Zadania z Analizy Matematycznej I.1- seria XI

23 stycznia 2014

Zadanie 1. Udowodné, że funkcja $f:[a,\infty)\to\mathbb{R}$, która jest ciągła na $[a,\infty)$ oraz która nie jest ograniczona ani z góry, ani z dołu na tym przedziale, przyjmuje każdą wartość nieskończenie wiele razy.

Zadanie 2. Niech dana będze funkcja ciągła $f:[0,2] \to [0,2]$, taka że f(0)=f(2). Udowodnić, że istnieje wtedy taki punkt x, że f(x)=f(x+1).

Zadanie 3. Zbadać, które z podanych niżej funkcji są jednostajnie ciągłe na przedziale (0,1)

- a) $a(x) = e^x$,
- b) $b(x) = \sin(1/x)$,
- c) $c(x) = x\sin(1/x)$,
- d) $d(x) = \ln x$

Zadanie 4. Zbadać, które z podanych funckji są jednostajnie ciągłe na przedziale $[0,\infty)$

- a) $a(x) = \sqrt{x}$,
- b) $b(x) = \sin^2 x$,
- c) $c(x) = \sin(x^2)$,
- d) $d(x) = e^x$.

Zadanie 5. Niech $f: \mathbb{R} \to \mathbb{R}$ będzie funckją ciągłą mającą skończone granice $\lim_{x \to -\infty} f(x)$ oraz $\lim_{x \to \infty} f(x)$. Pokazać, że f jest jednostajnie ciągła na \mathbb{R} .

Zadanie 6. Podać przykład funkcji $f:A\to\mathbb{R}$, która jest jednostajnie ciągła, ale nie spełnia warunku Lipschitza.

Zadanie 7. Pokazać, że dla dowolnego M>0 funkcja $f:[-M,M]\to\mathbb{R}$ określona wzorem $f(x)=x^2$ spełnia warunek Lipschitza.

Zadanie 8. Pokazać, że funkcja $ln:[1,\infty)\to\mathbb{R}$ spełnia warunek Lipschitza.