平成19年度「データベース」定期試験問題

加藤隆 (国島丈生)

2007-07-21

1 関係の制約

もうすぐ夏休みである。OPU 旅行では、夏休みの旅行プランを用意して契約を取ろうと努力しているが、 契約数は伸び悩んでいる。そんな中、カトウ社長の発案で、関係データベースを構築して人件費を削減し、旅 行プランをさらに安値で提供しようということになった。

用意する表 (関係) のスキーマを以下に示す。下線を引いた属性はその表の主キーを表す。

- プラン (<u>プラン ID</u>, エリア, 日数, 出発日, 価格)…プラン ID、日数、価格は整数。エリア、出発日は文字列
- 客 (<u>客 ID</u>, 氏名, 性別, 学生)…客 ID は整数。氏名は文字列。性別は"男"か"女"のいずれか。学生は"Y"か"N"のいずれか。
- 契約 (<u>客 ID</u>, <u>プラン ID</u>, 人数)…客 ID、プラン ID、人数は整数。客 ID、プラン ID はそれぞれ、客. 客 ID、プラン. プラン ID の外部キーになっている。

これに従って作成した表を図1に示す。しかし、突貫工事で作成したため、関係データベースの表としてはいろいろと問題点が残ってしまった。問題点をすべて列挙し、それぞれについて理由を述べよ。組の後ろに付けた番号を用いて説明してよい。また、スキーマには間違いはないと考えてよい。(35点)

2 **関係代数、**SQL

問題1で示した関係データベースは、社員が徹夜で修正を行った結果、無事運用を始めることができた。修 正後の関係データベースについて、以下の問合せを指定された方法で書け。(各5点、計55点)

- 1. 日帰りプランのプラン ID、エリア、日数、出発日、価格を求める (関係代数、SQL)
- 2. 価格が 20000 以下のプランのエリア、日数、価格を求める (関係代数、SQL)
- 3. すべてのプランについて、エリア、価格、学割価格(価格の4割引)を求める(SQL)
- 4. すべての契約について、客の氏名、プランのエリア、日数、出発日、人数を求める (関係代数、SQL)
- 5. 女性が契約したプランのエリアと価格をすべて求める (関係代数、SQL)
- 6. 価格の小さい順にプランを並べ替えて出力する (SQL)
- 7. プランをエリアごとに集計し、グループごとにエリアと価格の平均値を求める (SQL)

プラン

プラン ID	エリア	日数	出発日	価格	
1	大阪	_	8/2	30000	(1
_	広島	2	未定	10000	(2
2	神戸	2	8/10	30000	(3
4		5	8/19	50000	(4
3	東京	5,6	8/20	_	(5

客

客 ID	氏名	性別	学生	
20	総社二郎	男	Y	(6)
10	岡山太郎	男	_	(7)
11	岡山花子	女	N	(8)
36	岡山太郎	男	Y	(9)
20	総社二郎	男	Y	(10)
1	倉敷よい子	_	N	(11)

契約

客 ID	プラン ID	人数	
10	6	2	(12)
11			(13)
21	4	4	(14)
36	1	1	(15)
1	1	2(ただし途中から 3)	(16)
20	_	6	(17)

図1 OPU 旅行の関係データベース

3 表の設計

以下に示すのは、ある大学の開講科目とその教科書に関する表である。

科目番号	科目名	ISBN	教科書	出版社
1	データベース	4896725461	サルでもわかるデータベース	サル出版
2	論理回路	4896636769	AND と OR の不思議な世界	論理堂
3	データ工学	4896725461	サルでもわかるデータベース	サル出版
4	ロボット工学	4245634433	AIBO と遊ぼう	YNOS 出版

- 1. この表は第2正規形か。理由を添えて答えよ。(5点)
- 2. この表は第 3 正規形か。理由を添えて答えよ。(5 点)

平成19年度「データベース」定期試験の解答

国島丈生

2007-08-04

1 関係の制約

- (2)…主キーが空値になっており、キー制約に反する。
- (3),(4)…属性「エリア」の値が2つの組にまたがっており、第1正規形になっていない。
- (5)…属性「日数」の値が集合になっている。
- (6),(10)…主キーの値が重複しており、キー制約に反する。
- (12),(13)…属性「プラン ID」「人数」の値が 2 つの組にまたがっており、第 1 正規形になっていない。
- (12),(13)…属性「プラン ID」の値が、プラン. プラン ID に含まれておらず、外部キー制約に反する。
- (14)…属性「客 ID」の値が、客. 客 ID に含まれておらず、外部キー制約に反する。
- (16)…属性「人数」の値が文字列になっており、定義域制約に反する。
- (17)…主キーを構成する属性「プラン ID」の値が空値になっており、キー制約に反する。

以下のような間違いが目につきました。

- 空値が含まれている ((1) の「日数」、(5) の「価格」など) …主キー以外の属性については、スキーマで「空値が認められない」と指定されない限り、空値であっても構いません。
- (15),(16) で「プラン ID」の値が重複しており、キー制約に反する…この表の主キーは { 客 ID, プラン ID} です。つまり 2 つの属性の組です。この場合、(15), (16) の主キーの値はそれぞれ (36,1), (1,1) となり、重複しません。第 2 回に述べた集合の直積の話を思い出して下さい。

2 **関係代数、**SQL

1. 関係代数: $\sigma_{\text{日数=1}}$ プラン

SQL: SELECT * FROM プラン WHERE 日数=1

表「プラン」の属性をすべて出力するわけですから、関係代数では射影は不要です。SQL でも SELECT 句にはワイルドカード * を指定すればよいです。

- 2. 関係代数: $\pi_{\text{エリア, 日数, 価格}}\sigma_{\text{価格}<=20000}$ プラン
 - SQL: SELECT エリア, 日数, 価格 FROM プラン WHERE 価格<= 20000
- 3. SELECT エリア, 価格, 価格*0.4 AS 学割価格 FROM プラン
- 4. 関係代数: π_{氏名, エリア, 日数, 出発日, 人数}(プラン Ν 契約 Ν 客)
 - SQL: SELECT 氏名, エリア, 日数, 出発日, 人数 FROM プラン, 契約, 客 WHERE プラン. プラン

ID=契約. プラン ID AND 客. 客 ID=契約. プラン ID

関係代数の自然結合は(結合条件を内包した結合演算であるため)結合条件を書かなくても良いのですが、SQLでは、結合条件を WHERE 句(もしくは JOIN 句)に明記しなければなりません。

- 5. 関係代数: $\pi_{x \cup y \cap, \text{ mek}} \sigma_{\text{th} = \pm}(\mathcal{I})$ ラン \bowtie 契約 \bowtie 客) SQL: SELECT **エリア**, 価格 FROM \mathcal{I} ラン, 契約, 客 WHERE \mathcal{I} ラン. \mathcal{I} ラン ID=契約. \mathcal{I} ラン ID AND 客. 客 ID=契約. 客 ID AND 性別=女
- 6. SELECT * FROM プラン ORDER BY 価格 DESC
- 7. SELECT エリア, AVG(価格) FROM プラン GROUP BY エリア

3 表の設計

- 1. 属性「科目番号」が主キーであるから、関数従属性 科目番号 \rightarrow 科目名, ISBN, 教科書, 出版社 が成立 する。この関数従属性の左辺は属性 1 つであり、これ以上属性を減らすことはできないから、この関数 従属性は完全関数従属性でもある。したがって、この表は第 2 正規形である。
- 2. この表には関数従属性 $ISBN \to$ 教科書, 出版社 が成立している。したがって、関数従属性 科目番号 \to 教科書, 科目番号 \to 出版社 は推移的関数従属性である。このことから、この表は第 3 正規形ではない。

追加判定課題に出した通り、この表は第 3 正規形ではありません。第 3 正規形にするには、関数従属性 $ISBN \to$ 教科書,出版社 を用いて表を分解し、2 つの表 (科目番号,科目名,ISBN),(ISBN, 教科書,出版社) にします。ただし、そのまま分解すると (ISBN, 教科書,出版社) はキー制約を満たさなくなる(主キー「ISBN」に値の重複が起こる)ことに注意して下さい。重複している組を取り除く(結果は組が 3 つになる)必要があります。