

Wireless Network

EBU5211: Ad Hoc Networks

Dr. Yan SUN (Cindy)

History of wireless communications

- 1865 James Clerk Maxwell published his equations
- 1887 Heinrich Hertz demonstrated EM wave propagation
- 1893 Nicola Tesla demonstrated communication by radio
- 1895 Aleksandr Popov demonstrated a wireless system
- 1896 Guglielmo Marconi demonstrated wireless telegraphy
- 1901 First wireless signal sent across the Atlantic Ocean from Cornwall to St. John's, Newfoundland (Canada)
- Marconi was not the 'inventor', but appreciated the commercial opportunities offered by the new medium.

Why wireless?

- No more cables
 - No cost for installing wires or rewiring
 - Wiring is infeasible or costly in some areas, e.g.. rural areas, old buildings...
- Mobility and convenience
 - Allows users to access services while moving: walking, in vehicles...
- Flexibility
 - Roaming allows connection any where and any time
- Scalability
 - Easier to expand network coverage compared to wired networks.

Emerging and existing wireless technology

- Mobile Wireless:
 - 1G: Analog
 - 2G: GSM, TDMA, CDMA
 - 2.5G EDGE, GPRS
 - 3G W-CDMA, HSDPA, HSUPA
 - 4G LTE
 - 5G
- Fixed Wireless:
 - MMDS, LMDS, Satellite dish, Microwave
- Wireless LAN:
 - IEEE 802.11, Ad-hoc, Bluetooth, ZigBee

Future Wireless Networks

Ubiquitous Communication Among People and Devices

Basic Design Considerations

- Spectral Sharing
 - TD,CD or hybrid (TD/FD)
 - Frequency reuse
- Reuse Distance
 - Distance between cells using the same frequency, timeslot, or code
 - Smaller reuse distance packs more users into a given area, but also increases co-channel interference
- Cell radius
 - Decreasing the cell size increases system capacity, but complicates routing and handoff
- Resource allocation: power, BW, etc.

Evolution of mobile networks

1G systems

- Analogue
 - Speech
 - Some data at 1.2kbit/s
- Designed for car use
- First handportable –
 Motorola "Brick"
 (DynaTAC 8000X)
 - 1983
 - 800g
 - 30 mins talk time
 - USD 3995

- Insecure
 - Eavesdropping
 - Cloning

Almost no roaming

Some 1G systems

System	Band (MHz)	Example Locations	
AMPS	800	US, Canada, Mexico, Australia, New Zealand, Hong Kong, Brazil, Argentina	
TACS	900	UK, Ireland, Spain, Italy, Austria, China	
NMT	450/900	Denmark, Finland, Norway, Sweden, Belgium, Austria, France, Hungary, Netherlands, Spain	
NTT	800	Japan (First cellular system 1979)	

• No real roaming apart from NMT

2G Systems

- Speech and low bit rate data service
- Digital transmission
- Designed to be more secure
- Almost exclusively handportable

2G Systems

System	Band (MHz)	Example Locations
D-AMPS (IS-54, IS- 136)	800	North and South America
CDMA (IS-95)	800/1900	North and South America, S Korea, China
GSM	900/1800	World-wide (except Korea and Japan) 1900 MHz US and Canada
JDC/PDC	800/1500	Japan

GSM

- Officially launched in 1992
- Multiple access: TDMA 8 channels (frames of 8 time slots) on each carrier
- FDD (Frequency Division Duplex) different frequencies for uplink and downlink
- 200kHz carrier bandwidth
- 9.6kb/s net data (13kb/s encoded voice)
- (Almost) worldwide availability with multi-band handset
- Useful link www.gsmworld.com

GSM worldwide success

- Over 860 networks in 220 countries/areas
- Still growing: No of GSM + 3 GSM subscribers
 - 11/9/2011 00.55 (CN time) 5,231,269,752
 - In the next 5 mins an increase of: 7,106!!!!!
 - World Population at same time: 6.914 billion
 - Penetration 59%

System	Uplink (MHz)	Downlink (MHz)
GSM850	824 -849	880 -915
GSM900	890 -915	935 –960
GSM1800 (DCS1800)	1710 –1785	1805 –1880
GSM1900 (PCS1900):	1930 –1990	1850 –1910

GSM network architecture – core components

- BTS: Base Transceiver Station
- BSC: Base Station Controller
- BSS: Base Station Subsystem
- MSC: Mobile Switching Centre
- HLR: Home Location Register
- VLR: Visitors Location Register
- AuC: Authentication Centre
- GMSC: Gateway MSC
- PSTN: Public Switched Telephone Network

EBU5211: Ad Hoc Networks

GSM network architecture – other elements

- EIR: Equipment Identity Register
 - Record of status of phone
 - White / grey /black (stolen)
- SMS-C: Short Message Service Centre
- OMC: Operation and Maintenance Centre

Locating a Mobile terminal

When a MT moves from one location area to another:

- MT initiates the location updating procedure.
- HLR is notified by the new MSC/VLR.
- HLR removes old MSC/VLR information
- HLR confirms and updates the new MSC/VLR.
- location area update is confirmed with the MT.

Mobile Terminating call

traffic

signalling

Roaming incoming call

Roaming outgoing call

GSM Mobility Management: Authentication

If results match, Ks=Ki and the user is genuine Only information transmitted over the air is RAND and $SRES_{MT}$

Radio access

- This base station has 3 sectors each equipped with independent TRXs (transmitter/receivers)
- It has spaced pairs of antennas in each sector to provide diversity reception
- Microwave link antenna tot he network
- LNAs on the antennas (LNA=low noise amplifiers)

Diversity

Different phase relations will exist between the multipath rays from each antenna – so the interference will be different.

Diversity: Combining the signals

- Combine the signal from each branch and obtain a signal that is more reliable than any single branch
 - Switch diversity when one is too low, try another
 - Selection diversity choose the largest signal
 - Equal gain signals equally weighted and added in phase
 - Maximal ratio weight the power in the branches in proportion to their signal amplitude and add in phase
- Diversity gain = effective increase in signal power for some stated reliability. Typically 4–6dB depending on the environment.

Frequency reuse

- Adjacent cells use different frequencies to avoid interference
- Cells sufficiently distant from each other can use the same channel (frequency)
- Reuse factor N: number of cells in a repeating pattern
- Control cell size by choosing BS power and antennas
 - Make use of topographical screening

EBU5211: Ad Hoc Networks

Effect of cluster size

- lower capacity – bandwidth available in cell is F_A/N (F_A is frequency spectrum allocated)

Sectoring

- Almost all mobile systems now operate with 3-sector cells
- Allows 3 different frequencies in the same cell
- It will take some time to figure out the best frequency plan – operators use computer tools

EBU5211: Ad Hoc Networks

Radio Resource Management (RRM)

- Power Control
- Handover Control
- Admission Control
- Load Control
- Packet Scheduling

Power Control

Node B

Power Control
Load Control

RNC

Power Control
Handover Control
Admission Control
Load Control
Packet Scheduling

Downlink interference

Power control:

- compensates for and minimises inter-cell interference
- aim is to minimise
 transmitted power yet still
 have a signal that is
 decodable

Uplink interference

Power control:

 Overcomes near-far problem Optimises system capacity by controlling interference

• Maximises battery life of mobile terminals

Near-far problem

→ Intra-cell interference

→ Inter-cell interference

Mary

Types of power control

• Open-loop PC: used as initial power setting

Closed-loop PC: fast power control loop (1.5 KHz)

• Outer-loop PC: set target for closed-loop PC.

EBU5211: Ad Hoc Networks

Cell breathing in CDMA

Queen Mary
University of London

• With very heavy traffic near the centre of the cell the power control may make the cell effectively "shrink"

 signal power becomes very low near the edge

• If not planned properly this can cause "gaps" and a mobile might not get sufficient signal.

EBU5211: Ad Hoc Networks

Handover handles mobility of user Queen Mary

- Keeps wireless service when the mobile user moves across the cellular boundaries
- Keep required QoS
- Minimises interference level of the whole system by keeping the mobile attached to the strongest BS or BSs.
- Roaming between different networks
- Distributing load from hot spot areas (load balancing)

Hard Handover (GSM)

Can also be used for CDMA "Break" before "make" MT has to switch frequency

Soft Handover (W-CDMA)

"Make" before "break"
Each cell uses same frequency

Soft handover benefits/disadvantages

Advantages:

- Less the "ping-pong" effect
- Smoother transmission
- No hysteresis margin
- Macrodiversity gain
- Reduced overall uplink interference

Disadvantages:

- More complexity
- Additional network resources are consumed in the downlink direction (code resource and power resource)

EBU5211: Ad Hoc Networks

Challenges of wireless

- Limited resources: finite radio spectrum
 - Frequency reuse, breaking cells into smaller cells, more efficient medium access technology, e.g. CDMA...
- Supporting mobility Location management, handover, ...
- Maintaining Quality of Service (QoS) over unreliable wireless links
 - Radio propagation attenuation: path loss, shadowing, multipath fading.
- Connectivity and coverage roaming and internetworking
- Security
 - Wireless channels are "open"
 - Certification and authentication
- Integrated services (voice, data, multimedia, etc.) over a single network
 - service differentiation, priorities, resource sharing,...
- Mobile terminal battery life
- Can you think more?

How does communications everywhere Queen Mary affect the global economy?

- Increasingly reliant on communications technology for business
- Variety of actors with competing interests
- Communications systems becoming the target of cyber-terrorist attacks
- Communications networks now part of the national large-scale critical infrastructure.