

Concept of Booting A Computer System

Kai Huang

Why is Booting Required?

- Hardware doesn't know where the operating system resides and how to load it.
- Need a special program to do this job Bootstrap loader.
 - E.g. BIOS Boot Input Output System.

- Bootstrap loader locates the kernel, loads it into main memory and starts its execution.
- In some systems, a simple bootstrap loader fetches a more complex boot program from disk, which in turn loads the kernel.

How Boot Process Occurs?

- Reset event on CPU (power up, reboot) causes instruction register to be loaded with a predefined memory location. It contains a jump instruction that transfers execution to the location of Bootstrap program.
- This program is form of ROM, since RAM is in unknown state at system startup. ROM is convenient as it needs no initialization and can't be affected by virus.

Samsung SIII

Tasks performed at Boot Up

- Run diagnostics to determine the state of machine. If diagnostics pass, booting continues.
- Runs a <u>Power-On Self Test</u> (*POST*) to check the devices that the computer will rely on, are functioning.
- BIOS goes through a preconfigured list of devices until it finds one that is bootable. If it finds no such device, an error is given and the boot process stops.
- Initializes CPU registers, device controllers and contents of the main memory. After this, it loads the OS.

BIOS POST

 CPU Type
 : AMD Athlon(tm) XP
 Base Memory
 : 640K

 CPU ID
 : 0681
 Extended Memory
 :1047552K

 CPU Clock
 : 2009MHz
 L1 Cache Size
 : 128K

 L2 Cache Size
 : 256K

Biskette Drive A : 1.44M, 3.5 in. Display Type : EGA/UGA Pri. Master Disk : LBA,ATA 100,40822MB Serial Port(s) : 3F8 ZF8 Pri. Slave Disk : LBA,ATA 100,40062MB Parallel Port(s) : 378

Pri. Master Disk : DVD, ATA 33 DDR DIMM at Rows : 2 3 4 5

Sec. Slave Disk : CHS,PIO 4, 512MB

PCI device listing ... Bus No. Device No. Func No. Vendor/Device Class Device Class

0003 USB 1.0/1.1 OHCI Controller 10 0 0 10DE 00672 0 10DE 0067 0003 USB 1.0/1.1 OHCI Controller 11 2 0 10DE 0068 0003 USB 2.0 EHCI Controller 9 0 IDE Controller Θ 10DE 0101 0065 14

0 10DE 006E 13 0 0000 Serial Bus Controller 10 8 0 1106 3043 0200 Network Controller 11 9 0 1102 0002 0401 Multimedia Device 11

6

THO

BIOS Booting Priority

PhoenixBIOS Setup Utility												
Ma	in Adv	anced S	Security 💮	Power	Boot	Exit						
	ATAPI CD-	ROM Drive			3	Item Specific Help						
	+Removable +Hard Driv Network B	Devices e				Keys used to view or configure devices: <enter> expands or collapses devices with a + or - <ctrl+enter> expands all <shift +="" 1=""> enables or disables a device. <+> and <-> moves the device up or down. <n> May move removable device between Hard Disk or Removable Disk <d> Remove a device that is not installed.</d></n></shift></ctrl+enter></enter>						
F1 Esc	Help 1↓ Exit ←	Select It Select Me		Change Val Select ► S		F9 Setup Defaults mu F10 Save and Exit						

Tasks performed at boot up (Contd)

- On finding a bootable device, the BIOS loads and executes its boot sector. In the case of a hard drive, this is referred to as the master boot record (MBR) and is often not OS specific.
- The MBR code checks the <u>partition table</u> for an active partition. If one is found, the MBR code loads that partition's <u>boot sector</u> and executes it.
- The boot sector is often <u>operating system</u> specific, however in most operating systems its main function is to load and execute a <u>kernel</u>, which continues startup.

Secondary Boot Loaders

- If there is no active partition or the active partition's boot sector is invalid, the MBR may load a secondary boot loader and pass control to it and this secondary boot loader will select a partition (often via user input) and load its boot sector.
- Examples of secondary boot loaders
 - GRUB GRand Unified Bootloader
 - LILO LInux LOader
 - NTLDR NT Loader

GRUB Loader

GNU GRUB version 0.95 (638K lower / 288704K upper memory)

```
Ubuntu, kernel 2.6.12-9-386 (recovery mode)
Ubuntu, memtest86+
Other operating systems:
Windows NT/2000/XP
```

Use the \uparrow and \downarrow keys to select which entry is highlighted. Press enter to boot the selected OS, 'e' to edit the commands before booting, or 'c' for a command-line.

Booting and ROM

- System such as cellular phones, PDAs and game consoles stores entire OS on ROM. Done only for small OS, simple supporting hardware, and rugged operation.
- Changing bootstrap code would require changing ROM chips.
 - EPROM Erasable Programmable ROM.
- Code execution in ROM is slower. Copied to RAM for faster execution.

11

Storage Media

- Hard disks, floppy disk, thumb drives etc.
- Hard disks are the richest in digital evidence
- Integrated Disk Electronics (IDE) or Advanced
 Technology Attachment (ATA)
- Higher performance SCSI drives
- Fireware is an adaptation of SCSI standards that provides high speed access to a chain of devices
- All hard drives contain platters made of light, rightid material such aluminum, ceramic, or glass

12

Hard Disks

Hard Disk Platters

Tracks and Sectors

Master Boot Record

- Master Boot Record in first sector (1st 512 byte)
 - Boot Code
 - Partition Table
 - Signature Value
- MBR Supports a maximum of 4 partitions

Partition Entry

- Starting CHS Address
- Ending CHS Address
- Starting LBA Address
- Number of Sectors in Partition
- Type of Partition
- Flags

- Limitation
 - 2 Terabyte Disk Partition Limitation
 - MBR Partition size field is 32 bits

Layout of Partition Entry

Offset			He	Clear text					
00001a0:	0000	0000	0000	0000	0000	0000	0000	0000	
00001ь0:	0000	0000	002c	4463	70a6	0409	0000	8001	,Dcp
00001c0:	0100	07fe	ffff	3 f 00	0000	8237	f90d	0000	? 7
00001d0:	0000	0000	0000	0000	0000	0000	0000	0000	
00001e0:	0000	0000	0000	0000	0000	0000	0000	0000	
00001f0:	0000	0000	0000	0000	0000	0000	0000	5 <mark>5</mark> aa	
								ightharpoonup	
	Type of Syste		_	eginning of Windows Disk Size of State of Partition Partition					

Booting Linux

Overview of Booting Linux

- Firmware (bootloader)
 - Hardware probing
 - Hardware initialization
 - Kernel load and decompression
- Kernel execution
 - Core init (start_kernel)
 - Driver init (initcalls)
- User-space init
 - o /sbin/init
 - RC scripts
 - Graphics start (First Impression)
- Application start
 - Application load and link
 - Application initialization
- First use

Kernel Initialization

- A program itself
 - /vmlinuz or /boot/vmlinuz
- Two-stage loading process
 - initrd (init RAM disk)
 - A transient root filesystem in RAM before a real root filesystem is available
 - E.g., it is used to install file system modules into the kernel
 - The real root filesystem
- Device detection and configuration
 - You tell the kernel what to expect
 - The kernel probes the H/W itself
- Kernel threads creation
 - E.g., init (a user process), kjournald, kswapd

Startup/Init Scripts

- After Kernel initialization, a process called init is created with PID 1
- init runs startup scripts (normal shell scripts)
 to perform specific tasks, e.g.,
 - Setting the hostname, time zone, etc
 - Checking and mounting the disks
 - Configuring network interfaces
 - Starting up daemons and network services

Startup/Init Scripts (cont' 1)

- Startup scripts (rc files) are run based on run levels
 - o 0 the level in which the system is completely shut down
 - 1 single-user mode
 - 2 multiuser mode w/out NFS
 - 5 full multiuser mode
 - 4 unused
 - o 5 X11
 - 6 reboot level
- /etc/init/rc-sysinit.conf -> the place to config the run level (usually 2 or3)
- /etc/inittab tells init what to do at each level (obsolete)
- /etc/init (SysVinit) V.S. /etc/init.d (Upstart)
- To find out which run level the system is current in
 - \$ runlevel

Startup/Init Scripts (cont' 2)

- init runs the scripts from /etc/rc.d/rc[0-6].d/
 - /etc/rc.d/rc0/K25sshd → /etc/init.d/sshd
 - /etc/rc.d/rc3/S55sshd → /etc/init.d/sshd
- Each server/daemon provides a master script
 - Stored in /etc/init.d
 - Understands the arguments: start, stop, restart
 - /etc/init.d/sshd start
- run level $0 \rightarrow 3$
 - o /etc/rc.d/rc3/S* start
- run level $3 \rightarrow 0$
 - o /etc/rc.d/rc0/K* stop
- Pretty ugly!
- \$ man init

Startup/Init Scripts (cont' 3)

- Use chkconfig instead. E.g.,
 - \$ chkconfig --add sshd
 - \$ chkconfig --del sshd
- Before that, need to add/modify /etc/init.d/sshd
 - o # chkconfig: 2345 55 25
 - sshd should be started/stopped at run level 2, 3, 4 and
 with the start priority of 55 and the stop priority of 25
- \$ man chkconfig

Principle for Altera booting

- Both the hardware design and the software design are stored in flash memory
 - In the case of DEO-nano, Altera erasable programmable configurable serial (EPCS) flash
 - Hardware image: SOF file
 - Software image: ELF file

Tasks (1-4)

- Check BIOS of the Virtual Machine
- Check GRUB
 - O How many kernel images installed in the virtulal machine?
- Check first 512 bytes of your virtual machine
 - sudo dd if=/dev/sda of=sda.dump count=1 bs=512
 - hexdump sda.dump
 - O How many partitions in the virtual machine?
- Check slides 22-26

