TANGENT & NORMAL

Answer Ex-I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

- **1.** B
- **2.** A
- **3.** B
- **4.** D
- **5.** C
- **6.** B
- **7.** A
- **8.** A

- **9.** A
- **10.** B
- **11.** B
- **12.** D
- **13.** B
- **14.** D
- **15.** B
- **16.** B

- **17.** B **25.** B
- **18.** B **26.** B
- **19.** A **27.** B
- **20.** B 28. A
- **21.** A **29.** B
- **22.** B **30.** A
- **23.** B **24.** B

Answer Ex-II

MULTIPLE CORRECT (OBJECTIVE QUESTIONS)

- 1. AC
- **2.** AB
- **3.** AD
- 4. ABD
- **5.** AB
- **6.** AC
- 7. ABC
- **8.** AB

- 9. AC
- **10.** AC
- **11.** AD
- **12.** AB
- **13.** BC
- **14.** ACD
- **15.** AC

Answer Ex-III

SUBJECTIVE QUESTIONS

- **1.** (0, 0); (3, 27) **4.** y = x
- **2.** 2x + y = 2
- **5.** (a) y 2x 3 = 0
- **3.** Tangent : x + y = 6, Normal x y = 0
- (b) 2x + y 7 = 0

- **8.** (4, 11) & (-4, -31/3)
- **9.** (0, 0), (1, 2), (-1, -2)
- **10.** (9/4, 3/8)
- 11. $\frac{\pi}{3}$

- **12.** $3\sqrt{2} 1$
- **13.** (-6, 3)

- **15.** (i) -2 cm/min
- (ii) 2 cm²/min

16. zero

17. –1

- **18.** -1500 ft/sec
- **19.** $\pm \frac{c}{\sqrt{2}}$

- **20.** $p \in (0, 1/e)$
- **21.** 8

- **22.** $a \in \left(-\frac{13}{4}, 3\right)$
- **23.** $\frac{8b}{27}$

Answer Ex-IV

ADVANCED SUBJECTIVE QUESTIONS

- **1.** (0, 1)
- **2.** x = 1 when t = 1, $m \to \infty$; 5x 4y = 1 if $t \ne 1$, m = 1/3
- **3.** T: x 2y = 0; N: 2x + y = 0 **4.** x + 2y = $\pi/2$ & x + 2y = -3 $\pi/2$ **10.** $\frac{m\sqrt{m}}{\sqrt{2}}$

- **11.** (a) n = -2 **12.** $\pm \frac{1}{2\sqrt{2}}$ **13.** (i) 6 km/h (ii) 2 km/hr **14.** $1 + 36\pi$ cu. cm/sec
- **15.** $1/48 \pi$ cm/s **16.** 0.05 cm/sec
- **17.** $\frac{66}{7}$ **18.** $\frac{1}{4}$ cm/sec.
- **19.** (a) $-\frac{1}{24\pi}$ m/min., (b) $-\frac{5}{288\pi}$ m/min.
- **20.** (a) $r = (1 + t)^{1/4}$, (b) t = 80

Answer Ex-V

JEE PROBLEMS

4. D

- **1.** $\sqrt{2} x + y 2\sqrt{2} = 0$ or $\sqrt{2} x y 2\sqrt{2} = 0$ **2.** D
- **3.** D
- **5.** A

MONOTONOCITY

Answer Ex-I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

- **1.** C
- **2.** C
- **3.** A
- **4.** B
- **5.** D
- **6.** B
- **7.** D

31. A

8. C

16. C

32. B

- **9.** D
- **10.** A
- **11.** C
- **12.** D
- **13.** B

- **14.** C
- **15.** D

- **17.** B
- **18.** C
- **19.** A
- **20.** B **28.** D
- **21.** B **29.** C
- **22.** B **30.** B
- **23.** D **24.** B

- **25.** A **33.** B
- **26.** B **34.** B
- **27.** D **35.** C
- **36.** D
- **37.** D
- **38.** A

Answer Ex-II

MULTIPLE CORRECT (OBJECTIVE QUESTIONS)

- **1.** AB
- **2.** BC
- **3.** AD
- **4.** BC
- **5.** BC
- 6. ABC
- 7. ACD

- **8.** AD
- **9.** AB
- **10.** AD
- **11.** AB
- **12.** AD
- **13.** AC
- 14. ABCD

- **15.** AB
- **16.** CD
- **17.** AB
- **18.** AC

Answer Ex-III

SUBJECTIVE QUESTIONS

- **1.** $a \in R^+$
- 3. $[1-\sqrt{6}, 1+\sqrt{6}]$
- (i) M.D. in $(-\infty, -3] \cup [0, 2]$ M.I. in $(-3, 0] \cup [2, \infty)$

 - (ii) M.I. in $\left[\frac{2}{4n+3}, \frac{2}{4n+1}\right]$, $n \in Z$ M.D. in $\left[\frac{2}{4n+1}, \frac{2}{4n-1}\right]$, $n \in Z$
 - (iii) M.D. in $\left(0, \frac{1}{\sqrt{3}}\right]$ M.I. in $\left[\frac{1}{\sqrt{3}}, \infty\right]$

- **5.** (- ∞, -3]
- **6.** $(\pi/6) + (1/2)$. ℓ n 3, $(\pi/3) (1/2) \ell$ n 3
- **10.** $2 \sin x + \tan x > 3x$, $\lim x = 0$

- **11.** $[\sqrt{5}, \sqrt{10}]$
- **12.** f(x) is injective $\forall x \in [0, \infty)$
- **14.** increasig when $x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ decreasin when $x \in \left(0, \frac{\pi}{4}\right)$.
- **16.** a < $(2 + \sqrt{5})$ or a > $\sqrt{5}$ **17.** $(-\infty, -2) \cup (0, \infty)$
- **18.** $\ln (1 + x)$
- **20.** Neither increasing nor decreasing at x = -1, increasing at x = 0, 1.
- **21.** $[1, \infty)$

24. [-7, -1] \cup [2, 3]

- **26.** (a) I in $(2, \infty)$ & D in $(-\infty, 2)$
- (b) I in (1, ∞) & D in ($-\infty$, 0) \cup (0, 1)
- (c) I in (0, 2) & D in $(-\infty, 2) \cup (2, \infty)$ (d) I for $x > \frac{1}{2}$ or $-\frac{1}{2} < x < 0$ & D for $x < -\frac{1}{2}$ or $0 < x < \frac{1}{2}$
- 27. $(-2, 0) \cup (2, \infty)$
- 28. (a) I in $[0, 3\pi/4) \cup (7\pi/4, 2\pi] \& D$ in $(3\pi/4, 7\pi/4)$
 - (b) I in $[0, \pi/6) \cup (\pi/2, 5\pi/6) \cup (3\pi/2, 2\pi] \& D$ in $(\pi/6, \pi/2) \cup (5\pi/6, 3\pi/2)$
 - (c) I in $[0, \pi/2) \cup (3\pi/2, 2\pi) \& D$ in $(\pi/2, 3\pi/2)$
- 29. continuous but not diff. at x = 1
- 30. (a) Maximum at x = 1 and f(-1) = 18; Minimum at x = 1/8 and f(1/8) = -9/4(b) 2 & -10
- $a \in (-\infty, -3] \cup [1, \infty)$ 32. $0 \le a \le \frac{3}{2}$ 31.
- **33.** ↑ in (3, ∞) and \downarrow in (1, 3)

- 34. $a \ge 0$
- (a) $(-\infty, 0]$ (b) \uparrow in $\left(1, \frac{5}{3}\right)$ and \downarrow in $(-\infty, 1) \cup \left(\frac{5}{3}, \infty\right) \{-3\}$ (c) $x = \frac{5}{3}$ 35.
 - (d) removable discont. at x = -3 (missing point) and non removable discont. at x = 1 (infinite type) (e) -2
- $(-1, 0) \cup (0, \infty)$ 38.

39. $(b-a)^3/4$

Answer Ex-IV

ADVANCED SUBJECTIVE QUESTIONS

- $c = \frac{mb + na}{m + n}$ which lies between n & b
- **16.** a = 3, b = 4 and m = 1

y = -5x - 9 and y = 5x + 11. 17.

Answer Ex-V

JEE PROBLEMS

- **1.** (a) B; (b) D; (c) C
- **2.** (a) A, (b) $\cos\left(\frac{1}{3}\cos^{-1}p\right)$
- **3.** A
- **5.** (a) D; (b) C
- **7.** D **8.** (a) B; (b) (i) B, (ii) A, (iii) A; (c) (A)-P, Q, R; (B)-P, S; (C)-R, S; (D)-P, Q
- **9.** (a) C, (b) A, B, C, D
- **10.** B, C, D
- **11.** B,C
- **12.** B
- **13.** C

MAXIMA & MINIMA

Answer Ex-I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

- **1.** C **2.** D **9.** D **10.** D
- **3.** C **11.** C **19.** C
- **4.** D **12.** A
- **5.** A **13.** A **21.** B
- **6.** C **14.** B **22.** A
- **7.** B **15.** D **23.** B
- **8.** A 16. C **24.** D

17. A **25.** D

33. A

18. B **26.** D

34. D

- **27.** A
- **20.** C **28.** B **36.** B
- **29.** C **30.** B **37.** D **38.** A
- **31.** C **39.** B
- **32.** C **40.** C

- 41. A **42.** C 49. A **50.** D
- **35.** A **43.** A **51.** C
- **44.** B **52.** B
- **45.** A **53.** D
- **46.** B
- **47.** D **48.** C

Answer Ex-II

MULTIPLE CORRECT (OBJECTIVE QUESTIONS)

- **1.** D **9.** AC
- 2. ACD **10.** AD

Answer Ex-III

- **3.** B
- 4. ACD
- **5.** AC
- **6.** BD
- **7.** AC
- 8. BD

3.

- **11.** AC
- **12.** AC
- **13.** AC
- **14.** ABD
- **15.** BC
- **16.** ACD

- 17. BC
- **18.** AC
- **19.** ACD

SUBJECTIVE QUESTIONS

- (i) maxima 1.
- (ii) minima
- (iii) neither maxima nor minima
- (iv) neither maxima nor minima a = b = 3

- (v) neither maxima nor minima
- (vi) maxima
- (i) local max at x = 1, local min at x = 6 (ii) local max. at x = -1/5, local min. at x = -1
- (iii) local minima at $x = \frac{1}{2}$, No local maxima

minima at x = 0

- **5.** (i) 3 points, x = 0, -3, -5
- (ii) ∞ points, $x \in [-1, 2]$ (iii) 2 points, $x = \frac{\pi}{4}, \frac{3\pi}{4}$
- local max. at x = 1, local min. at x = 26.
- (i) max. = 8, min. = -87.
- (ii) max. = $\sqrt{2}$, min. = -1
- (iii) max. = 8, min. = -10
- (iv) max. = 25, min. = -39 (v) max. at $x = \pi/6$, max. value = 3/4; min. at $x = 0 \& \pi/2$, min. value = 1/2
- Greatest and least values are not defined **10.** b ∈ (0, e]
- **11.** (i) local max. at x = -1, Maxima of f(x) = -2, local min. at x = 1, Minima of f(x) = 2
 - Local Minima at $x = \frac{\pi}{2} + 2n\pi$, $n \in I$, Minima of f(x) = 1, Local Maxima at $x = -\frac{\pi}{2} + 2n\pi$, $n \in I$, Maxima of f(x) = -1
- **12.** It is a global maxima.
- **14.** $\frac{80\pi}{\pi+4}, \frac{20\pi}{\pi+4}$ **17.** 12cm, 6 cm **18.** 40 mph

- **19.** $27\sqrt{3}$ sq. cms.
- **20.** width 2 $\sqrt{3}$ m, length 3 $\sqrt{3}$ m **22.** $\left(\frac{1}{2}, \frac{5}{4}\right)$

- **23.** $f(x) = 2 x^4 \frac{12}{5} x^5 + \frac{2}{3} x^6$ **24.** $\frac{4\pi r^2}{3\sqrt{3}}$
- **25.** Rs. 400 **26.** 5 km. from B towards A

- **27.** $\cos A = 0.8$ **28.** $\frac{4\sqrt{3}}{9}$

- **29.** 2π/3
- **30.** side 10', height 10'
- **31.** Global maximum $\frac{\pi}{6} + \frac{1}{4} \ln 3$, Global minima $\frac{\pi}{3} \frac{1}{4} \ln 3$ **32.** $\frac{3\sqrt{3}}{8}$ a^2

Answer Ex-IV

ADVANCED SUBJECTIVE QUESTIONS

1. $f(x) = x^3 + x^2 - x + 2$ **2.** (a) Max. at $x = 2\pi$, Max. value $= 2\pi$, Min. at x = 0, Min. value of = 0 (b) Max. at $x = \pi/6$ & also at $x = 5\pi/6$ and Max. value = 3/2, Min. at $x = \pi/2$, Min. value = -3

3.
$$f(x) = \frac{2}{3} x^6 - \frac{12}{5} x^5 + 2x^4$$
 4. $P_{\text{max.}} = a \left(1 + \cos ec \frac{\alpha}{2} \right)$

5. 75 $\sqrt{3}$ sq. units.

6.
$$r = \sqrt{\frac{2A}{\pi + 4}}$$
, $s = \sqrt{\frac{2A}{\pi + 4}}$ **8.** $3x + 4y - 9 = 0$; $3x - 4y + 9 = 0$ **9.** $4\sqrt{2}$ m

8.
$$3x + 4y - 9 = 0$$
; $3x - 4y + 9 = 0$

10.
$$1/\pi$$
 cu m **11.** $110'$, $70'$ **12.** side $10'$, height $10'$ **13.** 32 sq. units

14.
$$\theta = 60^{\circ}$$

15. a = 1, b = 0 **17.** width
$$2\sqrt{3}$$
 m, length $3\sqrt{3}$ m

19. (a)
$$(-1, 0)$$
, $(0, 5/6)$ (b) $F'(x) = (x^2 - x)$, $F''(x) = 2x - 1$

(c) increasing
$$(-\infty, 0) \cup (1, \infty)$$
 decreasing $(0, 1)$; (d) $(0, 5/6)$; $(1, 2/3)$; (e) $x = 1/2$

20. (a)
$$x = y = \frac{d}{\sqrt{2}}$$
 (b) $x = \frac{d}{\sqrt{3}}$, $y = \sqrt{\frac{2}{3}}$ d **21.** $6' \times 18'$ **22.** $r = \sqrt{A}$, $\theta = 2$ radians

22.
$$r = \sqrt{A}$$
, $\theta = 2$ radians

23. (a) 0, 3 (c)
$$\frac{3}{4}$$
, t = ℓ n 4 **24.** cos A = 0.8

24.
$$\cos A = 0.8$$

28.
$$p < a < \frac{32p^3}{27} + p \text{ if } p > 0; \frac{32p^3}{27} + p < a < p \text{ if } p < 0$$
 30. 4 when $a = \sqrt{2}$

30. 4 when
$$a = \sqrt{2}$$

- **31.** (a) f is continuous at x = 0 (b) $-\frac{2}{e}$ (c) does not exist, does not exist; (d) point of inflection x = 1

- **32.** (a) $x = -2\pi, -\pi, 0, \pi, 2\pi$ (b) no inflection point (c) maxima at $x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$ and no minima,

(d)
$$x = \frac{3\pi}{2}$$
 and $x = -\frac{\pi}{2}$, (e) $-\pi \ln 2$ 33. 4 34. $m \in \left(\frac{1}{32}, \frac{1}{16}\right)$ 35. $\frac{\pi}{4}$

34.
$$m \in \left(\frac{1}{32}, \frac{1}{16}\right)$$

35.
$$\frac{\pi}{4}$$

37.
$$H = x = \left(\frac{4V}{\sqrt{3}}\right)^{1/3}$$
 38. L/4 **39.** $\frac{\pi}{3}$

39.
$$\frac{\pi}{3}$$

- **40.** (a) increasing in (0, 2) and decreasing in $(-\infty, 0) \cup (2, \infty)$, local min. value = 0 local max. value = 2
 - (b) concave up for $(-\infty, 2-\sqrt{2}) \cup (2+\sqrt{2}, \infty)$ and concave down in $(2-\sqrt{2}, 2+\sqrt{2})$

(e)
$$f(x) = \frac{1}{2}e^{2.x}.x^2$$

Answer Ex-V

JEE PROBLEMS

- 2. 2ab
- **3.** (a) D; (b) A **4.** A
- **5.** (a) (2, 1); (b) 5 **6.** (a) D
- **7.** $4\sqrt{65}$
- **8.** (a) B, C; (b) A (c) 6 solutions **9.** (a) C; (b) (i) A, (ii) A, (iii) B **10.** (a) 0; (b) 7 **11.** (a) D, (b) 1 **12.** 2 **13.** 9 **14.** 5 **15.** A.B.C.D

- **11.** (a) D, (b) 1
- **12.** 2
- **13.** 9 **14.** 5
- **15.** A,B,C,D