Laboratorio N° 4 SIMULACION DE UN BUS DE COMUNICACIONES MEDIANTE SYSTEMC.

Resumen --.

Juan David Caicedo, Néstor Romero Arismendi, UNIVERSIDAD NACIONAL DE COLOMBIA **Índice de Términos** —

I. INTRODUCCIÓN

II. PROCEDIMIENTO

Para el desarrollo de esta práctica se utilizo la descripción de un bus de datos anexa al paquete systemC, llamado simple_bus; se le realizaron las medidas temporales para su descripción, tales como la latencia y el trougput; también se sometió el bus a diversos tipos de arbitrajes y se compararon los resultados.

A. Medidas de latencia y trougput del bus con maestro no bloqueante.

Para la obtención de estas variables en el bus se implemento un sistema de un solo maestro no bloqueante y se compararon los resultados utilizando una memoria rápida y una memoria lenta.

• Latencia con memoria rápida.

Como se es conocida la latencia es la diferencia del tiempo entre cuando el maestro da una instrucción y esta se realiza, por lo tanto vamos a analizar 2 latencias, la de escritura y lectura, por lo tanto se simulo un proceso en el cual el maestro realiza una escritura y una lectura, los resultados obtenidos fueron los siguientes:

```
0 top.bus : read(1) @ 4c
500 top.bus : request (1) [SIMPLE_BUS_REQUEST]
500 top.bus Handle Slave(1)
--> status=(SIMPLE_BUS_OK)
1000 top.bus : write(1) @ 4c
1500 top.bus : request (1) [SIMPLE_BUS_REQUEST]
1500 top.bus Handle Slave(1)
--> status=(SIMPLE_BUS_OK)
```

Como se es posible observar para la operación de lectura, el maestro requiere el bus para la lectura en el tiempo 0, y la operación es completada en 0.5ns, por lo tanto:

$$Latencia_{lectura}$$
† 0.5ns – 0ns† 0.5ns

Mientras que para la escritura la escritura, el maestro solicita el bus en el tiempo de 1ns y la operación se realiza en el tiempo de 1.5ns por lo tanto:

Latencia
$$_{escritura}$$
 † 1,5 ns – 1,0 ns † 0,5 ns

• Latencia con memoria lenta

De igual manera como se realizo en la sección anterior, vamos a analizar ahora los tiempos de latencia teniendo un maestro no bloqueante y una memoria lenta. Se simulo un proceso en el cual el maestro realiza una escritura y una lectura, los resultados obtenidos fueron los siguientes:

```
0 top.bus : read(1) @ 4c
500 top.bus : request (1) [SIMPLE_BUS_REQUEST]
500 top.bus Handle Slave(1)
--> status=(SIMPLE_BUS_WAIT)
1500 SLV [76]
1500 top.bus Handle Slave(1)
--> status=(SIMPLE_BUS_OK)
2000 top.bus : write(1) @ 4c
2500 top.bus : request (1) [SIMPLE_BUS_REQUEST]
2500 top.bus Handle Slave(1)
--> status=(SIMPLE_BUS_WAIT)
3500 SLV [76]
3500 top.bus Handle Slave(1)
--> status=(SIMPLE_BUS_OK)
```

Como se es posible observar para la operación de lectura, el maestro requiere el bus para la lectura en el tiempo 0, y la operación es completada en 1,5ns, por lo tanto:

$$Latencia_{lectura} + 1,5 ns - 0 ns + 1,5 ns$$

Mientras que para la escritura la escritura, el maestro solicita el bus en el tiempo de 2ns y la operación se realiza en el tiempo de 3,5ns por lo tanto:

Latencia
$$_{escritura}$$
 † 3,5 ns $-$ 2,0 ns † 1,5 ns

• Trougputh con memoria rápida.

El trougputh se refiere a la cantidad de información que viaja a lo largo del sistema como se menciono anteriormente este se calcula de la siguiente manera:

$$Th + \frac{Mylength * tama\~{no}_{bus}}{t_{operacion}}$$

Con los resultados obtenidos en la sección anterior vamos a hallar el trougputh por operación para la memoria rápida, sabiendo que mylegth=9 y el tamaño del bus =32 bits (valores del simple_bus); de modo que tenemos :

$$Th + \frac{9 * 32}{0.5 \text{ ns}} + 576 \frac{bits}{ns}$$

• Trougput con memoria lenta

De igual manera para la memoria lenta tenemos:

Néstor Romero, Juan David Caicedo, INFORME PRÁCTICA 4, 2013-I

$$Th + \frac{Mylength * tamaño_{bus}}{t_{operacion}}$$

$$Th + \frac{9*32}{1,5} ns + 192 \frac{bits}{ns}$$

B. Medidas de latencia y trougput del bus con maestro bloqueante.

Para la obtención de estas variables en el bus se implemento un sistema de un solo maestro bloqueante y una memoria rápida.

Latencia con memoria rápida.

Como se es conocida la latencia es la diferencia del tiempo entre cuando el maestro da una instrucción y esta se realiza, por lo tanto vamos a analizar 2 latencias, la de escritura y lectura, por lo tanto se simulo un proceso en el cual el maestro realiza una escritura y una lectura, los resultados obtenidos fueron los siguientes:

Para la operación de lectura, el maestro requiere el bus para la lectura en el tiempo 0, y la operación es completada en 15.5 ns, por lo tanto:

$$Latencia_{lectura}$$
 † 15.5ns – 0ns † 15.5ns

Mientras que para la escritura la escritura, el maestro solicita el bus en el tiempo de 33ns y la operación se realiza en el tiempo de 48.5ns por lo tanto:

Latencia escritura
$$\dagger$$
 48.5 ns $-$ 33 ns \dagger 15.5 ns

• Latencia con memoria lenta

De igual manera como se realizo en la sección anterior, vamos a analizar ahora los tiempos de latencia teniendo un maestro bloqueante y una memoria lenta. Se simulo un proceso en el cual el maestro realiza una escritura y una lectura, los resultados obtenidos fueron los siguientes:

Para la operación de lectura, el maestro requiere el bus para la lectura en el tiempo 0, y la operación es completada en 31.5ns, por lo tanto:

$$Latencia_{lectura}$$
 † 31.5 ns -0 ns † 31,5 ns

Mientras que para la escritura la escritura, el maestro solicita el bus en el tiempo de 48ns y la operación se realiza en el tiempo de 79.5ns por lo tanto:

Latencia_{escritura}
$†$
79.5ns $-48 ns ^{\dagger}$ 31,5 ns

Trougputh con memoria rápida.

El trougputh se refiere a la cantidad de información que viaja a lo largo del sistema como se menciono anteriormente este se calcula de la siguiente manera:

$$Th + \frac{Mylength * tamaño_{bus}}{t_{operacion}}$$

Con los resultados obtenidos en la sección anterior vamos a hallar el trougputh por operación para la memoria rápida, sabiendo que mylegth=9 y el tamaño del bus =32 bits (valores del simple_bus); de modo que tenemos :

$$Th + \frac{9 * 32}{0.5 ns} + 576 \frac{bits}{ns}$$

Trougput con memoria lenta

De igual manera para la memoria lenta tenemos:

$$Th \dagger \frac{Mylength * tama\~no_{bus}}{t_{operacion}}$$

$$Th + \frac{9 * 32}{1.5} ns + 192 \frac{bits}{ns}$$

C. Políticas de Arbitraje con dos maestros y dos memorias..

En esta sección de la practica se implementó un sistema de bus descrito en la siguiente figura:

en el cual se encuentran 2 maestros no bloqueantes, dos memorias rápidas y un arbitro, cada maestro requerirá el bus para 3 operaciones de lectura y 3 de escritura cada 20 ns. Se implementaran 3 políticas de arbitraje (Prioridades fijas, Roun Robin y TDMA), y se evaluara cada una de sus medidas de desempeño y se compararan entre ellas:

• Propiedades Fijas

Se realizo la simulación del simple bus con la política de arbitraje de Prioridades Fijas y se obtuvieron los siguientes resultados:

15,	Maestro 1	Maestro 2
Numero de operaciones	12	12
Tiempo de simulación	40ns	

el	Maestro 1	Maestro 2
Numero de operaciones	18	18
Tiempo de simulación	70ns	

Conociendo los valores de latencia para los maestros no bloqueantes podemos obtener el tiempo de utilización de cada maestro, así como la latencia total del sistemas y el trougputh total del sistemas de manera que tenemos:

Para la simulación de 40ns

	Maestro 1	Maestro 2
Numero de operaciones	12	12
Tiempo de uso	6 ns	6ns
% de utilización de bus	15%	15%
Tiempo de utilización del	12 ns	
bus		
Tiempo de espera del bus	28 ns	·
% de utilización del bus	30%	

Para la simulación de 70ns

	Maestro 1	Maestro 2
Numero de operaciones	18	18
Tiempo de uso	9ns	9ns
% de utilización de bus	12.8%	12.8%
Tiempo de utilización del	18 ns	
bus		
Tiempo de espera del bus	52 ns	
% de utilización del bus	25.6%	

Round Robin

Tiempo de simulación

	Maestro 1	Maestro 2
Numero de operaciones	11	10
Tiempo de simulación	40ns	

	Maestro 1	Maestro 2
Numero de operaciones	16	16
Tiempo de simulación	70ns	

Conociendo los valores de latencia para los maestros no bloqueantes podemos obtener el tiempo de utilización de cada maestro, así como la latencia total del sistemas y el trougputh total del sistemas de manera que tenemos:

Para la simulación de 40ns

	Maestro 1	Maestro 2
Numero de operaciones	11	10
Tiempo de uso	5.5ns	5ns
% de utilización de bus	13.75%	12.5%
Tiempo de utilización del	10.5ns	
bus		
Tiempo de espera del bus	29.5 ns	
% de utilización del bus	26.25%	

Para la simulación de 70ns

	Maestro 1	Maestro 2
Numero de operaciones	18	18
Tiempo de uso	9ns	9ns
% de utilización de bus	12.8%	12.8%
Tiempo de utilización del	18 ns	
bus		

Tiempo de espera del bus	52 ns
% de utilización del bus	25.6%

TDMA

Se realizo la simulación del simple bus con la política de arbitraje de TDMA y se obtuvieron los siguientes resultados:

	Maestro 1	Maestro 2
Numero de operaciones	10	10
Tiempo de simulación	40ns	

	Maestro 1	Maestro 2
Numero de operaciones	16	14
Tiempo de simulación	70ns	

Conociendo los valores de latencia para los maestros no bloqueantes podemos obtener el tiempo de utilización de cada maestro, así como la latencia total del sistemas y el trougputh total del sistemas de manera que tenemos:

Para la simulación de 40ns

	Maestro 1	Maestro 2
Numero de operaciones	10	10
Tiempo de uso	5ns	5ns
% de utilización de bus	12.5%	12.5%
Tiempo de utilización	10ns	•
del bus		
Tiempo de espera del	30ns	
bus		
% de utilización del	25%	
bus		

Para la simulación de 70ns

	Maestro 1	Maestro 2
Numero de operaciones	16	14
Tiempo de uso	8ns	7ns
% de utilización de bus	11.42%	10%
Tiempo de utilización	15 ns	
del bus		
Tiempo de espera del	55 ns	
bus		
% de utilización del bus	21.46%	

Ahora, se cambiara el trafico de los maestros, ambos utilizaran el bus para 3 operaciones de lectura y escritura el primer maestro lo hará cada 5 ns y el segundo maestro lo requerirá cada 10 ns, y luego se invertirá este tiempo. Se analizara cada política de arbitraje.

• Propiedades Fijas

Se realizo la simulación del simple bus con la política de arbitraje de Prioridades Fijas y se obtuvieron los siguientes resultados:

	Maestro 1 (5ns)	Maestro 2 (10ns)
Numero de operaciones	24	12
Tiempo de simulación	40ns	

	Maestro 1 (10ns)	Maestro 2 (5ns)
Numero de operaciones	21	15
Tiempo de simulación	40ns	

Conociendo los valores de latencia para los maestros no bloqueantes podemos obtener el tiempo de utilización de cada maestro, así como la latencia total del sistemas y el trougputh total del sistemas de manera que tenemos:

Para la simulación con mayor trafico del maestro 1

	Maestro 1	Maestro 2
Numero de operaciones	24	12
Tiempo de uso	12ns	6ns
% de utilización de bus	30%	15%
Tiempo de utilización del	18 ns	
bus		
Tiempo de espera del bus	22 ns	
% de utilización del bus	45%	

Para la simulación con mayor trafico del maestro 2.

	Maestro 1	Maestro 2
Numero de operaciones	21	15
Tiempo de uso	10.5ns	7.5ns
% de utilización de bus	26.25%	18.75%
Tiempo de utilización del	18 ns	•
bus		
Tiempo de espera del bus	22 ns	
% de utilización del bus	45%	

• Round Robin

Se realizo la simulación del simple bus con la política de arbitraje de Round Robin y se obtuvieron los siguientes resultados:

	Maestro 1 (5ns)	Maestro 2 (10ns)
Numero de operaciones	18	14
Tiempo de simulación	40ns	

	Maestro 1 (10ns)	Maestro 2 (5ns)
Numero de operaciones	13	18
Tiempo de simulación	40ns	

Para la simulación con mayor trafico del maestro 1

	Maestro 1	Maestro 2
Numero de	18	14
operaciones		
Tiempo de uso	9ns	7ns
% de utilización de bus	22.5%	17.5%
Tiempo de utilización	16ns	
del bus		
Tiempo de espera del	24ns	
bus		
% de utilización del	40%	
bus		

Para la simulación con mayor trafico del maestro 2

	Maestro 1	Maestro 2
Numero de	13	18
operaciones		
Tiempo de uso	6,5ns	9ns
% de utilización de bus	15.25%	22.5%
Tiempo de utilización	15.5ns	
del bus		
Tiempo de espera del	54.5ns	
bus		
% de utilización del	37.75%	
bus		

• TDMA

Se realizo la simulación del simple bus con la política de arbitraje de TDMA y se obtuvieron los siguientes resultados:

		Maestro 1 (10ns)	Maestro 2 (5ns)
Numero	de	16	12
operaciones			
Tiempo de simulación		40ns	

		Maestro 1 (5ns)	Maestro 2 (10ns)
Numero	de	14	17
operaciones			
Tiempo de simulación		40ns	

Conociendo los valores de latencia para los maestros no bloqueantes podemos obtener el tiempo de utilización de cada maestro, así como la latencia total del sistemas y el trougputh total del sistemas de manera que tenemos:

Para la simulación con mayor trafico del maestro 1

Conociendo los valores de latencia para los maestros no Maestro 1 Maestro 2 bloqueantes podemos obtener el tiempo de utilización de cad umero de operaciones 16 12 maestro, así como la latencia total del sistemas y el trougput liempo de uso 8ns 6ns total del sistemas de manera que tenemos: % de utilización de bus 20% 15% Tiempo de utilización del 14ns

bus	
Tiempo de espera del bus	26ns
% de utilización del bus	35%

Para la simulación con mayor trafico del maestro 2

	Maestro 1	Maestro 2
Numero de operaciones	14	17
Tiempo de uso	7ns	8.5ns
% de utilización de bus	17.5%	21.25%
Tiempo de utilización del	15.5 ns	
bus		
Tiempo de espera del bus	24.5 ns	
% de utilización del bus	38.75%	

• Análisis para 2 maestros.

Para el análisis de los resultados obtenidos de las diferentes políticas de arbitraje con dos maestros, es importante señala umero que la frecuencia con que un maestro es aleatoria, por lo tante peraciones para poder decidir acerca de la mejor política de arbitraje, se iempo debe escoger la que mejor se comporte en los casos en queso alguno de los dos maestros tenga mayor recurrencia al bus % cuando los maestros lo utilizan con la misma frecuencia.

Con los resultados obtenidos de la política de prioridades fi se puede observar, que si bien esta política es la que cue con un mayor % de utilización del bus, cuando los maest tienen la misma frecuencia y cuando no, se presenta inconveniente cuando el maestro 2 tiene mayor frecuencia utilización del bus, esta política siempre va a tener r operaciones del maestro 1 lo cual puede generar errores de que el maestro 2 puede requerir el bus para operaciones r importantes que las del primer maestro, pero tardara madel bus tiempo; mientras que en las políticas de Round Robin y TDMA las operaciones son muy relacionadas a la frecuencia que cada maestro utiliza el bus, de modo que estas políticas son las mas ventajosas en el sentido de que los maestro tiene mas libertad para utilizar el bus con la frecuencia que estos desea, pero ya que el % de utilización del bus en la política de Round Robin es mayor a la de TDMA, esta sera mucho mejor política de para 2 maestros.

C. Políticas de Arbitraje con dos maestros bloqueantes y dos no bloqueantes con cuatro memorias.

En esta sección de la practica se implementó un sistema de bus descrito en la siguiente figura:

en el cual se encuentran 2 maestros no bloqueantes (M1,M2), 2 maestros bloqueantes(M3,M4), cuatro memorias rápidas y un arbitro, cada maestro no bloqueante requerirá el bus para 3 operaciones de lectura y 3 de escritura cada 5ns, mientras que los maestros bloqueantes ejecutara una operación de lectura y una escritura cada 5ns. Se implementaran 3 políticas de arbitraje (Prioridades fijas, Roun Robin y TDMA), y se evaluara cada una de sus medidas de desempeño y se compararan entre ellas:

Propiedades Fijas

M1

27.5ns

55

de

Se realizo la simulación del simple bus con la política de arbitraje de Prioridades Fijas y se obtuvieron los siguientes resultados:

		M1	M2	M3	M4
Numero	de	55	39	8	0
operaciones					
Tiempo	de	100ns			
simulación					

Conociendo los valores de latencia para los maestros no bloqueantes podemos obtener el tiempo de utilización de cada maestro, así como la latencia total del sistemas y el trougputh total del sistemas de manera que tenemos:

M3

8

14ns

M4

0

0

M2

39

19.5ns

27.5%	19.5%	14%	0%
61ns			
39ns			
61%			
	61ns 39ns	61ns 39ns	61ns 39ns

• Round Robin

Se realizo la simulación del simple bus con la política de arbitraje de Round Robins y se obtuvieron los siguientes resultados:

		M1	M2	M3	M4
Numero operaciones	de	22	24	2	2
Tiempo simulación	de	50ns	I	I	ı

Conociendo los valores de latencia para los maestros no bloqueantes podemos obtener el tiempo de utilización de cada maestro, así como la latencia total del sistemas y el trougputh total del sistemas de manera que tenemos:

ie		M1	M2	M3	M4
Numero operacion	de	22	24	2	2
Fiempo Iso	de	11ns	12ns	28ns	22ns
% utilizació:	de n de	11%	12%	28%	22%

6 Néstor Romero, Juan David Caicedo, INFORME PRÁCTICA 4, 2013-I

bus			
Tiempo de	73ns		
utilización			
del bus			
Tiempo de	27ns		
espera del			
bus			
% de	73%		
utilización			
del bus			

• TDMA

Se realizo la simulación del simple bus con la política de arbitraje de TDMA y se obtuvieron los siguientes resultados:

		M1	M2	M3	M4
Numero	de	22	18	2	2
operaciones					
Tiempo	de	100ns			
simulación					

Conociendo los valores de latencia para los maestros no bloqueantes podemos obtener el tiempo de utilización de cada maestro, así como la latencia total del sistemas y el trougputh total del sistemas de manera que tenemos:

		M1	M2	M3	M4
Numero	de	22	18	2	2
operacione	es				
Tiempo	de	11ns	10ns	20ns	20ns
uso					
%	de	11%	10%	20%	20%
utilización	de				
bus					
Tiempo	de	66ns			
utilización					
del bus					
Tiempo	de	44ns			
espera	del				
bus					
%	de	66%	·	·	·
utilización					
del bus					

Como se es posible observar la mejor política de arbitraje para el sistema anteriormente analizando, es la de Round Robin, debido a que como en el caso de los dos maestros esta política genera un repartimiento de tiempos del bus equitativo entre todos los maestros, que también se observa con la política TDMA, la política R.R. Tiene un mayor porcentaje de utilización del bus.

III. CONCLUCIONES.

• La política de arbitraje de prioridades Fijas es viable si y solo si tenemos un maestro que requiere en considerablemente mayor cantidad el bus con respecto a los otros maestro, de otro modo se hace ineficiente esta política.

• La política de arbitraje Round Robin es la mas eficiente de las tres políticas políticas analizadas

IV. BIBLIOGRAFIA.

_