DoNow

bigd103.link/wsj-youtube

Intro to Machine Learning

Machine learning is a subfield of computer science that focuses on building algorithms that rely on a collection of examples of some phenomenon. These examples may come from nature, be handcrafted by humans, or generated by another algorithm.
he Hundred-Page Machine Learning Book

Types of Learning

Supervised Learning

The dataset is a collection of labeled examples.

Unsupervised Learning

The dataset is a collection of unlabeled examples.

Semi-Supervised Learning

The dataset includes both labeled and unlabeled examples.

Reinforcement Learning

The machine interacts with an environment to maximize rewards.

Types of Learning

This class will focus on **Supervised Learning** and **Unsupervised Learning** as those are the most common.

Supervised Learning

Your "training" dataset is composed of examples of labeled examples:

- lacksquare X features
- Y labels

A supervised learning model learns to predict the label Y from the features X.

label: 5

label: 6

label: 6

label: 1

label: 5

label: 8

label: 7

label: 1

label: 2

label: 0

label: 6

label: 8

Unsupervised Learning

Your "training" dataset is composed of examples of unlabeled examples:

• X - features An unsupervised learning model learns to find patterns in the features X.

Supervised vs Unsupervised Learning

Semi-Supervised Learning

Your "training" dataset contains:

- A **small** set of labeled examples: (X_L, Y_L)
- A **large** set of unlabeled examples: X_U

The model learns from both labeled and unlabeled data to improve predictions.

Semi-Supervised in Action

Google Photos

- Initial Setup: You label a few faces
- After: Automatically groups all photos of that person
- Combines your labels with facial clustering
- YouTube Auto-Captions
 - Some videos: Human-transcribed (labeled)
 - Most videos: Auto-generated using both labeled and unlabeled audio

Reinforcement Learning

The model (agent) learns through **trial and error** by:

- State (S): What the agent observes
- Action (A): What the agent can do
- Reward (R): Feedback for actions taken

The agent learns a policy $\pi(S) o A$ to maximize cumulative rewards.

Reinforcement Learning in Action

Google Maps Route Suggestions

• Action: Suggest route

Reward: User selects route

 Learns: Traffic patterns and user choices

TikTok's "For You" Page

Action: Show video

• **Reward:** Watch time, likes, shares

Learns: What keeps you scrolling

The ML Pipeline

Most real-world ML systems follow this workflow:

Before We Dive Into Algorithms...

Key Questions to Ask:

- 1. What type of problem is it?
 - Classification, Regression, Clustering, etc.
- 2. What data do we have?
 - Labeled? Unlabeled? How much?
- 3. What's our goal?
 - Accuracy? Speed? Interpretability?
- 4. What are the constraints?
 - Computing power? Real-time requirements?

These questions determine which algorithm to use!