William Stallings
Computer Organization
and Architecture
8th Edition

Chapter 16
Micro-programmed Control

Control Unit Organization

Micro-programmed Control

- Use sequences of instructions (see earlier notes) to control complex operations
- Called micro-programming or firmware

Implementation (1)

- All the control unit does is generate a set of control signals
- Each control signal is on or off
- Represent each control signal by a bit
- Have a control word for each microoperation
- Have a sequence of control words for each machine code instruction
- Add an address to specify the next microinstruction, depending on conditions

Implementation (2)

- Today's large microprocessor
 - Many instructions and associated register-level hardware
 - Many control points to be manipulated
- This results in control memory that
 - Contains a large number of words
 - co-responding to the number of instructions to be executed
 - —Has a wide word width
 - Due to the large number of control points to be manipulated

Micro-program Word Length

- Based on 3 factors
 - Maximum number of simultaneous microoperations supported
 - —The way control information is represented or encoded
 - —The way in which the next micro-instruction address is specified

Micro-instruction Types

- Each micro-instruction specifies single (or few) micro-operations to be performed
 - (vertical micro-programming)
- Each micro-instruction specifies many different micro-operations to be performed in parallel
 - —(horizontal micro-programming)

Vertical Micro-programming

- Width is narrow
- n control signals encoded into log₂ n bits
- Limited ability to express parallelism
- Considerable encoding of control information requires external memory word decoder to identify the exact control line being manipulated

Horizontal Micro-programming

- Wide memory word
- High degree of parallel operations possible
- Little encoding of control information

Typical Microinstruction Formats

Compromise

- Divide control signals into disjoint groups
- Implement each group as separate field in memory word
- Supports reasonable levels of parallelism without too much complexity

Organization of Control Memory

Jump to fetch or interrupt

Fetch cycle routine Indirect cycle routine Interrupt cycle routine Execute cycle beginning AND routine ADD routine

IOF routine

Control Unit

Control Unit Function

- Sequence login unit issues read command
- Word specified in control address register is read into control buffer register
- Control buffer register contents generates control signals and next address information
- Sequence login loads new address into control buffer register based on next address information from control buffer register and ALU flags

Next Address Decision

- Depending on ALU flags and control buffer register
 - —Get next instruction
 - Add 1 to control address register
 - Jump to new routine based on jump microinstruction
 - Load address field of control buffer register into control address register
 - Jump to machine instruction routine
 - Load control address register based on opcode in IR

Functioning of Microprogrammed Control Unit

Wilkes Control

- 1951
- Matrix partially filled with diodes
- During cycle, one row activated
 - -Generates signals where diode present
 - First part of row generates control
 - Second generates address for next cycle

Wilkes's Microprogrammed Control Unit

Advantages and Disadvantages of Microprogramming

- Simplifies design of control unit
 - -Cheaper
 - —Less error-prone
- Slower

Tasks Done By Microprogrammed Control Unit

- Microinstruction sequencing
- Microinstruction execution
- Must consider both together

Design Considerations

- Size of microinstructions
- Address generation time
 - Determined by instruction register
 - Once per cycle, after instruction is fetched
 - Next sequential address
 - Common in most designed
 - —Branches
 - Both conditional and unconditional

Sequencing Techniques

- Based on current microinstruction, condition flags, contents of IR, control memory address must be generated
- Based on format of address information
 - —Two address fields
 - -Single address field
 - Variable format

Branch Control Logic: Two Address Fields

Branch Control Logic: Single Address Field

Branch Control Logic: Variable Format

Address Generation

Explicit	Implicit
Two-field	Mapping
Unconditional Branch	Addition
Conditional branch	Residual control

Execution

- The cycle is the basic event
- Each cycle is made up of two events
 - —Fetch
 - Determined by generation of microinstruction address
 - —Execute

Execute

- Effect is to generate control signals
- Some control points internal to processor
- Rest go to external control bus or other interface

Control Unit Organization

A Taxonomy of Microinstructions

- Vertical/horizontal
- Packed/unpacked
- Hard/soft microprogramming
- Direct/indirect encoding

Improvements over Wilkes

- Wilkes had each bit directly produced a control signal or directly produced one bit of next address
- More complex address sequencing schemes,
- using fewer microinstruction bits, are possible
- Require more complex sequencing logic module
- Control word bits can be saved by encoding and subsequently decoding control information

How to Encode

- K different internal and external control signals
- Wilkes's:
 - K bits dedicated
 - 2K control signals during any instruction cycle
- Not all used
 - Two sources cannot be gated to same destination
 - Register cannot be source and destination
 - Only one pattern presented to ALU at a time
 - Only one pattern presented to external control bus at a time
- Require Q < 2K which can be encoded with log2Q < K bits
- Not done
 - As difficult to program as pure decoded (Wilkes) scheme
 - Requires complex slow control logic module
- Compromises
 - More bits than necessary used
 - Some combinations that are physically allowable are not possible to encode

Specific Encoding Techniques

- Microinstruction organized as set of fields
- Each field contains code
- Activates one or more control signals
- Organize format into independent fields
 - Field depicts set of actions (pattern of control signals)
 - Actions from different fields can occur simultaneously
- Alternative actions that can be specified by a field are mutually exclusive
 - Only one action specified for field could occur at a time

Microinstruction Encoding Direct Encoding

Microinstruction Encoding Indirect Encoding

Required Reading

• Stallings chapter 16