Relatório de Análise de Algoritmos de Ordenação

Este relatório analisa a eficiência dos algoritmos de ordenação: Bubble Sort, Insertion Sort e Quick Sort, com base em seus tempos de execução em três tipos de conjuntos de dados: Aleatório, Crescente e Decrescente.

Tipo de Conjunto de Dados	Bubble Sort	Insertion Sort	Quick Sort
Aleatório	92.43	2.32	16.20
Crescente	13.19	0.41	12.56
Decrescente	103.68	0.26	25

A análise de desempenho dos algoritmos de ordenação pode ser explicada considerando sua complexidade computacional e o comportamento em diferentes tipos de conjuntos de dados. Diferenças de eficiência são as seguintes:

1. Bubble Sort

O Bubble Sort é um algoritmo simples que realiza comparações e trocas entre elementos adjacentes até que o conjunto esteja ordenado. o que torna o algoritmo muito ineficiente para grandes conjuntos de dados. Este algoritmo tem um desempenho ruim em todos os tipos de dados, mas seu pior desempenho ocorre em dados decrescentes.

2. Insertion Sort

O Insertion Sort é mais eficiente que o Bubble Sort, especialmente para conjuntos pequenos ou quase ordenados, já que ele insere cada elemento na posição correta em um conjunto ordenado. mas ele ainda desempenha melhor que o Bubble Sort, especialmente em dados já ordenados (crescente).

3. Quick Sort

O Quick Sort é o algoritmo mais eficiente dos três. Ele realiza uma divisão recursiva do conjunto de dados, permitindo que o algoritmo se mantenha eficiente mesmo para conjuntos grandes. O Quick Sort se desempenha bem em todos os tipos de dados, e seu desempenho é o melhor em comparação com o Bubble Sort e o Insertion Sort.