17.3 Sets in the Complex Plane

Arnav Patil

University of Toronto

1 Terminology

Suppose $z_0=x_0+iy_0$. Since $|z-z_0|=\sqrt{(x-x_0)^2+(y-y_0)^2}$ is the distance between points z=x+iy and $z_0=x_0+iy_0$ that satisfy $|z-z_0|=\rho$ for $\rho>0$ lie on a disk of radius ρ centered at z_0 .

The points that satisfy $|z-z_0|<\rho$ are within the disk but not on it. This set is called the neighbourhood of z_0 or an open disk. An **interior point** of a set S is a point for which there exists some neighbourhood of z_0 that lies entirely within S. If every point in S is an interior point, then S is an **open set**.

If every neighbourhood of z_0 has at least one point of S and one point not in S, then it is a **boundary point**.

If any pair of points z_1 and z_2 in an open set S can be connected by a polygon line that lies entirely within the set, then the set is called **connected**. A **region** is a domain in the complex plane with all, some, or none of its boundary points. A region containing all of its boundary bounds is labelled **closed**.