

Digital Talent Scholarship 2022

Multivariate Calculus

Lead a sprint through the Machine Learning with Tensorflow

Agenda

- Introduction to Optimisation
- Fitting as minimisation problem
- Newton Raphson
- Langrage multipiers

Are your students ML-ready?

Intro to optimisation

https://www.youtube.com/watch?v=Q2dewZweAtU

Fitting as minimisation problem

Newton-Raphson

Metode Newton-Raphson (juga dikenal sebagai metode Newton) adalah cara untuk menemukan aproksimasi yang baik dengan cepat untuk akar fungsi bernilai riil f(x)=0 f(x)=0 f(x)=0.

Ini menggunakan gagasan bahwa fungsi kontinu dan terdiferensiasi dapat didekati dengan garis lurus yang bersinggungan dengannya.

Newton Raphson Formula

Newton's Iterative Formula to Find b th Root of a Positive Real Number a	The iterative formula is given by: $x_{n+1} = rac{1}{b} \left[(b-1) x_n + rac{a}{x_n^{b-1}} ight]$
Newton's Iterative Formula to Find a Reciprocal of a Number N	The iterative formula is given by: $x_{i+1} = x_i(2 - x_iN)$

https://www.youtube.com/watch?v=W7S94pq5Xuo

Interpretasi Geometris Rumus Newton Raphson

Arti geometris metode Raphson Newton adalah bahwa garis singgung ditarik di titik [x0, f(x0)] terhadap kurva y = f(x).

Ini memotong sumbu x di x1, yang akan menjadi pendekatan akar yang lebih baik. Sekarang, menggambar garis singgung lain di [x1, f(x1)], yang memotong sumbu x di x2, yang merupakan pendekatan yang masih lebih baik dan proses dapat dilanjutkan hingga akurasi yang diinginkan tercapai.

Konvergensi Metode Newton Raphson

Orde kekonvergenan metode Newton Raphson adalah 2 atau konvergensinya kuadrat. Konvergen jika |f(x).f''(x)| < |f'(x)|2. Juga, metode ini gagal jika f'(x) = 0.

FaQ

Where is the Newton Raphson method used?

Metode Newton Raphson adalah teknik yang efisien untuk menyelesaikan persamaan secara numerik. Ini memberi kita perkiraan yang lebih baik dalam hal solusi.

Which is the correct formula of the Newton Raphson method?

$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$

Is the Newton Raphson method always convergent?

Tidak, metode Newton Raphson tidak selalu konvergen. Itu berarti tidak selalu dapat menjamin bahwa kondisi terpenuhi. Namun, metode ini gagal ketika f'(x) sama dengan 0.

Lagrange multipliers

What is Lagrange multipliers?

Dalam optimasi matematis, metode Lagrange Multipliers adalah strategi untuk menemukan maxima dan minima lokal dari suatu fungsi yang tunduk pada kendala kesetaraan (yaitu, tunduk pada kondisi bahwa satu atau lebih persamaan harus dipenuhi secara tepat oleh nilai-nilai yang dipilih dari variabel).

https://www.youtube.com/watch?v=yuqB-d5MjZA

Formula

$$\mathcal{L}(x,\lambda) = f(x) - \lambda g(x)$$

```
\mathcal{L} = Lagrangian
```

 λ = Lagrange multiplier

g(x) = equality constraint

f(x) = function

x = integer

Demo Code Lagrange Multipliers

Non-linear regression

What is non-linear least squares?

Nonlinear Least Squares (NLS) adalah teknik optimasi yang dapat digunakan untuk membangun model regresi untuk kumpulan data yang berisi fitur nonlinier. Model untuk kumpulan data tersebut adalah nonlinier dalam koefisiennya.

https://www.youtube.com/watch?v=UVvz8UfbHw8

Fitting the distribution of height data - DEMO

Q&A

Sounding Demo

Terimakasih