

الفصل الثاني:

سندرس رسم قوس جزء من الدائرة لكن لا يمكن أن نستخدم bresenham لأن القوس ليس بالضرورة قياسه 45°.

1 طريقة متعدد الحدود:

$$x_2 \stackrel{x+1}{\longleftarrow} x_1$$

$$y = \sqrt{}$$

المثلثية:

$$x = a \cdot \cos \theta + k$$
$$y = a \cdot \cos \theta + n$$

 $x=x_1$ نتوقف عندما ويتوقف عندما -رسم القطاع:

- θ_2 الى والى θ_2 الى 1.
- $(r\cdot\cos heta_1+n\ ,r\cdot\sin heta_1+k)$ للى $(n\ ,k)$ الى الحويل مسح مستقيم من $(n\ ,k)$
- $(r\cdot\cos heta_2+n\ ,r\cdot\sin heta_2+k)$ للى $(n\ ,k)$ الى 3.
 - » تأتي كخوارزمية «"هل هذه الخوارزمية تقوم برسم القطاع ام لا؟ (امتحان)"

-رسم مستطيل:

هو عبارة عن تجميع 4 مستقيمات

توقيع الرأسين المتنقيين (س) غير مفهوم (س) القيام برسم

رسوميات حاسوبية

المحاضرة: 6

مستقیمات بین کل نقطتین متجاورتین.

y إضاءة رؤوس الشكل تبدأ من أقل y إلى أعظم y ثم من أقل x إلى أعظم

 $(x_1,y_1)U_1$ نبدأ عند

$$y_{scan} = y_1$$

$$V_3$$

$$E_2$$

$$V_4$$

$$V_4$$

$$V_4$$

$$V_4$$

$$V_6$$

$$V_5$$

المعرفة الميل حتى نحسب نقاط التقاطع x الجديدة التي تنتمي للمستقيم y+1 \Rightarrow Δy $y_1+\tilde{1}$ $x+\Delta x$

$$\begin{vmatrix} y+1 \end{vmatrix} = \frac{\Delta y}{\Delta y}$$

$$y_1 + \hat{1}$$

$$x + \Delta x$$

$$x + \frac{1}{m_1}$$

النقطة التالية للمسح:
$$\left(x+\frac{1}{m_1}\;,y_1+1\right)\quad E_1\;$$
 من اجل

رسوميات حاسوبية

$$\left(x_1+\frac{1}{m_7},y+1\right)$$
 من اجل E_2

من أجل مستقيم المسح الذي فيه 4 نقاط:

3 4 1 2

تبدأ بقسم نقاط التقاطع إلى أزواج $(\widetilde{C},\widetilde{D})$, $(\widetilde{A},\widetilde{B})$ أو تعطى الترتيبات ، يبدأ الرسم من النقطة الفردية وصولاً إلى النقطة الزوج (المكافئ الفردي)

- v_1 , v_3 دنيا / دنيا 1.
- v_5 , v_6 او الله عليا / دنيا v_5 , موضعية (خط أفقي) عليا / دنيا v_5
 - v_2 , v_4 متزایدة v_2 , راویة متناقصة v_2

كيفية التعامل مع الزوايا

- 1) يفرز زوج من النقاط والوصل بينها طريقة التعامل مع الزاوية العليا / الدنيا-.
 - 2) نقطة تقاطع واحدة مع الطرف الذي له ميل لأنه يرسم بشكل أوتوماتيكي-.
 - 3) -الزاوية المتناقصة-

رسوميات حاسوبية المحاضرة: 6

-عندما يكون في الجدول $y_{scan}=y_2$ ماذا يكون في الجدول؟ يجب أن ينتهي عندما يصبح y_4-1 لأن عند y_4 يبدأ المستقيم التالي بالرسم منه.

ET جدول الرؤوس Edje table الكاملة

AET جدول الرؤوس Active edje table

ET:

 E_1 , E_7 , E_4 , E_6 , E_2 , E_3

AET: **Empty**

 $y_{scan} = y_1$

AET

 E_1 , E_2

 $y_{scan} = y_2 - 1$

ET

 E_4 , E_6 , E_2 , E_3

 E_1 مسح E_1 عملية معالجة عملية عملية حملية

 $y_{scan} = y_4 - 4$ في حالة كانت

"انتهى E_4 وخرج من جدول Active وبدأ و E_3 مع E_4 بالمعالجة"

AET داخل E_4 $y_{scan} = y_4 - 1$ ET خارج E_4 $y_{scan} = y_4$

<u>سىؤال:</u>

في اللحظة 1

رسوميات حاسوبية المحاضرة: 6

 V_4 (x_4, y_4)

Mh.

 $V_3 (x_3, y_3)$ $V_2(x_2, y_2)$ $V_1(x_1, y_1)$ *ET*: 2, 1, 3, 4

AET: empty

ET: 3,4*AET*: 2,1

ET: 4 *AET*: 2,3

empty ET: *AET*: 4,3

ET: empty AET: empty y_4 عند الوصول إلى y_4

النظام الثماثي

النظام الرباعي للملء

 $y_{scan} = y_1$

 $y_{scan} = y_2$

 $y_{scan} = y_3$

رسوميات حاسوبية المحاضرة: 6

أعضاء الفريق

الفريق التدقيقي

رها الديبو علا زلط روان درویش

الفريق الدراسي

عبدالوهاب كعكة سهام البيوش ملك المصرى روان درویش ملك قرعيش سلوی حمامی راما بابنسى لبنى صاري إسراء حاج موسى

الفريق التقني

صفوان الحجى عبدالوهاب كعكة محمد حذيفة أصيل رغد الداهودي

me/ITE19ALEPPO

fb.com/groups/ITE19ALEPPO

