3. Графи. Дървета. Обхождане на графи.

1. Краен ориентиран и неориентиран (мулти)граф

Деф: Краен неориентиран граф

Краен неориентиран граф наричаме наредената двойка множества G=(V,E), където $V\neq\emptyset$ е крайно множество от върхове, а E е множество с дву-елементни подмножества на V, които наричаме ребра. $E\subseteq\{X\subseteq V\colon |X|=2\}$

Деф: Мултиграф

Мултиграф е наредена тройка $G = (V, E, f_G)$, където V е непразно множество, чиито елементи се наричат върхове, E е множество, чиито елементи се наричат ребра, $V \cap E = \emptyset$ и $f_G \colon E \to \{X \subseteq V \colon |X| = 2\}$ е свързваща функция

Деф: Краен ориентиран граф

Ориентиран граф е наредена двойка G = (V, E), където V е непразно множество, чиито елементи се наричат върхове, E е множество, чиито елементи се наричат ребра, като $E \subseteq (V \times V) \setminus \{(u, u) \mid u \in V\}$

Деф: Краен ориентиран мултиграф

Ориентиран мултиграф е наредена тройка $G = (V, E, f_G)$, където V е непразно множество, чиито елементи се наричат върхове, E е множество, чиито елементи се наричат ребра, $V \cap E = \emptyset$ и

 $f_G: E \to V \times V$ е свързващата функция

2. Път (цикъл) в ориентиран и неориентиран мултиграф

Деф: Път

Нека $G = (V, E, f_G)$ е мултиграф. Ориентиран път в G наричаме всяка алтернираща редица от върхове и ребра, за някое $t \ge 0$:

 $p=(u_{i_0},e_{k_0},u_{i_1},e_{k_1},u_{i_2},\dots,u_{i_{t-1}},e_{k_{t-1}},u_{i_t}),$ Където $u_{i_p}\in V$ за $0\leq p\leq t,\ e_{k_p}\in E$ за $0\leq p\leq t-1$ и освен това е изпълнено $\mathrm{f_G}\left(e_{k_p}\right)=\left(u_{i_p},u_{i_{p+1}}\right)$ за $0\leq p\leq t-1.$

Връх u_{i_0} се нарича *начало на пътя*, а връх u_{i_t} се нарича *край на пътя*. Останалите върхове са *вътрешни върхове на пътя*. Дължината на пътя е броят на ребрата в него, бележим с |p|

Деф: Цикъл

Нека $G=\left(V,E,f_G\right)$ е мултиграф и р е ориентиран път в G, където $p=(u_{i_0},e_{k_0},u_{i_1},e_{k_1},u_{i_2},\dots,u_{i_{t-1}},e_{k_{t-1}},u_{i_t})$

Казваме, че р е ориентиран цикъл, ако $u_{i_0}=u_{i_1}$. Казваме, че р е прост ориентиран цикъл, ако р е ориентиран цикъл с поне едно ребро и освен това, всички елементи освен $u_{i_0}=u_{i_1}$ са уникални.

Ако $G = (V, E, f_G)$ е ориентиран мултиграф, то горедефинираните структури наричаме съответно ориентиран път и ориентиран цикъл.

3. Свързаност и свързани компоненти на граф

Деф: Свързаност в граф. Свързан граф

Нека G = (V, E) е граф. За всеки два върха $u, v \in V$ казваме, че u и v са ceързани, ако съществува u - v път. G е ceързан cраф, ако всеки два върха в него са свързани.

Деф: Слабо свързан граф

Ориентиран граф е слабо свързан, ако между всеки два върха има път в поне една от двете посоки

Деф: Силно свързан граф

Ориентиран граф е силно свързан, ако между всеки два върха има път между върховете и в двете посоки

Деф: Релация на достижимост

Нека G=(V,E) е граф. Релация на достижимост върху G наричаме $Q_G\subseteq V\times V$, т.ч. $\forall u,v\in V: uOv\leftrightarrow u$ и v са свързани

Деф: Свързани компоненти

Нека G=(V,E) е граф и Q_G е релацията на достижимост върху G. Подграфите на G, индуцирани от класовете на еквивалентност на Q_G се наричат $c g \sigma p 3 a h u m e komno h e h m u h a <math>G$

Друго определение: Свързаните компоненти на граф са максималните по включване свързани подграфи.

4. Дефиниция на дърво и кореново дърво. Всяко кореново дърво е дърво и |V|=|E|+1. Покриващо дърво на граф

Деф: Дърво

Дърво е всеки граф, който е свързан и ацикличен (няма цикли)ю

Деф: Кореново дърво

- \circ База: всеки тривиален граф $T=(\{u\},\emptyset)$ е кореново дърво с корен u и множество от листа $\{u\}$
- \circ ИС: Нека T = (V, E) е дърво с корен r и листа $W = e_1, ..., e_k$. Нека $v \in V$ и $u \notin V$. Тогава $T' = (V \cup \{u\}, E \cup (v, u))$ е дърво с корен r и листа $((W \setminus \{v\}) \cup \{u\})$
- Няма други коренови дървета

Твърдение: Всяко кореново дърво е дърво Д-во:

Индукция по построението на кореново дърво:

- \circ База: За T = $(\{r\},\emptyset)$ е в сила, че е свързан граф без цикли, защото има само един възел
- \circ ИХ: Нека кореновото дърво D=(V,E) е свързан граф без цикли.
- \circ Стъпка: Нека $T'-(V\cup\{u\},E\cup\{(v,u)\}),v\in V,u\notin V.$ Ще покажем, че T' е дърво. Нека v_1 и v_2 са произволни от $V'=V\cup\{u\}$
 - Ако $v_1 = v_2$, то имаме път тривиален път с дължина нула от v_1 до v_2 .
 - Ако $v_1, v_2 \in V$, то v_1, v_2 са върхове в графа Т. Съгласно ИХ T е свързан граф. Следователно има път в D от v_1 до v_2 и той се запазва в T'.
 - Ако $v_1 \neq v_2 \in V'$, то или $v_1 = u$, или $v_2 = u$. БОО нека $v_2 = u$. Тогава v_1 , v са върхове от T и между тях има ацикличен път в T, който е ацикличен път и в T', т.е. $v_1 = w_1, w_2, ..., w_k = v$. Така $v_1 = w_1, w_2, ..., w_k = v, u$ е път в T' и значи T' е свързан. Ако допуснем, че има цикъл в него, т.е. $w_{i_1}, ..., w_{i_k}$, то всеки връх в цикъла участва като край на две различни ребра (w_{i-1}, w_i) , (w_i, w_{i+1}) . Новият връг u е край на едно единствено ребро, така че няма как да участва в цикъла, а пътя $w_1, ..., w_k$ е ацикличен път в T. Противоречие! Следователно T' е свързан ацикличен граф.

Теорема: Нека T=(V,E) е кореново дърво. Тогава |V|=|E|+1

Д-во: Индукция по построението на кореново дърво

- \circ База: За $T = (\{r\}, \emptyset)$, то |V| = |E| + 1 = 0 + 1 = 1
- \circ ИХ: За T = (V, E) е в сила
- \circ Стъпка: За $T' = (V \cup \{u\}, E \cup \{(v,u)\}), v \in V, u \notin V$: $|V \cup \{u\}| = |V| + 1 = |E| + 1 + 1 = |E \cup \{(v,u)\}| + 1$ $|E \cup \{(v,u)\}| = |E| + 1 = |V|$

Деф: Покриващо дърво

Нека G = (V, E) е граф. Покриващо дърво на G наричаме дърво D = (V, E'), където $E' \subseteq E$.

Теорема: Граф G = (V, E) има покриващо дърво т.с.т.к. е свързан граф.

5. Обхождания на графи

Деф: Стек (индуктивно)

База: Празният стек означаваме с $\{\}$. За него дефинираме $pop(\{\}) = \{\}$, $top(\{\}) = \{\}$. Нека S е стек и x е елемент. Тогава S' = push(S, x) е стек, като top(S') = x, pop(X') = S.

Обхождане в дълбочина (DFS):

Идея: "Докато можем, вървим напред. Когато няма как да продължим - връщаме се една стъпка

Нека G=(V,E) е произволен граф с n върха и $v_0\in V$ е начален връх. Ще построим списък DFS = $((v_0,\emptyset),(v_1,s(v_1)),...,(v_n,s(v_n)))$, който включва всички върхове $v_1,...,v_n$ и техните непосредствени предшественици в покриващото дърво с корен v_0 : D=(V,E'), където $\mathbf{E}' = \left\{ \left(v_i, s(v_i)\right) \mid i=1,...,n \right\}$. Ще използваме помощен стек S и текущ връх t. В началото $DFS = \left(\left(v_0, \emptyset \right) \right)$ и $S = \{\}, \ t = v_0$ и v_0 е

обходен.

Докато има необходен връх във V:

- \circ Ако има необходен съсед v на t, обяваваме v за обходен, добавяме (v,t) към списък DFS =DFS \cup {(v,t)}, добавяме t към стека S := push(S,t), текущ връх става t := v.
- \circ Ако няма необходен съсед на t, връщаме се една стъпка назад: t = top(S), S := pop(S)

Деф: Опашка (индуктивно)

База: Празната опашка означаваме с $\{\}$. За нея $pop(\{\}) = top(\{\}) = \{\}$. Нека Q е опашка и x е елемент. Тогава Q' = push(Q, x) е опашка.

$$top(Q') = \begin{cases} x, & \text{ako } Q = \{\} \\ top(Q), & \text{ako } Q \neq \{\} \end{cases}$$

$$pop(Q') = \begin{cases} \{\}, & \text{ako } Q = \{\} \\ push(pop(Q), x), & \text{ako } Q \neq \{\} \end{cases}$$

Обхождане в широчина (BFS):

Идея: "Докато можем върви в страни. След това минаваме едно ниво надолу".

Нека G=(V,E) е произволен граф с n върха и $v_0\in V$ е начален връх. Ще построим списък BFS = $\Big((v_0, \emptyset), \Big(v_1, s(v_1) \Big), \dots, \Big(v_n, s(v_n) \Big) \Big)$, който включва всички върхове v_1, \dots, v_n и техните непосредствени предшественици в покриващото дърво с корен v_0 : D=(V,E'), където $\mathbf{E}' = \left\{ \left(v_i, s(v_i)\right) \mid i=1,...,n \right\}$. Ще използваме помощна опашка Q и текущ връх t. В началото $BFS = \left((v_0, \emptyset)\right)$ и $Q = \{\}, t = v_0$ и v_0

е обходен.

Докато има необходен връх във V:

- Ако има необходен съсед v на t, обявяваме v за обходен, добавяме (v,t) към списък BFS = $BFS \cup \{(v,t)\}$, добавяме v към опашката $Q \coloneqq push(Q,v)$
- \circ Ако няма необходен съсед на t, текущият връх става първият връх на опашката: t = top(Q), Q := pop(Q)

Двете обхождания могат да бъдат модифицирани да намират път между два върха в граф като зададем единият връх да бъде началния и модифицираме условието (докато) да бъде докато се срещне вторият връх.

Теорема: Обхождане в широчина намира най-късите пътища от началния връх до всички останали върхове в графа.

6. Ойлерови обхождания на мултиграф. Теореми за съществуване на Ойлеров цикъл и Ойлеров

Деф: Ойлеров граф. Ойлеров цикъл

Ойлеров път в свързан мултиграф G нариваме път, минаващ само по веднъж през всяко ребро в графа. Ако началния и крайния връх в графа съвпадат, то имаме Ойлеров цикъл и графът се нарича Ойлеров граф.

Теорема: Нека G = (V, E) е свързан граф. G е Ойлеров т.с.т.к. всеки връх в G има четна степен. Д-во:

 \Rightarrow Нека G е Ойлеров и нека $v=v_0,v_1,\ldots,v_k=v$ е Ойлеров цикъл в G. Всяко срещане на връх u в редицата v_0,\ldots,v_{k-1} съответства на две ребра през u:

- \circ Ако $u=v_0$, ребрата са $\{v_0,v_1\}$ и $\{v_{k-1},v_0\}$
- \circ Ако $u = v_i$ и i > 0, ребрата са $\{v_1, v_{i+1}\}$ и $\{v_{i-1}, v_i\}$.

Тъй като всички ребра в графа се срещат точно по веднъж в цикъла, степента на произволен връх $u \in V$ е равна на два пъти броя на срещанията на u в цикъла. Така d(u) е четно число.

 \Leftarrow Нека сега G е свързан граф, в който всеки връх има четна степен и $u \in V$. Ще построим Ойлеров цикъл C през u.

Обявяваме u за текущ връх t, C = (u)

1. Докато има необходено ребро $e = \{t, v\}$ през t, добавяме t към C, обявяваме е за обходено и v за текущ връх t.

На всяко преминаване през 1. броят на необходените ребра намалява, цикълът ще завърши след краен брой стъпки k и $C=\left(u=v_0,v_1,...,v_k\right)$.

Да допуснем, че $u \neq v_k$. Алгоритъмът завършва, всички ребра през v_k са обходени и на k+1-ва стъпка няма необходени ребра през v_k . На стъпка, на която v_k става текущ, обхождаме едно ребро през v_k и броят на обходените ребра през v_k е нечетен. На следващата стъпка, ако v_k престане да е текущ, обхождаме второ ребро през v_k , броят на обходените ребра през v_k става четен. Така на последната стъпка, на която v_k става текущ, броят на обходените ребра през v_k е нечетен, но тогава алгоритъмът завършва, защото няма как да се избере следващ текущ връх, всички ребра през v_k са обходени. Следователно v_k има нечетен брой ребра. Противоречие!

2. Следователно $v_k = u$ и C е цикъл. Ако C съдържа всички ребра, C е Ойлеров цикъл. Иначе C съдържа поне един връх v_i , който е край на необходено ребро (от свързаността на графа). Повтаряме цикъла 1. с начален връх v_i , като строим нов цикъл $C' = \left(v_i = u_0 \ u_1, ..., u_m = v_i\right)$. Заменяме C с цикъла:

 $C=(v_0,\ldots,v_{i-1},v_i=u_0,u_1,\ldots,u_m=v_i,v_{i+1},\ldots,v_k)$ и отново се връщаме на 2.

Вторият цикъл също ще завърши, защото при всяко преминаване през него, броят на необходимите ребра намалява. Така в крайна сметка С съдържа Ойлеров цикъл.

Следствие: Свързаният мултиграф G съдържа Ойлеров път т.с.т.к. всички върхове са от четна степен, като само два са от нечетна.