Desenvolvimento de Software para Análise de Treliças Planas

André de Weber, Henry Rocha, Vitor Eller

Abstract—O objetivo desse documento é a construção de um software em python para analisar treliças planas, e demonstrar possíveis representações reais em que pode ser utilizado.

Keywords—Python, treliças, treliças planas, software, simulação, Numpy.

1. INTRODUÇÃO:

A disciplina Transferência de Calor e Mecânica dos Sólidos de engenharia da computação estuda estruturas complexas e a física por trás. Uma delas é a treliça, uma estrutura constituída por barras, ligadas por articulações (nós) que se aplicada uma força transformam-se em trações e compressões em cada barra devido ao arranjo geométrico. Uma treliça rígida pode ser formada por três membros conectados.

O estudo foi feito através do desenvolvimento de um software em python para análise de tração e compressão em treliças planas elaborando cálculos de forças internas, deformações, deslocamentos nodais, reações de apoio e tensões internas.

2. CONCEITOS MECÂNICOS:

2.1. Tensão admissível

A tensão limite aplicada menor que a tensão de ruptura.

2.2. Treliças simples

Estrutura formada pela união de três membros conectados para não sofrer deformações e não ruir sob pequenas cargas.

2.3. Tipos de apoio

Os apoios são elementos que restringem os movimentos dos sólidos. Limitam os graus de liberdade de um corpo que nesse estudo se restringem a X e Y.

2.4. Nós

Articulação formada pelo encontro entre dois ou mais elementos (barras).

2.5. Tensões internas

A tensão é uma resultante das reações contrárias a sua deformação. Pode ser descrita como tração quando o sentido é divergente e compressão quando convergente. Pode ser representada como força por unidade de área.

2.6. Deformação

Mudança na forma e tamanho de um corpo quando aplicada uma força externa.

2.7. Deslocamentos nodais

Caracteriza a deformação no corpo. Descrito como variação da posição dos nós após a deformação.

3. SOFTWARE:

O estudo sobre o comportamento das treliças, dos nós, elementos e apoios influenciados por uma força permitiu maior entendimento da física por trás. Dessa forma foi possível o desenvolvimento do software para automatizar o cálculo das variáveis. A treliça analisada pode ser observada na figura 1, com elementos como barras de aço (resistência de 210 GPa), seções exemplificadas na figura 2 e considerando o L=4.

O programa foi desenvolvido na linguagem Python e foi utilizada majoritariamente a biblioteca Numpy para realizar e facilitar os cálculos.

O input dos valores deverá ser feito através de planilhas excel para facilitar a organização e visualização das entradas.

Figura 2 - Seção das barras

3.1. Unidades:

- 3.1.1. Comprimento: metros [m]
- 3.1.2. Módulo de elasticidade: Pascal [Pa]
- 3.1.3. Área: metros quadrados [m²]

3.1.4. Força externa: Newtons [N]

3.1.5. Deslocamentos: metros [m]

3.1.6. Tração/compressão: Newtons [N]

3.2. Dados e resultados:

3.2.1. Planilha Nos

Posição X e Y de cada nó existente e quantidade total.

x [m]	y [m]	Número de nós
0	0	9
4	4	
8	8	
4	0	
8	4	
8	0	
12	4	
12	0	
16	0	

Figura 3 - planilha dos nós

3.2.2. Planilha Incidencia

Ligação entre os nós, definição da área e tensão interna de cada um e quantidade total de membros.

Número de membros	A [m²]	E [Pa]	nó 2	nó 1
16	2,00E-04	2,10E+11	2	1
	2,00E-04	2,10E+11	4	1
	2,00E-04	2,10E+11	4	2
	2,00E-04	2,10E+11	3	2
	2,00E-04	2,10E+11	5	2
	2,00E-04	2,10E+11	5	3
	2,00E-04	2,10E+11	7	3
	2,00E-04	2,10E+11	6	4
	2,00E-04	2,10E+11	5	4
	2,00E-04	2,10E+11	6	5
	2,00E-04	2,10E+11	7	5
	2,00E-04	2,10E+11	8	5
	2,00E-04	2,10E+11	8	6
	2,00E-04	2,10E+11	8	7
	2,00E-04	2,10E+11	9	7
	2,00E-04	2,10E+11	9	8

Figura 4 - planilha de incidência

3.2.3. Planilha Carregamento

Definição da intensidade, sentido e quantidade das forças externas sobre determinados nós.

nó	1 = x 2 = y	Carga [N]	Número de cargas
3	1	8000	3
3	2	-40000	
2	1	8000	

Figura 5 - planilha de carregamento

3.2.4. Planilha Restrição

Definição dos tipos de apoio sobre determinados nós.

apoios
7

Figura 6 - planilha de restrição

3.2.5. *Output*

Reacoes de apoio [N]	Deslocamentos [m]	Deformacoes []	Forcas internas [N]	Tensoes internas [Pa]
[[-2.94164525e+03]	[[0.00000000e+00]	[[6.38190303e-05]	[[2680.39927319]	[[1.34019964e+07]
[-1.89532850e+03]	[0.00000000e+00]	[2.49123036e-05]	[1046.31675005]	[5.23158375e+06]
[7.99480729e+03]	[1.19498820e-03]	[-1.71108991e-04]	[-7186.57760292]	[-3.59328880e+07]
[-3.55970270e+00]	[-6.84435962e-04]	[-1.78045763e-04]	[-7477.92206007]	[-3.73896103e+07]
[8.00000000e+03]	[2.40119679e-03]	[-1.93283188e-05]	[-811.78938757]	[-4.05894694e+06]
[-4.00000000e+04]	[-3.31501065e-03]	[-5.10110029e-04]	[-21424.62120093]	[-1.07123106e+08]
[-1.17168276e+01]	[9.96492143e-05]	[-4.47419775e-04]	[-18791.63055905]	[-9.39581528e+07]
[8.13895166e+03]	[0.00000000e+00]	[4.78668486e-05]	[2010.40763944]	[1.00520382e+07]
[-2.65156783e+01]	[1.11767493e-03]	[-3.20681027e-05]	[-1346.86031464]	[-6.73430157e+06]
[1.76011512e+00]	[-1.27457054e-03]	[-3.18642634e-04]	[-13382.99064095]	[-6.69149532e+07]
[-4.97835734e+00]	[2.9 <mark>1</mark> 116609e-04]	[1.27377348e-04]	[5349.84861196]	[2.67492431e+07]
[1.33829906e+04]	[0.00000000e+00]	[-2.38648417e-04]	[-10023.2335082]	[-5.01161675e+07]
[-5.19270895e+00]	[1.62718432e-03]	[4.79853809e-05]	[2015.38599678]	[1.00769300e+07]
[3.55970270e+00]	[-5.09664916e-04]	[-1.27416229e-04]	[-5351.48161821]	[-2.67574081e+07]
[9.09494702e-13]	[4.83058132e-04]	[-2.67106155e-04]	[-11218.45849595]	[-5.60922925e+07]
[1.24389780e+04]	[0.00000000e+00]	[-1.20764533e-04]]	[-5072.11038628]]	[-2.53605519e+07]]
[-1.30047585e+04]	[0.00000000e+00]			
[7.93264808e+0311	[0.00000000e+0011			

Figura 7 - output dos dados calculados

O software também constrói uma imagem do corpo para garantir a veracidade dos cálculos, assim conseguimos uma maior certeza do que está sendo analisado.

Figura 8 - imagem do corpo construída pelo software

O código foi estruturado em 6 arquivos .py, sendo que 4 deles estão organizados em 1 classe para cada.

3.3. Estrutura de código:

3.3.1. structure.py

A classe Structure contém funções que preparam o arquivo de output com a organização da lista de elementos, a matriz Kg, as restrições, o deslocamento através do método de Gauss, Jacobi ou usando a biblioteca Numpy, reações de apoio, deformação, tensão e força. Assim gera a saída e cria uma imagem simulada do corpo.

- 3.3.1.1. __init__
- 3.3.1.2. criarListaDeElementos
- 3.3.1.3. criarKg
- 3.3.1.4. aplicarRestricoes
- 3.3.1.5. calcularDeslocamento
- 3.3.1.6. calcularReacoesDeApoio
- 3.3.1.7. calcularResto

- 3.3.1.8. gerarSaida
- 3.3.1.9. plota
- 3.3.1.10. calculaPeso
- 3.3.1.11. checaLimitacoes
- 3.3.1.12. log

3.3.2. solver.py

A classe Solver contém uma função que utiliza o método de Gauss para a solução numérica do sistema de equações obtido na análise estrutural de treliças.

- 3.3.2.1. gauss
- 3.3.2.2. jacobi

3.3.3. node.py

A classe Node contém duas funções em que se armazenam as informações de um nó e possibilidade de apresentar ele no output.

- 3.3.3.1. __init__
- 3.3.3.2. __*str*__

3.3.4. *main.py*

O main.py define o arquivo de input e chama a classe e as funções do structure criando o arquivo de output com o nome desejado.

3.3.5. funcoesTermosol.py

O arquivo contém funções para o plot de todos pontos, para importar o arquivo com informações do corpo e para gerar a saída com os resultados.

- 3.3.5.1. plota
- 3.3.5.2. importa
- 3.3.5.3. geraSaida

3.3.6. element.py

A classe Element contém funções em que armazenam as informações de um elemento, cria a matriz Ke do elemento e gera a saída do objeto.

- 3.3.6.1. *init*
- 3.3.6.2. calculateKe
- 3.3.6.3. __*str*__

A validação foi feita através de uma comparação computacional entre o software de autoria do grupo e o Ftool, um programa com objetivo de prototipar estruturas de modo fácil e eficiente, dos resultados da figura a seguir. Foram utilizados os seguintes parâmetros:

Módulo de elasticidade: 210GPa
 Seção transversal: 2 · 10 ⁻⁴ m²

• Cargas no nó 3: 150N em x e -100N em y.

Apoio nó 1: rolete.Apoio nó 2: pino.

Figura 9 - corpo para validação

4.1. Abordagem computacional do Ftool:

Figura 10 - imagem do corpo com forças internas e reações de apoio

Os números destacados em vermelho representam as forças internas: 100N, 225N e -125N. Enquanto as reações de apoio em vinho: -225N, 100N e 75N.

Figura 11 e 12 - deslocamentos horizontais e verticais

Os deslocamentos estão destacados com o quadrado vermelho: 1.607m na vertical e -9.52m e -4.017m na horizontal.

4.2. Abordagem computacional de nossa autoria:

Com o resultado obtido na abordagem do Ftool, podemos validar se a abordagem de nossa autoria está condizente com o esperado.

Primeiro adicionamos as coordenadas dos nós:

1	Α	В	C	D
1	x [m]	y [m]		Número de nós
2	0	0		3
3	0	0.4		
4	0.3	0.4		

Figura 13 - planilha dos nós para validação

Em seguida as áreas e força de resistência para cada membro:

A	А	В	С	D	E	F
1	nó 1	nó 2	E [Pa]	A [m²]		Número de membros
2	1	2	2.10E+11	2.00E-04		3
3	2	3	2.10E+11	2.00E-04		
4	3	1	2.10E+11	2.00E-04		
5						

Figura 14 - planilha de incidência para validação

Adicionamos a carga presente no nó:

4	Α	В	С	D	E
1	nó	1 = x 2 = y	Carga [N]		Número de cargas
2	3	1	150		2
3	3	2	-100		

Figura 15 - planilha de carregamento para validação

Por fim as restrições de cada nó ocasionadas pelos apoios:

4	Α	В	С	D
1	nó	1 = x 2 = y		Número de apoios
2	1	1		3
3	2	1		
4	2	2		

Figura 16 - planilha de restrição para validação

Após utilizar o software feito pelo grupo obtivemos um output com o resultado esperado.

```
Tensoes internas [Pa]
Reacoes de apoio [N]
                        Deslocamentos [m]
                                                 Deformacoes []
                                                                          Forcas internas [N]
  7.50000000e+01]
                           0.00000000e+00]
                                                 [[ 2.38095238e-06]
                                                                              99.99999999]
                                                                                                   [[ 499999.99993346]
  1.33070728e-08]
                           -9.52380952e-07]
                                                    5.35714286e-06]
                                                                             224.99999998]
                                                                                                    [1124999.99991368]
                                                                           [-125.
 -2.250000000e+02]
                           0.00000000e+00]
                                                  [-2.97619048e-06]]
                                                                                                    [-625000.
  1.00000000e+02]
                           0.00000000e+00]
  1.50000000e+02]
                           1.60714286e-06]
  -1.00000000e+02]]
                           -4.01785714e-06]]
```

Figura 17 - output dos resultados

Assim como na abordagem do Ftool, conseguimos os mesmos valores na abordagem de nossa autoria para as variáveis de força interna, equivalente a -125, 225 e 100. Deslocamentos: -9.52m, 1.607m e -4.01m. Por fim as reações de apoio: 75N, -225N e 100N.

O software reconstrói a imagem do corpo para maior certeza da análise.

Figura 18 - imagem do corpo construída pelo software

5. MÉTODO UTILIZADO:

O software de simulação computacional necessita de um método de soluções numérico para o sistema de equações que visam diminuir o número de operações com muitas equações, principalmente se a matriz contém diversos elementos nulos. Além disso possibilita evitar instabilidades numéricas. As possibilidades de implementação poderiam ser os métodos de Gauss-Seidel ou de Jacobi que estão representados pela figura a seguir e podem ser selecionados no software.

Figura 19 - imagem de representação do funcionamento dos métodos de Gauss e Jacobi.

6. A CONSTRUÇÃO DA PONTE:

Utilizando o software desenvolvido e os conteúdos adquiridos, foi proposta a construção de uma ponte que cumprisse requisitos específicos e predeterminados. Esta ponte tinha como objetivo transpassar um vão livre de 400mm, e suportar a maior carga possível.

6.1. Os requisitos:

Para garantir que o modelo proposto se encontrava dentro dos requisitos determinados foi desenvolvida uma função específica (checaLimitações), capaz de informar onde se algum limite era rompido, e em qual ponto.

Essa foi essencial para o andamento do projeto, possibilitando o grupo visualizar onde existiam gargalos, e, aliando esta informação aos conhecimentos obtidos em aula, pensar em uma abordagem para contornar o problema.

6.2. O desenvolvimento:

Partindo de iterações anteriores e de inspirações obtidas no cotidiano, o grupo decidiu por desenhar uma ponte com suporte superior e inferior. Utilizando também estruturas conhecidas, como treliças e pontos de apoio, foi possível obter a estrutura que pode ser vista na figura 20.

Figura 20 - imagem da estrutura final da ponte

Nesta estrutura, a altura y=0 do plano cartesiano representa o nível do solo. Os pontos zero, oito, dezesseis, dezessete, dezoito, e vinte e cinco são pontos de apoio na estrutura pré existente, a qual representa os limites do vão livre. Os seis pontos de apoio são do tipo engaste, o qual restringe o movimento do nó nos eixos x e y.

Após análise inicial, foi constatado que a estrutura apresentada era capaz de suportar cargas acima do valor mínimo, além de possuir considerável relação carga-massa. Com isso o grupo optou por seguir com a estrutura, realizando apenas otimizações onde fosse possível.

6.3. Otimizações:

Utilizando as informações referentes às tensões em cada elemento e a função de cálculo das restrições, foi possível compreender quais elementos seriam beneficiados por um aumento em sua área de seção transversal. Este aumento reduziria as tensões sofridas e os deslocamentos de cada nó, possibilitando assim um aumento na carga aplicada na estrutura. Após inúmeras iterações o grupo atingiu valores que otimizam as áreas dos elementos, maximizando então a carga suportada pela ponte.

7. LIMITAÇÕES DO SOFTWARE E MÉTODO:

7.1. Software:

O software elaborado tem uma limitação em relação a distribuição de peso do corpo, pois está programado para simular o plano em duas dimensões, dessa forma desconsidera o eixo z.

7.2. Métodos:

Os métodos de Gauss-Seidel e Jacobi têm uma limitação de solução, pois apenas suportam sistemas lineares de dimensão 3 representados pela figura 19.

8. APLICAÇÕES:

O software desenvolvido tem grande potencial na análise de projetos físicos, mais especificamente na análise de sistemas estáticos. Ele se sobressai ainda mais na análise de estruturas

treliçadas. Ele facilita o cálculo de diversas variáveis de grande interesse durante o projeto de uma estrutura 2D, como as tensões internas, forças internas, reação dos apoios, entre outras.

Utilizando o software os engenheiros conseguem projetar e simular as suas estruturas rapidamente, testando diferentes parâmetros como a espessura de cada elemento, seu comprimento, etc. A visualização prévia da ponte projetada também ajuda e acelera o processo de desenvolvimento.

Há aplicações em estruturas como influência das cargas em estruturas de concreto que podem levar a fissuras e rupturas, estudo de limites de resistência dos materiais e cargas em vigas e colunas, em pontes e lajes que podem sofrer deformações, cisalhamento e flexão através de carregamentos.

9. Referências:

[1]CAVALCANTE, João Paulo de Barros. Análise estática de treliça via modelagem numérica. In: CAVALCANTE, João Paulo de Barros. Análise estática de treliça via modelagem numérica. Orientador: Dra. Marcilene Vieira da Nóbrega. 2011. Trabalho de conclusão de curso (Universidade Federal Rural do Semi-Árido) - Ciência e Tecnologia da Universidade Federal Rural do Semi-Árido, [S. 1.], 2011. Disponível em:

http://www2.ufersa.edu.br/portal/view/uploads/setores/270/TCC%20-%20BCT/TCC_JO%C3%83O%20PAULO%20DE%20BARROS%20CAVALCANTE.pdf. Acesso em: 13 abr. 2020.