# PYTHON – AULA 7 LÓGICA DE PROGRAMAÇÃO APLICADA

### **AGENDA**

- Aula 1 Instalando e conhecendo o Python e as ferramentas do curso. Revisitando lógica de programação em Python.
- Aula 2 Revisitando lógica de programação em Python continuação.
- Aula 3 Trabalhando com listas, tuplas e dicionários.
  Leitura e escrita de JSON.
- Aula 4 Leitura e escrita de arquivos. Introdução a Numpy e Pandas.

# AGENDA

Aula 5 Orientação a objeto no Python.

Aula 6 Trabalhando com os algoritmos.
Ordenação e Recursão. – Pesquisa em largura.

Aula 7 Algoritmo de Dijkstra.

Aula 8 Algoritmos Genéticos.

# PROGRAMANDO EM PYTHON

GRAFOS

**ALGORITMO DE DIJKSTRA** 

# Introdução

 Existe um problema famoso na ciência da computação denominado caixeiro-viajante. A ideia é que um caixeiro precisa visitar um número n de cidades percorrendo a distância mínima para visitar toda elas.

 Se considerarmos um total de 6 cidades, por exemplo, devemos analisar 720 permutações (6!), ou seja, 720 operações.



Extraído de: https://br.pinterest.com/pin/37084396909133260

# Introdução



Possível rota para o caixeiro-viajante entre cidades do estado de São Paulo.

# Introdução

- O algoritmo do caixeiro-viajante tem uma performance muito ruim, crescendo de forma drástica e tornando inviável sua computação (problema intratável) acima de um número muito grande de cidades.
- Por exemplo, 100 cidades equivalem a 10<sup>158</sup> opções;
   considerando 1 bilhão de soluções por segundo, levaria 10<sup>140</sup>
   anos para encontrar a melhor (mais tempo do que a idade do universo).

# . Introdução

• Apesar do algoritmo do caixeiro-viajante ter uma performance ruim e ser um problema intratável para um grande número de cidades, ele nos fornece uma abordagem interessante ao mostrar conexões.

• Um conjunto de conexões são denominadas de grafos e a partir desta abordagem iremos conhecer algoritmos que irão nos oferecer uma solução aproximada em tempo hábil para o problema do caixeiro-viajante e muitos outros de aplicações reais

## Grafos

- <sup>†</sup>Um grafo é um conjunto de conexões, onde temos os nós ou vértices (N) e as
- arestas ou arcos (A). Trata-se de um modelo ou representação da realidade e nos ajuda com simulações.



Exemplo de grafo

# **Aplicações**

+Podem ser usados para representar mapas.



Grafo que representa o mapa parcial de uma região do Estado de São Paulo. [Extraído de NICOLETTI].

# . Aplicações

Podem ser usados para representar Árvore Genealógica



Grafo que representação de relações familiares. [Extraído de NICOLETTI].

### **Aplicações**

Pode ser aplicado na computação, por exemplo na geração de casos de teste.



Notação de vários comandos usando grafos de fluxo. [Extraído de NICOLETTI].

Exemplo de teste de controle: grafo de fluxo de um módulo que gere conjunto de caminhos independentes que devem ser percorridos para garantir que todos os comandos (e ramificações) sejam executados pelo menos uma vez.

# **Aplicações**

.Podem ser usados para modelar uma rede telefônica.



Modelando uma rede telefônica. [Extraído e adaptado de NICOLETTI].

## .Exercício

- 1. Onde mais podemos encontrar aplicações de grafos no mundo real?
- 2. Quais empresas utilizam grandes grafos otimizados?

#### 1. Fornecimento de:

- Eletricidade;
  - Gás;
  - Água.
  - Rádio;
  - Tarifas áreas;
- 2. Vendas
- 3. Logística
- 4. Supply Chain
- 5. GPS











# 'Grafo Dirigido

.• \_ É uma dupla (N, A), que se pode definir a ordem nos pares de nós

# Grafo Não Dirigido

Não pode definir a ordem nos pares de nós.



Grafo não dirigido



# Grau de um Nó



- O nó A tem grau 2 = uma saída mais uma entrada;
- O nó B tem grau 5 (3 + 2) = três saídas mais duas entradas.

#### .Pesos das arestas

O peso dos arcos representa o grau de importância na conexão entre dois nós.



No caso de mapas, pode-se considerar a distância em quilômetros ou milhas.

# Grafo Cíclico



Existe um caminho de no mínimo três "nós" que começam e terminam no mesmo "Nó".

# Grafo Acíclico



Não ocorre nenhum ciclo em circuito nos "Nós".

- Representação (construção) do grafo
- Os conjuntos G=(N,A) podem ser representados pelas estruturas de dados:

- a) Lista de adjacência;
- b) Matriz de adjacência.

#### Algoritmo

 O processo para percorrer o grafo de uma forma simples denomina-se <u>busca em largura.</u>

# Lista de Adjacência

- Usa um vetor com n <u>listas ligadas (filas)</u>. Cada posição do vetor corresponde a um Nó de
- → G(N,A), e os arcos de um certo Nó para outros Nós são representados por listas ligadas.



Filas são estruturas de dados (semelhante a filas na vida real), onde o primeiro elemento a ser inserido, será também o primeiro a ser retirado (FIFO).

Remoção - dequeue. Inserção - enqueue.

# Matriz de Adjacência

- · Assume que os Nós são numerados de 1 até N. A matriz é construída com
- † dimensão NxN de elementos e<sub>ii</sub>.



|   | Α | В | С | D | Е | F |
|---|---|---|---|---|---|---|
| Α | 0 | 1 | 0 | 0 | 0 | 0 |
| В | 0 | 0 | 0 | 0 | 1 | 0 |
| С | 0 | 0 | 0 | 0 | 1 | 1 |
| D | 1 | 1 | 0 | 0 | 0 | 0 |
| Ε | 0 | 0 | 0 | 1 | 0 | 0 |
| F | 0 | 0 | 0 | 0 | 0 | 1 |

## .Busca.em Largura

- A pesquisa em largura busca pelo caminho mínimo, ou seja, o mínimo de arestas a serem percorridas para chegar ao objetivo final.
- A busca começa por um vértice especificado pelo usuário, depois consulta os vértices vizinhos e todos os vizinhos dos vizinhos.
- O algoritmo numera os vértices na ordem em que eles são descobertos;
   para fazer isso, o algoritmo usa uma <u>fila</u> de vértices.

# i implementação do grafo

• Para implementar nosso primeiro código, iremos utilizar estruturas de dados, tais como listas e dicionários. Considere o grafo abaixo e seus relacionamentos.



Queremos saber se nessa rede de relacionamentos existe algum pescador

# Implementação do grafo

Para o grafo vamos criar um dicionário: grafo = {}

E popular por meio da chave – valor:

```
grafo["maria"] = ["joão", "miriam", "jose"]
grafo["joão"] = ["paulo", "pedro"]
grafo["jose"] = ["miriam"]
grafo[miriam] = ["elias"]
```

# . Implementação do algoritmo

- •Para implementar o algoritmo, devemos:
  - criar uma fila de todas as pessoas que serão verificadas (comece pelo centro);
- 2. retirar uma pessoa da fila e verificar se é um pescador;
- 3. caso seja, encontramos o que precisamos, se não, devemos adicionar todos os vizinhos dessa pessoa na fila; e
- 4. repetir o passo 2.

# Implementação em Python

```
from collections import deque
grafo = {}
grafo["maria"] = ["joão", "miriam", "jose"]
grafo["joão"] = ["paulo", "pedro"]
grafo["jose"] = ["miriam"]
grafo["miriam"] = ["elias"]
grafo["paulo"] = []
grafo["pedro"] = []
grafo["elias"] = []
```

Utilizamos a biblioteca deque de collections que cria a fila.

# Implementação em Python

```
def pesquisa(nome):
    fila = deque()
    fila += grafo[nome]
    verificadas = []
    while fila:
        pessoa = fila.popleft()
        if not pessoa in verificadas:
            if pescador(pessoa):
                print(pessoa + " é pescador")
                fila += grafo[pessoa]
                verificadas.append(pessoa)
    print("Não existem pescadores")
def pescador(nome):
```

A função popleft() remove a esquerda da lista

## Exercícios

1. Modifique a função pescador para algo mais interessante e veja se representa o que você espera.

## Algoritmo de Dijkstra

- O algoritmo de Dijkstra determina o caminho mínimo até um objetivo em um grafo ponderado.
- Vimos que para percorrer um grafo de um ponto a outro utilizamos busca em largura por meio de listas ligadas.

# Algoritmo de Dijkstra

- A busca em largura não é necessariamente o caminho mais rápido, mas é o mais curto. Entretanto, suponha que seja adicionado tempo de deslocamento aos segmentos (arestas).
- Nesse caso, com o algoritmo de Dikstra podemos calcular o caminho mais rápido.
- Este algoritmo resolve o problema do caminho mínimo em uma rede com múltiplas possibilidades, dado um ponto de partida.

## Algoritmo de Dijkstra

- O algoritmo de Dijkstra explora continuamente os vértices mais próximos ao inicial; quando encontra um novo, ele armazena a distancia do inicial até esse último e atualiza caso encontre um caminho mais curto.
- Além disso, o algoritmo também armazena qual aresta levou a cada vértice.

# · Implementação do algoritmo Dijkstra

·A partir do ponto inicial, você está pensando se deve ir ao ponto A ou B, considerando o tempo para alcançar cada um, e assim atingir o objetivo (ponto final).



- 1. O caminho para a aresta B leva menos tempo e portanto, você escolhe ir por ele.
- 2. Ao chegar em B, você percebe que o caminho para A só leva 3 min, logo, você encontrou um caminho mais curto para o ponto A.
- 3. Por fim o caminho até o final leva 8 minutos.

Obs: a busca em largura teria optado pelo caminho mais curto, ou seja, de inicial para A e deste para o final (duas arestas), consumindo 10 minutos.

# · Implementação do algoritmo Dijkstra

- 1. Coloque o vértice inicial em uma fila de prioridades
- 2. Remova o vértice mais próximo da fila.
- 3. Verifique todos os vizinhos conectados ao nó atual; se não foram registrados ou se a aresta propor um novo caminho mínimo, para cada um, registre sua distância a partir do início, armazene a aresta que proporcionou essa distância e acrescente o novo vértice a fila de prioridades.
- 4. Repita os passos 2 e 3 até esvaziar a fila
- 5. Retorne a distância mínima para todos os vértices a partir do inicial, e o caminho para cada um.

# Implementação do algoritmo Dijkstra em Python

```
grafo = {}
grafo["inicial"] = {}
grafo["inicial"]["a"] = 8
grafo["inicial"]["b"] = 3
grafo["a"] = {}
grafo["a"]["final"] = 2
grafo["b"] = {}
grafo["b"]["a"] = 3
grafo["b"]["final"] = 6
grafo["final"] = {}
infinito = float("inf") #representação de infinito em python
custos["a"] = 8
custos["final"] = infinito
pais["a"] = "inicial"
processados = []
```

# Implementação do algoritmo Dijkstra em python

```
def achar_melhor_custo(custos):
    custo_baixo = float("inf")
    vertice_melhor_custo = None
    for vertice in custos:
        custo = custos[vertice]
        if custo < custo_baixo and vertice not in processados:</pre>
            custo_baixo = custo
            vertice_melhor_custo = vertice
    return vertice_melhor_custo
vertice = achar_melhor_custo(custos)
while vertice is not None:
    custo = custos[vertice]
    vizinhos = grafo[vertice]
    for n in vizinhos.keys():
        novo_custo = custo + vizinhos[n]
        if custos[n] > novo_custo:
            custos[n] = novo_custo
            pais[n] = vertice
    processados.append(vertice)
    vertice = achar_melhor_custo(custos)
print(custo)
```

# Exercícios

Encontre o melhor custo (caminho mínimo) do início ao fim



#### Revisando

- Pesquisa em largura é usada para calcular o caminho mínimo em um grafo não ponderado.
- Algoritmo de Dijkstra é usado para calcular caminho mínimo em um grafo ponderado, porém com os pesos positivos.
- Para problemas que requerem muitas variáveis (vértices), usaremos algoritmos de aproximação (genéticos).

#### BIBLIOGRAFIA BÁSICA

- BEAZLEY, David. Python Essential Reference, 2009.
- BHARGAVA, ADITYA Y. Entendendo Algoritmos. Um guia ilustrado para programadores e outros curiosos. São
   Paulo: Ed. Novatec, 2017
- CORMEN, THOMAS H. et al. Algoritmos: teoria e prática. Rio de Janeiro: Elsevier, 2002
- COSTA, Sérgio Souza. Recursividade. Professor Adjunto da Universidade Federal do Maranhão.
- DOWNEY, ALLEN B. Pense em Python. Pense como um cientista da computação. São Paulo: Ed. Novatec, 2016
- GRANATYR, Jones; PACHOLOK, Edson. IA Expert Academy. Disponível em: <a href="https://iaexpert.academy/">https://iaexpert.academy/</a>
- KOPEC, DAVID. Problemas clássicos de ciência da computação com Python. São Paulo: Ed. Novatec, 2019
- LINDEN, Ricardo. Algoritmos Genéticos. 3 edição. Rio de Janeiro: Editora Moderna, 2012
- MCKINNEY, WILLIAM WESLEY. Python para análise de dados. Tratamento de dados com Pandas, Numpy e . lpython. São Paulo: Ed. Novatec, 2018

#### BIBLIOGRAFIA BÁSICA

- TENEMBAUM, Aaron M. Estrutura de Dados Usando C. Sao Paulo: Makron Books do Brasil, 1995.
- VELLOSO, Paulo. Estruturas de Dados. Rio de Janeiro: Ed. Campus, 1991.
- VILLAS, Marcos V & Outros. Estruturas de Dados: Conceitos e Tecnicas de implementacao. RJ: Ed.
   Campus, 1993.
- PREISS, Bruno P. Estrutura de dados e algoritmos: Padrões de projetos orientados a objetos com Java.
   Rio de Janeiro: Editora Campus, 2001.
- PUGA, Sandra; RISSETTI, Gerson. Lógica de programação e estruturas de dados. 2016.
- SILVA, Osmar Quirino. Estrutura de Dados e Algoritmos Usando C. Fundamentos e Aplicações. Rio de Janeiro: Editora Ciência Moderna, 2007.
- ZIVIANI, N. Projeto de algoritmos com implementações em pascal e C. São Paulo: Editora Thomsom,
   2002.

# **OBRIGADO**





Copyright © 2023 | Professor Dr. Emerson R. Abraham

Todos os direitos reservados. A reprodução ou divulgação total ou parcial deste documento é expressamente proibida sem o consentimento formal, por escrito, do professor/autor.