Formula Sheet

Grade 9 Academic

Geometric Figure	Perimeter	Area
Rectangle I W	P = l + l + w + w or $P = 2(l + w)$	A = lw
Parallelogram	P = b + b + c + c or $P = 2(b + c)$	A = bh
Triangle a h c b	P = a + b + c	$A = \frac{bh}{2}$ or $A = \frac{1}{2}bh$
Trapezoid $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	P = a + b + c + d	$A = \frac{(a+b)h}{2}$ or $A = \frac{1}{2}(a+b)h$
Circle	$C = \pi d$ or $C = 2\pi r$	$A = \pi r^2$

Geometric Figure	Surface Area	Volume
Cylinder	$A_{\text{base}} = \pi r^2$ $A_{\text{lateral surface}} = 2\pi r h$ $A_{\text{total}} = 2A_{\text{base}} + A_{\text{lateral surface}}$	$V = (A_{\text{base}})(\text{height})$ $V = \pi r^2 h$
Sphere	$= 2\pi r^2 + 2\pi rh$ $A = 4\pi r^2$	$V = \pi r n$ $V = \frac{4}{3}\pi r^3 \qquad \text{or} \qquad V = \frac{4\pi r^3}{3}$
Cone	$A_{\text{lateral surface}} = \pi r s$ $A_{\text{base}} = \pi r^{2}$ $A_{\text{total}} = A_{\text{lateral surface}} + A_{\text{base}}$ $= \pi r s + \pi r^{2}$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{1}{3}\pi r^2 h \qquad \text{or} \qquad V = \frac{\pi r^2 h}{3}$
Square-based pyramid b	$A_{\text{triangle}} = \frac{1}{2}bs$ $A_{\text{base}} = b^{2}$ $A_{\text{total}} = 4A_{\text{triangle}} + A_{\text{base}}$ $= 2bs + b^{2}$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{1}{3}b^2h \qquad \text{or} \qquad V = \frac{b^2h}{3}$
Rectangular prism h l	A = 2(wh + lw + lh)	$V = (A_{\text{base}})(\text{height})$ $V = lwh$
Triangular prism a c h	$A_{\text{base}} = \frac{1}{2}bl$ $A_{\text{rectangles}} = ah + bh + ch$ $A_{\text{total}} = A_{\text{rectangles}} + 2A_{\text{base}}$ $= ah + bh + ch + bl$	$V = (A_{\text{base}})(\text{height})$ $V = \frac{1}{2}blh \qquad \text{or} \qquad V = \frac{blh}{2}$