In [174]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits
 from sklearn.model_selection import train_test_split

In [302]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\madrid_2007
a

Out[302]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PΝ
0	2007- 12-01 01:00:00	NaN	2.86	NaN	NaN	NaN	282.200012	1054.000000	NaN	4.030000	156.199997	97
1	2007- 12-01 01:00:00	NaN	1.82	NaN	NaN	NaN	86.419998	354.600006	NaN	3.260000	80.809998	N
2	2007- 12-01 01:00:00	NaN	1.47	NaN	NaN	NaN	94.639999	319.000000	NaN	5.310000	53.099998	N
3	2007- 12-01 01:00:00	NaN	1.64	NaN	NaN	NaN	127.900002	476.700012	NaN	4.500000	105.300003	N
4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106.500000	15
225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999	6.760000	5
225116	2007 - 03-01 00:00:00	NaN	0.16	NaN	NaN	NaN	46.820000	51.480000	NaN	22.150000	5.700000	N
225117	2007- 03-01 00:00:00	0.24	NaN	0.20	NaN	0.09	51.259998	66.809998	NaN	18.540001	13.010000	6
225118	2007- 03-01 00:00:00	0.11	NaN	1.00	NaN	0.05	24.240000	36.930000	NaN	NaN	6.610000	N
225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000	10.260000	7

225120 rows × 17 columns

In [303]: a.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 225120 entries, 0 to 225119 Data columns (total 17 columns): Column Non-Null Count Dtype --------------0 date 225120 non-null object BEN 68885 non-null float64 1 2 CO 206748 non-null float64 3 EBE 68883 non-null float64 4 MXY 26061 non-null float64 5 NMHC 86883 non-null float64 6 NO 2 223985 non-null float64 7 NOx 223972 non-null float64 8 OXY 26062 non-null float64 float64 9 0 3 211850 non-null PM10 222588 non-null float64 10 11 PM25 68870 non-null float64 12 PXY 26062 non-null float64 13 S0_2 224372 non-null float64 14 TCH 87026 non-null float64 TOL 68845 non-null float64 15 16 station 225120 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 29.2+ MB

```
In [304]: b=a.fillna(value=200)
b
```

Out[304]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2007- 12-01 01:00:00	200.00	2.86	200.00	200.00	200.00	282.200012	1054.000000	200.00	4.030000	156.
1	2007- 12-01 01:00:00	200.00	1.82	200.00	200.00	200.00	86.419998	354.600006	200.00	3.260000	80.
2	2007- 12-01 01:00:00	200.00	1.47	200.00	200.00	200.00	94.639999	319.000000	200.00	5.310000	53.
3	2007- 12-01 01:00:00	200.00	1.64	200.00	200.00	200.00	127.900002	476.700012	200.00	4.500000	105.
4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106.
225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999	6.
225116	2007 - 03-01 00:00:00	200.00	0.16	200.00	200.00	200.00	46.820000	51.480000	200.00	22.150000	5.
225117	2007- 03-01 00:00:00	0.24	200.00	0.20	200.00	0.09	51.259998	66.809998	200.00	18.540001	13.
225118	2007- 03-01 00:00:00	0.11	200.00	1.00	200.00	0.05	24.240000	36.930000	200.00	200.000000	6.
225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000	10.

225120 rows × 17 columns

```
In [305]: b.columns
```

In [306]: c=b.head(10) c

Out[306]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	
0	2007- 12-01 01:00:00	200.00	2.86	200.00	200.00	200.00	282.200012	1054.000000	200.00	4.030000	156.199997	_
1	2007 - 12 - 01 01:00:00	200.00	1.82	200.00	200.00	200.00	86.419998	354.600006	200.00	3.260000	80.809998	:
2	2007- 12-01 01:00:00	200.00	1.47	200.00	200.00	200.00	94.639999	319.000000	200.00	5.310000	53.099998	1
3	2007- 12-01 01:00:00	200.00	1.64	200.00	200.00	200.00	127.900002	476.700012	200.00	4.500000	105.300003	:
4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106.500000	
5	2007- 12-01 01:00:00	200.00	1.35	200.00	200.00	0.56	115.300003	319.600006	200.00	9.880000	57.500000	:
6	2007- 12-01 01:00:00	5.54	1.87	4.65	200.00	0.75	165.100006	520.000000	200.00	4.780000	75.989998	1
7	2007- 12-01 01:00:00	200.00	1.57	200.00	200.00	200.00	97.830002	369.000000	200.00	4.870000	59.590000	:
8	2007- 12-01 01:00:00	200.00	0.70	200.00	200.00	200.00	107.699997	188.500000	200.00	4.560000	43.340000	
9	2007- 12-01 01:00:00	200.00	1.48	200.00	200.00	0.69	152.500000	485.200012	200.00	8.230000	80.830002	:
4 1												

Out[307]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	
(200.00	2.86	200.00	200.00	200.00	282.200012	1054.000000	200.00	4.030000	156.199997	200.00	64
	200.00	1.82	200.00	200.00	200.00	86.419998	354.600006	200.00	3.260000	80.809998	200.00	35
2	2 200.00	1.47	200.00	200.00	200.00	94.639999	319.000000	200.00	5.310000	53.099998	200.00	19
;	3 200.00	1.64	200.00	200.00	200.00	127.900002	476.700012	200.00	4.500000	105.300003	200.00	17
4	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106.500000	3.56	40
į	200.00	1.35	200.00	200.00	0.56	115.300003	319.600006	200.00	9.880000	57.500000	200.00	41
(5.54	1.87	4.65	200.00	0.75	165.100006	520.000000	200.00	4.780000	75.989998	200.00	36
•	7 200.00	1.57	200.00	200.00	200.00	97.830002	369.000000	200.00	4.870000	59.590000	200.00	25
8	200.00	0.70	200.00	200.00	200.00	107.699997	188.500000	200.00	4.560000	43.340000	200.00	30
,	200.00	1.48	200.00	200.00	0.69	152.500000	485.200012	200.00	8.230000	80.830002	200.00	37
4									_			

In [308]: sns.pairplot(d)

Out[308]: <seaborn.axisgrid.PairGrid at 0x1b69f2da970>


```
In [309]: sns.distplot(a['NOx'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[309]: <AxesSubplot:xlabel='NOx', ylabel='Density'>

In [310]: sns.heatmap(d.corr())

Out[310]: <AxesSubplot:>


```
In [311]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
y=d['TCH']
```

```
In [312]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Out[313]: LinearRegression()

```
In [314]: |print(lr.intercept_)
           1.3719012248623699
In [315]: coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
           coeff
Out[315]:
                    Co-efficient
                   1.525500e-04
             BEN
              CO
                  2.187635e-13
             EBE
                  1.530362e-04
                  7.916465e-05
             MXY
           NMHC
                  9.926747e-01
            NO_2
                  1.115168e-15
             NOx -7.853641e-16
             OXY 8.101575e-05
In [316]: | prediction=lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[316]: <matplotlib.collections.PathCollection at 0x1b6b3ad9e50>
            200
            175
            150
            125
            100
             75
             50
             25
                      25
                           50
                                75
                                     100
                                          125
                                                150
                                                     175
                                                           200
In [317]: |print(lr.score(x_test,y_test))
           0.9999974008505289
In [318]: from sklearn.linear_model import Ridge,Lasso
In [319]: rr=Ridge(alpha=10)
           rr.fit(x_train,y_train)
Out[319]: Ridge(alpha=10)
In [320]: rr.score(x_test,y_test)
Out[320]: 0.999996315282576
```

```
In [321]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[321]: Lasso(alpha=10)

In [322]: la.score(x_test,y_test)

Out[322]: 0.9999953067553261

In [323]: a1=b.head(7000)
a1

Out[323]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3	PM
0	2007- 12-01 01:00:00	200.00	2.86	200.00	200.00	200.00	282.200012	1054.000000	200.00	4.030000	156.1999
1	2007- 12-01 01:00:00	200.00	1.82	200.00	200.00	200.00	86.419998	354.600006	200.00	3.260000	80.8099
2	2007- 12-01 01:00:00	200.00	1.47	200.00	200.00	200.00	94.639999	319.000000	200.00	5.310000	53.0999
3	2007- 12-01 01:00:00	200.00	1.64	200.00	200.00	200.00	127.900002	476.700012	200.00	4.500000	105.3000
4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106.5000
6995	2007- 12-12 06:00:00	200.00	0.63	200.00	200.00	200.00	43.520000	99.480003	200.00	3.070000	23.3099
6996	2007- 12-12 06:00:00	200.00	0.52	200.00	200.00	200.00	37.279999	73.059998	200.00	1.000000	21.1100
6997	2007- 12-12 06:00:00	200.00	0.29	200.00	200.00	200.00	55.619999	118.900002	200.00	200.000000	24.7300
6998	2007- 12-12 06:00:00	0.62	0.34	0.49	0.68	0.21	59.540001	101.300003	0.33	17.809999	12.1500
6999	2007- 12-12 06:00:00	200.00	0.26	200.00	200.00	0.29	39.490002	43.330002	200.00	20.870001	8.6600

7000 rows × 17 columns

```
In [325]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [326]: h=StandardScaler().fit transform(f)
In [327]: logr=LogisticRegression(max iter=10000)
          logr.fit(h,g)
Out[327]: LogisticRegression(max_iter=10000)
In [328]: from sklearn.model selection import train test split
          h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [329]: |i=[[10,20,30,40,50,60,15,26,37,47,58,58,29,78]]
In [330]: prediction=logr.predict(i)
          print(prediction)
          [28079038]
In [331]: logr.classes_
Out[331]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                 28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                 28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
                 28079025, 28079026, 28079027, 28079036, 28079038, 28079039,
                 28079040, 28079099], dtype=int64)
In [332]: logr.predict proba(i)[0][0]
Out[332]: 9.139676819864243e-63
In [333]: logr.predict_proba(i)[0][1]
Out[333]: 3.385841902574991e-91
In [334]: logr.score(h test,g test)
Out[334]: 0.4928571428571429
In [335]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x train,y train)
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ coordinate descent.p
          y:530: ConvergenceWarning: Objective did not converge. You might want to increase the
          number of iterations. Duality gap: 8.595062614081863, tolerance: 6.715258888678174
            model = cd_fast.enet_coordinate_descent(
Out[335]: ElasticNet()
In [336]: print(en.coef )
          [ 0.00000000e+00 -0.00000000e+00 1.04181894e-05 3.57881209e-01
            9.92749489e-01 -0.00000000e+00 -0.00000000e+00 -3.49208720e-01]
```

```
In [337]: print(en.intercept_)
          -0.2870956300752425
In [338]: prediction=en.predict(x test)
          print(en.score(x test,y test))
          0.9999977009210478
In [339]: from sklearn.ensemble import RandomForestClassifier
          rfc=RandomForestClassifier()
          rfc.fit(h_train,g_train)
Out[339]: RandomForestClassifier()
In [340]: | parameters={ 'max_depth':[1,2,3,4,5],
           'min_samples_leaf':[5,10,15,20,25],
           'n_estimators':[10,20,30,40,50]
           }
In [341]: | from sklearn.model_selection import GridSearchCV
          grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
          grid_search.fit(h_train,g_train)
Out[341]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min_samples_leaf': [5, 10, 15, 20, 25],
                                    'n estimators': [10, 20, 30, 40, 50]},
                        scoring='accuracy')
In [342]: grid_search.best_score_
Out[342]: 0.5379591836734694
In [343]: rfc best=grid search.best estimator
```

```
In [344]: from sklearn.tree import plot tree
         plt.figure(figsize=(80,50))
         plot_tree(rfc_best.estimators_[2],filled=True)
          Text(1997.0526315789473, 226.5, 'gini = 0.161\nsamples = 79\nvalue = [0, 0, 0, 5, 0]
         0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 106]'),
          Text(2232.0, 226.5, 'gini = 0.0\nsamples = 26\nvalue = [0, 0, 0, 37, 0, 0, 0, 0,
         0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
          Text(2466.9473684210525, 1132.5, 'X[8] \leftarrow -0.354 = 0.315 = 35 = 35 = 35
         0]'),
          Text(2349.4736842105262, 679.5, 'gini = 0.0\nsamples = 8\nvalue = [0, 0, 0, 0, 0, 0]
         0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10]'),
          Text(2584.4210526315787, 679.5, 'gini = 0.0\nsamples = 27\nvalue = [0, 0, 0, 41,
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
          Text(3641.684210526316, 2038.5, 'X[0] <= -0.377\ngini = 0.956\nsamples = 2705\nval
         ue = [210, 204, 201, 0, 181, 182, 171, 200, 168, 173\n189, 160, 159, 183, 180, 192,
         182, 0, 195, 203\n186, 198, 208, 210, 185, 0]'),
         Text(3524.2105263157896, 1585.5, X[0] <= -1.529 \ngini = 0.798 \nsamples = 579 \nval
         ue = [0, 0, 0, 0, 0, 147, 0, 0, 0, 189, 0, 0, 0\n0, 0, 182, 0, 0, 203, 186, 0,
         0, 0, 0, 0]'),
         Text(3054.315789473684, 1132.5, 'X[1] <= 1.539\ngini = 0.76\nsamples = 407\nvalue
         0.01').
```

Conclusion: from this data set i observed that the ELASTICNET has the highest accuracy of 0.999997700921047

In []: