Mathcounts / AMC 8

	Name
(1)	Angle A of parallelogram $ABCD$ measures 135°. Find the number of degrees in the difference between angle A and the smallest of the other three angles of the parallelogram.
(2)	A man has a 10 m \times 10 m square garden. In the center is a 2 m \times 2 m square patch which he cannot use. He divides his usable space into four congruent rectangular patches. What is the number of meters in the perimeter of each rectangle?
(3)	How many $\frac{1}{2}$ -inch cubes are needed to make 1 cubic foot?
(4)	Find the number of square meters in the area of a regular hexagon inscribed in a circle of diameter 12 meters.
(5)	In the parallelogram shown, the midpoints of opposite sides are connected with line segments. Likewise, the opposite vertices are connected. What is the probability that a point randomly selected inside the parallelogram will lie inside one of the shaded regions? Express your answer as a common fraction.
(6)	Micah is building a corral for his pet buffalo. He equally spaces and consecutively numbers the posts as he pounds them around a circle. The seventh and seventeenth posts lie on the same diameter. How many posts are there?

(15) In the diagram, $AB \perp BC$ and $BC \perp CD$. AB = 8'', BC = 12'', and CD = 16''. E is the midpoint of AD. How many square inches are in the area of ABCD?

- (16) _____ A popcorn company wants to create a circular cylindrical container with diameter 10 inches and volume 1256 cubic inches. How many inches should the height of the container be? Express your answer to the nearest inch.
- (17) _____ How many degrees are in the sum of the complement and supplement of x?

- (18) _____ The area of a square is 49 square inches. Find the number of inches in the length of a diagonal. Express your answer in simplest radical form.
- (19) _____ What is the common name for an equiangular quadrilateral?
- (20) _____ Given a cube with volume 40 cubic centimeters, find the number of centimeters in the length of an edge.

(30)	How many non congruent quadrilaterals can be formed on this squarid if each vertex must coincide with a dot?		
	• • •		
	• • •		
	• • •		

Answer Sheet

Number	Answer	Problem ID
1	90	4BB22
2	20 meters	A1421
3	13824 cubes	B2041
4	$54\sqrt{3}$ square meters	03041
5	3/8	20DD
6	20 posts	00441
7	1/2	D2B11
8	45	0CB22
9	20 percent	52041
10	120 degrees	0B1B
11	160 acres	23041
12	6	C33D
13	9 units	52B21
14	13π	05531
15	144	3BB22
16	16	5DC5
17	210	BAB22
18	$7\sqrt{2}$	BCB22
19	Rectangle	5D011
20	$\sqrt[3]{30}$ cm	3D1B
21	32π	B0DD
22	56	2BB22
23	55	B2C5
24	8	C2021
25	40	C43D
26	24 cm	B2B11
27	18	0DC5
28	8	543D
29	12	053D
30	16 quadrilaterals	BC4B

Solutions

(1) 90 ID: [4BB22]

No solution is available at this time.

(2) **20** meters ID: [A1421]

No solution is available at this time.

(3) **13824 cubes** ID: [B2041]

No solution is available at this time.

(4) $54\sqrt{3}$ square meters ID: [03041]

No solution is available at this time.

(5) **3/8** ID: [20DD]

No solution is available at this time.

(6) **20 posts** ID: [00441]

No solution is available at this time.

(7) **1/2** ID: [D2B11]

No solution is available at this time.

ID: [0CB22] (8) 45

No solution is available at this time.

(9) **20** percent ID: [52041]

Let the original radius and height be r and h respectively, so the original volume is $\pi r^2 h$.

The new radius and height are $\frac{4}{5}r$ and $\frac{5}{4}h$ respectively, so the new volume is

$$\pi \left(\frac{4}{5}r\right)^2 \frac{5}{4} = \frac{4}{5}\pi r^2 h$$
, which is 20% less than the original volume. Hence the desired percent change is 20 percent.

(10) **120 degrees ID: [0B1B]**

No solution is available at this time.

(11) **160** acres **ID**: **[23041]**

No solution is available at this time.

(12) **6 ID:** [C33D]

Our current triangle lengths are 8, 15, and 17. Let us say that x is the length of the piece that we cut from each of the three sticks. Then, our lengths will be 8-x, 15-x, and 17-x. These lengths will no longer form a triangle when the two shorter lengths added together is shorter than or equal to the longest length. In other words, $(8-x)+(15-x)\leq (17-x)$. Then, we have $23-2x\leq 17-x$, so $6\leq x$. Therefore, the length of the smallest piece that can be cut from each of the three sticks is 6 inches.

(13) 9 units ID: [52B21]

No solution is available at this time.

(14) 13π **ID:** [05531]

No solution is available at this time.

(15) **144 ID:** [3BB22]

No solution is available at this time.

(16) **16 ID:** [5DC5]

No solution is available at this time.

(17) **210 ID:** [BAB22]

No solution is available at this time.

(18) $7\sqrt{2}$ ID: [BCB22]

No solution is available at this time.

(19) **Rectangle ID:** [5D011]

No solution is available at this time.

(20) $\sqrt[3]{30}$ cm ID: [3D1B]

No solution is available at this time.

(21) 32π **ID:** [**B0DD**]

No solution is available at this time.

(22) **56 ID:** [2BB22]

No solution is available at this time.

(23) **55 ID**: **[B2C5]**

No solution is available at this time.

(24) **8 ID**: **[C2021]**

No solution is available at this time.

(25) **40 ID**: **[C43D]**

No solution is available at this time.

(26) **24 cm ID**: **[B2B11]**

No solution is available at this time.

(27) **18 ID**: **[0DC5]**

No solution is available at this time.

(28) **8 ID:** [543D]

No solution is available at this time.

(29) **12 ID**: **[053D]**

No solution is available at this time.

(30)	16 quadrilaterals	ID: [BC4B]
	No solution is availa	ble at this time.