NDH 功能與架構介紹

文件編號: IDTF-V3.5-06-04 版本: 1.0 日期: 2025-10-16 作者: 林志錚 Michael Lin(Chih Cheng Lin)

1. 簡介

NDH (Neutral Data Hub) 是 IDTF (Industrial Digital Twin Framework) 的核心數據中樞,旨在為工業數位分身提供一個開放、可擴展且供應商中立的數據基礎設施。它負責從各種工業設備和系統中採集、處理、儲存和分發數據,並為上層應用、分析服務和 AI Agent 提供統一的數據存取介面。本文件將詳細介紹 NDH 的主要功能、分層架構及其關鍵組件,特別是新引入的 MCP (Multi-Agent Control Plane) 和 Agent Runtimes 層次,以展現其在智慧工廠應用中的核心價值。

2. NDH 核心架構概述

NDH 採用分層架構設計,確保數據流的清晰性、模組化和可擴展性。此架構不僅整合了傳統的數據處理能力,更加入了針對 Al Agent 協作和控制的 MCP 層,使其能夠支援更複雜、更智能的工業應用。

3. NDH 各層職責與功能

3.1 Apps / Dashboards (應用程式 / 儀表板)

這是最上層的用戶介面,提供數據視覺化、操作控制和業務流程管理。透過 WebSocket 或 HTTP 協議與 Service Layer 互動,實現人機交互。

3.2 Service Layer (服務層)

作為 NDH 的對外窗口,提供標準化的 REST、GraphQL 或 WebSocket API,供上層應用程式和服務存取數據。負責用戶認證、授權、API 路由和請求管理,確保數據存取的安全性和效率。

3.3 Processing Layer (處理層)

此層負責數據的深度處理和分析,包括:

- **流式處理 (Stream Processing)**: 實時處理來自數據採集層的連續數據流,進行數據清 洗、轉換、聚合和實時分析。
- **批次處理 (Batch Processing)**: 對歷史數據進行週期性處理,執行複雜的分析任務,如數據挖掘、報表生成和模型訓練。
- AI 分析 (AI Analytics): 運行機器學習模型,進行異常檢測、預測性維護、品質預測等高級分析。

3.4 USD Integration Service (USD 整合服務)

作為 Processing Layer 的一個關鍵組件,此服務專門負責將 IADL/FDL 的語義數據與 NVIDIA Omniverse 平台中的 USD (Universal Scene Description) 3D 物理模型進行深度整合。其職責包括:

- 數據模型解析器: 解析 IADL/FDL 定義, 理解資產的屬性、關係和行為。
- **USD 場景生成器**: 根據 IADL/FDL 數據動態生成或更新 USD 場景圖,包括資產的幾何、材質、物理屬性等。
- **實時數據連接器**: 將 NDH 中的實時數據(如感測器讀數、設備狀態)同步到 USD 場景中,實現數位分身的實時更新。
- 命令與事件處理器: 將來自 USD 場景的互動(如虛擬操作)或模擬結果映射回 NDH 的命令和事件。
- **USD 場景管理**: 管理 USD 場景的版本、權限和協作。
- Omniverse Connect 整合: 透過 Omniverse Connect 協議與 Omniverse 平台無縫連接,實現高效的數據交換和協同工作。

3.5 NDH (Data Hub) 核心

NDH 的核心數據中樞,整合了多種數據技術以滿足不同數據類型和處理需求:

- Kafka: 作為高性能的訊息佇列,處理實時數據流和事件分發。
- TSDB (時序數據庫): 專門儲存和查詢時間序列數據,如感測器讀數、設備運行參數。
- Postgres (關係型數據庫):儲存結構化數據,如資產元數據、配置資訊和業務數據。
- Redis (快取 / 訊息代理): 提供高速數據快取和輕量級訊息發布/訂閱功能。

• Event Bus: 統一的事件總線,用於 NDH 內部組件之間的事件通訊。

3.6 Data Acquisition (數據採集層)

負責從工廠現場的 OT (Operational Technology) 和 IT (Information Technology) 系統採集數據。支援多種工業通訊協議,如 OPC UA、MQTT、Modbus 等,將採集到的數據標準化後發送到 NDH Data Hub 和 MQTT Broker。

3.7 MCP Control Plane (MCP 控制平面)

MCP Control Plane 是 IDTF V3.6 引入的關鍵組件,旨在實現多個 AI Agent 之間的協作和智能控制。其主要職責包括:

- **Agent 註冊與發現**: 允許 Al Agent 註冊其身份、能力和通訊端點,並發現其他可用的 Agent。
- 事件分發: 根據預定義的規則或訂閱關係,將事件從發布 Agent 路由到訂閱 Agent。
- **狀態管理**: 接收 Agent 發布的狀態更新,並將其持久化到 IADL Schema 定義的 Agent 狀態記憶中,同時通知相關訂閱者。
- ACL (Access Control List): 管理 Agent 的權限,確保只有經過授權的 Agent 才能參與通訊和狀態管理。
- 排程與審計: 負責 Agent 任務的排程,並記錄 Agent 的行為和決策,以便進行審計和 追溯。

3.8 Agent Runtimes (Agent 運行時)

Agent Runtimes 是執行 AI Agent 實際邏輯的運行環境。它支援多種程式語言(如 Python、Go、Node.js),並透過標準化的 SDK 和策略與 MCP Control Plane 互動。Agent Runtimes 監聽來自 NDH 的數據和事件,執行 AI 模型進行決策,並將結果回寫至 NDH。

4. MCP Control Plane 與 Agent Runtimes 的互動

MCP Control Plane 和 Agent Runtimes 透過 NDH 內建的 MQTT Broker 進行高效通訊,實現了 Agent 之間的協同工作。

4.1 通訊機制

- agents/# (MQTT Topics): MCP Control Plane 和 Agent Runtimes 之間的主要通訊通道。Agent Runtimes 透過發布和訂閱 agents/# 命名空間下的 MQTT Topics 來交換事件、狀態和指令。
- ndh/# (MQTT Topics): Agent Runtimes 透過 ndh/# 命名空間下的 MQTT Topics 監 聽來自 Data Acquisition 層的遙測數據、事件和控制指令,並將其決策結果回寫至 NDH 的 /actions 和 /logs topic。

4.2 數據流

- 1. **數據採集**: Data Acquisition 層從 OT/IT 系統採集數據,並將其發送到 NDH Data Hub 和 ndh/# MQTT Topics。
- 2. **Agent 監聽**: Agent Runtimes 監聽 ndh/# MQTT Topics,獲取實時數據和事件。
- 3. **Agent 決策**: Agent Runtimes 根據其內建的 AI 模型和策略進行決策,並可能與 MCP Control Plane 互動以獲取排程或權限資訊。
- 4. **Agent 協作**: 多個 Agent Runtimes 透過 agents/# MQTT Topics 進行協作,交換彼此的狀態和中間結果。
- 5. **決策回寫**: Agent Runtimes 將最終決策結果發布到 NDH 的 /actions topic,將運行日誌發布到 /logs topic。
- 6. **NDH 處理**: NDH Data Hub 接收 Agent 的決策和日誌,並進行相應的處理,例如更新 資產狀態、觸發控制指令或儲存歷史數據。

5. 結論

NDH 作為 IDTF 的核心數據中樞,透過其強大的數據整合、處理和分發能力,以及新引入的 MCP Control Plane 和 Agent Runtimes 層次,為構建智能、自主的工業數位分身解決方案 提供了堅實的基礎。它不僅確保了數據的標準化和互操作性,更為 AI Agent 的協作和控制 提供了高效的平台,將極大推動智慧工廠的發展和數位轉型。