

# 제주도 도로 교통량 예측 AI 분석 발표



제주도의 교통 정보로부터 도로 교통량 회귀 예측

팀명: 감귤보이즈 2팀(김재승, 우현, 김정현, 배재한)

# <목차>

- I. 주제선정
  - 1. 프로젝트 배경 및 목표
- Ⅱ. 데이터 설명
  - 1. 데이터 EDA
  - 2. Feature Engineering

### Ⅲ. 데이터 분석

- 1. 모델링 설명
- 2. 모델링 결과

### IIII. 대회 결과

# 주제 선정



### 1. 주제선정: 프로젝트 배경 및 목표



### 제주도 교통정보데이터를 바탕으로 현재도로의 교통량을 예측 해보기!!

#### 현재 시각 제주도 도로교통 체증 원인 및 중요도

- 1. 제주도 내 주민등록수는 2022년 기준으로 약 70만명으로 집계 됨.
- 2. 연평균 1.5% 정도 매년 증가되는 추세~~.
- 3. 내국인 및 외국인관광객을 고려하면 전체 상주 인구는 90만명을 넘을 것으로 추정.





머신러닝 모델을 이용한 교통량(평균속도) 예측 분석

출처: 한겨레

# 데이터 설명



### 2. 데이터 설명(1) 데이터 EDA

### 내부 데이터(Dataset.Info)

#### 1. train.csv [파일]

- 4,701,217개의 데이터
- -base\_date(날짜): 2021.09.01 2022.07.31
- -day\_of\_week(요일): 월,화,수,목,금,토,일
- -base\_hour(시간대): 0 23
- -lane count(차로수): 1, 2, 3
- -road\_rating(도로등급): 103, 106, 107
- -road\_name(도로이름) : 61 가지의 도로명(일반국도12호선, -(결측 치) 등....)
- -multi\_linked(중용구간여부): 0, 1
- -connect\_code(연결로 코드): 0, 103
- -maximum\_speed\_limit(최고속도제한): 30, 50, 60, 70, 80
- -vehicle\_restricted(통과제한차량): 0
- -weight\_restricted(통과제한하중):0/ 43200/ 32400/ 50000
- -height\_restricted(통과제한높이): 0
- -road\_type(도로유형): 0, 3
- -start\_node\_name, end\_node\_name: 487 도로, 장소명
- -start latitude, start longitude: 586 가지 출발점 위,경도
- -end latitude, end longitude:: 586 가지 도착점 위,경도
- -start turn restricted: 있음, 없음
- -end\_turn\_restricted : 있음, 없음

### -target : 평균속도(예측해야할 값)

### 외부 데이터(Dataset.Info)

- Distance: 지리 공간 파생변수 도로의 위치 및 구간거리
- 2. Airport\_distance: 제주공항까지 거리의 제 주도 권역별 구분(제주도, 서귀포)
- 3. Road\_mean: GPS 정보를 사용해서 road 구 분한 평균
- 4. Slope: 각 도로의 경사도 계산
- 5. Tourist: 제주도 관광객 입도 현황
- 6. Is camera: 무인 교통단속 카메라 위치
- 7. 그외....

### 국토 해양부 데이터 자료

제정 2007. 9.13 건설교통부고시 제2007~386호 개정 2008. 4. 1 국토해양부고시 제2008~26호 개정 2009. 8.24 국토해양부고시 제2009~805호 개정 2012. 8. 2. 국토해양부고시 제2012~560호 개정 2013. 4.11 국토교통부고시 제2013~254호

지능형교통체계 표준 노드·링크 구축기준

# 데이터 설명



### 데이터 EDA

- 데이터 분포
- 결측치 처리
- 데이터 시각화

### **Feature Engineering**

- 범주형 인코딩
- 피처 선택

## 2. 데이터 설명(1) 데이터 EDA-

### 국토 해양부 데이터 자료 상세 설명

#### 마. 노드 속성정보에 활용하는 코드값은 아래와 같다.

| 영문명       | 한글명    | 코드값                                    | 설명                                                     |
|-----------|--------|----------------------------------------|--------------------------------------------------------|
| NODE_TYPE | 노드유형   | 101<br>102<br>103<br>104<br>105<br>108 | 도로교차점<br>도로시 · 종점<br>속성변화점<br>도로시설물<br>행정경계<br>IC 및 JC |
| TURN_P    | 회전제한유무 | 0<br>1                                 | 무야                                                     |

| 영문명       | 한글명    | 코드값                                                  | 설명                                                                   |
|-----------|--------|------------------------------------------------------|----------------------------------------------------------------------|
| TURN_TYPE | 회전제한유형 | 001<br>002<br>003<br>011<br>012<br>101<br>102<br>103 | 비보호회전<br>버스만회전<br>회전금지<br>U-TURN<br>P-TURN<br>좌회전금지<br>직진금지<br>우회전금지 |
| TURN_OPER | 회전제한운영 | 0                                                    | 전일제<br>시간제                                                           |

| 영문명        | 한글명    | 코드                                                   | 코드정보                                                                  |
|------------|--------|------------------------------------------------------|-----------------------------------------------------------------------|
| ROAD_RANK  | 도로등급   | 101<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | 고속국도<br>도시고속국도<br>일반국도<br>특별 - 광역시도<br>국가지원지방도<br>지방도<br>시 · 군도<br>기타 |
| ROAD_TYPE  | 도로유형   | 000<br>001<br>002<br>003<br>004                      | 일반도로<br>고가차도<br>지하차도<br>교량<br>터널                                      |
| ROAD_USE   | 도로사용여부 | 0<br>1                                               | 사용<br>미사용                                                             |
| MULTI_LINK | 중용구간여부 | 0<br>1                                               | 독립구간<br>중용구간                                                          |

### 자료를 보고 떠오른 생각



- 1. 위도 경도는 지도 관련 데이터?? -> Folium??
- 2. 중용구간의 의미는??
- . 일반국도의 도로 구간은 전용구간과 중용구간으로 나눌 수 있다. 전용구간이란하나의 노선이 도로를 전적으로 사용하는 구간을 말하며 2개 이상의 노선이 도로의 일정 구간을 공동으로 사용하는 구간을 중용구간이라한다.
- 3. 통과제한하중: 과적으로인한 도로 파괴과적...
- 4. 통과제한차량: 무게가 우선 부피도 제재도 한다.
- 5. 도로등급: 도로상태를 보고 정함.
- 6. 차량제한에 따라 도로차선
  - 승용차: 1차선~3차선
  - 화물차는 3차선
- 7. 일반도로/고속도로/추월선(고속도로에서 1차선에서만 가능)
- 9. 노선: 교통 기관이 통과하는 출발 지점과 목적 지점을 잇는 선이다.
  - 예시) 철도 노선, 버스 노선, 항공 노선, 항로 등이 있다.
- 10. 데이터 조사기간: 2021.09.31 ~ 2022.07.31 거의 1년치인데 관광객을 목표로해서
- 저 날짜기간을 둔것인가??

#### 데이터 분석 세트

```
2 import numpy as np
 3 import pandas as pd
 4 import matplotlib.pyplot as plt
 5 import seaborn as sns
 6 from collections import Counter
 7 import matplotlib as mpl
9 import plotly.express as px
10 from sklearn.model_selection import train_test_split, cross_val_score
11 from sklearn.preprocessing import OrdinalEncoder
12 from sklearn.model_selection import GridSearchCV
13 import gc
14 from sklearn.preprocessing import LabelEncoder
15 from sklearn.cluster import KMeans
16 import math
17 from sklearn.model_selection import StratifiedKFold as kfold
18 from sklearn.metrics import mean absolute error
19 from lightgbm import LGBMRegressor
20 from xgboost import XGBRegressor
21 from catboost import catRegressor
```

#### 데이터의 개수

```
id = 4701217
base_date = 281
day_of_week = 7
base hour = 24
Tane_count = 3
road rating = 3
road name = 61
multi linked = 2
connect_code = 2
maximum speed limit = 6
vehicle_restricted = 1
weight_restricted = 4
height_restricted = 1
road_type = 2
start node name = 487
start_latitude = 586
start_longitude = 586
start_turn_restricted = 2
end_node_name = 487
end_latitude = 586
end longitude = 586
end_turn_restricted = 2
target = 102
```

#### Train/Test Set의 데이터 분포 비교





#### **Test data**



© Copyright Company Name Presentation title in footer 10

### Train/Test Set의 데이터 분포 비교







### Train/Test Set의 데이터 분포 비교



### Train/Test Set의 데이터 분포 비교

Train data Test data





#### Train 상관관계



- 1. 예측해야하는 target 값과의 상관관계가 높은 것중에 가장 눈에 띄는 컬럼은 maximum\_speed\_limit입니다. 최고속도 제한이 높을 수록 양의 상관관계가 있다는 것을 알 수 있습니다(직관적으로도)
- 2. lane\_count(차로 수)는 많을수록 속도가 더 높을 것 같음에도 maximum\_speed\_limit와도 관련.
- 3. weight\_restricted(통과 제한 하중)은 target과의 양의 상관관계가 나왔습니다. Road\_rating, road\_type은 상관관계가 있으나 데이터를 보아야 원인을 유추할 수 있을 것으로 예상됨.

### Train/Test Set의 데이터 분포 비교

#### **Train data**





### [고려해본변수들]

- 1. road\_rating
- 2. Weight\_restricted
- 3. Maximum\_speed\_limit
  - 4. lane\_count
    - 5. target

**Train data** 



일반국도 11번 일반국도 12번 일반국도 16번 일반국도 95번 일반국도 99번

### Train 데이터 분포



#### Train 데이터 분포



### Target 데이터 분포



# Train 데이터 분포 road\_name/최대 속도/최저속도 비교

|           | 와 minOl 서로다른 <mark>구간</mark><br>sult["maximum_speed_limit(max) | o"] != result["maximum_speed_li | imit(m |
|-----------|----------------------------------------------------------------|---------------------------------|--------|
| road_name | maximum_speed_limit(max)                                       | maximum_speed_limit(min)        |        |
| -         | 80.0                                                           | 30.0                            |        |
| 남조로       | 60.0                                                           | 50.0                            |        |
| 동홍로       | 60.0                                                           | 50.0                            |        |
| 산서로       | 60.0                                                           | 50.0                            |        |
| 새서귀로      | 60.0                                                           | 30.0                            |        |
| 서사로       | 50.0                                                           | 30.0                            |        |
| 신대로       | 70.0                                                           | 30.0                            |        |
| 연북로       | 50.0                                                           | 30.0                            |        |
| 일반국도11호선  | 70.0                                                           | 30.0                            |        |
| 일반국도12호선  | 0.08                                                           | 30.0                            |        |
| 일반국도16호선  | 0.08                                                           | 30.0                            |        |
| 일반국도95호선  | 80.0                                                           | 40.0                            |        |
| 일반국도99호선  | 70.0                                                           | 30.0                            |        |
| 중산간서로     | 70.0                                                           | 50.0                            |        |
| 중앙로       | 70.0                                                           | 60.0                            |        |
| 지방도1112호선 | 60.0                                                           | 30.0                            |        |
| 지방도1118호선 | 70.0                                                           | 50.0                            |        |
| 지방도1120호선 | 60.0                                                           | 30.0                            |        |
| 지방도1132호선 | 70.0                                                           | 50.0                            |        |
|           |                                                                |                                 |        |

| 1 # maximum speed : 30, 50, 60, 70 일때 확인<br>2 # 위의 네개 값에서 교통혼잡이 많이 일어날거라 추론함.<br>3<br>4 trafic_jam_30 = result.loc[result["maximum_speed_limit(max)"] <= 30]<br>5 trafic_jam_30 |                                                   |      |      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------|------|--|
|                                                                                                                                                                                 | maximum_speed_limit(max) maximum_speed_limit(min) |      |      |  |
| road_name                                                                                                                                                                       |                                                   |      |      |  |
| 관광단지1로                                                                                                                                                                          |                                                   | 30.0 | 30.0 |  |
| 관광단지2로                                                                                                                                                                          |                                                   | 30.0 | 30.0 |  |
| 관광단지로                                                                                                                                                                           |                                                   | 30.0 | 30.0 |  |
| 시민광장로                                                                                                                                                                           |                                                   | 30.0 | 30.0 |  |
| 호근로                                                                                                                                                                             |                                                   | 30.0 | 30.0 |  |
|                                                                                                                                                                                 |                                                   |      |      |  |

#### Train 데이터 분포



(road\_name/최대속도/ 최저속도 30km 비교)

|           | maximum_speed_limit(max) | maximum_speed_limit(min) |
|-----------|--------------------------|--------------------------|
| road_name |                          |                          |
| 관광단지1로    | 30.0                     | 30.0                     |
| 관광단지2로    | 30.0                     | 30.0                     |
| 관광단지로     | 30.0                     | 30.0                     |
| 시민광장로     | 30.0                     | 30.0                     |
| 호근로       | 30.0                     | 30.0                     |
|           |                          |                          |

© Copyright Company Name Presentation title in footer 21

### Train 데이터 분포



(road\_name/최대속도/ 최저속도 50km 비교)

|           | maximum_speed_limit(max) maximum_speed_limit(min) |      |
|-----------|---------------------------------------------------|------|
| road_name |                                                   |      |
| 고평교       | 50.0                                              | 50.0 |
| 동문로       | 50.0                                              | 50.0 |
| 동부관광도로    | 50.0                                              | 50.0 |
| 삼무로       | 50.0                                              | 50.0 |
| 서사로       | 50.0                                              | 30.0 |
| 신광로       | 50.0                                              | 50.0 |
| 애원로       | 50.0                                              | 50.0 |
| 연동로       | 50.0                                              | 50.0 |
| 연북로       | 50.0                                              | 30.0 |
| 중문로       | 50.0                                              | 50.0 |
| 중정로       | 50.0                                              | 50.0 |
| 첨단로       | 50.0                                              | 50.0 |
| 태평로       | 50.0                                              | 50.0 |
| 호서중앙로     | 50.0                                              | 50.0 |

### Train 데이터 분포



(road\_name/최대속도/ 최저속도 60km 비교)

|           | maximum_speed_limit(max) | maximum_speed_limit(min) |
|-----------|--------------------------|--------------------------|
| road_name |                          |                          |
| 경찰로       | 60.0                     | 60.0                     |
| 관덕로       | 60.0                     | 60.0                     |
| 권학로       | 60.0                     | 60.0                     |
| 남조로       | 60.0                     | 50.0                     |
| 동홍로       | 60.0                     |                          |
| 산서로       | 60.0                     | 50.0                     |
| 삼봉로       | 60.0                     | 60.0                     |
| 삼성로       | 60.0                     | 60.0                     |
| 새서귀로      | 60.0                     |                          |
| 수영장길      | 60.0                     | 60.0                     |
| 시청로       | 60.0                     | 60.0                     |
| 신산로       | 60.0                     | 60.0                     |
| 아봉로       | 60.0                     |                          |
| 어시천교      | 60.0                     | 60.0                     |
| 외도천교      | 60.0                     | 60.0                     |
| 지방도1112호선 | 60.0                     | 30.0                     |
| 지방도1115호선 | 60.0                     | 60.0                     |
| 지방도1117호선 | 60.0                     | 60.0                     |
| 지방도1119호선 |                          | 60.0                     |
| 지방도1120호선 | 60.0                     | 30.0                     |
| 지방도1136호선 |                          |                          |
| 지방도97호선   | 60.0                     | 60.0                     |
| 한천로       |                          |                          |

Train 데이터 분포 (road\_name/최대속도/ 최저속도 비교)



(road\_name/최대속도/ 최저속도 70km비교

|           | maximum_speed_limit(max) | maximum_speed_limit(min) |
|-----------|--------------------------|--------------------------|
| road_name |                          |                          |
| 번영로       | 70.0                     | 70.0                     |
| 신대로       | 70.0                     | 30.0                     |
| 연북2교      | 70.0                     | 70.0                     |
| 연삼로       | 70.0                     | 70.0                     |
| 일반국도11호선  | 70.0                     | 30.0                     |
| 일반국도99호선  | 70.0                     | 30.0                     |
| 일주동로      | 70.0                     | 70.0                     |
| 임항로       | 70.0                     | 70.0                     |
| 제2거로교     | 70.0                     | 70.0                     |
| 중산간서로     | 70.0                     | 50.0                     |
| 중앙로       | 70.0                     | 60.0                     |
| 지방도1118호선 | 70.0                     | 50.0                     |
| 지방도1132호선 | 70.0                     | 50.0                     |
|           |                          |                          |

#### Train 데이터 분포



(road\_name/최대속도/ 최저속 도 80km 비교)

|           | maximum_speed_limit(max) | maximum_speed_limit(min) |  |
|-----------|--------------------------|--------------------------|--|
| road_name |                          |                          |  |
| -         | 80.0                     | 30.0                     |  |
| 애조로       | 80.0                     | 80.0                     |  |
| 일반국도12호선  | 80.0                     | 30.0                     |  |
| 일반국도16호선  | 80.0                     | 30.0                     |  |
| 일반국도95호선  | 80.0                     | 40.0                     |  |
| 지방도1116호선 | 80.0                     | 80.0                     |  |

© Copyright Company Name Presentation title in footer 25

Train 데이터 분포 (road\_type/maximum\_speed\_limit)



© Copyright Company Name Presentation title in footer 26

### 요일별 target 통계

|     |         | count  |
|-----|---------|--------|
| day | _of _we | ek     |
|     | 금       | 684024 |
|     | 수       | 675583 |
|     | 목       | 674070 |
|     | 일       | 673632 |
|     | 토       | 669767 |
|     | 화       | 662498 |
|     | 뮐       | 661643 |
|     |         |        |

### 요일별 target 통계

|             |           | count | 1 |
|-------------|-----------|-------|---|
| day_of_week | base_hour |       |   |
| 금           | 13        | 32115 |   |
| 일           | 19        | 31734 |   |
| 금           | 15        | 31715 |   |
| 목           | 14        | 31706 |   |
| 토           | 11        | 31697 |   |
| 목           | 16        | 31666 |   |
| 화           | 10        | 31646 |   |
| 토           | 12        | 31544 |   |
| 금           | 8         | 31492 |   |
| 토           | 13        | 31485 |   |

### 요일별/ 새벽시간대

|             |           | count | 1. |
|-------------|-----------|-------|----|
| day_of_week | base_hour |       |    |
| 목           | 4         | 23714 |    |
| 일           | 2         | 23603 |    |
| 금           | 3         | 23342 |    |
| 목           | 3         | 23325 |    |
| 일           | 23        | 23208 |    |
|             | 4         | 23183 |    |
| 금           | 4         | 23173 |    |
| 수           | 3         | 22871 |    |
| 금           | 0         | 22843 |    |
| 화           | 3         | 22430 |    |
| 월           | 3         | 22392 |    |
|             | 0         | 22269 |    |
| 토           | 4         | 22098 |    |
|             | 2         | 21967 |    |
| 화           | 0         | 21633 |    |
| 일           | 3         | 21488 |    |
| 수           | 0         | 21465 |    |
| 일           | 0         | 21351 |    |
| 토           | 0         | 20739 |    |
|             | 3         | 20090 |    |
|             |           |       |    |

#### Train 데이터 상관관계

```
1 # 컬럼 간 상관관계(pearson)
2 corr_mat = train.corr(method="pearson").abs()
3 sorted_mat = corr_mat.unstack().sort_values(ascending=False)
4 sorted_mat = sorted_mat[sorted_mat.It(1)]
5
6 sorted_mat.head(50)
7 # road_type와 weight_restricted 상관관계 높다.
8 # maximum_speed_limit과 road_rating, lane_count, target 어느정도 상관(0.3~0.4)
9 # 결론: 교통혼잡의 원인 = 도로시설의 미비이다.
```

#### Train 데이터 상관관계

- 1. road\_type와 weight\_restricted 상관관계 높다.
- 2. maximum\_speed\_limit과 road\_rating, lane count, target 어느정도 상관(0.3~0.4)

3. 결론: 교통혼잡의 원인 = 도로시설의 미비이다.

0.999180 end\_latitude start\_latitude 0.999180 start\_latitude end\_latitude 0.999143 start\_longitude end\_longitude 0.999143 end\_longitude start\_longitude 0.770532 weight\_restricted road\_type 0.770532 road\_type weight\_restricted maximum\_speed\_limit 0.421441target 0.421441 maximum\_speed\_limit target maximum\_speed\_limit 0.377472 Tane\_count maximum\_speed\_limit lane\_count 0.377472 0.342178 road\_rating maximum\_speed\_limit road\_rating 0.342178road\_rating 0.324382 target 0.324382 road\_rating target 0.292849 weight\_restricted target weight\_restricted target 0.292849 0.257554 maximum\_speed\_limit start\_latitude 0.257554 start\_latitude maximum\_speed\_limit end\_latitude maximum\_speed\_limit 0.257445 maximum\_speed\_limit \_end\_latitude 0.257445 0.220278 end latitude road\_rating road rating end latitude 0.2202780.220221 start\_latitude start\_latitude 0.220221 road\_rating road\_type target 0.194981 0.194981target road\_type start\_latitude 0.185216 Tane\_count 0.185216 lane\_count start\_latitude end latitude 0.184845 Tane\_count 0.184845 end latitude Tane count weight\_restricted 0.181511 weight\_restricted lane\_count 0.181511 0.178611 end\_latitude end\_longitude end\_longitude end\_latitude 0.178611 start\_longitude start\_latitude 0.178577 start\_latitude 0.178577 start\_longitude 0.178507 end\_longitude end\_longitude start\_latitude 0.178507 end latitude start\_longitude 0.1783610.178361 start\_longitude end\_latitude base\_hour target 0.159883 target base\_hour 0.159883 0.149444Tane\_count 0.149444 Tane\_count target 0.148552 road\_rating weight\_restricted weight\_restricted road rating 0.148552 0.122723road\_rating road\_type road\_rating road\_type 0.122723weight\_restricted end\_latitude 0.110721 0.110721end\_latitude weight\_restricted dtype: float64

## 위도/ 경도차이

```
[] 1#위도, 경도 차이
2 train['lat_change'] = train['start_latitude'] - train['end_latitude']
3 train['lon_change'] = train['start_longitude'] - train['end_longitude']
4
5 test['lat_change'] = test['start_latitude'] - test['end_latitude']
6 test['lon_change'] = test['start_longitude'] - test['end_longitude']
```



```
1 # 두지점 사이의 거리
2 from math import radians, cos, sin, asin, sqrt
4 def haversine(row):
      Calculate the great circle distance between two points
      on the earth (specified in decimal degrees)
      # convert decimal degrees to radians
      Ion1 = row['start_longitude']
      | lat1 = row[]'start_latitude'
      lon2 = row['end_longitude']
      lat2 = row['end_latitude']
      Ion1, Iat1, Ion2, Iat2 = map(radians, [Ion1, Iat1, Ion2, Iat2])
      # haversine formula
      dion = Ion2 - Ion1
      dlat = lat2 - lat1
      a = \sin(d \cdot at/2) **2 + \cos(i \cdot at1) * \cos(i \cdot at2) * \sin(d \cdot i \cdot n/2) **2
      c = 2 * asin(sqrt(a))
      km = 6367 + c
      return km
```

29

### 제주공항까지 거리 파생변수

```
# 제주공항까지 거리
 2 def haversine_airport(row):
       Calculate the great circle distance between two points
       on the earth (specified in decimal degrees)
       # convert decimal degrees to radians
       Ion1 = 126.4913534
       lat1 = 33.5104135
10
       lon2 = (row['start_longitude'] + row['end_longitude']) / 2
11
       lat2 = (row['start_latitude'] + row['end_latitude']) / 2
12
13
       Ion1, Iat1, Ion2, Iat2 = map(radians, [Ion1, Iat1, Ion2, Iat2])
       # haversine formula
14
15
       dion = Ion2 - Ion1
       dlat = lat2 - lat1
       a = \sin(d \cdot at/2) **2 + \cos(i \cdot at1) * \cos(i \cdot at2) * \sin(d \cdot i \cdot on/2) **2
       c = 2 * asin(sqrt(a))
19
       km = 6367 + c
20
       return km
21
22 train['airport_distance'] = train.apply(haversine_airport, axis=1)
23 test['airport_distance'] = test.apply(haversine_airport, axis=1)
```

### 제주 권역별 구분하여 파생 변수 추가

```
▼ 제주도 권역별 구분하여 변수 추가
     • 제주시 도심: 126.4531517 ~ 126.5900257, 33.4670429 ~

    서귀포 도심: 126.3972753 ~ 126.6076604, ~ 33.2686052

  [] 1#출발지점 권역
        2 mask_jj_start = (train['start_longitude'] > 126.4531517) & (train['start_longitude'] < 126.5900257) & (train['start_latitude'] > 33.4670429)
        3 mask_jj_end = (train['end_longitude'] > 126.4531517) & (train['end_longitude'] < |126.5900257) & (train['end_latitude'] > 33.4670429)
        5 mask_sgp_start = (train['start_longitude'] > 126.3972753) & (train['start_longitude'] < 126.6076604) & (train['start_latitude'] < 33.2686052)
        6 mask_sgp_end = (train['end_longitude'] > 126.3972753) & (train['end_longitude'] < 126.6076604) & (train['end_latitude'] < 33.2686052)
        1 train['center_start'] = 0
   O
        2 test['center_start'] = 0
        4 train.loc[mask_jj_start, 'center_start'] = 1
        5 train.loc[mask_sgp_start, 'center_start'] = 2
        7 test.loc[mask_jj_start, 'center_start'] = 1
        8 test.loc[mask_sgp_start, 'center_start'] = 2
        10 train['center_end'] = 0
       11 test['center_end'] = 0
       13 train.loc[mask_jj_end, 'center_end'] = 1
       14 train.loc[mask_sgp_end, 'center_end'] = 2
       16 test.loc[mask_jj_end, 'center_end'] = 1
        17 test.loc[mask_sgp_end, 'center_end'] = 2
```

© Copyright Company Name Presentation title in footer 31

### GPS 정보 사용해서 파생 변수 추가

```
1 # GPS 정보를 사용해서 road 구분
 2 train['road_code'] = train['start_latitude'].astype(str)+'_'+train['start_longitude'].astype(str)+'_'+train['end_latitude'].astype(str)+'_'+train['end_longitude'].astype(str)
 3 train['road_code'].value_counts()
33.3058672207151 126.599081327413 33.3082357708673 126.598689775097
                                                                      6477
33.3082357708673_126.598689775097_33.3058672207151_126.599081327413
                                                                      6397
33.5014774884938_126.569223187609_33.4968633703578_126.58123009621
33.5016270326083_126.568923085567_33.5014774884938_126.569223187609
33.496710616894_126.581529061335_33.4918481088766_126.591872255149
                                                                      6075
33,2566709359707 126,52441046863 33,2541529264473 126,524330998601
33.26127013848 126.524428741607 33.2574097173209 126.524412034435
                                                                       744
33.2574097173209_126.524412034435_33.2566709359707_126.52441046863
33.2574097173209_126.524412034435_33.26127013848_126.524428741607
                                                                        587
                                                                        587
33.2574006381515_126.52574476307_33.2574097173209_126.524412034435
Name: road code, Length: 904, dtype: int64
 1 test['road_code'] = test['start_latitude'].astype(str)+'_'+test['start_longitude'].astype(str)+'_'+test['end_latitude'].astype(str)+'_'+test['end_longitude'].astype(str)
 2 test['road_code'].value_counts()
33.508463678702_126.558231105407_33.5087115227295_126.558702856002
                                                                      740
33.4937925855376 126.492189386746 33.4923347723675 126.490247073997
33.4666066165642 126.454021511351 33.4664333666973 126.454583167413
33.4923347723675_126.490247073997_33.4937925855376_126.492189386746
33.4658632729266_126.456384480352_33.4664333666973_126.454583167413
                                                                      740
33.3452396554215_126.850113181832_33.3446283972409_126.849278713014
33.4857069297096_126.604162168012_33.4886994919865_126.597620980703
33.4379464931581_126.73250865826_33.4383285187565_126.732031757687
33.4359411786532 126.736248543312 33.4379464931581 126.73250865826
33.4288406442461_126.750881044473_33.4359411786532_126.736248543312
Name: road_code, Length: 441, dtype: int64
```

© Copyright Company Name Presentation title in footer 32

# 2. 데이터 설명(2) Feature engnieering- 변수처리

### 레이블 인코딩

#### One hot 인코딩

```
1 # onehot_encoding
2 train = pd.get_dummies(train, columns = str_col[1:], drop_first=False)
3 test = pd.get_dummies(test, columns = str_col[1:], drop_first=False)
4
5 train.shape, test.shape
((4701217, 35), (291241, 34))
```

© Copyright Company Name

Presentation title in footer 33

# 2. 데이터 설명(2) Feature engineering- 변수처리

# **Feature Scaling**

#### 1. Standard method



#### 1. Min/max scaling.



© Copyright Company Name Presentation title in footer 34

### 2. 데이터 설명(2) Feature engineering- 피처선택

# 피처 선택

#### **Train**

```
'id'
'base date'
'target'
'start node name'
'end node name',
'multi linked'
'connect code',
'start latitude'
'start longitude',
'center start'
'center end',
'weight restricted', 'road rating 0',
'road rating 1',
'road rating 2',
'road type 0',
'road type 1',
'start turn restricted',
'end turn restricted',
'road min', 'road max',
'road std'
'road name'
'road code'
```

```
1#변수 선택
 2 y_train = train['target']
 4 X_train = train.drop(['id','base_date', 'target', 'start_node_name', 'end_node_name', 'multi_linked', 'connect_code',
                          'start_latitude', 'start_longitude',
                          'center_start', 'center_end',
                          'start_turn_restricted','end_turn_restricted',
                          'road_name', 'road_code'], axis=1)
l3 X_test = test.drop(['id','base_date', 'start_node_name', 'end_node_name', 'multi_linked', 'connect_code',
                        'start_latitude', 'start_longitude',
                         'center_start', 'center_end',
                        'weight_restricted', 'road_rating_0',
                        'start_turn_restricted','end_turn_restricted',
                        'road_min', 'road_max', 'road_std',
                        'road_name', 'road_code'], axis=1)
22 print(X_train.shape)
23 print(y_train.shape)
24 print(X_test.shape)
(4701217, 11)
(4701217,)
```

# 데이터 분석



© Copyright Company Name Presentation title in footer 36

### 3. 데이터 분석(3) 모델링 설명

# 교통량 회귀 예측: 모델링(부스팅 앙상블)

교통 및 도로 구간 변수와 시간 변수를 사용하여 도로의 차량 평균속도 (Km)를 예측하기 위해 설명이 가능한 Tree 기반 boosting 알고리즘 활용

- 성능과 학습 능력이 우수한 Xgboost, LightGBM, Catboost 모델을 각각 학습하고, 평균 앙상 블을 적용하여 최종 예측을 시도
  - 도로의 차량 평균속도 예측값에 영향을 미치는 각 변수 중요도 영향력에 대한 고찰



교통 및 도로구간 변수 (내부 + 외부 데이터 +파생 변수 추가

**XGBoost** 



**LightGBM** 



**Catboost** 

MAE 산출

RandomForestRegressor mae : 2.9758

ExtraTreeRegressor mae : 3.0209

RandomForestRegressor mae : 2.9757

ExtraTreeRegressor mae : 3.0207

RandomForestRegressor mae : 2.9741

ExtraTreeRegressor mae : 3.0189

mean mae 2.9752 mean mae 3.0202

# 3. 데이터 분석(3) 모델링 결과

# 모델링 변수 중요도

### **XG Boost Feature importance**





### **Light GBM Feature importance**





## 3. 데이터 분석(3) 모델링 결과

### **CatBoost Feature importance**



bestTest = 3.682752966 bestIteration = 3999

훈련 셋: 3.6823877255151953 검증 셋: 3.6827539659508277

### 제출 방식





# 대회 결과



© Kakao Friends

### 4. 대회 결과

### 김정현-61등/1420



### 우현-78등/1420



### 배재한-116등/1420



### 김재승-229등/1420





Thank you for attention.

