Representing Concept Lattices with Euler Diagrams

Uta Priss

Informatik, Ostfalia, www.upriss.org.uk

July, 2023

Introduction

My experience with teaching mathematics to computer science students:

Reading Hasse diagrams of concept lattices can be difficult

•000

Euler diagrams are easier to read

Introduction

What kinds of diagrams?

- ► small diagrams (< 20 concepts)
- ► crisp, non-fuzzy data
- ► background knowledge matters
- ▶ for example: used in mathematics education

Software:

- \rightarrow interactive layout, heuristics
- → multiple linked representations (text and graphics)

Introduction

Introduction

Conclusion

There is a lot to be said about Euler diagrams ...

... not everything can be included in this talk.

partial function function injective surjective

bijective = injective AND surjective

Introduction

Euler diagrams that cannot be "well-drawn"

(2-dimensional and 1-dimensional)

Boolean lattice with 5 elements

(3-dimensional)

Introduction

- ▶ 3-valued logic: at least one, none, don't care
- ► negatable attributes (binary)
- supplemental concepts (contingent extension empty even if more objects are added)

Contrary to conceptual exploration: the data is not changed

Introduction

Introduction

- synonyms ("clarification")
- ► AND ("reduction")
- ▶ OR
- ► NOT
- ▶ negation
- ► factorisation
- horizontal split
- ► lower horizontal split
- partitioning attributes
- partitioning objects
- ► conceptual partitioning

Conceptual partitioning

The set of objects is partitioned so that each partition is an extension of a concept or an extension of a concept of a negated attribute.

Introduction

Introduction

0000

e.g. how many supplemental concepts have been removed

Body of waters lattice

Introduction

"inland AND constant" - "NOT inland OR NOT constant"

Introduction

Lattice of "binary relations"

Introduction

"symmetric"

Introduction

"NOT symmetric"

Introduction

Conclusion

Introduction

- ► Reducing concept lattices
- ► Euler⁺diagrams
- ► Software for Euler⁺diagrams
- ► Algorithms for Euler diagram layout?
- ► Evaluating the usability of Euler⁺diagrams

Questions?