CS 348 Intro to Artificial Intelligence Day 7

Markov Decision Processes

- Class business
 - Anonymous feedback: https://forms.gle/RJtdYQXCnpru3SeZ7
 - Lab 1 test cases on Piazza, second resubmission (40% penalty) due April 24, 7pm
 - Lab 2 (N queens) due today 7pm
 - Lab 3 (A*) Due April 28
 - Lab 4 (Tic Tac Toe) Due May 5
 - MDP's(17.1-17.3)
 - Introduce Lab 5 (Sudoku solver) Due May 12

Markov Decision Processes

Non-Deterministic Search

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
 - Special exit actions
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions a ∈ A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Goal: Policies

 In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

• For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

Optimal Policies

$$R(s) = -0.4$$

$$R(s) = -0.03$$

$$R(s) = -2.0$$

Example: Racing

Example: Racing

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: Slow, Fast

MDP Search Trees

Each MDP state projects an expectimax-like search tree

Utilities of Sequences

Utilities of Sequences

What preferences should an agent have over reward sequences?

• More or less? [1, 2, 2] or [2, 3, 4]

Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

How to discount?

 Each time we descend a level, we multiply in the discount once

Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge

Example: discount of 0.5

- U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
- U([1,2,3]) < U([3,2,1])</p>

Discounting

Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic

• For $\gamma = 1$, what is the optimal policy?

• For γ = 0.1, what is the optimal policy?

• For which γ are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

• Smaller γ means smaller "horizon" – shorter term focus

Recap: Defining MDPs

Markov decision processes:

- Set of states S
- Start state s₀
- Set of actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)

MDP quantities so far:

- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s $\pi^*(s)$ = arg max_a Q*(s,a)

Gridworld V Values

Gridworld Q Values

Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Lots of repetition!

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1

Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

k = 100

Computing Time-Limited Values

Value Iteration

Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do

Example: Value Iteration

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Convergence

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max |R| different
 - So as k increases, the values converge

Lab 5 CSP: sudoku Due May 12,7pm

- Build 2 functions
 - Backtracking
 - Forward checking
- Both modify board with solution found and return number of recursive calls.

7	8		4			1	2	
6				7	5			9
			6		1		7	8
		7		4		2	6	
		1		5		9	3	
9		4		6				5
	7		3				1	2
1	2				7	4		
	4	9	2		6			7

Will be represented by: sudoku[0]=[7,8,0,4,0,0,1,2,0] sudoku[1]=[6,0,0,0,7,5,0,0,9] sudoku[2]=[0,0,0,6,0,1,0,7,8] sudoku[3]=[0,0,7,0,4,0,2,6,0] sudoku[4]=[0,0,1,0,5,0,9,3,0] sudoku[5]=[9,0,4,0,6,0,0,0,5] sudoku[6]=[0,7,0,3,0,0,0,1,2] sudoku[7]=[1,2,0,0,0,7,4,0,0] sudoku[8]=[0,4,9,2,0,6,0,0,7]

Lab 5 Sudoku CSP

For backtracking:

 Check before recursion for assignment that violates constraints

For Forward checking:

- Check for empty domains due to new assignment before recursion.
- Don't implement full arc consistency

7	8		4			1	2	
6				7	5			9
			6		1		7	8
		7		4		2	6	
		1		5		9	3	
9		4		6				5
Г	7		3				1	2
1	2				7	4		
	4	9	2		6			7

Will be represented by: sudoku[0]=[7,8,0,4,0,0,1,2,0] sudoku[1]=[6,0,0,0,7,5,0,0,9] sudoku[2]=[0,0,0,6,0,1,0,7,8] sudoku[3]=[0,0,7,0,4,0,2,6,0] sudoku[4]=[0,0,1,0,5,0,9,3,0] sudoku[5]=[9,0,4,0,6,0,0,0,5] sudoku[6]=[0,7,0,3,0,0,0,1,2] sudoku[7]=[1,2,0,0,0,7,4,0,0] sudoku[8]=[0,4,9,2,0,6,0,0,7]