CMPT-413 Computational Linguistics

Anoop Sarkar http://www.cs.sfu.ca/~anoop

March 5, 2012

1/27

Prepositional Phrases

- ▶ noun attach: I bought the shirt with pockets
- verb attach: I washed the shirt with soap
- ► As in the case of other attachment decisions in parsing: it depends on the meaning of the entire sentence needs world knowledge, etc.
- Maybe there is a simpler solution: we can attempt to solve it using heuristics or associations between words

Structure Based Ambiguity Resolution

- Right association: a constituent (NP or PP) tends to attach to another constituent immediately to its right (Kimball 1973)
- Minimal attachment: a constituent tends to attach to an existing non-terminal using the fewest additional syntactic nodes (Frazier 1978)
- These two principles make opposite predictions for prepositional phrase attachment
- Consider the grammar:

$$VP \rightarrow V NP PP$$
 (1)

$$NP \rightarrow NP PP$$
 (2)

for input: I[VP] saw I[NP] the man ... I[PP] with the telescope I[NP], RA predicts that the PP attaches to the NP, i.e. use rule (2), and MA predicts V attachment, i.e. use rule (1)

3/27

Structure Based Ambiguity Resolution

- Garden-paths look structural:
 The emergency crews hate most is domestic violence
- Neither MA or RA account for more than 55% of the cases in real text
- Psycholinguistic experiments using eyetracking show that humans resolve ambiguities as soon as possible in the left to right sequence using the words to disambiguate
- Garden-paths are caused by a combination of lexical and structural effects:

The flowers delivered for the patient arrived

Ambiguity Resolution: Prepositional Phrases in English

Learning Prepositional Phrase Attachment: Annotated Data

•			
n1	р	n2	Attachment
board	as	director	V
chairman	of	N.V.	N
crocidolite	in	filters	V
attention	to	problem	V
asbestos	in	products	N
paper	for	filters	N
three	with	cancer	N
:	:	:	:
	board chairman crocidolite attention asbestos paper	board as chairman of crocidolite in attention to asbestos in paper for	board as director chairman of N.V. crocidolite in filters attention to problem asbestos in products paper for filters

5/27

Prepositional Phrase Attachment

Method	Accuracy
Always noun attachment	59.0
Most likely for each preposition	72.2
Average Human (4 head words only)	88.2
Average Human (whole sentence)	93.2

Back-off Smoothing

- Let 1 represent noun attachment.
- We want to compute probability of noun attachment: p(1 | v, n1, p, n2).
- ▶ Probability of verb attachment is $1 p(1 \mid v, n1, p, n2)$.

7/27

Back-off Smoothing

1. If f(v, n1, p, n2) > 0 and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

3. Else if f(v, p) + f(n1, p) + f(p, n2) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}$$

4. Else if f(p) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, p)}{f(p)}$$

5. Else $\hat{p}(1 \mid v, n1, p, n2) = 1.0$

Prepositional Phrase Attachment: (Collins and Brooks 1995)

- Results: 84.5% accuracy with the use of some limited word classes for dates, numbers, etc.
- ▶ Using complex word classes taken from WordNet (which we shall be looking at later in this course) increases accuracy to 88% (Stetina and Nagao 1998)
- We can improve on parsing performance with Probabilistic CFGs by using the insights taken from PP attachment.
- Modify the PCFG model to be sensitive to words and other context-sensitive features of the input.
- And generalizing to other kinds of attachment problems, like coordination or deciding which constituent is an argument of a verb.

9/27

Some other studies

- ► Toutanova, Manning, and Ng, 2004: use sophisticated smoothing model for PP attachment 86.18% with words & stems; with word classes: 87.54%
- Merlo, Crocker and Berthouzoz, 1997: test on multiple PPs, generalize disambiguation of 1 PP to 2-3 PPs

14 structures possible for 3PPs assuming a single verb: all 14 are attested in the Treebank same model as CB95; but generalized to dealing with upto

same model as CB95; but generalized to dealing with upto 3PPs

1PP: 84.3% 2PP: 69.6% 3PP: 43.6%

Note that this is still not the real problem faced in parsing natural language

Probability Models

- \triangleright p(x, y): x = input, y = labels
- Pick best prob distribution p(x, y) to fit the data
- Max likelihood of the data according to the prob model equivalent to minimizing entropy

11/27

Probability Models

- Max likelihood of the data according to the prob model
- Equivalent to picking best parameter values θ such that the data gets highest likelihood:

$$\max_{\theta} p(\theta \mid \text{data}) = \max_{\theta} p(\theta) \cdot p(\text{data} \mid \theta)$$

Advantages of probability models

- parameters can be estimated automatically, while scores have to twiddled by hand
- parameters can be estimated from supervised or unsupervised data
- probabilities can be used to quantify confidence in a particular state and used to compare against other probabilities in a strictly comparable setting
- modularity: p(semantics) · p(syntax | semantics) · p(morphology | syntax) · p(phonology | morphology) · p(sounds | phonology)

13/27

Naive Bayes Classifier

- **x** is the input that can be represented as *d* independent features f_i , $1 \le j \le d$
- y is the output classification

$$P(y \mid \mathbf{x}) = \frac{P(y) \cdot P(\mathbf{x}|y)}{P(\mathbf{x})}$$

$$P(\mathbf{x} \mid y) = \prod_{j=1}^{d} P(f_j \mid y)$$

$$P(y \mid \mathbf{x}) = P(y) \cdot \prod_{j=1}^{d} P(f_j \mid y)$$

Using Naive Bayes for Document Classification

- ► Spam text: Learn how to make \$38.99 into a money making machine that pays ... \$7,000 / month!
- Distinguish spam text from regular email text
- Find useful features to make this distinction

15/27

Using Naive Bayes

- Useful features
 - 1. contains turn \$AMOUNT into
 - 2. contains \$AMOUNT
 - 3. contains Learn how to
 - 4. contains exclamation mark at end of sentence

Using Naive Bayes

how many times do these features occur?

1. contains: turn \$AMOUNT into

in spam text: 50 in normal email: 2

i.e. 25x more likely in spam

2. contains: \$AMOUNT in spam text: 90 in normal email: 10

i.e. 9x more likely in spam

17/27

Using Naive Bayes

► How likely is it for *both* features to occur at the same time in a spam message?

1. contains: turn \$AMOUNT into

contains: \$AMOUNT

- Assume we have a new feature, contains: turn \$AMOUNT into and \$AMOUNT
- ► The model predicts that the event that both features occur simultaneously has probability $\frac{140}{152} = 0.92$
- ▶ But Naive Bayes assumes that these features are independent and should occur with probability: 0.92 · 0.9 = 0.864

18/27

Using Naive Bayes

- Naive Bayes needs overlapping but independent features
- How can we use all of the features we want?
 - 1. contains turn \$AMOUNT into
 - 2. contains \$AMOUNT
 - 3. contains Learn how to
 - 4. contains exclamation mark at end of sentence
- how about giving each feature a weight w equal to its log probability: $w = \log p(f, y)$

19/27

Using Naive Bayes

- each feature gets a score equal to its log probability
- Assign scores to features:
 - 1. $w_1 = +1$ contains turn \$AMOUNT into
 - 2. $w_2 = +5$ contains \$AMOUNT
 - 3. $w_3 = +0.2$ contains Learn how to
 - 4. $w_4 = -2$ contains exclamation mark at end of sentence

Using Naive Bayes

- so add the scores and treat it like a log probability
- ► log *p*(*spam* | *feats*) = 4.2
- but then, p(spam | feats) = exp(4.2) = 66.68
- how do we compute keep arbitrary scores and still get probabilities?

21/27

Log linear model

- Let there be m features, $f_k(\mathbf{x}, y)$ for k = 1, ..., m
- ▶ Define a parameter vector $\mathbf{w} \in \mathbb{R}^m$
- ► Each (**x**, y) pair is mapped to score:

$$s(\mathbf{x},y) = \sum_{k} w_{k} \cdot f_{k}(\mathbf{x},y)$$

Using inner product notation:

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y) = \sum_{k} w_{k} \cdot f_{k}(\mathbf{x}, y)$$

 $\mathbf{s}(\mathbf{x}, y) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$

► To get a probability from the score: Renormalize!

$$\Pr(y \mid \mathbf{x}, \mathbf{w}) = \frac{exp(s(\mathbf{x}, y))}{\sum_{y'} exp(s(\mathbf{x}, y'))}$$

Log linear model

▶ The name 'log-linear model' comes from:

$$\log \Pr(y \mid \mathbf{x}, \mathbf{w}) = \underbrace{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)}_{\text{linear term}} - \underbrace{\log \sum_{y'} exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y'))}_{\text{normalization term}}$$

- Once the weights are learned, we can perform predictions using these features.
- ▶ The goal: to find **w** that maximizes the log likelihood $L(\mathbf{w})$ of the labeled training set containing (\mathbf{x}_i, y_i) for i = 1...n

$$L(\mathbf{w}) = \sum_{i} \log \Pr(y_{i} \mid \mathbf{x}_{i}, \mathbf{w})$$

$$= \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \log \sum_{y'} \exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y'))$$

23/27

Log linear model

Maximize:

$$L(\mathbf{w}) = \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \log \sum_{y'} exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y'))$$

Calculate gradient:

$$\frac{dL(\mathbf{w})}{d\mathbf{w}}\Big|_{\mathbf{w}}$$

$$= \sum_{i} \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \frac{1}{\sum_{y''} \exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y''))}$$

$$\sum_{y'} \mathbf{f}(\mathbf{x}_{i}, y') \cdot \exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y'))$$

$$= \sum_{i} \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \sum_{y'} \mathbf{f}(\mathbf{x}_{i}, y') \frac{\exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y'))}{\sum_{y''} \exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y''))}$$

$$= \sum_{i} \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \sum_{y'} \mathbf{f}(\mathbf{x}_{i}, y') \Pr(y' \mid \mathbf{x}_{i}, \mathbf{w})$$
Observed counts
$$= \sum_{i} \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \sum_{y'} \mathbf{f}(\mathbf{x}_{i}, y') \Pr(y' \mid \mathbf{x}_{i}, \mathbf{w})$$
Expected counts

24/27

Log linear model

- ► Init: $\mathbf{w}^{(0)} = \mathbf{0}$
- t ← 0
- Iterate until convergence:
 - $\begin{array}{ll} \quad \text{Calculate: } \Delta = \left. \frac{\textit{dL}(\mathbf{w})}{\textit{dw}} \right|_{\mathbf{w} = \mathbf{w}^{(t)}} \\ \quad \text{Find } \beta^* = \operatorname{argmax}_{\beta} L(\mathbf{w}^{(t)} + \beta \Delta) \end{array}$

 - ► Set $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \beta^* \Delta$

25/27

Learning the weights: w: Generalized Iterative Scaling

```
f^{\#} = \max_{x,y} \sum_{j=1}^{k} f_j(x,y)
For each iteration
      expected[1 .. # of features] \leftarrow 0
      For i = 1 to | training data |
             For each feature f_i
                    expected[j] += f_j(x_i, y_i) \cdot P(y_i \mid x_i)
      For each feature f_i
             observed[j] = f_j(x, y) \cdot \frac{c(x, y)}{|\text{training data}|}
      For each feature f_j
             w_j \leftarrow w_j \cdot \sqrt[f^\#]{\frac{\int_{j}^{j} \text{observed[j]}}{\text{expected[j]}}}
```

cf. Goodman, NIPS '01

Maximum Entropy

- ► The log-linear model has an interpretation as a *maximum entropy* model.
- ► For observed events, maximize likelihood. For unobserved events, from all consistent models pick the one with maximum entropy.
- ► The maximum entropy principle: related to Occam's razor and other similar justifications for scientific inquiry
- Make the minimum possible assumptions about unseen data
- ► Also: Laplace's *Principle of Insufficient Reason*: when one has no information to distinguish between the probability of two events, the best strategy is to consider them equally likely

27/27