이상탐지서비스 알고리즘 소개 및 기업 적용 사례

이재훈 연구위원 LG전자 AI빅데이터담당 jae.h.lee@lge.com

Time Series Anomaly Detection

- ✓ 서비스가 확산될수록 여러 지표를 동시에 모니터당할 필요성 증대
- ✓ 제조, 생산, SCM, 고객, 제품, 환경 등 수많은 영역에서 이상감지 환용

- 공장 설비 예지 보전
- 네트워크 침입 감지
- 부품 수급댱 이상 감지
- VOC 이슈 비윧 이상 감지
- 고객만족도지수 이상 감지
- 환경(온습도 등) 이상 감지

Challenge 1. Lack of Labels

Challenge 1. Lack of Labels

Challenge 2. Diversity of Anomaly Types

✓ 도메인 특성과 필요에 따라 다양한 형태의 Anomaly 존재

Contextual Collective Anomaly

Contextual Point Anomaly

"Out-of-range" Point Anomaly

Multivariate Anomaly?

Challenge 2. Diversity of Anomaly Types

Point Anomaly Detection

- Local Outlier Factor (LOF)
- Dynamic Threshold
- Isolation Forest
- K-Nearest Neighbors (KNN)
- Robust Random Cut Forest
- One-Class SVM
- ...

Contextual Anomaly Detection

- Robust Random Cut Forest
- Spectral Residuals
- Matrix Profile
- Hierarchical Temporal
 Memory
- DeepAnT
- LSTM AutoEncoder
- ..

Multivariate Anomaly Detection

- AutoEncoder
- LSTM AutoEncoder
- USAD
- DBSCAN
- One-class SVM
- Robust Random Cut Forest
- TadGAN
 - ---

Challenge 3. Automation & Optimization

Best Model Selection

 사용자의 필요와 Anomaly의 유형에 따라 Candidate 모델을 학습한 후 최적 모델 선택

Anomaly Type Detection

- Time Series의 특성과 Anomaly의 유형 감지
- 사용자의 필요가 고려되어야 함

Hyper-parameter Optimization

• 선택된 모델이 Anomaly를 잘 탐지하도록 Hyper-parameter 최적화

Challenge 3. Automation & Optimization

Best Model Selection

- 최적 모델 선택 어떻게 할 것인가?
- 모델의 성능을 어떻게 정의할 것인가?

Anomaly Type Detection

사용자 필요에 따른 Anomaly 정의가 선행되어야 해서 완전 자동화 어려움

Hyper-parameter Optimization

- 어떻게 최적화할 것인가?
- 모델의 성능을 어떻게 정의할 것인가?

Challenge 4. Efficiency

- ✓ 실시간으로 많은 시계열 변수를 동시 관리해야 함
 - ✓ 자동화된 Workflow 구축 필요
 - ✓ 실시간 학습 및 추론 필요

2023년 대한산업공학회/한국경영과학회 춘계공동학술대회

Challenge 5. Concept Drift

- ✓ 시간 또는 환경의 변화에 따라 데이터의 분포가 바뀜
 - ✓ 연속 학습 (Continual Learning) 필요
 - ✓ 또는 조건부 재학습 필요

Object Function Based Optimization

Object Function 정의

- ✓ How to select best model?
- ✓ How to optimize hyper-parameters?
- ✓ Anomaly예측값과 Normal예측값과의 거리가 클수독 Object Function 증가

$$C(Y_A,Y_N,N_P) = D(Y_A,Y_N) - C_P(N_P)$$

 Y_A : Anomaly도 예측한 데이터

 Y_N : Normal도 예측한 데이터

 N_P : 득정 거리 조건은 만족하는 Anomaly 데이터 수

C : Distance Cost 함수

C_P : Penalty Cost 함수

Earth Mover Distance

- ✓ 두 분포의 차이를 나타내는 거리 함수
- ✓ 이 산을 저 산으로 옮기는 데 필요한 일의 양을 거리로 계산

2023년 대한산업공학회/한국경영과학회 춘계공동학술대회

Earth Mover Distance

✓ 두 분포 간의 겹치는 영역이 작은 경우 Earth Mover Distance가 합리적

Distribution Comparison	Kullback-Leibler	Jensen-Shannon	Earth Mover
Left vs Center	1.79	0.45	1.0
Center vs Right	1.79	0.45	1.0
Left vs Right	1.79	0.45	2.0

Modeling Workflows For Stream Data

Inference Workflow

Our Point Anomaly Detection Algorithm

- ✓ 실시간 스트리밍 point 데이터가 정상/ 이상인지 탐지하는 알고리즘
- ✓ Univariate Time Series Data을 대상으로 함

Our Point Anomaly Detection Algorithm

Automatic HPO

- Anomaly threshold 포함하여 모든 파라미터 자동화
- Bayesian -based 하이퍼파라미터 최적화

Diverse Candidate Models

- 통계적 방법론: Exponential Smoothing,
 Dynamic Threshold
- 머신러닝 방법론: Spectral Residual,
 Robust Random Cut Forest

Best Model selection

- 자체 목적함수 (Object function)기반으로 최 적 모델을 자동으로 선택
- 수동으로 candidate 모델 제한 가능

Customizable detection

- Anomaly 방향 설정 가능 (Upper / Lower / Both)
- 특정 파라미터 수동 설정 가능

Our Contextual Anomaly Detection Algorithm

- ✓ 실시간 스트리밍 데이터가 구간별 정상/이상인지 판별
- ✓ Time Series 정상 패턴을 학습하고 이에서 벗어난 이상 패턴을 탐지

Our Contextual Anomaly Detection Algorithm

Automatic HPO

- 모든 파라미터 자동화
- Anomaly Score 분포 활용
- Bayesian -based 하이퍼파라미터 최적화

Continual Learning

- 초기 Training 이후 점진적으로 연속학습
- Concept Drift 대응 가능

Tumbling / Sliding window

- Tumbling Window: Overlapping 없이 이상 패 턴 구간 탐지 가능
- Sliding Window: 한 point씩 구간 Sliding하여
 이상 탐지 가능

Adaptive Threshold / Window

- Anomaly Score 분포에 기반한 최적의
 threshold 제공
- 효율적인 정상 분포 학습을 위해 매번 모델 업데이트마다 Window 조정

Our Multivariate Anomaly Detection Algorithm

- ✓ 여러 변수를 모니터링하면서 이상 또는 불량을 조기 검출
- ✓ Time Series 정상 패턴을 학습하고 이에서 벗어난 이상 패턴을 탐지

Our Multivariate Anomaly Detection Algorithm

Automatic HPO

- 모든 파라미터 자동화
- Semi-supervised 학습 기반 최적화
- Bayesian -based 하이퍼파라미터 최적화

LSTM Autoencoder

- Long-term Dependency 시계열 특성 활용
- 조기 이상진단 (Early Sensing) 가능

Neural Architecture Optimization

- 데이터에 따라 최적화된 네트워크 구조를 통해 Overfitting / Underfitting 방지
- X인자 갯수 및 Window size 고려

Adaptive Threshold / Window

- Look Back Window Size 자동 조정
- Anomaly Score기반의 자동 Threshold 설정

이상진단 서비스 적용 사례

✓ Oil Pikup 유량 검사 공정

이상진단 서비스 적용 사례

✓ Harness 압입 공정 개선

1 모니터링
이상 감지
○ 대격 선 내 이상 감지 (압입력 증가)
○ 신규 금형 제작
3 조치 결과
○ 압입력 수준 회복

AWS MarketPlace 출시

