Cách giải bài tập Mạch điện xoay chiều chỉ có cuộn cảm thuần L

A. Phương pháp & Ví dụ

1. Phương pháp

Giả sử dòng điện xoay chiều có dạng: $i = I_0 cos(\omega t + \phi_i)$ thì điện áp xoay chiều có dạng tổng quát là: $u = U_0 cos(\omega t + \phi_u)$ khi đó:

- Đại lượng đặc trưng cho sự cản trở dòng điện là Z_L = ωL
- Đinh luật ôm:
- Độ lệch pha là $\phi = \phi_2$ $\phi_1 = \pi/2$. Hiệu điện thế nhanh pha hơn dòng điện là $\pi/2$. Kiểu 1: Xác định hệ số tự cảm L, tần số f.
- Cảm kháng $\varphi = \varphi_2 \varphi_1 = \pi/2$
- Định luật ôm:

Kiếu 2: Bài toán về giá trị tức thời

2. Ví du

Ví dụ 1: Đặt điện áp u = U₀cosωt vào hai đầu cuộn cảm thuần có độ tự cảm L thì cường độ dòng điện qua cuộn cảm là

Hướng dẫn:

Cường độ dòng điện hiệu dụng:

Theo lí thuyết, u sớm pha so với i là π/2 nên:

Chọn C

Ví dụ 2: Đặt điện áp u = U√2cos(ωt) vào hai đầu một cuộn cảm thì cường độ dòng điện qua nó có giá trị hiệu dụng là I. Tại thời điểm t, điện áp ở hai đầu cuộn cảm là u và cường độ dòng điện qua nó là i. Hệ thức liên hệ giữa các đại lượng là

Hướng dẫn:

Do u và i vuông pha nên ta có biểu thức:

Chon C

Ví dụ 3: Cuộn dây thuần cảm có độ tự cảm L. Đặt vào hai đầu cuộn dây điện áp xoay chiều $u=U_{\circ}cos(100\pi t)$. Tại thời điểm $t=t_{\scriptscriptstyle 1}$ điện áp tức thời và cường độ dòng điện tức thời có giá trị lần lượt $u_{\scriptscriptstyle 1}=50$ V, $i_{\scriptscriptstyle 1}=\sqrt{2}A$. Đến thời điểm $t=t_{\scriptscriptstyle 2}$ thì $u_{\scriptscriptstyle 2}=50\sqrt{2}$ V, $i_{\scriptscriptstyle 2}=1$ A. Tìm L?

A. 2/π H.

B. 1/2π H.

C. 1/π H.

D. 1/3π H.

Hướng dẫn:

Do i và u vuông pha nên ta có:

Chon B

B. Bài tập trắc nghiệm

Câu 1. (TN 2011). Đặt điện áp $u = 100\cos 100\pi t$ (V) vào hai đầu một cuộn cảm thuần có độ tự cảm $1/(2\pi)$ H. Biểu thức cường độ dòng điện qua cuộn cảm là

Lời giải:

 $Z_L = \omega L = 50~\Omega$; $I_0 = U_0/Z_L = 2~A$; $\phi_L = \pi/2$; $i = 2\cos(100\pi t - \pi/2)$ (A). Chọn A. **Câu 2.** (ĐH 2009). Đặt điện áp xoay chiều $u = U_0\cos(100\pi t + \pi/3)$ (V) vào hai đầu một cuộn cảm thuần có độ tự cảm $L = 1/(2\pi)$ (H). Ở thời điểm điện áp giữa hai đầu cuộn cảm là $100\sqrt{2}$ V thì cường độ dòng điện qua cuộn cảm là 2~A. Biểu thức của cường đô dòng điên qua cuôn cảm là

Lời giải:

 $Z_{l} = \omega L = 50 \Omega$; với đoạn mạch chỉ có cuốn cảm:

Chon A.

Câu 3. (ĐH 2010). Đặt điện áp u = U₀cosωt vào hai đầu cuộn cảm thuần có độ tự cảm L thì cường độ dòng điện qua cuộn cảm là

Lời giải:

và i trể pha hơn u_L góc π/2 . Chọn C.

Câu 4. Đặt vào hai đầu một cuộn cảm thuần L một điện áp xoay chiều có giá trị hiệu dụng U không đổi và tần số f thay đổi. Khi f = 60 Hz thì cường độ hiệu dụng qua L là 2,4 A. Để cường độ hiệu dụng qua L bằng 3,6 A thì tần số của dòng điện phải bằng A. 75 Hz B. 40 Hz C. 25 Hz D. 50√2 Hz

Lời giải:

Chon B

Câu 5. Đặt vào hai đầu đoạn mạch chỉ có cuộn cảm thuần một điện áp xoay chiều u = $U_0 cos 100 \pi t$ (V). Biết giá trị điện áp và cường độ dòng điện tại thời điểm t_1 là $u_1 = 50 \sqrt{2}$ (V), $i_1 = \sqrt{2}$ (A) và tại thời điểm t_2 là $u_2 = 50$ (V), $i_2 = -\sqrt{3}$ (A). Giá trị U_0 là A. 50 V B. 100 V C. $50 \sqrt{3}$ V D. $100 \sqrt{2}$ V

Lời giải:

Chon B

Câu 6. Đặt vào hai đầu một cuộn cảm thuần có độ tự cảm 0,3/π (H) một điện áp xoay chiều. Biết điện áp có giá trị tức thời $60\sqrt{6}$ (V) thì dòng điện có giá trị tức thời $\sqrt{2}$ (A) và khi điện áp có giá trị tức thời $60\sqrt{2}$ (V) thì dòng điện có giá trị tức thời $\sqrt{6}$ (A). Hãy tính tần số của dòng điện.

A. 120 (Hz) B. 50 (Hz) C. 100 (Hz) D. 60 (Hz)

Lời giải:

Chon C

 $\Rightarrow Z_L = 2\pi f L = U_0/I_0 = 60 \Rightarrow f = 100 \text{ (Hz)}$

Câu 7. (ĐH-2010). Đặt điện áp u = U₀cosωt (V) vào hai đầu cuộn cảm thuần có độ tự cảm L thì cường độ dòng điện qua cuộn cảm là

Lời giải:

Chon C

Vì mạch chỉ có L thì i trễ pha hơn u là π/2 nên

Câu 8. Đồ thị biểu diễn cường độ tức thời của dòng điện xoay chiều chỉ có cuộn cảm thuần có cảm kháng Z_{L} = 50 Ω ở hình vẽ bên. Viết biểu thức điện áp tức thời giữa hai đầu cuộn cảm.

Lời giải:

Chon A

Vì mạch chỉ có L thì u sớm pha hơn i là $\pi/2$ nên

Câu 9. Đặt vào hai đầu đoạn mạch chỉ có cuộn cảm thuần có độ tự cảm $0,4/\pi$ (H) một điện áp xoay chiều u = U₀cos100πt (V). Nếu tại thời điểm t₁ điện áp là 60 (V) thì cường độ dòng điện tại thời điểm t₁ + 0,035 (s) có độ lớn là

A. 1,5 A B. 1,25 A C. 1,5 $\sqrt{3}$ A D. 2 $\sqrt{2}$ A

Lời giải:

Chọn A

Cảm kháng $Z_L = \omega L = 40(\Omega)$. Vì $t_2 - t_1 = 0.035 = 7T/4$ là hai thời điểm vuông pha nên: $|i_2| = |u_1/Z_L| = 60/40 = 1.5$ (A)

Câu 10. Hiệu điện thế giữa hai đầu một đoạn mạch điện xoay chiều chỉ có cuộn cảm có độ tự cảm L = 1/π H có biểu thức u = 200√2cos(100πt + π/3) (V). Biểu thức cường độ dòng điện trong mạch là :

Lời giải:

Tính Z_L = ωL = 100π.(1/π) = 100Ω.

Tính I₀ hoặc I = U/Z_L = 200/100 = 2A ; i trễ pha góc π/2 so với u hai đầu cuộn cảm thuần, nên ta có: $\pi/3 - \pi/2 = \pi/6$. Suy ra: i = $2\sqrt{2}\cos(100\pi t - \pi/6)$ (A) . Chọn B