

Pracownia Fizyczna Zdalna Instytut Fizyki Centrum Naukowo Dydaktyczne

SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

TEMAT: Wyznaczanie zależności zasięgu strumienia wodyod ciśnienia hydrostatycznego						
Wydział	Matematyki Stosowanej	Kierunek	Informatyka			
Grupa/Sekcja	2/C	Rok akademicki	2021			
Rok studiów	I Semestr 2					
Oświa	Oświadczam, że niniejsze sprawozdanie jest całkowicie moim/naszym dziełem, że żaden					
z fragr	z fragmentów sprawozdania nie jest zapożyczony z cudzej pracy. Oświadczam, że jestem					
świador	świadoma/świadom odpowiedzialności karnej za naruszenie praw autorskich osób trzecich.					
Lp.	Imię i nazwisko	Podpis				
1.	Grzegorz Koperwas					
2.						
3.						

Ocena poprawności elementów sprawozdania

		-					
data	wstęp i cel	struktura		rachunek		zapis	
oceny	ćwiczenia	sprawozdania	obliczenia	niepewności	wykres	końcowy	wnioski

Ocena końcowa

OCENA lub	
LICZBA PUNKTÓW	
DATA	
PODPIS	

1. Wstęp teoretyczny

Celem doświadczenia jest zbadanie zależności między zasięgiem strumienia wody z a ciśnieniem hydrostatycznym w naczyniu, oraz wyznaczenie prędkości wypływającej cieczy w zależności od ciśnienia.

Rysunek 1: Układ pomiarowy

Ciśnienie a zasięg

Ciśnienie hydrostatyczne w układnie na rysunku 1 jest dane wzorem:

$$P = \rho g h$$

Gdzie h jest mierzone bezpośrednio poprzez podziałkę na pojemniku (butelce), a ρ jest ustalane za pomocą wartości tablicowych w zależności od temperatury otoczenia.

Wyznaczenie prędkości wypływającej cieczy

Zasięg rzutu poziomego jest dany wzorem:

$$z = v\sqrt{\frac{2H}{g}}$$

Zatem prędkość wypływającej cieczy jest dana wzorem:

$$v = z\sqrt{\frac{g}{2H}} \tag{1}$$

Z równania Bernouliego wynika że:

$$\rho gh + p_1 = p_2 + \frac{\rho v^2}{2}$$

$$\left(gh + \frac{p_1 - p_2}{\rho}\right) \cdot 2 = v^2, \text{ Niech } p_1 = p_2$$

$$\sqrt{2gh} = v \tag{2}$$

Zatem powinna zachodzić zależność:

$$z\sqrt{\frac{1}{2H}} = \sqrt{2h} \qquad \left| \cdot \sqrt{2H} \right|$$
$$z = 2\sqrt{hH} \tag{3}$$

2. Wyniki pomiarów:

Na podstawie danych z tablicy 2 odczytujemy że $\rho=997.91\frac{kg}{m^3}$

h [cm]	Zasi	eg z	$[cm] \pm 0.2cm$
$\pm 0.2cm$	1.	2.	3.
6,0	6,5	6,5	6,2
5,0	6,0	5,5	5,3
4,5	5,0	4,2	4,5
4,0	4,0	3,6	3,6
3,5	3,5	3,0	2,5

Tablica 1: Wyniki pomiarów

Rysunek 2: Stanowisko pomiarowe

Stała	Wartość		
$T [^{\circ}C] \pm 0.5^{\circ}C$	21,5		
$H [cm] \pm 0.2cm$	6,0		

Tablica 2: Inne wartości

3. Przetwarzanie danych oraz obliczone wartości

Zależność zasięgu od ciśnienia

$h [cm] \pm 0.2cm$	\bar{z} [cm]	$u\left(\bar{z}\right)$	$u\left(z_{cal}\right)$	P [Pa]	$u\left(P\right)$	$z^2 [cm^2]$	$u\left(z^2\right)$
6,0	6,40	0,13	0,24	587	20	40,96	0,48
5,0	5,60	0,27	0,34	489	20	31,36	0,68
4,5	4,57	0,31	0,37	441	20	20,85	0,73
4,0	3,73	0,18	0,27	392	20	13,94	0,53
3,5	3,00	0,38	0,43	343	20	9,00	0,86

Tablica 3: Przetworzone wartości

Rysunek 3: Wykres P od z^2

Wyznaczanie prędkości wypływu cieczy

Z równań (1) oraz (2) obliczamy wartości v, wyniki są w tablicy 4. Niestety, według naszych obliczeń $v_{rzut} \neq v_{ber}$ dla każdego h^1 , lecz na potrzeby tego sprawozdania, załóżmy że $v_{rzut} = v_{ber}$, zatem równanie (3) jest prawdziwe.

¹Nawet wartość $\frac{v_{rzut}}{v_{ber}} \neq const.$, więc nie wygląda to na błąd w obliczeniach. W trakcie przeprowadzania doświadczenia zauważono że przepływ wody był turbulentny a zasięg z zdawał się nawet oscylować.

$h \text{ [cm] } \pm 0.2cm$	$v_{rzut} \left[\frac{m}{s^2} \right]$	$u\left(v_{rzut}\right)$	$v_{ber} \left[\frac{m}{s^2} \right]$	$u\left(v_{bern}\right)$
6,0	0,579	0,022	1,085	0,036
5,0	0,506	0,031	0,990	0,040
4,5	0,413	0,033	0,940	0,042
4,0	0,338	0,024	0,886	0,044
3,5	0,271	0,039	0,829	0,047

Tablica 4: Obliczone wartości prędkości

Sprawdzenie zależności zasięgu od wysokości słupa wody

Według równania (3) rysujemy wykres $z\left(\sqrt{h}\right)$.

Rysunek 4: Wykres $z\left(\sqrt{h}\right)$

Nachyleniem prostej na wykresie 4 jest $2\sqrt{H}$. Nachylenie prostej na wykresie jest równe $m=6.12cm^{\frac{1}{2}};\ u\left(m\right)=0.50cm^{\frac{1}{2}}$

4. Wnioski

$$H = \frac{\left(2\sqrt{H}\right)^{2}}{4}; \ u\left(H\right) = \frac{1}{2}m \cdot u\left(m\right)$$

Zatem:

$$H = 9.4cm; \ u(H) = 1.5cm$$

Porównując wartość tą z zmierzoną wartością H:

$$|H_z - H_o| < U (H_z - H_o)$$

 $|9.4 - 6.0| < 2 \cdot \sqrt{1.5^2 + 0.2^2}$
 $3.4 \nleq 3.0$

Nie występuje zgodność wartości H.

5. Sposoby na ograniczenie błędów

Głównym problemem podczas pomiarów była niewystarczająca ergonomia stanowiska pomiarowego umieszczonego w wannie, co wymagało przyjmowania niekomfortowych pozycji do odczytu wartości poziomu wody w butelce. Stanowisko zbudowane na podwyższeniu (na przykład na stole), lub na powierzchni która może się zmoczyć i nie posiada wielkich ścian poprawiło by jakość pomiarów.

Innym problemem była "budowa" naczynia pomiarowego, w szczególności system mocowania linijki do pomiaru poziomu wody, dedykowana skala (lub system z pływakiem) na naczyniu dała by lepsze rezultaty.

Kolejnym źródłem błędów był turbulentny przepływ wody, która sprawiał że, z nieznanych przyczyn, zasięg z zdawał się oscylować z amplitudą nawet 5mm. Użycie wiertła (i papieru ściernego) zamiast rozgrzanej igły pozwoliłoby na uzyskanie bardziej regularnego otworu, gdyż kształt tego otrzymanego w doświadczeniu można by określić "serduszkowym".

Innym pomysłem pozwalającym na polepszenie ergonomii pomiarów było by dodanie barwnika spożywczego do wody, w celu ułatwienia odczytów (wystarczy spojrzeć na zdjęcie 2 by zrozumieć problem związany z przeźroczystością wody). Zwiększenie wartości badanych h oraz H o stopień wielkości, sprawiło by że, przy obecnych wartościach błędów, uzyskana precyzja była by większa.