Poznámka

Tyto poznámky jsou udělané z checklistu ke zkoušce, poznámek Lou van de Driese a "zelených slidů". A samozřejmě z předchozích poznámek. A s vlastními poznámkami, např. ze zkoušky, ze které jsem vyletěl.

1 Definice

1.1 Výroková logika

Definice 1.1 (Logické spojky)

Základem výrokové logiky je 5 symbolů (2 hodnoty + 3 logické spojky): $\top \bot \neg \land \lor = \text{pravda}$, lež, negace, a, nebo.

Zatím jim nepřiřazujeme žádný "význam". Ten získávají až následnými definicemi, zvláště axiomy.

Definice 1.2 (Prvorvýroky (atomy))

Dále jsou důležité výrokové atomy z nějaké abecedy, tj. z libovolné množiny.

Definice 1.3 (Výroky)

Libovolný výrok je pak konečným aplikováním logických spojek, jak je chápeme běžně (TODO), na atomy a \top , \bot .

Definice 1.4 (Polská (= prefixová) notace)

"Nejprve píšeme funkce (tj. zatím jen spojky), za nimi příslušný počet argumentů (včetně dalších funkcí s dalšími argumenty)."

Definice 1.5 (Pravdivostní ohodnocení)

Pravděpodobnostní ohodnocení je zobrazení t z prvovýroků do $\{0,1\}$. Toto zobrazení lze jednoznačně rozšířit na t' na všechny výroky:

$$t'(\top) = 1$$
, $t'(\bot) = 0$, $t'(\neg a) = 1 - t'(a)$,

$$t'(a \lor b) = \max\{t'(a), t'(b)\}, \quad t'(a \land b) = \min\{t'(a), t'(b)\}.$$

Definice 1.6 (Splnitelný výrok)

Výrok p je splnitelný \equiv existuje $t: A \rightarrow \{0, 1\}$ takové, že t(p) = 1.

Definice 1.7 (Tautologie (výroková))

Výrok p je tautologie (notace $\models p$) $\equiv t(p) = 1$ pro všechna $t: A \to \{0, 1\}$.

Definice 1.8 (Model)

Model (koho, čeho) Σ (výrokové teorie) je každé pravděpodobnostní ohodnocení t, které přiřazuje 1 všem výrokům ze Σ .

Definice 1.9 (Vyplývání)

Říkáme, že p je tautologický důsledek Σ (píšeme $\Sigma \models p$, říkáme p vyplývá ze Σ) $\equiv t(p) = 1$ pro všechny modely t (koho čeho) Σ .

Definice 1.10 (Disjunktivní normální tvar)

Výrok (nad konečnou množinou prvovýroků $A = \{a_1, \ldots, a_n\}$) je v disjunktivním normálním tvaru, pokud je tvaru $p_1 \vee \ldots \vee p_k$, kde každý tzv. disjunkt p_i je tvaru $[\neg]a_1 \wedge \ldots \wedge [\neg]a_n$, kde $[\neg]$ je buď \neg nebo nic.

Definice 1.11 (Výrokový axiom)

Zákony inempotence, komutativity, asociativity, distributivity, absorbce a DeMorganovy zákony. TODO

Není nutné znát nazpaměť.

Definice 1.12 (Odvozovací pravidlo (MP))

 $Z p a p \implies q$, odvodíme q.

Definice 1.13 (Důkaz (formální))

Formální důkaz (či důkaz) p z Σ je sekvence p_1, \ldots, p_n , kde $n \ge 1$ a $p_n = p$ tak, že $\forall k \in [n]$:

- bud $p_k \in \Sigma$,
- nebo p_k je výrokový axiom (viz skripta)
- nebo $\exists i, j \in [k-1]$ tak, že p_k lze odvodit pravidlem MP z p_i a p_j .

1.2 Predikátová logika

Definice 1.14 (Jazyk (= signatura), arita)

Jazyk (L) je množina symbolů, jíž je přiřazena tzv. arita, tedy zobrazení z L do \mathbb{N}_0 .

Dělí na relace (relační symboly) (L^r) a funkce (funkční symboly) (L^f) . Ale význam je jim přiřazen teprve ve strukturách.

Definice 1.15 (Struktura)

Struktura \mathcal{A} pro L je trojice $(A, (R^{\mathcal{A}})_{R \in L^r}, (F^{\mathcal{A}})_{F \in L^f})$ sestávající z množiny A (tzv. nosič) a vyjádření symbolů: pro každou m-ární relaci $R \in L^r$ máme její Interpretace (relaci, tak jak tvrdí TeMno) $R^{\mathcal{A}} \subseteq A^m$ (m-ární relace na A) a pro každou n-ární funkci $F \in L^f$ máme její interpretace (funkci tak, jak tvrdí TeMno) $F^{\mathcal{A}} : A^n \to A$.

Definice 1.16 (Interpretace rel. a fun. symbolů ve struktuře)

Viz minulé 2 definice. Až tím, že se symbol interpretuje v nějaké struktuře, získává význam.

Definice 1.17 (Podstruktura a rozšíření struktury)

 \mathcal{X} je podstruktura struktury \mathcal{Y} , značíme $\mathcal{X} \subseteq \mathcal{Y}$, pokud $X \subseteq Y$ a nosná množina X je uzavřená na zobrazení funkcemi a funkce i relace z \mathcal{X} jsou zúžením všech funkcí a relací \mathcal{Y} . Taktéž říkáme, že \mathcal{Y} je rozšíření \mathcal{A} .

Definice 1.18 (Homomorfismus / vnoření / izomorfismus)

At \mathcal{A} a a \mathcal{B} jsou struktury (pro tentýž jazyk). Homomorfismus $h: \mathcal{A} \to \mathcal{B}$ je zobrazení $h: \mathcal{A} \to \mathcal{B}$ tak, že $\forall m$ -nární $R \in L^r$ a každé $(a_1, \ldots, a_m) \in A^m$ máme $(a_1, \ldots, a_m) \in R^{\mathcal{A}} \Longrightarrow (ha_1, \ldots, ha_m) \in R^{\mathcal{B}}$. $\forall n$ -nární $F \in L^f$ a každé $(a_1, \ldots, a_n) \in A^n$ je $h(F^{\mathcal{A}}(a_1, \ldots, a_n)) = F^{\mathcal{B}}(ha_1, \ldots, ha_n)$.

Pokud nahradíme implikaci v předchozí definici ekvivalencí, dostaneme tzv. silný homomorfismus. Speciálními případy jsou vnoření, tedy prostý silný homomorfismus, a isomorfismus, tedy bijektivní silný homomorfismus.

Definice 1.19 (Kongruence a faktorstruktura)

Kongruence je ekvivalence taková, že pokud jsou v relaci nějaké prvky, tak jsou v relaci i kongruentní prvky. Stejně tak obraz kongruentních prvků je kongruentní prvek k obrazu původních.

Faktostruktura je struktura, která má za prvky ekvivalenční týdny.

Definice 1.20 (Součin struktur)

Triviální. TODO!

Definice 1.21 (Proměnná a term)

Proměnné: $Var = \{v_0, v_1, v_2, \ldots\}$ je spočetná (nekonečná) množina.

Poznámka

Většinou by nevadila ani nespočetná. Naopak spočetná by nám rozbíjela skládání výroků.

L-term je slovo na abecedě $L^f \cup Var$ získané jako: každá proměnná je L-term a kdykoliv je $F \in L^f$ n-nární relace a t_1, \ldots, t_n L-termy, pak je $Ft_1 \ldots t_n$ L-term.

Definice 1.22 (Termová operace)

Buď \mathcal{A} L-struktura a $t = t(\mathbf{x})$ je L-term, kde $\mathbf{x} = (x_1, \dots, x_m)$. Potom spojujeme pár (t, \mathbf{x}) s funkcí $t^{\mathcal{A}} : A^m \to A$ následovně:

- Pokud t je proměnná x_i , potom $t^{\mathcal{A}}(\mathbf{a}) = a_i$ pro $\mathbf{a} = (a_1, \dots, a_m) \in A^m$.
- Pokud $t = Ft_1 \dots t_n$, kde $F \in L^f$ je n-ární a t_1, \dots, t_n jsou L-termy, potom $t^{\mathcal{A}}(\mathbf{a}) = F^{\mathcal{A}}(t_1^{\mathcal{A}}(\mathbf{a}), \dots, t_n^{\mathcal{A}}(\mathbf{a}))$ pro $\mathbf{a} \in A^m$.

Definice 1.23 (Podstruktura generovaná množinou)

Mějme strukturu a množinu (oindexovanou) prvků z ní. Pokud tuto množinu uzavřeme na funkce a funkce i relace zúžíme, pak dostaneme podstrukturu, která se nazývá generovaná danou množinou prvků (a ty se nazývají generátory).

Definice 1.24 (Atomická formule)

Atomická L-formule je slovo z abecedy $L \cup Var \cup \{\top, \bot, =\}$, které je tvaru buď \top, \bot , nebo termy jsou v relaci $(Rt_1 \dots t_m, \text{ kde } R \in L^r \text{ je } m\text{-nární relace a } t_1, \dots, t_m \text{ jsou } L\text{-termy}),$ nebo $= t_1t_2$ (kde t_1 a t_2 jsou L-termy).

Definice 1.25 (Formule, sentence)

L-formule je slovo na abecedě $L \cup Var \cup \{\top, \bot, \neg, \lor, \land, =, \exists, \forall\}$, které je buď atomická formule, nebo $\neg \varphi, \lor \varphi \psi, \land \varphi \psi$, kde φ a ψ jsou L-formule, nebo $\exists x \varphi, \forall x \varphi$, kde φ je formule a x je proměnná.

Sentence je formule, kde všechny výskyty proměnné jsou vázané.

Definice 1.26 (Vázaný a volný výskyt proměnné)

Pokud se proměnná vyskytuje v podformuli tvaru $\exists x \varphi$ nebo $\forall x \varphi$, pak se tento výskyt nazývá vázaný, pokud se vyskytuje jinde, pak je tento výskyt volný.

Definice 1.27 (Substituce termů do formulí)

Píšeme $\varphi(x_1,\ldots,x_n)$, abychom zvýraznili, že právě proměnné x_1,\ldots,x_n jsou volné v φ .

Do formule dosazujeme $(\varphi(t_1/x_1,\ldots,t_n/x_n))$ naráz a nahrazujeme všechny volné výskyty dané proměnné.

Místo $\varphi(t_1/x_1,\ldots,t_n/x_n)$ budeme psát $\varphi(t_1,\ldots,t_n)$.

Definice 1.28 (Expanze struktury o jména)

Jazyk L rozšiřujeme o jména, tj. konstantní symboly reprezentující prvky, o kterých se chceme bavit (množina C), na L_C . Místo L-struktury $\mathcal A$ s nosnou množinou $A\supseteq C$ potom můžeme počítat s expandovanou L_C -strukturou $\mathcal A_C$, která má stejnou nosnou množinu, stejnou interpretaci L symbolů a symboly z $L_C \setminus L$ interpretuje jako dané prvky (funkce s aritou nula, které zobrazují na tyto prvky) množiny A.

Definice 1.29 (Tarského definice splňování)

 L_A -sentence σ je pravdivá v L-struktuře \mathcal{A} (píšeme $\mathcal{A} \models \sigma$ a čteme σ je pravdivá / splněna v \mathcal{A}) takto:

- $\mathcal{A} \models \top \ a \ \mathcal{A} \not\models \bot$,
- $\mathcal{A} \models Rt_1 \dots t_m$ právě tehdy, pokud $(t_1^{\mathcal{A}}, \dots, t_m^{\mathcal{A}}) \in R^{\mathcal{A}}$ pro m-nární relaci $R \in L^r$ a $L_{\mathcal{A}}$ termy bez volných proměnných t_1, \dots, t_m ,
- $\mathcal{A} \models t_1 = t_2$ právě tehdy, když $t_1^A = t_2^A$ pro L_A -termy bez volných proměnných t_1, t_2 ,
- $\sigma = \neg \sigma_1$, potom $\mathcal{A} \models \sigma$ právě tehdy, pokud $\mathcal{A} \not\models \sigma_1$,
- $\sigma = \sigma_1 \vee \sigma_2$, potom $\mathcal{A} \models \sigma$ právě tehdy, pokud $\mathcal{A} \models \sigma_1$ nebo $\mathcal{A} \models \sigma_2$,
- $\sigma = \sigma_1 \wedge \sigma_2$, potom $\mathcal{A} \models \sigma$ právě tehdy, pokud $\mathcal{A} \models \sigma_1$ a $\mathcal{A} \models \sigma_2$,
- $\sigma = \exists x \varphi(x)$, potom $\mathcal{A} \models \sigma$ tehdy a jen tehdy, když $\mathcal{A} \models \varphi(\underline{a})$ pro nějaké $a \in \mathcal{A}$,
- $\sigma = \forall x \varphi(x)$, potom $\mathcal{A} \models \sigma$ tehdy a jen tehdy, když $\mathcal{A} \models \varphi(\underline{a})$ pro všechna $a \in A$.

Definice 1.30 ((0-)definovatelné množiny)

$$\varphi(x_1,\ldots,x_n)$$
 definuje množinu $\varphi^{\mathcal{A}} = \{(a_1,\ldots,a_n): \mathcal{A} \models \varphi(a_1,\ldots,a_n)\}.$

Pokud existuje L-formule definující $S \subseteq A^n$, potom říkáme, že formule je 0-definovatelná v A. Množina je pak definovatelná tehdy, pokud existuje L_A -formule definující tuto množinu.

Definice 1.31 (Otevřená formule)

Otevřená formule je taková formule, která neobsahuje žádný kvantifikátor.

Definice 1.32 (Teorie a její model)

Říkáme, že struktura \mathcal{A} je model teorie (= množiny L-sentencí) Σ , když $\mathcal{A} \models \sigma$ pro všechny $\sigma \in \Sigma$.

Definice 1.33 (Logický důsledek (vyplývání))

Říkáme, že σ vyplývá z Σ (píšeme $\Sigma \models \sigma$), pokud σ je pravdivá v každém modelu (koho, čeho) Σ . (Van de Dries dokonce uvádí i pro formule, kde je potom, že vyplývá, pokud její generální uzávěr vyplývá.)

Definice 1.34 (Generální uzávěr formule)

Generální uzávěr formule $\varphi = \varphi(x_1, \dots, x_n)$ je formule $\forall x_1, \dots, x_n \varphi$.

Také definujeme $\mathcal{A} \models \varphi \equiv \mathcal{A} \models x_1 \dots x_n \varphi$.

Definice 1.35 (Výrokový axiom)

TODO.

Není nutné znát nazpamět.

Definice 1.36 (Axiomy rovnosti)

TODO.

Definice 1.37 (Axiom specifikace (pro kvantifikátory))

Kvantifikátorové axiomy v L jsou formule (pro všechny L-formule φ) $\varphi(t/y) \implies \exists y \varphi$ a $\forall y \varphi \implies \varphi(t/y)$.

Definice 1.38 (Substituovatelnost termu)

Term t je substituovatelný za proměnnou a ve formuli φ , jestliže žádná proměnná (žádný její výskyt) v t se nestane vázanou.

Definice 1.39 (Odvozovací pravidla (MP a G))

Modus Ponens (MP): z φ a $\varphi \implies \psi$ odvodíme $\psi.$

Generalizační pravidla (G): pokud se proměnná x nevyskytuje volně v φ , potom z $\varphi \implies \psi$ odvodíme $\varphi \implies \forall x \psi$ a z $\psi \implies \varphi$ odvodíme $\exists x \psi \implies \varphi$.

Definice 1.40 (Důkaz (formální) a dokazatelnost)

Formální důkaz, nebo prostě důkaz φ z Σ je posloupnost $\varphi_1, \ldots, \varphi_n$ formulí, kde $n \geq 1$ a $\varphi_n = \varphi$, takových, že $\forall k \in [n]$:

- je buď $\varphi_k \in \Sigma$,
- nebo φ_k je logický axiom,
- nebo φ_k může být odvozen z φ_i a φ_i (φ_i) pomocí MP (G), pro nějaké i, j.

Pokud existuje důkaz φ z teorie Σ , potom píšeme $\Sigma \vdash \varphi$ a říkáme, že φ je dokazatelné ze Σ .

Definice 1.41 (Kanonická struktura)

Kanonická struktura teorie Σ je $\mathcal{A}_{\Sigma} := T_L / \sim_{\Sigma}$. $R^{A_{\Sigma}}$ nebo $F^{A_{\Sigma}}$ je potom relace nebo funkce, přijímající bloky ekvivalence.

Kde T_L je množina L-termů a \sim_{Σ} je definováno jako

$$t_1 \sim_{\Sigma} t_2 \Leftrightarrow \Sigma \vdash t_1 = t_2.$$

Definice 1.42 (Kompletní teorie)

Teorie Σ je kompletní, pokud pro každou formuli φ je buď $\Sigma \vdash \varphi$ nebo (výlučné, tj. je konzistentní) $\Sigma \vdash \neg \varphi$.

Definice 1.43 (Henkinovský svědek)

(V teorii Σ :) (Henkinovský) svědek sentence $\exists x \varphi(x)$ je konstantní term $t \in T_L$ tak, že $\Sigma \vdash \varphi(t)$. Říkáme, že Σ je henkinovská teorie (má svědky), jestliže existuje svědek pro každou sentenci $\exists x \varphi(x)$.

Definice 1.44 (Redukt struktury, expanze struktury)

Buď \mathcal{A} L-struktura a \mathcal{A}^* L^* -struktura, kde $L^* \supseteq L$. Pokud mají \mathcal{A} a \mathcal{A}^* stejnou nosnou množinu a interpretaci symbolů v L, pak \mathcal{A} je redukt \mathcal{A}^* a \mathcal{A}^* je expanze \mathcal{A} .

Definice 1.45 (Varianta formule a prenexní tvar)

Varianta formule je formule získaná nějakým postupným nahrazováním $Qx\varphi$ za $Qy\varphi(y/x)$, kde $Q \in \{\forall, \exists\}$, kde y je substituovatelné za x v φ a y nemá volný výskyt v φ .

Formule je v prenexním tvaru, pokud je tvaru $Q_1x_1 \dots Q_nx_n\varphi$, kde x_1, \dots, x_n jsou různé proměnné, $Q_i \in \{\exists, \forall\}$ a φ je formule bez kvantifikátorů (otevřená formule).

1.3 Teorie modelů

Definice 1.46 (Elementární ekvivalence / vnoření)

Buďte \mathcal{A}, \mathcal{B} dvě L-struktury, $C \subseteq A$ a $h: C \to B$ zobrazení. Řekneme, že h je $(\mathcal{A}, \mathcal{B})$ -podobnost, pokud pro každou L_C -sentenci σ platí $A \models \sigma \Leftrightarrow B \models \sigma_h$.

Existuje-li nějaká $(\mathcal{A}, \mathcal{B})$ -podobnost (kde $C = \emptyset$), říkáme, že \mathcal{A} je elementárně ekvivalentní s \mathcal{B} , píšeme $\mathcal{A} \equiv \mathcal{B}$.

Je-li naopak dokonce C = A, říkáme, že h je elementární vnoření A do B.

Definice 1.47 (Skolemizace a rozšíření o definice)

TODO???

Definice 1.48 (Konzervativní rozšíření teorie)

 Σ' se nazývá konzervativní nad Σ , pokud pro každou L-sentenci σ je

$$\Sigma' \vdash_{L'} \sigma \Leftrightarrow \Sigma \vdash_L \sigma.$$

Definice 1.49 (Definice (interpretace) struktury ve struktuře)

TODO!

Definice 1.50 (Aritmetiky)

Definice 1.51 (Presburgerova aritmetika)

Uvažujme jazyk $K=\{0,S,+\}$, kde 0 je konstantní symbol, S je unární funkční a + binární funkční symbol. Presburgerova aritmetika je K-teorie obsahující právě následující axiomy:

- 1. $Sx \neq 0$;
- $2. Sx = Sy \implies x = y;$
- $3. \ x \neq 0 \implies \exists y : x = Sy;$
- 4. x + 0 = x;
- $5. \ x + Sy = S(x+y);$

a navíc schéma axiomů indukce (pro každou K-formuli φ):

$$(\varphi(0/x) \wedge \forall x (\varphi(x) \implies \varphi(Sx/x))) \implies \forall x \varphi.$$

Definice 1.52 (Robinsonova a Peanova aritmetika (tj. včetně ·))

Rozšíříme K na $L=K\cup\{\cdot\}$, kde · je binární funkční symbol, a přidejme k předchozím axiomům navíc $x\cdot 0=0$ a $x\cdot Sy=x\cdot y+x$. Navíc schéma indukce nyní uvažujme pro všechny L-formule. Výsledné L-teorii se říká Peanova aritmetika (P nebo PA). Její (konečnou) podteorii, která vznikne vypuštěním všech axiomů indukce, nazýváme Robinsonova aritmetika (Q či RA).

2 Lemma, tvrzení, věty

2.1 Výroková logika

Lemma 2.1 (O jednoznačném čtení výroku) Lemma 2.2 Buďte t_1, \ldots, t_m a u_1, \ldots, u_n jsou přijatelná slova a w libovolné slovo tak, že $t_1 \ldots t_m w =$ u_1-u_n . Potom $m \leq n$, $t_i = u_i$ pro $i \in [m]$ a $w = u_{m+1} \dots u_n$. $D\mathring{u}kaz$ Bez důkazu. $Ka\check{z}d\acute{e}$ přijatelné slovo je tvaru $ft_1 \dots t_n$ pro právě jednu (n+1)-tici (f,t_1,\dots,t_m) , kde $f \in F$ (F jsou symboly s přiřazenou aritou) je arity m a t_1, \ldots, t_n jsou přijatelná slova. DůkazPředpokládejme, že $ft_1 \dots t_n = gu_1 \dots u_m$. Potom z předchozího lemmatu máme f = g, tj. n = m a $t_i = u_i$ pro všechna $i \in [n]$. Lemma 2.3 (Nevím, zda je potřeba) Pro přijatelné slovo w a $1 \leq i \leq lenght(w)$ existuje právě jedno přijatelné slovo začínající ve slově w na pozici i. $D\mathring{u}kaz$

Tvrzení 2.4 (Disjunktivní normální tvar)

Indukcí vzhledem k length(w).

Každý výrok (nad konečnou množinou prvovýroků) je ekvivalentní nějakému výroku v disjunktivním normálním tvaru.

 $D\mathring{u}kaz$

Pro výrok, který není splnitelný, použijeme disjunkci 0 výroků. Jinak pro každé pravdivostní ohodnocení (těch je konečně mnoho), které přiřadí v jedničku, přidáme do disjunkce člen, který bude mít negaci podle toho, zda byl nebo nebyl daný atom ohodnocen 1 nebo nulou.

Lemma 2.5 (O dedukci)

 $P\check{r}edpokl\acute{a}dejme\ \Sigma \cup \{p\} \vdash q.\ Potom\ \Sigma \vdash p \implies q.$

Důkaz (Indukcí)

Pokud je q výrokový axiom, pak $\Sigma \vdash q$ a jelikož $q \implies (p \implies q)$ je výrokový axiom, MP říká $\Sigma \vdash p \implies q$.

Pokud $q \in \Sigma \cup \{p\}$, pak buď $q \in \Sigma$ a potom ze stejného důvodu $\Sigma \vdash p \implies q$. Nebo p = q a potom $\Sigma \vdash p \implies q$, jelikož $\vdash p \implies p$.

Jinak je qodvozeno pomocí MP z r a $r \implies q$, kde $\Sigma \cup \{p\} \vdash r, r \implies q$. Můžeme pak z IP předpokládat $\Sigma \vdash p \implies r, p \implies (r \implies q)$. Potom $\Sigma \vdash p \implies q$ dvojnásobným aplikováním MP z

$$(p \Longrightarrow (r \Longrightarrow q)) \Longrightarrow ((p \Longrightarrow r) \Longrightarrow (p \Longrightarrow q)).$$

Věta 2.6 (O úplnosti)

Lemma 2.7 (Lindenbaum)

Předpokládejme, že Σ je konzistentní. Potom existuje úplná $\Sigma'\supseteq\Sigma$. ($\Sigma'\subseteq Prop(A)$.)

 $D\mathring{u}kaz$

Standardní aplikace Zornova lemmatu. (A důkaz může být pouze z konečné množiny výroků.) $\hfill\Box$

Lemma 2.8

Předpokládejme Σ je úplné. Potom pro každý výrok p je

$$\Sigma \vdash p \Leftrightarrow t_{\Sigma}(p) = 1.$$

Tedy t_{Σ} je model Σ . Kde t_{Σ} je definováno jako

$$t_{\Sigma}(a) = 1 \Leftrightarrow \Sigma \vdash a.$$

 $D\mathring{u}kaz$

Indukcí. TODO

$$\Sigma \vdash p \Leftrightarrow \Sigma \models p$$
.

Neboli Σ je konzistentní právě tehdy, pokud Σ má model.

Důkaz
Pomocí Lindenbaumova lemmatu najdeme úplnou nadmnožinu Σ. Podle předchozího lemmatu má model. Tedy i Σ má model.

Opačná implikace je triviální (ponechána čtenáři, pokud se dá dokázat \bot , pak je $t(\bot) = 1$, ale my z definice víme, že je $t(\bot) = 0$. 4)

2.2 Predikátová logika

Tvrzení 2.10 (Týkající se bezprostředně h/v/i)

TODO!

Věta 2.13 (O úplnosti)

(Krom technických lemmat jako např. 3.1.2, 3.2.3, 3.2.8-10).

$$\Sigma \vdash p \Leftrightarrow \Sigma \models p$$
.

Neboli Σ je konzistentní právě tehdy, pokud Σ má model.

$ar{ extit{D}\mathring{u}kaz}$	
\Leftarrow jasné. \Longrightarrow : TODO!!!	
Věta 2.14 (O kompaktnosti)	
Pokud $\Sigma \models p$, potom existuje konečná $\Sigma_0 \subseteq \Sigma$ tak, že $\Sigma_0 \models p$.	
Neboli pokud každá konečná podmnožina Σ má model, potom Σ má model.	
au D ů kaz	
TODO? (Nenašel jsem důkaz.)	

2.3 Teorie modelů

Tvrzení 2.15 (Týkající se bezprostředně elem. e/v) TODO!

Věta 2.16 (Löwenheim-Skolem)

Spočetná verze: Předpokládejme, že L je spočetné a Σ má model. Potom Σ má spočetný model.

 $D\mathring{u}kaz$

Jelikož Var je spočetné, ze spočetnosti L dostáváme spočetnost množiny všech L-sentencí. Můžeme tedy jazyk L doplnit o svědky bez ztráty spočetnosti. Tedy můžeme postupovat stejně jako ve větě o úplnosti, a protože sjednocení spočetně mnoha spočetných množin je spočetné, tak i L_{∞} z důkazu je spočetné. Tedy $\mathcal{A}_{\Sigma_{\infty}}$ je spočetný a jeho redukt $A_{\Sigma_{\infty}}|_{L}$ je spočetný model Σ .

Obecná verze: Předpokládejme, že L je kardinality nejvýše \varkappa a Σ má nekonečný model. Potom Σ má model kardinality \varkappa .

Důkaz TODO!

Tvrzení 2.17 (Vaughtův test)

Nechť L je spočetné, Σ má model a všechny spočetné modely Σ jsou izomorfní. Potom Σ je úplné.

TODO!