

Reference: PPI Polyethylene Design Handbook

**Pipe Data****Pressure Water Flow**

ref. Ch.6, eqn. 2-12, pp. 175-177

$$P_f = \frac{0.0009015L}{D_i^{4.8655}} \left( \frac{100Q}{C} \right)^{1.85}$$

Hazen-Williams Equation

**Information**

|               |                  |
|---------------|------------------|
| Date          | 09-09-2015       |
| Project       | Gold King Divert |
| Engineer Name | Canyon           |
| Comments      |                  |

**Variables**

|                |       |                           |
|----------------|-------|---------------------------|
| D <sub>o</sub> | 6.625 | Pipe Outside Diameter, in |
| DR             | 11    | Dimension Ratio           |

**Result:**Calculated for: P<sub>f</sub>

|                |       |                                |
|----------------|-------|--------------------------------|
| L              | 2100  | Length Of Line, ft             |
| D <sub>i</sub> | 5.348 | Pipe Inside Diamater, in       |
| Q              | 1000  | Flow Rate, gpm                 |
| C              | 150   | Hazen-Williams Friction Factor |
| P <sub>f</sub> | 90.85 | Pressure Loss, psi             |
| V              | 14.3  | Fluid Velocity, fps            |

Reference: PPI Polyethylene Design Handbook

**Pipe Data****Pressure Water Flow**

ref. Ch.6, eqn. 2-12, pp. 175-177

$$P_f = \frac{0.0009015L}{D_i^{4.8655}} \left( \frac{100Q}{C} \right)^{1.85}$$

Hazen-Williams Equation.

**Information**

|               |                         |
|---------------|-------------------------|
| Date          | 09-09-2015              |
| Project       | Gold King Divert 600gpm |
| Engineer Name |                         |
| Comments      |                         |

**Variables**

|                |       |                           |
|----------------|-------|---------------------------|
| D <sub>o</sub> | 6.625 | Pipe Outside Diameter, in |
| DR             | 11    | Dimension Ratio           |

**Result****Calculated for: P<sub>f</sub>**

|                |       |                                |
|----------------|-------|--------------------------------|
| L              | 2100  | Length Of Line, ft             |
| D <sub>i</sub> | 5.348 | Pipe Inside Diameter, in       |
| Q              | 600   | Flow Rate, gpm                 |
| C              | 150   | Hazen-Williams Friction Factor |
| P <sub>f</sub> | 35.31 | Pressure Loss, psi             |
| V              | 8.6   | Fluid Velocity, fps            |

Reference: PPI Polyethylene Design Handbook

**Water Flow****Gravity Water Flow**ref. Ch.6, eqn. 2-36, pp. 186-188  
ref. Ch.6, eqn. 2-29, pp. 186-188

$$Q = 0.275 \left( \frac{D_i^{8/3} S_H^{1/2}}{n} \right) \quad V = \frac{1.486}{n} \left( \frac{D_i}{48} \right)^{2/3} S^{1/2}$$

ref. eqn. 2-36 (pages 186-188)

ref. eqn. 2-29 (pages 186-188)

**Information**

|               |            |
|---------------|------------|
| Date          | 09-09-2015 |
| Project       |            |
| Engineer Name |            |
| Comments      |            |

**Variables**

|                |       |                           |
|----------------|-------|---------------------------|
| D <sub>o</sub> | 6.625 | Pipe Outside Diameter, in |
| DR             | 11    | Dimension Ratio           |

**Result****Calculated for: Q**

|                |        |                                                                              |
|----------------|--------|------------------------------------------------------------------------------|
| Q              | 597.61 | 1/2-Full or Full Pipe Flow, gpm                                              |
| D <sub>i</sub> | 5.348  | Pipe Inside Diamater, in                                                     |
| n              | 0.009  | Manning Flow Coefficient                                                     |
| S <sub>H</sub> | .05    | Hydraulic Slope<br>[decimal value for vertical drop (ft)/horizontal run(ft)] |
| V              | 8.55   | Fluid Velocity, fps                                                          |