Отчет по решению задачи оптимизации методом сопряженных градиентов

Тишина Ульяна

November 9, 2024

Contents

1	Введение Постановка задачи Метод сопряженных градиентов Реализация проверки на выпуклость		3	
2			4	
3			4	
4			4	
5	Pea	лизац	ия функций над векторами и матрицами	5
6	6 Реализация метода сопряженных граиентов			6
7	Проверка работы			7
	7.1	Прим	ep 1	7
		7.1.1	Реализация	7
		7.1.2	Проверка выпуклости	7
		7.1.3		8
		7.1.4	График значений функции на каждой итерации	8
	7.2	Прим	ep 2	9
		7.2.1	Реализация	9
		7.2.2	Проверка выпуклости	9
		7.2.3	Применение МСГ	10
		7.2.4	График значений функции на каждой итерации	10
	7.3	Прим	ep 3	11
		7.3.1	Реализация	11
		7.3.2	Проверка выпуклости	11
		7.3.3	Применение МСГ	12
		7.3.4	График значений функции на каждой итерации	12
	7.4		ер 4	13
	1.4	7.4.1	Реализация	13
		7.4.2	Проверка выпуклости	13
		7.4.2 $7.4.3$	Применение МСГ	14
		7.4.3 $7.4.4$	•	14
		1.4.4	График значений функции на каждой итерации	14
8	Заключение			15

1 Введение

В данном отчете рассматривается метод сопряженных градиентов для решения задачи оптимизации квадратичной функции. Описаны постановка задачи, реализация метода на языке Python, и приведены результаты тестовых примеров с визуализацией процесса оптимизации.

2 Постановка задачи

Рассмотрим задачу оптимизации функции многих переменных (пусть х вектор, состоящий из нескольких переменных):

$$f(x) \to min,$$
 (1)

3 Метод сопряженных градиентов

Метод сопряженных градиентов — это итеративный метод, используемый для нахождения минимума функций.

Этот метод применим только для выпуклых функций, поэтому сначала нужна проверка на выпуклость. Необходимо задать гессиан (матрица 2-х частных проиводных) и проверить ее на положительную определенность. Сделаем это так: возьмем несколько точек и проверим знак гессиана в них. Если хот бы в одной точке гессиан отрицателен, то такая функция не положительно определена. Если такая функция выдает ответ: функция положительно определена, то это не точно, ведь мы могли просто не проверить функцию на тех точках, где она не положительно определена.

4 Реализация проверки на выпуклость

Код на Python, реализующий метод сопряженных градиентов, представлен ниже:

```
x = np.linspace(-10, 10, 10)
x_range = np.array(np.meshgrid(x, x, x)).T.reshape(-1, 3)
y_range = np.array(np.meshgrid(x, x)).T.reshape(-1, 2)
check_x_range = np.array(np.meshgrid(x, x, x, x)).T.reshape(-1, 4)

def check_convexity(func, grad_func, hessian_func, x_range):
    for x in x_range:
        H = hessian_func(x)
        eigenvalues = np.linalg.eigvals(H)
        if not np.all(eigenvalues >= 0):
            return False
    return True
```

5 Реализация функций над векторами и матрицами

```
\# mult float and vector
def mult(a, arr):
    return np.array([i*a for i in arr])
\# add 2 vectors
def add(arr1, arr2):
    \mathbf{try}:
         return np.array([arr1[i]+arr2[i] for i in range(len(arr1))])
    \mathbf{except} \  \, \mathbf{TypeError} \colon
         arr1+arr2 [0]
\# dot of 2 vectors
def mydot(arr1, arr2):
    \mathbf{try}:
         ans=0
         for i in range(len(arr1)):
              ans+=arr1 [ i ] * arr2 [ i ]
         return ans
    except:
         return arr1*arr2[0]
```

6 Реализация метода сопряженных граиентов

Код на Python, реализующий метод сопряженных градиентов, представлен ниже:

```
\mathbf{def}\ \mathtt{conjugate\_gradient5} \ (\mathtt{f}\ ,\ \mathtt{grad\_f}\ ,\ \mathtt{x0}\ ,\ \mathtt{tol} = \mathtt{1e-6},\ \mathtt{max\_iter} = \mathtt{200},
                               alpha \max = 1.0, c = 0.5, \text{rho} = 0.5, alpha \min = 1e - 8):
     arr_f = [f(x0)]
     x = x0
     r = mult(-1, grad_f(x))
     d = r
     for i in range (max iter):
          alpha = alpha\_max
          while f(add(x, mult(alpha, d))) > f(x) + c * alpha * mydot(grad f(x), d)
                      and alpha > alpha min:
                alpha *= rho
          if alpha < alpha_min:</pre>
               break
          x = add(x, mult(alpha, d))
          \operatorname{arr}_{f} . \operatorname{append}(f(x))
          r_{new} = mult(-1, grad_f(x))
          beta = mydot(r_new, r_new) / mydot(r, r)
          d = add(r new, mult(beta, d))
          r = r new
          if np.linalg.norm(r) < tol:
               break
     f \min = f(x)
     return x, f_min, arr_f
```

7 Проверка работы

$$f = x^{2} + y^{2} + z^{2},$$
$$q = x^{3} + y^{3} - 3xy,$$

$$check_fun = -2x_0^3 + 4x_0^2 + x_1^4 - 3x_1^2 + 2 * x_2^2 * x_1 - 5x_2 + x_3^4 - x_3^2 * x_0^2 - 10$$

$$fun4 = (x_0 + 3)^4 + (x_1 - 1)^2 + (x_2 - 2)^2 + (x_3 + x_0)^2$$

7.1 Пример 1

7.1.1 Реализация

7.1.2 Проверка выпуклости

```
\label{eq:convex} \begin{split} &x\_range = np.array(np.meshgrid(x, x, x)).T.reshape(-1, 3)\\ &is\_convex = check\_convexity(f, grad\_f, hessian\_f, x\_range)\\ &\textbf{print}(f \setminus "f(x, \_y, \_z) \_ is \_convex: \_\{is\_convex\} \setminus ") \end{split}
```

Вывод: f(x, y, z) is convex: True

Значит, метод к ней предположительно применим. (Помним, что возможно, мы просто не проверили на тех точках, где функция не выпукла).

Начальную точку возьмем (1,1,6)

$$x0_1 = np.array([1, 1, 6])$$

7.1.3 Применение МСГ

7.1.4 График значений функции на каждой итерации

Figure 1: Процесс оптимизации для Примера 1

Минимальное значение 0 было найдено за 1 итерацию, что видно на графике.

7.2 Пример 2

7.2.1 Реализация

7.2.2 Проверка выпуклости

```
\label{eq:convex} \begin{split} &y\_range = np.array(np.meshgrid(x, x)).T.reshape(-1, 2)\\ &is\_convex = check\_convexity(g, grad\_g, hessian\_g, y\_range)\\ &\textbf{print}(f"g(x,\_y)\_is\_convex:\_\{is\_convex\}") \end{split}
```

g(x, y) is convex: False

Значит, метод к ней точно не применим, так как функция не выпуклая. Но мы все равно запустим метод для этой функции, чтобы посмотреть, как метод себя поведет

Начальную точку возьмем (8,-2)

$$x0_2 = np.array([8, -2])$$

7.2.3 Применение МСГ

Выдает:

```
x min2: ['nan', 'nan'], f min1: nan in 101 iterations
```

Что соответствует нашим ожиданиям: метод не отработал корректно, значения = nan, а также написано, что за 1001 итерацию, то есть метод остановился не потому, что нашел достаточно близкое значение, а потому, что закончились итерации (в функции задано максимальное кол-во итераций = 100)

7.2.4 График значений функции на каждой итерации

Figure 2: Процесс оптимизации для Примера 2

Первые 3 итерации были какие-то численные значения, а дальше все значения nan, что не отображено на графике. На самом деле минимальное значения кубической функции = -бесконченость, на графике функция как раз уменьшается.

7.3 Пример 3

7.3.1 Реализация

7.3.2 Проверка выпуклости

```
\label{eq:check_x_range} $$ \operatorname{check_x_range} = \operatorname{np.array}(\operatorname{np.meshgrid}(x,\ x,\ x,\ x)).T.\operatorname{reshape}(-1,\ 4)$ $$ \operatorname{is\_convex} = \operatorname{check\_convexity}(\operatorname{check\_fun},\ \operatorname{grad\_check\_fun},\ \operatorname{hessian\_check\_fun},\ \operatorname{check\_print}(f''\operatorname{check\_fun}(x, y, z, k)).is\_\operatorname{convex}:\{is\_\operatorname{convex}\}'')$ $$
```

Вывод: check fun(x, y, z, k) выпуклая: False.

Значит, метод к ней предположительно не применим.

Начальную точку возьмем (-1,-1,-1,-1)

check
$$x = [-1, -1, -1, -1]$$

7.3.3 Применение МСГ

7.3.4 График значений функции на каждой итерации

Figure 3: Процесс оптимизации для Примера 3

Минимальное значение не было найдено, что видно на графике (после 3-й итерации график обрывается, потому что значения пап не отображаются)

7.4 Пример 4

7.4.1 Реализация

7.4.2 Проверка выпуклости

```
 \begin{array}{l} \operatorname{fun4\_x\_range} = \operatorname{np.array}(\operatorname{np.meshgrid}(x,\ x,\ x,\ x)). T.\operatorname{reshape}(-1,\ 4) \\ \operatorname{is\_convex} = \operatorname{check\_convexity}(\operatorname{fun4},\ \operatorname{grad\_fun4},\ \operatorname{hessian\_fun4},\ \operatorname{fun4\_x\_range}) \\ \operatorname{print}(\operatorname{f"fun4}(x,\cup y,\cup z,\cup k)\cup\operatorname{is\_convex}:\cup \{\operatorname{is\_convex}\}") \\ \operatorname{Bывод:} \operatorname{fun4}(x,y,z,k) \operatorname{выпуклая:} \operatorname{True} \\ \operatorname{Значит,} \operatorname{метод} \ \kappa \ \operatorname{ней} \operatorname{предположительно} \operatorname{применим.} \\ \operatorname{Начальную} \operatorname{точку} \operatorname{возьмем}(-1,0.5,0.5,0.5) \\ \operatorname{fun4\_x0} = [-1,0.5,0.5,0.5] \\ \end{array}
```

7.4.3 Применение МСГ

fun4_x_min, fun4_f_min, fun4_arr_f = conjugate_gradient5(fun4, grad_fun4, fun4_x

print(f"fun4_x_min:_{to_float(fun4_x_min)},_fun4_f_min:_{to_float(fun4_f_min)})

_____in_{len(fun4_arr_f)}_iterations")

Выдает:

 $fun4_x_min: \ [\ '-3.00\ ',\ '1.00\ ',\ '2.00\ ',\ '3.00\ ']\ ,\ fun4_f_min: \ 0.00\ \ \textbf{in}\ \ 138\ \ iteration$

Что соответствует нашим ожиданиям: минимальное значение =0 найдено в точке (-3,1,2,3), что на самом деле, является верным решением, потому что функция неотрицательна, состоит из неотрицательных слагаемых, приравняв каждое к 0, то как раз получим указанные значения.

7.4.4 График значений функции на каждой итерации

Figure 4: Процесс оптимизации для Примера 4

Минимальное значение было найдено за 138 итераций, потому что функция выпуклая.

8 Заключение

В данном отчете была продемонстрирована реализация метода сопряженных градиентов для оптимизации различных функций. Полученное решение подтверждает эффективность метода только для выпуклых функций. Визуализация показывает процесс сходимости к оптимальному решению, можем сделать вывод, что сходимость сверхлинейная.