

(1) Publication number: 0 426 211 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 24.11.93 Bulletin 93/47

(21) Application number: 90202467.8

(22) Date of filing: 18.09.90

(5) Int. CI.⁵: **A23L 1/32**, A23D 7/00, A23J 7/00, A23L 1/24, A23P 1/06

(54) Food product containing dried lyso-phospholipoprotein.

30 Priority: 29.09.89 NL 8902419 19.04.90 GB 9008755

- (43) Date of publication of application: 08.05.91 Bulletin 91/19
- (45) Publication of the grant of the patent: 24.11.93 Bulletin 93/47
- Beginner Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI NL SE
- (56) References cited:
 GB-A- 1 525 929
 PATENT ABSTRACTS OF JAPAN, vol. 12, no. 148 (C-493)[2995], 7th May 1988; & JP-A-62 262 998 (Q P CORP.) 16-11-1987
 PATENT ABSTRACTS OF JAPAN, vol. 12, no. 501 (C-556)[3348], 27th December 1988; & JP-A-63 209 742 (Q P CORP.) 31-08-1988
- 73 Proprietor: UNILEVER N.V. Weena 455 NL-3013 AL Rotterdam (NL)
- 84 BE CH DE DK ES FR GR IT LI NL SE AT Proprietor: UNILEVER PLC Unilever House Blackfriars P.O. Box 68 London EC4P 4BQ (GB)

(84) GB

- | Inventor: Carrell, Rebecca Susan 19 Madingley Road Cambridge (GB) | Inventor: van Dijk, Wietse, Unilever Research Laboratory Olivier van Noortlaan 120 Vlaardingen (NL) | Inventor: Goddard, Mervyn Roy 27 Griffith Street Rushden Northamptonshire (GB) | Inventor: Hayes, John Bernard, Unilever Research Laboratory Olivier van Noortlaan 120 Vlaardingen (NL)
- (4) Representative: Hartong, Richard Leroy et al Unilever N.V. Patent Division P.O. Box 137 NL-3130 AC Vlaardingen (NL)

) 426 211 B1

Ш

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

This invention relates to foodstuffs, ingredients for foodstuffs or animal feed comprising phospholipoprotein which has been modified with phospholipase A and to a process of preparing such foodstuffs, ingredients for foodstuffs, or animal feed, as well as to the use of dried phospholipoprotein which has been modified with phospholipase A in foodstuffs, ingredients for foodstuffs or animal feed.

It is known from British Patent Specification GB-B-1,525,929 (Unilever) to treat phospholipoproteins or phospholipoprotein comprising materials, such as egg yolk, whole egg, blood serum, wheat protein, soybean, and the like with phospholipase A. Phospholipase A is an enzyme which effects cleavage of the bond binding a fatty acid radical to the glycerol part of the phospholipid molecule, thereby replacing this fatty acid radical by a hydroxyl group. In the case of phospholipase A_2 the fatty acid radical in the 2-position of the glycerol part of the phospholipid molecule is selectively splitted off.

The phospholipase A is also active when the phospholipid is complexed with protein (and then called phospholipoprotein throughout this specification and the attached claims). After the treatment with the phospholipase a lyso-phospholipoprotein (hereinafter referred to as "LPLP") is formed, in which a lyso-phospholipid is complexed with a protein. In GB-B-1,525,929 the use of the LPLP comprising material as an emulsion stabilizer, particularly in oil-in-water emulsions, enabled the manufacture of sterilisable emulsions, which in practice turned out to be commercially very successful, because they had a long shelf life and an excellent creamy taste. Example 10 thereof discloses a spray dried salted modified egg yolk from which cholesterol had been removed, which dry powder was used to prepare an oil-in-water emulsion. The degree of conversion was said to be "50% or higher" which indicates that the method used for determining the percentage was not quite quantitative; it seems correct to interpret this as "not less than ca 50%". This clearly is not a disclosure of a dry LPLP comprising product having a degree of conversion of 60 to 100% as the drying of highly converted products was known to be difficult without appreciable dissociation taking place causing instability.

In Japanese Patent Application JP-A-62 262,998 (Q.P. Corp.) there has been described a process for the manufacture of lysolecithin having substantially no residual enzyme activity. In this process a natural phospholipid containing substance, such as egg yolk, soybean, crude lecithin, and the like, is treated with phospholipase A₂ so that the phospholipid is converted into lyso-phospholipid, after which the thus treated material is spray-dried or freeze-dried, taking care that the temperature of the product is at most about 60°C, until the moisture content is at most 10% by weight. Subsequently the lyso-phospholipid is extracted from the powder obtained by means of a polar solvent, like methanol or ethanol, after which the polar solvent is evaporated from the extract and the lyso-lecithin, which is substantially free of any residual enzyme activity, is obtained.

The aim of the process according to JP-A-62 262 998 is to obtain a specific lysophospholipid-containing material (phospholipase A₂ treated yolk of chicken's egg) in the form of a powder which contained less than 10% of water which was solvent-extracted and after distilling off the solvent the residue contained 30 wt.% of lysophospholipid. It is indicated that the powder is useful for commercial practice, but there is no disclosure of using the material in foodstuffs. Ipso facto not for using this material to impart specific effects in foodstuffs as indicated in user claims 17-21.

It has now been found that it is possible to dry LPLP or LPLP comprising material, preferably to a moisture content of at most 10% by weight using air inlet temperatures of above 200°C, preferably from 210-240°C, and air outlet temperatures of 85°C and higher, e.g. from 85°C to 95°C, without dissociating the lyso-phospholipid-protein complex, which is surprising since the protecting influence of the water of hydratation is rapidly diminishing upon drying the complex, certainly at these relatively high temperatures.

It turned out that not only the excellent emulsion stabilizing effect of the LPLP was retained after drying, but that the dried LPLP (when incorporated into preferably dried foodstuffs) or LPLP comprising material additionally proved to be an excellent texture modifying agent upon its rehydration. Also the dried LPLP or LPLP comprising material upon incorporation into certain foodstuffs enabled the deletion of certain artificial food additives, such as for example the sequestering agents in creamers, thus enabling the manufacture of entirely natural foodstuffs. In other foodstuffs, like custards, the added dried LPLP or LPLP comprising material upon reconstitution surprisingly appeared to act as a glossing agent. Thus, by using the dried LPLP or LPLP comprising material in, preferably dried, particulate foodstuffs or ingredients for foodstuffs, it appeared that upon reconstitution with edible liquids like water, milk, fruit juices, bouillon, and the like, products were obtained with surprisingly improved properties. Hence an area of novel, preferably dried, foodstuffs has been disclosed by the present invention, which foodstuffs cannot only be used for human consumption, but also in animal feedstuffs, like for example calf milk replacer.

Therefore the present invention relates to a process for the manufacture of an LPLP-comprising foodstuff, which is characterized in that dried lyso-phospholipoprotein (LPLP) or dried LPLP-comprising material is incorporated therein. Preferably, the dried LPLP-comprising material has a moisture content of at most 10% by

weight.

5

30

35

45

By "foodstuff" is understood throughout this specification and the attached claims any ingestible material which can be used as foodstuff, an animal feed, or as an ingredient for a foodstuff or animal feed.

Preferably, the dried LPLP or dried LPLP-comprising material is incorporated into dried foodstuffs or dried ingredients for foodstuffs.

In some instances the moisture content of the dried LPLP can be somewhat higher, for example about 12% by weight, if the dried LPLP is admixed with very dry foodstuffs or ingredients for foodstuffs, so that after moisture migration and equilibration the average moisture content of the final mixture is at most 10% by weight.

The present invention also relates to a process for the manufacture of an LPLP-comprising foodstuff, which is characterized in that the foodstuff is selected from the group consisting of sauces, spreads, mayonnaise, dressings, soups, bakery products, creamers, creamer-thickeners, ice cream, drinks, dairy products, desserts, sherbets, meals, and combinations thereof.

The present invention finally relates to the use of dry LPLP or dried LPLP-comprising materials, preferably having a moisture content of at most 10% by weight, as a texture-modifying agent, a glossing agent, a freeze-thaw stabilizing agent, a heat-stabilizing agent, or a syneresis-inhibiting agent in a foodstuff.

The enzyme phospholipase A is an enzyme which effects cleavage of the bond binding a fatty acid radical to the glycerol part of the phospholipid molecule.

Phospholipase A_1 cleaves the bond in the 1-position, phospholipase A_2 (which is preferred) cleaves the bond in the 2-position.

The expression "modified" applied to phospholipoprotein as used throughout this specification and the attached claims denotes any degree of conversion brought about by the action of phospholipase A.

A suitable source of phospholipase A is pancreatin, which is preferably heat-treated, preferably under acidic conditions. The heat treatment is carried out at a temperature of from 60°C to 90°C for 3-15 minutes, preferably at a pH value of from 4 to 6.5. The enzyme composition thus obtained is substantially free from enzymatic activity other than resulting from phospholipase A, which is remarkably stable under the conditions of the above treatment.

Another suitable source of phospholipase is Lecitase 10-L (Trade Mark), a commercial preparation of phospholipase A_2 ex Novo Industri A/S, Denmark.

Also kosher enzymes like those derived from snake venom or bee venom may be used.

The degree of conversion of modified phospholipoprotein is in the specification and the attached claims expressed as the percentage of converted phosphatidylcholine plus phosphatidylethanolamine based on the total amount of phosphatidylcholine plus phosphatidylethanolamine present before conversion. An easy method to obtain the figures required to compute this percentage is quantitative thin-layer chromatography. Another simple method of determining the degree of conversion is the modified titrimetric method of Dole for the determination of the released fatty acids (see V.P. Dole and H. Meinertz, J. Biol. Chem. 235 (1960) 2595-2599).

The degree of conversion is determined inter alia by the temperature and pH at which and the period of time during which incubation of the phospholipoprotein with phospholipase takes place, as well as by the concentration of the enzyme and the presence of activating agents, such as calcium ions, or deactivating agents, such as e.g. zinc ions and ethylene diamine tetraacetate, during the incubation. The modification can be carried out in any convenient manner know per se.

It has been found that the degree of conversion of the modified phospholipoprotein should be at least 60%. Preferred is a degree of conversion of from 60% to 90%.

Examples of suitable materials containing phospholipoproteins are: yeast, casein, skim milk powder, blood serum, egg yolk, whole egg, butter milk, whey, cream, soybean and wheat proteins, but also other phospholipoprotein-containing materials such, as plants and micro-organisms, may be used. The use of egg yolk and whole egg is preferred. The cholesterol content of the egg material can previously at least be reduced, e.g. by solvent extraction.

The source material of the phospholipoprotein can be subjected as such to the action of phospholipase A, but it is also possible to first isolate the phospholipoprotein from its source material and then subject this isolated phospholipoprotein to the action of phospholipase A. Preferably almost all of the phospholipoprotein in the source material is modified with the phospholipase A before the material is dried. Preferably, the phospholipase A is phospholipase A_2 .

The modified phospholipoprotein (or LPLP) or LPLP comprising material is preferably dried by spray drying, taking care that the powder temperature does not exceed 75°C, preferably 65°C. Preferably, air inlet temperatures of from 210°C to 240°C and air outlet temperatures of from 85°C to 95°C are used. The use of a spray-drying equipment provided with a fluidized bed, for example the FSD spray drayer (Trade Mark, ex A/S Niro Atomizer, Denmark) is preferred. The drying of the LPLP or LPLP comprising material may also be effected by freeze drying, however. After drying, the moisture content is preferably at most 10% by weight, and more

preferably at most 5% by weight. The particulate material thus obtained has a relatively long shelf life and may be admixed with any other, preferably dried foodstuff material. Under certain conditions, i.e. when the foodstuff material with which the dried LPLP or LPLP-comprising material has to be admixed has a very low moisture content, the moisture content of the dried LPLP may be higher (up to 15% by weight), because during the mixing of all the ingredients or thereafter, moisture migration takes place and the average moisture content of the final mixture will be lower, but should after equilibration preferably not be higher than 10% by weight. At higher moisture contents the chance of bacterial contamination upon storage increases, which is less desirable.

It is also possible to dry, preferably by spray-drying, all the ingredients of the final product together with the LPLP or the LPLP comprising material, so as to arrive at a dried particulate foodstuff with an average moisture content of preferably at most 10% by weight. Also a number (or one) of the ingredients of the final food product may be dried together and thereafter mixed with the remainder of the dried, particulate ingredients, during which process the LPLP or LPLP comprising material may be present in the one part or in the other.

The dried, particulate LPLP or LPLP comprising material can be used in a very wide range of food products, particularly in those which are of the so-called dry mix-type. The amount of dried LPLP or LPLP comprising material in the food product can vary within wide ranges, e.g. from 0.1% to 90% by weight based on the total composition.

For dried sauce-, spread-, mayonnaise- and dressing-like food products for example, the amount of dried LPLP or LPLP comprising material in the final dried product may be from 0.1% to 20% by weight based on the total composition, preferably from 5% to 15% by weight, based on the total composition.

For dried bakery mixes, like cake mixes or pancake mixes, the amount of dried LPLP or LPLP comprising material in the final dried food product may range from 0.1% to 15% by weight, preferably from 5% to 10% by weight, based on the total composition.

20

25

30

40

45

50

55

In non-dairy creamers and creamer-thickeners the amount of dried LPLP or LPLP comprising material in the final product may range from 0.5% to 15% by weight, preferably from 1% to 10% by weight, based on the total composition.

In products like baked custard, the amount of dried LPLP or LPLP comprising material in the dried product may range from 0.5% to 20% by weight or higher, preferably from 10% to 20% by weight, based on the total composition.

In typical egg products the amount of dried LPLP or LPLP comprising material may be as high as up to 90% by weight, or sometimes even more.

The dry, particulate dressing-, sauce-, spread- and mayonnaise-type products according to the present invention may comprise spray drying aids (like maltodextrins), oils, fats (like for instance butter fat), oil or fat fractions, liquid or solid low-calorie non-digestable fat replacers (like the edible polyesters of polyhydric alcohols having at least four free hydroxyl groups, such as polyglycerols, sugars, or sugar alcohols, and saturated or unsaturated, straight or branched alkyl chain C8-C24 fatty acids, in which polyesters on an average at least 70% of the polyhydric alcohol hydroxyl groups have been esterified with the fatty acids), herbs, spices, pH regulating substances (like vinegar), flavouring agents, colouring agents (like beta-carotene), vitamins, antioxidants, thickening agents, sweetening agents, salt, vegetable particles, meat particles, emulsifiers, gums and stabilizers, preservatives, and the like and mixtures of these substances.

These dried particulate products can be reconstituted with edible liquids like milk, water, fruit juices, bouillons, wine and mixtures thereof.

It has been found that these dry, particulate dressing-, sauce-, spread- and mayonnaise-type products comprising dried LPLP or LPLP comprising material upon reconstitution give products with an excellent texture, taste and appearance, and which are retortable and exhibit a surprisingly good freeze/thaw stability. The products may be packaged in single serving packaging, but may also be supplied in larger quantities e.g. for catering purposes.

The dried modified phospholipoprotein (or dried LPLP) or dried LPLP comprising material may also be used in bakery mixes, preferably dry, particulate bakery mixes, like cake mixes, pan cake mixes and mixes for the preparation of pastries, cookies, muffins and rolls, and the like products. In the manufacture of these mixes it may be advantageous to spray dry the LPLP or LPLP comprising material on flour as a carrier material. These dry, particulate mixes may also comprise flour, leavening agents, sweetening agents, flavouring agents, emulsifiers, salt, proteins, antioxidants, vitamins, preservatives, fibres, fats, oils, oil or fat fractions, liquid or solid low-calorie non-digestible fat replacers as those described herebefore, and mixtures of these substances.

It has been found that the use of dried LPLP or LPLP-comprising material in dry particulate cake mixes upon reconstitution and baking leads to cakes with a very open, moist texture with excellent taste.

The dried modified phospholipoproteins (or dried LPLP) or dried LPLP comprising material may also be used in pudding mixes, custards, sherbet type products and ice cream mixes and frozen desserts such as ice milks and mellorines, further in scrambled egg and omelette mixes, Yorkshire pudding, but also in creamy

drinks, such as yoghurt drinks, egg nog drinks, and the like. It has been found that in dry custard mixes the use of the dried LPLP or LPLP comprising material not only led to a very rich creamy texture upon reconstitution, but that it also acted as a glossing agent, imparting a shiny surface of the reconstituted product.

The invention is now illustrated on hand of the following examples which in no way are to be construed as limiting the scope of the present invention.

Example I

5

15

20

35

40

45

55

Unto 890 grams of fresh egg yolk were added 25 mg of Lecitase 10-L (Trade Mark; a phospholipase A₂ preparation from porcine pancreatic glands having an activity of 10,000 International Units per ml, ex Novo Industri A/S, Denmark) whilst stirring gently. The mixture obtained was incubated for 4.5 hours at 54°C, after which the modified egg yolk was cooled to room temperature and any lumps were dispersed. The degree of conversion was 86%.

The modified egg yolk comprising LPLP was then spray-dried in a Niro spray-drier, Type: Production Minor (ex A/S Niro Atomizer, Denmark) using an air inlet temperature of 200°C and an air outlet temperature of 75°C, so that a powder temperature of 40°C was reached. A finely divided powder of LPLP comprising material a moisture content of 1.0 % by weight was obtained.

The spray-dried LPLP comprising material was used to prepare a dry particulate cake mix, using the following ingredients:

	Wheat flour 1)	65.0	g
25	Spray-dried egg white	6.5	88
	Cocoa powder	10.0	n
	Baking powder ²⁾	5.0	11
30	Spray-dried butter	75.0	**
30	Sugar	75.0	11
	Spray-dried LPLP		
•	comprising material	14.5	**

¹⁾ Mc Dougalls Supreme Self Raising Flour

The ingredients were mixed in dry, particulate form using a ribbon mixer. The obtained cake mix could be reconstituted by adding water in a weight ratio of 1 pbw of water to 3.14 pbw of dry particulate mix, whilst stirring gently. The obtained smooth batter was poured into a greased baking tin and placed into a preheated oven (180°C) for 35-40 minutes.

The cake produced had a very open moist texture and was of excellent taste. The structure was different of that of a conventional cake prepared without the use of the LPLP in that the pores were greater.

50 Example II

The spray-dried LPLP comprising material obtained in Example I was used to prepare a pancake mix using the following ingredients:

Dried LPLP comprising material 9.12 g
Plain flour 113.4 g

The dry particulate mixture obtained could be reconstituted into a smooth batter by mixing the total amount obtained with 284.0 g of water or milk.

Pancakes prepared from the batter had a slightly better taste than those prepared without the use of the dried LPLP comprising material.

²⁾ A commercial sodium bicarbonate/edible acid-based baking powder

Example III

5

10

15

20

25

Egg yolk was treated in the same way as described in Example I, with the exception that the incubation time was 4 hrs at 55.5°C after which the egg yolk was stored overnight at 5.5°C and subsequently spray-dried in a FSD spray-drier (Trade Mark; ex A/S Niro Atomizer, Denmark) using an air inlet temperature of 210°C, an outlet air temperature of 82°C, so that the powder temperature was 50°C. A finely divided LPLP comprising material with a degree of conversion of 85% and a moisture content of 1.8% by weight was obtained.

The dried LPLP comprising material was used in the preparation of a dry mix for baked custard by dry mixing the following ingredients:

Spray-dried LPLP comprising material	20	g
Spray-dried egg white	12	11
Granulated sugar (sucrose)	60	11
Skimmed milk powder	50	**

The dry mixture obtained was reconstituted with water in a weight ratio of 1 pbw of dry mixture to 3 pbw of water by slowly adding the water to the powder whilst stirring. The obtained slurry was poured into a baking dish and baked in the oven for 25-30 minutes at 190°C.

A baked custard was obtained which with respect to colour, texture and flavour was superior to a traditionally prepared custard without using the LPLP comprising material of the same recipe. Moreover the baked custard comprising the LPLP immediately set upon cooling, and exhibited less syneresis than the traditional baked custard prepared with non-modified egg material.

Example IV

The spray-dried LPLP comprising material obtained in Example III was used to prepare a dry stove top custard mix using the following ingredients:

	Spray-dried LPLP comprising material	18	g
35	Corn flour	28	11
	Granulated sugar	15	11
	Vanilla essence	0.5	11

The dry mixture was reconstituted with whole milk in a weight ratio of 1 pbw of dry mix to 9.16 pbw of whole milk by slowly adding the milk to the dry mix while stirring in a saucepan. The mixture was brought to the boil while stirring continuously, was left to simmer for a few minutes and then removed from the heat. A stove top custard was obtained with a very rich creamy texture with a glossy surface. A stove top custard of the same recipe without the use of LPLP had a rather "gluggy" texture and not the excellent glossy surface.

The dry stove top custard mix could also be adapted to give a number of other sweet cream sauces, such as brandy and butter scotch sauce.

Example V

The spray-dried LPLP comprising material obtained in Example III was used to prepare a creme caramel mix using the following ingredients:

	Castor sugar	53.25	g
_	Spray-dried LPLP		
5	comprising material	18.24	11
	Skimmed milk powder	28.50	11
	Granulated sugar		
10	(sucrose)	27.00	11
	Spray-dried egg white	2,81	**

The dry mix with the exception of the castor sugar, which was packaged separately, could easily be converted into a creme caramel. The castor sugar was molten without stirring and once it was molten it was occasionally stirred until the colour was a golden brown. The melt was poured into bowls. Then water in a weight ratio of 1 pbw of the dry mixture without the castor sugar to 3.71 pbw of water was boiled and added to the remainder of the mix (without the castor sugar) while thoroughly stirring. The mixture obtained was poured into the bowls, placed in a bain-marie and cooked in a moderate oven (175°C) for about 20 minutes, or until set. The product was then taken out of the oven, left to cool and turned out.

The obtained creme caramel had a very light open texture and the taste and texture were vastly superior to those of a creme caramel made with ordinary egg yolk, using the same recipe. Also the creme caramel made with the LPLP exhibited a quicker setting and showed less syneresis than the same product, prepared with ordinary egg yolk.

Example VI

25

30

35

45

50

55

The spray-dried LPLP comprising material obtained in Example I was used to prepare a dry quiche filling mass, using the following ingredients:

Spray-dried LPLP comprising materia	9.12	g
Spray-dried egg white	2.82	**
Skimmed milk powder	28.5	- 11
Freeze-dried mushroom slices	5.0	11

The dry mix obtained was reconstituted with water in a weight ratio of 1 pbw of dry mix to 6.34 pbw of water, by adding the water to the dry mix while beating. The obtained batter was poured into a flan dish and cooked for 20-25 minutes at 190°C. The appearance and the texture of the quiche obtained was superior to quiches of the same recipe prepared by using ordinary egg yolk.

Example VII

The modified egg yolk obtained in Example I was mixed before it was spray-dried with the following ingredients:

Modified egg yolk	16.5	g
Unsalted butter	48.6	11
Maltodextrin 1)	10.3	
Water	24.2	

1) Having a D.E. of 18-20

The water and the maltodextrin were heated while stirring to 60°-70°C, after which the modified egg yolk was added to the obtained solution. The butter was molten at the same time to 60°-70°C. The modified egg

yolk and the maltodextrin solution were mixed in a Silverson mixer, after which the molten butter was added to obtain a coarse emulsion. The obtained emulsion was subsequently homogenised at a pressure of 2500-3000 psi (170 to 204 bar) in a Crepaco homogenizer. The homogenized emulsion was subsequently spraydried, using the same spray-drier as in Example I, at an air inlet temperature of 200°C and an air outlet temperature of 75°C-90°C. A spray-dried Hollandaise sauce powder was obtained, having a moisture content of 1.1% by weight.

The obtained dry mixture was reconstituted in a weight ratio of 100 g of dry mix to 6 g of lemon juice, 28 g of white wine and 20 g of water to yield a very good Hollandaise sauce with excellent texture and appearance. The reconstituted Hollandaise sauce could be retorted for 20 minutes at 121°C and had an excellent freeze/thaw stability. It could be blast frozen to -30°C and subsequently thawn to +15°C without impairing the excellent texture and appearance. It also appeared possible to admix wine and vinegar powder, so that the dry mixture only needed to be reconstituted with water. The Hollandaise sauce could be varied in recipe to convert it into a Bearnaise sauce mix without difficulty and without impairing its qualities in any way. This example clearly shows that the modified phospholipoprotein material can also be spray-dried together with the other ingredients of the mixture to obtain the desired dry mix.

Example VIII

20

45

The modified egg yolk obtained in Example III before it was spray-dried was mixed with the following ingredients:

	Sunflower oil	51.3	g
25	Modified egg yolk	15.4	n
	Mustard	0.8	n
30	Sodium chloride	0.8	"
	Distilled malt vinegar	4.8	11
	Maltodextrin 1)	3.5	11
	Water	23.4	
35	1) Having a D.E. of 18-2	20	

The water was heated to 60°-70°C, after which the other ingredients, with the exception of the oil, were dispersed therein using a Silverson-mixer. Finally the oil was slowly added to the dispersion. The obtained emulsion was homogenized at a pressure of 2500-3000 psi (170 to 204 bar) in a Crepaco homogenizer. The homogenized emulsion was spray-dried, using the same spray-drier as in Example I, at an air inlet temperature of 200°C and an air outlet temperature of 75°-90°C. A spray-dried mayonnaise powder was obtained, having a moisture content of 1.0% by weight.

The dried mayonnaise could be readily reconstituted with water in a ratio of 100 g of dry mixture and 25 ml of water to yield a very high quality mayonnaise, which was retortable.

Example IX

In this Example a number of non-dairy creamers was prepared, using a vegetable fat, modified egg yolk and a carrier material (maltodextrin) for the spray-drying. In three experiments the amount of modified egg yolk, as obtained in Example I, was varied from 2.5% to 5.0% to 7.5% by weight, based on the final dry composition. In the spray-drying experiments, the maltodextrin (having a D.E. of 18-20) together with the modified egg yolk was dissolved in water of 60°-70°C. Separately the fat was heated to the same temperature of 60°C-70°C and this heated fat was mixed with the maltodextrin solution in a Silverson mixer by slowly adding the heated fat to the solution while mixing. The coarse emulsion obtained was homogenized in a Crepaco homogeniser at a pressure of 2500-3000 psi (170 to 204 bar).

The homogenised emulsion was spray-dried in the same apparatus as used in Example I, using an air inlet temperature of 200°C and an air outlet temperature of 75°C-90°C. The recipes (on a dry basis in percent by weight) were as follows:

	(a)	(b)	(C)	. (d)
Vegetable fat 1)	35 %	35 ₺	35 %	50 %
Modified egg yolk	2.5%	5.0%	7.5%	7.2%
Maltodextrin	62.5%	60.0%	57.5%	42.8%

1) A hardened palm oil with melting point of 40°C.

In all instances a spray-dried creamer powder was obtained having a moisture content of 0.6% by weight, which could easily be reconstituted with water. It appeared also that the higher the level of modified egg yolk, the whiter the resultant particulate product was. The great advantage of this product is that no artifical ingredients are present (there is no need to use emulsifiers, sequestering agents like citrates and phosphates and caseinate). Moreover the absence of caseinate makes it possible to use these creamers in a rather acid environment, like for instance cream-style tomato soup and hence the present invention provides a new class of non-dairy creamers with superior properties compared to the non-dairy creamers with caseinate. Moreover it was found that the creamers according to the invention had an enhanced heat stability and exhibited a thickening effect by providing some viscosity to the environment in which they are used.

Thus with one formulation more than one very advantageous properties are added to the foodstuff. It appeared that particularly in instant sauces and gravylike products these pronounced properties led to very high quality products. The creamers were also applied in dips,like e.g. an onion dip and in creamy drinks, like e.g. yoghurt based drink.

The dried particulate creamer prepared above as recipe (c) was used in a cream of mushroom soup formulation (expressed in g/cup):

Modified egg yolk based creamer	11.35 g
Corn flour	8.33 g
Spray-dried mushroom extract	3.18 g
Sodium chloride	1.51 g
Flavourings	0.32 g
Maltodextrin (D.E. = 18-20)	1.52 g

The dry mixture could be reconstituted with 180 ml of boiling water to a cream of mushroom soup of excellent texture and taste.

The dried, particulate creamer as prepared according to recipe (b) above was used in a dry sauce mix of the following composition (expressed in g/cup):

Modified egg yolk based creamer	9.88 g
Dried potato starch	16.12 g
Salt	1.00 g
Spray-dried mushroom extract	4.00 g
Flavouring agents	3.18 g

The total amount of this dry particulate mixture could be reconstituted by stirring it with 200 ml of water yielding a sauce a very good texture and viscosity.

The dried particulate creamer prepared above as recipe (a) was also used in a cream of tomato soup formulation (expressed in g/cup):

Modified egg yolk based creamer	10.00 g
Tomato powder	6.00 g
Granulated sugar	4.74 g
Granulated corn flour	5.03 g
Maltodextrin (D.E. = 18-20)	2.00 g
Sodium chloride	1.34 g

The dry mixture could be reconstituted with 180 ml of boiling water to a cream of tomato soup of pH= 4.2, having an excellent texture and taste.

This soup was in reconstituted form also canned and then retorted for 20 minutes at 121°C. The excellent creaminess of the soup was not impaired during this retorting.

Example X

5

10

20

25

30

40

45

50

55

In the same way as described in Example IX a non-dairy creamer was prepared, using the following in-

gredients:

5

10

15

20

25

30

55

Low-calorie solid fat replacer 1)	35%	by	weight
Modified egg yolk ²⁾	2%	**	n
Maltodextrin (D.E. = 18-20)	63%	**	11

- 1) A sugar polyester having an octa-ester content of 80-85%, prepared from a mixture of 55 wt.% fully hardened soybean oil fatty acids and 45 wt% of slightly hardened soybean oil fatty acids, with a hydroxyl number of 4.1 and a melting point of 42°C.
- 2) According to Example I.

A dried, particulate creamer, having the same excellent properties as those prepared in Example IX, was obtained. This creamer could advantageously be used in dry cream-style soup and sauce mixes.

Example XI

A creamer-thickener was prepared using the following ingredients:

Modified egg yolk (according to Example I) 41.25 g

35	Vegetable fat ¹⁾	288.75	**
	Maltodextrin (D.E. = 18-20)	226.50	n
	Dried potato starch	313.50	**
40	Water	630,00	11

¹⁾ A hardened palm oil with melting point of 40°C.

The modified egg yolk was dissolved in water with the maltodextrin and heated to 60-70°C; the fat was molten to a similar temperature and mixed into the water phase using a Silverson mixer to obtain a coarse emulsion. This emulsion was homogenised in a Crepaco homogeniser at a pressure of 2550-3000 psi (170 to 204 bar).

The homogenised emulsion was spray-dried in the same apparatus as used in Example I, using an air inlet temperature of 200°C and an air outlet temperature of 75°C-90°C. A dry powder with a moisture content of 0.9% by weight was obtained.

The dried, particulate creamer thickener, prepared above, was used in a cream of mushroom soup formulation (expressed in g per cup):

Creamer-thickener	11.00 g
Spray-dried mushroom extract	3.18 g
Maltodextrin (D.E.= 18-20)	1.52 g
Sodium chloride	1.51 g
Flavouring agent	0.32 a

The dry mixture could be reconstituted with 180 ml of boiling water to a cream of mushroom soup of ex-

cellent taste and texture.

The same dried particulate creamer-thickener, prepared above, was used in a creamy tomato sauce mixture of the following recipe:

Creamer-thickener	20.0 g
Tomato powder	20.0 g
Granulated sugar	4.74 g
Maltodextrin (D.E. = 18-20)	2.0 g
Sodium chloride	1.34 q

The particulate composition was reconstituted with 200 ml of boiling water to a creamy tomato sauce of pH = 4.3. This sauce could be retorted at 121°C for 20 minutes without any visible effect and without impairing its taste.

Example XII

15

30

35

55

5

10

The dried LPLP comprising material prepared in Example III was used to prepare a warm custard using the following ingredients:

20	Spray-dried LPLP comprising material		
	according to Example III	18.24	g
	Skimmed milk powder	57.00	11
	Granulated corn flour	40.00	11
25	Sugar	15.00	11

All the ingredients were weighed out and placed in a bowl, after which one pint of boiling water was mixed in, whisking continuously. After this two tea spoons of brandy were stirred in. A brandy sauce of rich texture and excellent taste was obtained.

Example XIII

A dry mix for the preparation of ice cream was prepared from:

	Skimmed milk powder	9.4 g
	Granulated sugar	49.9"
10	Spray-dried fat powder	28.1"
	with 50% by weight of fat	
	Spray-dried LPLP comprising	12.5"

For every 100 g of this dry mixture, 200 ml of cold water were added and the obtained mixture was well dispersed using a hand whisk. After this the mixture was chilled in a domestic refrigerator at 5°C for 2 hours. Hereafter the mixture was whisked again and subsequently frozen in a domestic freezer at -20°C until the mixture was entirely frozen. The ice-cream obtained had a rich, smooth, creamy texture without the large ice crystals often associated with ice-cream obtained from dry mixes for ice-cream. Upon the addition of a foaming agent a still lighter texture was obtained.

Example XIV

Non-pasteurized egg yolk comprising 7% by weight of sodium chloride and 1% by weight of potassium sorbate was treated for 4 hours with 50 mg/kg of egg yolk of the enzyme Lecitase 10L (Trade Mark, ex Novo Industri A/S, Denmark, strength 10,000 International Units per ml) at 55.5°C. During this treatment, the mixture was stirred for 30 seconds during each 30 minutes.

The egg yolk thus treated was fed at a rate of 25 kg/h to a Niro FSD spray dryer (ex A/S Niro Atomizer, Denmark). The temperature of the inlet air was 210°C, the temperature of the outlet air was 85°C. The tem-

perature at the inlet of the fluidized bed was 40°C and the powder temperature was 35°C. The pressure drop over the fluidized bed was 48 mm water column. The atomizer slit determining the spray angle in the dryer was set at -2.2 mm.

A dry powder was obtained at a rate of 12.25 kg/h having a moisture content of 1.8% by weight. A microbiological investigation showed that the powder obtained had a germ count of less than 10.

The dry powder obtained was used for the preparation of a mayonnaise. 7.4 g of the dry powder were mixed with 22.2 g of water to form a slurry and to this slurry were added: 2.0 g of common salt, 3.0 g of sugar, 1.0 g of citric acid, 1.4 g of starch and 1 g of herbs. The slurry thus obtained was heated to 60-64°C for 2-2.5 minutes and subsequently cooled to room temperature. Then 12.0 g of vinegar and 150.0 g of soybean oil were stirred in and the mixture obtained was homogenized at room temperature. A pasteurizable and sterilizable, creamy mayonnaise with excellent organoleptic properties was obtained.

Example XV

15

5

Non-pasteurized egg yolk comprising 7% by weight of common salt and 1% by weight of potassium sorbate was treated with Lecitase 10L as described in Example XIV. The product thus treated was subsequently pasteurized by heating in a scraped surface heat exchanger for 30 seconds at a temperature of 65.5-75.5°C. The treated product thus pasteurized was fed at a rate of 25 kg/h to a Niro FSD spray dryer at a product temperature of 8°C-15°C. The inlet air temperature was 240°C, the outlet air temperature was 95°C, the temperature at the inlet of the fluidized bed was 60°C and the powder temperature was 50°C. The pressure drop over the fluidized bed was 40 mm of water column. The atomizer slit determining the spray angle in the dryer was adjusted to -2.0 mm.

A dry powder was obtained at a rate of 12.5 kg/h having a moisture content of 2.0% by weight and a germ count of 10.

Example XVI

In the same way as described in Example XIV, egg yolk was treated with Lecitase 10L, after which the treated egg yolk was dried in the same dryer was described in Example XIV, under the following conditions: inlet air temperature 210°C; outlet air temperature 92°C; temperature at the inlet of the fluidized bed 40°C; powder temperature 42.5°C; pressure drop over the fluidized bed 40 mm water column; adjustment of atomizer slit -2.0 mm. A dry powder was obtained at a rate of 12.0 kg/h having a moisture content of 1.8% by weight and a germ count of 20.

35

40

Claims

- 1. A process for the manufacture of a lyso-phospholipoprotein (LPLP)-comprising foodstuff, characterized by incorporating in the foodstuff dried LPLP or dried LPLP-comprising material both having a degree of conversion of at least 60%.
- 2. A process according to claim 1, characterized in that the dried LPLP or the dried LPLP-comprising material has a degree of conversion from 60 to 90%.

45

- 3. A process according to claim 1 or 2, characterized in that the dried LPLP or the dried LPLP-comprising material has a moisture content of at most 10% by weight.
- 4. A process according to any one of the claims 1 to 3, characterized in that the LPLP is derived from whole egg or egg yolk.

- 5. A process according to any one of the claims 1 to 4, characterized in that the foodstuff is a dried foodstuff.
- 6. A process according to any one of the claims 1 to 5, characterized in that the foodstuff is selected from the group consisting of sauces, spreads, mayonnaise, dressings, soups, bakery products, creamers, creamer-thickeners, ice-cream, drinks, dairy products, desserts, sherbets, meals and combinations thereof.
 - A process according to any one of the claims 1 to 6, characterized in that the dried LPLP or the dried LPLP-comprising material has been prepared by reacting with phospholipase A₂.

- 8. A process according to any one of the claims 1 to 7, characterized by incorporating in the foodstuff from 0.1 to 90% by weight based on the total composition of dried LPLP or dried LPLP-comprising material.
- 9. Afoodstuff containing LPLP or LPLP-comprising material characterized in that the foodstuff contains dried LPLP or dried LPLP-comprising material both having a degree of conversion of at least 60%.
 - A foodstuff according to claim 9, characterized in that the dried LPLP or the dried LPLP-comprising material has a degree of conversion from 60 to 90%.
- 11. A foodstuff according to claim 9 or 10, characterized in that the dried LPLP or the dried LPLP-comprising material has a moisture content of at most 10% by weight.
 - 12. A foodstuff according to any one of the claims 9 to 11, characterized in that the LPLP is derived from whole egg or egg yolk.
 - A foodstuff according to any one of the claims 9 to 12, characterized in that the foodstuff is a dried, particulate foodstuff.
- 14. A foodstuff according to any one of the claims 9 to 13, characterized in that the foodstuff is selected from the group consisting of sauces, spreads, mayonnaise, dressings, soups, bakery products, creamers, creamer-thickeners, ice-cream, drinks, dairy products, desserts, sherbets, meals and combinations there-of.
- 15. A foodstuff according to any one of the claims 9 to 14, characterized in that the dried LPLP material has been prepared by reacting with phospholipase A_2 .
 - 16. A foodstuff according to any one of the claims 9 to 15, characterized in that the foodstuff comprises dried LPLP or dried LPLP-comprising material in an amount of from 0.1 to 90% by weight based on the total composition.
- 30 17. Use of dried LPLP or dried LPLP-comprising material as texture-modifying agent in foodstuffs.
 - 18. Use of dried LPLP or dried LPLP-comprising material as a glossing agent in foodstuffs.
 - 19. Use of dried LPLP or dried LPLP-comprising material as a freeze-thaw stabilizing agent in foodstuffs.
 - 20. Use of dried LPLP or dried LPLP-comprising material both having a conversion percentage of at least 60% as a heat stabilizing agent in foodstuffs.
 - 21. Use of dried LPLP or dried LPLP-comprising material as a syneresis inhibiting agent in foodstuffs.

Patentansprüche

15

35

40

45

- 1. Verfahren zur Herstellung eines Lyso-Phospholipoprotein (LPLP) ent haltenden Nahrungsmittels, gekennzeichnet durch das Einverleiben von getrocknetem LPLP oder getrocknetem LPLP ent haltenden Material, jeweils mit einem Umwandlungsgrad von mindestens 60 %, in das Nahrungsmittel.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das getrocknete LPLP oder das getrocknete LPLP enthaltende Material einen Umwandlungsgrad von 60 bis 90 % aufweist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das getrocknete LPLP oder das getrocknete LPLP enthaltende Material einen Feuchtigkeitsgehalt von h\u00f6chstens 10 Gew.-% hat.
 - Verfahren nach irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das LPLP von Vollei oder Eigelb abgeleitet ist.
 - Verfahren nach irgendeinem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Nahrungsmittel ein getrocknetes Nahrungsmittel ist.
 - 6. Verfahren nach irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Nahrungsmittel

aus der Gruppe ausgewählt ist, die aus Soßen, Brotaufstrichen, Mayonnaise, Dressings, Suppen, Backwaren, Sahneweißern, Sahnaireißer-Verdickungsmitteln, Speiseeis, Drinks, Molkereiprodukten, Desserts, Sherbets, Mahlzeiten und Kombinationen derselben besteht.

5

- Verfahren nach irgendeinem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das getrocknete LPLP oder das getrocknete, LPLP enthaltende Material durch Umsetzen mit Phospholipase A₂ hergestellt worden ist.
- 8. Verfahren nach irgendeinem der Ansprüche 1 bis 7, gekennzeichnet durch das Einverleiben von 0,1 bis 90 Gew.-%, bezogen auf die Gesamtzusammensetzung, an getrocknetem LPLP oder getrocknetem LPLP enthaltenden Material in das Nahrungsmittel.
- Nahrungsmittel, das LPLP oder ein LPLP enthaltendes Material enthält, dadurch gekennzeichnet, daß
 das Nahrungsmittel getrocknetes LPLP oder ein getrocketes LPLP enthaltendes Material jeweils mit einem Umwandlungsgrad von mindestens 60 % enthält.
 - 10. Nahrungsmittel nach Anspruch 9, dadurch gekennzeichnet, daß das getrocknete LPLP oder das getrocknete LPLP enthaltende Material einen Umwandlungsgrad von 60 bis 90 % aufweist.
- 20 11. Nahrungsmittel nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß das getrocknete LPLP oder das getrocknete LPLP enthaltende Material einen Feuchtigkeitsgehalt von höchstens 10 Gew.-% hat.
 - 12. Nahrungsmittel nach irgendeinem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß das LPLP von Vollei oder Eigelb abgeleitet ist.

25

30

- 13. Nahrungsmittel nach irgendeinem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß es ein getrocknetes, feinteiliges Nahrungsmittel ist.
- 14. Nahrungsmittel nach irgendeinem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß es aus der Gruppe ausgewählt ist, die aus Soßen, Brotaufstrichen, Mayonnaise, Dressings, Suppen, Backwaren, Sahneweißern, Sahneweißer-Verdickungsmitteln, Speiseeis, Drinks, Molkereiprodukten, Desserts, Sherbets, Mahlzeiten und Kombinationen derselben besteht.

15. Nahrungsmittel nach irgendeinem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß das getrocknete

35

- 16. Nahrungsmittel nach irgendeinem der Ansprüche 9 bis 15, dadurch gekennzeichnet, daß das Nahrungsmittel getrocknetes LPLP oder das getrocknete LPLP enthaltende Material in einer Menge von 0,1 bis 90 Gew.-%, bezogen auf die Gesamtzusammensetzung, aufweist.
- 40 17. Verwendung von getrocknetem LPLP oder getrocknetem LPLP enthaltenden Material als texturmodifizierendes Mittel in Nahrungsmitteln.

LPLP-Material durch Umsetzen mit Phospholipase A₂ hergestellt worden ist.

18. Verwendung von getrocknetem LPLP oder getrocknetem LPLP enthaltenden Material als Glanz verleihendes Mittel in Nahrungsmitteln.

45

- 19. Verfahren von getrocknetem LPLP oder getrocknetem LPLP enthaltenden Material als Gefrier-/Auftau-Stabilisator in Nahrungsmitteln,
- 20. Verwendung von getrocknetem LPLP oder getrocknetem LPLP enthaltenden Material jeweils mit einem Umwandlungsprozentsatz von mindestens 60 % als Wärmestabilisator in Nahrungsmitteln.
 - 21. Verwendung von getrocknetem LPLP oder getrocknetem LPLP enthaltenden Material als synäreseinhibierendes Mittel in Nahrungsmitteln.

55

50

Revendications

 Procédé de fabrication d'un produit alimentaire contenant une lysophospholipoprotéine (LPLP), caractérisé en ce qu'on incorpore dans le produit alimentaire la LPLP séchée ou une matière comprenant la LPLP

séchée ayant chacune un degré de conversion de 60%.

5

25

35

45

- Procédé selon la revendication 1, caractérisé en ce que le degré de conversion de la LPLP séchée ou de la matière comprenant LPLP séchée est compris entre 60 et 90%.
 - 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la LPLP séchée ou la matière contenant la LPLP séchée présente une teneur en humidité ne dépassant pas 10% en poids.
- 4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la LPLP provient d'oeufs entiers ou de jaunes d'oeufs.
 - Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le produit alimentaire est un produit alimentaire séché.
- 6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le produit alimentaire est choisi parmi les sauces, les produits à tartiner, la mayonnaise, les assaisonnements, les potages, les produits de boulangerie, les crèmes, les épaississants de crème, les crèmes glacées, les boissons, les produits laitiers, les desserts, les sorbets, les purées et leurs combinaisons.
- Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on prépare la LPLP séchée ou la matière séchée comprenant LPLP en la faisant réagir avec la phospholipase A₂.
 - 8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'on incorpore dans le produit alimentaire de 0,1 à 90% en poids de la composition totale de LPLP séchée ou de matière séchée contenant LPLP.
 - Produit alimentaire contenant LPLP ou une matière contenant LPLP, caractérisé en ce qu'il contient la LPLP séchée ou la matière séchée contenant LPLP ayant toutes deux un degré de conversion d'au moins 60%.
- 10. Produit alimentaire selon la revendication 9, caractérisé en ce que le degré de conversion de la LPLP séchée ou de la matière séchée contenant LPLP est compris entre 60 et 90%.
 - 11. Produit alimentaire selon la revendication 9 ou 10, caractérisé en ce que la teneur en humidité de la LPLP séchée ou de la matière séchée contenant LPLP ne dépasse pas 10% en poids.
 - 12. Produit alimentaire selon l'une quelconque des revendications 9 à 11, caractérisé en ce que la LPLP provient d'oeufs entiers ou de jaunes d'oeufs.
- 13. Produit alimentaire selon l'une quelconque des revendications 9 à 12, caractérisé en ce qu'il est un produit
 40 alimentaire particulaire séché.
 - 14. Produit alimentaire selon l'une quelconque des revendications 9 à 13, caractérisé en ce qu'il est choisi parmi les sauces, les produits à tartiner, la mayonnaise, les assaisonnements, les potages, les produits de boulangerie, les crèmes, les épaississants de crème, la crème glacée, les boissons, les produits laitiers, les desserts, les sorbets, les purées et leurs combinaisons.
 - 15. Produit alimentaire selon l'une quelconque des revendications 9 à 14, caractérisé en ce qu'on prépare la LPLP séchéeen la faisant réagir avec la phospholipase A₂.
- 50 16. Produit alimentaire selon l'une quelconque des revendications 9 à 15, caractérisé en ce qu'il comprend la LPLP séchée ou une matière séchée contenant LPLP à raison de 0,1 à 90% en poids par rapport à la composition totale.
 - Utilisation de la LPLP séchée ou de la matière séchée contenant LPLP comme agent modificateur de texture dans des produtis alimentaires.
 - 18. Utilisation de la LPLP séchée ou de la matière séchée contenant LPLP comme agent de brillance dans des produits alimentaires.
 - 19. Utilisation de LPLP séchée ou de matière séchée contenant LPLP comme stabilisant de gel-dégel dans

les produits alimentaires.

- 20. Utilisation de LPLP séchée ou de matière séchée contenant LPLP ayant toutes deux un pourcentage de conversion d'au moins 60% en qualité de stabilisant dans les produits alimentaires.
- 21. Utilisation de LPLP séchée ou de matière séchée contenant LPLP comme agent inhibiteur de synérèse dans les produits alimentaires.