Math Notes

Sets

PART 1 - Writing of Sets and Venn Diagram

Due to the limitations of the document and time, I will not be covering much on venn diagrams. However, if you need help with it, feel free to ask away.

Methods of writing sets

- All sets are in capital whereas the elements are in small case.
- Roster Notation
 - Every element is listed
 - A = [1,2,3,4]
- Stating in words
 - Rarely used
 - Used when infinite amount of elements
 - B = {x is a prime number}
- Set Builder Notation
 - x:x means x such that x...
 - x:x must be present.
 - $C = \{x:x \text{ is off } \& 1 < x < 9000\}$
 - In roster notation, the above would list out all numbers between 1 to 9000.

In Venn Diagrams

- Remember to write the universal set symbol at the top left corner of the rectangle
- Label all sets properly
- List elements if necessary

Math Notes

PART 2 - Terms, Symbols & Glossary

Terms, Symbols & Glossary

- n(A) is the number of elements in set A
- ∈ represents an element of ... Use: a ∈ A - a is an element of A
- ∉ represents not an element of...
- Ø or I represents a null set or an empty set
- **E** represents the universal sets, containing all AVAILABLE elements in the situation
- The (') symbol or prime, represents the complement set of...
 - A complementary of set A is also known as A'
 - Simply, it is everything that is in the universal set and not in A
- Subsets (**⊆**) A set that has all its elements in another set, where both sets can be equal.
 - A ⊆ B A is a subset of B, every element of A can be found in B and A can be equal to B.
 - A = B if and only if $A \subseteq B$ and $B \subseteq A$.
 - All sets are subsets of the universal set.
 - Empty sets are subsets of every other sets.
 - Opposite: Not a subset (⊊)
- Proper Subsets (c) Similar to subsets, used to represent a set that has all its elements in another set but they are not equal.
 - $\text{ If } A \subset B, n(A) < n(B)$
 - Opposite: Not a proper subset (¢)
- Intersection (\mathbf{n}) A set of elements common to sets written beside the symbol.
 - Usage: AnB = 1 There are no common elements to both set A and B.
- Union (u) A set of elements that are in both sets
 - Usage: $\mathsf{A} \textbf{\textit{u}} \mathsf{B}$ is a set that contains all elements in set A and B
 - Common elements do NOT overlap.

Math Notes

PART 3 - Notes & Glossary

Notes & Glossary

- Coordinates are counted as a single element (x,y)
- Set name is capitalised, whereas elements are in small case.
- State all rules clearly in set builder notation.
- Finite sets Sets that will end
- Infinite sets Sets that are neverending
- Equal sets A=B
 - A and B must have same elements and same number or elements.
- Disjoint sets Sets that have no common elements.
- n(AuB) = n(A) + n(B) n(AnB)
- n(AuBuC) = n(A) + n(B) + n(C) n(AnB) n(AnC) n(BnC) + n(AnBnC)
- if A⊆B
 - -AnB = A & n(AnB) = n(A)
 - -AuB = B & n(AuB) = n(B)on