Unidad II - Resolución Analítica E.D.O. - Ecuaciones Lineales.

Msc. Lic. Víctor Rodríguez Estévez

February 22, 2022

Técnica para resolver Ecuaciones Lineales de Primer Orden Se estudiará en esta sección una técnica analítica para resolver ecuaciones lineales de primer orden.

- Recordemos que un ecuación lineal de primer orden tiene la forma: $a_1(x)\frac{dy}{dx} + a_0y = g(x)$
- Reescribiremos la ecuación, dividiendo ambos miembros por $a_1(x)$: $\frac{dy}{dx} + \frac{a_0(x)}{a_1(x)} = \frac{f(x)}{a_1(x)}$
- Entonces podemos escribir $\frac{dy}{dx} + p(x)y = f(x)$
- Donde $p(x) = \frac{a_0}{a_1}$ y $f(x) = \frac{g(x)}{a_1}$ ambas funciones continuas.
- La solución a esta ecuación es: $y = y_c + y_p$ donde y_c y y_p son dos soluciones de la ecuación.

Solución y_c

- Se contempla esta forma: $\frac{dy}{dx} + p(x)y = 0$
- Utilizando separación de variables: $\frac{dy}{dx} = -P(x)y$, entonces $\frac{1}{y}dy = -p(x)dx$
- Resolviendo: $ln|y| = -\int p(x)dx + c$
- entonces $y = e^{-\int p(x)dx} \cdot e^c$
- es decir $y_c = k \cdot e^{-\int p(x)dx}$

Solución y_n

- Se contempla la forma : $y_p = \mu(x)y_c$ donde μ es el multiplo de la solución anterior (variación de parámetros)
- Sustituyendo en la E.D.: y' + p(x)y = f(x) tenemos $\frac{d}{dx}(\mu y_c) + p(x)\mu y_c = f(x)$
- Derivando: $\mu \frac{dy_c}{dx} + y_c \frac{d\mu}{dx} + p(x)\mu y_c = f(x)$
- Factorizando $\mu(\frac{dy_c}{dx} + p(x)y_c) + y_c \frac{d\mu}{dx} = f(x)$
- como $\frac{dy_c}{dx} + p(x)y_c = 0$ queda la expresión: $y_c \frac{d\mu}{dx} = f(x)$
- Resolviendo: $d\mu = \frac{f(x)}{V_c} dx$ entonces $\mu = \int \frac{f(x)}{V_c} dx$
- Como $y_p = \mu y_c$ entonces $y_p = \left[\int \frac{f(x)}{e^{-\int p(x)dx}} dx \right] \cdot e^{-\int p(x)dx}$
- Reordenando: $y_p = \left[\int e^{\int p(x)dx} \cdot f(x)dx \right] \cdot e^{-\int p(x)dx}$

Solución $y = y_c + y_p$

$$y = ke^{-\int p(x)dx} + e^{-\int p(x)dx} \left[\int e^{\int p(x)dx} \cdot f(x)dx \right]$$

- Multiplicando por $e^{\int p(x)dx}$ nos queda: $e^{\int p(x)dx}v = k + \int e^{\int p(x)dx}f(x)dx$
- Aplicando la derivada con respecto a x a ambos miembros: $\frac{d}{dx}e^{\int p(x)dx}y = \frac{d}{dx}(k+\int e^{\int p(x)dx}f(x))dx$
- Quedando $e^{\int p(x)dx} \frac{dy}{dx} + e^{\int p(x)dx} \cdot p(x) \cdot y = e^{\int p(x)dx} f(x)$
- Notar que si dividimos ambos miembros por e^{∫ p(x)dx} llegamos a la ecuación original dy/dx + p(x)y = f(x).
 Básicamente la idea será partir de esta forma, y multiplicar por el factor encontrado para poder aplicar separación de variables y encontrar la solución.

Resolver:
$$\frac{dy}{dt} = 2 - \frac{1}{t}y$$

Resolver:
$$\frac{dy}{dt} = 2 - \frac{1}{t}y$$

- $\frac{dy}{dt} + \frac{1}{t}y = 2$ Acomodamos
- Factor : $e^{\int \frac{1}{t} dt} = e^{\ln(t)} = t$ comapara $\frac{dy}{dx} + p_{(x)}y = q_{(x)}$
- $\frac{dy}{dt}t + y = 2t$ multiplicando por el factor
- $\frac{d}{dt}(ty) = 2t$ por definición
- $ty = \int 2t dt$ aplicando integrales con respecto de t
- $ty = t^2 + c$ integrando

Resolver:
$$y' + 2xy = 2xe^{-x^2}$$

Resolver: $y' + 2xy = 2xe^{-x^2}$

- Factor: $e^{\int 2x dx} = e^{x^2}$ comapa $\frac{dy}{dx} + p_{(x)}y = q_{(x)}$
- $\frac{dy}{dx}e^{x^2} + 2xye^{x^2} = 2x$ multiplicando por el factor
- $\frac{d}{dx}(e^{x^2}y) = 2x$ por definición
- $e^{x^2}y = \int 2x dx$ aplicando integrales con respecto de x
- $e^{x^2}y = x^2 + c$ integrando
- $y = (x^2 + c)e^{-x^2}$ despejando

Resolver:
$$\frac{dy}{dx} = \frac{1}{x\cos(y) + \sin(2y)}$$

Resolver:
$$\frac{dy}{dx} = \frac{1}{x\cos(y) + \sin(2y)}$$

- $\frac{dx}{dy} x\cos(y) = \sin(2y)$ cambiando
- Factor : $e^{-\int cos(y)dy} = e^{-sin(y)}$ comapa $\frac{dy}{dx} + p_{(x)}y = q_{(x)}$
- ullet $rac{dx}{dy}e^{-sin(y)}-xe^{-sin(y)}cos(y)=e^{-sin(y)}sin(2y)$ multiplicando por el factor
- ullet $rac{d}{dy}(e^{-sin(y)}x)=e^{-sin(y)}sin(2y)$ por definición
- ullet $xe^{-sin(y)}=\int (e^{-sin(y)}sin(2y))dy$ aplicando integrales con respecto de x
- $xe^{-\sin(y)} = -2e^{-\sin(y)}(1+\sin(y)) + C$ integrando
- $x = ce^{\sin(y)} 2\sin(y) 2$ despejando

Resolver:
$$\frac{dy}{dt} + \frac{2}{t}y = t + 1$$

Resolver: $\frac{dy}{dt} + \frac{2}{t}y = t + 1$

- Factor : $e^{-\int \frac{2}{t}} = e^{2ln(t)} = t^2$ compara $\frac{dy}{dx} + p_{(x)}y = q_{(x)}$
- $\frac{dy}{dt}t^2 + 2ty = t^2(t+1)$ multiplicando por el factor
- $\frac{d}{dt}(t^2y) = t^3 + t^2$ por definición
- $yt^2 = \int (t^3 + t^2)$ aplicando integrales con respecto de x
- $yt^2 = \frac{1}{4}t^4 + \frac{1}{2}t^2 + C$ integrando
- $y = \frac{1}{4}t^2 + \frac{1}{3}t^3 + ct^{-2}$ despejando

Resolver: $xy' - 4y = x^6 e^x$

Resolver: $xy' - 4y = x^6 e^x$

- ullet $rac{dy}{dx}-rac{4}{x}y=x^5 e^{x}$ Dividiendo ambos miembros por "x" para dejar libre y'
- $e^{\int (-4x^{-1})dx} = e^{\ln|x^{-4}|} = x^{-4}_{compara \frac{dy}{dx} + p_{(x)}y = q_{(x)}}$
- $x^{-4} \frac{dy}{dx} x^{-4} \frac{4}{x} y = x^{-4} x^5 e^x$ multiplicando por el factor
- $x^{-4}y = \int xe^x dx$ aplicando integrales con respecto de x
- $x^{-4}y = xe^x e^x + c$ integrando

Resolver la E.d.:
$$y' + y = \frac{1 - e^{-2x}}{e^x + e^{-x}}$$

Resolver la E.d.:
$$y' + y = \frac{1 - e^{-2x}}{e^x + e^{-x}}$$

- Factor integrante $e^{\int dx} = e^x$ Comparando con $e^{\int p(x)dx}$
- ullet $e^{x}rac{dy}{dx}+e^{x}y=e^{x}rac{1-e^{-2x}}{e^{x}+e^{-x}}$ multiplicando por el factor encontrado por la EDO
- $\frac{d}{dx}(y \cdot e^x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$ por definición
- $y \cdot e^{x} = \int \frac{e^{x} e^{-x}}{e^{x} + e^{-x}} dx$ integrando ambos miembros con respecto de x
- $y \cdot e^{x} = \int \frac{e^{2x}-1}{e^{2x}+1} dx$ Resolvemos la integral, para lo cual acomodamos la expresión a

- Sea $z = e^{2x} \Rightarrow dz = 2e^{2x} dx \Rightarrow dx = \frac{dz}{2e^{2x}} \Rightarrow dx = \frac{dz}{2z}$
- ullet $\int rac{z-1}{z+1} rac{dz}{2z} = rac{1}{2} \int rac{z-1}{z(z+1)} dZ$ sustituyendo en la expresión inical
- ullet $rac{A}{z}+rac{B}{z+1}=rac{z-1}{z(z+a)}$ Utilizando fracciones parciales para resolver la integral
- ullet A(z+1)+Bz=z-1. asignando valores y realizando operacines
- ullet $z=0\Rightarrow A=-1$ De forma simiar, $z=-1\Rightarrow B=2$
- quedando la integral como $\frac{1}{2}\int (\frac{1}{z}+\frac{2}{z+1})dz$.
- La integral es: $\frac{1}{2}(\ln|z| + 2\ln|z+1|) + c$

Resolución

• Retomamos el cambio de variable $z = e^{2x}$ entonces

$$y \cdot e^{x} = \frac{1}{2}(-\ln|e^{2x}| + 2\ln|e^{2x} + 1|) + c$$

•
$$y \cdot e^x = \frac{1}{2}(-2x\ln|e| + 2\ln|e^{2x} + 1|) + c$$

•
$$y \cdot e^x = (-x\ln|e| + \ln|e^{2x} + 1|) + c$$

•
$$y \cdot e^x = (-x + \ln|e^{2x} + 1|) + c$$

•
$$y = \frac{1}{e^x}(-x + \ln|e^{2x} + 1|) + \frac{c}{e^x}$$