Processus discrets

TD4. Chaînes de Markov.

Exercice 1. On lance un dé de manière répétitive. Parmi les suites aléatoires suivantes, lesquelles sont des chaînes de Markov ? Donner leur matrice de transition.

- a) X_n : le plus grand résultat obtenu après n lancers.
- b) N_n : le nombre de 6 obtenus au bout de n lancers.
- c) C_n : nombre de lancers, à l'instant n, depuis le dernier 6.
- d) $B_n = \sum_{k=0}^n N_k$.

Exercice 2. Trois chars livrent un combat. Le char A atteint sa cible avec la probabilité 2/3, le char B avec la probabilité 1/2 et le char C avec la probabilité 1/3. Ils tirent tous ensembles et dès qu'un char est touché, il est détruit. On considère à chaque instant, l'ensemble des chars non détruits. Montrer qu'on obtient une chaîne de Markov dont on explicitera l'ensemble des états et la matrice de transition dans le cas où à chaque instant chaque char tire sur son adversaire le plus dangereux (le char qu'il a la plus grande probabilité d'atteindre sa cible).

Exercice 3. On considère une chaîne de Markov $(X_n)_{n\geqslant 0}$ homogène de matrice de transition P. Déterminer si les processus suivantes sont des chaînes de Markov et éventuellement préciser leur matrice de transition:

- a) $W_n = X_{n+k}, n \ge 0$ où $k \in \mathbb{N}$ est fixé;
- b) $Y_n = X_{2n}, \ n \ge 0$;
- c) $Z_n = X_{T_n}$, $n \ge 0$ où $T_n = S_1 + \dots + S_n$, $T_0 = 0$ et la suite $(S_n)_{n \ge 1}$ est iid et à valeurs dans $\mathbb{N} + 1$.

Exercice 4. Soit $(X_n)_{n\geq 0}$ la chaîne de Markov sur $\mathcal{M}=\{1,2,3,4,5\}$ de matrice de transition

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{3} & 0 & 0 & \frac{1}{6} \\ 0 & 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & \frac{2}{3} & 0 \end{pmatrix}$$

- a) Dessiner le graphe associé à cette matrice de transition.
- b) Déterminer les classes de communication et classifier les états en transients ou récurrents.
- c) La chaîne est-elle irréductible?
- d) Soit $T_x = \inf\{n \ge 0 : X_n = x\}$. Calculer $\mathbb{P}(X_3 = 1 | X_0 = 2)$ et $\mathbb{P}(T_2 < T_5 | X_0 = 1)$.
- e) Soit $u(x) = \mathbb{P}(T_2 < T_5 | X_0 = x)$ pour tout $x \in \mathcal{M}$. Déterminer l'équation linéaire satisfaite par u (sans la résoudre).

f) Soit $\lambda \ge 0$. Déterminer l'équation lineaire satisfaite par $v(x) = \mathbb{E}[e^{-\lambda T_5}|X_0 = x]$ (sans la résoudre).

Exercice 5. (RUINE DU JOUEUR) Deux joueurs A et B misent de façon répété 1 euro et chaque fois la probabilité que A gagne est $p \in]0, 1[$. Les jeux successifs sont indépendantes. Soit X_n la fortune du joueur A après n parties et soit a la fortune initiale de A et b celle de B. Le jeux termine de que un des joueurs perd tout sa fortune. On stipule que si un des joueurs perd sa fortune à l'instant n alors $X_k = X_n$ pour tout $k \geqslant n$. Donc $X_0 = a$ et le jeux termine de que $X_n \in \{0, a+b\}$. Soit $T = \inf\{n \geqslant 0 \colon X_n = 0 \text{ ou } X_n = a+b\}$ la durée (aléatoire) du jeux. La probabilité que A gagne si sa fortune initiale est x on la note $u(x) = \mathbb{P}(X_T = a+b, T < +\infty | X_0 = x)$.

- a) Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov et déterminer son espace d'états M et sa matrice de transition P.
- b) Montrer que u(0) = 0, u(a+b) = 1 et

$$u(x) = pu(x+1) + (1-p)u(x-1),$$
 $a < x < b.$

- c) Déterminer u(x) et $v(x) = \mathbb{P}(X_T = 0, T < +\infty | X_0 = x)$ et conclure que $\mathbb{P}(T = +\infty | X_0 = x) = 1$ pour tout $x \in M$.
- d) Remarquer que dans le cas $b = +\infty$ (joueur contre casino) et p = q (jeux équitable) on a que v(x) = 1 et donc que un joueur perdra toujours...
- e) Soit $m(x) = \mathbb{E}[T|X_0 = x]$ la durée moyenne du jeux si la fortune initiale de A est x. Montrer que m(x) satisfait la récurrence:

$$m(x) = 1 + p m(x+1) + (1-p) m(x-1)$$

pour tout $x \in]0, a+b[$ avec conditions au bords m(0) = 0 et m(a+b) = 0.

f) Montrer que l'unique solution de cette récurrence est

$$m(x) = x (a+b-x).$$

g) Conclure que dans le cas $b=+\infty$ en moyenne il faut un temps infini pour être ruiné en jouant contre le banc.

Exercice 6. On imagine le jeux suivante: en chaque instant de temps $n \ge 0$ et chaque point i de \mathbb{Z} on tire une v.a. $U_{n,i}$ qu'avec probabilité 1/2 vaut +1 et avec probabilité 1/2 vaut -1. On considère maintenant deux marches aléatoires (X_n, Y_n) définies par les recurrences

$$\left\{ \begin{array}{l} X_{n+1} = X_n + U_{n+1,X_n} \\ Y_{n+1} = Y_n + U_{n+1,Y_n} \end{array} \right.$$

On remarque que la suite $(U_{n,i})_{n,i}$ est la même pour les deux marches aléatoires. Etant donnée par une recurrence aléatoire la suite $(Z_n)_{n\geqslant 0}$ à valeurs dans \mathbb{Z}^2 donnée pas $Z_n=(X_n,Y_n)$, est une chaîne de Markov avec ensemble d'états $\mathcal{M}=\mathbb{Z}^2$.

- a) Donner la matrice de transition $P: \mathbb{Z}^2 \times \mathbb{Z}^2 \to [0,1]$ de la chaîne $(Z_n)_{n \geq 0}$.
- b) Determiner $\mathbb{P}(X_n = Y_n | X_0 = Y_0 = x)$ pour tout $n \ge 1$ et tout $x \in \mathbb{Z}$.
- c) Montrer que le processus $D_n = X_n Y_n$ est une chaîne de Markov sur \mathbb{Z} . Donner sa matrice de transition et classifier ses états.

d) Soit $T = \inf(n \ge 0$: $X_n = Y_n$) (avec $T = +\infty$ si $X_n \ne Y_n$ pour tout $n \ge 1$). Montrer que pour tout fonction $f: \mathbb{Z} \to \mathbb{R}$ bornée on a que

$$\mathbb{E}[|f(X_n) - f(Y_n)|] \leqslant 2C \mathbb{P}(T > n)$$

où $C = \sup_{x \in \mathbb{Z}} |f(x)|$. (Sugg: considérer la différence $f(X_n) - f(Y_n)$ dans les deux cas: $\{T \leq n\}$ et $\{T > n\}$)

Exercice 7. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov sur un espace d'états discret \mathcal{M} avec matrice de transition $P: \mathcal{M} \times \mathcal{M} \to [0,1]$. Soit $(\mathcal{F}_n = \sigma(X_0,...,X_n))_{n\geqslant 0}$ la filtration des $(X_n)_{n\geqslant 0}$. Toutes les martingales suivantes sont considérées par rapport à cette filtration. On suppose aussi que $X_0 = x_0$ est un état fixé. Soit $f: \mathcal{M} \to \mathbb{R}$ une fonction bornée. On rappelle que $(P f)(x) = \sum_{y \in \mathcal{M}} P(x,y) f(y)$.

a) Montrer que le processus $(M_n)_{n\geq 1}$

$$M_n = f(X_n) - f(X_0) + \sum_{k=0}^{n-1} [f(X_k) - (Pf)(X_k)]$$

est une martingale.

b) Montrer que le processus $(V_n)_{n\geqslant 1}$

$$V_n = M_n^2 - \sum_{k=0}^{n-1} [(P(f^2))(X_k) - ((Pf)(X_k))^2]$$

est une martingale.

c) Soit N un entier positif. Montrer que le processus $(Q_n)_{n\geqslant 0}$ defini par

$$Q_n = \sum_{k=1}^{n} [(P^{N-k}f)(X_k) - (P^{N-k+1}f)(X_{k-1})]$$

si $n \leq N$ et avec $Q_n = Q_N$ si n > N et $Q_0 = 0$ est une martingale telle que $Q_N = f(X_N) - \mathbb{E}[f(X_N)]$. Ici on utilise la convention que $P^0 f(x) = f(x)$.

d) On suppose maintenant que la fonction f satisfait $|f(x) - f(y)| \leq |x - y|$, que $(Y_n)_{n \geq 1}$ est une suite iid avec $\mathbb{P}(Y_n = \pm 1) = 1/2$ et $(X_n)_{n \geq 0}$ la marche aléatoire simple $X_n = Y_1 + \cdots + Y_n$ avec $X_0 = 0$. Soit $(Q_n)_{n \geq 0}$ la martingale introduite à la question (c). Montrer que $|Q_n - Q_{n-1}| \leq 2$ pour tout $n \geq 1$.

Exercice 8. (Pannes aléatoires) Soit $\{U_n\}_{n\geqslant 0}$ une suite iid à valeurs dans $\{1, 2, ..., +\infty\}$. La v.a. U_k s'interprète comme durée de vie d'une quelque machine (la k-eme) qui est remplace par un autre (la k+1-eme) des qu'elle défaille. Au temps initial 0 la machine 1 est mise en service et elle dure jusq'au temps U_1 , subitement remplacée par la machine 2 que dure pour un intervalle de temps U_2 et donc jusq'au temps U_1+U_2 et ainsi de suite. On note X_n le temps de service de la machine en utilisation au temps n. Le processus $\{X_n\}_{n\geqslant 0}$ est un processus à valeurs dans $\mathbb N$. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov homogène sur $\mathbb N$ de matrice de transition

$$P(x, y) = \begin{cases} \frac{\mathbb{P}(U_1 > x + 1)}{\mathbb{P}(U_1 > x)} & \text{si } y = x + 1 ;\\ 1 - P(x, x + 1) & \text{si } y = 0 ;\\ 0 & \text{autrement } . \end{cases} \forall x, y \in \mathbb{N}$$

Exercice 9. (L'URNE D'EHRENFEST) Dans un récipient divisé en deux enceintes par une paroi poreuse sont réparties N molécules de gaz. A chaque unité de temps une particule choisi au hasard change d'enceinte. (les particules sont choisie avec loi uniforme sur $\{0, N\}$ et indépendamment à chaque instant de temps)

- 1. Vision Microscopique: L'état du système X_n à l'instant n est représenté par un vecteur $(x^i) \in M = \{0, 1\}^N$ où la i^e composante x^i vaut 1 ou 0 selon que la i-eme particule est dans la première ou la seconde enceinte.
 - a. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov sur M et donner sa matrice de transition.
 - b. Écrire $(X_n)_{n\geq 0}$ comme récurrence aléatoire.
 - c. Montrer que pour tout $x, y \in M$ il existe $n \ge 0$ tel que $\mathbb{P}(X_n = y | X_0 = x) > 0$.
- 2. Vision macroscopique: Soit S_n ne nombre de particules dans la première enceinte au temps $n: S_n = \sum_{k=1}^N X_n^k$.
 - a. Montrer que S_n est une chaîne de Markov sur $\{0, N\}$ et donner sa matrice de transition.
 - b. Écrire $(S_n)_{n\geqslant 0}$ comme récurrence aléatoire.
 - c. Montrer que pour tout $x, y \in \{0, N\}$ il existe $n \ge 0$ tel que $\mathbb{P}(S_n = y | S_0 = x) > 0$.

Exercices complementaires.

Exercice 10. (PROCESSUS DE NAISSANCE ET MORT) Soit $(p_k)_{k\geq 0}$ une suite de nombres dans [0,1[et Q la matrice de transition définie par:

$$P(0,1) = 1; \qquad \left\{ \begin{array}{l} P(k,k+1) = p_k \\ P(k,k-1) = 1 - p_k = q_k \end{array} \right. \quad s \: i \: k \geq 1.$$

avec $0 < p_k < 1$ pour tout $k \ge 1$.

- a) Montrer que la chaîne de Markov associée est irréductible.
- b) On pose $\gamma_0 = 1$ et

$$\gamma_n = \frac{q_1 \cdots q_n}{p_1 \cdots p_n} \qquad n \ge 1$$

Montrer que la chaîne est récurrente si et seulement si $\sum_{0}^{\infty} \gamma_{n} = \infty$.

Exercice 11. (PROMENADE ALÉATOIRE SUR \mathbb{Z}^d) Si U est une v.a. à valeur dans \mathbb{Z}^d on considère la fonction $\varphi_U(t), t \in [0,1)^d$ définie par la somme de Fourier:

$$\varphi_U(t) = \sum_{z \in Z^d} e^{-2\pi i \langle z, t \rangle} P(U = z)$$

a) Vérifier que $P(U=z) = \int_{\,\, [0,1)^d} \, e^{2\pi i < z,t>} \varphi_U(t) \,\, d\,t.$

b) Soit $(U_j)_{j\geq 1}$ une suite de variables aléatoires i.i.d. à valeurs dans \mathbb{Z}^d . On pose $X_0=0$, $X_n=\sum_{j=i}^n U_j$. Montrer que le point 0 est récurrent pour cette chaîne de Markov si et seulement si

$$\lim_{\lambda\uparrow 1^-} \int_{[0,1)^d} \mathcal{R}e\bigg(\frac{1}{1-\lambda\varphi(t)}\bigg)\,\mathrm{d}t = +\infty$$

c) Appliquer ce critère à la marche aléatoire symétrique sur \mathbb{Z}^d

$$p(x, y) = \frac{1}{2d} |x - y| = 1$$

= 0 $|x - y| \neq 1$