Relational Retrieval Using a Combination of Path-Constrained Random Walks

Ni Lao, William W. Cohen
Carnegie Mellon University
2010.9.22

Outline

- Relational Retrieval Problems
 - Path-constrained random walks
 - The need for retrieval strategy mining
- Retrieval Models with PCRW
 - Path Ranking Algorithm (PRA)
 - Ext.1: query-independent experts (generalization of PageRank)
 - Ext.2: popular entity experts
- Experiment

Relational Retrieval Problems

- Data of many retrieval/recommendation tasks can be represented as labeled directed graphs
 - E.g. scientific literature
 - Typed nodes: documents, terms, metadata
 - Labeled edges: citation, authorOf, datePublished
- Can support a family of typed proximity queries
 - ad hoc retrieval: term nodes → documents
 - Reference (citation) recommendation: topic → paper
 - Expert finding: topic → user
 - Collaborator recommendation : scientist → scientist
- How to measure the proximity between query and target nodes?

Biology Literature Data

- Data of this study
 - Yeast: 0.2M nodes, 5.5M links
 - Fly: 0.8M nodes, 3.5M links

- Tasks
 - Gene recommendation:
 - Reference recommendation:
 - Venue recommendation:
 - Expert-finding:

author, year → gene title words, year → paper genes, title words → journal title words, genes → author

Random Walks with Restart (RWR) as A Proximity Measured

- RWR is a commonly used similarity measure on Labeled Graphs
 - Topic-sensitive Pagerank (Haveliwala, 2002)
 - Personalized Pagerank (Jeh &. Widom, 2003)
 - ObjectRank (Balmin et al., 2004),
 - Personal information management (Minkov & Cohen, 2007)
- RWR can be improved by supervised learning of edge weights
 - quadratic programming (Tsoi et al., 2003),
 - simulated annealing (Nie et al., 2005),
 - back-propagation (Diligenti et al., 2005; Minkov & Cohen, 2007),
 - limit memory Newton method (Agarwal et al., 2006)

The Limitation of RWR

- One-parameter-per-edge label is limited because the context in which an edge label appears is ignored
 - E.g. (observed from real data)

Path Comments $author \xrightarrow{Read} paper \xrightarrow{Contain} gene \xrightarrow{Contain^{-1}} paper \xrightarrow{Write^{-1}} author \xrightarrow{Write} paper$ Don't read about **genes** which I have already studied

Read about my favorite authors

	Path	Comments
author–	$\xrightarrow{Write} paper \xrightarrow{Contain} gene \xrightarrow{Contain^{-1}} paper$	Read about the genes that I am working on
author–	$\xrightarrow{Write} paper \xrightarrow{publish^{-1}} institute \xrightarrow{publish} paper$	Don't need to read paper from my own lab

The Need for Retrieval Strategy Mining

VMine v 25.0 An integrated database for Drosophila and Anopheles ge

- A ramification of considering paths on heterogeneous graph with complex schema
- Consider non-expert users....
 - Who are willing to give some labels

University of Cambridge

The Proposed Approach

- Automatically generate, evaluate and combine different retrieval strategies (paths)
- An example -- reference recommendation
 - In the TREC-CHEM Prior Art Search Task, researchers found that it is more effective to first find patents about the topic, then aggregate their citations
 - Our proposed model can discover this kind of retrieval schemes and assign proper weights to combine them. E.g.

Weight Path

$$272.4 \ word \xrightarrow{HasTitle^{-1}} paper \xrightarrow{Cite^{-1}} paper \xrightarrow{Cite} paper$$

$$156.7 \ word \xrightarrow{HasTitle^{-1}} paper \xrightarrow{Cite} paper$$

$$41.4 \ word \xrightarrow{HasTitle^{-1}} paper$$

Outline

- Relational Retrieval Problems
 - Path-constrained random walks
 - The need for retrieval strategy mining
- Retrieval Models with PCRW
 - Path Ranking Algorithm (PRA)
 - Ext.1: query-independent experts (generalization of PageRank)
 - Ext.2: popular entity experts
- Experiment

Definitions

- An Entity-Relation graph G=(T,E,R), is
 - a set of entities types T={T}
 - a set of *entities* $E=\{e\}$, Each entity is typed with $e.T \in T$
 - a set of relations R={R}
- A Relation path $P=(R_1, ..., R_n)$ is a sequence of relations

- E.g.
$$year \xrightarrow{PublishedIn^{-1}} paper$$
 $year \xrightarrow{PublishedIn^{-1}} paper \xrightarrow{Cite} paper$

- Path Constrained Random Walk

 - Given a query *q*=(**E**_q, *T*_q)
 Recursively define a distribution for each path

$$h_{E_q,P}(e) = \sum_{e' \in range(P')} h_{E_q,P'}(e') \cdot \frac{I(R_{\ell}(e',e))}{|R_{\ell}(e')|}$$

Supervised PCRW Retrieval Model

 A retrieval model can rank target entities by linearly combine the distributions of different paths

$$score(e, \theta, L) = \sum_{P \in \mathbf{P}(q, L)} h_P(e, \theta)$$

- or in matrix form $s=A\theta$
- This mode can be optimized by maximizing the probability of the observed relevance

$$p_e^{(m)} = p(y_e^{(m)} = 1 \mid q^{(m)}; \theta) = \frac{\exp(\theta^T A_e^{(m)})}{1 + \exp(\theta^T A_e^{(m)})}$$

- Given a set of training data D= $\{(q^{(m)}, A^{(m)}, y^{(m)})\}, y_e^{(m)}=1/0$

Parameter Estimation (Details)

We can define a regularized objective function

$$O(\theta) = \sum_{m=1..M} o_m(\theta) - \lambda_1 |\theta|_1 - \lambda_2 |\theta|_2 / 2$$

• Use average log-likelihood as the objective $o_m(\theta)$

$$o_{m}(\theta) = |P_{m}|^{-1} \sum_{i \in P_{m}} \ln p_{i}^{(m)} + |N_{m}|^{-1} \sum_{i \in N_{m}} \ln(1 - p_{i}^{(m)})$$

$$p_{i}^{(m)} = p(y_{i}^{(m)} = 1 | q^{(m)}; \theta) = \frac{\exp(\theta^{T} A_{i}^{(m)})}{1 + \exp(\theta^{T} A_{i}^{(m)})}$$

- P(m) the index set or relevant entities,
- N(m) the index set of irrelevant entities (sampled)

Parameter Estimation (Details)

- Selecting the negative entity set N_m
 - Few positive entities vs. thousands (or millions) of negative entities?
 - First sort all the negative entities with an initial model (uniform weight 1.0)
 - Then take negative entities at the k(k+1)/2-th position,
- The gradient

$$\frac{\partial o_m(\theta)}{\partial \theta} = |P_m|^{-1} \sum_{i \in P_m} (1 - p_i^{(m)}) A_i^{(m)} - |N_m|^{-1} \sum_{i \in N_m} p_i^{(m)} A_i^{(m)}$$

- Use orthant-wise L-BFGS (Andrew & Gao, 2007) to estimate θ
 - Efficient
 - Can deal with L1 regularization

Ext.1: Query Independent Paths

- PageRank
 - assign an importance score (query independent) to each web page
 - later combined with relevance score (query dependent)
- Generalize to heterogeneous graph
 - We include to each query a special entity e_0 of special type T_0
 - T_0 has relation to all other entity types, and e_0 has links to all entities
 - Therefore, we have a set of query independent relation paths
 - (distributions of which can be calculate offline)
- Example

Ext.2: Popular Entity Biases

- There are entity specific characteristics which cannot be captured by a general model
 - E.g. log mining
 - Some document with lower rank to a query may be interesting to the users because of features not captured in the data
 - E.g. personalization
 - Different users may have completely different information needs and goals under the same query
 - The identity of entity matters

Ext.2: Popular Entity Biases

- For a task with query type T_o , and target type T_a ,
 - Introduce a bias θ_e for each entity e in $I_E(T_q)$
 - Introduce a bias $\theta_{e',e}$ for each entity pair (e',e) where e in $I_{E}(T_{q})$ and e' in $I_{E}(T_{0})$
- Then $s(e;\theta) = \sum_{P:T_{last} = T_q} h_P^T(e)\theta_P + \theta_e + \sum_{e' \in \mathcal{E}_q} \theta_{e',e},$
 - Or in matrix form $s = A\theta + \theta^{(b)} + \Theta q$
- Efficiency consideration
 - Only add to the model top J parameters (measured by $|O(\theta)/\theta_e|$) at each LBFGS iteration

Outline

- Relational Retrieval Problems
 - Path-constrained random walks
 - The need for retrieval strategy mining
- Retrieval Models with PCRW
 - Path Ranking Algorithm (PRA)
 - Ext.1: query-independent experts (generalization of PageRank)
 - Ext.2: popular entity experts
- Experiment

Setup

- Data sources for bio-informatics
 - PubMed on-line archive of over 18 million biological abstracts
 - PubMed Central (PMC) full-text copies of over 1 million of these papers
 - Saccharomyces Genome Database (SGD) a database for yeast
 - Flymine a database for fruit flies
- Tasks

Gene recommendation: author, year→gene

Venue recommendation: genes, title words→journal

Reference recommendation: title words, year → paper

Expert-finding: title words, genes → author

- Data split
 - 2000 training, 2000 tuning, 2000 test
- Time variant graph (for training)
 - each edge is tagged with a time stamp (year)
 - only consider edges that are earlier than the query during random walk

L2 Regularization

Improves retrieval quality

On the personal paper recommendation task

L1 Regularization

Can help select features

Example Features

ID	Weight	Feature						
עו	weight							
1	272.4	$word \rightarrow paper \xrightarrow{Cite^{-1}} paper \xrightarrow{Cite} paper$ 1) Papers co-cited with the on-topic papers						
2		$word \rightarrow paper \xrightarrow{Cite} paper$ 2) Aggregated citations of the on-topic papers						
3		$gene \rightarrow paper \xrightarrow{Cite^{-1}} paper \xrightarrow{Cite} paper$						
4		$word \rightarrow paper \xrightarrow{Cite^{-1}} paper$						
5	50.2	$gene \rightarrow paper \xrightarrow{Cite} paper$						
6	41.4	$word \rightarrow paper$ 6) Resembles an ad-hoc retrieval system						
7		$year \rightarrow paper \xrightarrow{Cite} paper$						
8	13.0	$year \xrightarrow{Before^{-1}} year \rightarrow paper \xrightarrow{Cite} paper$ 7,8) Papers cited during the past two years						
9	3.7	$T^* \rightarrow paper \xrightarrow{Cite} paper$ 9) Well cited papers						
10	2.9	GAL4>Nature. 1988. GAL4-VP16 is an unusually potent transcriptional activator.						
11	2.1	CYC1>Cell. 1979. Sequence of the gene for iso-1-cytochrome c in Saccharomyces cerevisiae.						
		10,11) (Important) early papers about specific query terms (genes)						
12	-5.4	$year \xrightarrow{Before^{-1}} year \rightarrow paper$						
13		year o paper 12,13) General papers published during the past two years						
14	-49.0	$T^* o year o paper$ 14) old papers						
	A model trained for reference recommendation task on the yeast data							

Evaluations

- Compare the MAP of PCRW to

 Random walk with restart (RWR) model

 Query independent paths (qip)

 Popular entity biases (pop)

Corpus Task		RWR	PRA				
		${f trained}$	trained	+qip	+pop	+qip+pop	
yeast	Ven	44.2	45.7 (+3.4)	$46.4 \ (+5.0)$	48.7 (+10.2)	49.3 (+11.5)	
yeast	Ref	16.0	$16.9 \ (+5.6)$	18.3 (+14.4)	19.1 (+19.4)	19.8 (+23.8)	
yeast	Exp	11.1	11.9 (+7.2)	12.4 (+11.7)	12.5(+12.6)	12.9 (+16.2)	
yeast	Gen	14.4	14.9 (+3.5)	15.1 (+4.9)	15.1 (+4.9)	$15.3 \ (+6.3)$	
fly	Ven	48.3	$50.4 \ (+4.3)$	$51.1 \ (+5.8)$	50.7 (+5.0)	51.7 (+7.0)	
fly	Ref	20.5	$20.8 (^{\dagger}+1.5)$	$21.0 \ (+2.4)$	21.6 (+5.4)	21.7 (+5.9)	
fly	Exp	7.2	$7.6 (^{\dagger} + 5.6)$	8.3 (+15.3)	7.9 (+9.7)	8.5 (+18.1)	
fly	Gen	19.2	20.7 (+7.8)	21.1 (+9.9)	21.1 (+9.9)	$21.0 \ (+9.4)$	

Except these[†], all improvements are statistically significant at p<0.05 using paired t-test

Summary

