PAT 1 (n.w. 63)

รหัสวิชา 71 วิชา ความถนัดทางคณิตศาสตร์ (PAT 1) วันเสาร์ที่ 22 กุมภาพันธ์ 2563 เวลา 13.00 - 16.00 น.

ตอนที่ 1 ข้อ 1 - 35 ข้อละ 6 คะแนน

- 1. กำหนดให้ P และ Q เป็นประพจน์ที่ $\ (\sim\!P) \land (P o Q)$ มีค่าความจริงเป็น ${ extstyle 95}$ พิจารณาข้อความต่อไปนี้
 - (ก) $(\sim P \to Q) \to (P \to \sim Q)$ มีค่าความจริงเป็นเท็จ
 - (ข) $P \leftrightarrow (Q \land \sim Q)$ มีค่าความจริงเป็นจริง
 - (ค) $(P \land Q) \rightarrow Q$ มีค่าความจริงเป็นจริง

ข้อใดต่อไปนี้<u>ถูกต้อง</u>

- 1. ข้อ (ก) และ ข้อ (ข) ถูก แต่ ข้อ (ค) ผิด
- 3. ข้อ (ข) และ ข้อ (ค) ถูก แต่ ข้อ (ก) ผิด
- 5. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ผิดทั้งสามข้อ
- 2. ข้อ (ก) และ ข้อ (ค) ถูก แต่ ข้อ (ข) ผิด
- 4. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ถูกทั้งสามข้อ

- 2. ให้ R แทนเซตของจำนวนจริง กำหนดให้เอกภพสัมพัทธ์คือ $\left\{x \in R \left| -\frac{1}{2} < x < 1 \right. \right\}$ พิจารณาข้อความต่อไปนี้
 - (ก) $\exists x \left[\frac{1}{|x+1|} > 2 \right]$ มีค่าความจริงเป็นเท็จ
 - (ข) $\forall x \left[|x| < \frac{1}{2} \right]$ มีค่าความจริงเป็นจริง
 - (ค) $\forall x [x^2 x \leq 0]$ มีค่าความจริงเป็นเท็จ

ข้อใดต่อไปนี้<u>ถูกต้อง</u>

- 1. ช้อ (ก) และ ช้อ (ข) ถูก แต่ ช้อ (ค) ผิด
- 3. ข้อ (ข) และ ข้อ (ค) ถูก แต่ ข้อ (ก) ผิด
- 5. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ผิดทั้งสามข้อ
- 2. ข้อ (ก) และ ข้อ (ค) ถูก แต่ ข้อ (ข) ผิด
- 4. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ถูกทั้งสามข้อ

- 3. ให้ A, B และ C เป็นเซตใดๆ พิจารณาข้อความต่อไปนี้
 - (ก) ถ้า $B \cap C = \emptyset$ และ $A \subset (B \cup C)$ แล้ว $(A \cup B) \cap C = A \cap B$
 - (1) $A \cup (B \cap C) \subset (A \cup C) \cap B$
 - (ค) ถ้าเซต A มีสมาชิก 9 ตัว เซต B มีสมาชิก 7 ตัว และ เพาเวอร์เซตของเซต A-B มีสมาชิก 32 ตัว แล้ว เพาเวอร์เซตของเซต B-A มีสมาชิก 16 ตัว

ข้อใดต่อไปนี้ถูกต้อง

- 1. ข้อ (ก) และ ข้อ (ข) ถูก แต่ ข้อ (ค) ผิด
- 2. ข้อ (ก) และ ข้อ (ค) ถูก แต่ ข้อ (ข) ผิด

4. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ถูกทั้งสามข้อ

- 3. ข้อ (ข) และ ข้อ (ค) ถูก แต่ ข้อ (ก) ผิด
- 5. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ผิดทั้งสามข้อ

4. ให้ $A = \{-3, -2, -1, 0, 1, 2, 3\}$ และ $r = \{(x, y) \in A \times A \mid y = |x| - 2\}$

ให้ D_r และ R_r เป็นโดเมน และเรนจ์ของ r ตามลำดับ พิจารณาข้อความต่อไปนี้

- (ก) r^{-1} เป็นฟังก์ชัน
- (ข) จำนวนสมาชิกของเซต $r \cap r^{-1}$ เท่ากับ 3
- $(\mathsf{P}) \quad D_r \cap R_r = D_r$

ข้อใดต่อไปนี้<u>ถูกต้อง</u>

- 1. ข้อ (ก) ถูกเพียงข้อเดียว
- 3. ข้อ (ค) ถูกเพียงข้อเดียว
- 5. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ผิดทั้งสามข้อ
- 2. ข้อ (ข) ถูกเพียงข้อเดียว
- 4. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ถูกทั้งสามข้อ

- 5. ให้ n(S) แทนจำนวนสมาชิกของเซต S ก้า A,B และ C เป็นเซต โดยที่ n(A)+n(B)+n(C)=199 $n(A \cup B \cup C) = 100 \quad n((A \cup B) - C) = 35$ และ $n(C - (A \cup B)) = 9$ แล้ว $n(A \cap B)$ เท่ากับข้อใดต่อไปนี้
 - 1. 42
- 2. **43** 3. **44**
- 4. 45
- 5. **46**

6. กำหนดให้ 0° < A < 90°

ถ้า a เป็นจำนวนจริง ที่สอดคล้องกับสมการ $\frac{a\sin(-A)}{\sin(180^\circ + A)} - \frac{\tan(270^\circ + A)}{\tan(90^\circ - A)} = 3\sec 300^\circ$ แล้ว a มีค่าเท่ากับข้อใดต่อไปนี้

- 1. **-7** 2. **-5** 3. 3 4. 5 5. 7

- 7. ค่าของ $\tan\left(\frac{3\pi}{4}+2\arctan\frac{1}{2}\right)$ เท่ากับข้อใดต่อไปนี้ 1. -1 2. $-\frac{1}{7}$ 3. $\frac{1}{7}$ 4. 1 5. 2

- 8. กำหนดให้ $-\frac{\pi}{2} < x < 0$ และ $\cos x + \sin x = \frac{\sqrt{5}}{5}$ ค่าของ $\tan x \cot x$ เท่ากับข้อใดต่อไปนี้ 1. $-\frac{3}{2}$ 2. $-\frac{1}{2}$ 3. 0 4. $\frac{1}{2}$ 5. $\frac{3}{2}$

- 9. พิจารณาข้อความต่อไปนี้
 - (n) $(0.6)^{-\frac{2}{3}} > 1$
 - (ข) ถ้า $(0.2)^x > (0.2)^y$ แล้ว x < y
 - (A) $\log_5 0.1 > \log_{0.2} 0.1$

ข้อใดต่อไปนี้<u>ถูกต้อง</u>

- 1. ข้อ (ก) และ ข้อ (ข) ถูก แต่ ข้อ (ค) ผิด
- 3. ข้อ (ข) และ ข้อ (ค) ถูก แต่ ข้อ (ก) ผิด
- 5. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ผิดทั้งสามข้อ
- 2. ช้อ (ก) และ ข้อ (ค) ถูก แต่ ข้อ (ข) ผิด
- 4. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ถูกทั้งสามข้อ

10. กำหนดให้ฟังก์ชันจุดประสงค์ P=4x+y และอสมการข้อจำกัดดังนี้

 $x + ay \le 3$ เมื่อ a เป็นจำนวนจริงบวก

 $3x + y \le 9$ และ $x \ge 0$, $y \ge 0$

ค่าสูงสุดของ P เท่ากับข้อใดต่อไปนี้

- 1. 9
- 2. 10
- 3. 11
- 4. 12
- 5. มากกว่า 12

11. กำหนดอนุกรม $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\dots$ ถ้า S_n เป็นผลบวก n พจน์แรกของอนุกรม แล้ว $\lim_{n\to\infty}\frac{S_n}{S_{2n}}$ เท่ากับข้อใดต่อไปนี้

- 1. 0
- 2. $\frac{1}{8}$ 3. $\frac{1}{4}$ 4. $\frac{1}{2}$ 5. 1

12. กำหนดให้ R แทนเซตของจำนวนจริง ให้ $f\colon R o R$ และ $g\colon R o R$ เป็นฟังก์ชัน โดยที่

- (ก) f(-x) = -f(x) สำหรับทุกจำนวนจริง x
- (ข) g(-x) = g(x) สำหรับทุกจำนวนจริง x
- (ค) $f(x) g(x) = x^2 2x$ สำหรับทุกจำนวนจริง x

ถ้า a เป็นจำนวนจริงที่ทำให้ f(10+a)-f(10-a)=g(10) แล้ว $f\left(g(a)\right)$ เท่ากับข้อใดต่อไปนี้

- 1. 1250
- 2. 800
- 3. **0** 4. **-800**
 - 5. **-1250**

13. ข้อมูลชุดหนึ่งมี 6 จำนวน จัดเรียงข้อมูลจากน้อยไปมาก ดังนี้ a , 5 , 7 , b , 11 , c เมื่อ a ,b และ c เป็น จำนวนจริงบวก ข้อมูลชุดนี้ มีพิสัยเท่ากับค่าเฉลี่ยเลขคณิต ซึ่งเท่ากับ 8 และ เดไซล์ที่ 7 ของข้อมูลเท่ากับ 10.8 ค่าของ $a^2+b^2+c^2$ เท่ากับข้อใดต่อไปนี้

- 1. **234** 2. **237**
- з. **241**
- 4. 269
- 5. 283

14. ให้ A แทนเซตคำตอบของสมการ $9^x + 6^x - 2^{2x+1} = 0$ และให้ $B = \{ \, 2^x \mid x \in A \, \}$ ผลบวกของสมาชิกทั้งหมดในเซต B เท่ากับข้อใดต่อไปนี้

- 1. 0.25
- 2. 1
- 3. **1.25**
- 4. 2
- 5. **2.25**

15. จากการสำรวจจำนวนสมาชิกในครัวเรือนของ 30 ครัวเรือน มีตารางแสดงความถี่สะสมสัมพัทธ์ ดังนี้

จำนวนสมาชิกในครัวเรือน (คน)	ความถี่สะสมสัมพัทธ์
1	0.2
2	0.3
3	0.7
4	0.9
5	1.0

จากข้อมูลข้างต้น ข้อใดต่อไปนี้<u>ผิด</u>

- 1. มัธยฐานของจำนวนสมาชิกในครัวเรือน เท่ากับ 3 คน
- 2. ฐานนิยมของจำนวนสมาชิกในครัวเรือน เท่ากับ 3 คน
- 3. มี 24 ครัวเรือนที่มีจำนวนสมาชิกในครัวเรือน น้อยกว่า 4 คน
- 4. มี 9 ครัวเรือนที่มีจำนวนสมาชิกในครัวเรือน อย่างน้อย 4 คน
- 5. มี 9 ครัวเรือนที่มีจำนวนสมาชิกในครัวเรือน อย่างมาก 2 คน
- 16. กำหนดให้ $f(x) = \frac{1-x}{x+2}$ เมื่อ x เป็นจำนวนจริงที่ $x \neq -2$ ถ้า a เป็นจำนวนจริงที่สอดคล้องกับ $f\left(a+f^{-1}(2)\right)=1$ แล้ว 2a+1 เท่ากับข้อใดต่อไปนี้ 1. -2 2. -1 3. 0 4. 1 5. 2

17. ให้ a และ b เป็นจำนวนจริงที่ไม่เท่ากับศูนย์ และให้ $f(x)=ax^2+bx+1$ สำหรับทุกจำนวนจริง x และ f(-1)=0 ถ้าเรนจ์ของ f เท่ากับ $[0,\infty)$ แล้วค่าของ $\int\limits_{-1}^2 f(x) \, dx$ เท่ากับข้อใดต่อไปนี้ 1. f(x)=0 1. f(x)=0 3. f(x)=0 5. f(x)=0 5. f(x)=0 5. f(x)=0 6. f(x)=0 6. f(x)=0 7. f(x)=0 6. f(x)=0 7. f(x)=0 6. f(x)=0 9. f(x)=0 7. f(x)=0 9. f(x)=0 9. f(x)=0 1.

18. ให้พาราโบลารูปหนึ่งมีจุดยอดอยู่บนเส้นตรงซึ่งมีสมการ 2y=3x และมี y=3 เป็นแกนสมมาตร ถ้าพาราโบลา ผ่านจุด (3,5) แล้วสมการของพาราโบลารูปนี้ ตรงกับข้อใดต่อไปนี้

1.
$$y^2 - 4x - 6y + 17 = 0$$

$$2. \quad y^2 - 4x + 6y - 43 = 0$$

3.
$$y^2 + 4x - 6y - 7 = 0$$

$$4. \quad y^2 + 6x - 4y - 23 = 0$$

$$5. \quad y^2 - 6x + 4y - 27 = 0$$

- 19. ถ้า a และ b เป็นจำนวนจริง สอดคล้องกับ $\frac{2^a \log_2 b}{2 \log_2 b 4} = \frac{1}{2}$ และ $\frac{3 + \log_2 b}{2^a + 4} = \frac{\log_2 b}{2^a}$ แล้วค่าของ a^2+b^2 เท่ากับข้อใดต่อไปนี้
- 2. 36
- 3. **41** 4. **58**

- 20. ให้ L เป็นเส้นตรงซึ่งจุดทุกจุดบนเส้นตรง L อยู่ห่างจากจุด (-1,-1) และจุด (7,5) เป็นระยะทางเท่ากัน ระยะห่างระหว่างเส้นตรง L กับจุด (2,0) เท่ากับกี่หน่วย
 - 1. 2.0 หน่วย
- 2. 1.8 หน่วย
- 1.5 หน่วย

- 1.4 หน่วย
- 0.4 หน่วย

- 21. กำหนดให้ $ar u=2ar\iota-ar\jmath+2ar k$ และ $ar v=ar\iota+2ar\jmath-2ar k$ เวกเตอร์ในข้อใด<u>ไม่ตั้งฉาก</u>กับเวกเตอร์ ar u imesar v
 - 1. $3\bar{\iota} + \bar{\jmath}$
- $2. \quad \bar{\iota} 3\bar{\jmath} + 4\bar{k}$
- 3. $4\bar{\iota} + 3\bar{\jmath} 2\bar{k}$

- 4. $\bar{\iota} + \bar{\jmath} \bar{k}$ 5. $-5\bar{\jmath} + 6\bar{k}$

- 22. กำหนดให้ \vec{a},\vec{b} และ \vec{c} เป็นเวกเตอร์ในสามมิติ โดยที่ $\vec{a}+\vec{b}+\vec{c}=\vec{0}$ ถ้า $\vec{a}=\bar{\iota}+2\bar{\jmath}$ และขนาดของเวกเตอร์ $ec{b}$ และ $ec{c}$ เท่ากับ 2 และ 3 หน่วย ตามลำดับ แล้ว $ec{a}\cdotec{b}+ec{b}\cdotec{c}+ec{c}\cdotec{a}$ เท่ากับข้อใดต่อไปนี้
 - 1. **-18** 2. **-9** 3. 8

- 23. ถ้า A เป็นเซตคำตอบของอสมการ $x+rac{1}{x}\geq 0$ และ B เป็นเซตคำตอบของอสมการ $2x^2-3x\geq 7x-12$ แล้ว A-B เป็นสับเซตของช่วงในข้อใดต่อไปนี้
 - 1. $(-\infty, 0)$ 2. (-2, 2) 3. (0, 5) 4. (3, 8) 5. $(6, \infty)$

- 24. ถ้า A เป็นเซตคำตอบของ $|3-2x-x^2| = x^2 + 2x 3$ และ B เป็นเซตคำตอบของ $|x^2 + x| \le 12$ แล้วเซต $A\cap B$ เท่ากับข้อใดต่อไปนี้
 - 1. {**-3, 1**}
- 2. **[-3, 1]**
- 3. **[-4, 3]**
- 4. $[-4, -3] \cup [1, 3]$ 5. $[-4, 1] \cup [2, 3]$

- 25. ให้ $ar{z}$ แทนสังยุค (conjugate) ของจำนวนเชิงซ้อน z และ $i^2=-1$ ถ้า z-(1+i) เป็นจำนวนจินตภาพแท้ และ $z^2-2(1+i)^2$ เป็นจำนวนจริง แล้ว *zī* มีค่าเท่ากับข้อใดต่อไปนี้
 - 1. 2
- 2. 3
- 3. **4** 4. **5**
- 5. **6**

- 26. บริษัทแห่งหนึ่งมีพนักงาน 20 คน เป็นผู้ชาย 10 คน ฝ่ายบริหารมีผู้ชาย 3 คน ฝ่ายผลิตมี 8 คน และฝ่ายขายมี 7 คน โดยที่ฝ่ายผลิตและฝ่ายขายมีจำนวนผู้หญิงเท่ากัน ถ้าสุ่มพนักงานมา 4 คน ความน่าจะเป็นที่จะได้พนักงานฝ่าย ผลิตผู้ชายจำนวน 3 คนและพนักงานฝ่ายขายผู้หญิง 1 คนเท่ากับข้อใดต่อไปนี้
- 2. $\frac{8}{969}$
- 3. $\frac{8}{4845}$ 4. $\frac{16}{969}$ 5. $\frac{16}{4845}$

- 27. มีเลขโดด 5 ตัวคือ 1, 2, 3, 4 และ 5 นำเลขโดดเหล่านี้มา 3 ตัวไม่ซ้ำกันและใช้เลขโดดทั้ง 3 ตัวนี้เพื่อสร้าง จำนวนนับสี่หลัก จะมีจำนวนนับสี่หลักที่ต้องการทั้งหมดกี่จำนวน

- 1. 90
 2. 120
 3. 360
 4. 600
 5. 810

- 28. ค่าของ $\lim_{x\to 1} \frac{(\sqrt{x}-1)(3x-2)}{3x^2-x-2}$ เท่ากับข้อใดต่อไปนี้ 1. $-\frac{1}{10}$ 2. 0 3. $\frac{1}{10}$ 4. $\frac{1}{5}$ 5. 1

- 29. ให้ a,b,c และ d เป็นจำนวนจริง โดยที่ $\frac{1}{a+50}=\frac{1}{b-51}=\frac{1}{c+52}=\frac{1}{d-53}$ ข้อใดต่อไปนี้ถูกต้อง 1. c < a < b < d 2. c < d < a < b 3. b < d < c < a

- 4. d < b < a < c 5. d < c < a < b

- 30. ห้องเรียนห้องหนึ่งมีนักเรียน 40 คน ผลการสำรวจน้ำหนักของนักเรียนห้องนี้ พบว่า ค่าเฉลี่ยเลขคณิตของน้ำหนัก ของนักเรียนห้องนี้เท่ากับ 50 กิโลกรัม และส่วนเบี่ยงเบนมาตรฐาน 5 กิโลกรัม ถ้าห้องเรียนนี้ มีนักเรียนชาย 22 คน โดยมีค่าเฉลี่ยเลขคณิตและส่วนเบี่ยงเบนมาตรฐานของน้ำหนักของนักเรียนชายเท่ากับ 50 กิโลกรัม และ 4 กิโลกรัม ตามลำดับ แล้วน้ำหนักของนักเรียนหญิงมีสัมประสิทธิ์ของการแปรผันเท่ากับข้อใดต่อไปนี้
- 2. 0.12
- 3. **0.14**
- 4. 0.15
- 5. **0.16**

- 31. กำหนดให้ $a_1, a_2, a_3, ..., a_n, ...$ เป็นลำดับเรขาคณิต โดยมี $\sum\limits_{n=1}^{\infty} a_n = rac{3}{2}$ และ b_1,b_2,b_3,\ldots , b_n , \ldots เป็นลำดับเรขาคณิต โดยมี $\sum\limits_{n=1}^{\infty}b_n=5$
 - ถ้า $a_1=1$ และ $b_1=7$ แล้ว $\sum\limits_{n=1}^{\infty}rac{a_n}{b_n}$ เท่ากับข้อใดต่อไปนี้
 - 1. $\frac{3}{70}$ 2. $\frac{7}{70}$ 3. $\frac{2}{77}$ 4. $\frac{5}{77}$ 5. $\frac{6}{77}$

- 32. ให้ $A = \begin{bmatrix} 3 & a & b \\ 0 & a & 1 \\ -1 & 1 & 0 \end{bmatrix}$ เมื่อ a และ b เป็นจำนวนจริง ถ้า $C_{21}(A) = 2$ และ $\det A = -2$ แล้ว a + b เท่ากับข้อใดต่อไปนี้ 1. -3 2. $\frac{5}{3}$ 3. 2

- 33. กำหนดให้ f เป็นฟังก์ชันต่อเนื่องบนเซตของจำนวนจริง โดยที่ $f'(x) = \left\{ egin{array}{ll} x & ext{ide} & x < 1 \ x 1 & ext{ide} & x > 1 \end{array}
 ight.$ ถ้า f(0)=0 แล้ว f(2) เท่ากับข้อใดต่อไปนี้
- 2. **1.5** 3. **2**
- 4. **2.5** 5. **3**

- 34. ให้ f เป็นพังก์ชัน นิยามโดย $f(x) = \begin{cases} \frac{x}{x-x^2} & \text{เมื่อ } x < 0 \\ \frac{ax^2 + (b-a)x b}{x-1} & \text{เมื่อ } 0 \leq x < 1 & \text{เมื่อ } a \text{ และ } b \text{ เป็นจำนวนจริง} \\ (x+b)^2 & \text{เมื่อ } x \geq 1 \end{cases}$ ถ้าพังก์ชัน f ต่อเนื่องบนเซตของจำนวนจริง แล้ว f(a+b) เท่ากับข้อใดต่อไปนี้

 - 1. **25** 2. **16** 3. **9**

35. โรงงานผลิตสินค้าแห่งหนึ่งได้สำรวจยอดขายสินค้าและจำนวนสินค้าที่ผลิตในแต่ละเดือนของปีหนึ่ง มีข้อมูลดังนี้

เดือน	ม.ค.	ก.พ.	มี.ค.	 พ.ย.	ธิ.ค.
จำนวนสินค้าที่ผลิต (x) (หน่วยเป็นชิ้น)	x_1	x_2	x_3	 <i>x</i> ₁₁	<i>x</i> ₁₂
ยอดขายสินค้ำ (y) (หน่วยเป็นบาท)	y_1	y_2	y_3	 y ₁₁	y ₁₂

จากการสำรวจพบว่า

ค่าเฉลี่ยเลขคณิตของจำนวนสินค้าที่ผลิตเท่ากับ 6,000 ชิ้น ค่าเฉลี่ยเลขคณิตของยอดขายสินค้าเท่ากับ 380,000 บาท ยอดขายสินค้าและจำนวนสินค้าที่ผลิตมีความสัมพันธ์เชิงฟังก์ชันแบบเส้นตรง และถ้าจำนวนสินค้าที่ผลิตเพิ่มขึ้น 1,000 ชิ้น แล้วยอดขายสินค้าโดยประมาณเพิ่มขึ้น 60,000 บาท ถ้าจำนวนสินค้าที่ผลิต 10,000 ชิ้น แล้วยอดขายสินค้าโดยประมาณเท่ากับข้อใดต่อไปนี้

- 1. 600,000 บาท
- 2. 620,000 บาท
- 3. 660,000 บาท

- 4. 720,000 บาท
- 5. **760,000** บาท

ตอนที่ 2 ข้อ 36 - 45 ข้อละ 9 คะแนน

36. ให้ A เป็นเซตคำตอบทั้งหมดของสมการ $\log_2(2^{\sqrt{x}} + (2x)^{\log x} - 4^{\log 8}) = \left(\sqrt{2}\right)^{\log_2 x}$ แล้วผลคูณของสมาชิกทั้งหมดในเซต A เท่ากับเท่าใด

37. ให้ $\sec A = -\frac{5}{3}$ และ $\sin A > 0$ เมื่อ $0 < A < 2\pi$ ค่าของ $\frac{5 \sin A + \cot A}{1 + \cot A \csc A}$ เท่ากับเท่าใด

38. กำหนดให้ x,y,z และ k เป็นจำนวนจริง ที่สอดคล้องกับ

$$2^x = 1 + k$$
 , $2^y = 2^x + 2$ unc $2^z = 2^y + 4$

ถ้า x,y,z เป็นลำดับเลขคณิต แล้ว x+y+z เท่ากับเท่าใด

39. ให้ $f(x)=5-x^2$ สำหรับทุกจำนวนจริง x และให้ R_f เป็นเรนจ์ของ f ถ้า $g(x)=egin{cases} f(x+1) & \text{เมื่อ} & x\in R_f \\ 1 & \text{เมื่อ} & x\not\in R_f \end{cases}$ ค่าของ $(f\circ g)(6)-(g\circ f)(3)$ เท่ากับเท่าใด

40. กำหนดให้ a_1,a_2,a_3,\dots,a_n , ... เป็นลำดับเลขคณิตของจำนวนจริง โดยที่ $a_1+a_3=7$ และ $a_2+a_4+a_6+a_8=74$ ค่าของ $a_1+a_2+a_3+\dots+a_{50}$ เท่ากับเท่าใด

41. ให้ c เป็นจำนวนจริง และให้ $f(x)=-x^3-12x^2-45x+c$ สำหรับทุกจำนวนจริง xถ้าค่าสูงสุดสัมพัทธ์ของ f เท่ากับ 53 แล้วค่าของ f(c) เท่ากับเท่าใด

42. กำหนดให้ F_1 และ F_2 เป็นโฟกัสของไฮเพอร์โบลารูปหนึ่ง ซึ่งมีสมการเป็น $5x^2-4y^2-10x-16y=31$ ถ้า a,b และ c เป็นจำนวนจริง ที่ทำให้วงกลม $x^2+y^2+ax+by+c=0$ มี $\overline{F_1F_2}$ เป็นเส้นผ่านศูนย์กลาง แล้ว $a^2+b^2+c^2$ เท่ากับเท่าใด

43. กำหนดให้ A เป็นเมทริกซ์ที่มีมิติ 3 imes 3 โดยที่ $\det(A) = -7$ และเมทริกซ์ผูกพันของ A คือ

$$adj(A) = \begin{bmatrix} -4 & -1 & x \\ -2 & x & -2 \\ 1 & -5 & 1 \end{bmatrix} \quad ixึ่อ x เป็นจำนวนจริงบวก$$

ค่าของ $\det(x \operatorname{adj}(A))$ เท่ากับเท่าใด

44. กำหนดให้
$$N=\{\,1,2,3,\ldots\}$$

$$f(1,m)=1 \text{ สำหรับ } m\in N$$

$$f(n,m)=0 \text{ สำหรับ } n,m\in N \text{ โดยที่ } n>m$$

$$f(n,m+1)=f(n-1,m)+f(n,m)+f(n+1,m) \text{ สำหรับ } n,m\in N \text{ และ } n\geq 2$$
 ค่าของ $f(2,4)$ เท่ากับเท่าใด

45. กำหนดตารางแสดงพื้นที่ใต้เส้นโค้งปกติมาตรฐานระหว่าง 0 ถึง z

Z	0.7	1.3	2.42
พื้นที่ใต้เส้นโค้ง	0.2580	0.4032	0.4922

คะแนนสอบวิชาคณิตศาสตร์ของนักเรียนห้องหนึ่ง มีการแจกแจงปกติ และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 20 คะแนน นาย ก. และนาย ข. เป็นนักเรียนในห้องนี้ นาย ก. สอบได้คะแนนเป็นสองเท่าของคะแนนสอบ ของนาย ข. และคะแนนสอบของนาย ก. คิดเป็นคะแนนมาตรฐานเท่ากับ 1.3 ถ้ามีนักเรียนร้อยละ 24.2 ที่สอบได้ คะแนนสอบน้อยกว่าคะแนนสอบของนาย ข. แล้ว ค่าเฉลี่ยเลขคณิตของคะแนนสอบครั้งนี้ เท่ากับเท่าใด

เฉลย

 3 2 3 5 2 	11. 4 12. 1 13. 3 14. 2	21. 4 22. 2 23. 3 24. 4	31. 5 32. 5 33. 1 34. 1	41. 33 42. 36 43. 1323 44. 4
5. 2 6. 4 7. 3	15. 3 16. 5 17. 4	25. 4 26. 5 27. 3	35. 2 36. 0.5 37. 52	45. 54
8. 5 9. 1 10. 4	18. 1 19. 5 20. 1	28. 3 29. 1 30. 2	38. 6 39. 8 40. 6050	

<u>แนวคิด</u>

- 1. กำหนดให้ P และ Q เป็นประพจน์ที่ $\ (\sim\!P) \land (P o Q)$ มีค่าความจริงเป็น $rac{9}{2}$ พิจารณาข้อความต่อไปนี้
 - (ก) $(\sim\!P o Q) o (P o \sim\!Q)$ มีค่าความจริงเป็นเท็จ
 - (ข) $P \leftrightarrow (Q \land \sim Q)$ มีค่าความจริงเป็นจริง
 - (ค) $(P \land Q) \rightarrow Q$ มีค่าความจริงเป็นจริง

ข้อใดต่อไปนี้<u>ถูกต้อง</u>

- 1. ข้อ (ก) และ ข้อ (ข) ถูก แต่ ข้อ (ค) ผิด 2. ข้อ (ก) และ ข้อ (ค) ถูก แต่ ข้อ (ข) ผิด
- 3. ข้อ (ข) และ ข้อ (ค) ถูก แต่ ข้อ (ก) ผิด
- 4. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ถูกทั้งสามข้อ
- 5. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ผิดทั้งสามข้อ

<u>ตอบ</u> 3

ย้อนค่าความจริงที่โจทย์ให้ กลับไปหา P,Q ดังนี้ : $\ (\sim\!P) \land (P \to Q)$

(f)
$$(\sim P \to Q) \to (P \to \sim Q)$$

 $(\sim F \to Q) \to (F \to \sim Q)$
 $(T \to Q) \to T$
 $T \times$

(1)
$$P \leftrightarrow (Q \land \sim Q)$$
 (A) $P \leftrightarrow (Q \land \sim Q)$ (B) $P \leftrightarrow P \rightarrow Q$ (B) $P \leftrightarrow P \rightarrow Q$ (C) $P \land Q \rightarrow Q \rightarrow Q$ (C) $P \rightarrow Q \rightarrow Q \rightarrow Q$

$$(P \land Q) \rightarrow Q$$

$$(F \land Q) \rightarrow Q$$

$$F \rightarrow Q$$

$$T$$

- 2. ให้ R แทนเซตของจำนวนจริง กำหนดให้เอกภพสัมพัทธ์คือ $\left\{x \in R \left| -\frac{1}{2} < x < 1\right.
 ight\}$ พิจารณาข้อความต่อไปนี้
 - (ก) $\exists x \left[\frac{1}{|x+1|} > 2 \right]$ มีค่าความจริงเป็นเท็จ
 - (ข) $\forall x \left[|x| < \frac{1}{2} \right]$ มีค่าความจริงเป็นจริง
 - (ค) $\forall x[x^2-x\leq 0]$ มีค่าความจริงเป็นเท็จ

ข้อใดต่อไปนี้<u>ถูกต้อง</u>

- 1. ข้อ (ก) และ ข้อ (ข) ถูก แต่ ข้อ (ค) ผิด
- 3. ช้อ (ข) และ ช้อ (ค) ถูก แต่ ช้อ (ก) ผิด
- 5. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ผิดทั้งสามข้อ
- 2. ข้อ (ก) และ ข้อ (ค) ถูก แต่ ข้อ (ข) ผิด
- 4. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ถูกทั้งสามข้อ

ตอบ 2

(ก)
$$\frac{1}{|x+1|} > 2$$

$$\frac{1}{2} > |x+1| \; ; \; x \neq -1$$

$$-\frac{1}{2} < x + 1 < \frac{1}{2}$$

$$-\frac{3}{2} < x < -\frac{1}{2}$$
จะเห็นว่า x ที่เป็นคำตอบของ
อสมการ ไม่มีค่าไหนอยู่ใน
เอกภพสัมพัทธ์ $(-\frac{1}{2}, 1)$ เลย
→ ประพจน์เป็นเท็จ → (ก) ถูก

(ข) $\forall x$ จะจริงเมื่อ x ทุกตัว ทำให้ประโยคเป็นจริง จะลองจับผิด หา x ที่ทำให้ประโยคเป็นเท็จดู จะเห็นว่าถ้า x=0.9 จะได้ $|0.9|<rac{1}{2}$ เป็นเท็จ ightarrow (ข) ผิด

$$(P) \quad x^2 - x \leq 0 \\ x(x-1) \leq 0 \qquad + \begin{array}{c} & & \\ & - \\ & & \end{array}$$

จะเห็นมีบางส่วนของเอกภพสัมพัทธ์ $(-rac{1}{2},1)$ ที่อยู่นอกเซตคำตอบ เช่น $x=-0.1: \ (-0.1)^2-(-0.1) \ \leq 0 \ 0.01 \ + \ 0.1 \ \leq 0 \ imes$

→ ประพจน์เป็นเท็จ → (ค) ถูก

- 3. ให้ A, B และ C เป็นเซตใดๆ พิจารณาข้อความต่อไปนี้
 - (ก) ถ้า $B \cap C = \emptyset$ และ $A \subset (B \cup C)$ แล้ว $(A \cup B) \cap C = A \cap B$
 - (1) $A \cup (B \cap C) \subset (A \cup C) \cap B$
 - (ค) ถ้าเซต A มีสมาชิก 9 ตัว เซต B มีสมาชิก 7 ตัว และ เพาเวอร์เซตของเซต A-B มีสมาชิก 32 ตัว แล้ว เพาเวอร์เซตของเซต B-A มีสมาชิก 16 ตัว

ข้อใดต่อไปนี้<u>ถูกต้อง</u>

- 1. ข้อ (ก) และ ข้อ (ข) ถูก แต่ ข้อ (ค) ผิด
- 3. ข้อ (ข) และ ข้อ (ค) ถูก แต่ ข้อ (ก) ผิด
- 5. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ผิดทั้งสามข้อ
- 2. ข้อ (ก) และ ข้อ (ค) ถูก แต่ ข้อ (ข) ผิด
- 4. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ถูกทั้งสามข้อ

<u>ตอบ</u> 5

- (ก) ลองสุ่ม A,B,C ง่ายๆ ที่ทำให้ $B\cap C=\emptyset$ และ $A\subset (B\cup C)$ ลองแทนดู ลองให้ $B=\{1\}$, $C=\{2\}$, $A=\{1\}$: $(A\cup B)\cap C=A\cap B$ $(\{1\}\cup\{1\})\cap\{2\}=\{1\}\cap\{1\}$ $\emptyset=\{1\}$ \times
- (ข) จะพยายามหา A,B,C มาทำให้ (ข) ผิด ดู \to ต้องทำให้ฝั่งซ้ายเยอะๆ ฝั่งขวาน้อยๆ จะได้ไม่เป็นสับเชตกัน สังเกตว่าฝั่งขวามีการอินเตอร์เซกกับ $B \to$ ถ้า B เป็น \emptyset ฝั่งขวาจะไม่เหลืออะไรเลย

ลองให้
$$B=\emptyset$$
 , $A=\{1\}$, $C=\{2\}$: $A\cup (B\cap C)\subset (A\cup C)\cap B$ $\{1\}\cup (\emptyset\cap \{2\})\subset (\{1\}\cup \{2\})\cap \emptyset$ $\{1\}$ \subset \emptyset \times

(ค) P(A-B) มีสมาชิก $32=2^5$ ตัว ดังนั้น A-B จะมีสมาชิก 5 ตัว วาดแผนนภาพได้ดังรูป

A มีสมาชิก 9 ตัว ightarrow เหลือตรงกลาง 9-5=4 ตัว B มีสมาชิก 7 ตัว \rightarrow เหลือผู้งขวา 7-4=3 ตัว จะได้ P(B-A) มีสมาชิก $2^{n(B-A)}=2^3=8$ ตัว ightarrow (ค) ผิด

- 4. \mathbb{N} $A = \{-3, -2, -1, 0, 1, 2, 3\}$ une $r = \{(x, y) \in A \times A \mid y = |x| 2\}$ ให้ $\mathit{D_r}$ และ $\mathit{R_r}$ เป็นโดเมน และเรนจ์ของ r ตามลำดับ พิจารณาข้อความต่อไปนี้
 - (ก) r^{-1} เป็นฟังก์ชัน
 - (ข) จำนวนสมาชิกของเซต $r \cap r^{-1}$ เท่ากับ 3
 - $(P) \quad D_r \cap R_r = D_r$

ข้อใดต่อไปนี้ถกต้อง

1. ข้อ (ก) ถูกเพียงข้อเดียว

2. ข้อ (ข) ถูกเพียงข้อเดียว

3. ข้อ (ค) ถูกเพียงข้อเดียว

- 4. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ถูกทั้งสามข้อ
- 5. ช้อ (ก) ช้อ (ข) และ ช้อ (ค) ผิดทั้งสามช้อ

ตอบ 2

- (ก) แทน x แต่ละค่า เพื่อหา y จะได้ $r = \{ (-3, 1), (-2, 0), (-1, -1), (0, -2), (1, -1), (2, 0), (3, 1) \}$ สลับ x, y จะได้ $r^{-1} = \{ (1, -3), (0, -2), (-1, -1), (-2, 0), (-1, 1), (0, 2), (1, 3) \}$ จะเห็นว่า r^{-1} มี (1, -3) และ (1, 3) จึงไม่เป็นฟังก์ชัน \rightarrow (ก) ผิด
- (ข) หาตัวซ้ำระหว่าง r กับ r^{-1} จะมี (-2,0) , (-1,-1) , (0,-2) สามตัว o (ข) ถูก
- (ค) จาก (ก) จะเห็นว่า D_r มีครบตั้งแต่ -3, -2, -1, ..., 3 ในขณะที่ R_r มีแค่ 1, 0, -1, -2ดังนั้น $D_r \cap R_r$ จะเหลือสมาชิกน้อยกว่า $D_r o (\mathsf{P})$ ผิด
- 5. ให้ n(S) แทนจำนวนสมาชิกของเซต S ถ้า A,B และ C เป็นเซต โดยที่ n(A)+n(B)+n(C)=199 $n(A \cup B \cup C) = 100 \quad n((A \cup B) - C) = 35$ และ $n(C - (A \cup B)) = 9$ แล้ว $n(A \cap B)$ เท่ากับข้อใดต่อไปนี้
 - 1. 42
- 2. 43
- 3. 44
- 4. 45
- 5. 46

ตอบ 2

ลบแผนภาพ ได้ดังรูป

 $n(A \cup B \cup C)$ = 100...(1)

 $n((A \cup B) - C)$ = 35...(2)

 $n(C - (A \cup B))$ = 9 ...(3)

65

n(C) = 100 - 35...(4)

(1) - (3)

 $n(A \cup B) = 100 - 9$...(5)

ann
$$n(A) + n(B) + n(C) = 199$$

 $n(A) + n(B) + 65 = 199$
 $n(A) + n(B) = 134$...(6)

จากสูตร Inclusive & Exclusive :
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
 $91 = 134 - n(A \cap B)$ $91 = 134 - n(A \cap B) = 43$

6. กำหนดให้ 0° < A < 90°

ถ้า a เป็นจำนวนจริง ที่สอดคล้องกับสมการ $\frac{a\sin(-A)}{\sin(180^\circ + A)} - \frac{\tan(270^\circ + A)}{\tan(90^\circ - A)} = 3 \sec 300^\circ$ แล้ว a มีค่าเท่ากับข้อใดต่อไปนี้

- 1. **−7**

- 3. **3** 4. **5**

<u>ตอบ</u> 4

ทำมุมให้เป็นรูปอย่างง่าย จะได้ $\sin(-A) = -\sin A$ และ $\sin(180^\circ + A) = -\sin A$ และเนื่องจาก 270° และ 90° เป็นมุมแกนตั้ง จะเปลี่ยนเป็นโคฟังก์ชัน tan → cot

คิดเครื่องหมาย จะได้ $\tan(270^\circ + A) = -\cot A$ และ $\tan(90^\circ - A) = \cot A$

ดังนั้น
$$\frac{a \sin(-A)}{\sin(180^\circ + A)} - \frac{\tan(270^\circ + A)}{\tan(90^\circ - A)} = 3 \sec 300^\circ$$

$$\frac{a(-\sin A)}{-\sin A} - \frac{-\cot A}{\cot A} = 3 \quad \left(\frac{2}{1}\right)$$

$$a + 1 = 6$$

$$a = 5$$

7. ค่าของ $an\left(rac{3\pi}{4}+2rctanrac{1}{2}
ight)$ เท่ากับข้อใดต่อไปนี้

- 1. -1 2. $-\frac{1}{7}$ 3. $\frac{1}{7}$ 4. 1 5. 2

ตอบ 3

$$\tan\left(2\arctan\frac{1}{2}\right) = \frac{2\tan\left(\arctan\frac{1}{2}\right)}{1-\tan^2\left(\arctan\frac{1}{2}\right)}$$
$$= \frac{2\left(\frac{1}{2}\right)}{1-\left(\frac{1}{2}\right)^2} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \dots(*)$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\tan\left(\frac{3\pi}{4} + 2\arctan\frac{1}{2}\right) = \frac{\tan\frac{3\pi}{4} + \tan\left(2\arctan\frac{1}{2}\right)}{1 - \tan\frac{3\pi}{4}\tan\left(2\arctan\frac{1}{2}\right)}$$

$$= \frac{-1 + \frac{4}{3}}{1 - (-1)\left(\frac{4}{3}\right)}$$

$$= \frac{\frac{1}{3}}{1 + \frac{4}{3}} = \frac{\frac{1}{3}}{\frac{7}{3}} = \frac{1}{7}$$

8. กำหนดให้ $-\frac{\pi}{2} < x < 0$ และ $\cos x + \sin x = \frac{\sqrt{5}}{5}$ ค่าของ $\tan x - \cot x$ เท่ากับข้อใดต่อไปนี้

1.
$$-\frac{3}{2}$$

1.
$$-\frac{3}{2}$$
 2. $-\frac{1}{2}$ 3. 0

5.
$$\frac{3}{2}$$

ตอบ 5

$$\cos x + \sin x = \frac{\sqrt{5}}{5} \qquad \tan x - \cot x = \frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}$$

$$\cos^2 x + 2\sin x \cos x + \sin^2 x = \frac{5}{25} \qquad = \frac{\sin^2 x - \cos^2 x}{\cos x \sin x}$$

$$1 + \sin 2x \qquad = \frac{1}{5} \qquad = \frac{-(\cos^2 x - \sin^2 x)}{\frac{1}{2}(2\sin x \cos x)}$$

$$\sin 2x \qquad = -\frac{4}{5} \dots (1) \qquad = -\frac{2\cos 2x}{\sin 2x} = -2\cot 2x \dots (2)$$

จาก (1) เราจะใช้สามเหลี่ยมหาส่วนที่ เป็นตัวเลขของ $\cot 2x$ ใน (2) ได้ ดังรูป

$$4$$
 $\xrightarrow{5}$ \rightarrow ส่วนที่เป็นตัวเลขของ $\cot 2x = \frac{2\pi}{2}$ $= \frac{3}{4}$...(*) $= 3$ (จากด้านชุด 3, 4, 5)

เนื่องจาก $-\frac{\pi}{2}$ < x < 0

 $-\pi < 2x < 0 \rightarrow 2x$ อยู่ใน Q_3 หรือ Q_4 ก็ได้ จะยังบอกไม่ได้ว่า $\cot 2x$ ใน (2) เป็นบวกหรือลบ

จาก
$$\cos x + \sin x = \frac{\sqrt{5}}{5} \rightarrow$$
เป็นบวก

$$\cos x + \sin x > 0$$
 $\cos x > -\sin x$
 $\cos^2 x > \sin^2 x$
 $\cos^2 x - \sin^2 x > 0$
 $\cos^2 x - \sin^2 x > 0$

$$\cos x$$
 > $-\sin x$ > $\sin^2 x$ ว เนื่องจาก $-\frac{\pi}{2} < x < 0$ ทำให้ $-\sin x$ เป็นบวก $\cos^2 x - \sin^2 x$ > $\cos^2 x - \cos^2 x$ \(\sim^2 x - \sim^2 x - \sim^2 x - \sim^2 x

รวมกับ (*) จะได้
$$\cot 2x=-rac{3}{4}$$
 $ightarrow$ แทนใน (2) จะได้ $-2\left(-rac{3}{4}\right)=rac{3}{2}$

9. พิจารณาข้อความต่อไปนี้

(f)
$$(0.6)^{-\frac{2}{3}} > 1$$

(ข) ถ้า
$$(0.2)^x > (0.2)^y$$
 แล้ว $x < y$

(A)
$$\log_5 0.1 > \log_{0.2} 0.1$$

ข้อใดต่อไปนี้<u>ถูกต้อง</u>

- 1. ข้อ (ก) และ ข้อ (ข) ถูก แต่ ข้อ (ค) ผิด
- 2. ช้อ (ก) และ ช้อ (ค) ถูก แต่ ช้อ (ข) ผิด
- 3. ข้อ (ข) และ ข้อ (ค) ถูก แต่ ข้อ (ก) ผิด
- 4. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ถูกทั้งสามข้อ
- 5. ข้อ (ก) ข้อ (ข) และ ข้อ (ค) ผิดทั้งสามข้อ

<u>ตอบ</u> 1

- (ก) เนื่องจาก $(0.6)^{-\frac{2}{3}} > (0.6)^0$ (เพราะ 0 <ฐาน < 1 ยิ่งยกกำลังมาก ค่าจะยิ่งน้อย) ดังนั้น $(0.6)^{-\frac{2}{3}} > 1 \rightarrow (n)$ ถูก
- (ข) เนื่องจาก 0 < 0.2 < 1 o ถ้าตัดฐานทั้งสองข้าง จะต้องกลับเครื่องหมาย มากกว่า น้อยกว่า o (ข) ถูก
- (ค) ฝั่งซ้าย ฐาน 5 จะได้ ฐาน > 1 ดังนั้น $\log_5 0.1 < \log_5 1 = 0$ ightarrow ฝั่งซ้ายติดลบ ผึ้งขวา ฐาน 0.2 จะได้ 0 < ฐาน < 1 ดังนั้น $\log_{0.2} 0.1 > \log_{0.2} 1 = 0$ ightarrow ฝั่งขวาเป็นบวก ightarrow (ค) ผิด

10. กำหนดให้ฟังก์ชันจุดประสงค์ P=4x+y และอสมการข้อจำกัดดังนี้

$$x + ay \le 3$$
 เมื่อ a เป็นจำนวนจริงบวก $3x + y \le 9$ และ $x \ge 0$, $y \ge 0$

ค่าสูงสุดของ P เท่ากับข้อใดต่อไปนี้

1. 9

2. 10

3. 11

4. 12

5. มากกว่า 12

<u>ตอบ</u> 4

หาจุดตัดแกนของอสมการข้อจำกัด และหาพื้นที่ส่วนที่ซ้อนทับกัน

$$x+ay \leq 3 \rightarrow$$
 แทน $x=0$ จะได้จุดตัดแกน Y คือ $(0,\frac{3}{a})$ (ยังไม่รู้ว่า $\frac{3}{a}$ คือเท่าไหร่ แต่จะเป็นบวก เพราะ a เป็นบวก) แทน $y=0$ จะได้จุดตัดแกน X คือ $(3,0)$ $(0,0)$ ทำให้อสมการเป็นจริง \rightarrow แรงงาฝั่ง $(0,0)$ ดังรูป

$$3x+y \leq 9 o$$
 แทน $x=0$ จะได้จุดตัดแกน Y คือ $(0,9)$ แทน $y=0$ จะได้จุดตัดแกน X คือ $(3,0)$ $(0,0)$ ทำให้อสมการเป็นจริง o แรงงาฝั่ง $(0,0)$ ดังรูป

เนื่องจากทั้งสองรูป ตัดแกน X ที่ (3, 0) เหมือนกัน ดังนั้น จุดตัดแกน Y ของส่วน ที่ซ้อนทับกัน จะขึ้นกับว่า ค่าไหนน้อยกว่า ระหว่าง $\frac{3}{\sigma}$ กับ 9เมื่อพิจารณาร่วมกับอสมการ $x \geq 0$, $y \geq 0$ จะได้ส่วนที่ซ้อนทับกันดังรูป

น้ำจุดมุมทั้ง 3 มาแทนใน P=4x+y แล้วหาค่าสูงสุด

	์ อ่อที่ท	P = 4x + y
1)	(0,0)	4(0) + 0 = 0
2)	(3,0)	4(3) + 0 = 12
3)	$(0$, ค่าที่น้อยกว่าระหว่าง $rac{3}{a}$ กับ $9)$	$4(0)$ + ค่าที่น้อยกว่าระหว่าง $\frac{3}{a}$ กับ $9=$ ค่าที่น้อยกว่าระหว่าง $\frac{3}{a}$ กับ 9

จะเห็นว่า แถวที่ 3 มีค่าได้ไม่เกิน 9 จึงไม่มีทางชนะ 12 จากแถวที่ $2 \rightarrow$ จะได้ค่าสูงสุดของ P คือ 12

11. กำหนดอนุกรม $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\dots$ ถ้า S_n เป็นผลบวก n พจน์แรกของอนุกรม แล้ว $\lim_{n\to\infty}\frac{S_n}{S_{2n}}$ เท่ากับข้อใดต่อไปนี้ 1. 0 2. $\frac{1}{8}$ 3. $\frac{1}{4}$ 4. $\frac{1}{2}$ 5.

<u>ตอบ</u> 4

สังเกตว่าแต่ละพจน์ จะมีเศษน้อยกว่าส่วนอยู่ 1 เสมอ

ຈະໃຕ້
$$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots = \frac{2-1}{2} + \frac{4-1}{4} + \frac{8-1}{8} + \frac{16-1}{16} + \dots$$

$$= 1 - \frac{1}{2} + 1 - \frac{1}{4} + 1 - \frac{1}{8} + 1 - \frac{1}{16} + \dots$$

$$=(1+1+1+1+...)-(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...)$$
 บวกกัน n ตัว จะได้ S_n = n $-\frac{\frac{1}{2}(1-\frac{1}{2^n})}{1-\frac{1}{2}}$ = $n-1+\frac{1}{2^n}$

ดังนั้น
$$\lim_{n \to \infty} \frac{S_n}{S_{2n}} = \lim_{n \to \infty} \frac{n-1+\frac{1}{2^n}}{2n-1+\frac{1}{2^{2n}}} = \frac{$$
สปส n

- 12. กำหนดให้ R แทนเซตของจำนวนจริง ให้ $f\colon R \to R$ และ $g\colon R \to R$ เป็นฟังก์ชัน โดยที่
 - (ก) f(-x) = -f(x) สำหรับทุกจำนวนจริง x
 - (ข) g(-x) = g(x) สำหรับทุกจำนวนจริง x
 - (ค) $f(x) g(x) = x^2 2x$ สำหรับทุกจำนวนจริง x

ถ้า a เป็นจำนวนจริงที่ทำให้ f(10+a)-f(10-a)=g(10) แล้ว fig(g(a)ig) เท่ากับข้อใดต่อไปนี้

- 1. 1250
- 2. 800
- 0
- 4. **-800**
- 5. **−1250**

ตอบ 1

แทน
$$x$$
 ด้วย $-x$ ($f(x) - g(x) = x^2 - 2x$...(1) $f(-x) - g(-x) = (-x)^2 - 2(-x)$...(2) $f(x) - g(x) = x^2 + 2x$...(2) $f(x) - g(x) = 2x^2$ $g(x) = -x^2$ $f(x) - (-x^2) = x^2 - 2x$ $f(x) = -2x$

ຈາກ
$$f(10+a) - f(10-a) = g(10)$$

 $-2(10+a) - (-2(10-a)) = -10^2$
 $-20-2a + 20 - 2a = -100$
 $100 = 4a$
 $25 = a$

- 13. ข้อมูลชุดหนึ่งมี 6 จำนวน จัดเรียงข้อมูลจากน้อยไปมาก ดังนี้ a, 5, 7, b, 11, c เมื่อ a,b และ c เป็น จำนวนจริงบวก ข้อมูลชุดนี้ มีพิสัยเท่ากับค่าเฉลี่ยเลขคณิต ซึ่งเท่ากับ 8 และ เดไซล์ที่ 7 ของข้อมูลเท่ากับ 10.8 ค่าของ $a^2 + b^2 + c^2$ เท่ากับข้อใดต่อไปนี้
 - 1. 234
- 2. **237**
- 3. **241**
- 4. 269
- 5. **283**

ตอบ 3

เดไซล์ที่ 7 จะอยู่ตัวที่
$$\frac{7}{10}$$
 ($N+1$) = $\frac{7}{10}$ ($6+1$) = 4.9 \rightarrow D_7 = ตัวที่ $4+0.9 \times$ (ตัวที่ $5-$ ตัวที่ 4) $10.8=b+0.9 \times$ ($11-b$) $10.8=b+9.9-0.9b$ $0.9=0.1b$ $9=b$

จะได้
$$a^2 + b^2 + c^2 = 4^2 + 9^2 + 12^2$$

= $16 + 81 + 144 = 241$

14. ให้ A แทนเซตคำตอบของสมการ $9^x + 6^x - 2^{2x+1} = 0$ และให้ $B = \{ \, 2^x \mid x \in A \, \}$ ผลบวกของสมาชิกทั้งหมดในเซต B เท่ากับข้อใดต่อไปนี้

2. 1

3. **1.25**

4. **2**

5. **2.25**

ตอบ 2

$$9^{x} + 6^{x} - 2^{2x+1} = 0$$

$$3^{2x} + 2^{x}3^{x} - 2 \cdot 2^{2x} = 0$$

$$(3^{x} + 2 \cdot 2^{x})(3^{x} - 2^{x}) = 0$$

ดังนั้น
$$3^x + 2 \cdot 2^x = 0$$
 หรือ $3^x - 2^x = 0$ เป็นไปไม่ได้ เพราะ 3^x $3^x = 2^x$ เป็นไปได้เมื่อ $x = 0$ เท่านั้น

จะได้
$$A = \{\,0\,\}$$
 ดังนั้น $B = \{\,2^0\,\} = \{\,1\,\}$ $ightarrow$ จะได้ผลบวกสมาชิก $= \,1$

15. จากการสำรวจจำนวนสมาชิกในครัวเรือนของ 30 ครัวเรือน มีตารางแสดงความถี่สะสมสัมพัทธ์ ดังนี้

จำนวนสมาชิกในครัวเรือน (คน)	ความถี่สะสมสัมพัทธ์
1	0.2
2	0.3
3	0.7
4	0.9
5	1.0

จากข้อมูลข้างต้น ข้อใดต่อไปนี้<u>ผิด</u>

- 1. มัธยฐานของจำนวนสมาชิกในครัวเรือน เท่ากับ 3 คน
- 2. ฐานนิยมของจำนวนสมาชิกในครัวเรือน เท่ากับ 3 คน
- 3. มี 24 ครัวเรือนที่มีจำนวนสมาชิกในครัวเรือน น้อยกว่า 4 คน
- 4. มี 9 ครัวเรือนที่มีจำนวนสมาชิกในครัวเรือน อย่างน้อย 4 คน
- 5. มี 9 ครัวเรือนที่มีจำนวนสมาชิกในครัวเรือน อย่างมาก 2 คน

<u>ตอบ</u> 3

แปลงค่าสัมพัทธ์กลับไปเป็นค่าแบบไม่สัมพัทธ์ ด้วยสูตร ความถี่สะสมสัมพัทธ์ $= \frac{N}{N}$ ความถี่สะสมสัมพัทธ์ $\cdot N =$ ความถี่สะสม

และหาความถี่ ได้จากการเพิ่มของความถี่สะสม ดังนี้

จำนวนสมาชิกในครัวเรือน (คน)	ความถี่สะสมสัมพัทธ์	ความถี่สะสม	ความถึ่
1	0.2	$0.2 \times 30 = 6$	6 - 0 = 6
2	0.3	$0.3 \times 30 = 9$	9 - 6 = 3
3	0.7	$0.7 \times 30 = 21$	21 - 9 = 12
4	0.9	$0.9 \times 30 = 27$	27 - 21 = 6
5	1.0	$1.0 \times 30 = 30$	30 - 27 = 3

- 1. มัธยฐาน อยู่ตัวที่ $\frac{N+1}{2} = \frac{30+1}{2} = 15.5$ จะเห็นว่าความถี่สะสมเพิ่มจาก 9 จนเกิน 15.5 ไปเป็น 21 ในชั้นที่ $3 \, o \,$ มัธยฐาน $= 3 \, \, \checkmark$
- 2. ความถี่สูงสุด = 12 ในชั้นที่ 3 ightarrow ฐานนิยม = 3 \checkmark
- น้อยกว่า 4 → ดูความถี่สะสมในชั้น 3 ได้ 21 คน ×
- 4. อย่างน้อย 4 คือ 4 หรือ $5 \to \vec{\mathsf{l}} \ 6 + 3 = 9$ คน 🗸
- 5. อย่างมาก 2 o ดูความถี่สะสมในชั้น <math>2 ได้ 9 คน \checkmark
- 16. กำหนดให้ $f(x)=rac{1-x}{x+2}$ เมื่อ x เป็นจำนวนจริงที่ x
 eq -2ถ้า a เป็นจำนวนจริงที่สอดคล้องกับ $f(a+f^{-1}(2))=1$ แล้ว 2a+1 เท่ากับข้อใดต่อไปนี้ 0 2. **-1**

ตอบ 5

จะหา
$$f^{-1}(2)$$
 ต้องหา x ที่ทำให้ $f(x)=2$
$$\frac{1-x}{x+2}=2$$

$$1-x=2x+4$$

$$-3=3x$$

$$-1=x \rightarrow$$
จะได้ $f^{-1}(2)=-1$

แทนในสมการโจทย์
$$f\left(a+f^{-1}(2)\right)=1$$
 $f\left(a-1\right)=1$ $\frac{1-(a-1)}{(a-1)+2}=1$ $2-a=a+1$ $2=2a+1$

17. ให้ a และ b เป็นจำนวนจริงที่ไม่เท่ากับศูนย์ และให้ $f(x)=ax^2+bx+1$ สำหรับทุกจำนวนจริง xและ f(-1)=0 ถ้าเรนจ์ของ f เท่ากับ $[0,\infty)$ แล้วค่าของ $\int\limits_{-\infty}^{2}f(x)\,dx$ เท่ากับข้อใดต่อไปนี้ 2. 7 3. 8 4. 9 1. 5 5. 11

<u>ตอบ</u> 4

ann
$$f(-1) = a(-1)^2 + b(-1) + 1$$

 $0 = a - b + 1$
 $b - 1 = a$...(*)

โจทย์ให้เรนจ์ $= [0,\infty)$ แสดงว่า f(x) เป็นพาราโบลาหงาย โดยที่จุดยอดจะมีพิกัด Y เท่ากับ 0ใช้สูตร $(-\frac{b}{2a},\frac{4ac-b^2}{4a})$ จะได้พิกัด Y ของ $f(x)=ax^2+bx+1$ คือ $\frac{4a-b^2}{4a}$

ใช้สูตร
$$\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$$
 จะได้พิกัด Y ของ $f(x) = ax^2 + bx + 1$ คือ $\frac{4a}{4}$ คังนั้น $\frac{4a-b^2}{4a} = 0$ $4(b-1)-b^2 = 0$ $0 = b^2-4a+4$ $0 = (b-2)^2$ $b = 2 \rightarrow$ แทนใน $(*)$ จะได้ $a = 2-1 = 1$

$$\operatorname{Period}_{-1}^{2} f(x) dx = \int_{-1}^{2} (x^{2} + 2x + 1) dx = \frac{x^{3}}{3} + x^{2} + x \Big|_{-1}^{2}$$
$$= \left(\frac{8}{3} + 4 + 2\right) - \left(\frac{-1}{3} + 1^{2} - 1\right) = 9$$

18. ให้พาราโบลารูปหนึ่งมีจุดยอดอยู่บนเส้นตรงซึ่งมีสมการ 2y=3x และมี y=3 เป็นแกนสมมาตร ถ้าพาราโบลา ผ่านจุด (3,5) แล้วสมการของพาราโบลารูปนี้ ตรงกับข้อใดต่อไปนี้

1.
$$y^2 - 4x - 6y + 17 = 0$$

$$2. \quad y^2 - 4x + 6y - 43 = 0$$

3.
$$y^2 + 4x - 6y - 7 = 0$$

4.
$$y^2 + 6x - 4y - 23 = 0$$

5.
$$y^2 - 6x + 4y - 27 = 0$$

จุดยอดอยู่บนเส้นตรง 2y=3x แสดงว่าจุดยอดต้องทำให้สมการ 2y=3x เป็นจริง

แกนสมมาตร y=3 จะผ่านจุดยอดเสมอ \rightarrow จุดยอดจะมีพิกัด y คือ $3 \rightarrow$ แทนใน 2y=3x

$$2(3) = 3x$$

2 = x

ightarrow จะได้พิกัด (h,k) ของจุดยอดคือ (2,3)

แกนสมมาตร y=3 เป็นเส้นตรงในแนวนอน ดังนั้น พาราโบลาจะอยู่ในรูป $(y-k)^2=4c(x-h)$ กราฟผ่านจุด (3,5) ($(y-3)^2 = 4c(x-2)$) ($(5-3)^2 = 4c(3-2)$

ราฟผ่านจุด
$$(3,5)$$
 (5-3)² = $4c(3-2)$
4 = $4c$

แทน
$$h,k,c$$
 ในสมการพาราโบลา จะได้ $(y-3)^2=4(1)(x-2)$
$$y^2-6y+9=4x-8$$

$$y^2-4x-6y+17=0$$

19. ถ้า a และ b เป็นจำนวนจริง สอดคล้องกับ $\frac{2^a - \log_2 b}{2 \log_2 b - 4} = \frac{1}{2}$ และ $\frac{3 + \log_2 b}{2^a + 4} = \frac{\log_2 b}{2^a}$ แล้วค่าของ a^2+b^2 เท่ากับข้อใดต่อไปนี้

5. 68

<u>ตอบ</u> 5

20. ให้ L เป็นเส้นตรงซึ่งจุดทุกจุดบนเส้นตรง L อยู่ห่างจากจุด (-1,-1) และจุด (7,5) เป็นระยะทางเท่ากัน ระยะห่างระหว่างเส้นตรง L กับจุด (2,0) เท่ากับกี่หน่วย

<u>ตอบ</u> 1

ให้ (x,y) เป็นจุดบนเส้นตรง L จะได้ ระยะจาก (x,y) ไปยัง (-1,-1)= ระยะจาก (x,y) ไปยัง (7,5)

$$\sqrt{(x-(-1))^2 + (y-(-1))^2} = \sqrt{(x-7)^2 + (y-5)^2}$$

$$(x+1)^2 + (y+1)^2 = (x-7)^2 + (y-5)^2$$

$$x^2 + 2x + 1 + y^2 + 2y + 1 = x^2 - 14x + 49 + y^2 - 10y + 25$$

$$\div 4$$
 ଜନ୍ମନ୍ଦିନ ($4x + 3y - 72 = 0$

$$4x + 3y - 18 = 0$$

ระยะห่างจากจุด
$$(a,b)$$
 ถึงเส้นตรง $Ax+By+C=0$ คือ $rac{|Aa+Bb+C|}{\sqrt{A^2+B^2}}$

ระยะห่างจากจุด
$$(a,b)$$
 ถึงเส้นตรง จะได้สมการเส้นตรง L คือ $4x+3y-18=0$ คือ $\frac{|Aa+Bb+c|}{\sqrt{A^2+B^2}}$ ดังนั้น ระยะห่างจาก $(2,0)$ ถึง L คือ $\frac{|4(2)+3(0)-18|}{\sqrt{4^2+3^2}}=\frac{|-10|}{\sqrt{25}}=2$

21. กำหนดให้ $ar u=2ar\iota-ar\jmath+2ar k$ และ $ar v=ar\iota+2ar\jmath-2ar k$ เวกเตอร์ในข้อใด<u>ไม่ตั้งฉาก</u>กับเวกเตอร์ ar u imesar v

1.
$$3\bar{\iota} + \bar{\jmath}$$

2.
$$\bar{\iota} - 3\bar{\imath} + 4\bar{k}$$

3.
$$4\bar{\iota} + 3\bar{\iota} - 2\bar{k}$$

4.
$$\bar{\iota} + \bar{\jmath} - \bar{k}$$

5.
$$-5\bar{\imath} + 6\bar{k}$$

ตอบ 4

ตั้งฉากกัน จะดอทกันเป็น $0\, o\,$ จะดูว่าตัวเลือกไหนที่ดอทกับ $ar u imesar v\,$ แล้วเป็น 0

$$\bar{u} \times \bar{v} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} (-1)(-2) - (2)(2) \\ (2)(1) - (2)(-2) \\ (2)(2) - (-1)(1) \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \\ 5 \end{bmatrix}$$

1.
$$\begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 6 \\ 5 \end{bmatrix} = (3)(-2) + (1)(6) + (0)(5) = -6 + 6 + 0 = 0$$

2.
$$\begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 6 \\ 5 \end{bmatrix} = (1)(-2) + (-3)(6) + (4)(5) = -2 - 18 + 20 = 0 \quad \checkmark$$

3.
$$\begin{bmatrix} 4 \\ 3 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 6 \\ 5 \end{bmatrix} = (4)(-2) + (3)(6) + (-2)(5) = -8 + 18 - 10 = 0$$

4.
$$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 6 \\ 5 \end{bmatrix} = (1)(-2) + (1)(6) + (-1)(5) = -2 + 6 - 5 = -1$$

5.
$$\begin{bmatrix} 0 \\ -5 \\ 6 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 6 \\ 5 \end{bmatrix} = (0)(-2) + (-5)(6) + (6)(5) = 0 - 30 + 30 = 0$$

22. กำหนดให้ \vec{a}, \vec{b} และ \vec{c} เป็นเวกเตอร์ในสามมิติ โดยที่ $\vec{a}+\vec{b}+\vec{c}=\vec{0}$ ถ้า $\vec{a}=\bar{\iota}+2\bar{\jmath}$ และขนาดของเวกเตอร์ $ec{b}$ และ $ec{c}$ เท่ากับ 2 และ 3 หน่วย ตามลำดับ แล้ว $ec{a}\cdotec{b}+ec{b}\cdotec{c}+ec{c}\cdotec{a}$ เท่ากับข้อใดต่อไปนี้

ตอบ 2

พิลิป 2
$$\vec{a} + \vec{b} + \vec{c} = \vec{0}$$

$$\vec{b} + \vec{c} = -\vec{a}$$

$$\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = -\vec{a} \cdot \vec{a}$$

$$\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = -|\vec{a}|^2$$

$$\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = -|\vec{a}|^2$$

$$\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = -(1^2 + 2^2)$$

$$\vec{a} \cdot \vec{b} + \vec{c} \cdot \vec{a} = -5$$
...(1)
$$\vec{b} + \vec{c} = |\vec{a}|^2$$

$$2^2 + 3^2 + 2\vec{b} \cdot \vec{c} = 1^2 + 2^2$$

$$2\vec{b} \cdot \vec{c} = -8$$

$$\vec{b} \cdot \vec{c} = -4$$
...(2)

23. ถ้า A เป็นเซตคำตอบของอสมการ $x+rac{1}{x}\geq 0$ และ

B เป็นเซตคำตอบของอสมการ $2x^2 - 3x > 7x - 12$

แล้ว A-B เป็นสับเซตของช่วงในข้อใดต่อไปนี้

1.
$$(-\infty, 0)$$
 2. $(-2, 2)$ 3. $(0, 5)$ 4. $(3, 8)$ 5. $(6, \infty)$

<u>ตอบ</u> 3

$$x+rac{1}{x}\geq 0$$
 $\frac{x^2+1}{x}\geq 0$ เนื่องจากตัวเศษ x^2+1 เป็นบวกเสมอ x^2+1 เป็นบวกเสมอ

จะได้ A - B = (2,3) ซึ่งเป็นสับเชตของ (0,5) ในข้อ 3

24. ถ้า A เป็นเซตคำตอบของ $|3-2x-x^2| = x^2 + 2x - 3$ และ

B เป็นเซตคำตอบของ $|x^2 + x| \le 12$

แล้วเซต $A\cap B$ เท่ากับข้อใดต่อไปนี้

ดังนั้น $A=(0,\infty)$

4.
$$[-4, -3] \cup [1, 3]$$
 5. $[-4, 1] \cup [2, 3]$

5.
$$[-4, 1] \cup [2, 3]$$

ตอบ 4

หา A: สังเกตว่า $3-2x-x^2$ กับ x^2+2x-3 เป็นลบซึ่งกันและกัน

ดังนั้น สมการของ A จะอยู่ในรูป |k|=-k ซึ่งจากสมบัติของค่าสัมบูรณ์ สมการนี้จะเป็นจริงเมื่อ $k\leq 0$

หา B : จาก $|x^2+x| \le 12$ จะสรุปได้ว่า $-12 \le x^2+x \le 12$

จะได้
$$A\cap B \,=\, ((-\infty,-3]\cup[1,\infty))\cap[-4,3] \,=\, [-4,-3]\cup[1,3]$$

- 25. ให้ $ar{z}$ แทนสังยุค (conjugate) ของจำนวนเชิงซ้อน z และ $i^2=-1$ ถ้า z-(1+i) เป็นจำนวนจินตภาพแท้ และ $z^2-2(1+i)^2$ เป็นจำนวนจริง แล้ว *zī* มีค่าเท่ากับข้อใดต่อไปนี้
 - 1. 2
- 2. 3

- 4. 5 5. 6

ตอบ 4

ให้
$$z = x + yi$$
 จะได้ $z - (1+i) = x + yi - (1+i)$
= $x - 1 + (y - 1)i$

โจทย์ให้ z เป็นจำนวนจินตภาพแท้ ดังนั้น ส่วนจริง x-1 ต้องเป็น 0 o จะได้ x=1 o ดังนั้น z=1+yi

และจะได้
$$z^2 - 2(1+i)^2 = (1+yi)^2 - 2(1+i)^2$$

= $1 + 2yi - y^2 - 2(1+2i-1)$
= $1 - y^2 + (2y-4)i$

โจทย์ให้ $z^2-2(1+i)^2$ เป็นจำนวนจริง ดังนั้น ส่วนจินตภาพ 2y-4 ต้องเป็น 0
ightarrowจะได้ y=2

ดังนั้น
$$z\bar{z} = (1+2i)(1-2i)$$

= $1^2 + 2^2 = 5$

- 26. บริษัทแห่งหนึ่งมีพนักงาน 20 คน เป็นผู้ชาย 10 คน ฝ่ายบริหารมีผู้ชาย 3 คน ฝ่ายผลิตมี 8 คน และฝ่ายขายมี 7 คน โดยที่ฝ่ายผลิตและฝ่ายขายมีจำนวนผู้หญิงเท่ากัน ถ้าสุ่มพนักงานมา 4 คน ความน่าจะเป็นที่จะได้พนักงานฝ่าย ผลิตผู้ชายจำนวน 3 คนและพนักงานฝ่ายขายผู้หญิง 1 คนเท่ากับข้อใดต่อไปนี้
- 2. $\frac{8}{969}$ 3. $\frac{8}{4845}$ 4. $\frac{16}{969}$ 5. $\frac{16}{4845}$

ตอบ 5

สมมติให้ฝ่ายผลิตและฝ่ายขาย มีผู้หญิง x คนเท่ากัน จะได้ฝ่ายผลิตมีผู้ชาย 8-x คน และฝ่ายขายมีผู้ชาย 7-x คน รวมกับผู้ชายในฝ่ายบริหาร 3 คน จะได้ผู้ชายทั้งหมด 3+8-x+7-x=10

$$\begin{array}{ccc}
8 & = 2x \\
4 & = x
\end{array}$$

ดังนั้น ฝ่ายผลิตมีผู้ชาย = 8-4=4 คน ightarrow เลือก 3 คน ได้ ${4\choose 3}=rac{4!}{3!1!}=4$ แบบ ightarrow ได้ 4 imes 4=16 แบบ และ ฝ่ายขายมีผู้หญิง =x=4 คน ightarrow เลือก 1 คน ได้ 4 แบบ จำนวนแบบทั้งหมด = เลือก 4 คน จาก 20 คน จะเลือกได้ $\binom{20}{4}=rac{20\cdot 19\cdot 18\cdot 17}{4!}=4845$ แบบ

$$\frac{4!}{4!}$$
 จะได้ความน่าจะเป็น $=\frac{16}{4845}$

27. มีเลขโดด 5 ตัวคือ 1, 2, 3, 4 และ 5 นำเลขโดดเหล่านี้มา 3 ตัวไม่ซ้ำกันและใช้เลขโดดทั้ง 3 ตัวนี้เพื่อสร้าง จำนวนนับสี่หลัก จะมีจำนวนนับสี่หลักที่ต้องการทั้งหมดกี่จำนวน

1. 90

2. 120

3. **360**

4. 600

5. 810

<u>ตอบ</u> 3

เลือกเลขโดด 3 ตัว จากเลขโดดที่มี 5 ตัว ได้ $\binom{5}{3}=rac{5\cdot 4\cdot 3}{3!}=10$ แบบ ใช้เลขโดด 3 ตัว สร้างเลข 4 หลัก แสดงว่าต้องมีเลขโดด 1 ตัวที่ใช้ 2 ครั้ง เลือกเลขโดด 1 ตัวที่ต้องใช้ 2 ครั้ง จากเลขโดด 3 ตัวที่มี เลือกได้ 3 แบบ เรียงหลักทั้ง 4 หลัก (ซึ่งจะมีหลักซ้ำ 2 หลัก) \rightarrow ใช้สูตรเรียงของซ้ำ จะเรียงได้ $\frac{4!}{2!}=\ 12$ แบบ รวมจำนวนแบบทั้งหมด = $10 \times 3 \times 12 = 360$ แบบ

28. ค่าของ $\lim_{x\to 1} \frac{(\sqrt{x}-1)(3x-2)}{3x^2-x-2}$ เท่ากับข้อใดต่อไปนี้

1. $-\frac{1}{10}$ 2. 0 3. $\frac{1}{10}$ 4. $\frac{1}{5}$

ตอบ 3

แทน x=1 จะได้ $rac{0}{0}$ ightarrow ต้องจัดรูปให้ x-1 ตัดกัน ightarrow ตัวเศษ ต้องคูณ $\sqrt{x}+1$ และตัวส่วนต้องแยกตัวประกอบ

$$\lim_{x \to 1} \frac{(\sqrt{x} - 1)(3x - 2)}{3x^2 - x - 2} = \lim_{x \to 1} \frac{\sqrt{x} + 1}{\sqrt{x} + 1} \cdot \frac{(\sqrt{x} - 1)(3x - 2)}{(x - 1)(3x + 2)}$$

$$= \lim_{x \to 1} \frac{(x - 1)}{(\sqrt{x} + 1)(x - 1)(3x + 2)}$$

$$= \lim_{x \to 1} \frac{(3x - 2)}{(\sqrt{x} + 1)(3x + 2)} = \frac{3(1) - 2}{(\sqrt{1} + 1)(3(1) + 2)} = \frac{1}{10}$$

29. ให้ a,b,c และ d เป็นจำนวนจริง โดยที่ $\frac{1}{a+50}=\frac{1}{b-51}=\frac{1}{c+52}=\frac{1}{d-53}$ ข้อใดต่อไปนี้<u>ถูกต้อง</u>

1. c < a < b < d

4. d < b < a < c

5. d < c < a < b

ตอบ 1

สมมติให้ 4 ค่าที่เท่ากันนี้ เท่ากับ $\frac{1}{k}$ นั่นคือ $\frac{1}{a+50}=\frac{1}{b-51}=\frac{1}{c+52}=\frac{1}{d-53}=\frac{1}{k}$ กลับเศษ a+50=b-51=c+52=d-53=k

ดังนั้น c < a < b < dจับแต่ละตัว =k แล้วย้ายตัวเลขไปฝั้งขวา จะได้ a=k-50b = k + 50c = k - 52d = k + 53

30. ห้องเรียนห้องหนึ่งมีนักเรียน 40 คน ผลการสำรวจน้ำหนักของนักเรียนห้องนี้ พบว่า ค่าเฉลี่ยเลขคณิตของน้ำหนัก ของนักเรียนห้องนี้เท่ากับ 50 กิโลกรัม และส่วนเบี่ยงเบนมาตรฐาน 5 กิโลกรัม ถ้าห้องเรียนนี้ มีนักเรียนชาย 22 คน โดยมีค่าเฉลี่ยเลขคณิตและส่วนเบี่ยงเบนมาตรฐานของน้ำหนักของนักเรียนชายเท่ากับ 50 กิโลกรัม และ 4 กิโลกรัม ตามลำดับ แล้วน้ำหนักของนักเรียนหญิงมีสัมประสิทธิ์ของการแปรผันเท่ากับข้อใดต่อไปนี้

2. 0.12

з. **0.14**

4. 0.15

5. **0.16**

<u>ตอบ</u> 2

จะได้
$$N_{
m CL} = 40-22 = 18$$
 คน ดังตาราง

จากสูตรค่าเฉลี่ยรวม จะได้
$$\bar{x}_{\scriptscriptstyle{\mathfrak{I}}\mathfrak{I}\mathfrak{I}\mathfrak{I}}=\frac{N_{\scriptscriptstyle{\mathfrak{I}}}\bar{x}_{\scriptscriptstyle{\mathfrak{I}}}+N_{\scriptscriptstyle{\mathfrak{I}}\mathfrak{I}}\bar{x}_{\scriptscriptstyle{\mathfrak{I}}\mathfrak{I}}}{N_{\scriptscriptstyle{\mathfrak{I}}}+N_{\scriptscriptstyle{\mathfrak{I}}\mathfrak{I}}\bar{x}_{\scriptscriptstyle{\mathfrak{I}}\mathfrak{I}}}$$

$$50 = \frac{(22)(50)+(18)(\bar{x}_{\scriptscriptstyle{\mathfrak{I}}\mathfrak{I}})}{40}$$

$$2000 = 1100+18\bar{x}_{\scriptscriptstyle{\mathfrak{I}}\mathfrak{I}}$$

$$900 = 18\bar{x}_{\scriptscriptstyle{\mathfrak{I}}\mathfrak{I}}$$

$$50 = \bar{x}_{\scriptscriptstyle{\mathfrak{I}}\mathfrak{I}}$$

	มวม	ชาย	หญิง
N	40	22	18
\bar{x}	50	50	?
S	5	4	?

จะเห็นว่า
$$\bar{x}_{\scriptscriptstyle \parallel}=\bar{x}_{\scriptscriptstyle \Omega}=\bar{x}_{\scriptscriptstyle \Omega}$$
 ดังนั้น จะใช้สูตร $s_{\scriptscriptstyle \Omega}^2=\frac{N_{\scriptscriptstyle \parallel}s_{\scriptscriptstyle \parallel}^2+N_{\scriptscriptstyle \Omega}s_{\scriptscriptstyle \Omega}^2}{N_{\scriptscriptstyle \parallel}+N_{\scriptscriptstyle \Omega}}$ ได้
$$5^2=\frac{(22)(4^2)+(18)s_{\scriptscriptstyle \Omega}^2}{40}$$

$$1000=352+18s_{\scriptscriptstyle \Omega}^2$$

$$648=18s_{\scriptscriptstyle \Omega}^2$$

$$36=s_{\scriptscriptstyle \Omega}^2$$

$$6=s_{\scriptscriptstyle \Omega}$$

จากสูตร สปส การแปรผัน $=rac{s}{x}$ จะได้ สปส การแปรผันของนักเรียนหญิง $=rac{s_{
m Q}}{ar{x}_{
m Dl}}=rac{6}{50}=0.12$

31. กำหนดให้ $a_1,a_2,a_3,...$, a_n ... เป็นลำดับเรขาคณิต โดยมี $\sum\limits_{n=1}^{\infty}a_n=rac{3}{2}$

และ b_1,b_2,b_3,\ldots,b_n , \ldots เป็นลำดับเรขาคณิต โดยมี $\sum\limits_{n=1}^{\infty}b_n=5$

ถ้า $a_1=1$ และ $b_1=7$ แล้ว $\sum\limits_{n=1}^{\infty}rac{a_n}{b_n}$ เท่ากับข้อใดต่อไปนี้

1.
$$\frac{3}{70}$$
 2. $\frac{7}{70}$ 3. $\frac{2}{77}$ 4. $\frac{5}{77}$ 5. $\frac{6}{77}$

2.
$$\frac{7}{70}$$

3.
$$\frac{2}{77}$$

4.
$$\frac{5}{77}$$

5.
$$\frac{6}{77}$$

สมมติให้อัตราส่วนร่วมของทั้งสองลำดับ คือ $\it r_a$ และ $\it r_b$ ตามลำดับ

สมมติให้อัตราส่วนร่วมของทั้งสองลำดับ คือ
$$r_a$$
 และ r_b ตามลำดับ $\sum_{n=1}^\infty b_n = \frac{b_1}{1-r_b}$ อากสูตรอนุกรมเรขาคณิตอนันต์ จะได้ $\sum_{n=1}^\infty a_n = \frac{a_1}{1-r_a}$ และ $\sum_{n=1}^\infty b_n = \frac{b_1}{1-r_b}$ $S_\infty = \frac{a_1}{1-r}$ $S_\infty = \frac{a_1}{1-r}$ $S_\infty = \frac{a_1}{1-r}$ $S_\infty = \frac{a_1}{1-r}$ $S_\infty = \frac{a_1}{1-r}$

ାନ୍ଧାନ୍ୟ
$$a_n=a_1r^{n-1}$$
 $S_{\infty}=rac{a_1}{1-r}$

จะได้
$$\frac{a_n}{b_n}=\frac{a_1r_a^{n-1}}{b_1r_b^{n-1}}=\frac{1\left(\frac{1}{3}\right)^{n-1}}{7\left(-\frac{2}{5}\right)^{n-1}}=\frac{1}{7}\left(\frac{1}{3}\times-\frac{5}{2}\right)^{n-1}=\frac{1}{7}\left(-\frac{5}{6}\right)^{n-1}$$
 \rightarrow เทียบกับสูตร a_1r^{n-1} จะได้ พจน์แรก $=\frac{1}{7}$ และอัตราส่วนร่วม $=-\frac{5}{6}$ ใช้สูตรอนุกรมเรขาคณิตอนันต์ จะได้ $\sum_{n=1}^{\infty}\frac{a_n}{b_n}=\frac{\frac{1}{7}}{1-\left(-\frac{5}{6}\right)}=\frac{1}{7}\times\frac{6}{11}=\frac{6}{77}$

32. ให้
$$A = \begin{bmatrix} 3 & a & b \\ 0 & a & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
 เมื่อ a และ b เป็นจำนวนจริง ถ้า $C_{21}(A) = 2$ และ $\det A = -2$ แล้ว $a + b$ เท่ากับข้อใดต่อไปนี้ 1. -3 2. $\frac{5}{3}$ 3. 2 4. $\frac{7}{3}$ 5. 3

<u>ตอบ</u> 5

จากสูตร
$$C_{ij}(A)=(-1)^{i+j}M_{ij}(A)$$
 จะได้ $C_{21}(A)=(-1)^{2+1}M_{21}(A)$ $2=-M_{21}(A)$...(*) ซึ่ง $M_{21}(A)$ หาได้โดยการตัดแถวที่ 2 และหลักที่ $1 \to \begin{bmatrix} \frac{3}{3} & a & b \\ 0 & a & 1 \\ -1 & 1 & 0 \end{bmatrix}$ แล้วหา \det ของส่วนที่เหลือ จะได้ $M_{21}(A)=\begin{vmatrix} a & b \\ 1 & 0 \end{vmatrix}=(a)(0)-(1)(b)=-b$ แทนใน (*) จะได้ $2=-(-b)$ ดังนั้น $b=2$

จะได้ a+b=1+2=3

33. กำหนดให้
$$f$$
 เป็นฟังก์ชันต่อเนื่องบนเซตของจำนวนจริง โดยที่ $f'(x) = \begin{cases} x & \text{เมื่อ } x < 1 \\ x-1 & \text{เมื่อ } x > 1 \end{cases}$ ถ้า $f(0) = 0$ แล้ว $f(2)$ เท่ากับข้อใดต่อไปนี้ 1. 1 2. 1.5 3. 2 4. 2.5 5. 3

<u>ตอบ</u> 1

จาก
$$f'(x) = \begin{cases} x & \text{เมื่อ } x < 1 \\ x - 1 & \text{เมื่อ } x > 1 \end{cases} \rightarrow \text{ อินทิเกรต จะได้ } f(x) = \begin{cases} \frac{x^2}{2} + c_1 & \text{เมื่อ } x < 1 \\ \frac{x^2}{2} - x + c_2 & \text{เมื่อ } x > 1 \end{cases}$$
 (เนื่องจากทั้งสองกรณีใช้คนละสูตร ดังนั้น c_1 กับ c_2 อาจไม่เท่ากันได้)

โจทย์กำหนดให้ f(0)=0 ightarrow จะหาf(0) ต้องใช้สูตรของกรณี x<1 จะได้ $f(0)=rac{0^2}{2}+c_1$ $0=c_1$

โจทย์กำหนดให้ f ต่อเนื่อง $\; o \;$ สูตรของ f ทั้งสองกรณี ต้องมีค่าเท่ากันตรงรอยต่อ

$$ightarrow$$
 นั่นคือ เมื่อ $x=1$ จะได้ $rac{x^2}{2}+c_1=rac{x^2}{2}-x+c_2$
$$rac{1^2}{2}+0=rac{1^2}{2}-1+c_2$$
 $1=c_2$

หา f(2) ต้องใช้สูตรของกรณี x>1 จะได้ $f(2)=rac{z^2}{2}-2+c_2=2-2+1=1$

34. ให้
$$f$$
 เป็นพังก์ชัน นิยามโดย $f(x) = \begin{cases} \frac{x}{x-x^2} & \text{เมื่อ } x < 0 \\ \frac{ax^2 + (b-a)x - b}{x-1} & \text{เมื่อ } 0 \le x < 1 & \text{เมื่อ } a และ b เป็นจำนวนจริง
$$(x+b)^2 & \text{เมื่อ } x \ge 1 \end{cases}$$$

ถ้าฟังก์ชัน f ต่อเนื่องบนเซตของจำนวนจริง แล้ว f(a+b) เท่ากับข้อใดต่อไปนี้

5.
$$\frac{1}{6}$$

ตอบ 1

พิจารณาความต่อเนื่องที่ x=0 จะได้

พิจารณาความต่อเนื่องที่ x=1 จะได้

$$\lim_{x \to 1^{-}} f(x) = f(1) = \lim_{x \to 1^{+}} f(x)$$

$$\lim_{x \to 1^{-}} \frac{ax^{2} + (1-a)x - 1}{x - 1}$$

$$\lim_{x \to 1^{-}} \frac{ax^{2} - ax + x - 1}{x - 1} = (x + b)^{2} \text{ To late}$$

$$\lim_{x \to 1^{-}} \frac{ax(x - 1) + (x - 1)}{x - 1} = (1 + 1)^{2}$$

$$\lim_{x \to 1^{-}} \frac{(x - 1)(ax + 1)}{x - 1} = 4$$

$$\lim_{x \to 1^{-}} ax + 1 = 4$$

$$a(1) + 1 = 4$$

$$a = 3$$

จะได้
$$f(a+b)=f(3+1)=f(4)
ightarrow$$
ใช้สูตรกรณี $x>1$
$$=(4+1)^2 = 25$$

35. โรงงานผลิตสินค้าแห่งหนึ่งได้สำรวจยอดขายสินค้าและจำนวนสินค้าที่ผลิตในแต่ละเดือนของปีหนึ่ง มีข้อมลดังนี้

เดือน	ม.ค.	ก.พ.	มี.ค.	 พ.ย.	ธิ.ค.
จำนวนสินค้าที่ผลิต (x) (หน่วยเป็นชิ้น)	x_1	x_2	<i>x</i> ₃	 <i>x</i> ₁₁	<i>x</i> ₁₂
ยอดขายสินค้า (y) (หน่วยเป็นบาท)	y_1	y_2	y_3	 <i>y</i> ₁₁	y ₁₂

จากการสำรวจพบว่า

ค่าเฉลี่ยเลขคณิตของจำนวนสินค้าที่ผลิตเท่ากับ 6.000 ชิ้น

ค่าเฉลี่ยเลขคณิตของยอดขายสินค้าเท่ากับ 380.000 บาท

ยอดขายสินค้าและจำนวนสินค้าที่ผลิตมีความสัมพันธ์เชิงฟังก์ชันแบบเส้นตรง

และถ้าจำนวนสินค้าที่ผลิตเพิ่มขึ้น 1,000 ชิ้น แล้วยอดขายสินค้าโดยประมาณเพิ่มขึ้น 60,000 บาท ถ้าจำนวนสินค้าที่ผลิต 10,000 ชิ้น แล้วยอดขายสินค้าโดยประมาณเท่ากับข้อใดต่อไปนี้

- 1. 600,000 บาท
- 2. **620,000** บาท
- 3. 660,000 บาท

- 4. 720,000 บาท
- 5. 760,000 บาท

ตอบ 2

เมื่อจำนวนสินค้า (x) เพิ่ม 1000 ชิ้น จะทำให้ยอดขาย (y) เพิ่ม 60000 บาท

จะได้ความขันของกราฟเส้นตรง $=rac{\Delta y}{\Delta x}=rac{60000}{1000}=60$ ightarrow ถ้าให้สมการทำนายคือ $\hat{y}=a+bx$ จะได้ b=60

และจากสูตรความสัมพันธ์แบบเส้นตรง จะได้
$$\sum y_i = an + b \sum x_i$$
 ...(1) $\sum x_i y_i = a \sum x_i + b \sum x_i^2$...(2)

โจทย์ให้ ค่าเฉลี่ยจำนวนสินค้า $6000=ar{x}=rac{\sum x_i}{12}$ จะได้ $\sum x_i=(12)(6000)$

ค่าเฉลี่ยยอดขายสินค้า $380000=ar{y}=rac{\Sigma y_i}{12}$ จะได้ $\sum y_i=(12)(380000)$

แทนค่า
$$b$$
 , $\sum x_i$, $\sum y_i$ และ n ใน (1) จะได้ $(12)(380000)=a(12)+(60)(12)(6000)$ $380000=a+(60)(6000)$ $20000=a$

แทนค่า a และ b จะได้สมการทำนายคือ $\hat{y} = 20000 + 60x$

ดังนั้น เมื่อ จำนวนสินค้า x=10000 ขิ้น จะได้ยอดขาย $\hat{y}=20000+60(10000)=620000$ บาท

36. ให้ A เป็นเชตคำตอบทั้งหมดของสมการ $\log_2(2^{\sqrt{x}}+(2x)^{\log x}-4^{\log 8})=\left(\sqrt{2}\right)^{\log_2 x}$ แล้วผลคูณของสมาชิกทั้งหมดในเซต A เท่ากับเท่าใด

ตอบ 0.5

$$\log_2(2^{\sqrt{x}} + (2x)^{\log x} - 4^{\log 8}) = (\sqrt{2})^{\log_2 x}$$
 $\log_2(2^{\sqrt{x}} + (2x)^{\log x} - 4^{\log 8}) = \sqrt{2^{\log_2 x}}$
 $\log_2(2^{\sqrt{x}} + (2x)^{\log x} - 4^{\log 8}) = \sqrt{x}$
 $2^{\sqrt{x}} + (2x)^{\log x} - 4^{\log 8} = 2^{\sqrt{x}}$
 $(2x)^{\log x} = 4^{\log 8}$
 $\log(2x)^{\log x} = \log 4^{\log 8}$
 $\log(2x)^{\log x} = \log 4^{\log 8}$
 $\log(2x)^{\log x} = (\log 8)(\log 4)$
 $\log(2x)^{\log x} = (\log 8)$
 $\log(2x)^{\log x} = (\log$

37. ให้ $\sec A = -\frac{5}{3}$ และ $\sin A > 0$ เมื่อ $0 < A < 2\pi$ ค่าของ $\frac{5 \sin A + \cot A}{1 + \cot A \csc A}$ เท่ากับเท่าใด ตอบ 52

จาก
$$\sec A = -\frac{5}{3} \rightarrow$$
 ใช้สามเหลี่ยมหาส่วนที่เป็นตัวเลข ได้ดังนี้ $A = \frac{5}{3} = 4$ (จากด้านชุด 3, 4, 5)

หาควอดแรนต์ของ
$$A \to \sec A$$
 เป็นลบ จะได้ $\cos A$ เป็นลบ แสดงว่า A ต้องอยู่ใน Q_2 หรือ Q_3 $\int \sin A$ เป็นบวก แสดงว่า A ต้องอยู่ใน Q_1 หรือ Q_2 $\int \cot A$ จากทั้งสองเงื่อนไข จะได้ว่า A เป็นต้องมุมใน Q_2

จากรูปสามเหลี่ยม และ A เป็นมุมใน Q_2 จะได้ $\sin A = +\frac{4}{5}$, $\cot A = -\frac{3}{4}$, $\csc A = +\frac{5}{4}$

ຈະໃຕ້
$$\frac{5 \sin A + \cot A}{1 + \cot A \csc A} = \frac{5\left(\frac{4}{5}\right) - \frac{3}{4}}{1 + \left(-\frac{3}{4}\right)\left(\frac{5}{4}\right)} = \frac{4 - \frac{3}{4}}{1 - \frac{15}{16}} = \frac{13}{4} \times \frac{16}{1} = 52$$

38. กำหนดให้ x,y,z และ k เป็นจำนวนจริง ที่สอดคล้องกับ

$$2^x = 1 + k$$
, $2^y = 2^x + 2$ une $2^z = 2^y + 4$

ถ้า x,y,z เป็นลำดับเลขคณิต แล้ว x+y+z เท่ากับเท่าใด

ตอบ 6

ข้อนี้ k ปรากฏอยู่ในสมการเดียว และโจทย์ไม่ได้ถาม $k \, o \,$ จึงไม่มีส่วนช่วยในการหาค่าในสมการอื่นแต่อย่างใด ลำดับเลขคณิต แต่ละพจน์จะเพิ่มขึ้นอย่างคงที่ ightarrow ให้เพิ่มขึ้นที่ละ d จะได้ y=x+d และ z=x+2d

แทนในสองสมการหลัง:
$$2^y = 2^x + 2$$
 $2^x + 2$ $2^x + 2$

ดังนั้น ลำดับ x,y,z คือ 1,2,3 และจะได้ผลบวก =1+2+3=6

39. ให้ $f(x)=5-x^2$ สำหรับทุกจำนวนจริง x และให้ R_f เป็นเรนจ์ของ f

ถ้า
$$g(x)=egin{cases} f(x+1) & \mbox{เมื่อ} & x\in R_f \\ 1 & \mbox{เมื่อ} & x\not\in R_f \end{cases}$$
 ค่าของ $(f\circ g)(6)-(g\circ f)(3)$ เท่ากับเท่าใด

ตอบ 8
$$\text{หา } R_f \text{ โดยการพิจารณาช่วงค่าที่เป็นไปได้} \to x^2 \geq 0 \\ 0 \geq -x^2 \\ 5 \geq 5-x^2 \\ 5 \geq f(x) \to R_f = (-\infty, 5]$$

แทนค่า
$$f$$
 และ R_f ใน $g(x)$ จะได้ $g(x)=\left\{ egin{array}{ll} 5-(x+1)^2 & \mbox{id} \mbox{id} \mbox{x} \in (-\infty,5] \\ 1 & \mbox{id} \mbox{x} \notin (-\infty,5] \end{array}
ight.$

ຈະໃຕ້
$$(f \circ g)(6) - (g \circ f)(3) = f(g(6)) - g(f(3))$$

 $= f(1) - g(5 - 3^2)$
 $= f(1) - g(-4)$
 $= (5 - 1^2) - (5 - (-4 + 1)^2)$
 $= 4 - (-4) = 8$

40. กำหนดให้ $a_1, a_2, a_3, ..., a_n$, ... เป็นลำดับเลขคณิตของจำนวนจริง โดยที่ $a_1 + a_3 = 7$ และ $a_2+a_4+a_6+a_8=74$ ค่าของ $a_1+a_2+a_3+...+a_{50}$ เท่ากับเท่าใด

เปลี่ยนพจน์ให้อยู่ในรูปของ a_1 และ d โดยใช้สูตรลำดับเลขคณิต $a_n=a_1+(n-1)d$

$$a_1 + a_3 = 7$$
 $a_1 + a_1 + 2d = 7$
 $2a_1 + 2d = 7$...(1)
$$a_2 + a_4 + a_6 + a_8 = 74$$
 $a_1 + d + a_1 + 3d + a_1 + 5d + a_1 + 7d = 74$
 $4a_1 + 16d = 74$
 $2a_1 + 8d = 37$...(2)

ใช้สูตรอนุกรมเลขคณิต $S_n=rac{n}{2}(2a_1+(n-1)d)$

ຈະໃຕ້
$$a_1 + a_2 + a_3 + ... + a_{50} = S_{50} = \frac{50}{2} \left(2 \left(-\frac{3}{2} \right) + 49(5) \right)$$

= $\frac{50}{2} \left(242 \right) = 6050$

41. ให้ c เป็นจำนวนจริง และให้ $f(x) = -x^3 - 12x^2 - 45x + c$ สำหรับทุกจำนวนจริง x ถ้าค่าสูงสุดสัมพัทธ์ของ f เท่ากับ 53 แล้วค่าของ f(c) เท่ากับเท่าใด

<u>ตอบ</u> 33

จุดสูงสุดสัมพัทธ์ เกิดเมื่อ
$$f'(x)$$
 เปลี่ยนจากบวกเป็นลบ :
$$f(x) = -x^3 - 12x^2 - 45x + c$$

$$f'(x) = -3x^2 - 24x - 45$$

$$= -3(x^2 + 8x + 15)$$

$$= -3(x + 5)(x + 3)$$

$$-3 \text{ ที่คูณอยู่ด้านหน้า จะทำให้}$$
 เครื่องหมายสลับเป็นตรงข้าม

จะเห็นว่า f'(x) เปลี่ยนจากบวกเป็นลบที่ x=-3 ightarrow ค่าสูงสุดสัมพัทธ์เกิดที่ x=-3

$$\rightarrow 92\%$$
 $f(-3) = 53$
 $-(-3)^3 - 12(-3)^2 - 45(-3) + c = 53$
 $27 - 108 + 135 + c = 53$
 $c = -1$

ຈະໃຕ້
$$f(c) = f(-1) = -(-1)^3 - 12(-1)^2 - 45(-1) + (-1)$$

= 1 - 12 + 45 - 1 = 33

42. กำหนดให้ F_1 และ F_2 เป็นโฟกัสของไฮเพอร์โบลารูปหนึ่ง ซึ่งมีสมการเป็น $5x^2-4y^2-10x-16y=31$ ถ้า a,b และ c เป็นจำนวนจริง ที่ทำให้วงกลม $x^2+y^2+ax+by+c=0$ มี $\overline{F_1F_2}$ เป็นเส้นผ่านศูนย์กลาง แล้ว $a^2+b^2+c^2$ เท่ากับเท่าใด

ตอบ 36

จัดรูปไฮเพอร์โบลา:
$$5x^2 - 4y^2 - 10x - 16y = 31$$

$$5(x^2 - 2x) - 4(y^2 + 4y) = 31$$

$$5(x^2 - 2x + 1) - 4(y^2 + 4y + 4) = 31 + 5(1) - 4(4)$$

$$5(x - 1)^2 - 4(y + 2)^2 = 20$$

$$\frac{(x - 1)^2}{4} - \frac{(y + 2)^2}{5} = 1$$

เทียบกับรูปสมการ $\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1$ จะเป็นไฮเพอร์โบลาแนวนอน วงกลมที่มี $\overline{F_1F_2}$ เป็นเส้นผ่านศูนย์กลาง จะมีจุดศูนย์กลางร่วมกับไฮเพอร์โบลา และมีรัศมียาวเท่ากับระยะโฟกัสของไฮเพอร์โบลา ดังรูป

โฮเพอร์โบลา มีจุดศูนย์กลาง (h,k)=(1,-2) และระยะโฟกัส $c=\sqrt{a^2+b^2}=\sqrt{4+5}=3$

วงกลมที่มีจุดศูนย์กลาง
$$(1,-2)$$
 และรัศมี 3 จะมีสมการคือ $(x-1)^2+(y+2)^2=3^2$
$$x^2-2x+1+y^2+4y+4=9$$

$$x^2+y^2-2x+4y-4=0$$

เทียบกับรูป
$$x^2+y^2+ax+by+c=0$$
 จากโจทย์ จะได้ $a=-2$, $b=4$ และ $c=-4$ ดังนั้น $a^2+b^2+c^2=(-2)^2+4^2+(-4)^2=36$

43. กำหนดให้ A เป็นเมทริกซ์ที่มีมิติ 3×3 โดยที่ $\det(A) = -7$ และเมทริกซ์ผูกพันของ A คือ

$$adj(A) = \begin{bmatrix} -4 & -1 & x \\ -2 & x & -2 \\ 1 & -5 & 1 \end{bmatrix} \quad เมื่อ x เป็นจำนวนจริงบวก$$

ค่าของ $\det(x \operatorname{adj}(A))$ เท่ากับเท่าใด

ตอบ 1323

ବ୍ୟମଣ୍ଡ det(adj(A)) =
$$(\det(A))^{n-1}$$

$$\begin{vmatrix} -4 & -1 & x \\ -2 & x & -2 \\ 1 & -5 & 1 \end{vmatrix} = (-7)^{3-1}$$

$$(-4x + 2 + 10x) - (x^2 - 40 + 2) = 49$$

$$0 = x^2 - 6x + 9$$

$$0 = (x - 3)^2$$

$$x = 3$$

ຈະໃຕ້
$$\det(x \operatorname{adj}(A)) = \det(3 \operatorname{adj}(A))$$

= $3^n \det(\operatorname{adj}(A))$
= $3^n (\det(A))^{n-1}$
= $3^3 (-7)^{3-1} = 27(49) = 1323$

44. กำหนดให้
$$N = \{ 1, 2, 3, ... \}$$

$$f(1,m)=1$$
 สำหรับ $m\in N$

$$f(n,m)=0$$
 สำหรับ $n,m\in N$ โดยที่ $n>m$

$$f(n,m+1)=f(n-1,m)+f(n,m)+f(n+1,m)$$
 สำหรับ $n,m\in N$ และ $n\geq 2$ ค่าของ $f(2,4)$ เท่ากับเท่าใด

<u>ตอบ</u> 4

จะใช้ตารางมาช่วย โดยให้ f(n,m) คือช่องในแถวที่ n หลักที่ m o f(2,4) คือช่องในแถวที่ 2 หลักที่ 4

	1	1	1	1
f(1,m)=1 แปลว่า				?
แถวแรกเป็น 1 หมด				
PPPI, 1 PP T II PT PT T IN PAIN				

f(n,m)=0 เมื่อ n>m แปลว่า ช่องที่อยู่ใต้เล้นทแยง มุมเฉียงลง เป็น 0 หมด

1	1	1	1
0			?
0	0		
0	0	0	

f(n,m+1) = f(n-1,m) + f(n,m) + f(n+1,m)แปลว่า ช่องขวา ได้จากผลบวกของสามช่องซ้ายที่ติดกัน

	m	<i>m</i> -	+ 1
n-1	/		
n		\wedge	
n+1			

ไล่หาที่ละหลัก

1	1	1	1
0-) 1		?
0	0		
0	0	0	

1	1	1	1
0	1-	> 2	?
0	0) 1	
0	0	0	

1	1	1	1
0	1	2-	} 4
0	0	1	
0	0	0	

จะได้ f(2,4)=4

45. กำหนดตารางแสดงพื้นที่ใต้เส้นโค้งปกติมาตรฐานระหว่าง 0 ถึง z

Z	0.7	1.3	2.42
พื้นที่ใต้เส้นโค้ง	0.2580	0.4032	0.4922

คะแนนสอบวิชาคณิตศาสตร์ของนักเรียนห้องหนึ่ง มีการแจกแจงปกติ และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 20 คะแนน นาย ก. และนาย ข. เป็นนักเรียนในห้องนี้ นาย ก. สอบได้คะแนนเป็นสองเท่าของคะแนนสอบ ของนาย ข. และคะแนนสอบของนาย ก. คิดเป็นคะแนนมาตรฐานเท่ากับ 1.3 ถ้ามีนักเรียนร้อยละ 24.2 ที่สอบได้ คะแนนสอบน้อยกว่าคะแนนสอบของนาย ข. แล้ว ค่าเฉลี่ยเลขคณิตของคะแนนสอบควั้งนี้ เท่ากับเท่าใด

ตอบ 54

จากสูตร
$$z_i=rac{x_i-ar{x}}{s}$$
 จะได้ $z_{\scriptscriptstyle \Pi}=rac{x_{\scriptscriptstyle \Pi}-ar{x}}{s}$ $1.3=rac{x_{\scriptscriptstyle \Pi}-ar{x}}{20}$ $ar{x}+26=x_{\scriptscriptstyle \Pi}$...(1)

มีนักเรียน 24.2% ได้คะแนนน้อยกว่า ข. ightarrow จะวาดได้ดังภูป จะได้พื้นที่จากแกนกลางเพื่อใช้เปิดตาราง =0.5-0.2420=0.2580 เปิดตาราง เมื่อพื้นที่ =0.2580 จะได้ z=0.7 แต่ ข. อยู่ครึ่งซ้าย จะมีค่า z เป็นลบ ightarrow จะได้ $z_{\pi}=-0.7$

จากสูตร
$$z_i=rac{x_i-ar{x}}{s}$$
 จะได้ $z_{\scriptscriptstyle \parallel}=rac{x_{\scriptscriptstyle \parallel}-ar{x}}{s}$ $-0.7=rac{x_{\scriptscriptstyle \parallel}-ar{x}}{20}$ $ar{x}-14=x_{\scriptscriptstyle \parallel}$...(1)

โจทย์กำหนดให้ ก. ได้คะแนนเป็น 2 เท่าของ ข.
$$\to x_{\rm n} = 2x_{\rm ll}$$
 $\bar x + 26 = 2(\bar x - 14)$ $\bar x + 26 = 2\bar x - 28$ $54 = \bar x$

<u>เครดิต</u>

ขอบคุณ ข้อสอบ และเฉลย จาก อ. บึ๋ง GTRmath

ขอบคุณ คุณ Cherry Ctt

และ คุณ ธนพล สำราญรื่น

และ คุณ Kanyarach Rattanaphan ที่ช่วยตรวจสอบความถูกต้องของเอกสาร