Use Dijkstra's Algorithm to find the shortest path of the following maze . • •





| Vertex (accumulated path) | Initial Next Step | Step1 S<br>Next | Step2<br>(S, B) | Step3(S,<br>B,C) | Step4(S,<br>B,C,D) | Step5(S,<br>B,C,D,F) | Step6(S,<br>B,C,D,F,X) | Step7(S,<br>B,C,D,F,X,E) |
|---------------------------|-------------------|-----------------|-----------------|------------------|--------------------|----------------------|------------------------|--------------------------|
|                           | S                 | Step B          | Next<br>Step C  | Next<br>Step D   | Next Step<br>F     | Next Step<br>X       | Next Step E            |                          |
| S                         | 0                 | 0               | 0               | 0                | 0                  | 0                    | 0                      | 0                        |
| В                         | ∞                 | 3               | 3               | 3                | 3                  | 3                    | 4                      | 4                        |
| A                         | ∞                 | 1               | 1               | 1                | 1                  | 1                    | 1                      | 1                        |
| С                         | ∞                 | ∞               | 5               | 5                | 5                  | 5                    | 5                      | 5                        |
| K                         | ∞                 | ∞               | 5               | 5                | 5                  | 5                    | 5                      | 5                        |
| P                         | ∞                 | ∞               | ∞               | 8                | 8                  | 8                    | 8                      | 8                        |
| D                         | ∞                 | ∞               | ∞               | 6                | 6                  | 6                    | 6                      | 6                        |
| F                         | ∞                 | ∞               | ∞               | 7                | 7                  | 7                    | 7                      | 7                        |

| R | ∞ | ∞     | ∞ | ∞ | 11 | 11 | 11 | 11 |
|---|---|-------|---|---|----|----|----|----|
| Т | ∞ | ∞     | ∞ | ∞ | 11 | 11 | 11 | 11 |
| Н | ∞ | ∞     | ∞ | ∞ | ∞  | 12 | 12 | 12 |
| X | ∞ | ∞     | ∞ | ∞ | ∞  | 10 | 10 | 10 |
| M | ∞ | ∞<br> | ∞ | ∞ | ∞  | ∞  | 11 | 11 |
| E | ∞ | ∞     | ∞ | ∞ | ∞  | ∞  | 18 | 18 |
|   |   |       |   |   |    |    |    |    |

V: the current visiting nodeV: the next node to visit

V: this node has been visited

Stop if the destination node E is reached you will find the minimum distance of **E** from **S** is **18**. The path is **S>B>C>D>F>X>E** 

## o Process

- Step 1: Applying Dijkstra's Algorithm to find the shortest path. Your answer should include
  - Each node of the tree representation of the maze should be labeled sequentially and each edge should have a number indicating the distance. For example,

```
A O
            \ 2
B<sub>0</sub>
           C<sub>0</sub>
        6
      D 0
                   E 0
             1
                           G 0
           F 0
      8
    H 0
                                       K o
```

- $_{\circ}$   $\;\;$  Your answer should include the path and the total distance.
- References
  - Maze
  - Shortest Path

## **Solution:**

| Vertex (accumulate path | Initial<br>Next Step<br>(A) | Step1 (A) | Step2<br>(B) | Step3<br>(C) | Step4<br>(E) | Step5<br>(F) | Step6 (D) | Step7<br>(G) | Step8<br>(H) | Step9<br>(I) | Step10<br>(J) |
|-------------------------|-----------------------------|-----------|--------------|--------------|--------------|--------------|-----------|--------------|--------------|--------------|---------------|
| -                       |                             |           |              |              |              |              |           |              |              |              |               |
| A                       | 0                           | 0         | 0            | 0            | 0            | 0            | 0         | 0            | 0            | 0            | 0             |
| В                       | ∞                           | 1         | 1            | 1            | 1            | 1            | 1         | 1            | 1            | 1            | 1             |
| С                       | ∞                           | 2         | 2            | 2            | 2            | 2            | 2         | 2            | 2            | 2            | 2             |
| D                       | ∞                           | ∞         | 8            | 8            | 8            | 8            | 8         | 8            | 8            | 8            | 8             |
| Е                       | ∞                           | ∞         | ∞            | 6            | 6            | 6            | 6         | 6            | 6            | 6            | 6             |
| F                       | ∞                           | ∞         | ∞            | ∞            | 7            | 7            | 7         | 7            | 7            | 7            | 7             |
| Н                       | ∞                           | ∞         | ∞            | ∞            | ∞            | 15           | 15        | 15           | 15           | 15           | 15            |
| G                       | ∞                           | ∞         | 8            | ∞            | 13           | 13           | 13        | 13           | 13           | 13           | 13            |
| I                       | ∞                           | ∞         | 8            | 8            | 8            | ∞            | ∞         | 16           | 16           | 16           | 16            |
| J                       | ∞                           | ∞         | 8            | ∞            | ∞            | ∞            | ∞         | ∞            | ∞            | 17           | 17            |

| K | ∞ | ∞ | ∞ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 21 | 21 |
|---|---|---|---|----------|----------|----------|----------|----------|----------|----|----|
|   |   |   |   |          |          |          |          |          |          |    |    |

- Let's consider A and K as the start and destination vertex respectively Initially, all the vertices except the start vertex A are marked by ∞ and the start vertex A is marked by 0

## Note:

- Initial
  - o <u>0</u> is smallest cost on Initial step.
    - Thus, A is selected as the starting point for Step 1.
- Step 1
  - A is selected as the starting point for Step 1.
    - From A one can go to A or B or C
      - The accumulated cost on A is not changed. It is still 0.
      - o The accumulated cost on B is 1.
      - The accumulated cost on C is 2.
      - 1 is smaller than 2.
        - Thus, B is selected as the starting point for Step 2.

- Step 2
  - B is selected as the starting point for Step 2.
    - From B there is no path so all the values will remain the same
      - Since B is already visited, will select C as the starting point for Step3.

- Step 3
  - C is selected as the starting point for Step 3.
    - From C one can go D or E
      - o The accumulated cost on C is not changed. It is still 2.
      - o The accumulated cost on D is 8.
      - The accumulated cost on E is 6.
      - o 6 is smaller than 8.
        - Thus, E is selected as the starting point for Step 4.

- Step 4
  - E is selected as the starting point for Step 4.
    - From E one can go F or G
      - o The accumulated cost on E is not changed. It is still 6.
      - o The accumulated cost on F is 8.
      - The accumulated cost on E is 13.
      - 8 is smaller than 13.
        - Thus, F is selected as the starting point for Step 5.

- Step 5
  - F is selected as the starting point for Step 5.
    - From F one can go H
      - The accumulated cost on F is not changed. It is still 7.
      - The accumulated cost on H is 15.
      - o A, B, C, E and F already visited vertices, the remaining vertices are D and G.
      - o The accumulated cost on D is 8.
      - The accumulated cost on G is 13.
      - 8 is smaller than 13 and 15.
        - Thus, D is selected as the starting point for Step 6.

- Step 6
  - o D is selected as the starting point for Step 6.
    - From D one can go nowhere, there is no path connected to D
      - o The accumulated cost on D is not changed. It is still 8.
      - o All the values will remain the same for visited vertices.
      - o A, B, C, D, E and F already visited vertices, the remaining vertices are H and G.
      - The accumulated cost on H is 15.
      - The accumulated cost on G is 13.
      - o 13 is smaller than 15.
        - Thus, G is selected as the starting point for Step 7.

- Step 7
  - G is selected as the starting point for Step 7.
    - From G one can go I

- o The accumulated cost on G is not changed. It is still 13.
- All the values will remain the same for visited vertices.
- The accumulated cost on I is 16.
- o A, B, C, D, E, F and G are the vertices already visited, the remaining vertices are I and H
- The accumulated cost on H is 15.
- 15 is smaller than 16.
  - Thus, H is selected as the starting point for Step 8.

- Step 8
  - o H is selected as the starting point for Step 8.
    - From H one can go nowhere, there is no path connected to H
      - o the accumulated cost on His not changed. It is still 15.
      - o All the values will remain the same for visited vertices.
      - o A, B, C, D, E, F, G and H already visited vertices, the remaining vertices are I, J and K.
      - The accumulated cost on I is 16.
      - o the accumulated cost on J amd K is still infinity.
        - Thus, I is selected as the starting point for Step 9.

- Step 9
  - o I is selected as the starting point for Step 9.
    - From I one can go to J or K, where K is the destination
      - o the accumulated cost on I is not changed. It is still 16.
      - o All the values will remain the same for visited vertices.
      - o A, B, C, D, E, F, G, H and I already visited vertices, the remaining vertices are J and K, where K is the destination so will visit J and stop on K.
      - o the accumulated cost on J is 17.
      - the accumulated cost on K is 21.

• Thus, J is selected as the starting point for Step 10 and after this stop at Kth is reached because K is the destination.

You will find the minimum distance of K from *A* is *21* And the path is

$$2 \rightarrow 4 \rightarrow 7 \rightarrow 3 \rightarrow 5 \rightarrow 9$$