FMM

2023-05-29

The source code can be found in Github under the 'debugging' branch.

User-Defined functions

```
### Function: Summary Quantities "Mean (SD)".
bal_quan <- function(num_vec, rounding = 4){</pre>
  mean_val <- round(mean(num_vec), 4)</pre>
  sd_val <- round(sd(num_vec), 4)</pre>
  paste0(mean_val, " (", sd_val, ")")
### Function: Summary from the result
summary_para <- function(result_list){</pre>
  ### Collect the data
  n_cluster_vec <- rep(NA, n_para)</pre>
  time_vec <- rep(NA, n_para)</pre>
  clus_quality <- matrix(NA, ncol = 3, nrow = n_para)</pre>
  for(i in 1:n_para){
    n_cluster_vec[i] <- result_list[[i]]$n_cluster</pre>
    time_vec[i] <- result_list[[i]]$time</pre>
    clus_quality[i, ] <- result_model[[i]]$clus_measure[c(1, 5, 22), 2]</pre>
  }
  data.frame(n_cluster = bal_quan(n_cluster_vec), time = bal_quan(time_vec)) %>%
    data.frame(t(apply(clus_quality, 2, bal_quan))) %>%
    kbl(col.names = c("# cluster", "time", "Adjusted Rand", "Jaccard", "VI"))
}
### Function: Calculate mean and variance
mean_var <- function(num_vec){</pre>
  c(mean(num_vec), var(num_vec))
}
```

Overall Settings

I will run the model for 5,000 iterations for all cases while using the first 2,500 iterations as a burn-in. Also, I will run the model for 10 data sets parallel for each case.

```
iter <- 5000
burn_in <- 2500
overall_seed <- 31807
n_para <- 10</pre>
```

Part I: EM and DP Algorithm

```
set.seed(overall_seed)
ci_true <- sample(1:5, 500, replace = TRUE)</pre>
dat \leftarrow rnorm(500, c(-20, -10, 0, 10, 20)[ci true])
k < -5
mu_init <- rep(0, k)</pre>
sigma_init <- sqrt(1/rgamma(k, 1, 1))</pre>
EM_alg <- normalmixEM(scale(dat), mu = mu_init, sigma = sigma_init, maxit = 5000)
## number of iterations= 1422
EM_result < -t(apply(EM_alg$posterior, 1, rmultinom, n = 1, size = 1))
table(apply(EM_result, 1, which.max), ci_true)
##
      ci_true
        1 2 3 4 5
##
##
     1 0 0 0 0 99
##
    2 102 101 0 0 0
##
    3 0 0 0 100 0
##
     4
       0 0 85 0 0
##
     5
         0 0 13 0
set.seed(overall_seed)
registerDoParallel(detectCores() - 1)
overall_start <- Sys.time()</pre>
result_model <- foreach(i = 1:n_para) %dorng%{
  ### Data Simulation
  ci_true <- sample(1:2, 500, replace = TRUE)</pre>
  dat <- rnorm(500, c(-5, 5)[ci_true])
  ### Run the model
  K_max < -5
  start_time <- Sys.time()</pre>
  mu_init <- rep(0, K_max)</pre>
  sigma_init <- sqrt(1/rgamma(K_max, 1, 1))</pre>
  EM_alg <- normalmixEM(scale(dat), mu = mu_init, sigma = sigma_init, maxit = 5000)</pre>
  EM_result \leftarrow t(apply(EM_alg$posterior, 1, rmultinom, n = 1, size = 1))
  total_time <- difftime(Sys.time(), start_time, units = "secs")</pre>
  clus_assign <- apply(EM_result, 1, which.max)</pre>
  return(list(time = as.numeric(total_time),
```

# cluster	time	Adjusted Rand	Jaccard	VI
5 (0)	0.8431 (0.5442)	$0.6523 \ (0.2316)$	0.6708 (0.1749)	0.9775 (0.785)

Part II: 5 Separated Clusters

Below is the plot for the standardized data for five separated clusters.

5 separated clusters (Scaled Data)

I will change the value for ξ ($\xi=1,0.1,0.01,0.001$) while keeping the other variables to be fixed. ($\mu=0,a_{\sigma}=b_{\sigma}=\lambda=1,K_{\max}=10$)

$$\xi = 1$$

# cluster	time	Adjusted Rand	Jaccard	VI
2.7 (0.6749)	22.118 (1.5423)	$0.535 \ (0.1636)$	$0.5055 \ (0.1277)$	$0.9763 \ (0.3579)$

$$\xi = 0.1$$

# cluster	time	Adjusted Rand	Jaccard	VI
3 (0.6667)	19.0102 (1.2064)	0.6163 (0.1493)	0.5686 (0.1235)	0.8083 (0.3307)

$\xi = 0.01$

# cluster	time	Adjusted Rand	Jaccard	VI
2.9 (0.3162)	17.6851 (1.0259)	0.6013 (0.0804)	$0.5474 \ (0.0574)$	0.8383 (0.1781)

$\xi = 0.001$

# cluster	time	Adjusted Rand	Jaccard	VI
2.9 (0.3162)	17.1974 (1.0663)	0.6013 (0.0804)	0.5474 (0.0574)	0.8383 (0.1781)