Math 239 Spring 2014 Assignment 7 Solutions

- 1. $\{6 \text{ marks}\}\$ For each of the following statements about any graph G and three of its vertices u, v, w, determine whether it is true or false. If it is true, give a proof. If it is false, give a counterexample with appropriate explanations.
 - (a) If G contains a cycle, then every vertex has degree at least 2.

Solution. False. The following graph has a cycle, but vertex x has degree 1.

(b) If there is a walk containing u, v, w, then there is a path containing u, v, w.

Solution. False. Consider the following graph. There is a walk containing u, v, w, namely u, x, v, x, w. But there is no path containing u, v, w, since each vertex has degree 1 and if there's a path containing all of them, one of them has to have degree at least 2.

Figure 1: Flux capacitor.

(c) If there exist a cycle containing vertices u, v and a cycle containing vertices v, w, then there exists a cycle containing vertices u, w.

Solution. False.

2. Consider the following proposition.

Proposition. Let G be a non-empty graph where every vertex has degree at least k. Then G contains a path of length at least k.

(a) $\{2 \text{ marks}\}\$ The following is an incorrect proof of the proposition using induction on k. Determine the main flaw of this proof.

Bad proof. When k = 1, G has at least 1 vertex v with degree at least 1, so it has at least one neighbour w. Then v, w is a path of length at least 1 in G.

Assume that the statement is true for k-1. Let G be a graph where every vertex has degree at least k-1. By induction hypothesis, there exists a path $P=v_1,v_2,\ldots,v_k$ of length k-1. Construct a new graph G' by adding a new vertex x and join x with every vertex in G. Then every vertex has degree at least k in G'. In particular, $v_k x$ is an edge, so v_1, v_2, \ldots, v_k, x is a path of length k in G'. Therefore, G' contains a path of length at least k.

Solution. The problem is that this does not prove the statement for ALL possible graphs where every vertex has degree at least k. In particular, not every such graph has a vertex that is joined to all the other vertices. (A correct proof by induction is provided below.)

(b) {4 marks} Give a correct proof of this proposition. (You do not need to use induction.)

Solution. Let v_0, v_1, \ldots, v_m be a path of the longest length in G. Note that neighbours of v_m must all be on the path, for otherwise we may extend the path to get a longer one, contradicting our original choice. Since v_m has degree at least k, it is adjacent to at least k distinct vertices on the path. This implies that $m \geq k$, hence this path has length at least k.

Alternative proof (by induction). When k=1, there is at least one edge, so there is a path of length at least 1. Assume that every graph where each vertex has degree at least k-1 has a path of length at least k-1. Let G be a graph where each vertex has degree at least k. Then every vertex in G has degree at least k-1, so by induction hypothesis, there exists a path of length k-1, say it is $v_0, v_1, \ldots, v_{k-1}$. The vertex v_{k-1} has degree at least k, and there are only k-1 other vertices on the path. So at least one neighbour of v_{k-1} is not on the path. Let v_k be this neighbour. Therefore, $v_0, v_1, \ldots, v_{k-1}, v_k$ is a path of length k in G.

3. $\{4 \text{ marks}\}\ \text{Let } k \geq 2$ be an integer. Let G be a graph where every vertex has degree at least k. Prove that G contains at least $\lfloor k/2 \rfloor$ edge-disjoint cycles (i.e. no two of these cycles share any edges, but they may share some vertices).

Solution. We prove this by induction on k. For k = 2, 3, $\lfloor k/2 \rfloor = 1$. Since $k \ge 2$, there exists a cycle in G. This proves the base cases.

We now assume that the statement is true for $2, 3, \ldots, k-1$. Let G be a graph where every vertex has degree at least k. Since $k \geq 2$, there exists a cycle C in G. Remove the edges of C to obtain a graph G'. Notice that every vertex that is in C has degree 2 in C, so by removing the edges of C from G, the degree of each vertex decreases by either 2 or 0. This means that ever vertex in G' has degree at least k-2. By induction hypothesis, G' contains $\lfloor \frac{k-2}{2} \rfloor = \lfloor k/2 \rfloor - 1$ edge-disjoint cycles. These do not share any edges with C since edges in C are not present in G'. So together with C, we have $\lfloor k/2 \rfloor$ edge-disjoint cycles in G.

Alternate proof. Consider a longest path $P = v_1, v_2, \ldots, v_m$. All the neighbours of v_1 must be on the path, for otherwise we can extend P to get a longer path. Since every vertex has degree at least k, there are at least k neighbours of v_1 on P, let them be $v_{a_1}, v_{a_2}, \ldots, v_{a_k}$ where $a_1 < a_2 < \cdots < a_k$. Consider the cycles C_i where $C_i = v_1, v_{a_{2i}}, v_{a_{2i+1}}, \ldots, v_{a_{2i+1}}, v_1$. These cycles are edge-disjoint since they are using different parts of P and different edges incident with v_1 . The maximum possible value of i is $i = \lfloor k/2 \rfloor$, hence there are $\lfloor k/2 \rfloor$ edge-disjoint cycles in G.

4. $\{4 \text{ marks}\}\ \text{Let } G$ be a bipartite graph with n vertices. Prove that if every vertex has degree at least $\frac{n}{4} + 1$, then G is connected.

Solution. Suppose by way of contradiction that G is disconnected. So there are at least two components in G. Let H be one component. We know that H is bipartite, so H contains a bipartition (A,B) where each vertex in A is adjacent to at least $\frac{n}{4}+1$ vertices in B, and vice versa. Since there is at least one vertex in H, say wlog it is in A, it implies that $|B| \geq \frac{n}{4}+1$. Since there is at least 1 vertex in B and all of its neighbours are in A, it implies that $|A| \geq \frac{n}{4}+1$. Therefore, $|V(H)| \geq |A|+|B| \geq \frac{n}{2}+2$. But there are at least 2 components, so the total number of vertices in G is at least $2|V(H)| \geq n+4$. This contradicts the fact that G has n vertices. Therefore, G must be connected.

Alternate solution. Suppose V(G) has bipartition (A,B). Wlog assume $|A| \geq |B|$. In particular, $|B| \leq \frac{n}{2}$. Let $v \in A$. We will prove that G is connected by showing that there is a v,x-path for all $x \in V(G)$. If $x \in A$, then consider the set of neighbours N(v) and N(x) of v and x respectively. Since each vertex has degree at least $\frac{n}{4} + 1$, $|N(v)| \geq \frac{n}{4} + 1$ and $|N(x)| \geq \frac{n}{4} + 1$. In addition, both N(v) and N(x) are subsets of B, whose size is at most $\frac{n}{2}$. So by pigeonhole principle, there exists $y \in B$ such that $y \in N(v) \cap N(x)$. Then v, y, x form a v, x-path. Now suppose $x \in B$. Let N(x) be the set of neighbours of x. If $v \in N(x)$, then vx is an edge, so v, x is a v, x-path. Otherwise, let $y \in N(x)$. From the argument above, we see that v and y must have a common neighbour in B, say z. We know that $z \neq x$, therefore v, z, y, x form a v, x-path.

- 5. For some $k \in \mathbb{N}$, let G be a connected graph with 2k odd-degree vertices, and any number of even-degree vertices.
 - (a) $\{4 \text{ marks}\}\$ Prove that there exist k walks such that each edge in G is used in exactly one walk exactly once. What is so special about the end vertices of the k walks? (Hint: Add some edges to create an Eulerian circuit, and then remove them.)

Solution. Let v_1, v_2, \ldots, v_{2k} be the set of all odd-degree vertices in G. We obtain a new graph G' by adding k edges $v_1v_2, v_3v_4, \ldots, v_{2k-1}v_{2k}$ to G. Since we added one to each of these odd-degree vertices, G' is a connected graph where every vertex has even degree. Therefore, G' contains an Eulerian circuit, i.e. a closed walk containing each edge exactly once. By removing the k edges from the Eulerian circuit, we break it down to k walks where each edge in G is in exactly one of them.

The end vertices have to be odd-degree vertices in G.

(b) $\{2 \text{ marks}\}\$ Prove that it is not possible that a set of k-1 walks in G uses each edge exactly once. (This shows that to cover G with walks containing no repeated edges, you need at least k walks.)

Solution. Let W_1, \ldots, W_{k-1} be edge-disjoint walks in G. For each W_i , if it is a closed walk, then the edges contribute an even degree to every vertex. If it is not a closed walk, then the edges contribute an even degree to every vertex except the two endpoints, which have odd degrees. Over all k-1 walks, we have at most 2(k-1) vertices of odd degrees, which is not possible since there are 2k vertices of odd degrees.

(c) {2 marks} Partition the edges of the leftmost graph below into as few walks as possible.

Solution. One possible solution is the following. Note that there are 8 odd-degree vertices, so we must use exactly 4 walks, each starting and ending at distinct odd-degree vertices.

