§3 Compare the Algorithms

Example Given (possibly negative) integers A_1, A_2 ,

..., A_N , find the maximum value $\sum_{k=i}^{j} A_k$.

```
Algorithm 1
```

```
int MaxSubsequenceSum (const int A[], int N)
         int ThisSum, MaxSum, i, j, k;
/* 1*/
         MaxSum = 0; /* initialize the maximum sum */
/* 2*/
        for( i = 0; i < N; i++ ) /* start from A[ i ] */
/* 3*/
            for(j = i; j < N; j++) { /* end at/
/* 4*/
                 ThisSum = 0:
                                               Detailed analysis is
                 for( k = i; k <= j; k++ )
/* 5*/
                                                given on p.18-19.
/* 6*/
                     ThisSum += A[ k ]; /* sum
/* 7*/
                 if ( ThisSum > MaxSum )
                                                   ∕e max sum */
/* 8*/
                     MaxSum = ThisSum; /* up €
            } /* end for-j and for-i */
        return MaxSum;
/* 9*/
                                  T(N) = O(N^3)
```

Algorithm 2

```
int MaxSubsequenceSum (const int A[], int N)
        int ThisSum, MaxSum, i, j;
/* 1*/
        MaxSum = 0; /* initialize the maximum sum */
/* 2*/
        for(i = 0; i < N; i++) { /* start from A[i] */
            ThisSum = 0;
/* 3*/
/* 4*/
            for(j = i; j < N; j++) { /* end at A[j] */
                 ThisSum += A[j]; /* sum from A[i] to A[j] */
/* 5*/
/* 6*/
                 if ( ThisSum > MaxSum )
/* 7*/
                     MaxSum = ThisSum; /* update max sum */
            } /* end for-j */
        } /* end for-i */
/* 8*/
       return MaxSum;
```

$$T(N) = O(N^2)$$

Algorithm 4

On-line Algorithm

```
int MaxSubsequenceSum( const int A[], int N)
        int ThisSum, MaxSum, j;
        ThisSum = MaxSum = 0;
/* 1*/
/* 2*/
        for (j = 0; j < N; j++) {
            ThisSum += A[j];
/* 3*/
/* 4*/
            if (ThisSum > MaxSum )
                 MaxSum = ThisSum;
/* 5*/
/* 6*/
            else if (ThisSum < 0)
/* 7*/
                 ThisSum = 0;
        } /* end for-j */
/* 8*/
        return MaxSum;
                               At any point in time, the algorithm
```

$$T(N) = O(N)$$

A[] is scanned once only.

At any point in time, the algorithm can correctly give an answer to the subsequence problem for the data it has already read.

Running times of several algorithms for maximum subsequence sum (in seconds)

Algorithm		1	2	3	4
Time		$O(N^3)$	$O(N^2)$	$O(N \log N)$	$\mathbf{O}(N)$
	N=10	0.00103	0.00045	0.00066	0.00034
Input Size	N=100	0.47015	0.01112	0.00486	0.00063
	N=1,000	448.77	1.1233	0.05843	0.00333
	N=10,000	NA	111.13	0.68631	0.03042
	N=100,000	NA	NA	8.0113	0.29832

Note: The time required to read the input is not included.

§4 Logarithms in the Running Time

```
Example Binary Search:
  Given: A[0] \le A[1] \le ..... \le A[N-1]; X
   Task:
         Find X
   Output: i if X = A[i]
           -1 if X is not found
low
                             mid
                                                          high
                         X ~ A [mid]
               high = mid - 1
                                  low = mid + 1
                                                          high
low
                            mid
```

```
int BinarySearch (const ElementType A[],
                       ElementType X, int N)
       int Low, Mid, High;
      Low = 0; High = N - 1:
/* 1*/
                                       Very useful in
/* 2*/
      while
                                           data are
/* 3*/
                 Home work:
    Self-study Euclid's Algorithm
            and Exponentiation
/* 8*/
      } /* enu
      return NotFound; /* NotFound is defined as -1 */
/* 9*/
    T_{warst}(N) = O(\log N)
```

§5 Checking Your Analysis

When
$$T(N) = O(N)$$
, check if $T(2N)/T(N) \approx 2$
When $T(N) = O(N^2)$, check if $T(2N)/T(N) \approx 4$
When $T(N) = O(N^3)$, check if $T(2N)/T(N) \approx 8$

When
$$T(N) = O(f(N))$$
, check if
$$\lim_{N \to \infty} \frac{T(N)}{f(N)} \approx \text{Constant}$$

Read the example given on p.28 (Figures 2.12 & 2.13).

Laboratory Project 1

Performance Measurement

Normal: Search

Hard: A+B

Due: Tuesday, March 12th, 2024 at 10:00pm

don't co If it v it should be and harde

I will not read and grade any program which has less than 30% lines commented.

