Homework 3: Part II

Louis Bensard

February 27, 2018

(d)

```
p = 3
n = 200
m = p*(p+1)/2
maxit = 1000

mu = c(-1,1,2)
Sigma = matrix(c(1,0.7,0.7,0.7,1,0.7,0.7,0.7,1),3)
theta = vectorize(mu, Sigma,p)

#data
x = gen(n, p, mu, Sigma)

mu_0 = c(-1.5,1.5,2.3)
Sigma_0 = matrix(c(1,0.5,0.5,0.5,1,0.5,0.5,1),3)
theta_0 = vectorize(mu_0, Sigma_0, p)

tolgrad = 1e-9; tolerr = 1e-6
```

I - Steepest Ascent method with step halving

```
max_seeker(x, mu_0, Sigma_0, n, maxit, TRUE, FALSE, FALSE, tolerr, tolgrad)
```

##				
##	Iteration	Halving	log-likelihood	gradient
##	1		-853.5459	1.0e+03
##	1	1	NA	NA
##	1	2	NA	NA
##	1	3	NA	NA
##	1	4	NA	NA
##	1	5	NA	NA
##	1	6	NA	NA
##	1	7	NA	NA
##	1	8	NA	NA
##	1	9	NA	NA
##				
##	2		-783.9008	1.5e+03
##	2	1	NA	NA
##	2	2	NA	NA
##	2	3	NA	NA
##	2	4	NA	NA
##	2	5	NA	NA
##	2	6	NA	NA
##	2	7	NA	NA

##	2	8	NA	NA
##	2	9	-850.7135	1.2e+02
##	2	10	-808.6329	1.3e+02
##	2	11	-777.6896	1.5e+02
##				
##	• • •			
##	• • •			
##			-709.9636	1 7- 05
## ##	998 998	1	-709.9636 -709.9636	1.7e-05 1.0e-02
##	998	2	-709.9636	5.2e-03
##	998	3	-709.9636	2.6e-03
##	998	4	-709.9636	1.3e-03
##	998	5	-709.9636	6.4e-04
##	998	6	-709.9636	3.2e-04
##	998	7	-709.9636	1.5e-04
##	998	8	-709.9636	7.2e-05
##	998	9	-709.9636	3.1e-05
##	998	10	-709.9636	1.1e-05
##	998	11	-709.9636	8.6e-07
##	998	12	-709.9636	4.2e-06
##	998	13	-709.9636	6.8e-06
##	998	14	-709.9636	8.1e-06
##	998	15	-709.9636	8.7e-06
##	998	16	-709.9636	9.0e-06
##				
##	999		-709.9636	1.6e-05
##	999	1	-709.9636	1.0e-02
##	999	2	-709.9636	5.0e-03
##	999	3	-709.9636	2.5e-03
##	999	4	-709.9636	1.3e-03
##	999	5	-709.9636	6.2e-04
##	999	6	-709.9636	3.1e-04
##	999	7	-709.9636	1.5e-04
##	999	8	-709.9636	7.0e-05
##	999	9	-709.9636	3.0e-05
##	999	10	-709.9636	1.1e-05
##	999	11	-709.9636	8.3e-07
##	999	12	-709.9636	4.1e-06
##	999	13	-709.9636	6.6e-06
##	999	14	-709.9636	7.8e-06
##	999	15	-709.9636	8.4e-06
##	999	16	-709.9636	8.7e-06
##	999	17	-709.9636	8.9e-06
##	999	18	-709.9636	8.9e-06
##	999	19	-709.9636	9.0e-06
##			700 0000	4.0.05
##	1000	4	-709.9636	1.6e-05
##	1000	1	-709.9636	1.0e-02
##	1000	2	-709.9636	5.0e-03
## ##	1000	3	-709.9636 -709.9636	2.5e-03
## ##	1000	4	-709.9636 -709.9636	1.2e-03
##	1000	5 6	-709.9636 -709.9636	6.2e-04
##	1000	O	-709.9636	3.1e-04

##	1000	7	-709.9636	1.5e-04
##	1000	8	-709.9636	7.0e-05
##	1000	9	-709.9636	3.0e-05
##	1000	10	-709.9636	1.1e-05
##	1000	11	-709.9636	8.3e-07
##	1000	12	-709.9636	4.1e-06
##	1000	13	-709.9636	6.5e-06
##	1000	14	-709.9636	7.8e-06
##	1000	15	-709.9636	8.4e-06
##	1000	16	-709.9636	8.7e-06
##	1000	17	-709.9636	8.8e-06
##	1000	18	-709.9636	8.9e-06
##				
##				

After 1000 iterations, the condition on the norm of the gradient (<1e-9) hasn't been met, therefore the algorithm stops at maxit = 1000. If we would increase tolgrad to say 1e-5, the algorithm would stop after 323 iterations. But for our case, the maximum -709.9636 of the log-likelihood function is reached after 1000 iterations.

II - Fisher-scoring method with step-halving

```
max_seeker(x, mu_0, Sigma_0, n, maxit, FALSE, TRUE, FALSE, tolerr, tolgrad)
##
## Iteration
                Halving
                            log-likelihood
                                                ||gradient||
##
                                                   1.0e+03
       1
                                -853.5459
                                -745.4340
##
                   0
                                                   8.3e+01
##
##
       2
                                -745.4340
                                                   1.6e+02
##
                   0
                                -709.9636
                                                   1.2e-12
##
##
##
##
                                -853.5459
                                                   1.0e+03
       1
                                -745.4340
                                                   8.3e+01
##
       2
                                -745.4340
                                                   1.6e+02
##
##
       2
                   0
                                -709.9636
                                                   1.2e-12
       3
##
                                -709.9636
                                                   2.5e-12
       3
                                -709.9636
                   0
                                                   2.0e-13
```

Both the norm of the gradient and the Modified Relative Error meet the criteria to stop the algorithm after 3 iterations. The maximum -709.9636 of the log-likelihood function is reached after 3 iterations.

III - Newton's method with step-halving

```
max_seeker(x, mu_0, Sigma_0, n, maxit, FALSE, FALSE, TRUE, tolerr, tolgrad)
```

##				
##	Iteration	Halving	log-likelihood	gradient
##	1		-853.5459	1.0e+03
##	1	1	NA	NA
##	1	2	NA	NA
##	1	3	NA	NA
##	1	4	NA	NA
##				
##	2		-848.6825	4.4e+03
##	2	1	NA	NA
##				
##				
##				
##				
##	7		-709.9694	1.1e+01
##	7	0	-709.9636	9.9e-02
##				
##	8		-709.9636	2.1e-01
##	8	0	-709.9636	4.3e-05
##				
##	9		-709.9636	9.3e-05
##	9	0	-709.9636	6.9e-12
##				
##				

Both the norm of the gradient and the Modified Relative Error meet the criteria to stop the algorithm after 9 iterations. The maximum -709.9636 of the log-likelihood function is reached after 9 iterations.

(e)

```
mu = c(-1,1,2)
Sigma_e = matrix(c(1,0.9,0.9,0.9,1,0.9,0.9,0.9,1),3)
#data
x_e = gen(n, p, mu, Sigma_e)
mu_0 = c(-1.5,1.5,2.3)
Sigma_0 = matrix(c(1,0.5,0.5,0.5,1,0.5,0.5,0.5,1),3)
theta_0 = vectorize(mu_0, Sigma_0, p)
max_seeker(x_e, mu_0, Sigma_0, n, maxit, TRUE, FALSE, FALSE, tolerr, tolgrad)
```

##				
##	Iteration	Halving	log-likelihood	gradient
##	1		-791.1402	9.4e+02
##	1	1	NA	NA
##	1	2	NA	NA
##	1	3	NA	NA
##	1	4	NA	NA
##	1	5	NA	NA
##	1	6	NA	NA
##	1	7	NA	NA
##	1	8	NA	NA

##	1	9	NA	NA
##	1	10	NA	NA
##				
##	2		-670.8129	9.4e+02
##	2	1	NA	NA
##	2	2	NA	NA
##	2	3	NA	NA
##	2	4	NA	NA
##	2	5	NA	NA
##	2	6	NA	NA
##	2	7	NA	NA
##	2	8	NA	NA
##	2	9	NA	NA
##	2	10	NA	NA
##	2	11	NA	NA
##				
##	• • •			
	• • •			
##			FOF 666F	F 0-100
##	998	4	-505.6665	5.0e+00
## ##	998 998	1 2	NA NA	NA NA
##	998	3	NA NA	NA NA
##	998	4	-564.1572	1.0e+03
##	998	5	-529.0145	4.7e+02
##	998	6	-514.1718	3.5e+02
##	998	7	-508.3743	2.5e+02
##	998	8	-506.4386	1.5e+02
##	998	9	-505.8697	8.3e+01
##	998	10	-505.7164	4.3e+01
##	998	11	-505.6777	2.1e+01
##	998	12	-505.6685	9.5e+00
##	998	13	-505.6666	3.6e+00
##	998	14	-505.6663	8.1e-01
##				
##	999		-505.6663	1.4e+00
##	999	1	NA	NA
##	999	2	NA	NA
##	999	3	NA	NA
##	999	4	-535.1274	2.7e+03
##	999	5	-510.1268	6.1e+02
##	999	6	-506.5793	2.3e+02
##	999	7	-505.8728	9.9e+01
##	999	8	-505.7145	4.6e+01
##	999	9	-505.6775	2.2e+01
##	999	10	-505.6687	1.1e+01
##	999	11	-505.6668	5.0e+00
##	999	12	-505.6663	2.3e+00
##	999	13	-505.6663	1.0e+00
##	1000		-505 6663	2.3e+00
##	1000	1	-505.6663 NA	NA
##	1000	2	-594.1175	1.9e+03
##	1000	3	-539.8014	5.8e+02
ग ग	1000	J	000.0014	0.05.02

```
##
    1000
                   4
                                -518.7646
                                                   3.9e + 02
##
    1000
                   5
                                                   2.9e+02
                                -510.0778
                                                   1.9e+02
##
    1000
                   6
                                -506.9839
                   7
   1000
                                -506.0276
                                                   1.1e+02
##
##
    1000
                   8
                                -505.7598
                                                   5.8e+01
                                                   3.0e+01
##
   1000
                   9
                                -505.6894
                                                    1.5e+01
##
   1000
                   10
                                 -505.6716
##
    1000
                   11
                                 -505.6674
                                                    7.2e+00
##
    1000
                   12
                                 -505.6664
                                                    3.2e+00
##
    1000
                   13
                                  -505.6663
                                                    1.3e+00
```

After 1000 iterations, the condition on the norm of the gradient (<1e-9) hasn't been met, therefore the algorithm stops at maxit = 1000. The maximum -505.6663 of the log-likelihood function is reached after 1000 iterations.

But after 1000 iterations, in part (d) the norm of the gradient was 8.9e-06 as opposed to 1.3 for this part (e) so we can argue that part (d) is faster than part (e). The following proves more formally that this is correct:

```
theta_e = vectorize(mu, Sigma_e,p)
ev1 = eigen(-hessian(x, theta))[[1]]
ev2 = eigen(-hessian(x_e, theta_e))[[1]]

cr1 = ((max(ev1) - min(ev1))/(max(ev1) + min(ev1)))^2
cr2 = ((max(ev2) - min(ev2))/(max(ev2) + min(ev2)))^2

cat("cr1 =", cr1,"\ncr2 =", cr2)
```

```
## cr1 = 0.9508285
## cr2 = 0.9958086
```

The convergence ratio of part (d) is 0.9508, which is less than the convergence ratio of 0.9952 in part (e). Therefore, part (e) is indeed slower than part (d).

(f)

```
vect_ste = c()
mean_vect = c(mean(x[,1]), mean(x[,2]), mean(x[,3]))
Sig_cov = ((n-1)/n)*cov(x)
theta_mle = vectorize(mean_vect, Sig_cov,p)
f = fisher(x, theta_mle)
f_inv = solve(f)

for(i in 1:(m+p)){
    if(i==j) vect_ste = c(vect_ste, sqrt(f_inv[i,j]))
    }
}
unvectorize(vect_ste, p)
```

```
## $mu
## [1] 0.07197462 0.07485894 0.07365860
##
## $Sigma
## [,1] [,2] [,3]
## [1,] 0.10360692 0.09276979 0.09079161
## [2,] 0.09276979 0.11207721 0.09807797
## [3,] 0.09079161 0.09807797 0.10851179
```

\$mu is the standard error of the MLE $\hat{\mu}$ of μ . \$Sigma is the standard error of the MLE $\hat{\Sigma}$ of Σ .