

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
Ν
       = 41200 N
                                               = 1450000 Nmm
                                                                               M_{v}
                                                                                      = -1010000 Nmm
                                                                                                                       Ε
                                       M_t
                                                                                                                               = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
       = 23600 N
                                                                                       = 200 \text{ N/mm}^2
                                               = 1650000 Nmm
                                                                                                                       G
                                       M_{\star}
                                                                               \sigma_{\text{a}}
                                       \sigma(N) =
                                                                               σ
                                                                                                                       \theta_{t}
                                       \sigma(M_x)=
                                       \sigma(M_v)=
                                                                               \sigma_{l}
                                       \tau(M_t) =
                                                                               \sigma_{tresca} =
                                       \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
Ν
         = 53700 N
                                                      = 1690000 Nmm
                                                                                           M_{v}
                                                                                                   = -1450000 Nmm
                                                                                                                                         Ε
                                             M_t
                                                                                                                                                  = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
         = 30100 N
                                                                                                    = 200 \text{ N/mm}^2
                                                      = 1270000 Nmm
                                                                                                                                         G
                                             M_{\star}
                                                                                           \sigma_{\text{a}}
                                             \sigma(N) =
                                                                                           σ
                                                                                                                                         \theta_{t}
                                             \sigma(M_x)=
                                             \sigma(M_v)=
                                                                                           \sigma_{\text{I}}
                                             \tau(M_t) =
                                             \tau(\mathsf{T}_{\mathsf{yb}}) = \\ \tau(\mathsf{T}_{\mathsf{y}}) = \\
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		11 ====================================		_	2
Ν	= 42300 N	$M_t = 772000 \text{ Nmm}$	$M_{v} = -707000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$
T_y	= 26200 N	$M_x = 1170000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	σ(N) =	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	σ _I =	r_v	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{yc})=$	σ_{tresca} =		
J_v	=	$\tau(T_{yb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N.I	00400 N	M 4070000 No.	N 4	0000000 N	_	2000000 N/2		
Ν	= 66100 N	$M_t = 1870000 \text{ Nmm}$	M_{v}	= -2080000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
T_y	= 21500 N	$M_x = 2140000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
y_{G}	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_{o}	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_y)=$	σ_{l}	=	r_v	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_u	=	$\tau(T_{vc}) =$	σ_{tres}	=				
J_v	=	$\tau(T_{Vb})=$	σ_{mis}					
J_t	=	$\tau(T_y) =$	$\sigma_{st.ve}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
M_{v}
                                                                                    = 1740000 Nmm
                                                                                                                            = 200000 \text{ N/mm}^2
Ν
       = 37200 N
                                              = -1620000 Nmm
                                                                                                                    Ε
                                      M_t
                                                                                                                            = 75000 \text{ N/mm}^2
       = 20500 N
\mathsf{T}_\mathsf{y}
                                              = 1780000 Nmm
                                                                                     = 200 \text{ N/mm}^2
                                                                                                                    G
                                      M_{\star}
                                                                             \sigma_{\text{a}}
                                      \sigma(N) =
                                                                             σ
                                                                                                                    \theta_{t}
                                      \sigma(M_x)=
                                      \sigma(M_v)=
                                                                             \sigma_{l}
                                      \tau(M_t) =
                                      \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
M_{v}
                                                                                      = 2160000 Nmm
                                                                                                                              = 200000 \text{ N/mm}^2
Ν
       = 50000 N
                                              = -3140000 Nmm
                                                                                                                      Ε
                                       M_t
                                                                                                                              = 75000 \text{ N/mm}^2
       = 25400 N
\mathsf{T}_\mathsf{y}
                                              = 3070000 Nmm
                                                                                      = 200 \text{ N/mm}^2
                                                                                                                      G
                                       M_{\star}
                                                                               \sigma_{\text{a}}
                                       \sigma(N) =
                                                                               σ
                                                                                                                      \theta_{t}
                                       \sigma(M_x)=
                                       \sigma(M_v)=
                                                                               \sigma_{l}
                                       \tau(M_t) =
                                                                               \sigma_{tresca}=
                                       \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	- acondition rapprocentate randamente delle tener tangenziam							
Ν	= 53200 N	$M_t = 2440000 \text{ Nmm}$	$M_v = -1990000 \text{ Nmm}$	Ε	$= 200000 \text{ N/mm}^2$			
T_y	= 27400 N	$M_x = -1340000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	= 75000 N/mm ²			
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=			
u_{o}	=	$\sigma(M_x)=$	τ =	r_u	=			
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=			
Α	=	$\tau(M_t) =$	$\sigma_{II} =$	r_{o}	=			
J_u	=	$\tau(T_{yc}) =$	σ_{tresca} =					
J_v	=	$\tau(T_{yb})=$	$\sigma_{mises} =$					
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =					
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 64300 N	$M_t = 1840000 \text{ Nmm}$	M_{v}	= -2310000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
T_y	= 33700 N	$M_x = -1950000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_o	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_y)=$	σ_{l}	=	r_v	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_u	=	$\tau(T_{yc}) =$	σ_{tres}					
J_v	=	$\tau(T_{yb})=$	σ_{mis}	es=				
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ve}}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
M_{v}
                                                                                                                                          = 200000 \text{ N/mm}^2
Ν
        = 61200 N
                                                    = 1330000 Nmm
                                                                                              = -1450000 Nmm
                                                                                                                                  Ε
                                           M_t
                                                                                                                                          = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 21100 N
                                                                                               = 200 \text{ N/mm}^2
                                                   = 1820000 Nmm
                                                                                                                                  G
                                           M_{\star}
                                                                                      \sigma_{\text{a}}
                                           \sigma(N) =
                                                                                      σ
                                                                                                                                  \theta_{t}
                                           \sigma(M_x)=
                                           \sigma(M_v)=
                                                                                      \sigma_{l}
                                           \tau(M_t) =
                                                                                       \sigma_{tresca} =
                                           \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		''		_	2
Ν	= 46700 N	$M_t = 1470000 \text{ Nmm}$	$M_v = -1950000 \text{ Nmm}$	Е	= 200000 N/mm ²
T_y	= 28300 N	$M_x = 2230000 \text{ Nmm}$	$\sigma_a' = 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	Θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_v	=
Α	=	$\tau(M_t) =$	$\sigma_{II} =$	r_{o}	=
J_{u}	=	$\tau(T_{yc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{yb})=$	$\sigma_{mises} =$		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 38400 N	M _t = 1210000 Nmm	$M_{v} = -603000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_v	= 25900 N	$M_{x}^{'} = 2040000 \text{ Nmm}$	$\sigma_a^y = 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{Vb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		
_					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i acollativo. ia	ppresentare randamento dei	ie teris. tarigeriziali.		_
Ν	= 59700 N	$M_t = 2800000 \text{ Nmm}$	$M_v = -1780000 \text{ Nmm}$	Ε	$= 200000 \text{ N/mm}^2$
T_y	= 33300 N	$M_x = 2140000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	σ(N) =	σ =	θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_v	=
Α	=	$\tau(M_t) =$	σ_{II} =	r_{o}	=
J_u	=	$\tau(T_{yc})=$	σ_{tresca} =		
J_v	=	$\tau(T_{yb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 56200 N	M _t = 1500000 Nmm	$M_{v} = -1540000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_v	= 31600 N	$M_{x}^{'} = -1880000 \text{ Nmm}$	$\sigma_a^y = 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
$y_{G}^{'}$	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_v	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{VC}) =$	$\sigma_{tresca} =$		
J_v	=	$\tau(T_{Vb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		
_					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
Ν
       = 72200 N
                                               = 2950000 Nmm
                                                                                M_{v}
                                                                                       = -3200000 Nmm
                                                                                                                        Ε
                                        M_t
\mathsf{T}_\mathsf{y}
                                                                                                                                = 75000 \text{ N/mm}^2
       = 23500 N
                                                                                        = 200 \text{ N/mm}^2
                                               = 3170000 Nmm
                                                                                                                        G
                                        M_{\star}
                                                                                \sigma_{\text{a}}
                                        \sigma(N) =
                                                                                σ
                                                                                                                        \theta_{t}
                                        \sigma(M_x)=
                                        \sigma(M_v)=
                                                                                \sigma_{l}
                                        \tau(M_t) =
                                        \tau(T_{vc}) =
                                                                                \sigma_{tresca}=
                                        \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	40700 N	M 0040000 N		070000 N	_	2		
Ν	= 46700 N	$M_t = 2310000 \text{ Nmm}$	M_{v}	= -2780000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
T_y	= 25300 N	$M_x = -2390000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
y_{G}	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_o	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_{v})=$	σ_{l}	=	r_v	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_u	=	$\tau(T_{vc}) =$	σ_{tres}					
J_{v}	=	$\tau(T_{yb})=$	σ_{mis}					
J_t	=	$\tau(T_{\vee}) =$	$\sigma_{\text{st.v}}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

$\begin{array}{llllllllllllllllllllllllllllllllllll$					400000	_	2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ν	= 57200 N	$M_t = 2840000 \text{ Nmm}$	M_{v}	= -1920000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_y	= 31000 N	$M_x = -3280000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y_{G}	=	$\sigma(N) =$	σ	=	Θ_{t}	=		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	u_{o}	=	$\sigma(M_x)=$	τ	=	\mathbf{r}_{u}	=		
$\begin{array}{lll} J_u & = & \tau(T_{yc}) = & \sigma_{tresca} = \\ J_v & = & \tau(T_{yb}) = & \sigma_{mises} = \\ J_t & = & \tau(T_y) = & \sigma_{st.ven} = \end{array}$	V_{o}	=	$\sigma(M_{v})=$	σ_{I}	=	r_{v}	=		
$J_{v} = \tau(T_{yb}) = \sigma_{mises} = $ $J_{t} = \tau(T_{y}) = \sigma_{st.ven} = $	Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
$J_v = au(T_{yb}) = au_{mises} = $ $J_t = au(T_y) = au_{st.ven} = $	J_u	=	$\tau(T_{vc}) =$	σ_{tres}	_{ca} =				
$J_t = \tau(T_y) = \sigma_{st.ven} =$	J_{v}	=	$\tau(T_{vb}) =$	_					
•	J_t	=	$\tau(T_{v}) =$						
	@ A	· · · · · · · · · · · · · · · · · · ·							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
        = 48900 N
                                                   = 2190000 Nmm
                                                                                      M_{v}
                                                                                             = -1440000 Nmm
                                                                                                                                 Ε
                                           M_t
                                                                                                                                         = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 27800 N
                                                                                              = 200 \text{ N/mm}^2
                                                   = 1380000 Nmm
                                                                                                                                 G
                                           M_{\star}
                                                                                      \sigma_{\text{a}}
                                           \sigma(N) =
                                                                                      σ
                                                                                                                                 \theta_{t}
                                           \sigma(M_x)=
                                           \sigma(M_v)=
                                                                                      \sigma_{l}
                                           \tau(M_t) =
                                                                                      \sigma_{tresca}=
                                           \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 1870000 Nmm
                                                                                                                                      = 200000 \text{ N/mm}^2
Ν
        = 62600 N
                                                  = -1580000 Nmm
                                                                                    M_{v}
                                                                                                                              Ε
                                          M_t
                                                                                                                                      = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 36600 N
                                                                                            = 200 \text{ N/mm}^2
                                                  = 1790000 Nmm
                                                                                                                              G
                                          M_{\star}
                                                                                    \sigma_{\text{a}}
                                          \sigma(N) =
                                                                                    σ
                                                                                                                              \theta_{t}
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                                                                    \sigma_{l}
                                          \tau(M_t) =
                                          \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 1210000 Nmm
                                                                                                                                           = 200000 \text{ N/mm}^2
Ν
        = 46700 N
                                                   = -1260000 Nmm
                                                                                       M_{v}
                                                                                                                                   Ε
                                           M_t
                                                                                                                                           = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 18100 N
                                                   = -1530000 Nmm
                                                                                               = 200 \text{ N/mm}^2
                                                                                                                                   G
                                           M_{\star}
                                                                                       \sigma_{\text{a}}
                                           \sigma(N) =
                                                                                       σ
                                                                                                                                   \theta_{t}
                                           \sigma(M_x)=
                                                                                                                                           =
                                           \sigma(M_v)=
                                                                                       \sigma_{l}
                                           \tau(M_t) =
                                           \tau(T_{vc}) =
                                                                                       \sigma_{tresca}=
                                           \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 2800000 Nmm
                                                                                                                                         = 200000 \text{ N/mm}^2
Ν
        = 45800 N
                                                   = -2680000 Nmm
                                                                                      M_{v}
                                                                                                                                 Ε
                                           M_t
                                                                                                                                         = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 25500 N
                                                   = -2780000 Nmm
                                                                                              = 200 \text{ N/mm}^2
                                                                                                                                 G
                                           M_{\star}
                                                                                      \sigma_{\text{a}}
                                           \sigma(N) =
                                                                                      σ
                                                                                                                                 \theta_{t}
                                           \sigma(M_x)=
                                           \sigma(M_v)=
                                                                                      \sigma_{l}
                                           \tau(M_t) =
                                                                                      \sigma_{tresca}=
                                           \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 42300 N	$M_t = 2260000 \text{ Nmm}$	M_{v}	= -1450000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
T_y	= 23200 N	$M_x = 2250000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_o	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_v	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_u	=	$\tau(T_{yc}) =$	σ_{tres}					
J_v	=	$\tau(T_{yb})=$	σ_{mis}	es=				
J_t	=	$\tau(T_{y}^{y}) =$	$\sigma_{st.ve}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
Ν
       = 57500 N
                                              = 4150000 Nmm
                                                                              M_{v}
                                                                                     = -2950000 Nmm
                                                                                                                      Ε
                                       M_t
                                                                                                                             = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
                                                                                      = 200 \text{ N/mm}^2
       = 29300 N
                                              = 2340000 Nmm
                                                                                                                      G
                                       M_{\star}
                                                                              \sigma_{\text{a}}
                                       \sigma(N) =
                                                                              σ
                                                                                                                      \theta_{t}
                                       \sigma(M_x)=
                                                                                                                             =
                                       \sigma(M_v)=
                                                                              \sigma_{l}
                                       \tau(M_t) =
                                                                              \sigma_{tresca}=
                                       \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 62000 N	$M_t = 2040000 \text{ Nmm}$	M_v	= -2580000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
T_y	= 32500 N	$M_x = 1830000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_o	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_{v})=$	σ_{l}	=	r_{v}	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_u	=	$\tau(T_{yc}) =$	σ_{tres}	ca=				
J_{v}	=	$\tau(T_{yb})=$	σ_{mis}	es=				
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.v}}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	- accitative rapprocentation and action to the tangent at a						
Ν	= 74700 N	$M_t = 2680000 \text{ Nmm}$	M_{v}	= -3050000 Nmm	Ε	$= 200000 \text{ N/mm}^2$	
T_y	= 24000 N	$M_x = -2630000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$	
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=	
u_{o}	=	$\sigma(M_x)=$	τ	=	r_u	=	
V_{o}	=	$\sigma(M_y)=$	σ_{l}	=	r_v	=	
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=	
J_u	=	$\tau(T_{yc}) =$	σ_{tres}				
J_v	=	$\tau(T_{yb})=$	σ_{mis}	es=			
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ve}}$	en=			
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06						

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
        = 43300 N
                                                  = -2100000 Nmm
                                                                                    M_{v}
                                                                                            = 2050000 Nmm
                                                                                                                               Ε
                                          M_t
                                                                                                                                       = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 25700 N
                                                  = 2460000 Nmm
                                                                                             = 200 \text{ N/mm}^2
                                                                                                                               G
                                          M_{\star}
                                                                                    \sigma_{\text{a}}
                                          \sigma(N) =
                                                                                    σ
                                                                                                                               \theta_{t}
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                                                                    \sigma_{l}
                                          \tau(M_t) =
                                          \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
        = 56100 N
                                                  = 2370000 Nmm
                                                                                    M_{v}
                                                                                            = -1540000 Nmm
                                                                                                                               Ε
                                          M_t
                                                                                                                                       = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 33900 N
                                                                                             = 200 \text{ N/mm}^2
                                                  = 3020000 Nmm
                                                                                                                               G
                                          M_{\star}
                                                                                    \sigma_{\text{a}}
                                          \sigma(N) =
                                                                                    σ
                                                                                                                               \theta_{t}
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                                                                    \sigma_{l}
                                          \tau(M_t) =
                                          \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 43500 N	M _t = -1980000 Nmm	$M_{v} = 1110000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_v	= 29900 N	$M_{x}^{'} = -1590000 \text{ Nmm}$	$\sigma_a^y = 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_v	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{yc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{yb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =		
_					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 2500000 Nmm
                                                                                                                                           = 200000 \text{ N/mm}^2
Ν
        = 68700 N
                                                    = -2450000 Nmm
                                                                                       M_{v}
                                                                                                                                   Ε
                                           M_t
                                                                                                                                           = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 38800 N
                                                                                                = 200 \text{ N/mm}^2
                                                   = -2840000 Nmm
                                                                                                                                   G
                                           M_{\star}
                                                                                       \sigma_{\text{a}}
                                           \sigma(N) =
                                                                                       σ
                                                                                                                                   \theta_{t}
                                           \sigma(M_x)=
                                           \sigma(M_v)=
                                                                                       \sigma_{l}
                                           \tau(M_t) =
                                           \tau(T_{vc}) =
                                                                                       \sigma_{tresca}=
                                           \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i acollativo. rappresentare randamento delle tens. tangenziali.							
Ν	= 62300 N	$M_t = 2180000 \text{ Nmm}$	$M_v = -2200000 \text{ Nmm}$	Ε	= 200000 N/mm ²			
T_v	= 21800 N	$M_x = 2410000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$			
y_G	=	σ(N) =	σ =	θ_{t}	=			
u_{o}	=	$\sigma(M_x)=$	τ =	r_u	=			
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_v	=			
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=			
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =					
J_v	=	$\tau(T_{yb})=$	σ_{mises} =					
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 4310000 Nmm
                                                                                                                                = 200000 \text{ N/mm}^2
Ν
       = 49700 N
                                               = -4000000 Nmm
                                                                                M_{v}
                                                                                                                        Ε
                                        M_t
                                                                                                                                = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
       = 27800 N
                                               = 3960000 Nmm
                                                                                       = 200 \text{ N/mm}^2
                                                                                                                        G
                                        M_{\star}
                                                                                \sigma_{\text{a}}
                                        \sigma(N) =
                                                                                σ
                                                                                                                        \theta_{t}
                                        \sigma(M_x)=
                                                                                τ
                                                                                                                                =
                                        \sigma(M_v)=
                                                                                \sigma_{l}
                                        \tau(M_t) =
                                        \tau(T_{vc}) =
                                                                                \sigma_{tresca}=
                                        \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	- accitative rapprocentation and action to the tangent at a						
Ν	= 56000 N	$M_t = 3270000 \text{ Nmm}$	M_{v}	= -2220000 Nmm	Ε	$= 200000 \text{ N/mm}^2$	
T_y	= 30000 N	$M_x = -3150000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$	
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=	
u_o	=	$\sigma(M_x)=$	τ	=	r_u	=	
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_v	=	
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=	
J_u	=	$\tau(T_{yc}) =$	σ_{tres}				
J_{v}	=	$\tau(T_{yb})=$	σ_{mis}	es=			
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ve}}$	en=			
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06						

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N.I	07500 N	M 4040000 Nissass	N 4	0000000 Nimore	_	200000 N/m = 2		
Ν	= 67500 N	$M_t = 4040000 \text{ Nmm}$	M_{v}	= -2630000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
T_y	= 36800 N	$M_x = -2610000 \text{ Nmm}$	σ_{a}	$= 200 \text{ N/mm}^2$	G	= 75000 N/mm ²		
y_{G}	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_{o}	=	$\sigma(M_x)=$	τ	=	\mathbf{r}_{u}	=		
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_{v}	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_{u}	=	$\tau(T_{yc}) =$	σ_{tres}	ca=				
J_{v}	=	$\tau(T_{yb})=$	σ_{mis}	es=				
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.v}}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 960000 Nmm
                                                                                                                         = 200000 \text{ N/mm}^2
Ν
       = 47200 N
                                                                            M_{v}
                                                                                   = -1190000 Nmm
                                                                                                                  Ε
                                      M_t
T<sub>y</sub>
                                                                                                                         = 75000 \text{ N/mm}^2
       = 26300 N
                                                                                   = 200 \text{ N/mm}^2
                                             = 1140000 Nmm
                                                                                                                  G
                                      M_{\star}
                                                                            \sigma_{\text{a}}
                                      \sigma(N) =
                                                                            σ
                                                                                                                  \theta_{t}
                                      \sigma(M_x)=
                                      \sigma(M_v)=
                                                                            \sigma_{l}
                                      \tau(M_t) =
                                      \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
       = 60300 N
                                               = 1150000 Nmm
                                                                                M_{v}
                                                                                       = -1660000 Nmm
                                                                                                                        Ε
                                        M_t
                                                                                                                                = 75000 \text{ N/mm}^2
T_{y}
       = 20400 N
                                                                                        = 200 \text{ N/mm}^2
                                               = 1480000 Nmm
                                                                                                                        G
                                        M_{\star}
                                                                                \sigma_{\text{a}}
                                        \sigma(N) =
                                                                                σ
                                                                                                                        \theta_{t}
                                        \sigma(M_x)=
                                        \sigma(M_v)=
                                                                                \sigma_{\text{I}}
                                        \tau(M_t) =
                                        \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
        = 28700 N
                                                                                      M_{v}
                                                                                              = 796000 Nmm
                                                                                                                                  Ε
                                           M_t
                                                   = -878000 Nmm
                                                                                                                                          = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
                                                                                               = 200 \text{ N/mm}^2
        = 18100 N
                                                   = 1320000 Nmm
                                                                                                                                  G
                                           M_{\star}
                                                                                      \sigma_{\text{a}}
                                           \sigma(N) =
                                                                                      σ
                                                                                                                                  \theta_{t}
                                           \sigma(M_x)=
                                           \sigma(M_v)=
                                                                                      \sigma_{l}
                                           \tau(M_t) =
                                                                                      \sigma_{tresca}=
                                           \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
        = 46400 N
                                                = 2080000 Nmm
                                                                                 M_{v}
                                                                                        = -1420000 Nmm
                                                                                                                          Ε
                                        M_t
                                                                                                                                  = 75000 \text{ N/mm}^2
T_{y}
        = 24900 N
                                                                                         = 200 \text{ N/mm}^2
                                                = 2370000 Nmm
                                                                                                                          G
                                        M_{\star}
                                                                                 \sigma_{\text{a}}
                                        \sigma(N) =
                                                                                 σ
                                                                                                                          \theta_{t}
                                        \sigma(M_x)=
                                        \sigma(M_v)=
                                                                                 \sigma_{l}
                                        \tau(M_t) =
                                                                                 \sigma_{tresca}=
                                        \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 43000 N	M _t = -1750000 Nmm	$M_{v} = 1210000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_v	= 22900 N	$M_x = 1180000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	σ_{II} =	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	$\sigma_{\text{tresca}} =$		
J_v	=	$\tau(T_{Vb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		
_					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 56500 N	$M_t = -2050000 \text{ Nmm}$	M_{v}	= 2500000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
T_y	= 27800 N	$M_x = 2090000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_{o}	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_{y})=$	σ_{I}	=	r_v	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_{u}	=	$\tau(T_{yc}) =$	σ_{tres}	=				
J_v	=	$\tau(T_{yb})=$	σ_{mise}	es=				
J_t	=	$\tau(T_y) =$	$\sigma_{st.ve}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	- accitative rapprocentare randamente delle tener tangenziam							
Ν	= 59800 N	$M_t = 1660000 \text{ Nmm}$	$M_v =$	2280000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
T_y	= 18600 N	$M_x = -1550000 \text{ Nmm}$	σ_a =	= 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	σ =	:	θ_{t}	=		
u_{o}	=	$\sigma(M_x)=$	τ =	=	r_u	=		
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	=	r_v	=		
Α	=	$\tau(M_t) =$	$\sigma_{II} =$	=	r_{o}	=		
J_{u}	=	$\tau(T_{yc}) =$	σ_{tresca} =	:				
J_v	=	$\tau(T_{yb})=$	σ_{mises} =					
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =	=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
Ν
       = 43800 N
                                               = 2100000 Nmm
                                                                               M_{v}
                                                                                      = -2610000 Nmm
                                                                                                                       Ε
                                       M_t
                                                                                                                              = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
       = 23500 N
                                               = -2200000 Nmm
                                                                                       = 200 \text{ N/mm}^2
                                                                                                                       G
                                       M_{\star}
                                                                               \sigma_{\text{a}}
                                       \sigma(N) =
                                                                               σ
                                                                                                                       \theta_{t}
                                       \sigma(M_x)=
                                       \sigma(M_v)=
                                                                               \sigma_{l}
                                       \tau(M_t) =
                                                                               \sigma_{tresca}=
                                       \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		1.1	5		2
Ν	= 42900 N	$M_t = 1480000 \text{ Nmm}$	$M_{v} = -992000 \text{ Nmm}$	Е	= 200000 N/mm ²
T_y	= 24500 N	$M_x = 2020000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{yc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{yb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =		
		•			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
       = 54700 N
                                                = 1600000 Nmm
                                                                                M_{v}
                                                                                        = -1380000 Nmm
                                                                                                                         Ε
                                        M_t
                                                                                                                                 = 75000 \text{ N/mm}^2
T_y
                                                                                        = 200 \text{ N/mm}^2
       = 32100 N
                                               = 1500000 Nmm
                                                                                                                         G
                                        M_{\star}
                                                                                \sigma_{\text{a}}
                                        \sigma(N) =
                                                                                σ
                                                                                                                         \theta_{t}
                                        \sigma(M_x)=
                                        \sigma(M_v)=
                                                                                \sigma_{l}
                                        \tau(M_t) =
                                                                                \sigma_{tresca}=
                                        \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 43800 N	$M_{\rm t} = 806000 \text{Nmm}$	$M_v = -706000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_y	= 28700 N	$M_x = 1410000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_v	=
Α	=	$\tau(M_t) =$	σ_{II} =	r_{o}	=
J_u	=	$\tau(T_{yc}) =$	$\sigma_{tresca} =$		
J_v	=	$\tau(T_{yb})=$	$\sigma_{mises} =$		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 67000 N	M _t = 1910000 Nmm	$M_{v} = -2040000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T _v	= 22400 N	$M_x = 2480000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	Ğ	= 75000 N/mm ²
$y_{G}^{'}$	=	$\sigma(N) =$	σ =	θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ =	$r_{\rm u}$	=
V_{o}	=	$\sigma(M_v)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	$\sigma_{II} =$	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	$\sigma_{\text{tresca}} =$		
J_{v}	=	$\tau(T_{vb}) =$	$\sigma_{\text{mises}} =$		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		
_		•			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 38000 N	$M_t = -1700000 \text{ Nmm}$	$M_y = 1730000 \text{ Nmm}$	E	= 200000 N/mm ²
T_y	= 21800 N	$M_x = 2120000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	Θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	\mathbf{r}_{u}	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_v	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{yc}) =$	$\sigma_{\text{tresca}} =$		
J_v	=	$\tau(T_{vb})=$	$\sigma_{mises} =$		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
M_{v}
                                                                                                                              = 200000 \text{ N/mm}^2
Ν
       = 50000 N
                                               = -3240000 Nmm
                                                                                                                       Ε
                                       M_t
                                                                                      = 2150000 Nmm
                                                                                                                              = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
       = 26800 N
                                               = 3460000 Nmm
                                                                                       = 200 \text{ N/mm}^2
                                                                                                                       G
                                       M_{\star}
                                                                               \sigma_{\text{a}}
                                       \sigma(N) =
                                                                               σ
                                                                                                                       \theta_{t}
                                       \sigma(M_x)=
                                       \sigma(M_v)=
                                                                               \sigma_{l}
                                       \tau(M_t) =
                                                                               \sigma_{tresca}=
                                       \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N.I	E 4700 N	M 050000 Nmm	N /	1000000 Nimom	_	200000 N/mm ²		
Ν	= 54700 N	$M_t = 2520000 \text{ Nmm}$	M_{y}	= -1960000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
T_y	= 28700 N	$M_x = -1600000 \text{ Nmm}$	σ_{a}	$= 200 \text{ N/mm}^2$	G	= 75000 N/mm ²		
y_{G}	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_{o}	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_{v}	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_u	=	$\tau(T_{yc}) =$	σ_{tres}	ca=				
J_v	=	$\tau(T_{yb})=$	σ_{mis}					
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.v}}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 65500 N	$M_t = 1870000 \text{ Nmm}$	$M_v = -2260000 \text{ Nmm}$	Ε	= 200000 N/mm ²
T_y	= 34500 N	$M_x = -2270000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	σ _I =	r_{v}	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{yc}) =$	$\sigma_{tresca} =$		
J_v	=	$\tau(T_{Vb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 55200 N	M _t = 1510000 Nmm	M,	= -1660000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
1 1	- 33200 IN	W _t = 1310000 Millin	iviy	= -1000000 idililili	_			
T_y	= 18800 N	$M_x = 1600000 \text{ Nmm}$	σ_{a}	$= 200 \text{ N/mm}^2$	G	= 75000 N/mm ²		
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_o	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_v	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_u	=	$\tau(T_{vc}) =$	σ_{tres}					
J_v	=	$\tau(T_{Vb})=$	σ_{mis}					
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.v}}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
M_{v}
                                                                                                                                         = 200000 \text{ N/mm}^2
Ν
        = 42700 N
                                                   = 1810000 Nmm
                                                                                             = -2110000 Nmm
                                                                                                                                 Ε
                                           M_t
                                                                                                                                         = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 25800 N
                                                                                              = 200 \text{ N/mm}^2
                                                   = 2030000 Nmm
                                                                                                                                 G
                                           M_{\star}
                                                                                      \sigma_{\text{a}}
                                           \sigma(N) =
                                                                                      σ
                                                                                                                                 \theta_{t}
                                           \sigma(M_x)=
                                           \sigma(M_v)=
                                                                                      \sigma_{l}
                                           \tau(M_t) =
                                                                                      \sigma_{tresca}=
                                           \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
Ν
       = 32500 N
                                               = -1400000 Nmm
                                                                                M_{v}
                                                                                       = 822000 Nmm
                                                                                                                        Ε
                                        M_t
                                                                                                                                = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
       = 20800 N
                                               = -1690000 Nmm
                                                                                        = 200 \text{ N/mm}^2
                                                                                                                        G
                                        M_{\star}
                                                                                \sigma_{\text{a}}
                                        \sigma(N) =
                                                                                σ
                                                                                                                        \theta_{t}
                                        \sigma(M_x)=
                                                                                                                                =
                                        \sigma(M_v)=
                                                                                \sigma_{l}
                                        \tau(M_t) =
                                        \tau(T_{vc}) =
                                                                                \sigma_{tresca}=
                                        \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

				3		0
Ν	= 53200 N	$M_t = 2930000 \text{ Nmm}$	M_{v}	= -1960000 Nmm	Ε	$= 200000 \text{ N/mm}^2$
T_{y}	= 28800 N	$M_x = -1860000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	= 75000 N/mm ²
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ	=	r_u	=
V_{o}	=	$\sigma(M_v)=$	σ_{I}	=	r_{v}	=
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tres}	sca=		
J_{v}	=	$\tau(T_{vb}) =$	σ_{mis}			
J_t	=	$\tau(T_{v}) =$	$\sigma_{\text{st.v}}$			
@ <i>P</i>	Adolfo Zavelani Rossi,	Politecnico di Milano, vers.24				

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 1690000 Nmm
                                                                                                                              = 200000 \text{ N/mm}^2
Ν
       = 48000 N
                                              = -1490000 Nmm
                                                                              M_{v}
                                                                                                                      Ε
                                       M_t
                                                                                                                              = 75000 \text{ N/mm}^2
       = 25700 N
\mathsf{T}_\mathsf{y}
                                              = 1550000 Nmm
                                                                                      = 200 \text{ N/mm}^2
                                                                                                                      G
                                       M_{\star}
                                                                              \sigma_{\text{a}}
                                       \sigma(N) =
                                                                              σ
                                                                                                                      \theta_{t}
                                       \sigma(M_x)=
                                       \sigma(M_v)=
                                                                              \sigma_{l}
                                       \tau(M_t) =
                                                                              \sigma_{tresca}=
                                       \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 3360000 Nmm
                                                                                                                           = 200000 \text{ N/mm}^2
Ν
       = 64100 N
                                              = -2830000 Nmm
                                                                             M_{v}
                                                                                                                    Ε
                                      M_t
                                                                                                                           = 75000 \text{ N/mm}^2
       = 19600 N
                                             = 2690000 Nmm
                                                                                     = 200 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
                                                                                                                    G
                                      M_{\star}
                                                                             \sigma_{\text{a}}
                                      \sigma(N) =
                                                                             σ
                                                                                                                    \theta_{t}
                                      \sigma(M_x)=
                                      \sigma(M_v)=
                                                                             \sigma_{l}
                                      \tau(M_t) =
                                      \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 41900 N	$M_t = -2320000 \text{ Nmm}$	M_{v}	= 2890000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
T_y	= 22500 N	$M_x = 2050000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_{o}	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_{v})=$	σ_{I}	=	r_v	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_u	=	$\tau(T_{yc}) =$	σ_{tres}					
J_v	=	$\tau(T_{yb})=$	σ_{mise}	es=				
J_t	=	$\tau(T_y) =$	$\sigma_{st.ve}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 2070000 Nmm
                                                                                                                           = 200000 \text{ N/mm}^2
Ν
       = 52100 N
                                             = -2970000 Nmm
                                                                             M_{v}
                                                                                                                    Ε
                                      M_t
                                                                                                                           = 75000 \text{ N/mm}^2
                                                                                     = 200 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
       = 27700 N
                                             = 2900000 Nmm
                                                                                                                    G
                                      M_{\star}
                                                                             \sigma_{\text{a}}
                                      \sigma(N) =
                                                                             σ
                                                                                                                    \theta_{t}
                                      \sigma(M_x)=
                                      \sigma(M_v)=
                                                                             \sigma_{l}
                                      \tau(M_t) =
                                      \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
        = 50800 N
                                                    = 2320000 Nmm
                                                                                        M_{v}
                                                                                                = -1440000 Nmm
                                                                                                                                    Ε
                                            M_t
                                                                                                                                            = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 29200 N
                                                    = 1660000 Nmm
                                                                                                = 200 \text{ N/mm}^2
                                                                                                                                    G
                                            M_{\star}
                                                                                        \sigma_{\text{a}}
                                            \sigma(N) =
                                                                                        σ
                                                                                                                                    \theta_{t}
                                            \sigma(M_x)=
                                            \sigma(M_v)=
                                                                                        \sigma_{l}
                                            \tau(M_t) =
                                            \tau(T_{vc}) =
                                                                                        \sigma_{tresca} =
                                            \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
M_{v}
                                                                                              = 1810000 Nmm
                                                                                                                                          = 200000 \text{ N/mm}^2
Ν
        = 64500 N
                                                   = -1580000 Nmm
                                                                                                                                 Ε
                                           M_t
                                                                                                                                          = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 37900 N
                                                                                              = 200 \text{ N/mm}^2
                                                   = 2110000 Nmm
                                                                                                                                 G
                                           M_{\star}
                                                                                      \sigma_{\text{a}}
                                           \sigma(N) =
                                                                                      σ
                                                                                                                                 \theta_{t}
                                           \sigma(M_x)=
                                           \sigma(M_v)=
                                                                                      \sigma_{l}
                                           \tau(M_t) =
                                                                                      \sigma_{tresca}=
                                           \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 1260000 Nmm
                                                                                                                                              = 200000 \text{ N/mm}^2
Ν
        = 48400 N
                                                     = -1350000 Nmm
                                                                                         M_{v}
                                                                                                                                     Ε
                                            M_t
\mathsf{T}_\mathsf{y}
                                                                                                                                              = 75000 \text{ N/mm}^2
        = 20000 N
                                                     = -1830000 Nmm
                                                                                                 = 200 \text{ N/mm}^2
                                                                                                                                     G
                                            M_{\star}
                                                                                         \sigma_{\text{a}}
                                            \sigma(N) =
                                                                                         σ
                                                                                                                                     \theta_{t}
                                            \sigma(M_x)=
                                                                                         τ
                                            \sigma(M_v)=
                                                                                         \sigma_{\text{I}}
                                            \tau(M_t) =
                                            \tau(T_{vc}) =
                                                                                         \sigma_{tresca}=
                                            \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I		M 070000 Nmm	M 2000000 Nimm	_	$= 200000 \text{ N/mm}^2$
N	= 46400 N	$M_t = 2790000 \text{ Nmm}$	$M_y = -2800000 \text{ Nmm}$	Е	
T_y	= 26800 N	$M_x = -3190000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{yc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{yb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\sf st.ven} =$		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 1490000 Nmm
                                                                                                                                      = 200000 \text{ N/mm}^2
Ν
        = 43400 N
                                                  = -2420000 Nmm
                                                                                    M_{v}
                                                                                                                              Ε
                                          M_t
\mathsf{T}_\mathsf{y}
                                                                                                                                      = 75000 \text{ N/mm}^2
        = 25100 N
                                                  = 2660000 Nmm
                                                                                            = 200 \text{ N/mm}^2
                                                                                                                              G
                                          M_{\star}
                                                                                    \sigma_{\text{a}}
                                          \sigma(N) =
                                                                                    σ
                                                                                                                              \theta_{t}
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                                                                    \sigma_{l}
                                          \tau(M_t) =
                                          \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 3000000 Nmm
                                                                                                                             = 200000 \text{ N/mm}^2
Ν
       = 57600 N
                                              = -4360000 Nmm
                                                                              M_{v}
                                                                                                                      Ε
                                       M_t
                                                                                                                             = 75000 \text{ N/mm}^2
T_y
                                                                                      = 200 \text{ N/mm}^2
       = 31200 N
                                              = 2640000 Nmm
                                                                                                                      G
                                       M_{\star}
                                                                              \sigma_{\text{a}}
                                       \sigma(N) =
                                                                              σ
                                                                                                                      \theta_{t}
                                       \sigma(M_x)=
                                                                              τ
                                       \sigma(M_v)=
                                                                              \sigma_{\text{I}}
                                       \tau(M_t) =
                                       \tau(T_{vc}) =
                                                                              \sigma_{tresca}=
                                       \tau(T_{v}^{yb}) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
M_{v}
                                                                                             = 2590000 Nmm
                                                                                                                                         = 200000 \text{ N/mm}^2
Ν
        = 63700 N
                                                  = -2160000 Nmm
                                                                                                                                 Ε
                                          M_t
                                                                                                                                         = 75000 \text{ N/mm}^2
        = 33300 N
\mathsf{T}_\mathsf{y}
                                                  = 2170000 Nmm
                                                                                              = 200 \text{ N/mm}^2
                                                                                                                                 G
                                          M_{\star}
                                                                                     \sigma_{\text{a}}
                                          \sigma(N) =
                                                                                     σ
                                                                                                                                 \theta_{t}
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                                                                     \sigma_{l}
                                          \tau(M_t) =
                                                                                      \sigma_{tresca}=
                                          \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
M_{v}
                                                                                        = 3020000 Nmm
                                                                                                                                 = 200000 \text{ N/mm}^2
Ν
        = 75700 N
                                                = -2760000 Nmm
                                                                                                                          Ε
                                        M_t
                                                                                                                                 = 75000 \text{ N/mm}^2
T_y
                                                                                         = 200 \text{ N/mm}^2
        = 24800 N
                                                = 3020000 Nmm
                                                                                                                          G
                                        M_{\star}
                                                                                 \sigma_{\text{a}}
                                        \sigma(N) =
                                                                                 σ
                                                                                                                          \theta_{t}
                                        \sigma(M_x)=
                                        \sigma(M_v)=
                                                                                 \sigma_{l}
                                        \tau(M_t) =
                                                                                 \sigma_{tresca}=
                                        \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

- addition rapprocentare randamente delle terier tangenziam						
Ν	= 32000 N	$M_t = 1070000 \text{ Nmm}$	$M_v =$	1330000 Nmm	Е	$= 200000 \text{ N/mm}^2$
T_y	= 18200 N	$M_x = 1290000 \text{ Nmm}$	σ_a =	= 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	=	θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ =	=	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	=	r_v	=
Α	=	$\tau(M_t) =$	$\sigma_{II} =$	=	r_{o}	=
J_u	=	$\tau(T_{yc}) =$	σ_{tresca} =	=		
J_v	=	$\tau(T_{yb})=$	σ_{mises} =			
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =	=		
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06						

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

- acontainon approcentation and action terror terror terror								
Ν	= 42100 N	$M_t = 1260000 \text{ Nmm}$	M_{v}	= -1130000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
T_y	= 23800 N	$M_x = 1630000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_{o}	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_v	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_u	=	$\tau(T_{yc}) =$	σ_{tres}					
J_{v}	=	$\tau(T_{yb})=$	σ_{mis}	es=				
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.v}}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		1 1	9		2
Ν	= 33300 N	$M_t = 948000 \text{ Nmm}$	$M_{v} = -557000 \text{ Nmm}$	Ε	= 200000 N/mm ²
T_y	= 20400 N	$M_x = 884000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	Θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	$\sigma_{II} =$	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{Vb})=$	σ_{mises} =		
J_t	=	$\tau(T_{v}) =$	$\sigma_{\text{st.ven}}$ =		
		,			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
Ν
       = 52800 N
                                               = 1360000 Nmm
                                                                               M_{v}
                                                                                      = -1670000 Nmm
                                                                                                                      Ε
                                       M_t
                                                                                                                              = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
       = 27500 N
                                                                                      = 200 \text{ N/mm}^2
                                              = 1630000 Nmm
                                                                                                                      G
                                       M_{\star}
                                                                               \sigma_{\text{a}}
                                       \sigma(N) =
                                                                               σ
                                                                                                                      \theta_{t}
                                       \sigma(M_x)=
                                       \sigma(M_v)=
                                                                               \sigma_{l}
                                       \tau(M_t) =
                                                                               \sigma_{tresca}=
                                       \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 1370000 Nmm
                                                                                                                                  = 200000 \text{ N/mm}^2
Ν
        = 47400 N
                                                = -1170000 Nmm
                                                                                 M_{v}
                                                                                                                          Ε
                                        M_t
                                                                                                                                  = 75000 \text{ N/mm}^2
        = 15100 N
                                                                                         = 200 \text{ N/mm}^2
                                                = 1330000 Nmm
                                                                                                                          G
                                        M_{\star}
                                                                                 \sigma_{\text{a}}
                                        \sigma(N) =
                                                                                 σ
                                                                                                                          \theta_{t}
                                        \sigma(M_x)=
                                        \sigma(M_v)=
                                                                                 \sigma_{l}
                                        \tau(M_t) =
                                                                                 \sigma_{tresca} =
                                        \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
M_{v}
                                                                                      = 2760000 Nmm
                                                                                                                              = 200000 \text{ N/mm}^2
Ν
       = 37700 N
                                              = -2280000 Nmm
                                                                                                                      Ε
                                       M_t
                                                                                                                              = 75000 \text{ N/mm}^2
                                                                                      = 200 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
       = 18900 N
                                              = 2310000 Nmm
                                                                                                                      G
                                       M_{\star}
                                                                               \sigma_{\text{a}}
                                       \sigma(N) =
                                                                               σ
                                                                                                                      \theta_{t}
                                       \sigma(M_x)=
                                       \sigma(M_v)=
                                                                               \sigma_{l}
                                       \tau(M_t) =
                                                                               \sigma_{tresca}=
                                       \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

$N = 41800 \text{ N}$ $M_t = 1820000 \text{ Nmm}$ $M_v = -1550000 \text{ Nmm}$ $E = 200$	000 N/mm ²						
$T_{y} = 21600 \text{ N}$ $M_{x} = -1700000 \text{ Nmm}$ $\sigma_{a} = 200 \text{ N/mm}^{2}$ $G = 750$	00 N/mm ²						
$y_G = \sigma(N) = \sigma = \theta_t =$							
$u_o = \sigma(M_x) = \tau = r_u =$							
$v_o = \sigma(M_y) = \sigma_l = r_v =$							
$A = \tau(M_t) = \sigma_{II} = r_o =$							
$J_u = \tau(T_{yc}) = \sigma_{tresca} =$							
$J_v = \tau(T_{vb}) = \sigma_{mises} =$							
$J_t = \tau(T_y) = \sigma_{st.ven} =$							
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

- addition rapprocentare randamente delle terier tangenziam						
Ν	= 51000 N	$M_t = 2260000 \text{ Nmm}$	M_{v}	= -1830000 Nmm	Ε	$= 200000 \text{ N/mm}^2$
T_y	= 26500 N	$M_x = -1470000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ	=	r_u	=
V_{o}	=	$\sigma(M_y)=$	σ_{l}	=	r_v	=
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=
J_{u}	=	$\tau(T_{yc}) =$	σ_{tresca}	=		
J_v	=	$\tau(T_{yb})=$	σ_{mises}			
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$	=		
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06						

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		• •	3		2
Ν	= 48900 N	$M_t = 973000 \text{ Nmm}$	$M_v = -1160000 \text{ Nmm}$	Е	= 200000 N/mm ²
T_y	= 27000 N	$M_x = 1390000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ =	$r_{\rm u}$	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	$\sigma_{II} =$	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =		
J_{v}	=	$\tau(T_{Vb})=$	$\sigma_{mises} =$		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i acollativo. ia	ppresentare randamento dei	ie teris. tarigeriziali.		
Ν	= 61300 N	$M_t = 1080000 \text{ Nmm}$	$M_v = -1580000 \text{ Nmm}$	Ε	= 200000 N/mm ²
T_v	= 21500 N	$M_x = 1740000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	σ_{II} =	r_{o}	=
J_{u}	=	$\tau(T_{yc}) =$	$\sigma_{\text{tresca}} =$		
J_v	=	$\tau(T_{yb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		
_					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		• •	5		0
Ν	= 29600 N	$M_t = 906000 \text{ Nmm}$	$M_{v} = -790000 \text{ Nmm}$	Ε	$= 200000 \text{ N/mm}^2$
T_y	= 19700 N	$M_x = 1590000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ =	r_{u}	=
V_{o}	=	$\sigma(M_{\nu})=$	$\sigma_{l} =$	r_v	=
Α	=	$\tau(M_t) =$	σ_{II} =	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =		
J_{v}	=	$\tau(T_{vb}) =$	$\sigma_{mises} =$		
J_t	=	$\tau(T_{v}) =$	$\sigma_{\text{st.ven}} =$		
@ /	Adolfo Zavelani Ro	ossi, Politecnico di Milano, vers			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		1 1	9		2
Ν	= 46800 N	$M_t = 2100000 \text{ Nmm}$	$M_v = -1390000 \text{ Nmm}$	Е	= 200000 N/mm ²
T_y	= 25800 N	$M_x = 2730000 \text{ Nmm}$	$\sigma_a^2 = 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ =	$r_{\rm u}$	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	$\sigma_{II} =$	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =		
J_{v}	=	$\tau(T_{vb})=$	$\sigma_{mises} =$		
J_t	=	$\tau(T_{\nu}) =$	$\sigma_{\text{st.ven}} =$		
		,			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 43700 N = 24200 N	$M_t = -1810000 \text{ Nmm}$ $M_x = 1390000 \text{ Nmm}$	$M_y = 1200000 \text{ Nmm}$ $\sigma_a = 200 \text{ N/mm}^2$	E G	= 200000 N/mm ² = 75000 N/mm ²
T_y	= 24200 N		$O_a = 200 \text{ N/IIIIII}$	G	= 75000 19/111111
y_G	=	$\sigma(N) =$	σ =	Θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	$\sigma_{\text{tresca}} =$		
J_v	=	$\tau(T_{Vb})=$	$\sigma_{mises} =$		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 2480000 Nmm
                                                                                                                              = 200000 \text{ N/mm}^2
Ν
       = 56000 N
                                               = -2090000 Nmm
                                                                               M_{v}
                                                                                                                       Ε
                                       M_t
                                                                                                                              = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
       = 29200 N
                                                                                       = 200 \text{ N/mm}^2
                                               = 2340000 Nmm
                                                                                                                       G
                                       M_{\star}
                                                                               \sigma_{\text{a}}
                                       \sigma(N) =
                                                                               σ
                                                                                                                       \theta_{t}
                                       \sigma(M_x)=
                                       \sigma(M_v)=
                                                                               \sigma_{l}
                                       \tau(M_t) =
                                                                               \sigma_{tresca}=
                                       \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		. accitation approachtane randaminente acite terror tangenization							
Ν	= 61300 N	$M_t = 1700000 \text{ Nmm}$	M_{v}	= -2240000 Nmm	Ε	$= 200000 \text{ N/mm}^2$			
T_y	= 19200 N	$M_x = -1840000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=			
u_o	=	$\sigma(M_x)=$	τ	=	r_u	=			
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_v	=			
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=			
J_u	=	$\tau(T_{yc}) =$	σ_{tres}						
J_{v}	=	$\tau(T_{yb})=$	σ_{mise}						
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ve}}$	en=					
@ A	Adolfo Zavelani Rossi, F	Politecnico di Milano, vers.24	.08.06	3					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N.I	44200 N	M 2110000 Nmm	N/	2540000 Nmm	_	$= 200000 \text{ N/mm}^2$
Ν	= 44300 N	$M_t = 2110000 \text{ Nmm}$	M_{y}	= -2540000 Nmm	Е	
T_y	= 23800 N	$M_x = -2550000 \text{ Nmm}$	σ_{a}	= 200 N/mm ²	G	= 75000 N/mm ²
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ	=	r_u	=
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_v	=
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=
J_{u}	=	$\tau(T_{yc}) =$	σ_{tres}	ca=		
J_v	=	$\tau(T_{yb})=$	σ_{mis}			
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.v}}$	en=		
@ A	dolfo Zavelani Rossi, F	Politecnico di Milano, vers.24	.08.06	6		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
       = 38500 N
                                                = 1670000 Nmm
                                                                                M_{v}
                                                                                       = -1120000 Nmm
                                                                                                                         Ε
                                        M_t
                                                                                                                                = 75000 \text{ N/mm}^2
       = 21700 N
                                               = -1770000 Nmm
                                                                                        = 200 \text{ N/mm}^2
                                                                                                                         G
                                        M_{\star}
                                                                                \sigma_{\text{a}}
                                        \sigma(N) =
                                                                                σ
                                                                                                                         \theta_{t}
                                        \sigma(M_x)=
                                        \sigma(M_v)=
                                                                                \sigma_{\text{I}}
                                        \tau(M_t) =
                                        \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
        = 50000 N
                                                  = 1970000 Nmm
                                                                                    M_{v}
                                                                                           = -1480000 Nmm
                                                                                                                              Ε
                                          M_t
                                                                                                                                      = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 29400 N
                                                                                            = 200 \text{ N/mm}^2
                                                  = 1360000 Nmm
                                                                                                                              G
                                          M_{\star}
                                                                                    \sigma_{\text{a}}
                                          \sigma(N) =
                                                                                    σ
                                                                                                                              \theta_{t}
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                                                                    \sigma_{l}
                                          \tau(M_t) =
                                          \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 36600 N	M _t = 918000 Nmm	$M_{v} = -949000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_y	= 22900 N	$M_x = -1160000 \text{ Nmm}$	$\sigma_a^{\prime} = 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{Vb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		
_					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
        = 59100 N
                                                   = 1970000 Nmm
                                                                                     M_{v}
                                                                                             = -2220000 Nmm
                                                                                                                                 Ε
                                          M_t
                                                                                                                                         = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
                                                                                              = 200 \text{ N/mm}^2
        = 19100 N
                                                  = -2120000 Nmm
                                                                                                                                 G
                                          M_{\star}
                                                                                     \sigma_{\text{a}}
                                          \sigma(N) =
                                                                                     σ
                                                                                                                                 \theta_{t}
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                                                                     \sigma_{l}
                                          \tau(M_t) =
                                                                                     \sigma_{tresca}=
                                          \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 1880000 Nmm
                                                                                                                              = 200000 \text{ N/mm}^2
Ν
       = 32200 N
                                              = -1680000 Nmm
                                                                              M_{v}
                                                                                                                      Ε
                                       M_t
                                                                                                                              = 75000 \text{ N/mm}^2
       = 17600 N
\mathsf{T}_\mathsf{y}
                                              = 1720000 Nmm
                                                                                      = 200 \text{ N/mm}^2
                                                                                                                      G
                                       M_{\star}
                                                                              \sigma_{\text{a}}
                                       \sigma(N) =
                                                                              σ
                                                                                                                      \theta_{t}
                                       \sigma(M_x)=
                                       \sigma(M_v)=
                                                                              \sigma_{l}
                                       \tau(M_t) =
                                                                              \sigma_{tresca}=
                                       \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
Ν
       = 44300 N
                                              = 3110000 Nmm
                                                                             M_{v}
                                                                                    = -2260000 Nmm
                                                                                                                     Ε
                                      M_t
                                                                                                                            = 75000 \text{ N/mm}^2
                                                                                     = 200 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
       = 22400 N
                                              = 2930000 Nmm
                                                                                                                     G
                                      M_{x}
                                                                             \sigma_{\text{a}}
                                      \sigma(N) =
                                                                             σ
                                                                                                                     \theta_{t}
                                      \sigma(M_x)=
                                      \sigma(M_v)=
                                                                             \sigma_{l}
                                      \tau(M_t) =
                                                                              \sigma_{tresca}=
                                      \tau(T_y) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	. accitative: ic	approcernare ramaameme ae		go <u>-</u>		_
Ν	= 48500 N	$M_t = 2500000 \text{ Nmm}$	$M_v = -$	2010000 Nmm	Е	$= 200000 \text{ N/mm}^2$
T_y	= 25300 N	$M_x = 1360000 \text{ Nmm}$	$\sigma_a = 2$	200 N/mm ²	G	= 75000 N/mm ²
y_G	=	$\sigma(N) =$	σ =		θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ =		r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$		r_v	=
Α	=	$\tau(M_t) =$	$\sigma_{II} =$		r_{o}	=
J_u	=	$\tau(T_{yc}) =$	σ_{tresca} =			
J_v	=	$\tau(T_{yb})=$	σ_{mises} =			
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}}$ =			
@ A	dolfo Zavelani Rossi, F	Politecnico di Milano, vers.24.	.08.06			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 59000 N	M _t = -1940000 Nmm	M_{v}	= 2400000 Nmm	Е	$= 200000 \text{ N/mm}^2$
IN	= 39000 IN	$W_{t} = -1940000 \text{ NIIIIII}$	IVI	= 2400000 19111111	_	
T_y	= 30500 N	$M_x = 1980000 \text{ Nmm}$	σ_{a}	$= 200 \text{ N/mm}^2$	G	= 75000 N/mm ²
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=
u_{o}	=	$\sigma(M_x)=$	τ	=	r_u	=
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_v	=
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=
J_u	=	$\tau(T_{yc}) =$	σ_{tres}	ca=		
J_v	=	$\tau(T_{yb})=$	σ_{mis}			
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.v}}$	en=		
@ A	dolfo Zavelani Rossi, F	Politecnico di Milano, vers.24	.08.06	6		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
        = 57000 N
                                                  = 1580000 Nmm
                                                                                    M_{v}
                                                                                            = -1660000 Nmm
                                                                                                                               Ε
                                          M_t
                                                                                                                                       = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 19700 N
                                                                                            = 200 \text{ N/mm}^2
                                                  = 1920000 Nmm
                                                                                                                               G
                                          M_{\star}
                                                                                    \sigma_{\text{a}}
                                          \sigma(N) =
                                                                                    σ
                                                                                                                               \theta_{t}
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                                                                    \sigma_{l}
                                          \tau(M_t) =
                                          \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
Ν
        = 43900 N
                                                   = 1800000 Nmm
                                                                                      M_{v}
                                                                                              = -2050000 Nmm
                                                                                                                                  Ε
                                           M_t
                                                                                                                                          = 75000 \text{ N/mm}^2
\mathsf{T}_\mathsf{y}
        = 26400 N
                                                                                               = 200 \text{ N/mm}^2
                                                   = 2390000 Nmm
                                                                                                                                  G
                                           M_{\star}
                                                                                      \sigma_{\text{a}}
                                           \sigma(N) =
                                                                                      σ
                                                                                                                                  \theta_{t}
                                           \sigma(M_x)=
                                           \sigma(M_v)=
                                                                                      \sigma_{l}
                                           \tau(M_t) =
                                                                                      \sigma_{tresca} =
                                           \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 33500 N	$M_t = -1490000 \text{ Nmm}$	$M_{v} = 852000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_v	= 22900 N	$M_x = -2000000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_v	=
Α	=	$\tau(M_t) =$	σ_{II} =	r_{o}	=
J_u	=	$\tau(T_{yc}) =$	$\sigma_{\text{tresca}} =$		
J_v	=	$\tau(T_{yb})=$	$\sigma_{mises} =$		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		
_					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 53600 N	$M_t = -3010000 \text{ Nmm}$	$M_{v} = 1940000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_v	= 30000 N	$M_x = -2120000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	σ _{II} =	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{Vb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		
_					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 1720000 Nmm
                                                                                                                                          = 200000 \text{ N/mm}^2
Ν
        = 49000 N
                                                   = -1580000 Nmm
                                                                                      M_{v}
                                                                                                                                  Ε
                                           M_t
\mathsf{T}_\mathsf{y}
                                                                                                                                          = 75000 \text{ N/mm}^2
        = 27600 N
                                                                                               = 200 \text{ N/mm}^2
                                                   = 1820000 Nmm
                                                                                                                                  G
                                           M_{\star}
                                                                                      \sigma_{\text{a}}
                                           \sigma(N) =
                                                                                      σ
                                                                                                                                  \theta_{t}
                                           \sigma(M_x)=
                                           \sigma(M_v)=
                                                                                      \sigma_{l}
                                           \tau(M_t) =
                                                                                      \sigma_{tresca}=
                                           \tau(T_y) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 3390000 Nmm
                                                                                                                                                   = 200000 \text{ N/mm}^2
Ν
         = 63800 N
                                                       = -2940000 Nmm
                                                                                            M_{v}
                                                                                                                                          Ε
                                              M_t
\mathsf{T}_\mathsf{y}
                                                                                                                                                   = 75000 \text{ N/mm}^2
         = 20800 N
                                                      = 3010000 Nmm
                                                                                                     = 200 \text{ N/mm}^2
                                                                                                                                          G
                                              M_{\star}
                                                                                            \sigma_{\text{a}}
                                              \sigma(N) =
                                                                                            σ
                                                                                                                                          \theta_{t}
                                              \sigma(M_x)=
                                                                                                                                                   =
                                              \sigma(M_v)=
                                                                                            \sigma_{l}
                                              \tau(M_t) =
                                              \tau(T_{vc}) =
                                                                                            \sigma_{tresca}=
                                              \tau(\mathsf{T}_{\mathsf{yb}}) = \\ \tau(\mathsf{T}_{\mathsf{y}}) = \\
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		- - - - - - - - - - - - -			
Ν	= 42900 N	$M_t = -2430000 \text{ Nmm}$	$M_v = 2880000 \text{ Nmm}$	Ε	$= 200000 \text{ N/mm}^2$
T_v	= 22900 N	$M_x = 2420000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_v	=
Α	=	$\tau(M_t) =$	σ_{II} =	r_{o}	=
J_u	=	$\tau(T_{yc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{yb})=$	$\sigma_{mises} =$		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	- accitative rapprocentation and action to the tangent at a							
Ν	= 52500 N	$M_t = -3040000 \text{ Nmm}$	M_{v}	= 2040000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
T_y	= 28400 N	$M_x = 3310000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=		
u_o	=	$\sigma(M_x)=$	τ	=	r_u	=		
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_v	=		
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=		
J_u	=	$\tau(T_{yc}) =$	σ_{tres}					
J_v	=	$\tau(T_{yb})=$	σ_{mis}	es=				
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ve}}$	en=				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 46700 N	$M_t = 2600000 \text{ Nmm}$	$M_{v} = -1670000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_v	= 27300 N	$M_x^{'} = 1810000 \text{ Nmm}$	$\sigma_a^y = 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
$y_{G}^{'}$	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	σ_{II} =	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{Vb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		
_		-			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	. decitative rapprocessias e randamente de la tener tener também								
Ν	= 60900 N	$M_t = 2820000 \text{ Nmm}$	M_v	= -3280000 Nmm	Ε	$= 200000 \text{ N/mm}^2$			
T_y	= 33100 N	$M_x = 2970000 \text{ Nmm}$	$\sigma_{a}^{'}$	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
y_G	=	$\sigma(N) =$	σ	=	θ_{t}	=			
u_{o}	=	$\sigma(M_x)=$	τ	=	r_u	=			
V_{o}	=	$\sigma(M_y)=$	σ_{I}	=	r_v	=			
Α	=	$\tau(M_t) =$	σ_{II}	=	r_{o}	=			
J_u	=	$\tau(T_{yc}) =$	σ_{tres}						
J_v	=	$\tau(T_{yb})=$	σ_{mis}	es=					
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ve}}$	en=					
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.08.06								

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 66900 N	$M_t = 2400000 \text{ Nmm}$	$M_v = -2800000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_v	= 22400 N	$M_x = 2470000 \text{ Nmm}$	σ_a = 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
y_G	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_v	=
Α	=	$\tau(M_t) =$	σ_{II} =	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{vb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 48400 N	$M_t = 3000000 \text{ Nmm}$	$M_{v} = -3240000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$
T_v	= 27600 N	$M_{x}^{'} = 3350000 \text{ Nmm}$	$\sigma_a^y = 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
$y_G^{'}$	=	$\sigma(N) =$	σ =	θ_{t}	=
u_o	=	$\sigma(M_x)=$	τ =	r_u	=
V_{o}	=	$\sigma(M_y)=$	$\sigma_{l} =$	r_{v}	=
Α	=	$\tau(M_t) =$	σ_{II} =	r_{o}	=
J_u	=	$\tau(T_{vc}) =$	σ_{tresca} =		
J_v	=	$\tau(T_{Vb})=$	σ_{mises} =		
J_t	=	$\tau(T_y) =$	$\sigma_{\text{st.ven}} =$		
_		-			