Deep Learning model for Malaria Detection

Problems with manual diagnosis:

Time-consuming

Inter-observer variability

Objective:

Creation of an automated computer vision model to identify parasitized cells

Data:

27,558 labelled images (parasitised/uninfected):

Train: 24,958 images (≅ 90%)

Test: 2,600 images (≅ 10%)

* Source: National Library of Medicine (USA)

Data:

Approach:

1. Comparison of three base models (pre-trained on large amount of images)

2. Fine-tuning of the best model

3. Evaluation of predictions

	model	loss	accuracy
0	Efficient_Base	0.149827	0.959615
1	Efficient_Fine	0.065625	0.976538

After the iterations, the final model showed the near 98% accuracy on the classification task

Successfully classified images:

Misclassified images (61 of 2600):

Recommendations:

Feed in **unseen images** to help diagnose malaria (with experts monitoring the performance)

Next steps:

Further analyse misclassified images

Use more test data to capture clearer patterns of misclassification

Monitor model performance over time and make further improvements