Chapter 1

On the calucation of $K_2(\mathbb{F}_2[C_4 \times C_4])$

1.1 Abstract

```
We calulate K_2(\mathbb{F}_2[C_4 \times C_4]) by using relative K_2-group K_2(\mathbb{F}_2[t_1,t_2]/(t_1^4,t_2^4),(t_1,t_2)). 本文利用相对 K_2 群 K_2(\mathbb{F}_2[t_1,t_2]/(t_1^4,t_2^4),(t_1,t_2)) 计算 K_2(\mathbb{F}_2[C_4 \times C_4]). keywords: relative K_2-group, Dennis-Stein symbols, truncated polynomial ring 关键词相对 K_2 群, Dennis-Stein 符号, 截断多项式环
```

1.2 Introduction

Let C_n denote the cyclic group of order n. Chen et al. [2] calculated $K_2(\mathbb{F}_2[C_4 \times C_4])$ by the relative K_2 -group $K_2(\mathbb{F}_2C_4[t]/(t^4),(t))$ of the truncated polynomial ring $\mathbb{F}_2C_4[t]/(t^4)$. In this short notes, we use another method to calculate $K_2(\mathbb{F}_2[C_4 \times C_4])$ directly.

1.3 Preliminaries

Let k be a finite field of characteristic p > 0. Let $I = (t_1^m, t_2^n)$ be a proper ideal in the polynomial ring $k[t_1, t_2]$. Put $A = k[t_1, t_2]/I$. We will write the image of t_i in A also as t_i . Let $M = (t_1, t_2)$ be the nilradical of A. Note that A/M = k. One has a presentation for $K_2(A, M)$ in terms of Dennis-Stein symbols:

```
generators: \langle a,b \rangle, (a,b) \in A \times M \cup M \times A;
relations: \langle a,b \rangle = -\langle b,a \rangle, \langle a,b \rangle + \langle c,b \rangle = \langle a+c-abc,b \rangle, \langle a,bc \rangle = \langle ab,c \rangle + \langle ac,b \rangle for (a,b,c) \in A \times M \times A \cup M \times A \times M.
Now we introduce some notations followed [1]
```

- N: the monoid of non-negative integers,
- $\epsilon^1 = (1,0) \in \mathbb{N}^2, \epsilon^2 = (0,1) \in \mathbb{N}^2,$
- for $\alpha \in \mathbb{N}^2$, one writes $t^{\alpha} = t_1^{\alpha_1} t_2^{\alpha_2}$, so $t^{\epsilon^1} = t_1$, $t^{\epsilon^2} = t_2$,
- $\Delta = \{\alpha \in \mathbb{N}^2 \mid t^\alpha \in I\},$
- $\Lambda = \{(\alpha, i) \in \mathbb{N}^2 \times \{1, 2\} \mid \alpha_i \ge 1, t^{\alpha} \in M\},$
- for $(\alpha, i) \in \Lambda$, set $[\alpha, i] = \min\{m \in \mathbb{Z} \mid m\alpha \epsilon^i \in \Delta\}$,
- if $gcd(p, \alpha_1, \alpha_2) = 1$, let $[\alpha] = \max\{[\alpha, i] \mid \alpha_i \not\equiv 0 \bmod p\}$
- $\Lambda^{00} = \{(\alpha, i) \in \Lambda \mid gcd(\alpha_1, \alpha_2) = 1, i \neq \min\{j \mid \alpha_j \not\equiv 0 \bmod p, [\alpha, j] = [\alpha]\}\}$, If $(\alpha, i) \in \Lambda$, $f(x) \in k[x]$, put

$$\Gamma_{\alpha,i}(1-xf(x)) = \langle f(t^{\alpha})t^{\alpha-\epsilon^i}, t_i \rangle,$$

then $\Gamma_{\alpha,i}$ induces a homomorphism

$$(1+xk[x]/(x^{[\alpha,i]}))^{\times} \longrightarrow K_2(A,M).$$

Lemma 1.1. *The* $\Gamma_{\alpha,i}$ *induce an isomorphism*

$$K_2(A,M) \cong \bigoplus_{(\alpha,i)\in\Lambda^{00}} (1+xk[x]/(x^{[\alpha,i]}))^{\times}.$$

Proof. See Corollary 2.6 in [1].

Lemma 1.2. $(1+x\mathbb{F}_2[x]/(x^3))^{\times} \cong \mathbb{Z}/4\mathbb{Z}$, $(1+x\mathbb{F}_2[x]/(x^4))^{\times} \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Proof. It is easy to see that $(1 + x\mathbb{F}_2[x]/(x^3))^{\times}$ is generated by 1 + x, and the order of 1 + x is 4, we conclude that $(1 + x\mathbb{F}_2[x]/(x^3))^{\times} \cong \mathbb{Z}/4\mathbb{Z}$.

Obeserve that the orders of the elements 1+x, $1+x^3 \in (1+x\mathbb{F}_2[x]/(x^4))^{\times}$ are 4 and 2 respectively. The subgroups $\langle 1+x\rangle = \{1,1+x,1+x^2,1+x+x^2+x^3\}$, $\langle 1+x^3\rangle = \{1,1+x^3\}$. Let σ , τ be the generators of $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z}$ respectively, then the homomorphism

$$\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \longrightarrow (1+x\mathbb{F}_2[x]/(x^4))^{\times}$$
$$(\sigma,\tau) \mapsto (1+x)(1+x^3) = 1+x+x^3.$$

is an isomorphism.

1.4 Main result

Let $C_4 \times C_4$ be the direct product of two cyclic groups of order 4, then we have $\mathbb{F}_2[C_4 \times C_4] \cong \mathbb{F}_2[t_1, t_2]/(t_1^4, t_2^4)$ since the characteristic of \mathbb{F}_2 is 2.

1.4. MAIN RESULT 3

Lemma 1.3. $K_2(\mathbb{F}_2[C_4 \times C_4]) \cong K_2(\mathbb{F}_2[t_1, t_2]/(t_1^4, t_2^4), (t_1, t_2)).$

Proof. The following sequence is split exact

$$0 \longrightarrow K_2(\mathbb{F}_2[t_1, t_2]/(t_1^4, t_2^4), (t_1, t_2)) \stackrel{f}{\longrightarrow} K_2(\mathbb{F}_2[t_1, t_2]/(t_1^4, t_2^4)) \stackrel{t_i \mapsto 0}{\longrightarrow} K_2(\mathbb{F}_2) \longrightarrow 0.$$

The homomorphism f is an isomorphism since K_2 -group of any finite field is trivial.

Theorem 1.4. Let $C_4 \times C_4$ be the direct product of two cyclic groups of order 4, then $K_2(\mathbb{F}_2[C_4 \times C_4]) \cong (\mathbb{Z}/4\mathbb{Z})^3 \oplus (\mathbb{Z}/2\mathbb{Z})^9$.

Proof. Set $A = \mathbb{F}_2[t_1, t_2]/(t_1^4, t_2^4)$, then $I = (t_1^4, t_2^4)$, $M = (t_1, t_2)$, $A/M = \mathbb{F}_2$. Thus

$$\Delta = \{(\alpha_1, \alpha_2) \in \mathbb{N}^2 \mid \alpha_1 \ge 4 \text{ or } \alpha_2 \ge 4\},\$$

$$\Lambda = \{(\alpha, i) \mid \alpha_i \geq 1\}.$$

For $(\alpha, i) \in \Lambda$,

$$[\alpha,1] = \min\{\left\lceil \frac{5}{\alpha_1} \right\rceil, \left\lceil \frac{4}{\alpha_2} \right\rceil\},$$

$$[\alpha,2] = \min\{\left\lceil \frac{4}{\alpha_1} \right\rceil, \left\lceil \frac{5}{\alpha_2} \right\rceil\},$$

where $\lceil x \rceil = \min\{m \in \mathbb{Z} \mid m \ge x\}.$

Next we want to compute the set Λ^{00} . Since $(1+x\mathbb{F}_2[x]/(x))^{\times}$ is trivial, it is sufficient to consider the subset $\Lambda^{00}_{>1}:=\{(\alpha,i)\in\Lambda^{00}\mid [(\alpha,i)]>1\}$, and then

$$K_2(A,M) \cong \bigoplus_{(\alpha,i)\in\Lambda^{00}} (1+x\mathbb{F}_2[x]/(x^{[\alpha,i]}))^{\times} = \bigoplus_{(\alpha,i)\in\Lambda^{00}_{>1}} (1+x\mathbb{F}_2[x]/(x^{[\alpha,i]}))^{\times}.$$

- (1) If $1 \le \alpha_1 \le 4$ is even and $1 \le \alpha_2 \le 4$ is odd, then $(\alpha,1) \in \Lambda^{00}_{>1}$ and $[\alpha,1] = \min\{\left\lceil \frac{5}{\alpha_1}\right\rceil, \left\lceil \frac{4}{\alpha_2}\right\rceil\}$.
- (2) If $1 \le \alpha_1 \le 4$ is odd and $1 \le \alpha_2 \le 4$ is even, then $(\alpha, 2) \in \Lambda^{00}_{>1}$ and $[\alpha, 2] = \min\{\left\lceil \frac{4}{\alpha_1} \right\rceil, \left\lceil \frac{5}{\alpha_2} \right\rceil\}$.
- (3) If $1 \le \alpha_1, \alpha_2 \le 4$ are both odd and $gcd(\alpha_1, \alpha_2) = 1$, then $(\alpha, 2) \in \Lambda^{00}_{>1}$ only when $[\alpha] = [\alpha, 1]$.

By the computation	n 1.2, we can get	t the following table
--------------------	-------------------	-----------------------

$(\alpha,i)\in\Lambda^{00}_{>1}$	$[\alpha, i]$	$(1+x\mathbb{F}_2[x]/(x^{[\alpha,i]}))^{\times}$
((2,1),1)	3	$\mathbb{Z}/4\mathbb{Z}$
((2,3),1)	2	$\mathbb{Z}/2\mathbb{Z}$
((4,1),1)	2	$\mathbb{Z}/2\mathbb{Z}$
((4,3),1)	2	$\mathbb{Z}/2\mathbb{Z}$
((1,2),2)	3	$\mathbb{Z}/4\mathbb{Z}$
((1,4),2)	2	$\mathbb{Z}/2\mathbb{Z}$
((1,1),2)	4	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}$
((1,3),2)	2	$\mathbb{Z}/2\mathbb{Z}$
((3,2),2)	2	$\mathbb{Z}/2\mathbb{Z}$
((3,4),2)	2	$\mathbb{Z}/2\mathbb{Z}$
((3,1),2)	2	$\mathbb{Z}/2\mathbb{Z}$

Hence $K_2(\mathbb{F}_2[C_4 \times C_4]) \cong (\mathbb{Z}/4\mathbb{Z})^3 \oplus (\mathbb{Z}/2\mathbb{Z})^9$.

Furthermore, one can use the homomorphism $\Gamma_{\alpha,i}$ to determine the generators as below, the generators of order 4:

$$\langle t_1t_2, t_1 \rangle$$
, $\langle t_1t_2, t_2 \rangle$, $\langle t_1, t_2 \rangle$,

the generators of order 2:

$$\langle t_1t_2^3,t_1\rangle,\langle t_1^3t_2,t_1\rangle,\langle t_1^3t_2^3,t_1\rangle,\langle t_1t_2^3,t_2\rangle,\langle t_1^3t_2^2,t_2\rangle,\langle t_1t_2^2,t_2\rangle,\langle t_1^3t_2,t_2\rangle,\langle t_1^3t$$

Remark 1.5. Compared with [2], note that $\langle t_1^3, t_2 \rangle = \langle t_1^2 t_2, t_1 \rangle$, because

$$\begin{split} \langle t_1^3, t_2 \rangle &= \langle t_1^2, t_1 t_2 \rangle - \langle t_1^2 t_2, t_1 \rangle \\ &= \langle t_1, t_1^2 t_2 \rangle - \langle t_1^2 t_2, t_1 \rangle - \langle t_1^2 t_2, t_1 \rangle \\ &= -3 \langle t_1^2 t_2, t_1 \rangle \\ &= -\langle t_1^2 t_2, t_1 \rangle \\ &= \langle t_1^2 t_2, t_1 \rangle, \end{split}$$

since $\langle t_1^2 t_2, t_1 \rangle + \langle t_1^2 t_2, t_1 \rangle = \langle 0, t_1 \rangle = 0$ and $\langle t_1^3, t_2 \rangle = -\langle t_1^3, t_2 \rangle$.

参考文献

- [1] Wilberd van der Kallen and Jan Stienstra. The relative K_2 of truncated polynomial rings. In *Proceedings of the Luminy conference on algebraic K-theory (Luminy, 1983)*, volume 34, pages 277–289, 1984.
- [2] 唐国平陈虹, 高玉彬. $K_2(\mathbb{F}_2[C_4 \times C_4])$ 的计算. 中国科学院大学学报, 28(4):419, 2011.