Valuation Field

wu

2022年6月13日

目录

1	环与理想															1							
	1.1	介绍																				•	1
	1.2	分式	化																				2
	1.3	多项	式环																				2
2	2 局部环													3									

1 环与理想

1.1 介绍

Definition 1.1. 称 A 为 **局部环**,如果 A 只有一个极大理想 I,称 k = A/I 为 A 的 **剩余域**(residue field)

Proposition 1.2. 1. 设 A 为环, $I \subsetneq A$ 为理想,若每个 $x \in A \setminus I$ 均是单位元则 A 是局部环,I 是极大理想

2. 若 A 为环, $I\subseteq A$ 为极大理想,若 $\forall a\in I$,有 1+a 均是单位元,则 A 是局部环

1.2 分式化

Definition 1.3. 设 A 是一个整环,令 $A^{\times} = A \setminus \{0\}$,在 $A \times A^{\times}$ 上定义关系 ~ 为

$$(a,s) \sim (b,t) \Leftrightarrow at - bs = 0$$

Definition 1.4. 称 $S \subseteq A$ 为 乘法子集,如果 $1 \in S$ 且 $a, b \in S \Rightarrow ab \in S$

Definition 1.5. 设 $S \subseteq A$ 是乘法子集,定义 $A \times S$ 上的等价关系 \sim 为

$$(a,s) \sim (b,t) \Leftrightarrow \exists u \in S(u(at-bs)=0)$$

将 (a,s) 的等价类记作 $\frac{a}{s}$, 定义

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}, \quad \frac{a}{s} \frac{b}{t} = \frac{ab}{st}$$

则 $A \times S / \sim$ 是一个环,记作 $S^{-1}A$

Remark. • $\forall x \in A$, $\frac{xa}{xs} = \frac{a}{s}$

- 若S有零因子,则 $S^{-1}A=0$ 平凡
- $A \rightarrow S^{-1}A, a \mapsto \frac{a}{1}$ 是同态
- 若 A 是整环, $S = A^{\times}$,则 $S^{-1} = \operatorname{Frac}(A)$

Example 1.1. 若 \mathfrak{p} 是素理想, $S = A \setminus \mathfrak{p}$ 是乘法子集

- $\bullet \ \ \diamondsuit A_{\mathfrak{p}} = S^{-1}A$
- 令 $\mathfrak{m} = \{\frac{a}{s} \mid a \in \mathfrak{p}, s \notin \mathfrak{p}\} = pA_{\mathfrak{p}} = \mathfrak{p}S^{-1}$,则 $A_{\mathfrak{p}}$ 是局部环, \mathfrak{m} 是 $A_{\mathfrak{p}}$ 的极大理想

1.3 多项式环

设 A 是一个环,则多项式环 A[X] 的元素都形如

$$\sum_{i=0}^{n} a_i x^i, \quad a_i \in A, i \in \mathbb{N}$$

Definition 1.6. 设 A 是环, $a \in A$ 不可约如果 $a \neq 0$ 不是单位元且 $\forall b, c \in A (a = bc \Rightarrow) b$ 或 c 为单位元

一个整环 A 是 **唯一因子分解环**,如果 $\forall a \in A$,存在不可约元 $b_1, \ldots, b_n \in A$ 使得 $a = b_1 \cdots_n$ 并且若存在不可约元 c_1, \ldots, c_m 使得 $a = c_1 \ldots c_m$ 则 m = n,则 $\forall i < n \exists j < n (b_i = u_{ij}c_j)$,其中 u_{ij} 是单位元

Proposition 1.7. 若 A 是唯一因子分解环,则 A[X] 也是

Corollary 1.8. 若 k 是域,则 $k[X_1,...,X_n]$ 是唯一因子分解环

Corollary 1.9. k 是域, $f \in k[X_1, ..., X_n]$, 则 (f) 是素理想 $\Leftrightarrow f$ 不可约

证明. ⇒: $k[X_1, ..., X_n]/(f)$ 是整环,如果 f 可约,则 f = gh,其中 $g, h \in k[X_1, ..., X_n]$ 且不是单位元,于是 g+(f), h+(f) 非零,而 (g+(f))(h+(f)) = 0+(f),矛盾

 \Leftarrow : 对于任意 $g,h,p\in k[X_1,\ldots,X_n]$,若 gh=fp,因为 $k[X_1,\ldots,X_n]$ 是 唯一因子分解环,于是 f 整除 g 或者 f 整除 h

2 局部环

一个环是局部环当且仅当所有非单位元构成一个理想。等价地,一个环 是局部环当且仅当所有非单位元构成一个理想。

在环的语言 $\mathcal{L}_{ring} = \{+, \times, 0, 1\}$ 中局部环可以公理为

- 1. R是环。
- 2. 所有的非单位元构成一个集合 \mathfrak{m} 是理想,即 \mathfrak{m} 关于 "+" 封闭,关于 "×" 吸收。

但是非单位元关于"×"总是吸收的,故而(2)可以改为

2. 所有非单位元关于"+"封闭,即 m 是一个群。

Remark. • 0 ∈ \mathbb{R} 出解析函数的函数芽的环 A 是局部环

● 一个函数 f 在 $0 \in \mathbb{R}$ 处解析 \Leftrightarrow 存在开邻域 $U \ni 0$ 使得 f 在 U 上是个幂级数,即 $f \upharpoonright_{U} = \sum_{n=0}^{\infty} a_n x^n$,其中 $a_n \in \mathbb{R}$ 。

- 显然, $\sum a_n x^n \sim \sum b_n x^n \Leftrightarrow \forall n(a_n=b_n)$,故而 $A=\{f\mid f\ |\ F\ |$
- $\mathfrak{m}=xA=\{xf\mid f\in A\}$ 是唯一的极大理想,其中极大是因为 $A/\mathfrak{m}\cong\mathbb{R}$ 。

Example 2.1. 设 R 是一个环,称 $\sum_{n=0}^{\infty} r_n x^n \ (r_n \in R)$ 的元素为 R 上的形式 幂级数,令 R[[x]] 为 R 上所有形式幂级数构成的集合,定义

- 1. $\sum r_n x^n + \sum s_n x^n = \sum (r_n + s_n) x^n$
- 2. $\sum r_n x^n \sum s_n x^n = \sum_n (\sum_{i+j=n} r_i s_j) x^n$ 则 $(R[[x]], +, \times, 0_R, 1_R)$ 是一个环。

Definition 2.1. 设 R 是一个环,称 R[[x]] 为 R 的 形式幂级数环,若 $g = \sum r_n x^n \in R[[x]]$,则 g 的 度数记作 $\deg(g)$,定义为

$$\deg(g) = \min(n \in \mathbb{N} \mid r_n \neq 0)$$

定义 $deg(0) = \infty$ 。(因此 $deg(g) \ge 0$)

Lemma 2.2. 假设R

1. 若 $f \in R[[x]]$, 且 $\deg(f) = n$, 则

$$f=x^n(\sum r_k x^k)$$

其中 $r_0 \neq 0$,即 $f = x^n g$ 其中 $\deg(g) = 0$

- 2. 若 $f,g \in R[[x]]$,则 $\deg(fg) = \deg(f) + \deg(g)$
- 3. 若 $f=\sum r_n x^n$, $g=\sum s_n x^n$, 则 $fg=1\Rightarrow r_0 s_0=1$
- 4. 若 $f = \sum r_n x^n$, 则 f 是单位 $\Rightarrow r_0$ 是单位 $(r_0 \neq 0)$
- 证明. 1. 由定义,若 $f = \sum s_k x^k \perp \deg(f) = n$,则 $s_0 = \dots = s_{n-1} = 0$ 且 $s_n \neq 0$,因此 $f = x^n (\sum_{k=n}^{\infty} s_k x^k)$,对任意 $i \in \mathbb{N}$,令 $r_i = s_{i+n}$,则 $f = x^n (\sum r_k x^k)$,其中 $r_0 \neq 0$ 。

- 2. 假设 $\deg(f) = n$, $\deg(g) = m$, 则由(1), $f = x^n(\sum r_k x^k)$, $g = x^m(\sum s_k x^k)$, 其中 $r_0, s_0 \neq 0$, 因此 $fg = x^{n+m} \sum_{n=0}^{\infty} (\sum_{i+j=n} r_i s_j) x^n$, 因为 $r_0, s_0 \neq 0$, R 是整环,因此 $r_0 s_0 \neq 0$,因此 $\deg(fg) = n + m = \deg(f) + \deg(g)$ 。
- 3. 由定义, $fg=\sum_{n=0}^{\infty}(\sum_{i+j=n}r_is_j)x^n=1$, 因此 $r_0s_0=1$
- 4. 如果 f 是单位,则存在 $g \in R[[x]]$ 使得 fg = 1,由 (3), r_0 是单位。

Proposition 2.3. 若 R 是局部环,则 R[[x]] 也是局部环。

证明. • 只需验证非单位元关于加法封闭。

- 设 $f \in R[[x]]$ 是单位元,则 $f = r_0 + g$,其中 r_0 是R的单位, $\deg(g) \ge 1$ 。
- 令一方面,若 $f=r_0+g$ 且 $r_0\in R$ 是单位, $\deg(g)\geq 1$,取 $s_0\in R$ 使 得 $s_0r_0=1_R$,则 $s_0f=1+s_0g$,令 $h=-s_0g$ 。

Claim: $h + h^2 + h^3 + \cdots \in R[[x]]$

证明. 设 $h = \sum s_k x^k$,其中 $s_0 = 0$,令 $g = \sum_{n=1}^{\infty} h^n = \sum r_k x^k$,于是 $r_0 \in R$,若 $r_0, \ldots, r_n \in R$,则 $r_{n+1} = s_{n+1} + \sum_{i=1}^{n-1} s_i r_{n-i} \in R$,因此对于任意 $k \in \mathbb{N}$, $r_k \in R$,因此 $g \in R[[x]]$ 。

- 考虑等式 $(1-h)(1+h+h^2+...)=1$,则 $s_0f(1+h+h^2+...)=1$,故 f 是单位,因此
- $f \in R[[x]]$ 是单位 $\Leftrightarrow f = r_0 + g$,其中 r_0 是单位且 $\deg(g) \ge 1$ 。
- $f \in R[[x]]$ 不是单位 \Leftrightarrow $\deg(f) \ge 1$ 或 f = r + g,其中 r 不是单位且 $\deg(g) \ge 1$ 。
- f 不是单位 $\Leftrightarrow f \in \mathfrak{m}_0 + xR[[x]] = \{r+g \mid r \in \mathfrak{m}_0, g \in xR[x]\}$, 其中 \mathfrak{m}_0 是 R 的极大理想。
- 显然 $\mathfrak{m}_0 + xR[[x]]$ 是"+"封闭的,故 R[[x]] 是局部环。

Corollary 2.4. 若 R 是局部环, \mathfrak{m}_0 为 R 的极大理想, 则

1. R[[x]] 是局部环, 其极大理想为

$$\mathfrak{m}_0 + (x)$$

2. 若 k 是域,则 k[[x]] 中的理想排成一个降链

$$I_0=\mathfrak{m}_0+(x)\supseteq I_1=(x)\supseteq\cdots\supseteq I_n=(x^n)\supseteq\ldots$$

证明. 1. 已证。

2. 设 $J \neq k[[x]]$ 的理想,令 $n = \min\{\deg(f) \mid f \in J\}$,若 $n = \infty$,则 J = (0)。

若 $n < \infty$ 且 $f = x^n g \in J$ 其中 $\deg(g) = 0$,由于 g 的首项是单位,因此 g 是单位,令 $h \in R[[x]]$ 使得 hg = 1,则 $x^n = hf = hgx^n \in J$,因此 $(x^n) \subseteq J$,又由 n 的定义, $J \subseteq (x^n)$,所以 $J = (x^n)$ 。

Corollary 2.5. 若 k 是域,则 k[[x]] 是局部环,其极大理想为 (x)=xk[[x]],剩余域为 k。

Corollary 2.6. 定义 $k[[X_1,\ldots,X_{n+1}]]=k[[X_1,\ldots,X_n]][[X_{n+1}]]$,则 $k[[X_1,\ldots,X_{n+1}]]$ 为局部环,其极大理想 m 为 (X_1,\ldots,X_{n+1}) ,剩余域为 k。

Example 2.2. $\Diamond p \in \mathbb{Z}$ 是一个素数,

1. $\mathbb{Z}/p\mathbb{Z}$ 是一个域,这是因为若 0 < r < p,则 (r,p) = 1,故存在 m,n 使得

$$mr + np = 1 \Rightarrow mr \equiv_p 1$$

故 ℤ/pℤ 是一个局部环

2. 对每个 $n \in \mathbb{N}^+$, $\mathbb{Z}/p^n\mathbb{Z}$ 是局部环

- \mathbb{Z} 中包含 (p^n) 的理想与 $\mathbb{Z}/p^n\mathbb{Z}$ 中的理想——对应
- \mathbb{Z} 中的理想均形如 (k)
- $(p^n) \subseteq (k) \Leftrightarrow k \mid p^n \Rightarrow k = p^m$, $\sharp \vdash m \leq n$
- 故 $\mathbb{Z}/p^n\mathbb{Z}$ 中的理想为

$$p^{n}\mathbb{Z}/p^{n}\mathbb{Z} = (0) \subseteq p^{n-1}\mathbb{Z}/p^{n}\mathbb{Z} \subseteq \cdots \subseteq p\mathbb{Z}/p^{n}\mathbb{Z}$$

- 故 $p\mathbb{Z}/p^n\mathbb{Z}$ 为 $\mathbb{Z}/p^n\mathbb{Z}$ 的唯一极大理想,显然 $\mathbb{Z}/p^n\mathbb{Z}$ 中有 p^n 个元素。
- $\mathbb{Z}/p^n\mathbb{Z}$ 的元素可唯一表示为

$$a_0 + a_1 p + \dots + a_{n-1} p^{n-1}$$

其中 $a_i \in \{0, \dots, p-1\}$ 。

3. 若 m > n, 则 $\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ 和 $\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ 诱导了

• $\forall m > n$, $\Diamond \pi_{mn}$ 为 $\mathbb{Z}/(p^m)$ 到 $\mathbb{Z}/(p^n)$ 的自然同态,即

$$\pi_{mn}(a_0+a_1p+\cdots+a_{m-1}p^{m-1})=a_0+\cdots+a_{n-1}p^{n-1}$$

- $\bullet \ \diamondsuit \ \mathbb{Z}^* = \textstyle \prod_{n=1}^\infty \mathbb{Z}/(p^n) = \{(x_1,x_2,\dots) \mid x_n \in \mathbb{Z}/(p^n)\}\,,$
- 将 x_n 看作 $a_0+\cdots+a_{n-1}p^{n-1}$ 或序列 (a_0,\ldots,a_{n-1})
- 定义 $\mathbb{Z}_p \subseteq \mathbb{Z}^*$ 为

$$\{(x_1, x_2, \dots,) \mid \pi_{mn}(x_m) = x_n, m > n\}$$

- 将 $(x_1, x_2, ...)$ 中的每个 x_n 看作 $a_0 + \cdots + a_{n-1} p^{n-1}$,则 $(x_1, x_2, ...) \in \mathbb{Z}_n \Leftrightarrow \forall m > n, x_m \in \mathbb{Z}_n$ 的延长
- 故而 $(x_1,x_2,\dots)\in\mathbb{Z}_p$ 唯一对应一个幂级数 $a_0+a_1p+a_2p^2+\dots$

● 定义 Z* 中的 + 为

$$(x_1,x_2,\dots)+(y_1,y_2,\dots)=(x_1+y_1,x_2+y_2,\dots)$$

● 定义 Z* 中的 "×" 为

$$(x_1, x_2, \dots) \cdot (y_1, y_2, \dots) = (x_1 y_1, x_2 y_2, \dots)$$

- 定义零为(0,0,...,), 幺为(1,1,...), 则 ℤ* 为环。
- 由于每个 π_{mn} 是同态,故 \mathbb{Z}_p 对"+"与"×"封闭:对任意 $(x_1,x_2,\dots),(y_1,y_2,\dots)\in \mathbb{Z}_p$,对任意 m>n,因为 π_{mn} 是同态,有 $\pi_{mn}(x_m+y_m)=\pi_{mn}(x_m)+\pi_{mn}(y_m)=x_n+y_n$, $\pi_{mn}(x_m\cdot y_m)=\pi_{mn}(x_m)\cdot \pi_{mn}(y_m)=x_n\cdot y_n$,故 $(x_1,x_2,\dots)+(y_1,y_2,\dots),(x_1,x_2,\dots)\cdot (y_1,y_2,\dots)\in \mathbb{Z}_p\circ$
- \mathbb{Z}_p 也称为 $\mathbb{Z}/(p^n)$ 的逆极限,即 $\mathbb{Z}_p = \lim_{r \to \infty} \mathbb{Z}/(p^n)$

Remark. 设 $x=(x_1,x_2,\dots)\in\mathbb{Z}_p$,则 x 可以记作 $a_0+a_1p+a_2p^2+\dots$,其中每个 $a_i\in\{0,\dots,p-1\}$,因此 $x_1=a_0$, $x_2=a_0+a_1p$,…, $x_n=\sum_{k=0}^{n-1}a_kp^k$ 。设 $y=(y_1,y_2,\dots)\in\mathbb{Z}_p$,设它可写作 $b_0+b_1p+\dots$,令 $z=x+y=(x_1+y_1,x_2+y_2,\dots)$,将 z 写作 $\sum_{k=0}^{\infty}c_kp^k$,则

$$z_n = x_n + y_n = (\sum_{k=0}^{n-1} a_k p^k + \sum_{k=0}^{n-1} b_k p^k) (\mod p^k)$$

即 z_n 是 $x_n + y_n$ 的 p-进制展开的前 n 项。

同理若 z=xy,则 z_n 是 x_ny_n 的 p-进制展开的前 n 项。故 \mathbb{Z}_p 中的运算是"p-进制"运算。

Lemma 2.7. *label:6 若 A, B 是局部环,则 f: A \to B 是满同态,则 a \in A 是单位 \Leftrightarrow f(a) \in B 是单位*

证明. \bullet 令 m 是 B 的极大理想,

• 则 $\bar{f}: A/f^{-1}(\mathfrak{m}) \to B/\mathfrak{m}$ 是同构,

- 而 B/\mathfrak{m} 是域, 故 $A/f^{-1}(\mathfrak{m})$ 是域, 故 $f^{-1}(\mathfrak{m})$ 是极大理想,
- 故 $a \in A$ 是单位 $\Leftrightarrow a \notin f^{-1}(\mathfrak{m}) \Leftrightarrow f(a) \notin \mathfrak{m}$ 是 B 的单位。

Proposition 2.8. $1. \mathbb{Z}_p$ 是局部环

2. ℤ_p 的理想排成降链

$$p\mathbb{Z}_p \supseteq p^2\mathbb{Z}_p \supseteq \dots$$

3. $\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z}$

Claim: x 是单位 $\Leftrightarrow a_0 \neq 0$

证明. ⇐:

- 故存在 $b_0 \in \mathbb{Z}/p\mathbb{Z}$ 使得 $a_0b_0 \equiv 1 \mod p$ 。
- 由于 π_{21} 是同态,而 $a_0 = \pi_{21}(a_0 + a_1 p)$ 是单位,由引理**??**, $a_0 + a_1 p \in \mathbb{Z}/p^2 \mathbb{Z}$ 也是单位,
- 同理, $\forall b_1 \in \{0, \dots, p-1\}$, $b_0 + b_1 p \in \mathbb{Z}/p^2 \mathbb{Z}$ 是单位,
- $\diamondsuit c_0 + c_1 p \in \mathbb{Z}/p^2 \mathbb{Z}$ 使得

$$(a_0 + a_1 p)(c_0 + c_1 p) = 1 \in \mathbb{Z}/p^2 \mathbb{Z}$$

- $\bullet \ \ \text{ } \ \, \text{ } \ \,$
- 故 $a_0c_0-a_0b_0\equiv 0\mod p$,因此 $c_0\equiv b_0\mod p$,所以 $c_0=b_0$ 。
- 一般地,设 $b_0+b_1x+\cdots+b_{n-1}x^{n-1}\in \mathbb{Z}/(p^n)$ 使得 $(a_0+\cdots+a_{n-1}x^{n-1})(b_0+\cdots+b_{n-1}x^{n-1})=1\in \mathbb{Z}/p^n\mathbb{Z}$,
- 则存在 $b_n \in \{0,\dots,p-1\}$ 使得在 $\mathbb{Z}/(p^{n+1})$ 中有 $(a_0+\dots+a_nx^n)(b_0+\dots+b_nx^n)=1$ 。

• $\diamondsuit y = b_0 + b_1 + \dots = (y_1, y_2, \dots), \, \, \text{则} \, \, xy = 1, \, \, \text{故} \, \, x \, \text{是单位}.$

$$\Rightarrow$$
: 若 $a_0=0$, 则 $x=(0,x_2,\dots)$ 显然不是单位。

以上断言表明,所有非单位元形如 $x=(0,x_2,x_3,\dots)$ 是一个加法群,故而是极大理想,恰好是 $p\mathbb{Z}_p$

2. 设 $J \subseteq \mathbb{Z}_p$ 是一个非平凡理想

- $\diamondsuit k = \min\{n \in \mathbb{N} \mid p^n \in J\}, \exists k > 0, p^k \mathbb{Z}_p \subseteq J$
- 断言 $p^k \mathbb{Z}_p = J$.
- 设 $x = a_0 + a_1 p + \cdots \in J$, 令 a_m 是第一个非零系数
- 因为 $a_m \neq 0$, $a_m + a_{m+1}p + \dots$ 是单位,故存在 $y \in \mathbb{Z}_p$ 使得 $xy = p^m \in J$
- 由定义, $k \leq m \Rightarrow p^m \in p^k \mathbb{Z}_p \Rightarrow x \in p^k \mathbb{Z}_p$,
- 即 \mathbb{Z}_p 的每个非平反理想都形如 $p^k\mathbb{Z}_p$ 。

3. 投射函数诱导了一个同态

$$\begin{array}{ccc} \mathbb{Z}^* & \xrightarrow{\pi_n} \mathbb{Z}/(p^n) \\ \uparrow & & \\ \mathbb{Z}_p & & \end{array}$$

其中 $\pi_n: \mathbb{Z}_p \to \mathbb{Z}/(p^n), \ x = (x_1, \dots, x_n, \dots) \mapsto x_n, \$ 于是

$$\begin{split} x \in \ker(\pi_n) &\Leftrightarrow x_n = 0 \\ &\Leftrightarrow x = (0, \dots, 0, x_{n+1}, \dots) \\ &\Leftrightarrow x = a_n p^n + a_{n+1} p^{n+1} \dots \\ &\Leftrightarrow x \in p^n \mathbb{Z}_p \end{split}$$

Remark. 证明 \mathbb{Z}_p 是局部环的关键是验证

$$x = a_0 + a_1 p + \dots$$
 是单位 $\Leftrightarrow a_0 \neq 0$

以下证明更简洁:

- $\mbox{if }x=(x_1,x_2,\dots)\in\mathbb{Z}_p\subseteq\prod\mathbb{Z}/(p^n),\ x_1=a_0,\dots,x_n=a_0+a_1p+\dots+a_{n-1}p^{n-1},\dots$
- 由于每个 $\mathbb{Z}/(p^n)$ 都是局部环且 $p\mathbb{Z}/(p^n)$ 是其极大理想,
- 故每个 x_n 在 $\mathbb{Z}/(p^n)$ 中可逆, 令 y_n 是 x_n 在 $\mathbb{Z}/(p^n)$ 的逆
- $\bullet \ \, \pi_{mn}(x_my_m) = \pi_{mn}(x_m)\pi_{mn}(y_m) = x_n\pi_{mn}(y_m) = 1 \, ,$
- 故 $\forall n < m$, $\pi_{mn}(y_m)$ 都是 x_n 的逆
- 断言: $\pi_{mn}(y_m) = y_n$
- $\bullet \ x_n(y_n-\pi_{mn}(y_m))=0 \Rightarrow y_nx_n(y_n-\pi_{mn}(y_m))=0\,,$
- $\text{ id } y = (y_1, y_2, \dots) \not\equiv x \text{ 的id}$

更加简洁的方法:

- $\mathbb{R} b \in \{0, ..., p-1\}$ 使得 $a_0 \cdot b \equiv 1 \mod p$,
- $\bullet \ \ \diamondsuit \ c = 1 + py + p^2y^2 + \dots \in \mathbb{Z}_p \,,$
- $\text{III } bxc = (1 py)(1 + py + (py)^2 + \dots) = 1$

Remark. • $\mathbb{Z} \mapsto \mathbb{Z}_{p}, x \mapsto x$ 的 p-进制展开是一个单同态。

- \mathbb{Z} 中不能被 p 整除的元素都是 \mathbb{Z}_p 的单位。
- 令 $S=\mathbb{Z}-(p)$,则 S 是乘法集, \mathbb{Z} 关于 (p) 的局部化 $\mathbb{Z}_{(p)}=S^{-1}\mathbb{Z}\subseteq\mathbb{Q}$ 是局部环,且 $pS^{-1}\mathbb{Z}$ 是极大理想

- $\bullet \ \mathbb{Z}_{(p)} = \{ \tfrac{a}{b} : a,b \in \mathbb{Z}, b \nmid b \} \subseteq \mathbb{Q}$
- \mathbb{Z} 到 \mathbb{Z}_p 的嵌入自然地扩张为 $\mathbb{Z}_{(p)}$ 到 \mathbb{Z}_p 的嵌入

$$\begin{split} f: \mathbb{Z} \to \mathbb{Z}_p \\ \downarrow \\ \tilde{f}: S^{-1}\mathbb{Z} \to \mathbb{Z}_p \\ \frac{a}{b} \mapsto (f(b))^{-1}a \end{split}$$

- $\bullet \ \mathbb{Z}_p \cap \mathbb{Q} = \mathbb{Z}_{(p)}$
- 在形式上, \mathbb{Z}_p 与 $\mathbb{F}_p[[X]]$ 有相似之处,然而 $\mathrm{Char}(\mathbb{Z}_p)=0$,而 $\mathrm{Char}(\mathbb{F}_p[[X]])=p$