HH/PSYC 6273 3.0 A Computer programming for experimental psychology Fall 2018

Instructor: Richard Murray rfm@yorku.ca

Lectures: Thursdays, 11:30 - 2:30

DB 2027

Website: http://www.yorku.ca/rfm/psyc6273

Textbook: MATLAB: A practical introduction to programming and

problem solving, fourth edition (Attaway, 2016)

Evaluation: six tests (10%), two problem sets (40%), term project (50%)

Overview. This graduate course covers computer programming methods that are useful in experimental psychology. The course assumes no previous programming experience, and brings students to the point where they are able to write useful programs to advance their own research. Classes are held in a computer laboratory, and each class consists of a lecture followed by programming practice on assigned problems. Topics include the MATLAB programming language, data files, curve fitting, Monte Carlo simulations, statistical tests, journal-quality data plots, 2D and 3D graphics, and interfacing to external devices.

LECTURE SCHEDULE

	topic	readings	tests etc.
13-Sep	introduction	chapter 1	
	vectors and matrices	chapter 2	
20-Sep	scripts and functions	chapter 3	
	if-elseif-else	chapter 4	
27-Sep	loops	chapter 5	test 1
	files, etc.	chapter 6	project proposal
4-Oct	the psychtoolbox		test 2
11-Oct	curve fitting		
18-Oct	monitor calibration		test 3
25-Oct	fall reading days; no class		
			problem set 1
1-Nov	image matrices, plots	chapter 11	test 4
7-Nov	data structures	chapter 8	
	bootstrapping		
15-Nov	bootstrapping		test 5
	strings	chapter 7	
22-Nov	statistical functions		
	MEX files, the GUI		problem set 2
29-Nov	simulations		test 6

The term project is due on Thursday, December 6.

Guidelines on plagiarism. An important part of learning how to program is discussing problems with other people, and reading other peoples' code. This makes it important to think about what constitutes plagiarism. Here are some guidelines. You can discuss assigned problems with others as much as you want, and read each others' code, but in the end you must do your own work. If you cut and paste someone else's code, you are plagiarizing. If you find yourself looking at someone else's code while writing your own, you are probably plagiarizing. If you memorize someone else's code and type it in without understanding how it works, you are plagiarizing. You should think of computer programming as problem solving, and it is important that you provide your own solutions to assigned problems. That said, discussions are an important part of solving difficult problems, and it is inevitable and acceptable that different peoples' solutions will end up being similar in some ways.