

Dual-Polarized Phase-Gradient Reflecting Metasurface for 5G mmWave Coverage Improvement

Taran Anusorn^{1*}, Panuwat Janpugdee¹, Suwit Kiravittaya¹, and Paramin Sangwongngam²

* E-mail: anusorn.taran@gmail.com

#249 (1570915546)

SS02: Innovative Electromagnetic Surfaces for Radio Signal Performance Enhancement

2023 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION

1st November 2023

¹ Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand

² National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Thailand

#: Outline

- Introduction
 - Millimeter wave
 - Low-cost coverage problems mitigation
 - Objectives
- The perfect anomalous reflection.
- Design of passive dual-polarized phase-gradient metasurface reflector.
- Metasurface configuration.
- Full-wave simulation results and discussions.

Millimeter wave & 5G NR

- A millimeter wave (mmWave) band enables
 - Faster data rates.
 - Greater channel capacity.
 - Lower latency.
- The mmWave suffers from severe loss and limited coverage.

Downlink performance simulation (26 GHz)

Source: K. Zheng, D. Wang, Y. Han, X. Zhao, and D. Wang, "Performance and Measurement Analysis of a Commercial 5G Millimeter-Wave Network," in IEEE Access, vol. 8, pp. 163996-164011, 2020.

#: Coverage improvement

Reflecting surface

Creating a new propagation path by a reflecting surface.

Objectives

The main objective of this research is to design a reflecting metasurface that

- Can perform the **anomalous** reflection.
- Supports an operation with dual-polarized mmWave signals of 25.8 GHz.
- Has low design complexity.

• To achieve the perfect anomalous reflection*, the periodic phase variation of the wave along the *x*-axis is

$$\Phi_{\mathbf{r}}(x) = k_0 x (\sin \theta_i - \sin \theta_r) = \Phi_{\mathbf{r}}(x + D_x).$$

A spatial periodicity is

$$D_x = \frac{\lambda_0}{|\sin\theta_r - \sin\theta_i|}.$$

- λ_0 is the wavelength at the center frequency.
- $k_0 = 2\pi/\lambda_0$ is the wave constant.
- θ_i and θ_r are the incident and reflecting angles, respectively.

At 25.8 GHz, $\theta_i = 30^\circ$ and $\theta_r = 54^\circ$, we have $D_x = 37.6$ mm.

• According to the perfect anomalous reflection principle, the required surface impedance of the metasurface is

$$Z_{s}(x) = \frac{120\pi}{\sqrt{\cos\theta_{i}\cos\theta_{r}}} \frac{\sqrt{\cos\theta_{r}} + \sqrt{\cos\theta_{i}} e^{j\Phi_{r}(x)}}{\sqrt{\cos\theta_{r}} - \sqrt{\cos\theta_{i}} e^{j\Phi_{r}(x)}}$$

• The corresponding reflection coefficient of the metasurface is

$$R(x) = \frac{Z_s(x) - \eta_0}{Z_s(x) + \eta_0} = \frac{E_{reflected}}{E_{incident}},$$

where $\eta_0 = 120\pi \Omega$ is the intrinsic impedance of free space.

H: Design of phase-gradient metasurface

#: Unit cell investigation

Floquet port excitation.

Periodic boundary condition.

: Substrate thickness variation

Effect of substrate thickness variation given w = 0.4 mm at 25.8 GHz.

H: Resonator width variation

Effect of resonator thickness variation given h = 0.8 mm at 25.8 GHz.

#: Metasurface configuration

Unit cell no.	Length l (mm)	Reflection coefficient			
		Phase ∠R (Degree)		Magnitude R (dB)	
		Obtained	Required	Obtained	Required
1	2.79	-15.11	-16.37	-2.13	-0.56
2	2.86	-52.07	-51.26	-2.52	-0.27
3	2.94	-92.75	-93.29	-2.18	+0.34
4	3.11	-147.93	-148.10	-1.08	+1.05
5	4.50	+148.17	+148.10	-0.06	+1.05
6	2.22	+93.39	+93.29	-0.28	+0.34
7	2.60	+51.63	+51.26	-1.04	-0.27
8	2.72	+16.74	+16.37	-1.79	-0.56

Full-wave simulation

The proposed metasurface.

Dual-polarized incident waves.

: Simulation results and discussion

H Interesting questions for future works

- How to efficiently manipulate the perpendicular electric-field component?
- Is it possible to create unit cells with positive reflection coefficients? If yes, how?
- How to integrate the anomalous reflection principle to reconfigurable metasurfaces?

Conclusion

- The phase-gradient reflecting metasurface was designed by using the perfect anomalous reflection principle.
- With a proper selection of dimension parameters, a simple cross-shaped resonator can give the reflection phase needed for a periodic arrangement of the metasurface.

References

- 1. W. Hong et al., "The Role of Millimeter-Wave Technologies in 5G/6G Wireless Communications," in *IEEE Journal of Microwaves*, vol. 1, no. 1, pp. 101-122, Jan. 2021.
- 2. K. Zheng, D. Wang, Y. Han, X. Zhao and D. Wang, "Performance and Measurement Analysis of a Commercial 5G Millimeter-Wave Network," in *IEEE Access*, vol. 8, pp. 163996-164011, 2020.
- 3. G. R. Maccartney, T. S. Rappaport, S. Sun and S. Deng, "Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks," in *IEEE Access*, vol. 3, pp. 2388-2424, 2015.
- 4. A. Díaz-Rubio, V. S. Asadchy, A. Elsakka, and S. A. Tretyakov, "From the Generalized Reflection Law to the Realization of Perfect Anomalous Reflectors," *Science Advances*, vol. 3, No. 8, Aug. 2017.
- 5. M. H. Dahri, M. H. Jamaluddin, M. I. Abbasi and M. R. Kamarudin, "A Review of Wideband Reflectarray Antennas for 5G Communication Systems," in *IEEE Access*, vol. 5, pp. 17803-17815, 2017.
- 6. T. Hongnara et al., "Dual-Polarized Reflective Metasurface Based on Cross-Shaped Resonator for 5G Wireless Communication Systems at 28 GHz," 2019 International Symposium on Antennas and Propagation (ISAP), Xi'an, China, 2019, pp. 1-2.

Thank you

For further queries, please contact: anusorn.taran@gmail.com

This work is supported in part by Ratchadapisek Somphot Fund for Wireless Network & Future Internet Research Unit [Contract No. GRU 6409521015-1] and in part by the Department of Electrical Engineering, Chulalongkorn University.

2023 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION 30th October – 2nd November 2023