

Title Page

Contents

Page 36 of 41

Go Back

Full Screen

Close

Quit

Kernels: Hard Nuts to Crack

http://www.kangarooblue.com/images/fragranceoils/coconut.jpg

- Kernels used in Classification/Regression
- [1964: Aizerman *et al.*], Soviet Control theorists
- [1992: Boser, Guyon, Vapnik]: Hard-M SVM
 ■
- Top-down Genesis: (from the SVM Theory):
- * Many linear models: recast into 'dual' form
- * Predictors (classification/regression): In combo' of a kernel fn evaluated at (some) training pts
- * Of interest: models, non-lin feature space mapping, $\mathbf{k} \to \phi(\mathbf{x})$. P.g., $\tilde{\mathbf{x}}_{3\times 1} = \phi(\mathbf{x}_{2\times 1})$, $\phi(\cdot)$: vector

Home Page Page 37 of 41 Go Back Full Screen Close

Kernels: Hard Nuts to Crack

- Basic Idea: Use Φ to map the original patterns in $\mathscr X$ into a higher dimensional feature space $\mathscr H$
- Draw a separating hyperplane with max margin
- This corresponds to a non-linear decision boundary in the original pattern space
- Kernel trick: using $k(\cdot,\cdot)$, get separating hyperplane without explicitly using Φ to get \mathscr{H}

Title Page

Contents

Page 38 of 41

Go Back

Full Screen

Close

Quit

•
$$k(\mathbf{x}_i, \mathbf{x}_j) \stackrel{\triangle}{=} \boldsymbol{\phi}^T(\mathbf{x}_i) \boldsymbol{\phi}(\mathbf{x}_j) = \boldsymbol{\phi}^T(\mathbf{x}_j) \boldsymbol{\phi}(\mathbf{x}_i)$$

- \mathbf{x}_i , \mathbf{x}_j : vecs in original space, $\boldsymbol{\phi}(\cdot)$: x'fm'd space
- $k(\mathbf{x}_i, \mathbf{x}_j)$: scalar, symmetric, 1st term: fn of \mathbf{x}_i , 2nd term: same fn of \mathbf{x}_j

Title Page

Contents

Page 39 of 41

Go Back

Full Screen

Close

Quit

Unfortunate Conclusions-1...

Archimedes [287 BC-212 BC]

[1546-1601]

Tycho Brahe Galileo Galilei [1564-1642]

https://upload.wikimedia.org/wikipedia/commons/e/e7/Domenico-Fetti_Archimedes_1620.jpg

https://upload.wikimedia.org/wikipedia/commons/2/2b/Tycho_Brahe.JPG

https://upload.wikimedia.org/wikipedia/commons/d/d4/Justus_Sustermans_-_Portrait_of_Galileo_Galilei%2C_1636.jpg

Title Page

Contents

Page 40 of 41

Go Back

Full Screen

Close

Quit

Unfortunate Conclusions-2...

A. Lavoisier [1743-1794]

[1811-1832]

E. Galois A. M. Turing [1912-1954]

https://upload.wikimedia.org/wikipedia/commons/4/44/Lavoisier-statue.jpg

https://upload.wikimedia.org/wikipedia/commons/5/53/Evariste_galois.jpg

https://upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg

Title Page

Contents

Page 41 of 41

Go Back

Full Screen

Close

Quit

Unfortunate Conclusions-3...

A. Y. Chervonenkis [1938-2014]

SVMs-41

J. F. Nash [1928-2015]

http://www.clrc.rhul.ac.uk/people/photos/AClarge.JPG

 $https://upload.wikimedia.org/wikipedia/commons/a/a9/John_Forbes_Nash\%2C_Jr._by_Peter_Badge.jpg$