MAT320 Quiz #8

11/7/2023

Please answer the following questions, and write your name on top of the quiz.

Question 1. Let $f_k:[0,1]\to\mathbb{R}$ and $f:[0,1]\to\mathbb{R}$ be measurable functions. If $f_k\to f$ almost everywhere, does it follow that $\int_0^1 f_k\to \int_0^1 f$ as $k\to\infty$? State yes or no, and if no, give a counterexample.

Question 2.

- a) State the (Lebesgue) dominated convergence theorem.
- b) Let $f:[0,1]\to\mathbb{R}$ be an integrable function. Show that $f_k(x)=x^kf(x)$ defines an integrable function $f_k:[0,1]\to\mathbb{R}$.
- c) Show that $\lim_{k\to\infty} \int_0^1 x^k f(x) = 0$.

Extra credit. (1/2 Q) With the notation above, compute $\lim_{k\to\infty} \int_0^1 kx^k f(x)$ in terms of values of f, assuming that f is differentiable with continuous derivative.

Question 3.

- a) State the monotone convergence theorem.
- b) Suppose $f: \mathbb{R} \to \mathbb{R}$ is measurable and nonnegative. Suppose that

$$\int_{-\infty}^{\infty} \frac{n^2}{n^2 + x^2} f(x) dx \le 1 \text{ for all } n = 1, 2, \dots.$$

Show that f is integrable.