Determining Galactic Structure through 21cm Emission Lines

Henry Shackleton

May 11, 2017

Hyperfine Transition of Hydrogen Emits 21cm Wavelenth Emission

- Hydrogen electron spin-flip causes electromagnetic radiation at a frequency of 1420.41 MHz.
- Low probability $(2.9 \times 10^{-15} s^{-1})$, but the vast amount of hydrogen in the galaxy allows for this detection

Doppler Shift Gives Change in 21cm Line Proportional to Velocity

$$v = c \frac{1420.41 - \nu}{\nu}$$

 Henry Shackleton
 21 cm
 May 11, 2017
 2 / 12

Doppler Shift Gives Change in 21cm Line Proportional to Velocity

$$v = c \frac{1420.41 - \nu}{\nu} - v_{lsr}$$

 Henry Shackleton
 21 cm
 May 11, 2017
 3 / 12

 Velocity we observe is the velocity of the mass projected onto our line of sight.

 Henry Shackleton
 21 cm
 May 11, 2017
 4 / 12

- Velocity we observe is the velocity of the mass projected onto our line of sight.
- $v_{obs} = \frac{\Theta}{r} R_0 \sin \ell \Theta_0 \sin \ell$

- Velocity we observe is the velocity of the mass projected onto our line of sight.
- $v_{obs} = \frac{\Theta}{r} R_0 \sin \ell \Theta_0 \sin \ell$
- Relation between Θ and *r* obtained through Galactic Rotation Curve.

 Henry Shackleton
 21 cm
 May 11, 2017
 4 / 12

- Velocity we observe is the velocity of the mass projected onto our line of sight.
- $v_{obs} = \frac{\Theta}{r} R_0 \sin \ell \Theta_0 \sin \ell$
- Relation between Θ and r obtained through Galactic Rotation Curve.
- Between $90^{\circ} < \ell < 180^{\circ}$, Galactic Rotation Curve is approximately constant.

SRT Measures Radio Power Within Given Frequency Domain

- Noise diode allows for calibration of telescope.
- Recceiver selects desired bandwidth for data collection.

 Henry Shackleton
 21 cm
 May 11, 2017
 5 / 12

Peak in Antenna Readings Signal Hydrogen Density Concentration

Peak in Antenna Readings Signal Hydrogen Density Concentration

ullet Velocity of sun lacks certainty, approximately 231 \pm 14 km/s.

- ullet Velocity of sun lacks certainty, approximately 231 \pm 14 km/s.
- ullet Distance from sun to center of galaxy also uncertain, 8.2 ± 0.5 kpc.

- ullet Velocity of sun lacks certainty, approximately 231 \pm 14 km/s.
- ullet Distance from sun to center of galaxy also uncertain, 8.2 ± 0.5 kpc.
- Beam width approximated as constant across five degree bin width taking into account beam profile would allow for more accurate data analysis

- ullet Velocity of sun lacks certainty, approximately 231 \pm 14 km/s.
- ullet Distance from sun to center of galaxy also uncertain, 8.2 ± 0.5 kpc.
- Beam width approximated as constant across five degree bin width taking into account beam profile would allow for more accurate data analysis
- Poissonian uncertainy in number of counts.

Thermal Broadening Irrelevant at Current Galactic Resolution

Hydrogen Mapping to Polar Histogram Indicates Spiral Arm

Hydrogen Mapping Agrees with Density Data

Results Verify Validity of 21cm Analysis

• Hydrogen hyperfine emissions provide a reliable method of detecting hydrogen.

Results Verify Validity of 21cm Analysis

- Hydrogen hyperfine emissions provide a reliable method of detecting hydrogen.
- Analyzing Doppler shift allows for determining of source location and a mapping of hydrogen density.

 Henry Shackleton
 21 cm
 May 11, 2017
 12 / 12

Results Verify Validity of 21cm Analysis

- Hydrogen hyperfine emissions provide a reliable method of detecting hydrogen.
- Analyzing Doppler shift allows for determining of source location and a mapping of hydrogen density.
- Resolution limited due to telescope size and thermal broadening, but qualitative features agree with literature.