6. 时序逻辑电路

- 6.1 概 述
- 6.2 时序逻辑电路的分析
- 6.3 常用时序逻辑电路
- 6.4 时序逻辑电路的设计

6.1 概述

- 一、时序逻辑电路与组合逻辑电路的比较
 - 1、组合逻辑电路的一般结构

Z = F(X)

特点:

(1) 电路结构上 (2) 输出与输入的关系上

6.1 概 述

2、时序逻辑电路的一般结构

6.1 概述

二、时序逻辑电路的概念及特点

1、概念

任何时刻的输出不仅取决于当时的输入, 而且取决于 电路原来的状态. 即与以往的输入有关。

2、特点

- (1) 在电路结构上, 时序电路除包含组合电路外, 还 必须包括存储电路 (通常由触发器构成);
- (2) 在输出与输入的关系上,存储电路的输出必须反馈 到组合电路的输入端,与输入信号共同决定组合电 路的输出。

三、时序逻辑电路的分类

1、按触发器的翻转特点

同步: 所有触发器状态变化在同一时钟作用下,

同时发生:速度快:但结构相对复杂

异步: 触发器状态变化不是同时发生; 速度慢;

2、按输出信号的特点

穆尔型:输出Z仅与触发器的状态 Q^n 有关,而与外部输入X 无关; $Z=F_1 \ (Q^n)$

米利型: 输出Z不仅与触发器的状态Qn有关, 而且与外部输入X有关;

$$Z = F_1 (X, Q^n)$$

一、任务

已知时序逻辑电路图, 求逻辑功能。

根据给定的时序逻辑电路, 找出该电路在输入信号及时钟脉冲的作用下,

- ① 触发器电路状态转移的规律
- ② 电路输出变化的规律

从而确定电路的逻辑功能。

- 二、分析步骤
 - ◆ 根据给定的时序电路, 写出各组方程式。
 - ♦ 时钟方程 (CP)
 - ◆ 驱动方程 (D; J、K)
 - ◆ 状态方程 (Q n+1)
 - ◆ 输出方程 (Z)

 - ♦ 概括电路的逻辑功能

例1、分析同步时序电路

TTL 电路悬空的输入端当作1处理

解:

- 1、根据逻辑图,写出各组方程。
 - ① 时钟方程: $CP_1 = CP_2 = CP_3 = CP \downarrow$
 - ② 驱动方程:

$$\begin{cases} J_1 = \overline{Q}_3^n \\ K_1 = 1 \end{cases}, \begin{cases} J_2 = Q_1^n \\ K_2 = Q_1^n \end{cases}, \begin{cases} J_3 = Q_1^n \cdot Q_2^n \\ K_3 = 1 \end{cases}$$

③ 状态方程

将驱动方程代入 JK-FF 的特征方程, $Q^{n+1}=JQ^n+KQ^n$

$$\begin{cases} Q_{1}^{n+1} = J_{1} \overline{Q}_{1}^{n} + \overline{K}_{1} Q_{1}^{n} = \overline{Q}_{3}^{n} \overline{Q}_{1}^{n} \\ Q_{2}^{n+1} = J_{2} \overline{Q}_{2}^{n} + \overline{K}_{2} Q_{2}^{n} = Q_{1}^{n} \overline{Q}_{2}^{n} + \overline{Q}_{1}^{n} Q_{2}^{n} = Q_{1}^{n} \oplus Q_{2}^{n} \\ Q_{3}^{n+1} = J_{3} \overline{Q}_{3}^{n} + \overline{K}_{3} Q_{3}^{n} = Q_{1}^{n} Q_{2}^{n} \overline{Q}_{3}^{n} \end{cases}$$

④ 输出方程: Y = Q₃™

2、列状态转移表

	CP	初态	次态	当前输出	
		$Q_3^n Q_2^n Q_1^n$	$Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}$	Y	
	1	0 0 0	0 0 1	0	
有	2	0 0 1	0 1 0	0	
效状	3	0 1 0	0 1 1	0	
泛	4	0 1 1	1 0 0	0	
	5	1 0 0	0 0 0	1	
偏	1	1 0 1	0 1 0	1	
离人	1	1 1 0	0 1 0	1	
态	1	1 1 1	0 0 0	1	

自启动性

对于具有若干个偏离状态的时序逻辑电路,如果每个偏离状态都能在若干个时钟脉冲作用后,最终自动转入有效状态,则该电路具有 自启动性。

4、画时序图 (波形图)

5、概括逻辑功能

- 同步5进制计数器,以Y为进位输出;
- 具有自启动性;

可自启动电路与不可自启动电路举例

时序电路中的所有无效状态是否径过 数个CP脉冲后都能进入有效状态环? $Q_2Q_1Q_0/Z$

例、某时序逻辑电路的状态图如下。设电路现态为 S₀, 试确定电路输入序列为X=1000010110时对应 的输出状态序列和输出序列,并说明最后一位输入 后电路所处状态。

解:根据电路的状态图,推导出状态表。

状态表

	S_{n+1}/Y			
S _n X	0	1		
S ₀	S ₀ /0	S ₁ /0		
S ₁	$S_2/0$	S ₁ /0		
S ₂	$S_3/0$	S ₀ /1		
S ₃	S ₀ /1	S ₁ /0		

由电路的状态图、状态表和初态,按输入**X**序列推导出次态和输出序列。

输入状态序列为: 1000010110。

输出函数序列为: 0001000100。

最后状态为: S_2 。

例2、分析同步时序电路

解:

- 1、根据逻辑图,写出各组方程。
 - ① 时钟方程: $CP_0 = CP_1 = CP \downarrow$
 - ② 驱动方程:

$$\begin{cases} J_0 = \overline{Q}_1^n \\ K_0 = \overline{X} \overline{Q}_1^n \end{cases}, \qquad \begin{cases} J_1 = Q_0^n \\ K_1 = 1 \end{cases}$$

③ 状态方程

将驱动方程代入 JK-FF 的特征方程, $Q^{n+1}=JQ^n+KQ^n$

$$\begin{cases} Q_0^{n+1} = J_0 \, \overline{Q}_0^n + \overline{K}_0 \, Q_0^n = \overline{Q}_1^n \, \overline{Q}_0^n + X \overline{Q}_1^n \, Q_0^n \\ = \overline{Q}_1^n \, (\overline{Q}_0^n + X Q_0^n) = \overline{Q}_1^n \, (\overline{Q}_0^n + X) \\ Q_1^{n+1} = J_1 \, \overline{Q}_1^n + \overline{K}_1 \, Q_1^n = Q_0^n \, \overline{Q}_1^n \end{cases}$$

④ 输出方程: $Z = X Q_0^{-1} Q_1^{-1}$

2、列状态转移表

外部输入	现态	次茂	当前输出
X	$Q_1^n Q_0^n$	$Q_1^{n+1} Q_0^{n+1}$	Z
	0 0	0 1	0
0	0 1	1 0	0
	1 0	0 0	0
	1 1	0 0	0
	0 0	0 1	0
	0 1	1 1	0
1	1 0	0 0	0
	1 1	0 0	1

3、画状态转移图

例3、分析异步时序电路

解:

- 1、根据逻辑图,写出各组方程。
 - ① 时钟方程: CP₀= CP₂= CP↓ CP₁= Q₀↓
 - ② 驱动方程:

$$\begin{cases} J_0 = \overline{Q}_2^n & \begin{cases} J_1 = 1 \\ K_0 = 1 \end{cases}, & \begin{cases} J_1 = 1 \\ K_1 = 1 \end{cases}, & \begin{cases} J_2 = Q_0^n \cdot Q_1^n \\ K_2 = 1 \end{cases}$$

③ 状态方程 (标注时钟条件)

$$\begin{cases} Q_0^{n+1} = [J_0 \overline{Q}_0^n + \overline{K}_0 Q_0^n] \cdot CP \downarrow = [\overline{Q}_2^n \overline{Q}_0^n] \cdot CP \downarrow \\ Q_1^{n+1} = [J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n] \cdot Q_0 \downarrow = [\overline{Q}_1^n] \cdot Q_0 \downarrow \\ Q_2^{n+1} = [J_2 \overline{Q}_2^n + \overline{K}_2 Q_2^n] \cdot CP \downarrow = [\overline{Q}_2^n Q_1^n Q_0^n] \cdot CP \downarrow \end{cases}$$

2、列状态转移表

	Q_2^n	Q_1^n	Q_0^n	Q_2^{n-1}	$^{+1}$ Q_1^{n+}	$-1 Q_0^{n+1}$	$CP_1 = Q_0 $
	0	0	0	0	0	1	4
有	0	0	1	0	1	0	→
效	0	1	0	0	1	1	A
状态	0	1	1	1	0	0	∀
	1	0	0	0	0	0	0
偏	1	0	1	0	1	0	•
离状	1	1	0	0	1	0	0
态	1	1	1	0	0	0	

3、概括逻辑功能 具有自启动性的5进制、异步计数器

小结: 时序逻辑电路的分析方法和步骤

同步时序逻辑电路

异步时序逻辑电路

- 一、寄存器 (Register)
 - 1、概念

A <u>register</u> is a digital circuit with two basic functions:

- data storage
- **data movement**

The storage capability of a register makes it an important type of memory device.

寄存器与触发器

(1) 异步清()

$$\overline{R}_D = 0$$

(2) 并行数据输入

$$\begin{cases} Q_0^{n+1} = D_0 \\ Q_1^{n+1} = D_1 \\ Q_2^{n+1} = D_2 \\ Q_3^{n+1} = D_3 \end{cases}$$

- (3) 记忆保持 R_D=1 L CP天↑
- (4) 并行输出

二、移位寄存器 (Shift Register)

1、概念

移位是指在移存脉冲作用下, 寄存器中各位的 内容依次向左(或向右)移动一位。

2、单向移位寄存器 (4位右移移位寄存器)

在D_{in} 依次输入 1011

实现串 - 并转换

CP	D _{in}	Q_0	\mathbf{Q}_{1}	$\mathbf{Q_2}$	Q_3	
0	*	0	0	0	0	
1↑	1 -	→ 1 _\	0	0	0	
2↑	0 -	→ 0 \	1	0	0	
3↑	1 -	→ 1 _\	0	1	0	
4↑	1 -	→ 1 _\	1	0	1	
5↑	0 -	→ 0 \	1	1	0	
6 ↑	0 -	→ 0 \	0	1	1	
7 ↑	0 _	→ 0	0	0	1	
8↑	0 -	→ 0	0	0	0	

₩ 异步清()

一并行输出

转并行输出

串行输出

3、双向移位寄存器

- ① M=0, $Q_4^{n+1}=Q_3^n$, $Q_3^{n+1}=Q_2^n$, $Q_2^{n+1}=Q_1^n$, $Q_1^{n+1}=B$, 左移移位;
- ② M=1, $Q_4^{n+1}=A$, $Q_3^{n+1}=Q_4^n$, $Q_2^{n+1}=Q_3^n$, $Q_1^{n+1}=Q_2^n$, 右移移位;

转移位分析

移位分析

$$Q_3^{n+1} = D_3 = \overline{M}\overline{Q}_4^n + \overline{M}\overline{Q}_2^n$$

$$= \begin{cases} M = 0, \ Q_2^n \\ M = 1, \ Q_4^n \end{cases}$$

$$\overline{Q}_4^n$$

$$\overline{Q}_2$$

$$\overline{Q}_2$$

同理可得:

- ① M=0, $Q_4^{n+1}=Q_3^n$, $Q_3^{n+1}=Q_2^n$, $Q_2^{n+1}=Q_1^n$, $Q_1^{n+1}=B$;
- ② M=1, $Q_4^{n+1}=A$, $Q_3^{n+1}=Q_4^n$, $Q_2^{n+1}=Q_3^n$, $Q_1^{n+1}=Q_2^n$;

4位双向移位寄存器 74LS194

74LS194动能表

输入				输出	工作状态
\overline{R}_{D}	$S_1 S_0$	CP	$\mathbf{D}_0 \mathbf{D}_1 \mathbf{D}_2 \mathbf{D}_3$	$Q_0Q_1Q_2Q_3$	
0	XX	X	XXXX	0 0 0 0	异步清()
1	0 0	X	XXXX	$Q_0^n Q_1^n Q_2^n Q_3^n$	数据保持
1	0 1	1	XXXX	D _{IR} Q ₀ ⁿ Q ₁ ⁿ Q ₂ ⁿ	同步右移
1	1 0	1	XXXX	$Q_1^n Q_2^n Q_3^n D_{IL}$	同步左移
1	1 1	1	$\mathbf{d}_0 \ \mathbf{d}_1 \ \mathbf{d}_2 \ \mathbf{d}_3$	$\mathbf{d}_0 \; \mathbf{d}_1 \; \mathbf{d}_2 \; \mathbf{d}_3$	同步置数

4、应用

级联扩展

例1: 将两片74LS194 接成8位双向移位寄存器

(1) 构成序列检测器

例2、用74LS194 实现"1101"序列检测器, 允许输入 序列码重叠。

(2) 构成寄存器型计数器

- 三、计数器 (Counter)
 - 1、概念
 - 2、分类

 - ◆ 按计数增减趋势参 按计数增减趋势□逆计数器
 - ◆ 按计数进制 { 二进制计数器 非二进制计数器

- 3、同步计数器
 - (1) 同步二进制计数器
 - (2) 同步二一十进制计数器

分析方法与同步时序 电路完全相同

给定的同步 计数器电路

各组方程

时钟方程 驱动方程 状态方程 输出方程

状态转移表

有效状态偏离状态

状态转移图

分析逻辑功能 判断自启动性

(3) 集成同步二进制计数器

74LS161/160 ____ 同步16/10 进制加法计数器

B、逻辑功能

74LS160/161 功能表

$\overline{\mathbf{R}}_{\mathbf{D}}$	LD	EP	ET	CP	$D_0 D_1 D_2 D_3$	$Q_0Q_1Q_2Q_3$	
0	X	X	X	X	XXXX	0 0 0 0	i 异步
1	0	X	X	†	$\mathbf{d}_0 \; \mathbf{d}_1 \; \mathbf{d}_2 \; \mathbf{d}_3$	$\mathbf{d_0} \; \mathbf{d_1} \; \mathbf{d_2} \; \mathbf{d_3}$	ii 周岁
1	1	1	1	1	XXXX	计 数	iii <i>b</i> us
1	1	0	X	X	XXXX	保持	de
1	1	X	0	X	XXXX	保持, C=0	J IV B

清()

并行置数

进位输出:

161:
$$C = Q_3^n \cdot Q_2^n \cdot Q_1^n \cdot Q_0^n \cdot ET$$

160:
$$C = Q_3^n \cdot \overline{Q}_2^n \cdot \overline{Q}_1^n \cdot Q_0^n \cdot ET$$

例1、用3片4位二进制计数器74LS161 构成 12位二进制同步计数器。

解: 方法1

如何利用 $C = Q_3^n \cdot Q_2^n \cdot Q_1^n \cdot Q_0^n \cdot ET$ 简化连线? 方法2

$$C(2) = Q_7^{n} \cdot Q_6^{n} \cdot Q_5^{n} \cdot Q_4^{n} \cdot ET(2) = Q_7^{n} \cdot Q_6^{n} \cdot Q_5^{n} \cdot Q_4^{n} \cdot C(1)$$
$$= Q_7^{n} \cdot Q_6^{n} \cdot Q_5^{n} \cdot Q_4^{n} \cdot Q_3^{n} \cdot Q_2^{n} \cdot Q_1^{n} \cdot Q_0^{n} \cdot ET(1)$$

四、序列信号发生器

电路功能:

输出一个周期序列信号;

电路特点:

天输入X、有输出Z,属于特殊Moore型;

电路结构:

一个模N计数器 + 一个组合电路构成。

例、分析下列时序逻辑电路的逻辑功能。

电路观察:同步、特殊Moore型电路

输入: Q_2 、 Q_1 、 Q_0

输出: $Z \setminus Q_2^{n+1} \setminus Q_1^{n+1} \setminus Q_0^{n+1}$

$$D_0 = \overline{Q}_0 \overline{Q}_1 + \overline{Q}_1 Q_2 + Q_1 \overline{Q}_2$$

$$D_1 = Q_0 \quad D_2 = Q_1 \qquad Z = Q_2$$

$$Z = Q$$

(2) 求状态方程

$$Q_0^{n+1} = D_0 = \overline{Q}_0 \overline{\overline{Q}}_1 + \overline{Q}_1 Q_2 + Q_1 \overline{Q}_2$$

$$Q_1^{n+1} = D_1 = Q_0$$
 $Q_2^{n+1} = D_2 = Q_1$

(3) 列状态表

Q_0	Q_{I}	Q_2	Q_0^{n+1}	Q_l^{n+l}	Q_2^{n+1}	Z
0	0	0	1	0	0	0
1	0	0	0	1	0	0
0	1	0	1	0	1	0
1	0	1	1	1	0	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1
0	1	1	0	0	1	1
0	0	1	1	0	0	1

(4) 画状态转移图: Q₂Q₁Q₀/Z 000/0 → 100/0 → 010/0 → 101/1 001/1 ← 011/1 ← 111/1 ← 110/0

提示: 有效状态和无效状态?

- (5) 逻辑功能分析:
- 1、随着CP时钟到来,电路在七个有效状态中循环变化。
- 2、输出Z在0010111七个数中循环。表明该电路输出一个周期的数字序列信号。
- 3、电路是可自启动的。

缱泌: 该电路是一个序列信号发生器。

五、序列检测器

电路功能:

对电路输出的序列信号进行检测。

电路观察: 同步、Mealy型电路

输入: X、 Q_1 、 Q_0 ; 输出: Z、 $\overline{Q_1^{n+1}}$ 、 $\overline{Q_0^{n+1}}$

解:

(1) 求激励方程和输出方程:

$$J_1 = X$$
 $K_1 = \overline{X}$ $Z = XQ_0$
 $J_0 = XQ_1$ $K_0 = \overline{X}$

(2) 求状态方程:

$$Q_{1}^{n+1} = J_{1}\overline{Q}_{1} + \overline{K}_{1}Q_{1} = X\overline{Q}_{1} + XQ_{1}$$

$$Q_{0}^{n+1} = J_{0}\overline{Q}_{0} + \overline{K}_{0}Q_{0} = XQ_{1}\overline{Q}_{0} + XQ_{0}$$

(3) 列状态表:

V	$Q_1^{n+1}Q_0^{n+1}/Z$			
Q_1Q_0	0	1		
00	00/0	10/0		
01	00/0	11/1		
11	00/0	11/1		
10	00/0	11/0		

(4) 画Mealy型电路的状态转移图:

(5) 逻辑功能分析

- > 01状态不在有效状态环内,不考虑;
- > 电路是可自启动的;
- ➤ Z=1出现在X连续输入三个1之后,输出 代表了连续的三个1输入。

缱论: 该电路是一个111序列检测器

六、脉冲分配器

电路功能:在CP脉冲作用下,把宽度为T的脉冲依次分配给各触发器的输出端。

例、分析下列时序逻辑电路的逻辑功能。

电路观察:

同步、特殊Moore型

输入: Q_2 、 Q_1 、 Q_0

输出: 三个Z、

 Q_2^{n+1} , Q_1^{n+1} , Q_0^{n+1}

解:

(1) 求激励方程和输出方程

$$D_0 = \overline{Q_1 + Q_0} = \overline{Q}_1 \overline{Q}_0$$

$$7 - 0$$

$$Z_0 = Q_0 \qquad Z_1 = Q_1$$

$$D_1 = Q_0 \quad D_2 = Q_1$$

$$Z_2 = Q_2$$

(2) 求状态方程

$$Q_0^{n+1} = D_0 = \overline{Q}_0 \overline{Q}_1$$

$$Q_1^{n+1} = D_1 = Q_0$$

$$Q_1^{n+1} = D_1 = Q_0$$
 $Q_2^{n+1} = D_2 = Q_1$

(3) 列特殊Moore型电路的状态表

Q_2	Q_1	Q_0	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	0

(4) 画状态转移图

(5) 画波形图

(6) 逻辑功能分析

该电路在CP脉冲作用下,把宽度为T的脉冲以三次分配给 Q_0 、 Q_1 和 Q_2 各端,故该电路是一个脉冲分配器。

该电路每经过三个时钟周期循环一次,具有自启动能力。

初、少进电机脉冲分配器电路如图别小,试与出状态力性组、动力程组和输出方程组。(略)

此进市和成场八部现合口配约从市场

(1) 驱动和输出方程组

$$P_1 = D_1 = x \overline{Q}_2 + \overline{x} \overline{Q}_3; P_2 = D_2 = x \overline{Q}_3 + \overline{x} \overline{Q}_1; P_3 = D_3 = x \overline{Q}_1 + \overline{x} \overline{Q}_2$$

 $Y_1 = Q_1; Y_2 = Q_2; Y_3 = Q_3$

(2) 状态方程

$$Q_{1}^{n+1} = D_{1} = x \overline{Q}_{2}^{n} + \overline{x} \overline{Q}_{3}^{n};$$

$$Q_{2}^{n+1} = D_{2} = x \overline{Q}_{3}^{n} + \overline{x} \overline{Q}_{1}^{n};$$

$$Q_{3}^{n+1} = D_{3} = x \overline{Q}_{1}^{n} + \overline{x} \overline{Q}_{2}^{n};$$

(3) 状态转换表、状态转换图。

状态转换表

	ישילולי	14 1	111		
时	<i>X</i> =1	<i>X</i> =0			
钟	$Q_1Q_2Q_3$		$Q_1Q_2Q_3$		
0 1 2 3 4 5 6	100 110 010 011 001 101 100	有效循环 正循环	100 101 001 011 010 110 100	有效循环 逆循环	
0 1 2	000 111 000	无效循环	000 111 000	无效循环	

设计宗旨:

在满足功能要求的前提下,使电路最简单、最稳定。

设计思路:

针对某一给定逻辑要求,选择<u>最少</u>的逻辑状态进行描述,再用某种类型的<u>SSI</u>(触发器)、或<u>MSI</u>(计数器、移位寄存器) 实现这一逻辑功能。

设计类型:

- ▶ 采用 SSI (触发器和门电路)
- > 采用 MSI (计数器、移位寄存器、序列发生器、序列检测器和脉冲分配器)

一、采用触发器设计同步时序逻辑电路

例1、设计模6 (6进制) 同步计数器

解:

① 原始状态图 (已是最简)

② 状态编码

编码原则?相邻原则

$$S_0 = 000, S_1 = 001, S_2 = 011,$$

$$S_3 = 111, S_4 = 110, S_5 = 100$$

状态转移表

Q_3^{r}	$\mathbf{Q_2^n}$	Q_1^n	Q_3^{n-1}	$^{+1}Q_{2}^{n+1}$	$^{1}Q_{1}^{n+1}$	Z
0	0	0	0	0	1	0
0	0	1	0	1	1	0
0	1	1	1	1	1	0
1	1	1	1	1	0	0
1	1	0	1	0	0	0
1	0	0	0	0	0	1
0	1	0	X	X	X	X
1	0	1	X	X	X	X

③ 作出 $Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}$ 和Z的卡诺图

时序逻辑电路的设计 6.4

求状态方程和输出方程

$$\begin{cases} Q_3^{n+1} = Q_2^n \\ Q_2^{n+1} = Q_1^n \\ Q_1^{n+1} = \overline{Q}_3^n \end{cases}$$

$$Z = Q_3^n \overline{Q}_2^n$$

检验电路的自启动特性

010 101

偏离状态101、010 互为次态,电路无自启动性。

⑥ 修改设计, 使具有自启动性

修改后的状态方程

$$\begin{cases} Q_3^{n+1} = Q_2^n \\ Q_2^{n+1} = Q_1^n \\ Q_1^{n+1} = \overline{Q}_3^n + \overline{Q}_2^n Q_1^n \end{cases}$$

再次检验自启动性 \

状态转移图

⑦ 根据FF的类型,由状态方程反推驱动方程

A、若采用D-FF

$$\begin{cases} D_3 = Q_3^{n+1} = Q_2^n \\ D_2 = Q_2^{n+1} = Q_1^n \\ D_1 = Q_1^{n+1} = \overline{Q}_3^n + \overline{Q}_2^n Q_1^n \end{cases}$$

B、若采用JK-FF,如何求 J_1K_1 、 J_2K_2 、 J_3K_3 ?

JK-FF 的特征方程:
$$Q^{n+1} = J \overline{Q}^n + \overline{K} Q^n$$

FF₃:
$$Q_3^{n+1} = J_3 \overline{Q}_3^n + \overline{K}_3 Q_3^n$$

$$Q_3^{n+1} = Q_2^n = Q_2^n \cdot (\overline{Q}_3^n + Q_3^n)$$

$$= Q_2^n \overline{Q}_3^n + Q_2^n Q_3^n$$

$$\mathbf{J_3} = \mathbf{Q_2}^{\mathbf{n}} , \quad \mathbf{K_3} = \overline{\mathbf{Q}_2}^{\mathbf{n}}$$

⑧ 画逻辑电路图

触发器逻辑功能的转换

【方法】根据两种触发器转换前后,次态相等的原理,由两者的特征方程推导。

D-FF:
$$Q^{n+1} = D$$

JK-FF:
$$Q^{n+1} = J \overline{Q}^n + \overline{K} Q^n$$

$$\mathbf{D} = \mathbf{J} \, \overline{\mathbf{Q}} \, \mathbf{n} + \overline{\mathbf{K}} \, \mathbf{Q} \, \mathbf{n}$$

$$\bigcirc$$
 JK-FF \rightarrow D-FF

D-FF:
$$Q^{n+1} = D = D \overline{Q}^n + D Q^n$$

JK-FF:
$$Q^{n+1} = J \overline{Q}^n + \overline{K} Q^n$$

$$J = D, K = \overline{D}$$

二、采用MSI(计数器) 实现任意模值计数器 利用现有的N进制计数器,实现M进制计数, 则有M < N 和M > N 两种情况。

$\overline{1}$, \overline{M} < \overline{N}

在N进制计数器的顺序计数过程中,设法跳过多余的N-M个状态,就可得到M进制计数器,实际上就是多余状态如何去掉的问题。

转161/160功能表

例1、用74LS161实现模10计数器

解: ① 异步清()法

【思路】74LS161可以计16个状态,实际只需要10个状态,则当第11个状态出现时,使异步清()信号RD有效,强迫计数器回到最初的0000态,就可以实现10进制计数。

② 同步置数法

(思路)

当计数达到某一特定值时,使计数器的同步置数信号LD=0有效,在下一个时钟 $\$ 到来时刻,将并行数据输入端 $D_3D_2D_1D_0$ 上的数据 $d_3d_2d_1d_0$ 并行置入 $Q_3Q_2Q_1Q_0$,以此跳过多余的状态。

同步置数法 电路1

同步置数法 电路2

2, M > N

思路:

将多片 (m片) N 进制计数器级联, 生成 Nm 进制计数器, 再构成M 进制计数器。

例2、某数字通信系统的基本时钟频率为IMHZ,其中一个子系统的时钟频率要求为10kHZ。试设计能够从基本时钟产生子系统工作时钟的电路,用74LS160实现。

例3、用74LS160接成29进制计数器

解: 10 X 10 → 100 → 29

① 异步清()法

② 整体置数法

高位片 低位片

例4、用161/160分别构成174进制计数器

转160实现

数制转换

② 用160 至少用几片?

161芯片计数输出作为数据选择器151芯片的地址端($000\sim110$ 代表地址端从151芯片 D_0 至 D_6 有数据输出,151芯片 D_i 输入的正是周期序列)注意:161芯片从0000开始计数到0110,整体置数!故161芯片 D_i 全置0。

例5、设计一个周期性序列1110010发生器。

本章重点

- ◆ 描述时序电路逻辑功能的方法
 - 方程组(时钟、驱动、状态、输出方程)
 - ●状态转移表
 - ●状态转移图
 - ●时序图
- ◆ 同步、异步时序逻辑电路的分析、电路自启动 特性的判断
- ◆ 计数器、寄存器的功能及应用 (功能表)
- ◆ 采用SSI (触发器) 设计同步时序逻辑电路
- ◆ 采用MSI 实现任意进制计数器(例题、作业)

本章作业

6.4; 6.6; 6.8; 6.10; 6.12;

6.13; 6.14; 6.17; 6.22; 6.23