Number Theory (D)

Prove:

Prove that $m =_{(n)} p$ if and only if m%n = p%n.

proof

I will prove that $m=_{(n)}p$ if and only if m%n=p%n, by showing that

- (a) if $m =_{(n)} p$, then m%n = p%n,
- (b) if m%n = p%n, then $m =_{(n)} p$.

proof of (a)

By definition of %,

$$m\%n = m - (m \div n)n;$$

$$p\%n = p - (p \div n)n.$$

Therefore, $m\%n - p\%n = (m - p) - ((m \div n) - (p \div n))n$.

By definition of mod, if $m = \binom{n}{n} p$, then $n \mid (m-p)$. Plus, $n \mid ((m \div n) - (p \div n))n$.

Therefore, n|(m%n - p%n). From fact, we know that $0 \le m\%n < n$, so m%n - p%n can only be 0. Therefore, m%n = p%n.

proof of (b)

Let m%n = p%n = p',

so
$$m = \lfloor \frac{m}{n} \rfloor n + p'$$
 and $p = \lfloor \frac{p}{n} \rfloor n + p'$.

so
$$m - p = (\lfloor \frac{m}{n} \rfloor - \lfloor \frac{p}{n} \rfloor) n$$
.

so
$$m = (\lfloor \frac{m}{n} \rfloor - \lfloor \frac{p}{n} \rfloor)n + p$$
.

Therefore, n|(m-p).

Therefore, $m =_{(n)} p$.

Therefore, $m = \binom{n}{p} p$ if and only if m%n = p%n.