Recognition of Sign Language Digits

João Nuno Valente

Table of contents

Introduction

Contextualization of the problem

O2 FCNN

Fully Connected Neural Network architecture 03

CNN

Convolutional Neural Network architecture

04 Visualization

Image example through a convolution transformation

05 Final remarks

Challenges and useful resources

01 Introduction

Contextualization of the problem

Sign Language Digits

Sign languages are languages that use the visual-manual modality to convey meaning, instead of spoken words.

Dataset

These were split into two parts, 80/20: 1.649 for the training set and 413 for the test set.

They were reshaped to 64×64 pixels and converted to grayscale.

For some reason, the labels were not properly assigned, but this was fixed.

The dataset consists of 10 classes.

Neural Networks Approach

Neural Networks

FCNN

- Input layer: Takes in the raw data (e.g., pixel values of an image)
- Hidden layers: Each layer consists of neurons that apply an activation function

CNN

- Primarily used for image classification, object detection
- Consists of convolutional layers
- Uses pooling layers to reduce spatial dimensions

My approach

Involves testing both Neural Networks and comparing their results.

O2 FCNN

Fully Connected Neural Network architecture

FCNN Architecture I

- Input Layer:
 - It flattens the 64x64 image into a 1D vector of 4096 values
- First Hidden Layer:
 - 128 neurons with ReLU activation.
- Second Hidden Layer:
 - O Another 128 neurons with **ReLU** activation.
- Output Layer:
 - o 10 neurons, used for the 10-class classification using **Softmax**.

FCNN Architecture II

Analysis of the results

Parameters

The total number of parameters is 542,218.

Epochs

50 iterations were performed.

Accuracy

The accuracy using the test set was 72,9%.

O3 CNN

Convolutional Neural Network architecture

CNN Architecture I

- Input Layer:
 - L0: Accepts grayscale images of 64×64 pixels.
- Convolutional & Pooling Layers:
 - \circ L1: Conv2D (32 filters, 3×3 kernel, ReLU activation) \rightarrow Extracts features from the image.
 - L2: MaxPooling2D (2×2) \rightarrow Reduces spatial dimensions.
 - L3: Conv2D (64 filters, 3×3 kernel, ReLU activation) → Deeper feature extraction.
 - L4: MaxPooling2D (2×2) → Reduces spatial dimensions.
 - L5: Conv2D (128 filters, 3×3 kernel, ReLU activation) \rightarrow Captures more complex patterns.
 - L6: MaxPooling2D (2×2) \rightarrow Reduces spatial dimensions.

CNN Architecture II

- Fully Connected Layers:
 - L7: Flatten Layer → Converts the feature maps into a 1D vector for the Dense layers.
 - \circ L8: Dense (128 neurons, ReLU activation) \rightarrow Fully connected layer for learning high-level features.
 - \circ L9: Dropout (0.5) \rightarrow Reduces overfitting by randomly disabling 50% of neurons during training.
- Output Layer:
 - \circ L10: Dense (10 neurons, Softmax activation) \rightarrow Produces probabilities for 10 classes.

Analysis of the results

Parameters

The total number of parameters is 683,914.

Epochs

20 iterations were performed.

Accuracy

The accuracy using the test set was 94,7%.

04 Visualization

Image example through a convolution transformation

L1: Convolution

L2: MaxPooling

L3: Convolution

L4: MaxPooling

L5: Convolution

L6: MaxPooling

L8 | Fully connected

L8 | Fully connected - Bar plot

- 0
- (1)
- 2
- .
- (125
- (126)
- (127

L10 | Final result

05 Final remaks

Challenges and useful resources

Challenges

What is the best architecture configuration?

After some testing, I found these configurations interesting. However, I have no idea why they work, while others do not.

What is the impact of the batch size?

I just kept changing the batch size to see which value would perform better.

How many epochs are too many epochs?

At some point, I had 200 epochs, at which point a friend of mine politely asked, 'What exactly are you training that needs 200 epochs?'.

Useful resources

3Blue1Brown channel

This YouTube channel has a fascinating playlist that visually explains how Neural Networks work.

Michael Nielsen's Book

Neural Networks and Deep Learning is a fantastic free online book that covers the mathematics of Neural Networks.

Thanks!

Do you have any questions?

- jnvalente@ua.pt
- JoaoNunoValente.github.io
- @JoaoNunoValente

