Area of full circle

Cutout area:

$$A = R^2/2 \cdot (\vartheta - \sin \vartheta)$$
 where ϑ is the opening angle:

Want: Area E

Circle area remaining on chip

Area D: cutout by α

Want: ∝

$$lpha= {rak {artheta_2}/2}$$
 - $(\pi/2$ - ${rak {artheta_1}/2})$

$$\alpha = \vartheta_2/2$$
 - γ

Want: Area C

 Δx , Δy distance of center to edge of chip, may be negative

$$C = x' \cdot y'/2$$

with

$$x' = \cos \beta \cdot R$$
 - Δx

$$y' = \cos \gamma \cdot R - \Delta y$$

Area E therefore is:

$$E = F - A - B + C + D$$