Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali.

1. Con il metodo di Gauss-Jordan, determinare l'insieme delle soluzioni del seguente sistema lineare su \mathbb{R} :

2. Sia V uno spazio vettoriale su un campo K. Cosa vuol dire che un insieme S di vettori di V è linearmente indipendente? Per quali valori del parametro reale α l'insieme di vettori $\{(\alpha,2,1),(0,1,\alpha),(0,1,1)\}$ di \mathbb{R}^3 è linearmente indipendente?

3. Completare in una base di \mathbb{R}^4 ciascuno dei seguenti sottoinsiemi che sia linearmente indipendente: $S = \{(2, 1, 0, 3), (0, 1, 2, 5), (-1, 0, 1, 1)\}$ $T = \{(1, 0, -1, 1), (1, 1, 0, 1), (0, 1, 1, -1)\}.$

- **4.** Data l'applicazione lineare $T: \mathbb{R}^3 \to \mathbb{R}^4$ tale che T((x,y,z)) = (x+z, x+y-z, 2x+y, y-2z),
 - (i) determinare nucleo e immagine di T;
 - (ii) determinare la matrice associata a T fissati il riferimento canonico di \mathbb{R}^3 e il riferimento $\mathcal{B}' = ((1,1,0,0),(-1,2,0,0),(0,0,1,0),(0,0,0,1))$ di \mathbb{R}^4 .

5. Cosa è il rango di una matrice su un campo K? Esibire un esempio di matrice 3×3 che abbia rango 2.

6. Data la matrice reale $A=\begin{pmatrix}1&0&1\\2&-1&1\\0&1&1\end{pmatrix}$, determinare autovalori e autospazi dell'endomorfismo T di

 \mathbb{R}^3 con matrice associata A nel riferimento canonico di \mathbb{R}^3 e, nel caso in cui A sia diagonalizzabile, esibire una matrice che diagonalizza A.

- 7. Fissato un riferimento cartesiano di un piano euclideo, si considerino i punti A(2,3) e B(1,-2).
 - (i) Determinare la retta passante per $A \in B$.
- (ii) Determinare una retta ortogonale al vettore \overrightarrow{AB} e che abbia distanza 1 dal punto A.

- 8. Fissato un riferimento cartesiano dello spazio della geometria elementare, si considerino le rette s: $\begin{cases} x y + z = 1 \\ (0.1.1) + (1.1.0) t \end{cases}$
- $\begin{cases} x y + z &= 1 \\ x + y + z &= -1 \end{cases} e r := (0, 1, 1) + (1, 1, 0)t.$
 - (a) Le rette s ed r sono sghembe? \circ Si $\,$ \circ No $\,$ Perché?
 - (b) Determinare una retta ortogonale sia a s sia a r.
 - (c) Determinare un piano parallelo sia a r sia a s.