Álgebra

Ignacio Cordón Castillo

Ejercicios

Ejercicio 1.12

Demuestra que si un anillo verifica que cada elmento x verifica $x^n = x$ para algún $n \ge 2$ (dependiente de x) entonces todo ideal primo es maximal.

Ejercicio 1.16

Un anillo R se dice anillo de Boole si $x^2 = x$ para todo $x \in R$. Probar que en un anillo de Boole se tiene:

- 1. 2x = 0 para todo $x \in R$
- 2. Cada ideal primo Π es maximal y R/Π es un cuerpo con dos elementos.
- 3. Cada ideal finitamente generado es principal.

1-

Se tiene:

$$2x^2 = 2x = (2x)^2 = 4x^2$$

Luego $2x^2 = 0$.

2-

Sea Π ideal primo. Entonces R/Π es dominio de integridad. Pero dado $x + \Pi \in R/\Pi$, x no unidad, se tiene $(x + \Pi) + (x + \Pi) = (2x + \Pi) = \Pi$ que por ser dominio de integridad $x \in Pi$. Luego R/Π es cuerpo con dos elementos y Π maximal.

3-

Solución propuesta por M42

Por inducción, (a,b)=(a+b+ab) ya que $a(a+b+ab)=a^2=a$ y análogo b

Y el paso de inducción es trivial.

Ejercicio 1.17

En un anillo R sea Σ el conjunto de todos los ideales en los que cada elemento es un divisor de cero. Probar que el conjunto Σ tiene elementos maximales y que cada elemento maximal de Σ es un ideal primo. Por tanto el conjunto de los divisores de cero en R es una unión de ideales primos.

Ejercicio 1.18

Sea K un cuerpo, demuestra que el ideal $(X^3 - Y^2) \subseteq K[X, Y]$ es un ideal primo del anillo K[X, Y].

Se puede probar, con una discusión de casos, escribiendo X^3-Y^2 como producto de dos polinomios en K[X,Y] que no puede ocurrir esta circunstancia, luego X^3-Y^2 es irreducible en K[X,Y] y por tanto, al ser K cuerpo, (X^3-Y^2) es primo.

Ejercicio 1.25

Sean α y β ideales de un anillo R

- 1. Demuestra que $\alpha+\beta=R$ si y sólo si $\alpha^n+\beta^n=R$ para cada natural n\$
- 2. Demuestra que si α, β son ideales comaximales propios entonces $\alpha, \beta \subsetneq J(R)$
- 3. Demuestra que si $\alpha_1, \ldots \alpha_t$ son ideales comaximales dos a dos, entonces $\alpha_1 + (\alpha_2, \cdots \alpha_t)^n = R$ para cada $n \in \mathbb{N}$.

1-

La implicación hacia la izquierda es trivial tomando n = 1.

Hacia la derecha, n=1 obvio

Por inducción, supuesto que se cumple hasta $n \in \mathbb{N}$

Existen $u+v=1, \quad u \in \alpha^n, v \in \beta^n$. Desarrollando $(u+v)^{n+1}=1$ es fácil comprobar que pertenece a $\alpha^n+\beta^n$

2-

Supuesto sin pérdida de generalidad que $\alpha \subset J(R)$.

Como existen $x \in \alpha$, $y \in \beta$ verificando x + y = 1 por ser comaximales, $y = 1 - x \in U(R)$ por caracterización de radical de Jacobson, luego $\beta = R$, contradicción.

3-

Si son primos dos a dos $\exists x_{i1} \in \alpha_1, y_i \in \alpha_i$ verificando $1 = x_i + y_i$ para todo $i \geq 2$. Luego:

$$\prod_{i=1}^{t} (1 - x_{i1}) = 1 + z = y_1 \cdots y_n \in \alpha_1, \dots \alpha_t$$

con $z \in \alpha_1$. Luego $1 \in \alpha_1 + (\alpha_1, \dots \alpha_t)$. Y la caracterización del apartado 1 acaba teniendo en cuenta que:

$$\alpha_1^n + (\alpha_1, \cdots \alpha_t)^n \subset \alpha_1 + (\alpha_1, \cdots \alpha_t)^n$$

Ejercicio 1.24

Sea R un anillo y $\mathcal N$ su nilradical. Demostrar que son equivalentes:

- 1. R tiene exactamente un ideal primo.
- 2. Cada elemento de R es o una unidad o nilpotente.
- 3. R/\mathcal{N} es un cuerpo.

 $1 \Longrightarrow 2$. Entonces \mathcal{N} es maximal en R, por existir los ideales maximales en un anillo, ser todo ideal maximal primo y ser $Nil(R) = \{x \in \mathbb{R} : \exists n, x^n = 0\} = \bigcap_{\Pi \in Spec(R)} \Pi$ y en particular R es anillo local con maximal $\mathcal{N} \iff R - \mathcal{N} \subseteq U(R)$ lo que nos da el resultado.

 $2 \Longrightarrow 3$. Trivialmente, ya que todo elemento no nulo es invertible.

 $3 \Longrightarrow 1$. Los ideales primos de R/\mathcal{N} son de la forma $\alpha + \mathcal{N}$ con α ideal primo de R. Pero como R/\mathcal{N} es cuerpo, se tiene que sus únicos ideales son el total y $\mathcal{N} \equiv 0$. Es decir $\alpha \subseteq \mathcal{N} \subseteq \alpha$ donde el último contenido viene dado por ser $\mathcal{N} \infty = \bigcap_{\Pi \in Spec(R)} \Pi$.

Luego $\alpha = \mathcal{N}$ único ideal primo de R.

Ejercicio 2.2

1. Tomamos:

$$F = X^2Y + XY^2 = XY(X+Y)$$

$$G = XY^4$$

mcd(F,G)=XY, pero sin embargo $XY\neq (F,G)$, luego no se verifica la identidad de Bezout. En general, dados dos polinomios cualesquiera, dicha identidad no se verifica

1. Queda como ejercicio.

TODO Ejercicio 2.15

Ejercicio 2.16

Sea \leq un orden en \mathbb{N}^n que es total y compatible. Haciendo usod e la teoría de ideales monoiales, probad que \leq es un buen orden sii es monótono.

Hacia la izquierda, como \leq es monomial, entonces es buen orden.

Hacia la derecha, si 0 no fuese mínimo, $\exists x \in \mathbb{N}^n$ verificando x < 0. Como el orden es compatible tendríamos que x + x < x, lo que es contradicción.

Ejercicio 2.17

Sean $I, J \subset K[X_1, ... X_n]$ ideales monomiales generados por $\{A_1, ... A_s\}$ y $\{B_1 ... B_t\}$, A_i, B_j monomios:

1. Demuestra que $I \cap J$ es un ideal monomial.

2. Prueba que $\{M_{ij:i=1...s,j=1...t}\}$ donde $M_{ij}=mcm(A_i,B_j)$ es un sistema de generadores de $I\cap J$

1. Se tiene $F \in I$ sii todos los monomios de \$F \in I4.

Además
$$I \cap J = (F_1, \dots F_r)$$
, con $F_i = \sum_{j=1}^{n_i} a_{ij} R_{ij}$ monomios.

Si $F_i \in I \cap J$, entonces $F_i \in I$ y $F_i \in J$. Lueg $R_{ij} \in I$, $R_{ij} \in J$ y por tanto $R_{ij} \in I \cap J$

Por tanto $I \cap J = (R_{ij} : i = 1 \dots r, 1 \le j \le n_i)$, luego $I \cap J$ es monomial.

1. Es claro que $(M_{ij}) \subset I \cap J$

Para el otro contenido, si $X^{\alpha} \in I \cap J$ entonces $X\alpha \in I \implies X^{\alpha} = FA_i$ y análogo para $X^{\alpha} \in J$, luego $M_{ij}|X^{\alpha}$.

1.
$$I = (X = A_1, Y^2 Z = A_2, Y Z^2 = A_3)$$
, y por otor lado $J = (X^3 Y Z = B_1, X^2 Y = B_2, Y^2 Z^3 = B_3)$

Calculando $M_{11} = mcm(A_1, B_1), M_{12} = X^2Y.$

Al final
$$I \cap J = (X^2Y, Y^2Z^3)$$

Ejercicio 2.18

Sean I_1, I_2 ideales monomiales con sistema de generadores G_1, G_2 resp. Demuestra que:

 $1.I_1+I_2$ está generado por $G_1\cup G_2$ $2.I_1I_2$ está generado por $\{HL:H\in G_1,L\in G_2\}$

Hay que comprobar que si $I_1 = (G_1, \dots G_k), I_2 = (H_1, \dots H_s)$ entonces:

$$I_1 + I_2 = (G_1, \dots G_k, H_1, \dots H_s)$$

 $I_1 I_2 = (G_i H_j : i = 1 \dots k, j = 1 \dots s)$

Ejercicio 2.21

Demostrar que si I,J son dos ideales monomiales entonces (I:J) es un ideal monomial.

Definición. Llamo soporte de $F \in K[X_1, ... X_n]$ a $Sop(F) = \{X^{\alpha: \alpha \in N(F)}\}$

Dado $F \in (I:J) \implies FJ \subset I$. En particular $FX^{\beta} \forall X^{\beta} \in J$

Esto implica que $X\alpha X\beta\in I\forall \alpha\in N(F)X^{\alpha}\in J$. Entonces $X\alpha J\subset I\Longrightarrow X^{\alpha}\in (I:J)\forall \alpha\in N(F)$. Luego (I:J) es monomial.