1 PPCIC Dissertação - 2021

DETECÇÃO DE EVENTOS ADVERSOS ATRAVÉS DO TWITTER UTILIZANDO O METAMAP PARA O PORTUGUÊS DO BRASIL

- 1.1 Matéria: CIC1229 TÓPICOS ESPECIAIS EM ALGORITMOS
- 1.2 Aluno: Perciliano
- 1.3 Orientadora: Kele Belloze
- 1.3.1 Data: 11/06/2021

Autor: Luiz Perciliano - <u>luiz.perciliano@eic.cefet-rj.br (mailto:luiz.perciliano@eic.cefet-rj.br)</u>

- Dados da pesquisa na base SCOPUS dia 31-05-2021
 - String: "metamap" OR ("natural language processing" AND "pharmacovigilance") OR ("text mining" AND (pharmacovigilance OR "adverse event" OR "adverse effect"))
 - 574 artigos
- Download de dados da pesquisa do Qualis dia 06-06-2021

Requisitos

- RF01 Analisar bases de dados
- RF02 Mesclar bases para identificar estrato do artigo
- · RF03 Remover duplicatas
- RF03 Identificar artigos para leitura de resumo e conclusão
- RF04 Identificar artigos para leitura completa

Site do projeto: https:git.com

Endereço da dissertação: https://pt.overleaf.com/project/60731ca2bcfa0afce8ae0cd1

(https://pt.overleaf.com/project/60731ca2bcfa0afce8ae0cd1)

2 Preparar Infraesrtutura

```
In [1]:
 print(f'Importar as bibliotecas necessárias e mapear a pasta do projeto.')
 import os, re
 import sys
 import pandas as pd
 import datetime
 import matplotlib.pyplot as plt
 import seaborn as sns
 %matplotlib inline
 import nltk
 from unidecode import unidecode
 from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
Importar as bibliotecas necessárias e mapear a pasta do projeto.
In [2]:
 data_inicio = pd.Timestamp.now()
 print(data_inicio)
2021-06-10 11:24:38.137884
In [3]:
 print(f'Lista do conteúdo da pasta ...')
 os.listdir(os.path.join('..', 'data'))
Lista do conteúdo da pasta ...
```

```
Out[3]:
```

```
['base-qualis-06-06-2021.xlsx',
  'classificacao_qualis_06-06-2021.xls',
  'requiremets.txt',
  'resultado_geral.xlsx',
  'resultado_geral_06-06-2021.xlsx',
  'resultado_scopus.xlsx',
  'scopus-31-05-2021.csv',
  'stop_word_projeto.csv',
  'stop_word_pt.csv']
```

In [4]:

```
os.listdir('../Image')
Out[4]:
```

```
['logo-cefet.png', 'Logo_CVM.png', 'wordcloud.pdf']
```

2.1 Verificar, atualizar e instalar se necessário python e módulos

```
In [ ]:
```

```
## versao 3,9,0 estava funcionando
print('Local de instalação do Python: ',sys.executable)
print('Versão do Python instalado e em uso: ',sys.version)
print('Informações da versão do Python: ',sys.version_info)
print(f'Quantidade de CPU: {os.cpu_count()}')
```

In []:

```
print('Atualizando os módulos Python.')
#!pip install --upgrade pip
```

In []:

In []:

```
print('Instalando os módulos necessários.')
# print('')
#!pip install Unidecode -q
#!pip install sklearn
#!pip install wordcloud
#!pip install wget
#!pip install opencv-python #import cv2
#!pip install wand #wand=0.6.5
#!pip install jupyter_contrib_nbextensions
#!pip install pip-chill ## para verificar todos os mõdulos instalados para uma nova insta
```

```
print('Gerar arquivo com as dependencias necessárias para o projeto.')
#import pip-chill
#pip install -r > requirements.txt
pip freeze
```

```
print('Criando as variáveis para o projeto.')
## ????testar com novo caminho xxxx ????? -- path_pasta_trab =
os.path.join('SisCRI','data')

#pasta_trab = os.path.join('SisCRI','data','')
pasta_trab = 'C:\\Users\\luizp\\jupyter-notebook\\SisCRI\\data\\'

#print(f'Importar documentos necessários para o projeto. (stopwords, etc)')

# carregar stop_words padrao no git e sempre pegar de lá para demais projetos (eng e pt-Br)
```

3 Preparar e carregar base de dados

3.1 Conexão e consulta ao SQL Server

3.2 Carregar Planilha - Base Qualis

In [5]:

```
print('Carregando pesquisa realizada na base Scopus.')

Fonte: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/veiculoPublicacaoQu
Periódico do quadriênio 2013-2016

arquivo_base_qualis = os.path.join('../data','base-qualis-06-06-2021.xlsx')
raw_data_qualis = pd.read_excel(arquivo_base_qualis)
raw_data_qualis
```

Carregando pesquisa realizada na base Scopus.

Out[5]:

	ISSN	Título	Área de Avaliação	Estrato
0	1981- 030X	19&20 (RIO DE JANEIRO)	ADMINISTRAÇÃO PÚBLICA E DE EMPRESAS, CIÊNCIAS	С
1	2236- 6695	A BARRIGUDA: REVISTA CIENTÍFICA	ADMINISTRAÇÃO PÚBLICA E DE EMPRESAS, CIÊNCIAS	B4
2	1413- 6090	A ECONOMIA EM REVISTA	ADMINISTRAÇÃO PÚBLICA E DE EMPRESAS, CIÊNCIAS	В4
3	1516- 3210	A&C. REVISTA DE DIREITO ADMINISTRATIVO & CONST	ADMINISTRAÇÃO PÚBLICA E DE EMPRESAS, CIÊNCIAS	В4
4	0001- 3072	ABACUS (SYDNEY. PRINT)	ADMINISTRAÇÃO PÚBLICA E DE EMPRESAS, CIÊNCIAS	A2
131269	1175- 5326	ZOOTAXA (AUCKLAND. PRINT)	ZOOTECNIA / RECURSOS PESQUEIROS	В1
131270	1175- 5334	ZOOTAXA (ONLINE)	ZOOTECNIA / RECURSOS PESQUEIROS	В1
131271	2358- 3576	ZOOTECNIA	ZOOTECNIA / RECURSOS PESQUEIROS	С
131272	0798- 7269	ZOOTECNIA TROPICAL - FONAIAP	ZOOTECNIA / RECURSOS PESQUEIROS	ВЗ
131273	0967- 1994	ZYGOTE (CAMBRIDGE. PRINT)	ZOOTECNIA / RECURSOS PESQUEIROS	B2

131274 rows × 4 columns

3.3 Carregar CSV - Busca Scopus

In [6]:

```
print('Visualização do dataframe carregado da base scopus.')
arquivo_base_scopus = os.path.join('../data','scopus-31-05-2021.csv')
raw_data_scopus = pd.read_csv(arquivo_base_scopus, sep=",", delimiter=None, encoding='utfraw_data_scopus.head()
```

Visualização do dataframe carregado da base scopus.

Out[6]:

	Authors	Author(s) ID	Title	Year	Sou		
0	Bodenreider O.	6603893164;	The Unified Medical Language System (UMLS): In	2004	R		
1	Aronson A.R.	17933416200;	Effective mapping of biomedical text to the UM	2001	Proc / Sym		
2	Aronson A.R., Lang FM.	17933416200;13612282900;	An overview of MetaMap: Historical perspective	2010	Jo A Info		
3	Piñero J., Bravo A., Queralt- Rosinach N., Guti	55220852900;56374942700;35766634600;5672880770	DisGeNET: A comprehensive platform integrating	2017	R		
4	Nikfarjam A., Sarker A., O'Connor k., Ginn R.,	36069663700;36976315000;56596185000;5659652430	Pharmacovigilance from social media: Mining ad	2015	Jo A Info		
5 r	5 rows × 47 columns						

In [108]:

```
print('Carga e Visualização do dataframe')
arquivo_base_scopus = os.path.join('../data','pubmed-10-06-2021.csv')
raw_data_pubmed = pd.read_csv(arquivo_base_scopus, sep=",", delimiter=None, encoding='utfraw_data_pubmed.head()
```

Carga e Visualização do dataframe

Out[108]:

	PMID	Title	Authors	Citation	First Author	Journal/Book	Publication Year	
0	30649735	Overview of the First Natural Language Process	Jagannatha A, Liu F, Liu W, Yu H.	Drug Saf. 2019 Jan;42(1):99- 111. doi: 10.1007/	Jagannatha A	Drug Saf	2019	2
1	33245290	Identification of Adverse Drug Event- Related J	Ujiie S, Yada S, Wakamiya S, Aramaki E.	JMIR Med Inform. 2020 Nov 27;8(11):e22661. doi	Ujiie S	JMIR Med Inform	2020	2
2	31630063	A systematic review of natural language proces	Young IJB, Luz S, Lone N.	Int J Med Inform. 2019 Dec;132:103971. doi: 10	Young IJB	Int J Med Inform	2019	2
3	33278631	Natural language processing with deep learning	Borjali A, Magnéli M, Shin D, Malchau H, Murat	Comput Biol Med. 2021 Feb;129:104140. doi: 10	Borjali A	Comput Biol Med	2021	2
4	26394725	Can Natural Language Processing Improve the Ef	Baer B, Nguyen M, Woo EJ, Winiecki S, Scott J,	Methods Inf Med. 2016;55(2):144- 50. doi: 10.34	Baer B	Methods Inf Med	2016	2

In []:

https://www.gov.br/capes/pt-br

3.4 Analisar dados brutos original

3.4.1 Analisando base SCOPUS

In [7]:

```
▼ #pd.set_option("max_colwidth", 100)
```

In [8]:

```
print('Verificando tipos e se tem dados nulos')
raw_data_scopus.info()
```

Verificando tipos e se tem dados nulos
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 574 entries, 0 to 573
Data columns (total 47 columns):

Data	columns (total 47 columns):		
#	Column	Non-Null Count	Dtype
0	Authors	574 non-null	object
1	Author(s) ID	574 non-null	object
2	Title	574 non-null	object
3	Year	574 non-null	int64
4	Source title	574 non-null	object
5	Volume	481 non-null	object
6	Issue	242 non-null	object
7	Art. No.	154 non-null	object
8	Page start	420 non-null	object
9	Page end	410 non-null	object
10	Page count	6 non-null	float64
11	Cited by	448 non-null	float64
12	DOI	459 non-null	object
13	Link	574 non-null	object
14	Affiliations	567 non-null	object
15	Authors with affiliations	571 non-null	object
16	Abstract	574 non-null	object
17	Author Keywords	396 non-null	object
18	Index Keywords	520 non-null	object
19	Molecular Sequence Numbers	1 non-null	object
20	Chemicals/CAS	108 non-null	object
21	Tradenames	20 non-null	-
22	Manufacturers	2 non-null	object
23		240 non-null	object
23 24	Funding Details	188 non-null	object
	Funding Text 1		object
25 26	Funding Text 2	18 non-null	object
	Funding Text 3	2 non-null	object
27	References	521 non-null	object
28	Correspondence Address	457 non-null	object
29	Editors	115 non-null	object
30	Sponsors	75 non-null	object
31	Publisher	419 non-null	object
32	Conference name	202 non-null	object
33	Conference date	202 non-null	object
34	Conference location	65 non-null	object
35	Conference code	193 non-null	float64
36	ISSN	493 non-null	object
37	ISBN	153 non-null	object
38	CODEN	207 non-null	object
39	PubMed ID	314 non-null	float64
40	Language of Original Document	574 non-null	object
41	Abbreviated Source Title	574 non-null	object
42	Document Type	574 non-null	object
43	Publication Stage	574 non-null	object
44	Open Access	245 non-null	object
45	Source	574 non-null	object
46	EID	574 non-null	object
dtype	es: float64(4), int64(1), objec	t(42)	

dtypes: float64(4), int64(1), object(42)

memory usage: 210.9+ KB

In [9]:

raw_data_scopus.nunique()

Out[9]:

Authors	549
Author(s) ID	546
Title	572
Year	25
Source title	220
Volume	208
Issue	39
Art. No.	147
Page start	340
Page end	342
Page count	5
Cited by	81
DOI	459
Link	574
Affiliations	552
Authors with affiliations	567
Abstract	565
Author Keywords	394
Index Keywords	520
	1
Molecular Sequence Numbers	
Chemicals/CAS	94
Tradenames	16
Manufacturers	2
Funding Details	228
Funding Text 1	187
Funding Text 2	18
Funding Text 3	2
References	521
Correspondence Address	448
Editors	77
Sponsors	64
Publisher	85
Conference name	157
Conference date	155
Conference location	56
Conference code	150
ISSN	150
ISBN	134
CODEN	60
PubMed ID	314
Language of Original Document	4
Abbreviated Source Title	213
Document Type	9
Publication Stage	2
Open Access	7
Source	1
EID	574
dtype: int64	
- *	

In [10]:

```
# verificar campos nulos
raw_data_scopus.isnull().sum()
```

Out[10]:

Authors	0
Author(s) ID	0
Title	0
Year	0
Source title	0
Volume	93
Issue	332
Art. No.	420
Page start	154
Page end	164
Page count	568
Cited by	126
DOI	115
Link	0
Affiliations	7
Authors with affiliations	3
Abstract	0
Author Keywords	178
Index Keywords	54
Molecular Sequence Numbers	573
Chemicals/CAS	466
Tradenames	554
Manufacturers	572
Funding Details	334
Funding Text 1	386
Funding Text 2	556
Funding Text 3	572
References	53
Correspondence Address	117
Editors	459
Sponsors	499
·	
Publisher	155
Conference name	372
Conference date	372
Conference location	509
Conference code	381
ISSN	81
ISBN	421
CODEN	367
PubMed ID	260
Language of Original Document	0
Abbreviated Source Title	0
Document Type	0
Publication Stage	0
•	329
Open Access	
Source	0
EID	0
dtype: int64	

3.4.2 Analisando base Qualis

In []:

```
In [11]:
 print('Verificando tipos e se tem dados nulos')
 raw_data_qualis.info()
Verificando tipos e se tem dados nulos
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 131274 entries, 0 to 131273
Data columns (total 4 columns):
     Column
                        Non-Null Count
                                         Dtype
    -----
0
     TSSN
                        131271 non-null object
 1
     Título
                        131274 non-null object
 2
     Área de Avaliação 131274 non-null object
     Estrato
                        131274 non-null object
dtypes: object(4)
memory usage: 4.0+ MB
In [12]:
 raw_data_qualis.nunique()
Out[12]:
ISSN
                     27618
Título
                     29838
Área de Avaliação
                        49
Estrato
                         8
dtype: int64
In [13]:
 raw_data_qualis.isnull().sum()
Out[13]:
ISSN
                     3
Título
                     0
Área de Avaliação
                     0
Estrato
dtype: int64
```

3.5 Copiar dataframe para ajustes

```
In [14]:

df_scopus = raw_data_scopus.copy()

df_qualis = raw_data_qualis.copy()
```

In [15]:

```
## Verificar se os dataframes nao s"ao espelhos
print(id(df_scopus),id(df_qualis), id(raw_data_scopus),id(raw_data_qualis))
```

2504434480840 2504503299144 2504503065544 2504500494536

4 Dataframe SCOPUS

4.1 Ajustar de Colunas

4.1.1 Alterar nome de Colunas - SCOPUS

```
In [16]:
```

```
print('Verificar columas')
df_scopus.columns
```

Verificar colunas

```
Out[16]:
```

In [17]:

```
columns scopus = {
    'Authors': 'autores',
    'Author(s) ID':'id_autores',
    'Title':'titulo_artigo',
    'Year': 'ano',
    'Source title': 'titulo fonte',
    'Volume':'volume',
    'Issue':'publicado',
    'Art. No.': 'numero_artigo',
    'Page start': 'inicio pagina',
    'Page end': 'fim_pagina',
    'Page count': 'quantidade paginas',
    'Cited by':'quantidade_citacoes',
    'DOI': 'doi',
    'Link':'link_scopus',
    'Affiliations': 'afiliacoes',
    'Authors with affiliations': 'autores_com_filiacoes',
    'Abstract':'resumo',
    'Author Keywords': 'palavras_chaves_autor',
    'Index Keywords':'palavras_chave_index',
    'Molecular Sequence Numbers': 'numeros_sequencia_molecular',
    'Chemicals/CAS':'chemicals_cas',
    'Tradenames': 'nomes comerciais',
    'Manufacturers': 'fabricantes',
    'Funding Details': 'detalhes financiamento',
    'Funding Text 1':'texto_financiamento_1',
    'Funding Text 2':'texto_financiamento_2',
    'Funding Text 3': 'texto financiamento 3',
    'References': 'referencias',
    'Correspondence Address': 'endereco_correspondencia',
    'Editors':'editores',
    'Sponsors': 'patrocinadores',
    'Publisher': 'editor',
    'Conference name': 'nome conferencia',
    'Conference date':'data_conferencia',
    'Conference location':'local conferencia',
    'Conference code':'codigo conferencia',
    'ISSN':'issn_scopus',
    'ISBN':'isbn',
    'CODEN': 'coden',
    'PubMed ID':'id_pubmed',
    'Language of Original Document': 'idioma_original',
    'Abbreviated Source Title': 'titulo abreviado fonte',
    'Document Type': 'tipo_documento',
    'Publication Stage':'etapa_publicacao',
    'Open Access': 'acesso livre',
    'Source': 'fonte',
    'EID': 'eid',
}
```

```
In [18]:
```

```
df_scopus = df_scopus.rename(columns=columns_scopus)
df_scopus.head(1)
```

Out[18]:

	autores	id_autores	titulo_artigo	ano	titulo_fonte	volume	publicado	numero_artigc
0	Bodenreider O.	6603893164;	The Unified Medical Language System (UMLS): In	2004	Nucleic Acids Research	32	DATABASE ISS.	NaN

1 rows × 47 columns

4.1.2 Ajustar Colunas de Páginas

```
In [19]:
```

```
df_scopus["inicio_pagina_"] = df_scopus["inicio_pagina"]
df_scopus["fim_pagina_"] = df_scopus["fim_pagina"]
```

In [20]:

```
## Expressao que pega só dígitos
r = re.compile(r'\D')
```

In [21]:

```
df_scopus.loc[df_scopus['quantidade_citacoes'] == 1912] [['issn_scopus','inicio_pagina','
```

Out[21]:

issn_scopus		inicio_pagina	fim_pagina
0	03051048	D267	D270

In [22]:

```
df_scopus.loc[[0,1,2,513], ['inicio_pagina','fim_pagina','quantidade_paginas']]
```

Out[22]:

	inicio_pagina	fim_pagina	quantidade_paginas
0	D267	D270	NaN
1	17	21	NaN
2	229	236	NaN
513	NaN	NaN	837.0

In [23]:

▼ ## Criar novas colunas de paginas e + uma para calcular qtde paginas

```
df_scopus_1 = df_scopus.copy()
print(id(df_scopus), id(df_scopus_1))
```

In [24]:

```
df_scopus.inicio_pagina_.replace(r, '', regex = True, inplace=True)
df_scopus.fim_pagina_.replace(r, '', regex = True, inplace=True)
```

In [25]:

```
df_scopus.loc[[0,1,2,513], ['inicio_pagina','fim_pagina','quantidade_paginas','inicio_pag
```

Out[25]:

	inicio_pagina	fim_pagina	quantidade_paginas	inicio_pagina_	fim_pagina_
0	D267	D270	NaN	267	270
1	17	21	NaN	17	21
2	229	236	NaN	229	236
513	NaN	NaN	837.0	NaN	NaN

In [26]:

```
print('Ajustar tipagem dos dados')
df_scopus['inicio_pagina_'] = df_scopus['inicio_pagina_'].astype('float64')
df_scopus['fim_pagina_'] = df_scopus['fim_pagina_'].astype('float64')
```

Ajustar tipagem dos dados

In [27]:

```
df_scopus['quantidade_paginas_'] = df_scopus['fim_pagina_'] - df_scopus['inicio_pagina_']
```

In [28]:

```
df_scopus.loc[[0,1,2,513], ['inicio_pagina','fim_pagina','quantidade_paginas','inicio_pag
```

Out[28]:

	inicio_pagina	fim_pagina	quantidade_paginas	inicio_pagina_	fim_pagina_	quantidade_pa
0	D267	D270	NaN	267.0	270.0	
1	17	21	NaN	17.0	21.0	
2	229	236	NaN	229.0	236.0	
513	NaN	NaN	837.0	NaN	NaN	
4						•

```
In [29]:
```

```
df_scopus.sort_values('quantidade_paginas_',ascending=False, )[['issn_scopus','quantidade
```

Out[29]:

	issn_scopus	quantidade_paginas_
410	01492918	8836.0
192	NaN	60.0
320	09534814	30.0
480	13673270	26.0
502	18650929	26.0
562	NaN	NaN
564	16130073	NaN
566	1942597X	NaN
568	1048776X	NaN
571	10829873	NaN

574 rows × 2 columns

In [30]:

```
▼ ## Pegar documentos com paginas nao nulas menor q 3 páginas
```

4.1.3 Criar nova coluna com data de conferencia

In [31]:

```
# tratar data - criar novo campo de data
df_scopus['data_conferencia']
```

Out[31]:

0	NaN
1	NaN
2	NaN
3	NaN
4	NaN
	•••
569	21 September 2005 through 23 September 2005
570	NaN
571	NaN
572	13 October 1999 through 15 October 1999

Name: data_conferencia, Length: 574, dtype: object

7 November 1990 through 8 November 1990

4.2 Ajustar tipagem de dados

4.2.1 Convertendo as colunas de datas para o formato datetime

```
#Convertendo as colunas de datas para o formato datetime
colunas_datas = df_scopus.columns[df_scopus.columns.str.contains('DT_|dt\|data|DATA|Data',
regex=True)]
colunas_datas
```

```
#convertendo cada coluna de colunas_datas para o formato datetime
for coluna in colunas_datas:
    df_scopus[coluna] = pd.to_datetime(df_scopus[coluna], format='%Y-%m-%d')
```

4.2.2 Convertendo as colunas para categóricas

```
In [32]:
```

```
print('Ajustar tipagem dos dados')
df_scopus['fabricantes'] = df_scopus['fabricantes'].astype('category')
df_scopus['acesso_livre'] = df_scopus['acesso_livre'].astype('category')
```

Ajustar tipagem dos dados

4.3 Filtrar dataframe

In [111]:

```
df_scopus.head()
```

Out[111]:

	autores	id_autores	titulo_artigo	ano	titul
0	Bodenreider O.	6603893164;	The Unified Medical Language System (UMLS): In	2004	R
1	Aronson A.R.	17933416200;	Effective mapping of biomedical text to the UM	2001	Proc / Sym
2	Aronson A.R., Lang FM.	17933416200;13612282900;	An overview of MetaMap: Historical perspective	2010	Jc A Inf
3	Piñero J., Bravo A., Queralt- Rosinach N., Guti	55220852900;56374942700;35766634600;5672880770	DisGeNET: A comprehensive platform integrating	2017	R
4	Nikfarjam A., Sarker A., O'Connor k., Ginn R.,	36069663700;36976315000;56596185000;5659652430	Pharmacovigilance from social media: Mining ad	2015	Jc A Inf
4	ows × 50 colo	umns			•

4.4 Analisar dataframe tratado

In [33]:

```
print('Verificando tipos e se tem dados nulos')
df_scopus.info()
```

Verificando tipos e se tem dados nulos
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 574 entries, 0 to 573
Data columns (total 50 columns):

Data	columns (total 50 columns):		
#	Column	Non-Null Count	Dtype
0	autores	574 non-null	object
1	id_autores	574 non-null	object
2	titulo_artigo	574 non-null	object
3	ano	574 non-null	int64
4	titulo_fonte	574 non-null	object
5	volume	481 non-null	object
6	publicado	242 non-null	object
7	numero_artigo	154 non-null	object
8	inicio_pagina	420 non-null	object
9	fim_pagina	410 non-null	object
10	quantidade_paginas	6 non-null	float64
11			
	quantidade_citacoes	448 non-null	float64
12	doi	459 non-null	object
13	link_scopus	574 non-null	object
14	afiliacoes	567 non-null	object
15	autores_com_filiacoes	571 non-null	object
16	resumo	574 non-null	object
17	palavras_chaves_autor	396 non-null	object
18	palavras_chave_index	520 non-null	object
19	numeros_sequencia_molecular	1 non-null	object
20	chemicals_cas	108 non-null	object
21	nomes_comerciais	20 non-null	object
22	fabricantes	2 non-null	category
23	detalhes_financiamento	240 non-null	object
24	texto_financiamento_1	188 non-null	object
25	texto_financiamento_2	18 non-null	object
26	texto_financiamento_3	2 non-null	object
27	referencias	521 non-null	object
28	endereco_correspondencia	457 non-null	object
29	editores	115 non-null	object
30	patrocinadores	75 non-null	object
31	editor	419 non-null	object
32	nome_conferencia	202 non-null	object
33	data conferencia	202 non-null	object
34	local_conferencia	65 non-null	object
35	codigo_conferencia	193 non-null	float64
36	~ —	493 non-null	
	issn_scopus		object
37	isbn	153 non-null	object
38	coden	207 non-null	object
39	id_pubmed	314 non-null	float64
40	idioma_original	574 non-null	object
41	titulo_abreviado_fonte	574 non-null	object
42	tipo_documento	574 non-null	object
43	etapa_publicacao	574 non-null	object
44	acesso_livre	245 non-null	category
45	fonte	574 non-null	object
46	eid	574 non-null	object
47	inicio_pagina_	420 non-null	float64
48	fim_pagina_	410 non-null	float64
49	quantidade_paginas_	410 non-null	float64
	-		

```
dtypes: category(2), float64(7), int64(1), object(40)
```

memory usage: 217.0+ KB

```
In [34]:
```

```
### analisar estes números máximos e mínimos ????????
print('Resumo Estatístico de Campos Numéricos')
df_scopus.describe()
```

Resumo Estatístico de Campos Numéricos

Out[34]:

	ano	quantidade_paginas	quantidade_citacoes	codigo_conferencia	id_pubmed
count	574.000000	6.000000	448.000000	193.000000	3.140000e+02
mean	2014.632404	158.666667	28.962054	126570.849741	2.599832e+07
std	4.584182	334.274538	119.388752	39969.995470	5.110147e+06
min	1991.000000	2.000000	1.000000	14685.000000	8.947691e+06
25%	2012.000000	2.750000	3.000000	102305.000000	2.295241e+07
50%	2015.000000	8.000000	8.000000	117981.000000	2.637784e+07
75%	2018.000000	74.000000	23.000000	140679.000000	3.024264e+07
max	2021.000000	837.000000	1912.000000	253829.000000	3.393644e+07
4					•

In [35]:

```
# ver qtd no excel =NÚM.CARACT(02)
print('Coluna com maior qtde de caracteres')
df_scopus['titulo_artigo'].apply(str).map(len).max()
```

Coluna com maior qtde de caracteres

Out[35]:

319

In [36]:

```
# analisar alguns campos
```

```
574 entries - scopus
81 sem issn
493 entradas
```

```
In [37]:
```

```
## tirar os espaços das colunas strings a serem trabalhadas
```

4.5 Visualizações

4.5.1 Analisando tipos de acessos dos arquivos

In [38]:

```
## pegar os 10 + patrocinadores
df_scopus.acesso_livre.unique()
```

Out[38]:

['All Open Access, Bronze, Green', NaN, 'All Open Access, Gold, Green', 'All Open Access, Hybrid Gold, Green', 'All Open Access, Green', 'All Open Access, Bronze', 'All Open Access, Hybrid Gold', 'All Open Access, Gold'] Categories (7, object): ['All Open Access, Bronze, Green', 'All Open Access, Gold, Green', 'All Open Access, Hybrid Gold, Green', 'All Open Access, Green', 'All Open Access, Bronze', 'All Open Access, Hybrid Gold', 'All Open Access, Gold']

In [39]:

```
# Groupby by
acesso_livre = df_scopus.groupby("acesso_livre")

# Summary statistic of all
acesso_livre.describe().head()
```

Out[39]:

								ano	quantidade
	count	mean	std	min	25%	50%	75%	max	count
acesso_livre									
All Open Access, Bronze	21.0	2016.380952	2.060975	2014.0	2015.0	2016.0	2019.00	2019.0	0.0
All Open Access, Bronze, Green	46.0	2013.630435	3.573723	2003.0	2012.0	2014.0	2017.00	2019.0	0.0
All Open Access, Gold	4.0	2019.500000	0.577350	2019.0	2019.0	2019.5	2020.00	2020.0	0.0
All Open Access, Gold, Green	94.0	2016.244681	3.339842	2006.0	2014.0	2017.0	2019.00	2021.0	0.0
All Open Access, Green	54.0	2013.925926	4.321302	2005.0	2010.0	2013.5	2017.75	2021.0	0.0

5 rows × 64 columns

In [40]:

```
# pegar as 10 +
plt.figure(figsize=(15,10))
acesso_livre.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Tipos de acesso aos artigos")
plt.ylabel("Quantidade de Artigos")
plt.show()
```


4.5.2 Analisando tipos de documentos

In [41]:

```
# Groupby by
tipo_documento = df_scopus.groupby("tipo_documento")

# Summary statistic of all
tipo_documento.describe().head()
```

Out[41]:

								ano	quanti
	count	mean	std	min	25%	50%	75%	max	CO
tipo_documento									
Article	323.0	2014.770898	4.659541	1996.0	2012.00	2016.0	2018.00	2021.0	
Book Chapter	9.0	2016.444444	3.811532	2009.0	2014.00	2017.0	2019.00	2021.0	
Conference Paper	208.0	2014.096154	4.509827	1991.0	2012.00	2014.0	2018.00	2021.0	
Conference Review	2.0	2014.500000	3.535534	2012.0	2013.25	2014.5	2015.75	2017.0	
Editorial	4.0	2016.500000	3.696846	2012.0	2014.25	2017.0	2019.25	2020.0	

5 rows × 64 columns

localhost:8888/notebooks/jupyter-notebook/CEFET-Dissertacao-2021/script/CEFET-Dissertação-Mat-CIC1229-Relatório 001.ipynb#

```
In [42]:
```

```
# pegar as 10 +
plt.figure(figsize=(15,10))
tipo_documento.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Locais de Conferências")
plt.ylabel("Quantidade de Locais de Conferência")
plt.show()
```


In []:	
In []:	

4.5.3 Analisando Locais de Conferencia

In [43]:

```
# Groupby by
local_conferencia = df_scopus.groupby("local_conferencia")

# Summary statistic of all
local_conferencia.describe().head()
```

Out[43]:

								ano quantidade_pa			
	count	mean	std	min	25%	50%	75%	max	count	me	
local_conferencia											
Amman	1.0	2011.0	NaN	2011.0	2011.0	2011.0	2011.0	2011.0	0.0	N	
Amsterdam	1.0	2007.0	NaN	2007.0	2007.0	2007.0	2007.0	2007.0	0.0	N	
Arlington, VA	1.0	2010.0	NaN	2010.0	2010.0	2010.0	2010.0	2010.0	0.0	N	
Barcelona	1.0	2013.0	NaN	2013.0	2013.0	2013.0	2013.0	2013.0	0.0	Ν	
Beijing	1.0	2012.0	NaN	2012.0	2012.0	2012.0	2012.0	2012.0	0.0	Ν	
5 rows × 64 colum	ns										

localhost:8888/notebooks/jupyter-notebook/CEFET-Dissertacao-2021/script/CEFET-Dissertação-Mat-CIC1229-Relatório 001.ipynb#

```
In [44]:
```

```
# pegar as 10 +
plt.figure(figsize=(15,10))
local_conferencia.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Locais de Conferências")
plt.ylabel("Quantidade de Locais de Conferência")
plt.show()
```


In []:

4.5.4 Analisando Editores

In [45]:

```
# Groupby by
editor = df_scopus.groupby("editor")

# Summary statistic of all
editor.describe().head()
```

Out[45]:

								ano	quantidad
	count	mean	std	min	25%	50%	75%	max	count
editor									
Academic Press Inc.	35.0	2016.857143	2.116363	2014.0	2015.00	2017.0	2019.0	2021.0	0.0
Adis	4.0	2020.250000	0.957427	2019.0	2019.75	2020.5	2021.0	2021.0	0.0
American Medical Association	1.0	2019.000000	NaN	2019.0	2019.00	2019.0	2019.0	2019.0	0.0
American Society for Clinical Pharmacology and Therapeutics	1.0	2018.000000	NaN	2018.0	2018.00	2018.0	2018.0	2018.0	0.0
American Society for Engineering Management	1.0	2019.000000	NaN	2019.0	2019.00	2019.0	2019.0	2019.0	0.0

5 rows × 64 columns

In [46]:

```
plt.figure(figsize=(15,10))
editor.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Fabricantes")
plt.ylabel("Número de Artigos")
plt.show()
```


In []:

4.5.5 Analisando artigos por Ano

In [47]:

```
# Groupby by
ano = df_scopus.groupby("ano")
# Summary statistic of all
ano.describe().head()
```

Out[47]:

					quantidade_paginas			quantidade_c		fim_p	oagina_		
	count	mean	std	min	25%	50%	75%	max	count	mean		75%	max
ano													
1991	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1.0	1.0		809.0	1047.0
1996	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1.0	20.0		377.0	377.0
1997	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1.0	69.0		489.0	489.0
1999	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1.0	1.0		312.0	312.0
2000	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.0	NaN		182.0	182.0
5 rows × 56 columns													

In [48]:

```
plt.figure(figsize=(15,10))
ano.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Anos")
plt.ylabel("Número de Artigos")
plt.show()
```


4.5.6 Analisando os idiomas

In [49]:

```
# Groupby by
idioma = df_scopus.groupby("idioma_original")

# Summary statistic of all
idioma.describe().head()
```

Out[49]:

								ano	quantidac
	count	mean	std	min	25%	50%	75%	max	count
idioma_original									
English	571.0	2014.633975	4.591468	1991.0	2012.0	2015.0	2018.0	2021.0	6.0
French	1.0	2011.000000	NaN	2011.0	2011.0	2011.0	2011.0	2011.0	0.0
Japanese	1.0	2014.000000	NaN	2014.0	2014.0	2014.0	2014.0	2014.0	0.0
Spanish	1.0	2018.000000	NaN	2018.0	2018.0	2018.0	2018.0	2018.0	0.0

4 rows × 64 columns

In [50]:

```
plt.figure(figsize=(15,10))
idioma.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Idioma Original")
plt.ylabel("Número de Artigos")
plt.show()
```


In [51]:

```
print('Visão geral em gráfico')
sns.pairplot(df_scopus)
```

Visão geral em gráfico

Out[51]:

<seaborn.axisgrid.PairGrid at 0x2471f344f88>


```
In [52]:

    ## qtde de artigos financiados e nao financiados - criar coluna

In [53]:

    ## qtde de artigos patrociandores e nao patrociandores - criar coluna

In [54]:

    ## criar regex para identificar emails da coluna editores

In [55]:

    ## qtde de artigos por editores - unicos

In [56]:

    ## qtde de artigos por local de conferencia - unicos

In [57]:

    ## qtde de artigos por idioma_original - unicos

In [58]:
```

4.6 Nuvem de Palavras

4.6.1 Nuvem de Palavras dos Títulos

qtde de artigos por tipo de documentos - unicos

In [59]:

```
import nltk
from nltk.corpus import stopwords

stopwords = stopwords.words('english')

print(stopwords)

# apend outras palavras
```

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you'r e", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'i t', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselve s', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'tho se', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'bu t', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'befor e', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'o n', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'the re', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'mo re', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'sa me', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "d on't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "d oesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "is n't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wouldn't"]

In [60]:

```
print('Carregar novo dataframe de palavras apenas com dados da coluna texto, ou seja, uma
#df_scopus['issn_scopus'] = df_scopus.issn_scopus.str.upper()
palavras_titulo = df_scopus['titulo_artigo'].str.lower()
palavras_titulo
```

Carregar novo dataframe de palavras apenas com dados da coluna texto, ou sej a, uma série.

Out[60]:

```
0
       the unified medical language system (umls): in...
1
       effective mapping of biomedical text to the um...
2
       an overview of metamap: historical perspective...
3
       disgenet: a comprehensive platform integrating...
4
       pharmacovigilance from social media: mining ad...
       ub at clef 2005: bilingual clir and medical im...
569
570
       automated indexing of the hazardous substances...
571
                                                  metamap
572
       multivistm: a web-based interactive remote vis...
573
       new method for identifying features of an imag...
Name: titulo_artigo, Length: 574, dtype: object
```

```
In [61]:
```

```
print(f'O objeto palavras é do tipo {type(palavras_titulo)} e tem o shape de {palavras_ti
```

O objeto palavras é do tipo <class 'pandas.core.series.Series'> e tem o shap e de (574,)

In [62]:

```
print(f'Criando Nuvem de Palavras sem tratamento para ter ideia do corpus.')
# Variável recebe conteúdo do dataframe palavras concatenando cada conteúdo do texto sepa
wordcloud_palavras_titulo = " ".join(s for s in palavras_titulo)
#wordcloud_palavras
```

Criando Nuvem de Palavras sem tratamento para ter ideia do corpus.

In [63]:

```
print(f'Quantidade de palavras no corpus: {len(wordcloud_palavras_titulo)} e seu tipo atu
```

Quantidade de palavras no corpus: 53282 e seu tipo atual é<class 'str'>

In [64]:

Criação da nuvem de palavras sem tratamento nos textos

In [65]:

```
#Gráfico Nuvem de Palavras
# Gerando o grafico
# Variáveis do gráfico
path_image = '../image/'
titulo = 'Nuvem de Palavras'
\#eixo \ x = ''
#eixo_y = ''
image = path_image+'wordcloud'
extensao arquivo = '.pdf'
#Gráfico
fig, ax = plt.subplots(figsize=(16,8))
ax.imshow(wordcloud_titulo, interpolation='bilinear')
ax.set_axis_off()
#Legendas
#ax.legend(title='Legenda', loc=4, fontsize=9)
ax.set_title(titulo, fontsize=18)
#ax.set_xlabel(eixo_x, fontsize=9)
#ax.set_ylabel(eixo_y, fontsize=9)
#salvar imagens
plt.savefig(image+extensao_arquivo) #, format='pdf', dpi=300, transparent=True)
plt.tight_layout()
plt.show()
```


4.6.2 Nuvem de Palavras dos Resumos

In [66]:

```
print('Carregar novo dataframe de palavras apenas com dados da coluna texto, ou seja, uma
palavras_resumo = df_scopus['resumo'].str.lower()
palavras_resumo
```

Carregar novo dataframe de palavras apenas com dados da coluna texto, ou sej a, uma série.

Out[66]:

```
the unified medical language system (http://um...
       the umls metathesaurus, the largest thesaurus ...
1
       metamap is a widely available program providin...
2
       the information about the genetic basis of hum...
3
4
       objective social media is becoming increasingl...
       this paper presents the results of the state u...
569
570
       the hazardous substances data bank (hsdb), a f...
571
                                 [no abstract available]
572
       the evolution of hypermedia imagemap technolog...
573
       the metamap process extends the concept of dir...
Name: resumo, Length: 574, dtype: object
```

In [67]:

```
print(f'Criando Nuvem de Palavras sem tratamento para ter ideia do corpus.')
# Variável recebe conteúdo do dataframe palavras concatenando cada conteúdo do texto sepa
wordcloud_palavras_resumo = " ".join(s for s in palavras_resumo)
#wordcloud_palavras
```

Criando Nuvem de Palavras sem tratamento para ter ideia do corpus.

In [68]:

```
print(f'Quantidade de palavras no corpus: {len(wordcloud_palavras_resumo)} e seu tipo atu
```

Quantidade de palavras no corpus: 799380 e seu tipo atual é<class 'str'>

In [69]:

Criação da nuvem de palavras sem tratamento nos textos

In [70]:

```
#Gráfico Nuvem de Palavras
path_image = '../image/'
titulo = 'Nuvem de Palavras'
\#eixo_x = ''
#eixo_y = ''
image = path_image+'wordcloud'
extensao_arquivo = '.pdf'
#Gráfico
fig, ax = plt.subplots(figsize=(16,8))
ax.imshow(wordcloud_resumo, interpolation='bilinear')
ax.set_axis_off()
#Legendas
#ax.legend(title='Legenda', loc=4, fontsize=9)
ax.set_title(titulo, fontsize=18)
#ax.set_xlabel(eixo_x, fontsize=9)
#ax.set_ylabel(eixo_y, fontsize=9)
#salvar imagens
plt.savefig(image+extensao_arquivo) #, format='pdf', dpi=300, transparent=True)
plt.tight_layout()
plt.show()
```


5 Dataframe Qualis

5.1 Ajustar de Colunas

5.1.1 Alterar nome de colunas

```
In [71]:
    print('Verificar colunas')
    df_qualis.columns

Verificar colunas

Out[71]:
    Index(['ISSN', 'Título', 'Área de Avaliação', 'Estrato'], dtype='object')

In [72]:

v    columns_qualis = {
        'ISSN': 'issn_qualis',
        'Título':'titulo_periodico',
        'Área de Avaliação':'area_avaliacao',
        'Estrato':'estrato',
```

In [73]:

}

```
df_qualis = df_qualis.rename(columns=columns_qualis)
df_qualis.head(1)
```

Out[73]:

	issn_qualis	titulo_periodico	area_avaliacao	estrato
0	1981-030X	19&20 (RIO DE JANEIRO)	ADMINISTRAÇÃO PÚBLICA E DE EMPRESAS, CIÊNCIAS	С

5.2 Ajustar tipagem de dados

5.2.1 Converter colunas para categórica

```
In [74]:
```

```
print('Ajustar tipagem dos dados')
df_qualis['estrato'] = df_qualis['estrato'].astype('category')
```

Ajustar tipagem dos dados

5.2.2 Filtrar base Qualis

In [75]:

```
print(df_qualis['area_avaliacao'].unique())
['ADMINISTRAÇÃO PÚBLICA E DE EMPRESAS, CIÊNCIAS CONTÁBEIS E TURISMO'
 'ANTROPOLOGIA / ARQUEOLOGIA
 'ARQUITETURA, URBANISMO E DESIGN' 'ARTES'
 'ASTRONOMIA / FÍSICA
                                                        'BIODIVERSIDADE'
 'BIOTECNOLOGIA
 'CIÊNCIA DA COMPUTAÇÃO
 'CIÊNCIA DE ALIMENTOS
 'CIÊNCIA POLÍTICA E RELAÇÕES INTERNACIONAIS
 'CIÊNCIAS AGRÁRIAS I
 'CIÊNCIAS AMBIENTAIS'
 'CIÊNCIAS BIOLÓGICAS I
 'CIÊNCIAS BIOLÓGICAS II
 'CIÊNCIAS BIOLÓGICAS III
 'CIÊNCIAS DA RELIGIÃO E TEOLOGIA' 'COMUNICAÇÃO E INFORMAÇÃO'
 'DIREITO
 'ECONOMIA
 'EDUCAÇÃO
 'EDUCAÇÃO FÍSICA
 'ENFERMAGEM
 'ENGENHARIAS I
 'ENGENHARIAS II
 'ENGENHARIAS III
 'ENGENHARIAS IV
                                                        'ENSINO'
 'FARMÁCIA
                                                        'FILOSOFIA'
 'GEOCIÊNCIAS
 'GEOGRAFIA
 'HISTÓRIA
 'INTERDISCIPLINAR
 'LINGUÍSTICA E LITERATURA'
 'MATEMÁTICA / PROBABILIDADE E ESTATÍSTICA
 'MATERIAIS
 'MEDICINA I
 'MEDICINA II
 'MEDICINA III
 'MEDICINA VETERINÁRIA
                                                        'NUTRIÇÃO'
 'ODONTOLOGIA
 'PLANEJAMENTO URBANO E REGIONAL / DEMOGRAFIA
 'PSICOLOGIA
 'QUÍMICA
 'SAÚDE COLETIVA
 'SERVIÇO SOCIAL
 'SOCIOLOGIA
                                                      '1
 'ZOOTECNIA / RECURSOS PESQUEIROS
```

5.2.3 Remover as areas abaixo

In [76]:

```
#%%timeit
df_remove = df_qualis.loc[
    (df qualis['area avaliacao'] == 'ADMINISTRAÇÃO PÚBLICA E DE EMPRESAS, CIÊNCIAS CONTÁB
    (df_qualis['area_avaliacao'] == 'ARTES') |
    (df_qualis['area_avaliacao'] == 'ANTROPOLOGIA / ARQUEOLOGIA
    (df_qualis['area_avaliacao'] == 'ARQUITETURA, URBANISMO E DESIGN') |
    (df_qualis['area_avaliacao'] == 'ASTRONOMIA / FÍSICA
    (df_qualis['area_avaliacao'] == 'BIODIVERSIDADE') |
    (df qualis['area avaliacao'] == 'CIÊNCIAS AGRÁRIAS I
    (df_qualis['area_avaliacao'] == 'CIÊNCIA DE ALIMENTOS
    (df_qualis['area_avaliacao'] == 'CIÊNCIA POLÍTICA E RELAÇÕES INTERNACIONAIS
    (df_qualis['area_avaliacao'] == 'CIÊNCIAS AGRÁRIAS I
    (df_qualis['area_avaliacao'] == 'CIÊNCIAS AMBIENTAIS') |
    (df_qualis['area_avaliacao'] == 'CIÊNCIAS DA RELIGIÃO E TEOLOGIA') |
    (df_qualis['area_avaliacao'] == 'COMUNICAÇÃO E INFORMAÇÃO') |
    (df_qualis['area_avaliacao'] == 'DIREITO
    (df_qualis['area_avaliacao'] == 'ECONOMIA
    (df_qualis['area_avaliacao'] == 'EDUCAÇÃO
    (df_qualis['area_avaliacao'] == 'ENSINO') |
    (df_qualis['area_avaliacao'] == 'EDUCAÇÃO FÍSICA
    (df_qualis['area_avaliacao'] == 'ENGENHARIAS I
    (df_qualis['area_avaliacao'] == 'ENGENHARIAS II
    (df_qualis['area_avaliacao'] == 'ENGENHARIAS III
    (df qualis['area avaliacao'] == 'ENGENHARIAS IV
    (df_qualis['area_avaliacao'] == 'GEOCIÊNCIAS
    (df_qualis['area_avaliacao'] == 'FILOSOFIA') |
    (df qualis['area avaliacao'] == 'GEOGRAFIA
    (df_qualis['area_avaliacao'] == 'HISTÓRIA
    (df_qualis['area_avaliacao'] == 'INTERDISCIPLINAR
    (df_qualis['area_avaliacao'] == 'LINGUÍSTICA E LITERATURA') |
    (df_qualis['area_avaliacao'] == 'MATERIAIS
    (df_qualis['area_avaliacao'] == 'MEDICINA VETERINÁRIA
    (df_qualis['area_avaliacao'] == 'NUTRIÇÃO') |
    (df_qualis['area_avaliacao'] == 'PLANEJAMENTO URBANO E REGIONAL / DEMOGRAFIA
    (df qualis['area avaliacao'] == 'SERVIÇO SOCIAL
    (df_qualis['area_avaliacao'] == 'SOCIOLOGIA
    (df_qualis['area_avaliacao'] == 'ZOOTECNIA / RECURSOS PESQUEIROS
]
df qualis filtrado = df qualis.drop(df remove.index)
df qualis filtrado
```

Out[76]:

	issn_qualis	titulo_periodico	area_avaliacao	estrato
12853	2328-0662	# ISOJ JOURNAL	BIOTECNOLOGIA	С
12854	2190-5738	3 BIOTECH	BIOTECNOLOGIA	В3
12855	0101-9163	A HORA VETERINÁRIA	BIOTECNOLOGIA	С
12856	1232-1966	AAEM. ANNALS OF AGRICULTURAL AND ENVIRONMENTAL	BIOTECNOLOGIA	В3
12857	1530-9932	AAPS PHARMSCITECH	BIOTECNOLOGIA	В1

	issn_qualis	titulo_periodico	area_avaliacao	estrato
126668	1696-3202	ÁTOPOS - SALUD MENTAL, COMUNIDAD Y CULTURA	SAÚDE COLETIVA	B5
126669	2316-4360	ÉLISÉE - REVISTA DE GEOGRAFIA DA UEG	SAÚDE COLETIVA	B5
126670	1929-7017	ÉTHIQUE PUBLIQUE - REVUE INTERNATIONALE D'ÉTHI	SAÚDE COLETIVA	С
126671	1415-899X	ÚLTIMO ANDAR (PUCSP. IMPRESSO)	SAÚDE COLETIVA	B5
126672	1980-8305	ÚLTIMO ANDAR (PUCSP. ONLINE)	SAÚDE COLETIVA	B5

47063 rows × 4 columns

5.3 Analisar dataframe tratado

In [77]:

```
print('Verificando tipos e se tem dados nulos')
df_qualis_filtrado.info()
```

```
Verificando tipos e se tem dados nulos
<class 'pandas.core.frame.DataFrame'>
Int64Index: 47063 entries, 12853 to 126672
```

Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	issn_qualis	47063 non-null	object
1	titulo_periodico	47063 non-null	object
2	area_avaliacao	47063 non-null	object
3	estrato	47063 non-null	category

dtypes: category(1), object(3)

memory usage: 1.5+ MB

In [78]:

```
print('Resumo Estatístico de Campos Numéricos')
df_qualis_filtrado.describe()
```

Resumo Estatístico de Campos Numéricos

Out[78]:

	issn_qualis	titulo_periodico	area_avaliacao	estrato
count	47063	47063	47063	47063
unique	14975	15603	15	8
top	1932-6203	PLOS ONE	MEDICINA I	B1
freq	60	57	5181	9020

```
In [79]:
```

```
# ver qtd no excel =NÚM.CARACT(02)
print('Coluna com maior qtde de caracteres')
df_qualis_filtrado['titulo_periodico'].apply(str).map(len).max()
```

Coluna com maior qtde de caracteres

```
Out[79]:
```

254

5.4 Visualizações Qualis

5.4.1 Anáilise Area de Avaliação

```
In [80]:
```

```
df_qualis_filtrado.columns
```

Out[80]:

```
Index(['issn_qualis', 'titulo_periodico', 'area_avaliacao', 'estrato'], dtyp
e='object')
```

```
#colocar appos definir este df
## pegar os 10 + patrocinadores
df_bases.area_avaliacao.unique()
```

In [81]:

```
# Groupby by
area_avaliacao_all = df_qualis_filtrado.groupby("area_avaliacao")

# Summary statistic of all
area_avaliacao_all.describe().head()
```

Out[81]:

			issn_q	lualis			titulo_periodico			
	count	unique	top	freq	count	unique	top	freq	count	u
area_avaliacao										
BIOTECNOLOGIA	4376	4137	0100- 4042	5	4376	4211	PLOS ONE	4	4376	_
CIÊNCIA DA COMPUTAÇÃO	1850	1775	1932- 6203	3	1850	1794	REVISTA DE SISTEMAS E COMPUTAÇÃO - RSC	3	1850	
CIÊNCIAS BIOLÓGICAS I	3870	3677	1932- 6203	4	3870	3750	PLOS ONE	4	3870	
CIÊNCIAS BIOLÓGICAS II	3889	3681	1932- 6203	5	3889	3760	TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY	4	3889	
CIÊNCIAS BIOLÓGICAS III	2403	2276	1932- 6203	8	2403	2330	PLOS ONE	7	2403	

In [82]:

```
# pegar as 10 +
plt.figure(figsize=(15,10))
area_avaliacao_all.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Área de Avaliação geral - Base Qualis")
plt.ylabel("Quantidade de Artigos")
plt.grid()
plt.show()
```



```
In [ ]:
```

```
## muito lento
# Groupby by
titulo_periodico = df_qualis_filtrado.groupby("titulo_periodico")

# Summary statistic of all
titulo_periodico.describe().head()
```

```
# pegar as 10 +
plt.figure(figsize=(15,10))
titulo_periodico.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Título dos Periódicos")
plt.ylabel("Quantidade de Periodicos")
plt.show()
```

In []:

In [83]:

```
### Gerando gráfico Tipo de Extensões
#variáveis do gráfico
titulo = 'Quantidade de Periodicos'
eixo_x = 'Tipos de Periodicos'
eixo_y = 'Quantidade de Periodicos'
data_hora = datetime.datetime.now()
path = os.path.join('..', 'image')
img_extensao = '.png'
image = ''
# Matplotlib
fig, ax = plt.subplots(figsize=(15,5))
plt.bar(df_qualis_filtrado['area_avaliacao'].value_counts().index, df_qualis_filtrado['ar
#Legendas e eixos
#ax.legend(title='Legenda', loc=4, fontsize=20)
ax.set_title(titulo, fontsize=20)
ax.set_xlabel(eixo_x, fontsize=15)
ax.set_ylabel(eixo_y, fontsize=15)
plt.yticks(rotation=45) ## agrupar datas por meses, trimestre ou ano, etc
plt.grid()
#Salvar imagem
#plt.savefig(path+image, dpi=300)
plt.tight_layout()
plt.show()
plt.show()
```


6 Dataframe PubMEd

In []:

7 Dataframe CAPES

In []:

8 Unir / Merge de dataframes

```
In [84]:
#df_qualis["issn_qualis_ajustado"] =
 df_qualis_filtrado["issn_qualis"].replace('-','',regex=True, inplace=True)
In [85]:
 df_qualis_filtrado["issn_qualis"]
Out[85]:
12853
          23280662
          21905738
12854
          01019163
12855
12856
          12321966
12857
          15309932
126668
          16963202
126669
          23164360
126670
          19297017
126671
          1415899X
126672
          19808305
Name: issn_qualis, Length: 47063, dtype: object
In [86]:
 df_scopus['issn_scopus'] = df_scopus.issn_scopus.str.upper()
 df_qualis_filtrado['issn_qualis'] = df_qualis_filtrado.issn_qualis.str.upper()
In [87]:
 df_scopus['issn_scopus']
Out[87]:
       03051048
0
1
       1531605X
2
       10675027
3
       03051048
       10675027
569
       03029743
570
       15508390
571
       10829873
572
       0277786X
       0277786X
573
Name: issn_scopus, Length: 574, dtype: object
```

```
In [88]:
```

```
df_qualis_filtrado['issn_qualis']
Out[88]:
12853
          23280662
12854
          21905738
12855
          01019163
12856
          12321966
          15309932
12857
            . . .
126668
          16963202
126669
          23164360
          19297017
126670
126671
          1415899X
          19808305
126672
Name: issn_qualis, Length: 47063, dtype: object
```

In []:

```
## criar um dataframe q une o links_regulamentos_fundos + allLines, ligados pelo nome do
arquivo
df_bases = pd.merge(left=df_scopus, right=df_qualis_filtrado, left_on='issn_scopus',
right_on='issn_qualis', suffixes=["_df_scopus", "_df_qualis"])
df_bases
```

In [89]:

criar um dataframe q une o links_regulamentos_fundos + allLines, ligados pelo nome do df_bases = df_scopus.merge(df_qualis_filtrado, left_on='issn_scopus', right_on='issn_qual df_bases

Out[89]:

	autores	id_autores	titulo_artigo	ano	titulo_fo
0	Bodenreider O.	6603893164;	The Unified Medical Language System (UMLS): In	2004	Nuc Ad Resea
1	Bodenreider O.	6603893164;	The Unified Medical Language System (UMLS): In	2004	Nuc Ac Resea
2	Bodenreider O.	6603893164;	The Unified Medical Language System (UMLS): In	2004	Nuc Ac Resea
3	Bodenreider O.	6603893164;	The Unified Medical Language System (UMLS): In	2004	Nuc Ad Resea
4	Bodenreider O.	6603893164;	The Unified Medical Language System (UMLS): In	2004	Nuc Ad Resea
2331	Doyle M., Klein G., Hussaini F., Pescitelli M.	57197355375;57199985005;6603483180;6508147369;	MultiVISTM: A Web- based interactive remote vis	2000	Proceedi of SP Internatic Soci
2332	Doyle Michael	36804804600;	New method for identifying features of an imag	1991	Proceedi of SP Internation Soci
2333	Doyle Michael	36804804600;	New method for identifying features of an imag	1991	Proceedi of SP Internatic Soci
2334	Doyle Michael	36804804600;	New method for identifying features of an imag	1991	Proceedi of SP Internatic Soci
2335	Doyle Michael	36804804600;	New method for identifying features of an imag	1991	Proceedi of SP Internation Soci

In [90]:

#df_scopus.merge(df_qualis, left_on='issn_scopus', right_on='issn_qualis', how='left', va

In [91]:

df_bases[['autores','titulo_artigo','area_avaliacao','issn_scopus','issn_qualis','estrato

Out[91]:

	autores	titulo_artigo	area_avaliacao	issn_scopus	issn_qualis	estrato
0	Bodenreider O.	The Unified Medical Language System (UMLS): In	BIOTECNOLOGIA	03051048	03051048	A1
1	Bodenreider O.	The Unified Medical Language System (UMLS): In	CIÊNCIA DA COMPUTAÇÃO	03051048	03051048	B2
2	Bodenreider O.	The Unified Medical Language System (UMLS): In	CIÊNCIAS BIOLÓGICAS I	03051048	03051048	A1
3	Bodenreider O.	The Unified Medical Language System (UMLS): In	CIÊNCIAS BIOLÓGICAS II	03051048	03051048	A1
4	Bodenreider O.	The Unified Medical Language System (UMLS): In	CIÊNCIAS BIOLÓGICAS III 	03051048	03051048	A1
2331	Doyle M., Klein G., Hussaini F., Pescitelli M.	MultiVISTM: A Web-based interactive remote vis	QUÍMICA	0277786X	0277786X	С
2332	Doyle Michael	New method for identifying features of an imag	MEDICINA II	0277786X	0277786X	В4
2333	Doyle Michael	New method for identifying features of an imag	MEDICINA III	0277786X	0277786X	B4
2334	Doyle Michael	New method for identifying features of an imag	ODONTOLOGIA	0277786X	0277786X	B4
2335	Doyle Michael	New method for identifying features of an imag	QUÍMICA	0277786X	0277786X	С

2336 rows × 6 columns

In [92]:

print(type(df_bases['_merge'].unique()))

<class 'pandas.core.arrays.categorical.Categorical'>

```
In [93]:
```

```
print(df_bases['_merge'].unique())
['both', 'left_only']
Categories (2, object): ['both', 'left_only']
```

In [94]:

df_bases.nunique()

Out[94]:

out[54].	
autores	549
id autores	546
titulo_artigo	572
ano	25
titulo_fonte	220
volume	208
publicado	39
numero_artigo	147
inicio_pagina	340
fim_pagina	342
quantidade_paginas	5
quantidade_citacoes	81
doi	459
link_scopus	574
afiliacoes	552
autores_com_filiacoes	567
resumo	565
palavras chaves autor	394
palavras_chave_index	520
numeros_sequencia_molecular	1
chemicals_cas	94
nomes_comerciais	16
fabricantes	2
detalhes_financiamento	228
texto_financiamento_1	187
texto_financiamento_2	18
texto_financiamento_3	2
referencias	521
endereco_correspondencia	448
editores	77
patrocinadores	64
editor	85
nome_conferencia	157
data conferencia	155
local_conferencia	56
codigo_conferencia	150
issn_scopus	150
isbn	134
coden	60
id_pubmed	314
idioma_original	4
titulo abreviado fonte	213
tipo_documento	9
etapa_publicacao	2
acesso_livre	7
fonte	1
eid	574
inicio_pagina_	340
fim_pagina_	338
quantidade_paginas_	26
issn_qualis	104
titulo_periodico	111
area_avaliacao	15
estrato	8
CJCI UCO	o

11/06/2021

_merge

2

In [95]:

```
df_bases.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2336 entries, 0 to 2335
Data columns (total 55 columns):

Data	cordining (corar 33 cordining).		
#	Column	Non-Null Count	Dtype
0	autores	2336 non-null	object
1	id_autores	2336 non-null	object
2	titulo_artigo	2336 non-null	object
3	ano	2336 non-null	int64
4	titulo_fonte	2336 non-null	object
	volume	2238 non-null	
5			object
6	publicado	1419 non-null	object
7	numero_artigo 	1147 non-null	object
8	inicio_pagina	1187 non-null	object
9	fim_pagina	1157 non-null	object
10	quantidade_paginas	10 non-null	float64
11	quantidade_citacoes	1960 non-null	float64
12	doi	2191 non-null	object
13	link_scopus	2336 non-null	object
14	afiliacoes	2317 non-null	object
15	autores_com_filiacoes	2325 non-null	object
16	resumo	2336 non-null	object
17	palavras_chaves_autor	1269 non-null	object
18	palavras_chave_index	2239 non-null	object
19	numeros_sequencia_molecular	3 non-null	object
20	chemicals_cas	824 non-null	object
21	nomes_comerciais	118 non-null	object
22	fabricantes	13 non-null	category
23	detalhes_financiamento	1174 non-null	object
24	texto_financiamento_1	873 non-null	object
25	texto_financiamento_1 texto_financiamento_2	71 non-null	object
26	-	16 non-null	_
27	<pre>texto_financiamento_3 referencias</pre>		object
		2245 non-null	object
28	endereco_correspondencia	2115 non-null	object
29	editores	280 non-null	object
30	patrocinadores	129 non-null	object
31	editor	1790 non-null	object
32	nome_conferencia	473 non-null	object
33	data_conferencia	473 non-null	object
34	local_conferencia	182 non-null	object
35	codigo_conferencia	428 non-null	float64
36	issn_scopus	2255 non-null	object
37	isbn	421 non-null	object
38	coden	1267 non-null	object
39	id_pubmed	1780 non-null	float64
40	idioma_original	2336 non-null	object
41	titulo_abreviado_fonte	2336 non-null	object
42	tipo_documento	2336 non-null	object
43	etapa_publicacao	2336 non-null	object
44	acesso_livre	1444 non-null	category
45	fonte	2336 non-null	object
46	eid	2336 non-null	object
47	inicio_pagina_	1187 non-null	float64
48	fim_pagina_	1157 non-null	float64
49	quantidade_paginas_	1157 non-null	float64
50	issn_qualis	2163 non-null	object
50 51	titulo_periodico	2163 non-null	object
21	creato_bel routeo	TTO1 HOH-HUTT	object

In []:

8.1 Visualizações Base Geral

8.1.1 Analisando Nomes Comerciais

In [97]:

```
#Colocar + para baixo após criar este df

# Groupby by
nomes_comerciais = df_bases.groupby("nomes_comerciais")

# Summary statistic of all
nomes_comerciais.describe().head()
```

Out[97]:

								ano	quantidade_	pagin
	count	mean	std	min	25%	50%	75%	max	count	me
nomes_comerciais										
ABGene; Genome Function Integrated Discoverer; Journal Descriptor Indexing; MedPost; MetaMap; Metathesaurus; SemGen; SPECIALIST Lexicon	9.0	2006.0	0.0	2006.0	2006.0	2006.0	2006.0	2006.0	0.0	N
ABNER; MetaMap; OSCAR 3	9.0	2009.0	0.0	2009.0	2009.0	2009.0	2009.0	2009.0	0.0	N
ARRS GoldMiner; MeSH, us national library of medicine; MetaMap Transfer; Metathesaurus	4.0	2008.0	0.0	2008.0	2008.0	2008.0	2008.0	2008.0	0.0	N
GATE chunker; Genia Tagger; GENIA Treebank; Lingpipe; MetaMap; OpenNLP; Yamcha	3.0	2011.0	0.0	2011.0	2011.0	2011.0	2011.0	2011.0	0.0	N
Literature Mining for Toxicology	8.0	2017.0	0.0	2017.0	2017.0	2017.0	2017.0	2017.0	0.0	N
5 rows × 64 columns	S									
4										•

In [98]:

```
plt.figure(figsize=(15,10))
nomes_comerciais.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Nomes Comerciais")
plt.ylabel("Número de Artigos")
plt.show()
```


In []:

In [99]:

```
# Groupby by
area_avaliacao = df_bases.groupby("area_avaliacao")

# Summary statistic of all
area_avaliacao.describe().head()
```

Out[99]:

								ano	quant
	count	mean	std	min	25%	50%	75%	max	count
area_avaliacao									
BIOTECNOLOGIA	137.0	2015.043796	4.061781	2004.0	2013.00	2016.0	2018.0	2021.0	0.0
CIÊNCIA DA COMPUTAÇÃO	338.0	2014.920118	4.136701	1997.0	2013.00	2015.0	2018.0	2021.0	3.0
CIÊNCIAS BIOLÓGICAS I	192.0	2015.218750	3.876910	2004.0	2013.00	2016.0	2018.0	2021.0	0.0
CIÊNCIAS BIOLÓGICAS II	118.0	2015.898305	3.944898	2004.0	2013.25	2017.0	2019.0	2021.0	0.0
CIÊNCIAS BIOLÓGICAS III	138.0	2016.021739	3.796786	2004.0	2014.00	2017.0	2019.0	2021.0	0.0

5 rows × 64 columns

localhost:8888/notebooks/jupyter-notebook/CEFET-Dissertacao-2021/script/CEFET-Dissertação-Mat-CIC1229-Relatório 001.ipynb#

In [100]:

```
# pegar as 10 +
plt.figure(figsize=(15,10))
area_avaliacao.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Área de Avaliação")
plt.ylabel("Quantidade de Artigos")
plt.show()
```


In []:

8.1.2 Análise de Titulo Periodico

In [101]:

```
# Groupby by
titulo_periodico = df_bases.groupby("titulo_periodico")

# Summary statistic of all
titulo_periodico.describe().head()
```

Out[101]:

								ano	quantidade_pa	
	count	mean	std	min	25%	50%	75%	max	count	ı
titulo_periodico										
ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING	12.0	2019.0	1.206045	2018.0	2018.0	2018.5	2020.0	2021.0	0.0	
APPLIED CLINICAL INFORMATICS	12.0	2015.0	2.088932	2013.0	2013.0	2015.0	2017.0	2017.0	0.0	
APPLIED SOFT COMPUTING (PRINT)	2.0	2019.0	0.000000	2019.0	2019.0	2019.0	2019.0	2019.0	0.0	
ARTIFICIAL INTELLIGENCE IN MEDICINE (PRINT)	6.0	2017.0	1.095445	2016.0	2016.0	2017.0	2018.0	2018.0	0.0	
BIOANALYSIS (PRINT)	7.0	2012.0	0.000000	2012.0	2012.0	2012.0	2012.0	2012.0	0.0	

5 rows × 64 columns

In [102]:

```
# pegar as 10 +
plt.figure(figsize=(15,10))
titulo_periodico.size().sort_values(ascending=False).plot.bar()
plt.xticks(rotation=50)
plt.xlabel("Título dos Periódicos")
plt.ylabel("Quantidade de Periodicos")
plt.show()
```


9 Exportação do resultado para Excel

In [103]:

```
df_scopus.columns
```

Out[103]:

In [104]:

```
## Gerar planilha com colunas especificas
#resultado_geral = os.path.join('../data','scopus-31-05-2021.csv')
resultado_scopus = os.path.join('../data', 'resultado_scopus.xlsx')
df_xlsx_scopus = pd.DataFrame(df_scopus, columns = [
        'issn_scopus','titulo_artigo', 'ano','quantidade_citacoes', 'tipo_documento', 'nom
        'editores', 'patrocinadores', 'editor',
        'autores', 'id_autores', 'titulo_fonte',
'volume', 'publicado', 'numero_artigo',
        'inicio pagina', 'fim pagina','quantidade paginas','inicio pagina ','fim pagina ',
        'doi', 'link_scopus',
        'afiliacoes', 'autores_com_filiacoes', 'resumo',
        'palavras_chaves_autor', 'palavras_chave_index',
        'numeros_sequencia_molecular', 'chemicals_cas', 'nomes_comerciais',
        'fabricantes',
        'detalhes_financiamento', 'texto_financiamento_1', 'texto_financiamento_2', 'texto_
        'referencias', 'endereco_correspondencia',
        'data_conferencia', 'local_conferencia',
        'codigo_conferencia', 'isbn', 'coden', 'id_pubmed',
        'idioma_original', 'titulo_abreviado_fonte',
        'etapa_publicacao', 'acesso_livre', 'fonte',
    ,])
df_xlsx_scopus = df_xlsx_scopus.to_excel(resultado_scopus,index=False, encoding='utf-8',
```

C:\Users\luizp\anaconda3\lib\site-packages\xlsxwriter\worksheet.py:943: Us erWarning: Ignoring URL 'http://www.ncbi.nlm.nih.gov/sites/entrez?db=OMI M,%200MIM;%20http://biocreative.sourceforge.net,%20BioCreAtIvE;%20Gene%200 ntology,%20,%20http://www.geneontology.org;%20Kim,%20J.,%20Ohta,%20T.,%20T suruoka,%20Y.,%20Tateisi,%20Y.,%20Collier,%20N.,%20Introduction%20to%20th e%20bio-entity%20recognition%20task%20at%20JNLPBA%20(2004)%20Proceedings%2 0of%20the%20Joint%20Workshop%20on%20Natural%20Language%20Processing%20in%2 OBiomedicine%20and%20Its%20Applications%20(JNLPBA-2004),%20pp.%2070-75;%20 Kim,%20J.,%20GENIA%20corpus-semantically%20annotated%20corpus%20for%20biotextmining%20(2003)%20Bioinformatics,%2019%20(SUPPL.%201),%20pp.%20i180-i1 82.%20,%2012855455;%20Wilbur,%20W.J.,%20Hazard,%20G.F.,%20Divita,%20G.,%20 Mork, %20J.G., %20Aronson, %20A.R., %20Browne, %20A.C., %20Analysis %20of %20biome dical%20text%20for%20chemical%20names:%20A%20comparison%20of%20three%20met hods%20(1999)%20Proc%20AMIA%20Symp,%20pp.%20176-180.%20,%2010566344;%20Cor bett,%20P.,%20Batchelor,%20C.,%20Teufel,%20S.,%20Annotation%20of%20Chemica 1%20Named%20Entities%20(2007)%20Biological,%20Translational,%20and%20Clini cal%20Language%20Processing,%20pp.%2057-64;%20http://pubchem.ncbi.nlm.nih. gov,%20PubChem;%20http://www.ebi.ac.uk/chebi,%20ChEBI;%20Settles,%20B.,%20 ABNER: %20An%20open%20source%20tool%20for%20automatically%20tagging%20gene

```
In [105]:
```

```
df bases.columns
Out[105]:
Index(['autores', 'id_autores', 'titulo_artigo', 'ano', 'titulo_fonte',
         'volume', 'publicado', 'numero_artigo', 'inicio_pagina', 'fim_pagin
a',
        'quantidade paginas', 'quantidade citacoes', 'doi', 'link scopus',
        'afiliacoes', 'autores_com_filiacoes', 'resumo',
        'palavras_chaves_autor', 'palavras_chave_index',
        'numeros_sequencia_molecular', 'chemicals_cas', 'nomes_comerciais',
        'fabricantes', 'detalhes_financiamento', 'texto_financiamento_1',
        'texto_financiamento_2', 'texto_financiamento_3', 'referencias',
        'endereco_correspondencia', 'editores', 'patrocinadores', 'editor',
        'nome_conferencia', 'data_conferencia', 'local_conferencia',
        'codigo_conferencia', 'issn_scopus', 'isbn', 'coden', 'id_pubmed',
'idioma_original', 'titulo_abreviado_fonte', 'tipo_documento',
'etapa_publicacao', 'acesso_livre', 'fonte', 'eid', 'inicio_pagina_',
        'fim_pagina_', 'quantidade_paginas_', 'issn_qualis', 'titulo_periodic
ο',
        'area_avaliacao', 'estrato', '_merge', 'leitura_Resumo',
        'leitura_Conclusao', 'leitura_completa'],
       dtype='object')
```

In [106]:

```
## Gerar planilha com colunas especificas
#resultado_geral = os.path.join('../data','scopus-31-05-2021.csv')
resultado_geral = os.path.join('../data','resultado_geral.xlsx')
df_xlsx = pd.DataFrame(df_bases, columns =
          ['titulo_artigo', 'ano', 'titulo_periodico', 'area_avaliacao', 'estrato', 'id_autor
         'volume', 'publicado', 'numero_artigo', 'inicio_pagina', 'fim_pagina',
         'quantidade_paginas', 'quantidade_citacoes', 'doi', 'link_scopus', 'autores', 'afiliacoes', 'autores_com_filiacoes', 'resumo',
         'palavras_chaves_autor', 'palavras_chave_index',
          'numeros_sequencia_molecular', 'chemicals_cas', 'nomes_comerciais',
         'fabricantes', 'detalhes_financiamento', 'texto_financiamento_1',
         'texto_financiamento_2', 'texto_financiamento_3', 'referencias',
         'endereco_correspondencia', 'editores', 'patrocinadores', 'editor',
'nome_conferencia', 'data_conferencia', 'local_conferencia',
'codigo_conferencia', 'issn_scopus', 'isbn', 'coden', 'id_pubmed',
         'idioma_original', 'titulo_abreviado_fonte', 'tipo_documento',
         'etapa_publicacao', 'acesso_livre', 'fonte', 'eid', 'issn_qualis','_merge'
'leitura_Resumo','leitura_Conclusao','leitura_completa'
           ,])
df xlsx = df xlsx.to excel(resultado geral,index=False, encoding='utf-8', header=True)
#df_xlsx_1 = df_xlsx_1.to_excel(r'C:/Users/luizp/jupyter-notebook/SisCRI-ML/data/REQ-002-
```

In []:

10 Analises

```
In [ ]:
```

In [107]:

```
data_fim = pd.Timestamp.now()
print(data_inicio)
print(data_fim)
```

2021-06-10 11:24:38.137884 2021-06-10 11:25:42.959971