

I.E.S Zaidin Vergeles I Bug Bounty Report

CONFIDENTIAL

Date: Jan 9th, 2022 Project: I Bug Bounty

Version: 1.0

Table of Contents

Confidentiality Statement	4
Disclaimer	4
Contact Information	4
Assessment Overview	
Assessment Components	6
External Penetration Test	6
Finding Severity Ratings	7
Scope	
Scope Exclusions	
Post Assessment Clean-up	9
Executive Summary	10
Findings Overview	
Vulnerabilities By Impact	13
Security Strengths	
Difficult Staff Impersonation	
Security Weaknesses	
Missing Authorization	
Unrestricted Login Attempts	14
Technical Details	
Moodle Profile Stored XSS (CVE-2021-20279)	
AWStats Logs & Absolute Path (CVE-2018-10245)	
JoobSkee Students IDs Guessing	
Printer & Scanner Access	
Proxmox LXCs Root Access	
Wordpress XMLRPC Bruteforce Amplification	
MantisBT Unauthorized Access	
Margavila & PAE	
SlowLoris DOS	
Wordpress Pingback DDOS	
FPDF Error Absolute Path Disclosure	
GetProfesores Open API Endpoint	
TimThumb Version Exposure	
SQLServer Version Exposure	34

Confidentiality Statement

This document is the exclusive property of Efren Garcia and IES Zaidin Vergeles (IZV). This document contains proprietary and confidential information. Duplication, redistribution, or use, in whole or in part, in any form, requires consent of both Efren and IZV.

Efren may share this document with auditors under non-disclosure agreements to demonstrate penetration test requirement compliance.

Disclaimer

A penetration test is considered a snapshot in time. The findings and recommendations reflect the information gathered during the assessment and not any changes or modifications made outside of that period.

Time-limited engagements do not allow for a full evaluation of all security controls. I prioritized the assessment to identify the weakest security controls an attacker would exploit. I recommend conducting similar assessments on an annual basis by internal or third-party assessors to ensure the continued success of the controls.

Contact Information

Name	Title	Contact Information
Auditor		
Efren Garcia	Penetration Tester	Email: efrenzaidinvergeles@gmail.com
IES Zaidin Vergele	S	
Jose Luis Navarro	Deputy Headmaster	Office: 958 893 850

Assessment Overview

From May 21th, 2019 to June 13th, 2020, I participated in I BUG BOUNTY IES ZAIDIN VERGELES to evaluate the security posture of its infrastructure compared to current industry best practices that included an external penetration test

Phases of penetration testing activities include the following;

- **Planning** Customer goals are gathered and rules of engagement obtained.
- **Discovery** Perform scanning and enumeration to identify potential vulnerabilities, weak areas, and exploits.
- Attack Confirm potential vulnerabilities through exploitation and perform additional discovery upon new access.
- **Reporting** Document all found vulnerabilities, failed attempts, and company strengths and weaknesses.

Assessment Components

External Penetration Test

An external penetration test emulates the role of an attacker attempting to gain access to an internal network without internal resources or inside knowledge. A penetration tester attempts to gather sensitive information through open-source intelligence (OSINT), including students information, historical breached passwords, and more that can be leveraged against external systems to gain internal network access. The penetration tester also performs scanning and enumeration to identify potential vulnerabilities in hopes of exploitation.

Finding Severity Ratings

The following table defines levels of severity and corresponding CVSS score range that are used throughout the document to assess vulnerability and risk impact.

Severity	CVSS V3 Score Range	Definition
Critical	9.0-10.0	Exploitation is straightforward and usually results in system-level compromise. It is advised to form a plan of action and patch immediately.
High	7.0-8.9	Exploitation is more difficult but could cause elevated privileges and potentially a loss of data or downtime. It is advised to form a plan of action and patch as soon as possible.
Moderate	4.0-6.9	Vulnerabilities exist but are not exploitable or require extra steps. It is advised to form a plan of action and patch after high-priority issues have been resolved.
Low	0.1-3.9	Vulnerabilities are non-exploitable but would reduce an organization's attack surface. It is advised to form a plan of action and patch during the next maintenance window.
Informational	N/A	No vulnerability exists. Additional information is provided regarding items noticed during testing, strong controls, and additional documentation.

Scope

Assessment	Details
External Penetration Test	Any system owned by IZV through internet

During the assessment, the main targets were the following as shown in the image

Scope Exclusions

- Phishing and credential theft are not allowed in any case
- Bruteforce attacks are limited to low usage periods of time to avoid DOS

Post Assessment Clean-up

Any test accounts which were created for the purpose of this assessment should be disabled or removed, as appropriate, together with any associated content.		

Executive Summary

Efren evaluated IZV's external security posture through an external network penetration test from May 21th, 2019 to June 13th, 2020. By leveraging a series of attacks, Efren found critical level vulnerabilities that allowed full internal access to the IZV's teachers accounts, impersonation of them and access to sensitive data regarding students and teachers. It is highly recommended that IZV addresses these vulnerabilities as soon as possible to avoid unauthorized access.

Findings Overview

Ref	Description	Mitigation	Risk
1	Full access to teachers Moodle accounts through	Update Moodle version	Critical
	profile stored XSS	Set up automatic minor updates	
2	Access to webserver logs & stats through unauthorized AWStats cgi	Implement authorization	Critical
	Full webserver path disclosure		
3	JoobSkee full students IDs guessing	Limit the number of requests to avoid bruteforce attacks	Critical
		Add another required form field to make bruteforcing unviable	
4	Access to confidential documents through open scanner &	Implement authorization & non shared queues	Critical

	printer queue		
5	Multiple Proxmox LXCs root access using default Cloud9 credentials	Avoid using the same default password for every container and posting it in a public directory.	Critical
		Generate secure random default passwords and send them through a secure channel.	;
		Enforce the user to set a new one after the first login	
6	Wordpress admin password guessing through XMLRPC bruteforce amplification	Disable XMLRPC	Critical
7	MantisBT unauthorized account creation & access to incidents logs	Restrict account creation to authorized organizational email addresses	High
8	Confidential information through Margavila & PAE files	Implement authorization or remove the file from the webserver	High
9	SlowLoris DOS of multiple hosts	Use NginX	High
10	Usage of webserver as a zombie host in a botnet through XMLRPC	Disable XMLRPC	Moderate
11	Full list of teachers emails and full names through getProfesores open API endpoint	Remove the endpoint in case it's not needed Otherwise, implement authorization	
12	Absolute webserver path through FPDF library error	Fix the controller, disable error logs	Low

13	TimThumb version info	The library version is not vulnerable to the popular CVE-2014- 4663	Informational
		Removing version discovery is advised	
14	SQL Server version info	Remove the file from the webserver	Informational

Vulnerabilities By Impact

The following graph shows the number of vulnerabilities found regarding their risk (Note that this summary table does not include the informational items)

Security Strengths

Difficult Staff Impersonation

When trying to impersonate a teacher in the bug tracking service, one of the teachers noticed and found out it was me after checking the user mail address.

Security Weaknesses

Missing Authorization

Most services are missing proper authorization requirements, which allows any user to retrieve potentially sensitive or logging information, skipping the whole discovery process.

Unrestricted Login Attempts

Most forms submissions allow an unlimited number of retries and don't implement any kind of security like a captcha. Implementing proper security measures and notifying of unsuccessful login attempts would result in secure formularies

Technical Details

Moodle Profile Stored XSS (CVE-2021-20279)

Moodle is vulnerable to stored XSS through multiple fields in users profile formulary.

Vulnerability Details

Affects	https://server.ieszaidinvergeles.org/moodle3
Attack Vectors	XSS
References	https://www.cvedetails.com/cve/CVE-2020-25627

I discovered that Moodle was vulnerable to stored XSS through users profile fields. A malicious user can inject arbitrary Javascript code by updating their user profile info. Moodle version was found in the file "upgrade.txt"

To test it I set up a simple cookie farm;

I injected Javascript code that obtains the visiting user cookie, redirects to a server I set up and finally stores the cookie in a file

After setting up the cookie farm I just had to do a simple social engineering attempt to gain access to any account I wanted. In this case I chose the Hacking subject teacher as evidence.

After the teacher visited my profile, I was able to log into his account using the cookie

Remediation Guidance

Update Moodle to latest version and schedule automatic minor updates.

AWStats Logs & Absolute Path (CVE-2018-10245)

AWStats is accessible without any authentication and absolute webserver path can be discovered

Vulnerability Details

Affects	https://server.ieszaidinvergeles.org/cgi-bin/awstats.pl https://server.ieszaidinvergeles.org/cgi-bin/awstats.pl? migrate=passwd
Attack Vectors	HTTP Request
References	https://www.cvedetails.com/cve/CVE-2018-10245

AWStats is a cgi-bin service which shows multiple server stats, such as access logs, most visited pages, IPs and more. It has a search feature but lacks any kind of bulk export, so I decided to develop a Python program to retrieve all data to later process and search it in bulk.

This allowed me to have all the webserver routes without having to use fuzzing, as well as identifying staff IPs.

Error: Migrate of statistics has not been allowed from a browser (AllowToUpdateStatsFromBrowser should be set to 1).

Setup ('/etc/awstats/awstats.conf' file, web server or permissions) may be wrong. Check config file, permissions and AWStats documentation (in 'docs' directory).

Remediation Guidance

Update AWStats to latest version and implement authorization.

JoobSkee Students IDs Guessing

Complete students Ids can be bruteforced through the ID field in JobSkees job bank formulary.

Vulnerability Details

Affects	https://server.ieszaidinvergeles.org/bolsaempleo https://server.ieszaidinvergeles.org/jobskee/jobskee.sql
Attack Vectors	Bruteforce
References	https://capec.mitre.org/data/definitions/112.html

I discovered that JobSkees job bank was vulnerable to bruteforce through the ID fields. A malicious user can bruteforce the ID field to get subscribed as another student, supplant their identity and obtain their complete personal ID.

Since guessing a complete ID would take too much time, I used the join requests paper posted by IZV in a pinboard, which included full names and partial IDs containing the last 3 numbers and letter.

That means I only had to bruteforce the first 5 numbers, using the charset [0-9], which is a total of 10⁵ permutations (100k requests) to find all the students IDs.

Due to the birthday attack, I also found IDs from students in different study plans to the one posted in the pinboard.

Here's some evidence of the subscription to other IZV study plans by supplanting students guessing their ID;

Also, the default JobSkee database was public, but it was useless since the default admin password was changed as it should.

Remediation Guidance

Add authentication and security to the form such a Captcha to avoid bruteforcing.

Printer & Scanner Access

IZVs printer and scanner queue can be accessed by unauthorized users to fetch confidential documents.

Vulnerability Details

Affects	https://server.ieszaidinvergeles.org/impresion/borrafich.php https://server.ieszaidinvergeles.org/impresion/ini.php
	https://server.ieszaidinvergeles.org/impresion/upload.php
	https://server.ieszaidinvergeles.org/impresion/quedan.php
	http://server.ieszaidinvergeles.org/impresion/cierre.php
Attack Vectors	HTTP Request
References	https://capec.mitre.org/data/definitions/149.html
	https://capec.mitre.org/data/definitions/155.html

After pulling access logs from AWStats and analyzing them, multiple paths with names related to a printing functionality were found. Inferring the different printer and scanner paths contents by checking the access logs, multiple scanned files were found and accessed freely.

648, http://server.ieszaidinvergeles.org/	Documento%20sin%20t%C3%ADtulo.docx,2,0,12.99 K
649, http://server.ieszaidinvergeles.org/	amen%20tema5-2%20LINUX%20curso%202021-junio.pc
650, http://server.ieszaidinvergeles.org/escaner/escaneos/202106172046.pdf,2,0,8	9.99 MB,45.00 MB
651, http://server.ieszaidinvergeles.org	/EnlaceVideos.txt,2,0,726 Bytes,363 Bytes
652, http://server.ieszaidinvergeles.org	supuestos.pdf, 2, 0,1.37 MB,703.21 KB
653, http://server.ieszaidinvergeles.org	20XSS%20Almcenado.pdf,2,θ,239.92 KB,119.96 KB
654 http://server_jeszajdinyergeles_org	/Datos xlsx 2 0 24 97 KB 12 49 KB

All the scanned files follow the format YearMonthDayHourMinute, also expressed as date "+%Y%m%d%H%M".

A malicious user can retrieve files in realtime by simply writing a script that fetches the path with an HTTP request, containing the actual time in the mentioned format, in an endless loop.

Remediation Guidance

Implement authorization in the printer & scanner endpoints to ensure confidentiality and privacy

Proxmox LXCs Root Access

Multiple IZVs Proxmox node LXC containers can be accessed through Cloud9 with default credentials provided by the staff in README files.

Vulnerability Details

Affects	https://informatica.ieszaidinvergeles.org:9xxx https://web.archive.org/web/20210314231124/https:// informatica.ieszaidinvergeles.org:9201/index.html
Attack Vectors	Credential Stuffing, Dictionary Attack, POST Request
References	https://capec.mitre.org/data/definitions/600.html https://capec.mitre.org/data/definitions/555.html https://capec.mitre.org/data/definitions/16.html https://cwe.mitre.org/data/definitions/256.html

Using domain discovery and port scanning, multiple LXC hosts were accessible through different ports using the HTTP protocol.

Each of the hosts shared some common files, being the most important the README. This file contained a guide for the users on how to access their LXC container IDE and terminal, and also the assignment of each LXC based on a port pattern.

```
Usuario root:

Usuario cloud9:

Usuario mysql:

Usuario mysql:

Usuario mysql:

Url:

https://informatica.ieszaidinvergeles.org:9xxx donde xxx es el numero asignado

Url:

https://informatica.ieszaidinvergeles.org:9xxx/cloud9 donde xxx es el numero asignado

Url c9:

https://informatica.ieszaidinvergeles.org:9xxx/cloud9 donde xxx es el numero asignado

Modificar la clave del usuario root: passwd desde la consola de cloud9

Modificar el usuario y/o la clave del usuario c9, en el archivo /etc/init.d/cloud9.sh se ha de modificar la siguiente linea:

Workbin/node /var/c9sdk/server.js -w /var/www/html/ --auth root:izv --port $C9_PORT >/dev/null 2>&1 &

Se debe reemplazar por Una vez modificada la clave de cloud9, hay que relanzarlo: /etc/init.d/cloud9.sh

Modificar la clave de mysql: ir a PhpMyAdmin, entrar como root, pinchar en Cambio de contrasena, introducir la clave nueva dos veces y pulsar Continuar
```


Having the default user and password, I created a dictionary with the target ports. Using the birthday attack and credential stuffing through a fuzzing attack I was able to spot around 20 hosts using the default credentials.

Finally, logging in Cloud9 using the default credentials allowed me to spawn a CLI in the IDE. Since the user had root privileges, privilege scalation was not needed.

As evidence, I decided to deface one of the teachers app and upload some random memes and pictures.

Remediation Guidance

Implement secure random default passwords for each user, send them through a secure private channel to the final user (e.g. mail) and require setting a new password after the first login. Never store credentials in a public text file in plaintext.

Wordpress XMLRPC Bruteforce Amplification

IZVs Wordpress login can be bruteforced using the XMLRPC protocol to obtain admin access to the content manager interface.

Vulnerability Details

Affects	https://www.ieszaidinvergeles.org
Attack Vectors	Brute Force Amplification
References	https://www.acunetix.com/vulnerabilities/web/wordpress-xml-rpc- authentication-brute-force https://github.com/1N3/Wordpress-XMLRPC-Brute-Force-Exploit

Fuzzing IZVs main webpage showed that Wordpress XMLRPC was found. Crafting arbitrary XML requests showed that the multicall procedure was available.

Using the XMLRPC bruteforce amplification attack, the admin user password could be found

[Thread-1][TRAFFIC IN] XML response [#0] (200 OK):
[('faultCode': [#03, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'faultString': 'Nombre de usuario o contraseña incorrectos.'), ('faultCode': 403, 'fault

Remediation Guidance

Disable the XMLRPC feature in Wordpress

MantisBT Unauthorized Access

IZVs MantisBT service allows unauthorized accounts creation by any user.

Vulnerability Details

Affects	https://server.ieszaidinvergeles.org/mantisbt/admin/install.php
	https://server.ieszaidinvergeles.org/mantisbt
Attack Vectors	Improper Access Control
References	https://cwe.mitre.org/data/definitions/284.html

Checking AWStats access logs showed MantisBT was running in one of the hosts. Playing around with the app I noticed signing up was not restricted, so I created a user, using one of the teachers data in order to impersonate him, and got access to every bug or incident report and the permission to create new ones.

Using the bulk export feature I examined each report in order to find confidential information. Some MAC addresses and admin passwords for some PCs were leaked in plaintext on some of the reports

Also, the admin page is advised to be deleted after setting up the service by the own app. It wasn't deleted and I was able to drop the database even without the admin username or password

Remediation Guidance

Limit the list of allowed mails to sign up in MantisBT, update to latest version and remove the public admin page.

Margavila & PAE

IZVs Margavila & PAE documents can be accessed by unauthorized users to obtain confidential organizational and staff information.

Vulnerability Details

Affects	https://server.ieszaidinvergeles.org/margavila
	https://server.ieszaidinvergeles.org/PAE
Attack Vectors	HTTP Request
References	https://cwe.mitre.org/data/definitions/284.html

Using fuzzing some confidential documents were found. They contained private info such as a government email and private staff phone numbers

Remediation Guidance	
Remove the documents from the webserver or implement authorization	

SlowLoris DOS

Multiple IZVs webservers are vulnerable to Apache SlowLoris vulnerability.

Vulnerability Details

Affects	https://server.ieszaidinvergeles.org/moodle3 https://informatica.ieszaidinvergeles.org
Attack Vectors	DOS
References	https://www.cvedetails.com/cve/CVE-2007-6750 https://capec.mitre.org/data/definitions/227.html

While testing for simple DOS attacks, SlowLoris was effective agains multiple IZV hosts. This is a kind of low-and-slow attack which keeps connections open to exhaust the web server.

This results in timed out responses for the rest of the users trying to access the web content

Remediation Guidance

Migrate to NginX

Wordpress Pingback DDOS

IZVs Wordpress can be used to participate in a DDOS botnet by using the XMLRPC pingback method.

Vulnerability Details

Affects	https://www.ieszaidinvergeles.org
Attack Vectors	DOS
References	https://capec.mitre.org/data/definitions/469.html https://managewp.com/blog/pingback-vulnerability-protect- wordpress

While testing XMLRPC protocol, it was found that the pingback procedure is allowed and can be exploited to join the host in a DDOS botnet.

Remediation Guidance

Disable the XMLRPC feature in Wordpress

FPDF Error Absolute Path Disclosure

An error of the FPDF library usage shows the webserver absolute path.

Vulnerability Details

Affects	https://server.ieszaidinvergeles.org/recursos/?action=pdf
Attack Vectors	Fuzzing
References	https://capec.mitre.org/data/definitions/215.html

Fuzzing with random GET parameters showed an app error. It disclosed the absolute path and the usage of the FPDF library

Notice: Undefined index: desde in /var/www/adminizv/classes/controller/PublicController.php on line 141

Notice: Undefined index: hasta in /var/www/adminizv/classes/controller/PublicController.php on line 141

Notice: Undefined index: desde in /var/www/adminizv/classes/controller/PublicController.php on line 142

Notice: Undefined index: hasta in /var/www/adminizv/classes/controller/PublicController.php on line 142

FPDF error: Some data has already been output, can't send PDF file

Remediation Guidance

Fix the controller and disable error logs.

GetProfesores Open API Endpoint

An open API endpoint containing teachers info was found in the webserver.

Vulnerability Details

Affects	https://www.ieszaidinvergeles.org
Attack Vectors	DOS
References	https://capec.mitre.org/data/definitions/469.html https://managewp.com/blog/pingback-vulnerability-protect- wordpress

The endpoint retrieved the following teachers data;

ID, full name, username and department.

Using this data we could find teachers mail addresses and check for breaches.

Remediation Guidance

Remove the endpoint or implement authorization

TimThumb Version Exposure

TimThumb version can be retrieved from the webserver.

Vulnerability Details

Affects	https://server.ieszaidinvergeles.org/puertasabiertas2021/img.php
Attack Vectors	None
References	https://www.dragonjar.org/vulnerabilidad-en-timthumb-php- afecta-millones-de-blogs-con-wordpress.xhtml

The used version was patched from the RCE, also webshots were disabled.

Remediation Guidance

It's advised to use a non deprecated library since TimThumb is unmaintained.

SQLServer Version Exposure

SQLServer version can be retrieved from the webserver.

Vulnerability Details

Affects	https://server.ieszaidinvergeles.org/mssql/index2.php
Attack Vectors	None
References	

Remediation Guidance

Remove the file from the webserver to avoid version discovery.