Functional depths

Choi Seokjun

11 Dec. 2019

1/14

Outline

definition of depth

Consistency of functional depth

Application

| □ ▶ ∢団 ▶ ∢ 差 ▶ ∢ 差 ▶ ○ 差 ○ 夕久(※)

2/14

definition of depth in \mathbb{R}^p

Definition (statistical depth in \mathbb{R}^p , (Zuo and Serfling, 2000b))

Let \mathcal{P} be some class of of distributions. The bounded and non-negative mapping $D(.,.): \mathbb{R}^p \times \mathcal{P} \to \mathbb{R}$ is called a statistical depth function if it satisfies the following properties:

- Affine invariance $D(Ax + b, P_{AX+b}) = D(X, P_X)$ holds for any \mathbb{R}^p -valued random vector X, any $p \times p$ nonsingular matrix A and any $b \in \mathbb{R}^p$.
- Maximality at center $D(\theta, P) = \sup_{x \in \mathbb{R}^p} D(x, P)$ holds for any $P \in \mathcal{P}$ having a unique center of symmetry θ w.r.t. some notion of symmetry.
- Monotonicity relative to the deepest point For any $P \in \mathcal{P}$ having deepest point θ , $D(x, P) \leq D(\theta + \alpha(x \theta), P)$ holds for all $\alpha \in [0, 1]$.
- Vanishing at infinity $D(x, P) \to 0$ as $||x||_{\mathbb{R}^p} \to \infty$ for each $P \in \mathcal{P}$.

3/14

definition of depth in \mathbb{R}^p

(Serfling(2006)) Not necessary, but desirable property when setting D:

- Symmetry If P is symmetric about θ , then so is D(x, P).
- Continuity of D(x,P) as a function of x (or just have upper semi-continuity)
- Continuity of D(x,P) as a function of P
- Quasi-concavicity as a function of x The set $\{x: D(x, P) \ge c\}$ is convex for each real c.

Example (on \mathbb{R}^1)

If we denote F_P as cdf corresponding distribution measure P, then

- (By Fraiman, Muniz(2001)) $D(x, P) = 1/2 [1/2 F_P(x)]$
- (Halfspace depth, By Tukey(1975)) $D(x, P) = min\{F_P(x), lim_{v \to x} F_P(v)\}$
- (Simplical depth, By Liu(2001)) $D(x, P) = F_P(x)\{1 \lim_{v \to x^-} F_P(v)\}$
- (Modified band depth, By Cuevas, Fraiman(2009)) $D(x, P) = \frac{1}{J-1} \sum_{j=2}^{J} P(x \in [min(X_1, ..., X_j), max(X_1, ..., X_j)])$

4 □ ▷ 〈□ ▷ 〈필 ▷ 〈필 ▷ 〈필 ▷ 〈필 ▷ ○ 됨 ○ ○

4 / 14

definition of depth in ${\mathcal F}$

Definition (statistical depth in \mathcal{F} , (Nieto-Reyes and Battey, 2016))

Let (\mathcal{F}, A, P) be probability space and \mathcal{P} be class of all distribution measures on \mathcal{F} . The bounded and non-negative mapping $D(.,.): \mathcal{F} \times \mathcal{P} \to \mathbb{R}$ is called a statistical functional depth function if it satisfies the following properties:

- distance invariance
 - $D(f(x), P_{f(x)}) = D(X, P_X)$ for any $x \in \mathcal{F}$ and $f : \mathcal{F} \to \mathcal{F}$ such that for any $y \in \mathcal{F}$,
 - $d(f(x),f(y))=a_fd(x,y),\ a_f\in\mathbb{R}-\{0\}.$
- Maximality at center
 For any P ∈ P with unique center of symmetry θ w.r.t. some notion of symmetry,
 D(θ, P) = sup_{x∈ P}D(x, P).
- Monotonicity (strictly decreasing) relative to the deepest point For any $P \in \mathcal{P}$ s.t. $D(z,P) = \max_{x \in \mathcal{F}} D(x,P)$ exists (:deepest point z), for $x,y \in \mathcal{F}$,
 - D(x,P) < D(y,P) < D(z,P) s.t. $min\{d(y,z),d(y,x)\} > 0$ and $max\{d(y,z),d(y,x)\} < d(x,z)$.

◆ロ > ◆団 > ◆ 差 > ◆ 差 > 一差 | 釣 < ()・</p>

 Choi Seokjun
 Functional depths
 11 Dec. 2019
 5 / 14

Definition ((continue.))

• Upper semi-continuity in x D(x, P) is upper semi-continuous as a function of x.

 $\delta \in \inf_{v \in V} d(L(v), U(v)), d(L, U)$ s.t. $\lambda(L_{\delta}) > 0$ and $\lambda(L_{\delta}^{c}) > 0$.

- Receptivity to convex hull width across the domain. Let $C(\mathcal{F}, P)$ be convex hull in (\mathcal{F}, A, P) defined as $C(\mathcal{F}, P) = \{x \in \mathcal{F} : x(v) = \alpha L(v) + (1 - \alpha)U(v), v \in V, \alpha \in [0, 1]\}$ where $U = \{sup_{x \in \mathcal{F}}x(v) : v \in V\}$, $L = \{inf_{x \in E} \times (v) : v \in V\}$ and E is smallest set in A s.t. P(E) = P(F). Then, D has a property that $D(x, P_X) < D(f(x), P_{f(X)})$ for any $x \in C(\mathcal{F}, P)$ with $D(x,P) < \sup_{v \in \mathcal{F}} D(y,P)$ and $f: \mathcal{F} \to \mathcal{F}$ s.t. $f(y(v)) = \alpha(v)y(v)$ with $\alpha(v) \in (0,1)$ for all $v \in L_{\delta}$ and $\alpha(v) = 1$ otherwise where $L_{\delta} = argsup_{H \in V} \{ sup_{x,v \in C(\mathcal{F},P)} d(x(H),y(H)) \le \delta \}$ for any
- Continuity in P For all $x \in \mathcal{F}$, for all $P \in \mathcal{P}$ and for every $\epsilon > 0$, there exists a $\delta(\epsilon) > 0$ s.t. $|D(x,Q) - D(x-P)| \le \epsilon$ P-almost surely for all $Q \in \mathcal{P}$ with $d_P(Q, P) < \delta$ P-almost surely, where d_P is metric on \mathcal{P} .

Other requirement?

'convex depth level set'(ex. Narisetty and Nair, 2015), 'null at the boundary'(or, similarly 'Vanishing at infinity')(Mosler and Polyakov, 2012), 'non-degeneracy with gaussian process class' (Chakraborty and Chaudhuri, 2014b)

> Choi Seokjun 11 Dec. 2019

4日 > 4周 > 4 至 > 4 至 > 一至

6/14

Check the validity of existing depth on ${\mathcal F}$

- h-depth (Cuevas, Febrero and Fraiman(2007)): **FTTTTT** $D_h(x, P) = E_X(K_h(||x X||_{\mathcal{L}^2[0,1]}))$ on $\mathcal{L}^2[0,1]^p$
- random-tukey depth (Cuesta-Albertos and Nieto-Reyes(2008)) : **TTFTFT** $D_{RT}(x,P) = min_{u \in \{u_j\}_{j=1}^k} min(P_{(u)}(-\infty,\langle u,x\rangle], P_{(u)}[\langle u,x\rangle,\infty))$ where $P_{(u)}$: marginal distribution measure of u, on $\mathcal{L}^2[0,1]^p$
- band depth(Lopez-Pintado and Romo(2009)) : **TTFTFT** $D_J(x,P) = \sum_{j=2}^J P_{S_j}(x \in S_j(P))$ where $S_j(P) = \{y \in \mathcal{F} : y(v) = \alpha_1 X_1(v) + ... + \alpha_j X_j(v), \alpha_k \in (j\text{-th dim simplex}), v \in V, X_i \sim P\}$ on \mathcal{C} with sup norm
- modified band depth (Lopez-Pintado and Romo(2009)) : **TTFTFT** $D_{MJ}(x,P) = \sum_{j=2}^J E(\lambda\{v \in V : x(v) \in S_j(P)\})$ with above notation, on $\mathcal C$ with sup norm
- half-region depth (Lopez-Pintado and Romo(2011)): **TFFTFT** $D_{HR}(x, P) = min\{P(X \in H_x), P(X \in E_x)\}$ where $H_x = \{y \in \mathcal{F} : y(v) \le x(v) \text{ for all } v \in V\}$ and $E_x = \{y \in \mathcal{F} : y(v) \ge x(v) \text{ for all } v \in V\}$ on \mathcal{C} with sup norm
- modified half-region depth (Lopez-Pintado and Romo(2011)) : **TTFTFT** $D_{MHR}(x,P) = min\{E(\lambda\{v \in V, X(v) \leq x(v)\}), E(\lambda\{v \in V, X(v) \geq x(v)\})\}/\lambda(V)$ on $\mathcal C$ with sup norm

7/14

Consistency of functional depth: classification of existing functional depth

For showing consistency, classify depths to 3 groups (Stanislav Nagy(2018)) Let D: some depth in \mathbb{R}^p . then

- integrated depth (Fraiman, Muniz(2001) and Cuevas, Fraiman(2009)) form of $FD(x, P) = \int D(f(x), f(P)d\lambda(f))$
- infimal depth (Mosler(2013)) form of $ID(x, P) = inf_f D(f(x), f(P))$
- band depth (Lopez-Pintado, Romo(2009)) form of $BD(x,P) = P(x \in Band(X_1,...,X_K))$ on $\mathcal C$ where $Band(x_1,x_2) = \{y \in \mathcal C: min\{x_1(v),x_2(v)\} \leq y(v) \leq max\{x_1(v),x_2(v)\}, v \in V\}$ (extend to convex hull with many X_i s.)

<ロト < 回 > < 巨 > < 巨 > 、 重 ・ り < で

8/14

Consistency of functional depth

Definition

For given $P \in \mathcal{P}$, let $P_n \to P$ weakly. A functional depth D(x, P) is uniformly consistent for P over \mathcal{F} , if

$$sup_{x\in\mathcal{F}}|D(x,P_n)-D(x,P)|\to 0$$

for almost every x as $n \to \infty$.

Definition

If D is uniformly consistent for any $P \in \mathcal{P}$, then we say D is universally consistent over \mathcal{F} .

Theorem (Varadarajan(1956))

Let (S, d) be a sparable metric space and μ be any distribution (Borel probability measure) on S. Then the empirical measure μ_n converges to μ almost surely:

$$P(\{w : \mu_n(.)(w) \to \mu\}) = 1$$

4□ > 4回 > 4 重 > 4 重 > 重 のQ (*)

9/14

Consistency of functional depth

Theorem (Consistency of functional band depth (Gijbels, Nagy(2015)))

BD(x, P) is not uniformly consistent over compact subset of C.

Possible remedy: smoothing with integration and decreasing function $w:[0,\infty)\to [0,1], w(0)=1, w(\infty)\to 0$ Adjusted band depth: $aBD(x,P)=Ew(inf_{y\in Band(X_1,...,X_k)}||x-y||)$ for all $x\in \mathcal{C},P\in \mathcal{P}.$ Then, aBD is universally consistent over $\mathcal{C}.$

Theorem (Consistency of functional infimal depth (Gijbels, Nagy(2015)))

ID(x, P) is uniformly consistent over C for P when P is mixture of P_1, P_2 s.t.

- all marginal distribution of P_1 have continuous dist. functions.
- P_2 is concentrated in finite-dimensional subspace of C.

Note that the conditions are too restrictive. (Wiener measure fails to satisfy them.) And it means that ID(x, P) is not universally consistent over C.

◆ロ > ◆団 > ◆ 差 > ◆ 差 > 一差 | 釣 < ()</p>

10 / 14

Consistency of functional depth

Theorem (Consistency of functional integrated depth (Nagy, Gijbels, Omelka, Hlubinka(2016)))

FD(x, P) is uniformly consistent over C.

Note that, using the definition of integration, C can be extend to Borel-measurable (may be discontinuous) functions, include L^2 .

11 / 14

Consistency of functional depth: In practice

Theorem (Consistency over partial observability, (Nagy, Ferraty (2018))

Let $P \in \mathcal{P}$ on $\mathcal{L}^2[0,1]$ and \tilde{P}_n be empirical distribution of fitted n curves. Then (under some assumptions,)

$$sup_{x\in\mathcal{L}^2}|D(x,\tilde{P_n})-D(x,P)| o 0$$

almost every x as $n \to \infty$ when D is adjust band depth type, h-depth type. If all marginal distribution of P is absolutely continuous, then also true for integrated depth type.

Proof:

step1: show $\tilde{P}_n \to P$ weakly almost every $\omega \in \Omega$ using Varadarajan theorem and some good properties of fitting kernel.

step2: using convergence property of inner D, show outer D converges weakly.

12 / 14

Consistency of functional depth: In practice

Theorem (convergence rate of FD (Nagy, Ferraty(2018)))

Let P_n be empirical distribution of (true) n curves, and \tilde{P}_n be one of fitted n curves.

Suppose $P(|X(s) - X(t)| \le L|s - t|^{\beta}) = 1$ for all $s, t \in [0, 1]$. Then, for any $P \in \mathcal{P}$ on $\mathcal{L}^2[0, 1]$, under some conditions.

$$\sup_{x \in \mathcal{L}^2[0,1]} |FD(x, P_n) - FD(x, P)| = O_p(n^{-1/2})$$

Moreover, if number of data points of n-th curve is comparable to n^r and $\sup_{v \in [0,1]} \sup_{|s-s'| \le \epsilon} |F_{(v)}(s) - F_{(v)}(s')| \le K\epsilon^{\alpha}$ for some $\alpha \in (0,1]$ where $F_{(v)}$: marginal cdf of P at v, then under some conditions,

$$\begin{aligned} sup_{x \in \mathcal{L}^{2}[0,1]} | FD(x, \tilde{P}_{n}) - FD(x, P)| \\ &= O_{p}(n^{-r\alpha\beta/\{(1+\alpha)(2\beta+1)\}}) \text{ if } r < (2\beta+1)/\beta \\ &= O_{p}(\{ln(n)/n\}^{\alpha/(1+\alpha)}) \text{ if } r = (2\beta+1)/\beta \\ &= O_{p}(n^{-\alpha/(1+\alpha)}) \text{ if } r > (2\beta+1)/\beta \end{aligned}$$

Note that last case is dense setting, and the rate is similar to full observing case. In other cases, become slower.

◆□ > ◆□ > ◆ 差 > ◆ 差 > 一差 ● の Q ()

13 / 14

Application

- Median estimation
- Robust and Nonparametric functional statistics procedure of with rank, nonparametric estimation of distribution or summary statistic, ...
- Exploratory Data Analysis (EDA)
 outlier detection, data expression (ex. functional box plot), ...
 (Center? Cluster? Symmetry? range(width)? gap(separation)? other irregularities?)
- classification when data can be classified by relation to the center. (if needed, after some transformation)
- (and other things...)

Note: Usability in application yields some other criteria about comparing depth.

eg. 1. width(using depth) vs std relation? 2. validity of central region? 3. computational advantage?

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

11 Dec. 2019

14 / 14