Biostats and Big Data 2 Lecture 10

Lecture 10 T-test

What we learned...

- Sampling distribution
- Standard error of the mean
- Confidence interval

Hypothesis testing?

Before we learn the JAMOVI implementations of t-test,
 it would be good to review the logic of hypothesis testing.

Hypotheses

- **Hypothesis**: questions like, has the Facebook users who update their status daily increased since last month?
- Null hypothesis: null because it assumes no changes, thus p = 30.8%
- Alternative hypothesis: H_A : p > 30.8%
- We observed a new \hat{p} from 200 respondents.

• Based on the null hypothesis, $SD(\hat{p}) = \sqrt{\frac{pq}{n}} = \sqrt{\frac{0.308 \times 0.692}{200}} \approx 0.033$

• Then,
$$z = \frac{0.362 - 0.308}{0.033} = 1.6364$$

• p = 0.0509 (one-tail)

A Trial as a "Null Hypothesis Statistical Test" (NHST)

- It's the logic of jury trials.
 - The null hypothesis is that the defendant is *innocent*
 - Judge the evidence
 - Juries ask "Could these evidence plausibly have happened by chance if the defendant were in fact innocent?"
 - Make a decision
- In hypothesis testing:
 - We quantify "how surprising the evidence would be if the null hypothesis were true."

What's P-value?

- P-value = $P(Data | H_0)$, not $P(H_0 | Data)$
 - The conditional probability of getting the data given that the null hypothesis is true
 - NOT the probability that the null hypothesis is true
 - NOT the conditional probability that the null hypothesis is true given the data
 - P-value = 0.03
 - does **NOT** mean "there is a 3% chance that the null hypothesis is true".
 - does mean "given the null hypothesis, there's a 3% chance of observing the observed statistic value.

Small P-value

- First, yay!
- It means the result we just observed is unlikely to occur if the null hypothesis is true.
 - does NOT mean that the null hypothesis is "less true".
- How small the P-value should be?
 - depends on a lot of things, e.g., your prior belief in the null hypothesis, your trust in your data,
 in the experimental method, in the survey protocol, etc.
 - P-value serve as a measure of the strength of the evidence against the null hypothesis
 - should **NEVER** serve as a hard and fast rule for decisions.
 - YOU have to take the responsibility for the decision on yourself.

High P-value

- No evidence for rejecting H₀
- We cannot reject the null hypothesis.
- For one-sided test, if P-value is higher than 0.5, you know that your test statistic is on the "wrong" side.
- High P-values mean
 - What we've observed is not surprising.
 - We have no reason to reject our null hypothesis.
 - Does <u>NOT</u> prove that the null hypothesis is true
 - Do *NOT* say that you "accept the null hypothesis".
 - You should say that "the data have failed to provide sufficient evidence to reject the null hypothesis".

0.467 0.50

ĝ

T-tests

- One sample t-test
- Paired t-test
- Two samples t-test

https://www.youtube.com/playlist?list=PLXCuLG6zw7mL5v44qpj4VuvcV22YyNc8x

One sample t-test for the mean

- Null hypothesis, H0: $\mu=\mu_0$
- $t = \frac{\bar{y} \mu_0}{SE(\bar{y})}$, where $SE(\bar{y}) = \frac{s}{\sqrt{n}}$
- When the conditions are met, this statistic follows a Student's *t*-model with n-1 degrees of freedom. We use that model to obtain a P-value.

Paired *t*-test

- Two-sample t-test?
 - NO. The races are run in pairs, so the columns are not independent.
- Instead, we should focus on the difference between each pair.
 - It's not a problem, paired data provides an opportunity!
 - We need to take advantage of the paired data structure.
- "Paired" *t*-test:
 - Use *pairwise* differences!
 - Ignore original two columns
 - One-sample *t*-test on the pairwise differences

Skating Pair	Inner Time	Outer Time	Inner – Outer
1	129.24		•
2	125.75	122.34	3.41
3	121.63	122.12	-0.49
4	122.24	123.35	-1.11
5	120.85	120.45	0.40
6	122.19	123.07	-0.88
7	122.15	122.75	-0.60
8	122.16	121.22	0.94
9	121.85	119.96	1.89
10	121.17	121.03	0.14
11	124.77	118.87	5.90
12	118.76	121.85	-3.09
13	119.74	120.13	-0.39
14	121.60	120.15	1.45
15	119.33	116.74	2.59
16	119.30	119.15	0.15
17	117.31	115.27	2.04
18	116.90	120.77	-3.87

Assumptions and conditions

- Paired data assumption
 - You should not use methods for paired data on independent data.
 - Or methods for independent data (e.g., two-sample t-test) should not be used on paired data.
- Independence assumption
 - The differences for pairs should be independent of each other.
 - Conditions
 - Randomization condition
 - 10% condition
- Normal population assumption
 - The population of differences should follows a Normal model.
 - Each group doesn't need to follow a Normal model.

Two-Sample t-test

- $H_0: \mu_1 \mu_2 = \Delta_0$
 - many times $\Delta_0 = 0$
- $SE(\bar{y}_1 \bar{y}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

$$df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2}$$

 When the conditions are met and the null hypothesis is true, the statistic can be closely modeled by a Student's t-model with a number of degrees of freedom (adjusted). We use that model to obtain P-value.

Confidence Interval for the Difference between two means

•
$$SD(\bar{y}_1 - \bar{y}_2) = \sqrt{Var(\bar{y}_1) + Var(\bar{y}_2)} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

•
$$SE(\bar{y}_1 - \bar{y}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

- Two-sample t-interval: The sampling model is Student's t with adjusted degrees-of-freedom value
- $(\bar{y}_1 \bar{y}_2) \pm ME$, where $ME = t_{df}^* \times SE(\bar{y}_1 \bar{y}_2)$

$$SD(\bar{y}_1 - \bar{y}_2) = \sqrt{Var(\bar{y}_1) + Var(\bar{y}_2)} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

- $SE(\bar{y}_1 \bar{y}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
- Two-sample t-interval: The sampling model is Student's t with adjusted degrees-of-freedom value
- $(\bar{y}_1 \bar{y}_2) \pm ME$, where $ME = t_{df}^* \times SE(\bar{y}_1 \bar{y}_2)$

