Landmark Detection and 3D Face Reconstruction for Caricature using a Nonlinear Parametric Model

Hongrui Cai¹, Yudong Guo¹, Zhuang Peng¹, Juyong Zhang¹

¹University of Science and Technology of China

What is our goal?

• Given a single caricature image (first row), our algorithm generates its **3D model** with orientation (second row) and **corresponding landmarks** (third row).

Why 2D landmarks of caricatures are required?

• Most of caricature related works need facial landmarks to help preprocess the caricatures.

Generation

[Cao et al. 2018]

Reconstruction

[Wu et al. 2018]

Editing

[Chen et al. 2020]

Challenges

- Abstract and exaggerate patterns
- Large representation varieties
- No real shading information

Reconstruction results of traditional methods

Detection results of baselines

Related work

Automatic landmark detection for caricatures

[Sadimon et al. 2015]

• 3D caricature reconstruction

[Han et al. 2017]

[Wu et al. 2018]

Related work of normal face reconstruction

[Blanz et al. 1999]

Realistic Modeling

[Li et al. 2020]

Related work of normal face reconstruction

3DMM Heavier 1

[Blanz et al. 1999]

Realistic Modeling

[Li et al. 2020]

• Could not directly applied to general caricatures

Our solution

- Construct a caricature dataset with 2D images, labeled landmarks, and 3D meshes
- Via a deformation representation, propose a deep learning method to recover 3D shape and weak perspective parameters

Our solution

- Construct a caricature dataset with 2D images, labeled landmarks, and 3D meshes
- Via a deformation representation, propose a deep learning method to recover 3D shape and weak perspective parameters

Existing datasets

- IIIT-CFW [Mishra et al. 2016] Dataset:
 - 8,928 annotated cartoon faces of 100 public figures
 - with additional attributes, such as age group, expression

Existing datasets

- WebCaricature [Huo et al. 2018] Dataset:
 - Images of 6,042 caricatures and 5,974 photos from 252 persons
 - 17 facial landmarks for each image

Dataset Construction and Augmentation

- Select nearly 6K caricatures from the Internet, then label 68 landmarks on each image
- Based on CariGANs [Cao et al. 2018], generate around 2K caricatures and corresponding landmarks
- Adopt an optimization based method [Wu et al. 2018] to recover 3D meshes

Our solution

- Construct a caricature dataset with 2D images, labeled landmarks, and 3D meshes
- Via a deformation representation, propose a deep learning method to recover 3D shape and weak perspective parameters

• Compute deformation gradient T_i of i^{th} vertex with edge weight c_{ij} :

$$\min_{\mathbf{T}_i} \sum_{j \in \mathcal{N}_i} c_{ij} \| (\mathbf{p}_i' - \mathbf{p}_j') - \mathbf{T}_i (\mathbf{p}_i - \mathbf{p}_j) \|_2^2, \tag{1}$$

- Polar decomposition of T_i : $T_i = R_i S_i$.
- Logarithm of rotation part \mathbf{R}_i . It allow effective linear combination for $\log \mathbf{R}_i$.
- Transformation of scaling / shear part S_i .

• Compute deformation gradient T_i of i^{th} vertex with edge weight c_{ij} :

$$\min_{\mathbf{T}_i} \sum_{j \in \mathcal{N}_i} c_{ij} \| (\mathbf{p}_i' - \mathbf{p}_j') - \mathbf{T}_i (\mathbf{p}_i - \mathbf{p}_j) \|_2^2, \tag{1}$$

- Polar decomposition of T_i : $T_i = R_i S_i$.
- Logarithm of rotation part \mathbf{R}_i . It allow effective linear combination for $\log \mathbf{R}_i$.
- Transformation of scaling / shear part S_i .

• Compute deformation gradient T_i of i^{th} vertex with edge weight c_{ij} :

$$\min_{\mathbf{T}_i} \sum_{j \in \mathcal{N}_i} c_{ij} \| (\mathbf{p}_i' - \mathbf{p}_j') - \mathbf{T}_i (\mathbf{p}_i - \mathbf{p}_j) \|_2^2, \tag{1}$$

- Polar decomposition of T_i : $T_i = R_i S_i$.
- Logarithm of rotation part \mathbf{R}_i . It allow effective linear combination for $\log \mathbf{R}_i$.
- Transformation of scaling / shear part S_i .

- The deformation representation of i^{th} vertex:
 - matrix form $\{\log \mathbf{R}_i, \mathbf{S}_i \mathbf{I}\}$
 - vector form $[\mathbf{r}_i, \mathbf{s}_i] \in \mathbb{R}^9$

Deformation base

• Based on a reference mesh and n deformed meshes, build a linear combination of deformation representations:

$$\mathbf{T}_{i}(\mathbf{w}) = \exp\left(\sum_{l=1}^{n} w_{R,l} \log \mathbf{R}_{i}^{l}\right) \left(\mathbf{I} + \sum_{l=1}^{n} w_{S,l} (\mathbf{S}_{i}^{l} - \mathbf{I})\right), \quad (4)$$

• Compute the Jacobian matrix $\partial \mathbf{T}_i(\mathbf{w})/\partial \mathbf{w}$, then use the Levenberg-Marquardt algorithm to solve:

$$\min_{\mathbf{w}} \sum_{v_i \in \mathcal{V}} \sum_{j \in \mathcal{N}_i} c_{ij} \| (\mathbf{p}_i' - \mathbf{p}_j') - \mathbf{T}_i(\mathbf{w}) (\mathbf{p}_i - \mathbf{p}_j) \|^2, \quad (5)$$

Deformation base

• Based on a reference mesh and n deformed meshes, build a linear combination of deformation representations:

$$\mathbf{T}_{i}(\mathbf{w}) = \exp\left(\sum_{l=1}^{n} w_{R,l} \log \mathbf{R}_{i}^{l}\right) \left(\mathbf{I} + \sum_{l=1}^{n} w_{S,l} (\mathbf{S}_{i}^{l} - \mathbf{I})\right), \quad (4)$$

• Compute the Jacobian matrix $\partial \mathbf{T}_i(\mathbf{w})/\partial \mathbf{w}$, then use the Levenberg-Marquardt algorithm to solve:

$$\min_{\mathbf{w}} \sum_{v_i \in \mathcal{V}} \sum_{j \in \mathcal{N}_i} c_{ij} \| (\mathbf{p}_i' - \mathbf{p}_j') - \mathbf{T}_i(\mathbf{w}) (\mathbf{p}_i - \mathbf{p}_j) \|^2, \quad (5)$$

Deformation base

• Based on a reference mesh and n deformed meshes, build a linear combination of deformation representations:

$$\mathbf{T}_{i}(\mathbf{w}) = \exp\left(\sum_{l=1}^{n} w_{R,l} \log \mathbf{R}_{i}^{l}\right) \left(\mathbf{I} + \sum_{l=1}^{n} w_{S,l} (\mathbf{S}_{i}^{l} - \mathbf{I})\right), \quad (4)$$

• Compute the Jacobian matrix $\partial \mathbf{T}_i(\mathbf{w})/\partial \mathbf{w}$, then use the Levenberg-Marquardt algorithm to solve:

$$\min_{\mathbf{w}} \sum_{v_i \in \mathcal{V}} \sum_{j \in \mathcal{N}_i} c_{ij} \| (\mathbf{p}_i' - \mathbf{p}_j') - \mathbf{T}_i(\mathbf{w}) (\mathbf{p}_i - \mathbf{p}_j) \|^2,$$

$$\vee \text{ertex of caricature} \quad \text{vertex of mean face}$$

Deep learning framework

- use ResNet-34 backbone as the encoder, 3 Fully Connected layers as the decoder
- use the PCA basis of deformation presentation $\{\log \mathbf{R}_i, \mathbf{S}_i\}$ to initialize the last FC layer

Deep learning framework

Recover the vertex coordinate $\{\hat{\mathbf{p}}'_i\}$ from estimated deformation representation $(\log \hat{\mathbf{R}}_i, \hat{\mathbf{S}}_i)$ by solving: $\underset{\{\hat{\mathbf{p}}'_i\}}{\arg\min} \sum_{j \in \mathcal{N}_i} c_{ij} \|(\hat{\mathbf{p}}'_i - \hat{\mathbf{p}}'_j) - \hat{\mathbf{T}}_i(\mathbf{p}_i - \mathbf{p}_j)\|_2^2$, (6)

$$\geq \sum_{j \in \mathcal{N}_i} c_{ij} (\hat{\mathbf{p}}_i' - \hat{\mathbf{p}}_j') = \sum_{j \in \mathcal{N}_i} c_{ij} (\hat{\mathbf{T}}_i + \hat{\mathbf{T}}_j) (\mathbf{p}_i - \mathbf{p}_j).$$
 (7)

Silhouette updating strategy

- Construct an optional landmark set from each horizontal line that has a vertex lying on the silhouette
- In each training time, select among them a set of updated silhouette landmarks according to estimated rotation matrix $\hat{\mathbf{R}}$

Loss Function

Loss for Caricature Shape

$$\mathbf{E}_{ver}(\boldsymbol{\chi}_s) = \sum_{v_i \in \mathcal{V}} \|\hat{\mathbf{p}}_i' - \mathbf{p}_i'\|_2^2, \tag{8}$$

Loss for Landmarks

$$\mathbf{E}_{lan}(\boldsymbol{\chi}_s, \boldsymbol{\chi}_p) = \sum_{v_i \in \mathcal{L}'} \|\hat{\mathbf{\Pi}}\hat{\mathbf{R}}\hat{\mathbf{p}}_i' + \hat{\mathbf{t}} - \mathbf{q}_i'\|_2^2, \tag{9}$$

• Total loss function

$$\mathbf{E} = \lambda_1 \mathbf{E}_{ver} + \lambda_2 \mathbf{E}_{lan}, \tag{10}$$

 λ_1, λ_2 : hyperparameters

Ablation studies

- Augmented data
- PCA initialization
- Silhouette updating strategy

	mean	inter	inter	diagonal	
	error	-pupil	-ocular		
w/o Augmented	5.85	9.29	6.34	2.38	
w/o PCA	6.91	11.01	7.52	2.82	
w/o Sil. Update	5.99	9.49	6.48	2.44	
Ours	5.64	8.93	6.10	2.30	

Comparison

Comparison

Comparison

	mean	inter	inter	diagonal	time
	error	-pupil	-ocular	diagonal	(ms)
DAN	5.78	9.93	6.80	2.59	25.9
ERT	8.24	14.52	9.95	3.71	2.7
VCNN	14.04	24.33	16.67	6.39	1.6
L-PCA	5.87	10.08	6.91	2.64	4.8
V-PCA	6.20	10.68	7.32	2.79	6.4
DR-PCA	5.75	9.89	6.77	2.58	9.3
Ours	4.98	8.51	5.82	2.23	9.8

Thanks

Q&A

Our constructed dataset, source code, and trained model are available at: https://github.com/Juyong/CaricatureFace