Surfaces

Topology (Klein Bottle)

Surface

$$S(u,v) = \{x(u,v), y(u,v), z(u,v)\}$$

• Total area $A = \iint |S_u \times S_v| du dv$

Surface

$$S(u,v) = \big\{x(u,v),y(u,v),z(u,v)\big\}$$

Example: Surface as graph of function

• A surface, $S: \mathbb{R}^2 \to \mathbb{R}^3$

$$S(u,v) = \left\{ x = u, y = v, z(u,v) \right\}$$

Principal

Normal Curvature

$$\kappa_n = \left\langle C_{ss}, \vec{N} \right\rangle$$

Principle Curvatures

$$\kappa_1 = \max_{\theta}(\kappa)$$

$$\kappa_2 = \min_{\theta}(\kappa)$$

Mean Curvature
$$H = \frac{\kappa_1 + \kappa_2}{2}$$

Gaussian Curvature $K = \kappa_1 \kappa_2$

$$K = \kappa_1 \kappa_2$$

Normal Curvature

$$\kappa_n = \left\langle C_{ss}, \vec{N} \right\rangle$$

Gauss

Principal

Priciple Curvatures

$$\kappa_1 = \max_{\theta}(\kappa)$$

$$K_2 = \min_{\theta}(K)$$

Mean Curvature $H = \frac{\kappa_1 + \kappa_2}{2}$

Gaussian Curvature $K = \kappa_1 \kappa_2$