UNIVERSIDAD NACIONAL DE SAN AGUSTÍN

Mineria de Datos

DNA sequence similarity analysis using image texture analysis

MSc. Vicente Machaca Arceda

June 13, 2020

Overview

Introduction

Problem

Proposal

Paper

Description

Results

Overview

Introduction

Problem

Proposal

Description Results

Introduction DNA

Figure: Molecules in DNA. Adenine, Thymine, Guanine and Cytosine [1].

Introduction DNA

The human genome is made of ~3.2 billions bp of DNA. ~6.4 billions of nucleotides [2].

The HIV-1 genome is made of ~20k bp of DNA. Meanwhile, the COVID-19 is made of ~32k bp [3].

Introduction DNA

Table: Total GigaBytes used to store a complete diploid genome.

Total Gigabytes	2.980
Total Megabytes	3052
Total Kilobytes	3125000
Total bits Diplod genome	25600000000
Bits per genome	12800000000
Base pairs per genome	3200000000
Bits per base	2
DNA bases	4

Introduction Visualization

Figure: Example of visualization in bioinformatics.

Introduction Similarity and Phylogenetics

Similarity

It is used for identifying evolutionary or affinity relations [4]. Similarity analysis is an important research area in Bioinformatics [5].

Phylogenetics

Phylogenetics is the study of the evolutionary history of living organisms using tree- like diagrams to represent pedigrees of these organisms [6].

Introduction Phylogenetics

Figure: The phylogenetic tree of SARS-CoV-2 (COVID-19) and the related Coronaviruses [7].

Introduction

Phylogenetics

Figure: The phylogeny tree of bird species [8].

Overview

Introduction

Problem

Proposal

Description Results

Problem Phylogenetics steps

Figure: Steps to visualize phylonetics trees.

Problem Phylogenetics steps

Figure: Steps to visualize phylonetics trees.

Problem Alignment-based methods

► The most used **alignment-based** method is BLAST.

Problem Alignment-based methods

- ▶ The most used alignment-based method is BLAST.
- ▶ BLAST is slow.

- ► The most used **alignment-based** method is BLAST.
- ▶ BLAST is slow.
- ▶ DNA sequences increases every day so BLAST get slower every second.

- ▶ The most used alignment-based method is BLAST.
- ► BLAST is slow.
- DNA sequences increases every day so BLAST get slower every second.
- ► For example, two days were necessary to build the Phylogenetis tree of COVID-19.

Overview

Introduction

Problem

Proposal

Paper Description Results

Proposal Objective

Represent the DNA as images and compute textures descriptors in order to get a feature vector. This will reduce time processing in distance processing [4].

Use distances computed before to build phylogenetic trees with **Evolview v3** (a webserver for visualization, annotation, and management of phylogenetic trees) [9].

Proposal Data

We will use a dataset from beta coronavirus used by Randhawa [3]. Moreover, the sequences are stored at:

- ► NCBI.
- ► Virus-host DB

Overview

Introduction

Problem

Proposa

Paper Description Results

DNA sequence similarity analysis using image texture analysis based on first-order statistics

The authors used **alignment-free** methods that convert the DNA sequences into feature vectors. They represent DNA sequences as images and then computed the histogram [4].

Paper Image texture analysis

>J01859.1 Escherichia coli 16S ribosomal RNA, complete sequence AAATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAACGGT AACAGGAAGAAGCTTGCTCTTTGCTGACGAGTGGCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATG GAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGGACCTTCG GGCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACG A TCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGG CAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTT CGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAAGTTAATACCTTTTGCCTCATTGACGTTACCCG CAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAAT TACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAAC TGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGT AGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCG TGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTGCCC TTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACT CAAATGAATTGACGGGGCCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCT TACCTGGTCTTGACATCCACGGAAGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACAGGTGC TGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCT TTGTTGCCAGCGGTCCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGA CGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGCGA CCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCCTTGTACACACCG TGTGATTCATGACTGGGGTGAAGTCGTAACAAGGTAACCGTAGGGGAACCTGCGGTTGGATCACCTCCTT

Figure: 16S ribosomal DNA of Escherichia coli with FASTA Format.

Each pair of bases have a value from 0 to 15.

$$\alpha = \left\{ \begin{array}{l} AA, AG, AC, AT, GA, GG, GC, GT, \\ CG, CC, CT, CA, TA, TG, TC, TT \end{array} \right\}$$
(1)

Figure: Textures converted from the DNA sequences. Source [4].

Figure: Histogram of 16S ribosomal DNA. Source [4].

From the histogram, the following features are compute:

- Skewness = $\sigma^{-3} \sum_{i=0}^{G-1} (i \mu)^3 p(i)$
- *Kurtosis* = $\sigma^{-4} \sum_{i=0}^{G-1} (i \mu)^4 p(i) 3$
- ► **Energy** = $\sum_{i=0}^{G-1} p(i)^2$
- **Entropy** = $-\sum_{i=0}^{G-1} p(i) lg(p(i))$

Where:

- ightharpoonup p(i) = h(i)/NM
- ► h(i) = histogram
- ► N and M are image's width and height.
- $\blacktriangleright \ \mu = \sum_{i=0}^{G-1} ip(i)$

Table: 16S ribosomal DNA of 13 bacteria

Specie	Accession code	Length(bp)
Bacillus maritimus	KP317497	1515
Bacillus wakoensis	NR_040849	1524
Bacillus australimaris	NR_148787	1513
Bacillus xiamenensis	NR_148244	1513
Escherichia coli	J01859	1541
Streptococcus himalayensis	NR_156072	1509
Streptococcus halotolerans	NR_152063	1520
Streptococcus tangierensis	NR_134818	1520
Streptococcus cameli	NR_134817	1518
Thermus amyloliquefaciens	NR_136784	1514
Thermus tengchongensis	NR_132306	1523
Thermus thermophilus	NR_037066	1515
Thermus thermophilus	NR_117152	1514

Results Phylogenetic tree

Figure: Phylogenetic tree generated by the proposed method. Source: [4]

Results Phylogenetic tree

Figure: Phylogenetic tree generated by MEGA7 based on ClustalW alignment and the UPGMA method. Source: [4]

Results Phylogenetic tree

Figure: The degree of similarity/dissimilarity of the other 12 bacteria and Escherichia coli. Source: [4]

Overview

Introduction

Problem

Proposal

Paper
Description
Results

- An image texture from DNA is proposed for DNA analysis similarity.
- The method proposed results in a phylogenetic tree very similar to the result of MEGA.
- ➤ The method proposed have a low time processing but the authors did not measure it.
- Moreover, It is necessary an evaluation with complete genomes and more samples.

References I

- [1] M. Clinics, "How genetic disorders are inherited," https://www.mayoclinic.org/tests-procedures/genetic-testing/multimedia/genetic-disorders/sls-20076216?s=2, 2020, accessed: 2020-03-20.
- [2] J. M. Archibald, *Genomics: A Very Short Introduction*. Oxford University Press, 2018, vol. 559.
- [3] G. S. Randhawa, M. P. Soltysiak, H. El Roz, C. P. de Souza, K. A. Hill, and L. Kari, "Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: Covid-19 case study," bioRxiv, 2020.
- [4] E. Delibaş and A. Arslan, "Dna sequence similarity analysis using image texture analysis based on first-order statistics," *Journal of Molecular Graphics and Modelling*, p. 107603, 2020.

References II

- [5] X. Jin, Q. Jiang, Y. Chen, S.-J. Lee, R. Nie, S. Yao, D. Zhou, and K. He, "Similarity/dissimilarity calculation methods of dna sequences: a survey," *Journal of Molecular Graphics and Modelling*, vol. 76, pp. 342–355, 2017.
- [6] J. Xiong, *Essential bioinformatics*. Cambridge University Press, 2006.
- [7] X. Tang, C. Wu, X. Li, Y. Song, X. Yao, X. Wu, Y. Duan, H. Zhang, Y. Wang, Z. Qian et al., "On the origin and continuing evolution of sars-cov-2," *National Science Review*, 2020.
- [8] P. Mannion, "First ever family tree for all living birds reveals evolution and diversification," 2020.
- [9] B. Subramanian, S. Gao, M. J. Lercher, S. Hu, and W.-H. Chen, "Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees," *Nucleic acids research*, vol. 47, no. W1, pp. W270–W275, 2019.

References III

