CS4102 Algorithms

Fall 2018

Warm up

Given any 5 points on the unit square, show there's always a pair distance $\leq \frac{\sqrt{2}}{2}$ apart

If points p_1, p_2 in same quadrant, then $\delta(p_1, p_2) \leq \frac{\sqrt{2}}{2}$

Given 5 points, two must share the same quadrant

Pigeonhole Principle!

Today's Keywords

- Solving recurrences
- Cookbook Method
- Master Theorem
- Substitution Method

CLRS Readings

• Chapter 4

Homework

- Hw1 due 11pm Wednesday, Sept 12
 - Written (use Latex!)
 - Asymptotic notation
 - Recurrences
 - Divide and conquer
- Hw2 released Thursday, Sept 13
 - Programming assignment (Python or Java)
 - Divide and conquer

Homework

- Hw1 due 11pm Wednesday, Sept 12 Friday, Sept 14
 - Written (use Latex!)
 - Asymptotic notation
 - Recurrences
 - Divide and conquer
- Hw2 released Thursday, Sept 13
 - Programming assignment (Python or Java)
 - Divide and conquer

Recurrence Solving Techniques

"Cookbook"

Guess and Check Intuition

- To Prove: T(n) = O(g(n))
- Consider: $g_*(n) = O(g(n))$
- Goal: show $\exists n_0$ s.t. $\forall n > n_0$, $T(n) \le g_*(n)$
 - (definition of big-O)
- Technique: Induction
 - Base cases:
 - show $T(1) \le g_*(1), T(2) \le g_*(2), \dots$ for a small number of cases
 - Hypothesis:
 - $\forall n \leq x_0, T(n) \leq g_*(n)$
 - Inductive step:
 - $T(x_0 + 1) \le g_*(x_0 + 1)$

Karatsuba Guess and Check

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Goal:
$$T(n) \le 24n^{\log_2 3} - 16n = O(n^{\log_2 3})$$

Base cases: by inspection, holds for small n (at home)

Hypothesis:
$$\forall n \leq x_0, T(n) \leq 24n^{\log_2 3} - 16n$$

Inductive step:
$$T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} - 16(x_0 + 1)$$

What if we leave out the -16n?

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$
Goal:
$$T(n) \le 24n^{\log_2 3} - 16n = O(n^{\log_2 3})$$

Base cases: by inspection, holds for small n (at home)

Hypothesis: $\forall n \leq x_0, T(n) \leq 24n^{\log_2 3} - 16n$

Inductive step:
$$T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} - 16(x_0 + 1)$$

What we wanted: $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3}$ Induction failed! What we got: $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} + 8(x_0 + 1)$

"Bad Mergesort" Guess and Check

$$T(n) = 2T(\frac{n}{2}) + 209n$$

Goal: $T(n) \le 209n \log_2 n = O(n \log_2 n)$

Base cases: T(1) = 0

 $T(2) = 518 \le 209 \cdot 2 \log_2 2$

... up to some small k

Hypothesis: $\forall n \leq x_0, T(n) \leq 209n \log_2 n$

Inductive step: $T(x_0 + 1) \le 209(x_0 + 1) \log_2(x_0 + 1)$

Recurrence Solving Techniques

"Cookbook"

Observation

- Divide: D(n) time,
- Conquer: recurse on small problems, size s
- Combine: C(n) time
- Recurrence:

$$-T(n) = D(n) + \sum T(s) + C(n)$$

Many D&C recurrences are of the form:

$$-T(n) = aT\left(\frac{n}{b}\right) + f(n),$$
 where $f(n) = D(n) + C(n)$

Remember...

- Better Attendance: $T(n) = T(\frac{n}{2}) + 2$
- MergeSort: $T(n) = 2 T\left(\frac{n}{2}\right) + n$
- D&C Multiplication: $T(n) = 4T(\frac{n}{2}) + 5n$
- Karatsuba: $T(n) = 3T(\frac{n}{2}) + 8n$

General

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

3 Cases

Master Theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a} \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

Proof of Case 1

$$T(n) = \sum_{i=0}^{\log_b n} a^i f\left(\frac{n}{b^i}\right),\,$$

$$f(n) = O(n^{\log_b a - \varepsilon}) \Rightarrow f(n) \le c \cdot n^{\log_b a - \varepsilon}$$

Insert math here...

Conclusion: $T(n) = O(n^{\log_b a})$

Master Theorem Example 1

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Case 2

$$\Theta(n^{\log_2 2} \log n) = \Theta(n \log n)$$

Master Theorem Example 2

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Case 1

$$\Theta(n^{\log_2 4}) = \Theta(n^2)$$

Master Theorem Example 3

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Case 1

$$\Theta(n^{\log_2 3}) \approx \Theta(n^{1.5})$$

Karatsuba

Master Theorem Example 4

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + 15n^3$$

Case 3

$$\Theta(n^3)$$

Recurrence Solving Techniques

"Cookbook"

Substitution Method

• Idea: take a "difficult" recurrence, re-express it such that one of our other methods applies.

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

$$T(n) = O(\log_2 n \cdot \log_2 \log_2 n)$$

Substitution Method

- Idea: take a "difficult" recurrence, re-express it such that one of our other methods applies.
- Example:

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

Let
$$n = 2^m$$
, i.e. $m = \log_2 n$

$$T(2^m) = 2T(2^{\frac{m}{2}}) + m$$
 Rewrite in terms of exponent!

Let
$$S(m) = 2S\left(\frac{m}{2}\right) + m$$
 Case 2!

Let
$$S(m) = \Theta(m \log m)$$
 Substitute Back

Let
$$T(n) = \Theta(\log n \log \log n)$$

$$n = 2^m \qquad T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$$

$$n = 2^m$$
 $T(2^m) = 2T(2^m) + \log_2 n$

$$n = 2^{m} \qquad S(m) = 2S\left(\frac{m}{2}\right) + m$$

$$T(2^{m}) = S(m)$$

$$m$$

$$m$$

$$m$$

$$m/2 \quad \frac{m}{2} \quad + \quad m/2 \quad \frac{m}{2} \quad m$$

$$m/4 \quad \frac{m}{4} \quad + \quad m/4 \quad \frac{m}{4} \quad + \quad m/4 \quad \frac{m}{4} \quad m$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad m$$

$$T(n) = O(m \cdot \log_2 m) = O(\log_2 n \cdot \log_2 \log_2 n)$$