

DIGITAL VLSI DESIGN

Annapurna K YElectronics and Communication Engineering

DIGITAL VLSI DESIGN

Unit 2: Fabrication of MOSFETs & Circuit Design Process

Annapurna K Y

Electronics and Communication Engineering

active

P-type substrate

- n-well region for PMOS
- thin gate oxide is grown on top of the active regions
- thick field oxide is grown in the areas surrounding the transistor active regions
- gate oxide thickness and quality affect the operational characteristics of the MOS transistor and reliability.

Poly

- ❖ The polysilicon layer is deposited using chemical vapor deposition (CVD) and patterned by dry (plasma) etching.
- ❖ The created polysilicon lines will function as the gate electrodes of the nMOS and the pMOS transistors and their interconnects.
- Also, the polysilicon gates act as selfaligned masks for the source and drain implantations that follow this step.

Implant

- ❖ Using a set of two masks, the n+ and p+ regions are implanted into the substrate and into the n-well, respectively.
- Also, the ohmic contacts to the substrate and to the n-well are implanted in this process step.

Contacts

- An insulating silicon dioxide layer is deposited over the entire wafer using CVD.
- ❖ Then, the contacts are defined and etched away to expose the silicon or polysilicon contact windows.
- ❖ These contact windows are necessary to complete the circuit interconnections using the metal layer, which is patterned in the next step.

metal

Metal

- ❖ Metal (aluminum) is deposited over the entire chip surface using metal evaporation, and the metal lines are patterned through etching.
- Since the wafer surface is nonplanar, the quality and the integrity of the metal lines created in this step are very critical and are ultimately essential for circuit reliability.

Composite Mask Layout

PES UNIVERSITY

- The composite layout and the resulting cross-sectional view of the chip, showing one nMOS and one pMOS transistor (in the n-well), and the polysilicon and metal interconnections.
- ❖ The final step is to deposit the passivation layer (for protection) over the chip, except over wire-bonding pad areas.

n-well Process

FIGURE 1.11 Main steps in a typical n-well process.

Advantage of n-well process is that it can be fabricated on the same line as conventional nmos. So, this process is often retrofitted to existing nmos processes.

FIGURE 1.12 Cross-sectional view of n-well CMOS inverter.

N-well CMOS circuits are superior to p-well because of the lower substrate bias effects on transistor threshold voltage and inherently lower parasitic capacitances associated with source and drain regions

The Twin-Tub Process

- This technology provides the basis for separate optimization of p- and n-devices in terms of threshold voltage, body effect.
- Starting material is either n+ or p+ substrate with a lightly doped epitaxial layer or epi layer.
- This layer is used as protection against latch-up.
- The aim of epitaxy (=> arranged upon) is to grow high purity silicon layers of controlled thickness with accurately calculated doping concentrations distributed homogenously throughout the layer.
- Electrical properties of this layer is determined by the dopant and its concentration in the silicon.
- N-well and p-well are formed on this layer; which forms the actual substrate.

Process Steps

- Similar to p-well process except for the tub formation where both nwell and p-wells are utilized:
 - Tub formation
 - Thin oxide etching
 - Source and drain implantations
 - Contact cut definitions
 - metallization

FIGURE 1.14 Twin-tub structure.

THANK YOU

Annapurna K Y

Electronics & Communication Engineering

annapurnaky@pes.edu