WIP Concept of a Web-Connected Smart Garden

Chris Ortner - Barcamp 2019

Agenda

- Motivation
- Requirements
- Architecture
- Power Optimization Ideas
- Outlook

Motivation

- A novice gardener lacks intuition
 - Compensate with data
- Visiting the garden often is time-consuming
- Minimize maintenance visits
- It's a fun project

Requirements

- No power available solar-powered
- Solar-powered -> low power operation
- 27/7 monitoring of weather and soil conditions
- Possible extension to automate irrigation
- Cheap

Architecture

Hardware Components

- Arduino Mega
- GSM Module
- Sensors:
 - Thermometer
 - o Rain
 - Air hygrometer
 - Multiple soil hygrometers
 - Light intensity
 - Battery charge
 - Water level
- Charging circuit

- Water valves
- Solar panel
- Battery
- Waterproof housing
- Water tank
- Hoses
- Wires and wire guards
- Prototype board
- LEDs and buttons
- Transistors or relays

Construction Overview

Software Components

- Arduino IDE for software development
- Fritzing for circuit design
- Elasticsearch
- Kibana
- Simple web endpoint to receive and save data

Communication

Automatic Irrigation

Power Optimization Ideas

- Adjust sensor data resolution
 - ...b-but muh data!
- Send data in bulk to reduce GSM power drain
 - ...b-but muh realtime!
- Bigger solar panels and batteries
 - Takes space away from the actual garden
- Servos to make the solar panels follow the sun
 - Requires strong motors and much power due to weight of panels

Outlook

- Stage 1 (current): Prototype, collect parts, write code
- Stage 2: Build test type to use in the wild
- Stage 3: Add automatic irrigation
- Stage 4: Webcam? Presence detection? Party mode? Seismometer? Lightning tracking microphones?

Schematics and code will be published at https://github.com/howard/smart-garden

