Chinese Remainder Theorem

Start HW5 early!

 $x =_s 2$

 $\times =_7 3$

RSA recap:

$$m \mapsto m^e \mod N$$
 } inverses!

Chinese Remainder Theorem:

let
$$p, g$$
 be relatively prime $\left(gcd(p, g) = 1\right)$
then for all u, v , there
is a solution for x in

$$\begin{array}{ll} \text{System} & \left\{ \begin{array}{l} \times & \equiv_{p} & u \\ \text{of eg'ns} & \left\{ \begin{array}{l} \times & \equiv_{q} & v \end{array} \right. \end{array} \right.$$

Alternatively:

$$x \in \mathbb{Z}_{pq} \xrightarrow{crt} (x 2p, x 2g) \in \mathbb{Z}_{p} \times \mathbb{Z}_{q}$$
this function is a bijection! (1-10-1 correspondence)
$$|\mathbb{Z}_{pq}| = p \cdot q = |\mathbb{Z}_{p} \times \mathbb{Z}_{q}|$$

Mathematically: Zpg and Zp × Zq are isomorphic

2 sets of "names" for same objects
(encodings)

Application to RSA:

RSA inverse $C \mapsto C^d \mod N = p \cdot g$ Pq is $\approx 2k \text{ Sitx}$ $p_1 \text{ g are } \approx k \text{ Sits}$ $p_2 \text{ world}$ $C \mapsto C^d \mod N = p \cdot g$ Provide $C \mapsto C^d \mod N = p \cdot g$ Cost: $C \mapsto C^d \mod N = p \cdot g$ $C \mapsto C^d \mod N = p$

Why? Cost to compute x - x y % n is roughly (# of bits in n)3