4/14/2019 Calc Team

question 2 views

Daily Challenge 13.6

(Due: Tuesday 9/11 at 12:00 noon eastern)

Chapter 4 begins!

(1) The derivative controls the shape of a function's graph.

We have seen in the past several meetings that one can extract useful data about the graph of a function from the behavior of its first and second derivatives.

For instance, the sign of the derivative controls whether a function is increasing or decreasing:

- If f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing on (a, b).
- If $f'(x) \geq 0$ for all $x \in (a,b)$, then f is increasing on (a,b).
- If f'(x) < 0 for all $x \in (a, b)$, then f is strictly decreasing on (a, b).
- If $f'(x) \leq 0$ for all $x \in (a, b)$, then f is decreasing on (a, b).

We have also seen that local maxima and minima often occur at critical points where the first derivative vanishes, as encoded in the following theorem.

Theorem. Let f be continuous on [a,b] and differentiable on (a,b). Then f achieves its maximum and minimum value on [a,b], and both occur at points x which satisfy one of the following conditions:

- f'(x) = 0,
- x=a or x=b,
- ullet the derivative of f at x does not exist.

Finally, as we will prove in the next meeting, the second derivative controls the *concavity* of the function: if f''(x) > 0 then the function is convex (or "concave up", i.e. it opens upward) and if f''(x) < 0 the function is concave (or "concave down", i.e. it opens downward).

A point where f''(x) = 0 is called an *inflection point*; this is a place at which the function's concavity changes direction.

(2) Problem: sketching a graph.

Sketch the graph of the function $f(x) = xe^{-x}$. Find all intervals where f is increasing and decreasing, where it is concave up and concave down, and any local maxima or minima. Include a picture or scan of your physical sketch in your response.

daily_challenge

Updated 7 months ago by Christian Ferko

the instructors' answer, where instructors collectively construct a single answer

The original function $f(x)=xe^{-x}$ has derivatives

$$f'(x) = e^{-x} - e^{-x}x,$$

 $f''(x) = -2e^{-x} + e^{-x}x.$

First we find where f is increasing or decreasing, which is controlled by the sign of the first derivative. We see f'(x) = 0 where $e^{-x} = xe^{-x}$, which occurs at x = 1. On the other hand, f'(x) is negative for large positive x and negative for large negative x, so we conclude that the original function f is increasing on $(-\infty, 1)$ and decreasing on $(1, \infty)$.

The second derivative vanishes where $2e^{-x}=e^{-x}x$, i.e. at x=2, and is negative to the left of 2 and positive to the right of 2. Thus we see that the original function f is concave on $(-\infty,2)$ and convex on $(2,\infty)$.

We also see that f has a local maximum at x=1 since here the first derivative vanishes and the second derivative is negative.

Finally, the plots of f and its derivatives are below.

4/14/2019 Calc Team

followup discussions for lingering questions and comments