EEE104 – Digital Electronics (I) Lecture 10

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- The Karnaugh Map
- Karnaugh Map SOP Minimization
- Karnaugh Map POS Minimization

Karnaugh Map

- A graphical tool to simplify Boolean expressions.
- It is like a truth table in array form, in which each cell corresponds to a row in the truth table.
- Limited to 5-6 variables.

Karnaugh Map

- The number of cells is equal to 2ⁿ, where n is the number of variables.
- The cells are not arranged according to the magnitude of binary values, e.g. 00→ 01 → 11 → 10.

Karnaugh Map

Cell Adjacency

- The cells are arranged so that there is only a singlevariable change between adjacent cells.
- The binary values of two variables: 00→01→11→10.

- 1. Each cell is adjacent to the cells on its four sides.
- 2. The top row is adjacent to the bottom row.
- 3. The leftmost column is adjacent to the rightmost column. ("wrap-around")

Mapping a Standard SOP Expression

 For a standard SOP, place a 1 on the Karnaugh map in the cell having the same value as the product term.

Mapping a Non-Standard SOP Expression

- Convert it to standard form by numerical expansion.
- For each missing variable, the binary value of the product term is split into two by attaching a 1 and 0 respectively.

\overline{A}	$+$ $A\overline{B}$ $+$	$AB\overline{C}$
000	100	110
001	101	T (1.25
010		
011		

Step 1: Grouping the 1s

- The goal is to maximize the size of the groups (shorter product terms) and to minimize the number of groups (less product terms).
- A group may contain 1, 2, 4, 8, or 16 adjacent cells.
- Each 1 must be included in one or more groups.

Step 1: Grouping the 1s

 Alternative grouping will **not** maximize the size or minimize the number of groups.

Step 2: Determine the Minimum SOP

 When a variable appears in both complemented and uncomplemented form in a group, that variable is eliminated.

Variables that are the same for all cells of the group

must appear.

Step 2: Determine the Minimum SOP

- The variable that is 1 for all cells of the group appear in uncomplemented form.
- The variable that is 0 for all cells of the group appear in complemented form.

Step 2: Determine the Minimum SOP

For a 3-variable map:

- A 4-cell group yields a 1-variable term.
- 2. A 2-cell group yields a 2-variable product term.
- 3. A 1-cell group yields a 3-variable product term.

The larger a group, the shorter a product term.

Inputs	Output	
ABCD	Y	
0 0 0 0	0	
0 0 0 1	0	
0010	0	
0011	0	
0 1 0 0	0	
0 1 0 1	0	
0 1 1 0	0	
0 1 1 1	1	
1000	1	
1001	1	
1010	x	
1011	x	
1 1 0 0	x	
1 1 0 1	x	
1 1 1 0	x	
1 1 1 1	x	

"Don't Care"

- Sometimes some input variable combinations will never occur, e.g. six invalid numbers in BCD code.
- Either a 1 or a 0 may be assigned to the output. They can be treated as "don't care" terms, written as X

Inputs	Output	
ABCD	Y	
0 0 0 0	0	
0 0 0 1	0	
0010	0	
0011	0	
0 1 0 0	О	
0 1 0 1	0	
0 1 1 0	0	
0 1 1 1	1	
1000	1	
1001	1	
1010	×	
1011	×	
1 100	\mathbf{x}	
1 101	\mathbf{x}	
1110	\mathbf{x}	
1 1 1 1	\mathbf{x}	

(b) Without "don't cares" $Y = AB\overline{C} + \overline{A}BCD$ With "don't cares" Y = A + BCD

"Don't Care"

- Can be used to simplify Boolean expressions.
- When an X can be grouped with 1s, then it is thought as 1.
- Otherwise, it is thought as 0.

Mapping a Standard POS Expression

 For a standard POS, place a 0 on the Karnaugh map in the cell having the same value as the sum term.

Karnaugh Map Simplification

Same as for an SOP except grouping 0s.

$$(A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)$$

The binary values of the sum terms are 000, 001, 010, 011, 110.

If a variable is always 0, it appears in uncomplemented form; if it is always 1, in complemented form.

The minimum POS is $A(\overline{B} + C)$

