ST205A - HW1

Hoang Duong

September 5, 2014

Problem 1. $\mathcal{F}_n \subset \mathcal{F}_{n+1}, \forall n \in \mathbb{N}, \text{ prove } \mathcal{F} = \bigcup_{n=1}^{\infty} \mathcal{F}_n \text{ is a field}$

Proof. 1. We will check the three condition of \mathcal{F} :

a.
$$\mathcal{F}_n \neq \emptyset \Rightarrow \mathcal{F} \neq \emptyset$$

a.
$$\mathcal{F}_n \neq \emptyset \Rightarrow \mathcal{F} \neq \emptyset$$

b. $\forall A \in \mathcal{F} = \bigcup_{n=1}^{\infty} \mathcal{F}_n \Rightarrow \exists m \in \mathbb{N}, A \in \mathcal{F}_m \Rightarrow A^C \in \mathcal{F}_m \Rightarrow A^C \in \mathcal{F}$
c. $\forall A, B \in \mathcal{F} \Rightarrow \exists m, n \in \mathbb{N}, A \in \mathcal{F}_m, B \in \mathcal{F}_n$

c.
$$\forall A, B \in \mathcal{F} \Rightarrow \exists m, n \in \mathbb{N}, A \in \mathcal{F}_m, B \in \mathcal{F}_m$$

Without loss of generality assume $m \leq n, \Rightarrow A, B \in \mathcal{F}_n \Rightarrow A \cup B \in \mathcal{F}_n \Rightarrow$ $A \cup B \in \mathcal{F}$

Thus \mathcal{F} is a field

2. However for the case of $\sigma - field$, \mathcal{F} might not be the case. Counter example: Let S = [0, 1) be the half open unit interval. Define:

$$\mathcal{F}_n = \sigma(\{[\frac{2^m}{2^n}, \frac{2^{m+1}}{2^n}) \mid m \in \{0, 1, ..., n-1\}\})$$

then $\mathcal{F}'_n s$ are $\sigma - field$. Assuming that $\mathcal{F} = \bigcup_{n=1}^{\infty} \mathcal{F}_n$, we have:

$$[0, \frac{1}{2^n}) \in \mathcal{F}, \forall n \in \mathbb{N}$$

$$\Rightarrow \bigcap_{n=0}^{\infty} [0, \frac{1}{2^n}) \in \mathcal{F}$$

$$\Rightarrow \{0\} \in \mathcal{F}$$

$$\Rightarrow \exists m \in \mathbb{N}, \{0\} \in \mathcal{F}_m$$

which is a contradiction because \mathcal{F}_m is generated by m disjoint element each of them is countably infinite, so there is no boolean operation of them that could result in a finite nonempty set.

Lemma 1. Let Ω be a set, \mathcal{A} is a collection of subsets of Ω . Define $U = \{\mathcal{F} \mid$ $\mathcal{F}: field \land \mathcal{A} \subset \mathcal{F} \}$ and $f(\mathcal{A}) := \bigcap_{\mathcal{F} \in U} \mathcal{F}$, then $f(\mathcal{A})$ is a field.

Proof. We check the three condition of field

a. Since the power set of Ω is a field that contains all elements in $\mathcal{A}, U \neq \emptyset$. Now $\forall \mathcal{F} \in U, \mathcal{A} \subset \mathcal{F} \Rightarrow \bigcap_{\mathcal{F} \in U} \mathcal{F} \neq \emptyset$

b.
$$\forall B \in \bigcap_{\mathcal{F} \in U} \mathcal{F}$$

$$\forall \mathcal{F} \in U, B \in \mathcal{F}$$
$$\Rightarrow \forall \mathcal{F} \in U, B^C \in \mathcal{F}$$
$$\Rightarrow B^C \in \bigcap_{\mathcal{F} \in U} \mathcal{F}$$

c.
$$\forall B, C \in \bigcap_{\mathcal{F} \in U} \mathcal{F}$$

$$\forall \mathcal{F} \in U; B, C \in \mathcal{F}$$
$$\Rightarrow \forall \mathcal{F} \in U; B \cup C \in \mathcal{F}$$
$$\Rightarrow B \cup C \in \bigcap_{\mathcal{F} \in U} \mathcal{F}$$

Thus f(A) is a field This result also holds for $\sigma - field$

Problem 2. Let Ω be a set, \mathcal{A} is a collection of subsets of Ω , $f(\mathcal{A})$ is the field generated by \mathcal{A} as defined in Lemma 1. Let $\mathcal{G} = \bigcup_{i=1}^m \bigcap_{j=1}^{n_i} A_{ij}$ where for each i,j, either $A_{ij} \in \mathcal{A}$ or $A_{ij}^C \in \mathcal{A}$ and the m sets $\bigcap_{j=1}^{n_i}$ are disjoint. Prove that $f(\mathcal{A}) = \mathcal{G}$.

Proof. We will prove two sides

- a. To prove $\mathcal{G} \subset f(\mathcal{A})$. Since $\forall A_{ij}, A_{ij} \in f(\mathcal{A}) \Rightarrow \bigcup_{i=1}^m \bigcap_{j=1}^{n_i} A_{ij} \in f(\mathcal{A}) \Rightarrow \mathcal{G} \subset f(\mathcal{A})$
 - b. To prove $f(A) \subset \mathcal{G}$. First we will prove that \mathcal{G} is a field.
 - i. $\forall A \in \mathcal{A}, A \in \mathcal{G} \Rightarrow \mathcal{G} \neq \emptyset$
- ii. $\forall A = \bigcup_{i=1}^m \bigcap_{j=1}^{n_i} A_{ij}, B = \bigcup_{h=1}^p \bigcap_{k=1}^{q_i} B_{ij}$, where A_{ij} 's, B_{ij} 's satisfy the condition mentioned above, we have:

$$A \cap B = \bigcup_{i=1,\dots,m;h=1,\dots,p} \left(\bigcap_{j=1}^{n_i} A_{ij}\right) \cap \left(\bigcap_{k=1}^{q_h} B_{hk}\right)$$

Now consider any two term of the form inside the union, $(\bigcap_{j=1}^{n_i} A_{ij}) \cap (\bigcap_{k=1}^{q_h} B_{hk})$, they must be disjoint because if they have any term in common, that implies two term $(\bigcap_{j=1}^{n_i} A_{ij})$ have element in common which is a contradiction. So $A \cap B \in \mathcal{G}$. Thus a \mathcal{G} is also closed under finite intersection.

iii.
$$\forall A = \bigcup_{i=1}^m \bigcap_{j=1}^{n_i} A_{ij}$$
, we have:

$$A^{C} = (\bigcup_{i=1}^{m} \bigcap_{j=1}^{n_{i}} A_{ij})^{C}$$

$$= \bigcap_{i=1}^{m} \bigcup_{j=1}^{n_{i}} A_{ij}^{C}$$

$$= \bigcap_{i=1}^{m} \bigcup_{j=1}^{n_{i}} [A_{ij}^{C} \cap \bigcap_{k=1}^{j-1} A_{ik}]$$

The terms inside each union operand are disjoint, thus each union term is in \mathcal{G} , and from ii., \mathcal{G} is closed under finite intersection, thus $A^C \in \mathcal{G}$.

So \mathcal{G} is a field. Since $\forall A \in \mathcal{A}, A \in \mathcal{G} \Rightarrow f(\mathcal{A}) \subset \mathcal{G}$ since f(A) is the intersection of all field containing \mathcal{A} . From a. and b., we have $f(\mathcal{A}) = \mathcal{G}$.

Problem 3. Let Ω be a set, \mathcal{A} is a collection of subsets of Ω , $B \in \sigma(\mathcal{A})$. Prove that $\exists \mathcal{A}_B \subset \mathcal{A}, |\mathcal{A}_B| = |\mathbb{N}|, B \in \sigma(\mathcal{A}_B)$

Proof. Let $\mathcal{G} = \bigcup_{\mathcal{C} \subset \mathcal{A} \wedge |\mathcal{C}| = |\mathbb{N}|} \sigma(\mathcal{C})$. It is obvious that $\mathcal{G} \subset \sigma(\mathcal{A})$. We will prove that $\sigma(\mathcal{A}) \subset \mathcal{G}$. First we will prove that \mathcal{G} is a $\sigma - field$.

a. We can assume that $\mathcal{A} \neq \emptyset \Rightarrow \exists A \in \mathcal{A} \Rightarrow \sigma(\{A\}) = \{\emptyset, A, A^C, \Omega\} \neq \emptyset \Rightarrow \mathcal{G} \neq \emptyset$

b.
$$\forall A \in \mathcal{G}, \exists \mathcal{C} \subset \mathcal{A}, |\mathcal{C}| = |\mathbb{N}|, A \in \sigma(\mathcal{C}) \Rightarrow A^C \in \sigma(\mathcal{C}) \Rightarrow A^C \in \mathcal{G}$$

c. $\forall A_1, A_2, ..., A_n, ... \in \mathcal{G}, \exists \mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_n, ... \subset \mathcal{A}, |\mathcal{C}_i| = |\mathbb{N}|, A_i \in \sigma(\mathcal{C}_i)$. Now consider

$$\mathcal{C} = \bigcup_{i=1}^{\infty} \mathcal{C}_i$$

Since countable union of countable sets is countable, C is countable. Thus:

$$\forall i \in \mathbb{N}, A_i \in \sigma(C)$$

$$\Rightarrow \bigcup_{i=1}^{\infty} A_i \in \sigma(C)$$

$$\Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{G}$$

From a., b., and c., we have $\mathcal G$ is a $\sigma-field$. And since $\mathcal G$ is a field that contains $\mathcal A$, we have $\sigma(\mathcal A)\subset \mathcal G$. (From Lemma 2, where we prove that the union of all $\sigma-field$ containing $\mathcal A$ is a field denoted $\sigma(\mathcal A)$). So $\sigma(\mathcal A)=\mathcal G\Rightarrow \forall A\in \sigma(\mathcal A), \exists \mathcal C\subset \mathcal A\land |\mathcal C|=|\mathbb N|, A\in \sigma(\mathcal C)$.

Problem 4. Let \mathbb{R} be equipped with the Borel sigma algebra $\mathcal{B}(\mathbb{R})$. Show that of all the $\sigma - field$ in \mathbb{R}^d that satisfy all continuous function $f: \mathbb{R}^d \to \mathbb{R}$ is measurable, the Borel $\sigma - field$ of \mathbb{R}^d is the smallest such $\sigma - field$

Proof. We will prove two direction.

- a. $\mathcal{B}(\mathbb{R}^d)$ satisfies the condition that all continuous function f is measurable. This is true because for any open set on \mathbb{R} , its pre-image w.r.t continuous f is also an open set and thus measurable. Any measurable set on \mathbb{R} (with respect to $\mathcal{B}(\mathbb{R})$) is the result of boolean operation on countable number of open set (Result from Problem 3), so the pre-image of any measurable set the result of boolean operation on countable number of open set on \mathbb{R}^d , and so belong to $\mathcal{B}(\mathbb{R}^d)$, thus measurable. So f is measurable with respect to $\mathcal{B}(\mathbb{R}^d)$ and $\mathcal{B}(\mathbb{R})$.
- b. Now we need to prove that $\mathcal{B}(\mathbb{R}^d)$ is the smallest such $\sigma field$, by proving that any $\sigma field$ \mathcal{A} that satisfies the condition must contain $\mathcal{B}(\mathbb{R}^d)$. Let E be an arbitrary non-empty closed set in \mathbb{R} . Consider the function:

$$g: \mathbb{R}^d \to \mathbb{R}$$

 $x \mapsto \inf\{||y - x||, \forall y \in E\}$

It follows from the triangle inequality that $\forall x,y \in \mathbb{R}^d$, $d(x,E) \leq d(x,y) + d(y,E) \Rightarrow d(x,y) \geq d(x,E) - d(y,E)$. Similarly $d(x,y) \geq d(y,E) - d(x,E)$. So $d(x,y) \geq |d(x,E) - d(y,E)|$ or $g(x,y) \leq ||x-y||$. So g is 1-Lipschitz function, thus it is continuous. Since we need g to be measurable, and $\{0\} \in \mathcal{B}(\mathbb{R})$ is measurable, thus $g^{-1}(\{0\}) = E$ is measurable. So any closed set in \mathbb{R}^d must be measurable w.r.t this $\sigma - algebra \mathcal{A}$. Thus $\mathcal{B}(\mathbb{R}^d) \subset \mathcal{A}$.

From a., and b., we have $\mathcal{B}(\mathbb{R}^d)$ is the smallest $\sigma - algebra$ that satisfies the condition.

Problem 5. Upper semicontinuous function $f: \mathbb{R}^d \to \mathbb{R}$ is measurable.

Proof. Let $U_t = \{x \in \mathbb{R}^d \mid f(x) < t\}$. Let $x_0 \in U_t$ be fixed, $\epsilon = t - f(x_0)$. From the definition of upper semicontinuous function, $\exists \delta \in \mathbb{R}^+, \forall y, ||y - x_0|| < \delta \Rightarrow f(y) < f(x) + \epsilon = f(x_0) + t - f(x_0) = t$. So the ball around x_0 radius δ is in U_t . This is true for all x_0 in U_t . So U_t is open and thus measurable. So the pre-image of $(-\infty, a)$ is U_a and is measurable. Since the set of $\{(-\infty, a) \mid a \in \mathbb{R}\}$ generates the Borel set $\mathcal{B}(\mathbb{R})$, we have the pre-image of any measurable set in $\mathcal{B}(\mathbb{R})$ is also measurable. So f is measurable.

The proof is analogous for lower semicontinuous function $f: \mathbb{R}^d \to \mathbb{R}$.