

Mass gauging sensors on the EDU

- DT-670 diode temperature/wet-dry rake
- RF Mass Gauge
- Reduced Gravity CryoTracker (Sierra Lobo)
- Capacitance Probe (American Magnetics)

LH2 Test Objectives met or addressed:

- Ground loading: Mass gauging checkouts & heat load measurement
- Gather data for model validation

LH2 Test Success Criteria met or addressed:

- Load the EDU to 90% full with Liquid Hydrogen
- Conduct mass gauging measurements with RFMG and compare to liquid level information provided by temperature rake
- Measure EDU Boil off for simulated on-orbit heat load
- Data collection from above objectives
- Gauging data was also critical for LAD outflow testing

EDU mass gauging probe

Not shown: RFMG antennas, diode rake

Not to Scale

Top View

Fill Level (%)	Toul Station (1-1)	Instrumentation ID				
	Tank Station (in)	Temperature Rake	Cryo Tracker	RFMG		
	85.2	D2401				
94	80.2	D2402				
91	77.3	D2428				
90	76.4	D2403	D2432			
89	75.6	D2429				
86	73.1	D2404				
82	70.0	D2405	D2433			
78	67.0	D2406				
74	64.0	D2407				
73	63.3		D2434			
70	61.0	D2408				
66	58.0	D2409				
63	55.7		D2435			
62	55.0	D2410				
58	52.0	D2411				
55	49.7		D2436			
54	49.0	D2412				
50	46.0			RF1440		
48	51.3	D2413				
46	43.0	D2414	D2437			
42	40.0	D2415				
38	37.0	D2416	D2438			
34	34.0	D2417				
30	30.9	D2418	D2439			
26	27.9	D2419				
25	27.1			RF1448		
22	24.9	D2420				
18	21.9	D2421				
14	18.8	D2422				
10	15.5	D2423				
6	11.7	D2424				
5	10.6	D2425				
	10.2	D2426				
	9.8	D2430				

Capacitance probe CP2440

90%

- Temperature rake (wet-dry sensors) and cap probe data is stored with facility CSV data files.
- RFMG and CryoTracker data were both stored on separate systems.
- RFMG and CryoTracker clocks were synchronized to the facility data computer clock to within a few seconds

NOTE: The diode tank station values are from the EDU CAD model, not the as-built configuration

4%

Photos of the mass gauging sensors, mounted to aluminum T-bar

The wet-dry rake diodes are mounted above the perf board.

Silicon diodes at 5% location

- Reduced Gravity
 CryoTracker (RGCT)
 probe; contains 8
 sensors mounted on
 backside of T-bar
- RF Mass Gauge antennas mounted on edges of T-bar, about 20 inches apart
- All mass gauging sensors are attached to the T-bar assembly

RFMG antennas

Mass Gauging – Wet/dry rake

Silicon diodes are run "hot" (30 mA) when in wet-dry mode.

• The T reading during wet-dry mode is obviously not accurate. It is based on an DT- 670 voltage vs T table (valid for 10 μ A) extrapolated to negative temperatures

- Different offsets in the transition value are due to lead resistance
- This did not affect the analysis, which was done manually

Mass Gauging – Wet/dry rake

To analyze the wet-dry sensor data, CSV data files were used to find the transition times from dry-to-wet, and wet-to-dry. Winplot was used to visually narrow the search.

The data were recorded in an Excel spreadsheet.

F	G	Н
CST date/time		wet-dry rake
6/12/14 17:17	163/17:17:2.187	70%
6/12/14 17:29	163/17:29:41.192	70%
6/12/14 17:33	163/17:33:49.194	74%
6/12/14 17:37	163/17:37:37.195	78%
6/12/14 17:41	163/17:41:8.197	82%
6/12/14 17:44	163/17:44:59.198	86%
6/12/14 17:48	163/17:48:51.200	90%
6/12/14 17:50	163/17:50:35.201	91%
6/12/14 18:45	163/18:45:33.223	86%
6/12/14 19:30	163/19:30:56.242	86%
6/13/14 1:31	164/01:31:4.884	82%
6/14/14 8:33	165/08:33:8.557	78%
6/15/14 20:02	166/20:02:40.512	74%
6/17/14 9:00	168/09:00:00	70%
6/18/14 19:46	169/19:46:00	66%
6/20/14 12:15	171/12:15:00	62%
6/20/14 14:00	171/14:00:00	91%
6/21/14 23:50	172/23:50:00	86%

- The T rake was periodically set to wet-dry mode during quiescent conditions, and sometimes left in wet-dry mode continuously during fill/drain.
- 150 transition points have been identified
- The wet-dry sensor data are used as the reference gauging data
- The data are considered accurate to within + 1% of full-scale

Mass Gauging – Wet/dry rake

Wet-dry transition points during EDU LH2 testing:

Discrete wet-dry data points are augmented by the continuous cap-probe data

Capacitance probe:

- American Magnetics, Model 185 controller
- Output was zeroed at LN2 temperature, He gas
- Output was calibrated to "100%" at two different fill levels:
 - An initial cal to "100%" was done with a partially filled tank
 - Wet-dry/RFMG data was used to find the cal-point, which was at 83% fill

Capacitance probe:

- Cap probe 100% value was re-calibrated on June 20, around 2:17 pm
 - Fill level was between 90%-91%
- For a good approximation to the actual %volume fill level, the cap probe data should be multiplied by:
 - 0.83 for times before June 20, 2:17 pm (only good up to 83% fill)
 - 0.90 for times after June 20, 2:17 pm
- Note that the cap probe is a level sensor, and there is some error when converting % -level to %-volume. For EDU this is only important at fill levels below ~40%.
- A model of the cap probe and tank was used to refine the cap probe data
 - The correction is only significant below 30%

Refined cap probe output model

COMSOL RF tank model was used to convert liquid height to %Vol

Cap probe correlation with wet-dry data

Actual value of h0 is 7 inches. Using 10 inches provides an additional offset that provides better agreement, especially below 40% fill during final drain.

Cap probe correlation with wet-dry data

Detail during LAD testing

Comparison of adjusted cap-probe data ($h_0 = 10$ ") with wet-dry rake

Mean difference: -0.3%

STDEV = 1.3%

RFMG: Principle of operation

- The tank RF spectrum changes with fill level, since the dielectric fluid slows the speed of light
- The basis of the RFMG is that these changes can be accurately predicted

- RFMG software finds the peaks, compares the frequencies to a database of simulations, and returns the best match %fill-level information
- Gauging operation takes 1 10 s, depending on number of frequency points (4k – 40k)

COMSOL – RF Module was used to calculate the tank mode frequencies

Model includes: 3 LAD arms, LAD crossover TVS tube, top diffuser, bottom diffuser, axial jet nozzle, mass gauging T-bar, horizontal ullage T rake

Computed RF modes for EDU tank

- 100 simulation files 1% resolution
- Specified dielectric constant for liquid and vapor phases in the model

Plot of RFMG raw data from June 24/03:41:51

The RFMG software finds the frequencies of these peaks, compares it to the database of 5 modes, and returns a % fill level.

RFMG data

- Typically collected RFMG data once every 15 minutes during boil-off tests
 - Once every 10-20 seconds during fill/drain
- 12,900 files were collected, zipped, and sent to GRC
- Bad connection somewhere along Antenna 2 line before start of test.
 Signal came back during fill.
- A couple re-boots of the ZVL network analyzer were required during testing
- RFMG software initially set to use 3 measured modes
 - This led to poor results around 38% fill level, and several % discrepancy with wet-dry data near 90% fill
 - June 26: Updated software to use 5 measured modes, and updated the mode calibration factors
 - The 6/12 6/26 data reported here has been re-processed using the June 26 software update

Comparison of RFMG result with wet-dry data:

time

No correction has been applied to convert wet-dry %-fill by volume to %-fill by mass (small effect)

Detail of initial fill and 6/25 top-off

— RFMG

Wet-dry rake

Excellent agreement between RFMG and wet-dry rake data

Comparison of RFMG output with wet-dry rake:

Mean difference: -0.6%

STDEV = 2.6%

Wet_Dry - RFMG output, %

Reduced Gravity CryoTracker probes:

- CryoTracker instrument was controlled via laptop in instrument area
- Control room "mass gauge" computer running Remote Desktop was used to control and monitor the instrument
- CryoTracker software was used to manually switch the probe between T mode and mass gauging mode
- Data was recorded once every 10 s
- Unresolved software bug: CryoTracker software had to be restarted many times throughout testing

Reduced Gravity CryoTracker

- Data is similar to wet-dry rake
- Wet-dry transition points were found manually
- 72 wet-dry transition points were identified

Date: 7/1/20	14									
Host Softwar	re Rev: 2.3.	0								
Embedded S	oftware Re	ev: 14								
Tau: 64										
Start Time: 7	:10:41									
Time	Sensor 1	Sensor 2	Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7	Sensor 8	Pressure (Mass (kg)
7:10:52 AM	22	25	31	34	37	39	41	40	14.7	
7:11:02 AM	1.638	1.288	1.281	1.274	1.239	1.25	1.234	1.228	14.7	87.7
7:11:12 AM	1.638	1.287	1.281	1.273	1.239	1.248	1.23	1.223	14.7	86
7:11:22 AM	1.638	1.288	1.281	1.273	1.239	1.248	1.23	1.231	14.7	86
7:11:32 AM	1.638	1.288	1.281	1.273	1.239	1.249	1.23	1.223	14.7	86
7:11:42 AM	1.638	1.289	1.281	1.273	1.239	1.25	1.232	1.229	14.7	86
7:11:52 AM	1.638	1.287	1.28	1.273	1.239	1.249	1.232	1.23	14.7	86
7:12:02 AM	1.638	1.288	1.281	1.273	1.238	1.25	1.231	1.227	14.7	86
7:12:12 AM	1.638	1.289	1.281	1.273	1.238	1.249	1.232	1.227	14.7	86
7:12:22 AM	22	29	37	39	42	44	47	50	14.7	
7:12:32 AM	21	25	31	34	37	40	40	40	14.7	
7:12:42 AM	22	24	32	34	37	39	39	45	14.7	
7:12:52 AM	22	24	32	34	37	39	40	44	14.7	
7:13:02 AM	22	24	31	33	38	39	39	48	14.7	
7:13:12 AM	23	24	31	34	37	39	39	44	14.7	
7:13:22 AM	22	24	31	32	38	38	40	47	14.7	

Comparison of CryoTracker with cap probe and T rake: June 30

Comparison of CryoTracker with cap probe and T rake: July 1

Comparison of RGCT output with cap-probe data:

Mean difference: -1.4%

STDEV = 2.2%

Mass Gauging – Comparison of all probes

Mass Gauging – Comparison of all probes

LAD outflow testing

Conclusions:

- Very good correlation among mass gauging %-fill readings once corrections are made to cap probe data
- Wet-dry diode rake provided benchmark data for other probes, with an output resolution of ~ 4%.
- Cap probe data using h0 = 10 inches produces an excellent match with wet-dry data (mean difference = -0.3%, STDEV = 1.3%), continuous output resolution.
- Wet-dry/Cap probe data is regarded as accurate to within +-1%
- RFMG data agrees well with wet-dry sensors, using 6/26 software update (mean difference = 0.6%, STDEV = 2.6%). Output was quasicontinuous, 1% resolution.
- CryoTracker data shows good agreement with wet-dry/cap probe data at the transition points (mean difference = -1.4%, STDEV = 2.2%). Eight sensors provided course gauging between 30% and 90% fill, 8% resolution.