PROBLEM SET 9.4

SCALAR FIELDS IN THE PLANE

Let the temperature T in a body be independent of z so that it is given by a scalar function T = T(x, t). Identify the isotherms T(x, y) = const. Sketch some of them.

1.
$$T = x^2 - y^2$$

2.
$$T = xy$$

3.
$$T = 3x - 4y$$

3.
$$T = 3x - 4y$$
 4. $T = \arctan(y/x)$

5.
$$T = y/(x^2 + y^2)$$
 6. $T = x/(x^2 + y^2)$

6.
$$T = x/(x^2 + y^2)$$

7.
$$T = 9x^2 + 4y^2$$

8. CAS PROJECT. Scalar Fields in the Plane. Sketch or graph isotherms of the following fields and describe what they look like.

(a)
$$x^2 - 4x - y^2$$
 (b) $x^2y - y^3/3$

(b)
$$x^2y - y^3/3$$

(c)
$$\cos x \sinh y$$
 (d) $\sin x \sinh y$

(d)
$$\sin x \sinh y$$

(e)
$$e^x \sin y$$

(f)
$$e^{2x}\cos 2y$$

(e)
$$e^x \sin y$$
 (f) $e^{2x} \cos 2y$
(g) $x^4 - 6x^2y^2 + y^4$ (h) $x^2 - 2x - y^2$

(h)
$$x^2 - 2x - y^2$$

SCALAR FIELDS IN SPACE 9–14

What kind of surfaces are the level surfaces f(x, y, z) =const?

9.
$$f = 4x - 3y + 2z$$

9.
$$f = 4x - 3y + 2z$$
 10. $f = 9(x^2 + y^2) + z^2$

11.
$$f = 5x^2 + 2y^2$$

11.
$$f = 5x^2 + 2y^2$$
 12. $f = z - \sqrt{x^2 + y^2}$

13.
$$f = z - (x^2 + y^2)$$
 14. $f = x - y^2$

14.
$$f = x - y^2$$

15–20 VECTOR FIELDS

Sketch figures similar to Fig. 198. Try to interpet the field of v as a velocity field.

15.
$$v = i + j$$

16.
$$v = -yi + xj$$

17.
$$v = xj$$

18.
$$v = xi + yj$$

19.
$$v = xi - yj$$

20.
$$v = yi - xj$$

21. CAS PROJECT. Vector Fields. Plot by arrows:

(a)
$$v = [x, x^2]$$

(b)
$$\mathbf{v} = [1/y, 1/x]$$

(c)
$$\mathbf{v} = [\cos x, \sin x]$$

(d)
$$\mathbf{v} = e^{-(x^2+y^2)}[x, -y]$$

22–25 DIFFERENTIATION

- 22. Find the first and second derivatives of $\mathbf{r} = [3 \cos 2t, 3 \sin 2t, 4t]$.
- Prove (11)–(13). Give two typical examples for each formula.
- **24.** Find the first partial derivatives of $\mathbf{v}_1 = [e^x \cos y, e^x \sin y]$ and $\mathbf{v}_2 = [\cos x \cosh y, -\sin x \sinh y]$.
- 25. WRITING PROJECT. Differentiation of Vector Functions. Summarize the essential ideas and facts and give examples of your own.