Function	Derivative	Equivalent integral	Comment
$y=f(x)^n$	$rac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	$\int \!\! f'(x)[f(x)]^n dx = rac{1}{n+1}[f(x)]^{n+1} + c ext{ where } n eq -1$	When n = -1 follow the integration rules for $\int rac{f'(x)}{f(x)} dx$
y = uv	$rac{dy}{dx}=urac{dv}{dx}+vrac{du}{dx}$	$\int\! u rac{dv}{dx} dx = uv - \int\! v rac{du}{dx} dx$	
$y = \frac{u}{v}$	$rac{dy}{dx} = rac{vrac{du}{dx} - urac{dv}{dx}}{v^2}$		
y = g(u) where $u = f(x)$	$rac{dy}{dx} = rac{dy}{du} imes rac{du}{dx}$		
		$\int_a^b f(x)dx pprox rac{b-a}{2n} ig\{ f(a) + f(b) \ + 2ig[f(x_1) + \ldots + f(x_{n-1}) ig] ig\} ext{ where } a = x_0 ext{ and } b$ $= x_n$	
y=sinf(x)	$rac{dy}{dx} = f'(x) cos f(x)$	$\int\!f'(x)cosf(x)dx=sinf(x)+c$	
y=cosf(x)	$rac{dy}{dx} = -f'(x)sinf(x)$	$\int\!f'(x)sinf(x)dx = -cosf(x) + c$	
y = tanf(x)	$rac{dy}{dx} = f'(x)sec^2f(x)$	$\int \! f'(x) sec^2 f(x) dx = tan f(x) + c$	
$y=e^{f(x)}$	$rac{dy}{dx} = f'(x)e^{f(x)}$	$\int \! f'(x) e^{f(x)} dx = e^{f(x)} + c$	
y=lnf(x)	$rac{dy}{dx} = rac{f'(x)}{f(x)}$	$\int\!rac{f'(x)}{f(x)}dx=ln f(x) +c$	Why absolute value?
$y=a^{f(x)}$	$rac{dy}{dx} = (\ln a) f'(x) a^{f(x)}$	$\int\! f'(x)a^{f(x)}dx = rac{a^f(x)}{\ln a} + c$	In a is a constant therefore can be removed from the integral it can go on the other side of the intergral equation when compared to the derivative equation.
$y=log_af(x)$	$rac{dy}{dx} = rac{f'(x)}{(\ln a)f(x)}$		This formula is not really needed on formula sheet as original function can easily be rewritten as $\dfrac{\ln f(x)}{\ln a}$ where $\dfrac{1}{\ln a}$ is a constant therefore the derivative rules for $y=\mathrm{constant}\ imes \ln f(x)$ can be followed. No equivalent

Function	Derivative	Equivalent integral	Comment
			integral is provided on formula sheet but can be easily derived.
$y=sin^{-1}f(x)$	$rac{dy}{dx} = rac{f'(x)}{\sqrt{1-(f(x))^2}}$	$\int \! rac{f'(x)}{\sqrt{a^2-(f(x))^2}} dx = sin^{-1}rac{f(x)}{a} + c$	Note slighlty different format compared to derivative on formula sheet ("a" rather than a 1)
$y = \cos^{-1} f(x)$	$rac{dy}{dx} = -rac{f'(x)}{\sqrt{1-(f(x))^2}}$		Note the minus in front of fraction. Why no integral equivalent?
$y=tan^{-1}f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1+(f(x))^2}$	$\int\!rac{f'(x)}{a^2+(f(x))^2}dx=rac{1}{a}tan^{-1}rac{f(x)}{a}+c$	No square root as per inverse sin and inverse cos derivatives and plus signNote slighlty different format compared to derivative on formula sheet ("a" rather than a 1)