# Wireless Networks

**Lecture 1: Overview** 

#### THE ELECTROMAGNETIC SPECTRUM



#### THE ELECTROMAGNETIC SPECTRUM



#### SPECTRUM SHARED BY MANY USERS

- Spectrum allocated by FCC and NTIA
- Two types of spectrum bands:
  - 1. Licensed spectrum: exclusive access to an organization
    - Federal agencies, broadcast TV, first responders, ...
    - Commercial, e.g., cellular operators
  - 2. Unlicensed spectrum: everyone can use it with appropriate equipment, e.g., WiFi, zigbee, ...

#### Other trends:

- » Technology improvements have allowed us to use higher frequency bands over time
- » Many bands have low utilization
- » Older bands often use very inefficient technologies

# WIRELESS TECHNOLOGIES



#### WHY SO MANY TECHNOLOGIES?

- Diverse application requirements
  - » Energy consumption
  - » Range
  - » Bandwidth
  - » Mobility
  - » Cost
- Diverse deployments
  - » Licensed versus unlicensed
  - » Provisioned or not

- Technologies have different
  - » Signal penetration
  - » Frequency use
  - » Cost
  - » Market size
  - » Age, integration

UWB

IrDA

100

10

Chroughput (Mbps)

WiFi

WiMAX/LTE

BT

Zigbee

1m 10m 100m 1Km 10km 100km

Range 20

#### APPLICATION TRENDS IN WIRELESS

- Early days: specialized applications
  - » Broadcast TV and radio, voice calls, data, ..
  - » Holds for wireless and wired
- Today: flexible wireless platforms
  - » Phones, tables, and laptops all run similar applications
  - » Same trend as for wired networks: everything runs over the Internet
- Wireless is expanding in new domains
  - » Sensor networks, body area networks, …
  - » Edge of the internet is increasingly wireless
  - » Many of these applications are unique to wireless
- Future?

#### SCOPE OF WIRELESS COVERED IN THE COURSE

#### Significant depth on two technologies:

- » Wireless in unlicensed band: WiFi
- » Wireless in licensed spectrum: cellular
- » Focus is on optimizing performance with limited spectrum
- » Sophisticated protocols to fight challenging physical layer

#### Other wireless communication technologies

- » RFID/NFC, low-power, satellite, UWB, visible light, ...
- Localization and sensing
  - » GPS, Wifi for localization and sensing, ...

#### Wireless deployments

- » Infrastructure WiFi, ad hoc, sensor networks, vehicular, DTN, visible light, ..
- » Some topics covered in the surveys

#### SOME HISTORY...

- Tesla credited with first radio communication in 1893
- Wireless telegraph invented by Guglielmo Marconi in 1896
- First telegraphic signal traveled across the Atlantic ocean in 1901
- First "cell phone" concept developed in 1946
  - » FCC allocated spectrum in the 70s; commercial service in the early 80s
  - » Data started only in the 90s
- GPS project started in 1973, complete in 1995
- WiFi technology developed in the mid-1990s

# THE MTS NETWORK



#### THE ORIGIN OF MOBILE PHONE

- America's mobile phone age started in 1946 with MTS
- First mobile phones bulky, expensive and hardly portable, let alone mobile
  - » Phones weighed 40 Kg~
- Operator assisted with 250 maximum users





#### SHORT HISTORY OF WIFI

- In 1985, the FCC opened up the 900 Mhz, 2.4 GHz and 5.8 Ghz bands for unlicensed devices
- NCR and AT&T developed a WiFi predecessor called "Wavelan" starting in 1988
  - » NCR wanted to connect cashier registers wirelessly
  - » Originally used the 900 MHz band and ran at 1 Mbps
- Standardization started in early 90s and led to 802.11b (1999) and 802.11a (2000)
  - » Pre-standard products were available earlier
- Today –many standards!
  - » Working on 802.11ba rates up to several Gps
  - » Very sophisticated technology: OFDM, MIMO, multi-user MIMO, ..

#### EARLY WIFI INTERFACES



Wavelan at 900MHz 1 Mbps throughput



#### PCMCIA form factor made Wavelan more portable



#### THE INTERNET IS BIG AND HAS MANY PIECES

#### How do you design something this complex?



#### WHAT PIECES DO WE NEED?

We need to be able to send bits

» Over wired and wireless links

» Based on analog signals

We really want to send packets

» Statistical multiplexing: users can share link

» Need addresses to deliver packets correctly

But network may not be reliable

» Bit errors, lost packets, …

» Must recover from these errors end-to-end

You need applications and services

» Otherwise: who cares?

**Module:** 

**Physical** 

Datalink Network

**Transport** 

**Application** 

# HOSTS EXCHANGING PACKETS CAN BE EASY OR HARD

Scaling up

Two or more hosts talk over a wire (bits)

Physical

Groups of hosts can talk at two levels

- Datalink
- » Hosts talk in a network is homogeneous in terms of administration and technology

Internet

» Hosts talk across networks that have different administrators and technologies

Differ in physical and admin properties, scale



#### A BIT MORE DETAIL

- Physical layer delivers bits between the two endpoints of a "link"
  - » Copper, fiber, wireless, visible light, ...
- Datalink layer delivers packets between two hosts in a local area network
  - » Ethernet, WiFi, cellular, …
  - » Best effort service: should expect a modest loss rate
  - » "Boxes" that connect links are called bridges or switches
- Network layer connects multiple networks
  - » The Inter-net protocol (IP)
  - » Also offers best effort service
  - » Boxes that forward packets are called routers

#### **OUR INTERNET SO FAR**



- The Internet as five modules that are stacked as a set of layers
  - » More on this later
- Five layers is nice, but ...
  - » Each module is still huge!
  - » What about communication?
- We need protocols!
- Protocol modules within each layer on different devices allow the devices communicate

### PROTOCOL AND SERVICE LEVELS



#### THE ISO LAYERED NETWORK MODEL

The Open Systems Interconnection (OSI) Model.



#### **OSI FUNCTIONS**

- (1) Physical: transmission of a bit stream.
- (2) Data link: flow control, framing, error detection.
- (3) Network: switching and routing.
- (4) Transport: reliable end to end delivery.
- (5) Session: managing logical connections.
- (6) Presentation: data transformations.
- (7) Application: specific uses, e.g. mail, file transfer, telnet, network management.

# LIFE OF PACKET



# ATCP/IP/802.11 PACKET

**Application** 

**Presentation** 

Session

**Transport** 

**Network** 

**Data link** 

**Physical** 



#### EXAMPLE: SENDING A WEB PAGE



**Application** 

**Presentation** 

**Session** 

**Transport** 

**Network** 

**Data link** 

**Physical** 

#### BENEFITS OF LAYERED ARCHITECTURE

- Significantly reduces the complexity of building and maintaining the system.
  - » Effort is 7 x N instead of N<sup>7</sup> for N versions per layer
- The implementation of a layer can be replaced True easily as long as its interfaces are respected
  - » Does not impact the other components in the system
  - » Different implementation versus different protocols
- In practice: most significant evolution and diversity at the top and bottom:
  - » Applications: web, peer-to-peer, video streaming, ...
  - » Physical layers: optical, wireless, new types of copper
  - » Only the Internet Protocol in the "middle" layer

#### IMPACT OF THE PHYSICAL LAYER





Wireless: error prone and variable



- Packet losses and variable delay and bandwidth
- Disconnections
- Mobility: IP addresses change
- Must manage complex PHY to perform error control
- Sophisticated modulation & coding, bit rate adaptation