2^{nde}

Vecteurs - Généralités

Cours

I Translation et vecteur

Définition

On dit que D est l'image de C par la translation qui transforme A en B lorsque le quadrilatère ABDC est un parallélogramme (éventuellement aplati)

Exercice 1

Placer les points A', B', C' et D' les images respectives des points A, B, C et D par la translation qui transforme M en N.

Définition:

Un vecteur \overrightarrow{AB} est caractérisé par :

- sa direction : celle de la droite (AB)

- son sens : celui de A vers B

- sa longueur : la longueur AB du segment [AB]

Vocabulaire :

► A est l'origine du vecteur \overrightarrow{AB}

▶ B est **l'extrémité** du vecteur \overrightarrow{AB}

Exercice 2

1) Tracer les vecteurs \overrightarrow{AO} , \overrightarrow{DO} et \overrightarrow{BC} .

2)	1 Cam	pléter	•
∠,	COIII	pietei	٠

...... est l'origine du vecteur \overrightarrow{OC} est l'extrémité du vecteur \overrightarrow{AF}

Remarque : La translation qui transforme A en B est appelée la translation de vecteur \overrightarrow{AB} .

Il Egalités de vecteurs

Définition:

On dit que $\overrightarrow{AB} = \overrightarrow{CD}$ lorsque les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ont

- même direction :(AB) // (CD)

- même sens : on va de A vers B comme on va de C vers D.

- même longueur : AB = CD

Exercice 3

ABEF est un parallélogramme de centre G BCDE est un parallélogramme de centre H Avec la figure ci-contre, compléter le tableau ci-dessous

	Ont même direction	Ont même sens	Ont même longueur	sont égaux
\overrightarrow{AB} et \overrightarrow{EF}				
\overrightarrow{BG} et \overrightarrow{BH}				
\overrightarrow{AB} et \overrightarrow{ED}				
\overrightarrow{GB} et \overrightarrow{EC}				
\overrightarrow{GB} et \overrightarrow{HC}				
\overrightarrow{BC} et \overrightarrow{ED}				

Théorème:

Les quatre propositions suivantes sont équivalentes :

- $ightharpoonup \overrightarrow{AB} = \overrightarrow{CD}$
- ► D est l'image de C par la translation de vecteur \overrightarrow{AB}
- ► ABDC est un parallélogramme.
- ► [AD] et [BC] ont même milieu.

III Représentant d'un vecteur \vec{u}

Théorème - Définition :

Soit A un point, \vec{u} un vecteur.

Il existe un unique point M tel que $\overrightarrow{AM} = \overrightarrow{u}$

On dira que \overrightarrow{AM} est un **représentant** de \overrightarrow{u} d'origine A

Exercice 4

<u>1</u>)

Sur la figure ci-contre, tracer le représentant :

- du vecteur \overrightarrow{u} d'origine A
- du vecteur \overrightarrow{v} d'origine B
- du vecteur \overrightarrow{w} d'origine C

2)

Sur la figure ci-contre, tracer le représentant :

- du vecteur \overrightarrow{u} d'origine A
- du vecteur \overrightarrow{v} d'origine B

IV Vecteurs particuliers

1) Vecteur nul

 $\overrightarrow{0} = \overrightarrow{AA} = \overrightarrow{BB}$

2) Opposé d'un vecteur

Définition:

L'opposé du vecteur \overrightarrow{u} est le vecteur qui a :

- la même direction que \overrightarrow{u}
- le sens opposé à celui de \overrightarrow{u}
- la même longueur que \overrightarrow{u}

On le note $-\overrightarrow{u}$

Remarque : $-\overrightarrow{AB} = \overrightarrow{BA}$

Exercice 5

Sur la figure ci-contre, placer les points

- L tel que $\overrightarrow{AL} = -\overrightarrow{u}$
- M tel que $\overrightarrow{BM} = -\overrightarrow{v}$

V Somme de vecteurs

Définition:

La somme de deux vecteurs \vec{u} et \vec{v} est le vecteur associé à la translation résultant de l'enchaînement des translations de vecteur \vec{u} et de vecteur \vec{v} . On note ce vecteur \vec{u} + \vec{v}

Exercice 6

Dessiner à chaque fois, en rouge la somme des deux vecteurs :

Remarque: Effectuer la translation de vecteur \overrightarrow{AB} suivie de la translation de vecteur \overrightarrow{BC} revient à effectuer la translation de vecteur \overrightarrow{AC} .

Propriété (Relation de Chasles)

A, B et C sont des points.

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Propriété (Règle du parallélogramme)

M, N, P et Q sont des points.

 $\overrightarrow{MN} + \overrightarrow{MP} = \overrightarrow{MQ}$ équivaut à MNQP est un parallélogramme.

Exercice 7

 \overline{ABCD} est un rectangle de centre O. Les points I, J et K sont les milieux respectifs des segments [AB], [AD] et [BC].

Compléter les égalités suivantes :

1) En utilisant la relation de Chasles

a)
$$\overrightarrow{JI} = \overrightarrow{J} \bullet + \overrightarrow{O} \bullet$$
 b) $\overrightarrow{AC} = \overrightarrow{\bullet} \overrightarrow{I} + \overrightarrow{I} \bullet$

$$(a) \overrightarrow{D \bullet} = \overrightarrow{\bullet} \overrightarrow{K} + \overrightarrow{\bullet} \overrightarrow{C} \qquad \mathbf{d})$$

$$\overrightarrow{AJ} + \overrightarrow{KC} = \overrightarrow{AJ} + \overrightarrow{\bullet} \bullet = \overrightarrow{\bullet} \bullet$$

2) En utilisant la règle du parallélogramme.

a)
$$\overrightarrow{AB} + \overrightarrow{A \bullet} = \overrightarrow{AC}$$

b)
$$\overrightarrow{AJ} + \overrightarrow{AI} = \overline{\bullet} \bullet$$

c)
$$\overrightarrow{BK} + \overrightarrow{\bullet} = \overrightarrow{BO}$$

VI Multiplication d'un vecteur par un réel

1) Exemples

2) Définition

 \overrightarrow{u} désigne un vecteur non nul et k un réel non nul.

Le produit du vecteur \overrightarrow{u} par le réel k est le vecteur noté $k\overrightarrow{u}$ tel que :

• $k\vec{u}$ et \vec{u} ont même direction

Lorsque k > 0

- $k\vec{u}$ a même sens que \vec{u}
- la longueur de $k\vec{u}$ est le produit de k par la longueur de \vec{u}

Lorsque k < 0

- $k\vec{u}$ est de sens opposé à celui \vec{u}
- la longueur de $k\overrightarrow{u}$ est le produit -k par la longueur de \overrightarrow{u}

Remarque: Si k = 0 ou $\vec{u} = \vec{0}$ alors $k\vec{u} = \vec{0}$

Exercice 8

Soient \overrightarrow{A} et \overrightarrow{B} deux points distincts. Tracer les points \overrightarrow{N} et \overrightarrow{Q} tels que $\overrightarrow{MN} = \frac{3}{4}\overrightarrow{AB}$ et $\overrightarrow{PQ} = \frac{4}{3}\overrightarrow{AB}$

3) Colinéarité de deux vecteurs

Définition:

On dit que deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires lorsqu'il existe un réel k tel que $\vec{v} = k\vec{u}$ Autrement dit, deux vecteurs non nuls sont colinéaires lorsqu'ils ont la même direction.

Remarque : Par convention, on dit que le vecteur nul est colinéaire à tout vecteur.

Exercice 9

Démontrer que les vecteurs \vec{u} et \vec{v} suivants sont colinéaires :

$$\mathbf{a)} \ 2\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{0}$$

b)
$$4\overrightarrow{u} = 5\overrightarrow{v}$$

b)
$$4\overrightarrow{u} = 5\overrightarrow{v}$$
 c) $-3\overrightarrow{u} + \frac{1}{2}\overrightarrow{v} = \overrightarrow{0}$

4) Parallélisme et alignement

Théorème :

▶ Deux droites (AB) et (MN) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires.

▶ Trois points distincts A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Exercice 10

 \overline{ABC} est un triangle.D et E sont deux points définis par $\overrightarrow{AD} = -\frac{1}{4}\overrightarrow{AB}$ et $\overrightarrow{CE} = \frac{5}{4}\overrightarrow{CA}$.

1) Placer les points D et E sur la figure ci-dessous.

2) Exprimer le vecteurs \overrightarrow{BC} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

3) Exprimer le vecteur \overrightarrow{DE} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

4) En déduire que les droites (*DE*) et (*BC*) sont parallèles.