(19) Japanese Patent Office (JP)

(12) Publication of Patent Application (A)

(11) Publication No.: 07168208 A

(43) Date of publication: 04.07.95

(22) Date of filing: 29.09.94

(30) Prioriy: 30.09.93

(54) [Title of the invention]

ACTIVE MATRIX SYSTEM LIQUID CRYSTAL DISPLAY

Page 2, 1st column, Claims 1-4

[Claims]

[Claim 1] An active matrix system liquid crystal device comprising a plurality of pixel electrodes on a substrate; a plurality of wiring electrodes connected to a plurality of switching elements in order to drive the pixel electrodes; an input electrode supplying driving signal to the switching element via coupling capacitance; wherein the coupling capacitances have almost same amount each other.

[Claim 2] An active matrix system liquid crystal device comprising a plurality of pixel electrodes on a substrate; a plurality of wiring electrodes connected to a plurality of switching elements in order to drive the pixel electrodes; an input electrode supplying driving signal to the switching element via coupling capacitance; wherein the input electrode is connected directly to the semiconductor for driving the liquid crystal by a chip-on-glass structure.

[Claim 3] An active matrix system liquid crystal device comprising a plurality of pixel electrodes on a substrate; a plurality of wiring electrodes connected to a plurality of switching elements in order to drive the pixel electrodes; an input electrode supplying driving signal to the switching element via coupling capacitance; wherein the coupling capacitance is formed between the first electode and the second electrode, and the cross section of the coupling capacitance is controlled as same by adjusting the slit between the first element and the second element.

[Claim 4] An active matrix system liquid crystal device comprising a plurality of pixel electrodes on a substrate; a plurality of wiring electrodes connected to a plurality of switching elements in order to drive the pixel electrodes; an input electrode supplying driving signal to the switching element via coupling capacitance; wherein a driving signal is

supplied to the one terminal of the pixel electrode connected to the wiring electrode via the switching, the coupling capacitance is formed on the other terminal of the pixel electrode.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07168208 A

(43) Date of publication of application: 04.07.95

(51) Int. CI

G02F 1/136 G02F 1/1345 H01L 29/786

(21) Application number: 06234653

(22) Date of filing: 29.09.94

(30) Priority:

30.09.93 JP 05 57392

(71) Applicant:

CITIZEN WATCH CO LTD

(72) Inventor:

KIKUCHI MASAMI HOSHINO KOICHI

(54) ACTIVE MATRIX SYSTEM LIQUID CRYSTAL **DISPLAY**

(57) Abstract:

PURPOSE: To obtain a liquid crystal display which is free from unequal display generated by a difference in voltages by distances from input electrodes and unequal display by a difference in capacitances between respective wiring electrodes and has excellent display quality.

CONSTITUTION: Plural pixel electrodes 10 and plural wiring electrodes 5 connected to plural switching elements 12 for driving these pixel electrodes on a substrate are connected to input electrodes 11 to which driving signals are supplied via coupling capacitances. The values of the respective coupling capacitances of the active matrix type liquid crystal display are nearly the same values.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-168208

(43)公開日 平成7年(1995)7月4日

(51) Int.Cl. ⁶	識別記号 5 1 0	庁内整理番号	FΙ			;	技術表示	(箇所
G02F 1/136 1/134								
H01L 29/786								
		9056-4M	H01L	29/ 78	3 1 1	Α		
			審査請求	未請求	請求項の数4	OL	(全 6	頁)
(21)出願番号	特顏平6-234653		(71)出頭人)出願人 000001960				
					ン時計株式会社		4. H	
(22)出顧日	平成6年(1994)9	月29日	(72)発明者	東京都 菊池 正	所宿区西新宿 2 ⁻ F	1日14	新工行	
(31) 優先権主張番号 実願平5-57392			(10) (10)		へ 所沢市大字下宮:	字武野8	340番地	シ
(32)優先日	2) 優先日 平 5 (1993) 9 月30日			チズン	导計株式会社技	有研究	折内	
(33)優先権主張国	日本(JP)		(72)発明者	星野 1	_			_
				,	所沢市大字下富 ⁵ 時計株式会社技術			シ

(54) 【発明の名称】 アクティブマトリックス方式液晶表示体

(57)【要約】

【構成】 基板1上に複数の画素電極10と画素電極を駆動するための複数のスイッチング素子12に接続する複数の配線電極5が、結合容量を介して駆動信号が供給される入力電極11に接続する、アクティブマトリックス方式液晶表示体において、それぞれの結合容量の値がほぼ同じ値であること特徴とするアクティブマトリックス方式液晶表示体。

【効果】 入力電極からの距離による電圧差によって生ずる表示ムラも、各配線電極間の容量差による表示ムラがない、非常に良好な表示品質を有する液晶表示体を得ることができる。

【特許請求の範囲】

【請求項1】 基板上に設ける複数の画素電極と、画素 電極を駆動するための複数のスイッチング素子に接続す る複数の配線電極と、結合容量を介して駆動信号をスイ ッチング素子に供給する入力電極とを備え、結合容量は それぞれの結合容量の値がほぼ同じ値であること特徴と するアクティブマトリックス方式液晶表示体。

1

【請求項2】 基板上に設ける複数の画素電極と、画素 電極を駆動するための複数のスイッチング素子に接続す る複数の配線電極と、結合容量を介して駆動信号をスイ ッチング裏子に供給する入力電極とを備え、入力電極は チップオングラス構造により液晶表示体を駆動する半導 体チップの端子に直接接続することを特徴とするアクテ ィブマトリックス方式液晶表示体。

【請求項3】 基板上に設ける複数の画素電極と、画素 電極を駆動するための複数のスイッチング素子に接続す る複数の配線電極と、結合容量を介して駆動信号をスイ ッチング素子に供給する入力電極とを備え、結合容量は 第1の電極と第2の電極との間に設け、第1の電極ある いは第2の電極に設けるスリットにより制御することに 20 より、結合容量の面積をほぼ同じ値にすることを特徴と するアクティブマトリックス方式液晶表示体。

【請求項4】 基板上に設ける複数の画素電極と、画素 電極を駆動するための複数のスイッチング素子に接続す る複数の配線電極と、結合容量を介して駆動信号をスイ ッチング素子に供給する入力電極とを備え、配線電極に スイッチング素子を介して接続する画素電極の一方から 駆動信号を供給し、他方に結合容量を設けること特徴と するアクティブマトリックス方式液晶表示体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、アクティブマトリック ス方式液晶表示体の構造に関し、とくに液晶のスイッチ ング素子として薄膜ダイオード素子を有するアクティブ マトリックス方式液晶表示体に関する。

[0002]

【従来の技術】 薄膜ダイオード(Thin Film Diode 以下TFDと記載する)素子を有するアク ティブマトリクス方式液晶表示体においては、入力電極 から入力する信号は、配線電極をとうり、素子を介し、 画素電極に印加する構造をもつのが一般的である。

【0003】この構成によると配線電極の抵抗値の差に より、入力電極に近い画素と遠い画素に電圧差が生じ、 液晶表示体の表示ムラの原因となる。

【0004】そこで、たとえば特開平2-302734 号公報に記載されているように、入力電極と配線電極の 間に、結合容量を設ける構成が提案されている。

【0005】すなわち、素子を形成するための誘電体膜 を配線電極も含めて同時に形成し、その後、入力電極を 形成し、入力電極と結合容量と配線電極が電気的に直列 50 する。図るは本発明の第1の実施例におけるTFD素子

に配置する。

【0006】このことによって、配線電極の配線抵抗の 差による入力電極からの距離による表示ムラを改善す る。

[0007]

【発明が解決しようとする課題】しかしながら、アクテ ィブマトリクス方式液晶表示においては、配線電極は単 数ではありえず、複数の配線電極が存在する。

【0008】そしてこの配線電極に駆動信号を供給する ための入力電極は、外部からの接続のための異方性導電 フィルムの最小接続ピッチ寸法に制限されて、配線電極 のピッチと同一寸法とは限らず、その配線電極と入力電 極との面積がすべて同じということはほとんどない。

【0009】この結果、上記公報に記載の手段で得られ る結合容量は、配線電極毎に変化してしまう。

【0010】このため、一本の配線電極内の表示ムラは 解消されても、配線電極間の表示ムラが出てしまうとい う、アクティブマトリクス方式液晶表示体として用いる には致命的な欠点を有している。

【0011】本発明は、配線電極間の表示ムラを解消 し、高品質なアクティブマトリクス方式液晶表示体を提 供することを目的とするものである。

[0012]

【課題を解決するための手段】この目的を達成するため に、本発明のアクティブマトリックス方式液晶表示体 は、下記記載の構成を採用する。

【0013】本発明のアクティブマトリックス方式液晶 表示体は、基板上に設ける複数の画素電極と、画素電極 を駆動するための複数のスイッチング素子に接続する複 数の配線電極と、結合容量を介して駆動信号をスイッチ ング素子に供給する入力電極とを備え、結合容量はそれ ぞれの結合容量の値がほぼ同じ値であること特徴とす る。

[0014]

【作用】本発明のアクティブマトリックス方式液晶表示 体では、入力電極と配線電極の間に設ける結合容量の値 を均一化するために、スリットを設けるか、あるいはダ ミー領域を設ける。

【0015】この結果、入力電極からの距離による電圧 40 差をなくすことができ、表示ムラがなくなる。

【0016】このことにより、各配線電極間の結合容量 の差を抑えることが可能となり、画面全面にわたって表 示ムラのない、高品質なアクティブマトリクス方式液晶 表示体が可能となる。

[0017]

【実施例】以下、図面を用いて本発明の実施例における アクティブマトリックス方式液晶表示体の構造を説明す

【0018】まずはじめに本発明の第1の実施例を説明

の構造を示す平面図である。

【0019】TFD素子の下層電極を構成する第1の金 属のタンタル (Ta) によって、共通電極4と、配線電 極ると、入力電極の裏打ち電極6とを設ける。

【0020】そして、配線電極5aと配線電極5bとが ほぼ同じ面積になるような位置に、第1の金属のタンタ ルを形成しない領域であるスリット7を設けている。

【0021】ここで配線電極5は共通電極4を除く、ス リットまでの配線電極5の領域をいう。配線電極5aと 配線電極5 bとは、共通電極4 で共通接続し、陽極酸化 10 処理のときの電極となり、配線電極5表面に誘電体膜を 設ける。

【0022】TFD素子の上層金属を構成する第2の金 属の酸化インジウムスズ (ITO)を用いて、表示用の 画素電極10を設ける。

【0023】ITOからなる画素電極10パターンは、 TFD素子12を除いた配線電極5上にも形成うい、ス リット7により分離する配線電極5と入力電極の裏打ち 電極6を接続しながら入力電極11を構成する。

【0024】そして、結合容量は第1の電極であるIT 0と、誘電体膜と、結合容量の第2の電極であり、しか もTFD素子の第1の金属であるタンタルとで結合容量 を構成する。

【0025】陽極酸化処理で得られる誘電体膜は、厚 さ、質ともに均一性がきわめてよい。このため、結合容 量の第2の電極にあたる配線電極5aと配線電極5bと の面積を一定にすると、結合容量の第1の電極にあたる 入力電極11の面積は異なっていても、結合容量の値は 同じになる。

【0026】誘電体膜を形成後、共通電極4をこの共通 30 電極4と配線電極5との境界部で切断した後、入力電極 の裏打ち電極6側より給電して、TFD素子12を駆動 する本発明は、入力電極からの距離や、配線電極間の差 によらず一定であり、表示ムラのない特性を示す。

【0027】つぎに、図1から図5を用いて、図5に示 す構造を得るための製造方法を説明する。

【0028】まず、図1に示すように、透明で絶縁性を 有する基板1上に第1の金属2としてタンタル (Ta) を200nmの厚さに形成する。

【0029】このTaの形成は、たとえば基板温度およ 40 そ250~350℃で、全圧1~3×10-3torr の条件でスパッタリング法により形成する。

【0030】その後、およそ1μmの厚さのポジ型フォ トレジストからなるレジスト3を、回転塗布法によって 形成し、露光現像処理を行い、レジスト3をパターンニ ングする。

【0031】この露光現像処理したレジスト3の平面パ ターン形状は、図2の平面図に示すように、共通電極4 で接続する複数の配線電極るはどの配線電極るをとって も、すべて同じ面積になる位置にスリット7を設けてい 50 TO膜からなる入力電極11の裏打ち電極6として入力

る。

【0032】スリット7によって制御する配線電極5の 面積は、結合容量として働くため、TFD素子との容量 比を大きくとるため、その線幅寸法はなるべく広いこと が好きましい。

【0033】そののち、反応性イオンエッチング(以下 RIEと記載する) 法で、第1の金属2をエッチングす

【0034】ここで用いるRIE法によるエッチング処 理は、エッチングガスとして四フッ化炭素(CF4)の 流量を200~240sccm、酸素(02)の流量を 10~40sccm混合し、4~12×10-2tor rの圧力下で、電力が0.5W/cm2の条件で行う。 【0035】その後、レジスト3を剝離し、図3に示す ように、第1の金属2を、0.01~0.1wt%のク エン酸浴中で化成処理して、タンタル酸化膜からなる誘 電体膜8を形成する。

【0036】誘電体膜8は、共通電極4によって接続す る配線電極るの表面にのみ形成し、スリット7で分離し ている入力電極の裏打ち電極6には、誘電体膜8は形成 されない。

【0037】つぎに、図4に示すように、第2の金属9 として画素電極も兼ねる酸化インジウムスズ(ITO) を200nmの厚さで形成する。

【0038】このIT〇の形成は、基板温度150℃以 下で、Arガスと酸素の混合ガスを用い、全圧2~8× 10-3 torr、酸素分圧2~3×10-5 torr で反応性スパッタリング法で形成する。

【0039】その後、およそ1 u mの厚さのポジ型フォ トレジストからなるレジストを塗布法により形成し、路 光現像処理を行いレジストをパターンニングする。

【0040】この露光現像処理したレジストの平面パタ ーン形状は、図5に示すように、画素電極10とTFD 素子12の上部電極を構成する第2の金属パターンと、 配線電極5上と、この配線電極5と分離している入力電 極の裏打ち電極6をつなぐ入力電極11とのパターンか らなっている。

【0041】このレジストを100~170℃の温度で 熱処理した後、エッチング液として塩酸を用いてITO からなる第2の金属9をエッチングする。

【0042】このような処理工程により形成するTFD 素子を設けた基板を、通常の液晶表示体を製造する工程 である、配向膜塗布工程と、ラビングによる配向処理工 程とを行い、さらに同様の処理をした対向基板との張り 合わせ工程と、液晶の注入工程と、液晶注入口の封向工 程を経たのち、共通電極を切断して液晶表示体を完成す

【0043】化成処理によってその表面に誘電体膜8を 形成しない領域のタンタルは形成しなくてもよいが、I 電極11の断線不良の低減に寄与し、化成処理により誘 電体膜を形成した領域はどの配線電極5も同じ容量をも つコンデンサーとして働き、良好な画質の液晶表示体を 得ることができる。

5

- (-

【0044】つぎに本発明の第2の実施例を図7を用い て説明する。図7は、本発明の第2の実施例におけるT FD素子の構成を示す平面図である。

【0045】TFD素子の下層金属を構成する第1の金 属であるTaパターンは第1の実施例と同様に、共通電 極4と、配線電極5とからなる。しかし第1の実施例の 10 Taパターンを分離するスリットは設けず、誘電体膜は 第1の金属のパターン全体に設けている。

【0046】TFD素子12上層金属を構成する第2の 金属9であるITOのパターン形状は第1の実施例と同 様に、画案電極10とTFD素子12部を除いた配線電 極 5 上と入力電極 1 1 上とに設けている。

【0047】ITOのパターン形状は、入力電極11の 面積が一定になる位置にスリット7を設けている。

【0048】そして、結合容量は第1の電極であるIT 〇と、誘電体膜と、結合容量の第2の電極であり、しか 20 もTFD素子の第1の金属であるタンタルによって結合 容量を構成する。

【0049】つぎに、図6から図7を用いて、図7に示 す構造を得るための製造方法を説明する。

【0050】図1から図5を用いて説明した、第1の実 施例と同様な方法により、第1の金属2であるTa膜を 形成したのち、パターンニングを行う。

【0051】第1の実施例においては、Taパターンの 配線電極5の一部にスリットが設け配線電極5を分離し ていたが、第2の実施例では図6に示すように、第1の 30 金属2は連続したパターンで形成し、化成処理は第1の 金属 2 全体に行い、全面に誘電体膜を形成する。

【0052】その後、第1の実施例と同様の条件で第2 の金属9としてITO膜を形成し、ITO膜上にレジス トパターンを形成する。

【0053】レジストパターンは、図7に示すように、 入力電極11の面積が一定になるような位置にスリット 7を設ける。

【0054】本発明の第2の実施例においては入力電極 11の領域のみで結合容量を制御されるため、第1の実 40 施例と同様に、TFD素子の容量との比を大きく取るた め、できるだけ入力電極11の線幅寸法は広いことが好 ましい。

【0055】また、スリットにより分離した配線電極5 側のITOからなる第2の金属9は第1の実施例と同様 に、配線抵抗の低抵抗化と、断線不良の低減を図ること ができる。

【0056】その後は第1の実施例の説明と同様の処理 工程を行うことによって、液晶表示体を形成する。

【0057】つぎに本発明の第3の実施例を、図8を用 50 ス方式液晶表示体を示す断面図である。

いて説明する。図1から図5を用いて説明した第1の実 施例と同様な構造で、配線電極るの面積差の調整とTF D素子12との容量比を大きくとるため、図8に示すよ うに、配線電極るにTFD素子12を介して接続する画 素電極10の一方の入力電極11より給電を行う。

【0058】そして入力電極11と反対側の配線電極に ダミー領域13を設ける。そしてこのダミー領域13の 線幅寸法を太くとり、このダミー領域13に結合容量を 設ける。なおその後の製造方法は第1の実施例と同様の 処理工程を行えばよく、液晶表示体を形成することがで

【0059】つぎに本発明の第4の実施例を、図9を用 いて説明する。配線電極5の線幅寸法が充分に太く、断 線の可能性の低いときには、図6と図7とを用いて説明 した第2の実施例と同様な構造を採用して、図9に示す ように入力電極部11のみに第2の金属であるITOパ ターンを設ける。

【0060】この図9に示すような構造とすると、配線 電極5上のITOパターンの形成を省略することがで き、複雑なパターンの必要がなく、パターンの重ね合わ せの精度もゆとりをもたせて液晶表示体を制作すること が可能である。

【0061】図10は、本発明のアクティブマトリック ス方式の液晶表示体にチップオングラス(COG)実装 構造を適用した例を示す平面図である。

【0062】COG実装構造を用いて、入力電極11と 液晶表示体を駆動する半導体チップの端子とを直接に接 続を行うと、第10図に示すように、入力電極11の接 統部14の位置は半導体チップの端子の位置にあわせる 必要があり、実装位置に集中的に配線することが多い。

【0063】このとき、結合容量の第2の電極となる配 線電極 5 は、1 本毎に面積が異なることとなる。

【0064】そこで、同じ容量値を得るためには、第1 の実施例から第4の実施例の構造を採用すればよい。こ の結果、コンパクトで信頼性の高いアクティブマトリッ クス方式液晶表示体を得ることが可能となる。

[0065]

【発明の効果】以上の説明で明らかなように、本発明の アクティブマトリックス方式の液晶表示体は、入力電極 からの距離による電圧差によって生ずる表示ムラと、各 配線電極間の結合容量の差による表示ムラとが発生しな い。このため非常に良好な表示品質を有する液晶表示体 を提供することができる。

【図面の簡単な説明】

【図1】本発明の実施例におけるアクティブマトリック ス方式液晶表示体を示す断面図である。

【図2】 本発明の実施例におけるアクティブマトリック ス方式液晶表示体を示す平面図である。

【図3】 本発明の実施例におけるアクティブマトリック

【図4】本発明の実施例におけるアクティブマトリック ス方式液晶表示体を示す断面図である。

【図5】本発明の実施例におけるアクティブマトリック ス方式液晶表示体を示す平面図である。

【図 6】 本発明の実施例におけるアクティブマトリック ス方式液晶表示体を示す平面図である。

【図7】本発明の実施例におけるアクティブマトリック ス方式液晶表示体を示す平面図である。

【図8】本発明の実施例におけるアクティブマトリック ス方式液晶表示体を示す平面図である。

【図9】本発明の実施例におけるアクティブマトリック ス方式液晶表示体を示す平面図である。

【図10】本発明の実施例におけるアクティブマトリッ*

* クス方式液晶表示体を示す平面図である。

【符号の説明】

- 2 第1の金属
- 4 共通電極
- 5 配線電極
- 6 変打ち電極
- 7 スリット
- 8 誘電体膜
- 9 第2の金属
- 10 11 入力電極
 - 12 TFD素子
 - 13 ダミー領域

【図1】

【図3】

【図2】

【図4】

【図5】

【図6】

【図9】

