Kapitel 7

Formale Spezifikation von Hardware:

- 3. Anwendung: Formale Verifikation

1. Boolesche Ausdrücke
2. Binäre Entscheidungsdiagramme (BDDs)

Liagram

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

Motivation

- Der Entwurf von ReTI hat (hoffentlich) gezeigt, dass Hardware-Synthese komplex und fehleranfällig ist.
- Es gibt <u>automatische</u> Methoden, um Fehler zu finden oder ihre Abwesenheit nachweisen zu können.
- Für ihre Anwendbarkeit muss ein Schaltkreis formal vollständig spezifiziert werden.
- Wir schauen uns daher boolesche Funktionen nochmals (und genauer) an und lernen effiziente Algorithmen und Datenstrukturen zu ihrer Handhabung.

Motivation

- Der Entwurf von ReTI hat (hoffentlich) gezeigt, dass Hardware-Synthese komplex und fehleranfällig ist.
- Es gibt automatische Methoden, um Fehler zu finden oder ihre Abwesenheit nachweisen zu können.
- Für ihre Anwendbarkeit muss ein Schaltkreis formal vollständig spezifiziert werden.
- Wir schauen uns daher boolesche Funktionen nochmals (und genauer) an und lernen effiziente Algorithmen und Datenstrukturen zu ihrer Handhabung.

Boolesche Algebren - allgemein

Deeration

- Es sei M eine Menge auf der zwei binäre Operationen und + und eine unäre Option \sim definiert sind.
- Das Tupel $(M, \cdot, +, \sim)$ heißt boolesche Algebra, falls \underline{M} eine nichtleere Menge ist und für alle $x, y, z \in M$ die folgenden Axiome gelten:

Beispiele boolescher Algebren

- lacksquare Boolesche Algebra der Teilmengen einer Menge S: $(Pot(S),\cap,\cup,^C)$
- Boolesche Algebra der booleschen Funktionen in n Variablen: $(\mathbb{B}_n,\cdot,+,\sim)$

- ⇒ Allgemein: Lässt sich eine Aussage direkt aus den Axiomen herleiten, dann gilt sie in allen booleschen Algebren!
 - Man darf beim Beweis der Aussage aber auch wirklich nur die Axiome verwenden und keine Eigenschaften der konkreten booleschen Algebra.

Boolesche Algebra der Teilmengen von $S(Pot(S), \cap, \cup, \frac{C}{2})$

- Menge: Potenzmenge von S
- \blacksquare : $Pot(S) \times Pot(S) \rightarrow Pot(S)$; $(M_1, M_2) \mapsto M_1 \cap M_2$
- \blacksquare +: $Pot(S) \times Pot(S) \rightarrow Pot(S)$; $(M_1, M_2) \mapsto M_1 \cup M_2$
- \blacksquare C : $Pot(S) \rightarrow Pot(S)$; $M \mapsto M^{C} := S \setminus M$

Satz

 $(Pot(S), \cap, \cup, ^{C})$ ist eine boolesche Algebra.

Beweis: Nachrechnen, dass alle Axiome gelten.

Beispiel: Absorption

■ Seien
$$M_1, M_2 \in Pot(S)$$
.

Dann ist
$$(M_1 + (M_1 \cdot M_2)) = (M_1 \cup (M_1 \cap M_2)) = M_1$$

Dann ist
$$(\underline{M_1 + (\underline{M_1 \cdot \underline{M_2}})}) = (\underline{M_1 \cup (\underline{M_1 \cap \underline{M_2}})}) = \underline{M_1}$$

und $(\underline{M_1 \cdot (\underline{M_1 + \underline{M_2}})}) = (\underline{M_1 \cap (\underline{M_1 \cup \underline{M_2}})}) = \underline{M_1}$.

WS 2016/17 TS/RW - Kapitel 7 5/15

HI = MI

Boolesche Algebra der Funktionen in *n* Variablen $(\mathbb{B}_n, \cdot, +, \sim)$

- Menge: \mathbb{B}_n (Menge der booleschen Funktionen in *n* Variablen)
- $\underline{\quad} : \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{B}_n; \ (f \cdot g)(\alpha) = f(\alpha) \cdot g(\alpha) \text{ für alle } \alpha \in \mathbb{B}^n$
- $= \underline{+:} \, \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{B}_n; \ (f+g)(\alpha) = f(\alpha) + g(\alpha) \text{ für alle } \alpha \in \mathbb{B}^n$ $\sim: \mathbb{B}_n \to \mathbb{B}_n; \ (\sim f)(\alpha) = 1 \Leftrightarrow f(\alpha) = 0 \text{ für alle } \alpha \in \mathbb{B}^n$

Satz

 $(\mathbb{B}_n,\cdot,+,\sim)$ ist eine boolesche Algebra.

Beweis: Nachrechnen, dass alle Axiome gelten.

Beispiel: Kommutativität

- Seien $f, g \in \mathbb{B}_n$.
- Für alle $\alpha \in \mathbb{B}^n$ gilt: $(f+g)(\alpha) = \underline{f(\alpha)} + \underline{g(\alpha)} = \underline{g(\alpha)} + \underline{f(\alpha)} = \underline{(g+f)(\alpha)}$.
 - Also f + g = g + f.

Weitere, aus den Axiomen ableitbare Regeln:

Existenz neutraler Elemente:

$$\exists 0 : \underline{x+0=x}, \ x \cdot 0 = 0 \quad \exists 1 : x \cdot \underline{1} = x, \ x+1 = \underline{1}$$

$$(x \cdot y = \mathbf{0} \text{ und } x + y = \mathbf{1}) \Rightarrow y = (\sim x)$$

■ Idempotenz:

$$X + X = X$$
 $X \cdot X = X$

de Morgan-Regel:

$$\sim (x+y) = (\sim x) \cdot (\sim y) \qquad \sim (x \cdot y) = (\sim x) + (\sim y)$$

■ Consensus-Regel: / Resolution

$$(x \cdot y) + ((\sim x) \cdot z) = (x \cdot y) + ((\sim x) \cdot z) + (y \cdot z) (x + y) \cdot ((\sim x) + z) = (x + y) \cdot ((\sim x) + z) \cdot (y + z)$$

Diese Regeln gelten in allen booleschen Algebren!

Dualitätsprinzip bei booleschen Algebren

Prinzip der Dualität

Gilt eine aus den Gesetzen der booleschen Algebra abgeleitete Gleichung p, so gilt auch die zu p duale Gleichung, die aus p hervorgeht durch gleichzeitiges Vertauschen von $\underline{+}$ und $\underline{\cdot}$, sowie $\mathbf{0}$ und $\mathbf{1}$.

Beispiel:

$$(x \cdot y) + ((\sim x) \cdot z) + (y \cdot z) = (x \cdot y) + ((\sim x) \cdot z)$$

$$(x+y)\cdot ((\sim x)+z)\cdot (y+z)=(x+y)\cdot ((\sim x)+z)$$

Boolesche Ausdrücke - allgemein

- Formal vollständige Definition boolescher Ausdrücke
 - Syntax (korrekte Schreibweise) \rightarrow Def. boolescher Ausdrücke $BE(X_n)$
 - Semantik (Bedeutung) → Interpretationsfunktion $\underline{\Psi}$ von $\underline{BE}(X_n)$
- Zweck: Einem Rechner unzweifelhaft "beibringen", was und was nicht ein boolescher Ausdruck ist und was seine Funktion bezüglich einer booleschen Algebra ist.
- \rightarrow Zum Beispiel: Unterschied zwischen dem Ausdruck " $(x_1 \cdot (\sim x_2))$ " und der Funktion $f = x_1 \land \neg x_2$.

Syntax boolescher Ausdrücke

- Sei $X_n = \{x_1, ..., x_n\}$ eine endliche Menge von Symbolen/Variablen.
- Sei $A = X_n \cup \{0, 1, +, \cdot, \sim, (,)\}$ ein Alphabet.

Definition

Die Menge $\underline{BE(X_n)}$ der vollständig geklammerten booleschen Ausdrücke über X_n ist eine Teilmenge von $\underline{A^*}$, die folgendermaßen induktiv definiert ist:

- 0,1 und $x_i \in X_n$ i = 1,...,n sind boolesche Ausdrücke
- Sind *g* und *h* boolesche Ausdrücke, so auch
 - die Disjunktion ($\underline{g} + \underline{h}$),
 - die Konjunktion $(g \cdot h)$,
 - die Negation $(\sim \overline{g})$.

WS 2016/17 TS/RW – Kapitel 7 10 / 15

Schreibweise von $BE(X_n)$

- **Konvention**: Negation \sim bindet stärker als Konjunktion \cdot , Konjunktion bindet stärker als Disjunktion +.
 - → Klammern können weggelassen werden, ohne dass Mehrdeutigkeiten entstehen.
- Je nach Kontext (betrachtete boolesche Algebra) schreibt man auch
 - statt 0,1: Die entsprechenden neutralen Elemente,
 - statt \cdot : \wedge , \cap ,

 - statt $+: \lor, \cup$, statt $\sim x: \neg x, x^C, x', \overline{x}$.
- → So "vereinfachte" Ausdrücke entsprechen zwar nicht genau der obigen Definition, es gibt aber für jeden solchen Ausdruck einen äquivalenten vollständig geklammerten Ausdruck im Sinne der Definition.
- Beispiel: Der äguivalente vollständige geklammerte Ausdruck für $"x_1 \land \neg x_2"$ wäre $"(x_1 \cdot (\sim x_2))"$.

TS/RW - Kapitel 7 WS 2016/17

Semantik boolescher Ausdrücke

Lypissherweise Bn

- Sei $\widetilde{M} = (M, \cdot, +, \sim)$ eine beliebige boolesche Algebra.
- Seien $0, 1 \in M$ die neutralen Elemente von B.

Definition

Jedem booleschen Ausdruck $BE(X_n)$ kann durch eine <u>Interpretationsfunktion</u> $\underline{\Psi:BE(X_n)\to M_n}$ eine boolesche Funktion $\underline{M_n:M^n\to M}$ zugeordnet werden. $\underline{\Psi}$ wird folgendermaßen induktiv definiert:

 $\Psi(0) = \underline{\mathbf{0}}; \ \Psi(1) = \underline{\mathbf{1}};$ $\Psi(x_i)(\alpha_1, \dots, \alpha_n) = \alpha_i, \text{ für alle } \alpha \in M^n$

(Projektion)

 $\Psi((\underline{g+h})) = \Psi(\underline{g}) + \Psi(\underline{h})$

(Disjunktion)

 $\Psi((\underline{g \cdot h)}) = \Psi(\underline{g}) \cdot \Psi(\underline{h})$

(Konjunktion)

 $\Psi((\sim g)) = \sim (\Psi(g))$

(Negation)

Interpretation boolescher Ausdrücke

- Sei e ein boolescher Ausdruck.
 - Ψ(e)(α) für ein $α ∈ M^n$ ergibt sich durch Ersetzen von x_i durch $α_i$ in e, für alle i und Rechnen in der booleschen Algebra \widetilde{M} .
 - Gilt $\underline{\Psi(e)} = \underline{f}$ für eine boolesche Funktion $\underline{f} \in \underline{M_n}$, so sagen wir, dass \underline{e} ein boolescher Ausdruck für \underline{f} ist, bzw. dass \underline{e} die boolesche Funktion \underline{f} beschreibt.
 - Zwei boolesche Ausdrücke e_1 und e_2 heißen <u>aquivalent</u> $(e_1 \equiv e_2)$ genau dann, wenn $\underline{\Psi(e_1)} = \underline{\Psi(e_2)}$. Sie sind gleich, wenn $e_1 = e_2$.
- Wir betrachten folgend nur noch die Interpretation in $B = (\mathbb{B}, \wedge, \vee, \neg)$.

Boolesche Ausdrücke ↔ boolesche Funktionen

Lemma 1

Zu jedem booleschen Ausdruck $e \in BE(X_n)$ existiert eine boolesche Funktion f, die durch e beschrieben wird.

■ Beweis: $\underline{f} := \Psi(e)$

Lemma 2

Zu jeder booleschen Funktion *f* existiert ein boolescher Ausdruck, der *f* beschreibt.

■ **Beweis**: Es gilt: $\underline{f} = \Psi(\sum_{\alpha \in ON(f)} m(\alpha))$.

m.a.W. Die DNF ist ein Boolescher Ausdruck.

mit anderen worten

TS/RW - Kapitel 7

Zusammenhang mit Schaltkreisen

Lemma 3

Zu jedem booleschen Ausdruck $e \in BE(X_n)$ gibt es einen kombinatorischen Schaltkreis, der e implementiert.

■ **Beweis**: Übung

- Zu jeder booleschen Funktion gibt es einen kombinatorischen Schaltkreis, der sie implementiert (zum Beispiel zweistufige Umsetzung der DNF/KDNF).
- Zu jedem kombinatorischen Schaltkreis gibt es sowohl eine boolesche Funktion, als auch einen boolescher Ausdruck.

