UNDERWRITING SCORECARD BASED ON FINANCIAL MODELING

JIAQI.CHEN 09/04/2015

RESEARCH PURPOSE AND BACKGROUND

- Data source: Freddy Mac & Fannie Mae
- Constructing a financial model by given data
- Predicting default rate via various features
- Create underwriting scorecard by actural default rate and forecasted default rate
- Data duration: 1999~2015
- Data volume: more than 20,000,000 loan level data

DATA DESCRIPTION

- FREDDY MAC & FANNIE MAE

ORIGINATION DATA FILE & PERFORMANCE DATA FILE

Dataset	File Name Format	Contents	File Type	Delimiter	
Full	nisioncai_data1_Qnfffff.zip	historical_data1_QnYYYY.txt	Origination Data	Pipe (" ")	
		historical_data1_time_QnYYYY.txt	Monthly Performance Data		

- -separated in to 4 quarters, such as: Q1,Q2,Q3,Q4
- -origination data: containing loan level origination information for all loans originated in that quarter.
- -performance data: containing monthly loan-level credit score performance and actual loss for each loan

FEATURES SELECTED

Origination data

-continuous features: 1.debit to income ratio (DTI)

from 0~65%

2.loan to value ratio (LTV)

from 0~100%

3.credit score (FICO)

from 301~850

4. original unpaid principal balance (UPB)

from 0~1,000,000

-leveled features:

1. first time homebuyer flag

'Y'=yes, 'N'=no

2. loan purpose

'P'=purchase, 'C'=cash-out refinance, 'N'=no cash-out refinance

Performance data

-features:

1.delinquency status

2. ages

DEFAULT IDENTIFICATION

- PERFORMANCE DATA
- 1.Filter data by age: 0^48 2.Identify loan's delinquency status>=3 as default 3. Record the default ID.
- -ORIGINATION DATA
- -Merge the default flag('0', '1') by ID with the origination dataset.

Formal Name	Loan Sequence Number	Monthly Reporting Period	Current Actual UPB	Current Loan Delinquency Status	Loan Age
	F108Q4000374	201004	79930.72	0	16
, gi	F108Q4000374	201005	79844.71	0	17
Monthly Performance Data	F108Q4000374	201006	79844.71	1	18
nanc	F108Q4000374	201007	79844.71	2	19
rform	F108Q4000374	201008	79844.71	3	20
ly Pe	F108Q4000374	201009	79844.71	4	21
onth	F108Q4000374	201010	79844.71	5	22
2	F108Q4000374	201011	79844.71	6	23
	F108Q4000374	201012	0	7	24

ID	DTI	LTV	FICO	LOAN PURPOSE	FHBF	Default
F108Q4000374	80	65	630	Р	Υ	1

SAMPLING AND WEIGHTING

- Purpose: Increase the efficiency of data processing and prevent incident that the financial model
 neglects the correct rate of default sample's prediction.
- -Sampling 50% of the default data from the origination data set.
- -Sampling 5% of the non-default data from the origination data set.
- Weight on samples:
- Default loan : 2
- Non-default loan: 20

ID	DTI	LTV	FICO	Loan purpose	First time homebuyer flag	Default	weight
F108Q4000374	57	80	630	N	Υ	1	2
F108Q4000676	32	54	800	С	N	0	20
F108Q4000325	43	34	760	Р	N	0	20
F108Q4000879	20	40	750	С	Υ	0	20

LOGISTIC REGRESSION ANALYSIS

- Model selection: Logistic regression;
- Dependent variable: Default
- Independent variable: DTI, LTV, FICO, original UPB, Loan Purpose, First time homebuyer flag.
- Purpose: forecasting the default rate of loans.
- Model coefficients:
- Fannie Mae

Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) <2e-16 *** 3.762e+00 1.787e-02 210.60 dataset1\$fico -1.499e-02 2.215e-05 -676.75 <2e-16 *** dataset1\$homefirstY <2e-16 *** 8.182e-02 4.698e-03 17.41 dataset1\$dti 3.471e-02 1.149e-04 302.15 <2e-16 *** 66.25 dataset1\$upb <2e-16 *** 9.123e-07 1.377e-08 dataset1\$7tv 3.107e-02 1.147e-04 270.98 <2e-16 *** dataset1\$loanpurposeP -7.508e-01 3.663e-03 -204.99 <2e-16 *** dataset1\$loanpurposeR -5.003e-01 3.371e-03 -148.41 <2e-16 *** dataset1\$loanpurposeU -1.314e+00 7.505e-02 -17.51 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1)

Freddy Mac

```
Coefficients:
                        Estimate Std. Error z value Pr(>|z|)
(Intercept)
                       2.818e+00 2.131e-02 132.21
dataset1$fico
                      -1.427e-02 2.523e-05 -565.69
                                                      <2e-16 ***
dataset1$homefirstY
                       5.979e-02 5.061e-03
                                             11.81
                                                      <2e-16 ***
                                            272.32
                                                      <2e-16 ***
dataset1$dti
                       3.622e-02 1.330e-04
dataset1$upb
                       1.302e-06 1.563e-08
                                             83.32
                                                      <2e-16 ***
dataset1$1tv
                       3.540e-02 1.310e-04
                                            270.15
                                                      <2e-16 ***
dataset1$loanpurposeN -5.422e-01 3.711e-03 -146.11
                                                      <2e-16 ***
dataset1$loanpurposeP -7.870e-01 3.912e-03 -201.20
                                                      <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
```

COMPARISON BETWEEN ACTURAL DEFAULT RATE AND FOARCASTED DEFAULT RATE: DTI

Freddy mac Fannie Mae

LTV

Fannie Mae

Freddy mac

ORIGINAL UPB

Fannie Mae

FICO SCORE

Fannie Mae

Freddy mac

LOAN PURPOSE

Fannie Mae

Freddy mac

FIRST TIME HOMEBUYER FLAG

Fannie Mae

ADJUSTMENT ON FEATURES

- Problem: model fitness should be improved
- Method: make a spline on each continuous feature(DTI,LTV,FICO,UPB)
- 1. identify the cut point
- 2. create sub features according to the cut point
- 3. apply sub features on the logistic regression model
- 4. analyze the goodness of fitting again

DETAILS ABOUT SPLINE FUNCTION: DTI(FREDDY MAC)

$$dti3= \begin{cases} 0 & if \ dti \le 45 \\ dit - 45 & if \ dti > 45 \end{cases}$$

DETAILS ABOUT SPLINE FUNCTION: FICO(FREDDY MAC)

DETAILS ABOUT SPLINE FUNCTION: LTV(FREDDY MAC)

$$|tv1= \begin{cases} ltv & if ltv \le 65 \\ 65 & if ltv > 65 \end{cases}$$

$$if \ ltv \le 65$$

$$if \ 65 < ltv \le 80$$

$$if \ ltv > 80$$

DETAILS ABOUT SPLINE FUNCTION: UPB (FREDDY MAC)

 $if 400000 < upb \le 600000$

if upb > 600000

upb2= $\{upb - 400000\}$

200000

$$\mbox{upb3=} \left\{ \begin{array}{ll} 0 & \mbox{if } ltv \leq 600000 \\ \\ upb - 600000 & \mbox{if } ltv > 600000 \end{array} \right.$$

DETAILS ABOUT SPLINE FUNCTION: FANNIE MAE

LTV FICO

DETAILS ABOUT SPLINE FUNCTION: FANNIE MAE

UPB

DTI

LOGESTIC REGESSION MODEL WITH SPLINED FEATURES

FANNIE MAE

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.910e-01 6.176e-02 dti1 -2.232e-03 2.607e-04 -8.562 < 2e-16 *** dti2 5.632e-04 1.756e-05 dti3 3.274e-03 8.334e-05 39.284 < 2e-16 *** ltv1 2.652e-04 2.671e-05 ltv2 8.735e-04 3.159e-05 ltv3 1.264e-03 4.095e-05 fico1 -5.348e-04 1.155e-04 -4.629 3.67e-06 *** fico2 -8.700e-04 6.780e-06 -128.310 < 2e-16 *** fico3 5.637e-06 -1.160e-04 upb1 3.646e-08 1.626e-09 upb2 -4.371e-08 7.875e-09 -5.551 2.84e-08 *** upb3 1.897e-08 2.534e-08 0.748 0.454 dataset1\$homefirstY 4.886e-04 4.987e-04 0.980 0.327 -51.064 dataset1\$loanpurposeP -2.077e-02 4.068e-04 dataset1\$loanpurposeR -1.334e-02 3.770e-04 -35.382 < 2e-16 dataset1\$loanpurposeU -3.791e-02 6.793e-03 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for gaussian family taken to be 0.4367739)

FREDDY MAC

```
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       5.260e-02 8.248e-02
                                               0.638
                                                        0.524
dti1
                      -1.881e-03 2.635e-04
                                              -7.138 9.45e-13 ***
dti2
                       5.223e-04 2.004e-05
                                              26.065 < 2e-16 ***
dti3
                       3.601e-03 9.967e-05
                                                     < 2e-16 ***
ltv1
                       1.916e-04 2.347e-05
                                               8.163 3.27e-16 ***
ltv2
                       9.220e-04 3.445e-05
                                              26.763
                                                     < 2e-16 ***
ltv3
                       1.857e-03 4.534e-05
                                                     < 2e-16 ***
                                              40.953
fico1
                       2.093e-04 1.543e-04
                                               1.356
                                                        0.175
fico2
                      -8.359e-04 7.425e-06 -112.581
                                                     < 2e-16 ***
fico3
                      -8.059e-05 6.664e-06
                                             -12.094
upb1
                       4.608e-08 1.881e-09
                                              24.500
                                                     < 2e-16 ***
                      -5.455e-08 1.149e-08
                                              -4.745 2.08e-06 ***
upb2
                      -6.887e-09 4.025e-08
                                              -0.171
upb3
                                                        0.864
dataset1$homefirstY
                      -4.082e-05 5.735e-04
                                              -0.071
                                                        0.943
dataset1$loanpurposeN -1.489e-02 4.327e-04
                                             -34.399
                                                      < 2e-16 ***
dataset1$loanpurposeP -2.234e-02 4.554e-04
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.4510141)
```

APPLY MACRO VARS FEATURES

- 1. relative employment rate (RUE)
- - matching method: by Loan's origination year, quarter, location
- 2 . Two year Home price appreciation (HPA)
- + HPA=[HPI2year(housing price index 2 years)/HPI (housing price index original year)]-1
- - matching method of HPI 2 year : by Loan's origination year +2, quarter, location
- matching method of HPI: by Loan's origination year +2, quarter, location
- 3. mortgage spread rate
- spread rate = original loan interest rate- cmt10 (10 years' constant maturity treasure rate)
- matching method of cmt10 : by origination year ,quarter
- 4.cmt difference
- -CMT difference=cmt10-cmt01(1 year's constant maturity treasure rate)
- matching method of cmt01: by origination year, quarter

LOGISTIC REGRESSION MODEL ANALYZE: CMT

FANNIE MAE

FREDDY MAC

LOGISTIC REGRESSION MODEL ANALYZE: HPA

FANNIE MAE

FREDDY MAC

LOGISTIC REGRESSION MODEL ANALYZE:

FANNIE MAE FREDDY MAC

LOGISTIC REGRESSION MODEL ANALYZE: SPREAD

FANNIE MAE

FREDDY MAC

LOGISTIC MODEL COEFFICENT

FANNIE MAE

```
Coefficients: (2 not defined because of singularities)
                           Estimate Std. Error
                                               t value Pr(>|t|)
(Intercept)
                          5.947e-01 6.071e-02
                                                  9.796 < 2e-16 ***
dti1
                         -1.808e-03 2.548e-04
                                                 -7.098 1.27e-12 ***
dti2
                          3.650e-04 1.719e-05
                                                21.238 < 2e-16 ***
dti3
                         1.989e-03 8.171e-05
                                                24.338 < 2e-16 ***
cmt1
                         -4.619e-03 7.536e-04
                                                 -6.129 8.85e-10 ***
cmt2
                         -2.113e-02 8.000e-04
                                                -26.407 < 2e-16 ***
                          3.095e-03 4.840e-04
cmt3
                                                  6.394 1.62e-10 ***
spreada1
                         -1.984e-03 5.712e-04
                                                 -3.474 0.000513 ***
spreada2
                         2.965e-02 6.321e-04
                                                46.900 < 2e-16 ***
hpa1
                         -1.898e-01 2.146e-02
                                                 -8.843 < 2e-16 ***
                         -1.011e+00 1.376e-02
hpa2
                                                -73.455 < 2e-16 ***
hpa3
                         -6.172e-02 1.003e-03
                                                -61.548
                                                        < 2e-16 ***
rue1
                         1.154e-01 1.602e-03
                                                72.023
                                                        < 2e-16 ***
rue2
rue3
ltv1
                          3.593e-04
                                    2.314e-05
                                                15.527
1tv2
                         7.139e-04
                                    3.058e-05
                                                 23.346
                                                        < 2e-16 ***
1tv3
                         1.378e-03
                                    4.009e-05
                                                 34.364
fico1
                                    1.129e-04
                                                -5.214 1.85e-07 ***
fico2
                                    6.649e-06 -119.156 < 2e-16 ***
fico3
                         -1.304e-04 5.563e-06
                                                -23.437 < 2e-16 ***
upb1
                         1.170e-08 1.636e-09
                                                  7.154 8.40e-13 ***
upb2
                         -6.855e-09 7.720e-09
                                                 -0.888 0.374594
                         -4.154e-08 2.478e-08
upb3
                                                 -1.676 0.093678
datasetset1$homefirstY
                        -2.458e-05 4.880e-04
                                                 -0.050 0.959834
datasetset1$loanpurposeP -1.773e-02 3.990e-04
datasetset1$loanpurposeR -4.415e-03 3.704e-04
                                               -11.919 < 2e-16 ***
datasetset1$loanpurposeU -1.389e-02 6.637e-03
                                                -2.093 0.036378 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

FREDDY MAC

Coefficients:

```
Estimate Std. Error
                                               t value Pr(>|t|)
(Intercept)
                          2.267e-01 8.086e-02
                                                  2.804 0.00505 **
dti1
                         -1.495e-03 2.573e-04
                                                 -5.811 6.22e-09 ***
dti2
                          3.798e-04 1.958e-05
                                                19.394 < 2e-16 ***
dti3
                          2.347e-03 9.754e-05
                                                24.062 < 2e-16 ***
cmt1
                                    7.601e-04
                                                -16.528 < 2e-16 ***
                         -1.256e-02
cmt2
                         -5.426e-03
                                    8.366e-04
                                                 -6.485 8.87e-11 ***
cmt3
                         -1.236e-03 5.757e-04
                                                 -2.147 0.03183 *
                         -6.648e-05 5.541e-04
                                                 -0.120 0.90450
spreada1
spreada2
                          3.240e-02 6.071e-04
                                                 53.359
                                                       < 2e-16 ***
                         -1.493e-01 2.269e-02
hpa1
                                                 -6.582 4.65e-11 ***
hpa2
                         -8.970e-01 1.495e-02
                                                -60.001 < 2e-16 ***
hpa3
                         -7.069e-02 1.445e-03
                                                -48.908 < 2e-16 ***
                         -4.769e-03 1.085e-03
rue1
                                                 -4.397 1.10e-05 ***
rue2
                         1.194e-01 1.954e-03
rue3
                         1.600e-01 8.504e-03
                                                18.819 < 2e-16 ***
ltv1
                          4.108e-04 2.295e-05
                                                17.905 < 2e-16 ***
1tv2
                          8.588e-04 3.367e-05
                                                25.507
                                                        < 2e-16 ***
1tv3
                         1.742e-03 4.439e-05
                                                 39.258
                                                        < 2e-16 ***
fico1
                          9.911e-06 1.506e-04
                                                  0.066
                                                        0.94754
fico2
                         -7.502e-04
                                    7.277e-06 -103.095
                                                        < 2e-16 ***
fico3
                         -1.109e-04
                                   6.578e-06
                                                -16.864
upb1
                         1.757e-08 1.897e-09
                                                        < 2e-16 ***
                          9.453e-09 1.124e-08
                                                  0.841 0.40050
upb2
upb3
                         -3.840e-08 3.931e-08
                                                 -0.977
                                                        0.32867
datasetset1$homefirstY
                        -3.842e-04
                                    5.605e-04
                                                 -0.686
                                                        0.49300
datasetset1$loanpurposeN -3.535e-03 4.262e-04
                                                 -8.295
datasetset1$loanpurposeP -1.818e-02 4.477e-04
                                                -40.617
                                                        < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.4296014)
```

CREATE UNDERWRITING SCORECARD

- 1.neutralize macro vars.
- take the average of the variables(cmt, spread, hpa, rue)
- 2.apply the model coefficients to the neutralized data set, and get the predicted default rate
- 3. scorecard=(-1)*predicted default rate (the higher the default rate, the lower the score)
- 4.rank our scorecard rate from low to high.
- 5. make the scorecard graph by percentile. (1000 interval from 0 to 1)
- Example: 0.1%: $\frac{2*(\# \ of \ actual \ defaults \ in \ 0\sim0.1\% \ interval)}{2*(\# \ of \ actual \ defaults \ in \ 0\sim0.1\% \ interval)+20*(\# \ of \ actual \ non-defaults \ in \ 0\sim0.1\% \ interval)}$ $0.2\%: \frac{2*(\# \ of \ actual \ defaults \ in \ 0\sim0.2\% \ interval)}{2*(\# \ of \ actual \ defaults \ in \ 0\sim0.2\% \ interval)+20*(\# \ of \ actual \ non-defaults \ in \ 0\sim0.2\% \ interval)}$
 - 0.3%: $\frac{2*(\# of \ actual \ defaults \ in \ 0\sim0.3\% \ interval)}{2*(\# of \ actual \ defaults \ in \ 0\sim0.3\% \ interval)+20*(\# of \ actual \ non-defaults \ in \ 0\sim0.3\% \ interval)}$

SCORE CARD GRAPH

FANNIE MAE

FREDDY MAC

CONCLUSION

- 1.sampling data by age and delinquency status
- 2. create logistic model by splined features
- 3. add macro Vars features to this model and revalue this model
- 4.neutralize Macro Vars and get the scorecard default rate
- 5. create the underwriting scorecard.

Thank you for your attention!