Estadística: estadística Grado en Relaciones Laborales | Curso 2019-2020 Tema 2. Análisis descriptivo de dos variables

Alejandro Saavedra Nieves

Distribución de frecuencias bidimensional

En adelante, se trabaja con n pares de observaciones de la variable (X,Y) que pueden presentarse:

- Individualmente o en extensión: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- En tabla de frecuencias de doble entrada, representando una distribución bidimensional de frecuencias

Ejemplo Una muestra de 500 viviendas en Galicia se ha clasificado según su superficie en m^2 (X) y el número de dormitorios (Y) resultando la siguiente distribución conjunta de frecuencias:

X/Y	1	2	3	4
0-60	9	23	6	0
60-90	7	65	120	22
90-120	2	15	87	50
120-200	0	5	29	60

Distribución de frecuencias bidimensional

- La variable X toma r valores differentes: x_1, x_2, \ldots, x_r .
- La variable Y toma c valores diferentes: y_1, y_2, \dots, y_c .
- La frecuencia absoluta conjunta del valor x_i de X con el valor y_j de Y es n_{ij} , para todo $i=1,\ldots,r$ y para todo $j=1,\ldots,c$.

Propiedades

• El número total de observaciones es n:

$$n = \sum_{i=1}^r \sum_{j=1}^c n_{ij}$$

• La frecuencia relativa conjunta para todo $i=1,\dots,r$ y para todo $j=1,\dots,c$ es

$$f_{ij}=\frac{n_{ij}}{n}$$

• La suma de todas las frecuencias relativas es igual a 1, es decir,

$$\sum_{i=1}^{r} \sum_{i=1}^{c} f_{ij} = 1.$$

Tabla de doble entrada

La distribución bidimensional de frecuencias suele presentarse en una tabla de doble entrada conocida como:

- Tabla de correlación si las variables son cuantitativas.
- Tabla de contingencia si alguna de las variables es cualitativa

Notación de la tabla

X/Y	<i>y</i> ₁	y 2	 Уc	
<i>X</i> ₁	n ₁₁	n_{12}	 n_{1c}	
<i>X</i> ₂	n ₂₁	<i>n</i> ₂₂	 n_{2c}	
X _r	n_{r1}	n_{r2}	 n_{rc}	
				n

Ejemplo Una muestra de 500 viviendas en Galicia se ha clasificado según su superficie en m^2 (X) y el número de dormitorios (Y):

X/Y	1	2	3	4
0-60	9	23	6	0
60-90	7	65	120	22
90-120	2	15	87	50
120-200	0	5	29	60

a) ¿Cuál será la distribución en frecuencias relativas?

X/Y	1	2	3	4
0-60	0.018	0.046	0.012	0
60-90	0.014	0.130	0.240	0.044
90-120	0.004	0.030	0.174	0.100
120-200	0	0.010	0.058	0.120

Ejemplo Una muestra de 500 viviendas en Galicia se ha clasificado según su superficie en m^2 (X) y el número de dormitorios (Y):

X/Y	1	2	3	4
0-60	9	23	6	0
60-90	7	65	120	22
90-120	2	15	87	50
120-200	0	5	29	60

b) ¿Qué porcentaje de viviendas tiene más de 120 m^2 y 3 dormitorios?

$$\frac{29}{500} = 0.058 \longrightarrow 5.8 \%$$

c) Entre las viviendas con superficie entre 60 y 90 m^2 , ¿qué porcentaje tiene más de 2 dormitorios?

$$\frac{120 + 22}{7 + 65 + 120 + 22} = \frac{142}{214} = 0.6636 \longrightarrow 66.36\%$$

Ejemplo Una muestra de 500 viviendas en Galicia se ha clasificado según su superficie en m^2 (X) y el número de dormitorios (Y):

X/Y	1	2	3	4
0-60	9	23	6	0
60-90	7	65	120	22
90-120	2	15	87	50
120-200	0	5	29	60

d) Entre las viviendas de menos de 3 dormitorios, ¿qué porcentaje tiene una superficie superior a 90 m^2 ?

$$\frac{2+15+5}{9+23+7+65+2+15+5} = \frac{22}{126} = 0.1746 \longrightarrow 17.46\%$$

e) Distribución de frecuencias de la variable X:

$L_{i-1}-L_i$	n_i .	f_i .
0-60	38	0.076
60-90	214	0.428
90-120	154	0.308
120-200	94	0.188
	500	1

Representaciones gráficas

 Diagrama de barras: Para variables cualitativas o cuantitativas sin agrupar.

Representaciones gráficas

• Diagrama de dispersión: Para variables cuantitativas sin agrupar.

Representaciones gráficas

• Gráficos de resumen: Una variable es explicada en función de la otra.

Distribuciones marginales

A partir de la tabla de doble entrada podemos obtener las distribuciones de X o de Y.

X/Y	<i>y</i> ₁	<i>y</i> ₂	 Уc	
<i>x</i> ₁	n ₁₁	n_{12}	 n_{1c}	n_1 .
<i>X</i> ₂	n ₂₁	n_{22}	 n_{2c}	n ₂ .
X _r	n_{r1}	n_{r2}	 n_{rc}	n_r .
	n. ₁	n .2	n.c	n

• La frecuencia marginal de x_i , i = 1, ..., r:

$$n_{i.} = n_{i1} + n_{i2} + \cdots + n_{ic} = \sum_{j=1}^{c} n_{ij}$$

(se corresponde con sumar por filas la tabla)

• La frecuencia marginal de y_j , j = 1, ..., c:

$$n_{\cdot j} = n_{1j} + n_{2j} + \cdots + n_{rj} = \sum_{i=1}^{r} n_{ij}$$

(se corresponde con sumar por columnas la tabla)

Distribuciones marginales

Llamaremos distribuciones marginales a las distribuciones unidimensionales de frecuencias de las variables X e Y; respectivamente:

$$(x_i; n_{i\cdot}), i = 1, 2, ..., r y (y_j; n_{\cdot j}), j = 1, 2, ..., c.$$

• La frecuencia relativa marginal de X,

$$f_{i\cdot}=\frac{n_{i\cdot}}{n}$$

• La frecuencia relativa marginal de Y,

$$f_{\cdot j} = \frac{n_{\cdot j}}{n}$$

a) Superficie media y mediana de las viviendas y varianza de la superficie (X):

$(L_{i-1},L_i]$	n _i .	c_i	$c_i n_i$.	N_i .	$c_i^2 n_i$.
0-60	38	30	1140	38	34200
60-90	214	75	16050	252	1203750
90-120	154	105	16710	406	1697850
120-200	94	160	15040	500	2406400
	500		48400		5342200

Media:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{r} c_i n_i$$
 = $\frac{48400}{500} = 96.8 \text{ m}^2$

Mediana:

$$\frac{n}{2} = 250 \rightarrow Me_x \in (60, 90]$$

$$Me_X = L_{i-1} + \frac{n/2 - N_{i-1}}{n_i} \times a_i = 60 + \frac{250 - 38}{214} \times 30 = 89.72 \ m^2$$

Varianza:

$$S_X^2 = \frac{1}{n} \sum_{i=1}^r c_i^2 n_i - \bar{x}^2 = \frac{5342200}{500} - 96.8^2 = 1314.16 (m^2)^2.$$

b) Número medio y más frecuente de dormitorios en una vivienda y varianza del no de dormitorios (Y):

Уj	n .j	<i>y_j n</i> . _j	$y_j^2 n_{.j}$
1	18	18	18
2	108	216	432
3	242	726	2178
4	132	528	2112
	500	1488	4740

Media:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{c} y_i n_{i,j} = \frac{1488}{500} = 2.976 \ m^2$$

Moda: $Mo_Y = 3$

Varianza:

$$S_Y^2 = \frac{1}{n} \sum_{i=1}^c y_j^2 n_{ij} - \bar{y}^2 = \frac{4740}{500} - 2.976^2 = 0.6234$$

c) ¿Cuál de las dos variables presenta mayor dispersión?

$$CV_X = \frac{S_X}{\bar{x}} = \frac{36.251}{96.8} = 0.3745 \text{ y } CV_Y = \frac{S_Y}{\bar{y}} = \frac{0.7896}{2.976} = 0.2653$$

Distribuciones condicionadas

Ejemplo. Distribución de la superficie para las viviendas de 2 dormitorios:

X Y = 2	$n_{i Y=2}$	$f_{i Y=2} = \frac{n_{i Y=2}}{108}$
0-60	23	0.213
60-90	65	0.602
90-120	15	0.139
120-200	5	0.0462
	108	1

Ejemplo. Distribución de la superficie para las viviendas de 3 dormitorios:

X Y = 3	$n_{i Y=3}$	$f_{i Y=3} = \frac{n_{i Y=3}}{242}$
0-60	6	0.025
60-90	120	0.496
90-120	87	0.360
120-200	29	0.120
	242	1

Distribuciones condicionadas

Distribución de X condicionada al valor y_j de la variable Y $(X|Y=y_j)$

- Se representa por $(x_i; n_{i|Y=y_i}=n_{ij})$, con $i=1,2,\ldots,r$.
- Número total de observaciones: $\sum_{i=1}^{r} = n_{\cdot j}$
- ullet Frecuencias relativas: $f_{i|Y=y_j}=rac{n_{i|Y=y_j}}{n_{\cdot j}}=rac{n_{ij}}{n_{\cdot j}}$

Distribución de Y condicionada al valor x_i de la variable Y $(Y|X=x_i)$

- Se representa por $(y_j; n_{j|X=x_i}=n_{ij})$, con $i=1,2,\ldots,c$.
- Número total de observaciones: $\sum_{j=1}^{c} = n_i$.
- ullet Frecuencias relativas: $f_{i|Y=y_j}=rac{n_{j|X=x_j}}{n_{i.}}=rac{n_{ij}}{n_{i.}}$

Distribuciones condicionadas

- Pueden definirse también distribuciones condicionadas a un conjunto o intervalo de valores; por ejemplo, la distribución de $X|Y \le y_j$ o la de $Y|X>x_i$.
- En las distribuciones condicionadas el estudio se reduce a la parte de la tabla determinada por la condición.
- Las distribuciones condicionadas son distribuciones unidimensionales.

Ejemplo Número medio de dormitorios en las viviendas de más de 90 m^2 , esto es, se trata de la distribución de Y|X>90.

Уj	$n_{j X>90}$	$y_j n_{j X>90}$
1	2	2
2	20	40
3	116	348
4	110	440
	248	830

Media:

$$\bar{y}_{|X>90} = \frac{1}{248} \sum_{j=1}^{c} y_j n_{j|X>90} = \frac{830}{248} = 3.347$$
, que es mayor que la media global (2.976).

Independencia Estadística

Dos variables X, Y se dice que son independientes estadísticamente si el comportamiento de una de ellas no se ve afectado por los valores que toma la otra, es decir:

$$f_{i|Y=y_j} = f_i$$
 para cualquier par de valores (x_i, y_j)

y

 $f_{j|X=x_i} = f_{\cdot j}$ para cualquier par de valores (x_i, y_j) .

Equivalentemente, X e Y son independientes si y sólo si

$$f_{ij} = f_{i.} f_{.j}$$
 y $n_{ij} = \frac{n_{i.} n_{.j}}{n}$ para todo i, j

Independencia Estadística: ejemplo

X/Y	y_1	y ₂	<i>y</i> ₃	n _i .	f _i .
<i>x</i> ₁	1	3	5	9	9/54=1/6
<i>X</i> ₂	2	6	10	18	9/54=1/6 18/54=1/3 27/54=1/2
<i>X</i> ₃	3	9	15	27	27/54=1/2
n.j	6	18	30	n = 54	

Tenemos que ver que $f_{i|Y=y_j}=f_{i\cdot}$ con i,j=1,2,3.

X	$n_{i Y=y_1}$	$ f_{i Y=y_1} $	$n_{i Y=y_2}$	$f_{i Y=y_2}$	$n_{i Y=y_3}$	$f_{i Y=y_3}$
<i>x</i> ₁	1	1/6	3	3/18=1/6	5	5/30=1/6
<i>X</i> ₂	2	2/6=1/3	6	6/18=1/3	10	10/30=1/3
<i>X</i> ₃	3	3/6=1/2	9	9/18=1/2	15	15/30=1/2
	$n_{.1} = 6$		$n_{.2} = 18$		$n_{.3} = 30$	

Covarianza: asociación entre variables cuantitativas

En caso de que las variables no sean independientes, vamos a estudiar cómo medir la posible relación **lineal** entre ambas.

Covarianza:
$$S_{XY} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} (x_i - \overline{x})(y_j - \overline{y}) n_{ij}$$
, para datos tabulados $S_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_j - \overline{y})$, para n pares de datos

- Relación directa: $S_{XY} > 0$
- ② Relación inversa: $S_{XY} < 0$
- **1** Independientes: $S_{XY} \approx 0$
- **9** Sin relación lineal: $S_{XY} \approx 0$

Covarianza: propiedades

- **1** $S_{XX} = S_X^2$.
- Si X e Y son independientes, entonces la covarianza es cero. El recíproco no es cierto en general.
- \odot Si $S_{XY} > 0$, existe una relación lineal positiva: las variables varían en en el mismo sentido.
- Si $S_{XY} < 0$, existe una relación lineal negativa: las variables varían en sentido contrario.
- $\mathbf{3} \quad S_{XY} = \left(\frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} x_i y_j n_{ij}\right) \overline{x} \cdot \overline{y}, \text{ para datos tabulados.}$ $S_{XY} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i \overline{x} \overline{y}, \text{ para } n \text{ pares de datos}$
- Opende de las unidades de medida y no está acotada.

Coeficiente de correlación: asociación entre variables cuantitativas

¿Cómo sabemos si la relación lineal existente entre las variables es intensa o no?

Usaremos el coeficiente de correlación de Pearson:

$$r_{XY} = \frac{S_{XY}}{S_X \cdot S_Y}$$

Propiedades

- Es una medida adimensional.
- **2** −1 ≤ r_{XY} ≤ 1.
- Cuando rxy = 0 se dice que las variables están incorreladas: no existe relación lineal entre ellas.

Más comentarios

- Su signo coincide con el de la covarianza.
- Si X e Y son independientes, $r_{XY} = 0$. El recíproco no es cierto en general.
- Si r_{XY} ≠ 0 existe asociación lineal, más fuerte cuanto más se acerque el coeficiente a 1 o a -1.

Coeficiente de correlación

Ejercicio

En la tabla conjunta se tiene información sobre la edad (X) y el salario por hora (en euros) (Y) de un grupo de trabajadores:

$X \setminus Y$	6-10	10-14	14-20
20-30	22	10	0
30-40	14	24	8
40-50	5	17	20

- Determina la edad más frecuente.
- 2 Calcula el salario medio de los trabajadores mayores de 30 años.
- Si nos restringimos a aquellos trabajadores que que cobran más de 10 euros por hora ¿qué porcentaje de ellos tiene más de 27 años?
- Son independientes ambas variables?

Asociación entre variables cualitativas

Coeficiente χ^2 de Pearson

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(n_{ij} - \frac{n_i \cdot n \cdot j}{n})^2}{\frac{n_i \cdot n \cdot j}{n}} = n \left(\sum_{i=1}^r \sum_{j=1}^c \frac{n_{ij}^2}{n_i \cdot n \cdot j} - 1 \right)$$

- Toma valores entre 0 y $n(\min\{r,c\}-1)$.
- Si X e Y son independientes, entonces $\chi^2 = 0$.
- Si $\chi^2 \neq 0$, existe asociación entre las variables, de mayor intensidad cuanto más alto sea su valor.

Coeficiente V de Crámer

- Se define como $V = \sqrt{\frac{\chi^2}{n(\min\{r,c\}-1)}}$.
- $0 \le V \le 1$.
- Mayor grado de dependencia o asociación cuanto más próximo a 1.

Asociación entre variables cualitativas: ejemplo

De la población adulta con edad comprendida entre 25 y 65 años se ha seleccionado una muestra de 500 personas clasificándolas según la frecuencia de asistencia al cine y el nivel educativo (educación superior o no):

	Superior	No superior
Cada semana	8	2
Cada mes	35	18
Alguna vez al año	77	83
Nunca	35	242

Vamos a analizar la asociación utilizando el coeficiente V de Crámer, para lo cual necesitamos calcular el coeficiente χ^2 de Pearson.

Asociación entre variables cualitativas: ejemplo

	Superior	No superior	n _i .
Cada semana	8	2	10
Cada mes	35	18	53
Alguna vez al año	77	83	160
Nunca	35	242	277
n.j	155	345	500

$$\chi^2 = n \left(\sum_{i=1}^r \sum_{j=1}^c \frac{n_{ij}^2}{n_i \cdot n_i} - 1 \right) = 500 \left(\frac{8^2}{10 \times 155} + \frac{2^2}{10 \times 345} + \dots + \frac{242^2}{277 \times 345} - 1 \right) = 107.255$$

$$V = \sqrt{\frac{\chi^2}{n(\min\{r,c\}-1)}} = \sqrt{\frac{107.255}{500 \times 1}} = 0.463$$

