- 1. Verify that the line y = 2x 3 from x = 1 to x = 5 has length $4\sqrt{5}$
 - (a) using the Pythagorean Theorem directly;
 - (b) using the arc length formula.
- 2. (**) Find the length of the curve $x = 3y^{4/3} \frac{3}{32}y^{2/3}$ from y = 1 to y = 8. Simplify your
- 3. **Set up** an integral for the length of each curve. (You can try to evaluate the integrals later, if possible.)
 - (a) $y = \sin x$ from x = 0 to $x = \frac{\pi}{2}$ (d) $x = y^2 + 5$ from y = -1 to y = 3

 - (b) $y = \frac{1}{x}$ from x = 1 to x = 4 (e) (*) $x = \sqrt[4]{5y 1}$ from y = 2 to y = 4
 - (c) (*) $y = \ln(\cos x)$ from x = 0 to $x = \frac{\pi}{3}$ (f) (*) $x = y \ln y$ from y = 1 to y = 2