PINN aplicada a sistemas de Compressão de Gás Natural

Matheus Marinho Bezerra, Rodrigo L. Meira, Leonardo S. de Souza, Márcio A. F. Martins

Contexto e Objetivo do Trabalho

Contexto Histórico na Indústria do Petróleo:

- Importância do Transporte de Gás Natural: movimentar o gás até consumidores finais (indústrias, usinas, centros urbanos) é um processo essencial, porém com alto custo operacional.
- Limitações dos Modelos Tradicionais: métodos numéricos apresentam elevado tempo computacional (Marfatia e Li 2022), enquanto modelos aproximados sacrificam precisão.
- Avanços com Redes Neurais: desde os anos 90, redes neurais têm sido aplicadas no setor (Mohaghegh et al. 1996), buscando equilíbrio entre precisão e eficiência.
- Physics-Informed Neural Networks (PINNs): propostas por Raissi, Perdikaris e Karniadakis 2017, integram dados experimentais às leis físicas, aumentando a precisão e reduzindo o tempo de simulação.

Objetivo Principal

Construir uma PINN (Physics Informed Neural Network) que modele o comportamento dinâmico de um sistema de compressão de gás natural.

Sistema de Compressão e Gás Natural

Figura 1: Sitema de Compressão retirado de Meira et al. (2021)

Composição do gás

O gás natural utilizado é rico em metano, com composição baseada em Chaczykowski (2009):

CH₄: 98,34%C₂H₆: 0,61%

C₃H₈: 0,15% iC₄H₁₀: 0,03%

● nC₄H₁₀: 0,03% CO₂: 0,80%

• Traços de: iC₅H₁₂, nC₅H₁₂, N₂

A equação de estado de Soave (1972) foi utilizada para modelar o comportamento termodinâmico do gás:

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b)}$$

com:

 \bullet a(T): fator de correção das forças intermoleculares

• b: correção do volume molecular

Equações e Variáveis do Modelo de Meira et al. (2021)

Equações diferenciais que descrevem a dinâmica do sistema:

$$\frac{d\dot{m}}{dt} = \frac{A_1}{L_c}(P_2 - P_P) \tag{1}$$

$$\frac{dV_P}{dt} = -\frac{V_P^2}{v_{PM}} \left(\dot{m} - \alpha k_v \sqrt{P_P - P_{\text{out}}} \right) \tag{2}$$

$$\frac{dT_P}{dt} = \frac{V_P \dot{m}}{v_P M} \left(\frac{h_c - h_p}{C_V}\right) +$$

$$+\frac{R_a T_P}{C_V} \left[T_P \left(\frac{\partial Z_P}{\partial T} \right)_{V_P} + Z_P \right] \frac{V_P}{v_P M} \left(\dot{m} - \alpha k_v \sqrt{P_P - P_{\mathsf{out}}} \right)$$
(3)

Símbolos:

• \dot{m} : vazão mássica; V_P , T_P , Z_P : volume molar, temperatura e fator de compressibilidade no plenum; R_a : constante dos gases; M: massa molar; h_c , h_p : entalpias; C_V : calor específico a volume constante.

Principais variáveis algébricas estimadas:

- ullet P_2 , T_2 , V_2 : saída do compressor
- ullet T_{2s} , V_{2s} : pós-compressão isentrópica
- ullet V_1 : sucção do compressor
- (2) V_{imp} , T_{imp} : impelidor
 - V_{dif} , T_{dif} : difusor
 - ullet P_P : pressão no plenum

Estrutura da Rede Neural Proposta

Figura 2: Diagrama da arquitetura da PINN.

Função de Loss e Hiperparâmetros da Rede

A equação geral da função de perda utilizada foi:

$$\mathsf{Loss} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{i}^{*} - y_{i}^{*})^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(\frac{d\hat{y}_{i,\mathsf{num}}}{dt} - \frac{d\hat{y}_{i,\mathsf{an}}}{dt} \right)^{2} + \frac{1}{N} \sum_{i=1}^{N} (\hat{z}_{i} - z_{i})^{2}$$

Onde:

- \hat{y}^* : variáveis previstas mensuráveis (saída da rede);
- y^* : variáveis reais mensuráveis (target);
- \hat{z} : variáveis algébricas previstas pela rede;
- z: variáveis algébricas calculadas pelo solver extermp.

Hiperparâmetros do Modelo

Parâmetro	Valor
Nº de camadas (LSTM)	1
Learning Rate inicial	$1 \cdot 10^{-4}$
Tamanho do mini batch	64
Neurônios por camada	100
Nº de épocas	200
Otimizador	Adam

Resultados de Previsão e Erro Quadrático Médio

Comparação entre o modelo de rede neural e os dados simulados para vazão mássica, temperatura no plenum (T_P) e pressão no plenum (P_P) .

Comparação entre o modelo de rede neural e os dados simulados para a pressão (P_2) e a temperatura (T_2) na saída do compressor.

Raiz do Erro Quadrático Médio (RMSE) das demais variáveis

V_P	T_{imp}	V_{imp}	T_{dif}	V_{dif}	T_{2s}	V_{2s}
0.012762	0.050806	0.045487	0.049855	0.031096	0.037175	0.037160

Distribuição do Tempo de Simulação

Distribuição do tempo de simulação dos experimentos/modelos.

Conclusão

- A técnica PINN apresentou um desempenho superior em termos de tempo de execução quando comparada aos métodos tradicionais. Enquanto manteve previsões com boa precisão.
- Em média, a PINN foi:
 - aproximadamente 20 vezes mais rápida que o IDAS.

Agradecimentos

Agradeço à Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), no âmbito do PRH 35.1, pelo suporte financeiro apoio ao desenvolvimento deste trabalho.

Bibliografia I

- Marfatia, Zaid e Xiang Li (2022). "Data-Driven Natural Gas Compressor Models for Gas Transport Network Optimization". Em: Digital Chemical Engineering 3, p. 100030. ISSN: 2772-5081.
- Mohaghegh, Shahab et al. (1996). "Petroleum reservoir characterization with the aid of artificial neural networks". Em: *Journal of Petroleum Science and Engineering* 16.4, pp. 263–274.
- Raissi, Maziar, Paris Perdikaris e George Em Karniadakis (2017). "Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations". Em: arXiv preprint arXiv:1704.03718.