

Multiples Testen

-Verallgemeinerter Bonferroni-Abschlusstest und Gatekeeping Prozeduren-

Dr. Martin Scharpenberg

MSc Medical Biometry/Biostatistics

WiSe 2019/2020

Bonferroni-Abschlusstests

Abschlusstestprinzip mit Bonferroni-Tests

• Wir berechnen für H_0^1, \ldots, H_0^h die p-Werte p_1, \ldots, p_h und testen jedes $H_0^J = \cap_{j \in J} H_0^j$, $J \subseteq J_0$, mit seinem Bonferroni-Test

$$arphi_J^lpha = \mathbf{1}_{\{\min_{j \in J} p_j \leq lpha/|J|\}}$$

- Ist $(\varphi_J^{\alpha})_{J\subseteq\{1,...,h\}}$ kohärent? Folgt aus $J\subseteq J''$, dass $\varphi_J^{\alpha}\leq \varphi_{J''}^{\alpha}$?
- Nein! Ein Beispiel: $\alpha = 0.05$ und

$$p_1 = 0.015$$
, $p_2 = 0.018$, $p_3 = 0.02$, $p_4 = 0.08$

Dann ist

$$\min_{i \in \{1,2,3,4\}} p_i = 0.015 > \alpha/4 = 0.0125 \qquad \text{(also } \varphi^{\alpha}_{\{1,2,3,4\}} = 0\text{)}$$

$$\min_{i \in \{3,4\}} p_i = 0.2 \le 0.05/2 = 0.025 \qquad \text{(also } \varphi^{\alpha}_{\{3,4\}} = 1\text{)}$$

• Wir müssen also den Abschlusstest betrachten!

Abschlusstestprinzip mit Bonferroni-Tests für h=2

- Beispiel: $\alpha = 0.05$, $\alpha/2 = 0.025$, $p_1 = 0.04$, $p_2 = 0.04$
- Wir können weder H_0^1 noch H_0^2 verwerfen!
- Was verwirft der Bonferroni-Test?
- Der Bonferroni-Test verwirft ebenfalls keine der Hypothesen!

Abschlusstestprinzip mit Bonferroni-Tests für h=2

- Beispiel: $\alpha = 0.05$, $\alpha/2 = 0.025$, $p_1 = 0.02$, $p_2 = 0.04$
- Wir können H_0^1 und H_0^2 verwerfen!
- Was verwirft der Bonferroni-Test?
- Der Bonferroni-Test verwirft nur H₀¹!

Abschlusstestprinzip für drei Hypothesen

$$\alpha = 0.05, \ \alpha/2 = 0.025, \ \alpha/3 = 0.0167$$
 $p_1 = 0.02, \ p_2 = 0.03, \ p_3 = 0.04$

$$p_1 = 0.02, p_2 = 0.03, p_3 = 0.04$$

Abschlusstestprinzip für drei Hypothesen

$$\alpha = 0.05$$
, $\alpha/2 = 0.025$, $\alpha/3 = 0.0167$

$$p_1 = 0.01, p_2 = 0.03, p_3 = 0.04$$

Abschlusstestprinzip mit Bonferroni-Tests

- Der Bonferroni-Abschlusstest kann wie folgt formalisiert werden:
 - Wir verwerfen H_0^i falls

$$\min_{j \in J''} p_j \leq lpha/|J''|$$
 für alle $J'' \subseteq \{1,\ldots,h\}$ mit $J'' \ni i$,

bzw.
$$\phi_i^{\alpha}=1$$
, wobei $\phi_i^{\alpha}=\min_{J''\ni i}\varphi_{J''}^{\alpha}$

• Wir verwerfen H_0^J für $J \subseteq J_0$ falls

$$\min_{j \in J''} p_j \leq \alpha/|J''|$$
 für alle $J'' \subseteq \{1, \dots, h\}$ mit $J'' \supseteq J$

bzw.
$$\phi_J^{lpha}=1$$
, wobei $\phi_J^{lpha}=\min_{J''\supseteq J} \varphi_{J''}^{lpha}$

Ist dieser Abschlusstest konsonant?

Abschlusstestprinzip für drei Hypothesen - nocheinmal

$$\alpha = 0.05$$
, $\alpha/2 = 0.025$, $\alpha/3 = 0.0167$

$$p_1 = 0.01$$
, $p_2 = 0.03$, $p_3 = 0.04$

Erinnerung: Lokale Konsonanz

Definition – Lokale Konsonanz

Gegeben seien die Hypothesen H_0^1, \ldots, H_0^h . Ein multipler Test φ^{α} auf dem Abschuss $\mathcal{H} = \mathcal{C}(H_0^1, \ldots, H_0^h)$ heißt **lokal konsonant**, falls für alle $J \subseteq \{1, \ldots, h\}$

$$\{\varphi_J^\alpha=1\}=\bigcup_{i\in J}\{\min_{i\in J'\subseteq J}\varphi_{J'}^\alpha=1\}$$

- Lokale Konsonanz bedeutet, dass für jedes $J \subseteq J_0$ der (lokale) Abschlusstest auf $\mathcal{C}(H_0^j:j\in J)$ konsonant ist
- Falls $arphi_J^{lpha}=\mathbf{1}_{\{\min_{i\in J}p_i\leq lpha/|J|\}}$ dann ist die lokale Konsonanz äquivalent zu

$$\min_{j \in J} p_j \leq \alpha/|J| \quad \Rightarrow \quad \exists \ i \in J \ \mathrm{mit} \quad \min_{j \in J'} p_j \leq \alpha/|J'| \quad \forall i \in J' \subseteq J$$

Lokale Konsonanz - Beispiel

$$p_1 = \min(p_1, p_2, p_4) \le \alpha/3 \implies p_1 = \min(p_1, p_j) \le \alpha/2 \le \alpha \ (j = 2, 4)$$

Lokale Konsonanz des Bonferroni-Abschlusstests

ullet Falls $arphi_J^lpha=\mathbf{1}_{\{\min_{j\in J}p_j\leqlpha/|J|\}}$, dann bedeutet lokale Konsonanz, dass

$$\min_{j \in J} p_j \le \alpha/|J| \quad \Rightarrow \quad \exists \ i \in J \ \text{mit} \quad \min_{j \in J'} p_j \le \alpha/|J'| \quad \forall J' \subseteq J: \ i \in J'$$

für alle $J \subseteq \{1, \ldots, h\}$

Satz - Bonferroni Abschlusstest

Die Bonferroni-Tests $\varphi_J^{\alpha} = \mathbf{1}_{\{\min_{i \in J} p_i \leq \alpha/|J|\}}$, $J \subseteq \{1, \dots, h\}$, sind lokal konsonant.

• Beweis: Wähle $i \in J$, so dass $p_i = \min_{i \in J} p_i$. Dann folgt aus

$$p_i = \min_{j \in J} p_j \le \alpha/|J|,$$

dass für alle $J' \subseteq J$ mit $i \in J'$

$$\min_{i \in J'} p_i \le p_i \le \alpha/|J| \le \alpha/|J'|$$

Eine Abkürzung des Bonferroni-Abschlusstests

Ordne die p-Werte: $p_{i_1} \leq \cdots \leq p_{i_h}$

- 1. Wenn $p_{i_1} > \alpha/|\{i_1,\ldots,i_h\}|$ stoppe und akzeptiere mit $H_0^{\{i_1,\ldots,i_h\}}$ alle $H_0^{i_1}$. Wenn $p_{i_1} \leq \alpha/|\{i_1,\ldots,i_h\}|$ verwerfe $H_0^{\{i_1,\ldots,i_h\}}$. Dann gilt: lokale Konsonanz \Rightarrow alle H_0^{J} mit $i_1 \in J \subseteq \{i_1,\ldots,i_h\}$ werden verworfen \Rightarrow der Abschluss-Test verwirft $H_0^{i_1}$. Gehe zu Schritt 2.
- 2. Wenn $p_{i_2} > \alpha/|\{i_2,\ldots,i_h\}|$ stoppe und akzeptiere $H_0^{\{i_2,\ldots,i_h\}}$ und $H_0^{i_j}$ für $j \geq 2$. Wenn $p_{i_2} \leq \alpha/|\{i_2,\ldots,i_h\}|$ verwerfe $H_0^{\{i_2,\ldots,i_h\}}$ und damit $H_0^{i_1}$ und alle H_0^J mit $i_2 \subseteq J \subseteq \{i_2,\ldots,i_h\}$. Gehe zu Schritt 3.
- k. Wenn $p_{i_k} \leq \alpha/|\{i_k, \dots, i_h\}|$, verwerfe $H_0^{i_k}$ und gehe zu Schritt k+1., ansonsten stoppe und akzeptiere alle $H_0^{i_j}$, $j \geq k$.
- k+1. Wenn $p_{i_{k+1}} \leq \alpha/|\{i_{k+1},\ldots,i_h\}|$, verwerfe $H_0^{i_{k+1}}$ und gehe zu Schritt k+2., ansonsten stoppe und akzeptiere alle $H_0^{i_j}$, $j \geq k$.
 - h. Wenn $p_{i_h} \leq \alpha$, dann verwerfe $H_0^{i_h}$, ansonsten akzeptiere $H_0^{i_h}$.
- Da $|\{i_k, \ldots, i_h\}| = h k + 1$ ist dies genau der Bonferroni-Holm-Test

Abkürzung ist identisch zum Bonferroni-Holm-Test:

Ordne die p-Werte: $p_{i_1} \leq \cdots \leq p_{i_h}$ [Bemerkung: $i_j = (j)$].

- 1. Wenn $p_{i_1} \leq \alpha/h$ verwerfe $H_0^{i_1}$ und gehe zu Schritt 2., ansonsten stoppe und akzeptiere alle H_0^i .
- 2. Wenn $p_{i_2} \le \alpha/(h-1)$ verwerfe $H_0^{i_2}$ und gehe zu Schritt 3., ansonsten stoppe und akzeptiere alle $H_0^{i_j}$, $j \ge 2$.

k. Wenn $p_{i_k} \le \alpha/(h-k+1)$, verwerfe $H_0^{i_k}$ und gehe zu Schritt k+1., ansonsten stoppe und akzeptiere alle $H_0^{i_j}$, $j \ge k$.

k+1. Wenn $p_{i_{k+1}} \le \alpha/(h-k)$, verwerfe $H_0^{i_{k+1}}$ und gehe zu Schritt k+2., ansonsten stoppe und akzeptiere alle $H_0^{i_j}$, $j \ge k$.

. .

h. Wenn $p_{i_h} \leq \alpha$, dann verwerfe $H_0^{i_h}$, ansonsten akzeptiere $H_0^{i_h}$.

Gewichteter Bonferroni-Holm-Test für H_0^1, \ldots, H_0^h

- Man kann zeigen, dass der gewichtete Bonferroni-Holm-Test ebenfalls äquivalent zu einem Abschlusstest ist
- Der äquivalente Abschlusstest basiert auf den (lokalen) Tests

$$\varphi_J = \mathbf{1}_{\{\text{für mindestens ein } i \in J: \ p_i \leq \alpha_i^J\},} \quad J \subseteq \{1, \dots, h\}$$

wobei

$$\alpha_i^J = \alpha \frac{w_i}{\sum_{j \in J} w_j} \qquad (\sum_{i \in J} \alpha_j^J = \alpha)$$

• Übung: Zeigen Sie, dass dieser Abschlusstest lokal konsonant und zum gewichteten Bonferroni-Holm-Test äquivalent ist

Verallgemeinerte Bonferroni-Abschlusstests

Verallgemeiteter Bonferroni-Abschlusstest

- Wir können beliebige Gewichte für die einzelnen Indexmengen $J\subseteq\{1,\ldots,h\}$ verwenden
- Spezifiziere für alle $J \subseteq \{1, \ldots, h\}$: $w_i^J \ge 0$, $i \in J$, mit $\sum_{i \in J} w_i^J = 1$
- Wähle als lokalen Test φ_J^α für H_0^J den gewichteten Bonferroni-Test mit den Gewichten w_i^J , $j \in J$:

$$\varphi_J^{lpha} = \mathbf{1}_{\{p_i \leq lpha w_j^J \text{ für mindestens ein } i \in J\}}$$

• Der Abschlusstest verwirft H_0^J mit der Testentscheidungsfunktion

$$\phi_J = \min_{J'' \supseteq J} \varphi_{J''}$$

insbesondere $\phi_i = \min_{J'' \ni i} \varphi_{J''}$

Verallgemeiteter Bonferroni-Abschlusstest

Mit 3 Hypothesen:

Wenn
$$p_1 \leq \alpha w_1^{\{1,2,3\}}$$
 oder $p_2 \leq \alpha w_2^{\{1,2,3\}}$ oder $p_3 \leq \alpha w_3^{\{1,2,3\}}$, verwerfe $H_0^{\{1,2,3\}}$ und gehe zur nächsten Ebene, ansonsten stoppe und akzeptierte alle H_0^J (und damit alle H_0^i).

Wenn
$$p_1 \leq \alpha w_1^{\{1,2\}}$$
 oder $p_2 \leq \alpha w_2^{\{1,2\}}$ verwerfe $H_0^{\{1,2\}}$ ansonsten akzeptiere alle H_0^J mit $J \subseteq \{1,2\}$

$$\begin{aligned} \text{Wenn } p_1 &\leq \alpha w_1^{\{1,3\}} \text{ oder} \\ p_3 &\leq \alpha w_3^{\{1,3\}} \\ \text{verwerfe } H_0^{\{1,3\}}, \\ \text{ansonsten akzeptiere alle } H_0^J \\ \text{mit } J \subseteq \{1,3\} \end{aligned}$$

 $\begin{aligned} \text{Wenn } p_2 &\leq \alpha w_2^{\{2,3\}} \text{ oder} \\ p_3 &\leq \alpha w_3^{\{2,3\}} \\ \text{verwerfe } H_0^{\{2,3\}}, \\ \text{ansonsten akzeptiere alle } H_0^J \\ \text{mit } J \subseteq \{2,3\} \end{aligned}$

Verwerfe H_0^1 wenn $p_1 \leq \alpha$ und $H_0^{\{1,2\}}, H_0^{\{1,3\}}, H_0^{\{1,2,3\}}$ verworfen werden; Verwerfe H_0^2 wenn $p_2 \leq \alpha$ und $H_0^{\{1,2\}}, H_0^{\{2,3\}}, H_0^{\{1,2,3\}}$ verworfen werden; Verwerfe H_0^3 wenn $p_3 \leq \alpha$ und $H_0^{\{1,3\}}, H_0^{\{2,3\}}, H_0^{\{1,2,3\}}$ verworfen werden.

18 / 31

Hierarchischer Test

Teste jede Hypothese zum vollen Niveau α in einer vorgegeben Reihenfolge.

Diese Prozedur kann als verallgemeinerter Bonferroni-Abschlusstest geschrieben werden:

z.B. für $H_0^{\{1,2,3\}}$ sind die Gewichte:

$$w_1^{\{1,2,3\}} = 1, \ w_2^{\{1,2,3\}} = w_3^{\{1,2,3\}} = 0$$

Wir testen $H_0^{\{1,2,3\}}$ mit p_1 . Das gleiche gilt für $H_0^{\{1,2\}}$ und $H_0^{\{1,3\}}$

	Gewichte w _j				
H_0^J	H_0^1	H_0^2	H_0^3		
$H_0^{\{1,2,3\}}$ $H_0^{\{1,2\}}$	1	0	0		
$H_0^{\{1,2\}}$	1	0	_		
$H_0^{\{1,3\}}$	1	_	0		
H^1	1	_	_		
$H_0^{\{2,3\}} \ H_0^2$	_	1	0		
H_0^2	_	1	_		
$H_0^{\bar{3}}$	_	_	1		

Monotonie-Bedingung für lokale Konsonanz

Für lokale Konsonanz benötigen wir die Bedingung

$$w_i^{J'} \ge w_i^J$$
 für alle $i \in J' \subseteq J \subseteq \{1, \dots, h\}$

- Beispiele:
 - Die Bedingung gilt für die Gewichte des Bonferroni-Abschlusstests

$$w_i^J = 1/|J|$$

und des gewichteten Bonferroni-Holm-Tests

$$w_i^J = w_i / \sum_{i \in J} w_i$$

• Die Bedingung gilt auch für die Gewichte des hierarchischen Tests

Lokale Konsonanz

Satz.

Mit der Monotonieeigenschaft der vorigen Folie ist der verallgemeinerte Bonferroni-Abschlusstest lokal konsonant.

Beweis: Wir definieren für $i \in J \subseteq \{1, ..., h\}$ die Größe

$$q_i^J := p_i/w_i^J$$
 so dass $q_i^J \le \alpha \iff p_i \le \alpha_i^J$.

Aus der Monotoniebedingung der letzten Folie folgt

(*)
$$q_i^{J'} \leq q_i^J$$
 für alle $i \in J' \subseteq J \subseteq \{1, ..., h\}$.

Es sei $i_J=\arg\min_{j\in J}q_j^J$ (wir ordnen die q_j^J , $j\in J$). Dann impliziert $\varphi_J^\alpha=1$, dass $q_{i_J}^J=\min_{j\in J}q_j^J\leq \alpha$, und aus (*) folgt

$$\text{für alle } J' \text{ mit } i_J \in J' \subseteq J: \qquad \min_{j \in J'} q_j^{J'} \leq q_{i_J}^{J'} \leq q_{i_J}^{J} \leq \alpha$$

und damit $\varphi_{J'}^{\alpha} = 1$ für alle J' mit $i_J \in J' \subseteq J$.

Abkürzung des verallg. Bonferroni-Abschlusstests

1. Setzte $J_1 = \{1, \dots, h\}$ und bestimme $i_1 = \arg\min_{j=1}^m p_j / w_j^{J_1}$

Wenn $p_{i_1} > \alpha w_j^{J_1}$ stoppe und akzeptiere mit $H_0^{J_1}$ alle H_0^i .

Wenn $p_{i_1} \leq \alpha w_i^{J_1}$ verwerfe $H_0^{J_1}$. Dann gilt:

lokale Konsonanz \Rightarrow alle H_0^J mit $i_1 \in J \subseteq \{1, \dots, h\}$ werden verworfen.

- \Rightarrow der Abschluss-Test verwirft $H_0^{i_1}$. Gehe zu Schritt 2.
- 2. Setzte $J_2 = J_1 \setminus \{i_1\}$ und bestimme $i_2 = \arg\min_{j \in J_2} p_j / w_j^{J_2}$

Wenn $p_{i_2} > \alpha w_{i_2}^{J_2}$ stoppe und akzeptiere $H_0^{J_2}$ und H_0^j für $j \in J_2$.

Wenn $p_{i_2} \leq \alpha w_{i_2}^{j_2}$ verwerfe $H_0^{J_2}$ und damit $H_0^{i_2}$ und alle H_0^J mit $i_2 \in J \subseteq J_2$. Gehe zu Schritt 3.

. .

k. Setzte $J_k = J_{k-1} \setminus \{i_{k-1}\}$ und bestimme $i_k = \arg\min_{j \in J_k} p_j/w_j^{J_k}$ Wenn $p_{i_k} \leq \alpha w_{i_k}^{J_k}$, verwerfe $H_0^{i_k}$ und gehe zu Schritt k+1., ansonsten stoppe und akzeptiere alle $H_0^{i_j}$, $j \geq k$.

. . .

h. Setzte $J_h = \{i_h\} = J_{h-1} \setminus \{i_{h-1}\}$. Wenn $p_{i_h} \leq \alpha$, dann verwerfe $H_0^{i_h}$, ansonsten akzeptiere $H_0^{i_h}$.

Beispiel – Hierarchischer Test: $H_0^1 \rightarrow H_0^2 \rightarrow \cdots \rightarrow H_0^h$

Wir wählen die Gewichte

$$w_i^J = \left\{ egin{array}{ll} 1 & i = \min J \ 0 & \mathrm{sonst} \end{array}
ight. \Longrightarrow \qquad q_i^J = p_i/w_i^J = \left\{ egin{array}{ll} p_i & i = \min J \ \infty & \mathrm{sonst} \end{array}
ight.$$

- 1. $J_1=\{1,\ldots,h\}$ und $i_1=\arg\min_{j=1}^hq_j^{J_1}=1$ Wenn $p_1\leq \alpha$ verwerfe H_0^1 und gehe zu Schritt 2., ansonsten stoppe und akzeptiere alle H_0^i .
- 2. $J_2=J_1\setminus\{1\}=\{2,\ldots,h\}$ und $i_2=\arg\min_{j\in J_2}q_j^{J_2}=2$ Wenn $p_2\leq\alpha$ verwerfe H_0^2 und gehe zu Schritt 3., ansonsten stoppe und akzeptiere alle H_0^i für $i\geq 2$.
- k. $J_k = \{k, \ldots, h\}$ und $i_k = \arg\min_{j \in J_k} q_j^{J_k} = k$ Wenn $p_k \leq \alpha$ verwerfe H_0^k und gehe zu Schritt k+1., ansonsten stoppe und akzeptiere alle H_0^j , $j \geq k$.
- h. $J_h=\{h\}$. Wenn $p_h\leq lpha$, dann verwerfe H_0^h , ansonsten akzeptiere H_0^h .

Gatekeeping-Prozeduren

Beispiel: 2 primäre und 2 sekundäre Hypothesen

- Primäre Hypothesen: H_0^1 und H_0^2 (z.B. Heilung mit Dosis 1 bzw. 2 eines neuen Med.)
- Sekundäre Hypothesen: H_0^3 und H_0^4 (z.B. Schmerzlinderung mit Dosis 1 bzw. 2)
- Eine Verwerfung von H_0^3 oder H_0^4 ist nur sinnvoll, falls H_0^1 oder H_0^2 verworfen wurde.

Test-Strategie

- Bonferroni-Test für H_0^1, H_0^2 : Jede primäre Hypothese wird auf dem Niveau $\alpha/2$ getestet.
- Falls mind. eine primäre Hypothese verworfen wurde: Bonferroni-Test für H_0^3, H_0^4 : jede sekundäre Hypothese wird auf dem Niveau $\alpha/2$ getestet.

Kontrolliert diese Prozedur den FWER (stark) auf dem Niveau α ?

Beispiel: 2 primäre und 2 sekundäre Hypothesen

- Die genannte Test-Strategie kontrolliert die FWER nicht!
- Angenommen $\theta \in A_1 \cap H_0^2 \cap H_0^3 \cap H_0^4$ wobei $A_1 = \Omega \setminus H_0^1$
- Angenommen θ_1 ist so groß, dass $p_1 \leq \alpha/2$ mit Wahrscheinlichkeit ≈ 1
- Dann verwerfen wir H_0^j , j = 2, 3, 4, falls $p_j \le \alpha/2$
- Im Extremfall ist die FWER= $3\alpha/2 > \alpha$

Einfache Form des Parallel Gatekeeping

 H_0^1 **oder** H_0^2 müssen verworfen werden, um H_0^3 oder H_0^4 zu testen.

 $\{1,3\}$ 0.5 - 0

Eine verbesserte Form des Parallelen Gatekeepings (Erklärung nächste Woche)

 H_0^1 oder H_0^2 müssen verworfen werden, um H_0^3 oder H_0^4 zu testen.

0 0					
J	w_i^J				
	H_0^1	H_0^2	H_0^3	H_0^4	
{1,2,3,4}	0.5	0.5	0	0	
$\{1, 2, 3\}$	0.5	0.5	0	_	
$\{1, 2, 4\}$	0.5	0.5	_	0	
$\{1, 2\}$	0.5	0.5	_	_	
$\{1, 3\}$	1	_	0	_	
$\{1, 4\}$	0.5	_	_	0.5	
$\{1, 3, 4\}$	0.5	_	0	0.5	
$\{2, 3, 4\}$	_	0.5	0.5	0	
$\{2,3\}$	_	0.5	0.5	_	
$\{2,4\}$	_	1	_	0	
$\{3,4\}$	_	_	0.5	0.5	

Serielles Gatekeeping

 H_0^1 und H_0^2 müssen verworfen werden, um H_0^3 oder H_0^4 zu testen.

J	W_i^J			
	H_0^1	H_0^2	H_0^3	H_0^4
{1, 2, 3, 4}	0.5	0.5	0	0
$\{1, 2, 3\}$	0.5	0.5	0	_
$\{1, 2, 4\}$	0.5	0.5	_	0
$\{1, 2\}$	0.5	0.5	_	_
$\{1, 3\}$	1	_	0	_
$\{1, 4\}$	1	_	_	0
$\{1, 3, 4\}$	1	_	0	0
$\{2, 3, 4\}$	_	1	0	0
{2,3}	_	1	0	_
$\{2,4\}$	_	1	_	0
$\{3,4\}$	_	_	0.5	0.5

Serielles und paralleles Gatekeeping

• Geben sei einen k (geordnete) Familien von Nullhypothesen

$$\mathcal{F}_j = \{H_{0,j}^1, \dots, H_{0,j}^{h_j}\} \quad j = 1 \dots, k$$

- Im vorigen Beispiel $\mathcal{F}_1=\{H_0^1,H_0^2\}$ und $\mathcal{F}_2=\{H_0^3,H_0^4\}$ (k=2)
- Eine multiple Testprozedur heißt **serielle** Gatekeeping- Prozedur, falls zur Verwerfung einer Hypothese aus \mathcal{F}_j alle Hypothesen aus \mathcal{F}_{j-1} verworfen werden müssen
- Eine multiple Testprozedur heißt **parallele** Gatekeeping- Prozedur, falls zur Verwerfung einer Hypothese aus \mathcal{F}_j mindestens eine Hypothesen aus \mathcal{F}_{j-1} verworfen werden muss

Ausgewählte Arbeiten

A. Dmitrienko, W.W. Offen, and P.H. Westfall.

Gatekeeping strategies for clinical trials that do not require all primary effects to be significant. *Statistics in Medicine*, 22:2387–2400, 2003.

G. Hommel, F. Bretz, and W. Maurer.

Powerful short-cuts for multiple testing procedures with special reference to gatekeeping strategies.

Statistics in Medicine, 26:4063-4073, 2007.

W. Brannath, and F. Bretz.

Shortcuts for locally consonant closed test procedures.

Journal of the American Statistical Association, 105:660-669, 2010.