Isabelle Dupanloup

**BCF** - Bioinformatics Core Facility

SIB - Swiss Institute of Bioinformatics

isabelle.dupanloup@sib.swiss



Teaching material from Harvard Chan Bioinformatics Core training

#### **Learning Objectives**

- Determine how functions are attributed to genes using Gene Ontology terms
- Understand the theory of how functional enrichment tools yield statistically enriched functions or interactions
- Discuss functional analysis using over-representation analysis, functional class scoring, and pathway topology methods
- Explore functional analysis tools



### All known genes in a species (categorized into groups)





| Genes categories      | Organism-<br>specific<br>Background | DE results | Over-represented? |
|-----------------------|-------------------------------------|------------|-------------------|
| Functional category 1 | 35/13000                            | 25/1000    | Likely            |
| Functional category 2 | 56/13000                            | 4/1000     | Unlikely          |
| Functional category 3 | 90/13000                            | 8/1000     | Unlikely          |
| Functional category 4 | 15/13000                            | 10/1000    | Likely            |
|                       |                                     |            |                   |
|                       |                                     |            |                   |

Hypergeometric test 
$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

## Functional analysis Gene Ontology project

- collaborative effort to address the need for consistent descriptions of gene products across databases
- GO Consortium: develop a comprehensive, computational model of biological systems, ranging from the molecular to the organism level, across the multiplicity of species in the tree of life
- GO terms = GO categorizations
- GO term: each with a name (DNA repair) and a unique accession number (GO:0005125)

# Functional analysis Gene Ontology

## GO ontologies: GO terms organized in 3 independent controlled vocabularies

- **Biological process**: refers to the biological role involving the gene or gene product, and could include "transcription", "signal transduction", and "apoptosis". A biological process generally involves a chemical or physical change of the starting material or input.
- Molecular function: represents the biochemical activity of the gene product, such activities could include "ligand", "GTPase", and "transporter".
- **Cellular component**: refers to the location in the cell of the gene product. Cellular components could include "nucleus", "lysosome", and "plasma membrane".

# Functional analysis Gene Ontology



Nature Reviews | Cancer

### Sources of gene sets

- Online:
- MSigDB: database containing several types of gene set lists
  - https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
  - GO
  - hallmark
  - published gene sets
- KEGG (bi-directional eg mTOR signaling):
   https://www.kegg.jp/kegg/pathway.html
- Reactome <a href="https://reactome.org/">https://reactome.org/</a>
- WikiPathways <a href="https://www.wikipathways.org/index.php/WikiPathways">https://www.wikipathways.org/index.php/WikiPathways</a>



This package implements methods to analyze and visualize functional profiles of genomic coordinates (supported by <a href="ChIPseeker">ChIPseeker</a>), gene and gene clusters.

https://yulab-

smu.github.io/clusterProfiler-book/.

#### **Authors**

Guangchuang YU School of Basic Medical Sciences, Southern Medical University



**Over-representation analysis** 

#### dotplot

#### **GO** enrichment with clusterProfiler

|             | ID .        | Description                                      | GeneRatio | BgRatio   | pvalue        | padjust      | qvalue       | geneiD                                   | Count |
|-------------|-------------|--------------------------------------------------|-----------|-----------|---------------|--------------|--------------|------------------------------------------|-------|
| CO:0008380  | CO:0008380  | RNA splicing                                     | 217/5660  | 393/16649 | 2.299032e-18  | 1.015934e-14 | 8-427986e-15 | RBM11/RBM158/RBM38/SNRPD1/SNRPD3/PP.     | 217   |
| GO:0006397  | GO:0006397* | mRNA processing                                  | 247/5660  | 463/16649 | 3,630282e-18  | 1.015934e-14 | 8.427985e-15 | RBM11/RBM158/APP/RBM38/SNRPD1/FASTK      | 247   |
| CiO:0010608 | CO:0010608  | posttranscriptional regulation of gene expres    | 247/5660  | 481/16649 | 1.544298e-15  | 2.881145e-12 | 2.390140e-12 | RPS27L/SMAD2/APP/R8M38/PSM87/LSM14A      | 247   |
| CO:0034660  | CO:0034660  | ncRNA metabolic process                          | 237/5660  | 473/16649 | 1.884052e-13  | 2.636260e-10 | 2.186988e-10 | SMAD2/RAE1/SNRPD1/SMARCB1/RRP7BP/RP      | 237   |
| C/0:0000375 | GO:0000375  | RNA splicing, via transesterification reactions  | 158/5660  | 292/16649 | 9.323903+13   | 9.270219e-10 | 7.690386e-10 | RBM11/RBM158/SNRPO1/SNRPO3/SNRPC/LS      | 158   |
| Ci0:0000377 | GO:0000377  | RNA splicing, via transesterification reactions. | 156/5660  | 288/16649 | 1.159398e-12  | 9.270219e-10 | 7.690386e-10 | RBM11/RBM158/SNRPD1/SNRPD3/SNRPC/LS      | 156   |
| C/0:0000398 | GO:0000398  | mRNA splicing, via spliceosome                   | 156/5660  | 288/16649 | 1.159398+-12  | 9.270219e-10 | 7.690385e-10 | RBM11/RBM15E/SNRPD1/SNRPD3/SNRPC/LS      | 156   |
| CO:0022613  | GO:00226138 | ribonucleoprotein complex biogenesis             | 194/5660  | 379/16649 | 2.554931e-12  | 1.787494±-09 | 1.482869e-09 | IRPS27L/LSM14A/SNRPD1/RRP78P/RPSA/WDR.   | 194   |
| GO:0044772  | GO:0044772  | mitotic celli cycle phase transition             | 241/5660  | 499/16649 | 1.576324e-11  | 9.802982e-09 | 8.132356e-09 | RPS27L/UBE2:C/APP/INOBIO/RBM38/PSMB7/S   | 241   |
| G0:0018205  | 60:0018205  | peptidyl-lysine modification                     | 203/5660  | 411/16649 | 5,414440+11   | 3.030462+08  | 2.514010e-08 | RAEL/CTCFL/SMARCHI/RTF1/RAGG/EEFLAX      | 263   |
| C/0:0002486 | CO:0002486  | antigen processing and presentation of endo      | 21/5660   | 21/16649  | 1.410396-e-10 | 7.176352e-08 | 5.953356e-08 | HLA C/HLA A/HLA 8/HLA-A/HLA C/HLA A/HL   | 21    |
| GO:0034470  | GO:0034470  | ncRNA processing                                 | 163/5660  | 320/16649 | 2.315204e-10  | 1.079850e-07 | 8.958215e-08 | SMAD2/RAE1 /RRP78F/RPSA/WDR46/TBL/NUP.   | 163   |
| CO:0016570  | GD:0016570  | histone modification                             | 201/5660  | 412/16649 | 2.625099+10   | 1.130205e-07 | 9.375959e-08 | CTCFL/DAXX/SMARCB1/RTF1/2NF335/ATG7      | 201   |
| GO:0006281  | GO:0006281  | DNA repair                                       | 235/5660  | 495/16649 | 2.860491e-10  | 1.143583e-07 | 9.486937e-08 | RP527L/INO80/SMARCE1/BACH1/RB8P8/IER3.   | . 235 |
| GIO:0002480 | GO:0002480  | antigen processing and presentation of exog      | 36/5660   | 45/16649  | 3.073965-e-10 | 1.146999e-07 | 9.515270e-08 | PILA E/HLA E/HLA C/HLA A/HLA B/HLA E/HL. | 36    |



Invasive Ductal Breast Carcinoma

**GO** enrichment with clusterProfiler

enrichment map (emapplot):

organizes enriched terms into a network with edges connecting overlapping gene sets

mutually overlapping gene sets tend to cluster together, making it easy to identify functional module



Dermatologic disorders

Bronchiolitis, Viral

**GO** enrichment with clusterProfiler

Gene-Concept Network (cnetplot): network with genes and GO terms or KEGG pathways



#### gProfileR

- Another tool for performing ORA
- considers multiple sources of functional evidence: Gene Ontology terms, biological pathways, regulatory motifs of transcription factors and microRNAs, human disease annotations, protein-protein interactions



#### News

16.09.2015 -- g:Profiler was updated to Ensembl 81 and Ensembl Genomes 28.

#### **REVIGO**

 web-based tool that can take a list of GO terms, collapse redundant terms by semantic similarity, and summarize them graphically



#### **REVIGO Gene Ontology treemap**



#### Alternative to REVIGO : GO-Figure!

•Article :

https://www.biorxiv.org/content/10.1101/202 0.12.02.408534v1

•Github : <a href="https://gitlab.com/evogenlab/GO-">https://gitlab.com/evogenlab/GO-</a> Figure

#### Summary Visualisations of Gene Ontology Terms with GO-Figure!

Maarten JMF Reijnders, Robert M Waterhouse doi: https://doi.org/10.1101/2020.12.02.408534

This article is a preprint and has not been certified by peer review [ what does this mean?].

 Abstract
 Full Text
 Info/History
 Metrics
 □ Preview PDF

#### Abstract

The Gene Ontology (GO) is a cornerstone of functional genomics research that drives discoveries through knowledge-informed computational analysis of biological data from large- scale assays. Key to this success is how the GO can be used to support hypotheses or conclusions about the biology or evolution of a study system by identifying annotated functions that are overrepresented in subsets of genes of interest. Graphical visualisations of such GO term enrichment results are critical to aid interpretation and avoid biases by presenting researchers with intuitive visual data summaries. Amongst current visualisation tools and resources there is a lack of standalone open-source software solutions that facilitate systematic comparisons of multiple lists of GO terms. To address this we developed GO-Figure!, an open-source Python software for producing user-customisable semantic similarity scatterplots of redundancy-reduced GO term lists. The lists are simplified by grouping together GO terms with similar functions using their quantified information contents and semantic similarities, with user-control over grouping thresholds. Representatives are then selected for plotting in two-dimensional semantic space where similar GO terms are placed closer to each other on the scatterplot, with an array of user-customisable graphical attributes. GO-Figure! offers a simple solution for command-line plotting of informative summary visualisations of lists of GO terms, designed to support exploratory data analyses and multiple dataset comparisons.

## Functional analysis Functional class scoring tools

- use the gene-level statistics from the DEA
- see whether gene sets for particular biological pathways are enriched among the large positive or negative fold changes
- example: GSEA
- hypotheses:
  - large changes in individual genes can have significant effects on pathways, and will be detected via ORA methods
  - weaker but coordinated changes in sets of functionally related genes can also have significant effects, and will be detected with FCS methods

## Functional analysis Functional class scoring tools

- rather than setting an arbitrary threshold to identify 'significant genes', all genes are considered in the analysis
- aggregation of gene-level statistics to generate a single pathway-level statistic (+ significance)
- particularly helpful if the differential expression analysis only outputs a small list of significant DE genes

### **Functional class scoring tools**

#### **GSEA**

- Goal: determine whether the members of a gene set S are randomly distributed throughout the ranked gene list (L) or primarily found at the top or bottom
- Enrichment score: calculated by walking down the list L, increasing a running-sum statistic when we encounter a gene in S and decreasing when it is not
- p-value: estimated by permutations



### Functional analysis **Functional class scoring tools**



Rank in ordered dataset

Ranking metric scores

Enrichment profile
 Hits

Rank in ordered dataset

Ranking metric scores

- Enrichment profile - Hits

# Functional analysis Pathway topology tools

- identification of dysregulated pathways: taking into account gene interaction information + fold changes and adjusted p-values from DEA
- example: SPIA (Signaling Pathway Impact Analysis)

| KEGG pathway   | P <sub>NDE</sub> | P <sub>PERT</sub> | $P_{G}$ | P <sub>FDR</sub> | P <sub>EWER</sub> | Status |
|----------------|------------------|-------------------|---------|------------------|-------------------|--------|
| Focal adhe4510 | 0.0001           | 0.0000            | 0.0000  | 0.00000          | 0.00000           | Act.   |
| ECM-recept4512 | 0.0001           | 0.0004            | 0.0000  | 0.00001          | 0.00002           | Act.   |
| PPAR signa3320 | 0.0000           | 0.1240            | 0.0000  | 0.00011          | 0.00034           | Inh.   |
| Alzheimers5010 | 0.0000           | 0.7260            | 0.0001  | 0.00059          | 0.00235           | Act.   |
| Adherens j4520 | 0.0001           | 0.0852            | 0.0001  | 0.00090          | 0.00452           | Act.   |
| Axon guida4360 | 0.0002           | 0.2324            | 0.0006  | 0.00487          | 0.02922           | Act.   |
| MAPK signa4010 | 0.0001           | 0.7112            | 0.0007  | 0.00504          | 0.03527           | Inh.   |
| Tight junc4530 | 0.0007           | 0.5156            | 0.0032  | 0.02073          | 0.16585           | Act.   |

 $P_{NDE} = P(X \ge N_{DE} \mid H_0)$   $P_{PERT}$ : probability to observe a larger perturbation than observed  $P_G$ : combination of  $P_{NDE}$  and  $P_{PERT}$  $P_{FDR}$ : adjusted FDR p-value  $P_{FWER}$ : adjusted FDR p-value (more conservative)

### **Pathway topology tools**



### Resources for functional analysis

- g:Profiler http://biit.cs.ut.ee/gprofiler/index.cgi
- DAVID http://david.abcc.ncifcrf.gov/tools.jsp
- clusterProfiler http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
- GeneMANIA http://www.genemania.org/
- GenePattern http://www.broadinstitute.org/cancer/software/genepattern/ (need to register)
- WebGestalt http://bioinfo.vanderbilt.edu/webgestalt/ (need to register)
- AmiGO http://amigo.geneontology.org/amigo
- ReviGO (visualizing GO analysis, input is GO terms) http://revigo.irb.hr/
- WGCNA http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork
- GSEA http://software.broadinstitute.org/gsea/index.jsp
- SPIA https://www.bioconductor.org/packages/release/bioc/html/SPIA.html
- GAGE/Pathview http://www.bioconductor.org/packages/release/bioc/html/gage.html