B4B01DMA

Jakub Adamec Domácí úkol č. 8A

19. 11. 2024

Tento úkol vypracujte a pak přineste na cvičení č. 9.

- 1. Nechť A je množina předmětů vyučovaných katedrou matematiky. Definujeme $\mathcal R$ na A takto: Předměty X,Y jsou v relaci, pokud se shodují první písmena jejich oficiálních třípísmenných zkratek.
- a) Dokažte, že \mathcal{R} je ekvivalence. b) Najděte $[\mathrm{DMA12}]_{\mathcal{R}}$ neboli třídu ekvivalence příslušnou předmětu Diskrétní matematika. Tip: V důkazu se může hodit zavést si indikátor I předmětu p definovaný takto: I(p) je první písmeno oficiální třípísmenné zkratky předmětu p.
- 2. Dokažte indukcí, že pro $n\in\mathbb{N}$ je $\sum_{k=1}^n 0=0$. Poznámka: Může pro vás být jednodušší to vidět jako $\underbrace{0+0+\ldots+0}_{n\text{ krát}}=0$.

Bonus:

Nechť \mathcal{R}, \mathcal{S} jsou relace na A. Dokažte: Je-li \mathcal{R} reflexivní, tak je i u $\mathcal{R} \cup \mathcal{S}$ reflexivní.

1. Například DMA \mathcal{R} DRN.

a)

Nechť I(a) je první písmeno třípísmenné zkratky předmětu $a \in A$.

Reflexivita: Symetrie: Tranzivita:

$$a\mathcal{R}a, a \in A.$$
 $a, b \in A$ libovolné. $a, b, c \in A$ libovolné. $I(a) = I(a)$ platí vždy $\Longrightarrow a\mathcal{R}a.$ předpoklad: $a\mathcal{R}b.$ předpoklad: $(a\mathcal{R}b) \wedge (b\mathcal{R}c).$ $I(a) = I(b) \wedge I(b) = I(c).$ a tedy $I(b) = I(a) \Longrightarrow b\mathcal{R}a.$ \square což znamená $I(a) = I(c).$

Protože $\mathcal R$ splňuje Reflexivitu, Symetrii a Tranzivitu, $\mathcal R$ je ekvivalence.

b)

Nechť I(X) je první písmeno třípísmenné zkratky předmětu $X \in A.$

$$\left[\mathrm{DMA12}\right]_{\mathcal{R}} = \{X \in A; \mathrm{DMA12}\ \mathcal{R}\ X\} = \{I(X) = D\}.$$

2.

(0)
$$n = 1: 0 \stackrel{?}{=} 0 \checkmark$$

(1) $n \ge 1:$ indukční předpoklad: $\sum_{k=1}^{n} 0 = 0.$
Pak: $\sum_{k=1}^{n} (0) + 0(n+1) = 0n + 0n + 0 = 0(2n+1) = 0.$

Bonus.

předpoklad:
$$\mathcal{R}$$
 je reflexivní.
pak $[(a,a)\in\mathcal{R}\cup\mathcal{S}] \to [(a,a)\in\mathcal{R}\vee(a,a)\in\mathcal{S}] \stackrel{\text{předp.}}{\longrightarrow} \mathcal{R}\cup\mathcal{S}$.