Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Conditional Generation: Intuition

Outline

- Unconditional generation
- Conditional vs. unconditional generation

You get outputs from a random class

You get outputs from a random class

You get what you ask for

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

You get what you ask for

Conditional vs. Unconditional Generation

Unconditional

Conditional vs. Unconditional Generation

Conditional	Unconditional
Examples from the classes you want	Examples from random classes

Conditional vs. Unconditional Generation

Conditional	Unconditional
Examples from the classes you want	Examples from random classes
Training dataset needs to be labeled	Training dataset doesn't need to be labeled

Summary

- Conditional generation requires labeled datasets
- Examples can be generated for the selected class

Conditional Generation: Inputs

Outline

- How to tell the generator what type of example to produce
- Input representation for the discriminator

Randomness in the generation

Randomness in the generation

Generator Input Output Noise vector Generator Class Husky (one-hot) vector 0

0

Generator Input Output Noise vector Generator Class Husky (one-hot) vector 0

0

Discriminator

Discriminator Input

Discriminator Input

Discriminator Input

Summary

- The class is passed to the generator as one-hot vectors
- The class is passed to the discriminator as one-hot matrices
- The size of the vector and the number of matrices represent the number of classes

Outline

- What is controllable generation
- How it compares to conditional generation

Change specific features of the output

Change specific features of the output

Available from: https://arxiv.org/abs/1907.10786

Tweak the input noise vector to get different features on the output

Controlled Output

Tweak the input noise vector to get different features on the output

Controllable	Conditional

Controllable	Conditional
Examples with the features that you want	Examples from the classes you want

Controllable

Conditional

Examples with the features that you want

Training dataset doesn't need to be labeled

Examples from the classes you want

Training dataset needs to be labeled

Controllable

Conditional

Examples with the features that you want

Training dataset doesn't need to be labeled

Manipulate the z vector input

Examples from the classes you want

Training dataset needs to be labeled

Append a class vector to the input

Summary

- Controllable generation lets you control the features of the generated outputs
- It does not need a labeled training dataset
- The input vector is tweaked to get different features on the output

Vector Algebra in the *Z*-Space

Outline

- Interpolation in the Z-space
- Modifying the noise vector z to control desired features

How an image morphs into another

Z-Space with Noise Vectors

Summary

- To control output features, you need to find directions in the Z-space
- To modify your output, you move around in the Z-space

Challenges with Controllable Generation

Outline

- Output feature correlation
- Z-space entanglement

Feature Correlation

Uncorrelated Features

Add beard

Feature Correlation

Uncorrelated Features

Correlated Features

It is not possible to control single output features

It is not possible to control single output features

Summary

- When trying to control one feature, others that are correlated change
- Z-space entanglement makes controllability difficult, if not impossible
- Entanglement happens when z does not have enough dimensions

Classifier Gradients

Outline

- How to use classifiers to find directions in the Z-space
- Requirements to use this method

Classifier Gradients

Classifier Gradients

Noise vector

Classifier Gradients

Modify **just** the **noise vector** until the feature emerges

Modify **just** the **noise vector** until the feature emerges

Summary

- Classifiers can be used to find directions in the Z-space
- To find directions, the updates are done just to the noise vector

Disentanglement

Outline

- What a disentangled Z-space means
- Ways to encourage disentangled *Z*-spaces

$$v_1 = [1, 2, 3, ...]$$

$$v_2 = [5, 6, 7, ...]$$

$$v_1 = [\begin{tabular}{c} $z_1 \ $v_1 = [\begin{tabular}{c} 1, 2, 3,...] \ $v_2 = [\begin{tabular}{c} 5, 6, 7,...] \ $\text{Hair} \ $\text{color} \end{tabular}$$

$$egin{array}{c} z_1 & z_2 \ v_1 = [\ f 1,\ 2,\ 3,...\] \ v_2 = [\ f 5,\ 6,\ 7,...\] \ {}_{
m Hair}_{
m color} \ {}_{
m length} \end{array}$$

$$egin{array}{c} z_1 & z_2 \ v_1 = [\ 1,\ 2,\ 3,...\] \ v_2 = [\ 5,\ 6,\ 7,...\] \ {}_{ ext{Hair}} \ {}_{ ext{color}} \end{array}$$

Latent factors of variation

Output Features

Changes to one feature don't affect the others

Encourage Disentanglement: Supervision

Encourage Disentanglement: Supervision

Encourage Disentanglement: Supervision

$$v_1 = [1, 2, 3, ...]$$

$$v_2 = [5, 6, 7, ...]$$

$$v_1 = [1, 2, 3, ...]$$

$$v_2 = [5, 6, 7, ...]$$

$$v_1 = [1, 2, 3, ...]$$

$$v_2 = [5, 6, 7, ...]$$

Can be any loss function (e.g. BCE, W-Loss)

$$v_1 = [\begin{tabular}{ll} z_1 & z_2 & $L_{\rm new} = L_{\rm original} + {\rm reg}_d \\ v_1 = [\begin{tabular}{ll} 1, 2, 3, ...] & $V_{\rm original loss}$ & ${\rm Regularization}$ \\ \hline $v_2 = [\begin{tabular}{ll} 5, 6, 7, ...] & ${\rm Can \, be \, any \, loss \, function}$ \\ \hline $({\rm e.g. \, BCE, W-Loss})$ & ${\rm c.s. \, loss}$ \\ \hline \end{tabular}$$

Summary

- Disentangled Z-spaces let you control individual features by corresponding z values directly to them
- There are supervised and unsupervised methods to achieve disentanglement

