AMSC 714

NUMERICAL METHODS FOR STATIONARY PDEs

HOMEWORK # 5 (Pbs 1-2 due Th May 1, Pbs 3-4 due Th May 8)

1 (30 pts). Implementation of FEM. Modify the MATLAB finite element code fem.m so that it solves the general elliptic PDE with constant coefficients

$$-\operatorname{div}(A\nabla u) + \mathbf{b}\nabla u + cu = f,$$

where $A \in \mathbb{R}^{2 \times 2}$ is symmetric positive definite, $\mathbf{b} = (b_1, b_2) \in \mathbb{R}^2$, and $c \in \mathbb{R}$. We impose Dirichlet boundary condition $u = g_D$ in the whole boundary $\partial \Omega$ of Ω .

- (a) Replace the scalar diffusion coefficient coef_a in fem.m by a constant symmetric 2-by-2 matrix coef_a and implement the convection term $\mathbf{b}\nabla u$, following the tutorial. Note that the resulting matrix A is nonsymmetric if $\mathbf{b} \neq 0$.
- (b) Let Ω be the L-shape domain of HW#4-Pb1. Use the finite element code <code>gen_mesh_L_shape.m</code> to generate uniform meshes with meshsize $h=2^{-k}$ with k=2,3,4,5,6, and <code>fem.m</code> with Dirichlet condition $g_D=0$, forcing function f=1, and the following PDE coefficients:
 - (i) A = 0.01I, $\mathbf{b} = (0,0)$, c = 1 (singularly perturbed diffusion-reaction);
 - (ii) $A = \begin{bmatrix} 3 & -11 \\ -11 & 45 \end{bmatrix}$, $\mathbf{b} = (0,0)$, c = 1 (anisotropic diffusion);
 - (iii) A = I, $\mathbf{b} = (30, 60)$, c = 0 (convection-diffusion);
 - (iv) A = I, $\mathbf{b} = (0,0)$, c = -180 (Helmholtz equation).
- (c) Show plots of the Galerkin solution $u_h(x)$ and its gradient $\|\nabla u_h(x)\|_2$, $x \in \Omega$, for the finest mesh (without the mesh). Comment on the behavior of u_h on coarse meshes (relate to discussion in class on indefinite forms), and the presence of corner singularities, boundary layers, and oscillations.

2 (25 pts). Relation between norms and nodal values. Let $\{\mathcal{T}\}$ be a family of shape-regular meshes with nodes $\{z_i\}_{i=1}^N$, and let $\mathbb{V}_{\mathcal{T}}$ be a finite element space over \mathcal{T} in \mathbb{R}^d . Let $\{\phi_i\}_{i=1}^N$ be the canonical Lagrange basis functions of $\mathbb{V}_{\mathcal{T}}$. Use inverse inequalities to prove the existence of a geometric constant such that for all $v = \sum_{i=1}^N v_i \phi_i \in \mathbb{V}_{\mathcal{T}}$ and all $T \in \mathcal{T}$

$$C^{-1}\|v\|_{L^{2}(T)}^{2} \le h_{T}^{d} \sum_{z_{i} \in T} v_{i}^{2} \le C\|v\|_{L^{2}(T)}^{2}; \tag{1}$$

$$||v||_{H^1(T)}^2 \le Ch_T^{d-2} ||v||_{L^{\infty}(T)}^2 \le Ch_T^{d-2} \sum_{z_i \in T} v_i^2.$$
 (2)

Examine whether or not a reverse inequality to (2) is valid. Study how (1) and (2) change if $v = \sum_{i=1}^{N} \hat{v}_i \psi_i$ and ψ_i is a scaled basis function, namely $\psi_i = C_i \phi_i$.

- 3 (25 pts). Condition numbers. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be nonsingular. The condition number of \mathbf{A} in the 2-norm is $k(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2$. This number dictates the performance of both direct and iterative solvers. Show that
- (a) if **A** is symmetric and positive definite, then $k(\mathbf{A}) = \frac{\lambda_{max}(\mathbf{A})}{\lambda_{min}(\mathbf{A})}$, where $\lambda_{max}(\mathbf{A})$ (resp. $\lambda_{min}(\mathbf{A})$) is the largest (resp. smallest) eigenvalue of **A**.
- (b) the condition number of the mass matrix $\mathbf{M} = (\int_{\Omega} \phi_i \phi_j)_{i,j=1}^N$ over a quasi-uniform triangulation \mathcal{T} of size h satisfies $k(\mathbf{M}) = \mathcal{O}(1)$. Hint: use (1).

- (c) the condition number of the stiffness matrix $\mathbf{K} = (\int_{\Omega} \nabla \phi_i \nabla \phi_j)_{i,j=1}^N$ for vanishing Dirichlet boundary condition over a *quasi-uniform* triangulation \mathcal{T} of size h satisfies $k(\mathbf{K}) = \mathcal{O}(h^{-2}) = \mathcal{O}(N^{\frac{2}{d}})$. Hint: use (2).
- (d) the condition number of the mass matrix $\widehat{\mathbf{M}} = (\int_{\Omega} \psi_i \psi_j)_{i,j=1}^N$ over a graded shape-regular triangulation \mathcal{T} still satisfies $k(\widehat{\mathbf{M}}) = \mathcal{O}(1)$ provided that the basis functions are rescaled $\psi_i = C_i \phi_i$ in such a way that $\int_{\Omega} \psi_i^2 = 1$. What is the value of C_i ?
- (e) the condition number of the stiffness matrix $\hat{\mathbf{K}} = (\int_{\Omega} \nabla \psi_i \nabla \psi_j)_{i,j=1}^N$ for vanishing Dirichlet boundary condition over a graded shape-regular triangulation \mathcal{T} still satisfies $k(\hat{\mathbf{K}}) = \mathcal{O}(N^{\frac{2}{d}})$, provided that the basis functions are rescaled $\psi_i = C_i \phi_i$ in such a way that $\int_{\Omega} |\nabla \psi_i|^2 = 1$. What is the value of C_i ? Hint: If $v = \sum_{i=1}^N v_i \phi_i = \sum_{i=1}^N \hat{v}_i \psi_i$, use (2) to prove $||v||_{H^1(\Omega)}^2 \leq C_1 \sum_{i=1}^N \hat{v}_i^2$ and that this implies

$$\lambda_{max}(\widehat{\mathbf{K}}) \le C_1.$$

Next combine the inverse estimate $\|v\|_{L^{\infty}(T)} \leq Ch_T^{-\frac{d-2}{2}}\|v\|_{L^{\frac{2d}{d-2}}(T)}$ with the definition of \hat{v}_i to deduce

$$\sum_{i=1}^{N} \hat{v}_i^2 \le C \sum_{T \in \mathcal{T}} \|v\|_{L^{\frac{2d}{d-2}}(T)}^2,$$

Finally apply the Hölder inequality with suitable exponents and the Sobolev imbedding estimate $||v||_{L^{\frac{2d}{d-2}}(\Omega)} \le C||\nabla v||_{L^2(\Omega)}$ to deduce

$$\lambda_{min}(\widehat{\mathbf{K}}) \ge C_2 N^{-2/d}.$$

4 (20 pts). L^2 -projection. Let \mathcal{T} be a shape-regular triangulation of a polygonal domain $\Omega \subset \mathbb{R}^n$. Let $\mathbb{V}_{\mathcal{T}}$ be a space of (possibly discontinuous) finite elements containing at least $P_k(T)$ as interpolating polynomials for all $T \in \mathcal{T}$. Given $u \in L^2(\Omega)$ let $u_{\mathcal{T}} \in \mathbb{V}_{\mathcal{T}}$ be the L^2 -projection of u onto $\mathbb{V}_{\mathcal{T}}$, i.e.

$$u_{\mathcal{T}} \in \mathbb{V}_{\mathcal{T}}: \qquad \int_{\Omega} (u - u_{\mathcal{T}})v = 0 \quad \forall \ v \in \mathbb{V}_{\mathcal{T}}.$$

Prove the following error estimates for $0 \le m \le k+1$ $(H^{-m}(\Omega)) = \text{dual of } H_0^m(\Omega)$:

$$||u - u_{\mathcal{T}}||_{L^{2}(\Omega)} \le \inf_{v \in \mathbb{V}_{\mathcal{T}}} ||u - v||_{L^{2}(\Omega)} \le Ch^{k+1} |u|_{H^{k+1}(\Omega)};$$
 (a)

$$||u - u_{\mathcal{T}}||_{H^{-m}(\Omega)} \le Ch^{k+1+m}|u|_{H^{k+1}(\Omega)};$$
 (b)

$$||u - u_{\mathcal{T}}||_{H^m(\Omega)} \le Ch^{k+1-m}|u|_{H^{k+1}(\Omega)},$$
 (c)

the latter provided \mathcal{T} is quasi-uniform. The inequality (b) is referred to as a *superconvergence* estimate. Hint: to prove (c) add and subtract $I_{\mathcal{T}}u$ and use an inverse inequality.