第10章 動態規劃

題號 10.2-2

11.2-2.

(a)

The optimal routes are O - A - F - T and O - C - H - T, the associated sales income is 140. The route O - A - F - T corresponds to assigning 1, 2, and 3 salespeople to regions 1, 2, and 3 respectively. The route O - C - H - T corresponds to assigning 3, 2, and 1 salespeople to regions 1, 2, and 3 respectively.

(b) The regions are the stages and the number of salespeople remaining to be allocated at stage n are possible states at stage n, say s_n . Let x_n be the number of salespeople assigned to region n and $c_n(x_n)$ be the increase in sales in region n if x_n salespeople are assigned to it. Number of stages: 3.

s_3	$f_3^*(s_3)$	x_3^*
1	28	1
2	41	2
3	63	3
4	75	4

		$f_2(s_2,$				
s_2	1	2	3	4	$f_2^st(s_2)$	x_2^*
2	49	_	_	_	49	1
3	62	70	_	_	70	2
4	84	83	84	_	84	1,3
5	96	105	97	98	105	2

	j	$f_1(s_1, s_1)$				
s_1	1	2	3	4	$f_1^*(s_1)$	x_1^*
6	140	132	140	138	140	1,3

The optimal solutions are $(x_1^* = 1, x_2^* = 2, x_3^* = 3)$ and $(x_1^* = 3, x_2^* = 2, x_3^* = 1)$.

題號 10.3-3

11.3-3.

Let x_n be the number of study days allocated to course n, $p_n(x_n)$ be the number of grade points expected when x_n days are allocated to course n and s_n be the number of study days remaining to be allocated to courses $k \ge n$. Then

$$f_n^*(s_n) = \max_{1 \leq x_n \leq \min(s_n, 4)} \left[p_n(x_n) + f_{n+1}^*(s_n - x_n) \right].$$

Number of stages: 4

<i>s</i> ₄	$f_4^*(s_4)$	x_4^*
1	6	1
2	7	2
3	9	3
4	9	4

		$f_3(.$	(s_3, x_3)			
83	1	2	3	4	$f_3^*(s_3)$	x_3^*
2	8	_	_	_	8	1
3	9	10	_	_	13	2
4	11	11	13	_	13	3
5	11	13	14	14	14	3, 4

		$f_2(s$	$_{2},x_{2})$			
s_2	1	2	3	4	$f_2^*(s_2)$	x_2^*
3	13	_	_	_	13	1
4	15	13	_	_	15	1
5	18	15	14	_	18	1
6	19	18	16	17	19	1

		$f_1(s$	$[x_1, x_1]$			
s_1	1	2	3	$f_1^*(s_1)$	x_1^*	
7	22	23	21	20	23	2

Optimal Solution	x_1^*	x_2^*	x_3^*	x_4^*
1	2	1	3	1

題號 10.3-8

11.3-8.

Let x_n be the number of parallel units of component n that are installed, $p_n(x_n)$ be the probability that the component will function if it contains x_n parallel units, $c_n(x_n)$ be the cost of installing x_n units of component n, s_n be the amount of money remaining in hundreds of dollars. Then

$$f_n^*(s_n) = \max_{x_n = 0, \dots, \min(3, \alpha_{s_n})} \left[p_n(x_n) f_{n+1}^*(s_n - c_n(x_n)) \right]$$

where $\alpha_{s_n} \equiv \max\{\alpha : c_n(\alpha) \leq s_n, \alpha \text{ integer}\}.$

s_4	$f_4^*(s_4)$	x_4^*
0,1	0	0
2	0.5	1
3	0.7	2
$4 \le s_4 \le 10$	0.9	3

$$f_3(s_3, x_3) = P_3(x_3) f_4^*(s_3 - c_3(x_3))$$

		$f_3(s)$				
s_3	O	1	2	3	$f_3^*(s_3)$	x_3^*
0	O	_	_	_	0	0
1,2	0	0	_	_	0	0, 1
3	0	0.35	0	_	0.35	1
4	0	0.49	0	0	0.49	1
5	0	0.63	0.40	0	0.63	1
6	0	0.63	0.56	0.45	0.63	1
7	0	0.63	0.72	0.63	0.72	2
$8 \le s_3 \le 10$	0	0.63	0.72	0.81	0.81	3

$$f_2(s_2, x_2) = P_2(x_2) f_3^*(s_2 - c_2(x_2))$$

		$f_2(s_2$	(x, x_2)			
s_2	0	1	2	3	$f_2^*(s_2)$	x_2^*
0, 1	O	_	_	_	0	0
2, 3	0	0			0	0, 1
4	0	0	О	_	0	0, 1, 2
5	O	0.210	О	О	0.210	1
6	0	0.294	0	0	0.294	1
7	O	0.378	0.245	О	0.378	1
8	0	0.378	0.343	0.280	0.378	1
9	0	0.432	0.441	0.392	0.441	2
10	O	0.486	0.441	0.504	0.504	3

$$f_1(s_1, x_1) = P_1(x_1) f_2^*(s_1 - c_1(x_1))$$

		$f_1(s)$				
s_1	0	1	2	3	$f_1^*(s_1)$	x_1^*
10	0	0.22	0.227	0.302	0.302	3

The optimal solution is $x_1^* = 3$, $x_2^* = 1$, $x_3^* = 1$ and $x_4^* = 3$, yielding a system reliability of 0.3024.

題號 10.4-1

11.4-1.

Let s_n be the current fortune of the player, A be the event to have \$100 at the end and X_n be the amount bet at the nth match.

$$f_3^*(s_3) = \max_{0 \le x_3 \le s_3} \{ P\{A|s_3\} \}$$

$$0 \le s_3 < 50, f_3^*(s_3) = 0.$$

$$50 \le s_3 < 100, f_3^*(s_3) = \begin{cases} 0 & \text{if } x_3^* \ne 100 - s_3 \\ 1/2 & \text{if } x_3^* = 100 - s_3 \end{cases}$$

$$s_3 = 100, f_3^*(s_3) = \begin{cases} 0 & \text{if } x_3^* > 0 \\ 1 & \text{if } x_3^* = 0 \end{cases}$$

$$s_3 > 100, f_3^*(s_3) = \begin{cases} 0 & \text{if } x_3^* \neq s_3 - 100 \\ 1/2 & \text{if } x_3^* = s_3 - 100 \end{cases}$$

s_3	$f_3^*(s_3)$	x_3^*	
$0 \le s_3 < 50$	0	$0 \leq x_3^* \leq 50$	
$50 \le s_3 < 100$	1/2	$100 - s_3$	
$s_3 = 100$	1	0	
$100 < s_3$	1/2	$s_3 - 100$	

$$f_2^*(s_2) = \max_{0 \le x_2 \le s_2} \left[\frac{1}{2} f_3^*(s_2 - x_2) + \frac{1}{2} f_3^*(s_2 + x_2) \right]$$

s_2	$f_2^*(s_2)$	x_2^*
$0 \le s_2 < 25$	O	$0 \le x_2 \le s_2$
$25 \le s_2 < 50$	0	$0 \le x_2 \le 50 - s_2$
	1/4	$50 - s_2 \le x_2 \le s_2$
$s_2 = 50$	1/4	$0 \le x_2 < 50$
	1/2	$x_2 = 50$
$50 < s_2 < 75$	1/2	$0 \le x_2 < s_2 - 50$
	1/4	$s_2 - 50 < x_2 < 100 - s_2$
	1/2	$x_2 = 100 - s_2$
	1/4	$100 - s_2 < x_2 \le s_2$
$s_2 = 75$	1/2	$0 \le x_2 < 25$
	3/4	$x_2 = 25$
	1/4	$25 \le x_2 \le 75$
$75 < s_2 < 100$	1/2	$0 \le x_2 < 100 - s_2$
	3/4	$x_2 = 100 - s_2$
	1/2	$100 - s_2 < x_2 \le s_2 - 50$
	1/4	$s_2 - 50 < x_2 \le s_2$
$s_2 = 100$	1	$x_2 = 0$
	1/2	$0 < x_2 \le 50$
	1/4	$50 \le x_2 \le 100$
$100 < s_2$	1/2	$0 \le x_2 \le s_2 - 100$
	3/4	$x_2 = s_2 - 100$
	1/2	$s_2 - 100 < x_2 \le s_2 - 50$
	1/4	$s_2 - 50 < x_2 \le s_2$

The entries in bold represent the maximum value in each case.

$$f_1^*(75) = \max_{0 \le x_1 \le 75} \left[\frac{1}{2} f_2^*(75 - x_1) + \frac{1}{2} f_2^*(75 + x_1) \right]$$

$$f_1(75, x_1) = \begin{cases} 3/4 & \text{if } x_1 = 0\\ 5/8 & \text{if } 0 < x_1 < 25\\ 3/4 & \text{if } x_1 = 25\\ 1/2 & \text{if } 25 < x_1 \le 50\\ 3/8 & \text{if } 50 < x_1 \le 75 \end{cases}$$

$$\frac{s_1}{75} \frac{|f_1^*(s_1)|}{3/4} \frac{x_1^*}{0 \text{ or } 25}$$

Policy	x_1	won 1st bet	lost 1st bet	won 2nd bet	lost 2nd bet
1	0	25	25	0	50
2	25	0	50	0	0