

网络

程龚

从图到网络

■ 网络:顶点或边带有标记的图

• 标记:数值、文本等任意属性

从图到网络(举例)

■ 路的长度

• 图:经过的边的数量

• 网络:经过的边的权和

■ 距离的计算

● 图:BFS算法

• 网络: Dijkstra算法

本次课的主要内容

高随祥《图论与网络流理论》

- 4.2 中国邮递员问题
- 4.4 旅行商问题
- 9.1 网络与网络流的基本概念
- 9.2 最大流问题及其标号算法

本次课的主要内容

高随祥《图论与网络流理论》

- 4.2 中国邮递员问题
- 4.4 旅行商问题
- 9.1 网络与网络流的基本概念
- 9.2 最大流问题及其标号算法

中国邮递员问题

■ 管梅谷, 1934-, 出生于中国

每段路上都有一个邮筒,邮递员从邮局出发,处理每个邮筒后返回邮局,走过的总路程最短。

你能用图来为这个问题建立数学模型吗?

中国邮递员问题

■ 最优邮路: 边带权的连通网络中, 经过所有边且权和最小的闭路线

欧拉图 (复习)

■ 欧拉迹:经过图的每条边恰一次的迹

■ 欧拉回路:经过图的每条边恰一次的闭迹(回路)

■ 欧拉图:含欧拉回路的图

■ 欧拉图的最优邮路是什么?

• 欧拉回路

中国邮递员问题的转换

- 非欧拉图的最优邮路,有什么特征?
 - 必然要重复经过一些边。
 - 将重复走过的边作为重边添加到图中⇒新图一定是欧拉图吗?
 - 原图中的最优邮路,与新图中的欧拉回路,有什么联系?
- 据此, 你能将中国邮递员问题转换为一个新的问题吗?
 - 1. 添加重边成为欧拉图(如果本来不是的话)。
 - 2. 使添加的边权和最小。
 - 3. 找欧拉回路。

Edmonds-Johnson算法

- Jack Edmonds, 1934-, 出生于美国
- Ellis L. Johnson, 1938-, 出生于美国

https://en.wikipedia.org/wiki/Jack_Edmonds https://www.isye.gatech.edu/sites/default/files/emp-profiles/johnson_ellis_-_bust.jpg

- 1. 添加重边成为欧拉图
- 非空连通图*G*含欧拉回路当且仅当*G*没有顶点的度为奇数。
 - ⇒添加重边的目标是什么?
 - 消除奇度顶点。

1. 添加重边成为欧拉图

- 如何添加重边,才能消除奇度顶点?
 - 奇度顶点 → 偶度顶点
 - 偶度顶点 → 偶度顶点

■ 设G是边带权的连通网络,G中有2k个奇度顶点。G*是G的最优邮路对应的欧拉图, $\varphi E' = E_{G^*} \setminus E_G$ 。则H = G[E']是以G的奇度顶点为起点和终点的k条无公共边的最短路之并。

- ⇒ 重边的添法?
- 连接k对奇度顶点的k条无公共边的最短路。
- 且边权和最小。

■ 设G是边带权的连通网络,G中有2k个奇度顶点。G*是G的最优邮路对应的欧拉图,令E' = $E_{G^*}\setminus E_G$ 。则H=G[E']是以G的奇度顶点为起点和终点的k条无公共边的最短路之并。

证明:

- H有2k个奇度顶点,为什么?
 - G^* 是欧拉图 \Rightarrow G^* 无奇度顶点 \Rightarrow E 中关联到G的每个奇/偶度顶点的边有奇/偶数条 \Rightarrow G 中的奇度顶点在H 中仍是奇度顶点,G 中的偶度顶点在H 中仍是偶度顶点或不出现 \Rightarrow 得证
- 2. H中没有圈, 为什么?
 - 假设H中有圈 $C \Rightarrow C$ 在 G^* 中 $\Rightarrow G^*$ 中删去C后无奇度顶点 \Rightarrow 是欧拉图且边权和比 G^* 小 \Rightarrow G^* 不是最优邮路对应的欧拉图 \Rightarrow 矛盾 \Rightarrow 得证
- 3. 从H的任一个奇度顶点出发沿未走过的边前行直到无法继续,形成迹 P_1 ⇒
 - P₁的终点是奇度顶点,为什么?
 - P₁是路,为什么?
- 4. 从H去掉 P_1 ,剩余2k-2个奇度顶点,同理可找到 P_2 、 P_3 、.....、 P_k 。
- 剩余图中无圈无奇度顶点 \Rightarrow 无边 \Rightarrow H是以G的奇度顶点为起点和终点的k条无公共边的最短路之并

- 设G是边带权的连通网络,G中有2k个奇度顶点。G*是G的最优邮路对应的欧拉图,令 $E' = E_{G^*} \setminus E_G$ 。则H = G[E']是以G的奇度顶点为起点和终点的k条无公共边的最短路之并。
 - ⇒ 重边的添法?
 - 连接k对奇度顶点的k条无公共边的最短路。
 - 且边权和最小。

这里的关键是要确定一件什么事情?这让你联想到我们学过的哪个概念?

顶点如何配对 → 匹配

■ Edmonds-Johnson算法的关键步骤

- 1. 找到所有2k个奇度顶点间的最短路。
- 2. 构造一个完全图 K_{2k} :顶点为2k个奇度顶点,边权为最短路的 边权和。
- 3. 找 K_{2k} 的最小权完美匹配M。
- 4. 沿*M*对应的最短路添加重边。 为什么这\条路一定恰没有公共边?

- 3. 找欧拉回路
- 弗勒里算法
- 希尔霍尔策算法

Edmonds-Johnson算法的时间复杂度

- 1. 找两两最短路
 - Floyd-Warshall算法: O(n³)
- 2. 构造完全图: O(n²)
- 3. 找最小权完美匹配
 - 基于花算法: O(n³)
- 4. 添加重边: O(m)
- 5. 找欧拉回路
 - 希尔霍尔策算法: O(n + m)

本次课的主要内容

高随祥《图论与网络流理论》

- 4.2 中国邮递员问题
- 4.4 旅行商问题
- 9.1 网络与网络流的基本概念
- 9.2 最大流问题及其标号算法

旅行商经过每座城市恰一次后返回起点,经过的总路程最短。

你能用图来为这个问题建立数学模型吗?

旅行商问题

- 边带权的连通网络中,权和最小的哈密尔顿圈
 - 通常假设: $\forall v_i, v_j, v_k \in V$, $w(v_i, v_j) + w(v_j, v_k) \ge w(v_i, v_k)$
 - 通常只讨论边权为正数的完全图 K_n (缺失的边的权设为 ∞)

http://www.buildyouridea.com/cnc/pcb_drill/pcb_drill_4.jpg

哈密尔顿图 (复习)

■ 哈密尔顿路:经过图的每个顶点的路

■ 哈密尔顿圈:经过图的每个顶点的圈

■ 哈密尔顿图:含哈密尔顿圈的图

旅行商问题的难度

- 任意图中,<mark>哈密尔顿圈的存在性</mark>的判定问题:NPC
- 完全图中,<mark>找权和最小的哈密尔顿圈</mark>:NP难

前者如何规约到后者? 随堂小测

- 因此,通常采用近似算法
 - 高效地找出较优解
 - 你自己能想出一些方法吗?

旅行商问题的近似算法

- 邻近点法
- 最小生成树法
- 最小权匹配法
- Kernighan-Lin

- 基本思路
 - 总是贪心地选择最近的未访问邻点前行。

- 举例 (从a出发)
 - 5+7+8+16+12=48

- 举例 (从b出发)
 - 5+5+8+9+9=36

- 近似比 $w(H) / w(H^*) \le \frac{1}{2} \lceil \log_2 n \rceil$
- 最终结果与以下因素有关
 - 初始点

■ 时间复杂度: O(n²)

- 1. 找 K_n 的一棵最小生成树T。
- 2. 为T中的每条边添加重边成为 T^* 。
- 3. 找T*的一条欧拉回路C。
- 4. 按C经过顶点的顺序构造哈密尔顿圈。

- 近似比w(H)/w(H*)<2
- 最终结果与以下因素有关
 - 最小生成树
 - 欧拉回路
 - 初始点

■ 近似比w(*H*) / w(*H**) < 2

证明:

- 1. 三角不等式 ⇒ $w(H) \le w(C) = w(T^*) = 2w(T)$
- 2. w(H*) > w(T), 为什么?
 - *H**比生成树多一条边(这就是想到用最小生成树的原因)
- 3. $w(H) / w(H^*) < 2$

■ 时间复杂度

- 1. 找最小生成树
 - Prim算法: O(*m* + *n* log*n*)
- 2. 添加重边:O(n) //生成树的边数为n-1
- 3. 找欧拉回路
 - 希尔霍尔策算法: O(n)
- 4. 沿欧拉回路前行:O(n)

- 你能根据刚才的证明,优化这个算法吗? (提示:从*T*到*T**需要添加那么多边吗?)
 - $w(H) \le w(C) = w(T^*) = 2w(T)$

- 1. 找 K_n 的一棵最小生成树T。
- 2. 找T中奇度顶点在 K_n 中导出子图G的最小权完美匹配M。
- 3. 将M添加到T中成为 T^* 。
- 4. 找T*的一条欧拉回路C。
- 5. 按C经过顶点的顺序构造哈密尔顿圈。

- 近似比w(H)/w(H*) < 3/2
- 最终结果与以下因素有关
 - 最小生成树
 - 最小权完美匹配
 - 欧拉回路
 - 初始点

■ 近似比w(*H*) / w(*H**) < 3/2

证明:

- 1. 三角不等式 \Rightarrow w(H) \leq w(C) = w(T*) = w(T) + w(M)
- 2. H*比生成树多一条边 ⇒ $w(H^*)$ > w(T)
- 3. 三角不等式 \Rightarrow w(H') ≤ w(H*), 为什么? (H'是G'中的某个哈密尔顿圈)
 - H'可由H*反复"去二添一"得到
- 4. w(M) ≤ w(H')/2, 为什么?
 - ullet G的两个完美匹配可由H中交替取边得到
- 5. $w(H) / w(H^*) < 3/2$

■ 时间复杂度

- 1. 找最小生成树
 - Prim算法: $O(m + n \log n)$
- 2. 找最小权完美匹配
 - 基于花算法: O(n³)
- 3. 添加边: O(n) //M的边数最多为n/2
- 4. 找欧拉回路
 - 希尔霍尔策算法: O(n)
- 5. 沿欧拉回路前行:O(n)

Kernighan-Lin

理论近似比:较差 但实际效果:较好

本次课的主要内容

高随祥《图论与网络流理论》

- 4.2 中国邮递员问题
- 4.4 旅行商问题
- 9.1 网络与网络流的基本概念
- 9.2 最大流问题及其标号算法

- **有向图**: *G* = <*V*, *A*>
 - V:顶点(结点)的有限集合
 - A:有向边(弧)的有限集合

 - $-v_1$ 称作 a_1 的尾, v_2 称作 a_1 的头,统称作 a_1 的端点

- 有向图: G = <V, A>
 - V: <mark>顶点(结点</mark>)的有限集合
 - A: 有向边(弧)的有限集合

 - $-v_1$ 称作 a_1 的<mark>尾</mark>, v_2 称作 a_1 的<mark>头</mark>,统称作 a_1 的<mark>端点</mark>
- 一些术语
 - 自环:一条弧的头和尾是同一个顶点

- 有向图: *G* = <*V*, *A*>
 - V:顶点(结点)的有限集合
 - A:有向边(弧)的有限集合

 - $-v_1$ 称作 a_1 的尾, v_2 称作 a_1 的头,统称作 a_1 的端点
- 一些术语
 - 自环:一条弧的头和尾是同一个顶点
 - 重弧(平行弧): 头相同、尾相同

- 有向图: G = <V, A>
 - V:顶点(结点)的有限集合
 - A:有向边(弧)的有限集合

 - $-v_1$ 称作 a_1 的尾, v_2 称作 a_1 的头,统称作 a_1 的端点
- 一些术语
 - 自环:一条弧的头和尾是同一个顶点
 - 重弧(平行弧):头相同、尾相同
 - **简单有向图**:不含自环和重弧的有向图

- 有向图: G = <V, A>
 - V:顶点(结点)的有限集合
 - A:有向边(弧)的有限集合
 - $\underline{\mathbf{u}}_{a_1} = (v_1, v_2) \mathbb{E} V$ 中顶点 $v_1 \mathbf{n} v_2 \mathbf{u}$ 成的一个有序对
 - $-v_1$ 称作 a_1 的尾、 v_2 称作 a_1 的头、统称作 a_1 的端点

- 自环:一条弧的头和尾是同一个顶点
- 重弧(平行弧):头相同、尾相同
- 简单有向图:不含自环和重弧的有向图
- 反向弧:头、尾相反

- 有向图: G = <V, A>
 - V:顶点(结点)的有限集合
 - A:有向边(弧)的有限集合

 - $-v_1$ 称作 a_1 的尾, v_2 称作 a_1 的头,统称作 a_1 的端点

- 自环:一条弧的头和尾是同一个顶点
- 重弧(平行弧):头相同、尾相同
- 简单有向图:不含自环和重弧的有向图
- 反向弧:头、尾相反
- **出度**:作为尾关联的弧(出弧)的数量,记作 $d^+(v)$ v_2
- 入度:作为头关联的弧(入弧)的数量,记作d·(v)

- 有向图: G = <V, A>
 - V:顶点(结点)的有限集合
 - A:有向边(弧)的有限集合

 - $-v_1$ 称作 a_1 的尾, v_2 称作 a_1 的头,统称作 a_1 的端点

- 自环:一条弧的头和尾是同一个顶点
- 重弧(平行弧):头相同、尾相同
- 简单有向图:不含自环和重弧的有向图
- 反向弧:头、尾相反
- 出度:作为尾关联的弧(出弧)的数量,记作 $d^+(v)^{\nu_2}$
- 入度:作为头关联的弧(入弧)的数量,记作d·(v)
- 有向路线、有向迹、有向路
- 有向闭路线、有向闭迹、有向圈

- 有向图: G = <V, A>
 - V:顶点(结点)的有限集合
 - A:有向边(弧)的有限集合
 - $3 a_1 = (v_1, v_2)$ 是V中顶点 v_1 和 v_2 组成的一个有序对
 - $-v_1$ 称作 a_1 的尾, v_2 称作 a_1 的头,统称作 a_1 的端点

- 自环:一条弧的头和尾是同一个顶点
- 重弧(平行弧):头相同、尾相同
- 简单有向图:不含自环和重弧的有向图
- 反向弧:头、尾相反
- 出度:作为尾关联的弧(出弧)的数量,记作 $d^+(v)v_2$
- 入度:作为头关联的弧(入弧)的数量,记作d·(v)
- 有向路线、有向迹、有向路
- 有向闭路线、有向闭迹、有向圈
- 底图:有向图 → 无向图

■ 流网络

• **容量**:定义在<mark>弧集上的非负实值函数</mark>,记<mark>作c(a)</mark>

• **流**: 定义在<mark>弧集上的实值函数</mark>,记作**f(***a***)**

− f⁺(v) : v关联的出弧的流和

- f(v):v关联的<mark>入弧</mark>的流和

汇点: t∈ V

■ 流网络

• 容量:定义在弧集上的非负实值函数,记作c(a)

• 流:定义在弧集上的实值函数,记作f(a)

f'(v): v关联的出弧的流和f(v): v关联的入弧的流和

源点: *s* ∈ *V*汇点: *t* ∈ *V*

■ 可行流

• 容量约束: $\forall a \in A, 0 \le f(a) \le c(a)$

守恒约束: ∀v ∈ V\ {s, t}, f⁺(v) = f(v)

■ 流网络

• 容量:定义在弧集上的非负实值函数,记作c(a)

• 流:定义在弧集上的实值函数,记作f(a)

− f⁺(v): v关联的出弧的流和

- f(v): v关联的入弧的流和

源点: s ∈ V汇点: t ∈ V

■ 可行流

• 容量约束: $\forall a \in A, 0 \le f(a) \le c(a)$

守恒约束: ∀v ∈ V\ {s, t}, f⁺(v) = f(v)

■ 可行流一定存在吗?

■ 流网络

• 容量:定义在弧集上的非负实值函数,记作c(a)

• 流:定义在弧集上的实值函数,记作f(a)

f'(v): v关联的出弧的流和f(v): v关联的入弧的流和

源点: s ∈ V汇点: t ∈ V

■ 可行流

• 容量约束: $\forall a \in A, 0 \le f(a) \le c(a)$

守恒约束: ∀v ∈ V\ {s, t}, f⁺(v) = f(v)

■ 可行流一定存在吗?

• 零值流: $\forall a \in A$, f(a) = 0

■ 流的**流量**: **f**(t) - **f**⁺(t)

- 流的流量: f(t) f⁺(t)
- 可行流满足 $f^+(s) f(s) = f(t) f^+(t)$, 为什么?

- 流的流量: f(t) f⁺(t)
- 可行流满足 $f^+(s) f(s) = f(t) f^+(t)$, 为什么?
- **最大流**:流量最大的可行流

- 流的流量: f(t) f⁺(t)
- 可行流满足 $f^+(s) f(s) = f(t) f^+(t)$, 为什么?
- 最大流:流量最大的可行流
- 右图是最大流吗?你是如何判断的?

- 流的流量: f(t) f⁺(t)
- 可行流满足 $f^+(s) f(s) = f(t) f^+(t)$, 为什么?
- 最大流:流量最大的可行流
- 右图是最大流吗?你是如何判断的?

■ f-增广路

- f-增广路

还有其它类型的增广路吗?

- f-增广路
 - 底图中的一条*s-t*路
 - 经过的每条前向弧 $a \in A$: f(a) < c(a)
 - 经过的每条后向弧 $a \in A$: f(a) > 0

还有其它类型的增广路吗?

- f-增广路
 - 底图中的一条s-t路
 - 经过的每条前向弧 $a \in A$: f(a) < c(a)
 - 经过的每条后向弧 $a \in A$: f(a) > 0

还有其它类型的增广路吗?

- f-增广路
 - 底图中的一条*s-t*路
 - 经过的每条前向弧 $a \in A$: f(a) < c(a)
 - 经过的每条后向弧 $a \in A$: f(a) > 0
- 增广路的"可增量"有多少?

还有其它种类的增广路吗?

- f-增广路
 - 底图中的一条s-t路
 - 经过的每条前向弧 $a \in A$: f(a) < c(a)
 - 经过的每条后向弧 $a \in A$: f(a) > 0
- 增广路的"可增量"有多少?
 - 弧的可增量
 - 前向弧:c(a) f(a)
 - 后向弧: f(a)
 - 增广路的可增量
 - 经过的弧的可增量的最小值

还有其它种类的增广路吗?

- 对于可增量为z的f增广路,对f做如下调整,结果f仍是一个可行流,且流量增加z:
 - 前向弧a: f(a) = f(a) + z
 - 后向弧 $a: \mathbf{f}(a) = \mathbf{f}(a) \mathbf{z}$
 - 其它弧a: f(a) = f(a)

证明:你能自己证明吗?

- 1、容量约束: $\forall a \in A, 0 \le f(a) \le c(a)$
- - + + -

←

3、流量增量:

$$(f^{-}(t) - f^{+}(t)) - (f^{-}(t) - f^{+}(t))$$

$$= (f^{-}(t) - f^{-}(t)) - (f^{+}(t) - f^{+}(t))$$

$$=z-0$$
 或 $0-(-z)$

= z

- L. R. Ford Jr., 1927-2017, 出生于美国
- D. R. Fulkerson, 1924-1976, 出生于美国

 $https://www.independent.com/wp-content/uploads/2019/03/dadd_opt.jpg?resize=600,800 \ https://en.wikipedia.org/wiki/D._R._Fulkerson$

- 基本思路
 - 1. 从零值流开始
 - 2. 搜索一条增广路
 - 3. 如果找到了:<mark>调整得到流量更大的流</mark>,回到第2步
 - 4. 否则:结束

■ 举例

■ 举例

- 如何搜索一条增广路?
 - 构建余量网络

• 找不到增广路时, 余量网络呈现什么特征?

- 将顶点集任意划分为S和T,使 $s \in S$, $t \in T = V \setminus S$
- **■** *S-t*割
 - $[S, T] = \{ \langle x, y \rangle \in A : x \in S, y \in T \}$
- ■割的容量
 - 弧的容量和: $\sum_{a \in [S, T]} c(a)$
- 最小割
 - 容量最小的割

■ 对网络中任一可行流f和任一割[S, T],<mark>均有f⁺(s) – f(s) = f⁺(S) – f(S), 其中f⁺(S)表示S关联的出弧的流和、f(S)表示S关联的入弧的流和。</mark>

证明:你能自己证明吗?

$$\forall v \in S \setminus \{s\}, f^+(v) = f^-(v)$$

$$\Rightarrow f^{+}(s) - f^{-}(s) = f^{+}(s) - f^{-}(s) + \sum_{v \in S \setminus \{s\}} (f^{+}(v) - f^{-}(v)) = \sum_{v \in S} (f^{+}(v) - f^{-}(v)) = f^{+}(S) - f^{-}(S)$$

- 对网络中任一可行流f和任一割[S, T], 均有f $^{+}(s)$ f $^{+}(s)$ = $f^{+}(S)$ f $^{+}(S)$, 其中f $^{+}(S)$ 表示S关联的出弧的流和、f $^{+}(S)$ 表示S关联的入弧的流和。
- 对网络中任一可行流f和任一割[S, T],均有f的流量不超过[S, T]的容量。(两者相等时f有什么特征?)

S到T的弧:f = cT到S的弧:f = 0

- 对网络中任一可行流f和任一割[S, T], 均有f⁺(s) f(s) = f⁺(S) f(S), 其中f⁺(S)表示S关联的出弧的流和、f(S)表示S关联的入弧的流和。
- 对网络中任一可行流f和任一割[S, T],均有f的流量不超过[S, T]的容量。(两者相等时f有什么特征?)
- 设f是网络中的一个可行流、[S, T]是一个割,若f的流量与[S, T]的容量相等,那么f是一个最大流而[S, T]是一个最小割。

S到T的弧:f = cT到S的弧:f = 0

- 对网络中任一可行流f和任一割[S, T], 均有f⁺(s) f(s) = f⁺(S) f(S), 其中f⁺(S)表示S关联的出弧的流和、f(S)表示S关联的入弧的流和。
- 对网络中任一可行流f和任一割[S, T],均有f的流量不超过[S, T]的容量。(两者相等时f有什么特征?)
- 设f是网络中的一个可行流、[S, T]是一个割,若f的流量与[S, T]的容量相等,那么f是一个最大流而[S, T]是一个最小割。

S到T的弧:f = cT到S的弧:f = 0

Ford-Fulkerson算法运行结束时, 恰是这种状态(为什么?),因此算法是正确的。

因为在余量网络中, S到T没有弧

- 最大流的流量 = 最小割的容量。
- 若所有弧的容量都是整数,则最大流的流量也必为整数。

- 时间复杂度
 - 迭代的轮数?
 - O(f_{max}), f_{max}为最大流的流量
 - 每轮迭代的时间: O(*n* + *m*)

甚至, 当容量包含无理数时, 算法有可能永不终止。

最大流的应用与扩展

■ 多源多汇网络

最大流的应用与扩展

- 还记得求<mark>二分图最大匹配</mark>的匈牙利算法吗? 与**Ford-Fulkerson**算法是不是有些神似?
- 你能将该问题转化为最大流问题吗? (留作练习)

最大流的应用与扩展

- 如何计算图的点(边)连通度?
- 根据:非平凡图 *G是k*-(边)连通图 当且仅当 *G*中任意 两个顶点间存在至少*k*条两两无公共内顶点(公共边)的路。
- 问题转化:如何计算任意两个顶点间无公共内顶点 (公共边)的路的最大数量?
- 进一步转化:最大流问题(留作练习)

书面作业

高随祥《图论与网络流理论》

- 练习4.12 (要写出主要步骤)
- 将二分图最大匹配问题归约为最大流问题
- 将边连通度计算问题归约为最大流问题
- 将点连通度计算问题归约为最大流问题