Einführung in die Technische Informatik

Prof. Dr.-Ing. Stefan Kowalewski

WS 22/23

Kapitel 9: Rechenstrukturen

Abschnitt 9.1

Addiernetze

- ► Halbaddierer
- Volladdierer
- Ripple-Carry-Adder
- Carry-Bypass-Addiernetz
- Carry-Save-Addiernetz
- ► Wallace-Tree

Recap: Schriftliche Addition

Dezimal

Binär

Halbaddierer

Х	У	Σ_{10}	U	R
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	2	1	0

Volladdierer

Х	У	u'	Σ_{10}	U	R
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	2	1	0
1	0	0	1	0	1
1	0	1	2	1	0
1	1	0	2	1	0
1	1	1	3	1	1

$$U_1 = x \cdot y$$

$$U_2 = (x \oplus y) \cdot u'$$

$$R_1 = x \oplus y$$

$$R_2 = (x \oplus y) \oplus u'$$

$$R = (x \oplus y) \oplus u'$$

$$R_1 = x \oplus y$$

$$R_2 = (x \oplus y) \oplus u'$$

$$u' \quad R = (x \oplus y) \oplus u'$$

Addiernetz für zwei 4-stellige Dualzahlen

asynchrones (Parallel-) Addiernetz, Ripple-Carry-Addierer:

n-stelliges Addiernetz

Carry-Bypass-Addiernetz

Carry-Bypass-Addiernetz

Carry-Save-Addiernetz

Carry-Save-Addiernetz

Prinzip der Carry-Save-Addition

Wallace-Tree

Abschnitt 9.2

Multiplikation

- Carry-Save-Multiplikation
- Schaltung zur Multiplikation

Carry-Save-Multiplikation

			X ₃	\mathbf{x}_{2}	x_{1}	x_0	Х
	×		y ₃	y ₂	y_1	y ₀	У
0	0	0	$y_3 \cdot x_0$	$y_2 \cdot x_0$	$y_1 \cdot x_0$	$y_0 \cdot x_0$	M ₀
0	0	$y_3 \cdot x_1$	$y_2 \cdot x_1$	$y_1 \cdot x_1$	$y_0 \cdot x_1$	0	M_1
0	$y_3 \cdot x_2$	$y_2 \cdot x_2$	$y_1 \cdot x_2$	$y_0 \cdot x_2$	0	0	M_2
$y_3 \cdot x_3$	$y_2 \cdot x_3$	$y_1 \cdot x_3$	$y_0 \cdot x_3$	0	0	0	M_3

Carry-Save-Multiplikation

Multiplikation (Wdh.)

Schulmethode:

Sei x der Multiplikand, $y = (y_{n-1}, ..., y_0)$ der Multiplikator, dann ist $x \cdot y = x \cdot y_0 + x \cdot y_1 \cdot 2 + x \cdot y_2 \cdot 2^2 + \dots + x \cdot y_{n-1} \cdot 2^{n-1}$ $= \sum_{i=0}^{n-1} x \cdot y_i \cdot 2^i$

In der Praxis ist es sinnvoll, jeden Term der Form $x \cdot y_i \cdot 2^i$ zu addieren, sobald er generiert wurde:

$$x \cdot y = \left(\dots \left((x \cdot y_0 + x \cdot y_1 \cdot 2) + x \cdot y_2 \cdot 2^2 \right) + \dots \right) + x \cdot y_{n-1} \cdot 2^{n-1}$$

Schaltung zur Multiplikation

Abschnitt 9.3

Addierwerke

- Parallel-Addierwerk
- Serien-Addierwerk
- von Neumann-Addierwerk

Addierwerk (Organisationsplan)

4-Bit-Serien-Addierwerk

0101

+ 0011

0101

+ 0011

+ 0011 + 0011 + 0001 + 1

+ 0011 + 0011 + 0001 + 1

+ 0011 + 0011 + 0001 + 1 - 0001 + 0000 + 1

+ 0011 + 0011 + 0001 + 1 - 0001 + 0000 + 1

4-Bit-Serien-Addierwerk: Beispiel

4-Bit-Serien-Addierwerk: Beispiel

4-Bit-Serien-Addierwerk: Beispiel

4-Bit-von Neumann-Addierwerk

+ 1101 + 0010

+ 1101 + 0110 + 0010

- 1011
- + 1101
- 1 0110
- + 0010
 - 1 0100
- + 0100

- 1011
- + 1101
- 1 0110
- + 0010
- 1 0100
- + 0100

1011

+ 1101

1 0110

+ 0010

1 0100

+ 0100

1 0000

+ 1000

- 1011
- + 1101
- 1 0110
- + 0010
- 1 0100
- + 0100
- 1 0000
- + 1000

- 1011
- + 1101
- 1 0110
- + 0010
- 1 0100
- + 0100
- 1 0000
- + 1000
- 1 1000
- + 0000

- 1011
- + 1101
- 1 0110
- + 0010
- 1 0100
- + 0100
- 1 0000
- + 1000
- 1 1000
- + 0000
- 1 1000

Arbeitsweise (Beispiel)

Aufgaben: 13+11, 10+12, 15+15, 9+10, 0+0

Zeile	U	Akku- Inhalt dual (U)A ₃ A ₂ A ₁ A ₀	Akku- Inhalt dezimal	Puffer- Inhalt dual P ₃ P ₂ P ₁ P ₀	Puffer- Inhalt dezimal	S
1	0	(0)0000	0	0000	0	0
2	0	(0)1011	11	1101	13	1
3	1	(1)0110	22	0010	2	1
4	1	(1)0100	20	0100	4	1
5	1	(1)0000	16	1000	8	1
6	1	(1)1000	24	0000	0	0
7	0	(0)1100	12	1010	10	1
8	1	(1)0110	22	0000	0	0
9	0	(0)1111	15	1111	15	1
10	1	(1)0000	16	1110	14	1
11	1	(1)1110	30	0000	0	0
12	0	(0)1010	10	1001	9	1
13	1	(1)0011	19	0000	0	0

