Stato dell'arte su vulnerabilità e mitigazioni di

TRUSTZONE

Politecnico di Milano, Advanced operating systems A.A. 2021/2022

INTRODUZIONE

Politecnico di Milano, Advanced operating systems A.A. 2021/2022

COS È TRUSTZONE?

Politecnico di Milano Advanced operating systems 2021-2022

Daniele Carta

TEE Enabler

Base di partenza per integrità e confidenzialità sull'esecuzione di codice in una parte del sistema

COS È TRUSTZONE?

Architettura

Politecnico di Milano Advanced operating systems 2021-2022 Daniele Carta

Architettura

Hardware

Conclusione

DUE MODELLI DI TRUSTZONE

Politecnico di Milano Advanced operating systems 2021-2022 Daniele Carta

CORTEX A

World switch

CORTEX M

Utilizzo del Secure Monitor Non utilizzo del Secure Monitor

- Trusted kernel
- Può eseguire sistemi operativi

- Trusted service
- Context switch veloce
- Applicazioni per il basso consumo

Architettura

Hardware

Conclusione

CONTEXT SWITCH SU CORTEX-M

Politecnico di Milano Advanced operating systems 2021-2022

Daniele Carta

3 istruzioni per gestire il context switch in maniera sicura:

SecureGate: Dal SW all'entrypoint di un istruzione del SW

Branch with eXchange to Nonsecure State:

Dal SW branch o return al NSW

Branch with Link and eXchange to Nonsecure State:

Dal SW chiama una funzione nel NSW

Il mapping della memoria è gestito da SAU e IDAU

Introduzione

Implementazione

Architettura

Hardware

CARATTERISTICHE DI TRUSTZONE E CONTROIDICAZIONI

Politecnico di MilanoA operating systems 2021-2022

Advanced operating systems 2021-2022 Daniele Carta

- Piccola Trusted Code Base
 - API Standard dal 2009
 a cura di GlobalPlatform
 - Estensibilità (Trustlets)
 - Modularità
 (TZASC, TZMA, TPM...)
 - Isolamento hardware
 - Problemi con le revoche
 da configurare
 - Hardware sensibile
 da configurare
 - Hardware condiviso

TRUSTED CODE BASE UN CONFRONTO

System	Core (bin / src)	TAs
Qualcomm TEE (Google Pixel XL)	1.61MB)-	2.71MB
Trustonic TEE (Samsung S7)	350KB / –	5,02MB
Huawei TEE (Huawei P8 Lite)	744KB /-	479KB
Nvidia TEE (Nvidia Tegra)	97KB / 123Kloc	80KB
Linaro TEE (Hikey960)	365KB /210Kloc	-
Linux (4.14.rc7)	19MB / 15Mloc	-
seL4 (kernel)	166.5KB (19Kloc)	-

Politecnico di Milano dvanced operatina systems 2021-2022

Advanced operating systems 2021-2022 Daniele Carta

Alle dimensioni del kernel si aggiungono quelle di:

- Trusted Applications
- Secure drivers
- Secure Monitor
- Firmware

VULNERABILITÀ

Politecnico di Milano, Advanced operating systems A.A. 2021/2022

Architettura

Politecnico di Milano Advanced operating systems 2021-2022 Daniele Carta

IMPLEMENTAZIONE

ARCHITETTURA

HARDWARE

IMPLEMENTAZIONE

Politecnico di Milano, Advanced operating systems A.A. 2021/2022

Architettura

Hardware

LA PRIMA VULNERABILITÀ NEL SM (BLACKHAT 2015)

Politecnico di Milano Advanced operating systems 2021-2022

Il TEE di Qualcomm usa un <u>driver Linux</u>

Secure Che per emettere SMC attraverso due metodi

Secure Channel Manager

Call by registers

Request/Response Structure

Attraverso un'area di memoria condivisa

Politecnico di Milano

Advanced operating systems 2021-2022

Architettura

Hardware

LA PRIMA VULNERABILITÀ NEL SM (BLACKHAT 2015)

Controllo sull'area di memoria condivisa

Risiede nel mondo non sicuro?

Il TEE scriverà in quel buffer la sua risposta...

```
int qsee_is_ns_memory(long addr, long size)
return qsee_range_not_in_region(qsee_region_list, addr, addr+sizeaddr+size);
int qsee_range_not_in_region(void *region_list, long start, long end)
long tmp;
if (end < start) {if (end < start) {</pre>
tmp = start; tmp = start;
start = end;start = end;
end = tmp;end = tmp;
/* Validate that start to end doesn't overlap
* secure list */
```


Introduzione

Implementazione

Architettura

Hardware

I SOLITI BUG

Politecnico di Milano

Advanced operating systems 2021-2022 Daniele Carta

Class	Subclass	# Bugs	
Validation Bugs	Secure Monitor	2 (1.07%)	
	Trusted Applications	62 (33.16%)	
	Trusted Kernel	52 (27.81%)	
	Secure Boot Loader	5 (2.67%)	
Functional Bugs	Memory Protection	32 (17.11%)	
	Peripheral Configuration	8 (4.28%)	
	Security Mechanisms	11 (5.88%)	
Extrinsic Bugs	Concurrency Bugs	11 (5.88%)	
	Software Side Channels	4 (2.14%)	

Corruzione della memoria

Più bug nel bootloader che nel SM

Timing sidechannel attacks

ARCHITETTURA

Politecnico di Milano, Advanced operating systems A.A. 2021/2022

Architettura

Hardware

DRIVER

Politecnico di Milano

Advanced operating systems 2021-2022 Daniele Carta

- Sono complessi e fonte di bug
- Solo alcuni vivono nel kernel space
- Altri nelle mani delle TAs

Architettura di ciascuna implementazione Global TA S-EL0 TA McLib TA libe Driver Task Pseudo TA OPTEE-OS Driver **QSEOS** S-EL1 Driver Driver MTK RTOSck Trusted Little Kernel Monitor Arm Trusted Firmware Arm Trusted Firmware EL3 Arm Trusted Firmware Arm Trusted Firmware /dev/mobicore Linux Linux Linux N-EL1 /dev/tc_ns_client /dev/tlk driver /dev/qseecom /dev/tee0 /dev/mobicore-user Kernel Kernel Kernel Privileged Privileged [Privileged] Privileged mcDriver Privileged TLK OPTEE N-EL0 App App Supplicant Daemon Service Service Service Service Service Daemon Trustonic TEE Linaro TEE Qualcomm TEE Huawei TEE Nvidia TEE

INTERFACCE

Politecnico di Milano Advanced operating systems 2021-2022

Daniele Carta

- In Android 4 daemons hanno accesso privilegiato al driver di TrustZone
- La TA Widivine implementa 70 comandi
- QSEE offre 69 diverse syscalls contro le 116 di Linux

Architettura

Hardware

Conclusione

Politecnico di Milano

Advanced operating systems 2021-2022

BREAKING SAMSUNG'S TRUSTZONE (BLACKHAT 2019)

Target: trusted application del TEE di Trustonic

STEP #1 - Caricamento su IDA/Ghidra

STEP #2 - Identificazione delle funzioni

STEP #3 - Creare un emulatore

STEP #4 - Cercare vulnerabilità con un Fuzzer

STEP #5 - Exploitare sul vero target

Politecnico di Milano

Daniele Carta

Advanced operating systems 2021-2022

BREAKING SAMSUNG'S TRUSTZONE (BLACKHAT 2019)

Cosa hanno trovato?

Buffer Overflow da manuale

→ Nelle TAs
→ Nei Secure Driver

Esecuzione di codice arbitrario nel Secure Monitor

Architettura

Hardware

Conclusione

Politecnico di Milano

Advanced operating systems 2021-2022

ISOLAMENTO TRA SW E NSW

Boomerang attack

Le TAs possono mappare la memoria fisica del NSW

Da una TA posso compromettere il non trusted kernel

Trasformando TrustZone in un vettore d'attacco

Fig. 2: An example of BOOMERANG, where a malicious memory pointer is hidden from pointer sanitization, ultimately tricking a TA to act on that memory address.

Introduzione

Hardware

REVOCA DELLE TA

Politecnico di Milano Advanced operating systems 2021-2022

-TA caricata dal filesystem dell'untrusted OS e verificata dal trusted OS

-Caricamento di una nuova versione della TA

-Prevenzione del caricamento della versione obsoleta e vulnerabile

Politecnico di Milano

Daniele Carta

Advanced operating systems 2021-2022

Implementazione

Architettura

Hardware

REVOCA DELLE TA

Project Zero's Trust Issues (blogpost 2017)

-Buona documentazione che spiega il procedimento di revoca

-Signature sulla TA computata sulla base di un version ID

-Tutti gli ID di tutti I trustlet di Qualcomm e Trustonic sono '0'

HARDWARE

Politecnico di Milano, Advanced operating systems A.A. 2021/2022

HARDWARE

Politecnico di Milano Advanced operating systems 2021-2022 Daniele Carta

-TCB estesa al firmware

-Configurazione delicata

-FPGA

Componenti sicuri
Componenti NS

CHAIN OF TRUST

Politecnico di Milano

Advanced operating systems 2021-2022 Daniele Carta

- -Affidabilità della chain of trust
- -TOCTOU
- -Microprobing
- -Silicon editing

POWER MANAGEMENT

Politecnico di Milano Advanced operating systems 2021-2022 Daniele Carta

Ad uso del NSW

Implementazione

Fault injection via userspace software

CLKSCREW

Possibilità di configurare l'hardware per lavorare su limiti di frequenza maggiori di quelli che dovrebbero essere imposti dal venditore

Figure 5: Vendor-stipulated voltage/frequency Operating Performance Points (OPPs) vs. maximum OPPs achieved before computation fails.

Architettura

Hardware

POWER MANAGEMENT Fault injection (36c3 2019)

Chip SAML11 di microchip (TrustZone-M)

Non ha SAU

IDAU configurata dalla boot rom

Politecnico di Milano

Advanced operating systems 2021-2022 Daniele Carta

Glitch oltre il setting di AS

registro AS

MICROARCHITETTURE

Politecnico di Milano

Advanced operating systems 2021-2022 Daniele Carta

- -Rowhammer e Branch predictor leaks
- -Cache condivise Prime & Probe

Politecnico di Milano

Advanced operating systems 2021-2022

MICROARCHITETTURE

Migliorando Prime&Probe (34c3 2017)

- Sfruttare un secondo core e interrupt ——— Migliorare granularità temporale
- Usare i performance counter ——— Ridurre il rumore

MITIGAZIONI

Politecnico di Milano, Advanced operating systems A.A. 2021/2022

Architettura

Hardware

MITIGAZIONI

Politecnico di Milano

Advanced operating systems 2021-2022 Daniele Carta

IMPLEMENTAZIONE

ARCHITETTURA

HARDWARE

Hardware

MITIGAZIONI IMPLEMENTAZIONE

Politecnico di Milano Advanced operating systems 2021-2022

- Utilizzo di linguaggi type e memory safe

- RustZone è un estensione per OP-TEE per lo sviluppo di TAs con Rust

Validazione e concorrenza

- Verifica del software via metodi formali Complesso ma fattibile (MIPE, Komodo)

--- Funzionali

Introduzione

Hardware

MITIGAZIONI ARCHITETTURA

Politecnico di Milano Advanced operating systems 2021-2022

- Rispettare l'architettura
- Aumentare la granularità dell'isolamento
- Canali di comunicazione fra SW e NSW sicuri (SeCReT)
 - Memoria criptata come in Intel SGX
 - Contenere la grandezza della TCB

MITIGAZIONI HARDWARE

Politecnico di Milano Advanced operating systems 2021-2022

- Eliminare la shared cache

Introduzione

- Fornirne una dedicata al SW
- Flushare ad ogni utilizzo del SW
- Limitare il controllo di energia a livello driver o hardware
- Un AXI per soli dispositivi sicuri
- Per la chain of trust Physical Unclonable Functions
- Remote attestation, TPM

Power management

Componenti

-- Attestazione

Architettura

Politecnico di Milano Advanced operating systems 2021-2022

- ASLR assente o debole
- Niente canaries, guardpages, NX bit

Mechan	isms	Qualcomm	Trustonic	Huawei	Nvidia	Linaro	
User	ASLR	•		\circ		0	
Space	SC			0	0	\circ	
	GP		\circ		_		→ Non trovato
	XP	WXN	WXN	\circ	UXN/PXN	UXP/PXN	
Kernel	KASLR	0	0	0	0	0	
Space	SC			\circ	\circ	0	
	XP	WXN	WXN	0	UXN/PXN	UXN/PXN	

Introduzione

Hardware

CONCLUSIONI

Politecnico di Milano Advanced operating systems 2021-2022

- Trade off con performance e costo
 - Industria molto frammentata
 - SoC e board sovraffollati
- Focus sulla root e la chain of trust
- La sicurezza come vettore d'attacco
 - Tema di ricerca molto attiva

Hardware

Mitigazioni

Conclusione

BIBLIOGRAFIA

Politecnico di Milano Advanced operating systems 2021-2022 Daniele Carta

- SoK: Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems, David Cerdeira et al.
- Demystifying Arm TrustZone: A Comprehensive Survey, Ssndro Pinto, Nuno Santos
- How to Break Secure Boot on FPGA SoCs through Malicious Hardware, Nisha Jacob et al.
- BOOMERANG: Exploiting the Semantic Gap in Trusted Execution Environments, Aravind Machiry et al.
- CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management, Adrian Tang et al.
- SeCReT: Secure Channel between Rich Execution Environment and Trusted Execution Environment, Jinsoo Jang et al.
- Reflections on Trusting TrustZone Blackhat 2015, Dan Rosenberg
- Breaking Samsung's ARM trustzone Blackhat 2019, Quarkslab
- Trust Issues: Exploiting TrustZone TEEs, Project Zero

Introduzione

- Microarchitectural Attacks on Trusted Execution Environments 34c3, Ryan Keegan
- TrustZone-M(eh): Breaking ARMv8-M's security 36c3, Thomas Roth
- RustZone: Writing Trusted Applications in Rust Blackhat 2018, Eric Evenchi
- Breaking Samsung's Root of Trust: Exploiting Samsung S10 Secure Boot

GRAZIE

Politecnico di Milano, Advanced operating systems A.A. 2021/2022