Branch-and-bound Graphical Example (Accompanying Lesson 16)

1 Branch-and-bound Example

Solve the following IP using branch-and-bound. Solve each sub problem graphically.

(P1)
$$z_{IP}^* = \max 4x_1 - x_2$$

s.t. $7x_1 - 2x_2 \le 14$
 $2x_1 - 2x_2 \le 3$
 $x_2 \le 3$
 $x_1, x_2 \in \mathbb{Z}^{\geq 0}$

- Solve each sub-problem graphically
- Branching Rules
 - Always select the active node with the largest upperbound for branching.
 - \circ Branch on x_1 if it is fractional. Otherwise branch on x_2 .
- Book-keeping
 - Keep track of the:
 - \diamond incumbent solution \underline{x} ,
 - \diamond global lower bound \underline{z} , and
 - ♦ list of active nodes.
 - Draw the branch-and-bound tree:
 - \diamond Record the local upper bound (z) and relaxed optimal solution (x) for each subproblem.
 - ♦ Label each edge with the constraint that is added to form the child subproblem.
 - ♦ X-out fathomed nodes. Circle incumbent solution nodes.
 - Use the provided diagram to illustrate the (relaxed) feasible region of each subproblem.

incumbent solution \underline{x}

global lower bound \underline{z}

active nodes

Feasible Region

Steps taken

Step 1: Solve the LP relaxation of original problem

Got Z=8.4 X=(32,3) Not optimal for IP $Z_{IP}^{*} \leq 8.4$ $\rightarrow Z_{IP}^{*} \leq 8$

XI is fractional. We branch on XI and creak

2 problems PI and P2.

P2: Original Problem and X123

Step 2: solve UP relaxation of P1 and P2

P1-> Z= 7.5 X=(212)

P2-> Infeasible

Bliminale Pa.

Bronch Pl on Xa. Creale P3 and P4

P3: Original Problem and XISA IXASO

P4: Original Problem and XISA IXASI

Step 3: solve LP relaxation of P3 and P9
P3-> Z=6 X=(3,0)
P4-> Z=4 X=(2,1)

From PII WE KNOW ZX Z 7

All that's left is P3, But 6 47 150 there's no value (1 exploring P3, Bliningle P3,

Optimal solution $Z^{\times} = 7$ $x^{*} = (a_{1})_{4}$