

## 선형 모델

고려대학교 석준희

ChatGPT: Optimizing
Language Models
for Dialogue





- 선형 회귀 모델
- 로지스틱 회귀 모델
- 프로그래밍 실습



선형 모델

## 선형 회귀 모델

### 학습의 목표와 종류

• 인공지능은 인간의 지능을 모방하여 관측된 데이터를 바탕으로 어떤 행동에 대한 판단을 내리는 주체



- 함수 f()를 주어진 관측데이터로부터 추정하는 것이 (기계)학습의 목표
- 지식으로부터 찾는다면 지식 기반의 인공지능
- 회귀(regression): Y가 수치형 변수일 때
  - 기대 수명, 임금, 주가, 카카오톡 메시지의 수 등
- 분류(classification): Y가 범주형 변수일 때
  - 성공/실패, 성별, 자동차의 종류, 꽃 품종 등

### 선형 모델 (Linear Model)

- $\bullet_{\bullet}$  모집단에서의 실제 f()가 선형성을 갖고 있다고 가정
  - 선형 회귀 (linear regression) 모델: 회귀 문제에 적용
  - **로지스틱 회귀 (logistic regression) 모델**: 분류 문제에 적용

Random Sampling (past)

**\*** 

| _ | Iraining Set |                       |                       |  |  |  |
|---|--------------|-----------------------|-----------------------|--|--|--|
|   |              | X                     | Υ                     |  |  |  |
|   | 1            | <b>X</b> <sub>1</sub> | У <sub>1</sub>        |  |  |  |
|   | 2            | <b>x</b> <sub>2</sub> | <b>y</b> <sub>2</sub> |  |  |  |
|   | :            | :                     | :                     |  |  |  |
|   | n            | Х                     | V                     |  |  |  |

Learning (now)

f

Estimated relation

Infinitely many X's and Y's

$$Y = f(X) + \epsilon$$

Population

### 단순 선형 회귀 (Simple Linear Regression)

하나의 독립변수(X)와 하나의 출력변수(Y)에 대한 모델

$$Y \approx \beta_0 + \beta_1 X$$

 $Y \approx \beta_0 + \beta_1 X$   $\beta_0$ : 절편,  $\beta_1$ : 계수

각 데이터는 다음과 같이 모델링 됨

$$y_i = \beta_0 + \beta_1 x_i + e_i$$
 for  $i = 1 \cdots n$ .



## 단순

### 단순 선형 회귀 (Simple Linear Regression)

• 하나의 독립변수(X)와 하나의 출력변수(Y)에 대한 모델:  $Y \approx \beta_0 + \beta_1 X$ 



$$Y = f(X)$$
  
=  $\beta_0 + \beta_1 X + \epsilon$ 



Learning

**Model Estimation** 

$$\hat{f}(X) = \hat{\beta}_0 + \hat{\beta}_1 X$$

Prediction

$$\hat{y} = \hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$$

Mean Square Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

### 모델 파라메터의 추정

• 최소제곱법(Least squares)을 이용하여 파라메터를 추정

$$L(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

손실함수 Loss Function

- 손실 함수를 미분하여 쉽게 계산 가능



**Square loss function** 

• 추정값

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 x$$

- 위의 추정값은 훈련 데이터의 에러를 최소화하는 것이지, 반드시 평가 데이터의 에러를 최소화하지는 않음
  - 평가 데이터의 에러를 최소화하기 위해 모델 선택 과정이 필요

## 일반 선형 회귀 (Multiple Linear Regression)

• 하나의 출력 변수와 여러 개의 입력 변수

$$Y \approx \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

• 제곱에러 (square-error) 손실함수를 최소화 하여 파라메터를 추정

$$L = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \cdots \hat{\beta}_p x_{pi}$$



$$Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

- Y의 변화량은 각 X의 변화량에 비례
- 각 X는 독립적으로 기여

## 회귀 모델의 평가

- 추정한 모델이 얼마나 좋은지 평가하는 척도
- 평균제곱에러 (MSE: Mean Square Error)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

$$RMSE = \sqrt{MSE}$$

- 결정계수 R<sup>2</sup> (coefficient of determination)
  - Y가 얼마나 X에 의해 설명되는지에 대한 비율

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} = 1 - \frac{\text{(unexplained variance)}}{\text{(total variance of } Y)}$$

- 보통은 0과 1 사이이지만, 모델이 아주 나쁜 경우 음의 값을 갖기도 함
- 이러한 척도는 트레이닝 셋과 테스트 셋 양쪽 모두에서 계산 가능

### 예제: 광고비와 판매량

• 상품의 판매량(Sales)을 각 매체(TV, Radio, Newspaper)의 광고비로 설명

- Sales =  $\beta_0 + \beta_1 TV + \beta_2 Radio + \beta_3 Newspaper + \epsilon$ .

• 전체 200개의 표본(샘플: sample) 중에서…

- 훈련 데이터: 임의로 선택된 100 샘플

- 평가 데이터: 나머지 100개의 샘플

• 데이터 행렬

| 1  | TV    | Radio | Newspaper | Sales |
|----|-------|-------|-----------|-------|
| 2  | 230.1 | 37.8  | 69.2      | 22.1  |
| 3  | 44.5  | 39.3  | 45.1      | 10.4  |
| 4  | 17.2  | 45.9  | 69.3      | 12    |
| 5  | 151.5 | 41.3  | 58.5      | 16.5  |
| 6  | 180.8 | 10.8  | 58.4      | 17.9  |
| 7  | 8.7   | 48.9  | 75        | 7.2   |
| 8  | 57.5  | 32.8  | 23.5      | 11.8  |
| 9  | 120.2 | 19.6  | 11.6      | 13.2  |
| 10 | 8.6   | 2.1   | 1         | 4.8   |
| 11 | 199.8 | 2.6   | 21.2      | 15.6  |

### 예제: 광고비와 판매량

• 탐색적 데이터 분석



### 예제: 광고비와 판매량

- TV광고비만을 이용한 모델
  - Sales =  $\beta_0 + \beta_1 TV + \epsilon$ .
- 결과
  - 모델: Sales ~ 7.074 + 0.055 TV

|       | MSE    |        |
|-------|--------|--------|
| Train | 5.4193 | 0.8216 |
| Test  | 5.2871 | 0.8017 |



#### 예제: 광고비와 판매량

- 모든 변수를 이용한 모델
  - Sales =  $\beta_0 + \beta_1 TV + \beta_2 Radio + \beta_3 Newspaper + \varepsilon$
- 결과
  - 모델: Sales  $\sim 4.478 + 0.054$  TV + 0.116 Radio + 0.0002 Newspaper

|       | MSE    |        |
|-------|--------|--------|
| Train | 2.4050 | 0.9167 |
| Test  | 3.0439 | 0.8858 |

- 단순한 모델과 복잡한 모델
  - 어느 모델이 더 복잡한가?
  - 어느 모델이 트레이닝 셋에서 더 성능이 좋은가?
  - 어느 모델이 테스트 셋에서 더 성능이 좋은가? 항상 그럴 것인가?
  - 테스트 셋 결과를 보지 않고 테스트 셋에서 더 성능이 좋은 모델을 선택할 수 있을까?

### 범주형 변수의 표현

• 입력 변수가 범주형 변수인 경우….

$$Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

- X₁: 나이, 연속형 변수
- X<sub>2</sub>: 성별, 범주형 변수 (남성/여성)
- X<sub>3</sub>: 지역, 범주형 변수 (서울/경기/인천)
- 일반적으로 **가변수(dummy variable)**로 변환하여 모델링
  - 성별: X<sub>2M</sub> = 1 (남성) or 0 (여성)
  - 지역:  $X_{3S} = 1$  (서울) or 0 (서울 외),  $X_{3K} = 1$  (경기) or 0 (경기 외)

$$Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_{2M} + \beta_3 X_{3S} + \beta_4 X_{3K}$$

• 일반적으로 K개의 범주를 갖는 변수에 대해서 K-1 개의 가변수가 필요

### 상호작용(Interaction)의 고려

• 일반적 선형 회귀 모델: 두 변수의 영향력이 독립적

$$Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

• 상호작용을 고려한 모델: 두 변수의 영향력이 비독립적

$$Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

- 상호작용 항  $X_1X_2$  를 새로운 변수  $X_3$  처럼 취급
- 상호작용을 고려한 모델 vs. 일반 모델
  - 어느 모델이 더 복잡한가?
  - 어느 모델이 트레이닝 셋에서 더 성능이 좋은가?
  - 어느 모델이 테스트 셋에서 더 성능이 좋은가?

### 다항 회귀 (Polynomial Regression)

- $Y \approx \beta_0 + \beta_1 X$  vs.  $Y \approx \beta_0 + \beta_1 X + \beta_2 X^2$ .
- 일반 선형 회귀 (1차 회귀 모델) vs. 다항회귀 (2,3, ... 차 회귀 모델)
- 고차항을 새로운 변수처럼 취급
- 모델의 복잡성 vs. 고차항
- 상호작용을 고려한 모델 vs. 일반 모델
  - 어느 모델이 더 복잡한가?
  - 어느 모델이 트레이닝 셋에서 더 성능이 좋은가?
  - 어느 모델이 테스트 셋에서 더 성능이 좋은가?



## 기계학습 vs. 통계분석

- 선형 회귀 모델은 현대의 기계학습과 전통적인 통계에서 모두 중요한 모델이지만, 이 둘은 약간 다른 관점을 갖고 있음
- 통계 모델
  - 주로 해석에 초점을 맞추고 있음
  - 적은 계산량을 필요로 하는 이론적 추정을 주로 이용
  - 상대적으로적은 데이터 양을 가정
- 기계학습 모델
  - 주로 예측에 초점을 맞추고 있음
  - 많은 계산량을 필요로 하는 실험적 추정을 주로 이용
  - 상대적으로 많은 데이터 양을 가정

## 기계학습 vs. 통계분석

#### • 두 모델 중 어느 모델을 선택할 것인가?

-  $f_1$ (): sales =  $\beta_0 + \beta_1 TV + \beta_2 radio + \beta_3 newspaper + <math>\epsilon$ 

-  $f_2$ (): sales =  $\beta_0 + \beta_1 \text{TV} + \beta_2 \text{radio} + \epsilon$ 

#### • 통계 모델

- 모델의 파라메터가 0인지 아닌지 통계적 검정을 이용해 확인

|           | Coefficient | Std. error | t-statistic | p-value  |
|-----------|-------------|------------|-------------|----------|
| Intercept | 2.939       | 0.3119     | 9.42        | < 0.0001 |
| TV        | 0.046       | 0.0014     | 32.81       | < 0.0001 |
| radio     | 0.189       | 0.0086     | 21.89       | < 0.0001 |
| newspaper | -0.001      | 0.0059     | -0.18       | 0.8599   |

$$-$$
 모델의 실제 에러를 RSE를 통해 확인:  $\sqrt{\frac{1}{n-p-1}\sum_{i=1}^n(y_i-\hat{y}_i)^2}$ 

#### • 기계학습 모델

- 모델의 실제 에러 및 예측 성능을 다른 데이터를 이용해 확인



선형 모델

## 로지스틱 회귀 모델

## 분류 문제의 표현

- 회귀문제 (Regression): Y가 연속형 변수일 때
- 분류문제 (Classification): Y가 범주형 변수일 때
- 클래스 혹은 범주를 숫자로 표현이 가능할까?
  - Y = A or B → Y = 1 or 2 : 가능함
  - Y = A, B or C → Y = 1, 2 or 3 : 불가능함
  - 기본적으로 회귀문제로 치환하여 해결하는 것이 불가능
- 많은 분류의 문제들이 클래스 Y를 직접 예측하기 보다는 Y가 특정 클래스일 확률  $\Pr[Y = k | X]$ 를 예측하고자 함

$$\Pr[Y = k | X] \sim f(X)$$

### 이진 분류 (Binary Classification)

• 이진 분류: 범주/클래스가 두 개인 경우

• 예제: 공부시간 vs. 시험합격

Hours: 공부시간 (숫자)

- Pass: 합격 여부 (합격 or 불합격)

|   | 공부시간 | 합격여부 | Pr[Y=1 X] |
|---|------|------|-----------|
| 1 | 0.50 | 불합격  | 0         |
| 2 | 3.30 | 합격   | 1         |
| 3 | 1.75 | 합격   | 1         |
| 4 | 3.00 | 불합격  | 0         |
|   |      |      |           |



https://en.wikipedia.org/wiki/Logistic\_regression

### 로지스틱 회귀 (Logistic Regression)

- 클래스에 대한 확률을 시그모이드 함수를 이용하여 모델링
- 이진분류 (Y = 1 or 0 )에 대하여

$$\Pr[Y = 1|X] = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$$

$$\Pr[Y = 0|X] = \frac{1}{1 + e^{\beta_0 + \beta_1 X}} = \frac{e^{-(\beta_0 + \beta_1 X)}}{1 + e^{-(\beta_0 + \beta_1 X)}}$$



$$\log\left(\frac{\Pr[Y=1|X]}{\Pr[Y=0|X]}\right) = \beta_0 + \beta_1 X$$

$$\Rightarrow \div(\text{odds})$$

https://en.wikipedia.org/wiki/Sigmoid\_function

## 파라메터의 추정

- 우도 (Likelihood): 어떤 모델을 가정했을 때 현재 데이터를 관측할 확률
- 로지스틱 회귀에서의 우도

모델: 
$$\Pr[Y = 1|X] = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}, \quad \Pr[Y = 0|X] = \frac{1}{1 + e^{\beta_0 + \beta_1 X}}$$
 우도:  $l(\beta_0, \beta_1) = \prod_{i:y_i = 0} \frac{1}{1 + e^{\beta_0 + \beta_1 X_i}} \prod_{i:y_i = 1} \frac{e^{\beta_0 + \beta_1 X_i}}{1 + e^{\beta_0 + \beta_1 X_i}}$ 

예제

|   | 공부시간 | 합격여부 | Pr[Y=1 X] |
|---|------|------|-----------|
| 1 | 0.50 | 불합격  | 0         |
| 2 | 3.30 | 합격   | 1         |
| 3 | 1.75 | 합격   | 1         |
| 4 | 3.00 | 불합격  | 0         |

## 파라메터의 추정

#### • 최대우도법 (Maximum Likelihood)

- 왜 하필 우리는 이 데이터를 관측하고 있을까? 그것은 이 데이터를 관측할 확률이 제일 높기 때문이다!
- 우도를 제일 크게 만드는 파라메터가 진짜 파라메터

$$l(\beta_0, \beta_1) = \prod_{i: y_i = 0} \frac{1}{1 + e^{\beta_0 + \beta_1 x_i}} \prod_{i: y_i = 1} \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

- 보통 우도의 미분을 통해 파라메터를 찾는 것은 계산이 어려움
- 우도의 로그값(Log-likelihood)을 최대화하는 파라메터를 찾음
  - 로그 함수의 특성상 f(x)를 최대화 하는 것은  $\log(f(x))$ 를 최대화 하는 것과 같음

$$\hat{\beta}_0, \hat{\beta}_1 = \operatorname{argmax}(l) = \operatorname{argmax}(\log l)$$

$$\frac{\partial \log l}{\partial \beta_0} = 0 \qquad \frac{\partial \log l}{\partial \beta_1} = 0 \qquad \Box \qquad \hat{\beta}_0, \hat{\beta}_1$$

## 파라메터의 추정

- 수치적 해법
  - 우도에 대한 미분을 수식으로 풀 수 없어 수치적으로 풀어야 함
  - 임의의 파라메터에서 시작하여 경사(미분값)을 따라 업데이트해 가는 방식
  - 예: Newton-Raphson 법, 경사하강법 등

 $\beta^{(0)}$ : random position

$$\beta^{(i+1)} = \beta^{(i)} - \lambda \frac{\partial L(\beta^{(i)})}{\partial \beta}$$



https://en.wikipedia.org/wiki/Gradient\_descent

### 일반적인 로지스틱 회귀 (Multiple Logistic Regression)

• 하나 이상의 독립 변수에 대해서 선형 회귀와 같이 확장

$$\log\left(\frac{\Pr[Y=1|X]}{\Pr[Y=0|X]}\right) = \beta_0 + \beta_1 X$$

$$\log \left( \frac{\Pr[Y = 1 | X]}{\Pr[Y = 0 | X]} \right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

$$\Pr[Y = 1|X] = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p}}$$

- 선형회귀에서 사용되었던 다양한 기법을 바로 적용 가능
  - 가변수를 이용한 범주형 변수의 표현
  - 상호작용의고려
  - 고차원 변수의 도입
  - 모델의 복잡성에 대한 고려도 동일

## 분류 모델의 평가

정확도 (Accuracy): 각 클래스를 정확히 맞춘 비율

$$Acc = \frac{1}{n} \sum_{i=1}^{n} I\left(y_i \neq \hat{f}(x_i)\right)$$

• 혼동행렬 (Confusion Matrix): 실제값과 예측값을 행렬의 형태로 표현

#### truth

C Α В D 15 5 Α 70 10 5 В 8 **67** 20 C 88 0 11 **72** D 10 14 4

## 이진 분류 모델의 평가

- 두 개의 클래스에 대한 2x2 혼동 행렬
  - 양성 (Positive): 우리가 찾고 싶은 클래스 (e.g. 질병, 부도 등)
  - 음성 (Negative): 다른 하나의 클래스 (e.g. 정상, 신용 등)

|                    | Truly Positive      | Truly Negative      |  |
|--------------------|---------------------|---------------------|--|
| Predicted Positive | True Positive (TP)  | False Positive (FP) |  |
| Predicted Negative | False Negative (FN) | True Negative (TN)  |  |

- 정확도(Accuracy) = (TP+TN)/(TP+FP+FN+TN)
- 재현율(Recall, True Positive Rate, Sensitivity) = TP/(TP+FN)
- 정밀도(Precision, Positive Predictive Value) = TP/(TP+FP)
- 위양성률(False Positive Rate) = FP/(FP+TN)

• 
$$F_1$$
 Score =  $2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \left(\frac{P^{-1} + R^{-1}}{2}\right)^{-1} = \frac{TP}{TP + (FP + FN)/2}$ 

### 이진 분류 모델의 평가

- Precision-Recall curve: recall이 증가함에 따라 precision은 대체로 감소하지만 증가하기도 함
  - mAP (mean Average Precision): 단조감소화한 PR 커브의 면적
- Receive-operating character (ROC) curve: FPR이 증가함에 따라 TPR은 항상 같거나
   증가
  - AUC (area under curve): ROC 커브의 면적



## 예제: 부도 예측

Output: default

• Input: balance, income

Data description

|       | Default: Yes | Default: No |       |
|-------|--------------|-------------|-------|
| Train | 174          | 4,826       | 5,000 |
| Test  | 159          | 4,841       | 5,000 |

• Model: default ~ balance + income

| Train Set | Cond. Yes | Cond. No |  |
|-----------|-----------|----------|--|
| Pred. Yes | 59        | 19       |  |
| Pred. No  | 115       | 4,807    |  |

| Test Set  | Cond. Yes | Cond. No |  |
|-----------|-----------|----------|--|
| Pred. Yes | 48        | 22       |  |
| Pred. No  | 111       | 4,819    |  |

|       | Acc  | Recall | Precision | FPR  | F1   |
|-------|------|--------|-----------|------|------|
| Train | 0.97 | 0.34   | 0.76      | 0.00 | 0.47 |
| Test  | 0.97 | 0.30   | 0.69      | 0.00 | 0.42 |

### 예제: 부도 예측

- 모델의 판단 경계 (decision boundary): default ~ balance + income
  - 판단의 경계는 항상 선형 (linear): 선형 모델!!



### 멀티 클래스 분류 (Multi-class Classification)

- 세 개의 클래스에 대한 분류문제는 두 개의 이진분류 문제로 풀 수 있음
- Y = A, B, or C에 대하여, A vs C와 B vs. C로 나누고 확률을 계산

$$\log\left(\frac{\Pr[Y=A|X]}{\Pr[Y=C|X]}\right) = \beta_{10} + \beta_{11}X_1 + \beta_{12}X_2 \quad \log\left(\frac{\Pr[Y=B|X]}{\Pr[Y=C|X]}\right) = \beta_{20} + \beta_{21}X_1 + \beta_{22}X_2$$

$$Pr[Y = A|X] + Pr[Y = B|X] + Pr[Y = C|X] = 1$$





선형 모델

## 프로그래밍 실습

## 선형 회귀 모델

당뇨병 데이터 셋

[ ] from sklearn.datasets import load\_diabetes
 X, y = load\_diabetes(return\_X\_y=True,as\_frame=True)

#### X.head()

 $\Box$ 

|   | age       | sex       | bmi       | bp        | s1        | s2        | s3        | s4        | s5        | s6        |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0 | 0.038076  | 0.050680  | 0.061696  | 0.021872  | -0.044223 | -0.034821 | -0.043401 | -0.002592 | 0.019907  | -0.017646 |
| 1 | -0.001882 | -0.044642 | -0.051474 | -0.026328 | -0.008449 | -0.019163 | 0.074412  | -0.039493 | -0.068332 | -0.092204 |
| 2 | 0.085299  | 0.050680  | 0.044451  | -0.005670 | -0.045599 | -0.034194 | -0.032356 | -0.002592 | 0.002861  | -0.025930 |
| 3 | -0.089063 | -0.044642 | -0.011595 | -0.036656 | 0.012191  | 0.024991  | -0.036038 | 0.034309  | 0.022688  | -0.009362 |
| 4 | 0.005383  | -0.044642 | -0.036385 | 0.021872  | 0.003935  | 0.015596  | 0.008142  | -0.002592 | -0.031988 | -0.046641 |

#### [ ] y[:5]

- 0 151.0
- 1 75.0
- 2 141.0
- 3 206.0
- 4 135.0

Name: target, dtype: float64

## 선형 회귀 모델

```
[] # 훈련 데이터와 평가 데이터를 임의로 분할
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(X,y,test_size=0.4,random_state=42)
```

- print( xtrain.shape, xtest.shape )
- (265, 10) (177, 10)



```
[] # 변수 중에서 bmi 만 추출
xtrain_simple = xtrain[['bmi']]
xtest_simple = xtest[['bmi']]
```

- # 훈련데이터에서 x와 y의 관계 plt.scatter(xtrain\_simple,ytrain)
- <matplotlib.collections.PathCollection at 0x7efe2d5341f0>



```
[] # 선형 회귀 모델 선언
    from sklearn.linear_model import LinearRegression
    f = LinearRegression()
[ ] f.fit(xtrain_simple,ytrain) # 모델 훈련
     LinearRegression
    LinearRegression()
[] print(f.intercept_, f.coef_) # 파라메터 확인
    148.53674347978227 [980.74210468]
    f.predict([[0.01]]) # 그 값에 대한 예측
    /usr/local/lib/python3.10/dist-packages/sklearn/base
      warnings.warn(
    array([158.34416453])
```

- # 모든 훈련데이터에 대해서 예측 ytrain\_hat = f.predict(xtrain\_simple) plt.scatter(ytrain\_hat,ytrain) # 예측값과 실제값 사이의 산점도
- <matplotlib.collections.PathCollection at 0x7efe392fe320>



- # 모든 평가 데이터에 대해서 예측 ytest\_hat = f.predict(xtest\_simple) plt.scatter(ytest\_hat,ytest)
- <matplotlib.collections.PathCollection at 0x7efe28d4c9d0>



## KOREA

- [] f.score(xtrain\_simple,ytrain) # 훈련 데이터에 대한 R2 0.3686078890927438
- [] f.score(xtest\_simple,ytest) # 평가 데이터에 대한 R2
  - 0.2991646176262257

#### 일반 회귀 분석

LinearRegression()

```
[ ] from sklearn.linear_model import LinearRegression
    f = LinearRegression()

[ ] f.fit(xtrain,ytrain)

v LinearRegression
```

```
[ ] print( f.intercept_, f.coef_ )
```

148.9285083717007 [ 18.08799763 -227.04344876 592.27723487 361.54123241 -655.90738774 353.71636413 14.41265469 142.87369371 594.01542882 31.67317969]

- # 모든 훈련데이터에 대해서 예측 ytrain\_hat = f.predict(xtrain) plt.scatter(ytrain\_hat,ytrain) # 예측값과 실제값 사이의 산점도
  - <matplotlib.collections.PathCollection at 0x7efe28dba740>



- # 모든 평가 데이터에 대해서 예측 ytest\_hat = f.predict(xtest) plt.scatter(ytest\_hat,ytest)
- <matplotlib.collections.PathCollection at 0x7efe28c2fd90>



```
[] # R2 평가 print( f.score(xtrain,ytrain), f.score(xtest,ytest) )
```

0.5072191031715794 0.515743631390243

### 아이리스 데이터 셋

import pandas as pd

```
from sklearn.datasets import load_iris

X, y = load_iris(return_X_y=True,as_frame=True)
X.columns = ['SepalLength','SepalWidth','PetalLength','PetalWidth']
X = X[50:]
y = y[50:]

[] from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(X,y,test_size=0.4,random_state=42)
```

## KOREA

### 로지스틱 회귀 모델

[] xtrain.head()

|     | SepalLength | SepalWidth | PetalLength | PetalWidth |
|-----|-------------|------------|-------------|------------|
| 99  | 5.7         | 2.8        | 4.1         | 1.3        |
| 84  | 5.4         | 3.0        | 4.5         | 1.5        |
| 57  | 4.9         | 2.4        | 3.3         | 1.0        |
| 145 | 6.7         | 3.0        | 5.2         | 2.3        |
| 77  | 6.7         | 3.0        | 5.0         | 1.7        |

[ ] ytrain[:5]

Name: target, dtype: int64

print( xtrain.shape, xtest.shape )

□→ (60, 4) (40, 4)





#### 단순 로지스틱 회귀

```
[] # 변수 중에서 SepalLength 만 추출
xtrain_simple = xtrain[['SepalLength']]
xtest_simple = xtest[['SepalLength']]
```

```
▶ # SepalLength와 target (Species)와의 관계 plt.scatter(xtrain_simple,ytrain)
```



```
[ ] # 로지스틱 회귀 모델 로딩
    from sklearn.linear_model import LogisticRegression
    f = LogisticRegression()
│ # 모델 훈련
    f.fit(xtrain_simple,ytrain)
     ▼ LogisticRegression
    LogisticRegression()
    # 파라메터 확인
    print( f.intercept_, f.coef_ )
    [-8.20141709] [[1.34436502]]
```



# [

### 로지스틱 회귀 모델

- [] # 훈련데이터 전체에 대한 예측 ytrain\_hat = f.predict(xtrain\_simple)
- # 혼동 행렬 pd.crosstab(ytrain\_hat,ytrain)

25

row\_0

1 18 8

2





- # 정확도(Accuracy) 성능 평가 print( f.score(xtrain\_simple,ytrain) ) print( f.score(xtest\_simple,ytest) )

### 일반 로지스틱 회귀 모델

- from sklearn.linear\_model import LogisticRegression
  f = LogisticRegression()
  f.fit(xtrain,ytrain)
  - LogisticRegression
    LogisticRegression()

```
[ ] print( f.intercept_, f.coef_ )
```

[-12.0380239] [[-0.37085631 -0.45441801 2.54024233 1.96076702]]

```
[ ] ytrain_hat = f.predict(xtrain)
ytest_hat = f.predict(xtest)
```

- pd.crosstab(ytrain\_hat,ytrain)
- target 1 2 row\_0

```
1 25 1
2 2 32
```





```
[] # 정확도(Accuracy) 성능 평가 print( f.score(xtrain,ytrain) ) print( f.score(xtest,ytest) )
```

0.95 0.975



## 감사합니다