

Grundlagen des Operations Research

Teil 5 – 0-1 Variablen Lin Xie | 09.11.2021

PROF. DR. LIN XIE - WIRTSCHAFTSINFORMATIK, INSBESONDERE OPERATIONS RESEARCH

- 1 Wiederholung
- 2 Modellarten
- 3 Ganzzahlige Modelle
- 4 Modellierungstechniken mit 0/1-Variablen
- 5 Ein Praxisproblem
- 6 Fazit und Ausblick

Wiederholung

Richtig/Falsch-Fragen

1. Wenn die reduzierten Kosten einer Entscheidungsvariable = 0betragen, so kann dies bedeuten, dass die marginale Änderung des Werts dieser Entscheidungsvariable, aufgrund von bereits vorhandenen Restriktionen, keine Auswirkung im Zielfunktionswert darstellt.

Richtig/Falsch-Fragen

- 1. Wenn die reduzierten Kosten einer Entscheidungsvariable = 0betragen, so kann dies bedeuten, dass die marginale Änderung des Werts dieser Entscheidungsvariable, aufgrund von bereits vorhandenen Restriktionen, keine Auswirkung im Zielfunktionswert darstellt.
- 2. Wenn der Schattenpreis einer Restriktion = 0 beträgt, so bedeutet dies, dass die Kapazität der entsprechenden Ressource aufgebraucht ist.

Richtig/Falsch-Fragen

- 1. Wenn die reduzierten Kosten einer Entscheidungsvariable = 0betragen, so kann dies bedeuten, dass die marginale Änderung des Werts dieser Entscheidungsvariable, aufgrund von bereits vorhandenen Restriktionen, keine Auswirkung im Zielfunktionswert darstellt.
- 2. Wenn der Schattenpreis einer Restriktion = 0 beträgt, so bedeutet dies, dass die Kapazität der entsprechenden Ressource aufgebraucht ist.
- 3. Wenn die reduzierten Kosten einer Entscheidungsvariable bei > 0 liegen, so bedeutet dies immer, dass der Wert dieser Entscheidungsvariable, zugunsten eines besseren Zielfunktionswertes, erhöht werden sollte.

Sammlung der Richtig/Falsch-Fragen für die Klausur

- Sie können Richtig/Falsch-Fragen thematisch entlang des Semesters aufstellen (hier: https://docs.google.com/document/d/ 11E9-ByHxVyvanmynoOH3LtBTHKdexNrCFW1tndBYiCs/edit?usp=sharing).
- Sie brauchen keine Lösung mitgeben.
- Davon werden fünf gute Fragen in der Klausur ausgewählt.

Vorläufige Gliederung der Vorlesung/Übung

Termin	Inhalte				
19.10.2021	Organisatorisches, Einführung OR, Einführung LP, grafische Lösung von LP				
26.10.2021	LP Modellierung, Eigenschaften des Lösungsraumes LP Standardgleichungsform, Simplex Phase 2				
20.10.2021	Präsenzübung 1, Besprechung 1.Übungszettel				
02.11.2021	Simplex Phase 1, Sensitivitätsanalyse und ökon. Interpretation				
02.11.2021	Präsenzübung 2, Besprechung 2.Übungszettel				
09.11.2021	Einführung ganzzahliger und 0/1-Variablen, Modellarten, Modellierungstechniken (Schwellenwerte,				
	Fixkosten und alternative Restriktionsgruppen)				
	Präsenzübung 3, Besprechung 3.Übungszettel				
16.11.2021	Lösung ganzzahliger Modelle (insbes. Branch & Bound)				
	Präsenzübung 4, Besprechung 4. Übungszettel				
23.11.2021	Logische Abhängigkeiten modellieren, Nichtlinearitäten modellieren (Betrag, Maximum, Produkt 0/1)				
30.11.2021	Präsenzübung 5, Besprechung 5.Übungszettel Soft Constraints, stückweise lineare Zielfunktion und mehrfache Zielsetzungen modellieren				
30.11.2021	Präsenzübung 6, Besprechung 6.Übungszettel				
07.12.2021	Allgemeine Notation für Modelle, Modellierungssprachen, Einbettung von Optimierung in EUS				
	Präsenzübung 7, Besprechung 7.Übungszettel				
14.12.2021	Einführung Netzwerke und Netzwerk(fluss)probleme (insbes. Graphentheorie, shortest-path-problem,				
	Transportproblem, Transshipmentproblem, Umwandlungen)				
	Präsenzübung 8, Besprechung 8.Übungszettel				
21.12.2021	Min-cost-flow-und max-flow-problem (Modellierung, Lösungsverfahren und Umwandlungen)				
	Präsenzübung 9, Besprechung 9.Übungszettel				
11.01.2022	Tourenplanung und TSP (Einführung und exakte Modellierung)				
18.01.2022	Präsenzübung 10, Besprechung 10.Ubungszettel Heuristische Lösungsverfahren für Tourenplanung und TSP				
10.01.2022	Präsenzübung 11, Besprechung 11. Übungszettel				
25.01.2022	Standortplanung: exakte und heuristische Lösungsverfahren				
20.01.2022	Präsenzübung 12, Besprechung 12. und 13. Übungszettel				
01.02.2022	Praxisvortrag				
	Fragestunde				

Vorläufige Gliederung der Vorlesung/Übung

Termin	Inhalte						
19.10.2021							
	LP Modellierung, Eigenschaften des Lösungsraumes						
26.10.2021	LP Standardgleichungsform, Simplex Phase 2						
	Präsenzübung 1, Besprechung 1.Übungszettel						
02.11.2021	Simplex Phase 1, Sensitivitätsanalyse und ökon. Interpretation Lineare Modelle						
	Präsenzübung 2, Besprechung 2.Übungszettel						
09.11.2021	Einführung ganzzahliger und 0/1-Variablen, Modellarten, Modellierungstechniken (Schwellenwerte,						
	Fixkosten und alternative Restriktionsgruppen)						
	Präsenzübung 3, Besprechung 3.Übungszettel						
16.11.2021	Lösung ganzzahliger Modelle (insbes. Branch & Bound)						
	Präsenzübung 4, Besprechung 4. Übungszettel						
23.11.2021	Logische Abhängigkeiten modellieren, Nichtlinearitäten modellieren (Betrag, Maximum, Produkt 0/1)						
	Präsenzübung 5, Besprechung 5.Übungszettel						
30.11.2021	Soft Constraints, stückweise lineare Zielfunktion und mehrfache Zielsetzungen modellieren						
	Präsenzübung 6, Besprechung 6.Übungszettel						
07.12.2021	Allgemeine Notation für Modelle, Modellierungssprachen, Einbettung von Optimierung in EUS						
	Präsenzübung 7, Besprechung 7.Übungszettel						
14.12.2021	Einführung Netzwerke und Netzwerk(fluss)probleme (insbes. Graphentheorie, shortest-path-problem,						
	Transportproblem, Transshipmentproblem, Umwandlungen)						
	Präsenzübung 8, Besprechung 8.Ubungszettel						
21.12.2021	Min-cost-flow-und max-flow-problem (Modellierung, Lösungsverfahren und Umwandlungen)						
	Präsenzübung 9, Besprechung 9.Übungszettel						
11.01.2022	Tourenplanung und TSP (Einführung und exakte Modellierung)						
	Präsenzübung 10, Besprechung 10.Übungszettel						
18.01.2022	Heuristische Lösungsverfahren für Tourenplanung und TSP						
	Präsenzübung 11, Besprechung 11.Übungszettel						
25.01.2022	Standortplanung: exakte und heuristische Lösungsverfahren						
	Präsenzübung 12, Besprechung 12. und 13. Übungszettel						
01.02.2022	Praxisvortrag						
	Fragestunde						

Vorläufige Gliederung der Vorlesung/Übung

Termin 19.10.2021	Inhalte						
19.10.2021	Organisatorisches, Einführung OR, Einführung LP, grafische Lösung von LP LP Modellierung, Eigenschaften des Lösungsraumes						
26.10.2021	LP Standardgleichungsform, Simplex Phase 2						
	Präsenzübung 1, Besprechung 1.Übungszettel						
02.11.2021	Simplex Phase 1, Sensitivitätsanalyse und ökon. Interpretation Lineare Modelle						
	Präsenzübung 2, Besprechung 2.Ubungszettel						
09.11.2021	Einführung ganzzahliger und 0/1-Variablen, Modellarten, Modellierungstechniken (Schwellenwerte,						
	Fixkosten und alternative Restriktionsgruppen) Präsenzübung 3. Besprechung 3. Übungszettel Ganzzahlige Modelle						
16.11.2021							
16.11.2021	Lösung ganzzahliger Modelle (insbes. Branch & Bound)						
23.11.2021	Präsenzübung 4, Besprechung 4.Übungszettel Logische Abhängigkeiten modellieren, Nichtlinearitäten modellieren (Betrag, Maximum, Produkt 0/						
25.11.2021	Präsenzübung 5, Besprechung 5.Übungszettel						
30.11.2021	Soft Constraints, stückweise lineare Zielfunktion und mehrfache Zielsetzungen modellieren						
	Präsenzübung 6. Besprechung 6. Übungszettel						
07.12.2021	Allgemeine Notation für Modelle, Modellierungssprachen, Einbettung von Optimierung in EUS						
	Präsenzübung 7, Besprechung 7.Übungszettel						
14.12.2021	Einführung Netzwerke und Netzwerk (fluss) probleme (insbes. Graphentheorie, shortest-path-problem,						
	Transportproblem, Transshipmentproblem, Umwandlungen)						
21.12.2021	Präsenzübung 8, Besprechung 8. Ubungszettel						
21.12.2021	Min-cost-flow-und max-flow-problem (Modellierung, Lösungsverfahren und Umwandlungen) Präsenzübung 9, Besprechung 9.Übungszettel						
11.01.2022	Tourenplanung und TSP (Einführung und exakte Modellierung)						
11.01.2022	Präsenzübung 10, Besprechung 10. Übungszettel						
18.01.2022	Heuristische Lösungsverfahren für Tourenplanung und TSP						
	Präsenzübung 11, Besprechung 11.Übungszettel						
25.01.2022	Standortplanung: exakte und heuristische Lösungsverfahren						
	Präsenzübung 12, Besprechung 12. und 13. Übungszettel						
01.02.2022	Praxisvortrag						
	Fragestunde						

LP: Linear Program

IP: Integer Program

MIP: Mixed Integer Program

BP: Binary Program

LP: Linear Program

IP: Integer Program

MIP: Mixed Integer Program

BP: Binary Program

NLP: Nonlinear Program

INLP: Integer Nonlinear Program

MINLP: Mixed Integer Nonlinear Program

Mathematische Optimierungsprogramme können auch nach folgenden Kriterien unterschieden werden:

Parameter-Werte

- Deterministisch
- Stochastisch

Anzahl der Zielfunktionen

- Keine Zielfunktion
- Eine Zielfunktion
- Mehrere Zielfunktionen

Mathematische Optimierungsprogramme können auch nach folgenden Kriterien unterschieden werden:

Parameter-Werte

- Deterministisch
- Stochastisch

- [1] die Freiheit/Willensfreiheit verneinend
- [2] Vorher bestimmbar Gegenwörter: stochastisch

aus Wikipedia

Anzahl der Zielfunktionen

- Keine Zielfunktion
- Eine Zielfunktion
- Mehrere Zielfunktionen

Mathematische Optimierungsprogramme können auch nach folgenden Kriterien unterschieden werden:

Parameter-Werte

- Deterministisch

Stochastisch

- [1] die Freiheit/Willensfreiheit verneinend
- [2] Vorher bestimmbar Gegenwörter: stochastisch

aus Wikipedia

Anzahl der Zielfunktionen

- Keine Zielfunktion
- Eine Zielfunktion
- Mehrere Zielfunktionen

Mathematische Optimierungsprogramme können auch nach folgenden Kriterien unterschieden werden:

Parameter-Werte

- Deterministisch

Stochastisch

- [1] die Freiheit/Willensfreiheit verneinend
- [2] Vorher bestimmbar Gegenwörter: stochastisch

aus Wikipedia

Anzahl der Zielfunktionen

- Keine Zielfunktion
- Eine Zielfunktion

- Mehrere Zielfunktionen

Mathematische Optimierungsprogramme können auch nach folgenden Kriterien unterschieden werden:

Parameter-Werte

- Deterministisch 📛
- Stochastisch

- [1] die Freiheit/Willensfreiheit verneinend
- [2] Vorher bestimmbar Gegenwörter: stochastisch

aus Wikipedia

Anzahl der Zielfunktionen

- Keine Zielfunktion
- Eine Zielfunktion
- Mehrere Zielfunktionen

Ganzzahlige Modelle

- Ganzzahlige Variablen (nicht-kontinuierliche Entscheidungen) $y \in \{0,1\}, x \in \{..., -2, -1, 0, 1, 2, ...\}$
- Fixe Kosten (z. B. Investitions- oder Rüstkosten)

$$k(x) = \begin{cases} 0 & \text{für x=0} \\ k_0 + cx & \text{für x>0} \end{cases}$$

■ Schwellenwerte: Wert einer Variable darf entweder gleich Null oder größer gleich eines positiven, gegebenen Mindestwertes sein.

$$x = \begin{cases} x = 0 & \text{oder} \\ x \ge X_L \end{cases}$$

Was können wir in einem LP nicht abbilden?

■ Alternative Restriktionen: eine aus mehreren Gruppen von Restriktionen soll erfüllt werden (z. B. alternative Fertigungsanlagen)

a):
$$x_1 +5x_2 \le 10$$
 b): $2x_1 +5x_2 \le 20$ $x_1 +x_2 \le 6$

■ Weitere spezielle Nichtlinearitäten:

$$y_3 = y_1 \cdot y_2$$
 oder $z = max(x_1, x_2)$ oder $x_1 = \begin{cases} x_2 & \text{wenn y} = 1\\ 0 & \text{sonst} \end{cases}$

■ Beliebige logische Zusammenhänge: "Aus A folgt B." oder "Wenn C und D gilt, dann gilt nicht E."

Beispiel "Postamt"

Beispiel: Personalplanung

■ In einem Postamt ist die benötigte Mitarbeiterzahl pro Wochentag wie folgt:

Мо						
17	13	15	19	14	16	11

- Eine Betriebsvereinbarung besagt, dass jeder Mitarbeiter immer fünf Tage hintereinander arbeitet und danach zwei Tage frei hat. Wenn ein Mitarbeiter z. B. von Montag bis Freitag arbeitet, muss er/sie am Samstag und Sonntag frei haben.
- Wie hoch ist die minimal benötigte Anzahl von Mitarbeitern?
- Wie kann dieses Entscheidungsproblem modelliert werden?

Beispiel "Postamt" – Lösung

■ Entscheidungsvariablen:

 x_i : Anzahl Mitarbeiter, die am Tag i ihre 5-tägige Arbeitswoche beginnen (i = 1,...,7)

■ Modell:

Beispiel "Postamt" – Lösung

■ Entscheidungsvariablen:

 x_i : Anzahl Mitarbeiter, die am Tag i ihre 5-tägige Arbeitswoche beginnen (i = 1,...,7)

■ Modell:

min z=
$$x_1$$
 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7
s.t. x_1 + x_2 + x_4 + x_5 + x_6 + x_7 ≥ 17 (Mo)
 x_1 + x_2 + x_3 + x_6 + x_7 ≥ 13 (Di)
 x_1 + x_2 + x_3 + x_4 + x_6 + x_7 ≥ 15 (Mi)
 x_1 + x_2 + x_3 + x_4 + x_5 ≥ 19 (Do)
 x_1 + x_2 + x_3 + x_4 + x_5 ≥ 14 (Fr)
 x_2 + x_3 + x_4 + x_5 + x_6 ≥ 16 (Sa)
 x_3 + x_4 + x_5 + x_6 + x_7 ≥ 11 (So)
 x_i integer > 0 für alle $i=1,...,7$

Beispiel "Personalplanung"

■ In einem Betrieb mit Mehrschichtarbeit besteht für folgende Schichten der folgende Bedarf an Personal:

```
0 bis
      4 Uhr: 3 Personen
                            12 bis
                                  16 Uhr:
                                            8 Personen
4 bis
      8 Uhr: 8 Personen
                           16 bis 20 Uhr: 14 Personen
8 bis 12 Uhr: 10 Personen 20 bis 24 Uhr:
                                            5 Personen
```

- Bestimmen Sie einen Tageseinsatzplan mit einer minimalen Anzahl an Mitarbeitern, vorausgesetzt, dass jeder Mitarbeiter acht aufeinanderfolgende Stunden Dienst pro Tag hat.
- 2 Lohnt sich die Einstellung von Halbtagsarbeitskräften? Wie kann das Modell hierzu erweitert werden?

Beispiel "Personalplanung" – Lösung Frage 1

- \blacksquare x_1 Anzahl Mitarbeiter, die um 0 Uhr anfangen x₂ Anzahl Mitarbeiter, die um 4 Uhr anfangen x₃ Anzahl Mitarbeiter, die um 8 Uhr anfangen x₄ Anzahl Mitarbeiter, die um 12 Uhr anfangen x_5 Anzahl Mitarbeiter, die um 16 Uhr anfangen x_6 Anzahl Mitarbeiter, die um 20 Uhr anfangen
- \blacksquare minimize $x_1 + ... + x_6$

$$x_1 + x_2 \ge 8$$

 $x_2 + x_3 \ge 10$
 $x_3 + x_4 \ge 8$
 $x_4 + x_5 > 14$

 $x_6 + x_1 > 3$

$$x_4 + x_5 \ge 14$$

$$x_5 + x_6 \ge 5$$

$$x_i \ge 0$$
, x_i integer, für alle i=1,...,6

Beispiel "Personalplanung" – Lösung Frage 2

- \blacksquare x_7 Anzahl Mitarbeiter, die von 0 4 Uhr arbeiten x₈ Anzahl Mitarbeiter, die von 4 - 8 Uhr arbeiten x_0 Anzahl Mitarbeiter, die von 8 - 12 Uhr arbeiten x_{10} Anzahl Mitarbeiter, die von 12 - 16 Uhr arbeiten x_{11} Anzahl Mitarbeiter, die von 16 - 20 Uhr arbeiten x_{12} Anzahl Mitarbeiter, die von 20 - 0 Uhr arbeiten
- \blacksquare minimize $x_1 + ... + x_{12}$

■
$$x_6 + x_1 + x_7 \ge 3$$

 $x_1 + x_2 + x_8 \ge 8$
 $x_2 + x_3 + x_9 \ge 10$
 $x_3 + x_4 + x_{10} \ge 8$
 $x_4 + x_5 + x_{11} \ge 14$
 $x_5 + x_6 + x_{12} \ge 5$
 $x_i > 0$, x_i integer, für alle $i=1,...,12$

Lösungsraum – LP vs. IP vs. MIP

Grafische Veranschaulichung:

Lösungsraum – LP vs. IP

Grafische Veranschaulichung (Maximierungsproblem):

 Definition: LP-Relaxation bedeutet, dass die Ganzzahligkeitsbedingungen eines Optimierungsproblems aufgegeben werden.

Lösungsraum – LP vs. IP

Grafische Veranschaulichung (Maximierungsproblem):

■ Definition: LP-Relaxation bedeutet, dass die Ganzzahligkeitsbedingungen eines Optimierungsproblems aufgegeben werden.

Lösungsraum – LP vs. IP

Grafische Veranschaulichung (Maximierungsproblem):

■ Definition: LP-Relaxation bedeutet, dass die Ganzzahligkeitsbedingungen eines Optimierungsproblems aufgegeben werden.

■ Definition: Der Unterschied zwischen der Lösung der LP-Relaxation und der Lösung des Integer-Problems heißt duality Gap.

Modellierungstechniken mit 0/1-Variablen

Modellierungstechniken mit 0/1-Variablen

- Alternative Bezeichnung von 0/1-Variablen:
 - Indikatorvariablen
 - Binärvariablen
 - Logische Variablen
- 0/1-Variablen drücken einen Wahrheitswert aus, d. h. sie zeigen an, ob etwas wahr ist (1) oder nicht (0). Daher der Name Indikatoryariable.
- Viele Entscheidungen können mit 0/1-Variablen modelliert werden:
 - Fixkosten bei der Planung von Produktionsanlagen
 - Schwellenwerte in Produktionsstrukturen
 - Alternative Restriktionen bei unterschiedlichen Systemkonfigurationen
 - logische Aussagen in Umgangssprache
 - etc.

Fixkostenprobleme

Fixe Kosten (Investitions- oder Rüstkosten):

Kostenfunktion
$$k(x) = \begin{cases} 0 & \text{für } x=0 \\ k_0 + cx & \text{für } x>0 \end{cases}$$

$$k_0 + 4c$$

$$k_0 + c^*x$$

$$k_0 + c^*x$$

Wie können fixe Kosten in einem Optimierungsmodell ausgedrückt werden?

Fixkostenprobleme

Ziel: Modelliere die Minimierung der Kostenfunktion

$$k(x) = \begin{cases} 0 & \text{für x=0} \\ k_0 + cx & \text{für x>0} \end{cases}$$

1 Definiere eine 0/1-Variable y: Wenn x>0 gilt, dann soll y=1 sein. Wenn x=0 gilt, dann soll y=0 sein.

Fixkostenprobleme

Ziel: Modelliere die Minimierung der Kostenfunktion

$$k(x) = \begin{cases} 0 & \text{für x=0} \\ k_0 + cx & \text{für x>0} \end{cases}$$

- 1 Definiere eine 0/1-Variable y: Wenn x>0 gilt, dann soll y=1 sein. Wenn x=0 gilt, dann soll y=0 sein.
- 2 Die Kostenfunktion lässt sich jetzt in geschlossener Form darstellen: min $k(x,y)=cx+k_0y$ $x > 0, y \in \{0, 1\}$

Fixkostenprobleme

Ziel: Modelliere die Minimierung der Kostenfunktion

$$k(x) = \begin{cases} 0 & \text{für x=0} \\ k_0 + cx & \text{für x>0} \end{cases}$$

- 1 Definiere eine 0/1-Variable y: Wenn x>0 gilt, dann soll y=1 sein. Wenn x=0 gilt, dann soll y=0 sein.
- 2 Die Kostenfunktion lässt sich jetzt in geschlossener Form darstellen: min $k(x,y)=cx+k_0y$ $x > 0, y \in \{0, 1\}$
- 3 Die folgende Bedingung sichert den Zusammenhang zwischen x und y: (0 <) x < MyWobei die Zahl M (Big-M) so groß sein muss, dass die Restriktion in 3. für y = 1 den Wertebereich von x nicht einschränkt (z. B. Obergrenze von x).

Fixkostenprobleme

Ziel: Modelliere die Minimierung der Kostenfunktion

$$k(x) = \begin{cases} 0 & \text{für x=0} \\ k_0 + cx & \text{für x>0} \end{cases}$$

- 1 Definiere eine 0/1-Variable y: Wenn x>0 gilt, dann soll y=1 sein. Wenn x=0 gilt, dann soll y=0 sein.
- 2 Die Kostenfunktion lässt sich jetzt in geschlossener Form darstellen: min $k(x,y)=cx+k_0y$ $x > 0, y \in \{0, 1\}$
- 3 Die folgende Bedingung sichert den Zusammenhang zwischen x und y: (0 <) x < MyWobei die Zahl M (Big-M) so groß sein muss, dass die Restriktion in 3. für y = 1 den Wertebereich von x nicht einschränkt (z. B. Obergrenze von x).

Erläuterung: Da die Kostenfunktion minimiert (bzw. die Gewinnfunktion maximiert) wird, wird für x = 0 automatisch y = 0 gesetzt. Für x > 0 wird durch die Bedingung in 3. y = 1 erzwungen.

Fixkostenprobleme: Beispiel "Landwirtschaft"

- Ein landwirtschaftlicher Betrieb hat 100 ha Land und kann
 - (a) Viehzucht betreiben und/oder
 - (b) Getreide anpflanzen oder
 - (c) Gemüse anpflanzen
- Im Fall a) werden pro 100 Rinder 1 ha Land benötigt. Außerdem muss ein Gebäude errichtet werden. Die Investitionskosten betragen 200 GE pro Periode. Der Periodenertrag je 100 Rinder beträgt 25 GE. Die sonstigen Periodenkosten je 100 Rinder betragen 8 GE.
- Im Fall b) müssen Maschinen angeschafft werden mit Periodenkosten in Höhe von 100 GE. Der Periodenertrag je ha beträgt 18 GE, die Periodenkosten 4 GE je ha.
- Im Fall c) betragen der Ertrag je ha und Periode 30 GE, die Kosten 7 GE. Infolge Personalmangels können jedoch maximal 20 ha Gemüse angepflanzt werden. Alle Kombinationen außer Viehzucht und Gemüseanbau sind erlaubt.
- Der Betrieb möchte seinen Gewinn maximieren.

Fixkostenprobleme: Beispiel "Landwirtschaft" –

Variablen

Entscheidungsvariablen:

- Zunächst definieren wir die kontinuierlichen Variablen R. G. Ü
 - > 0 : R Anzahl Hektar zur Rinderzucht (in ha)
 - G Anzahl Hektar zum Getreideanbau (in ha)
 - Ü Anzahl Hektar zum Gemüseanbau (in ha)
- 2 Entscheidungsalternativen der Art "Gemüse wird angebaut oder nicht"
 - \Rightarrow 0/1-Variablen einführen:

$$Y_R = egin{cases} 1 & {
m Rinderzucht} \ 0 & {
m Keine Rinderzucht} \ Y_G = egin{cases} 1 & {
m Getreideanbau} \ 0 & {
m Keine Getreideanbau} \ Y_{\ddot{\mathbb{U}}} = egin{cases} 1 & {
m Gem\"{u}seanbau} \ 0 & {
m Keine Gem\"{u}seanbau} \ \end{cases}$$

Fixkostenprobleme: Beispiel "Landwirtschaft" – Math. Modell

Zielfunktion (Maximiere Ertrag – Kosten): max z= $(25-8)R+(18-4)G+(30-7)\ddot{U}-200Y_R-100Y_G$

Restriktionen:

Schwellenwerte

Der Begriff Schwellenwert kommt in vielen praktischen Anwendungen vor, z. B.:

- Bei Großunternehmen können manche Produkte nur ab einer Mindestmenge angekauft, produziert oder verkauft werden.
- Der Erwerb von Werbezeit bei Fernseh- oder Radiosendern kann nur ab einer bestimmten Mindestzeit erfolgen.

Allgemein:

- Der Wert einer Variable ist entweder gleich Null oder größer gleich einem positiven, gegebenen Mindestwert.
- Außerdem besitzt die Variable im Allgemeinen eine obere Schranke.
- D.h. eine kontinuierliche Variable x kann entweder den Wert 0 oder einen positiven Wert zwischen X_{i} und X_{ij} annehmen.

Ziel: Modelliere $x = \begin{cases} x = 0 \\ X_L \le x \le X_U \end{cases}$

1 Definiere eine 0/1-Variable y: Wenn x>0 gilt, dann soll y=1 sein. Wenn x=0 gilt, dann soll y=0 sein.

Schwellenwerte

Ziel: Modelliere
$$x = \begin{cases} x = 0 & \text{oder} \\ X_L \le x \le X_U \end{cases}$$

- **1** Definiere eine 0/1-Variable y: Wenn x>0 gilt, dann soll y=1 sein. Wenn x=0 gilt, dann soll y=0 sein.
- 2 Folgende Ungleichungen (zusammen mit Variable y) erreichen das Ziel:

 $x < X_{II}y$ erzwingt, dass y=1, falls x>0 ist und damit gilt $X_{1} < x < X_{11}$

 $x > X_L y$ erzwingt, dass y=0 ist, falls x=0 ist und damit gilt $X_{I} < x < X_{II}$ nicht.

Schwellenwerte

Ziel: Modelliere
$$x = \begin{cases} x = 0 & \text{oder} \\ X_L \le x \le X_U \end{cases}$$

- **1** Definiere eine 0/1-Variable y: Wenn x>0 gilt, dann soll y=1 sein. Wenn x=0 gilt, dann soll y=0 sein.
- 2 Folgende Ungleichungen (zusammen mit Variable y) erreichen das Ziel:

 $x < X_{U}y$ erzwingt, dass y=1, falls x>0 ist und damit gilt $X_1 < x < X_{11}$

- $x > X_L y$ erzwingt, dass y=0 ist, falls x=0 ist und damit gilt $X_{I} < x < X_{IJ}$ nicht.
- Die erste Ungleichung ist hier notwendig, auch wenn keine obere Schranke X_{II} gegeben ist.
- Falls X_{II} nicht gegeben, setze Big-M ein.

Fixe Kosten und Schwellenwerte: Beispiel "Fashion GmbH"

- Die Fashion GmbH kann Hemden, Röcke und Hosen produzieren. Produktionsmaschinen müssen gemietet werden. Die Maschinen kosten für Hemden 1000 €/Schicht, für Röcke 2000 €/Schicht und Hosen 1500 €/Schicht.
- Es stehen 150 Arbeitsstunden und 160 m² Material pro Schicht zur Verfügung. Bedarf an Arbeitsstunden, Material, Preise und variable Kosten:

	Arbeitsstunden	Material pro	Verkaufs-	Variable
	pro Stück	Stück (in <i>m</i> ²)	preis	Kosten
Hemden	3	1,2	60	35
Röcke	2	0,8	90	45
Hosen	3	1,3	110	60

(a) Unter Betrachtung der fixen Mietkosten sollen die

Produktionsmengen an Hemden, Röcken und Hosen bestimmt werden, sodass der gesamte Gewinn maximiert wird.

Formulieren Sie ein Optimierungsmodell.

(b) Erweitern Sie Ihr Modell unter Beachtung, dass im Falle der Produktion von Röcken bzw. Hosen eine Mindestmenge von 20 Stück produziert werden soll.

Fixe Kosten und Schwellenwerte: Beispiel "Fashion GmbH"

Entscheidungsvariablen:

- Ganzzahlige Variablen :
 - H Anzahl an Hemden pro Schicht
 - R Anzahl an Röcken pro Schicht
 - HO Anzahl an Hosen pro Schicht
- 2 Binärvariablen:

$$Y_H := egin{cases} 1 & \text{Hemden werden produziert} \\ 0 & \text{Hemden werden nicht produziert} \end{cases}$$

$$Y_R := egin{cases} 1 & ext{R\"ocke werden produziert} \ 0 & ext{R\"ocke werden nicht produziert} \end{cases}$$

$$Y_{HO} := \begin{cases} 1 & \text{Hosen werden produziert} \\ 0 & \text{Hosen werden nicht produziert} \end{cases}$$

Fixe Kosten und Schwellenwerte: Beispiel "Fashion GmbH"

Aufgabe: Aus zwei Gruppen a) und b) von je zwei Maschinen soll eine Gruppe für die Produktion zweier Produkte ausgewählt und dabei deren Gewinn maximiert werden.

a):
$$x_1 +5x_2 \le 10$$
 b): $2x_1 +5x_2 \le 20$ $x_1 +x_2 \le 6$

mit
$$x_1, x_2 \ge 0$$

und der Zielfunktion maximiere $z=x_1 + 2x_2$

Alternative Restriktionsgruppen – Grafik

- Das Restriktionssystem a oder b muss erfüllt werden.
- Lösungsraum ist nicht konvex.

Alternative Restriktionen

- Alternative Restriktionen können benutzt werden für die explizite Darstellung
 - nicht konvexer oder
 - nicht zusammenhängender Bereiche.
- Pro konvexem (Teil-)Bereich ist eine 0/1-Variable einzuführen.
- Optimale Lösung liegt in einem der Bereiche
 - Aber: Es muss immer gelten:

 $y_B = 1 \rightarrow \text{Restriktionen für Bereich B wirksam}$

 $y_B = 0 \rightarrow \text{Restriktionen für Bereich B unwirksam}$

- **1** Definiere 0/1-Variablen, $y_i = 1 \rightarrow \text{Restriktionsgruppe i}$ wirksam
- 2 Alle Gleichungen in Ungleichungen umwandeln.
- **3** Alle Ungleichungen in < -Ungleichungen umwandeln.
- Addiere auf der rechten Seite jeweils " $+M_i(1-y_i)$ ". Als M_i wird eine in Relation zu den anderen Parametern große Zahl gewählt.
- **5** Durch die Restriktion $y_1 + ... y_N = 1$ wird sichergestellt, dass nur eine Restriktionsgruppe ausgewählt wird.

Fixe Kosten und Schwellenwerte – Hinweis

- Im Buch "Optimierungssysteme" (Kap. 4.9) kann die Modellierung von Fixkosten und Schwellenwerten nachgelesen werden.
- Dort wird auch die Modellierung von anderen Nichtlinearitäten beschrieben.

Ein Praxisproblem


```
68 Sande + Elser Heide + Elsen Schule + Hauptbahnhof + Schöne Aussicht
```


Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Praxisproblelm "Personalplanung im ÖPNV"

Komplexe Restriktionen

Praxisproblelm "Personalplanung im ÖPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

Praxisproblelm "Personalplanung im OPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

Praxisproblelm "Personalplanung im ÖPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

Praxisproblelm "Personalplanung im ÖPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

Praxisproblelm "Personalplanung im ÖPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

Praxisproblelm "Personalplanung im ÖPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

Praxisproblelm "Personalplanung im OPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

Praxisproblelm "Personalplanung im OPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

Praxisproblelm "Personalplanung im ÖPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

Praxisproblelm "Personalplanung im OPNV"

Γ		Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
П	Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
	Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

Praxisproblelm "Personalplanung im OPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

$$\begin{array}{l} x_1^{\it a} + x_2^{\it a} + x_3^{\it a} + x_4^{\it a} + x_5^{\it a} + x_6^{\it a} \geq 1 \\ x_2^{\it a} + x_3^{\it a} + x_4^{\it a} + x_5^{\it a} + x_6^{\it a} + x_7^{\it a} \geq 1 \end{array}$$

Praxisproblelm "Personalplanung im OPNV"

	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10	Tag11	Tag12	Tag13	Tag14
Lin	d1	d13	F	F	F	d3	d5	d8	d10	F	F	d100	d67	d45
Corinna	d2	d24	d89	d29	d90	F	F	d20	d30	d32	d40	d88	F	F

$$\begin{aligned} x_1^a + x_2^a + x_3^a + x_4^a + x_5^a + x_6^a &\geq 1 \\ x_2^a + x_3^a + x_4^a + x_5^a + x_6^a + x_7^a &\geq 1 \\ & \dots \\ \sum_{t'=t}^{t+L_m^w} \sum_{e \in A_{m,t',d}} x_e^a &\geq 1 \qquad \forall m \in M, \ t \in \{1,...,T_m-L_m^w\}, \ d \in D_f \end{aligned}$$

Fazit und Ausblick

Fazit und Ausblick

Lernziele

- Modellierung von Entscheidungssituationen mit ganzzahligen Variablen
- Modellierung von Fixkosten, Schwellenwerten, alternativen Restriktionsgruppen mit 0/1-Variablen

■ Nächste Vorlesung

- Lösung von MIPs mit Branch&Bound

Danke für Ihre Aufmerksamkeit!

Leuphana Universität Lüneburg Wirtschaftsinformatik, insbesondere Operations Research Prof Dr Lin Xie Universitätsallee 1 Gebäude 4. Raum 314 21335 Lüneburg Fon +49 4131 677 2305 Fax +49 4131 677 1749 xie@leuphana.de

