Efficiently Approximating GP Emulators with Inequality Constraints using MC/MCMC

Andrés F. López-Lopera 1 , François Bachoc 2 , Nicolas Durrande 1,3 , and Olivier Roustant 1

 1 École des Mines de Saint-Étienne (EMSE), France. 2 Institut de Mathématiques de Toulouse (IMT), France. 3 PROWLER.io, Cambridge, UK.

This work is funded by the chair of applied mathematics OQUAIDO.

13th MCQMC

July 5, 2018

Unconditional mean

■ Prediction intervals
■ •••• Realizations

• Interpolation conditions

$$\mathcal{D} = (x_i, y_i)_{i=1}^n = (\mathbf{x}, \mathbf{y})$$

$$Y|\{Y(\mathbf{x}) = \mathbf{y}\} \sim \mathcal{GP}(m(x), c(x, x'))$$

- Prediction intervals
 • · · Realizations
- Interpolation conditions

$$\mathcal{D} = (x_i, y_i)_{i=1}^n = (\mathbf{x}, \mathbf{y})$$

$$Y|\{Y(\mathbf{x}) = \mathbf{y}, Y \in [-1, 1]\} \nsim \mathcal{GP}(\mu_c(x), c_c(x, x'))$$

- Unconditional mean
- Prediction intervals
- Realizations
- Interpolation conditions

$$\mathcal{D} = (x_i, y_i)_{i=1}^n = (\mathbf{x}, \mathbf{y})$$

- - Boundedness condition

$$Y \in [-1,1]$$

- Unconditional mean
- Prediction intervals
- ■ · · · Realizations
- Interpolation conditions

$$\mathcal{D} = (x_i, y_i)_{i=1}^n = (\mathbf{x}, \mathbf{y})$$

- - Boundedness condition

$$Y \in [-1,1]$$

$$Y|\{Y(\mathbf{x}) = \mathbf{y}, Y \in [-1, 1]\} \nsim \mathcal{GP}(\mu_c(x), c_c(x, x'))$$

 \Rightarrow But it can be approximated efficiently via MC or MCMC!

- GP regression models under linear inequality constraints
 - Finite-dimensional Gaussian approximation
- 2 Sampling from truncated multivariate normals
 - Rejection sampling from the mode (RSM)
 - Separation of variable (SOV)
 - Markov Chain Monte Carlo (MCMC)
- Numerical results
- 4 Conclusions
- References

- GP regression models under linear inequality constraints
 - Finite-dimensional Gaussian approximation
- 2 Sampling from truncated multivariate normals
 - Rejection sampling from the mode (RSM)
 - Separation of variable (SOV)
 - Markov Chain Monte Carlo (MCMC)
- 3 Numerical results
- 4 Conclusions
- 6 References

- GP regression models under linear inequality constraints
 - Finite-dimensional Gaussian approximation
- 2 Sampling from truncated multivariate normals
 - Rejection sampling from the mode (RSM)
 - Separation of variable (SOV)
 - Markov Chain Monte Carlo (MCMC)
- Numerical results
- 4 Conclusions
- 6 References

Finite-dimensional Gaussian approximation

Finite representation: also bounded and monotonic.

■ true function ■ finite approximation

Imposing constraints on the knots is enough (Maatouk and Bay, 2017).

Finite-dimensional Gaussian approximation

Let the finite-dimensional Gaussian approximation be defined as

$$Y_m(x) = \sum_{j=1}^m \frac{\xi_j}{\phi_j}(x), \text{ s.t. } \begin{cases} Y_m(x_i) = y_i & \text{(interpolation conditions)}, \\ l \leq \Lambda \frac{\xi}{\xi} \leq u & \text{(linear inequality conditions)}, \end{cases}$$

where

- $\boldsymbol{\xi} = \begin{bmatrix} \xi_1, & \cdots, & \xi_m \end{bmatrix}^\top \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Gamma}_{\boldsymbol{\theta}})$ with covariance matrix $\boldsymbol{\Gamma}_{\boldsymbol{\theta}}$; and
- $\phi_j:[0,1]\to\mathbb{R}$ are hat functions as in (Maatouk and Bay, 2017):

Finite-dimensional Gaussian approximation

Then, since linearity preserves Gaussian distributions, quantifying uncertainty on Y_m relies on simulating the truncated Gaussian vector

$$\Lambda \boldsymbol{\xi} | \{ \boldsymbol{\Phi} \boldsymbol{\xi} = \mathbf{y}, l \leq \Lambda \boldsymbol{\xi} \leq u \} \sim \mathcal{T} \mathcal{N}(\Lambda \boldsymbol{\mu}, \Lambda \boldsymbol{\Sigma} \Lambda^{\top}, l, u), \tag{1}$$

where μ and Σ are the mean vector and covariance matrix of the conditional distribution $\boldsymbol{\xi}|\{\Phi\boldsymbol{\xi}=\mathbf{y}\}\sim\mathcal{N}(\mu,\Sigma)$:

$$\begin{split} & \boldsymbol{\mu} = \boldsymbol{\Gamma} \boldsymbol{\Phi}^\top (\boldsymbol{\Phi} \boldsymbol{\Gamma} \boldsymbol{\Phi}^\top)^{-1} \mathbf{y}, \\ & \boldsymbol{\Sigma} = \boldsymbol{\Gamma} - \boldsymbol{\Gamma} \boldsymbol{\Phi}^\top (\boldsymbol{\Phi} \boldsymbol{\Gamma} \boldsymbol{\Phi}^\top)^{-1} \boldsymbol{\Phi} \boldsymbol{\Gamma}. \end{split}$$

 \Rightarrow Posterior distribution (1) can be approximated via MC/MCMC.

Finite-dimensional Gaussian approximation: examples

1D example under boundedness constraints

Finite-dimensional Gaussian approximation: examples

1D example under boundedness & monotonicity constraints

- GP regression models under linear inequality constraints
 - Finite-dimensional Gaussian approximation
- 2 Sampling from truncated multivariate normals
 - Rejection sampling from the mode (RSM)
 - Separation of variable (SOV)
 - Markov Chain Monte Carlo (MCMC)
- 3 Numerical results
- 4 Conclusions
- 6 References

- GP regression models under linear inequality constraints
 - Finite-dimensional Gaussian approximation
- 2 Sampling from truncated multivariate normals
 - Rejection sampling from the mode (RSM)
 - Separation of variable (SOV)
 - Markov Chain Monte Carlo (MCMC)
- 3 Numerical results
- 4 Conclusions
- 6 References

Rejection sampling from the mode (RSM)

MCQMC-2014: Maatouk and Bay (2016) proposed a rejection sampler using the mode of $\boldsymbol{\xi}$ (MAP solution). Let $\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Gamma})$, then

$$\boldsymbol{\mu}^* = \underset{\boldsymbol{\xi} \in C}{\operatorname{argmin}} \ \frac{1}{2} \boldsymbol{\xi}^\top \boldsymbol{\Gamma}^{-1} \boldsymbol{\xi},$$

where $C = \{ \mathbf{c} \in \mathbb{R}^m; \ \forall \ k = 1, \dots, q : \ell_k \leq \sum_{j=1}^m \lambda_{k,j} c_j \leq u_k \}$. Then, a valid proposal pdf for rejection sampling (RS) on C is

$$g(\boldsymbol{\xi}|\boldsymbol{\mu}^*, \boldsymbol{\Gamma}) = \mathcal{N}(\boldsymbol{\mu}^*, \boldsymbol{\Gamma}).$$

Rejection sampling from the mode (RSM)

$$\begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \sim \mathcal{TN} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1.0 & 0.7 \\ 0.7 & 1.0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 4 \end{bmatrix} \right).$$

Number of simulations: 10³

Acceptance rate: 9%

 $\mu_{\text{RSM}}^* = [1, 1]$ Acceptance rate: 14%

Rejection sampling from the mode (RSM)

Advantage

- ✓ RMS is an exact approach.
- ✓ It provides uncorrelated samples.

Disadvantage

- X It still yields small acceptance rates.
- X Curse of rejection samplers: not usable in high dimensions.
- X It requires two rejection steps.

- GP regression models under linear inequality constraints
 - Finite-dimensional Gaussian approximation
- 2 Sampling from truncated multivariate normals
 - Rejection sampling from the mode (RSM)
 - Separation of variable (SOV)
 - Markov Chain Monte Carlo (MCMC)
- 3 Numerical results
- 4 Conclusions
- 6 References

The SOV method from (Genz, 1992) allows sampling from truncated multivariate normals by simulating truncated univariate normals.

Consider the LQ-decomposition

$$\Lambda = \mathbf{L}\mathbf{Q}^{\top},$$

where

- L: (full rank) lower triangular matrix with non-negative entries,
- Q: orthonormal matrix.

Let $\boldsymbol{\xi} \sim \mathcal{TN}\left(\mathbf{0}, \mathbf{I}, \boldsymbol{l}, \boldsymbol{u}\right)$ and $\mathbf{z} = \mathbf{Q}^{\top} \boldsymbol{\xi}$, then

$$l \le \Lambda \xi \le u \quad \Rightarrow \quad l \le Lz \le u.$$

One can observe,

$$\begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_m \end{bmatrix} \le \begin{bmatrix} L_{1,1} & 0 & 0 & \dots & 0 \\ L_{2,1} & L_{2,2} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{m,1} & L_{m,2} & L_{m,3} & \dots & L_{m,m} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{bmatrix} \le \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix}.$$

Then, the importance sampling density can be written as

$$g(\mathbf{z}) = g(z_1)g(z_2|z_1)\cdots g(z_m|z_1\cdots z_{m-1}), \quad s.t. \quad \mathbf{l} \leq \mathbf{L}\mathbf{z} \leq \mathbf{u},$$

where

$$g(z_k|z_1, \dots, z_{k-1}) \sim \mathcal{TN}(0, 1, \widetilde{l}_k(z_1, \dots, z_{k-1}), \widetilde{u}_k(z_1, \dots, z_{k-1})).$$

Finally, samples of z can be generated via importance sampling (IS).

One can observe,

$$\begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_m \end{bmatrix} \le \begin{bmatrix} L_{1,1} & 0 & 0 & \dots & 0 \\ L_{2,1} & L_{2,2} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{m,1} & L_{m,2} & L_{m,3} & \dots & L_{m,m} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{bmatrix} \le \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix}.$$

Then, the importance sampling density can be written as

$$g(\mathbf{z}) = g(z_1)g(z_2|z_1)\cdots g(z_m|z_1\cdots z_{m-1}), \quad s.t. \quad \mathbf{l} \leq \mathbf{L}\mathbf{z} \leq \mathbf{u},$$

where

$$g(z_k|z_1, \dots, z_{k-1}) \sim \mathcal{TN}(0, 1, \widetilde{l}_k(z_1, \dots, z_{k-1}), \widetilde{u}_k(z_1, \dots, z_{k-1})).$$

Finally, samples of z can be generated via importance sampling (IS).

 \Rightarrow This approach was further investigated in (Botev, 2017) for rare events via exponential tilting (ExpT) (see, e.g., (L'Ecuyer et al., 2010)).

$$\begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \sim \mathcal{TN} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1.0 & 0.7 \\ 0.7 & 1.0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 4 \end{bmatrix} \right).$$

Number of simulations: 10³

 $\mu_{\text{RSM}}^* = [1, 1]$ Acceptance rate: 14%

Acceptance rate: 94%

- GP regression models under linear inequality constraints
 - Finite-dimensional Gaussian approximation
- 2 Sampling from truncated multivariate normals
 - Rejection sampling from the mode (RSM)
 - Separation of variable (SOV)
 - Markov Chain Monte Carlo (MCMC)
- Numerical results
- 4 Conclusions
- 6 References

Markov Chain Monte Carlo (MCMC)

MCMC assumes that the sample-path performs a Markov Chain.

Advantage

- ✓ Samples can be obtained with higher acceptance rate.
- \checkmark There are MCMC algorithms that scale well to high dimensions.

Disadvantage

- **X** Typically, MCMC is only an approximatation.
- X Correlated samples: some of the samples have to be discarded.
- **X** Burn-in the Markov chain.

Markov Chain Monte Carlo (MCMC)

MCMC assumes that the sample-path performs a Markov Chain.

Advantage

- ✓ Samples can be obtained with higher acceptance rate.
- ✓ There are MCMC algorithms that scale well to high dimensions.

Disadvantage

- **X** Typically, MCMC is only an approximatation.
- **X** Correlated samples: some of the samples have to be discarded.
- X Burn-in the Markov chain.

Some efficient MCMC methods for truncated multivariate normals:

- Gibbs sampling (Taylor and Benjamini, 2017).
- Exact Hamiltonian Monte Carlo (Pakman and Paninski, 2014).

MCMC: Hamiltonian Monte Carlo (HMC)

Comparison between proposed MCMC techniques w.r.t. the RSM approach

	RSM	ExpT	Gibbs	HMC
Exact method	✓	✓	X	√
Non parametric	✓	✓	✓	X (√)
Acceptance rate	X	X -√	100%	
Speed	X	X -√	✓	✓
Uncorrelated samples	✓	✓	×	X
R Package	constrKriging	${\tt TruncatedNormal}$	tmvtnorm	tmg

RSM: Rejection Sampling from the Mode (Maatouk and Bay, 2016)

ExpT: Exponential Tilting (Botev, 2017) Gibbs sampling (Taylor and Benjamini, 2017)

HMC: Hamiltonian Monte Carlo (Pakman and Paninski, 2014)

- GP regression models under linear inequality constraints
 - Finite-dimensional Gaussian approximation
- 2 Sampling from truncated multivariate normals
 - Rejection sampling from the mode (RSM)
 - Separation of variable (SOV)
 - Markov Chain Monte Carlo (MCMC)
- Numerical results
- 4 Conclusions
- 6 References

Numerical results

• We simulate constrained samples under different conditions according to (López-Lopera et al., 2017).

Numerical results

- We simulate constrained samples under different conditions according to (López-Lopera et al., 2017).
- For MCMC methods, we use the mode as initial state of the chains.
- We "burn" the first 100 realization.
- We fix the MCMC hyperparameters in order to obtain less correlated samples (e.g. thinning for Gibb sampling).

Numerical results

- We simulate constrained samples under different conditions according to (López-Lopera et al., 2017).
- For MCMC methods, we use the mode as initial state of the chains.
- We "burn" the first 100 realization.
- We fix the MCMC hyperparameters in order to obtain less correlated samples (e.g. thinning for Gibb sampling).
- We assess algorithms via Effective Sample Size (ESS) criterion:

$$ESS = \frac{N}{1 + 2\sum_{k=1}^{N} \widehat{\rho}_k}$$

with N the sample size and $\hat{\rho}_k$ a positive and convex estimator of the sample autocorrelation ρ_k with lag k (Geyer, 1992).

• Time normalised (TN)-ESS:

$$\text{TN-ESS} = \frac{\text{ESS}}{\text{Time } [s]}.$$

Method	$\begin{array}{c} \text{CPU} \\ \text{Time } [s] \end{array}$	ESS $[\times 10^4 s^{-1}]$ $(q_{10\%}, q_{50\%}, q_{90\%})$	TN-ESS $(q_{10\%})$
RSM	1207.4	(0.94, 0.99, 1.00)	0.001

Method	$\begin{array}{c} \text{CPU} \\ \text{Time} \ [s] \end{array}$	ESS $[\times 10^4 s^{-1}]$ $(q_{10\%}, q_{50\%}, q_{90\%})$	TN-ESS $(q_{10\%})$
$\begin{array}{c} \mathrm{RSM} \\ \mathrm{ExpT} \end{array}$	$1207.4 \\ 3.3$	(0.94, 0.99, 1.00) (0.94, 0.99, 1.00)	$0.001 \\ 0.285$

Method	$\begin{array}{c} \text{CPU} \\ \text{Time} \ [s] \end{array}$	ESS $[\times 10^4 s^{-1}]$ $(q_{10\%}, q_{50\%}, q_{90\%})$	TN-ESS $(q_{10\%})$
RSM	1207.4	(0.94, 0.99, 1.00)	0.001 0.285 0.059
ExpT	3.3	(0.94, 0.99, 1.00)	
Gibbs	9.6	(0.57, 0.75, 0.81)	

m =	100.	a =	100.	N	$=10^{3}$
110 —	100,	q -	100,	_ T	- 10

Toy example 2: boundedness & monotonicity conditions

Method	$\begin{array}{c} \text{CPU} \\ \text{Time } [s] \end{array}$	ESS $[\times 10^4 s^{-1}]$ $(q_{10\%}, q_{50\%}, q_{90\%})$	TN-ESS $(q_{10\%})$
RSM ExpT	- 73.7	(0.87, 1.00, 1.00)	0.012

Toy example 2: boundedness & monotonicity conditions

	Method	$\begin{array}{c} \text{CPU} \\ \text{Time} \ [s] \end{array}$	ESS $[\times 10^4 s^{-1}]$ $(q_{10\%}, q_{50\%}, q_{90\%})$	TN-ESS $(q_{10\%})$
	RSM	-	-	-
	ExpT	73.7	(0.87, 1.00, 1.00)	0.012
0	Gibbs	29.0	(0.18, 0.40, 0.96)	0.006

 $m = 100, q = 200, N = 10^3$

Toy example 2: boundedness & monotonicity conditions

Toy example 3: boundedness conditions on 2D

2D Examples under boundedness constr.

	2D boundedness example			2D monotonicity example		
Method	CPU	ESS $[\times 10^4 s^{-1}]$	TN-ESS	CPU	ESS $[\times 10^4 s^{-1}]$	TN-ESS
	Time $[s]$	$(q_{10\%}, q_{50\%}, q_{90\%})$	$(q_{10\%})$	Time $[s]$	$(q_{10\%}, q_{50\%}, q_{90\%})$	$(q_{10\%})$
RSM	-	-	-	-	-	-
ExpT	0.9	(0.90, 1.00, 1.00)	1.009	1488.3	(0.93, 1.00, 1.00)	0.001
Gibbs	9.7	(0.85, 0.96, 1.00)	0.088	-	=	-
HMC	0.6	(0.83, 0.93, 1.00)	1.493	8.6	(0.80, 0.90, 1.00)	0.093

- GP regression models under linear inequality constraints
 - Finite-dimensional Gaussian approximation
- 2 Sampling from truncated multivariate normals
 - Rejection sampling from the mode (RSM)
 - Separation of variable (SOV)
 - Markov Chain Monte Carlo (MCMC)
- Numerical results
- 4 Conclusions
- 6 References

Conclusions

Conclusions

- We further investigated the approach from (Maatouk and Bay, 2017) under linear inequality constraints.
- We suggested Hamiltonian MC to approximate the posterior of ξ .
- We implemented the R package: lineqGPR (available on July).
- ◆ A.F. López-Lopera, F. Bachoc, N. Durrande, and O. Roustant (2017). Finite-dimensional Gaussian approximation with linear inequality constraints. ArXiv preprint
- ♦ A.F. López-Lopera. LineqGPR: Gaussian process regression models with linear inequality constraints, 2018.

Conclusions

Conclusions

- We further investigated the approach from (Maatouk and Bay, 2017) under linear inequality constraints.
- We suggested Hamiltonian MC to approximate the posterior of ξ .
- We implemented the R package: lineqGPR (available on July).
- ◆ A.F. López-Lopera, F. Bachoc, N. Durrande, and O. Roustant (2017). Finite-dimensional Gaussian approximation with linear inequality constraints. ArXiv preprint
- ♦ A.F. López-Lopera. LineqGPR: Gaussian process regression models with linear inequality constraints, 2018.

Future work

• Zig-Zag/Bouncy samplers for truncated multivariate normals?

- GP regression models under linear inequality constraints
 - Finite-dimensional Gaussian approximation
- 2 Sampling from truncated multivariate normals
 - Rejection sampling from the mode (RSM)
 - Separation of variable (SOV)
 - Markov Chain Monte Carlo (MCMC)
- 3 Numerical results
- 4 Conclusions
- References

References I

- Botev, Z. I. (2017). The normal law under linear restrictions: simulation and estimation via minimax tilting. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(1):125–148.
- Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1:141–150.
- Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4):473–483.
- L'Ecuyer, P., Blanchet, J. H., Tuffin, B., and Glynn, P. W. (2010). Asymptotic robustness of estimators in rare-event simulation. ACM Trans. Model. Comput. Simul., 20(1):6:1–6:41.
- López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2017). Finite-dimensional Gaussian approximation with linear inequality constraints. $ArXiv\ e-prints$.
- Maatouk, H. and Bay, X. (2016). A New Rejection Sampling Method for Truncated Multivariate Gaussian Random Variables Restricted to Convex Sets, pages 521–530. Springer International Publishing, Cham.
- Maatouk, H. and Bay, X. (2017). Gaussian process emulators for computer experiments with inequality constraints. *Mathematical Geosciences*, 49(5):557–582.
- Pakman, A. and Paninski, L. (2014). Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians. Journal of Computational and Graphical Statistics, 23(2):518-542.
- Taylor, J. and Benjamini, Y. (2017). RestrictedMVN: multivariate normal restricted by affine constraints. https://cran.r-project.org/web/packages/restrictedMVN/index.