Computation 1: Find a number z so that $z^2 = i$. Write it in the form z = x + iy.

Solution: We wish to find a number z such that

$$(x+iy)^2 = i.$$

So $x^2 - y^2 = 0$ and 2xy = 1. Thus we have $x = y = \pm \frac{\sqrt{2}}{2}$ and hence

$$z = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, \quad z = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}.$$

Computation 1.1: Shakarchi. Describe geometrically the sets of points in z in the complex plane defined by the list in Sharkarchi.

Solution:

- 1. This is the line consisting of all points that are equidistant from both z_1, z_2 .
- 2. $z\overline{z} = 1$ is the unit circle.
- 3. This is the line where all numbers have real part equal 3.
- 4. The first case is the open half plane with real part greater than c. The second is closed.
- 5. This is the line which has real part re(a)re(z) im(a)im(z) + re(b).
- 6. $|z|^2 = (x+1)^2 \implies y^2 = 2x+1$. This is the complex numbers on this parabola opening to the right.
- 7. This is a line with imaginary part c for any $c \in \mathbb{R}$.

Computation 9: Shakarchi. Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\partial_r u = \frac{1}{r} \partial_\theta v \quad \partial_\theta u = -r \partial_r v.$$

Use this to show that $\log(z) = \log(r) + i\theta$ is holomorphic in $\mathbb{C} \setminus (-\infty, 0]$.

Solution:

$$\partial_r u = \partial_x u \partial_r x + \partial_y u \partial_r y \quad \partial_\theta u = \partial_x u \partial_\theta x + \partial_y u \partial_\theta y$$

Using the fact that $x = r \cos \theta$, $y = r \sin \theta$, we have that

$$u_r = u_x \cos \theta + u_y \sin \theta, \ u_\theta = -u_x r \sin \theta + u_y r \cos \theta$$

Now for u, v, we have that they satisfie Cauchy Riemann So

$$v_r = -u_u \cos \theta + u_x \sin \theta \ v_\theta = u_u r \sin \theta + u_x r \cos \theta$$

It follows directly that

$$ru_r = v_\theta, \ u_\theta = -rv_r.$$

When $z = re^{i\theta}$, $\log z = \log r + i\theta$, so we have that

$$ru_r = r/r = 1 = v_\theta$$
, $u_\theta = 0 = -r \cdot 0 = -rv_r$.

So whenever $\theta \neq \pi$, we have holomorphicity.

Computation 16: Shakarchi. Determine the radius of convergence of the series in Shakarchi.

1. $a_n = (\log n)^2$. We want $R = \limsup |a_n|^{1/n}$. Furthermore, we have

$$\lim_{n \to \infty} |\log n^2|^{1/n} = L$$

Taking the log of both sides of the limit, we see that

$$\lim_{n\to\infty} \log|\log n^2|/n\to 0$$

because $O(\log \log n^2) < O(n)$. So we see that R = 1.

2. $a_n = n!$. We have

$$|n!|^{1/n}$$

so taking the log on both sides gives $\lim \log n!/n \to \infty$ as $O(\log n!) > O(n)$ given that $n! \approx O(n^n e^{-n})$. So R = 0.

3. $a_n = \frac{n^2}{4^n + 3n}$. Upon first glance, clearly $a_n \to 0$ so $R = \infty$.

4. $a_n = \frac{(n!)^3}{(3n)!} \approx \frac{c^3 n^{3n+3/2} e^{-3x}}{c n^{3n+1/2} e^{-3x}} = \frac{c^2 n^{3/2}}{n^{1/2}} = c^2 n$. As $n \to \infty$, this goes to ∞ so R = 0.

Computation 25: Shakarchi. Cauchy's Theorem preliminaries.

1. Solve

$$\int_C z^n dz$$

for the positive oriented circle containing the origin

Solution:

$$\int_C z^n dz = \int_0^{2\pi} (re^{it})^n ire^{it} dt = ir^{n+1} \int_0^{2\pi} (e^{it})^{n+1} dt.$$

We see that when $n \neq -1$, then $\int z^n dz = 0$ because $e^0 = e^{i2\pi}$. Now when n = -1, we have that the integral is 2π because it's the definite integral of 1 from 0 to 2π .

2. Now assume the circle does not contain the origin.

Solution: When $n \ge 0$, the case is trivially 0 as we have the integral above shifted to $|z - z_0|$. We have that when m < 0,

$$(1+z)^m = \sum_{k=0}^{\infty} {m \choose k} z^k = \sum_{k=0}^{\infty} (-1)^k {m+k-1 \choose k} z^k.$$

Then, for small enough radius of the contour.

$$\int_0^{2\pi} (2 + re^{it})^m ire^{it} dt = c^m ir \int_0^{2\pi} \left(1 + \frac{re^{it}}{c}\right)^m e^{it} dt = c^{-m} ir \sum_{k=0}^{\infty} (-1)^k \binom{m+k-1}{k} \frac{r^k}{c^k}$$

Now, we see that $\int_0^{2\pi} e^{i(k+1)t} dt = 0$.

3. Show that if |a| < r < |b|, then

$$\int_C \frac{1}{(z-a)(z-b)} dz = \frac{2\pi i}{a-b}.$$

By partial fractions we have

$$\frac{1}{a-b}\left(\int_C \frac{1}{z-a} - \frac{1}{z-b}\right) = \frac{1}{a-b}\int_C \frac{1}{w}dw$$

where w=z-a. The integral of 1/(z-b) is 0 because |b|>r. Furthermore, now we have $a\in C$, so the integral is equal to (by part a)

$$\frac{2\pi i}{a-b}$$
.

Exercise 1: Stein Shakarchi 3,4,5,7,23,24

3. With $\omega = se^{i\phi}$, where $s \ge 0$ and $\phi \in \mathbb{R}$, solve the equation $z^n = \omega$ in \mathbb{C} where n is a natural number. How many solutions are there?

Solution: Write z as $re^{i\theta}$ where $r \geq 0$ and $\theta \in \mathbb{R}$. Now,

$$r^n e^{ni\theta} = se^{i\phi}$$

so we have that $r = s^{1/n}$ and $\theta = \phi/n$. We see that solutions are the same up to $2n\pi$.

4. Show that it is impossible to define a total ordering on \mathbb{C} .

Solution: Assume such a relation, \succ , exists. Now, consider that $i \succ 0$. Furthermore, multiplying by i, we see that $-1 \succ 0$. Now, using (iii) again, multiplying by -1 gives $(-1)(-1) = 1 \succ 0$. This is a contradiction to (i) given that both $1 \succ 0$ and $-1 \succ 0$ hold.

Solution: Assume such a relation, \succ , exists with $i \succ 0$. Using condition (iii), observe that

$$i \cdot i \succ 0 \cdot i \implies -1 \succ 0$$
$$-1 \cdot i \succ 0 \cdot i \implies -i \succ 0$$
$$i \cdot (-i) \succ 0 \cdot (-i) \implies 1 \succ 0.$$

This breaks condition (i), so we've arrived at a contradiction, and there is no such relation.

- 5. Prove that an open set Ω is pathwise connected if and only if Ω is connected.
 - (a) Suppose first that Ω is open and pathwise connected, and that it can be written as $\Omega = \Omega_1 \cup \Omega_2$ where Ω_1 and Ω_2 are disjoint non-empty open sets. Choose two points $\omega_1 \in \Omega_1$ and $\omega_2 \in \Omega_2$ and let γ denote a curve in Ω joining ω_1 to ω_2 . Consider a parametrization $z : [0,1] \to \Omega$ of this curve with $z(0) = \omega_1$ and $z(1) = \omega_2$, and let

$$t^* = \sup_{0 \le t \le 1} \{t : z(s) \in \Omega_1 \text{ for all } 0 \le s < t\}.$$

Arrive at a contradiction by considering the point $z(t^*)$.

Solution: 0 is contained in the set $T_1 = \{t : z(s) \in \Omega_1 \text{ for all } 0 \le s < t\}$. Furthermore, when $t^* = 1$, $z(t^*) \in \Omega_2$ so the set $T_2 = \{t : z(s) \in \Omega_2 \text{ for all } t \le s \le 1\}$ is non-empty. Now, $T_1 \cup T_2 = [0, 1]$, but intervals in $\mathbb R$ are connected, so this is a contradiction.

Define Ω_1, Ω_2 , let $z \in \Omega_1$. Since Ω is open and $z \in \Omega$, there exists a ball $B(z, \delta) \subset \Omega$. To show that $B \subset \Omega_1$, let $s \in B$ and consider $f : [0,1] \to \mathbb{C}$ given by f(t) = st + z(1-t). Now, $|f(t) - z| = t|s-z| < \delta$. The image of f is contained in B so we can see that $s \in \Omega_1$. Suppose Ω_2 is not open, then there is some $z \in \Omega_2$ such that every ball around z contains a point of Ω_1 . B is one such ball, so consider $s \in \Omega_1 \cap B(z, \delta)$. Similarly, define f such that $|f(t) - z| = t|s-z| < \delta$, so w is path connected to the point s, but that means that $z \in \Omega_1$, which means Ω_2 must be open. Now Ω_1 is non-empty so $\Omega_2 = \emptyset$ by connectedness.

7. Let z, w be two complex numbers such that $\bar{z}w \neq 1$. Prove that

$$\left| \frac{w - z}{1 - \bar{w}z} \right| < 1$$

if |z|, |w| < 1 with equality when |z| or |w| equal 1.

Then, prove that for a fixed w in the unit disc \mathbb{D} , the mapping

$$F: z \mapsto \frac{w-z}{1-\bar{w}z}$$

for the given properties.

Solution: Suppose that |w| < 1 and |z| = 1 then

$$\left| \frac{w - z}{1 - \bar{w}z} \right| = \left| \frac{w - z}{\bar{z} - \bar{w}} \right| = 1$$

Because |w| < 1, we see that the function $f(z) = (w-z)/(1-\bar{w}z)$ is holomorphic on \mathbb{D} . Thus, by the maximum modulus principle, it satisfies |f(z)| < 1 in \mathbb{D} because it is not constant.

We already have that $F(\mathbb{D}) \subset \mathbb{D}$ by above. Clearly, F(0) = w and F(w) = 0. From above, we have $F(\partial \mathbb{D}) \subseteq \partial \mathbb{D}$. F^{-1} equals itself, so it's clearly bijective.

23 Prove that f is infinitely differentiable on \mathbb{R} and $f^{(n)}(0) = 0$ for all $n \geq 1$. Conclude that f does not have a converging power series expansion near the origin.

We see that $f'(x) = -\frac{\exp{-1/x^2}}{x^3}$, and as $x \to 0$, $e^{-1/x^2} \to 0$ faster than x^3 , so $f'(x) \to 0$ as $x \to 0$. This follows for every (n) s.t. $f^{(n)}(x) \approx (-1)^n \frac{e^{-1/x^2}}{x^2+n}$ for $n \ge 1$. We see this tends to 0, so f is infinitely differentiable on \mathbb{R} . This function can be written using $\omega = 1/x$ so we see that $\exp{-\omega^2} = 1 - \omega + \frac{1}{2}\omega^2 - \ldots$, but this actually adopts the Laurent series, as $\omega = x^{-1}$. If there were a polynomial series, then its radius of convergence must be infinite, but the derivatives are all 0 at x = 0, so an extension of the summation must be applied.

24 Reversal of curves

We see that

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = -\int_{b}^{a} f(\gamma(t))\gamma'(t)dt = -\int_{-\gamma} f(z)dz.$$

Exercise 2: Prove that if $f: \mathbb{C} \to \mathbb{C}$ is C^2 ,, and f is holomorphic on \mathbb{C} then f' is holomorphic.

Solution: Because f is holomorphic, it satisfies the cauchy riemann equations with

$$\partial_x u = \partial_y v, \quad \partial_y u = -\partial_x v$$

Additionally, we know that

$$\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial y \partial x}$$

exist (with the last one being equal to its mixed case as it's continuous). Recall that $f'(z) = 2\frac{\partial u}{\partial z} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$ let $U = \frac{\partial u}{\partial x}$ and $V = \frac{\partial v}{\partial x}$. Now,

$$\partial_x U = \partial_{xx} u = \partial_{xy} v = \partial_y V, \quad \partial_y U = \partial_{xy} u = \partial_{yx} u = -\partial_{xy} v = -\partial_y V.$$

Hence, f has holomorphic derivative.

Exercise 3: Let γ be a smooth curve in \mathbb{C} , when does $\overline{\int_{\gamma} f(z)dz} = \int_{gamma} \overline{f(z)}dz$ for all f continuous?

WLOG, let $\gamma:[0,1]\to\mathbb{C}$ because γ is smooth, it's sufficiently regular, so we can parametrize it over the contour.

$$\int_C f(z)dz = \int_{[0,1]} f(y(t))y'(t)dt$$

we can take conjugates to yield $\overline{\int_{[0,1]} f(y(t))y'(t)dt} = \int_{[0,1]} \overline{f(y(t))y'(t)}dt = \int_C \overline{f(z)}d\overline{z}$ from the fact that the former is a Riemann integral over [0,1], so the conjugate can be applied over each sum. Now, we see that there is equality when $\overline{dz} = dz$.

Exercise 4: Suppose that $f: \mathbb{D} \to \mathbb{C}$ is holomorphic and $|f'(z)| \leq M$ then $|f(z) - f(0)| \leq M|z|$. Formulate and prove an analogous bound for |f(z) - f(w)| when $f: \Omega \to \mathbb{C}$ where Ω is a general path-connected domain.

Solution: We see that $|f'(z)| = \lim_{w \to z} \frac{|f(z) - f(w)|}{|z - w|} \le M$. Furthermore, we have that

$$\frac{|f(z) - f(w)|}{|z - w|} \le M \implies |f(z) - f(w)| \le M|z - w|.$$

Exercise 5: Show that if f is holomorphic on an open connected set $\Omega \subset \mathbb{C}$ and f'(z) = 0 in Ω then f is constant. What if Ω is not connected?

Solution: Because Ω is open and connected, it is also path connected. Let $z_0 \in \Omega$, and any $w \in \Omega$. There is a curve $\gamma : [0,1] \to \Omega$ such that $\gamma(0) = z_0$ and $\gamma(1) = w$. We then have

$$f(w) - f(z_0) = \int_{\gamma} f'(z)dz = \int_{\gamma} 0dz = 0$$

Hence $f(z_0) = f(w)$ for any $w \in \Omega$, so f(w) is constant in Ω . However, if Ω is disconnected, consider $A, B \subset \mathbb{C}$ be disjoint, open sets. Then $A \cup B$ is disconnected. Let f(A) = 1 and f(B) = 0, then f'(z) = 0, but f is not constant.

Exercise 6: Show that there is a holomorphic function on $\mathbb{C} \setminus (-\infty, 0]$ which is equal to $z^{1/2}$ on the positive reals.

 $\log(r) + i\theta$ is holomorphic on r > 0 and $-\pi < \theta < \pi$. The function $e^{z/2}$ is also holomorphic. A composition of Holomorphic functions is still harmonic so let

$$f(r,\theta) = e^{\log(r)/2 + i\theta/2} = r^{1/2}e^{i\theta/2} \implies f(z) = z^{1/2}.$$

So along $z \in \mathbb{R}^+$, we see that $f(z) = \sqrt{z}$. Holomorphicity comes from the branch cut on $(-\infty, 0]$, or when $\theta = \pm \pi$. which is not in the domain.