Security Information System

Chapter 7: Differential Privacy

Outline

- Introduction
- Differential privacy for machine learning

Problem

Problem

Objective: Using DP to protect personal data

- Example: Mallory Salary? Random noise $\triangle f/\epsilon$?
 - Query:
 - o Count employee

> 1

Average Salary

$$\Delta f = rac{S_{ ext{max}} - S_{ ext{min}}}{N}$$

- Laplace Noise
 - ➤ Count Employee

$$\text{Noise}_{\text{count}} \sim \text{Laplace}(0, \frac{1}{\epsilon})$$

➤ Average Salary

 $ext{Noise}_{ ext{average}} \sim ext{Laplace}\left(0, rac{S_{ ext{max}} - S_{ ext{min}}}{\epsilon N}
ight)$

The January salary database

January

	-
Employee (100)	Salary
CEO - Jack	\$290,000
CFO - Tim	\$250,000
CTO - Mike	\$245,000
COO - Peter	\$240,000
CMO - Scott	\$200,000
95× Other	
Employees	\$45,000
AVG	\$55,000

The average salary of the private company in January

The February salary database

February

Mallory joins

the company

for a salary of \$156,000.

Mallory joins

the company

Employee (101)	Salary
CEO - Jack	\$290,000
CFO - Tim	\$250,000
CTO - Mike	\$245,000
COO - Peter	\$240,000
CMO - Scott	\$200,000
Mallory	\$156,000
95 × Other	
Employees	\$45,000
AVG	\$56,000

The average salary of the private company in February

- 1. Total Number of Employees:
- Example: Add noise
- $Noisy count = True count + Noise_{count}$
- Average Salary:
 - Noisy average salary = True average salary + Noise_{average}

Exercise

- Tính giá trị nhạy cảm cho thuộc tính tuổi ở bảng dữ liệu bên.
- Tính giá trị nhiễu với ϵ = 0.1
- Tính giá trị nhiễu với ϵ = 0.01

Age	ZipCode	Condition
21	23058	heart disease
24	23059	heart disease
26	23060	viral infection
27	23061	viral infection
32	23058	kidney stone
34	23059	kidney stone
35	23060	aids
38	23061	aids
43	23058	kidney stone
43	23059	heart disease
47	23060	viral infection
	21 24 26 27 32 34 35 38 43 43	21 23058 24 23059 26 23060 27 23061 32 23058 34 23059 35 23060 38 23061 43 23058 43 23059

49

23061

8901-89-8901

viral infection

Input perturbation

Algorithm perturbation

Output perturbation

Objective perturbation

- Differentially private naive Bayes classification Output perturbation
 - NAIVE BAYES CLASSIFICATION

$$P(C_j|X) = \frac{P(X|C_j) \times P(C_j)}{P(X)}$$

Since P(X) is the same for all classes, it is sufficient to find the class with the maximum $P(X \mid C_j) \cdot P(C_j)$. Assuming the independence of features, that class is equal to $P(C_j) \cdot \prod_{i=1}^n P(F_i = x_i \mid C_j)$. Hence, the probability of assigning C_j to the given instance X is proportional to $P(C_1) \cdot \prod_{i=1}^3 P(F_i = x_i \mid C_1)$.

- Differentially private naive Bayes classification
 - Dataset
 - X = (Age = Young, Income = Medium, Gender = Female).

Number	Age	Income	Gender	Missed payment (yes or no)
1	Young	Low	Male	Yes
2	Young	High	Female	Yes
3	Medium	High	Male	No
4	Old	Medium	Male	No

Differentially private naive Bayes classification

Input: the user-specified privacy budget ϵ , the training data X (n-dimensional vector), the set of n feature names F, and the set k of classes C

```
Input: privacy budget \epsilon; X = [x_1, x_2, \dots, x_n];
            F = [F_1, F_2, \dots, F_n]; C = [C_1, C_2, \dots, C_k].
                                                                           Calculate the sensitivity
   Output: perturbed P(F_i = x_i | C_i) and P(C_i),
                                                                           for discrete features.
              i = 1, 2, \dots, n, j = 1, 2, \dots, k.
                                                                           Perturb the aggregated
 1 for each feature F<sub>i</sub> do
                                                                           data.
       if F_i is discrete then
                                                                           Calculate the
            sensitivity s \leftarrow 1:
                                                                          differentially private
           n'_{ij} = n_{ij} + Lap(0, \frac{s}{\epsilon}); \leftarrow
           Use n'_{ij} to calculate P(F_i = x_i | C_i);
                                                                           conditional probability.
                                                                           Calculate the sensitivity
                                                                           for numerical features.
            compute sensitivity of mean and variance, s_{\mu} \checkmark
             and s_{\sigma^2};
                                                                           Perturb the aggregated
          \mu'_i = \mu_i + Lap(0, \frac{s_\mu}{\epsilon}); \leftarrow
                                                                           data.
          \sigma_i^{2'} = \sigma_i^2 + Lap(0, \frac{s_{\sigma^2}}{\epsilon});
                                                                           Calculate the
           Use \mu'_i and \sigma^{2'}_i to calculate P(F_i = x_i | C_j);
                                                                           differentially private
                                                                           conditional probability.
11 for each class C<sub>i</sub> do
       sensitivity s \leftarrow 1;
                                                                           Calculate the sensitivity
       count the perturbed total number of samples of
13
                                                                           for count.
        class C_i: n'_i \leftarrow n_i + Lap(0, \frac{s}{\epsilon});
                                                                          Perturb the count.
       Use n'_i to calculate the prior P(C_i);
                                                                           Calculate the
15 return perturbed P(F_i = x_i | C_i) and P(C_i),
                                                                           differentially private
    i = 1, 2, \dots, n, j = 1, 2, \dots, k.
                                                                           prior probability.
```

Output: the differentially private conditional probability $P(F_i = x_i | C_j)$ and class prior probability $P(C_i)$

- Differentially private naive Bayes classification
 - Implement
 - Load dataset
 - Naive Bayes with no privacy
 - o Install IBM Differential Privacy Library, diffprivlib
 - Train a naive Bayes classifier while satisfying DP

- Differentially private k-means clustering Algorithm perturbation
 - Each sample of the k-means clustering is a d-dimensional point, and assume the k-means algorithm has a predetermined number of running iterations, denoted as t. In each iteration of the k-means algorithm, two values are calculated:
 - The total number of samples of each cluster C_i, denoted as n_i (i.e., the count queries)
 - The sum of the samples of each cluster C_i (to recalculate the centroids), denoted as s_i (i.e., the sum queries)

Differentially private k-means clustering

Input: the userspecified privacy budget ϵ , k, and the training data X

Output: differentially private k-means models (k-centroids and the size of each cluster)

```
Input: privacy budget \epsilon; parameter k; d-dimensional
                                                                       Calculate the sensitivity
           samples X = [x_1, x_2, ..., x_n].
                                                                       of the cluster centroid.
  Output: the centroids s_1, s_2, \ldots, s_k; the size of
             clusters n_1, n_2, \dots, n_k.
                                                                       Calculate the sensitivity
1 sensitivity of the centroid s<sub>cent</sub> = d · r · t;
                                                                       of the cluster size.
2 sensitivity of the size of cluster s<sub>csize</sub> = t; <</p>
s for l \in \{1, 2, ..., t\} do
                                                                       Run t iterations for
       Assign the points to the closest centroid;
                                                                       k-means training.
      for n_i \in \{n_1, n_2, \dots, n_k\} do
       n_i \leftarrow n_i + Lap(\frac{2 \cdot s_{csise}}{\epsilon}); \blacktriangleleft
                                                                       Add Laplace noise to the
      for s_i \in \{s_1, s_2, \dots, s_k\} do
                                                                       intermediate centroids
       s_i \leftarrow s_i + Lap(\frac{2 \cdot s_{cent}}{\epsilon}); 
                                                                       and cluster sizes.
9 return the centroids s_1, s_2, \ldots, s_k; the size of clusters
   n_1, n_2, \ldots, n_k.
```