Culinária ao Redor do Mundo: Análise de Receitas

Equipe União Vasko:

- * Breno Shigeki Guimarães Nishimoto 220599
- * Gabriel de Carvalho Silva Nascimento 222103

 - * Henrique Marques de Martim 248333 * Leandro Henrique Silva Resende 213437
- Mateus da Costa e Silva Rios Alves de Andrade 230806
 - * Matheus Mantovani Meneghel 230906

Motivação e Contexto

O tema do projeto foi definido como "O que as pessoas comem ao redor do mundo". A ideia para o projeto surgiu de uma análise do sistema de comida a quilo brasileiro, em que uma mesma fileira de pratos possuem alimentos de receitas de origens diversas, como o spaghetti italiano ao lado do sushi japonês que por sua vez está ao lado do kibe, que possui origens no Oriente Médio. Diante tal situação, chegamos a diversas perguntas como "o quão semelhante pode ser uma refeição entre as diversas regiões do mundo?" e "como essa diversidade de pratos molda a dieta macromolecular de cada povo?".

Bases Utilizadas

Modelo Conceitual

ID

Modelo Lógico Relacional

```
IngredienteComposto(_ID_, Nome)
IngredienteSimples( ID , Nome, Grupo, Subgrupo)
Receita(_ID_, Nome, Regiao)
CompostoQuimico(_ID_, Nome)
Macronutriente( ID , Nome)
Contem(Receita_ID, Ingrediente_ID, Volume, Unidades, Massa)
        Receita_ID chave estrangeira -> Receita(ID)
        Ingrediente_ID chave estrangeira -> Ingrediente(Nome)
Constitui(_IngrdienteS_ID_, _CQ_ID_, QuantidadeGrama)
        IngredienteS ID chave estrangeira -> IngredienteSimples(ID)
        CQ_ID chave estrangeira -> CompostoQuimico(ID)
Define( IngredienteS ID , Macro ID , QuantidadeGrama)
        Ingrediente ID chave estrangeira -> IngredienteSimples(ID)
        Macro_ID chave estrangeira -> Macronutriente(ID)
Compoe( Ingrediente1 ID , Ingrediente2 ID )
        Ingrediente1 ID chave estrangeira -> Ingrediente(ID)
        Ingrediente2_ID chave estrangeira -> Ingrediente(ID)
```

Modelo Lógico de Grafos

Modelo Lógico de Grafos

```
Ingredientes-Simples(_id_, nome, grupo, subgrupo)
Composicao-Quimica( nome )
Macronutrientes( nome )
Receita( id , nome, regiao)
Ingrediente-Composto( id , nome)
Define( idis , nome-macro , quantidade-grama)
        idis chave estrangeira -> Ingredientes-Simples(id)
        nome-macro chave estrangeira -> macronutrientes(nome)
Constitui(_idis_, _nomecq_, quantidade-grama)
        idis chave estrangeira -> Ingredientes-Simples(id)
        nomecq chave estrangeira -> Composicao-Quimica(nome)
Compoe( idis , idic )
        idis chave estrangeira -> Ingredientes-Simples(id)
        idic chave estrangeira -> Ingrediente-Composto(id)
Contems( idrec , idis )
        idirec chave estrangeira -> Receita(id)
        idis chave estrangeira -> Ingredientes-Simples(id)
Contemc( IDrec , IDic )
        idirec chave estrangeira -> Receita(id)
        idic chave estrangeira -> Ingrediente-Composto(id)
```

Operações de preparo do dataset

- Integração de dados de bancos distintos
- Extração de dados dentro de strings
- Tratamento de inconsistências
- Transformação dos dados para análise

Integração

- Juntamos logicamente os dados no ponto dos ingredientes. Criamos um mapeamento de ingredientes do CulinaryDB para o FooDB, de forma a permitir uma análise quanto à categoria e valor nutricional dos ingredientes e receitas.
- Integração dos dados de um dataset com o outro usando o código de Hamming normalizado para no mínimo 85% de semelhança, evitando falsos positivos. Mesmo assim, sobraram cerca de 300 (~30%) ingredientes que foram associados manualmente.

Integração

- Com a ligação dos ingredientes concluída, pudemos relacionar as receitas com os novos ingredientes.
- Os ingredientes do CulinaryDB remanescentes são apenas os ingredientes compostos que não possuem par no FooDB; todos os ingredientes simples foram pareados ou removidos.

```
.
                                                    Title
 1 def ligar ingrediente receita():
 2 with (open("data/interim/ingredientes final.csv") as ing f,
           open("data/interim/ingredientes compostos final.csv") as ingc f,
           open("data/processed/receitas.csv") as rec f,
           open("data/external/04 Recipe-Ingredients Aliases.csv") as rec ing f,
           open("data/processed/ingredientes receitas.csv", "w") as out f,
           open("data/interim/ing rec removidos.csv", "w") as removidos f):
       ing reader = csv.DictReader(ing f, lineterminator='\n')
       ingc_reader = csv.DictReader(ingc_f, lineterminator='\n')
 9
       rec reader = csv.DictReader(rec f, lineterminator='\n')
 10
       rec ing reader = csv.DictReader(rec ing f, lineterminator='\n')
       out_writer = csv.DictWriter(out_f, fieldnames=["id_ingrediente", "id_receita", "volume", "massa",
   "unidade"], lineterminator='\n')
       removidos writer = csv.DictWriter(removidos f, fieldnames=["id ing cdb", "id receita", "nome"],
   lineterminator='\n')
       out writer.writeheader()
       ingredientes = {x["id_cdb"]: x for x in ing_reader}
       ingredientes compostos = {x["id cdb"]: x for x in ingc reader}
       map_final: dict[(str, str), dict] = dict()
```

Extração

 Filtragem de ingredientes, suas quantidades e suas respectivas unidades de medidas utilizando regex, para determinar as quantidades de cada ingrediente nas receitas.

```
REGULAR EXPRESSION
                                                    9 matches (856 steps, 2.0ms)
r" ((\d+/\d+)|(\d)+(\s\d+/\d+)?)
     (teaspoons?|tablespoons?|pounds?|cups?|\((\d+(\.
     \d+)?) (ounces?)\)|ounces?|quarts?)?
TEST STRING
1 1/2 (10.5 ounce) cans low-sodium chicken broth
1 1/2 (10 ounce)
3 1/2 ounces high quality milk chocolate
1 (14 ounce)
1 tablespoon
1 1/2 teaspoon
2 (2.30 ounce)
8 slices white bread, with crusts trimmed
turkey
2 quarts water
```

```
. .
                                       Title
  1 for rec_ing in rec_ing_reader:
     [q, u, *_] = test_string(rec_ing["Original Ingredient Name"]) + ["unit"]
         u = u.removesuffix("s")
     tem volume = u != "unit" and u != "pound"
      if ing := ingredientes.get(rec ing["Entity ID"], False):
         id ing = ing["id fdb"]
         id receita = rec ing["Recipe ID"]
         if tem volume:
           if (id ing, id receita) in map final.keys():
              map_final[(id_ing, id_receita)]["volume"] += calc_volume(q, u)
 10
              map_final[(id_ing, id_receita)] = {
               "id ingrediente": ing["id fdb"],
               "id receita": rec ing["Recipe ID"],
 14
               "volume": calc_volume(q, u),
               "massa": 0,
 16
                "unidade": 0
 18
         elif u == "pound":
           if (id ing, id receita) in map final.keys():
 20
              map_final[(id_ing, id_receita)]["massa"] += converte pound(q)
 21
             map_final[(id_ing, id_receita)] = {
                "id ingrediente": ing["id fdb"],
                "id receita": rec ing["Recipe ID"],
               "massa": converte pound(q),
                "volume": 0,
                "unidade": 0,
 28
 29
```

Tratamento

O que fizemos com os dados inconsistentes?

	А	В	С	D	E	F
1	id_cdb	nome_cdb	id_fdb	nome_fdb	grupo_fdb	subgrupo_fdb
2	0	Egg	633	Eggs	Eggs	Eggs
3	2	Bread	1019	White bread	Cereals and cereal products	Cereals
4	4	Wheaten Bread	836	Wheat bread	Cereals and cereal products	Leavened breads
5	6	Wholewheat Bread	836	Wheat bread	Cereals and cereal products	Leavened breads
6	7	Wort	268	Beer	Beverages	Fermented beverages
7	8	Arrack	630	Liquor	Beverages	Distilled beverages
8	10	Bantu Beer	268	Beer	Beverages	Fermented beverages
9	11	Brandy	630	Liquor	Beverages	Distilled beverages
10	12	Anise Brandy	630	Liquor	Beverages	Distilled beverages
11	13	Apple Brandy	630	Liquor	Beverages	Distilled beverages
12	14	Armagnac Brandy	630	Liquor	Beverages	Distilled beverages
13	15	Blackberry Brandy	630	Liquor	Beverages	Distilled beverages
14	16	Cherry Brandy	630	Liquor	Beverages	Distilled beverages
15	17	Cognac Brandy	630	Liquor	Beverages	Distilled beverages
16	18	Papaya Brandy	630	Liquor	Beverages	Distilled beverages

Tratamento

Eliminação das colunas que não serão importantes na análise, para facilitar a pesquisa e melhorar a visualização dos dados.

Tratamento

```
def limpa_nutrient():
    with open('data/external/Nutrient.csv') as csv_file:
        csv_reader = csv.reader(csv_file, delimiter=',')
        header = ["id", "nome"]
        next(csv_reader, None)
        with open('data/processed/nutrientes.csv', mode='w') as new_csv_file:
            csv_writer = csv.writer(new_csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL, lineterminator='\n')
            csv_writer.writerow(header)
            for row in csv_reader:
            csv_writer.writerow([row[0], row[4]])
```

Perguntas de Pesquisa/Análise

- → Perguntas que irão ser implementadas
- 1)Quais as estruturas bioquímicas mais frequentes em cada região?
- 2) Quais regiões possuem receitas com ingredientes majoritariamente vegetais?
- 3) Quais regiões possuem a maior média de gorduras por receita?

1) Quais as estruturas bioquímicas mais frequentes em cada região?

```
...
                                                      Title
 1 DROP VIEW IF EXISTS EstruturasFrequentes;
 2 CREATE VIEW EstruturasFrequentes AS
 3 SELECT
       r.regiao AS Regiao,
       c.nome AS NomeComposto,
       COUNT(*) AS Quantidade
  7 FROM
       Receitas r
  9 JOIN
       Ingredientes receitas ir ON r.id = ir.id receita
 11 JOIN
       Compostos content cc ON ir.id ingrediente = cc.id ingrediente
 13 JOIN
       Compostos c ON cc.id_composto = c.id
 15 GROUP BY
       r.regiao, c.nome
 17 ORDER BY
       COUNT(*) DESC;
20 SELECT regiao, nomecomposto, quantidade
21 FROM (
22 SELECT regiao, nomecomposto, quantidade, ROW NUMBER() OVER ( PARTITION BY regiao ORDER BY quantidade
   DESC) as rn
23 FROM EstruturasFrequentes
24 ) x
25 WHERE rn <= 3;
```

H	<u>Aa</u> regiao	Aa nomecomposto	# quantidade	34	Italy	Iron
	26 Uniques	3 Uniques	128 - 122,565	35	Italy	Sodium
1	Africa	Sodium	6,252	36	Italy	Zinc
2	Africa	Iron	6,252	37	Japan	Iron
3	Africa	Zinc	6,248	38	Japan	Sodium
4	Australia & NZ	Iron	3,523	39	Japan	Zinc
5	Australia & NZ	Sodium	3,522	40	Korea	Iron
6	Australia & NZ	Zinc	3,518	41	Korea	Sodium
7	British Isles	Iron	8,013	42	Korea	Zinc
8	British Isles	Sodium	8,007	43	Mexico	Iron
9	British Isles	Zinc	7,974	44	Mexico	Sodium
10	Canada	Iron	7,789	45	Mexico	Zino
11	Canada	Sodium	7,787	46	Middle East	Sodium
12	Canada	Zinc	7,756	47	Middle East	Iron
13	Caribbean	Iron	9,755	48	Middle East	Zinc
14	Caribbean	Sodium	9,752	49	Misc.: Belgian	Zinc
15	Caribbean	Zino	9,735	50	Misc.: Belgian	Iron
16	China	Iron	8,634	51	Misc.: Belgian	Sodium
17	China	Sodium	8,630 8,611	52	Misc.: Central America	Iron
18	China DACH Countries	Zinc	8,611	53	Misc.: Central America	Zinc
20	DACH Countries DACH Countries	Iron Sodium	3,978	54	Misc.: Central America	Sodium
20	DACH Countries	Zinc	3,950	55	Misc.: Dutch	Iron
22	Eastern Europe	Iron	4,466	56	Misc.: Dutch	Sodium
23	Eastern Europe	Sodium	4,466			
24	Eastern Europe	Zinc	4.441	57	Misc.: Dutch	Zinc
25	France	Iron	20,944	.58	Misc.: Portugal	Iron
26	France	Sodium	20,914	59	Misc.: Portugal	Sodium
27	France	Zinc	20,845	60	Misc.: Portugal	Zinc
28	Greece	Sodium	7,826	61	Scandinavia	Iron
29	Greece	Iron	7,826	62	Scandinavia	Sodium
30	Greece	Zinc	7,818	63	Scandinavia	Zinc
31	Indian Subcontinent	Iron	26,932	64	South America	Iron
32	Indian Subcontinent	Sodium	26,912	65	South America	Sodium
33	Indian Subcontinent	Zino	26,906	66	South America	Zinc

Italy	Iron	57,728
Italy	Sodium	57,707
Italy	Zinc	57, <mark>5</mark> 67
Japan	Iron	4,377
Japan	Sodium	4,372
Japan	Zinc	4,364
Korea	Iron	2,589
Korea	Sodium	2,589
Korea	Zinc	2,584
Mexico	Iron	22,119
Mexico	Sodium	22,118
Mexico	Zinc	22,088
Middle East	Sodium	8,685
Middle East	Iron	8,685
Middle East	Zinc	8,674
Misc.: Belgian	Zinc	128
Misc.: Belgian	Iron	128
Misc.: Belgian	Sodium	128
Misc.: Central America	Iron	137
Misc.: Central America	Zinc	137
Misc.: Central America	Sodium	137
Misc.: Dutch	Iron	302
Misc.: Dutch	Sodium	302
Misc.: Dutch	Zinc	300
Misc.: Portugal	Iron	1,135
Misc.: Portugal	Sodium	1,134
Misc.: Portugal	Zinc	1,130
Scandinavia	Iron	3,096
Scandinavia	Sodium	3,091
Scandinavia	Zinc	3,072
South America	Iron	2,311
South America	Sodium	2,310
South America	Zinc	2,301

South East Asia	Sodium	5,647
South East Asia	Iron	5,647
outh East Asia	Zinc	5,644
pain	Iron	6,903
Spain	Sodium	6,900
Spain	Zinc	6,894
hailand	Iron	6,118
hailand	Sodium	6,114
hailand	Zinc	6,112
ISA	Iron	122,568
SA	Sodium	122,461
ISA	Zinc	122,000

2)Quais regiões possuem receitas com ingredientes majoritariamente vegetais?

```
.
                                                       Title
  1 DROP VIEW IF EXISTS RegionVegetablePercentageRanking;
  2 CREATE VIEW RegionVegetablePercentageRanking AS
  3 SELECT
       r.regiao AS nome regiao,
       COUNT (DISTINCT CASE WHEN i.grupo NOT IN ('Milk and milk products', 'Snack foods', 'Aquatic foods',
    'Animal foods') THEN ir.id ingrediente END) AS total vegetais,
       COUNT(DISTINCT ir.id_ingrediente) AS total_ingredientes,
       COUNT(DISTINCT ir.id_receita) AS total_receitas,
       (COUNT(DISTINCT CASE WHEN i.grupo NOT IN ('Milk and milk products', 'Snack foods', 'Aquatic foods',
    'Animal foods') THEN ir.id ingrediente END) * 100.0) / COUNT(DISTINCT ir.id ingrediente) AS
   porcentagem vegetais
  9 FROM
        Receitas r
 11 JOIN
        Ingredientes receitas ir ON r.id = ir.id receita
 13 JOIN
        Ingredientes i ON ir.id ingrediente = i.id
15 GROUP BY
 17 ORDER BY
       porcentagem vegetais DESC;
 19 SELECT * FROM RegionVegetablePercentageRanking LIMIT 22;
```

index	NOME_REGIAO	TOTAL_VEGETAIS	TOTAL_INGREDIENTES	TOTAL_RECEITAS	PORCENTAGEM_VEGETAIS
0	Misc.: Dutch	57	66	40	86.3636363636363
1	DACH Countries	179	212	487	84.43396226415095
2	Middle East	215	256	993	83.984375
3	Australia & NZ	202	241	494	83.81742738589212
4	Canada	242	292	1112	82.87671232876713
5	Indian Subcontinent	241	291	4054	82.81786941580756
6	Korea	134	162	301	82.71604938271605
7	Mexico	250	304	3137	82.23684210526316
8	Scandinavia	166	202	404	82.17821782178218
9	Eastern Europe	166	202	565	82.17821782178218
10	Thailand	182	222	664	81.98198198199
11	Misc.: Central America	50	61	14	81.9672131147541
12	Misc.: Belgian	40	49	15	81.63265306122449
13	British Isles	220	270	1073	81.48148148148
14	Africa	202	248	650	81.45161290322581
15	China	200	246	940	81.30081300813008
16	South East Asia	182	225	611	80.8888888888889
17	Greece	186	230	934	80.8695652173913
18	Misc.: Portugal	97	121	138	80.16528925619835
19	Italy	284	357	7501	79.55182072829132
20	Japan	190	239	578	79.4979079497908
21	Caribbean	221	278	1102	79.49640287769785

3) Quais regiões possuem a maior média de gorduras por receita?

```
. .
                                   Title
 1 DROP VIEW IF EXISTS RegionFatAverageRanking;
 2 CREATE VIEW RegionFatAverageRanking AS
 3 SELECT
       r.regiao AS nome regiao,
       AVG(nc.quantidade) AS media gordura
 6 FROM
       Receitas r
 8 JOIN
       Ingredientes_receitas ir ON r.id = ir.id_receita
10 JOIN
       Nutrientes content nc ON ir.id ingrediente = nc.id ingrediente
12 WHERE
       nc.id nutriente = 1
14 GROUP BY
       r.regiao
16 ORDER BY media gordura DESC;
17 SELECT * FROM RegionFatAverageRanking LIMIT 22;
```

index	NOME_REGIAO	MEDIA_GORDURA
0	Misc.: Dutch	21326.884736842105
1	Scandinavia	19353.324574083643
2	France	17173.067878333193
3	British Isles	17108.132793709516
4	DACH Countries	17060.838876102785
5	Eastern Europe	16353.001610197904
6	Misc.: Belgian	16135.756790123458
7	Canada	15341.187846889941
8	USA	14996.273418855028
9	Italy	13821.445315528272
10	Australia & NZ	13535.283883495144
11	Indian Subcontinent	13467.79639313689
12	Middle East	12257.380754716918
13	Greece	12227.171196264626
14	South America	12011.708659217871
15	Misc.: Portugal	11823.665217391303
16	Mexico	11607.517253678232
17	Spain	11288.560922557623
18	Africa	11007.57716301899
19	Caribbean	10875.610227272737
20	Misc.: Central America	10617.594845360823
21	Japan	7651.733659730716

Perguntas de Pesquisa/Análise

- → Perguntas que **NÃO** irão ser implementadas
- 1)Quais as combinações de ingredientes mais frequentes em cada região?
- 2) Existem similaridades entre as receitas das mais diversas regiões do globo?
- 3) Quais regiões com maior diversidade de subgrupos alimentícios?

Perguntas de Pesquisa/Análise

- → Análises a serem exploradas por meio de bancos de grafos
- Podemos construir uma rede de ingredientes fazendo a projeção dos ingredientes do FooDB que se interligam por meio das receitas do CulinaryDB em que aparecem
 - 1) Distância grande entre entre dois ingredientes implica em baixa compatibilidade/disponibilidade na mesma região?
 - 2) O que ingredientes considerados "hubs" têm em comum?

Ingredientes que possuem mais ligações com outros ingredientes

```
1 MATCH (i:Ingrediente)
2 WHERE i.grupo 		 'Baking goods'
3 WITH i, [(i)-[:Relaciona]-() | 1] AS relationships
4 WITH i, REDUCE(s = 0, rel IN relationships | s + rel) AS degree
5 ORDER BY degree DESC
6 LIMIT 20
7 RETURN i, degree;
8
```

Excluímos ingredientes do grupo "Baking goods", como óleo de cozinha e sal, pois são respostas muito óbvias

Evolução do Projeto

- Modelos conceitual e lógico pouco alterados
- Dificuldades no pré-processamento dos dados (integrabilidade baixa)
- Tratamento de dados em python
- Falta de dados para responder perguntas (pesquisa)
- Ferramentas online não suportavam as grandes quantidades de dados (ajustes)

Fim