BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 06 179.7

Anmeldetag: 13. Februar 2003

Anmelder/inhaber: Boehringer Ingelheim Pharma GmbH & Co KG,

Ingelheim/DE

Bezeichnung: Use of dipyridamole in combination with

acetylsalicylic acid and an angiotensin II

antagonist for stroke prevention

IPC: A 61 K 31/519

A 9161

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 19. Dezember 2003 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

Mischia

Use of dipyridamole in combination with acetylsalicylic acid and an angiotensin II antagonist for stroke prevention

Field of the Invention

This invention relates to a method of preventing stroke or reducing the risk of stroke in a patient in need thereof, especially in a patient at risk for a stroke or a secondary stroke, using dipyridamole in combination with acetylsalicylic acid (ASA) and an angiotensin II antagonist, a pharmaceutical composition comprising a combination of dipyridamole, acetyl salicylic acid and an angiotensin II antagonist, and the use of dipyridamole for the manufacture of a corresponding pharmaceutical composition comprising a combination of dipyridamole, acetyl salicylic acid and an angiotensin II antagonist.

Background of the Invention

Dipyridamole {2,6-bis(diethanolamino)-4,8-dipiperidino-pyrimido[5,4-d]pyrimidine}, closely related substituted pyrimido-pyrimidines and their preparation have been described in e.g. U.S.Patent 3,031,450[RR1]. Dipyridamole was introduced as a coronary vasodilator in the early 1960s. It is also well known having platelet aggregation inhibitor properties due to the inhibition of adenosine uptake. Subsequently, dipyridamole was shown to reduce thrombus formation in a study of arterial circulation of the brain in a rabbit model. These investigations led to its use as an antithrombotic agent; it soon became the therapy of choice for such applications as stroke prevention, maintaining the patency of coronary bypass and valve-replacement, as well as for treatment prior to coronary angioplasty.

Furthermore, the European Stroke Prevention Study 2 (ESPS-2; J Neurol Sci. 1996; 143: 1-13; Neurology 1998; 51: 17-19) proved that treatment by dipyridamole alone was as effective as low-dose aspirin in the reduction of stroke risk, and combination

therapy with dipyridamole and aspirin was more than twice as effective as aspirin alone.

Dipyridamole appears to inhibit thrombosis through multiple mechanisms. Early studies showed that it inhibits the uptake of adenosine, which was found to be a potent endogenous anti-thrombotic compound. Dipyridamole was also shown to inhibit cyclic AMP phosphodiesterase, thereby increasing intracellular c-AMP.

Dipyridamole also has *antioxidant properties* (Free Radic. Biol. Med. 1995; 18: 239-247) that may contribute to its antithrombotic effect. When oxidized, low density lipoproteins become recognized by the scavenger receptor on macrophages, which is assumed to be the necessary step in the development of atherosclerosis (Ann. Rev. Med. 1992; 43: 219-25).

The inhibition of free radical formation by dipyridamole has been found to inhibit fibrinogenesis in experimental liver fibrosis (Hepatology 1996; 24: 855-864) and to suppress oxygen radicals and proteinuria in experimental animals with aminonucleoside nephropathy (Eur. J. Clin. Invest. 1998; 28: 877-883; Renal Physiol. 1984; 7: 218-226). Inhibition of lipid peroxidation also has been observed in human nonneoplastic lung tissue (Gen. Pharmacol. 1996; 27: 855-859).

Summary of the Invention

It has now surprisingly been found that dipyridamole when administered in combination with acetylsalicylic acid and an angiotensin II antagonist provides a stroke preventing effect superior to conventional medications or treatment regimes, for instance a combination regime of clopidogrel together with acetyl salicylic acid, especially in a patient at risk for a stroke or a secondary stroke.

ASA inhibits aggregation through direct effects on the platelet, in more detail, by irreversibly acetylating platelet cyclooxygenase, thus inhibiting the production of thromboxane, which is strongly thrombotic. In high doses, however, aspirin crosses over into endothelial cells (N. Eng. J. Med. 1984; 311: 1206-1211), where it interrupts

the production of prostacyclin, a potent natural inhibitor of platelet aggregation and by-product of the "arachidonic cascade" (N. Engl. J. Med. 1979; 300: 1142-1147). These observations led to the concept of low-dose antiplatelet therapy with ASA to maximize inhibition of thromboxane while minimizing the loss of prostacyclin (Lancet 1981; 1: 969-971). In the method of prevention according to the invention a combination of low-dose ASA with dipyridamole and an angiotensin II antagonist is preferred.

Viewed from one aspect the present invention provides a method of stroke prevention or reducing the risk of stroke or secondary stroke in a patient in need thereof, especially in a patient with elevated risk for stroke, e.g. in hypertensive patients or patients suffering from cerebrovascular disorders, said method comprising administering to said patient an effective amount of a pharmaceutical composition comprising dipyridamole or a pharmaceutically acceptable salt thereof in combination with ASA and an angiotensin II antagonist. The main risk for a second stroke is a prior stroke due to degenerative processes in the wall of blood vessels supplying the brain. Patients at high risk of a second stroke with all its consequences readily seek preventive treatment. The vascular pathobiology of ischaemic stroke is multiple and antithrombotic mechanisms in the cerebro-vascular microenvironment beyond platelet inhibition seem to be potentially disease-modifying and a means of reducing ischaemic stroke.

Viewed from a second aspect the present invention provides a pharmaceutical composition comprising dipyridamole or a pharmaceutically acceptable salt thereof in combination with ASA and an angiotensin II antagonist, adapted for simultaneous or sequential administration.

Viewed from a different aspect the present invention provides the use of dipyridamole or a pharmaceutically acceptable salt thereof in combination with ASA and an angiotensin II antagonist for the manufacture of a pharmaceutical composition for stroke prevention or reducing the risk of stroke or secondary stroke in a patient in need thereof.

Detailed Description of the Invention

The invention provides a new and improved approach for stroke prevention or reducing the risk of stroke or secondary stroke in a patient in need thereof, especially in a patient with elevated risk for stroke, comprising administering to the patient an effective amount of a pharmaceutical composition containing as acive ingredients dipyridamole or a pharmaceutically acceptable salt thereof in combination with ASA and an angiotensin II antagonist.

In the method of the invention any of the oral dipyridamole retard, instant or the parenteral formulations on the market may be used, the retard formulations being preferred, for instance those available under the trademark Persantin®, or, already in combination with ASA the formulations available under the trademark Asasantin® or Aggrenox[®]. Suitable dipyridamole retard formulations are disclosed EP-A-0032562[RR2], instant formulations are disclosed in EP-A-0068191 [RR3]and [combinations of ASA with dipyridamole are disclosed in EP-A-0257344 [RR4]which are incorporated by reference. Any Angiotensin II antagonist known in the art may be used in the method of prevention of the invention, e.g. the sartans such as candesartan, eprosartan, irbesartan, losartan, telmisartan (trademark Micardis®), valsartan, olmesartan or tasosartan, using for instance the dosages disclosed in Rote Liste® 2002, Editio Cantor Verlag Aulendorf, Germany, or in Physician's Desk Reference.

In the method of prevention according to the invention a plasma level of dipyridamole of about 0.2 to 5 μ mol/L, preferably of about 0.5 to 2 μ mol/L or particularly of about 0.8 to 1.5 μ mol/L may be maintained. Dipyridamole can be administered orally in a daily dosage of 50 to 750 mg, preferably 100 to 500 mg, most preferred 200 to 450 mg, for instance 200 mg twice a day.

With respect to ASA this component of the ternary medication may be administered orally in a daily dosage of 10 to 200 mg, preferably 25 to 100 mg, most preferred 30 to 75 mg, for instance 25 mg twice a day.

With respect to the third component the angiotensin II antagonist telmisartan is preferred. This component can be administered orally in a daily dosage of 10 to 80 mg, most preferred 20 to 50 mg, for instance 20 or 40 mg once a day.

A specific method of prevention according to the invention comprises the combination of dipyridamole administered orally 200 mg twice a day, ASA administered orally 25 mg twice a day and telmisartan administered orally 20 or 40 mg once a day.

With respect to all aspects of the invention the combination of dipyridamole, ASA and telmisartan is preferred, especially in the oral dosages indicated hereinbefore as most preferred.

CLAIMS

- 1. A method of stroke prevention or reducing the risk of stroke or secondary stroke in a patient in need thereof, comprising administering to the patient an effective amount of a pharmaceutical composition comprising dipyridamole or a pharmaceutically acceptable salt thereof in combination with acetylsalicylic acid and an angiotensin II antagonist.
- 2. The method of claim 1 wherein the angiotensin II antagonist is telmisartan.
- 3. A pharmaceutical composition comprising dipyridamole or a pharmaceutically acceptable salt thereof in combination with acetyl salicylic acid and an angiotensin II antagonist.
- 4. The pharmaceutical composition of claim 2 wherein the angiotensin II antagonist is telmisartan.
- 5. The use of dipyridamole or a pharmaceutically acceptable salt thereof in combination with acetylsalicylic acid and an angiotensin II antagonist for the manufacture of a pharmaceutical composition for stroke prevention or reducing the risk of stroke or secondary stroke in a patient.
- 6. The use of claim 5 wherein the angiotensin II antagonist is telmisartan.

Abstract

This invention relates to a method of preventing stroke or reducing the risk of stroke in a patient in need thereof, especially in a patient at risk for a stroke or a secondary stroke, using dipyridamole in combination with acetylsalicylic acid (ASA) and an angiotensin II antagonist, corresponding pharmaceutical compositions, and the use of dipyridamole for the manufacture of a corresponding pharmaceutical composition comprising a combination of dipyridamole, acetyl salicylic acid and an angiotensin II antagonist.

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP04/001208

International filing date:

10 February 2004 (10.02.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: DE

Number:

103 06 179.7

Filing date:

13 February 2003 (13.02.2003)

Date of receipt at the International Bureau: 03 August 2005 (03.08.2005)

Remark: Priority document submitted or transmitted to the International Bureau but not

in compliance with Rule 17.1(a) or (b)

