

Polynomial Basis Functions

- Q: What if the raw feature is insufficient for good performance?
 - Example: non-linear dependency between label and raw feature.

- A: Engineer / Learning higher-level features, as functions of the raw feature.
- Polynomial curve fitting:
 - Add new features, as polynomials of the original feature.

Regression: Curve Fitting

Regression: Curve Fitting

• Training: Build a function h(x), based on (noisy) training examples $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$.

Regression: Curve Fitting

• Testing: for arbitrary (unseen) instance $x \in X$, compute target output h(x); want it to be close to f(x).

Regression: Polynomial Curve Fitting

$$h(x) = h(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$parameters \qquad features$$

Polynomial Curve Fitting

Parametric model:

$$h(x) = h(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Polynomial curve fitting is (Multiple) Linear Regression:

$$\mathbf{x} = [1, x, x^2, \cdots, x^M]^T$$

$$h(x) = h(\mathbf{x}, \mathbf{w}) = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

• **Learning** = minimize the Sum-of-Squares error function:

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w}) \qquad J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - y_n)^2$$

Least Square Estimate:

$$\widehat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Polynomial Curve Fitting

- Generalization = how well the parameterized $h(x, \mathbf{w})$ performs on arbitrary (unseen) test instances $x \in X$.
- Generalization performance depends on the value of M

0th Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

- Which M to pick? Why?
- Follow the wisdom of a philosopher.

Occam's Razor

William of Occam (1288 – 1348)
English Franciscan friar, theologian and philosopher.

"Entia non sunt multiplicanda praeter necessitatem"

- Entities must not be multiplied beyond necessity.
- i.e. Do not make things needlessly complicated.
- i.e. Prefer the simplest hypothesis that fits the data.

Polynomial Curve Fitting

- Model Selection: choosing the order M of the polynomial.
 - Best generalization obtained with M=3.
 - M = 9 obtains poor generalization, even though it fits training examples perfectly:
 - But M = 9 polynomials subsume M = 3 polynomials!
- Overfitting \equiv good performance on training examples, poor performance on test examples.

Over-fitting and Parameter Values

	M=0	M = 1	M=3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_{9}^{\star}				125201.43

Overfitting

• Measure fit using the Root-Mean-Square (RMS) error (RMSE):

$$E_{RMS(\mathbf{w})} = \sqrt{\frac{\sum_{n} (\mathbf{w}^{T} \mathbf{x}_{n} - \mathbf{t}_{n})^{2}}{N}}$$

• Use 100 random test examples, generated in the same way:

Overfitting vs. Data Set Size

• More training data \Rightarrow less overfitting

- What if we do not have more training data?
 - Use regularization

Regularization

• Penalize large parameter values:

$$E(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$Regularizer$$

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w})$$

Ridge Regression

• Multiple linear regression with L2 regularization:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$
$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$$

- Solution is $\mathbf{w} = (\lambda N\mathbf{I} + \mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{t}$
 - Prove it.

9th Order Polynomial with Regularization

9th Order Polynomial with Regularization

Training & Test error vs. ln λ

How do we find the optimal value of λ ?

Model Selection

- Put aside an independent validation set.
- Select parameters giving best performance on validation set.

K-fold Cross-Validation

Source: https://scikit-learn.org/stable/modules/cross_validation.html

K-fold Cross-Validation

- Split the training data into K folds and try a wide range of tunning parameter values:
 - split the data into K folds of roughly equal size
 - iterate over a set of values for λ
 - iterate over $k = 1, 2, \dots, K$
 - use all folds except k for training
 - validate (calculate test error) in the k-th fold
 - error[λ] = average error over the K folds
 - choose the value of λ that gives the smallest error.

Regularization: Ridge vs. Lasso

• Ridge regression:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} \sum_{j=1}^{M} w_j^2$$

• Lasso:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|$$

- if λ is sufficiently large, some of the coefficients w_j are driven to $0 \Longrightarrow$ sparse model

Regularization: Ridge vs. Lasso

Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer q = 2 on the left and the lasso regularizer q = 1 on the right, in which the optimum value for the parameter vector \mathbf{w} is denoted by \mathbf{w}^* . The lasso gives a sparse solution in which $\mathbf{w}^* = \mathbf{0}$.

Regularization

- Parameter norm penalties (term in the objective).
- Limit parameter norm (constraint).
- Dataset augmentation.
- Dropout.
- Ensembles.
- Semi-supervised learning.
- Early stopping
- Noise robustness.
- Sparse representations.
- Adversarial training.

Questions?

