Rank-65899 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_2 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431726489

General information

	T
Number of lines	8
Number of points	29
Number of singular points	3
Number of Eckardt points	2
Number of double points	6
Number of single points	18
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	58
Type of lines on points	$4, 3^2, 2^6, 1^{18}, 0^2$

Singular Points

The surface has 3 singular points:

$$\begin{array}{ll} 0: \ P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0) \\ 1: \ P_{31} = \mathbf{P}(1,\omega,0,1) = \mathbf{P}(1,2,0,1) \end{array}$$

The 8 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \mathbf{Pl}(1,0,0,0,0,0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{58} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{58} = \mathbf{Pl}(0,0,3,0,0,1)_{122}$$

$$\ell_{2} = \begin{bmatrix} 1 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{79} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{79} = \mathbf{Pl}(0,0,2,0,0,1)_{115}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \mathbf{Pl}(1,0,0,1,0,0)_{10}$$

$$\ell_{4} = \begin{bmatrix} 1 & \omega & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{142} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{142} = \mathbf{Pl}(0,3,3,0,0,1)_{128}$$

$$\ell_{5} = \begin{bmatrix} 1 & \omega^{2} & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{163} = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{163} = \mathbf{Pl}(0,2,2,0,0,1)_{120}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & \omega^{2} & \omega \\ 0 & 1 & 1 & 1 \end{bmatrix}_{236} = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{236} = \mathbf{Pl}(3,2,2,3,2,1)_{290}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & \omega & \omega^{2} \\ 0 & 1 & 1 & 1 \end{bmatrix}_{299} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{299} = \mathbf{Pl}(2,3,3,2,3,1)_{352}$$

Rank of lines: (0, 58, 79, 84, 142, 163, 236, 299)

Rank of points on Klein quadric: (0, 122, 115, 10, 128, 120, 290, 352)

Eckardt Points

The surface has 2 Eckardt points:

$$0: P_{31} = \mathbf{P}(1, \omega, 0, 1) = \mathbf{P}(1, 2, 0, 1),$$

1:
$$P_{35} = \mathbf{P}(1, \omega^2, 0, 1) = \mathbf{P}(1, 3, 0, 1).$$

Double Points

The surface has 6 Double points:

The double points on the surface are:

$$P_7 = (3,1,0,0) = \ell_0 \cap \ell_1$$

$$P_6 = (2,1,0,0) = \ell_0 \cap \ell_2$$

$$P_1 = (0,1,0,0) = \ell_0 \cap \ell_3$$

$$P_{16} = (1,2,1,0) = \ell_1 \cap \ell_6$$

$$P_{20} = (1, 3, 1, 0) = \ell_2 \cap \ell_7$$

 $P_{42} = (0, 1, 1, 1) = \ell_6 \cap \ell_7$

Single Points

The surface has 18 single points:

The single points on the surface are:

$$\begin{array}{lll} 0: P_0 = (1,0,0,0) \text{ lies on line } \ell_0 & 10: P_{56} = (3,0,2,1) \text{ lies on line } \ell_6 \\ 1: P_5 = (1,1,0,0) \text{ lies on line } \ell_0 & 11: P_{62} = (1,2,2,1) \text{ lies on line } \ell_4 \\ 2: P_{13} = (2,1,1,0) \text{ lies on line } \ell_2 & 12: P_{66} = (1,3,2,1) \text{ lies on line } \ell_5 \\ 3: P_{14} = (3,1,1,0) \text{ lies on line } \ell_1 & 13: P_{68} = (3,3,2,1) \text{ lies on line } \ell_7 \\ 4: P_{18} = (3,2,1,0) \text{ lies on line } \ell_2 & 14: P_{71} = (2,0,3,1) \text{ lies on line } \ell_7 \\ 5: P_{21} = (2,3,1,0) \text{ lies on line } \ell_1 & 15: P_{78} = (1,2,3,1) \text{ lies on line } \ell_4 \\ 6: P_{23} = (1,0,0,1) \text{ lies on line } \ell_3 & 16: P_{79} = (2,2,3,1) \text{ lies on line } \ell_6 \\ 7: P_{27} = (1,1,0,1) \text{ lies on line } \ell_3 & 17: P_{82} = (1,3,3,1) \text{ lies on line } \ell_5 \\ 8: P_{46} = (1,2,1,1) \text{ lies on line } \ell_4 \\ 9: P_{50} = (1,3,1,1) \text{ lies on line } \ell_5 \end{array}$$

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line: The points on the surface but not on lines are:

$$0: P_{61} = (0, 2, 2, 1) 1: P_{81} = (0, 3, 3, 1)$$

Line Intersection Graph

	$\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ \end{array}$
0	01110000
1	10101110
2	11001101
3	10001111
4	01110101
5	01111010
6	01010101
7	00111010

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_7	P_6	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_5	ℓ_6
in point	P_7	P_2	P_2	P_2	P_{16}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_5	ℓ_7
in point	P_6	P_2	P_2	P_2	P_{20}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in point	P_1	P_{31}	P_{35}	P_{35}	P_{31}

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_7
in point	P_2	P_2	P_{31}	P_2	P_{31}

Line 5 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_6
in point	P_2	P_2	P_{35}	P_2	P_{35}

Line 6 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_7
in point	P_{16}	P_{35}	P_{35}	P_{42}

Line 7 intersects

	_			
Line	ℓ_2	ℓ_3	ℓ_4	ℓ_6
in point	P_{20}	P_{31}	P_{31}	P_{42}

The surface has 29 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$10: P_{20} = (1, 3, 1, 0)$	$20: P_{61} = (0, 2, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	$11: P_{21} = (2, 3, 1, 0)$	$21: P_{62} = (1, 2, 2, 1)$
$2: P_2 = (0,0,1,0)$	$12: P_{23} = (1,0,0,1)$	$22: P_{66} = (1, 3, 2, 1)$
$3: P_5 = (1, 1, 0, 0)$	13: $P_{27} = (1, 1, 0, 1)$	$23: P_{68} = (3, 3, 2, 1)$
$4: P_6 = (2, 1, 0, 0)$	$14: P_{31} = (1, 2, 0, 1)$	$24: P_{71} = (2,0,3,1)$
$5: P_7 = (3, 1, 0, 0)$	$15: P_{35} = (1,3,0,1)$	$25: P_{78} = (1, 2, 3, 1)$
$6: P_{13} = (2, 1, 1, 0)$	$16: P_{42} = (0, 1, 1, 1)$	$26: P_{79} = (2, 2, 3, 1)$
$7: P_{14} = (3, 1, 1, 0)$	17: $P_{46} = (1, 2, 1, 1)$	$27: P_{81} = (0, 3, 3, 1)$
$8: P_{16} = (1, 2, 1, 0)$	18: $P_{50} = (1, 3, 1, 1)$	$28: P_{82} = (1, 3, 3, 1)$
$9: P_{18} = (3, 2, 1, 0)$	$19: P_{56} = (3, 0, 2, 1)$	