ĐỀ THI CUỐI HỌC KỲ – KHÓA 2010 MÔN: XÁC SUẤT & THỐNG KẾ B

Khoa: Vật Lý – Thời gian làm bài: 90 phút

(Sinh viên chỉ được sử dụng bảng phân phối xác suất)

Câu 1: (3 điểm)

Một công nhân làm việc tại Thủ Thiêm, khi trở về nhà ở Gò Vấp đi theo 2 cách: đi qua hầm hoặc đi qua cầu. Giả sử anh ta đi qua hầm trong 1/3 trường hợp, còn lại đi qua cầu. Nếu đi qua hầm thì anh ta trở về nhà trước 6 giờ có xác suất là 0,75; còn qua cầu xác suất khi đó chỉ còn 0,50.

- a) Tìm xác suất anh công nhân này về trước 6 giờ.
- b) Nếu anh ta về nhà trước 6 giờ thì đi bằng cách nào? Tại sao?
- c) Tìm xác suất trong mỗi tháng anh ta về nhà trước 6 giờ không dưới 20 ngày, biết rằng mỗi tháng đi làm 26 ngày.

Câu 2: (3 điểm)

Giả sử số lần X bão đổ bộ vào tỉnh H trong mỗi năm là một đại lượng ngẫu nhiên có luật phân phối như sau:

X (lần/năm)	0	1	2	3	4
P_{X}	0,1	0,2	0,25	0,4	A

- a) Xác định A và $P(2 \le X \le 4)$.
- b) Tìm số lần bão đổ bộ trung bình hàng năm vào tỉnh H.
- c) Giả sử số lần bão đổ bộ hàng năm là độc lập với nhau, tìm xác suất 3 năm thì có 2 năm có số lần không quá 2 (lần/năm).

Câu 3: (4 điểm)

Một khảo sát về thu nhập một năm của công nhân ngành M tại TĐ có:

Mức thu nhập (triệu đồng)	10	12	14	16	18	20	22	24
Số người	4	6	7	18	25	20	16	4

- a) Hãy ước lượng mức thu nhập trung bình, tỷ lệ thu nhập trên 20 (triệu đồng) với độ tin cậy 90%.
- b) Có ý kiến cho rằng: "Tỷ lệ có thu nhập từ 20 (triệu đồng) trở lên là 42%", với mức ý nghĩa 5% có chấp nhận ý kiến này không?

- - - HÉT - - -

<u>Câu 1</u>: Gọi $A = \{Người công nhân về nhà trước 6 giờ\}$

 $B_1 = \{Người công nhân đi qua hầm về nhà\}$

 $B_2 = \{ \text{Người công nhân đi qua cầu về nhà} \}$

a) B_1 , B_2 là một hệ đầy đủ. Áp dụng công thức xác suất đầy đủ, ta có:

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) = \frac{1}{3} \cdot 0.75 + \frac{2}{3} \cdot 0.5 = \frac{7}{12}$$

b) Áp dụng công thức Bayes, ta có:
$$P(B_1|A) = \frac{P(B_1)P(A|B_1)}{P(A)} = \frac{3}{7}$$
 ; $P(B_2|A) = \frac{P(B_2)P(A|B_2)}{P(A)} = \frac{4}{7}$

 $\Rightarrow P(B_1|A) < P(B_2|A) \Rightarrow$ Khả năng lớn nhất người công nhân đi qua cầu về nhà trước 6 giờ.

c) Gọi $X = \{Số \text{ ngày trong tháng người công nhân về nhà trước 6 giờ} \implies X \sim B\left(26; \frac{7}{12}\right)$.

$$P(X \ge 20) = 1 - P(X < 20) = 1 - P\left(\frac{X - np}{\sqrt{npq}} < \frac{20 - np}{\sqrt{npq}}\right) \approx 1 - \Phi\left(\frac{20 - np}{\sqrt{npq}}\right) = 1 - \Phi(1,92) = 0.0274.$$

Câu 2: a) *
$$A = P(X = 4) = 1 - P(X < 4) = 1 - (0.1 + 0.2 + 0.25 + 0.4) = 0.05$$
.

*
$$P(2 \le X \le 4) = P(X = 2) + P(X = 3) + P(X = 4) = 0.7.$$

b) Số lần bão đổ bộ trung bình hàng năm vào tỉnh H: $E(X) = \sum_{i=0}^4 P_{X_i} \cdot X_i = 2,1.$

c) Xác suất 1 năm có không quá 2 cơn bão: $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0,55$.

Gọi Y là số năm có không quá 2 con bão trong 3 năm. $Y \sim B(3; 0.55)$

Ta có:
$$P(Y = 2) = C_3^2 (0.55)^2 (0.45)^1 \approx 0.41.$$

Câu 4: a)
$$\overline{x} = \frac{\sum n_i x_i}{n} = \frac{1796}{100} = 17,96$$
; $s^2 = \frac{\sum n_i x_i^2 - n_i(\overline{x})^2}{n-1} = \frac{1135,84}{99} \approx 11,47.$

Độ tin cậy 90%
$$\implies 1 - \alpha = 0.9 \implies \alpha = 0.1 \implies z_{1 - \frac{\alpha}{2}} = z_{0.95} = 1.65.$$

* Gọi μ là mức thu nhập trung bình của công nhân. Ta có khoảng tin cậy của μ :

$$\left(\overline{x} - z_{1 - \frac{\alpha}{2}} \frac{s}{\sqrt{n}}; \overline{x} + z_{1 - \frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right) = \left(17,96 - 1,65 \frac{\sqrt{11,47}}{\sqrt{100}}; 17,96 + 1,65 \frac{\sqrt{11,47}}{\sqrt{100}}\right) = (17,40; 18,52).$$

* $f = \frac{20}{100} = 0$,2. Gọi p là tỷ lệ thu nhập của công nhân trên 20 (triệu đồng). Ta có khoảng tin cậy của p:

$$\left(f - z_{1 - \frac{\alpha}{2}} \sqrt{\frac{f(1 - f)}{n}}; f + z_{1 - \frac{\alpha}{2}} \sqrt{\frac{f(1 - f)}{n}}\right) = \left(0.2 - 1.65 \sqrt{\frac{0.2 \cdot 0.8}{100}}; 0.2 + 1.65 \sqrt{\frac{0.2 \cdot 0.8}{100}}\right) = (0.134; 0.266).$$

b) Gọi p là tỷ lệ thu nhập của công nhân từ 20 (triệu đồng) trở lên. $f = \frac{40}{100} = 0.4$.

Ta cần kiểm định: $\begin{cases} H_o: p = 0.42 \\ H_1: p \neq 0.42 \end{cases}$

$$\alpha = 0.05 \implies \text{Miền bác bỏ: } W_{\alpha} = \left\{ |z| > z_{1-\frac{\alpha}{2}} \right\} = \left\{ |z| > z_{0.975} \right\} = \left\{ |z| > 1.96 \right\} = \left\{ z < -1.96 \right\} \cup \left\{ z > 1.96 \right\}$$

Ta có:
$$z = \frac{(f - p_o)\sqrt{n}}{\sqrt{p_o(1 - p_o)}} = \frac{(0.4 - 0.42)\sqrt{100}}{\sqrt{0.42(1 - 0.42)}} = -0.41 \notin W_{\alpha}$$

 \Rightarrow Chưa đủ bằng chứng thống kê để bác bỏ H_0 .

Vậy: Ý kiến đề bài đưa ra có thể chấp nhận được.

---HÉT---

Jvanpham