

Melbourne Bioinformatics Seminar

Hatching a plot (and more) on the command line: part 3

Bernard Pope
Victorian Health and Medical Research Fellow
Melbourne Bioinformatics
The University of Melbourne, Australia

Another Hatch talk?

* The beatings talks will continue until morale improves someone else uses hatch

Recap

- · Hatch is a command line tool for analysing and visualising data.
- · Input is tabular data in CSV or TSV format.
- · Output is (one or both of):
 - plot(s)
 - transformed tabular data in CSV or TSV format
- · Built on top of pandas, scikit-learn, numpy, matplotlib, seaborn.

Simple example

cat iris.csv hatch pretty							
sepal_length	sepal_width	petal_length	petal_width	species			
5.1	3.5	1.4	0.2	setosa			
4.9	3.0	1.4	0.2	setosa			
4.7	3.2	1.3	0.2	setosa			
4.6	3.1	1.5	0.2	setosa			
5.0	3.6	1.4	0.2	setosa			
• • •	• • •	• • •	• • •	• • •			
6.7	3.0	5.2	2.3	virginica			
6.3	2.5	5.0	1.9	virginica			
6.5	3.0	5.2	2.0	virginica			
6.2	3.4	5.4	2.3	virginica			
5.9	3.0	5.1	1.8	virginica			

Simple example

cat iris.csv hatch describe						
	sepal_length	sepal_width	petal_length	petal_width	species	
count	150.000000	150.000000	150.000000	150.000000	150	
unique	NaN	NaN	NaN	NaN	3	
top	NaN	NaN	NaN	NaN	versicolor	
freq	NaN	NaN	NaN	NaN	50	
mean	5.843333	3.054000	3.758667	1.198667	NaN	
std	0.828066	0.433594	1.764420	0.763161	NaN	
min	4.300000	2.000000	1.000000	0.100000	NaN	
25%	5.100000	2.800000	1.600000	0.300000	NaN	
50%	5.800000	3.000000	4.350000	1.300000	NaN	
75%	6.400000	3.300000	5.100000	1.800000	NaN	
max	7.900000	4.400000	6.900000	2.500000	NaN	

Simple example

cat iris.csv | hatch box -x species -y sepal_length

output is written to hatch.species.sepal_length.box.png

Equivalently

hatch box -x species -y sepal_length < iris.csv

output is written to hatch.species.sepal_length.box.png

Purpose and philosophy

- · Fast, convenient and flexible data analytics on the command line.
- · Large input data sets are supported (> millions rows).
- · Simple tasks should be simple. Complex tasks should be possible.
 - · Highly customisable, but sensible defaults used extensively.

Supported basic plot types

Facets

cat mmr.csv | hatch count -x gene --hue classification --col expert_review

Supported data transformations

name	description
<u>corr</u>	pairwise correlation
<u>cut</u>	column selection
eval	compute new columns from existing data
filter	filter rows using a logical expression
<u>gmm</u>	Gaussian mixture model clustering
<u>head</u>	select the first N rows in the data
<u>kmeans</u>	k-means clustering
<u>melt</u>	reshape wide format into long format
pca	principal component analysis
pivot	reshape long format into wide format
sample	randomly sample rows
<u>sort</u>	sort rows
<u>tail</u>	select the last N rows in the data

Limitations of previous version

- · Only one plot per command.
- · filter, eval, sample done in predefined order, and only once per invocation of hatch.
- · Not modular.
 - · For example: PCA plot might involve pca-transformation, clustering, and a scatter plot.
 - · Previously these were all bundled together in one command.
 - · Each part ought to be usable on its own.
 - · No way to combine parts in novel ways.
- · Inadequate documentation.
- · No logo!

Addressing the most important problem first

clearly I'm not a graphic artist

Modularity brainwave

- · Make each basic task its own command.
- · Allow commands to be chained together.
- · Data flows left to right in the chain.

how to express this on the command line?

```
hatch command<sub>1</sub> + command<sub>2</sub> + . . + command<sub>n</sub>
```

hatch command₁ + command₂ + . . + command_n

multiple commands are separated by +

data flows from left to right and may be transformed along the way

complex chains can be formed and multiple plots are possible

Commands have optional arguments

```
hatch command<sub>1</sub> [args] + . . + command<sub>n</sub> [args]
```

Standard input

if the first command is
not an explicit input
command hatch inserts
an implicit stdin at the
start of the chain

Standard output

if the last command is a data transformation then hatch inserts an implicit stdout at the end of the chain

Standard input and output

stdin* and stdout are
commands that read/
write data from the
standard input/output
device in CSV format by
default. You can specify
explicitly with --format
argument.

Named input and output files

hatch in iris.csv + tail

there is an implicit + stdout at the end of this chain

<u>in</u> is a command that reads data from a named file. The format is guessed from the extension but you can specify explicitly with --format

Named input and output files

hatch tail + out new.tsv

there is an implicit stdin + at the start of this chain

out is a command that writes data to a named file. The format is guessed from the extension but you can specify explicitly with --format

Named input and output files

hatch in iris.csv + tail + out new.csv

no implicit stdin or stdout here

Data transformation example

```
cat iris.csv | hatch sort -c sepal_length + tail 10
sepal_length,sepal_width,petal_length,petal_width,species
7.2,3.2,6.0,1.8, virginica
7.2,3.6,6.1,2.5, virginica
7.3,2.9,6.3,1.8, virginica
7.4,2.8,6.1,1.9, virginica
7.6,3.0,6.6,2.1, virginica
7.7,2.8,6.7,2.0, virginica
7.7,2.6,6.9,2.3, virginica
7.7,3.8,6.7,2.2, virginica
7.7,3.0,6.1,2.3, virginica
7.9,3.8,6.4,2.0, virginica
```

Data transformation example

```
cat iris.csv | hatch sort -c sepal_length + tail 10
sepal_length, sepal_width, petal_length, petal_width, species
7.2,3.2,6.0,1.8, virginica
7.2,3.6,6.1,2.5, virginica
7.3,2.9,6.3,1.8, virginica
7.4,2.8,6.1,1.9, virginica
7.6,3.0,6.6,2.1, virginica
7.7,2.8,6.7,2.0, virginica
7.7,2.6,6.9,2.3, virginica
7.7,3.8,6.7,2.2, virginica
7.7,3.0,6.1,2.3, virginica
7.9,3.8,6.4,2.0, virginica
```

input is read from stdin, then sorted (ascending) on the sepal length column, then the last 10 rows are selected and output to stdout

Data transformation and plotting example

cat iris.csv | hatch sort -c sepal_length + tail 10 + histogram -x sepal_length

*nothing is printed on stdout because the last command is a plot

Data transformation and interactive plotting example

cat iris.csv | hatch sort -c sepal_length + tail 10 + histogram -x sepal_length --show

An interactive window displays the current plot, no file is generated.

PCA example

cat iris.csv hatch pca + pretty							
sepal_length	sepal_width	petal_length	petal_width	species	pc1	pc2	
5.1	3.5	1.4	0.2	setosa	-2.264542	0.505704	
4.9	3.0	1.4	0.2	setosa	-2.086426	-0.655405	
4.7	3.2	1.3	0.2	setosa	-2.367950	-0.318477	
4.6	3.1	1.5	0.2	setosa	-2.304197	-0.575368	
5.0	3.6	1.4	0.2	setosa	-2.388777	0.674767	
• • •	• • •	• • •	• • •	• • •	• • •	• • •	
6.7	3.0	5.2	2.3	virginica	1.870522	0.382822	
6.3	2.5	5.0	1.9	virginica	1.558492	-0.905314	
6.5	3.0	5.2	2.0	virginica	1.520845	0.266795	
6.2	3.4	5.4	2.3	virginica	1.376391	1.016362	
5.9	3.0	5.1	1.8	virginica	0.959299	-0.022284	

PCA example

```
cat iris.csv | hatch pca + pretty
 sepal_length sepal_width petal_length petal_width
                                                        species
                                                                      pc1
                                                                                pc2
                                                  0.2
                                                         setosa -2.264542 0.505704
 pca defaults to 2 components, but you can
                                                  0.2
                                                         setosa -2.086426 -0.655405
specify more with the -n argument. Unless
                                                  0.2
                                                         setosa -2.367950 -0.318477
otherwise specified all numerical features are
                                                  0.2
              taken as inputs.
                                                         setosa -2.304197 -0.575368
                                                  0.2
                                                         setosa -2.388777 0.674767
          5.0
                       3.6
                                     1.4
          6.7
                       3.0
                                     5.2
                                                  2.3 virginica 1.870522 0.382822
          6.3
                                                  1.9 virginica 1.558492 -0.905314
                       2.5
                                     5.0
          6.5
                                                  2.0 virginica 1.520845 0.266795
                       3.0
                                     5.2
                                                  2.3 virginica 1.376391 1.016362
          6.2
                       3.4
                                     5.4
                                                  1.8 virginica 0.959299 -0.022284
```

[150 rows x 7 columns]

in this case 2 extra columns (pc1, pc2) are added to the data

PCA example with scatter plot

cat iris.csv | hatch pca + scatter -x pc1 -y pc2

PCA example with k-means clustering

cat iris.csv hatch pca + kmeans -n 2 -c pc1 pc2 + pretty							
sepal_length	sepal_width	petal_length	petal_width	species	pc1	pc2	cluster
5.1	3.5	1.4	0.2	setosa	-2.264542	0.505704	0
4.9	3.0	1.4	0.2	setosa	-2.086426	-0.655405	0
4.7	3.2	1.3	0.2	setosa	-2.367950	-0.318477	0
4.6	3.1	1.5	0.2	setosa	-2.304197	-0.575368	0
5.0	3.6	1.4	0.2	setosa	-2.388777	0.674767	0
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
6.7	3.0	5.2	2.3	virginica	1.870522	0.382822	1
6.3	2.5	5.0	1.9	virginica	1.558492	-0.905314	1
6.5	3.0	5.2	2.0	virginica	1.520845	0.266795	1
6.2	3.4	5.4	2.3	virginica	1.376391	1.016362	1
5.9	3.0	5.1	1.8	virginica	0.959299	-0.022284	1

PCA example with k-means clustering

cat iris.csv | hatch pca + kmeans -n 2 -c pc1 pc2 + pretty width species pc2 cluster pc1 use kmeans to find 2 clusters in the data using setosa -2.264542 0.505704 0.2 only the columns pc1 and pc2 setosa -2.086426 -0.655405 0.2 4.7 3.2 1.3 setosa -2.367950 -0.318477 0.2 4.6 3.1 setosa -2.304197 -0.575368 1.5 0.2 5.0 3.6 1.4 0.2 setosa -2.388777 0.674767 0 6.7 2.3 virginica 1.870522 0.382822 3.0 5.2 6.3 2.5 1.9 virginica 1.558492 -0.905314 5.0 6.5 3.0 2.0 virginica 1.520845 0.266795 5.2 6.2 3.4 5.4 2.3 virginica 1.376391 1.016362 1.8 virginica 0.959299 -0.022284

[150 rows x 8 columns]

1 extra column (cluster) is added to the data

PCA example with k-means clustering and scatter plot

cat iris.csv | hatch pca + kmeans -n 2 -c pc1 pc2 + scatter -x pc1 -y pc2 --hue cluster

cat TSO500.lfc.csv | hatch pretty -c chrom start end gene lfc gene ordinal sample code gene lfc gene ordinal sample code chrom start end 8025060.0 ERRFI1 0.391513 8013207.0 chr1 A1 chr1 9710453.0 9727048.0 PIK3CD -0.215299 A1 chr1 11107482.0 11259411.0 MTOR -0.135017 A1 chr1 15848065.0 15939429.0 SPEN 0.210534 A1 chr22 28687894.0 28741491.0 CHEK2 - 0.385767483 J9 chr22 29268006.0 29300527.0 EWSR1 -0.382720 484 J9 chr22 29603996.0 29694804.0 NF2 -0.109701 485 J9 chr22 37973492.0 37983786.0 SOX10 -0.922735 J9 486 chr22 41093002.0 41178958.0 EP300 0.180778 487 J9

cat TSO500.lfc.csv | hatch filter 'sample_code == "B1"' + gmm -n 2 -c lfc + histogram -x lfc --hue cluster --show

Code and documentation

· code:

github.com/bjpop/hatch

documentation:

hatch.readthedocs.io

TODO

- · More testing of the code.
- · Complete the documentation.
- · More useful plots and transformations.
- · Beg people to use it.
- · Try to publish.