Fault tolerance in Composite

Formula

Assumption:

- 1) Asusme system has N tasks that need to be rebuilt during the recovery
- 2) j < i indicates that task, has higher priority
- 3) For checkpoint, now assume one component is checkpointed, and 4 threads within (also Checkpoint is atomic)
- 4) Assume each task has the same number objects to recover for now, e.g, same n
 - Checkpoint (system service is checked, atomic operation)

$$R_i^{n+1} = b_i + e_i + \sum_{i < i} \left\lceil \frac{R_i^n}{p_i} \right\rceil e_j + \left\lceil \frac{R_i^n}{p_{chk}} \right\rceil e_{chk} + \left\lceil \frac{R_i^n}{p_{re}} \right\rceil r_{chk}$$
 (1)

- $-e_{chk}$ and r_{chk} depend on how many objects, e.g, threads, and files, etc., checkpointed/restored
- Eager recovery

$$R_i^{n+1} = b_i + e_i + \sum_{j < i} \left\lceil \frac{R_i^n}{p_j} \right\rceil e_j + \left\lceil \frac{R_i^n}{p_{re}} \right\rceil (e_{\mu r} + \sum_{j=1}^N r_j(n))$$
 (2)

• On-Demand recovery

$$R_i^{n+1} = b_i + e_i + \sum_{j < i} \left\lceil \frac{R_i^n}{p_j} \right\rceil e_j + \left\lceil \frac{R_i^n}{p_{re}} \right\rceil (e_{\mu r} + \sum_{j \le i} r_j(n))$$
 (3)

One Equation

$$R_i^{n+1} = e_i + b_i + \sum_{j < i} \lceil \frac{R_i^n}{p_j} \rceil e_j + \lceil \frac{R_i^n}{p_{re}} \rceil e_{\mu r} + \lceil \frac{R_i^n}{p_{re}} \rceil e_{hr} + \lceil \frac{R_i^n}{p_{re}} \rceil e_{chk} - \text{eheckpoint}$$
eager
$$\sum_{j=1}^{N} r_j(n) \qquad \text{on-demand}$$

Variables

Assumption:

- 1) RMS
- 2)j < i implies that task_j has smaller period and higer priority than $\mathrm{task}_i,\,j$ starts from 1
 - Regular Definition
 - $-R_i \equiv \text{response time of task } i$
 - $-e_i \equiv \text{execution time of task } i$
 - $-d_i \equiv \text{deadline of task } i$
 - $-p_i \equiv \text{period of task } i$
 - $-b_i \equiv$ blocking time of task i (caused by the lower priority tasks)

• Fault Related

- $-p_{re} \equiv \text{period of fault}$
- $-e_{\mu r}^{x} \equiv$ execution time of the micro rebooting spd c^{x}
- $e_{\mu r} \equiv \max_{\forall x} \{e_{\mu r}^x\}$
- $-r_i^x(n) \equiv n$ objects recovery cost for task t_j if component c^x failed
- $r_j(n) \equiv \max_{\forall x} \{r_j^x(n)\}$
- CheckPointing
 - * $p_{chk} \equiv \text{period of checkpointing}$
 - * $e_{chk} \equiv \text{cost of saving checkpoint}$
 - * $r_{chk} \equiv \cos t$ of restoring from the checkpoint

Parameters

- Recovery
 - OD
 - EG
 - CK
- Period
 - P_{task}
 - $-P_{fault}$
 - P_{ckpt}
- Number
 - Obj_{num}
 - $Task_{num}$
 - Util
- Cost
 - PerObjRec $_{cost}$
 - $\text{ CheckSave}_{cost} = \text{CheckRestore}_{cost}$
 - $-\mu \mathbf{Reboot}_{cost}$