

FCC LISTED, REGISTRATION NUMBER: 905266

IC LISTED REGISTRATION NUMBER IC 4621A-1

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 29590 Campanillas/ Málaga/ España Tel. 952 61 91 00 - Fax 952 61 91 13 MÁLAGA, C.I.F. A29 507 456 Registro Mercantil de Málaga,Tomo 1169, Libro 82, Folio 133, Hoja MA3729

TEST REPORT REFERENCE STANDARD: USA FCC Part 22 & Part 24 CANADA IC RSS-132, RSS-133

NIE:	33376RRF.003
Approved by (name / position & signature):	A. Llamas / RF Lab. manager
Elaboration date:	2011-09-27
Identification of item tested:	Mobile Broadband Module
Trademark ::::::::::::::::::::::::::::::::::::	Ericsson
Model name:	H5321
Type number:	KRD 131 21/1, KRD 131 21/4, KRD 131 21/8
Other identification of the product:	FCC ID: VV7-MBMH5321 IC: 287AG-MBMH5321
Final HW version:	R1
Final SW version:	R1A24
IMEI TAC:	35873904; 35874004; 35874104
Features:	QUAD BAND 850/900/1800/1900 GSM/GPRS/EGPRS class 10, WCDMA Bands I/II/V,VI, VIII HSDPA Cat. 14 HSUPA Cat. 6
Description:	PCI Express Half-Mini Card
Applicant:	Ericsson AB
Address:	Lindholmspiren 11
	SE-417 56, Gothenburg, Sweden
CIF/NIF/Passport:	SE556056625801
Contact person::	Fredrik Claesson
Telephone / Fax:	Phone: +46 10 7127856 Fax: +46 107126033
e-mail:	fredrik.a.claesson@ericsson.com
Test samples supplier:	Same as applicant
Manufacturer:	Same as applicant

Test method requested	See Standard
Standard	USA FCC Part 22 10-01-09 Edition:
	-Part 22.913. RF output power.
	-Part 22.917. Spurious emissions at antenna terminals and Radiated emissions.
	USA FCC Part 24 10-01-09 Edition:
	-Part 24.232. RF output power.
	-Part 24.238. Spurious emissions at antenna terminals and Radiated emissions.
	CANADA IC RSS-132 Issue 2, Sep. 2005.
	CANADA IC RSS-133 Issue 5, Feb. 2009.
Test procedure:	1. PEET000: Medidas de equipos radioeléctricos en condiciones radiadas.
	2. PEET003: Medidas conducidas de equipos radioeléctricos.
Non-standardized test method	N/A

Used instrumentation			Last Cal.	Cal. due date
	1.	Semianechoic Absorber Lined Chamber IR 11, BS	N.A.	N.A.
	2.	Control Chamber IR 12.BC	N.A.	N.A.
	3.	Hybrid Bilog antenna Sunol Sciences Corporation JB6	2008-10	2011-10
	4.	Antenna mast EM 1072 NMT	N.A.	N.A.
	5.	Rotating table EM 1084-4. ON	N.A.	N.A.
	6.	Double-ridge Guide Horn antenna 1-18 GHz HP 11966E	2011/05	2014/05
	7.	Double-ridge Guide Horn antenna 18-40 GHz Agilent 119665J	2008-09	2011-09
	8.	EMI Test Receiver R&S ESIB26	2009-09	2011-09
	9.	Universal Radio communication Tester R&S CMU200	2011-05	2013-05
	10.	Multi Device Controller EMCO 2090	N.A.	N.A.
	11.	Spectrum Analyzer R&S ESU40	2009-11	2011-11
	12.	Spectrum Analyzer Agilent E4440A	2010-02	2012-02
	13.	Power amplifier AMF-4D-00400600-50-30P	2011-04	2013-04
	14.	Log-Periodic antenna R&S HL 040	2009-10	2012-10
	15.	RF generator Agilent ESG E4438C	2010-09	2012-09
	16.	Climatic chamber HERAEUS VM 07/100	2010-02	2013-02
	17.	RF pre-amplifier Miteq AFS5-04001300-15-10P-6.	2010-07	2012-07
	18.	RF pre-amplifier Schaffner CPA 9231.	2011-06	2013-06
	19.	RF pre-amplifier Miteq JS4-12002600-30-5A.	2010-07	2012-07

Report template No. FDT08_12

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of AT4 wireless, S.A.

INDEX

Competences and guarantees	5
General conditions	
Uncertainty	
Usage of samples	
Testing period	
Environmental conditions	
Summary	7
Remarks and comments	8
Testing verdicts	9
APPENDIX A: Test results for FCC parts 22 & 24	10

Competences and guarantees

AT4 wireless, S.A. is a laboratory with a measurement facility in compliance with the requirements of Section 2.948 of the FCC rules and has been added to the list of facilities whose measurements data will be accepted in conjuction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Registration Number: 905266.

AT4 wireless, S.A. is a laboratory with a measurement site in compliance with the requirements of RSS 212, Issue 1 (Provisional) and has been added to the list of filed sites of the Canadian Certification and Engineering Bureau. Reference File Number: IC 4621A-1.

In order to assure the traceability to other national and international laboratories, AT4 wireless has a calibration and maintenance programme for its measurement equipment.

AT4 wireless guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at AT4 wireless at the time of performance of the test.

AT4 wireless is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of AT4 wireless.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of AT4 wireless and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the AT4 wireless internal document PODT000.

Usage of samples

Samples undergoing test have been selected by: the client.

Sample M/01 is composed of the following elements

Control No.	Description	Model / Type	Serial No.	Date of reception
33376B/92	Mobile Broadband Module	H5321	IMEI: 004401700860360 Serial #: C37003BSLA	09/08/2011
33376B/35	Test board			06/06/2011
33376B /49	AC Adaptor	SA115C-05		06/06/2011
33376B /76	Laptop simulator antenna			15/07/2011

1. Sample M/01 has undergone the following test(s) specified in subclause "Test method requested":

FCC part 22 and part 24 / IC RSS-132 Issue 2 and IC RSS-133 Issue 5 tests indicated in appendix A.

Testing period

The performed test started on 2011-08-09 and finished on. 2011-08-11.

The tests have been performed at AT4 wireless.

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 23.3 °C
	Max. = 24.7 °C
Relative humidity	Min. = 44.1 %
	Max. = 43.5 %
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω

In the semianechoic chamber (21 meters x 11 meters x 8 meters), the following limits were not exceeded during the test.

Temperature	Min. = 23.7 °C
-	Max. = 24.0 °C
Relative humidity	Min. = 43 %
	Max. = 44 %
Air pressure	Min. = 1020 mbar
	Max. = 1020 mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω
Normal site attenuation (NSA)	< ±4 dB at 10 m distance between item
	under test and receiver antenna, (30 MHz to
	1000 MHz)
Field homogeneity	More than 75% of illuminated surface is
	between 0 and 6 dB (26 MHz to 1000
	MHz).

In the chamber for conducted measurements the following limits were not exceeded during the test:

Temperature	Min. = 24.7°C
	Max. = 25.3 °C
Relative humidity	Min. = 44.7 %
	Max. = 45.8 %
Air pressure	Min. = 1020 mbar
	Max. = 1020 mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω

Summary

Considering the results of the performed test according to standards USA FCC Part 22 and Part 24, Canada IC RSS-132 and RSS-133, the item under test is **IN COMPLIANCE** with the requested specifications specified in the standard.

NOTE: The results presented in this Test Report apply only to the particular item under test established in page 1 of this document, as presented for test on the date(s) shown in section, "USAGE OF SAMPLES, TESTING PERIOD AND ENVIRONMENTAL CONDITIONS".

Remarks and comments

1. Test not requested.

The H5321 Ericsson Mobile Broadband Module (FCC ID: VV7-MBMH5321; IC: 287AG-MBMH5321) is a half-size MiniPCIe variant of the F5321 Ericsson Mobile Broadband Module (FCC ID: VV7-MBMF5321; IC: 287AG-MBMF5321). Apart of the size of the board, the only difference between both products is that the PCB track from the RF circuitry to the antenna port is shorter in the H5321 module respect to the F5321 module, being the rest of the components, circuits and PCB layout totally identical.

Output power, conducted emissions and radiated emissions has been performed in H5321 module, being found that the test results obtained do not show any relevant changes respect to the test results of the F5321 module. As conclusion, the rest of test results for the F5321 module, included in the AT4 wireless' test report No. 33376RRF.001, can be considered representative and valid for H5321 module.

The H5321 Ericsson Mobile Broadband Module (FCC ID: VV7-MBMH5321; IC: 287AG-MBMH5321) comes with three different variants with minor HW changes depending on the support of the following features: GPS and tuneable antennas. A summary of the supported features is included below:

H5321 variants	GPS	Tuneable antennas
Variant 1	Yes	No
Variant 2	No	No
Variant 3	Yes	No

More detailed information about the different variants has been provided in the supporting documentation from the manufacturer.

These variations do not affect to the PCB layout and components of the RF circuitry and it is supposed that they will not affect to the RF performance of the device. A pre-scan on radiated emissions have been performed on the three different variants, being found that the three variants are electrically equivalent with no relevant changes on the test results. As conclusion, the test results included in this test report and corresponding to the variant 1 mentioned above are considered representative and valid for the three indicated HW variants.

2. GSM mode has not been tested to prove USA FCC Part 22 and Part 24 and Canada IC RSS-132 and RSS-133 compliance because the modulation scheme and the power maximum levels are the same as for GPRS mode.

Taking into account the above comments, testing in GSM mode is redundant for FCC Parts 22 and Part 24 and IC RSS-132 and RSS-133 as it is the same as GPRS mode. GPRS mode has been tested as indicated on the present test report.

3. HSDPA modulation mode has not been tested to prove USA FCC Part 22 and Part 24 and Canada IC RSS-132 and RSS-133 compliance because it is an improved mode of operation only for Downlink (UE reception), but using the normal WCDMA mode for UL (Up Link, UE transmission). Therefore HSDPA has no associated a Power class or modulation scheme different than WCDMA mode for the UL transmission.

Taking into account the above comments, testing in HSDPA modulation mode is redundant for FCC Parts 22 and Part 24 and IC RSS-132 and RSS-133 as it is the same as WCDMA mode as long as UE transmission is concerned. WCDMA modulation mode has been tested as indicated on the present test report.

Testing verdicts	
Not applicable	NA
Pass. :	P
Fail:	F
Not measured:	NM

FCC PART 22/IC RSS-132 PARAGRAPH		VERDICT			
	NA	P	F	NM	
Clause 22.913/RSS-132 Clause 4.4: RF output power		P			
Clause 2.1047/RSS-132 Clause 4.2: Modulation characteristics				NM^1	
Clause 22.355/RSS-132 Clause 4.3: Frequency stability				NM ¹	
Clause 2.1049: Occupied Bandwidth				NM ¹	
Clause 22.917/RSS-132 Clause 4.5: Spurious emissions at antenna terminals		P			
Clause 22.917/RSS-132 Clause 4.5: Radiated emissions		P			

^{1:} See point "Remarks and comments".

FCC PART 24/IC RSS-133 PARAGRAPH		VERDICT			
	NA	P	F	NM	
Clause 24.232/RSS-133 Clause 6.4: RF output power		P			
Clause 2.1047/RSS-133 Clause 6.2: Modulation characteristics				NM^1	
Clause 24.235/RSS-133 Clause 6.3: Frequency stability				NM^1	
Clause 2.1049: Occupied Bandwidth				NM^1	
Clause 24.238/RSS-133 Clause 6.5: Spurious emissions at antenna terminals		P			
Clause 24.238/RSS-133 Clause 6.5: Radiated emissions		P			

^{1:} See point "Remarks and comments".

APPENDIX A: Test results for FCC parts 22 &24

INDEX

TEST RESULTS FOR FCC PART 22 AND IC RSS-132	12
TEST CONDITIONS	12
RF Output Power (conducted and E.R.P.)	13
Spurious emissions at antenna terminals.	
Spurious emissions at antenna terminals at Block Edges	
Radiated emissions	
TEST RESULTS FOR FCC PART 24 AND RSS-133	45
TEST CONDITIONS	45
RF Output Power (conducted and E.I.R.P.)	46
Spurious emissions at antenna terminals.	
Spurious emissions at antenna terminals at Block Edges	
Radiated emissions	68

TEST RESULTS FOR FCC PART 22 AND IC RSS-132

TEST CONDITIONS

Power supply (V):

 $V_{nom} = 3.3 \text{ Vdc}$

 $V_{\text{max}} = 3.6 \text{ Vdc}$

 $V_{min} = 3.0 \text{ Vdc}$

The subscripts nom, min and max indicate voltage test conditions (nominal, minimum and maximum respectively, as declared by the applicant).

Type of power supply = DC Voltage from external power supply

Type of antenna = external connectable antenna

TEST FREQUENCIES:

GPRS AND EDGE MODULATION

Lowest channel (128): 824.2 MHz

Middle channel (190): 836.6 MHz

Highest channel (251): 848.8 MHz

WCDMA AND HSUPA MODULATION

Lowest channel (4132): 826.4 MHz

Middle channel (4182): 836.4 MHz

Highest channel (4233): 846.6 MHz

RF Output Power (conducted and E.R.P.)

SPECIFICATION

§2.1046 and 22.913.

The Effective Radiated Power (E.R.P.) of mobile transmitter and auxiliary test transmitter must not exceed 7 Watts (38.45 dBm).

METHOD

The conducted RF output power measurements were made at the RF output terminals of the EUT using an attenuator, power splitter and spectrum analyser. The EUT was controlled via the Universal Radio Communication tester R&S CMU200 selecting maximum transmission power of the EUT and different modes of modulation.

For radiated measurements the EUT was placed on a 1 m high non-conductive stand inside an anechoic chamber. The measuring antenna was placed at 3 m distance and the maximum field strength was measured for the three channels. The EUT was controlled via the Universal Radio Communication tester R&S CMU200 selecting maximum transmission power of the EUT and different modes of modulation.

The Effective Radiated Power (E.R.P.) is obtained by using the Substitution Method according to ANSI/TIA/EIA-603-C: 2004.

RESULTS

MAXIMUM OUTPUT POWER (CONDUCTED). See plots in next pages.

GPRS MODULATION

Channel	Lowest	Middle	Highest
Measured maximum peak power (dBm) at antenna port	33.51	33.34	33.17
Maximum peak power (W)	2.24	2.16	2.07
Measurement uncertainty (dB)		±0.5	

EDGE MODULATION

Channel	Lowest	Middle	Highest
Measured maximum peak power (dBm) at antenna port	31.17	31.02	30.97
Maximum peak power (W)	1.31	1.26	1.25
Measurement uncertainty (dB)		±0.5	

WCDMA MODULATION

Channel	Lowest	Middle	Highest
Measured maximum peak power (dBm) at antenna port	28.01	28.13	28.18
Maximum peak power (W)	0.63	0.65	0.66
Measurement uncertainty (dB)		±0.5	

HSUPA MODULATION

Channel	Lowest	Middle	Highest
Measured maximum peak power (dBm) at antenna port	27.57	27.62	27.13
Maximum peak power (W)	0.57	0.58	0.52
Measurement uncertainty (dB)		±0.5	

MAXIMUM EFFECTIVE RADIATED POWER E.R.P. (RADIATED).

GPRS MODULATION

Substitution method data

Frequency	Max.	Polarization	(1) RF Generator	(2) Cable loss	(3) Substitution antenna	E.R.P. (dBm) =
(MHz) at max.	Instrument		+power amplifier	(dB)	gain Gd (respect to $\lambda/2$	(1) - (2) + (3)
reading	reading		output (dBm)		dipole) (dB)	
	(dBm)					
824.2451	-11.57	Vertical	25.93	0.3	6.3	31.93
836.6451	-11.51	Vertical	26.59	0.3	6.2	32.49
848.8852	-11.09	Vertical	27.01	0.3	6.1	32.81

RBW = VBW = 1 MHz

Channel	Lowest	Middle	Highest
Measured maximum peak power E.R.P.(dBm) with antenna connected at antenna port	31.93	32.49	32.81
Maximum peak power (W)	1.56	1.77	1.91
Measurement uncertainty (dB)		± 3.8	

EDGE MODULATION

Substitution method data

Frequency	Max.	Polarization	(1) RF Generator	(2) Cable loss	(3) Substitution antenna	E.R.P. (dBm) =
(MHz) at max.	Instrument		+power amplifier	(dB)	gain Gd (respect to $\lambda/2$	(1) - (2) + (3)
reading	reading		output (dBm)		dipole) (dB)	
	(dBm)					
824.1048	-13.20	Vertical	24.30	0.3	6.3	30.30
836.7453	-12.49	Vertical	25.61	0.3	6.2	31.51
848.8050	-12.65	Vertical	25.45	0.3	6.1	31.25

RBW = VBW = 1 MHz

Channel	Lowest	Middle	Highest
Measured maximum peak power E.R.P.(dBm) with antenna connected at antenna port	30.30	31.51	31.25
Maximum peak power (W)	1.07	1.41	1.33
Measurement uncertainty (dB)		± 3.8	

WCDMA MODULATION

Substitution method data

Frequency	Max.	Polarization	(1) RF Generator	(2) Cable loss	(3) Substitution antenna	E.R.P. (dBm) =
(MHz) at max.	Instrument		+power amplifier	(dB)	gain Gd (respect to $\lambda/2$	(1) - (2) + (3)
reading	reading		output (dBm)		dipole) (dB)	
	(dBm)					
827.7226	-14.88	Vertical	22.62	0.3	6.3	28.62
835.9591	-15.37	Vertical	22.73	0.3	6.2	28.63
847.6020	-15.17	Vertical	22.93	0.3	6.1	28.73

RBW = VBW = 8 MHz

Channel	Lowest	Middle	Highest
Measured maximum peak power E.R.P. (dBm) with antenna connected at antenna port	28.62	28.63	28.73
Maximum peak power (W)	0.73	0.73	0.75
Measurement uncertainty (dB)		± 3.8	

HSUPA MODULATION Substitution method data

Frequency	Max.	Polarization	(1) RF Generator	(2) Cable loss	(3) Substitution antenna	E.R.P. (dBm) =
(MHz) at max.	Instrument		+power amplifier	(dB)	gain Gd (respect to $\lambda/2$	(1) - (2) + (3)
reading	reading		output (dBm)		dipole) (dB)	
	(dBm)					
827.4822	-16.53	Vertical	20.97	0.3	6.3	26.97
834.5964	-16.17	Vertical	21.93	0.3	6.2	27.83
847.1204	-15.90	Vertical	22.20	0.3	6.1	28.00

RBW = VBW = 8 MHz

Channel	Lowest	Middle	Highest
Measured maximum peak power E.R.P. (dBm) with antenna connected at antenna port	26.97	27.83	28.00
Maximum peak power (W)	0.50	0.61	0.63
Measurement uncertainty (dB)		± 3.8	

PEAK OUTPUT POWER (CONDUCTED).

GPRS MODULATION

Lowest Channel.

Middle Channel.

Highest Channel.

EDGE MODULATION

Lowest Channel.

Middle Channel.

Highest Channel.

WCDMA MODULATION

Lowest Channel.

Middle Channel.

Highest Channel.

HSUPA MODULATION

Lowest Channel

Middle Channel

Highest Channel

Spurious emissions at antenna terminals

SPECIFICATION

§2.1051 and §22.917

METHOD

The EUT RF output connector was connected to an spectrum analyser using an 50 ohm attenuator and the resolution bandwidth of the spectrum analyser was set to at least 100 kHz. The spectrum was investigated from 30 MHz to 10 GHz.

The reading of the spectrum analyser is corrected with the attenuation loss of connection between output terminal of EUT and input of the spectrum analyser.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po $(dBm) - [43 + 10 \log (Po in mwatts) - 30] = -13 dBm$

RESULTS (see plots in next pages)

GPRS MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

EDGE MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

Report N°(NIE): 33376RRF.003 Page 22 of 80 2011-09-27

WCDMA MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

HSUPA MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

GPRS MODULATION

1. CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

2. CHANNEL: MIDDLE

3. CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

EDGE MODULATION

1. CHANNEL: LOWEST

2. CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

3. CHANNEL: HIGHEST

WCDMA MODULATION

1. CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

2. CHANNEL: MIDDLE

3. CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

HSUPA MODULATION

1. CHANNEL: LOWEST

2. CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

3. CHANNEL: HIGHEST

Spurious emissions at antenna terminals at Block Edges

SPECIFICATION

§2.1051 and §22.917

METHOD

As indicated in FCC part 22. in the 1 MHz bands immediately outside and adjacent to the frequency block or band a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A resolution bandwidth of 3.3 kHz was used for GPRS and EDGE modulations and 50 kHz for WCDMA and HSUPA modulations.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

RESULTS (see plots in next pages)

MODULATION:	GPRS	EDGE	WCDMA	HSUPA
Maximum measured level at lowest Block Edge at antenna port (dBm)	-16.85	-25.33	-16.58	-19.86

MODULATION:	GPRS	EDGE	WCDMA	HSUPA
Maximum measured level at highest Block Edge at antenna port (dBm)	-18.42	-26.11	-16.15	-19.90

Measurement uncertainty = ± 1.57 dB.

GPRS MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

EDGE MODULATION

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

WCDMA MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

HSUPA MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

Radiated emissions

SPECIFICATION

§ 22.917

METHOD

The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to at least the 10th harmonic of the highest frequency generated within the equipment.

The EUT was placed on a 1 meter high non-conductive stand at a 3 meter distance from the measuring antenna for measurements below 1 GHz and at 1 m distance for measurements above 1 GHz.

Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum meter reading was recorded. The radiated emissions were measured with peak detector and 1 MHz bandwidth.

Each detected emissions were substituted by the Substitution method. in accordance with the ANSI/TIA/EIA-603-C: 2004.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

RESULTS

GPRS MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

EDGE MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

WCDMA MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Report N°(NIE): 33376RRF.003 Page 36 of 80 2011-09-27

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

HSUPA MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

FREQUENCY RANGE 30 MHz-1000 MHz.

GPRS MODULATION

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

EDGE MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

HSUPA MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST

FREQUENCY RANGE 1 GHz to 3 GHz.

(This plot is valid for all three channels and all modulations)

FREQUENCY RANGE 3 GHz to 12.75 GHz.

(This plot is valid for all three channels and all modulations)

TEST RESULTS FOR FCC PART 24 AND RSS-133

TEST CONDITIONS

Power supply (V):

 $V_{nom} = 3.3 \text{ Vdc}$

 $V_{\text{max}} = 3.6 \text{ Vdc}$

 $V_{min} = 3.0 \text{ Vdc}$

The subscripts nom. min and max indicate voltage test conditions (nominal. minimum and maximum respectively. as declared by the applicant).

Type of power supply = DC Voltage from external power supply

Type of antenna = external connectable antenna

TEST FREQUENCIES:

GPRS AND EDGE MODULATION

Lowest channel (512): 1850.2 MHz

Middle channel (662): 1880.2 MHz

Highest channel (810): 1909.8 MHz

WCDMA AND HSUPA MODULATION

Lowest channel (9262): 1852.4 MHz

Middle channel (9400): 1880.0 MHz

Highest channel (9538): 1907.6 MHz

RF Output Power (conducted and E.I.R.P.)

SPECIFICATION

§2.1046 and 24.232

Mobile/portable stations are limited to 2 Watts (33 dBm) Effective Isotropic Radiated Power (E.I.R.P.) peak power.

METHOD

The conducted RF output power measurements were made at the RF output terminals of the EUT using an attenuator. power splitter and spectrum analyser. The EUT was controlled via the Universal Radio Communication tester R&S CMU200 selecting maximum transmission power of the EUT and different modes of modulation.

For radiated measurements the EUT was placed on a 1 m high non-conductive stand inside an anechoic chamber. The measuring antenna was placed at 1 m distance and the maximum field strength was measured for the three channels. The EUT was controlled via the Universal Radio Communication tester R&S CMU200 selecting maximum transmission power of the EUT and different modes of modulation.

The Effective Isotropic Radiated Power (E.I.R.P.) is obtained by using the Substitution Method according to ANSI/TIA/EIA-603-C: 2004.

RESULTS

MAXIMUM OUTPUT POWER (CONDUCTED). See plots in next pages.

GPRS MODULATION

Channel	Lowest	Middle	Highest
Measured maximum peak power (dBm) at antenna port	30.40	29.97	29.44
Maximum peak power (W)	1.10	0.99	0.88
Measurement uncertainty (dB)		±0.5	

EDGE MODULATION

Channel	Lowest	Middle	Highest
Measured maximum peak power (dBm) at antenna port	30.16	29.64	29.22
Maximum peak power (W)	1.04	0.92	0.83
Measurement uncertainty (dB)		±0.5	

Channel	Lowest	Middle	Highest
Measured maximum peak power (dBm) at antenna port	26.33	26.35	26.07
Maximum peak power (W)	0.43	0.43	0.40
Measurement uncertainty (dB)		±0.5	

HSUPA MODULATION

Channel	Lowest	Middle	Highest
Measured maximum peak power (dBm) at antenna port	25.30	25.11	25.58
Maximum peak power (W)	0.34	0.32	0.36
Measurement uncertainty (dB)		±0.5	

MAXIMUM EFFECTIVE ISOTROPIC RADIATED POWER E.I.R.P. (RADIATED).

GPRS MODULATION

Substitution method data

Frequency	Max.	Polarization	(1) RF Generator	(2) Cable	(3) Substitution antenna	E.I.R.P. (dBm) =
(MHz) at max.	Instrument		+power amplifier	loss (dB)	gain Gi (respect to	(1)-(2)+(3)
reading	reading		output (dBm)		isotropic radiator) (dB)	
	(dBm)				_	
1850.1275	-4.20	Horizontal	20.20	0.5	8.6	28.30
1880.2383	-4.59	Horizontal	20.31	0.5	8.3	28.11
1909.8633	-3.83	Horizontal	21.47	0.5	8.0	28.97

RBW = VBW = 1 MHz

Channel	Lowest	Middle	Highest
Measured maximum peak power E.I.R.P. (dBm) with antenna connected at antenna port	28.30	28.11	28.97
Maximum peak power (W)	0.68	0.65	0.79
Measurement uncertainty (dB)		± 4.09	

EDGE MODULATION

Substitution method data

Frequency	Max.	Polarization	(1) RF Generator	(2) Cable	(3) Substitution antenna	E.I.R.P. (dBm) =
(MHz) at max.	Instrument		+power amplifier	loss (dB)	gain Gi (respect to	(1)-(2)+(3)
reading	reading		output (dBm)		isotropic radiator) (dB)	
	(dBm)				_	
1850.1923	-4.91	Horizontal	19.49	0.5	8.6	27.59
1880.2035	-4.93	Horizontal	19.97	0.5	8.3	27.77
1909.7923	-4.58	Horizontal	20.72	0.5	8.0	28.22

RBW = VBW = 1 MHz

Channel	Lowest	Middle	Highest
Measured maximum peak power E.I.R.P. (dBm) with antenna connected at antenna port	27.59	27.77	28.22
Maximum peak power (W)	0.57	0.60	0.66
Measurement uncertainty (dB)		± 4.09	

Substitution method data

Frequency	Max.	Polarization	(1) RF Generator	(2) Cable	(3) Substitution antenna	E.I.R.P. (dBm) =
(MHz) at max.	Instrument		+power amplifier	loss (dB)	gain Gi (respect to	(1)-(2)+(3)
reading	reading		output (dBm)		isotropic radiator) (dB)	
	(dBm)					
1852.8907	-9.41	Horizontal	14.99	0.5	8.6	23.09
1879.2893	-9.09	Horizontal	15.81	0.5	8.3	23.61
1909.4325	-7.11	Horizontal	18.19	0.5	8.0	25.69

RBW = VBW = 8 MHz

Channel	Lowest	Middle	Highest
Measured maximum peak power E.I.R.P. (dBm) with antenna connected at antenna port	23.09	23.61	25.69
Maximum peak power (W)	0.20	0.23	0.37
Measurement uncertainty (dB)		± 4.09	

HSUPA MODULATION

Substitution method data

Frequency (MHz) at max. reading	Max. Instrument reading (dBm)	Polarization	(1) RF Generator +power amplifier output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gi (respect to isotropic radiator) (dB)	E.I.R.P. $(dBm) = (1) - (2) + (3)$
1854.7305	-9.98	Horizontal	14.42	0.5	8.6	22.52
1881.5593	-9.39	Horizontal	15.51	0.5	8.3	23.31
1908.8115	-7.91	Horizontal	17.39	0.5	8.0	24.89

RBW = VBW = 8 MHz

Channel	Lowest	Middle	Highest
Measured maximum peak power E.I.R.P. (dBm) with antenna connected at antenna port	22.52	23.31	24.89
Maximum peak power (W)	0.18	0.21	0.31
Measurement uncertainty (dB)		± 4.09	

PEAK OUTPUT POWER (CONDUCTED).

GPRS MODULATION

Lowest Channel.

Middle Channel.

Highest Channel.

EDGE MODULATION

Lowest Channel.

Middle Channel.

Highest Channel.

Lowest Channel.

Middle Channel.

Highest Channel.

HSUPA MODULATION

Lowest Channel

Middle Channel

Highest Channel

Spurious emissions at antenna terminals

SPECIFICATION

§2.1051 and §24.238

METHOD

The EUT RF output connector was connected to a spectrum analyser using an 50 ohm attenuator and the resolution bandwidth of the spectrum analyser was set to 1 MHz. The spectrum was investigated from 30 MHz to 20 GHz.

The reading of the spectrum analyser is corrected with the attenuation loss of connection between output terminal of EUT and input of the spectrum analyser.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po $(dBm) - [43 + 10 \log (Po in mwatts) - 30] = -13 dBm$

RESULTS (see plots in next pages)

GPRS MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

EDGE MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

Report N°(NIE): 33376RRF.003 Page 55 of 80 2011-09-27

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

HSUPA MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

GPRS MODULATION

1. CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

2. CHANNEL: MIDDLE

3. CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

EDGE MODULATION

1. CHANNEL: LOWEST

2. CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

3. CHANNEL: HIGHEST

1. CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

2. CHANNEL: MIDDLE

3. CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

HSUPA MODULATION

1. CHANNEL: LOWEST

2. CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

3. CHANNEL: HIGHEST

Spurious emissions at antenna terminals at Block Edges

SPECIFICATION

§2.1051 and §24.238

METHOD

As indicated in FCC part 24. in the 1 MHz bands immediately outside and adjacent to the frequency block or band a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A resolution bandwidth of 5 kHz/3.3 kHz was used for GPRS and EDGE modulations, and 50 kHz for WCDMA and HSUPA modulations.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

RESULTS (see plots in next pages)

MODULATION:	GPRS	EDGE	WCDMA	HSUPA
Maximum measured level at lowest Block Edge at antenna	-19.59	-26.17	-16.93	-21.23
port (dBm)				

MODULATION:	GPRS	EDGE	WCDMA	HSUPA
Maximum measured level at highest Block Edge at antenna port (dBm)	-22.22	-28.22	-17.59	-21.18

Measurement uncertainty = ± 1.57 dB.

GPRS MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

EDGE MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

HSUPA MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

Radiated emissions

SPECIFICATION

§ 24.238

METHOD

The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment.

The EUT was placed on a 1 meter high non-conductive stand at a 3 meter distance from the measuring antenna for measurements below 1 GHz and at 1 m distance for measurements above 1 GHz.

Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum meter reading was recorded. The radiated emissions were measured with peak detector and 1 MHz bandwidth.

Each detected emissions were substituted by the Substitution method. in accordance with the ANSI/TIA/EIA-603-C: 2004.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po $(dBm) - [43 + 10 \log (Po in mwatts) - 30] = -13 dBm$

RESULTS

GPRS MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

EDGE MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

Report N°(NIE): 33376RRF.003 Page 69 of 80 2011-09-27

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

HSUPA MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

FREQUENCY RANGE 30 MHz-1000 MHz.

(This plot is valid for all three channels and all modulations).

FREQUENCY RANGE 1 GHz to 3 GHz.

GPRS MODULATION

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

EDGE MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

HSUPA MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST

FREQUENCY RANGE 3 GHz to 12.75 GHz.

(This plot is valid for all three channels and all modulations).

FREQUENCY RANGE 12.75 GHz TO 18 GHz.

(This plot is valid for all three channels and all modulations).

FREQUENCY RANGE 18 GHz TO 20 GHz.

(This plot is valid for all three channels and all modulations).