Simple Estimation of Semiparametric Models with Measurement Errors

Kirill Evdokimov Andrei Zeleneev

Princeton University

May 17, 2018

Framework

General moment condition model

$$\mathbb{E}\left[g(X_i^*,R_i,\theta)\right] = 0 \quad \text{iff} \quad \theta = \theta_0$$

• X_i^* is mismeasured with a (classical) measurement error ε_i

$$X_i = X_i^* + \varepsilon_i, \quad \varepsilon_i \perp (X_i^*, R_i), \quad \mathbb{E}[\varepsilon_i] = 0$$

Leading example: nonlinear regression

$$Y_i = \rho(X_i^*, W_i, \theta_0) + U_i, \quad \mathbb{E}[U_i | X_i^*, W_i, Z_i] = 0$$

 $g(x, w, y, z, \theta) = (\rho(x, w, \theta) - y)h(x, w, z)$

For example, Logit/Probit/Tobit

Framework: Small and Moderate Measurement Error

- Most of the literature treats $\sigma^2 = \mathbb{E}\left[arepsilon_i^2 \right]$ as fixed
 - Too pessimistic and not representative of most empirical settings
 - Estimation of an infinite dimensional nuisance parameter and/or numerical simulation is required
 - ightharpoonup The asymptotic theory assumes σ^2 is bounded away from zero
 - ► Hausman, Newey, Ichimura, and Powell (1991), Newey (2001), Li (2002), Schennach (2004, 2007), Hu and Schennach (2008), and others
- We suggest an alternative asymptotic framework modeling $\sigma_n^2 \equiv \mathbb{E}\left[\varepsilon_{in}^2\right]$ as shrinking to zero
 - Simple estimation procedure: GMM
 - Advantageous in terms of the quality of point estimates
 - ID robust and powerful inference

Estimation: Motivation

Taylor expansion of $g(X_i, R_i, \theta)$ (in the spirit of Chesher, 1991): $\sigma_n^2 \equiv \mathbb{E}\left[\varepsilon_{in}^2\right] \to 0$

$$\begin{split} g(X_i, R_i, \theta) &= g(X_i^*, R_i, \theta) + g_x^{(1)}(X_i^*, R_i, \theta) \varepsilon_{in} + \frac{1}{2} g_x^{(2)}(X_i^*, R_i, \theta) \varepsilon_{in}^2 + O_p(\sigma_n^3), \\ \mathbb{E}[g(X_i, R_i, \theta)] &= \mathbb{E}[g(X_i^*, R_i, \theta)] \\ &+ \frac{\sigma_n^2}{2} \mathbb{E}[g_x^{(2)}(X_i^*, R_i, \theta)] + O(\sigma_n^3), \end{split}$$

where
$$g_x^{(k)}(x,r,\theta) \equiv \frac{\partial^k}{\partial x^k} g(x,r,\theta)$$

Therefore, $\mathbb{E}\left[g(X_i,R_i,\theta_0)\right]=O(\sigma_n^2)$, and the standard estimator is:

- Asymptotically biased if $\sqrt{n}\sigma_n^2 \to C \in (0,+\infty)$
- Not \sqrt{n} -consistent if $\sqrt{n}\sigma_n^2 \to \infty$

SME Estimator

• Define the corrected moment function:

$$\psi(X_i, R_i, \theta, \gamma) \equiv g(X_i, R_i, \theta) - \gamma g_x^{(2)}(X_i, R_i, \theta)$$

Assumption (Small Measurement Error)

$$\sigma_n^2 = o(n^{-1/3})$$

- $\mathbb{E}\left[\psi(X_i,R_i, heta_0,\gamma_{0n})\right]=O(\sigma_n^3)=o(n^{-1/2})$, where $\gamma_{0n}\equiv\sigma_n^2/2$
- SME estimator:

$$(\hat{\theta}, \hat{\gamma}) = \operatorname*{argmin}_{\theta \in \Theta, \gamma \in \Gamma} \hat{Q}(\theta, \gamma), \quad \hat{Q}(\theta, \gamma) = \overline{\psi}(\theta, \gamma)' \hat{\Xi}(\theta, \gamma) \overline{\psi}(\theta, \gamma)$$

• Higher order expansion is a bit more tricky: one needs to correct the correction terms. Details are in the paper.

Monte Carlo: Point Estimation

From Schennach (2007, Ecta):

$$Y_{i} = \rho(X_{i}^{*}, \theta_{0}) + U_{i}$$

$$X_{i}^{*} = Z_{i} + \eta_{i}$$

$$X_{i} = X_{i}^{*} + \varepsilon_{i}$$

$$\begin{pmatrix} Z_{i} \\ \eta_{i} \\ U_{i} \\ \varepsilon_{i} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/4^{\dagger} & 0 \\ 0 & 0 & 0 & 1/4 \end{pmatrix}$$

$$g(y, x, z, \theta) = (\rho(x, \theta) - y)h(x, z)$$

The ratio of the standard deviations is $\sigma_{\varepsilon}/\sigma_{X^*}\approx 0.45$ ("fairly large"), n=1000 Specifications:

- Polynomial
- Rational Fraction
- Probit

Monte Carlo: Polynomial Specification

$$\rho(x,\theta) = \theta_1 + \theta_2 x + \theta_3 x^2 + \theta_4 x^3, \quad \theta_0 = (1,1,0,-0.5)'$$

	Bias				Std. Dev.				RMSE				
	$\overline{\theta_1}$	θ_2	θ_3	θ_4	$\overline{\theta_1}$	θ_2	θ_3	θ_4	$\overline{ heta_1}$	θ_2	θ_3	θ_4	All
OLS	-0.00	-0.43	0.00	0.21	0.07	0.13	0.06	0.04	0.07	0.45	0.06	0.22	0.51
SS07	-0.05	-0.07	-0.02	0.05	0.17	0.19	0.24	0.05	0.17	0.20	0.24	0.07	0.36
SME	-0.00	-0.05	0.00	0.07	0.09	0.22	0.10	0.08	0.09	0.22	0.10	0.10	0.28

 $\sigma_{\varepsilon}/\sigma_{X^*} \approx 0.45, Y_i = \rho(X_i^*, \theta_0) + U_i, U_i \sim N(0, 1/4)$

Monte Carlo: Rational Fraction Specification

$$\rho(x,\theta) = \theta_1 + \theta_2 x + \frac{\theta_3}{(1+x^2)^2}, \quad \theta_0 = (1,1,2)'$$

		Bias		Std. Dev.			RMSE				
	$\overline{\theta_1}$	θ_2	θ_3	$\overline{\theta_1}$	θ_2	θ_3	$\overline{ heta_1}$	θ_2	θ_3	All	
OLS	0.339	-0.167	-0.644	0.040	0.020	0.076	0.341	0.168	0.648	0.752	
SS07	0.107	0.117	-0.150	0.146	0.139	0.328	0.181	0.182	0.361	0.443	
SME	0.023	-0.004	-0.031	0.056	0.029	0.123	0.060	0.029	0.127	0.143	
$\sigma_{\varepsilon}/\sigma_{X^*} \approx 0.45, Y_i = \rho(X_i^*, \theta_0) + U_i, U_i \sim N(0, 1/4)$											

Monte Carlo: Probit Model

$$\rho(x,\theta) = \frac{1}{2}(1 + \text{erf}(\theta_1 + \theta_2 x)), \quad \theta_0 = (-1,2)'$$

	Bias		Std.	Dev.	RMSE			
	$\overline{\theta_1}$	θ_2	$\overline{ heta_1}$	θ_2	$\overline{ heta_1}$	θ_2	All	
NLLS	0.38	-0.97	0.06	0.08	0.39	0.98	1.05	
SS07	0.05	-0.06	0.39	0.53	0.39	0.53	0.69	
SME	-0.09	0.15	0.28	0.56	0.29	0.58	0.65	

 $\sigma_\varepsilon/\sigma_{X^*}\approx 0.45, Y_i=\rho(X_i^*,\theta_0)+U_i, U_i=1-\rho(X_i^*,\theta_0) \text{ w.p. } \rho(X_i^*,\theta_0),$ and $-\rho(X_i^*,\theta_0)$ o/w

Estimator: General Case

Assumption (Small/Moderate Measurement Error)

$$\sigma_n^2 = o\left(n^{-1/(K+1)}\right)$$

$$\psi(X_i, R_i, \theta, \gamma) \equiv g(X_i, R_i, \theta) - \sum_{k=2}^{K} \gamma_k g_x^{(k)}(X_i, R_i, \theta), \quad \gamma = (\gamma_2, \dots, \gamma_K)'$$

- Under smoothness conditions, $\mathbb{E}[\psi(X_i, R_i, \theta_0, \gamma_{0n})] = o(n^{-1/2})$
- γ_{0n} is determined by the moments of ε_{in}
- Need to ensure that the Taylor's expansion reminder is negligible
- For the polynomial specification, the expansion is exact
- Hong and Tamer (2003): if $\varepsilon_i \sim Laplace$, the expansion is exact with K=2

Assumption: Moment Function

Assumption (Lipschitz-Polynomial). For some functions $b_j(x,r,\theta)$ for $j\in\{1,\ldots,J\}$ s.t., $\forall x,x'\in\mathcal{X}$ and $\forall (r,\theta)\in\mathcal{R}\times\Theta$,

$$\|g_x^{(K)}(x',r,\theta) - g_x^{(K)}(x,r,\theta)\| \leqslant \sum_{j=1}^J b_j(x,r,\theta)|x'-x|^j,$$

and $\mathbb{E}\left[\sup_{\theta\in\Theta}b_j(X_i^*,R_i,\theta)\right] < C \text{ for } j\in\{1,\ldots,J\}$

- Key to show $\mathbb{E}\left[\psi(X_i,R_i,\theta_0,\gamma_{0n})\right]=O(\sigma_n^{K+1})=o(n^{-1/2})$
- Satisfied in the most of empirically relevant models including Logit/Tobit/Probit
- If M moments of $|\varepsilon_{in}/\sigma_n|$ exist, J=M-K is allowed
- A similar condition is also imposed on $\nabla_{\theta}g_{x}^{(K)}(x,r,\theta)$

Asymptotic Normality

• Denote $\hat{\beta} \equiv (\hat{\theta}', \hat{\gamma}')', \beta_{0n} \equiv (\theta'_0, \gamma'_{0n})'$

Theorem (Asymptotic Normality)

Under standard assumptions (for the strongly identified models),

$$n^{1/2}\Omega^{-1/2}(\hat{\beta} - \beta_{0n}) \xrightarrow{d} N(0, I_{p+K-1}),$$

$$\Omega = (\Psi^{*'}\Xi\Psi^{*})^{-1}\Psi^{*'}\Xi\Sigma^{*}\Xi\Psi^{*}(\Psi^{*'}\Xi\Psi^{*})^{-1}$$

$$\Sigma^{*} \equiv \mathbb{E}\left[g(X_{i}^{*}, R_{i}, \theta_{0})g(X_{i}^{*}, R_{i}, \theta_{0})'\right], \quad \Psi^{*} \equiv \mathbb{E}\left[\nabla_{\beta}\psi(X_{i}^{*}, R_{i}, \theta_{0}, 0)\right]$$

- Strong ID: $\lambda_{min} \left(\Psi^{*\prime} \Xi \Psi^* \right) > C > 0$
- For asymptotic normality, $\gamma_{0n} \to \gamma_0 = 0 \in \operatorname{int}(\Gamma)$ or $n^{1/2}\gamma_{0n} \to \infty$
- ullet Ω can be consistently estimated, the standard inference tools apply

$$n^{-1} \sum_{i=1}^{n} \psi_i(\hat{\beta}) \psi_i(\hat{\beta})' = \Sigma^* + o_{p,n}(1), \quad n^{-1} \sum_{i=1}^{n} \nabla_{\beta} \psi_i(\hat{\beta}) = \Psi^* + o_{p,n}(1)$$

Summary

- Simple estimation for nonlinear models
 - ► GMM
- In particular can handle
 - panel data models
 - weakly-dependent data
 - serially correlated dependent
 - non-classical measurement errors
- Inference is simply GMM inference (standard/textbook procedures apply)

Summary

- Simple estimation for nonlinear models
 - ► GMM
- In particular can handle
 - panel data models
 - weakly-dependent data
 - serially correlated dependent
 - non-classical measurement errors
- Inference is simply GMM inference (standard/textbook procedures apply)
- In practice, the measurement error can be very small, relative to the sampling variability. And we should not rule out the possibility that it is absent.
 - ► Econometricians/Inference methods should take this into account
 - We address this concern as the parameter on the boundary problem: $\sigma_{\varepsilon}^2 \geqslant 0$

Advertising another paper of ours:

Issues of Nonstandard Inference in Measurement Error Models

 This paper points out that the nuisance parameter (measurement error distribution) can be weakly ID-ed or not ID-ed even if the instruments are strong

Example: GLM

$$Y_{i} = \rho(\theta_{01}X_{i}^{*} + \theta'_{02}W_{i}) + U_{i}, \quad \mathbb{E}\left[U_{i}|X_{i}^{*}, W_{i}, Z_{i}\right] = 0$$

$$X_{i}^{*} = m(Z_{i}) + \eta_{i}$$

$$X_{i} = X_{i}^{*} + \varepsilon_{i} = m(Z_{i}) + \eta_{i} + \varepsilon_{i}$$

- If $\theta_{01} = 0$, $f_{\varepsilon}(\cdot)$ (and σ_{ε}^2) are not identified!
 - ▶ this is a *feature of the problem*, not of an estimation method.
- Not even clear if the existing estimators are consistent or what are the rates of convergence
- This paper:
 - lacktriangle Establishes uniform \sqrt{n} -consistency of $\hat{\theta}$ without assuming identifiability of nuisance parameter
 - Develops a simple (but powerful and ID robust) inference procedure