

Decision Tree for Text Categorization

School of Information Studies
Syracuse University

Text Categorization

Two steps: training and testing

Step 1: Training

- Goal: build a prediction model (a "classifier") that assigns documents to pre-defined categories (e.g., positive, negative, and neutral comments)
- Input: a collection of training documents and a computer algorithm

	"happy"	"sad"	"mad"	 Category
Doc1	1	0	0	positive
Doc2	0.1	0.3	0.6	negative
Doc3	0.1	0.1	0.1	neutral

Training a Text Classifier

Step 2: Testing

Goal: use the classifier to predict the category of new documents

Input: a trained classification model and a collection of testing documents with unknown category labels

	"happy"	"sad"	"mad"	 Category
Doc1	0.8	0.1	0.1	?
Doc2	0.5	0.3	0.2	?
Doc3	0.2	0.4	0.4	?

How to Train a Text "Classifier"?

Many candidate algorithms

- Decision tree
- Naïve Bayes
- Support vector machines
- K-nearest neighbor
- Neural network
- . . .

Train Decision Tree Model

	"happy"	"sad"	"mad"	 Category
Doc1	1	0	0	positive
Doc2	0.1	0.3	0.6	negative
Doc3	0.1	0.1	0.1	neutral

Use Decision Tree Model for Prediction

What is the sentiment of this text document?

- "happy happy happy happy mad mad sad sad sad"
- {"happy" = 0.4, "mad" = 0.3, "sad" = 0.3}

Decision Tree Is Not Commonly Used in Text Categorization

A few problems

- Black and white decision: mixed sentiment?
- The tree may become very big: too many word features!

