Modeling Match Performance in Elite Volleyball Players: Importance of Jump Load and Strength Training Characteristics

Seminário 3 – Aprendizado Descritivo 2025.1

Historiador

DANIEL SCHLICKMANN BASTOS

GABRIEL CASTELO BRANCO ROCHA

GUILHERME BUXBAUM MARINHO GUERRA

JOSE EDUARDO DUARTE MASSUCATO

LEONARDO CAETANO GOMIDE LUCAS MESQUITA ANDRADE VINICIUS LEITE CENSI FARIA

Objetivo

 Investigar as relações entre carga de treinamento, bem-estar e desempenho de atletas profissionais de vôlei utilizando XGBoost, Random Forest e descoberta de subgrupos

Trabalhos anteriores

• Estudo anteriores investigaram a relação entre **indicadores de performance** e **desempenho**.

- [2] Indicadores de performance (saque, bloqueio) -> Ranking na liga
- [3, 5] Indicadores de performance -> Chance de vitória
- [4] Indicadores de performance -> Eficiência do ataque (tempo do ataque, tipo do ataque, número de bloqueadores)
- [6] Performance do levantador -> Eficiência do ataque

Nenhum estudo avaliou a carga de treinamento, o bem-estar e desempenho juntos

Aprendizado de máquina - Regressão

Random Forest

• XGBoost

Descoberta de subgrupos

- Descobrir os seletores que melhor distinguem entre boa e má performance
- Vantagem: Funciona bem para datasets pequenos com alta dimensionalidade
 - -Times e atletas não querem fornecer seus dados
 - -Dataset do artigo: 17 Atletas

- [23] Padrão do ritmo de corredores -> Performance
- [24] Treino de skatistas profissionais -> Performance
- [25] 1 Atleta de tênis -> Ponto ganho
 - -Ex: Chance maior de sucesso quando evita backhand

Formalizador

Bernnardo Serafim

Diná Xavier

Gabriel Fadoul

Kênia Gonçalves

Oluwatoyin Joy

Samuel Kfuri

Contexto - Coleta dos dados

Hipótese: os preditores relacionados a saltos altos são importantes para o <u>desempenho</u>, uma vez que temos <u>diferentes posições</u> dentro de uma equipe de vôlei e que a <u>altura do salto</u> impacta a efetividade no ataque e o <u>bloqueio</u> é decisivo para o <u>resultado das partidas</u>.

Na coleta de dados: Reuniram dados físicos, subjetivos e técnicos para investigar a relação entre carga de treino, bem-estar e desempenho técnico

Participantes:

- 25 atletas acompanhados durante
 24 semanas (1 temporada).
- 17 atletas foram utilizados na aplicação do estudo (dados completos).
- 8 atletas excluídos por dados insuficientes.

Tipo de Dado	Origem / Ferramenta				
Carga de treino externa	Dispositivos de monitoramento (G- VERT)				
Carga de treino interna	Questionários subjetivos (ex.: RPE)				
Bem-estar percebido	Auto relatos diários dos atletas				
Desempenho técnico em jogo	Software <i>Data Volley 4</i> + analistas de vídeo				

Preparação dos dados

Ações avaliadas:

Saques

Passes

Ataques

Bloqueios

- → Cada ação dos jogadores foi transformada em **dados quantificáveis (notas),** para representar a qualidade de cada execução em quadra;
- → Cálculo de **probabilidade** que representa a chance de a ação resultar em ponto e gerar vitória no rally = nº de vezes que ocorreu cada ação / total de ocorrências

Para representar o volume, a variação e o impacto dos treinos no corpo do atleta, foram calculados:

Carga Total	soma(Peso × Esforço (RPE))	
Monotonia	Variação diária da carga	
Strain	Carga Total × Monotonia	

Análise dos dados

- O desempenho de cada jogador foi calculado por **tipo de ação**, a partir da **média das notas recebidas** para aquela ação específica.
- As notas foram utilizadas para avaliar quais características são mais importantes para o desempenho de cada ação, em cada posição, por isto, utilizou-se o **one-hot-encoding** para binarizar a posição dos jogadores;

A construção das variáveis explicativas (preditivas), que representam o contexto físico e psicológico dos atletas antes do jogo, foram **agregadas em diferentes janelas de tempo** e calculadas utilizando informações sobre:

Categoria	Quantidade de Preditores		
Saltos (número e altura) - G-VERT	72		
Exercícios de força (carga e repetição max.)	81		
Bem-estar percebido (fadiga, sono, humor)	48		
Carga de treino (total, monotonia, strain)	27		
Frequência de sessões de treino	9		

No total, foram construídos 237 preditores combinando dados de **carga interna**, **carga externa e bem-estar**.

Análise Preditiva e Descoberta de Padrões

Objetivo: Modelar o **desempenho técnico** dos atletas (ofensivo e defensivo), identificar os **fatores mais relevantes** e extrair padrões que ajudem a explicar variações de desempenho.

Subgroup Discovery

- Identificar padrões interpretáveis que distinguem bons e maus desempenhos;
- Aplicado separadamente para cada tipo de ação (ataque, passe, saque e bloqueio)
- Para garantir validade dos achados, foram usados:
- Z-score
- Teste t
- Cohen's d (tamanho do efeito)

Modelos Preditivos de Aprendizado de Máquina

- Random Forest e XGBoost
- Ajudaram a identificar os preditivos mais influentes
- Modelagem dividida em:
 - o Ofensivo: ataque e saque
 - o **Defensivo:** recepção e bloqueio

Avaliação dos Modelos

- Foi utilizado o Erro Absoluto Médio
 (MAE) para medir a performance das previsões;
- Correlação de Spearman também foi aplicada para verificar <u>possíveis</u> aumentos ou quedas no desempenho ao longo do tempo.

Metodologista > Resultados e discussão

Distribuição da performance média das diferentes categorias de ação:

Avaliação de mudanças de performance ao longo do tempo:

Spearman's rank correlation (entre performance da partida e o índice da partida)

Defensivo: -0.02 (p = 0.19) Ofensivo: -0.19 (p = 0.02)

Modelos de aprendizado de máquina

Métricas da qualidade das predições para cada tipo de ação (ofensiva ou defensiva):

Action Type	Model	MAE (95% CI)	Difference in MAE	p-Value	Cohen's d (95% CI)	Effect Size
Offense .	Random Forest	0.91 (0.62–1.19)	-46.8%	p < 0.001	0.79 (0.47-1.18)	Medium
	XGBoost	1.09 (0.78–1.41)	-36.3%	p < 0.01	0.58 (0.23–0.99)	Medium
	Action Model	1.04 (0.75–1.32)	-39.2%	p < 0.001	0.66 (0.35–1.04)	Medium
	Baseline	1.71 (1.38-2.05)				
Defense	Random Forest	1.15 (0.79–1.51)	-59.4%	p < 0.001	1.47 (1.10–1.98)	Large
	XGBoost	0.75 (0.50-1.00)	-73.5%	p < 0.001	2.09 (1.63–2.78)	Large
	Action Model	0.79 (0.58–1.00)	-72.1%	p < 0.001	2.14 (1.63–2.88)	Large
	Baseline	2.83 (2.47-3.20)				

MAE (Mean Absolute Error): Erro absoluto médio, a distância entre o valor predito e o valor real da performance de uma partida.

Busca de subgrupos

Action Type	Description Subgroup	Z-Score Sign	Size	<i>p-</i> Value	Cohen's d (95% CI)	Effect Size		
Passes -	$[Jumps_above65_]$ $[std7 \ge 9.75]$	-	17.2%	p = 0.01	1.03 (0.48–1.62)	Large		
	Jumps_above65_ $avg14 \ge 11.6$	-	10.3%	p = 0.01	1.33 (0.64–2.08)	Large		
Blocks		No significant results						
Serve	No significant results							
Attacks	LowerWeight_) firstquantile28 ≥ 90	+	15.6%	p = 0.01	0.83 (0.35–1.34)	Large		
	(JumpHeight_) (thirdquantile28 \leq 59)	-	12.3%	p = 0.001	1.01 (0.47–1.58)	Large		
	(FullbodyWeight_ (std28 ≥ 17.6)	-	23.0%	p = 0.001	0.76 (0.35–1.19)	Medium		
	WeightPrct_ Upperbody_ avg28 ≥ 0.90	-	28.7%	<i>p</i> = 0.001	0.67 (0.30–1.07)	Medium		
	$[Jumps_above65_]$ $[std28 \le 2.24]$	-	10.7%	p = 0.02	0.99 (0.42–1.59)	Large		
	WeightPrct_ Upperbody_ firstquantile28 ≥ 0.87	-	32.0%	p = 0.03	0.56 (0.20–0.94)	Medium		

Altura dos pulos

Pesos na musculação

Discussão

Preditores mais importantes:

- Melhor ataque: Carga de treinamento de força de membros inferiores (4 sem.) (maiores pulos)
- Pior ataque: Altura dos saltos (4 sem.) (menores pulos) e Excesso de carga em parte superior (menos controle)
- Pior passe: Altura média dos saltos (1 semana) ("reduced freshess")
- Bem estar n\u00e3o teve impacto.

Limitações e trabalhos futuros:

- Número baixo de jogadores para coletar os dados
- Os melhores modelos de aprendizado performaram tão bem quanto modelos que se baseavam na média dos *scores* do tipo da ação
- Avaliar variações nos cronogramas de treinamento
- Pesos para importância da partida ou nível do oponente

Assessor Social

Aplicação: Esportes

O artigo mostra a aplicação de métodos de descoberta de subgrupos para o melhor desempenho de atletas, por meio de:

- Personalização de treinos
- Análise de performance
- Delimitação de treinos úteis e menos úteis
- Medidas de previsão de desempenho em partida a partir do treino

Como dito no resumo do artigo:

"Differences in findings with respect to passing and attack performance suggest that elite volleyball players can improve their performance if training schedules are adapted to the position of a player."

Aplicação: Desempenho em geral

Nota-se que não necessariamente precisamos limitar a análise para análise de esportes. Podemos, por exemplo, fazer as seguintes trocas:

- Treino (peso, repetições, etc) -> Estudos; Tempo e forma de trabalho;
- Resultados na partida -> Entregas de trabalhos e tarefas

a terem resultados piores na avaliação das entregas."

O algoritmo pode ser generalizado para ambientes de estudos, trabalhos e hobbies pessoais, permitindo uma análise de quais as melhores formas de dedicação para alcance de melhores resultados.

"Empregados que passaram 20% das horas em repouso, 55% das horas trabalhando e 15% das horas estudando tiveram entregas mais pontuais." "Empregados que variavam bastante o seu horário de entrada e saída tendem

Risco: Controle

Na busca de terem os dados mais atualizados, empresas e organizações podem acabar usando os estudos analíticos como desculpa para controlarem funcionários e atletas. Considere o caso à direita como exemplo:

Isso leva ao descontentamento de funcionários, considere os seguintes comentários:

Risco: Controle

ddrac • 1y ago

We should start practicing the art of acting. Because seems like the best actors and actresses will stay on the job.

介 16K ↔

Ω Award

る Share

csandazoltan * 1y ago

Because productivity is 100% defined of being at the desk and typing....

I'm a programmer and I consider work when I am thinking about work and planning... There was a really hard project and had to plan carefully, so I took my notebook and went for a bicycle ride, thinking about the project on the road and on the breaks i wrote down my notes and when I got back i had a complete action plan...

RudeandOffensive • 1y ago

Yeah, the day a company brings this in, is the day I leave.

Risco: Privacidade

O monitoramento constante das pessoas pode afetar a sua privacidade, especialmente quando:

- Os dados forem usados sem consentimento claro ou transparência.
- Houver coleta em excesso (dados sensíveis, pessoais).
- Os dados monitoram a pessoa de forma a remover a privacidade em ambiente privados.
- Houver vazamento de dados pessoais.

Hacker

Henrique Rotsen
Alexandre Cassimiro Silva Araújo
Wesley Marques Daniel Chaves
Caíque Bruno Fortunato
Arthur Yochio R. Codama

Tentando obter os dados

O artigo menciona que os dados não podem ser compartilhados publicamente, pois são propriedade da NeVoBo (Federação Holandesa de Voleibol). No entanto, os dados estão disponíveis mediante solicitação ao autor correspondente.

- No artigo tem somente o e-mail do primeiro autor: Arie-Willem de Leeuw
 - O professor mudou de universidade, então o e-mail não existe mais
- Procuramos o e-mail atual do Arie-Willem de Leeuw: ainda sem resposta

O detentor dos dados é o segundo autor: **Rick van Baar**, ele era treinador, mas saiu da instituição NeVoBo.

Após muita busca, foi encontrado o e-mail: ainda sem resposta

Tentando obter os algoritmos

Embora os dados brutos não estejam abertos, talvez o código-fonte para o método (os algoritmos de aprendizado de máquina e a engenharia de recursos) possa estar em um repositório. O artigo menciona o uso de **XGBoost**, **random forest regression** e **subgroup discovery**.

Buscamos o repositório no GitHub, mas não obtivemos sucesso.

Porém, o uso dos algoritmos pode ser exemplificado:

Random Forest Artigo: Link do artigo

Git: Link do git

Biblioteca Py: from sklearn.ensemble import RandomForestClassifier

Exemplo de uso: Link do git

XGBoostArtigo: Link do artigo

Git: Link do git

Características dos dados originais

Desempenho de Partida:

Avaliações de ações de voleibol (ataque, bloqueio, recepção...) em uma escala de 0 a 10.

Carga de Salto:

• Número de saltos e alturas de salto (total, baixos < 50cm, médios entre 50-65cm, altos > 65cm).

Treinamento de Força:

 Pesos de exercícios (em kg absolutos ou % de 1-RM) divididos em corpo inteiro, parte inferior e parte superior do corpo.

Carga de Treinamento Percebida (RPE):

• Usando a escala CR10 para sessões de voleibol e força.

Bem-estar Percebido (Wellness):

• Medidas de fadiga, qualidade do sono, horas dormidas e humor em uma escala Likert de 10 pontos.

Períodos de Agregação:

• Dados agregados em janelas de **7, 14 ou 28** dias anteriores à partida, com funções como primeiro quartil, média, terceiro quartil e desvio padrão.

Como reproduzir?

Procure por conjuntos de dados de voleibol abertos e disponíveis publicamente que sejam similares em natureza aos dados usados no artigo.

O objetivo não é replicar exatamente os resultados, mas demonstrar como o método poderia ser aplicado e os tipos de padrões que poderiam ser encontrados.

Implementação do algoritmo não faz parte do escopo.

Simulando o Dataset

Link para o Colab

Referências

Referências bibliográficas