Causal Inference and Invariance

Qingyuan Zhao and Charles Zheng

Stanford University

February 21, 2016

(Part 2/2)

From Last Week: Causal Graph

Causal relationships in a system represented by a graph. The graph tells you:

- I. which variables are affected by an intervention.
- II. what conditional independence relationships exist in the joint distribution (*d-separation*.)
- III. which sets of predictors and responses will have "invariant" optimal predictive rules.

This talk is restricted to directed acyclic graph (DAG), i.e. no feedback!

From Last Week: Three Causal Questions

- Given a number of variables, which pairs are causally related?
 - Infer the graph.
- Given a number of variables and a fixed Y, which variables causally affect Y?
 - Infer the invariance set.
- Given a fixed X and a fixed Y, what is the causal effect of X on Y?
 - Infer the causal effect.

Why different languages? Convenience!

Section 1

Overview of Previous methods

Known Causal Structure

For example, suppose we want to estimate the causal effect of X on Y with known confounders Z.

Graphical approach: the backdoor formula

$$P(y|do(x)) = \sum_{z} P(y|x,z)P(z).$$

- Functional appraoch: outcome regression $Y \sim X + Z$.
- Potential outcome approach: estimate the propensity score.

Unknown Causal Structure

Conventional approach:

- Estimate the Markov equivalence class of causal graphs via conditional independence relationships.
- 2 Infer or bound the identifiable causal effects.

More recent approach: impose additional functional/distributional assumptions to the structural equation model: for any variable Y,

$$Y = f(parents(Y); \epsilon_Y).$$

How should we think about the assumptions?

One thing for sure: They are no monsters!

How should we think about the assumptions?

- In statistics we make assumptions all the time: parametric, independence, function form, etc.
 - George Box: "All models are wrong but some are useful".
- To infer causation, we need to make different kinds of assumptions.
 - Problem statement: Can what we learned from this environment be generalized to another environment?

 - Causal assumptions: causal graph, structural equation model, or invariant prediction.

What if we are willing to make both kinds of assumptions?

Section 2

Invariance

Assumed invariance

Focus: Given a number of variables and a fixed Y, which variables causally affect Y?

Data: i.i.d. samples of (X^e, Y^e) from different environments $e \in \mathcal{E}$.

Assumption (Invariant prediction)

There exists a vector of coefficients γ^* with support S^* such that for all $e \in \mathcal{E}$, X^e has an arbitrary distribution and

$$Y^e = \mu + X^e \gamma^* + \epsilon^e, \ \epsilon^e \sim F_{\epsilon}, \ \epsilon^e \perp X^e_{S^*}.$$

Important:

- F_{ϵ} does not depend on e.
- ϵ is always independent of X.

This is essentially a single structural equation with parents(Y) = S*.

Building block

Testing the null hypothesis that (γ, S) satisfies the assumption.

$$H_{0,\gamma,S}(\mathcal{E}): \ \gamma_k = 0 \ \mathrm{if} \ k \in S, \ and \ \exists F_{\epsilon} \ \mathrm{such \ that \ for \ all} \ e \in \mathcal{E}, \ Y^e = X^e \gamma + \epsilon^e, \ \epsilon^e \sim F_{\epsilon}, \ \epsilon^e \perp X^e_S.$$

 $H_{0,S}(\mathcal{E})$: $\exists \gamma$ such that $H_{0,\gamma,S}(\mathcal{E})$ is true.