Lecture 4: Convexity

Guoxuan Ma¹

UIBE Math Camp, 2022

Convex Sets

Definition

In real vector space V , a set $S \subset V$ is a convex set iff

$$\lambda x + (1 - \lambda)y \in S$$

for any $\lambda \in [0,1]$ and $x, y \in S$.

For finitely many vectors $x_1, x_2, ... x_n$ in vector space V, a convex combination of $x_1, x_2, ..., x_n$ is a vector $\sum_{i=1}^n \lambda_i x_i$ for scalars $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}_+$ with $\sum_{i=1}^n \lambda_i = 1$.

Separating Hyperplane Theorem

In \mathbb{R}^n , a hyperplane is defined as

$$H(p,c) = \{x \in \mathbb{R}^n : p \cdot x = c\}$$

where $p \in \mathbb{R}^n \setminus \{0\}$, $c \in \mathbb{R}$, and \cdot is the dot product. A hyperplane H(p,c) cuts the whole space \mathbb{R}^n into halves. This is a generalization of a line in \mathbb{R}^2 and a plane in \mathbb{R}^3 .

Theorem

(Minkowski's Separating Hyperplane). Let S_1 and S_2 be two disjoint nonempty and convex sets in \mathbb{R}^n . Then there exist $p \in \mathbb{R}^n \setminus \{0\}$ and $c \in \mathbb{R}$ s.t. $p \cdot x \geq c$ for any $x \in S_1$ and $p \cdot x \leq c$ for any $x \in S_2$.

Minkowski's Separating Hyperplane is used in the proof of Second Welfare Theorem.

Example

A hyperplane in \mathbb{R}^2 is a line

A hyperplane in \mathbb{R}^3 is a plane

Brouwer's Fixed Point Theorem

Theorem

Let X be a nonempty, compact, and convex set in \mathbb{R}^n , and consider a continuous function $f: X \to X$. Then there exists $x^* \in X$ s.t. $f(x^*) = x^*$.

Brouwer's fixed point theorem plays an important role in the existence of Walrasian equilibria in the general equilibrium theory and the existence of Nash equilibria in non-cooperative game theory.

Convex and Concave Functions

Definition

Consider a function $f: S \to \mathbb{R}$, where S is a convex set in vector space V.

1. The function f is a convex function iff

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$

for any $x, y \in S$ and $\lambda \in [0,1]$.

2. The function f is a concave function iff

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

for any $x, y \in S$ and $\lambda \in [0, 1]$.

Strictly convex/concave will make \geq / \leq , > / <.

Jensen's Inequality

Theorem

(Jensen's Inequality). Consider a function $f: S \to \mathbb{R}$, where S is a convex set in vector space V.

1. f is convex iff

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i)$$

for any $x_1, x_2, ..., x_n \in S$ and $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}_+$ with $\sum_{i=1}^n \lambda_i = 1$.

2. f is concave iff

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \geq \sum_{i=1}^n \lambda_i f(x_i)$$

for any $x_1, x_2, ..., x_n \in S$ and $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}_+$ with $\sum_{i=1}^n \lambda_i = 1$.

Convex/Concave Property

Proposition

Consider two functions f and g from S to \mathbb{R} , where S is a convex set in vector space V. If f and g are both convex/concave functions, then

- 1. f + g is a convex/concave function, and
- 2. cf is a convex/concave function, for any $c \in \mathbb{R}_+$.

Proposition

Consider a function $f: S \to \mathbb{R}$, where S is a convex set in vector space V.

- (1) If f is convex and $\phi : \mathbb{R} \to \mathbb{R}$ is weakly increasing and convex, then $\phi \circ f$ is convex.
- (2) If f is concave and $\phi : \mathbb{R} \to \mathbb{R}$ is weakly increasing and concave, then $\phi \circ f$ is concave.

Proposition

Consider a finite family of functions $\{f_{\alpha}\}_{{\alpha}\in A}$ from S to \mathbb{R} , where S is a convex set in vector space V.

- 1. If all functions in the family are convex, and the set $\{f_{\alpha}\}_{{\alpha}\in A}$ is bounded from above for each $x\in S$, then $\sup\{f_{\alpha}\}_{{\alpha}\in A}$ is a convex function.
- 2. If all functions in the family are concave, and the set $\{f_{\alpha}(x): \alpha \in A\}$ is bounded from below for each $x \in S$, then $\inf\{f_{\alpha}\}_{\alpha \in A}$ is a concave function.

Convexity/Concavity of Continuously Differentiable Functions.

Suppose the function $f: S \to \mathbb{R}$ is a C^1 function, where S is a convex and open set in \mathbb{R}^n .

(1) f is (strictly) convex iff

$$f(x')$$
 (>) $\geq f(x) + \nabla f(x) \cdot (x' - x)$

for any $x', x \in S$.

(2) f is (strictly) concave iff

$$f(x') (<) \le f(x) + \nabla f(x) \cdot (x' - x)$$

for any $x', x \in S$.

Theorem

Suppose the function $f: S \to \mathbb{R}$ is a C^2 function, where S is a convex and open set in \mathbb{R}^n .

- 1. f is convex iff its Hessian matrix H(x) is positive semi-definite for any $x \in S$.
- 2. f is concave iff its Hessian matrix H(x) is negative semi-definite for any $x \in S$.
- 3. f is strictly convex if its Hessian matrix H(x) is positive definite for any $x \in S$.
- 4. f is strictly concave if its Hessian matrix H(x) is negative definite for any $x \in S$.

Quasi-convex and Quasi-concave Functions

Definition

Consider a function $f: S \to \mathbb{R}$, where S is a convex set in vector space V.

1. The function f is a (strictly) quasi-convex function iff

$$f(\lambda x + (1 - \lambda)y) (<) \le \max\{f(x), f(y)\}\$$

for any $x, y \in S$ and $\lambda \in [0,1]$.

2. The function f is a (strictly) quasi-concave function iff

$$f(\lambda x + (1 - \lambda)y) (>) \ge \min\{f(x), f(y)\}\$$

for any $x, y \in S$ and $\lambda \in [0,1]$.

For a function $f: S \to \mathbb{R}$, define the **upper contour set** of f with cutoff a as

$$C^+(f,a) := \{x \in S : f(x) \ge a\}$$

and the **lower contour set** of f with cutoff a as

$$C^-(f,a) := \{x \in S : f(x) \le a\}$$

Proposition

- Consider a function $f: S \to \mathbb{R}$, where S is a convex set in vector space V.
- (1) f is quasi-concave iff its upper contour set $C^+(f,a)$ is a convex set in V for any $a \in \mathbb{R}$;
- (2) f is quasi-convex iff its lower contour set $C^-(f,a)$ is a convex set in V for any $a \in \mathbb{R}$.

Proposition

Consider a function $f:S\to\mathbb{R}$, where S is a convex set in vector space V .

- (1) If f is quasi-convex and $\phi: \mathbb{R} \to \mathbb{R}$ is weakly increasing, then $\phi \circ f$ is quasi-convex.
- (2) If f is quasi-concave and $\phi: \mathbb{R} \to \mathbb{R}$ is weakly increasing, then $\phi \circ f$ is quasi-concave.

Economic Content of Quasiconcavity

The convexity of uppercontour sets is a natural requirement for utility and production functions.

- ightharpoonup consider an indifference curve of the concave utility function f(x,y).
- ► The set of bundles which are preferred to them, is a convex set. In particular, the bundles that mix their contents are in this preferred set

Example

- 1. Any increasing transformation of a concave function is quasiconcave.
- 2. An monotone function f(x) on \mathbb{R}^1 is both quasiconcave and quasiconvex.
- 3. A single peaked function f(x) on \mathbb{R}^1 is quasiconcave.
- 4. The function $min\{x,y\}$ is quasiconcave, as $C^+(f,a)$ is convex.

