Aproximación del número π

Cathaysa Pérez Quintero Práctica #10

9 de abril de 2014

Resumen

El objetivo es entregar un programa escrito en Python en el que se aproxime el valor de π . Además de su informe escrito en LATEX.

1. Motivación y objetivos

A lo largo de la historia han sido muchas las formas utilizadas por el ser humano para calcular aproximaciones cada vez más exactas del número π . El objetivo de esta práctica de laboratorio es implementar el código Python que permita aproximar el número π con una cierta precisión. π se puede calcular mediante integración:

$$\int_0^1 \frac{4}{1+x^2} dx = 4(atan(1) - atan(0)) = \pi$$

Esta integral¹ se puede aproximar numéricamente con una fórmula de cuadratura.

1.1. Regla del punto medio

Si se utiliza la regla del punto medio se obtiene:

$$\pi \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$
, con $f(x) = \frac{4}{(1+x^2)}$, $x_i = \frac{i-\frac{1}{2}}{n}$, para $i = 1, \dots, n$

2. Ejercicios propuestos

Escriba un programa que reciba como entrada el número de subintervalos con los que se desea abordar la aproximación del número π .

A partir de él se deben calcular y mostrar por la consola:

¹Cálculo matemático usualmente utilizado

- 1. Los extremos de los subintervalos.
- 2. El punto x_i .
- 3. El valor de de la función de aproximación de pi, $f(x_i)$.
- 4. El resultado de la aproximación.
- 5. La constante pi con treinta y cinco decimales.

2.1. Ejemplo

Por ejemplo, si se utilizan 4 subintervalos, la salida debería ser:

```
Introduzca el número de intervalos (n > 0): 4
Subintervalo: [0 , 0.25] x_i: 0.125 fx_i: 3.93846
Subintervalo: [0.25, 0.5] x_i: 0.375 fx_i: 3.50685
Subintervalo: [0.5 , 0.75] x_i: 0.625 fx_i: 2.8764
Subintervalo: [0.75, 1] x_i: 0.875 fx_i: 2.26549
```

El valor aproximado de PI es: 3.14680051839

En forma de tabla:

Subintervalo	XÌ	fxi
0, 0.25	0.125	3.93846
0.25, 0.5	0.375	3.50685
0.5 , 0.75	0.625	2.8764
0.75, 1	0.875	2.26549

Cuadro 1: Es una tabla del ejercicio anterior

En la tabla 1 aparece el ejemplo anterior.

3. Imagen

Figura 1: Imagen ULL

En la figura 1 aparece el logo de la Universidad.