Orlando M. Romeo

oromeo@berkeley.edu || (410) 900-6893 || www.omromeo.com

EDUCATION

12/2024 University of California, Berkeley, CA

Doctor of Philosophy, Earth and Planetary Science

05/2020 University of Maryland, College Park, MD

Bachelor of Science (Honors), Physics - Magna Cum Laude Bachelor of Science (Honors), Astronomy - Magna Cum Laude

RESEARCH INTERESTS

Heliophysics: Solar wind dynamics, Coronal mass ejections, Wave-particle interactions

Planetary Science: Crustal magnetization, Planetary magnetospheres

Geospace: Space physics, Space weather prediction

Instrumentation: Electrostatic analyzers, X-ray optics, Magnetometers, Space mission design

RESEARCH EXPERIENCE

01/2025 Postdoctoral Researcher, University of California Berkeley/SSL

- Present Parker Solar Probe (PSP) SWEAP Team, Advisor: Dr. Davin Larson

- Calibrating the SPAN-E ESA on PSP to produce solar wind electron parameters
- Studying Coronal Mass Ejections with in situ measurements close to the Sun
- Collaborating with other instrument teams to produce additional data products

08/2020 Graduate Student Researcher, University of California Berkeley/SSL

- 12/2024 Parker Solar Probe (PSP) SWEAP Team, Advisor: Dr. Davin Larson

- Calibrating the SPAN-E ESA on PSP to produce solar wind electron parameters
- Studying electron strahl scattering under varying solar wind conditions
- Collaborating with other instrument teams to produce additional data products

FOXSI-4 Sounding Rocket Mission, Advisor: Dr. Juan Camilo Buitrago-Casas

- Assembled, tested, and integrated the Solar Aspect and Alignment System (SAAS)
- Performed laser and X-ray alignment tests and simulations for the optics modules
- Supported multiple stages of rocket integration at SSL, WSMR, & PFRR
- Monitored solar conditions to capture real-time observations of an M-class solar flare

InSight & Zhurong Surface Magnetometers, Advisor: Dr. Michael Manga

- Conducted Monte Carlo simulations of crustal magnetic fields on Mars
- Determined probable magnetic coherence scales and depths below each landing site
- Developed geological magnetization models to study the Martian geodynamo history

SWFO-L1 STIS Team, Advisor: Dr. Davin Larson

- Characterized magnetic field emission from the STIS solid-state telescope
- Tested Amptek pre-amps on the electronics board for each detector channel
- Performed detector calibration tests with high-energy ion beams and radioactive sources to validate instrument performance
- Monitored STIS conditions during spacecraft Thermal Vacuum Chamber testing

05/2019 Planetary Science Intern, NASA Goddard Space Flight Center

-09/2020 MAVEN Proton Cyclotron Waves (PCWs), Advisor: Dr. Norberto Romanelli

- Identified PCWs near Mars using Fourier and minimum variance analysis on MAVEN magnetometer data
- Characterized PCWs and shock processes upstream of the Martian bow shock based on solar wind and planetary properties derived from the MAG and SWIA instruments

08/2017 Plasma Physics Undergraduate Researcher, University of Maryland – 06/2020 Machine Learning Space Weather Forecasting, Advisor: Dr. Surjalal Sharma

- Adapted detrending fluctuation analysis on Advanced Composition Explorer (ACE) space weather data to detect long-range correlations over several days
- Forecasted space weather parameters using nonlinear and data-derived techniques (delay embedding, singular value decomposition, and nearest neighbor tree search)

Magnetic Nanoparticle Antennas, Advisor: Dr. Dennis Papadopoulos

- Simulated magnetization dynamics for nanoparticles in ferro-fluid antennas from the Stoner-Wohlfarth Model, including effects of magnetization precession, hysteresis, and quantum tunneling
- Calculated nanoparticle magnetization states to determine energy efficient materials for CubeSat antennas in plasma environments

05/2017 Space Physics Intern, Johns Hopkins University APL

- -08/2018 RBSP Data-Driven Forecasting, Advisor: Dr. Aleksandr Ukhorskiy
 - Modeled radiation belt electron energy flux (eflux) from Dst index using particle diffusion theory
 - Filtered eflux measurements based on adiabatic invariants from the MagEIS and REPT instruments on the Van Allen Probes (RBSP) to calculate electron Phase Space Density (PSD)
 - Forecasted PSD from geomagnetic parameters and geosynchronous satellite observations, implementing nonlinear and data-derived techniques, such as delay embedding, singular value decomposition, and nearest neighbor tree search

01/2017 Seismology Undergraduate Researcher, University of Maryland – 06/2017 Seismic Wave Travel Times of Varying Frequencies, Advisor: Dr. Vedan Lekic

- Cross-correlated observed travel times of seismic waves during the 2013 Sea of Okhotsk Earthquake with seismograms from the Preliminary Reference Earth Model (PREM) and Generalized Seismological Data Functionals (GSDF) method
- Adapted Fourier and Gaussian wavelet analysis to filter the correlograms based on varying levels of frequency to calculate phase arrival times
- Developed new framework for earthquake predictions with error bound estimation using significant deviations from PREM to characterize Earth's interior structure

09/2015 Space Physics Intern (DMSP), Johns Hopkins University APL

- 12/2016 Solar Wind and IMF Activity on SAA Intensity, Advisor: Dr. Robert Schaefer
 - Filtered UV spectrographic imaging from the Defense Meteorological Satellite Program (DMSP) based on photon counts and geographical, lunar and solar positions
 - Fitted photon counts in the South Atlantic Anomaly (SAA) region of Earth to a spherical harmonics model for daily SAA intensity
 - Correlated SAA intensity with solar wind speed and IMF activity from ACE

TEACHING & MENTORING EXPERIENCE

University of California Berkeley, Space Sciences Lab (SSL)

01/2025 Heliophysics Mentor, Student: Yuqi Zhang

 Present
 Junior undergraduate in the Berkeley International Study Program developed *CMEMoss*, a public python tool enabling general searches for spacecraft conjunc-tions with CME trajectories

06/2025 ASSURE REU Mentor, Student: Joseph Byrnes

-08/2025 • Junior undergraduate simulated spacecraft electrostatic charging in various space plasma environments using SPIS (Spacecraft Plasma Interaction Software) to support flight calibration and future mission design

06/2024 FOXSI-5 SAAS/Optics Mentor, Student: Danny Sun

- 08/2024 • Graduate student improved the SAAS instrument and performed optical alignment tests for the FOXSI-5 sounding rocket mission

06/2023 ASSURE REU Mentor, Student: Elyas Ahmed

- 08/2023 • Sophomore undergraduate utilized machine learning techniques (PySR) to characterize solar wind electron strahl scattering observed by PSP

- Ahmed, E. et al. (2023). Machine Learning for Electron Distributions Observed by PSP. AGU Fall Meeting Abstracts, SH31D-3005.

06/2022 ASSURE REU Mentor, Student: Kyla Giron

− 08/2022 • Sophomore undergraduate investigated a potential Earth to Sun connection by studying possible asymmetries in flare and CME production on the Sun

- Giron, K. et al. (2022). Investigating a Possible Earth to Sun Connection - Can the Earth Affect the Sun. AGU Fall Meeting Abstracts, ED35D-0579.

University of California Berkeley, Department of Earth & Planetary Science (EPS)

08/2023 EPS Graduate Student Mentor, EPS Graduate Mentoring Program

- 05/2024 • Mentored three first-year graduate students in the EPS department

• Established and tracked short and long term goals for students over academic year

• Provided advice on navigating graduate school, conducting research, and networking

08/2021 EPS Graduate Student Grader, EPS150 - Case Studies in Earth Systems

- 12/2021 • Reviewed weekly manuscripts related to Earth's carbon cycle and Martian hydrology

• Graded weekly student abstracts summarizing each research paper

01/2021 EPS Graduate Student Instructor, EPS50 - The Planet Earth

-05/2021 • Instructed students during weekly three-hour lab sections on the study of minerals, rocks, geologic maps, and geological processes

• Designed weekly lab assignments and created questions for midterm and final exams

Assisted students during weekly three-hour office hours and exam review sessions

University of Maryland, College Park, Department of Astronomy

08/2019 Astronomy Teaching Assistant, ASTR310 - Observational Astronomy

-12/2019 • Directed weekly two-hour research labs on image processing and data analysis

• Aided students during two-hour office hours with programming troubleshooting

• Graded weekly quizzes, lab activities, exams, and research projects

University of Maryland, College Park, Department of Physics

- 01/2020 Physics Teaching Assistant, PHYS121 Fundamentals of Physics I
- -05/2020 Graded weekly quizzes/exams for 120 students focused on introductory physics
 - Held weekly one-hour discussion classes and two-hour office hours
 - Led two-hour lab sections using Microsoft Excel, Logger Pro, and physics demos
- 08/2019 Physics Teaching Assistant, PHYS161- General Physics
- − 12/2019 Graded quizzes/exams for 120 students focused on mechanics and particle dynamics
 - Assisted students during weekly two-hour office hours and exam review sessions
 - 02/2019 Python Class Session Instructor, PHYS205: Developing Essential Research Skills
 - Instructed Python coding sessions over two weeks to undergraduate freshmen
 - Provided an overall introduction to Python with basics of coding syntax and logic
 - Presented data science methods to visualize and analyze cosmic ray counts from the Bartol Research Institute Neutron Monitor Program
 - 07/2018 Arduino Workshop Instructor, UMD Physics Summer Girls Outreach Program
- 08/2018 Led Arduino programming workshop for 60 female high school students
 - Introduced Arduino code, sensors, and circuits to monitor plant growth over 1 week
 - Presented methods to extract and visualize data for plant sustainability statistics

AWARDS & CERTIFICATIONS

2024	Certification of Heliophysics Mission Design School – NASA/JPL
2023	Group Achievement Award for Parker Solar Probe Team – NASA
2023	Certification of Heliophysics Summer School $-NASA/UCAR$
2022	FINESST Fellowship Award (Heliophysics Division) – NASA
2022	Certification of Solar Orbiter Summer School – ESA/CNES
2022	SSL Robert P. Lin Graduate Fellowship – University of California, Berkeley
2022	Travel Award for SHINE 2022 Workshop – SHINE
2019	William M. MacDonald Physics Scholarship – University of Maryland
2017 - 2020	Group Award for SPS Outstanding Chapter (Annual) – AIS SPS
2016 - 2020	JHU APL Academic Merit Scholarship (Annual) – JHU APL
2016 - 2020	Angelo Bardasis Physics Scholarship (Annual) – University of Maryland

PUBLICATIONS

- 31. Romeo, O. M., et al. (2025). Scales of Martian crustal magnetization constrained by MAVEN, InSight, and Zhurong. Journal of Geophysical Research: Planets, 130, e2025JE008986.
- 30. Pulupa, M., ..., Romeo, O. M., et al. (2025). Highly Polarized Type III Storm Observed with Parker Solar Probe. The Astrophysical Journal Letters, 987(2), L34.
- 29. Phan, T., **Romeo, O. M.**, et al. (2025). Parker Solar Probe Observations of a Highly Energetic and Asymmetric Reconnecting Heliospheric Current Sheet during Encounter 13. The Astrophysical Journal, 986(2), 209.
- 28. Huang, J., ..., Romeo, O. M., et al. (2025). The Temperature Anisotropy and Helium Abundance Features of Alfvénic Slow Solar Wind Observed by Parker Solar Probe, Helios, and Wind Missions. The Astrophysical Journal Letters, 986(2), L28.
- 27. Alnussirat, S. T., ..., **Romeo, O. M.**, et al. (2025). Impulsive Solar Flares in the Parker Solar Probe Era. I. Low-energy Electron, Proton, and Alpha Beams. The Astrophysical Journal Letters, 985(1), 19.
- 26. Riley, P., ..., Romeo, O. M., et al. (2025). Understanding the global structure of the September 5, 2022, coronal mass ejection using sunRunner3D. Journal of Space Weather and Space Climate, 15, 17.
- Muro, G. D., ..., Romeo, O. M., et al. (2025). Radial Dependence of Ion Fluences in the 2023 July 17 Solar Energetic Particle Event from Parker Solar Probe to STEREO and ACE. The Astrophysical Journal Letters, 981(1), 8.
- 24. Ruffolo, D., ..., Romeo, O. M., et al. (2024). Observed Fluctuation Enhancement and Departure from WKB Theory in Sub-Alfvénic Solar Wind. The Astrophysical Journal Letters, 977(1), L19.
- 23. Shaver, S. R., ..., Romeo, O. M., et al. (2024). Exploring Observational Heliophysics Across All Scales:

Reflections and Insights From the 2023 NASA Heliophysics Summer School. Perspectives of Earth and Space Scientists, 5(1), e2023CN000217.

- 22. Ervin, T., ..., Romeo, O. M., et al. (2024). Near Subsonic Solar Wind Outflow from an Active Region. The Astrophysical Journal, 972(1), 129.
- 21. Phan, T. D., ..., Romeo, O. M., et al. (2024). Multiple Subscale Magnetic Reconnection Embedded inside a Heliospheric Current Sheet Reconnection Exhaust: Evidence for Flux Rope Merging. The Astrophysical Journal Letters, 971(2), L42.
- 20. Ervin, T., ..., Romeo, O. M., et al. (2024). Compositional Metrics of Fast and Slow Alfvénic Solar Wind Emerging from Coronal Holes and Their Boundaries. The Astrophysical Journal, 969(2), 83.
- 19. Cohen, C. M. S., ..., Romeo, O. M., et al. (2024). Observations of the 2022 September 5 Solar Energetic Particle Event at 15 Solar Radii. The Astrophysical Journal, 966(2), 148.
- 18. Zaslavsky, A., ..., Romeo, O. M., et al. (2024). Probing Turbulent Scattering Effects on Suprathermal Electrons in the Solar Wind: Modeling, Observations, and Implications. *The Astrophysical Journal*, 966(1), 60.
- 17. Eriksson, S., ..., **Romeo, O. M.**, et al. (2024). Parker Solar Probe Observations of Magnetic Reconnection Exhausts in Quiescent Plasmas near the Sun. The Astrophysical Journal, 965(1), 76.
- Palmerio, E., ..., Romeo, O. M., et al. (2024). On the Mesoscale Structure of Coronal Mass Ejections at Mercury's Orbit: BepiColombo and Parker Solar Probe Observations. The Astrophysical Journal, 963(2), 108.
- McManus, M. D., ..., Romeo, O. M., et al. (2024). Proton- and Alpha-driven Instabilities in an Ion Cyclotron Wave Event. The Astrophysical Journal, 961(1), 142.
- 14. Mozer, F. S., ..., Romeo, O. M., et al. (2023). Density Enhancement Streams in The Solar Wind. The Astrophysical Journal Letters, 957(2), L33.
- 13. Alnussirat, S. T., ..., **Romeo, O. M.**, et al. (2023). Dispersive Suprathermal Ion Events Observed by the Parker Solar Probe Mission. The Astrophysical Journal Letters, 954(1), L32.
- 12. Romeo, O. M., et al. (2023). Near-Sun in situ and remote-sensing observations of a Coronal Mass Ejection and its effect on the Heliospheric Current Sheet. The Astrophysical Journal, 954(2), 168.
- 11. Huang, J., ..., Romeo, O. M., et al. (2023). The Temperature, Electron, and Pressure Characteristics of Switchbacks: Parker Solar Probe Observations. The Astrophysical Journal, 954(2), 133.
- Huang, J., ..., Romeo, O. M., et al. (2023). The Structure and Origin of Switchbacks: Parker Solar Probe Observations. The Astrophysical Journal, 952(1), 33.
- 9. Bowen, T. A., ..., Romeo, O. M. (2023). Constraining Collisionless Processes in Planetary Magnetospheres. Uranus Flagship: Investigations and Instruments for Cross-Discipline Science Workshop, 2808, 8170.
- 8. Mozer, F. S., Bale, S. D., Kellogg, P., **Romeo, O. M.**, et al. (2023). Arguments for the physical nature of the triggered ion-acoustic waves observed on the Parker Solar Probe. *Physics of Plasmas*, 30(6), 062111.
- 7. Mozer, F. S., ..., **Romeo, O. M.**, et al. (2023). Direct observation of solar wind proton heating from in situ plasma measurements. Astronomy & Astrophysics, 673, L3.
- 6. Huang, J., ..., Romeo, O. M., et al. (2023). Parker Solar Probe Observations of High Plasma β Solar Wind from the Streamer Belt. The Astrophysical Journal Supplement Series, 265(2), 47.
- 5. Short, B., Malaspina, D. M., Halekas, J., **Romeo, O. M.**, et al. (2022). Observations of Quiescent Solar Wind Regions with Near- f_{ce} Wave Activity. The Astrophysical Journal, 940(1), 45.
- McManus, M. D., ..., Romeo, O. M., et al. (2022). Density and Velocity Fluctuations of Alpha Particles in Magnetic Switchbacks. The Astrophysical Journal, 933(1), 43.
- 3. Mozer, F. S., ..., Romeo, O. M. (2022). An Improved Technique for Measuring Plasma Density to High Frequencies on the Parker Solar Probe. *The Astrophysical Journal*, 926(2), 220.
- Bandyopadhyay, R., ..., Romeo, O. M., et al. (2022). Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe: Characterization of Turbulence, Anisotropy, Intermittency, and Switchback. The Astrophysical Journal, 926(1), L1.
- 1. Romeo, O. M., et al. (2021). Variability of Upstream Proton Cyclotron Wave Properties and Occurrence at Mars Observed by MAVEN. Journal of Geophysical Research: Space Physics, 126(2), e28616.

PRESENTATIONS

International – Oral

2024 45th COSPAR Scientific Assembly, Near-Sun In Situ & Remote Sensing Observations of a CME and its Effect on the HCS, Busan, Korea

International – Poster

- 2023 American Geophysical Union Fall Meeting, Determination and Calibration of Solar Wind Electron Moments Observed by PSP, San Francisco CA, United States
- 2023 16th Solar Wind Conference, Determining the Anatomy of an ICME by Relating Remote Sensing and In Situ Observations Within 13 Rs, Pacific Grove CA, United States
- 2022 American Geophysical Union Fall Meeting, Characterization of Solar Wind Strahl Electron Scattering Observed by PSP, Chicago IL, United States
- 2022 Solar Orbiter Summer Conference, Solar Wind Electron Distributions as Observed by PSP, Sète, France
- 2021 American Geophysical Union Fall Meeting, Characterization of Strahl Electron Scattering in the Solar Wind Observed by PSP, New Orleans LA, United States
- 2019 American Geophysical Union Fall Meeting, Solar Longitudinal Variability of Waves at the Local Proton Cyclotron Frequency, San Francisco CA, United States

National – Oral

- 2025 Parker Solar Probe Fourth Annual Conference, Evolution of Electron Distributions During the March 13, 2023, ICME Observed by PSP, Laurel MD, United States
- 2024 American Geophysical Union Fall Meeting, Overview of PSP Electron Observations from 10 to 100 Solar Radii, Washington D.C., United States
- 2023 16th PSP Science Working Group Meeting, CME Anatomy from Remote Sensing Observations and In-situ Measurements near 13 Rs, Pasadena CA, United States

National – Poster

- 2022 JHU/APL Parker Two Meeting (PSP), Characterization of Strahl Electron Scattering in the Solar Wind Observed by PSP, Laurel MD, United States
- 2019 Sigma Pi Sigma Physics Congress, Seasonal Variability of Waves near the Proton Cyclotron Frequency Upstream from Mars, Providence RI, United States
- 2019 MAVEN Project Science Group Meeting, Seasonal Variability of Waves near the Proton Cyclotron Frequency Upstream from Mars, Boulder CO, United States

Institutional - Oral

- 2025 University of California, Berkeley Space Sciences Seminar, Exploring the Inner Heliosphere with Novel in situ Measurements, Berkeley CA, United States
- 2022 Space Sciences Lab Robert P. Lin Fellowship Seminar, *Electron Distribution Evolution near* the Sun Observed by PSP, Berkeley CA, United States
- 2018 University of Maryland Astronomical Observatory Open House, Changes in Brightness for Cataclysmic Variables in Different Galactic Regions, College Park MD, United States
- 2018 Johns Hopkins University APL Student Expo, Data Driven Forecasting Model of Radiation Belt Intensities, Laurel MD, United States

Institutional – Poster

- 2019 NASA Goddard Space Flight Center Student Poster Expo, Seasonal Variability of Waves near the Proton Cyclotron Frequency Upstream from Mars, Providence RI, United States
- 2017 University of Maryland Physics Research Showcase, Seismic Wave Travel Times at Varying Frequencies, College Park MD, United States
- 2016 Science and Math Academy Symposium, Correlation of Solar Wind and IMF Activity on SAA Intensity, Aberdeen MD, United States

SERVICE & OUTREACH

Professional

2024	NASA ROSES Solicitation, Executive Secretary
2024	The Astrophysical Journal, Reviewer of 1 manuscript
2024	Geophysical Research Letters, Reviewer of 1 manuscript
2022	The Astrophysical Journal, Reviewer of 1 manuscript
2022	Heliophysics 2050 Workshop: Space Physics, Executive Secretary
2021	AGU Fall Meeting Parker Solar Probe Session, Volunteer Chair
2020	Intersect: The Stanford Journal of STS, Reviewer of 1 manuscript

Community

2025	SSL ASSURE REU Program, Student Poster Judge
2024	SSL ASSURE REU Program, Student Poster Judge
2023	SSL ASSURE REU Program, Guest Speaker on Planetary Environments
2022	SSL ASSURE REU Program, Student Application Reviewer
2022 - Present	California Academy of Sciences, Volunteer
2019	UMD Society of Physics Students, President
2018	UMD SPS National Zone 4 Meeting, Lead Python Workshop Instructor
2018	UMD SPS National Zone 4 Meeting, Lead Arduino Workshop Instructor
2017 - 2018	UMD Society of Physics Students, Vice President

Media Outreach

2023 Press Release, News Article on Romeo et al. 2023 manuscript

PROFESSIONAL SKILLS

Programming & Software

• Python	• Julia	• UNIX
• IDL	• Arduino	• pyGSEOS
• MATLAB	• Java	ullet HTML

Instrumentation & Lab Experience

• Electrostatic Analyzers	 Oscilloscopes 	• Optics Alignment
• Magnetometers	• Vacuum chambers	• Magnetic Characterization
• Solid State Telescopes	• Circuit design & testing	• Carbon Foil Floating
• Observatory telescopes	• Soldering	• Data Acquisition Processor
• Raspberry Pi	• 3D printing	(DAP) testing

Languages

• English (Native) • Italian (Proficient) • Spanish (Beginner)