Функциональный анализ

Курс Виденского И.В.

Осень 2023

Оглавление

Оглавление				
Ι	Me	трические пространства	3	
1	Вве	дение	4	
	1.1	Зачем изучать функциональный анализ	5	
2	Метрические пространства			
	2.1	Банаховы пространства	10	
	2.2	Пространства ограниченных функций	13	
	2.3	Пространство последовательностей с sup нормой	15	
	2.4	Пространства n раз непрерывно дифференцируемых функ-		
		ций на отрезке		
3	Про	остранство суммируемых функций (Лебега L^p)	18	
	3.1^{-}	Теория меры	18	
	3.2	Классические неравенства	20	
	3.3	Пространство Лебега	23	
	3.4	Пространства l_n^p, l^p	26	
	3.5	Неполное нормированное пространство	29	
	3.6	Пополнение метрического пространства	30	
	3.7	Теорема о вложенных шарах	35	
	3.8	Сепарабельные пространства	37	
	3.9	Нигде не плотные множества	42	
	3.10	Полные семейства элементов	43	
	3.11	Полные и плотные множества в L^p	44	
4	Meı	грические компакты	51	
	4.1	Относительно компактные множества в $C(K)$	58	

ОГЛАВЛЕНИЕ 2

II	Ли	нейные операторы	65
5	Линейные операторы в линейных пространствах		
	5.1	Линейные операторы в линейных пространствах	66
	5.2	Линейные операторы в нормированных пространствах .	69
	5.3	Линейные функционалы	76
	5.4	Изоморфные линейные пространства	81
	5.5	Конечномерные пространства	84
	5.6	Конечномерные подпространства	88
	5.7	Конечномерность нормированного пространства с ком-	
		пактным единичным шаром	91
	5.8	Факторпространство	94
II	Ги.	льбертовы пространства	97
6	Гил	ъбертовы пространства	98
	6.1	Введение	98
	6.2	Пространство, сопряжённое к гильбертову	115

Часть I Метрические пространства

Глава 1

Введение

День рождения функционального анализа — 1932 год. В этом году вышла книжка «Теория линейных операторов», автор — С. Банах. Главная цель функционального анализа — изучение линейных операторов (но не только их). Главным объектом у нас будет X — линейное топологическое пространство. Оно же линейное пространство над $\mathbb C$ (или $\mathbb R$). Есть непрерывные операции

- 1. $(x,z) \rightarrow x+z$ $x,z \in X$
- 2. $(\alpha, x) \to \alpha x \quad \alpha \in \mathbb{C}$

Если у нас есть топологическое пространство, то у нас есть все любимые объекты из математического анализа — пределы, непрерывность, производные, интегралы.

Пусть есть X,Y — линейные топологические пространства. Также есть линейное отображение $A:X\to Y$

Определение 1.1 (Линейное отображение).

$$A(\alpha x + \beta z) = \alpha Ax + \beta Az$$

Если $\dim X < +\infty$, $\dim Y < +\infty$, то это линейная алгебра.

$$A: X \to X, \dim X = n, A = A^* \Rightarrow \exists \text{ OHB}\{u_j\}_{j=1}^n$$

 λ_i — j-е собственное число

$$Au_i = \lambda_i u_i$$

Теорема 1.1 (Гильберт). X — гильбертово (сепарабельное) пространство. $A = A^*, A: X \to X \Rightarrow \exists$ ОНБ из собственных векторов.

Если $\dim Y=1$, т.е. $Y=\mathbb{C}$ (или \mathbb{R}), то $A:X\to\mathbb{C},$ A — линейный функционал.

В математическом анализе мы изучаем $f:\mathbb{C}\to\mathbb{C}.$ В функциональном анализе же у нас X — пространство функций, $f\in X$

$$D(f) = f' \quad D: X \to Y$$

и здесь мы задаемся вопросами о следующих свойствах D(f)

- компактность
- самосопряжённость
- непрерывность

Отцы-основатели функционального анализа:

- Ф. Гильберт (1862–1943) Гильбертовы пространства;
- С. Банах (1892–1945) Банаховы пространства;
- Ф.Рисс (1880–1956) пространства Лебега L^p .

Ну и хочется ещё упомянуть для вас, компьютер саентистов, отцов основателей кибернетики, которые оставили немалый след в функциональном анализе

- Н. Винер (1894–1964);
- Д. фон Нейман (1903–1957). Про его архитектуру, наверное, чтото слышали?

1.1. Зачем изучать функциональный анализ

Во-первых, он позволяет посмотреть на задачу с высокого уровня абстракции.

Рассмотрим пространство непрерывных функций C[a,b], там введём норму $|f|=\max_{x\in[a,b]}|f(x)|$. Рассмотрим пространство многочленов $P_n=\{\sum_{k=0}^n a_k x^k, a_k\in\mathbb{R}\}$ Существует ли такой многочлен, на котором инфимум достигается? И если да, то единственный ли он?

$$E_n(f) = \inf_{p \in P_n} ||f - p|| = \min_{p \in P_n} ||f - p||$$

На первый вопрос ответ да, это следует из общей теоремы функционального анализа.

$$\dim P_n = n + 1 < +\infty$$

На второй же вопрос ответ тоже да, и тут функциональный анализ ни при чём. Суть в том, что у многочлена степени n не может быть больше n корней.

Ну и ещё немаловажные причины

- 1. язык функционального анализа междисциплинарный язык математики;
- 2. его результаты применяются в математической физике, которая у нас будет в следующем семестре;
- 3. это интересно и важно. 0, 1, 2 = o(3);
- 4. у нас будет экзамен, на котором придется говорить уже нам.

Дополнительная литература по курсу. Первая рассчитана на студентов: в некоторых местах рассказывается, как придумать доказательство, как прийти к тому, что требуется, а не в обратную сторону, как обычно. Остальные же книги поумнее.

- 1. А.Н.Колмогоров, С.В. Фомин «Элементы теории функций и Ф.А.»;
- 2. М.Рид, Б. Саймон. 1 том «методы современной физики». Тонкая (можно осилить), рассказывается также про применение ФА;
- 3. А.В. Канторович, Г.Г Акилов «Функциональный анализ». Похожа на энциклопедию. Но там можно найти всё;
- 4. К. Итосида «Функциональный анализ»;
- 5. У. Рудин.

Глава 2

Метрические пространства

Начнём с того, что все знают, надо ведь с чего-то начать. Мы будем несколько раз возвращаться к метрическим пространствам, а не изучим всё сразу. Один из полезных результатов, который мы получим, этоновое описание компакта в метрических пространствах. Он будет самым рабочим. А компакт — вещь очень полезная. Компакты в гигантских пространствах напоминают компакты в \mathbb{R}^n или в \mathbb{C}^n и обладают теми же полезными свойствами.

Определение 2.1 (Метрика). X — множество. $\rho: X \times X \to \mathbb{R},$ ρ — метрика, если при $x \in X \land y \in X \land z \in X$ она обладает следующими свойствами

1.
$$\rho(x,y) \ge 0 \land (\rho(x,y) = 0 \Leftrightarrow x = y)$$

$$2. \ \rho(y,x) = \rho(x,y)$$

3.
$$\rho(x,z) \le \rho(x,y) + \rho(y,z)$$

Введём стандартное обозначение открытого шара. $x \in X, r > 0$ $B_r(x) = \{y \in X : \rho(x,y) < r\}$ — шар с радиусом r. $\{B_r(x)\}_{r>0}$ — база окрестности в точке x.

G — открытое, если $\forall x \in G \exists r > 0 B_r(x) \subset G$.

F — замкнутое $\Leftrightarrow F \subset X \land X \setminus F$ — открытое.

В метрическом пространстве удобно характеризовать замкнутое множества с помощью последовательностей. Вспомним, что такое сходящаяся последовательность.

$$\{x_n\}_{n=1}^{\infty}$$
 — последовательность $\land \forall n \in \mathbb{N} x_n \in X \land \lim_{n \to \infty} x_n = x_0 \Leftrightarrow \lim_{n \to \infty} \rho(x_n, x_0) = 0$

 (X, ρ) — метрическое пространство \Rightarrow (F — замкнутое \Leftrightarrow $\{x_n\}_{n=1}^{\infty}$ — последовательность $\land \forall \ n \in \mathbb{N} x_n \in F \land (\lim_{n \to \infty} x_n = x_0 \Rightarrow x_0 \in F))$

Определение 2.2 (Фундаментальная последовательность). $\{x_n\}_{n=1}^{\infty}$ — фундаментальная $\Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \in \mathbb{N} \forall m \in \mathbb{N} ((n > N \land m > N)) \Rightarrow \rho(x_n, x_m) < \varepsilon) \Leftrightarrow \lim_{n,m \to \infty} \rho(x_n, x_m) = 0$

Замечание 2.1. $\exists x_0 \lim_{n \to \infty} x_n = x_0 \Rightarrow \{x_n\}_{n=1}^{\infty} - фундаментальная$

Определение 2.3 (Полное метрическое пространство). (X, ρ) — полное, если все фундаментальные последовательности имеют предел, лежащий в X

Почему хорошо жить в полном метрическом пространстве?

Замечание 2.2 (о пользе полноты). $F: X \to \mathbb{R}, (X, \rho)$ — метрическое пространство, F — непрерывная.

Стоит задача найти $x_0 \in X$ т.ч. $F(x_0) = 0$ Алгоритм: $\{x_n\}_{n=1}^{\infty}, \lim_{n \to \infty} F(x_n) = 0, \lim_{n,m \to \infty} \rho(x_n,x_m) = 0$ Если (X,ρ) — полное, то $\lim_{n \to \infty} x_n = x_0, F(x_0) = 0$ А если нет, то из наших вычислений вообще ничего не следует, возможно, решения вообще нет.

Пример 2.1. \mathbb{R}^n , \mathbb{C}^n — полные.

Пример 2.2. $\mathbb{R}^n \setminus \{\mathbb{O}_n\}$ — неполное.

Пример 2.3. \mathbb{Q} — неполное.

Потом приведем примеры поинтереснее. Кстати, древние греки пришли в ужас, когда узнали, что \mathbb{Q} — неполное.

Определение 2.4. (X, ρ) — метрическое пространство, $A \subset X, A$ — ограниченное, если

$$\exists R > 0 \exists x_0 \in XA \subset B_R(x_0)$$

Теорема 2.1 (Свойства фундаментальных последовательностей). (X, ρ) — метрическое пространство, $\{x_n\}_{n=1}^{\infty}$ — фундаментальная последовательность, тогда выполняется:

- 1. $\{x_n\}_{n=1}^{\infty}$ ограниченная, т.е. $\exists R > 0 \exists x_0 \in X \forall n \in \mathbb{N} x_n \in B_R(x_0)$
- 2. $\exists \{x_{n_k}\}_{k=1}^{\infty}$ подпоследовательность $\Rightarrow (\exists a \in X \lim_{k \to \infty} x_{n_k} = a \Rightarrow \exists a \in X \lim_{n \to \infty} x_n = a = \lim_{k \to \infty} x_{n_k})$
- 3. $\{\varepsilon_k\}_{k=1}^{\infty}$ произвольная последовательность действительных чисел $\land \forall \, k \in \mathbb{N} \varepsilon_k > 0 \Rightarrow \exists \, \{x_{n_k}\}_{k=1}^{\infty}$ подпоследовательность $\forall \, j \in \mathbb{N} (j > k \Rightarrow \rho(x_{n_k}, x_{n_j}) < \varepsilon_k)$

1 утверждение. Возьмём $\varepsilon=1$, тогда из фундаментальности $\exists N \, \forall \, n \in \mathbb{N} (n>N \Rightarrow \rho(x_n,x_N)<1).$

Возьмём $R = \max\{\rho(x_1,x_N),\ldots,\rho(x_{N-1},x_N)\}+1$. Единичка на всякий случай.

Тогда
$$\forall n \in \mathbb{N} x_n \in B_R(x_N)$$
.

2 утверждение. Возьмём $\varepsilon > 0$, тогда по фундаментальности $\exists N \forall n \in \mathbb{N} \forall m \in \mathbb{N} ((\underline{n > N} \land m > N) \Rightarrow \rho(x_n, x_m) < \varepsilon)$. Возьмём это N.

 $\exists a \lim x_{n_k} = a \Rightarrow \exists n_k (\rho(x_{n_k}, \overline{a) < \varepsilon \land n_k > N})$. Возьмём это n_k .

Возьмём некоторое m>N. Тогда $\rho(x_m,a)<\underline{\rho(x_m,x_{n_k})}+\rho(x_{n_k},a)<2\varepsilon$

3 утверждение. Докажем по индукции:

 $\varepsilon_1:\exists n_1\forall\,n\in\mathbb{N}\forall\,m\in\mathbb{N}((n>n_1\land m>n)\Rightarrow \rho(x_m,x_n)<\varepsilon_1).$ Выберем $n_1,$ тогда $\forall\,m\in\mathbb{N}(m>n_1\Rightarrow\rho(x_m,x_{n_1})<\varepsilon_1).$

 ε_k : по индукции выбрали $n_1, \ldots, n_{k-1}, k \geq 2$. $\forall j \in (1 \ldots k-1) \forall m \in \mathbb{N} (m > n_j \Rightarrow \rho(x_m, x_{n_j}) < \varepsilon_j)$. Из фундаментальности исходной последовательности $\exists n_k (n_k > n_{k-1} \land \forall m \in \mathbb{N} (m > n_k \Rightarrow \rho(x_m, x_{n_k}) < \varepsilon_k))$

Следствие 2.1. $(X, \rho), \{x_n\}$ — фундаментальная последовательность, тогда

$$\exists \left\{ x_{n_k} \right\}$$
 т.ч. $\sum_{k=1}^{\infty} \rho(x_{n_k}, x_{n_{k+1}}) < +\infty$

 \mathcal{A} оказательство. По 3 свойству при $\varepsilon_k = \frac{1}{2^k}$.

Теорема 2.2 (О замкнутом подмножестве). (X, ρ) — метрическое пространство, тогда

- 1. (X, ρ) полное, $Y \subseteq X$, Y замкнутое $\Rightarrow (Y, \rho)$ полное
- 2. $Y \subseteq X$, (Y, ρ) полное $\Rightarrow Y$ замкнутое

1 утверждение. Доказательство следует прямо из определения. Знаем, что Y — замкнутое подниножество полного пространства. Берем фундаментальную последовательность. $Y \subset X$, пусть $\{x_n\}_{n=1}^{\infty}, \forall n \in \mathbb{N} x_n \in Y$ — фундаментальная. $\forall n \in \mathbb{N} x_n \in X, X$ — полное $\Rightarrow \exists x_0 \in X \lim_{n \to \infty} x_n = x_0$. Y — замкнутое, значит $x_0 \in Y \Rightarrow (Y, \rho)$ — полное. \square

2 утверждение. Второй пункт не труднее первого. Пусть $\{x_n\}_{n=1}^{\infty}$ — произвольная фундаментальная последовательность в Y.

Y- полное $\Rightarrow \exists x_0 \in Y \lim_{n \to \infty} x_n = x_0 \Rightarrow Y-$ замкнутое из-за произвольности последовательности. \Box

2.1. Банаховы пространства

Сначала введём понятие полунормы.

Определение 2.5 (полунорма). Пусть X — линейное пространство над $\mathbb R$ или $\mathbb C$. Отображение $p:X\to\mathbb R$ называется полунормой, если при $x\in X\wedge y\in X\wedge (\lambda\in\mathbb R\vee\lambda\in\mathbb C)$

- 1. $p(x + y) \le p(x) + p(y)$ (полуаддитивность)
- 2. $p(\lambda x) = |\lambda| p(x)$

Свойство 2.1. p — полунорма \Rightarrow

$$\forall x \in Xp(x) \ge 0 \land p(0) = 0$$

Доказательство.
$$p(\mathbb{O}) = p(0 \cdot \mathbb{O}) = 0 \cdot p(\mathbb{O}) = 0$$
. Пусть $x \in X \Rightarrow \mathbb{O} = x + (-x) \Rightarrow p(\mathbb{O}) \le p(x) + \underbrace{p(-x)}_{p(x)} = 2p(x) \Rightarrow p(x) \ge 0$

Определение 2.6 (Норма). X — линейное пространство, $p: X \to \mathbb{R}$. p — норма $\Leftrightarrow (p$ — полунорма $\land (p(x) = 0 \Leftrightarrow x = \mathbb{0}))$. Будем обозначать ||x|| := p(x).

 $(X,||\cdot||)$ будем обозначать нормированное пространство. и при $(x\in X\wedge y\in X)$ $\rho(x,y):=||x-y||.$ Тогда $(X,||\cdot||)$ — метрическое пространство.

Определение 2.7 (банахово пространство). $(X, ||\cdot||)$ — банахово, если оно полное

Еще пару определений перед критерием банахова пространства.

Определение 2.8 (подпространство в алгебраическом смысле). X — линейное пространство, $L \subset X$. L — подпространство в алгебраическом смысле $\Leftrightarrow \forall x \in L \forall y \in L \forall \alpha \in K \forall \beta \in K \alpha x + \beta y \in L$.

Определение 2.9 (подпространство). $(X, ||\cdot||), L \subset X, L$ подпространство, если

- L подпространство в алгебраическом смысле
- $L = \overline{L} \ (\overline{L}$ замыкание)

Теперь нам потребуется сходимость рядов. Для того, чтобы говорить о сходимости, нужна топология.

Определение 2.10 (Сходимость).

$$(X, ||\cdot||)$$
 $\{x_k\}_{k=1}^{\infty}$ $S_n = \sum_{k=1}^{n} x_k$

 $\sum_{k=1}^{\infty} x_k(*)$, (*) сходится, если $\exists \lim_{n \to \infty} S_n = S \in X$ (*) сходится абсолютно, если $\sum_{k=1}^{\infty} ||x_k||$ сходится

В \mathbb{R}^n (или в \mathbb{C}^n) если у нас была абсолютная сходимость, то была и обычная, но вообще говоря, это не так.

Теорема 2.3 (Критерий полноты нормированного пространства (банаховости)). $(X, ||\cdot||)$ - полное \Leftrightarrow из абсолютной сходимости ряда следует сходимость ряда.

Доказательство. Предположим, что наше пространство полное (\Rightarrow) . (X,ρ) — полное, $\{x_k\}_{k=1}^{\infty}$ — последовательность, при этом

$$\sum_{k=1}^{\infty} ||x_k||$$
 сходится (**)

Цель такая: последовательность S_n — фундаментальная. Сейчас применим критерий Коши к ряду (**). Это ряд из чисел, так что всё в порядке. Пусть $\varepsilon > 0$. По критерию Коши $\exists N \in \mathbb{N} \forall n \in \mathbb{N} \forall p \in \mathbb{N} (n > N)$ $N \Rightarrow \sum_{k=n+1}^{n+p} ||x_k|| < \varepsilon$). $S_n = \sum_{k=1}^n x_k$.

$$||S_{n+p} - S_n|| = \left| \left| \sum_{k=1}^p x_{n+k} \right| \right| \le \sum_{k=1}^p ||x_{n+k}|| = \sum_{k=n+1}^{n+p} ||x_k|| < \varepsilon$$
 $\Rightarrow \{S_n\}_{n=1}^{\infty} - \text{фундаментальная}, (X, \rho) - \text{полное}$ $\Rightarrow \exists S \in X \lim_{n \to \infty} S_n = S$

$$\Rightarrow \sum_{k=1}^{\infty} x_k$$
 сходится

Мы так запаслись номерами, чтобы выражение было меньше ε .

Теперь (⇐). У нас кроме определения ничего нет. Возьмём какуюто фундаментальную последовательность. Откуда взять предел? Есть соотношения между элементами последовательности. Возьмём подпоследовательность, ведь у нас есть следствие 2.1! Из свойств фундаментальных последовательностей, мы знаем, что

$$\exists \{x_{n_k}\}_{k=1}^{\infty}$$
 — подпоследовательность $||x_{n_1}|| + \sum_{k=1}^{\infty} ||x_{n_{k+1}} - x_{n_k}||$ сходится \Rightarrow последовательность $x_{n_1} + \sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k})$ сходится

Но её последовательность частичных сумм — это в точности оригинальная подпоследовательность:

$$S_m = x_{n_1} + \sum_{k=1}^{m-1} (x_{n_{k+1}} - x_{n_k}) = x_{n_m} \Rightarrow \exists S \in X \lim_{k \to \infty} x_{n_k} = S$$

Далее из части 2 Теоремы 2.1

$$\exists S \in X \lim_{m \to \infty} x_{n_m} = S \Rightarrow \exists S \in X \lim_{n \to \infty} x_n = S$$

2.2. Пространства ограниченных функций

Определение 2.11. Пусть A — произвольное множество. Стандартное обозначение m(A) — множество всех ограниченных функций из него в комплексные (или только в действительные, не важно) числа

$$m(A) = \{f|f:A \to \mathbb{C} \wedge \sup_{x \in A} |f(x)| < +\infty\}$$

$$f \in m(A) \Rightarrow ||f||_{\infty} = \sup_{x \in A} |f(x)|.$$

Теорема 2.4.
$$(m(A), ||\cdot||_{\infty})$$
 — банахово пространство

Доказательство. Нужно проверить две вещи. Во-первых, что $||\cdot||_{\infty}$ удовлетворяет аксиомам нормы. А во-вторых, что пространство с таким определением является полным. Просто по определению, никаких хитрых критериев — возьмём фундаментальную подпоследовательность и покажем, что у нее есть предел.

Проверяем, что $||\cdot||_{\infty}$ удовлетворяет аксиомам нормы.

$$\forall\,\lambda\in\mathbb{C}||\lambda f||_{\infty}=\sup_{x\in A}|\lambda|\cdot||f(x)||=|\lambda|\cdot\sup_{x\in A}||f(x)||=|\lambda|\cdot||f||_{\infty}$$

Нужно проверить неравенство треугольника.

$$\forall f \in m(A) \forall g \in m(A) \forall x \in A | f(x) + g(x) | \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

$$\Rightarrow \forall f \in m(A) \forall g \in m(A) ||f + g||_{\infty} = \sup_{x \in A} |f(x) + g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

Следующая аксиома нормы:

$$||f||_{\infty}=0\Leftrightarrow \forall\,x\in Af(x)=0$$
 т.е. f — нулевая функция

Теперь мы проверили аксиомы нормы. Доказываем полноту. $\{f_n\}_{n=0}^{\infty}$ — фундаментальная в m(A).

$$\forall \, \varepsilon > 0 \exists \, N \in \mathbb{N} \forall \, m \in \mathbb{N} \forall \, n \in \mathbb{N} ($$

$$(m > N \land n > N) \Rightarrow ||f_n - f_m||_{\infty} < \varepsilon) \text{ T.e. } \sup_{x \in A} |f_n(x) - f_m(x)| < \varepsilon$$

Первый вопрос: откуда взять претендента на роль предела? Еще желательно, чтобы он был единственный. Берём ε , N из формулы выше, фиксируем x. Если для супремума есть неравенство, то и для x тем более. $\forall x \in A((n > N \land m > N) \Rightarrow |f_n(x) - f_m(x)| < \varepsilon). \Rightarrow \{f_n(x)\}_{n=0}^{\infty}$ — фундаментальная последовательность чисел в \mathbb{C} .

$$\Rightarrow \forall x \in A \exists L \in \mathbb{C} \lim_{n \to \infty} f_n(x) = L$$

Определим $f \coloneqq (x \in A \mapsto \lim_{n \to \infty} f_n(x))$
 $(n > N \land m > N \Rightarrow \forall x \in A | f_n(x) - f_m(x) | < \varepsilon)$ пусть $m \to \infty$
 $\Rightarrow (n > N \Rightarrow \forall x \in A | f_n(x) - f(x) | \le \varepsilon)$
 $\Rightarrow (n > N \Rightarrow ||f_n - f||_{\infty} = \sup_{x \in A} |f_n(x) - f(x)| \le \varepsilon)$

Последнее сображение, которое нужно добавить, это то, что f — элемент A. Для n > N можем записать f как $f = (f - f_n) + f_n, f_n \in m(A), f - f_n \in m(A)$.

$$\Rightarrow ||f||_{\infty} = ||(f - f_n) + f_n||_{\infty} \le ||f - f_n||_{\infty} + ||f_n||_{\infty} < +\infty \Rightarrow f \in m(A)$$

Давайте заметим, что у нас получилось определение равномерной непрерывности из математического анализа.

$$\lim_{n \to \infty} f_n = f \in m(A) \Leftrightarrow \lim_{n \to \infty} \sup_{x \in A} |f_n(x) - f(x)| = 0 \Leftrightarrow f_n \underset{\substack{x \in A \\ n \to \infty}}{\Longrightarrow} f$$

Определение 2.12 (Топологический компакт). Множество K — топологический компакт, если оно обладает следующими свойствами

- 1. ($\forall \alpha \in AG_{\alpha}$ открытое множество $\land K \subseteq \bigcup_{\alpha \in A} G_{\alpha} \Rightarrow \exists \{\alpha_j\}_{j=1}^n$ конечная подпоследовательность $K \subseteq \bigcup_{j=1}^n G_{\alpha_j}$)
- 2. Хаусдорфовость $\forall x \in K \forall y \in K (x \neq y \Rightarrow \exists U \exists V (U otkрытое множество <math>\land V otkрытое множество \land x \in U \land y \in V \land U \cap V = \varnothing))$

Определение 2.13. $C(K) = \{f | f : K \to \mathbb{R} \land f \text{ непрерывна} \}$

$$||f||_{C(K)} = ||f||_{\infty} = \sup_{x \in K} |f(x)| = \max_{x \in K} |f(x)|$$

Следствие 2.2. K — топологический компакт $\Rightarrow C(K)$ — банахово

Доказательство. $C(K) \subset m(K)$. C(K) — подпространство в алгебраическом смысле. Проверим, что C(K) — замкнуто в m(K)

$$\{f_n\}, f_n = C(K), \lim_{n \to \infty} |f - f_n|_{\infty} = 0 \Leftrightarrow f_n \underset{K, n \to \infty}{\Longrightarrow} f \Rightarrow f \in C(K) \Rightarrow C(K)$$

тогда
$$m(K)$$
 — полное и $C(K)$ — полное.

2.3. Пространство последовательностей с sup нормой

Определение 2.14.
$$\mathbb{C}^n, n \in \mathbb{N}, l_n = \{x^\infty = (x_1, \dots, x_n), x_j \in \mathbb{C}\}$$

$$||x||_\infty = \max_{1 \le j \le n} |x_j|$$

 $A = \{1, 2, \dots, n\}, l_n^{\infty} = m(A) \Rightarrow l_n^{\infty}$ — полное Удобно думать, что последовательность — это функция на множестве натуральных чисел.

Определение 2.15 (l^{∞}) .

$$\begin{split} l^{\infty} &= \{X = \{x_j\}_{j=1}^{\infty}, \sup_{j \in \mathbb{N}} |x_j| < +\infty\} \\ ||x||_{\infty} \sup_{j \in \mathbb{N}} |x_j| \quad A &= \{1, 2, 3, \dots, n, \dots\} \\ X &= \{x\} j_{j=1}^{\infty} \in m(A), f(j) = x_j \\ f:A \to \mathbb{C} \\ l^{\infty} &:= m(\mathbb{N}) \Rightarrow l^{\infty} - \text{полное} \end{split}$$

Определение 2.16.

$$c = \{X = \{x\} \ j_{j=1}^{\infty}, x_j \in \mathbb{C} \quad \exists \lim_{n \to \infty} x_n = x_0\}$$
$$c \subset l^{\infty}, ||x|| = ||x||_{\infty} = \sup ||X||$$
$$c_0 = \{x = \{x\}_{j=1}^{\infty}, \lim_{n \to \infty} x_j = 0\}, c_0 \subset c \subset l^{\infty}$$

 c, c_0 — замкнутые подпространства в $l^\infty \Rightarrow c, c_0$ — банаховы.

2.4. Пространства n раз непрерывно дифференцируемых функций на отрезке

Определение 2.17 (норма n производной).

$$n \in \mathbb{N}$$
 $C^{(n)}[a, b] = \{f : [a, b] \to \mathbb{R}\} \exists f^{(n)} \in C[a, b]$
$$|||f||_{(n)} = \max_{0 \le k \le n}, f^0 = f$$

Теорема 2.5. В $C^{(n)}[a,b]$ — банахово.

Доказательство.

$$\{f_m\}_{m=1}^{\infty}$$
 — фундаментальная последовательность в $C^{(n)}[a,b]$ $\varepsilon>0$ $\exists \ N: (m>n \ \land \ q>n) \Rightarrow ||f_m-f_q||_{C^{(n)}}<\varepsilon \Rightarrow ||f_m^{(k)}< f_q^{(k)}||_{\infty}<\varepsilon$ $k=0,1,\ldots,n$

$$\begin{split} \{f_m^{(k)}\} &- \text{фундаментальная в полном пространстве } C[a,b] \\ &\Rightarrow \exists \, \varphi_k \in C[a,b], f_n^{(k)} \underset{[a,b]}{\Longrightarrow} \varphi_k, k = 0,1,\ldots,n \end{split}$$

 ^{Анализ} $(f_k^{(n)} \underset{[a,b]}{\Longrightarrow} \varphi_0 \wedge \varphi_k^0 \underset{[a,b]}{\Longrightarrow} \varphi_1) \Rightarrow \varphi_1 = \varphi_0', \varphi_2 = \varphi_0'',\ldots,\varphi_n = \varphi_0^{(n)} \quad (2.1)$

Глава 3

Пространство суммируемых функций (Лебега L^p)

Сейчас будет небольшой экскурс в теорию меры, которая была на математическом анализе. Мы ничего доказывать не будем и поверим, что все утверждения верны и в общем случае.

3.1. Теория меры

Определение 3.1 (Мера). (X,U,μ) — пространство с мерой. X — множество, U — σ -алгебра подмножества X

- 1. $\emptyset \in U$
- $2. \ A \in U \Rightarrow X A \in U$
- 3. $\{A_n\}_{n=1}^{\infty}, A_n \in U, A \infty_{n=1} A_n \Rightarrow A \in U$

$$\mu: U \to [0, +\infty]$$

- мера, если
 - 1. $\mu(\emptyset) = 0$
 - 2. $A = U_{n=1}^{\infty}\{A_n\}, A_n \cap A_m = \varnothing, n \neq m, A_n \in U \Rightarrow \mu(A) = \sum_{n=1}^{\infty} \mu A_n$ (счетная аддитивность)

Предположения:

1. μ — полная мера, то есть $A \in U, \mu(A) = 0 \Rightarrow (\forall B \subset A \Rightarrow B \in U, (\Rightarrow \mu B) = 0)$

2.
$$\mu - \sigma$$
-конечна, то есть $X = \bigcup_{i=1}^{\infty} X_i, \mu(X_i) < +\infty$

Пока можем думать, что речь идет о мере Лебега. Потом приведём другие примеры. В теории пространств будем считать, что функция действует из X в \mathbb{R} или в \mathbb{C} (не особо важно).

Определение 3.2 (Измеримая функция). $f: X \to \overline{\mathbb{R}}$. fизмерима, если

$$\forall\, c \in \mathbb{R}, x \ \underbrace{\{x: c < f(x)\}}_{\text{измеримое множество}} \in U$$

$$f: X \to \mathbb{C} \Rightarrow f = u + iv, u, v: X \to \mathbb{R}$$

$$f: X \to \mathbb{C} \Rightarrow f = u + iv, u, v: X \to \mathbb{R}$$

f — измерима, если u,v — измеримы

Как же определяется интеграл? Пусть есть какой-то элемент σ алгебры $e\in U,\; \chi_e(x)=\begin{cases} 1,x\in E\\ 0,x\notin e \end{cases}$. Множество простых функций определяется как

$$S = \{g(x) = \sum_{k=1}^{n} c_k \chi_{e_k}, c_k \in \mathbb{C}, e_k \in U\}$$

$$g\in S, \int_X g(x)d\mu=\sum_{k=1}^n c_k\mu e_k.$$
 $f(x)$ — измеримая, если $f(x)\geq e, x\in X$

Определение 3.3 (Произвольно измеримая функция).

$$\int_X f d\mu = \sup \left\{ \int_X g(x) d\mu : 0 \le g(x) \le g(x), x \in X, c_k \in \mathbb{R}, c_k > 0 \right\}$$

Определение 3.4 (Измеримая функция). f — измерима, если

$$f_{+}(x) = \max_{(x)} f(x), 0 \land f_{-}(x) = \max(-f(x), 0) \Rightarrow f = f_{+} - f_{-}$$

Если $\int_X f_+ d\mu$ — конечен или $\int_X f_- d\mu$ — конечен, то $\int_X f d\mu = \int_X f_+ d\mu$ — $\int_X f_- d\mu$ Если f — измеримая, $f: X \to \mathbb{C} \Rightarrow f = u + iv$

$$\int_X f d\mu = \int_X u d\mu + i \int_X v d\mu$$

Определение 3.5 (Множество суммируемых функций). $L(X,\mu)$ — множество суммируемых функций =

$$\left\{ f_i : \int_X |f| d\mu < +\infty \right\}, |f| = f_+ + f_-$$

Прежде чем двигаться дальше, приведем примры других мер (кроме мер Лебега)

Пример 3.1. $E \subset \mathbb{R}^n$, E — измерима по Лебегу, λ — мера Лебега, $w(x) \geq 0, x \in E, w$ — измерима по Лебегу.

 $e\subset E, e$ — измеримо по Лебегу. $\mu e=\int_e w(x)d\lambda, w(x)$ — плотность меры $\mu,\,w(x)$ — её вес.

Вторая мера в каком-то смысле противоположная. Она сосредоточна на наборе точек и называется дискретной.

Пример 3.2. X — множество $(X \neq \emptyset), a \in X$

$$\sigma_n, e \subset X, \sigma_a(e) = \begin{cases} 1, a \in E \\ 0, a \notin e \end{cases}$$

 $\forall e, e \subset X, e$ — измеримо

Пример 3.3 (Дискретная мера). X — бесконечное множество. $\{a_j\}_{j=1}^\infty, a_j \in X, a_j \neq a_k, j \neq k$ $\{h_j\}_{j=1}^\infty, h_j > 0$

$$\mu - \sum_{\gamma=1}^{\infty} h_j \delta_{a_j}, e \subset X \quad \mu E = \sum_{\{j: a_j \in E\}} h_j$$

План такой: хотим ввести норму на множестве интегрирумеых функций. Для этого нам надо ввести некоторые неравенства.

3.2. Классические неравенства

Теорема 3.1 (Неравенство Юнга). $p>1, \frac{1}{p}+\frac{1}{q}=1$ (q-сопряженный показатель)

$$\Rightarrow ab \le \frac{a^p}{p} + \frac{b^p}{q}$$

Доказательство. Пусть b — фиксировано, $\varphi(x) = \frac{x^p}{p} - xb, x \in [0, +\infty)$. Хотим найти $\min_{x \in [0, +\infty)} \varphi(x)$. Для этого посмотрим, где производная обращается в 0. $\varphi'(x) = x^{p-1} - b, \ \varphi'(x_0) = 0 \Leftrightarrow x_0 = b^{\frac{1}{p-1}} \Rightarrow \varphi(x) > \varphi(x) > \varphi(x) > \varphi(x_0) \ \forall \ x \neq x_0, x \geq 0$. Таким образом, x_0 — строгий локальный минимум.

$$\varphi(x_0) = \frac{1}{p} b^{\frac{p}{p-1}} - b^{\frac{p}{p-1}} = b^{\frac{p}{p-1}} \left(\frac{1}{p} - 1\right) = \frac{b^q}{q}$$

$$-\frac{1}{q} = \frac{1}{p} - 1 = \frac{1-p}{p} \Rightarrow q = \frac{p}{p-1}$$

$$\varphi(x) \ge -\frac{b^q}{q} \, \forall \, x \in [0, +\infty) \text{ то есть ОК}$$

$$\varphi(x_0) = \frac{1}{p} b^{\frac{p}{p-1}} - b^{\frac{p}{p-1}} = b^{\frac{p}{p-1}} \left(\frac{1}{p} - 1\right) = \frac{b^q}{q}$$

Замечание 3.1. Равенство в неравенстве Юнга достигается только при $a=b^{\frac{1}{p-1}}$

Теорема 3.2 (Неравенство Гельдера). (X,U,μ) — пространство с мерой. f,g — измеримые, $p>1,\frac{1}{p}+\frac{1}{q}=1$ \Rightarrow

$$\int_X |fg| d\mu \le \left(\int_X |f|^p d\mu \right)^{\frac{1}{p}} \cdot \left(\int_X |g|^q d\mu \right)^{\frac{1}{q}} \tag{*}$$

Если p=q=2, то это «Неравенство Коши-Бунаковского-Шварца», или на молодёжном математическом сленге неравенство КБШ

Доказательство. Для начала отбросим какие-то простые случаи. $A = \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}, B = \left(\int_X |g|^q d\mu\right)^{\frac{1}{q}}.$ Если $A = 0 \Leftrightarrow |f| = 0$ почти всюду по $\mu \Leftrightarrow f(x) = 0$ почти всюду по μ (то есть $\mu\{x: f(x) \neq 0\} = 0$) На всякий случай поясним, почему функция равна 0 почти всюду по мере μ

$$\int_{X} |f| d\mu = 0 \Rightarrow e = \{x : f(x) = 0\}, m \in \mathbb{N}, e_m = \{x : |f(x)| > \frac{1}{m}\}$$

$$e = \bigcup_{m=1}^{\infty} e_m \quad \int_{X} |f| d\mu \ge \int_{e_m} |f| d\mu \ge \frac{1}{m} \mu e_m \Rightarrow \mu e_m = 0 \Rightarrow \mu E = 0$$

$$\Rightarrow f(x) \cdot g(x) = 0 \text{ n.b.} \quad 0 \le 0$$
 (*)

Если $A = +\infty$, то (*)

пусть
$$0 < A < +\infty, 0 < R < +\infty$$

Неравенство Гельдера однородное, то есть если мы f умножим на константу, то левая и правая часть умножится на неё же, аналогично с g. Иногда бывает удобно ввести нормировку.

$$f_1(x) = \frac{f(x)}{A}, g_1(x) = \frac{g(x)}{B}, \int_X |f_1(x)|^p d\mu = \frac{A^p}{A^p} = 1, \int_X |g_1(x)|^q d\mu = 1$$

Пусть x — фиксирован, $a = |f(x)|, b = |g(x)| \stackrel{\text{н.Юнга}}{\Rightarrow}$

$$|f_1(x)| \cdot |g_1(x)| \le \frac{|f_1(x)|^p}{p} + \frac{|g_1(x)|^q}{q}$$
 проинтегрируем X по μ
$$\Rightarrow \int_x |f_1| \cdot |g_1| d\mu \le \frac{1}{p} \int_X |f_1|^p d\mu + \frac{1}{q} \int_X |g_1|^q d\mu = \frac{1}{p} + \frac{1}{q} = 1$$

Умножаем на $AB \Rightarrow \int_X |fg| d\mu \le AB$

Теорема 3.3 (Неравенство Минковского). $(X,U,\mu),\,f,g$ — измеримые, $1\leq p<+\infty$ \Rightarrow

$$\underbrace{\left(\int_{X}|f(x)+g(x)|^{p}d\mu\right)^{\frac{1}{p}}}_{C} \leq \underbrace{\left(\int_{X}|f(x)|^{p}d\mu\right)^{\frac{1}{p}}}_{A} + \underbrace{\left(\int_{X}|fg(x)|^{p}d\mu\right)^{\frac{1}{p}}}_{B}$$
(*)

Доказательство. Сначала разберём простые случаи. p=1,x — фиксирован. $|f(x)+g(x)|\leq |f(x)|+|g(x)|$ проинтегрируем по $X\Rightarrow (*)$ при p=1. Теперь пусть p>1. Если $A=+\infty$, или $B=+\infty$, или C=0, то (*).

Теперь же пусть $A<+\infty, B<+\infty, C>0$. Доказателсьвто будет в два этапа. На первом этапе получим гораздо более слабое утверждение, вообще не то, что требуется в теореме, но оно нам понадобится. Докажем, что $C<+\infty$.

 $a,b\in\mathbb{R}\Rightarrow |a+b|\leq |a|+|b|\leq 2\max(|a|,|b|)\Rightarrow |a+b|^p\leq 2^p\max(|a|^p,|b|^p)\leq 2^p(|a|^p+|b|^p)\Rightarrow$ при фиксированном x

$$|f(x)+g(x)|^p \leq 2^p (|f(x)|^p + |g(x)|^p)$$
проинтегрируем по X

 $\Rightarrow C^p \leq 2^p (A^p + B^p) \Rightarrow C < +\infty$. Первая часть доказательства закончена.

$$C^p = \int_X |f+g|^p d\mu = \int_X |f+g| \cdot |f+g|^{p-1} d\mu \leq \int_X |f| \cdot |f+g|^{p-1} d\mu + \int_X |g| \cdot |f+g|^{p-1} d\mu$$

$$\int_X |f| \cdot |f+g|^{p-1} d\mu \overset{\text{н. Гельдера}}{\leq} \left(\int_X |f+g| d\mu \right)^{\frac{1}{p}} \cdot \left(\underbrace{\int_X |f+g| d\mu}_A \right)^{(p-1)q} = AC$$

$$\int_X |g| \cdot |f + g|^{p-1} d\mu \stackrel{\text{аналогично}}{\leq} BC^{\frac{p}{q}} \Rightarrow$$

$$C^p \leq (A+B)C^{\frac{p}{q}}, \quad 0 < C < +\infty \Rightarrow$$

$$C^{p-\frac{p}{q}} = C \Rightarrow C \leq A + B(\text{ это (*)})$$

3.3. Пространство Лебега

Отсюда и до определения L^{∞} очень аккуратно с \mathcal{L} и L читать. Тут точно есть путаница, но записи лекции нет, чтобы ее устранить.

Определение 3.6. (X,U,μ) — пространство с мерой. $L(X,\mu)$ — пространство суммируемых функций. $1 \le p < +\infty$ $\mathcal{L}^p(X,\mu) = \{f: |f|^p \in L(X,\mu)\}$

$$f \in L^p(X,\mu), ||f||_p = \left(\int_X |f(x)|^p d\mu\right)^{\frac{1}{p}}$$

Проверим, что $||f||_p$ — это полунорма на $L^p(X,\mu).$ $c\in\mathbb{R}$ (или \mathbb{C}). $||cf||_p=|c|||f||_p$

 $||f+g||_p \leq ||f||_p + ||g||_p —$ неравенство Минковского $||f||=0 \Leftrightarrow \int_X |f(x)|^p d\mu = 0 \Leftrightarrow f(x)=0 \text{ почти всюду по мере } \mu \text{ на } X.$

Пример 3.4. $L[0,1], \lambda$ — мера Лебега на [0,1].

функция Дирихле
$$\varphi(x)=\begin{cases} 1, x\in\mathbb{Q} \\ 0, x\notin\mathbb{Q} \end{cases}$$
 $\int_0^1 |\varphi(x)| d\lambda=0.$

 $N=\{f-$ измерима $\wedge f(x)=0$ почти всюду на X по $\mu\}$. $||f||_p=0 \Leftrightarrow f\in N$ (не зависит от p). Рецепт приготовления пространства с нормой из полуфбриката. пространство с полунормой. N — подпространство в L^p , $L^p=L^p/N$ — факторпространство.

 $g,f\in L^p,f$ $g\Leftrightarrow f-\underline{g}\in N\Leftrightarrow f(x)=g(x)$ почти всюду по $\mu.$ \overline{f} — класс эквивалентности, $\overline{f}=\{g:f$ $g\}.$

 $||\overline{f}||_p:=||f||,$ то есть можно взять любую функцию из класса эквивалнентности.

$$||\overline{f}||_p = 0 \Leftrightarrow \int_X |f|^p d\mu = 0 \Leftrightarrow f \in N \Rightarrow \overline{f} = N = \overline{0} \Rightarrow$$

 $||\overline{f}||_p$ — норма на L^p . Говорят, что $f \in L^p$, возьмём функцию из L^p , но имеют в виду, что возьмут класс экивалентности, а из него возьмут функцию

Одна из главных целей — доказать, что эти пространства Банаховы. Сначала определим $L^{\infty}(X,\mu)$ (существенно ограниченные функции).

Определение 3.7
$$(L^{\infty}(X,\mu))$$
. $f \in L^{\infty}(X,\mu)$, если

$$\exists \, c > 0 | f(x) | \leq c$$
 почти всюду на X по $\mu(\mu \{ x : | f(x) | > c \} = 0)$

Возьмём точную нижнюю грань этой константы. $||f||_{\infty}=\inf\{c\geq 0: \mu\{x: ||f(x)||>c\}=0\}$ (существуенный \sup , или на подлом англосаксонском $\exp_X f$)

Свойство 3.1.
$$f \in \mathcal{L}^{\infty}(X, \mu) \Rightarrow \mu\{f(x) > ||f||_{\infty}\} = 0$$

Доказательство.
$$e = \{x: |f(x)>||f||_{\infty}\}, m \in \mathbb{N}.$$
 $e_m = \{x: |f(x)|>||f||_{\infty}+\frac{1}{m}\} \Rightarrow \mu e_m = 0$ по определеннию ess $\sup_X f \Rightarrow e = \cup_{m=1}^{\infty} e_m \Rightarrow \mu e = 0$

$$||f||_{\infty} - \text{полунорма на } \mathcal{L}^{\infty}$$

$$\lambda \neq 0 \quad |\lambda f(x)| \leq |\lambda| \cdot c \Leftrightarrow |f(x) \leq c \Rightarrow ||\lambda f||_{\infty} = |\lambda|||f||_{\infty},$$

$$f, g \in \mathcal{L}^{\infty}, x \in X \Rightarrow |f(x) + g(x)| \leq |f(x)| + |g(x)| \leq ||f||_{\infty} + ||g||_{\infty}$$
 для п.в. x на X
$$\Rightarrow ||f + g||_{\infty} < ||f||_{\infty} + ||g||_{\infty}$$

 $||f||_{\infty}=0\Leftrightarrow \mu\{x:|f(x)|>0\}=0\Leftrightarrow f(x)=0$ п.в. на $X\Leftrightarrow f\in N=\{f$ — измерима, f(x)=0 п.в. на $X\}$

$$L^{\infty} = \mathcal{L}^{\infty}/N$$

Все, что Н.А. доказал для меры Лебега, верно и для других мер. Те доказательства и так были не особо веселые, чтобы их повторять.

Теорема 3.4 (Фату). $(X, U, \mu), \{g_n\}_{n=1}^{\infty}, g_n$ — измеримые, $g_n(x) \geq 0$

$$g_n(x) \xrightarrow[\text{п.в.}]{} g(x) \qquad \int_X g_n(x) d\mu \leq C$$
 не зависит от п
$$\Rightarrow \int_X g(x) d\mu \leq C$$

Первая существенная теорема, которая нам встретилась.

Теорема 3.5 (полнота пространства Лебега). $(X, U, \mu), 1 \le p \le +\infty \Rightarrow L^p(X, \mu)$ — банаховы.

Доказательство. при $1 \le p < +\infty$ воспользуемся критерием полноты (если сходится ряд из норм, то сам ряд сходится)

$$\{f_n\}_{n=1}^{\infty}, f_n \in L^p, \sum_{n=1}^{\infty} ||f_n||_p \le C < +\infty$$

$$S_n(x) = \sum_{k=1}^n f_k(x)$$

Докажем, что $\lim_{n\to\infty} ||S_n(x)-f(x)||_p = 0$. Существует ли $f(x) = \lim_{n\to\infty} S_n(x)$ почти всюду на X?

Рассмотрим $\sigma_n(x) = \sum_{k=1}^n |f_k(x)| \Rightarrow \sigma_n(x)$ возрастает $\Rightarrow \exists \sigma(x) = \lim_{n \to \infty} \sigma_n(x)$. Возможно, $\sigma(x) = +\infty$ для некоторых x.

$$||\sigma_n||_p \le \sum_{k=1}^n ||f_k||_p \le C$$

$$\int_{X} |\sigma_{n}(x)|^{p} d\mu \leq C^{p} \wedge \sigma_{n}(x)^{p} \underset{n \to \infty}{\longrightarrow} \sigma_{(x)}^{p} \, \forall \, x \in X \stackrel{\text{\tiny T. } \Phiarry}{\Rightarrow}$$

 $\int_X \sigma(x)^p d\mu \le c^p$ Самое главное, что мы из этого заключаем: $\sigma(x) < +\infty$ п.в. на X по $\mu.$

$$x\in X$$

$$\sum_{k=1}^{\infty}|f_k(x)|<+\infty\Rightarrow\sum_{k=1}^{\infty}f_k(x)-$$
 сходится
$$f(x):=\sum_{k=1}^{\infty}f_k(x)$$
 определена п.в. на $X,\lim_{n\to\infty}S_n(x)=f(x)$
$$\sum_{k=1}^{\infty}||f_k||_p<+\infty, \varepsilon>0$$

Применим критерий Коши: $\exists N \in \mathbb{N} \quad m > n > N \Rightarrow \sum_{k=n+1}^m ||f_k||_p < \varepsilon \Rightarrow ||S_m(x) - S_n(x)||_p \leq \sum_{k=n+1}^m ||f_k||_p < \varepsilon$

$$\begin{split} \int_x |S_m(x) - S_n(x)|^p d\mu &< \varepsilon^p(n \text{ фиксировано}) \wedge |S_m(x) - S_n(x)|^m \underset{m \to \infty}{\longrightarrow} |f(x) - S_n(x)| \\ &\stackrel{\Phi_{\text{ary}}}{\Rightarrow} \int_X |f - S_n|^p d\mu \leq \varepsilon^p \Rightarrow ||f - S_n|| \leq \varepsilon \end{split}$$

 $f-S_n\in L_p, S+n\in L^p\Rightarrow f=(f-S_n)+S_n\Rightarrow f\in L_p$ и $||f-S_n||_p\underset{n\to\infty}{\longrightarrow} 0$ Теперь осталось рассмотреть случай $p=\infty.$ $\{f_n\}_{n=1}^\infty$ фундаментальная, $f_n\in L^\infty,$

$$|f_n(x)| \le ||f_n||_{\infty} \quad x \in X \setminus e_n, \mu e_n = 0 \quad n \in \mathbb{N}$$

 $e=\cup_{n=1}^\infty, X_1=X\setminus e\Rightarrow f_n\in m(X_1)$ — ограниченная функция. $m(X_1)$ — полное $\Rightarrow \{f_n\}$ — фундаментальна в $m(X_1)\Rightarrow\exists f\in m(X_1)$ — $\sup_{x\in X_1}|f(x)-f_n(x)|\underset{n\to\infty}{\longrightarrow}0$. Положим f(x)=0 если $x\in e\Rightarrow \lim_{n\to\infty}||f_n-f||_{L\infty}=0$ \square

3.4. Пространства l_n^p, l^p

$$n \in \mathbb{N}, 1 \leq p < +\infty.$$

Определение 3.8.

$$l_n^p = \left\{ \mathbb{R}^n, x = (x_1, \dots, x_n), x_j \in \mathbb{R}, ||x||_p = \left(\sum_{j=1}^n |x_j|^p \right)^{\frac{1}{p}} \right\}$$

Рассмотрим $X = \{1, 2, ..., n\}$. Возьмём дискретную меру $\mu(j) = 1$ при $1 \leq j \leq n, \ l_n^p = L^p(X,\mu). \ f \in L^p(X,\mu), f(j) = x_j \Rightarrow l_n^p$ — полное. Посмотрим, что будет обозначать сходимость этой нормы.

Теорема 3.6. $\{x^{(m)}\}_{m=1}^{\infty}, x=(x_1,\ldots,x_n), x^{(m)}=(x_1^{(m)},\ldots,x_n^{(m)}), x^{(m)}\in l_n^p, q\leq p\leq +\infty$

$$\lim_{m \to \infty} ||x - x^{(m)}||_p = 0 \Leftrightarrow \lim_{m \to \infty} x_j^{(m)} = x_j, 1 \le j \le n$$

 $Доказательство. \Rightarrow$

Пусть j — фиксировано, $\lim_{m \to \infty} x^{(m)} = x$ в l_n^p .

При $p < +\infty ||x - x^{(m)}||_p = \left(\sum_{i=1}^n |x_i - x_i^{(m)}|^p\right)^{\frac{1}{p}} \ge |x_j - x_j^{(m)}|$. Так как

 $||x - x^{(m)}||_p \xrightarrow[m \to \infty]{} 0 \Rightarrow \lim_{m \to \infty} |x_j - x_j^{(m)}| = 0.$ При $p = \infty$ $||x - x^{(m)}||_{\infty} = \max_{1 \le i \le m} \{|x_i - x_i^{(m)}|\} \ge |x_j - x_j^{(m)}|.$ Так как $||x - x^{(m)}||_{\infty} \xrightarrow[m \to \infty]{} 0 \Rightarrow \lim_{m \to \infty} |x_j - x_j^{(m)}| = 0$ Теперь ←

$$1 \le j \le n \quad \lim_{m \to \infty} |x_j - x_j^{(m)}| = 0 \Rightarrow \left(\sum_{j=1}^n ||x_j - x_j^{(m)}|^p\right)^{\frac{1}{p}} \underset{m \to \infty}{\longrightarrow} 0$$

$$\text{if } x_j = \max_{1 \le j \le n} |x_j - x_j^{(m)}| \underset{m \to \infty}{\longrightarrow} 0$$

Определение 3.9. $l_p = \{x: \{x_j\}_{j=1}^{\infty}, x_j \in \mathbb{R}(\mathbb{C}) \land \sum_{j=1}^{\infty} |x_j|^p < 0$

$$||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}}$$

$$X=\mathbb{N},\, \mu(j)=1,\, \mu=\sum_{n=1}^\infty\sigma_n$$

$$l^p=L^p(\mathbb{N},\mu)\Rightarrow \text{ полное} \qquad 1\leq p<+\infty$$

Замечание 3.2. $\{x^{(m)}\}_{m=1}^{\infty}, x^{(m)} \in l^p, \lim_{m \to \infty} ||x^{(m)} - x||_p = 0 \Rightarrow \forall j \lim_{m \to \infty} x_j^{(m)} = 0$ x_i Например, $\not =$ при $e_m = (0, 0, \dots, 0, 1, 0, 0, \dots)$

Рис. 3.1: Примеры единичных шаров в l_2^p

Пусть j фиксировано. $\lim_{m\to\infty}(e_m)_j=0$ $||e_m-\mathbb{O}||_p=1$ $\forall\,p,1\le p\le +\infty.$ В качестве упражнения доказать, что l^p — полное непосредственно.

На рисунке 3.1 приведены примеры единичных шаров в $l_2^p=\{(x,y):(|x|^p+|y|^p)^{\frac{1}{p}}\},1\leq p<+\infty.$ Для l_2^∞ норма определяется $||(x,y)||_\infty=\max(|x|,|y|)$

3.5. Неполное нормированное пространство

Определение 3.10 (Финитное линейное пространство).

$$F = \{x - \{x_j\}_{j=1}^{\infty}, x_j \in \mathbb{R}(\mathbb{C}) \exists \ N(x) \in \mathbb{N} : n > N(x) \Rightarrow x_n = 0\}$$

 $F \subset l^p \ 1 \leq p \leq +\infty. \ (F, ||\cdot||_p)$ — не полное, F — не замкнуто. Будем брать геометрическую прогрессию и обрывать ее на некотором члене.

$$x^{(m)} = \left\{ \frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^m}, 0, 0, 0, \dots \right\} \in F$$

$$X = \left\{ \frac{1}{2^k} \right\} \in l^p$$

$$1 \le p < +\infty \quad ||x - x^{(m)}||_p = \left(\sum_{k=m+1}^{\infty} \frac{1}{2^{kp}} \right)^{\frac{1}{p}} \xrightarrow[m \to \infty]{} 0$$

Следовательно, F — не замкнуто.

В качестве упражнения проверить, что \overline{F} в $l^p=$? при $p<+\infty$ и при $p=\infty.$

Теорема 3.7.
$$C[a,b], ||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}, 1 \leq p < +\infty$$
 $(C[a,b], ||\cdot||)$ — не полное

Доказательство. При $p=1, [a,b]=[-1,1], f\in C[a,b], \int_a^b |f(x)|^p dx=0 \Leftrightarrow f(x)\equiv 0.$ Предъявим фундаментальную последовательность, предел которой не будет непрерывной функцией.

$$f_n = egin{cases} 0, -1 \leq x \leq 0 \ nx, x \in [0, rac{1}{n}] \ 1, x \in [rac{1}{n}, 1] \end{cases}$$
 , $f \in C[-1, 1]$

 f_n — фундаментальная в (C[-1,1], p=1)

Пусть m > n.

$$\int_{-1}^{1} |f_m(x) - f_n(x)| dx = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{m} \right) \le \frac{1}{2n} \underset{n, m \to \infty}{\longrightarrow} 0$$

Рис. 3.2: Доказательство теоремы 3.7

Пусть
$$\exists \ f \in C[-1,1]: ||f-f_n||_1 \underset{n \to \infty}{\longrightarrow} 0$$

$$m \ge n \qquad \int_{\frac{1}{n}}^1 \underbrace{|f(x)-1|} \, dx \underset{m \to \infty}{\longrightarrow} 0$$

$$\int_{\frac{1}{n}}^1 |f(x)-1| dx \le \int_0^1 |f(x)-f_m(x)| dx \underset{m \to \infty}{\longrightarrow} 0$$
 $\Rightarrow f(x)=1, x \in \left[\frac{1}{n},1\right] \, \forall \, n$
$$\begin{cases} \Rightarrow f(x)=1, x \in (0,1], \, f \text{ непрерывна }, f(0)=1 \\ \text{аналогично } f(x)\equiv 0 \text{ на } [-1,0] \end{cases} \Rightarrow \text{ противоречие}$$

3.6. Пополнение метрического пространства

Мы привели несколько примеров нормированных пространств, не являющихся полными. Приведём еще один пример.

Определение 3.11.

$$\mathcal{P} = \left\{ p(x) = \sum_{k=0}^{n} a_k x^k, a_k \in \mathbb{R}, n \ge 0 \right\}$$

 \mathcal{P} (подпространство в алгебраическом смысле) $\subset C[a,b], ||p||_{\infty} = \max_{x \in [a,b]} |p(x)| \ e^x \notin \mathcal{P}, \ p_n(x) = \sum_{k=0}^n \frac{x^k}{k!}, \Rightarrow p_n \underset{[a,b],n \to \infty}{\Rightarrow} e^x$ это не многочлен, потому что если сколько-то раз продифференцировать многочлен, он станте тождественным $0 \Rightarrow \overline{\mathcal{P}} \setminus \mathcal{P} \ni e^x \Rightarrow \mathcal{P}$ — не замкнуто $\Rightarrow \mathcal{P}$ — не полное.

$$\overline{\mathcal{P}} = C[a, b]$$

Теорема 3.8 (Вейерштрасса, 1885). $f \in C[a,b], \forall \varepsilon > 0 \exists p \in \mathcal{P}$ т.ч. $||f-p|| < \varepsilon$ (любую функцию на отрезке можно приблизить многочленами)

$$p_n \underset{G}{\rightrightarrows} f \Rightarrow f$$
 аналитическая в G

Несколько простых свойств метрики, и все следуют из неравенства треугольника

Теорема 3.9 (Свойства метрики). (X, ρ) — метрическое

1.
$$x, y, z, u \in X \Rightarrow |\rho(x, u) - \rho(y, z)| \le \rho(x, y) + \rho(u, z)$$

2.
$$\rho: X \times X \to \mathbb{R} \Rightarrow \rho(x,y)$$
 — непрерывная функция

- 3. $A\subset X, A$ подмножество, $\rho(x,A)=\inf_{y\in A}\rho(x,y)\Rightarrow \rho(x,A)$ непрерывная функция от x
- 4. $A \subset X, A = \overline{A}, x_0 \notin A \Rightarrow \rho(x_0, A) > 0$

Доказательство. 1.
$$\rho(x,u) \leq \rho(x,y) + \rho(y,u) \leq \rho(x,y) + \rho(y,z) + \rho(z,u) \Rightarrow \rho(x,u) - \rho(y,z) \leq \rho(x,y) + \rho(z,u)$$
 Аналогично $\rho(y,z) - \rho(x,u) \leq \ldots$ из всего $\Rightarrow 1$)

2. Докажем непрерывность с помощью последовательности. $\rho(x,y)$ — непрерывная?

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y \Leftrightarrow \lim_{n \to \infty} \rho(x_n, x) = 0 = \lim_{n \to \infty} \rho(y_n, y)$$

$$\rho(x,y) - \rho(x_n,y_n)| \stackrel{(1)}{\leq} \rho(x,x_n) + \rho(y,y_n) \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow \lim_{n \to \infty} \rho(x_n,y_n) = \rho(x,y)$$

3. $A \subset X$, $x, z \in X$, $|\rho(x, A) - \rho(z, A)| \le ?$ Пусть $y \in A$

$$\rho(x,y) \le \rho(x,z) + \rho(z,y) \Rightarrow \rho(x,A) \le \rho(x,z) + \rho(z,y) \,\forall \, y \in A$$
$$\Rightarrow \rho(x,A) \le \rho(x,z) + \inf_{y \in A} \rho(z,y) = \rho(x,z) + \rho(z,A) \Rightarrow$$
$$\rho(x,A) - \rho(z,A) \le \rho(x,z)$$

Но нам нужен модуль. Можем сказать, что x и z ничем не отличаются, аналогично $\rho(z,A) - \rho(x,A) \le \rho(x,z) \Rightarrow 3$

4.

$$x_0 \notin A \Rightarrow x_0 \in X \setminus A \text{ открытое}$$

$$\Rightarrow \exists \ \delta>0 \quad B_\delta(x_0) \subset X \setminus A \Rightarrow \rho(x_0,A) \geq \delta$$

Перед определением пополнения нам потребуется несколько определений, связанных с отображениями в метрических пространствах.

$$(X, \rho), (Y, d)$$
 — метрические простариства. $T: X \to Y$.

Определение 3.12 (Изометрическое вложение).

$$d(T_x, T_z) = \rho(x, z) \quad \forall x, z \in X$$

Обозначение: $X \hookrightarrow Y$

Определение 3.13 (Изометрия). T — изометрическое вложение, T(X) = Y

Определение 3.14 (Изометричность пространств). $(X,\rho),(Y,d)$ изометричны, если $\exists \ T: X \to Y, T$ — изометрия

Свойство 3.2. T — изометрическое вложение $\Rightarrow T$ — инъективное, непрерывное

Доказательство. $x,z\in X,T:X\to Y$, пусть $T_x=T_z\Rightarrow d(T_x,T_z)=0$ Значит, исходное расстояние тоже 0 по свойству метрики. $d(x,z)=0\Rightarrow x=z$

Инъективность проверили, теперь непрерывность, это еще проще.

$$\lim_{n \to \infty} = x \Leftrightarrow \lim_{n \to \infty} \rho(x, x_n) = 0 \Rightarrow \lim_{n \to \infty} d(T_{X_n}, T_x) = 0 \Rightarrow \lim_{n \to \infty} T_{X_n} = T_x$$

Свойство 3.3. Если T — изометрия, то $\exists T^{-1}$ — изометрия.

Свойство 3.4. «Изометричность» — отношение эквивалентности на множестве метрических пространств

И наконец

Определение 3.15 (Пополнение м. пространства). (X, ρ) — метрическое пространство. (Z, d) — полное метрическое пространство. (Z, d) — пополнение (X, ρ) , если существует $T: X \to Z$

1. T — изометрическое вложение

2.
$$\overline{T(X)} = Z$$

Замечание 3.3. Не обязательно искать пространство, удовлетворяющее и второму свойству. Достаточно найти такое, которое удовлетворяет первому. (X, ρ) — метрическое пространство, (U, d) — полное метрическое пространство. Пусть $\exists T: X \to U$ — изометрическое вложение. Если 2 свойство не выполняется, то легко такое Z построить. Возьмём замыкание образа. $Z = \overline{T(X)} \Rightarrow (Z, d)$ — пополнение X.

Теперь обещанная теорема. Возьмём любое метрическое пространство и покажем, что у него есть пополнение.

Теорема 3.10 (О пополнении метрического пространства). (X, ρ) — метрическое $\Rightarrow \exists$ пополнение (Z, d)

Доказательство. Есть классическое доказательство с рассмотрением всех фундаметнальных последовательностей, рассмотрением фактор-пространства, муторным разбором случаев. Мы пойдем другим путём. Будет короткое, но фантастически непонятное доказательство в том смысле, что непонятно, как его придумать.

Мы собираемся использовать $m(X) = \{f: X \to \mathbb{R}, \sup_{x \in X} |f(x)| < +\infty\}$

$$||f||_{m(X)} = ||f||_{\infty} = \sup_{x \in X} |f(x)|$$

m(X) — полное пространство.

Каждой точке мы сопоставим функцию. Вот такая идея! $\varphi: X \to m(X)$. Оно же будет изометрическим вложением, то есть будет сохранять расстояния.

Сначала будет маленькое облегчающее предположение про X, от которого мы потом откажемся. Пусть X — ограниченное, то есть $\exists \, M>0$ т.ч. $\forall \, x,y \in X \, \rho(x,y) \leq M$. Единственная цель предположения — формула для φ будет чуть проще. Вообще, можно было бы обойтись и без него.

 $t \in X, t$ — фиксирован, $f_t(x) = \rho(x,t)$. При фиксированном t — это функция на X. Именно сюда наше отображение будет отображать t. Одной точке — целая функция, понятно?

$$\varphi(t) := f_t(x) \text{ T.e. } \varphi : t \to f_t(x)$$

$$|f_t(x)| \le M \Rightarrow f_t \in m(X)$$

Самое главное. Проверим, что отображение сохраняет расстояния. Это очень легко. Возьмём 2 точки.

$$\begin{split} & \Pi \text{усть } t,s \in X, \quad ||f_t - f_s||_\infty = \sup_{x \in X} |\rho(x,y) - \rho(x,s)| \\ & |\rho(x,t) - \rho(x,s)| \leq \rho(t,s), \quad \Pi \text{усть } x = t \Rightarrow |\rho(t,t) - \rho(t,s)| = \rho(t,s) \\ & \Rightarrow ||\varphi(t) - \varphi(s)||_\infty = \rho(t,s) \Rightarrow \varphi - \text{изометрическое вложение} \end{split}$$

Посмотрим, что будет, если откажемся от этого облегчающего предположения. Надо будет чуть исправить отображение φ . X — любое метрическое пространство. $a \in X$ — фиксированная точка.

$$t \in X, f_t(x) = \rho(x, t) - \rho(x, a) \Rightarrow |f_t(x)| \leq \rho(a, t) \Rightarrow f_t \in m(X)$$

Раньше мы могли так брать и не вылетать из пространства из-за ограниченности. Вычтем эту штуку, чтоыб попасть, куда надо.

$$t,s\in X\Rightarrow f_t(x)-f_s(x)=
ho(x,t)-
ho(x,s)\overset{(1)}{\Rightarrow}||f_t-f_s||_{\infty}=
ho(s,t)$$
 Пополнение $X\colon \overline{\varphi(X)}^{||\cdot||_{\infty}}=Z,(Z,||\cdot||_{\infty})$

Таким образом, изучение метрических пространств можно свести к изучению подмножества пространства непрерывных функций.

Замечание 3.4. Забегая далеко вперёд. $(X, ||\cdot||)$ — нормированное, X^* — множество непрерывных линейных функционалов на X, X^* — полное (ВСЕГДА).

Мы построим каноническое вложение $\pi: X \to \underbrace{(X^*)^*}_{\text{полное}}, \ \overline{\varphi(x)}^{X^{**}}$ —

пополнение Х.

3.7. Теорема о вложенных шарах

Когда-то в анализе была теорема Кантора о том, что если есть последовательность вложенных друг в друга отрезков, то их пересечение не пусто. Мы докажем похожее утверждение для метрических пространств. Оказывается, то утверждение было связано с полнотой вещественной прямой \mathbb{R} . (X, ρ) — метрическое пространство, $r > 0, x \in X$ Введём стандартное обозначение замкнутого шара.

$$D_r(x) = \{ y \in X : \rho(x, y) \le r \}$$

Теорема 3.11 (О вложенных шарах). (X, ρ) — метрическое пространство. X — полное $(|\Leftrightarrow (\forall \{D_n\}_{n=1}^{\infty}, D_n = D_{r_n}(x_n)), D_{n+1} \subset D_n, \lim_{n \to \infty} r_n = 0 \Rightarrow \bigcap_{n=1}^{+\infty} D_n \neq \varnothing)$. По сранению с теоремой Кантора у нас есть дополнительное предположение о стремлении к нулю, которое здесь важно, а на прямой было как данность.

$$\{D_n\}_{n=1}^{\infty}, D_n = D_{r_n}(x_n), D_{n+1} \subset D_n, \lim_{n \to \infty} r_n = 0$$

Надо проверить, что центры шаров образуют фундаментальную последовательность, то есть что $\{x_n\}_{n=1}^{\infty}$ — фундаментальная. Пусть $\varepsilon > 0 \quad \exists \ N \in \mathbb{N} \quad r_n < \varepsilon$ при $n \ge N$.

$$(n > N \land m > N) \Rightarrow (x_n \in D_n \land x_m \in D_n) \Rightarrow \rho(x_n, x_m) \le$$

 $\leq \rho(x_n, x_N) + \rho(x_m, x_N) \le 2\varepsilon$

$$X$$
 — полное $\Rightarrow \exists \lim_{n \to \infty} x_n = x$

любое фиксированное $m \in \mathbb{N}$ $x_n \in D_m \, \forall \, n \geq m, D_m$ — замкнутое

$$\Rightarrow \lim_{n \to \infty, n > m} x_n = x \in D_n$$

$$\Rightarrow \lim_{n \to \infty, n \ge m} x_n = x \in D_m$$
$$\Rightarrow x \in \bigcap_{m=1}^{\infty} D_m$$

Ничего кроме определения для доказательства полноты у нас нет. Пусть $\{x_n\}_{n=1}^{\infty}$ — фундаментальная. Возьмём достаточно быстро убывающую последовательность $\varepsilon_k = \frac{1}{2^k}$. Существует $\{x_{n_k}\}_{k=1}^{\infty}$, $\rho(x_{n_k}, x_{n_{k+1}}) < 1$

$$D_k = D_{\varepsilon_k}(x_{n_k})$$

$$\begin{cases} y \in D_{k+1} \Rightarrow \rho(y, x_{n_{k+1}}) \le \frac{1}{2^{k+1}} \\ \rho(x_{n_k}, x_{n_{k+1}}) < \frac{1}{2^{k+1}} \end{cases} \Rightarrow$$

$$\rho(y, x_{n_k}) \le \rho(y, x_{n_{k+1}}) + \rho(x_{n_{k+1}}, x_{n_k}) < \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} = \frac{1}{2^k}$$
$$\Rightarrow y \in D_k \Rightarrow D_{k+1} \subset D_k$$

Мы взяли произвольный элемент из D_{k+1} и показали, что он принадлежит D_k , то есть показали вложенность элементов последовательности.

$$\Rightarrow \exists x \in \bigcap_{k=1}^{\infty} D_k \quad \rho(x, x_{n_k}) \le \frac{1}{2^k} \Rightarrow \lim_{k \to \infty} x_{n_k} = x$$

По свойству фундаметнальных последовательностей из первой лекции $\lim_{n\to\infty}x_n=x$

Замечание 3.5. В условиях теоремы пересечение вложенных шаров $\bigcap_{n=1}^{\infty} D_n$ состоит из одной точки.

Доказательство. Пусть $x\in\bigcap_{n=1}^\infty D_n,\Rightarrow \rho(x,x_n)\in r_n,\lim_{n\to\infty}r_n=0\Rightarrow\lim_{n\to\infty}x_n=x.$ А мы знаем, что предел в метрическом пространстве единственный.

Замечание 3.6. Условие, что $\lim_{n\to\infty} r_n = 0$ в теореме существенно.

Пример 3.5 (Замкнутые множества). $\{F_n\}_{n=1}^{\infty}, F_n$ — замкнутое, $F_{n+1} \subset F_n, F_n \subset \mathbb{R}, \bigcap_{n=1}^{\infty} F_n = \varnothing, F_n = [n, +\infty)$

Пример 3.6 (По теореме).

$$X[1.+\infty) \quad \rho(x,y) = \begin{cases} 1 + \frac{1}{x+y}, & x \neq y \\ 0, & x = y \end{cases}$$

Проверим, что ρ — метрика. x, y, z

$$\rho(x,y) + \rho(y,z) = 1 + \frac{1}{x+y} + 1 + \frac{1}{y+z} > 1 + 1 > 1 + \frac{1}{x+z} = \rho(x,z)$$

Проверяем полноту. Пусть $\{x_n\}_{n=1}^{\infty}$ фундаментальная, $\varepsilon=\frac{1}{2}\Rightarrow$

$$\exists N \in \mathbb{N} : (n \ge N \land m \ge N) \rho(x_n, x_m) < \frac{1}{2} \Rightarrow \left(\rho(x_n, x_N) < \frac{1}{2} \land \rho(x_m, x_N) < \frac{1}{2} \right) \Rightarrow$$

$$x_N = x_{N+1} = x_{N+2} = \dots$$

$$\Rightarrow \exists \lim_{n \to \infty} x_n = X_N \Rightarrow (X, \rho) - \text{полное}$$

Полноту проверили.

$$r_n = 1 + \frac{1}{2n}, x_n = n; D_n = D_{r_n}(n), h \in D_n.$$
 Пусть $x \neq n, x \in D_n \Rightarrow \rho(x, x_n) = 1 + \frac{1}{x+n} \leq 1 + \frac{1}{2n}$

Замечание 3.7 (Домашнее задание). Если $(X, ||\cdot||)$ — банахово, то $D_{n+1} \subset D_n \{D_n\}_{n=1}^{\infty} \Rightarrow \bigcap_{n=1}^{\infty} D_n \neq \emptyset$ (требование $\lim_{n \to \infty} r_n = 0$ лишнее)

3.8. Сепарабельные пространства

 (X, ρ) — метрическое пространство,

Определение 3.16 (A плотно в C). $A \subset X, C \subset X$. A плотно в C, если $C \subset \overline{A} \Leftrightarrow$

$$\forall x \in C \,\forall \, \varepsilon > 0 \,\exists \, a \in A \, \rho(x, A) < \varepsilon \Leftrightarrow \forall \, \varepsilon > 0 \, C \subset \bigcup_{a \in A} B_{\varepsilon}(a)$$

Любой элемент C можно сколь угодно хорошо приблизить элементами из A.

Определение 3.17 (A всюду плотно в C). A — всюду плотно в X, если $\overline{A} = X$

Чем же полезно это свойство? Если хотят доказать свойство для X, то часто доказывают сначала для всюду плотного подмножества.

Определение 3.18 (Сепарабельное пространство). (X, ρ) — сепарабельное, если $\exists E \subset X, E = \{x_n\}_{n=1}^{\infty}, \overline{E} = X$

Теорема 3.12. $n \in \mathbb{N}, q \leq p \leq +\infty$,

 l_n^p — сепарабельное

Доказательство.

$$l_n^p = (\mathbb{R}^n, ||\cdot||_p) = \{x = (x_1, \dots, x_n), x_j \in \mathbb{R}, ||x||_p\}$$
$$E = \mathbb{Q}^n = \{x = (x_1, \dots, x_n), x_j \in \mathbb{Q}\}$$

Если
$$(\mathbb{C}^n, ||\cdot||_p), \tilde{\mathbb{Q}} = \{x + iy, x, y \in \mathbb{Q}\}, E = \tilde{\mathbb{Q}}^n$$

Теорема 3.13. F — финитные последовательности, $1 \le p \le +\infty$

$$(F,||\cdot||_p)$$
 — сепарабельно

Доказательство. $E = \bigcup_{n=1}^{\infty}, \mathbb{Q}^n = \{x = (x_1, x_2, \dots, x_{N(x)}, 0, 0, \dots,), x_j \in \mathbb{Q}\}$. Попросту говоря, все финитные последовательности, координаты которых рациональны.

Теорема 3.14. $l^p, 1 \le p < +\infty, C_0$ — сепарабельные

Доказательство. На прошлой лекции мы доказали, что

$$(F,||\cdot||_p),\overline{F}^{||\cdot||_p}=l^p$$
 при $1\leq p<+\infty$ $\begin{cases} E=\bigcup_{n=1}^\infty\mathbb{Q}^n-\text{ всюду плотно в }F\\ F-\text{ всюду плотное в }l^p \end{cases}$ \Rightarrow E всюду плотно в $l^p,1\leq p<+\infty$

Почему любой элемент из l^p может быть приближен финитной последоватностью? Мы ее просто отрезаем.

Ответ на упражнение для читателя, которое было на прошлой лекции: F — подпространство в алгебраическом смысле, $F \subset l^{\infty}$, $\overline{F}^{||\cdot||_{\infty}} = C_0$

$$x_0 \in C_0 \Leftrightarrow x = \{x_n\}_{n=1}^{\infty}, \lim_{n \to \infty} x_n = 0$$

берем первые m координат и дополняем их нулями

$$x^{(m)} = (x_1, \dots, x_m, 0, 0, \dots, 0, \dots) \Rightarrow x^{(m)} \in F$$
$$||x - x^{(m)}||_{\infty} = \sup_{k > m} |x_k| \xrightarrow[m \to \infty]{} 0$$

Остаётся вопрос, почему C_0 — замкнутое множество. Можно в лоб, а можно по-учёному рассудить.

пусть
$$\{y^{(m)}\}_{m=1}^{\infty}, y^{(m)} \in C_0, y^{(m)} \xrightarrow[m \to \infty]{} y$$
 в C_0

$$\Rightarrow \lim_{m \to \infty} ||y - y^{(m)}||_{\infty} = 0 \qquad y = \{y_n\}_{n=1}^{\infty}, \lim_{n \to \infty} y_n = 0 ????$$

А это равномерная сходимость на множестве натуральных чисел, то есть это тот случай, когда можно менять местами пределы.

$$\lim_{n \to \infty} y_n = \lim_{m \to \infty} \lim_{n \to \infty} y_n^{(m)} = 0$$

Упражнение: C — сепарабельное, $C \subset l^{\infty}$

Теорема 3.15. l^{∞} — не сепарабельное

Какой бы шарик из X мы бы не предъявили, там всегда будет элемент всюду плотного множества.

Доказательство.

$$A \subset \mathbb{N} \quad X_n^A = \begin{cases} 1, n \in A \\ 0, n \notin A \end{cases}$$

Мощность $\{A,A\subset\mathbb{N}\}$ — континуум (> счётное). Это и будет центр пересекающихся шариков. Посмотрим, каким будет расстояние между двумя разными точками.

$$A \subset \mathbb{N}, C \subset \mathbb{N}, A \notin \mathbb{C}$$

$$X_n^A - X_n^c = \begin{cases} 1 \\ 0 \\ -1 \end{cases} \Rightarrow ||x^A - x^C||_{\infty} = \sup_{n \in \mathbb{N}} |X_n^A -_n^C| = 1$$

То есть если 2 множества не равны, то расстояние между ними — единица.

$$B_{\frac{1}{2}}(x^A) \cap B_{\frac{1}{2}}(x^C) = \varnothing$$

Мы предъявили несчётный набор дизъюнктных шариков. E — всюду плотно в $l^{\infty} \Rightarrow \forall A \subset \mathbb{N} \exists e_A \in B_{\frac{1}{2}}(x^A)$

$$A \neq C \Rightarrow e_A \neq e_C, \qquad \underbrace{\{e_A\}_{a \subset \mathbb{N}}}_{\text{несчётно}} \subset E \Rightarrow E$$
 несчётно

То, что у всех шариков одинаковый радиус — это просто приятный бонус. \Box

Теорема 3.16. (X, ρ) — сепарабельное, $Y \subset X \Rightarrow (Y, \rho)$ — сепарабельное.

Доказательство. $\exists \ E = \{x_n\}_{n=1}^{\infty}$ — всюду плотно в $X, x_0 \in X$

$$\rho(x_n, Y) = \inf_{y \in Y} \rho(x_n, y) \Rightarrow$$

$$\exists \{y_{n,k}\}_{k=1}^{\infty} \quad \lim_{k \to \infty} \rho(x_n, y_{n,k}) = \rho(x_n, Y)$$

$$y_{n,k} \in Y, F = \{y_{n_k}\}_{n_k} - \text{счётное}, F \subset Y$$

Проверим, что F — всюду плотно в Y. Пусть $y \in Y, \varepsilon > 0 \Rightarrow \exists x_n : \rho(y,x_n) < \varepsilon$. Из этого неравенства мы делаем вывод, что $\rho(x_n,Y) < \varepsilon$. Значит, $\exists \, k : \rho(x_n,y_{n,k}) < \varepsilon \Rightarrow$

$$\rho(y, y_{n,k}) \le \rho(y, x_n) + \rho(x_n, y_{n,k}) < \varepsilon + \varepsilon = 2\varepsilon$$

Следствие 3.1. X — бесконечное множество $\Rightarrow m(X)$ — не сепарабельное.

 \mathcal{A} оказательство. Можно слово в слово повторить доказательство для l^{∞} , но мы воспользуемся последними доказанными теоремами.

$$\exists \ \{a_j\}_{j=1}^{\infty}, a_j \in X, a_j \neq a_i \text{ при } i \neq j$$

$$Y = \{f \in m(X), f(x) = 0 \text{ если } x \neq a_j\} \sup_{j \in \mathbb{N}} |f(a_j)| < +\infty$$

$$Y \text{ изометрично } l^{\infty}, f \in Y, T(f) = \{f(a_j)\}_{j=1}^{\infty} \in l^{\infty}$$

$$Y - \text{ не сепарабельно } \Rightarrow \text{ и по последней теореме}$$

$$m(X) - \text{ не сепарабельно}$$

Теорема 3.17.

C[a,b] — сепарабельно

1 часть.

$$L=\{$$
 ломаные $\}$ $a=x_0 < x_1 < \ldots < x_n=b$ $\{y_k\}_{k=0}^n\,,y_k \in \mathbb{R}$ $L(x)$ — ломаные $L(x_k)=y_k,\ k=0,1,\ldots,n$ $l(x)$ линейная на $[x_k,x_{k+1}]$

Отметим, что L — всюду плотное множество в пространстве непрерывных функций. Это связано с равномерной непрерывностью. Никаких надежд на то, что оно будёт счётным нет.

пусть
$$f \in C[a,b], \ \varepsilon > 0 \Rightarrow \exists \ \delta > 0 : |x-y| < \delta$$

$$\Rightarrow |f(x) - f(y)| < \varepsilon$$

$$\exists \ \{x_k\}_{k=0}^n - \text{разбиение} \quad x_{k+1} - x_k < \delta$$

$$y_k := f(x_k) \quad L(x) - \text{ломаная}$$

$$\Rightarrow |f(x) - L(x)| < \varepsilon \Rightarrow ||f - L||_{\infty} \le \varepsilon \Rightarrow \overline{\mathcal{L}} = C[a,b]$$

как сделать так, чтобы множество ломаных было счётным? возьмём в качестве вершин элементы $\mathbb Q$

$$E=\{L\in\mathcal{L},\,x_k,y_k\in\mathbb{Q}\}\text{— счетное множество}$$

$$\begin{cases} \mathcal{L}\subset\overline{E}\\ \overline{\mathcal{L}}=C[a,b] \end{cases} \Rightarrow E\text{— всюду плотно, т.е. }\overline{E}=C[a,b]$$

2 часть. по т. Вейерштрасса замыкание многочленов — тоже пространство непрерывных функций.

$$\mathcal{P} = \{ p(x) = \sum_{k=0}^{n} a_k x^k \} \quad \overline{\mathcal{P}} - C[a, b]$$

$$E = \{ p(x) = \sum_{k=0}^{n} a_k x^k, \ a_k \in \mathbb{Q} \}$$

$$\begin{cases} \mathcal{P} \subset \overline{E} \\ \overline{\mathcal{P}} = C[a, b] \end{cases} \Rightarrow \overline{E} = C[a, b]$$

3.9. Нигде не плотные множества

Определение 3.19. (X, ρ) — метрическое пространство. $A \subset X, A$ — **нигде не плотно** в X, если

$$\forall\, B_r(x)$$
 при $r>0, x\in X$ $B_r(x)\not\subset\overline{A}\Leftrightarrow \operatorname{Int}(\overline{A})=\varnothing\Leftrightarrow$

Если мы рассмотрим замыкание, никакого шарика там не будет. Иначе: если мы рассмотрим внутренность замыкания, она будет пустой.

$$\forall r > 0, x \in X \quad B_r(x) \exists B_{r_1}(x_1) \subset B_r(x), B_{r_1}(x_1) \cap A = \emptyset$$

$$\Leftrightarrow \forall r > 0, x \in XD_r(x) \exists D_{r_1}(x_1) \subset D_r(X), D_{r_1}(x_1) \cap A = \emptyset$$

Скоро докажем связь между нигде не плотными множествами и полными пространствами. Но сперва определение, которое не будет часто встречаться, но сам факт — полезный.

Определение 3.20 (множество первой категории). $M \subset X, (X, \rho).$ M- множество первой категории, если

$$M = \bigcup_{j=1}^{\infty} E_j, E_j$$
 нигде не плотно в X

M — **множество второй категории**, если M нельзя представить в виде объединения счетного числа нигде не плотных множеств.

Теорема 3.18 (Бэр, о категориях). (X, ρ) — полное $\Rightarrow X$ — множество второй категории.

Доказательство. Можно было бы даже от противного. Но мы возьмём семейство $\{M_j\}_{j=1}^{\infty}$, M_j — нигде не плотно в X, $E - \bigcup_{j=1}^{\infty} M_j$. Мы докажем, что найдётся хоть одна точка, которая принадлежит X и не принадлежит E. Это и будет обозначать, что X невозможно представить в виде такого объединения.

$$x_0 \in X$$
 $D_0 = \{y: \rho(x_0,y) \le 1\}$ M_1 — нигде не плотно $\Rightarrow \exists D_1 = D_{r_1}(x_1) \subset D_0, D_1 \cap M_1 = \varnothing$ $r_1 < 1$

Теперь мы то же соображение применим к множеству M_2 , которое тоже нигде не плотно

$$\exists D_2 = D_{r_2}(x_2) \subset D_1, D_2 \cap M_2 = \emptyset$$
$$r_2 < \frac{1}{2}$$

и так далее $\begin{cases} \{D_n\}_{n=1}^\infty, D_n = D_{r_n}(x_n), D_{n+1} \subset D_n \\ D_n \cap M_n = \varnothing, r_n < \frac{1}{n} \end{cases}$ по теореме о вложенных шарах $\Rightarrow \exists \ x \in \cap_{n=1}^\infty D_n, (x \in D_n \land x \in X \setminus E) \Rightarrow x \notin M_n \ \forall \ n \Rightarrow x \notin E$

3.10. Полные семейства элементов

Теперь мы будем понимать полноту в совершенно другом смысле. Сначала вспомним, что такое линейная оболочка пространства.

Определение 3.21 (Линейная оболочка). X — линейное пространство над $\mathbb{R}(\mathbb{C})$. Рассмотрим семейство $\{x_{\alpha}\}_{{\alpha}\in A}$ — семейство элементов, $x_{\alpha}\in X$.

$$\mathcal{L}\left\{x_{\alpha}\right\}_{\alpha \in A} = \left\{\sum_{k=1}^{n} c_{k} x_{\alpha_{k}}, c_{k} \in \mathbb{R}(\mathbb{C}), n \in \mathbb{N}\right\}$$

Определение 3.22 (Полное семейство). $(X, ||\cdot||), \{x_{\alpha}\}_{\alpha \in A}$ — полное семейство, если $\overline{\mathcal{L}\{x_{\alpha}\}_{\alpha \in A}} = X$. То есть линейная оболочка всюду плотна в X.

Пример 3.7. $C[a,b], \{x^n\}_{n=0}^{+\infty}$ — полное семейство в C[a,b], так как $\mathcal{P} = \mathcal{L}\{x^n\}_{n=0}^{+\infty}, \overline{\mathcal{P}} = C[a,b]$

Пример 3.8. $l^p, 1 \le p < +\infty, C_0$

$$e_n=(1,0,0,\dots,0,\underbrace{1}_n,0,\dots),\{e_n\}_{n=1}^\infty$$
 — полное семейство
$$\mathcal{L}\left\{e_n\right\}_{n=1}^\infty=F$$
 — финитная последовательность

Упражнение: C — что будет полным семейством?

Утверждение 3.1. $(X,||\cdot||)$ - нормированное пространство. В нём существует $\{x_n\}_{n=1}^{\infty}$ — полное семейство

$$X$$
 — сепарабельное

Доказательство. Рассмотрим линейную оболочку $L = \mathcal{L}\left\{x_n\right\}_{n=1}^{\infty} = \left\{x = \sum_{j=1}^n c_j x_j, c_j \in \mathbb{R}(\mathbb{C})\right\}$. $\overline{L} = X$.

$$E=\{x=\sum_{j=1}^n c_jx_j,c_j\in\mathbb{Q}\}$$
 — счётное всюду плотное
$$(L\subset\overline{E}\,\wedge\,\overline{L}=X)\Rightarrow\overline{E}=X$$

Замечание 3.8. $l^{\infty}, E = \{x = \{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{Q}, \sup_{n \in \mathbb{N}} |x_n| < +\infty\}. \overline{E} = l^{\infty}, E$ — не счётное.

3.11. Полные и плотные множества в L^p

Сначала небольшое замечание. (X,U,μ) — пространство с мерой $e\in U$ — измеримые множества, $\chi_e(x)=\begin{cases} 1, x\in E\\ 0, x\notin E \end{cases}$ — характеристическая функция. $\chi\in L^\infty(X,\mu),\, \forall\, e\in U$

$$\chi_e \in L^p(X,\mu)$$
 при $1 \le p < +\infty \Leftrightarrow \int_X (\chi_e(x))^p d\mu < +\infty \Leftrightarrow \mu e < +\infty$

П

Теорема 3.19. (X, U, μ) — пространство с мерой \Rightarrow

$$\{\chi_e\}_{e\in U} \ -\text{ полное семейство в } L^\infty(X,\mu)$$

$$\{\chi_e\}_{e\in U,\mu E<+\infty} \ -\text{ полное семйество в } L^p(X,\mu), 1\leq p<+\infty$$

Для доказательства этой теоремы нужно будет вспомнить теорему Лебега из анализа (она у нас уже была).

Теорема 3.20 (Лебег).
$$\{h_n(x)\}_{n=1}^{\infty}$$
 — измеримые, $\varphi(x)$. $\int_X \varphi(x) d\mu < +\infty, |h_n(x)| \leq \varphi(x)$ п.в. на X

$$h_n(x) \xrightarrow[n \to \infty]{\text{п.в. по } \mu} h(x) \Rightarrow \lim_{n \to \infty} \int_X h_n(x) d\mu = \int_X h(x) d\mu$$

Доказательство. Вспомним конструкцию, которая была в математическом анализе. f — измеримая, $f(x) \ge 0, x \in X$. Рассмотрим разбиение множества X, а по нему построим соотвествующую простую функцию

$$n \in \mathbb{N}$$
 $e_k = \left\{ x \in X : \frac{k}{n} \le f(x) < \frac{k+1}{n} \right\}, k = 0, 1, \dots, n^2 - 1$
 $e_{n^2} - \{x : f(x) \ge n\} \Rightarrow X = \bigcup_{k=0}^{n^2} e_k, e_k \cap e_j = \emptyset(k \ne j)$

Теперь построим измеримые функции, потом они будут простыми.

$$g_n(x) = \sum_{k=1}^{n^2} \frac{k}{n} \chi_{e_k} \quad 0 \le g_n(x) \le f(x), x \in X$$

$$f(x) \le g_n(x) + \frac{1}{n}, x \in \bigcup_{k=0}^{n^2 - 1} e_k$$

Теперь все готово, чтобы обсудить случай L^{∞} . Пусть $f \in L^{\infty}(X, \mu) \Rightarrow n \geq ||f||_{\infty} \Rightarrow \mu(e_{n^2}) = 0. \Rightarrow |f(x) - g_n(x)| \leq \frac{1}{n}$ для п.в. $x \in X$ $\Rightarrow ||f - g_n||_{\infty} \xrightarrow[n \to \infty]{} 0, g_n \in \mathcal{L} \left\{\chi_e\right\}_{e \in U}$ $\Rightarrow f \in \overline{\mathcal{L} \left\{\chi_e\right\}_{e \in U}}$

Посмотрим теперь, что происходит с конечными p. Тут вспоминаем теорему Лебега, она была верна для интеграла Лебега, но верна и для

произвольной меры.

$$\begin{cases} f(x) \in L^p(X,\mu), 1 \le p < +\infty & |f(x) - g_n(x)|^p \le |f(x)|^p \\ g_n(x)f(x) & \Rightarrow |f(x) - g_n(x)|^p \xrightarrow[n \to \infty]{} 0 \end{cases}$$

$$\xrightarrow{\text{The Germinian Proof of the Pr$$

все, что надо — убедиться, что мера конечная $\lim_{n\to\infty} \left(\int_X |f-g_n|^p d\mu\right)^{\frac{1}{p}} = 0$

$$f \in L^{p} \Rightarrow \mu e_{k} < +\infty \quad f(x) \geq \frac{k}{n}, x \in e_{k} \Rightarrow \left(\int_{X} |f|^{p} d\mu \right)^{\frac{1}{p}} \geq \left(\int_{e_{k}} \left(\frac{k}{n} \right)^{p} d\mu \right)^{\frac{1}{p}} = \frac{k}{n} (\mu e_{k})^{\frac{1}{p}} \Rightarrow \mu e_{k} < +\infty$$
$$\Rightarrow f \in \overline{\mathcal{L} \{\chi_{e}\}_{e \in U, \mu e < +\infty}}$$

Теперь покажем, что для произвольных f рассуждение тоже верно. Рассмотрим замыкание линейное оболчоки

$$\begin{cases} f: X \to \mathbb{R}, \Rightarrow f = f_{+} - f_{-}, f_{+}(x) \geq 0, f_{-}(x) \geq 0 \\ f: X \to \mathbb{C} \Rightarrow f = u + iv; u, v: X \to \mathbb{R} \end{cases} \Rightarrow \begin{cases} f: X \to \mathbb{R}, f \in L^{p}, f \in \overline{\mathcal{L}\{\chi_{e}\}_{e \in U}} \\ (p = \infty \,\forall e, p < +\infty, \mu e < +\infty) \end{cases}$$

Теперь, зная эту теорему, посмотрим, какое множество будет полным в пространстве l^∞

Следствие 3.2.
$$l^{\infty},A$$
 \subset $\mathbb{N},$ X^A $=$ $\left\{x_n^A\right\}_{n=1}^{\infty},X_n^A$ $=$ $\begin{cases}1,n\in A\\0,n\notin A\end{cases}$ \Rightarrow

 $\left\{X^A\right\}_{A\subset\mathbb{N}}$ — полное семейство в l^∞

Доказательство. $l^\infty=L^\infty(\mathbb{N},\mu), \mu(n)=1\,\forall\,n\in\mathbb{N}\quad\forall\,A\subset\mathbb{N},A$ — измеримо

$$\chi_A = X^A \Rightarrow \left\{ X^A \right\}_{A \subset \mathbb{N}}$$
 — полное семейство

Теорема 3.21. (\mathbb{R}^n, U, λ), λ — классическая мера Лебега. U — измеримые по Лебегу множества.

$$\mathcal{R} = \left\{ \Delta = \prod_{j=1}^n [a_j, b_j), a_j < b_j; a_j, b_j \in \mathbb{R} \right\}$$
 — множество ячеек

$$\Rightarrow \{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}$$
 — полное семейство в $L^p(\mathbb{R}^n,\lambda), 1 \leq p < +\infty$

Достаточно рассмотреть характеристические множества ячеек.

Доказательство. Собираемся приблизить множество линейной комбинацеий характеристических функций ячеек. Вспомним определение внешней меры.

$$e \in U, \lambda(e) < +\infty$$

$$\lambda(e) = \inf \left\{ \sum_{k=1}^{\infty} \lambda(\Delta_k), e \subset \bigcup_{k=1}^{\infty} \Delta_k, \Delta_k \in \mathcal{R}, \Delta_k \cap \Delta_j = \emptyset \right\}$$

Сначала просто по определению нижней грани. $\forall \varepsilon > 0 \Rightarrow \exists \{\Delta_k\}_{k=1}^n$. $\lambda(e) \leq \sum_{k=1}^{\infty} \lambda(\Delta_k) < \lambda(e) + \varepsilon$. $e \subset \bigcup_{k=1}^{\infty} \Delta_k, \Delta_k \in \mathcal{R}, \Delta_k \cap \Delta_j = \emptyset$ при $k \neq j$.

$$A = \bigcup_{k=1}^{\infty} \Delta_k, e \subset A, \lambda(A \setminus e) < \varepsilon$$

$$\exists N \in \mathbb{N} \quad \sum_{k=N+1}^{\infty} \lambda(\Delta_k) < \varepsilon, B = \bigcup_{k=1}^{n} \Delta_k$$

$$\Rightarrow \lambda(A \setminus B) < \varepsilon$$

$$||\chi_{e} - \chi_{b}||_{p} \leq ||\chi_{e} - \chi||_{p} - ||\chi_{A} - \chi_{B}||_{p} \leq \left(\int_{A \setminus e} \mathbb{1} d\mu\right)^{\frac{1}{p}} + \left(\int_{A \setminus B} \mathbb{1} d\mu\right)^{\frac{1}{p}} < \varepsilon^{\frac{1}{p}} + \varepsilon^{\frac{1}{p}} = 2\varepsilon^{\frac{1}{p}}$$

$$\chi_{b} = \sum_{k=1}^{N} \chi_{\Delta_{k}} \in \mathcal{L} \{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}$$

$$\begin{cases} \overline{\mathcal{L} \{\chi_{e}\}_{e \in U}} = L^{p} \\ \chi_{e} \in \overline{\mathcal{L} \{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}} \end{cases} \Rightarrow \overline{\mathcal{L} \{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}} = L^{p}, 1 \leq p < +\infty$$

Следствие 3.3.
$$E\subset\mathbb{R}^n,\,E$$
 — измеримые по Лебегу, $1\leq p<+\infty$ $\Rightarrow L^p(E,\lambda)$ — сепарабельные $(\lambda$ — мера лебега)

Доказательство. Докажем, что $L^p(\mathbb{R}^n,\lambda)$ — сепарабельное.

$$\mathcal{R} = \left\{ \Delta = \prod_{j=1}^n [a_j,b_j), a_j < b_j, \ a_j,b_j \in \mathbb{R}
ight\}$$
 — полные семейства в L^p

Теперь мы возьмём только такие ячейки, полуинтервалы которых мы перемножаем, имеют рациональные концы. Пока что можем сказать, что это счётное множество.

$$R_0 = \left\{ \Delta = \prod_{j=1}^n [a_j, b_j), a_j < b_j, \ a_j, b_j \in \mathbb{Q} \right\}$$
 — счётное множество

$$\Delta \in \mathcal{R} \quad 0$$

$$\Rightarrow \exists \Delta_0 \in R_0, \Delta \subset \Delta_0, \lambda(\Delta_0 \setminus \Delta) < \varepsilon$$

$$\Rightarrow ||\chi_{\Delta_0} - \chi_{\Delta}||_p = ||\chi_{\Delta_0 \setminus \Delta}||_p = \left(\int_{\Delta_0 \setminus \Delta} \mathbb{1} dx\right)^{\frac{1}{p}} = (\lambda(\Delta_0 \setminus \Delta))^{\frac{1}{p}} < \varepsilon^{\frac{1}{p}}$$

$$\Rightarrow \forall \Delta \in \mathcal{R} \chi_{\Delta} \in \overline{\mathcal{L} \{\chi_{\Delta}\}_{\Delta \in R_0}}$$

 R_0 — полное счётное семейство $\stackrel{\text{утверждение}}{\Rightarrow} L^p(\mathbb{R}^n,\lambda)$ — сепарабельное.

$$E\subset\mathbb{R}^n, E$$
 — измеримое , $f\in L^p(E,\lambda)$ пусть $f(x)=0, x\in\mathbb{R}^n\setminus E\Rightarrow f\in L^p(\mathbb{R}^n,\lambda)$

$$\Rightarrow L^p(E,\lambda)$$
 — подпространство $L^p(\mathbb{R}^n,\lambda)\Rightarrow L^p(E,\lambda)$ — сепарабельно

Определение 3.23. (X,U,μ) — пространство с мерой. (X,ρ) — метрическое пространство. μ — **борелевская мера**, если (G — открытое $\Rightarrow G \in U)$

 β — минимальная σ -алгебра, содержащая все открытые множества. β — **борелевские множества**, то есть $\beta \subset U$.

Чем же хороши борелевские меры? Оказывается, они безумно связаны с непрерывными функциями

Замечание 3.9. Пусть $f: X \to \mathbb{R}, f$ — непрерывная $\Rightarrow f^{-1}((c, +\infty)), c \in \mathbb{R}, (c,_{\infty})$ — открытое в \mathbb{R} . Определение непрерывной функции из топологии: прообраз любого открытого множества открыт. Так как прообраз f открыт в $X \Rightarrow f$ — измеримая по μ , если μ — борелевская.

Замечание 3.10. λ — мера Лебега в \mathbb{R}^n , тогда λ — борелевская.

Еще более специальное определение. Этим свойством мера Лебега тоже обладает.

Определение 3.24 (регулярная мера). $(X,U,\mu),\ (X,\rho),\ \mu$ — борелевская. μ — **регулярная мера**, если $\forall\,e\in U$

$$\sup_{\{F\subset e,F\ -\ \mathrm{3amkhytoe}\}}\big\{\mu(F)\big\}=\mu e=\inf_{\{e\subset G,G\ -\ \mathrm{otkphitoe}\}}\mu G$$

Замечание 3.11. λ -мера Лебега — регулярная.

На самом деле эти 2 свойство друг из друга следуют, но мы это доказывать не будем.

Теорема 3.22. $(X, U, \mu), (X, \rho), \mu$ — регулярная мера \Rightarrow непрерывная функция плотна В $L^p(X, \mu), 1 \leq p < +\infty$.

$$\overline{C(X) \cap L^p(X\mu)}^{||\cdot||_p} = L^p(X,\mu)$$

Доказательство. Мы уже знаем, что полное семейство — это семейство характеристических функций всех измеримых функций, и мы будем этим изо всех сил пользоваться. Возьмём какую-то характеристическую функцию из множества и ее будем приближать непрерывными функциями.

 $\{\chi_e\}_{e\in U, ue<+\infty}$ — полное семейство.

пусть $e\in U, \mu e<+\infty, \, 0, \mu$ — регулярная $\Rightarrow \exists\, F\subset e\subset G, F$ — замкнутое, G — открытое. $\mu(G\setminus F)<\varepsilon$

Когда мы попадем в $X \setminus G$ она будет равна нулю.

$$\varphi(x) = \frac{\rho(x, X \setminus G)}{\rho(x, X \setminus G) + \rho(x, F)}$$

Нужно позаботиться о том, чтобы знаменатель не был равен нулю. $\rho(x,A)$ — непрерывная функция $\forall\,A\subset X.\ X\setminus G$ — замкнутое, F — замкнутое. Если $\rho(x,F)=0\Rightarrow x\in F\Rightarrow x\notin X\setminus G\Rightarrow \rho(x,X\setminus G)>0$

$$\Rightarrow \rho(x, X \setminus G) + \rho(x, F) > 0 \,\forall \, x \in X \Rightarrow \varphi \in C(X)$$

$$\varphi(x) = 0, x \in X \setminus G, \varphi(x) = 1, x \in F \quad \forall x \in X \ 0 \le \varphi(x) \le 1$$

Понятно, что модуль $\varphi(x)$ совпадает с характеристической функцией множества e.

$$\chi_e(x) - \varphi(x)| \le 1 \quad \forall x \in X$$

$$\chi_e(x) - \varphi(x) = 0 \quad x \in F \text{ или } x \in X \setminus G$$

$$\Rightarrow ||\chi_e - \varphi||_p = \left(\int_X |\chi_e(x) - \varphi(x)|^p d\mu\right)^{\frac{1}{p}} = \left(\int_{G \setminus F} |\chi_e(x) - \varphi(x)|^p d\mu\right)^{\frac{1}{p}} \le$$

$$\le (\mu(G \setminus F))^{\frac{1}{p}} < \varepsilon^{\frac{1}{p}}$$

$$\Rightarrow \chi_e \in \overline{C(X)}^{||\cdot||_p}$$

Тем самым мы доказали, что $\chi_e(x)$ может быть приближена непрерывными функциями. Может быть, стоить отметить, что $\mu G < \mu e + \varepsilon < +\infty$ $\int_X |\varphi(x)|^p d\mu - \int_G |\varphi(x)|^p d\mu < \mu G \Rightarrow \varphi \in L^p(X,\mu)$

Раз утверждение верно для любых регулярных мер, то оно верно и для меры Лебега.

Глава 4

Метрические компакты

Топологический компакт: из любого подпокрытия можно выбрать конечное подпокрытие.

Утверждение 4.1 (из топологии). 1. (X, ρ) – метрическое пространство, $K \subset X, K$ – компакт $\Leftrightarrow K$ – счётнокомпактен, то есть

$$\forall \{x_n\}_{n=1}^{\infty}, x_n \in K \quad \exists \{x_{n_j}\}_{j=1}^{\infty} \text{ т.ч. } \exists \lim_{j \to \infty} x_{n_j} = x_0, x_0 \in K$$

2. K – компакт $\Rightarrow K$ – ограниченное замкнутое множество.

Пример 4.1. \mathbb{R}^n, K – компакт $\Leftrightarrow K$ – ограниченное, замкнутое

Замечание 4.1. НИ В КОЕМ СЛУЧАЕ из того, что K – ограниченное замкнутое, не следует, что K – компакт

Замечание 4.2.
$$l^2=\left\{x=\left\{x_n\right\}_{n=1}^{\infty},||x||_2=\left(\sum_{n=1}^{\infty}|x_n|^2\right)^{\frac{1}{2}}<+\infty,x_n\in\mathbb{R}(\mathbb{C})\right\}$$

$$D = \{x \in l^2 : ||x||_2 \le 1\}$$
 — ограниченное, замкнутое

$$e_n = (0, 0, \dots, 0, \underbrace{1}_n, 0, 0, \dots), \ n \neq m \quad ||e_n - e_m||_2 = \sqrt{2} \Rightarrow \forall \ \{e_{n_j}\}$$
 – не

фундаментальная. Тогда $\nexists \lim_{j \to \infty} e_{n_j} \Rightarrow D$ – не компакт.

Ещё одно *напоминание*, кто такие относительно компактные множества.

Определение 4.1 (относительный компакт). $(X, \rho), A \subset X, A$ — относительно компактно, если \overline{A} — компакт. Или можно сказать

$$\Leftrightarrow \forall \{x_n\}_{n=1}^{\infty}, x_n \in A \exists \{x_{n_j}\}_{j=1}^{\infty}, \exists \lim_{j \to \infty} x_{n_j} = x_0, x_0 \in X$$

Предел не обязательно принадлежит A. A в компакте предел обязательно лежит в A.

Мы получим новое описание компактных и относительно компактных множеств. В \mathbb{R}^n мы описывали относительные компакты. Для описания компакта нужно добавить замыкание.

Еще несколько определений:

Определение 4.2 (ε -сеть). (X, ρ) – метрическое пространство. $A \subset X, \varepsilon > 0$ $F - \varepsilon$ -сеть для A, если

$$\forall a \in A \exists f \in F : \rho(a, f) < \varepsilon$$
$$(\Leftrightarrow \forall a \in AB_{\varepsilon}(a) \cap F \neq \varnothing) \Leftrightarrow (A \subset \bigcup_{f \in F} B_{\varepsilon}(f))$$

Определение 4.3. A – вполне ограниченное множество, если для $\forall \varepsilon > 0 \exists$ конечная ε -сеть для A.

Описание компактных и относительно-компактных множеств в терминах вполне ограниченных — как раз наша главная цель. Мы будем использовать это новое описание так: если мы в полном метрическом пространстве, то там относительная компактность и вполне ограниченность — одно и то же. А проверять вполне ограниченность - гораздо проще, чем проверять относительную компактность. Предъявим ε -сеть и всё!

Замечание 4.3. $(X, \rho), A$ – вполне ограниченное $\Rightarrow A$ – ограничено.

Пример 4.2. $(\mathbb{R}^n,||\cdot||_2)=l_n^2$ $A\subset\mathbb{R}^n.$ A – ограниченное $\Leftrightarrow A$ вполне ограниченное

Доказательство. A — ограниченное $\Leftrightarrow \exists M > 0, \forall x - (x_1, \dots, x_n) \in A \Rightarrow |x_j| \leq M$ $A \subset \mathbb{Q} = \{|x_j| \leq M, 1 \leq j \leq n\}$ Как же построить ε —сеть?

Рис. 4.1: классный поясняющий рисуночек

Пусть
$$\varepsilon>0,\ Q=\bigcup Q_j, l$$
 — сторона Q_j
$$\mathrm{diam}\,Q_j=\sup_{x,y\in Q_j}\rho(x,y)=\sqrt{n}\cdot l<\varepsilon\Rightarrow l<\frac{\varepsilon}{\sqrt{n}}$$

$$l=\frac{M}{N}, N\in\mathbb{N},\ \exists\ N:\frac{M}{N}<\frac{\varepsilon}{\sqrt{n}}\Rightarrow$$
 F — вершины Q_j — ε -сеть

EC = equicontinuous

Убедимся в пространстве l^2

Пример 4.3. $D \subset l^2, D = \{x \in l^2 : ||x||_2 \le 1\}$ Убедимся, что D – не вполне ограниченное.

Доказательство.

$$\{e_n\}_{n=1}^{\infty}, e_n=(0,\dots,0,\underbrace{1}_n,0,\dots), n\neq m, ||e_n-e_m||=\sqrt{2}$$

$$B_{\frac{1}{2}}(e_n)\cap B_{\frac{1}{2}}(e_m)=\varnothing$$

$$\varepsilon=\frac{1}{2}, F-\frac{1}{2}\text{-сеть для }D$$

$$\Rightarrow \forall\, n\,\exists\, f_n\in F\cap B_{\frac{1}{2}}(e_n),\, f_n\neq f_m(n\neq m) \text{ так как }B_{\frac{1}{2}}(e_n)\cap B_{\frac{1}{2}}(e_m)=\varnothing$$

$$\{f_n\}_{n=1}^{\infty}\subset F\Rightarrow F-\text{ не конечное}$$

Теперь посмотрим для l^{∞}

Пример 4.4. $\Pi = \left\{ x = \{x_n\}_{n=1}^{\infty}, \, |x_n| < \frac{1}{2^n} \right\} \subset l^2$. Проверим, что Π – вполне ограничено. 0

$$\exists M \in \mathbb{N} \quad \left(\sum_{k=N+1}^{\infty} \left(\frac{1}{2^k}\right)^p\right)^{\frac{1}{p}} < \varepsilon$$

$$\Pi^* = \left\{x = \left\{x_1, \dots, x_N, 0, 0, \dots\right\}\right\}, |x_j| \le \frac{1}{2^j}, 1 \le j \le N \quad x_{N+k} = 0, k \in \mathbb{N}$$

Если мы забудем про нули, то можем думать, что Π^* лежит в \mathbb{R}^n , и там оно ограниченное, а значит и вполне ограниченное. $\Pi^* \subset \mathbb{R}^n$, Π^* – ограниченное \Rightarrow вполне ограниченное $\Rightarrow \exists F \subset \Pi^*$ – конечная ε -сеть. Докажем, что $F - 2\varepsilon$ -сеть для Π .

$$x \in \Pi$$
 $\Rightarrow x = \underbrace{(x_1, \dots, x_N, 0, \dots)}_y + \underbrace{(0, 0, \dots, 0, x_{N+1}, x_{N+2}, \dots)}_z$ $||z||_2 < \varepsilon$ $y \in \Pi^* \Rightarrow \exists f \in F : ||y - f||_2 < \varepsilon \Rightarrow$ $||x - f||_2 = ||(y - f) + z||_2 \le ||y - f||_2 + ||z||_2 < 2\varepsilon$ $\Rightarrow \Pi$ – вполне ограничено

Таким образом, все множества можно описать в пространстве l^p . Перед тем, как доказывать основную теорему, несколько свойств вполне ограниченных множеств.

Свойство 4.1. 1. A — вполне ограничено $\Rightarrow \overline{A}$ — вполне ограничено

- 2. $A \subset Y \subset X, A$ вполне ограничено в $X \Rightarrow A$ вполне ограниченное в Y.
- 3. A вполне ограничено \Rightarrow (A, ρ) сепарабельно.

1 свойство. $A\subset X, \varepsilon>0$. F — конечная ε -сеть для A. Проверим, что $F-(2\varepsilon$ -сеть) для \overline{A}

пусть
$$x \in \overline{A} \Rightarrow \exists y \in A : \rho(x,y) < \varepsilon, \exists f \in F : \rho(y,f) < \varepsilon$$

 $\Rightarrow \rho(x,f) \le \rho(x,y) + \rho(y,f) < 2\varepsilon$

2 свойство. Проблема в том, что надо двигать точки. Мы уже так делали, когда доказывали сепарабельность. $A\subset Y\subset X, \varepsilon>0, \{x_k\}_{k=1}^n$ – ε -сеть для $A,\,x_k\in X$

 $A \subset \bigcup_{k=1}^n B_{\varepsilon}(x_k)$, если $A \cap B_{\varepsilon}(x_k) \neq \emptyset$, то пусть $y_k \in A \cap B_{\varepsilon}(x_k)$ (если $= \emptyset$, то не будем выбирать)

Мы найдем ε -сеть из точек множества A, тогда она точно будет обслуживать и Y. Как же и куда сдвигать точки?

$$E = \{y_k\}_{k=1}^n$$

$$x \in A \Rightarrow \exists x_k : \rho(x, x_k) < \varepsilon \Rightarrow A \cap B_{\varepsilon}(x_k) \neq \varnothing \Rightarrow y_k \in B_{\varepsilon}(x_k) \Rightarrow$$

$$\rho(x_k, y_k) < \varepsilon \Rightarrow \rho(x, y_k) \leq \rho(x, x_k) + \rho(x_k, y_k) < 2\varepsilon \Rightarrow$$

$$E - (2\varepsilon)\text{-сеть для } A, E \subset A$$

3 свойство. $n \in \mathbb{N}, F_n - \left(\frac{1}{n}\right)$ -сеть для A, F_n – конечное.

$$F$$
 (счетное) = $\bigcup_{n=1}^{\infty} F_n$ – плотно в A , то есть $A \subset \overline{F}$

Утверждение 4.2 (о разбиении). $(X,\rho),A\subset X,\varepsilon>0.$ F – конечная ε -сеть для $A\Rightarrow$

$$\exists \{C_j\}_{j=1}^n \quad A = \bigcup_{j=1}^n C_j \quad C_j \cap C_k = \emptyset, j \neq k, \operatorname{diam} C_j \leq 2\varepsilon, C_j \neq \emptyset$$

Доказательство.

$$F = \{x_k\}_{k=1}^n, A \subset \bigcup_{k=1}^n B_{\varepsilon}(x_k)$$

$$C_1 = A \cap B_{\varepsilon}(x_1)$$

$$C_2 = (A \cap B_{\varepsilon}(x_2)) \setminus C_1$$

$$C_k = A \cap B_{\varepsilon}(x_k) \setminus \left(\bigcup_{j=1}^{k-1}\right) \quad k = 2, \dots, n$$

если $C_k = \emptyset$, то забудем о нём. $C_k \subset B_{\varepsilon(x_k)} \Rightarrow \operatorname{diam} C_k \leq 2\varepsilon$

Теперь у нас всё готово для доказательства теоремы о том, как описывать компакты в терминах вполне ограниченных множеств.

Теорема 4.1 (Хаусдорф). (X, ρ) – метрическое пространство,

A – компакт \Leftrightarrow

- 1. A полное, то есть $\forall \{x_n\}_{n=1}^{\infty}$ $A, \{x_n\}$ фундаментальная $\exists \lim x_n = x_0 \in A$ \subset
- 2. A вполне ограничено

Высока вероятность, что спросят на экзамене эту теорему, пытаясь вытянуть.

 $Доказательство. \Rightarrow$

A — компакт, $\{x_n\}_{n=1}^{\infty}$ — фундаментальная, $x_n \in A$. A — компакт $\Rightarrow \exists \{x_{n_j}\}$, $\lim_{k\to\infty} x_{n_j} = x_0, x_0 \in A$. Тогда по свойствам фундаментальных последовательностей $\lim_{n\to\infty}x_n=x_0\Rightarrow (A,\rho)$ — полное метрическое пространство. Проверили первое условие. Теперь надо проверить второе: сначала покроем наш компакт безумным количеством шариков, а они ведь открытые множества, и среди них существует конечное подпокрытие.

пусть
$$\varepsilon>0$$
 $A\subset\bigcup_{a\in A}B_{\varepsilon}(a)\wedge A$ — компакт \Rightarrow , \exists $\{a_j\}_{j=1}^n$, $a_j\in A$:
$$A\subset\bigcup_{j=1}^nB_{\varepsilon}(a_j)\Rightarrow F=\{a_j\}_{j=1}^n\ -\varepsilon\text{-сеть для }A$$

Это была тривиальная часть теоремы. ←.

 $\{x_n\}_{n=1}^\infty, x_n \in A$. Собираемся применять лемму о разбиении. $\varepsilon_1 = \frac{1}{2}$. По лемме $\exists \left\{ C_j^{(1)} \right\}_{j=1}^{N_1}.$ $A = \bigcup_{j=1}^{N_1} C_j^{(1)}, \operatorname{diam} C_j^{(1)} \leq 1.$ Когда-то в детстве мы азнимались бесконечным делением пополам. Тут будем делать то же самое. $\exists j: C_j^{(1)}$ содержит бесконечное число элементов $\{x_n\}$. $A_1:=$

 $C_{i}^{(1)}$.

$$arepsilon_2=rac{1}{2^2},\;$$
 по лемме о разбиении к $A_1\Rightarrow\exists\;\left\{C_j^{(2)}
ight\}_{j=1}^{N_2}$ diam $C_j^{(2)}\leqrac{1}{2}\quad A_1=igcup_{j=1}^{N_2}C_j^{(2)}$

 $\exists \ 1 \leq j \leq N_2 \quad C_j^{(2)}$ содержит бесконечное количетсво элементов в x_n

и так далее
$$\{A_m\}_{m=1}^{\infty}, A_{m+1} \subset A_m, \operatorname{diam}_{A_m} \leq \frac{1}{2^m}$$

 A_m содержит бесконечное число элементов $\{x_n\}_{n=1}^{\infty}(*)$

$$x_{n_1} \in A_1, \quad \exists \ n_2 > n_1 : x_{n_2} \in A_2 \text{ т.к. (*)}$$
 и так далее $\exists \ n_k \text{ т.ч. } n_k > n_{k-1} \quad x_{n_k} \in A_k$ $\{x_{n_k}\}_{k=1}^{\infty}, x_{n_k} \in A_k, \operatorname{diam} A_k \underset{k \to \infty}{\longrightarrow} 0 \quad A_{k+1} \subset A_k$ $\Rightarrow \{x_{n_k}\}_{k=1}^{\infty} - \operatorname{фундаментальная} \land A - \operatorname{полное}$ $\Rightarrow \exists \lim_{k \to \infty} x_{n_k} = x_0, x_0 \in A$

Часто описывают компакт, но фактически говорят об относительный компкте. Для описания компакта, опять же, надо просто добавить замкнутость.

Следствие 4.1. (X, ρ) – метрическое, $A \subset X$.

- 1. A относительно компактно $\Rightarrow A$ вполне ограничено
- 2. (X, ρ) полное, A относительно компактно $\Leftrightarrow A$ вполне ограничено

Будем изо всех сил пользоваться теоремой Хаусдорфа.

1 утверждение. A — относителько компактно, $\Rightarrow \overline{A}$ — компакт, тогда по теореме Хаусдорфа \overline{A} — вполне ограничено, $A \subset \overline{A} \Rightarrow A$ вполне ограничено.

2 утверждение. (X, ρ) – полное, A – вполне ограничено, тогда по ранее доказанному свойству $(\overline{A}$ – вполне ограничено \wedge \overline{A} – замкнутое в $X \Rightarrow \overline{A}$ – полное) \Rightarrow по теореме Хаусдорфа \overline{A} компакт \Rightarrow A – относительно компактно.

Оказывется, можно вместо конечных ε -сетей можно утверждать чуть большее.

Следствие 4.2. (X,ρ) — полное, $A\subset X$. Если для $\forall\,\varepsilon>0\,\exists$ относительно компактная ε -сеть, то A — относительно компактно

Доказательство. $0, F - \varepsilon$ -сеть для A. F — относителько компактно $\Rightarrow F$ вполне ограничено, $\exists E$ — конечная ε -сеть для $F \Rightarrow E - (2\varepsilon)$ -сеть для $A \Rightarrow A$ — вполне ограничено $\Rightarrow -A$ — относительно компактно. \square

4.1. Относительно компактные множества в C(K)

Определение 4.4. (K, ρ) — метрический компакт. $C(K) = \{f : K \to \mathbb{R}(\mathbb{C}), f$ — непрерывная $\}, ||f|| = \max_{x \in K} |f(x)|\Phi \subset C(K)$. Φ — равностепенно непрерывно, если $\forall \varepsilon > 0 \,\exists \, \delta > 0 \,\forall \, f \in \Phi, \,\forall \, x, y \in K, \rho(x, y) < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$ EC — equicontinuous.

Раностепенная непрерывность отличается от равномерной непрерывности тем, что δ не зависит от f, но от ε конечно зависит. Некоторый вариант теоремы Арцелла-Асколи, который, возможно, доказывали на дифурах:

Теорема 4.2 (Асколи-Арцелла). K – компакт, (K, ρ) , $\Phi \subset C(K)$. Φ – относительно компактно \Leftrightarrow

- 1. Φ ограниченное в C(K)
- 2. Φ равностепенно непрерывно ($\Phi \in EC$ equicontinuous)

Доказательство. С самого начала отметим, что C(K) – полное. Вместо проверки относительной компактности Φ будем проверять вполне ограниченность.

 \Rightarrow Φ – относительно компактно \Rightarrow Φ – вполне ограничено \Rightarrow Φ – ограничено, то есть $\exists M \geq 0$ т.ч. $||f|| \leq M \, \forall f \in \Phi \Leftrightarrow \forall x \in K, \, \forall f \in \Phi \, |f(x)| \leq$

$$M.\ arepsilon>0\ \exists\ arepsilon$$
-сеть $\left\{arphi_j
ight\}_{j=1}^n, arphi_j\in C(K),\ arphi_j$ — равномерно непрерывна $\exists\ \delta_j>0$ $x,y\in K,
ho(x,y)<\delta_j\Rightarrow |arphi_j(x)-arphi_j(y)| $\delta_j$$

при описании относительного компакта мы получили такой резуль- перетат: C(K) – полное $\Rightarrow \Phi$ относительный компакт $\Leftrightarrow \Phi$ – вполне ограничено. Будем этим пользоваться.

 $\Rightarrow \Phi$ – вполне ограниченное $\Rightarrow \Phi$ – ограничено

Пусть $\varepsilon>0\Rightarrow\exists\{\varphi_j\}_{j=1}^n$ - ε -сеть для $\Phi.$ $\varphi_j\in C(K)\Rightarrow\varphi_j$ — равномерно непрерывна

$$\exists \, \delta_j > 0 \, \forall \, x, y \in K, \, \rho(x, y) < \delta_j \Rightarrow |\varphi_j(x) - \varphi_j(y)| < \varepsilon$$

 \Leftarrow

$$\delta = \min_{1 \le j \le n} \delta_j, \delta > 0$$
 пусть $f \in \Phi \Rightarrow \exists \ j: ||f - \varphi_j|| < \varepsilon$ то есть

надо оценить этот модуль через неравенство треугольника; справа, очевидно, будет 3 слагаемых

$$\max_{x \in K} |f(x) - \varphi_j(x)| < \varepsilon \Rightarrow$$

пусть
$$x,y\in K, \rho(x,y)<\delta, |f(x)-f(y)|\leq \underbrace{|f(x)-\varphi_j(x)|}_{<\varepsilon}+\underbrace{|\varphi_j(x)-\varphi_j(y)|}_{<\varepsilon \text{ так как }\delta\leq\delta_j}+|\varphi_j(y)-f(y)|<3\varepsilon$$

мы и проверили равностепенную непрерывность. Тривиальная часть доказательства закончена.

 Φ – ограничено $\Rightarrow \exists M > 0: f \in \Phi \Rightarrow ||f|| \leq M \Rightarrow |f(x)| \leq M \, \forall \, x \in K.$ Надо по определению построить конечную ε -сеть в множестве непрерывных функций. Но мы воспользуемся двумя облегчающими хитростями: $1. \, \Phi \subset C(K), \, a \, C(K) \subset m(K), \, u$ если множество имеет ε -сеть в большем пространстве, то в меньшем и подавно. Более того, сеть можно построить из элементов меньшего множества. Мы выберем ограниченные функции. 2. выберем относительно компактную ε -сеть в m(K) вместо конечной в $C(K), \, u$ этого будет достаточно.

$$\varepsilon > 0 \quad \Phi \subset C(K) \subset m(K) = \{ f : K \to \mathbb{C}, \sup_{x \in K} |f(x)| < +\infty \}$$

$$\varepsilon > 0$$
 $\exists \delta$ из определения (EC)

применим к этой парочке лемму о разбиении $(K, \rho), \delta > 0$

$$\exists \{C_j\}_{j=1}^n, \operatorname{diam} C_j < \delta, K = \bigcup_{j=1}^n C_j, C_j \bigcap C_i = \emptyset(j \neq i), C_j \neq \emptyset$$

$$\Psi = \left\{ g(x) = \sum_{j=1}^n y_j \chi_{C_j}(x) \right\} \subset m(K), y_j \in \mathbb{C}, 1 \leq j \leq n$$

$$g \in \Psi, ||g||_{\infty} = \sup_{x \in K} |g(x)| = \max_{1 \leq j \leq n} |y_j| = ||y||_{l_n^{\infty}}, y = (y_1, \dots, y_n)$$

$$F : l_n^{\infty} \to \Psi, F(y) = \sum_{j=1}^n y_j \chi_{C_j}(x)$$

Мы выяснили, что F биекция, изометрия, линейное.

 $Q = \{y = (y_1, \dots, y_n), |y_j| \le M\}$ полидиск, что бы это пока не значило Q – компакт , F – непрерывна $\Rightarrow F(Q)$ – компакт в m(K)

$$E := F(Q), E = \left\{ g(x) = \sum_{j=1}^{n} y_j \chi_{C_j}(x), |y_j| \le M \right\}$$

вот у нас есть компакт E, и мы собираемся проверить, что он и будет ε -сетью для Φ . Будет полезно в каждом множестве выбрать по точечке. Пусть $x_j \in C_j, f \in \Phi, y_j := f(x_j)$.

$$g(x) = \sum_{j=1}^{n} f(x_j) \chi_{C_j}(x), g \in E, |y_j| \le M$$

Пусть $x \in K \Rightarrow \exists j, x \in C_j \Rightarrow g(x) = f(x_j) \Rightarrow$

$$|f(x) - g(x)| = |f(x) - f(x_i)| < \varepsilon$$
 t.k. $\rho(x, x_i) < \delta$

Вот это и то, что было обещано. E – компактная ε -сеть.

Замечание 4.4. Условия теоремы не зависимы.

Пример 4.5. C[0,1]. $f_n(x) = x^2 + n$, $\{f_n\}$ – равностепенно непрерывны, но $\{f_n\}$ не ограничено.

ограниченная, но не равностепенно непрерывная

Пример 4.6. $C[0,1], f_n(x) = x^n$. $\{f_n\}$ – ограничены, но не равностепенно непрерывны.

Теорема 4.1 (достаточные условия равностепенной непрерывности). (K, ρ) — компакт, $\Phi \subset C(K)$. Сначала какие-то абстрактные множества, потом будут более конкретные.

1. Если $\exists M > 0, \alpha > 0, \beta > 0$ такие что

$$\forall f \in \Phi, (\forall x, y \in K\rho(x, y) < \beta) \Rightarrow |f(x) - f(y)| \le M(\rho(x, y))^{\alpha}$$
$$\Rightarrow \Phi \in (EC)$$

2. $C[a,b], \Phi \subset C[a,b]$, пусть $\exists L > 0$

$$\forall f \in \Phi \exists f'(x), x \in (a, b), |f'(x)| \leq L \Rightarrow \Phi \in (EC)$$

3. чуть более общий случай. $K \subset G \subset \mathbb{R}^n, \, K$ – компакт, G – открытое.

$$\exists L > 0 : \forall f \in \Phi, \exists \left| \frac{\partial f}{\partial x_j}(x) \right| \le L(1 \le j \le n), \forall x \in G \Rightarrow \Phi \in (EC)$$

4. про аналитические функции. предполагать можно будет гораздо меньшее. $K \subset G \subset \mathbb{C}, \ G$ – открытое, K – компакт.

$$\exists\: L>0, f\in\Phi, f\:$$
аналитическая в $G,\exists\: f'(x), \underbrace{|f(x)|}_{\text{ТУТ}}\leq L, \forall\: x\in G$

ТУТ НЕ ПРОИЗВОДНАЯ, НА ЭКЗАМЕНЕ ЧАСТО ОШИБАЮТ-СЯ!!!! Аналитичность — фантастическое свойство, в отличие от, например, дифференцируемости. Именно из-за неё ТАМ как раз и не производная.

1. Пусть $\varepsilon>0,\ x,y\in K,$ пусть $\rho(x,y)<\beta,$ пусть $\delta<\beta,\rho(x,y)<\delta,\delta(\varepsilon)=?.$

$$f \in \Phi \Rightarrow |f(x) - f(y)| \le M\rho(x, y)^{\alpha} < M\delta^{\alpha} \le \varepsilon$$
$$\Rightarrow \delta \le \left(\frac{\varepsilon}{M}\right)^{\frac{1}{\alpha}},$$
$$\delta(\varepsilon) = \min\left\{\beta, \left(\frac{\varepsilon}{M}\right)^{\frac{1}{\alpha}}\right\},$$

Будем сводить остальные доказательства к первому пункту, находя M, α, β . Второй пункт теперь совсем лёгкий.

2. $\Phi \subset C[a,b], x,y \in [a,b], f \in \Phi$. Для оценки разности f(x) - f(y) воспользуемся теоремой Лагранжа.

$$f(x) - f(y) = f'(c)(x - y) \Rightarrow |f(x) - f(y)| \le |f(c)||x - y| \le L|x - y|$$
$$M = L, \alpha = 1, (\beta - \forall) \stackrel{1}{\Rightarrow} \Phi \in (EC)$$

3. Пусть $z,y\in K$ такие что $[z,y]\subset G, f\in \Phi$ Оценим разность f(y)-f(z).

 $\Gamma: [0,1] \rightarrow [y,z]$

$$\Gamma(t) = ty + (1-t)z, \Gamma(0) = z, \Gamma(1) = y$$
 опять можем воспользоваться теоремой Лагранжа
$$f(y) - f(z) = f(\Gamma(1)) - f(\Gamma(0)) = (f(\Gamma(c)))_t'$$

$$(f(\Gamma(t)))_t' = (f(ty + (1-t)z))_t' = \sum_{j=1}^n \frac{\partial f}{\partial x_j} (\ldots) (y_j - z_j)$$

$$|f(\Gamma(t))'| \le L \sum_{j=1}^n |y_j - z_j| \overset{\text{KBIII}}{\le} L \sqrt{n} \left(\sum_{j=1}^n (y_j - z_j)^2 \right)^{\frac{1}{2}} = L \sqrt{n} \rho(y, z)$$

Если выбртаь β достаточно маленьким, то наш отрезок будет лежать в этом компакте. $F = \mathbb{R}^n \setminus G$ — замккнутое, $\rho(x,F)$ — непрерывная

Рис. 4.2: Утопленность компакта

функция в $\mathbb{R}^n \Rightarrow \rho(x,F)$ непрерывна на $K \Rightarrow \exists x_o \in K, \rho(x_0,F) = \min_{x \in K} \rho(x,F)$

$$x_0 \notin F \Rightarrow \rho(x_0, F) > 0, r := \rho(x_0, F)$$

 $\forall x \in K B_r(x) \subset G, \beta = r$
 $\rho(x, y) < r \Rightarrow y \in B_r(x) \subset G \Rightarrow$
отрезок $[x, y]B_r(x) \subset G$
 $\Rightarrow |f(x) - f(y)| \le L\sqrt{n}\rho(x, y)$

z и y, которые с самого начала были выбраны вместо x и y, чтобы не смущаться из-за dx, обратно превратились в x и y, все же поняли? На пальцах: наш компакт настолько утоплен в G, что если мы возьмём шарик радиуса r, то шарик всё еще лежит в G.

4. Букву r, которую мы нашли в предыдущем пункте, будем изо всех сил использовать. $K\subset G\subset \mathbb{C}.$ В 3 пункте выяснили, что $\exists \ r>0:$ $B_r(x)\subset G\ \forall\ x\in K, \beta=\frac{r}{3}.$

$$x, y \in K, \rho(x, y) < \beta, \gamma = \{\zeta \in \mathbb{C} : |x - \zeta| = 2\beta\}$$

 $f \in \Phi$

разницу собираемся оценивать с помощью формулу Коши, поэтому никакие проивзодные и не нужны!!!

$$f(x) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - x} d\zeta$$
$$f(y) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - y} d\zeta$$
$$f(x) - f(y) = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \frac{x - y}{(\zeta - x)(\zeta - y)} d\zeta$$

оцениваем самым грубом образом, отправляя модули под интегралы

$$|f(\zeta)| \le L, |\zeta - x| = 2\beta, |z - y| \ge \beta$$

$$|f(x) - f(y)| \le \frac{1}{2\pi} L \cdot |x - y| \cdot |\gamma| \cdot \frac{1}{(2\beta) \cdot \beta} = |x - y| L \frac{(2\beta) \cdot 2\pi}{(2\pi)(2\beta)\beta} = \frac{L}{\beta} |x - y|$$

и в обозначениях 1 пункта получаем $M=\frac{L}{\beta}, \alpha=1, \beta=\frac{r}{3}, \stackrel{(1)}{\Rightarrow} \Phi \in (EC)$

Перед тем, как мы покинем относительно компакты, пара упражнений, которые на экзамене спрашивали в качестве задачи на 5.

Утверждение 4.3. $1 \le p < +\infty$. $\Phi \subset l^p, \Phi$ – относительно компактно \Leftrightarrow

1. Φ – ограничено в l^p

2.
$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} : \forall x = \{x_j\}_{j=1}^{\infty} \in \Phi, \left(\sum_{j=N+1}^{\infty} |x_j|^p\right)^{\frac{1}{p}} < \varepsilon$$

Утверждение 4.4. $\Phi \subset C_0, \Phi$ – относительно компактно \Leftrightarrow

- 1. Ф ограничено
- $2. \ \varepsilon > 0 \, \exists \, N \in \mathbb{N} : \forall \, x \in \Phi \quad \sup_{j \geq N+1} |x_j| < \varepsilon$

Мы сейчас находимся на перепутье функционального анализа. Можно отправиться в Гильбертовы пространства, в линейные операторы или еще куда-то. Изучить-то придётся всё, но мы начинаем линейные операторы.

Часть II Линейные операторы

Глава 5

Линейные операторы в линейных пространствах

Первый парагарф про линейные пространства будет совсем простой, здесь будут самые тривиальные свойства, следующие из линейности.

5.1. Линейные операторы в линейных пространствах

Определение 5.1 (Линейный оператор). X, Y — линейны над $k(k = \mathbb{R} \text{ или } \mathbb{C}).$ $A: X \to Y, A$ — **линейный оператор**, если

$$A(\alpha x + \beta z) = \alpha Ax + \beta Az, \quad x, z \in X, \alpha, \beta \in k$$

 $\operatorname{Lin}(X,Y)$ — множество линейных операторов из X в Y. Также нам понадобится линейное пространство над k

$$\alpha \in k, A \in \text{Lin}(X,Y), (\alpha A)(x) := \alpha Ax, \emptyset(x) = 0 \ (0 \ в пространстве Y)$$
 $A, B \in \text{Lin}(X,Y), (A+B)(x) := Ax + Bx$

Если X = Y, пишем только Lin(X).

Пример 5.1 (интегральный оператор). $C[a,b], K(s,t) \in C([a,b] \times [a,b])$

$$f \in C[a, b], (\mathcal{K}f)(s) = \int_{a}^{b} k(s, t) f(t) dt$$
$$(\mathcal{K}f)(s) \in C[a, b], \mathcal{K} \in \text{Lin}(C[a, b])$$

Пример 5.2 (оператор дифференцирования). $X = C^{(1)}[0,1] = \{f : f' \in C[0,1]\}, Y = C[0,1]. f \in X, D(f) = f', D \in Lin(X,Y)$

Пример 5.3 (оператор вложения). $l^1 \subset l^2, x = \{x_n\}_{n=1}^{\infty}, \sum_{n=1}^{\infty} |x_n| < +\infty, x \in l^1 \Rightarrow \sum_{n=1}^{\infty} |x_n|^2 < +\infty \Rightarrow x \in l^2$

$$Ax = x, A$$
 оператор вложения $l^1 \stackrel{A}{\hookrightarrow} l^2$ $\forall 1 \leq p_1 < p_2 \leq +\infty \Rightarrow l^{p_1} \stackrel{A}{\hookrightarrow} l^{p_2}, Ax = x$ $A \in \operatorname{Lin}(l^{p_1}, l^{p_2})$

Пример 5.4 (оператор, но не линейный). x = X — линейное пространство, $x_0 \in X, x_0 \neq 0, Ax = x + x_0 \Rightarrow A$ — не линейный.

Перед тем, как доказывать теорему, еще одно небольшое определение.

Определение 5.2 (Выпуклое множество). $B \subset X, X$ — линейное пространство. B — **выпуклое** , если

$$\forall x, z \in B, \forall t, 0 \le t \le 1 \Rightarrow tx + (1 - t)z \in B$$

то есть отрезок, соединяющий любые две точки, полностью лежит в этом множестве

Теорема 5.1 (простейшие свойства линейного оператора). X, Y — линейные пространства над k (\mathbb{R} или \mathbb{C}), $A \in \text{Lin}(X,Y)$

- 1. $L \subset X, L$ подпространство в $X \Rightarrow A(L)$ подпространство в Y (образ подпространства подпространство)
- 2. $M\subset Y, M$ подпространство в $Y\Rightarrow\underbrace{A^{-1}(M)}_{\text{прообраз}}$ подпро-

странство в X

- 3. $B \subset X, B$ выпуклое $\Rightarrow A(B)$ выпуклое в Y
- 4. $C \subset Y, C$ выпуклое $\Rightarrow A^{-1}(C)$ выпуклое в X
- 5. пусть A биекция $\Rightarrow A^{-1} \in \text{Lin}(Y, X)$

Все 5 свойств доказывать не будем, покажем только несколько и скажем, что остальные доказываются аналогично.

1. L — подпространство, $y, v \in A(L), \alpha \in k$. Наша мечта — проверить $(\stackrel{?}{\Rightarrow} \alpha y + v \in A(L))$, не обязательно писать α и β .

$$\Rightarrow \exists x, y \in L : (Ax = y \land Au = v) \Rightarrow A(\alpha x + u) = \alpha Ax + Au = \alpha y + v$$
$$\alpha x + u \in L \Rightarrow A(\alpha x + u) \in A(L) \Rightarrow \alpha y + v \in A(L)$$

3 проверяется тютелька в тютельку как 1, а 2 $\,-\,$ как 4, поэтому проверим 4.

4. C — выпуклое, $x, u \in A^{-1}(C), 0 \le t \le 1$.

$$(y:=Ax \wedge v:=Au) \quad y,v \in C \Rightarrow ty+(1-t)v \in C$$
 $A(tx+(1-t)u)=tAx+(1-t)Au=ty+(1-t)v \in C$ $\Rightarrow tx+(1-t)u \in A^{-1}(C) \Rightarrow A^{-1}(C)$ выпуклое

5. $y, v \in Y \Rightarrow x = A^{-1}y, u = A^{-1}v \Rightarrow (Ax = y \land Au = v) \Rightarrow$ пусть $\alpha \in k$, $A(\alpha x + u) = \alpha Ax + Au = \alpha y + v \Rightarrow$ $\alpha x + u = A^{-1}(\alpha y + v) = \alpha A^{-1}y + A^{-1}v \Rightarrow$ $A^{-1} \in \text{Lin}(Y, X)$

Определение 5.3 (Ядро линейного оператора). $A \in \text{Lin}(X,Y)$

$$\operatorname{Ker} A = \{x \in X : Ax = 0\} \ -\text{ ядро } A$$

$$\operatorname{Im} A = \{y \in Y : \, \exists \, x : Ax = y\} = A(X) \ -\text{ образ } A$$

Следствие 5.1. X, Y — линейные пространства, \Rightarrow Ker A — подпространство в X, Im A — подпространство в Y.

Определение 5.4 (произведение операторов). X,Y,Z — линейные пространства

$$X \stackrel{A}{\to} Y \stackrel{B}{\to} Z$$

 $A\in \mathrm{Lin}(X,Y), B\in \mathrm{Lin}(Y,Z), \ C=BA, C(x):=B(Ax), x\in X\Rightarrow C\in \mathrm{Lin}(X,Z), C$ — произведение BA

Всё самое тривиальное для операторов в линейных простаранствах мы вспомнили

5.2. Линейные операторы в нормированных пространствах

Линейные операторы в нормированных пространствах — главный объект, который изучает функциональный анализ.

Определение 5.5 (Огранисченный оператор). $(X, ||\cdot||), (Y, ||\cdot||), A \in \operatorname{Lin}(X,Y).$ A — **ограниченный**, если $\forall C \subset X, C$ — ограниченное $\Rightarrow A(C)$ — ограниченное в Y.

Оказывается, для операторов ограниченность эквивалентна непрерывности. Казалось бы, ограниченность сильно слабее, но если к ней добавить линейность, то будет аж непрерывность.

Обычно если в теореме 2 свойства, то говорят «если и только если», а если условий несколько, то говорят «равносильность». Подлые анголосаксы говорят Following Conditions are Equivalent.

Теорема 5.2 (эквивалентность ограниченности и непрерывности линейного оператора). $(X, ||\cdot||), (Y, ||\cdot||), A \in \operatorname{Lin}(X, Y).$ Следующие условия равносильны (СУР) (FCE)

- 1. A непрерывен в точке 0
- 2. A непрерывен $\forall x \in X$
- 3. $\exists C > 0 : ||Ax|| < C||x|| \forall x \in X$
- 4. А ограниченный
- 5. $\exists r > 0 \ A(B_r(0))$ ограниченное множество в Y.

Доказательство очень простое, и, конечно, строится на линейности

 $1\Rightarrow 2.$ A непрерывен в точке 0. Пусть $\varepsilon>0$ $\exists \delta>0,\ ||x||<\delta\Rightarrow ||Ax||<\varepsilon$ $(A(\mathbb{O}))=\mathbb{O}.$ утверждается, что те же самые ε и δ подходят.

пусть
$$x_0 \in X$$
, проверим, что A непрерывен в x_0 пусть $||x-x_0|| < \delta \Rightarrow ||A(x-x_0)|| < \varepsilon \Rightarrow ||Ax-Ax_0|| < \varepsilon$

$\Gamma \Pi ABA$ 5. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ЛИНЕЙНЫХ ПРОСТРАНСТВАХ

70

 $2 \Rightarrow 1$ очевидно

$$\begin{split} 1 &\Rightarrow 3. \ \text{Пусть } \varepsilon > 0 \, \exists \, \delta > 0 : ||x|| < \delta \Rightarrow ||Ax|| < \varepsilon. \\ z &\in X, z \neq 0 \quad x = \frac{z}{||z||} \cdot \delta \Rightarrow ||x|| = \delta \Rightarrow ||Ax|| < \varepsilon \\ &\Rightarrow ||A\left(\frac{z}{||z||} \cdot \delta\right)|| < \varepsilon \Rightarrow ||Az|| < \frac{\varepsilon}{\delta}||z|| \text{т.e.} C = \frac{\varepsilon}{\delta} \end{split}$$

 $3\Rightarrow 4.\ B\subset X,\ B$ — ограниченное, то есть $\exists\ M>0: (\forall\ x\in B\land ||x||< M)\stackrel{3}{\Rightarrow}||Ax||\leq C||x||\leq CM\ \forall\ x\in B\Rightarrow \{A(B)\}$ — ограниченное.

 $4 \Rightarrow 5$ очевидно $(B_r(0))$ — ограниченное)

$$5 \Rightarrow 1$$
. $\exists R > 0 A(B_r^x(0)) \subset B_R^y(0)$

$$||x|| < r \Rightarrow ||Ax|| < R$$

непрерывность в 0 означает

пусть
$$\varepsilon > 0$$
 $||x|| < \delta(\varepsilon) \Rightarrow ||Ax|| < \varepsilon$
$$\delta(\varepsilon) = \varepsilon \cdot \frac{r}{R}$$

$$||z|| < \varepsilon \cdot \frac{r}{R} \Rightarrow ||z \cdot \frac{R}{\varepsilon}|| < r \Rightarrow ||A\left(z \cdot \frac{R}{z}\right)|| < R \Rightarrow ||Az|| < \varepsilon$$

с помощью теоремы, которую мы только что доказали, введём норму в этом пространстве.

Определение 5.6 (норма оператора). $(X, ||\cdot||), (Y, ||\cdot||)$

$$\underbrace{\mathcal{B}(X,Y)}_{\text{bounded}} = \{A \in \text{Lin}(X,Y) \land A - \text{ограниченный}\}$$

 $A \in \mathcal{B}(X,Y)$

$$||A|| = \inf\{C : C > 0 \land ||Ax|| \le C ||x|| \ \forall x \in X\}$$

то бишь точная нижняя грань множества величин, на которые наш оператор увеличивает норму элемента.

Раз мы так объявили норму, то надо проверять аксиомы нормы.

Утверждение 5.1.
$$(X, ||\cdot||), (Y, ||\cdot||), A \in \mathcal{B}(X, Y)$$

- 1. $\forall x \in X ||Ax|| \le ||A||||x||$ (то есть inf в определении нормы $= \min$)
- 2. ||A|| удовлетворяет аксиомам нормы

Доказательство. x - фиксирован, $\Rightarrow \forall c > ||A||, ||Ax|| \leq C||x|| \Rightarrow ||Ax|| \leq ||A|| \cdot ||x||$. Был фиксирован, теперь любой, первое утверждение доказано. Теперь второе.

$$\alpha \in k, \alpha \neq 0, x \in X, x \quad -\text{ фиксирован}$$

$$(\alpha A)(x) = \alpha A x$$

$$\forall \, x \in X \quad ||(\alpha A)(x)|| = ||\alpha \cdot A x|| = |\alpha| \cdot ||Ax|| \leq |\alpha| \cdot ||A|| \cdot ||x||$$

$$\Rightarrow ||\alpha A|| \leq |\alpha|||A||$$

Очевидное замечание по слёзной просьбе двух студенток, которые ничего не понимали. Если мы докажем $||Ax|| \leq M||x|| \, \forall \, x \in X,$ то $||A|| \leq M$

$$\Rightarrow \left| \left| \frac{1}{\alpha} (\alpha A) \right| \right| \le \frac{1}{|\alpha|} ||\alpha A|| \Rightarrow |\alpha| ||A|| \le ||\alpha A||$$
$$\Rightarrow ||\alpha A|| = |\alpha| ||A||$$
$$A, B \in \mathcal{B}(X, Y), x \in X$$

$$||(A+B)(x)|| = ||Ax + Bx|| \le ||Ax|| + ||Bx|| \le ||A|| \cdot ||x|| + ||B|| \cdot ||x|| =$$

$$= (||A|| + ||B||)||x|| \quad \forall x \in X$$

$$\Rightarrow ||A+B|| \le ||A|| + ||B||$$

Как только есть какая-то константа, то настоящая норма меньше или равна этой константы. $||A||=0 \Rightarrow \forall x \in X \, ||Ax|| \leq ||A|| \cdot ||x||=0$. $\Rightarrow Ax=0 \, \forall x \in X \Rightarrow A=0 \Rightarrow ||A||$ — настоящая норма

Теорема 5.3 (вычисление нормы непрерывного оператора). $(X, ||\cdot||), (Y, ||\cdot||), A \in \mathcal{B}(X, Y) \Rightarrow$

$$||A|| = \sup_{\underbrace{\{||x|| \le 1\}}} ||Ax|| = \sup_{\underbrace{\{||x|| < 1\}}} ||Ax|| = \sup_{\underbrace{\{||x|| = 1\}}} ||Ax|| = \sup_{\underbrace{\{x \in X, x \ne 0\}}} \frac{||Ax||}{||x||}$$

Доказательство. Очевидно $a \geq b, a \geq c, d \geq c$. Докажем $||A|| \geq a \geq b \geq ||A||, \quad ||A|| \geq d \geq c \geq ||A||.$

$$||Ax|| \leq ||A|| \cdot ||x|| \leq ||A|| \quad \forall \, x, ||x|| \geq 1 \Rightarrow \sup_{\{||x|| \geq 1\}} ||Ax|| \leq ||A|| \Rightarrow a \leq ||A||$$

Доказали $||A|| \ge a$.

Пусть
$$\varepsilon > 0$$
 $z \in X, z \neq 0 \Rightarrow \left| \left| \frac{z}{||z||(1+\varepsilon)} \right| \right| = \frac{1}{1+\varepsilon} < 1$

$$\left| \left| A\left(\frac{z}{||z||(1+\varepsilon)}\right) \right| \right| \le b \Rightarrow ||Az|| \le b(1+\varepsilon)||z|| \quad \forall z \in X$$
$$\Rightarrow ||A|| \le b(1+\varepsilon) \, \forall \varepsilon > 0 \Rightarrow ||A|| \le b$$

Закончили с первой цепочкой неравенств.

Пусть $x \neq 0 \Rightarrow |Ax| \leq |A| \cdot |x| \Rightarrow \frac{|Ax|}{|x|} \leq |A| \Rightarrow d = \sup_{\{x \neq 0\}} \frac{|Ax|}{|x|} \leq |A|.$

пусть
$$z \in X, z \neq 0, \left| \left| \frac{z}{||z||} \right| \right| = 1 \Rightarrow ||A\left(\frac{z}{||z||}\right)|| \leq c \Rightarrow ||Az|| \leq C||z|| \forall z \in X$$

с — супремум по единичной сфере

$$\Rightarrow ||A|| \leq C$$

Пример 5.5. $C[a,b], h(x) \in C[a,b]$ — фиксированная функция. $f \in C[a,b], M_h(f) := h(x) \cdot f(x)$.

$$M_h \in \operatorname{Lin}(C[a,b])$$

Проверим, что он непрерывен и сосчитаем его норму.

Доказательство.

$$||M_h(f)||_{\infty} = \max_{x \in [a,b]} |h(x) \cdot f(x)| \le \max_{x \in [a,b]} |h(x)| \cdot \max_{x \in [a,b]} |f(x)| = ||h||_{\infty} \cdot ||f||_{\infty}$$
$$\Rightarrow M_h \in \mathcal{B}(C[a,b]), ||M_h||_{\mathcal{B}(C[a,b])} \le ||h||_{\infty}$$

получили непрерывность; раз есть общая константа, не зависящая от f, то мы получаем и оценку для нормы

$$\chi_{[a,b]}(x) = 1 \,\forall \, x \in [a,b], \, \chi_{[a,b]} \in C[a,b], \, ||\chi_{[a,b]}||_{\infty} = 1$$
$$||M_h|| \ge ||M_h(f)|| \forall \, f, \, ||f|| = 1 \Rightarrow ||M_h|| \ge ||M_h(\chi_{[a,b]})||_{\infty} = ||h||_{\infty}$$
$$\Rightarrow ||M_h||_{\mathcal{B}(C[a,b])} = ||h||_{\infty}$$

Теперь посмотрим на оператор дифференцирования, это очень важный пример.

Пример 5.6.
$$Y = C[a,b], X = \{f: \exists f' \in C[a,b]\}, 0 \le a \le b$$
 $X \subset Y, X$ — подпространство Y , то есть
$$||f||_X = ||f||_Y = \max_{x \in [a,b]} |f(x)|$$
 $D(f) = f' \Rightarrow D \in \mathrm{Lin}(X,Y),$

$$D(f) = f' \Rightarrow D \in \operatorname{Lin}(X, Y),$$

$$D(x^n) = nx^{n-1} \quad \sup_{n \in \mathbb{N}} \frac{||D(x^n)||}{||x^n||} = \sup_{n \in \mathbb{N}} \frac{nb^{n-1}}{b^n} = +\infty$$

при таком определении нормы оператор дифференцирования D не непрерывен.

Пример 5.7.
$$Y = C[a, b], X = C^{(1)}[a, b]$$

$$||f||_{X} = \max\{||f||_{\infty}, ||f'||_{\infty}\}$$

$$D(f) = f' \quad ||D(f)|| = ||f'||_{\infty} = \max_{x \in [a,b]} |f'(x)| \le \underbrace{\max\{||f||_{\infty}, ||f||_{\infty}\}}_{||f||_{X}}$$

$$\Rightarrow D \in \mathcal{B}(X,Y), ||D|| \le 1$$

Теорема 5.4 (вложение пространств в l^p). Пусть $1 \le p_1 < p_2 \le +\infty$. $x \in l^p$. Рассмотрим оператор вложения $Ax = x \Rightarrow A \in \mathcal{B}(l^{p_1}, l^{p_2}), ||A|| = 1$.

Доказательство. То, что он линейный, мы уже обсуждали, это очевидно. Удобно будет рассматривать последовательности из единичной сферы. $x \in l^p, x = \{x_n\}_{n=1}^\infty, x_n \in \mathbb{C}. \ ||x||_p = (\sum_{n=1}^\infty |x_n|^p)^{\frac{1}{p}}, 1 \leq p < +\infty.$ Возьмём не просто последовательность из l^{p_1} , но и такую, что $||x||_{p_1} = 1 \Rightarrow \sum_{n=1}^\infty |x_n|^{p_1} = 1$ Ax = x.

$$\Rightarrow |x_n| \leq 1 \Rightarrow (|x_n|^{p_2}) < |x_n|^{p_1}$$

$$||Ax||_{p_2} = \left(\sum_{n=1}^{\infty} |x_n|^{p_2}\right)^{\frac{1}{p_2}} \leq \left(\sum_{n=1}^{\infty} |x_n|^{p_1}\right)^{\frac{1}{p_2}} = 1 \Rightarrow A \in \mathcal{B}(l^{p_1}, l^{p_2})$$

$$||A|| = \sup_{\{||x||_{p_1}=1\}} ||Ax||_{p_2} \leq 1 \Rightarrow ||A||_{\mathcal{B}(l^{p_1}, l^{p_2})} \leq 1 \quad \text{при } p_2 < +\infty$$
 теперь $p_2 = +\infty$ $||x||_{p_1} = 1 \Rightarrow \sup_{n \in \mathbb{N}} |x_n| \leq ||x||_{p_1} \Rightarrow ||x||_{\infty} \leq ||x||_{p_1} \Rightarrow$
$$A \in \mathcal{B}(l^{p_1}, l^{p_2}) \, ||A|| \leq 1$$

если
$$e_1=(1,0,\ldots),\ ||e_1||_p=1\ \forall\, p:1\leq p\leq +\infty$$

$$||A||=\sup_{\{||x||_{p_1}=1\}}||Ax||_{p_2}\geq ||Ae_1||_{p_2}=1\Rightarrow ||A||_{\mathcal{B}(l^{p_1},l^{p_2})}=1\quad\forall\, p_1< p_2$$

Посмотрим теперь на похожую теорему для больших пространств L^p .

Теорема 5.5 (вложение пространств в $L^p(\mu)$ для конечной меры). $(X,U,\mu), 1 \leq p_1 < p_2 \leq +\infty, \mu(X) < +\infty.$ Рассмотрим $f \in L^{p_2}, Af = f \Rightarrow A \in \mathcal{B}(L^{p_2},L^{p_1}).$ $||A|| = (\mu(X))^{\frac{1}{p_1}-\frac{1}{p_2}}, \left(\frac{1}{\infty}=0\right)$

Доказательство. Начнём с самого простого случая. То есть что называлось существенно ограниченными функциями. $p_2 = \infty, f \in L^{\infty}(\mu), |f(x)| \le ||f||_{\infty}$ п.в. для $x \in X$ по μ .

$$||Af||_{p_1} = ||f||_{p_1} = \left(\int_X |f|^{p_1} d\mu\right)^{\frac{1}{p_1}} \le ||f||_{\infty} \left(\int_X d\mu\right)^{\frac{1}{p_1}} = ||f||_{\infty} \mu(X)^{\frac{1}{p_1}}$$

Вот у нас получилась константа, которая обслуживает все функции f. Тогда, во-первых, оператор непрерывен, а во-вторых, это и есть оценка для нормы

$$\Rightarrow A \in \mathcal{B}(L^{\infty}, L^{p_{1}}), ||A|| \leq (\mu(X))^{\frac{1}{p_{1}}}$$
 пусть $p_{2} < +\infty, f \in L^{p_{2}}, \left(\int_{X} |f|^{p_{2}} d\mu\right)^{\frac{1}{p_{2}}} = ||f||_{p_{2}}$
$$||Af||_{p_{1}} = ||f||_{p_{1}} = \left(\int_{X} |f|^{p_{1}} d\mu\right)^{\frac{1}{p_{1}}} \overset{\text{н. Гёльдера}}{\leq} \left[\left(\int_{X} |f|^{p_{2}} d\mu\right)^{\frac{1}{p_{2}}} \left(\int_{X} \mathbb{1}^{q} d\mu\right)^{\frac{1}{q}}\right]^{\frac{1}{p_{1}}} =$$

$$p = \frac{p_{2}}{p_{1}}, \frac{1}{q} = 1 - \frac{1}{p} = 1 - \frac{p_{1}}{p_{2}}$$

$$= \left(\int_{X} |f|^{p_{2}} d\mu\right)^{\frac{1}{p_{2}}} \cdot (\mu(X))^{\left(1 - \frac{p_{1}}{p_{2}}\right) \frac{1}{p_{1}}} = ||f||_{p_{2}} (\mu(X))^{\frac{1}{p_{1}} - \frac{1}{p_{2}}}$$

$$\Rightarrow A \in \mathcal{B}(L^{p_{2}}, L^{p_{1}}), ||A|| \leq (\mu(X))^{\frac{1}{p_{1}} - \frac{1}{p_{2}}}$$

Почти всё готово. Мы оценили норму сверху, и утверждается, что на самом деле имеет место равенство. На какой пробной функции получить неравенство с другой стороны? Наверное, все уже догадались. Раз есть sup, то мы можем подставить какую-то конкретную функцию. $p_2 < +\infty, \chi_X(x) \equiv 1$

$$||A|| = \sup_{f \neq 0} \frac{||Af||_{p_1}}{||f||_{p_2}} \ge \frac{||A(\chi_X)||_{p_1}}{||\chi_X||_{p_2}} = \frac{\left(\int_X \chi_X^{p_1} d\mu\right)^{\frac{1}{p_1}}}{\left(\int_X \chi_X^{p_2} d\mu\right)^{\frac{1}{p_2}}} = \frac{\left(\mu(X)\right)^{\frac{1}{p_1}}}{\mu(X)^{\frac{1}{p_2}}} = \mu(X)^{\frac{1}{p_1} - \frac{1}{p_2}}$$

если $p_2 = \infty, ||\chi_x||_{\infty} = 1 \Rightarrow ||A||_{\mathcal{B}(L^{\infty}, L^{p_1})} \ge \mu(X)^{\frac{1}{p_1}}$

Позже вычислим норму интегрального оператора, который часто встречается в анализе и в матфизике.

Теорема 5.6 (полнота пространства операторов, действующих в банахово пространство). $(X,||\cdot||)$ — нормированное, $(Y,||\cdot||)$ — банахово $\Rightarrow \mathcal{B}(X,Y)$ — банахово.

Доказательство. Тут без хитростей. По определению возьмём фундаментальную последовательность и покажем, что у нее есть предел. Сначала надо добыть оператор, который будет претендентом на

звание предела. $\{A_n\}_{n=1}^{\infty}$ — фундаментальная, $A_n \in \mathcal{B}(X,Y)$. Пусть $\varepsilon > 0 \; \exists \; N \in \mathbb{N} \; (n > N \land m > N) \Rightarrow ||A_n - A_m|| < \varepsilon. \; x \in X, x — фиксирован, <math>\Rightarrow ||A_n x - A_m x|| = ||(A_n - A_m)x|| < \varepsilon \, ||x||$. Тогда $\{A_n x\}_{n=1}^{\infty}$ — фундаментальная в Y, Y — банахово \Rightarrow

$$\exists \lim_{n\to\infty} A_nx \in Y, Ax := \lim_{n\to\infty} A_nx$$
 поточечный предел
$$\lim - \text{линейная} \ \Rightarrow A \in \operatorname{Lin}(X,Y)$$

$$x - \text{фиксирован} \ ||A_nx - A_mx|| < \varepsilon \, ||x|| \, , \text{ пусть } m \to \infty$$

$$\Rightarrow ||A_nx - Ax|| \le \varepsilon \, ||x|| \quad \forall \, x \in X$$

$$\Rightarrow A_n - A \in \mathcal{B}(X,Y), ||A_n - A|| \le \varepsilon \Rightarrow A = (A - A_n) + A_n \Rightarrow A \in \mathcal{B}(X,Y)$$

Поговорим немного о линейных функционалах. Вы только не думайте, что мы покидаем линейые операторы, это всё-таки главный объект изучения функционального анализа.

5.3. Линейные функционалы

Определение 5.7 (линейный функционал). X — линейное пространство над k ($\mathbb R$ или $\mathbb C$). $\mathrm{Lin}(X,k)$ — линейные функционалы на X

Определение 5.8 (сопряжённое пространство). $(X, ||\cdot||), X^* = \mathcal{B}(X, \mathbb{C})$ (или же $X^* = \mathcal{B}(X, \mathbb{R})$) — сопряжённое пространство. X^* — линейные **НЕПРЕРЫВНЫЕ** функционалы.

Про неперывность надо помнить. На экзамене часто спрашивают, что такое сопряжённое пространство, и не могут выпытать непрерывность. Что делают с такими студентами? Выгоняют.

Следствие 5.2.
$$(X, ||\cdot||), f \in X^* \Rightarrow$$

$$||f|| = \sup_{\{||x|| \le 1\}} |f(x)| = \sup_{\{||x|| < 1\}} |f(x)| = \sup_{\{||x|| = 1\}} |f(x)| = \sup_{x \in X, x \ne 0} \frac{|f(x)|}{||x||}$$

Следствие 5.3. $(X, ||\cdot||) \Rightarrow X^* -$ банахово

Г

77

 \mathcal{A} оказательство. \mathbb{R} и \mathbb{C} — полные $\Rightarrow \mathcal{B}(X,\mathbb{C})$ — банахово ($\Rightarrow \mathcal{B}(X,\mathbb{R})$ — банахово).

Пример 5.8. $X = l^p, (1 \le p \le +\infty), i \in \mathbb{N}$ — фиксированное число

$$x \in l^p \Rightarrow x = \{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{C}, f(x) := x_i \Rightarrow f \in X^*, ||f|| = 1$$

$$|f(x)| = |x_i| \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \text{ при } 1 \le p < +\infty \text{ и}$$

$$\le \sup_n ||x_n|| = ||x||_{\infty} \text{ при } p = +\infty$$

$$\Rightarrow f \in \mathcal{B}(X, \mathbb{C}) = X^*, ||f|| \le 1$$

$$||f|| = \sup_{\{||x||=1\}} |f(x)| \ge |f(e_i)| = 1$$

Со временем мы сосчитаем, что такое сопряженное пространство к l^p для конечных p. По секрету, это l^q , где p и q — сопряжены.

Почему всегда рассматривается компакт? Потому что на компакте функция достигает свой максимум, и иначе непонятно, как норму вводить.

Пример 5.9. $C(K) = \{ f : K \to \mathbb{C} \land f \text{ непрерывные } \}, x_0 \in K, K - \text{компакт.}$

 $f \in C(K), G(f) := f(x_0) \Rightarrow G \in X^*, ||G|| = 1$ (функционал значения в точке, подлые англосаксы говорят point evaluation).

$$G \in \text{Lin}(C(K), \mathbb{C})$$

$$f \in C(K), |G(f)| = |f(x_0)| \le \sup_{x \in K} |f(x)| = ||f||_{C(k)} \Rightarrow$$

$$G \in X^*, ||G|| \le 1$$

$$\begin{cases} \chi_K(x) = 1, \chi_K \in C(K), ||\chi_K|| = 1, \chi_K(x_0) = 1 \\ \Rightarrow ||G|| = \sup_{\{||f||=1\}} |G(f)| \ge |G(\chi_K)| = 1 \end{cases} \Rightarrow ||G|| = 1$$

Когда-то мы опишем пространство непрерывных функций, но доказывать, почему оно так выглядит, не будем, ибо это очень сложно, и придётся просто поверить в это описание. Сейчас докажем теорему про норму интегрального оператора в C[a,b]. Мы ей даже когда-то нескоро воспользуемся. **Теорема 5.7.** $C[a,b] = \{f|f: [a,b] \to \mathbb{R}, f \text{ непрерывная } \}$. Ядро интегрального оператора $k(s,t) \in C([a,b] \times [a,b])$, пусть $f \in C[a,b]$.

$$(\mathcal{K}f)(s) := \int_a^b k(s,t)f(t)dt$$
 при $s \in [a,b] \Rightarrow$

$$\mathcal{K} \in \mathcal{B}(C[a,b]), ||\mathcal{K}|| = \max_{a \le s \le b} \int_a^b |k(s,t)| dt$$

Доказательство начнём с важной леммы, помогающий вычислить норму линейного функционала. Когда мы сосчитаем норму линейного функционала, то будет очень нетрудно применить это для вычисления нормы линейного оператора.

Лемма 5.1.
$$\varphi(t) \in C[a,b], \varphi$$
 — фиксирована. $f \in C[a,b], G(f) := \int_a^b f(t)\varphi(t)dt \Rightarrow G \in (C[a,b])^*, ||G|| = \int_a^b |\varphi(t)|dt$.

Доказательство леммы. Оценка сверху совершенно тривиальна. $f \in C[a,b]$

$$|G(f)| = \left| \int_{a}^{b} f(t)\varphi(t)dt \right| \le \int_{a}^{b} |f(t)||\varphi(t)|dt \le \max_{t \in [a,b]} |f(t)| \cdot \int_{a}^{b} |\varphi(t)|dt =$$

$$= ||f||_{\infty} \int_{a}^{b} |\varphi(t)|dt \Rightarrow$$

$$G \in (C[a,b])^{*}, ||G|| \le \int_{a}^{b} |\varphi(t)|dt$$

Теперь оценка ||G|| снизу. Сначала тривиальные замечания. Если $\varphi(t) \ge 0 \ \forall \ t \in [a,b], \ \text{то} \ \chi_{[a,b]}(x) \equiv 1$

$$|G(\chi[a,b])| = \left| \int_a^b \varphi(t)dt \right| = \int_a^b \varphi(t)dt$$

Если $\varphi(t) \leq 0 \, \forall \, t \in [a,b]$ — то же самое.

$$g(t) = \operatorname{sign} \varphi(t) = \begin{cases} 1 & \varphi(t) > 0 \\ -1 & \varphi(t) < 0 \\ 0 & \varphi(t) = 0 \end{cases}$$

 $G(g)=\int_a^b|\varphi(t)|dt,$ но $g\notin C[a,b].$ До сих пор мы всегда находили пробную функцию, на котором достигался sup, а здесь такого элемента

нет. Поэтому будем приближать φ непрерывными функциями с точностью до ε , вот такая идея.

Пусть $\varepsilon > 0, \varphi \in C[a,b] \Rightarrow \varphi$ — равномерно непрерывна на $[a,b] \Rightarrow$

$$\exists \, \delta > 0 \, |s-t| < \delta \Rightarrow |\varphi(t) - \varphi(s)| < \varepsilon \quad a \le s, t \le b$$

 $a = t_0 < t_1 < \ldots < t_n = b, t_k - t_{k-1} < \delta.$

Рассмотрим $\{\Delta_j\}_{j=1}^n$. Δ_j — интервалы $[t_{k-1},t_k]$. Нумерация будет не по порядку, как сперва может показаться, а совершенно другая, и она никак не будет зависеть от расположения на отрезке. Разобьём интервал на 2 сорта. Первый — где функция положительна или отрицательна, то есть не меняет знак. Второй — где меняет знак или обращается в 0. Δ_1,\ldots,Δ_r — те интервалы, на которых $\varphi(t)>0, t\in\Delta_j$ или $\varphi(t)<0, t\in\Delta_j$ $(1\leq j\leq r)$

 $\Delta_{r+1},\ldots,\Delta_n$ — те интервалы, для которых $\exists\,s\in\Delta_j:\varphi(s)=0,n\geq j>r.$

пусть
$$t \in \Delta_j, j > r \Rightarrow \exists \, s \in \Delta_j, \varphi(s) = 0 \Rightarrow$$

$$|\varphi(t)| = |\varphi(t) - \varphi(s)| < \varepsilon \Rightarrow \int_{\Delta_j} |\varphi(t)| dt < \varepsilon |\Delta_j|$$

$$\Rightarrow \int_{\bigcup_{j=r+1}^n \Delta_j} |\varphi(t)| \, dt \le \varepsilon \left(\sum_{j=r+1}^n |\Delta_j|\right) \le \varepsilon (b-a)$$

$$h(t) = \begin{cases} \operatorname{sign} \varphi(t), t \in \Delta_j & 1 \le j \le r \\ \text{линейная на } \Delta_j & j > r \\ \operatorname{если} \left[a, t_1\right] \in \Delta_j, j > r, \text{ то } h(a) = 0 \\ \operatorname{если} \left[t_{n-1}, b\right] \in \Delta_j, j > r, \text{ то } h(b) = 0 \end{cases}$$
 $h \in C[a, b], |h(t)| \le 1$

$$||G|| = \sup_{\{||f|| \le 1\}} |G(f)| \ge |G(h)| = \left| \int_a^b h(t)\varphi(t)dt \right| =$$

$$= \left| \int_{\bigcup_{j=1}^r \Delta_j} h(t)\varphi(t)dt + \int_{\bigcup_{j=r+1}^n \Delta_j} h(t)\varphi(t)dt \right| =$$

$$= \left| \int_{\bigcup_{j=1}^r \Delta_j} |\varphi(t)|dt + \int_{\bigcup_{j=r+1}^n \Delta_j} h(t)\varphi(t)dt \right| \ge$$

$$\ge \int_{\bigcup_{j=1}^r \Delta_j} |\varphi(t)|dt - \int_{\bigcup_{j=r+1}^n \Delta_j} |h(t)||\varphi(t)|dt \ge$$

$$\ge \int_{\bigcup_{j=1}^r \Delta_j} |\varphi(t)|dt - \int_{\bigcup_{j=r+1}^n \Delta_j} |\varphi(t)|dt = \int_a^b |\varphi(t)|dt - 2\int_{\bigcup_{j=r+1}^n \Delta_j} |\varphi(t)|dt \ge$$

$$\ge \int_a^b |\varphi(t)|dt - 2\varepsilon(b-a) \quad \forall \varepsilon > 0$$

$$\Rightarrow ||G|| \ge \int_a^b |\varphi(t)|dt$$

Главной частью доказательства теоремы было доказательство теоремы. Вернёмся к теореме.

Доказательство. Оценим сначала норму оператора сверху. $(\mathcal{K}f)(s) = \int_a^b k(s,t)f(t)dt, f \in C[a,b].$ $M = \max_{a \leq s \leq b} \int_a^b |k(s,t)|dt.$ Мы как раз хотим показать, что норма оператора будет равна M.

$$|(Kf)(s)| \le \int_a^b |k(s,t)||f(t)|dt \le ||f||_{\infty} \int_a^b |k(s,t)|dt \le M ||f||_{\infty}$$
$$||\mathcal{K}f||_{\infty} = \max_s |\mathcal{K}f(s)| \le M \cdot ||f|| \ \forall f \in C[a,b] \Rightarrow \mathcal{K} \in \mathcal{B}(C[a,b])$$

 $||K||_{\mathcal{B}(C[a,b])} \leq M$ Теперь оценим $||\mathcal{K}||$ снизу.

$$g(s) = \int_{a}^{b} |k(s,t)| dt \Rightarrow g \in C[a,b] \Rightarrow$$
$$\exists s_0 \ g(s_0) = \max g(s) \Rightarrow g(s_0) = M$$

применим к произвольной непрерывной функции оператор

$$f \in C[a, b], ||(\mathcal{K}f)(s)||_{\infty} = \max_{a \le s \le b} |\mathcal{K}f(s)| \ge |(\mathcal{K}f)(s_0)| = \left| \int_a^b k(s_0, t)f(t)dt \right| = |G(f)|$$

$\Gamma \Pi ABA$ 5. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ЛИНЕЙНЫХ $\Pi POCTPAHCTBAX$

где
$$\varphi(t) = K(s_0, t), G(f) = \int_a^b k(s_0, t) f(t) dt.$$

$$||\mathcal{K}|| = \sup_{\{||f|| \le 1\}} ||\mathcal{K}(f)|| \ge \sup_{\{||f|| \le 1\}} |G(f)| = ||G||_{(C[a,b])^*} \stackrel{\text{\tiny{nemma}}}{=} \int_a^b |\varphi(t)| dt = M \Rightarrow ||K|| = M$$

От сопряжённых пространств мы не уходим, а наоборот, углубляемся в них.

5.4. Изоморфные линейные пространства

Определение 5.9 (изоморфность пространств). $(X, ||\cdot||), (Y, ||\cdot||)$ — линейно изоморфны, если $\exists A \in \mathcal{B}(X, Y), \exists A^{-1} \in \mathcal{B}(Y, X).$ A — линейный изоморфизм

Замечание 5.1. «Изоморфность» — отношение эквивалентности на множестве нормированных пространств.

Когда можно сказать, что два пространства изоморфны?

Теорема 5.8 (критерий линейного изоморфизма). $(X, ||\cdot||), (Y, ||\cdot||), A \in \operatorname{Lin}(X, Y), A(X) = Y$ (то есть A — сюръекция). A — линейный изоморфизм \Leftrightarrow пусть $0 < c_1 < C_2 < +\infty$ т.ч. $c_1 ||x|| \le ||Ax|| \le C_2 ||x||$, $\forall x \in X$

 $Доказательство. \Rightarrow$

$$A \in \mathcal{B}(X,Y) \Rightarrow ||Ax|| \leq ||A|| \cdot ||X|| \ \forall x \in X, C_2 = ||A||$$
 $\exists A^{-1}\mathcal{B}(Y,X) \Rightarrow ||A^{-1}y|| \leq ||A^{-1}|| ||y|| \ \forall y \in Y$
пусть $x \in X, y = Ax \Rightarrow ||A^{-1}(Ax)|| \leq ||A^{-1}|| \cdot ||Ax|| \Rightarrow \frac{1}{||A^{-1}||} \cdot ||x|| \leq ||Ax|| \quad c_1 = \frac{1}{||A^{-1}||}$

_

 $||Ax|| \leq C_2 \, ||x|| \Rightarrow A \in \mathcal{B}(X,Y)(||A|| \leq C_2)$. Теперь проверим, что A

— инъекция. Без неравенства снизу мы сейчас как раз выведем, что образы различных иксов различны. Пусть $Ax_1 = Ax_2 \Rightarrow A(x_1 - x_2) = 0$

$$0 = ||A(x_1 - x_2)|| \ge c \, ||x_1 - x_2|| \Rightarrow x_1 = x_2 \Rightarrow A - \text{ биекция}$$

$$\stackrel{\text{доказали}}{\Rightarrow} \; \exists \, A^{-1} \in \text{Lin}(Y, X)$$

$$\begin{cases} c_1 \, ||x|| \le ||Ax|| \; \forall \, x \in X \\ \text{пусть } y \in Y, \, x = A^{-1}y \end{cases} \Rightarrow$$

$$c_1 \, \big| \big| A^{-1}y \big| \big| \le ||y|| \Rightarrow \big| \big| A^{-1}y \big| \big| \le \frac{1}{c_1} \, ||y|| \Rightarrow A^{-1} \in \mathcal{B}(Y, X) \, \bigg(\big| \big| A^{-1} \big| \big| \le \frac{1}{c_1} \bigg)$$

Раз нам предстоит потом долгий разговор про обратные операторы, сразу отметим некоторое следствия из доказательства теоремы, чтобы не возвращаться к нему потом.

Следствие 5.4 (из доказательства теоремы).
$$(X, ||\cdot||), (Y, ||\cdot||), A \in \operatorname{Lin}(X, Y), A(X) = Y$$

$$\exists \, A^{-1} \in \mathcal{B}(Y, X) \Rightarrow \exists \, c > 0 : ||Ax|| \geq c \, ||x|| \, \, \forall \, x \in X$$

Доказательство. Следует из доказательства теоремы.

Часто бывает, что на одном и том же пространстве определены две различные нормы. Какие же нормы будут называться эквивалентными?

Определение 5.10. X — линейное пространство, $||\cdot||_1$, $||\cdot||_2$ — две нормы на X. $||\cdot||_1$ эквивалентна $||\cdot||_2$, если

$$\lim_{n \to \infty} ||x_n - x_0||_1 = 0 \Leftrightarrow \lim_{n \to \infty} ||x_n - x_0||_2 = 0$$

По-другому можно сказать, что топологии, которые задают эти нормы, одинаковые: $\Leftrightarrow G \subset X, G$ — открытое в $(X,||\cdot||_1) \Leftrightarrow G$ — открытое в $(X,||\cdot||_2)$

Следствие 5.5. X — линейное, $||\cdot||_1$, $||\cdot||_2$ — нормы на X. $||\cdot||_1$ эквивалентна $||\cdot||_2 \Leftrightarrow \exists \ 0 < c_1 < c_2 \le +\infty$ т.ч.

$$c_1 ||x||_1 \le ||x||_2 \le C_2 ||x||_1$$

хотя в определении не утверждалось, что одну норму можно оценить через другую

Доказательство. $X=(X,||\cdot||_1),Y=(X,||\cdot||_2)$ — как бы 2 разных пространства, но на одном множестве. Рассмотрим оператор Ix=x. Ясно, что $I\in \mathrm{Lin}(X,Y),\,I$ — биекция, $I^{-1}\in\mathrm{Lin}(Y,X)$. Что означает, что $||\cdot||_1$ эквивалентна $||\cdot||_2?\Leftrightarrow I,\,I^{-1}$ непрерывны $\Leftrightarrow I$ — линейный изоморфизм X и Y ткритерий линейного изоморфизма $c_1\,||x||_1\leq \underbrace{||Ix||_2}_{||x||_2}\leq C_2\,||x||_1$

Не очень скоро мы получим обобщение этой теоремы. Окажется, что если пространство банахово в обеих нормах, то только одно из последних неравенств влечёт другое.

Утверждение 5.2. $(X,||\cdot||),(Y,||\cdot||)$ — линейно изоморфны. Пусть X — банахово, тогда Y — банахово.

Доказательство.

$$A: X o Y \quad A \in \mathcal{B}(X,Y) \quad A$$
 — линейный изоморфизм
$$A^{-1}: Y o X \quad A^{-1} \in \mathcal{B}(Y,X)$$
 $\{y_n\}_{n=1}^{\infty}$ — фундаментальная в $Y \quad x_n = A^{-1}y_n$ $||x_n - x_m|| \le \left|\left|A^{-1}\right|\right| \cdot ||y_n - y_m|| \Rightarrow \{x_n\}_{n=1}^{\infty}$ фундаментальная в X

теперь применяем наш, слава богу, непрерывный оператор

$$\Rightarrow \exists \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} Ax_n = Ax_0 \land \lim_{n \to \infty} y_n = Ax_0 \Rightarrow Y$$
 полное

5.5. Конечномерные пространства

Определение 5.11 (Размерность пространства). X — линейное пространство над $\mathbb C$ или $\mathbb R$. Если $\exists \ n$ линейно независимых элементов в X, и $\forall (n+1)$ элементов линейно зависимы, то $\dim X = n$

Определение 5.12. Если $\forall n \in \mathbb{N} \exists n$ линейно незаисимых элементов, то X — **бесконечномерное**

Теорема 5.9. $(X, ||\cdot||), (Y, ||\cdot||)$ — линейные пространства над $\mathbb{C}, \dim X = \dim Y = n.$

 $\Rightarrow X$ линейно изоморфно Y

Доказательство. Поскольку мы обсудили, что изоморфность — отношение эквивалентности, то можно зафиксировать

$$X=l_n^2=\left\{x=(x_1,\dots,x_n),x_j\in\mathbb{C},||X||=\left(\sum_{j=1}^n|x_j|^2
ight)^{rac{1}{2}}
ight\}\{f_j\}_{j=1}^n$$
 — базис в Y $A:l_n^2 o Y,A(e_j)=f_j$

утверждается, что это и будет линейный изоморфизм

$$A\left(\sum_{j=1}^{n} x_{j} e_{j}\right) = \sum_{j=1}^{n} x_{j} f_{j}, A \in \operatorname{Lin}(l_{n}^{2}, Y)$$

$$x \in l_{n}^{2}, x = \sum_{j=1}^{n} x_{j} e_{j}$$

$$||Ax|| = \left|\left|\sum_{j=1}^{n} x_{j} f_{j}\right|\right| \leq \sum_{j=1}^{n} |x_{j}| ||f_{j}|| \stackrel{\text{KBIII}}{\leq} \underbrace{\left(\sum_{j=1}^{n} |x_{j}|^{2}\right)^{\frac{1}{2}}}_{||x||_{l_{n}^{2}}} \underbrace{\left(\sum_{j=1}^{n} ||f_{j}||^{2}\right)^{\frac{1}{2}}}_{:=M}$$

мы оценили норму оператора A

$$\Rightarrow ||Ax||_Y \leq ||x||_{l^2_n} \cdot M \Rightarrow A \in \mathcal{B}(l^2_n,Y), ||A|| \leq M$$

$$g(x):=||Ax|| - \text{функция на } l^2_n \Rightarrow g(x) - \text{непрерывна на } l^2_n$$

Теперь рассмотрим эту функцию не на всём пространстве, а на единичной сфере $S = \{x \in l_n^2, ||x||_2 = 1\}$ — компакт в l_n^2 .

$$x\in S, g(x)>0, g$$
 непрерывная на компакте $S\Rightarrow \exists \,x_0\in S, g(x_0)=\min_{x\in S}g(x), r=g(x_0), r>0$ пусть $x\in l_n^2, x\neq 0$ $\dfrac{x}{||x||}\in S\Rightarrow g\left(\dfrac{x}{||x||}\right)\geq r\Rightarrow$ $\left|\left|A\left(\dfrac{x}{||x||}\right)\right|\right|\geq r\Rightarrow ||Ax||\geq r\,||x||\,\,\,\forall\,x\in l_n^2$ \Rightarrow — линейная изометрия

Следствие 5.6. $(X, ||\cdot||), \dim X = n \in \mathbb{N} \Rightarrow$

- 1. X банахово
- 2. $K \subset X, K$ относительно компактно $\Leftrightarrow K$ ограничено
- 3. $K \subset X, K$ компакт $\Leftrightarrow K$ ограничено и замкнуто

Мы когда-нибудь выясним, что если в пространстве единичный шар — компакт, то это пространство конечномерное.

Доказательство. 1. l_n^2 — полное, X — линейно изоморфно l_n^2 и по утверждению из конца предыдущего параграфа $\Rightarrow l_n^2 X$ банахово

- 2. $A \in \mathcal{B}(l_n^2, X), A^{-1} \in \mathcal{B}(X, l_n^2), A, A^{-1}$ непрерывны
- 3. аналогично 2

Следствие 5.7. $X, \dim X = n, n \in \mathbb{N},$ на X две нормы $||\cdot||_1, ||\cdot||_2 \Rightarrow ||\cdot||_1$ эквивалентна $||\cdot||_2$

 \mathcal{A} оказательство. $(X, ||\cdot||_1)$ линейно изоморфно $(X, ||\cdot||_2)$.

Теорема 5.10.
$$(X, ||\cdot||), (Y, ||\cdot||), \dim X = n, n \in \mathbb{N}$$
 $\Rightarrow \operatorname{Lin}(X, Y) = \mathcal{B}(X, Y)$

Доказательство. Рассмотрим сначала частный случай, потом сведём произвольный случай к частному. Пусть $T \in \text{Lin}(l_n^2, Y)$.

$$e_{j} = (0, \dots, 0, \underbrace{1}_{j}, \dots, 0)$$

$$x \in l_{n}^{2}, x = \{x_{j}\}_{j=1}^{n}, x = \sum_{j=1}^{n} x_{j} e_{j} \Rightarrow Tx = \sum_{j=1}^{n} x_{j} Te_{j}$$

оцениваем норму простейшим образом

$$||Tx|| \le \sum_{j=1}^{n} |x_j| \cdot ||Te_j|| \stackrel{\text{KBIII}}{\le} \left(\sum_{j=1}^{n} |x_j|^2\right)^{\frac{1}{2}} \cdot \underbrace{\left(\sum_{j=1}^{n} ||Te_j||^2\right)^{\frac{1}{2}}}_{M} \le ||x||_2 \cdot M$$

2 множитель не зависит от x, и раз получилась независимая константа, то оператор непрерывен

$$\Rightarrow T \in \mathcal{B}(l_n^2, Y), ||T|| \le M$$

теперь произвольный случай, пусть $U \in \text{Lin}(X,Y), \dim X = n$

$$A-\text{линейный изоморфизм}$$

$$T=UA\in \mathrm{Lin}(l_n^2,Y)\overset{\text{доказали}}{\Rightarrow}T\in \mathcal{B}(l_n^2,Y)$$

$$\Rightarrow U=TA^{-1}\quad A,A^{-1} \text{ непрерывны } \Rightarrow U\in \mathcal{B}(X,Y)$$

ранее мы сформулировали следствие, и теперь скажем пару слов о доказательстве

Следствие 5.8.
$$(X,||\cdot||_1,||\cdot||_2),\dim X=n<+\infty$$

$$\Rightarrow ||\cdot||_1 \text{ эквивалентна } ||\cdot||_2$$

Доказательство. $(X = (X, ||\cdot||_1)), Y = (X, ||\cdot||_2)$

$$\begin{cases} Ix = x \Rightarrow I \in \operatorname{Lin}(X, Y) \stackrel{\text{теорема}}{\Rightarrow} I \in \mathcal{B}(X, Y) \\ I^{-1}x = x \quad I^{-1} : Y \to X \Rightarrow I^{-1} \in \mathcal{B}(Y, X) \end{cases} \Rightarrow ||\cdot||_1 \equiv ||\cdot||_2$$

$$(\Leftrightarrow \exists \ 0 < c_1 < c_2 : c_1 ||x||_1 \le ||x_2|| \le c_2 ||x_1||)$$

Если последовательность сходится в одной норме, то под действием непрерывного оператора сходится и в другой. \Box

Последнее, что хочется сказать в этом параграфеЖ

Теорема 5.11.
$$(X, ||\cdot||), \dim X = n < +\infty \Rightarrow$$

$$X^* = \mathcal{B}(X, \mathbb{C}) \quad \dim X^* = n$$

Доказательство.

$$\mathcal{B}(X,\mathbb{C})=\mathrm{Lin}(X,\mathbb{C})$$
пусть $\{e_j\}_{j=1}^n$ — базис $X,x\in X\Rightarrow x=\sum_{j=1}^n x_je_j$
$$f_j(x)=x_j,f_j:X\to\mathbb{C},f_j\in\mathrm{Lin}(X,\mathbb{C})$$

проверим $\{f_j\}_{j=1}^n$ базис в X^*

$$f \in X^*, x = \sum_{j=1}^n x_j e_j \Rightarrow f(x) = \sum_{j=1}^n x_j f(e_j) = \sum_{j=1}^n \alpha_j x_j, \alpha_j = f(e_j)$$
$$\Rightarrow f(x) = \sum_{j=1}^n \alpha_j f_j(x) \, \forall \, x \in X$$
$$\Rightarrow f = \sum_{j=1}^n \alpha_j f_j$$

88

Проверим, что $\{f_j\}_{j=1}^n$ линейно независимы

пусть
$$\sum_{j=1}^n c_j f_j = \mathbb{O}$$
, то есть $\mathbb{O}(x) = 0 \ \forall x \in X$
$$f_j(e_k) = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases} \Rightarrow \underbrace{\left(\sum_{j=1}^n c_j f_j\right)(e_k)}_{=0} = c_k \Rightarrow c_k = 0, 1, \dots, n$$
 $\Rightarrow \{f_j\}_{j=1}^n - \text{базис в } X^*$

Теперь мы расстаёмся с конечномерными пространствами.

5.6. Конечномерные подпространства

Начнём с некоторого общего определения, которое касается метрических пространств.

Определение 5.13.
$$(X, \rho)$$
 — метрическое, $Y \subset X, x_0 \in X, \rho(x_0, Y) = \inf_{y \in Y} \rho(x_0, y)$. Если $\exists \ y_0 \in Y$ т.ч. $\rho(x_0, Y) = \rho(x_0, y_0)$, то y_0 — элемент наилучшего приближения для x_0 в Y

Возникают вопросы, существует ли он, и если да, то единственный ли? Тривиальное замечание

Замечание 5.2. Если Y компакт, то $\exists y_0 \in Y : f(y) = \rho(x_0, y), f(y)$ непрерывна на Y. $\exists y_0, f(y_0) = \min_{y \in Y} f(y)$

теперь мы имеем дело с конечномерным подпространством

Теорема 5.12. $(X, ||\cdot||)$ — нормированное, $L \subset X$. L — подпространство (в алгебраическом смысле), dim $L = n < +\infty \Rightarrow$

- 1. L замкнутое
- 2. $\forall x_0 \in X \exists y_0 \in L$ элемент наилучшего приближения
- 1. Естественно, о компактности никакой речи быть не может, но конечномерность нам поможет. Во-первых, мы уже отмечали, что все

конечномерные пространства — полные. Ещё мы доказывали линейную изоморфность. Таким образом, L — полное. А ещё почти на первой лекции мы обсуждали, что если есть полное подмножество метрического пространства, то оно автоматически оказывается замкнутым.

2.

пусть
$$x_0 \in X \setminus L$$
 $\rho(x_0, L) = d > 0$
$$\rho(x_0, L) = \inf_{y \in L} ||x_0 - y|| \Rightarrow \exists \{y_n\}_{n=1}^{\infty}, y_n \in L$$

План такой: мы докажем что последовательность ограниченная, значит, она относительно компактная, и из неё можно выбрать сходящуюся подпоследовательность, а так как L замкнуто, то предел будет лежать в L. Для оценки воспользуемся неравенством треугольника

$$d<||x_0-y_n||\leq d+\frac{1}{n}\left\{y_n\right\}_{n=1}^\infty \text{ ограничена в }L$$

$$\dim L<+\infty\Rightarrow \{y_n\}_{n=1}^\infty \text{ относительно компактна }\Rightarrow$$

$$\exists \ \{n_k\}_{k=1}^\infty \ \exists \ \lim_{k\to\infty}y_{n_k}=y_0, L-\text{ замкнуто }\Rightarrow y_0\in L$$

$$d\leq ||x_0-y_{n_k}||\leq d+\frac{1}{n_k}\Rightarrow \text{при }k\to\infty \,||x_0-y_0||=d$$

Замечание 5.3. $\dim L < +\infty$, элемент наименьшего приближения может быть не единственным.

Пример 5.10 (l_2^{∞}) . $||(x,y)|| = \max\{|x|,|y|\}$. $L = \{(x,y): y = kx, k \neq 0\}$. (\cdot) — элемент наилучшего приближения, единственный Если допустить k = 0, то все точки будут лежать на одном и том же расстоянии от (x_1,y_1) . $\forall x \in [x_1-y_1,x_1+y_1], y = 0 \ \forall (\cdot)$ — элемент наилучшего приближения

Пример 5.11 (l_2^1) . $||(x,y)||_1 = |x| + |y|$, $L = \{(x,y): y = kx, k \neq \pm 1\}$, тогда \exists единственный элемент наилучшего приближения. Если же $L = \{y = x\}$, все точки отрезка — элементы наилучшего приближения

Пример 5.12 (l_2^2) . $l_2^2 = \left\{ (x,y) : ||(x,y)||_2 = \sqrt{|x|^2 + |y|^2} \right\} \ \forall L \ \exists \ !$ элемент наилучшего приближения, при 1 аналогично

$\Gamma \Pi ABA$ 5. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ЛИНЕЙНЫХ $\Pi POCTPAHCTBAX$

91

Рис. 5.2: Почти перпендикуляр

Следствие 5.9 (про многочлены). $C_{\mathbb{R}}[a,b] = \{f : [a,b] \to \mathbb{R}\},$

$$\mathcal{P}_n\left\{p(x) = \sum_{k=0}^n a_k x^k, a_k \in \mathbb{R}\right\}$$

$$E_n(f) = \inf_{p \in \mathcal{P}_n} ||f - p||_{\infty}$$
 $\Rightarrow \exists p_0 \text{ т.ч. } E_n(f) = ||f - p_0||_{\infty}, p_0$

носит торжественное название многочлена наилучшего приближения

Доказательство. dim $\mathcal{P}_n = n + 1 \Rightarrow \exists p_0$

Замечание 5.4. $\exists ! \ p_0$, так как $p_0(x) = 0$ только в n точках. В пространстве непрерывных функций единичный шар устроен совершенно кошмарно, хотя норма устроена похожим образом на l^{∞} . В шаре полно отрезков.

5.7. Конечномерность нормированного пространства с компактным единичным шаром

Лемма 5.2 (Ф.Рисс, о почти перпендикуляре). $(X, ||\cdot||), L \subsetneq X, L$ — замкнутое подпространство, $0 < \varepsilon < 1$

$$\Rightarrow \exists x_0, ||x_0|| = 1, \rho(x_0, L) > 1 - \varepsilon$$

На рисунке 5.2 показано, причём тут «почти перпендикуляр». Хочется, чтобы x_0 , был элемент на расстоянии 1, но 1 обеспечить нельзя, но $1-\varepsilon$ — можно.

Доказательство.

$$z \in X \setminus L, d = \rho(z, L) = \inf_{y \in L} ||z - y|| \Rightarrow \exists y_0 \in L : d \le ||z - y_0|| < d(1 + \varepsilon)$$
$$x_0 = \frac{z - y_0}{||z - y_0||}, ||x_0|| = 1$$

оценим норму разности

пусть
$$y \in L$$
 $||x_0 - y|| = \left| \left| \frac{z - y_0}{||z - y_0||} - y \right| \right| = \frac{1}{||z - y_0||} \underbrace{\left| \left| z - \underbrace{y_0 - y \, ||z - y_0||}_{\geq d} \right|}_{\geq d} \right| \ge \frac{d}{d(1 + \varepsilon)} = \frac{1}{1 + \varepsilon}$

$$\forall y \in L \Rightarrow \rho(x_0, L) \ge \frac{1}{1+\varepsilon} > 1 - \varepsilon$$

Замечание 5.5. Если $\exists \ y_0 \in L: ||z-y_0|| = d, \ \text{то} \ x_0 = \frac{z-y_0}{||z-y_0||} \Rightarrow \rho(x_0,L) = 1$

Следствие 5.10 (из замечания). $(X,||\cdot||),L\subsetneq X,L$ — подпространство, $\dim L<+\infty$

$$\Rightarrow \exists x_0 \in X \setminus L, ||x_0|| = 1, \rho(x_0, L) = 1$$

А это следствие нам понадобится несколько раз.

Следствие 5.11. $(X,||\cdot||),\{L_n\}_{n=1}^\infty,\ L_n$ — замкнутые подпространства. $L_n\subsetneq L_{n+1},L_1\neq\varnothing\Rightarrow$

$$\exists \{y_n\}_{n=1}^{\infty}, y_n = L_n, \rho(y_{n+1}, L_n) \ge \frac{1}{2}, ||y_n|| = 1$$

Доказательство. пусть $y_1 \in L_1, ||y_1|| = 1, L_1 \subsetneq L_2 \stackrel{\text{Лемма}}{\Rightarrow} \exists y_2 \in L_2, ||y_2|| = 1. \ \rho(y_2, L_1) \geq \frac{1}{2}$ и так далее по индукции

Теорема 5.13 (Ф.Рисс).
$$(X,||\cdot||),B=\{x:||x||<1\}.$$
 $\overline{B}=\{x:||x||\leq 1\}$

$$\overline{B}$$
 — компакт $\Leftrightarrow \dim X < +\infty$

Доказательство. ← уже доказали

 \Rightarrow

пусть $\dim X = \infty \Rightarrow \exists \{x_n\}_{n=1}^{\infty}$ — линейно независимы

$$L_{n} = \operatorname{Lin} \{x_{j}\}_{j=1}^{n}, \dim L_{n} = n, L_{n} \subsetneq L_{n+1}$$

$$\stackrel{\text{C.t.2}}{\Rightarrow} \exists \{y_{n}\}_{n=1}^{\infty}, ||y_{n}|| = 1, \rho(y_{n}, L_{n-1}) > \frac{1}{2} \Rightarrow$$

Вот так нам удалось установить, что если в пространстве единичный шар — компакт, то пространство конечномерное.

Теорема 5.14 (о продолжении линейного оператора). $(X, ||\cdot||)$ — нормированное, $(Y, ||\cdot||)$ — банахово, $L \subset X, L$ — подпространство в алгебраическом смысле

$$\overline{L} = X, A \in \mathcal{B}(L, Y) \Rightarrow \exists! \ V \in \mathcal{B}(X, Y) : ||V||_{\mathcal{B}(X, Y)} = ||A||_{\mathcal{B}(L, Y)}$$

Доказательство. Сначала мы должны распростарнить оператор, то есть определить, как он будет действовать на произвольный элемент X. Пусть $x \in X$.

$$\exists \ \{x_n\}_{n=1}^\infty, x_n \in L, \lim_{n\to\infty}||x-x_n||=0$$

$$\{Ax_n\}_{n=1}^\infty, Ax_n \in Y, \{Ax_n\}_{n=1}^\infty - \text{фундаментальная в } Y, ||Ax_n-Ax_m|| \underset{n,m\to\infty}{\longrightarrow} 0$$

Раз последовательность имеет предел, то она фундаментальная. Значит мы не зря в условии требовали банаховость. Y — банахово, тогда $\exists \lim_{n \to \infty} Ax_n \in Y$

$$Vx := \lim_{n \to \infty} AX_n$$

надо убедиться, что определение корректно, то есть что предел не зависит от изначально выбранной последовательности:

пусть
$$\{z_n\}_{n=1}^{\infty} \lim_{n \to \infty} z_n = x \Rightarrow \exists \lim_{n \to \infty} Az_n$$

$$z_n \in L \quad ||Ax_n - Az_n|| \le ||A|| \underbrace{||x_n - z_n||}_{\substack{n \to \infty}} \Rightarrow \lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Az_n$$

корректность проверена

пусть
$$x \in L$$
, пусть $x_n = x \, \forall \, n \in \mathbb{N} \Rightarrow Vx = \lim_{n \to \infty} Ax_n = Ax \Rightarrow V|_L = A$ пусть $\lim_{n \to \infty} x_n = x \Rightarrow Vx = \lim_{n \to \infty} Ax_n \Rightarrow$ $\lim_{n \to \infty} ||x_n|| = ||x|| \quad ||Vx|| \le \lim_{n \to \infty} ||A|| \cdot ||x_n|| = ||A|| \, ||x||$ $\Rightarrow ||V|| \le ||A||$ $||V|| = \sup_{\{x \in X: ||x|| = 1\}} ||Vx|| \ge \sup_{\{x \in L: ||x|| = 1\}} ||Vx|| = ||A||$ $\Rightarrow ||V|| = ||A||$

Следующая конструкция, которая ранее упоминалась, это фактор-пространства.

5.8. Факторпространство

Определение 5.14 (класс эквивалентности). X — линейное пространство над \mathbb{C}, Y — подпространство. $X/Y = \{\overline{x}\}_{x \in X}$

$$x \sim z$$
 если $x - z \in Y$
 $\overline{x} = \{z : z = x + h, h \in Y\}$
 $\overline{x} + \overline{y} = \overline{x + y}$
 $\lambda \in \mathbb{C}, \lambda \overline{x} = \overline{(\lambda x)}$
 $\varphi : X \Rightarrow X/Y \quad \varphi(x) = \overline{x}$

 φ — линейное (канонический гомоморфизм).

Если пространство будет не замкнутым, то будут ненулевые элементы с нулевой нормой (те, что лежат в замыкании).

Определение 5.15. $(X,||\cdot||)$ — нормированное, Y — замкнутое подпространство. $X/Y = \{\overline{x}\}_{x \in X},$

$$||\overline{x}|| = \inf_{z \in \overline{x}} ||z|| = \inf_{y \in Y} ||x - y|| = \rho(x, Y)$$

Теорема 5.15. $(X, ||\cdot||), Y$ — замкнутое подпространство \Rightarrow

- 1. $||\overline{x}||$ в X/Y удовлетворяет аксиомам нормы
- 2. $\varphi: X \to X/Y, \varphi(x) = \overline{x} \Rightarrow \varphi \in \mathcal{B}(X, X/Y), ||\varphi|| = 1$
- 3. Если X банахово, то X/Y банахово

1.

$$\begin{split} \lambda \in \mathbb{C}, \lambda \neq 0, x \in X \\ \big| \big| \overline{\lambda x} \big| \big| &= \inf_{z \in \overline{x}} ||\lambda z|| = |\lambda| \inf_{z \in \overline{x}} ||z|| = |\lambda| \cdot ||\overline{x}|| \\ \text{пусть } \overline{x}, \overline{u} \in X/Y, z \in \overline{x}, v \in \overline{y} \\ \big| |\overline{x} + \overline{u}| \big| \leq ||z + v|| \leq ||z|| + ||v|| \quad \forall \, z \in \overline{x}, \forall \, v \in \overline{y} \\ \Rightarrow ||\overline{x} + \overline{u}| \big| \leq \inf_{z \in \overline{x}} ||z|| + \inf_{v \in \overline{u}} ||v|| = ||\overline{x}|| + ||\overline{u}|| \end{split}$$

теперь проверяем в 0, тут как раз нужна замкнутость

$$||\overline{x}|| = 0$$
 $||\overline{x}|| = \rho(x, Y) = 0 \Rightarrow x \in Y \Rightarrow \overline{x} = Y = \overline{0}$

2. $||\varphi(x)|| = ||\overline{x}|| = \inf_{z \in \overline{x}} ||z|| \le ||x|| \Rightarrow \varphi \in \mathcal{B}(X, X/Y), ||\varphi|| \le 1$. По лемме о почти перпендикуляре, пусть $\varepsilon > 0 \ \exists \ x_0, ||x_0|| = 1$

$$\rho(x_0, Y) > 1 - \varepsilon \Rightarrow ||\varphi(x_0)|| = \rho(x_0, Y) > 1 - \varepsilon$$

$$\Rightarrow ||\varphi|| = \sup_{\{x:||x||=1\}} ||\varphi(x)|| > 1 - \varepsilon \,\forall \, \varepsilon > 0 \Rightarrow ||\varphi|| = 1$$

$\Gamma \Pi ABA$ 5. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ЛИНЕЙНЫХ ПРОСТРАНСТВАХ

96

3. Воспользуемся критерием полноты: если сходится ряд из норм, то сходится и сам ряд. X/Y — полное?

пусть
$$\{x_n\}_{n=1}^{\infty} \sum_{n=1}^{\infty} ||\overline{x_n}|| < +\infty \left(\stackrel{?}{\Rightarrow} \sum_{n=1}^{\infty} \overline{x_n} \text{сходится в } X/Y\right)$$

$$||\overline{x_n}|| = \inf_{z \in \overline{x_n}} ||z|| \Rightarrow \exists \, z_n \in \overline{x_n} : ||z_n|| \le 2 \, ||\overline{x_n}||$$

$$\Rightarrow \sum_{n=1}^{\infty} ||z_n|| < +\infty X - \text{банахово, и по критерию полноты} \Rightarrow$$

$$\exists \, S = \sum_{n=1}^{\infty} z_n, s \in X$$

рассмотрим частичные суммы

$$\begin{cases} S_n = \sum_{k=1}^n z_k, \lim_{n \to \infty} s_n = s \\ \varphi(s_n) = \sum_{k=1}^n \varphi(z_k) = \sum_{k=1}^n \overline{x_k} \end{cases} \varphi \text{ непрерывна} \Rightarrow \\ \lim_{n \to \infty} \varphi(s_n) = \varphi(s) \in X/Y \\ \Rightarrow \exists \lim_{n \to \infty} \sum_{k=1}^n \overline{x_k} = \sum_{k=1}^\infty \overline{x_k} \Rightarrow X/Y - \text{банахово} \end{cases}$$

Часть III Гильбертовы пространства

Глава 6

Гильбертовы пространства

6.1. Введение

Кто-то говорил, что матобесам в курсе ФА надо читать только гильбертовы пространства. Но неизвестно, как жить без трех китов функционального анализа, которые нас ждут дальше :(. А вы бы хотели 32 лекции про гильбертовы пространства?

Определение 6.1. H — линейное пространство над \mathbb{C} . Скалярное произведение $H \times H \to \mathbb{C}, \ x,y \in H, (x,y)$ — скалярное произведение удовлетворяет следующим аксиомам

- 1. $(\lambda x, y) = \lambda(x, y), \lambda \in \mathbb{C}, x, y \in H$
- 2. (x, y + z) = (x, y) + (x, z)
- 3. $(y,x) = \overline{(x,y)}$ (комплексное сопряжение)
- 4. $(x,x) > 0, (x,x) = 0 \Leftrightarrow x = 0$

если H над \mathbb{R} , то 3 выглядит как (y, x) = (x, y)

Снабдим H нормой: $||x||:=\sqrt{(x,x)}$ — норма, порожденная скалярным произведением. (H,||x||) называется предгильбертовым пространством.

Если $(H, ||\cdot||)$ полное, то H — гильбертово.

Рис. 6.1: Тождество параллелограмма

- 2. $||x|| = \sqrt{(x,x)}$ удовлетворяет аксиомам нормы
- 3. $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$ (тождество параллеллограмма)
- 4. непрерывность (x,y), то есть $\lim_{n\to\infty} x_n = x, \lim_{n\to\infty} y_n = y \Rightarrow \lim_{n\to\infty} (x_n,y_n) = (x,y)$

2.

$$||x|| = 0 \Leftrightarrow (x, x) = 0 \Leftrightarrow x = 0$$
$$||\lambda x||^2 = (\lambda x, \lambda x) = \lambda \cdot \overline{\lambda}(x, x) = |\lambda|^2 ||x||^2$$

$$||x+y||^2 = (x+y, x+y) = ||x||^2 + (x,y) + (y,x) + ||y||^2 =$$

$$= ||x||^2 + 2\operatorname{Re}(x,y) + ||y||^2 \le ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 =$$

$$= (||x|| + ||y||)^2$$

Кто не верит в тождество параллелограмма, может проверить сам4.

$$\begin{aligned} |(x,y) - (x_n, y_n)| &\leq |(x,y) - (x,y_n)| + |(x,y_n) - (x_n, y_n)| = \\ &= |(x,y-y_n)| + |(x-x_n, y_n)| \overset{\text{K-B}}{\leq} \\ &\leq ||x|| \cdot \underbrace{||y-y_n||}_{\to 0} + \underbrace{||x-x_n||}_{\to 0} \underbrace{||y_n||}_{n \to \infty} \underset{n \to \infty}{\longrightarrow} 0 \end{aligned}$$

$$\lim_{n \to \infty} ||y_n|| = ||y|| \Rightarrow \exists M : ||y_n|| \le M$$

Пример 6.1.

$$l_n^2=\left\{x:x=\left\{x_1,\ldots,x_n
ight\},x_j\in\mathbb{C}
ight\},\left|\left|x
ight|
ight|_2=\sqrt{\sum_{k=1}^n\left|x_j
ight|^2}$$
 $(x,y)=\sum_{j=1}^nx_j\overline{y_j},l_n^2$ — гильбертово

 $y=(y_1,\ldots,y_n),y_j\in\mathbb{C},\overline{y_j}$ — комплексное сопряжение

Пример 6.2
$$(l^2)$$
. $l^2=\left\{x:x=\{x_j\}_{j=1}^\infty,||x||=\sqrt{\sum_{j=1}^\infty|x_j|^2}<+\infty\right\}.$ $(x,y)=\sum_{j=1}^\infty x_j\overline{y_j}.\ l^2$ — гильбертово

Главый пример

Пример 6.3. (X, U, μ) — пространство с мерой. $L^2(X, \mu)$,

$$||f|| = \left(\int_X |f(x)|^2 d\mu\right)^{\frac{1}{2}} < +\infty$$

 $(f,g)=\int_X f(x)\cdot \overline{g(x)}d\mu, L^2(X,\mu)$ — полное, \Rightarrow гильбертово

Пример 6.4 (пространство Харди). H^2 — пространство Харди

$$H^{2} = \left\{ f(z) = \sum_{n=0}^{+\infty} a_{n} z^{n}, ||f||^{2} = \sum_{n=0}^{+\infty} |a_{n}|^{2} < +\infty \right\}$$

 ${\cal H}^2$ линейно изометрически изоморфно $l^2.$

$$(f,g)=\sum_{n=0}^{\infty}a_n\overline{b_n},g(z)=\sum_{n=0}^{+\infty}b_nz^n\Rightarrow H^2$$
 гильбертово

Отметим, где f будет аналитической

$$\sum_{n=0}^{+\infty} |a_n|^2 < +\infty \Rightarrow \lim_{n \to \infty} |a_n| = 0 \Rightarrow \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} \le 1$$
$$\Rightarrow R \ge 1$$

где R — радиус круга сходимости ряда $\sum_{n=0}^{+\infty} a_n z^n$

$$R=rac{1}{\varlimsup\limits_{n o\infty}\sqrt[n]{|a_n|}},f\in H^2\Rightarrow f$$
 аналитическая в $\left\{z:|z|<1\right\}$

Теперь примеры предгильбертовых пространств

Пример 6.5. F — финитные последовательности.

 $(x,y) \in F, (x,y) = \sum_{j=1}^{\infty} x_j \overline{y_j}$ (конечная сумма $F \subset l^2, ||x|| = \sqrt{\sum_{j=1}^N |x_j|^2}$), $x_{N+k} = 0$ $k \in \mathbb{N}$. F — предгильбертово (не полное)

Пример 6.6. $C[a,b] = \{f : [a,b] \to \mathbb{C}\}$

$$||f|| = \left(\int_{a}^{b} |f(x)|^{2} dx\right)^{\frac{1}{2}}, (f,g) = \int_{a}^{b} f(x)\overline{g(x)} dx$$

не полное ⇒ предгильбертово

Пример 6.7. $\mathcal{P} = \{p(x) = \sum_{k=0}^n a_k x^k, a_k \in \mathbb{C}, n \geq 0\}.$ $q(x) = \sum_{k=0}^n b_k x^k, (p,q) = \sum_{k=0}^n a_k \overline{b_k}$ предгильбертово. \mathcal{P} — линейно изометрически изоморфно $F: p(x) \to (a_0, a_1, \dots, a_n) \in F$. Пополнение p по этой норме до гильбертова пространства есть l^2 .

Пример 6.8. $\mathcal{P}, \mathcal{P} \subset C[a,b].$ $(p,q) = \int_a^b p(x)\overline{q(x)}dx$ — предгильбертово, пополнением \mathcal{P} будет $L^2(a,b)$ по мере Лебега.

Определение 6.2. H — гильбертово,

- 1. $x, y \in H, (x, y) = 0$, то $x \perp y$ (x ортогонален y)
- 2. $M \subset H, M$ подмножество. Ортогональным дополнением к нему будем называть

$$M^{\perp} = \{ y \in H : (y, x) = 0 \, \forall \, x \in M \}$$

Свойство 6.2. $M \subset H$ — гильбертово $\Rightarrow M^{\perp}$ — замкнутое подпространство

Доказательство.

$$y,z \in M^{\perp}, \lambda \in \mathbb{C}, \text{ пусть } x \in M$$
$$(\lambda y + z, x) = \lambda \underbrace{(y,x)}_{=0} + \underbrace{(z,x)}_{=0} \Rightarrow \lambda y + z \in M^{\perp}$$
пусть $\{y_n\}_{n=1}^{\infty}, y_n \in M^{\perp}, \lim_{n \to \infty} y_n = y_0, \text{ пусть } x \in M$
$$\lim_{n \to \infty} \underbrace{(y_n,x)}_{=0} = (y_0,x) \Rightarrow (y_0,x) = 0 \Rightarrow y_0 \in M^{\perp}$$

В гильбертовом пространстве всегда существует элемент наилучшего приближения, он ещё и единственный!

Теорема 6.1 (о существовании элемента наилучшего приближения в гильбертовом пространстве). H — гильбертово, $M \subset H, M$ — замкнутое подпространство, $\forall x \in H \Rightarrow \exists ! z \in M : ||x-z|| = \min_{h \in M} ||x-h|| = \rho(x, M)$

Для произвольного метрического пространства мы доказывали, что если есть конечномерное подпространство, то элемент существует. Доказательство начнём с простой леммы.

Лемма 6.1. H — гильбертово, замкнутое подпространство $M \subset H.$ $x \in H \setminus M, \ u, v \in M, \ d = \inf_{h \in M} ||x - h||$

$$\Rightarrow ||u - v||^2 \le 2(||u - x||^2 + ||v - x||^2) - 4d^2$$

Доказательство. Применим тождество параллелограмма к (u-x), (v-x)

$$||u - v||^2 + ||u + v - 2x||^2 = 2(||u - x||^2 + ||v - x||^2)$$

тут 3 слагаемых из 4 участвуютв формулировке леммы, нужно оценить только второе слагаемое.

$$||2x - u - v|| = 2\left|\left|x - \frac{u + v}{2}\right|\right| \ge 2d$$

$$\frac{u - v}{2} \in M \Rightarrow ||u - v||^2 \le 2(||u - x||^2 + ||v - x||^2) - 4d^2$$

Доказательство. Обозначим $d = \rho(x, M)$. Мы ещё не знаем, достигается ли расстояние, но знаем, что $\exists \{y_n\}_{n=1}^{\infty}, y_n \in M. \lim_{n \to \infty} ||x - y_n|| = d.$ План такой: мы докажем, что последовательность фундаментальная, значит, предел лежит в M и всё доказано.

воспользуемся леммой и устремим в получившемся неравенстве n,m к ∞

$$\begin{aligned} \left|\left|y_{n}-y_{m}\right|\right|^{2} &\stackrel{\text{_{Ј} DEMMA}}{\leq} 2(\underbrace{\left|\left|x-y_{n}\right|\right|^{2}}_{d^{2}} + \underbrace{\left|\left|x-y_{m}\right|\right|^{2}}_{d^{2}}) - 4d^{2} \underset{n,m\to\infty}{\longrightarrow} 0 \\ \Rightarrow \left\{y_{n}\right\}_{n=1}^{\infty} - \text{фундаментальная, } H - \text{гильбертово} \Rightarrow \\ \exists \lim_{n\to\infty} y_{n} = z, z \in M, \text{ т.к. } M \text{ замкнуто } \Rightarrow \\ d = \lim_{n\to\infty} \left|\left|x-y_{n}\right|\right| = \left|\left|x-z\right|\right| \end{aligned}$$

теперь проверим единственность

пусть
$$||x - z|| = d, ||x - u|| = d$$
 $z, u \in M$

воспользуемся ещё раз леммой

$$\Rightarrow ||z - u||^2 \le 2(\underbrace{||x - z||^2}_{=d^2} + \underbrace{||x - u||^2}_{=d^2}) - 4d^2 = 0 \Rightarrow z = u$$

Теорема 6.2 (о проекции на подпространство). H — гильбертово, $M \subset H$, M — замкнутое подпространство

$$\forall x \in X \exists !z, w : x = z + w, z \in M, w \in M^{\perp}$$

Этот элемент z как раз будет ближайшим элементом, который появился в предыдущей теореме.

Доказательство.

$$d := \rho(x, M) \quad \exists z \in M \quad ||x - z|| = d \quad w := x - z$$

проверим, что $w\perp M$; будем пользоваться тем, что для любой точки расстояние до M больше или равно d

пусть
$$u \in M, u \neq 0 \ \forall t \in \mathbb{R} \ z + tu \in M$$

$$d^2 \leq ||x - (z + tu)||^2 = ||w - tu||^2 = (w - tu, w - tu) = \underbrace{||w||^2}_{=d^2} - t(u, w) - t(w, u) + t^2 ||u||^2 \Rightarrow$$

так как 2 и 3 слагамое комплексно сопряжённые

$$t \cdot 2\operatorname{Re}(u, w) \le t^2 ||u^2||$$

неравенство верно для любого вещественного t

пусть
$$t>0\Rightarrow 2\operatorname{Re}(u,w)\leq t\left|\left|u\right|\right|^2\ \forall\ t>0\Rightarrow \operatorname{Re}(u,w)\leq 0$$
 пусть $t<0\Rightarrow 2\operatorname{Re}(u,w)\geq t\left|\left|u\right|\right|^2\ \forall\ t<0\Rightarrow \operatorname{Re}(u,w)\geq 0$
$$\text{аналогично}\ \forall\ t\in\mathbb{R}\ d^2\leq \left|\left|x-(z+itu)\right|\right|^2\Rightarrow \operatorname{Im}(u,w)=0$$

$$\Rightarrow (u,w)=0,\ \text{ то есть } w\perp M\Rightarrow w\in M^\perp$$

осталось проверить единственность

пусть
$$x = z + w, x = z_1 + w_1$$
 $z, z_1 \in M, w, w_1 \in M^{\perp}$

$$\Rightarrow u = \underbrace{z - z_1}_{\in M} = \underbrace{w_1 - w}_{\in M^{\perp}} \Rightarrow u \perp \Rightarrow (u, u) = 0$$

$$\Rightarrow u = 0 \Rightarrow z = z_1, w = w_1$$

Определение 6.3. H — гильбертово, X,Y — замкнутые подпространства. $H = X \oplus Y$. H — ортогональная сумма подпространств X и Y, если

- 1. $\forall h \in H \exists x \in X, y \in Y : h = x + y$
- 2. $\forall x \in X, y \in Y (x, y) = 0$

Замечание 6.1.

X,Y — подпространства в $H,X\perp Y,$ то есть $\forall x\in X, \forall y\in Y \ (x,y)=0\Rightarrow X\cap Y=\{0\}.$

Доказательство.
$$u \in X \cap Y \Rightarrow u \perp u \Rightarrow u = 0$$

Замечание 6.2. Если $H = X \oplus Y$, то $\forall x \in H \ \exists \ ! x \in X, \ \exists \ ! y \in Y \ \text{т.ч.}$ h = x + y

Доказательство. Пусть
$$h = x + y, h = x_1 + y_1 x, x_1 \in X, y, y_1 \in Y \Rightarrow \underbrace{x - x_1}_{\in X} = \underbrace{y_1 - y}_{\in Y} \stackrel{\text{Зам.1}}{\Rightarrow} x = x_1, y \in y_1$$

Следствие 6.1. 1. M — замкнутое подпространство \Rightarrow $H = M \oplus M^{\perp}$

- 2. M замкнутое подпрстранство $\Rightarrow (M^{\perp})^{\perp} = M$
- 3. Если $H=X\oplus Y,\ X,Y$ замкнутые $\Rightarrow Y=X^{\perp}$

Определение 6.4 (оператор ортогонального проектирования). H — гильбертово, M — замкнутое подпространство. Знаем, что $\forall x \in H \; \exists \; ! z \in M, w \in M^{\perp} : h = z + w$

$$P_M(h) := z$$

 P_{M} — оператор ортогонального проектирования на M.

Хоть в определении об этом нигде не сказано, но хорошо помнить, что $||h-z||=\min_{y\in M}||h-y||$. На экзамене часто пристают с вопросом, откуда же взять этот z. $w=P_{M^{\perp}}(h)$.

Теорема 6.3 (критерий принадлежности оператора множеству ортогональных проекторов). Теорема будет состоять из 2 частей. Первая полегче, в ней опишем простые свойства ортогонального проектора. Вторая посложнее, и в ней будет собственно критерий.

- 1. M замкнутое подпространство, $P := P_M \Rightarrow$
 - a) $P \in \mathcal{B}(H)$
 - b) $P^2 = P$
 - с) $(Px,y) = (x,Py), \ \forall \, x,y \in H$ (по секрету, это самосопряжённость)
- 2. пусть оператор P удовлетворяет свойствам 1-3 $\Rightarrow M := P(H), M$ замкнутое, $P = P_M$

1 часть. 1. Сначала проверим, что $P_M \in \text{Lin}(H, M)$

$$h \in H \Rightarrow \exists ! z \in M, w \in M^{\perp} h = z + w$$

утверждается, что P(h) = z

$$\alpha \in \mathbb{C} \Rightarrow \alpha h = \alpha z + \alpha w \quad \alpha z \in M, \alpha w \in M^{\perp}$$

по единственности разложения $\alpha z \Rightarrow$

$$P(\alpha h) = \alpha z$$
 пусть $h_1 \in H \Rightarrow h_1 \in z_1 + w_1 \ z_1 \in M, w_1 \in M^{\perp}$ $P(h_1) = z_1 \Rightarrow h + h_1 = \underbrace{(z + z_1) + (w + w_1)}_{\text{разложение единственно}} z + z_1 \in M, w + w_1 \in M^{\perp}$ $\Rightarrow P(h + h_1) = z + z_1 = P(h) + P(h_1)$

Теперь проверим непрерывность P

$$h = z + w, \ z \perp w \Rightarrow (h,h) = (z,z) + (w,w)$$

$$||h||^2 = ||z^2|| + ||w||^2$$
 $z = P(h) \Rightarrow ||P(h)||^2 \le ||h||^2 \Rightarrow P \in \mathcal{B}(H)$
$$||P|| \le 1$$
 если $M \ne \{0\}, \ \exists \ x \in M, x \ne 0 \Rightarrow Px = x \Rightarrow ||P|| \ge \frac{||Px||}{||x||} = 1$
$$\Rightarrow ||P|| = 1$$

 $2. \ x \in M \Rightarrow Px = x,$

пусть
$$y = Px \Rightarrow y \in M \Rightarrow \underbrace{Py}_{=y=Px} = P(Px) \Rightarrow P^2x = Px$$

3.

$$x, y \in H, P = P_m, Q = P_{M^{\perp}}$$

 $x = Px + Qx, y = Py + Qy$
 $(Px, y) = (Px, Py + Qy) = (Px, Py)$
 $(x, Py) = (Px + Qx, Py) = (Px, Py)$

2 часть. $p \in \mathcal{B}(H), M := P(H), M$ — подпространство в алгебраическом смысле. План такой: проверим, что P совпадает с ортогоналным проектором на M и что он отправляет ортогональное дополнение в 0. Проверим, что если $x \in M$, то Px = x.

пусть $x\in M\Rightarrow \exists y\in H: Py=x\Rightarrow P(Py)=Px$ по свойству ортогонального оператора $P^2=P\Rightarrow P(Py)=Py=x$ $\Rightarrow x=Px$

Проверим теперь замкнутость M

пусть
$$\{x_n\}_{n=1}^{\infty}$$
, $x_n \in M$, $\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} Px_n = Px_0$
 $Px_n = x_n \Rightarrow \lim_{n \to \infty} x_n = Px_0 \Rightarrow x_0 = Px_0 \Rightarrow x_0 \in P(H) = M$

осталось убедиться, что оператор P отправляет в 0 ортогональное дополнение

пусть
$$y\in M^\perp$$

$$||Py||^2=(Py,Py)\stackrel{\text{самосопряжённость}}{=}(y,P(Py))=(y,Py)$$
т.к. $y\in M^\perp,Py\in M=0$
$$\Rightarrow Py=0$$

Мы знаем, что оператор совпадает на M, а ортогональное дополнение отправляет в 0

$$h \in H \Rightarrow h = z + w, z \in M, w \in M^{\perp}$$

 $\Rightarrow P(z + w) = z$
 $P_m(z + w) = z$
 $\Rightarrow P = P_m$

Следствие 6.2 (ортогональный оператор на конечномерное подпространство). H — гильбертово, подпространство $M \subset H, \dim M = n, n \in \mathbb{N}$

$$\{e_j\}_{j=1}^n$$
 — ортонормированный базис
$$(e_j,e_k) = \begin{cases} 0 & j \neq k \\ 1 & j=k \end{cases}, x \in H, P_M(x) = \sum_{j=1}^n (x,e_j)e_j$$

Доказательство. $s_n = \sum_{j=1}^n (x, e_j) e_j, \ s_n \in M, w := x - s_n.$ Проверим, что $w \in M^{\perp}$. Для этого проверим, что он ортогонален всем e_i

$$(s_n, e_k) = \left(\sum_{j=1}^n (x, e_j)e_j, e_k\right) = (x, e_k)$$

$$\Rightarrow (x - s_n, e_k) = 0 \Rightarrow (w, e_k) = 0 \,\forall \, k, 1 \le k \le n$$

$$\Rightarrow w \perp M, \Rightarrow w \in M^{\perp} \Rightarrow P_M(x) = s_n$$

Следствие 6.3 (критерий полноты системы элементов в гильбертовом пространстве). H — гильбертово, $\{x_{\alpha}\}_{{\alpha}\in A}$, $x_{\alpha}\in H$ (A — множество индексов)

$$\{x_{\alpha}\}_{\alpha\in A}$$
 — полное $\Leftrightarrow (y\perp x_{\alpha}\,\forall\,\alpha\in A\Rightarrow y=0)$

Доказательство.

$$\{x_{\alpha}\}_{\alpha \in A}$$
 — полное $\Rightarrow \overline{\mathcal{L}\{x_{\alpha}\}_{\alpha \in A}} = H$
$$L = \overline{\mathcal{L}\{x_{\alpha}\}}$$
 $L = H \Leftrightarrow L^{\perp} = \{0\} \Leftrightarrow (y \perp x_{\alpha} \, \forall \, \alpha \in A \Rightarrow y = 0)$

Несмотря на то, что доказательство тривиальное, этот критерий полноты очень полезен.

Упражнения, которое когда-то давали в качестве задачи на 5 на экзамене

Утверждение 6.1. $l^2, L = \{x = \{x_n\}_{n=1}^{\infty} \in l^2 : \sum_{n=1}^{\infty} x_n = 0\}.$ Нужно доказать, что L — плотно в l^2

Утверждение 6.2. $z \in \mathbb{C}, |z| < 1, x_z = \{1, z, z^2, \dots, z^n, \dots\} \in l^2.$ $\{z_n\}_{n=1}^{\infty}, |z_n| < 1, \lim_{n \to \infty} z_n$ Нужно доказать, что $\{x_{z_n}\}_{n=1}^{\infty} -$ плотное семейство в l^2

Утверждение 6.3. Пусть $\lim_{n\to\infty}z_n=a, |a|<1.$ Нужно доказать, что $\{x_{z_n}\}_{n=1}^\infty$ — плотное семейство в l^2

То, что |a| < 1 — очень важно. При равенстве утверждения неверны.

Определение 6.5 (коэффициент Фурье). H — гильбертово, $\{e_n\}_{n=1}^{\infty}$ — ортонормированная система

$$(e_j,e_k)=0$$
 при $j\neq k$ $(e_k,e_k)=1,||e_k||=1$ $M_n=\{\alpha e_n|\alpha\in\mathbb{C}\}$, $\dim M_n=1,P_{M_n}$ $x\in H,P_{M_n}(x)=(x,e_n)e_n$ (x,e_n) — коэффициент Фурье $x\sim\sum_{n=1}^{\infty}(x,e_n)e_n$ ряд Фурье по системе $\{e_n\}_{n=1}^{\infty}$

Определение 6.6.

$$\{e_n\}_{n=1}^{\infty}$$
 — ортогональная система (ОС)
$$(e_j,e_k)=0, j\neq k, e_n\neq 0$$
 $M_n=\{\alpha e_n:\alpha\in\mathbb{C}\}$ $P_{M_n}(x)=\left(x,\frac{e_n}{||e_n||}\right), \frac{e_n}{||e_n||}=\frac{(x,e_n)}{||e_n||^2}e_n$ коэффициент Фурье по системе $\{e_n\}$
$$x\sim\sum_{n=1}^{\infty}\frac{||(x,e_n)||}{||e_n||^2}e_n$$

Когда мы пишем $\{e_n\}_{n=1}^{\infty}$, мы подразумеваем бесконечномерность пространства. Если же вы возьмёте книжку Колмогорова, то гильбертово пространство в ней по определению бесконечномерное. Однако И.В. решил убрать это условие в своём курсе, Ввдь есть теория конечномерных банаховых пространств, где переходят к пределу и получают утверждения про бесконечномерные пространства. В общем: если вам попадётся кровожадный помощник на экзамене и вы скажете, что гильбертово пространство бесконечномерное, он спросит: «С какод стати?». Если не скажете — то он скажет, что вы даже не знаете определение, и вы в любом случае получите 2.

Следствие 6.4 (неравенство Бесселя). H — гильбертово, $\{e_n\}_{n=1}^{\infty}$ — О.Н.С, $x \in H \Rightarrow$

$$\sum_{n=1}^{\infty} |(x, e_n)|^2 \le ||x||^2$$

Доказательство.

$$h = \sum_{j=1}^{n} \alpha_{j} e_{j}, \alpha_{j} \in \mathbb{C} \Rightarrow$$

$$||h||^{2} = \left(\sum_{j=1}^{n} \alpha_{j} e_{j}, \sum_{k=1}^{n} \alpha_{k} e_{k}\right) = \sum_{k=1}^{n} |\alpha_{k}|^{2}$$

$$L_{n} = \mathcal{L}\left\{e_{j}\right\}_{j=1}^{n}, P_{L_{n}}(x) = \sum_{j=1}^{n} (x, e_{j}) e_{j}$$

$$||P_{L_{n}}|| \leq 1 \Rightarrow ||P_{L_{n}}(x)||^{2} \leq ||x||^{2} \Rightarrow$$

$$\sum_{j=1}^{n} |(x, e_{j})| \leq ||x||^{2} \, \forall \, n \in \mathbb{N} \Rightarrow$$

$$\sum_{j=1}^{\infty} |(x, e_{j})|^{2} \leq ||x||^{2}$$

Сейчас выясним, когда неравенство превращается в равенство, то есть когда можно узнать норму, вычислив эту сумму.

Теорема 6.4 (о разложении элемента гильбертова пространства в ряд Фурье). H — гильбертово, $x \in H, \{e_n\}_{n=1}^{\infty}$ — О.Н.С., тогда следующие условия равносильны

1.
$$x \in \overline{\mathcal{L}\left\{e_n\right\}_{n=1}^{\infty}}$$

2.
$$x = \sum_{n=1}^{\infty} (x, e_n) e_n$$

3.
$$||x||^2 = \sum_{n=1}^{\infty} \left| (x, e_n) \right|^2$$
 (равенство Парсеваля)

Доказательство. $1 \Rightarrow 2$

По виду первое утверждение куда более слабое, чем второе. В первом

можно приблизить элемент сколько угодно хорошо какими-то элементами. Во втором же есть сходимость к какому-то ряду.

$$x \in H, x \in \overline{\mathcal{L}\left\{e_{n}\right\}_{n=1}^{\infty}}, \text{ пусть } \varepsilon > 0$$

$$\exists y = \sum_{k=1}^{n} \alpha_{k} e_{k}, ||x - y|| < \varepsilon$$

$$L_{n} = \mathcal{L}\left\{e_{k}\right\}_{k=1}^{n} \Rightarrow \rho(x, L_{n}) < \varepsilon \quad P_{L_{n}}(x) = \sum_{j=1}^{n} (x, e_{j}) e_{j}$$

$$\Rightarrow ||x - s_{n}|| \leq ||x - y|| < \varepsilon \quad L_{n} \subset L_{n+1} \Rightarrow$$

$$||x - S_{n+1}|| \leq ||x - S_{n}|| < \varepsilon \Rightarrow$$

$$\forall m \geq n \ ||x - S_{m}|| < \varepsilon \Rightarrow \lim_{n \to \infty} S_{n} = x$$

 $2\Rightarrow 1$ очевидно: $x=\lim_{n\to\infty}s_n\Rightarrow x\in\overline{\mathcal{L}\left\{e_j\right\}_{j=1}^\infty}$ $2\Rightarrow 3$ $s_n=\sum_{k=1}^n(x,e_k)e_k,\ x=\lim_{n\to\infty}s_n,$ и по непрерывности скалярного произведения $\Rightarrow (x,x)=\lim_{n\to\infty}(s_n,s_n)\Leftrightarrow$

$$||x||^2 = \lim_{n \to \infty} \sum_{k=1}^n |(x, e_k)|^2 = \sum_{k=1}^\infty |(x, e_k)|^2$$

 $3 \Rightarrow 2$

$$\sigma_{n} = \sum_{k=1}^{n} |(x, e_{k})|^{2}, \lim_{n \to \infty} \sigma_{n} = ||x||^{2}$$

$$w_{n} \coloneqq x - s_{n}, \ w_{n} \perp s_{n} \Rightarrow ||x||^{2} = \underbrace{||s_{n}||^{2}}_{n \to \infty} + ||w_{n}||^{2}$$

$$||s_{n}||^{2} = \sigma_{n} \Rightarrow \lim_{n \to \infty} ||w_{n}||^{2} = 0 \Rightarrow \lim_{n \to \infty} ||x - s_{n}|| = 0$$

Следствие 6.5. H — гильбертово, $\{e_n\}_{n=1}^{\infty}$ — полная О.Н.С \Rightarrow

$$\forall x \in H \ x = \sum_{k=1}^{\infty} (x, e_k) e_k, ||x||^2 = \sum_{k=1}^{\infty} |(x, e_k)|^2$$

Доказывать нечего, принадлежность линейной оболочке означает полноту.

Определение 6.7. $(X,||\cdot||)$ — нормированное пространство, $\{e_n\}_{n=1}^{\infty}$ — базис (Шаудера), если

$$\forall x \in X \exists ! \{\alpha_n\}_{n=1}^{\infty}, \ \alpha_n \in \mathbb{C} : x = \sum_{n=1}^{\infty} \alpha_n e_n$$

Пример 6.9. $l^p, 1 \le p < +\infty, e_n = (0, 0, \dots, 0, \underbrace{1}_n, 0, \dots)$

$$x \in l^p, x = \{x_n\}_{n=1}^{\infty} = \sum_{n=1}^{\infty} x_n e_n, ||x - s_n||_{l^p} \underset{n \to \infty}{\longrightarrow} 0$$
$$c_0, x \in c_0, \lim_{n \to \infty} x_n = 0 \quad x = \sum_{n=1}^{\infty} x_n e_n \quad ||x - s_n||_{\infty} \underset{n \to \infty}{\longrightarrow} 0$$

Упражнение: $c = \left\{ x = \{x_n\}_{n=1}^{\infty}, \; \exists \lim_{n \to \infty} x_n = x_0 \right\} \subset l^{\infty}$. Что тут будет базисом?

Замечание 6.3. Если в $(X, ||\cdot||)$ есть базис, то X — сепарабельно.

Замечание 6.4 (Проблема Банаха, проблема базиса). Проблема Банаха, проблема базиса

$$X$$
 — нормированное сепарабельное $\stackrel{?}{\Rightarrow}$ \exists базис

Собирались товарищи во Львове в кафе и выводили эти проблемы. Обычно математики любят сидеть в тиишине, нот вот Банах любил сидеть в кафе. Вероятно, они там не только чаи гоняли. Пер Энфло в 1973 году дал ответ на этот вопрос: нет. Он предоставил множество контр-примеров. Да и вообще он знаменит своими контр-примерами. Сейчас в Америке где-то работает.

Следствие 6.6.
$$H$$
 — гильбертово, $\{e_n\}_{n=1}^{\infty}$ — полная О.Н.С. $\Rightarrow \{e_n\}_{n=1}^{\infty}$ — базис в H

Доказательство.

$$x \in H \Rightarrow x = \sum_{n=1}^{\infty} (x, e_n)e_n$$

проверяем единственность: пусть $x=\sum_{n=1}^{\infty}\alpha_ne_n, \alpha_n\in\mathbb{C}$

$$\sigma_n = \sum_{k=1}^n \alpha_k e_k \lim_{n \to \infty} \sigma_n = x \Rightarrow \lim_{n \to \infty} (\sigma_n, e_k) = (x, e_k)$$

пусть
$$n > k \Rightarrow (\sigma_n, e_k) = \alpha_k \Rightarrow \alpha_k = (x, e_k)$$

Теорема 6.5 (о существовании О.Н.Б. в сепарабельном гильбертовом пространстве). H — сепарабельное гильбертово пространство \Rightarrow

$$\exists \{e_n\}_{n=1}^{\infty} - \text{O.H.B.}$$

По секрету, если убрать сепарабельность, то базис будет несчётный. Какова размерность, такой и базис. Обычно, когда говорят о гильбертовом пространстве, подразумевают гильбертово сепарабельное.

Доказательство. Будем действовать в 2 этапа. Сепарабельность означает, что есть счётное всюду плотное множество, возьмём его: $\{x_n\}_{n=1}^{\infty}$. 1 этап: по индукции выберем из нгео линейно независимую систему так, чтобы замыкание их линейной оболочки совпадало с замыканием линейной оболочки x_n . Оно будет полным и линейно-независимым Потом применим к нему ортогонализацию Грама-Шмидта (а он ученик Гильберта, кстати)

$$x_1=x_2=\ldots=x_{n_1-1}=0, x_{n_1}
eq 0 \quad z_1=x_{n_1}$$
 $L_1=\mathcal{L}(z_1)=\{\alpha z_1|\alpha\in\mathbb{C}\}$
 $x_{n_1+1},\ldots,x_{n_2-1}\in L_1\;x_{n_2}\notin L_1,z_2=x_{n_2},L_2=\mathcal{L}(z_1,z_2)$
пусть выбрали z_1,\ldots,z_m
 $z_m=x_{n_m},x_{n_m+1},\ldots,x_{n_{m+1}-1}\in L_m,x_{n_{m+1}}\notin L_m$
 $z_{m+1}=x_{n_{m+1}}$

как мы их выбираем?

$$\{z_j\}_{j=1}^{\infty}$$
 — линейно независимы $\mathcal{L}(z_j)_{j=1}^m = \mathcal{L}\left\{x_k\right\}_{k=1}^{n_m} \, orall \, m \Rightarrow \mathcal{L}\left\{z_j\right\}_{j=1}^{\infty} = \mathcal{L}\left\{x_n\right\}_{n=1}^{\infty} \ \Rightarrow H = \overline{\mathcal{L}\left\{z_n\right\}_{n=1}^{\infty}} \Rightarrow \{z_n\}_{n=1}^{\infty} \ - \text{полная}$

Процесс ортогонализации Грама-Шмидта:

$$e_1 = \frac{z_1}{||z_1||}$$
, пусть e_1, \dots, e_{n-1} — выбрали $\mathcal{L}\left\{e_j\right\}_{j=1}^{n-1} = \mathcal{L}\left\{z_j\right\}_{j=1}^{n-1}$ $L_n = \mathcal{L}\left\{z_j\right\}_{j=1}^n$, $L_n \subsetneq L_{n+1}$ $e_n = \frac{z_n - P_{L_{n-1}}(z_n)}{\left|\left|z_n - P_{L_{n-1}}(z_n)\right|\right|} = \frac{z_n - \sum_{j=1}^{n-1}(z_n, e_j)e_j}{\left|\left|z_n - P_{L_{n-1}}(z_n)\right|\right|} \Rightarrow \{e_n\}_{n=1}^{\infty}$ — полная О.Н.С. $\Rightarrow \{e_n\}_{n=1}^{\infty}$ — базис (Шаудера)

Теперь докажем, что все сепарабельные линейные пространства похожи друг на друга как две капли воды: не просто линейно изоморфны, а линейно изометрически изоморфно. Для конечномерных тоже верно, нужно только рассматривать пространства одинаковой размерности.

Теорема. Все сепарабельные бесконечномерные гильбертовы пространства линейно изометрически изоморфны друг другу

Доказательство. H — гильбертово сепарабельное, $\dim H = \infty$. Мы обсуждали, что линейный изоморфизм — отношение эквивалентности, отношение изометричности — тоже. Поэтому линейный изометрический изоморфизм есть отношение эквивалентности. Поэтому вместо того, чтобы брать H_1, H_2 , возьмём H и l^2 и покажем, что они линейно изометрически изоморфны.

пусть
$$\{f_n\}_{n=1}^{\infty}$$
 — О.Н.Б. в H $\varphi: H \to l^2 \quad x \in H \quad x \mapsto \{(x, f_n)\}_{n=1}^{\infty}$ $||x||^2 = \sum_{n=1}^{\infty} |(x, f_n)|^2 \Rightarrow ||x||_H = ||\varphi(x)||_{l^2}$ $\varphi \in \text{Lin}(H, l^2)$ очевидно $\Rightarrow \varphi \in \mathcal{B}(H, l^2)$ φ — инъективен

проверим, что φ — сюръекция

пусть
$$y=\{y_n\}_{n=1}^\infty\in l^2$$

$$s_n=\sum_{k=1}^ny_kf_k,s_n\in H,\ \text{пусть m}>\text{n}$$

$$||s_m-s_n||^2=\sum_{k=n+1}^m|y_k|^2\underset{n,m\to 0}{\longrightarrow}0\Rightarrow\{s_n\}\ -\text{фундаментальная}$$

$$\Rightarrow\ \exists\ \lim_{n\to\infty}s_n=s,s=\sum_{k=1}^\infty y_kf_k\Rightarrow\varphi(s)=y$$

Замечание 6.5. Пусть $m \in \mathbb{N}, H$ — гильбертово пространство, $\dim H = m \Rightarrow H$ — линейно изометрически изоморфно l_m^2 .

6.2. Пространство, сопряжённое к гильбертову

Опишем все непрерывные функционалы в гильбертовом пространстве ${\cal H}.$

Теорема (Ф.Рисс, общий вид линейного непрерывного функционала в гильбертовом пространстве). H — гильбертово. Опишем набор линейных функционалов: покажем, что он непрерывный. Вторая часть будет утверждать, что других нет.

1. $y \in H, y$ — фиксирован. Рассмотрим отображение

$$f_y: H \to \mathbb{C} \quad x \mapsto (x, y) \, \forall \, x \in H$$

 $\Rightarrow f_y \in H^*, ||f_y||_{H^*} = ||y||_H$

$$2. \ f \in H^* \Rightarrow \ \exists \, !y \in H : f = f_y$$

1 часть.

 $f_y \in \operatorname{Lin}(H,\mathbb{C})$ — очевидно из свойств скалярного произведения

$$|f_y(x)| = |(x,y)| \stackrel{\text{K-B}}{\leq} ||x|| \cdot ||y|| \ \forall x \in H$$

 $\Rightarrow f_y \in H^*, ||f_y||_{H^*} \leq ||y||_H$

проведём тривиальное отбрасывание тривиальных случаев

$$y = 0 \Rightarrow f_y = 0 \quad ||f_y|| = 0$$
пусть $y \neq 0$ $\quad ||f_y|| = \sup_{x \in H, x \neq 0} \frac{|f_y(x)|}{||x||} \geq \frac{|f_y(y)|}{||y||} = \frac{(y,y)}{||y||} = ||y||$
$$\Rightarrow ||f_y||_{H^*} = ||y||_H$$