

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS SÃO GONÇALO DO AMARANTE

Fundamentos de Lógica e Algoritmos

#ConstruçãoDeTabelasVerdade

Eliezio Soares eliezio.soares@ifrn.edu.br

Relembrando... Conjunção

- Conectivo "e".
- Chama-se conjunção, a conexão de duas proposições através do conectivo "e".
- Simbologia para "p" e "q":
 - PΛq
- Exemplo:
 - ▶ (p) Ele estuda.
 - (q) Ele trabalha.
 - □p∧q
 - □ Ele estuda e trabalha.

Relembrando... Conjunção – Tabela Verdade

A proposição composta p ∧ q tem seu valor lógico verdadeiro somente quando as duas proposições simples, p e q forem verdadeiras;

р	q	р∧q
V	V	V
٧	F	F
F	V	F
F	F	F

Relembrando... Disjunção

- Conectivo "ou".
- Chama-se disjunção, a conexão de duas proposições através do conectivo "ou".
- Simbologia para "p" ou "q":
 - ▶ p V q
- Exemplo:
 - ▶ (p) Ela namora.
 - ▶ (q) Ela é feliz.
 - □ p V q
 - □ Ela namora ou é feliz.

Relembrando... Disjunção – Tabela Verdade

A proposição composta p V q tem seu valor lógico verdadeiro quando p for verdadeira ou quando q for verdadeira;

р	q	p∨q
V	V	V
V	F	V
F	V	V
F	F	F

Relembrando... Negação

- Conectivo "negação" (lembram de "sqn" ou "#not"?).
- O conectivo "negação" é aplicado uma proposição simples ou composta e tem o efeito de mudar o valor lógico da proposição.
- Simbologia para "não p":
 - **Р** ¬Р
 - **P**
- Exemplo:
 - (p) Ele trabalha.
 - □ ¬р
 - □ Ele não trabalha.
 - □ Não é verdade que ele trabalha.

Relembrando... Negação – Tabela Verdade

- A proposição ¬p tem valor lógico "verdadeiro" quando p for "falsa" e valor "falso" quando p for "verdadeira".
- A negação inverte o valor lógico da proposição original.

р	¬р
٧	F
F	V

Relembrando... Condicional

- Conectivo "se ... Então ...".
- Utiliza-se a forma "se p, então q".
- Simbologia para "se p então q":
 - $p \rightarrow q$
- Pode ser lido como:
 - "p implica em q";
 - "p é condição suficiente para q";
- Exemplo:
 - (p) Sou mossoroense.
 - (q) Sou norte-riograndense.
 - \square $p \rightarrow q$
 - □ "Se sou mossoroense, então sou norte-riograndense."

Relembrando... Condicional – Tabela Verdade

- A proposição composta p \rightarrow q tem seu valor lógico falso somente quando p for verdadeira e q for falsa.
- Ou seja, quando a condição (p) para que "q" seja verdadeira exista e ainda assim "q" seja falsa.

р	q	p o q
V	V	V
٧	F	F
F	V	V
F	F	V

Relembrando... Bi-Condicional

- Conectivo "se, e somente se, ...".
- Utiliza-se a forma "p se, e somente se, q".
- Simbologia para "p se, e somente se, q":
 - $p \leftrightarrow q$

Exemplo:

- ▶ (p) Ela é uma excelente profissional.
- (q) Ela estudou em centros de referência em administração.
 - \square p \leftrightarrow q
 - □ "Ela é uma excelente profissional se, e somente se, ela estudou em centros de referência em administração.

Relembrando... Bi-Condicional – Tabela Verdade

A proposição composta p ↔ q tem seu valor lógico verdadeiro somente quando "p" e "q" possuírem valores lógicos iguais.

р	q	$p \leftrightarrow q$
V	V	V
٧	F	F
F	V	F
F	F	V

A construção de tabelas verdade

- O número de linhas da tabela verdade corresponde ao número de possibilidades de resposta.
- O número de possibilidades depende do número de proposições simples.
- O número de linhas será igual a 2
 - Logo, para 2 proposições: p, q tem-se 4 linhas.
 - ▶ Logo, para 3 proposições: p, q, r tem-se 8 linhas.
 - ▶ Logo, para 4 proposições: p, q, r, s tem-se 16 linhas.

Montagem inicial

- Sabendo-se o números de linhas:
 - Preencher a primeira coluna com metade dos valores VERDADEIROS e metade FALSOS.
 - Preencher a última coluna alternando VERDADEIRO e FALSO.
- Em tabelas de 8 linhas:
 - Preencher a segunda coluna com 2 VERDADEIRO e 2 FALSO, intercalando dessa forma.
- ▶ Em tabelas de 16 linhas:
 - Preencher a segunda coluna com 4 VERDADEIRO e 4 FALSO, intercalando dessa forma.
 - Preencher a terceira coluna com 2 VERDADEIRO e 2 FALSO, intercalando dessa forma.

Montagem inicial – Exemplo

Para 4 linhas

р	q
V	V
V	F
F	V
F	F

Para 8 linhas

p	q	r
V	٧	٧
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	٧
F	F	F

O uso de parêntesis

- Utilizamos parêntesis para evitar ambiguidades.
- Por exemplo:
 - A proposição P: p ∧ q v r fica mais clara se representarmos dessa forma:
 - □ P: (p ∧ q) v r

O uso de parêntesis

- As proposições compostas devem ser lidas na ordem de aparecimento dos conectivos (Os parêntesis auxiliam na leitura).
- A ordem de precedência dos conectivos deve seguir a seguinte ordem:
 - |. ~
 - 2. v, \wedge (na ordem de aparecimento)
 - 3. ->
 - 4. <->

O uso de parêntesis

A proposição p \land q \lor r \leftrightarrow \sim r \rightarrow s, deve ser lida da forma abaixo:

 $((p \land q) \lor r) \leftrightarrow (\sim r \rightarrow s)$

A construção de tabelas verdade

- O algoritmo seguinte fornece um auxílio na construção de tabelas verdade corretas:
 - Passo I: Definir os valores das proposições simples.
 - Passo 2: Define o valor lógico das negações e das proposições compostas internas aos parêntesis.
 - Passo 3: Define o valor lógico das proposições compostas externas aos parêntesis (sempre priorizando os parêntesis).
 - Passo 4: Define o valor lógico da junção das proposições compostas (sempre priorizando os parêntesis).

A construção de tabelas verdade

- Exemplo

Dúvidas

Exercício

- Traduza as sentenças em linguagem natural, para símbolos:
 - p = Está quente.
 - q = Está ensolarado.
 - (a) Não está quente, mas está ensolarado.

▶ (b) Não está quente nem ensolarado.

Exercício

Escreva a tabela verdade das seguintes proposições:

- I. $(p \vee q) \leftrightarrow (\sim p \wedge \sim q)$
- 2. $(p \land q) \rightarrow (p \land q)$
- 3. $(\sim p \vee \sim q) \wedge \sim (p \wedge q)$
- 4. $(p \land q) \lor \sim (p \leftrightarrow \sim q)$
- 5. $(p \land \sim q) \leftrightarrow (r \land p)$