	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS □	

Basisprüfung Herbst 2006

Organische Chemie I+II

für Studiengänge
Biologie (Variante 1)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1		Aufgabe 6	
Aufgabe 2		Aufgabe 7	
Aufgabe 3		Aufgabe 8	
Aufgabe 4		Aufgabe 9	
Aufgabe 5			
Total OC I		Total OC II	
Note OC I		Note OC II	

Seite 2 von total 13

1. Aufgabe (10 Pkt)

Zeichnen Sie die Strukturformeln (inkl. Stereochemie) von:

a) 1.5 Pkt. (1R,3S,4S)-4-Methylcyclohexan-1,3-dicarbonsäure	
b) 1 Pkt. (Z)-7-Chlor-2-methyl-5-(2-methyl-1-butenyl)-indol	
c) 4.5 Pkt. Benennen Sie die folgenden Verbindungen nach IUPAC	
(wo erforderlich inkl. stereochemische Deskriptoren !)	
N O	
N COOH O	
d) 3 Pkt Zu welcher Substanzklasse gehören die folgenden Verbindungen?	
0, 0	
$O \longrightarrow C \longrightarrow N$	
О— О— О— О— ОН	
Punkte Aufgabe 1	î.

2. Aufgabe (7 Pkt)

a) 2 Pkt. Tragen Sie in den folgenden Lewisformeln die fehlenden Formalladungen ein:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
b) 3 Pkt. Zeichnen Sie mindestens je eine weitere möglichst gute Grenzstruktur der	
untenstehenden Verbindungen	
H NI	
c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den nummerierten	
Stickstoffatomen an. Bindungsgeometrie Hybridisierung	
1	
$0 = \begin{pmatrix} 1 \\ N - \begin{pmatrix} 4 \\ 4 \end{pmatrix} \qquad 3 \qquad \dots \qquad \qquad$	
4	
Punkte Aufgabe 2	

3. Aufgabe (13 Pkt)

a) 2 1/2 Pkt Liegt bei den folgenden Strukturen Isomerie Wenn ja, um welche Art von Isomerie handelt es sich?	e vor ?	
N N N N N N N N N N N N N N N N N N N	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral?				
Welches ist die Beziehung zwischen a und c?				
a b c d				
chiral				
achiral				
Enantiomere Moleküle a und c sind Diastereoisomere identisch				
c) 5 1/2 Pkt. Die Fischerprojektion einer Galactonsäure ist unten angegeben.				
COOH HO H HO H HO H HOH CH ₂ OH				
Galactonsäure Perspektivformel Enantiomeres				
c1) 1/2 Pkt. Handelt es sich um die D- oder L- Galactonsäure?				
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).				
3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zur dargestellten Galactonsäure enantiomeren Moleküls (Projektion ergänzen).				
1 Pkt. Geben Sie den systematischen IUPAC Namen der oben abgebildeten Galactonsäure inkl. stereochemischerDeskriptoren nach CIP)				
c5) 2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es? Übertrag Aufgabe 3				
Obertray Aurgabe 3				

Aufgabe 3 (Fortsetzung).

4. Aufgabe (14 Pkt)

Aufgabe 4 (Fortsetzung).

_					
	b) 2 1/2 Pkt. Welche der beide	en Säuren ist stärker,	a oder	b? (<i>ankreuzen</i>)	
	NC CN	H	а	b	
	а О ₂ N- С ООН	NO ₂ —COOH	a	b	
	a • • • • • • • • • • • • • • • • • •	b Hydra Hydr	a 🔲	b	
	a N————OH	b OH	a	b	
	a SH	р О "S-ОН О	a	b	
	а	b			
				Übertrag Aufgabe 4	

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle protoniert? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Begründung

Begründung

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Begründung:

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

a) 2 Pkt. Wie gross ist die Gleichgewichtskonstante K_3 ?

COOH K_1 COOH $\Delta G^{\circ}(1) = -5.7 \text{ kJ/mol}$

2) $K_2 = 3.3$

b) 2 Pkt. Zeichnen Sie die Konformere von meso-2,3-Dibrombutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil $[E(\Theta)]$ der Rotation um die C(2)-C(3) Bindung (Θ) = Diederwinkel C(4)-C(3)-C(2)-C(1), d.h. Θ =0°, wenn die Bindungen C(4)-C(3) und C(2)-C(1) verdeckt stehen).

b) 2 Pkt. Die freie Aktivierungsenthalpie ∆G[≠] für den Übergang von einem gestaffelten Konformeren ins andere (über den verdeckten Übergangszustand) beträgt bei Ethan 12.6 kJ/mol. Dies bedeutet, dass das dieser Prozess im Ethanmolekül bei 298 K mit einer Geschwindigkeit von ca. 10¹¹ s⁻¹ stattfindet.

Die Inversion des pyramidalen Stickstoffs in Ammoniak (NH₃; über den trigonal planaren Übergangszustand) hat eine freie Aktivierungsenthalpie von 24 kJ/mol. Wie schnell ist der Umklapp-Prozess des Ammoniaks bei 298 K?

Punkte Aufgabe 5

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

Wie würden Sie die nachstehenden Umwandlungen durchführen? Geben Sie alle benötigten Reagenzien, Lösungsmittel und allenfalls Katalysatoren an! Bemerkung: eine Stufe beinhaltet auch die entsprechende Aufarbeitung! a) b) Br c) COOH d) 2 Stufen CN e) COOEt OH f) Punkte Aufgabe 6

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

	e erwarten Sie bei den fo , bzw. um welche Name eochemie angeben!).		t es sich		
a) O	NaBH₄ ➤				
COOCH ₃	Dioxan / Wasser 1 h 0°				
b) O		Тур:			
	HNO ₃ (conc.) H ₂ SO ₄				
c) H	1 Equiv. Pyridin CH ₂ Cl ₂ als Lsgsm.	Тур:			
	16 h 23°				
d) $H_3C CH_3$ $H_3C CH_3$	Cl ₂ UV - Licht	Тур:			
e) CH ₃ HO CH ₃	1) TsCl, Pyridin	Тур:			
		Р	unkte Aut	gabe 7	

8. Aufgabe (a=8 Pkt, b=2 Pkt; total 10 Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!	
NH—NH ₂ + O AcOH, 8 h, 100° Ph	
Mechanismus:	
b) Ist der neugebildete Heterocyclus aromatisch? ja: nein:	
Begründung (ohne befriedigende Begründung gibt es keine Punkte):	
Disable Astroba C	
Punkte Aufgabe 8	

9. Aufgabe (a=4 Pkt,b=2x3 Pkt; total 10Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Mechanismus: 16 h 25°

b) Erläutern Sie die Saytzew-Regel.

Machen Sie ein Anwendungsbeispiel für die Saytzew-Regel.

Punkte Aufgabe 9