When \mathcal{F} is a presheaf on X, we denote by \mathcal{F}_x the stalk at $x \in X$, and by $a(\mathcal{F})$ the sheaf associated with \mathcal{F} .

Exercise 1. Let $\pi: Y \to X$ be a local homeomorphism, and Γ_{π} its sheaf of sections. Show that for any $x \in X$ the natural map $(\Gamma_{\pi})_x \to \pi^{-1}\{x\}$ is a bijection.

Exercise 2. Let \mathcal{F} and \mathcal{G} be two presheaves on a topological space X.

- (i) Let $x \in X$. Show that the natural map $(\mathcal{F} \times \mathcal{G})_x \to \mathcal{F}_x \times \mathcal{G}_x$ is a bijection.
- (ii) Deduce that the natural morphism $a(\mathcal{F} \times \mathcal{G}) \to a(\mathcal{F}) \times a(\mathcal{G})$ is an isomorphism.

Exercise 3. Let E be a set and X a topological space. The value of the *constant* sheaf \underline{E} on an open subset U of X is the set of continuous maps $U \to E$, where E is endowed with the discrete topology. Show that \underline{E} is isomorphic to the sheaf associated with the presheaf taking the value E on every open subset of X.

Exercise 4. Let \mathcal{F} be a presheaf on a topological space X.

- (i) Let $x \in X$ and $i: \{x\} \to X$ be the inclusion. Let E be a set, and \underline{E} the constant sheaf on $\{x\}$ associated with E (i.e. $\underline{E}(\{x\}) = E$ and $\underline{E}(\emptyset) = \{*\}$). Show that the set of presheaf morphisms $\mathcal{F} \to i_*\underline{E}$ is in bijection with the set of maps $\mathcal{F}_x \to E$.
- (ii) Let $j: U \to X$ be the inclusion of an open subset. Let \mathcal{G} be a presheaf on U. Show that the set of presheaf morphisms $\mathcal{F} \to j_*\mathcal{G}$ and $\mathcal{F}|_U \to \mathcal{G}$ are in bijection.