

AUTOMOTIVE MOSFET

IRF2804S-7P

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	320	Α
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (See Fig. 9)	230	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	160	
I _{DM}	Pulsed Drain Current ①	1360	
P _D @T _C = 25°C	Maximum Power Dissipation	330	W
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	630	mJ
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value ®	1050	
I _{AR}	Avalanche Current ①	See Fig.12a,12b,15,16	Α
E _{AR}	Repetitive Avalanche Energy ©		mJ
T_J	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units	
$R_{\theta JC}$	Junction-to-Case ®		0.50	°C/W	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50			
$R_{\theta JA}$	Junction-to-Ambient ®		62		
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount, steady state) ⑦ ®		40		

HEXFET® is a registered trademark of International Rectifier. www.irf.com

Static @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}} / \Delta T_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		0.028		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)} SMD	Static Drain-to-Source On-Resistance		1.2	1.6	mΩ	V _{GS} = 10V, I _D = 160A ③
V _{GS(th)}	Gate Threshold Voltage	2.0	_	4.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	220			S	$V_{DS} = 10V, I_{D} = 160A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 40V, V_{GS} = 0V$
		_	_	250		$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage	_	_	200	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage	_	_	-200		V _{GS} = -20V
Q_g	Total Gate Charge		170	260	nC	I _D = 160A
Q_{gs}	Gate-to-Source Charge		63			$V_{DS} = 32V$
Q_{gd}	Gate-to-Drain ("Miller") Charge	_	71			V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		17		ns	$V_{DD} = 20V$
t _r	Rise Time		150			I _D = 160A
t _{d(off)}	Turn-Off Delay Time	_	110			$R_G = 2.6\Omega$
t _f	Fall Time		105			V _{GS} = 10V ②
L_{D}	Internal Drain Inductance	_	4.5		nΗ	Between lead,
						6mm (0.25in.)
L _S	Internal Source Inductance	_	7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		6930		pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance	_	1750			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		970			f = 1.0MHz, See Fig. 5
C _{oss}	Output Capacitance		5740			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		1570			$V_{GS} = 0V, V_{DS} = 32V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		2340			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V$

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current		_	320		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			1360		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C$, $I_S = 160A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		43	65	ns	$T_J = 25^{\circ}C, I_F = 160A, V_{DD} = 20V$
Q_{rr}	Reverse Recovery Charge	_	48	72	nC	di/dt = 100A/μs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L=0.049mH, $R_G = 25\Omega$, $I_{AS} = 160A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- 3 Pulse width \leq 1.0ms; duty cycle \leq 2%.
- $\ \ \,$ $\ \ \,$ C $_{oss}$ eff. is a fixed capacitance that gives the same charging time as C $_{oss}$ while V $_{DS}$ is rising from 0 to 80% V $_{DSS}$.
- ⑤ This value determined from sample failure population. 100% tested to this value in production.
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- $\ ^{\textcircled{\$}}$ R $_{\theta}$ is measured at T $_{J}$ of approximately 90°C.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

10000 OPERATION IN THIS AREA IMITED BY R DS (on) ID, Drain-to-Source Current (A) 1000 100 10 Tj = 175°C 10msec Single Pulse 0.1 0 10 100 1000 V_{DS} , Drain-toSource Voltage (V)

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current vs. Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. $P_{D \text{ (ave)}}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche.
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D~(ave)} &= 1/2~(~1.3 \cdot BV \cdot I_{aV}) = \Delta T/~Z_{thJC} \\ I_{av} &= 2\Delta T/~[1.3 \cdot BV \cdot Z_{th}] \\ E_{AS~(AR)} &= P_{D~(ave)} \cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

D²Pak - 7 Pin Package Outline

Dimensions are shown in millimeters (inches)

RECOMMENDED FOOTPRINT

REV	DATE	MODIFICATION	
-	18/03/03	RAISED IAW ECN 3426	
Rev1	07/04/03	CHANGED IAW ECN 3438	
А	23/04/04	ADD LEAD ASSIGNMENT	

D²Pak - 7 Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1. TAPE AND REEL.
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING BOD DEVICES.
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. 71-9667.
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS.

 REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS.

 HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRF2804STRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRF2804STRL-7P
 - 2.3 I.R. PART NUMBER: IRF2804STRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE: IR
 - 2.6 LOT CODE:
 - 2.7 DATE CODE:

Data and specifications subject to change without notice.

This product has been designed and qualified for the Automotive [Q101]market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903