Теоретическая механика

Содержание

1.	Обзор основных понятий и законов классической механики	2
	1.1. Механика как часть теоретической физики	2
	1.2. Механика системы материальных точек	2

1. Обзор основных понятий и законов классической механики

1.1. Механика как часть теоретической физики

Общая (экспериментальная) физика основана на принципе индукции и поставляет теоретической физике математические модели (физические законы). Теоретическая физика использует дедукцию, и возвращает общей физике предсказания результатов экспериментов.

Определение 1.1. Механика — наука о движении материальных объектов в пространстве и времени.

Откажемся от определения, в котором сложно объяснить слова в правой части, и будем перечислять...

- 1. Пространство и время независимы.
- 2. Пространство трёхмерно, евклидово, однородно, изотропно.
- 3. Время однородно, однонаправленно (?).

С точки зрения современной физики эти положения неверны, но это представления классической физики. А как сделать их более корректными?

- 1. CTO $v \ll c$.
- 2. КМ $\Delta l \gg \frac{\hbar}{p}$ длина волны де Бройля.
- 3. ОТО $m\varphi \ll mc^2$, φ потенциал.
- 4. BB $t \gg t_{BB}$.

Определение 1.2. Материальная точка — тело, размерами которого при рассмотрении данного класса движение модно пренебречь.

Определение 1.3. Абсолютно твёрдое тело — набор материальных точек, расстояния между которыми не изменяются.

Задача 1.1 (Задача Кэлли (?)). Какое минимальное количество связей между материальными точками необходимо установить, чтобы их система обрела жёсткость?

1.2. Механика системы материальных точек

$$\mathbf{r}(t) = \{x(t), y(t), z(t)\}; \{\mathbf{r}_i(t)\}_{i=\overline{1,N}}$$

Кинематика материальной точки. $\mathbf{r}(t)$ — закон движения (иногда знаем траекторию и положение точки для любого момента времени).

$$\mathbf{r} = r\mathbf{e}_r = \sqrt{x^2 + y^2 + z^2}\mathbf{e}_r,$$

$$\mathbf{e}_r = \frac{\mathbf{r}}{r} = \left\{ \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right\};$$

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \{\dot{x}, \dot{y}, \dot{z}\},$$

$$\mathbf{v} = v\boldsymbol{\tau}.$$

Криволинейные координаты.

$$q = (q_1, q_2, q_3), x = X(q, t), y = Y(q, t), z = Z(q, t) \Rightarrow$$

$$q(t) \Rightarrow \mathbf{r}(t) = \mathbf{r}\mathbf{q}(t), t = \{X(q(t), t), Y(q(t), t), Z(q(t), t)\};$$

$$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt} = \sum \frac{\partial \mathbf{r}}{\partial q_i} \dot{q}_i + \frac{\partial \mathbf{r}}{\partial t};$$

$$\mathbf{v}_i = \left\{\frac{\partial X}{\partial q_i} \dot{q}_i, \frac{\partial Y}{\partial q_i} \dot{q}_i, \frac{\partial Z}{\partial q_i} \dot{q}_i\right\}.$$

$$\mathbf{v} = \sum v_i \mathbf{e}_i; (e_i, e_j) = \delta_{ij} \Rightarrow v^2 = v_1^2 + v_2^2 + v_3^2$$

Пример 1.2.1 (Цилиндрические координаты). Пусть $q=(\varphi,\rho,z)$, и

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \\ z, \end{cases}$$

тогда

$$\mathbf{v} = \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \rho \cos \varphi, \rho \sin \varphi, z \right\} \Rightarrow$$

Alt+E, Alt+Q

$$\begin{cases} \mathbf{v}_{\varphi} = \rho \dot{\varphi} \underbrace{\{-\sin \varphi, \cos \varphi, 0\}}_{\mathbf{e}_{\varphi}} \\ \mathbf{v}_{\rho} = \dot{\rho} \underbrace{\{\cos \varphi, \sin \varphi, 0\}}_{\mathbf{e}_{\rho}} \\ \mathbf{v}_{z} = \dot{z} \{0, 0, 1\}, \end{cases}$$

значит,

$$(\mathbf{e}_{\rho}, \mathbf{e}_{\varphi}) = 0.$$

Ускорение.

$$\mathbf{a} \stackrel{\text{def}}{=} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} = \{\ddot{x}, \ddot{y}, \ddot{z}\}$$

$$\mathbf{a} = \frac{\mathrm{d}}{\mathrm{d}t}(v\boldsymbol{\tau}) = \dot{v}\boldsymbol{\tau} + \underbrace{v\dot{\boldsymbol{\tau}}}_{=\frac{v^2}{R}}\mathbf{n}$$

$$\mathbf{n} = \frac{\dot{\mathbf{r}}}{\dot{\boldsymbol{\tau}}}$$

$$|\dot{\boldsymbol{\tau}}| = \frac{v}{R}$$

 $[au, \mathbf{n}] = \mathbf{b}$ — бинормаль — по ней не может быть направлено ускорение.

Основные постулаты ньютоновской механики. Сразу отметим, что количество точек в системе может быть бесконечным, или даже несчётным.

0. Пространство + Время классические (однонаправленность времени не учитываем).

1. Первый закон Ньютона: существуют инерциальные системы отсчёта, в которых изолированная точка движется равномерно и прямолинейно.

Добавим принцип относительности Галилея, чтобы не возникало выделенных направлений изза введения системы отсчёта: законы движения инвариантны относительно преобразования Галилея в замкнутой системе. Преобразование Галилея:

$$\begin{cases} t = t' \\ \mathbf{r}' = \mathbf{r} + \mathbf{u}t, & \mathbf{u} = const. \end{cases}$$
 (1.1)

Система (1.1) порождает бесконечный класс инерциальных систем, и однородность восстанавливается.

2. Второй закон Ньютона. Принцип детерминизма Ньютона «сидит» в порядке дифференциальных уравнений для описания динамики системы.

$$\ddot{\mathbf{r}}_i = \mathbf{f}_i(\mathbf{r}_1, \dots, \mathbf{r}_N, \mathbf{v}_1, \dots, \mathbf{v}_N, t)$$

6N свободных констант — по две на каждую степень свободы.

$$\begin{cases} \mathbf{r}_i(t_0) = \mathbf{r}_{i0} \\ \mathbf{v}_i(t_0) = \mathbf{v}_{i0}, \end{cases}$$

существует, правда, множество меры нуль всяких исключений: диссипативные состояния равновесия, например.

Второй закон Ньютона:

$$m_i \ddot{\mathbf{r}}_i = \mathbf{F}_i \left(\{ \mathbf{r}_i \}, \{ \dot{\mathbf{r}}_i, t \right). \tag{1.2}$$

Отметим, что уравнение (1.2) работает в инерциальных системах отсчёта, m_i — характеристика материальной точки, не зависящая от движения.

Экспериментальный способ измерения:

$$\begin{cases} m_1 a_1 = F \\ m_2 a_2 = F \end{cases} \Rightarrow \frac{m_1}{m_2} = \frac{a_2}{a_1}, \qquad \begin{cases} m a_1 = F_1 \\ m a_2 = F_2 \end{cases} \Rightarrow \frac{F_1}{F_2} = \frac{a_1}{a_2}.$$

Импульс.

$$\mathbf{p}_i \stackrel{\mathrm{def}}{=} m_i \mathbf{v}_i$$
 — момент импульса, $\mathbf{M}_i \stackrel{\mathrm{def}}{=} m_i [\mathbf{r}_i, \mathbf{v}_i]$ — момент силы, $\mathbf{N}_i \stackrel{\mathrm{def}}{=} [\mathbf{r}_i, \mathbf{F}_i].$

Контрпример 1.2.2. Могут быть патологические случаи. m(t) — ракета и реактивная сила или, например, тележка с тающим льдом: включаем массу в систему — система с сохраняющейся массой, а потом смотрим на динамику подсистем. \mathbf{F} может зависеть от разных других вещей, когда мы пытаемся описать механическим немеханические явления: $m(\dot{\mathbf{r}})$ — квазиклассические частицы в твёрдом теле, тела в СТО, $m(\ddot{\mathbf{r}})$ — присоединённая масса в гидродинамике, $F(\ddot{\mathbf{r}})$ — радиационное трение — электрон летает вокруг ядра по боровской орбите, излучает электромагнитные волны как любой движущийся заряд, теряя таким образом энергию, и падает на ядро, нарушается принцип детерминизма Ньютона — пытаемся описать электромагнитную задачу механическим языком.

3. Третий закон Ньютона. Чтобы его определить, придётся все силы разбить на внутренние и внешние.

$$\mathbf{F}_i = \mathbf{F}_i^{(e)}(t, \mathbf{r}_i) + \sum_i \mathbf{F}_{ij}^{(i)}(t, \mathbf{r}_i, \mathbf{r}_j),$$

внешняя сила может зависеть только от координаты точки (и времени), а все оставшиеся силы — внутренние. Для «всех оставшихся» предположили, что каждая из точек действует на i-ю точку независимо от всех остальных. И обрываем ряд, то есть считаем, что силы, в которой есть $\mathbf{r}_i, \mathbf{r}_j$ и \mathbf{r}_k уже нет — приближение парных взаимодействий, и третий закон Ньютона справедлив только при его применении. Формулировка третьего закона Ньютона:

$$i$$
 ρ_{ij}
 $\rho_{ij} = \mathbf{r}_j - \mathbf{r}_i$

$$\begin{cases} \mathbf{F}_{ij}^{(i)} + \mathbf{F}_{ji}^{(i)} = 0\\ [\boldsymbol{\rho}_{ij}, \mathbf{F}_{ij}] = 0 \end{cases}$$

$$(1.3)$$

Контример 1.2.3. Третий закон Ньютона справедлив только для объектов, которые являются материальными точками, но существуют объекты нулевого размера, не являющиеся материальными точками: например, электрический диполь, у которого есть вращающий объект, который может ещё и энергию забирать...

Следствие 1.1. (a)

$$\mathbf{F} = \sum_{i=1}^{N} \mathbf{F}_{i}^{(e)} = \mathbf{F}^{(e)} \Rightarrow \left(\sum m_{i}\right) \cdot \ddot{\mathbf{R}} = \mathbf{F} = \mathbf{F}^{(e)}, \mathbf{R} = \frac{\sum m_{i} \mathbf{r}_{i}}{\sum m_{i}},$$

то есть центр масс системы материальных точек с попарным взаимодействием движется так же, как одна точка с суммарной массой системы в поле равнодействующей всех внешних сил.

Пример 1.2.4. Центр масс двигавшегося по параболе и разорвавшегося в некоторой точке снаряда продолжит движение по параболе.

Контрпример 1.2.5. У Карлсона, летящего по параболе, раскрылся парашют...

(b)
$$\mathbf{N} = \sum \mathbf{N}_i = \sum \mathbf{N}_i^{(e)},$$

то есть суммарный момент сил, действующих на систему с попарным взаимодействием, равен суммарному моменту внешних сил. Как это можно доказать?

$$[\mathbf{r}_i, \mathbf{F}_{ij}] + [\mathbf{r}_j, \mathbf{F}_{ji}] = [\mathbf{r}_i - \mathbf{r}_j, \mathbf{F}_{ij}] = 0, \tag{1.4}$$

то есть сначала воспользовались первой часть третьего закона Ньютона (1.3), чтобы поменять знак, а потом — второй, чтобы приравнять к нулю.

Законы сохранения в механике Ньютона.

Закон сохранения импульса.

$$\mathbf{p} \stackrel{\text{def}}{=} \sum m_i \mathbf{v}_i \Rightarrow$$

 $\dot{\mathbf{p}} = \mathbf{F} = \mathbf{F}^{(e)},$

первый переход осуществлён в силу II закона Ньютона, второй — III закона Ньютона.

$$\mathbf{p} = const \Leftarrow \sum \mathbf{F}_i^{(e)} = 0,$$

согласно III закону Ньютона.

Закон сохранения момента импульса.

$$\mathbf{M} \stackrel{\text{def}}{=} \sum m_i[\mathbf{r}_i, \mathbf{v}_i];$$
 $\dot{\mathbf{M}} = \sum m_i \{ [\mathbf{r}_i, \dot{\mathbf{v}}_i] + [\dot{\mathbf{r}}_i, \mathbf{v}] \} = \mathbf{N} = \mathbf{N}^{(e)};$ $\begin{cases} \sum \mathbf{N}_i^{(e)} = 0, \\ \text{III закон Ньютона} \end{cases} \Rightarrow \mathbf{M} = const$

Закон сохранения энергии.

$$m\ddot{\mathbf{r}} = \mathbf{F} \qquad | \cdot \mathbf{v} \Rightarrow$$

$$m\mathbf{v}\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = m\left(v_x\dot{v}_x + v_y\dot{v}_y + v_z\dot{v}_z\right) = \frac{m}{2} \cdot 2\frac{\mathrm{d}}{\mathrm{d}t}\left(v_x^2 + v_y^2 + v_z^2\right) = \frac{\mathrm{d}T}{\mathrm{d}t} \Rightarrow$$

$$T = \frac{mv^2}{2}$$

Рис. 1: Траектория материальной точки.

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \mathbf{F} \cdot \mathbf{v} \tag{1.5}$$

$$\int_{t_1}^{t_2} \frac{dT}{dt} dt = T(2) - T(1) = \int_{t_1}^{t_2} \mathbf{F} \cdot \underbrace{\mathbf{v}}_{d\mathbf{r}} dt = \int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F} d\mathbf{r} = \int_{1}^{2} dA$$
 (1.6)

Определение 1.4. Сила является потенциальной, если существует потенциал $U(\mathbf{r},t)$.

$$\mathbf{F} = -\frac{\mathrm{d}U}{\mathrm{d}\mathbf{r}} = \left\{ -\frac{\partial U}{\partial x}, -\frac{\partial U}{\partial y}, -\frac{\partial U}{\partial z} \right\} = -\nabla U \tag{1.7}$$

$$rot \mathbf{F} \equiv 0 \Leftrightarrow [\nabla, \mathbf{F}] = 0, \tag{1.8}$$

но вся эта наука справедлива в односвязной стягиваемой области. Если сила потенциальная, то

$$\oint \mathbf{F}(\tau, r) \, d\mathbf{r} = 0$$

Определение 1.5.

$$\frac{\partial U}{\partial t} = 0 \Rightarrow$$
 сила консервативная (стационарная потенциальная). (1.9)

Определение 1.6.

$$dA = 0, (1.10)$$

значит, сила гироскопическая (сила Кориолиса, магнитная составляющая силы Лоренца).

$$(\mathbf{F}, \mathbf{v}) = 0 \tag{1.11}$$

Определение 1.7. Диссипативная сила:

$$dA < 0 \tag{1.12}$$

Пример 1.2.6.

$$\mathbf{F} = -k(t, \mathbf{r}, \mathbf{v}) \cdot \mathbf{v}, \quad k > 0 \tag{1.13}$$

Запишем выражение для силы ${\bf F}$, используя введённые определения и считая, что они покрывают все силы:

$$\mathbf{F} = -\nabla U(\mathbf{r}, t) + \mathbf{F}_g + \mathbf{F}_d \tag{1.14}$$

Введём понятие полной энергии:

$$T + U = E. (1.15)$$

Получим дифференциалы потенциальной и кинетической энергии:

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -\frac{\partial U}{\partial \mathbf{r}} \mathbf{v} + \mathbf{F}_d \cdot \mathbf{v}; \tag{1.16}$$

$$\frac{\mathrm{d}U}{\mathrm{d}t} = \frac{\partial U}{\partial t} + \frac{\partial U}{\partial \mathbf{r}}\dot{\mathbf{r}};\tag{1.17}$$

Сложим (1.16) и (1.17):

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\partial U}{\partial t} + \mathbf{F}_d \cdot \mathbf{v},\tag{1.18}$$

то есть для выполнения закона сохранения энергии требуется, чтобы все потенциальные силы были консервативными, и отсутствовали диссипативные силы, а полная энергия материальной точки может изменяться за счёт работы и диссипативных сил и работы потенциальных неконсервативных сил.

Закон сохранения энергии для системы материальных точек.

$$m_i \ddot{\mathbf{v}}_i = \mathbf{F}_i \qquad |\cdot \mathbf{v}_i, \sum_i \quad i = 1, N$$
 (1.19)

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \sum_{i=1}^{N} \mathbf{F}_{i} \mathbf{v}_{i}; \quad T = \sum_{i=1}^{N} \frac{m_{i} v_{i}^{2}}{2}$$

$$(1.20)$$

$$\mathbf{F}_i = \mathbf{F}_i^{(e)} + \sum_{i \neq j} \mathbf{F}_{ij} \tag{1.21}$$

$$F_i^{(e)} = -\frac{\partial U^{(e)}(\mathbf{r}_i)}{\partial \mathbf{r}_i} + \mathbf{F}_{gi}^{(e)} + \mathbf{F}_{di}^{(e)}, \qquad (1.22)$$

то есть для каждой внешней силы проделали то же, что делали в случае одной материальной точки. И посчитаем:

$$\sum \mathbf{F}_{i}^{(e)} \cdot \mathbf{v}_{i} = -\sum \frac{\partial U^{(e)}}{\partial \mathbf{r}_{i}} \cdot \dot{\mathbf{r}}_{i} + \sum \mathbf{F}_{d \, i}^{(e)} \cdot \mathbf{v}_{i}, \tag{1.23}$$

введём $U^{(e)}$:

$$U^{(e)} = \sum_{i=1}^{N} U_i^{(e)}(\mathbf{r}_i),$$
 тогда (1.24)

$$\frac{\mathrm{d}U^{(e)}}{\mathrm{d}t} = \sum \frac{\partial U^{(e)}}{\partial \mathbf{r}_i} \cdot \dot{\mathbf{r}}_i + \frac{\partial U^{(e)}}{\partial t}.$$
(1.25)

Выразим первое слагаемое в правой части (1.23) из (1.25) и соберём полные производные энергии по времени вместе:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(T + U^{(e)} \right) = \frac{\partial U^{(e)}}{\partial t} + \sum_{i} \mathbf{F}_{di}^{(e)} \cdot \mathbf{v}_{i}. \tag{1.26}$$

$$U_{ij} = U_{ij}(|\mathbf{r}_j - \mathbf{r}_i|) = U_{ij}\rho_{ij} \Rightarrow U_{ij} = U_{ji}; \tag{1.27}$$

$$\mathbf{F}_{i} = -\frac{\partial U_{ij}}{\partial \boldsymbol{\rho}_{ij}} \frac{\partial \boldsymbol{\rho}_{ij}}{\partial \mathbf{r}_{i}} = +\frac{\partial U_{ij}(\boldsymbol{\rho}_{ij})}{\partial \boldsymbol{\rho}_{ij}}, \mathbf{F}_{j} = -\frac{\partial U_{ij}}{\partial \boldsymbol{\rho}_{ij}} \frac{\partial \boldsymbol{\rho}_{ij}}{\partial \mathbf{r}_{j}} = -\frac{\partial U_{ij}(\boldsymbol{\rho}_{ij})}{\partial \boldsymbol{\rho}_{ij}}; \tag{1.28}$$

$$\mathbf{F}_{ij} = -\frac{\partial}{\partial \mathbf{r}_i} U_{ij}(\mathbf{r}_i, \mathbf{r}_j); \tag{1.29}$$

$$\sum_{\substack{i,j\\i\neq j}} \mathbf{F}_{ij} \cdot \mathbf{v}_i = \sum_{-\dot{\boldsymbol{\rho}}_{ij}} (\underline{\mathbf{v}_i - \mathbf{v}_j}) \frac{\partial U_{ij}}{\partial \rho_{ij}} = -\frac{\mathrm{d}}{\mathrm{d}t} U^{(i)};$$
(1.30)

$$U^{(i)} = \frac{1}{2} \sum_{\substack{i,j=1\\i \neq j}}^{N} U^{(i)}(\boldsymbol{\rho}_{ij}) \Rightarrow$$
 (1.31)

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(T + U^{(e)} + U^{(i)} \right) = \frac{\partial U^{(e)}}{\partial t} + \sum_{i} \mathbf{F}_{di}^{(e)}$$
(1.32)

3. C. 9. E = const:

- 1. Внешние силы консервативные и/или гироскопические.
- 2. Нет диссипативных сил.
- 3. Внутренние силы специальной структуры: отвечают глобальным законам симметрии пространства. $U^{(i)}(|\mathbf{r}_i - \mathbf{r}_j|)$.

Пример 1.2.7.

$$E_{\rm JI} = -e\nabla\varphi + \frac{e}{c}[\mathbf{v}, \mathbf{B}]$$

Интеграл движения.

$$I(t, \mathbf{r}_i, \mathbf{v}_i) = const \tag{1.33}$$

(???)

Теорема Нётер (???)

Пример 1.2.8.

$$\begin{cases} \mathbf{F} = \frac{\alpha}{x^2 + y^2} \boldsymbol{\tau}, \\ \boldsymbol{\tau} = \{-y, x, 0\}, \\ x = R \cos \omega t, \\ y = R \sin \omega t, \\ z = 0 \end{cases} \Rightarrow$$

$$\begin{cases} \mathbf{F} = \frac{\alpha}{x^2 + y^2} \boldsymbol{\tau}, \\ \boldsymbol{\tau} = \{-y, x, 0\}, \\ x = R \cos \omega t, & \Rightarrow \\ y = R \sin \omega t, \\ z = 0 \end{cases}$$
$$A = \frac{\alpha}{R^2} \int_0^T (\boldsymbol{\tau}, \mathbf{v}) dt = \frac{\alpha}{R^2} \int_0^T (R^2 \omega \sin^2 \omega t + R^2 \omega \cos^2 \omega t) dt = \frac{\alpha}{R^2} R^2 \omega \int_0^T dt = \alpha \omega T = 2\pi \alpha$$