

COHORT 3

Deployment #3

Kerri Smith

18th October 2022

Table of Contents

Overview	1
Pipeline	
/PC	
ocal VMs	
STACK	
Screen Capture	7
Proposed Improvements	g

Overview

This deployment exercise demonstrated the steps for setting up a basic CI/CD pipeline deployment to a custom AWS VPC.

Pipeline deployment

The software application used in this case was a Flask web application called "url shortener"

GitHub was used to manage the code and Jenkins was used to automate the following stages:

- 1. Build
- 2. Test
- 3. Clean
- 4. Deploy

Issues:

There were issues encountered in the initial deployment due to:

1. The configuration of the nginx server "/etc/nginx/sites-enabled/default" file.

```
initial instructions: server {
    listen 5000
```

The errors encountered included requesting browser not being able to access dependencies in subfolder (e.g. css files and js files)

(See Deployment_3-Assignment page 11)

2. The script in the Jenkins file did not successfully allow the application to continue running at the end of a "successful" deployment.

```
Correction: download the Jenkins plugin "Pipeline Keep Running Step"
Use revised script in Jenkinsfile: (See Deployment_3-Assignment page 12)
```

VPC

The deployment environment used two Amazon Virtual Private Clouds (Amazon VPCs):

- 1. The default VPC created with the AWS account
- 2. A custom VPC called "Kura-VPC". This VPC consisted of
 - a. Two availability zones
 - b. Two private subnets and one public subnet
 - c. An internet gateway
 - d. One EC2 which was used to run the Jenkins agent and deploy the application

Issues:

Extended time was used running EC2 to trouble shoot initial issues with deployment. This resulted in the AWS free tier being exceeded. The revised deployment instructions were simulated using Virtual Machines and Virtual Network on a local computer. Since both VMs were on the same LAN the connection between the Jenkins Server and the Jenkins agent used "Username with password" instead of "SSH Username with private key".

Pipeline

VPC

The deployment environment used two Amazon Virtual Private Clouds (Amazon VPCs): The default VPC created with the AWS account and a custom VPC called "Kura-VPC"

Local VMs

The revised deployment instruction were simulated using Virtual Machines and Virtual Network on a local computer

STACK

A software stack consists of independent software components that work together to support the execution of an application. These components can include operating system(s), runtime environments, databases, etc. These components tend to function hierarchically with lower-level components enabling or supporting the functionality of higher-level components. The following diagram describes the software stack used for this deployment

Screen Capture

VPC

Figure 1 - Jenkins Build History - VPC

Although the Jenkins deployment was "successful" the application failed to work.

502 Bad Gateway
nginx/1.18.0 (Ubuntu)

Figure 2 - NGINX failure

Local VMs

Figure 3Jenkins Build History- Local VM

Figure 4 - Successful launch of the web application

Modification

The heading of the templates/base.html was changed header to "URL Shortener Dep3_2022"

Proposed Improvements

The pipeline could be improved in the following ways:

- 1. Include automated monitoring and reporting after deployment
- 2. Include webhooks to automate deployment of updated code