Columbia MA Math Camp

Set Theory

Vinayak Iyer ^a

August 12, 2019

Motivation of Study Set Theory

- Set theory is one of the fundamental building blocks of mathematics
- Many important concepts later such as relations, functions and sequences are defined using the language of sets
- You will encounter a lot of this during your micro course (and math methods of course)

Table of Contents

Sets

- **Basic Concepts**
- Inclusion Comparison of Sets
- Constructing New Sets
- Cartesian Product

Small Digression on Proofs

- We went through some basics of logic where we talked about implications like $p \rightarrow q$.
- In set theory, you will frequently encounter questions which give you some information and then ask you to show that p → q.
- The way to show it is to assume that *p* is true and then use the information to show that *q* must be true
- Sometimes it is easier to prove the contrapositive i.e. try to prove that $\neg q \rightarrow \neg p$.
 - Assume that $\neg q$ is true and then proceed to show that $\neg p$ must be true.

Table of Contents

Sets

Basic Concepts

Inclusion - Comparison of Sets

Constructing New Sets

Cartesian Product

Common Notation

- \in : "in"; e.g. $x \in \mathbb{N}$ means x is a natural number.
- \forall : "for all"; e.g. $\forall x \in \mathbb{N}$ means for all natural numbers x.
- \exists : "there exists"; e.g. $\forall x \in \mathbb{N}, \exists y \in \mathbb{Z}$ such that x + y = 0
- !: "unique"; typically used in conjunction with ∃
- \Rightarrow : "implies"; e.g. $A \Rightarrow B$ means A implies B.
 - \bullet We have been using \to . We will switch to \implies from now as this is more commonly used.

Basic Concepts

- A set is a collection of objects and each individual object is called an element
- Lowercase letters are used for elements and Capital letters for sets.
- The notation $x \in X$ means that the object x is an element of the set X.
- A set is typically written in curly brackets {1,2,3}
 - The order of the elements listed does not matter
- For more complicated sets we use "set-builder" notation, e.g.

$$\{x \in \mathbb{N} | x^2 < 100\}$$

- The item before the vertical line defines the domain of our search.
- In the example above, we are searching for natural numbers which satisfy the requirement to the right of the vertical line

Common Sets

• Common sets:

- \mathbb{N} : natural numbers $\{0, 1, 2, ...\}$
- \mathbb{Z} : integers $\{..., -2, -1, 0, 1, 2, ...\}$
- ullet \mathbb{Q} : rational numbers; all numbers of form $rac{p}{q}$ with $p,q\in\mathbb{Z},q
 eq0$
- ullet \mathbb{R} : real numbers; most of econ happens here
- \bullet We do allow a set to contain **no element** at all, and we call it the **empty set** denoted by \emptyset
 - \bullet The empty set \emptyset is a subset of every set. (Why?)

Comparing sets - Inclusion

- A is a **subset** of B if every element of A is an element of B; write $A \subseteq B$ or $B \supseteq A$
 - In other words, $x \in A \implies x \in B \ \forall x$
- Two sets are **equal** if they contain exactly the same elements. A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- A set A is a **proper subset** of B if $A \subseteq B$ and $A \neq B$. This is sometimes written $A \subset B$ or $A \subseteq B$
 - Not all sets are comparable. Give me an example?
- Set inclusion is **transitive**: $A \subseteq B$ and $B \subseteq C$ implies $A \subseteq C$.
- For finite sets, the **cardinality** of a set |A| is the number of elements of A

How to prove Set Inclusion is Transitive?

Lemma 1.1

Set inclusion is transitive i.e. $A \subseteq B$ and $B \subseteq C$ implies $A \subseteq C$

Proof.

We want to show $A \subseteq C$. By definition, this means that we need to show for any $x \in A$ it must be that $x \in C$. Take any $x \in A$. By definition of $A \subseteq B$ and because $x \in A$, we have that $x \in B$. Again by the definition of $B \subseteq C$, we have $x \in C$.

Constructing new sets

• The union of A and B, $A \cup B$ is the collection of elements in A or B (or both)

$$A \cup B := \{x : x \in A \text{ or } x \in B\}$$

 The intersection of A and B, A∩B is the collection of elements that belong to both A and B

$$A \cap B := \{x : x \in A \text{ and } x \in B\}$$

If $A \cap B = \emptyset$, then we say that A and B are disjoint.

• The **difference** of A and B, $A \setminus B$ or A - B, is the collection of elements in A and not in B.

Can take unions and intersections of big collections of sets, typically indexed by an **index set**. Most common index set is \mathbb{N} , e.g.

$$\bigcup_{i\in\{0,1,2,\dots\}}A_i$$

Some properties - I

Lemma 1.2

 $A \cup B = B$ iff $A \subseteq B$ (Note that this is a equivalence because of the iff)

Proof.

We show subset containment both ways i.e. both the \implies and the \iff . Let's first prove the \iff side.

- Suppose $A \subseteq B$. WTS that $A \cup B = B$. This means that we need to show both $A \cup B \subseteq B$ and $B \subseteq A \cup B$. Let us first show $A \cup B \subseteq B$.
- Take any $x \in A \cup B$. WTS $x \in B$. Because $x \in A \cup B$, then, by definition \cup , either $x \in A$ or $x \in B$
- If $x \in A$, then by definition of $x \subseteq B$ we have $x \in B$. So either case, we have $x \in B$. Thus $A \cup B \subseteq B$ is proved. Proving $B \subseteq A \cup B$ is left as an exercise.

Now let us prove the other direction i.e. \Longrightarrow

- Given $A \subseteq B = B$, WTS $A \subseteq B$.
- Take any $x \in A$, WTS that $x \in B$. By definition of $A \cup B$ and $x \in A$, we have $x \in A \cup B$. Because $A \subseteq B = B$, we have $x \in B$. Thus \implies is proved.

Some properties - II

Lemma 1.3

Intersection is distributive with respect to the union:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Proof.

We show subset containment both ways.

- Let $x \in A \cap (B \cup C)$.
- By definition, $x \in A$ and $x \in B \cup C$, so $x \in B$ or $x \in C$.
- Thus $x \in A \cap B$ or $A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.

Now the other direction

- Let $x \in (A \cap B) \cup (A \cap C)$.
- By definition, $x \in A \cap B$ or $x \in A \cap C$, so $x \in A$ and $x \in B$ or $x \in C$.
- Thus $x \in A \cap (B \cup C)$

Complements and DeMorgan's Laws

We normally think of sets living in some larger space Ω . The **complement** of a set A, A^c , is the collection of elements not in A.

$$(A^c)^c = A$$

Complements play nicely with unions and intersections:

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Cartesian Products

The **Cartesian product** is our last common method for generating new sets: take all pairs from A and B:

$$A \times B \equiv \{(a, b) | a \in A, b \in B\}$$

Typically work in \mathbb{R}^n :

$$\mathbb{R}^{n} \equiv \{(a_{1},...,a_{n})|a_{i} \in \mathbb{R} \ \forall i = 1,...,n\}$$

Note order matters: $(2,1) \neq (1,2)$