system-using-k-means-on-mall-data

October 6, 2023

1 Customer Segmentation System Using K-Means

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     pd.set_option('display.max_columns', None)
     pd.set_option('display.max_rows',None)
     import warnings
     warnings.filterwarnings('ignore')
[2]: df = pd.read_csv(r"C:\Ganesh\pandas datafile\mall_kmeans.csv")
[3]: df
[3]:
          CustomerID
                                      Annual Income (k$)
                                                           Spending Score (1-100)
                        Genre
                                Age
                          Male
                                 19
                                                                                 39
     0
                                                       15
                    1
     1
                    2
                          Male
                                 21
                                                       15
                                                                                 81
                      Female
     2
                    3
                                 20
                                                       16
                                                                                  6
     3
                    4
                       Female
                                 23
                                                                                 77
                                                       16
     4
                    5
                       Female
                                 31
                                                       17
                                                                                 40
     5
                    6
                       Female
                                 22
                                                       17
                                                                                 76
                    7
                       Female
     6
                                 35
                                                       18
                                                                                  6
     7
                       Female
                    8
                                 23
                                                       18
                                                                                 94
     8
                    9
                          Male
                                 64
                                                       19
                                                                                  3
                       Female
                                                                                 72
     9
                   10
                                 30
                                                       19
     10
                   11
                          Male
                                 67
                                                       19
                                                                                 14
                   12 Female
                                                                                 99
     11
                                 35
                                                       19
     12
                   13
                       Female
                                 58
                                                       20
                                                                                 15
     13
                       Female
                                 24
                                                       20
                                                                                 77
                   14
     14
                                 37
                   15
                          Male
                                                       20
                                                                                 13
     15
                                 22
                                                       20
                                                                                 79
                   16
                          Male
     16
                       Female
                                 35
                                                       21
                                                                                 35
                   17
     17
                   18
                          Male
                                 20
                                                       21
                                                                                 66
     18
                   19
                          Male
                                 52
                                                       23
                                                                                 29
     19
                                                       23
                                                                                 98
                   20 Female
                                 35
     20
                   21
                          Male
                                 35
                                                       24
                                                                                 35
```

0.4	00	м э	0.5	0.4	70
21	22	Male	25	24	73
22	23	Female	46	25	5
23	24	Male	31	25	73
24	25	Female	54	28	14
25	26	Male	29	28	82
26	27	Female	45	28	32
27	28	Male	35	28	61
28	29	Female	40	29	31
29	30	Female	23	29	87
30	31	Male	60	30	4
31	32	Female	21	30	73
32	33	Male	53	33	4
33	34	Male	18	33	92
34	35	Female	49	33	14
35	36	Female	21	33	81
36	37	Female	42	34	17
37	38	Female	30	34	73
38	39	Female	36	37	26
39	40	Female	20	37	75
40	41	Female	65	38	35
41	42	Male	24	38	92
42	43	Male	48	39	36
43	44	Female	31	39	61
44	45	Female	49	39	28
45	46	Female	24	39	65
46	47	Female	50	40	55
47	48	Female	27	40	47
48	49	Female	29	40	42
49	50	Female	31	40	42
50	51	Female	49	42	52
51	52	Male	33	42	60
52	53	Female	31	43	54
53	54	Male	59	43	60
54	55	Female	50	43	45
55	56	Male	47	43	41
56	57	Female	51	44	50
57	58	Male	69	44	46
58	59	Female	27	46	51
59	60	Male	53	46	46
60	61	Male	70	46	56
61	62		19	46	
62	63	Male	19 67	40	55 52
	64	Female			
63 64		Female	54	47	59 51
64 65	65 66	Male	63	48	51
65	66	Male	18	48	59 50
66	67	Female	43	48	50
67	68	Female	68	48	48

68	69	Male	19	48	59
69	70	Female	32	48	47
70	71	Male	70	49	55
71	72	Female	47	49	42
72	73	Female	60	50	49
73	74	Female	60	50	56
74	75	Male	59	54	47
75	76	Male	26	54	54
76	77	Female	45	54	53
77	78	Male	40	54	48
78	79	Female	23	54	52
79	80	Female	49	54	42
80	81	Male	57	54	51
81	82	Male	38	54	55
82	83	Male	67	54	41
83	84	Female	46	54	44
84	85	Female	21	54	57
85	86	Male	48	54	46
86	87	Female	55	57	58
87	88	Female	22	57	55
88	89	Female	34	58	60
89 90	90 91	Female Female	50 68	58 59	46 55
91	92	Male	18	59	41
92	93	Male	48	60	49
93	94	Female	40	60	40
94	95	Female	32	60	42
95	96	Male	24	60	52
96	97	Female	47	60	47
97	98	Female	27	60	50
98	99	Male	48	61	42
99	100	Male	20	61	49
100	101	Female	23	62	41
101	102	Female	49	62	48
102	103	Male	67	62	59
103	104	Male	26	62	55
104	105	Male	49	62	56
105	106	Female	21	62	42
106	107	Female	66	63	50
107	108	Male	54	63	46
108	109	Male	68	63	43
109	110	Male	66	63	48
110	111	Male	65 10	63	52 54
111 112	112 113	Female	19 38	63 64	54 42
112	113	Female Male	38 19	64 64	42 46
113	114	Male Female	19 18	65	46 48
114	110	1. emate	10	00	40

115	116	Female	19	65	50
116	117	Female	63	65	43
117	118	Female	49	65	59
118	119	Female	51	67	43
119	120	Female	50	67	57
120	121	Male	27	67	56
121	122	Female	38	67	40
122	123	Female	40	69	58
123	124	Male	39	69	91
124	125	Female	23	70	29
125	126	Female	31	70	77
126	127	Male	43	71	35
127	128	Male	40	71	95
128	129	Male	59	71	11
129	130	Male	38	71	75
130	131	Male	47	71	9
131	132	Male	39	71	75
132	133	Female	25	72	34
133	134	Female	31	72	71
134	135	Male	20	73	5
135	136	Female	29	73	88
136	137	Female	44	73	7
137	138	Male	32	73	73
138	139	Male	19	74	10
139	140	Female	35	74	72
140	141	Female	57	75	5
141	142	Male	32	75	93
142	143	Female	28	76	40
143	144	Female	32	76	87
144	145	Male	25	77	12
145	146	Male	28	77	97
146	147	Male	48	77	36
147	148	Female	32	77	74
148	149	Female	34	78	22
149	150	Male	34	78	90
150	151	Male	43	78	17
151	152	Male	39	78	88
152	153	Female	44	78	20
153	154	Female	38	78	76
154	155	Female	47	78	16
155	156	Female	27	78	89
156	157	Male	37	78	1
157	158	Female	30	78	78
158	159	Male	34	78	1
159	160	Female	30	78	73
160	161	Female	56	79	35
161	162	Female	29	79	83

162	163	Male	19	81	5
163	164	Female	31	81	93
164	165	Male	50	85	26
165	166	Female	36	85	75
166	167	Male	42	86	20
167	168	Female	33	86	95
168	169	Female	36	87	27
169	170	Male	32	87	63
170	171	Male	40	87	13
171	172	Male	28	87	75
172	173	Male	36	87	10
173	174	Male	36	87	92
174	175	Female	52	88	13
175	176	Female	30	88	86
176	177	Male	58	88	15
177	178	Male	27	88	69
178	179	Male	59	93	14
179	180	Male	35	93	90
180	181	Female	37	97	32
181	182	Female	32	97	86
182	183	Male	46	98	15
183	184	Female	29	98	88
184	185	Female	41	99	39
185	186	Male	30	99	97
186	187	Female	54	101	24
187	188	Male	28	101	68
188	189	Female	41	103	17
189	190	Female	36	103	85
190	191	Female	34	103	23
191	192	Female	32	103	69
192	193	Male	33	113	8
193	194	Female	38	113	91
194	195	Female	47	120	16
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

[4]: df.head()

[4]:	${\tt CustomerID}$	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

```
[5]: df.tail()
                                     Annual Income (k$)
                                                           Spending Score (1-100)
[5]:
          CustomerID
                        Genre
                                Age
     195
                  196
                       Female
                                 35
                                                      120
                                                                                 79
     196
                       Female
                                 45
                                                                                 28
                  197
                                                      126
                                                                                 74
     197
                  198
                                 32
                         Male
                                                      126
     198
                  199
                         Male
                                 32
                                                      137
                                                                                 18
                                                      137
     199
                  200
                         Male
                                 30
                                                                                 83
[6]:
    df.shape
[6]: (200, 5)
     df.describe()
[7]:
            CustomerID
                                      Annual Income (k$)
                                                            Spending Score (1-100)
                                 Age
     count
            200.000000
                         200.000000
                                               200.000000
                                                                         200.000000
     mean
             100.500000
                          38.850000
                                                60.560000
                                                                          50.200000
     std
             57.879185
                           13.969007
                                                26.264721
                                                                          25.823522
     min
               1.000000
                          18.000000
                                                15.000000
                                                                           1.000000
     25%
             50.750000
                          28.750000
                                                41.500000
                                                                          34.750000
     50%
             100.500000
                          36.000000
                                                61.500000
                                                                          50.000000
     75%
             150.250000
                           49.000000
                                                78.000000
                                                                          73.000000
             200.000000
                          70.000000
                                                                          99.000000
     max
                                               137.000000
```

[8]: sns.histplot(x='Genre', data = df);


```
[9]: sns.histplot(x='Age', data = df);
```



```
df.isnull().sum()
[10]:
[10]: CustomerID
                                0
      Genre
                                0
                                0
      Age
      Annual Income (k$)
                                0
      Spending Score (1-100)
      dtype: int64
[11]: df=df.drop(['CustomerID'],axis=1)
[12]: df.columns
[12]: Index(['Genre', 'Age', 'Annual Income (k$)', 'Spending Score (1-100)'],
      dtype='object')
[13]: df.rename(columns={'Annual Income (k$)':'Annual_Income'},inplace=True)
[14]: df.rename(columns={'Spending Score (1-100)':'Spending_Score'},inplace=True)
[15]: df.Genre.replace({'Male':1, 'Female':0}, inplace=True)
```

[16]: df

[16]:	Genre	Age	Annual_Income	Spending_Score
0	1	19	15	39
1	1	21	15	81
2	0	20	16	6
3	0	23	16	77
4	0	31	17	40
5	0	22	17	76
6	0	35	18	6
7	0	23	18	94
8	1	64	19	3
9	0	30	19	72
10	1	67	19	14
11	0	35	19	99
12	0	58	20	15
13	0	24	20	77
14	1	37	20	13
15	1	22	20	79
16	0	35	21	35
17	1	20	21	66
18	1	52	23	29
19	0	35	23	98
20	1	35	24	35
21	1	25	24	73
22	0	46	25	5
23	1	31	25	73
24	0	54	28	14
25	1	29	28	82
26	0	45	28	32
27	1	35	28	61
28	0	40	29	31
29	0	23	29	87
30	1	60	30	4
31	0	21	30	73
32	1	53	33	4
33	1	18	33	92
34	0	49	33	14
35	0	21	33	81
36	0	42	34	17
37	0	30	34	73
38	0	36	37	26
39	0	20	37	75
40	0	65	38	35
41	1	24	38	92
42	1	48	39	36
43	0	31	39	61

44	0	49	39	28
45	0	24	39	65
46	0	50	40	55
47	0	27	40	47
48	0	29	40	42
49	0	31	40	42
50	0	49	42	52
51	1	33	42	60
52	0	31	43	54
53	1	59	43	60
54	0	50	43	45
55	1	47	43	41
56	0	51	44	50
57	1	69	44	46
58	0	27	46	51
59	1	53	46	46
60	1	70	46	56
61	1	19	46	55
62	0	67	47	52
63	0	54	47	59
64	1	63	48	51
65	1	18	48	59
66	0	43	48	50
67	0	68	48	48
68	1	19	48	59
69	0	32	48	47
70	1	70	49	55
71	0	47	49	42
72	0	60	50	49
73	0	60	50	56
74	1	59	54	47
75	1	26	54	54
76	0	45	54	53
77	1	40	54	48
78	0	23	54	52
79	0	49	54	42
80	1	57	54	51
81	1	38	54	55
82	1	67	54	41
83	0	46	54	44
84	0	21	54	57
85	1	48	54	46
86	0	55	57	58
87	0	22	57	55
88	0	34	58	60
89	0	50	58	46
90	0	68	59	55

91	1	18	59	41
92	1	48	60	49
93	0	40	60	40
94	0	32	60	42
95	1	24	60	52
96	0	47	60	47
97	0	27	60	50
98	1	48	61	42
99	1	20	61	49
100	0	23	62	41
101	0	49	62	48
102	1	67	62	59
103	1	26	62	55
104	1	49	62	56
105	0	21	62	42
106	0	66	63	50
107	1	54	63	46
108	1	68	63	43
109	1	66	63	48
110	1	65	63	52
111	0	19	63	54
112	0	38	64	42
113	1	19	64	46
114	0	18	65	48
115	0	19	65	50
116	0	63	65	43
117	0	49	65	59
118	0	51	67	43
119	0	50	67	57
120	1	27	67	56
121	0	38	67	40
122	0	40	69	58
123	1	39	69	91
124	0	23	70	29
125	0	31	70	77
126	1	43	71	35
127	1	40	71	95
128	1	59	71	11
129	1	38	71	75
130	1	47	71	9
131	1	39	71	75
132	0	25	72	34
133	0	31	72	71
134	1	20	73	5
135	0	29	73	88
136	0	44	73	7
137	1	32	73	73

120	4	10	7.4	10
138	1	19	74	10
139	0	35	74	72
140	0	57	75	5
141	1	32	75	93
142	0	28	76	40
143	0	32	76	87
144	1	25	77	12
145	1	28	77	97
146	1	48	77	36
147	0	32	77	74
148	0	34	78	22
149	1	34	78	90
150	1	43	78	17
151	1	39	78	88
152	0	44	78	20
153	0	38	78	76
154	0	47	78	16
155	0	27	78	89
156	1	37	78	1
157	0	30	78	78
158	1	34	78	1
159	0	30	78	73
160	0	56	79	35
161	0	29	79	83
162	1	19	81	5
163			81	93
	0	31		
164	1	50	85	26
165	0	36	85	75
166	1	42	86	20
167	0	33	86	95
168	0	36	87	27
169	1	32	87	63
170	1	40	87	13
171	1	28	87	75
172	1	36	87	10
173	1	36	87	92
174	0	52	88	13
175	0	30	88	86
176	1	58	88	15
177	1	27	88	69
178	1	59	93	14
179	1	35	93	90
180	0	37	97	32
181	0	32	97	86
182	1	46	98	15
183	0	29	98	88
184	0	41	99	39

```
185
                                       99
                                                         97
                     30
      186
                 0
                     54
                                      101
                                                         24
      187
                 1
                     28
                                      101
                                                         68
      188
                 0
                     41
                                      103
                                                         17
      189
                 0
                     36
                                      103
                                                         85
      190
                 0
                     34
                                      103
                                                         23
      191
                 0
                     32
                                      103
                                                         69
      192
                 1
                                      113
                                                          8
                     33
      193
                 0
                     38
                                      113
                                                         91
      194
                     47
                                      120
                                                         16
                                                         79
      195
                 0
                     35
                                      120
      196
                 0
                     45
                                      126
                                                         28
      197
                 1
                     32
                                      126
                                                         74
      198
                 1
                     32
                                      137
                                                         18
      199
                 1
                     30
                                      137
                                                         83
[17]: X= df.iloc[:, [2, 3]].values
[18]: X
[18]: array([[ 15,
                      39],
               [ 15,
                      81],
               [ 16,
                        6],
               [ 16,
                      77],
               [ 17,
                      40],
               [ 17,
                      76],
               [ 18,
                        6],
               [ 18,
                      94],
               [ 19,
                        3],
               [ 19,
                      72],
               [ 19,
                      14],
               [ 19,
                      99],
               [ 20,
                      15],
               [ 20,
                      77],
               [ 20,
                      13],
               [ 20,
                      79],
               [ 21,
                      35],
               [ 21,
                      66],
               [ 23,
                      29],
               [ 23,
                      98],
               [ 24,
                      35],
               [ 24,
                      73],
               [ 25,
                       5],
               [ 25,
                      73],
               [ 28,
                      14],
               [ 28,
                      82],
```

[28,

32],

- [28, 61],
- [29, 31],
- [29, 87],
- [20, 01]
- [30, 4],
- [30, 73],
- [33, 4],
- [33, 92],
- [33, 14],
- [33, 81],
- [34, 17],
- [34, 73],
- [37, 26],
- [37, 75],
- [38, 35],
- [38, 92],
- [39, 36],
- [39, 61],
- [39, 28],
- [39, 65],
- [40, 55],
- [40, 47],
- [40, 42],
- [40, 42],
- [42, 52],
- [42, 60],
- [43, 54],
- [43, 60],
- [43, 45],
- [43, 41],
- [44, 50],
- [44, 46],
- [46, 51],
- [46,46],
- [46, 56],
- [46, 55],
- [47, 52],
- [47, 59],
- [48, 51],
- [48, 59],
- [48, 50],
- [48, 48],
- [48, 59],
- [48, 47],
- [49, 55],
- [49,42],
- [50, 49],
- [50, 56],

- [54, 47],
- 54], [54,
- 53], [54,
- [54, 48],
- [54, 52],
- [54, 42],
- [54, 51],
- 55], [54,
- 41], [54,
- [54, 44],
- [54, 57],
- 46], [54,
- 58], [57,
- [57, 55],
- [58, 60],
- 46], [58,
- [59, 55],
- 41], [59,
- [60, 49],
- [60, 40],
- [60, 42],
- [60, 52],
- [60, 47],
- [60, 50],
- [61, 42],
- [61, 49],
- 41], [62,
- [62, 48],
- [62, 59],
- 55], [62,
- 56], [62,
- 42], [62, [63, 50],
- [63, 46],
- [63, 43], [63, 48],
- [63, 52],
- [63, 54], [64, 42],
- [64,
- 46], [65, 48],
- 50], [65,
- [65, 43],
- [65, 59],
- [67, 43],
- [67, 57],
- [67, 56],

```
[ 67,
       40],
      58],
[ 69,
[ 69,
      91],
[ 70,
       29],
[70,
       77],
[71,
       35],
[71,
       95],
[71,
       11],
[71,
       75],
[71,
       9],
[71,
       75],
[72,
       34],
[72,
       71],
[ 73,
       5],
[ 73,
       88],
[ 73,
       7],
[ 73,
       73],
[ 74,
       10],
[ 74,
       72],
[ 75,
       5],
[75,
       93],
[76,
       40],
[76,
       87],
[77,
       12],
[77,
       97],
[77,
       36],
[77,
      74],
[78,
      22],
[ 78,
       90],
[ 78,
       17],
[78,
       88],
[ 78,
       20],
[ 78,
       76],
[ 78,
       16],
[ 78,
       89],
[ 78,
       1],
[ 78,
      78],
[ 78,
       1],
[78,
       73],
[79,
       35],
[79,
      83],
[ 81,
       5],
[ 81,
      93],
[ 85,
       26],
      75],
[ 85,
```

[86,

[86,

20],

95],

```
[87, 27],
            [87,63],
            [87,
                   13],
            [87,
                   75],
            [ 87,
                  10],
            [87,
                   92],
            [ 88,
                   13],
            [88,
                   86],
            [ 88,
                   15],
            [ 88,
                   69],
            [ 93,
                   14],
            [ 93,
                  90],
            [ 97,
                   32],
            [ 97,
                   86],
            [ 98,
                   15],
            [ 98,
                   88],
            [ 99,
                   39],
            [ 99,
                  97],
            [101, 24],
            [101,
                  68],
            [103, 17],
            [103, 85],
            [103, 23],
            [103, 69],
            [113,
                    8],
            [113, 91],
            [120, 16],
            [120, 79],
            [126, 28],
            [126, 74],
             [137, 18],
            [137, 83]], dtype=int64)
[19]: from sklearn.cluster import KMeans
     wcss = []
[20]: for i in range(1, 11):
         kmeans = KMeans(n_clusters=i, init='k-means++', random_state=0)
         kmeans.fit(X)
         wcss.append(kmeans.inertia_)
[21]: plt.plot(range(1, 11), wcss)
     plt.title("The Elbow Method")
     plt.xlabel('Number of clusters')
     plt.ylabel('WCSS Values')
[21]: Text(0, 0.5, 'WCSS Values')
```


2 Training a model using Unsupervised Learning Algorithm

```
[25]: array([[88.2
                    , 17.11428571],
             [55.2962963 , 49.51851852],
             [86.53846154, 82.12820513],
             [25.72727273, 79.36363636],
             [26.30434783, 20.91304348]])
[26]: plt.scatter(X[y_kmeans == 0,0], X[y_kmeans == 0,1], s= 80, c = "red",__
       →label='Customer 1')
      plt.scatter(X[y_kmeans == 1,0], X[y_kmeans == 1,1], s= 80, c = "blue", __
       →label='Customer 2')
      plt.scatter(X[y_kmeans == 2,0], X[y_kmeans == 2,1], s= 80, c = "yellow", __
       ⇔label='Customer 3')
      plt.scatter(X[y_kmeans == 3,0], X[y_kmeans == 3,1], s= 80, c = "cyan", __
       ⇔label='Customer 4')
      plt.scatter(X[y_kmeans == 4,0], X[y_kmeans == 4,1], s= 80, c = "black", __
       ⇔label='Customer 5')
      plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=_{\sqcup}
       ⇔100, c= 'magenta', label='Centroids')
      plt.title('Clusters of Customers')
      plt.xlabel('Annual Income (k$)')
      plt.ylabel('Spending Score (1-100)')
      plt.legend()
      plt.show()
```


[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	