# Krystallmessungen II.

von

#### Dr. Philipp Heberdey,

Assistenten am mineralogischen Museum der k. k. Universität in Wien.

(Mit 28 Textaguren.

(Vorgelegt in der Sitzung am 9. Jänner 1896.)

In der nachstehenden Arbeit ist die Krystallbestimmung von 14 chemischen Substanzen enthalten, welche mir zur Untersuchung von den Herren Prof. Weidel, Prof. Zeisel und Prof. Lippmann anvertraut wurden. Die chemischen Formeln sind nach den schriftlichen Angaben der Autoren hier angeführt; wo die genaue Constitutionsformel und der Titel mangelt, wird dieselbe erst durch die bevorstehenden Publicationen des chemischen Verhaltens der Substanzen von den Herren Autoren bekannt gegeben werden.

#### I. β-Hemipinäthylestersäure

COOH
$$CH_3O-C C-COOC_2H_5$$

$$CH_3O-C CH$$

$$CH$$

Die Substanz wurde dargestellt von Herrn Dr. Wegscheider im Laboratorium Prof. Weidel's, und zwar wurden die Krystalle gewonnen durch Verdunstung einer ätherischen Lösung; sie sind wasserfrei, ihr Schmelzpunkt liegt zwischen 147—149°.

Krystallsystem: asymmetrisch.

Axenverhältniss: a:b:c=0.4972:1:0.3699.

#### Krystallmessungen.

$$\eta = 117^{\circ}54'$$
 $\xi = 93 25$ 
 $\zeta = 89 20$ 

Die Krystalle sind farblos, vollkommen durchsichtig, von säulenförmigem Habitus; sie sind an beiden Enden wohl entwickelt, die einzelnen Flächen geben gute Signale, bloss eine einzige Fläche 010 war gekrümmt.





rig. 1.

Die beobachteten Formen sind:

$$c(001), b(010), m(110), \mu(1\bar{1}0), p(\bar{1}11), \pi(\bar{1}\bar{1}1).$$

Die Ergebnisse der Messungen und Rechnung stellen sich, wie folgt. Die Rechnung stützt sich auf die mit \* bezeichneten Winkelwerthe.¹

| Buchstaben                                            | Indices                                                                                         | Gemessen                                                               | Gerechnet                                                                            |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| μ<br>c: μ'<br>c: m'<br>c: b<br>c: b'<br>c: p'<br>c: p | 001:100<br>001:110<br>001:110<br>001:110<br>001:110<br>001:010<br>001:010<br>001:111<br>001:111 | 66° 1′<br>113 59<br>116 36<br>63 24<br>86 29<br>93 31<br>46 48<br>49 0 | 62° 6′<br>66 1 *<br>113 59<br>116 36<br>63 24 *<br>86 35<br>93 25<br>46 53<br>49 0 * |
|                                                       | 100:110                                                                                         |                                                                        | 23 46                                                                                |

<sup>&</sup>lt;sup>1</sup> Auch in den folgenden Tabellen sind immer die der Rechnung zu Grunde gelegten Winkelwerthe mit \* bezeichnet.

P. Heberdev,

| Buchstaben                    | Indices                                                                                                                                                                                                                                     | Gemessen                                  | Gerechnet                                                    |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|
| m: μ<br>m: b<br>μ: b'<br>p: b | 100:110<br>100:111<br>110:110<br>110:010<br>110:010<br>111:010<br>111:11                                                                                                                                                                    | 47°58′<br>64 57<br>67 3<br>68 0<br>67 18  | 24°14′<br>74 37<br>48 0<br>64 57 *<br>67 3 *<br>68 4<br>67 6 |
| p:π<br>π:μ<br>π:μ'<br>π:μ'    | $\overline{1}11 : \overline{1}\overline{1}1$ $\overline{1}\overline{1}1 : 1\overline{1}0$ $\overline{1}\overline{1}1 : \overline{1}\overline{1}0$ $\overline{1}\overline{1}1 : \overline{1}10$ $\overline{1}\overline{1}1 : \overline{1}10$ | 39 28<br>97 58<br>67 36<br>82 22<br>72 30 | 39 9<br>98 22<br>67 36<br>81 42<br>72 47                     |

Die Auslöschung ist auf der Fläche 010 fast parallel zur Kante 010:110. Auf 010 tritt eine der beiden Axen aus, welche aber unter dem Mikroskop nur sehr undeutlich zu sehen ist, und sehr excentrisch liegt.

## II. α-Hemipinäthylestersäure.

$$COOHC_2H_5$$
 $C$ 
 $CH_3O-C$ 
 $CH$ 
 $CH$ 

Die Substanz wurde ebenfalls von Dr. Wegscheider dargestellt und erhielt er die Krystalle durch Verdunstung einer ätherischen Lösung; sie sind wasserfrei, ihr Schmelzpunkt liegt zwischen 144—148°.

Krystallsystem: monosymmetrisch.

Axenverhältniss: a:b:c=1.461:1:1.122.

 $r_i = 101^{\circ}17'$ .

Die Krystalle sind farblos, vollständig wasserhell, aufgewachsen, an dem freien Ende wohl entwickelt; sie sind nach der Queraxe gestreckt; die einzelnen Flächen sind manchmal gekrümmt und gaben selten einheitliche Signale.

99

Die beobachteten Formen sind:

$$c(001)$$
,  $a(100)$ ,  $p(122)$ .



Die Ergebnisse von Messungen und Rechnung sind in folgender Tabelle zusammengestellt; die mit \* bezeichneten Winkelwerthe sind der Rechnung zu Grunde gelegt.

| Buchstaben | Indices              | Gemessen | Gerechnet |
|------------|----------------------|----------|-----------|
| c : a      | 001:100              | 78°43′   | 78°43′ *  |
| c: a'      | 001: 100             | 101 17   | 101 17    |
| c:p        | 001:122              | 49 43    | 49 43 *   |
| c:p'       | $001:12\overline{2}$ | 130 17   | 130 17    |
|            | 001:102              |          | 20 54     |
|            | 100:102              |          | 57 49     |
| a:p        | 100:122              | 68 24    | 68 22     |
| a:p'       | $100:12\overline{2}$ | 111 36   | 111 38    |
|            | 010:122              |          | 43 48     |
| p:p'       | $122:12\overline{2}$ | 87 36    | 87 36 *   |
|            | 122:102              |          | 46 12     |

Auf 001 ist unter dem Mikroskop der Austritt beider Axen, aber nur sehr undeutlich zu sehen, wahrscheinlich wegen der Krümmung der Flächen.

Die Auslöschung auf 001 ist parallel zur Kante 001:100. Nur bei einem Krystall konnte ich mit den Bertrand'schen Platten eine Auslöschungsschiefe von 1°, bezogen auf die Kante 001:100, beobachten.

Bemerkenswerth sind die Ätzgrübchen und Subindividuen, welche unter dem Mikroskop auf 001 sichtbar sind. Die Ätzeindrücke haben die Form von Dreiecken, deren Grundlinie kurz ist und parallel zur Kante 001:100 verläuft. Die beiden anderen Schenkel sind ungefähr gleich lang und parallel den Kanten 001:122 und 001:122. Die Ätzgrübchen bestehen wie die Subindividuen im Wesentlichen aus vier Flächen, von denen die tiefste, respective die oberste parallel 001 ist.

Da sich die  $\alpha$ - und  $\beta$ -Hemipinäthylestersäure nur durch die verschiedene Stellung des Atomcomplexes  $COOC_2H_5$  von einander unterscheiden, so lag die Vermuthung nahe, dass dies Verhältniss auch in krystallographischer Hinsicht zum Ausdruck gelangen würde. In der That ergibt sich bei beiden Substanzen als Verhältniss:

a:c=1:0.735 ( $\beta$ -Hemipinäthylestersäure) a:c=1:0.769 ( $\alpha$ -Hemipinäthylestersäure),

so dass durch die Umstellung des Atomcomplexes eine wesentliche Einwirkung erfolgt in Bezug auf die b-Axe, dagegen das Verhältniss von a:c fast ungeändert erscheint.

Eine ähnliche Erscheinung findet sich auch bei anderen isomeren Verbindungen und hat auf dieselbe Helge Bäckström bei seinen krystallographischen Untersuchungen über  $\alpha$ - und  $\beta$ -Amyrilen hingewiesen. Beide Substanzen krystallisiren rhombisch, zeigen dieselbe Dispersion, Doppelbrechung; bei beiden ist die Axenebene 001 und verhält sich bei

α-Amyrilen a:c=1:1.6482β-Amyrilen a:c=1:1.6963,

so dass wie oben das Verhältniss a:c wenig geändert erscheint.

Mats Weibull<sup>2</sup> beschreibt die Krystallform des  $\alpha$ - und  $\beta$ -Platoäthylsulfinchlorid  $PtCl_2$ ,  $2S(C_2H_5)$  und gibt als Axenverhältniss an:

 $<sup>^1</sup>$  H. Bäckström, Krystallogr. Untersuchungen über α- und β-Amyrilen. Groth's Zeitschr. für Krystallogr. XIV, S. 545.

<sup>&</sup>lt;sup>2</sup> M. Weibull, Über die Platinverbindungen der Alkylsulfide. Groth's Zeitschr. für Krystallogr. XIV, 121.

α-Platoäthylsulfinchlorid 1·5876:1:1·2610, 
$$\beta = 86^{\circ}$$
 4′ β-Platoäthylsulfinchlorid 1·5567:1:1·2961,  $\beta = 82^{\circ}$ 44′,

wo die Änderung der Stellung eine sehr geringe krystallographische Verschiedenheit hervorruft; es verhält sich:

$$a:c=1:0.7946$$
  $\alpha$  Platoathylsulfinchlorid.

Als weiterer Beleg möge noch genannt werden das  $\alpha$ - und  $\beta$ -Picolinplatinchlorid  $(C_6H_7NHCl)_2PtCl_4$ , von denen das erstere monosymmetrisch:

$$a:b:c=1.272:1:0.953, \beta=71°21',$$

das letztere asymmetrisch krystallisirt:

$$a:b:c=0.90331:1:0.7082.$$

Beide wurden krystallographisch bestimmt von Sander¹ und ergibt sich:

$$a:c=1:0.7494$$
  $\alpha$   $a:c=1:0.7840$   $\beta$  Picolinplatinchlorid.

Die Übereinstimmung in dem Verhältniss a:c tritt noch deutlicher hervor, wenn man das von Fock <sup>2</sup> für das  $\beta$ -Chlorid berechnete Axenverhältniss annimmt:

$$a:b:c = 0.8973:1:0.6627$$
  
 $a:c = 1:0.7385.$ 

Es dürfte sich mithin als Gesetz ableiten lassen, dass der Übergang eines Atomcomplexes aus der  $\alpha$ - in die  $\beta$ -Stellung das Verhältniss von a:c nur wenig ändert, wenn auch die anderen krystallographischen und optischen Constanten eine bedeutende Verschiebung erleiden können. Doch scheint diese Annahme nur für den Übergang aus der  $\alpha$ - in die  $\beta$ -Stellung zu gelten, indem z. B. das  $\beta$ - und  $\gamma$ -Platosulfinchlorid  $\beta$ 

<sup>&</sup>lt;sup>1</sup> Groth's Zeitschr. für Krystallogr. XX, 242.

<sup>&</sup>lt;sup>2</sup> Ebenda, XX, 342.

<sup>&</sup>lt;sup>3</sup> Ebenda, XIV, 126.

 $PtCl_2$ ,  $2S(C_4H_9)_2$  eine bedeutende Verschiedenheit des Verhältnisses a:c zeigen:

$$a:b:c=1.4425:1:0.9989$$
  $\gamma$  a:b:c=1.3733:1:0.6910  $\beta$  Platopropylsulfinchlorid.

Zugleich mit den  $\alpha$ - und  $\beta$ -Hemipinäthylestersäure-Krystallen übergab mir Dr. Wegscheider noch eine Suite von Krystallen, welche angeblich der  $\alpha$ -Hemipinäthylestersäure angehören sollten; er erhielt sie durch Verdunsten aus einer Benzollösung; sie sind wasserfrei, ihr Schmelzpunkt liegt zwischen  $144^{1}/_{2}$ ° und 145°.

Sie sind monosymmetrisch nach der Axe b gestreckt und weisen dieselben krystallographischen Verhältnisse auf, wie jene sind, welche Hofrath v. Lang<sup>1</sup> bei den Krystallen des sauren Hemipinäthyläthers  $C_{12}H_{14}O_6+1^1/_2H_2O$  gefunden.

| v I.                                 | ang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A 11                                       | tor      |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------|
| v. Lang Formen:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Formen:                                    |          |
| (100) (110) (101) ( <del>1</del> 01) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(100) (110) (101) (\overline{1}01) (001)$ |          |
| Indices                              | Gemessen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gerechnet                                  | Gemessen |
| 100:110                              | 53°40′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53°40′                                     | 53°30′   |
| 110 : 110                            | 76 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76 46                                      | 76 36    |
| 100:101                              | 66 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66 40                                      | 66 35    |
| 101:100                              | 67 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67 41                                      | 67 41    |
| 001:101                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 20                                      | 23 20    |
| 001: 101                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 34                                      | 22 34    |
| 101: 101                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 38                                      | _        |
| 110: 110                             | 72 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72 40                                      |          |
| 110:101                              | 77 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77 0                                       |          |
|                                      | The state of the s |                                            |          |

Das Axenverhältniss ist nach v. Lang:

$$a:b:c = 1.3596:1:0.5723$$
  
 $\eta = 90°36'.$ 

Der optische Charakter ist bei beiden ident, die positive Mittellinie senkrecht auf 100.

<sup>&</sup>lt;sup>1</sup> Diese Sitzungsberichte, CII. Bd., Abth. II. a, S. 873.

Vergleicht man diese Krystalle mit denen der α-Hemipinäthylestersäure, so sieht man, dass beide sowohl im Axenverhältniss, als auch den Winkelwerthen nach so stark differiren, dass es nicht möglich ist, beide unter einer Krystallform zu vereinigen. Ob aber hier Dimorphie vorliegt oder vielleicht doch die eine Suite der Krystalle wasserhaltend ist, die andere aber nicht, ist mir nicht möglich zu entscheiden.

#### III. Trimethylcolchidimethinsäure

$$C_{15}H_{9} \left\langle \begin{array}{c} OCH_{3} \\ OCH_{3} \\ OCH_{3} \\ OCH_{3} \\ CH_{3} \\ CH_{3} \\ COOH \end{array} \right. = C_{21}H_{25}NO_{5}$$

Unter diesem Namen übergab mir Prof. Zeisel eine Suite von Krystallen, welche er alle erhielt durch Auskrystallisiren der Substanz aus einer Methylalkohollösung. Schon a priori musste ich zur Vermuthung kommen, dass die Krystalle nicht derselben, sondern zwei chemisch verschiedenen Substanzen angehören dürften. Denn einerseits zeigte ein Theil der Krystalle einen tafelförmigen Habitus, während die anderen säulenförmig entwickelt waren; anderseits wurden die tafelförmigen Krystalle schon nach 1—2 Stunden opac und undurchsichtig, während die säulenförmigen lange Zeit hindurch vollkommen klar und durchsichtig blieben; einige derselben bekamen wohl nach längerem Liegen eine mehr braune Färbung, erwiesen sich aber krystallographisch mit den durchsichtigen ident.

## a) Säulenförmige Krystalle.

Dieselben sind an beiden Enden wohl entwickelt, durchsichtig, schwach gelblich gefärbt. Dichroismus ist nicht bemerkbar. Die einzelnen Flächen sind gut ausgebildet, selten die eine oder andere gekrümmt; doch geben die meisten Flächen zwei Signale, die in der Regel bis gegen 30' von einander abweichen. Bei den goniometrischen Messungen wurde der Horizontalfaden intermediär eingestellt.

Krystallsystem: trimetrisch.

Axenverhältniss: a:b:c=0.556212:1:0.349869.

Beobachtete Formen: c(001), a(100), b(010), m(110), n(011). Die Ergebnisse von Messungen und Rechnung stellen sich wie folgt:

| Buchstaben | Indices          | Gemessen | Gerechnet |
|------------|------------------|----------|-----------|
| c:n        | 001:011          | 19°25′   | 19°17′    |
| a:m        | 100:110          | 28 55    | 29 5      |
| b:m        | 010:1!0          | 66 55    | 66 55 *   |
| b:n        | 010:011          | 70 43    | 70 43 *   |
| n:n'       | 011.011          | 38 50    | 38 34     |
| n:m        | 011:110          | \$0 46   | \$0 48    |
| n:m'       | 011:1 <u>T</u> 0 | 99 14    | 99 12     |
| m:m'       | 110:1 <u>T</u> 0 | 57 50    | 58 10     |







Fig. 6.

Auf 110 tritt eine der beiden Axen sehr excentrisch aus die Prüfung mit dem Quarzkeil erlaubt kein sicheres Urtheil über den optischen Charakter; doch scheinen die Ringe vom Centrum hinaus sich zu bewegen, also der Krystall optisch negativ zu sein. Bei Anwendung des Babinet'schen Compensators zeigt sich deutlich der optisch negative Charakter. indem der schwarze Streifen stark nach links verschoben wird in derselben Richtung, wie der negative Glimmer verschiebt.

Die Hyperbel ist gegen das Centrum zu blau, auf der convexen Seite einheitlich roth gefärbt, die Dispersion gleich der des Arragonites disymmetrisch: ε< 3λ.

Die Bertrand'schen Quarzplatten lassen auf 110 eine Auslöschungsschiefe von circa 1° erkennen, bezogen auf die Kanten der Prismenzone.

## b) Tafelförmige Krystalle.

Diese sind anfangs durchsichtig, schwach gelblich grün gefärbt, erhalten aber im verwitterten Zustande eine deutlich gelbe Farbe. Die Flächen bleiben während des Undurchsichtigwerdens gut erhalten. Die Krystalle selbst sind nach allen Seiten hin vollkommen ausgebildet; ihr quadratischer Habitusist ähnlich dem der Krystalle des Jodmethylates derselben Säure.

Krystallsystem: monosymmetrisch.

Axenverhältniss: a:b:c=1.078:1:1.297.

 $\eta = 95^{\circ}25'$ .



Fig. 7.



Fig. 8.

Beobachtete Formen:  $a(100), m(110), d(101), f(\bar{1}01), e(503)$ .

| Buchstaben                               | Indices                                                                                                                          | Gemessen                                             | Gerechnet                                                                                                             |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| a:m<br>a:d<br>a:e<br>a':f<br>m:m'<br>m:e | 100:111<br>100:110<br>100:101<br>100:503<br>100:101<br>110:110<br>110:503<br>110:111<br>110:001<br>001:111<br>001:101<br>001:100 | 46°50′<br>41 56<br>27 46<br>37 20<br>86 1.7<br>52 37 | 55°22′<br>46 50 *<br>41 56 *<br>27 46<br>37 30<br>86 20<br>52 37<br>30 22<br>93 42<br>63 20<br>53 29<br>95 25<br>49 6 |
| d:e<br>d:f<br>m:d                        | 111:101<br>101:503<br>101:101<br>101:110<br>010:110                                                                              | 14 10<br>100 44<br>59 35                             | 40 47<br>14 10<br>100 34<br>59 35 *<br>43 10                                                                          |

Die optischen Verhältnisse konnten wegen Mangel an durchsichtigem Materiale nicht bestimmt werden.

#### IV. Phenylnaphtylketon

$$C_{10}H_7$$
— $CO-C_6H_5$ .

Die Substanz wurde im chemischen Laboratorium des Herrn Prof. Lippmann dargestellt. Die Krystalle sind durchsichtig, wasserhell, theils einzeln, theils zu zweien mit einander verklebt; sie sind tafelförmig nach der Axe a und b entwickelt, nach der Axe c ausserordentlich verkürzt. Die einzelnen Flächen sind gut ausgebildet, die Signale einfach und deutlich.

Krystallsystem: monosymmetrisch.

Axenverhältniss: a:b:c = 2.712:1:2.267.

$$\eta = 99^{\circ}44'$$
.



Die beobachteten Formen sind: c(001), m(110),  $d(\overline{1}01)$ . Die Ergebnisse von Messungen und Rechnung stellen sich wie folgt:

| Buchstaben            | Indices                                                                   | Gemessen                 | Gerechnet                                           |
|-----------------------|---------------------------------------------------------------------------|--------------------------|-----------------------------------------------------|
| c: m<br>c: m'<br>c: d | 001:110<br>001:110<br>001:101<br>001:111<br>001:100<br>100:110<br>100:110 | 86°30′<br>93 30<br>43 51 | 86 30 * 93 30 43 51 * 70 12 80 16 69 25 74 48 20 39 |

Krystallmessungen.

| Buchstaben                   | Indices                                                                          | Gemessen                  | Gerechnet                                                     |
|------------------------------|----------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------|
| m' : d<br>m' : m<br>m' : 'm' | 010: T11<br>T10: T01<br>T10: T11<br>T10: T11<br>T10: T10<br>T10: TT0<br>T01: T00 | 78°40′<br>41 15<br>138 45 | 28° 0′<br>78 40 *<br>23 18<br>41 10<br>138 50<br>56 1<br>62 0 |

Die Substanz ist stark doppelbrechend; auf 001 die Auslöschung entsprechend dem Krystallsystem parallel zu den Kanten 001: 101.

Ein Axenaustritt ist auf 001 nicht sichtbar.

$$V. C_4H_5(C_2H_3O)N_2O_2$$

Die Substanz wurde im chemischen Laboratorium des Herrn Prof. Weidel dargestellt, sowie auch alle anderen, die noch folgen, dem Laboratorium des Herrn Prof. Weidel entstammen. Die Krystalle wurden gewonnen durch Verdunsten einer alkoholischen Lösung; sie sind gut ausgebildet, aufgewachsen, säulenförmig, wasserhell durchsichtig, nach der Axe b in die Länge gestreckt; parallel 010 sind sie ausgezeichnet spaltbar.







Fig. 12.

Krystallsystem: monosymmetrisch.

Axenverhältniss: a : b : c = 1.1113 : 1 : 1.1132.

 $\eta = 97^{\circ}35'$ .

Beobachtete Formen: a(100), c(001), p(111), b(010) (Spaltfläche).

P. Heberdey,

Die Ergebnisse von Messung und Rechnung sind:

| Buchstaben                              | Indices                                                                                         | Gemessen                                            | Gerechnet                                                                                    |
|-----------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------|
| c:b<br>c:a<br>c:a'<br>c:p<br>a:b<br>a:p | 001:010<br>001:100<br>001:100<br>001:111<br>001:101<br>100:010<br>100:111<br>100:101<br>010:111 | 90° 1′<br>97 35<br>82 25<br>60 23<br>89 58<br>59 40 | 90° 0′<br>97 35<br>82 25 *<br>60 23 *<br>49 20<br>90 0<br>59 40 *<br>48 15<br>49 40<br>40 20 |

Die Auslöschung ist auf den Flächen 001 und 100 entsprechend dem Krystallsystem parallel zur Kante 001:100.

Auf der Spaltfläche (010) tritt eine der beiden Axen sehr excentrisch aus.

VI. β-Amidopropionsäure.

$$\begin{array}{c} \mathrm{CH_2}\mathbf{--}\mathrm{NH_2} \\ | \\ \mathrm{CH_2} \\ | \\ \mathrm{COOH} \end{array}$$

Die Krystalle dieser Substanz, die von Prof. Weidel dargestellt wurde, erhielt er aus einer wässerigen Lösung, die, einige Tage über Alkohol gestellt, Krystalle ausscheidet. Die Substanz selbst ist ein Derivat von der vorhergehenden, entstanden durch Abspalten von Kohlensäure und Ammon.

Die Krystalle zeigen theils tafelförmigen, theils säulenförmigen Habitus. Die ersteren gestatteten überhaupt keine krystallographische Bestimmung, indem die sehr starke Convexität der Flächen, verbunden mit einer weitgehenden Corrosion, die Messungen unmöglich machte.

Die säulenförmigen Krystalle sind beiderseits entwickelt, durchsichtig, wasserhell, die Pyramiden und Pinakoidflächen sind etwas besser, die Prismenflächen sehr schlecht ausgebildet;

sie sind gekrümmt, oft sehr stark, und geben immer zahlreiche Signale. Von diesen wurde immer auf das hellste oder, wenn sie gleich stark waren, auf das mittlere eingestellt, und erhielt ich folgende krystallographische Constanten:

Krystallsystem: trimetrisch.

Axenverhältniss: a:b:c=1.3638:1:0.5941.







Fig. 14.

Die beobachteten Formen sind: a(100), m(110), p(111).

|   | Buchstaben    | Indices                                              | Gemessen                                          | Gerechnet           |
|---|---------------|------------------------------------------------------|---------------------------------------------------|---------------------|
|   | a: m          | 100 : 110<br>100 : 111                               | 53°30′<br>69 29                                   | 53°30′ *<br>69 29 * |
|   | a:p $m:p$     | 110:111                                              | 53 1                                              | 53 33 36 30         |
|   | p:p'          | $111:010$ $111:1\overline{1}1$                       | 57 5                                              | 61 28<br>57 4       |
| ; | p:'p<br>p:'p' | $111:\overline{1}11$ $111:\overline{1}\overline{1}1$ | $\begin{array}{cc} 41 & 3 \\ 72 & 12 \end{array}$ | 41 2<br>72 54       |
|   | P · P         |                                                      |                                                   | , , , , ,           |

Auf 100 ist gerade Auslöschung parallel den Kanten 100:110 und treten durch 100 beide Axen aus. Die Axenebene ist senkrecht auf die Kanten der Zone 100:110. Die Dispersion ist sehr gering und ist ihre Art nicht sicher zu stellen. Es scheint  $\rho > \beta \lambda$  zu sein. Der Axenwinkel in Luft beträgt gegen 70°.

Mit dem Quarzkeil geprüft, bewegen sich die Ringe deutlich vom Centrum weg, daher die Substanz optisch negativ. Die erste Bissectrix ist a und senkrecht auf 100, die zweite auf 010; das optische Schema daher (a: c:b).

## VII. Salzsaures Salz der β-Amido-γ-Pyridincarbonsäure

$$C_3H_3N/\frac{COOH}{NH_2}$$
 + HC1

Die Krystalle, mir anvertraut von Prof. Weidel, wurden erhalten durch sehr langsames Abdunsten einer verdünnten salzsauren Lösung: sie sind aufgewachsen, säulenförmig, von grüngelber Farbe und werden bei längerem Liegen an der Luft opac. Die Flächen der Prismenzone sind gut, die 001- und 101-Flächen schlecht entwickelt: parallel 001 und 101 sind die Krystalle gut spaltbar.

Krystallsystem: monosymmetrisch.

Axenverhältniss:  $a \cdot b : c = 0.6859 : 1 : 0.8366$ .

 $\eta = 83^{\circ}20'$ .





Die beobachteten Formen sind:

Die Ergebnisse von Messungen und Rechnung sind in folgender Tabelle zusammengestellt:

| Buchstaben                | Indices                                             | Gemessen                | Gerechne:                         |
|---------------------------|-----------------------------------------------------|-------------------------|-----------------------------------|
| g:8                       | 001:010<br>001:100<br>001:T01<br>001:T11            | 6€0° 11                 | 90° 0'<br>83 20<br>54 41<br>59 40 |
| 5: 105<br>5: 105<br>5: 17 | 001:110<br>001:110<br>010:110<br>010:210<br>010:711 | 84 30<br>55 44<br>70 38 | 55 44.#<br>70 40<br>60 46         |

| Buchstaben                         | Indices                                                                                                    | Gemessen                                            | Gerechnet                                                                                 |
|------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------|
| m: m' m: n m: n' m: t  n: n' n': t | 100:110<br>100:210<br>100:101<br>110:110<br>110:210<br>110:210<br>110:101<br>110:111<br>210:210<br>210:101 | 111°28′<br>14 58<br>53 20<br>52 2<br>38 26<br>45 28 | 34°16′<br>19 20<br>41 59<br>111 28<br>14 56<br>53 36<br>52 7<br>35 50<br>38 40<br>45 28 * |
|                                    | 111:101                                                                                                    | 10 20                                               | 29 14                                                                                     |

Herr Prof. Weidel übergab mir noch zwei Suiten von Krystallen, bei denen die Flächen (110) schlecht oder gar nicht ausgebildet, dagegen (210) gut entwickelt waren. Aus nachstehender Tabelle ergibt sich die krystallographische Identität dieser Krystalle mit den früheren.

| Krystalle o          | Krystalle der II.<br>und III. Suite |              |
|----------------------|-------------------------------------|--------------|
| Indices              | Winkelwerthe                        | Winkelwerthe |
| <u>1</u> 01:010      | 90°                                 | 90°          |
| 101:210              | 45 28'                              | 44 54'       |
| 210:010              | 70 40                               | 71 10        |
| $210:2\overline{1}0$ | 38 40                               | 38 40        |
| 110:010              | 55 44.                              | 55 44        |
| 110:210              | 14 56                               | 15 25        |
| -                    |                                     |              |

Auf 010 beträgt die Auslöschungsschiefe, bezogen auf die Kanten 010:110 = 48°30′. Ein Axenaustritt konnte nicht beobachtet werden.

# VIII. Goldsalz der $\beta$ -Amido- $\gamma$ -Pyridincarbonsäure $C_5H_6N_2+HCl+AuCl_3$ .

Unter diesem Namen erhielt ich dunkelrothe Krystalle; sie sind aufgewachsen, säulenförmig und sind nur die Prismenflächen entwickelt; ungefähr senkrecht auf die Kanten der Prismenzone verläuft eine Spaltbarkeit; jedoch sind die Spaltflächen so unvollkommen, dass von einer Messung abgesehen werden musste. Da die Auslöschung parallel den Längskanten eine gerade ist, so dürfte ein rhombisches Prisma vorliegen, und zwar  $\infty P = 88°30'$ . Die Krystalle zeigen Absorptionsdichroismus. Schwingungen senkrecht zur Kante der Prismenzone werden fast vollständig absorbirt, der Krystall erscheint schwarz. Sind die Schwingungen parallel zur Kante  $\infty P$ , so erscheint der Krystall lichtroth gefärbt. Ein Axenaustritt konnte nicht beobachtet werden.

#### IX. Chloroplatinat der β-Amido-γ-Pyridincarbonsäure

$$2\left[C_{5}H_{3}N\left\{ \begin{array}{c} COOH \\ NH_{2} \end{array} + HCl 
ight\} \right] + PtCl_{4}$$

Die Krystalle, welche mir Herr Prof. Weidel übergab, wurden gewonnen durch langsames Verdunsten aus einer verdünnten (1:2) Salzsäurelösung; sie sind säulenförmig, aufgewachsen, einige beiderseits entwickelt. Die Prismenzone ist gut ausgebildet, dagegen sind die Pyramidenflächen sehr stark convex. Sie sind nach 001 ziemlich gut spaltbar.



Die Krystalle sind rothbraun gefärbt und geben einige derselben sehr schöne Totalreflexe, welche als braun gefärbte Signale im Fernrohr erscheinen und von den wirklichen Flächensignalen der Pinakoide nur ganz wenig seitlich verschoben erscheinen.

Krystallsystem: asymmetrisch.

#### Krystallmessungen.

Axenverhältniss: a:b:c:1.8372:1:1.1258.

Die beobachteten Formen sind:

$$a(100), b(010), c(001), p(\bar{1}11), \pi(\bar{1}\bar{1}1).$$

Die Ergebnisse von Messungen und Rechnung stellen sich wie folgt:

| Buchstaben | Indices                   | Messung | Rechnung |
|------------|---------------------------|---------|----------|
| c : a      | 001:100                   | 74°25′  | 74°25′*  |
| c: b       | 001:010                   | 81 15   | 81 15 *  |
|            | 001: 101                  |         | 35 26    |
|            | 001:011                   |         | 42 40    |
|            | 001:110                   |         | 74 25    |
|            | 100:110                   |         | 59 4     |
| a: b       | 100:010                   | 87 2    | 87 2 *   |
|            | <u>1</u> 00 : <u>1</u> 01 |         | 70 9     |
| a':p       | $\bar{1}00:\bar{1}11$     | 80 16   | 79 25    |
| $a':\pi$   | 100 : 111<br>-            | 73 15   | 73 15 *  |
| b:p        | 010: 111                  | 40 40   | 40 8     |
|            | 010:110                   |         | 27 58    |
|            | 010:110                   |         | 30 21    |
| $b':\pi$   | 010:111                   | 46 29   | 46 29 *  |

Die Krystalle zeigen keinen merkbaren Dichroismus. Auf 100 beträgt die Auslöschungsschiefe 13°21′, bezogen auf die Kante 100:010.

Auf 001 tritt eine der beiden Axen aus, sehr excentrisch und nur sehr schwer sichtbar.

Die Krystalle dieser Substanz erhielt Prof. Weidel aus einer Ligroinlösung. Sie. sind durchsichtig, wasserhell, aufgewachsen. Die Flächen (111) und (011) sind gut entwickelt, dagegen (010) und (110) stark gekrümmt, ja bei einigen Krystallen ist die Krümmung so stark, dass sie sich bogenförmig nach oben hin verjüngen. Die Signale sind undeutlich, immer zahlreich.

Die Krystalle scheinen zwar der Flächenentwicklung nach triclin zu sein, jedoch unter dieser Annahme können sie nicht

gerechnet werden. Es wurde daher monosymmetrisches System, und zwar eine hemiëdrische Ausbildung angenommen.<sup>1</sup> Diese Annahme findet dadurch eine Stütze, dass die Auslöschung auf 100 eine gerade ist, also eine optische Symmetrie vorzuliegen scheint. Alle Krystalle waren gleich entwickelt und konnten holoëdrische Formen nicht aufgefunden werden.

Krystallsystem: monosymmetrisch (hemiëdrisch). Axenverhältniss: a:b:c=0.6171:1:0.5319.  $\eta=85^{\circ}28'$ .



Fig. 19.



Fig. 20.

Die beobachteten Formen sind:

$$a(100), m(110), t(011), p(\bar{1}11).$$

| Buchstaben | Indices   | Gemessen | Gerechnet |
|------------|-----------|----------|-----------|
| a:111      | 100:110   | 52°30′   | 52°30′*   |
|            | 100:001   |          | 85 28     |
| a:t        | 100:011   | 86 0     | 86 0 *    |
| a':p       | 100:111   | 55 14    | 55 15     |
|            | 010:110   |          | 37 30     |
|            | 010:011   |          | 62 4      |
|            | 010: 111  |          | 67 18     |
|            | 001:011   |          | 27 56     |
| 111 : t    | 110:011   | 66 2     | 66 2 *    |
| m:p        | 110 : 111 | 92 48    | 92 20     |

<sup>&</sup>lt;sup>1</sup> Über hemiedrische Formen des monoklinen Systems cf. Liebisch, phys. Krystall. 1891, S. 49. Ferner Groth's Zeitschr. für Krystallogr. XIX, S. 237.

115

Die Auslöschung ist auf 100 parallel den Kanten 100:110. Ein Axenaustritt konnte nicht beobachtet werden.

XI. 
$$C_{13}H_{10}N_2O$$
.

Die Krystalle, welche ich vom Herrn Prof. Weidel erhielt, und die aus einer alkoholischen Lösung erhalten wurden, sind. aufgewachsen, farblos, durchsichtig; die einzelnen Flächen sind nicht gut entwickelt, die Pyramiden und Domenflächen sind klein und oft corrodirt. Namentlich war es unmöglich, die Lage der mit höheren Indices zu bezeichnenden Flächen sicher festzustellen, da sie überhaupt nur an einzelnen Krystallen und sehr schlecht ausgebildet vorkommen; es lässt sich nur constatiren, dass sie in der Nähe der angegebenen Pyramiden liegen. Ob sie Vicinalflächen sind oder die Ungenauigkeit der Messung die bedeutende Differenz zwischen Rechnung und Beobachtung herbeiführt, lässt sich nicht entscheiden.

Krystallsystem: asymmetrisch.

 $\xi = 90^{\circ}10'$ 

 $\eta = 78 \ 16$ 

 $\zeta = 88 49$ .

Axenverhältniss: a:b:c=1.1295:1:0.9113.



Fig. 21.



Fig. 22.

Die vorhandenen Formen sind:

 $a(100), m(110), n(340), t(011), t'(0\bar{1}1), p(111), p'(\bar{1}11), 'p(1\bar{1}1),$  $'p'(\bar{1}\bar{1}\bar{1}), q(322), r(533), s(5\bar{9}9), v(\bar{2}\bar{5}\bar{5}).$ 

P. Heberdey,

Die Beobachtungen stellen sich zur Rechnung wie folgt:

| Buchstaben           | Indices                         | Messung        | Rechnung         |
|----------------------|---------------------------------|----------------|------------------|
|                      | 001:100                         |                | 78°16′           |
|                      | 001:010                         |                | 89 25            |
|                      | 001:111                         | •              | 50 50            |
| a: n                 | 100:340                         | 60 21          | 59 50            |
| a:m                  | 100:110                         | 52 30          | 52 30 *          |
| a:m'                 | 100:110                         | 50 55          | 50 55 *          |
|                      | 100:010                         |                | 91 17            |
| 1                    | 100:011                         |                | 99 42            |
|                      | 100:011                         |                | 82 6             |
| a:p                  | 100:111                         | 71 30          | 70 52            |
| a:'p                 | 100:111                         | 70 4           | 68 29            |
| a:q                  | 100:322                         | 60 10          | 58 58            |
| a:r                  | 100:533                         | 51 54          | 53 4             |
| a:s                  | 100:599                         | 80 54          | 81 4             |
| a':p'                | 100:111                         | 55 26          | 55 34            |
| a':'p'               | 100:111                         | 56 4           | 56 4 *           |
| $a': \iota$          | 100 : 255                       | 70 20          | 70 34            |
|                      | 010:110                         |                | 38 47            |
|                      | 010 : 110                       |                | 37 48            |
|                      | 010:011                         |                | 49 8             |
| 1                    | 010-: 111                       |                | 51 11            |
| m: m'                | 110 : 110                       | 76 25          | 76 35            |
| 111 : 11             | 110:340                         | 7 20           | 7 51             |
| _                    | 110:011                         | 12.00          | 65 33            |
| m : p                | 110:111                         | 46 30          | 46 1             |
| 'm': t               | 110:011                         | 114 58         | 114 27           |
| 'm':t' 'm':'p'       | 110:011<br>110 111              | 53 10          | 52 18<br>38 30 * |
| m:p $m':v$           |                                 | 38 30<br>45 58 | 38 30 *<br>45 1  |
| m: v' 'm': s         | 110 : 255<br>110 : 599          | 45 58<br>65 45 | 45 1<br>65 52    |
|                      | 110:599                         | 95 0           | 95 29            |
| p:'p' p: t           | 111:011                         | 27 46          | 28 49            |
| $p \cdot t$ $p' : t$ | 111:011                         | 25 30          | 24 53            |
| p : t $p' : t'$      | $\overline{11}1:0\overline{1}1$ | 26 2           | 26 2 *           |
| 'p:t'                | $1\overline{1}1:0\overline{1}1$ | 28 50          | 29 25            |
| r:s                  | 533:599                         | 28 57          | 28 0             |
| t:t'                 | $011:0\overline{1}1$            | 81 32          | 82 22            |
|                      |                                 |                |                  |

Auf 100 ist die Auslöschung fast parallel zu den Kanten 100:110. Ein Axenaustritt konnte nicht beobachtet werden.

## XII. $C_9H_9NO_2$ .

Die Krystalle dieser Substanz, mir übergeben vom Herrn Prof. Weidel, waren erhältlich sowohl aus Ligroin, als auch aus Alkohol. Sie sind farblos, durchsichtig, frei nach allen Seiten entwickelt; die Flächen sind schlecht ausgebildet, die Signale undeutlich.

Krystallsystem: monosymmetrisch.

Axenverhältniss: a:b:c=0.4679:1:0.4824.

 $\eta = 82^{\circ}2'$ .



Fig. 23.



Fig. 24.

Die beobachteten Formen sind:

$$b(010), m(110), t(011), p(\bar{1}21).$$

Die Ergebnisse von Messung und Rechnung stellen sich wie folgt:

| Buchstaben | Indices  | Messung | Rechnung |
|------------|----------|---------|----------|
| b:t        | 010:011  | 64°58′  | 65°18′   |
|            | 010:121  |         | 54 54    |
|            | 010:111  |         | 70 17    |
| b : 111    | 010:110  | 65 15   | 65 15 *  |
|            | 100:001  |         | 82 2     |
|            | 100:110  |         | 24 45    |
|            | 001: 101 |         | 49 59    |
|            | 011:001  |         | 24 45    |
| t:'m       | 011: 110 | 86 15   | 86 28    |
| t:m        | 011:110  | 73 10   | 73 10 *  |
| t:m'       | 011:110  | 93 45   | 93 32    |
|            |          |         |          |

P. Heberdey,

| Indices  | Messung                                                              | Rechnung                                                                                    |
|----------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 011:110  | 106°50′                                                              | 106°50′                                                                                     |
| 011: 121 | 43 48                                                                | 43 44                                                                                       |
| 011:011  | 49 30                                                                | 49 30                                                                                       |
| 121:111  |                                                                      | 15 23                                                                                       |
| 121:110  | 43 2                                                                 | 42 34                                                                                       |
| 110:110  | 49 30                                                                | 49 30 *                                                                                     |
| T10: T11 |                                                                      | 44 43                                                                                       |
| 111: T01 |                                                                      | 19 43                                                                                       |
|          | 011: T21<br>011: 0T1<br>T21: T11<br>T21: T10<br>110: T10<br>T10: T41 | 011: 121 43 48<br>011: 011 49 30<br>121: 111<br>121: 110 43 2<br>110: 110 49 30<br>110: 111 |

Ein Axenaustritt konnte nicht beobachtet werden.

XIII. 
$$C_{q}H_{q}NO = NH$$
.

Die Krystalle, erhalten vom Herrn Prof. Weidel, sind allseits entwickelt, durchsichtig, schwach gelbgrün gefärbt und zeichnen sich aus durch prachtvolle Totalreflexe. Im auffallenden Licht erscheinen einzelne Flächen blau gefärbt. Die Flächen sind gut entwickelt; bei den meisten Individuen ist je ein Paar der Prismenflächen ähnlich den sanduhrförmigen Augiten gebaut.



Die Entwicklung der Krystalle ist vorherrschend nach (110), die Pinakoide 100 und 010 sind schmal und schlecht, dagegen 001 immer gut ausgebildet.

Krystallsystem: monosymmetrisch.

Axenverhältniss: a:b:c=0.7004:1:0.9785.

 $\tau_i = 71^{\circ} 54'$ .

Die beobachteten Formen sind:

 $a(100), c(001), b(010), m(110), n(210), t(011), p(\bar{1}11).$ 

Rechnung und Beobachtung stellen sich wie folgt:

| 1          |                                 |          |           |
|------------|---------------------------------|----------|-----------|
| Buchstaben | Indices                         | Gemessen | Gerechnet |
|            |                                 |          |           |
| · ·        | 001:100                         |          | 71°54′    |
| c:t        | 001:011                         | 34°31′   | 33 44     |
|            | 001:111                         |          | 37 56     |
| c:p        | $001 : \overline{1}11$          | 51 56    | 52 23     |
| c:m        | 001:110                         | 76 54    | 76 54 *   |
| a : 11     | 100:210                         | 25 21    | 24 57     |
| a : 111    | 100:110                         | 42 56    | 42 56     |
|            | 100:111                         |          | 48 30     |
| a:b        | 100:010                         | 89 58    | 90 0      |
|            | 100:011                         |          | 75 6      |
| b:c        | 010:001                         | 90 1     | 90        |
| b:t        | 010:011                         | 56 21    | 56 8      |
| b : 111    | 010:110                         | 47 4     | 47 4 *    |
|            | 010:111                         | •        | 64 27     |
| 111:11     | 110:210                         | 18 0     | 17 59     |
| m:t        | 110:011                         | 55 29    | 55 29 *   |
|            | 110:111                         |          | 38 58     |
|            | 011:111                         |          | 26 36     |
|            | 011: 111                        |          | 35 9      |
| t:m'       | $011 : \overline{1}10$          | 78 18    | 78 15     |
| p:m'       | $\overline{1}11:\overline{1}10$ | 51 10    | 50 43     |
| 7          |                                 |          |           |

Auf 001 ist die Auslöschung parallel den Kanten 001:100. Dabei zeigt sich ein eigenthümliches Phänomen. Laufen die Schwingungsrichtungen im Krystall parallel zu denen der gekreuzten Nicol, so erscheint die Platte dunkelviolblau; wird der Krystall dann gedreht, so verschwindet die blaue Farbe und in der 45°-Stellung ist die Farbe hellgelb; bei weiterer Drehung dunkelt die gelbe Farbe immer mehr ab, und in der 90°-Stellung ist die Farbe wieder dunkelviolblau.

Auf 001 tritt eine der beiden Axen nahezu centrisch aus, doch so undeutlich, dass eine genaue Feststellung des optischen Charakters nicht möglich war. Bei Anwendung des Babinet'schen Compensators scheint sich der schwarze Streifen nach

entgegengesetzter Richtung hin zu verschieben, als der negative Glimmer dies bewirkt, also die Substanz optisch positiv zu sein.

Dichroismus ist nicht bemerkbar.

## XIV. C<sub>5</sub>H<sub>7</sub>N<sub>3</sub>SO.

Die Krystalle dieser Substanz, welche Prof. Weidel mir übergab, entstammen zwei Lösungen, die einen aus einer unreinen, die anderen aus einer reinen Lösung. Erstere sind theilweise undurchsichtig und braun gefärbt, letztere vollkommen klar und durchsichtig, aber ausserordentlich klein; krystallographisch sind beide ident. Die einzelnen Flächen sind häufig gekrümmt und haben einzelne Krystalle eine Configuration, welche den Anschein erweckt, als ob sie Theile einer Kugel wären. Die Fläche 100 gibt immer eine Reihe von Signalen.

Krystallsystem: monosymmetrisch. Axenverhältniss: a:b:c=2.783:1:1.278.  $\gamma=69°22'$ .







Fig. 28.

Die beobachteten Formen sind:

Messungen und Rechnung sind in folgender Tabelle zusammengestellt:

#### Krystallmessungen.

| Buchstaben | Indices  | Messung | Rechnung |
|------------|----------|---------|----------|
|            | 001:013  |         | 16°26′   |
|            | 001:011  |         | 41 30    |
|            | 001:100  |         | 69 22    |
|            | 001:110  |         | 82 44    |
| a:t        | 100.013  | 70°14′  | 70 14 *  |
|            | 100:011  |         | 74 42    |
|            | 100:111  |         | 61 47    |
| a:m        | 100:110  | 68 58   | 68 58 *  |
| a':t       | 100:013  | 109 46  | 109 46   |
|            | 010:011  |         | 48 30    |
|            | 010:013  |         | 73 34    |
|            | 010:111  |         | 52 46    |
|            | 010:110  |         | 21 2     |
|            | 100:111  |         | 42 43    |
| m . $m'$   | 110: 110 | 42 4    | 42 4 *   |
|            | 011:013  |         | 25 4     |
|            | 011:111  |         | 12 25    |
| m:t'       | 110:011  | 97 30   | 98 2     |

Die Krystalle sind gut spaltbar nach (110), (100), (013) und sind an jedem Individuum die Spaltrisse unter dem Mikroskop sichtbar.

Die Substanz ist stark doppelbrechend, auf 100 die Auslöschung parallel zur Kante 100:110. Ein Axenaustritt konnte nicht beobachtet werden.

Die Krystalle sind dichroitisch, und zwar ist es ein blosser Absorptionsdichroismus, indem die Farbe wechselt von lichtgrün bis dunkelgrün. Verlaufen die Schwingungen parallel zur Kante 100:110, so ist die Farbe dunkelgrün, gehen sie senkrecht zur Kante, so erscheint der Krystall fast farblos.

Diese krystallographischen Untersuchungen wurden im mineralogischen Museum der k. k. Wiener Universität ausgeführt und sage ich hiemit dem Herrn Prof. Schrauf geziemend Dank für seine gütige Unterstützung.

## P. Heberdey, Krystallmessungen.

## Inhaltsverzeichniss.

|       |                                                  | Seite |
|-------|--------------------------------------------------|-------|
| I.    | β-Hemipinäthylestersäure                         | 96    |
| II.   | α-Hemipinäthylestersäure                         | 98    |
| III.  | Trimethylcolchidimethinsäure                     | 103   |
| IV.   | Phenylnaphtylketon                               | 106   |
| V.    | $C_4H_5(C_2H_3O)N_2O_2$                          | 107   |
| VI.   | β-Amidopropionsäure                              | 108   |
| VII.  | Salzsaures Salz der β-Amido-γ-Pyridincarbonsäure | . 110 |
| VIII. | Goldsalz derselben Säure                         | 111   |
| IX.   | Chloroplatinat derselben Säure                   | 112   |
| X.    | $C_{19}H_{15}N_3$                                | 113   |
| XI.   | $C_{13}H_{10}N_2O$                               | 115   |
|       | $C_9H_9NO_2$                                     |       |
| XIII. | $C_9H_9NO = NH$                                  | 118   |
| XIV.  | $C_5H_7N_3SO$                                    | 120   |
|       |                                                  |       |