CoE202 Fundamentals of Artificial intelligence <Big Data Analysis and Machine Learning>

Recurrent Neural Network

Prof. Young-Gyu Yoon School of EE, KAIST

Contents

- Recap
 - Joint probability distribution function
 - Discriminative model vs generative model
 - Generative adversarial network
 - Based on two competing networks
- Sequence prediction problem
- Recurrent neural network
 - Concept
 - Unit cell
- Training RNN
- Advanced unit cells

Word prediction problem

and it doesn't have to be a word

Characteristics of the problem

- Input is a sequence of characters or words
- Input length can be arbitrary
- The prediction may depend on the entire input (at least it does not depend solely on the latest input)
- Simple neural network (MLP) or vanilla convolutional neural network is not suited for solving this type of problem

Feedforward neural network

There's only one-way information flow

Information flow in a biological brain...

...is not one-way, obviously

RECURENT neural network?

What if we add a **recurrent** path like this?

Feedforward vs. Recurrent

Recurrent neural network (RNN)

 RNN: a type of neural network that contains loops, allowing information to be stored within the network

Recurrent neural network (RNN)

- RNN can take a 'sequence' of input
- RNN has "memory"
- RNN can handle input with 'arbitrary length'

Unfolding RNN

RNN for sequence prediction

Character-by-character prediction example

Possible use of RNN

One to many

many to one

many to many

many to many

image captioning

language detection meaning of word

language translation

character prediction

Unit cell of RNN?

$$y_t, h_t = f(x_t, h_{t-1})$$

- Constraint
 - Takes two inputs: x_{t} , h_{t-1}
 - Returns two outputs: y_t , h_t
- ...and that's pretty much it!

Unit cell of RNN

$$y_t, h_t = f(x_t, h_{t-1})$$

$$h_t = g_1(W_1x_t + W_2h_{t-1} + b_1)$$

$$y_t = g_2(W_3h_t + b_2)$$
 can be merged with the weight matrix

 g_1, g_2 are activation functions

Training: backpropagation in RNN

Truncated backpropagation through time

Issues of RNN

Vanishing gradient

 Gradient may become very small

$$\frac{\partial \mathcal{L}}{\partial h_0} = \frac{\partial \mathcal{L}}{\partial h_3} \frac{\partial h_3}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial h_0}$$

Exploding gradient

 Gradient may become very large

Both make it difficult to learn long term dependencies

Advanced unit cells

 Advanced unit cells have been developed to overcome the limitations of RNN

Unit cell: Gated Rucurrent Unit (GRU)

$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ \hat{h}_t &= \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) \ h_t &= (1-z_t) \odot h_{t-1} + z_t \odot \hat{h}_t \end{aligned}$$

- x_t : input vector
- h_t : output vector
- $ullet \hat{h}_t$: candidate activation vector
- z_t : update gate vector
- r_t : reset gate vector
- ullet W, U and b: parameter matrices and vector

Unit cell: LSTM

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ ilde{c}_t &= anh_c(W_c x_t + U_c h_{t-1} + b_c) \ c_t &= f_t \circ c_{t-1} + i_t \circ ilde{c}_t \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

- $ullet x_t \in \mathbb{R}^d$: input vector to the LSTM unit
- $ullet f_t \in \mathbb{R}^h$: forget gate's activation vector
- $ullet i_t \in \mathbb{R}^h$: input/update gate's activation vector
- $ullet o_t \in \mathbb{R}^h$: output gate's activation vector
- $ullet h_t \in \mathbb{R}^h$: hidden state vector also known as output vector of the LSTM unit
- $ullet ilde{c}_t \in \mathbb{R}^h$: cell input activation vector
- $ullet c_t \in \mathbb{R}^h$: cell state vector
- $W \in \mathbb{R}^{h \times d}$, $U \in \mathbb{R}^{h \times h}$ and $b \in \mathbb{R}^h$: weight matrices and bias vector parameters which need to be learned during training

Summary

- Sequence prediction problem
- Recurrent neural network
- Training RNN
 - Backpropagation through time (BPTT)
 - Truncated BPTT
- Learning long-term dependency is difficult with vanilla RNN (gradient vanishing & gradient explosion)
- Advanced unit cells
 - Gated Recurrent Unit (GRU)
 - Long Short Term Memory (LSTM)

References

- Website
 - CS231n RNN lecture note: http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture10.pdf