COMP9020 Week 4 Recap and Administrivia

Week 4 Recap

- Matrices
- Big-O, Ω and Θ
- Recursion

"Big-O" Asymptotic Upper Bounds

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}$. We say that g is asymptotically less than f (or: f is an upper bound of g) if there exists $n_0 \in \mathbb{N}$ and a real constant c > 0 such that for all $n \geq n_0$,

$$g(n) \leq c \cdot f(n)$$

Write O(f(n)) for the class of all functions g that are asymptotically less than f.

Alternative definition

Fact

$$f(n) \in O(g(n))$$
 if and only if $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.

Properties

Fact

Suppose $f(n) \in O(g(n))$, $g(n) \in O(h(n))$ and $j(n) \in O(k(n))$. Then:

- $f(n) \in O(h(n))$
 - $f(n) + j(n) \in O(g(n) + k(n))$
 - $f(n) \cdot j(n) \in O(g(n) \cdot k(n))$

Need to know for this course

- Basic Matrix operations: A + B, $A \cdot B$, A^T
- Big-O vs Big- Ω vs Big- Θ
- How to define things recursively

