Zbiory częściowo uporządkowane

- 1. Def: Relację $R\subseteq X\times X$ $(X\neq\emptyset)$ nazywamy **relacją częściowego porządku** "jeśli R jest zwrotna, przechodnia i antysymetryczna.
- 2. **Zbiór częściowo uporządkowany** jest to para (X,R) gdzie X jest niepustym zbiorem a $R\subseteq X^2$ jest relacją częściowego porządku

Przykłady:

- (a) $(\mathbb{R}, \leq), (P(X), \subseteq)$ dla niepustego X
- (b) $(\mathbb{N}, |)$ a|b a jest podzielne przez b
- (c) (\mathbb{R}^X, \preceq) $\mathbb{R}^X = \{f : f : X \to \mathbb{R}\}, f \preceq g \iff \forall_{x \in X} f(x) \leq g(x)$
- (d) (\mathbb{R}^2, \preceq) $\forall_{x_1, x_2, y_1, y_2 \in \mathbb{R}}(x_1, y_1) \preceq (x_2, y_2) \iff x_1 \leq x_2 \land y_1 \leq y_2$
- (e) (P, \preceq) zbiór częściowo uporządkowany

Definiujemy relację $\prec \subseteq P \times P$ i $\prec_{\bullet} \subseteq P \times P$ następująco

$$x \prec y \iff x \leq y \land x \neq y$$

$$x \prec_{\bullet} y \iff x \prec y \land \neg (\exists_{z \in P} x \prec z \prec y)$$

Jeśli $x \prec_{\bullet} y$ to mówimy, że **x jest poprzednikiem y**, oraz **y jest następnikiem x**

Na przykład $(\mathbb{N}, \leq), n \in \mathbb{N}, n <_{\bullet} n + 1$

3. Def: **Diagramem Hassego** zbioru częsciowo uporządkowanego (P, \preceq) nazywamy graf, którego wierzchołakmi są elementy zbioru P. Jeśli dla $x,y \in P$ zachodzi $x \prec y$, to x rysujemy niżej niż y. Ponadto dwa wierzchołki $x,y \in P$ są połączone krawędzią wtedy i tylko wtedy, gdy $x <_{\bullet} y$

