

Machine Learning e riconoscimento automatico di opere museali

Candidato: Latini Giacomo Relatore: Mei Alessandro Correlatore: La Morgia Massimo

Progetto ARCHEM

Obiettivo della tesi

Realizzazione di un modello di machine learning per il riconoscimento di opere museali.

Object Detection vs Object Recognition

Gatto

Gatto Europeo

Creazione del dataset

Data Augmentation per modificare le immagini mediante delle trasformazioni.

Creazione dei bounding box

File di testo in formato YOLO:

ID: 0

X: 0.430469

Y: 0.511806

• LARGHEZZA: 0.800000

ALTEZZA: 0.598611

Detectron2

ee Detectron 27

Conversione dei dati

Scelta del modello

Train

• Loss Function è una funzione che permette di capire quanto il modello si stia avvicinando alla soluzione corretta.

• Cross Validation è un metodo che permette di stimare come un modello sia capace di generalizzare dati mai visti prima.

Risultati

Conclusioni

- Stato dell'arte su metodologie di reti neurali per fare Object Detection.
- Creazione del dataset mediante il Data Augmentation.
- Creazione dei bounding box sugli oggetti d'interesse delle immagini.
- Addestramento del modello, con la relativa valutazione del Cross Validation dell'81%.

Sviluppi Futuri

- Aumento del dataset con altre classi.
- Utilizzo di altre immagini.
- Porting del modello su mobile.

Grazie per l'attenzione!