DMML

Practical Lesson 7 (November 6, 2025)¹ $VC\ Dimension$

- 1. (a) $\mathcal{X} = \mathbb{R}^2$, $\mathcal{F} = \{\text{linear classifiers}\}$, i.e., $\mathcal{H} = \{\text{half-planes}\}$.
 - (b) $\mathcal{X} = \mathbb{R}^d$, $\mathcal{F} = \{\text{linear classifiers}\}.$
- 2. (a) Prove that if $\mathcal{H}_1 \subseteq \mathcal{H}_2$, then $\dim_{VC}(\mathcal{H}_1) \leq \dim_{VC}(\mathcal{H}_2)$.
 - (b) Prove that if \mathcal{H} is finite, then $\dim_{VC}(\mathcal{H}) \leq \log_2 |\mathcal{H}|$.
- 3. $\mathcal{X} = \{1, 2, ..., 999\}$, $\mathcal{H} = \{H_0, H_1, ..., H_9\}$, where H_i is the set of numbers in \mathcal{X} whose decimal representation contains the digit i. Determine $\dim_{\mathrm{VC}}(\mathcal{H})$.
- $\text{4. (a)} \ \ \mathcal{X}=\mathbb{R}, \mathcal{F}=\left\{f_{a,b}(x)=\mathbb{I}(a\leq x\leq b): a,b\in\mathbb{R}\right\}\text{, i.e., }\mathcal{H}=\{\text{intervals}\}.$
 - (b) $\mathcal{X}=\mathbb{R},\,\mathcal{F}=\left\{f_{a,b,s}:a,b\in\mathbb{R},s\in\{-1,1\}\right\}$ ("signed intervals"), where:

$$f_{a,b,s}(x) = \begin{cases} s, & \text{if } x \in [a,b] \\ -s, & \text{if } x \notin [a,b]. \end{cases}$$

- (c) $\mathcal{X} = \mathbb{R}$, $\mathcal{H} = \{\text{union of } k \text{ closed intervals}\}.$
- 5. (a) $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \{\text{axis-aligned rectangles}\}.$
 - (b) $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \{\text{axis-aligned squares}\}.$
 - (c) $\mathcal{X} = \mathbb{R}^d$, $\mathcal{H} = \{\text{axis-aligned rectangles}\}.$
- 6. (a) $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \{\text{triangles}\}.$
 - (b) $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \{\text{convex } k\text{-gons}\}\ \text{for some fixed } k$.
 - (c) $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \{\text{convex polygons}\}.$
- 7. Let $k < |\mathcal{X}| < \infty$.
 - (a) Determine $\dim_{VC}(\mathcal{H}_{\leq k})$, where $\mathcal{H}_{\leq k} = \{H \subseteq \mathcal{X} : |H| \leq k\}$.
 - (b) Determine $\dim_{VC}(\mathcal{H}_{=k})$, where $\mathcal{H}_{=k} = \{H \subseteq \mathcal{X} : |H| = k\}$.
- 8. Let $\mathcal{X} = \{0,1\}^n$. For $I \subseteq \{1,2,...,n\}$, the parity function f_I is defined as follows:

$$f_I(x_1,x_2,...,x_n) = \left(\sum_{i \in I} x_i\right) \bmod 2.$$

What is the VC dimension of the class of parity functions?

At the lecture:

• A class of sets \mathcal{C} shatters a set A if

$$\forall S \subseteq A : \exists C \in \mathcal{C} : S = A \cap C.$$

• A class of classifiers \mathcal{F} shatters a set $A \subseteq \mathcal{X}$, if the class generated by \mathcal{F} , i.e.,

$$\mathcal{C}_{\mathcal{F}} = \big\{ C \subseteq \mathcal{X} : \exists f \in \mathcal{F} : C = f^{-1}(\{1\}) \big\},$$

shatters A.

• The Vapnik-Chervonenkis (VC) dimension of \mathcal{F} is the largest h, such that there is a set A with |A| = h that is shattered by \mathcal{F} .

¹https://apagyidavid.web.elte.hu/2025-2026-1/dmml

Alternatively:

• Let $\mathcal H$ be a set system over $\mathcal X.$ For $A\subseteq \mathcal X,$ the trace of $\mathcal H$ on A is defined as as

$$\operatorname{tr}_A(\mathcal{H}) = \{ H \cap A : H \in \mathcal{H} \}.$$

- A subset $A \subseteq \mathcal{X}$ is $\mathit{shattered}$ by \mathcal{H} if

$$\operatorname{tr}_A(\mathcal{H})=2^A.$$

- The $\mathit{Vapnik-Chervonenkis}$ dimension of $\mathcal H$ is

$$\dim_{\mathrm{VC}}(\mathcal{H}) = \max\{|A|: A \subseteq \mathcal{X} \text{ is shattered by } \mathcal{H}\}.$$

Solutions: