Análisis Matemático II

Tema 8: Espacios de Lebesgue

- Espacios de Lebesgue
 - Desigualdades clásicas
 - Definición y complitud de los espacios de Lebesgue

- Teoremas de densidad
 - Funciones simples integrables
 - Funciones escalonadas
 - Funciones continuas de soporte compacto

Integral de Riemann

Desigualdad de Young

Motivación

Para $\Omega \in \mathcal{M}$ y $f,g \in \mathcal{L}(\Omega)$ nos preguntamos si fg es integrable.

Para
$$a,b \in \mathbb{R}_0^+$$
 se tiene: $ab \leqslant \frac{a^2}{2} + \frac{b^2}{2}$

luego si f^2 y g^2 son integrables, entonces $f\,g$ también lo es.

Pretendemos sustituir 2 por otros exponentes

Exponente conjugado

Para $p \in \mathbb{R}$ con p > 1, su exponente conjugado p^* viene dado por

$$\frac{1}{p} + \frac{1}{p^*} = 1$$

Es claro que $p^* > 1$ y $(p^*)^* = p$

Desigualdad de Young

Para $p \in \mathbb{R}$ con p > 1 y $a, b \in \mathbb{R}_0^+$, se tiene:

$$ab \leqslant \frac{a^p}{p} + \frac{b^{p^*}}{p^*}$$

Funciones p-integrables

Para $\Omega \in \mathcal{M}$ y $p \in \mathbb{R}$ con p > 1, definimos:

$$\mathcal{L}_p(\Omega) = \left\{ f \in \mathcal{L}(\Omega) : \int_{\Omega} |f|^p < \infty \right\}$$

y los elementos de $\mathcal{L}_p(\Omega)$ son las funciones p-integrables

Desigualdad integral de Hölder

Dado $p\in\mathbb{R}$ con p>1, si $f\in\mathcal{L}_p(\Omega)$ y $g\in\mathcal{L}_{p^*}(\Omega)$,

$$\text{entonces } fg \in \mathcal{L}_1(\Omega) \text{ con: } \int_{\Omega} \left| fg \right| \, \leqslant \, \left(\int_{\Omega} \left| f \right|^p \right)^{1/p} \left(\int_{\Omega} \left| g \right|^{p^*} \right)^{1/p^*}$$

Desigualdad de Hölder para sumas finitas

Para $p \in \mathbb{R}$ con p > 1, $n \in \mathbb{N}$ y $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n \in \mathbb{R}_0^+$, se tiene:

$$\sum_{k=1}^{n} a_k b_k \leqslant \left(\sum_{k=1}^{n} a^p\right)^{1/p} \left(\sum_{k=1}^{n} b^{p^*}\right)^{1/p^*}$$

Desigualdad de Minkowski

Una propiedad del conjunto $\mathcal{L}_p(\Omega)$

Para $\Omega\in\mathcal{M}$ y $p\in\mathbb{R}$ con p>1 se tiene que $\mathcal{L}_p(\Omega) \text{ es un subespacio vectorial de } \mathcal{L}(\Omega)$

Desigualdad integral de Minkowski

Para $p \in \mathbb{R}$ con $p \geqslant 1$ y $f, g \in \mathcal{L}_p(\Omega)$, se tiene:

$$\left(\int_{\Omega} |f+g|^p\right)^{1/p} \leqslant \left(\int_{\Omega} |f|^p\right)^{1/p} + \left(\int_{\Omega} |g|^p\right)^{1/p}$$

Desigualdad de Minkowski para sumas finitas

Para $p \in \mathbb{R}$ con $p \geqslant 1$, $n \in \mathbb{N}$ y $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}_0^+$, se tiene:

$$\left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{1/p} \leqslant \left(\sum_{k=1}^{n} a^p\right)^{1/p} + \left(\sum_{k=1}^{n} b^p\right)^{1/p}$$

Hacia la definición de los espacios de Lebesgue

En busca de un espacio normado

En lo que sigue, fijamos $\Omega \in \mathcal{M}$ y $p \in \mathbb{R}$ con $p \geqslant 1$. Definimos:

$$\varphi_p(f) = \left(\int_{\Omega} |f|^p\right)^{1/p} \quad \forall f \in \mathcal{L}_p(\Omega)$$

La función $\varphi_p:\mathcal{L}_p(\Omega)\to\mathbb{R}_0^+$ es una seminorma, es decir, verifica:

- $\varphi_p(f+g) \leq \varphi_p(f) + \varphi_p(g) \quad \forall f, g \in \mathcal{L}_p(\Omega)$
- $\varphi_p(\alpha f) = |\alpha| \varphi_p(f) \quad \forall \alpha \in \mathbb{R}, \ \forall f \in \mathcal{L}_p(\Omega)$

Para $f \in \mathcal{L}_p(\Omega)$, se tiene: $\varphi_p\left(f\right) = 0 \iff f = 0$ c.p.d.

 $\mathcal{N}(\Omega)$ será el conjunto de las funciones de Ω en \mathbb{R} que se anulan c.p.d.

Una observación útil

 $\mbox{Toda función } f\in \mathcal{N}(\Omega) \mbox{ es medible,}$ luego $\mathcal{N}(\Omega)$ es un subespacio vectorial de $\mathcal{L}_p(\Omega)$

Paso a cociente para obtener un espacio normado

Para $\Omega \in \mathcal{M}$ y $p \in \mathbb{R}$ con $p \geqslant 1$, el espacio de Lebesgue $L_p(\Omega)$

es por definición el espacio vectorial cociente

$$L_p(\Omega) = \mathcal{L}_p(\Omega) / \mathcal{N}(\Omega) = \{ f + \mathcal{N}(\Omega) : f \in \mathcal{L}_p(\Omega) \}$$

En $L_p(\Omega)$ se considera siempre la norma $\|\cdot\|_p$ definida por:

$$\|f + \mathcal{N}(\Omega)\|_p = \varphi_p(f) = \left(\int_{\Omega} |f|^p\right)^{1/p} \quad \forall f \in \mathcal{L}_p(\Omega)$$

Para $f \in \mathcal{L}_p(\Omega)$ abreviamos escribiendo $\widetilde{f} = f + \mathcal{N}(\Omega)$

Teorema de Riesz-Fischer

Para todo $\Omega \in \mathcal{M}$ y todo $p \in \mathbb{R}$ con $p \geqslant 1$, el espacio normado $L_p(\Omega)$ es completo, es decir, es un espacio de Banach

Convergencia en los espacios de Lebesgue

Convergencia en $L_p(\Omega)$ y convergencia c.p.d.

Dadas $f \in \mathcal{L}_p(\Omega)$ y $f_n \in \mathcal{L}_p(\Omega)$ para todo $n \in \mathbb{N}$,

supongamos que $\left\{\,\widetilde{f_n}\,\right\}$ converge a $\,\widetilde{f}\,$ en $L_p(\Omega)\,.$

Entonces $\{f_n\}$ tiene una sucesión parcial $\{f_{\sigma(n)}\}$ tal que:

$$f(x) = \lim_{n \to \infty} f_{\sigma(n)}(x)$$
 p.c.t. $x \in \Omega$

Funciones simples integrables

Funciones simples

Para $\Omega\in\mathcal{M}$, decimos que $s:\Omega\to\mathbb{R}$ es una función simple en Ω cuando s es medible y $s(\Omega)$ es un conjunto finito

Integrabilidad de las funciones simples

Para una función simple $s:\Omega\to\mathbb{R}$, las siguientes afirmaciones son equivalentes:

- Existe $p \in \mathbb{R}$ con $p \geqslant 1$ tal que $s \in \mathcal{L}_p(\Omega)$
- s es la restricción a Ω de una combinación lineal de funciones características de subconjuntos medibles de Ω , con medida finita:

$$s(x) = \sum_{k=1} \alpha_k \, \chi_{A_k}(x) \quad \forall \, x \in \Omega$$

donde $n\in\mathbb{N}$ y, para $k\in\Delta_n$, se tiene $\alpha_k\in\mathbb{R}$ y $A_k\in\mathcal{M}\cap\mathcal{P}(\Omega)$ con $\lambda(A_k)<\infty$

• Se tiene $s \in \mathcal{L}_p(\Omega)$, para todo $p \in \mathbb{R}$ con $p \geqslant 1$

Aproximación por funciones simples

Una función simple integrable en Ω

es una función simple $s: \Omega \to \mathbb{R}$ tal que $s \in \mathcal{L}_1(\Omega)$,

con lo que s verifica las afirmaciones equivalentes del resultado anterior

Denotamos por $\mathcal{S}(\Omega)$ al conjunto de las funciones simples integrables en Ω $\mathcal{S}(\Omega)$ es subespacio vectorial de $\mathcal{L}_p(\Omega)$ para todo $p \in \mathbb{R}$ con $p \geqslant 1$

En el cociente $S(\Omega) = \{ \widetilde{s} : s \in S(\Omega) \}$ es subespacio vectorial de $L_p(\Omega)$

Primer teorema de densidad

Dados $\Omega \in \mathcal{M}$ y $p \in \mathbb{R}$ con $p \geqslant 1$, para cada $f \in \mathcal{L}_p(\Omega)$,

existe una sucesión $\{s_n\}$ de funciones simples integrables en Ω , que converge puntualmente a f en Ω y verifica:

$$\lim_{n \to \infty} \int_{\Omega} \left| f - s_n \right|^p = 0$$

Como consecuencia, $S(\Omega)$ es denso en $L_p(\Omega)$

[3n] funciones medibles positivas
$$f_n: \Omega \longrightarrow [0,\infty]$$

Se cumple que $\int_{\infty}^{\infty} \sum_{n=3}^{\infty} \delta_n = \sum_{n=3}^{\infty} \int_{\infty}^{1} \delta_n$
 $5, t$ simples positivas
 $S = \sum_{n=3}^{\infty} \alpha_n X_{A_n} \alpha_{A_1} \dots \alpha_p \in \mathbb{R}_0^{+} A_{A_1} \dots A_n \in \mathcal{M}$

$$s = \sum_{k=1}^{6} \alpha_{k} \chi_{k}$$

t = \$ Bix Bi Bi..., BiELR & Bi..., BiELL

$$\Omega = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} (A_{k} \cap B_{\hat{q}}) \right)$$

Por la aditividad de la integral de s+t:

 $\sum_{k=1}^{\frac{1}{2}} \sum_{j=1}^{4} S_{j} + t = \sum_{k=1}^{4} \sum_{j=1}^{4} (\alpha_{k} + \beta_{j}) \lambda (A_{k} \cap B_{j})$ 1 s+t =

$$\sum_{k=4}^{\infty} \int_{\hat{g}^{-k}} S_{k} + t = \sum_{k=4}^{\infty} \sum_{\hat{g}^{-k}} (\alpha_{k} + \beta_{\hat{g}}) \lambda (A_{k} + \beta_{\hat{g}})$$

Aitividad de la integral de
$$S: \sum \sum_{i=1}^{n} S = \sum_{i=1}^{n} A_{i}$$

Aditivi dad de la integral de $S: \sum_{k=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{q} \sum_{k=1}^{q} \sum_{k=1}^{q} \sum_{k=1}^{q} \sum_{k=1}^{q} \sum_{j=1}^{q} \sum_{k=1}^{q} \sum_{j=1}^{q} \sum_{k=1}^{q} \sum_{j=1}^{q} \sum_{k=1}^{q} \sum_{k=1}$

"t: \(\subseteq \frac{2}{5} \subseteq \frac{1}{5} \subseteq \frac

To uniture con le de antes y: $\int s+t=\int s+\int t$

Usando el teorema de la conv. wantona y usando lo de antes:

Usando el teorema de la convinciona y usando lo de antes:
$$\int_{\Omega} g + g = \int_{\Omega} \lim_{n \to \infty} (s_n + t_n) = \lim_{n \to \infty} \left(\int_{\Omega} s_n + \int_{\Omega} t_n \right) = \int_{\Omega} g + \int_{\Omega} g$$

Inducción -> Cierto para una suma finita de funciones medibles positivan.

Efrí sucesión arbitraria de funciones simples positivas:

$$\int_{0}^{\infty} \sum_{n=1}^{\infty} dn = \int_{0}^{\infty} \lim_{n \to \infty} \sum_{k=1}^{\infty} \int_{0}^{\infty} k = \lim_{n \to \infty} \sum_{k=1}^{\infty} \int_{0}^{\infty} dn = \sum_{n=1}^{\infty} \int_{0}^{\infty} dn$$

$$\int_{0}^{\infty} \sum_{n=1}^{\infty} dn = \int_{0}^{\infty} \lim_{n \to \infty} \sum_{k=1}^{\infty} \int_{0}^{\infty} dn = \int_{0}^{\infty} \lim_{n \to \infty} \int_{0}^{\infty} dn = \int_{0}^{\infty} \int_{0}^{\infty} dn = \int_{$$

FEWOP(D)

$$\mathcal{L}_{\varepsilon} = \mathcal{L}_{\varepsilon} \times \mathcal{L}_{\varepsilon} = \mathcal{L}_{\varepsilon} \times \mathcal{L}_{\varepsilon}$$

Eren [xe, ff succión de funciones medidos positivas, luego podemos

aplicar el resultado anterior

 $= \sum_{n=1}^{\infty} \int_{\mathbb{R}^n} \delta = \sum_{n=1}^{\infty} \varphi(\mathcal{E}_n) \longrightarrow \sigma \text{-aditive}$

 $\varphi(\mathcal{E}) = \varphi(\overline{\mathcal{Y}}_{n-1}^{\mathcal{E}} - \overline{\mathcal{E}}_{n}) = \int_{\mathcal{E}} \mathcal{E}_{n-1} = \int_{n-1}^{\infty} \chi_{\varepsilon_{n}} \cdot \overline{\mathcal{E}}_{n} = \sum_{n-1}^{\infty} \chi_{\varepsilon_{n}} \cdot \overline{\mathcal{E}}_{n} = \sum_{n-1}^{\infty} \int_{n-1}^{\infty} \chi_{\varepsilon_{n}} \cdot \overline{\mathcal{E}}_{n} = \sum_{n-1}^{\infty} \chi_{\varepsilon_{n}} \cdot \overline{\mathcal{E}}_{n} = \sum_{n-1}^{\infty} \int_{n-1}^{\infty} \chi_{\varepsilon_{n}} \cdot \overline{\mathcal{E}}_{n} = \sum_{n-1}^$

Funciones escalonadas

Funciones escalonadas

Una función escalonada es una combinación lineal de funciones características de intervalos acotados, es decir, una función $h:\mathbb{R}^N \to \mathbb{R}$ de la forma:

$$h = \sum_{k=1}^{n} \alpha_k \ \chi_{J_k} \quad \text{ con } \quad n \in \mathbb{N}, \quad \alpha_1, \dots, \alpha_n \in \mathbb{R}, \quad J_1, \dots, J_n \in \mathcal{J}$$

Para $\Omega \in \mathcal{M}$ llamamos $\mathcal{E}(\Omega)$ al conjunto de todas las restricciones a Ω de funciones escalonadas

Para $p \in \mathbb{R}$ con $p \geqslant 1$, $\mathcal{E}(\Omega)$ es subespacio vectorial de $\mathcal{L}_p(\Omega)$

En el cociente $E(\Omega)=\left\{\widetilde{g}:g\in\mathcal{E}(\Omega)\right\}$ es subespacio vectorial de $L_p(\Omega)$

Una observación sencilla

Si Y es un subespacio vectorial de un espacio normado X, entonces el cierre de Y también es subespacio vectorial de X

Aproximación por funciones escalonadas

Densidad de las funciones escalonadas

Para $\Omega \in \mathcal{M}$ y $p \in \mathbb{R}$ con $p \geqslant 1$, el conjunto $E(\Omega)$

de las clases de equivalencia que contienen una función escalonada, es denso en $L_{v}(\Omega)$

Como consecuencia, para cada $f \in \mathcal{L}_p(\Omega)$

existe una sucesión $\{g_n\}$ de funciones escalonadas que verifica:

$$\{g_n(x)\} \to f(x)$$
 p.c.t. $x \in \Omega$ y $\lim_{n \to \infty} \int_{\Omega} \left| f - g_n \right|^p = 0$

Funciones continuas de soporte compacto

Funciones continuas de soporte compacto

En lo que sigue Ω es abierto de \mathbb{R}^N

Se define el soporte de una función $f: \Omega \to \mathbb{R}$ como:

$$\operatorname{sop} f = \overline{\left\{ \, x \in \Omega : f(x) \neq 0 \, \right\}} \subset \Omega \ \, \text{(cierre relativo a } \Omega \text{)}$$

Si f es continua y $\operatorname{sop} f$ es un subconjunto compacto de Ω , decimos que

f es una función continua de soporte compacto en $\,\Omega\,$

Denotamos por $C_c(\Omega)$ al conjunto de tales funciones

Para $p \in \mathbb{R}$ con $p \geqslant 1$, $C_c(\Omega)$ es un subespacio vectorial de $\mathcal{L}_p(\Omega)$

La aplicación cociente $f\mapsto \widetilde{f}$ es inyectiva en $C_c(\Omega)$,

luego identificando $C_c(\Omega)$ con su imagen, tenemos $C_c(\Omega) \subset L_p(\Omega)$

Lema de Uryshon (para espacios métricos)

Si A_0 y A_1 son cerrados, no vacíos y disjuntos de un espacio métrico X, existe una función continua $h:X\to [0,1]$, tal que $h(x)=0 \ \ \forall x\in A_0 \quad \text{y} \quad h(x)=1 \ \ \forall x\in A_1$

Aproximación por funciones continuas de soporte compacto

Abundancia de funciones continuas de soporte compacto

Si U es un abierto de \mathbb{R}^N y K un subconjunto compacto no vacío de U, entonces existe una función $h \in C_c(\mathbb{R}^N)$ verificando que $h(\mathbb{R}^N) \subset [0,1], \quad h(x) = 1 \quad \forall x \in K, \quad \operatorname{sop} h \subset U$

Densidad de las funciones continuas de soporte compacto

Si Ω es abierto de \mathbb{R}^N , y $p \in \mathbb{R}$ con $p \geqslant 1$, entonces $C_c(\Omega)$ es denso en $L_p(\Omega)$.

Como consecuencia, para cada $f \in \mathcal{L}_p(\Omega)$, existe una sucesión $\{g_n\}$ en $C_c(\Omega)$ tal que

$$\{g_n(x)\} \to f(x)$$
 p.c.t. $x \in \Omega$ y $\lim_{n \to \infty} \int_{\Omega} \left| f - g_n \right|^p = 0$

La integral de Riemann

Definición de la integral de Rieman

Trabajamos en un intervalo compacto $I\subset\mathbb{R}^N$ con $I^\circ
eq\emptyset$

Una subdivisión de ${\cal I}$ es una familia finita ${\cal P}$ de intervalos compactos,

cuya unión es I, y cuyos interiores son dos a dos disjuntos

Llamamos $\delta(P) \in \mathbb{R}^+$ al máximo de los diámetros de los intervalos de P:

$$\delta(P) = \max \left\{ \operatorname{diam} J : J \in P \right\} = \max \left\{ \, \max \left\{ \|x - y\| : x, y \in J \right\} : J \in P \right\}$$

Sea ahora $f:I \to \mathbb{R}$ una función acotada: $\sup \big\{\,|\, f(x):x \in I\,\big\} < \infty$

La suma inferior y la suma superior de f para cada subdivisión P son:

$$I(f,P) = \sum_{J \in P} \left(\inf f(J)\right) \lambda(J)$$
 y $S(f,P) = \sum_{J \in P} \left(\sup f(J)\right) \lambda(J)$

La función f es Riemann-integrable, cuando existe $\mathcal{R}(f)\in\mathbb{R}$ verificando que para toda sucesión $\{P_n\}$ de subdivisiones de I, con $\{\delta(P_n)\}\to 0$, se tiene

$$\lim_{n \to \infty} I(f, P_n) = \mathcal{R}(f) = \lim_{n \to \infty} S(f, P_n)$$

Entonces $\mathcal{R}(f)$ es la integral de Riemann de f

Caracterización de las funciones Riemann-integrables

Un teorema de Lebesgue

Sea I un intervalo compacto en \mathbb{R}^N con interior no vacío,

$$f:I o\mathbb{R}$$
 una función acotada

y $\,D(f)\,$ el conjunto de las discontinuidades de $\,f\,$, es decir,

el conjunto de puntos de ${\it I}$ en los que ${\it f}$ no es continua.

Entonces $D(f) \in \mathcal{M}$ y las siguientes afirmaciones son equivalentes:

- (1) f es Riemann-integrable
- (2) $\lambda(D(f)) = 0$

Si se cumplen (1) y (2), entonces $f \in \mathcal{L}_1(I)$, con

$$\int_{T} f = \mathcal{R}(f)$$