Consideraciones sobre el tamaño de la parcela y el número de puntos por parcela

18 Agosto 2017

Autor: Randy Hamilton

Servicio Forestal EEUU

Temas

- Objetivos de la interpretación de la malla
- Pasos de mapeo
- Sistemas de clasificación
- Diseño de la parcela para satisfacer los requerimientos
- Interpretación de la parcela
- Consideraciones relacionados al uso de los datos como fuente de entrenamiento
- Control de calidad
- Collect Earth Online
- Google Earth Engine

Objetivos de la interpretación de la malla

- Fuente de post-estratificación para estudios como el IFN.
- Datos de entrenamiento para elaboración de mapas.
- Datos de validación para mapas.
- Monitorear cambios en las coberturas/usos de la tierra

Los objetivos deben impulsar la metodología

1. Fuente de post-estratificación

- Este objetivo requiere la asignación de un solo uso a la parcela —varias opciones
 - Punto central
 - La clase mayoritaria
 - Otras
- Considerar registrar otros atributos para el punto central que podrían servir mejor como fuente de post-estratificación (p.ej., etapa de desarrollo)
- Lo importante es ser consistente

1. Fuente de post-estratificación

- Las cuadrillas de campo deben, también, registrar el uso o usos.
- Dr. Chip Scott sugiere registrar uso en 6 puntos, pero hay diferentes opciones.
- Cada árbol medido debe asociarse con uno de los usos.
- La parcela de campo puede incluir varios diferentes usos (porcentajes).
- Lo importante es ser consistente.

2. Entrenamiento para Mapas

Pasos para el mapeo:

- 1. Recolectar datos geoespaciales
- Segmentación (unidades de modelado)
 - Estadísticas zonales
- 3. Recolecta de datos de referencia
- 4. El modelado
- 5. Revisión del mapa preliminar

- 6. Filtrado del mapa
- 7. Tabla de áreas

8. Productos finales

Capas Geoespaciales para el modelado

Fotos aéreas

- 4 bandas
- NDVI

Landsat 8 Primavera/Verano/Otoño

- 6 bandas (rojo,verde,azúl, infraroja cercana, infrarroja de onda corta1, infrarrojo de onda corta2)
- NDVI
- Armónicos de NDVI
- Componentes principals (3)
- Tasseled cap (3)

Sentinel 2 compuesto 2015-2017

- 9 bandas (10m: rojo,verde,azúl, infraroja cercana; 20m: re1,re2,re3, infraroja cercana 2, infrarroja de onda corta1, infrarrojo de onda corta2)
- NDVI
- Componentes principals (3)

Modelo digital de elevación

- Elevación
- Pendiente
- Pendiente-aspect transformación seno
- Pendiente-aspect transformación coseno
- Carga de calor
- Posición relativa de la pendiente

Clima 30 años medio diario

- Temperatura máxima
- Temperatura mínima
- Temperatura media
- Precipitación total
- Punto medio de rocío
- Déficit máximo de presión de vapor
- Déficit mínimo de presión de vapor

- 1. ¿Qué tipo de mapa?
 - Temático (clases de tipo de bosque/usos de la tierra)
 - Continuo (porcentaje cobertura del dosel)

2. A base de píxeles o a base de polígonos (objetos)?

A base de píxeles

A base de polígonos

- 3. Usando qué software?
- 4. Pre-procesamiento?
- 5. Qué algoritmo?
 - Recomiendo random forests
- 6. Post-procesamiento

Datos de referencia (entrenamiento)

- Fuentes
 - De la malla de puntos
 - Datos de campo (p.ej., parcelas de REDD+)
 - Seleccionados de manera intencional

Deben ser puros (evitar datos mixtos)

¿Cómo se va a identificar datos de entrenamiento puros de la malla?

Datos de validación

- Fuentes
 - De la malla de puntos (no incluyendo datos de entrenamiento)
 - Muestra independiente (interpretados de imágenes o de campo)

4. Monitorear cambios en las coberturas/usos de la tierra

- ¿Qué desean monitorear?
- ¿Mandatos legales?
- Sinergia con otras iniciativas
- ¿Frecuencia?

Sistema(s) de Clasificación

Consideraciones:

- ¿Uso y cobertura o solo uso?
- ¿Consistencia con las clases del SIMOCUTE?
- ¿Consistencia con las clases de uso registrados en campo?
- ¿Consistencia de las clases con los objetivos?
- ¿Se pueden interpretar todas las clases con confianza?
- ¿Están bien definidas las clases? (p.ej., áreas mínimas, anchura, largo)
- Minimizar el número de clases para maximizar la exactitud del mapa

Diferentes tipos de Imágenes

Imagen de alta resolución: Imagen Google Earth, 1m de resolución

Imagen Planet: 3m de resolución

Diferentes tipos de Imágenes

Imagen Google Earth

1m de resolución

Sistema(s) de Clasificación

Consideraciones

¿Están bien definidas las clases?
 (p.ej., áreas mínimas, anchura,
 largo)

Los objetivos deben impulsar el diseño.

Consideraciones

- Tamaño de la parcela
- Número de puntos dentro de la parcela
- Consistencia con el diseño del SIMOCUTE

Número de puntos dentro de la parcela

Consideraciones:

- Para estimar áreas de las clases a nivel del estudio:
 - El número de puntos afecta poco el error total (P. Patterson)
 - P. Patterson recomienda entre 5 y 25 puntos
- Para caracterizar la composición *a nivel de parcela*:
 - 5 puntos es muy poco
 - 9 o 25 sería mejor
 - Estudio de la Secretaría REDD+

Número de puntos dentro de la parcela

Consideraciones

- Para estimar áreas de las clases a nivel del estudio:
 - El número de puntos afecta poco el error total (P. Patterson)
 - P. Patterson recomienda entre 5 y 25 puntos
- Para caracterizar la composición a nivel de parcela:
 - 5 puntos es muy poco
 - 9 o 25 sería mejor
 - Estudio de la Secretaría REDD+

Número de puntos dentro de la parcela

- Dr. Paul Patterson
- Dr. Chip Scott
- Consideraciones estadísticas
 - La varianza total para las estimaciones a nivel de país incluye dos términos (la varianza determina el error de las estimaciones)
 - var(total) = var(dentro de parcelas) + var(entre parcelas)
 - La varianza dentro de parcelas es muy pequeño comparado a la varianza entre parcelas (casi insignificante)
 - Cambiar el número de puntos dentro de la parcela tiene un efecto mínimo en la varianza dentro de las parcelas
 - No tiene sentido meter muchos puntos dentro de las parcelas porque casi no afecta el error de las estimaciones

Resumen:

- Para la post-estratificación de los datos de campo
 - El tamaño de parcela y número de puntos no importan
- Para datos de entrenamiento
 - Definir cómo identificar las parcelas o puntos dentro de parcela que están puros
 - Si parcelas sirven como datos de entrenamiento, mejor usar parcelas pequeñas y 25 puntos
 - Si puntos dentro de parcela sirven como datos de entrenamiento, el tamaño y número de puntos no importan tanto

Resumen:

- Para datos de validación:
 - Si parcelas sirven como datos de validación, mejor usar parcelas pequeñas y 25 puntos para caracterizar bien la composición
 - Si puntos dentro de parcela sirven como datos de validación,
 el tamaño y número de puntos no importan tanto

Resumen:

- Para monitorear cambios en los usos:
 - Considerar consistencia con otras iniciativas que podrían usar los datos (p.ej., REDD+, inventario de GEI).
 - Con consistencia de metodología, existe la posibilidad de compartir el trabajo entre instituciones (p.ej., SINAC interpreta las parcelas forestales, FONAFIFO/IMN interpreta parcelas no forestales, etc.) para ahorrar tiempo y bajar costos?
 - El tamaño de la parcela no es tan importante
 - Estadísticamente, 9 o 25 puntos es adecuado
 - Tomar en cuenta la resolución de las imágenes interpretadas. Se pueden interpretar más puntos con parcelas pequeñas cuando la resolución es alta

Interpretar con o sin contexto:

- La interpretación sin contexto toma en cuenta solamente lo que se ve dentro de la parcela y con contexto toma en cuenta lo que se ve en los alrededores de la parcela.
- El contexto solo tiene que ver con uso de la tierra. Cobertura es lo que se ve únicamente donde cae el punto.
- Interpretación sin contexto podría resultar en la asignación de usos distintos a la misma área dependiendo de la ubicación espacial de la parcela. Es una violación de los supuestos estadísticos.
- Interpretación con contexto puede ser un poco más difícil

Sin contexto:

 Interpretar solo lo que se ve dentro de la parcela sin tomar en cuenta el paisaje afuera de la parcela

- 76% de los puntos intersecan árboles
- La parcela es de 2 Ha
- Sin contexto, se concluye que toda la parcela es bosque

Con contexto:

- Tomar en cuenta el paisaje alrededor de la parcela
- Dibujar mentalmente los límites entre usos y atribuir los puntos según estas divisiones
- El uso de todos los puntos es de pasto; el parche de árboles no alcanza los 2 Ha entonces es una inclusión en el pastizal.

Sin contexto:

 Interpretar solo lo que se ve dentro de la parcela sin tomar en cuenta el paisaje afuera de la parcela

Con contexto:

- Tomar en cuenta el paisaje alrededor de la parcela
- Dibujar mentalmente los límites entre usos y atribuir los puntos según estas divisiones

MUCHAS GRACIAS

