#### 527-12 1/5527 P\_ (5

# Space Defense Initiative Technologies and Hardware Can Help Resolve Certain Space Exploration Initiative Weight and Performance Issues



### Many Aerojet Programs Have Contributed to Advanced Technologies and Hardware

| Program and POP                        | Objective                                                                        |
|----------------------------------------|----------------------------------------------------------------------------------|
| Advanced Liquid Axial Stage (89-92)    | Space Based Interceptor - Advanced Liquid Propulsion and Structures Technologies |
| Missile Integrated Stage (90-94)       | Low Cost Booster/Interceptor                                                     |
| Liquid Propellant Sustainer (90-94)    | Gelled Technology for Interceptor                                                |
| High Endoatmospheric Def. Int. (87-93) | Ground Based Interceptor                                                         |
| SCIT-DACS (87-92)                      | Kill Vehicle Propulsion                                                          |
| THAADS (92- )                          | Theatre Missile Defense Propulsion                                               |
| GBI (90- )                             | Ground Based Interceptor                                                         |
| Brilliant Pebbles (90-95)              | Advanced Booster and Kill Vehicle Propulsion<br>Systems and Structures           |
| Endo LEAP (90- )                       | Endoatmospheric Interceptor Controls & Cooling                                   |

#### CENCORP AEROJET

#### **SDI Programs' Technical Focus**

Lightweight

- High Mass Fraction Stages
  - Heavy Use of Composites
  - Advanced Propellants

**Low Cost** 

- Highly Producible Designs
  - Integrated Propulsion Modules

- **High Performance • Ultrafast Engine Responses** 
  - Front-End Cooling for In Atmospheric Flight
  - Advanced Propellants

# SDI Technology Provides Order AEROJET of Magnitude Savings on Weight

#### **Propulsion Division**

#### **Current State of the Art**



| Wt = | 290 | lbm | (132 | kg) |
|------|-----|-----|------|-----|
|      |     |     |      |     |

#### **ALAS**



|                   |                               | Current<br>S.O.A.                                   | ALAS                                                  | Weight Impact                                                                  |
|-------------------|-------------------------------|-----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------|
| ERS               | Material                      | All Metal                                           | Carbon<br>Composites                                  | High strength to weight composites are more weight efficient than best metals  |
| DRIV              | Propellants                   | N2O4/<br>N2H4                                       | CIF5/N2H4                                             | High density oxidizers result in denser, smaller packages                      |
| DESIGN DRIVERS    | $ sp, sec(\frac{N-sec}{kg}) $ | 310 – 320<br>(3040-<br>3140)                        | 340 – 360<br>(3330-3530)                              | Higher ISP results in less required propellant for same mission                |
| STAGE             | F/Wt                          | 50                                                  | 500 1000                                              | Decreases engine weight an order of magnitude                                  |
| SIGNIFICANT STAGE | Response<br>Time, sec         | 0.010 –<br>0.030                                    | 0.001                                                 | Improves control of stage — saves using another set of smaller control engines |
| SIGN              | Press Vol in weight (cm)      | 6 x 10 <sup>5</sup><br>(15.2 x<br>10 <sup>5</sup> ) | 1-2 x 10 <sup>6</sup><br>(2.5 - 5 x 10 <sup>6</sup> ) | Halves the tank weight                                                         |

Wt = 38.3 lbm (17.4 kg)



#### Benefits are Realized in Several Areas

- New Engines
- Structures
- Tanks
- Advanced Propellant



# Emerging Composites Technologies Result in Numerous Propulsion Benefits

| Subsystem           | Conventional<br>Technology                                                                                                                                         | ALAS<br>Technology                                                                                                                       | ,<br>Benefit                                                                                                                |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| ALAS Axial Engine   | Refractory     Nozzle     Low Density     Graphite     Chambers     Metal Structural     Shell                                                                     | Braided Carbon<br>Axial Nozzle     Carbon<br>Structural Shell                                                                            | Nozzle Weight<br>Reduced 90%                                                                                                |
| Propellant Tanks    | All Metal Designs     Usually Titanium     Glass –     Overwrapped     Thick-Wall Metal     Liners (Pressure     Load Is Shared     Between Liner     and Overwrap | Carbon Fiber     Overwrapped     with Very Thin     Wall Liners     (Pressure Load     Is Not Shared     Between Liner     and Overwrap) | ~60% Weight     Savings from     1 ibm to 45 lbm     Order of     Magnitude     Savings in Cost     \$10,000 vs     ≤\$1000 |
| ACS Engine          | Refractory     Nozzle                                                                                                                                              | Free Standing Graphite Nozzle                                                                                                            | Nozzle/Chamber Weight Reduced from 2 lbm to <.2 lbm                                                                         |
|                     | - All Aluminum<br>Bolted/Welded<br>Configuration                                                                                                                   | Injection Molded Carbon Rings Braided Rings Stamped Struts Plastic Welding                                                               | Weight Savings     – from 2 lbm to     .5 lbm                                                                               |
| Composite Structure |                                                                                                                                                                    |                                                                                                                                          |                                                                                                                             |



#### **Advanced Liquid Axial Stage**



# 1545 A

The second of th



## Propellant and Pressurant Tank Accomplishments

#### **Features**

- 10<sup>6</sup> psi (7000 MPA) Carbon Fiber
- Yielding .006 in (.015 cm)Al Liner
- No Liner Welds
- Passive Propellant Management Device



#### **Status**

- Fiber/Resin System Demonstrated
- .006 in (.015 cm) Liners Made
- Long Term CIF
   Material Storage
   Demonstrated
- He Containment
   Demonstrated With
   0.010 in (.025 cm)
   Liner/@ 10,000 psi
- Prototype PMD Made
- First Burst Tests at 14,100 and 16,860 psia

#### GENCORP AEROJET

## New Family of Lightweight Engines Has Been Developed

| <u>Program</u> | <b>Engine Type</b> | <u>Pc</u> | <u>Tests</u>             |
|----------------|--------------------|-----------|--------------------------|
| ALAS           | Axial              | 775       | 150 Tests 1989-91        |
| ALAS           | ACS                | 500       | 110 Tests 1989-91        |
| SCIT           | Divert             | 500       | 20 Tests 1989-92         |
| LDI            | Axial/Divert       | 300-600   | 23 Tests 1992 (On-going) |
| GBI            | ACS                | 500       | To Be Tested July 1992   |
| BP             | Divert             | 500       | To Be Tested Early 1993  |
| BP             | ACS                | 300       | To Be Tested Mid 1993    |

#### **ALAS Has Demonstrated High Performing Helium Tanks**



Welded 2219/1100 Liner



Spun 2219 Liner



Spun 6061 Liner

- 32 Helium Tanks Fabricated
- 0.010 in. Liner Wall Thickness Demonstrated
- PV/W = 1.2 x 10<sup>6</sup> Achieved
- Helium Permeability 1.0 x 10<sup>-9</sup> sccs at 10,000 psi after 20 Cycles Demonstrated





#### **Specification**

|                         | <u>Phase I</u> | <u>Phase II</u> |
|-------------------------|----------------|-----------------|
| Volume, in <sup>3</sup> | 40             | 335             |
| Diameter, in            | 3.2            | 6.3             |
| Operating Pressure, psi | 10,000         | 10,000          |

**Propulsion Division** 

GENCORP

APD91-08B



#### Propellant Hoop And Helical Fibers Have Been Selected



|                            | Tank        | Modulus | Compa | Neight<br>rison, % | Fiber              |    |
|----------------------------|-------------|---------|-------|--------------------|--------------------|----|
| Fiber                      | Application | (MSI)   | Fu    | Ox                 | (KSI)              | Av |
| T-400<br>(3K Tow)          | Helical     | 36.4    | +8    | +4                 | 367<br>368<br>370  | 36 |
| T-650(1)<br>(3K-Tow)       | Helical     | 35.0    |       |                    | 591<br>605<br>591  | 59 |
| T-650<br>(6K Tow)          | Helical     | 42.0    | +10   | +5                 | 596<br>609<br>603  | 60 |
| Apollo 53-750<br>(12K Tow) | Helical     | 53.0    | +3    | -1                 | 615<br>666<br>660  | 64 |
| Т-1000Н                    | Ноор        | 42.0    | +6    | +5                 | 919<br>901<br>791* | 91 |
| T-1000GB(3)                | Hoop        | 42.0    |       |                    | 909<br>901         | 72 |

<sup>\*</sup>Not included in Average

ALAS0228



#### Selection Criteria

- (1) Minimum Weight Design
- (2) Higher Strength
- (3) Cheaper and Available



Selected

#### **ALAS Developed An Advanced Carbon Composite Structure**



KKV Deflection Test 0.018 in. Deflection at Flight Load

#### **5 Structures Fabricated**





Compression Test
• Ultimate Failure at 5000 lbf

SLOSH Tensile TestStrut Demonstrated at 2X Load

#### Component Tests-



Main Strut Component Test Set-Up



Forward Ring Component Test Set-Up ALAS Aft Ring Component Test Set-Up



GENCORP AEROJET TechSystems

#### ALAS Structure Estimated Weight Summary

| <ul> <li>Forward Ring, Ibs</li> </ul>        | .147  |
|----------------------------------------------|-------|
| · Aft Ring, Ibs                              | .230  |
| ACS Supports, Ibs                            | .0178 |
| Tank Support Inserts, Ibs                    | .0086 |
| Struts, Structure, Ibs                       | .328  |
| Struts, Engine, Ibs                          | .041  |
| <ul> <li>Tank Retaining Pins, Ibs</li> </ul> | .011  |
|                                              |       |

Total, lbs .757

Note: Change in Tank Mounting Method Provides .0195 lbs Total Tank Weight Saving

# Optimum Material for Each Component

| Component         | Material ·                                                       | Rationale                                              |
|-------------------|------------------------------------------------------------------|--------------------------------------------------------|
| Helium Tank Mount | High Strength Graphite Fiber/High Elongation Resin [±45°] Layup  | Best Balance of Stiffness/Strength                     |
| Longeron          | High Modulus Graphite Fiber/BMI<br>Resin<br>[±45°/0°/±45°] Layup | Stiffness Driven Producible BMI for Thermal Capability |
| Aft Ring*         | High Strength Graphite Fiber/High Elongation Resin               | Best Strength/Weight Ratio for Launch Looks            |
| Forward Flange*   | Beryllium                                                        | Stiff Isotropic Machined Part Ribs/Bosses              |

<sup>\*</sup>Detailed Structural Analysis and Dynamics Must Be Done

**Propulsion Division** 

#### GENCORP AEROJET

#### CLF<sub>5</sub> Offers Improved Performance Without Undue Safety/Toxicity Issues

- Performance
  - High specific impulse 340-360 sec delivered
  - High specific gravity 1.8 vs. N<sub>2</sub>H<sub>4</sub> = 1.04
- Safety
  - No untoward incidents in 5 years of recent testing
    - Over 300 rocket engine tests
    - Over 25 different engines
    - Stage test (loading and firing)
  - Handles like N2O4 and tested with same precautions (Amines are more trouble)
  - Strong reaction with hydrocarbons must be clean
    - Lox cleanliness level is appropriate
- Toxicity
  - Only about two-four times as toxic as N<sub>2</sub>H<sub>4</sub>
  - About 4-8 times safer than Titan III launch
    - Titan III fuel load = 105,000 lb of N<sub>2</sub>H<sub>4</sub>/UDMH
    - CLF<sub>5</sub> on Atlas ~ 6,500 lb
    - Equivalent  $N_2H_1 = 13,000-26,000$  lb