LC14: Liaisons chimiques

Isomérie Z-E

E-1,2-dichloroéthène

Z-1,2-dichloroéthène

Isomérie Z-E

acide maléique

acide fumarique

Rupture et formation des liaisons

Nicolas COPPENS, Valéry PREVOST, Physique Chimie Première S. Nathan, 2015.

Solide ionique - sel

Exemples de liquides/solides moléculaires

Eau liquide

Eau solide

Diiode solide

Interactions de Van der Waals dans les solides

Carbone diamant

Liaisons covalentes

Carbone graphite

Pourquoi le gecko adhère-t-il aux parois?

Kellar Autumn et al., Adhesive force of a single gecko foot-hair, Nature 405

Températures fusion acide maléique/fumarique

acide maléique

acide fumarique

Températures fusion acide maléique/fumarique

liaisons H intramoléculaires

acide maléique

$$T_{fus,tab} = 131^{\circ}C$$

+ de liaisons H intermoléculaires

acide fumarique

$$T_{fus,tab} = 287^{\circ}C$$

Comparaison de températures de fusion

Nicolas COPPENS, Valéry PREVOST, Physique Chimie Première S. Nathan, 2015.

⇒ Les interactions de Van der Waals ne sont pas suffisantes pour expliquer ce comportement