UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA DE SÃO CARLOS LABORATÓRIO DE FÍSICA 1

COLISÕES

JOÃO VICTOR ALCÂNTARA PIMENTA Nº USP: xxxxxxxxx

SÃO CARLOS, 2020

1. RESUMO:

O estudo do momento é de extrema relevância. Sua conservação se mantém verdade em qualquer caso e por isso uma análise em seus termos pode ser muito importante. Tendo isso em vista se fará dois experimentos.

O primeiro consiste em um choque elástico entre dois blocos de massas iguais. O segundo, um choque plástico entre as mesmas massas.

Fazendo as devidas medições de velocidade e das respectivas massas é possível confirmar a conservação do momento. Outras ferramentas analisadas serão o coeficiente de restituição e a respectiva variação da energia cinética, assim determinando em quais contextos é verdade sua sua conservação. Será também calculado as forças e impulso envolvidos para determinar se são compatíveis com as previsões da conservação de momento. Ademais. a mudança de referencial será também aplicada a todos os conceitos acima citados, em busca de provar o conceito em diferentes referenciais.

2. INTRODUÇÃO TEÓRICA:

2.1 QUANTIDADE DE MOVIMENTO

É sabido da segunda lei de Newton a seguinte propriedade:

$$F = \frac{dp}{dt} \tag{I}$$

Assim, é notável que, sem a influência de forças externas, a quantidade de movimento deve permanecer constante em um sistema. Define-se a quantidade de movimento também pela equação abaixo, onde m é a massa do corpo e v a sua velocidade.

$$p = m \times v \tag{II}$$

Também, da equação acima se pode tirar a definição de Impulso:

$$Impulso = dp = F \times dt \tag{III}$$

2.2 COEFICIENTE DE RESTITUIÇÃO

Para analisar a conservação de energia em uma colisão é necessário algum meio de comparação entre a energia que existia antes e depois do choque. Para tal, se utiliza o coeficiente de restituição (e). Variável entre 0 e 1, ele é definido como a razão entre a velocidade relativa final e inicial do sistema. Assim, se toda energia é conservada e o choque é perfeitamente elástico, o coeficiente deve ser 1:

$$e = \frac{V_{afastamento}}{V_{aproximação}}$$
 (IV)

3. MÉTODOS EXPERIMENTAIS:

3.1 COLISÃO ELÁSTICA

Para o primeiro experimento será feita a seguinte montagem:

Imagem 1 - Montagem colisão elástica Elaborado pelo Compilador

Neste experimento posiciona-se dois carros de massa iguais em um trilho de ar que reduz o atrito. Monta-se também dois sensores laser para medir a velocidade dos carros ao passar pelo sensor, a partir do tempo de obstrução do mesmo.

Para realizar o experimento, imprime-se uma velocidade (v_i) ao carro 1 em direção ao carro 2. No meio do trajeto, o carro tem sua velocidade inferida a partir do tempo medido pelo primeiro laser.

Em seguida, colide com o carro 2 e, graças às massas iguais, fica em repouso enquanto o carro 2 toma uma velocidade. Agora, em movimento, este passa pelo segundo sensor nos trilhos e, obstruindo a luz do laser, tem também sua velocidade (v_f) inferida. Repete-se 3 vezes o procedimento.

Mede-se também as massas e comprimentos dos carros.

3.1.1 ANÁLISES

Valem as análises a seguir.

As velocidades v dos blocos, ditas inferidas, são descobertas por um processo simples descrito pela seguinte relação entre o tempo t de obstrução e o comprimento L do carro:

$$v = \frac{L}{t} \tag{V}$$

3.1.2 CONSERVAÇÃO MOMENTO

Faz-se a análise da conservação de momento. Para isso, usa-se a relação abaixo, onde p_i , p_f são respectivamente a quantidade movimento inicial e final, dada por (II), :

$$\Delta P = 100 \times \frac{p_i - p_f}{p_i} \tag{VI}$$

Sabendo então a porcentagem de momento conservado é possível discutir se houve conservação do momento inicial. Alguma variação é esperada na margem de erro prevista.

3.1.3 COEFICIENTE DE RESTITUIÇÃO

Outra abordagem interessante é utilizar o coeficiente de restituição, que denuncia se há conservação da energia cinética na colisão, dado por (IV). Em posse do coeficiente, é possível classificar a colisão como plástica (e = 0), elástica (e = 1) e parcialmente elástico (e = 1).

Calcule também a energia cinética inicial e final. Determina-se se a energia cinética se conserva e classifica-se o tipo de choque. A energia cinética se dá por:

$$K = \frac{m \times v^2}{2} \tag{VII}$$

3.1.4 IMPULSO NA COLISÃO

O impulso é facilmente calculado, pela primeira igualdade de (III), uma vez que se sabe o momento de cada carro antes e depois da colisão, a partir dos dados retirados do experimento.

Calcule também o impulso total sofrido pelo conjunto, do ponto de vista de um observador situado no referencial do laboratório.

3.1.5 FORÇA NA COLISÃO

Com o impulso, e supondo um tempo de t=1ms, pode-se calcular a força que atua sobre cada um dos carros na colisão com (III).

Checa-se ainda se as forças encontradas são compatíveis com as velocidades denunciadas pela conservação de momento.

3.1.6 MUDANÇA DE REFERENCIAL

Recalcule as análises anteriores para um observador situado no referencial do centro de massa do sistema. Determine se os resultados são compatíveis com os obtidos anteriormente.

Para a análise na colisão elástica, o centro de massa se moverá, em relação ao referencial do laboratório, antes da colisão com $\frac{v_i}{2}$, e depois da colisão com $\frac{v_f}{2}$. Que, neste caso, devem ser idealmente iguais.

Para a análise na colisão plástica, o centro de massa se moverá, em relação ao referencial do laboratório, antes da colisão com $\frac{v_i}{2}$, e depois da colisão com v_f .

3.2 COLISÃO PLÁSTICA

A seguinte montagem será utilizada:

Imagem 2 - Montagem experimental colisão plástica Elaborado pelo Compilador

Neste experimento posiciona-se dois carros de massa iguais em um trilho de ar que reduz o atrito. Monta-se também dois sensores laser para medir a velocidade dos carros ao passar pelo sensor, a partir do tempo de obstrução do mesmo.

Para realizar o experimento, imprime-se uma velocidade (v_i) ao carro 1 em direção ao carro 2. No meio do trajeto, o carro tem sua velocidade inferida a partir do tempo medido pelo primeiro laser.

Em seguida, com a colisão e graças a uma massa colocada no carro, os dois corpos se juntam e tomam um velocidade juntos. Agora, em movimento, este passa pelo segundo sensor nos trilhos e, obstruindo a luz do laser, tem também sua velocidade (v_f) inferida. Repete-se 3 vezes o procedimento.

Mede-se também as massas e comprimentos dos carros.

3.2.1 ANÁLISES

Valem as análises a seguir.

As velocidades v dos blocos, ditas inferidas, são descobertas por um processo simples descrito pela seguinte relação entre o tempo t de obstrução e o comprimento L do carro:

$$v = \frac{L}{t}$$

Ao passar pelo segundo sensor, o tempo será compatível com o tempo de obstrução apenas do carro 2, devido ao vão entre os dois.

3.2.2 CONSERVAÇÃO MOMENTO

Faz-se a análise da conservação de momento. Para isso, usa-se a relação abaixo, onde p_i , p_f são respectivamente a quantidade movimento inicial e final, dada por (II), :

$$\Delta P = 100 \times \frac{p_i - p_f}{p_i}$$

Sabendo então a porcentagem de momento conservado é possível discutir se houve conservação do momento inicial. Alguma variação é esperada na margem de erro prevista.

3.2.3 COEFICIENTE DE RESTITUIÇÃO

Outra abordagem interessante é utilizar o coeficiente de restituição, que denuncia se há conservação da energia cinética na colisão, dado por (IV). Em posse do coeficiente, é possível classificar a colisão como plástica (e = 0), elástica (e = 1) e parcialmente elástico (e = 1).

Calcule também a energia cinética inicial e final. Determina-se se a energia cinética se conserva e classifica-se o tipo de choque. A energia cinética se dá por:

$$K = \frac{m \times v^2}{2}$$

3.2.4 IMPULSO NA COLISÃO

O impulso é facilmente calculado, pela primeira igualdade de (III), uma vez que se sabe o momento de cada carro antes e depois da colisão, a partir dos dados retirados do experimento.

Calcule também o impulso total sofrido pelo conjunto, do ponto de vista de um observador situado no referencial do laboratório.

4. RESULTADOS E DISCUSSÃO:

4.1 EXPERIMENTO 1

Seja T1 o primeiro tempo medido e T2, o segundo. Os dados colhidos da prática foram:

i	$T1(\pm 0.000001)$ (s)	$T2(\pm 0.000001)$ (s)
1	0.121658	0.124288
2	0.109302	0.111647
3	0.131920	0.137729

Tabela 1 - Dados experimento 1 Elaborado pelo Compilador

As informações sobre os carros estão também listadas abaixo:

carro	carro $Massa(\pm 0.01)(g)$ Comprimento $(\pm 0.1)(cm)$	
1	195.93	12
2	195.87	12

Tabela 2 - Dados experimento 1 Elaborado pelo Compilador

Determina-se então as velocidades compatíveis com os resultados:

i	$V_i(\pm 0.0001)$ (m/s)	V_f (± 0.0001) (m/s)
---	-------------------------	------------------------

1	0.9864	0.9655
2	1.0979	1.0749
3	0.9096	0.8713

Tabela 3 - Velocidades experimento 1 Elaborado pelo Compilador

4.1.1 CONSERVAÇÃO DE MOMENTO

Determina-se o momento do sistema antes e depois da colisão. Neste cenário, o momento anterior a colisão é totalmente atribuído à velocidade do corpo 1 e depois da colisão é ao corpo 2.

i	Momento antes colisão(± 0.03)($\frac{Kg m}{s}$)	Momento depois colisão(± 0.03)($\frac{Kg m}{s}$)
1	0.19	0.19
2	0.22	0.21
3	0.18	0.17

Tabela 4 - Momento Elaborado pelo compilador

A partir de (VI), tem se que, em média:

$$\Delta P = (0 \pm 30)\%$$

Os dados nos permitem dizer com alguma confiança que, dentro da precisão do experimento, houve conservação de energia. Contudo, a precisão não foi ideal, uma vez que as variações rodavam ao entorno de 3% e sua imprecisão foi de outra ordem de grandeza.

4.1.2 COEFICIENTE DE RESTITUIÇÃO

Uma vez sabidas as velocidades é fácil estabelecer o coeficiente de restituição dado por (IV) e feitas a devida média.

$$e = 0.9720 \pm 0.0002$$

Que leva a acreditar que, idealmente, a colisão é elástica. Resta agora conferir as energias cinéticas inicial e final. A porcentagem de variação da energia cinética, dada por (VII), é de:

$$\Delta K_1 = (4.22 \pm 0.05)\%$$

 $\Delta K_2 = (4.17 \pm 0.04)\%$
 $\Delta K_3 = (8.27 \pm 0.06)\%$

Assim, é bem razoável considerar que a energia cinética foi conservada em grande parcela, o que é compatível com as observações do coeficiente de restituição.

4.1.3 IMPULSO E FORÇA NA COLISÃO

Impulso é definido como a variação de momento de um corpo ou sistema. Assim, já sabendo os momentos definidos na tabela 4 e, sabendo que o corpo 1 para completamente e o corpo dois parte do repouso, é possível determinar o impulso.

A tabela está toda na unidade $\frac{Kg m}{s}$ e representa o impulso.

i	Corpo 1 (± 0.06)	Corpo 2 (± 0.06)	Do sistema (± 0.12)
1	-0.19	0.19	0
2	-0.22	0.21	0
3	-0.18	0.17	0

Tabela 5 - Impulso Elaborado pelo compilador

O resultado é compatível com o esperado. Uma vez que não houve a influência de forças externas o impulso no sistema foi 0.

Considerando agora que o impulso foi feito em um intervalo de t=1ms. Pode-se definir a força aplicada a cada corpo:

i	Força corpo 1 $(\pm 30)(N)$	Força corpo $2 (\pm 30)(N)$
1	-190	190
2	-220	210
3	-180	170

Tabela 6 - Força Elaborado pelo compilador

O centro de massa, neste experimento, mantém uma velocidade única, compatível com o esperado já que não há influência de uma força externa.

4.1.4 MUDANÇA DE REFERENCIAL

Refaz-se agora as análises anteriores com o referencial tomado no centro de massa do sistema. Levada em conta as devidas considerações já feitas sobre a velocidade do centro de massa, tem-se que:

Corpo 1

i	$V_i (\pm 0.00005) (\text{m/s})$	$V_f (\pm 0.00005) (\text{m/s})$	
1	0.49320	-0.48275	
2	0.54895	-0.53745	
3	0.45480	-0.43565	

Tabela 7 - Velocidades experimento 1, CM, corpo 1 Elaborado pelo Compilador

Corpo 2

i	$V_i (\pm 0.00005) (\text{m/s})$ $V_f (\pm 0.00005) (\text{m/s})$	
1	-0.49320	0.48275
2	-0.54895	0.53745

3	-0.45480	0.43565

Tabela 8 - Velocidades experimento 1, CM, corpo 2 Elaborado pelo Compilador

4.1.4.1 CONSERVAÇÃO DE MOMENTO

Determina-se o momento do sistema antes e depois da colisão. Neste cenário, o momento é a soma de ambos os momentos dos dois corpos.

i	Momento antes colisão(± 0.01)($\frac{Kg m}{s}$)	Momento depois colisão(± 0.01)($\frac{Kg m}{s}$)
1	0.00	0.00
2	0.00	0.00
3	0.00	0.00

Tabela 9 - Momento , CM Elaborado pelo compilador

A partir de (VI), tem se que:

$$\Delta P = (0)\%$$

Os dados nos permitem dizer com confiança que houve conservação de energia.

4.1.4.2 COEFICIENTE DE RESTITUIÇÃO

Uma vez sabidas as velocidades é fácil estabelecer o coeficiente de restituição dado por (IV) e feitas a devida média.

$$e = 0.9720 \pm 0.0002$$

Que leva a acreditar que, idealmente, a colisão é elástica. Resta agora conferir as energias cinéticas inicial e final. A porcentagem de variação da energia cinética, dada por (VII), é de:

$$\Delta K_1 = (4.22 \pm 0.05)\%$$

 $\Delta K_2 = (4.17 \pm 0.04)\%$
 $\Delta K_3 = (8.27 \pm 0.06)\%$

Assim, é bem razoável considerar que a energia cinética foi conservada em grande parcela, o que é compatível com as observações do coeficiente de restituição.

4.1.4.3 IMPULSO E FORÇA NA COLISÃO

Impulso é definido como a variação de momento de um corpo ou sistema. Assim, já sabendo os momentos e as velocidades iniciais e finais de cada bloco, é possível determinar o impulso.

A tabela está toda na unidade $\frac{Kg m}{c}$ e representa o impulso.

i	Corpo 1 (± 0.02)	Corpo 2 (±0.02)	Do sistema (± 0.04)
1	-0.19	0.19	0
2	-0.22	0.21	-0.01
3	-0.18	0.17	-0.01

Tabela 10 - Impulso Elaborado pelo compilador

O resultado é compatível com o esperado. Uma vez que não houve a influência de forças externas o impulso no sistema foi 0.

4.2 EXPERIMENTO 2

Seja T1 o primeiro tempo medido e T2, o segundo. Os dados colhidos da prática foram:

i	$T1(\pm 0.000001)$ (s)	$T2(\pm 0.000001)$ (s)	
1	0.136418	0.288659	

2	0.135392	0.288863	
3	0.113016	0.239748	

Tabela 11 - Dados experimento 2 Elaborado pelo Compilador

As informações sobre os carros estão também listadas abaixo:

carro	$Massa(\pm 0.01)(g)$	$ca(\pm 0.01)(g)$ Comprimento $(\pm 0.1)(cm)$	
1	195.93	12	
2	195.87	12	

Tabela 12 - Dados experimento 2 Elaborado pelo Compilador

Refaz-se agora as análises anteriores com o referencial tomado no centro de massa do sistema. Levada em conta as devidas considerações já feitas sobre a velocidade do centro de massa, tem-se que:

Na tabela a seguir analisa-se as velocidades. Nesse caso, \boldsymbol{V}_i representa a velocidade do corpo 1 e, \boldsymbol{V}_f , a velocidade que os dois corpos assumem agregados.

i	V_i (m/s)	V_f (m/s)
1	0.880 ± 0.007	0.416 ± 0.003
2	0.886 ± 0.007	0.415 ± 0.003
3	1.062 ± 0.009	0.501 ± 0.004

Tabela 13 - Velocidades experimento 2, corpo 1 Elaborado pelo Compilador

4.2.1 CONSERVAÇÃO DE MOMENTO

Determina-se o momento do sistema antes e depois da colisão. Neste caso, o momento antes da colisão é totalmente atribuído a velocidade do corpo 1. Já o momento depois da colisão, deve ser atribuído ao movimento da junção dos dois carros.

i	Momento antes colisão ($\frac{Kg m}{s}$)	Momento depois colisão $(\frac{Kg m}{s})$
1	0.172 ± 0.001	0.163 ± 0.001
2	0.174 ± 0.001	0.163 ± 0.001
3	0.208 ± 0.002	0.196 ± 0.002

Tabela 14 - Momento, experimento 2 Elaborado pelo compilador

A partir de (VI), tem se que, em média:

$$\Delta P = (5 \pm 1)\%$$

Os dados nos permitem dizer com alguma confiança que houve conservação de energia.

4.2.2 COEFICIENTE DE RESTITUIÇÃO

Uma vez sabidas as velocidades é fácil estabelecer o coeficiente de restituição dado por (IV). Como os corpos não tem velocidade de afastamento relativa pos colisão fica claro que:

$$e = 0$$

Que leva a acreditar que, idealmente, a colisão é plástica. Resta agora conferir as energias cinéticas inicial e final. A porcentagem de variação da energia cinética, dada por (VII), é de:

$$\Delta K_1 = (55.28 \pm 0.01)\%$$

 $\Delta K_2 = (56.13 \pm 0.01)\%$
 $\Delta K_3 = (55.30 \pm 0.07)\%$

Assim, é bem razoável considerar que a energia cinética não é conservada e a colisão é plástica.

4.2.3 IMPULSO

Impulso é definido como a variação de momento de um corpo ou sistema. Assim, já sabendo os momentos definidos, é possível determinar o impulso.

A tabela está toda na unidade $\frac{Kg m}{g}$ e representa o impulso.

i	Corpo 1	Corpo 2	Do sistema
1	-0.090 ± 0.002	0.0815 ± 0.0006	-0.009 ± 0.003
2	-0.092 ± 0.002	0.0813 ± 0.0006	-0.010 ± 0.003
3	-0.110 ± 0.003	0.0981 ± 0.0008	-0.012 ± 0.004

Tabela 15 - Impulso, experimento 2 Elaborado pelo compilador

O resultado é compatível com o esperado. Uma vez que não houve a influência de forças externas o impulso no sistema foi próximo de 0.

5. CONCLUSÃO

Foi possível observar em ambos os experimentos que o momento foi conservado. Fato de muito interesse uma vez que foi possível determinar que os casos eram de natureza distintas, um representava um colisão elástica, e o outro, plástica. É razoável pensar que, com esses resultados, é justo afirmar que o momento será sempre conservado. Independentemente do referencial. Se não há influências de forças externas em um sistema, não há alteração do momento.

A mesma conclusão não pode ser feita para a energia cinética. Em colisões elásticas, de coeficiente de restituição (e) muito grandes, próximos de 1, é até possível falar de conservação de energia cinética. Contudo, para outros tipos de colisão, plásticas ou um meio termo, de *e* razoavelmente menor que 1, não há tal conservação.

6. BIBLIOGRAFIA

Laboratório de Física I: Livro de práticas/ compilado por José F. Schneider. São Carlos: Instituto de Física de São Carlos, 2017.