Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. M. Maurer

Prof. Dr.-Ing. W. Schumacher Prof. em. Dr.-Ing. W. Leonhard

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3836

Klausuraufgaben			Grundlagen der Elektrotechnik				21.08.2009		
			Vorname: Studiengang:						
1:	2:	3:	4:	5:	6:	7:	8:	9:	
	S	umme:				Note:			

Alle Lösungen müssen nachvollziehbar bzw. begründet sein.

Für jede Aufgabe ein neues Blatt verwenden.

Keine Rückseiten beschreiben.

Keine Bleistift oder roten Stifte verwenden.

Zugelassene Hilfsmittel:

- Handschriftliche Formelsammlung, zwei Seiten DIN-A4, doppelseitig beschrieben.
- Nichtprogrammierbarer Taschenrechner.

Einverständiserklärung

Ich erkläre mich einverstanden, dass meine Note mit Matrikelnummer im Institut für Regelungstechnik ausgehängt wird.

Datum, Unterschift

1 Kondensatornetzwerk

In dem gegebenen Netzwerk nach Bild(1) sind alle Kondensatoren vollständig geladen. Die Kondensatoren C_1 , C_2 , C_3 und C_4 sind über den Schalter S_1 an die Gleichspannungsquelle U_0 angeschlossen. Der Schalter S_2 ist geöffnet.

Gegeben:
$$C_1 = 4 \text{pF}, \ C_2 = 3 \text{pF}, \ C_3 = C_4 = 2 \text{pF}, \ \epsilon_0 = \frac{10^{-9}}{36 \cdot \pi} \frac{AS}{Vm} \text{ und } U_0 = 100 \text{V}$$

- a) Die Gesamtkapazität C_{ges} des Netzwerks nach Bild(1) ist zu bestimmen. (3 Punkte)
- b) Berechnen Sie zahlenmäßig die Spannungen U_1 , U_2 , U_3 und U_4 , die an den Kondensatoren C_1 , C_2 , C_3 und C_4 anliegen. (6 Punkte)
- c) Berechnen Sie die Ladung Q_1 , die der Kondensator C_1 trägt. (2 Punkte)

Nun wird Schalter S_1 geöffnet und Schalter S_2 geschlossen. Das Abklingen des Einschwingvorgangs wird abgewartet.

d) Berechnen Sie zahlenmäßig die Spannungen U_1^* , U_2^* , U_3^* und U_4^* , die an den Kondensatoren C_1 , C_2 , C_3 und C_4 anliegen. (7 Punkte)

Die Kapazität C_1 ist durch einen Kugelkondensator mit dem in Bild (2) dargestellten Querschnitt realisiert. Zwischen den Wänden zweier konzentrisch angeordneter Kugeln

mit den Radien r_1 und r_2 befinden sich zwei verschiedene Dielektrika mit den relativen elektrischen Permittivitäten ϵ_{r1} und ϵ_{r2} . Dabei füllt das Dielektrikum mit der Permittivität ϵ_{r2} ein Viertel des Volumens aus.

- e) Für die gegebene Anordnung in Bild(2) ist das elektrische Ersatzschaltbild zu zeichnen. (2 Punkte)
- f) Leiten Sie eine Gleichung für die Ladung Q_1^* in der Form $f(U_1^*, \epsilon_0, \epsilon_{r1}, \epsilon_{r2}, r_1, r_2)$ her. $(\epsilon_0 = \text{Permittivität des Vakuums})$ (5 Punkte).
- g) Radius r_1 ist zahlenmäßig zu berechnen. Es gilt dabei, dass $r_2=5\cdot r_1,\,\epsilon_{r1}=4$ und $\epsilon_{r2}=3.$ (2 Punkte)

Bild(2)

2 Kondensatornetzwerk

In dem gegebenen Netzwerk (Bild 1) sind zu Beginn $(t = t_0)$ alle Kondensatoren entladen. Die Kondensatoren C_1 und C_2 sind über den Schalter S_1 an die Spannungsquelle U_0 angeschlossen. Die Plattenkondensatoren C_1 und C_3 mit den relativen elektrischen Permittivitäten ϵ_{r1} bzw. ϵ_{r3} werden wie in Bild(2) dargestellt mit dem Plattenabstand d und der Plattenfläche A realisiert.

Bei der Kapazität C_2 handelt es sich um einen Zylinderkondensator, der zur Hälfte mit einem Dielektrikum mit der relativen elektrischen Permittivität ϵ_{r2} ausgefüllt ist (Bild(3)). Der Schalter S_1 ist geschlossen. Die Schalter S_2 und S_3 sind geöffnet.

Zum Zeitpunkt t_1 wird der Schalter S_1 geöffnet. Zu diesem Zeitpunkt werden an den Kondensatoren C_1 und C_2 die Spannungen $U_1(t_1)$ bzw. $U_2(t_1)$ gemessen.

Gegeben:

 $d = 0,5mm, A = 200mm^2.$

 $U_1(t_1)=50V, U_2(t_1)=50V.$

 $\epsilon_0 = 8,854.10^{-12} As/Vm, \ \epsilon_{r1} = 4, \ \epsilon_{r2} = 3.$

- a) Geben Sie (ohne Herleitung) eine allgemeine Gleichung für den zeitlichen Verlauf des Stromes $I_1(t) = f(U_0, R_0, C_1, C_2)$ nach Schließen des Schalters S_1 an. (3 Punkte)
- b) Die Länge des Zylinderkondensators l ist zahlenmäßig zu berechnen. Es gilt dabei: $r_2 = 2 \cdot r_1$. (6 Punkte)

Nun wird der Schalter S_2 geschlossen. Die Schalter S_1 und S_3 bleiben weiterhin geöffnet. Nach dem Abklingen des Einschwingvorgangs zum Zeitpunkt t_2 wird am Kondensator C_3 die Spannungen $U_3(t_2) = 50V$ gemessen.

c) Berechnen Sie zahlenmäßig die relative elektrische Permittivität ϵ_{r3} des Kondensators C_3 . Dabei kann der Widerstand R_1 vernachlässigt werden. (5 Punkte)

(*Hinweis:* Berechnen Sie die Gesamtkapazität C_{ges} des Netzwerks bezüglich der Klemmen X und Y.)

Zum Zeitpunkt t_3 wird der Schalter S_2 geöffnet und der Schalter S_3 geschlossen.

d) Skizzieren Sie qualitativ den zeitlichen Verlauf der Spannung $U_R(t)$ und des Stroms $I_R(t)$ am Widerstand R ab Zeitpunkt t_3 . Kennzeichnen Sie dabei relevante berechnete Werte im Diagramm. (4 Punkte)

3 Gleichstromnetzwerk

Im gegebenen Netzwerk sind alle Quellen als ideal anzunehmen. Der Schalter S ist geöffnet.

Gegegeben:

$$I_0 = 5A$$
 $U_0 = 10V$ $R_1 = 1\Omega$ $R_2 = 1\Omega$ $R_3 = 3\Omega$ $R_4 = 2\Omega$ $R_5 = 2\Omega$ $R_6 = 4\Omega$ $R_7 = 4\Omega$ $R_8 = 4\Omega$ $R_9 = 4\Omega$ $R_{10} = 1\Omega$

- a) Berechnen Sie zahlenmäßig mit Hilfe des Maschenstromverfahrens den Strom i. (6 Punkte)
- b) Verifizieren Sie mit Hilfe des Superpositionsprinzips Ihr Ergebnis aus Aufgabenteil a). (10 Punkte)
- c) Berechnen Sie den Wert des Stroms i, wenn: (3 Punkte)
 - i) der Widerstand R_2 durch den 2Ω Widerstand R_2^* ersetzt wird.
 - ii) die Spannungsquelle U_0 durch die Spannungsquelle U_0^* mit 20V ersetzt wird.

(*Hinweis*: Begründen Sie Ihre Antwort.)

d) Der Gesamtinnenwiderstand R_{ges} des Netzwerks bezüglich der Klemmen A und B ist zahlenmäßig zu berechnen. (3 Punkte)

(Hinweis: Betrachten Sie dabei nur die rechte Hälfte des Netzwerks.)

Nun wird der Schalter S geschlossen. Es sind dabei, wie zu Beginn, die Spannungsquelle $U_0=10\mathrm{V}$ und der Widerstand $R_2=1\Omega$ im Netzwerk verbaut.

- e) Berechnen Sie zahlenmäßig den Strom I_{10} . (2 Punkte)
- f) Berechnen Sie zahlenmäßig den Strom I_5 . Es gilt dabei, dass die im Widerstand R_4 umgesetzte Leistung (P_{R4}) 12,5 Watt beträgt. (3 Punkte)

4 Gleichstromnetzwerk

Im gegebenen Netzwerk sind alle Quellen als ideal anzunehmen. Der Schalter S ist geschlossen. Gegegeben:

$$U_1 = 12V$$
 $U_2 = 12V$ $U_3 = 12V$ $R_1 = 2\Omega$ $R_2 = 6\Omega$ $R_3 = 2\Omega$ $R_4 = 6\Omega$ $R_5 = 6\Omega$ $R_6 = 2\Omega$ $R_7 = 10\Omega$

- a) Berechnen Sie zahlenmäßig den Strom I_3 . (6 Punkte)
- b) Berechnen Sie zahlenmäßig bezüglich der Klemmen A und B die Ersatzspannungsquelle mit U_0 und R_i . Es gilt dabei: (10 Punkte)
 - i) U_0 ist die Leerlaufspannung zwischen den Klemmen A und B.
 - ii) R_i ist der Gesamtinnenwiderstand bezüglich der Klemmen A und B.
- c) Berechnen Sie den Wert der Spannung U_0 , wenn der Widerstand R_3 durch den 4Ω Widerstand R_3^* ersetzt wird. Begründen Sie Ihre Antwort. (3 Punkte)

Nun wird der Schalter S geöffnet. Dabei ist im Netzwerk, wie zu Beginn, der Widerstand R_3 verbaut.

- d) Berechnen Sie zahlenmäßig bezüglich der Klemmen A und B die Ersatzstromquelle mit I_0 und \hat{R}_i . Es gilt dabei: (4 Punkte)
 - i) ${\cal I}_0$ ist der Kurzschlussstrom bezüglich der Klemmen A und B.
 - ii) \hat{R}_i ist der Gesamtinnenwiderstand zwischen den Klemmen A und B.

Nun wird das Netzwerk an den Klemmen A-B durch einen Lastwiderstand R_L belastet.

- e) Berechnen Sie die im Lastwiderstand R_L umgesetzte Leistung $P_{RL} = f(R_L)$. (2 Punkte)
- f) Leiten Sie die erforderliche Bedingung her, sodass die umgesetzte Leistung P_{RL} maximal wird. (3 Punkte)
- g) Berechnen Sie zahlenmäßig die maximal umgesetzte Leistung $P_{RL,max}$. (2 Punkte)

5 Gleichstromnetzwerk

Im gegebenen Netzwerk sind alle Quellen als ideal anzunehmen. Die Schalter S_1 und S_2 sind geschlossen. Der Schalter S_3 ist geöffnet. Gegegeben:

$$U_1 = 8V$$
 $I_1 = 2A$ $I_2 = 3A$ $R_1 = 16\Omega$ $R_2 = 20\Omega$ $R_3 = 12\Omega$ $R_4 = 3\Omega$ $R_5 = 6\Omega$ $R_6 = 10\Omega$ $R_7 = 10\Omega$ $R_8 = 7\Omega$ $R_9 = 10\Omega$ $R_{10} = 150\Omega$ $R_{11} = 200\Omega$ $R_{12} = 100\Omega$ $R_{13} = 200\Omega$ $R_{14} = 100\Omega$

- a) Berechnen Sie zahlenmäßig den erforderlichen Wert der Spannung U_0 , sodass der Strom I_8 einem Wert von 2,5A entspricht. (6 Punkte)
- b) Berechnen Sie den Wert der Spannung U_0 , wenn: (2 Punkte)
 - i) zusätzlich zu S_3 auch der Schalter S_1 geöffnet ist.
 - ii) alle Schalter geöffnet sind.

Nun wird der Schalter S_3 geschlossen. Die Schalter S_1 und S_2 bleiben weiterhin geöffnet.

- c) Berechnen Sie zahlenmäßig den Strom I_{10} . (2 Punkte)
- d) Berechnen Sie zahlenmäßig die Spannung U_{ab} . (2 Punkte)
- e) Berechnen Sie zahlenmäßig den Strom I_{14} . (2 Punkte)
- f) Der Gesamtinnenwiderstand R_{ges} des Netzwerks bezüglich der Klemmen A und C ist zahlenmäßig zu berechnen. (4 Punkte)

6 Magnetischer Kreis

Der gegebene Elektromagnet hat einen Kern aus Dynamoblech und Stahl mit konstanter relativer Permeabilität μ_{r1} bzw. μ_{r2} . Jeder Schenkel weisst einen Luftspalt δ auf. Auf dem mittleren Schenkel (AC) ist eine Spule mit N Windungen und der Durchflutung Θ angebracht. Die Querschnittsfläche ist überall quadratisch. Durch die Spule fließt ein sinusförmiger Strom mit dem Effektivwert I_{eff} . Die Streuung ist zu vernachlässigen. Gegegeben:

$$a = 20mm$$
 $b = 80mm$ $\delta = 0.1mm$ $N = 500$ $I_{eff} = \frac{2}{\sqrt{2}}A$ $\mu_0 = 4\pi.10^{-7}H/m$ $\mu_{r1} = 2000$ $\mu_{r2} = 10^4$

- a) Skizzieren Sie das vollständige Ersatzschaltbild des magnetischen Kreises und tragen Sie alle magnetischen Größen mit ihren Bezugsrichtungen ein. (3 Punkte)
- b) Berechnen Sie die magnetischen Widerstände R_1 , R_2 und R_3 bezüglich der mittleren Linien in allen drei Teilen (ABC, AC und ADC) des magnetischen Kreises. (5 Punkte)
- c) Berechnen Sie zahlenmäßig die Amplituden der magnetischen Flüsse $\hat{\phi}_1$, $\hat{\phi}_2$, und $\hat{\phi}_3$ in den Schenkeln ABC, AC, und ADC. (5 Punkte)

- d) Berechnen Sie den magnetischen Gesamtersatzwiderstand R_{ges} . (2 Punkte)
- e) Berechnen Sie jeweils zahlenmäßig die Amplituden der magnetischen Flussdichten \hat{B}_1 , \hat{B}_2 und \hat{B}_3 in den Luftspalten. (3 Punkte)
- f) Die magnetische Spannung $V_{m,AD}$ auf dem Weg A-C-D ist zahlenmäßig zu ermitteln. (3 Punkte)

7 Magnetischer Kreis

Der Ringkern des gegebenen Elektromagneten besteht aus einem magnetischen Material mit konstanter relativer Permeabilität μ_r und der Querschnittsfläche A. Der Kern mit der Dicke d weist außerdem den Luftspalt δ auf.

Der Kern trägt eine Spule mit N Windungen. Diese weist die magnetische Durchflutung Θ auf. Durch die Spule fließt ein sinusförmiger Strom i(t) mit der Amplitude \hat{I}_1 . Die Streuung ist zu vernachlässigen.

- a) Skizzieren Sie das vollständige Ersatzschaltbild des magnetischen Kreises und tragen Sie alle magnetischen Größen mit ihren Bezugsrichtungen ein. (2 Punkte)
- b) Weisen Sie durch eine mathematische Herleitung nach, dass sich die Amplitude des magnetischen Flusses im Kern für den geschlossenen Ring (d.h. $\alpha=0$) mit der Beziehung $\hat{\phi}=\frac{\mu_0\,\mu_r\,d}{2\cdot\pi}\cdot N\,\hat{I}_1\cdot ln\frac{r_2}{r_1}$ beschreiben lässt. (4 Punkte)
- c) Nun wird der Ringkern mit Luftspalt betrachtet (d.h. $\alpha \neq 0$). Im Kern soll weiterhin der magnetische Fluß mit der Amplitude $\hat{\phi}$ herrschen. Leiten Sie eine Gleichung der Form $f(\hat{I}_1, \alpha, \mu_r)$ für den dazu erforderlichen Strom \hat{I}_2 durch die Spule her. (5 Punkte)
- d) Wie groß ist das Verhältnis der Ströme $\frac{\hat{I}_2}{\hat{I}_1}$ für die beiden Kombinationen $\alpha = 1.8^o$ und $\mu_r = 100$ sowie $\alpha = 9,0^o$ und $\mu_r = 10^4$? (2 Punkte)

8 Induktion Punkte: 25

In der gegebenen Anordnung werden die beiden Wechselströme $i_1(t)$ und $i_2(t)$ in den beiden Leitern mit jeweils der Länge l, der spezifischen Leitfähigkeit k, der Querschnittsfläche A und dem Radius r_0 durch die Wechselspannungsquelle $u_1(t)$ erzeugt. Der Abstand zwischen den Leitern beträgt h.

Die Punkte P_1 bzw. P_2 liegt auf dem ersten bzw. zweiten Leiter. Der Punkt P innerhalb der Fläche A_{ϕ} hat einen beliebigen Abstand r zur Symmetrieachse des oberen Leiters und liegt horizontal mittig zwischen den Leiterenden.

Parallel zu der Leiterschleife liegt im Abstand b ein Starkstromleiter, der vom Strom $i_3(t)$ durchflossen wird. Der Schalter S befindet sich in der Neutralposition (s. Abbildung). Alle Größen sind im dargestellten Koordinatensystem anzugeben.

- a) Berechnen Sie allgemein die Ströme $i_1(t) = f(u_1(t), k, l, A)$ und $i_2(t) = f(u_2(t), k, l, A)$. Kennzeichnen Sie außerdem die Stromrichtungen. (3 Punkte)
- b) Berechnen Sie allgemein die magnetische Flussdichte $\overrightarrow{B}(t) = f(i_1(t), i_2(t), h, r_0)$ am Punkt P. Dabei gilt: $r_0 < r < h r_0$. (3 Punkte)
- c) Skizzieren Sie qualitativ den Verlauf der Feldstärke H(r) im Bereich 0 < r < h. (4 Punkte)

- d) In der Fläche A_{ϕ} ist der magnetische Fluss $\phi(t) = f(i_1(t), i_2(t), h, r_0)$ allgemein zu berechnen. (4 Punkte)
- e) In welcher Position (C oder D) muss sich der Schalter S befinden, sodass sich die beiden Leiter, durch die die Ströme $i_2(t)$ und $i_3(t)$ fließen, abstoßen? Begründen Sie Ihre Antwort. Es gilt dabei, dass sich die Wechselspannungsquellen $u_1(t)$, $u_2(t)$ und $u_3(t)$ in Phase befinden. (3 Punkte)
- f) Berechnen Sie allgemein die resultierenden magnetischen Kräfte $\overrightarrow{F(t)}_{ges1}$ und $\overrightarrow{F(t)}_{ges2}$, die in Folge dieser Ströme $(i_1(t), i_2(t), i_3(t))$ auf den Punkt P_1 bzw. P_2 wirken. (5 Punkte)

Im Folgenden wird der Abstand b vergrößert, sodass $b \gg h$ gilt. Das induzierte Magnetfeld in der Fläche A_{ϕ} kann durch $B_i(t) = \hat{B} \cdot (1 + \cos \omega t)$ angenähert werden (ω =konstant).

g) Berechnen Sie allgemein die in der Schleife induzierte Spannung $u_i(t)$ bezüglich der Klemmen X-Y unter Zuhilfenahme obiger Näherungsformel zur Beschreibung des Magnetfelds $B_i(t)$ und den in der Skizze gegebenen Maßangaben. Kennzeichnen Sie die Richtungen von $u_i(t)$ und $B_i(t)$. (3 Punkte)

9 Komplexe Wechselstromrechnung

Gegeben:

 $R = 400\Omega$, L=1mH, $C_1=1428$ pF, $C_2=600$ pF.

Die Wechselspannungsquelle \underline{U} arbeitet mit einer Frequenz von $f=\frac{1}{2\pi} \mathrm{MHz}$. An der Induktivität L wird ein Spannungsabfall $|\underline{U}_L|=10V$ gemessen.

- a) $|\underline{I}_1|,\,|\underline{U}_R|$ und $|\underline{U}_{C1}|$ sind zahlenmäßig zu berechnen. (3 Punkte)
- b) Das vollständige Zeigerdiagramm mit allen Strömen und Spannungen ist zu entwickeln (Maßstab: $1V \cong 1cm$, $1mA \cong 1cm$). Die Größen $|\underline{U}|$, $|\underline{I}_2|$ und $|\underline{I}|$ sind betragsmäßig anzugeben (abzulesen). Nehmen Sie dabei die Gegenuhrzeigerrichtung als positiv an. (6 Punkte)

(*Hinweis*: Verwenden Sie \underline{U}_R als Bezugszeiger.)

- c) Berechnen Sie die in dem Netzwerk umgesetzte Wirk-, Blind- und Scheinleistung. (2 Punkte)
- d) Unter Vernachlässigung des Widerstandes R ist für die im Bild angegebene Schaltung allgemein die Impedanz in der Form $\underline{Z} = j\frac{A}{B}$ anzugeben. (3 Punkte)