Назарова К.А. Группа № в5130904/30030

Расчетная работа №2. Реализация алгоритма поисковой оптимизации

1. Вариант 2 (10). Реализация метода покоординатного спуска с постоянным шагом.

2. Описание общего алгоритма поиска.

Метод покоординатного спуска с постоянным шагом является одним из простейших методов оптимизации. Его основная идея заключается в том, что на каждой итерации мы выбираем одно из направлений (координат) и опускаемся по нему на фиксированное расстояние (шаг).

Реализация данного алгоритма требует учета особенностей конкретной задачи оптимизации (например, выбор критерия остановки, определение начального приближения и шага, обработка ограничений на переменные). Также важно правильно выбрать координатную ось для опускания на каждой итерации, чтобы обеспечить сходимость алгоритма.

В целом, метод покоординатного спуска с постоянным шагом является простым и интуитивно понятным методом оптимизации, однако он часто требует большого количества итераций для сходимости, особенно в случае высокой размерности пространства. Рекомендуется использовать более эффективные методы оптимизации, такие как градиентный спуск или метод Ньютона, если это возможно.

3. Блок-схема общего алгоритма метода покоординатного поиска

4. Описание условий окончания алгоритма поиска.

Условия окончания алгоритма реализации метода покоординатного спуска с постоянным шагом могут быть заданы различными способами, но обычно они включают в себя одно или несколько из следующих условий:

- Достижение определенного числа итераций алгоритм останавливается после выполнения заданного количества шагов.
- Достижение заданного значения функции потерь или точности алгоритм завершается, когда значение функции потерь становится меньше определенного порога или когда изменение значения функции потерь меньше определенного значения.
- Обнаружение сходимости алгоритм завершает работу, если на очередной итерации значения функции потерь не меняются существенно или изменяются медленно.

При реализации метода покоординатного спуска с постоянным шагом, после каждого обновления координаты проверяются условия остановки и при их выполнении алгоритм завершает работу.

5. Функция №1. Функция эллипсоида.

$$f(x,y) = (\frac{x}{A})^2 + (\frac{y}{B})^2$$

Условие №1

A: 3.0, B: 2.0;

Начальная точка: (2.0, 1.0);

Точность: 0.01;

Шаг: 0.1;

Заданное кол-во итераций: 100;

Таблица 1: Таблица результатов

X	У	f(x,y)
2.0	1.0	0.6511111111111111
1.9000000000000000000000000000000000000	0.90000000000000001	0.603611111111111
1.8	0.90000000000000001	0.5625
1.8	0.8000000000000003	0.52000000000000001
1.7000000000000000000000000000000000000	0.8000000000000003	0.481111111111111
1.7000000000000000000000000000000000000	0.70000000000000002	0.443611111111111
1.60000000000000000	0.70000000000000002	0.406944444444446
1.60000000000000000	0.60000000000000001	0.374444444444446
1.500000000000000004	0.60000000000000001	0.34000000000000014
1.500000000000000004	0.5	0.31250000000000001
1.4000000000000000	0.5	0.2802777777777796
1.40000000000000000	0.3999999999999997	0.2577777777777794
1.30000000000000007	0.3999999999999997	0.22777777777777797
1.30000000000000007	0.3	0.2102777777777798
1.20000000000000000	0.3	0.18250000000000025
1.20000000000000000	0.2	0.170000000000000026
1.1000000000000001	0.2	0.1444444444444468
1.1000000000000001	0.10000000000000003	0.1369444444444467
1.0000000000000001	0.10000000000000003	0.11361111111111136
1.0000000000000001	2.7755575615628914e-17	0.1111111111111135
0.90000000000000012	2.7755575615628914e-17	0.090000000000000026

x	y	f(x,y)
0.90000000000000012	2.7755575615628914e-17	0.090000000000000026
0.8000000000000014	2.7755575615628914e-17	0.0711111111111135
0.8000000000000014	2.7755575615628914e-17	0.0711111111111135
0.70000000000000013	2.7755575615628914e-17	0.05444444444444464
0.70000000000000013	2.7755575615628914e-17	0.05444444444444464
0.60000000000000012	2.7755575615628914e-17	0.04000000000000016
0.60000000000000012	2.7755575615628914e-17	0.04000000000000016
0.50000000000000011	2.7755575615628914e-17	0.02777777777777905
0.50000000000000011	2.7755575615628914e-17	0.02777777777777905
0.4000000000000011	2.7755575615628914e-17	0.01777777777777875
0.4000000000000011	2.7755575615628914e-17	0.01777777777777875
0.3000000000000011	2.7755575615628914e-17	0.0100000000000000073
0.3000000000000011	2.7755575615628914e-17	0.0100000000000000073
0.3000000000000011	2.7755575615628914e-17	0.0100000000000000073

Количество итераций - 17.

Точка минимума - ($0.300000000000011,\, 2.7755575615628914\text{e-}17)$

Условие №2

A: 2.0, B: 3.0;

Начальная точка: (1.0, 1.0);

Точность: 0.01;

Шаг: 0.1;

Заданное кол-во итераций: 100.

Таблица 2: Таблица результатов

x	y	f(x,y)
1.0	1.0	0.3136111111111112
0.9000000000000001	0.90000000000000001	0.2925000000000001
0.8000000000000003	0.90000000000000001	0.25000000000000001
0.8000000000000003	0.8000000000000003	0.2311111111111127
0.70000000000000002	0.8000000000000003	0.19361111111111123
0.70000000000000002	0.70000000000000002	0.17694444444444454
0.60000000000000001	0.70000000000000002	0.144444444444445
0.60000000000000001	0.60000000000000001	0.130000000000000003
0.5	0.60000000000000001	0.102500000000000001
0.5	0.5	0.0902777777777778
0.399999999999997	0.5	0.0677777777777777
0.399999999999997	0.399999999999999	0.0577777777777777
0.3	0.3999999999999997	0.0402777777777777
0.3	0.3	0.0325
0.2	0.3	0.02
0.2	0.2	0.01444444444444447
0.100000000000000003	0.2	0.00694444444444446
0.10000000000000003	0.10000000000000003	0.003611111111111135
2.7755575615628914e-17	0.10000000000000003	0.0011111111111111111
2.7755575615628914e-17	2.7755575615628914e-17	2.7818988085593406e-34
2.7755575615628914e-17	2.7755575615628914e-17	2.7818988085593406e-34

Количество итераций - 10.

Точка минимума - (2.7755575615628914e-17, 2.7755575615628914e-17)

Условие №3

A: 3.0, B: 2.0;

Начальная точка: (-1.0, 1.0);

Точность: 0.01;

Шаг: 0.1;

Заданное кол-во итераций: 100;

Таблица 3: Таблица результатов

x	у	f(x,y)
-1.0	1.0	0.3399999999999999
-0.9	0.90000000000000001	0.2925000000000001
-0.8	0.90000000000000001	0.2736111111111112
-0.8	0.8000000000000003	0.231111111111111
-0.70000000000000001	0.8000000000000003	0.2144444444444458
-0.70000000000000001	0.70000000000000002	0.1769444444444452
-0.60000000000000001	0.70000000000000002	0.16250000000000001
-0.60000000000000001	0.60000000000000001	0.130000000000000003
-0.50000000000000001	0.60000000000000001	0.11777777777777781
-0.50000000000000001	0.5	0.090277777777779
-0.400000000000000013	0.5	0.08027777777778
-0.400000000000000013	0.399999999999999	0.0577777777777779
-0.30000000000000016	0.399999999999999	0.05
-0.30000000000000016	0.3	0.032500000000000001
-0.200000000000000015	0.3	0.0269444444444445
-0.20000000000000015	0.2	0.01444444444444454
-0.10000000000000014	0.2	0.01111111111111111
-0.10000000000000014	0.100000000000000003	0.0036111111111111116
-1.3877787807814457e-16	0.100000000000000003	0.00250000000000000002
-1.3877787807814457e-16	2.7755575615628914e-17	2.332515154868986e-33
-1.3877787807814457e-16	2.7755575615628914e-17	2.332515154868986e-33

Количество итераций - 10.

Точка минимума - (-1.3877787807814457e-16, 2.7755575615628914e-17)

6. Функция №2. Функция Розенброка.

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

Условие №1

Начальная точка: (2, 1);

Точность: 0.001;

Шаг: 0.01;

Заданное кол-во итераций: 100.

Таблица 4: Таблица результатов

x	У	f(x,y)
1.98999999999999	1.0	98.009999999999
1.98999999999999	1.01	94.07070099999996
1.979999999999999	1.01	92.14090099999996
1.979999999999999	1.02	88.28521599999995
1.969999999999998	1.02	86.41601599999996
1.969999999999998	1.03	82.64718099999996
1.959999999999999	1.03	80.83898099999996
1.959999999999999	1.04	77.16025599999993
1.949999999999999	1.04	75.41345599999993
1.949999999999999	1.05	71.82812499999994
1.939999999999999	1.05	70.14312499999994
1.939999999999999	1.06	66.65449599999994
1.929999999999999	1.06	65.03169599999993
1.929999999999999	1.07	61.643100999999945
1.919999999999999	1.07	60.08290099999995
1.919999999999999	1.08	56.79769599999994
1.909999999999999	1.08	55.30049599999994
1.909999999999999	1.09	52.12206099999993
1.899999999999999	1.09	50.68826099999993
1.899999999999999	1.10	47.619999999999926
1.889999999999999	1.10	46.2499999999999
1.889999999999999	1.11	43.29534099999993
1.879999999999999	1.11	41.98954099999993

x	У	f(x,y)
1.879999999999999	1.12	39.151935999999935
1.869999999999999	1.12	37.910735999999936
1.869999999999999	1.13000000000000001	35.19366099999992
1.859999999999999	1.13000000000000001	34.01746099999999
1.859999999999999	1.14000000000000001	31.424415999999926
1.84999999999999	1.14000000000000001	30.31361599999993
1.84999999999999	1.150000000000000001	27.84812499999994
1.839999999999999	1.150000000000000001	26.803124999999937
1.839999999999999	1.160000000000000001	24.46873599999993
1.829999999999999	1.160000000000000001	23.48993599999933
1.82999999999999	1.17000000000000000	21.290220999999924
1.819999999999999	1.170000000000000002	20.378020999999926
1.81999999999999	1.18000000000000000	18.31657599999994
1.80999999999999	1.18000000000000000	17.471375999999943
1.80999999999999	1.19000000000000000	15.55182099999994
1.79999999999999	1.19000000000000000	14.774020999999943
1.79999999999999	1.2000000000000000000000000000000000000	12.9999999999945
1.789999999999999	1.2000000000000000000000000000000000000	12.28999999999946
1.789999999999999	1.21000000000000000	10.665180999999947
1.779999999999999	1.21000000000000000	10.023380999999949
1.779999999999999	1.22000000000000000	8.551455999999954
1.769999999999999	1.22000000000000000	7.978255999999955
1.769999999999999	1.230000000000000002	6.6629409999999485
1.759999999999999	1.23000000000000000	6.15874099999995
1.759999999999999	1.24000000000000000	5.003775999999958
1.749999999999999	1.24000000000000000	4.568975999999958
1.749999999999999	1.25000000000000000000000000000000000000	3.5781249999999667
1.739999999999999	1.250000000000000000	3.213124999999968
1.739999999999999	1.26000000000000000000000000000000000000	2.390175999999999
1.72999999999999	1.26000000000000000000000000000000000000	2.095375999999971
1.72999999999999	1.27000000000000000	1.4441409999999737
1.719999999999999	1.27000000000000000	1.219940999999757
1.719999999999999	1.28000000000000000	0.7442559999999803
1.70999999999999	1.28000000000000000	0.5910559999999826
1.70999999999999	1.29000000000000003	0.2947809999999904

X	y	f(x,y)
1.69999999999999	1.29000000000000003	0.21298099999999248
1.69999999999999	1.30000000000000000	0.0999999999999797
1.68999999999999	1.30000000000000003	0.090000000000000016
1.68999999999999	1.30000000000000003	0.090000000000000016
1.68999999999999	1.30000000000000003	0.090000000000000016
1.68999999999999	1.30000000000000003	0.090000000000000016
1.68999999999999	1.30000000000000003	0.090000000000000016

Количество итераций - 32.

Точка минимума - (1.68999999999995, 1.3000000000000000).

Условие №2

Начальная точка: (-1, 2);

Точность: 0.01;

Шаг: 0.1;

Заданное кол-во итераций: 100.

Таблица 5: Таблица результатов

X	У	f(x,y)
-1.0	2.0	2402.0000000000005
-0.9	1.900000000000000001	2034.82000000000006
-0.8	1.900000000000000001	1945.62
-0.8	1.8	1632.80000000000002
-0.70000000000000001	1.8	1553.00000000000005
-0.70000000000000001	1.7000000000000000000000000000000000000	1289.3000000000004
-0.600000000000000001	1.7000000000000000000000000000000000000	1218.5000000000005
-0.600000000000000001	1.60000000000000003	998.9200000000008
-0.500000000000000001	1.600000000000000003	936.7200000000006
-0.500000000000000001	1.500000000000000004	756.50000000000007
-0.400000000000000013	1.500000000000000004	702.50000000000006
-0.400000000000000013	1.40000000000000006	557.1200000000007
-0.300000000000000016	1.40000000000000006	510.9200000000007
-0.300000000000000016	1.30000000000000007	396.10000000000076
-0.200000000000000015	1.30000000000000007	357.30000000000075
-0.200000000000000015	1.20000000000000000	269.00000000000074
-0.10000000000000014	1.20000000000000000	237.20000000000006
-0.10000000000000014	1.1000000000000001	171.62000000000057
-1.3877787807814457e-16	1.1000000000000001	146.42000000000056
-1.3877787807814457e-16	1.0000000000000001	100.000000000000048
0.0999999999999987	1.0000000000000001	81.00000000000043
0.0999999999999987	0.90000000000000012	50.42000000000034
0.1999999999999987	0.90000000000000012	37.2200000000003
0.1999999999999987	0.8000000000000014	19.400000000000208
0.29999999999999	0.8000000000000014	11.600000000000016
0.29999999999999	0.70000000000000013	3.7000000000000735
0.39999999999999	0.70000000000000013	0.9000000000000337

X	y	f(x,y)
0.39999999999999	0.600000000000000012	0.3199999999998685
0.39999999999999	0.60000000000000012	0.3199999999998685
0.39999999999999	0.60000000000000011	0.3199999999998785
0.39999999999999	0.60000000000000011	0.3199999999998785

Количество итераций - 15.

Точка минимума - (0.39999999999999, 0.6000000000000011).

Условие №3 Начальная точка: (3, -5);

Точность: 0.01;

Шаг: 0.1;

Заданное кол-во итераций: 100.

Таблица 6: Таблица результатов

X	у	f(x,y)
2.0	3.0	4765.0000000000001
2.1	2.9	3985.2200000000007
2.2	2.9	3860.02
2.2	2.8	3184.199999999985
2.30000000000000003	2.8	3072.3999999999987
2.30000000000000003	2.699999999999999	2492.899999999983
2.400000000000000004	2.699999999999997	2394.099999999998
2.400000000000000004	2.599999999999996	1903.5199999999982
2.500000000000000004	2.599999999999996	1817.3199999999983
2.500000000000000004	2.499999999999996	1408.499999999984
2.60000000000000005	2.499999999999996	1334.499999999984
2.60000000000000005	2.399999999999995	1000.5199999999999
2.70000000000000000	2.399999999999995	938.3199999999999
2.70000000000000000	2.299999999999999	672.499999999984
2.80000000000000007	2.299999999999999	621.699999999983
2.80000000000000007	2.199999999999993	417.599999999986
2.9000000000000001	2.199999999999993	377.799999999986
2.9000000000000001	2.09999999999999	229.21999999999872
3.0000000000000001	2.09999999999999	200.0199999999988
3.0000000000000001	1.999999999999993	100.9999999999999
3.1000000000000001	1.99999999999999	81.999999999935
3.1000000000000001	1.899999999999999	26.819999999999617
3.2000000000000001	1.899999999999999	17.6199999999968
3.2000000000000001	1.799999999999999	0.799999999999708
3.2000000000000001	1.799999999999999	0.799999999999708
3.2000000000000001	1.799999999999996	0.799999999999783
3.2000000000000001	1.799999999999999	0.799999999999783

Количество итераций - 13.

Точка минимума - (3.20000000000001, 1.79999999999996)

7. Вывод по расчетной работе №2

В настоящем исследовании был рассмотрен метод покоординатного спуска с постоянным шагом. Было проведено тестирование метода на вычислении двух функций: функции эллипсоида с минимальным значением в точке (0,0) и функции Розенброка с минимальным значением в точке (1,1).

Недостатком этого метода является большое количество итераций, необходимых для достижения минимума функций, что делает его достаточно затратным по ресурсам и времени.

8. Код программы

```
1 from matplotlib import pyplot as plt
2 import pandas as pd
3 import csv
4
5 | eps = 0.01
6 step = 0.1
7
8
  def ellipsoid(x: list):
      A = 3.0
9
       B = 2.0
       return (float(x[0]) / A) ** 2 + (float(x[1]) / B) ** 2
11
12
|13| \text{ result} = [[2, 1]]
|14| current iter = 0
15 | f 1 = 0
16 | f 2 = 1
17 \mid \text{max} \quad \text{iter} = 100
18
19 while abs(f 1 - f 2) > eps and current iter < max iter:
       for i in range(len(result[-1]):
20
            value = ellipsoid (result [-1])
21
            result[-1][i] += step
22
            new value = ellipsoid (result [-1])
23
24
            if new value >= value:
25
                result[-1][i] = 2 * step
26
                new_value = ellipsoid(result[-1])
27
                if new value > value:
28
```

```
29
                    result[-1][i] += step
           result .append (result [-1][:])
30
       f_1 = f_2
31
       f 2 = ellipsoid(result[-1])
32
       current_iter += 1
33
34
  print("Iter Amount: ", current_iter)
35
36
  new result = result [0::]
38 | \text{columns} = ['x', 'y', 'z']
  with open('fun1_1.csv', 'w') as f:
       write = csv.writer(f)
40
       write.writerow(columns)
41
       for coord in new result:
42
           coord.append(ellipsoid(coord))
43
           write.writerow(coord)
44
45
46 df = pd.DataFrame(new_result, columns=columns)
  df.to_csv('fun1_1.csv', index=False)
47
48
49 | x = df['x']
50 | y = df['y']
51 plt.xlabel('x')
52 plt.ylabel('y')
53 plt.grid(True)
54
55 plt.scatter(x, y)
56 plt.plot(x, y, '-o', color='r')
57 plt.savefig('fun1_1.jpeg')
58 plt.show()
```

```
from matplotlib import pyplot as plt
import pandas as pd
import csv

eps = 0.01
step = 0.1

def rosenbrok(x: list):
    return (1 - x[1]) ** 2 + 100 * (x[0] - x[1] ** 2) ** 2
```

```
11 result = [[2, 1]]
12 current iter = 0
13 | f_1 = 0
14 | f 2 = 1
15 \mid max\_iter = 100
16
  while abs(f_1 - f_2) > eps and current_iter < max_iter:
17
       for i in range(len(result[-1]):
18
           value = rosenbrok(result[-1])
19
           result[-1][i] += step
20
           new_value = rosenbrok(result[-1])
21
22
           if new value >= value:
23
                result[-1][i] = 2 * step
24
                new value = rosenbrok (result [-1])
25
                if new value > value:
26
                    result[-1][i] += step
27
           result . append (result [-1][:])
28
       f 1 = f 2
29
       f 2 = rosenbrok(result[-1])
30
       current_iter += 1
31
32
  print("Iter Amount: ", current_iter)
33
34
  new result = result [0::]
36 | columns = ['x', 'y', 'z']
  with open('fun2 1.csv', 'w') as f:
37
       write = csv.writer(f)
38
       write.writerow(columns)
39
       for coord in new result:
40
           coord . append ( rosenbrok ( coord ) )
41
           write.writerow(coord)
42
43
44 df = pd.DataFrame(new result, columns=columns)
45 df.to_csv('fun2_1.csv', index=False)
46
47 \times = df['x']
48 | y = df['y']
49 plt.xlabel('x')
50 plt.ylabel('y')
51 plt.grid(True)
```

```
52

53 plt.scatter(x, y)

54 plt.plot(x, y, '-o', color='g')

55 plt.savefig('fun2_1.jpeg')

56 plt.show()
```