Neutrokine- α

1	AAATTCAGGATAACTCTCCTGAGGGGTGAGCCAAGCCCTGCCATGTAGTGCACGCAGGAC	60
61	ATCAACAAACACAGATAACAGGAAATGATCCATTCCCTGTGGTCACTTATTCTAAAGGCC	120
121 1	CCAACCTTCAAAGTTCAAGTAGTGATTATGGATGACTCCACAGAAAGGGAGCAGTCACGCC M D D S T E R E Q S R L	180 12
181 13	TTACTTCTTGCCTTAAGAAAAGAGAAGAAATGAAACTGAAGGAGTGTGTTTCCATCCTCC T S C L K K R E E M K L K E C V S I <u>L P</u> CD-I	240 32
241 33	CACGGAAGGAAAGCCCCTCTGTCCGATCCTCCAAAGACGGAAAGCTGCTGGCTG	300 52
301 53	TGCTGCTGGCACTGCTGTCTTGCTGCCTCACGGTGGTGTCTTTCTACCAGGTGGCCGCCC L L A L L S C C L T V V S F Y Q V A A L	360 72
361 73	TGCAAGGGGACCTGGCCAGCCTCCGGGCAGAGCTGCAGGGCCACCACGCGGAGAAGCTGC Q G D L A S L R A E L Q G H H A E K L P CD-II	420 92
421 93	CAGCAGGAGCAGGAGCCCCAAGGCCGGCCTGGAGGAAGCTCCAGCTGTCACCGCGGGAC A G A G A P K A G L E E A P A V T A G L CD-III	480 112
481 113	TGAAAATCTTTGAACCACCAGCTCCAGGAGAAGGCAACTCCAGTCAGAACAGCAGAAATA K I F E P P A P G E G N S S Q N S R N K	540 132
541 133	AGCGTGCCGTTCAGGGTCCAGAAGAAACAGTCACTCAAGACTGCTTGCAACTGATTGCAG R A V Q G P E E T V T Q D C L Q L I A D CD-IV	600 152

FIG.1A

Neutrokine- α

601 153	ACAGTGAAACACCAACTATACAAAAAGGATCTTACACATTTGTTCCATGGCTTCTCAGCT S E T P T I Q K G S Y T F <u>V P W L L S F</u> CD-V	660 172
661 173	TTAAAAGGGGAAGTGCCCTAGAAGAAAAAGAGAAATATTGGTCAAAGAAACTGGTT K R G S A L E E K E N K I L V K E T G Y CD-VI	720 192
721 193	ACTITITATATATGGTCAGGTTITATATACTGATAAGACCTACGCCATGGGACATCTAA FFIYGQVLYTDKTYAMGHLI CD-VI CD-VII	780 212
781 213	TTCAGAGGAAGAAGGTCCATGTCTTTGGGGATGAATTGAGTCTGGTGACTTTGTTTCGAT Q R K K V H V F G D E L S L V T L F R C CD-VII	840 232
841 233	GTATTCAAAATATGCCTGAAACACTACCCAATAATTCCTGCTATTCAGCTGGCATTGCAA I Q N M P E T L P N N <u>S C Y S A G</u> I A K CD-VIII CD-IX	900 252
901 253	AACTGGAAGAAGGAGATGAACTCCAACTTGCAATACCAAGAGAAAATGCACAAATATCAC <u>L E E G D E L Q L A I P R</u> E N A Q I S L CD-X	960 272
961 273	TGGATGGAGATGTCACATTTTTTGGTGCATTGAAACTGCTGTGACCTACTTACACCATGT D G D V <u>T F F G A L K L</u> L CD-XI	1020 285
1021	CTGTAGCTATTTTCCTCCCTTTCTCTGTACCTCTAAGAAGAAAGA	1080
1081	CCAAAAAAAAAAAAAA 1100	

FIG.1B

		District
TNFalpha TNFbeta LTbeta FasLigand Neutrokine alpha Neutrokine alpha	TNFalpha TNFbeta LTbeta FasLigand Neutrokine alpha	TNFalpha TNFbeta LTbeta FasLigand Neutrokine alpha
10 30 30 30 30 30 30 30 30 30 30 30 30 30	40 50 60 60 60 60 60 60 60 60 60 60 60 60 60	70 80 90 90 90 90 90 90 90 90 90 90 90 90 90
	17 8 4 4 30 31	30 9 112 60 58

FIG.2A

	•	
TNFalpha TNFbeta LTbeta FasLigand Neutrokine alpha Neutrokine alphaSV	TNFalpha TNFbeta LTbeta FasLigand Neutrokine alpha Neutrokine alpha	TNFalpha TNFbeta LTbeta FasLigand Neutrokine alpha
120 120 120 120 120 120 120 120 120 120	130 140 150 150 150 150 150 150 150 150 150 15	160 170 170 180 66 H L I G D P S K Q N - S L Q W L N R R A N A L L 91 H L I G A P L K - G Q G L G W E T I K E Q A F L 148 H L T G K S N S R S M P L E W E D I Y G I V L L 148 Q L I A D S E T P T I Q K G S Y T F V P W L L S F K 142 G S Y T F V P W L L S F K
38 31 32 90 88 88	96.4.	9. 17 17 17

se e

FIG.2B

TNFalpha TNFbeta LTbeta FasLigand Neutrokine alpha	TNFalpha TNFbeta LTbeta FasLigand Neutrokine alpha	TNFalpha TNFbeta LTbeta FasLigand Neutrokine alpha Neutrokine alphaSV
190 200 200 200 200 200 200 200 200 200 2	240 240 240 118 KAYSP STHVLLTHTISRIAVSYQTK 118 KAYSP KATSSPLYLAHEVQLFSGQYPFH 144 RAPPGGBSVTLRSSLYRAGGAYGPG 200 QSCN NLPLSHKVYMRNSKYPQD 204 KTYAMG HLIQRKKVHVFGDELS 185 KTYAMG HLIQRKKVHVFGDELS HLIQRKKVHVFGDELS HLIQRKKVHVFGDELS	250 260 270 167 VN LLS AIKSPCQRETPE - GAEAKPWYE 146 VP LLS SQKMVYP GLQEPWLH 174 TPELLEGAETVTPVLDPARRQGYGPLWYT 222 LV MMEGKMMSYC TTGQMMAR 226 LVTLFRCIQNMPETLPN TTGQMMAR 207 LVTLFRCIQNMPETLPN N FIG.2C

					pha	phaSV						pha	phaSV
	TNFalpha	eta	LTbeta	-igand	Neutrokine alpha	Neutrokine alphaSV		[NFa] pha	TNFbeta	LTbeta	FasLigand	Neutrokine alpha	Neutrokine alphaSV
	TNF	IN THE	LTbe	Fast	Neut	Neut		TNF	TNF	LTb	Fasl	Neut	Neut
300	A F	S P	A R	ш									
	GGVFQLEKGDRLSAEINRPDYLDFAE	\ \ \	L O	z	S	S							
	7 /	H	Σ	<u>></u>	0	Ø							
	<u>а</u>	IP	۵.	S	Z E E	z							
_	z	DG	I S	М П	<u>6</u> ∠	<u>~</u>							
290	<u> </u>	\vdash \vdash	z	> z	EEGDELQLAI	QLAIPRE	-						
	∢	⊢	>	> _	7	7 7							
		ب	>	_	٥							٠	
	~	O	В	工	D E	EEGDEL							
	G	5	Œ	TSA	G	9		-					
	\times	0	2	S	ш	Ш		L		5			
280			∝	<u> </u>	Ш		101		V	×	∀	1 ×	<u>'</u>
8	Q	ď	G G L V Q L	z	<u>×</u>	AK	ري س		щ	>	>-	FFGALK	FFGALK
	ഥ	ᄔ	>	<u>u</u> _	¥	¥		-	⋖	⋖		A	A
	7	Y	، لـــــ محمد	<u>></u>	H-1	_		9	G	9 :	9	9 :	5
	9	<u>~</u>	5	CO	6	⊕		YFGI	i.	<u> </u>	FFGL	1	<u></u>
		王	F		S	S		>	>	\vdash	Ŀ	H	
	>	>	5	>	>	>		0	—	×	O	>	>
	I d	Σ Ø	S V G F	S	S	S 0		SG	> T ⋅ S	<u>.</u>	, (2)	<u>С</u> П	0 0
,			204				-		196				

FIG.2D

	1				50
HSOAD55R HNEDU15X		GGATAACTC	T CCTGAGGGGT	GAGCCAAGC	CTGCCATGTA
HSLAH84R HLTBM08R	AATTCGGCAC	GAGCAAGGC	GGCCTGGAGG	TATATATGG AAGCTCCAG	CAGGTTTTAT CTGTCACCGCG
HSOAD55R HNEDU15X HSLAH84R	GTGCACGCAG ATACTGATAA	GACATCAACA GACCTACGCC	A AACACAGA C ATGGGACATO	TAACAGGAÂA TAGTTCAGA	100 TAÂTCCATTC TGATCCATTC GGAAGAAGGTC
HLTBM08R	GGACTGAAAA	TCTTTGAACC	CACCAGCTCCA	GGAGAAGGCA	ACTCCAGTCA
HSOAD55R HNEDU15X HSLAH84R HLTBM08R	CCTGTGGTCA CATGTCTTTG	CTTATTCTAA GGGATGAATT	AGGCCCCAAC GAGTCTGGTG	CTTCAAAGTT	150 CAAGTAGTGA CAAGTAGTGA GATGTATTCA ACAGTCACTC
HSOAD55R HNEDU15X HSLAH84R HLTBM08R	TATGGATGAC AAATATGCCT	TCCACAGAAA GAAACACTAC	GGGAGCAGTC CCAATAATTC	ACGCCTTACT CTGCTATTCA	200 TCTTGCCTTA TCTTGCCTTA GCTGGCATTG TATACAAAAA
HSOAD55R HNEDU15X HSLAH84R HLTBM08R	AGAAAAGAGA CAAAACTGGN	AGAAATGAAA AGGAAGGA	CTGNAAGGAG CT.GAAGGAG GATGAAC TTTGGGCCAA	TGTGTTTCCA TCCAACTTGC	TCCTCCCACG AATACCAGGG
HSOAD55R HNEDU15X HSLAH84R HLTBM08R	GAAGGAAAGC GAAAATGCAC	CCCTCTGTCC AATTATCACT	GATCCTCCAA GATCCTCCAA GGGATGGAGA CTCTTCAGAT	AGACGGAAAG TGTTCACATT	CTGCTGGCTG TTTTGGGTGC
HSOAD55R HNEDU15X HSLAH84R HLTBM08R	CAACCTTGCT CATTGAAACT	GCTGGCACTG GCTGTGACCT	TGTTCTTGCT CTGTCTTGCT NCTTACANCA GATTNACACA	GCCTCACGGT NGTGCTGTTN	GGTGTCTTTC GCTATTTTNC
HSOAD55R HNEDU15X HSLAH84R HLTBM08R	TACCAGGTGG CTNCCTNTTC AAGTTTTAAA	TNTGGTAACC	TCTTAGGAAG	GAAGGATTCT	TAACTGGGAA

LICOADEED	401				450
HSOAD55R HNEDU15X HSLAH84R HLTBM08R	ATAACCCAAA	AAAANNTTAA	ANGGGTANGN	AGGAGCAGGA GNNANANGNG AGGTTTNTAT	GGGNNGTTN
	451				500
HSOAD55R HNEDU15X HSLAH84R HLTBM08R	CCGGCCTGGA CNNGNNGNNT	GGAAGCTCCA TTTNGGNNTA	GCTGTCACCG TNTTNTNNTN	CGGGACTGAA GGGNNNNGTA NCNNTCTTTT	AAAATGGGG
	501				550
HSOAD55R HNEDU15X HSLAH84R	CNANGGGGGN	ПП		CAGAACAGCA	
HLTBM08R	• • • • • • • • • • • • • • • • • • • •	••••••	. 		
HSOAD55R	551				-600
HNEDU15X				TCAAGACTGC	TTGCAACTGA
HSLAH84R HLTBM08R					
	601				650
HSOAD55R HNEDU15X	TTGCAGACAG			AAGGATCTTA	
HSLAH84R HLTBM08R					
LICOADEED	651				700
HSOAD55R HNEDU15X	CCATGGCTTC	TCAGCTTTAA	AAGGGGAAGT	GCCCTAGAAG	AAAAAGAGAA
HSLAH84R HLTBM08R					
	701		•		750
HSOAD55R HNEDU15X	TAAAATATTG			TTTTATATAT	
HSLAH84R HLTBM08R					
	751				800
HSOAD55R HNEDU15X HSLAH84R			GCCATGGGAC	ATCTAATTCA	GAGGAAGAAG
HLTBM08R					

	801				850
HSOAD55R HNEDU15X				GTGACTTTGT	
HSLAH84R HLTBM08R					
HOOADEED	851			· · · · · · · · · · · · · · · · · · ·	900
HSOAD55R HNEDU15X	TCAAAATATG	CCTGAAACAC	TACCCAATAA	TTCCTGCTAT	TCAGCTGGCA
HSLAH84R HLTBM08R	• • • • • • • • • • •				
	901				950
HSOAD55R HNEDU15X		GGAAGAAGGA	GATGAACTCC	AACTTGCAAT	
HSLAH84R HLTBM08R					
	951				1000
HSOAD55R HNEDU15X	AATGCACAAA	TATCACTGGA	TGGAGATGTC	ACATTTTTG	GTGCATTGAA
HSLAH84R HLTBM08R			•		
	1001	•			1050
HSOAD55R HNEDU15X	ACTGCTGTGA			AGCTATTTTC	
HSLAH84R HLTBM08R	* * * *				
	1051				1100
HSOAD55R HNEDU15X	• • • • • • • • • • • • • • • • • • • •	•		AAAATACCAA	
HSLAH84R HLTBM08R					
HSOAD55R HNEDU15X HSLAH84R HLTBM08R	1101 AAAAAA				

FIG.4C

Neutrokine- αSV

1		GGA D	TGA D	CTC S	CAC T	AGA E		GGG/ E			CAC(R	GCCT L	TAC T	STTC	CTT(C	GCC ⁻			AAA(R	GAGA/ E	A 60 20
61 21	GA E				GAA K		GTG C	GTGT V	rrr(S	CCAT				GA/ K		<u>S</u>				TCCG/ R	A 120 _ 40
121 41	<u>S</u>	CTC S CD-	Κ			AAA K						CT1 <u>L</u>	GCT L	GCT L	GG(CACT	rgc7	FGT(<u>S</u>	СТТ(С	GCTGC C	180 60
181 61		CAC T									CGC A			AGG G		<u> L </u>	GGC A	<u>S</u>	GCCT L	CCGG	3 240 80
241 81	<u>A</u>	AGA E -II		GCA Q	GGG G	CCA H	CCA H	CGC A	GGA E	∖GAA K	GCT L	GCC P	AGC A		AGC A	G		Р		AGGCC A	300 100
	GG(<u>G</u> CD - I	L				TCC. P	AGC A		CAC T	CGC A	GGG G		GAA K	AAT I	CTT F	TGA E	ACC P	ACC P	AGC A	TCCA P	360 120
361 121	GG/ G		AGG(G	CAA		CAG [*] S								TGC A				TCC P	AGA E	AGAA E	420 140
421 141		AGG/ G		ГТА(Ү	CAC/ T	ATT F	TGT <u>V</u>	TCC P	ATG W	GCT L	TCT L	CAG S	F	TAA <u>K</u> - IV	R	GGG G	AAG S	TGC A	CCT L	AGAA E	480 160
481 161	G A / <u>E</u> CD -]	K		SAAT N		AATA <u>I</u>	ATTO		CAA <u>K</u>		AAC T	G	TTA(<u>Y</u> CD-'	F	TTT F	TAT I	ATA Y	TGG G	TCA Q	GGTT V	540 180
541 181	TTA L	\TA7 Y	TACT	D ·		T			CAT(ACA <u>H</u>	TCT.	AAT I	Q		K	GAA K		CCA H	TGTC V	600 200

FIG.5A

Neutrokine- α SV

601	TTTGGGGATGAATTGAGTCTGGTGACTTTGTTTCGATGTATTCAAAATATGCCTGAAACA	660
201	FGDELS <u>LVILFRCIQNMP</u> ET	220
. •	CD-VIII CD-VIII	
661	CTACCCAATAATTCCTGCTATTCAGCTGGCATTGCAAAACTGGAAGAAGGAGATGAACTC	720
221		720
221	LINK SCISAGIAR LEEGDEL	240
	CD-IX CD-X	
701	CAACTTOCAATACCAACAAATCCACAAAATCCACAAAAATCCACAAAATCCACAAAAATCCACAAAAATCCACAAAAATCCACAAAAATCCACAAAAATCCACAAAAATCCACAAAAAA	
721	CAACTTGCAATACCAAGAGAAAATGCACAAATATCACTGGATGGA	780
241		260
	CD-XI CD-XI	
781	GGTGCATTGAAACTGCTGTGACCTACTTACACCATGTCTGTAGCTATTTTCCTCCCTTTC	840
261	GALKLL	266
	CD-XI	
841	TCTGTACCTCTAAGAAGAAAGAATCTAACTGAAAATACCAAAAAAAA	900
901	AAA 903	

FIG.5B

Neutrokine-Alpha M D D S T E R E Q S R L T S C L K K R E E M K L K E C V S I L P R K E S P S V R

_	-
2	2
Region	į
å	2
a	ر
ransmemhrane	=
٤	-
官	₫
E	ב
2	2
7	3
F	_

	S	Š
	U	
	<	<
	_	_
		J
		つ
	<	
	<	
	_	_
	_	_
		9
	<	>
		1
	<	c
	_	C
	_	>
•	_	7
	>	_
-	L	
4	0	7
	>	>
	>	>
1	-	_
		ر
	ے	
	۰	د
()
		1
	_	ı
	d	C
		ı
		ı
		ı
ł	٥	_
•		
٠	◁	
	_	ı
		ı
:	_	′
(_	3
	_	<u>۔</u>
	_	
	¥	
(_)

I F E P P A P G E G 123 G L K AVTA A P ш لنا V \prec GAGAP ¥ Д \checkmark لبا ¥ H H 5 0 7

	164	134	102	9/
				•
	>-	>		
	S	SDV	•	•
	G	S	•	•,
	\prec	a	•	•
	O	0	•	. •
	-	•	Q	S
	<u>Г</u>	×	5	Z
	۵.	S	ш	
	<u> </u>		¥ ×	SKQ
	<u>и</u>	PINA		
	I A D S	_		0
ı	4	۵.	<u> </u>	5
	1	>	<u> </u>	5
1			>	
	O	豆	ï	Ŧ
			٧	¥
	ပ	>	2	Y
- [d p	SH	Ф	Д
1	Ŏ	工	¥	\succeq
	_ \			
	>			
	-	<u></u>		ರ
	P E E	lpri	ĭ.	H-:
	ш	⋖	 	_
	<u> </u>			
	V Q G I			
	>			
	R A 1			
	8			
	\leq			
	z			
	8			
	S			
	z			
	Ŏ			
	S			

S S

	0	0	6	4
	200	17	139	114
			YLIYSQVLI	>
	>	SQVL	٨	۸.
	O	Q	ď	Ŏ
	9	S	S	S
	_	À	<u> </u>	/ /
0		7 7	است	
	LL.		_ ≽	_
	>	<u> </u>		I
	Œ	G	ம	LLVPTSGIY
	<u>-</u>	DAG	PSE	S
	ш		S	<u> </u>
	\prec	D	ட	Д
	>	R I	>	^
			>	
	Н	G V	0	10
ш	<u>×</u>	·		S
,	Ш	9		,
	$\overline{\mathbf{x}}$	0		
	ш	¥	O	z
i	س	0	I R D -	- N S
8				
ŀ	Y	G	V E	S
	S	R	>	ட
	Q	R G	œ.	0 D G
	\simeq	∞	Z	2
	ᅩ		⋖	O
	-			
	,	•		<u> </u>
			N N	D R A
			×	Q
	•		\simeq	⊢
	S	¥	×	Z
	_	Ф	Z	A
		0	'	~
	2	3	8	⊗
	a D	Σ	0 -	
	L	ш	<u> </u>	
	_	_	•	•

	•		
237	201	176	155
Σ P	<u>a</u>	Q.	 >
	Σ	S	Σ
Z	۳ ا	¥	¥
O	R		O
	<u> </u>	SA	S S
R C	FRCI	S	S
~	2	1 7	
	1	2	Ь 1
		1	_
>	لبا	<u>×</u>	H
	0	_	<u>_</u>
S	~	O	_
_	5		>-
لنا	O	S	O
	G	>	S
5		A	S
	ı	Н	سلما
>	•	\simeq	
工		S	Q
>		\vdash	\geq
$ \times $	•	\vdash	ш
🗠	ليا		
œ	<u>~</u>	—	A
Q	S		
I	>		<u>></u> _
	>	_	
G H	0	-	<u>a</u>
9	9	S	SS
<	2		
∢ :		•	T V
i	·	·	×
·	,	į	٦
		ـَــ	S
>=	ш.		×
T			A
\succeq	>	Ö	
			9
\vdash	o	\prec	S
 >-	LL.		1

FIG. 7A-2

HL-60
HeLa
K-562
MOLT-4
Raji
SW480
Spleen
Lymph Node
Thymus
PBL
Bone Marrow
Fetal liver
Heart
Brain
Placenta S. Muscle Kidney Pancreas

FIG.7B

FIG.8C

FIG.10E

FIG.11A

FIG. 11B

FIG. 11C

FIG. 11D

FIG. 11E

FIG. 11F

Figure 7

a.

```
Meutrokine-
ulpha M DDSTEREQSRLTSCLKKREEMKLKECVSILPRKESPSVRS / 419
                                                                                                                            DELETE PORTION OF
                                                                                                                                                      UNE
                                                Transmembrane
                                                                         Region
         SKDGKLLAATLLLALLSCCLTVVSFYQVAALQGDLASLRAE
         LQGHHAEKLPAGAGAPKAGLEEAPAVTAGLKIFEPPAPGEG. 123
         NSSQNSRNKRAVQGPEETVTQDCTQTTADSETPTIQKGSYT 164
April HSVTHLVPINAESK-DDSDVT 134
TNF KPVAHVVANPQAEGQ----- 102
                                                                                                                                                              10
                                                                         KPAAHLIGDPSKQNS---
                                                         LT a
                                                                                                                                                     "6" at position
         F V P W E L S - - - - F K R G S A L E E K E N K I E V K E T G Y F F I Y G Q V E 200 E V M W Q P A - - - - L R G R G L Q A Q G Y G V R I Q D A G V Y L L Y S Q V L 170 - L Q W L N R R A N A L L A N G V E L R D - - N Q E V V P S E G L Y L I Y S Q V L 139 - L L W R A N T D R A F L Q D G F S E S N - - N S L L V P T S G I Y F V Y S Q V V 114
                                                                                                                                                       pe black
                                                                                                                                                         text on
         YTDKTY - - - AMCHI IQRKKVHVFGDELSLVTLFRCIQNMF
FQDVTF - - - TMGQVVSRE - - - - - GQGRQETLFRCIRSMF
FKGQGCP - - - STHVLLTHTISRIAVSYQTKVNLLSAIKSP
FSGKAYSPKAFSSPLYLAHEVQLFSSQYPFHVPLLSSQKNV
                                                                                                                                                             backylow
                                                                                                                                             201
         E - - T L P - - - - - - N N S C Y S A G I A K L E E G D E L Q L A L P R E N A 268 S H P D R A - - - - - - - Y N S C Y S A G V F H D H O G D I L S V I L P R A R A 234 C Q R E T P E G A E A K P W Y E P I Y L G G V F Q L E K G D R L S A E I N R P D Y 217 Y P - - - - - G L Q E P W L H S M Y H G A A F Q L T Q G D Q L S T H T D G I P H 190
         QISÎDGDV<u>TFFGALKL</u>LKLNISPHGTFLGFVKL
LDFAESGQVYFĞIIAL
LVLS— STVFFGAFAL
                                                                                                                                              285
                                                                                                                                              250
                                                                                                                                              233
                                                                                                                                              205
```

b.

