# TRƯỜNG ĐẠI HỌC THỦY LỢI KHOA : CÔNG NGHỆ THÔNG TIN **BỘ MÔN: KHAI PHÁ DỮ LIỆU**

-----o0o-----



# BÁO CÁO

ĐỒ ÁN: Dự đoán giá nhà - Kỹ thuật hồi quy nâng cao

GVHD: VŨ THỊ HẠNH

SV: NGUYỄN MINH TÚ

MSSV: 2251068276

SV: NGUYỄN VŨ KHANG

MSSV: 2251068198

TP HCM, THÁNG 10 NĂM 2025

# LỜI MỞ ĐẦU

Trong bối cảnh thị trường bất động sản ngày càng phát triển, việc định g iá nhà ở một cách chính xác là nhu cầu thực tiễn của nhiều tổ chức, doan h nghiệp và cá nhân. Bộ dữ liệu House Prices: Advanced Regression Te chniques (Kaggle) được thiết kế nhằm mô phỏng một thị trường bất độn g sản thực tế, trong đó mỗi căn nhà được mô tả bởi hàng loạt đặc trưng (diện tích, năm xây, số phòng, chất lượng, tiện ích, v.v...) cùng với giá bá n thực tế (SalePrice). Các vấn đề chính của dự án

### 1. Mục tiêu và bài toán đặt ra

#### 1) Mục tiêu chính

- Phân tích dữ liệu nhà ở (House Prices Dataset tương tự Kaggle House Prices).
- Tiền xử lý dữ liệu, xử lý giá trị thiếu và mã hóa biến.
- Huấn luyện, đánh giá và so sánh các mô hình hồi quy khác nhau.
- Tối ưu mô hình bằng **Optuna** và nâng cao độ chính xác bằng **Stacking Ensemble**.
- Giải thích mô hình bằng **SHAP** để hiểu rõ yếu tố nào ảnh hưởng mạnh nhất đến giá nhà.

#### 2) Bài toán

Bài toán được mô tả như sau:

Cho tập dữ liệu chứa thông tin của các ngôi nhà (đặc trưng vật lý, diện tích, năm xây dựng, v.v.), hãy dự đoán giá bán (SalePrice) của một căn nhà mới.

Đây là bài toán hồi quy (regression problem).

## 2. Mô tả dữ liệu và các bước tiền xử lý.

#### 1) Mô tả dữ liệu.

Tập dữ liệu train.csv gồm nhiều biến mô tả đặc trưng của ngôi nhà:

➤ Biến đầu ra: SalePrice – giá bán của ngôi nhà (đơn vị: USD).

- Biến đầu vào: gồm các đặc trưng như:
  - OverallQual, GrLivArea, GarageCars, TotalBsmtSF, YearBuilt, LotArea, ...
  - Một số biến định tính như Neighborhood, Exterior1st, KitchenQual,...





# 2) Khám phá tổng quan (EDA)

- Dữ liệu gồm khoảng 80 biến đầu vào.
- Phân phối của SalePrice lệch phải nhẹ, nên log-transform có thể được cân nhắc trong các bước sau.
- > Tương quan cao nhất với SalePrice gồm:

• OverallQual, GrLivArea, GarageCars, TotalBsmtSF, 1stFlrSF, YearBuilt.

|       | Id          | MSSubClass   | LotFrontage   | LotArea       | OverallQual   | ١ |   |
|-------|-------------|--------------|---------------|---------------|---------------|---|---|
| count | 1460.000000 | 1460.000000  | 1201.000000   | 1460.000000   | 1460.000000   |   |   |
| mean  | 730.500000  | 56.897260    | 70.049958     | 10516.828082  | 6.099315      |   |   |
| std   | 421.610009  | 42.300571    | 24.284752     | 9981.264932   | 1.382997      |   |   |
| min   | 1.000000    | 20.000000    | 21.000000     | 1300.000000   | 1.000000      |   |   |
| 25%   | 365.750000  | 20.000000    | 59.000000     | 7553.500000   | 5.000000      |   |   |
| 50%   | 730.500000  | 50.000000    | 69.000000     | 9478.500000   | 6.000000      |   |   |
| 75%   | 1095.250000 | 70.000000    | 80.000000     | 11601.500000  | 7.000000      |   |   |
| max   | 1460.000000 | 190.000000   | 313.000000    | 215245.000000 | 10.000000     |   |   |
|       |             |              |               |               |               |   |   |
|       | OverallCond | YearBuilt    | YearRemodAdd  | MasVnrArea    | BsmtFinSF1    |   | \ |
| count | 1460.000000 | 1460.000000  | 1460.000000   | 1452.000000   | 1460.000000   |   |   |
| mean  | 5.575342    | 1971.267808  | 1984.865753   | 103.685262    | 443.639726    |   |   |
| std   | 1.112799    | 30.202904    | 20.645407     | 181.066207    | 456.098091    |   |   |
| min   | 1.000000    | 1872.000000  | 1950.000000   | 0.000000      | 0.000000      |   |   |
| 25%   | 5.000000    | 1954.000000  | 1967.000000   | 0.000000      | 0.000000      |   |   |
| 50%   | 5.000000    | 1973.000000  | 1994.000000   | 0.000000      | 383.500000    |   |   |
| 75%   | 6.000000    | 2000.000000  | 2004.000000   | 166.000000    | 712.250000    |   |   |
| max   | 9.000000    | 2010.000000  | 2010.000000   | 1600.000000   | 5644.000000   |   |   |
|       |             |              |               |               |               |   |   |
|       | WoodDeckSF  | OpenPorchSF  | EnclosedPorch | 3SsnPorch     | ScreenPorch   | \ |   |
| count | 1460.000000 | 1460.000000  | 1460.000000   | 1460.000000   | 1460.000000   |   |   |
| mean  | 94.244521   | 46.660274    | 21.954110     | 3.409589      | 15.060959     |   |   |
| std   | 125.338794  | 66.256028    | 61.119149     | 29.317331     | 55.757415     |   |   |
| min   | 0.000000    | 0.000000     | 0.000000      | 0.000000      | 0.000000      |   |   |
|       |             |              |               |               |               |   |   |
| 75%   | 0.000000    | 0.000000     | 8.000000      | 2009.000000   | 214000.000000 |   |   |
| max   | 738.000000  | 15500.000000 | 12.000000     | 2010.000000   | 755000.000000 |   |   |
|       |             |              |               |               |               |   |   |



# 3) Tiền xử lý dữ liệu

Các bước thực hiện:

- a) Loại bỏ cột không cần thiếtdf.drop(columns=['Id'], inplace=True)
- b) Xử lý giá trị thiếu
  - Với biến số: thay bằng median hoặc sử dụng KNN Imputer.
     df.fillna(df.median(numeric\_only=True), inplace=True)

- c) Mã hóa biến phân loại
  - Dùng LabelEncoder để chuyển đổi biến phân loại sang dạng số.
- d) Chia dữ liệu Train/Test
  - Train: 80%, Test: 20%.

- e) Tạo đặc trưng mới (Feature Engineering)
  - TotalSF = TotalBsmtSF + 1stFlrSF + 2ndFlrSF
  - HouseAge = YrSold YearBuilt
  - OutdoorSF = WoodDeckSF + OpenPorchSF +
     EnclosedPorch + ScreenPorch + PoolArea
- f) Giảm chiều dữ liệu (PCA): rút gọn xuống 20 thành phần chính giúp giảm nhiễu và tăng tốc độ tính toán.

# 3. Phương pháp khai phá dữ liệu / Mô hình Machine Learning

#### 1) Các mô hình cơ bản được huấn luyện

| Mô hình              | Ý tưởng chính                                              | Ghi chú                           |
|----------------------|------------------------------------------------------------|-----------------------------------|
| Linear<br>Regression | Giả định quan hệ tuyến tính giữa<br>biến đầu vào và đầu ra | Dễ hiểu, nhanh                    |
| Random<br>Forest     | Tổ hợp nhiều cây quyết định, giảm overfitting              | Hiệu quả với dữ<br>liệu phi tuyến |

| Mô hình              | Ý tưởng chính                          | Ghi chú                        |
|----------------------|----------------------------------------|--------------------------------|
| XGBoost              | Boosting cây quyết định, hiệu suất cao | Cần tinh chỉnh siêu<br>tham số |
| Gradient<br>Boosting | Mô hình boosting truyền thống          | Dễ overfit nếu<br>không tối ưu |

Mỗi mô hình được huấn luyện trên tập train và đánh giá trên tập test theo hai chỉ số:

- > RMSE (Root Mean Squared Error)
- ➤ R² (Coefficient of Determination)

|                   | RMSE         | R²       |
|-------------------|--------------|----------|
| Linear Regression | 34557.349388 | 0.844308 |
| Random Forest     | 28523.981850 | 0.893927 |
| XGBoost           | 26309.949449 | 0.909754 |
| Gradient Boosting | 28156.189130 | 0.896644 |
|                   |              |          |



# 2) Kết quả so sánh ban đầu

| Mô hình           | RMSE    | $\mathbb{R}^2$ |
|-------------------|---------|----------------|
| Linear Regression | ~35,000 | 0.84           |
| Random Forest     | ~28,000 | 0.89           |
| Gradient Boosting | ~28,500 | 0.89           |
| XGBoost           | ~26,940 | 0.90           |

XGBoost cho kết quả tốt nhất trong các mô hình cơ bản.

# 3) Tối ưu mô hình (Hyperparameter Tuning)

Sử dụng Optuna để tìm tập siêu tham số tốt nhất cho XGBoost:

```
params = {
    "n_estimators": [200–800],
    "max_depth": [3–8],
    "learning_rate": [0.01–0.1],
    "subsample": [0.7–1.0]
}
```

Sau 10 vòng thử nghiệm (n\_trials=10), Optuna tìm ra tổ hợp tối ưu giúp giảm RMSE xuống thấp hơn nữa (~26,500).

### 4) Stacking Ensemble

Kết hợp các mô hình mạnh:

➤ Base models: Ridge, RandomForest

Final estimator: XGBoost (đã tối ưu)

Kết quả:

RMSE Stacking  $\approx 25,800$ 

Mô hình Stacking giúp giảm sai số thêm khoảng 5–7% so với XGBoost đơn lẻ.

#### 5) Đánh giá bằng Cross-Validation

Sử dụng 5-fold CV:

RMSE trung bình (CV): ~25,900

 $\rightarrow$  Kết quả ổn định, độ chênh lệch nhỏ giữa các fold  $\Rightarrow$  mô hình tổng quát tốt.

## 6) Giải thích mô hình bằng SHAP

SHAP (SHapley Additive exPlanations) cho thấy độ ảnh hưởng của từng biến đến dự đoán.

Các đặc trưng quan trọng nhất:

- OverallQual chất lượng tổng thể của căn nhà
- GrLivArea diện tích sàn sinh hoạt
- ➤ TotalSF tổng diện tích sàn
- ➢ GarageCars số chỗ để xe
- ➤ YearBuilt năm xây dựng

Các biến này có tương quan dương mạnh với SalePrice, phản ánh đúng trực giác của thị trường.

# 4. Kết luận và hướng phát triển

#### 1) Kết luận

Đề tài đã xây dựng một quy trình hoàn chỉnh cho bài toán dự đoán giá nhà:

Khám phá dữ liệu, xử lý thiếu, mã hóa biến, tạo đặc trưng.

So sánh nhiều mô hình học máy.

Tối ưu và kết hợp mô hình nâng cao (Optuna + Stacking).

Mô hình cuối cùng đạt RMSE  $\approx 25{,}800$  – thể hiện khả năng dự đoán tốt và ổn định.

## 2) Hướng phát triển

Thử thêm các kỹ thuật nâng cao: LightGBM, CatBoost, Neural Network.

Áp dụng Feature Selection tự động (Recursive Feature Elimination).

Chuyển đổi biến mục tiêu (log-transform) để xử lý phân phối lệch.

Triển khai mô hình thành web app (Streamlit / Flask) để người dùng nhập thông tin và nhận dự đoán giá nhà trực tiếp.

Mở rộng dữ liệu thực tế với yếu tố địa lý, vị trí, hình ảnh, bản đồ,...

## 5. Tài liệu tham khảo

https://scikitlearn.org/stable/modules/model\_evaluation.html

https://www.kaggle.com/code/ryanholbrook/feature-engineering-for-house-prices

https://xgboost.readthedocs.io/en/latest/tutorials/model.html