Optimization and Computational Linear Algebra – Brett Bernstein

Recitation 7

It may be helpful if after recitation you try to re-solve these problems by yourself, and use them as additional study problems for the class.

1. Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times m}$ and $C \in \mathbb{R}^{n \times n}$. Prove that if B and C are invertible then rank(A) = rank(BAC). What does this say about the spectral decomposition?

Solution. By the homework we know that $\operatorname{rank}(AC) \leq \operatorname{rank}(A)$. Let $v \in \operatorname{im}(A)$ so that v = Ax for some $x \in \mathbb{R}^n$. Then $v = AC(C^{-1}x)$ so $v \in \operatorname{im}(AC)$. Thus $\operatorname{rank}(AC) = \operatorname{rank}(A)$. For the other side, note that

$$rank(BA) = rank(A^TB^T) = rank(A^T) = rank(A)$$

by applying the previous argument, and noting that B^T is invertible (since $(B^{-1})^T B^T = (BB^{-1})^T = I^T$). Thus

$$rank(BAC) = rank((BA)C) = rank(BA) = rank(A).$$

This proves that the rank of a symmetric matrix is equal to its number of non-zero eigenvalues. To see this suppose the spectral decomposition of M is given by $M = V\Lambda V^T$. Then we have

$$\operatorname{rank}(M) = \operatorname{rank}(V\Lambda V^T) = \operatorname{rank}(\Lambda)$$

since V, V^T are orthogonal and thus invertible.

2. Suppose $D \in \mathbb{R}^{n \times n}$ is diagonal. Give a vector $v \in \mathbb{R}^n$ with ||v|| = 1 such that ||Dv|| maximized.

Solution. Note that

$$||Dv||^2 = \sum_{i=1}^n (D_{ii}v_i)^2 \le \left(\max_i D_{ii}^2\right) \sum_{i=1}^n v_i^2 = \max_i D_{ii}^2.$$

Thus we can choose $v = e_j$ where $|D_{jj}|$ is the largest absolute diagonal entry of D.

3. Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric. Give a vector v with ||v|| = 1 such that ||Av|| maximized.

Solution. By the spectral theorem we have $A=U\Lambda U^T$ where Λ is diagonal and U is orthogonal. Write v as

$$v = \alpha_1 u_1 + \dots + \alpha_n u_n$$

where u_1, \ldots, u_n are the columns of U. Then we have

$$||Av||^2 = ||U\Lambda U^T \sum_{i=1}^n \alpha_i u_i||^2 = ||\sum_{i=1}^n \alpha_i \lambda_i u_i||^2 = \sum_{i=1}^n \alpha_i^2 \lambda_i^2 \le \max_i \lambda_i^2 \sum_{i=1}^n \alpha_i^2 = \max_i \lambda_i^2$$

where $\lambda_i = \Lambda_{ii}$. Thus we can choose $v = u_j$ where $|\lambda_j|$ is the largest absolute eigenvalue.

- 4. Suppose $A \in \mathbb{R}^{m \times n}$. Give a vector w with ||w|| = 1 such that ||Aw|| maximized.
 - Solution. See extra credit 7.5 on the homework.
- 5. Let $A \in \mathbb{R}^{n \times n}$ have eigenvalue λ . Prove that

$$E_{\lambda} = \{ v \in \mathbb{R}^n : Av = \lambda v \}$$

is a subspace of \mathbb{R}^n (called the eigenspace of A corresponding to λ).

Solution.

- $A0 = 0 = \lambda \cdot 0$ so $0 \in E_{\lambda}$.
- If $v, w \in E_{\lambda}$ then

$$A(v+w) = Av + Aw = \lambda v + \lambda w = \lambda(v+w)$$

proving $v + w \in E_{\lambda}$.

• If $v \in E_{\lambda}$ and $c \in \mathbb{R}$ then

$$A(cv) = cAv = c\lambda v = \lambda(cv)$$

proving $cv \in E_{\lambda}$.

6. Let $A \in \mathbb{R}^{n \times n}$ have eigenvalue λ . How would you find a non-zero vector $v \in \mathbb{R}^n$ such that $Av = \lambda v$?

Solution. Solve the linear system $(A - \lambda I)v = 0$.

7. Let $A \in \mathbb{R}^{m \times n}$ and let $k = \min(m, n)$. Show there are orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that $A = U \Sigma V^T$ where $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal (rectangular) matrix with non-negative entries (in other words, $\Sigma_{ij} = 0$ if $i \neq j$). The diagonal entries are labeled $\sigma_1 = \Sigma_{11}, \ldots, \sigma_k = \Sigma_{kk}$ and are ordered so that $\sigma_1 \geq \cdots \geq \sigma_k$. This is called the singular value decomposition (SVD) of A, the values $\sigma_1, \ldots, \sigma_k$ are called the singular values of A, the columns of U are called the left singular vectors of A, and the columns of V are called the right singular vectors of A.

Solution.

Proof. Note that $A^TA \in \mathbb{R}^{n \times n}$ is symmetric, so we can apply the spectral theorem to obtain

$$A^T A = V \Lambda V^T$$

where $V \in \mathbb{R}^{n \times n}$ is orthogonal and $\Lambda \in \mathbb{R}^{n \times n}$ is diagonal. Suppose $A^T A$ has rank r and we order the columns of V so that $\lambda_{r+1} = 0, \ldots, \lambda_n = 0$. Let w_1, \ldots, w_n denote the n columns of AV. We claim that w_1, \ldots, w_n are orthogonal (but not necessarily orthonormal). To see this note that

$$V^T A^T A V = \Lambda$$
,

which is diagonal. This proves the claim since $\Lambda_{ij} = w_i^T w_j$. Note also that w_{r+1}, \ldots, w_n are zero, since their squared lengths are given by $\lambda_{r+1}, \ldots, \lambda_n$, which are assumed to be zero. Let $u_i = w_i/\|w_i\|$ for $i = 1, \ldots, r$, and extend with m-r new vectors to form an orthonormal basis

$$u_1,\ldots,u_r,u_{r+1},\ldots,u_m.$$

Then we have

$$AV = U\Sigma$$

where $U \in \mathbb{R}^{m \times m}$ has u_i as its *i*th column and $\Sigma \in \mathbb{R}^{m \times n}$ is given by

$$\Sigma = \begin{bmatrix} \|w_1\| & & & \\ & \ddots & & \\ & & \|w_r\| & \\ & & & \ddots \end{bmatrix},$$

with zeros on the off-diagonal. Thus $A = U\Sigma V^T$ as required.

8. Let $A \in \mathbb{R}^{m \times n}$. Give a method for computing rank(A) using the SVD of A.

Solution. Writing $A = U\Sigma V^T$ we can simply count the number of non-zero entries in Σ since U,V are invertible.

9. Explain the following statement: For any $A \in \mathbb{R}^{m \times n}$, the set $\{Ax : ||x|| = 1\}$ is an ellipsoid. In other words, the image of the sphere under a linear transformation is always an ellipsoid.

Solution. Using the SVD write $A = U\Sigma V^T$. V^T is orthogonal, so it preserves lengths and maps the sphere $\{x : ||x|| = 1\}$ to itself. Then Σ stretches the sphere along each axis creating an ellipsoid. Finally U is orthogonal, so it rotates the ellipsoid.