MA0505 - Análisis I

Lección XXII: Riemann y Lebesgue IV

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- La Relación entre las Integrales
 - Recordatorio de Particiones
 - El Teorema Clave

Particiones

Sea $f:[a,b]\to\mathbb{R}$ acotada y

$$\Gamma_k = \{ a = x_1^k < x_2^k < \cdots < x_{m_k}^k = b \}.$$

Consideremos

a) Si $m_i = \inf_{[X_{i-1}, X_i]} f(x)$, entonces

$$\ell_k(x) = \sum_{i=1}^{n-1} m_i \mathbf{1}_{[x_{i-1},x_i[} + m_n \mathbf{1}_{[x_{n-1},x_n]}.$$

b) Si $M_i = \sup_{[X_{i-1},X_i]} f(x)$, entonces

$$u_k(x) = \sum_{i=1}^{n-1} M_i \mathbf{1}_{[x_{i-1},x_i[} + M_n \mathbf{1}_{[x_{n-1},x_n]}.$$

Note que

$$\ell_k(x) \leqslant f(x) \leqslant u_k(x).$$

Recordemos que si $\Gamma_k \subseteq \Gamma_{k+1}$, entonces

- (I) $\ell_k \leqslant \ell_{k+1}$.
- (II) $u_k \geqslant u_{k+1}$.

Si $|f(x)| \le M$ para $x \in [a, b]$, entonces $|\ell_k|, |u_k| \le M$ en [a, b]. Y también

$$\begin{cases} \ell = \lim_{k \to \infty} \ell_k & (TCD) \\ u = \lim_{k \to \infty} u_k & \Longrightarrow \end{cases} \begin{cases} \lim_{k \to \infty} \int_{[a,b]} \ell_k(x) dx = \int_{[a,b]} \ell(x) dx. \\ \lim_{k \to \infty} \int_{[a,b]} u_k(x) dx = \int_{[a,b]} u(x) dx. \end{cases}$$

Luego tenemos que

$$\int_{[a,b]} u(x) dx = \int_{[a,b]} \ell(x) dx$$

$$\iff \int_{[a,b]} (u(x) - \ell(x)) dx = 0$$

$$\iff u = \ell \text{ c.p.d.}$$

Como

$$\int_{[a,b]} \ell_k(x) dx = \sum_{i=1}^n m_i(x_i - x_{i-1}), \int_{[a,b]} u_k(x) dx = \sum_{i=1}^n M_i(x_i - x_{i-1}),$$

entonces concluimos que $u=\ell$ c.p.d. si y sólo si las sumas inferiores y superiores convergen al mismo punto.

Teorema

Sea $f:[a,b] \to \mathbb{R}$ acotada. Entonces son equivalentes

- (I) f es Riemann-integrable.
- (II) f es continua c.p.d.

Comenzamos asumiendo que f es Riemann-integrable. Tomemos

$$Z = \{ \ell \neq f \} \cap \{ \ell \neq u \} \cap \{ f \neq u \} \cap \bigcup_{k=1}^{\infty} \Gamma_k.$$

Como f es Riemann-integrable, entonces m(Z) = 0.

Continuamos la Prueba

Si fuese que $x \notin Z$, entonces

$$u(x) = \ell(x) = f(x), \ x \notin \Gamma_k, \ k \geqslant 1.$$

Supongamos a manera de contradicción que f no es continua en x. Entonces existe un $\varepsilon>0$ tal que para $\delta>0$, existe x_δ tal que

$$|x_{\delta} - x| < \delta$$
, y $|f(x) - f(x_{\delta})| > \varepsilon$.

Continuamos la Prueba

Dado k, existen x_i^k, x_{i+1}^k tales que $x \in]x_i^k, x_{i+1}^k[$. Tomemos δ_0 tal que

$$]x - \delta, x + \delta[\subseteq]x_i^k, x_{i+1}^k[, \delta \leqslant \delta_0.$$

Entonces

$$x_{\delta} \in \left] x_{i}^{k}, x_{i+1}^{k} \right[\Rightarrow \varepsilon \leqslant M_{i} - m_{i}$$

 $\Rightarrow u_{k}(x) - \ell_{k}(x) > \varepsilon$, para todo k .

La Otra Dirección

Asumamos que f es continua c.p.d. Sea entonces

$$Z = \{ x : f(x) \text{ es discontinua en } x \}$$

y tomemos $x \in Z \cup \{a, b\}$. Dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $y \in]a, b[$, entonces

$$|x-y|<\delta \Rightarrow |f(x)-f(y)|<\frac{\varepsilon}{2}.$$

Continuamos la Prueba

Tome ahora $|\Gamma_k| < \frac{\delta}{2}$. Sea i tal que $x \in [x_{i-1}, x_i[$ para $1 \le i \le n$. Como $[x_{i-1}, x_i[\subseteq]x - \delta, x + \delta[$ tenemos que

$$f(x) - \frac{\varepsilon}{2} \leqslant f(x) < f(x) + \frac{\varepsilon}{2}, \ y \in [x_{i-1}, x_i].$$

Luego

$$f(x) - \frac{\varepsilon}{2} < m_i \leqslant M_i \leqslant f(x) + \frac{\varepsilon}{2}$$

y así concluimos que si $|\Gamma_k| \xrightarrow[k \to \infty]{} 0$, existe k_0 tal que

$$k \geqslant k_0 \Rightarrow |u_k(x) - f(x)|, |\ell_k(x) - f(x)| < \frac{\varepsilon}{2}.$$

Concluimos la Prueba

Lo anterior nos dice que

$$\ell_k(x) \xrightarrow[k \to \infty]{} f(x), \ u_k(x) \xrightarrow[k \to \infty]{} f(x).$$

Por el T.C.D. se cumple que

$$\lim_{k\to\infty}\int\limits_{[a,b]}\ell_k(x)\mathrm{d}x=\int\limits_{[a,b]}f(x)\mathrm{d}x.\quad \lim_{k\to\infty}\int\limits_{[a,b]}u_k(x)\mathrm{d}x=\int\limits_{[a,b]}f(x)\mathrm{d}x.$$

En conclusión las integrales de Riemann y Lebesgue concuerdan.

Resumen

 El teorema 1 que nos da la equivalencia entre integrabilidad de Riemann y continuidad casi por doquier.

Ejercicios

- Lista 22
 - No hay ejercicios para hoy.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.