Universidad Autónoma de Madrid

FINAL MASTER THESIS

STRUCTURE AND STABILITY THEOREMS IN TOPOLOGICAL DATA ANALYSIS DRAFT

Author: Gonzalo Ortega Carpintero

Tutor: Manuel Mellado Cuerno

Abstract

This is a draft version of a in-work Master's thesis in TDA.

Key words

Contents

1	Preliminaries		1
	1.1	Persistence modules and the interleaving distance	1
	1.2	Barcodes, persistence diagrams and the bottleneck distance	4
	1.3	The Hausdorff and Gromov-Hausdorff distances	5
2	Structure Theorem		7
	2.1	Structure theorem for finitely generated modules over a principal ideal domain	7
	2.2	Structure theorem for persistence diagrams	7
3	Inte	Interleaving Stability Theorem	
4	Edelsbrunner & Harer's (Hausdorff) Stability Theorem		19
	4.1	Hausdorff Stability	20
	4.2	Bottleneck Stability	24
5	Gromov-Hausdorff's Stability Theorem		28
	5.1	Gromov-Hausdorff stability	28
6	Vectorizations' Stability Theorems		30
	6.1	Persistence landscapes	30
	6.2	Persistence images	30
	6.3	Euler curves	30

iii CONTENTS

Bibliography 30

Chapter 1

Preliminaries

The contents of this chapter are based on [1], [7], [8] and [9].

1.1 Persistence modules and the interleaving distance

Definition 1.1.1 (Graded ring). Let R be a ring. It is said that R is a **graded ring** if it can be decomposed into a direct sum of additive groups

$$R = \bigoplus_{n=1}^{\infty} R_n = R_1 \oplus R_2 \oplus \dots$$

such that for all $n, m \geq 0$,

$$R_n R_m = R_{n+m}.$$

Definition 1.1.2 (Graded ideal). Let R be a graded ring. A **graded ideal** is a two sided ideal $I \subseteq R$ that can be decomposed into a direct sum

$$I = \bigoplus_{n=1}^{\infty} I_n$$

where each $n \geq 0$, $I_n = I \cap R_n$.

Definition 1.1.3 (Left moudule, Definition IV.1.1.1 [6]). Let R be a ring. A **left** R-**module** is an abelian group (M, +) with an operation $\cdot : R \times M \to M$ such that for all $r, s \in R$ and for all $x, y \in M$,

(i)
$$(rs) \cdot x = r(s \cdot x)$$
,

(ii)
$$(r+s) = r \cdot x + s \cdot x$$
,

(iii)
$$r \cdot (x+y) = r \cdot x + r \cdot y$$
.

If R has a multiplicative identity 1, then M is said to be a **unitary** R-module and

(iv)
$$1 \cdot x = x$$
.

If R is a division ring, that is, a ring with identity where every non cero element is a unit, then a unitary R-module is called a **left** R-vector space. Note that in this case, R is in fact a field.

Definition 1.1.4 (Graded moudule, Definition 4.7 [9]). Let M be a left module over a graded ring R. It is said that M is a **left graded module** if it can be decomposed into a direct sum

$$M = \bigoplus_{n=1}^{\infty} M_n$$

if for each $n, m \geq 0$, $R_n M_m \subseteq M_{n+m}$.

Definition 1.1.5 (Persistence module). Let /F be a field and let T be a totally ordered set. Let $V = \{V_t\}_{t \in T}$ be a collection of F-vector spaces. A T-indexed **persistence** module is a pair (V, π) such that $\pi = \{\pi_{s \leq t}\}$ is a collection of linear maps $\pi_{s \leq t} \colon V_s \to V_t$ that verifies that for all $r, s, t \in T$,

$$\pi_{r < s} \circ \pi_{s < t} = \pi_{r < t}.$$

Definition 1.1.6 (Morphism between persistence modules). Let T be a totally ordered set. Let $(V, \pi), (W, \theta)$ be two persistence modules. A **morphism** between persistence modules $p: (V, \pi) \to (W, \theta)$ is a family of linear maps $p_t: V_t \to W_t$ such that for all $s \leq t$ the following diagram commutes:

$$V_s \xrightarrow{\pi_{s \leq t}} V_t$$

$$\downarrow^{p_s} \qquad \downarrow^{p_t}$$

$$W_s \xrightarrow{\theta_{s < t}} W_t$$

If a morphism i verifies that for all $t \in T$, $i_t \colon V_t \to V_t$ is the identity, then i is the **identity** morphism. If there exists two morphisms $p \colon (V, \pi) \to (W, \theta)$ and $q \colon (W, \theta) \to (V, \pi)$ such that the compositions $p \circ q$ and $q \circ p$ are both the identity morphism, then p and q are **isomorphisms** of persistence modules. In this case, (V, π) and (W, θ) are said to be **isomorphic** persistence modules.

For now on, to simplify notation, we will limit our totally order set to be the real numbers, $T = \mathbb{R}$. Also, when there is no possible confusion, we might denote the persistence module (V, π) by just is collection of vector spaces V.

Definition 1.1.7 (Persistence module shift). Let (V, π) be a persistence module and let $\delta \in \mathbb{R}$. The δ -shift of (V, π) is the persistence module $(V_{\delta}, \pi_{\delta})$ defined by taking

$$(V_{\delta})_t \coloneqq V_{t+\delta}, \qquad (\pi_{\delta})_{s \le t} \coloneqq \pi_{s+\delta \le t+\delta}.$$

Proposition 1.1.8 (Exercise 1.2.3, [8]). Let $\delta > 0$. Let $(V, \pi), (V_{\delta}, \pi_{\delta})$ be a persistence module and its shift. The map $\phi_{\delta} : (V, \pi) \to (V_{\delta}, \pi_{\delta})$, defined as

$$\phi_{\delta}(V_t) := \pi_{t < t + \delta}(V_t) = V_{t + \delta},$$

is a persistence module morphism.

Proof. As $\delta > 0$, then $t \leq t + \delta$. Hence

$$\phi_{\delta} \circ \pi_{t \leq t+\delta}(V_t) = \phi_{\delta}(V_{t+\delta}) = V_{t+\delta+\delta} = V_{t+2\delta},$$

$$\pi_{t+\delta \leq t+2\delta} \circ \phi_{\delta}(V_t) = \pi_{t+\delta \leq t+2\delta}(V_{t+\delta}) = V_{t+2\delta}.$$

Definition 1.1.9 (Shift morphism). The persistence module morphism ϕ_{δ} defined as in Proposition 1.1.8 is named δ -shift morphism.

Definition 1.1.10 (δ -interleaved modules). Let (V, π) , (W, θ) be two persistence modules and let $\delta > 0$. V and W are δ -interleaved if there exists two persistence module morphisms $\phi \colon V \to W_{\delta}$ and $\psi \colon W \to V_{\delta}$ such that the following diagrams commute:

$$V \xrightarrow{\phi} W_{\delta} \xrightarrow{\psi_{\delta}} V_{2\delta} , \qquad W \xrightarrow{\psi} V_{\delta} \xrightarrow{\phi_{\delta}} W_{2\delta} .$$

Persistence modules are a vast abstract algebraic tool. In order to make it more manejable, we give it some more structure, restricting the dimension of the vector spaces, Also, we limit as the amount of different up to isomorphism vector spaces there are.

Definition 1.1.11 (Tame persistence module). A a persistence module (V, π) over \mathbb{R} is tame if

- (i) For all $t \geq 0$, $\dim(V_t)$ is finite.
- (ii) For any $\varepsilon > 0$, there exists a finite subset $K \subset \mathbb{R}$ such that for all $t \in \mathbb{R} \setminus K$, the map $\pi_{t-\varepsilon \leq t+\varepsilon} \colon V_{t-\varepsilon} \to V_{t+\varepsilon}$ is not an isomorphism.

Definition 1.1.12 (Interleaving distance). Let (V, π) and (W, θ) be tame two persistence modules. The **interleaving distance** between them is defined as

$$d_{\text{int}}(V, W) := \inf\{\delta > 0 \mid V \text{ and } W \text{ are } \delta\text{-interleaved}\}.$$

Proposition 1.1.13. The interleaving distance between two tame persistence modules is actually a distance.

Definition 1.1.14 (Interval module). Let I = (a, b] be an interval with $b \leq \infty$ and let \mathbb{F} be a field. An **interval module** $\mathbb{F}(I)$ is a persistence module defined as

$$\mathbb{F}(I)_t := \begin{cases} & \mathbb{F} \text{ if } t \in I, \\ & 0 \text{ else,} \end{cases} \qquad \pi_{s \le t} = \begin{cases} & \text{Id if } t \in I, \\ & 0 \text{ else.} \end{cases}$$

Definition 1.1.15 (Direct sum of persistance modules). Let (V, π) and (V', π') be two persistence modules. Their **direct sum** (W, θ) is a persistence module where

$$W_t := V_t \oplus V_t'$$
, the direct sum of both vector spaces, and $\theta_{s \le t} := \pi_{s \le t} \oplus \pi_{s \le t}'$.

1.2 Barcodes, persistence diagrams and the bottleneck distance

Definition 1.2.1 (Barcode). A **barcode** B is a finite multiset of intervals. That is, a collection $\{(I_i, m_i)\}$ of intervals I_i with multiplicities $m_i \in N$, where each interval I_i is either finite of the form (a, b] or infinite of the form (a, ∞) . Each interval I_i is named to be a **bar** of B.

Given an interval I=(a,b], and some $\delta \geq 0$, we will denote

$$I^{\delta} \coloneqq (a - \delta, b + \delta].$$

We will denote the strict upper triangular region of the Euclidean plane as

$$\mathbb{R}^2 := \{ (x, y) \in \mathbb{R}^2 : x < y \},$$

and the diagonal of the plane as

$$\Delta := \{ (x, y) \in \mathbb{R}^2 : x = y \}.$$

Definition 1.2.2 (Persistence diagrams). Let I be a countable set. A persistence diagram is a function $D: I \to \mathbb{R}^2_{<}$.

Definition 1.2.3 (Multiset matching). Let X and Y be two multi-sets and let $X' \subseteq X$, $Y' \subseteq Y$. A **matching** between them is a bijection $\mu \colon X' \to Y'$. The elements in X' and Y' are said to be **matched** by μ .

Note that $X' = \text{coim}(\mu)$ and $Y' = \text{im}(\mu)$. Also note that as X and Y are multisets, it might happen that one same element appears several times in one of the multisets, ans that some, but not all of its copies are matched to some element in the other multiset.

Definition 1.2.4 (δ -matching barcodes). A delta matching between two barcodes B and C is a multiset matching that verifies

- 1. $B_{2\delta} \subseteq \operatorname{coim}(\mu)$,
- 2. $C_{2\delta} \subseteq \operatorname{im}(\mu)$,
- 3. If $\mu(I) = J$, then $I \subseteq J^{\delta}$ and $J \subseteq I^{\delta}$.

There are various ways of defining the bottleneck distance, all of them equivalent to one an other. We first give the natural definition that comes up following the use of δ -matchings.

Definition 1.2.5 (Bottleneck distance). The **bottleneck distance** between two barcodes B and C is the infimum over all $\delta \in \mathbb{R}$ such that there exists a δ -matching between B and C.

1.3 The Hausdorff and Gromov-Hausdorff distances

The Hausdorff distance is a way of measuring distances of different sets contained into a same metric space. This concept can be generalized defining a metric which allow us to measure distances between different metric spaces.

Definition 1.3.1 (Hausdorff distance). Let (M, d) be a metric space, and let $A \subseteq M$, $B \subseteq M$ two compact subspaces of M. Define the r-neighborhood of a set $S \subset M$ as

$$U_r(S) := \{x \in S \mid d(x, S) \le r\}.$$

The **Hausdorff distance** can be defined as

$$d_{\mathrm{H}}(A, B) := \inf \{ r > 0 \mid A \subset U_r(B) \text{ and } B \subset U_r(A) \}.$$

Definition 1.3.2 (Isometric metric spaces). Let $(X, d_X), (Y, d_Y)$ be metric spaces. X and Y are said to be **isometric** if there exists a bijective map $f: X \to Y$ such that distances are preserved. That is, for all $x_1, x_2 \in X$,

$$d_X(x_1, x_2) = d_Y(f(x_1), f(x_2)).$$

Definition 1.3.3 (Gromov-Hausdorff distance). Let $(X, d_X), (Y, d_Y)$ be metric spaces. The **Gromov-Hausdorff** distance is defined as

$$d_{\mathrm{GH}} \coloneqq \inf \left\{ r > 0 \mid \exists (Z, d_{\mathrm{H}}) \text{ metric space such that, } \exists X', Y' \subseteq Z, d_{\mathrm{H}}(X', Y'), r \right\},$$

where X', Y' are isometric spaces to X and Y respectively.

Definition 1.3.4 (Correspondence between sets).

Definition 1.3.5 (Distortion of a correspondance).

Proposition 1.3.6 (Theorem 7.3.25, [1]). Let $(X, d_X), (Y, d_Y)$ be two metric spaces. The Gromov-Housdorff distance between them can be characterized as

$$d_{\mathrm{GH}}((X, d_X), (Y, d_Y)) = \frac{1}{2} \inf_{\mathcal{R}} \mathrm{dis}(\mathcal{R})$$

Lemma 1.3.7 (Proposition 7.3.16, [1]). Gromov-Hausdorff distance satisfies the triangle inequality. That is, for any $(X_1, d_{X_1}), (X_1, d_{X_1}), (X_1, d_{X_1}),$

$$d_{\mathrm{GH}}(X_1, X_3) \le d_{\mathrm{GH}}(X_1, X_2) + d_{\mathrm{GH}}(X_2, X_3).$$

Theorem 1.3.8 (Theorem 7.3.30, [1]). Gromov-Hausdorff distance is in fact a metric over the space of isometry clases of compact metric spaces.

Chapter 2

Structure Theorem

2.1 Structure theorem for finitely generated modules over a principal ideal domain

Theorem 2.1.1 (Chapter IV, Theorem 6.12, [6]). Let M be a finitely generated module over a principal ideal domain R. There exist a finite sequence of proper ideals $(d_1) \supseteq (d_2) \supseteq \cdots \supseteq (d_n)$ such that

$$M \cong \bigoplus_{i=1}^{n} R/(d_i).$$

2.2 Structure theorem for persistence diagrams

The Structure Theorem for persistence modules is referred to as the "first miracle" of persistence homology [7]. This algebraic property allows to express a persistence module of finite type as a direct sum of finitely many interval modules. Its proof requires the algebraic structure theorem for finitely generated modules over a principal domain.

In addition to Theorem 2.1.1, we will use the following simple algebraic statement.

Proposition 2.2.1 (Proposition 4.6, [9]). An ideal $I \subseteq R$ is graded if and only if it is generated by homogeneous elements.

Proof. First, if I is a graded ideal $I = \bigoplus_p I^p$ and is generated by $\bigcup_p I^p$. Then, each

$$I^p = I \cap R^p \subseteq R^p$$

is a subset of homogeneous elements. Therefore, I is generated by homogeneous elements.

Now, let I be generated by a set X of homogeneous elements. For sure, $I \cap R^p \subseteq I$, so we just need to prove the converse inclusion. As I is generated by X, its elements $u \in I$ are of the form

$$u = \sum_{i} r_i x_i s_i, \tag{2.1}$$

for $r_i, s_i \in R$ and $x_i \in X$. And as $I \subseteq R$, also,

$$u = \sum_{p} u_{p},$$

for $u_p \in \mathbb{R}^p$. For every term in (2.1), we have

$$r_i = \sum_{j} r_{i,j}, \qquad \qquad s_i = \sum_{l} s_{i,l},$$

with each $r_{i,j}$, $s_{i,l}$ being homogeneous. Therefore, combining all we have that

$$u = \sum_{i} \sum_{j,l} r_{i,j} x_i s_{i,l}.$$
 (2.2)

Each term in (2.2) is homogeneous as is a product of homogeneous elements. Thus u_p is the sum of those terms, and u has degree p. Therefore $u_p \in I$ and $I \subseteq I \cap \mathbb{R}^p$.

Theorem 2.2.2 (Proposition 4.8, [9]). Let (V, π) be a persistence module. There exist a barcode $Bar(V, \pi)$, with $\mu \colon Bar(V, \pi) \longrightarrow \mathbb{N}$, the multiplicity of the barcode intervals, such as there is a unique direct sum decomposition

$$V \cong \bigoplus_{I \in \text{Bar}(V)} \mathbb{F}(I)^{\mu(I)}.$$
 (2.3)

Proof. V is of finite type, so it is a finite $\mathbb{F}[x]$ -module. As \mathbb{F} is a field, $\mathbb{F}[x]$ is a principal ideal domain, therefore, V is a finitely generated module over a principal ideal domain. Using Fact 2.1.1, V can be decompose in the direct sum of its free and torsion subgroups, $F \oplus T$. Thus, we have

$$F = \bigoplus_{i \ge q} x^i \cdot \mathbb{F}$$
$$T = \bigoplus_{i \ge q} R^i / I^i.$$

Each $x^i \cdot \mathbb{F}$ is isomorphic to ideals of the form (x^q) . By Proposition 2.2.1, each R^i/I^i is isomorphic to some quotient of graded ideals of the form $(x^p)/(x^r)$. Note that the free subgroup can be seen as a particular case of the torsion group taking r = 0. Thus V can be decompose as described in (2.3).

Chapter 3

Interleaving Stability Theorem

In this section we are going to give a detailed proof of the first stability theorem for persistence homology. This theorem is refer to as the "geometry miracle" of persistent homology, as it allows to describe an isometry between persistence modules and barcodes [7]. This shows that *small* changes in a data sets will perform *small* changes in their persistence modules, and therefore small changes in how persistent homology groups vary through time. The theorem claims that given two persistence modules, the distance between them using the interleaving distance, is the same as the distance between their barcodes using the bottleneck distance.

Theorem 3.0.1 (Interleaving Stability, Theorem 2.2.8, [8]). There is an isometry between a persistence module with the interleaving distance and its barcode with the bottleneck distance. That is, given two persistence modules V and W, it holds that

$$d_{int}(V, W) = d_{bot}(Bar(V), Bar(W)).$$

For the presented proof we have followed [8]. Hence, we will divide the proof into proving two complementary inequalities separately. This implies checking that if there exists a δ -matching between two given barcodes, then there exists a δ -interleaving morphism between, Proposition 3.0.3. Also, we need to check that, if there exists a δ -interleaving morphism between two persistence modules, then there exists a δ -matching between their barcodes, 3.0.11.

The first claim can be deduced from the Structure Theorem in a rather direct way, proving first the case where our modules are just interval modules.

Lemma 3.0.2 (Exercise 2.2.7, [8]). Let I, J be two δ -matched intervals. Then, their corresponding interval modules $(\mathbb{F}(I), \pi)$ and $(\mathbb{F}(J), \theta)$ are δ -interleaved.

Proof. Let I=(a,b], J=(c,d]. If ρ is the δ -matching between them, then $\rho(I)=J$ and, following Definition 1.2.4, $(a,b]\subseteq (c-\delta,d+\delta]$ and $(c,d]\subseteq (a-\delta,b+\delta]$, with $b-a>2\delta$

and $d-c>2\delta$. Then, the morphisms

$$\phi_{\delta} \colon \mathbb{F}(I) \to \mathbb{F}(J)_{\delta} \quad \text{and} \quad \psi_{\delta} \colon \mathbb{F}(J) \to \mathbb{F}(I)_{\delta}$$
$$\phi_{\delta}(\mathbb{F}(I)_{t}) \mapsto \mathbb{F}(J)_{(t+\delta)} \quad \psi_{\delta}(\mathbb{F}(J)_{t}) \mapsto \mathbb{F}(I)_{(t+\delta)}$$

are well defined as for any $t \in (a, b]$, $t + \delta \in (c, d]$, as $a + \delta > c$ and $b + \delta \leq d$. In the same way, for any $t \in (c, d]$, $t + \delta \in (a, b]$. Thus,

$$\psi_{\delta} \circ \phi_{\delta}(\mathbb{F}(I)_t) = \psi_{\delta}(\mathbb{F}(J)_{(t+\delta)}) = \mathbb{F}(I)_{(t+2\delta)} = \pi_{t \le t+2\delta}(\mathbb{F}(I)_t)$$

and

$$\phi_{\delta} \circ \psi_{\delta}(\mathbb{F}(J)_t) = \phi_{\delta}(\mathbb{F}(I)_{(t+\delta)}) = \mathbb{F}(J)_{(t+2\delta)} = \theta_{t \le t+2\delta}(\mathbb{F}(J)_t).$$

Therefore, ϕ_{δ} and ψ_{δ} are a pair of δ -interleaving morphisms.

Once we are able to build a δ -interleaving between two δ -matched interval modules, we will use the Structure Theorem for persistence modules to generalize the construction for arbitrary persistence modules. This will prove useful to prove the first inequality needed to prove Theorem 3.0.1.

Proposition 3.0.3 (Theorem 3.0.1, [8]). Given two persistence modules V, W, if there is a δ -matching between their barcodes, then there is a δ -interleaving morphism between them.

Proof. Suppose that $\rho: \operatorname{Bar}(V) \to \operatorname{Bar}(W)$ is a δ -matching between the barcodes of V and W. By the Structure Theorem 2.1.1, V and W decompose in a finite direct sum of interval modules

$$V \cong \bigoplus_{I \in \text{Bar}(V)} \mathbb{F}(I),$$
 $W \cong \bigoplus_{J \in \text{Bar}(W)} \mathbb{F}(W).$

We can express $V = V_Y \oplus V_N$, $W = W_Y \oplus W_N$ denoting

$$V_Y \cong \bigoplus_{I \in \operatorname{coim} \rho} \mathbb{F}(I),$$
 $V_N \cong \bigoplus_{I \in \operatorname{Bar}(V) \setminus \operatorname{coim} \rho} \mathbb{F}(I),$ $W_Y \cong \bigoplus_{J \in \operatorname{im} \rho} \mathbb{F}(J),$ $W_N \cong \bigoplus_{J \in \operatorname{Bar}(J) \setminus \operatorname{im} \rho} \mathbb{F}(J).$

The V_Y, W_Y modules separate the "yes, matched" intervals, from the V_N, W_N "not matched" intervals. For every interval $I \in \text{Bar}(V_Y)$, I is δ -matched to an interval $J \in \text{Bar}(W_Y)$ by $\rho(I) = J$. Thus, by Lemma 3.0.2, for all pair I, J of matched intervals, there exist a par of δ -interleaved morphisms

$$\phi_{\delta} \colon \mathbb{F}(I) \to \mathbb{F}(J)_{\delta} \quad \text{and} \quad \psi_{\delta} \colon \mathbb{F}(J) \to \mathbb{F}(I)_{\delta}$$

which induce the pair of δ -interleaved morphisms

$$\phi_{\delta} \colon V_{Y} \to W_{Y\delta}$$
 and $\psi_{\delta} \colon W_{Y} \to V_{Y\delta}$.

Not matched intervals are of length smaller than 2δ , therefore both, V_N and V_Y are δ -interleaved with the empty set. We can now construct the δ -interleaving morphism $\phi\colon V\to W$ such as $\phi|_{V_Y}=\phi_Y$ and $\phi|_{V_N}=0$. In a similar way, we also construct $\psi\colon W\to V$.

With Proposition 3.0.3 we have proven the first halve of Stability Theorem 3.0.1. Now we need to prove that we can build a δ -interleaving morphism from a δ -matching. To verify this claim we need several previous lemmas that will lead us to prove Proposition 3.0.3.

First, we will introduce some notation. Let (V, π) , (W, θ) be two persistence modules and let I = (b, d] be an interval with $d \in \mathbb{R} \cup \{+\infty\}$. Denote the set of bars of Bar(V) that start before b end exactly at d as

$$\operatorname{Bar}_{I-}(V) := \{(a, d] \in \operatorname{Bar}(V) : a \leq b\}.$$

Analogously, denote the set of bars that start at b and end after d as

$$\operatorname{Bar}_{I+}(V) := \{(b, c] \in \operatorname{Bar}(V) : c \ge d\}.$$

Lemma 3.0.4 (Proposition 3.1.1, [8]). Let I = (b, d] be an interval. It exists an injective morphism $\iota: (V, \pi) \in (W, \theta)$, then $\#(\operatorname{Bar}_{I-}(V)) \leq \#(\operatorname{Bar}_{I-}(W))$. Where $\#(\cdot)$ denotes the cardinal operator.

Proof. For b < s < d < r, denote the set of elements in V_d witch come from all V_s and disappear in all V_r as

$$E_{I-} = \bigcap_{b < s < d} \operatorname{im} \pi_{s \le d} \cap \bigcap_{r > d} \ker \pi_{d \le r} \subseteq V_d.$$

It holds that dim $E_{I-}(V) = \#(\text{Bar}_{I-}(V))$. For every morphism $p: (V, \pi) \to (W, \theta)$ the following diagram commutes

$$\begin{array}{c|c} V_s & \xrightarrow{\pi_{s \leq r}} V_r \\ p_s \downarrow & & \downarrow p_r \\ W_s & \xrightarrow{\theta_{s < r}} W_r \end{array}$$

This implies that

$$p_r(\operatorname{im} \pi_{s \le r}) \subseteq \operatorname{im} \theta_{s \le r}, \qquad p_s(\ker \pi_{s \le r}) \subseteq \ker \theta_{s \le r}.$$

Taking r = d, b < s < d in the first inclusion, and s = d, r > d in the second, we have that

$$p_d(\operatorname{im} \pi_{s \le d}) \subseteq \operatorname{im} \theta_{s \le d}, \qquad p_d(\ker \pi_{d \le r}) \subseteq \ker \theta_{d \le r},$$

and

$$p_d(E_{I-}(V)) \subseteq E_{I-}(W).$$

If we now take p as the injective morphism of the hypothesis, $p = \iota$, we get

$$\dim E_{I-}(V) \le \dim E_{I-}(W).$$

Lemma 3.0.5 (Exercise 3.1.3, [8]). Let I = (b, d] be an interval. It exists a surjective morphism $s: (V, \pi) \to (W, \theta)$, then $\#(\operatorname{Bar}_{I+}(V)) \ge \#(\operatorname{Bar}_{I+}(W))$.

Proof. Analogously to the proof of Lemma 3.0.4 we now define

$$E_{I+}(V) = \bigcap \operatorname{im} \pi_{d \le r}.$$

Therefore dim $E_{I+}(V) = \#(\text{Bar}_{I+}(V))$, and recalling the diagram used for the previous proof, and using the fact that is commutative, we have that

$$p_r(\operatorname{im} \pi_{s \le r}) \supseteq \operatorname{im} \theta_{s \le r}.$$

Taking s = d we then have that

$$p_d(E_{I+}(V)) \supseteq E_{I+}(W).$$

And finally, taking the surjective morphism p = s we have that

$$\dim E_{I-}(V) \ge \dim E_{I-}(W).$$

To build our δ -matching we first define two induced matchings, by an injection and by a surjection respectively. First, suppose that there exists an injection $\iota: V \to W$. For every $c \in \mathbb{R} \cup \{\infty\}$, sort the bars $(a_i, c] \in \text{Bar}(V)$, $i \in \{1, \ldots, k\}$ by decreasing length order,

$$(a_1, c] \supseteq (a_2, c] \supseteq \cdots \supseteq (a_k, c]$$
, with $a_1 \le a_2 \le \cdots \le a_k$.

Sort in the same manner the bars $(b_j, c] \in Bar(V), j \in \{1, \dots, l\},\$

$$(b_1, c] \supset (b_2, c] \supset \cdots \supset (a_k, c]$$
, with $b_1 < b_2 < \cdots < b_k$.

As there is an injection between V and W, Lemma 3.0.4 asures that the amount of bars in Bar(V) is lower that the amount in Bar(V), i.e., $k \leq l$. We define the *injective induced matching* $\mu_{inj} \colon Bar(V) \to Bar(W)$ matching, for each $c \in \mathbb{R} \cup \{\infty\}$, the intervals from both lists by decreasing length.

Lemma 3.0.6 (Proposition 3.1.5, [8]). If there exists an injection $\iota: (V, \pi) \in (W, \theta)$, then the induced matching $\mu_{inj}: Bar(V) \to Bar(W)$ satisfies:

- 1. $\operatorname{coim} \mu_{inj} = \operatorname{Bar}(V),$
- 2. $\mu_{inj}(a, c] = (b, c], \ \forall b \le a, \ \forall (a, d] \in Bar(V).$

Proof. Applying Lemma 3.0.4 with the interval $(a_k, c]$, we have that for each $c \in \mathbb{R} \cup \{\infty\}$, $\# \operatorname{Bar}_{(a_k, c]-}(V) \leq \# \operatorname{Bar}_{(a_k, c]-}(W)$, having $k \leq l$ as we note earlier. This means that every bar in $\operatorname{Bar}(V)$ is matched to some bar in $\operatorname{Bar}(W)$. Hence $\operatorname{coim} \mu_{inj} = \operatorname{Bar}(V)$. Moreover, as the matching is carried out in length descending order, for each $i \in \{1, \ldots, k\}$, $\mu_{inj}(a_i, c] = (b_i, c]$, and applying Lemma 3.0.4, now with the interval $(a_i, c]$, and making the same reasoning, $a_i \leq b_i$.

Now we suppose that there exists a surjection $\sigma: V \to W$. For every $a \in \mathbb{R}$, sort the intervals $(a, c_i] \in \text{Bar}(V)$, $i \in \{1, ..., k\}$ by decreasing length order as before,

$$(a, c_1] \supseteq (a, c_2] \supseteq \cdots \supseteq (a, c_k]$$
, with $c_1 \ge c_2 \ge \cdots \ge a_k$,

and again in the same manner, sort the intervals $(a, d_j] \in Bar(V), j \in \{1, \dots, l\},\$

$$(a, d_1] \supseteq (a, d_2] \supseteq \cdots \supseteq (a, d_l)$$
, with $d_1 \ge d_2 \ge \cdots \ge d_l$.

We define the surjective induced matching μ_{sur} : Bar $(V) \to \text{Bar}(W)$ matching, for each $a \in \mathbb{R}$, the intervals from both lists by decreasing length.

Lemma 3.0.7 (Exercise 3.1.8, [8]). If there exists a surjection $s: (V, \pi) \to (W, \theta)$, then the induced matching $\mu_{sur}: Bar(V) \to Bar(W)$ satisfies:

- 1. $\operatorname{im} \mu_{sur} = \operatorname{Bar}(W)$,
- 2. $\mu_{sur}(a, c] = (a, d], \forall c \ge d, \forall (a, d] \in Bar(V).$

Proof. Using Lemma 3.0.5 with the interval $(b, d_k]$ for each $b \in \mathbb{R}$, we get that, as there exists a surjection between the modules, now $k \geq l$. Therefore, every bar in Bar(W) is matched to some bar in Bar(V) and $Immu_{sur} = Bar(W)$. In an analogue way to the previous lemma, as the intervals in both lists are matched in a decreasing manner, for every $j \in \{1, \ldots, l\}$, $\mu_{sur}(a, c_j] = (a, d_j]$, and if we now apply Lemma 3.0.5, we get that $c_j \geq d_j$.

Hence, with the injective and the surjective induced matchings at hand, for a general morphism f, we can define the *induced matching* $\mu(f)$: Bar $(V) \to \text{Bar}(W)$, as the composition $\mu_{inj} \circ \mu_{sur}$, defined as im $\mu_{sur} = \text{Bar}(\text{im } f) = \text{coim } \mu_{inj}$.

The following lemma verifies that, in fact, the mapping between persistence modules with its morphisms and barcodes with induced matchings (either the injective or the surjective versions) has functorial properties between the two categories.

Lemma 3.0.8 (Claim 3.1.13, [8]). Let U, V and W persistence diagrams and f, g, h morphisms between them defined as in the following diagram:

$$U \xrightarrow{f} V \xrightarrow{g} W .$$

If all f, g, h are all injections, or all surjections, then the corresponding diagram formed by the barcodes of the modules, and their respective matchings commutes as well.

$$\operatorname{Bar}(U) \xrightarrow{\mu_*(f)} \operatorname{Bar}(V) \xrightarrow{\mu_*(g)} \operatorname{Bar}(W) .$$

Where μ_* denotes μ_{inj} or μ_{sur} accordingly.

Proof. Let f, g, h injective morphisms, by the definition of the injective induced matching and Lemma 3.0.4 for any $d \in \mathbb{R} \cup \{+\infty\}$, there exist $k \leq l \leq q$ such that the barcodes of U, V, W consist on the following bars:

$$Bar(U):(a_1,d]\supset\cdots\supset(a_k,d]$$

$$Bar(V):(b_1,d]\supset\cdots\supset(b_k,d]\supset\cdots\supset(b_l,d]$$

$$Bar(V):(c_1,d]\supset\cdots\supset(c_k,d]\supset\cdots\supset(c_l,d]\supset\cdots\supset(c_q,d].$$

Therefore, for any d the diagram connutes as

$$\mu_{inj}(f)(a_i, d] = (b_i, d], \ \mu_{inj}(g)(b_i, d] = (c_i, d], \ \mu_{inj}(h)(a_i, d] = (c_i, d]$$

for $1 \le i \le k$. If f, g, h were surjective morphisms, an analogue reasoning using the surjective induced matching definition and Lemma 3.0.5 completes the proof.

Finally, we can claim the two main lemmas from which we will construct our desired δ -matching.

Lemma 3.0.9 (Lemma 3.2.1, [8]). Let (V, π) , (W, θ) be δ -interleaved persistence modules, with δ -interleaving morphisms $\phi \colon V \to W_{\delta}$ and $\psi \colon W \to V_{\delta}$. Let $\phi \colon V \to \operatorname{im} \phi$ be a surjection and $\mu_{sur} \colon \operatorname{Bar}(V) \to \operatorname{Bar}(\operatorname{im} \phi)$ the induced matching. Then

- 1. $\operatorname{coim} \mu_{sur} \supseteq \operatorname{Bar}(V)_{\geq 2\delta}$,
- 2. $\lim \mu_{sur} = \operatorname{Bar}(\operatorname{im} \phi)$ and
- 3. $\mu_{sur}(b, d) = (b, d'), \ \forall (b, d) \in \text{coim } \mu_{sur}, \ d' \in [d 2\delta, d].$
- *Proof.* 1. To check the first part, we observe that, in the following diagram, the three morphisms are surjective as ϕ and $\pi_{t \leq t+2\delta}$ are defined onto their images, and the diagram conmutes,

$$V \xrightarrow{\phi} \operatorname{im} \phi \xrightarrow{\psi_{\delta}} \operatorname{im} \pi_{t \leq t+2\delta} .$$

Therefore, because of Lemma 3.0.8 the barcode diagram also conmutes:

$$\operatorname{Bar}(V) \xrightarrow{\mu_{sur}(\phi)} \operatorname{Bar}(\operatorname{im} \phi) \xrightarrow{\mu_{sur}(\psi_{\delta})} \operatorname{Bar}(\operatorname{im} \pi_{t \leq t+2\delta})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

By the definition of the surjective induced matching,

$$\operatorname{coim} \mu_{sur}(\pi_{t < t+2\delta}) = \operatorname{Bar}(V)_{>2\delta}.$$

For each starting point $a \in \mathbb{R}$, we have that

$$Bar(im \pi_{t < t+2\delta}) = \{(a, b - 2\delta] : (a, b] \in Bar(V), b - a > 2\delta\}.$$

Sorting all bars of $\operatorname{Bar}(V)$ and of $\operatorname{Bar}(\operatorname{im} \pi_{t \leq t+2\delta})$ in length-not-increasing order and matching the bars though the longest-first order, each bar $(a, b] \in \operatorname{Bar}(V)$ is matched with the bar $(a, b - 2\delta] \in \operatorname{Bar}(\operatorname{im} \pi_{t \leq t+2\delta})$ while $b - a > 2\delta$. The smaller bars are not matched. Thus,

$$\operatorname{coim} \mu_{sur}(phi) \supseteq \operatorname{coim} \mu_{sur}(\operatorname{im} \pi_{t \le t+2\delta}) = \operatorname{Bar}(V)_{\ge 2\delta}.$$

- 2. The second part is just a reformulation of Lemma 3.0.4.
- 3. Let $(b, d] \in \text{coim}$. There are two cases:

On one hand, if $d - b \le 2\delta$, (b, d] is matched to (b, d'] where $d \ge d'$, by definition of μ_{sur} . Also, d' > b and, as in this case we have $b \ge d - 2\delta$, we have $d' > d - 2\delta$. Therefore, $d' \in [d - 2\delta, d]$.

On the other hand, if $d-b>2\delta$, (b,d] is matched to (b,d'] by $\mu_{sur}(\phi)$, with $(b,d'] \in W_{\leq 2\delta}$. We can therefore use Lemma 3.0.7 to check that $d' \geq d$. In the same manner, (b,d'] is matched to (b,d''] by $\mu_{sur}(\psi)_{\delta}$ with $d'' \geq d'$. Finally, using the commutativity of the following diagram, we have that $(b,d'']=(b,d-2\delta]$, making $d' \in [d-2\delta,d]$.

Lemma 3.0.10 (Proposition 3.2.2, [8]). Let $(V, \pi), (W, \theta)$ be δ -interleaved persistence modules, with δ -interleaving morphisms $\phi \colon V \to W_{\delta}$ and $\psi \colon W \to V_{\delta}$. Let $\phi \colon V \to \operatorname{im} \phi$ be a injection and $\mu_{inj} \colon \operatorname{Bar}(\operatorname{im} \phi) \to \operatorname{Bar}(W_{\delta})$ the induced matching. Then

- 1. $coim \mu_{sur} = Bar(im \phi),$
- 2. im $\mu_{inj} \supseteq Bar(W_{\delta})_{\geq 2\delta}$ and
- 3. $\mu_{inj}(b, d') = (b', d'), (b, d') \in \operatorname{coim} \mu_{inj}, b' \in [b 2\delta, b].$

Proof. 1. Immediate using Lemma 3.0.6.

2. As $\phi_{\delta} \circ \psi = \theta_{t \leq t+2\delta}$ the following diagram commutes:

$$W \xrightarrow{\psi} \lim \psi \xrightarrow{\phi_{\delta}} W_{2\delta}$$

$$\xrightarrow{\theta_{t \le t + 2\delta}} W_{2\delta} .$$

This implies that im $\theta_{t \leq t+2\delta} \subseteq \text{im } \phi_{\delta} \subseteq W_{2\delta}$, so there are some injections j and i which make the following diagram commute as well:

$$\operatorname{im} \theta_{t \le t+2\delta} \xrightarrow{j} \operatorname{im} \phi_{\delta} \xrightarrow{i} W_{2\delta} \\
\theta_{t \le t+2\delta} \\$$

As all morphisms in the diagram abobe are injections, we can use the functorial properties of Lemma 3.0.8 having a commutative diagram of the barcodes of each of the previous persistence modules:

$$\operatorname{Bar}(\operatorname{im} \theta_{t \leq t+2\delta}) \xrightarrow{\mu_{inj}(j)} \operatorname{Bar}(\operatorname{im} \phi_{\delta}) \xrightarrow{\mu_{inj}(i)} \operatorname{Bar}(W_{2\delta})$$

We have that

$$Bar(im \, \theta_{t \le t+2\delta}) = \{(b, d-2\delta) : (b, d] \in Bar(W), b < d-2\delta\},$$

$$Bar(W_{2\delta}) = \{(b-2\delta, d-2\delta) : (b, d] \in Bar(W)\} \text{ and }$$

$$\mu_{inj}(\theta_{t < t+2\delta})((b, d-2\delta)) = (b-2\delta, 2-2\delta)$$

Therefore $\operatorname{im}_{\mu} inj(i) \supseteq \operatorname{im} \mu_{inj}(\psi_{t \leq t+2\delta}) = \operatorname{Bar}(W_{2\delta})_{2\delta}$. This, undoing the shifts made, make the prove.

3. Let $(b, d] \in \text{Bar}(\text{im } f_{\delta})$ such as for some b', $\mu_{inj}(b, d] = (b', d] \in \text{Bar}(W)$. Because of Lemma 3.0.6, $b' \leq b$. There are again two cases:

If
$$d - b \le 2\delta$$
, then $b' \ge d - 2\delta \ge b > b - 2\delta$ and $b' \in [b - 2\delta, b]$.

Else, if $d - b > 2\delta$, there exists an interval $(b' + 2\delta, d] \in \text{Bar}(\text{im } \theta_{t \le t + 2\delta})$ such that

$$\mu_{inj}(\theta_{t \le t+2\delta})(b'+2\delta, d] = \mu_{inj}(i)(b, d] = (a, d].$$

Thus, $b \le b' + 2\delta$ and $b' \in [b - 2\delta, b]$.

At last, we can now prove the other part of the Stability theorem. For so, we will construct a δ -matching out of a δ -interleaving morphism.

Proposition 3.0.11 (Theorem 3.0.2, [8]). Given two persistence modules V, W, with a δ -interleaving morphism between them, then there is a δ -matching between their barcodes.

Proof. Let $\mu(\phi) = \mu_{inj} \circ \mu_{sur}$ and let Φ_{δ} : Bar $(W_{\delta}) \to \text{Bar}(W)$ be the *shift map* that carries each bar (a, b] into $(a + \delta, b + \delta]$. The composition $\Phi_{\delta} \circ \mu(\phi)$ is a matching between

Bar(V) and Bar(W). Hence, using Lemma 3.0.10 and 3.0.9, we get the following diagram:

$$\operatorname{Bar}(V) \qquad \operatorname{Bar}(W_{\delta})_{\geq 2\delta} \qquad \operatorname{Bar}(W)_{\geq 2\delta}$$

$$\cup \qquad \qquad \cap \qquad \qquad \cap \qquad \qquad \cap \qquad \qquad \cap \qquad \qquad \\ \operatorname{Bar}(V)_{\geq 2\delta} \xrightarrow{\mu_{sur}} \operatorname{Bar}(\operatorname{im} f) \xrightarrow{\mu_{inj}} \operatorname{im} \mu_{inj} \xrightarrow{\Psi_{\delta}} \operatorname{Bar} B(W)$$

$$\cup \qquad \qquad \cup \qquad$$

The diagram shows that, by Lemma 3.0.9, a bar $(b, d] \in \text{Bar}(V)_{\geq 2\delta}$ is sent to $\mu_{sur}(b, d] = (b, d'] \in \text{Bar}(\text{im }\phi)$ with $d' \in [d - 2\delta, d]$. Then, by Lemma 3.0.9, it is sent to $\mu_{sur}(b, d'] = (b', d']$ with $b' \in [b-2\delta, b]$. At last, using the shift morphism Φ_{δ} it is carried to $(b' + \delta, d' + \delta]$.

This shows that any bar in $Bar(V)_{\geq 2\delta}$ is matched. In the same manner it can be seen that any bar in $Bar(W)_{\geq 2\delta}$ is matched. Thus, we have that

$$\begin{cases} d - 2\delta \le d' \le d \\ b - 2\delta \le b' \le b \end{cases} \Rightarrow \begin{cases} d - \delta \le d' + \delta \le d + \delta \\ b - \delta \le b' + \delta \le b + \delta \end{cases},$$

and therefore, $\Phi_{\delta} \circ \mu(\phi)$ is a δ -matching between Bar(V) and Bar(W).

The constructions made by Proposition 3.0.3 and Proposition 3.0.11 asure that given a δ -interleaving morphism we can build a δ -matching, and conversely, given a δ -matching we can build a δ -interleaving morphism. This means that if one of the two exists, it fixes a δ . Both the interleaving distance and the bottleneck distance try to minimice this δ , so once fixed for one of them, the other needs an smaller or equal δ' . Thus, with each of the propositions we can prove one of the inequalities needed to reach the isomorphism between the space of persistence diagrams and the space of their barcodes.

Theorem 3.0.1 (Interleaving Stability, Theorem 2.2.8, [8]). There is an isometry between a persistence module with the interleaving distance and its barcode with the bottleneck distance. That is, given two persistence modules V and W, it holds that

$$d_{int}(V, W) = d_{bot}(Bar(V), Bar(W)).$$

Proof. Suppose $d_{int}(V, W) = \delta$. Proposition 3.0.11 asures there exist a δ -matching between Bar(V) and Bar(W). As $d_{bot}(V, W)$ is the infimum δ for witch exists a δ -matching, $d_{bot}(V, W) \leq d_{int}(V, W)$. On the other hand, Proposition 3.0.3 leads, with the same reasoning, to $d_{int}(V, W) \leq d_{bot}(V, W)$. Thus, it has to be $d_{int}(V, W) = d_{bot}(Bar(V), Bar(W))$.

Chapter 4

Edelsbrunner & Harer's (Hausdorff) Stability Theorem

Persistence diagrams help summarize the information given by the homology groups of a filtration over a certain data set. They represent the birth and death of every feature in an easy to analice format scattering points over the upper half of the plane \mathbb{R}^2 and its diagonal Δ . Once we have computed the diagrams given by two datasets we can measure distances between them using the bottleneck distance, enabling us to decide wether two diagrams are close to each other. However, this would be kind of useless if the bottleneck distance were not stable. If minor differences in original data would cause great changes in the bottleneck distance between the corresponding persistence diagrams, then this data summary method would be as good as any other random method.

Fortunately for us, David Cohen-Steiner, Herbert Edelsbrunner and John Harer, proved in their 2005 paper that bottleneck distance over persistence diagrams is indeed stable [4]. This means that, when comparing the bottleneck distance between the persistence diagrams formed by the pre images of two tame functions, the first will be always lower or equal that the Lebesgue L_{∞} norm between the two functions.

Along this chapter we will follow Edelsbrunner et al. paper [4] to prove Theorem 4.0.4. To simplify notation, along this chapter we will adopt the following. Let $H_k(X)$ be the k-th singular homology group of a topological space X. The dimension of $H_k(x)$ is denoted by the k-th Betti number $\beta_k(X) := \dim H_k(x)$.

Let $f: X \to \mathbb{R}$, $x < y \in \mathbb{R}$. Denote the k-th homology group of the pre-image by f of an interval $(-\infty, x]$ as $F_x := H_k(f^{-1}(-\infty, x])$. Denote the inclusion map from the k-th homology group F_x to the k-th homology group F_y as $f_x^y: F_x \to F_y$. Finally, denote $F_x^y:= \operatorname{im} f_x^y$.

Note that if $y = \infty$, F_x^y is the trivial group. Also, if $x = \infty$, then $y = \infty$ too.

Definition 4.0.1 (Homological critical value). Let X be a topological space and let $f: X \to \mathbb{R}$. A **homological critical value** of f a number $a \in \mathbb{R}$ such that there exists

 $k \in \mathbb{Z}$ such that for all $\varepsilon > 0$, the morphism $H_k(f^{-1}(-\infty, a - \infty)) \to H_k(f_{-1}(-\infty, a + \varepsilon))$ is not an isomorphism.

Definition 4.0.2 (Tame function). A function $f: X \to \mathbb{R}$ is said to be **tame** if it has a finite number of homological critical values, and for all $z \in \mathbb{Z}$, and for all $a \in \mathbb{R}$, dim $F_a < \infty$.

Definition 4.0.3 (Multiplicity). Let $f: X \to \mathbb{R}$ be tame, and $(a_i)_{i=1,\dots,n}$ be its homological critical values. Take $(b_i)_{i=1,\dots,n}$ be an interleaved sequence of non critical values such that $b_{i-1} < a_i < b_i$ for all $i = 1, \dots, n$. Define $b_{-1} = a_0 = -\infty$, $b_{n+1} = a_{n+1} = \infty$. The **multiplicity** of $(a_i, a_j) \in D(f)$, denoted μ_i^j is

$$\mu_i^j := \beta_{b_{i-1}}^{b_j} - \beta_{b_i}^{b_j} + \beta_{b_i}^{b_{j-1}} - \beta_{b_{i-1}}^{b_{j-1}}.$$

The **total multiplicity** of a multiset A, denoted #(A) is the sum of the multiplicities of every element in A.

Note that the total multiplicity of a multiset is the the generalized concept of cardinality of a normal set. While the cardinality of a set counts the number of elements in the set, the multiplicity of a multiset counts how many elements, different or not, are there in the multiset.

Theorem 4.0.4 (Main Theorem, [4]). Let X be a triangulable space, and $f, g: X \to \mathbb{R}$ continuous tame functions. Then,

$$d_{\text{bot}}(D(f), D(g)) \le ||f - g||_{\infty}$$

4.1 Hausdorff Stability

We will denote the closed upper left quadrant of a point $(x, y) \in \mathbb{R}^2$ as $Q_x^y := [-\infty, x] \times [y, \infty]$.

Lemma 4.1.1 (k-Triangle Lemma, [4]). Let $f: X \to \mathbb{R}$ be a tame function, $x < y \in \mathbb{R}$ be non critical values of f. Then the multiplicity μ of the persistence diagram of f in the closed upper left quadrant is

$$\mu = \#(D(f) \cap Q_x^y) = \beta_x^y.$$

Proof. Let $x = b_i$, $y = b_{i-1}$.

$$\mu = \sum_{k \le i \le j \le l} \mu_k^l = \sum_{k \le i \le j \le l} \beta_{b_{k-1}}^{b_l} - \beta_{b_k}^{b_l} + \beta_{b_k}^{b_{l-1}} - \beta_{b_{k-1}}^{b_{l-1}}$$

$$(4.1)$$

$$= \beta_{b_{-1}}^{b_{n+1}} - \beta_{b_i}^{b_{n+1}} + \beta_{b_i}^{b_{j-1}} - \beta_{b_{j-1}}^{b_{-1}} = \beta_{b_k}^{b_{l-1}} = \beta_x^y.$$

$$(4.2)$$

The fist two equalities in (4.1) are just the definition of total multiplicity. In (4.2), note that every other term in the sum cancels. Then note that $\beta_{b-1}^{b_{n+1}} = \dim F_{-\infty}^{\infty}$, $\beta_{b_i}^{b_{n+1}} = \dim F_x^{\infty}$ and $\beta_{b_{j-1}}^{b-1} = \dim F_{-\infty}^{y}$. All of them are the dimension of the trivial group, therefore, equal to 0. This leaves only one remaining term and completes the proof. \square

Denote the **upper left quadrants** $Q := Q_b^c = [-\infty, b] \times [c, \infty], \ Q_{\varepsilon} := Q_{b-\varepsilon}^{c+\varepsilon} = [-\infty, b-\varepsilon] \times [c+\varepsilon, \infty].$

Lemma 4.1.2 (Quadrant Lemma, [4]). Let $f, g: X \to \mathbb{R}$ be two tame functions. With the notation abobe, the following inequality holds,

$$\#(D(f), \cap Q_{\varepsilon}) \le \#(D(g) \cap Q).$$

Proof. Let $\varepsilon := ||f - g||_{\infty}$. Hence, considering the pre-image of the functions, we have the following inclusions

$$f^{-1}((-\infty, x]) \subseteq g^{-1}((-\infty, x + \varepsilon)), \tag{4.3}$$

$$g^{-1}((-\infty, x]) \subseteq f^{-1}((-\infty, x + \varepsilon)). \tag{4.4}$$

Name $\varphi_x \colon F_x \to G_{x+\varepsilon}$ to the inclusion map induced by (4.3) and $\psi_x \colon G_x \to F_{x+\varepsilon}$ to the inclusion map induced by (4.4). Let $b < c \in \mathbb{R}$. With the described maps, we can form commutative diagram (4.5) where we observe that

$$\operatorname{im}(f_{c-\varepsilon}^{c+\varepsilon}) = F_{c-\varepsilon}^{c+\varepsilon} \subseteq \psi_c \circ g_b^c(G_b) = \psi_c(G_b^c).$$

$$F_{b-\varepsilon} \xrightarrow{f_{b-\varepsilon}^{c+\varepsilon}} F_{c+\varepsilon}$$

$$\varphi_{b-\varepsilon} \downarrow \qquad \qquad \uparrow \psi_c$$

$$G_b \xrightarrow{g_b^c} G_s$$

$$(4.5)$$

Last inclusion is enough for the requirements of this proof, never the less, we will make one more note that will be useful latter on, through the proof of Lemma 4.1.3. Fit the maps so that they describe commutative diagram (4.6), showing that

$$\psi_c(G_b^c) = \psi_c \circ g_b^c(G_b) = f_{b+\varepsilon}^{c+\varepsilon} \circ \psi_b(G_b) \subseteq F_{b+\varepsilon}^{c+\varepsilon}.$$

$$F_{b+\varepsilon} \xrightarrow{f_{b+\varepsilon}^{c+\varepsilon}} F_{c+\varepsilon}$$

$$\varphi_b \uparrow \qquad \qquad \uparrow \psi_c$$

$$G_b \xrightarrow{g_b^c} G_c$$

$$(4.6)$$

From both diagrams we finally obtain the inclusion chain

$$F_{c-\varepsilon}^{c+\varepsilon} \subseteq \psi_c(G_b^c) \subseteq F_{b+\varepsilon}^{c+\varepsilon}. \tag{4.7}$$

By Lemma 4.1.1, we are able to count the elements in the intersection of the diagrams with the upper left quadrants. Hence

$$\#(D(f) \cap Q_{\varepsilon}) = \beta_{b-\varepsilon}^{c+\varepsilon} = \dim F_{b-\varepsilon}^{c+\varepsilon},$$

$$\#(D(g) \cap Q) = \beta_b^c = \dim G_b^c.$$

As if one homology group is contain in an other, the dimension of the first must be lower or equal to the one of the second. Also, the dimension is invariant under inclusion maps. Thus, the first inclusion of (4.7) asserts that $F_{c-\varepsilon}^{c+\varepsilon} \subseteq \psi_c(G_b^c)$ and therefore we have proven that $\dim F_{c-\varepsilon}^{c+\varepsilon} \leq \dim G_b^c$.

Before next lemma we will introduce some new notation. Let $f: X \to \mathbb{R}$ fe a tame function. Let $w < x < y < z \in \mathbb{R}$ be numbers different from critical values of f. Recall that $F_x = H_k(f^{-1}(-\infty, x]), f_x^y: F_x \to F_y$ and $F_x^y = \dim f_x^y$. We denote

$$f_x^{y,z} \coloneqq f_y^z|_{F_x^y}, \qquad \qquad F_x^{y,z} \coloneqq \dim f_x^{y,z}.$$

Note, from linear algebra, that $\dim F_x^{y,z} = \dim F_x^y - \dim F_x^z$. Note too that $F_w^y \subseteq F_x^y$. Therefore, $\ker F_w^y \subseteq \ker F_x^y$ and we can define the quotient

$$F_{w,x}^{y,z} := F_x^{y,z}/F_w^{y,z}.$$

Let $a < b < c < d \in \mathbb{R}$. Denote the **rectangles** $R := [a, b] \times [c, d], R_{\varepsilon} := [a + \varepsilon, b - \varepsilon] \times [c + \varepsilon, d - \varepsilon].$

Lemma 4.1.3 (Box Lemma, [4]). With the notation abobe, the following inequality holds,

$$\#(D(f), \cap R_{\varepsilon}) \le \#(D(g) \cap R).$$

Proof. Note that we can assume that $a + \varepsilon < b - \varepsilon$ and $c + \varepsilon < d - \varepsilon$. Otherwise there would not be rectangle R_{ε} . Also note that

$$\#(D(f) \cap R_{\varepsilon}) = \dim F_{a+\varepsilon,b-\varepsilon}^{c+\varepsilon,d-\varepsilon}$$
$$\#(D(g) \cap R) = \dim G_{a,b}^{c,d}$$

To make our prove we draw diagram 4.1. Lets analice every element of the diagram.

First of all, the middle upside arrows, are

$$u_2 = f_{a+\varepsilon}^{c+\varepsilon,d-\varepsilon},$$
 $u_3 = f_{b-\varepsilon}^{c+\varepsilon,d-\varepsilon}.$

Right arrows r_1, r_2, r_3, r_4 represent the inclusions from its respective vector spaces to their destination. The objetive is to define que respective quotients to define $G_{a,b}^{c,d}$. Recall the inclusion maps defined in the proof of Lemma 4.1.2, $\varphi_x \colon F_x \to G_{x+\varepsilon}$ and $\psi_x \colon G_x \to F_{x+\varepsilon}$. We define

$$E_b^c := \psi_c^{-1}(F_{b-\varepsilon}^{c+\varepsilon,d-\varepsilon}) \cap G_b^c, \qquad E_a^c := G_a^c \cap E_b^c.$$

We have then that the outer upside arrows are the respective restrictions

$$u_1 = g_a^{c,d}|_{E_a^c},$$
 $u_4 = g_b^{c,d}|_{E_b^d}.$

We denote

$$s_1 \coloneqq \varphi_{d-\varepsilon}|_{F_{b-\varepsilon}^{d-\varepsilon}}, \qquad \qquad s_2 \coloneqq \psi_c|_{E_a^c}, \qquad \qquad s_3 \coloneqq \psi_c(G_b^c)|_{E_b^c}.$$

By the inclusions (4.7), we have that

$$\varphi_{d-\varepsilon}(F_{b-\varepsilon}^{d-\varepsilon}) \subseteq G_b^d, \qquad \psi_c(G_a^c), \subseteq F_{a+\varepsilon}^{c+\varepsilon} \qquad F_{b-\varepsilon}^{c+\varepsilon} \subseteq \psi_c(G_b^c).$$

Note that by the manner we have define the diagram, it need to be that

$$\operatorname{im}(s_3) = \ker(u_3), \qquad \operatorname{im}(s_1) \subseteq G_b^d.$$

Also, we can observe that $u_4 = s_1 \circ u_3 \circ s_3$. As $u_3 \circ s_3 = 0$, then $E_b^c = \ker(u_4)$. Also, as $r_1 \circ u_1 = u_4 \circ r_4 = 0$ and r_1 is the inclusion, then $E_a^c = \ker(u_1)$. Hence, we can write

$$E_b^c = E_b^{c,d} \subseteq G_b^{c,d}, \qquad \qquad E_a^c = E_a^{c,d} \subseteq G_a^{c,d}.$$

As $E_a^{c,d} = E_b^{c,d} \cap G_a^{c,d}$, the following quotient inclusion holds

$$E_{a,b}^{c,d} = E_b^{c,d} / E_a^{c,d} \subseteq G_b^{c,d} / G_a^{c,d} = G_{a,b}^{c,d}$$

Therefore, we have

$$\dim(E_{a,b}^{c,d}) \le \dim(G_{a,b}^{c,d}).$$

Now note that

$$E_{a,b}^{c,d} = \ker(u_4)/\ker(u_1),$$
 $F_{a+\varepsilon,b+\varepsilon}^{c+\varepsilon,d+\varepsilon} = \ker(u_3/\ker(u_2)).$

By construction $s_3(\ker(u_4)) = \ker(u_3)$. As for every $x \in \ker(u_1)$, $r_2 \circ u_2 \circ s_2(x) = u_3 \circ s_3 \circ r_4(x) = 0$, and r_2 is an injection, then $s_3(\ker(u_1)) = s_2(\ker(u_1)) \subseteq \ker(u_2)$, we get

$$\dim(F_{a+\varepsilon,b+\varepsilon}^{c+\varepsilon,d+\varepsilon}) \le \dim(E_{a,b}^{c,d}).$$

Hence, the desired inequality is hold as we have seen that

$$\#(D(f) \cap R_{\varepsilon}) = \dim F_{a+\varepsilon,b-\varepsilon}^{c+\varepsilon,d-\varepsilon} \le \dim(E_{a,b}^{c,d}) \le \dim(G_{a,b}^{c,d}) = \#(D(g) \cap R).$$

Theorem 4.1.4 (Hausdorff Stability).

$$d_{H}(D(f), D(g)) \leq ||f - g||_{\infty}.$$

Proof. As a direct consequence of Lemma 4.1.3 if $(x,y) \in D(f)$ then there must exist some point at D(g) at distance less than or equal to $\varepsilon = ||f - g||_{\infty}$ from (x,y) since the total multiplicity of $D(g) \cap R_{\varepsilon}$ is at least one.

4.2 Bottleneck Stability

In this section we are going to prove Theorem 4.0.4.

Definition 4.2.1 (Very close tame functions). Let $f, g: X \to \mathbb{R}$ be tame functions. We define

$$\delta_f = \min\{\|p - q\|_{\infty} : p \in D(f) \setminus \Delta, \ q \in D(f), \ p \neq q\}.$$

We say that g is **very close** to f if $||f - g||_{\infty} < \delta_f/2$.

Lemma 4.2.2 (Easy Bijection Lemma, [4]). Let $f, g: X \to \mathbb{R}$ be tame functions, where g is very close to f. Then, following holds,

$$d_{\mathrm{bot}}(D(f), D(g)) \le ||f - g||_{\infty}.$$

Proof. Let $p := (a_i, a_j) \in D(f) - \Delta$ be a point in the diagram of f that is not in the diagonal, and let $\mu := \beta_i^j$ denote its multiplicity. Let S_{ε} be the square of center p and radius $\varepsilon = \|f - g\|_{\infty}$. That is, the square of side 2ε . By definition of the square S_{ε} we have that the number of points of its intersection with the diagram of g must be grater or equal than the multiplicity at p. Hence, by the Box Lemma 4.1.3 we have

$$\mu < \#(D(q) \cap S_{\varepsilon}) < \#(D(f) \cap S_{2\varepsilon}).$$

As g is very close to f, we have $2\varepsilon \leq \delta_f$. Hence p is the only point of D(f) in S_{ε} , and therefore the previous inequality is in fact an equivalence. If there was a point in the intersection which was not in μ then it would be inside the square S_{ε} and meaning the distance ||f - g|| would be smaller. That is

$$\mu = \#(D(g) \cap S_{\varepsilon}).$$

Hence we can map every point in $D(g) \cap S_e psilon$ with p. We can then repeat this process for every other $p \in D(f) \setminus \Delta$. After this process, every point of D(g) which have not been matched jet, must be at distance grater than ε from $D(f) \setminus \Delta$. By Theorem 4.1.4, every unmatched point must be at distance at most ε from the diagonal Δ . Hence, if we map each of this points to Δ , we have built a bijection between D(f) and D(g) that moves each point at most ε .

Definition 4.2.3. Let \hat{f}, \hat{g} be two picewise linear functions over a simplicial complex K. Let $\lambda \in [0,1]$. A **convex combination** of \hat{f} and \hat{g} is a function of the form

$$h_{\lambda} := (1 - \lambda)\hat{f} + \lambda \hat{g}.$$

Lemma 4.2.4 (Interpolation Lemma, [4]). Let K be a simplicial complex. Take two picewise linear functions $\hat{f}, \hat{g} \colon K \to \mathbb{R}$. Then, following holds,

$$d_{\mathrm{bot}}(D(\hat{f}), D(\hat{g})) \le \|\hat{f} - \hat{g}\|_{\infty}.$$

Proof. Let $c := \|\hat{f} - \hat{g}\|_{\infty}$. For every $\lambda \in [0, 1]$, define $\delta(\lambda) := \delta_{h_{\lambda}} > 0$. Let J_{λ} denote open intervals around each δ as follows, and consider the set C of all J_{λ} be

$$C := \left\{ J_{\lambda} := \left(\lambda - \frac{\delta(\lambda)}{4c}, \lambda + \frac{\delta(\lambda)}{4c} \right) \right\}.$$

The set C is an open cover of the interval [0,1]. Let C' be the minimal subcover of C. As [0,1] is compact, the subcover C' must be finite. Consider then $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ the midpoints of the intervals in C'. As C' is minimal, the each intersection $J_{\lambda_i} \cap J_{\lambda_{i+1}}$ is not empty. Hence

$$\lambda_i + \lambda_{i+1} \le \frac{\delta(\lambda_i) + \delta(\lambda_{i+1})}{4c} \le \frac{\max\{\delta(\lambda_i), \delta(\lambda_{i+1})\}}{2c}.$$

Therefore, by definition of c and each h_{δ_i} , it holds

$$||h_{\delta_i} - h_{\delta_{i+1}}||_{\infty} = c(\lambda_{i+1} - \lambda_i) \le \frac{\max\{\delta(\lambda_i), \delta(\lambda_{i+1})\}}{2}.$$

This implies that h_{δ_i} is very close to $h_{\delta_{i+1}}$ or viceversa. Then, by Lemma 4.2.2, for every $1 \le i \le n-1$,

$$d_{\text{bot}}(D(h_{\lambda_i}), D(h_{\lambda_{i+1}})) \le ||h_{\lambda_i} - h_{\lambda_{i+1}}||_{\infty}.$$
 (4.8)

Let $\lambda_0 = 0$ and $\lambda_{n+1} = 1$. Then $h_{\lambda_0} = \hat{f}$ is very close to h_{λ_1} and $h_{\lambda_1} = \hat{g}$ is very close to h_{λ_n} and therefore (4.8) also holds for i = 0 and i = n + 1. Finally, using the triangle inequality we have

$$d_{\text{bot}}(D(\hat{f}), D(\hat{g})) \le \sum_{i=0}^{n} d_{\text{bot}}(D(h_{\lambda_i}), D(h_{\lambda_{i+1}})) \le \sum_{i=0}^{n} \|h_{\lambda_i} - h_{\lambda_{i+1}}\|_{\infty} = \|\hat{f} - \hat{g}\|_{\infty}.$$

For the final prove lets recall

Definition 4.2.5 (Star of a simplicial complex). Let σ be a simplex in a simplicial complex L. The **star** $St(\sigma)$ of σ is the set of simplices in L which contain σ as a face. The **star of a subset** K of L, denoted St(K), is the union of the stars of each simplex of K.

Theorem 4.0.4 (Main Theorem, [4]). Let X be a triangulable space, and $f, g: X \to \mathbb{R}$ continuous tame functions. Then,

$$d_{\text{bot}}(D(f), D(g)) \le ||f - g||_{\infty}$$

Proof. As X is triangulable, there exists a finite simplicial complex L and a homeomorphism $\Phi \colon L \to X$. Hence a persistence diagram is invariant under this change of variables. That is, $f \circ \Phi \colon L \to \mathbb{R}$ is tame and $D(f \circ \Phi) = D(f)$. Since f and g are continuous and L is compact, for every $\delta < 0$ there exists a subdivision K of L such that for every u, v points of a common simplex $\sigma \in K$,

$$|f \circ \Phi(u) - f \circ \Phi(v)| \le \delta,$$

$$|g \circ \Phi(u) - g \circ \Phi(v)| < \delta.$$

Let $\hat{f}, \hat{g} \colon \operatorname{St}(K) \to \mathbb{R}$ be the picewise linear interpolations of $f \circ \Phi$ and $g \circ \Phi$ on K. By construction of K and the definition of the L_{∞} -norm, this interpolations satisfy

$$\|\hat{f} - f \circ \Phi\|_{\infty} \le \delta,$$

$$\|\hat{g} - g \circ \Phi\|_{\infty} \le \delta.$$

Hence, by Lemma 4.2.4 and the triangle inequality

$$d_{\text{bot}}(D(\hat{f}), D(\hat{g})) \le \|\hat{f} - \hat{g}\|_{\infty} \le \|f \circ \Phi - g \circ \Phi\|_{\infty} + 2\delta \le \|f - g\|_{\infty} + 2\delta.$$

Now, we can take some δ such that $\delta \leq \delta_f/2$ so \hat{f} is very close to f. This allows to use Lemma 4.2.2 to make a bijection that satisfy

$$d_{\text{bot}}(D(f), D(\hat{f})) \le d_{\text{bot}}(D(f \circ \Phi), D(\hat{f})) \le \delta.$$

Analogously, also assuring $\delta < \delta_g$ we also have

$$d_{\mathrm{bot}}(D(g),D(\hat{g})) \le d_{\mathrm{bot}}(D(g \circ \Phi),D(\hat{g})) \le \delta,$$

and therefore, by triangle inequality again,

$$d_{\mathrm{bot}}(D(f),D(g)) \le d_{\mathrm{bot}}(D(f),D(\hat{f})) + d_{\mathrm{bot}}(D(\hat{f}),D(\hat{g})) + d_{\mathrm{bot}}(D(\hat{g}),D(g)) \le 4\delta.$$

As this holds for any δ smaller that δ_f and δ_g , taking the limit when δ tends to 0, we complete the proof.

Chapter 5

Gromov-Hausdorff's Stability Theorem

5.1 Gromov-Hausdorff stability

Lemma 5.1.1 (Exercise 3.5.4, [1]). Any finite metric space of cardinality n can be isometrically embedded into (\mathbb{R}^n, ℓ^n) .

Lemma 5.1.2 (Lemma VII, [5]). Let $X \subset \mathbb{R}^n$ and $\alpha > 0$. Then the α -Čech and the α -Rips complexes coincide when using the ℓ^{∞} -norm. That is

$$\check{C}_{\alpha}(X, \ell^{\infty}) = R_{\alpha}(X, \ell^{\infty}).$$

Definition 5.1.3 (Paracompact space). Let X be a topological space. It is said to be **paracompact** if for all covering U of X, there exists $\mathcal{V} \subseteq \mathcal{U}$ such that \mathcal{V} is a finite covering.

Definition 5.1.4 (Good cover).

Lemma 5.1.5 ([3]). Let $S \subset S'$ be two paracompact spaces. Let $\mathcal{U} = \{U_x\}_{x \in A}$, $\mathcal{U}' = \{U'_x\}_{x \in A'}$ be two good covers of S and S' respectively, based on finite parameter sets $A \subset A'$ such that $U_x \subset U'_x$ for all $x \in A$. Then the homotopy equivalences $\mathcal{N}\mathcal{U} \to S$ and $\mathcal{N}\mathcal{U}' \to S'$ commute with the canonical inclusions $S \to S'$ and $\mathcal{N}\mathcal{U} \to \mathcal{N}\mathcal{U}'$ at homology level.

Theorem 5.1.6 (Theorem 3.1, [2]). Let (X, d_X) , (Y, d_Y) be finite metric spaces. Then, for any $k \in \mathbb{N}$.

$$d_{\text{bot}}(D_k(\mathcal{R}(X, d_X)), D_k(\mathcal{R}(Y, d_Y))) \le d_{\text{GH}}((X, d_X), (Y, d_Y)).$$

Proposition 5.1.7. Let (X, d_X) , (Y, d_Y) be finite metric spaces. Then, for any $k \in \mathbb{N}$, the bottleneck distance

$$d_{\text{bot}}(D_k(\mathcal{R}(X, d_X)), D_k(\mathcal{R}(Y, d_Y))),$$

is a tight lower bound of

$$d_{\mathrm{GH}}((X,d_X),(Y,d_Y)).$$

That is, it is the largest possible lower bound.

Theorem 5.1.8. Let (X, d_X) , (Y, d_Y) be finite metric spaces endowed with the functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then

$$d_{\text{bot}}(D_k(\mathcal{R}(X, d_X, f)), D_k(\mathcal{R}(Y, d_Y, g))) \le d_{\text{GH}}^1((X, d_X, f), (Y, d_Y, g)).$$

Chapter 6

Vectorizations' Stability Theorems

- 6.1 Persistence landscapes
- 6.2 Persistence images
- 6.3 Euler curves

Bibliography

- [1] Burago, D., Burago, Y., and Ivanov, S. A Course in Metric Geometry. American Mathematical Society, 2001.
- [2] Chazal, F., Cohen-Steiner, D., Guibas, L. J., Mémoli, F., and Oudot, S. Y. Gromov-hausdorff stable signatures for shapes using persistence. *Eurographics Symposium on Geometry Processing* (2009).
- [3] Chazal, F., and Oudot, S. Y. Towards persistence-based reconstruction in euclidean spaces. *Institut National de Reerche en Informatique et en Automatique* (2008).
- [4] EDELSBRUNNER, H., COHEN-STEINER, D., AND HARER, J. Stability of persistence diagrams. *University of Chicago* (2005).
- [5] Ghrist, R., and Muhammad, A. Coverage and hole-detection in sensor networks via homology. Fourth International Symposium on Information Processing in Sensor Networks (2005).
- [6] HUNGERFORD, T. W. Algebra. Springer, 2000.
- [7] NANDA, V. Computational algebraic topology, lecture notes. *University of Oxford* (2020).
- [8] POLTEROVICH, L., ROSEN, D., SAMVELYAN, K., AND ZHANG, J. Topological Persistence in Geometry and Analysis. American Mathematical Society, 2020.
- [9] Wang, K. G. The basic theory of persistent homology. University of Chicago (2012).