත පන්තියකට නොපැමිණි සිසුන් ගණනෙහි සංඛාාත වාාාප්තිය පහත වගුවෙන් දෙනු ලබයි.

නොපැමිණි සිසුන් ගණන	දවස් ගණන
1-3	15
4-6	12
7-9	10
10 – 12	5
13 – 15	2

මෙම වහාප්තියේ මධානය, මාතය හා මධාස්ථය නිමානය කරන්න.

- (b) කරනවෑමියකු පාරිභෝගිකයකුගේ කොණ්ඩය කැපීමට ගතකරන කාලය මධානාය මිනිත්තු $20\,$ ක් හා සම්මත අපගමනය මිනිත්තු $5\,$ ක් ලෙස පුමතව වාහජ්ත වේ.
 - (i) කරනවැමියා පාරිභෝගිකයකුගේ කොණ්ඩය කැපීමට
 - (a) මිනිත්තු 25 කට වඩා,
 - (b) මිනිත්තු 25 ත් 30 ත් අතර කාලයක්,

ගැනීමේ සම්භාවිතාව සොයන්න.

(ii) ඔහු පාරිභෝගිකයන් 5 දෙනෙකුට පැය 2 කට (මිනිත්තු 120 කට) වඩා අඩු කාලයකදී සේවය සැපයීමේ සම්භාවිතාව සොයන්න.

17. වසාපෘතියක කියාකාරකම් සඳහා ගතවන කාලය හා කියාකාරකම්වල ගැලීම් පහත වගුවෙන් දී ඇත:

කියාකාරක ම	පූර්ව	කාලය (මාසවලින්)
Α	-	3
В	Α .	6
C	A	7
D	A	5
Е	B,C	13
F	C,D	8
G	D, F	11
Н	G, E	6
I	Н	2

- (i) ව්‍ාපෘති ජාලය ගොඩනගන්න.
- (ii) එක් එක් කිුයාකාරකම සඳහා ආරම්භ කළ හැකි ඉක්මන්ම වේලාව, අවසන් කළ හැකි ඉක්මන්ම වේලාව, ආරම්භ කළ හැකි පුමාදම වේලාව, අවසන් කළ හැකි පුමාදම වේලාව හා ඉපිලුම ඇතුළත් කාර්ය සටහනක් සකස් කරන්න.
- (iii) වනපෘතිය සඳහා ගතවන මුළු කාලය සොයන්න.
- (iv) ව්යාපෘතිය සඳහා අවධි පථය ලියා දක්වන්න.
- (v) වාහපෘතිය සඳහා ගතවන මුළු කාලය දීර්ඝ නොකර, පමා කළ හැකි කි්යාකාරකම් මොනවා ද?
- (vi) වනාපෘතියේ නිමා කාලයට පහත එක එකක් කෙසේ බලපායි ද?
 - (a) F කිුිිියාකාරකම මාස 2 කින් පුමාද කිරීම.
 - (b) E කිුියාකාරකම මාස 1 කින් පුමාද කිරීම.