# IT 542: Pattern Recognition and Machine Learning

# **Assignment 6**

#### **Question 1:-**

**Aim:** Implement Fuzzy c-means clustering algorithm. Use IRIS data to evaluate performance of the algorithm.

Compare your results with that of the in-built function.

#### Code:-

```
clc;
clear all;
load iris.dat
obsv n = size(iris, 1);
                                      % total number of observations
Characteristics = {'sepal length', 'sepal width', 'petal length', 'petal
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4];
h = figure;
for j = 1:6
   x = pairs(j, 1);
    y = pairs(j, 2);
    subplot(2,3,j);
    plot([setosa(:,x) versicolor(:,x) virginica(:,x)],...
         [setosa(:,y) versicolor(:,y) virginica(:,y)], '.');
    xlabel(Characteristics{x},'FontSize',10);
    ylabel(Characteristics{y}, 'FontSize', 10);
end
cluster n = 3;
                                       % Number of clusters
expo = 2.0;
                                       % Exponent for U
max iter = 100;
                                      % Max. iteration
min impro = 1e-6;
% initialize fuzzy partition
U = initfcm(cluster n, obsv n);
if ishghandle(h)
    figure(h);
else
    for j = 1:6,
       x = pairs(j, 1);
       y = pairs(j, 2);
       subplot(2,3,j);
       plot([setosa(:,x) versicolor(:,x) virginica(:,x)],...
             [setosa(:,y) versicolor(:,y) virginica(:,y)], '.');
       xlabel(Characteristics{x},'FontSize',10);
       ylabel(Characteristics{y}, 'FontSize', 10);
    end
end
```

```
% iteration
for i = 1:max iter,
    [U, center, obj] = stepfcm(iris, U, cluster n, expo);
    fprintf('Iteration count = %d, obj. fcn = f \in \mathbb{N}n', i, obj);
    if i>1 && (abs(obj - lastobj) < min impro)</pre>
        for j = 1:6,
            subplot(2,3,j);
            for k = 1:cluster n,
                text(center(k, pairs(j,1)), center(k,pairs(j,2)), int2str(k),
                'FontWeight', 'bold');
            end
        end
        break;
    elseif i==1
        for j = 1:6,
            subplot(2,3,j);
            for k = 1:cluster n,
                text(center(k, pairs(j, 1)), center(k, pairs(j, 2)), int2str(k),
                 'color', [0.5 0.5 0.5]);
            end
        end
    end
    lastobj = obj;
end
center=center(:,1:4);
center=center/10;
%FCM by inbuilt method
data = load('iris.csv');
data=data(:,1:4);% load some sample data
n_clusters_inbuilt = 3;
                                      % number of clusters
[center inbuilt,U inbuilt,obj fcn inbuilt] = fcm(data, n clusters inbuilt);
```

### **Output:-**

| 1 | Editor - Lab6_3.m |                |        |        |   |   | 🌠 Variables - center |    |   |    |  |
|---|-------------------|----------------|--------|--------|---|---|----------------------|----|---|----|--|
|   | center X          | center_inbuilt | ×      |        |   |   | 7.00                 |    |   |    |  |
|   | 3x4 double        | ALC:           |        | ,iTe   |   |   | <u> </u>             | 0. |   |    |  |
|   | 1                 | 2              | 3      | 4      | 5 | 6 | 7                    | 8  | 9 | 10 |  |
| 1 | 5.8889            | 2.7611         | 4.3629 | 1.3966 |   |   |                      |    |   |    |  |
| 2 | 5.0040            | 3.4141         | 1.4828 | 0.2535 |   |   |                      |    |   |    |  |
| 3 | 6.7741            | 3.0521         | 5.6464 | 2.0535 |   |   |                      |    |   |    |  |
| 4 |                   |                |        |        |   |   |                      |    |   |    |  |
| 5 |                   |                |        |        |   |   |                      |    |   |    |  |
| 6 |                   |                |        |        |   |   |                      |    |   |    |  |

Fig 1. Centroid values without In-built Function



Fig 2. Centroid values with In-built Function

## **Conclusion:**

Centroid values computed by Fig. 1 and Fig. 2 is almost same. In program, center matrix is for centroid values without using in-built function and center\_inbuilt matrix is for centroid values using In-built function.