ОПИСАНИЕ СИНТАКСИСА ЯЗЫКОВ ПРОГРАММИРОВАНИЯ С ПОМОЩЬЮ L-ГРАФОВ

А.А. Вылиток

Т.В. Генералова

Московский государственный университет имени М.В. Ломоносова факультет вычислительной математики и кибернетики кафедра алгоритмических языков

Москва, 2015

0: порождающие грамматики без ограничений

0: порождающие грамматики без ограничений

1: контекстно-зависимые грамматики

0: порождающие грамматики без ограничений

1: контекстно-зависимые грамматики

2: контекстно-свободные грамматики (бесконтекстные)

- 0: порождающие грамматики без ограничений
- 1: контекстно-зависимые грамматики
- 2: контекстно-свободные грамматики (бесконтекстные)
- 3: регулярные грамматики

Пример бесконтекстного языка

$$\{a^nb^n\,\big|\,n\,\geqslant 1\}$$

L-графом G назовем шестерку $G = \langle V, \Sigma, P, E, I, F \rangle$, в которой:

▶ V — конечное множество вершин,

- ▶ V конечное множество вершин,
- ∑ алфавит основных символов,

- ▶ V конечное множество вершин,
- Σ алфавит основных символов,
- ▶ P скобочное множество,

- ▶ V конечное множество вершин,
- Σ алфавит основных символов,
- \triangleright P скобочное множество,
- ▶ $I \subseteq V$ множество *начальных* вершин,

- V конечное множество вершин,
- ▶ ∑ алфавит основных символов,
- \triangleright P скобочное множество,
- ▶ $I \subseteq V$ множество *начальных* вершин,
- ▶ $F \subseteq V$ множество *заключительных* вершин,

- ▶ V конечное множество вершин,
- Σ алфавит основных символов,
- $\triangleright P$ скобочное множество,
- ▶ $I \subseteq V$ множество *начальных* вершин,
- ▶ $F \subseteq V$ множество *заключительных* вершин,
- ▶ $E \subseteq V \times (\Sigma \cup \{\varepsilon\}) \times (P \cup \{\varepsilon\}) \times (P \cup \{\varepsilon\}) \times V$ множество *дуг*.

- V конечное множество вершин,
- ▶ ∑ алфавит основных символов,
- ▶ P скобочное множество,
- ▶ $I \subseteq V$ множество *начальных* вершин,
- ▶ $F \subseteq V$ множество *заключительных* вершин,
- ▶ $E \subseteq V \times (\Sigma \cup \{\varepsilon\}) \times (P \cup \{\varepsilon\}) \times (P \cup \{\varepsilon\}) \times V$ множество дуг.

L-граф называется бесконтекстным, если
$$E\subseteq V imes(\Sigma\cup\{arepsilon\}) imes(P\cup\{arepsilon\}) imes\{arepsilon\} imes V$$

L-графом G назовем шестерку $G = \langle V, \Sigma, P, E, I, F \rangle$, в которой:

- ▶ V конечное множество вершин,
- ▶ ∑ алфавит основных символов,
- ▶ P скобочное множество,
- ▶ $I \subseteq V$ множество *начальных* вершин,
- ▶ $F \subseteq V$ множество *заключительных* вершин,
- ▶ $E \subseteq V \times (\Sigma \cup \{\varepsilon\}) \times (P \cup \{\varepsilon\}) \times (P \cup \{\varepsilon\}) \times V$ множество дуг.

L-граф называется бесконтекстным, если
$$E\subseteq V imes(\Sigma\cup\{arepsilon\}) imes(P\cup\{arepsilon\}) imes\{arepsilon\} imes V$$

L-граф называется *регулярным*, если $E\subseteq V{ imes}(\Sigma\cup\{arepsilon\}){ imes}\{arepsilon\}{ imes}\{arepsilon\}{ imes}V$

$$\rightarrow 1 \xrightarrow{a} 1 \xrightarrow{b} 2 \rightarrow$$

$$\rightarrow$$
1 $\stackrel{a}{=}$ 1 $\stackrel{b}{=}$ 2 $\stackrel{b}{\rightarrow}$ 2 $\stackrel{\rightarrow$

Соалансирован

$$\rightarrow 1 \stackrel{a}{=} 1 \stackrel{b}{=} 2 \rightarrow$$
 $\rightarrow 1 \stackrel{a}{=} 1 \stackrel{a}{=} 1 \stackrel{b}{=} 2 \stackrel{b}{\rightarrow} 2 \rightarrow$

парные циклы

 $\rightarrow 1 \stackrel{a}{=} 1 \stackrel{a}{=} 1 \stackrel{a}{=} 1 \stackrel{b}{=} 2 \stackrel{b}{\rightarrow} 2 \stackrel{b}{\rightarrow} 2 \rightarrow$

Синтаксис арифметического выражения БНФ

Синтаксис арифметического выражения БНФ

КС-грамматика с итерациями

$$S \rightarrow A \ \{+A\}$$

 $A \rightarrow B \ \{*B\}$
 $B \rightarrow a \ | \ (S)$

$$S \rightarrow A \{ + A \}$$

$$A \rightarrow B \{ * B \}$$

$$B \rightarrow a \mid (S)$$

6

$$S \rightarrow A \{ + A \}$$

$$A \rightarrow B \{ * B \}$$

$$B \rightarrow a \mid (S)$$

6

$$S \rightarrow A \{ + A \}$$

$$A \rightarrow B \{ * B \}$$

$$B \rightarrow a \mid (S)$$

СД

6

$$S \rightarrow A \{ + A \}$$

$$A \rightarrow B \{ * B \}$$

$$B \rightarrow a \mid (S)$$

Преобразование СД в L-граф

Сомножитель

Input:

Итоги

Показан способ описания синтаксиса языков программирования с помощью бесконтекстных L-графов, обладающий свойствами:

- цельность описания
- наглядность изображения
- возможность масштабирования
- применимость в качестве основы
 для схем трансляции и интерпретации

Интерпретация на основе L-графа с действиями

