Supporting Protocols ARP and ICMP

Kameswari Chebrolu

All the figures used as part of the slides are either self created or from the public domain with either 'creative commons' or 'public domain dedication' licensing. The public sites from which some of the figures have been picked include: http://commons.wikimedia.org (Wikipedia, Wikimedia and workbooks); http://www.sxc.hu and http://www.pixabay.com

Recap

- Forwarding needs IP to MAC address mapping
 - Service provided by ARP protocol
- Network layer needs to provide means for debugging (error signaling) and for router-host communication (determine MTU size, indicate better routes, provide netmask info etc)
 - Service provided by ICMP protocol

Problem Statement

- IP layer forwarding is based on IP addresses
- Next-hop delivery based on Link addresses (MAC)
- Need to perform IP to MAC address translation
- Answer: Address Resolution Protocol (ARP)
 - -what layer?

 How do you consume ARP process gets the relevant Packets? > demices

 What address should the frame Carry?

 what messages would you send & how do you act

 on a message received message?

Address Resolution Protocol (ARP)

- Operates at Link layer (Frame type = 0x0806)
- Based on broadcast: What is the MAC address corresponding to given IP address?
 - Host with matching IP address replies
- Each host maintains a cache with IP to MAC translations
 - Entries in cache timed out periodically (15 min)

ARP Packet Format

0	8 1	6 3.		
Hardware Type (=1)		Protocol Type (=0x0800)		
HLEN (=48)	PLEN (=32)	Operation regnar, reply		
Source Hardware Address (Bytes 0-3)				
Source Hardware Address (Bytes 4-5)		Source Protocol Address (Bytes 0-1)		
Source Protocol Address (Bytes 2-3)		Target Hardware Address (Bytes 0-1)		
Target Hardware Address (Bytes 2-5)				
Target Protocol Address (Bytes 0-3)				

Numbers in brackets capture mapping IP addresses to Ethernet addresses

Address Resolution Protocol (ARP)

- Originator: Add entry to cache corresponding to target
- Target: Add entry to cache corresponding to the originator (sender)

ARP REPLY

- Intermediate hosts: Refresh existing entries
- When forwarding a datagram, check cache, if no mapping, invoke ARP

Example

20

Address Resolution Protocol (ARP)

- Originator: Add entry to cache corresponding to target
- Target: Add entry to cache corresponding to the originator (sender)
- Intermediate hosts: Refresh existing entries
- When forwarding a datagram, check cache, if no mapping, invoke ARP

Gratuitous ARPs

- Generated by a host to inform others of its IP to MAC mapping stemate dur
- Could be a request or reply
 - If request, no reply will occur
 - If reply, there was no preceding request
 - Source IP = destination IP = IP of machine generating gratuitous ARP - Target MAC =?

Uses of Gratuitous ARPs

- Issued whenever IP or MAC address of an interface changes or brought up from down state
 - Help rectify cached ARP entries
 - Report IP address conflicts (duplicate IP)
 - Inform bridges of the location of new host

ICMP: Internet Control Message Protocol

- Used by hosts & routers to communicate network-level information
 - Error reporting: unreachable host, network, port, protocol
 - Diagnostic purposes: Echo request/reply (used by ping)
 - Routing: Source quench

ICMP Packet Format

demus

- ICMP messages carried in IP datagrams
- 8 bytes of header followed by data.
- Data field in error messages carry
 - entire IP header and first 8 bytes of data of IP packet that caused the error

Select ICMP Messages

Type	Code	Description
0	0	Echo Reply (Ping)
3	0	Destination network unreachable
3	1	Destination host unreachable
3	3	Destination port unreachable
3 /	4 /	Fragmentation required, DF flag set
3	6	Destination network unknown
3	7	Destination host unknown

Select ICMP Messages

Type	Code	Description	
4	0	Source Quench	
5	0	Redirect datagram for the network	
8	0	Echo request (Ping)	
11	0	TTL expired	
12	0	Bad IP header	
13	0	Timestamp	
14	0	Timestamp reply	
17	0	Address mask request	
18	0	Address mask reply	

Example: Fragmentation Required

Type=3 Code=4 Checksum				
Unused Next hop MTU	-			
IP header and first 8 bytes of original datagram's payload				

Traceroute

- Source sends series of UDP segments to destination one after another
 - First has TTL =1

- Second has TTL=2, etc.
- Destination port is set to an unlikely number

Traceroute

- When nth datagram arrives to nth router:
 - Router discards datagram
 - Sends to source an ICMP message (type 11, code 0)
 - Message includes name of router& IP address
- For each ICMP message, sending host notes router id and RTT time for ever number
- Sending host stops when it gets ICMP message (type 3, code 3)

Summary

- Studied two useful protocols: ARP and ICMP
- ARP is needed for forwarding
 - Performs IP to MAC address translation
- ICMP helps with error reporting and host signaling