Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- * Definición de conjunto
- * Subconjunto y subconjunto propio
- * Conjunto potencia
- * Producto cartesiano
- * Operaciones con conjuntos

George Cantor

- Defendió su tesis doctoral en 1867 sobre teoría de números
- Es considerado el fundador de la teoría de conjuntos

(1845-1918)

Noción de conjunto: Definición por extensión

· Conjunto de vocales del alfabeto

$$A = \{a,e,i,o,u\}$$

• Conjunto de enteros positivos menores que 100

Conjunto de números naturales

· Conjunto de operadores aritméticos conmutativos

$$D=\{+,x\}$$

Noción de conjunto: Definición por compresión

· Conjunto de vocales del alfabeto

$$A = \{x : \mathring{A} | Vocal(x)\}$$

• Conjunto de enteros positivos menores que 100

$$B = \{x : \mathbb{Z}^+ \mid x \le 100\}$$

Conjunto de números naturales

$$C = \{x : \mathbb{N}\}$$

Conjunto de operadores aritméticos conmutativos

$$A = \{x : \mathring{A} | OperadorAritmetico(x) \}$$

¿Los conjuntos A y B son iguales?

$$A = \{a,e,i,o,u\}$$

$$B=\{u,o,i,e,a\}$$

Los conjuntos NO TIENEN ORDEN

Se evalúan directamente los elementos

¿Los conjuntos A y B son iguales?

$$A = \{a,e,i,o,u\}$$

$$B=\{u,o,i,e,a\}$$

Un conjunto es una colección desordenada de objetos

¿Los conjuntos A y B son iguales?

A={a,a,a,a,e,e,e,e,e,i,o,u}

B={a,e,i,o,u}

¿Los conjuntos A y B son iguales?

A={a,a,a,a,e,e,e,e,e,i,o,u}

B={a,e,i,o,u}

Dos conjuntos son iguales si tienen los mismos elementos sin importar la cantidad

Conjunto vacio

Representa el conjunto que no tiene elementos, se puede expresar de las dos siguientes maneras:

- { }
- Ø

Determine si los siguientes conjuntos son iguales:

•
$$\{1,3,3,3,3,3,3,5,5,5,5\}$$
 y $\{5,3,1\}$

• $\{x \mid x \text{ es un entero positivo menor que 5}\}$ y $\{1,2,3,4\}$

Determine si los siguientes conjuntos son iguales:

- $\{1,3,3,3,3,3,3,5,5,5,5\}$ y $\{5,3,1\}$, si
- {{1}} y {1}, no
- $\{\{1,1,1,1,1\},1,1,1,1,1\}$ y $\{1,\{1\}\}$, si
- { } y {Ø, { }}, no
- {∅} y {{ }, ∅}, si
- $\{x \mid x \text{ es un entero positivo menor que 5}\}$ y $\{1,2,3,4\}$, si

Pertenencia sobre conjuntos

- $x \in A$ para indicar que el elemento x pertenece al conjunto A
- x∉A para el caso contrario

Sea $A=\{1,2,\{3,4\},5,\{5,6\}\}$ responda falso o verdadero:

•
$$\{3,4\} \in A$$

•
$$\varnothing \in A$$
 No

•
$$\{3,4,5\} \in A$$

Sea $A=\{1,2,\{3,4\},5,\{5,6\}\}$ responda falso o verdadero:

- $1 \in A$, verdadero
- $\{3,4\} \in A$, verdadero
- $\emptyset \in A$, falso
- $5 \in A$, verdadero
- $\{5\} \in A$, falso
- $\{3,4,5\} \in A$, falso

 $A = \{1,2,\{3,4\},5,\{5,6\}\}$ responda falso o verdadero:

Sea $A=\{1,2,\{3,4\},5,\{5,6\}\}$ responda falso o verdadero:

- $\{1,2\} \in A$, falso
- $\{5,6\} \in A$, verdadero
- $4 \in A$, falso
- $\{\} \in A$, falso

Subconjunto ⊆

El conjunto A es subconjunto de B, A⊆B, si y solo si todo elemento de A es también un elemento de B

- $\{1,2\} \subseteq \{1,2,3,4,5\}$
- $\{1,2,6\} \subseteq \{1,2,3,4,5\}$

Subconjunto ⊆

El conjunto A es subconjunto de B, A⊆B, si y solo si todo elemento de A es también un elemento de B

- $\{1,2\} \subseteq \{1,2,3,4,5\}$
- $\{1,2,6\} \subseteq \{1,2,3,4,5\}$

Para cualquier conjunto S, se cumple que $\varnothing\subseteq S$

Para cualquier conjunto S, se cumple que $S\subseteq S$

Subconjunto propio

El conjunto A es subconjunto propio de B, $A \subset B$, si y solo si, $A \subseteq B$ y $A \neq B$

Subconjunto propio

El conjunto A es subconjunto propio de B, $A \subset B$, si y solo si, $A \subseteq B$ y $A \neq B$

Sean $P=\{1,2\}$, $Q=\{1,2,3\}$, $R=\{1,2,3\}$, se cumple:

- $P \subseteq R$ y $P \subseteq R$
- Q⊆R pero Q⊄R

•
$$x \in \{x\}$$

• $\{x, y\} \subseteq \{x\}$ \vdash
• $\{x\} \subset \{x\}$ \vdash
• $\{x\} \in \{x\}$ \vdash
• $\{x\} \in \{x\}$ \vdash
• $\{x\} \in \{x\}$ \lor
• $\emptyset \subseteq \{x\}$ \lor
• $\emptyset \subset \{x\}$ \lor
• $\emptyset \subset \{x\}$ \lor
• $\emptyset \subset \{x\}$ \lor

- $x \in \{x\}$, verdadero
- $\{x,y\} \subseteq \{x\}$, falso
- $\{x\} \subset \{x\}$, falso
- $\{x\} \in \{x\}$, falso
- $\{x\} \in \{\{x\}, y, z\}$, verdadero
- $\emptyset \subseteq \{x\}$, verdadero
- $\emptyset \in \{x\}$, falso
- $\emptyset \subset \{x\}$, verdadero

- $0 \in \emptyset$, falso
- $\emptyset \in \{0\}$, falso
- $\{0\}$ $\subset \emptyset$, falso
- $\varnothing \subset \{0\}$, verdadero
- $\{0\} \in \{0,\{0,0\}\}\$, verdadero
- $\{0\}\subset\{0\}$, falso
- $\{0\}\subseteq\{0\}$, verdadero

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

- Para $A=\{3,3,3,3,1,1,1,2,2,2\}, |A|=?$
- Para A={1,2,3,{4,5}}, |A|=? 4
- Para A=∅, |A|=?

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

- Para $A=\{3,3,3,3,1,1,1,2,2,2\}, |A|=3$
- Para A={1,2,3,{4,5}}, |A|=4
- Para $A=\emptyset$, |A|=0

Indique la cardinalidad de los siguientes conjuntos:

• $\{x \mid x \text{ es un entero positivo impar menor que } 10\} = 5$

12,3,5,7,93

- {a} = 1
- $\{\{a,b\}\} = 1$
- $\{a, \{a\}\} = 2$
- {a, a, {a,a}, {a,a,a}} = $\{a, \{a,a\}\} = 2$

Indique la cardinalidad de los siguientes conjuntos:

- $\{x \mid x \text{ es un entero positivo impar menor que 10}\}$, 5
- {a}, 1
- {{a,b}}, 1
- {a, {a}}, 2
- {a, a, {a,a}, {a,a,a}}, **2**

Indique la cardinalidad de los siguientes conjuntos:

•
$$\{a, \{a\}, \{a, \{a\}\}\} = 3$$

• $\{3,\emptyset\} = 2$

•
$$\{\emptyset, \emptyset, \emptyset, \emptyset, \{\}\}$$

$$\emptyset = \{3\}$$

Indique la cardinalidad de los siguientes conjuntos:

- {a, {a}, {a,{a}}}, **3**
- {3,∅}, **2**
- {∅}, **1**
- $\{\emptyset, \emptyset, \emptyset, \{\emptyset, \{\}\}\}, \mathbf{1}$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por A x B es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$ $(a,b) \neq (b,q)$

Pares ardenada

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = ?$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $B \times A = ?$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $B \times A = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Dados $A=\{a,b\}$, $B=\{x,y,z\}$, $C=\{0,1\}$ calcule:

• BxC
$$\{(x,0)(x,1)(y,0)(y,1)(t,0)(t,1)\}$$

Dados
$$A=\{a,b\}$$
, $B=\{x,y,z\}$, $C=\{0,1\}$ calcule: $\{(a,x),(a,y),(a,z),(b,x),(b,y),(b,z)\}$
 $A\times B=\{(a,a),(a,b),(b,a),(b,b)\}$
 $A\times A=\{(a,a),(a,b),(b,a),(b,b)\}$
 $B\times C=\{(x,0),(x,1),(y,0),(y,1),(z,0),(z,1)\}$

René Descartes

- Estudió matemáticas y leyes
- A los 18 años se desencantó de estudiar y se dedicó a recorrer el mundo
- El servicio militar y cómo decidió su futuro
- Escribió el Discurso del Método (hipótesis del espíritu maligno*)
- Motivación de la duda metódica (niñez y los sueños)

(1596-1650)

Tabla **CAMISAS**:

ID_CAMISA	CAMISA	PESO_GR	
1	lino blanca	210	
2	algodon naranja,	290	
3	seda negra	260	

Tabla PANTALONES:

ID_PANTALON	PANTALON	PESO_GR	
1	tela azul marino	470	
2	pana marron claro	730	

Λ

Tabla CAMISASxPANTALONES:

ID_CAMISA	CAMISA	PESO_GR	ID_PANTALON	PANTALON	PESO_GR
1	lino blanca -	210	1	tela azul marino	470
1	lino blanca	210	2	pana marron claro	730
2	algodon naranja	290	1	tela azul marino	470
2	algodon naranja	290	2	pana marron claro	730
3	seda negra	260	1	tela azul marino	470
3	seda negra	260	2	pana marron claro	730

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

Dado A={1,2,3}

$$P(A)=?$$

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

• Dado A={1,2,3}

$$P(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}\}$$

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

 En general, dado un conjunto A con n elementos, el conjunto P(A) tiene 2ⁿ elementos

Sea S={1,{2,3},4}, muestre P(S)
$$P(S) = \{ \emptyset, \{1\}, \{\{2,3\}\}, \{4\}, \{1\}, \{2,3\}\}, \{4\}, \{1\}, \{2,3\}\}, \{1\}, \{2,3\}\}, \{1\}, \{2,3\}, \{1\}, \{2,3\}, \{1\}\}, \{2,3\}, \{1\}, \{2,3\}, \{1\}\}$$

```
Sea S=\{1,\{2,3\},4\}, muestre P(S)
```

- $P(S)=\{\emptyset, \{1\}, \{\{2,3\}\}, \{4\}, \{1,\{2,3\}\}, \{1,4\}, \{\{2,3\},4\}, \{1,\{2,3\},4\}\}\}$

Sea $S=\emptyset$, muestre P(S)

$$p = \{ \emptyset \}$$
 $2^{\circ} = 1$

Sea $S=\emptyset$, muestre P(S)

Encuentre el siguientes conjunto:

• P(P(
$$\varnothing$$
))
$$P(\varphi) = \{\emptyset\}$$

$$P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$$

Encuentre el siguientes conjunto:

```
    P(P(∅))
    P(∅)={∅}
    P(P(∅))=?
```

Encuentre el siguientes conjunto:

```
    P(P(∅))
    P(∅)={∅}
    P(P(∅))=P({∅})={∅, {∅}}
```

Encuentre los siguientes conjuntos potencia:

• P({1,2,3,4})

Encuentre los siguientes conjuntos potencia:

- P({{a,c},{a,b}})={Ø,{a,c},{a,b},{{a,c},{a,b}}}
- P({1,2,3,4})={Ø,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{2,3,4},{1,3,4},{1,2,3,4}}

Determine si cada una de las siguientes sentencias es falsa o verdadera

ilsa o verdadera

•
$$\{\emptyset\} \subseteq P(\{\emptyset\})$$
 $\{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\}\}$ $\{\emptyset, \{\emptyset\}\}\} \subseteq \{\emptyset, \{\emptyset\}\}\}$ • $\{\emptyset, \{\emptyset\}\}\} \subseteq P(P(\{\emptyset\}))$ $P(\{\emptyset, \{\emptyset\}\}\}) = \{\emptyset, \{\emptyset\}\}\}$ • $\{\emptyset, \{\emptyset\}\}$

Determine si cada una de las siguientes sentencias es falsa o verdadera

- $\{\emptyset\} \subset P(\{\emptyset\})$ $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}, \text{ verdadero}$
- $\{\emptyset, \{\emptyset\}\} \subset P(P(\{\emptyset\}))$ $\{\emptyset, \{\emptyset\}\} \subset \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}, \text{ verdadero}$
- |{a,b,c}x{1,2}| < |P({a,b})|6<4, falso

$$\begin{cases}
\{\{\emptyset\}\}\} \in P(P(P(\emptyset))) \\
P(P(\{\emptyset\})) = P(\{\emptyset, \{\emptyset, \{\emptyset, \{\emptyset\}\}, \{\{\emptyset\}\}\}\} \\
\{\emptyset, \{\emptyset\}\}\}\} \\
\{\emptyset, \{\emptyset\}\}\}\}
\end{cases}$$

$$P(P(P(P(P(P(\{\{1, 2, 3\} \times \{a, b, c, d, e, \{\}\}\}))))) | 1$$

$$2^{2^{0}} = 2^{1} = 2$$

$$|P(P(\emptyset)) \times P(\emptyset)| \quad 1 \times 1 = 1$$

$$|P(P(\emptyset) \times P(\emptyset))| \quad 2^{1} = 2$$

{1,3}{1,43,{2,3},{2,4} {3,43 ٩.2,2,3} {1,2,4} {1,3,4}

Operaciones entre conjuntos

- Unión
- · Intersección
- · Diferencia
- Complemento

Operaciones entre conjuntos

- Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$
- Diferencia. A-B= $\{x \mid x \in A \land x \notin B\}$
- Complemento. $A = \{x \mid x \notin A\}$

Operaciones entre conjuntos

- Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$
- Diferencia. A-B= $\{x \mid x \in A \land x \notin B\}$
- Complemento. $\overline{A} = \{x \mid x \notin A\}$

$$U=\{1,2,3,4,5,6,7,8,9\} \quad A\cap B = \{3,9\}$$

$$A=\{1,2,3,5,9\} \quad A\cup B = \{1,2,3,5,9\}$$

$$B=\{3,7,9\} \quad |A|=5$$

$$|B|=3$$

$$|A\cup B|=6$$

$$|A\cup B|=2$$

Operaciones entre conjuntos

• Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$

Cardinalidad de la Unión

En la unión los elementos de la intercepción sólo se toman una vez

Operaciones entre conjuntos

• Unión. $A \cup B \cup C = \{x \mid x \in A \lor x \in B \lor x \in C\}$

Cardinalidad de la Unión

$$A = \{ I, 3, 5, 7, 9 \} = 5$$

 $B = \{ I, 3, 4, 6, 8 \} = 6$
 $C = \{ 1, 2, 3, 4, 5 \} = 5$

Ang=
$$\{1, 3\}$$
 = 2
Anc= $\{1, 3, 5\}$ = 3
Bnc= $\{1, 2, 3, 4\}$ = $\{4\}$
An Bnc= $\{1, 3, 5\}$

AUBUC={1,2,3,4,5,6,7,8,1}=9

$$|A_{1} \cup ... \cup A_{n}| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}| + \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| - ... + (-1)^{n-1} |A_{1} \cap ... \cap A_{n}|$$

$$|A_{1} + |A_{2} - |A_{2}| + |A_{2}| + |A_{2}| + |A_{2}| + |A_{2}| +$$

Operaciones entre conjuntos

•Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$

Operaciones entre conjuntos

•Diferencia. $A-B=\{x \mid x \in A \land x \notin B\}$

Operaciones entre conjuntos

•Complemento. $A = \{x \mid x \notin A\}$

U

Dados $A=\{1,2,3,5,9\}$, $B=\{3,7,9\}$ y $U=\{1,2,3,4,5,6,7,8,9\}$ indique los resultados de las siguientes operaciones:

• $A \cap \overline{B} \cup B \cap \overline{A}$

AUB=
$$\{1, 2, 3, 5, 7, 9\}$$

ANB= $\{4, 6, 8\}$
 $B-A=\{77\}$
 $B-A=\{73, 3, 9, 5, 6, 8, 9\}$
ANB $B-A=\{1, 2, 3, 9, 5, 6, 8, 9\}$

Dados $A=\{1,2,3,5,9\}$, $B=\{3,7,9\}$ y $U=\{1,2,3,4,5,6,7,8,9\}$ indique los resultados de las siguientes operaciones:

•
$$\overline{A \cup B} \cap \overline{B - A} = \{4,6,8\} \cap \{1,2,3,4,5,6,8,9\} = \{4,6,8\}$$

•
$$A \cap \overline{B} \cup B \cap \overline{A} = \{1,2,5\} \cup \{7\} = \{1,2,5,7\}$$

Dados $A = \{a,b,c,d,e\}, B = \{a,b,c,d,e,f,g,h\} y U = \{a,b,c,d,e,f,g,h,i,j,k\}$ encuentre:

- A∩B
 - B-A ∪ (A-B)
 - (A-B) (A∪B)
 - $(B \cap A) \cup (B A)$

B n A) U (B-A) = {i, i, k}

Dados $A=\{a,b,c,d,e\}$, $B=\{a,b,c,d,e,f,g,h\}$ y $U=\{a,b,c,d,e,f,g,h,i,j,k\}$ encuentre:

- *A*∩B={f,g,h,i,j,k}
- B-A \cup (A-B)={a,b,c,d,e,i,j,k} $\cup \emptyset$ ={a,b,c,d,e,i,j,k}
- $(A-B) (A \cup B) = \{a,b,c,d,e,f,g,h,i,j,k\} \{a,b,c,d,e,f,g,h\} = \{i,j,k\}$
- $(B \cap A) \cup (B-A)=\{i,j,k\}$

Dados A={1,3,5,7,8,9}, B={2,4,5,6} y U={1,2,3,4,5,6,7,8,9,10} encuentre:

•
$$\overline{\mathsf{A}}$$
- $\overline{\mathsf{B}}$ \cap $\overline{\mathsf{A}}$

•
$$(B \cap A) \cup (\overline{A \cup B})$$

•
$$(A \cap B) \cap (B-A)$$

$$A-B = \{2,3,4,8,9\}$$
 $A-B = \{2,4,5,6,10\}$
 $\overline{A} = \{2,4,6,10\}$
 $A-B \cap \overline{A} = \{2,4,6,10\}$

Anb =
$$\{ 5 \}$$

Anb = $\{ 1, 2, 3, 4, 6, 7, 8, 9, 16 \}$
B-A= $\{ 2, 4, 6 \}$
(Anb) $\{ (3-A) = \{ 2, 4, 6 \}$

Dados A={1,3,5,7,8,9}, B={2,4,5,6} y U={1,2,3,4,5,6,7,8,9,10} encuentre:

•
$$A-B \cap A = \{2,4,5,6,10\} \cap \{2,4,6,10\} = \{2,4,6,10\}$$

•
$$(B \cap A) \cup (A \cup B) = \{5\} \cup \{10\} = \{5,10\}$$

•
$$(A \cap B) \cap (B-A) = \{1,2,3,4,6,7,8,9,10\} \cap \{2,4,6\} = \{2,4,6\}$$

Dados $A=\{a,b,c\}$, $B=\{b,d\}$, $U=\{a,b,c,d,e,f\}$ encuentre y compare:

- $\overline{A \cup B}$, $\overline{A \cap B}$
- $\overline{A \cap B}$, $\overline{A} \cup \overline{B}$

Dados $A=\{a,b,c\}$, $B=\{b,d\}$, $U=\{a,b,c,d,e,f\}$ encuentre y compare:

- $A \cup B$, $A \cap B$. Ambos son $\{e,f\}$
- $\overline{A \cap B}$, $\overline{A \cup B}$. Ambos son {a,c,d,e,f}

Identidad	Nombre
$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$	Leyes de De Morgan
$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$	
$A \cup (A \cap B) = A$	Leyes de absorción
$A \cap (A \cup B) = A$	
$A \cup \overline{A} = ?$	Leyes de complemento
$A \cap \overline{A} = ?$	

Identidad	Nombre
$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$	Leyes de De Morgan
$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$	
$A \cup (A \cap B) = A$	Leyes de absorción
$A \cap (A \cup B) = A$	
$A \cup \overline{A} = U$	Leyes de complemento
$A \cap \overline{A} = \emptyset$	

Identidad	Nombre
$A \cup \varnothing = ?$	Leyes de
A ∩ U = ?	identidad
A ∪ U = U	Leyes de
$A \cap \varnothing = \varnothing$	dominación
$A \cup A = A$	Leyes de
$A \cap A = A$	idempotencia
	Ley de
$\overline{A} = A$	complementación

Identidad	Nombre
$A \cup \varnothing = A$	Leyes de
$A \cap U = A$	identidad
<i>A</i> ∪ U = U	Leyes de
$A \cap \emptyset = \emptyset$	dominación
$A \cup A = A$	Leyes de
$A \cap A = A$	idempotencia
	Ley de
$\overline{A} = A$	complementación

Identidad	Nombre
$A \cup B = B \cup A$	Leyes
$A \cap B = B \cap A$	conmutativas
$A \cup (B \cup C) = (A \cup B) \cup C$	Leyes
$A \cap (B \cap C) = (A \cap B) \cap C$	asociativas
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Leyes
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	distributivas

Cómo probar identidades

Se tienen dos métodos:

- · Construir una tabla de pertenencia
- Utilizar la notación de conjuntos y las equivalencias lógicas

Tabla de pertenencia

Se considera cada combinación de conjuntos en los que un elemento puede pertenecer y se verifica que los elementos en la misma combinación de conjuntos pertenecen a ambos conjuntos en la identidad

Probar $\overline{A \cap B} = \overline{A} \cup \overline{B}$									
	V	<i>V</i>							
	A	В	A	B	-A\B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$		
	1	1	0	6	1	0	O		
	1	0	0	1	0	1	2		
	0	1	1	O	0	1	1		
	0	0	1	1	0	1	2		

Probar $A \cap B = A \cup B$

Α	В	Ā	B	A∩B	$\overline{A} \cap \overline{B}$	$\overline{A} \cup \overline{B}$
1	1					
1	0					
0	1					
0	0					

1 representa x∈Conjunto0 representa x∉Conjunto

Α	В	Ā	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0				
1	0	0				
0	1	1				
0	0	1				

Α	В	Ā	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0			
1	0	0	1			
0	1	1	0			
0	0	1	1			

A	В	A	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1		
1	0	0	1	0		
0	1	1	0	0		
0	0	1	1	0		

A	В	A	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	
1	0	0	1	0	1	
0	1	1	0	0	1	
0	0	1	1	0	1	

A	В	A	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

A	В	Ā	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

Probar
$$\overline{A \cup (\overline{A} \cap B)} = \overline{A} \cap (A \cup \overline{B})$$

Probar $A \cup (\overline{A} \cap B) = A \cap (A \cup B)$

							<u></u>	<u> </u>
A	В	A	В	$\overline{A} \cap B$	$A \cup (\overline{A} \cap B)$		$A \cup \overline{B}$	$\overline{A} \cap (A \cup \overline{B})$
1	1	0	0	, O	1	0	1	0
1	0	8	1	0	1	0	1	0
0	1	1	0	1	1	0	Q	0
0	0	1	1	0	0	1	1	1

Probar $\overline{A \cup (\overline{A} \cap B)} = \overline{A} \cap (A \cup \overline{B})$

A	В	A	В	$\overline{A} \cap B$	$A \cup (\overline{A} \cap B)$	$A \cup (A \cap B)$	A∪B	$\overline{A} \cap (A \cup \overline{B})$
1	1	0	0	0	1	0	1	0
1	0	0	1	0	1	0	1	0
0	1	1	0	1	1	0	0	0
0	0	1	1	0	0	1	1	1

Complete la tabla para (A - B)

A	В	A-B	,
1	1	?	\bigcirc
1	0	?	1
0	1	?	0
0	0	?	0

Complete la tabla para (A - B)

Α	В	A-B
1	1	0
1	0	
0	1	
0	0	

El mismo elemento está en A y en B. Por lo tanto, no estará en A-B

Complete la tabla para (A - B)

Α	В	A-B
1	1	0
1	0	1
0	1	0
0	0	0

Α	В	B-A	A ∩ (B-A)
1	1	0	0
1	0	0	0
0	1	7	0
0	0	0	0

Α	В	B-A	<i>A</i> ∩(B- <i>A</i>)
1	1	0	
1	0	0	
0	1	1	
0	0	0	

Α	В	B-A	A∩(B-A)
1	1	0	0
1	0	0	0
0	1	1	0
0	0	0	0

Probar $A \cup (B - A) = A \cup B$

Probar $A \cup (B - A) = A \cup B$

A	В	B-A	<i>A</i> ∪(B- <i>A</i>)	$A \cup B$
1	1	0	1	1
1	0	0	1	1
0	1	1	1	1
0	0	0	0	0

Probar A	$\overline{(B-A)}$		V		V		
A B 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	1 B O 1 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B-A 0 0	B-A 1 2 0	An (B-A) 0 0 0 2	An (B-A) 1 2 0	AnB O O O 1	ANB 111 1 0

Cómo probar identidades

Se tienen dos métodos:

- · Construir una tabla de pertenencia
- Utilizar la notación de conjuntos y las equivalencias lógicas

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A-B=\{x \mid x \in A \land x \notin B\}$$

$$A = \{x \mid x \notin A\}$$

Probar
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

 $\overline{A \cap B} = ?$

Probar
$$\overline{A \cap B} = \overline{A \cup B}$$

 $\overline{A \cap B} = \{ x \mid x \notin A \cap B \}$

Probar
$$\overline{A} \cap \overline{B} = \overline{A} \cup \overline{B}$$

 $\overline{A} \cap \overline{B} = \{x \mid x \notin A \cap B\}$ $\times G \cap B$
 $\overline{A} \cap \overline{B} = \{x \mid \neg(x \in A \cap B)\}$
 $\overline{A} \cap \overline{B} = \{x \mid \neg(x \in A \land x \in B)\}$
 $\overline{A} \cap \overline{B} = \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$
 $\overline{A} \cap \overline{B} = \{x \mid (x \notin A) \lor (x \notin B)\}$
 $\overline{A} \cap \overline{B} = \{x \mid (x \in \overline{A}) \lor (x \in \overline{B})\}$
 $\overline{A} \cap \overline{B} = \{x \mid (x \in \overline{A}) \lor (x \in \overline{B})\}$

Probar
$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{(B \cap C)}$$
 $\overline{A \cup (B \cap C)} = ?$
 $X \not\in \overline{(B \cap C)}$
 $X \not\in \overline{(B \cap C)}$

Probar
$$\overline{A \cup (B \cap C)} = \overline{A \cap (B \cap C)}$$

 $\overline{A \cup (B \cap C)} = \{ x \mid x \notin (A \cup (B \cap C)) \}$
 $\overline{A \cup (B \cap C)} = \{ x \mid \neg(x \in (A \cup (B \cap C))) \}$
 $\overline{A \cup (B \cap C)} = \{ x \mid \neg(x \in A) \lor (x \in (B \cap C)) \}$
 $\overline{A \cup (B \cap C)} = \{ x \mid \neg(x \in A) \land \neg(x \in (B \cap C)) \}$
 $\overline{A \cup (B \cap C)} = \{ x \mid (x \notin A) \land (x \notin (B \cap C)) \}$
 $\overline{A \cup (B \cap C)} = \{ x \mid (x \in \overline{A}) \land (x \in (\overline{B \cap C}) \}$
 $\overline{A \cup (B \cap C)} = \{ x \mid (x \in \overline{A}) \land (x \in (\overline{B \cap C}) \}$

Probar
$$A \cap (B - A) = \emptyset$$

$$A \cap (B - A) = ?$$

$$X \mid X \in A \cap (B - A)$$

$$X \mid X \in A \cap X \in (B - A)$$

$$X \mid X \in A \cap X \in B \cap X \notin A$$

$$X \mid X \in A \cap X \notin A \cap X \in B$$

$$X \mid X \in A \cap X \notin A \cap X \in B$$

$$X \mid X \in A \cap X \notin A \cap X \in B$$

$$X \mid X \in A \cap X \notin A \cap X \in B$$

$$X \mid X \in A \cap X \notin A \cap X \in B$$

$$X \mid X \in A \cap X \notin A \cap X \in B$$

$$X \mid X \in A \cap X \notin A \cap X \in B$$

$$X \mid X \in A \cap A \cap A \cap A \cap A \in B$$

$$\rightarrow \{x \mid x \in \emptyset \land x \in B\}$$

 $\{x \mid x \in (\emptyset \land B)\}$
 $\{x \mid x \in \emptyset\}$

Probar
$$A \cap (B - A) = \emptyset$$

 $A \cap (B - A) = \{x \mid x \in (A \cap (B - A))\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land [x \in (B - A)]\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land (x \in B \land x \notin A)\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land (x \in B) \land (x \notin A)\}$
 $A \cap (B - A) = \{x \mid ((x \in A) \land (x \notin A)) \land (x \in B)\}$
 $A \cap (B - A) = \{x \mid (x \in \emptyset) \land (x \in B)\}$
 $A \cap (B - A) = \{x \mid (x \in \emptyset)\}$
 $A \cap (B - A) = \emptyset$

Probar
$$\overline{A} \cap (\overline{B} - A) = \overline{A} \cap \overline{B}$$
 $\overline{A} \cap (\overline{B} - A) = ?$
 $\{x \mid x \in \overline{A} \cap (B - A)\}$
 $\{x \mid x \in \overline{A} \cap x \notin (B - A)\}$
 $\{x \mid x \in \overline{A} \cap x \notin (B - A)\}$
 $\{x \mid x \in \overline{A} \cap (x \in (B - A))\}$
 $\{x \mid x \in \overline{A} \cap (x \in (B - A))\}$
 $\{x \mid x \in \overline{A} \cap (x \in B) \setminus (x \notin A)\}$
 $\{x \mid x \in \overline{A} \cap (x \notin B) \setminus (x \notin A)\}$
 $\{x \mid x \in \overline{A} \cap (x \notin B) \setminus (x \notin A)\}$

{X | (xeAnxeB) v (xeAnxeA) { {X| Xe(ĀnB) v Xe(ĀnA) } {X| Xe(ĀnB) v Xe(ĀnA) } {X|XE(AnB)UØ} {X|XEANB}

Probar
$$\overline{A} \cap (\overline{B} - \overline{A}) = \overline{A} \cap \overline{B}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \cap (\overline{B} - \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land x \in (\overline{B} - \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg x \in (\overline{B} - \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B} \land x \notin \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B}) \lor \neg x \notin \overline{A}\}\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B}) \lor \neg (\neg x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B})\} \lor [x \in \overline{A} \land x \in \overline{A}]\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B})\} \lor \emptyset$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B})\} \lor \emptyset$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B})\} \lor \emptyset$$

Probar
$$A \cup (B - A) = A \cup B$$

$$A \cup (B - A) = ?$$

$$\{x \mid x \in (A \cup (B - A))\}$$

$$\{x \mid x \in A \lor (x \in (B - A))\}$$

$$\{x \mid x \in A \lor (x \in B \land x \notin A)\}$$

$$\{x \mid x \in A \lor (x \in B \land x \in \overline{A})\}$$

$$\{x \mid x \in A \lor (x \in B \land x \in \overline{A})\}$$

$$\{x \mid x \in A \lor (x \in B \land x \in \overline{A})\}$$

$$\{x \mid x \in A \lor (x \in B \land x \in \overline{A})\}$$

$$\{x \mid x \in (A \cup B) \land (x \in A \lor x \in \overline{A})\}$$

$$\{x \mid x \in (A \cup B) \land (x \in A \lor x \in \overline{A})\}$$

{X | XE (AUB) N X E U } {X | XE (AUB) N U } {X | XE (AUB)}

^ V

Probar
$$A \cup (B - A) = A \cup B$$

 $A \cup (B - A) = \{x \mid x \in (A \cup (B - A))\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor (x \in (B - A))\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor [(x \in B) \land (x \notin A)]\}$
 $A \cup (B - A) = \{x \mid [(x \in A) \lor (x \in B)] \land [(x \in A) \lor (x \notin A)]\}$
 $A \cup (B - A) = \{x \mid [(x \in A) \lor (x \in B)] \land (x \in U)\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor (x \in B)\}$
 $A \cup (B - A) = A \cup B$

$$X|^{1}(^{1}(x \in A \lor x \in B)) \lor ^{1}(x \in A \lor x \in C))$$
 $X|^{1}(x \notin A \land x \notin B) \lor x \notin A \land x \notin C))$
 $X|^{1}(x \notin A \land x \notin B) \land ^{1}(x \notin A \land x \notin C))$
 $X|^{1}(x \notin A \land x \notin B) \land ^{1}(x \notin A \land x \notin C))$
 $X|^{1}(x \notin A \land x \notin B) \land ^{1}(x \notin A \land x \notin C)$
 $X|^{1}(x \notin A \lor x \in B) \land x \in A \lor x \in C$
 $X|^{1}(x \in A \lor x \in B) \land x \in (A \cup C)$
 $X|^{1}(x \in A \cup B) \land (A \cup C)$
 $X|^{1}(x \in A \cup B) \land (A \cup C)$
 $X|^{1}(x \in A \cup B) \land (A \cup C)$
 $X|^{1}(x \in A \cup B) \land (A \cup C)$
 $X|^{1}(x \in A \cup B) \land (A \cup C)$
 $X|^{1}(x \in A \cup B) \land (A \cup C)$

Uniones generalizadas e intercepciones

Unión
$$A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$$

Intercepción
$$A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{i=1}^n A_i$$

Representación computacional de conjuntos

- Estas proveen las operaciones de unión, intercepción y resta entre conjuntos
- No se permiten elementos repetidos
- En Java se provee la clase Set<E>
 <u>https://docs.oracle.com/javase/7/docs/api/java/util/Set.html</u>
- En C++ se provee set http://www.cplusplus.com/reference/set/set/
- En Python se provee set <u>https://docs.python.org/2/library/sets.html</u>

Representación computacional de conjuntos

- Son muy útiles para resolver problemas que involucran conjuntos
- Internamente se manejan operaciones en representaciones de bits de los elementos de los conjuntos
- Las operaciones son más costosas computacional que los arreglos