Generalized Neural Sorting Networks with Error-Free Differentiable Swap Functions

Jungtaek Kim¹

Jeongbeen Yoon²

Minsu Cho^2

¹University of Pittsburgh

²POSTECH

Introduction

- Traditional sorting algorithms are a well-established approach to arranging given instances in computer science.
- Sorting networks are structurally designed as an abstract device with a fixed number of wires.
- Sorting networks have been used to perform a sorting algorithm on computing hardware.

Sorting

• Standard sorting formulation:

Given an unordered sequence of n elements $\mathbf{s} = [s_1, \dots, s_n] \in \mathbb{R}^n$, the problem of sorting is defined to find a permutation matrix $\mathbf{P} \in \{0, 1\}^{n \times n}$:

$$\mathbf{s}_{0} = \mathbf{P}^{\mathsf{T}} \mathbf{s},\tag{1}$$

where a sorting algorithm is a function f of s:

$$\mathbf{P} = f(\mathbf{s}). \tag{2}$$

• More generalized sorting formulation:

Instead of **s**, it is to sort $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^{\top} \in \mathbb{R}^{n \times d}$:

$$\mathbf{X}_{0} = \mathbf{P}^{\top} \mathbf{X}. \tag{3}$$

- This generalized sorting problem can be reduced to (1) if we are given a proper mapping g from an input $\mathbf{x} \in \mathbb{R}^d$ to an ordinal value $s \in \mathbb{R}$.
- Without such a mapping g, predicting \mathbf{P} in (3) remains more challenging than in (1) because \mathbf{x} is often a highly implicative high-dimensional input.

Contributions

- Define a softening error, which is a difference between original and smoothed values.
- Propose an error-free DSF that resolves the error accumulation problem of conventional DSFs and is still differentiable.
- Adopt a permutation-equivariant network with multi-head attention as a mapping from inputs to ordinal variables $g(\mathbf{X})$, unlike $g(\mathbf{x})$.

Sorting Networks with Differentiable Swap Functions

• A swap function is a key ingredient of sorting algorithms and sorting networks:

$$(x', y') = \operatorname{swap}(x, y), \tag{4}$$

where $x' = \min(x, y)$ and $y' = \max(x, y)$.

• We can express $\min(\cdot, \cdot)$ and $\max(\cdot, \cdot)$:

$$\min(x,y) = x \lfloor \sigma(y-x) \rfloor + y \lfloor \sigma(x-y) \rfloor, \quad (5)$$

$$\max(x,y) = x \lfloor \sigma(x-y) \rceil + y \lfloor \sigma(y-x) \rceil, \quad (6)$$

where $\lfloor \cdot \rfloor$ rounds to the nearest integer and $\sigma(\cdot)$ transforms an input to a bounded value.

• To enable us to differentiate a swap function, the soft versions of min and max can be defined:

$$\overline{\min}(x,y) = x\sigma(y-x) + y\sigma(x-y), \qquad (7)$$

$$\overline{\max}(x,y) = x\sigma(x-y) + y\sigma(y-x), \qquad (8)$$

where $\sigma(\cdot)$ is differentiable.

• A sigmoid function $\sigma(x)$ satisfies the following properties that (i) $\sigma(x)$ is non-decreasing, (ii) $\sigma(x) = 1$ if $x \to \infty$, (iii) $\sigma(x) = 0$ if $x \to -\infty$, (iv) $\sigma(0) = 0.5$, and (v) $\sigma(x) = 1 - \sigma(-x)$.

Error-Free Differentiable Swap Functions

• We propose an error-free differentiable swap function:

$$(x', y') = \operatorname{swap}_{\text{error-free}}(x, y),$$
 (9)

where

$$x' = (\min(x, y) - \overline{\min}(x, y))_{sg} + \overline{\min}(x, y), \quad (10)$$

$$y' = (\max(x, y) - \overline{\max}(x, y))_{sg} + \overline{\max}(x, y). \quad (11)$$

Note that sg indicates that gradients are stopped amid backward propagation, inspired by a straight-through estimator.

• A mapping $g: \mathbb{R}^d \to \mathbb{R}$ has to satisfy a permutation-equivariant property:

$$[g(\mathbf{x}_{\pi_1}), \dots, g(\mathbf{x}_{\pi_n})] = \pi([g(\mathbf{x}_1), \dots, g(\mathbf{x}_n)]), (12)$$

where $\pi_i = [\pi([1, \dots, n])]_i \ \forall i \in [n].$

• Both objectives for \mathbf{P}_{soft} and \mathbf{P}_{hard} are defined:

$$\mathcal{L}_{\text{soft}} = -\sum_{i=1}^{n} \sum_{j=1}^{n} [\mathbf{P}_{\text{gt}} \log \mathbf{P}_{\text{soft}}]_{ij}$$
$$-\sum_{i=1}^{n} \sum_{j=1}^{n} [(1 - \mathbf{P}_{\text{gt}}) \log(1 - \mathbf{P}_{\text{soft}})]_{ij}, \quad (13)$$

$$\mathcal{L}_{\text{hard}} = \|\mathbf{P}_{\text{hard}}^{\top} \mathbf{X} - \mathbf{P}_{\text{gt}}^{\top} \mathbf{X}\|_F^2. \tag{1}$$

$$\mathbf{P}_1^ op \ \mathbf{P}_2^ op \ \mathbf{P}_3^ op \ \mathbf{P}_4^ op \ \mathbf{P}_5^ op = \mathbf{P}^ op$$

Experiments

Table: Sorting the four-digit MNIST dataset.

Method		Model	Sequence Length						
			3	5	7	9	15	32	
NeuralSon	rt		91.9 (94.5)	77.7 (90.1)	51.0 (86.2)	43.4 (82.4) 9	0.7 (71.6)	0.0 (38.8)	
Sinkhorn Sort			92.8 (95.0)	81.1 (91.7)	35.6 (88.2)	49.7 (84.7) 12	2.6 (74.2)	0.0 (41.2)	
Fast Sort & Rank			90.6 (93.5)	71.5 (87.2)	19.7 (81.3)	29.0 (75.2) 2	2.8 (60.9)	_	
	Log.	CNN	92.0 (94.5)	77.2 (89.8)	54.8 (83.6)	37.2 (79.4) 4	.7 (62.3)	0.0 (56.3)	
	Log. w/ ART		94.3 (96.1)	83.4 (92.6) 7	71.6 (90.0)	56.3 (86.7) 23	3.5 (79.4)	0.5 (64.9)	
Diffsort	Reciprocal		94.4 (96.1)	85.0 (93.3)7	73.4 (90.7)	60.8 (88.1) 30	0.2 (81.9)	1.0 (66.8)	
	Cauchy		94.2 (96.0)	84.9 (93.2)7	73.3 (90.5)	63.8 (89.1) 33	1.1 (82.2)	0.8 (63.3)	
	Optimal		94.6 (96.3)	85.0 (93.3)7	73.6 (90.7)	62.2 (88.5) 3	1.8 (82.3)	1.4 (67.9)	
Ours	EF. DSFs	CNN	95.2 (96.7)	87.2 (94.2)7	76.6 (91.6)	64.8 (89.2)34	4.7 (83.3)	2.1 (69.2)	
		Tr-S	95.9 (97.1)	94.8 (97.5)	0.8 (96.5)	86.9 (95.7) 74	4.3 (93.6))37.8 (87.7)	
		Tr-L	96.5 (97.5)	95.4 (97.7))2.9 (97.2)	90.1 (96.5) 82	2.5 (95.0))46.2 (88.9)	

Table: Sorting the SVHN dataset.

Method		Model	Sequence Length					
		wodei	3	5	7	9	15	
	Log.		76.3 (83.2)	46.0 (72.7)	21.8 (63.9) 1	3.5 (61.7)	0.3 (45.9)	
Diffsort	Log. w/ ART		83.2 (88.1)	64.1 (82.1)	43.8 (76.5) 2	24.2 (69.6)	2.4 (56.8)	
	Reciprocal	CNN	85.7 (89.8)	68.8 (84.2)	53.3 (80.0)4	40.0 (76.3)	13.2 (66.0)	
	Cauchy		85.5 (89.6) 6	68.5 (84.1)	52.9 (79.8) 3	39.9 (75.8)	13.7 (66.0)	
	Optimal		86.0 (90.0)6	67.5 (83.5)	53.1 (80.0) 3	39.1 (76.0)	13.2 (66.3)	
Ours		CNN	86.8 (90.6) 6	68.9 (84.5)	53.4 (80.4)4	40.0 (77.0)	12.0 (65.3)	
	EF. DSFs	Transformer-	-886.6 (90.2)7	72.6 (85.7)	62.5 (83.5)4	48.6 (79.3)	19.3 (69.6)	
	r	Transformer-	L88.0 (91.2)7	74.0 (86.3)	63.9 (83.8) 5	50.2 (80.1)	21.7 (71.2)	

Table: Sorting image fragments of MNIST and CIFAR-10.

Method			MNIST		CIFAR-10	
		\mathbf{Model}	2×2	3×3	2×2	3×3
			(14×14)	(9×9)	(16×16)	(10×10)
	Logistic		98.5 (99.0)	5.3 (42.9)	56.9 (73.6)	0.8 (27.7)
Diffsort	Logistic w/ ART		98.4 (99.1)	5.4 (42.9)	56.7 (73.4)	0.7(27.7)
	Reciprocal	CNN	98.4 (99.2)	5.3 (42.9)	56.7 (73.4)	0.7(27.8)
	Cauchy		98.4 (99.2)	5.3 (42.9)	56.9 (73.6)	0.9(27.9)
	Optimal		98.4 (99.1)	5.3 (43.0)	3×3 2×2	0.7(27.7)
Ours	Error-Free DSFs	CNN	98.4 (99.2)	5.2 (42.6)	56.9 (73.6)	0.8 (28.0)
		Transformer	986 (992)	5 6 (43 7)	58 1 (74 2)	0.9 (28.3)

Table: Comparisons of Diffsort with the optimal monotonic sigmoid function and our methods in the MNIST experiments.

Method	\mathbf{Model}	Sequence Length						
Memod		3	5	7	9	15	32	
Diffsort	CNN	94.6 (96	5.3) 85.0 (93.	3) 73.6 (90.7)	62.2 (88.5)	31.8 (82.3)	1.4 (67.9)	
Ours		95.2 (96	5.7) 87.2 (94.	2) 76.6 (91.6)	64.8 (89.2)	34.7 (83.3)	2.1 (69.2)	
Diffsort	Transformer	95.9 (97	7.1) 90.2 (95.	4) 83.9 (94.2)	77.2 (92.9)	57.3 (89.7)	16.3 (81.7)	
Ours	Transformer-S	95.9 (97	7.1) 94.8 (97.	5) 90.8 (96.5)	86.9 (95.7)	74.3 (93.6)	37.8 (87.7)	
Diffsort	Transformer-L	96.5 (97	7.5) 92.6 (96.	4) 87.6 (95.3)	82.6 (94.3)	67.8 (92.0)	32.1 (85.7)	
Ours		96.5 (97	7.5) 95.4 (97.	7) 92.9 (97.2)	90.1 (96.5)	82.5 (95.0)	46.2 (88.9)	

arXiv

GitHub

