This is A Tribute To The Best TN of All Time

Hogan, Matthew 1 and Toki, Walter 1 January 30, 2019

 $^{1} \ Colorado \ State \ University, \ Fort \ Collins, \ USA$

Abstract

This is the abstract

7	\mathbf{C}	ont	ents	
8	1	Intr	$\mathbf{roduction}$	5
9		1.1	BANFF Treatment of ND Constraint	5
10			1.1.1 Constructing a Likelihood	6
11			1.1.2 BANFF Likelihood	7
12	2	PØI	D Event Selection And Cuts	8
13		2.1	The PØD	8
14		2.2	Global Reconstruction	10
15		2.3	Data Sets	11
16		2.4	PØD Selection Cuts	11
17			2.4.1 Pre-Selection Cuts	11
18			2.4.2 CC-Inclusive in FHC	13
19			2.4.3 CC-Inclusive in RHC	13
20		2.5	PØD Water-Out Selections	13
21			2.5.1 CC-Inclusive	26
22			2.5.2 CC-1 Track (CCQE Enhanced)	26
23			2.5.3 CC-N Tracks (CCnQE Enhanced)	26
24		2.6	PØD Water-In Selections	26
25			2.6.1 CC-Inclusive	26
26			2.6.2 CC-1 Track (CCQE Enhanced)	26
27			2.6.3 CC-N Tracks (CCnQE Enhanced)	26
28		2.7	Comparison Between Water-Out and Water-In Selections	26
29	Re	efere	nces 2	27
30	No	omen	nclature	28

31	List of Figures	
32	2.1 Cartoon of the PØD	9
33	2.2 Cartoon of an Individual PØDule	10
34	2.3 Momentum: True Particle	14
35	2.4 Angle: True Particle	15
36	2.5 Momentum: NEUT Interaction	16
37	2.6 Angle: NEUT Interaction	17
38	2.7 Momentum: True Topology	18
39	2.8 Angle: True Topology	19
40	2.9 Momentum: True Particle	20
41	2.10 Angle: True Particle	21
42	2.11 Momentum: NEUT Interaction	22
43	2.12 Angle: NEUT Interaction	23
44	2.13 Momentum: True Topology	24
45	2.14 Angle: True Topology	25

ist	of Tables	
2.1	PØD WT FV and Corridor Definition	3
		List of Tables 2.1 PØD WT FV and Corridor Definition

Introduction

49

61

62

63

64

65

66

1.1 BANFF Treatment of ND Constraint

The primary goal of an oscillation experiment is to measure the parameters in a neutrino 50 mixing matrix. All other parameters, while having some theoretical importance to funda-51 mental physics, are nuisance parameters that must be accounted for. To understand the 52 methodology of BANFF, it is relevant to understand the number of nuisance parameters that go into a ND+FD fit. The BANFF implementation aims to reduce the dimensionality, and hence complexity, of the problem by performing a separate analysis on the nuisance 55 parameters that only the ND can measure. Then that information is propagated to the oscillation analysis for the FD data. Conceptually this approach has computational advantages 57 and should provide the same result with a joint ND+FD analysis. However, information 58 encoded in the ND measurements for shared nuisance parameters is inevitably lost in this 59 'divide-and-conquer" approach. 60

The BANFF ND-only constraint between 2015 and 2018 is described in TN-220. It uses a frequentist approach to find the best nuisance parameter set to maximize a binned likelihood. The sets of nuisance parameters are

- cross section physics model parameters hereby denoted by \vec{x} ,
- neutrino flux binned in neutrino energy hereby denoted by \vec{b} , and
- \bullet detector systematics that affect detector observables hereby denoted by \vec{d} .

A priori (prior) knowledge of \vec{x} and \vec{b} are available from external measurements and experiments. The \vec{d} parameters are penalty terms whose effect can be mitigated with control samples.

1.1.1 Constructing a Likelihood

We can define a binned likelihood for the ND280-only constraint with the nuisance parameters as

$$\mathcal{L}\left(\vec{x}, \vec{b} \left| \vec{N}_{\text{ND280}}^{\text{Data}} \right.\right) = \mathcal{P}\left(\vec{x}, \vec{b}, \vec{d} \left| \vec{N}_{\text{ND280}}^{\text{Data}} \right.\right) = \frac{\mathcal{P}\left(\left. \vec{N}_{\text{ND280}}^{\text{Data}} \right| \vec{x}, \vec{b}, \vec{d}\right)}{\mathcal{P}\left(\vec{N}_{\text{ND280}}^{\text{Data}}\right)} \pi\left(\vec{x}\right) \pi\left(\vec{b}\right) \pi\left(\vec{d}\right), \quad (1.1)$$

where $\vec{N}_{\text{ND280}}^{\text{Data}}$ are the binned data measurements, $\pi\left(\vec{y}=\vec{x},\vec{b},\vec{d}\right)$ are prior distributions which are assumed Gaussian distributions

$$\pi(\vec{y}) = \left(\frac{1}{(2\pi)^k \det(V_y)}\right)^{\frac{1}{2}} e^{\left(-\frac{1}{2}\Delta \vec{y} \cdot V_y^{-1} \cdot \Delta y^T\right)},\tag{1.2}$$

with V_y being the covariance matrix for \vec{y} and $\Delta \vec{y} = \vec{y} - \vec{y}_{\text{Nominal}}$, and $\mathcal{P}\left(\vec{N}_{\text{ND280}}^{\text{Data}}\right)$ is a normalization. We have used Bayes' theorem

$$\mathcal{P}(AB) = \mathcal{P}(B)\mathcal{P}(A|B) \tag{1.3}$$

to evaluate (1.1) as

$$\mathcal{P}\left(\underbrace{\vec{x}, \vec{b}, \vec{d}}_{A} \middle| \underbrace{\vec{N}_{\text{ND280}}^{\text{Data}}}_{B}\right) = \frac{\mathcal{P}\left(\vec{N}_{\text{ND280}}^{\text{Data}}, \left(\vec{x}, \vec{b}, \vec{d}\right)\right)}{\mathcal{P}\left(\vec{N}_{\text{ND280}}^{\text{Data}}\right)}$$
(1.4)

which we can further manipulate since the data are independent of the nuisance parameters

$$\mathcal{P}\left(\vec{N}_{\text{ND280}}^{\text{Data}}, \left(\vec{x}, \vec{b}, \vec{d}\right)\right) = \mathcal{P}\left(\underbrace{\left(\vec{x}, \vec{b}, \vec{d}\right)}_{A}, \underbrace{\vec{N}_{\text{ND280}}^{\text{Data}}}_{B}\right) = \pi\left(\vec{x}\right) \pi\left(\vec{b}\right) \pi\left(\vec{d}\right) \mathcal{P}\left(\vec{N}_{\text{ND280}}^{\text{Data}} \middle| \vec{x}, \vec{b}, \vec{d}\right)$$
(1.5)

resulting in (1.1). The assumption of a Gaussian prior in (1.2) while not always truly Gaussian, allows for the use of a covariance matrix to describe the uncertainties and correlations

in parameters. Once a maximum of the likelihood is found after marginalizing the effects of the systematics \vec{d} , the best fit values for \vec{b} and \vec{x} can be propagated to the oscillation analysis. 83

BANFF Likelihood 1.1.2

82

84

In practice maximizing the log-likelihood (LL) is performed instead of maximizing the likeli-85 hood function. In addition, multiplying the LL by -2 turns the maximization problem into a 86 minimization one which programs like MINUIT are designed to find. To obtain the best set of 87 parameters \vec{x} and \vec{b} from the ND280 data that minimize the $-2\times LL$, we need to predict how 88 they affect our detector observables. Consider binned samples that select different charged 89 current topologies. A convenient choice of observables for all the samples are the outgoing 90 charged lepton l momentum P_l and angle $\cos \theta_l$ as mesaured in the ND since all the nuisance parameters affect these quantities. We have the pieces needed to define the likelihood function used in ND-only BANFF analysis. For each $(P_l, \cos \theta_l)$ bin i = 1, 2, ..., M - 1, M, the likelihood for the ND-constraint is a ratio (r) of the predicted events (\vec{N}^p) likelihood to the likelihood of the data events (\vec{N}^d) 95

$$\begin{split} & \Lambda_{\text{ND280}}^{r} = \frac{\mathcal{L}\left(\vec{N}^{p}\left(\vec{x}, \vec{b}, \vec{d}\right) \middle| \vec{N}^{d}\right)}{\mathcal{L}\left(\vec{N}^{d}\left(\vec{x}, \vec{b}, \vec{d}\right) \middle| \vec{N}^{d}\right)} \\ & = \left(\prod_{\vec{y} = \vec{x}, \vec{b}, \vec{d}} \frac{\pi\left(\vec{y}\right)}{\pi\left(\vec{y}_{\text{Nom}}\right)}\right) \left(\prod_{i=1}^{M} \left(\vec{N}_{i}^{p}\right)^{\vec{N}_{i}^{d}} \frac{e^{-\vec{N}_{i}^{p}}}{\vec{N}_{i}^{d}!}\right) \left(\prod_{j=1}^{M} \left(\vec{N}_{i}^{d}\right)^{\vec{N}_{i}^{d}} \frac{e^{-\vec{N}_{i}^{d}}}{\vec{N}_{i}^{d}!}\right)^{-1} \end{split}$$

2 PØD Event Selection And Cuts

This section describes the development of ν_{μ} and $\overline{\nu}_{\mu}$ CC-Inclusive selections in both FHC and RHC beam configuration for PØD-based analyses. These selections are the continuation of previous works that developed ν_{μ} CC-Inclusive selections between the PØD and TPC1. The first such analyses were T2K-TN-80 and T2K-TN-100 which described the ν_{μ} CC-Inclusive event selection and, later, cross-section analysis using ND280 Production 5 software, respectively[2, 3]. These analyzes relied on each sub-detector's reconstruction software and developed a track matching algorithm since the ND280 "Global" reconstruction matching was problematic in Production 5. As the inter-detector matching reconstruction improved in "Global", two CC-0 π cross section analyzes, T2K-TN-258 and T2K-TN-328, were developed that also used the CC-Inclusive selection as pre-selection cuts[7, 1]. The selections described in this technical note also employ the same pre-selection cuts. What follows from here in this section is a layout of the following topic discussions.

The first topic discussed in this section is a description of the π^0 Detector (PØD). The next topic is the event reconstruction using the "Global" reconstruction software. Following that is the pre-selection cut flow. With the pre-selection cuts established, each of the three CC-Inclusive selection's cut flow is described. Concluding this section is a discussion of the three samples in the following order: ν_{μ} in FHC mode, $\overline{\nu}_{\mu}$ in RHC, and ν_{μ} in RHC.

2.1 The PØD

The PØD, short for π^0 Detector, is a plastic scintillator based tracking calorimeter inside the ND280 basket. The PØD is constructed as many sandwiches of active and inactive materials designed to fully contain π^0 decay photons. The four primary regions inside the PØD in order of upstream to downstream of the neutrino beam are the upstream ECal (USECal), upstream water target (WT), central WT, and central ECal (CECal). A representation

Figure 2.1: This cartoon illustrates the concept design of the $P\emptyset D$ where the neutrino beam is approaching from the left.

of the entire PØD can be seen in Figure 2.1. Each active module, also called a PØDule, consists of two orthogonally oriented sheets of triangular, scintillator-doped plastic bars as shown in Figure 2.2. The ECal regions are designed to contain decay photons inside the PØD by alternating the scintillator planes with lead sheets. The WT regions, as compared to the lead sheets in the ECals, alternate a thin brass sheet and water filled bags between the PØDules. A unique feature of the PØD is that the water can be drained out resulting in two detector configurations: water-in and water-out.

Figure 2.2: This cartoon illustrates the design of a PØDule with orthogonal layers of scintillating, triangular bars. When a charged particle travels through the bar such as a muon from CC interaction, the scintillation light is captured and wavelength shifted inside a fiber bored in the center of each bar. The wavelength shifted light is later observed by a photon counter.

2.2 Global Reconstruction

The task of the Global reconstruction is to combine ND280 sub-detector reconstruction into an single reconstructed object. It was originally designed to analyze "CCQE-like" events in the Tracker region and has been extended with all of ND280. Global attempts to match and re-fit individual sub-detector objects using a Kalman filter while correcting for energy loss and multiscattering. A vertex associated with the re-fit object is also extracted using a different Kalman filter. A detailed description of the track matching and vertex finding algorithms for Global is described in T2K-TN-46[6].

2.3 Data Sets

135

136

142

143

145

146

147

150

151

152

153

154

155

156

2.4 PØD Selection Cuts

The selection of CC-Inclusive events use a series of cuts to select the primary lepton. The pre-selection cuts ("precuts") are applied first to extract events that start in the PØD FV.

A MIP is more likely to reach TPC1 from the PØD FV since the PØD is constructed out of heavy materials especially in the CECal. So the main track each selection is designed to select a muon.

This following sections will describe the precuts common to all CC-Inclusive selections and the branching of different cuts, after the precuts, to select the main track.

2.4.1 Pre-Selection Cuts

The pre-selection ("precuts") were initially developed to select ν_{μ} CC-Inclusive using the PØD and TPC sub-detector reconstruction softwares separately[2]. They were then used with the Global reconstruction software for the ν_{μ} CC-0 π selection in the FHC beam configuration as described in technical note T2K-TN-258[7]. The description and flow of the precuts are described here as well since there is an incomplete description of the selection precuts.

The precuts are performed on each bunch per beam spill as follows

- 1. The event has a "good" data quality flag.
 - An event is rejected if any sub-detector or electronics in ND280 reported as "bad" during that bunch.
- 2. There is at least one (1) track reconstructed in TPC1.
 - There are no restrictions on the number of tracks fully contained in the PØD or exiting into other sub-detectors.

3. The track in TPC1 must have more than 18 nodes.

- The TPC reconstruction gathers vertical and horizontal hits into clusters of hits. The charge distribution of the cluster is used to get a vertical (horizontal) position that is more accurate than the individual readout pads. A node is constructed out of each cluster with associated track state information. The set of nodes are used to fit the track helix[5].
- 4. The reconstructed vertex is within the PØD WT FV.
 - The PØD FV is defined to include as much as the WT regions as possible. Its X and Y borders are 25 cm away from the PØDule edges while its Z borders intersect the last and first half downstream PØDule in the USECal and CECal, respectively. The enumerated volume edges are shown in Table 2.1. This volume, while used for track-based analyzes in the past, was optimized for π^0 and ν_e analyzes [4].
- 5. All tracks that enter TPC1 pass the veto cut
 - An event is rejected if any PØD track enters TPC1 from outside the "corridor" volume. This cut was designed to eliminate broken tracks between the PØD and TPC1 when the separate sub-detector reconstructions were used[2]. In practice, this cut ensures that Global tracks entering TPC1 away from its X and Y edges. The corridor definition is the same as defined in T2K-TN-208 and shown in Table 2.1.

P	ØD WT F	Ϋ́	Cor	ridor Volu	ıme
-836	< X <	764	-988	< X <	910
-871	< Y <	869	-1020	< Y <	1010
-2969	< Z <	1264	-3139	< Z <	-900

Table 2.1: The PØD WT FV (left) and veto corridor volume (right) in the ND280 coordinate system. The corridor spans from the 5th (8th) to 40th (80th) PØDule (scintillator layer). All the units are given in millimeters.

After passing all the precuts, a single, global track, which is observed in TPC1, is assigned as the "main track" of a selection. The main track for ν_{μ} selections is the highest momentum, negatively-charged track (HMNT). Similarly the highest momentum, positively-charged track (HMPT) is assigned the main track for $\overline{\nu}_{\mu}$ selections.

This concludes the application of precuts to all the CC-Inclusive selections. The following subsubsections describe the CC-Inclusive selection cuts, first in FHC mode and then RHC mode.

2.4.2 CC-Inclusive in FHC

As discussed in the Section 2.4.1, this selection is the basis for the ν_{μ} CC-0 π PØD+TPC1 analysis. This is FHC mode selection and so the lack of a negatively charged track is the final cut for the CC-Inclusive selection.

2.4.3 CC-Inclusive in RHC

2.5 PØD Water-Out Selections

Look for me!!!

177

179

180

181

182

183

184

Figure 2.3: Momentum: True Particle

Figure 2.4: Angle: True Particle

Figure 2.5: Momentum: NEUT Interaction

Figure 2.6: Angle: NEUT Interaction

Figure 2.7: Momentum: True Topology

Figure 2.8: Angle: True Topology

Figure 2.10: Angle: True Particle

Figure 2.11: Momentum: NEUT Interaction

Figure 2.12: Angle: NEUT Interaction

Figure 2.13: Momentum: True Topology

Figure 2.14: Angle: True Topology

)1	2.5.1	CC-Inclusive] [
)2	2.5.2	CC-1 Track (CCQE Enhanced)	
)3	2.5.3	CC-N Tracks (CCnQE Enhanced)	
94	2.6	PØD Water-In Selections	
95	2.6.1	CC-Inclusive	
)6	2.6.2	CC-1 Track (CCQE Enhanced)	
97	2.6.3	CC-N Tracks (CCnQE Enhanced)	
98	2.7	Comparison Between Water-Out and Water-In Selections	

References

- [1] T. Campbell. Measurement of the ν_{μ} CC-0 π Double Differential Cross Section on Water in the PØD, February 2018. T2K-TN-328. 8
- [2] T. Campbell and Others. Analysis of ν_{μ} Charged Current Inclusive Events in the PØD in Runs 1+2+3+4, Mar 2014. T2K-TN-80 v4. 8, 11, 12
- [3] R. Das and Others. Measurement of Induced Charged Current Cross Section on Water using the PØD and TPC, November 2014. T2K-TN-100. 8
- [4] K. Gilje. Geometry and Mass of the π^0 Detector in the ND280 Basket, Apr 2012. T2K-TN-73 v3.1. 12
- ²⁰⁸ [5] A. Hillairet and Others. ND280 Reconstruction, Nov 2011. T2K-TN-72 v1. 12
- [6] G. Wikström and A. Finch. Global Kalman vertexing in ND280, Feb 2018. T2K-TN-46
 v3. 10
- [7] T. Yuan and Others. Double Differential Measurement of the Flux Averaged ν_{μ} CC0Pi Cross Section on Water, Aug 2016. T2K-TN-258 v4.6.1. 8, 11

Nomenclature $CC-0\pi$ A charged current zero pion selection is an exclusive selection that selects neutrino 214 interaction topologies only one MIP-like particle. 215 CC-Inclusive A charged current event selection that selects all neutrino interaction topolo-216 gies with an outgoing charged lepton. 217 A fine grain detector is a detector made of closely spaced, small scintillating bars 218 designed to provide precise resolution of charged particle tracks 219 FHC The forward horn current beam configuration that focuses positively charged particles 220 into the particle decay pipe. This configuration produces a very pure ν_{μ} neutrino beam HMNT The highest momentum negatively-charged track in the bunch 222 HMPT The highest momentum positively-charged track in the bunch 223 MIP A minimum ionizing particle ND280 The Near Detector of T2K which is 280 meters away from the neutrino source. 225 CECal The Central ECal detector which is a part of the $P\emptyset D$ inside ND280 226 PØD The π^0 detector (pi-Ø detector) 227 PØDule A collection of two active scintillator bar layers inside the PØD The reverse horn current beam configuration that focuses negatively charged particles 229 into the particle decay pipe. This configuration produces a $\overline{\nu}_{\mu}$ enriched neutrino beam 230 with a significant ν_{μ} contribution. 231 FVThe fiducial volume of a detector is the region where the detector response is well

232

233

understood

234	TPC A time projection chamber is a device that detects and tracks charged particles with
235	the application of strong electric fields
236	Tracker The region of ND280 consisting of two FGDs and TPCs
237	Global The Global reconstruction module responsible for making joined tracks between the
238	subdetectors inside ND280
239	USECal The Upstream ECal which is a part of the PØD inside ND280