Problem 7

Let's say an experiment has three outcomes.

a. How many events can be defined for this experiment?

Now we say we repeat the experiment twice (once more), independently.

- b. How many outcomes does the combined experiment have?
- c. How may events can be defined for the combined experiment?
- d. How many events for the combined experiment can not be derived from the cartesian products for the individual experiments? Please give an example.

Solution

Let the experiment be called E_1 which has the three outcomes be A, B and C i.e. $\Omega = \{A, B, C\}$

a. # Events = 2^n where n is the cardinality of the sample space Ω . Here n=3 and therefore # Events = $2^3=8$.

Let the combined experiment be called E_2 . The outcomes of this combined experiment will be represented by the new sample space $\Omega_2 = \{AA, AB, AC, BA, BB, BC, CA, CB, CC\}$.

- b. # Outcomes = Cardinality $(n_2 = n^2)$ of the sample space Ω_2 . Here $n_2 = 3^2 = 9$.
- c. # Events = 2^{n_2} Here $n_2 = 9$ and therefore # Events = $2^9 = 512$.
- d. # Events of the combined experiment which can be defined from the cartesian products of the individual experiments $= 2^n * 2^n = 2^{2n} = 2^6$. Total # Events of the combined experiment $= 2^{n^2} = 2^9$. Therefore, # Events which cannot be defined from the cartesian products of the individual experiments $= 2^{n^2} 2^{2n} = 2^9 2^6 = 512 64 = 448$.

Examples for an event of E_2 which can be formed from the cartesian products of the events of E_1 :

$$\{A\} \times \{A\} = \{AA\}$$

 $\{A, B, C\} \times \{A\} = \{AA, BA, CA\}$
 $\{A, C\} \times \{B\} = \{AB, CB\}$

Examples for events of E_2 which can NOT be formed from the cartesian products of the events of E_1 :

$$\begin{aligned} \{AB,BC,CA\} \\ \{AA,CB\} \\ \{BC,CB\} \end{aligned}$$