AGRICULTURE FIELD CLASSIFICATION USING MACHINE LEARNING

A PROJECT REPORT

Submitted by

ATCHAYA B (810015205013)

KAVIYA S (810015205031)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

INFORMATION TECHNOLOGY

UNIVERSITY COLLEGE OF ENGINEERING BIT CAMPUS, TIRUCHIRAPPALLI 620024

ANNA UNIVERSITY: CHENNAI 600025

APRIL 2019

UNIVERSITY COLLEGE OF ENGINEERING BIT CAMPUS

TIRUCHIRAPPALLI-620024

BONAFIDE CERTIFICATE

Certified that this project report "AGRICULTURE FIELD CLASSIFICATION USING MACHINE LEARNING" is the bonafide work of "ATCHAYA B (810015205013) and KAVIYA S (810015205031)" who carried out the project work under my supervision.

SIGNATURE SIGNTURE

Dr. D. Venkatesan Dr. D. Asir Antony Gnana singh

HEAD OF THE DEPARTMENT SUPERVISOR

Assistant Professor Teaching Fellow

Department of Information Technology Department of Information

Technology

University College of Engineering, University College of Engineering,

Anna University-BIT Campus, Anna University-BIT Campus,

Tiruchirappalli -620 024. Tiruchirappalli -620 024.

Submitted for the project Viva voice examination held on

DECLARATION

We hereby declare that the work entitled "AGRICULTURE FIELD CLASSIFICATION USING MACHINE LEARNING" is submitted in partial fulfillment of the requirement for the award of the degree in B.TECH, in University college of Engineering, BIT Campus, Anna University, Tiruchirappalli. It is the record of our own work carried out during the academic year 2018-2019 under the supervision and guidance of **Dr. D. ASIR ANTONY GNANA SINGH**, Teaching Fellow, Department of Information Technology, University college of Engineering, BIT Campus, Anna University, Tiruchirappalli. The extent and source of information are derived from the existing literature and have been indicated through the dissertation at the appropriate places.

ATCHAYA B (810015205013)

KAVIYA S (810015205031)

I certify that the declaration made above by the candidates is true

Signature of the Guide,

Dr. D.Asir Antony Gnana

Singh

Teaching Fellow,

Department of Information Technology,

University college of Engineering,

Anna University- BIT Campus

ACKNOWLEDGEMENT

We would like to thank our honorable Dean **Dr. T. SENTHIL KUMAR**, professor for having provided us with all required facilities to complete our project without hurdles.

We would like to express our sincere thanks to **Dr. D. VENKATESAN**, Head of the Department of Computer Science and Engineering, for his valuable guidance, suggestions and constant encouragement paved way for the successful completion of this project work.

We would like to thank our project Coordinator Mr. M. PRASANNA KUMAR Teaching Fellow, Department of Computer Science for his kind support.

We would like to thank and express our deep sense of gratitude to our project guide **Dr. D. Asir Antony Gnana Singh**, Teaching Fellow, Department of Information Technology, for his valuable guidance throughout the project. We also extend our thanks to all other teaching and non-teaching staff for their encouragement and support.

We thank our beloved parents and friends for their full support in the moral development of this project.

ABSTRACT

Agriculture is the backbone of human sustenance on this world. Now a days with growing population we need the productivity of the agriculture to be increased a lot to meet the demands. Agriculture field classification plays a significant role in improving the productivity of agriculture product. This project present agriculture field classification using machine learning algorithm. The proposed system is developed using two phases namely image feature extraction machine learning (predictive model) model development. In order to extract the feature from the agriculture field images local binary pattern is used. For the construction of predictive model, the decision table algorithm is used. Moreover, the proposed system is tested on a wide range of field images with cross validation method. From the experiment, it is observed that the proposed system produce better accuracy, than the other methods compared.

TABLE OF CONTENT

TITLE

PAGE NO

CHAPTER NO

	ABSTRACT	
	LIST OF ABBREVIATION	
	LIST OF TABLES	
	LIST OF FIGURES	
1	INTRODUTION	1
2	LITERATURE REVIEW	2
3	METHODOLOGIES	7
	3.1 MACHINE LEARNING	7
	3.2 TYPES OF ,ACHINE LEARNING	7
	3.2.1 Supervised Learning	7
	3.2.2 Unsupervised Learning	7
	3.2.3 Reinforcement Learning	8
	3.3 NAÏVE BAYESIAN CLASSIFICATION	8
	3.3.1 Bayes Theorem	8
	3.3.2 Naïve Assumption	8
	3.4 PERFORMANCE EVALUATION METRICS	Q

	3.4.1 Confusion Matrix	9
	3.4.2 Accuracy	9
	3.4.3 TP Rate	9
	3.4.4 FP Rate	10
	3.4.5 Precision	10
	3.4.6 Recall	10
	3.4.7 F-Measure	10
	3.4.8 MCC	10
	3.4.9 ROC Area	11
	3.4.10 PRC Area	11
4	PROPOSED SYSTEM	
	4.1 DECISION TABLE	13
	4.2 LOCAL BINARY PATTERN	13
	4.3 ARCHITECTURE DIAGRAM	19
5 SPECIFICATION	SOFTWARE AND HA	ARDWARE
	5.1 HARDWARE SPECIFICATION	21
	5.2 SOFTWARE SPECIFICATION	22
6	TESTING	
	6.1GENERAL	24
	6.2 TYPES OF TESTING	24
	6.2.1 Unit Testing	24
	6.2.2Functional Testing	24
	6.2.3System Testing	25
	6.2.4 Performance Testing	25

	6.2.5Integration Testing	25
	6.2.6Acceptance Testing	25
	6.2.7 Black Box and White Box Testing	26
	6.2.8 Validation	26
7	RESULT AND DISCUSSION	
	7.1 EXPERIMENTAL PROCEDURE	28
	7.2 SUMMARY AND RESULT	37
8	CONCLUSION	38
9	REFERENCES	39

LIST OF ABBREVIATION

S.NO	ABBREVIATION	EXPLANATION
1	Random Forest	DECISION TREE
2	NB	NAIVE BAYES
3	TP Rate	TRUE POSITIVE RATE
4	FP Rate	FALSE POSITIVE RATE
5	MCC	MATTHEWS
		CORRELATION
		COEFFICIENT
6	ROC	RECEIVER OPERATING
		SYSTEM
7	PRC	PRECISION RECALL

LIST OF TABLES

S.NO	TITLE	P.NO
7.1	Accuracy of various datasets with respect to	
	Random Forest, Naive Bayes, Decision Table algorithm	29
7.2	TP Rate of various datasets with respect to	
	Random Forest, Naive Bayes, Decision Table algorithm	30
7.3	FP Rate of various datasets with respect to	
	Random Forest, Naive Bayes, Decision Table algorithm	31
7.4	Precision of various datasets with respect to	
	Random Forest, Naive Bayes, Decision Table algorithm	32
7.5	Recall of various datasets with respect to	
	Random Forest, Naive Bayes, Decision Table algorithm	33
7.6	F-Measure of various datasets with respect to	
	Random Forest, Naive Bayes, Decision Table algorithm	34
7.7	MCC of various datasets with respect to	
	Random Forest, Naive Bayes, Decision Table algorithm	35
7.8	ROC Area of various datasets with respect to	
	Random Forest, Naive Bayes, Decision Table algorithm	36

7.9 PRC Area of various datasets with respect to
 Random Forest, Naive Bayes, Decision Table algorithm
 37

LIST OF FIGURES

S.NO	TITLE	P.NO
4.1	Proposed system for Agriculture	
	Field classification	12
4.2	The value is subtracted from the first	
	Centre pixel	12
4.2	The value is subtracted from the second	
	Centre pixel	14
4.2	The value is subtracted from the third	
	Centre pixel	14
4.2	The value is subtracted from the fourth	
	Centre pixel	14