Numerical Comparison Summary

Qiyuan Pang

June 28, 2021

According to the preprint, we solve Kx = b by solving

$$\hat{K}^* \hat{K} x = \hat{K}^* b,$$

preconditioned with and without $\hat{G} = (\hat{K}^*\hat{K})^{-1}$. The following quantities are used in the rest of the section to evaluate the performance of the preconditioner:

- N: problem size;
- e_a : the relative error set for the butterfly approximation \hat{K} of K;
- ϵ : the fixed tolerance set in HIF/HQR;
- e_f : forward error of a factorization (HIF/HQR) (e.g., \hat{A} factorizes A, then $e_f = \|\hat{A}x Ax\|/\|Ax\|$);
- e_h : the accuracy of HODLR construction using the peeling algorithm.
- r_h : the maximum rank recorded from the HODLR construction above.
- e_s : the relative error of the approximation $\hat{G}\hat{K}^*$ of K^{-1} , defined as $\|\hat{G}\hat{K}^*b x\|/\|x\|$ where x is a random vector and b = Kx;
- n_i : the number of iterations used in PCG until covergence;
- e: the relative error of the solution returned by PCG.

Among all experiments below, the stopping criteria set for PCG is tolerance 1e - 8. **Examples (1D).** We begin with an example of 1D discrete FIO of the form

$$u(x) = \int_{\mathbb{R}} a(x)e^{2\pi i\Phi(x,\xi)}\hat{f}(\xi)d\xi$$

There are five 1D kernels to test here, as follows:

$$a = 1, \Phi(x, \xi) = x \cdot \xi + c(x)|\xi|, c(x) = (2 + \sin(2\pi x))/8, \tag{1}$$

$$a = 1, \Phi(x, \xi) = x \cdot \xi + c(x)\xi, c(x) = (2 + \sin(2\pi x))/6.5,$$
(2)

$$a = \sum_{k=0}^{n_k} e^{-\frac{(x-x_k)^2 + (\xi-\xi_k)^2}{\sigma^2}}, \sigma = 0.05, \Phi(x,\xi) = x \cdot \xi + c(x)|\xi|, c(x) = (2+\sin(2\pi x))/8,$$
 (3)

$$a = \sum_{k=0}^{n_k} e^{-\frac{(x-x_k)^2 + (\xi - \xi_k)^2}{\sigma^2}}, \sigma = 0.1, \Phi(x, \xi) = x \cdot \xi + c(x)|\xi|, c(x) = (2 + \sin(2\pi x))/8, \tag{4}$$

$$a = \sum_{k=0}^{n_k} e^{-\frac{(x-x_k)^2 + (\xi-\xi_k)^2}{\sigma^2}}, \sigma = 0.05, \Phi(x,\xi) = x \cdot \xi + c(x)|\xi|, c(x) = (2+\sin(2\pi x))/7,$$
 (5)

Note that the amplitude function a in (3), (4), and (5) are as the same as that in Example 2 in Lexing's preprint. Here we skip the exact formula of a.

Discretizing x and ξ on [0,1) and [-N/2, N/2) with N points,

$$x_i = (i-1)/N, \xi_j = j-1-N/2.$$

leads to the discrete system u = Kf.

Table 1 summarizes the results for 1D kernel (1). Table 2 summarizes the results for 1D kernel

- (2). Table 3 summarizes the results for 1D kernel (3). Table 4 summarizes the results for 1D kernel
- (4). Table 5 summarizes the results for 1D kernel (5).

Scaling. See Figure 1 for time scaling of the algorithms involved.

	$\hat{K} \approx K$	HOD	LR		HIF					HQR				
N	e_a	e_h	r_h	ϵ	e_f	e_s	n_i	e	e_f	e_s	n_i	e	n_i	e
2^{8}	9e-16	1e-05	10	1e-3	1e-05	2e-05	2	1e-09	4e-04	2e-04	3	1e-09	26	8e-09
		1e-06	14	1e-4	2e-06	3e-06	2	3e-11	3e-05	2e-05	2	1e-09	26	8e-09
2^{9}	3e-09	2e-05	10	1e-3	2e-05	2e-05	2	3e-09	4e-04	2e-04	3	2e-10	27	7e-09
		1e-06	14	1e-4	3e-06	3e-06	2	7e-11	3e-05	3e-05	2	1e-09	27	7e-09
2^{10}	2e-09	2e-05	10	1e-3	3e-05	3e-05	2	5e-09	3e-04	2e-04	3	1e-10	27	9e-09
		1e-06	14	1e-4	3e-06	4e-06	2	8e-11	3e-05	2e-05	2	1e-09	27	9e-09
2^{11}	6e-09	2e-05	10	1e-3	3e-05	3e-05	2	8e-09	3e-04	3e-04	3	1e-10	27	1e-08
		2e-06	14	1e-4	4e-06	4e-06	2	8e-11	3e-05	2e-05	2	1e-09	27	1e-08
2^{12}	4e-09	2e-05	10	1e-3	3e-05	3e-05	2	9e-09	3e-04	2e-04	3	1e-10	28	5e-09
		2e-06	14	1e-4	4e-06	4e-06	2	9e-11	3e-05	2e-05	2	1e-09	28	5e-09
2^{13}	9e-09	2e-05	10	1e-3	4e-05	3e-05	2	9e-09	3e-04	2e-04	3	1e-10	27	1e-08
		2e-06	14	1e-4	3e-06	3e-06	2	6e-11	3e-05	2e-05	2	1e-09	28	5e-09
2^{14}	6e-09	2e-05	10	1e-3	6e-05	4e-05	3	3e-11	3e-04	2e-04	3	1e-10	27	1e-08
		2e-06	14	1e-4	3e-06	3e-06	2	8e-11	3e-05	2e-05	2	1e-09	28	5e-09
2^{15}	1e-08	2e-05	10	1e-3	8e-05	6e-05	3	9e-11	3e-04	2e-04	3	1e-10	28	5e-09
		2e-06	14	1e-4	7e-06	7e-06	2	6e-10	3e-05	2e-05	2	1e-09	28	5e-09
2^{16}	6e-09	2e-05	10	1e-3	7e-05	6e-05	3	5e-11	3e-04	2e-04	3	1e-10	27	1e-08
		2e-06	14	1e-4	1e-05	1e-05	2	1e-09	3e-05	2e-05	2	1e-09	27	1e-08
2^{17}	1e-08	2e-05	10	1e-3	1e-04	7e-05	3	8e-11	3e-04	2e-04	3	1e-10	27	9e-09
		2e-06	14	1e-4	1e-05	1e-05	2	1e-09	3e-05	2e-05	2	1e-09	27	1e-08
2^{18}	7e-09	2e-05	10	1e-3	1e-04	7e-05	3	7e-11	3e-04	2e-04	3	1e-10	27	5e-09
		2e-06	14	1e-4	2e-05	2e-05	2	2e-09	3e-05	2e-05	2	1e-09	27	7e-09
2^{19}	1e-08	2e-05	10	1e-3	1e-04	1e-04	3	1e-10	3e-04	2e-04	3	1e-10	27	8e-09
		2e-06	14	1e-4	1e-05	2e-05	2	1e-09	3e-05	2e-05	2	1e-09	27	6e-09

Table 1: Numerical comparison between HIF and HQR. We solve 1D kernel (1) equation by using the approximate inverse $\hat{G}\hat{K}^*$ as preconditioners for PCG with tolerance 1e-8. We also solve the equation by pure CG without any preconditioners and set the maximum iteration number to be 200.

	$\hat{K} \approx K$	HOD	\overline{LR}		HIF					HQR				
N	e_a	e_h	r_h	ϵ	e_f	e_s	n_i	e	e_f	e_s	n_i	e	n_i	e
2^{8}	9e-16	3e-05	17	1e-3	1e-04	2e-04	3	9e-11	3e-04	4e-04	3	7e-10	32	9e-09
		3e-06	19	1e-4	1e-05	1e-05	2	8e-10	3e-05	3e-05	2	3e-09	32	9e-09
2^{9}	2e-09	4e-05	18	1e-3	3e-04	2e-04	3	2e-10	3e-04	3e-04	3	5e-10	38	1e-08
		7e-06	20	1e-4	3e-05	2e-05	2	3e-09	2e-05	3e-05	2	5e-09	38	1e-08
2^{10}	2e-09	5e-05	19	1e-3	6e-04	3e-04	3	1e-09	4e-04	3e-04	3	1e-09	45	9e-09
		2e-05	20	1e-4	4e-05	3e-05	3	3e-12	3e-05	3e-05	2	1e-08	45	1e-08
2^{11}	8e-09	4e-05	20	1e-3	4e-04	3e-04	3	1e-09	5e-04	3e-04	3	3e-09	54	1e-08
		2e-05	20	1e-4	6e-05	5e-05	3	2e-11	5e-05	5e-05	3	1e-11	54	9e-09
2^{12}	4e-09	5e-05	20	1e-3	7e-04	4e-04	3	9e-09	3e-04	4e-04	3	1e-09	62	1e-08
		2e-05	20	1e-4	8e-05	6e-05	3	8e-11	4e-05	4e-05	3	8e-11	62	1e-08
2^{13}	1e-08	4e-05	20	1e-3	9e-04	4e-04	3	6e-09	4e-04	3e-04	3	9e-10	69	1e-08
		1e-05	20	1e-4	6e-05	6e-05	3	3e-11	3e-05	3e-05	3	2e-11	69	1e-08
2^{14}	5e-09	4e-05	20	1e-3	1e-03	4e-04	4	6e-11	4e-04	3e-04	3	1e-09	75	9e-09
		2e-05	20	1e-4	8e-05	6e-05	3	4e-11	4e-05	3e-05	3	3e-11	76	7e-09
2^{15}	1e-08	4e-05	20	1e-3	9e-04	4e-04	4	5e-11	4e-04	3e-04	3	1e-09	76	1e-08
		1e-05	20	1e-4	8e-05	7e-05	3	3e-11	3e-05	3e-05	3	2e-11	76	1e-08
2^{16}	7e-09	4e-05	20	1e-3	1e-03	4e-04	4	1e-10	4e-04	3e-04	3	9e-10	77	8e-09
		1e-05	20	1e-4	1e-04	7e-05	3	5e-11	3e-05	2e-05	3	3e-11	77	8e-09
2^{17}	2e-08	4e-05	20	1e-3	1e-03	4e-04	4	5e-11	4e-04	3e-04	3	9e-10	77	8e-09
		8e-06	20	1e-4	1e-04	8e-05	3	4e-11	3e-05	2e-05	2	2e-08	77	8e-09
2^{18}	8e-09	4e-05	20	1e-3	1e-03	4e-04	4	9e-11	4e-04	3e-04	3	1e-09	77	8e-09
		9e-06	20	1e-4	1e-04	8e-05	3	5e-11	3e-05	2e-05	2	1e-08	77	8e-09
2^{19}	2e-08	4e-05	20	1e-3	1e-03	4e-04	4	1e-10	4e-04	3e-04	3	9e-10	77	8e-09
		7e-06	20	1e-4	1e-04	9e-05	3	8e-11	3e-05	2e-05	2	1e-08	77	8e-09

Table 2: Numerical comparison between HIF and HQR. We solve 1D kernel (2) equation by using the approximate inverse $\hat{G}\hat{K}^*$ as preconditioners for PCG with tolerance 1e-8. We also solve the equation by pure CG without any preconditioners and set the maximum iteration number to be 200.

	$\hat{K} \approx K$	HODLR				HIF			HQI	Pure CG				
N	e_a	e_h	r_h	ϵ	e_f	e_s	n_i	e	e_f	e_s	n_i	e	n_i	e
2^{8}	1e-15	7e-06	11	1e-3	5e-05	5e-04	3	8e-08	2e-04	2e-03	5	4e-07	187	1e-02
		1e-06	14	1e-4	5e-06	7e-05	2	1e-07	2e-05	5e-04	3	7e-06	187	1e-02
2^{9}	3e-09	1e-05	10	1e-3	2e-05	5e-04	3	7e-08	1e-04	3e-03	5	1e-07	200	2e-02
		1e-06	14	1e-4	6e-06	1e-04	2	2e-07	1e-05	7e-05	3	1e-07	200	2e-02
2^{10}	2e-09	1e-05	10	1e-3	4e-05	5e-04	3	1e-07	3e-04	2e-03	4	9e-07	193	3e-02
		1e-06	13	1e-4	5e-06	1e-04	2	5e-07	1e-05	3e-04	3	2e-07	193	3e-02
2^{11}	6e-09	1e-05	10	1e-3	5e-05	7e-04	3	1e-07	2e-04	2e-03	5	5e-06	197	5e-02
		1e-06	13	1e-4	5e-06	1e-04	2	4e-07	1e-05	3e-04	3	1e-06	197	5e-02
2^{12}	4e-09	1e-05	10	1e-3	5e-05	6e-04	3	1e-07	2e-04	2e-03	6	2e-06	196	4e-02
		1e-06	13	1e-4	5e-06	1e-04	2	4e-07	2e-05	2e-04	3	3e-06	196	4e-02
2^{13}	9e-09	1e-05	10	1e-3	4e-05	6e-04	3	1e-07	2e-04	2e-03	4	5e-06	199	6e-02
		1e-06	13	1e-4	6e-06	1e-04	2	4e-07	2e-05	2e-04	3	3e-06	198	5e-02
2^{14}	6e-09	1e-05	10	1e-3	5e-05	8e-04	3	1e-06	2e-04	1e-03	4	1e-07	200	5e-02
		1e-06	13	1e-4	5e-06	1e-04	2	6e-07	2e-05	2e-04	3	6e-07	199	5e-02
2^{15}	9e-09	1e-05	10	1e-3	7e-05	1e-03	4	8e-07	2e-04	1e-03	5	3e-06	200	5e-02
		1e-06	13	1e-4	2e-05	5e-04	3	1e-07	2e-05	2e-04	3	7e-07	200	5e-02
2^{16}	6e-09	1e-05	10	1e-3	8e-05	1e-03	4	1e-07	2e-04	1e-03	4	4e-06	200	5e-02
		1e-06	13	1e-4	2e-05	5e-04	3	1e-07	2e-05	2e-04	3	2e-06	200	5e-02
2^{17}	1e-08	1e-05	10	1e-3	9e-05	1e-03	4	7e-07	2e-04	1e-03	6	3e-06	200	5e-02
		1e-06	13	1e-4	2e-05	5e-04	3	1e-07	2e-05	1e-04	3	2e-06	200	5e-02
2^{18}	8e-09	1e-05	10	1e-3	9e-05	1e-03	4	2e-06	2e-04	1e-03	4	5e-06	200	5e-02
		1e-06	13	1e-4	3e-05	6e-04	3	2e-07	2e-05	1e-04	3	3e-07	200	5e-02
2^{19}	1e-08	1e-05	10	1e-3	1e-04	1e-03	4	2e-06	2e-04	1e-03	5	2e-06	200	5e-02
		1e-06	13	1e-4	3e-05	6e-04	3	1e-07	2e-05	1e-04	3	1e-07	200	5e-02

Table 3: Numerical comparison between HIF and HQR. We solve 1D kernel (3) equation by using the approximate inverse $\hat{G}\hat{K}^*$ as preconditioners for PCG with tolerance 1e-8. We also solve the equation by pure CG without any preconditioners and set the maximum iteration number to be 200.

	$\hat{K} \approx K$	HOD	LR			HIF			HQI	Pure CG				
N	e_a	e_h	r_h	ϵ	e_f	e_s	n_i	e	e_f	e_s	n_i	e	n_i	e
2^{8}	1e-15	8e-06	13	1e-3	6e-05	9e-05	3	9e-12	5e-04	4e-04	3	4e-09	106	1e-07
		1e-06	16	1e-4	5e-06	1e-05	2	4e-10	5e-05	5e-05	2	2e-08	106	1e-07
2^{9}	3e-09	1e-05	13	1e-3	5e-05	8e-05	3	6e-11	4e-04	5e-04	3	3e-09	128	9e-08
		1e-06	17	1e-4	5e-06	9e-06	2	1e-09	3e-05	7e-05	2	4e-08	128	9e-08
2^{10}	2e-09	1e-05	14	1e-3	6e-05	9e-05	3	6e-11	4e-04	5e-04	3	3e-09	145	1e-07
		1e-06	18	1e-4	5e-06	9e-06	2	7e-10	4e-05	6e-05	3	1e-11	145	1e-07
2^{11}	6e-09	1e-05	14	1e-3	5e-05	1e-04	3	1e-10	4e-04	5e-04	3	4e-08	158	1e-07
		1e-06	19	1e-4	5e-06	1e-05	2	1e-09	5e-05	5e-05	2	3e-08	158	1e-07
2^{12}	4e-09	1e-05	15	1e-3	5e-05	1e-04	3	8e-10	4e-04	5e-04	3	5e-09	164	1e-07
		2e-06	19	1e-4	5e-06	1e-05	2	1e-09	4e-05	6e-05	2	1e-08	165	1e-07
2^{13}	9e-09	1e-05	15	1e-3	7e-05	2e-04	3	1e-09	4e-04	5e-04	3	4e-09	170	1e-07
		2e-06	20	1e-4	1e-05	3e-05	2	1e-08	4e-05	6e-05	2	1e-08	170	1e-07
2^{14}	6e-09	1e-05	16	1e-3	1e-04	2e-04	3	2e-09	4e-04	5e-04	3	4e-09	171	1e-07
		2e-06	20	1e-4	2e-05	4e-05	2	1e-08	4e-05	5e-05	2	1e-08	170	1e-07
2^{15}	1e-08	1e-05	16	1e-3	1e-04	3e-04	3	3e-09	4e-04	5e-04	3	4e-09	171	1e-07
		2e-06	20	1e-4	1e-05	3e-05	2	1e-08	4e-05	5e-05	2	1e-08	171	1e-07
2^{16}	8e-09	1e-05	17	1e-3	1e-04	3e-04	3	7e-09	4e-04	5e-04	3	2e-09	172	1e-07
		2e-06	20	1e-4	2e-05	4e-05	2	1e-08	4e-05	6e-05	2	1e-08	171	1e-07
2^{17}	1e-08	1e-05	17	1e-3	2e-04	4e-04	4	3e-10	4e-04	5e-04	3	3e-09	171	1e-07
		2e-06	20	1e-4	1e-05	3e-05	2	1e-08	4e-05	5e-05	2	1e-08	172	1e-07
2^{18}	7e-09	1e-05	18	1e-3	2e-04	4e-04	4	5e-10	4e-04	5e-04	3	3e-09	172	1e-07
		3e-06	20	1e-4	2e-05	5e-05	2	4e-08	4e-05	6e-05	2	3e-08	172	1e-07
2^{19}	1e-08	1e-05	18	1e-3	2e-04	5e-04	4	4e-09	4e-04	5e-04	3	3e-09	172	1e-07
		3e-06	20	1e-4	1e-05	3e-05	2	3e-08	4e-05	5e-05	2	3e-08	172	1e-07

Table 4: Numerical comparison between HIF and HQR. We solve 1D kernel (4) equation by using the approximate inverse $\hat{G}\hat{K}^*$ as preconditioners for PCG with tolerance 1e-8. We also solve the equation by pure CG without any preconditioners and set the maximum iteration number to be 200.

	$\hat{K} \approx K$	HOD.	LR		HIF				HQ	Pure CG				
N	e_a	e_h	r_h	ϵ	e_f	e_s	n_i	e	e_f	e_s	n_i	e	n_i	e
2^{8}	9e-16	2e-05	14	1e-3	1e-04	1e-03	3	2e-06	5e-04	2e-02	186	1e-03	193	2e-02
		1e-06	17	1e-4	1e-05	2e-04	3	2e-08	4e-05	2e-04	3	3e-07	193	2e-02
2^{9}	4e-09	2e-05	14	1e-3	1e-04	1e-03	3	9e-07	3e-04	4e-03	11	8e-06	185	4e-02
		1e-06	18	1e-4	2e-05	4e-04	3	1e-08	8e-05	1e-03	4	1e-07	185	4e-02
2^{10}	3e-09	2e-05	14	1e-3	1e-04	3e-03	4	3e-07	6e-04	3e-03	31	5e-06	200	4e-02
		2e-06	17	1e-4	2e-05	4e-04	3	3e-08	5e-05	2e-04	3	2e-06	200	4e-02
2^{11}	7e-09	3e-05	14	1e-3	2e-04	4e-03	4	1e-06	5e-04	4e-03	13	1e-05	200	7e-02
		2e-06	17	1e-4	1e-05	4e-04	3	2e-08	6e-05	4e-04	3	2e-06	200	7e-02
2^{12}	6e-09	2e-05	14	1e-3	3e-04	4e-03	5	1e-07	4e-04	4e-03	10	5e-06	196	7e-02
		2e-06	17	1e-4	2e-05	3e-04	3	5e-08	6e-05	5e-04	3	3e-06	198	6e-02
2^{13}	9e-09	2e-05	14	1e-3	2e-04	5e-03	5	1e-06	5e-04	2e-03	109	4e-05	200	8e-02
		2e-06	17	1e-4	3e-05	8e-04	3	5e-07	6e-05	2e-04	3	3e-07	200	7e-02
2^{14}	6e-09	2e-05	14	1e-3	3e-04	5e-03	5	1e-06	4e-04	2e-03	6	2e-06	200	7e-02
		2e-06	17	1e-4	4e-05	8e-04	3	4e-07	5e-05	3e-04	3	1e-06	198	8e-02
2^{15}	1e-08	2e-05	14	1e-3	3e-04	7e-03	6	7e-07	5e-04	2e-03	11	1e-05	197	8e-02
		2e-06	17	1e-4	4e-05	9e-04	3	4e-07	5e-05	2e-04	3	7e-07	198	8e-02
2^{16}	6e-09	2e-05	14	1e-3	3e-04	6e-03	6	1e-06	5e-04	1e-03	4	8e-06	197	9e-02
		2e-06	17	1e-4	5e-05	1e-03	3	7e-07	5e-05	3e-04	3	4e-08	200	8e-02
2^{17}	1e-08	2e-05	14	1e-3	3e-04	7e-03	6	5e-07	5e-04	1e-03	6	3e-06	200	9e-02
		2e-06	17	1e-4	5e-05	9e-04	3	6e-07	5e-05	2e-04	3	7e-07	200	9e-02
2^{18}	8e-09	2e-05	14	1e-3	3e-04	7e-03	6	1e-06	5e-04	2e-03	5	6e-06	200	8e-02
		2e-06	17	1e-4	6e-05	1e-03	3	8e-07	5e-05	2e-04	3	9e-07	200	9e-02
2^{19}	1e-08	2e-05	14	1e-3	3e-04	6e-03	6	2e-06	5e-04	1e-03	6	3e-06	200	9e-02
		2e-06	17	1e-4	6e-05	1e-03	3	7e-07	5e-05	2e-04	4	2e-07	200	9e-02

Table 5: Numerical comparison between HIF and HQR. We solve 1D kernel (5) equation by using the approximate inverse $\hat{G}\hat{K}^*$ as preconditioners for PCG with tolerance 1e-8. We also solve the equation by pure CG without any preconditioners and set the maximum iteration number to be 200.

Figure 1: The upper left, upper right, lower left, and lower right plot the time scaling of HIF/HQR factorization, peeling algorithm, application of HIF/HQR factorization, and backward application of HIF/HQR factorization, respectively.