Lab-05_Unsupervised_Anamoly_Detection 321910302051

K.Kalyani

```
In [1]:
          import numpy as np
           import pandas as pd
           import seaborn as sns
          data=pd.read csv("creditcard lab 5.csv")
In [2]:
In [3]:
           data.shape
          (284807, 31)
           data.head()
In [4]:
Out[4]:
             Time
                          V1
                                    V2
                                             V3
                                                        V4
                                                                  V5
                                                                             V6
                                                                                       V7
                                                                                                  V8
                                                                                                            V9 ...
                                                                                                                         V21
                                                                                                                                    V22
                                                                                                                                              V23
                                                                                                                                                        V24
               0.0 -1.359807
                              -0.072781 2.536347
                                                   1.378155
                                                            -0.338321
                                                                        0.462388
                                                                                  0.239599
                                                                                            0.098698
                                                                                                       0.363787 ... -0.018307
                                                                                                                               0.277838
                                                                                                                                         -0.110474
                                                                                                                                                    0.066928
                    1.191857
                               0.266151 0.166480
                                                   0.448154
                                                             0.060018
                                                                       -0.082361
                                                                                 -0.078803
                                                                                            0.085102
                                                                                                      -0.255425
                                                                                                                ...
                                                                                                                    -0.225775
                                                                                                                               -0.638672
                                                                                                                                          0.101288
                                                                                                                                                    -0.339846
                                                            -0.503198
                                                                        1.800499
                                                                                  0.791461
                                                                                                                                          0.909412
               1.0 -1.358354
                             -1.340163 1.773209
                                                   0.379780
                                                                                            0.247676
                                                                                                     -1.514654 ...
                                                                                                                     0.247998
                                                                                                                               0.771679
                                                                                                                                                    -0.689281 -0.
                   -0.966272
                              -0.185226 1.792993
                                                  -0.863291
                                                            -0.010309
                                                                        1.247203
                                                                                  0.237609
                                                                                            0.377436
                                                                                                      -1.387024 ...
                                                                                                                    -0.108300
                                                                                                                               0.005274
                                                                                                                                         -0.190321
                                                                                                                                                    -1.175575
               2.0 -1.158233
                              0.877737 1.548718
                                                   0.403034
                                                            -0.407193
                                                                       0.095921
                                                                                  0.592941
                                                                                           -0.270533
                                                                                                       0.817739
                                                                                                                ... -0.009431
                                                                                                                               0.798278
                                                                                                                                         -0.137458
         5 rows × 31 columns
          data.tail()
In [5]:
```

							,	, .								
[5]:		Time	V1	V2	V3	V4	V	75 V6	V7	V8	V9	•••	V21	V22	V2	!3
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.36447	73 -2.606837	-4.918215	7.305334	1.914428		0.213454	0.111864	1.01448	30 -0.5
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.86822	29 1.058415	0.024330	0.294869	0.584800		0.214205	0.924384	0.01246	53 -1.0
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.63051	15 3.031260	-0.296827	0.708417	0.432454		0.232045	0.578229	-0.03750	0.6
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.37796	0.623708	-0.686180	0.679145	0.392087		0.265245	0.800049	-0.16329	98 0.1
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.01254	16 -0.649617	1.577006	-0.414650	0.486180		0.261057	0.643078	0.37677	77 0.0
	4	<pre>< 31 column describe()</pre>														
[6]:	uacas	Tii		V1	V2		V3	V4		V5	V6		V7		V8	
	count	284807.0000			.848070e+05			2.848070e+05	2.848070e-		3070e+05	2.8	48070e+05)e+05	2.84807
	mean	94813.8595	75 3.9195	560e-15	5.688174e-16	-8.76907	1e-15 2	2.782312e-15	-1.552563e	-15 2.01	0663e-15	-1.6	594249e-15	-1.927028	8e-16	-3.1370
	std	47488.1459	55 1.9586	96e+00 1	.651309e+00	1.516255	e+00 1	l.415869e+00	1.380247e	+00 1.332	271e+00	1.2	37094e+00	1.194353	8e+00	1.09863
	min	0.0000	000 -5.6407	51e+01 -7	.271573e+01	-4.832559	e+01 -5	5.683171e+00	-1.137433e+	+02 -2.616	6051e+01	-4.3	55724e+01	-7.321672	e+01 -	1.34340
	25%	54201.5000	000 -9.2037	734e-01 -	5.985499e-01	-8.903648	8e-01 -8	8.486401e-01	-6.915971e	-01 -7.68	2956e-01	-5.5	540759e-01	-2.086297	7e-01	-6.43097
	50%	84692.0000	00 1.8108	380e-02	5.548556e-02	1.798463	3e-01 -	1.984653e-02	-5.433583e	-02 -2.74	1871e-01	4.0)10308e-02	2.235804	4e-02	-5.14287
	75%	139320.5000	000 1.3156	42e+00 8	3.037239e-01	1.027196	e+00	7.433413e-01	6.119264e	-01 3.98	5649e-01	5.7	704361e-01	3.273459	9e-01	5.97139
	max	172792.0000	00 2.4549	30e+00 2	.205773e+01	9.382558	e+00 1	1.687534e+01	3.480167e	+01 7.330	163e+01	1.2	05895e+02	2.000721	e+01	1.55949
	4	< 31 columi	ns		_	_	_	-								>
[7]:	data.:	ınto														
t[7]:	<box>bound 0 1 2</box>	0.0	-1.35980 1.1918	07 -0.07 57 0.26	2781 2.536 6151 0.166 0163 1.77	6347 1.3 6480 0.4	48154	0.060018	V3	V	4	V5	\			

```
3
                 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
4
                  -1.158233
                              0.877737
                                       1.548718
             2.0
                                                 0.403034 -0.407193
       172786.0
                 -11.881118
                             10.071785 -9.834783 -2.066656 -5.364473
284802
284803
       172787.0
                  -0.732789
                             -0.055080
                                        2.035030 -0.738589
                                                           0.868229
284804 172788.0
                   1.919565
                             -0.301254 -3.249640 -0.557828 2.630515
284805
       172788.0
                  -0.240440
                              0.530483
                                        0.702510
                                                 0.689799 -0.377961
284806 172792.0
                 -0.533413 -0.189733 0.703337 -0.506271 -0.012546
              V6
                        V7
                                  V8
                                            V9
                                                          V21
                                                                    V22 \
a
        0.462388
                  0.239599
                            0.098698
                                      0.363787
                                                 ... -0.018307
                                                               0.277838
1
       -0.082361 -0.078803
                            0.085102 -0.255425
                                                 ... -0.225775 -0.638672
2
        1.800499
                  0.791461
                            0.247676 -1.514654
                                                     0.247998
                                                               0.771679
3
        1.247203
                  0.237609
                            0.377436 -1.387024
                                                 ... -0.108300
                                                               0.005274
4
        0.095921
                  0.592941 -0.270533
                                      0.817739
                                                    -0.009431
                                                               0.798278
284802 -2.606837 -4.918215
                            7.305334
                                      1.914428
                                                     0.213454
                                                               0.111864
284803 1.058415
                  0.024330
                            0.294869
                                      0.584800
                                                     0.214205
                                                               0.924384
284804
       3.031260 -0.296827
                            0.708417
                                      0.432454
                                                     0.232045
                                                               0.578229
284805 0.623708 -0.686180
                            0.679145
                                      0.392087
                                                     0.265245
                                                               0.800049
284806 -0.649617 1.577006 -0.414650
                                      0.486180
                                                     0.261057 0.643078
             V23
                       V24
                                                     V27
                                 V25
                                           V26
                                                                V28
                                                                    Amount
a
       -0.110474
                  0.066928
                            0.128539 -0.189115
                                                0.133558 -0.021053
                                                                    149.62
1
        0.101288 -0.339846
                            0.167170
                                      0.125895 -0.008983
                                                                       2.69
2
        0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
                                                                     378.66
3
       -0.190321 -1.175575  0.647376 -0.221929  0.062723
                                                         0.061458
                                                                    123,50
                  0.141267 -0.206010
4
       -0.137458
                                      0.502292
                                                0.219422 0.215153
                                                                      69.99
                                                                        . . .
284802 1.014480
                 -0.509348
                           1.436807
                                      0.250034
                                                0.943651 0.823731
                                                                      0.77
284803
       0.012463 -1.016226
                           -0.606624 -0.395255
                                                0.068472 -0.053527
                                                                      24.79
                  0.640134
                            0.265745 -0.087371
                                                0.004455 -0.026561
                                                                      67.88
284804 -0.037501
284805 -0.163298
                  0.123205 -0.569159
                                      0.546668
                                                0.108821 0.104533
                                                                      10.00
284806 0.376777
                  0.008797 -0.473649 -0.818267 -0.002415 0.013649
                                                                    217.00
        Class
0
1
            0
2
            0
3
4
            0
284802
            0
284803
284804
            0
284805
            0
284806
```

[284807 rows x 31 columns]> In [8]: data.nunique() Out[8]: Time 124592 V1 275663 V2 275663 V3 275663 275663 V4 V5 275663 V6 275663 V7 275663 ٧8 275663 V9 275663 V10 275663 275663 V11 275663 V12 V13 275663 275663 V14 V15 275663 V16 275663 275663 V17 275663 V18 V19 275663 V20 275663 275663 V21 V22 275663 V23 275663 275663 V24 275663 V25 V26 275663 275663 V27 V28 275663 Amount 32767 Class 2 dtype: int64 In [9]: data['V10'].unique() Out[9]: array([0.09079417, -0.16697441, 0.20764287, ..., -0.48478176, -0.39912565, -0.91542665]) data['Amount'].unique() In [10]: Out[10]: array([149.62, 2.69, 378.66, ..., 381.05, 337.54, 95.63])

```
data.isnull().sum()
   In [11]:
Out[11]: Time
                                                                                                                                                                                                                                           0
                                                                                                                   V1
                                                                                                                                                                                                                                           0
                                                                                                                   V2
                                                                                                                   V3
                                                                                                                   V4
                                                                                                                   V5
                                                                                                                   V6
                                                                                                                   ٧7
                                                                                                                   V8
                                                                                                                   V9
                                                                                                                  V10
                                                                                                                  V11
                                                                                                                   V12
                                                                                                                   V13
                                                                                                                   V14
                                                                                                                   V15
                                                                                                                  V16
                                                                                                                  V17
                                                                                                                   V18
                                                                                                                   V19
                                                                                                                   V20
                                                                                                                   V21
                                                                                                                   V22
                                                                                                                  V23
                                                                                                                   V24
                                                                                                                   V25
                                                                                                                   V26
                                                                                                                   V27
                                                                                                                   V28
                                                                                                                   Amount
                                                                                                                   Class
                                                                                                                   dtype: int64
                                                                                                                          data.isnull()
   In [12]:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       V9 ... V21 V22 V23 V24
Out[12]:
                                                                                                                                                                                                                Time
                                                                                                                                                                                                                                                                                                 V1
                                                                                                                                                                                                                                                                                                                                                                  V2
                                                                                                                                                                                                                                                                                                                                                                                                                               V3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              V4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               V5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              V6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            V7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           V8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          V25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         V26 V27
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       V28 Amount Class
                                                                                                                                                                            0 False Fa
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    False False
                                                                                                                                                                                                                                                                        False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False False 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            False
                                                                                                                                                                            2 False Fals
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      False
                                                                                                                                                                               3 False Fals
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      False False
```

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	•••	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
4	False		False	False																	
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
284802	False		False	False																	
284803	False		False	False																	
284804	False		False	False																	
284805	False		False	False																	
284806	False		False	False																	

284807 rows × 31 columns

In [14]: data.notnull().sum()

284807 Out[14]: Time V1 284807 V2 284807 V3 284807 V4 284807 V5 284807 V6 284807 V7 284807

٧8 284807 V9 284807 V10 284807 V11 284807 V12 284807 V13 284807 V14 284807 V15 284807 284807 V16 V17 284807 V18 284807 V19 284807 V20 284807 V21 284807 V22 284807 V23 284807 V24 284807 V25 284807 V26 284807 V27 284807 V28 284807 Amount 284807 Class 284807 dtype: int64

In [15]:

data.dropna()

	V23	V22	V21	•••	V9	V8	V7	V6	V5	V4	V3	V2	V1	Time		Out[15]:
	-0.110474	0.277838	-0.018307		0.363787	0.098698	0.239599	0.462388	-0.338321	1.378155	2.536347	-0.072781	-1.359807	0.0	0	
-(0.101288	-0.638672	-0.225775		-0.255425	0.085102	-0.078803	-0.082361	0.060018	0.448154	0.166480	0.266151	1.191857	0.0	1	
-(0.909412	0.771679	0.247998		-1.514654	0.247676	0.791461	1.800499	-0.503198	0.379780	1.773209	-1.340163	-1.358354	1.0	2	
-1	-0.190321	0.005274	-0.108300		-1.387024	0.377436	0.237609	1.247203	-0.010309	-0.863291	1.792993	-0.185226	-0.966272	1.0	3	
C	-0.137458	0.798278	-0.009431		0.817739	-0.270533	0.592941	0.095921	-0.407193	0.403034	1.548718	0.877737	-1.158233	2.0	4	
-(1.014480	0.111864	0.213454		1.914428	7.305334	-4.918215	-2.606837	-5.364473	-2.066656	-9.834783	10.071785	-11.881118	172786.0	284802	
-1	0.012463	0.924384	0.214205		0.584800	0.294869	0.024330	1.058415	0.868229	-0.738589	2.035030	-0.055080	-0.732789	172787.0	284803	
C	-0.037501	0.578229	0.232045		0.432454	0.708417	-0.296827	3.031260	2.630515	-0.557828	-3.249640	-0.301254	1.919565	172788.0	284804	
C	-0.163298	0.800049	0.265245		0.392087	0.679145	-0.686180	0.623708	-0.377961	0.689799	0.702510	0.530483	-0.240440	172788.0	284805	

	Tir	ne	\	/1	V2	2	V3		V4	V	5	•	/6	V7	•	V 8		V9		V21	V22
284806	17279	2.0 -	0.5334	13 -0	.189733	3 0.70)3337	-0.5062	271 -	0.01254	6 -	-0.6496	17 1	.577006	-0.41	4650	0.486	180	0.26	61057 0	.643078
284807 ı	rows ×	31 co	lumns																		
4																					
data1=	data.d	dropna	1()																		
data1.	isnull	L()																			
	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9		V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
0	False																				False
	False																			False	False
2	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False	False	False	False	False
•••																					
284802	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False	False	False	False	False
284803	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False	False	False	False	False
284804	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False	False	False	False	False
284805	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False	False	False	False	False
284806	False	False	False	False	False	False	False	False	False	False		False	False	False	False	False	False	False	False	False	False
284807 ı	rows ×	31 co	lumns																		
import import import import %matpl import	numpy math rando	/ as r om inlir	ıp																		

```
from matplotlib import pyplot
import os
```

Anomaly Detection Algorithms: Isolation

Forest vs the Rest

Isolation Forests in Python

```
1. Forest
2. Isolation Tree
3. Evaluation (Path Length)

In [20]: class ExNode:
    def __init__(self,size):
        self.size=size

class InNode:
    def __init__(self,left,right,splitAtt,splitVal):
        self.left=left
        self.right=right
        self.splitAtt=splitAtt
        self.splitVal=splitVal
```

FOREST

```
In [23]: def iForest(X,noOfTrees,sampleSize):
    forest=[]
    hlim=math.ceil(math.log(sampleSize,2))
    for i in range(noOfTrees):
        X_train=X.sample(sampleSize)
        forest.append(iTree(X_train,0,hlim))
    return forest
```

ISOLATION TREE

```
In [24]:
    def iTree(X,currHeight,hlim):
        if currHeight>=hlim or len(X)<=1:
            return ExNode(len(X))
    else:
        Q=X.columns
        q=random.choice(Q)
        p=random.choice(X[q].unique())
        X_l=X[X[q]<p]
        X_r=X[X[q]>=p]
        return InNode(iTree(X_l,currHeight+1,hlim),iTree(X_r,currHeight+1,hlim),q,p)
```

PATH LENGTH

```
In [25]: def pathLength(x,Tree,currHeight):
    if isinstance(Tree,ExNode):
        return currHeight
    a=Tree.splitAtt
    if x[a]<Tree.splitVal:
        return pathLength(x,Tree.left,currHeight+1)
    else:
        return pathLength(x,Tree.right,currHeight+1)</pre>
```

TEST RUN

```
In [26]: df=pd.read_csv("creditcard_lab_5.csv")
    y_true=df['Class']
    df_data=df.drop('Class',1)
```

CREATING THE FOREST

```
In [27]: sampleSize=10000
  ifor=iForest(df_data.sample(100000),10,sampleSize)
```

Selecting 1000 random datapoints to get their path lengths. The purpose for this is to plot and see if anomalies actually have shorter path lengths.

```
In [28]: posLenLst=[]
    negLenLst=[]
    for sim in range(1000):
        ind=random.choice(df_data[y_true==1].index)
        for tree in ifor:
            posLenLst.append(pathLength(df_data.iloc[ind],tree,0))

        ind=random.choice(df_data[y_true==0].index)
        for tree in ifor:
            negLenLst.append(pathLength(df_data.iloc[ind],tree,0))
```

Plotting the Path Lengths

In []: