Chapter 10 Vocabulaire relatif aux applications

Exercice 1 (10.2)

Soit $f : \mathbb{R} \to \mathbb{R}$. Écrire $\{x \in \mathbb{R} \mid f(x) \neq 0\}$ comme une image réciproque.

Exercice 2 (10.2)

On considère l'application $f:\mathbb{R}\to\mathbb{R}$. Déterminer

1.
$$f(2)$$
,

2.
$$f(\{2\})$$

3.
$$f(\{-1,0,1,2\})$$

4.
$$f^{-1}(4)$$

5.
$$f^{-1}(\{4\})$$

6.
$$f^{-1}(\{-2,0,1,4\}),$$

1.
$$f(2)$$
,6. $f^{-1}(\{-2,0,1,4\})$,11. $f^{-1}(]1,2]$),2. $f(\{2\})$,7. $f(f^{-1}(\{-2,0,1,4\}))$,12. $f^{-1}([-1,4])$,3. $f(\{-1,0,1,2\})$,8. $f^{-1}(f(\{-1,0,1,2\}))$,13. $f(\mathbb{R})$,4. $f^{-1}(4)$,9. $f([1,2])$,14. $f^{-1}(\mathbb{R})$,5. $f^{-1}(\{4\})$,10. $f([-1,4[),$ 15. Im f .

8.
$$f^{-1}(f(\{-1,0,1,2\}))$$
.

10.
$$f([-1,4])$$

11.
$$f^{-1}(]1,2]),$$

12.
$$f^{-1}([-1,4]),$$

13.
$$f(\mathbb{R})$$
,

14
$$f^{-1}(\mathbb{R})$$

Exercice 3 (10.2)

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction impaire déterminée par

$$f(x) = \begin{cases} 1 - x, & 0 < x < 1 \\ 2 - x, & x \ge 1. \end{cases}$$

- **1.** Représenter graphiquement f (sur \mathbb{R}).
- **2.** Déterminer (graphiquement) f([0,2]) et $f^{-1}([0,2])$.

Exercice 4 (10.2)

Soit ϕ : $\mathbb{R} \to \mathbb{R}$. Déterminer $\phi(\mathbb{R})$. $x \mapsto \lfloor 2x \rfloor - 2 \lfloor x \rfloor$

Exercice 5 (10.2)

On considère l'application

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x_1, x_2, x_3) \mapsto (x_1 + x_2, x_2 + x_3, x_1 - x_3)$

- **1.** Déterminer $f^{-1}(\{(0,0,0)\})$.
- **2.** Soit $P = \{ (a, b, c) \in \mathbb{R}^3 \mid a + 2b + 3c = 0 \}$. Déterminer $f^{-1}(P)$.
- **3.** Déterminer Im f.
- **4.** Soit $\Delta = \{ (t, t, t) \mid t \in \mathbb{R} \}$. Déterminer $f(\Delta)$.
- **5.** Soit $Q = \{ (a, b, c) \in \mathbb{R}^3 \mid a + 2b + c = 0 \}$. Déterminer f(Q).

Exercice 6 (10.2)

Soit $f: A \to B$ une application, X_1 et X_2 deux parties de A. Montrer

- **1.** $X_1 \subset X_2 \implies f(X_1) \subset f(X_2)$.
- **2.** $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$.
- **3.** $f(X_1 \cap X_2) \subset f(X_1) \cap f(X_2)$.
- **4.** Montrer que l'inclusion réciproque, $f(X_1) \cap f(X_2) \subset f(X_1 \cap X_2)$, est fausse en général.

Exercice 7 (10.2)

Soit $f: A \to B$ une application, Y_1 et Y_2 deux parties de B. Montrer

- **1.** $Y_1 \subset Y_2 \implies f^{-1}(Y_1) \subset f^{-1}(Y_2)$.
- **2.** $f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$.
- **3.** $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$.

Exercice 8 (10.2)

Soient E et F deux ensembles, et f une application de E dans F. On considère une partie E de E et une partie E de E de E de E et une partie E de E de

$$f\left(A\cap f^{-1}(B)\right)=f(A)\cap B.$$

Exercice 9 (10.2)

On définit la somme de deux parties E et F de $\mathbb R$ par

$$E + F = \{ x + y \mid x \in E \text{ et } y \in F \}.$$

Soient f et g deux applications de \mathbb{R} dans \mathbb{R} et A une partie de \mathbb{R} . Vrai ou Faux?

1.
$$(f+g)(A) \subset f(A) + g(A)$$
.

3.
$$(f+g)^{-1}(A) \subset f^{-1}(A) + g^{-1}(A)$$
.

2.
$$f(A) + g(A) \subset (f + g)(A)$$
.

4.
$$f^{-1}(A) + g^{-1}(A) \subset (f+g)^{-1}(A)$$
.

Exercice 10 (10.4)

Donner, pour chacun des énoncés suivants, une formulation du type «l'application de ...vers ...qui à tout ... associe ... est (n'est pas) injective (surjective)».

- 1. Dans mon quartier, il y a deux personnes qui ont le même modèle de voiture.
- 2. Dans cette classe, il y a des élèves qui ont le même âge.
- 3. Dans cette classe, chaque élève est né un jour différent de l'année.
- 4. Toute ville de France possède au moins une église.
- 5. Il y a des villes de France qui ont plusieurs églises.
- 6. Il y a des réels qui n'ont pas de racine carrée réelle.
- 7. Tout réel positif ou nul possède une unique racine carrée positive ou nulle.
- **8.** On peut avoir a + b = c + d sans que a = c et b = d.

Exercice 11 (10.4)

On considère les deux applications de N dans N définies par

$$f: \mathbb{N} \to \mathbb{N} \qquad \text{et} \qquad g: \mathbb{N} \to \mathbb{N} \qquad .$$

$$n \mapsto n+1 \qquad \qquad n \mapsto \begin{cases} 0, & n=0 \\ n-1, & n>0 \end{cases}$$

- **1.** Calculer $g \circ f$.
- **2.** Les applications f et g sont-elles bijectives ? Que dire de $f \circ g$?

Exercice 12 (10.4)

Les applications suivantes sont-elles injectives ? surjectives ?

1.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 4. $k: \mathbb{R}^2 \to \mathbb{R}^2$
 . $(x,y) \mapsto (x+y,x+y^3)$

 2. $g: \mathbb{R}^2 \to \mathbb{R}^2$
 . $(x,y) \mapsto (x+y,x-y)$

 3. $h: \mathbb{R}^2 \to \mathbb{R}^2$
 . $(x,y) \mapsto (x+y,x+y^2)$

Exercice 13 (10.4)

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
.
 $(x,y) \mapsto (x+y,xy)$

- 1. On considère un élément $(u, v) \in \mathbb{R}^2$. Déterminer l'ensemble $f^{-1}(\{(u, v)\})$. (Les notations sont-elles correctes ?)
- **2.** *f* est-elle injective ? surjective ?
- **3.** Déterminer $f(\mathbb{R}^2)$.
- **4.** Soit $D = \{ (x, y) \in \mathbb{R}^2 \mid x \le y \}$ et ϕ la restriction de f à D. L'application ϕ est-elle injective ?

Exercice 14 (10.4)

- 1. Une application admet un point fixe s'il existe x tel que f(x) = x. Donner un exemple de bijection de \mathbb{N} dans \mathbb{N} n'ayant aucun point fixe.
- **2.** Donner un exemple de bijection de \mathbb{R} dans \mathbb{R} non monotone.
- **3.** Donner un exemple de bijection de \mathbb{R} dans \mathbb{R}^* .

Exercice 15 (10.4)

On considère l'application

$$f: \mathbb{C}^{\star} \to \mathbb{C}$$

$$z \mapsto \frac{1}{2} \left(z + \frac{1}{z} \right)$$

On rappelle que $i\mathbb{R} = \{iy \mid y \in \mathbb{R} \}$ désigne l'ensemble des imaginaires purs.

- **1.** Déterminer $f^{-1}(\mathbb{R})$.
- **2.** Déterminer $f^{-1}(i\mathbb{R})$.

3. Déterminer, selon la valeur du complexe Z le nombre d'antécédents de Z par f.

L'application f est-elle injective ?

L'application f est-elle surjective ?

Lorsque Z possède deux antécédents, que valent leur somme et leur produit ?

4. On note

$$\mathbb{U} = \left\{ \left. z \in \mathbb{C}^{\star} \mid |z| = 1 \right. \right\}, \qquad V_1 = \left\{ \left. z \in \mathbb{C}^{\star} \mid |z| < 1 \right. \right\}, \qquad V_2 = \left\{ \left. z \in \mathbb{C}^{\star} \mid |z| > 1 \right. \right\}.$$

- (a) Que représentent géométriquement les ensemble \mathbb{U}, V_1, V_2 ?
- (b) Montrer que $f^{-1}([-1, 1]) = \mathbb{U}$.
- (c) Soient z_1 et z_2 deux complexes. Montrer

$$z_1z_2 = 1 \implies (z_1, z_2) \in \mathbb{U}^2$$
 ou $(z_1, z_2) \in V_1 \times V_2$ ou $(z_1, z_2) \in V_2 \times V_1$.

(d) Démontrer que f réalise une bijection de V_1 sur $\mathbb{C} \setminus [-1, 1]$.

On notera
$$g: V_1 \to \mathbb{C} \setminus [-1, 1]$$
 .
$$z \mapsto f(z)$$

Exercice 16 (10.4)

- **1.** Démontrer que l'application $z \mapsto \frac{z-i}{z+i}$ définit une bijection de $\mathbb{C} \setminus \{-i\}$ sur $\mathbb{C} \setminus \{1\}$ et que la bijection réciproque est l'application $w \mapsto i \frac{1+w}{1-w}$.
- **2.** On note \mathcal{D} le disque unité ouvert et \mathcal{H} le demi-plan de Poincaré:

$$\mathcal{D} = \{ z \in \mathbb{C} \mid |z| < 1 \} \qquad \mathcal{H} = \{ z \in \mathbb{C} \mid \mathfrak{Tm} \, z > 0 \}.$$

Démontrer géométriquement que $z \in \mathcal{H}$ si, et seulement si $\frac{z-i}{z+i} \in \mathcal{D}$. En déduire une bijection de \mathcal{H} sur \mathcal{D} .

Exercice 17 (10.4)

Soient une application $f: E \to F$ et deux parties $A \subset E$, $B \subset F$. Montrer que

- **1.** Si f est injective, alors $f^{-1}(f(A)) = A$.
- **2.** Si f est surjective, alors $f(f^{-1}(B)) = B$.

Exercice 18 (10.4)

Soit X un ensemble et f une application de X dans l'ensemble $\mathcal{P}(X)$ des parties de X. On note A l'ensemble des $x \in X$ vérifiant $x \notin f(x)$. Démontrer qu'il n'existe aucun $x \in X$ tel que A = f(x).

Exercice 19 (10.4)

Soit f une application de E dans E telle que

$$f \circ f \circ f = \mathrm{Id}_F$$
.

Prouver que f est bijective et exprimer f^{-1} en fonction de f.

Exercice 20 (10.4)

Soient trois ensembles A,B,C et deux applications $f:A\to B$ et $g:B\to C$.

- 1. On suppose que $g \circ f$ est injective. Montrer que f est injective, puis montrer à l'aide d'un contre-exemple que g ne l'est pas nécessairement.
- 2. On suppose que $g \circ f$ est surjective. Montrer que g est surjective, puis montrer à l'aide d'un contreexemple que f ne l'est pas nécessairement.
- 3. Donner un exemple où $g \circ f$ est bijective sans que ni g ni f ne le soit.

Exercice 21 (10.5)

Donner une écriture simple les ensembles suivants.

1.
$$I_1 = \bigcap_{n=1}^{+\infty} \left[3, 3 + \frac{1}{n^2} \right[$$
.

2.
$$I_2 = \bigcap_{n=1}^{+\infty} \left[-2 - \frac{1}{n}, 4 + n^2 \right].$$

3.
$$I_3 = \bigcap_{n=1}^{+\infty} \left[-\frac{1}{n}, 2 + \frac{1}{n} \right[.$$

4.
$$I_4 = \bigcup_{n=2}^{+\infty} \left[1 + \frac{1}{n}, n \right].$$