Types of Biochemical Reactors

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Chemical Reaction Engineering

Chemical processes can be classified as batch, continuous, or semibatch

• Batch process - no mass crosses the system boundary

• Continuous process - inputs and outputs flow continuously through the system boundary

• Semibatch process - neither batch nor continuous

Biochemical reactors can also be classified as batch, continuous, or semibatch

- **Batch reactor** feed is put into the reactor before t=0, no inlet or outlet during operation
 - Batch process

- Continuous stirred tank reactor (CSTR, chemostat) inlet and outlet flow continuously in and out
 - Continuous process

- **Semibatch reactor** feed is added to the reactor OR the reactor content is drained
 - Semibatch process

Conservation of mass is the foundation of mass balance

- Conservation of mass no mass is created nor destroyed in physical and chemical processes
- Mass balance of a chemical species

$$egin{aligned} ext{In} - ext{Out} + ext{Generation} &= ext{Accumulation} \ \dot{m}_{i,0} - \dot{m}_i + ilde{G}_i &= rac{dm_i}{dt} \ \dot{n}_{i,0} - \dot{n}_i + G_i &= rac{dn_i}{dt} \end{aligned}$$

- In $\dot{n}_{i,0}$
- Out \dot{n}_i
- Generation/Destruction G_i
- Accumulation $\frac{dn_i}{dt}$

Batch reactor mass balance gives its design equation

$$\dot{n}_{i,0} - \dot{n}_i + G_i = rac{dn_i}{dt}$$

- Assumptions
 - \circ No inlet $\dot{n}_{i,0}=0$
 - $\circ~$ No outlet $\dot{n}_i=0$

Continuous stirred tank reactor (CSTR) mass balance gives its design equation

$$\dot{n}_{i,0} - \dot{n}_i + G_i = rac{dn_i}{dt}$$

- Assumptions
 - \circ Steady state $rac{dn_i}{dt}=0$

Semibatch reactor mass balance gives its design equation

$$\dot{n}_{i,0} - \dot{n}_i + G_i = rac{dn_i}{dt}$$

- Assumptions
 - \circ Feed batch, no outlet $\dot{n}_i = 0$
 - \circ Well-mixed, spatially uniform $G_i = r_i V(t)$