Colle 18 MPSI/MP2I Jeudi 14 mars 2024

Planche 1

- 1. Passage au logarithme dans les équivalents
- 2. Soit $n \in \mathbb{N}^*$. Décomposer $F = \frac{1}{X^{2n} + 1}$ danc $\mathbb{C}(X)$, puis dans $\mathbb{R}(X)$.
- 3. On note $f: \mathbb{R}^+ \to \mathbb{R}, x \mapsto \frac{2x}{1 + e^x}$.
 - (a) Montrer que f admet un maximum global M et qu'il est atteint en un unique point α dans]1,2[.
 - (b) Déterminer un développement limité de f au voisinage de α à l'ordre 2.
 - (c) En déduire que $\left(f_{|[\alpha,+\infty[}^{|]0,M]}\right)^{-1} \circ f_{|[0,\alpha]}^{|]0,M]}$ est dérivable en α . Déterminer sa dérivée en ce point.

Planche 2

- 1. Unicité du développement limité en cas d'existence
- 2. Déterminer un équivalent de $e^{e^{-n}}$ e quand n tend vers $+\infty$.
- 3. Déterminer un développement asymptotique à deux termes de l'arcsinus au voisinage de -1.

Planche 3

- 1. Comparaison des suites de terme général a^n , n!, n^n .
- 2. Décomposition en éléments simples de $F = \frac{1}{X^4 + 4}$ dans $\mathbb{R}(X)$.
- 3. Développement asymptotique à trois termes en +∞ de

$$x \mapsto \sqrt[3]{\frac{x^2 + x + 1}{x^2 + 1}}$$

Bonus

Soit
$$a > 0$$
. A-t-on $(\lfloor \ln(x) \rfloor)! = o(x^a)$?