

Introduzione al ragionamento scientifico

A.A. 2024/2025 [Lettere A-K] Lezione 16

Prof. Bernardino Sassoli de' Bianchi

Alcune regole di inferenza

- Abbiamo detto che un'inferenza da delle premesse a una conclusione è corretta se preserva la verità, cioè se è impossibile che le premesse siano vere e la conclusione sia falsa
- Ora incominciamo a introdurre delle regole d'inferenza che ci permettono appunto di "passare" da alcune premesse a una conclusione (a inferire la conclusione dalle premesse) garantendo che la verità sia preservata
- Sono regole che possiamo usare per dimostrare che la conclusione segue dalle premesse (e quindi appunto che l'inferenza è corretta)

La congiunzione: eliminazione (\ \ - elim

Studiamo sia logica che probabilità	Studiamo sia logica che probabilità
Dunque: Studiamo logica	Dunque: Studiamo probabilità
P = Studiamo logica Q = Studiamo probabilità	P = Studiamo logica Q = Studiamo probabilità
$P \wedge Q$	$P \wedge Q$
P	Q

Il condizionale: modus ponens (MP)

Se studio logica, divento un filosofo migliore

Studio logica

Dunque: divento un filosofo migliore

P = Studio logica

Q = Divento un filosofo migliore

 $P \rightarrow Q$

P

Q

Esempio // 1

- POSSO DIMOSTRARE CHE R È UNA CONSEGUENZA DELLE DUE PREMESSE $A.\ E\ B.$?
- COME POSSO APPLICARE LE DUE REGOLE D'INFERENZA CHE ABBIAMO VISTO (ELIMINAZIONE DELLA CONGIUNZIONE E MODUS PONENS)?

Esempio // 1 (segue)

4. Divento un filosofo migliore	R	MP 1, 3
3. Studio logica	P	$\wedge - elim$ 2
2. Studio sia logica che teoria della probabilità	$P \wedge Q$	Premessa
1. Se studio logica, divento un filosofo migliore	$P \rightarrow R$	Premessa

P = Studio logica

Q = Studio teoria della probabilità

R = Divento un filosofo migliore

Il condizionale: modus tollens (MT)

Se conosco la logica, so cos'è un condizionale

Non so cos'è un condizionale

Dunque: Non conosco la logica

P = Conosco la logica

Q = So cos'è un condizionale

 $P \rightarrow Q$

 $\neg Q$

¬Р

Esempio // 2

1. Se Kant ha ragione, il tempo è assoluto	$P \rightarrow R$	P = Kant ha ragione
2. Se la velocità della luce è costante allora il tempo non è assoluto	$Q \rightarrow \neg R$	Q = La velocità della luce è costante
3. La velocità della luce è costante e le leggi della fisica sono le stesse in tutti i sistemi di riferimento inerziali	$Q \wedge S$	R = II tempo è assoluto
4. Kant non ha ragione	$\neg P$	S = Le leggi della fisica sono le stesse in tutti i sistemi di riferimento inerziali

- Proviamo a usare le regole di inferenza che abbiamo introdotto sinora:
 - modus ponens
 - modus tollens
 - eliminazione della congiunzione (∧ elim)

per dimostrare 4. a partire da 1., 2., e 3.

Esempio // 2 (segue)

6. ¬ <i>P</i>	MT 1, 5	Quindi Kant non ha ragione
5. ¬ <i>R</i>	MP 2, 4	Il tempo non è assoluto
4. <i>Q</i>	\wedge – elim 3	La velocità della luce è costante
3. $Q \wedge S$	Premessa	La velocità della luce è costante e le leggi della fisica sono le stesse in tutti i sistemi di riferimento inerziali
$2. Q \rightarrow \neg R$	Premessa	Se la velocità della luce è costante allora il tempo non è assoluto
$1.P \rightarrow R$	Premessa	Se Kant ha ragione, il tempo è assoluto

La disgiunzione: sillogismo disgiuntivo (SD)

Platone fu allievo di Socrate o di Gorgia Platone non fu allievo di Socrate Platone fu allievo di Gorgia P = Platone fu allievo di Socrate Q = Platone fu allievo di Gorgia $P \vee Q$

Platone fu allievo di Socrate o di Gorgia Platone non fu allievo di Gorgia Platone fu allievo di Socrate P = Platone fu allievo di Socrate Q = Platone fu allievo di Gorgia $P \vee Q$ $\neg Q$

L'eliminazione della doppia negazione (DN-Elim)

Legge di eliminazione della doppia negazione (DN-Elim)

Non è vero che Wittgenstein non minacciò Popper con un attizzatoio

Quindi Wittgenstein minacciò Popper con un attizzatoio

P = Wittgenstein minacciò Popper con un attizzatoio

```
¬¬ Р
```

- •La negazione ¬ P è vera se P è falsa ed è falsa se P è vera
- •¬¬P equivale logicamente a P

Esempio // 3 (Hume e il principio di uniformità della natura) Hume e il principio di uniformità della natura

1. O PUN è giustificato induttivamente oppure è analitico	$P \vee Q$	Premessa
2. PUN è analitico solo se non si può negarlo senza contraddizione	$Q \rightarrow \neg R$	Premessa
3. Non è vero che non si può negare PUN senza contraddizione	$\neg \neg R$	Premessa
4. PUN non è analitico	$\neg Q$	3, 2 <i>MT</i>
5. Quindi PUN è giustificato induttivamente	\overline{P}	4, 1 <i>SD</i>

PUN = Principio di uniformità della natura

P = II PUN è giustificato induttivamente

Q = II PUN è analitico

R = Si può negare PUN senza contraddizione

"Se" vs. "so o se"

- Una confusione comune riguarda il modo di formalizzare asserzioni quali:
 - 1. "Ada balla solo se mettono i Joy Division"
 - 2. "Ada balla se mettono i Joy Division"
- Per vedere la differenza considerate:
 - 3. "Jane è una nonna solo se è una madre"
 - 4. "Jane è una nonna se è una madre"

La 3. è chiaramente vera, ma la 4. non ha senso. Nonostante l'apparente somiglianza infatti, la 3. e la 4. dicono cose affatto differenti. La 3. asserisce che essere madre è una condizione necessaria per essere nonna, la 4. (falsamente!) asserisce che è una condizione sufficiente.

Condizioni necessarie vs sufficienti // 1

"Se", "solo se", "se e solo se"

"Mi bagnerò solo se piove"	$B \rightarrow P$	Condizione necessaria	Stiamo dicendo che B non può darsi senza che si dia anche P
"Mi bagnerò se piove" = "Se piove allora mi bagnerò"	P o B	Condizione sufficiente	Stiamo dicendo che basta che si dia P perché si dia anche B
"Giorgio è maggiorenne se e solo se ha compiuto 18 anni"	$M \leftrightarrow N$	Condizione necessaria e sufficiente	Ricordiamo che un bicondizionale è la congiunzione di due condizionali simmetrici

"Se" vs. "solo se", condizioni necessarie, condizioni sufficienti

- Generalmente vale la seguente regola di traduzione:
 - "Se" (A → B): indica che A
 è una condizione sufficiente
 per B. Se A è vero, allora B
 deve essere vero.
 - "Solo se" (B → A): indica che A è una condizione necessaria per B. Se B è vero, allora A deve essere vero.

- Consideriamo per esempio di nuovo gli esempi precedenti:
 - "Mi bagno se piove" Condizione sufficiente: La pioggia garantisce che mi bagnerò, ma potrei bagnarmi anche per altri motivi.
 - "Mi bagno solo se piove" Condizione necessaria: Mi bagnerò solamente in caso di pioggia; se mi bagno, deve piovere.
- Questa regola non può essere però applicata meccanicamente, in modo pedissequo.
 Spesso i linguaggi naturali come l'italiano sono ingannevoli.

Condizioni necessarie vs sufficienti // 2

"Se", "solo se", "se e solo se"

"Jane è una nonna solo se è una madre"	$N \to M$	Condizione necessaria	Stiamo dicendo che N non può darsi senza che si dia anche M
"Jane è una madre se è una nonna" = "Se Jane è una nonna allora Jane è una madre"	N o M	Condizione necessaria	Stiamo ancora dicendo che non si da N senza anche M
"Jane è una madre se e solo + una nonna"	$M \leftrightarrow N$	Condizione necessaria e sufficiente	Infatti il bicondizionale è falso, ma non lo sarebbe se

A volte il linguaggio naturale è ingannevole. La seconda frase è un "solo se" camuffato.

La congiunzione: introduzione (\ \ - int


```
Studiamo logica
Studiamo filosofia
Studiamo sia logica che filosofia
P = Studiamo logica
Q = Studiamo filosofia
P \wedge Q
```

La congiunzione: sillogismo congiuntivo (SC)

Non è vero che studiamo sia logica che filosofia Studiamo logica Non studiamo filosofia P = Studiamo logica Q = Studiamo filosofia $\neg (P \land Q)$

```
Non è vero che studiamo sia logica che
filosofia
Studiamo filosofia
Non studiamo logica
P = Studiamo logica
Q = Studiamo filosofia
\neg (P \land Q)
```

Il ragionamento per assurdo

- Per dimostrare che la conclusione B segue dalle premesse A_1,A_2,\ldots,A_n posso usare il ragionamento per assurdo
 - 1. Assumo per ipotesi $\neg B$ (la negazione della conclusione)
 - 2. Cerco di dimostrare che questo nuovo insieme di premesse $A_1, A_2, ..., A_n, \neg B$ porta a una contraddizione, cioè cerco di trovare una proposizione P tale che riesco a dimostrare sia P che $\neg P$ a partire da $A_1, A_2, ..., A_n, \neg B$
 - 3. A questo punto ho dimostrato per assurdo che le premesse implicano la conclusione

Esempio // 4

- 1. $\neg (P \land Q)$
- Un enunciato E non può sia esser analitico che avere conseguenze osservative

 $2. \quad R \rightarrow P$

Se E è una definizione allora E è analitico

3. $Q \vee \neg S$

O E ha conseguenze osservative oppure non è dotato di significato

Voglio dimostrare che non è possibile che E è sia una definizione e anche dotato di significato, cioè voglio dimostrare che $\neg (R \land \neg \neg S)$

Esempio // 4 - segue

1. $\neg (P \land Q)$

2. $R \rightarrow P$

3. $Q \vee \neg S$

4. $\neg \neg (R \land \neg \neg S)$

5. $R \wedge \neg \neg S$

6. $\neg \neg S$

7. *R*

8. *S*

9. *P*

10. *Q*

12. $\neg (R \land \neg \neg S)$

Premessa

Premessa

Premessa

Ipotesi (assumo la negazione di quanto voglio dimostrare)

obiettivo: $\neg (R \land \neg \neg S)$

4., DN-elim

5., \wedge – elim

5., \wedge – elim

6., DN-elim

2,7 *MP*

8,3, *SD*

 $9.,10., \land -int$

Per assurdo da 11. e 1., "scaricando" l'ipotesi 4.

La contrapposizione del condizionale (CC)

Se amo la filosofia allora studio la logica

Se non studio la logica allora non amo la filosofia

P = Amo la filosofia

Q = Studio la logica

$$P \rightarrow Q$$

$$\neg Q \rightarrow \neg P$$

L'espressività di un linguaggio formale

- Considerate: «Oggi nevica, ma non è inverno». Si tratta di una congiunzione, quindi sarebbe naturale tradurlo come P ^¬ Q
- Ora considerate: «Giorgio ama Anna, ma Anna non ama Giorgio»
- Ha la stessa forma del precedente, quindi dovremmo tradurlo come P A¬ Q ???
- Sembra abbiamo trascurato un contenuto informativo importante, la relazione tra Giorgio e Anna
- Dobbiamo aggiungere risorse espressive al nostro linguaggio L

Predicati e relazioni

- Traduciamo enunciati che asseriscono che un oggetto x ha una proprietà P con P(x)
- Possiamo usare questa nuova risorsa espressiva, i predicati, per tradurre per esempio:

n è un numero pari	P(n)	oppure Pari(n)
Socrate è un uomo	U(Socrate)	oppure P(Socrate),
Pluto non è un papero	¬P(Pluto)	oppure ¬R(Pluto), ¬Papero(Pluto)
Se Pluto abbaia allora Pluto è un cane	$P(Pluto) \supset Q(Pluto)$	oppure $P(A) \supset Q(A)$

- Possiamo ora anche esprimere relazioni, se pensiamo a una relazione come a un predicato «a più posti»
- Per esempio, possiamo esprimere «Giorgio ama Anna» come P(Giorgio, Anna) e «Anna non ama Giorgio» come ¬P(Anna, Giorgio)

Il linguaggio logico \mathcal{L}'

- Alfabeto:
 - Costanti: a, b, c, \dots
 - Variabili: x, y, z, ...
 - Relazioni: R, Q, S, \dots (possono avere 1 o più posti)
- P è una proposizione atomica di \mathscr{L}' se ha la forma RELAZIONE(variabile) o RELAZIONE(costante)
- Proposizioni:
 - ullet se P è una proposizione atomica di \mathscr{Z}' allora P è una proposizione di \mathscr{Z}'
 - se P è una proposizione di \mathscr{L}' allora $\neg P$ è una proposizione di \mathscr{L}'
 - se P e Q sono proposizioni di \mathscr{L}' allora $P \lor Q, P \land Q, P \to Q, P \leftrightarrow Q$ sono proposizioni di \mathscr{L}'

Relazioni di parentela

Definiamo il Linguaggio delle Relazioni di Parentela (LRP)

- Le costanti (nomi) del linguaggio sono: a, b, c, d, \dots
- Le variabili sono x, y, z, ...
- Le relazioni di base sono:
 - father(x, y)
 - mother(x, y)
- Le proposizioni elementari (o «atomiche») sono tutte le proposizioni della forma:
 - $mother(t_1, t_2)$
 - $father(t_1, t_2)$
 - dove t1 e t2 sono costanti oppure variabili
- Per esempio: mother(a, b), father(c, y), mother(x, y) sono proposizioni atomiche

II linguaggio *LRP* - Sintassi

- Le proposizioni del linguaggio LRP sono definite come segue:
 - 1. Tutte le proposizioni atomiche di LRP sono proposizioni di LRP
 - 2. Se P è una proposizione di LRP, allora anche $\neg P$ è una proposizione di LRP
 - 3. Se P e Q sono proposizioni di LRP allora anche $P \to Q$, $P \land Q$, $P \lor Q$, $P \leftrightarrow Q$ sono proposizioni di LRP
 - 4. Nient'altro è una proposizione di LRP
- Una definizione di questo tipo si chiama definizione induttiva o ricorsiva
- Possiamo sempre decidere se una certa espressione è una proposizione di LRP usando «a ritroso» questa definizione

II linguaggio LRP - Sintassi (esempio)

Per esempio:

```
(father(a,b) \vee father(a,c)) \rightarrow (\negmother(d,b) \wedge \negmother(d,c))
```

è una proposizione di LRP in base alla definizione precedente. Perché?

- (father(a,b) ∨ father(a,c)) → (¬mother(d,b) ∧ ¬mother(d,c)) è una proposizione di LRP se lo sono sia (father(a,b) ∨ father(a,c)) sia ¬mother(d,b) ∧ ¬mother(d,c) [Clausola 3 della definizione]
- father(a,b) \times father(a,c) \(\hat{e}\) una proposizione di LPR se lo sono sia father(a,b) sia father(a,c) [Clausola 3]
- father(a,b) e father(a,c) sono entrambe proposizioni di LPR [Clausola 1]
- ¬mother(d,b) ∧ ¬mother(d,c) è una proposizione di LPR se lo sono sia ¬mother(d,b) sia ¬mother(d,c) [Clausola 3]
- ¬mother(d,b) una proposizione di LPR se lo è mother(d,b) [Clausola 2]
- mother(d,b) è una proposizione di LPR [Clausola 1]
- ¬mother(d,c) una proposizione di LPR se lo è mother(d,c) [Clausola 2]
- mother(d,c) è una proposizione di LPR [Clausola 1]

Il linguaggio LRP

Un linguaggio logico delle relazioni temporali

- Costanti e variabili:
 - Costanti (rappresentano eventi specifici): e_1, e_2, e_3, \dots
 - Variabili: x, y, z, \dots
- Relazioni di base:
 - before(x, y): x avviene prima di y
 - after(x, y): x avviene dopo di y
 - during(x, y): x durante y
 - Proposizioni atomiche: hanno la forma:
 - $before(t_1, t_2)$ e $after(t_1, t_2)$ during(x, y) dove t_1, t_2 possono essere costanti o variabili.

Un linguaggio logico delle relazioni temporali

Definire "contemporaneo" (simultaneo)

- Esercizio: definire "contemporaneo/simultaneo"
- Due eventi sono contemporanei se non c'è né un "prima" né un "dopo" e se occupano esattamente lo stesso intervallo temporale

 $contemporary(x, y) =_{df} \neg begin(x, y) \land \neg after(x, y) \land during(x, y) \land during(y, x)$

Quantificatori

- Considerate il seguente condizionale: «Se n non è un numero primo allora c'è un numero p tale che n è divisibile per p e p è maggiore di 1 e minore di n»
- Oppure: «Se Giorgio ama Anna e Anna non ama Giorgio, allora Giorgio non è amato dalla persona che ama»
- Come possiamo formalizzarle in modo adeguato?
- Ancora una volta dobbiamo ampliare le risorse espressive del nostro linguaggio formale

Quantificatori // 2

- Aggiungiamo al linguaggio LRP le espressioni
 - $\forall x$ ("per ogni x")
 - $\exists x$ ("esiste almeno un x")

Quantificatori // 3

 Aggiungiamo al linguaggio le nuove espressioni ∀x («per ogni x») ed ∃x («esiste almeno un x tale che»)

• $\forall x \neg father(x,x)$

nessuno è padre di se stesso

■ ∃x father(a,x)

a ha un figlio

■ ∀x ∃y father(y,x)

tutti hanno un padre

∃y ∀x father(y,x)

c'è qualcuno che è padre di tutti

• Esercizio: estendete la definizione di LRP in modo da comprendere anche le proposizioni quantificate.

Dal linguaggio ordinario al linguaggio logico

- Abbandoniamo momentaneamente LRP e consideriamo le seguenti proposizioni
- Tutti i corvi sono neri
 - Per ogni x, se x è un corvo, allora x è nero
 - $\forall x(C(x) \rightarrow N(x))$
- Qualche corvo è bianco
 - Per qualche x, x è un corvo e x è bianco
 - $\exists x (C(x) \land B(x))$

- Non tutti i corvi sono neri
 - $\neg \forall x(C(x) \rightarrow N(x))$ oppure
 - $\exists x(C(x) \land \neg N(x))$
- Nessun corvo è nero
 - $\forall x(C(x) \rightarrow \neg N(x))$ oppure
 - $\neg \exists x(C(x) \land N(x))$

- ullet Definite, usando connettivi e quantificatori, le seguenti relazioni in LRP
 - parent(x, y)
 - sibling(x, y)
 - grandfather(x, z)
 - cousin(x, y)
 - child(x, y)

```
• parent(x, y) = def mother(x, y) \vee father(x, y)
```

- sibling (x, y)
- grandfather(x, z)
- cousin(x,y)
- child(x, y)

```
• parent(x,y) = def mother(x,y) V father(x,y)
```

- sibling (x,y) = def $\exists z(parent(z,x) \land parent(z,y))$
- grandfather(x,z)
- cousin(x,y)
- child(x,y)

```
    parent(x,y) = def mother(x,y) V father(x,y)
    sibling (x,y) = def ∃z(parent(z,x) ∧ parent(z,y))
```

- grandfather(x,z) = def $\exists y$ (father(x,y) \land parent(y,z))
- cousin(x,y)
- child(x,y)

 Definite, usando connettivi e quantificatori, le seguenti relazioni nel linguaggio LRP

```
    parent(x,y) = def mother(x,y) V father(x,y)
    sibling (x,y) = def ∃z(parent(z,x) ∧ parent(z,y))
    grandfather(x,z) = def ∃y (father(x,y) ∧ parent(y,z))
    cousin(x,y) = def ∃z∃w(sibling(z,w) & parent(z,x) ∧ parent(w,y))
```

child(x,y)

```
    parent(x,y) = def mother(x,y) V father(x,y)
    sibling (x,y) = def ∃z(parent(z,x) ∧ parent(z,y))
    grandfather(x,z) = def ∃y (father(x,y) ∧ parent(y,z))
    cousin(x,y) = def ∃z∃w(sibling(z,w) & parent(z,x) ∧ parent(w,y))
    child(x,y) = def ∃yparent(y,x)
```

Usando anche female(x) e male(x) come predicati primitivi definite le seguenti relazioni

daughter(x,y)

parent(y,x) \cap female(x)

oppure $child(x,y) \land female(x)$

brother(x,y)

 $\exists z(parent(z,x) \land parent(z,y)) \land male(x)$

- sister(x,y)
- son(x,y)
- nephew(x,y)
- uncle(x,y)
- aunt(x,y)

 Definite termini neutri (tipo «sibling», «parent» e «child» nell'esercizio precedente) per nephew-niece e uncle-aunt.

Ragionare con i quantificatori // 1

Due leggi importanti:

$$\neg \forall x P(x)$$
 equivale a $\exists x \neg P(x)$

$$\forall x \neg P(x)$$
 equivale a $\neg \exists x P(x)$

Ragionare con i quantificatori // 2

 $\forall (x)P(x)$

P(a)

Da $\forall (x)P(x)$, cioè se so che tutti gli elementi del dominio sono P, allora posso inferire P(a), qualunque sia a

P(a)

 $\exists x P(x)$

Da P(a) posso inferire $\exists x P(x)$, cioè se so che almeno un elemento del dominio è P posso dedurre il corrispondente esistenziale

Ragionare con i quantificatori - Esempio

Dimostriamo che: se a è divisibile per b e b è divisibile per c, allora a è divisibile per c

- 1 Se a è divisibile per b allora esiste un (unico) x tale che a = xb.
- 2 Chiamiamo m questo x. Dunque a = mb.
- 3 Se b è divisibile per c allora esiste un (unico) x tale che b = xc.
- 4 Chiamiamo n questo x. Dunque b = nc.
- 5 Sostituendo *b* con *nc* nella 2, otteniamo *a* =*mnc*
- 6 mn è un intero
- 7 a è divisibile per c

Nella 4 abbiamo dovuto usare un termine diverso da quello usato nella 2.

Esercizio: Spiegate perché