

Chunghwa Picture Tubes, Ltd. Technical Specification

То	:
Date	:

CPT TFT-LCD
CLAA101WP01

ACCEPTED BY :		

APPROVED BY	CHECKED BY	PREPARED BY
		Product Application Division

Niche Business Division CHUNGHWA PICTURE TUBES, LTD.

1127 Hopin Rd., Padeh, Taoyuan, Taiwan 334, R.O.C. TEL: +886-3-3675151 FAX: +886-3-377-3003

Doc. No: CLAA101WP01—SPEC-tentative-20111114	Issue Date:	
--	-------------	--

Modification Record List

NO.	Issue Date	Modification Index
1	2011/03/11	First Edition
2	2011/06/03	ES2 LVDS 6 bit + VCOM compensation circuit
3		
4		
5		
6		
7		
8		
9		
10		

Table of Content

NO.	Table of Content	Page
1	OVERVIEW	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL CHARACTERISTICS	6
4	CONNECTOR INTERFACE PIN & FUNCTION	11
5	INTERFACE TIMING CHART	12
6	BLOCK DIAGRAM	14
7	MECHANICAL SPECIFICATION	15
8	OPTICAL CHARACTERISTICS	17
9	RELIABILITY TEST CONDITIONS	21

1. OVERVIEW

CLAA101WP01 is 10.1" color (16:10) TFT-LCD (Thin Film Transistor Liquid Crystal Display) module composed of LCD panel, LVDS driver ICs, control circuit and backlight. By applying 6 bit digital data, 1280×RGB (3) ×800, 262K-color images are displayed on the 10.1" diagonal screen. General specifications are summarized in the following table:

ITEM	SPECIFICATION
Display Area	216.96 (H) x 135.6 (V) (mm) (10.1-inch diagonal)
Number of Pixels	1280(H) × 3(RGB) × 800(V)
Pixel Pitch	0.1695 (H) × 0.1695 (V) (mm)
Color Pixel Arrangement	RGB vertical stripe
Display Mode	HFFS
Number of Colors	262,144(6bits)(LVDS)
Gamut	50% (Typ)
Optimum Viewing Angle	6 o'clock
Response Time	30ms (Typ)
Surface Treatment	HC-LR
Viewing Angle	80° \ 80° / 80° \ 80° (Min)
Viewing Angle	85° \ 85° /85° \ 85° (Typ.)
Brightness	400 cd/m ² (5 Point) (Typ)
Uniformity	9point: 80%(min) 85%(Typ)
Consumption of Power	3.86W (Max)
Module Size	229.96(W)×149.7 (H)×3.1 (D) (mm) (Max) (w/o pcb)
Wiodule Size	229.96(W)×149.7 (H)×5 (D) (mm) (Max) (with pcb)
Module Weight	160g (Max)

The LCD Products listed on this document are not suitable for use of aerospace equipment, submarine cable, and nuclear reactor control system and life support systems. If customers intend to use these LCD products for applications listed above or those not included in the "Standard" list as follows, please contact our sales in advance.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tool, Industrial robot, Audio and Visual equipment, Other consumer products.

2. ABSOLUTE MAXIMUM RATINGS

The following are maximum value, which if exceeded, may cause faulty operation or damage to the unit.

ITEM	SYMBOL	MIN	MAX	UNIT	NOTE
LCD Power Voltage	VCC	0	4.0	V	
LED Driver Input Voltage	VBL+	0	25	V	
Operation Temperature	Тор	0	50	$^{\circ}\mathbb{C}$	*1).*2).*3).*4)
Storage Temperature	Tstg	-25	65	$^{\circ}\mathbb{C}$	*1).*2).*3)

[Note]

- *1) The relative temperature and humidity range are as below sketch, 90% RH Max. ($Ta \le 40^{\circ}$ C)
- *2) The maximum wet bulb temperature $\leq 39^{\circ}$ C (Ta> 40° C) and without dewing.
- *3) If product in environment which over the definition of the relative temperature and humidity out of range too long, it will affect visual of LCD.
- *4) If you operate LCD in normal temperature range, the center surface of panel should be under 50°C.

3. ELECTRICAL CHARACTERISTICS

(A) TFT LCD

ITEM		SYMBOL	MIN	TYP	MAX	UNIT	NOTE
LCD F	Power Voltage	VCC	3.0	3.3	3.6	V	*1)
LCD F	Power Current	ICC	-	272		mA	*2)
Rus	sh Current	Irush	-	(TBD)	-	A	*4)
	Common Voltage	VCM	VID /2		2.4-(VID /2)	V	*3)
Logic Input Voltage	Differential Input Voltage	VID	200		600	mV	*3)
(LVDS: IN+,IN-)	Threshold Voltage (HIGH)	VTH	-	-	100	mV	*3)
	Threshold Voltage (LOW)	VTL	-100	-	-	mV	When $VCM = +1.2V$

[Note]

*1) Power Sequence:

 $0.50 \text{ ms} \leq t1 \leq 10 \text{ ms}$ $500 \text{ ms} \leq t4$ $0.01 \text{ ms} < t2 \leq 50 \text{ ms}$ $200 \text{ ms} \leq t5$ $0.01 \text{ ms} < t3 \leq 50 \text{ ms}$ $200 \text{ ms} \leq t6$

data: RGB DATA, DCLK, HD, VD, DENA

VCC-dip state

(1)when 3.0V > VCC \geq 2.7V , td \leq 10 ms.

(2)when VCC < 2.7V , VCC-dip condition should as the VCC-turn-off condition.

*2) Typical value is Mosaic (32*36 Checker board) Pattern: 800 line mode.

Circuit condition (Typ) : VCC=3.3 V , $\rm f_{V}\!=\!60~Hz$, $\rm f_{H}\!=\!49.375~kHz$, $\rm f_{CLK}\!=\!71.1~MHz.$

Max value is White Pattern: 800 line mode.

Circuit condition (Max) : VCC=3.3 V , f_V =60 Hz , f_H =49.375 kHz , f_{CLK} =71.1 MHz.

*3) LVDS Signal Definite:

VIN+: Positive differential DATA & CLK Input VIN-: Negative differential DATA & CLK Input

*4) Irush measure condition

(B) BACK LIGHT

(a.) ELECTRICAL CHARACTERISTICS

 $Ta=25^{\circ}C$

ITEM	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
LED Driver Input Voltage	VBL+	6.0	7.2	9.0	V	
LED Driver Input Current	IBL+	-	410	-	mA	*1)
Forward Voltage	V_{F}	3.0	3.1	3.2	V	*2) I _F =20mA
Forward Current	I_{F}	-	20.0	-	mA	*2) I _F =20mA
Power Consumption	PLED		2.6		W	*2)*3) I _F =20mA
PWM Frequency	PWM_BL	100	-	1000	Hz	
Duty ratio	Dim	1	1	100	%	

(b.) LED LIFE – TIME

ITEM	CONDITION	MIN	TYP	MAX	UNIT	NOTE
Life Time	$I_F=20$ mA · $Ta=25$ °C	12000			hrs	*4)

(c.) LED ON/OFF Sequence:

$$0.5ms \le T1 \le 10ms$$

 $10 \text{ms} \leq \text{T2}$

 $10 \text{ms} \leq \text{T3}$

 $0 \text{ms} \leq T4$

 $10ms \leq T5$

Note:

The LED power variation spec. is defined as the following figure.

When LED input voltage is from

be less than 20 V/ms.

Slew rate = (Vin2-Vin1) / Tr,

Vin1 up to Vin2, the slew rate should

Vin2 > Vin1

- *1) Maximum LED Driver Input Current at 12V Input Voltage/PWM Duty 100%.
- *2) Measure method: a. LED current is measured by utilizing a current meter as show below.
 - b. System power PLED is measured at input voltage 12V.

- *2) Calculator value for reference $I_F \times V_F \times N = PLED$
- *3) Life time means that estimated time to 50% degradation of initial luminous intensity.

4. Connector Interface PIN & Function

CN (Interface signal)

Outlet connector: HD1S040HA1 (JAE)

➤ Pin No. is 40 pin define of Plug connector

Pin No.	SYMBOL	FUNCTION				
1	NC/(BIST)	No Connection				
2	VDD	Power Supply, 3.3V (typical)				
3	VDD	Power Supply, 3.3V (typical)				
4	V_ EDID	3.3V power for EDID				
5	NC	No Connection				
6	CLK_EDID	EDID clock input				
7	DATA_EDID	EDID data input				
8	Odd Rxln0-	-LVDS Differential Data Input				
9	Odd Rxln0+	+LVDS Differential Data Input				
10	GND	Ground				
11	Odd Rxln1-	-LVDS Differential Data Input				
12	Odd Rxln1+	+LVDS Differential Data Input				
13	GND	Ground				
14	Odd Rxln2-	-LVDS Differential Data Input				
15	Odd Rxln2+	+LVDS Differential Data Input				
16	GND	Ground				
17		-LVDS Differential Clock Input				
18		+LVDS Differential Clock Input				
19	GND	Ground				
20	NC	No Connection				
21	NC	No Connection				
22	GND	Ground				
23	NC	No Connection				
24	NC	No Connection				
25	GND	Ground				
26	NC	No Connection				
27	NC	No Connection				
28	GND	Ground				
29	NC	No Connection				
30	NC	No Connection				
31	GND	Ground				
32	GND	Ground				
33	GND	Ground				
34	NC	No Connection				
35	PWM	PWM Control Signal of LED Converter				
36	LEN_EN	Enable Control Signal of LED Converter				
37	NC	No Connection				
38	VBL	LED Backlight Power				
39	VBL	LED Backlight Power				
40	VBL	LED Backlight Power				

5. INTERFACE TIMING CHART

(1)(a) LVDS input time sequence

(b) LCD input time sequence

(c) LVDS Input Data mapping

6bit LVDS input (HSD='H')

(2) Timing Chart

ITEM			SYNBOL	MIN	TYP	MAX	UNIT	
LCD Timing	Frame Rate			-	(60)	60	(60)	Hz
	DCLK		Frequency	f_{CLK}	66.6	71.11	78.9	MHz
			Period	t_{CLK}	15.01	14.06	12.67	ns
	DENA	Horizontal	Horizontal Total time	t_{H}	1370	1440	1500	t_{CLK}
			Horizontal Active time	t_{HA}	1280	1280	1280	t_{CLK}
			Horizontal Blank time	t_{HB}	90	160	220	t_{CLK}
		Vertical	Vertical Total time	t_{V}	810	823	877	t_{H}
			Vertical Active time	t_{VA}	800	800	800	t _H
			Vertical Blank time	t_{VB}	10	23	77	t _H
	LVDS Spread Spectrum Range *3)				(-3)		(+3)	%

[Note]

- *1) DENA (DATA ENABLE) usually is positive.
- *2) During the whole blank period, DCLK should keep input.
- *3) LVDS input clock is 71.11MHz and modulation rate is fixed 100kHz.

6. BLOCK DIAGRAM

7. MECHANICAL SPECIFICATION

(1) Front side

The tolerance, not show in the figure, is ± 0.5 mm.

[Unit: mm]

(2) Rear side

The tolerance, not show in the figure, is ± 0.5 mm.

[Unit: mm]

8. OPTICAL CHARACTERISTICS

 $Ta=25^{\circ}C$, VDD=3.3V

ITEM		SYMBOL	CONDITION	MIN	ТҮР	MAX	UNIT	NOTE
Contrast Ratio		CR	$\theta = \psi = 0^{\circ}$	500	800			*1) 2)
Luminance (5P)		L	$\theta = \psi = 0^{\circ}$	300	400		cd/m ²	*1) 3)
Uniformity(9P)		ΔL	θ=ψ= 0°	80			%	*1) 3)
Uniformity(13P)		Δ L	$\theta = \psi = 0^{\circ}$	60			%	*1) 3)
Response Time		Tr Tf	$\theta = \psi = 0^{\circ}$		30	40	ms	*5)
Cross	Cross Talk		$\theta = \psi = 0^{\circ}$			1.0	%	*6)
Y.,	Horizontal	Ψ	CR≥10	160	170		0	*4)
View Angle	Vertical	θ		160	170		0	*4)
	W	x y	0 00	0.283 0.299	0.313 0.329	0.343 0.359		
Color	R	x y		(0.571) (0.314)	(0.601) (0.344)	(0.631) (0.374)		*2)
Coordinate	G	x y	$\theta = \psi = 0^{\circ}$	(0.298) (0.540)	(0.328) (0.570)	(0.358) (0.600)		*3)
	В	x y		(0.124) (0.089)	(0.154) (0.119)	(0.184) (0.149)		
Gamut			$\theta = \psi = 0^{\circ}$	45	50		%	
Gamma		γ	GL	2.0	2.2	2.4		*7)

Color coordinate and color gamut are measured by SRUL1R, response time is measured by TRD-100, and all the other items are measured by BM-5A (TOPCON). All these items are measured under the dark room condition (no ambient light).

Measurement Condition: IL= 20mA (each LED)

Definition of these measurement items is as follows:

*1) Setup of Measurement Equipment

The LCD module should be turn-on to a stable luminance level to be reached. The measurement should be executed after lighting Backlight for 20 minutes and in a dark room.

*2) Definition of Contrast Ratio

CR=ON (White) Luminance/OFF (Black) Luminance

*3) Definition of Luminance and Luminance uniformity

Central luminance: The white luminance is measured at the center position "5" on the screen, see Fig.1 below.

5P Luminance (AVG): The white luminance is measured at measuring points 5 \ 10 \ 11 \ 12 \ 13, see Fig.1 below.

5P Uniformity: $\Delta L = (Lmin / Lmax) \times 100\%$

13P Uniformity: $\Delta L = (Lmin / Lmax) \times 100\%$

Fig.1 Measure point (Active area)

*4) Definition of view angle(θ , ψ)

*5) Definition of response time

*6) Crosstalk Modulation Ratio

$$CT = | Y_B-Y_A | / Y_{A\times} \times 100\%$$

 $Y_A \cdot Y_B$ measure position and definition

Y_A means luminance at gray level 31(exclude gray level 0 pattern)

Y_B means luminance at gray level 31(include gray level 0 pattern)

*7) Definition of Gamma (VESA)

Based on Customer Sample, take the average value as a standard center value and the variation range of gamma value caused by loop voltage error should be between +/- 0.2. the bellow figure shows how to obtain the gamma curve and γ (from gray level: $0 \cdot 4 \cdot 8$ -----60 \cdot 63).

9. RELIABILITY TEST CONDITIONS

(1) Temperature and Humidity

TEST ITEMS	CONDITIONS		
High Temperature Operation	50° C ; 250Hrs		
High Temperature Storage	65° C ; 250Hrs		
High Temperature High Humidity Operation	40°C; 95% RH; 240Hrs		
High Temperature High Humidity Storage	60° C ;90% RH;48 Hrs		
Low Temperature Operation	0° C ;250 Hrs		
Low Temperature Storage	-30° C ; 250 Hrs		
Thermal Shock	-40° C (0.5 Hr)~65° C (0.5 Hr), Ramp<20° C, 100 CYCLES		
Temperature & Pressure Storage	-30° C ; 260hPa, 24 Hrs		

(2) Shock & Vibration

TEST ITEMS	CONDITIONS		
Shock (Non-Operation)	210G, 3ms, half sin ewave, $\pm X, \pm Y, \pm Z$ 1time each		
Vibration (Non-Operation)	Vibration level: 14.7m/s2, 1.5G, sinusoidal wave (each x, y, z axis: 1hr, total 3 hrs) Frequency range: 5Hz to 500 Hz Sweep speed: 0.5 Octave/min		

(3) ESD

	Surface discharg area · Frame · PWB		Electrics capacity of Connector		
	Contact	Air	Contact		
Capacity	150 pF	150 pF	200 pF		
Resistance	330 Ω	330 Ω	Ω		
Voltage	±8kV/±15kV	±8kV/±15kV	±250 V		
Interval	1 sec	1 sec	1 sec		
Times(single point)	25	25	1		

(4) MTBF without B/L: 200,000 Hrs (min) lifetimes.

(5) Judgment standard

The judgment of the above test should be made as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect.

Partial transformation of the module parts should be ignored.

Fail: No display image, obvious non-uniformity, or line defects.