复分析期中测验

提示: 本考试时间 10:40am - 12:10am, 可以参考自带的学习资料, 但请勿相互讨论。请将答案书写整齐无歧义。有问题请举手。总分 40+2.

§1 在下列陈述的后面括号中写上 True 或者 False, 以表达你对其正确性的判断。

这部分每个题目值 1 分,总共 16 分. 1. 若函数 f 在一点 $a \in \mathbb{C}$ 连续且可导,则 f 在这一点解析.			
2. 有界集合一定是闭集. () 3. 单连通的开集是一种区域. () 4. 若整数 n 满足 $ (\frac{1+i}{1-i})^n = 1. $ 则 $n=4$. () 5. 对任何复数 $z \neq 0$, 有 $(z^2)^{\frac{1}{2}} = z$ 或 $-z$. () 6. 对任何复数 $z \neq 0$, 有 $\ln(e^z) = z$. () 7. 若函数项级数 $\sum_{n=0}^{\infty} f_n$ 的每一项 f_n 都在区域 D 内连续,且级数本身在 D 内局部一致收敛,则它的和函数在 D 内连续. () 8. 函数 $\ln z$ 定义在 $D = \mathbb{C} - \{0\}$ 上,是多值函数. 其每个定义在区域 $D_0 \subset D$ 上的单值解析		这部分每个题目值	1分,总共16分.
() 3. 单连通的开集是一种区域. () 4. 若整数 n 满足 $ (\frac{1+i}{1-i})^n = 1. $ 则 $n=4$. () 5. 对任何复数 $z\neq 0$, 有 $(z^2)^{\frac{1}{2}}=z$ 或 $-z$. () 6. 对任何复数 $z\neq 0$, 有 $\operatorname{Ln}(e^z)=z$. () 7. 若函数项级数 $\sum_{n=0}^{\infty} f_n$ 的每一项 f_n 都在区域 D 内连续,且级数本身在 D 内局部一致收敛,则它的和函数在 D 内连续. () 8. 函数 $\operatorname{Ln}z$ 定义在 $D=\mathbb{C}-\{0\}$ 上,是多值函数. 其每个定义在区域 $D_0\subset D$ 上的单值解析	1.	若函数 f 在一点 a ($\in \mathbb{C}$ 连续且可导,则 f 在这一点解析.
($\frac{1+i}{1-i}$) $n=1$. 则 $n=4$. ($\frac{1+i}{1-i}$) $n=1$. D $n=4$. () 5. 对任何复数 $z\neq 0$, 有 $(z^2)^{\frac{1}{2}}=z$ 或 $-z$. () 6. 对任何复数 $z\neq 0$, 有 $\mathrm{Ln}(e^z)=z$. () 7. 若函数项级数 $\sum_{n=0}^{\infty} f_n$ 的每一项 f_n 都在区域 D 内连续,且级数本身在 D 内局部一致收敛,则它的和函数在 D 内连续. () 8. 函数 $\mathrm{Ln}z$ 定义在 $D=\mathbb{C}-\{0\}$ 上,是多值函数. 其每个定义在区域 $D_0\subset D$ 上的单值解析	2.	有界集合一定是闭约 (港.)
$(\frac{1+i}{1-i})^n=1.$ 则 $n=4.$ () 5. 对任何复数 $z\neq 0$,有 $(z^2)^{\frac{1}{2}}=z$ 或 $-z.$ () 6. 对任何复数 $z\neq 0$,有 $\mathrm{Ln}(e^z)=z.$ () 7. 若函数项级数 $\sum_{n=0}^{\infty} f_n$ 的每一项 f_n 都在区域 D 内连续,且级数本身在 D 内局部一致收敛,则它的和函数在 D 内连续. () 8. 函数 $\mathrm{Ln}z$ 定义在 $D=\mathbb{C}-\{0\}$ 上,是多值函数.其每个定义在区域 $D_0\subset D$ 上的单值解析	3.	单连通的开集是一和 (中区域.)
5. 对任何复数 $z \neq 0$,有 $(z^2)^{\frac{1}{2}} = z$ 或 $-z$. () 6. 对任何复数 $z \neq 0$,有 $\operatorname{Ln}(e^z) = z$. () 7. 若函数项级数 $\sum_{n=0}^{\infty} f_n$ 的每一项 f_n 都在区域 D 内连续,且级数本身在 D 内局部一致收敛,则它的和函数在 D 内连续. ()	4.	若整数 n 满足	$(\frac{1+i}{1-i})^n = 1.$
 () 6. 对任何复数 z ≠ 0, 有 Ln(e²) = z. () 7. 若函数项级数 ∑_{n=0}[∞] f_n 的每一项 f_n 都在区域 D 内连续, 且级数本身在 D 内局部一致收敛, 则它的和函数在 D 内连续. () 8. 函数 Lnz 定义在 D = C - {0} 上, 是多值函数. 其每个定义在区域 D₀ ⊂ D 上的单值解析 		则 $n=4$.)
 () 7. 若函数项级数 ∑_{n=0}[∞] f_n 的每一项 f_n 都在区域 D 内连续, 且级数本身在 D 内局部一致收敛, 则它的和函数在 D 内连续. () 8. 函数 Lnz 定义在 D = C - {0} 上, 是多值函数. 其每个定义在区域 D₀ ⊂ D 上的单值解析 	5.	对任何复数 $z \neq 0$, $z \neq 0$, $z \neq 0$	有 $(z^2)^{\frac{1}{2}} = z$ 或 $-z$.
敛,则它的和函数在 D 内连续. (\qquad) 8. 函数 $\mathrm{Ln}z$ 定义在 $D=\mathbb{C}-\{0\}$ 上,是多值函数. 其每个定义在区域 $D_0\subset D$ 上的单值解析	6.	对任何复数 $z \neq 0$, (有 $\operatorname{Ln}(e^z) = z$.
	7.	· ·	
	8.		
		() 大町子四双印花	

9.	设一个幂级数∑	$\sum_{n=0}^{\infty} c_n z^n$	的收敛半径	是 R, 0 <	$R<\infty$.	那么	$\sum_{n=0}^{\infty} c_n z^n$	在圆 { 2	< R	中
	一致收敛到一个角	解析函数	•							
	()								

10. 级数

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} z^{n+1}$$
 收敛到 $\operatorname{Ln}(1+z)$ 的一个解析分支,对任意 $z \neq -1$.

(

11. 设函数 f 在圆 $D = \{|z-a| < r\}$ (r > 0) 内连续,且对任意的 D 中的可求长闭曲线 γ , 有

$$\int_{\gamma} f(z)dz = 0.$$

那么 f 在这个圆 D 内可以展成幂级数

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n, \quad \forall z \in D.$$

(

- 12. 如果 $v \neq u$ 的共轭调和函数,那么 $e^v \sin u \neq -e^v \cos u$ 的共轭调和函数.
- 13. 集合 $D = \mathbb{C} (-\infty, +\infty)$ 是多连通的区域. (
- 14. 设函数 f 在区域 $D=\{1<|z|<2\}$ 内解析,那么对任意 D 内的两条具有相同起点和终点的可求长曲线 γ_1,γ_2 有

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(w)dw.$$

(

15. 设函数 f 在 (不一定单连通的) 区域 D 内解析, 且在 D 上存在单值解析的原函数 F, 那么

$$F(z) = \int_{z_0}^{z} f(z)dz + C.$$

其中 $z_0 \in D$ 是固定的一点,沿着任意一条在 D 内连接 z_0 与 z 的可求长连续曲线做上述积分. C 是常数.

(

16. 多值函数 $(z^2+1)^{\frac{1}{2}}$ 可以在区域

$$D = \mathbb{C} - [-i, i]$$

上取到单值解析分支.

§2 在下列陈述的空白括号中写上正确的词语、数字、或数学表达式。

这部分每个空值 1 分, 总共 17 分.

1. 设 γ 是以1为圆心,1.0001为半径的逆时针方向圆周,那么

$$\int_{\gamma} \frac{1+z}{z^2} dz = ($$
).

- 2. 对多值函数 $\operatorname{Ln}(z^2+1)$, 点 i = -i, 以及 ∞ , 称作这个多值函数的 () .
- 3. 设一个幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径是 R, $0 < R < \infty$. 那么 $\sum_{n=0}^{\infty} c_n z^n$ 在圆 $\{|z| < R\}$ 内收敛到一个解析函数 f. 请写出 f 在这个圆内的所有原函数的 Taylor 展开式:

- 4. 集合 $\mathbb{C} [0, \infty)$ 的边界点集是 ().
- 5. 设曲线 γ 是从 i 出发,依次沿着直线连接线经过点 1+i, 1-i, -1-i, 到达 -1+i 的分段 折线. 那么积分

$$\int_{\gamma} \frac{1}{z} dz = ($$

6. 若将定义在

$$D = \mathbb{C} - [2, +\infty)$$

的函数 $f(z)=\frac{(z-2)^{\frac{1}{2}}}{z^2+5}$ 在 z=0 的一个单值解析分支展开成幂级数,这个幂级数的收敛半 径是 (

7. 请分别写出解析函数 $f(z) = \cos(z^2)$ 的实部和虚部:

$$Ref = u(x, y) = ($$
),

$$Im f = v(x, y) = ($$

8. 将函数 $f(z) = \frac{e^z}{1+z}$ 在 z=0 处展开 Taylor 级数,写出其前面的 5 项系数

$$f(z) = () + ()z + ()z^2 + ()z^3 + ()z^4 + \cdots, \forall |z| < 1.$$

9. 写出下列幂级数的收敛半径

$$f(z) = \sum_{n=0}^{\infty} n^2 z^n$$
, 收敛半径 $R = ($),

$$f(z) = \sum_{n=0}^{\infty} (\sin \frac{n\pi}{3})^n z^n, \qquad 收敛半径R = (),$$

$$f(z) = \sum_{n=1}^{\infty} n^n z^n$$
, 收敛半径 $R = ($),
$$f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^{2n}, \qquad$$
收敛半径 $R = ($).

§3 在每个陈述的所有选项中选择正确的答案,并在括号中填写相应的字母.

这部分每个题目值 1 分,总共 4 分.注意:每个题目都有可能需要你选择多个答案,但至少有一个正确的答案。如果你只选择出一部分正确答案,而没有选择出全部正确的答案,只能得 0.5 分.如果你的选择中有一个或多个错误的答案,就只能很遗憾地得到 0 分.

- 1. 如果函数 f = u + iv 在 \mathbb{C} 上解析,那么下列断言正确的是 (和 和 和).
 - A $u^2 v^2$ 是调和函数.
 - B 若 $u = e^{-y} \cos x$ (对 z = x + iy), 则 $v = e^{-y} \sin x$.
 - C 若 $u^2 + v^2$ 有界,则 f 是常数.
 - D $\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ 是解析函数.
- 2. 考察下面的积分

$$I = \int_{\gamma} \frac{e^z}{z(z+1)^2} dz,$$

这里的 γ 是一条不通过点 0 与 -1 的逆时针方向、可求长、简单闭曲线. 那么下面关于该积分求值的结论、正确的是 (和 和 和).

- A 若 0 和 -1 都在 γ 的外部,则 I=0.
- B 若 0 和 -1 都在 γ 的内部,则 $I=2\pi i-\frac{4\pi i}{a}$.
- C 若 0 在 γ 的内部, -1 在 γ 的外部, 则 $I = 2\pi i$.
- D 若 0 在 γ 的内部, -1 在 γ 的外部,则 $I = -\frac{4\pi i}{e}$.
- 3. 设 D 是区域, γ 是 D 内的可求长、逆时针方向、简单闭曲线. f 是定义在 D 上的复函数. 请问下面的哪个条件可以保证

$$\int_{\gamma} f(z)dz = 0.$$

你的选择 = (或 或 或).

- A f 在 γ 内部解析.
- B f 在 γ 上,及 γ 的内部的任一点可以局部展成 Taylor 级数.
- $C f 在 D 连续, 在 \gamma 的内部处处可导.$
- D 在 D 上存在 f 的原函数.

4. 设有函数项级数

$$\sum_{n=0}^{\infty} f_n(z).$$

其中每个函数 f_n 都是区域 D 上的解析函数. 能保证这个级数收敛到另一个 D 内的解析函数的条件是下列中的 (或 或).

- A $\sum_{n=0}^{\infty} f_n(z)$ 对任何 $z \in D$ 绝对收敛.
- B $\sum_{n=0}^{\infty} f_n(z)$ 在 D 内局部 (又称内闭) 一致收敛.
- C D 单连通, $\sum_{n=0}^{\infty} f_n'(z)$ 在 D 内一致收敛,且至少存在一个点 $z_0 \in D$ 使得 $\sum_{n=0}^{\infty} f_n(z_0)$ 收敛.
- D 存在另一个收敛的实数级数 $\sum_{n=0}^{\infty} M_n$, 使得每个 $|f_n(z)| \leq M_n$, $\forall z \in D$.

§4 请针对题目的要求写出足够详细的解答

这部分每个题 1 分, 总共 3 分.

1. 请指出幂级数

$$\sum_{n=0}^{\infty} (-1)^n (n+1) z^n$$

的收敛半径和在收敛圆内的和函数.

2. 设函数 $f = u^2 + iv$ 在 \mathbb{C} 上解析 (其中 u, v 是实的二元连续可微函数), 请通过考虑函数

$$g(z) = e^{-f(z)}$$

来证明 u, v 都是常数. (必须说明所引用的定理的名称.)

3. 设在 a 点邻域 U 上有两个解析函数 f 和 g ,且 f(a)=g(a)=0. 又知道 a 是 f 的 m 级零点, a 是 g 的 n 级零点,且 $m \ge n$,求证

$$\lim_{z \to a} \frac{f(z)}{g(z)} = \frac{f^{(n)}(a)}{g^{(n)}(a)}.$$

4. (附加题 2 分, 可做可不做),设 f(z) 是 $((1-z)z^2)^{\frac{1}{3}}$ 的某个单值解析分支,定义在 $D=\mathbb{C}-[0,1]$ 上. 已知 f(2)<0,求 f(i)=?

5. 调查: 你感觉自己能得到的分数是() /(out of 40+2). 你觉得哪里听不懂? 你希望怎样提高教学质量? 你是否觉得这门课很难? 你对开设这门课有什么样的想法? 你希望提高难度还是降低难度? 你觉得作业布置地太重吗? 你对教师和助教有什么要求? 你觉得总分数=30 分作业+40 分期中+30 分期末是否公平?

Key to $\S 1$

- 1. F
- 2. F
- 3. F
- 4. F
- 5. T
- 6. F
- 7. T
- 8. T
- 9. F
- 10. F
- 11. T
- 12. T
- 13. F
- 14. F
- 15. T
- 16. T

Key to $\S 2$

- 1. $2\pi i$
- 2. 支点, 或分支点, 支割点, 或奇点, 或极点都可以
- 3.

$$c + \sum_{n=0}^{\infty} c_n \frac{1}{n+1} z^{n+1}$$

其中 c 是常数。

- 4. $[0, +\infty)$
- 5. $\frac{1}{2} \ln 2 \frac{7}{4} \pi i$

6. 2

7.

$$\begin{cases} \frac{1}{2}(e^{2xy} + e^{-2xy})\cos(x^2 - y^2) & ,\\ -\frac{1}{2}(e^{2xy} - e^{-2xy})\sin(x^2 - y^2) & . \end{cases}$$

8. $1, 0, \frac{1}{2}, -\frac{1}{3}, \frac{3}{8}$

9. $1, \frac{2}{\sqrt{3}}, 0, \infty$

Key to $\S 3$

- 1. A,C,D
- 2. A,B,C
- 3. B,C,D
- 4. B,C,D

Key to $\S 4$

- 1. R = 1, 收敛到 $\frac{1}{(1+z)^2}$
- 2. 先说明 $|g(z)| \le 1$, 然后用 Liouville 定理。
- 3. 用 m 级零点的等价刻画。
- 4. $2^{\frac{1}{6}}e^{\frac{19}{12}\pi i}$

5.