Jason Chadwick

jason-chadwick.com | jchadwick@uchicago.edu | github.com/jasonchadwick

EDUCATION

Ph.D. Candidate, Computer Science, University of Chicago

2022-present

Studying quantum computer architecture, advised by Fred Chong

Interests: Quantum optimal control, compilation, high-radix computation, neutral atom devices, variational algorithms, surface codes

B.S. Physics, Carnegie Mellon University

2018-2022

Minor in Computer Science

GPA 3.95

AWARDS

Crerar Fellowship, University of Chicago2022University Honors, Carnegie Mellon University2022

College Honors, Mellon College of Science

2022

Dean's List, High Honors, Mellon College of Science

2018-2022

SKILLS

Programming: Python, Julia, C/C++, C#/Unity, Java, Clojure, Common Lisp, SML, Bash

Python libraries: QuTiP, qiskit, Cirq, Pulser, pandas, TensorFlow, PyTorch

Julia packages: QuantumOptics, DataFrames,
Software: LaTeX, Unix, slurm, Mathematica

Techniques: Machine learning, linear programming, functional programming

EXPERIENCE

Undergraduate researcher, University of Chicago

2021-2022

Optimized short-duration control pulses for high-radix quantum logic gates, motivating a new compiler design that takes advantage of mixed-radix operations.

Research intern, Princeton Plasma Physics Laboratory

2020

Designed a neural network to predict fusion plasma cross-sectional properties in real time, for use in control systems. Published work in *Nuclear Fusion*.

FEATURED PROJECTS

see my github for all public projects

Chronodrifter 2021–

2D platformer game in Unity where the player must solve puzzles by slowing and reversing the flow of time. A live web version is available.

Quops 2021–

Board game based on the rules of quantum mechanics. Players take turns applying quantum logic operations to a board of qubit tiles, aiming to create specific superpositions of states.

Publications

† indicates equal contribution

Year	Title and Authors	Publisher
2023	(under review) Qompress: Efficient Compilation for Ququarts Exploiting Partial and Mixed Radix Operations for Communication Reduction A. Litteken, L.M. Seifert, J. Chadwick , N. Nottingham, J.M. Baker, F.T. Chong	ASPLOS
2022	(to appear) Time-Efficient Qudit Gates through Incremental Pulse Re-seeding L.M. Seifert † , J. Chadwick † , A. Litteken, F.T. Chong, J.M. Baker	QCE
2022	Synthesizing Efficient Pulses for Practical Qudit Circuits J. Baker, J. Chadwick, L.M. Seifert, A. Litteken, N. Nottingham, A. Petersson, S. Guenther, F.T. Chong	QIP Poster
2021	Prediction of electron density and pressure profile shapes on NSTX-U using neural networks M.D. Boyer, J. Chadwick	Nucl. Fusion
2020	Machine learning modeling and analysis of density and pressure profiles on NSTX and NSTX-U J. Chadwick, M.D. Boyer	APS DPP Poster