Generative Adversarial Transformers

John Salvador

Sri Ram Pavan Kumar Guttikonda

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - Duplex Attention

- Testing Results
 - FID Scores
 - Generated Images
- Code Overview
 - Environment Setup
 - Quick-start commands
 - Issues

Contributions

- Authored by Drew A. Hudson and C. Lawrence Zitnick
- Unifies GANs and Transformers into a single architecture
 - Allows different components to contribute to image generation
- Introduction of Bipartite attention for bilinear efficiency O(mn)
 - Better performance scaling for higher resolutions

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - Duplex Attention

- Testing Results
 - FID Scores
 - Generated Images
- Code Overview
 - Environment Setup
 - Quick-start commands
 - Issues

Inspiration From Human Perception

- the bottom up processing, proceeding from the retina up to the cortex, as local elements and salient stimuli hierarchically group together to form the whole.
- Top-down processing: Background knowledge is used to make inference

Preceding Works

- The traditional convolution networks does not reflect this bidirectional nature that so characterizes the human visual system.
- Hard to produce diverse images in GAN
- The Transformer complexity for attention is $O(n^2)$.
- The Style GAN provides no means to control the style of a localized regions within the generated image.

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - Duplex Attention

- Testing Results
 - FID Scores
 - Generated Images
- Code Overview
 - Environment Setup
 - Quick-start commands
 - Issues

Input Terms

- z: the latent vector
 - Splits into k components $[z_1, ..., z_k]$
- $Y^{m \times d}$: The intermediate latents
 - Akin to output of the mapping network in the StyleGAN architecture
- $X^{n \times d}$: Input Vectors of Dimension d
 - n is Width × Height
 - d is the number of channels

GANsformer Generator Diagram

Input Terms

- z: the latent vector
 - Splits into k components $[z_1, ..., z_k]$
- $Y^{m \times d}$: The intermediate latents
 - Akin to output of the mapping network in the StyleGAN architecture
- $X^{n \times d}$: Input Vectors of Dimension d
 - n is Width × Height
 - d is the number of channels
- Notice: inputs in diagram don't match the dimensions of the terms just mentioned
 - Outputs of $q(\cdot)$, $k(\cdot)$, and $v(\cdot)$ transform inputs to their respective dimensions (GAN former only)

GANsformer Generator Diagram

Vanilla Attention

- Attention(Q, K, V) = $softmax(\frac{QK^T}{\sqrt{d}})V$
- a(X) = Attention(q(X), k(X), v(X))
- $q(\cdot)$, $k(\cdot)$, $v(\cdot)$ map elements to queries, keys, and values
 - Maintain dimensionality
- Poorly scales at higher dimensions
 - $O(n^2 \cdot d)$

Scaled Dot-Product Attention

Vanilla Attention

- Attention(Q, K, V) = $softmax(\frac{QK^T}{\sqrt{d}})V$
- a(X) = Attention(q(X), k(X), v(X))
- $q(\cdot)$, $k(\cdot)$, $v(\cdot)$ map elements to queries, keys, and values
 - Dimensions are remapped
- Add and LayerNorm right after attention
 - $u^{at}(X) = LayerNorm(X + a(X))$

Transformer Architecture

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - Duplex Attention

- Testing Results
 - FID Scores
 - Generated Images
- Code Overview
 - Environment Setup
 - Quick-start commands
 - Issues

Bipartite Attention

- Attention(Q, K, V) = $softmax(\frac{QK^T}{\sqrt{d}})V$
- a(X,Y) = Attention(q(X), k(Y), v(Y))
 - Keys and values are derived from Y (the latents)
- $u^a(X,Y) = LayerNorm(X + a(X,Y))$

Bipartite Attention Efficiency

- Bilinearly Efficient: O(mn)
- Recall: $Attention(Q, K, V) = softmax\left(\frac{QK^T}{\sqrt{d}}\right)V$
 - Self attention: $O(n^2 \cdot d)$
 - <u>Matrix multiplications dominate the calculation</u>
- Matrix Multiplication for QK^T **5.** $t. Q^{n \times d}, K^{m \times d}: O(ndm) \rightarrow O(mn)$

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - Duplex Attention

- Testing Results
 - FID Scores
 - Generated Images
- Code Overview
 - Environment Setup
 - Quick-start commands
 - Issues

Simplex Attention

- Attention(Q, K, V) = $softmax(\frac{QK^T}{\sqrt{d}})V$
- a(X,Y) = Attention(q(X), k(Y), v(Y))
 - Keys and values are derived from Y (the latents)
- - $u^{s}(X,Y) = \gamma(a(X,Y)) \odot \omega(X) + \beta(a(X,Y))$
 - $\omega(X) = \frac{X \mu(X)}{\sigma(X)}$
 - Operation taken from StyleGAN architecture

StyleGAN Diagram

Simplex Attention

- Attention(Q, K, V) = $softmax(\frac{QK^T}{\sqrt{d}})V$
- a(X,Y) = Attention(q(X), k(Y), v(Y))
 - Keys and values are derived from Y (the latents)
- Modified AdalN After Element-wise multiplication $u^{s}(X,Y) = \gamma(a(X,Y)) \odot \omega(X) + \beta(a(X,Y))$

$$u^{s}(X,Y) = \gamma (a(X,Y)) \odot \omega(X) + \beta (a(X,Y))$$

- $\omega(X) = \frac{X \mu(X)}{\sigma(X)}$
- Corresponds to StyleGAN architecture
- Latents are global in the generator network

StyleGAN Diagram

Simplex Attention

Simplex

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - <u>Duplex Attention</u>

- Testing Results
 - FID Scores
 - Generated Images
- Code Overview
 - Environment Setup
 - Quick-start commands
 - Issues

Duplex Attention

- Recall: $u^a(X,Y) = LayerNorm(X + a(X,Y))$
- $u^d(X,Y) = \gamma(A(X,K,V)) \odot \omega(X) + \beta(A(X,K,V))$
 - K = a(Y, X)
 - Analogous to K-Means
 - Contrast from $u^s(X,Y) = \gamma(a(X,Y)) \odot \omega(X) + \beta(a(X,Y))$

Duplex Attention

- Recall: $u^a(X,Y) = LayerNorm(X + a(X,Y))$
- $u^d(X,Y) = \gamma(A(X,K,V)) \odot \omega(X) + \beta(A(X,K,V))$
 - K = a(Y, X)
 - Analogous to K-Means
 - Contrast from $u^s(X,Y) = \gamma(a(X,Y)) \odot \omega(X) + \beta(a(X,Y))$
- Compute Duplex Attention
 - $Y := u^a(Y, X)$
 - $X := u^d(X, Y)$

Duplex Attention

Duplex

GANsformer Generator Block

Source: Generative Adversarial Transformers

Recap

Generator and Discriminator

- Generator
 - Utilizes attention to allow components to style different regions of the image
- Discriminator
 - Attention applied after every convolution
 - Uses trained embeddings for Y

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - Duplex Attention

Testing Results

- FID Scores
- Generated Images
- Code Overview
 - Environment Setup
 - Quick-start commands
 - Issues

Results

	CLEVR				LSUN-Bedroom			
Model	$FID \downarrow$	IS ↑	Precision ↑	Recall ↑	$FID \downarrow$	IS ↑	Precision ↑	Recall ↑
GAN	25.02	2.17	21.77	16.76	12.16	2.66	52.17	13.63
k-GAN	28.29	2.21	22.93	18.43	69.90	2.41	28.71	3.45
SAGAN	26.04	2.17	30.09	15.16	14.06	2.70	54.82	7.26
StyleGAN2	16.05	2.15	28.41	23.22	11.53	2.79	51.69	19.42
VQGAN	32.60	2.03	46.55	63.33	59.63	1.93	55.24	28.00
GANformer _s	10.26	2.46	38.47	37.76	8.56	2.69	55.52	22.89
GANformer _d	9.17	2.36	47.55	66.63	6.51	2.67	57.41	29.71
	FFHQ				Cityscapes			
Model	$FID \downarrow$	IS ↑	Precision ↑	Recall ↑	$FID \downarrow$	IS ↑	Precision ↑	Recall ↑
GAN	13.18	4.30	67.15	17.64	11.57	1.63	61.09	15.30
k-GAN	61.14	4.00	50.51	0.49	51.08	1.66	18.80	1.73
SAGAN	16.21	4.26	64.84	12.26	12.81	1.68	43.48	7.97
StyleGAN2	9.24	4.33	68.61	25.45	8.35	1.70	59.35	27.82
VQGAN	63.12	2.23	67.01	29.67	173.80	2.82	30.74	43.00
GANformer _s	8.12	4.46	68.94	10.14	14.23	1.67	64.12	2.03
GANformer _d	7.42	4.41	68.77	5.76	5.76	1.69	48.06	33.65

Results

 Achieves better FID scores in fewer training steps than previous models

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - Duplex Attention

Testing Results

- FID Scores
- Generated Images
- Code Overview
 - Environment Setup
 - Quick-start commands
 - Issues

Our Evaluations

ffhq-snapshot FID: 6.1067

cityscapes-snapshot FID: 7.8310

Baseline Model for Cityscapes-2048

34

FFHQ-1024 Baseline: Good

35

FFHQ-1024 Baseline: Bad

Attention Maps

ullet Each color corresponds to a different component of the k latents that influence that region

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - Duplex Attention

- Testing Results
 - FID Scores
 - Generated Images
- Code Overview
 - Environment Setup
 - Quick-start commands
 - Issues

Running the Code On Windows Environment Setup

- Clone from https://github.com/dorarad/gansformer
- Create a Python 3.7 virtual environment and install packages from the requirements.txt file
- Install Visual Studio 2017 and the MSVC compiler
 - Edit ./dnnlib/tflib/custom_ops.py and add your compiler path to the compiler_bindir_search_path variable

Running the Code On Windows Environment Setup

- Clone from https://github.com/dorarad/gansformer
- Create a Python 3.7 virtual environment and install packages from the requirements.txt file
- Install Visual Studio 2017 and the MSVC compiler
 - Edit ./dnnlib/tflib/custom_ops.py and add your compiler path to the compiler_bindir_search_path variable
- Dównload and install CUDA 10.0
- Download cuDNN v7.6.5 (November 5th, 2019), for CUDA 10.0
 - Follow the instructions in section 3.3 in the following link
 - https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installwindows

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - Duplex Attention

- Testing Results
 - FID Scores
 - Generated Images

Code Overview

- Environment Setup
- Quick-start commands
- Issues

Running the Code On Windows

- python generate.py --gpus 0 --model gdrive:<dataset>-snapshot.pkl--output-dir images --images-num 32
 - Replace "<dataset>" with different supported dataset name
- python run_network.py --train --gpus 0 --ganformer-default --expname <dataset>-pretrained --dataset <dataset> --pretrained-pkl gdrive:<dataset>-snapshot.pkl
 - Trains a pre-existing network
- Python run_network.py --help
 - Help menu for more options

- Contribution
- Inspirations
- Attention
 - Vanilla Attention
 - Bipartite Attention
 - Simplex Attention
 - Duplex Attention

- Testing Results
 - FID Scores
 - Generated Images

Code Overview

- Environment Setup
- Quick-start commands
- Issues

Issues We Ran Into

- Could not train a model using duplex attention
 - Enabling causes errors
 - Could be an issue with the dependencies
- Often ran out of GPU memory
 - Cøde designed with 12GB GPUs in mind
 - Led to crashing
 - Couldn't generate attention maps

Questions?