

Microcontroladores Labs Aplicados a IoT

Dilson Liukiti Ito

Microcontroladores Aplicados a loT

Wi-Fi

- É um conjunto de especificações técnicas para redes locais sem fio (WLAN — Wireless Local Area Network) baseado no padrão <u>IEEE 802.11</u>
- O padrão 802.11 estabelece normas para a criação e uso de redes sem fio.
- A transmissão nesse tipo de rede é feita por sinais de radiofrequência que se propagam pelo ar e podem cobrir áreas na casa das centenas de metros.

Padrões IEEE 802.11

Ano	Geração	Padrão	Banda	Taxa de Dados
1999	1a Geração	IEEE 802.11b	2,4 Ghz	11 Mbps
1999	2a Geração	IEEE 802.11a	5 Ghz	54 Mbps
2003	3a Geração	IEEE 802.11g	2,4 Ghz	54 Mbps
2009	4a Geração	IEEE 802.11n	2,4 Ghz e 5 Ghz	600 Mbps
2014	5a Geração	IEEE 802.11ac	5 GHz	3,6 Gbps
2019	6a Geração	IEEE 802.11ax	2,4 Ghz e 5 Ghz	10 Gbps

WLAN com múltiplos APs

Uma WLAN pode ter vários pontos de acesso (APs) conectados entre si através de um sistema de distribuição para aumentar a área de cobertura, ou seja, a abrangência geográfica da rede.

STA / AP / BSS

- STA (station): estação, dispositivo, que se refere ao dispositivo cliente (<u>smartphone</u>, <u>notebook</u>, tablet);
- Uma das estações será o AP (Access Point). Ele será o ponto de acesso que fará a ponte (bridge) entre duas tecnologias, a Wi-Fi (sem fio) e a infraestrutura cabeada.
- Quando um ou mais STAs se conectam a um AP, tem-se, portanto, uma rede, que é denominada Basic Service Set (BSS).

SSID

- O termo SSID significa "service set identifier" ("identificador do conjunto de serviços", em tradução livre).
- Em outras palavras, o SSID nada mais é do que o nome atribuído a cada rede sem fio.
- Nomes de rede Wi-Fi podem ter até 32 caracteres e há distinção entre minúsculas e maiúsculas: "minharede" é diferente de "MinhaRede", por exemplo.
- o ideal seja evitar o uso de caracteres especiais por conta de problemas de compatibilidade com dispositivos mais antigos

BSSID

- BSSIDs identificam pontos de acesso e seus clientes
- Por convenção, o endereço MAC de um ponto de acesso é usado como o ID de um BSS (BSSID).
- Portanto, se você conhece o endereço MAC, conhece o BSSID
 - e, como todos os pacotes contêm o BSSID do originador, você pode rastrear um pacote.

BSSID vs SSID

BSSID	SSID
BSSID is short for basic service set identifier.	SSID is short for service set identifier.
The BSSID is the MAC address of the corresponding WAP.	The SSID is a unique name given to a WLAN.
The BSSID uniquely identifies the access point's radio using a MAC address.	The SSID is the name of the network that acts as a single shared password between access points and clients.
The BSSID is a 48-bit identifier that contains a combination of hexadecimal numbers.	An SSID is a unique alphanumeric string of characters that is limited to 32 characters. DB Difference Between.net

MAC (Medium Access Control)

- É um número de série de 48 bits / 6 bytes separados por dois pontos (":") ou hífen ("-"), sendo cada byte representado por dois algarismos na forma hexadecimal
- É o endereço base de todos os dispositivos de rede, sendo que existe apenas um para cada paca produzida.

 Apesar de ser único e gravado em hardware, o endereço MAC pode ser alterado através de técnicas específicas.

ESS

- Extended Service Set ESS (Serviço Estendido)
- A ESS é uma WLAN (Rede Local Sem Fios) com um ou mais pontos de acesso (AP) conectados através de um cabo ethernet (cabo de rede) no sistema de distribuição (roteadores e switches ligados por cabos).
- Ela é utilizada para que seja possível aumentar uma área de cobertura de sinal Wi-Fi.

Bandas RF Wi-Fi

Analogia Canal RF x Canos

 Um canal RF pode ser comparado a um cano. Quanto maior a largura de banda do canal RF, maior é a bitola do cano, maior a taxa de transferência.

Canais WiFi 2,4GHz

Canal	F0 (MHz)	Faixa de frequência (MHz)
1	2412	2401-2423
2	2417	2406-2428
3	2422	2411-2433
4	2427	2416-2438
5	2432	2421-2443
6	2437	2426-2448
7	2442	2431-2453

Canal	F0 (MHz)	Faixa de frequência (MHz)
8	2447	2436-2458
9	2452	2441-2463
10	2457	2446-2468
11	2462	2451-2473
12	2467	2456-2478
13	2472	2461-2483

Canais WiFi 2,4GHz (cont.)

 A transmissão de dados nesta faixa de frequência sofre constantemente de interferências de dispositivos que também operam em 2,4 Ghz como, por exemplo, telefones sem fio, forno micro-ondas, headphones Bluetooth, fones True Wireless (TWS), entre outros.

Canais WiFi 5GHz

5 GHz Channel Allocations

Canais WiFi 5GHz (cont.)

- A grande vantagem desta faixa de frequência é o seu grande número de canais, proporcionando maior largura de banda.
- a ANATEL <u>permite</u> que se utilize 24 canais que são organizados pela U-NII, que significa Unlicensed National Information Infrastructure.
- A Infraestrutura de informação nacional não licenciada é uma banda de rádio que opera em 4 faixas: UNII-1, UNII-2, UNII-2C (extended) e UNII-3.

Canais WiFi 5GHz (cont.)

- Os canais do grupo UNII-2 e UNII-2C (extended) só são possíveis de serem utilizados se o AP possuir DFS (dynamic frequency selection ou seleção dinâmica de frequência), uma função que permite analisar o meio aéreo antes de permitir sua operação (devido ao fato de radares meteorológicos utilizarem estas frequências).
- Os canais que são ideais para utilização são os das faixas UNII-1 (36, 40, 44 e 48) e UNII-3 (149, 153, 157 e 161)

Canais WiFi 5GHz (cont.)

Canal	F0 (MHz)	Faixa de frequência (MHz)	Canal	F0 (MHz)	Faixa de frequência (MHz)	Canal	F0 (MHz)	Faixa de frequência (MHz)
36	5180	5170-5190	96	5480	5470-5490	128	5640	5630-5650
38	5190	5170-5210	100	5500	5490-5510	132	5660	5650-5670
40	5200	5190-5210	102	5510	5490-5530	134	5670	5650-5690
42	5210	5170-5250	104	5520	5510-5530	136	5680	5670-5690
44	5220	5210-5230	106	5530	5490-5570	138	5690	5650-5730
46	5230	5210-5250	108	5540	5530-5550	140	5700	5690-5710
48	5240	5230-5250	110	5550	5530-5570	142	5710	5690-5730
50	5250	5170-5330	112	5560	5550-5570	144	5720	5710-5730
52	5260	5250-5270	114	5570	5490-5650	149	5745	5735-5755
54	5270	5250-5290	116	5580	5570-5590	151	5755	5735-5775
56	5280	5270-5290	118	5590	5570-5610	153	5765	5755-5775
58	5290	5250-5330	120	5600	5590-5610	155	5775	5735-5815
60	5300	5290-5310	122	5610	5570-5650	157	5785	5775-5795
62	5310	5290-5330	124	5620	5610-5630	159	5795	5775-5815
64	5320	5310-5330	126	5630	5610-5650	161	5805	5795-5815
68	5340	5330-5350				165	5825	5815-5835

2,4 GHz vs 5 GHz

- Por questões físicas, frequências de rádio mais baixas acabam indo mais longe.
- É por isso que redes de 2,4 GHz são as que alcançam áreas maiores e têm maior penetração diante de obstáculos.
- Já as frequências maiores, como 5 GHz, permitem uma conexão muito mais rápida, mas têm alcance limitado.

IP

- Internet Protocol
- O endereço IP é uma sequência de números composta por 32 bits. Esse valor consiste em um conjunto de quatro sequências de 8 bits.
- Cada sequência é separada por um ponto e recebe o nome de octeto ou simplesmente byte

172 . 16 . 254 . 1

↓ ↓ ↓ ↓

10101100.00010000.111111110.00000001

8 bits

32 bits (4 bytes)

IP (cont.)

- Para que seja encontrado, o seu computador precisa ter um endereço único, o roteador irá atribuir um IP para cada dispositivo conectado a ele.
 O mesmo vale para qualquer site na internet
- Se duas ou mais máquinas tiverem o mesmo IP, tem-se então um problema chamado "conflito de IP";
- Há conjuntos de endereços que são privados. Isso significa que eles não podem ser usados na internet, pois foram reservados para aplicações locais. São, essencialmente, estes:
 - 10.0.0.0 à 10.255.255.255;
 - 172.16.0.0 à 172.31.255.255;
 - 192.168.0.0 à 192.168.255.255.

Máscara de sub-rede

- Uma máscara de sub-rede é um número de 32-bit que mascara um endereço IP e divide o endereço IP em endereço de rede e endereço de host
- Os bits de rede são representados pela 1 's na máscara e os bits de host são representados por 0 's. A execução de uma operação lógica no endereço IP com a máscara de sub-rede produz o endereço de rede.

```
. 0000 0011
IΡ
      1101 1000
                               . 1000 0000
                                            . 0000 1100
                                                                    (189.003.128.012)
MASK
      1111 1111
                  . 1111 1111
                               . 1111 1111
                                              0000 0000
                                                                    (255.255.255.000)
      1101 1000
                  . 0000 0011 . 1000 0000
                                            . 0000 0000
                                                                    (189.003.128.000)
```

DHCP

- Dynamic Host Configuration Protocol: trata-se de um protocolo utilizado em redes de computadores que permite a estes obterem um endereço IP automaticamente;
- Quando um computador se conecta a uma rede, envia uma solicitação para que o servidor DHCP "veja" que uma máquina-cliente está querendo fazer parte da rede. O servidor DHCP responde informando os dados cabíveis, principalmente um número IP livre até então;

DHCP (cont.)

 Quando um computador desconecta, seu IP fica livre para uso de outra máquina. Para isso, o servidor geralmente é configurado para fazer uma checagem da rede em intervalos pré-definidos.

DNS

- Quando você digita um endereço qualquer de um site, um servidor de <u>DNS</u> (*Domain Name System*) é consultado. Ele é que informa qual IP está associado a cada site.
- O DNS possui uma hierarquia bem definida. Se, por exemplo, o site www.hausenn.com.br é requisitado, o sistema envia a solicitação a um servidor responsável por terminações ".br". Esse servidor localizará qual o IP correspondente e responderá à solicitação. Se o site solicitado termina com ".com", um servidor responsável por esta terminação é consultado e assim por diante.

☐\$ ping www.hausenn.com.br PING hausenn.com.br (173.254.29.38) 56(84) bytes of data. 64 bytes from just2057.justhost.com (173.254.29.38): icmp_seq=1 ttl=52 time=191 ms

IPv6

- O formato do IPv4 é uma sequência de 32 bits (ou quatro conjuntos de 8 bits) e isso permite, teoricamente, a criação de até 4.294.967.296 endereços.
- O mundo está cada vez mais conectado => Esgotamento de IP
- IPv6 é formado por 128 bits. Com isso, teoricamente, a quantidade de endereços disponíveis pode chegar a 340.282.366.920.938.463.463.374.607.431.768.211.456

FEDC:2D9D:DC28:7654:3210:FC57:D4C8:1FFF

IPv6 (cont.)

 roteadores, servidores, sistemas operacionais, entre outros precisam estar plenamente compatíveis com o IPv6, mas a internet ainda está baseada no IPv4. Isso significa que ambos os padrões vão coexistir por algum tempo.

Gateway

Labs

- Um gateway é um nó de rede que forma uma passagem entre duas redes operando com diferentes protocolos de transmissão.
- Ele atua como o ponto de saída de entrada para uma rede, pois todo o tráfego que flui pelas redes deve passar pelo gateway. Somente o tráfego interno entre os nós de uma LAN não passa pelo gateway.

Gateway (cont.)

- Um gateway conecta redes, enquanto um roteador normalmente entrega dados dentro de uma rede.
- Os roteadores Wi-Fi fornecidos geralmente para o serviço de Internet para casas e para pequenas empresas são um roteador (entregando dados) e um gateway (traduzindo-o para que os dispositivos de destino possam usá-lo).

Protocolos Segurança Wi-Fi

 A criptografia Wi-Fi é um método que usa algoritmos para embaralhar o sinal de dados entre dispositivos. O embaralhamento impede que pessoas não autorizadas interceptem ou leiam qualquer informação transmitida pela conexão Wi-Fi.

Proteção de seus dados

Encriptação Wi-Fi

WEP. Wired Equivalent Privacy

Padrão 1999 - 2004. Fácil de quebrar e difícil de configurar. Abandonado.

Segurança • Fraca

Configuração • Difícil

WPA2. Versão 2 do Wi-Fi Protected Access

Desde 2004. Criptografia AES.

4 ★ ★ ★ ★ ★
Configuração • Normal

WPA3. Versão 3 do Wi-Fi Protected Access

Em breve. Proteção de senha. WiFi Easy Connect.

Segurança • Excelente

Configuração • Excelente

WPA/WPA2

- 802.1X (Enterprise): utiliza o EAP (Extensible Authentication Protocol);
- PSK (Shared Key) utiliza uma chave compartilhada entre o AP e o STA;

TKIP / AES

- WPA utiliza o TKIP (Temporal Key Integrity Protocol) ou o CCMP (Counter Mode CBC-MAC Protocol) como meio de encriptação;
- WPA2 utiliza CCMP tendo o TKIP como opcional.
- TKIP e CCMP são protocolos de encriptação. AES e RC4 são cifras. As duplas são CCMP/AES e TKIP/RC4.

Pairwise / Group Keys

- pairwise key: Cada cliente negocia uma chave de encriptação exclusiva com o Access Point;
- Group Cipher Identifica os tipos de encriptação utilizados na comunicação de grupo da rede (multicast / broadcast).

Encriptação Wi-Fi overview

- Enquanto o WPA2 oferece mais proteção do que o WPA e, portanto, oferece ainda mais proteção do que o WEP, a segurança do seu roteador ainda dependerá muito da senha que você definir. O WPA e o WPA2 permitem usar senhas de até 63 caracteres.
- O WPA2 é a versão melhorada do WPA;
- WPA e WPA2 suportam criptografia TKIP e CCMP;
- O WPA2 precisa de mais poder de processamento do que o WPA;

Encriptação Wi-Fi overview (cont.)

- Aqui está a classificação básica (do melhor ao pior) dos métodos de segurança Wi-Fi disponíveis para os roteadores:
 - WPA2 CCMP
 - WPA CCMP
 - WPA TKIP/CCMP (TKIP existe um método de fallback)
 - WPA TKIP
 - WEP
 - Rede Aberta (sem qualquer segurança)

RSSI

- received signal strength indicator (RSSI) é é uma indicação do nível de potência que está sendo recebido pelo rádio receptor, em unidades arbitrárias;
- Portanto, quanto maior o valor RSSI, mais forte o sinal. Assim, quando um valor RSSI é representado de forma negativa (por exemplo, -100), quanto mais próximo o valor estiver de 0, mais forte foi o sinal recebido.

dBm

	P(dBm)	P(mW)
transmissor forte	50	100000
	40	10000
	30	1000
1	20	100
	10	10
	0	1,
Ĭ	-10	0.1
	-20	0.01
	-30	0.001
	-40	0.0001
	-50	0.00001
	-60	0.00001
	-70	0.000001
receptor	-80	0.0000001
sensível	-90	0.00000001
SCHSIVE		
$P_{dBm} = 10 \times log_{10}(P1/P2_{ref})$		
		P2 _{ref} = 1mW

- É a unidade de medida utilizada principalmente em telecomunicações para expressar a potência absoluta.
- O dBm é o nível de potência em dB em relação ao nível de referência de 1mW (miliWatts).

dBm (cont.)

- uma variação de 3 dBm é equivalente à metade da potência,
 e de + 3 dBm é equivalente ao dobro da potência
- A potência cai de 50 dBm para 47 dBm, significa uma queda de 100 W para 50 W.
- A potência subiu de 50 dBm para 53 dBm, significa um aumento de 100 W para 200 W.

dBm (cont.)

Potência Sinal	Qualidade esperada
-30dBm	Força máxima do sinal, você provavelmente está ao lado do ponto de acesso.
-55dBm	Qualquer coisa até esse nível pode ser considerada excelente força de sinal.
-67dBm	Força de sinal confiável - a borda do que a Cisco considera adequado para apoiar a voz sobre a WLAN
-80dBm	Força de sinal não confiável
-90dBm	As chances de conectar são muito baixas neste nível

Update ESP-IDF

\$ cd ESP32/esp-idf/

\$ git fetch
\$ git switch release/v4.3

\$ git submodule update --init --recursive

\$ git status
On branch release/v4.3
Your branch is up to date with 'origin/release/v4.3'.

\$ git describe
v4.3.2-600-gb137ae4259

\$./install.shesp32

I (27) boot: ESP-IDF v4.3.2-600-gb137ae4259-dirty 2nd stage bootloader

EventGroup()


```
#define WIFI_CONNECTED_BIT BIT0 #define WIFI_FAIL_BIT BIT1
```

EventGroupHandle_t wifi_events;

wifi_events = xEventGroupCreate();

```
EventBits_t bits = xEventGroupWaitBits(wifi_events, WIFI_CONNECTED_BIT

| WIFI_FAIL_BIT, pdFALSE, pdFALSE, portMAX_DELAY);
```

if (bits & WIFI_CONNECTED_BIT)

esp_err_t e ESP_ERROR_CHECK()


```
typedef int esp_err_t;
```

```
#define ESP_OK 0 /*! < esp_err_t value indicating success (no error) */
#define ESP_FAIL -1 /*! < Generic esp_err_t code indicating failure */
```

ESP_ERROR_CHECK();

esp_err_to_name(esp_err_t)

Exemplos

Labs

- Scan
- STA
- AP

Download Aula05.zip

ESP32 como estação (STA)

ESP32 como AP

Exercício

- Faça um programa que mantenha o ESP32 em modo AP até que receba as credenciais válidas de uma rede WiFi (get / post), quando então deverá conectar à essa rede em modo station.
- Faça o correto manejo das credenciais e da tentativa de conexão com o AP. Relatando o "disconnect reason" ou o status quando for conveniente;
- Desafio: Mostre as redes que o módulo "enxerga" na página onde serão repassadas as credenciais.

Recomendados

- https://www.gta.ufrj.br/ensino/eel879/trabalhos_vf_2011_2/rodri go_paim/intro.html
- https://onlinepngtools.com/convert-png-to-base64

