

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
 КАФЕДРА	Программное обеспечение ЭВМ и информационные технологии
, ,	· · · · · · · · · · · · · · · ·

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ 3

По дисциплине «Типы и структуре данных»

Название «Обработка разреженных матриц»

Студент <u>Дубов Андрей Игоревич</u> фамилия, имя, отчество		
Группа <u>ИУ7-33Б</u>		
Вариант <u>5</u>		
Тип лабораторной работы Учебная		
Студент		<u>Дубов А. И.</u>
	подпись, дата	— <i>фамилия, и.о.</i> Рыбкин Ю. А.
Преподаватель		Рыокин Ю. А. <u>Силантьева А. В.</u>
	подпись, дата	— фамилия, и.о.

Оглавление

Условие задачи	.3
Описание технического задания	.3
Входные данные:	.3
Либо файл, либо ручной ввод матрицы в разреженном виде	. 2
Выходные данные:	3
Аварийные ситуации:	3
Описание структуры данных	
Описание алгоритма	
Оценка эффективности	
Вывод	
Ответы на контрольные вопросы	

Условие задачи

Разработать программу умножения или сложения разреженных матриц. Предусмотреть возможность ввода данных, как с клавиатуры, так и использования заранее подготовленных данных. Матрицы хранятся и выводятся в форме трех объектов. Для небольших матриц можно дополнительно вывести матрицу в виде матрицы. Величина матриц - любая (допустим, 1000*1000). Сравнить эффективность (по памяти и по времени выполнения) стандартных алгоритмов обработки матриц с алгоритмами обработки разреженных матриц при различной степени разреженности матриц и различной размерности матриц.

Описание технического задания

Разреженная (содержащая много нулей) матрица хранится в форме 3-х объектов:

- вектор А содержит значения ненулевых элементов;
- вектор ЈА содержит номера столбцов для элементов вектора А;
- связный список IA, в элементе Nk которого находится номер компонент в A и JA, с которых начинается описание строки Nk матрицы A.
- 1. Смоделировать операцию умножения вектора-строки и матрицы, хранящихся в этой форме, с получением результата в той же форме.
- 2. Произвести операцию умножения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

Входные данные:

Вводятся размеры матрицы, потом вводится по строкам. Сначала вводится количество элементов в строке, потом вводится по два значения, элемент и номер колонны элемента.

Выходные данные:

1. Матрица в разреженном виде, вектор в разреженном виде, они же в нормальном виде и результаты их перемножения

Аварийные ситуации:

1. Некорректный ввод чисел

Описание структуры данных

Структура разреженной матрицы

```
typedef struct
{
   long long nums[MAX_NUMBERS];
```

```
long long rows[MAX_NUMBERS];
    long long columns[MAX_SIDE_LEN];
    int n;
    int m;
    int size;
} sparce_matrix_t;
nums – ненулевые элементы
rows - номера рядов этих элементов
columns – массив начала каждой колонны
n - количество колонн
т – количество строк
size – количество чисел
Структура разреженного вектора
typedef struct
    long long nums[MAX_NUMBERS];
    long long columns[MAX_SIDE_LEN];
    int n;
    int size;
} sparce_vector_t;
nums - ненулевые элементы
columns – номера рядов этих элементов
n - количество элементов
size - количество чисел
Структура матрицы
typedef struct
    long long nums[MAX_SIDE_LEN][MAX_SIDE_LEN];
    int n;
    int m;
} matrix_t;
nums – элементы
n - количество колонн
т - количество строк
Структура вектора
typedef struct
    long long nums[MAX_NUMBERS];
    int n;
} vector_t;
nums - элементы
```

Описание алгоритма

n - количество элементов

Программа продит по массиву чисел и последовательно складывает нужное произведение в требуемый столбец ветора ответа.

Оценка эффективности

Время работы, все времена измеряются в т	гиках процессора
--	------------------

	Добавление	Удаление
Список	7	7
Массив	18	19

1% заполнения

	Разреженная матрица	Обычная матрица
10x10	245	1188
100x100	33083	79338
200x200	358851	314572
300x300	1396463	1192606

2% заполнения

	Разреженная матрица	Обычная матрица
10x10	1067	1156
100x100	106313	87527
200x200	1090175	317017
300x300	3352081	908417

3% заполнения

	Разреженная матрица	Обычная матрица
10x10	828	1114
100x100	175832	79680
200x200	1502678	368860
300x300	4943702	956393

4% заполнения

	Разреженная матрица	Обычная матрица
10x10	1063	1156
100x100	254472	78362
200x200	2088345	351017
300x300	6790451	996616

6% заполнения

	Разреженная матрица	Обычная матрица
10x10	1275	1075

100x100	420381	78786
200x200	3116522	343669
300x300	10345181	1132095
8%		
	Разреженная матрица	Обычная матрица
10x10	1529	1075
100x100	551683	78743
200x200	4410930	350596
300x300	14244226	1164198
9% заполнения	,	
	Разреженная матрица	Обычная матрица
10x10	1957	1120
100x100	647717	78416
200x200	5075631	316805
300x300	16595531	738796
10% заполнения		
	Разреженная матрица	Обычная матрица
10x10	2158	1045
100x100	2398253	226246
200x200	5589672	316353
300x300	18708886	743819
20% заполнения		
	Разреженная матрица	Обычная матрица
10x10	4541	1276
100x100	1595300	79334
200x200	12034178	318805
300x300	40098071	772540
30% заполнения	,	
	Разреженная матрица	Обычная матрица
10x10	6003	1116
100x100	2547311	94232

200x200

300x300

Вывод

Использование алгоритмов хранения и обработки разреженных матриц выгодно при маленьком количестве элементов, примерно до 1-2% заполненности матриц. В таком случае, алгоритм выигрывает как и в размерах занимаемой памяти, так и в скорости обработки. Но при заполненности более чем 2%, алгоритм обработки и хранения разреженных матриц начинает проигрывать по времени. Стоит отметить, что для каждого значения в разреженной матрице хранится по сути два числа, то есть принебрегая массивом, которые указывают на начала строк, то до 50% разреженная матрица выигрывает по памяти.

Ответы на контрольные вопросы

1. Что такое разреженная матрица, какие способы хранения вы знаете?

Разреженная матрица — это матрица, содержащая большое количество нулей. Способы хранения: связная схема хранения, строчный формат, линейный связный список, кольцевой связный список, двунаправленные стеки и очереди.

2. Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы?

Под обычную матрицу выделяет N * M ячеек памяти, где N – строки, а M – столбцы. Для разреженной матрицы – зависит от способа. В случае разреженного формата, требуется 2 * K + N ячеек памяти, где K – количество ненулевых элементов.

3. Каков принцип обработки разреженной матрицы?

Алгоритмы обработки разреженных матриц предусматривают действие только с ненулевыми элементами, и, таким образом, количество операций будет пропорционально количеству ненулевых элементов.

4. В каком случае для матриц эффективнее применять стандартные алгоритмы обработки матриц? От чего это зависит?

Стандартные алгоритмы обработки матриц эффективнее применять при большом количестве ненулевых элементов (от 50%).