Capítulo 8

Técnicas de integração CÁLCULO GEORGE B. THOMAS

VOLUME 1

Seção 8.1 - Fórmulas de Integração Básica

TABELA 8.1 Fórmulas de integração básica

$$1. \int du = u + C$$

2.
$$\int k \, du = ku + C$$
 (qualquer número k)

$$3. \int (du + dv) = \int du + \int dv$$

4.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C$$
 $(n \neq -1)$

$$\int \frac{du}{u} = \ln|u| + C$$

$$6. \int \sin u \, du = -\cos u + C$$

7.
$$\int \cos u \, du = \sin u + C$$

$$8. \int \sec^2 u \, du = \operatorname{tg} u + C$$

9.
$$\int \csc^2 u \, du = -\cot u + C$$

$$10. \int \sec u \operatorname{tg} u \, du = \sec u + C$$

11.
$$\int \csc u \cot u \, du = -\csc u + C$$

12.
$$\int \operatorname{tg} u \, du = -\ln|\cos u| + C$$
$$= \ln|\sec u| + C$$

13.
$$\int \cot u \, du = \ln|\sin u| + C$$
$$= -\ln|\csc u| + C$$

$$14. \int e^u du = e^u + C$$

15.
$$\int a^u du = \frac{a^u}{\ln a} + C$$
 $(a > 0, a \ne 1)$

$$16. \int \sinh u \, du = \cosh u + C$$

17.
$$\int \cosh u \, du = \sinh u + C$$

18.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \operatorname{sen}^{-1} \left(\frac{u}{a} \right) + C$$

19.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \operatorname{tg}^{-1} \left(\frac{u}{a} \right) + C$$

20.
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + C$$

21.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \operatorname{senh}^{-1} \left(\frac{u}{a} \right) + C$$
 $(a > 0)$

22.
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \cosh^{-1}\left(\frac{u}{a}\right) + C \qquad (u > a > 0)$$

Realizando uma substituição para simplificar

• Exemplo 1: Calcule $\int \frac{2x-9}{\sqrt{x^2-9x+1}} dx$. (Exercício)

Completando o quadrado

• Exemplo 2: Calcule $\int \frac{dx}{\sqrt{8x-x^2}}$.

CAPÍTULO 8

TÉCNICAS DE INTEGRAÇÃO

uma identidade trigonométrica

• Exemplo 3: Calcule $\int (\sec x + \tan x)^2 dx$.

Eliminando uma raiz quadrada

• Exemplo 4: Calcule $\int_0^{\pi/4} \sqrt{1 + \cos(4x)} \, dx$.

Reduzindo uma fração imprópria

• Exemplo 5: Calcule $\int \frac{3x^2 - 7x}{3x + 2} dx$.

Separando uma fração

• Exemplo 6: Calcule $\int \frac{3x+2}{\sqrt{1-x^2}} dx$.

Integral de $y = \sec x$ - multiplicando por 1

• Exemplo 7: Calcule $\int \sec x \, dx$.

TABELA 8.2 As integrais de secante e cossecante

1.
$$\int \sec u \, du = \ln|\sec u + \operatorname{tg} u| + C$$

2.
$$\int \operatorname{cosec} u \, du = -\ln|\operatorname{cosec} u + \operatorname{cotg} u| + C$$

11a ED

Procedimento para adequar integrais a fórmulas básicas

Procedimento

EXEMPLO

Fazendo uma substituição para simplificar

Eliminando uma raiz quadrada

Reduzindo uma fração imprópria

$$\frac{2x-9}{\sqrt{x^2-9x+1}}dx = \frac{du}{\sqrt{u}}$$

$$\sqrt{8x - x^2} = \sqrt{16 - (x - 4)^2}$$

Usando uma identidade
$$(\sec x + \tan x)^2 = \sec^2 x + 2 \sec x \tan x + \tan^2 x$$

trigonométrica $= \sec^2 x + 2 \sec x \tan x$
 $+ (\sec^2 x - 1)$

$$= 2 \sec^2 x + 2 \sec x \, \text{tg} \ x - 1$$

$$\sqrt{1 + \cos 4x} = \sqrt{2 \cos^2 2x} = \sqrt{2} |\cos 2x|$$

$$\frac{3x^2 - 7x}{3x + 2} = x - 3 + \frac{6}{3x + 2}$$

$$\frac{3x+2}{\sqrt{1-x^2}} = \frac{3x}{\sqrt{1-x^2}} + \frac{2}{\sqrt{1-x^2}}$$

Multiplicando por uma forma de 1
$$\sec x = \sec x \cdot \frac{\sec x + \tan x}{\sec x + \tan x}$$

$$= \frac{\sec^2 x + \sec x \operatorname{tg} x}{\sec x + \operatorname{tg} x}$$

Seção 8.2 – Integração por partes

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$
 (1)

Fórmula da integração por partes

$$\int u \, dv = uv - \int v \, du \tag{2}$$

Fórmula da integração por partes para integrais definidas

$$\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x)\Big]_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx \tag{3}$$

11º ED Usando integração por partes

- Exemplo 1: Determine $\int x \cos x \, dx$.
- Exemplo 3: Calcule $\int \ln x \, dx$.
- Exemplo 4: Calcule $\int x^2 e^x dx$.
- Exemplo 5: Calcule $\int e^x \cos x \, dx$.
- Exemplo 6: Encontre a área da região delimitada pela curva $y = xe^{-x}$ e pelo eixo x de x = 0 a x = 4.

Seção 8.3 – Integração de Funções Racionais por Frações Parciais

CAPÍTULO 8

TÉCNICAS DE INTEGRAÇÃO

Método de frações parciais (f(x)/g(x) própria)

1. Seja x - r um fator linear de g(x). Suponha que (x - r)^m seja a maior potência de x - r que divide g(x). Então, associe a esse fator a soma de m frações parciais:

$$\frac{A_1}{x-r} + \frac{A_2}{(x-r)^2} + \cdots + \frac{A_m}{(x-r)^m}$$

Faça isso para cada fator linear distinto de g(x).

2. Seja x² + px + q um fator quadrático de g(x). Suponha que (x² + px + q)ⁿ seja a maior potência desse fator que divide g(x). Então, atribua a esse fator a soma de n frações parciais:

$$\frac{B_1x + C_1}{x^2 + px + q} + \frac{B_2x + C_2}{(x^2 + px + q)^2} + \dots + \frac{B_nx + C_n}{(x^2 + px + q)^n}$$

Faça isso para cada fator quadrático distinto de g(x) que não pode ser decomposto como produto de fatores lineares com coeficientes reais.

- 3. Iguale a fração original f(x)/g(x) à soma de todas essas frações parciais. Elimine as frações da equação resultante e organize os termos em potências decrescentes de x.
- 4. Iguale os coeficientes das potências correspondentes de x e resolva o sistema de equações obtido desse modo para encontrar os coeficientes indeterminados.

Fatores lineares distintos

• Exemplo 1: Calcule $\int \frac{x^2+4x+1}{(x-1)(x+1)(x+3)} dx$ usando frações parciais.

11º EDIÇÃO Um fator linear repetido

• Exemplo 2: Calcule $\int \frac{6x+7}{(x+2)^2} dx$.

Integrando uma fração imprópria

• Exemplo 3: Calcule $\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx$. Note $\text{que } \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} = 2x + \frac{5x - 3}{x^2 - 2x - 3}$

Fator quadrático irredutível no denominador

• Exemplo 4: Calcule $\int \frac{-2x+4}{(x^2+1)(x-1)^2} dx$ usando frações parciais.

Um fator quadrático irredutível repetido

• Exemplo 5: Calcule $\int \frac{dx}{x(x^2+1)^2}$.

Método de Heaviside

1. Escreva o quociente com g(x) fatorado:

$$\frac{f(x)}{g(x)} = \frac{f(x)}{(x - r_1)(x - r_2) \cdots (x - r_n)}$$

2. Oculte os fatores $(x - r_i)$ de g(x), um de cada vez, substituindo a cada vez todos os x não ocultos por r_i . Isso dá um número A_i para cada raiz r_i :

$$A_{1} = \frac{f(r_{1})}{(r_{1} - r_{2}) \cdots (r_{1} - r_{n})}$$

$$A_{2} = \frac{f(r_{2})}{(r_{2} - r_{1})(r_{2} - r_{3}) \cdots (r_{2} - r_{n})}$$

$$\vdots$$

$$A_{n} = \frac{f(r_{n})}{(r_{n} - r_{1})(r_{n} - r_{2}) \cdots (r_{n} - r_{n-1})}$$

3. Escreva a decomposição em frações parciais de f(x)/g(x) como

$$\frac{f(x)}{g(x)} = \frac{A_1}{(x - r_1)} + \frac{A_2}{(x - r_2)} + \dots + \frac{A_n}{(x - r_n)}$$

Seção 8.4 – Integrais Trigonométricas

Produtos de potências de senos e cossenos

Começamos com integrais da forma:

$$\int \operatorname{sen}^m x \cos^n x \, dx$$

onde m e n são inteiros não negativos (positivos ou zero). Podemos dividir a tarefa em três casos possíveis.

Caso 1 Se m é impar, escrevemos m como 2k + 1 e usamos a identidade sen² $x = 1 - \cos^2 x$ para obter

$$\operatorname{sen}^m x = \operatorname{sen}^{2k+1} x = (\operatorname{sen}^2 x)^k \operatorname{sen} x = (1 - \cos^2 x)^k \operatorname{sen} x$$
 (1)

Então, combinamos o único sen x com dx na integral e igualamos sen x dx a $-d(\cos x)$.

Caso 2 Se m é par e n é impar em $\int \operatorname{sen}^m x \cos^n x \, dx$, escrevemos n como 2k + 1 e usamos a identidade $\cos^2 x = 1 - \operatorname{sen}^2 x$ para obter

$$\cos^n x = \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1 - \sin^2 x)^k \cos x$$

Então, combinamos o único $\cos x \operatorname{com} dx$ e igualamos $\cos x \, dx$ a $d(\operatorname{sen} x)$.

Caso 3 Se tanto m quanto n são pares em $\int \text{sen}^m x \cos^n x \, dx$, substituímos

$$sen^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2}$$
(2)

para reduzir o integrando a outro que tenha potências mais baixas de cos 2x.

Estudando os três casos

- Exemplo 1: Calcule $\int \sin^3 x \cos^2 x \, dx$.
- Exemplo 2: Calcule $\int \cos^5 x \, dx$.
- Exemplo 3: Calcule $\int \sin^2 x \cos^4 x \, dx$.

Eliminando raízes quadradas

• Exemplo 4: Calcule $\int_0^{\pi/4} \sqrt{1 + \cos(4x)} \, dx$. (Exercício)

Întegrais de potências de tg x e sec x

- Exemplo 5: Calcule $\int tg^4 x dx$.
- Exemplo 6: Calcule $\int \sec^3 x \, dx$.

As integrais

$$\int \operatorname{sen} mx \operatorname{sen} nx \, dx, \qquad \int \operatorname{sen} mx \cos nx \, dx \qquad e \qquad \int \cos mx \cos nx \, dx$$

costumam aparecer quando funções trigonométricas são aplicadas a problemas de matemática e ciência. Podemos calcular essas integrais usando integração por partes, mas sempre serão necessárias duas integrações desse tipo em cada caso. É mais simples usar as identidades

$$\operatorname{sen} mx \operatorname{sen} nx = \frac{1}{2} \left[\cos (m - n)x - \cos (m + n)x \right] \tag{3}$$

$$\operatorname{sen} mx \cos nx = \frac{1}{2} \left[\operatorname{sen}(m-n)x + \operatorname{sen}(m+n)x \right] \tag{4}$$

$$\cos mx \cos nx = \frac{1}{2} \left[\cos \left(m - n \right) x + \cos \left(m + n \right) x \right] \tag{5}$$

11ª EDIÇÃO

Produtos de senos e cossenos

• Exemplo 7: Calcule $\int \text{sen}(3x) \cos(5x) dx$.

Seção 8.5 – Substituições Trigonométricas

FIGURA 8.2 Triângulos de referência para as três substituições básicas; eles ajudam a identificar os lados x e a para cada substituição.

Como já vimos na Seção 1.6, nessas substituições as funções têm inversas somente para valores selecionados de θ (Figura 8.3). Para reversibilidade,

$$x = a \operatorname{tg} \theta \quad \operatorname{exige} \theta = \operatorname{tg}^{-1} \left(\frac{x}{a} \right) \quad \operatorname{com} \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

$$x = a \operatorname{sen} \theta \quad \operatorname{exige} \quad \theta = \operatorname{sen}^{-1} \left(\frac{x}{a} \right) \quad \operatorname{com} \quad -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

$$x = a \operatorname{sec} \theta \quad \operatorname{exige} \quad \theta = \operatorname{sec}^{-1} \left(\frac{x}{a} \right) \quad \operatorname{com} \quad \begin{cases} 0 \le \theta < \frac{\pi}{2} \quad \operatorname{se} \quad \frac{x}{a} \ge 1 \\ \frac{\pi}{2} < \theta \le \pi \quad \operatorname{se} \quad \frac{x}{a} \le -1 \end{cases}$$

Para simplificar os cálculos com a substituição x = a sec θ , restringiremos seu uso a integrais nas quais $x/a \ge 1$. Isso colocará θ em $[0, \pi/2)$ e tornará tg $\theta \ge 0$. Teremos, então, $\sqrt{x^2 - a^2} = \sqrt{a^2 \operatorname{tg}^2 \theta} = |a \operatorname{tg} \theta| = a \operatorname{tg} \theta$, livre de valores absolutos, desde que a > 0.

11ª EDIÇÃO

FIGURA 8.3 O arco tangente, o arco seno e o arco secante de x/a, representados graficamente como funções de x/a.

Usando a substituição $x = a \operatorname{tg} \theta$

• Exemplo 1: Calcule $\int \frac{dx}{\sqrt{4+x^2}}$.

FIGURA 8.4 Triângulo de referência para $x = 2 \text{ tg } \theta$ (Exemplo 1):

$$tg \theta = \frac{x}{2}$$

e

$$\sec \theta = \frac{\sqrt{4 + x^2}}{2}$$

Usando a substituição $x = a \operatorname{sen} \theta$

• Exemplo 2: Calcule $\int \frac{x^2 dx}{\sqrt{9-x^2}}$.

CÁLCULO GEORGE B. THOMAS

11ª EDIÇÃO

CAPÍTULO 8 TÉCNICAS DE INTEGRAÇÃO

FIGURA 8.5 Triângulo de referência para x = 3 sen θ (Exemplo 2):

$$sen \theta = \frac{x}{3}$$

e

$$\cos\theta = \frac{\sqrt{9 - x^2}}{3}$$

Usando a substituição $x = a \sec \theta$

• Exemplo 3: Calcule $\int \frac{dx}{\sqrt{25x^2-4}}$, $x > \frac{2}{5}$.

11ª EDIÇÃO

FIGURA 8.6 Se x = (2/5) sec θ , $0 \le \theta < \pi/2$, então $\theta = \sec^{-1}(5x/2)$ e podemos ler os valores de outras funções trigonométricas de θ nesse triângulo retângulo (Exemplo 3).

Seção 8.8 – Integrais Impróprias

FIGURA 8.17 As áreas sob essas curvas infinitas são finitas?

quadrante sob a curva $y = e^{-x/2}$ é (b) uma

integral imprópria do primeiro tipo.

Definição Integrais impróprias do tipo I

Integrais com limites infinitos de integração são **integrais impróprias do tipo I**.

1. Se f(x) é contínua em $[a, \infty)$, então

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

2. Se f(x) é contínua em $(-\infty, b]$, então

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

3. Se f(x) é contínua em $(-\infty, \infty)$, então

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{c} f(x) \, dx + \int_{c}^{\infty} f(x) \, dx$$

onde *c* é qualquer número real.

Em todos os casos, se o limite é finito, dizemos que a integral imprópria **converge** e que o limite é o **valor** da integral imprópria. Se o limite não existe, dizemos que a integral imprópria **diverge**.

Uma integral imprópria em [1, +∞)

• Exemplo 1: A área sob a curva $y = (\ln x)/x^2$ de x = 1 a $x = +\infty$ é finita? Se for, qual será ela?

FIGURA 8.19 A área abaixo dessa curva é uma integral imprópria (Exemplo 1).

Uma integral imprópria em $(-\infty, +\infty)$

• Exemplo 2: Calcule $\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$.

FORA DE ESCALA

FIGURA 8.20 A área sob essa curva é finita (Exemplo 2).

EXEMPLO 3 Determinando a convergência

Para quais valores de p a integral $\int_{1}^{\infty} dx / x^{p}$ converge? Quando a integral converge, qual é o seu valor?

CAPÍTULO 8

TÉCNICAS DE INTEGRAÇÃO

11ª EDIÇÃO

EXEMPLO 3 Determinando a convergência

SOLUÇÃO Se $p \neq 1$,

$$\int_{1}^{b} \frac{dx}{x^{p}} = \frac{x^{-p+1}}{-p+1} \bigg]_{1}^{b} = \frac{1}{1-p} \left(b^{-p+1} - 1 \right) = \frac{1}{1-p} \left(\frac{1}{b^{p-1}} - 1 \right)$$

Logo,

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^{p}}$$

$$= \lim_{b \to \infty} \left[\frac{1}{1-p} \left(\frac{1}{b^{p-1}} - 1 \right) \right] = \begin{cases} \frac{1}{p-1}, & p > 1\\ \infty, & p < 1 \end{cases}$$

porque

$$\lim_{b \to \infty} \frac{1}{b^{p-1}} = \begin{cases} 0, & p > 1\\ \infty, & p < 1 \end{cases}$$

Consequentemente, a integral converge para o valor 1/(p-1) se p>1 e diverge se p<1.

Se p = 1, a integral também diverge:

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \int_{1}^{\infty} \frac{dx}{x}$$

$$= \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x}$$

$$= \lim_{b \to \infty} \ln x \Big]_{1}^{b}$$

$$= \lim_{b \to \infty} (\ln b - \ln 1) = \infty$$

CÁLCULO GEORGE B. THOMAS

11ª EDIÇÃO

CAPÍTULO 8 TÉCNICAS DE INTEGRAÇÃO

FIGURA 8.21 A área sob a curva é $\lim_{a\to 0^+} \int_a^1 \left(\frac{1}{\sqrt{x}}\right) dx = 2$, uma integral imprópria do segundo tipo.

11a

Definição Integrais impróprias do tipo II

Integrais de funções que se tornam infinitas em um ponto dentro do intervalo de integração são integrais impróprias do tipo II.

1. Se f(x) é contínua em (a, b] e descontínua em a, então

$$\int_{a}^{b} f(x) dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx$$

2. Se f(x) é contínua em [a, b) e descontínua em b, então

$$\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x) dx$$

3. Se f(x) é descontínua em c, onde a < c < b, e contínua em $[a, c) \cup (c, b]$, então

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Em todos os casos, se o limite é finito, dizemos que a integral imprópria **converge** e que o limite é o **valor** da integral imprópria. Se o limite não existe, dizemos que a integral imprópria **diverge**.

Uma integral imprópria divergente

• Exemplo 4: Verifique a convergência de $\int_0^1 \frac{1}{1-x} dx.$

CÁLCULO GEORGE B. THOMAS

11ª EDIÇÃO

CAPÍTULO 8 TÉCNICAS DE INTEGRAÇÃO

FIGURA 8.22 O limite não existe:

$$\int_{0}^{1} \left(\frac{1}{1-x} \right) dx = \lim_{b \to 1^{-}} \int_{0}^{b} \frac{1}{1-x} dx = \infty.$$

A área sob a curva e acima do eixo *x* para [0, 1) não é um número real (Exemplo 4).

Assintota vertical em um ponto interior

• Exemplo 5: Calcule $\int_0^3 \frac{dx}{(x-1)^{2/3}}$.

CÁLCULO GEORGE B. THOMAS 11ª EDIÇÃO

CAPÍTULO 8 TÉCNICAS DE INTEGRAÇÃO

FIGURA 8.23 O Exemplo 5 mostra a convergência de $\int_0^3 \frac{1}{(x-1)^{2/3}} dx = 3 + 3\sqrt[3]{2}$ portanto a área sob a curva existe (então se trata de um número real).

Uma integral imprópria convergente

• Exemplo 6: Calcule $\int_{2}^{+\infty} \frac{x+3}{(x-1)(x^2+1)} dx$. Use $\operatorname{que} \frac{x+3}{(x-1)(x^2+1)} = \frac{2}{x-1} - \frac{2x+1}{x^2+1} \text{ (exercício de frações parciais).}$

Um cálculo incorreto

• Exemplo 8: Calcule $\int_0^3 \frac{dx}{x-1}$.

Verificando a convergência

• Exemplo 9: A integral $\int_{1}^{+\infty} e^{-x^2} dx$ converge?

FIGURA 8.25 O gráfico de e^{-x^2} está abaixo do gráfico de e^{-x} para x > 1 (Exemplo 9).

Teorema 1 Teste de comparação direta

Sejam f e g contínuas em $[a, \infty)$, com $0 \le f(x) \le g(x)$ para qualquer $x \ge a$.

Então
$$\int_{a}^{\infty} f(x) dx$$

converge se

$$\int_{a}^{\infty} g(x) \, dx$$

converge

$$2. \qquad \int_{-\infty}^{\infty} g(x) \, dx$$

diverge se

$$\int_{-\infty}^{\infty} f(x) \, dx$$

diverge

Usando o teste de comparação direta

• Exemplo 10: Estude a convergência das integrais

a)
$$\int_{1}^{+\infty} \frac{\sin^2 x}{x^2} dx;$$

b)
$$\int_{1}^{+\infty} \frac{1}{\sqrt{x^2-0.1}} dx$$
.

Teorema 2 Teste de comparação no limite

Se as funções positivas f e g são contínuas em $[a, \infty)$ e se

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L, \qquad 0 < L < \infty$$

então

$$\int_{a}^{\infty} f(x) dx \qquad e \qquad \int_{a}^{\infty} g(x) dx$$

são ambas convergentes ou ambas divergentes.

Usando o teste de comparação no limite

• Exemplo 11: Mostre que $\int_{1}^{+\infty} \frac{dx}{1+x^2}$ converge por comparação com $\int_{1}^{+\infty} \frac{dx}{x^2}$. Calcule e compare os valores das duas integrais.

FIGURA 8.26 As funções do Exemplo 11.

Usando o teste de comparação no limite

• Exemplo 12: Mostre que $\int_{1}^{+\infty} \frac{3}{e^{x}+5} dx$ converge.

Tipos de integrais impróprias discutidas nesta seção

Limites infinitos de integração: tipo I

1. Limitante superior

$$\int_{1}^{\infty} \frac{\ln x}{x^2} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{\ln x}{x^2} dx$$

2. Limitante inferior

$$\int_{-\infty}^{0} \frac{dx}{1+x^{2}} = \lim_{a \to -\infty} \int_{a}^{0} \frac{dx}{1+x^{2}}$$

3. Os dois limitantes

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \lim_{b \to -\infty} \int_{b}^{0} \frac{dx}{1+x^2} + \lim_{c \to \infty} \int_{0}^{c} \frac{dx}{1+x^2}$$

O integrando se torna infinito: tipo II

4. Extremidade superior

$$\int_0^1 \frac{dx}{(x-1)^{2/3}} = \lim_{b \to 1^-} \int_0^b \frac{dx}{(x-1)^{2/3}}$$

5. Extremidade inferior

$$\int_{1}^{3} \frac{dx}{(x-1)^{2/3}} = \lim_{d \to 1^{+}} \int_{d}^{3} \frac{dx}{(x-1)^{2/3}}$$

6. Ponto interior

$$\int_0^3 \frac{dx}{(x-1)^{2/3}} = \int_0^1 \frac{dx}{(x-1)^{2/3}} + \int_1^3 \frac{dx}{(x-1)^{2/3}}$$

GEORGE B. THOMAS 11ª EDIÇÃO

FIGURA 8.27 A função gama de Euler $\Gamma(x)$ é uma função contínua de x cujo valor em cada positivo inteiro n+1 é n!. A fórmula de definição da integral para Γ é válida somente para x>0, mas podemos estender Γ para valores negativos não inteiros de x com a fórmula $\Gamma(x)=(\Gamma(x+1))/x$, que é o assunto do Exercício 49.