```
In [1]: import matplotlib.pyplot as plt # To visulaize the data
import pandas as pd # To read and analyse the data
import seaborn as sns
import numpy as np
import warnings
warnings.filterwarnings('ignore')
```

In [2]: data=pd.read_csv('C:\\Users\\KAVYA SRI\\Downloads\\water analysis\water_potabi
 data

Out[2]:		ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbo
	0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.37978
	1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.18001
	2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.86863
	3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.43652
	4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.55827
	3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.89441
	3272	7.808856	193.553212	17329.802160	8.061362	NaN	392.449580	19.90322
	3273	9.419510	175.762646	33155.578218	7.350233	NaN	432.044783	11.03907
	3274	5.126763	230.603758	11983.869376	6.303357	NaN	402.883113	11.16894
	3275	7.874671	195.102299	17404.177061	7.509306	NaN	327.459760	16.14036

3276 rows × 10 columns

In [4]: data.head()

Out[4]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon
0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783
1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013
2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.868637
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279

In [5]: data.tail()

Out[5]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbo
3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.89441
3272	7.808856	193.553212	17329.802160	8.061362	NaN	392.449580	19.90322
3273	9.419510	175.762646	33155.578218	7.350233	NaN	432.044783	11.03907
3274	5.126763	230.603758	11983.869376	6.303357	NaN	402.883113	11.16894
3275	7.874671	195.102299	17404.177061	7.509306	NaN	327.459760	16.14036

In [6]: data.shape # Rows and columns

Out[6]: (3276, 10)

In [7]: data.describe()

Out[7]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic
count	2785.000000	3276.000000	3276.000000	3276.000000	2495.000000	3276.000000	3276
mean	7.080795	196.369496	22014.092526	7.122277	333.775777	426.205111	14
std	1.594320	32.879761	8768.570828	1.583085	41.416840	80.824064	ફ
min	0.000000	47.432000	320.942611	0.352000	129.000000	181.483754	2
25%	6.093092	176.850538	15666.690297	6.127421	307.699498	365.734414	12
50%	7.036752	196.967627	20927.833607	7.130299	333.073546	421.884968	14
75%	8.062066	216.667456	27332.762127	8.114887	359.950170	481.792304	16
max	14.000000	323.124000	61227.196008	13.127000	481.030642	753.342620	28

In [8]: data.describe().T

Out[8]:

	count	mean	std	min	25%	50%	
ph	2785.0	7.080795	1.594320	0.000000	6.093092	7.036752	
Hardness	3276.0	196.369496	32.879761	47.432000	176.850538	196.967627	:
Solids	3276.0	22014.092526	8768.570828	320.942611	15666.690297	20927.833607	27:
Chloramines	3276.0	7.122277	1.583085	0.352000	6.127421	7.130299	
Sulfate	2495.0	333.775777	41.416840	129.000000	307.699498	333.073546	;
Conductivity	3276.0	426.205111	80.824064	181.483754	365.734414	421.884968	4
Organic_carbon	3276.0	14.284970	3.308162	2.200000	12.065801	14.218338	
Trihalomethanes	3114.0	66.396293	16.175008	0.738000	55.844536	66.622485	
Turbidity	3276.0	3.966786	0.780382	1.450000	3.439711	3.955028	
Potability	3276.0	0.390110	0.487849	0.000000	0.000000	0.000000	

• Data Cleaning

```
In [9]:
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3276 entries, 0 to 3275
         Data columns (total 10 columns):
          #
              Column
                               Non-Null Count Dtype
              -----
                               -----
          0
              ph
                               2785 non-null
                                               float64
          1
              Hardness
                               3276 non-null
                                               float64
              Solids
                               3276 non-null
                                               float64
          3
              Chloramines
                               3276 non-null
                                               float64
          4
              Sulfate
                               2495 non-null
                                               float64
          5
              Conductivity
                               3276 non-null
                                               float64
              Organic_carbon
                               3276 non-null
                                               float64
          6
              Trihalomethanes 3114 non-null
          7
                                               float64
          8
              Turbidity
                               3276 non-null
                                               float64
              Potability
                               3276 non-null
                                               int64
         dtypes: float64(9), int64(1)
         memory usage: 256.1 KB
In [10]:
         data.isnull().sum()
Out[10]: ph
                            491
         Hardness
                              0
         Solids
                              0
                              0
         Chloramines
         Sulfate
                            781
                              0
         Conductivity
         Organic_carbon
                              0
         Trihalomethanes
                            162
         Turbidity
                              0
         Potability
                              0
         dtype: int64
         data.fillna(data.mean(),inplace=True)
In [11]:
In [12]: data.isnull().sum()
Out[12]: ph
                            0
         Hardness
                            0
         Solids
                            0
         Chloramines
                            0
         Sulfate
                            0
         Conductivity
                            0
         Organic_carbon
                            0
         Trihalomethanes
                            0
         Turbidity
                            0
         Potability
                            0
         dtype: int64
```

```
In [13]: # Display information about the Data Frame
data.info(memory_usage="deep")
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):
```

#	Column	Non-Null Count	Dtype
0	ph	3276 non-null	float64
1	Hardness	3276 non-null	float64
2	Solids	3276 non-null	float64
3	Chloramines	3276 non-null	float64
4	Sulfate	3276 non-null	float64
5	Conductivity	3276 non-null	float64
6	Organic_carbon	3276 non-null	float64
7	Trihalomethanes	3276 non-null	float64
8	Turbidity	3276 non-null	float64
9	Potability	3276 non-null	int64
	(1 (64/6) .	101/11	

dtypes: float64(9), int64(1)
memory usage: 256.1 KB

```
In [14]: plt.figure(figsize=(15,10))
    sns.countplot(data.Potability)
    plt.title("Distribution of Unsafe and Safe Water")
    plt.show
```

Out[14]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [15]: import plotly.express as px
data = data
figure = px.histogram(data, x = "ph", color = "Potability", title = "Factors A
figure.show()
```

```
In [16]: figure = px.histogram(data, x = "Hardness", color = "Potability", title = "Fac
figure.show()
```

```
In [17]: figure = px.histogram(data, x = "Solids", color = "Potability", title = "Facto
figure.show()
```

7 of 23

```
In [18]: figure = px.histogram(data, x = "Chloramines", color = "Potability", title = "
figure.show()
```

```
In [19]: figure = px.histogram(data, x = "Sulfate", color = "Potability", title = "Fact
figure.show()
```

```
In [20]: figure = px.histogram(data, x = "Sulfate", color = "Potability", title = "Fact
figure.show()
```

```
In [21]: figure = px.histogram(data, x = "Organic_carbon", color = "Potability", title
figure.show()
```

```
In [22]: figure = px.histogram(data, x = "Trihalomethanes", color = "Potability", title
figure.show()
```

```
In [23]: figure = px.histogram(data, x = "Turbidity", color = "Potability", title = "Fa
figure.show()
```



```
In [30]: sns.barplot(x=data['ph'],y=data['Hardness'], hue=data['Potability'])
plt.show()
```



```
In [30]: plt.figure(figsize=(8, 6))
    sns.barplot(x='Potability', y='ph', data=data)
    plt.title('Bar Plot of pH by Potability')
    plt.xlabel('Potability')
    plt.ylabel('pH')
    plt.show()
```



```
In [32]: potability_counts = data['Potability'].value_counts()
print(potability_counts)
```

0 19981 1278

Name: Potability, dtype: int64

In [33]: plt.figure(figsize=(6, 6))
 plt.pie(potability_counts, labels=['Not Potable', 'Potable'], autopct='%1.1f%%
 plt.title('Distribution of Water Potability')
 plt.axis('equal') # Equal aspect ratio ensures that the pie chart is circular
 plt.show()

In [35]: # pair plot
sns.pairplot(data, hue='Potability')
plt.show()


```
In [36]: from scipy.stats import ttest_ind
         numerical_columns = ['ph', 'Hardness', 'Solids', 'Chloramines', 'Sulfate', 'Co
         for column in numerical columns:
             potable_values = data[data['Potability'] == 1][column]
             non_potable_values = data[data['Potability'] == 0][column]
             t_stat, p_value = ttest_ind(potable_values, non_potable_values)
             print(f'{column}: t-statistic = {t_stat:.2f}, p-value = {p_value:.4f}')
         ph: t-statistic = -0.19, p-value = 0.8508
         Hardness: t-statistic = -0.79, p-value = 0.4285
         Solids: t-statistic = 1.93, p-value = 0.0535
         Chloramines: t-statistic = 1.36, p-value = 0.1736
         Sulfate: t-statistic = -1.18, p-value = 0.2381
         Conductivity: t-statistic = -0.47, p-value = 0.6419
         Organic_carbon: t-statistic = -1.72, p-value = 0.0860
         Trihalomethanes: t-statistic = 0.40, p-value = 0.6905
         Turbidity: t-statistic = 0.09, p-value = 0.9279
In [37]: from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         # Separate features (X) and target (y)
         X = data.drop('Potability', axis=1)
         y = data['Potability']
         # Split data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rando
         # Standardize features
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
In [38]: from sklearn.ensemble import RandomForestClassifier
         # Initialize the classifier
         classifier = RandomForestClassifier(random_state=42)
         # Train the model
         classifier.fit(X_train_scaled, y_train)
Out[38]: RandomForestClassifier(random_state=42)
```

20 of 23

```
In [39]: from sklearn.metrics import accuracy_score, classification_report, confusion_m
         # Predict on the test set
         y_pred = classifier.predict(X_test_scaled)
         # Evaluate the model
         accuracy = accuracy_score(y_test, y_pred)
         print(f'Accuracy: {accuracy:.2f}')
         conf_matrix = confusion_matrix(y_test, y_pred)
         print('Confusion Matrix:')
         print(conf_matrix)
         class_report = classification_report(y_test, y_pred)
         print('Classification Report:')
         print(class_report)
         Accuracy: 0.68
         Confusion Matrix:
         [[353 59]
          [152 92]]
         Classification Report:
                       precision recall f1-score support
                    0
                            0.70
                                      0.86
                                                0.77
                                                           412
                    1
                            0.61
                                      0.38
                                                0.47
                                                           244
                                                0.68
                                                           656
             accuracy
                            0.65
                                      0.62
                                                0.62
                                                           656
            macro avg
         weighted avg
                            0.67
                                      0.68
                                                0.66
                                                           656
In [40]: # Separate features
         data_X = data.drop('Potability', axis=1)
         # Scale the features using the same scaler as before
         data_X_scaled = scaler.transform(data_X)
         # Make predictions for Kaggle samples
         water_predictions = classifier.predict(data_X_scaled)
         # Add the predictions as a new column in the dataset
         data['Predicted_Potability'] = water_predictions
         # Save the dataset with predictions
```

data.to_csv('Data_with_predictions.csv', index=False)

```
# Filter and print suitable samples
In [41]:
         suitable_samples = data[data['Predicted_Potability'] == 1]
         print('Water samples predicted to be suitable for drinking:')
         print(suitable_samples)
         Water samples predicted to be suitable for drinking:
                             Hardness
                                             Solids Chloramines
                                                                      Sulfate \
                       ph
         26
                3.445062 207.926260 33424.768678
                                                        8.782147
                                                                  384.007006
         30
                7.181449 209.625601 15196.229987
                                                        5.994679 338.336431
         32
               10.433291 117.791230 22326.892046
                                                        8.161505 307.707509
         44
                4.758439 183.349454 21568.428779
                                                        4.731349 333.775777
         67
                7.080795 103.464759 27420.167425
                                                        8.417305 333.775777
         . . .
                      . . .
                                  . . .
                                                             . . .
         3269
               11.491011
                           94.812545 37188.826022
                                                        9.263166
                                                                 258.930600
                7.808856 193.553212 17329.802160
         3272
                                                        8.061362 333.775777
         3273
                9.419510 175.762646 33155.578218
                                                        7.350233 333.775777
         3274
                5.126763 230.603758 11983.869376
                                                        6.303357
                                                                  333.775777
         3275
                7.874671 195.102299 17404.177061
                                                        7.509306 333.775777
               Conductivity Organic_carbon
                                             Trihalomethanes Turbidity
                                                                           Potability
         26
                 441.785876
                                   13.805902
                                                    30.284597
                                                                4.184397
                                                                                    0
         30
                 342.111286
                                    7.922598
                                                                                    0
                                                    71.537953
                                                                5.088860
         32
                 412.986834
                                   12.890709
                                                                                    0
                                                    65.733478
                                                                5.057311
         44
                 403.944168
                                   18.668229
                                                    66.912400
                                                                4.542801
                                                                                    0
         67
                 485.974500
                                                    67.869964
                                                                4.620793
                                                                                    0
                                   11.351133
                 439.893618
                                   16.172755
                                                    41.558501
                                                                                    1
         3269
                                                                4.369264
                 392.449580
                                                                2.798243
                                                                                    1
         3272
                                   19.903225
                                                    66.396293
                                                                                    1
         3273
                 432.044783
                                   11.039070
                                                    69.845400
                                                                3.298875
         3274
                 402.883113
                                   11.168946
                                                    77.488213
                                                                4.708658
                                                                                    1
         3275
                 327.459760
                                   16.140368
                                                    78.698446
                                                                2.309149
                                                                                    1
               Predicted_Potability
         26
                                   1
                                   1
         30
         32
                                   1
         44
                                   1
         67
                                   1
         . . .
         3269
                                   1
         3272
                                   1
                                   1
         3273
         3274
                                   1
                                   1
         3275
```

[1185 rows x 11 columns]

```
In [ ]:
```