Homework set 5

Problem 1. If V is a normed space and $S \subset V$ a subset, we define the distance from a point x to S by $d(x,S) = \inf_{y \in S} |x-y|$. Let $f: V \to \mathbf{R}$ be a bounded linear functional and let

$$H_f = \{ x \in V \mid f(x) = 1 \}.$$

Show that

$$|f| = \frac{1}{d(0, H_f)}.$$

Solution. If |f| = 0 then f = 0 and $H_f = \emptyset$ and \inf of the empty set is ∞ , so that works. We may thus assume that $f \neq 0$.

If f(x) = 0 then |f(x)|/|x| = 0, so

$$|f| = \sup_{x \neq 0} \frac{|f(x)|}{|x|} = \sup_{f(x) \neq 0} \frac{|f(x)|}{|x|} = \sup_{f(x) \neq 0} \frac{1}{|x/f(x)|}$$
$$= \frac{1}{\inf_{f(x) \neq 0} |x/f(x)|} = \frac{1}{d(0, H_f)}. \qquad \Box$$

Problem 2. Let $V={\bf R}^2$ and let $f:V\to V$ be the operator defined by the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Calculate |A| when V has each of the norms below:

- 1. $|(x,y)|_1 = |x| + |y|$.
- 2. $|(x,y)|_2 = \sqrt{x^2 + y^2}$.
- 3. $|(x,y)|_{\infty} = \max\{|x|,|y|\}.$

If this is too difficult we may also accept bounds in terms of the other norms or numerical approximations.

Solution. Case by case analysis shows the answer in 1 is 6, and the answer in 3 is 7. The answer in 2 is the largest square root of an eigeinvalue of A^tA , or approximately 5.465 if we don't want to calculate that.

Problem 3. Let V and $W \neq 0$ be normed spaces. Suppose that $\dim V = \infty$. Show that there exists an unbounded linear operator $f: V \to W$. Conclude that $V^{\vee} \neq V^*$. (Hint: Every vector space has a basis.)

Solution. Let $(e_{\alpha})_{\alpha \in J}$ be a basis for V. As $\dim V = \infty$ the set J contains a countable subset J_0 that we identify with \mathbf{N} . Pick a nonzero $y \in W$ of norm 1 and define $f: V \to W$ by $f(e_{\alpha}) = ny$ if $n \mapsto \alpha$ and 0 otherwise, and extend by linearity to all of V. Then f is an unbounded linear operator. We can in particular do this when $W = \mathbf{R}$, so there always exists an unbounded linear functional on an infinite-dimensional space.

Theorem (Hahn–Banach). Let V be a normed space and let $S \subset V$ be a subspace. If $f \in S^{\vee}$ there exists a bounded extension $\hat{f} \in V^{\vee}$ of f such that $|\hat{f}| = |f|$.

Problem 4 (Proof of Hahn–Banach, part 1). Let *V* be a normed space.

- 1. Let $S \subset V$ be a linear subspace. Let $x_1 \in V \setminus S$ and let $S_1 = S + \mathbf{R}x_1$. Show that S_1 is a linear subspace that contains S, and that every vector in S_1 can be written uniquely as $x = x_0 + \lambda x_1$, where $x_0 \in S$ and $\lambda \in \mathbf{R}$.
- 2. Let $f \in S^{\vee}$. Show that $f_1(x) = f(x_0)$ is a bounded extension of f from S^{\vee} to S_1^{\vee} , and that $|f_1| = |f|$.

Solution. 1. Obvious because $S_1 = S \oplus \mathbf{R} x_1$.

2. Define $f_1(x + \lambda x_0) = f(x) + \lambda c$, where c will be chosen later. This functional is clearly an extension of f to S_1 . We would like it to satisfy $|f_1| = |f|$, and may assume that |f| = 1. We would then like to have

$$-|x + \lambda x_0| \le f(x) + c\lambda \le |x + \lambda x_0|$$

for any x and λ . This holds for $\lambda=0$ by hypothesis. For $\lambda\neq 0$ we can rewrite this as

$$-|x/\lambda + x_0| - f(x/\lambda) \le c \le |x/\lambda + x_0| - f(x/\lambda),$$

or equivalently

$$-|y + x_0| - f(y) \le c \le |y + x_0| - f(y)$$

for $y \in S$. For $y, z \in S$ we have

$$f(z) - f(y) = f(z - y) \le |z - y| \le |z + x_0| + |y + x_0|$$

by |f| = 1, so in fact

$$-|y + x_0| - f(y) \le |z + x_0| - f(z)$$

for all $y, z \in S$. Then

$$a := \sup_{y \in S} -|y + x_0| - f(y), \quad b := \inf_{z \in S} |z + x_0| - f(z)$$

are finite and satisfy $a \leq b$, so any $c \in [a, b]$ will do.

A partial order on a set S is a binary relation \prec on S that satisfies:

- Reflexivity: $x \prec x$.
- Antisymmetry: $x \prec y$ and $y \prec x$ imply x = y.
- Transitivity: $x \prec y$ and $y \prec z$ imply $x \prec z$.

As an example, consider the inclusion $U \subset V$ of subsets of S.

A subset $T \subset S$ is totally ordered if for every x, y in T we have either $x \prec y$ or $y \prec x$. An element y is an upper bound for T if $x \prec y$ for every $x \in T$. Finally an element $y \in S$ is maximal if $x \prec y$ implies x = y.

Zorn's lemma says that if (S, \prec) is a partially ordered set such that every totally ordered subset contains an upper bound, then (S, \prec) contains at least one maximal element.

Problem 5 (Proof of Hahn–Banach, part 2). Let V be a normed space and $S \subset V$ a subspace. Let also $f \in S^{\vee}$ be a bounded linear functional. Denote by $\mathcal L$ the set of all bounded extensions (M,g) of f to a subspace M such that |g|=|f|.

- 1. Show that $(S, f) \in \mathcal{L}$, so it is not empty.
- 2. We write $(M, g) \prec (M', g')$ if $M \subset M'$ and g'(x) = g(x) for all $x \in M$. Show that this is a partial order on \mathcal{L} .
- 3. Suppose that \mathcal{F} is a totally ordered subset of \mathcal{L} . Define a set $W = \bigcup_{(M,f)\in\mathcal{F}} M$. Show that W is in fact a vector subspace of V.
- 4. Suppose that \mathcal{F} is a totally ordered subset of \mathcal{L} . Define W as above and define $h:W\to\mathbf{R}$ by h(x)=g(x) for any (M,g) such that $x\in M$. Show that this is well-defined, and that h is an extension of f.
- 5. Conclude that there exists a maximal extension $h:W\to \mathbf{R}$ of f, and use part 1 to conclude that we must have W=V.

Solution. \Box