PepBay: Implementation of Bayesian inference in the analysis of peptide arrays

Katarzyna Sidorczuk

University of Wrocław, Faculty of Biotechnology, Department of Bioinformatics

Why R? 2019, Warsaw

What are peptide arrays?

- Collections of short protein fragments;
- Efficient tool for search of new biomarkers;
- Peptide array data:
 - very small sample size (patients),
 - large number of variables (peptides),
 - correlated.

Why traditional methods fail when p >> n?

Cannot distinguish between noise and significant results

Solution: Bayesian inference

(Doll, J. C. and Jacquemin, S. J. 2018)

Bayes' theorem:

$$P(\theta|X) = \frac{P(X|\theta) \times P\theta}{P(X)}$$

Implementation using package BEST

```
y1 <- rnorm(100)
y2 <- rnorm(100)
test <- BESTmcmc(y1,y2)

## Waiting for parallel processing to complete...done.
```

BEST package:

- Based on JAGS:
- Core function: BESTmcmc;
- Convenient wrapper: tidybayes;
- Alternative: rSTAN.

Implementation using package BEST

```
y1 <- rnorm(100)
v2 <- rnorm(100)
test <- BESTmcmc(v1,v2)
## Waiting for parallel processing to complete...done.
test
## MCMC fit results for BEST analysis:
## 100002 simulations saved.
                         sd median
                                        HDIlo
                                                HDIup Rhat n.eff
          -0.04564 0.10282 -0.04571 -0.24666
                                                0.1572
                                                         1 58812
## mu2
          0.11573 0.09411 0.11573 -0.07092
                                               0.2998
                                                         1 60291
          41.47526 30.51176 33.05015 4.66915 102.8904
                                                         1 20892
## sigmal 0.98335 0.07812 0.98014 0.83142
                                                         1 46892
                                               1.1381
## sigma2 0.90946 0.07362 0.90715 0.76636
                                                         1 44496
```

'HDIlo' and 'HDIup' are the limits of a 95% HDI credible interval.

'n.eff' is a crude measure of effective sample size.

'Rhat' is the potential scale reduction factor (at convergence, Rhat=1).

BEST package:

- Based on JAGS;
- Core function: BESTmcmc:
- Convenient wrapper: tidybayes;
- Alternative: rSTAN.

Implementation using package BEST

```
y1 <- rnorm(100)
y2 <- rnorm(100)
test <- BESTmcmc(y1,y2)
```

Waiting for parallel processing to complete...done.

test

BEST package:

- Based on JAGS;
- Core function: BESTmcmc:
- Convenient wrapper: tidybayes;
- Alternative: rSTAN.

```
## MCMC fit results for BEST analysis:
## 100002 simulations saved.
              mean
                             median
                                        HDIlo
                                                 HDIup Rhat n.eff
          -0.04564 0.10282 -0.04571 -0.24666
                                                0.1572
                                                          1 58812
## mu2
          0.11573 0.09411 0.11573 -0.07092
                                                0.2998
                                                          1 60291
          41.47526 30.51176 33.05015 4.66915 102.8904
                                                          1 20892
## sigmal 0.98335 0.07812 0.98014 0.83142
                                                          1 46892
                                                1.1381
## sigma2 0.90946 0.07362 0.90715 0.76636
                                                          1 44496
## 'HDIlo' and 'HDIup' are the limits of a 95% HDI credible interval.
## 'Rhat' is the potential scale reduction factor (at convergence, Rhat=1).
## 'n.eff' is a crude measure of effective sample size.
```

summary(test)

```
HDIup compVal %>compVal
                mean median
                                           HDT1o
             -0.0456 -0.0457 -0.0470
                                      95 -0.2467
                                                   0.157
## mul
## mu2
             0.1157 0.1157 0.1089
                                      95 -0.0709
                                                   0.300
## muDiff
             -0.1614 -0.1620 -0.1703
                                      95 -0 4375
                                                   0.109
                                                                      12.4
## sigmal
             0.9833 0.9801 0.9783
                                      95 0.8314
                                                   1.138
             0.9095 0.9072 0.9006
                                      95 0.7664
## sigma2
                                                   1.055
## sigmaDiff 0.0739 0.0728 0.0724
                                      95 -0.1213
                                                   0.280
                                                                      76.9
## nu
             41.4753 33.0502 19.2860
                                      95 4.6691 102.890
## log10nu
             1.5122 1.5192 1.5352
                                      95 0.9187
                                                   2.098
## effSz
             -0.1714 -0.1713 -0.1800
                                      95 -0.4670
                                                   0.113
                                                               Θ
                                                                      12.4
```

Bayesian inference vs. frequentist methods

Advantages of Bayesian inference:

- complete distributions of reliable values;
- effect size instead of p-value.

PepBay app screenshots

Select peptides individually by clicking on the rows or use the checkbox below to select all.

Peptide browser

Select all peptides

PepBay app screenshots

Peptide browser

The color of squares represents the phenotype associated with a peptide, triangles represent p-value and boxplot distribution of measured points.

p-value in a log scale

PepBay app screenshots

Peptide browser

Overview Detailed view n-gram panel

n-gram analysis of amino acid motifs in peptides

Motifs are automatically selected by QuiPT (significance level: 0.05). Longer n-grams require longer computation time.

Acknowledgments

- Andreas Weinhäusel
 Austrian Instutute of Technology, Department of Molecular Diagnostics
- Michał Burdukiewicz
 Warsaw University of Technology, Faculty of Mathematics and Information Science