Примеры римановых многообразий

- ① M гладкое мн-е, N римановое мн-е. Тогда вложение $M \subset N$ индуцирует риманову структуру на M. Частный случай, $N = \mathbb{R}^n$.
- ② M гладкое мн-е, N римановое мн-е. Тогда погружение $f: M \to N$ индуцирует риманову структуру на M: для любой точки $p \in M$ и любых векторов $u, v \in T_pM$

$$\langle u, v \rangle_p = \langle d_p f(u), d_p f(v) \rangle_{f(p)}.$$

ullet M — область в \mathbb{R}^n . $g_{ij}(p)$ — набор гладких функций на M таких, что (g_{ij}) — матрица симметричной положительно определенной формы на M.

$$M = \{(x,y) \in \mathbb{R}^2, y > 0\}$$

$$(9ij) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}$$

MCN T, MCT, N

Длины и расстояния

Определение

Пусть (M,g) – риманово многообразие, $p\in M, v\in T_p(M)$. Тогда длиной вектора v в римановой метрике g называется число

$$|v|_g = \sqrt{g_p(v,v)}$$
. $= \sqrt{\langle v, v \rangle}$

Определение

Длина гладкой кривой $\gamma\colon [a,b] o M$:

$$\ell(\gamma) = \int_a^b |\gamma'|_g dt.$$

Определение

Кривая γ называется *кусочно-гладкой*, если γ непрерывно и существует разбиение отрезка [a,b], на каждом элементе которого γ – гладкая функция.

Определение

Длина кусочно-гладкой кривой – сумма длин ее гладких частей.

Риманово расстояние между точками

Определение

Pимановым расстоянием между точками $x,y\in M$ называется число

$$d(x, y) = \inf \ell(\gamma),$$

где инфимум берется по всем кусочно-гладким кривым, соединяющим x и y.

Замечание

Мы добавили условие связности в определение риманова многообразия для корректности определения.

Теорема (о римановом расстоянии)

Пусть (M,g) – риманово многообразие. Тогда (M,d) – метрическое пространствою

Упражнение

Докажите, что топология, индуцированная метрикой d, совпадает с топологией многообразия M.

Свойства $d(x,y) \ge 0$, d(x,x) = 0, d(x,y) = d(y,x) – очевидны.

Свойства
$$d(x,y) \ge 0$$
, $d(x,x) = 0$, $d(x,y) = d(y,x) - \text{очевидны.}$

$$d(x,y) \le d(x,z) + d(z,y)$$

$$\begin{cases} \ell(x_1) < d(x_1, x_2) + \frac{2}{2} \\ \ell(x_2) < d(x_1, x_2) + \frac{2}{2} \end{cases}$$

$$\begin{cases} \ell(x_1) < d(x_1, x_2) + \frac{2}{2} \\ \ell(x_2) < d(x_1, x_2) + \ell(x_2) < d(x_1, x_2) + \ell(x_2, x_2) + \ell(x_2, x_2) \end{cases}$$

$$\begin{cases} \ell(x_1) < d(x_1, x_2) + \ell(x_2) < d(x_1, x_2) + \ell(x_2, x_2) < d(x_1, x_2) + \ell(x_2, x_2) + \ell(x_2, x_2) < d(x_1, x_2) < d(x_2, x_$$

20 апреля 2022 г.

Свойства $d(x,y) \geq 0$, d(x,x) = 0, d(x,y) = d(y,x) – очевидны. $d(x,y) \leq d(x,z) + d(z,y)$

Остается доказать, что если $x \neq y$, то d(x, y) > 0.

- Для этого мы построим вокруг каждой точки некоторую окрестность, выйти из которой можно будет только пройдя ненулевую длину.
- Возьмем любую карту (U,φ) , содержащую точку x. Пусть \overline{B} замкнутый шар с центром в $\varphi(x)$ такого маленького радиуса r, что $\overline{B} \subset \varphi(U)$, и если $y \in U$, то $\varphi(y) \notin \overline{B}$.
- Пусть $\gamma\colon [a,b] \to M$ кусочно-гладкая кривая, соединяющая x с y. Обозначим $t_0=\inf\{t\in [a,b]: \gamma(t)\not\in \varphi^{-1}(\overline{B})\}$. Пусть $\gamma_0=\gamma|_{[a,t_0]}$.
- Предъявим такую констатнту c, не зависящую от γ , что $\ell(\gamma_0) \geq cr$.

Плоскость Лобачесвского (гиперболическая плоскость)

Определение

Плоскостью Лобачевского называется множество $\mathbb{H}^2 = \{(x,y) \in \mathbb{R}^2, y>0\}$ с римановой структурой

$$g_{ij}(x,y) = \frac{1}{y^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Абсолют плоскости Лобачевского – прямая y = 0.

ullet длина вектора $v \in T_{(x,y)}\mathbb{H}^2$

$$\boxed{|v|_h = \frac{|v|_e}{y}.}$$

ullet длина кривой $\gamma\colon [a,b] o \mathbb{H}^2$, $\gamma(t)=(x(t),y(y))$

$$\ell_h(\gamma) = \int_a^b \frac{|\gamma'(t)|_e}{\gamma(t)} dt = \int_a^b \frac{\sqrt{x'(t)^2 + y'(t)^2}}{\gamma(t)} dt.$$

• углы между касательными векторами в плоскости Лобачевского совпадают с обычными евклидовыми углами.

Элементарные движения плоскости Лобачесвского

Теорема

Следующие преобразования \mathbb{H}^2 являются изометриями \mathbb{H}^2 :

- Горизонтальные параллельные переносы.
- Симметрии относительно вертикальных прямых.
- Евклидовы гомотетии с центром на абсолюте и положительным коэффициентом.
- Инверсии с центром на абсолюте.

Определение

Движения из теоремы называются элементарными.

OCH, used: gour-16, 200 D-19 coxp snuncu bekrapob 1) lop, repense - grappeonsparin We - coxp, koops to nower Tome x(4)=(x(4),5(4)) 8'=(x'(4),4'(4)) FOR(t) = $(14 \cdot x, 14 \cdot y)$ (for) = $(k \cdot x', x \cdot y')$ romoverup c gengrom e O (n1, n0)e neperoc.

Элементарные движения – изометрии – доказательство

4) goct, paech unb-4 = 4ent pon 6 0 0 paguycom 1 (20 no 18746)

C: UHB
$$I(z) = \frac{2}{z} = \overline{I} = f(z)$$
 $f(z) = -\frac{1}{z^2}$

Octain C-1 No4576, 40 no ne ngrow y

grund beki chambura $1 \text{VIe}/12/2$

a roung c knops 5 nept xo 5 no for Comp.

20 апреля 2022 г.