Analysis I (Marciniak-Czochra)

Robin Heinemann

October 28, 2016

Contents

1	Ein	leitung	r S	2	
2	Mengen und Zahlen				
	2.1	Logisc	che Regeln und Zeichen	2	
		2.1.1	Quantoren	2	
		2.1.2	Hinreichend und Notwendig	2	
		2.1.3	Beweistypen	2	
		2.1.4	Summenzeichen und Produktzeichen	3	
	2.2	Menge	en	4	
		2.2.1	Definition	4	
		2.2.2	Mengenrelationen	4	
		2.2.3	Potenzmenge	5	
		2.2.4	Familien von Mengen	5	
		2.2.5	Rechenregeln	5	
		2.2.6	geordneter Tupel	6	
		2.2.7	Kartesisches Produkt	6	
		2.2.8	Äquivalenzrelation	6	
	2.3	Relati	onen und Abbildungen	7	
		2.3.1	Relationen	7	
		2.3.2	Graph der Abbildung	7	
		2.3.3	Umkehrabbildung	7	
		2.3.4	Komposition	8	
		2.3.5	Identitäts Abbildung	8	
		2.3.6	Homomorphe Abbildungen	8	
	2.4	Natür	liche Zahlen	8	
		2.4.1	Peanosche Axiomensystem der natürlichen Zahlen	8	
		2.4.2	Vollständige Induktion	9	

	2.4.3	Definition Körper	10
2.5	Abzäh	lbarkeit	11
	2.5.1	Abzählbarkeit von Mengen	11
	2.5.2	Beispiel	12
	2.5.3	Beispiel	12

1 Einleitung

Webseite www.biostruct.uni-heidelberg.de/Analysis1.php Klausurzulassung: 50% Klausur18.2.20179-12Uhr

2 Mengen und Zahlen

2.1 Logische Regeln und Zeichen

2.1.1 Quantoren

 $\forall x$ für alle x $\exists x$ es gibt (mindestens) ein x $\exists!x$ es gibt genau ein x

2.1.2 Hinreichend und Notwendig

- $A \Rightarrow B$: wenn A gilt, gilt auch B, A ist **hinreichend** für B, daraus folgt: B ist **notwendig** für A, Ungültigkeit von B impliziert die Ungültigkeit von A ($\neg B \Rightarrow \neg A$)
- $A \Leftrightarrow B$: A gilt, genau dann, wenn B gilt

2.1.3 Beweistypen

- 1. Direkter Schluss $A \Rightarrow B$
 - (a) Beispiel m gerade Zahl $\Rightarrow m^2$ gerade Zahl
 - i. Beweis m gerade $\Rightarrow \exists n \in \mathbb{N}$ sodas
s $m=2n \Rightarrow m^2=4n^2=2k,$ wobei $k=2n^2 \in \mathbb{N}\square$
- 2. Beweis der Transponerten (der Kontraposition) Zum Beweis $A \Rightarrow B$ zeigt man $\neg B \Rightarrow \neg A \ (A \Rightarrow B) \Leftrightarrow (\neg B) \Rightarrow (\neg A)$
 - (a) Beispiel Sei $m \in \mathbb{N}$, dann gilt m^2 gerade $\Rightarrow m$ gerade

i. Beweis Wir zeigen: m ist ungerade $\Rightarrow m^2$ ungerade

$$\exists n \in \mathbb{N}: \ m=2n+1 \Rightarrow m^2=(2n+1)^2=2k+1, k=2n^2+2n \in \mathbb{N} \Rightarrow m^2 \ \text{ungerade} \square$$

- 3. Indirekter Schluss (Beweis durch Wiederspruch) Man nimmt an, dass $A\Rightarrow B$ nicht gilt, das heißt $A\wedge \neg B$ und zeigt, dass dann für eine Aussage C gelten muss $C\Rightarrow \neg C$, also ein Wiederspruch
 - (a) Beispiel $\not\exists q \in \mathbb{Q} : a^2 = 2$
 - i. Beweis Wir nehmen an, dass $\exists a \in \mathbb{Q} : a^2 = 2$ Dann folgt: $\exists b,c \in \mathbb{Z}$ teilfremd (ohne Einschränkung, denn sonst kürzen soweit wie möglich) mit $a=\frac{b}{c}$ Falls

$$a^2=2\Rightarrow (\frac{b}{c})^2=2=\frac{b^2}{c^2}=2\Rightarrow b^2=2c^2\Rightarrow b^2\,\text{gerade}\,\Rightarrow b\,\text{ist gerade (schon gezeight)}$$

$$\Rightarrow \exists d \in \mathbb{N} \text{ sodass } b = 2d \Rightarrow b^2 = 4d^2$$

Außerdem $b^2=2c^2\Rightarrow 2c^2=4d^2\Rightarrow c^2=2d^2\Rightarrow c$ ist auch gerade. Also müssen b und c beide gerade sein, also nicht teilerfremd, damit haben wir einen Widerspruch hergeleitet \Box

2.1.4 Summenzeichen und Produktzeichen

1. Summenzeichen Wir definieren für m > 0

$$\sum_{k=m}^{m} a_k := a_m + \ldots + a_n$$

falls $n \geq m$

$$\sum_{k=m}^{n} a_k := 0$$

falls n < m (sogennante leere Summe)

2. Produktzeichen

$$\prod_{k=m}^{n} a_k := \begin{cases} a_m \cdot \ldots \cdot a_n & \text{falls } n \geq m \\ 1 & \text{falls } n < m \text{ (sog. leeres Produkt)} \end{cases}$$

2.2 Mengen

2.2.1 Definition

(Georg cantor 1885) Unger einer <u>Menge</u> verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten (welche die Elemente von M genannt werden), zu einem Ganzen M dadurch ist charakterisiert, dass von jedem vorliegendem Objekt x feststeht, ab gilt

- $x \in M$ (x Element von M)
- $x \neg \in M$ (x kein Element von M)

$$M = \{x_1, x_2, \dots, x_n\}$$

 $M = \{x \mid A(x)\} \rightarrow \text{ eine Menge } M$ für die $x \in \ M \Leftrightarrow A(x)$

2.2.2 Mengenrelationen

• Mengeninklusion $A \subseteq M$ (A ist eine Teilmenge von M)

$$\forall x : (x \in A \Rightarrow x \in M)$$

, zum Beispiel $\mathbb{N} \subseteq \mathbb{Z}$

$$A = B \Leftrightarrow \forall x : (x \in A \Leftrightarrow x \in B)$$

 $A \subset M$ (strikte Teilmenge) $\Leftrightarrow A \subset M \land A \neq M$

 \emptyset : leere Menge $\exists x : x \in \emptyset$

. Wir setzen fest, dass \emptyset eine Teilmenge jeder Menge ist. Zum Beipsiel

$${x \in \mathbb{R} : x^2 + 1 = 0}$$

• Durchschnitt

$$A \cup B := \{x \mid x \in A \land x \in B\}$$

• Vereinigung

$$A \cap B := \{x \mid x \in A \lor x \in B\}$$

• Differenz (auch Komplement von B in A)

$$A \setminus B := \{x \mid x \in A \land x \notin B\} := C_a B \text{ (auch } B^c)$$

2.2.3 Potenzmenge

Potenzmenge A

$$\mathcal{P}(A) := \{ B \mid B \subseteq A \}$$

Alle Teilmengen von A

1. Beispiel

$$\mathcal{P}(\{1,2\}) = \{1\}, \{2\}, \{1,2\}, \emptyset$$

Familien von Mengen

Sei I eine Indexmenge, $I \subseteq \mathbb{N}, (A_i)_{i \in I}$ eine Familie von Mengen A

1. Durchschnitt von A

$$\cap_{i \in I} = \{ x \mid \forall_{i \in I} \ x \in A_i \}$$

2. Vereinigung

$$\cup_{i \in I} = \{x \mid \exists i \in I : x \in A_i\}$$

Reflexivität

Transitivität

Kommutativität

Assoziativität

2.2.5 Rechenregeln

A, B, C, D seien Mengen

- $\emptyset \subseteq A$
- $A \subseteq A$

• $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$

- $A \cap B = B \cap A$ $A \cup B = B \cup A$

• $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Eigenschaften der Komplementbildung: Seien $A, B \subseteq D(C_D A) := D \setminus A$, dann gilt

$$C_D(C_D A) = A$$

$$C_D(A \cap B) = C_D A \cup C_D B$$

$$C_D(A \cup B) = C_D A \cap C_D B$$

- Beweis:

$$x \in C_D(A \cap B) \Leftrightarrow x \in D \land (x \notin (A \cap B)) \Leftrightarrow x \in D \land (x \notin A \lor x \notin B)$$
$$\Leftrightarrow (c \in D \land x \notin A) \cup x \in D \land x \notin B$$
$$\Leftrightarrow x \in D \land A \cup x \in D \land B \Leftrightarrow x \in D \land (A \cup B) \square$$

- Bemerkung: Komplement kann man auch mit A^c bezeichnen

2.2.6 geordneter Tupel

Sei x_1, x_2, \ldots, x_n (nicht notwendig verschiedene) Objekte. Ein geordneter n-Tupel

$$(x_1, x_2, \dots, x_n) = (y_1, \dots, y_n) \Leftrightarrow x_1 = y_1, \dots, x_n = y_n$$

Beachte:

$$\{x_1, \dots, x_n\} = \{y_i, \dots, y_n\} \not\implies x_1 = y_1, \dots, x_n = y_n$$

2.2.7 Kartesisches Produkt

Seien

$$A_1 \times A_2 \times ... \times A_n = \{(x_1, x_2, ..., x_n) \mid x_j \in A_j \in \mathbb{N}, j \leq n\}$$

1. Beispiel

.

$$\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$$

• \mathbb{R}^n m-dimensionaler Raum von reellen Zahlen

2.2.8 Aquivalenzrelation

Eine Äquivalenzrelation auf eine Menge A ist eine Beziehung zwischen ihren Elementen (Bezeichnung: $a \sim b$), sodass

- Für jede zwei $a,b \in A$ gilt entweder $a \sim b \vee a \not\sim b$

• $a \sim a$ Reflexivität

• $a \sim b \Rightarrow b \sim a$ Symmetrie

• $a \sim b, b \sim c \Rightarrow a \sim c$ Transitivität

Mit Hilfe einer Äquivalenzrelation lassen sich die Elemente einer Menge in sogenannte Äquivalenzklassen einordnen: $[a]:\{b\in A\mid b\sim a\}$

2.3 Relationen und Abbildungen

2.3.1 Relationen

Unter einer **Relation** verstehen wir eine Teilmenge $R \subseteq X \times Y$ wobei X, Y Mengen sind. Für $x \in X$ definieren wir, das **Bild** von x unter R

$$R(X) := \{ y \in Y | mid(x, y) \in R \}$$

und *Definitionsbereiche von R (bezüglich X)

$$D(R) := \{ x \in X \mid R(x) \neq \emptyset \}$$

2.3.2 Graph der Abbildung

 $R \subseteq X \times Y$ heißt Graph der Abbildung (Funktion)

$$f: X \to Y \Leftrightarrow D(R) = X, \forall x \in X : R(x) = \{f(x)\}\$$

also enthält R(X) genau ein Element.

X heißt Definitionsbereich von f

Y heißt Werte- oder Bildbereich von f (Bild)

 $x \in X$ heißt Argument

 $f(x) \in Y$ heißt Wert von f an der Stelle x

- 1. Beispiel $f:\mathbb{R}\to\mathbb{R}, x\to x^2$ dann ist der Graph von $f=\{(x,y)\in\mathbb{R}^{\nvDash}, y=x^2\}$
 - (a) Bemerkung

$$M^*(x) = \{(x, y) \in \mathbb{R}^2; x = y^2\} = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y = \sqrt{x} \lor y = -\sqrt{x}\}$$

Ist kein Graph einer Funktion $\mathbb{R} \to \mathbb{R}$, denn $M^*(x) = \{\sqrt{x}, -\sqrt{x}, x \ge 0\}$ f heißt

- surjektiv, wenn gilt f(X) = Y
- injectiv, $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- bijektiv, wenn f surjektiv und injectiv ist

2.3.3 Umkehrabbildung

Sei die Abbildung $f:X\to Y$ bijektiv. Dann definieren wir die Umkehrabbildung $f^{-1}:Y\to X$ durch $y\to x\in X$, eindeutig bestimmt durch y=f(x)

1. Bemerkung

$$(x,y) \in \text{Graph } f \Leftrightarrow (y,x) \in \text{Graph } f^{-1}$$

2.3.4 Komposition

Seien $f: X \to Y, g: Y \to Z$ Abbildungen. Die Komposition von g und f

$$g \circ f: X \to Z$$
 ist durch $x \to g(f(x))$ definiert

2.3.5 Identitäts Abbildung

Für jede Menge X definieren wir dei identische Abbildung

$$I_d(A) = I_A : A \to A$$
, durch $x \to x$

1. Beispiel

 $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} = S^1$

$$S^{n-1} := \{(x_1 \dots x_n) \in \mathbb{R}^n; \sum_{i=1}^n x_i^2 = 1\}$$

(n-1) dimensionale sphere in \mathbb{R}^n

• Seien X, Y Mengen, $M \subseteq X \times Y, f : M \to X$ f heißt Projektion, f surjektiv

$$f(M) = \{x \mid \exists y \in Y : (x, y) \in M\} = X$$

2.3.6 Homomorphe Abbildungen

Existieren auf Mengen X und Y mit gewissen Operationen \oplus_x bzw. \oplus_y (zum Beispiel AAddition, Ordungsrelation), ho heißt die Abbildung $f: X \to Y$ homomorph (strukturerhaltend), wenn gilt $\forall x_1, x_2 \in X f(x_1 \oplus_x x_2) = f(x_1) \oplus_y f(x_2)$ Eine bijektive Homomorphie heißt Isomorphisumus, beziehungsweise $X \approx Y$ (äquivalent, isomorph)

2.4 Natürliche Zahlen

$$\mathbb{N} = \{1, 2, 3, \ldots\}, \ \mathbb{N}_0 := \mathbb{N} \cup \{0\}$$

2.4.1 Peanosche Axiomensystem der natürlichen Zahlen

- 1. Die Zahl 1 ist eine natürliche Zahl $1 \in \mathbb{N}$
- 2. Zu jeder natürlichen Zahl n, gibt es genau einen "Nachfolger" n'(=:n+1)

- 3. Die Zahl 1 ist kein Nachfolger einer natürlichen Zahl
- 4. $n' = m' \Rightarrow n = m$
- 5. Enthält eine Teilmenge $M\subseteq \mathbb{N}$ die Zahl 1 und von jedem $n\in m$ auch den Nachfolger n' ist $M=\mathbb{N}$

Bemerkung:

Mit Hilfe der Axiome lassen sich auf \mathbb{N} Addition (+), Multiplikation (·) und Ordung (\leq) einführen. Wir definieren:

 $1'=2,2'=3,\ldots n+1:=m'$ n+m':=(n+m)'; $n\cdot m':=nm+n$ Man kann zeigen, dass jede Menge, welche die Peano Axiome erfüllt isomorph bezüglich Multiplikation und Addition zu $\mathbb N$ ist Wir definieren $n< m\Leftrightarrow \exists x\in \mathbb N: x+m=m$

2.4.2 Vollständige Induktion

- 1. Induktionsprinzip Es seien die folgende Schritte vollzogen:
 - (a) Induktionsverankerung (Induktionsanfang): Die Aussage A(1) gilt
 - (b) Induktionsschluss: Ist für ein $n \in \mathbb{N}$ A(n) gültig, so folgt auch die Gültigkeit von A(n+1)

Dann sind alle Aussagen $A(n), n \in \mathbb{N}$ gültig.

- 2. Beweis: Wir definieren die Tailmenge $M \subseteq \mathbb{N}$, $M := \{n \in \mathbb{N} \mid A(N) \text{ ist gültig}\}$ Die Induktionsverankerung besagt, dass $1 \in M$ und die Induktionsannahme $n \in M \Rightarrow n+1 \in M$. Folglich ist nach dem 5. Axiom von Peano $M = \mathbb{N}$
- 3. Beispiel 1 Zu Beweisen:

$$\forall n \in \mathbb{N} \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

- (a) Beweis
 - i. Induktionsverankerung: $1^2 = \frac{1}{6} \cdot 1 \cdot 2 \cdot 3$
 - ii. Annahme: A(n) gültig für $n \in \mathbb{N}$: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ Zu zeigen A(n+1): $1^2 + \ldots + (n+1)^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$

$$1^{2} + \ldots + n^{2} + (n+1)^{2} = \frac{1}{2}n(n+1)(2n+1) + (n+1)^{2} = (n+1)(\frac{1}{3}n^{2} + \frac{1}{6}n + n + 1)$$

$$= \frac{1}{6}(n+1)(2n^2+7n+6) = \frac{1}{6}(n+1)(2n+3)(n+2)\Box$$

4. Beispiel 2 Definition von Potenzen

$$x^0 := 1$$

$$\forall n \in \mathbb{N}x^n := x^{n-1}x$$

(iterative (rekursive) Definition)

Auf \mathbb{N} sind diese elementaren Operationene erklärt:

- Addition a + b
- Multiplikation $a \cdot b$
- (unter gewissen Vorraussetzungen):
 - Subtraktion a b
 - Division $\frac{a}{b}$

 $\mathbb N$ ist bezüglich "-" oder "/" nicht vollständig, das heißt n+x=m ist nicht lösbar in $\mathbb N$ Erweiterungen:

- Ganze Zahlen $\mathbb{Z} := \{0; \pm, n \in \mathbb{N}\}$ Negative Zahl (-n) ist definiert duch n + (-n) = 0
- Rationale Zahlen \mathbb{Q} (bx = y)

Man sagt, dass $(\mathbb{Q}, +, \cdot)$ einen Körper bildet.

2.4.3 Definition Körper

 \mathbb{K} sei eine Menge auf der Addition und Multiplikation sei. \mathbb{K} heißt ein Körper, wenn die folgende Axiome erfüllt sind:

- Addition: $(\mathbb{K}, +)$ ist eine kummutative Gruppe, das heißt $\forall a, b, c \in \mathbb{K}$:
 - 1. (a+b) + c = a + (b+c)

Assoziativität

2. a + b = b + a

Kommutativität

3. $\exists ! 0 \in \mathbb{K} : a + 0 = a$

Existenz des Nullelement

 $4. \exists x \in \mathbb{K} : a + x = 0$

Existstenz des Nagativen

- Multiplikation: $(\mathbb{K}\setminus\{0\},\cdot)$ ist eine kommutative Gruppte, das heißt $\forall\,a,b,c\in\mathbb{K}$
 - 1. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Assozativität

$$2. \ a \cdot b = b \cdot a$$

Kummutativität

3.
$$\exists ! 1 \in \mathbb{K} : a \cdot 1 = a$$

Existenz des Einselement

4. Für
$$a \neq 0, \exists ! y \in \mathbb{K} : a \cdot y = 1$$

Inverse

Verträglichkeit

1.
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Distributivität

1. Satz $(\mathbb{Q}, +, \cdot)$ ist ein Körper. Definieren auf \mathbb{Q} eine Ordnung " \leq " duch

$$x \le y \Leftrightarrow \exists m \in \mathbb{N}_0, n \in \mathbb{N} : y - x = \frac{m}{n}$$

dann ist auch diese Ordnung mit der Addition und Multiplikation in \mathbb{Q} in folgendem Sinne verträglich:

•
$$a \le b \Rightarrow a + c \le b + c$$

•
$$0 < a \land 0 < b \Rightarrow 0 < a \cdot b$$

2. Bemerkung

$$\{a \in \mathbb{Q} : a = \frac{r}{s}, r \in \mathbb{N}_0, s \in \mathbb{N}\} =: \mathbb{Q}_+(\mathbb{Q}_{\geq 0})$$

2.5 Abzählbarkeit

2.5.1 Abzählbarkeit von Mengen

Sei A eine Menge

• A heißt endlich mit |A| = n Elementen ist äquivalent zu

$$|A| = \begin{cases} A = \emptyset & (n = 0) \\ \exists f : A \to \{1, \dots, n\} & f \text{ bijektiv}, n < \infty \end{cases}$$

• A heißt abzählbar undendlich genau dann wenn

$$\exists f: A \to \mathbb{N} \text{ bijektiv}$$

• A heißt überabzählbar genau dann wenn: A ist weder endlich oder abzählbar unendlich

2.5.2 Beispiel

 \mathbb{Z} ist abzählbar unendlich

1. Beweis Die Abbildung $f: \mathbb{Z} \to \mathbb{N}$

$$z \mapsto \begin{cases} 2z & z \ge 0 \\ -2z - 1 & 2 < 0 \end{cases}$$

- Surjektivität: zu zeigen $f(\mathbb{Z}) = \mathbb{N}$ Offenbar $f(\mathbb{Z}) \subseteq \mathbb{N}$. Wir zeigen $\mathbb{N} \subseteq f(\mathbb{Z})$. Sei $n \in \mathbb{N}$, finde $z \in \mathbb{Z}$ mit f(z) = n. Man unterscheide:
 - -n gerade \rightarrow Wähle $z=\frac{n}{2}$
 - n ungerade $\rightarrow z = -\frac{n+1}{2}$
- Injektivität: Sei $z_1, z_2 \in \mathbb{Z}$ und $f(z_1) = f(z_2)$ ohne Beschränkung der Allgemeinheit $z_1 \leq z_2$. Entweder $z_1, z_2 \geq 0$ oder $z_1, z_2 < 0$, denn sonst währe $f(z_1)$ ungerade und $f(z_1)$ gerade **Wiederspruch**. Falls

$$-z_1, z-2 \ge 0 \Rightarrow 2z_1 = f(z_1) = f(z_2) = 2z_2 \Rightarrow z_1 = z_2$$

$$-z_1, z-2 < 0 \Rightarrow -2z_1 - 1 = f(z_1) = f(z_2) = -2z_2 - 1 \Rightarrow z_1 = z_2$$

2.5.3 Beispiel

- $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ abzählbar unendlich
- $\bullet \ \mathbb{Q}$ abzählbar unendlich
- \bullet $\mathbb R$ überabzählbar