Solutions Manual to Applied Partial Differential Equations

Stewart Nash

(S. Nash) 362 LOWELL STREET ANDOVER, MA 01810 Email address, S. Nash: Stewart.M.Nash@gmail.com

URL: http://www.pervigilent.com

Dedicated to those who came before me and those who will come after.

The Author thanks DuChateau and Zachmann for such a good book. The internet for endless resources.

ABSTRACT. This work consists of solutions to the exercises from the volume "Applied Partial Differential Equations" by Paul DuChateau and David Zachmann

Contents

Preface	v
Chapter 1. Mathematical Modeling and Partial Differential Equations 1. Equation of Heat Conduction	1 1
Chapter 2. Finite Difference Methods for Parabolic Equations 1. Computational Methods 2. Fourier's Method for Difference Equations	3 3 11
Chapter 3. Numerical Solutions of Hyperbolic Equations 1. Difference Methods for a Scalar Initial-Value Problem	15 15
Bibliography	17

Preface

This document consists of computer-based solutions to problems in "Applied Partial Differential Equations" by Paul DuChateau and David Zachmann.

CHAPTER 1

Mathematical Modeling and Partial Differential Equations

1. Equation of Heat Conduction

1. Consider an infinitely long rod for which the parameters K, ϵ , σ , C are such that $\beta = 0.1$. Then equation (1.2.8*) becomes

(1.1)
$$u_n^{j+1} = 0.1u_{n+1}^j + 0.8u_n^j + 0.1u_{n-1}^j$$

Suppose

(1.2)
$$u_n^0 \begin{cases} 1 & \text{for } n = 4, 5, 6 \\ 0 & \text{for all other } n \end{cases}$$

Then use (1.2.8*) and this initial condition to compose u_n^j for $n=-5,\ldots,5$ for $j=1,\ldots,5$. For each value of j, for how many n is u_n^j different from zero?

2. Repeat Exercise 1 for the situation in which the rod is of finite length L with $10\epsilon = L$. Suppose

(1.3)
$$u_0^j = 1 \text{ and } u_{10}^j = -1 \text{ for all } j > 0$$

and

$$(1.4) u_n^0 = 0 for all n$$

Then use $(1.2.8^*)$ to compute u_n^j for $n=1,\ldots,9$ and $j=1,\ldots,5$.

```
import numpy as np
import matplotlib.pyplot as plt

N = 10 # Length of rod
T = 5 # Duration of simulation

def matrix_power(x, n):
    y = x.copy()
    if n > 1:
        for i in np.arange(n - 1):
            y = np.matmul(y, x)
    return y

coefficients = np.zeros((N, N))
for i in np.arange(N):
    if i == 0:
```

```
coefficients[i, 0] = 1
    elif i == N - 1:
        coefficients[i, N - 1] = 1
    else:
        coefficients[i, i - 1] = 0.1
        coefficients[i, i] = 0.8
        coefficients[i, i + 1] = 0.1
initial_conditions = np.zeros((N, 1))
initial_conditions[0, 0] = 1
initial_conditions[N - 1, 0] = -1
y = [np.squeeze(np.transpose(np.matmul(matrix_power(coefficients, i),\
initial_conditions))) for i in np.arange(T)]
length_intervals = np.arange(N)
plt.figure()
for i in np.arange(T):
    plt.plot(length_intervals, y[i])
plt.show()
print("The number of non-zero elements is {0}.".format(\
np.count_nonzero(y[T - 1] != 0)))
```

CHAPTER 2

Finite Difference Methods for Parabolic Equations

1. Computational Methods

4. Use Algorithm 8.1 to approximate the solution of the initial-boundary-value problem

$$(1.1) u_t - u_{xx} = -2e^{x-t}, 0 < x < 1, t > 0$$

$$(1.2) u(x,0) = e^x, 0 < x < 1$$

(1.3)
$$u(0,t) = e^{-t}, u(1,t) = e^{1-t}, t > 0$$

- (a) Choose k = 0.0025 and nmax = 9 (so h = 0.1) and compare the numerical and exact solutions, $u(x,t) = e^{x-t}$, at time t = 0.5.
- (b) Choose k = 0.01 and nmax = 9 and explain the numerical results.

```
import numpy as np
# Forward Difference Method - Dirichlet Initial-Boundary-Value Problem
def algorithm_8_1(diffusivity,
                  endpoint,
                  time_step,
                  number_of_time_steps,
                  number_of_nodes,
                  right_side,
                  initial_condition,
                  boundary_condition_left,
                  boundary_condition_right):
    # Define a grid
    increment = endpoint / (number_of_nodes + 1)
    coefficient_r = diffusivity * time_step / increment ** 2
    if coefficient_r > 0.5:
       print("WARNING: algorithm_8_1 is unstable")
    # Initialize numerical solution
    t = np.zeros((number_of_time_steps + 1,))
    #x = np.zeros((1, number_of_nodes + 2))
    x = np.zeros((number_of_nodes + 2,))
    x[0] = 0
    #V = np.zeros((1, number_of_nodes + 2))
    V = np.zeros((number_of_nodes + 2,))
    V[0] = (boundary_condition_left(0) + initial_condition(0)) / 2
    for n in np.arange(number_of_nodes):
       x[n + 1] = x[n] + increment
```

```
V[n + 1] = initial\_condition(x[n + 1])
    x[number_of_nodes + 1] = endpoint
    V[number_of_nodes + 1] = (boundary_condition_right(0) + \
     initial_condition(endpoint)) / 2
    # Begin time stepping
    #U = np.zeros((1, number_of_nodes + 2))
    U = np.zeros((number_of_nodes + 2,))
    for j in np.arange(number_of_time_steps):
        # Advance solution one time step
        for n in np.arange(number_of_nodes):
            U[n + 1] = coefficient_r * V[n]
            U[n + 1] += (1 - 2 * coefficient_r) * V[n + 1]
            U[n + 1] += coefficient_r * V[n + 2]
            U[n + 1] += time\_step * right\_side(x[n + 1], t[j])
        t[j + 1] = t[j] + time_step
        U[0] = boundary_condition_left(t[j + 1])
        U[number_of_nodes + 1] = boundary_condition_right(t[j + 1])
        # Output numerical solution
        # Prepare for next time step
        for n in np.arange(number_of_nodes + 2):
            V[n] = U[n]
    #x = x[1:-1]
    t = t[:-1]
    return U, x, t
import math
# right_side
def S(x, t):
    return -2.0 * math.e ** (x - t)
# initial_condition
def f(x):
    return math.e ** x
# boundary_condition_left
def p(t):
    return math.e ** -t
# boundary_condition_right
def q(t):
    return math.e ** (1 - t)
# exact_answer
def u(x, t):
return math.e ** (x - t)
a2 = 1 # diffusivity
L = 1 \# endpoint
k = 0.0025 \# time_step
```

```
nmax = 9 # number_of_nodes
end_time = 0.5
jmax = int(end_time / k) # number_of_time_steps
numerical_answer, x, t = algorithm_8_1(a2,
                       jmax,
                       nmax,
                       S,
                       f,
                       p,
                       q)
exact_answer = u(x, t[-1])
answer_error = (numerical_answer - exact_answer) / (exact_answer)
answer_error = answer_error * 100
from matplotlib import pyplot as plt
fig, ax1 = plt.subplots()
ax1.set_xlabel('Position')
ax1.set_ylabel('Temperature')
ax1.plot(x, numerical_answer, 'r', label='Numerical Solution')
ax1.plot(x, exact_answer, 'g', label='Exact Solution')
ax2 = ax1.twinx()
ax2.set_ylabel('Percent Error')
ax2.plot(x, answer_error, 'b', label='Percent Error')
ax1.legend()
ax2.legend()
plt.show()
```

5. Use Algorithm 8.3 or 8.4 to approximate the solution of the initial-boundary-value problem

$$(1.4) u_t - u_{xx} = -2e^{x-t}, 0 < x < 1, t > 0$$

$$(1.5) u(x,0) = e^x, 0 < x < 1$$

(1.6)
$$u(0,t) = e^{-t}, u(1,t) = e^{1-t}, t > 0$$

- (a) Choose k = 0.0025 and nmax = 9 (so h = 0.1) and compare the numerical and exact solutions, $u(x,t) = e^{x-t}$, at time t = 0.5.
- (b) Choose k = 0.01 and nmax = 9 and compare the numerical and exact solutions at time t = 0.5.
- (c) Choose k = 0.01 and nmax = 99 (so h = 0.01) and compare the numerical and exact solutions at time t = 0.5 at the positions $x = 0.1, 0.2, \dots, 0.9$.

```
import numpy as np
```

Solution of a Tridiagonal Linear System

```
def algorithm_8_2(a, # subdiagonal
                 b, # diagonal
                 c, # superdiagonal
                 d, # right-hand side
                 number_of_nodes=None):
    if number_of_nodes is None:
       number_of_nodes = d.size
    # Forward substitute to eliminate subdiagonal
    for n in np.arange(number_of_nodes - 1):
       ratio = a[n + 2] / b[n + 1]
       b[n + 2] = b[n + 2] - ratio * c[n + 1]
       d[n + 2] = d[n + 2] - ratio * d[n + 1]
    # Back substitude and store in solution array in d
    d[number_of_nodes] = d[number_of_nodes] / b[number_of_nodes]
    for l in np.arange(number_of_nodes - 1):
       n = number_of_nodes - (1 + 1)
       d[n] = (d[n] - c[n] * d[n + 1]) / b[n]
    return d
# Backward Difference Method - Dirichlet Initial-Boundary-Value Problem
def algorithm_8_3(diffusivity,
                  endpoint,
                  time_step,
                  number_of_time_steps,
                  number_of_nodes,
                  right_side,
                  initial_condition,
                  boundary_condition_left,
                  boundary_condition_right):
    # Define a grid
    increment = endpoint / (number_of_nodes + 1)
    coefficient_r = diffusivity * time_step / increment ** 2
    # Initialize numerical solution
    t = np.zeros((number_of_time_steps + 1,))
    x = np.zeros((number_of_nodes + 2,))
    x[0] = 0
    U = np.zeros((number_of_nodes + 2,))
    U[0] = (boundary_condition_left(0) + initial_condition(0)) / 2
    for n in np.arange(number_of_nodes):
       x[n + 1] = x[n] + increment
       U[n + 1] = initial\_condition(x[n + 1])
    U[number_of_nodes + 1] = (boundary_condition_right(0) + \
    initial_condition(endpoint)) / 2
    x[number_of_nodes + 1] = endpoint
    term_a = np.zeros((number_of_nodes + 2,))
    term_b = np.zeros((number_of_nodes + 2,))
    term_c = np.zeros((number_of_nodes + 2,))
    term_d = np.zeros((number_of_nodes + 2,))
    # Begin time stepping
    for j in np.arange(number_of_time_steps):
       # Define tridiagonal system
```

```
t[j + 1] = t[j] + time_step
        for n in np.arange(number_of_nodes):
            term_a[n + 1] = - coefficient_r
            term_b[n + 1] = 1 + 2 * coefficient_r
            term_c[n + 1] = - coefficient_r
            term_d[n + 1] = U[n + 1] + time_step * right_side(x[n + 1], t[j + 1])
        term_d[1] = term_d[1] + coefficient_r * boundary_condition_left(t[j + 1])
        term_d[number_of_nodes] = term_d[number_of_nodes] + \
         coefficient_r * boundary_condition_right(t[j + 1])
        # Advance solution one time step
        term_d = algorithm_8_2(term_a, term_b, term_c, term_d, number_of_nodes)
        for n in np.arange(number_of_nodes):
            U[n + 1] = term_d[n + 1]
        U[0] = boundary_condition_left(t[j + 1])
    # Output numerical solution
    U[0] = boundary_condition_left(t[j + 1])
    U[number_of_nodes + 1] = boundary_condition_right(t[j + 1])
    return U, x, t
import math
# right_side
def S(x, t):
    return -2.0 * math.e ** (x - t)
# initial_condition
def f(x):
    return math.e ** x
# boundary_condition_left
def p(t):
    return math.e ** -t
# boundary_condition_right
def q(t):
    return math.e ** (1 - t)
# exact_answer
def u(x, t):
return math.e ** (x - t)
a2 = 1 # diffusivity
L = 1 \# endpoint
k = 0.0025 \# time\_step
nmax = 9 # number_of_nodes
end_time = 0.5
jmax = int(end_time / k) # number_of_time_steps
numerical_answer, x, t = algorithm_8_3(a2,
                       L,
                       k,
                       jmax,
```

```
nmax,
                       S,
                       f,
                       p,
                       q)
exact_answer = u(x, t[-1])
answer_error = (numerical_answer - exact_answer) / (exact_answer)
answer_error = answer_error * 100
from matplotlib import pyplot as plt
fig, ax1 = plt.subplots()
ax1.set_xlabel('Position')
ax1.set_ylabel('Temperature')
ax1.plot(x, numerical_answer, 'r', label='Numerical Solution')
ax1.plot(x, exact_answer, 'g', label='Exact Solution')
ax2 = ax1.twinx()
ax2.set_ylabel('Percent Error')
ax2.plot(x, answer_error, 'b', label='Percent Error')
ax1.legend()
ax2.legend()
plt.show()
```

 ${\bf 6.}\,$ Use Algorithm 8.5 to approximate the solution of the initial-boundary-value problem

$$(1.7) u_t - u_{xx} = -2e^{x-t}, 0 < x < 1, t > 0$$

$$(1.8) u(x,0) = e^x, 0 < x < 1$$

(1.9)
$$u(0,t) = e^{-t}, u(1,t) = e^{1-t}, t > 0$$

- (a) Choose k = 0.0025 and nmax = 9 (so h = 0.1) and compare the numerical and exact solutions, $u(x,t) = e^{x-t}$, at time t = 0.5.
- (b) Choose k = 0.01 and nmax = 9 and compare the numerical and exact solutions at time t = 0.5.
- (c) Choose k = 0.01 and nmax = 99 (so h = 0.01) and compare the numerical and exact solutions at time t = 0.5.

```
import numpy as np
```

```
boundary_condition_right):
    # Define a grid
    increment = endpoint / (number_of_nodes - 1)
    coefficient_r = diffusivity * time_step / increment ** 2
    # Initialize numerical solution
    t = np.zeros((number_of_time_steps + 1,))
    x = np.zeros((number_of_nodes + 1,))
    x[0] = -increment
    U = np.zeros((number_of_nodes + 1,))
    for n in np.arange(number_of_nodes):
       x[n + 1] = x[n] + increment
       U[n + 1] = initial\_condition(x[n + 1])
    term_a = np.zeros((number_of_nodes + 1,))
    term_b = np.zeros((number_of_nodes + 1,))
    term_c = np.zeros((number_of_nodes + 1,))
    term_d = np.zeros((number_of_nodes + 1,))
    # Begin time stepping
    for j in np.arange(number_of_time_steps):
       # Define tridiagonal system
       t[j + 1] = t[j] + time_step
       for n in np.arange(number_of_nodes):
            term_a[n + 1] = - coefficient_r
           term_b[n + 1] = 1 + 2 * coefficient_r
           term_c[n + 1] = - coefficient_r
           term_d[n + 1] = U[n + 1] + time_step * right_side(x[n + 1], t[j + 1])
       term_d[1] = term_d[1] - \
         2 * increment * coefficient_r * boundary_condition_left(t[j + 1])
       term_d[number_of_nodes] = term_d[number_of_nodes] + \
         2 * increment * coefficient_r * boundary_condition_right(t[j + 1])
       term_c[1] = -2 * coefficient_r
       term_a[number_of_nodes] = -2 * coefficient_r
       # Advance solution one time step
       term_d = algorithm_8_2(term_a, term_b, term_c, term_d, number_of_nodes)
       for n in np.arange(number_of_nodes):
           U[n + 1] = term_d[n + 1]
    # Output numerical solution
   #t = t[:-1]
    x = x[1:]
   U = U[1:]
   return U, x, t
import math
# right_side
def S(x, t):
    return -2.0 * math.e ** (x - t)
# initial_condition
def f(x):
```

```
return math.e ** x
# boundary_condition_left
def p(t):
    return math.e ** -t
# boundary_condition_right
def q(t):
    return math.e ** (1 - t)
# exact_answer
def u(x, t):
return math.e ** (x - t)
a2 = 1 # diffusivity
L = 1 # endpoint
k = 0.0025 \# time_step
nmax = 9 # number_of_nodes
end_time = 0.5
jmax = int(end_time / k) # number_of_time_steps
numerical_answer, x, t = algorithm_8_5(a2,
                       L,
                       k,
                       jmax,
                       nmax,
                       S,
                       f,
                       p,
                       q)
exact_answer = u(x, t[-1])
answer_error = (numerical_answer - exact_answer) / (exact_answer)
answer_error = answer_error * 100
from matplotlib import pyplot as plt
fig, ax1 = plt.subplots()
ax1.set_xlabel('Position')
ax1.set_ylabel('Temperature')
ax1.plot(x, numerical_answer, 'r', label='Numerical Solution')
ax1.plot(x, exact_answer, 'g', label='Exact Solution')
ax2 = ax1.twinx()
ax2.set_ylabel('Percent Error')
ax2.plot(x, answer_error, 'b', label='Percent Error')
ax1.legend()
ax2.legend()
plt.show()
```

2. Fourier's Method for Difference Equations

5. Given the initial-boundary-value problem

$$(2.1) u_t - u_{xx} = 0, 0 < x < 1, t > 0$$

$$(2.2) u(x,0) = x^2, 0 < x < 1$$

$$(2.3) u_x(0,t) = 0 = u_x(1,t), t > 0$$

and the grid $x_1 = 0$, $x_2 = 1/2$, and $x_3 = 1$, so N = 3,

- (a) Use the matrix \mathbf{F}_2 to formulate a forward-in-time difference system.
- (b) Use the matrix \mathbf{F}_2 to formulate a backward-in-time difference system.
- (c) Use the matrix \mathbf{F}_2 to formulate a Crank-Nicolson difference system.
- (d) Use Fourier's method to solve the system (a).
- (e) Use Fourier's method to solve the system (b).
- (f) Use Fourier's method to solve the system (c).

```
import numpy as np
import math
def node_points(endpoint, number_of_nodes):
    increment = endpoint / (number_of_nodes - 1)
    x = [i * increment for i in range(number_of_nodes)]
    #x = np.array(x)
    return x
def eigenvalue(n, N):
    return 2 * (1 - math.cos((n - 1) * math.pi / (N - 1)))
# eigenvector Vn
def eigenvector_v(n, N, L):
    \#x = [((i + 1) - 1) / (N - 1) \text{ for i in range}(N)]
    x = node_points(L, N)
    output = [math.cos((n - 1) * math.pi * y) for y in x]
    output = np.array(output)
    return output
# eigenvector Wn
def eigenvector_w(n, N, L):
    \#x = [((i + 1) - 1) / (N - 1) \text{ for } i \text{ in } range(N)]
    x = node_points(L, N)
    output = [2 * math.cos((n - 1) * math.pi * y) for y in x]
    output[0] = output[0] / 2
    output[-1] = output[-1] / 2
    output = np.array(output)
    return output
# initial_condition
def f(x):
    return x ** 2
def coefficients(N, initial_condition, L):
```

```
output = [coefficient(i + 1, N, initial_condition, L) for i in range(N)]
    output = np.array(output)
    return output
def coefficient(n, N, initial_condition, L):
   x = node_points(L, N)
    initial = [initial_condition(y) for y in x]
    initial = np.array(initial)
    output = np.dot(initial, eigenvector_w(n, N, L))
    output = output / np.dot(eigenvector_v(n, N, L), eigenvector_w(n, N, L))
    return output
# Forward-in-time (FIT)
# Neumann-Neumann (NN) Initial-Boundary-Value Problem
def solve_nn_fit(endpoint,
                  time_step,
                  number_of_time_steps,
                  number_of_nodes,
                  right_side,
                  initial_condition,
                  boundary_condition_left,
                  boundary_condition_right):
    j = number_of_time_steps
    increment = endpoint / (number_of_nodes - 1)
    coefficient_r = time_step / increment ** 2
    matrix_b = lambda number: 1 - coefficient_r * number
    matrix_a = lambda number: 1
    U = np.zeros((number_of_nodes,))
    for n in np.arange(number_of_nodes):
       l = eigenvalue(n + 1, number_of_nodes)
       V = eigenvector_v(n + 1, number_of_nodes, endpoint)
       c_n = coefficient(n + 1, number_of_nodes, initial_condition, endpoint)
       U = U + (matrix_b(1) / matrix_a(1)) ** j * c_n * V
    return U
# Backward-in-time (BIT)
# Neumann-Neumann (NN) Initial-Boundary-Value Problem
def solve_nn_bit(endpoint,
                  time_step,
                  number_of_time_steps,
                  number_of_nodes,
                  right_side,
                  initial_condition,
                  boundary_condition_left,
                  boundary_condition_right):
    U = np.zeros((number_of_nodes,))
    return U
# Crank-Nicolson (CN)
# Neumann-Neumann (NN) Initial-Boundary-Value Problem
def solve_nn_cn(endpoint,
                  time_step,
                  number_of_time_steps,
```

number_of_nodes,

```
right_side,
                               initial_condition,
                               boundary_condition_left,
                               boundary_condition_right):
       U = np.zeros((number_of_nodes,))
       return U
L = 1 \# endpoint
k = 0.0025 \# time_step
nmax = 3 # number_of_nodes
end_time = 0.5
jmax = int(end_time / k) # number_of_time_steps
answer_a = solve_nn_fit(L,
                               k,
                               jmax,
                               nmax,
                               Ο,
                               f,
                               0,
                               0)
(a)
                                               A(\mathbf{F}_2)\mathbf{U}^{j+1} = B(\mathbf{F}_2)\mathbf{U}^j
(2.4)
                                                            \mathbf{U}^0 = \mathbf{f}
(2.5)
                                                             c_n^0 = \frac{\mathbf{f} \cdot \mathbf{W}_n}{\mathbf{V}_n \cdot \mathbf{W}_n}
(2.6)
(2.7)
                                                          A(\lambda) = 1
                                                          B(\lambda) = 1 - r\lambda
(2.8)
(b)
                                               A(\mathbf{F}_2)\mathbf{U}^{j+1} = B(\mathbf{F}_2)\mathbf{U}^j
(2.9)
                                                            \mathbf{U}^0 = \mathbf{f}
(2.10)
                                                             c_n^0 = \frac{\mathbf{f} \cdot \mathbf{W}_n}{\mathbf{V}_n \cdot \mathbf{W}_n}
(2.11)
                                                          A(\lambda) = 1 + r\lambda
(2.12)
                                                          B(\lambda) = 1
(2.13)
(c)
                                               A(\mathbf{F}_2)\mathbf{U}^{j+1} = B(\mathbf{F}_2)\mathbf{U}^j
(2.14)
                                                            \mathbf{U}^0 = \mathbf{f}
(2.15)
                                                              c_n^0 = \frac{\mathbf{f} \cdot \mathbf{W}_n}{\mathbf{V}_n \cdot \mathbf{W}_n}
(2.16)
                                                          A(\lambda) = 1 + r\lambda/2
(2.17)
                                                          B(\lambda) = 1 - r\lambda/2
(2.18)
```

6. Given the initial-boundary-value problem

$$(2.19) u_t - u_{xx} = 0, 0 < x < 1, t > 0$$

$$(2.20) u(x,0) = x^2, 0 < x < 1$$

$$(2.21) u_x(0,t) = 0 = u_x(1,t), t > 0$$

and the grid $x_1 = 0$, $x_2 = 1/3$, and $x_3 = 2/3$, so N = 3,

- (a) Use the matrix \mathbf{F}_2 to formulate a forward-in-time difference system.
- (b) Use the matrix \mathbf{F}_2 to formulate a backward-in-time difference system.
- (c) Use the matrix \mathbf{F}_2 to formulate a Crank-Nicolson difference system.
- (d) Use Fourier's method to solve the system (a).
- (e) Use Fourier's method to solve the system (b).
- (f) Use Fourier's method to solve the system (c).

(a)

(2.22)
$$A(\mathbf{F}_3)\mathbf{U}^{j+1} = B(\mathbf{F}_3)\mathbf{U}^j$$

$$(2.23) \mathbf{U}^0 = \mathbf{f}$$

$$(2.24) A(\lambda) = 1$$

$$(2.25) B(\lambda) = 1 - r\lambda$$

$$(2.26) c_n^j = \frac{\mathbf{U}^j \cdot \mathbf{W}_n}{\mathbf{V}_n \cdot \mathbf{W}_n}$$

$$= \left[\frac{B(\lambda_n)}{A(\lambda_n)} \right]^j c_n^0$$

(2.28)
$$= \left[\frac{B(\lambda_n)}{A(\lambda_n)}\right]^j \frac{\mathbf{f} \cdot \mathbf{W}_n}{\mathbf{V}_n \cdot \mathbf{W}_n}$$

$$\mathbf{U}^{j} = \sum_{n=0}^{N} c_{n}^{j} \mathbf{V}_{n}$$

$$= \sum_{n=0}^{N} \left[\frac{B(\lambda_n)}{A(\lambda_n)} \right]^j c_n^0 \mathbf{V}_n$$

(2.31)
$$= \sum_{n=0}^{N} (1 - r\lambda_n)^{-j} c_n^0 \mathbf{V}_n$$

(2.32)

(b)

(2.33)
$$A(\mathbf{F}_3)\mathbf{U}^{j+1} = B(\mathbf{F}_3)\mathbf{U}^j$$

$$(2.34) \mathbf{U}^0 = \mathbf{f}$$

$$(2.35) c_n^0 = \frac{\mathbf{f} \cdot \mathbf{W}_n}{\mathbf{V}_n \cdot \mathbf{W}_n}$$

$$(2.36) A(\lambda) = 1 + r\lambda$$

$$(2.37) B(\lambda) = 1$$

(2.38)
$$A(\mathbf{F}_3)\mathbf{U}^{j+1} = B(\mathbf{F}_3)\mathbf{U}^j$$

$$(2.39) \mathbf{U}^0 = \mathbf{f}$$

$$c_n^0 = \frac{\mathbf{f} \cdot \mathbf{W}_n}{\mathbf{V}_n \cdot \mathbf{W}_n}$$

$$(2.41) A(\lambda) = 1 + r\lambda/2$$

$$(2.42) B(\lambda) = 1 - r\lambda/2$$

7. Given the initial-boundary-value problem

$$(2.43) u_t - u_{xx} = 0, 0 < x < 1, t > 0$$

$$(2.44) u(x,0) = x, 0 < x < 1$$

$$(2.45) u_x(0,t) = 0 = u_x(1,t), t > 0$$

and the grid $x_1 = 0$, $x_2 = 1/4$, $x_3 = 1/2$, $x_4 = 3/4$, and $x_5 = 1$, so N = 5,

- (a) Use the matrix \mathbf{F}_2 to formulate a forward-in-time difference system.
- (b) Use the matrix \mathbf{F}_2 to formulate a backward-in-time difference system.
- (c) Use the matrix \mathbf{F}_2 to formulate a Crank-Nicolson difference system.
- (d) Use Fourier's method to solve the system (a).
- (e) Use Fourier's method to solve the system (b).
- (f) Use Fourier's method to solve the system (c).

CHAPTER 3

Numerical Solutions of Hyperbolic Equations

1. Difference Methods for a Scalar Initial-Value Problem

- 1. Modify Algorithm 9.1 to implement
- (a) FTBS method
- (b) FTFS method
- (c) Lax-Friedrichs method
- (d) leapfrog method
- **2.** Approximate the solution of the initial-value problem of Example 9.1.3 on the interval $0 \le x \le 1$ for $0 \le t_j \le 1.5$ with h = 0.1 and k = 0.075 using
- (a) FTBS method
- (b) Lax-Friederichs method
- (c) leapfrog method
- **3.** Repeat exercise 2 with h = 0.1 and k = 0.1.
- 4. Given the initial-value problem

$$(1.1) u_x + u_t = 2xt + x^2, -\infty < x < \infty, t > 0$$

$$(1.2) u(x,0) = 0, -\infty < x < \infty$$

(1.3)

whose exact solution is $u(x,t) = x^2t$. Find the local truncation error for this problem when using (a) FTBS method

- (b) Lax-Wendroff method
- 8. Consider the initial-value problem

$$(1.4) u_x + u_t = 0, -\infty < x < \infty, t > 0$$

(1.5)
$$u(x,0) = \begin{cases} 1, & |x| < 0.5, \\ 0, & |x| \ge 0.5, \end{cases} -\infty < x < \infty$$

Bibliography

[1] DuChateau, P., Zachmann, D. Applied Partial Differential Equations, Dover Publications Inc, Mineola, New York, 1989