Thursday, March 10, 2022 2:15 AM



**Lecture: Flow Networks** 

**Unit:** 7.5

**Instructor: Carlos C.L** 



## **Edge connectivity**

 $oldsymbol{\lambda} = oldsymbol{min} \# \ edges \ that \ need \ to \ be \ deleted, \ such \ that \ G \ get's \ disconnected$ 

- A graph that is already disconnected has  $\lambda=0$
- A connected graph with at least one bridge has  $\lambda=1$

#### **Vertex connectivity**

 $\kappa = min \ \# \ nodes \ that \ need \ to \ be \ deleted, \ such \ that \ G \ get's \ disconnected$ 

- A graph that is already disconnected has  $\kappa=0$
- A connected graph with one articulation point has  $\kappa=0$



# Solve edge connectivity using max flow

- a. Iterate through all pair of vertices (u1, u2), for each pair find the largest number of disjoints paths between them, then the answer is the minimum.
- b. To find the number of disjoint paths between u1, u2 run maximum flown on a network graph whose source is u1 and sink u2, with capacity of 1 for all edges.

# **Complexity:**

Using Dinic:  $O(V^2V^2E) = O(V^4E)$ 

Using Stoer-Wagner =  $O(V^3)$ 

#### **Problems**

**CSES Police Chase** 

# 2-SAT problem

#### **Motivation:**



Say we want to order a pizza, we can choose any number of ingredients from a list, each person can give two wishes in the following way:

$$\pm x \pm y$$

For example, if someone wishes:

$$+x - y$$

This means she wants ingredient x and doesn't want ingredient y on the pizza.

Our problem is to find a way to pick ingredients such that at least one wish for every person is satisficed, notice there may not be solution.

#### The 2-SAT problem

SAT is the problem of assigning boolean values to variables that satisfy a boolean formula.

2-SAT is the problem where the formula is a conjunction of clauses where each clause is a disjunction of literals:

$$(a \lor \neg b) \land (\neg a \lor b) \land (\neg a \lor \neg b) \land (a \lor \neg c)$$

Start by noticing these two are equivalent

$$\begin{array}{c}
a \lor b \\
\neg a \Rightarrow b \land \neg b \Rightarrow a
\end{array}$$

# **Implication graph**

Create a graph, in the following way:

- Each variable and it's negative is a node.
- For each literal [Equation], we create two edges:

$$\neg a \Rightarrow b$$
 ,  $\neg b \Rightarrow a$ 





### Note the following:

- If there is a path from x to -x and a path form -x to x, then there is no solution
- Else, if there is a path from x to -x, then x has to be false
- Else, If there is a path from -x to x, then x has to be true

#### Idea:

- Find SCC on implication graph
- Remember, if we consider each SCC as a node, then the resulting graph will be a DAG
- Do topological sort on the SCCs



## **Algorithm**

a. Find SCCs

b. Create comp array, where: comp[a] = # SCC of a

comp[a] < comp[b] if there is a path from a -> b and b is on a different SCC

- c. If comp[a] < comp[-a] choose a = false else true
- d. If comp[a] = comp[-a] then there is no solution

# **Complexity:**

O(V+E)

#### **Problems**

**CSES Giant Pizza** 

| Topic             | Notes                                                                                                                                                                                                                                                                                | Complexity                                                          |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Floyd<br>Warshall | • Finds distance matrix, d where: $d\left[u ight]\left[v ight] = mindistance(weighted)betweenuandv$                                                                                                                                                                                  | $O\left(V^3\right)$                                                 |
|                   | Works with negative weights                                                                                                                                                                                                                                                          |                                                                     |
|                   | Can detect negative cycles                                                                                                                                                                                                                                                           |                                                                     |
| LCA               | two nodes, where:                                                                                                                                                                                                                                                                    | Preprocessing: $O\left(N\right)$ Answer query: $O\left(LogN\right)$ |
|                   | Solve using Euler tour + Segment Tree                                                                                                                                                                                                                                                |                                                                     |
| Binary<br>Lifting | • Respond queries for the k-th ancestor of any node • Works with dynamic programming: $up\left[u\right]\left[j\right]=2^{j}\ ancestor\ of\ u$ $up\left[u\right]\left[j\right]=up[up\left[u\right]\left[j-1\right],j-1]$                                                              | Preprocessing: $O\left(N\right)$ Answer query $O\left(LogN\right)$  |
| Ford<br>Fulkerson | <ul> <li>Finds maximum flow in a graph</li> <li>Defines residual network (G + residual capacity and reverse edges)         residual capcity (e) = capacity (e) - flow (e)</li> <li>Finds augmenting paths in residual network and updates flows using bottleneck capacity</li> </ul> | $O\left(EF ight) \ F=Max\ flow$                                     |
| Edmonds<br>Karp   | Ford Fulkerson using BFS to find augmenting paths                                                                                                                                                                                                                                    | $O\left(VE^2 ight)$                                                 |
| Dinic             | Finds maximum flow in a graph                                                                                                                                                                                                                                                        | Any graph:                                                          |

|                       |                                                                                                                                                                                               | $O\left(V^2E ight)$                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                       | <ul> <li>Defines layered network = residual network + layer array</li> <li>+ only keeps edges (u,v) where layer[u] = layer[v]+1</li> </ul>                                                    | Unit graphs:                                          |
|                       | Similar to Ford Fulkerson but finds augmenting paths in layered network                                                                                                                       | $O(\sqrt{V}E)$                                        |
| Min Cost<br>Max Flow  | • Introduces cost function to a graph network: $cost\left(e\right) = cost\ per\ unit\ flow\ along\ edge\ e$                                                                                   | Using Edmonds: $O\left(V^3E\right)=O\left(V^5\right)$ |
|                       | • Finds maximum flow with min cost total cost: $total\ cost\ (flow) = \sum_{e \in E}\ flow\ (e) * cost\ (e)$                                                                                  |                                                       |
| Maximum<br>Bipartite  | • Finds maximum matching matched on a bipartite graph, where there is and edge (u,v) y u can be matched with v                                                                                | Using Dinic: $O(\sqrt{V}E)$                           |
| Matching              | <ul> <li>Use Dinic to solve this problem, construct network flow<br/>by adding source and sink and choose capacity equal to<br/>1 for all edges</li> </ul>                                    |                                                       |
| Assigment<br>Problem  | • Finds 1:1 matching on a bipartite graph with the lowest possible cost $cost = \sum\nolimits_{(u,v) \in assignent} cost(u,v)$                                                                | Using Edmonds: $O\left(V^3E\right)=O\left(V^5\right)$ |
|                       | <ul> <li>Solve using Min Cost Max Flow, construct network flow<br/>by adding source and sink, choose capacity equal to 1<br/>for all edges and use the cost function already given</li> </ul> | Hungarian: $O\left(V^3\right)$                        |
| Graph<br>Connectivity | Minimum number of edges/vertices that must be deleted to disconnect graph                                                                                                                     | Using Dinic: $O\left(V^4E\right)$                     |
|                       | Find disjoint number of paths between every pair of vertices, answer will be the minimum of these values                                                                                      | Stoer-Wagner: $O\left(V^3\right)$                     |
| 2-SAT                 | Find values for boolean variables satisfying a boolean formula                                                                                                                                | $O\left(V+E ight)$                                    |
|                       | Boolean formula is a conjunction of clauses where each clause is a disjunction of literals                                                                                                    |                                                       |