Logic in Computer Science

DAT060/DIT201 (7.5 hec)

Responsible: Thierry Coquand – Telefon: 1030

Tuesday 29th of October 2019

Total: 60 points CTH:
$$\geqslant$$
 30: 3, \geqslant 41: 4, \geqslant 51: 5 GU: \geqslant 30: G, \geqslant 46: VG

No help material but dictionaries to/from English.

Write in English and as readable as possible (think that what we cannot read we cannot correct).

OBS: All answers should be *carefully* motivated. Points will be deduced when you give an unnecessarily complicated solution or when you do not properly justify your answer.

Good luck!

1. Give proofs in natural deduction of the following sequents:

(a) (2pts)
$$(p \to r) \land (q \to s) \vdash p \land q \to r \land s$$

Solution:

1.
$$(p \rightarrow r) \land (q \rightarrow s)$$
 premise
2. $p \rightarrow r$ $\land e_1 \ 1$
3. $q \rightarrow s$ $\land e_2 \ 1$
4. $p \land q$ assumption
5. p $\land e_1 \ 4$
6. q $\land e_2 \ 4$
7. r $\rightarrow e \ (2,5)$
8. s $\rightarrow e \ (3,6)$
9. $r \land s$ $\land i \ (7,8)$
10. $p \land q \rightarrow r \land s$ $\rightarrow i \ 4-9$

(b) (2.5pts)
$$\neg r \rightarrow (s \land p), s \rightarrow q, \neg q \vdash r$$

1.	$\neg r \to (s \land p)$	premise
2.	$s \to q$	premise
3.	$\neg q$	premise
4.	$\neg s$	MT(2,3)
5.	$s \wedge p$	assumption
6.	s	$\wedge e_1 5$
7.	上	\rightarrow e (4,6)
8.	$\neg(s \land p)$	\rightarrow i 5–7
9.	$\neg\neg r$	MT (1,8)
10.	r	¬¬е 9

(c) (2.5pts)
$$\neg p \rightarrow r, r \rightarrow s \vdash s \lor p$$

Solution:

1.
$$\neg p \rightarrow r$$
 premise
2. $r \rightarrow s$ premise
3. $p \lor \neg p$ LEM
4. p assumption
5. $s \lor p$ $\lor i_2 4$
6. $\neg p$ assumption
7. r $\rightarrow e (1,6)$
8. s $\rightarrow e (2,7)$
9. $s \lor p$ $\lor i_1 8$
10. $s \lor p$ $\lor e (3,4-5,6-9)$

2. (a) (1pt) Without using truth tables, give a valuation for which the formula

$$(((p \rightarrow q) \rightarrow q) \rightarrow ((r \rightarrow q) \rightarrow p)) \rightarrow ((p \rightarrow r) \rightarrow q) \rightarrow q$$

is not true.

(b) (2pts) Explain how you arrived to this valuation.

Solution:

- (a) p should be true, and q and r should be false.
- (b) For the formula to be false it should be that $((p \to q) \to q) \to ((r \to q) \to p)$ is true and $((p \to r) \to q) \to q$ is false.

For $((p \to r) \to q) \to q$ to be false then $(p \to r) \to q$ should be true and q should be false.

For $(p \to r) \to q$ to be true when q is false then $p \to r$ should be false which give us p true and r false.

With this valuation we need to check that $((p \to q) \to q) \to ((r \to q) \to p)$ is true, which is indeed the case since $(p \to q) \to q$ is true (false implies false is true) and $(r \to q) \to p$ is also true (true implies true is true).

3. For each of the sequents below, prove using natural deduction that they are valid, or give a counter-model that they are not.

(a) (3pts)
$$\vdash \forall x \forall y \forall z (f(x,z) = f(x,y) \rightarrow y = z)$$

Solution: We will give a counter-model \mathcal{M} .

In \mathcal{M} , let $A = \mathbb{N}$ and $f^{\mathcal{M}} : A \times A \to A$ be such that $f^{\mathcal{M}}(u, v) = u$.

Here, we have that $f^{\mathcal{M}}(0,1) = f^{\mathcal{M}}(0,2) = 0$ but $2 \neq 1$.

Hence $\mathcal{M} \not\models \forall x \forall y \forall z (f(x, z) = f(x, y) \rightarrow y = z)$ and by soundness $\not\vdash \forall x \forall y \forall z (f(x, z) = f(x, y) \rightarrow y = z)$.

(b) (3pts)
$$\vdash \forall x \forall y \forall z (y = z \rightarrow f(x, z) = f(x, y))$$

Solution:

1.	x_0	fresh
2.	y_0	fresh
3.	$ z_0$	fresh
4.		assumption
5.	$ \ \ \ f(x_0, z_0) = f(x_0, y_0)$	=e with 5, $\phi(u) \equiv f(x_0, u) = f(x_0, y_0)$
6.	$y_0 = z_0 \to f(x_0, z_0) = f(x_0, y_0)$	→i 4–5
7.	$\forall z(y_0 = z \to f(x_0, z) = f(x_0, y_0))$	∀i 3–6
8.	$\forall y \forall z (y = z \to f(x_0, z) = f(x_0, y))$	∀i 2–7
9.	$\forall x \forall y \forall z (y = z \to f(x, z) = f(x, y))$	∀i 1–8

(c) (3pts)
$$\vdash \neg \forall x \neg A(x) \rightarrow \neg \neg \exists x A(x)$$

1.
$$\neg \forall x \neg A(x)$$
 premise
2. $\neg \exists x A(x)$ assumption
3. x_0 fresh
4. $A(x_0)$ assumption
5. $\exists x A(x)$ $\exists i \ 4$
6. \bot $\rightarrow e \ (2,5)$
7. $\neg A(x_0)$ $\rightarrow i \ 4 - 6$
8. $\forall x \neg A(x)$ $\forall i \ 3 - 7$
9. \bot $\rightarrow e \ (1,8)$
10. $\neg \neg \exists x A(x)$ $\rightarrow i \ (2,9)$

(d) (3pts)
$$\vdash \exists x P(x) \land \exists x (P(x) \to Q(x)) \to \exists x Q(x)$$

Solution: We will give a counter-model \mathcal{M} . In \mathcal{M} , let $A = \{0, 1\}$, $P^{\mathcal{M}} = \{0\}$ and $Q^{\mathcal{M}} = \emptyset$. We have that $\mathcal{M} \models \exists x P(x)$ and $\mathcal{M} \models \exists x (P(x) \to Q(x))$ hold because $0 \in P^{\mathcal{M}}$ and $1 \notin P^{\mathcal{M}}$. However, $\mathcal{M} \not\models \exists x Q(x)$ since $Q^{\mathcal{M}} = \emptyset$. Hence $\mathcal{M} \not\models \exists x P(x) \land \exists x (P(x) \to Q(x)) \to \exists x Q(x)$ and by soundness $\not\vdash \exists x P(x) \land \exists x (P(x) \to Q(x)) \to \exists x Q(x)$.

(e) (4pts)
$$\forall x \neg \forall y (P(x,y) \rightarrow Q(x,y)) \vdash \forall x \neg \forall y \neg P(x,y)$$

- 4. Consider the following semantic entailment $\forall x (Q(x) \to \exists y R(x,y)) \land \forall x \forall y (R(x,y) \to P(x)) \models \forall x (Q(x) \to P(x))$
 - (a) (2pts) What is a model for the language?

Solution: A model \mathcal{M} for the language consists in a domain $\mathcal{A} \neq \emptyset$, two unary relations $Q^{\mathcal{M}}, P^{\mathcal{M}} \subseteq \mathcal{A}$ and a binary relation $R^{\mathcal{M}} \subseteq \mathcal{A} \times \mathcal{A}$.

(b) (3.5pts) Explain if the semantic entailment is valid.

Solution: The semantic entailment is valid.

Consider a model \mathcal{M} with domain \mathcal{A} such that $\mathcal{M} \models \forall x (Q(x) \to \exists y R(x,y))$ and $\mathcal{M} \models \forall x \forall y (R(x,y) \to P(x))$. We need to show that $\mathcal{M} \models \forall x (Q(x) \to P(x))$. Let $a \in \mathcal{A}$ such that $a \in Q^{\mathcal{M}}$. We need to show that $a \in P^{\mathcal{M}}$.

Now, since $a \in Q^{\mathcal{M}}$ and $M \models \forall x(Q(x) \to \exists y R(x,y))$ then there is $b \in \mathcal{A}$ such that $(a,b) \in R^{\mathcal{M}}$.

Now, since $M \models \forall x \forall y (R(x,y) \rightarrow P(x))$ and $(a,b) \in R^{\mathcal{M}}$ then we must have $a \in P^{\mathcal{M}}$, which ends our poof.

5. (3.5pts) Explain if the following semantic entailment is valid $\models \forall x \forall y (R(x,y) \land \neg (x=y) \rightarrow \exists z (R(x,z) \land R(z,y) \land \neg (x=z) \land \neg (y=z)))$

Solution: This semantic entailment is not valid.

Consider a model \mathcal{M} with domain $\mathcal{A} = \{2,3\}$ and the binary relation $R^{\mathcal{M}} = \{(2,3), (3,2)\} \subseteq \mathcal{A} \times \mathcal{A}.$

Here, for any a and b in \mathcal{A} such that $\neg(a=b)$, we have that $(a,b) \in \mathbb{R}^{\mathcal{M}}$.

On other hand, there is no element c such that $\neg(a=c)$ and $\neg(b=c)$.

Hence for any $a, b \in \mathcal{A}$, $\mathcal{M} \models_{[x \mapsto a, y \mapsto b]} R(x, y) \land \neg(x = y)$ but $\mathcal{M} \not\models_{[x \mapsto a, y \mapsto b]} \exists z (R(x, z) \land R(z, y) \land \neg(x = z) \land \neg(y = z)).$

This concludes that

 $\mathcal{M} \not\models \forall x \forall y (R(x,y) \land \neg(x=y) \rightarrow \exists z (R(x,z) \land R(z,y) \land \neg(x=z) \land \neg(y=z)))$

6. Consider the transition system $\mathcal{M} = (S, \to, L)$ where the states are $S = \{s_0, s_1, s_2, s_3, s_4\}$, the transitions are $s_0 \rightarrow s_0, s_1 \rightarrow s_0, s_2 \rightarrow s_1, s_2 \rightarrow s_3, s_3 \rightarrow s_2, s_3 \rightarrow s_4, s_4 \rightarrow s_3, s_4 \rightarrow s_4, s_4 \rightarrow s_5, s_4 \rightarrow s_5, s_5 \rightarrow s_6, s_7 \rightarrow s_8, s_8 \rightarrow s_8 \rightarrow s_8, s_8 \rightarrow s_8 \rightarrow s_8, s_8 \rightarrow s_8$ s_4 , and the labeling function is given by $L(s_0) = L(s_4) = \{p\}, L(s_1) = L(s_3) = \{q\},$ and $L(s_2) = \emptyset$.

(a) (3pts) Do we have $\mathcal{M} \models G(Fp)$?

(b) (3pts) Which are the states s that satisfy the CTL formula $AG(q \to AFp)$ (i.e., where $\mathcal{M}, s \models AG(q \to AFp)$)?

Solution:

- (a) We do not have $\mathcal{M} \models G(Fp)$ since there is the path $\sigma = s_2 \to s_3 \to s_2 \dots$ such that $\sigma \models G(\neg p)$
- (b) s_4, s_3 and s_2 do not satisfy this property because of the previous path σ . Both s_1 and s_0 this property since we have only one path starting from s_1 (resp. s_0) and we can directly check the property for this path.
- 7. (a) (4pts) Explain why the following LTL formula is valid $(Fp \wedge Fq \wedge G(q \rightarrow G(\neg p))) \rightarrow F(p \wedge XFq)$.
 - (b) (4pts) Explain why the following LTL formula is not valid $(G(p \to Fp) \land p) \to Gp$.

Solution:

- (a) This formula is valid since for any model and any path σ if we have $\sigma \models Fp \land Fq \land G(q \to G(\neg p))$ then $p \in L(\sigma(n))$ and $q \in L(\sigma(m))$ for some n and m. Since $\sigma \models G(q \to G(\neg p))$ we have n < m and then $\sigma^n \models p \land XFq$ and some $\sigma \models F(p \land XFq)$.
- (b) We define a model with two states s_0 and s_1 and $s_0 \to s_1$ and $s_1 \to s_1$ and $L(s_0) = \{p\}$ and $L(s_1) = \emptyset$. The path $\sigma = a_0 \to s_1 \to s_1 \dots$ satisfies then $\sigma \models G(p \to Fp) \land p$ and $\sigma \models \neg(Gp)$.
- 8. (3pts) Let S be a set and A, B two subsets of S. Let F be the monotone function $F: Pow(S) \to Pow(S), \ X \mapsto (X \cup A) \cap B$ What are the least fix point and the greatest fix point of F?

Solution: If F(X) = X then we have $X \subseteq B$. We also have F(B) = B so B is the greatest fix point of F. Also $F(\emptyset) = A \cap B$ and $F(A \cap B) = A \cap B$ so $A \cap B$ is the least fix point of F.

- 9. Make sure to justify your answers below!
 - (a) (2pts) Give a CTL model where the formula $AG((EF p) \wedge EF(\neg p))$ is valid.
 - (b) (2pts) Give a model where the formula $EF p \to AG(EF p)$ is not valid.

- (a) We define a model with two states s_0 and s_1 and $s_0 \to s_1$ and $s_1 \to s_0$ and $L(s_0) = \{p\}$ and $L(s_1) = \emptyset$. For this model M we $M, s_0 \models (EF \ p) \land EF(\neg p)$ and $M, s_1 \models (EF \ p) \land EF(\neg p)$, so M is a model of $AG((EF \ p) \land EF(\neg p))$ is
- (b) We build a model M and a state s where EF p is valid but AG(EF p) is not valid. We take a model with two states s_0 and s_1 and $s_0 \to s_1$ and $s_1 \to s_1$ and $L(s_0) = \{p\}$ and $L(s_1) = \emptyset$. We have then $M, s_0 \models EF$ p and $s_0 \to s_1$ and $M, s_1 \models \neg(EF$ p). So we have $M, s_0 \models \neg(AG(EF$ p)).
- 10. (4pts) Suppose that Γ is a set of formulae in a given language with a binary relation R such that for any natural number $n \geq 0$, Γ has a model M whose domains contains elements a_0, a_1, \ldots, a_n such that $(a_i, a_{i+1}) \in R^M$ for $i = 0, \ldots, n-1$. Show that Γ has a model whose domain contains an infinite sequence a_0, a_1, \ldots satisfying $(a_n, a_{n+1}) \in R^M$ for all n.

Solution: We use the Compactness Theorem. We add infinitely many constant c_0, c_1, c_2, \ldots and consider the theory

$$\Gamma$$
, $R(c_0, c_1)$, $R(c_1, c_2)$, ...

By hypothesis any finite subset of this theory is satisfiable. By Compactness, this theory is satisfiable and a model M of this theory has a domain which contains an infinite sequence $a_0 = c_0^M$, $a_1 = c_1^M$, ... satisfying $(a_n, a_{n+1}) \in \mathbb{R}^M$ for all n.