LEX-GNN: Label-Exploring Graph Neural Network for Accurate Fraud Detection

Woochang Hyun¹, Insoo Lee², Bongwon Suh¹

¹ Human Centered Computing Lab, Seoul National University ² Digital Forensic Center, Supreme Prosecutors' Office, Republic of Korea

Introduction

Background

• GNNs are promising for fraud detection due to their ability to capture relational data. However, they face challenges such as class imbalance and heterophilic connections.

Existing Approaches

- **Node-based:** Focuses on similar nodes but struggles when fraudsters resemble legitimate ones.
- **Edge-based:** Discerns homophilic from heterophilic edges but can be computationally expensive as #edge >> #node.
- Label-based: Incorporates label information but has limitations in properly handling unlabeled nodes, as it treats them equally.

Proposed Framework

- LEX-GNN: Label-Exploring Graph Neural Network
- Predicts the soft labels of nodes in advance utilizing a semi-supervised learning approach.
- Adjusts message passing and aggregation pipeline dynamically based on the predicted labels.

Method

Label Exploration

• We predict the soft (probable) label of nodes using a double-layer MLP at the beginning of each layer.

$$p_v^{(l)} = \Phi_{\text{pre}}^{(l)}(h_v^{(l-1)})$$

LEX Aggregation

• **Differentiated message passing:** We incorporate the label embedding into the node representation and interpolate the outgoing message according to the fraudulent probability.

$$\tilde{m}_{v}^{(l)} = h_{v}^{(l-1)} + \Psi^{(l)}(p_{v}^{(l)}), \quad \Psi^{(l)}(p_{v}^{(l)}) = p_{v}^{(l)}\Psi_{1}^{(l)} + (1 - p_{v}^{(l)})\Psi_{0}^{(l)}$$

$$m_{v}^{(l)} = W_{s,v}^{(l)}(\tilde{m}_{v}^{(l)}), \quad W_{s,v}^{(l)} = p_{v}^{(l)}W_{s,1}^{(l)} + (1 - p_{v}^{(l)})W_{s,0}^{(l)}$$

• Attention-based aggregation: The messages are aggregated through multi-head dynamic attention.

$$\tilde{h}_{u}^{(l)} = \sigma \left(\frac{1}{H} \sum_{h=1}^{H} \sum_{v \in \mathcal{N}_{u}} \alpha_{uv}^{(l,h)} \mathcal{W}_{a}^{(l,h)} m_{v}^{(l)} \right), \quad \alpha_{uv}^{(l,h)} = \frac{\exp \left(a^{(l,h)} \cdot \sigma \left(\mathcal{W}_{a}^{(l,h)} \left(m_{u}^{(l)} + m_{v}^{(l)} \right) \right) \right)}{\sum_{v' \in \mathcal{N}_{u}} \exp \left(a^{(l,h)} \cdot \sigma \left(\mathcal{W}_{a}^{(l,h)} \left(m_{u}^{(l)} + m_{v'}^{(l)} \right) \right) \right)}$$

• **Differentiated message reception:** Destination nodes also incorporate the aggregated messages based on their own predicted labels to make final representations.

$$h_u^{(l)} = \mathcal{W}_{\text{self}}^{(l)}(h_u^{(l-1)}) + \mathcal{W}_{\text{d}u}^{(l)}(\tilde{h}_u^{(l)}), \quad \mathcal{W}_{\text{d}u}^{(l)} = p_u^{(l)}\mathcal{W}_{\text{d},1}^{(l)} + (1 - p_u^{(l)})\mathcal{W}_{\text{d},0}^{(l)}$$

Optimization

• The overall loss is formulated reflecting the accuracy of label exploration.

$$\mathcal{L}_{\text{cls}} = -\sum_{u \in \mathcal{V}_{t}} [y_{u} \log(q_{u}) + (1 - y_{u}) \log(1 - q_{u})], \quad q_{u} = \Phi_{\text{cls}}(h_{u}^{(L)})$$

$$\mathcal{L} = \mathcal{L}_{\text{cls}} + \beta \mathcal{L}_{\text{pre}}^{(L)}, \quad \mathcal{L}_{\text{pre}}^{(l)} = -\sum_{v \in \mathcal{V}_{t}} [y_{v} \log(p_{v}^{(l)}) + (1 - y_{v}) \log(1 - p_{v}^{(l)})]$$

Conclusion

- LEX-GNN effectively detects fraud by integrating label predictions into the message passing process, even when dealing with unlabeled data.
- The dual transformation on both the source and destination ends with attention effectively captures the relational characteristics of the graph.
- The superior accuracy and robustness of the proposed framework have been validated through experiments on real-world datasets.

Input graph

Generic GNNs

In generic GNNs, source nodes pass their representations as messages toward destination nodes, applying a learnable weight () uniformly.

LEX-GNN

LEX-GNN explores the probability of a node being fraudulent through a neural classifier (▲).

Based on the prediction, source nodes transform (♠) and send messages, while destination nodes adjust their reception adaptively (♠).

Figure 1: A conceptual diagram of LEX-GNN.

Results

Dataset

- Yelp: 6,677 fraud reviews / 45,954 (14.53%)
- Amazon: 821 fraudsters / 11,944 (6.87%)

Performance Comparison

- LEX-GNN outperforms state-of-the-art baselines in all metrics, except for F1-macro on Amazon with 1% training condition.
- The performances on Yelp with 40% training are significant, showing improvements of over 3.05% in AUC and 5.29% in F1-macro.

Table 1: Performance comparison on Yelp and Amazon under 40% and 1% training conditions.

Method	Dataset	Yelp (40%)		Amazon (40%)		Yelp (1%)		Amazon (1%)	
	Metric	AUC	F1-macro	AUC	F1-macro	AUC	F1-macro	AUC	F1-macro
Baselines	CARE-GNN	80.15±1.13	67.41±1.61	94.18±0.85	89.35±0.72	72.91±0.86	59.51±1.27	89.35±2.37	65.34±1.68
	PC-GNN	81.64±1.08	65.72±1.52	94.42±0.75	89.82±1.64	74.12±1.51	57.63±1.54	90.70±2.16	72.18 ± 2.47
	H ² -FDetector*	89.48±1.26	74.38 ± 2.42	96.03±0.69	86.91±1.01	74.19±0.52	57.42±0.45	83.26±0.17	67.60 ± 0.31
	GHRN*	90.57±0.36	77.54 ± 1.02	97.07±0.73	92.36 ± 0.97	76.76±0.37	$64.30 {\pm} 0.61$	90.27±0.30	89.16±0.89
	GTAN	92.86±0.60	$80.12 {\pm} 0.26$	96.65±0.41	92.53 ± 0.48	81.05±1.02	66.10 ± 0.77	91.70±1.54	85.67 ± 1.34
	PMP	93.54±0.25	82.01 ± 0.70	97.37 ± 0.18	92.29 ± 0.27	81.58±0.57	67.15 ± 0.56	91.55±0.80	82.49 ± 1.26
Ours	LEX-GNN	96.40±0.28	86.35±0.39	97.91±0.15	93.48±0.25	83.14±0.53	69.73±0.68	93.02±0.21 [†]	87.33±1.76 [†]

* Results of H²-FDetector and GHRN are obtained from [28]. † Results on *Amazon* of 1% learning are derived from a single-layer LEX-GNN with $\beta = 1$.

Ablation Study

• All components are beneficial, the exclusion of attention on Yelp and the source-side transformation on Amazon has the most detrimental impact.

Effect of Label Exploration

- When $\beta > 0$, label exploration is activated, and the accurate p is fed into the LEX aggregation, which enhances the overall performance.
- In addition to conventional pseudo-labeling which primarily aims at data augmentation, our approach adjusts the message passing based on predicted labels, thus enabling more precise relational representation.

Table 2: Ablation study. All components are beneficial.

Method	Yelp	(40%)	Amazon (40%)		
Wiethou	AUC	F1-macro	AUC	F1-macro	
LEX-GNN	96.40±0.28	86.35±0.39	97.91±0.15	93.48±0.25	
– label emb.	96.08±0.26	85.89±0.27	97.75±0.24	93.24±0.19	
- src. trans.	96.30±0.15	86.16 ± 0.14	97.16±0.15	92.74 ± 0.67	
dst. trans.	95.87±0.39	85.17 ± 0.08	97.78±0.10	93.22 ± 0.23	
attention	94.61±0.25	82.85±0.53	97.54±0.01	93.10 ± 0.27	

Figure 2: Performance w.r.t β . When $\beta > 0$, label exploration is activated, which enhances overall model accuracy.

