2. Seminar EVU RegAut

Sigurd Meldgaard

7. februar 2009

Plan

Nondeterministiske automater

Determinisering

 $NFA-\Lambda'er$

Kleenes sætning

Kleenes sætning del 1

Kleenes sætning del 2

Frokost

Minimering

MyHill Nerode

Java projekt

- Definition af NFA'er og deres sprog
- Delmængdekonstruktionen: NFA → FA
- Definition af NFA-Λ'er og deres sprog
- Λ -eliminering: NFA- $\Lambda \to FA$
- Kleenes sætning: regulært udtryk \to NFA- Λ \to NFA \to FA \to regulært udtryk

- Definition af NFA'er og deres sprog
- Delmængdekonstruktionen: NFA → FA
- Definition af NFA-Λ'er og deres sprog
- Λ -eliminering: NFA- $\Lambda \to FA$
- Kleenes sætning: regulært udtryk \to NFA- Λ \to NFA \to FA \to regulært udtryk

- Definition af NFA'er og deres sprog
- Delmængdekonstruktionen: NFA → FA
- Definition af NFA-Λ'er og deres sprog
- Λ-eliminering: NFA-Λ → FA
- Kleenes sætning: regulært udtryk \to NFA- Λ \to NFA \to FA \to regulært udtryk

- Definition af NFA'er og deres sprog
- Delmængdekonstruktionen: NFA → FA
- Definition af NFA-Λ'er og deres sprog
- Λ -eliminering: NFA- $\Lambda \to FA$
- Kleenes sætning: regulært udtryk \to NFA- Λ \to NFA \to FA \to regulært udtryk

- Definition af NFA'er og deres sprog
- Delmængdekonstruktionen: NFA → FA
- Definition af NFA-Λ'er og deres sprog
- Λ -eliminering: NFA- $\Lambda \to FA$
- Kleenes sætning: regulært udtryk \to NFA- Λ \to NFA \to FA \to regulært udtryk

Nondeterministiske automater

- NFA'er: som FA'er men
- Der er ikke altid præcis én udgående transition pr. alfabetsymbol for hver tilstand
- Automaten accepterer en streng, hvis det er muligt at "gætte" en vej til accept

Nondeterministiske automater

- NFA'er: som FA'er men
- Der er ikke altid præcis én udgående transition pr. alfabetsymbol for hver tilstand
- Automaten accepterer en streng, hvis det er muligt at "gætte" en vej til accept

Nondeterministiske automater

- NFA'er: som FA'er men
- Der er ikke altid præcis én udgående transition pr. alfabetsymbol for hver tilstand
- Automaten accepterer en streng, hvis det er muligt at "gætte" en vej til accept

Eksempel

- Hvordan laver man en automat, der svarer til det regulære udtryk (11+110)*0 ?
- Det er ikke trivielt med FA'er...
- En nondeterministisk automat:

Eksempel

- Hvordan laver man en automat, der svarer til det regulære udtryk (11+110)*0 ?
- Det er ikke trivielt med FA'er...
- En nondeterministisk automat:

Eksempel

- Hvordan laver man en automat, der svarer til det regulære udtryk (11 + 110)*0 ?
- Det er ikke trivielt med FA'er...
- En nondeterministisk automat:

Everything is vague to a degree you do not realize till you have tried to make it precise.

Bertrand Russell

- Q er en endelig mængde af tilstande
- \bullet Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta: Q \times \Sigma \to 2^Q$ er en transitionsfunktion Det betyder at $\delta(q, a)$ giver en *mængde* af tilstande

Everything is vague to a degree you do not realize till you have tried to make it precise.

Bertrand Russell

- Q er en endelig mængde af tilstande
- \bullet Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta \colon Q \times \Sigma \to 2^Q$ er en transitionsfunktion Det betyder at $\delta(q,a)$ giver en *mængde* af tilstande.

Everything is vague to a degree you do not realize till you have tried to make it precise.

Bertrand Russell

- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta \colon Q \times \Sigma \to 2^Q$ er en transitionsfunktion Det betyder at $\delta(q,a)$ giver en *mængde* af tilstande.

Everything is vague to a degree you do not realize till you have tried to make it precise.

Bertrand Russell

- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta \colon Q \times \Sigma \to 2^Q$ er en transitionsfunktion Det betyder at $\delta(q, a)$ giver en *mængde* af tilstande.

Everything is vague to a degree you do not realize till you have tried to make it precise.

Bertrand Russell

- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta \colon Q \times \Sigma \to 2^Q$ er en transitionsfunktion Det betyder at $\delta(q,a)$ giver en *mængde* af tilstande.

Everything is vague to a degree you do not realize till you have tried to make it precise.

Bertrand Russell

- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta: Q \times \Sigma \to 2^Q$ er en transitionsfunktion Det betyder at $\delta(q, a)$ giver en *mængde* af tilstande.

- Den representerer 5-tuplet:
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- $A = \{q_4\}$
- $\delta: Q \times \Sigma \to 2^Q$ Er funktionen i denne tabel:

	0	1
90	$\{q_4\}$	$\{q_1, q_2\}$
q_1	Ø	$\{q_0\}$
q_2	Ø	$\{q_3\}$
q_3	$\{q_0\}$	Ø
94	Ø	Ø

- Den representerer 5-tuplet:
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- $A = \{q_4\}$
- $\delta: Q \times \Sigma \to 2^Q$ Er funktionen i denne tabel:

	0	1
90	$\{q_4\}$	$\{q_1, q_2\}$
q_1	Ø	$\{q_0\}$
q_2	Ø	$\{q_3\}$
q_3	$\{q_0\}$	Ø
94	Ø	Ø

- Den representerer 5-tuplet:
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- $A = \{q_4\}$
- $\delta: Q \times \Sigma \to 2^Q$ Er funktionen i denne tabel:

	0	1
90	$\{q_4\}$	$\{q_1, q_2\}$
q_1	Ø	$\{q_0\}$
q_2	Ø	$\{q_3\}$
q_3	$\{q_0\}$	Ø
94	Ø	Ø

- Den representerer 5-tuplet:
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- $A = \{q_4\}$
- $\delta: Q \times \Sigma \to 2^Q$ Er funktionen i denne tabel:

	0	1
90	$\{q_4\}$	$\{q_1, q_2\}$
q_1	Ø	$\{q_0\}$
q_2	Ø	$\{q_3\}$
q_3	$\{q_0\}$	Ø
94	Ø	Ø

- Den representerer 5-tuplet:
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- $A = \{q_4\}$
- $\delta: Q \times \Sigma \to 2^Q$ Er funktionen i denne tabel:

	0	1
q_0	$\{q_4\}$	$\{q_1, q_2\}$
q_1	Ø	$\{q_0\}$
q_2	Ø	$\{q_3\}$
q_3	$\{q_0\}$	Ø
q_4	Ø	Ø

Sproget af en NFA

Givet en NFA $M = (Q, \Sigma, q_0, A, \delta)$:

Definer den udvidede transitionsfunktion:

$$\delta^*(q,x) = \begin{cases} \{q\} & \text{hvis } x = \Lambda \\ \bigcup_{r \in \delta^*(q,y)} \delta(r,a) & \text{hvis } x = y \cdot a \end{cases}$$

- $x \in \Sigma^*$ accepteres af en NFA M hvis og kun hvis $\delta^*(q_0, x) \cap A \neq \emptyset$
- $L(M) = \{x | x \text{ accepteres af } M\}$

Sproget af en NFA

Givet en NFA $M = (Q, \Sigma, q_0, A, \delta)$:

Definer den udvidede transitionsfunktion:

$$\delta^*(q,x) = \begin{cases} \{q\} & \text{hvis } x = \Lambda \\ \bigcup_{r \in \delta^*(q,y)} \delta(r,a) & \text{hvis } x = y \cdot a \end{cases}$$

- $x \in \Sigma^*$ accepteres af en NFA M hvis og kun hvis $\delta^*(q_0, x) \cap A \neq \emptyset$
- $L(M) = \{x | x \text{ accepteres af } M\}$

Sproget af en NFA

Givet en NFA $M = (Q, \Sigma, q_0, A, \delta)$:

Definer den udvidede transitionsfunktion:

$$\delta^*(q,x) = \begin{cases} \{q\} & \text{hvis } x = \Lambda \\ \bigcup_{r \in \delta^*(q,y)} \delta(r,a) & \text{hvis } x = y \cdot a \end{cases}$$

- $x \in \Sigma^*$ accepteres af en NFA M hvis og kun hvis $\delta^*(q_0, x) \cap A \neq \emptyset$
- $L(M) = \{x | x \text{ accepteres af } M\}$

NFA'er er ofte mindre end FA'er

- $L_{42} = \{x \mid |x| \ge 42 \land 42 \text{ tegn fra højre er et } 1\}$
- Sidste seminar viste vi at det kræver mindst 2^{42} tilstande at lave en FA der genkender L_{42}
- En NFA der genkender L₄₂ med 43 tilstande:

NFA'er er ofte mindre end FA'er

- $L_{42} = \{x \mid |x| \ge 42 \land 42 \text{ tegn fra højre er et } 1\}$
- Sidste seminar viste vi at det kræver mindst 2^{42} tilstande at lave en FA der genkender L_{42}
- En NFA der genkender L₄₂ med 43 tilstande:

NFA'er er ofte mindre end FA'er

- $L_{42} = \{x \mid |x| \ge 42 \land 42 \text{ tegn fra højre er et } 1\}$
- Sidste seminar viste vi at det kræver mindst 2^{42} tilstande at lave en FA der genkender L_{42}
- En NFA der genkender L₄₂ med 43 tilstande:

Bliver strengen 110110 accepteret af denne automat?

Bliver strengen 110110 accepteret af denne automat?

Ja! der findes en sti til accept:

$$q_0 \overset{1}{\rightarrow} q_2 \overset{1}{\rightarrow} q_3 \overset{0}{\rightarrow} q_0 \overset{1}{\rightarrow} q_1 \overset{1}{\rightarrow} q_0 \overset{0}{\rightarrow} q_4$$

Bliver strengen 110110 accepteret af denne automat?

Ja! der findes en sti til accept:

$$q_0 \xrightarrow{1} q_2 \xrightarrow{1} q_3 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_0 \xrightarrow{0} q_4$$

Vi kan systematisk lede efter sådan en sti: $\{q_0\}$

Bliver strengen 110110 accepteret af denne automat?

Ja! der findes en sti til accept:

$$q_0 \xrightarrow{1} q_2 \xrightarrow{1} q_3 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_0 \xrightarrow{0} q_4$$

Vi kan systematisk lede efter sådan en sti: $\{q_0\} \stackrel{1}{ o} \{q_1,q_2\}$

Bliver strengen 110110 accepteret af denne automat?

Ja! der findes en sti til accept:

$$q_0 \xrightarrow{1} q_2 \xrightarrow{1} q_3 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_0 \xrightarrow{0} q_4$$

Vi kan systematisk lede efter sådan en sti: $\{q_0\} \stackrel{1}{ o} \{q_1,q_2\} \stackrel{1}{ o} \{q_0,q_3\}$

Bliver strengen 110110 accepteret af denne automat?

Ja! der findes en sti til accept:

$$q_0 \xrightarrow{1} q_2 \xrightarrow{1} q_3 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_0 \xrightarrow{0} q_4$$

Vi kan systematisk lede efter sådan en sti: $\{q_0\}$ $\xrightarrow{1}$ $\{q_1, q_2\}$ $\xrightarrow{1}$ $\{q_0, q_3\}$ $\xrightarrow{0}$ $\{q_4, q_0\}$ $\xrightarrow{1}$ $\{q_1, q_2\}$ $\xrightarrow{1}$ $\{q_0, q_3\}$ $\xrightarrow{0}$ $\{q_4, q_0\}$

Øvelser:

• [Martin]: opg. 4.2. (p. 156) Drawing an NFA and using the definition of δ^*

Plan

Nondeterministiske automater

Determinisering

NFA-A'er

Kleenes sætning

Kleenes sætning del 1

Kleenes sætning del 2

Frokost

Minimering

MyHill Nerode

Java projekt

- Hvis man ser på den grafiske repræsentation, så er det trivielt, en FA er bare en simpel NFA.
- Formelt: givet en FA: $N = (Q, \Sigma, q_0, A, \delta)$
- Konstruer en NFA: $M = (Q, \Sigma, q_0, A, \delta')$ hvor:

$$\delta'(q, a) = \{\delta(q, a)\}\$$

- Hvis man ser på den grafiske repræsentation, så er det trivielt, en FA er bare en simpel NFA.
- Formelt: givet en FA: $N = (Q, \Sigma, q_0, A, \delta)$
- Konstruer en NFA: $M = (Q, \Sigma, q_0, A, \delta')$ hvor:

$$\delta'(q, a) = \{\delta(q, a)\}\$$

- Hvis man ser på den grafiske repræsentation, så er det trivielt, en FA er bare en simpel NFA.
- Formelt: givet en FA: $N = (Q, \Sigma, q_0, A, \delta)$
- Konstruer en NFA: $M = (Q, \Sigma, q_0, A, \delta')$ hvor:

$$\delta'(q,a) = \{\delta(q,a)\}\$$

- Hvis man ser på den grafiske repræsentation, så er det trivielt, en FA er bare en simpel NFA.
- Formelt: givet en FA: $N = (Q, \Sigma, q_0, A, \delta)$
- Konstruer en NFA: $M = (Q, \Sigma, q_0, A, \delta')$ hvor:

$$\delta'(q, a) = \{\delta(q, a)\}\$$

Dette kaldes determinisering

Dette kaldes determinisering

- $Q' = 2^{Q}$ (tilstandene i FA'en svarer til en mængde af tilstande i NFA'en)
- $q_0' = \{q_0\}$
- $A' = \{ q \in Q' | A \cap q \neq \emptyset \}$
- $\delta'(q, a) = \bigcup_{r \in q} \delta(r, a)$
- Husk bevis for korrekthed...

- $Q' = 2^{Q}$ (tilstandene i FA'en svarer til en mængde af tilstande i NFA'en)
- $q_0' = \{q_0\}$
- $A' = \{ q \in Q' | A \cap q \neq \emptyset \}$
- $\delta'(q, a) = \bigcup_{r \in q} \delta(r, a)$
- Husk bevis for korrekthed...

- $Q' = 2^{Q}$ (tilstandene i FA'en svarer til en mængde af tilstande i NFA'en)
- $q_0' = \{q_0\}$
- $A' = \{ q \in Q' | A \cap q \neq \emptyset \}$
- $\delta'(q, a) = \bigcup_{r \in q} \delta(r, a)$
- Husk bevis for korrekthed...

- $Q' = 2^{Q'}$ (tilstandene i FA'en svarer til en mængde af tilstande i NFA'en)
- $q_0' = \{q_0\}$
- $A' = \{q \in Q' | A \cap q \neq \emptyset\}$
- $\delta'(q, a) = \bigcup_{r \in q} \delta(r, a)$
- Husk bevis for korrekthed...

- $Q' = 2^{Q}$ (tilstandene i FA'en svarer til en mængde af tilstande i NFA'en)
- $q_0' = \{q_0\}$
- $A' = \{q \in Q' | A \cap q \neq \emptyset\}$
- $\delta'(q, a) = \bigcup_{r \in q} \delta(r, a)$
- Husk bevis for korrekthed...

- $Q' = 2^{Q}$ (tilstandene i FA'en svarer til en mængde af tilstande i NFA'en)
- $q_0' = \{q_0\}$
- $A' = \{q \in Q' | A \cap q \neq \emptyset\}$
- $\delta'(q, a) = \bigcup_{r \in q} \delta(r, a)$
- Husk bevis for korrekthed...

• Husk definitionen for L(M) og L(N)

$$L(M) = \{x | \delta'^*(q_0', x) \in A'\}$$

 $L(N) = \{x | \delta^*(q_0, x) \cap A \neq \emptyset\}$

$$\forall x \in \Sigma^* : \delta'^*(q'_0, x) = \delta^*(q_0, x)$$

Bevis: induktion i strukturen af x...

- $\delta'^*(q'_0, x) \in A' \stackrel{\mathsf{lemma}}{\Leftrightarrow} \delta^*(q_0, x) \in A' \stackrel{\mathsf{def} \text{ af } A}{\Leftrightarrow} \delta^*(q_0, x) \cap A \neq \emptyset$
- D.v.s. L(M) = L(N)

Lemma:

• Husk definitionen for L(M) og L(N)

$$L(M) = \{x | \delta'^*(q_0', x) \in A'\}$$

$$L(N) = \{x | \delta^*(q_0, x) \cap A \neq \emptyset\}$$

Lemma:

$$\forall x \in \Sigma^* : \delta'^*(q'_0, x) = \delta^*(q_0, x)$$

Bevis: induktion i strukturen af x...

- $\delta'^*(q'_0, x) \in A' \stackrel{\mathsf{lemma}}{\Leftrightarrow} \delta^*(q_0, x) \in A' \stackrel{\mathsf{def} \text{ af } A}{\Leftrightarrow} \delta^*(q_0, x) \cap A \neq \emptyset$
- D.v.s. L(M) = L(N)

• Husk definitionen for L(M) og L(N)

$$L(M) = \{x | \delta'^*(q_0', x) \in A'\}$$

$$L(N) = \{x | \delta^*(q_0, x) \cap A \neq \emptyset\}$$

Lemma:

$$\forall x \in \Sigma^* : \delta'^*(q_0', x) = \delta^*(q_0, x)$$

Bevis: induktion i strukturen af x...

- $\delta'^*(q_0', x) \in A' \stackrel{\mathsf{lemma}}{\Leftrightarrow} \delta^*(q_0, x) \in A' \stackrel{\mathsf{def} \text{ af } A}{\Leftrightarrow} \delta^*(q_0, x) \cap A \neq \emptyset$
- D.v.s. L(M) = L(N)

• Husk definitionen for L(M) og L(N)

$$L(M) = \{x | \delta'^*(q_0', x) \in A'\}$$

$$L(N) = \{x | \delta^*(q_0, x) \cap A \neq \emptyset\}$$

Lemma:

$$\forall x \in \Sigma^* : \delta'^*(q'_0, x) = \delta^*(q_0, x)$$

Bevis: induktion i strukturen af x...

- $\delta'^*(q_0', x) \in A' \stackrel{\mathsf{lemma}}{\Leftrightarrow} \delta^*(q_0, x) \in A' \stackrel{\mathsf{def} \text{ af } A}{\Leftrightarrow} \delta^*(q_0, x) \cap A \neq \emptyset$
- D.v.s. L(M) = L(N)

Nøjes med opnåelige tilstande

- Delmængdekonstruktionen bruger $Q' = 2^Q$
- Som ved produktkonstruktionen: I praksis er hele tilstandsrummet sjældent nødvendigt
- Som sidste gang: Kun tilstande, der er opnåelige fra starttilstanden er relevante for sproget (Bevis dette: Opg. 3.29, p. 117)

Nøjes med opnåelige tilstande

- Delmængdekonstruktionen bruger $Q' = 2^Q$
- Som ved produktkonstruktionen: I praksis er hele tilstandsrummet sjældent nødvendigt
- Som sidste gang: Kun tilstande, der er opnåelige fra starttilstanden er relevante for sproget (Bevis dette: Opg. 3.29, p. 117)

Nøjes med opnåelige tilstande

- Delmængdekonstruktionen bruger $Q' = 2^Q$
- Som ved produktkonstruktionen: I praksis er hele tilstandsrummet sjældent nødvendigt
- Som sidste gang: Kun tilstande, der er opnåelige fra starttilstanden er relevante for sproget (Bevis dette: Opg. 3.29, p. 117)

Øvelser

• [Martin] Opg. 4.10 (a+e) (p. 157) Udfør selv delmængdekonstruktionen.

Plan

Nondeterministiske automater

Determinisering

NFA-Λ'er

Kleenes sætning del 1 Kleenes sætning del 2

Frokost

Minimering
MyHill Nerode

Java projekt

NFA'er med Λ-transitioner

- For nemt at kunne oversætte regulære udtryk til automater generaliserer vi automaterne yderligere
- En Λ-transition er en transition, der ikke læser et symbol fra input-strengen

NFA'er med Λ-transitioner

- For nemt at kunne oversætte regulære udtryk til automater generaliserer vi automaterne yderligere
- En Λ-transition er en transition, der ikke læser et symbol fra input-strengen

NFA'er med Λ -transitioner

- For nemt at kunne oversætte regulære udtryk til automater generaliserer vi automaterne yderligere
- En Λ-transition er en transition, der ikke læser et symbol fra input-strengen

NFA'er med Λ-transitioner

- For nemt at kunne oversætte regulære udtryk til automater generaliserer vi automaterne yderligere
- En Λ-transition er en transition, der ikke læser et symbol fra input-strengen

Formel definition af NFA- Λ

- Q er en endelig mængde af tilstande
- \bullet Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta: Q \times (\Sigma \cup \Lambda) \to 2^Q$ er en transitionsfunktion

Formel definition af NFA-Λ

- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta: Q \times (\Sigma \cup \Lambda) \to 2^Q$ er en transitionsfunktion

Formel definition af NFA-Λ

- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta: Q \times (\Sigma \cup \Lambda) \to 2^Q$ er en transitionsfunktion

Formel definition af NFA-Λ

- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta: Q \times (\Sigma \cup \Lambda) \to 2^Q$ er en transitionsfunktion

Formel definition af NFA- Λ

- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- $A \subseteq Q$ er accepttilstande
- $\delta: Q \times (\Sigma \cup \Lambda) \to 2^Q$ er en transitionsfunktion

- Hvor kan man komme til ved kun at bruge Λ-transitioner?
- Givet en mængde $S \subseteq Q$, definer Λ -lukningen $\Lambda(S)$ som den mindste mængde der opfylder flg.:
- $S \subseteq \Lambda(S)$
- $\forall q \in \Lambda(S) : \delta(q, \Lambda) \in \Lambda(S)$

- Hvor kan man komme til ved kun at bruge Λ-transitioner?
- Givet en mængde $S \subseteq Q$, definer Λ -lukningen $\Lambda(S)$ som den mindste mængde der opfylder flg.:
- $S \subseteq \Lambda(S)$
- $\forall q \in \Lambda(S) : \delta(q, \Lambda) \in \Lambda(S)$

- Hvor kan man komme til ved kun at bruge Λ-transitioner?
- Givet en mængde $S \subseteq Q$, definer Λ -lukningen $\Lambda(S)$ som den mindste mængde der opfylder flg.:
- $S \subseteq \Lambda(S)$
- $\forall q \in \Lambda(S) : \delta(q, \Lambda) \in \Lambda(S)$

- Hvor kan man komme til ved kun at bruge Λ-transitioner?
- Givet en mængde $S \subseteq Q$, definer Λ -lukningen $\Lambda(S)$ som den mindste mængde der opfylder flg.:
- $S \subseteq \Lambda(S)$
- $\forall q \in \Lambda(S) : \delta(q, \Lambda) \in \Lambda(S)$

Sproget for en NFA-A

• Givet en NFA- Λ $M=(Q,\Sigma,q_0,A,\delta)$, definer den udvidede transitionsfunktion $\delta^*:Q\times\Sigma^*\to 2^Q$ ved

$$\delta^*(q, x) = \begin{cases} \Lambda(q) & \text{hvis } x = \Lambda \\ \Lambda(\bigcup_{r \in \delta^*(q, y)} \delta(r, a)) & \text{hvis } x = y \cdot a \end{cases}$$

Sproget for en NFA-A

• Givet en NFA- Λ $M=(Q,\Sigma,q_0,A,\delta)$, definer den udvidede transitionsfunktion $\delta^*:Q\times\Sigma^*\to 2^Q$ ved

$$\delta^*(q,x) = \begin{cases} \Lambda(q) & \text{hvis } x = \Lambda \\ \Lambda(\bigcup_{r \in \delta^*(q,y)} \delta(r,a)) & \text{hvis } x = y \cdot a \end{cases}$$

- $\delta^*(q_0, \Lambda) = \Lambda(q_0) = \{q_0\}$
- $\delta^*(q_0, \Lambda \cdot 0) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda)} \delta(r, 0)) = \{q_1, q_2\}$
- $\delta^*(q_0, \Lambda \cdot 0 \cdot 1) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda \cdot 0)} \delta(r, 1)) = \Lambda(\{q_1, q_2\} \cup \{q_3\}) = \{q_1, q_2, q_3\}$
- - d.v.s. strengen 01 bliver accepteret af automaten.

- $\delta^*(q_0, \Lambda) = \Lambda(q_0) = \{q_0\}$
- $\delta^*(q_0, \Lambda \cdot 0) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda)} \delta(r, 0)) = \{q_1, q_2\}$
- $\delta^*(q_0, \Lambda \cdot 0 \cdot 1) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda \cdot 0)} \delta(r, 1)) = \Lambda(\{q_1, q_2\} \cup \{q_3\}) = \{q_1, q_2, q_3\}$
- - d.v.s. strengen 01 bliver accepteret af automaten.

- $\delta^*(q_0, \Lambda) = \Lambda(q_0) = \{q_0\}$
- $\delta^*(q_0, \Lambda \cdot 0) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda)} \delta(r, 0)) = \{q_1, q_2\}$
- $\delta^*(q_0, \Lambda \cdot 0 \cdot 1) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda \cdot 0)} \delta(r, 1)) = \Lambda(\{q_1, q_2\} \cup \{q_3\}) = \{q_1, q_2, q_3\}$
- - d.v.s. strengen 01 bliver accepteret af automaten.

- $\delta^*(q_0, \Lambda) = \Lambda(q_0) = \{q_0\}$
- $\delta^*(q_0, \Lambda \cdot 0) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda)} \delta(r, 0)) = \{q_1, q_2\}$
- $\delta^*(q_0, \Lambda \cdot 0 \cdot 1) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda \cdot 0)} \delta(r, 1)) = \Lambda(\{q_1, q_2\} \cup \{q_3\}) = \{q_1, q_2, q_3\}$
- - d.v.s. strengen 01 bliver accepteret af automaten.

- $\delta^*(q_0, \Lambda) = \Lambda(q_0) = \{q_0\}$
- $\delta^*(q_0, \Lambda \cdot 0) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda)} \delta(r, 0)) = \{q_1, q_2\}$
- $\delta^*(q_0, \Lambda \cdot 0 \cdot 1) = \Lambda(\bigcup_{r \in \delta^*(q_0, \Lambda \cdot 0)} \delta(r, 1)) = \Lambda(\{q_1, q_2\} \cup \{q_3\}) = \{q_1, q_2, q_3\}$
- - d.v.s. strengen 01 bliver accepteret af automaten.

Enhver NFA kan oversættes til en NFA-Λ

- Med den grafiske repræsentation er det trivielt
- Med de formelle definitioner: Givet en NFA $M=(Q,\Sigma,q_0,A,\delta_M)$, definer en NFA- Λ $N=(Q,\Sigma,q_0,A,\delta_N)$ hvor $\delta_N(q,a)=\delta M(q,a)$ for alle $q\in Q$ og $a\in \Sigma$ $\delta_N(q,\Lambda)=$ for alle $q\in Q$ Bevis for at L(N)=L(M): induktion...

Enhver NFA kan oversættes til en NFA-Λ

- Med den grafiske repræsentation er det trivielt
- Med de formelle definitioner: Givet en NFA $M=(Q,\Sigma,q_0,A,\delta_M)$, definer en NFA- Λ $N=(Q,\Sigma,q_0,A,\delta_N)$ hvor $\delta_N(q,a)=\delta M(q,a)$ for alle $q\in Q$ og $a\in \Sigma$ $\delta_N(q,\Lambda)=$ for alle $q\in Q$ Bevis for at L(N)=L(M): induktion...

- Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$,
- definer en NFA $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$ ved
- $\delta_1(q,a) = \delta^*(q,a)$
- $A_1 = \begin{cases} A \cup \{q_0\} & \text{hvis } \Lambda(\{q_0\}) \cap A \neq \emptyset \\ A & \text{ellers} \end{cases}$
- Der gælder nu: $L(M_1) = L(M)$

- Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$,
- definer en NFA $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$ ved
- $\delta_1(q,a) = \delta^*(q,a)$
- $A_1 = \begin{cases} A \cup \{q_0\} & \text{hvis } \Lambda(\{q_0\}) \cap A \neq \emptyset \\ A & \text{ellers} \end{cases}$
- Der gælder nu: $L(M_1) = L(M)$

- Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$,
- definer en NFA $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$ ved
- $\delta_1(q,a) = \delta^*(q,a)$
- $A_1 = \begin{cases} A \cup \{q_0\} & \text{hvis } \Lambda(\{q_0\}) \cap A \neq \emptyset \\ A & \text{ellers} \end{cases}$
- Der gælder nu: $L(M_1) = L(M)$

- Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$,
- definer en NFA $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$ ved
- $\delta_1(q,a) = \delta^*(q,a)$
- $A_1 = egin{cases} A \cup \{q_0\} & ext{hvis } \Lambda(\{q_0\}) \cap A
 eq \emptyset \\ A & ext{ellers} \end{cases}$
- Der gælder nu: $L(M_1) = L(M)$

- Givet en NFA- Λ $M = (Q, \Sigma, q_0, A, \delta)$,
- definer en NFA $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$ ved
- $\delta_1(q,a) = \delta^*(q,a)$
- $A_1 = egin{cases} A \cup \{q_0\} & ext{hvis } \Lambda(\{q_0\}) \cap A
 eq \emptyset \\ A & ext{ellers} \end{cases}$
- Der gælder nu: $L(M_1) = L(M)$

Eksempel

- NFA-Λ:
- Find $\delta^*(q, a)$ for alle $q \in Q$ og $a \in \Sigma$
- Se om $\Lambda(\{q_0\}) \cap A \neq \emptyset$

q	$\delta(q, \Lambda)$	$\delta(q,0)$	$\delta(q,1)$	$\delta^*(q,0)$	$\delta^*(q,1)$
Α	{B}	{ <i>A</i> }	{}	{A,B,C,D}	{}
В	{D}	{C}	{}	{C,D}	{}
C	{}	{}	{B}	{}	{B,D}
D	{}	$\{D\}$	{}	{D}	{}

Eksempel

- NFA-Λ:
- Find $\delta^*(q, a)$ for alle $q \in Q$ og $a \in \Sigma$
- Se om $\Lambda(\{q_0\}) \cap A \neq \emptyset$

q	$\delta(q, \Lambda)$	$\delta(q,0)$	$\delta(q,1)$	$\delta^*(q,0)$	$\delta^*(q,1)$
Α	{B}	{ <i>A</i> }	{}	{A,B,C,D}	{}
В	{D}	{C}	{}	{C,D}	{}
C	{}	{}	{B}	{}	{B,D}
D	{}	$\{D\}$	{}	{D}	{}

Eksempel

- NFA-Λ:
- Find $\delta^*(q, a)$ for alle $q \in Q$ og $a \in \Sigma$
- Se om $\Lambda(\{q_0\}) \cap A \neq \emptyset$

q	$\delta(q, \Lambda)$	$\delta(q,0)$	$\delta(q,1)$	$\delta^*(q,0)$	$\delta^*(q,1)$
Α	{ <i>B</i> }	{ <i>A</i> }	{}	{A,B,C,D}	{}
В	{D}	{C}	{}	{C,D}	{}
C	{}	{}	{B}	{}	{B,D}
D	{}	$\{D\}$	{}	{D}	{}

- Vi skal vise: $\forall x \in \Sigma^* : x \in L(M_1) \Leftrightarrow x \in L(M) \ x = \Lambda$: brug definition af A_1 og Λ -lukning...
- $x = a \in \Sigma$: brug A_1 , $\delta^*(q, a) = \delta_1(q, a)$ og Λ -lukning...
- $x = ya, y \neq \Lambda$: Induktionshypotese: $\forall y \in \Sigma^*, y \neq \Lambda : \delta^*(q_0, y) = \delta_1(q_0, y) \Rightarrow \delta^*(q_0, x) = \delta_1^*(q_0, x)$
- - se bogen Th. 4.2 p. 141.

- Vi skal vise: $\forall x \in \Sigma^* : x \in L(M_1) \Leftrightarrow x \in L(M) \ x = \Lambda$: brug definition af A_1 og Λ -lukning...
- $x = a \in \Sigma$: brug A_1 , $\delta^*(q, a) = \delta_1(q, a)$ og Λ -lukning...
- $x = ya, y \neq \Lambda$: Induktionshypotese: $\forall y \in \Sigma^*, y \neq \Lambda : \delta^*(q_0, y) = \delta_1(q_0, y) \Rightarrow \delta^*(q_0, x) = \delta_1^*(q_0, x)$...
- - se bogen Th. 4.2 p. 141.

- Vi skal vise: $\forall x \in \Sigma^* : x \in L(M_1) \Leftrightarrow x \in L(M) \ x = \Lambda$: brug definition af A_1 og Λ -lukning...
- $x = a \in \Sigma$: brug A_1 , $\delta^*(q, a) = \delta_1(q, a)$ og Λ -lukning...
- $x = ya, y \neq \Lambda$: Induktionshypotese: $\forall y \in \Sigma^*, y \neq \Lambda : \delta^*(q_0, y) = \delta_1(q_0, y) \Rightarrow \delta^*(q_0, x) = \delta_1^*(q_0, x)$...
- - se bogen Th. 4.2 p. 141.

- Vi skal vise: $\forall x \in \Sigma^* : x \in L(M_1) \Leftrightarrow x \in L(M) \ x = \Lambda$: brug definition af A_1 og Λ -lukning...
- $x = a \in \Sigma$: brug A_1 , $\delta^*(q, a) = \delta_1(q, a)$ og Λ -lukning...
- $x = ya, y \neq \Lambda$: Induktionshypotese: $\forall y \in \Sigma^*, y \neq \Lambda : \delta^*(q_0, y) = \delta_1(q_0, y) \Rightarrow \delta^*(q_0, x) = \delta_1^*(q_0, x)$
 - • •
- se bogen Th. 4.2 p. 141.

Øvelser

- [Martin] Opg. 4.13 (p.159) Kør strenge på en NFA-Λ
- [Martin] Opg. 4.28 (e) Brug algoritmen til Λ -eliminering

Plan

Nondeterministiske automater

Determinisering

NFA-A'er

Kleenes sætning

Kleenes sætning del 1 Kleenes sætning del 2

Frokost

Minimering
MyHill Nerode

Java projekt

- Vi har defineret 4 formalismer:
 - regulære udtryk
 - FA.
 - NFA.
 - NFA-A
- og er ved konstruktivt at bevise ækvivalens i udtrykskraft

- Vi har defineret 4 formalismer:
 - regulære udtryk
 - FA,
 - NFA.
 - NFA-A
- og er ved konstruktivt at bevise ækvivalens i udtrykskraft

- Vi har defineret 4 formalismer:
 - regulære udtryk
 - FA.
 - NFA.
 - NFA-A
- og er ved konstruktivt at bevise ækvivalens i udtrykskraft

- Vi har defineret 4 formalismer:
 - regulære udtryk
 - FA.
 - NFA.
 - NFA-A
- og er ved konstruktivt at bevise ækvivalens i udtrykskraft

- Vi har defineret 4 formalismer:
 - regulære udtryk
 - FA,
 - NFA,
 - NFA-Λ
- og er ved konstruktivt at bevise ækvivalens i udtrykskraft

- Vi har defineret 4 formalismer:
 - regulære udtryk
 - FA,
 - NFA,
 - NFA-Λ
- og er ved konstruktivt at bevise ækvivalens i udtrykskraft

Ethvert regulært udtryk kan oversættes til en NFA-Λ

(Kleenes sætning, del 1)

- Bevis: Induktion i strukturen af det regulære udtryk r.
- Vis konstruktivt for hvert tilfælde hvordan man kan lave den korrekte NFA-Λ

- $r = \emptyset$
- $r = \Lambda$
- r = a, hvor $a \in \Sigma$

Basis

•
$$r = \emptyset$$

•
$$r = \Lambda$$

•
$$r = a$$
, hvor $a \in \Sigma$

•
$$r = \emptyset$$

•
$$r = \Lambda$$

•
$$r = a$$
, hvor $a \in \Sigma$

Induktionsskridt

- For alle deludtryk s af r kan vi udnytte induktionshypotesen:
- Der eksisterer en NFA- Λ M_s hvor $L(M_s) = L(s)$

Induktionsskridt

- For alle deludtryk s af r kan vi udnytte induktionshypotesen:
- Der eksisterer en NFA- Λ M_s hvor $L(M_s) = L(s)$

$$r = r_1 + r_2$$

Induktionsskridt (part 2)

•
$$r = r_1 \cdot r_2$$

•
$$r = r_1^*$$

Induktionsskridt (part 2)

• $r = r_1 \cdot r_2$

• $r = r_1^*$

Induktionsskridt (part 2)

• $r = r_1 \cdot r_2$

• $r = r_1^*$

Induktionsskridt (part 2)

• $r = r_1 \cdot r_2$

• $r = r_1^*$

Formel beskrivelse og bevis for korrekthed

Se beviset i bogen: p. 146

- 0:
- 1:
- 00:
- 10:

- 0: O C
- 1:
- 00:
- 10:

- 00:
- 10:

- 10:

Konstruer en NFA- Λ for det regulære udtryk $(00 + 1)^*(10)^*$

• 00 + 1:

• $(00+1)^*$:

Konstruer en NFA- Λ for det regulære udtryk $(00+1)^*(10)^*$

• 00 + 1:

• $(00+1)^*$:

Konstruer en NFA- Λ for det regulære udtryk $(00 + 1)^*(10)^*$

• 00 + 1:

• $(00+1)^*$:

Konstruer en NFA- Λ for det regulære udtryk $(00 + 1)^*(10)^*$

• (10)*:

• $(00+1)^*(10)^*$:

Konstruer en NFA- Λ for det regulære udtryk $(00 + 1)^*(10)^*$

• (10)*:

• $(00+1)^*(10)^*$:

Konstruer en NFA- Λ for det regulære udtryk $(00+1)^*(10)^*$

• (10)*:

• $(00+1)^*(10)^*$:

Øvelser

[Martin] Opg. 4.35 (a) (p. 163)
 Udfør algoritmen for konstruktion af NFA-Λ fra regulært udtryk.

Enhver FA kan oversættes til et regulært udtryk

- Kleene's sætning del 2.
- Vi laver bevis med induktion naturligvis, men induktion i hvad?

Fra FA til regulært udtryk

- For en FA $M = (Q, \Sigma, q_0, A, \delta)$ er L(M) defineret som $L(M) = \{x \in \Sigma^* | \delta^*(q_0, x) \in A\}$
- Da A er endelig kan L(M) udtrykkes som en endelig forening af sprog på form $L(p,q) = \{x \in \Sigma^* | \delta^*(p,x) = q\}$
- Vi vil vise at hvert af disse sprog kan oversættes til et regulært udtryk, r(p,q), og derefter kombinere disse med "+"

Fra FA til regulært udtryk

- For en FA $M = (Q, \Sigma, q_0, A, \delta)$ er L(M) defineret som $L(M) = \{x \in \Sigma^* | \delta^*(q_0, x) \in A\}$
- Da A er endelig kan L(M) udtrykkes som en endelig forening af sprog på form $L(p,q) = \{x \in \Sigma^* | \delta^*(p,x) = q\}$
- Vi vil vise at hvert af disse sprog kan oversættes til et regulært udtryk, r(p,q), og derefter kombinere disse med "+"

Fra FA til regulært udtryk

- For en FA $M = (Q, \Sigma, q_0, A, \delta)$ er L(M) defineret som $L(M) = \{x \in \Sigma^* | \delta^*(q_0, x) \in A\}$
- Da A er endelig kan L(M) udtrykkes som en endelig forening af sprog på form $L(p,q) = \{x \in \Sigma^* | \delta^*(p,x) = q\}$
- Vi vil vise at hvert af disse sprog kan oversættes til et regulært udtryk, r(p,q), og derefter kombinere disse med "+"

- Antag tilstandene i M er nummereret 1, ..., |Q|
- Definer L(p, q, k) hvor $p, q \in Q$ og $k \in \{1..|Q|\}$ som: Mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer $\leq k$ (fraregnet endepunkterne)

- dvs. L(p,q) = L(p,q,|Q|)
- Vi vil vise ved induktion i k at L(p,q,k) svarer til et regulært udtryk, r(p,q,k)
- dvs. vælg r(p,q) = r(p,q,|Q|)

- Antag tilstandene i M er nummereret 1, ..., |Q|
- Definer L(p,q,k) hvor $p,q\in Q$ og $k\in\{1..|Q|\}$ som: Mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer $\leq k$ (fraregnet endepunkterne)

- dvs. L(p,q) = L(p,q,|Q|)
- Vi vil vise ved induktion i k at L(p,q,k) svarer til et regulært udtryk, r(p,q,k)
- dvs. vælg r(p,q) = r(p,q,|Q|)

- Antag tilstandene i M er nummereret 1, ..., |Q|
- Definer L(p, q, k) hvor $p, q \in Q$ og $k \in \{1..|Q|\}$ som: Mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer $\leq k$ (fraregnet endepunkterne)

- dvs. L(p,q) = L(p,q,|Q|)
- Vi vil vise ved induktion i k at L(p,q,k) svarer til et regulært udtryk, r(p,q,k)
- dvs. vælg r(p,q) = r(p,q,|Q|)

- Antag tilstandene i M er nummereret 1, ..., |Q|
- Definer L(p, q, k) hvor $p, q \in Q$ og $k \in \{1..|Q|\}$ som: Mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer $\leq k$ (fraregnet endepunkterne)

- dvs. L(p,q) = L(p,q,|Q|)
- Vi vil vise ved induktion i k at L(p,q,k) svarer til et regulært udtryk, r(p,q,k)
- dvs. vælg r(p,q) = r(p,q,|Q|)

- Antag tilstandene i M er nummereret 1, ..., |Q|
- Definer L(p, q, k) hvor $p, q \in Q$ og $k \in \{1..|Q|\}$ som: Mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer $\leq k$ (fraregnet endepunkterne)

- dvs. L(p,q) = L(p,q,|Q|)
- Vi vil vise ved induktion i k at L(p,q,k) svarer til et regulært udtryk, r(p,q,k)
- dvs. vælg r(p,q) = r(p,q,|Q|)

- L(p, q, 0) er mængden af strenge, der fører fra p til q uden at gå gennem nogen tilstande (fraregnet endepunkterne)
- hvis $p \neq q$: $L(p, q, 0) = \{a \in \Sigma | \delta(p, a) = q\}$
- hvis p = q: $L(p, q, 0) = \{a \in \Sigma | \delta(p, a) = p\} \cup \{\Lambda\}$
- dvs. vi kan altid finde et regulært udtryk r(p, q, 0) for L(p, q, 0)

- L(p, q, 0) er mængden af strenge, der fører fra p til q uden at gå gennem nogen tilstande (fraregnet endepunkterne)
- hvis $p \neq q$: $L(p, q, 0) = \{a \in \Sigma | \delta(p, a) = q\}$
- hvis p = q: $L(p, q, 0) = \{a \in \Sigma | \delta(p, a) = p\} \cup \{\Lambda\}$
- dvs. vi kan altid finde et regulært udtryk r(p, q, 0) for L(p, q, 0)

- L(p, q, 0) er mængden af strenge, der fører fra p til q uden at gå gennem nogen tilstande (fraregnet endepunkterne)
- hvis $p \neq q$: $L(p, q, 0) = \{a \in \Sigma | \delta(p, a) = q\}$
- hvis p = q: $L(p, q, 0) = \{a \in \Sigma | \delta(p, a) = p\} \cup \{\Lambda\}$
- dvs. vi kan altid finde et regulært udtryk r(p, q, 0) for L(p, q, 0)

- L(p, q, 0) er mængden af strenge, der fører fra p til q uden at gå gennem nogen tilstande (fraregnet endepunkterne)
- hvis $p \neq q$: $L(p, q, 0) = \{a \in \Sigma | \delta(p, a) = q\}$
- hvis p = q: $L(p, q, 0) = \{a \in \Sigma | \delta(p, a) = p\} \cup \{\Lambda\}$
- dvs. vi kan altid finde et regulært udtryk r(p, q, 0) for L(p, q, 0)

- L(p,q,k+1) er mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer < k + 1
- To tilfælde:
 - Strenge der ikke går gennem tilstand k + 1: L(p, q, k)
 - Strenge der går gennem tilstand k + 1:
- dvs. $L(p, q, k+1) = L(p, q, k) \cup L(p, k+1, k) L(k+1, k+1, k)^* L(k+1, q, k)$
- som vha. induktionshypotesen svarer til et regulært udtryk r(p, q, k+1) = r(p, q, k) + r(p, k+1, k)r(k+1, k+1, k)*r(k+1, q, k)

- L(p,q,k+1) er mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer < k + 1
- To tilfælde:
 - Strenge der ikke går gennem tilstand k + 1: L(p, q, k)
 - Strenge der går gennem tilstand k + 1: L(p, k+1, k)L(k+1, k+1, k)*L(k+1, q, k)
- dvs. $L(p, q, k+1) = L(p, q, k) \cup L(p, k+1, k) L(k+1, k+1, k)^* L(k+1, q, k)$
- som vha. induktionshypotesen svarer til et regulært udtryk r(p, q, k+1) = r(p, q, k) + r(p, k+1, k)r(k+1, k+1, k)*r(k+1, q, k)

- L(p,q,k+1) er mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer $\leq k+1$
- To tilfælde:
 - Strenge der ikke går gennem tilstand k+1: L(p,q,k)
 - Strenge der går gennem tilstand k + 1: L(p, k + 1, k)L(k + 1, k + 1, k)*L(k + 1, q, k)
- dvs. $L(p, q, k+1) = L(p, q, k) \cup L(p, k+1, k)L(k+1, k+1, k)^*L(k+1, q, k)$
- som vha. induktionshypotesen svarer til et regulært udtryk $r(p,q,k+1)=r(p,q,k)+r(p,k+1,k)r(k+1,k+1,k)^*r(k+1,q,k)$

- L(p,q,k+1) er mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer $\leq k+1$
- To tilfælde:
 - Strenge der ikke går gennem tilstand k+1: L(p,q,k)
 - Strenge der går gennem tilstand k + 1: L(p, k + 1, k)L(k + 1, k + 1, k)*L(k + 1, q, k)
- dvs. $L(p,q,k+1) = L(p,q,k) \cup L(p,k+1,k)L(k+1,k+1,k)*L(k+1,q,k)$
- som vha. induktionshypotesen svarer til et regulært udtryk $r(p,q,k+1)=r(p,q,k)+r(p,k+1,k)r(k+1,k+1,k)^*r(k+1,q,k)$

k+1

- L(p,q,k+1) er mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer $\leq k+1$
- To tilfælde:
 - Strenge der ikke går gennem tilstand k+1: L(p,q,k)
 - Strenge der går gennem tilstand k + 1: L(p, k + 1, k)L(k + 1, k + 1, k)*L(k + 1, q, k)
- dvs.

$$L(p,q,k+1) = L(p,q,k) \cup L(p,k+1,k)L(k+1,k+1,k)^*L(k+1,q,k)$$

• som vha. induktionshypotesen svarer til et regulært udtryk $r(p,q,k+1) = r(p,q,k) + r(p,k+1,k)r(k+1,k+1,k)^*r(k+1,q,k)$

- L(p,q,k+1) er mængden af strenge, der fører fra p til q og kun går gennem tilstande med nummer $\leq k+1$
- To tilfælde:
 - Strenge der ikke går gennem tilstand k + 1: L(p, q, k)
 - Strenge der går gennem tilstand k + 1: L(p, k + 1, k)L(k + 1, k + 1, k)*L(k + 1, q, k)
- dvs. $L(p,q,k+1) = L(p,q,k) \cup L(p,k+1,k)L(k+1,k+1,k)*L(k+1,q,k)$
- som vha. induktionshypotesen svarer til et regulært udtryk $r(p,q,k+1)=r(p,q,k)+r(p,k+1,k)r(k+1,k+1,k)^*r(k+1,q,k)$

Oversæt denne FA til et regulært udtryk

- r = r(1,1,3) + r(1,2,3)
- r(1,1,3) = r(1,1,2) + r(1,3,2)r(3,3,2)*r(3,1,2)
- r(1,1,2) = r(1,1,1) + r(1,2,1)r(2,2,1)*r(2,1,1)
- r(1,1,1) = r(1,1,0) + r(1,1,0)r(1,1,0)*r(1,1,0)
- $r(1,1,0) = a + \Lambda ...$
- Heldigvis kan vi sætte en computer til det!

Eksempel

- r = r(1,1,3) + r(1,2,3)
- r(1,1,3) = r(1,1,2) + r(1,3,2)r(3,3,2)*r(3,1,2)
- r(1,1,2) = r(1,1,1) + r(1,2,1)r(2,2,1)*r(2,1,1)
- r(1,1,1) = r(1,1,0) + r(1,1,0)r(1,1,0)*r(1,1,0)
- $r(1,1,0) = a + \Lambda \dots$
- Heldigvis kan vi sætte en computer til det!

- r = r(1,1,3) + r(1,2,3)
- r(1,1,3) = r(1,1,2) + r(1,3,2)r(3,3,2)*r(3,1,2)
- r(1,1,2) = r(1,1,1) + r(1,2,1)r(2,2,1)*r(2,1,1)
- r(1,1,1) = r(1,1,0) + r(1,1,0)r(1,1,0)*r(1,1,0)
- $r(1,1,0) = a + \Lambda ...$
- Heldigvis kan vi sætte en computer til det!

Eksempel

- r = r(1,1,3) + r(1,2,3)
- r(1,1,3) = r(1,1,2) + r(1,3,2)r(3,3,2)*r(3,1,2)
- r(1,1,2) = r(1,1,1) + r(1,2,1)r(2,2,1)*r(2,1,1)
- r(1,1,1) = r(1,1,0) + r(1,1,0)r(1,1,0)*r(1,1,0)
- $r(1,1,0) = a + \Lambda ...$
- Heldigvis kan vi sætte en computer til det!

- r = r(1,1,3) + r(1,2,3)
- r(1,1,3) = r(1,1,2) + r(1,3,2)r(3,3,2)*r(3,1,2)
- r(1,1,2) = r(1,1,1) + r(1,2,1)r(2,2,1)*r(2,1,1)
- r(1,1,1) = r(1,1,0) + r(1,1,0)r(1,1,0)*r(1,1,0)
- $r(1,1,0) = a + \Lambda ...$
- Heldigvis kan vi sætte en computer til det!

- r = r(1,1,3) + r(1,2,3)
- r(1,1,3) = r(1,1,2) + r(1,3,2)r(3,3,2)*r(3,1,2)
- r(1,1,2) = r(1,1,1) + r(1,2,1)r(2,2,1)*r(2,1,1)
- r(1,1,1) = r(1,1,0) + r(1,1,0)r(1,1,0)*r(1,1,0)
- $r(1,1,0) = a + \Lambda ...$
- Heldigvis kan vi sætte en computer til det!

Eksempel fortsat

- ((0, +b))((0, +b))((0, +a) + ((0, +b))(((0, +b) + (0, +a))))((((0, +a) + b) + (0, +a) + (0, +a))))) $a) + (((0 + b))(((0 + A)^*)(0 + a))))(((((0 + a) + A) + (0(((0 + A)^*)(0 + a))))^*)(((0 + b) + (0)(((0 + A)^*)(0 + b)))))))))$
- (Hvis programmet ikke simplificerer undervejs...)

• (Hvis programmet ikke simplificerer underveis...)

Øvelser

[Martin] Opg. 4.38(b) (p. 164)
 Brug algoritmen fra Kleenes sætning del 2.

Plan

Nondeterministiske automater

Determinisering

NFA-A'er

Kleenes sætning

Kleenes sætning del 1 Kleenes sætning del 2

Frokost

Minimering

MyHill Nerode

Java projekt

Resume

- Regulære udtryk, FA'er, NFA'er og NFA-Λ'er svarer alle til klassen af regulære sprog
- Algoritmer fra de konstruktive beviser:
- determinisering (delmængdekonstruktionen)
- Λ-eliminering
- regulært udtryk → NFA-Λ
- ullet FA o regulære udtryk (primært et teoretisk resultat)

Plan

Nondeterministiske automater

Determinisering

NFA-A'er

Kleenes sætning

Kleenes sætning del 1 Kleenes sætning del 2

Frokost

Minimering
MyHill Nerode

Java projekt

Karakteristik af de regulære sprog

Et sprog er regulært hviss (hvis og kun hvis)

- L beskrives af et regulært udtryk
- L genkendes af en FA/NFA/NFA-Λ
- Der ikke findes uendeligt mange strenge der er parvist skelnelige mht. L

Karakteristik af de regulære sprog

Et sprog er regulært hviss (hvis og kun hvis)

- L beskrives af et regulært udtryk
- L genkendes af en FA/NFA/NFA-Λ
- Der ikke findes uendeligt mange strenge der er parvist skelnelige mht. L

Karakteristik af de regulære sprog

Et sprog er regulært hviss (hvis og kun hvis)

- L beskrives af et regulært udtryk
- L genkendes af en FA/NFA/NFA-Λ
- Der ikke findes uendeligt mange strenge der er parvist skelnelige mht. L

- x og y er skelnelige mht. L hvis $\exists z \in \Sigma^* : (xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)$
- Hvis to skelnelige strenge mht. L køres på en FA, der accepterer L, vil de ende i forskellige tilstande
- Intuition bag FA-minimering:
- hvis to strenge er uskelnelige mht. FA'ens sprog, er der ingen grund til at den skelner mellem dem l

- x og y er skelnelige mht. L hvis $\exists z \in \Sigma^* : (xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)$
- Hvis to skelnelige strenge mht. L køres på en FA, der accepterer L, vil de ende i forskellige tilstande
- Intuition bag FA-minimering:
- hvis to strenge er uskelnelige mht. FA'ens sprog, er der ingen grund til at den skelner mellem dem l

- x og y er skelnelige mht. L hvis $\exists z \in \Sigma^* : (xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)$
- Hvis to skelnelige strenge mht. L køres på en FA, der accepterer L, vil de ende i forskellige tilstande
- Intuition bag FA-minimering:
- hvis to strenge er uskelnelige mht. FA'ens sprog, er der ingen grund til at den skelner mellem dem l

- x og y er skelnelige mht. L hvis $\exists z \in \Sigma^* : (xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)$
- Hvis to skelnelige strenge mht. L køres på en FA, der accepterer L, vil de ende i forskellige tilstande
- Intuition bag FA-minimering:
- hvis to strenge er uskelnelige mht. FA'ens sprog, er der ingen grund til at den skelner mellem dem!

Uskelnelighedsrelationen I_L

• Definition: Givet et sprog $L \subseteq \Sigma^*$, definer relationen I_L over Σ^* ved: $xI_Ly \Leftrightarrow x$ og y er uskelnelige mht. L

Relationer

- En (binær) relation R over en mængde A er en delmængde af $A \times A$
 - Eksempler: \leq er en relation over mængden af reelle tal I_L er en relation over Σ^*
- Notation: $xRy \Leftrightarrow (x, y) \in R$

Relationer

- En (binær) relation R over en mængde A er en delmængde af $A \times A$
- Eksempler: \leq er en relation over mængden af reelle tal I_L er en relation over Σ^*
- Notation: $xRy \Leftrightarrow (x, y) \in R$

Relationer

- En (binær) relation R over en mængde A er en delmængde af $A \times A$
- Eksempler: \leq er en relation over mængden af reelle tal I_L er en relation over Σ^*
- Notation: $xRy \Leftrightarrow (x, y) \in R$

Ækvivalensrelationer

- R er en ækvivalensrelation hvis den er
- refleksiv $(\forall x : xRx)$
- symmetrisk $(\forall x, y : xRy \Rightarrow yRx)$
- transitiv $(\forall x, y, z : xRy \land yRz \Rightarrow xRz)$
- En ækvivalensrelation over A definerer en partitionering af A

- R er en ækvivalensrelation hvis den er
- refleksiv $(\forall x : xRx)$
- symmetrisk $(\forall x, y : xRy \Rightarrow yRx)$
- transitiv $(\forall x, y, z : xRy \land yRz \Rightarrow xRz)$
- En ækvivalensrelation over A definerer en partitionering af A

- R er en ækvivalensrelation hvis den er
- refleksiv $(\forall x : xRx)$
- symmetrisk $(\forall x, y : xRy \Rightarrow yRx)$
- transitiv $(\forall x, y, z : xRy \land yRz \Rightarrow xRz)$
- En ækvivalensrelation over A definerer en partitionering af A

Ækvivalensrelationer

- R er en ækvivalensrelation hvis den er
- refleksiv $(\forall x : xRx)$
- symmetrisk $(\forall x, y : xRy \Rightarrow yRx)$
- transitiv $(\forall x, y, z : xRy \land yRz \Rightarrow xRz)$
- En ækvivalensrelation over A definerer en partitionering af A

- R er en ækvivalensrelation hvis den er
- refleksiv $(\forall x : xRx)$
- symmetrisk $(\forall x, y : xRy \Rightarrow yRx)$
- transitiv $(\forall x, y, z : xRy \land yRz \Rightarrow xRz)$
- En ækvivalensrelation over A definerer en partitionering af A

Ækvivalensrelationer

- R er en ækvivalensrelation hvis den er
- refleksiv $(\forall x : xRx)$
- symmetrisk $(\forall x, y : xRy \Rightarrow yRx)$
- transitiv $(\forall x, y, z : xRy \land yRz \Rightarrow xRz)$
- En ækvivalensrelation over A definerer en partitionering af A

- *I_L* er
- refleksiv $(\forall x : x I_L x)$
- symmetrisk $(\forall x, y : xl_L y \Rightarrow yl_L x)$
- transitiv $(\forall x, y, z : xl_L y \land yl_L z \Rightarrow xl_L z)$
- dvs. IL er en ækvivalensrelation
- I_L partitionerer Σ^*
- [x] er mængden af strenge, der er uskelnelige fra x mht. L

- *I_L* er
- refleksiv $(\forall x : xI_Lx)$
- symmetrisk $(\forall x, y : xl_L y \Rightarrow yl_L x)$
- transitiv $(\forall x, y, z : xl_L y \land yl_L z \Rightarrow xl_L z)$
- dvs. IL er en ækvivalensrelation
- I_L partitionerer Σ^*
- [x] er mængden af strenge, der er uskelnelige fra x mht. L

- *I_L* er
- refleksiv $(\forall x : xI_Lx)$
- symmetrisk $(\forall x, y : xl_L y \Rightarrow yl_L x)$
- transitiv $(\forall x, y, z : xl_L y \land yl_L z \Rightarrow xl_L z)$
- dvs. IL er en ækvivalensrelation
- I_L partitionerer Σ^*
- [x] er mængden af strenge, der er uskelnelige fra x mht. L

- *I_L* er
- refleksiv $(\forall x : xI_Lx)$
- symmetrisk $(\forall x, y : xl_L y \Rightarrow yl_L x)$
- transitiv $(\forall x, y, z : xl_L y \land yl_L z \Rightarrow xl_L z)$
- dvs. I, er en ækvivalensrelation
- I_L partitionerer Σ^*
- [x] er mængden af strenge, der er uskelnelige fra x mht. L

- *I_L* er
- refleksiv $(\forall x : xI_Lx)$
- symmetrisk $(\forall x, y : xl_L y \Rightarrow yl_L x)$
- transitiv $(\forall x, y, z : xl_L y \land yl_L z \Rightarrow xl_L z)$
- dvs. I_I er en ækvivalensrelation
- I_L partitionerer Σ^*
- [x] er mængden af strenge, der er uskelnelige fra x mht. L

- *I_L* er
- refleksiv $(\forall x : xI_Lx)$
- symmetrisk $(\forall x, y : xl_L y \Rightarrow yl_L x)$
- transitiv $(\forall x, y, z : xl_L y \land yl_L z \Rightarrow xl_L z)$
- dvs. I_L er en ækvivalensrelation
- I_L partitionerer Σ^*
- [x] er mængden af strenge, der er uskelnelige fra x mht. L

- *I_L* er
- refleksiv $(\forall x : xl_L x)$
- symmetrisk $(\forall x, y : xl_L y \Rightarrow yl_L x)$
- transitiv $(\forall x, y, z : xl_L y \land yl_L z \Rightarrow xl_L z)$
- dvs. IL er en ækvivalensrelation
- I_L partitionerer Σ^*
- [x] er mængden af strenge, der er uskelnelige fra x mht. L

$$L = \{0,1\}^*\{10\}$$

Beskriv ækvivalensklasserne for I_L

$$L = \{0, 1\}^* \{10\}$$

Beskriv ækvivalensklasserne for IL

Hint: der er 3 ækvivalensklasser...

$$L = \{0, 1\}^* \{10\}$$

Beskriv ækvivalensklasserne for IL

- Hint: der er 3 ækvivalensklasser...
- Hint: find en streng, der er skelnelig fra Λ ...

$$L = \{0, 1\}^* \{10\}$$

Beskriv ækvivalensklasserne for II

- Hint: der er 3 ækvivalensklasser...
- Hint: find en streng, der er skelnelig fra Λ ...
- Hint: find en streng, der er skelnelig fra både Λ og 1...

$$L = \{0, 1\}^* \{10\}$$

Beskriv ækvivalensklasserne for IL

- Hint: der er 3 ækvivalensklasser...
- Hint: find en streng, der er skelnelig fra Λ ...
- Hint: find en streng, der er skelnelig fra både Λ og 1...

$$X : \{\Lambda, 0\} \cup \{0, 1\}^* \{00\} = [\Lambda]$$

$$Y : \{0, 1\}^* \{1\} = [1]$$

$$Z : \{0, 1\}^* \{10\} = [10]$$

MyHill-Nerode-sætningen

- L er regulært ⇔ I_L har endeligt mange ækvivalensklasser
- " \Rightarrow ": (1. seminar) hvis I_L har uendeligt mange ækvivalensklasser, så er L ikke regulært
- "⇐": Bevis følger...

MyHill-Nerode-sætningen

- L er regulært ⇔ I_L har endeligt mange ækvivalensklasser
- " \Rightarrow ": (1. seminar) hvis I_L har uendeligt mange ækvivalensklasser, så er L ikke regulært
- "⇐": Bevis følger...

MyHill-Nerode-sætningen

- L er regulært $\Leftrightarrow I_L$ har endeligt mange ækvivalensklasser
- " \Rightarrow ": (1. seminar) hvis I_L har uendeligt mange ækvivalensklasser, så er L ikke regulært
- "⇐": Bevis følger...

- Givet et sprog $L \subseteq \Sigma^*$, antag I_L har endeligt mange ækvivalensklasser.
- ullet Vi kan definere en FA, hvor tilstandene er ækvivalensklasserne af I_L

Konstruktion af en FA fra IL

- Givet et sprog $L \subseteq \Sigma^*$, antag I_L har endeligt mange ækvivalensklasser.
- ullet Vi kan definere en FA, hvor tilstandene er ækvivalensklasserne af I_L

Eksempel

• Ækvivalensklasserne for I_L når $L = \{0, 1\}^*\{10\}$:

$$X : \{\Lambda, 0\} \cup \{0, 1\}^* \{00\} = [\Lambda]$$

 $Y : \{0, 1\}^* \{1\} = [1]$
 $Z : \{0, 1\}^* \{10\} = [10]$

Konstruktion af en FA fra I

- Definer en FA: $M_I = (Q, \Sigma, q_0, A, \delta)$ hvor
- $Q = Q_I$ hvor Q_I er ækvivalensklasserne af I_I
- $q_0 = [\Lambda]$
- $A = \{ g \in Q | g \cap L \neq \emptyset \}$
- $\delta(q, a) = p$ hvis q = [x] og p = [xa] for en streng x (δ er veldefineret idet $xl_1y \Rightarrow xal_1ya$)
- Påstand: $L(M_I) = L$

Konstruktion af en FA fra I

- Definer en FA: $M_I = (Q, \Sigma, q_0, A, \delta)$ hvor
- $Q = Q_I$ hvor Q_I er ækvivalensklasserne af I_I
- $q_0 = [\Lambda]$
- $A = \{ g \in Q | g \cap L \neq \emptyset \}$
- $\delta(q, a) = p$ hvis q = [x] og p = [xa] for en streng x (δ er veldefineret idet $xl_1y \Rightarrow xal_1ya$)
- Påstand: $L(M_I) = L$

- Definer en FA: $M_L = (Q, \Sigma, q_0, A, \delta)$ hvor
- $Q = Q_L$ hvor Q_L er ækvivalensklasserne af I_L
- $q_0 = [\Lambda]$
- $A = \{ q \in Q | q \cap L \neq \emptyset \}$
- $\delta(q, a) = p$ hvis q = [x] og p = [xa] for en streng x (δ er veldefineret idet $xl_1 y \Rightarrow xal_1 ya$)
- Påstand: $L(M_L) = L$

Konstruktion af en FA fra I

- Definer en FA: $M_L = (Q, \Sigma, q_0, A, \delta)$ hvor
- $Q = Q_I$ hvor Q_I er ækvivalensklasserne af I_I
- $q_0 = [\Lambda]$
- $A = \{ g \in Q | g \cap L \neq \emptyset \}$
- $\delta(q, a) = p$ hvis q = [x] og p = [xa] for en streng x (δ er veldefineret idet $xl_1y \Rightarrow xal_1ya$)
- Påstand: $L(M_I) = L$

Konstruktion af en FA fra IL

- Definer en FA: $M_I = (Q, \Sigma, q_0, A, \delta)$ hvor
- $Q = Q_I$ hvor Q_I er ækvivalensklasserne af I_I
- $q_0 = [\Lambda]$
- $A = \{ g \in Q | g \cap L \neq \emptyset \}$
- $\delta(q, a) = p$ hvis q = [x] og p = [xa] for en streng x (δ er veldefineret idet $xl_1 y \Rightarrow xal_1 ya$)
- Påstand: $L(M_I) = L$

Konstruktion af en FA fra IL

- Definer en FA: $M_I = (Q, \Sigma, q_0, A, \delta)$ hvor
- $Q = Q_I$ hvor Q_I er ækvivalensklasserne af I_I
- $q_0 = [\Lambda]$
- $A = \{ g \in Q | g \cap L \neq \emptyset \}$
- $\delta(q, a) = p$ hvis q = [x] og p = [xa] for en streng x (δ er veldefineret idet $xl_1 y \Rightarrow xal_1 ya$)
- Påstand: $L(M_I) = L$

• Antag ækvivalensklasserne for I_L er

$$X = \{x \in \{0,1\}^* | ext{antal 1'er i } x ext{ er lige } \}$$
 $Y = \{x \in \{0,1\}^* | ext{antal 1'er i } x ext{ er ulige } \}$

Lav en FA, der accepterer L

og $111 \in L$

• Antag ækvivalensklasserne for I_L er

$$X = \{x \in \{0,1\}^* | \text{antal 1'er i } x \text{ er lige } \}$$
 $Y = \{x \in \{0,1\}^* | \text{antal 1'er i } x \text{ er ulige } \}$

og $111 \in L$ Lav en FA, der accepterer L

• Antag ækvivalensklasserne for I_L er

$$X = \{x \in \{0,1\}^* | \text{antal 1'er i } x \text{ er lige } \}$$

$$Y = \{x \in \{0,1\}^* | \text{antal 1'er i } x \text{ er ulige } \}$$

og $111 \in L$ Lav en FA, der accepterer L

- Påstand: $L(M_L) = L$
- Lemma: $\forall x, y \in \Sigma^* : \delta^*([x], y) = [xy]$
- Bevis: induktion i strukturen af y...
- $\delta^*(q_0, x) = \delta^*([\Lambda], x) = [x]$ (følger af lemmaet og def. af q_0)
- $x \in L(M_L) \Leftrightarrow \delta^*(q_0, x) \in A \Leftrightarrow [x] \in A \Leftrightarrow [x] \cap L \neq \emptyset$
- $x \in L \Rightarrow [x] \cap L \neq \emptyset$ (da $x \in [x]$)
- $[x] \cap L \neq \emptyset \Rightarrow x \in L$ (bruger def. af I_I)
- dvs. $x \in L(M_I) \Leftrightarrow x \in L$

- Påstand: $L(M_I) = L$
- Lemma: $\forall x, y \in \Sigma^* : \delta^*([x], y) = [xy]$
- Bevis: induktion i strukturen af y...
- $\delta^*(q_0, x) = \delta^*([\Lambda], x) = [x]$ (følger af lemmaet og def. af q_0)
- $x \in L(M_L) \Leftrightarrow \delta^*(q_0, x) \in A \Leftrightarrow [x] \in A \Leftrightarrow [x] \cap L \neq \emptyset$
- $x \in L \Rightarrow [x] \cap L \neq \emptyset$ (da $x \in [x]$)
- $[x] \cap L \neq \emptyset \Rightarrow x \in L$ (bruger def. af I_I)
- dvs. $x \in L(M_I) \Leftrightarrow x \in L$

- Påstand: $L(M_I) = L$
- Lemma: $\forall x, y \in \Sigma^* : \delta^*([x], y) = [xy]$
- Bevis: induktion i strukturen af y...
- $\delta^*(q_0, x) = \delta^*([\Lambda], x) = [x]$ (følger af lemmaet og def. af q_0)
- $x \in L(M_L) \Leftrightarrow \delta^*(g_0, x) \in A \Leftrightarrow [x] \in A \Leftrightarrow [x] \cap L \neq \emptyset$
- $x \in L \Rightarrow [x] \cap L \neq \emptyset$ (da $x \in [x]$)
- $[x] \cap L \neq \emptyset \Rightarrow x \in L$ (bruger def. af I_I)
- dvs. $x \in L(M_I) \Leftrightarrow x \in L$

- Påstand: $L(M_I) = L$
- Lemma: $\forall x, y \in \Sigma^* : \delta^*([x], y) = [xy]$
- Bevis: induktion i strukturen af y...
- $\delta^*(q_0, x) = \delta^*([\Lambda], x) = [x]$ (følger af lemmaet og def. af q_0)
- $x \in L(M_L) \Leftrightarrow \delta^*(g_0, x) \in A \Leftrightarrow [x] \in A \Leftrightarrow [x] \cap L \neq \emptyset$
- $x \in L \Rightarrow [x] \cap L \neq \emptyset$ (da $x \in [x]$)
- $[x] \cap L \neq \emptyset \Rightarrow x \in L$ (bruger def. af I_I)
- dvs. $x \in L(M_I) \Leftrightarrow x \in L$

- Påstand: $L(M_I) = L$
- Lemma: $\forall x, y \in \Sigma^* : \delta^*([x], y) = [xy]$
- Bevis: induktion i strukturen af y...
- $\delta^*(q_0, x) = \delta^*([\Lambda], x) = [x]$ (følger af lemmaet og def. af q_0)
- $x \in L(M_L) \Leftrightarrow \delta^*(a_0, x) \in A \Leftrightarrow [x] \in A \Leftrightarrow [x] \cap L \neq \emptyset$
- $x \in L \Rightarrow [x] \cap L \neq \emptyset$ (da $x \in [x]$)
- $[x] \cap L \neq \emptyset \Rightarrow x \in L$ (bruger def. af I_I)
- dvs. $x \in L(M_I) \Leftrightarrow x \in L$

- Påstand: $L(M_L) = L$
- Lemma: $\forall x, y \in \Sigma^* : \delta^*([x], y) = [xy]$
- Bevis: induktion i strukturen af y...
- $\delta^*(q_0, x) = \delta^*([\Lambda], x) = [x]$ (følger af lemmaet og def. af q_0)
- $x \in L(M_L) \Leftrightarrow \delta^*(q_0, x) \in A \Leftrightarrow [x] \in A \Leftrightarrow [x] \cap L \neq \emptyset$
- $x \in L \Rightarrow [x] \cap L \neq \emptyset$ (da $x \in [x]$)
- $[x] \cap L \neq \emptyset \Rightarrow x \in L$ (bruger def. af I_I)
- dvs. $x \in L(M_I) \Leftrightarrow x \in L$

- Påstand: $L(M_L) = L$
- Lemma: $\forall x, y \in \Sigma^* : \delta^*([x], y) = [xy]$
- Bevis: induktion i strukturen af y...
- $\delta^*(q_0, x) = \delta^*([\Lambda], x) = [x]$ (følger af lemmaet og def. af q_0)
- $x \in L(M_L) \Leftrightarrow \delta^*(a_0, x) \in A \Leftrightarrow [x] \in A \Leftrightarrow [x] \cap L \neq \emptyset$
- $x \in L \Rightarrow [x] \cap L \neq \emptyset$ (da $x \in [x]$)
- $[x] \cap L \neq \emptyset \Rightarrow x \in L$ (bruger def. af I_I)
- dvs. $x \in L(M_I) \Leftrightarrow x \in L$

- Påstand: $L(M_L) = L$
- Lemma: $\forall x, y \in \Sigma^* : \delta^*([x], y) = [xy]$
- Bevis: induktion i strukturen af y...
- $\delta^*(q_0, x) = \delta^*([\Lambda], x) = [x]$ (følger af lemmaet og def. af q_0)
- $x \in L(M_L) \Leftrightarrow \delta^*(a_0, x) \in A \Leftrightarrow [x] \in A \Leftrightarrow [x] \cap L \neq \emptyset$
- $x \in L \Rightarrow [x] \cap L \neq \emptyset$ (da $x \in [x]$)
- $[x] \cap L \neq \emptyset \Rightarrow x \in L$ (bruger def. af I_I)
- dvs. $x \in L(M_I) \Leftrightarrow x \in L$

Øvelser

- [Martin] Opg. 5.2 (p. 191) Find selv ækvivalensklasser
- [Martin] Opg. 5.7 Konstruer en FA ud fra en beskrivelse af I_L

Minimering af automater

- Man kan i visse tilfælde opnå en mindre FA ved at "slå tilstande sammen"...
- Kan vi gøre det systematisk?
- Vil den resulterende FA blive minimal?

En algoritme til FA-minimering

Fra MyHill-Nerode-sætningen kan vi udlede en algoritme, der givet en vilkårlig FA $M = (Q, \Sigma, q_0, A, \delta)$, finder en minimal FA M_1 hvor $L(M_1) = L(M)$

- 1: Ækvivalensklasserne af I_L (svarer til tilstandene i den minimale FA M_L)
- 2: En opdeling af alle $x \in \Sigma^*$ efter værdien af $\delta^*(q_0, x)$ (svarer til tilstandene i den givne FA M)
- Kan vi konstruere 1 ud fra 2?
- Definer for alle $q \in Q$: $L_q = \{x \in \Sigma^* | \delta^*(q_0, x) = q\}$

To partitioneringer af Σ^*

- 1: Ækvivalensklasserne af I_L (svarer til tilstandene i den minimale FA M_L)
- 2: En opdeling af alle $x \in \Sigma^*$ efter værdien af $\delta^*(q_0, x)$ (svarer til tilstandene i den givne FA M)
- Kan vi konstruere 1 ud fra 2?
- Definer for alle $q \in Q$: $L_q = \{x \in \Sigma^* | \delta^*(q_0, x) = q\}$

To partitioneringer af Σ^*

- 1: Ækvivalensklasserne af I_L (svarer til tilstandene i den minimale FA M_L)
- 2: En opdeling af alle $x \in \Sigma^*$ efter værdien af $\delta^*(q_0, x)$ (svarer til tilstandene i den givne FA M)
- Kan vi konstruere 1 ud fra 2?
- Definer for alle $q \in Q$: $L_q = \{x \in \Sigma^* | \delta^*(q_0, x) = q\}$

To partitioneringer af Σ^*

- 1: Ækvivalensklasserne af I_L (svarer til tilstandene i den minimale FA M_L)
- 2: En opdeling af alle $x \in \Sigma^*$ efter værdien af $\delta^*(q_0, x)$ (svarer til tilstandene i den givne FA M)
- Kan vi konstruere 1 ud fra 2?
- Definer for alle $q \in Q$: $L_q = \{x \in \Sigma^* | \delta^*(q_0, x) = q\}$

Eksempel

Fiern uopnåelige tilstande

- Ækvivalensklasserne af I_I indeholder alle mindst 1 streng
- Det er muligt at $L_q = \emptyset$ for en eller flere $q \in Q$ (hvis q er uopnåelig fra q_0)
- Der findes en algoritme, der kan fjerne uopnåelige tilstande fra en FA uden at ændre sproget
- Vi kan derfor antage at $Lq \neq \emptyset$ for alle $q \in Q$

Fiern uopnåelige tilstande

- Ækvivalensklasserne af I_I indeholder alle mindst 1 streng
- Det er muligt at $L_q = \emptyset$ for en eller flere $q \in Q$ (hvis q er uopnåelig fra q_0)
- Der findes en algoritme, der kan fjerne uopnåelige tilstande fra en FA uden at ændre sproget
- Vi kan derfor antage at $Lq \neq \emptyset$ for alle $q \in Q$

Fiern uopnåelige tilstande

- Ækvivalensklasserne af I_I indeholder alle mindst 1 streng
- Det er muligt at $L_q = \emptyset$ for en eller flere $q \in Q$ (hvis q er uopnåelig fra q_0)
- Der findes en algoritme, der kan fjerne uopnåelige tilstande fra en FA uden at ændre sproget
- Vi kan derfor antage at $Lq \neq \emptyset$ for alle $q \in Q$

- Ækvivalensklasserne af I_L indeholder alle mindst 1 streng
- Det er muligt at $L_q=\emptyset$ for en eller flere $q\in Q$ (hvis q er uopnåelig fra q_0)
- Der findes en algoritme, der kan fjerne uopnåelige tilstande fra en FA uden at ændre sproget
- Vi kan derfor antage at $Lq
 eq \emptyset$ for alle $q \in Q$

- Givet en FA $M = (Q, \Sigma, q_0, A, \delta)$
- Lad R være den mindste mængde, der opfylder:
- $q_0 \in R$
- $\forall q \in R, a \in \Sigma : \delta(q, a) \in R$
- R er mængden af opnåelige tilstande i M
- (minder om def. af $\Lambda lukning$)

- Givet en FA $M = (Q, \Sigma, q_0, A, \delta)$
- Lad R være den mindste mængde, der opfylder:
- $q_0 \in R$
- $\forall q \in R, a \in \Sigma : \delta(q, a) \in R$
- R er mængden af opnåelige tilstande i M
- (minder om def. af $\Lambda lukning$)

- Givet en FA $M = (Q, \Sigma, q_0, A, \delta)$
- Lad R være den mindste mængde, der opfylder:
- q₀ ∈ R
- $\forall q \in R, a \in \Sigma : \delta(q, a) \in R$
- R er mængden af opnåelige tilstande i M
- (minder om def. af $\Lambda lukning$)

- Givet en FA $M = (Q, \Sigma, q_0, A, \delta)$
- Lad R være den mindste mængde, der opfylder:
- q₀ ∈ R
- $\forall q \in R, a \in \Sigma : \delta(q, a) \in R$
- R er mængden af opnåelige tilstande i M
- (minder om def. af $\Lambda lukning$)

- Givet en FA $M = (Q, \Sigma, q_0, A, \delta)$
- Lad R være den mindste mængde, der opfylder:
- $q_0 \in R$
- $\forall q \in R, a \in \Sigma : \delta(q, a) \in R$
- R er mængden af opnåelige tilstande i M
- (minder om def. af $\Lambda lukning$)

- Givet en FA $M = (Q, \Sigma, q_0, A, \delta)$
- Lad R være den mindste mængde, der opfylder:
- $q_0 \in R$
- $\forall q \in R, a \in \Sigma : \delta(q, a) \in R$
- R er mængden af opnåelige tilstande i M
- (minder om def. af $\Lambda lukning$)

R kan findes med en fixpunktsalgoritme:

- 1 ∈ R
- $\delta(1,b) = 2 \in R$
- $\delta(2, a) = 4 \in R$
- fixpunkt er nu nået dvs. de opnåelige tilstande er $R = \{1, 2, 4\}$

• R kan findes med en fixpunktsalgoritme:

- 1 ∈ R
- $\delta(1,b) = 2 \in R$
- $\delta(2, a) = 4 \in R$
- fixpunkt er nu nået dvs. de opnåelige tilstande er $R = \{1, 2, 4\}$

• R kan findes med en fixpunktsalgoritme:

- 1 ∈ R
- $\delta(1,b) = 2 \in R$
- $\delta(2, a) = 4 \in R$
- fixpunkt er nu nået dvs. de opnåelige tilstande er $R = \{1, 2, 4\}$

R kan findes med en fixpunktsalgoritme:

- 1 ∈ R
- $\delta(1, b) = 2 \in R$
- $\delta(2, a) = 4 \in R$
- fixpunkt er nu nået dvs. de opnåelige tilstande er $R = \{1, 2, 4\}$

R kan findes med en fixpunktsalgoritme:

- 1 ∈ R
- $\delta(1, b) = 2 \in R$
- $\delta(2, a) = 4 \in R$
- fixpunkt er nu nået dvs. de opnåelige tilstande er $R = \{1, 2, 4\}$

- Fra seminar 1: $\delta^*(q_0, x) = \delta^*(q_0, y) \Rightarrow xI_L y$
- Dvs. enhver L_q -mængde er helt indeholdt i én I_I -ækvivalensklasse
- Enhver ækvivalensklasse af I_I er derfor foreningen af en eller flere af L_{a} -mængderne
- Da $L_a \neq \emptyset$ er hver af disse foreninger unik
- Definition: $p \equiv q \Leftrightarrow L_p \text{ og } L_q \text{ er delmængder af samme}$ Iı-ækvivalensklasse
- Dvs. hvis $p \equiv q$, så svarer p og q til samme tilstand i den minimale automat!

- Fra seminar 1: $\delta^*(q_0, x) = \delta^*(q_0, y) \Rightarrow xl_1 y$
- Dvs. enhver L_a -mængde er helt indeholdt i én I_I -ækvivalensklasse
- Enhver ækvivalensklasse af I_I er derfor foreningen af en eller flere af L_a -mængderne
- Da $L_a \neq \emptyset$ er hver af disse foreninger unik
- Definition: $p \equiv q \Leftrightarrow L_p \text{ og } L_q \text{ er delmængder af samme}$ Iı-ækvivalensklasse
- Dvs. hvis $p \equiv q$, så svarer p og q til samme tilstand i den minimale automat!

- Fra seminar 1: $\delta^*(q_0, x) = \delta^*(q_0, y) \Rightarrow xl_1 y$
- Dvs. enhver L_q -mængde er helt indeholdt i én I_L -ækvivalensklasse
- Enhver ækvivalensklasse af I_I er derfor foreningen af en eller flere af L_a –mængderne
- Da $L_a \neq \emptyset$ er hver af disse foreninger unik
- Definition: $p \equiv q \Leftrightarrow L_p \text{ og } L_q \text{ er delmængder af samme}$ Iı-ækvivalensklasse
- Dvs. hvis $p \equiv q$, så svarer p og q til samme tilstand i den minimale automat!

- Fra seminar 1: $\delta^*(q_0, x) = \delta^*(q_0, y) \Rightarrow xI_I y$
- Dvs. enhver L_q -mængde er helt indeholdt i én I_L -ækvivalensklasse
- Enhver ækvivalensklasse af I_I er derfor foreningen af en eller flere af L_a –mængderne
- Da $L_a \neq \emptyset$ er hver af disse foreninger unik
- Definition: $p \equiv q \Leftrightarrow L_p \text{ og } L_q \text{ er delmængder af samme}$ Iı-ækvivalensklasse
- Dvs. hvis $p \equiv q$, så svarer p og q til samme tilstand i den minimale automat!

- Fra seminar 1: $\delta^*(q_0, x) = \delta^*(q_0, y) \Rightarrow xI_I y$
- Dvs. enhver L_q -mængde er helt indeholdt i én I_L -ækvivalensklasse
- Enhver ækvivalensklasse af I_I er derfor foreningen af en eller flere af L_a –mængderne
- Da $L_a \neq \emptyset$ er hver af disse foreninger unik
- Definition: $p \equiv q \Leftrightarrow L_p$ og L_q er delmængder af samme Iı-ækvivalensklasse
- Dvs. hvis $p \equiv q$, så svarer p og q til samme tilstand i den minimale automat!

- Fra seminar 1: $\delta^*(q_0, x) = \delta^*(q_0, y) \Rightarrow xl_1 y$
- Dvs. enhver L_q -mængde er helt indeholdt i én I_L -ækvivalensklasse
- Enhver ækvivalensklasse af I_I er derfor foreningen af en eller flere af L_a –mængderne
- Da $L_a \neq \emptyset$ er hver af disse foreninger unik
- Definition: $p \equiv q \Leftrightarrow L_p \text{ og } L_q \text{ er delmængder af samme}$ Iı-ækvivalensklasse
- Dvs. hvis $p \equiv q$, så svarer p og q til samme tilstand i den minimale automat!

Konstruktion af \equiv (minimeringsalgoritmen)

- Lad S være den mindste mængde, der opfylder:
- a) $(p \in A \land g \notin A) \lor (p \notin A \land g \in A) \Rightarrow (p, g) \in S$
- b) $(\exists a \in \Sigma : (\delta(p, a), \delta(q, a)) \in S) \Rightarrow (p, q) \in S$
- Påstand: $p \equiv q$ hvis og kun hvis $(p,q) \in S$ S kan beregnes med en fixpunktsalgoritme (i stil med opnåelige tilstande og Λ-lukning tidligere...)

- Lad S være den mindste mængde, der opfylder:
- a) $(p \in A \land q \notin A) \lor (p \notin A \land q \in A) \Rightarrow (p,q) \in S$
- b) $(\exists a \in \Sigma : (\delta(p, a), \delta(q, a)) \in S) \Rightarrow (p, q) \in S$
- Påstand: $p \equiv q$ hvis og kun hvis $(p,q) \in S$ S kan beregnes med en fixpunktsalgoritme (i stil med opnåelige tilstande og Λ -lukning tidligere...)

Konstruktion af \equiv (minimeringsalgoritmen)

- Lad S være den mindste mængde, der opfylder:
- a) $(p \in A \land q \notin A) \lor (p \notin A \land q \in A) \Rightarrow (p,q) \in S$
- b) $(\exists a \in \Sigma : (\delta(p, a), \delta(q, a)) \in S) \Rightarrow (p, q) \in S$
- Påstand: $p \equiv q$ hvis og kun hvis $(p,q) \in S$ S kan beregnes med en fixpunktsalgoritme (i stil med opnåelige tilstande og Λ -lukning tidligere...)

Konstruktion af \equiv (minimeringsalgoritmen)

- Lad S være den mindste mængde, der opfylder:
- a) $(p \in A \land q \notin A) \lor (p \notin A \land q \in A) \Rightarrow (p,q) \in S$
- b) $(\exists a \in \Sigma : (\delta(p, a), \delta(q, a)) \in S) \Rightarrow (p, q) \in S$
- Påstand: $p \equiv q$ hvis og kun hvis $(p,q) \in S$ S kan beregnes med en fixpunktsalgoritme (i stil med opnåelige tilstande og Λ -lukning tidligere...)

- Find alle par af tilstande
- Fjern uopnåelige tilstande (ingen i denne FA)
- Marker alle par som med/ikke med i A
- Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- Kombiner tilstande, der svarer til umærkede par

- Find alle par af tilstande
- Fjern uopnåelige tilstande (ingen i denne FA)
- Marker alle par som med/ikke med i A
- Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- Kombiner tilstande, der svarer til umærkede par

- Find alle par af tilstande
- Fjern uopnåelige tilstande (ingen i denne FA)
- Marker alle par som med/ikke med i A
- Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- Kombiner tilstande, der svarer til umærkede par

- Find alle par af tilstande
- Fjern uopnåelige tilstande (ingen i denne FA)
- Marker alle par som med/ikke med i A
- Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- Kombiner tilstande, der svarer til umærkede par

- Find alle par af tilstande
- Fjern uopnåelige tilstande (ingen i denne FA)
- Marker alle par som med/ikke med i A
- Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- Kombiner tilstande, der svarer til umærkede par

- Find alle par af tilstande
- Fjern uopnåelige tilstande (ingen i denne FA)
- Marker alle par som med/ikke med i A
- Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- Kombiner tilstande, der svarer til umærkede par

2							
3	Х	Х					
4			Х				
5	Х	Х		Х			
6	Х	Х	Х	Х	Х		
7	Χ	Х		Х		X 6	
	1	2	3	4	5	6	

- Find alle par af tilstande
- Fjern uopnåelige tilstande (ingen i denne FA)
- Marker alle par som med/ikke med i A
- Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- Kombiner tilstande, der svarer til umærkede par

2							
3	Х	Х					
4			Х				
5	Х	Х		Х			
6	Х	Х	Х	Х	Х		
7	Χ	Х		Х		Х	l
	X X X X	2	3	4	5	6	ĺ

- Find alle par af tilstande
- Fjern uopnåelige tilstande (ingen i denne FA)
- Marker alle par som med/ikke med i A
- Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- Kombiner tilstande, der svarer til umærkede par

2						
3	Х	Х				
4			Х			
5	Х	Х		Х		
6	Х	Х	Х	Х	Х	
7	Χ	Х		Х	X 5	Χ
	1	2	3	4	5	6

- Find alle par af tilstande
- Fjern uopnåelige tilstande (ingen i denne FA)
- Marker alle par som med/ikke med i A
- Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- Kombiner tilstande, der svarer til umærkede par

2						
3	Х	Х				
4			Х			
5	Х	Х		Х		
6	Х	Х	Х	Х	Х	
7	Χ	Х		Х	X 5	Χ
	1	2	3	4	5	6

- Find alle par af tilstande
- Fjern uopnåelige tilstande (ingen i denne FA)
- Marker alle par som med/ikke med i A
- Find \equiv ved at udfylde en tabel for S (fixpunktsberegning)
- Kombiner tilstande, der svarer til umærkede par

Bevis for korrekthed af minimeringsalgoritmen

- Antag $p, q \in Q, x \in L_p, y \in L_q$ (dvs. $\delta^*(q_0, x) = p \text{ og } \delta^*(q_0, y) = q$)
- Lemma: Følgende udsagn er ækvivalente:

$$p \equiv q$$

$$xI_L y$$

$$\forall z \in \Sigma^* : \delta^*(p, z) \in A \Leftrightarrow \delta^*(q, z) \in A$$

- Antag $p, q \in Q, x \in L_p, y \in L_q$ (dvs. $\delta^*(q_0, x) = p \text{ og } \delta^*(q_0, y) = q$)
- Lemma: Følgende udsagn er ækvivalente:

$$p \equiv q$$
 xI_Ly $\forall z \in \Sigma^* : \delta^*(p,z) \in A \Leftrightarrow \delta^*(q,z) \in A$

Bevis for korrekthed, fortsat

- Påstand: $p \equiv q$ hvis og kun hvis $(p,q) \notin S$
- Iflg. lemmaet:

$$p \not\equiv q \Leftrightarrow (\exists z \in \Sigma^* : (\delta^*(p, z) \in A \land \delta^*(q, z) \not\in A) \lor (\delta^*(p, z) \not\in A \land \delta^*(q, z) \in A))$$

- $p \not\equiv q \Rightarrow (p,q) \in S$ (brug lemmaet, lav induktion i z)
- $(p,q) \in S \Rightarrow p \not\equiv q$ (brug lemmaet, lav induktion i S)

Bevis for korrekthed, fortsat

- Påstand: $p \equiv q$ hvis og kun hvis $(p,q) \notin S$
- Iflg. lemmaet:

$$p \not\equiv q \Leftrightarrow (\exists z \in \Sigma^* : (\delta^*(p, z) \in A \land \delta^*(q, z) \not\in A) \lor (\delta^*(p, z) \not\in A \land \delta^*(q, z) \in A))$$

- $p \not\equiv q \Rightarrow (p,q) \in S$ (brug lemmaet, lav induktion i z)
- $(p,q) \in S \Rightarrow p \not\equiv q$ (brug lemmaet, lav induktion i S)

Bevis for korrekthed, fortsat

- Påstand: $p \equiv q$ hvis og kun hvis $(p,q) \notin S$
- Iflg. lemmaet:

$$p \not\equiv q \Leftrightarrow (\exists z \in \Sigma^* : (\delta^*(p, z) \in A \land \delta^*(q, z) \not\in A) \lor (\delta^*(p, z) \not\in A \land \delta^*(q, z) \in A))$$

- $p \not\equiv q \Rightarrow (p,q) \in S$ (brug lemmaet, lav induktion i z)
- $(p,q) \in S \Rightarrow p \not\equiv q$ (brug lemmaet, lav induktion i S)

- Påstand: $p \equiv q$ hvis og kun hvis $(p, q) \notin S$
- Iflg. lemmaet:

$$p \not\equiv q \Leftrightarrow (\exists z \in \Sigma^* : (\delta^*(p, z) \in A \land \delta^*(q, z) \not\in A) \lor (\delta^*(p, z) \not\in A \land \delta^*(q, z) \in A))$$

- $p \not\equiv q \Rightarrow (p,q) \in S$ (brug lemmaet, lav induktion i z)
- $(p,q) \in S \Rightarrow p \not\equiv q$ (brug lemmaet, lav induktion i S)

Øvelse

• [Martin] 5.16 (a+e) (p.192)

Plan

Nondeterministiske automater

Determinisering

NFA-A'er

Kleenes sætning

Kleenes sætning del 1 Kleenes sætning del 2

Frokost

Minimering

MyHill Nerode

Java projekt

- Udleverede programdele:
- NFA.java og NFALambda.java: repræsentation af NFA'er og NFA-Λ'er
- RegExp. java: repræsentation af regulære udtryk
- parser for regulære udtryk
- de trivielle oversættelser: $FA o NFA, NFA o NFA \Lambda$

- Udleverede programdele:
- NFA.java og NFALambda.java: repræsentation af NFA'er og NFA-Λ'er
- RegExp.java: repræsentation af regulære udtryk
- parser for regulære udtryk
- de trivielle oversættelser: $FA \rightarrow NFA$, $NFA \rightarrow NFA \Lambda$

- Udleverede programdele:
- NFA.java og NFALambda.java: repræsentation af NFA'er og NFA-Λ'er
- RegExp. java: repræsentation af regulære udtryk
- parser for regulære udtryk
- de trivielle oversættelser: $FA \rightarrow NFA$, $NFA \rightarrow NFA \Lambda$

- Udleverede programdele:
- NFA.java og NFALambda.java: repræsentation af NFA'er og NFA-Λ'er
- RegExp. java: repræsentation af regulære udtryk
- parser for regulære udtryk
- de trivielle oversættelser: $FA \rightarrow NFA$, $NFA \rightarrow NFA \Lambda$

- Udleverede programdele:
- NFA.java og NFALambda.java: repræsentation af NFA'er og NFA-Λ'er
- RegExp. java: repræsentation af regulære udtryk
- parser for regulære udtryk
- de trivielle oversættelser: $FA \rightarrow NFA$, $NFA \rightarrow NFA \Lambda$

NFA.java

- Repræsentation som FA. java, med én undtagelse:
- transitions er en funktion fra StateSymbolPair til en mængde af State objekter

NFA.java

- Repræsentation som FA. java, med én undtagelse:
- transitions er en funktion fra StateSymbolPair til en mængde af State objekter

NFALambda.java

- Repræsentation som NFA.java, med én undtagelse:
- ∧ repræsenteres som \uFFFF (= NFALambda.LAMBDA)

NFALambda.java

- Repræsentation som NFA.java, med én undtagelse:
- Λ repræsenteres som \uFFFF (= NFALambda.LAMBDA)

- RegExp(String, Alphabet) parser et regulært udtryk
- toString() til udskrift af et parsed regulært udtryk
- toNFALambda() konstruktionen fra Kleene's sætning del 1
- simplify() simplificerer et parsed regulært udtryk, nyttig efter FA.toRegExp() (Kleene's sætning del 2)

- RegExp(String, Alphabet) parser et regulært udtryk
- toString() til udskrift af et parsed regulært udtryk
- toNFALambda() konstruktionen fra Kleene's sætning del 1
- simplify() simplificerer et parsed regulært udtryk, nyttig efter FA.toRegExp() (Kleene's sætning del 2)

- RegExp(String, Alphabet) parser et regulært udtryk
- toString() til udskrift af et parsed regulært udtryk
- toNFALambda() konstruktionen fra Kleene's sætning del 1
- simplify() simplificerer et parsed regulært udtryk, nyttig efter FA.toRegExp() (Kleene's sætning del 2)

- RegExp(String, Alphabet) parser et regulært udtryk
- toString() til udskrift af et parsed regulært udtryk
- toNFALambda() konstruktionen fra Kleene's sætning del 1
- simplify() simplificerer et parsed regulært udtryk, nyttig efter FA.toRegExp() (Kleene's sætning del 2)

Minimering i dRegAut java-pakken

• "pseudo-kode": uformel mellemting mellem de matematiske definitioner og Java-koden

FA.minimize()

```
FA minimize() {
    phase 1: Remove unreachable states
    phase 2a: Divide into accept/reject states
    phase 2b: Iteration
    phase 3: Build and return resulting minimal automaton n
}
```

FA.findReachableStates(), version 1

```
Set findReachableStates() {
 R = \{q_0\}
 done = false
 while not done do
   done = true
   for each q \in R do
     for each a \in \Sigma do
      p = \delta(q, a)
      if p \notin R then
        add p to R
        done = false
 return R
```

FA.findReachableStates(), version 2

Vi kan holde øje med hvilke tilstande der ikke er "færdigbesøgt" for at undgå at besøge hver tilstand flere gange:

```
Set findReachableStates() {
 R = \{\}
 pending = \{q_0\}
 while pending \neq \emptyset do
   pick and remove an element q from pending
   add q to R
   for each c \in \Sigma do
     p = \delta(q, c)
     if p \notin R then add p to pending
 return R
```

FA.minimize phase 2a

- Define some ordering on the states Q
- Declare marks: a set of pairs (p, q) where $p, q \in Q$ and p < q
- marks = ∅
- for each pair $p, q \in Q$ where p < q do if not $(p \in A \Leftrightarrow q \in A)$ then add (p, q) to marks

Mange muligheder for Java-representation af marks...

FA.minimize() phase 2b

```
done = false
while not done do
 done = true
 for each pair p, q \in Q where p < q do
   if (p,q) \notin \text{marks then}
     for each a \in \Sigma do
       r = \delta(p, a)
       s = \delta(q, a)
       if r > s then swap r and s
       if (r, s) \in marks then
        add (p, q) to marks
        done = false
Kunne gøres smartere med en pending worklist.
```

FA.minimize(), phase 3

```
FA = new FA with same alphabet as f but with no states or transitions yet
initialize empty maps old2new: f.Q \rightarrow n.Q and new2old: n.Q \rightarrow f.Q
for each r \in f.Q in order do
 if (s, r) \in marks for every s < r then
   add a new state p to n.Q
   add old2new(r) = p and new2old(p) = r
   if r \in f.A then add p to n.A
 else
   add old2new(r) = old2new(s)
 if r = f.q_0 then set n.q_0 = old2new(r)
 for each state p \in n do
   add n.\delta(p,c) = old2new(f.\delta(new2old(p),c)) for each c \in \Sigma
```

Eksempel

```
Alphabet a = new Alphabet('0', '1');
RegExp r = new RegExp("0+(1*+01*+10*+001*01)*0*", a);
NFALambda n1 = r.toNFALambda();
NFA n2 = n1.removeLambdas();
FA n3 = n2.determinize();
System.out.println("Før: "+n3.getNumberOfStates());
FA n4 = n3.minimize();
System.out.println("Efter: "+n4.getNumberOfStates());
Før: 13
Efter: 1
```

Eksempel

```
Alphabet a = new Alphabet('0', '1');
RegExp r = new RegExp("0+(1*+01*+10*+001*01)*0*", a);
NFALambda n1 = r.toNFALambda();
NFA n2 = n1.removeLambdas();
FA n3 = n2.determinize();
System.out.println("Før: "+n3.getNumberOfStates());
FA n4 = n3.minimize();
System.out.println("Efter: "+n4.getNumberOfStates());
Før: 13
Efter: 1
```

Eksempel

```
Alphabet a = new Alphabet('0', '1');
RegExp r = new RegExp("0+(1*+01*+10*+001*01)*0*", a);
NFALambda n1 = r.toNFALambda();
NFA n2 = n1.removeLambdas();
FA n3 = n2.determinize();
System.out.println("Før: "+n3.getNumberOfStates());
FA n4 = n3.minimize();
System.out.println("Efter: "+n4.getNumberOfStates());
Før: 13
Efter: 1
```

Resume

- MyHill-Nerode-sætningen:
- endnu en karakteristik af de regulære sprog
- en algoritme til FA minimering
- en algoritme til at fjerne uopnåelige tilstande i en FA