Report

Method

p: event proportion Exact method is used for this analysis.

Descriptive Statistics

Ν	Event	Sample p	95% CI for p
100	70	0.700000	(0.600185, 0.787594)

Test

Null hypothesis H_0 : p = 0.5Alternative hypothesis H_1 : $p \neq 0.5$

P-Value 0.000

Method

 λ_1 : Poisson rate of Sample 1 λ_2 : Poisson rate of Sample 2 Difference: λ_1 - λ_2

Descriptive Statistics

	Total				
Sample	Ν	Occurrences	Sample Rate		
Samp l e 1	65	100	1.53846		
Samp l e 2	140	200	1.42857		

Estimation for Difference

Estimated	
Difference	95% CI for Difference
0.109890	(-0.250832, 0.470613)

Test

Null hypothesis $H_0: \lambda_1 - \lambda_2 = 0$ Alternative hypothesis $H_1: \lambda_1 - \lambda_2 \neq 0$

Method	Z-Value	P-Value
Exact		0.583
Normal approximation	0.60	0.550