163 HWK 2

James Gillbrand

March 2024

Question 1

Proof. Let $(a_n), (b_n), (c_n)$ be sequences of real numbers. Assume that (a_n) and (c_n) are convergent, $\lim_{n\to\infty} (a_n) = \lim_{n\to\infty} (c_n) \stackrel{\text{def}}{=} l$, and that there exists a natural number N such that for each natural number n, if n > N, then $a_n \le b_n \le c_n$. Let $\epsilon > 0$. There exist a N_1, N_2 so that if n > N,

$$|a_n - l| < \epsilon$$

$$|c_n - l| < \epsilon$$

Also,

$$a_n - l \le b_n - l \le c_n - l$$

Hence

$$-\epsilon < a_n - l \le b_n - l \le c_n - l < \epsilon$$

So,

$$|b_n - l| < \epsilon$$

Thus, b_n is convergent and $\lim_{n\to\infty}(a_n) = \lim_{n\to\infty}(c_n) = \lim_{n\to\infty}(b_n)$

Question 2

Proof. Let (a_n) be an increasing sequence of natural numbers. Then for each $n \in \mathbb{N}$, $a_n < a_{n+1}$. Hence, by the properties of natural numbers, $a_n + 1 = a_{n+1}$ and so $a_n = a_0 + n$. Thus, by the archimedean property, for any M > 0, we can choose a $N \in \mathbb{N}$ so that $a_0 + N \ge M$. So, if n > N, then $a_n > M$. Consequently, (a_n) diverges to ∞ .

Question 3

Proof. Let (a_n) be a non-decreasing sequence of real numbers and let (a_{n_k}) be a convergent subsequence of (a_n) that converges to l. Hence, for each $\epsilon > 0$, there exists a $K \in \mathbb{K}$ so that if k > K,

$$|a_{n_k} - l| < \epsilon$$

For each $n > n_k$, since (a_n) is nondecreasing,

$$a_{n_k} \le a_n \le a_{n_{k+1}}$$

$$a_{n_k} - l \le a_n - l \le a_{n_{k+1}} - l$$

Also,

$$\begin{aligned} |a_{n_k} - l| &< \epsilon \\ |a_{n_{k+1}} - l| &< \epsilon \\ -\epsilon &< a_{n_k} - l \\ a_{n_{k+1}} - l &< \epsilon \\ -\epsilon &< a_n - l &< \epsilon \\ |a_n - l| &< \epsilon \end{aligned}$$

Hence, (a_n) is a convergent sequence.

Question 4

Proof. Let $n^{\frac{1}{n}}$ be a sequence of real numbers for $n \in \mathbb{N}$. Let $\epsilon > 0$. Define $a_n \stackrel{\text{def}}{=} n^{\frac{1}{n}} - 1$. Then,

$$n^{\frac{1}{n}} = a_n + 1$$

$$n = (a_n + 1)^n = \sum_{k=0}^n \binom{n}{k} a_n^k$$

Because n is natural number

$$n \ge 1$$
$$n^{\frac{1}{n}} > 1$$

Hence,

$$\sum_{k=0}^{n} \binom{n}{k} a_n^k > \binom{n}{2} a_n^2$$

Thus,

$$(a_n + 1)^n > \frac{n(n-1)a_n^2}{2}$$

Hence,

$$0 \le a_n \le \sqrt{\frac{2}{n-1}}$$

Then, by the archimedean property, we can choose an N sufficiently large so that for each epsilon, if n > N then,

$$|a_n| = |n^{\frac{1}{n}} - 1| < \epsilon$$

Thus, $n^{\frac{1}{n}}$ converges to 1.

Question 5

Proof. Let (a_n) be a bounded, non-increasing sequence of real numbers. Define

$$A \stackrel{\mathrm{def}}{=} \{a_n : n \in \mathbb{N}\}$$

Because (a_n) is a sequence, $A \neq 0$. Since, (a_n) is bounded then A is bounded as well. So, A is bounded below. By the greatest lower bound axiom, A has a greatest lower bound. Define,

$$l \stackrel{\text{def}}{=} \inf[A]$$

Let $\epsilon>0$. By the approximation property of greatest lower bounds, there exists an $N\in\mathbb{N}$ such that

$$l \le a_n < l + \epsilon$$

Because (a_n) is non-increasing, for each n > N,

$$l - \epsilon < l \le a_n < l + \epsilon$$
$$|a_n - l| < \epsilon$$

Hence, (a_n) is convergent and

$$l = \lim_{n \to \infty} (a_n) = \inf[A]$$

Question 6

Proof of arithmetic mean-geometric mean inequality

Proof. Let $a, b \ge 0$. Then,

$$0 \le (a - b)^{2}$$

$$= a^{2} - 2ab + b^{2}$$

$$= a^{2} + 2ab + b^{2} - 4ab$$

$$= (a + b)^{2} - 4ab$$

Hence,

$$4ab \le (a+b)^2$$

$$\sqrt{ab} \le \frac{a+b}{2}$$

Proof that $x_n > 0$

Proof. Proceeding by induction,

Base Case: n=1

Then, it is given that $x_1 > 0$

Inductive Step:

Let $n \in \mathbb{N}$

Inductive Hypothesis:

Assume that $x_n > 0$

Proof of Inductive Step:

$$x_{n+1} = \frac{1}{2}(x_n + \frac{c}{x_n}) = \frac{x_n}{2} + \frac{c}{2x_n}$$

Because c, x_n are positive real numbers,

$$x_{n+1} > 0$$

Hence, by induction, $x_n > 0$

Assumptions:

Let c be a positive real number, and let x_1 be any positive real number such that $x_1^2 \ge c$. For each natural number n, define

$$x_{n+1} = \frac{1}{2}(x_n + \frac{c}{x_n})$$

(a)

Proof. Proceeding by induction to show that $x_n^2 \ge c$:

Base Case: n=1

By the assumptions of the question,

$$x_1^2 \ge c$$

Inductive Step:

Let $n \in \mathbb{N}$

Inductive Hypothesis:

Assume that

$$x_n^2 \ge c$$

Proof of Inductive Step:

Need to show that

$$x_{n+1}^2 \ge c$$

It's given that,

$$x_{n+1} = \frac{1}{2}(x_n + \frac{c}{x_n})$$

So, by the arithmetic mean-geometric mean inequality,

$$\frac{1}{2}(x_n + \frac{c}{x_n}) \ge \sqrt{x_n \cdot \frac{c}{x_n}} = \sqrt{c}$$

Hence,

$$x_{n+1}^2 \ge c$$

So, by means of induction, $x_n^2 \ge c$ for any natural n.

(b)

Proof. In order to show that (x_n) is nonincreasing, we need to show that $x_{n+1} \le x_n$. We know that

$$x_{n+1} = \frac{1}{2}(x_n + \frac{c}{x_n}) = x_{n+1} = \frac{1}{2}(x_n + x_n \frac{c}{x_n^2})$$

By part a,

$$x_n^2 \ge c$$

So

$$x_n + x_n \frac{c}{x_n^2} \le 2x_n$$

Hence,

$$x_{n+1} \le \frac{1}{2}(2x_n) = x_n$$

Thus, (x_n) is nonincreasing.

(c)

Proof. Since $x_n > 0$ and because (x_n) is nonincreasing, it is bounded above by x_1 so $0 < x_n \le x_1$. Hence, (x_n) is bounded and monotone, so it is convergent. Define

$$l \stackrel{\text{def}}{=} \lim_{n \to \infty} x_n$$

So by the shift property of sequences and limit laws,

$$l = \lim_{n \to \infty} x_{n+1} = \frac{1}{2} \left(\lim_{n \to \infty} x_n + \lim_{n \to \infty} \frac{c}{x_n} \right)$$
$$= \frac{1}{2} \left(l + \frac{c}{l} \right)$$

Hence,

$$2l = l + \frac{c}{l}$$
$$l^2 = c$$
$$l = \sqrt{c}$$

Thus,

$$\lim_{n \to \infty} x_n = l = \sqrt{c}$$

Lemma 1

Proof. Let (a_n) be a bounded sequence in $\mathbb R$ that does not converge to $l \in \mathbb R$. Hence, there exists an $\epsilon > 0$ such that for each $N \in \mathbb N$, there exists an $n \in \mathbb N$ such that $n \geq N$, and $|a_n - l| \geq \epsilon$. Thus, there exists $n_1 \in \mathbb N$ so that $n_1 \geq 1$ and $|a_{n_1} - l| \geq \epsilon$. There also exists $n_2 \in \mathbb N$ so that $n_2 \geq n_1 + 1 > n_1$ and $|a_{n_2} - l| \geq \epsilon$.

For each $k \in \mathbb{N}$, there exists $n_{k+1} \in \mathbb{N}$ such that $n_{k+1} \geq n_k + 1 > n_k$ and $|a_{n_k} - l| \geq \epsilon$.

Then (n_k) is an increasing sequence of natural numbers. So, (a_{n_k}) is a subsequence of (a_n) . So, because (a_n) is bounded, by the Bolzano-Weierstrass theorem, (a_{n_k}) has a convergent subsequence $(a_{n_{k_j}})$ and $\lim_{j\to\infty}a_{n_{k_j}}\neq l$. Hence, there is a convergent subsequence of (a_n) that doesn't converge to l.

Question 7

Proof. Assume that (a_n) is a bounded and divergent sequence of real numbers. By Bolzano-Weierstrass,, there exists a convergent subsequence, (a_k) of (a_n) that is convergent. Define

$$l \stackrel{\text{def}}{=} \lim_{k \to \infty} a_k$$

Applying lemma 1, there exists a convergent subsequence, (a_m) of (a_n) that does not converge to l. Define

$$j \stackrel{\text{def}}{=} \lim_{m \to \infty} a_m$$

Hence, there are two subsequence which both converge to unique real numbers. $\hfill\Box$

Question 8

Proof. (\Rightarrow) Assume that (a_n) is a convergent sequence of real numbers. Define,

$$l \stackrel{\text{def}}{=} \lim_{n \to \infty} a_n$$

Let $k \in \mathbb{N}$. Define

$$(n_k) \stackrel{\text{def}}{=} 2k$$

Because this sequence is increasing, and $a_{n_k} = a_{2k}$, then a_{2k} is a subsequence of (a_n) . Because it is a subsequence of a convergent sequence, a_{2k} is convergent

itself and also converges to l. So, by the shift property of sequences, a_{2k+1} is convergent and

$$l = \lim_{n \to \infty} a_n = \lim_{k \to \infty} a_{2k} = \lim_{k \to \infty} a_{2k+1}$$

 (\Leftarrow) Assume that a_{2k} and a_{2k+1} are convergent sequences so that

$$\lim_{k \to \infty} a_{2k} = \lim_{k \to \infty} a_{2k+1} \stackrel{\text{def}}{=} l$$

Thus, for each $\epsilon > 0$ there exists a $K_1, K_2 \in \mathbb{N}$ so that if $k \geq \max\{K_1, K_2\}$, then

$$|a_{2k} - l| < \epsilon$$

$$and$$

$$|a_{2k+1} - l| < \epsilon$$

Hence, if $n \geq 2 \cdot \max\{K_1, K_2\}$, then

$$|a_n - l| < \epsilon$$

Question 9

Let (a_n) be a bounded sequence of real numbers such that each convergent subsequence of (a_n) converges to l.

(a)

Proof. Assume that (a_n) is either divergent or converges to a value that isnt l. In either case, we know that the subsequence (a_{n_k}) of (a_n) isn't convergent to l when $(n_k) = k$. Negating the definition of convergence to l gives us that for the subsequence (a_k) of (a_n) there exists an $\epsilon > 0$ such that for each $K \in \mathbb{N}$, there exists a natural k such that $k \geq K$ and $|a_k - l| \geq \epsilon$.

(b)

Proof. Because (a_n) is a bounded sequence, (a_{n_k}) is also bounded. Thus, by the Bolzano-Weierstrass theorem, there exists a convergent subsequence $(a_{n_{k_j}})$. However, because for (a_{n_k}) there exists and $\epsilon > 0$ such that for each $K \in \mathbb{N}$, there exists a $k \in \mathbb{N}$ such that $k \geq K$ and $|a_{n_k} - l| \geq \epsilon$, since $(a_{n_{k_j}})$ is a subsequence of (a_{n_k}) , the same is true of $(a_{n_{k_j}})$. Hence, we know that

$$\lim_{j \to \infty} (a_{n_{k_j}}) \neq 0.$$

(c)

Proof. Proceeding by contradiction, assume that (a_n) is either convergent to something other than l or divergent. Then, by part(a) and part(b), there exists a convergent subsequence, $(a_{n_{k_j}})$ that doesn't converge to l, which is a contradiction. Hence, (a_n) must converge to l.