Gabarito

Para usa resolução, assemimos que todos os alunos posserem matriculo tal que mito e Mis #0. AP2 - Álgebra Linear - 2021.2

Universidade Federal do Ceará - Campus Sobral Curso de Engenharia da Computação Professor: Josefran Bastos

Observação: Sua matrícula será utilizada como base para a prova. Para isso, para i=1,...6, denotarei por m_i o i-ésimo dígito da sua matrícula da esquerda para a direita. Por fim, para i,j=1,...,6, denotarei por $m_{ij}=m_i*10+m_j$. Por exemplo, se sua matrícula é 321456 então $m_1=3, m_5=5$ e $m_{12}=31$.

Mais observações que AFETAM SUA NOTA.

- 1. A prova deverá ser entregue em pdf.
- 2. Cada página deverá ter orientação vertical de cima para baixo.
- 3. O texto deverá ser LEGÍVEL para outras pessoas além de você.
- 1. Considere o vetor $\overrightarrow{v} = (m_1, m_2)$. Encontre um vetor w organal a v e mostre que todos os vetores ortogonais a w são múltiplos de v.
- 2. Calcule a distância entre os planos $m_1x + 5y + m_5z + 10 = 0$ e $4m_1x + 20y + 4m_5z + 2 = 0$.
- 3. Seja \overrightarrow{v} um vetor qualquer em um espaço vetorial V e k um escalar. Mostre, utilizando apenas os axiomas, que

$$(-k)\overrightarrow{v} = -\overrightarrow{w},$$

onde $\overrightarrow{w} = k\overrightarrow{v}$.

4. Sejam $\overrightarrow{v}_1 = (m_1, m_2, 0)$ e $\overrightarrow{v_2} = (m_2, 2, m_1 5)$ e c uma constante qualquer. Encontre um vetor \overrightarrow{x} tal que o volume do paralelograma formado por \overrightarrow{v}_1 , $\overrightarrow{v_2}$ e \overrightarrow{x} seja igual a 100 - c.

1 + Existem infinitos vetres ortogenais a F. Temo que encontron um w tal que v. vo = 0. 0=(m+, m2)(w2, w2)= w, m, +w2m2. = - Wzmz. Como todas as matrículos tem m, to atro a, =-m, wz.
Logo, tomando cu=m, temos que o vetor a=(-m, m,)

l'ortogonal à i? e ortogonal à F. Sya i un veto oitogond a ci. Similar ao raciócno anterior, temo 0= t1w, + t2w2 = - t1m2 + 22m1 Logo, todo vetor ortogonal a \vec{w} é da formar ($\xi_1, \frac{m_2}{m_1}$). Fazendo a mudança de variand $x = \xi_1$ concluimo o desegado. 20 Intéramente, note que es votous (m, 5, m, 5, m, 1 (4m, 20, 4m, 5) sou es mes perféros vetous normais. Como eles sou prealeles logo es planos também o sos. Para calcular a distancia entre os formos precisamos de defenir um ponto qualquer no primoiro plano. Para ibro, tome x=3=0, assim mil + 5.y + mg () + 10=0 => y==2. Logo (0,-2,0) é un ponto do primetro plano. Assim, a distância entre os planos sera $d = \frac{14m_{10} + 20(-2) + 4m_{50} + 2(=40)}{(16m_{1}^{2} + 400 + 16m_{5}^{2})^{1/2}}$ $(16m_{1}^{2} + 400 + 16m_{5}^{2})^{1/2}$

3t Primero, vamos mostron que 00=0. Terros	
00 = (0+0) V (proporte dade números precis)	
= OP+OP Axloma distribuição	
= 00+00 Axioma distribuição C=> 00-00 = 00+00-00 Existência do oposto regativo	
$\langle \Rightarrow \rangle = 0 \vec{v} + \vec{o}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Com 1506, temos	
Com isso, temos $3 = 0\vec{3} = (k-k)\vec{6}$	
Axioma distribuiçã	כ
() -KV+B=-KV+KV+(-1CV) Existência do oposto neg.	
€> = KB = B+(-1<)B = (-K)B	
4 → Sya Z=(x, sq x3) O vetor que buscomo. Duta forma, o volume é dado por	
O volume of dada por	
$m_1 m_2 0$ $m_1 z m_{15} = (-1)^{1+1} m_1 z m_{15} + (-1)^{1+2} m_2 m_2 m_{15}$ $x_1 x_2 x_3 = x_3 x_3 x_3 x_3 x_3 x_3 x_3 x_3 x_3 x_3$	
$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} x_1 & x_3 \end{bmatrix} \begin{bmatrix} x_1 & x_3 \end{bmatrix}$	
$= m(2x_3 - m_ex_2) - m_e(m_2x_3 - m_ex_1) $	
= $m_1(2x_3 - m_{15}x_2) - m_2(m_2x_3 - m_{15}x_1)$. Se $(2m_1 - m_2^2) \neq 0$, fore $x_1 = \frac{1}{m_{15}}$, $x_2 = -\frac{1}{m_{15}m_1}$, Assim	
$(2m_1-m_1^2)x_1+f_1+m_2$	
$(2m_1-m_1^2)x_3+1+m_2l$. Logo, tomendo $x_3=100-c-m_1-1$ (emos o perultas $z_{m_1}-m_2^2$) desejado. Como estou fazendo coso geral, para minha respos ta ficar completa, nesta (azer o coso $z_{m_1}-m_2^2=0$, mos nosa turma não tem es coso. Doixo como desafro completarem!	6
$2m_{\ell}-M_{\ell}^{2}$	
desejado. Como estou fazendo coso gerol, para minha	
resposta ficos completa, nesta fazer o coso 2m, - M2=0, mos	
nora turna não tem es coso. Deixo como de sofro completarent	