ENGR 305

Voltage Rectifier Circuits
September 18, 2025

The full-wave rectifier

We consider the full-wave rectifier using a transformer with a center-tapped secondary winding.

The full-wave rectifier

- The full-wave rectifier uses both halves of the input sinusoid.
 - It inverts the negative halves of the sine wave to produce a unipolar output.
- One possible implementation (as shown) has a center-tapped secondary winding.
- For the case when the input line voltage (feeding the primary) is positive:
 - **Both signals labeled** v_s will be positive.
 - Diode D_1 will conduct and D_2 will be reverse biased.
 - The current through D_1 will flow through R and back to the center tap of the secondary.
 - The circuit then behaves like a half-wave rectifier.

Full-wave rectifier

- During the negative half-cycle of the ac line voltage, both voltages labeled v_S will be negative.
 - Then D_1 will be cut off while D_2 will conduct.
 - The current conducted by D_2 will flow through R and back to the center tap.
 - The circuit again behaves like a half-wave rectifier.
- Note that for both half cycles the current through R always flows in the same direction.
 - This causes the resulting v_0 to be unipolar.
 - We again use the constant-voltage-drop model for the diode $(V_D = 0.7 V)$

Full-wave rectifier

- The resulting v_0 is unipolar as shown.
- The transfer characteristic is also shown.

Transfer characteristic for full-wave rectifier.

Full-wave rectifier

- Recalling that the Peak Inverse voltage (PIV) is an important parameter in rectifier design
 - lacktriangle During the positive half-cycles, D_1 is conducting while D_2 is cut off.
 - ▶ Voltage at the cathode of D_2 is v_0 and at its anode is $-v_S$.
 - The reverse voltage across D_2 will be $(v_0 + v_S)$
 - This reaches its maximum when v_0 is at its peak value of $(V_S V_D)$ and v_S is at its peak value of V_S
 - Then $PIV = 2V_S V_D$

The Bridge rectifier

- The bridge rectifier is an alternative implementation to the full-wave rectifier.
 - It does not require a center-tapped transformer.
 - It does require four diodes instead of two diodes.

The bridge rectifier

- lacktriangle During the positive half-cycles of the input voltage, v_S is positive
 - \blacksquare Current is conducted through diode D_1 , resistor R, and diode D_2 .
 - \blacksquare Diodes D_3 and D_4 will be reverse biased.
 - Since there are two diodes in the conduction path, v_0 will be lower than v_S by two diode drops.

The bridge rectifier

- During the negative half-cycles of the input voltage, v_s is negative.
 - Thus, $-v_S$ will be positive, forcing current through D_3 , R and D_4 .
 - lacktriangle Diodes D_1 and D_2 will be reverse biased.
 - During both half-cycles, current flows through R in the same direction (from right to left)
 - Then v_0 will always be positive.

The bridge rectifier

- We want to determine the peak inverse voltage (PIV) of each diode.
- The reverse voltage across D_3 can be found from the loop formed by D_3 , R and D_2
 - $v_{D3}(reverse) = v_0 + v_{D2}(forward)$
- The maximum value of v_{D3} occurs at the peak of v_{0} and is given by
 - $PIV = V_S 2V_D + V_D = V_S V_D$
- Here the PIV is about half the value for the full-wave rectifier with a center-tapped transformer.

Rectifier with a filter capacitor

- The output voltage waveform of the rectifier circuits is not suitable for a dc power supply.
- A simple way to reduce the variation in the output voltage is to place a capacitor across the load resistor, called a filter capacitor.
- We first consider the simple circuit shown.

Rectifier with a filter capacitor

- Let the input v_I be a sinusoid with a peak value V_p
- Assume the diode to be ideal.
- As v_I goes positive, the diode conducts and the capacitor is charged so that $v_0 = v_I$
- This continues until v_I reaches its peak value V_p . As v_I decreases, the diode becomes reverse biased and the output remains (theoretically) constant at the value V_p .

Rectifier with a filter capacitor

- Consider the more practical circuit with a load resistance R connected across the capacitor.
 - ightharpoonup For a sinusoidal input, the capacitor charges to the peak value of input of V_p .
 - Then the diode cuts off, and the capacitor discharges through the load resistance R.
 - The capacitor discharge continues until the time at which v_I exceeds the capacitor voltage.
 - We choose a value for C so that the time constant CR is much greater than the discharge interval.

(a)

Peak rectifier circuit – voltage and current

Here we see the input and output voltage waveforms under the assumption that *CR* >> *T*, where T is the period of the input sinusoid.

The waveforms of the load current, $i_L = {^{v_O}}/_R$ and of the diode current (when it is conducting) $i_D = i_C + i_L = C \frac{dv_I}{dt} + i_L$ are shown.

Peak rectifier circuit - observations

- 1. The diode conducts for a brief interval, Δt , near the peak of the input sinusoid and supplies the capacitor with charge equal to that lost during the much longer discharge interval, which is approximately equal to T.
- 2. Assuming an ideal diode, the diode conduction begins at time t_1 , at which the input v_I equals the exponentially decaying output v_O . Conduction stops at t_2 , shortly after the peak of v_I .
- 3. During the diode-off interval, the capacitor C discharges through R, and so v_0 decays exponentially with a time constant CR. The discharge interval begins just past the peak of v_I . At the end of the discharge interval, $v_0 = V_p V_r$, where V_r is the peak-to-peak ripple voltage.
- 4. When V_r is small, v_o is almost constant and equal to the peak value of v_I . Thus the dc output voltage is approximately equal to V_p .

- \blacksquare Similarly, the current i_L is almost constant, with its dc component given by
 - $I_L = \frac{V_p}{R}$
- During the diode-off interval, v_0 can be expressed as
 - $v_0 = V_p e^{-t/CR}$
- At the end of the discharge interval we have
 - $V_p V_r \cong V_p e^{-T/CR}$
- Now, since $CR \gg T$, we can use the approximation $e^{-T/CR} \cong 1 T/CR$ to get
 - $V_r \cong V_p \frac{T}{CR}$
- ▶ To keep V_r small we must select a capacitance C so that $CR \gg T$.

The **ripple voltage** V_r in the previous equation can be expressed in terms of the frequency f = 1/T as

$$V_r = \frac{V_p}{fCR}$$

lacktriangle Using the previous expression for I_L we can express V_r as

$$ightharpoonup V_r = \frac{I_L}{fC}$$

- Assuming that the diode conduction ceases almost at the peak of v_I , we can determine the **conduction interval** Δt from
- $V_p cos(\omega \Delta t) = V_p V_r$ where $\omega = 2\pi f = 2\pi/T$ is the angular frequency of v_I .

- Since $(\omega \Delta t)$ is a small angle, we can use the approximation $cos(\omega \Delta t) \cong 1 \frac{1}{2}(\omega \Delta t)^2$
 - Which gives $\omega \Delta t = \sqrt{2^{V_r}/V_p} \xrightarrow{\text{yields}} \Delta t = \frac{T}{2\pi} \sqrt{\frac{2V_r}{V_p}}$
 - We note that when $V_r \ll V_p$ the conduction angle $\omega \Delta t$ will be small.
- Another interpretation is that the charge supplied by the diode to the capacitor during the conduction interval must equal the charge that the capacitor loses during the discharge interval.
- The average capacitor, diode and load currents are related by $i_{Cav} = i_{Dav} I_L$
- Then, the supplied charge is $Q_{supplied} = i_{Cav} \Delta t \cong (i_{Dav} I_L) \frac{T}{2\pi} \sqrt{\frac{2V_r}{V_p}}$
- The lost charge is $Q_{lost} = CV_r = I_L T$

Equating the equations for supplied charge and lost charge, the average diode current during conduction is

- To select an appropriate diode, we must find the peak value of diode current.
 - We evaluate the current equation at the onset of conduction ($t = -\Delta t$ where t = 0 at the peak)

$$I_{Dmax} = I_L \left(1 + 2\pi \sqrt{2^{V_p}/V_r} \right)$$

- From these two equations, we see that for $V_r \ll V_p$, $i_{Dmax} \cong 2i_{Dav}$
 - This correlates with the fact that the waveform of i_D is almost a right-angle triangle.