Variational Learning for Sparse GP

Background

Given observation vectors \boldsymbol{x} and \boldsymbol{y} , we want to find the latent function value \boldsymbol{f} . Our goal is the posterior distribution $p(\boldsymbol{f}|\boldsymbol{y}) \propto (\boldsymbol{y}|\boldsymbol{f})p(\boldsymbol{f})$ through maximizing the log marginal likelihood $\log p(\boldsymbol{y}) = \log[N(\boldsymbol{y}|\boldsymbol{0}, \sigma^2 I + K_{nn})]$, which uses $O(n^3)$ time.

Principles behind Variational Inference in Sparse GP

Besides latent variable f, let us introduce two new latent variables f_m and z. f_m , named inducing variables, are function values evaluated at pseudo-inputs X_m , which live in the same space as training inputs x but are independent from them. For latent variable z, it is any set of true function values.

Remember that we want posterior p(f|y), we can describe it by predictive distribution p(z|y)

$$p(\boldsymbol{z}|\boldsymbol{y}) = \iint p(\boldsymbol{z}, \boldsymbol{f}, \boldsymbol{f}_m|\boldsymbol{y}) d\boldsymbol{f} d\boldsymbol{f}_m$$
$$= \iint p(\boldsymbol{z}|\boldsymbol{f}, \boldsymbol{f}_m, \boldsymbol{y}) p(\boldsymbol{f}, \boldsymbol{f}_m|\boldsymbol{y}) d\boldsymbol{f} d\boldsymbol{f}_m$$
$$= \iint p(\boldsymbol{z}|\boldsymbol{f}, \boldsymbol{f}_m) p(\boldsymbol{f}, \boldsymbol{f}_m|\boldsymbol{y}) d\boldsymbol{f} d\boldsymbol{f}_m$$

Now we want to use q(z) to approximate p(z|y), i.e., $q(z) \approx p(z|y)$:

If we can approximate the posterior distribution $p(\mathbf{f}, \mathbf{f}_m | \mathbf{y})$ by variational distribution $q(\mathbf{f}, \mathbf{f}m)$ and the inducing variables \mathbf{f}_m are good enough to be sufficient statistics for \mathbf{f} , i.e., $q(\mathbf{f}, \mathbf{f}_m) \approx p(\mathbf{f}, \mathbf{f}_m | \mathbf{y}), p(\mathbf{z} | \mathbf{f}, \mathbf{f}_m) = p(\mathbf{z} | \mathbf{f}_m)$

Thus

$$p(\boldsymbol{z}|\boldsymbol{y}) \approx q(\boldsymbol{z}) = \iint p(\boldsymbol{z}|\boldsymbol{f}_m) q(\boldsymbol{f}, \boldsymbol{f}_m) d\boldsymbol{f} d\boldsymbol{f}_m$$

$$= \iint p(\boldsymbol{z}|\boldsymbol{f}_m) p(\boldsymbol{f}|\boldsymbol{f}_m) \phi(\boldsymbol{f}_m) d\boldsymbol{f} d\boldsymbol{f}_m$$

$$= \int p(\boldsymbol{z}|\boldsymbol{f}_m) \{ \int p(\boldsymbol{f}|\boldsymbol{f}_m) d\boldsymbol{f} \} \phi(\boldsymbol{f}_m) d\boldsymbol{f}_m$$

$$= \int p(\boldsymbol{z}|\boldsymbol{f}_m) \phi(\boldsymbol{f}_m) d\boldsymbol{f}_m$$

$$= \int q(\boldsymbol{z}, \boldsymbol{f}_m) d\boldsymbol{f}_m$$

where $\phi(\mathbf{f}_m)$ is free variation Gaussian distribution for \mathbf{f}_m with mean μ and covariance A. We can obtain the mean and covariance of this approximate posterior $q(\mathbf{z})$:

$$m(\mathbf{x}) = K_{\mathbf{x}m} K_{mm}^{-1} \mu \text{equation}(1)$$

$$k(x, x') = k(x, x') - K_{xm}K_{mm}^{-1}K_{mx'} + K_{xm}K_{mm}^{-1}AK_{mm}^{-1}K_{mx'}$$

The above defines the general form of sparse posterior GP, which is computed in $O(nm^2)$

Now our task is to find the optimal variational distribution $q(f, f_m) \approx p(f, f_m | y)$

In the theory of Variational Inference, the optimal variational distribution is always derived from a restricted distribution family, which has a factorization property. Here, the variational distribution $q(\mathbf{f}, \mathbf{f}_m)$ must satisfy the factorization: $q(\mathbf{f}, \mathbf{f}_m) = p(\mathbf{f}|\mathbf{f}_m)\phi(\mathbf{f}_m)$

I omit detailed derivations for the following equation:

$$\log p(\boldsymbol{y}) = \underbrace{\int q(\boldsymbol{f}, \boldsymbol{f}_m) \log \frac{p(\boldsymbol{f}, \boldsymbol{f}_m, \boldsymbol{y})}{q(\boldsymbol{f}, \boldsymbol{f}_m)} d\boldsymbol{f} d\boldsymbol{f}_m}_{ELBO} + KL(q(\boldsymbol{f}, \boldsymbol{f}_m)||p(\boldsymbol{f}, \boldsymbol{f}_m|y))$$

To get the optimal $q(\mathbf{f}, \mathbf{f}_m)$, we will minimize the KL divergence, $KL(q(\mathbf{f}, \mathbf{f}_m)||p(\mathbf{f}, \mathbf{f}_m|y))$, which is equivalent to maximize the evidence lower bound (ELBO), $\int q(\boldsymbol{f}, \boldsymbol{f}_m) \log \frac{p(\boldsymbol{f}, \boldsymbol{f}_m, \boldsymbol{y})}{q(\boldsymbol{f}, \boldsymbol{f}_m)} d\boldsymbol{f} d\boldsymbol{f}_m$. Now our objective function is ELBO, and our optimized variables are X_m, σ^2, θ and $\phi(\boldsymbol{f}_m)$ variational parameters free variational distribution

Therefore, I denote ELBO with $F_v(X_m, \sigma^2, \theta, \phi)$

We optimize $F_v(X_m, \sigma^2, \theta, \phi)$ with respect to $\phi(\mathbf{f}_m)$, and we get $\phi^*(\mathbf{f}_m) = N(\mathbf{f}_m | \mu, A)$, where $\mu = \sigma^{-2} K_{mm} \Sigma K_{mn} \boldsymbol{y}, A = K_{mm} \Sigma K_{mm}, \Sigma = (K_{mm} + \sigma^{-2} K_{mn} K_{nm})^{-1}$. Substitute μ and Σ into equation (1) and (2), then we can get the approximate posterior mean and variance.

Now with fixed optimal $\phi^*(\mathbf{f}_m)$, our objective function becomes

$$F_v = F_v(X_m, \sigma^2, \theta) = \log[N(\boldsymbol{y}|0, \sigma^2 I + Q_{nn})] - \frac{1}{2\sigma^2} \underbrace{Tr(K_{nn} - Q_{nn})}_{\text{total variance of } p(\boldsymbol{f}|\boldsymbol{f}_m)}$$

where $Q_{nn} = K_{nm}K_{mm}^{-1}K_{mn}$, and $K_{nn} - Q_{nn} = Var[\boldsymbol{f}|\boldsymbol{f}_m]$

So far, our goal is to maximize the $F_v = F_v(X_m, \sigma^2, \theta)$ with respect to variaitonal parameters (X_m, σ^2, θ) . In standard variational inference, we implement the optimization with gradient descent method as the following algorithm shows:

Algorithm 1 standard variational inference

Initialize inducing inputs X_m

repeat

 $\theta = argmax F_v$, fixed σ^2, X_m $\sigma^2 = \frac{1}{n} \int \phi^*(\boldsymbol{f}_m) \parallel \boldsymbol{y} - K_{nm} K_{mm}^{-1} \boldsymbol{f}_m \parallel^2 d\boldsymbol{f}_m + \frac{1}{n} Tr(K_{nn} - Q_{nn}), \text{ fixed } \theta, X_m \\ X_m = argmax F_v, \text{ fixed } \theta, \sigma^2$ until Convergence

However, the standard gradient descent method will be difficult to implement; we can instead use gready selection method. Gready selection method results in a suboptimal solution, and it endures an easier algorithm. We have n training inputs, and basically, m inducing inputs will be selected among them. We start with with an empty inducing set $m = \emptyset$ and a remaining set $n - m = \{1, \dots, n\}$. At each iteration, we add a training point $j \in J \subset n-m$, where J is a randomly chosen working set with the size of what we choose, into the inducing set that maximizes the selection criterion Δ_i . For me, I personly would like to choose the trace $Tr(K_{nn}-Q_{nn})$ to be the selection criterion, because it represents the total variance of the conditional prior $p(\mathbf{f}|\mathbf{f}_m)$. Thus smaller $Tr(K_{nn}-Q_{nn})$ means that the inducing variables f_m are more likely to contain more information of f.

Here is the algorithm using greedy selection method.

Algorithm	2	variational	inference	using	greedy	selection	method
TIEOI IUIIII		variation	micronice	usine	~ICCUV	BOICCUIOII	THE CHECK

Start with with an empty inducing set $m = \emptyset$ and a remaining set $n - m = \{1, \dots, n\}$

- (1). Add a training point $j \in J \subset n-m$, where J is a randomly chosen working set with the size of what we choose, into the inducing set that minimize $Tr(K_{nn}-Q_{nn})$, fixed θ, σ^2
- (2). $\theta = argmax F_v$, fixed σ^2 , X_m (3). $\sigma^2 = \frac{1}{n} \int \phi^*(\mathbf{f}_m) \parallel \mathbf{y} K_{nm} K_{mm}^{-1} \mathbf{f}_m \parallel^2 d\mathbf{f}_m + \frac{1}{n} Tr(K_{nn} Q_{nn})$, fixed θ , X_m until Convergence

This summary is my lastest understading after I read the Variational Inference Chapter in Pattern Recognition and Machine Learning, and the 2013 paper Stochastic Variational Inference. Thus the algorithm part of this summary is a little different from what I did in my previous code for the GSM kernel with variational inference. I will try to adapt my code to this summary, and to see whether I will obtain new improvements in my work.