Write your name here		
Surname	Other nan	nes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiar Unit 2: Application of	ry	s of Chemistry
Friday 25 May 2018 – Morn Time: 1 hour 30 minutes	ning	Paper Reference WCH02/01

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** guestions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Show all your working in calculations and give units where appropriate.

Turn over ▶

P51600A ©2018 Pearson Education Ltd.

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ₩ and then mark your new answer with a cross ⋈.

- 1 Which species does **not** have a trigonal pyramidal structure?
 - A AlCl₃
 - B NH₃

 - ☑ D PCl₃

(Total for Question 1 = 1 mark)

- 2 Which molecule contains three atoms in a straight line?
 - A BF₃
 - B CH₄
 - C H₂O
 - \square **D** SF₆

(Total for Question 2 = 1 mark)

- **3** Which compound has the greatest ionic character?
 - A Sodium bromide
 - **B** Sodium chloride
 - C Sodium fluoride
 - Sodium iodide

(Total for Question 3 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

4 Which best represents the position of the bonding pair of electrons and the dipole of hydrogen chloride?

	Position of bonding electrons	Dipole
⊠ A	H— : Cl	δ+ δ- ΗCl
⋈ B	H : —Cl	δ+ δ- Η——Cl
⊠ C	H —: Cl	δ– δ+ Η——Cl
⊠ D	H : —Cl	δ− δ+ Η——Cl

(Total for Question 4 = 1 mark)

- **5** When a system is at equilibrium, it is **always** true that
 - ☑ A molecules of reactants stop changing into molecules of products.
 - **B** the concentrations of reactants and products are equal.
 - ☑ C the concentrations of reactants and products are constant.
 - D the activation energies of the forward and reverse reactions are equal.

(Total for Question 5 = 1 mark)

- **6** An oxidising agent
 - ☑ A gains electrons and is oxidised.
 - **B** loses electrons and is oxidised.
 - ☑ C gains electrons and is reduced.
 - D loses electrons and is reduced.

(Total for Question 6 = 1 mark)

- 7 Which trend is correct for the Group 2 metals as the atomic number **increases**?
 - A The atomic radius decreases.
 - ☑ B The electronegativity increases.
 - ☑ C The first ionisation energy decreases.
 - D The thermal stability of their nitrates decreases.

(Total for Question 7 = 1 mark)

8 Consider the following reaction profile.

The activation energy of the forward reaction has a value of

- **A** X minus Y.
- B Y minus X.
- ☑ D Z minus Y.

(Total for Question 8 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

9		te solid gives a lilac flame colour. The solid reacts with water, forming a strongly se solution.
	The so	olid could be
	⊠ A	calcium oxide.
	⊠ B	potassium oxide.
	⊠ C	calcium chloride.
	⊠ D	potassium chloride.
		(Total for Question 9 = 1 mark)
10	Which	of the following is an isomer of 2,2-dimethylpentan-1-ol?
	⊠ A	CH ₃ CH ₂ CH ₂ CH(CH ₃)CH ₂ OH
	⊠ B	(CH ₃) ₃ CCH(CH ₃)CH ₂ OH
	⊠ C	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH
	⊠ D	(CH ₃) ₂ CHC(CH ₃) ₂ CH ₂ CH ₂ OH
		(Total for Question 10 = 1 mark)
11	Which	of the following hydroxides is the most soluble in water?
	⊠ A	Barium hydroxide
	⊠ B	Calcium hydroxide
	⋈ C	Magnesium hydroxide
	⊠ D	Strontium hydroxide
		(Total for Question 11 = 1 mark)

12 Under suitable conditions, a mixture of carbon monoxide and hydrogen reacts to form water and a mixture of hydrocarbons.

$$nCO + (2n + 1)H_2 \rightarrow nH_2O + hydrocarbons$$

What is the general formula for the hydrocarbons produced?

- \triangle **A** C_nH_{2n-2}
- \blacksquare **B** C_nH_{2n}
- \square **C** C_nH_{2n+1}
- \square **D** C_nH_{2n+2}

(Total for Question 12 = 1 mark)

- 13 A protective layer of ozone, O_3 , exists in the atmosphere. This protection mainly arises from ozone's ability to
 - A absorb ultraviolet radiation.
 - **B** reflect ultraviolet radiation.
 - □ C break down chlorofluorocarbons.
 - **D** reflect chlorofluorocarbons.

(Total for Question 13 = 1 mark)

14 Consider the following equation.

$$ClO_3^-(aq) + 6H^+(aq) + ne^- \rightarrow Cl^-(aq) + 3H_2O(l)$$

What value of *n* is required to balance the above equation?

- A 4
- **B** 5
- **◯ C** 6
- □ 7

(Total for Question 14 = 1 mark)

- 15 The conversion of butanoic acid into butan-1-ol is an example of
 - **A** elimination.
 - **B** substitution.
 - C oxidation.
 - **D** reduction.

(Total for Question 15 = 1 mark)

16 Compound **X** forms compound **Y** in the reaction shown in the equation. No knowledge of this reaction is required.

What mass of compound **X** is required to produce 8.4 g of compound **Y**, if the yield is 40%?

[Molar masses/g mol⁻¹: $C_7H_6O_3 = 138$ $C_9H_8O_4 = 180$]

- **B** 6.4g
- **☑ C** 16.1 g
- ☑ D 21.0 g

(Total for Question 16 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

- 17 Which alcohol can be oxidised by acidified potassium dichromate(VI) to form a ketone?
 - A OH

 - ☑ C OH
 - OH □ D

(Total for Question 17 = 1 mark)

18 An experiment requires 500 cm³ of a solution with a **nitrate** ion concentration of 0.100 mol dm⁻³.

This is prepared by diluting a $0.250\,\mathrm{mol\,dm^{-3}}$ calcium nitrate solution, $Ca(NO_3)_2(aq)$, with water.

What volume of this calcium nitrate solution will be needed?

- \triangle **A** 50 cm³
- \square **B** 100 cm³
- \square **D** 400 cm³

(Total for Question 18 = 1 mark)

19 A mass of 1.60 g of an anhydrous metal sulfate was dissolved in water.

Addition of excess barium chloride solution resulted in the precipitation of 2.33 g of barium sulfate.

[Molar mass of $BaSO_4 = 233 \,\mathrm{g} \,\mathrm{mol}^{-1}$]

The original substance could be

- A calcium sulfate.
- B copper(II) sulfate.
- **C** magnesium sulfate.
- **D** sodium sulfate.

(Total for Question 19 = 1 mark)

20 The concentration of a solution of iodine can be determined by titration with a solution of sodium thiosulfate.

The sulfur-containing **product** of this reaction is

- \square A Na₂S₂O₃
- \square **B** Na₂S₄O₆
- \square **D** Na₂S₂O₈

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- **21** This question is about the chemistry of Group 7.
 - (a) Silver nitrate solution is added to an aqueous solution containing two different halide ions. A mixture of two different precipitates, **A** and **B**, is formed. When concentrated ammonia solution is then added, precipitate **A** remains and precipitate **B** dissolves completely.
 - (i) Identify, by name or formula, the halide ion in A.

(1)

(ii) Identify, by name or formula, **one** possible halide ion in **B**.

(1)

(iii) Write an **ionic** equation, including state symbols, for the formation of precipitate **A**.

(2)

(b) Concentrated sulfuric acid is added to solid potassium chloride.

A reaction occurs in which steamy fumes are formed.

(i) Give the **formula** of the steamy fumes.

(1)

(ii) Write an equation for this reaction. State symbols are not required.

(1)

(c) When concentrated sulfuric acid is added to solid potassium bromide, a redox reaction occurs. A mixture of products is formed, including sulfur dioxide as the only reduction product.	
(i) Give the oxidation number of sulfur in	(2)
sulfuric acid	
sulfur dioxide	
(ii) Complete the ionic equation for this redox reaction.	
State symbols are not required.	(2)
H_2SO_4 + H^+ + $Br^- \rightarrow$ + +	H ₂ O
(d) When concentrated sulfuric acid is added to solid potassium iodide, a redox reaction occurs producing two reduction products other than sulfur dioxide.	
Identify these two reduction products. In each case, give an observation that indicates the presence of the product.	
	(4)
First reduction product	
Observation	
Second reduction product	
Observation	
(Total for Question 21 = 14 mar	ks)

22 Hydromagnesite is a mineral containing magnesium carbonate.

A student crushed some hydromagnesite and added a sample of mass 0.936 g to excess dilute hydrochloric acid.

(a) Give a reason why the mineral was crushed before being added to the acid.

(1)

(b) Write the equation for the reaction between magnesium carbonate and dilute hydrochloric acid. Include state symbols in your equation.

(2)

(c) The gas formed in the reaction was collected in a gas syringe. The volume of gas was measured at regular intervals for 6 minutes. A graph of the student's results is shown.

Describe the changes in the rate of reaction during the experiment. Explain these changes in terms of collisions.

(3)

(d) (i) Use information from the graph to calculate the number of moles of magnesium carbonate that reacted with the dilute hydrochloric acid.

[The molar volume of a gas = $24\,000\,\mathrm{cm^3\,mol^{-1}}$ under the conditions of the experiment.]

(2)

(ii) Calculate the mass of magnesium carbonate that reacted and hence the percentage by mass of magnesium carbonate in the hydromagnesite.

(2)

Mass of magnesium carbonate =g

Percentage by mass of magnesium carbonate = %

(2)

(e) Another student decided to carry out a similar experiment. This student did not have a gas syringe and therefore collected the carbon dioxide over water in an inverted measuring cylinder, as shown in the diagram.

Explain the effect that collecting the carbon dioxide over water would have on the volume of gas collected and hence on the percentage of magnesium carbonate in hydromagnesite. Assume that the gas syringe and the measuring cylinder can be read to the same accuracy.

(Total for Question 22 = 12 marks)

- **23** This question is about chemical equilibrium.
 - (a) The gases nitrogen dioxide, NO_2 and dinitrogen tetroxide, N_2O_4 form an equilibrium mixture at room temperature.

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$
 $\Delta H = -58 \text{ kJ mol}^{-1}$ brown colourless

*(i) A gas syringe containing an equilibrium mixture of these gases is compressed by pushing in the plunger and then allowed to stand with the plunger in the new position.

Predict how the **appearance** of the equilibrium mixture would change during this procedure.

Justify your answer.

(3)

(ii)	State and explain	the effect of an	increase in	temperature (on this equilibrium.
------	-------------------	------------------	-------------	---------------	----------------------

(1)

*(b) When potassium dichromate(VI), $K_2Cr_2O_7$, is dissolved in water, an equilibrium is set up. The position of the equilibrium is well to the left and the solution is an orange colour.

$$Cr_2O_7^{2-}(aq) + H_2O(l) \rightleftharpoons 2CrO_4^{2-}(aq) + 2H^+(aq)$$
 orange yellow

Aqueous alkali is added and the solution turns a yellow colour.

Explain this observation.

.....

(2)

(Total for Question 23 = 6 marks)

(i) State the reagents and conditions required for this reaction. (2) gents: Conditions: (ii) Draw the mechanism for this reaction. Include curly arrows, and relevant dipoles and lone pairs. (4) (5) Explain why 1-bromobutane is much less soluble in water than in butan-1-ol. A detailed description of the forces involved is not required.	(a) 1-bioifiobulane can b	e converted into butan-1-ol in a one-step reaction	on.
(ii) Draw the mechanism for this reaction. Include curly arrows, and relevant dipoles and lone pairs. (4) (b) Explain why 1-bromobutane is much less soluble in water than in butan-1-ol. A detailed description of the forces involved is not required.	(i) State the reagents	and conditions required for this reaction.	(2)
(4) (b) Explain why 1-bromobutane is much less soluble in water than in butan-1-ol. A detailed description of the forces involved is not required.	gents:	Conditions:	
(b) Explain why 1-bromobutane is much less soluble in water than in butan-1-ol. A detailed description of the forces involved is not required.	(ii) Draw the mechani	ism for this reaction.	
A detailed description of the forces involved is not required.	Include curly arrov	ws, and relevant dipoles and lone pairs.	(4)
A detailed description of the forces involved is not required.			
A detailed description of the forces involved is not required.			
A detailed description of the forces involved is not required.			
A detailed description of the forces involved is not required.			
A detailed description of the forces involved is not required.			
A detailed description of the forces involved is not required.			
A detailed description of the forces involved is not required.			
			an-1-ol.

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

25 Organic compounds can be analysed using physical methods such as mass spectrometry and infrared spectroscopy, chemical tests and quantitative measurements.

The mass spectrum and infrared spectrum of ethanol, C₂H₅OH, are shown.

Some infrared data are given in the table below.

Bond stretching vibration	Wavenumber / cm ⁻¹
C—H, alkane	2962–2853
C—H, alkene	3100–3010
O—H (weak), carboxylic acids	3300–2500
O—H (broad), alcohols	3750–3200

(a) (i) State what can be deduced about ethanol from the presence of the peak at $m/e = 46$ in the mass spectrum.	(1)
(ii) Identify the species responsible for the peak at $m/e = 31$ in the mass spectrum of ethanol, and state how it is formed.	(2)
(iii) Identify one feature of the infrared spectrum which confirms the functional group in ethanol. Include the appropriate wavenumber range in your answer.	(1)
(b) Chemical tests are often used to identify functional groups in organic molecules. *(i) Explain the meaning of the term functional group .	(2)

(ii) The reaction of sodium metal with ethanol can be used to confirm the presence of the functional group in ethanol.

Give the equation for the reaction of sodium with ethanol. State symbols are not required.

(2)

(c) A carboxylic acid **E** was investigated by quantitative and qualitative methods. **E** was known to have one of the following structures:

Structure 1 CH₃CH₂CH=CHCOOH Molar mass = 100 g mol⁻¹

Structure **2** HOOCCH₂CH₂COOH Molar mass = $118 \,\mathrm{g} \,\mathrm{mol}^{-1}$

A sample of 1.20 g of **E** was burned in excess oxygen.

A mass of 1.79 g of carbon dioxide was formed.

(i) Calculate the mass of carbon present in the sample of **E**.

(2)

(ii) The mass of hydrogen present in the sample is 0.0610 g.

Deduce the mass of oxygen in the sample.

(1)

 $Mass\ of\ oxygen = \underline{\qquad} g$

(iii)	Use the information from parts (c)(i) and (c)(ii) to calculate the empirical formula of E .	(2)
(iv)	Deduce the identity of E . Give a reason for your answer by referring to the information at the start of (c) and your answer to (c)(iii).	(1)
	Describe a qualitative chemical test that would distinguish between Structure 1 and Structure 2 . State the expected results.	(2)
Results for	Structure 1:	
Results for	Structure 2 :	

(vi) Draw the displayed formula of a compound that can be oxidised to form Structure 2 .	
Structure 2.	(1)
*(vii) Explain why a molecule of Structure 1 can show geometric isomerism.	(2)
	(2)
(Total for Question 25 = 19	marks)
TOTAL FOR SECTION C = 19	MARKS

TOTAL FOR SECTION C = 19 MARKS TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

The Periodic Table of Elements

		_			
0 (8)	(18)) V	2	helium	2
1					(17)
9					(16)
2					(15)
4					(14)
m					(13)
		_		ydrogen	٦
			_	hydro	
					Key
7					(2)
-					£

-								_					_							_				
	20.2	Š	neon	10	39.9	Αr	argon	18	83.8	궃	krypton	36	131.3	Xe	xenon	24	[222]	윤	radon	98		ted		
	19.0	L	fluorine	6	35.5	บ	chlorine	17	6.62	Б	bromine	35	126.9	П	iodine	53	[210]	Αŧ	astatine	85		seen repor		
,	16.0	0	oxygen	00	32.1	s	sulfur	16	79.0	Se	selenium	34	127.6	ъ	tellurium	52	[506]	8	polonium	84		116 have L	nticated	
,	14.0	z	nitrogen	7	31.0	۵	shosphorus	15	74.9	As	arsenic	33	121.8	Sb	antimony	51	209.0	æ	bismuth	83		mbers 112-	but not fully authenticated	
,	12.0	U	carbon	9	28.1	Si	silicon	14	72.6	g	germanium	32	118.7	S	ţ	20	207.2	ይ	lead	82		atomic nur	but not f	
(2:	10.8	ω	poron	2	27.0	₹	aluminium	13	69.7	g	gallium	31	114.8	드	indium	49	204.4	F	thallium	81		Elements with atomic numbers 112-116 have been reported		
•							(6)	(71)	65.4	Zu	zinc	30	112.4	8	cadmium	48	200.6	£	mercury	80		Elen		
							(44)	(11)	63.5	3	copper	53	107.9	Ag	silver	47	197.0	Ρ	gold	79	[272]	Ş	roentgenium	111
							9	(01)	58.7	ź	nickel	28	106.4	В	palladium	46	195.1	ᆂ	platinum	78	[271]	۵	퉝	110
							ę	6)	58.9	ပိ	cobalt	27	102.9	윤	rhodium	45	192.2	<u>_</u>	iridium	77	[368]	¥	meltnerium	109
							6	(8)	55.8	ā	iron	56	101.1	æ	ruthenium	44	190.2	õ	osmium	76	[277]	£	hassium	108
							Ć	2	54.9	W	manganese	22	[86]	բ	molybdenum technetium	43	186.2	æ	rhenium	75	[564]	絽	pohrium	107
	mass	lod		number			17/	(0)	52.0	ъ	vanadium chromium manganese	24	95.9	W	molybdenum	42	183.8	>	tungsten	74	[392]	Sg	seaborgium	106
	relative atomic mass	atomic symbol	name	atomic (proton) number			ý	(c)	50.9	>	vanadium	23	92.9	₽	niobium	41	180.9	Тa	tantalum	73	[292]	8	dubnit	105
	relat	ato		atomic			3	(4)	47.9	F	titanium	22	91.2	Zr	zirconium	40	178.5	Ŧ	£	72	[261]	₹	nutherfordium	104
							ç	(5)	45.0	S	scandium	21	88.9	>	yttrium	39	138.9	ra*	lanthanum	22	[227]	¥c*	actinium	89
	0.6	Be	beryllium	4	24.3	Mg	magnesium	12	40.1	రి	calcinm	70	97.6	'n	strontium	38	137.3	Ba	barium	26	[526]	Ra	radium	88
/	6.9	'n	lithium	3	23.0	Na	sodium	11	39.1	¥	potassium	19	85.5	&	rubidium	37	132.9	ర	caesium	22	[223]	<u></u>	francium	87

Lanthanide series

Actinide series

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
ő	占	ž	Pm	Sm	Е	В	P	ð	운	ы	Ę	χ	3
cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
28	29	09	19	62	63	64	65	99	- 67	89	69	70	71
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
£	Pa	_	2	P	Am	£	쓢	້ຽ	ß	F	W	ž	ځ
thorium	protactinium	uranium	neptunium	plutonium	americium	ourium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
8	9	92	93	94	95	%	46	86	66	100	101	102	103