Einführung in die Mathematik für Informatiker Lineare Algebra

Prof. Dr. Ulrike Baumann www.math.tu-dresden.de/~baumann

3.12.2018

9. Vorlesung

- Eigenschaften linearer Abbildungen
- Beschreibung linearer Abbildungen durch Matrizen
- Eigenschaften von Determinanten
- Berechnung von Determinanten für 2-reihige und 3-reihige Matrizen

				L.			1																		
		inle	wQ	P	16	jild	m	9 .																	
								J																	
		_		,																_					
		ť		_) E	N			4	Vi	+ 1	51	/2	_	5	K.	£Ιν	,) -	t K	H((V_{ν})				
			Ł	R		4-1/	2		Ů								0.0		U						
		_																							
	154	SP).	(ι)	1	· }		×K			水-	> (lx	.(0	ER	, a	Le&	t]							
			(2)	4:	$\leq_{\mathcal{V}}$	-	Kn Kn		V	->	<u> </u>	V	(A	Ek	mxn	A	fes	t)						
								neewe											/						
			۲,	43	t t	ine		neewe		boile		i On	enn:												
						1	,	,v,+		1 //	A.K.V.	f Akıl	/i												
								∕n' +																	
			(3)	١	: -{	→ {	'(Ab	leitun) (inear	, dem	. (γ	f'(X)+1	r f2(75)) ^l =(r	(k).};	1+(ru	(K)) ⁽	= h:	£,′(×) .	+ hti	(7)			
	\mathbb{Z}_{p_n}	\T€																			eivol		best	imnt	
																						Ĭ			
																					\rightarrow	Nac	hole (Seite	2
1																									

Eigenschaften linearer Abbildungen

Sei $f: V \rightarrow W$ eine lineare Abbildung.

 $\{b_1, b_2, \ldots, b_n\}$ sei eine Basis von V.

 $\underline{w_i := f(b_i)}$ (i = 1, 2, ..., n) seien die Bilder der Basisvektoren.

- ① f ist injektiv $\iff \{w_1, w_2, \dots, w_n\}$ ist linear unabhängig
- 2 f ist surjektiv \iff Span $(\{w_1, w_2, \dots, w_n\}) = W$
- 3 f ist bijektiv $\iff \{w_1, w_2, \dots, w_n\}$ ist eine Basis von W

Glocht.
$$f(V)$$
 für $V \in V$

Delieb G

Van. $f(V) = f(K_1b_1 + \dots + K_nb_n) = k_1 f(b_1) + \dots + K_n f(b_n)$

Vis = $\binom{b_1}{b_1} = V = k_1b_1 + \dots + k_nb_n$

Koordinatenvektar von $V = b \times g(L - B)$

BSP. $f(R) = \binom{a_1}{b_1} \Rightarrow \binom{a_2}{a_1} \Rightarrow \binom{a_1}{a_2} \Rightarrow \binom{a_2}{a_1} \Rightarrow \binom{a_1}{b_2} \Rightarrow \binom{a_2}{a_1} \Rightarrow \binom{a_1}{b_2} \Rightarrow \binom{a_1}{b_2} \Rightarrow \binom{a_2}{b_2} \Rightarrow \binom{a_1}{b_2} \Rightarrow \binom{a_1}{b_2} \Rightarrow \binom{a_2}{b_2} \Rightarrow \binom{a_2}{b_2} \Rightarrow \binom{a_2}{b_2} \Rightarrow \binom{a_1}{b_2} \Rightarrow \binom{a_2}{b_2} \Rightarrow \binom{a_1}{b_2} \Rightarrow \binom{a_2}{b_2} \Rightarrow \binom$

Lineare Abbildungen $f: \mathbb{R}^2 \to \mathbb{R}^2: v \mapsto Av$

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 $A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ Die identische Abbildung bildet jeden Vektor auf sich selbst ab.

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

Die Nullabbildung bildet jeden Vektor auf den Nullvektor ab.

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$

Jeder Vektor (a, b) wird auf den doppelten Vektor (2a, 2b) abgebildet.

Senkrechte Projektion auf die x-Achse

Senkrechte Projektion auf die Winkelhalbierende des ersten Quadranten

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

 $A = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$ Linksdrehung um den Koodinatenursprung um den Winkel φ $A = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ \sin(\varphi) & -\cos(\varphi) \end{pmatrix}$ Spiegelung an der Geraden, die gegen die

x-Achse mit dem Winkel $\frac{\varphi}{2}$ geneigt ist Ulrike Baumann Lineare Algebra

Lineare Abbildungen $f_A: v \mapsto Av$

• Jede Matrix $A \in K^{m \times n}$ induziert eine lineare Abbildung f_A vom K-Vektorraum K^n in den K-Vektorraum K^m :

$$f_A:K^n\to K^m:v\mapsto Av$$

• Jede lineare Abbildung aus einem n-dimensionalen K-Vektorraum in einen m-dimensionalen K-Vektorraum lässt sich mit einer geeigneten Matrix $A \in K^{m \times n}$ in der Form $v \mapsto Av$ darstellen.

Darstellung linearer Abbildungen bezüglich der Standardbasen

Es sei
$$f: K^n \to K^m$$
 eine lineare Abbildung,
 $v = (v_1, \dots, v_n)^T \in K^n$
und (e_1, \dots, e_n) die Standardbasis von K^n .

$$f(v) = f(v_1e_1 + \dots + v_ne_n)$$

$$= v_1f(e_1) + \dots + v_nf(e_n)$$

$$= \underbrace{(f(e_1), \dots, f(e_n))}_{=: A} \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$= Av$$

$$= f_A(v)$$

Ulrike Baumann

Lineare Algebra

Darstellungsmatrix einer linearen Abbildung

Es sei $f: V \to W$ eine lineare Abbildung eines K-Vektorraums V mit dim(V) = n in einen K-Vektorraum W mit dim(W) = m.

 $B = (b_1, \ldots, b_n)$ sei eine geordnete Basis von V.

$$C = (c_1, \ldots, c_m)$$
 sei eine geordnete Basis von W .

Man nennt die Matrix

$$\underline{A_{BC}} := (f(b_1)_C, \dots, f(b_n)_C)$$

die Darstellungsmatrix von f bezüglich der Basen B und C.

Die i-te Spalte von A_{BC} ist der Koordinatenvektor bezüglich der Basis C des Bildes des i-ten Basisvektors aus der Basis B.

• Der Koordinatenvektor $f(v)_C$ von f(v) bezüglich C ist das Produkt der Darstellungsmatrix mit dem Koordinatenvektor v_B von v bezüglich B:

$$f(v)_C = A_{BC} \cdot v_B$$

$$||S|| = ||S|| ||$$

Hintereinanderausführung linearer Abbildungen

Es sei $f_1: V_1 \to V_2$ eine lineare Abbildung des K-Vektorraums V_1 in den K-Vektorraum V_2 und $f_2: V_2 \to V_3$ eine lineare Abbildung des K-Vektorraums V_2 in den K-Vektorraum V_3 . Dann gilt:

- $f_2 \circ f_1 : V_1 \to V_3$ eine lineare Abbildung.
- B_i sei eine geordnete Basis von V_i für i = 1, 2, 3.

 $A_{B_1B_2}$ sei die Darstellungsmatrix von f_1 bezüglich der Basen B_1 und B_2 .

 $A_{B_2B_3}$ sei die Darstellungsmatrix von f_2 bezüglich der Basen B_2 und B_3 .

Dann ist

$$A_{B_2B_3}\cdot A_{B_1B_2}$$

die Darstellungsmatrix der linearen Abbildung $f_2 \circ f_1$ bezüglich der Basen B_1 und B_3 .

Bijektive lineare Abbildungen

- Ist $f: V \to W$ eine bijektive lineare Abbildung, so ist auch $f^{-1}: W \to V$ eine bijektive lineare Abbildung.
- Die Darstellungsmatrix einer linearen Abbildung kann man bezüglich beliebiger Basen bilden.
- Eine lineare Abbildung f: V → W eines K-Vektorraums V ist genau dann bijektiv, wenn die Darstellungsmatrizen für f invertierbar sind.

Eigenschaften von Determinanten

 $\det: K^{n \times n} \to K: A \mapsto \det(A)$

Die Determinante ist eine Abbildung det, die durch folgende Eigenschaften festgelegt ist:

• det ist multilinear,

d.h. det
$$\begin{pmatrix} z_1 \\ \vdots \\ z_i + kz_i^* \\ \vdots \\ z_n \end{pmatrix} = \det \begin{pmatrix} z_1 \\ \vdots \\ z_i \\ \vdots \\ z_n \end{pmatrix} + k \det \begin{pmatrix} z_1 \\ \vdots \\ z_i^* \\ \vdots \\ z_n \end{pmatrix}$$

- det ist <u>alternierend</u>, d.h. hat A zwei gleiche Zeilen, dann gilt det(A) = 0.
- det ist <u>normiert</u>,
 d.h. det(E_n) = 1.

Ulrike Baumann

Lineare Algebra

Determinante einer 2×2 -Matrix

• Ist
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in K^{2 \times 2}$$
, so wird
$$\det(A) := a_{11}a_{22} - a_{12}a_{21} \in K$$

die Determinante von A genannt.

• Sind
$$v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
 und $w = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ Vektoren aus dem \mathbb{R}^2 , so bilden die Punkte

$$0, v, w, v + w$$

die Ecken eines Parallelogramms mit dem Flächeninhalt F:

$$F = \left| \det \left(egin{array}{cc} v_1 & w_1 \ v_2 & w_2 \end{array}
ight)
ight|$$

Ulrike Baumann

Lineare Algebra

Determinante einer 3×3 -Matrix

Regel von Sarrus:

Ist
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in K^{3\times3}$$
, so wird

$$\det(A) := a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}$$

die Determinante von A genannt.

Es gilt

$$\det(A) = a_{11} \cdot \det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{21} \cdot \det \begin{pmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{pmatrix} + a_{31} \cdot \det \begin{pmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{pmatrix}$$