

XFEL-MPS

XFEL Machine Protection System (MPS) based on uTCA
Sven Karstensen, DESY

XFEL FLASH 2 and XFEL

2 Masters, >120 Slaves

kicker Beam

distribution kicker

The Problems

- Latency of signals
- Reliability of components
- Maintenance without shutdown the accelerator

XFEL MTCA.4 in general

- IPMI Management for 12 AMC modules
- Management for up to 4 Power Modules
- Fabric Switching for up to 60 Ports
 - 12 GbE minimum
 - 12 x 4 lanes XAUI, PCI-E or SRIO
- Management for up to 2 Cooling Units

Optionally provides Shelf Management

- Front Panel Alarms
- Clock Distribution system
- Fabric Channel Uplink
- HOT SWAPable

Source: http://www.picmg.org/pdf/introduction_to_microtca.pdf and Kay Rehlich, DESY

FEL MTCA.4 @ XFEL

Modular + modern architecture

Reusability + PCle + Ethernet

E[Uptime]E[Uptime] + E[Downtime]■ High availability (.999 to .9999€,

- Redundant power and fan optional
- IPMI management

High performance:

- Very low analog distortions
- 4 lanes PCIe: 400 MB/s ... 3.2 GB/s
- XFEL fast electronics will be based on **MTCA.4**: > 200 Crates

Courtesy to Kay Rehlich, DESY

XFEL MPS MTCA components, DESY design

FEL Overall MPS features

- Scalability
- same firmware in every DAMC2
- Every DAMC2 slave holds all information of all prior connected slaves (debugging)
- Every slave can be connected to the timing system
- Every slave can be hold one I2C driven FMC Dosimetry board
- Configurable NOT programmable

XFEL Configuration Panel

FEL General MPS features for every DAMC2

- 45 RS422 external input channels
- 3 internal input channels for FMC
- 7 RS422 output channels, 1 Backplane Output
- I²C support to FMC
- 4 SFP I/O fiber optic lines (0-4 Inputs, 0-4 outputs)
- Addressable up to 64 Sections, each equipped with 64 DAMC2 MPS modules
- Indirect redundancy
- Fast internal RS422 link from in- to outputs
- Debug Register
- LED status indicator (heart beat, server connection, initialization)

_ IN- and OUTPUT channel features

- Options for each INput channel (48):
 - Enable / disable Inputs; Test input; Check functionality of connected systems between Macro Pulses; Pulse counter within a given time, both configurable; Beam Mode generation; Section Pattern generation; Alarm Type generation; Save each Alarm into DOOCS history
- Options for each OUTput channel (8):
 - Enable / disable Outputs ;Test output; Fast output line;
 Save each action into DOOCS history; Fast Output configuration on same DAMC2 board

The Protocol

XFEL Information structures, protocol priority, pre-processing

Beam Modes

 63-52

 Sec 63-58
 Addr 57-52 51
 50-48
 47-40
 39-32
 31-0

 FFF
 P
 CNT
 Spare
 ALARM Type
 BEAM Modes

 12 (6+6)
 1
 3
 8 bit
 8 bit
 32 bit

Section Pattern

 63-58
 57-52
 51
 50-48
 47-40
 39-32
 31-0

 FFE 12 (6+6)
 P CNT 13 Spare 14 Spare 15 Spare 12 Section PATTERN 32 bit

Slave Info

63	3-58							
	00-00	57-52	51	50-48	47-0			
	000 - FFD 12 (6+6)		P 1	CNT 3	single SLAVE information 48 bit			

Reaction Times in XFEL

Beam loss location	Distance from injector	Distance from dump	# of lost bunches
Injector	0 m	-1970 m	0
BC1	160 m	-1810 m	7
BC2	360 m	-1640 m	15
Linac center	1040 m	-930 m	44
Linac end	1650 m	-320 m	69
Beam distribution	2010 m	40 m	2
Last undulator	3010 m	1040 m	44

- ~ 50 bunches are inside accelerator
- Signal transport from dump to injector 20 µs (2000 m)
- ~ 50 bunches generated before laser is blocked
- Using beam dump kicker reduces the number of lost bunches inside SASE Undulator sections.

What does all information of the slides before now mean for our largest problem: the Latency?

Latency MPS-DAMC2 boards (August 2013)

Fiber optics: unattended (5ns / m)

Speed: 1.25 GBps

Latency between DAMCs will be improved.

Factor 3 is aspired.

XFEL needs 20 μ sec, we peak: 1400 ns + 2000 m * 5 ns/m = 11,4 μ sec

Thank You

XFEL FLASH II, XFEL, ILC

scalability

XFEL FLASH II, XFEL, ILC

scalability

XFEL Configuration Instruction

XFEL MPS architecture in XFEL

- Numbers in drawing corresponding to numbers in FPGA code
- Excel Sheet includes all addresses

