DEVOIR 1 – VÉRIFICATION DE CODE

Diffusion du sel dans un pilier de béton poreux

Eduards Blandin 1893699 Jacques Desfossés 61902 Timothée Duruisseau 1949883

https://github.com/tiduru/MEC8211 VetV/tree/main/Devoir1

Atchafalaya Basin Bridge, I-10, Whiskey Bay [© MICHAELAT1, CC BY-SA 3.0, via Wikimedia Commons]

A) SIMPLIFIER ET ÉTABLIR LE PROBLÈME

- a. L'équation $\frac{\partial C}{\partial t} = D_{eff} \nabla^2 C S$ est de type parabolique b. En coordonnées cylindriques, l'équation devient $\frac{\partial C}{\partial t} = D_{eff} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 C}{\partial \theta^2} + \frac{\partial^2 C}{\partial z^2} \right] S$
 - Nous sommes en présence d'une symétrie axiale de révolution
 - On réduit le problème à une diffusion radiale seulement, i.e. $C(t,r,\theta,z) = C(t,r)$
 - Cylindre infiniment haut
 - Concentration constante C_{e} à la surface du pilier
 - Flux nul en r=0
 - Concentration initiale nulle à l'intérieur du pilier

L'équation simplifiée est
$$\boxed{\frac{\partial C}{\partial t} = D_{\textit{eff}} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C}{\partial r} \right) \right] - S = D_{\textit{eff}} \left[\frac{1}{r} \frac{\partial C}{\partial r} + \frac{\partial^2 C}{\partial r^2} \right] - S}$$

A) SIMPLIFIER ET ÉTABLIR LE PROBLÈME (SUITE)

- c. Discrétisation du domaine pour 5 nœuds
 - Intervalles constants $h = R/(N_{tot} 1) = 1/8 m$
 - Position sur l'axe r: $r_i = (i-1)h$, $1 \le i \le N_{tot}$
- d. i) Conditions frontières
 - Condition frontière de **Dirichlet**: $C(t, r = R) = C_{p}$
 - Condition frontière de **Neumann**: $\frac{\partial C}{\partial r}(t, r = 0) = 0$
 - ii) Conditions initiales
 - Concentration initiale **nulle**: C(t=0, r < R) = 0

B) DIFFÉRENCES FINIES

- **Équations nodales** pour Euler implicite en temps et $\frac{\partial C}{\partial r}|_{i} = \frac{C_{i+1}^{t} C_{i}^{t}}{\Lambda r}$, $\frac{\partial^{2} C}{\partial r^{2}}|_{i} = \frac{C_{i+1}^{t} 2C_{i}^{t} + C_{i-1}^{t}}{\Lambda r^{2}}$ en espace
 - Dirichlet : $C_5^t = C_8$
 - Neumann: $(C_2^t C_1^t)/h = 0 \Rightarrow C_1^t = C_2^t$
 - Noeuds 2 à 4: $\frac{C_i^t C_i^{t-1}}{\Delta t} = D_{eff} \left[\frac{1}{r} \frac{C_{i+1}^t C_i^t}{h} + \frac{C_{i+1}^t 2C_i^t + C_{i-1}^t}{h^2} \right] S$

$$-\left(\underbrace{r_{i}D_{eff}\Delta t}_{A_{i}}\right)C_{i-1}^{t} + \left(r_{i}h^{2} + 2\underbrace{r_{i}D_{eff}\Delta t}_{A_{i}} + \underbrace{D_{eff}h\Delta t}_{E}\right)C_{i}^{t} - \left(\underbrace{D_{eff}h\Delta t}_{E} + \underbrace{r_{i}D_{eff}\Delta t}_{A_{i}}\right)C_{i+1}^{t} = \underbrace{\left(r_{i}h^{2}\right)C_{i}^{t-1} - Sr_{i}h^{2}\Delta t}_{F_{i}}$$

$$N_{1}: C_{1}^{t} - C_{2}^{t} = 0$$

$$N_{2}: -A_{2}C_{1}^{t} + (B_{2} + 2A_{2} + E)C_{2}^{t} - (E + A_{2})C_{3}^{t} = F_{2}$$

$$N_{3}: -A_{3}C_{2}^{t} + (B_{3} + 2A_{3} + E)C_{3}^{t} - (E + A_{3})C_{4}^{t} = F_{3}$$

$$N_{4}: -A_{4}C_{3}^{t} + (B_{4} + 2A_{4} + E)C_{4}^{t} - (E + A_{4})C_{5}^{t} = F_{4}$$

$$N_{5}: C_{5}^{t} = C_{a}$$

$$N_{1}: C_{1}^{t} - C_{2}^{t} = 0$$

$$N_{2}: -A_{2}C_{1}^{t} + (B_{2} + 2A_{2} + E)C_{2}^{t} - (E + A_{2})C_{3}^{t} = F_{2}$$

$$N_{3}: -A_{3}C_{2}^{t} + (B_{3} + 2A_{3} + E)C_{3}^{t} - (E + A_{3})C_{4}^{t} = F_{3}$$

$$N_{4}: -A_{4}C_{3}^{t} + (B_{4} + 2A_{4} + E)C_{4}^{t} - (E + A_{4})C_{5}^{t} = F_{4}$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -A_{2} & B_{2} + 2A_{2} + E & -E - A_{2} & 0 & 0 \\ 0 & -A_{3} & B_{3} + 2A_{3} + E & -E - A_{3} & 0 \\ 0 & 0 & -A_{4} & B_{4} + 2A_{4} + E & -E - A_{4} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_{1}^{t} \\ C_{2}^{t} \\ C_{3}^{t} \\ C_{4}^{t} \\ C_{e}^{t} \end{bmatrix}$$

Système matriciel à résoudre à chaque pas de temps (forme non-compacte)

B) DIFFÉRENCES FINIES (SUITE)

- b. Le système matriciel linéaire est de la forme $[M]{C} = {V}$
 - Il est résolu à chaque pas de temps par une méthode directe étant donné sa petite taille: $\{C\} = [M]^{-1} \{V\}$
 - Dans notre code, on laisse Matlab décider du meilleur algorithme avec l'opérateur '\': $C = M \setminus V$;
- c. Les ordres de précision attendus du schéma global sont $O(h + \Delta t)$
 - Temps: ordre 1
 - Espace: ordre 1
- d. Le schéma numérique est inconditionnellement stable

C) SOLUTION ANALYTIQUE DU RÉGIME STATIONNAIRE

L'équation elliptique du régime stationnaire est $D_{eff} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dC}{dr} \right) \right] = S \Rightarrow \left| \frac{d}{dr} \left(r \frac{dC}{dr} \right) = \frac{Sr}{D_{eff}} \right|$

On intègre deux fois:
$$\int d\left(r\frac{dC}{dr}\right) = \int \frac{S}{D_{eff}} r dr \Rightarrow r\frac{dC}{dr} = \frac{Sr^2}{2D_{eff}} + C_1$$

$$\int dC = \int \left(\frac{Sr}{2D_{eff}} + \frac{C_1}{r}\right) dr \Rightarrow \boxed{C(r) = \frac{Sr^2}{4D_{eff}} + C_1 \ln r + C_2}$$

On trouve les constantes d'intégration à l'aide des conditions frontières:

$$ightharpoonup$$
 Dirichlet: $C(r=R) = C_e \Rightarrow C_2 = C_e - \frac{SR^2}{4D_{eff}} - C_1 \ln R$

ightharpoonup Neumann: $C'(r=0)=0 \Rightarrow C_1=0$

La solution analytique est
$$C(r) = \frac{Sr^2}{4D_{eff}} + C_e - \frac{SR^2}{4D_{eff}} \Rightarrow C(r) = \frac{S}{4D_{eff}} R^2 \left(\frac{r^2}{R^2} - 1\right) + C_e$$

D) CODE DE CALCUL GÉNÉRIQUE

La fonction *FickDF* a été écrite dans *Matlab* et calcule C(t,r) pour :

- Un nombre de nœuds total Ntot
- Un pas de temps dt (en années)
- Un nombre d'années Ndt
- Les schémas de différenciation 1 et 2
- Un terme source tsMeth constant ou du 1^{er} ordre

```
% MEC8211 A2022 Devoir 1
% Eduards Blandin
% Jacques Desfossés
% Timothée Duruisseau
% Cette fonction résout l'équation différentielle représentant la 2e loi
% de Frick exprimée en coordonnées cylindriques et calcule C(r,t) pour:
   - Un pilier de béton de rayon R submergé dans une eau saline
    - Un pilier (cylindre) infiniment haut
     Une concentration Ce=10 mol/m^3 constante à la surface du pilier
      correspondant à une condition frontière de Dirichlet
    - Un flux nul en r=0 correspondant à une condition frontière de Neumann
     • Une concentration initiale nulle dans le pilier C(r<R,0) = 0</p>
% Variables
   entrée : Ntot - Nombre de noeuds, Entier >= 3
            dt - Pas de temps [an], > 0
            Ndt - Nombre de pas de temps, Entier >= 1
            schema - Schéma de différentiation: 1 - Ordre 1
                                             2 - Ordre 2
            tsMeth - Terme source: 0 - Constant S=1E-8 [mol/m^3/s]
                                 1 - 1er ordre, S=kC avec k=4E-9 [s^-1]
   sortie : C - Concentrations [mol/m^3]. Taille Ndt+1 x Ntot
                    Rangées (temps) : Ndt + 1
                    Colonnes (noeuds): Ntot
                    Ex: C(1,1) = Concentration initiale au noeud 1.
                        C(101,3) = Concentration au noeud 3, temps 100*dt
            temps - Temps discrets de la simulation [an]. Taille Ndt+1
   test : 50 noeuds, 30 incréments d'une année, schéma d'ordre 2,
          terme src cst: C = FrickDF(50, 1, 30, 2, 0);
% Historiaue
% 02-Oct-2022 : Création
```

function [C, temps] = FickDF(Ntot, dt, Ndt, schema, tsMeth)

https://github.com/tiduru/MEC8211 VetV/tree/main/Devoir1/FickDF.m

E) SOLUTION NUMÉRIQUE DU RÉGIME STATIONNAIRE

- a. La solution numérique du régime stationnaire est obtenue de deux façons:
 - 1) Méthode transitoire: On fait rouler le code jusqu'au régime stationnaire avec les paramètres ci-dessous
 - Pas de temps de 1 an: dt = 1
 - Nombre de pas de temps: *Ndt*=1000
 - 2) Méthode <u>directe</u>: On utilise une nouvelle fonction *FickDFStat*, dérivée de la fonction *FickDF*, qui résout directement l'équation elliptique du régime stationnaire et qui ne nécessite donc aucune discrétisation temporelle.
- b. La vérification du code, pour le schéma d'ordre 1, donne des résultats similaires pour les 2 méthodes. La fonction *FickVerifStat* fait le graphe des erreurs et donne la pente entre les 2 intervalles les plus élevés. On utilise
 - Intervalle maximum (N_{min} = 3): $h_{\text{max}} = R/(N_{\text{min}} 1) = 0.25 \, m$
 - Intervalle minimum (N_{max} = 1001): $h_{min} = R/(N_{max} 1) = 0.0005 m$

>> FickVerifStat(3, 1001, 1, "directe")

pentes O(1): L1=1.000000, L2=1.085079, Linf=1.000000

E) SOLUTION NUMÉRIQUE DU RÉGIME STATIONNAIRE (SUITE)

- b. L'ordre de précision **observé** avec les méthodes **directe** et **transitoire** est
 - Ordre de 1 pour les erreurs L₁ et L∞
 - Ordre de 1.09 pour L2

L'ordre de convergence observé atteint l'ordre de convergence formel (ordre 1)

- c. Problèmes constatés:
 - Cette méthode de vérification requiert une solution analytique calculable, ce qui n'est pas toujours possible.
- Avec la condition de Neumann en r=0 et un schéma d'ordre 1, les nœuds 1 et 2 ont toujours la même concentration, ce qui n'est pas le cas en réalité. Cela contribue à l'erreur. L'utilisation d'un pas de temps h variable pourrait palier ce problème.

F) SCHÉMAS DE DIFFÉRENCIATION D'ORDRE 2

a. Pour le schéma d'ordre 2, l'approximation avant « de Gear » est utilisée pour la condition frontière de Neumann.

F) SCHÉMAS DE DIFFÉRENCIATION D'ORDRE 2

- b. Les méthodes directe et transitoire ont les propriétés suivantes:
 - Erreur obtenue de l'ordre de la précision machine (erreurs < 1E-14 pour hmin)
 - Pour h<0.1 m, l'erreur augmente lorsque le pas de temps diminue. C'est donc l'erreur de représentation des nombres qui domine.
 - Pour la méthode transitoire, la solution obtenue contient aussi une erreur associée au fait que l'on n'atteint qu'asymptotiquement la solution stationnaire.

Le schéma d'ordre 2 est du même ordre que le problème stationnaire elliptique. La solution par différences finies est donc très précise, car l'erreur de discrétisation est minime.