Under what circumstances is a function equal to the sum of its Taylor series? In other words, if f has derivatives of all orders, when is it true that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n ?$$

Under what circumstances is a function equal to the sum of its Taylor series? In other words, if f has derivatives of all orders, when is it true that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n ?$$

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x - a)^i$$

$$= f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$$

the nth-degree Taylor polynomial of f at a.

Under what circumstances is a function equal to the sum of its Taylor series? In other words, if f has derivatives of all orders, when is it true that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n ?$$

f(x) is the sum of its Taylor series if

$$f(x) = \lim_{n \to \infty} T_n(x)$$

$$R_n(x) = f(x) - T_n(x) \qquad \qquad \blacktriangleright \qquad f(x) = T_n(x) + R_n(x)$$

$$R_n(x) = f(x) - T_n(x)$$

$$f(x) = T_n(x) + R_n(x)$$
remainder

THEOREM If $f(x) = T_n(x) + R_n(x)$, where T_n is the *n*th-degree Taylor polynomial of f at a and

$$\lim_{n\to\infty}R_n(x)=0$$

for |x - a| < R, then f is equal to the sum of its Taylor series on the interval |x - a| < R.

In trying to show that $\lim_{n\to\infty} R_n(x) = 0$ for a specific function f, we usually use the following fact.

TAYLOR'S INEQUALITY If $|f^{(n+1)}(x)| \le M$ for $|x - a| \le d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for $|x-a| \le d$

EXAMPLE Prove that e^x is equal to the sum of its Maclaurin series.

EXAMPLE Prove that e^x is equal to the sum of its Maclaurin series.

SOLUTION If $f(x) = e^x$, then $f^{(n+1)}(x) = e^x$ for all n. If d is any positive number and $|x| \le d$, then $|f^{(n+1)}(x)| = e^x \le e^d$. So Taylor's Inequality, with a = 0 and $M = e^d$, says that

$$|R_n(x)| \le \frac{e^d}{(n+1)!} |x|^{n+1}$$
 for $|x| \le d$

EXAMPLE Prove that e^x is equal to the sum of its Maclaurin series.

SOLUTION If $f(x) = e^x$, then $f^{(n+1)}(x) = e^x$ for all n. If d is any positive number and $|x| \le d$, then $|f^{(n+1)}(x)| = e^x \le e^d$. So Taylor's Inequality, with a = 0 and $M = e^d$, says that

$$|R_n(x)| \le \frac{e^d}{(n+1)!} |x|^{n+1}$$
 for $|x| \le d$

$$\lim_{n \to \infty} \frac{e^d}{(n+1)!} |x|^{n+1} = e^d \lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0$$
because $\lim_{n \to \infty} \frac{x^n}{n!} = 0$

EXAMPLE Prove that e^x is equal to the sum of its Maclaurin series.

SOLUTION If $f(x) = e^x$, then $f^{(n+1)}(x) = e^x$ for all n. If d is any positive number and $|x| \le d$, then $|f^{(n+1)}(x)| = e^x \le e^d$. So Taylor's Inequality, with a = 0 and $M = e^d$, says that

$$|R_n(x)| \le \frac{e^d}{(n+1)!} |x|^{n+1}$$
 for $|x| \le d$

$$\lim_{n\to\infty}\frac{e^d}{(n+1)!}|x|^{n+1}=e^d\lim_{n\to\infty}\frac{|x|^{n+1}}{(n+1)!}=0$$
 By the Sandwich Theorem $\lim_{n\to\infty}|R_n(x)|=0$ $\Rightarrow \lim_{n\to\infty}|R_n(x)|=0$

EXAMPLE Prove that e^x is equal to the sum of its Maclaurin series.

SOLUTION If $f(x) = e^x$, then $f^{(n+1)}(x) = e^x$ for all n. If d is any positive number and $|x| \le d$, then $|f^{(n+1)}(x)| = e^x \le e^d$. So Taylor's Inequality, with a = 0 and $M = e^d$, says that

$$|R_n(x)| \le \frac{e^d}{(n+1)!} |x|^{n+1}$$
 for $|x| \le d$

$$\lim_{n\to\infty} \frac{e^d}{(n+1)!} |x|^{n+1} = e^d \lim_{n\to\infty} \frac{|x|^{n+1}}{(n+1)!} = 0$$
By the Sandwich Theorem $\lim_{n\to\infty} |R_n(x)| = 0$

$$\lim_{n\to\infty} |R_n(x)| = 0 \implies e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad \text{for all } x$$

EXAMPLE Find the Maclaurin series for $\sin x$ and prove that it represents $\sin x$ for all x.

SOLUTION We arrange our computation in two columns as follows:

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin x$ $f''(0) = 0$
 $f'''(x) = -\cos x$ $f'''(0) = -1$
 $f^{(4)}(x) = \sin x$ $f^{(4)}(0) = 0$

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as follows:

$$f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

EXAMPLE Find the Maclaurin series for $\sin x$ and prove that it represents $\sin x$ for all x.

Since $f^{(n+1)}(x)$ is $\pm \sin x$ or $\pm \cos x$, we know that $|f^{(n+1)}(x)| \le 1$ for all x. So we can take M = 1 in Taylor's Inequality:

$$|R_n(x)| \le \frac{M}{(n+1)!} |x^{n+1}| = \frac{|x|^{n+1}}{(n+1)!}$$

EXAMPLE Find the Maclaurin series for $\sin x$ and prove that it represents $\sin x$ for all x.

Since $f^{(n+1)}(x)$ is $\pm \sin x$ or $\pm \cos x$, we know that $|f^{(n+1)}(x)| \le 1$ for all x. So we can take M = 1 in Taylor's Inequality:

$$|R_n(x)| \le \frac{M}{(n+1)!} |x^{n+1}| = \frac{|x|^{n+1}}{(n+1)!} \xrightarrow{as n \to \infty} 0$$

EXAMPLE Find the Maclaurin series for $\sin x$ and prove that it represents $\sin x$ for all x.

Since $f^{(n+1)}(x)$ is $\pm \sin x$ or $\pm \cos x$, we know that $|f^{(n+1)}(x)| \le 1$ for all x. So we can take M = 1 in Taylor's Inequality:

$$|R_n(x)| \le \frac{M}{(n+1)!} |x^{n+1}| = \frac{|x|^{n+1}}{(n+1)!} \xrightarrow{as n \to \infty} 0$$

 $|R_n(x)| \to 0$ by the Squeeze Theorem. It follows that $R_n(x) \to 0$ as $n \to \infty$

EXAMPLE Find the Maclaurin series for $\sin x$ and prove that it represents $\sin x$ for all x.

Since $f^{(n+1)}(x)$ is $\pm \sin x$ or $\pm \cos x$, we know that $|f^{(n+1)}(x)| \le 1$ for all x. So we can take M = 1 in Taylor's Inequality:

$$|R_n(x)| \le \frac{M}{(n+1)!} |x^{n+1}| = \frac{|x|^{n+1}}{(n+1)!} \xrightarrow{\text{as } n \to \infty} 0$$

 $|R_n(x)| \to 0$ by the Squeeze Theorem. It follows that $R_n(x) \to 0$ as $n \to \infty$

 $\sin x$ is equal to the sum of its Maclaurin series

EXAMPLE Find the Maclaurin series for $f(x) = (1 + x)^k$, where k is any real number.

EXAMPLE Find the Maclaurin series for $f(x) = (1 + x)^k$, where k is any real number.

SOLUTION

EXAMPLE Find the Maclaurin series for $f(x) = (1 + x)^k$, where k is any real number.

SOLUTION

Therefore the Maclaurin series of $f(x) = (1 + x)^k$ is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{k(k-1)\cdots(k-n+1)}{n!} x^n$$

EXAMPLE Find the Maclaurin series for $f(x) = (1 + x)^k$, where k is any real number.

SOLUTION

This series is called the **binomial series**. If its *n*th term is a_n , then

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{k(k-1)\cdots(k-n+1)(k-n)x^{n+1}}{(n+1)!} \cdot \frac{n!}{k(k-1)\cdots(k-n+1)x^n} \right|$$

$$= \frac{|k-n|}{n+1} |x| = \frac{\left| 1 - \frac{k}{n} \right|}{1 + \frac{1}{n}} |x| \to |x| \quad \text{as } n \to \infty$$

Thus, by the Ratio Test, the binomial series converges if |x| < 1 and diverges if |x| > 1.

The traditional notation for the coefficients in the binomial series is

$$\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$$

and these numbers are called the binomial coefficients.

THE BINOMIAL SERIES If k is any real number and |x| < 1, then

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots$$

EXAMPLE Find the Maclaurin series for the function $f(x) = \frac{1}{\sqrt{4-x}}$ and its radius of convergence.

EXAMPLE Find the Maclaurin series for the function $f(x) = \frac{1}{\sqrt{4-x}}$ and its radius of convergence.

SOLUTION We write f(x) in a form where we can use the binomial series:

$$\frac{1}{\sqrt{4-x}} = \frac{1}{\sqrt{4\left(1-\frac{x}{4}\right)}} = \frac{1}{2\sqrt{1-\frac{x}{4}}} = \frac{1}{2}\left(1-\frac{x}{4}\right)^{-1/2}$$

EXAMPLE Find the Maclaurin series for the function $f(x) = \frac{1}{\sqrt{4-x}}$ and its radius of convergence.

SOLUTION We write f(x) in a form where we can use the binomial series:

$$\frac{1}{\sqrt{4-x}} = \frac{1}{\sqrt{4\left(1-\frac{x}{4}\right)}} = \frac{1}{2\sqrt{1-\frac{x}{4}}} = \frac{1}{2}\left(1-\frac{x}{4}\right)^{-1/2}$$

$$\frac{1}{\sqrt{4-x}} = \frac{1}{2}\left(1-\frac{x}{4}\right)^{-1/2} = \frac{1}{2}\sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} \left(-\frac{x}{4}\right)^{n}$$

$$= \frac{1}{2}\left[1+\left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(-\frac{x}{4}\right)^{2} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(-\frac{x}{4}\right)^{3}$$

$$+\cdots + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\cdots\left(-\frac{1}{2}-n+1\right)}{n!}\left(-\frac{x}{4}\right)^{n} + \cdots\right]$$

$$= \frac{1}{2}\left[1+\frac{1}{8}x+\frac{1\cdot 3}{2!8^{2}}x^{2}+\frac{1\cdot 3\cdot 5}{3!8^{3}}x^{3}+\cdots+\frac{1\cdot 3\cdot 5\cdot \cdots \cdot (2n-1)}{n!8^{n}}x^{n}+\cdots\right]$$

EXAMPLE Find the Maclaurin series for the function $f(x) = \frac{1}{\sqrt{4-x}}$ and its radius of convergence.

SOLUTION

this series converges when |-x/4| < 1, that is, |x| < 4 the radius of convergence is R = 4.

$$\frac{1}{\sqrt{4-x}} = \frac{1}{2} \left(1 - \frac{x}{4} \right)^{-1/2} = \frac{1}{2} \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} \left(-\frac{x}{4} \right)^n$$

$$= \frac{1}{2} \left[1 + \left(-\frac{1}{2} \right) \left(-\frac{x}{4} \right) + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{2!} \left(-\frac{x}{4} \right)^2 + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(-\frac{5}{2} \right)}{3!} \left(-\frac{x}{4} \right)^3 + \cdots + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(-\frac{5}{2} \right) \cdots \left(-\frac{1}{2} - n + 1 \right)}{n!} \left(-\frac{x}{4} \right)^n + \cdots \right]$$

$$= \frac{1}{2} \left[1 + \frac{1}{8} x + \frac{1 \cdot 3}{2! \cdot 8^2} x^2 + \frac{1 \cdot 3 \cdot 5}{3! \cdot 8^3} x^3 + \cdots + \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n - 1)}{n! \cdot 8^n} x^n + \cdots \right]$$

EXAMPLE

Evaluate $\int e^{-x^2} dx$ as an infinite series.

EXAMPLE

Evaluate $\int e^{-x^2} dx$ as an infinite series.

SOLUTION

$$e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!} = 1 - \frac{x^2}{1!} + \frac{x^4}{2!} - \frac{x^6}{3!} + \cdots$$

$$\int e^{-x^2} dx = \int \left(1 - \frac{x^2}{1!} + \frac{x^4}{2!} - \frac{x^6}{3!} + \dots + (-1)^n \frac{x^{2n}}{n!} + \dots \right) dx$$

$$= C + x - \frac{x^3}{3 \cdot 1!} + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)n!} + \dots$$

This series converges for all x because the original series for e^{-x^2} converges for all x.

EXAMPLE

Evaluate $\int e^{-x^2} dx$ as an infinite series.

SOLUTION

The Fundamental Theorem of Calculus gives

$$\int_0^1 e^{-x^2} dx = \left[x - \frac{x^3}{3 \cdot 1!} + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \frac{x^9}{9 \cdot 4!} - \cdots \right]_0^1$$

$$= 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} + \frac{1}{216} - \cdots$$

$$\approx 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} + \frac{1}{216} \approx 0.7475$$

the error involved in this approximation is less than

$$\frac{1}{11 \cdot 5!} = \frac{1}{1320} < 0.001$$

EXAMPLE

- (a) Approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at a = 8.
- (b) How accurate is this approximation when $7 \le x \le 9$?

EXAMPLE

- (a) Approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at a = 8.
- (b) How accurate is this approximation when $7 \le x \le 9$?

SOLUTION

(a)
$$f(x) = \sqrt[3]{x} = x^{1/3}$$
 $f(8) = 2$
 $f'(x) = \frac{1}{3}x^{-2/3}$ $f'(8) = \frac{1}{12}$
 $f''(x) = -\frac{2}{9}x^{-5/3}$ $f''(8) = -\frac{1}{144}$
 $f'''(x) = \frac{10}{27}x^{-8/3}$

EXAMPLE

- (a) Approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at a = 8.
- (b) How accurate is this approximation when $7 \le x \le 9$?

SOLUTION

SOLUTION
(a)
$$f(x) = \sqrt[3]{x} = x^{1/3}$$
 $f(8) = 2$

$$f'(x) = \frac{1}{3}x^{-2/3}$$
 $f'(8) = \frac{1}{12}$

$$f''(x) = -\frac{2}{9}x^{-5/3}$$
 $f''(8) = -\frac{1}{144}$

$$f'''(x) = \frac{10}{27}x^{-8/3}$$
 $f''(8) = -\frac{1}{144}$

$$f'''(8) = 2$$

$$f'''(8) = \frac{1}{12}$$

$$f''(8) = -\frac{1}{144}$$

$$T_2(x) = f(8) + \frac{f'(8)}{1!}(x - 8) + \frac{f''(8)}{2!}(x - 8)^2$$
$$= 2 + \frac{1}{12}(x - 8) - \frac{1}{288}(x - 8)^2$$

EXAMPLE

- (a) Approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at a = 8.
- (b) How accurate is this approximation when $7 \le x \le 9$?

SOLUTION

(a)
$$f(x) = \sqrt[3]{x} = x^{1/3}$$
 $f(8) = 2$ the second-degree Taylor polynomial $f'(x) = \frac{1}{3}x^{-2/3}$ $f'(8) = \frac{1}{12}$ $f''(x) = -\frac{2}{9}x^{-5/3}$ $f''(8) = -\frac{1}{144}$ f

the second-degree Taylor polynomial

$$T_2(x) = f(8) + \frac{f'(8)}{1!}(x - 8) + \frac{f''(8)}{2!}(x - 8)^2$$
$$= 2 + \frac{1}{12}(x - 8) - \frac{1}{288}(x - 8)^2$$

The desired approximation is $\sqrt[3]{x} \approx T_2(x) = 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2$.

EXAMPLE

- (a) Approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at a = 8.
- (b) How accurate is this approximation when $7 \le x \le 9$?

SOLUTION

(a)
$$f(x) = \sqrt[3]{x} = x^{1/3}$$
 $f(8) = 2$ the second-degree Taylor polynomial $f'(x) = \frac{1}{3}x^{-2/3}$ $f'(8) = \frac{1}{12}$ $f''(x) = -\frac{2}{9}x^{-5/3}$ $f''(8) = -\frac{1}{144}$ f

the second-degree Taylor polynomial

$$T_2(x) = f(8) + \frac{f'(8)}{1!}(x - 8) + \frac{f''(8)}{2!}(x - 8)^2$$
$$= 2 + \frac{1}{12}(x - 8) - \frac{1}{288}(x - 8)^2$$

The desired approximation is $\sqrt[3]{x} \approx T_2(x) = 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2$.

(b) Because $x \ge 7$, we have $x^{8/3} \ge 7^{8/3}$ and so $f'''(x) = \frac{10}{27} \cdot \frac{1}{x^{8/3}} \le \frac{10}{27} \cdot \frac{1}{7^{8/3}} < 0.0021$.

EXAMPLE

- (a) Approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at a = 8.
- (b) How accurate is this approximation when $7 \le x \le 9$?

SOLUTION

SOLUTION
(a)
$$f(x) = \sqrt[3]{x} = x^{1/3}$$
 $f(8) = 2$

$$f'(x) = \frac{1}{3}x^{-2/3}$$
 $f'(8) = \frac{1}{12}$

$$f''(x) = -\frac{2}{9}x^{-5/3}$$
 $f''(8) = -\frac{1}{144}$

$$f'''(x) = \frac{10}{27}x^{-8/3}$$
 the second-degree Taylor polynomial
$$T_2(x) = f(8) + \frac{f'(8)}{1!}(x - 8) + \frac{f''(8)}{2!}(x - 8)^2$$

$$= 2 + \frac{1}{12}(x - 8) - \frac{1}{288}(x - 8)^2$$

$$T_2(x) = f(8) + \frac{f'(8)}{1!}(x - 8) + \frac{f''(8)}{2!}(x - 8)$$
$$= 2 + \frac{1}{12}(x - 8) - \frac{1}{288}(x - 8)^2$$

The desired approximation is $\sqrt[3]{x} \approx T_2(x) = 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2$.

(b) Because $x \ge 7$, we have $x^{8/3} \ge 7^{8/3}$ and so $f'''(x) = \frac{10}{27} \cdot \frac{1}{x^{8/3}} \le \frac{10}{27} \cdot \frac{1}{7^{8/3}} < 0.0021$.

EXAMPLE

- (a) Approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at a = 8.
- (b) How accurate is this approximation when $7 \le x \le 9$?

SOLUTION

SOLUTION

(a)
$$f(x) = \sqrt[3]{x} = x^{1/3}$$
 $f(8) = 2$

$$f'(x) = \frac{1}{3}x^{-2/3}$$
 $f'(8) = \frac{1}{12}$

$$f''(x) = -\frac{2}{9}x^{-5/3}$$
 $f''(8) = -\frac{1}{144}$

$$f'''(x) = \frac{10}{27}x^{-8/3}$$
 the second-degree Taylor polynomial
$$T_2(x) = f(8) + \frac{f'(8)}{1!}(x - 8) + \frac{f''(8)}{2!}(x - 8)^2$$

$$= 2 + \frac{1}{12}(x - 8) - \frac{1}{288}(x - 8)^2$$

$$T_2(x) = f(8) + \frac{f'(8)}{1!}(x - 8) + \frac{f''(8)}{2!}(x - 8)$$
$$= 2 + \frac{1}{12}(x - 8) - \frac{1}{288}(x - 8)^2$$

The desired approximation is $\sqrt[3]{x} \approx T_2(x) = 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2$.

(b) Because $x \ge 7$, we have $x^{8/3} \ge 7^{8/3}$ and so $f'''(x) = \frac{10}{27} \cdot \frac{1}{x^{8/3}} \le \frac{10}{27} \cdot \frac{1}{7^{8/3}} < 0.0021$.

$$|R_2(x)| \le \frac{M}{3!}|x-8|^3 = \frac{0.0021}{3!} \cdot 1^3 = \frac{0.0021}{6} < 0.0004$$

EXAMPLE

- (a) Approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at a = 8.
- (b) How accurate is this approximation when $7 \le x \le 9$?

SOLUTION

(a)
$$f(x) = \sqrt[3]{x} = x^{1/3}$$
 $f(8) = 2$
 $f'(x) = \frac{1}{3}x^{-2/3}$ $f'(8) = \frac{1}{12}$
 $f''(x) = -\frac{2}{9}x^{-5/3}$ $f''(8) = -\frac{1}{144}$
 $f'''(x) = \frac{10}{27}x^{-8/3}$

the second-degree Taylor polynomial

$$T_2(x) = f(8) + \frac{f'(8)}{1!}(x - 8) + \frac{f''(8)}{2!}(x - 8)^2$$
$$= 2 + \frac{1}{12}(x - 8) - \frac{1}{288}(x - 8)^2$$

The desired approximation is $\sqrt[3]{x} \approx T_2(x) = 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2$.

(b) Because
$$x \ge 7$$
, we have $x^{8/3} \ge 7^{8/3}$ and so $f'''(x) = \frac{10}{27} \cdot \frac{1}{x^{8/3}} \le \frac{10}{27} \cdot \frac{1}{7^{8/3}} < 0.0021$.

$$|R_2(x)| \le \frac{M}{3!}|x-8|^3 = \frac{0.0021}{3!} \cdot 1^3 = \frac{0.0021}{6} < 0.0004$$

Thus, if $7 \le x \le 9$, the approximation in part (a) is accurate to within 0.0004.