CS663 Assignment 4

Yash Shah, 160050002 Utkarsh Gupta, 160050032

October 15, 2018

Question 6

(a)

 $P = A^T A \implies y^T P y = (y^T A^T) (y^T A^T)^T = v v^T = \sum_{i=1}^{|v|} v_i^2 \ge 0$ where $v = y^T A^T$ and |v| is number of elements in the vector v (note that v is a row vector). Similarly,

 $Q = AA^T \implies z^TQz = (z^TA)(z^TA)^T = vv^T = \sum_{i=1}^{|v|} v_i^2 \ge 0$ where $v = z^TA$ and |v| is number of elements in the vector v.

These properties of P and Q are true for any arbitrary y and z. Choose y and z to be the eigen vectors of P and Q with eigenvalues λ_1 and λ_2 respectively. Substituting, we get

$$y^T P y = y^T (\lambda_1 y) = \lambda_1 (y^T y) = \lambda_1 \ge 0$$

 $z^T Q z = z^T (\lambda_2 z) = \lambda_2 (z^T z) = \lambda_2 \ge 0$

Hence, P and Q will always have non-negative eigenvalues (since the eigen vectors were chosen arbitrarily).

(b)

$$Pu = \lambda u \implies A^T A u = \lambda u$$

Pre-multiplying A on both sides of the equation yields

$$AA^{T}(Au) = \lambda(Au)$$

Hence by definition of eigenvectors Au is an eigenvector of AA^T (or Q) with eigenvalue λ . Similarly,

$$Qv = \mu v \implies AA^Tv = \mu v$$

Pre-multiplying A^T on both sides of the equation yields

$$A^T A (A^T v) = \mu(A^T v)$$

Hence by definition of eigen vectors A^Tv is eigen vector of A^TA (or P) with eigenvalue μ . Keeping in mind the validity of multiplication operation in matrices, the number of elements in the vectors u, v will be n (dimension is $n \times 1$) and m (dimension is $m \times 1$) respectively.

(c)

Let $k = ||A^T v_i||_2$ where $k \in R^+$. Since v_i is an eigen vector of Q, by definition of eigen vectors we have $Qv_i = \lambda v_i$ for some $\lambda \in R^+$ (since by part (a) we know that the eigenvalues are non-negative for Q, and λ is the eigenvalue for eigen vector v_i). Thus

$$Au_i = \frac{AA^Tv_i}{k} = \frac{Qv_i}{k} = \frac{\lambda}{k}v_i$$

Thus, $\gamma_i = \frac{\lambda}{k} \in \mathbb{R}^+$ as the numerator is non-negative (shown above) and the denominator is positive (L_2 norm of any vector is positive). Thus, we have shown the existence of a non-negative real γ_i by finding it out using the corresponding eigenvalue.

(d)

It is given in the question that u_i 's are orthonormal among themselves and v_i 's are orthonormal among themselves. Also, $U = [v_1|v_2|...|v_m]$ and $V = [u_1|u_2|...|u_m]$. We solve backwards. $A = U\Gamma V^T \iff AV = U\Gamma$ (post multiplying with V and making use of the fact that V is a orthonormal matrix as all column vectors are orthonormal to each other). Now we show separately that LHS and RHS are equal to the same matrix and hence are in turn equal to one another (which would imply that $A = U\Gamma V^T$)

$$AV = A[u_1|u_2|..|u_m] = [Au_1|Au_2|..|Au_m] = [\gamma_1v_1|\gamma_2v_2|...|\gamma_mv_m]$$

$$U\Gamma = U[x_1|x_2|...|x_m]$$

where x_i is the i^{th} column vector of Γ . By definition of Γ (diagonal matrix), only i^{th} entry of x_i is non-zero and equal to γ_i . Now we can simplify it as $U\Gamma = [Ux_1|Ux_2|...|Ux_m]$; Ux_i is equal to γ_i times the i^{th} column of U which is v_i . Thus, $U\Gamma = [\gamma_1v_1|\gamma_2v_2|...|\gamma_mv_m]$. Hence both RHS and LHS have been shown to be equal, thereby establishing the required equality.