Rotation dans le plan

I. Rotation - Rotation réciproque :

1. Définitions:

Activité D:

Soient Ω et A deux points du plan orienté direct et soit α un réel tel que $\alpha \equiv \frac{\pi}{4}[2\pi]$.

Construire le point A' tel que $\left\{ (\overrightarrow{\overrightarrow{\Omega A}}, \overrightarrow{\Omega A'}) \equiv \frac{\pi}{4} [2\pi] \right\}$

Définition :

Soit Ω un point du plan orienté dans le sens direct et α un nombre réel.

La rotation de centre Ω et d'angle α est la transformation du plan, qui à tout point Mdu plan associe le point M' défini par :

• Si
$$M \neq \Omega$$
, alors $\left\{ \begin{array}{l} OM = OM' \\ (\overrightarrow{\overrightarrow{OM}}; \overrightarrow{OM'}) \equiv \alpha[2\pi] \end{array} \right\}$

O_Exemple :

ABC est un triangle équilatéral et I est le milieu du segment [BC].

- On a $r_1(A) = B$ tel que $r_1 = r(C, \frac{\pi}{3})$.
- On a $r_2(C) = B$ tel que $r_2 = r(A, -\frac{\pi}{3})$.
- On a $r_3(C) = A$ tel que $r_3 = r(B, \frac{\pi}{3})$.
- On a $r_4(B) = C$ tel que $r_4 = r(I, \pi)$.

O_Conséquences:

Soient r la rotation de centre Ω et d'angle α et M et M' deux points du plan tels que r(M) = M'.

- Si $\alpha \neq 2k\pi$ tel que $k \in \mathbb{Z}$, alors le triangle $M\Omega M'$ est isocèle de sommet Ω et la médiatrice du segment [MM'] passe par le point Ω .
- Si $\alpha \equiv \pi[2\pi]$, alors la rotation est la symétrie centrale de centre Ω .
- Si $\alpha \equiv 0[2\pi]$, alors $(\forall M \in (P))$: r(M) = M. On dit que tous les points du plan sont invariants par r.
- Si $\alpha \neq 2k\pi$ tel que $k \in \mathbb{Z}$, alors Ω le centre de la rotation rest l'unique point invariant par cette rotation.

2. La rotation réciproque :

& Activité @:

On considère ABCD est un carré de centre O tel que $(\overline{AB}; \overline{AD}) \equiv \frac{\pi}{2} [2\pi]$.

On considère r_1 et r_2 les rotations de centre 0 et d'angles respectifs $\frac{\pi}{2}$ et $-\frac{\pi}{2}$.

- 1. Construire une figure convenable.
- 2. Recopier et remplir le tableau suivant :

• $r_1(A) =$	• $r_2(D) =$
• $r_1(B) =$	• $r_2(C) =$
• $r_1(\mathcal{C}) =$	• $r_2(B) =$
\bullet $r_1(D) =$	• $r_2(A) =$

Définition :

La rotation $r(\Omega; -\alpha)$ de centre Ω et d'angle $-\alpha$ est appelé **la rotation réciproque** de la rotation $r(\Omega; \alpha)$ de centre Ω et d'angle α et on le note par r^{-1} .

O_Remarque:

Pour tout point M du plan on $a: r(M) = M' \Leftrightarrow r^{-1}(M') = M$.

II. Propriétés .

1. Rotation et distance :

Propriété :

Si A et B sont deux points du plan et A', B' leurs images respectives par une rotation r, alors AB = A'B'.

On dit que la rotation conserve la distance.

∠ Application ②:

On considère un triangle ABC.

On construit à l'extérieur de ce triangle deux triangles *MAB* et *NAC* qui sont équilatéraux.

Prouver que MC = NB.

2. Rotation et angle orienté:

Propriété :

Soit r une rotation d'angle α .

Si A' et B' les images respectives de deux points distincts A et B par la rotation r alors

$$\left(\overrightarrow{\overline{AB}}; \overrightarrow{\overline{A'B'}}\right) \equiv \alpha[2\pi].$$

O Remarque:

Cette propriété nous permet de déterminer l'angle d'une rotation à partir de deux points distincts et leurs images.

Application 2:

OABet OCD sont deux triangles rectangles isocèles au sommet commun O tels que :

$$\left(\overrightarrow{\overrightarrow{OA}}; \overrightarrow{\overrightarrow{OB}}\right) \equiv \frac{\pi}{2} [2\pi] \operatorname{et}\left(\overrightarrow{\overrightarrow{OC}}; \overrightarrow{\overrightarrow{OD}}\right) \equiv \frac{\pi}{2} [2\pi].$$

Montrer que $\overrightarrow{AC} = \overrightarrow{BD}$ et $(AC) \perp (\overrightarrow{BD})$.

Propriété :

Soient A, B, C et D quatre points du plan tels que $A \neq B$ et $C \neq D$.

Si A', B', C' et D' leurs images respectives par une rotation r, alors:

$$\left(\overline{\overrightarrow{AB};\overrightarrow{CD}}\right) \equiv \left(\overline{\overrightarrow{A'B'};\overrightarrow{C'D'}}\right)[2\pi].$$

On dit que la rotation conserve les mesures d'angles orientés.

Application 3:

ABC est un triangle équilatéral tel que $(\overline{AB}; \overline{AC}) \equiv \frac{\pi}{3} [2\pi]$. On construit à l'extérieur de ce triangle un parallélogramme BCDE.

On considère la rotation r de centre A et d'angle $\frac{\pi}{2}$.

- 1. Construire le point F l'image du point E par la rotation r, puis montrer que CFD est un triangle équilatéral.
- **2.** Montrer que $(\overrightarrow{BE}; \overrightarrow{BA}) \equiv (\overrightarrow{CF}; \overrightarrow{CA})[2\pi]$.
- **3.** Que peut-on dire sur le point F si E appartient à (AB).

3. Rotation et barycentre:

Propriété :

Soit G le barycentre des points pondérés $(A; \alpha)$ et $(B; \beta)$.

Si A', B' et G' sont les images respectives de A, B et G par une rotation F alors G' est le barycentre des points pondérés $(A'; \alpha)$ et $(B'; \beta)$

On dit que la rotation conserve le barycentre de deux points pondérés.

O Remarque :

On peut étendre cette propriété au barycentre de trois ou quatre points pondérés.

Application @:

Soit ABC un triangle et D un point tel que $D = bar\{(B; 1), (C; 2)\}$

Soit r la rotation de centre A et d'angle $\frac{\pi}{2}$

- **1.** Construire les points B',C' et D' les images respectives de B,C et D
- **2.** Montrer que les points B',C' et D' sont alignés.

O Conséquence :

Soit *I* le milieu d'un segment [AB].

Si A', B' et I' sont les images respectives de A', B' et I' par une rotation I' est le milieu du segment A'B' on dit que la rotation **conserve le milieu d'un segment.**

Propriété :

Soient A, B et C des points du plan et A', B' et C' leurs images respectives par une rotation C'. Si $\overrightarrow{AC} = k\overrightarrow{AB}$ tel que C' est un réel, alors $\overrightarrow{A'C'} = k\overrightarrow{A'B'}$. On dit que la rotation conserve le coefficient de colinéarité de deux vecteurs, ou que la rotation conserve l'alignement des points.

Application 5:

ABC est un triangle et M est un point tel que $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AC}$. Soit r la rotation de centre B et d'angle $\frac{\pi}{3}$.

- **1.** Construire les points A' et C' et M' les images respectives des points A et C et M par r.
- **2.** Montrer que les points A' et C' et M' sont alignés.

Exercice 1:

ABC est un triangle rectangle isocèle en *A* tel que $(\overrightarrow{AB}; \overrightarrow{AC}) \equiv \frac{\pi}{2} [2\pi]$.

Soit *I* le milieu du segment [*BC*].

E et F sont deux points du plan tels que $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AC}$ et $\overrightarrow{BF} = \frac{2}{3}\overrightarrow{BA}$

On considère la rotation de centre *I* et d'angle $\frac{\overline{\pi}}{2}$

Montrer que le triangle EIF est rectangle isocèle en I.

III. Images de certaines figures par une rotation :

Soit r une rotation et A, B, O, A', B' et O' sont des points du plan tels que $A \neq B$, r(A) = A', r(B) = B' et r(O) = O'

Propriété:

- L'image de la droite (AB) est la droite (A'B').
- L'image du segment [AB] est le segment [A'B'].
- L'image de la demi-droite [AB) est la demi-droite [A'B').
- L'image du cercle C(0; R) de centre O et de rayonR est le cercle C'(O'; R) de centre O' et de rayon R.

O_Conséquences :

- Les images de deux droites perpendiculaires sont deux droites perpendiculaires.
- Les images de deux droites parallèles sont deux droites parallèles.
- Si un point M est le point d'intersection de deux droites (D) et (Δ) alors, l'image de M par la rotation r est le point d'intersection des images de (D) et (Δ) par la rotation r.

Application 6:

ABCD un carré tel que : $(\overline{\overrightarrow{AB}}; \overline{\overrightarrow{AD}}) \equiv \frac{\pi}{2} [2\pi]$, soit E un point du segment [BC] tel que

Pr. LATRACH ABDELKBIR

Edifférent de B et C; F le point d'intersection de la droite (DC) et la droite perpendiculaire à (AE) en A.

Soit r la rotation de centre A et d'angle $\frac{\pi}{2}$.

- 1. Déterminer les images des deux droites (BC) et (AE).
- **2.** En déduire l'image du point E par la rotation r.

Application 0:

Soit ABC un triangle rectangle isocèle en A tel que $(\overrightarrow{AB}; \overrightarrow{AC}) \equiv \frac{\pi}{2} [2\pi]$.

Soit *I* le milieu du segment [*BC*]

On considère la rotation r de centre I et d'angle $\frac{\pi}{2}$.

Soit (C) le cercle de centre C et passant par le point I.

- **1.** Construire (C') l'image par la rotation r du cercle (C)
- **2.** Le cercle (C) coupe le segment [AC] en un point E et le cercle (C') coupe le segment [AB] en un point F

Montrer que : r(E) = F.

& Exercice 2:

Soit \overrightarrow{ABCD} un carré de centre O tel que $(\overrightarrow{AB}; \overrightarrow{AC}) \equiv \frac{\pi}{2} [2\pi]$. Soient I et J deux points tels que $\overrightarrow{AI} = \frac{3}{2} \overrightarrow{AB}$ et $\overrightarrow{BJ} = \frac{3}{2} \overrightarrow{BC}$.

Les droites (IC) et (JD) coupent respectivement (BD) et (AC) en M et N.

On considère la rotation r de centre 0 et d'angle $\frac{\pi}{2}$.

- **1.** Déterminer r(A) et r(B).
- **2.** a- Montrer que *I* est le barycentre des points pondérés (A; 1) et (B; -3).
- b- Montrer que r(I) = I.
- **3.** a- Déterminer l'image de chacune des droites (BD) et (IC).
- b- En déduire que r(M) = N.
- **4.** a- Montrer que IM = JN.
- b- Montrer que $(CM) \perp (DN)$.