Master thesis presentation: Mining adverse events from healthcare data

Dries Van Daele

KU Leuven, DTAI

6 september, 2013

Problem description

Problem: voluntary reporting records a fraction of the adverse events

manual detection

- is costly
- is limited in scope
- is driven by intuition

data mining

- treats all patient data uniformly
- can reason over all relevant data
- enables automation
- makes biases explicit

Problem description

Task: Apply data mining on a given database to detect adverse events or discover novel adverse event triggers

Figure: http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1996-Fayyad.pdf

patient_id	birth_date	gender
patient_1	07-MAR-1965	М

medical_case_id	patient_id	admission_date	discharge_date
medical_case_100 medical_case_101	•	12-JUL-2007 03-FEB-2008	28-JUL-2007 06-FEB-2008

diagnose_id	medical_case_id	ICD_code
•	medical_case_101 medical_case_101	

relational schema

direct (isomorphic) mapping (automated)

local ontology

ontology to ontology mapping

domain ontology

Figure:

http://www.w3.org/2001/sw/rdb2rdf/use-cases/

relational schema

direct (isomorphic) mapping (automated)

local ontology

ontology to ontology mapping

domain ontology

```
@prefix orgStructure: <a href="http://www.example.org/ddo/orgStructure#">http://www.example.org/ddo/orgStructure#</a>.
@prefix space: <a href="http://eulersharp.sourceforge.net/2003/03swap/space#">http://eulersharp.sourceforge.net/2003/03swap/space#</a>
{
    _:structure
        orgStructure:structID ?s;
        orgStructure:innerStructID ?is .
} => {
        ?is space:containedBy ?s .
}.

{
        ?startNode space:containedBy ?middleNode .
        ?middleNode space:containedBy ?endNode .
} => {
            ?startNode space:containedBy ?endNode .
}.
```


- include ATC and ICD hierarchy
- \blacksquare add ad hoc predicates (≈ 150 e.g. discretise age, distinguish acute from chronic disorders)
- final theory \approx 43,000,000 clauses (103,256 patients, 15649 drugs prescribed)

Problem:

whether a disorder is an adverse event depends entirely on context, difficult to capture in a monolithic model

Problem:

 whether a disorder is an adverse event depends entirely on context, difficult to capture in a monolithic model

Solution:

split detection task up by treatment or trigger

Problem:

no labelled data

Problem:

no labelled data

Solution:

reverse machine learning to target relevant patterns

Problem:

no labelled data

Solution:

- reverse machine learning to target relevant patterns
- performed MONADIC experiment

Collecting evidence

Collecting evidence

	positive examples	negative examples
BUN>60 mg/dl	531	1477
readm. within 30 days	37058	222388
Agopton	141	141
Marcoumar	166	166
Nexium	224	224
Plavix	174	174
Trental	80	80
Urosin	121	121

Table: Target attribute characteristics

Exploratory manual detection of adverse events

Problem:

■ No notion of amount of adverse events in data

Exploratory manual detection of adverse events

Problem:

No notion of amount of adverse events in data

Solution:

 Manually evaluate portion of the drug data (one drug retention period after prescription)

Exploratory manual detection of adverse events

Used FAERS data to filter disorders:

support relational input data

- support relational input data
 - examples are Prolog facts
 - hypothesis is a set of clauses (learning a predicate)
 - background knowledge can rely on all Prolog features

- support relational input data
 - examples are Prolog facts
 - hypothesis is a set of clauses (learning a predicate)
 - background knowledge can rely on all Prolog features
- perform induction

- support relational input data
 - examples are Prolog facts
 - hypothesis is a set of clauses (learning a predicate)
 - background knowledge can rely on all Prolog features
- perform induction
 - Progol algorithm

- support relational input data
 - examples are Prolog facts
 - hypothesis is a set of clauses (learning a predicate)
 - background knowledge can rely on all Prolog features
- perform induction
 - Progol algorithm
- incorporate reverse machine learning

- support relational input data
 - examples are Prolog facts
 - hypothesis is a set of clauses (learning a predicate)
 - background knowledge can rely on all Prolog features
- perform induction
 - Progol algorithm
- incorporate reverse machine learning
 - using positive and negative examples of the chosen target attribute

- support relational input data
 - examples are Prolog facts
 - hypothesis is a set of clauses (learning a predicate)
 - background knowledge can rely on all Prolog features
- perform induction
 - Progol algorithm
- incorporate reverse machine learning
 - using positive and negative examples of the chosen target attribute
- handle probability

- support relational input data
 - examples are Prolog facts
 - hypothesis is a set of clauses (learning a predicate)
 - background knowledge can rely on all Prolog features
- perform induction
 - Progol algorithm
- incorporate reverse machine learning
 - using positive and negative examples of the chosen target attribute
- handle probability
 - clause evaluation functions rely on frequency counts of the true and false positives

Aleph usage

space of legal clauses is extremely large, search is not sufficiently targeted:

- vocabulary consisting of derivative predicates
- user-defined prune statements (e.g. limit number of disorders referenced in a clause)
- integrity constraints

acceptable clauses need to

- not be trivial: cover at least 2 positive examples
- have a precision of at least 60%

Conclusions: BUN

Predicted example class

Actual example class

	Positive	Negative
Positive	65	466
Negative	1	1476
Total	66	1942

Table: confusion matrix for the theory on the BUN>60 mg/dl trigger

- predict as positive only those examples that contain likely adverse events
- return rules that strongly correlate with the targeted treatment/trigger: only 1 FP

- Medication:
 - Problem: limited amount of data + heterogeneous set of adverse events

- Problem: limited amount of data + heterogeneous set of adverse events
- Conclusion: strongest correlation with other treatments (combination therapy), majority of likely AEs indistinguishable from random events

- Medication:
 - Problem: limited amount of data + heterogeneous set of adverse events
 - Conclusion: strongest correlation with other treatments (combination therapy), majority of likely AEs indistinguishable from random events
- Readmission within 30 days:
 - Problem: rules focus on patterns involving chronic disorders

- Medication:
 - Problem: limited amount of data + heterogeneous set of adverse events
 - Conclusion: strongest correlation with other treatments (combination therapy), majority of likely AEs indistinguishable from random events
- Readmission within 30 days:
 - Problem: rules focus on patterns involving chronic disorders
 - Solution: introduce predicate that excludes chronic disorders & neoplasms

- Problem: limited amount of data + heterogeneous set of adverse events
- Conclusion: strongest correlation with other treatments (combination therapy), majority of likely AEs indistinguishable from random events
- Readmission within 30 days:
 - Problem: rules focus on patterns involving chronic disorders
 - Solution: introduce predicate that excludes chronic disorders & neoplasms
 - Problem: limiting available diagnoses to specific period ignores useful information

- Problem: limited amount of data + heterogeneous set of adverse events
- Conclusion: strongest correlation with other treatments (combination therapy), majority of likely AEs indistinguishable from random events
- Readmission within 30 days:
 - Problem: rules focus on patterns involving chronic disorders
 - Solution: introduce predicate that excludes chronic disorders & neoplasms
 - Problem: limiting available diagnoses to specific period ignores useful information
 - Solution: allow diagnoses that capture relevant health status (e.g. diagnosed with allergies)

- Problem: limited amount of data + heterogeneous set of adverse events
- Conclusion: strongest correlation with other treatments (combination therapy), majority of likely AEs indistinguishable from random events
- Readmission within 30 days:
 - Problem: rules focus on patterns involving chronic disorders
 - Solution: introduce predicate that excludes chronic disorders & neoplasms
 - Problem: limiting available diagnoses to specific period ignores useful information
 - Solution: allow diagnoses that capture relevant health status (e.g. diagnosed with allergies)
 - Conclusion: reasonable set of interesting rules can be retrieved

Questions

Thanks for your attention