MATH 240 Lecture 2.2 The Inverse A^{-1} of a matrix A

Alexander Ng

October 04, 2024

$$A + B$$
, $A - B$, $r \cdot A$, $A \cdot B$, A^{T} , A^{-1}
Let I_n be the $n \times n$ identity matrix. (Matrix property 5);

$$\begin{bmatrix} 1 & \dots & 0 \\ \dots & 1 & \dots \\ 0 & \dots & 1 \end{bmatrix}$$

 $A \cdot I_n = A$ and $I_n \cdot A = A$. (Matrix multiplication by the Identity Matrix is commutative).

1 Definition of the Inverse

Let A be an $n \times n$ matrix. (The definition of the inverse of a matrix is only for square matrices.)

A is **invertible** or **nonsingular** if there exists an $n \times n$ matrix C such that $AC = CA = I_n$.

C is unique. (Theorem)

1.1 Proof of the Uniqueness of C

Suppose C and B are inverses of A.

$$AC = I_n$$
 and $AB = I_n$ and $CA = I_n$ and $CB = I_n$

Using the fact that $AC = I_n$, substitute in AC as I_n in $B = B \cdot I_n$.

$$B = B \cdot I_n = B(AC) = (BA)C = I_n \cdot C = C$$

2 Forgot Name

In \mathbb{R} ,

$$ax = b$$

$$x = b/a$$

$$x = a^{-1}b\{a \neq 0\}$$

in \mathbb{R}^n ,

$$Ax = b$$
$$x = A^{-1}b\{A \text{ is invertible}\}\$$

If A is an invertible matrix, then the linear system Ax = b has the unique solution $x = A^{-1}b$.

2.1 Proof

$$Ax = b$$
Is $A(A^{-1}b) = b$

$$A(A^{-1}b) = b$$
$$= (AA^{-1})b$$
$$= b$$

Suppose Au = b and Av = b. $\Longrightarrow Au = Av$. A is invertible $\Longrightarrow A^{-1} \Longrightarrow A^{-1}(Au) = A^{-1}(Av) = b$. $A^{-1}(Au) = (A^{-1}A)u = u$. $A^{-1}(Av) = (A^{-1}A)v = v$. $\therefore u = v$.

3 Theorem 6 (Properties of A^{-1})

- (a) If A is invertible, then A^{-1} is also invertible and $(A^{-1})^{-1} = A$.
- (b) If A and B are invertible, then $(AB)^{-1} = B^{-1}A^{-1}$.
- (c) If A is invertible, A^T is also invertible and $(A^T)^{-1} = (A^{-1})^T$.

3.1 Proof of (b)

Apply the Associative Law over and over again.

$$(AB)(B^{-1}A^{-1}) = A(B(B^{-1}A^{-1})) = A((BB^{-1})A^{-1}) = A(I_nA^{-1}) = A(A^{-1}) = I_n.$$

Prove $(B^{-1}A^{-1})(AB) = I_n$. (do it at home)

3.2 Exercise 2.2-25

Suppose A, B and C are invertible. So A^{-1} , B^{-1} and C^{-1} exist. Find $A \cdot B)^{-1} = ((AB) \cdot C)^{-1}$.

4 How to find the inverse of a matrix

Is
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 invertible? If so, find A^{-1} .

Let's find C such that $AC = I_n$. Then check $CA = I_n$.

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} c & d \\ -a & -b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} c = 1, d = 0 \\ a = 0, b = 1 \end{bmatrix} \implies C = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Check (at home).

4.1 Theorem

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible.

And
$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
.

The thingie $ad - \bar{b}c$ is called the **determinant** of A. (This will be part of Ch.3)

4.2Theorem 7 (The most beautiful algorithm)

An $n \times n$ matrix A is invertible $\iff A \sim I_n$.

? Calculate
$$A^{-1}$$
. Let's find C such that $AC = I_n$. Then check $CA = I_n$. Calculate the inverse of $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$.
$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix}$$

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array} \right]$$

$$R_2 \rightarrow R_2 - 2R_1$$

$$\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 0 \\
0 & -1 & -2 & 1
\end{array} \right]$$

$$R_1 \to R_1 + R_2$$
$$R_2 \to -R_2$$

$$\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -1
\end{array} \right]$$

Calculate $A \cdot A^{-1}$ (at home).