UNIVERSITY OF OSLO

Master's thesis

Gravitational waves from topological defects

Any short subtitle

Nanna Bryne

CS: Astrophysics 60 ECTS study points

Institute of Theoretical Astrophysics, Department of Physics Faculty of Mathematics and Natural Sciences

Nanna Bryne

Gravitational waves from topological defects

Any short subtitle

Supervisor: David Fonseca Mota

Contents

1 2	Introduction Introduction	
II 3	Analytical work Dummy chapter	9 11 11
III	Numerical work	13
IV	Finishing	15

Contents

Notation

Common abbreviations

CDM cold dark matter

DW domain wall

GW gravitational wave

Contents

Part I Introduction

Chapter 1

Introduction

We use the convention that (-, +, +, +) is the metric signature.

SO(3) is a group

SO(3) is a group

SO(3) is a group

The order O(1) is large

The order O(1) is large

The Planck unit $M_{\rm Pl}$

We have a GW with $ho_{\rm GW}$ or $ho_{\rm gw} \dots
ho_{\rm GW}$

$$f(x) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot x} \tilde{f}(k)$$

$$\tilde{f}(k) = \int d^4x e^{ik \cdot x} f(x)$$
(1.1)

1.1 Nomenclature

[LIST OF SYMBOLS?]

Chapter 2

Theoretical Background

In the context of ... blah ... blah

2.1 High-Performance Computing

Chapter 2. Theoretical Background

Part II Analytical work

Chapter 3

Dummy chapter

3.1 Dummy section

Hello this is a nice thesis

$$h_{ij} = \mathbf{a}^{\mathrm{s}} \square \widehat{=} \tag{3.1}$$

Nanna is cool

Alma is lame

UNIVERSITY UNIVERSITY OF OSLO OF OSLO

. (b)

Figure 3.1: .

helo See Eq. (3.1). fdf [1] Boltzmann equation

$$\hat{L}[f] = \hat{C}[f]; \quad \hat{L}[f] \equiv \frac{\mathrm{d}f}{\mathrm{d}\lambda}$$
 (3.2)

$$e^{i\pi}$$
 (3.3)

Hei jeg heter Nanna

Chapter 3. Dummy chapter

Part III Numerical work

Part IV Finishing

Bibliography

[1] Tanmay Vachaspati. *Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons*. Cambridge University Press, Cambridge, 2006.