Homework 6 - Problem 4

- a) Reducing problem P to problem Q₁ Finding the longest path for G₁, s₁ and t₁:
 - 1. Construct G_1 , s_1 and t_1 :

Given you get G, S and t,

Duplicate G into G_1 , Copy s into S_1 , Copy t into S_1 ,

2. Run algorithm A_{Q1} on G_1 , s_1 , and t_1

Now Given L:

If the length of the longest path from s_1 and t_1 is equal to the number of vertices in G, then there is an s-t hamiltonian path in G, otherwise there is no path.

- **b)** Reducing problem P to problem Q_2 Finding the shortest path for G_2 , s_2 and t_2
 - 1. Construct G_2 , s_2 and t_2 : Given you get G, S and t,

Duplicate G into G₂ Copy s into s₂ Copy t into t₂

2. Run algorithm A_{Q2} on G_2 , s_2 , and t_2

Now Given L:

If the length of the longest path from s_1 and t_1 is equal to the number of vertices in G, then there is an s-t hamiltonian path in G, otherwise there is no path.