Final examination, Spring 2016. Computer Architecture. Open book, open notes.		
Your name and ID please:		
that you understand what each part does, plea	oked at 3 different sample architectures. <i>To show</i> se answer question 1 with numbered steps each class many, many times. I have left areas for your is attached for your convenience.	
Question 1(a): You can assume that the ALU is so or decrement "A" (or "B" if you wish). Write "s	ophisticated and has the ability simply to increment et ALU to increment 'A'", etc.	
Write out the steps necessary to fetch an instructifirst, continue in column 2.	on using the three bus architecture. Use column 1	
1. •		
•		

Question 1(b) Assume that the instruction you have just "fetched" is: "ADD -(R1), (R2)+"

for your execution process. **Important:** Again, it would be crazy to include the auto-increment direct and auto-decrement direct addressing modes and not provide increment and decrement ALU functions so although this cannot be indicated on the 3-bus diagram, assume that these ALU functions exist and are invoked using the function select lines. What is a suitable execution sequence? Start in column 1, continue as necessary in column 2

1. •	
•	

Question 2: Importance – all modern computers employ microcoding.

Explain the essential difference between horizontal micro-code and vertical micro-code.
Question 3: Importance – all modern computers use 2's complement arithmetic <i>and</i> at the hardwlevel, if statements use the flags.
Using a 5-bit two's complement system, set up below the sum $+15 + (-16)$. Do the addition.
Interpret the answer in decimal:
Which of the following ALU flags would be set to a "1" by this addition?
V Yes □ No □
C Yes \square No \square
N Yes □ No □ Z Yes □ No □

Briefly explain the process of "paging". And why do we do it? What is a "page fault"? **(b)** What two phenomena make this system workable? Use a sentence or two to explain them.

Question 4(a). Importance – without these mechanisms and phenomena, we wouldn't be able to

use the architecture of current main memory sub-system hierarchy.

Question 5(a). Importance – without certain fields in the page table, memory management would be impossible.

	ny fields which exist in each line of a page table, and in the righ
column explain what the field is	s for. What's its purpose, briefly?
(b) What is cache? What type o block need a tag?	f memory hardware is it? What is its function and why does each

Question 6. Importance: all modern general purpose computers use prioritized interrupts. What sequence of events occurs when the CPU receives an interrupt from a peripheral which needs attention?

Question 7. Importance: the use of pipelining techniques improves the performance of a system by using parallelism. CPU control units generally are pipelined.
A 5 stage pipeline implements a task T which would normally take "n" seconds. Each of the stages of the pipeline are constructed to execute in "n/5" seconds. 21 tasks are waiting at the input to this pipeline. How many seconds will be required to finish all of these 21 tasks?
Question 8. Importance: DMA is a general technique for improving computer system performance.
A dedicated DMA unit is connected to a hard drive. Describe the steps taken in copying pages into memory, and particularly identify what problematic issues are solved by the use of DMA.

Generic three-bus C.P.U. architecture Data output lines from register RAM ▼ **Control Lines** IR Read/ Mux 0 1 Write select MUX A MUX B select line **Control Unit** To and from data input lines/data output Buffer d lines of main memory Registers d B/ 16 address MDR SRAM, A and B replacing and acting as s General N C Function Registers ALU MAR select lines To main memory Address 15=PC n address lines е Flags, ← Data input lines s above