Subnetting

Practical 4

UCD School of Computer Science

October 9, 2018

Practical 4 COMP30040 October 9, 2018 1 / 13

IPv4 address space

- The 32-bit IP address is grouped 8 bits \rightarrow each group of 8 bits is an octet. Each of the four octets is separated by a dot, and represented in decimal format, this is known as dotted decimal notation.
 - For example: 10.0.2.10
- The total number of addresses: $2^{32} = 4,294,967,296$ IPv4 addresses \rightarrow still lower than Earth's population (\approx 7 billions)

Practical 4 COMP30040 October 9, 2018 2 / 13

History - Class-based-subnet (Used before 1993 and is now deprecated

Subnetting

- Divide a network into sub-networks. For example, UCD has one network but many sub-networks for different schools.
- The netmask splits the IP address into:
 - Network-prefix (Network ID)
 - Host-number (Host ID)

Practical 4 COMP30040 October 9, 2018 4 / 13

CIDR - Classless Inter-Domain Routing

- Why it exists:
 - The 8-bit address boundary had lack of vision
 - E.g. Class B networks are too big, i.e., 65535 hosts
 - In CIDR, the address space can be allocated to Internet Providers and end-users on any address bit boundary using netmasks.
- Netmask (Network mask):
 - 32 bit long
 - Used to specify
 - How many bits from IP address define the network ID / How many bits from IP address are used for Host IDs?
- For example

Practical 4 COMP30040 October 9, 2018 5 / 13

Example: What network do I belong to?

This is the fixed part of any IP address in this network. This is a /24 network, specifically: 192.168.5.0/24

This is the free part, where bits can take any value, resulting in host IP addresses.

How many hosts does this network have?

Example: 192.168.5.0/24

In network 192.168.5.0/24, there are 254 hosts: $2^{(32\cdot24)}-2=2^8-2=256-2=254 \text{ hosts,}$ And the broadcast address is 192.168.5.255

Network ID Binary:		. 1 0 1 0 1 0 0 0	. 0 0 0 0 0 1 0 1	0000000
Decimal:	192	168	5	0
First host's Binary:	1 1 0 0 0 0 0 0	. 1 0 1 0 1 0 0 0	. 0 0 0 0 0 1 0 1	0 0 0 0 0 0 0 1
address Decimal:	192	168	5	1
Other Binary:	1 1 0 0 0 0 0 0	. 1 0 1 0 1 0 0 0	. 0 0 0 0 0 1 0 1	****
hosts Decimal:	192	168	5	2 to 253
	1 1 0 0 0 0 0 0	. 1 0 1 0 1 0 0 0	. 0 0 0 0 0 1 0 1 .	1 1 1 1 1 1 0
Last host's Binary:	192	168	5	254
address Decimal:	132	100	3	234

Practical 4 COMP30040 October 9, 2018 7 / 13

Subnetting: Number of hosts

- If your network has a /n (with n < 31), then:
 - There are $2^{32-n} 2$ hosts (or usable IP addresses).
 - Why n should be less than 31?
 - What if n = 32 ?

Reversed range

- The following IP Address ranges are not used over the Internet, but valid in local network
 - 10.0.0.0 10.255.255.255
 - 172.16.0.0 172.31.255.255
 - 192.168.0.0 192.168.255.255
 - 127.0.0.0 127.255.255.255

Practical 4 COMP30040 October 9, 2018 9 / 13

- Solution to the scarce IPv4 address domain
- Addresses are on 128 bits
- Total number of IPv6 addresses:
 - $\bullet \ \ 2^{128} = 340, 282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211, 456$
 - More than enough for anybody on the Earth to own multiple IP addresses.
 - Internet of Things (IoT) will use a lot of these IPv6 addresses.

Exercises - Try it on your own - 192.168.153.33/21

Practical 4 COMP30040 October 9, 2018 11 / 13

Exercises - Try it on your own

- This exercise for your free time you don't have to submit it. Please determine:
 - Network ID
 - Host Range (First hosts address to Last hosts address)
 - The number of maximum usable address
 - Broadcast address
- **1**0.234.171.0/27
- **a** 10.79.63.0/29
- **3** 172.22.173.118/20
- **1**0.63.113.33/17
- 172.22.29.40/17
- 192.168.56.192/28
- For more exercise, please check: https://www.subnetting.net/Subnetting.aspx?mode=practice

ENJOY !!!

Practical 4 COMP30040 October 9, 2018 13 / 13