unit. 2 Serniconductors.

- * Syllabus: Ointoinsic and Extrinsic semiconductors.
 - and temp. (equilibrium carrier statistics)
 - 3 carrier generation and recombination, carrier transport, diffusion, duft, p-n-junction.
 - (4) Metal-Semiconductor Junction (ohmic & Schottley)

 Semiconductor material of interest for optoelectronic

 devices.

-

At moso

Difference Between Intrinsic and Extrinsic Semiconductor

The Intrinsic and Extrinsic semiconductors are distinguished from each other considering various factors such as doping or the addition of the impurity, density of electrons and holes in the semiconductor material, electrical conductivity and its dependency on various other factors.

The difference between the two types of the semiconductor is given below in detail.

BASIS OF DIFFERENCE	INTRINSIC SEMICONDUCTOR	EXTRINSIC SEMICONDUCTOR
Doping of impurity	Doping or addition of impurity does not take place in intrinsic semiconductor.	A small amount of impurity is dopped in a pure semiconductor for preparing extrinsic semiconductor.
Density of electrons and holes	The number of free electrons in the conduction band is equal to the number of holes in the valence band.	The number of electrons and holes are not equal.
Electrical . eonductivity	Electrical conductivity is low.	Electrical conductivity is high
ependency of electrical conductivity	Electrical conductivity is a function of temperature alone.	Electrical conductivity depends on temperature as well as on the amount of impurity doping in the pure semiconductor.
Example	Crystalline form of pure Silicon and Germanium.	Impurity like As, Sb, P, In, Bi, Al etc. are dopped with Germanium and Silicon atom.

Intrinsic Semiconductor is a pure form of the semiconductor as there is no addition of impurity takes place. An example of intrinsic semiconductors is Silicon (Si) and Germanium (Ge).

On the other hand, when a small quantity of Tetravalent or Pentavalent impurity like Arsenic (As), Aluminium (Al), Phosphorus (P), Galium (Ga), Indium (In), Antimony (Sb) etc. is added in pure semiconductor, an Extrinsic Semiconductor is obtained.

Difference Between Intrinsic and Extrinsic Semiconductor

- In an intrinsic semiconductor, the addition of impurity with a pure semiconductor does not take place, whereas the extrinsic semiconductor is formed by dopping of impurity in a pure semiconductor.
- The density of electrons and holes in the intrinsic semiconductor is same, i.e. the number of free electrons present in the conduction band is equal to the number of holes in the valence band.but in the case of extrinsic semiconductor the number of electrons and holes are not equal. In a p-type semiconductor, the holes are in excess and n-type semiconductor the number of electrons is greater than the number of holes.
- The electrical conductivity of an intrinsic semiconductor is low, whereas in extrinsic semiconductor the electrical conductivity is high.
- The impurity like arsenic, antimony, phosphorus, aluminium indium, etc. is added to the pure form of silicon and germanium to form an extrinsic semiconductor. The pure form of silicon and germanium crystal is used in an intrinsic semiconductor.
- Electrical conductivity in intrinsic semiconductor is a function of temperature alone, but in extrinsic semiconductor the electrical conductivity depends upon the temperature and the amount of impurity doping in the pure semiconductor.

1	
(1)	Intrinsic and Extrinsic Semiconductors:
	1 internsic:
	Pure semi conductors are known as intrinsic
	semiconductors. or a semiconductor in which
	electrons and holes are solely created by thermal excitation
	is the or Intrinsic Semiconductors.
	chemically pure with less than one impurity
	atom in a billion host atom.
	Electorcal conductivity is low.
	Not use ful for device manufactoring because
	of 10W conductivity.
	·-
	(3) Extrimsic :-
	The semiconductors in which impurites are
	added is called extrinsic semiconductors.
.	large quantity of impurity atoms property
.	The impurity Produced corriers are not
	temperature dependent but voituse dependent
_,	and amount of impurity added.
	Electorical conductivity is high.
	" Useful for semiconductor devices ous
	diodes transister, LED, photodiodes etc.
	Extrinsic are further devided into 2
	types. (i) P-type semicon ductors
	(ii) Notype semiconductors.
100	

where EF = Fermi energy level. Ec = Bottom of Cb By = top of Vo as seen in figure at T=0 Vb is completely filled and Coep is completely emply -> Expression: carrier density combe obtained by integrating the density of states ZCE) dE and probability Contemporation . E=0 inlegation ean a with bottom of Cb Ec and top of v. Cb 6 ... ne = | ZCE) dE f(E) -> (2) dursing of state for an ele. with effective mass Z(E) de = T (8me) 312. E/L dE The energy for electron in Cb becomes E-Ec no ean 3 can be written as Z(E) dE = TT (8 me) 312 (E-Ec) 1/2 dE ->(y) Sub IH HUHMY (4) INTO @

" " " ne = T (8 me KgT) e (Ef-Er)/ket VT Simplifying me = 1 (8 me KBT) . e (Ef-Ec)/KBT ne = 2 (200 me kBT) 312 e (Ef-Ec)/1CBT Or density of ele. in Ch Fer Internsic. Jem 1 Conductor 2.(2) Density of holes in Valence band Fer inkinsic semiconductors ther donsing of holes can be calculated by density of States Z(E) dE and probability function fles for a hole [1-F(E)] between the limits from the bottom of valence band (-00) to top. Of valence bornd Ev which is, Ev probability of absence = 1- Probability of presence hole probability = 1- Electron probability So 1- f(E) = 1- 1+ e (E-E)/KOT = 1-(1+ e F-E+)/KRT] Using binomal series $(1+x)^{2} = 1-x+x^{2}-x^{3}+...$

	U
1	
-	2.4 Law of mass action. (
	This law states that for a given
	semiconductor (intrinsic or Extrinsic) Product of
	change carrier concentration remains a constant at
	any given temperature even exit dopping is varied.
	ne. nh = n; = constant
	n; = carrier concentration for
	Bosed on mans action law
	$m_i^2 = me \times mn \qquad \longrightarrow \bigcirc$
	n; = 2 (21 me kst) 2 (Ef-Ec)/ksr
	X & (2 m, KBT) . e
	3 (- 5)/.
	$\frac{1}{2} = 2 \left(\frac{2\pi k_B T}{h^2} \right)^{\frac{3}{2}} \left(\frac{m_e^4 m_h^4}{m_h^4} \right)^{\frac{3}{2}} \left(\frac{EV - Ec}{k^2} \right)^{\frac{1}{2}} \left(\frac{m_e^4 m_h^4}{m_h^4} \right)^{\frac{3}{2}} \left(\frac{EV - Ec}{k^2} \right)^{\frac{3}{2}} \left($
	$n_{i} = 2 \left(\frac{2 \pi k_{B} T}{h^{2}} \right)^{3/2} \left(\frac{m_{e}^{2} m_{h}^{2}}{m_{h}^{2}} \right)^{3/4} e^{\left(EV - E_{E}^{2} \right) / 2 k_{B} T}$
	h ²
'	we know that Ec-Er= Eq
	$n_{i} = 2\left(\frac{2\pi k_{B}T}{h^{2}}\right)^{3/2} \left(\frac{m_{e}^{4} m_{h}^{4}}{m_{h}^{3}}\right)^{3/4} e^{\left(-\frac{E_{g}}{2}k_{B}T\right)}$
	h ²
	From Above ean it is clear that product of
	ne. The dies not depend on Ex but remain const.
	at a steel given temp, and above ean gives
	carrier concentration for an internsic semiconducto
	\cdot $m_0 = m_0 = h$;

: Ef = (Ed + Ec) + KgT In (9 (27 211 mg KgT)32 (3) at T=0 the ear (5) reduced to Ef = Ed + Ec) = egn for formilard. fermi level lies exactly in the middle of donor level and bottom of conduction band. Expression for corrier concontritted in conduction band for N. type semiconductors from ean () me = 2 (2TT me KBT) 3/2 (Ef-Ec)/KBT · putting the values of to Frem ean (5) before that simplifying term Et-Ec for the above egu $E_{f}-E_{c}=\left(\frac{E_{d}+E_{c}}{2}\right)+\frac{|k_{B}T|}{2}\ln\left(\frac{N_{d}}{2\pi m_{e}^{2}k_{B}T}\right)^{3/2}$ $E_{f}-E_{c} = E_{d}-E_{c} + k_{8}T \ln \left[\frac{Nd}{2 \pi M_{e}^{2} k_{8}T}\right]^{312} - 5(6)$ deviding the above eem by KBT $\frac{\text{Ef-Ec}}{\text{kbT}} = \frac{\text{Ed-Ec}}{2 \text{kbT}} + \ln \left[\frac{N_d^{1/2}}{2 \left(2 \left(2 \right) \text{Tm}_e^{\frac{1}{2}} \text{kbT} \right)^{3/2}} \right]^{\frac{1}{2}}$

1	
	. Taticing logarithm on both sides
	$\ln \left[2 \left(2\pi M_h^{\dagger} K_B T \right)^{3/2} \right] + \frac{EV_V - EF}{K_B T} = \ln N\alpha + \frac{EF - E\alpha}{N\alpha T}$
	Rearranging the above ean
	EV-EF EF-Fa = In Na - In 9 (171 mh KBT) 3/12 KBT - KBT
1,	$\frac{2E_{f}}{k_{g}T} + \frac{E_{V} + E_{a}}{k_{g}T} = \ln \left[\frac{Na}{2} \frac{Na}{k_{g}T} \right]^{3/2}$
	Mulhphing both Side by (-ve) and rearranging
	$\frac{2E_F}{K_BT} = \frac{E_V + E_A}{K_BT} - \ln \left[\frac{V_0}{2 \left(\frac{2\pi m_h^* K_BT}{h^2} \right)^{3/2}} \right]$
	multiplying both side with KBT
	$ \frac{E_{f} = \frac{E_{v} + E_{u}}{2} - \frac{K_{B}T}{2} \ln \left[\frac{N_{u}}{2} \frac{N_{u}}{h^{2}} \right]^{3k}}{2 \left(\frac{2 \pi m_{h} K_{B}T}{h^{2}} \right)^{3k}} $
	at T=0 above ean reduced to (6)
	Ef = Ev + Ea
ķ.	* Expression For density & of holes in valence band:
	from eqn ① nn = 2 (2π mn · KeT) 3 (EV-EF)/keT
	substituting the value of Effrom above in ean (

7	(1) photon trunsition.
	It is known as direct recombination.
	here an electron from Ch Falls back to Vb and
	release energy in the form of Photon.
	The reverse process (generation) is achived
	by giving energy to atoms in which to electron
1	runsfer to from Vb to Cb and creating a hole in Vb.
	The energy of incident photon has to be
	atteast of the masnihide of bandges energy.
	From trunsition from excited states to lower
2	tate, momentum has to conserved.
	energy E = hre freq of photon
	Planks Chot.
	Θ
	There's
,	(H)
	(a) (b)
	(Recombination) (Generation)
	The process of recombination is directly
pro	portions to available holes and electrons.
2	phonon transition: (SRH)
	Also known as indirect or tourn assisted
~	e combination.
	It is a trupassisted, passing through a
7 - 4	in aster st second rol to had and a the sound we

3.2 carrier transport: Diffusion and drift. * Drift current: The flow of charge currier which is due to applied voltage or electrical field is called drift current. in a semiconductor 2 types of consciens, ele-anahat when voltage is applied to a semiconductor, me ele mores towards the terminal of buttery and holes moves towards + -ve terminal. aenerally in semiconductor ele tendito travel in straight direction but due to collisions they change direction with every collision they bounce buck in rundom direction. The applied voltage does not stop Collisions but causes the elemon to writt towards the positive terminal. 'The average rejocity that an electron or hole achieve due to applied voltage or ele field is drift velocity of ele. Ve = He E. drift velocity of holes Vn= MnE Lydrifft current density of eig. Je = ne He. E drift current density due to, hore Ih = ne lin E Total drift current density J= Je + Jh = nelle C + nelly E J = ne F (Me + Mh)

* Diffusion current:

a higher concentration to lower concentration region is

-1. - 4. THE O PHOSE & B

1	
	3.3 P-N Junction.
	when a p-type semiconductor is fused (somed)
	to an N-type semiconductor, a P-N Junetion is
	formed. It is fubricated by special processes like
	alloying and diffusion methods.
	* P-N Junchen at zero hias
	p. Mie h. Mie
	Migrated electrone Depletion Migrated holes from PMPE
	from N.MIE. Tregion
	-> In P-mpe holes and in Nimpe ele. are
-	majority charge curriers along with majority charge
_	corriers minorin charge corriers are also present.
	The majority change carrier near the Jynetton
	diffuse across the synction and recombine after
	few recombination the process Stops because of this
2	There is a region created between p-mpe and Nimile
	naterial which is having neutral Charge. This region is
	Known as Depletion region.
**	There is No current in this condition.
\- <u>-</u>	The thickness of the depletion region is of the
<u></u>	orden of 10° m.
	The potential co difference between the

Patrick to be a second

_	The applied reverse volterge creates an ele field
	which acts in the same direction of potential barrier.
	due to this potential bablier increases.
_	This barrier Stops the flow of current
	across the Juneton, very small current feous
	in the circuit due to minority carriers called
_	reverse current. deligher width and increased when p. N. 2007
_	PMPE NOTHER
	motes electrons
_	enoles ele->.
_	-> when a P-N sumction diode is forward
	blased 1000 replaterace pater and culterit flows.
	when a P-N Jimiction diode is reverse
	blased high resistence path and No current flows.
	so plode can be used as a switch
	er rectifier.
_	It can also be used as clipper, clamper
	or in gates.

4.1 Meterl Semiconductor Junction (ohmic & Schottky)

4 work function (\$): 118 tere minimum energy

required to trunter an ele. From a point within
a solid to a point outside its surface.

4 Etetron affinity (\$\text{X}_n\$): it is defined as the energy

released or sport when ele is added to a neutral abom or molecules.

metal and semiconducter brough into context two house of junction are can be formed.

In > Osem, -> Schottky junction

On a observed of semi -> ohmic junction.

when electron hole pair are generated by bombardment of highly energetic electrons into the material, the resulting radiation due to electrombination of ele-hole pair is railed cathodoluminescence.

Excemples: TV tubes, CRT's.

(2.3) Electrolumine scence (EL):

when the excitention of corriers (generator of electron-hole point) is produced due to the introduction of forward current into the moverial. the resulting radiation due to recombination of ele-hole paint is called electrolyminescence.

ex. LED

Basically optodel optoelectronic devices are devided into two categories.

optoelectronic devices

into Em Radiation (1'19ht)

Ex. LED

electroc curent

Ex. photodiode.