LOGIQUE

Corrigé du contrôle continu du 27 Novembre 2008

Exercice 1(sur 6 points)

- 1- La première règle est la règle d'élimination de l'implication dans le système DN. On a vu en cours que *toutes* les règles de DN sont des règles dérivées de LK.
- 2- Instancions la deuxième règle par les multi-ensembles $\Gamma := \emptyset, \Delta := \emptyset, \Gamma' := \emptyset, \Delta' := \emptyset$ et les formules $A := \bot$, $B := \neg \bot$. Considérons les preuves π_0, π_1 dans LK :

$$\frac{\bot \vdash \bot}{\vdash \bot, \neg \bot}^{ax} \qquad \frac{\bot \vdash \bot}{\bot, \neg \bot \vdash}^{ax}$$

En utilisant cette deuxième règle (R2), on obtient une preuve de ⊢ :

$$\begin{array}{c|c}
\hline \vdash \bot, \neg \bot & \pi_0 & \hline \bot, \neg \bot \vdash \\
\hline \vdash & & R2
\end{array}$$

Or, le « séquent vide » , n'est pas prouvable dans LK. La deuxième règle n'est donc pas dérivable dans LK.

3- La règle R1 (élimination de \rightarrow) ne peut être simulée par une dérivation sans coupure de LK. Les règles de LK \ { coupure } sont toutes des règles d'introduction ou des règles structurelles. Supposons que R1 soit simulée par une preuve π sans coupure, utilisant les hypothèses $H_1 := \Gamma \vdash A$ et $H_2 := \Gamma \vdash A \to B$. Comme cette preuve a pour racine $R = \Gamma \vdash B$, elle n'a aucun noeud étiqueté par H_1 , car A est une sous-formule de H_1 qui n'est pas sous-formule de H_2 qui n'est pas sous-formule de H_2 qui n'est pas sous-formule de H_2 qui n'est pas sous-formule de H_3 , ce qui n'est pas possible.

Exercice 2(sur 4 points)

Les deux séquents sont prouvables dans LK :

$$\frac{\overline{B \vdash B}^{\text{ax}}}{\overline{A}, B, A \vdash B}^{\text{aff*}} \xrightarrow{\overline{C} \vdash C}^{\text{ax}} \xrightarrow{\overline{B} \vdash B}^{\text{ax}} \xrightarrow{\overline{B} \vdash B}^{\text{ax}} \xrightarrow{\overline{C} \vdash C}^{\text{ax}} \xrightarrow{\overline{A}, B \vdash A \to B, C}^{\text{aff*}} \xrightarrow{\overline{A}, B, C \vdash C}^{\text{aff*}} \xrightarrow{\overline{A}, C, B, C \vdash C}^{\text{aff*}} \xrightarrow{\overline{A}$$

Exercice 3(sur 6 points)

$$\frac{\frac{\overline{R(y) \vdash R(y)}}{\neg R(y), R(y) \vdash}^{\mathsf{ax}}}{\frac{\overline{\neg R(y), R(y) \vdash} R(x)}{\neg R(y) \vdash R(x)}^{\mathsf{aff}_d}} \qquad \frac{\overline{R(x) \vdash R(x)}}{\frac{\overline{R(x) \vdash} \exists_d}{R(x) \vdash \exists x R(x)}} \\ \frac{\overline{\neg R(y) \vdash R(y) \rightarrow} R(x)}{\forall y \neg R(y) \vdash R(y) \rightarrow R(x)}^{\forall_d}}{\forall y \neg R(y) \vdash \forall y (R(y) \rightarrow R(x))}^{\forall_d} \qquad \frac{\overline{R(x) \vdash} R(x)}{\overline{R(x) \vdash} \exists x R(x) \vdash}^{\neg g} \\ \overline{\neg \exists x R(x) \vdash} \neg \overline{\neg}_d \\ \overline{\neg \exists x R(x) \vdash} \forall x \neg R(x)}^{\neg d}$$

On construit la la troisième preuve en réutilisant les deux premières preuves, notées π_1, π_2 :

$$\frac{ \overline{ \neg \exists x R(x) \vdash \forall x \neg R(x)}^{\pi_2} \ \, \overline{\forall y \neg R(y) \vdash \forall y (R(y) \rightarrow R(x))}^{\pi_1} }{ \frac{\neg \exists x R(x) \vdash \forall y (R(y) \rightarrow R(x))}{\neg \exists x R(x) \vdash \exists x \forall y (R(y) \rightarrow R(x))}}^{\exists_d}$$

Exercice 4(sur 6 points)

Nous montrons par induction structurelle que pour toute formule A, il existe une dérivation atomique α_A du séquent $A \vdash A$.

Base Les dérivations α_{\perp} et α_P (où P désigne une proposition atomique) sont trivialement définies par

$$\overline{\perp \vdash \bot}^{\, \mathrm{ax}} \quad \overline{P \vdash P}^{\, \mathrm{ax}}$$

Induction Supposons l'existence de dérivations atomiques α_A et α_B . Alors $\alpha_{A \wedge B}$, $\alpha_{A \vee B}$, $\alpha_{A \to B}$, $\alpha_{\neg A}$, $\alpha_{\forall x \cdot A}$ et $\alpha_{\exists x \cdot A}$ sont définies par

$$\frac{\overline{A \vdash A}^{\alpha_{A}}}{A, B \vdash A}^{\alpha_{A}} \frac{\overline{B \vdash B}^{\alpha_{B}}}{A, B \vdash B}^{\alpha_{B}} A_{A} + \overline{A}^{\alpha_{A}} \frac{\overline{B \vdash B}^{\alpha_{B}}}{A \vdash A \lor B}^{\alpha_{B}} A_{A} + \overline{A}^{\alpha_{A}} \frac{\overline{B \vdash B}^{\alpha_{B}}}{A \vdash A \lor B}^{\alpha_{B}} A_{A} + \overline{A}^{\alpha_{A}} \frac{\overline{B \vdash B}^{\alpha_{B}}}{A \vdash A \lor B}^{\alpha_{B}} A_{A} + \overline{A}^{\alpha_{A}} \frac{\overline{B \vdash B}^{\alpha_{B}}}{A, B \vdash B}^{\alpha_{B}} A_{A} + \overline{A}^{\alpha_{A}} \frac{\overline{B \vdash B}^{\alpha_{B}}}{A \to B \vdash A \to B}^{\alpha_{B}} A_{A} + \overline{A}^{\alpha_{A}} A_{A}$$