Class 7: Machine Learning 1

Dani Baur (A16648266)

Today we will start our multi-part exploration of some key machine learning methods. We will begin with clustering- finding groupings in data and then dimensionality reduction.

Clusting

Let's start with "k-means" clustering. The main function in base R for this k(means).

```
#make up some data
hist(rnorm(100000, mean=3))
```

Histogram of rnorm(1e+05, mean = 3)


```
tmp <- c(rnorm(30, -3), rnorm(30,+3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```


Now let's try out k(means).

```
km <- kmeans(x, centers=2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 -3.237277 3.243383
2 3.243383 -3.237277
```

Clustering vector:

Within cluster sum of squares by cluster:

[1] 55.7962 55.7962 (between_SS / total_SS = 91.9 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

Q. how many points in each cluster?

km\$size

[1] 30 30

Q. what component of your result object details cluster assignment/membership?

km\$cluster

Q. what are centers/means values of each cluster?

km\$centers

x y 1 -3.237277 3.243383

2 3.243383 -3.237277

Q. make a plot of your data showing your clustering results.

```
plot(x, col=c("red", "blue"))
```



```
c(1:5) + c(100,1)
```

Warning in c(1:5) + c(100, 1): longer object length is not a multiple of shorter object length

```
[1] 101 3 103 5 105
```

```
plot(x, col=km$cluster)
points(km$centers, col="green", pch=15, cex=3)
```


Q. run k(means) again and cluster in 4 groups and plot the results.

```
km4 <- kmeans(x, centers=4)
plot(x, col=km4$cluster)</pre>
```


Hierarchical Clustering

This form of clustering aims to reveal the structure in your data by progressively grouping points into a even smaller number of clusters.

The main function in base R for this called hclust(). This function does not take our input data directly but wants a "distance matrix" that details how (dis)similar all our input points are to each other.

```
hc <- hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

 $\begin{array}{lll} \hbox{\tt Cluster method} & : & \hbox{\tt complete} \\ \hbox{\tt Distance} & : & \hbox{\tt euclidean} \end{array}$

Number of objects: 60

The print out above is not very useful (unlink that from kmeans) but there is a useful plot() method.

```
plot(hc)
abline(h=10, col="red")
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

To get my main result (my cluster membership vector), I need to "cut" my tree using the function cutree().

```
grps <- cutree(hc, h=10)
grps</pre>
```

```
plot(x,col=grps)
```


Lab 7: PCA

The goal of PCA is to reduce the dimensionality of a dataset down to some smaller subset of new variables (called PCs) that are useful bases for further analysis, like visualization, clustering, etc.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)</pre>
```

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
dim(x)
```

[1] 17 5

 \rightarrow There are 17 rows and 5 columns in data frame x.

```
# checking the data
head(x)
```

X England Wales Scotland N.Ireland Cheese Carcass_meat Other_meat Fish 5 Fats_and_oils Sugars

```
# don't want food types to be its own column
rownames(x) <- x[,1]
x <- x[,-1]
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
\# checking to see if change applied to column number \dim(x)
```

[1] 17 4

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

```
x <- read.csv(url, row.names=1)
```

 \rightarrow The second method shown above is more efficient and concise but it assumes that the data is listed in a way that could be presented better. The first method allows you to see the data first then make adjustments as you see fit.

```
# spotting differences and trends
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


 ${f Q3.}$ Changing what optional argument in the above barplot() function results in the following plot?

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


→ Changing beside=TRUE to beside=FALSE changes the result of the graph.

The so-called "pairs" plot can be useful for small datasets:

```
rainbow(nrow(x))

[1] "#FF0000" "#FF5A00" "#FFB400" "#F0FF00" "#96FF00" "#3CFF00" "#00FF1E"
[8] "#00FF78" "#00FFD2" "#00D2FF" "#0078FF" "#001EFF" "#3C00FF" "#9600FF"
[15] "#F000FF" "#FF00B4" "#FF005A"

#pairs(x,col=rainbow(nrow(x)))
pairs(x, col=rainbow(10), pch=16)
```


So the pairs plot is useful for small datasets but it can be lots of work to interpret and gets untractable for larger datasets.

So PCA to the rescue...

The main function to do PCA in base R is called prcomp(). This function wants the transpose of our data in this case.

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        2.921e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

```
$class
[1] "prcomp"
```

```
pca$x
```

```
PC3
                 PC1
                             PC2
                                                       PC4
England
          -144.99315
                       -2.532999 105.768945 -9.152022e-15
Wales
          -240.52915 -224.646925 -56.475555
                                             5.560040e-13
Scotland
           -91.86934
                      286.081786 -44.415495 -6.638419e-13
N.Ireland
          477.39164
                      -58.901862 -4.877895
                                             1.329771e-13
```

A major PCA result viz is called a "PCA plot" (aka a score plot, a bi-plot, PC1 vs. PC2 plot, ordientation plot)

```
plot(pca$x[,1],pca$x[,2])
```



```
mycols <- c("orange","red","blue","darkgreen")
plot(pca$x[,1],pca$x[,2], col=mycols, pch=16, xlab="PC1", ylab="PC2")
abline(h=0, col="gray")</pre>
```


Another important output from PCA is called the "loadings" vector or the "rotation" component- this tell us how much the original variables (the foods in this case) contribute to the new PCs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.409382587
Carcass_meat	0.047927628	0.013915823	0.06367111	0.729481922
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.331001134
Fish	-0.084414983	-0.050754947	0.03906481	0.022375878
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.034512161
Sugars	-0.037620983	-0.043021699	-0.03605745	0.024943337
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	0.021396007
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	0.001606882
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.031153231
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	-0.017379680
Processed_Veg	-0.036488269	-0.045451802	0.05289191	0.021250980
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.227657348

```
      Cereals
      -0.047702858 -0.212599678 -0.35884921 0.100043319

      Beverages
      -0.026187756 -0.030560542 -0.04135860 -0.018382072

      Soft_drinks
      0.232244140 0.555124311 -0.16942648 0.222319484

      Alcoholic_drinks
      -0.463968168 0.113536523 -0.49858320 -0.273126013

      Confectionery
      -0.029650201 0.005949921 -0.05232164 0.001890737
```

PCA looks to be a super useful method for gaining some insight into high dimensional data that is difficult to examine in other ways.