

Ayudantía 1 (Solución parcial)

20 de marzo de 2020

Profesores C. Riveros - J. Salas Tamara Cucumides y Bernardo Barías

Pregunta 4

Sea Σ un conjunto de conectivos lógicos. Se dice que Σ es funcionalmente completo si toda tabla de verdad puede ser definida usando solamente los operadores de Σ (en clases se demostró que $\{\neg, \lor, \land\}$ es funcionalmente completo). Demuestre que el conectivo lógico NOR definido a continuación es funcionalmente completo.

p	q	$p \; \mathtt{NOR} \; q$
0	0	1
0	1	0
1	0	0
1	1	0

Solución

Como sabemos que $\{\neg, \lor, \land\}$ es funcionalmente completo basta poder replicar estos tres operadores usando NOR.

A continuación se proponen las siguientes equivalencias lógicas que pueden comprobar construyendo las tablas de verdad (ejercicio).

Sean p y q variables proposicionales

- $\quad \blacksquare \ \neg p \ \equiv p \ \mathrm{NOR} \ p$
- $p \wedge q \equiv (p \text{ NOR } p) \text{ NOR } (q \text{ NOR } q)$
- $p \lor q \equiv (p \text{ NOR } q) \text{ NOR } (p \text{ NOR } q)$

Pregunta 5 (P3-I1-2019)

Sea $\Sigma = \{\varphi_1, \dots, \varphi_n\}$ un conjunto de formulas proposicionales y φ una formula proposicional. Decimos que φ es consecuencia lógica débil de Σ , que denotamos como $\Sigma \vdash \varphi$, si para toda valuación \bar{v} , si existe algún $i \leq n$ tal que $\varphi_i(\bar{v}) = 1$, entonces $\varphi(\bar{v}) = 1$. En otras palabras, para toda valuación que hace verdadera alguna formula de Σ , entonces debe hacer verdadera φ .

Para las siguientes preguntas sobre consecuencia lógica débil, debe responder si es verdadero o falso. En caso de responder verdadero, demuestrelo, y en caso de responder falso, de un contra ejemplo.

- 1. ¿Es cierto que si $\{\varphi_1, \dots, \varphi_n, \psi\} \vdash \varphi$, entonces $\{\varphi_1, \dots, \varphi_n\} \vdash \varphi$?
- 2. ¿Es cierto que $\{\varphi_1, \dots, \varphi_n\} \vdash \varphi$ si, y solo si, $\{\varphi_1, \dots, \varphi_n, \neg \varphi\}$ no es satisfacible?

Solución

En primer lugar es importante notar en la diferencia de esta definición de consecuencia lógica débil con la consecuencia lógica tradicional vista en clases: en este caso nos interesa que las valuaciones que hagan verdadero a **algún** φ_i hagan también verdadera a φ (en el caso tradicional nos enfocamos en las valuaciones que hacen verdadero a todos los φ_i)

Veamos ahora cada item:

- 1. **Verdadero.** La intuición es que el conjunto de valuaciones que hacen verdadera a alguna formula disminuye al quitar la formula ψ del conjunto. Procedamos ahora a la demostración:
 - Sea $\Sigma = \{\varphi_1, ..., \varphi_n\}$. Supongamos que $\Sigma \cup \{\psi\} \vdash \varphi$, entonces para toda valuación v tal que alguna formula de $\Sigma \cup \{\psi\}$ se haga verdadera con v, se tendrá que $\varphi(v) = 1$.

Ahora veamos solamente Σ y tomamos una valuación v tal que exista una fórmula $\varphi_i \in \Sigma$ tal que $\varphi_i(v) = 1$. Tenemos dos casos:

- No existe un v que haga verdadera a alguna φ_i . En este caso, trivialmente se cumple que $\{\varphi_1, \ldots, \varphi_n\} \vdash \varphi$ y concluye la demostración
- Suponemos que existe v tal que algún $\varphi_i(v) = 1$. Ahora queremos demostrar que también se cumple que $\varphi(v) = 1$. Como $\varphi_i \in \Sigma$, entonces $\varphi_i \in \Sigma \cup \{\psi\}$, de modo que existe $\varphi_j \in \Sigma \cup \{\psi\}$ tal que $\varphi_j(v) = 1$ (en particular, $\varphi_i = \varphi_j$). Por lo tanto, como asumimos que $\Sigma \cup \{\psi\} \vdash \varphi$, se concluye que $\varphi(v) = 1$, con lo que concluye la demostración
- 2. **Falso.** En particular la implicancia de derecha a izquierda no se cumple para el siguiente contraejemplo: Sea $\Sigma = \{p, \neg p\}$ y $\varphi = p \land \neg p$ (por tanto $\neg \phi = \neg p \lor p$).

En primer lugar veamos que $\{\Sigma, \neg \phi\} = \{p, \neg p, \neg p \lor p\}$ es inconsistente.

Sin embargo, no se cumple que $\{p, \neg p\} \vdash p \land \neg p$. Para mostrar esto basta tomar la valuación v tal que p(v) = 1 y $p \land \neg p(v) = 0$.