Topology Course Notes (KSM1C03)

Day 17: 16th October, 2025

properties of Lindelöf spaces -- separable spaces

17.1 Properties of Lindelöf spaces

Proposition 17.1: (Image of Lindelöf spaces)

A continuous image of a Lindelöf space is again Lindelöf

Proof

Suppose $f:X\to Y$ is a continuous surjection, and X is Lindelöf. Consider an open cover $Y=\bigcup_{\alpha}V_{\alpha}.$ Then, we have an open cover $X=\bigcup_{\alpha}f^{-1}\left(U_{\alpha}\right)$, which admits a countable sub-cover, $X=\bigcup_{i=1}^{\infty}f^{-1}(U_{\alpha_{i}}).$ Then, $Y=f(X)=\bigcup_{i=1}^{\infty}U_{\alpha_{i}}.$ Thus, Y is Lindelöf. \square

Lindelöf spaces are not well-behaved when considering product or subspaces.

Example 17.2: (\mathbb{R}_ℓ is Lindelöf)

Let us show that the lower limit topology \mathbb{R}_ℓ on \mathbb{R} is Lindelöf. Suppose $\{U_\alpha\}$ is an open cover. For each x, we have $[x,r_x)\subset U_{\alpha_x}$, for some $r_x\in\mathbb{Q}$. Clearly, $\mathbb{R}_\ell=\bigcup_x[x,r_x)$. Let us consider the space $C=\bigcup_x(x,r_x)$. We claim that $\mathbb{R}\setminus C$ is countable. Indeed, for each $u,v\in\mathbb{R}\setminus C$, with u< v, we must have $r_u< r_v$, since otherwise we get $u< v< r_v\leq r_u$ and then, $v\in(u,r_u)\subset C$ a contradiction. Thus, we have an injective map

$$\mathbb{R} \setminus C \to \mathbb{Q}$$
$$u \mapsto r_u.$$

But then $\mathbb{R}\setminus C$ is countable, as \mathbb{Q} is countable. Say, $\mathbb{R}\setminus C=\{u_i\}_{i=1}^\infty$. On the other hand, considering $C=\bigcup_{x\in\mathbb{R}}(x,r_x)$ as a collection of open sets in the usual topology of \mathbb{R} , we have a countable subcover $C=\bigcup_{i=1}^\infty(x_i,r_{x_i})$. Thus, we have a countable cover,

$$\mathbb{R}_{\ell} = \bigcup_{i=1}^{\infty} [u_i, r_{u_i}] \cup \bigcup_{i=1}^{\infty} [x_i, r_{x_i}] \subset \bigcup U_{\alpha_{u_i}} \cup \bigcup U_{\alpha_{x_i}}.$$

Hence, \mathbb{R}_{ℓ} is Lindelöf.

Example 17.3: ($\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$ is not Lindelöf)

Let us now show that the product $X = \mathbb{R}_{\ell} \times \mathbb{R}_I$ (also known as *Sorgenfrey plane*) is not Lindelöf. Consider the subset $A = \{(x, -x) \mid x \in \mathbb{R}\} \subset X$. It is easy to see that A is open. Next, for each $x \in \mathbb{R}$, consider the open set $U_x = [x, x+1) \times [-x, -x+1) \subset X$. It follows that $A \cap U_x = \{(x, -x)\}$. Now, consider the open cover

$$X = (X \setminus A) \cup \bigcup_{x \in \mathbb{R}} U_x.$$

This cannot have a countable subcover, since A is uncountable.

Definition 17.4: (Hereditarily Lindelöf)

A space X is called *hereditarily Lindelöf* if every subspace $A \subset X$ is Lindelöf.

Proposition 17.5: (Hereditarily Lindelöf if and only if open subsets are Lindelöf)

A space X is hereditarily Lindelöf if and only if every open subspace $U \subset X$ is Lindelöf.

Proof

One direction is trivial. So, suppose every open subspace of X is Lindelöf. Consider an arbitrary subset $A\subset X$, with the subspace topology. Suppose, we have an open cover $A=\bigcup_{\alpha}U_{\alpha}$, where $U_{\alpha}=A\cap V_{\alpha}$ for $V_{\alpha}\subset X$ open. Now, $U=\bigcup_{\alpha}V_{\alpha}$ is a open cover, which admits a countable subcover, say $U=\bigcup_{i=1}^{\infty}V_{\alpha_{i}}$. But then, $A=A\cap U=\bigcup_{i=1}^{\infty}A\cap V_{\alpha_{i}}=\bigcup_{i=1}^{\infty}U_{\alpha_{i}}$. Thus, A is Lindelöf. Since A was arbitrary, we have X is hereditarily Lindelöf.

Example 17.6: (\bar{S}_{Ω} is not hereditarily Lindelöf)

Recall the space $X=\bar{S}_\Omega=S_\Omega\cup\{\Omega\}$, which was shown to be compact, and hence, Lindelöf. Now, for each $a\in S_\Omega$, consider the open sets $U_a=(a,a+2)=\{a+1\}$. Since S_Ω is uncountable, we have the uncountable discrete space $A=\bigcup_{a\in S_\Omega}(a,a+2)=\bigcup_{a\in S_\Omega}\{a+1\}$. Clearly, this is not Lindelöf. Thus, \bar{S}_Ω is not hereditarily Lindelöf.

17.2 Separable space

Definition 17.7: (Separability)

Given $A \subset X$, we say A is *dense* in X if $X = \overline{A}$. A space X is called *separable* if there exists a countable dense subset.

Exercise 17.8: (Dense set and open set)

Show that $A \subset X$ is dense if and only for any nonempty open set $U \subset X$ we have $U \cap A \neq \emptyset$.

Exercise 17.9: (Second countablity and seperability)

Show that a second countable space is separable. Check that \mathbb{R} with the cofinite topology is separable, but not second countable.

Proposition 17.10: (Image of separable space)

Let $f: X \to Y$ be countinuous surjection. If X is separable, then so is Y.

Proof

Suppose $A\subset X$ is a countable dense subset. Since f is continuous, we have, $f(\bar{A})\subset \overline{f(A)}\Rightarrow \overline{f(A)}\supset f(X)=Y\Rightarrow \overline{f(A)}=Y.$ Thus, f(A) is dense in Y, which is clearly countable. Hence, Y is separable. \Box

Proposition 17.11: (Product of separable spaces)

Suppose $\{X_{\alpha}\}_{\alpha\in I}$ is a countable collection of separable spaces. Then, the product $X=\Pi X_{\alpha}$ is separable.

Proof

Fix countable dense subsets $A_{\alpha} \subset X_{\alpha}$. Fix some $a_{\alpha} \in A_{\alpha}$. Then, consider the collection

$$A = \{(x_{\alpha}) \in \Pi A_{\alpha} \mid x_{\alpha} = a_{\alpha} \text{ for all but finitely many } \alpha \in I\}$$
.

By construction, A is countable. Let us show that A is dense in X. Let $U \subset X$ be a basic open sets. Then, $U = \Pi_{\alpha}U_{\alpha}$, where $U_{\alpha} = X_{\alpha}$ for all $\alpha \in I \setminus \{\alpha_1, \ldots, \alpha_k\}$. Since $X_{\alpha} = \overline{A_{\alpha}}$, we have $b_{\alpha_i} \in U_{\alpha_i} \cap A_{\alpha_i}$ for $i = 1, \ldots, k$. Set $b_{\alpha} = a_{\alpha}$ for all $\alpha \in I \setminus \{\alpha_1, \ldots, \alpha_k\}$. Then, clearly $b \in U \cap A$. Thus, $\overline{A} = X$. Hence, X is separable. \square

Example 17.12: (Subspaces of separable space)

Subspaces of a separable space need not be separable! Consider an uncountable set X, and fix a point $x_0 \in X$. Equip X with the particular point topology based at x_0 (i.e, a nonempty set is open in X if and only if it contains x_0). Then, $\{x_0\}$ is dense in X, and thus X is separable. On the other hand, the set $X \setminus \{x_0\}$ is an uncountable discrete subspace, and hence, cannot be separable.

Definition 17.13: (Nowhere dense subset)

A subset $A \subset X$ is called *nowhere dense* if $int(\bar{A}) = \emptyset$.

Example 17.14

 $\mathbb{Z} \subset \mathbb{R}$ is nowhere dense, and so is the Cantor set (which is uncountable). If X has discrete topology, no subset $A \subset X$ is nowhere dense. The set $A \coloneqq \mathbb{Z} \cup ((0,1) \cap \mathbb{Q}) \subset \mathbb{R}$ is not nowhere dense.

Exercise 17.15: (Nowhere dense discrete subspace of \mathbb{R})

Show that any discrete subspace $A \subset \mathbb{R}$ is nowhere dense. In particular, $\left\{\frac{1}{n} \mid n \geq 1\right\}$ is nowhere dense.

Theorem 17.16: (Nowhere dense equivalence)

Let $A \subset X$ is given. The following are equivalent.

- a) $int(\bar{A}) = \emptyset$.
- b) For any nonempty open set $\emptyset \neq Usubset X$, we have $A \cap U$ is not dense in U (in the subspace topology).
- c) $X \setminus \bar{A}$ is dense in X.

Proof

Suppose $\operatorname{int}(\bar{A})=\emptyset$. Fix some $\emptyset \neq U \subset X$ open set. Then, $U \not\subset \bar{A}$. Pick some $y \in U \setminus \bar{A}$. Since \bar{A} is closed, we have $V\coloneqq U\setminus \bar{A}$ is open in X, and hence, open in U as well. Now, clearly $V\cap (U\cap A)=\emptyset$, and hence, $y\not\in \overline{U\cap A}^U$. Thus, $U\cap A$ is not dense in U.

Conversely, suppose $A\cap U$ is not dense in U for any nonempty open set $U\subset X$. If possible, suppose $\operatorname{int}(\bar{A})\neq\emptyset$. Then, there exists some nonempty open set $U\subset\bar{A}$. Pick $y\in U$ and some arbitrary open neighborhood $y\in V\subset U$. Since U is open in X, we have V is open in X as well. Now, $V\subset U\subset\bar{A}\Rightarrow V\cap A\neq\emptyset$ (since $V\cap A=\emptyset\Rightarrow V\cap\bar{A}=\emptyset$ for V open). Thus, we have $\emptyset\neq V\cap A=(V\cap U)\cap A=V\cap (U\cap A)$. Since V was an arbitrary open neighborhood of Y in Y0, we have Y1 is an adherent point of Y2 in the subspace topology). Thus, we have Y3 a contradiction. Hence, Y4 in the subspace topology.

Let us now assume that $X\setminus \bar{A}$ is dense in X. Then, for any nonempty open set $U\subset X$, we must have $U\cap (X\setminus \bar{A})\neq\emptyset\Rightarrow U\not\subset \bar{A}$. But then, $\operatorname{int}(\bar{A})=\emptyset$. Conversely, suppose $\operatorname{int}(\bar{A})=\emptyset$. Then, for any nonempty open set $U\subset X$, we have $U\not\subset \bar{A}\Rightarrow U\cap (X\setminus \bar{A})$. But this means $X\setminus \bar{A}$ is dense in X.