

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
FIC – PROGRAMAÇÃO DE CLP BÁSICO

MATERIAL 3

(FIC Programação Básica CLP Básico)

Prof. Rogério da Silva

Sensores, Atuadores e Controladores

Fazendo uma Analogia

Sensores e Atuadores

"As Industrias trabalhão continuamente para desenvolver produtos com mais velocidade e menor custo. Pela automação de processos, é possível alcançar estes objetivos mantendo altos níveis de qualidade e confiabilidade. O uso de sensores e chaves para detecção de posição é fundamental para monitorar, regular e controlar a automação das máquinas envolvidas nos processos de fabricação.

Os sensores geralmente são aplicados para contagem, verificação de posição e seleção entre dimensões diferentes de peças, entre outras aplicações. Desta maneira é fundamental a escolha correta de um sensor para que a automação de um processo industrial possa funcionar corretamente. Os sensores para indicação de posição comumente utilizados são chaves fim de curso, indutivos, capacitivos, ópticos e ultrassônicos, descritos a seguir."

FRANCHI, C. M. e CAMARGO, V. L. A. Controladores Lógicos Programáveis: sistemas discretos. São Paulo. Érica. 2010.

Chaves

As chaves pela sua natureza sofrem uma ação mecânica como entrada e tem como saída o nível de tensão (chaves eletromecânicas).

Características – Alta velocidade de comutação, Alta confiabilidade, baixo custo.

FRANCHI, C. M. e CAMARGO, V. L. A. Controladores Lógicos Programáveis: sistemas discretos. São Paulo. Érica. 2010.

Aplicação de Chaves

FRANCHI, C. M. e CAMARGO, V. L. A. Controladores Lógicos Programáveis: sistemas discretos. São Paulo. Érica. 2010.

Chaves Botoeiras

Botoeiras – De impulso (push-button) ou de trava, as de impulso são muito utilizadas nos processos industriais.

De Impulso – São ativadas quando são pressionadas pelo usuário e desativadas quando soltas pelo usuário.

De retenção (ou trava) — São ativadas quando pressionadas e mantém sua posição dos contatos ativados mesmo que o usuário solte a botoeira, para que seja destravado o botão o usuário precisa pressionar novamente a botoeira.

Características – Alta velocidade de comutação, Alta confiabilidade, baixo custo.

Estado lógico dos contatos das chaves de impulso sem retenção

Relê, Contatores

Relês, Contatores – São chaves onde são acionadas através da energização de uma bobina. São consideradas chaves porque eles são responsáveis por ligarem ou desligarem os circuitos elétricos. Contudo, estas chaves não requerem a ação de uma força do homem ou de uma força mecânica externa.

O principal motivo da aplicação dos relês, contatores são devido a capacidade de carga dos seus contatos, assim como, a possibilidade terem vários contatos sobre uma única ação de movimento.

Relês, Contatores

Sensores

Sensores – Podem ser do tipo digital ou analógico. Os mais comuns são os indutivos, os capacitivos, os ópticos.

Sensores Indutivos

São muito utilizados nos processos industriais, eles são acionados pela aproximação de um corpo ferroso, outra característica comum desse tipo de sensores é que normalmente são acionados quando o material é colocado bem próximo. Essa distância de aproximação está ligada as características dos sensores. Exemplo quanto maior o diâmetro do sensor indutivo, maior a distância de detecção, sem que haja a necessidade de tanta aproximação, outra característica é o tipo do corpo, exemplo faceado ou não. Vide alguns exemplos abaixo.

Sensores Capacitivos

São sensores utilizados para identificar diversos tipos de materiais, de ferrosos a não ferrosos, enquanto os indutivos só detectam materiais ferrosos os capacitivos tem a capacidade de detectar quaisquer tipos de materiais a frente e desprezar outros, nível de água, óleo ou outro dentro de um recipiente de acrílico, vidro, ou plástico. Para que o sensor capacitivo não venha ser acionado pela barreira a frente que é o acrílico, vidro ou plástico normalmente é feito um ajuste da densidade esperada como parte do fechamento do circuito capacitivo. Este sensor também pode ser utilizado para ver materiais ferrosos, não é comum.

Sensores Optoeletrônicos

São sensores bastante utilizados para detecção da passagem de materiais a distância, onde os sensores normalmente são colocados mais afastados, não requerem tanta aproximação, esses sensores utilizam as seguintes técnicas, tipo reflexivo com espelho, reflexivo sem espelho, ou dois sensores separados "emissor e receptor".

CLP's com I/O discretos

Trabalharemos com os elementos de entrada e saídas I/O "sensores e atuadores" discretos. Sendo assim, vamos lembrar algumas portas lógicas e suas tabelas verdades que representam grande parte dos sistemas.

Álgebra de Boole

Utilizado para minimizar a função ao máximo antes de ser montado um sistema discreto (eletrônica digital à programação de CLP).

Ao se utilizar a álgebra de boole nas soluções dos problemas, tem-se uma grande vantagem quanto a utilização de uma solução matemática do problema, antes da implementação propriamente dito, lembrando-se que todo programador tem objetivo de trazer uma função final mais simples quanto a solução do problema.

Álgebra de Boole

Postulados	
<u>Complementação</u>	
Se A = 0 então $\overline{A} = 1$	
Se A = 1 então $\overline{A} = 0$	
Identidade	
$\overline{A} = A$	
<u>Adição</u>	<u>Multiplicação</u>
0 + 0 = 0	0.0=0
0 + 1 = 1	0 . 1 = 0
1 + 0 = 1	1.0=0
1 + 1 = 1	1.1=1
Identidade	Identidade
A + 0 = A	A . 0 = 0
A + 1 = 1	A . 1 = A
A + A = A	A . A = A
$A + \overline{A} = 1$	$A.\overline{A} = 0$

Teoremas	
Teoremas de De Morgan	
$\overline{A + B} = \overline{A} \cdot \overline{B}$	
$\overline{A \cdot B} = \overline{A} + \overline{B}$	
Teoremas da Absorção	
$A + A \cdot B = A$	
$A + \overline{A} \cdot B = A + B$	

Determinando a Função através da Álgebra de Boole

Uma determinada lâmpada é acesa quando o botão B0 não estiver acionado. Qual é a função resultante?

Determinando a Função através da Álgebra de Boole

Uma determinada lâmpada é acesa quando um ou mais botões são acionados e desligada nas demais condições. Importante, os botões são do tipo pulso, não são com travas. São 3 botões no sistema. Qual é a função resultante?

Determinando a Função através da Utilizando o Mapa de Karnaugh

Uma determinada lâmpada é acesa quando um ou mais botões são acionados e desligada nas demais condições. Importante, os botões são do tipo pulso, não são com travas. São 3 botões no sistema. Qual é a função resultante?

Continuação no Material 4