Group Theory

Involutions

by Lukas Wrana

Table of contents

- 01 Fundamentals
- 02 Main theorem
- 03 Counter example

Chapter 01

Fundamentals

Definition

A **Group** is an ordered pair (G,*) of a set G and a binary operator

$$*: egin{cases} G imes G o G\ (a,b)\mapsto a*b \end{cases}$$

that satisfies the group axioms:

Associativity

$$orall a,b,c\in G: \quad (a*b)*c=a*(b*c)$$

Identity element

$$\exists e \in G$$
 such that $\forall a \in G: \quad a*e=e*a=a$

Inverse element

$$orall g \in G \ \exists a^{-1} \in G: \quad a*a^{-1} = a^{-1}*a = e$$

Definition

Given two groups, (G,*) and (H,\cdot) , a group homomorphism from (G,*) to (H,\cdot) is a function

$$f:\ G\to H$$

such that $orall u,v\in G$ it holds that

$$f(u*v) = f(u) \cdot f(v)$$

Further remarks

From this property, we can also deduce that

- $oldsymbol{\cdot} f(eG) = eH$ $oldsymbol{\cdot} f(u^{-1}) = f(u)^{-1}$

Definition

An <u>automorphism</u> is a bijective homomorphism of an object into itself.

Definiton

Given a group (G,st), a group automorphism σ is an <code>involution</code>, if

$$\sigma(\sigma(x)) = x \qquad orall x \in G$$

Definiton

An involution σ on a group (G,*) has <u>no non-trivial-fixpoints</u> if the identity element $e \in G$ is the only fixpoint of σ :

$$orall g \in G: \quad (\ \sigma(g) = g \Rightarrow g = e\)$$

We call $e \in G$ a trivial fixpoint of σ .

Lemma

Every group (G,*) has a trivial involution, namely the identity id .

proof:

Let (G,*) be an arbitrary Group. For every $x\in G$:

$$x=\operatorname{id}(x)=\operatorname{id}(\operatorname{id}(x))$$

 \Rightarrow id is an involution.

Example

Real negation

$$-: egin{cases} \mathbb{R} o \mathbb{R}, \ x \mapsto -x \end{cases}$$

is an involution on $(\mathbb{R},+)$.

proof:

For $x,y\in\mathbb{R}$:

$$-(x+y)=-x+(-y)$$

and

$$x = -(-x) = -(-(x))$$

... \Rightarrow real negation is an involution on $(\mathbb{R},+)$.

Chapter 02 Main theorem

Theorem

Let (G, *) be a finite group. If an involution with no non-trivial fixpoints on (G, *) exists, then * is commutative.

Thus making (G,*) an abelian group.

proof: Later ...

Lemma

Let (G,*) be a finite group and σ be an involution on G. If σ has no non-trivial fixpoints, then:

$$orall g \in G \ \exists x \in G: \quad g = x^{-1} * \sigma(x)$$

proof:

In essence, we want to show surjectivity of a function:

$$x \mapsto x^{-1} * \sigma(x)$$

Because G is finite, we can conclude surjectivity by injectivity.

So, lets prove injectivity...

Suppose
$$x,y\in G$$
 with $x^{-1}*\sigma(x)=y^{-1}*\sigma(y)$.

$$egin{aligned} x &= \sigma(\sigma(x)) \ &= \sigma(x * x^{-1} * \sigma(x)) \ &= \sigma(x * y^{-1} * \sigma(y)) \ &= \sigma(x) * \sigma(y^{-1}) * \sigma(\sigma(y)) \ &= \sigma(x) * \sigma(y^{-1}) * y \end{aligned}$$

$$\Rightarrow x * y^{-1} = \sigma(x) * \sigma(y^{-1})$$

$$= \sigma(x * y^{-1})$$

We have no non-trivial fixpoints, so $x * y^{-1}$ has to be the trivial fixpoint:

$$\Rightarrow x * y^{-1} = e$$
 $\Leftrightarrow x = y$

 $\Rightarrow x \mapsto x^{-1} * \sigma(x)$ is injective.

Since G is finite, we can conclude that $x\mapsto x^{-1}*\sigma(x)$ is also surjective on G.

$$\Rightarrow orall g \in G \ \exists x \in G: \quad g = x^{-1} * \sigma(x)$$

Lemma

Let (G,*) be a finite group and σ be an involution on G. If σ has no non-trivial fixpoints, then:

$$orall g \in G: \quad \sigma(g) = g^{-1}$$

proof:

In the previous Lemma, we showed that

$$orall g \in G \ \exists x \in G: \quad g = x^{-1} * \sigma(x)$$

We can expand on that result:

$$egin{aligned} \Rightarrow \sigma(g) &= \sigma(x^{-1} * \sigma(x)) \ &= \sigma(x^{-1}) * \sigma(\sigma(x)) \ &= \sigma(x^{-1}) * x \ &= (\sigma(x))^{-1} * x \ &= (x^{-1} * \sigma(x))^{-1} \ &= g^{-1} \end{aligned}$$

Theorem

Let (G, *) be a finite group. If an involution with no non-trivial fixpoints on (G, *) exists, then * is commutative.

Thus making (G,st) an abelian group.

proof:

Let $a,b\in G$.

$$egin{aligned} a*b &= (a^{-1})^{-1}*(b^{-1})^{-1} \ &= (b^{-1}*a^{-1})^{-1} \ &= \sigma(b^{-1}*a^{-1}) \ &= \sigma(b^{-1})*\sigma(a^{-1}) \ &= b*a \end{aligned}$$

 \Rightarrow * is commutative, (G,*) is abelian.

Chapter 03

Counter example

Definiton

A <u>free group</u> $(F_S, *)$ over a given set S consists of all words that can be build by elements of S or their inverse.

Elements of S are called **generators**. Two constructed words are considered different unless their equality follows from the group axioms.

Universal property

Given any function f from S to a group (G, *), there exists a unique homomorphism

$$\phi: F_S \mapsto G$$

Counter-Example

We will look at a free group $(F_2,*)$ on two generators $\{a,b\}$:

 $e, \quad a*b, \quad a^{-1}*b*b, \quad a^{-1}*b*b*a*a*b^{-1}a, \quad \dots$

We can define an automorphism s that swaps the generators over a free group $(F_2, *)$.

$$s(x) := egin{cases} a, & ext{if} \ x = b \ b, & ext{if} \ x = a \ s(u) * s(v), & ext{for} \ x = u * v, & u,v \in F_2 \end{cases}$$

Examples

s(abba) = baab Note: abba is short for a * b * b * a.

By it's construction, s is a homorphism. It is therefore not difficult to show that s is indeed an involution on $(F_2, *)$.

s has no non trivial-fixed points

Let's assume that x is a fixed point of s:

$$s(x) = x$$

 $m{x}$ has to look the same, with $m{a}$ and $m{b}$ swapped. This can only be the case if $m{x}$ is the empty word $m{e}$, thus beeing a trivial fixed point.

(F_2,st) is not abelian

By the very construction of any free group (on more than one generator), elements a * b and b * a are considered different, because there's no imposed property proving their equality.