Discrete Optimization

Introduction to Linear Programming

Topics

- 1 Introduction
- 2 Prototype Example
 - Formulation as a Linear Program
 - Graphical Solution
- 3 The Linear Programming Model
- 4 Additional Examples
 - Reclaiming Solid Wastes
 - Personnel Scheduling
- 5 Formulating Very Large Linear Programming Models
 - CPLEX

Definition

Definition

Linear programming: A standard tool that uses a mathematical model for planning of activities to obtain an optimal result.

Linear: All the mathematical functions in the model are required to be linear.

Programming: Synonym for planning, NOT computer

programming!

Definition

Definition

Linear programming: A standard tool that uses a mathematical model for planning of activities to obtain an optimal result.

Linear: All the mathematical functions in the model are required to be linear.

Programming: Synonym for planning, NOT computer programming!

Uses of Linear Programming

- Among the most important scientific advances of mid-20th century
- Allocating limited resources among competing activities
- Variety of situations:
 - Allocation of production facilities
 - Portfolio selection
 - Selection of shipping patterns
 - Design of radiation therapy
 - Network flow optimization (routing problems)
 - ..

Example

- Wyndor Glass Co. produces glass products: windows, glass doors, etc.
- It has 3 plants:
 - Plant 1: Aluminum frames and hardware
 - Plant 2: Wood frames
 - Plant 3: Glass and assembly
- The plants have limited production capabilities

Example

- Company's product line to be changed.
 - Product 1: An 8-foot glass door with aluminum framing
 - lacktriangle Product 2: A 4 imes 6 foot double-hung wood-framed window
- Products will be produced in batches of 20.

Example

- Product 1 requires Plants 1 and 3
- Product 2 requires Plants 2 and 3
- So, they are competing for Plant 3
- Which mix of the two products is most profitable?

Problem: Determine the production rate of each product, to maximize the total profit.

(Production rate = batches/week)

Example

- Product 1 requires Plants 1 and 3
- Product 2 requires Plants 2 and 3
- So, they are competing for Plant 3
- Which mix of the two products is most profitable?

Problem: Determine the production rate of each product, to maximize the total profit.

(Production rate = batches/week)

Example

- Product 1 requires Plants 1 and 3
- Product 2 requires Plants 2 and 3
- So, they are competing for Plant 3
- Which mix of the two products is most profitable?

Problem: Determine the production rate of each product, to maximize the total profit.

(Production rate = batches/week)

Following additional data is required:

- Number of hours of production time available per week in each plant
- Number of hours of production time for each batch of each new product
- Profit per batch of each new product

Following additional data is required:

- Number of hours of production time available per week in each plant
- Number of hours of production time for each batch of each new product
- Profit per batch of each new product

Following additional data is required:

- Number of hours of production time available per week in each plant
- Number of hours of production time for each batch of each new product
- Profit per batch of each new product

 $\textbf{Copyright} \ \textcircled{\o} \ \textbf{The McGraw-Hill Companies, Inc. Permission required for reproduction or display.}$

	Α	В	С	D	E	F	G
1	W	yndor Glass (
2							
3			Doors	Windows			
4		Profit Per Batch	\$3,000	\$5,000			
- 5							Hours
6			Hours Used Per			Available	
7		Plant 1	1	0			4
8		Plant 2	0	2			12
9		Plant 3	3	2			18

Topics

- 1 Introduction
- 2 Prototype Example
 - Formulation as a Linear Program
 - Graphical Solution
- 3 The Linear Programming Model
- 4 Additional Examples
 - Reclaiming Solid Wastes
 - Personnel Scheduling
- 5 Formulating Very Large Linear Programming Models
 - CPLEX

Formulation: Variables

- x_1 : Number of batches of product 1 produced per week
- x_2 : Number of batches of product 2 produced per week
- Z: total profit per week (in thousands of dollars)

 x_1 and x_2 are the decision variables.

The Objective

Maximize: $Z = 3x_1 + 5x_2$

Formulation: Variables

- \mathbf{z}_1 : Number of batches of product 1 produced per week
- \mathbf{x}_2 : Number of batches of product 2 produced per week
- Z: total profit per week (in thousands of dollars)

 x_1 and x_2 are the decision variables.

The Objective

Maximize: $Z = 3x_1 + 5x_2$

Formulation: The problem

Maximize:

$$Z=3x_1+5x_2$$

Subject to:

$$x_1 \le 4$$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1 \ge 0$, $x_2 \ge 0$

Topics

- 1 Introduction
- 2 Prototype Example
 - Formulation as a Linear Program
 - Graphical Solution
- 3 The Linear Programming Model
- 4 Additional Examples
 - Reclaiming Solid Wastes
 - Personnel Scheduling
- 5 Formulating Very Large Linear Programming Models
 - CPLEX

Graphical Solution

- 2 decision variables: 2-dimensional space
- Constraints: Lines
- Feasible region: Area enclosed by lines
- Objective function: A line
- Optimal solution: Point that maximizes Z

Shaded area shows values of (x_1, x_2) allowed by

$$x_1 > 0, x_2 > 0, x_1 < 4$$

Shaded area shows the set of permissible values of (x_1, x_2) , called the feasible region.

The value of (x_1, x_2) that maximizes $3x_1 + 5x_2$ is (2, 6).

17 / 47

Maximize:

$$Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

Subject to:

$$\begin{array}{rcl} a_{11}x_1 + a_{12}x_2 + ... a_{1n}x_n & \leq & b_1 \\ a_{21}x_1 + a_{22}x_2 + ... a_{2n}x_n & \leq & b_2 \\ & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + ... a_{mn}x_n & \leq & b_m \\ x_1 \geq 0, x_2 \geq 0, ..., x_n \geq 0 \end{array}$$

- *Z*: Objective value = overall measure of performance
- \mathbf{x}_j : decision variable (level of activity j)
- c_i, b_i, a_{ij} : Parameters (input constants)
 - c_i: increase in Z that would result from each unit increase in activity j
 - $lackbox{b}_i$: amount of resource i
 - a_{ij} : amount of resource i consumed by each unit of activity j

- *Z*: Objective value = overall measure of performance
- x_j : decision variable (level of activity j)
- c_i, b_i, a_{ij} : Parameters (input constants)
 - c_i: increase in Z that would result from each unit increase in activity j
 - $lackbox{b}_i$: amount of resource i
 - \blacksquare a_{ij} : amount of resource i consumed by each unit of activity j

- Z: Objective value = overall measure of performance
- x_j : decision variable (level of activity j)
- c_i, b_i, a_{ij} : Parameters (input constants)
 - c_i : increase in Z that would result from each unit increase in activity j
 - b_i: amount of resource i
 - lacksquare amount of resource i consumed by each unit of activity j

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

■ TABLE 3.3 Data needed for a linear programming model involving the allocation of resources to activities

	Resour	ce Usage p		
		Acti		
Resource	1	2	 n	Amount of Resource Available
1	a ₁₁	a ₁₂	 a _{1n}	b ₁
2	a_{21}	a_{22}	 a_{2n}	b ₂
			 	•
m	a_{m1}	a_{m2}	 a _{mn}	b _m
Contribution to Z per unit of activity	<i>c</i> ₁	C ₂	 C _n	

■ Any specification of values for $(x_1, x_2, ..., x_n)$ is a solution.

Feasible solution

A feasible solution is a solution for which all the constraints are satisfied.

Infeasible solution

An infeasible solution is a solution for which at least one constraint is violated.

■ Any specification of values for $(x_1, x_2, ..., x_n)$ is a solution.

Feasible solution

A feasible solution is a solution for which all the constraints are satisfied.

Infeasible solution

An infeasible solution is a solution for which at least one constraint is violated.

Optimal Solution

An optimal solution is a feasible solution that has the most favorable value of the objective function.

- The most favorable value:
 - largest value if the objective function is to be maximized,
 - smallest value if the objective function is to be minimized.

Optimal Solution

An optimal solution is a feasible solution that has the most favorable value of the objective function.

- The most favorable value:
 - largest value if the objective function is to be maximized,
 - smallest value if the objective function is to be minimized.

Example: No Feasible Solutions

It is possible for a problem to have no feasible solution. New constraint added: $3x_1 + 5x_2 \ge 50$.

Example: Multiple Optimal Solutions

It is possible to have multiple (= an infinite number of) optimal solutions. The objective function is changed: $Z = 3x_1 + 2x_2$.

Example: Unbounded Z

No optimal solutions: only constraint is $x_1 \le 4$, we could increase x_2 indefinitely in the feasible region.

Corner-Point Feasible Solutions

Corner-point feasible solution

A corner-point feasible (CPF) solution is a solution that lies at a corner of the feasible region.

- If a problem has exactly one optimal solution, it must be a CPF solution.
- If the problem has multiple optimal solutions, at least two must be CPF solutions.

Corner-Point Feasible Solutions

Corner-point feasible solution

A corner-point feasible (CPF) solution is a solution that lies at a corner of the feasible region.

- If a problem has exactly one optimal solution, it must be a CPF solution.
- If the problem has multiple optimal solutions, at least two must be CPF solutions.

Corner-Point Feasible Solutions

Corner-point feasible solution

A corner-point feasible (CPF) solution is a solution that lies at a corner of the feasible region.

- If a problem has exactly one optimal solution, it must be a CPF solution.
- If the problem has multiple optimal solutions, at least two must be CPF solutions.

Example

The five dots are the five CPF solutions.

27 / 47

Topics

- 1 Introduction
- 2 Prototype Example
 - Formulation as a Linear Program
 - Graphical Solution
- 3 The Linear Programming Model
- 4 Additional Examples
 - Reclaiming Solid Wastes
 - Personnel Scheduling
- 5 Formulating Very Large Linear Programming Models
 - CPLEX

A company collects four types of solid waste

- The company treats and amalgamates them into salable products.
- Three grades of products: Grade A, Grade B, and Grade C (depending on the mix of the materials used).
- Grants amounting to \$30,000 per week are to be used exclusively to cover the entire treatment cost.
- At least half of the amount available of each material must be collected and treated.
- Objective: Maximize the net weekly profit (total sales income minus total amalgamation cost).

- A company collects four types of solid waste
- The company treats and amalgamates them into salable products.
- Three grades of products: Grade A, Grade B, and Grade C (depending on the mix of the materials used).
- Grants amounting to \$30,000 per week are to be used exclusively to cover the entire treatment cost.
- At least half of the amount available of each material must be collected and treated.
- Objective: Maximize the net weekly profit (total sales income minus total amalgamation cost).

- A company collects four types of solid waste
- The company treats and amalgamates them into salable products.
- Three grades of products: Grade A, Grade B, and Grade C (depending on the mix of the materials used).
- Grants amounting to \$30,000 per week are to be used exclusively to cover the entire treatment cost.
- At least half of the amount available of each material must be collected and treated.
- Objective: Maximize the net weekly profit (total sales income minus total amalgamation cost).

- A company collects four types of solid waste
- The company treats and amalgamates them into salable products.
- Three grades of products: Grade A, Grade B, and Grade C (depending on the mix of the materials used).
- Grants amounting to \$30,000 per week are to be used exclusively to cover the entire treatment cost.
- At least half of the amount available of each material must be collected and treated.
- Objective: Maximize the net weekly profit (total sales income minus total amalgamation cost).

- A company collects four types of solid waste
- The company treats and amalgamates them into salable products.
- Three grades of products: Grade A, Grade B, and Grade C (depending on the mix of the materials used).
- Grants amounting to \$30,000 per week are to be used exclusively to cover the entire treatment cost.
- At least half of the amount available of each material must be collected and treated.
- Objective: Maximize the net weekly profit (total sales income minus total amalgamation cost).

Example

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

■ **TABLE 3.16** Product data for Save-It Co.

Grade	Specification	Amalgamation Cost per Pound (\$)	Selling Price per Pound (\$)
А	Material 1: Not more than 30% of total Material 2: Not less than 40% of total Material 3: Not more than 50% of total Material 4: Exactly 20% of total	3.00	8.50
В	Material 1: Not more than 50% of total Material 2: Not less than 10% of total Material 4: Exactly 10% of total	2.50	7.00
С	Material 1: Not more than 70% of total	2.00	5.50

Example

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

■ **TABLE 3.17** Solid waste materials data for the Save-It Co.

Material	Pounds per Week Available	Treatment Cost per Pound (\$)	Additional Restrictions
1	3,000	3.00	1. For each material, at least half of the pounds per week available should be collected and treated. 2. \$30,000 per week should be used to treat these materials.
2	2,000	6.00	
3	4,000	4.00	
4	1,000	5.00	

- Defining decision variables: A crucial step
 - x_{ij} : Number of pounds of material j allocated to product grade i per week
 - $= \frac{x_{ij}}{x_{i1} + x_{i2} + x_{i3} + x_{i4}}$: Proportion of material j in product grade i

Mixture Specifications

$$\frac{x_{A1}}{x_{A1} + x_{A2} + x_{A3} + x_{A4}} \le 0.3$$

is equivalent to:

$$0.7x_{A1} - 0.3x_{A2} - 0.3x_{A3} - 0.3x_{A4} \le 0$$

- Defining decision variables: A crucial step
 - x_{ij} : Number of pounds of material j allocated to product grade i per week
 - $\frac{x_{ij}}{x_{i1}+x_{i2}+x_{i3}+x_{i4}}$: Proportion of material j in product grade i

Mixture Specifications

$$\frac{x_{A1}}{x_{A1} + x_{A2} + x_{A3} + x_{A4}} \le 0.3$$

is equivalent to:

$$0.7x_{A1} - 0.3x_{A2} - 0.3x_{A3} - 0.3x_{A4} \le 0$$

- Defining decision variables: A crucial step
 - x_{ij} : Number of pounds of material j allocated to product grade i per week
 - $= \frac{x_{ij}}{x_{i1} + x_{i2} + x_{i3} + x_{i4}}$: Proportion of material j in product grade i

Mixture Specifications

$$\frac{x_{A1}}{x_{A1} + x_{A2} + x_{A3} + x_{A4}} \le 0.3$$

is equivalent to:

$$0.7x_{A1} - 0.3x_{A2} - 0.3x_{A3} - 0.3x_{A4} \le 0$$

Maximize: (coeff. = sell. price - amalg. cost in last two columns of Table 3.16)

$$Z = 5.5(x_{A1} + x_{A2} + x_{A3} + x_{A4}) + 4.5(x_{B1} + x_{B2} + x_{B3} + x_{B4}) + 3.5(x_{C1} + x_{C2} + x_{C3} + x_{C4})$$

Subject to

1. Mixture Specifications (second column of Table 3.16)

$$x_{A1} \leq 0.3(x_{A1} + x_{A2} + x_{A3} + x_{A4})$$

$$x_{A2} \geq 0.4(x_{A1} + x_{A2} + x_{A3} + x_{A4})$$

$$x_{A3} \leq 0.5(x_{A1} + x_{A2} + x_{A3} + x_{A4})$$

$$x_{A4} = 0.2(x_{A1} + x_{A2} + x_{A3} + x_{A4})$$

$$x_{B1} \leq 0.5(x_{B1} + x_{B2} + x_{B3} + x_{B4})$$

$$x_{B2} \geq 0.1(x_{B1} + x_{B2} + x_{B3} + x_{B4})$$

$$x_{B4} = 0.1(x_{B1} + x_{B2} + x_{B3} + x_{B4})$$

$$x_{C1} \leq 0.7(x_{C1} + x_{C2} + x_{C3} + x_{C4})$$

33 / 47

Maximize: (coeff. = sell. price - amalg. cost in last two columns of Table 3.16)

$$Z = 5.5(x_{A1} + x_{A2} + x_{A3} + x_{A4}) + 4.5(x_{B1} + x_{B2} + x_{B3} + x_{B4}) + 3.5(x_{C1} + x_{C2} + x_{C3} + x_{C4})$$

Subject to:

1. Mixture Specifications (second column of Table 3.16):

$$x_{A1} \le 0.3(x_{A1} + x_{A2} + x_{A3} + x_{A4})$$

 $x_{A2} \ge 0.4(x_{A1} + x_{A2} + x_{A3} + x_{A4})$
 $x_{A3} \le 0.5(x_{A1} + x_{A2} + x_{A3} + x_{A4})$
 $x_{A4} = 0.2(x_{A1} + x_{A2} + x_{A3} + x_{A4})$
 $x_{B1} \le 0.5(x_{B1} + x_{B2} + x_{B3} + x_{B4})$
 $x_{B2} \ge 0.1(x_{B1} + x_{B2} + x_{B3} + x_{B4})$
 $x_{B4} = 0.1(x_{B1} + x_{B2} + x_{B3} + x_{B4})$
 $x_{C1} \le 0.7(x_{C1} + x_{C2} + x_{C3} + x_{C4})$

33 / 47

2. Availability of Materials (second column of Table 3.17):

$$x_{A1} + x_{B1} + x_{C1} \le 3,000$$

 $x_{A2} + x_{B2} + x_{C2} \le 2,000$
 $x_{A3} + x_{B3} + x_{C3} \le 4,000$
 $x_{A4} + x_{B4} + x_{C4} \le 1,000$

3. Restrictions on Amounts Treated (right side of Table 3.17)

$$x_{A1} + x_{B1} + x_{C1} \ge 1,500$$

 $x_{A2} + x_{B2} + x_{C2} \ge 1,000$
 $x_{A3} + x_{B3} + x_{C3} \ge 2,000$
 $x_{A4} + x_{B4} + x_{C4} \ge 500$

2. Availability of Materials (second column of Table 3.17):

$$x_{A1} + x_{B1} + x_{C1} \le 3,000$$

 $x_{A2} + x_{B2} + x_{C2} \le 2,000$
 $x_{A3} + x_{B3} + x_{C3} \le 4,000$
 $x_{A4} + x_{B4} + x_{C4} \le 1,000$

3. Restrictions on Amounts Treated (right side of Table 3.17):

$$x_{A1} + x_{B1} + x_{C1} \ge 1,500$$

 $x_{A2} + x_{B2} + x_{C2} \ge 1,000$
 $x_{A3} + x_{B3} + x_{C3} \ge 2,000$
 $x_{A4} + x_{B4} + x_{C4} \ge 500$

4. Restriction on Treatment Cost (right side of Table 3.17):

$$3(x_{A1} + x_{B1} + x_{C1}) + 6(x_{A2} + x_{B2} + x_{C2}) + 4(x_{A3} + x_{B3} + x_{C3}) + 5(x_{A4} + x_{B4} + x_{C4}) = 30,000$$

5. Nonnegativity Constraints:

$$x_{A1} \ge 0, \ x_{A2} \ge 0, \ x_{A3} \ge 0, \ x_{A4} \ge 0$$
..., $x_{C4} \ge 0$

4. Restriction on Treatment Cost (right side of Table 3.17):

$$3(x_{A1} + x_{B1} + x_{C1}) + 6(x_{A2} + x_{B2} + x_{C2}) + 4(x_{A3} + x_{B3} + x_{C3}) + 5(x_{A4} + x_{B4} + x_{C4}) = 30,000$$

5. Nonnegativity Constraints:

$$x_{A1} \ge 0, \ x_{A2} \ge 0, \ x_{A3} \ge 0, \ x_{A4} \ge 0$$

..., $x_{C4} \ge 0$

Solution

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

■ TABLE 3.18 Optimal solution for the Save-It Co. problem

Grade					
	Material				
	1	2	3	4	Number of Pounds Produced per Week
Α	412.3 (19.2%)	859.6 (40%)	447.4 (20.8%)	429.8 (20%)	2149
В	2587.7 (50%)	517.5 (10%)	1552.6	517.5 (10%)	5175
С	0	0	0	0	0
Total	3000	1377	2000	947	

The objective Z = 35, 108.90

Once the problem is solved, the x_{ij} values are used to calculate the other quantities of interest given in the table.

Topics

- 1 Introduction
- 2 Prototype Example
 - Formulation as a Linear Program
 - Graphical Solution
- 3 The Linear Programming Model
- 4 Additional Examples
 - Reclaiming Solid Wastes
 - Personnel Scheduling
- 5 Formulating Very Large Linear Programming Models
 - CPLEX

- Union Airways is adding more flights to its schedule, and so it needs to hire additional customer service agents.
- An analysis has been made of the minimum number of customer service agents that need to be on duty at different times of the day.
- An OR team is trying to schedule the agents to provide satisfactory service with the smallest personnel cost.

- Union Airways is adding more flights to its schedule, and so it needs to hire additional customer service agents.
- An analysis has been made of the minimum number of customer service agents that need to be on duty at different times of the day.
- An OR team is trying to schedule the agents to provide satisfactory service with the smallest personnel cost.

- Union Airways is adding more flights to its schedule, and so it needs to hire additional customer service agents.
- An analysis has been made of the minimum number of customer service agents that need to be on duty at different times of the day.
- An OR team is trying to schedule the agents to provide satisfactory service with the smallest personnel cost.

- Each agent should work an 8-hour shift 5 days per week.
- The shifts are:
 - Shift 1: 6:00 AM to 2:00 PM
 - Shift 2: 8:00 AM to 4:00 PM
 - Shift 3: Noon to 8:00 PM
 - Shift 4: 4:00 PM to midnight
 - Shift 5: 10:00 PM to 6:00 AM

- Each agent should work an 8-hour shift 5 days per week.
- The shifts are:
 - Shift 1: 6:00 AM to 2:00 PM
 - Shift 2: 8:00 AM to 4:00 PM
 - Shift 3: Noon to 8:00 PM
 - Shift 4: 4:00 PM to midnight
 - Shift 5: 10:00 PM to 6:00 AM

Data for Personnel Scheduling Problem

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

■ **TABLE 3.19** Data for the Union Airways personnel scheduling problem

	Time Periods Covered Shift						
Time Period	1	2	3	4	5	Minimum Number of Agents Needed	
6:00 a.m. to 8:00 a.m.	V					48	
8:00 a.m. to 10:00 a.m.	V	~				79	
10:00 A.M. to noon	V	~				65	
Noon to 2:00 P.M.	V	~	~			87	
2:00 P.M. to 4:00 P.M.		~	~			64	
4:00 P.M. to 6:00 P.M.			~	~		73	
6:00 P.M. to 8:00 P.M.			~	V		82	
8:00 P.M. to 10:00 P.M.				~		43	
10:00 P.M. to midnight				~	~	52	
Midnight to 6:00 A.M.					~	15	
Daily cost per agent	\$170	\$160	\$175	\$180	\$195		

- Activities correspond to shifts.
- Level of an activity: Number of agents assigned to that shift
- Decision variables are always levels of activities
- The five decision variables are:

$$x_j$$
 = number of agents assigned to shift j , for $j = 1, 2, 3, 4, 5$

- The main restrictions on values of the decision variables are the minimum requirements given in the last column.
- For example, for 2:00 P.M. to 4:00 P.M., the total number of agents assigned to the shifts that cover this time period (shifts 2 and 3) must be at least 64, so

- Activities correspond to shifts.
- Level of an activity: Number of agents assigned to that shift
- Decision variables are always levels of activities
- The five decision variables are:

$$x_j$$
 = number of agents assigned to shift j , for $j = 1, 2, 3, 4, 5$

- The main restrictions on values of the decision variables are the minimum requirements given in the last column.
- For example, for 2:00 P.M. to 4:00 P.M., the total number of agents assigned to the shifts that cover this time period (shifts 2 and 3) must be at least 64, so

- Activities correspond to shifts.
- Level of an activity: Number of agents assigned to that shift
- Decision variables are always levels of activities
- The five decision variables are:

```
x_j = number of agents assigned to shift j, for j = 1, 2, 3, 4, 5
```

- The main restrictions on values of the decision variables are the minimum requirements given in the last column.
- For example, for 2:00 P.M. to 4:00 P.M., the total number of agents assigned to the shifts that cover this time period (shifts 2 and 3) must be at least 64, so

- Activities correspond to shifts.
- Level of an activity: Number of agents assigned to that shift
- Decision variables are always levels of activities
- The five decision variables are:

$$x_j$$
 = number of agents assigned to shift j , for $j = 1, 2, 3, 4, 5$

- The main restrictions on values of the decision variables are the minimum requirements given in the last column.
- For example, for 2:00 P.M. to 4:00 P.M., the total number of agents assigned to the shifts that cover this time period (shifts 2 and 3) must be at least 64, so

- Activities correspond to shifts.
- Level of an activity: Number of agents assigned to that shift
- Decision variables are always levels of activities
- The five decision variables are:
 - x_j = number of agents assigned to shift j, for j = 1, 2, 3, 4, 5
- The main restrictions on values of the decision variables are the minimum requirements given in the last column.
- For example, for 2:00 P.M. to 4:00 P.M., the total number of agents assigned to the shifts that cover this time period (shifts 2 and 3) must be at least 64, so

$$x_2 + x_3 \ge 64$$

Minimize: (coefficients given by last row of Table 3.19)

$$Z = 170x_1 + 160x_2 + 175x_3 + 180x_4 + 195x_5$$

Subject to

$$x_1$$
 \geq 48 (6-8 AM)
 $x_1 + x_2$ \geq 79 (8-10 AM)
 $x_1 + x_2$ \geq 65 (10 AM to noon)
 $x_1 + x_2 + x_3$ \geq 87 (Noon-2 PM)
 $x_2 + x_3$ \geq 64 (2-4 PM)
 $x_3 + x_4$ \geq 73 (4-6 PM)
 $x_3 + x_4$ \geq 82 (6-8 PM)
 x_4 \geq 43 (8-10 PM)
 $x_4 + x_5$ \geq 52 (10 PM-midnight)
 x_5 \geq 15 (Midnight-6 AM)

42 / 47

Minimize: (coefficients given by last row of Table 3.19)

$$Z = 170x_1 + 160x_2 + 175x_3 + 180x_4 + 195x_5$$

Subject to:

$$x_1$$
 \geq 48 (6-8 AM)
 $x_1 + x_2$ \geq 79 (8-10 AM)
 $x_1 + x_2$ \geq 65 (10 AM to noon)
 $x_1 + x_2 + x_3$ \geq 87 (Noon-2 PM)
 $x_2 + x_3$ \geq 64 (2-4 PM)
 $x_3 + x_4$ \geq 73 (4-6 PM)
 $x_3 + x_4$ \geq 82 (6-8 PM)
 x_4 \geq 43 (8-10 PM)
 $x_4 + x_5$ \geq 52 (Midnight-6 AM)

42 / 47

- Nonnegativity constraints should also be added.
- Some constraints are redundant.
- The optimal solution is: $(x_1, x_2, x_3, x_4, x_5) = (48, 31, 39, 43, 15)$
- The objective value is Z = \$30,610.

- Nonnegativity constraints should also be added.
- Some constraints are redundant.
- The optimal solution is: $(x_1, x_2, x_3, x_4, x_5) = (48, 31, 39, 43, 15)$
- The objective value is Z = \$30,610.

- Nonnegativity constraints should also be added.
- Some constraints are redundant.
- The optimal solution is: $(x_1, x_2, x_3, x_4, x_5) = (48, 31, 39, 43, 15)$
- The objective value is Z = \$30,610.

- The number of agents assigned to each shift needs to be an integer.
- The model should have an additional constraint for each x_i specifying that the variable must have an integer value.
- Adding these constraints would convert the linear programming model to an integer programming model (will be studied later).
- Without these integer constraints, the optimal solution (previous slide) turned out to have integer values anyway.
- What happens if some of the variables have noninteger values in the optimal solution?

- The number of agents assigned to each shift needs to be an integer.
- The model should have an additional constraint for each x_i specifying that the variable must have an integer value.
- Adding these constraints would convert the linear programming model to an integer programming model (will be studied later).
- Without these integer constraints, the optimal solution (previous slide) turned out to have integer values anyway.
- What happens if some of the variables have noninteger values in the optimal solution?

- The number of agents assigned to each shift needs to be an integer.
- The model should have an additional constraint for each x_i specifying that the variable must have an integer value.
- Adding these constraints would convert the linear programming model to an integer programming model (will be studied later).
- Without these integer constraints, the optimal solution (previous slide) turned out to have integer values anyway.
- What happens if some of the variables have noninteger values in the optimal solution?

- The number of agents assigned to each shift needs to be an integer.
- The model should have an additional constraint for each x_i specifying that the variable must have an integer value.
- Adding these constraints would convert the linear programming model to an integer programming model (will be studied later).
- Without these integer constraints, the optimal solution (previous slide) turned out to have integer values anyway.
- What happens if some of the variables have noninteger values in the optimal solution?

Very Large LP Models

- Linear programming model sizes for real-world cases can be very large.
- A medium-sized model may have a thousand functional constraints and a thousand of decision variables.
- How are these very large models formulated in practice?
- It requires the use of a modeling language.
- Several languages have been developed: AMPL, MPL, GAMS, LINGO, ...
- A very powerful industrial solver is CPLEX.

Very Large LP Models

- Linear programming model sizes for real-world cases can be very large.
- A medium-sized model may have a thousand functional constraints and a thousand of decision variables.
- How are these very large models formulated in practice?
- It requires the use of a modeling language.
- Several languages have been developed: AMPL, MPL, GAMS, LINGO, ...
- A very powerful industrial solver is CPLEX.

Very Large LP Models

- Linear programming model sizes for real-world cases can be very large.
- A medium-sized model may have a thousand functional constraints and a thousand of decision variables.
- How are these very large models formulated in practice?
- It requires the use of a modeling language.
- Several languages have been developed: AMPL, MPL, GAMS, LINGO, ...
- A very powerful industrial solver is CPLEX.

Topics

- 1 Introduction
- 2 Prototype Example
 - Formulation as a Linear Program
 - Graphical Solution
- 3 The Linear Programming Model
- 4 Additional Examples
 - Reclaiming Solid Wastes
 - Personnel Scheduling
- 5 Formulating Very Large Linear Programming Models
 - CPLEX

References

Hillier&Lieberman

■ Chapter 3: Introduction to Linear Programming