Cost based Evaluation Cross-validation and Regularization

BA810: Supervised Machine Learning
Nachiketa Sahoo

Recap

- Logistic regression
 - learn log odd ratio as a linear function
- · Bayesian approaches
 - · Use Bayes rule to invert the direction of conditional probability
 - Compute Pr(class|attribute) from Pr(attribute|class) and Pr(class)
 - I.e., posterior distribution of class from class conditional distribution and prior
- K-nearest neighbor
 - Select k most similar points to the test point from training data
 - Predict majority label (classification) or mean (regression)
- Evaluation
 - Confusion matrix, True Positive, True Negative, False Positive, False Negative
 - Accuracy, Precision, Recall, F-measure, ROC curve

Outline

- Cost based evaluation and prediction
 - Use expected cost of classification to choose classifier given costs
 - · Cost minimizing prediction
- Cross validation
- Regularization

Cost Based Evaluation and Prediction

Cost Matrix

Because different types of mistakes could have different costs. Examples?

	PREDICTED CLASS			
	C(i j)	Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)	
	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

+: fraudulent transaction

1	Cost Matrix	PREDICTED CLASS		
	ACTUAL CLASS	C(i j)	+	-
		+	-1	100
ı		-	1	0

Model M ₁	PREDICTED CLASS				Model M ₂	PREDICTED CLASS		
		+	-				+	•
ACTUAL CLASS	+	150	40		ACTUAL CLASS	+	250	45
	-	60	250			•	5	200
Accuracy = 80% Accuracy = 90%					1%			
Cost = 3910		_	Confus 1atric	0031 - 4233				

Tuning Prediction to Minimize Cost

- The cost of False Positive is \$12, cost of False Negative is \$3
 - If you are using a classifier that estimates the probability of a record being +ve, what is the lowest probability at which you'd classify a record to be +ve?

Hint: look for the probability threshold where the expected cost from mistake by either prediction is same. At that probability you'll be indifferent between predicting a record to be + or -

Record#	P(+)	Predict
1	0.99	+
2	0.91	+
3	0.84	?
4	0.75	?
19	0.23	?
20	0.11	-

Cross Validation

Estimating Generalization/Test Error

Two Approaches

to estimate generalization error

- Hold out a subset (validation set)
 - Learn the model from the remainder
 - Evaluate on validation set
 - MSE for regression, misclassification rate for classifier

- Mathematical adjustment to the training error rate to estimate the test error rate
 - Penalize training performance for complexity/number of parameters
 - Cp statistic, AIC, BIC, adjusted R²
 - Less accurate, but useful when repeated training and testing is costly (e.g., feature selection)

The Validation Process

Randomly split into two parts: training and validation sets.

A large portion of the dataset is kept for validation, so that our new data error estimates are reliable.

Example: automobile data

- To compare linear vs higher-order polynomial regression
- Randomly split the 392 observations into two halves: one for training, one for validation
 - Fit to training, measure MSE on validation, plot for different degrees of polynomials

Left panel shows single splitting; right shows multiple splitting

K-fold Cross-validation

- Randomly divide the data (with n records) into K equal parts
 - leave out k'th part for validation
 - fit the model to the other K 1 parts (combined)
 - measure performance on the leftout k'th part
- Repeat for each k = 1, 2, ... K, and take weighted average of the metrics
 - Setting K = n is called leave-one-outcross-validation

Cross-validation: Right And Wrong Way

Consider learning a regression model for a dataset with 5000 features and 500 rows. Standard Multiple Linear regression can't be estimated with more features than records. So,

- 1. One selects the 100 features most correlated with the target.
- 2. Then learn a linear regression using only these 100 features.
- How do we estimate the test set performance of this classifier?
 - Can we wrap step 2 in cross validation to measure test error, after step 1?

NO!

- This would ignore that in Step 1, the procedure has already used the labels of the training data an example of data leakage, from test to training.
 - · Ignoring the use of all data in feature selection underestimates the test data error.
 - Feature selection is a form of training and must be separated in the cross-validation process.
- Right: Wrap both steps 1 and 2 in cross validation.

Regularization

Simplifying models in a controlled way

Incurring some bias to reduce variance and overall prediction error $% \left(1\right) =\left(1\right) \left(1\right)$

Two Classes of Methods to Control Complexity

- Regularization/Shrinkage. Fit a model involving all predictors, but the estimated coefficients are shrunken towards zero (relative to the least squares estimates).
 - Reduces variance and some can perform variable selection.
- Feature Selection. Identify a subset of the predictors that are most related to the response. Then fit a model using least squares on the reduced set of variables.

Regularization

Minimize a modified objective instead of MSE on training data

Ridge Regression Minimizes:

$$\frac{1}{n}\sum_{i=1}^{n} \left(y_i - \hat{f}(x_i)\right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- First term: sum of squared residuals
- Second: penalizes large coefficients
 - Which can result from fitting to noise in the training data
- $\lambda > 0$ is a tuning parameter, often chosen by cross validation

- Larger λ shrink the coefficients more
 - But all βs remain non-zero, i.e., doesn't select features.
 - Important to standardize the features first

Bias–Variance Tradeoff with Regularization Parameter λ

Recall that MSE = Variance + Bias + Irreducible error

Lasso Regression

• Lasso (Least Absolute Shrinkage and Selection Operator) minimizes:

$$\frac{1}{n}\sum_{i=1}^{n}\left(y_{i}-\hat{f}(x_{i})\right)^{2}+\lambda\sum_{j=1}^{p}|\beta_{j}|$$

This turns coefficients, one-by-one, to exactly zero as λ increases \rightarrow selects features

Example: Predicting Credit Card Balances

Ridge vs Lasso in Predicting Credit Card Balance

Ridge or Lasso?

- If there truly are only a few relevant variables (rest are noise), then Lasso is likely to perform better
 - · Often not known in advance
 - Use cross validation to choose among Lasso and Ridge (as well as the regularization parameter)
- To choose regularization parameter λ , for each method
 - Choose a set of regularization parameters λs
 - Using each λ , fit k models to cross validation training data, average test errors
 - Choose λ with lowest test error
 - Retrain the model using the chosen λ and entire training data

Summary

- · Cost based evaluation
 - Choose the model with the least expected cost of prediction
- Cost minimizing prediction
 - Change the positive/negative threshold to minimize the expected cost out of mistakes
- Cross validation
 - Use 1 of K parts for evaluation using the rest for training (K times)
 - Can't use the same validation data to select a model and to measure its generalization error
 - Cross validate within the training data to select model

- Regularization to control complexity
 - Reduce variance, potentially incur bias
- In linear regression
 - · Ridge: reduces coefficients towards zero
 - Lasso: reduces coefficients towards zero and can turn some to exactly zero
 - · Can be used for feature selection
- Many types of regularization depending on forms of predictive models
 - k (# of neighbors) in kNN regularizes; high k reduces variance, potentially inducing bias