Distributions in R

Jochen Kalser University of Liechtenstein

August 10, 2014

Contents

1	General Remarks	2
2	Normal Distribution	2
3	χ^2 -Distribution	3
4	$t ext{-} ext{Distribution}$	4
5	F-Distribution	4
6	Binomial Distribution	4

1 General Remarks

R provides a set of statistical tables in order to evaluate probability density functions using the prefix d-, cumulative distribution functions using the prefix p-, quantiles using the prefix q- and a set of routines in order to perform simulations using the prefix r-

for the distributions

Distribution	R Name	Arguments
binomial	binom	$size,\ prob$
normal	norm	mean, sd
chi-squared	chisq	df, ncp
\mathbf{t}	t	df, ncp
F	f	df1, df2, ncp

among others.

2 Normal Distribution

We consider the standard normally distributed random variable $Z \sim \mathcal{N}(0,1)$ and calculate

the value
$$\phi(1)=0.2419707$$
 of its probability density $\phi(t)=\frac{1}{\sqrt{2}\cdot\pi}\cdot e^{-\frac{t^2}{2}}$ by dnorm(1)

the value $\Phi(1.73)=\mathbb{P}[Z\leq 1.73]=0.9581849$ of its cumulative probability function $\Phi(z)=\mathbb{P}[Z\leq z]=\int_{-\infty}^z\phi(t)dt$ by

the value $z_{0.9} = 1.281552$ of its 0.90-quantile by

and get a random sample of size 50 out of a standard normally distributed population

x<-rnorm(50)
hist(x)
stem(x)</pre>

We now consider the normally distributed random variable $X \sim \mathcal{N}(3, 4^2)$ with mean 3 and standard deviation 4 and calculate

the value f(7)=0.06049268 of its probability density $f(t)=\frac{1}{\sigma}\cdot\phi\left(\frac{t-\mu}{\sigma}\right)=\frac{1}{\sigma\sqrt{2\cdot\pi}}\cdot e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2}$ by

```
dnorm(7,mean=3,sd=4)
      dnorm(7,3,4)
the probability \mathbb{P}[X \le -2] = \Phi(\frac{-2-3}{4}) = 0.1056498 by
      pnorm(-2,3,4)
      pnorm((-2-3)/4)
the probability \mathbb{P}[X \ge 10] = 1 - \mathbb{P}[X \le 10] = 1 - \Phi\left(\frac{10-3}{4}\right) = 0.04005916 by
      pnorm(10,3,4,lower.tail=FALSE)
       1-pnorm(10,3,4)
       1-pnorm((10-3)/4)
the probability \mathbb{P}[1 \le X \le 5] = \mathbb{P}[X \le 5] - \mathbb{P}[X \le 1] = \Phi\left(\frac{5-3}{4}\right) - \Phi\left(\frac{1-3}{4}\right) = 0
     0.3829249 by
      pnorm(5,3,4) - pnorm(1,3,4)
      pnorm((5-3)/4) - pnorm((1-3)/4)
the value q_{0.9} = 3 + z_{0.9} \cdot 4 = 8.126206 of its 0.90-quantile by
       qnorm(0.9,3,4)
      3+qnorm(0.9)*4
and get a random sample of size 50 out of a normally distributed population
     with mean \mu = 3 and standard deviation \sigma = 4
      x < -rnorm(50, 3, 4)
      hist(x)
      stem(x)
```

3 χ^2 -Distribution

We consider the χ^2 -distributed random variable $X \sim \chi^2_{10}$ with $\nu=10$ degrees of freedom and calculate

```
its 0.95 quantile \chi^2_{10,0.95} = 18.30704 by \mbox{qchisq(0.95,10)} the probability \mathbb{P}[X \geq 15] = 1 - \mathbb{P}[X \leq 15] = 0.1320619 by \mbox{pchisq(15,10,lower.tail=FALSE)} 1-pchisq(15,10)
```

4 t-Distribution

We consider the t-distributed random variable $X \sim t_{10}$ with $\nu=10$ degrees of freedom and calculate

```
its 0.95 quantile t_{10,0.95}=1.812461 by \mbox{qt(0.95,10)} the probability \mathbb{P}[X\geq 1.5]=1-\mathbb{P}[X\leq 1.5]=0.08225366 by \mbox{pt(1.5,10,lower.tail=FALSE)} 1-pt(1.5,10)
```

5 F-Distribution

We consider the F-distributed random variable $X \sim F_{2,10}$ with m=2 degrees of freedom in the numerator and n=10 degrees of freedom in the denumerator and calculate

```
its 0.95 quantile F_{2,10,0.95}=4.102821 by  \mathsf{qf}(0.95,2,10)  the probability \mathbb{P}[X\geq 5]=1-\mathbb{P}[X\leq 5]=0.03125 by  \mathsf{pf}(5,2,10,\mathsf{lower.tail=FALSE})  1-pf(5,2,10)
```

6 Binomial Distribution

We consider the binomial distributed random variable $X \sim BIN(10,0.2)$ and calculate the value $\mathbb{P}[X=3]=0.2013266$ of the probability mass function $\mathbb{P}[X=k]=\binom{10}{k} \cdot 0.2^k \cdot 0.8^{10-k}$ by choose(10,3)*0.2 \wedge 3*0.8 \wedge 7 dbinom(3,10,0.2) evaluate the probabilities $\mathbb{P}[X=k]$ for $k=0,1,\ldots,10$ by k<-0:10 pxk<-dbinom(k,10,0.2) in order to get the distribution with its mode cbind(k,pxk) k[which.max(pxk)] and plot its point graph

plot(0:10,dbinom(0:10,10,0.2),type="h")

```
abline(0,0)
calculate the value F(3) = \mathbb{P}[X \leq 3] = 0.8791261 of the cumulative distribu-
     tion function F(x) = \mathbb{P}[X \le x] = \sum_{k=0}^{x} \begin{pmatrix} 10 \\ k \end{pmatrix} \cdot 0.2^k \cdot 0.8^{10-k} by
      sum(dbinom(0:3,10,0.2))
      pbinom(3,10,0.2)
      pbinom(3,10,0.2,lower.tail=TRUE)
plot the cumulative distribution function as a point graph
      plot(0:10,pbinom(0:10,10,0.2),type="s")
calculate \mathbb{P}[X > 3] = 1 - \mathbb{P}[X \le 3] = \mathbb{P}[X \ge 4] = 1 - \mathbb{P}[X < 4] = 0.1208739 by
      sum(dbinom(4:10,10,0.2))
      1-pbinom(3,10,0.2)
      pbinom(3,10,0.2,lower.tail=FALSE)
evaluate the third quartile q_3 respectively the 0.75-quantile q_{0.75} by
      cbind(0:10,pbinom(0:10,10,0.2))
      qbinom(0.75, 10, 0.2)
get a random sample of size 50 out of a population
      x < -rbinom(50, 10, 0.2)
      hist(x)
      stem(x)
```