MOBILE PHONE SECURITY SYSTEM

Vintila Florin Filipescu, Octavian Barbu, George Ionita

Department of Electronics and Instrumentation Faculty of Automation, Computers and Electronics University of Craiova, Romania email: vfilipescu@electronics.ucv.ro

Abstract: This paper presents a security system which permits the notification through mobile phone for some breach of close produced in any area supervised by the sensors and the operating from a distance, through mobile phone too, of any section of the warning block in order to discourage and reprisal the intruder.

Keywords: mobile phone, muvement sensor, intruder, microcontroller, programme, SIM card.

1. INTRODUCTION

A system of modern supervision must have the capacity to detect, discourage and prevent or delay any attempt of penetrating the protected objectives or zones and to accumulate material concerning this event.

The system presented in this work carries out all the above mentioned conditions with the observation that the function of realizing a documentary material is deficient in the absence of a video system even if it can memorize the chronological order and the exact moment of attacking the supervised points by the intruder.

However, this disadvantage can be easily surpassed by coupling this system with the *Webcam security system* [see ref.].

2. THE BLOCK SCHEME

The security system presented in fig. 1 is made up of the central unit, the input block, the output block, the detection system for the intruder, the warning

block, the serial interface, the distance information transmitting block and the supply block.

2.1. The central unit

The central unit is made up of the microcontroller AT89C52, the peripherical selection block GAL22V10, the parallel input port on 8 bits MM74HCT541, the parallel output port on 8 bits MM74HCT574, the supervised circuit of the microcontroller ADM 691, the ROM serial memory and the configuration switch with 8 channels.

2.2. The input and output blocks

The input and output blocks, shown in fig. 2 and 3, are formed by the integrated optocouplors LTV844 and they have the role to realize the galvanic isolation between the central unit, on one hand and the sensors, respectively the sections of the warning block on the other hand

In fig. 4 and 5 a detail for each of the two blocks is presented.

Fig. 1. Block scheme

Fig. 2. The input block

Fig. 3. The output block

Fig. 4. A detail of the input block

Fig. 5. A detail of the output block

2.3. The intruder detection block

The intruder detection block is made up of eight movement sensors or any type of sensors on

condition that these could give the 0 output logical level when they are activated.

2.4. The warning block

The warning block is formed by eight sections which, when they are activated, can generate acustic and light signals, can shut off doors, start engines, flood spaces, a.s.o.

2.5. The serial interface

The serial interface RS232 permits a baudrate up to 200KB/s and realizes the bidirectional link with the GSM modem.

2.6. The distance information transmitting block

The distance information transmitting block is made up of a GSM modem from Telit GM682-PCS/_GPRS/_GSM family, endowed with a SIM card and a mobile phone.

The transmission between the two modules takes place through some bidirectional SMS-s.

2.7. The supply block

The supply block has three stabilized voltage sources, two of 12V and one of 5V, realized with the three terminal integrated circuits LM7812 and LM7805.

3. THE MICROCONTROLLER PROGRAMMING

The modem initialization routine, fig. 6, contains the following controls:

- 1. AT <cr> modem activation
 - OK is waited for.
- 2. AT + IPR = 9600- baudrate selection OK is waited for.
- 3. AT + CMEE = 1 error message activation OK is waited for.
- 4. AT + CMGF = 1 <cr> "text" type selection for SMS-s

OK is waited for.

5. AT + CMGS = "user's phone number" – send SMS.

The prompter ">" is waited for, after which the SMS is written.

Fig. 6. The logical scheme of the modem initialization routine

```
Finally, it is sent the CTRL – Z and
                                                                \ell = K' \mod d
        the message is waited for AT + CMGS:
        <the number of the message> OK
                                                        void init_modem(void)
                                                        XBYTE[0x40] = 0x01;
If after any of the AT controls it is not confirmed
the correct receiving of the control, this one is
                                                       modem_ok = 0;
repeated.
                                                        while(!modem_ok)
The programme is written in C++ and it is next
                                                                for (k=0; k<43; k++) TX buffer[k] = 0;
presented:
                                                                strcpy(TX buffer,"AT");
                                                                send cmd();
#include <stdio.h>
                                                       XBYTE[0x40] = 0x02;
#include <AT89X52.h>
#include <absacc.h>
                                                       modem_ok = 0;
#include <string.h>
                                                        while(!modem_ok)
#include <ctype.h>
                                                                for (k=0; k<43; k++) TX_buffer[k] = 0;
                                                                strcpy(TX_buffer,"AT+IPR=19200");
unsigned char rst,k,ki,modem ok,lf,cr,kk;
unsigned long i;
                                                                send_cmd();
char TX_buffer[42];
                                                       XBYTE[0x40] = 0x04;
char long_buffer[42];
                                                        modem_ok = 0;
unsigned char intrari;
                                                        while(!modem_ok)
// RESET ROUTINE
                                                                for (k=0;k<43;k++) TX_buffer[k] = 0;
                                                                strcpy(TX_buffer,"AT+CMEE=1");
void resetuc(void) interrupt 1
                                                                send cmd();
{
        XBYTE[0x70] = 0;
                                                        XBYTE[0x40] = 0x08;
                                                       modem ok = 0:
// INTERRUPTION UART ROUTINE
                                                       while(!modem ok)
void serial receiving (void) interrupt 4
                                                                for (k=0;k<43;k++) TX_buffer[k] = 0;
                                                                strcpy(TX_buffer,"AT+CMGF=1");
        if (RI)
                                                                send_cmd();
                if (ki<42)
                                                       modem_ok=0;
                {long_buffer[ki] = SBUF;
                                                       XBYTE[0x40] = 0x10;
                ki++;
                                                       while(!modem ok)
                RI = 0;
                                                                for (k=0; k<43; k++) TX_buffer[k] = 0;
                                                                strcpy(TX_buffer,"AT+CMGS=");
// MODEM GSM ROUTINE
                                                                TX_buffer[strlen(TX_buffer)]="";
                                                                strcat(TX_buffer,"0723492338");
void send_cmd(void)
                                                                TX_buffer[strlen(TX_buffer)]="";
                                                                send_cmd();
                                                                for (i=0;i<150000;i++);
//strcpy(long_buffer,TX_buffer);
for (k=0; k<43; k++) long buffer[k] = 0;
                                                                for (k=0; k<43; k++) TX buffer[k] = 0;
ki = 0:
                                                                strcpy(TX buffer,"MODEM INIT.");
k = strlen(TX buffer);
                                                                send_cmd();
TX buffer[k]=13;
                                                       XBYTE[0x40] = 0x1F;
//TX_buffer[k+1]=10;
                                                       for (i=0;i<150000;i++);
TI = 0;
for (k=0;k<strlen(TX_buffer);k++)
                                                       modem_ok = 0;
        SBUF = TX\_buffer[k];
                                                        void send_sms_inputs(void)
        while (!TI){};
        TI = 0;
                                                        while(!modem_ok)
        for (i=0;i<500;i++);
                                                              XBYTE[0x40]=0x10;
for (i=0;i<150000;i++);
                                                              for (k=0;k<43;k++) TX_buffer[k] = 0;
if (long_buffer[2]=='O'&
                                                             strcpy(TX_buffer,"AT+CMGS=");
```

```
TX_buffer[strlen(TX_buffer)]="";
      strcat(TX_buffer,"0723492338");
      TX_buffer[strlen(TX_buffer)]="";
      send_cmd();
      for (i=0;i<150000;i++);
      for (k=0;k<43;k++) TX_buffer[k] = 0;
      if (inputs&0x01) strcat(TX_buffer,"I0=1\n");
                 else strcat(TX_buffer,"I0=0\n");
      if (inputs&0x02) strcat(TX buffer,"I1=1\n");
                 else strcat(TX buffer,"I1=0\n");
      if (inputs&0x04) strcat(TX_buffer,"I2=1\n");
                 else strcat(TX_buffer,"I2=0\n");
      if (inputs&0x08) strcat(TX_buffer,"I3=1\n");
                 else strcat(TX_buffer,"I3=0\n");
      if (inputs&0x10) streat(TX_buffer,"I4=1\n");
                 else strcat(TX_buffer,"I4=0\n");
      if (inputs&0x20) strcat(TX_buffer,"I5=1\n");
                 else strcat(TX buffer,"I5=0\n");
      if (inputs&0x40) strcat(TX_buffer,"I6=1\n");
                 else strcat(TX_buffer,"I6=0\n");
      if (inputs&0x80) streat(TX buffer,"I7=1\n");
                 else strcat(TX_buffer,"I7=0\n");
      send_cmd();
XBYTE[0x40]=0x1F;
                 for (i=0;i<150000;i++);
modem ok = 0;
void main(void)
XBYTE[0x40] = XBYTE[0x40];
//lcd present = 0;
//serial setting
rst=PCON;
rst = 0x80;
PCON=rst;
TMOD\&=0x0f;
TMOD|=0x20;
TH1=0xfd;//=0xff;
TR1=01;
SCON=0x50;
TMOD &= 0xF0;
TMOD \models 0x01;
TR0 = 1;
```

4. CONCLUSIONS

The presented system is an attempt to use the mobile phone in industrial field.

The transition from this security system to any other type of system with distance supervision and control, represents a minor application.

REFERENCES

Filipescu, V.F., (2002), *Circuite electronice digitale*, Ed. Universitaria, Craiova;

Filipescu, V.F., Gheorghiu, F.C., (2005), *Webcam security system*, The International Symposium on System Theory, Automation, Robotics, Computers, Informatics, Electronics and Instrumentation, SINTES 12, 20-22 October, Craiova, Romania;

Melnic, V., (1999), Sisteme electronice de supraveghere, Ed. Teora, Bucuresti;

Negrescu, L., (1997), $Limbajul C^{++}$, vol. II, editia a III-a, Ed. Albastra, Cluj-Napoca.