Teorema 5.5.2

Si $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ y $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ son bases en un espacio vectorial V, entonces m = n; es decir, cualesquiera dos bases en un espacio vectorial V tienen el mismo número de vectores.

Demostración*

Sea $S_1 = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ y $S_2 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ dos bases para V. Debe demostrarse que m = n. Esto se prueba mostrando que si m > n, entonces S_1 es un conjunto linealmente independiente, lo que contradice la hipótesis de que S_1 es una base. Esto demostrará que $m \le n$. La misma prueba demostrará que $n \le m$, y esto prueba el teorema. Así, basta demostrar que si m > n, entonces S_1 es dependiente. Como S_2 constituye una base, todo \mathbf{u}_i se puede expresar como una combinación lineal de las \mathbf{v}_i . Se tiene

$$\mathbf{u}_{1} = a_{11}\mathbf{v}_{1} + a_{12}\mathbf{v}_{2} + \dots + a_{1n}\mathbf{v}_{n}$$

$$\mathbf{u}_{2} = a_{21}\mathbf{v}_{1} + a_{22}\mathbf{v}_{2} + \dots + a_{2n}\mathbf{v}_{n}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{u}_{m} = a_{m1}\mathbf{v}_{1} + a_{m2}\mathbf{v}_{2} + \dots + a_{mn}\mathbf{v}_{n}$$
(5.5.1)

Para demostrar que S_1 es dependiente, deben encontrarse escalares c_1, c_2, \ldots, c_m , no todos cero, tales que

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_m \mathbf{u}_m = \mathbf{0}$$
 (5.5.2)

Sustituyendo (5.5.1) en (5.5.2) se obtiene

$$c_{1}(a_{11}\mathbf{v}_{1} + a_{12}\mathbf{v}_{2} + \dots + a_{1n}\mathbf{v}_{n}) + c_{2}(a_{21}\mathbf{v}_{1} + a_{22}\mathbf{v}_{2} + \dots + a_{2n}\mathbf{v}_{n}) + \dots + c_{m}(a_{m1}\mathbf{v}_{1} + a_{m2}\mathbf{v}_{2} + \dots + a_{mn}\mathbf{v}_{n}) = \mathbf{0}$$
(5.5.3)

La ecuación (5.5.3) se puede reescribir como

$$(a_{11}c_1 + a_{21}c_2 + \dots + a_{m1}c_m)\mathbf{v}_1 + (a_{12}c_1 + a_{22}c_2 + \dots + a_{m2}c_m)\mathbf{v}_2 + \dots + (a_{1n}c_1 + a_{2n}c_2 + \dots + a_{mn}c_m)\mathbf{v}_n = \mathbf{0}$$
(5.5.4)

Pero como $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ son linealmente independientes, se debe tener

$$a_{11}c_{1} + a_{21} c_{2} + \dots + a_{m1} c_{m} = 0$$

$$a_{12}c_{1} + a_{22} c_{2} + \dots + a_{m2} c_{m} = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{1n} c_{1} + a_{2n} c_{2} + \dots + a_{mn} c_{m} = 0$$
(5.5.5)

El sistema (5.5.5) es un sistema homogéneo de n ecuaciones con las m incógnitas c_1, c_2, \ldots, c_m , y como m > n, el teorema 1.4.1 dice que el sistema tiene un número infinito de soluciones. De esta forma, existen escalares c_1, c_2, \ldots, c_m , no todos cero, tales que (5.5.2) se satisface y, por lo tanto, S_1 es un conjunto linealmente dependiente. Esta contradicción prueba que $m \le n$ si se cambian los papeles de S_1 y S_2 ; se demuestra que $n \le m$ y la prueba queda completa

Por este teorema se puede definir uno de los conceptos centrales en el álgebra lineal.

^{*} Esta prueba se da para espacios vectoriales con bases que contienen un número finito de vectores. También se manejan los escalares como si fueran números reales, pero la prueba funciona también en el caso complejo.