Problem 3.1:

1.
$$\alpha = 2$$
, $\beta = 7$

The mean is
$$\frac{\alpha}{\alpha+\beta} = \frac{2}{2+7} = \mathbf{0.222}$$

The mode is
$$\frac{\alpha - 1}{\alpha + \beta - 2} = \frac{2 - 1}{2 + 7 - 2} = \mathbf{0.143}$$

2. The median is **0.2011**

The 90% central interval is [0.0464, 0.4707]

```
> qbeta(0.5,2,7)
[1] 0.2011312
> qbeta(0.05,2,7)
[1] 0.04638926
> qbeta(0.95,2,7)
[1] 0.4706794
```

3. The beta(2,7) plot is:

Problem 3.3:

- 1. uniform(0,1) = beta(1,1)
- 2. Since the desired sample size for beta (1,1) is 1+1-2=0. The desired equivalent prior sample size for U(0,1) is also 0.

Problem 3.4:

1. $\alpha - 1 = 40$, $\beta - 1 = 80$, we plot the density function of beta (41, 81):

We notice that the distribution is concentrated between 0.3 to 0.4. We need to use the probability of a sample high school student getting hit to estimate θ .

The probability P(getting hit) = $\frac{40}{120}$ = 0.333. It's within the interval of [0.3, 0.4]. Therefore the guess of beta(41,81) is good.

2. The player's mother's belief would probability want a steady hit, therefore we want the prior mean to be 0.333. We could try beta(40,80), beta(20,40), beta (10,20) and beta(5,10).

The plots indicate that, when the sum of α and β is larger, the distribution is more concentrated. To get a more certain outcome of getting a hit at bat, the **beta(40,80)** would be the best fit in all.

- 3. One of the reason of dependence might be that the players' performances would go down since the eight college-levels games are very exhausting. **The model might not be independent**.
- 4. (a) Posterior: probability of getting a hit at bat based on player's latest record.

The likelihood function is $L(\theta) = {30 \choose 5} \theta^5 (1-\theta)^{25}$. The posterior $P(\theta : y)$ is proportional to beta $(\alpha + y, \beta + n - y)$.

(b) Here we plot **Beta(46,106).**

Page | 4

0.0

0.2

0.4

p

0.6

8.0

1.0