Watertight Planar Surface Meshing of Indoor Point-Clouds with Voxel Carving

3DV - June 29, 2013

Eric Turner Avideh Zakhor

Surface Meshing of Buildings

Indoor Modeling

Acquisition System

Indoor Modeling

Point-cloud Generation

Motivation

- Why is meshing useful?
- Why do we want it to be planar?
- Why do we want it to be watertight?

Motivation

Why is meshing useful?

Example Point-cloud

- 45 Million Pts
- 3.5 GB on disk

Motivation

Why is meshing useful?

Example Mesh

- 985,000 Tris
- 20 MB on disk

Approach

Trace path of laser through space

Interpolate neighboring scans to define volume

Define volume with voxels

Voxel Data Structure

Only boundary voxels explicitly stored

Carving preserves watertightness of volume

■ Goal: remove discretization artifacts on surface

- Goal: remove discretization artifacts on surface
- Combine voxel faces into planar regions

- Goal: remove discretization artifacts on surface
- Combine voxel faces into planar regions

Initialize via flood-fill

Merge regions by computing best-fit plane

Final merged regions

Final merged regions

- Identified locations of planar regions
- Now need to mesh

Example planar region

 Triangulate 2D projection × × × × × 25 ×

Example

Boundaries snapped to plane intersections

Results

Results

Close up of hotel hallway

Viewing triangulation and planar regions

Large Retail Shopping Center

112 m x 78 m

2.7 million triangles from 220 million points

Supplemental

Path of scanner

Exterior Space

Interior Space

Scan points

Path of scanner

Exterior Space

Interior Space

