

Computer Vision

Logistics:

- Homework 5 is due!
 - Probably still have some late days left
- Final Project Proposals were due on Tuesday
 - If you haven't turned one in, please do
 - Kaggle competition on birds if you don't have another idea
 - Link is on Google group, please do not share
- Start working on projects!

Ancient Secrets of Computer Vision

Gradient explosion / vanishing

With very deep networks, the gradients flow through many layers of weights on their way back

With saturating activation functions like logistic or with small weights gradients can "vanish"

With non-saturating activations or large weights gradients can EXPLODE!

Learning doesn't scale, what works at 2 levels doesn't at 20

Batch normalization

One way to deal with gradient vanishing:

Normalize activations of filters spatially / over the mini-batch

During training, the distribution of network activations changes over time because the parameters (weights) change

Learning is more stable if this change (or internal covariate shift) as reduced

If output is $32 \times 32 \times 16$ image, batch size of 64, normalize activations for each filter across all images in batch:

I.e. calculate 16 means and variances

Subtract mean, divide by variance both across spatial dimensions and images in the batch https://arxiv.org/pdf/1502.03167.pdf

Batch normalization

Other benefits:

Output is normalized before activation, mean 0 var 1 means it's in the "good" domain of most activation functions

Each image is seen relative to others in a batch, introduces a form of regularization because we don't ever "see" same image twice

Stabilizes training so much larger learning rates can be used

GoogleNetv2 or Inception Net?

Or something, GoogleNet + batch norm

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	double #3×3 reduce	double #3×3	Pool +proj
convolution*	$7 \times 7/2$	112×112×64	1						
max pool	$3\times3/2$	$56 \times 56 \times 64$	0						
convolution	$3\times3/1$	$56 \times 56 \times 192$	1		64	192			
max pool	$3\times3/2$	$28 \times 28 \times 192$	0						
inception (3a)		$28 \times 28 \times 256$	3	64	64	64	64	96	avg + 32
inception (3b)		$28 \times 28 \times 320$	3	64	64	96	64	96	avg + 64
inception (3c)	stride 2	$28 \times 28 \times 576$	3	0	128	160	64	96	max + pass through
inception (4a)		$14 \times 14 \times 576$	3	224	64	96	96	128	avg + 128
inception (4b)		$14 \times 14 \times 576$	3	192	96	128	96	128	avg + 128
inception (4c)		$14 \times 14 \times 576$	3	160	128	160	128	160	avg + 128
inception (4d)		$14 \times 14 \times 576$	3	96	128	192	160	192	avg + 128
inception (4e)	stride 2	$14 \times 14 \times 1024$	3	0	128	192	192	256	max + pass through
inception (5a)		$7 \times 7 \times 1024$	3	352	192	320	160	224	avg + 128
inception (5b)		$7 \times 7 \times 1024$	3	352	192	320	192	224	max + 128
avg pool	7×7/1	$1\times1\times1024$	0					_	

Figure 5: Inception architecture

Residual connections

Normally, output of two layers is: f(w*f(vx))Residual connections: f(w*f(vx) + x)

Learning how to modify x, add some transformed amount Gives delta another path, less vanishing gradient

Figure 2. Residual learning: a building block.

ResNet

ResNet

3x3 conv blocks or 3x3 and 1x1 conv blocks

Residual connections

VERY deep, 100+ layers

Grouped convolutions

Most filters look at every channel in input
Very expensive
Maybe not needed? Might only pull info from a
few of them

Grouped convolutions:

Split up input feature map intro groups Run convs on groups independently Recombine

Grouped convolutions

Grouped convolutions:

Split up input feature map intro groups
Run convs on groups independently
Recombine

E.g. 3x3 conv layer 32 x 32 x 256 input, 128 filters, 32 groups:

Split input into 32 different feature maps
Each is 32 x 32 x 8
Run 4 filters, 3x3x8 on each group
Merge 4*32 channels back together, get 32 x 32 x 128 output

Input, output stays same dimensions, less computation

ResNeXt

Replace 3x3 blocks with larger grouped convs

"Larger" network but same computational complexity

stage	output	ResNet-50		ResNeXt-50 (32×4d)			
conv1	112×112	7×7, 64, stride	e 2	7×7, 64, stride 2			
conv2	56×56	3×3 max pool, st	ride 2	3×3 max pool, stride 2			
		1×1, 64		1×1, 128			
		3×3, 64	×3	$3 \times 3, 128, C=32 \times$	3		
		1×1, 256		1×1, 256			
conv3	28×28	1×1, 128		[1×1, 256			
		3×3, 128	×4	3×3, 256, <i>C</i> =32 ×	4		
		$1 \times 1,512$		1×1,512			
conv4	14×14	1×1, 256		[1×1,512]	×6		
		3×3, 256	×6	$3\times3,512,C=32$ \times			
		1×1, 1024		1×1, 1024			
conv5	7×7	1×1, 512		[1×1, 1024			
		3×3, 512	×3	3×3, 1024, <i>C</i> =32 ×	(3		
		1×1, 2048		1×1, 2048			
	1×1	global average p	ool	global average pool			
	1 X 1	1000-d fc, softr	nax	1000-d fc, softmax			
# params.		25.5 $\times 10^6$		25.0×10^6			
FLOPs		4.1 $\times 10^9$		4.2 ×10 ⁹			

https://arxiv.org/pdf/1611.05431.pdf

What's NeXt?

Starting to saturate ImageNet, fighting over 1-2%

What's NeXt?

Starting to saturate ImageNet, fighting over 1-2%

But now vision really works, other tasks

Segmentation
Object detection
Captioning
...
The rest of the class

Deconvolution

U-net/Segnet

Spatial pyramid pooling

Spatial pyramid pooling

DeepLabv3+

Atrous convolutions

Spaced inputs

DeepLabv3+

Atrous convolutions

Spaced inputs

DeepLabv3+

Atrous convolutions

Spaced inputs

Deformable parts models

Scoring object detection

```
Multiple classes, multiple objects per images
Can't just use accuracy
```

"Correct" bounding box:

Intersection / Union > 0.5

Intersection: Ground truth ∩ prediction

Union: Ground truth U prediction

Scoring object detection

```
"Correct" bounding box:
   Intersection / Union > 0.5
Recall:
   Correct bounding boxes / total ground-truth boxes
Precision:
   Correct bounding boxes / total predicted boxes
Only the most confident predictions: High precision, low recall
All the predictions:
                                        Low precision, high recall
```

Scoring object detection

Precision-Recall curve: vary threshold, plot precision and recall

Average precision:

Area under PR curve
Only for a single class

Take mean of AP across classes:

Mean AP (mAP)

Standard detection metric Sometimes at particular IOU I.e. mAP@.5 or mAP@.75

Pascal VOC

One of the first large detection datasets:

20 classes 11,530 training images 27,450 annotated objects

DPM: 33.6% mAP

DPM is pre-neural network, how do we use CNNs for detection?

R-CNN: Regions with CNN features

Selective search: fewer proposals

R-CNN: Regions with CNN features

Lots of post processing, 20 sec/im

Pascal VOC:

AlexNet

53.3% mAP

VGG-16

62.4% mAP

1. Input image

2. Extract region proposals (~2k)

CNN features

5. Bounding box regression

6. Non-max suppression

regions

7. RNN rescoring??

