Lezione 15

Saverio Salzo*

20 Ottobre 2022

1 Limite di una successione di numeri reali

Ricordiamo che una successione $(a_n)_{n\in\mathbb{N}}$ di numeri reali non è altro che una funzione definita in \mathbb{N} a valori in \mathbb{R} , cioè $a: \mathbb{N} \to \mathbb{R}$. Dato che $+\infty$ è l'unico punto di accumulazione per \mathbb{N} in $\overline{\mathbb{R}}$ possiamo considerare il limite di a per $n \to +\infty$. In accordo alla definizione di generale di limite si ha che $\lim_{n\to+\infty} a_n = l$ se e solo se

$$\forall V \text{ intorno di } l \; \exists \alpha \in \mathbb{R}_+ \text{ t.c. } \forall n \in \mathbb{N} \colon n > \alpha \; \Rightarrow \; a_n \in V.$$

Dato che $n > \alpha \iff n > \lfloor \alpha \rfloor$, nella definizione di sopra si può fare in modo di prendere $\alpha \in \mathbb{N}$. Questo conduce alla seguente.

Definizione 1.1. Sia $(a_n)_{n\in\mathbb{N}}$ una successione di numeri reali e $l\in\overline{\mathbb{R}}$. Si dice che la successione $(a_n)_{n\in\mathbb{N}}$ tende a l per n che tende a $+\infty$ e si scrive

$$\lim_{n \to +\infty} a_n = l \quad \text{oppure} \quad a_n \to l \text{ per } n \to +\infty$$

se per ogni intorno V di l esiste $\nu \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}: n > \nu \Rightarrow a_n \in V.$$

Se $l \in \mathbb{R}$, si dice anche che la successione $(a_n)_{n \in \mathbb{N}}$ converge ad l per $n \to +\infty$. Poi se $l = +\infty$ (risp. $l = -\infty$), si dice anche che la successione $(a_n)_{n \in \mathbb{N}}$ diverge positivamente (risp. negativamente) per $n \to +\infty$. La successione si dice regolare se esiste $l \in \mathbb{R}$ tale che $\lim_{n \to +\infty} a_n = l$. Altrimenti si dice che non è regolare o indeterminata.

Come nel caso delle funzioni si hanno i seguenti casi speciali

• Caso $l \in \mathbb{R}$. Allora $\lim_{n \to +\infty} a_n = l$ se e solo se

$$\forall \varepsilon > 0 \,\exists \, \nu \in \mathbb{N} \text{ tale che } \forall \, n \in \mathbb{N} \colon n > \nu \ \Rightarrow \ |a_n - l| < \varepsilon. \tag{1}$$

^{*}DIAG, Sapienza Università di Roma (saverio.salzo@uniroma1.it).

• Caso $l = +\infty$. Allora $\lim_{n \to +\infty} a_n = +\infty$ se e solo se

$$\forall \beta > 0 \,\exists \nu \in \mathbb{N} \text{ tale che } \forall n \in \mathbb{N} \colon n > \nu \implies a_n > \beta.$$
 (2)

• Caso $l = -\infty$. Allora $\lim_{n \to +\infty} a_n = -\infty$ se e solo se

$$\forall \beta > 0 \,\exists \nu \in \mathbb{N} \text{ tale che } \forall n \in \mathbb{N} \colon n > \nu \implies a_n < -\beta.$$

Osservazione 1.2. Considereremo anche successioni definite in \mathbb{N}^* , per esempio la successione $(1/n)_{n\in\mathbb{N}^*}$. Le definizioni di limite si applicano uguali anche a questo caso.

Esempio 1.3.

(i) Sia $a \in \mathbb{R}$ con $a \neq 0$. Allora

$$\lim_{n \to +\infty} \frac{a}{n} = 0.$$

Infatti, per ogni $\varepsilon > 0$ si ha

$$\left|\frac{a}{n} - 0\right| < \varepsilon \iff \frac{|a|}{n+1} < \varepsilon \iff n > \frac{|a|}{\varepsilon} \iff n > \frac{|a|}{\varepsilon}.$$

Perciò se si prende $\nu=\lfloor |a|/\varepsilon\rfloor$ (parte intera di $|a|/\varepsilon$), allora per ogni $n>\nu$, risulta $n>|a|/\varepsilon$ e quindi

$$\left|\frac{a}{n} - 0\right| < \varepsilon.$$

(ii) Sia $k \in \mathbb{N}^*$. Proviamo che

$$\lim_{n \to +\infty} n^k = +\infty \quad \text{e} \quad \lim_{n \to +\infty} \frac{1}{n^k} = 0.$$

Sia $\beta > 0$. Dobbiamo provare che

 $n^k > \beta$ da un certo indice in poi.

Allora

$$n^k > \beta \iff n > \sqrt[k]{\beta} \iff n > \lfloor \sqrt[k]{\beta} \rfloor.$$

Perciò preso $\nu = \lfloor \sqrt[k]{\beta} \rfloor$, risulta $n > \nu \implies n^k > \beta$. Proviamo la seconda. Sia $\varepsilon > 0$. Si tratta di provare che

$$\frac{1}{n^k} < \varepsilon$$
 da un certo indice in poi.

Allora

$$\frac{1}{n^k} < \varepsilon \iff \frac{1}{\varepsilon} < n^k \iff \frac{1}{\sqrt[k]{\varepsilon}} < n \iff \left\lfloor \frac{1}{\sqrt[k]{\varepsilon}} \right\rfloor < n$$

Quindi preso $\nu = \lfloor 1/\sqrt[k]{\varepsilon} \rfloor$, si ha $n > \nu \implies 1/n^k < \varepsilon$.

(iii) Consideriamo la successione armonica generalizzata $(n^r)_{n\in\mathbb{N}}$ con $r\in\mathbb{R}$. Allora

$$\lim_{n \to +\infty} n^r = \begin{cases} +\infty & \text{se } r > 0\\ 1 & \text{se } r = 0\\ 0 & \text{se } r < 0. \end{cases}$$

Consideriamo il caso r > 0. Per ogni $\beta > 0$, si ha

$$n^r > \beta \iff n > \beta^{1/r} \iff n > \lfloor \beta^{1/r} \rfloor.$$

Quindi se si prende $\nu = \lfloor \beta^{1/r} \rfloor$, allora

$$\forall n \in \mathbb{N}: n > \nu \Rightarrow n^r > \beta.$$

Se r=0, è immediato. Se r<0, allora

$$n^{r} = \frac{1}{n^{-r}} < \varepsilon \iff \frac{1}{\varepsilon} < n^{-r} \iff \frac{1}{\varepsilon^{\frac{1}{r}}} < n \iff \left| \frac{1}{\varepsilon^{\frac{1}{r}}} \right| < n.$$

Perciò se si prende $\nu = \lfloor 1/(\varepsilon^{\frac{1}{r}}) \rfloor$, si ha $n > \nu \Rightarrow n^r < \varepsilon$.

(iv) Sia a > 0. Proviamo che

$$\lim_{n \to +\infty} \sqrt[n]{a} = 1.$$

Se a=1, la tesi è ovvia perché $\sqrt[n]{a}=1$. Supponiamo a>1 (e quindi si ha $\sqrt[n]{a}>1$) Sia $\varepsilon>0$. Dobbiamo provare che

$$\sqrt[n]{a} - 1 < \varepsilon$$

per tutti gli interi n sufficientemente grandi. Evidentemente, dato che la funzione potenza n-esima e radice n-esima sono strettamente crescenti in \mathbb{R}_+ , si ha

$$|\sqrt[n]{a} - 1| = \sqrt[n]{a} - 1 < \varepsilon \iff \sqrt[n]{a} < 1 + \varepsilon \iff a < (1 + \varepsilon)^n.$$

Adesso ricordiamo la disuguaglianza di Bernoulli $1 + n\varepsilon \le (1 + \varepsilon)^n$. Perciò è chiaro che se $a < 1 + n\varepsilon$, allora $a < (1 + \varepsilon)^n$ e quindi $\sqrt[n]{a} - 1 < \varepsilon$. Ma

$$a < 1 + n\varepsilon \iff \frac{a-1}{\varepsilon} < n.$$

In definitiva, se si prende $\nu_{\varepsilon} = \lfloor (a-1)/\varepsilon \rfloor$, si ha

$$\forall n \in \mathbb{N} \colon \ n > \nu_{\varepsilon} \ \Rightarrow \ \sqrt[n]{a} - 1 < \varepsilon,$$

che dimostra la tesi. Infine consideriamo il caso a < 1. Allora 1/a > 1 e quindi

$$\forall n \in \mathbb{N} \colon \left| \sqrt[n]{a} - 1 \right| < \sqrt[n]{\frac{1}{a}} \left| \sqrt[n]{a} - 1 \right| = \left| \sqrt[n]{\frac{1}{a}} (\sqrt[n]{a} - 1) \right| = \left| 1 - \sqrt[n]{\frac{1}{a}} \right|. \tag{3}$$

Adesso, dal risultato provato nel caso precedente segue che $\lim_{n\to+\infty} \sqrt[n]{1/a} = 1$. Perciò dato $\varepsilon > 0$ esiste $\nu_{\varepsilon} \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}: \ n > \nu_{\varepsilon} \Rightarrow |\sqrt[n]{1/a} - 1| < \varepsilon$$

e quindi, per la (3), si ha $n > \nu_{\varepsilon} \implies |\sqrt[n]{a} - 1| < \varepsilon$. Questo prova la tesi.

Proposizione 1.4 (Carattere locale del limite di successioni). Siano $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ due successioni di numeri reali e supponiamo che esista $\nu_0 \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}: n > \nu_0 \Rightarrow a_n = b_n.$$

Allora, se $l \in \overline{\mathbb{R}}$, si ha

$$\lim_{n \to +\infty} a_n = l \iff \lim_{n \to +\infty} b_n.$$

Dimostrazione. Supponiamo che $\lim_n a_n = l$ e proviamo che $\lim_n b_n = l$ (il viceversa si prova scambiando il ruolo delle successioni). Sia V intorno di l. Allora esiste $\nu_1 \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N} : n > \nu_1 \implies a_n \in V.$$

Perciò se si prende $\nu = \max\{\nu_0, \nu_1\}$ risulta $n > \nu \implies b_n = a_n \in V$.

Proposizione 1.5. Ogni successione numerica convergente è limitata.

Dimostrazione. Sia $(a_n)_{n\in\mathbb{N}}$ una successione di numeri reali e supponiamo che $a_n\to l$ per $n\to +\infty$, dove $l\in\mathbb{R}$. Dobbiamo provare che si può scegliere un M>0 in modo che

$$\forall n \in \mathbb{N} \colon |a_n| \leq M.$$

Allora, dato che $a_n \to l$, dalla definizione (1) segue che in corrispondenza di $\varepsilon = 1$ è possibile trovare $\nu \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}, n > \nu \colon |a_n - l| < 1.$$

Ora, dalla disuguaglianza triangolare risulta che per ogni intero $n>\nu,$

$$|a_n| = |a_n - l + l| \le |a_n - l| + |l| < 1 + |l|.$$

Perciò, posto

$$M = \max\{|a_0|, \dots, |a_{\nu}|, 1 + |l|\} \in \mathbb{R},$$

è chiaro che $\forall n \in \mathbb{N}$: $|a_n| \leq M$, da cui segue la limitatezza di $(a_n)_{n \in \mathbb{N}}$.

Proposizione 1.6. Valgono le seguenti affermazioni.

- (i) Ogni successione numerica divergente positivamente non è limitata superiormente
- $(ii) \ \ Ogni \ successione \ numerica \ divergente \ negativamente \ non \ \grave{e} \ limitata \ inferiormente$

Dimostrazione. Proviamo solo la prima proposizione. Sia $(a_n)_{n\in\mathbb{N}}$ una successione numerica divergente positivamente. Per dimostrare che non è limitata superiormente si deve provare che

$$\forall \beta \in \mathbb{R} \,\exists n \in \mathbb{N} \text{ tale che } a_n > \beta.$$

Ma questo è ovvio perché essendo $\lim_n a_n = +\infty$, si ha che

$$\forall \beta \in \mathbb{R} \,\exists \nu \in \mathbb{N} \text{ tale che } \forall n \in \mathbb{N}, n > \nu \colon a_n > \beta.$$

2 Sottosuccessioni

Definizione 2.1. Data una successione $(a_n)_{n\in\mathbb{N}}$, si chiama successione estratta da $(a_n)_{n\in\mathbb{N}}$ o anche sottosuccesione di $(a_n)_{n\in\mathbb{N}}$ ogni successione del tipo

$$(a_{n_k})_{k\in\mathbb{N}}$$

dove $(n_k)_{k\in\mathbb{N}}$ è una successione strettamente crescente di numeri naturali. In altri termini una successione estratta non è altro che la composizione di $a: \mathbb{N} \to \mathbb{R}$ con una funzione $n: \mathbb{N} \to \mathbb{N}$ strettamente crescente (cioè $a \circ n$).

Esempio 2.2.

Sia $(a_n)_{n\in\mathbb{N}}$ una successione di numeri reali. Allora le successioni $(a_{2k})_{k\in\mathbb{N}}$ e $(a_{2k+1})_{k\in\mathbb{N}}$ sono le sottosuccessioni dei termini con indice pari e dei termini con indice dispari. Si noti che $(2k)_{k\in\mathbb{N}}$ e $(2k+1)_{k\in\mathbb{N}}$ sono successioni strettamente crescenti di numeri naturali.

Lemma 2.3. Sia $(n_k)_{k\in\mathbb{N}}$ una successione strettamente crescente di numeri naturali. Allora, per ogni $k\in\mathbb{N}$, $n_k\geq k$.

Dimostrazione. Si prova per induzione. Evidentemente $n_0 \geq 0$, perché $n_0 \in \mathbb{N}$. Supponiamo che $n_k \geq k$. Allora, essendo $(n_k)_{k \in \mathbb{N}}$ strettamente crescente, si ha $n_{k+1} > n_k \geq k$ e quindi $n_{k+1} \geq k+1$.

Teorema 2.4 (sui limiti delle sottosuccessioni). Sia $(a_n)_{n\in\mathbb{N}}$ una successione di numeri reali $e(a_{n_k})_{k\in\mathbb{N}}$ una sua sottosuccessione. Allora se $l\in\overline{\mathbb{R}}$, si ha

$$\lim_{n \to +\infty} a_n = l \implies \lim_{k \to +\infty} a_{n_k} = l.$$

Quindi se una successione è regolare, allora tutte le sue sottosuccessioni sono regolari e hanno lo stesso limite.

Dimostrazione. Supponiamo che $\lim_{n\to+\infty}a_n=l$. Sia V un intorno di l. Allora esiste $\nu\in\mathbb{N}$ tale che

$$\forall n \in \mathbb{N} \colon n > \nu \implies a_n \in V. \tag{4}$$

Adesso ricordando il Lemma 2.3 si ha

$$\forall k \in \mathbb{N} : k > \nu \implies n_k > k > \nu$$

e quindi dalla (4) si conclude che $k > \nu \Rightarrow a_{n_k} \in V$.

Esempio 2.5.

(i) Sappiamo che

$$\lim_{n \to +\infty} \frac{1}{n} = 0.$$

Allora si ha

$$\lim_{k \to +\infty} \frac{1}{2^k} = 0.$$

Infatti $(1/2^k)_{k\in\mathbb{N}}$ è una sottosuccessione di $(1/n)_{n\in\mathbb{N}}$.

Osservazione 2.6. Dal Teorema 2.4 segue che se si trovano due sottosuccessioni che ammettono limiti diversi, si può concludere che la successione di partenza non ammette limite.

Esempio 2.7.

(i) La successione $((-1)^n)_{n\in\mathbb{N}}$ non è regolare. Infatti le sottosuccessioni

$$((-1)^{2k})_{k\in\mathbb{N}}$$
 e $((-1)^{2k+1})_{k\in\mathbb{N}}$

convergono a limiti distinti, perché $\forall n \in \mathbb{N}: (-1)^{2k} = 1 \text{ e } (-1)^{2k+1} = -1.$

Proposizione 2.8. Sia $q \in \mathbb{R}$. La successione $(q^n)_{n \in \mathbb{N}}$ si chiama successione geometrica di ragione q. Allora

- (i) Se $q \leq -1$ la successione $(q^n)_{n \in \mathbb{N}}$ non è regolare.
- (ii) Se q > -1, allora la successione $(q^n)_{n \in \mathbb{N}}$ è regolare e risulta

$$\lim_{n \to +\infty} q^n = \begin{cases} +\infty & se \ q > 1\\ 1 & se \ q = 1\\ 0 & se \ |q| < 1. \end{cases}$$

Dimostrazione. Consideriamo prima il caso (ii). Se q=1, allora $q^n=1$ e quindi $\lim_{n\to+\infty}q^n=1$. Supponiamo q>1 e sia $\beta>0$. Si tratta di dimostrare che

$$q^n > \beta$$

per tutti gli interi n sufficientemente grandi. Poniamo a:=q-1>0. Per la disuguaglianza di Bernoulli, si ha $q^n=(1+a)^n\geq 1+na$. Allora è chiaro che se $1+na>\beta$, a maggior ragione si ha $q^n>\beta$. Inoltre

$$1 + na > \beta \iff n > (\beta - 1)/a.$$

Quindi se si definisce $\nu_{\beta} = [(\beta - 1)/a]$, si ha

$$\forall n \in \mathbb{N}: n > \nu_{\beta} \Rightarrow q^n > \beta$$

che prova la tesi. Supponiamo ora che |q| < 1 e proviamo che $\lim_{n \to +\infty} q^n = 0$. Sia $\varepsilon > 0$. Allora si tratta di mostrare che la diseguaglianza

$$|q^n| = |q|^n < \varepsilon$$

è soddisfatta per tutti gli interi n abbastanza grandi. A tal fine notiamo che

$$|q^n| < \varepsilon \iff \frac{1}{\varepsilon} < \left| \frac{1}{q} \right|^n$$

e che |1/q| > 1. Perciò, per quanto già provato, si ha $\lim_{n\to+\infty} |1/q|^n = +\infty$. Allora in corrispondenza di $1/\varepsilon > 0$ esiste $\nu \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}: n > \nu \Rightarrow 1/\varepsilon < |1/q|^n \Rightarrow |q^n| < \varepsilon$$

che prova la tesi.

Adesso proviamo la (i). Se q = -1, si ha che $q^n = (-1)^n$ e abbiamo visto che la successione non è regolare. Se q < -1, allora

$$q^n = [(-1)(-q)]^n = (-1)^n (-q)^n$$
, dove $-q > 1$.

Per quanto già provato $(-q)^n \to +\infty$ e quindi per le sottosuccessioni dei termini di indice pari e dispari si ha

$$(-q)^{2k} \to +\infty$$
 e $(-q)^{2k+1} \to +\infty$.

Allora

$$q^{2k} = (-q)^{2k} \to +\infty$$
 e $q^{2k+1} = -(-q)^{2k+1} \to -\infty$

e, per l'Osservazione 2.6, la successione $(q^n)_{n\in\mathbb{N}}$ non è regolare.

Abbiamo già presentato esempi che mostrano che l'inverso del Teorema 2.4 non è valido, cioè che in generale dalla regolarità di una sottosuccessione non consegue la regolarità della successione dalla quale è estratta. Il risultato seguente mostra che se le sottosuccessioni corrispondenti agli indice pari e dispari sono regolari e hanno lo stesso limite, allora la successione principale è regolare.

Teorema 2.9. Sia $(a_n)_{n\in\mathbb{N}}$ una successione di numeri reali e supponiamo che

$$\lim_{k \to +\infty} a_{2k} = l \quad e \quad \lim_{k \to +\infty} a_{2k+1} = l, \quad con \ l \in \overline{\mathbb{R}}. \tag{5}$$

Allora $\lim_{n\to+\infty} a_n = l$.

Dimostrazione. Sia V un intorno di x_0 . Allora dell'ipotesi (5) segue che esistono $\nu_1, \nu_2 \in \mathbb{N}$ tali che

$$\forall k \in \mathbb{N}, k > \nu_1 : a_{2k} \in V \quad \text{e} \quad \forall k \in \mathbb{N}, k > \nu_2 : a_{2k+1} \in V.$$

Poniamo $\nu = \max\{2\nu_1, 2\nu_2 + 1\}$ e prendiamo $n \in \mathbb{N}$ con $n > \nu$. Adesso si presentano due casi. Supponiamo che n sia pari. Allora n = 2k, per qualche $k \in \mathbb{N}$ e si ha

$$n > \nu \implies 2k > 2\nu_1 \implies k > \nu_1 \implies a_n = a_{2k} \in V.$$

Consideriamo poi il caso che n sia dispari. Allora n=2k+1 per qualche $k\in\mathbb{N}$, e si ha

$$n > \nu \implies 2k+1 > 2\nu_2 + 1 \implies k > \nu_2 \implies a_n = a_{2k+1} \in V.$$

Quindi in ogni caso si è provato che $a_n \in V$.

3 Proprietà definite in un intorno

Sia $A \subset \mathbb{R}$ e sia $\mathsf{P}(x)$ una proprietà definita sull'insieme A. Sia $x_0 \in \mathbb{R}$ un punto di accumulazione per A. Diciamo che $\mathsf{P}(x)$ è vera in un intorno di x_0 oppure che $\mathsf{P}(x)$ è vera definitivamente per $x \to x_0$ se

 $\exists U$ intorno di x_0 tale che P(x) è vera $\forall x \in U \cap A_{x_0}$.

Esempio 3.1.

- (i) $x^2 > 0$ definitivamente in un intorno di 0
- (ii) $\sqrt{x} < 2$ in un intorno di 1
- (iii) $x^2 > 1000$ in un intorno di $+\infty$.

Proposizione 3.2. Siano $P_1(x)$ e $P_2(x)$ due proprietà definite in A. Se $P_1(x)$ è vera in un intorno di x_0 e $P_2(x)$ è vera in un intorno di x_0 , allora $(P_1(x) \wedge P_2(x))$ è vera in un intorno di x_0 , cioè $P_1(x)$ e $P_2(x)$ sono simultaneamente vere in un intorno di x_0 .

Dimostrazione. Supponiamo che

$$\forall x \in U_1 \cap A_{x_0} \colon \mathsf{P}_1(x) \text{ è vera} \quad \mathsf{e} \quad \forall x \in U_2 \cap A_{x_0} \colon \mathsf{P}_1(x) \text{ è vera}.$$

Allora, posto $U = U_1 \cap U_2$, risulta che U è un intorno di x_0 e

$$x \in U \cap A_{x_0} \Rightarrow x \in U_1 \cap A_{x_0} \in U_2 \cap A_{x_0} \Rightarrow \mathsf{P}_1(x) \wedge \mathsf{P}_2(x)$$
è vera.

Osservazione 3.3. Il risultato precedente si estende a un numero finito di proprietà, cioè se ciascuna proprietà $P_i(x)$ è vera in un intorno di x_0 , con i = 1, ..., n, allora

$$(P_1(x) \wedge \cdots \wedge P_n(x))$$
 è vera in un intorno di x_0 .

Osservazione 3.4.

(i) Il fatto che $\lim_{x\to x_0} f(x) = l$ si può esprimere dicendo che

$$\forall V \text{ intorno di } x_0 \colon f(x) \in V \text{ in un intorno di } x_0.$$

(ii) Nella Proposizione 4.2 dimostreremo che se $\lim_{x\to x_0} f(x) = l \in \mathbb{R}$, allora f(x) è limitata in un intorno di x_0 , cioè

esiste
$$M > 0$$
 tale che $|f(x)| \leq M$ in un intorno di x_0 .

4 Operazioni sui limiti

In questa sezione diamo le regole di calcolo dei limiti. Cominciamo con l'operazione di valore assuluto.

Proposizione 4.1. Sia $f: A \to \mathbb{R}$, $l \in \mathbb{R}$ e $x_0 \in \overline{\mathbb{R}}$ punto di accumulazione per A. Allora

$$\lim_{x \to x_0} f(x) = l \implies \lim_{x \to x_0} |f(x)| = |l|.$$

Dimostrazione. Notiamo che dalla disuguaglianza $||\alpha| - |\beta|| \le |\alpha - \beta|$ (che è valida per ogni $\alpha, \beta \in \mathbb{R}$) segue che

$$\forall x \in A \colon \quad \left| |f(x)| - |l| \right| \le |f(x) - l|. \tag{6}$$

Quindi, è chiaro che se per un qualunque $\varepsilon > 0$ risulta

$$|f(x)-l|<\varepsilon$$
 in un intorno di x_0 ,

allora, a maggior ragione, si ha

$$||f(x)| - |l|| < \varepsilon$$
 in un intorno di x_0 .

Proposizione 4.2. Se f(x) converge a $l \in \mathbb{R}$ per $x \to x_0$, allora f è limitata in un intorno di x_0 , cioè

$$\exists M > 0 \text{ tale che } |f(x)| \leq M \text{ in un intorno di } x_0.$$

Dimostrazione. Prendo $\varepsilon = 1$ e allora dalla definizione di limite segue che |f(x) - l| < 1 in un intorno di x_0 . Ma

$$|f(x)| \le |f(x) - l + l| \le |f(x) - l| + |l|$$

e quindi |f(x)| < 1 + |l| = M in un intorno di x_0 .

Vediamo adesso come si comportano i limiti rispetto alle operazioni algebriche.

Teorema 4.3 (sull'algebra dei limiti). Sia $A \subset \mathbb{R}$ e $x_0 \in \overline{\mathbb{R}}$ punto di accumulazione per A. Siano $f: A \to \mathbb{R}$ e $g: A \to \mathbb{R}$ e supponiamo che

$$\lim_{x \to x_0} f(x) = l \in \mathbb{R} \quad e \quad \lim_{x \to x_0} g(x) = m \in \mathbb{R}. \tag{7}$$

Allora valgono le seguenti proposizioni.

- (i) $\lim_{x \to x_0} (f+g)(x) = l + m$.
- (ii) $\lim_{x \to x_0} (fg)(x) = lm.$
- (iii) Se $m \neq 0$ e $g(x) \neq 0$ per ogni $x \in A$, allora $\lim_{x \to x_0} (f/g) = l/m$.

Dimostrazione. (i): Dalla disuguaglianza triangolare $|\alpha + \beta| \leq |\alpha| + |\beta|$ (valida per ogni $\alpha, \beta \in \mathbb{R}$) si ha che

$$\forall x \in A: \quad |(f+g)(x) - (l+m)| = |f(x) - l + g(x) - m| \le |f(x) - l| + |g(x) - m|. \tag{8}$$

Per ipotesi possiamo rendere i due termini |f(x) - l| e |g(x) - m| in (8) piccoli a piacere in un intorno di x_0 . Sia $\varepsilon > 0$. Allora, da (7) segue che

$$|f(x)-l|<rac{arepsilon}{2}$$
 in un intorno di x_0 e $|g(x)-m|<rac{arepsilon}{2}$ in un intorno di x_0 .

e quindi, per la Proposizione 3.2, che

$$|f(x)-l|<rac{arepsilon}{2}\quad {
m e}\quad |g(x)-m|<rac{arepsilon}{2}\quad {
m simultaneamente\ in\ un\ intorno\ di\ } x_0.$$

Perciò sommando, e tenendo conto della (8) si ha che

$$|(f+g)(x)-(l+m)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$
 in un intorno di x_0 .

Questo prova la tesi.

(ii): Ancora dalla disuguaglianza triangolare segue che, per ogni $x \in A$,

$$|(fg)(x) - lm| = |f(x)g(x) - f(x)m + f(x)m - lm|$$

$$= |f(x)(g(x) - m) + m(f(x) - l)|$$

$$\leq |f(x)(g(x) - m)| + |m(f(x) - l)|$$

$$= |f(x)||g(x) - m| + |m||f(x) - l|.$$
(9)

Poi, dato che $\lim_{x\to x_0} f(x) = l \in \mathbb{R}$, per la Proposizione 4.2 risulta che

$$|f(x)| < 1 + |l|$$
 in un intorno di x_0 .

Quindi si ha che

$$|(fg)(x) - lm| \le (1 + |l|)|g(x) - m| + |m||f(x) - l|$$
 in un intorno di x_0 . (10)

Di nuovo, dalle ipotesi segue che possiamo rendere i due termini |f(x) - l| e |g(x) - m| in (10) piccoli a piacere. Sia $\varepsilon > 0$. Allora, da (7) risulta che

$$|g(x)-m|<rac{arepsilon}{2(1+|l|)}$$
 in un intorno di x_0 e $|f(x)-l|<rac{arepsilon}{2(1+|m|)}$ in un intorno di x_0 .

Quindi, sempre per la Proposizione 3.2, si ha che

$$\begin{cases} |(fg)(x) - lm| \le (1 + |l|)|g(x) - m| + |m||f(x) - l| \\ |f(x) - l| < \frac{\varepsilon}{2(1 + |m|)} \\ |g(x) - m| < \frac{\varepsilon}{2(1 + |l|)} \end{cases}$$

sono simultaneamente vere in un intorno di x_0 e perciò

$$|(fg)(x) - lm| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 in un intorno di x_0 .

(iii): Consideriamo prima il caso che $f \equiv 1$. Per ogni $x \in A$ risulta

$$\left| \frac{1}{g(x)} - \frac{1}{m} \right| = \left| \frac{m - g(x)}{g(x)m} \right| = \frac{|g(x) - m|}{|g(x)||m|}.$$
 (11)

Dato che $\lim_{x\to x_0} |g(x)| = |m| > 0$ (per la Proposizione 4.1) e che

$$\left| \frac{|m|}{2}, \frac{3|m|}{2} \right|$$
 è un intorno di $|m|$,

risulta che

$$\frac{|m|}{2} < |g(x)| < \frac{3|m|}{2} \quad \text{in un intorno di } x_0.$$

Perciò, dalla (11) si ha

$$\left| \frac{1}{g(x)} - \frac{1}{m} \right| \le \underbrace{\frac{2}{|m|^2} |g(x) - m|}_{\text{questo deve essere} < \varepsilon} \quad \text{in un intorno di } x_0. \tag{12}$$

Fissiamo ora, la nostra precisione $\varepsilon > 0$. Allora, dato che $\lim_{x \to x_0} g(x) = m$, si ha che

$$|g(x) - m| < \frac{\varepsilon |m|^2}{2}$$
 in un intorno di x_0 .

D'altra parte vale anche (12). Perciò per la Proposizione 3.2, si ha

$$\begin{cases} \left| \frac{1}{g(x)} - \frac{1}{m} \right| \le \frac{2}{|m|^2} |g(x) - m| \\ |g(x) - m| < \frac{\varepsilon |m|^2}{2} \end{cases}$$
 sono simultaneamente vere in un intorno di x_0

e quindi

$$\left| \frac{1}{g(x)} - \frac{1}{m} \right| < \varepsilon$$
 in un intorno di x_0 .

Per il caso generale basta osservare che f/g = f(1/g) e applicare il risultato appena provato e il punto (ii).