Exact Error and Erasure Exponents for the Asymmetric Broadcast Channel

Daming Cao ¹ Vincent Y. F. Tan ²

¹Southeast University

²National University of Singapore

June 2018

Figure: Representation of typical decision regions:(a) ordinary decoding, (b) erasure option

Daming Cao (SEU) | ISIT 2018 | June 2018 | 2 / 18

Figure: Representation of typical decision regions:(a) ordinary decoding, (b) erasure option

• Total error and undetected error.

$$\begin{aligned} & \mathsf{Pr}\{\mathcal{E}^{\mathsf{t}}\} = \frac{1}{M} \sum_{m} \sum_{y^{n} \notin \mathcal{D}(m)} \mathsf{Pr}\{y^{n} | x^{n}(m)\} \\ & \mathsf{Pr}\{\mathcal{E}^{\mathsf{u}}\} = \frac{1}{M} \sum_{m} \sum_{m' \neq m} \sum_{y^{n} \in \mathcal{D}(m')} \mathsf{Pr}\{y^{n} | x^{n}(m)\} \end{aligned}$$

←□ → ←□ → ← □ → ← □ → へ○ ○

June 2018

 Using the Neyman-Pearson theorem, Forney¹ showed that the optimal tradeoff between the average total and undetected error probabilities is attained by the decoding regions

$$y^n \in \mathcal{D}(m) \iff \ln \frac{\Pr\{y^n | x^n(m)\}}{\sum_{m' \neq m} \Pr\{y^n | x^n(m')\}} \ge nT$$

¹G. Forney, "Exponential error bounds for erasure, list, and decision feedback schemes," IEEE Trans. on Inform. Th., vol. 14, no. 2, pp. 206–220, Mar 1968.

²A. Somekh-Baruch and N. Merhav, "Exact random coding exponents for erasure decoding," IEEE Trans. on Inform. Th., vol. 57, no. 10, pp. 6444–6454, Oct 2011 → ⟨₹⟩ ⟨₹⟩ ⟨₹⟩ ⟨₹⟩ ⟨₹⟩

 Using the Neyman-Pearson theorem, Forney¹ showed that the optimal tradeoff between the average total and undetected error probabilities is attained by the decoding regions

$$y^n \in \mathcal{D}(m) \iff \ln \frac{\Pr\{y^n | x^n(m)\}}{\sum_{m' \neq m} \Pr\{y^n | x^n(m')\}} \ge nT$$

 Somekh-Baruch and Merhav² derived the exact random coding exponents for erasure decoding in the single-user DMC.

¹G. Forney, "Exponential error bounds for erasure, list, and decision feedback schemes," IEEE Trans. on Inform. Th., vol. 14, no. 2, pp. 206–220, Mar 1968.

Decoding with Erasure in the Asymmetric Broadcast Channel

Figure: Asymmetric Broadcast Channel

Daming Cao (SEU) | ISIT 2018 | June 2018 | 4 / 18

Decoding with Erasure in the Asymmetric Broadcast Channel

Figure: Asymmetric Broadcast Channel

Decoding with erasure option.

$$g_1: \mathcal{Y}^n \to (\mathcal{M}_1 \cup \{e_1\}) \times (\mathcal{M}_2 \cup \{e_2\})$$
$$g_2: \mathcal{Z}^n \to \mathcal{M}_2 \cup \{e_2\}$$

The total error and undetected error

Define the average total and undetected error probabilities at terminal ${\cal Y}$ as follows:

$$\begin{split} e_{Y}^{\mathrm{t}} &\triangleq \frac{1}{M_{1}M_{2}} \sum_{(m_{1},m_{2}) \in \mathcal{M}_{1} \times \mathcal{M}_{2}} W_{\mathcal{Y}}^{n} \left(\mathcal{D}_{m_{1},m_{2}}^{c} \mid x^{n}(m_{1},m_{2}) \right) \\ e_{Y}^{\mathrm{u}} &\triangleq \frac{1}{M_{1}M_{2}} \sum_{(m_{1},m_{2}) \in \mathcal{M}_{1} \times \mathcal{M}_{2}} W_{\mathcal{Y}}^{n} \left(\bigcup_{(\hat{m}_{1},\hat{m}_{2}) \neq (m_{1},m_{2})} \mathcal{D}_{\hat{m}_{1}\hat{m}_{2}} \mid x^{n}(m_{1},m_{2}) \right) \end{split}$$

The total error and undetected error

Define the average total and undetected error probabilities at terminal ${\cal Y}$ as follows:

$$\begin{split} e_{Y}^{\mathrm{t}} &\triangleq \frac{1}{M_{1}M_{2}} \sum_{(m_{1},m_{2}) \in \mathcal{M}_{1} \times \mathcal{M}_{2}} W_{\mathcal{Y}}^{n} \left(\mathcal{D}_{m_{1},m_{2}}^{c} \, \middle| \, x^{n}(m_{1},m_{2}) \right) \\ e_{Y}^{\mathrm{u}} &\triangleq \frac{1}{M_{1}M_{2}} \sum_{(m_{1},m_{2}) \in \mathcal{M}_{1} \times \mathcal{M}_{2}} W_{\mathcal{Y}}^{n} \Big(\bigcup_{(\hat{m}_{1},\hat{m}_{2}) \neq (m_{1},m_{2})} \mathcal{D}_{\hat{m}_{1}\hat{m}_{2}} \, \middle| \, x^{n}(m_{1},m_{2}) \Big) \end{split}$$

Moreover,

$$\begin{split} e_j^{\mathrm{t}} &\triangleq \frac{1}{M_1 M_2} \sum_{(m_1, m_2) \in \mathcal{M}_1 \times \mathcal{M}_2} W_{\mathcal{Y}}^n \big(\mathcal{D}_{m_j}^c \, \big| \, x^n(m_1, m_2) \big) \\ e_j^{\mathrm{u}} &\triangleq \frac{1}{M_1 M_2} \sum_{(m_1, m_2) \in \mathcal{M}_1 \times \mathcal{M}_2} W_{\mathcal{Y}}^n \Big(\bigcup_{\hat{m}_j \in \mathcal{M}_j \setminus \{m_j\}} \mathcal{D}_{\hat{m}_j} \, \Big| \, x^n(m_1, m_2) \Big). \end{split}$$

where j = 1, 2.

→ロト→団ト→ミト→ミー のQで

•
$$\mathcal{D}_{m_1m_2}^* \triangleq \left\{ y^n : \ln \frac{W_{\mathcal{Y}}^n(y^n|x^n(m_1,m_2))}{\sum_{(m'_1,m'_2) \neq (m_1,m_2)} W_{\mathcal{Y}}^n(y^n|x^n(m'_1,m'_2))} \geq nT \right\}$$

•
$$\mathcal{D}_{m_1m_2}^* \triangleq \left\{ y^n : \ln \frac{W_{\mathcal{Y}}^n(y^n|x^n(m_1,m_2))}{\sum_{(m_1',m_2')\neq(m_1,m_2)} W_{\mathcal{Y}}^n(y^n|x^n(m_1',m_2'))} \geq nT \right\}$$

ullet The average channel of a sub-codebook $\mathcal{C}_1(m_1)=\{x^n(m_1,m_2):m_2\in\mathcal{M}_2\}$:

$$\Pr(y^n|\mathcal{C}_1(m_1)) \triangleq \frac{1}{M_2} \sum_{m_2 \in \mathcal{M}_2} W_{\mathcal{Y}}^n(y^n|x^n(m_1, m_2))$$

Daming Cao (SEU) | ISIT 2018 | June 2018 | 6 /

•
$$\mathcal{D}_{m_1m_2}^* \triangleq \left\{ y^n : \ln \frac{W_{\mathcal{Y}}^n(y^n|x^n(m_1,m_2))}{\sum_{(m_1',m_2')\neq(m_1,m_2)} W_{\mathcal{Y}}^n(y^n|x^n(m_1',m_2'))} \geq nT \right\}$$

ullet The average channel of a sub-codebook $\mathcal{C}_1(m_1)=\{x^n(m_1,m_2):m_2\in\mathcal{M}_2\}$:

$$\Pr(y^n|\mathcal{C}_1(m_1)) \triangleq \frac{1}{M_2} \sum_{m_2 \in \mathcal{M}_2} W_{\mathcal{Y}}^n(y^n|x^n(m_1, m_2))$$

•
$$\mathcal{D}_{m_1}^* \triangleq \left\{ y^n : \ln \frac{\Pr(y^n | \mathcal{C}_1(m_1))}{\sum_{m'_1 \neq m_1} \Pr(y^n | \mathcal{C}_j(m'_1))} \geq nT \right\}$$

•
$$\mathcal{D}_{m_1m_2}^* \triangleq \left\{ y^n : \ln \frac{W_{\mathcal{Y}}^n(y^n|x^n(m_1,m_2))}{\sum_{(m_1',m_2')\neq(m_1,m_2)} W_{\mathcal{Y}}^n(y^n|x^n(m_1',m_2'))} \geq nT \right\}$$

ullet The average channel of a sub-codebook $\mathcal{C}_1(m_1)=\{x^n(m_1,m_2):m_2\in\mathcal{M}_2\}$:

$$\Pr(y^n|\mathcal{C}_1(m_1)) \triangleq \frac{1}{M_2} \sum_{m_2 \in \mathcal{M}_2} W_{\mathcal{Y}}^n(y^n|x^n(m_1, m_2))$$

•
$$\mathcal{D}_{m_1}^* \triangleq \left\{ y^n : \ln \frac{\Pr(y^n | \mathcal{C}_1(m_1))}{\sum_{m'_1 \neq m_1} \Pr(y^n | \mathcal{C}_1(m'_1))} \geq nT \right\}$$

• If *T* increases, the decoding regions become small. Moreover, the total error probabilities increase and the undetected error probabilities decrease.

4 D > 4 D > 4 E > 4 E > E 990

Problem Formulation-Encoder

 Capacity region of the Asymmetric Broadcast Channel is well known ¹ and is achieved with superposition coding.

Daming Cao (SEU) | ISIT 2018 | June 2018 | 7 / 18

Problem Formulation-Encoder

 Capacity region of the Asymmetric Broadcast Channel is well known ¹ and is achieved with superposition coding.

Random coding with superposition structure

• Randomly generate $M_2=e^{nR_2}$ "cloud centers" $\{U^n(m_2): m_2\in \mathcal{M}_2=[M_2]\}$ according to the distribution

$$P(u^n) \triangleq \prod_{i=1}^n P_U(u_i).$$

¹J. Korner and K. Marton, "General broadcast channels with degraded message sets," IEEE Trans. on Inform. Th., vol. 23, no. 1, pp. 60–64, Jan 1977.

Problem Formulation-Encoder

 Capacity region of the Asymmetric Broadcast Channel is well known ¹ and is achieved with superposition coding.

Random coding with superposition structure

• Randomly generate $M_2 = e^{nR_2}$ "cloud centers" $\{U^n(m_2) : m_2 \in \mathcal{M}_2 = [M_2]\}$ according to the distribution

$$P(u^n) \triangleq \prod_{i=1}^n P_U(u_i).$$

• For each cloud center $U^n(m_2)$, randomly generate $M_1=e^{nR_1}$ "satellite" codewords $\{X^n(m_1,m_2): m_1\in \mathcal{M}_1=[M_1]\}$ according to the conditional distribution

$$P(x^n|u^n) := \prod_{i=1}^n P_{X|U}(x_i|u_i)$$

¹J. Korner and K. Marton, "General broadcast channels with degraded message sets," IEEE Trans. on Inform. Th., vol. 23, no. 1, pp. 60–64, Jan 1977.

The Exact Error and Erasure Exponents

We would like to find the *exact* error exponents $E_j^{\rm t}$, $E_j^{\rm u}$, $E_Y^{\rm t}$ and $E_Y^{\rm u}$, j=1,2 as follow

$$E_1^{\mathrm{t}}(R_1, R_2, T) \triangleq \limsup_{n \to \infty} \left[-\frac{1}{n} \ln \mathbb{E}_{\mathcal{C}}[e_1^{\mathrm{t}}] \right],$$

where the expectation is taken with respect to the randomness of the codebook \mathcal{C} , and similarly for the other exponents $E_1^{\mathrm{u}}, E_Y^{\mathrm{t}}, E_Y^{\mathrm{t}}, E_2^{\mathrm{t}}$, and E_2^{u} .

Main Results-Theorem 1

The error exponents $E_1^{\rm t}$, $E_1^{\rm u}$, $E_Y^{\rm t}$ and $E_Y^{\rm u}$ are given by

$$\textit{E}_{1}^{\mathrm{t}} = \textit{E}_{Y}^{\mathrm{t}} = \text{min}\{\Psi_{\mathrm{a}}, \Psi_{\mathrm{b}}\}, \quad \text{and} \quad \textit{E}_{1}^{\mathrm{u}} = \textit{E}_{Y}^{\mathrm{u}} = \textit{E}_{1}^{\mathrm{t}} + \textit{T}$$

Daming Cao (SEU)

Main Results-Theorem 1

The error exponents $E_1^{\rm t}$, $E_1^{\rm u}$, $E_Y^{\rm t}$ and $E_Y^{\rm u}$ are given by

$$\label{eq:total_total_total_total} E_1^{\mathrm{t}} = E_Y^{\mathrm{t}} = \text{min}\{\Psi_{\mathrm{a}}, \Psi_{\mathrm{b}}\}, \quad \text{and} \quad E_1^{\mathrm{u}} = E_Y^{\mathrm{u}} = E_1^{\mathrm{t}} + T$$

where

$$\begin{split} & \Psi_{\mathbf{a}} \triangleq \min_{\hat{Q}_{UXY}} \left[D(\hat{Q}_{UXY} \| P_{UXY}) + \min_{Q_{UX|Y} \in \mathcal{L}_{1}(\hat{Q}_{UXY}, R_{1}, R_{2}, \mathcal{T})} \Phi(Q_{UX|Y} \hat{Q}_{Y}, R_{1}, R_{2}) \right] \\ & \Psi_{\mathbf{b}} \triangleq \min_{\hat{Q}_{UXY}} \left[D(\hat{Q}_{UXY} \| P_{UXY}) + \min_{Q_{X|UY} \in \mathcal{L}_{2}(\hat{Q}_{UXY}, R_{1}, \mathcal{T})} |\beta(Q_{X|UY} \hat{Q}_{UY}, R_{1})|_{+} \right] \end{split}$$

and the sets \mathcal{L}_1 and \mathcal{L}_2 are defined as

$$\begin{split} \mathcal{L}_{1}(\hat{Q}_{UXY},R_{1},R_{2},T) &\triangleq \left\{ Q_{UX|Y} : \mathbb{E}_{Q} \ln \frac{1}{W_{\mathcal{Y}}} + \mathbb{E}_{\hat{Q}} \ln W_{\mathcal{Y}} - T \leq \Delta(Q,R_{1},R_{2}) \right\} \\ \mathcal{L}_{2}(\hat{Q}_{UXY},R_{1},T) &\triangleq \left\{ Q_{X|UY} : \mathbb{E}_{Q} \ln \frac{1}{W_{\mathcal{Y}}} + \mathbb{E}_{\hat{Q}} \ln W_{\mathcal{Y}} - T \leq \left| -\beta(Q,R_{1}) \right|_{+} \right\} \end{split}$$

where Q in \mathcal{L}_1 is equal to $Q=Q_{UX|Y}\hat{Q}_Y$ and Q in \mathcal{L}_2 is equal to $Q=Q_{X|UY}\hat{Q}_{UY}$,

• The meaning of $E_1^{\rm t}=E_Y^{\rm t}$.

- The meaning of $E_1^t = E_Y^t$.
- Construct a sub-optimal decoding region $\tilde{\mathcal{D}}(m_1)$ from the joint decoding region $\mathcal{D}^*(m_1,m_2)$

$$\tilde{\mathcal{D}}(m_1) = \bigcup_{m_2} \mathcal{D}^*(m_1, m_2)$$

- The meaning of $E_1^t = E_Y^t$.
- Construct a sub-optimal decoding region $\tilde{\mathcal{D}}(m_1)$ from the joint decoding region $\mathcal{D}^*(m_1,m_2)$

$$\tilde{\mathcal{D}}(m_1) = \bigcup_{m_2} \mathcal{D}^*(m_1, m_2)$$

• The event that the user \mathcal{Y} decodes the correct private message m_1 but the wrong common message m_2 .

Daming Cao (SEU) | ISIT 2018 | June 2018 | 10 / 18

- The meaning of $E_1^{\rm t}=E_Y^{\rm t}$.
- Construct a sub-optimal decoding region $\tilde{\mathcal{D}}(m_1)$ from the joint decoding region $\mathcal{D}^*(m_1,m_2)$

$$\tilde{\mathcal{D}}(m_1) = \bigcup_{m_2} \mathcal{D}^*(m_1, m_2)$$

- The event that the user \mathcal{Y} decodes the correct private message m_1 but the wrong common message m_2 .
- There is no loss in optimality of using this joint decoding region $\mathcal{D}^*(m_1,m_2)$ for decoding only message m_1

The closed form expression of $\Psi_{\rm b}$

$$\begin{aligned} \Psi_{\rm b} &\triangleq \min_{\hat{Q}_{UXY}} \left[D(\hat{Q}_{UXY} \| P_{UXY}) + \min_{Q_{X|UY} \in \mathcal{L}_2(\hat{Q}_{UXY}, R_1, T)} |\beta(Q_{X|UY} \hat{Q}_{UY}, R_1)|_+ \right] \\ \beta(Q, R_1) &\triangleq D(Q_{X|U} \| P_{X|U} | Q_U) + I_Q(X; Y|U) - R_1 \end{aligned}$$

Daming Cao (SEU) | ISIT 2018 | June 2018 | 11 / 18

The closed form expression of $\Psi_{\rm b}$

$$\begin{aligned} \Psi_{\rm b} &\triangleq \min_{\hat{Q}_{UXY}} \left[D(\hat{Q}_{UXY} \| P_{UXY}) + \min_{Q_{X|UY} \in \mathcal{L}_2(\hat{Q}_{UXY}, R_1, T)} |\beta(Q_{X|UY} \hat{Q}_{UY}, R_1)|_+ \right] \\ \beta(Q, R_1) &\triangleq D(Q_{X|U} \| P_{X|U} | Q_U) + I_Q(X; Y|U) - R_1 \end{aligned}$$

ullet $\Psi_{
m b}$ does not depend on R_2 , and its expression is averaged over the random variable U.

◆ロト ◆園 → ◆園 → ◆園 → ● ・ 夕 ○ ○

Daming Cao (SEU) | June 2018 | 11 / 18

The closed form expression of $\Psi_{\rm b}$

$$\begin{aligned} \Psi_{\rm b} &\triangleq \min_{\hat{Q}_{UXY}} \left[D(\hat{Q}_{UXY} \| P_{UXY}) + \min_{Q_{X|UY} \in \mathcal{L}_2(\hat{Q}_{UXY}, R_1, T)} |\beta(Q_{X|UY} \hat{Q}_{UY}, R_1)|_+ \right] \\ \beta(Q, R_1) &\triangleq D(Q_{X|U} \| P_{X|U} | Q_U) + I_Q(X; Y|U) - R_1 \end{aligned}$$

- $\Psi_{\rm b}$ does not depend on R_2 , and its expression is averaged over the random variable U.
- If a genie gives the true common message m_2 to the user \mathcal{Y} , all codewords are conditioned on a particular $u^n(m_2)$ and are generated according to a conditional distribution $P_{X|U}$.

◆ロト ◆園 → ◆園 → ◆園 → ● ・ 夕 ○ ○

The closed form expression of $\Psi_{\rm b}$

$$\begin{aligned} \Psi_{\rm b} &\triangleq \min_{\hat{Q}_{UXY}} \left[D(\hat{Q}_{UXY} \| P_{UXY}) + \min_{Q_{X|UY} \in \mathcal{L}_2(\hat{Q}_{UXY}, R_1, T)} |\beta(Q_{X|UY} \hat{Q}_{UY}, R_1)|_+ \right] \\ \beta(Q, R_1) &\triangleq D(Q_{X|U} \| P_{X|U} | Q_U) + I_Q(X; Y|U) - R_1 \end{aligned}$$

- $\Psi_{\rm b}$ does not depend on R_2 , and its expression is averaged over the random variable U.
- If a genie gives the true common message m_2 to the user \mathcal{Y} , all codewords are conditioned on a particular $u^n(m_2)$ and are generated according to a conditional distribution $P_{X|U}$.
- Compare to the single-user DMC case, when T=0, $\Psi_{\rm b}$ can be viewed as the "conditional" random coding error exponent.

Main Results-Theorem 2

The error exponents E_2^{t} and E_2^{u} are given by

$$\label{eq:energy_energy} \textit{E}_{2}^{\mathrm{t}} = \text{max}\{\Psi_{\mathrm{a}}, \Psi_{\mathrm{c}}\}, \quad \text{and} \quad \textit{E}_{2}^{\mathrm{u}} = \textit{E}_{2}^{\mathrm{t}} + \textit{T},$$

 Daming Cao (SEU)
 ISIT 2018
 June 2018
 12 / 18

Main Results-Theorem 2

The error exponents $E_2^{\rm t}$ and $E_2^{\rm u}$ are given by

$$extstyle E_2^{\mathrm{t}} = \max\{\Psi_{\mathrm{a}}, \Psi_{\mathrm{c}}\}, \quad \text{and} \quad extstyle E_2^{\mathrm{u}} = E_2^{\mathrm{t}} + T,$$

where

$$\Psi_{c} \triangleq \min_{\hat{Q}_{UXY}} \left[D(\hat{Q}_{UXY} \| P_{UXY}) + \min_{Q_{UX|Y} \in \mathcal{L}_{3}(\hat{Q}_{UXY}, R_{1}, R_{2}, T)} \Phi(Q_{UX|Y} \hat{Q}_{Y}, R_{1}, R_{2}) \right]$$

with

$$\mathcal{L}_3(\hat{Q}_{UXY}, R_1, R_2, \mathcal{T}) \triangleq \left\{Q_{UX|Y} : \mathbb{E}_Q \ln \frac{1}{W_{\mathcal{Y}}} + s_0(\hat{Q}_{UXY}, R_1) - \mathcal{T} \leq \Delta(Q, R_1, R_2)\right\}$$

and where Q in \mathcal{L}_3 is equal to $Q=Q_{UX|Y}\hat{Q}_Y$, and

$$s_0(\hat{Q}_{UXY}, R_1) \triangleq -\min_{\tilde{Q}_{X|UY}: \beta(\tilde{Q}, R_1) \leq 0} \left[\beta(\tilde{Q}, R_1) - \mathbb{E}_{\tilde{Q}} \ln W_{\mathcal{Y}} \right]$$

and where $ilde{Q}$ in s_0 is equal to $ilde{Q} = ilde{Q}_{X|UY} \hat{Q}_{UY}.$

←□ → ←□ → ← □ → ← □ → ○ へ ○

 \bullet The intuition of the maximum in $\textit{E}_{2}^{\rm t} = \text{max}\{\Psi_{\rm a}, \Psi_{\rm c}\}$

Daming Cao (SEU) | June 2018 | 13 / 18

- \bullet The intuition of the maximum in $\textit{E}_{2}^{\rm t} = \text{max}\{\Psi_{\rm a}, \Psi_{\rm c}\}$
- The user \mathcal{Y} has two strategies to decode the message \hat{m}_2 .

Daming Cao (SEU) | June 2018 | 13 / 18

- \bullet The intuition of the maximum in $\textit{E}_{2}^{\rm t} = \text{max}\{\Psi_{\rm a}, \Psi_{\rm c}\}$
- The user \mathcal{Y} has two strategies to decode the message \hat{m}_2 .
 - The user \mathcal{Y} decodes the pair of messages (\hat{m}_1, \hat{m}_2) and declares the message \hat{m}_2 . And this strategy corresponds to the exponent Ψ_a .

- \bullet The intuition of the maximum in $\textit{E}_{2}^{\rm t} = \text{max}\{\Psi_{\rm a}, \Psi_{\rm c}\}$
- The user \mathcal{Y} has two strategies to decode the message \hat{m}_2 .
 - The user \mathcal{Y} decodes the pair of messages (\hat{m}_1, \hat{m}_2) and declares the message \hat{m}_2 . And this strategy corresponds to the exponent Ψ_a .
 - ② The user \mathcal{Y} decodes the entire sub-codebook for the common message m_2 , i.e., $\mathcal{C}_2(m_2) = \{X^n(m_1, m_2) : m_1 \in [M_1]\}$. And this strategy corresponds to the exponent Ψ_c .

- \bullet The intuition of the maximum in $\textit{E}_{2}^{\rm t} = \text{max}\{\Psi_{\rm a}, \Psi_{\rm c}\}$
- The user \mathcal{Y} has two strategies to decode the message \hat{m}_2 .
 - The user \mathcal{Y} decodes the pair of messages (\hat{m}_1, \hat{m}_2) and declares the message \hat{m}_2 . And this strategy corresponds to the exponent Ψ_a .
 - ② The user \mathcal{Y} decodes the entire sub-codebook for the common message m_2 , i.e., $\mathcal{C}_2(m_2) = \{X^n(m_1,m_2) : m_1 \in [M_1]\}$. And this strategy corresponds to the exponent Ψ_c .
- Loosely speaking, when R_1 is large and the exponent Ψ_c achieves the maximum in E_2^t , the user $\mathcal Y$ is more likely to decode the "cloud center" $U^n(m_2)$ according to the "test channel"

$$W_{Y|U}(y|u) \triangleq \sum_{x} W_{\mathcal{Y}}(y|x) P_{X|U}(x|u)$$

rather than the average channel

$$\Pr(y^n|\mathcal{C}_2(m_2)) \triangleq \frac{1}{M_1} \sum_{m_1 \in \mathcal{M}_1} W_{\mathcal{Y}}^n(y^n|x^n(m_1, m_2))$$

Daming Cao (SEU) | ISIT 2018 | June 2018 | 13 /

Numerical Evaluations

 In the paper, we show that the minimizations required to evaluate these error exponents can be cast as convex optimization problems, and thus, can be solved efficiently.

Numerical Evaluations

- In the paper, we show that the minimizations required to evaluate these error exponents can be cast as convex optimization problems, and thus, can be solved efficiently.
- We consider binary symmetric channels (BSCs) as follow

$$Y = X \oplus Z_2$$
 $X = U \oplus Z_1$ $U \sim \mathsf{Bern}(0.5)$ $Z_1 \sim \mathsf{Bern}(p_1)$ $Z_2 \sim \mathsf{Bern}(p_2)$

where $U, X, Y, Z_1, Z_2 \in \{0, 1\}$, $p_1 = 0.1$ and $p_2 = 0.2$.

- In the paper, we show that the minimizations required to evaluate these error exponents can be cast as convex optimization problems, and thus, can be solved efficiently.
- We consider binary symmetric channels (BSCs) as follow

$$Y = X \oplus Z_2$$
 $X = U \oplus Z_1$
 $U \sim \mathsf{Bern}(0.5)$ $Z_1 \sim \mathsf{Bern}(p_1)$ $Z_2 \sim \mathsf{Bern}(p_2)$

where $U, X, Y, Z_1, Z_2 \in \{0, 1\}$, $p_1 = 0.1$ and $p_2 = 0.2$.

• The set of achievable rates for M_1 and (M_1, M_2) .

$${R_1 \leq I(X;Y|U) = 0.07} \cap {R_1 + R_2 \leq I(X;Y) = 0.19}.$$

• The set of achievable rates for M_2 .

$${R_2 \leq I(U;Y) = 0.12} \bigcup {R_1 + R_2 \leq I(X;Y) = 0.19}.$$

Figure: Total error exponents $E_1^{\rm t}$ and $E_2^{\rm t}$ as a function of R_2 for two different values of R_1 and where the threshold T=0.

Daming Cao (SEU) | SIT 2018 | June 2018 | 15 / 18

• The exponents decrease when R_2 increases.

Figure: Total error exponents E_1^t and E_2^t as a function of R_2 for two different values of R_1 and where the threshold T=0.

Daming Cao (SEU) | ISIT 2018 | June 2018 | 15 / 18

- The exponents decrease when R_2 increases.
- When R_2 is below a critical value, the green line (E_1^t) is horizontal.

Figure: Total error exponents $E_1^{\rm t}$ and $E_2^{\rm t}$ as a function of R_2 for two different values of R_1 and where the threshold T=0.

Daming Cao (SEU) | ISIT 2018 | June 2018 | 15 / 18

- The exponents decrease when R_2 increases.
- When R₂ is below a critical value, the green line (E₁^t) is horizontal.
- When R_2 is small, the user \mathcal{Y} can easily decode the true common message m_2 .

Figure: Total error exponents $E_1^{\rm t}$ and $E_2^{\rm t}$ as a function of R_2 for two different values of R_1 and where the threshold T=0.

Daming Cao (SEU) | ISIT 2018 | June 2018 | 15 / 18

Figure: Total error exponents E_1^t and E_2^t as a function of R_1 for two different values of R_2 and where the threshold T = 0.

• The exponents decrease when R_2 increases.

Figure: Total error exponents E_1^t and E_2^t as a function of R_1 for two different values of R_2 and where the threshold T=0.

- The exponents decrease when R_2 increases.
- When R₁ is above a critical value, the blue line (E₂^t) is horizontal.

Figure: Total error exponents E_1^t and E_2^t as a function of R_1 for two different values of R_2 and where the threshold T=0.

- The exponents decrease when R_2 increases.
- When R₁ is above a critical value, the blue line (E₂^t) is horizontal.
- When $R_2 \ge I(U; Y)$, the black line $(E_2^{\rm t})$ decreases to zero.

Figure: Total error exponents E_1^t and E_2^t as a function of R_1 for two different values of R_2 and where the threshold T = 0.

- The exponents decrease when R_2 increases.
- When R_1 is above a critical value, the blue line (E_2^t) is horizontal.
- When $R_2 \ge I(U; Y)$, the black line $(E_2^{\rm t})$ decreases to zero.
- When R_1 is large, the user \mathcal{Y} is more likely to directly decode the "cloud center" $u^n(m_2)$ according to the "test channel" $W_{Y|U}$.

Figure: Total error exponents E_1^t and E_2^t as a function of R_1 for two different values of R_2 and where the threshold T=0.

Figure: Total error exponent $E_1^{\rm t}$ and undetected error exponent $E_1^{\rm u}$ for message m_1 as a function of T for two different pairs of (R_1, R_2)

Daming Cao (SEU) ISIT 2018 June 2018 17 / 18

Thank You!

Full version: https://arxiv.org/pdf/1801.05112.pdf

Daming Cao (SEU) | ISIT 2018 | June 2018 | 18 / 18