Relational and Logical Operations

Contents

Another Way to Display Text

2 Relational and Logical Operators

8 Examples

4 Exercises

Another Way to Display Text

FPRINTF: Alternate Displaying Function

Combine literal text with numeric data.

Number of digits to display

```
fprintf('There are %d days in a year.\n', 365)
```

Complex number

```
z = exp(li*pi/4);
fprintf('%f+%fi\n', real(z), imag(z));
```

FPRINTF: Formatting Operator

```
%[field width][precision][conversion character]
```

e.g. %12.5f.

- %: marks the beginning of a formatting operator
- [field width]: maximum number of characters to print; optional
- [precision] number of digits to the right of the decimal point; optional
- [conversion character]

%d	integer	
%f	fixed-point notation	
%e	exponential notation	
%g	the more compact of %f or %e	
%S	string array	
%X	hexadecimal	

Relational and Logical Operators

Relational Operators

How are two numbers X and Y related?

- [X>Y] Is X greater than Y?
- [X<Y] Is X less than Y?</p>
- [X>=Y] Is X greater than or equal to Y?
- [X<=Y] Is X less than or equal to Y?
- [X==Y] Is X equal to Y?
- [X~=Y] Is X not equal to Y?

The symbols used between X and Y are called the **relational operators**.

Logical Variables and Logical Operators

- A relational statement evaluates to either True(1) or False(0); these are called logical variables or boolean variables.
- As arithmetic operators (+, -, *, /) put together two numbers and produce other numbers, logical operators combine two logical variables to produce other logical variables.
- Logical Operators: and, or, not, xor

Logical Operator: & & (AND)

Let ${\tt A}$ and ${\tt B}$ be two logical variables. The && operation is completely defined by the following truth table:

A	В	A && B
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Note that $\mathbb{A} \& \& \mathbb{B}$ is true if and only if both \mathbb{A} and \mathbb{B} are true.

Logical Operator: | | (OR)

Let ${\tt A}$ and ${\tt B}$ be two logical variables. The $|\ |$ operation is completely defined by the following truth table:

А	В	Α B
F	F	F
F	Т	Т
Т	F	Т
Т	Т	T <

Note that $A \mid \ \mid \ B$ is false if and only if both A and B are false.

Logical Operator: xor (exclusive or)

This is a special variant of the $|\cdot|$ operator.

А	В	xor(A,B)
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Note that xor(A, B) is true if only one of A or B is true.

Logical Operator: ~ (NOT)

many operator (acts on one variable)

This is a negation operator.

Combination of Logical Operations

7 De Morgan's Law

Let A and B be logical variables. Then ~ (A && B) and ~A | | ~B are equivalent:

А	В	A && B	~(A && B)
F	F	F	T
F	Т	£	T
Т	F	-	_
Т	Т	<u> </u>	

.
$$\sim$$
 (AIIB) \equiv \sim A && \sim B is the other half of De Morgan's Law.

Examples

Quadratics Revisited

Consider a monic quadratic function $q(x)=x^2+bx+c$ on a close interval [L,R].

- Critical point: $x_c = -b/2$
- If $x_c \in (L, R)$, q(x) attains the (global) minimum at x_c ; otherwise, the minimum occurs at one of the endpoints x = L or x = R.

Question

Write a program which determines whether the critical point of q(x) falls on the interval.

Initialization

```
b = input('Enter b: ');
c = input('Enter c: ');
L = input('Enter L: ');
R = input('Enter R (L<R): ');
clc
fprintf('Function: x^2 + bx + c, b = %5.2f, c = %5.2f\n', b, c)
fprintf('Interval: [L, R], L = %5.2f, R = %5.2f\n', L, R)
xc = -b/2;</pre>
```

Main Fragment

```
if L < xc && xc < R
    fprintf('Interior critical point at x_c = %5.2f\n', xc)
else
    disp('Either xc <= L or xc >= R')
end
```

Main Fragment – another way

```
if xc <= L || xc >= R
    disp('Either xc <= L or xc >= R')
else
    fprintf('Interior critical point at x_c = %5.2f\n', xc)
end
```

Main Fragment – yet another way

```
if ~(xc <= L || xc >= R)
    fprintf('Interior critical point at x_c = %5.2f\n', xc)
else
    disp('Either xc <= L or xc >= R')
end
```

The simplest if statement?

So far, we have seen

- if-else **statement**
- if-elseif-else statement

The simplest if statement is of the form

```
if [condition]
  [statements to run]
end
```

Input Errors

If a user mistakenly provides L that is larger than R, fix it silently by swapping L and R.

```
if L > R
    tmp = L;
    L = R;
    R = tmp;
end
```

I will show you how to send an error message and halt a program later.

Exercises

Exercise 1: Simple Minimization Problem

Question

Write a program that finds $x_{\min} \in [L, R]$ at which q(x) is minimized and the minimum value $q(x_{\min})$.

• This can be done with if-elseif-else

Exercise 2: Leap Year

Question

Write a script which determines whether a given year is a leap year or not. A year is a leap year if

- it is a multiple of 4;
- it is not a multiple of 100;
- it is a multiple of 400.

Useful: mod function.

Pseudocode

```
if [YEAR] is not divisible by 4
   it is a common year
elseif [YEAR] is not divisible by 100
   it is a leap year
elseif [YEAR] is not divisible by 400
   it is a common year
else
   it is a leap year
end
```

Exercise 3: Angle Finder

Question

Let x and y be given, not both zero. Determine the angle $\theta \in (-\pi, \pi]$ between the positive x-axis and the line segment connecting the origin to (x, y).

Four quandrants:

- 1st or 4th (x >= 0): $\theta = \tan^{-1}(y/x)$
- 2nd (x < 0, y >= 0): $\theta = \tan^{-1}(y/x) + \pi$
- 3rd (x < 0, y < 0): $\theta = \tan^{-1}(y/x) \pi$

Useful: at an (inverse tangent function)

Extended Inverse Tangent

```
if x > 0
    theta = atan(y/x)
elseif y >= 0
    theta = atan(y/x) + pi
else
    theta = atan(y/x) - pi
end
```

- MATLAB provides a function that exactly does this: atan2 (x, y).
- Further Exploration: What would you do if you are asked to find the angle $\theta \in [0, 2\pi)$, with atan alone or with atan2?