AM & Excel & QucsStudio

- Thema
- Hörbereich
- Frequenz & Wellenlänge
- Sinuswelle
- Amplitudenmodulation
- Formelzeichen?
- Amplitudenmodulation
- Electronic notes
- Elektroniktutor
- AM-Funktion & Simulation
- Frequenzspektrum
- QucsStudio Amplitudenmodulation
- Excel
- Links
- Anhang: Sciencedirect
- Anhang: Wikipedia

Τ	h	e	m	ıa
---	---	---	---	----

DL6OAA	$V(t) = A * \sin(2 * \pi * f * t + \phi)$
	Diskussion der Amplitudenformel anhand der Literatur.
	Deutsche & englische Formelsprache.
	Herleitung der Formeln.
	Animation der Funktionen mit Hilfe von Excel.
	Simulation mit QucsStudio.

Hörbereich

Frequenz &	Wel	len	länge
------------	-----	-----	-------

Menschliche Sprache	250 Hz bis 2000 Hz
Idee	Menschliche Sprache direkt als elektromagnetische Frequenz übertragen?
	Wellenlänge in Meter: $\lambda = {^c/_f}$ Lichtgeschwindigkeit: $c = 299792458 \frac{m}{s}$ $f = Frequenz \ in \ Hz$
	$\lambda_{250Hz}=1200km$ So lange Antennen sind unrealistisch! $\lambda_{2000Hz}=33km$
	Weiterhin könnte es nur wenige Sender geben.
Lösung	Geeignete Trägerfrequenz. Mittelwellen: Frequenzbereich 0,3 - 3 MHz Wellenlänge 100 – 10 m

Sinuswelle

Quelle

Vortrag Workshop (Zusammengestellt von DL6OAA)

Komponenten einer Sinuswelle

$$V(t) = A * \sin(2 * \pi * f * t + \phi)$$

Modulationsmöglichkeiten:

Amplitudenmodulation (AM)

Frequenzmodulation (FM)

Phasenmodulation (PM)

QucsStudio

Amplitudenmodulation

Quelle: https://academo.org/demos/amplitude-modulation/

		•
Forme	170 IC	henr
	2010	

	Kritik der Notation!
Englische Notation!	$V(t) = A * \sin(2 * \pi * f * t + \phi)$
Siehe als Quelle	https://en.wikipedia.org/wiki/List_of_common_physics_notations
Spannung "V" und "U"	Im englischen wird die elektrische Spannung mit dem Formelzeichen "V" statt "U" bezeichnet. Das widerspricht den abgeleiteten SI-Basisgrößen. Die Einheit ist allerdings auch "V".
Amplitude "A"	Im englischen wird die Amplitude mit dem Formelzeichen "A" bezeichnet.
Wikipedia	$\frac{\mathbf{u}_{NF}}{\mathbf{v}_{NF}} \times \cos(\omega t)$
	Wechselspannungen sollen als kleines " u " geschrieben werden. Maximalwerte werden mit einem Dach über dem Formelzeichen gekennzeichnet: Die Amplitude als großes \widehat{U} oder \widehat{u} .
	Funktion nicht als " $u_T(t)$ " dargestellt.

Electronic notes

C is the carrier amplitude φ is the phase C to "1" and φ to "0"	Carrier-function: $c(t) = C \sin(\omega c + \phi)$	ωc c = index carrier ωc = $2π$ * fc
M is the carrier amplitude? φ is the phase φ to "0"	Modulating signal: $m(t) = M \sin(\omega m + \phi)$ t ?	ωm m = index mudulated signal $ω$ m = $2π$ * fm
A is amplitude of the waveform	Overall modulated signal for a sing $y(t) = [A + m(t)] * c(t)$	gle tone:
Welche "waveform" ?	Richtig: A ist die Amplitude vom C	Carrier
	Substituting c(t) and m(t): $y(t) = [A + M \cos(\omega m t + \phi)] * \sin(\omega m t + \phi)$	ct)

Quelle: Amplitude Modulation AM: Theory & Equations » Electronics Notes (electronics-notes.com)

Elektroniktutor

Funktionsgleichung HF-Trägersignal:

$$u_T(t) = \hat{u}_T \times \cos(\Omega t)$$

Funktionsgleichung NF-Modulationssignal:

$$u_S(t) = \hat{u}_S \times \cos(\omega t)$$

Zum Nutzsignal einen Gleichanteil \hat{u}_T addieren:

$$u_{AM}(t) = [\hat{u}_T + \hat{u}_S \times \cos(\omega t)] \dots$$

Dann mit einer hochfrequenten Trägerschwingung "cosΩt" multiplizieren:

$$u_{AM}(t) = [u_T + u_S \times \cos(\omega t)] \times \cos(\Omega t)$$

Modulationsgrad:

$$m = \hat{u}_S / \hat{u}_T$$
 for $0^{\circ} \leq m \leq 1^{\circ}$

$$u_{AM}(t) = [\hat{u}_T + \hat{u}_T \times m \times \cos(\omega t)] \times \cos(\Omega t)$$

$$u_{AM}(t) = \hat{u}_T \cos(\Omega t) + \hat{u}_T \times m \times \cos(\omega t) \times \cos(\Omega t)$$

Quelle: <u>Amplitudenmodulation (elektroniktutor.de)</u>

AM-Funktion & Simulation

	$u_{AM}(t) = \hat{u}_T \cos(\Omega t) +$	$\hat{u}_T \times m \times \cos(\omega t) \times \cos(\Omega t)$
QucsStudio:		
		Multiplikation von Signal " $\cos(\omega t)$ " mit Träger " $\cos(\Omega t)$ "
1. Modulationsprodukt:		$\hat{u}_T \times m \times \cos(\omega t) \times \cos(\Omega t)$
2. Addition	$u_{AM}(t) = \hat{u}_T \cos(\Omega t) +$	$\hat{u}_T \times m \times \cos(\omega t) \times \cos(\Omega t)$
QucsStudio		Wechselspannungsquelle V1 U=0,5 V; f _{inf} =1 kHz (m=0,5/1)
		Wechselspannungsquelle V2 U=1,0 V; f _{carrier} =10 kHz

Beispiele nach: QucsStudio; Tutorial Teil 1; Gunthard Kraus; S. 178 ff

Frequenzspektrum

	$u_{AM}(t) = \hat{u}_T \cos(\Omega t) + \hat{u}_T \times m \times \cos(\omega t) \times \cos(\Omega t)$
Trigonometrie	$\cos\alpha \cos\beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$
	Es ist auch: $\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta)$
	$u_{AM}(t) = \hat{u}_T \cos(\Omega t) + \frac{\hat{u}_T \times m}{2} \times \cos((\Omega - \omega)t) + \frac{\hat{u}_T \times m}{2} \times \cos((\Omega + \omega)t)$
	Aus der Formel kann man das entstandene Frequenzspektrum ablesen. Das modulierte Signal enthält das (konstante) Trägersignal: $\hat{u}_T \cos(\Omega t)$

Seitenbänder

Linkes Seitenband: $(\Omega - \omega)$

Rechts Seitenband: $(\Omega + \omega)$

Quelle: https://de.wikipedia.org/wiki/Amplitudenmodulation

QucsStudio Amplitudenmodulation

Excel

Idee		Funktion: $u_{AM}(t) = \hat{u}_T \cos(\Omega t)$	$+ \hat{u}_T \times m \times \cos(\omega t) \times \cos(\Omega t)$ " in Excel.
		Animation mit Hilfe von	Formularsteuerlementen.
Tabelle:	Aufgabe	Diskussion von $V(t) = A$	$* \sin(2 * \pi * f * t + \phi)$ ".
	Tabelle1	Trigonometrische Funkti	onen $f(x) = \sin(x)$ mit Gradmaß.
	Tabelle2	Trigonometrische Funkti	onen $f(x) = \sin(x)$ mit Gradmaß & Bogenmaß.
	Tabelle3	Einfluss von Parametern	
	Tabelle3 (2) (3) (4)	Animation von: Phasenverschiebung in R Verschiebung in Richtung Streckung/Stauchung.	<u> </u>
	Tabelle4	Produktkomponenten	" $\hat{u}_T \times m \times \cos(\omega t)$ " und " $\cos(\Omega t)$ "
	Tabelle5	Produkt	$_{m}\hat{u}_{T}\times m\times\cos(\omega t)\times\cos(\Omega t)$ "
	Tabelle 6 & 7	Produkt & Addition	$_{m}\cos(\Omega t) + \hat{u}_{T} \times m \times \cos(\omega t) \times \cos(\Omega t)$ "

Links

<u>Amplitude Modulation | Academo.org - Free, interactive, education.</u>

<u>Amplitude Modulation AM: Theory & Equations » Electronics Notes</u>

<u>Amplitude Modulation - an overview | ScienceDirect Topics</u>

<u>Amplitudenmodulation – Wikipedia</u>

<u>Amplitudenmodulation</u>

Kurze Beschreibung der mathematischen Funktionen — Qucs Help 0.0.18 Dokumentation

Sinusoidal Waveforms or Sine Wave in an AC Circuit

<u>quesstudio - Tutorial, Teil 1, (Time Domain und Frequency Domain Simulationen), Version 1.6</u> <u>als pdf-File, 250 Seiten, vom 10. März 2019</u>

<u>qucsstudio - Tutorial, Teil 2 (Harmonic Balance Simulationen), Version 1.0 als pdf-File, 51 Seiten, vom 10. März 2019</u>

Anhang: Sciencedirect

Original	$e(t) = [A_0 + as(t)] cos\omega_c t$
Lesbarer	$e(t) = [A_0 + a * s(t)] * cos(\omega_c * t)$
Ergänzt	a = maximum amplitude of modulating function A_0 = amplitude of unmodulated carrier ω_c = (angular speed of carrier) ω_s = (angular speed of signal)
Angenommen	$s(t) = cos(\omega_s * t)$
	Modulation index: $m_a = a/A_0$ for $0'' \le m_a \le 1''$
	$e(t) = A_0[1 + m_a * s(t)] * cos(\omega_c * t)$
Ergänzt:	$e(t) = A_0[1 + m_a * cos(\omega_s * t)] * cos(\omega_c * t)$

Quelle: <u>Amplitude Modulation - an overview | ScienceDirect Topics</u>

Anhang: Wikipedia

	Man erhält ein moduliertes Signal, wenn man zum Nutzsignal: $u_{NF}=\widehat{U}_{NF} imes \cos(\omega t)$
	einen Gleichanteil \widehat{U}_T addiert: $u_{AM} = [\widehat{U}_T + \widehat{U}_{NF} imes \cos(\omega t)] \dots$
	und anschließend beides mit einer hochfrequenten Trägerschwingung " $\cos\Omega t$ " multipliziert: $u_{AM} = [\widehat{U}_T + \widehat{U}_{NF} \times \cos(\omega t)] \times \cos(\Omega t)$
	Modulationsgrad: $m=\widehat{U}_{NF}/\widehat{U}_T$ for "0" \leq m \leq "1"
Ergänzt:	$u_{AM} = [\widehat{U}_T + \widehat{U}_T \times m \times \cos(\omega t)] \times \cos(\Omega t)$
	$u_{AM} = \widehat{U}_T[1 + m \times \cos(\omega t)] \times \cos(\Omega t)$
QucsStudio	$u_{AM} = \widehat{U}_T \times \cos(\Omega t) + \widehat{U}_T \times m \times \cos(\omega t) \times \cos(\Omega t)$

Quelle: <u>Amplitudenmodulation – Wikipedia</u>