

 As propriedades electrónicas dos materiais são função da população electrónica das diferentes bandas.

Num sólido existem muitas bandas permitidas separadas por muitas bandas proibidas- gaps!!!!!!

- De um modo geral, as duas bandas mais importantes do ponto de vista das propriedades óticas e elétricas dos materiais são,
  - uma que tem origem no último nível eletrónico do átomo (o de energia mais elevada) –denominada banda de valência (BV)- e
  - outra, a seguir a esta –denominada banda de condução (BC)-.

• A condução eléctrica resulta do deslocamento dos electrões no interior de cada banda.

Por acção de um campo eléctrico o eletrão adquire um ganho de **E**<sub>cin</sub> na direcção do campo (sentido contrário) e **desloca-se** no cristal.

• Consideremos uma **banda vazia**, consequentemente ela não participa para a corrente eléctrica.

• O mesmo acontece numa **banda cheia** (por acção do campo eléctrico um eletrão com energia E ganha uma energia extra  $\Delta$ E), mas o deslocamento só é possível se o eletrão encontrar na banda um lugar disponível à energia E+ $\Delta$ E, que obviamente não acontece se a banda estiver cheia.

Assim, um material que possua bandas cheias e vazias é um isolador

- Um condutor é um material que possui uma banda parcialmente ocupada (ou parcialmente vazia).
- Se a banda está parcialmente vazia,
  - a condução é proporcional ao número de els,
- se a banda está parcialmente ocupada
  - a condução é proporcional ao número de lugares vazios.

Várias situações ocorrem no que se refere ao posicionamento relativo dessas duas bandas na escala de energia:





#### Situação I

- os estados da BV estão parcialmente ocupados por eletrões a T=0. Corresponde assim a um condutor a T=0.
- Outra situação (equivalente) é todos os estados da BV estarem ocupados, mas ocorrendo sobreposição com a BC, nesta situação também pela aplicação de um campo elétrico há condução, ou seja estamos também na presença de um condutor.



#### Situação II

#### A T=0 K

- Todos os estados da BV estão ocupados e não há sobreposição com a BC.
- Esta é a situação de um
- isolador ou
- Semicondutor (SC).



A distinção entre SC e isoladores depende da relação que existe entre o gap do material e a energia de agitação térmica dos eletrões à temperatura ambiente.

#### Se Eg é muito grande:

a energia térmica, à temperatura ambiente, não é suficiente para excitar um número considerável de els da BV para a BC, diz-se então que o material é **isolador** (Eg > 200 kT, ou seja, Eg > 3.5 - 4 eV).

**Se Eg é baixo** (Eg < 100kT, ou seja Eg da ordem de 1-3 eV):

a energia térmica é capaz de popular a BC e assim o material apresenta uma condução elétrica, diz-se então que o material é um **semicondutor** (**SC**).

Assim, a especificidade dos SC, é a de possuir à temperatura de zero absoluto a BV completamente cheia e a BC completamente vazia e a separação de energia entre elas ser menor que 100kT.

Esquematicamente, um **isolador ou um SC** em termos da ocupação das bandas a T=0 é a seguinte:



 $E_g^{isolante} >> E_g^{semicondutor}$ 

Vermelho: Banda cheia

Azul: Banda vazia

#### Semicondutor



# **Metais**

 $E_{
m vac}$ 



• Se  $\vec{E} = 0$ 

Cerne (iões positivos)



Movimento aleatório dos electrões livres, o que resulta numa corrente de electrões nula.

• Se  $\vec{E} \neq 0 \rightarrow \vec{F} = q\vec{E}$ 



Ocorre o movimento orientado de eletrões livres, ou seja corrente de eletrões, no sentido oposto ao campo eléctrico.

#### Metal



(a) Energy band diagram of a metal. (b) In the absence of a field, there are as many electrons moving right as there are moving left. The motions of two electrons at each energy cancel each other as for a and b. (c) In the presence of a field in the -x direction, the electron a accelerates and gains energy to a', an empty state near  $E_{FO}$ 

# Metal



Electrão a mover-se num E: Como varia a Ecin?; Epot?; potencial?

#### Conduction in a metal is due to the drift of electrons around the Fermi

**level**. When a voltage is applied, the energy band is bent to be lower at the positive terminal so that the electron's potential energy decreases as it moves toward the positive terminal.

# **Isolador**

# Semicondutores



#### **Semiconductor**



FIGURE 19.6 For a Semiconductor, occupancy of electron states (a) before and (b) after an electron excitation from the valence band into the conduction band, in which both a free electron and a hole are generated. (William D. Callister, JR. *Materials Science and Engineering an Introduction*, John Wiley & Sons, Inc.)

## Diagrama de bandas de energia de um semicondutor (SC)



CB é a banda de condução e VB é a banda de valência. Eg —Energia de gap A T = 0 K, a VB está cheia e a BV está vazia.

# Diagrama de bandas de energia de um semicondutor (SC)



#### 2.8- Buraco/lacuna/hole

Lacunas referem-se a estados da banda de valência vazios, ou seja não preenchidos por eletrões. Elas são também chamadas por buracos ou holes em Inglês.

A lacuna pode ser tratada como uma partícula de carga positiva. Esta característica deve-se ao comportamento dos demais eletrões da banda de valência onde se encontra a lacuna.

Na realidade a lacuna não existe como partícula ou como entidade isolada, mas ela é uma consequência do movimento de eletrões num potencial periódico.

A falta de um eletrão na BV é denominado hole/buraco/lacuna. Esta entidade responde a campos elétricos e magnéticos como se possuísse carga +e.



# Propriedades da lacuna

- A carga da lacuna é simétrica da do eletrão:
- O quase-momento é simétrico ao do eletrão (ou seja o vetor de onda do h é simétrico do do eletrão\*\*:
- A energia da lacuna é contada de cima para baixo (na escala do eletrão):
- A massa efetiva da lacuna é simétrica da do eletrão:
- A velocidade da lacuna é igual à velocidade do eletrão (que falta) :

$$q_h = -q_e$$

$$h\vec{k}_h = -\hbar\vec{k}_e$$

$$E_h(\vec{k}_h) = -E_e(\vec{k}_e)$$

$$m_h^* = -m_e^*$$

$$v_h = v_e$$

\*\*

Numa banda cheia:  $\sum k_i = 0$ . Assim, se faltar um eletrão:

$$\sum_{i=0}^{\infty} k_i \neq 0 = -k_e$$

# Eletrões e buracos/lacunas VS ligações covalentes

Num SC os portadores de carga são os eletrões e as lacunas

- As ligações entre átomos vizinhos são covalentes
- Cada átomo possui 4 eletrões de valência e recebe de cada um dos 4 átomos vizinhos 1 eletrão, ficando então cada átomo a partilhar 8 eletrões.



Ligação covalente

#### Ligações covalentes e bandas de energia





### Excitação de eletrões da BV para a BC: criação de pares eletrãolacuna/buraco/hole

- A temperaturas baixas:
   ausência de eletrões livres
- À temperatura ambiente: probabilidade de existirem eletrões livres:

Formação de pares eletrão-lacuna



Representação simbólica bidimensional da estrutura

# Criação de pares eletrão-lacuna/buraco/hole ? O que significa na rede cristalina?



Existência de portadores de carga "livres"

Assim, T > 0 K ( $K_BT > E_g$ ), existem eletrões livres (na BC) e lacunas (na BV) para conduzirem. A aplicação de um campo elétrico vai provocar movimento dos eletrões livres e das lacunas (um eletrão na BV já se pode mover, pois existem "buracos" para onde ele se pode deslocar...)



 Na ausência de campo externo aplicado estes eletrões livres e lacunas movem-se aleatoriamente através da estrutura cristalina do SC e, no desenvolvimento deste processo, alguns eletrões podem preencher algumas lacunas. Este mecanismo, é chamado recombinação.

 A concentração de eletrões livres n é igual à concentração de lacunas p para um semicondutor intrínseco.



B - Parâmetro dependente do material (= 5.4x10<sup>31</sup> para silício)

Eg – Energia da banda proibida (=1.12 eV para silício)

K - constante de Boltzmann (= 8.62x10<sup>-5</sup>eV/K)

Num semicondutor intrínseco: n = p

Nº de portadores de carga móvel = n + p



$$\sigma = n|q|\mu!!!!!!!!$$

#### Rede cristalina



#### Semicondutor intrínseco



Fluxo de electrões

$$T = 0 T > 0$$



|      | $*E_g[eV]$ | $n_i[cm^{-3}]$       |
|------|------------|----------------------|
| Ge   | 0,67       | $2,4 \times 10^{13}$ |
| Si   | 1,12       | $1,5 \times 10^{10}$ |
| GaAs | 1,43       | $5 \times 10^{7}$    |

<sup>\*</sup> Valores para temperatura ambiente

#### Lacunas-EXTRA

Numa banda cheia:  $\sum k_i = 0$ . Assim, se faltar um eletrão:

$$\sum k_i \neq 0 = -k_e$$

1. 
$$\vec{k}_b = -\vec{k}_e$$
 Vetor de onda



O elétron sai da posição F  $(\vec{k}_e)$  e vai para a posição Q. O buraco é criado na posição G com  $\vec{k}_b = -\vec{k}_e$ . O momento total depois da absorção do fóton é  $\vec{k}_e + \vec{k}_b = 0$ 

2. 
$$\mathcal{E}_b(\vec{k}_b) = -\mathcal{E}_e(\vec{k}_e)$$

Construímos a banda de energia dos buracos invertendo a BV e localizando o buraco em  $\vec{k}_b = -\vec{k}_e$ , para simular a dinâmica do buraco. Quanto mais baixo se localizar a falta do elétron, em relação ao TBV, maior a energia do sistema, pois o sistema faltando um elétron tem energia maior que o sistema com todos os orbitais ocupados. Assim, a energia do



buraco = energia do sistema com a BV faltando um elétron. A energia e o vetor de onda do buraco, na faixa de energia do buraco, têm valores negativos em relação ao vetor de onda e à energia do elétron que falta na BV.

O elétron faltante no estado  $\vec{k}_e$  tem energia  $\mathcal{E}_e(\vec{k}_e)$  e ::  $\mathcal{E}_b\left(-\vec{k}_e\right) = -\mathcal{E}_e\left(\vec{k}_e\right) = \mathcal{E}_b\left(\vec{k}_b\right) = -\mathcal{E}_e(\vec{k}_e)$ 

$$3. \vec{\mathbf{v}}_b(\vec{k}_b) = \vec{\mathbf{v}}_e(\vec{k}_e)$$

A velocidade do buraco = velocidade do elétron que falta na BV. Como a velocidade é proporcional ao gradiente de  $\mathcal{E}$ , temos que  $\vec{\mathrm{v}}_e = \frac{1}{\hbar} \nabla_{\vec{k}_e} \mathcal{E}_e(\vec{k}_e)$  e  $\vec{\mathrm{v}}_b = \frac{1}{\hbar} \nabla_{\vec{k}_b} \mathcal{E}_b(\vec{k}_b)$ .

4. Orbitais vacantes na banda de valência (buracos) atuam como se tivessem carga positiva quando são aplicados campos elétricos e magnéticos. A equação de movimento do buraco é a de uma partícula com carga +e. A equação de movimento de um elétron na FV é

5.  $m_b^* = -m_e^*$  ( $m^* \Longrightarrow$  massa efetiva)

Esta última propriedade diz respeito ao conceito de <u>massa efetiva</u>, como vimos na dedução da equação de movimento de elétrons em bandas de energia. Para elétrons em uma faixa de energia podem ocorrer regiões com curvaturas acentuadas (ponto  $\Gamma$  e contornos da 1º ZB) e mais suaves (fora desses pontos), as quais são descritas pela relação  $\mathcal{E}(\vec{k}) \times \vec{k}$ :

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \nabla_{\vec{k}}^2 \mathcal{E}(\vec{k})$$