University of California, Berkeley

Literally everything I know about

Linear Algebra

Warren Alphonso

A very reductionist summary of Linear Algebra and its Applications by Lay, Lay, and McDonald, as well as Linear Algebra Done Wrong by Treil.

Contents

1	Inn	er Product Spaces	1
	1.1	Inner Product	1
	1.2	Orthogonality	4
	1.3	Orthogonal Projection and Gram-Schmidt Orthogonalization	5

Chapter 1

Inner Product Spaces

Keep in mind that theory for inner product space is only developed for \mathbb{R} and \mathbb{C} , so \mathbb{F} will always denote one of those two fields in this chapter.

1.1 Inner Product

Definition 1.1.1. We define the **norm** of a vector to be the generalization of *length*. That is, the norm of a vector $x \in \mathbb{R}^n$ is

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}$$

For any complex number z = x + iy, we can write $|z|^2 = x^2 + y^2 = z\overline{z}$, where \overline{z} denotes the complex conjugate of z. So for any z in a complex field \mathbb{C}^n , we can write

$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} = \begin{bmatrix} x_1 + iy_1 \\ \vdots \\ x_n + iy_n \end{bmatrix}$$

so it is natural to define the norm ||z|| as

$$||z||^2 = \sum_{k=1}^n (x_k^2 + y_k^2) = \sum_{k=1}^n |z_k|^2$$

Definition 1.1.2. The **inner product** of two vectors $x, y \in \mathbb{R}^n$ is

$$(x,y) = x_1y_1 + \dots + x_ny_n = x^Ty = y^Tx$$

This yields another definition for the **norm**:

$$||x|| = \sqrt{(x,x)}$$

For complex fields, we need a definition of inner product such that $||z||^2 = (z, z)$. One definition that is consistent with this requirement will be our definition for the *standard* inner product in \mathbb{C}^n ,

$$(z, w) = z_1 \overline{w_1} + \cdots + z_n \overline{w_n}$$

To simplify this, we will define the **Hermitian adjoint**, or simply **adjoint** A^* , by $A^* = \overline{A}^T$.

Using this, we can write

$$(z,w)=w^*z$$

The inner products we defined for \mathbb{R}^n and \mathbb{C}^n have the following properties:

- 1. Symmetry: $(x, y) = \overline{(y, x)}$
- 2. Linearity: $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$
- 3. Non-negativity: $(x, x) \ge 0$
- 4. Non-degeneracy: (x, x) = 0 if and only if x = 0

Note that properties 1 and 2 imply that

$$(x, \alpha y + \beta z) = \overline{(\alpha y + \beta z, x)} = \overline{\alpha}(x, y) + \overline{\beta}(x, z)$$

Lemma 1.1.1. Let x be a vector in V. Then x = 0 if and only if

$$(x, y) = 0 \quad \forall y \in V$$

Proof. Since (0, y) = 0, we need to only show that x = 0 if (x, y) = 0. Subbing in y = x, we get (x, x) = 0 and property 3 asserts that x = 0.

Lemma 1.1.2. Let x, y be vectors in V. Then x = y if and only if

$$(x,z) = (y,z) \quad \forall z \in V$$

Proof. Using the above lemma, if we set (x - y, z) = 0 $\forall z \in V$, then it follows that x = y and (x, z) = (y, z).

Theorem 1.1.3. Suppose two operators $X, Y : A \rightarrow B$ satisfy

$$(Ax, y) = (Bx, y)$$
 $\forall x \in X, \forall y \in Y$

Then A = B.

Proof. Using the previous lemma, we can fix x and take all $y \in Y$, which means Ax = Bx. Since this is true for all x, A and B are the same operator.

Theorem 1.1.4 (Cauchy-Schwartz Inequality).

$$|(x,y)| \le ||x|| \cdot ||y||$$

Proof. If x or y is 0, then the proof is trivial. Assuming neither is 0, we will prove both the real and complex cases. But first consider only the real case:

$$0 \le ||x - ty||^2 = (x - ty, x - ty) = ||x||^2 - 2t(x, y) + t^2 ||y||^2$$

Taking the derivative with respect to t and setting it to 0 gives us $t = \frac{(x,y)}{\|y\|^2}$. We will use this same t value for the following proof of the real and complex cases:

$$0 \le ||x - ty||^2 = (x - ty, x - ty)$$
$$= (x, x - ty) - t(y, x - ty)$$
$$= ||x||^2 - \overline{t}(x, y) - t(y, x) + |t|^2 ||y||^2$$

Using property 1 of inner products, we have

$$t = \frac{(x, y)}{\|y\|^2} = \frac{\overline{(y, x)}}{\|y\|^2}$$

Subbing in *t*, we get

$$0 \le ||x||^2 - \frac{|(xy)|^2}{||y||^2}$$

which completes the proof.

Theorem 1.1.5 (Triangle Inequality).

$$||x, y|| \le ||x|| + ||y||$$

Proof.

$$||x + y||^{2} = (x + y, x + y) = ||x||^{2} + ||y||^{2} + (x, y) + (y, x)$$

$$\leq ||x||^{2} + ||y||^{2} + 2|(x, y)|$$

$$\leq ||x||^{2} + ||y||^{2} + 2||x|| \cdot ||y||$$

$$= (||x|| + ||y||)^{2}$$

Theorem 1.1.6. The following polarization identities allow us to construct the inner product from the norm: For $x, y \in \mathbb{R}^n$,

$$(x,y) = \frac{1}{4} \Big(||x+y||^2 - ||x-y||^2 \Big)$$

For $x, y \in \mathbb{C}^n$,

$$(x,y) = \frac{1}{4} \Big(||x+y||^2 - ||x-y||^2 + i||x+iy||^2 - i||x-iy||^2 \Big)$$

Proof. For the real case,

$$||x + y||^2 - ||x - y||^2 = (x + y, x + y) - (x - y, x - y)$$
$$= ||x||^2 + ||y||^2 + 2(x, y) - ||x||^2 - ||y||^2 + 2(x, y)$$
$$= 4(x, y)$$

For the complex case,

$$\sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2} = \sum_{k=0}^{3} i^{k} (x + i^{k}y, x + i^{k}y)$$

$$= \sum_{k=0}^{3} i^{k} (||x||^{2} + ||y||^{2} + (x, i^{k}y) + (i^{k}y, x))$$

$$= \sum_{k=0}^{3} (i^{k} ||x||^{2} + i^{k} ||y||^{2} + (x, y) + (i^{2k}y, x))$$

$$= 4(x, y)$$

where the last step follows from

$$\sum_{k=0}^{3} i^k = \sum_{k=0}^{3} i^{2k} = 0$$

Theorem 1.1.7 (Parallelogram Identity). *Another important property of the norm is the parallelogram identity. For vectors u and v:*

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

Proof. The theorem follows easily from the fact that the sum of the diagonals of a parallelogram equal the sum of all four sides.

To review, we have so far proved the following properties about the norm ||u||:

- 1. Homogeneity: $\|\alpha u\| = |\alpha| \cdot \|u\|$
- 2. Triangle inequality: $||u + v|| \le ||u|| + ||v||$
- 3. Non-negativity: $||u|| \ge 0$
- 4. Non-degeneracy: ||u|| = 0 if and only if u = 0

In a vector space V, if we assign to each vector u a number ||u|| that satisfies these 4 properties, we can say that the space V is a **normed space**.

1.2 Orthogonality

Definition 1.2.1. Two vectors u and v are **orthogonal**, denoted $u \perp v$, if and only if (u, v) = 0

Theorem 1.2.1. *If* $u \perp v$, then

$$||u + v||^2 = ||u||^2 + ||v||^2$$

Proof.

$$||u + v||^2 = ||u||^2 + ||v||^2 + (u, v) + (v, u) = ||u||^2 + ||v||^2$$

Since (u, v) = (v, u) = 0 because of orthogonality.

Definition 1.2.2. A vector u is **orthogonal to vector space** V if u is orthogonal to all vectors in V.

Theorem 1.2.2. Let V be spanned by v_1, \dots, v_n . Then $u \perp V$ if and only if

$$u \perp v_k \qquad \forall k = 1, \cdots, n$$

Proof. Proving "only if" is trivial by the definition of $u \perp V$. Proving "if" comes easily after noticing that any vector can be rewritten as a linear combination of the basis vectors, so if u is perpendicular to all the basis vectors, then it is perpendicular to any other vector in V.

Definition 1.2.3. A set of vectors v_1, \dots, v_n are orthogonal if any two vectors in the set are orthogonal to each other. If $||v_k|| = 1$ for all k, we call the set orthonormal.

Lemma 1.2.3 (Generalized Pythagorean Theorem). Let v_1, \dots, v_n be an orthogonal system. Then

$$\|\sum_{k=1}^{n} a_k v_k\|^2 = \sum_{k=1}^{n} |a_k|^2 \|v_k\|^2$$

Proof.

$$\|\sum_{k=1}^{n} a_k v_k\|^2 = \left(\sum_{k=1}^{n} a_k v_k, \sum_{j=1}^{n} a_j v_j\right) = \sum_{k=1}^{n} \sum_{j=1}^{n} a_k \overline{a_j}(v_k, v_j)$$

Since the set is orthogonal, (v_k, v_j) is only nonzero when k = j, so

$$= \sum_{k=1}^{n} |a_k|^2 ||v_k||^2$$

Definition 1.2.4. An orthogonal set of vectors that is also a basis is called an **orthogonal basis**.

Typically, to find coordinates of a vector in a basis, we need to solve a system of equations. For orthogonal bases, it is much simpler. Suppose v_1, \dots, v_n is an orthogonal basis and let

$$x = \alpha_1 v_1 + \cdots + \alpha_n v_n$$

Taking the inner product with v_1 yields

$$(x, v_1) = (\sum_{j=1}^{n} \alpha_j(v_j, v_1) = \alpha_1(v_1, v_1) = \alpha_1 ||v_1||^2$$

Thus, to find any coordinate α_k of a vector x in orthogonal basis v_1, \dots, v_n :

$$\alpha_k = \frac{(x, v_k)}{\|v_k\|^2}$$

This is a simple example of abstract orthogonal Fourier decomposition – simple because classical Fourier decomposition deals with infinite orthonormal systems.

1.3 Orthogonal Projection and Gram-Schmidt Orthogonalization

Definition 1.3.1. The **orthogonal projection** of a vector v onto the subspace E is the vector $w := P_E v$ such that $w \in E$ and $v - w \perp E$.

Theorem 1.3.1. The orthogonal projection $w = P_E v$ minimizes the distance from v to E. In other words,

$$||v - w|| \le ||v - x||$$
 $\forall x \in E$

Additionally, if for some $x \in E$

$$||v - w|| = ||v - x||$$

then x = w.

Proof. Let $y = w - x \in E$. Then

$$v - x = v - w + w - x = v - w + y$$

Since $v - w \perp E$, we know $y \perp v - w$. By the Pythagorean Theorem,

$$||v - x||^2 = ||v - w||^2 + ||y||^2 \ge ||v - w||^2$$

To finish the proof, note that equality only arises when y = 0, ie when x = w.

There is a formula for finding an orthogonal projection if we know an orthogonal basis in E. Let v_1, \dots, v_n be an orthogonal basis in E. Then the projection $P_E v$ of a vector v is

$$P_E v = \sum_{k=1}^n a_k v_k$$
 where $a_k = \frac{(v, v_k)}{\|v_k\|^2}$

In other words,

$$P_E v = \sum_{k=1}^{n} \frac{(v, v_k)}{\|v_k\|^2} v_k$$

This is great if we have an orthogonal basis, but if even if we only have a basis in *E*, we can use the following algorithm to find an orthogonal basis.

Theorem 1.3.2 (Gram-Schmidt Orthogonalization Algorithm). Suppose we have linearly independent system x_1, \dots, x_n . The Gram-Schmidt algorithm constructs from this an orthogonal system v_1, \dots, v_n such that

$$span(x_1, \dots, x_n) = span(v_1, \dots, v_n)$$

Additionally, for all $r \leq n$

$$span(x_1, \dots, x_r) = span(v_1, \dots, v_r)$$

The algorithm is as follows:

- 1. Define $v_1 := x_1$.
 - Define $E_1 := span(v_1) = span(x_1)$.
- 2. Define $v_2 := x_2 P_{E_1} x_2 = x_2 \frac{(x_2, v_1)}{\|v_1\|^2} v_1$.
 - *Define* $E_2 := span(v_1, v_2) = span(x_1, x_2)$.
- 3. Define $v_3 := x_3 P_{E_2}x_3 = x_3 \frac{(x_3, v_1)}{\|v_1\|^2}v_1 \frac{(x_3, v_2)}{\|v_2\|^2}v_2$.
 - Define $E_3 := span(v_1, v_2, v_3) = span(x_1, x_2, x_3)$.
- 4. Continue until we have n vectors and $span(v_1, \dots, v_n) = span(x_1, \dots, x_n)$. The formula for vector v_{r+1} given v_1, \dots, v_r is

$$v_{r+1} := x_{r+1} - P_{E_r} x_{r+1} = x_{r+1} - \sum_{k=1}^{r} \frac{(x_{r+1}, v_k)}{\|v_k\|^2} v_k$$

Note that at each step, we are adding in x_{r+1} which means the resulting vector will not exist in E_r .

Proof. At each step, we add in x_{r+1} and then subtract its projection the subspace spanned by x_1, \dots, x_r , meaning each additional vector is orthogonal to the ones previously defined. Since we set $v_1 = x_1$, we have proved the algorithm by induction.

Since multiplication by a scalar does not change orthogonality, we can multiply vectors v_k returned by Gram-Schmidt by any non-zero numbers. One use case is to normalize the orthogonal vectors by dividing by their norms $||v_k||$ to yield an orthonormal system.

Definition 1.3.2. For a subspace E, its **orthogonal complement** E^{\perp} is the set of all vectors orthogonal to E. Since at least 0 is orthogonal to E, E^{\perp} is always a subspace.

By the definition of orthogonal projection, any vector in an inner product space V has a unique representation of the form

$$v = v_1 + v_2$$
 $v_1 \in E, v_2 \in E^{\perp}$

This statement is usually written as $V = E \oplus E^{\perp}$.

Theorem 1.3.3. For subspace E of V,

$$(E^{\perp})^{\perp} = E$$

Proof. We will show $E \subseteq (E^{\perp})^{\perp}$ and $(E^{\perp})^{\perp} \subseteq E$.

Let $u \in E$. Then (u, v) = 0 for all $v \in E^{\perp}$. Since u is orthogonal to every vector $v \in E^{\perp}$, then $u \in (E^{\perp})^{\perp}$ so $E \subseteq (E^{\perp})^{\perp}$.

Now let $u \in (E^{\perp})^{\perp}$. Since $V = E \oplus E^{\perp}$, we can write u = v + w, where $v \in E$ and $w \in E^{\perp}$. This means that $u - v = w \in E^{\perp}$. Since we know $E \subseteq (E^{\perp})^{\perp}$, we have $u \in (E^{\perp})^{\perp}$ and $v \in (E^{\perp})^{\perp}$, which means $u - v \in (E^{\perp})^{\perp}$. Therefore, $u - v \in E^{\perp} \cap (E^{\perp})^{\perp}$. Since the only vector that is orthogonal to itself is 0, u = v, and because $v \in E$, $(E^{\perp})^{\perp} \subseteq E$.

1.4 Least Square Solution