MAT4770: Recap of curriculum

Andreas Slaattelid

Contents

1	Temperature markets	3
	1.1 CAT-futures	4
	1.2 Call option on CAT-futures	
	1.3 HDD/CDD-futures	
2	Esscher transform	7
	2.1 Esscher transform	8
	2.2 Understanding $\varphi(\widetilde{\theta})$:	9
	2.3 Jump intensity and distribution under $Q^{\widetilde{\theta}}$:	
	2.4 Tricks on calculating integrals of CPP's	
	2.5 Trick number 2: compensated CPP	
	2.6 Trick number 3: using characteristic function of I under Q	
3	Pricing of forwards: Geometric case	17
	3.1 Analysis of risk premium	20
4	Pricing of forwards Arithmetic case	22
5	HJM-modelling	25
6	Black-76 formula	27
7	Pricing of options when we have jumps	30
	7.1 Fourier Analysis	30
	7.2 Fourier methods in practice	33

The following content is heavily based upon the wonderful lecture notes of Fred Espen Benth in the course MAT4770-Stochastic Modelling in Energy and Commodity Markets. Please check out the course STK4530- Interest Rate Modelling via SPDE's, the course consists of many of the same methodologies.

1 Temperature markets

let $p \in \mathbb{N}, A \in \mathbb{R}^{p \times p}$ and B(t) a 1-dim BM. \boldsymbol{e}_p is the p-th unit vector.

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -\alpha_p & -\alpha_{p-1} & -\alpha_{p-2} & \dots & -\alpha_1 \end{bmatrix}$$

The model we will be interested in is:

$$dX(t) = AX(t)dt + \sigma e_p dB(t)$$

Proposition 1 The solution to the above SDE, for $s \ge t$ is given by:

$$X(s) = e^{A(s-t)}X(t) + \sigma \int_t^s e^{A(s-u)} \boldsymbol{e}_p dB(u)$$

Proof 1 We start off by the usual way, and apply a "OU/Vasicek"-trick:

$$\begin{split} d(e^{-At}X(t)) &= -Ae^{-At}X(t)dt + e^{-At}dX(t) \\ &= -Ae^{-At}X(t)dt + e^{-At}\left[AX(t)dt + \sigma \boldsymbol{e}_p dB(t)\right] \\ &= \sigma e^{-At}\boldsymbol{e}_p dB(t) \\ & \qquad \qquad \downarrow \end{split}$$

$$X(s) = e^{A(s-t)}X(t) + \sigma \int_t^s e^{A(s-u)} \mathbf{e}_p dB(u)$$

Let $b' = (b_0, b_1, \dots, b_q, 0, \dots, 0) \in \mathbb{R}^p$, with $b_q = 1$ for q < p, we then define:

Definition 1 (CARMA(p,q)) The CARMA(p,q) process Y(t) is defined by:

$$CARMA(p,q) = Y(t) := b'X(t)$$

Definition 2 (CAR(p)) The CAR(p) process is defined by:

$$CAR(p) = CARMA(p, 0) := Y(t) = e'_1X(t) = X_1(t)$$

We will be interested in CAR(p)-processes, as these will be a part of modelling temperature dynamics.

1.1 CAT-futures

We define the CAT-future as follows:

$$F_{CAT}(t, \tau_1, \tau_2) = \mathbb{E}_Q \left[\int_{\tau_1}^{\tau_2} T(s) ds | \mathcal{F}_t \right]$$

Where:

$$T(s) = \Lambda(s) + e_1'X(s)$$

The temperature follows a deterministic seasonal-function Λ and a CAR(p)-process. We model under Q, and would therefore need a change of measure:

$$\left. \frac{dQ^{\theta}}{dP} \right|_{\mathcal{F}_t} = \exp\left(\int_0^t \theta dB_s - \frac{1}{2} \int_0^t \theta^2 ds \right)$$

And from Girsanov, we get: $dB^{\theta}(t) = dB(t) - \theta dt$ is a Q^{θ} -BM.

$$X(s) = e^{A(s-t)}X(t) + \sigma \int_t^s e^{A(s-u)} \mathbf{e}_p \theta du + \sigma \int_s^t e^{A(s-u)} \mathbf{e}_p dB^{\theta}(u) \quad (Q^{\theta})$$

Proposition 2 (dynamics of CAT-futures) The CAT-futures has the following dynamics:

$$dF_{CAT}(t, \tau_1, \tau_2) = \Sigma_{CAT}(t, \tau_1, \tau_2) dB^{\theta}(t)$$

$$\Sigma_{CAT}(t, \tau_1, \tau_2) = \sigma e_1' A^{-1} \left(e^{A(\tau_2 - t)} - e^{A(\tau_1 - t)} \right) e_p$$

$$= \sigma e_1' \int_{\tau_1}^{\tau_2} e^{A(s - t)} ds e_p$$

1.2 Call option on CAT-futures

$$C(t, \tau, K, \tau_1, \tau_2) = e^{-r(\tau - t)} \mathbb{E}_Q \left[(F_{CAT}(\tau, \tau_1, \tau_2) - K)^+ | \mathcal{F}_t \right]$$

We start off by decomposing F_{CAT} :

$$F_{CAT}(\tau, \tau_1, \tau_2) = F_{CAT}(t, \tau, \tau_1, \tau_2) + \int_{\tau_1}^{\tau_2} \Sigma_{CAT}(s, \tau_1, \tau_2) dB^{\theta}(s)$$

Here the first part is \mathcal{F}_t -measurable and the second part is \mathcal{F}_t -independent.

Furthermore, we exploit the following:

$$\int_{\tau_1}^{\tau_2} \Sigma_{CAT}(s, \tau_1, \tau_2) dB^{\theta}(s) \sim \mathcal{N}\left(0, \int_{\tau_1}^{\tau_2} \Sigma^2(s, \tau_1, \tau_2) ds\right)$$

Let
$$c_1 = \sqrt{\int_{\tau_1}^{\tau_2} \Sigma^2(s, \tau_1, \tau_2) ds}$$
:

$$\mathbb{E}_{Q}\left[\left(F_{CAT}(\tau, \tau_{1}, \tau_{2}) - K\right)^{+} | \mathcal{F}_{t}\right] = \mathbb{E}_{Q}\left[\left(x + \int_{\tau_{1}}^{\tau_{2}} \Sigma_{CAT}(s, \tau_{1}, \tau_{2}) dB^{\theta}(s)\right)^{+}\right] \Big|_{x = F_{CAT}(t, \tau_{1}, \tau_{2})}$$

$$= \mathbb{E}_{Q}\left[\left(x + c_{1}Z\right)^{+}\right] \Big|_{x = F_{CAT}(t, \tau_{1}, \tau_{2})}$$

Now:
$$x + c_1 Z > 0 \implies Z > \frac{K - x}{c_1} := -d$$

$$\mathbb{E}_{Q}\left[\left(x+c_{1}Z\right)^{+}\right]\Big|_{x=F_{CAT}(t,\tau_{1},\tau_{2})} = \int_{-d}^{\infty} (x-K+c_{1}z)\varphi(z)dz$$
$$= (x-K)\int_{-d}^{\infty} \varphi(z)dz + c_{1}\int_{-d}^{\infty} z\varphi(z)dz$$

Now we will use the symmetry of the Normal distribution, as well as the fact: $\varphi'(z) = -z\varphi(z)$:

$$(x - K) \int_{-d}^{\infty} \varphi(z)dz + c_1 \int_{-d}^{\infty} z\varphi(z)dz = (x - K)\Phi(d) - c_1 \int_{-d}^{\infty} \varphi'(z)dz$$
$$= (x - K)\Phi(d) - c_1[0 - \varphi(-d)]$$
$$= (x - K)\Phi(d) + c_1\varphi(d)$$

Which the finally gives:

$$C(t, \tau, K, \tau_1, \tau_2) = e^{-r(\tau - t)} \left([F_{CAT}(t, \tau_1, \tau_2) - K] \Phi(d) + \sqrt{\int_{\tau_1}^{\tau_2} \Sigma^2(s, \tau_1, \tau_2) ds} \varphi(d) \right)$$
$$d = \frac{F_{CAT}(t, \tau_1, \tau_2) - K}{\sqrt{\int_{\tau_1}^{\tau_2} \Sigma^2(s, \tau_1, \tau_2) ds}}$$

1.3 HDD/CDD-futures

These are contracts traded on CME, these represent demand for heating and cooling, they are defined as:

$$CDD(t, \tau_1, \tau_2) = \max (T(t) - c, 0)$$

 $HDD(t, \tau_1, \tau_2) = \max (c - T(t), 0)$

The price of a forward at time t with measurement period $[\tau_1, \tau_2]$ is:

$$F_{CDD}(t,\tau_1,\tau_2) = \mathbb{E}_Q\left[\int_{\tau_1}^{\tau_2} CDD(s)ds \bigg| F_t\right]$$

Meaning that one in general is interested in: $\mathbb{E}_Q[CDD(s)|\mathcal{F}_t]$, meaning that one needs a model for the temperature T(s) and a measure change $Q \sim P$.

$$T(s) = \Lambda(s) + e_1'X(s)$$

2 Esscher transform

We start off by the following:

$$f(t,\tau) = \mathbb{E}_Q[S(\tau)|\mathcal{F}_t]$$

Where does this relation come from: All tradable assets should be Q-martingales after discounting. Furthermore futures are free to enter, giving:

$$\begin{split} \pi_{future}(t) &= 0 = e^{-r(\tau - t)} \mathbb{E}_Q[S(\tau) - f(t, \tau) | \mathcal{F}_t] \\ &\downarrow \\ f(t, \tau) &= \mathbb{E}_Q[S(\tau) | \mathcal{F}_t] \end{split}$$

We have that power spot is not tradable, hence the completeness of the market is gone, thus giving us many pricing measures, we should choose Q so that:

- 1. the spot S, can be categorized under Q
- 2. the expected value can be computed.

Our model framework is:

$$\Lambda(t) + X(t) + Y(t) = \begin{cases} \ln(S(t)) & \text{Geometric} \\ S(t) & \text{Arithmetic} \end{cases}$$

With the following dynamics:

$$dX(t) = [\mu - \alpha X(t)]dt + \sigma dB(t)$$

$$dY(t) = [\delta - \beta Y(t)]dt + \eta dI(t)$$

Consider X: here we change measure by Girsanov: let $\hat{\theta}$ be a constant, and define:

$$\begin{split} \hat{Z}(t) &= \exp\left(\hat{\theta}B(t) - \frac{1}{2}\hat{\theta}^2t\right) \\ d\hat{B}_t &= dB(t) - \hat{\theta}dt \end{split}$$

Here $t \mapsto \hat{Z}(t)$ is a (P, \mathcal{F}) -martingale. We get the Radon-nikodym derivative:

$$\left. \frac{dQ^{\hat{\theta}}}{dP} \right|_{\mathcal{F}_t} = \hat{Z}(t)$$

From Girsanov's thm: $Q^{\hat{\theta}}$ is a probability measure, and \hat{B} is a $Q^{\hat{\theta}}$ -BM. We state the dynamics under $Q^{\hat{\theta}}$:

$$\begin{split} dX(t) &= [\mu - \alpha X(t)]dt + \sigma dB(t) \\ &= [\mu - \alpha X(t)]dt + \sigma [d\hat{B}_t + \hat{\theta}]dt \\ &= \left[(\mu + \sigma \hat{\theta}) - \alpha X(t) \right]dt + \sigma d\hat{B}(t) \end{split}$$

2.1 Esscher transform

Let $\widetilde{\theta} \in \mathbb{R}$, and define:

$$\widetilde{Z}(t) = \exp\left(\widetilde{\theta}I(t) - \varphi(\widetilde{\theta})t\right)$$

Here:

$$I(t) = \sum_{k=1}^{N_t} J_k$$
$$\varphi(\widetilde{\theta}) = \ln \mathbb{E}[e^{\widetilde{\theta}I(1)}]$$

We will study $\varphi(\widetilde{\theta})$ a bit further, later on.

In order for $\widetilde{Z}(t)$ to be well defined, we must have that $\mathbb{E}[e^{\widetilde{\theta}I(t)}]$ exist:

$$\begin{split} \mathbb{E}[e^{\widetilde{\theta}I(t)}] &= \mathbb{E}\left[e^{\widetilde{\theta}\sum_{k=1}^{N_t}J_k}\right] \\ &= \mathbb{E}\left[\mathbb{E}[e^{\widetilde{\theta}\sum_{k=1}^{N_t}J_k}|N_t]\right] \\ &= \sum_{n\in\mathbb{N}_0}\mathbb{E}[e^{\widetilde{\theta}\sum_{k=1}^{N_t}J_k}|N_t]P(N_t = n) \\ &= \sum_{n\in\mathbb{N}_0}\mathbb{E}[\prod_{k=1}^n e^{\widetilde{\theta}J_k}]e^{-\lambda t}\frac{(\lambda t)^n}{n!} \\ &= \sum_{n\in\mathbb{N}_0}\left(\prod_{k=1}^n\mathbb{E}[e^{\widetilde{\theta}J_k}]\right)e^{-\lambda t}\frac{(\lambda t)^n}{n!} \\ &= \sum_{n\in\mathbb{N}_0}\left(\mathbb{E}[e^{\widetilde{\theta}J_1}]\right)^ne^{-\lambda t}\frac{(\lambda t)^n}{n!} \\ &= e^{-\lambda t}\sum_{n\in\mathbb{N}_0}\frac{(\mathbb{E}[e^{\widetilde{\theta}J_1}]\lambda t)^n}{n!} \\ &= e^{-\lambda t}e^{\mathbb{E}[e^{\widetilde{\theta}J_1}]\lambda t} \\ &= \exp\left(\lambda t(\mathbb{E}[e^{\widetilde{\theta}J_1}]-1)\right) \end{split}$$

Hence we must require $\mathbb{E}[e^{\widetilde{\theta}J_1}]<\infty$

2.2 Understanding $\varphi(\widetilde{\theta})$:

We recall that we defined:

$$\varphi(\widetilde{\theta}) = \ln \mathbb{E}[e^{\widetilde{\theta}I(1)}]$$

From above, we just found out that:

$$\begin{split} \mathbb{E}[e^{\widetilde{\theta}I(t)}] &= \exp\left(\lambda t (\mathbb{E}[e^{\widetilde{\theta}J_1}] - 1)\right) \\ & \qquad \qquad \Downarrow \\ \mathbb{E}[e^{\widetilde{\theta}I(1)}] &= \exp\left(\lambda (\mathbb{E}[e^{\widetilde{\theta}J_1}] - 1)\right) \\ & \qquad \qquad \Downarrow \\ \varphi(\widetilde{\theta}) &= \ln \mathbb{E}[e^{\widetilde{\theta}I(1)}] = \left(\lambda (\mathbb{E}[e^{\widetilde{\theta}J_1}] - 1)\right) \end{split}$$

Now:

$$\begin{split} \varphi(\widetilde{\theta})t &= \left(\lambda t(\mathbb{E}[e^{\widetilde{\theta}J_1}] - 1)\right) = \ln \mathbb{E}[e^{\widetilde{\theta}I(t)}] \\ & \quad \ \ \, \downarrow \\ e^{\varphi(\widetilde{\theta})t} &= \mathbb{E}[e^{\widetilde{\theta}I(t)}] \end{split}$$

Proposition 3 $\widetilde{Z}(t) = \exp(\widetilde{\theta}I(t) - \varphi(\widetilde{\theta})t)$ is a (P, \mathcal{F}) -martingale

Proof 2 As I is a Levy-process, it has independent and stationary increments: $I_t = I_s + (I_t - I_s)$,

$$\begin{split} \mathbb{E}[\widetilde{Z}(t)|\mathcal{F}_s] &= \mathbb{E}[e^{\widetilde{\theta}I(t)-\varphi(\widetilde{\theta})t}|\mathcal{F}_s] \\ &= e^{-\varphi(\widetilde{\theta})t}\mathbb{E}[e^{\widetilde{\theta}(I_s+(I_t-I_s))}|\mathcal{F}_s] \\ &= e^{-\varphi(\widetilde{\theta})t}e^{\widetilde{\theta}I(s)}\mathbb{E}[e^{\widetilde{\theta}(I(t)-I(s))}] \\ &= e^{-\varphi(\widetilde{\theta})t}e^{\widetilde{\theta}I(s)}\mathbb{E}[e^{\widetilde{\theta}(I(t-s))}] \\ &= e^{-\varphi(\widetilde{\theta})t}e^{\widetilde{\theta}I(s)}e^{\varphi(\widetilde{\theta})(t-s)} \\ &= e^{\widetilde{\theta}I(s)-\varphi(\widetilde{\theta})s} = \widetilde{Z}(s) \end{split}$$

We define $Q^{\widetilde{\theta}}$ such that for $A \in \mathcal{F}_t$, we get:

$$Q^{\widetilde{\theta}}(A) = \mathbb{E}[\widetilde{Z}(t)\mathbf{1}_{A}]$$

$$\frac{dQ^{\widetilde{\theta}}}{dP}\Big|_{\mathcal{F}_{t}} = \widetilde{Z}(t), \quad Q^{\widetilde{\theta}} \sim P$$

Proposition 4 I(t) is a CPP under $Q^{\widetilde{\theta}}$, meaning that the Esscer transform is structure preserving.

Proposition 5 (Characteristic function of I under \widetilde{Q})

$$\mathbb{E}_{Q^{\tilde{\theta}}}\left[e^{ixI(t)}\right] = \exp\left(\left[\varphi(\tilde{\theta} + ix) - \varphi(\tilde{\theta})\right]t\right)$$

Proof 3 This relies all upon Bayes theorem:

$$\begin{split} \mathbb{E}_{Q^{\tilde{\theta}}} \left[e^{ixI(t)} \right] &= \frac{\mathbb{E} \left[e^{ixI(t)} \frac{dQ}{dP} \Big|_{\mathcal{F}_t} \right]}{\mathbb{E} \left[\frac{dQ}{dP} \Big|_{\mathcal{F}_t} \right]} = \mathbb{E} \left[e^{ixI(t)} \widetilde{Z}(t) \right] \\ &= \mathbb{E} \left[e^{ixI(t)} e^{(\tilde{\theta}I(t) - \varphi(\tilde{\theta})t)} \right] \\ &= e^{-\varphi(\tilde{\theta})t} \mathbb{E} \left[e^{ixI(t) + \tilde{\theta}I(t)} \right] \\ &= e^{-\varphi(\tilde{\theta})t} \mathbb{E} \left[e^{(\tilde{\theta} + ix)I(t)} \right] \\ &= \exp \left(\left[\varphi(\tilde{\theta} + ix) - \varphi(\tilde{\theta}) \right] t \right) \end{split}$$

2.3 Jump intensity and distribution under $Q^{\tilde{\theta}}$:

$$\begin{split} \varphi(\widetilde{\theta}+ix)-\varphi(\widetilde{\theta}) &= \ln \mathbb{E}[e^{\widetilde{\theta}+ix}I(1)] - \ln \mathbb{E}[e^{\widetilde{\theta}I(1)}] \\ &= \lambda(\mathbb{E}[e^{(\widetilde{\theta}+ix)J}]-1) - \lambda(\mathbb{E}[e^{\widetilde{\theta}J}]-1) \\ &= \lambda\mathbb{E}[e^{(\widetilde{\theta}+ix)J}] - \lambda\mathbb{E}[e^{\widetilde{\theta}J}] \\ &= \lambda\mathbb{E}[e^{\widetilde{\theta}J}e^{ixJ} - e^{\widetilde{\theta}J}] \\ &= \lambda\mathbb{E}[e^{\widetilde{\theta}J}(e^{ixJ}-1)] \\ &= \lambda \int_{\mathbb{R}}(e^{ixy}-1)e^{\widetilde{\theta}y}P_J(dy) \end{split}$$

Before we move on, we recall the characteristic function of a CPP with intensity λ , and law $P_J(dy)$

$$\mathbb{E}[e^{iuI(t)}] = \exp\left(\lambda t \int_{R} (e^{iuy} - 1)P_J(dy)\right)$$

We continue:

$$\lambda \int_{\mathbb{R}} (e^{ixy} - 1)e^{\widetilde{\theta}y} P_J(dy) = \lambda \int_{\mathbb{R}} e^{\widetilde{\theta}y} P_J(dy) \int_{\mathbb{R}} (e^{ixy} - 1) \frac{e^{\widetilde{\theta}y} P_J(dy)}{\int_{\mathbb{R}} e^{\widetilde{\theta}y} P_J(dy)}$$
$$= \lambda \mathbb{E}[e^{\widetilde{\theta}J}] \int_{\mathbb{R}} (e^{ixy} - 1) P_J^{\widetilde{\theta}}(dy)$$

Where we have defined:

$$P_J^{\widetilde{\theta}}(A) = \int_A \frac{e^{\widetilde{\theta}y}}{\mathbb{E}[e^{\widetilde{\theta}J}]} P_J(dy)$$

In conclusion: I(t) is a CPP undet $Q^{\widetilde{\theta}}$ with intensity $\lambda_{\widetilde{\theta}} = \lambda \mathbb{E}[e^{\widetilde{\theta}J}]$ and jump distribution:

$$P_J^{\widetilde{\theta}}(dy) = \frac{e^{\widetilde{\theta}y} P_j(dy)}{\mathbb{E}[e^{\widetilde{\theta}J}]}$$

2.4 Tricks on calculating integrals of CPP's

The first one we will look at is:

$$\mathbb{E}\left[\int_{t}^{T} e^{-\beta(T-s)} dI(s)\right]$$

Before we start doing things, we recall somethings:

Proposition 6 (Characteristic function)

$$\mathbb{E}\left[e^{i\theta\int_0^t g(s)dI(s)}\right] = \exp\left(\int_0^t \Psi(\theta g(s))ds\right)$$

where:

$$\Psi(x) = \lambda \int_{\mathbb{R}} (e^{ixy} - 1) P_J(dy)$$
$$= \lambda \left(\mathbb{E}[e^{ixJ}] - 1 \right)$$

Proposition 7 (Relation between characteristic function and expectation)

$$\mathbb{E}[X^k] = i^{-k} \phi_X^{(k)}(\theta) \bigg|_{\theta=0}$$

Where:

$$\phi_X^{(k)}(\theta) = \frac{d}{d\theta^k} \mathbb{E}[e^{i\theta X}]$$

We will now use this proposition, in combination with the relationship

$$\mathbb{E}\left[\int_t^T e^{-\beta(T-s)}dI(s)\right] = i^{-1}\frac{d}{d\theta}\left[\mathbb{E}[e^{i\theta\int_t^T e^{-\beta(T-s)}dI(s)}]\right]\bigg|_{\theta=0}$$

Furthermore:

$$\mathbb{E}\left[e^{i\theta\int_t^T e^{-\beta(T-s)}dI(s)}\right] = \exp\left(\int_t^T \Psi(\theta e^{-\beta(T-s)})ds\right)$$
$$= \exp\left(\int_0^{T-t} \Psi(\theta e^{-\beta s})ds\right)$$

We are now ready to take the derivative:

$$\frac{d}{d\theta} \exp\left(\int_0^{T-t} \Psi(\theta e^{-\beta s}) ds\right) = \exp\left(\int_0^{T-t} \Psi(\theta e^{-\beta s}) ds\right) \int_0^T \frac{d}{d\theta} \Psi(\theta e^{-\beta s}) ds$$
$$= \exp\left(\int_0^{T-t} \Psi(\theta e^{-\beta s}) ds\right) \int_0^T \Psi'(\theta e^{-\beta s}) e^{-\beta s} ds$$

Here we have:

$$\Psi'(x) = \frac{d}{dx} \lambda \left(\mathbb{E}[e^{ixJ}] - 1 \right) = \lambda \frac{d}{dx} \mathbb{E}[e^{ixJ}]$$
$$= \lambda \mathbb{E} \left[\frac{d}{dx} e^{ixJ} \right]$$
$$= \lambda \mathbb{E} \left[e^{ixJ} iJ \right]$$
$$= \lambda i \mathbb{E}[e^{ixJ} J]$$

Evaluating the above at $\theta = 0$, gives us:

$$\frac{d}{d\theta} \exp\left(\int_0^{T-t} \Psi(\theta e^{-\beta s}) ds\right) \Big|_{\theta=0} = \exp\left(\int_0^{T-t} \Psi(0) ds\right) \int_0^{T-t} \Psi'(0) e^{-\beta s} ds$$

We have $\Psi(0) = 0$ and $\Psi'(0) = \lambda i \mathbb{E}[J]$, leaving us with:

$$\frac{d}{d\theta} \exp\left(\int_0^{T-t} \Psi(\theta e^{-\beta s}) ds\right) \Big|_{\theta=0} = \int_0^{T-t} \lambda i \mathbb{E}[J] e^{-\beta s} ds$$
$$= \frac{\lambda}{\beta} i \mathbb{E}[J] (1 - e^{-\beta(T-t)})$$

And finally we can compute:

$$\mathbb{E}\left[\int_{t}^{T} e^{-\beta(T-s)} dI(s)\right] = i^{-1} \frac{d}{d\theta} \left[\mathbb{E}\left[e^{i\theta \int_{t}^{T} e^{-\beta(T-s)} dI(s)}\right]\right] \Big|_{\theta=0}$$
$$= \frac{\lambda}{\beta} \mathbb{E}[J] (1 - e^{-\beta(T-t)})$$

2.5 Trick number 2: compensated CPP

Let's say we still want to compute:

$$\mathbb{E}\left[\int_{t}^{T} e^{-\beta(T-s)} dI(s)\right]$$

We can also use martingale-theory to compute this quantity, namely by looking at the compensated CPP, meaning that we look at:

$$\tilde{I}(t) := I(t) - \mathbb{E}[I(t)]$$

We start off by computing: $\mathbb{E}[I(t)]$

$$\mathbb{E}[I(t)] = i^{-1} \frac{d}{dx} \mathbb{E}\left[e^{ixI(t)}\right] \bigg|_{x=0}$$

We use the same procedure as earlier:

$$\begin{split} \frac{d}{dx} \mathbb{E} \left[e^{ixI(t)} \right] &= \frac{d}{dx} \exp \left(\Psi(x)t \right) \\ &= \exp \left(\Psi(x)t \right) \Psi'(x)t \\ &= \exp \left(\Psi(x)t \right) \lambda i \mathbb{E}[e^{ixJ}J]t \\ &\downarrow \\ \frac{d}{dx} \mathbb{E} \left[e^{ixI(t)} \right] \bigg|_{x=0} &= \lambda i \mathbb{E}[J]t \end{split}$$

This leaves us with:

$$\mathbb{E}[I(t)] = \lambda \mathbb{E}[J]t$$

We have that \tilde{I} is a Levy-process and a martingale (it can be shown).

We write down the differential form of \tilde{I} :

$$\begin{split} d\tilde{I}(t) &= dI(t) - d(\mathbb{E}[I(t)]) \\ &= dI(t) - d(\lambda \mathbb{E}[J]t) \\ &= dI(t) - \lambda \mathbb{E}[J]dt \end{split}$$

We now get:

$$\begin{split} \mathbb{E}\left[\int_t^T e^{-\beta(T-s)}dI(s)\right] &= \mathbb{E}\left[\int_t^T e^{-\beta(T-s)}(d\tilde{I}(s) + \lambda \mathbb{E}[J]ds)\right] \\ &= \mathbb{E}\left[\int_t^T e^{-\beta(T-s)}d\tilde{I}(s)\right] + \lambda \mathbb{E}[J]\mathbb{E}\left[\int_t^T e^{-\beta(T-s)}ds\right] \\ &= 0 + \lambda \mathbb{E}[J]\mathbb{E}\left[\int_t^T e^{-\beta(T-s)}ds\right] \\ &= \lambda \mathbb{E}[J]\left(1 - e^{-\beta(T-t)}\right) \end{split}$$

Why is the integral w.r.t the martingale zero?

The intuition comes when we look at simple functions $g_n \to g$:

$$\int_{t}^{T} g_{n}(s)d\tilde{I}(s) = \sum_{i} g_{n}(s_{i})[\tilde{I}(s_{i+1}) - \tilde{I}(s_{i})]$$

$$\Downarrow$$

$$\mathbb{E}\left[\int_{t}^{T} g_{n}(s)d\tilde{I}(s)\right] = \sum_{i} g_{n}(s_{i})\mathbb{E}[\tilde{I}(s_{i+1}) - \tilde{I}(s_{i})] = 0$$

2.6 Trick number 3: using characteristic function of I under Q

From earlier we have:

$$\begin{split} \mathbb{E}_{Q\widetilde{\theta}} \left[e^{ixI(t)} \right] &= \exp \left([\varphi(\widetilde{\theta} + ix) - \varphi(\widetilde{\theta})]t \right) \\ &= \exp \left(\int_0^t [\varphi(\widetilde{\theta} + ix) - \varphi(\widetilde{\theta})]ds \right) \end{split}$$

The key observation here is the following:

$$\mathbb{E}_{Q\widetilde{\theta}}\left[e^{ixaI(t)}\right] = \mathbb{E}_{Q\widetilde{\theta}}\left[e^{ix\int_0^t adI(s)}\right] = \exp\left(\int_0^t [\varphi(\widetilde{\theta} + ixa) - \varphi(\widetilde{\theta})]ds\right)$$

Let's say we want to calculate:

$$\mathbb{E}_{Q\tilde{\theta}}\left[e^{\eta\int_t^{\tau}e^{-\beta(\tau-s)}dI(s)}\right] = \mathbb{E}_{Q\tilde{\theta}}\left[e^{i(-i)\eta\int_t^{\tau}e^{-\beta(\tau-s)}dI(s)}\right]$$

So here x = -i and $a = \eta e^{-\beta(\tau - s)}$, giving us:

$$\begin{split} \mathbb{E}_{Q\widetilde{\theta}} \left[e^{i(-i)\eta \int_t^{\tau} e^{-\beta(\tau-s)} dI(s)} \right] &= \exp\left(\int_t^{\tau} [\varphi\left(\widetilde{\theta} + i * (-i) * (\eta e^{-\beta(\tau-s)})\right) - \varphi(\widetilde{\theta})] ds \right) \\ &= \exp\left(\int_t^{\tau} [\varphi(\widetilde{\theta} + \eta e^{-\beta(\tau-s)}) - \varphi(\widetilde{\theta})] ds \right) \\ &= \exp\left(\int_0^{\tau-t} [\varphi(\widetilde{\theta} + \eta e^{-\beta s}) - \varphi(\widetilde{\theta})] ds \right) \end{split}$$

Now let's say we want to calculate the following:

$$\mathbb{E}_Q\left[\int_t^T e^{-\alpha(T-s)} dI(s)\right]$$

$$\mathbb{E}_{Q}[Y^{k}] = i^{-k} \phi_{Q,Y}^{(k)}(\theta) \Big|_{\theta=0}$$
$$= i^{-k} \frac{d}{d\theta^{k}} \mathbb{E}_{Q}[e^{i\theta Y}] \Big|_{\theta=0}$$

3 Pricing of forwards: Geometric case

Let us assume the geometric spot price model:

$$S(t) = \exp(\Lambda(t) + X(t) + Y(t))$$

furthermore we also assume that we have a pricing measure $Q \sim P$ defined by:

$$\left. \frac{dQ}{dP} \right|_{\mathcal{F}_t} = \hat{Z}(t)\tilde{Z}(t)$$

Where:

$$\begin{split} \hat{Z}(t) &= \exp\left(\hat{\theta}B(t) - \frac{1}{2}\hat{\theta}^2t\right) \\ \tilde{Z}(t) &= \exp\left(\tilde{\theta}I(t) - \varphi(\tilde{\theta})t\right) \end{split}$$

 $(\widetilde{\theta},\widehat{\theta})\in\mathbb{R}^2$ are parameters so that $\varphi(\widetilde{\theta})$ is well defined, namely $\mathbb{E}[e^{\widetilde{\theta}J}]<\infty$

Goal: find:

$$f(t,\tau) = \mathbb{E}_Q[S(\tau)|\mathcal{F}_t]$$

We start with how X looks like under P:

$$X(\tau) = e^{-\alpha(\tau - t)}X(t) + \frac{\mu}{\alpha}\left(1 - e^{-\alpha(\tau - t)}\right) + \sigma\int_{t}^{\tau} e^{-\alpha(\tau - s)}dB(s)$$

Now from Girsanov's thm we have: $d\widehat{B}(t) = dB(t) - \widehat{\theta}dt \ \widehat{B}$ is a $Q^{\widehat{\theta}}$ -BM, giving us:

$$\widehat{X}(\tau) = e^{-\alpha(\tau - t)}X(t) + \frac{\mu + \sigma\widehat{\theta}}{\alpha} \left(1 - e^{-\alpha(\tau - t)} \right) + \sigma \int_{t}^{\tau} e^{-\alpha(\tau - s)} d\widehat{B}(s)$$

We also recall how Y looks like under P:

$$Y(\tau) = e^{-\beta(\tau - t)}Y(t) + \frac{\delta}{\beta} \left(1 - e^{-\beta(\tau - t)}\right) + \eta \int_{t}^{\tau} e^{-\beta(\tau - s)} dI(s)$$

Under P we have that I is a CPP with intensity λ and jump-dist $P_J(dy)$, under $Q^{\widetilde{\theta}}$ we have that I is a CPP with intensity $\lambda_{\widetilde{\theta}} = \lambda \mathbb{E}[e^{\widetilde{\theta}J}]$ and jump-distribution:

$$P_J^{\widetilde{\theta}}(dy) = \frac{e^{\widetilde{\theta}y}}{\mathbb{E}[e^{\widetilde{\theta}J}]} P_J(dy)$$

$$\mathbb{E}_{Q}\left[e^{X(\tau)+Y(\tau)}\middle|\mathcal{F}_{t}\right] = \exp\left(e^{-\alpha(\tau-t)}X(t) + e^{-\beta(\tau-t)}Y(t)\right)$$

$$\times \exp\left(\frac{\mu+\sigma\widehat{\theta}}{\alpha}(1-e^{-\alpha(\tau-t)}) + \frac{\delta}{\beta}(1-e^{-\beta(\tau-t)})\right)$$

$$\times \mathbb{E}_{Q}\left[e^{\sigma\int_{t}^{\tau}e^{-\alpha(\tau-s)}d\widehat{B}(s)}e^{\eta\int_{t}^{\tau}e^{-\beta(\tau-s)}dI(s)}\right]$$

Where \widehat{B} and I are independent, giving us:

$$\mathbb{E}_{Q}\left[e^{\sigma\int_{t}^{\tau}e^{-\alpha(\tau-s)}d\widehat{B}(s)}e^{\eta\int_{t}^{\tau}e^{-\beta(\tau-s)}dI(s)}\right] = \mathbb{E}_{\widehat{Q}}\left[e^{\sigma\int_{t}^{\tau}e^{-\alpha(\tau-s)}d\widehat{B}(s)}\right]\mathbb{E}_{\widetilde{Q}}\left[e^{\eta\int_{t}^{\tau}e^{-\beta(\tau-s)}dI(s)}\right]$$

We will now focus on how to compute:

$$\mathbb{E}_{\widetilde{Q}}\left[e^{\eta\int_{t}^{\tau}e^{-\beta(\tau-s)}dI(s)}\right]$$

Actually from earlier we have:

$$\mathbb{E}_{\widetilde{Q}}\left[e^{i\widetilde{\theta}\eta\int_{t}^{\tau}e^{-\beta(\tau-s)}dI(s)}\right] = \exp\left(\int_{t}^{\tau}\Psi_{\widetilde{Q}}(\widetilde{\theta}\eta e^{-\beta(\tau-s)})ds\right)$$
$$= \exp\left(\int_{0}^{\tau-t}\Psi_{\widetilde{Q}}(\widetilde{\theta}\eta e^{-\beta s})ds\right)$$

Hence the one we are looking for is when $\widetilde{\theta}=-i,$ giving us:

$$\mathbb{E}_{\widetilde{Q}}\left[e^{\eta \int_{t}^{\tau} e^{-\beta(\tau-s)} dI(s)}\right] = \exp\left(\int_{0}^{\tau-t} \Psi_{\widetilde{Q}}(-i\eta e^{-\beta s}) ds\right)$$

Now for the other expectation, we have:

$$\sigma \int_{t}^{\tau} e^{-\alpha(\tau-s)} d\widehat{B}(s) \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{2\alpha} \left[1 - e^{-2\alpha(\tau-t)}\right]\right)$$

This yields:

$$\mathbb{E}_{\widehat{Q}}\left[e^{\sigma\int_t^{\tau}e^{-\alpha(\tau-s)}d\widehat{B}(s)}\right] = \exp\left(\frac{\sigma^2}{4\alpha}\left[1 - e^{-2\alpha(\tau-t)}\right]\right)$$

We can then summarize our findings:

$$f(t,\tau) = \mathbb{E}_Q[S(\tau)|\mathcal{F}_t]$$

= $\exp\left(\Lambda(\tau) + e^{-\alpha(\tau-t)}X(t) + e^{-\beta(\tau-t)}Y(t) + \Theta(\tau-t)\right)$

Where:

$$\Theta(x) = \frac{\mu + \sigma \widehat{\theta}}{\alpha} (1 - e^{-\alpha x}) + \frac{\delta}{\beta} (1 - e^{-\beta x}) + \frac{\sigma^2}{4\alpha} (1 - e^{-2\alpha x}) + \int_0^x \Psi_{\widetilde{Q}}(-i\eta e^{-\beta s}) ds$$

From Fred's lecture notes he has:

$$\Theta(x) = \frac{\mu + \sigma \widehat{\theta}}{\alpha} (1 - e^{-\alpha x}) + \frac{\delta}{\beta} (1 - e^{-\beta x}) + \frac{\sigma^2}{4\alpha} (1 - e^{-2\alpha x}) + \int_0^x \left[\varphi(\widetilde{\theta} + \eta e^{-\beta s}) - \varphi(\widetilde{\theta}) \right] ds$$

The reason for that is that he uses the trick I learned about later on in the semester:

$$\mathbb{E}_{Q}\left[e^{ix\int_{0}^{t}g(s)dI(s)}\right] = \exp\left(\int_{0}^{t} \left[\varphi(\theta + ixg(s)) - \varphi(\theta)\right]ds\right)$$

Translating this to our setting:

$$\begin{split} \mathbb{E}_Q \left[e^{\eta \int_t^\tau e^{-\beta(\tau-s)} dI(s)} \right] &= \mathbb{E}_Q \left[e^{i*(-i) \int_t^\tau \eta e^{-\beta(\tau-s)} dI(s)} \right] \\ &= \exp \left(\int_t^\tau [\varphi(\theta+i*(-i)*\eta e^{-\beta(\tau-s)}) - \varphi(\theta)] ds \right) \\ &= \exp \left(\int_0^{\tau-t} [\varphi(\theta+\eta e^{-\beta s}) - \varphi(\theta)] ds \right) \end{split}$$

3.1 Analysis of risk premium

The risk premium is defined as:

Risk premium :=
$$f(t, \tau) - \mathbb{E}[S(\tau)|\mathcal{F}_t]$$

We note here that we use the ordinary expectation, this corresponds to $(\widehat{\theta}, \widetilde{\theta}) = (0, 0)$. The goal here is to study the sign of this risk premium, we can to this by analyzing:

$$\ln(f(t,\tau)) - \ln(\mathbb{E}[S(\tau)|\mathcal{F}_t])$$

We can look at the logarithm as it's an increasing function, kind the same approach as one uses in likelihood theory.

$$\begin{split} & \ln(f(t,\tau)) - \ln(\mathbb{E}[S(\tau)|\mathcal{F}_t]) = \\ & \Lambda(\tau) + e^{-\alpha(\tau-t)}X(t) + e^{-\beta(\tau-t)}Y(t) + \Theta(\tau-t) - \Lambda(\tau) + e^{-\alpha(\tau-t)}X(t) + e^{-\beta(\tau-t)}Y(t) + \Theta(\tau-t)_{(\widehat{\theta},\widetilde{\theta})=(0,0)} \\ & = \Theta(\tau-t) - \Theta(\tau-t)_{(\widehat{\theta},\widetilde{\theta})=(0,0)} \\ & = \frac{\mu + \sigma\widehat{\theta}}{\alpha}(1 - e^{-\alpha(\tau-t)}) + \int_0^{\tau-t} \left[\varphi(\widetilde{\theta} + \eta e^{-\beta s}) - \varphi(\widetilde{\theta})\right] ds - \frac{\mu}{\alpha}(1 - e^{-\alpha(\tau-t)}) - \int_0^{\tau-t} \left[\varphi(\eta e^{-\beta s})\right] ds \\ & = \frac{\sigma\widehat{\theta}}{\alpha}[1 - e^{-\alpha(\tau-t)}] + \int_0^{\tau-t} \left[\varphi(\widetilde{\theta} + \eta e^{-\beta s}) - \varphi(\widetilde{\theta}) - \varphi(\eta e^{-\beta s})\right] ds \end{split}$$

Summary:

$$\ln(f(t,\tau)) - \ln(\mathbb{E}[S(\tau)|\mathcal{F}_t]) = \underbrace{\frac{\sigma\widehat{\theta}}{\alpha}[1 - e^{-\alpha(\tau - t)}]}_{(a)} + \int_0^{\tau - t} \underbrace{[\varphi(\widetilde{\theta} + \eta e^{-\beta s}) - \varphi(\widetilde{\theta}) - \varphi(\eta e^{-\beta s})]}_{(b)} ds$$

We start with (a), if $\hat{\theta} > 0$, then (a) is positive, if $\hat{\theta} < 0$, then (a) is negative. Let's do some algebra on (b):

$$\begin{split} \varphi(\widetilde{\theta} + \eta e^{-\beta s}) - \varphi(\widetilde{\theta}) - \varphi(\eta e^{-\beta s}) &= \lambda(\mathbb{E}[e^{(\widetilde{\theta} + \eta e^{-\beta s})J} - 1) \\ &- \lambda(\mathbb{E}[e^{\widetilde{\theta}}] - 1) \\ &- \lambda(\mathbb{E}[e^{\eta e^{-\beta s}J} - 1) \\ &= \lambda + \lambda(\underbrace{\mathbb{E}[e^{\widetilde{\theta}J}e^{\eta e^{-\beta s}J} - e^{\widetilde{\theta}J} - e^{\eta e^{-\beta s}J}}_{\xi(\widetilde{\theta})} \end{split}$$

$$\begin{split} \xi(0) &= \lambda \mathbb{E}[e^{\eta e^{-\beta s}J} - e^{\eta e^{-\beta s}J}] = 0 \\ \xi'(\widetilde{\theta}) &= \lambda \mathbb{E}\left[\frac{d}{d\theta}e^{(\widetilde{\theta} + \eta e^{-\beta s})J} - Je^{\widetilde{\theta}J}\right] \\ &= \lambda \mathbb{E}\left[Je^{(\widetilde{\theta} + \eta e^{-\beta s})J} - Je^{\widetilde{\theta}J}\right] \\ &= \lambda (\mathbb{E}[Je^{\widetilde{\theta}J}(e^{\eta e^{-\beta s}J} - 1)]) \end{split}$$

We assume J>0 and $\eta>0$, this gives us that $\xi'(\theta)>0$, meaning that $\widetilde{\theta}\mapsto \xi(\widetilde{\theta})$ is increasing. Furthermore $\xi(0)=0$, this makes the analysis of sign easier for (b). As then for $\widetilde{\theta}>0$ we get (b) positive, and for $\widetilde{\theta}<0$ we get (b) negative.

- $\widehat{\theta} > 0$ and $\widetilde{\theta} > 0$ yields positive risk premium.
- $\widehat{\theta} < 0$ and $\widetilde{\theta} < 0$ yields negative risk premium.
- mixed signs means that we must look into the size of parameters. i.e $\widehat{\theta}>0$ and $\widetilde{\theta}<0$ for instance.

4 Pricing of forwards Arithmetic case

The arithmetic model is given by:

$$S(t) = \Lambda(t) + X(t) + Y(t)$$

We will now model directly under $Q^{\widehat{\theta}}$ and $Q^{\widetilde{\theta}}$:

$$dX(t) = [(\mu + \sigma \hat{\theta}) - \alpha X(t)]dt + \sigma d\hat{B}(t)$$
 (Q\hat{\theta})

$$dY(t) = [\delta - \beta Y(t)]dt + \eta dI^{\widetilde{\theta}}(t)$$
 (Q^{\wideta})

Where $I^{\widetilde{\theta}}$ is a CPP with intensity $\lambda_{\widetilde{\theta}} = \lambda \mathbb{E}[e^{\widetilde{\theta}J}]$ and jump distribution $P_J^{\widetilde{\theta}}$

$$\widehat{X}(\tau) = e^{-\alpha(\tau - t)}X(t) + \frac{\mu + \sigma\widehat{\theta}}{\alpha} \left(1 - e^{-\alpha(\tau - t)} \right) + \sigma \int_{t}^{\tau} e^{-\alpha(\tau - s)} d\widehat{B}(s)$$

$$\widetilde{Y}(\tau) = e^{-\beta(\tau - t)}Y(t) + \frac{\delta}{\beta} \left(1 - e^{-\beta(\tau - t)} \right) + \eta \int_{t}^{\tau} e^{-\beta(\tau - s)} dI^{\widetilde{\theta}}(s)$$

We need to calculate: $\mathbb{E}_{\widehat{Q}}[\widehat{X}(\tau)|\mathcal{F}_t]$ and $\mathbb{E}_{\widetilde{Q}}[\widetilde{Y}(\tau)|\mathcal{F}_t]$, the first one is straight forward, as the Ito-integral here has expectation zero:

$$\mathbb{E}_{\widehat{Q}}[\widehat{X}(\tau)|\mathcal{F}_t] = e^{-\alpha(\tau - t)}X(t) + \frac{\mu + \sigma\widehat{\theta}}{\alpha} \left(1 - e^{-\alpha(\tau - t)}\right)$$

The other one requires some more work, as we need to calculate:

$$\mathbb{E}_{\widetilde{Q}}[\eta \int_{t}^{\tau} e^{-\beta(\tau-s)} dI^{\widetilde{\theta}}(s)]$$

Here we will use trick number two, i.e where we smuggle in the compensated CPP under \widetilde{Q} , which is a martingale, i.e:

$$I^{\widetilde{\theta}}(s) - \mathbb{E}_{\widetilde{Q}}[I^{\widetilde{\theta}}(s)] := M^{\widetilde{\theta}}(s)$$

Meaning that we need

$$\mathbb{E}_{\widetilde{Q}}[I^{\widetilde{\theta}}(s)]$$

$$\begin{split} \mathbb{E}_{\widetilde{Q}}[I^{\widetilde{\theta}}(s)] &= i^{-1} \frac{d}{dx} \mathbb{E}_{\widetilde{Q}} \left[e^{ixI^{\widetilde{\theta}}(s)} \right] \bigg|_{x=0} \\ \mathbb{E}_{\widetilde{Q}} \left[e^{ixI^{\widetilde{\theta}}(s)} \right] &= \exp \left(\Psi_{\widetilde{Q}}(x)s \right) \\ & \qquad \qquad \qquad \downarrow \\ \frac{d}{dx} \mathbb{E}_{\widetilde{Q}} \left[e^{ixI^{\widetilde{\theta}}(s)} \right] &= \frac{d}{dx} \exp \left(\Psi_{\widetilde{Q}}(x)s \right) = \exp \left(\Psi_{\widetilde{Q}}(x)s \right) \Psi_{\widetilde{Q}}'(x)s \end{split}$$

Here:

$$\begin{split} \Psi_{\widetilde{Q}}(x) &= \lambda_{\widetilde{\theta}} \int_{\mathbb{R}} (e^{ixy} - 1) P_J^{\widetilde{\theta}}(dy) \\ & \qquad \qquad \Downarrow \\ \Psi_{\widetilde{Q}}'(x) &= \lambda_{\widetilde{\theta}} \int_{\mathbb{R}} e^{ixy} iy P_J^{\widetilde{\theta}}(dy) = \lambda_{\widetilde{\theta}} i \int_{\mathbb{R}} e^{ixy} y P_J^{\widetilde{\theta}}(dy) \end{split}$$

This yields:

$$\frac{d}{dx} \mathbb{E}_{\widetilde{Q}} \left[e^{ixI^{\widetilde{\theta}}(s)} \right] \bigg|_{x=0} = \lambda_{\widetilde{\theta}} i \mathbb{E}_{\widetilde{Q}}[J] s$$
$$= \lambda \mathbb{E}[e^{\widetilde{\theta}J}] \mathbb{E}_{\widetilde{Q}}[J] s$$

Meaing that:

Which then again gives us:

$$\begin{split} \mathbb{E}_{\widetilde{Q}}[\eta \int_{t}^{\tau} e^{-\beta(\tau-s)} dI^{\widetilde{\theta}}(s)] &= \mathbb{E}_{\widetilde{Q}}[\eta \int_{t}^{\tau} e^{-\beta(\tau-s)} dM^{\widetilde{\theta}}(s)] + \eta \lambda \mathbb{E}[e^{\widetilde{\theta}J}] \mathbb{E}_{\widetilde{Q}}[J] \int_{t}^{\tau} e^{-\beta(\tau-s)} ds \\ &= \frac{\eta \lambda_{\widetilde{\theta}} \mathbb{E}_{\widetilde{Q}}[J]}{\beta} \left(1 - e^{-\beta(\tau-t)}\right) \end{split}$$

Which the finally gives:

$$\mathbb{E}_{\widetilde{Q}}[\widetilde{Y}(\tau)|\mathcal{F}_t] = e^{-\beta(\tau-t)}Y(t) + \frac{\delta}{\beta}\left(1 - e^{-\beta(\tau-t)}\right) + \frac{\eta\lambda_{\widetilde{\theta}}\mathbb{E}_{\widetilde{Q}}[J]}{\beta}\left(1 - e^{-\beta(\tau-t)}\right)$$

Also the actual gangster we were going to compute:

$$\begin{split} f(t,\tau) &= \mathbb{E}_Q[S(\tau)|\mathcal{F}_t] \\ &= \Lambda(\tau) + \frac{\mu + \sigma\widehat{\theta}}{\alpha} \left(1 - e^{-\alpha(\tau - t)}\right) + \frac{\eta \lambda_{\widetilde{\theta}} \mathbb{E}_{\widetilde{Q}}[J]}{\beta} \left(1 - e^{-\beta(\tau - t)}\right) \\ &+ e^{-\alpha(\tau - t)} X(t) + e^{-\beta(\tau - t)} Y(t) \end{split}$$

5 HJM-modelling

It turns out that one smart way to model forwards, is to model them directly under Q, meaning that we state $f(t,\tau)$ directly:

$$f(t,\tau) = f(0,\tau) \exp\left(\int_0^t a(u,\tau)du + \int_0^t \sigma(u,\tau)dW(u) + \int_0^\tau \eta(u,\tau)dI(u)\right)$$

We look into some technical conditions:

1.st set of conditions

$$\int_0^\tau |a(u,\tau)| du < \infty \quad Q\text{-a.e}$$

$$\int_0^\tau |\sigma^2(u,\tau)| du < \infty \quad Q\text{-a.e}$$

$$\sum_{k=1}^{N_t} |\eta(s_i,\tau)| |J_k| < \infty \quad \omega\text{-a.e}$$

2nd set of conditions

$$\mathbb{E}_{Q}[f(t,\tau)] < \infty \quad t \le \tau$$

$$\mathbb{E}_{Q}[f(t,\tau)] = f(0,\tau) \exp\left(\int_{0}^{t} a(u,\tau)du\right) \mathbb{E}_{Q}\left[\exp\left(\int_{0}^{t} \sigma(u,\tau)dW(u)\right)\right]$$

$$\times \mathbb{E}_{Q}\left[\exp\left(\int_{0}^{t} \eta(u,\tau)dI(u)\right)\right]$$

$$\Downarrow$$

$$\mathbb{E}_{Q}\left[\exp\left(\int_{0}^{t} \sigma(u,\tau)dW(u)\right)\right] < \infty \quad \mathbb{E}_{Q}\left[\exp\left(\int_{0}^{t} \eta(u,\tau)dI(u)\right)\right] < \infty$$

3rd set of conditions

We need f to be a (Q, \mathcal{F}) -martingale:

$$\mathbb{E}_{Q}[f(t,\tau)|\mathcal{F}_{s}] = f(0,\tau) \exp\left(\int_{0}^{t} a(u,\tau)du\right) \exp\left(\int_{0}^{s} \sigma(u,\tau)dW(u)\right) \exp\left(\int_{0}^{s} \eta(u,\tau)dI(u)\right)$$
$$\times \mathbb{E}_{Q}\left[\exp\left(\int_{s}^{t} \sigma(u,\tau)dW(u)\right) \exp\left(\int_{s}^{t} \eta(u,\tau)dI(u)\right)\right]$$

Now I and W are independent, meaning that we can split up the expectation into two:

$$\mathbb{E}_{Q}\left[\exp\left(\int_{s}^{t}\sigma(u,\tau)dW(u)\right)\exp\left(\int_{s}^{t}\eta(u,\tau)dI(u)\right)\right] = \mathbb{E}_{Q}\left[\exp\left(\int_{s}^{t}\sigma(u,\tau)dW(u)\right)\right] \times \mathbb{E}_{Q}\left[\exp\left(\int_{s}^{t}\eta(u,\tau)dI(u)\right)\right]$$

Furthermore we have:

$$\mathbb{E}_{Q}\left[\exp\left(\int_{s}^{t}\sigma(u,\tau)dW(u)\right)\right] = \exp\left(\frac{1}{2}\int_{s}^{t}\sigma^{2}(u,\tau)du\right)$$
$$\mathbb{E}_{Q}\left[\exp\left(\int_{s}^{t}\eta(u,\tau)dI(u)\right)\right] = \exp\left(\int_{s}^{t}\varphi_{Q}(\eta(u,\tau))du\right)$$

Meaning that we have:

$$\mathbb{E}_Q[f(t,\tau)|\mathcal{F}_s] = f(s,\tau) \exp\left(\int_s^t a(u,\tau) du\right) \exp\left(\frac{1}{2} \int_s^t \sigma^2(u,\tau) du\right) \exp\left(\int_s^t \varphi_Q(\eta(u,\tau)) du\right)$$

Meaning that we must have:

$$\int_{s}^{t} a(u,\tau)du = -\frac{1}{2} \int_{s}^{t} \sigma^{2}(u,\tau)du - \int_{s}^{t} \varphi_{Q}(\eta(u,\tau))du$$

We can take the derivative w.r.t t, and then we get:

$$a(t,\tau) = -\frac{1}{2}\sigma^2(t,\tau) - \varphi_Q(\eta(t,\tau))$$

6 Black-76 formula

We have a forward price given by GBM, with no jumps, and our goal is to price a European-call.

$$df(t,\tau) = f(t,\tau)\sigma(t,\tau)dW_t$$
 (Q)

Result 1 The price of a European call written on a forward is:

$$C(t, T, K, \tau) = e^{-r(T-t)} \mathbb{E}_Q \left[f(t, \tau) \Phi(d_1) - K \Phi(d_2) \right]$$

Where:

$$d_{1,2} = \frac{\ln\left(\frac{f(t,\tau)}{K}\right) \pm \frac{1}{2} \int_{t}^{T} \sigma^{2}(u,\tau) du}{\sqrt{\int_{t}^{T} \sigma^{2}(u,\tau) du}}$$

Proof 4 We start off by applying Ito's formula on $\ln f(t,\tau)$, thus $g(t,x) = \ln(x)$, meaning that $\partial_x g = 1/x$ and $\partial_{xx} g = -1/x^2$, $(df(t,\tau))^2 = f^2(t,\tau)\sigma^2(t,\tau)dt$, leaving us with:

$$d \ln f(t,\tau) = \frac{1}{f(t,\tau)} df(t,\tau) - \frac{1}{2} \frac{1}{f^2(t,\tau)} f^2(t,\tau) \sigma^2(t,\tau) dt$$
$$= \sigma(t,\tau) dW_t - \frac{1}{2} \sigma^2(t,\tau) dt$$
$$\Downarrow$$

$$\ln f(T,\tau) = \ln f(t,\tau) + \int_t^T \sigma(u,\tau)dW_u - \frac{1}{2} \int_t^T \sigma^2(u,\tau)du$$

 $\int_{t}^{T} \sigma(u,\tau) dW_{u} \sim \mathcal{N}\left(0, \int_{t}^{T} \sigma^{2}(u,\tau) du\right), \text{ hence } \int_{t}^{T} \sigma(u,\tau) dW_{u} \stackrel{d}{=} \sqrt{\int_{t}^{T} \sigma^{2}(u,\tau) du} Z_{u} \text{ where } Z \sim \mathcal{N}\left(0,1\right)$

Now working with the price of the call:

$$C(t, T, K, \tau) = e^{-r(T-t)} \mathbb{E}_Q \left[(f(T, \tau) - K)^+ | \mathcal{F}_t \right]$$

We will simplify a bit:

$$(f(T,\tau) - K)^{+} = \left(f(t,\tau) \exp\left(\sqrt{\int_{t}^{T} \sigma^{2}(u,\tau) du} Z - \frac{1}{2} \int_{t}^{T} \sigma^{2}(u,\tau) du \right) - K \right) \mathbb{1}_{\{f(T,\tau) > K\}}$$

We will now work with the set $\{f(T,\tau) > K\}$:

$$f(T,\tau) > K$$

$$\updownarrow$$

$$\exp\left(\sqrt{\int_{t}^{T} \sigma^{2}(u,\tau)du}Z - \frac{1}{2}\int_{t}^{T} \sigma^{2}(u,\tau)du\right) > \frac{K}{f(t,\tau)}$$

$$Z > \frac{\ln\left(\frac{K}{f(t,\tau)}\right) + \frac{1}{2}\int_{t}^{T} \sigma^{2}(u,\tau)du}{\sqrt{\int_{t}^{T} \sigma^{2}(u,\tau)du}} := -d_{2}$$

We have \mathcal{F}_t -independent parts, furthermore we use the freezing lemma leading to:

$$\mathbb{E}_Q\left[\left(f(T,\tau)-K\right)^+\right] = \int_{-d_2}^{\infty} \left[x \exp\left(\sqrt{\int_t^T \sigma^2(u,\tau)du}z - \frac{1}{2}\int_t^T \sigma^2(u,\tau)du\right) - K\right] f_{\mathcal{N}(0,1)}(z)dz$$

Before we move on, we will expand the square properly:

$$\begin{split} -\frac{z^2}{2} + \sqrt{\int_t^T \sigma^2(u,\tau) du} \ z - \frac{1}{2} \int_t^T \sigma^2(u,\tau) du &= -\frac{1}{2} \left(z^2 - 2z \sqrt{\int_t^T \sigma^2(u,\tau) du} + \int_t^T \sigma^2(u,\tau) du \right) \\ &= -\frac{1}{2} \left(z - \sqrt{\int_t^T \sigma^2(u,\tau) du} \right)^2 \end{split}$$

This leaves us with:

$$\mathbb{E}_{Q}\left[(f(T,\tau) - K)^{+} \right] = x \int_{-d_{2}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(z - \sqrt{\int_{t}^{T} \sigma^{2}(u,\tau) du} \right)^{2}} dz - K \int_{-d_{2}}^{\infty} f(z) dz$$

Let's work with the first integral, first let $u = z - \sqrt{\int_t^T \sigma^2(u, \tau) du}$, then $\frac{du}{dz} = 1$, and $z = -d_2$ leads to $u = -d_2 - \sqrt{\int_t^T \sigma^2(u, \tau) du} := -d'$

Furthermore we exploit the symmetry of the normal-distribution: $P(Z>-d)=P(Z\leq d)$

$$\mathbb{E}_{Q}\left[(f(T,\tau)-K)^{+}\right] = x \int_{-d'}^{\infty} f_{Z}(u)du - K \int_{-d_{2}}^{\infty} f_{Z}(z)dz$$
$$= f(t,\tau)\Phi(d') - K\Phi(d_{2})$$

Here we have:

$$d' := d_1 = \frac{\ln\left(\frac{f(t,\tau)}{K}\right) + \frac{1}{2} \int_t^T \sigma^2(u,\tau) du}{\sqrt{\int_t^T \sigma^2(u,\tau) du}}$$

We can then finally conclude on the price:

$$C(t, T, K, \tau) := e^{-r(T-t)} \left[f(t, \tau) \Phi(d_1) - K \Phi(d_2) \right]$$

Where:

$$d_{1,2} = \frac{\ln\left(\frac{f(t,\tau)}{K}\right) \pm \frac{1}{2} \int_{t}^{T} \sigma^{2}(u,\tau) du}{\sqrt{\int_{t}^{T} \sigma^{2}(u,\tau) du}}$$

7 Pricing of options when we have jumps

We recall from the HJM-framework the following:

$$f(t,\tau) = f(0,\tau) \exp\left(\int_0^t a(u,\tau)du + \int_0^t \sigma(u,\tau)dW_u + \int_0^t \eta(u,\tau)dI(u)\right)$$

 σ, η are deterministic, W is a Q-BM and I is a Q-CPP. The martingale condition on a:

$$a(t,\tau) = -\frac{1}{2}\sigma^2(t,\tau) - \varphi_Q(\eta(t,\tau))$$

where:

$$\varphi_Q(z) = \lambda_Q(\mathbb{E}_Q[e^{zJ}] - 1)$$

We will simplify the notation a bit:

$$f(t,\tau) = h(t,\tau) \exp\left(\int_0^t \sigma(u,\tau)dW_u + \int_0^t \eta(u,\tau)dI(u)\right)$$
$$h(t,\tau) = f(0,\tau) \exp\left(\int_0^t a(u,\tau)du\right)$$

And form mathematical finance theory, we still have:

$$C(t, T, K, \tau) := e^{-r(T-t)} \mathbb{E}_Q \left[(f(T, \tau) - K)^+ | \mathcal{F}_t \right]$$

When we are dealing with jumps, our approach goes out on taking a round with some Fourier analysis:

7.1 Fourier Analysis

Definition 3 (Fourier transform) Let $g \in L^1(\mathbb{R})$, then the fourier transform \widehat{g} of g is:

$$\widehat{g}(y) := \int_{\mathbb{R}} g(x)e^{-ixy}dx$$

Definition 4 (Inverse Fourier transform) If $\hat{g} \in L^1(\mathbb{R})$, then the inverse Fourier transform is given by:

$$g(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{g}(y)e^{ixy}dy$$

Let X be a r.v, objects we will be interested in are:

$$g(X) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{g}(y) e^{iXy} dy \text{ and } \mathbb{E}_{Q}[g(X)|\mathcal{F}_{t}] = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{g}(y) \mathbb{E}_{Q}[e^{iXy}|\mathcal{F}_{t}] dy$$

Let

$$X := \int_0^T \sigma(u, \tau) dW_u + \int_0^T \eta(u, \tau) dI(u)$$

and $g(x) := (h(T, \tau)e^x - K)^+$, an immediate problem here is that $g \notin L^1(\mathbb{R})$, as for $x > \ln(K/h(T, \tau))$ we get that it behaves as an exponential.

We therefor introduce a trick, namely define

$$g_{\alpha}(x) := e^{-\alpha x} g(x), \quad \alpha > 1$$

Here we see why $\alpha > 1$:

$$g_{\alpha}(x) = e^{-\alpha x} g(x)$$

$$= \left(h(T, \tau) e^{(1-\alpha)x} - K e^{-\alpha x} \right) \mathbb{1}(e^x > K/h(T, \tau))$$

So $\alpha > 1 \implies g_{\alpha}(x) \in L^1(\mathbb{R})$

We also define:

$$\widehat{g}_{\alpha}(y) := \int_{\mathbb{R}} g_{\alpha}(x)e^{-ixy}dx$$

Goal: calculate $\widehat{g}(y)$

$$\begin{split} \widehat{g}_{\alpha}(y) &= \int_{\mathbb{R}} g_{\alpha}(x) e^{-ixy} dx \\ &= \int_{\ln(\frac{K}{h(T,\tau)})}^{\infty} \left(h(T,\tau) e^{(1-\alpha)x} - K e^{-\alpha x} \right) e^{-ixy} \right) dx \\ &= h(T,\tau) \int_{\ln(\frac{K}{h(T,\tau)})}^{\infty} e^{(1-\alpha-iy)x} dx - K \int_{\ln(\frac{K}{h(T,\tau)})}^{\infty} e^{-(\alpha+iy)x} dx \\ &= \frac{h(T,\tau)}{\alpha - 1 + iy} e^{(1-\alpha-iy)\ln(\frac{K}{h})} - \frac{K}{\alpha + iy} e^{-(\alpha+iy)\ln(K/h)} \\ &= e^{(-\alpha+iy)\ln(K/h)} \left[c_1 e^{\ln(K/h)} - c_2 \right] \\ &= e^{(-\alpha+iy)\ln(K/h)} \left[\frac{K}{\alpha - 1 + iy} - \frac{K}{\alpha + iy} \right] \\ &= K e^{(-\alpha+iy)\ln(K/h)} \left[\frac{1}{\alpha - 1 + iy} - \frac{1}{\alpha + iy} \right] \\ &= \frac{K}{(\alpha - 1 + iy)(\alpha + iy)} e^{-(\alpha+iy)\ln(\frac{K}{h(T,\tau)})} \end{split}$$

It can be shown that $\widehat{g}_{\alpha} \in L^{1}(\mathbb{R})$

$$g(x) := e^{\alpha x} g_{\alpha}(x)$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{g}_{\alpha}(y) e^{(\alpha + iy)x} dy$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \frac{K}{(\alpha - 1 + iy)(\alpha + iy)} e^{-(\alpha + iy) \ln\left[\left(\frac{K}{h(T, \tau)}\right) + x\right]} dy$$

Let's start with calculating the option price:

$$\mathbb{E}_{Q}\left[\left(f(T,\tau)-K\right)^{+}\middle|\mathcal{F}_{t}\right] = \mathbb{E}_{Q}\left[\left(h(T,\tau)e^{X}-K\right)^{+}\middle|\mathcal{F}_{t}\right]$$
$$= \mathbb{E}_{Q}[g(X)|\mathcal{F}_{t}]$$

Now:

$$\mathbb{E}_{Q}\left[g(X)\middle|\mathcal{F}_{t}\right] = \mathbb{E}_{Q}\left[\frac{1}{2\pi}\int_{\mathbb{R}}\widehat{g}_{\alpha}(y)e^{(\alpha+iy)X}dy\middle|\mathcal{F}_{t}\right]$$
$$= \frac{1}{2\pi}\int_{\mathbb{R}}\widehat{g}_{\alpha}(y)\mathbb{E}_{Q}\left[e^{(\alpha+iy)X}\middle|\mathcal{F}_{t}\right]dy$$

Remeber W and I are independent, so:

$$\begin{split} \mathbb{E}_{Q} \left[e^{(\alpha+iy)X} \middle| \mathcal{F}_{t} \right] &= \mathbb{E}_{Q} \left[e^{(\alpha+iy) \int_{0}^{T} \sigma(u,\tau) dW_{u}} \middle| \mathcal{F}_{t} \right] \times \mathbb{E}_{Q} \left[e^{(\alpha+iy) \int_{0}^{T} \eta(u,\tau) dI(u)} \middle| \mathcal{F}_{t} \right] \\ &= e^{(\alpha+iy) \left[\int_{0}^{t} \sigma(u,\tau) dW_{u} + \int_{0}^{t} \eta(u,\tau) dI_{u} \right]} \times \mathbb{E}_{Q} \left[e^{(\alpha+iy) \int_{t}^{T} \sigma(u,\tau) dW_{u}} \middle| \mathbb{E}_{Q} \left[e^{(\alpha+iy) \int_{t}^{T} \eta(u,\tau) dI(u)} \middle| \mathbb{E}_{Q} \left[e^{(\alpha+iy) \int_{t}^{T} \eta(u,$$

Here we used the measurability and independent increments of Levy-processes. Hence:

$$\mathbb{E}_{Q}\left[e^{(\alpha+iy)\int_{t}^{T}\sigma(u,\tau)dW_{u}}\right] = e^{\frac{1}{2}(\alpha+iy)^{2}\int_{t}^{T}\sigma^{2}(u,\tau)du}$$

$$\mathbb{E}_{Q}\left[e^{(\alpha+iy)\int_{t}^{T}\eta(u,\tau)dI(u)}\right] = e^{\int_{t}^{T}\varphi_{Q}((\alpha+iy)\eta(u,\tau))du}$$

Summarizing our findings:

$$\mathbb{E}_{Q}[g(X)|\mathcal{F}_{t}] = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{g}_{\alpha}(y) e^{(\alpha+iy)\left[\int_{0}^{t} \sigma(u,\tau)dW_{u} + \int_{0}^{t} \eta(u,\tau)dI_{u}\right]} e^{\frac{1}{2}(\alpha+iy)^{2} \int_{t}^{T} \sigma^{2}(u,\tau)du} e^{\int_{t}^{T} \varphi_{Q}((\alpha+iy)\eta(u,\tau))du} dy$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{g}_{\alpha}(y) \left(\frac{f(t,\tau)}{f(0,\tau)}\right)^{(\alpha+iy)} e^{\frac{1}{2}(\alpha+iy)^{2} \int_{t}^{T} \sigma^{2}(u,\tau)du} e^{\int_{t}^{T} \varphi_{Q}((\alpha+iy)\eta(u,\tau))du} dy$$

Which means that:

$$C(t, T, K, \tau) = e^{-r(T-t)} \mathbb{E}_Q[g(X)|\mathcal{F}_t]$$

7.2 Fourier methods in practice

Let's consider a put option:

$$g(x) := \max(K - e^x, 0)$$

We are asked to find the inverse Fourier transform of g:

$$g(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{g}(y) e^{ixy} dy$$

The problem is that $g \notin L^1(\mathbb{R})$:

$$g(x) = (K - e^x)\mathbf{1}\{x < \ln(K)\}$$

Consider $g_{\alpha}(x) = e^{\alpha x} g(x)$:

$$g_{\alpha}(x) = e^{\alpha x} (K - e^{x}) \mathbf{1} \{ x < \ln(K) \}$$

= $(Ke^{\alpha x} - e^{(\alpha + 1)x}) \mathbf{1} \{ x < \ln(K) \} \in L^{1}(\mathbb{R})$

In order for us to find g(x) we need \widehat{g} :

$$\widehat{g}_{\alpha}(y) = \int_{\mathbb{R}} g_{\alpha}(x)e^{-ixy}dx$$

$$= \int_{-\infty}^{\ln(K)} e^{\alpha x}(K - e^{x})e^{-ixy}dx$$

$$= \int_{-\infty}^{\ln(K)} (K - e^{x})e^{(\alpha - iy)x}dx$$

$$= K \int_{-\infty}^{\ln(K)} e^{(\alpha - iy)x}dx - \int_{-\infty}^{\ln(K)} e^{(\alpha - iy + 1)x}dx$$

$$= \frac{K}{\alpha - iy}[e^{(\alpha - iy)\ln(K)}] - \frac{1}{\alpha - iy + 1}[e^{(\alpha - iy + 1)\ln(K)}]$$

We notice that:

$$e^{(\alpha - iy + 1)\ln(K)} = e^{(\alpha - iy)\ln(K)}e^{\ln(K)} = e^{(\alpha - iy)\ln(K)}K$$

Leaving us with:

$$\widehat{g}_{\alpha}(y) = \frac{K}{\alpha - iy} e^{(\alpha - iy)\ln(K)} - \frac{K}{\alpha - iy + 1} e^{(\alpha - iy)\ln(K)}$$

$$= Ke^{(\alpha - iy)\ln(K)} \left[\frac{1}{\alpha - iy} - \frac{1}{\alpha - iy + 1} \right]$$

$$= \frac{Ke^{(\alpha - iy)\ln(K)}}{(\alpha - iy)(\alpha - iy + 1)}$$

Do we have that $\widehat{g}_{\alpha}(y) \in L^{1}(\mathbb{R})$?:

$$\left| \frac{Ke^{(\alpha - iy)\ln(K)}}{(\alpha - iy)(\alpha - iy + 1)} \right| = \frac{|Ke^{\alpha \ln(K)}||e^{-iy\ln(K)}|}{|(\alpha - iy)||(\alpha - iy + 1)|}$$

$$= \frac{K^{\alpha + 1} * 1}{\sqrt{\alpha^2 + y^2}\sqrt{(\alpha + 1)^2 + y^2}} \sim \frac{K^{\alpha + 1}}{c_2 + y^2} \in L^1(\mathbb{R})$$

In this case we have $g(x) = e^{-\alpha x}g_{\alpha}(x)$, this yields:

$$g(x) = e^{-\alpha x} \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{g}_{\alpha}(y) e^{ixy} dy$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{g}_{\alpha}(y) e^{(iy-\alpha)x} dy$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \frac{K^{\alpha+1}}{(\alpha - iy)(\alpha - iy + 1)} e^{(iy-\alpha)x} dy$$