DÉPARTEMENT

Année Univers

d

Travaux Dirigés.

Algèbre :

Exercice 1

- 1 Effectuer la division euclidienne (suivant les p
 - (a) $3X^5 + 4X^2 + 1$ par $X^2 + 2X + 3$;
 - (c) $X^4 + (1+i)X^2 + 1$ par $X^2 1$; (d) 2
- 2 Effectuer la division suivant les puissances cro
 - (a) $A = X^4 + X^3 2X + 1$ par $B = X^2 + X$
 - (b) $A = X^6 + 2X^4 + X^3 + 1$ par $B = X^3 + X^2$

Exercice 2

- $\boxed{1}$ Déterminer le reste de la division euclidienne d
- $\boxed{2}$ Déterminer le reste de la division euclidienne ϵ
- 3 Montrer que le polynôme $P = nX^{n+1} (n+1)Y$

Exercice 3

- 1 Factoriser en produit de polynômes irréductible
 - a) $X^4 + 4$;
 - c) $X^4 + X^2 + 1$;

Exercise 4
Soit
$$P = X^7 - 5X^6 + 8X^5 - 4X^4 - 4X^3 + 8X^2 - 5$$

- $\boxed{1} \ \text{Montrer que 1 et } -1 \ \text{sont des racines de } P.$
- 2 Déterminer P_1 tel que $P = (X-1)^{\alpha}(X+1)^{\beta}F$
- 3 Montrer que $P_1(z) = 0$ si et seulement si $z + \frac{1}{z}$
- 4 En déduire la décomposition de P dans $\mathbb{C}[X]$.

Exercice 5

Soit $P \in \mathbb{R}[X]$ défini par:

$$P = X^8 + 2X^6 +$$

- 1 Montrer que $j = e^{\frac{2i\pi}{3}}$ est une racine multiple d
- $\boxed{2}$ En remarquant que P est un polynôme pair, de
- $\fbox{3}$ Factoriser P dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$.