Untitled

hugyu

27 1 2020

Contents

- Binary outcomes and proportions
- Comparative parameters of risks and their estimation
- Binomial regression models and comparative parameters
- Adjustment for confounding and evaluation of modification by binomial regression

Main R functions covered:

- twoby2() (Epi package)
- ▶ glm()
- ci.lin() (Epi package)

Outcomes in epidemiologic research

Epidemiologic studies address the occurrence of diseases and other health related phenomena:

(a) cross-sectional: **prevalence** of diseases,

(b) longitudinal: disease **incidence**, and mortality

Often we want to compare the prevalence or incidence of disease between two groups defined by a binary $risk\ factor\ X$

ightharpoonup X = 1: exposed X = 0: unexposed

Types of outcome variables

- ightharpoonup Binary (0/1) variables at individual level
 - disease status at a time point
 - change of status, event or transition ({e.g.} from healthy to diseased)
- Proportions at group level
 - prevalence
 - incidence proportion or cumulative incidence,
- Rates of events
 - incidence or mortality rate (per 1000 y)
 - car accidents (per million km)
- Time to event
 - survival time (often censored)

Incidence and prevalence proportions}

▶ Incidence proportion (R) of a binary (0/1) outcome (disease, death etc.) over a fixed risk period is defined

$$R = \frac{D}{N} = \frac{\text{number of new cases during period}}{\text{size of population-at-risk at start}}$$

Also called {cumulative incidence} (or even "risk").\ NB.

This formula requires complete follow-up, i.e. no {censorings}, and absence of {competing risks}.

Prevalence (proportion) P of disease at time point t

$$P = \frac{\text{no. of existing cases at t}}{\text{total population size at t}}.$$

Two-group comparison

- ▶ Binary risk factor X: exposed vs. unexposed.
- Summarizy results from cohort study with fixed risk period and no losses:

Exposure	Cases	Non-cases	Group size
yes	D_1	C_1	N_1
no	D_0	C_0	N_0
total	D_+	<i>C</i> ₊	N_+

▶ Incidence proportions in the two exposure groups

$$R_1 = \frac{D_1}{N_1}, \qquad R_0 = \frac{D_0}{N_0}.$$

► These are crude *estimates* of the true *risks* π_1 , and π_0 of outcome in the two exposure categories.