Let a real matrix A is

symmetric: $\mathbf{A}^T = \mathbf{A}$

positive definite: $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \quad \forall \mathbf{x} \in \mathbb{R}^m$

Then

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

where ${\bf L}$ is a lower triangular matrix.

$$\mathbf{A} = \mathbf{L}\mathbf{L}^{T}$$

$$= \begin{pmatrix} l_{11} & 0 & 0 & \cdots & 0 \\ l_{21} & l_{22} & 0 & \cdots & 0 \\ l_{31} & l_{32} & l_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{m1} & l_{m2} & l_{m3} & \cdots & l_{mm} \end{pmatrix} \begin{pmatrix} l_{11} & l_{21} & l_{31} & \cdots & l_{m1} \\ 0 & l_{22} & l_{32} & \cdots & l_{m2} \\ 0 & 0 & l_{33} & \cdots & l_{m3} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & l_{mm} \end{pmatrix}$$

1st row of A

$$a_{11} = l_{11}^2$$

 $a_{12} = l_{11}l_{21}, \quad \cdots, \quad a_{1k} = l_{11}l_{k1}, \quad k = 2, \dots, m$

NB: The square root is OK because $\bf A$ is positive definite.

$$\mathbf{A} = \mathbf{L}\mathbf{L}^{T}$$

$$= \begin{pmatrix} l_{11} & 0 & 0 & \cdots & 0 \\ l_{21} & l_{22} & 0 & \cdots & 0 \\ l_{31} & l_{32} & l_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{m1} & l_{m2} & l_{m3} & \cdots & l_{mm} \end{pmatrix} \begin{pmatrix} l_{11} & l_{21} & l_{31} & \cdots & l_{m1} \\ 0 & l_{22} & l_{32} & \cdots & l_{m2} \\ 0 & 0 & l_{33} & \cdots & l_{m3} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & l_{mm} \end{pmatrix}$$

2nd row of A

$$a_{21} = l_{21}l_{11}$$

 $a_{22} = l_{21}^2 + l_{22}^2, \quad \cdots, \quad a_{2k} = l_{21}l_{k1} + l_{22}l_{k2}, \quad k = 2, \dots, m$

NB: The square root is OK because \mathbf{A} is positive definite.

Compared to a general LU factorization, Cholesky decomposition:

- ightharpoonup requires 1/2 memory
- requires $\sim 1/2$ less operations
- has better stability, and does not require pivoting
- fails if A is not PD.

Systems of linear equations

If ${f A}$ is symmetric and positive definite, then

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

is solved via $\mathbf{A} = \mathbf{L}\mathbf{L}^T$, and

$$\mathbf{L}\mathbf{y} = \mathbf{b}$$
 (forward substitution)
 $\mathbf{L}^T \mathbf{x} = \mathbf{y}$ (back substitution)

Applications of Cholesky decomposition

Quantum mechanics

Observables are represented by Hermitian operators. ($\left(\mathbf{A}^{T}\right)^{*}=\mathbf{A}$)

Applications of Cholesky decomposition

Numerical optimization

The Hessian matrix of a multivariate function $F(\mathbf{x})$

$$H_{jk} = \frac{\partial^2 F}{\partial x_i \partial x_k}$$

is symmetric and is in some cases positive (semi-)definite.

Applications of Cholesky decomposition

Monte Carlo simulations

Generation of correlated Gaussian random variables: decompose the correlation matrix $\mathbf{C} = \mathbf{L}\mathbf{L}^T$, generate a vector of uncorrelated values \mathbf{x} , then

$$z = Lx$$

has the correlation matrix C.

QR decomposition

Any real $m \times n$ matrix **A** can be decomposed into

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

where \mathbf{Q} is an $m \times m$ orthogonal matrix ($\mathbf{Q}^T \mathbf{Q} = 1$) and \mathbf{R} is an $m \times n$ upper triangular matrix.

IOW, a rectangular matrix can be reduced to an upper triangular form by an orthogonal transformation \mathbf{Q}^T

$$\mathbf{Q}^T \mathbf{A} = \mathbf{R}$$

Thin QR factorization

If
$$m > n$$

$$\mathbf{A} = \mathbf{Q} \begin{pmatrix} \mathbf{R}_1 \\ 0 \end{pmatrix}$$

$$= (\mathbf{Q}_1 \mathbf{Q}_2) \begin{pmatrix} \mathbf{R}_1 \\ 0 \end{pmatrix}$$

$$= \mathbf{Q}_1 \mathbf{R}_1$$

where \mathbf{R}_1 is $m \times m$ uppper triangular, \mathbf{Q}_1 is $m \times n$ and has orthonormal columns.

This is a *thin* \mathbf{QR} factorization (or *economic*, or *reduced* factorization).

Thin QR factorization

If ${\bf A}$ has full column rank (i.e., columns of ${\bf A}$ are all linearly independent), then

- lacktriangle The thin factorization ${f A}={f Q}_1{f R}_1$ is unique
- Diagonal elements of \mathbf{R}_1 are positive
- $ightharpoonup {f R}_1^T$ is a lower triangular Cholesky factor of ${f A}^T{f A}$

Constructing the QR factorization

- Householder reflections
- Givens rotations

Both reduce ${\bf A}$ to ${\bf R}$ column by column, and construct ${\bf Q}$ as a product of orthogonal matrices.

Given a vector $\mathbf{x} \in \mathbb{R}^m$, reflect it across a hyperplane with the normal vector \mathbf{u} ($\|\mathbf{u}\|_2 = 1$)

$$\mathbf{x} = \mathbf{x}_{\parallel} + \mathbf{x}_{\perp}, \qquad \mathbf{x}_{\perp} \perp \mathbf{x}_{\parallel}$$
 $\mathbf{x}_{\perp} \parallel \mathbf{u}$

The perp component is given by $\mathbf{x}_{\perp} = \mathbf{u} \langle \mathbf{u} \cdot \mathbf{x} \rangle$

$$\mathbf{y} = \mathbf{x}_{\parallel} - \mathbf{x}_{\perp} = (\mathbf{x}_{\parallel} + \mathbf{x}_{\perp}) - 2\mathbf{x}_{\perp} = \mathbf{x} - 2\mathbf{u}\langle\mathbf{u}\cdot\mathbf{x}\rangle$$

In the matrix form, $\langle \mathbf{u} \cdot \mathbf{x} \rangle \equiv \mathbf{u}^T \mathbf{x}$, and the Householder transformation is

$$\mathbf{y} = \mathbf{H}\mathbf{x} = (\mathbf{1} - 2\mathbf{u}\mathbf{u}^T)\,\mathbf{x}$$

The Householder matrices are

- Symmetric, $\mathbf{H}^T = \mathbf{H}$
- ▶ Orthogonal, $\mathbf{H}^T\mathbf{H} = \mathbf{1}$

Given two vectors \mathbf{x} and \mathbf{y} with $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2$, construct a \mathbf{H} which converts \mathbf{x} to \mathbf{y} .

Reflect x across the hyperplane which bisects the angle between x and y. The Householder transformation with

$$\mathbf{u} = (\mathbf{x} - \mathbf{y}) / \|\mathbf{x} - \mathbf{y}\|_2$$

Given two vectors \mathbf{x} and \mathbf{y} with $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2$, construct a \mathbf{H} which converts \mathbf{x} to \mathbf{y} .

Reflect x across the hyperplane which bisects the angle between x and y.

The Householder transformation with

$$\mathbf{u} = (\mathbf{x} - \mathbf{y}) / \|\mathbf{x} - \mathbf{y}\|_2$$

$$\mathbf{x} = \begin{pmatrix} \times \\ \times \\ \vdots \\ \times \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} \times \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\mathbf{H}_{1}\mathbf{A} = \begin{pmatrix} \times & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ & & \cdots & & \\ 0 & \times & \times & \cdots & \times \end{pmatrix}$$

$$\mathbf{H}_{1}\mathbf{A} = \begin{pmatrix} \times & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ & & \cdots & & \\ 0 & \times & \times & \cdots & \times \end{pmatrix}$$

$$\mathbf{H}_{2}\mathbf{H}_{1}\mathbf{A} = \begin{pmatrix} \times & \times & \times & \cdots & \times \\ 0 & \times & \times & \cdots & \times \\ 0 & 0 & \times & \cdots & \times \\ & & \cdots & & \\ 0 & 0 & \times & \cdots & \times \end{pmatrix}$$

After n steps:

 $\mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1 \mathbf{A} = \mathbf{R}$

so that

A = QR

with

$$\mathbf{Q} = \mathbf{H}_1 \mathbf{H}_2 \cdots \mathbf{H}_n$$

After n steps:

$$\mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1 \mathbf{A} = \mathbf{R}$$

so that

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

with

$$\mathbf{Q} = \mathbf{H}_1 \mathbf{H}_2 \cdots \mathbf{H}_n$$

Computational complexity strongly depends on the order of calculations.

$$\begin{pmatrix} \mathbf{u}\mathbf{u}^T \end{pmatrix} \mathbf{x}$$
 is $O(m^2)$
 $\mathbf{u} \begin{pmatrix} \mathbf{u}^T \mathbf{x} \end{pmatrix}$ is $O(m)$

In practice, *never* form the ${f H}$ matrices explicitly.

Householder reflections: avoiding the roundoff

$$\mathbf{H} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} \|\mathbf{x}\|_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

involves computing $x_1 - ||\mathbf{x}||_2$ which is prone to a catastrophic cancellation.

For $x_1 > 0$, write

$$x_1 - \|\mathbf{x}\|_2 = \frac{x_1^2 - \|\mathbf{x}\|_2^2}{x_1 + \|\mathbf{x}\|_2}$$
$$= \frac{-x_2^2 - \dots - x_m^2}{x_1 + \|\mathbf{x}\|_2}$$

The Householder $\mathbf{Q}\mathbf{R}$ algorithm:

- has excellent stability
- for square matrices involves only several times more work than $\mathbf{L}\mathbf{U}$
- is not easy to parallelize

Givens rotations

$$\begin{pmatrix}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\
& & \cdots & & \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mm}
\end{pmatrix}$$

Find ϕ such that

$$\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = \begin{pmatrix} \times \\ 0 \end{pmatrix}$$

Givens rotations

$$\begin{pmatrix}
\cos \phi & 0 & -\sin \phi \\
0 & 1 & 0 \\
\sin \phi & 0 & \cos \phi
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3m} \\
& & & & & \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mm}
\end{pmatrix}$$

Find ϕ such that

$$\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} a_{11} \\ a_{31} \end{pmatrix} = \begin{pmatrix} \times \\ 0 \end{pmatrix}$$

QR decomposition via Givens rotations

- ▶ Complexity is 3/2 of the Householder $\mathbf{Q}\mathbf{R}$ algorithm
- There is flexibility in selecting the order of introducing zeros.

Suppose we solved

$$Ax = b$$

Now, we "slighly" change A. Can we update x?

Suppose we solved

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

Now, we "slighly" change A. Can we update x?

Yes, for an outer product update:

$$\left(\mathbf{A} + \mathbf{u}\mathbf{v}^T\right)\mathbf{x} = \mathbf{b}$$

where \mathbf{u} and \mathbf{v} are known column vectors.

If $u_j = \delta_{jp}$, this updates the p-th row of \mathbf{A} . If $v_j = \delta_{jp}$, this updates the p-th column of \mathbf{A}

$$\left(\mathbf{A} + \mathbf{u}\,\mathbf{v}^T\right)^{-1} = \left(\mathbf{1} + \mathbf{A}^{-1}\mathbf{u}\,\mathbf{v}^T\right)^{-1}\mathbf{A}^{-1}$$

$$(\mathbf{A} + \mathbf{u} \, \mathbf{v}^T)^{-1} = (\mathbf{1} + \mathbf{A}^{-1} \mathbf{u} \, \mathbf{v}^T)^{-1} \, \mathbf{A}^{-1}$$

$$(expand into a formal power series)$$

$$= (\mathbf{1} - \mathbf{A}^{-1} \mathbf{u} \, \mathbf{v}^T + \mathbf{A}^{-1} \mathbf{u} \mathbf{v}^T \mathbf{A}^{-1} \mathbf{u} \mathbf{v}^T + \cdots) \, \mathbf{A}^{-1}$$

$$(\mathbf{A} + \mathbf{u} \, \mathbf{v}^T)^{-1} = (\mathbf{1} + \mathbf{A}^{-1} \mathbf{u} \, \mathbf{v}^T)^{-1} \, \mathbf{A}^{-1}$$

$$(expand into a formal power series)$$

$$= (\mathbf{1} - \mathbf{A}^{-1} \mathbf{u} \, \mathbf{v}^T + \mathbf{A}^{-1} \mathbf{u} \mathbf{v}^T \mathbf{A}^{-1} \mathbf{u} \mathbf{v}^T + \cdots) \, \mathbf{A}^{-1}$$

$$(define \, \lambda = \mathbf{v}^T \mathbf{A} \mathbf{u})$$

$$= \mathbf{A}^{-1} - (\mathbf{A}^{-1} \mathbf{u}) \, (\mathbf{v}^T \mathbf{A}^{-1}) \, (1 - \lambda + \lambda^2 + \cdots)$$

$$(\mathbf{A} + \mathbf{u} \, \mathbf{v}^T)^{-1} = (\mathbf{1} + \mathbf{A}^{-1} \mathbf{u} \, \mathbf{v}^T)^{-1} \, \mathbf{A}^{-1}$$

$$(expand into a formal power series)$$

$$= (\mathbf{1} - \mathbf{A}^{-1} \mathbf{u} \, \mathbf{v}^T + \mathbf{A}^{-1} \mathbf{u} \mathbf{v}^T \mathbf{A}^{-1} \mathbf{u} \mathbf{v}^T + \cdots) \, \mathbf{A}^{-1}$$

$$(define \, \lambda = \mathbf{v}^T \mathbf{A} \mathbf{u})$$

$$= \mathbf{A}^{-1} - (\mathbf{A}^{-1} \mathbf{u}) \, (\mathbf{v}^T \mathbf{A}^{-1}) \, (1 - \lambda + \lambda^2 + \cdots)$$

$$(sum the geometric series)$$

$$= \mathbf{A}^{-1} - \frac{(\mathbf{A}^{-1} \mathbf{u}) \, (\mathbf{v}^T \mathbf{A}^{-1})}{1 + \lambda}$$

Sherman-Morrison update

Let y is the (known) solution of Ay = b. We want to find the solution of $(A + uv^T)x = b$.

Define z as the solution of Az = u. Note that $\lambda = \mathbf{v}^T \mathbf{z}$.

Then the solution \mathbf{x} of $\left(\mathbf{A} + \mathbf{u}\,\mathbf{v}^T\right)\mathbf{x} = \mathbf{b}$ is

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} - \frac{\left(\mathbf{A}^{-1}\mathbf{u}\right)\left(\mathbf{v}^{T}\mathbf{A}^{-1}\right)}{1+\lambda}\mathbf{b}$$
$$= \mathbf{y} - \mathbf{z}\frac{\left(\mathbf{v}^{T}\mathbf{y}\right)}{1+\left(\mathbf{v}^{T}\mathbf{z}\right)}$$

The complexity of the Sherman-Morrison update is $O(m^2)$.

Linear systems with banded left-hand sides

A matrix **A** is banded if $a_{ij} = 0$ for |i - j| > p. Then p is the bandwidth.

For banded matrices, constructing the LU factorization is O(m).

Memory requirements for storing banded matrices is also O(m).

$$\begin{pmatrix} b_1 & c_1 & & & & \\ a_2 & b_2 & c_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & a_{m-1} & b_{m-1} & c_{m-1} \\ & & & a_m & b_m \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ x_{m-1} \\ x_m \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ \cdots \\ d_{m-1} \\ d_m \end{pmatrix}$$

Forward sweep: bidiagonalization

row 1:
$$b_1x_1 + c_1x_2 = d_1$$
 $\Rightarrow x_1 = \alpha_1x_2 + \beta_1$
row2: $a_2x_1 + b_2x_2 + c_2x_3 = d_2$ $\Rightarrow x_2 = \alpha_2x_3 + \beta_2$

Forward sweep: bidiagonalization

Then do backsubstitution starting from x_m .

The total computational complexity is O(m).

The corresponding LU factorization is

The corresponding LU factorization is

Stability

The algorithm is stable if A is diagonally dominant:

$$|b_k| \ge |a_k| + |c_k|, \qquad k = 1, \dots, m$$