赋能正确率小于 0.75 的题目

 $_{1,10,0.512}$ 若双曲线的一条渐近线为 $_{x}+2y=0$,且双曲线与抛物线 $_{y}=x^{2}$ 的准线仅有一个公共点,则此双曲线的标准方程为_______.

$$f(x) = \begin{cases} 2^x, & x \le 0, \\ -x^2 + m, & x > 0 \end{cases}$$
 的值域为 $(-\infty, 1]$, 则实数 m 的取值范围是______.

3,10,0.605 有以下命题:

- ① 若函数 f(x) 既是奇函数又是偶函数, 则 f(x) 的值域为 $\{0\}$;
- ② 若函数 f(x) 是偶函数, 则 f(|x|) = f(x);
- ③ 若函数 f(x) 在其定义域内不是单调函数,则 f(x) 不存在反函数;
- ④ 若函数 f(x) 存在反函数 $f^{-1}(x)$, 且 $f^{-1}(x)$ 与 f(x) 不完全相同, 则 f(x) 与 $f^{-1}(x)$ 图像的公共点必在直线 y = x 上;

其中真命题的序号是____(写出所有真命题的序号).

$$4,4,0.523$$
 若 $(1+x)^5 = a_0 + a_1x + a_2x^2 + \dots + a_5x^5$,则 $a_1 + a_2 + \dots + a_5 = \underline{\qquad}$.

$$_{4,5,0.750}$$
 设 $k\in\mathbf{R},\,rac{y^2}{k}-rac{x^2}{k-2}=1$ 表示焦点在 y 轴上的双曲线,则半焦距的取值范围是______.
 $_{4,8,0.727}$ 已知圆 $C:x^2+y^2+2kx+2y+k^2=0(k\in\mathbf{R})$ 和定点 $P(1,-1),$ 若过 P 可以作两条直线与圆 C 相

 $_{4,8,0.727}$ 已知圆 $C: x^2+y^2+2kx+2y+k^2=0 (k\in \mathbf{R})$ 和定点 P(1,-1),若过 P 可以作两条直线与圆 C 相切,则 k 的取值范围是______.

 $_{4,9,0.750}$ 如图, 在直三棱柱 $ABC-A_1B_1C_1$ 中, $\angle ABC=90^\circ$, AB=BC=1, 若 A_1C 与平面 B_1BCC_1 所成的角为 $\frac{\pi}{6}$, 则三棱锥 A_1-ABC 的体积为______.

s, s, 0.705 已知数列 $\{a_n\}$ 的通项公式为 $a_n = n^2 + bn$,若数列 $\{a_n\}$ 是单调递增数列,则实数 b 的取值范围是

 $a_{n,0,0.545}$ 若 a_n 是 $(2+x)^n (n \in \mathbb{N}^*, n \ge 2, x \in \mathbb{R})$ 展开式中 x^2 项的二项式系数,则 $\lim_{n \to \infty} (\frac{1}{a_2} + \frac{1}{a_3} + \cdots + \frac{1}{a_n}) = \underline{\qquad}$

 $\frac{x^2}{25} - \frac{y^2}{144} = 1$ 的右焦点是 C 的焦点 F. 若斜率为 -1, 且过 F 的直线与 C 交于 A,B 两点, 则 $|AB| = ______$.

 $_{14,10,0.744}$ 直角坐标系 $_{xOy}$ 内有点 $_{P(-2,-1)}$, $_{Q(0,-2)}$, 将 $_{\triangle POQ}$ 绕 $_{x}$ 轴旋转一周,则所得几何体的体积为______.

 $_{18,6,0.595}$ 过点 P(-2,1) 作圆 $x^2+y^2=5$ 的切线, 则该切线的点法向式方程是______.

 $_{18,9,0.619}$ 已知 $\triangle ABC$ 的三个内角 A,B,C 所对边长分别为 a,b,c, 记 $\triangle ABC$ 的面积为 S, 若 $S=a^2-(b-c)^2$,则内角 A=______(结果用反三角函数值表示).

 $_{18,10,0.381}$ 已知函数 $f(x) = \left| \frac{1}{|x|-1} \right|$,关于 x 的方程 $f^2(x) + bf(x) + c = 0$ 有 7 个不同实数根,则实数 b,c 满足的关系式是

 $_{19,8,0.721}$ 已知点 A(2,3)、点 $B(-2,\sqrt{3})$, 直线 l 过点 P(-1,0), 若直线 l 与线段 AB 相交, 则直线 l 的倾斜角的取值范围是______.

 $_{19,10,0.581}$ 向量 \overrightarrow{i} 、 \overrightarrow{j} 是平面直角坐标系 x 轴、y 轴的基本单位向量, 且 $|\overrightarrow{a}-\overrightarrow{i}|+|\overrightarrow{a}-2\overrightarrow{j}|=\sqrt{5}$, 则 $|\overrightarrow{a}+2\overrightarrow{i}|$ 的取值范围为_______.

 $_{21,10,0.750}$ 如图, 向量 \overrightarrow{OA} 与 \overrightarrow{OB} 的夹角为 120° , $|\overrightarrow{OA}|=2$, $|\overrightarrow{OB}|=1$, P 是以 O 为圆心、 $|\overrightarrow{OB}|$ 为半径的弧 $\overset{\frown}{BC}$ 上的动点, 若 $\overrightarrow{OP}=\lambda\overrightarrow{OA}+\mu\overrightarrow{OB}$, 则 $\lambda\mu$ 的最大值是______.

23,10,0.568 已知函数 f(x) = x|2x - a| - 1 有三个零点, 则实数 a 的取值范围为______.

24,9,0.682 同时掷两枚质地均匀的骰子,则两个点数之积不小于 4 的概率为_____.

 $^{25,10,0.605}$ 若不等式 $(-1)^n \cdot a < 3 + \frac{(-1)^{n+1}}{n+1}$ 对任意正整数 n 恒成立, 则实数 a 的取值范围是______.

 $g_{26,10,0.535}$ 已知函数 $f(x) = \cos x (\sin x + \sqrt{3}\cos x) - \frac{\sqrt{3}}{2}, x \in \mathbf{R}$. 设 $\alpha > 0$, 若函数 $g(x) = f(x + \alpha)$ 为奇函数,则 α 的值为______.

30,5,0.698 若 $(x+2)^n=x^n+ax^{n-1}+\cdots+bx+c\ (n\in\mathbf{N}^*,\ n\geq 3),$ 且 b=4c, 则 a 的值为______.

30,6,0.558 某空间几何体的三视图如图所示,则该几何体的侧面积是______

 $_{30,10,0.744}$ 已知椭圆 $x^2+\frac{y^2}{b^2}=1\ (0< b<1),$ 其左、右焦点分别为 $F_1,\,F_2,\,|F_1F_2|=2c.$ 若此椭圆上存在点 P, 使 P 到直线 $x=\frac{1}{c}$ 的距离是 $|PF_1|$ 与 $|PF_2|$ 的等差中项, 则 b 的最大值为______.

31,10,0.721 甲与其四位朋友各有一辆私家车, 甲的车牌尾数是 0, 其四位朋友的车牌尾数分别是 0, 2, 1, 5, 为遵守当地 4 月 1 日至 5 日 5 天的限行规定 (奇数日车牌尾数为奇数的车通行, 偶数日车牌尾数为偶数的车通行), 五人商议拼车出行, 每天任选一辆符合规定的车, 但甲的车最多只能用一天, 则不同的用车方案总数为______.

33,9,0.524 若从正八边形的 8 个顶点中随机选取 3 个顶点,则以它们作为顶点的三角形是直角三角形的概率 是 . 34,7,0.558 各项均不为零的数列 $\{a_n\}$ 的前 n 项和为 S_n . 对任意 $n \in \mathbb{N}^*$, $\overrightarrow{m_n} = (a_{n+1} - a_n, 2a_{n+1})$ 都是直线 y = kx 的法向量. 若 $\lim_{n \to \infty} S_n$ 存在, 则实数 k 的取值范围是_____ 38,9,0.721 小明和小红各自掷一颗均匀的正方体骰子, 两人相互独立地进行. 则小明掷出的点数不大于 2 或小红 掷出的点数不小于 3 的概率为___ $_{39,10,0.512}$ 设奇函数 f(x) 的定义域为 $\mathbf{R},$ 当 x>0 时, $f(x)=x+\frac{m^2}{x}-1$ (这里 m 为正常数). 若 $f(x)\leq m-2$ 对一切 $x \le 0$ 成立, 则 m 的取值范围为_ $\begin{cases} \sqrt{3}x + y \leq 4\sqrt{3}, \\ \\ \sqrt{3}x - y \geq 0, \end{cases}$ 若存在 $\theta \in \mathbf{R}$ 使得 $x\cos\theta + y\sin\theta + 1 = 0$ 成立, 则点 $y \geq 0$. P(x,y) 构成的区域面积为 43,4,0.674 长方体的对角线与过同一个顶点的三个表面所成的角分别为 α , β , γ , 则 $\cos^2\alpha + \cos^2\beta + \cos^2\gamma =$ 45,10,0.581 平面上三条直线 x-2y+1=0, x-1=0, x+ky=0, 如果这三条直线将平面划分为六个部分, 则 实数 k 的取值组成的集合 A = $x-y\geq 0,$ $2x+y\leq 2,$ 若该条件表示的平面区域是三角形,则实数 m 的取值范围 $y\geq 0,$ $x+u\leq m$ $f(x) = \log_a(x^2 - ax + 1)$ $f(x) = \log_a(x^2 - ax + 1)$ $f(x) = \log_a(x^2 - ax + 1)$ 没有最小值, 则 a 的取值范围是___ $\overrightarrow{OA} = (1, m), \overrightarrow{OB} = (m-1, 2),$ 若 $\overrightarrow{OA} \perp = \overrightarrow{AB},$ 则实数 $m = \underline{\underline{\hspace{1cm}}}$. 53,9,0.395 已知四面体 ABCD 中, $AB=CD=2,\,E,\,F$ 分别为 $BC,\,AD$ 的中点, 且异面直线 AB 与 CD 所成 $\begin{cases} x = 1 - \frac{\sqrt{5}}{5}t, \\ y = -1 + \frac{2\sqrt{5}}{5}t, \end{cases}$ (t 为参数) 与曲线 $\begin{cases} x = \sin\theta \cdot \cos\theta, \\ y = \sin\theta + \cos\theta, \end{cases}$ (θ 为参数) 的公共点的坐标为_____.