Medical Health Expenses

Understanding Problem Statement

- Predict the future medical expenses of patients based on certain features.
- Factors affecting the medical expenses of the patients:-
 - Age
 - Gender
 - Body Mass Index
 - Region
 - Smoking Behaviour

Business Implications of the Project

- Health is the center of everyone's life.
- Every part of our life relies on good health.
- Health is the extent of an individual's continuing physical, emotional, mental, and social ability to cope with the environment.

Univariate Analysis

- It involves only one variable.
- It is used to understand the distribution of the variables present in the dataset and derive meaningful insights from them.
- It can be used to check the distribution of both Numerical as well as Categorical variables.

Bivariate Analysis

- Bivariate Analysis is one of the simplest forms of quantitative analysis.
- It involves analysis of two variables for determining the empirical relationship between them.
- It can be helpful in testing simple hypothesis of association.

Feature Scaling

- Feature Scaling is used to normalize the range of independent variables or features of data.
- Feature Scaling is also known as Data Normalization.
- It helps to normalize the data within a particular range.
- It also helps in speeding up the calculations in an algorithm.

Linear Regression

 Linear Regression is a linear approach of modelling the relationship between a dependent and one or more independent variables.

Assumptions of Linear Regression

Linearity

- The relationship between the dependent and the independent variables must be linear.
- Trend lines between two variables must be either in increasing or decreasing pattern.

Assumptions of Linear Regression

Homoscedasticity

 In statistical terms, the variance of all the variables must be same.

Assumptions of Linear Regression

Independence

All the observations must be independent of each other.

Normality

All the variables must follow a normal distribution.

Evaluation Metrics

R2 Score

 It is generally used to determine the strength of correlation between the independent features and the target column.

Root Mean Squared Error(RMSE)

 It is the square root of the mean of the differences between actual and the predicted values.

Random Forest

- Random forest is an ensemble learning method for classification and regression by constructing multiple number of decision trees at training time.
- And it outputs the average prediction of the individual trees in case of regression and mode of the classes in case of classification.

Gradient Boosting Model

- Gradient boosting works sequentially adding the previous predictors under fitted predictions to the ensemble.
- In case of Gradient boosting, ensembling happens sequentially.
- The model is built until and unless the errors are optimised in the best way.

Cross Validation

- Cross Validation is a resampling procedure which is used to evaluate the machine learning models on limited data samples.
- The goal of cross validation is to test the model's ability to predict new data.
- It has a single parameter called k.
- k indicates the number of groups the data would be split into.

More things to try

- We can give different labels to each Region. It might give better results.
- Keep 4 and 5 number of children in our analysis instead of capping them and see how the results vary.
- We can try some more predictive models and compare the results.
- Try converting Expense column to a normal distribution using log or square root transformation.

Major Takeaways from the project

- Understood the importance of Data Analysis and Data Visualization for determining the association between features.
- How to build intuition by building insights from Data Visualization.
- How to deal with categorical variables.
- Learnt about different Assumptions to be satisfied before using a Linear Regression Model.

Major Takeaways from the project

- Learned different predictive models such as Linear Regression, Random Forest and Gradient Boosting model.
- Learned how to ensemble different models.
- Understood the importance of cross validation on the data.
- Learned the importance of comparing different predictive models.

