CENG 424 - Logic for Computer Science 2023-1

Homework 2

Anıl Eren Göçer e2448397@ceng.metu.edu.tr

November 4, 2023

1. Let's construct truth tables for the given premises and conclusion r.

p	q	r	$\neg q$	$p \wedge q$	$p \wedge q \Rightarrow r$	$q \vee \neg q$	р
0	0	0	1	0	1	1	0
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	0
0	1	1	0	0	1	1	0
1	0	0	1	0	1	1	1
1	0	1	1	0	1	1	1
1	1	0	0	1	0	1	1
1	1	1	0	1	1	1	1

Table 1: Truth Table for Premises

The last three column on Table 1 above corresponds the truth table values of the given premises.

p	q	r	r
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Table 2: Truth Table for the Conclusion

The last columnd on Table 2 above corresponds the truth table values of the conclusion.

Now, we need to eliminate all rows that do not satisfy premises in the Table 1 and we need to eliminate all rows that do not satisfy premises in the Table 2. Please go to the next page.

р	q	r	$\neg q$	$p \wedge q$	$p \land q \Rightarrow r$	$q \vee \neg q$	p
X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X
1	0	0	1	0	1	1	1
1	0	1	1	0	1	1	1
X	X	X	X	X	X	X	X
1	1	1	0	1	1	1	1

Table 3: Truth Table for Premises after elimination of rows

р	q	r	r
X	X	X	X
0	0	1	1
X	X	X	X
0	1	1	1
X	Χ	X	X
1	0	1	1
X	X	X	Χ
1	1	1	1

Table 4: Truth Table for the Conclusion after elimination of rows

As you can see from the Table 3 and Table 4, remaining rows in the first table are 5th, 6th and 8th rows and remaining rows in the second table 2nd, 4th, 6th and 8th rows. Since $\{5,6,8\}$ is not a subset of $\{2,4,6,8\}$, given premises does **NOT** entail the conclusion.

2.

1. $p \Rightarrow q$	Premise
$2. q \Rightarrow r$	Premise
3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$	II
$4. p \Rightarrow (q \Rightarrow r)$	MP: 2, 3
5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$	ID
6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$	MP: 4, 5
7. $p \Rightarrow r$	MP: 1, 6
8. $(p \Rightarrow r) \Rightarrow ((p \Rightarrow \neg r) \Rightarrow \neg p)$	CR
9. $((p \Rightarrow \neg r) \Rightarrow \neg p)$	MP: 7, 8

3. Here is a formal proof for p from the premise $\neg \neg p$.

$ 1. \neg \neg p$	Premise
$2. \neg \neg p \Rightarrow (\neg p \Rightarrow \neg \neg p)$	II
$3. \neg p \Rightarrow \neg \neg p$	MP: 1, 2
$4. (\neg p \Rightarrow \neg p) \Rightarrow ((\neg p \Rightarrow \neg \neg p) \Rightarrow p)$	CR
$5. (\neg p \Rightarrow ((\neg p \Rightarrow \neg p) \Rightarrow \neg p)) \Rightarrow ((\neg p \Rightarrow (\neg p \Rightarrow \neg p)) \Rightarrow (\neg p \Rightarrow \neg p))$	ID
6. $(\neg p \Rightarrow ((\neg p \Rightarrow \neg p) \Rightarrow \neg p)$	II
7. $(\neg p \Rightarrow (\neg p \Rightarrow \neg p)) \Rightarrow (\neg p \Rightarrow \neg p)$	MP: 5, 6
$8. \neg p \Rightarrow (\neg p \Rightarrow \neg p)$	II
9. $\neg p \Rightarrow \neg p$	MP: 7, 8
$10. (\neg p \Rightarrow \neg \neg p) \Rightarrow p$	MP: 4, 9
11. p	MP: 3, 10

If you want to see the assignments in each step in which I used a standard axiom schemata, you can find them below.

Step 2: II,
$$\varphi = \neg \neg p$$
, $\Psi = \neg p$

Step 4: CR,
$$\varphi = \neg p$$
, $\Psi = p$

Step 5: ID
$$\varphi = \neg p, \Psi = \neg p \Rightarrow \neg p, \chi = \neg p$$

Step 6: II,
$$\varphi = \neg p$$
, $\Psi = \neg p \Rightarrow \neg p$

Step 8: II,
$$\varphi = \neg p$$
, $\Psi = \neg p$

4. Let's rewrite the sentence with paranthesis in order to avoid confusion by taking precedence of operators into account.

$$((p \lor q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$$

Now, let's apply INDO steps to write it in the clausal form.

Implications out:

$$(\neg (p \lor q) \lor r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$$
$$(\neg (p \lor q) \lor r) \Rightarrow (\neg p \lor (q \Rightarrow r))$$
$$(\neg (p \lor q) \lor r) \Rightarrow (\neg p \lor (\neg q \lor r))$$
$$\neg (\neg (p \lor q) \lor r) \lor (\neg p \lor (\neg q \lor r))$$

Negations in:

$$((p \lor q) \land \neg r) \lor (\neg p \lor (\neg q \lor r))$$

Distribution:

$$\begin{split} ((p \wedge \neg r) \vee (q \wedge \neg r)) \vee (\neg p \vee \neg q \vee r) \\ (p \wedge \neg r) \vee (q \wedge \neg r) \vee \neg p \vee r \vee \neg q \\ (p \wedge \neg r) \vee (q \wedge \neg r) \vee (\neg p \vee r) \vee \neg q \\ T \end{split}$$

Operators out:

{}

We have already obtained $\{\}$, so we showed that the sentence is valid.

5 (old question). First, I will write given premises in CNF form.

$$\phi_1 = p \Rightarrow (q \lor r)$$

$$= \neg p \lor (q \lor r)$$

$$= \neg p \lor q \lor r$$

$$= \{\neg p, q, r\}$$

$$\begin{split} \phi_2 &= r \vee s \Rightarrow t \\ &= (r \vee s) \Rightarrow t \\ &= \neg (r \vee s) \vee t \\ &= (\neg r \wedge \neg s) \vee t \\ &= (t \vee \neg r) \wedge (t \vee \neg s) \\ &= \{t, \neg r\}, \{t, \neg s\} \end{split}$$

$$\phi_3 = \neg(p \land q) \Rightarrow t$$

$$= \neg(\neg(p \land q)) \lor t$$

$$= (p \land q) \lor t$$

$$= (p \lor t) \land (q \lor t)$$

$$= \{p, t\}, \{q, t\}$$

$$\phi_4 = q \Rightarrow (s \land r)$$

$$= \neg q \lor (s \land r)$$

$$= (\neg q \lor s) \land (\neg q \lor r)$$

$$= \{\neg q, s\}, \{\neg q, r\}$$

$$\phi_5 = \neg(\neg q \Rightarrow t)$$

$$= \neg(\neg(\neg q) \lor t)$$

$$= \neg(q \lor t)$$

$$= \neg q \land \neg t$$

$$= \{\neg q\}, \{\neg t\}$$

Now, I will use these CNF forms in the following parts.

(a)

Observe that our Negated goal is $q \vee t$ which yields $\{q,t\}$.

1. $\{\neg q, s\}$	Premise, ϕ_4
$2. \{\neg q, r\}$	Premise, ϕ_4
3. $\{\neg q\}$	Premise, ϕ_5
$4. \{\neg t\}$	Premise, ϕ_5
5. $\{q, t\}$	Negated Goal
6. $\{t\}$	3, 5
7. {}	4, 6

We obtained $\{\}$ at step 7, so we showed $\{\phi_4, \phi_5\} \vdash \neg (q \lor t)$.

(b)

Observe that our Negated goal is $q \wedge \neg t$ which yields $\{q\}, \{\neg t\}$.

$1. \{\neg p, q, r\}$	Premise, ϕ_1
$2. \{t, \neg r\}$	Premise, ϕ_2
3. $\{t, \neg s\}$	Premise, ϕ_2
4. $\{p, t\}$	Premise, ϕ_3
5. $\{q, t\}$	Premise, ϕ_3
6. $\{\neg q, s\}$	Premise, ϕ_4
7. $\{\neg q, r\}$	Premise, ϕ_4
8. $\{q\}$	Negated Goal
9. $\{\neg t\}$	Negated Goal
10. $\{\neg r\}$	2, 9
11. $\{\neg s\}$	3, 9
12. $\{\neg q\}$	6, 11
13. {}	8, 12

We obtained $\{\}$ at step 13, so we showed $\{\phi_1, \phi_2, \phi_3, \phi_4\} \vdash (\neg q \lor t)$.

(c) Let's calculate negated goal

$$\neg(\neg q \lor (q \land s \land t)) = q \land \neg(q \land s \land t) = q \land (\neg q \lor \neg s \lor \neg t)$$

and it yields $\{q\}, \{\neg q, \neg s, \neg t\}$

Premise, ϕ_4
Premise, ϕ_4
Negated Goal
Negated Goal
1, 3
1, 4
2, 3
4, 6
3, 8
5, 9

We obtained $\{\}$ at step 10, so we showed $\{\phi_4\} \vdash \neg q \lor (q \land s \land t)$.