Some Theory of Likelihood

Friday 15th December, 2017

1 To be done

- Understand existing theory in exponential family. Some paper to be read: Portnoy (1988); Ghosal (2000).
- Give the theory of posterior Bayes factor under exponential family.
- Beyond exponential family. (?).
- Bartlett correction.
- General integral likelihood ratio test.
- Nonasymptotic. Read Spokoiny (2012)'s paper.
- Consider the sparse case as in Stadler and Mukherjee (2017).

2 Introduction

3 Results for exponential family

The content of this section is adapted from Ghosal (2000).

The following result, known as acute angle principle, is a key tool for the analysis.

Lemma 1 (J. M. Ortega (1987), Theorem 6.3.4.). Let C be an open, bounded set in \mathbb{R}^n and assume that $F: \bar{C} \subset \mathbb{R}^n \to \mathbb{R}^n$ is countinuous and satisfies $(x-x_0)^T F(x) \geq 0$ for some $x_0 \in C$ and all $x \in \partial C$. Then F(x) = 0 has a solution in \bar{C} .

We make the following assumptions.

Assumption 1. The p dimensional independent random samples X_1, \ldots, X_n are from a standard exponential family with density

$$f(x; \theta_n) = \exp[x^T \theta_n - \psi_n(\theta_n)]$$

with respect to μ_n . Where $\theta_n \in \Theta_n$, an **open** subset of \mathbb{R}^n . Sometimes we suppress the subscript n. The true parameter is denoted by θ_0 . To prevent θ_0 approaching the boundary as $n \to \infty$, we assume that for a fixed $\epsilon_0 > 0$ independent of n, $B(\theta_0, \epsilon_0) \subset \Theta$.

It's well known that $E[X_1] = \psi'(\theta_0)$ and $Var[X_1] = \psi''(\theta_0)$. $\psi''(\theta_0)$ is also the Fisher information matrix. We assume that $\psi''(\theta_0)$ is positive definite.

Assumption 2. $p \to \infty$ as $n \to \infty$.

Let the positive definite matrix **J** be the square root of $\psi''(\theta_0)$, that is $\psi''(\theta_0) = \mathbf{J}^2$. The MLE $\hat{\theta}$ of θ is unique and satisfies $\psi'(\hat{\theta}) = \bar{X}$.

For a square matrix \mathbf{A} , $\|\mathbf{A}\|$ will stand for its operator norm.

The function $\psi(\theta)$ is in fact the cumulant generating function of X_1 . Portnoy (1988) gave the following Taylor series expansions.

Proposition 1. Suppose Assumption 1 holds. For any θ and θ_0 in Θ , the following expansions hold for some $\tilde{\theta}$ between θ and θ_0 :

$$\begin{split} \psi(\theta) = & \psi(\theta_{0}) + (\theta - \theta_{0})^{T} \psi'(\theta_{0}) + \frac{1}{2} (\theta - \theta_{0})^{T} \psi''(\theta_{0}) (\theta - \theta_{0}) \\ & + \frac{1}{6} \operatorname{E}_{\theta_{0}} \left((\theta - \theta_{0})^{T} (U - \operatorname{E}_{\theta_{0}} U) \right)^{3} \\ & + \frac{1}{24} \Big\{ \operatorname{E}_{\tilde{\theta}} \left((\theta - \theta_{0})^{T} (U - \operatorname{E}_{\tilde{\theta}} U) \right)^{4} - 3 \big[\operatorname{E}_{\tilde{\theta}} \left((\theta - \theta_{0})^{T} (U - \operatorname{E}_{\tilde{\theta}} U) \right)^{2} \big]^{2} \Big\}, \\ \alpha^{T} \psi'(\theta) = & \alpha^{T} \psi'(\theta_{0}) + \alpha^{T} \psi''(\theta_{0}) (\theta - \theta_{0}) \\ & + \frac{1}{2} \operatorname{E}_{\theta_{0}} \left((\theta - \theta_{0})^{T} (U - \operatorname{E}_{\theta_{0}} U) \right)^{2} \alpha^{T} (U - \operatorname{E}_{\theta_{0}} U) \\ & + \frac{1}{6} \operatorname{E}_{\tilde{\theta}} \left((\theta - \theta_{0})^{T} (U - \operatorname{E}_{\tilde{\theta}} U) \right)^{3} \alpha^{T} (U - \operatorname{E}_{\tilde{\theta}} U) \\ & - \frac{1}{2} \operatorname{E}_{\tilde{\theta}} \left((\theta - \theta_{0})^{T} (U - \operatorname{E}_{\tilde{\theta}} U) \right)^{2} \operatorname{E}_{\tilde{\theta}} (\theta - \theta_{0})^{T} (U - \operatorname{E}_{\tilde{\theta}} U) \alpha^{T} (U - \operatorname{E}_{\tilde{\theta}} U), \\ \alpha^{T} \psi'(\theta) = & \alpha^{T} \psi'(\theta_{0}) + \alpha^{T} \psi''(\theta_{0}) (\theta - \theta_{0}) + \frac{1}{2} \operatorname{E}_{\tilde{\theta}} \left((\theta - \theta_{0})^{T} (U - \operatorname{E}_{\tilde{\theta}} U) \right)^{2} \alpha^{T} (U - \operatorname{E}_{\tilde{\theta}} U), \end{split}$$

where U is a random variable with density $f(x;\theta)$, α is a fixed p dimensional vector.

Let, for $c \geq 0$,

$$B_{1n}(c) = \sup \Big\{ E_{\theta} |a^T \mathbf{J}^{-1}(U - E_{\theta} U)|^3 : ||a|| = 1, ||\mathbf{J}(\theta - \theta_0)|| \le c \Big\},\$$

$$B_{2n}(c) = \sup \Big\{ E_{\theta} |a^T \mathbf{J}^{-1}(U - E_{\theta} U)|^4 : ||a|| = 1, ||\mathbf{J}(\theta - \theta_0)|| \le c \Big\},\$$

Consistency.

Theorem 1. Suppose Assumption 1 holds. Assume that for all M > 0, $M\sqrt{p/n}B_{1n}(M\sqrt{p/n}) \to 0$. Assume that for every M > 0, we have $\{\theta : \|\mathbf{J}(\theta - \theta_0)\| \le M\sqrt{p/n} \subset \}\Theta$ for large n. Then

$$\|\mathbf{J}(\hat{\theta} - \theta_0)\| = O_P(\sqrt{p/n}).$$

Proof. The MLE $\hat{\theta}$ is unique and satisfies $\bar{X} - \psi'(\hat{\theta}) = 0$. By Lemma 1, the inequality

$$\sup_{\|\mathbf{J}(\theta-\theta_0)\|=c} (\theta-\theta_0)^T (\bar{X} - \psi'(\theta)) \le 0$$

implies $\|\mathbf{J}(\hat{\theta} - \theta_0)\| \le c$. By proposition 1, for θ satisfying $\|\mathbf{J}(\theta - \theta_0)\| = c$, we have

$$(\theta - \theta_0)^T (\bar{X} - \psi'(\theta)) = (\theta - \theta_0)^T (\bar{X} - \psi'(\theta_0)) - (\theta - \theta_0)^T \psi''(\theta_0) (\theta - \theta_0) - \frac{1}{2} \operatorname{E}_{\tilde{\theta}} ((\theta - \theta_0)^T (U - \operatorname{E}_{\tilde{\theta}} U))^3$$

$$= (\theta - \theta_0)^T \mathbf{J} \mathbf{J}^{-1} (\bar{X} - \psi'(\theta_0)) - c^2 - \frac{1}{2} \operatorname{E}_{\tilde{\theta}} ((\theta - \theta_0)^T (U - \operatorname{E}_{\tilde{\theta}} U))^3$$

$$\leq c \|\mathbf{J}^{-1} (\bar{X} - \psi'(\theta_0))\| - c^2 - \frac{1}{2} \operatorname{E}_{\tilde{\theta}} ((\theta - \theta_0)^T \mathbf{J} \mathbf{J}^{-1} (U - \operatorname{E}_{\tilde{\theta}} U))^3$$

$$\leq c \|\mathbf{J}^{-1} (\bar{X} - \psi'(\theta_0))\| - c^2 + \frac{1}{2} c^3 B_{1n}(c).$$

Since $\mathbb{E} \|\mathbf{J}^{-1}(\bar{X} - \psi'(\theta_0))\|^2 = \operatorname{tr} \operatorname{Var}(\mathbf{J}^{-1}\bar{X}) = p/n$, we have $\|\mathbf{J}^{-1}(\bar{X} - \psi'(\theta_0))\| = O_P(\sqrt{p/n})$. Hence for every $\delta > 0$, there is an M such that $\|\mathbf{J}^{-1}(\bar{X} - \psi'(\theta_0))\| \leq M\sqrt{p/n}$ with probability at least $1 - \delta$. Taking $c = 2M\sqrt{p/n}$ yields that with probability at least $1 - \delta$,

$$\sup_{\|\mathbf{J}(\theta-\theta_0)\|=M\sqrt{p/n}} (\theta-\theta_0)^T (\bar{X}-\psi'(\theta)) \le -2M^2 \frac{p}{n} + 2M^2 \frac{p}{n} \Big(2M\sqrt{p/n} B_{1n} (2M\sqrt{p/n}) \Big),$$

which is less than 0 eventually. Hence for large n, with probability at least $1 - \delta$, $\|\mathbf{J}(\theta - \theta_0)\| \le M\sqrt{p/n}$. This proves $\|\mathbf{J}(\theta - \theta_0)\| = O_P(\sqrt{p/n})$.

Appendices

Appendix A haha1

Appendix B haha2

References

References

Ghosal, S. (2000). Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity. *Journal of Multivariate Analysis*, 74(1):49–68.

J. M. Ortega, W. C. R. (1987). *Iterative Solution of Nonlinear Equations in Several Variables*. Classics in Applied Mathematics, 30. Society for Industrial Mathematics.

Portnoy, S. (1988). Asymptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity. *Annals of Statistics*, 16(1):356–366.

Spokoiny, V. (2012). Parametric estimation. finite sample theory. *Annals of Statistics*, 40(6):2877–2909.

Stadler, N. and Mukherjee, S. (2017). Two-sample testing in high dimensions. *Journal of The Royal Statistical Society Series B-statistical Methodology*.