LECTURE 3A: OTHER NONLINEAR ESTIMATION (GMM AND EM)

CHRIS CONLON

NYU STERN

MARCH 7, 2019

ESTIMATING FINITE MIXTURES

- In practice estimating finite mixture models can be tricky.
- A simple example is the mixture of normals (incomplete data likelihood)

$$f(x_1,\ldots,x_n|\theta)=\prod_{i=1}^N\sum_{k=1}^K\pi_kf(x_i|\mu_k,\sigma_k)$$

- We need to find both mixture weights $\pi_k = Pr(z_k)$ and the components (μ_k, σ_k) the weights define a valid probabiltiy measure $\sum_k \pi_k = 1$.
- Easy problem is label switching. Usually it helps to order the components by say decreasing $\pi_1 > \pi_2 > \dots$ or $\mu_1 > \mu_2 > \dots$
- The real problem is that which component you belong to is unobserved. We can add an extra indicator variable $z_{ik} \in \{0,1\}$.
- We don't care about z_{ik} per-se so they are nuisance parameters.

ESTIMATING FINITE MIXTURES

■ We can write the complete data log-likelihood (as if we observed z_{ik}):

$$l(x_1,\ldots,x_n|\theta) = \sum_{i=1}^N \log \left(\sum_{k=1}^K I[z_i = k] \pi_k f(x_i \mu_k, \sigma_k) \right)$$

lacktriangle We can instead maximized the expected log-likelihood where we take the expectation $E_{z|\theta}$

$$\alpha_{ik}(\theta) = \Pr(\mathbf{z}_{ik} = \mathbf{1} | \mathbf{x}_i, \theta) = \frac{f_k(\mathbf{x}_i, \mathbf{z}_k, \mu_k, \sigma_k) \pi_k}{\sum_{m=1}^{K} f_m(\mathbf{x}_i, \mathbf{z}_m, \mu_m, \sigma_m) \pi_m}$$

Now we have a probability $\hat{\alpha}_{ik}$ that gives us the probability that i came from component k. We also compute $\hat{\pi}_k = \frac{1}{N} \sum_{i=1}^N \alpha_{ik}$

EM ALGORITHM

■ Treat the $\hat{\alpha}_k(\theta^{(q)})$ as data and maximize to find μ_k, σ_k for each k

$$\hat{\theta}^{(q+1)} = \arg\max_{\theta} \sum_{i=1}^{N} \log \left(\sum_{k=1}^{K} \hat{\alpha}_{k}(\theta^{(q)}) f(x_{i}|\mathbf{z}_{ik}, \theta) \right)$$

- We iterate between updating $\hat{\alpha}_{R}(\theta^{(q)})$ (E-step) and $\hat{\theta}^{(q+1)}$ (M-step)
- For the mixture of normals we can compute the M-step very easily:

$$\mu_{k}^{(q+1)} = \frac{1}{N} \sum_{i=1}^{N} \hat{\alpha}_{k}(\theta^{(q)}) x_{i}$$

$$\sigma_{k}^{(q+1)} = \frac{1}{N} \sum_{i=1}^{N} \hat{\alpha}_{k}(\theta^{(q)}) (x_{i} - \overline{x})^{2}$$

EM ALGORITHM

- EM algorithm has the advantage that it avoids complicated integrals in computing the expected log-likelihood over the missing data.
- For a large set of families it is proven to converge to the MLE
- That convergence is monotonic and linear. (Newton's method is quadratic)
- This means it can be slow, but sometimes $\nabla_{\theta} f(\cdot)$ is really complicated.

BRIEF REVIEW OF GMM

Generalized Method of Moments is a powerful tool to estimate econometric models under weaker assumptions than MLE:

- We no longer need to know $f(y, x|\theta)$.
- Instead we just need that $E[g(y_i, x_i; \theta)] = o$ (Moment Condition)
- Like MLE this is another M-Estimator or Extremum Estimator
- We choose $\hat{\theta}_{GMM}$ to minimize some objective function that is an expectation over our entire dataset.

GMM SETUP

- some data w_i where i = 1, ..., N
- Our data w_i might contain all kinds of things such as dependent variables y_i , regressors x_i and excluded instruments z_i .
- Our economic model provides the following restriction on our data:

$$E[g(w_i, \theta_0)] = 0$$

- At the true parameter value $\theta_0 \in \mathbb{R}^k$ our moment conditions $g(w_i, \theta)$ are on average equal to zero.
 - What does "on average" mean?
 - ▶ In theory, we are making an asymptotic statement about what happens as $N \to \infty$. This is what we mean when we write $E[\cdot]$.

GMM SETUP

In practice, it is helpful to consider the sample analogue:

■ We write as $g_N(\theta) \in \mathbb{R}^q$, where $g_N(\theta)$ is a q-dimensional vector of moment conditions:

$$E[g(w_i,\theta)] \approx \frac{1}{N} \sum_{i=1}^{N} g(w_i,\theta) \equiv g_N(\theta)$$

- We define the Jacobian: $D(\theta) \equiv E\left[\frac{\partial g(w_i,\theta)}{\partial \theta}\right]$, which is a $q \times k$ matrix.
- Evaluated at the optimum, $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} g(w_i, \theta_0) \stackrel{d}{\to} N(o, S)$ where $S = E[g(w_i, \theta_0)g(w_i, \theta_0)']$ is a $q \times q$ matrix.
- In other words, the moment conditions which are o in expectation at θ_0 are normally distributed with some covariance S.
- Later, we will refer to a weighting matrix W_N which is a $q \times q$ positive semi-definite matrix. It tells us how much to penalize the violations of one moment condition relative to another (in quadratic distance).

GMM: EXAMPLES

Here is the GMM estimator:

$$\hat{\theta} = \arg\min_{\theta} Q_N(\theta) \quad Q_N(\theta) = g_N(\theta)'W_Ng_N(\theta)$$

It is easy to see some very simple examples:

- **OLS** Here $y_i = x_i\beta + \epsilon_i$. Exogeneity implies that $E[x_i'\epsilon_i] = 0$. We can write this in terms of just observables and parameters as $E[x_i'(y_i x_i\beta)] = 0$ so that $g(y_i, x_i, \beta) = x_i'(y_i x_i\beta)$.
 - **IV** Again $y_i = x_i\beta + \epsilon_i$. Now, endogeneity implies that $E[x_i'\epsilon_i] \neq 0$. However there are some instruments z_i which may be partly contained in x_i and partly excluded from y_i , so that $E[z_i'\epsilon_i] = 0$. $E[z_i'(y_i x_i\beta)] = 0$ so that $g(y_i, x_i, z_i, \beta) = z_i'(y_i x_i\beta)$.
- **Maximum Likelihood** $g(w_i, \theta) = \frac{\partial \log f(w_i, \theta)}{\partial \theta}$ where $f(w_i, \theta)$ is the density function so that $\log f(w_i, \theta)$ is the contribution of observation i to the log-likelihood. Here we set the expected (average) derivative of the log-likelihood (score) function to zero.

A FAMOUS EXAMPLE: EULER EQUATION

Assume we have a CRRA utility function $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$ and an agent who maximizes the expected discounted value of their stream of consumption. This leads to an Euler Equation:

$$E\left[\beta\left(\frac{c_{t+1}}{c_t}\right)^{-\gamma}R_{t+1}-1|\Omega_t\right]=0$$

where Ω_t is the Information Set (sigma algebra) of everything known to the agent up until time t (include full histories). We can write a moment restriction of the form for any measurable $z_t \in \Omega_t$.

$$E\left[z_{t}\left(\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}R_{t+1}-1\right)\right]=0$$

In the original work by Hansen (1982) on GMM, this $g(c_t, c_{t+1}, R_{t+1}, \beta, \gamma)$ was used to estimate (β, γ) .

ç

GMM: Technical Conditions

Here is the GMM estimator:

$$\hat{\theta} = \arg\min_{\theta} Q_N(\theta) \quad Q_N(\theta) = g_N(\theta)' W_N g_N(\theta)$$

These are a set of sufficient conditions to establish consistency and asymptotic normality of the GMM estimator. These conditions are stronger than necessary, but they establish the requisite LLN and CLT.

- 1. $\theta \in \Theta$ is compact.
- 2. $W_N \stackrel{p}{\rightarrow} W$.
- 3. $g_N(\theta) \stackrel{p}{\to} E[g(z_i, \theta)]$ (uniformly)
- 4. $E[g(z_i, \theta)]$ is continous.
- 5. We need that $E[g(z_i, \theta_0)] = 0$ and $W_N E[g(z_i, \theta)] \neq 0$ for $\theta \neq \theta_0$ (global identification condition).
- 6. $g_N(\theta)$ is twice continuously differentiable about θ_0 .
- 7. θ_0 is not on the boundary of Θ .
- 8. $D(\theta_0)WD(\theta_0)'$ is invertible (non-singular).
- 9. $g(z_i, \theta)$ has at least two moments finite and finite derivatives at all $\theta \in \Theta$.

The first five conditions give us consistency $\hat{\theta} \stackrel{p}{\to} \theta_0$ as $N \to \infty$. All nine conditions give us asymptotic normality.

10
$$-\theta$$
) $\stackrel{d}{\rightarrow}$ $N(0, V_{\theta})$

SPECIAL CASE: LINEAR MODEL

The global identification condition is difficult to understand, for the linear model we can replace it with a (local) condition on Jacobian of the moment conditions.

- Recall the Jacobian: $D \equiv \frac{\partial g(w_i, \theta)}{\partial \theta}$, which is a $q \times k$ matrix.
- For OLS this reduces to (X'X)
- We call the problem:
 Under-identified if rank(D) < k
 Just-identified if rank(D) = k
 Over-identified if rank(D) > k.
- In the under-identified case, there may be many such $\hat{\theta}$ where $g(w_i, \hat{\theta}) = 0$.

OVERIDENTIFICATION

We are primarily interested in the over-identified case

$$\hat{\theta} = \arg\min_{\theta} Q_N(\theta) \quad Q_N(\theta) = g_N(\theta)' W_N g_N(\theta)$$

- There is no $\hat{\theta}$ which satisfies the moment conditions $g_N(\hat{\theta}) \neq 0$.
- Instead, we search for $\hat{\theta}$ which minimizes the violations of the moment conditions.
- We write this as a quadratic form for some positive definite matrix W_N which is $q \times q$.

LINEAR IV

For the linear IV problem this becomes:

$$g_{N}(\theta)'W_{N}g_{N}(\theta) = \frac{1}{N^{2}} \cdot (\mathbf{Z}'(\mathbf{Y} - \mathbf{X}\beta))'W_{N}(\mathbf{Z}'(\mathbf{Y} - \mathbf{X}\beta))$$
$$= \frac{1}{N^{2}} \cdot [\mathbf{Y}'ZW_{N}Z'\mathbf{Y} - 2\beta X'ZW_{N}Z'\mathbf{Y} + \beta'X'ZW_{N}Z'X\beta]$$

We can ignore the $\frac{1}{N^2}$ and take the first-order condition:

$$2X'ZW_NZ'Y = 2X'ZW_NZ'X\beta$$
$$\hat{\beta}_{GMM} = (X'ZW_NZ'X)^{-1}X'ZW_NZ'Y$$

OLS

Suppose that we do not have any excluded instruments so that Z = X (and thus q = k). Also suppose that $W_N = \mathbb{I}_q$ (the identity matrix). Then we can see that:

$$\begin{split} \hat{\beta}_{GMM} &= (X'X \mathbb{I}_q X'X)^{-1} X'X \mathbb{I}_q X'Y \\ &= (X'XX'X)^{-1} X'XX'Y \\ &= (X'X)^{-1} (X'X)^{-1} (X'X)X'Y = (X'X)^{-1} X'Y = \hat{\beta}_{OLS} \end{split}$$

- In other words, OLS is a special case of the GMM estimator.
- Also, the identification condition $D = \frac{\partial g(w_i, \theta)}{\partial \theta} = \frac{1}{N} \sum_{i=1}^{N} z_i' x_i = \frac{1}{N} \sum_{i=1}^{N} x_i' x_i$ becomes that rank(X'X) = k the well-known OLS rank condition

2SLS ESTIMATOR

Suppose that we do have excluded instruments so that:

- \blacksquare dim(Z) = q > dim(X) = k
- $W_N = (Z'Z)^{-1}$

It immediately follows that:

$$\hat{\beta}_{GMM} = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'Y = \hat{\beta}_{2SLS}$$

If dim(Z) = q = dim(X) = k then (X'Z) is square (and invertible). This expression further simplifies:

$$(X'Z(Z'Z)^{-1}Z'X)^{-1} = (Z'X)^{-1}(Z'Z)(X'Z)^{-1}$$

$$\rightarrow \hat{\beta}_{GMM} = (Z'X)^{-1}(Z'Z)(X'Z)^{-1}X'Z(Z'Z)^{-1}Z'Y = (Z'X)^{-1}Z'Y = \hat{\beta}_{IV}$$

CHOICE OF WEIGHTING MATRIX

How do we choose the weighting matrix W_N . Already seen two options:

- 1. The identity matrix I_q equally penalizes violations of all q moments;
- 2. TSLS weighting matrix $(Z'Z)^{-1}$ which can be thought about as the inverse of the covariance of the instruments.

We are interested in **efficient GMM** which is the GMM estimator with the lowest variance.

EFFICIENT GMM

In order to find the W_N which minimizes the variance of $\hat{\theta}_{GMM}$ we recall the asymptotic variance (sandwich form) of the GMM estimator:

$$V_{\theta} = \underbrace{(DWD')^{-1}}_{\text{bread}} \underbrace{(DWSW'D')}_{\text{filling}} \underbrace{(DWD')^{-1}}_{\text{bread}}$$

It turns out that the best choice of $W_N = S^{-1}$ (which sets filling = bread). This is easy to see, because W_N is positive semi-definite.

$$(DS^{-1}D')^{-1}(DS^{-1}SS^{-1'}D')(DS^{-1}D')^{-1} = (DS^{-1}D')^{-1}(DS^{-1}D')(DS^{-1}D')^{-1} = (DS^{-1}D')^{-1}(DS^{-1}D')^{-1} = (DS^{-1}D')^{-1}(DS^{-1}D')^{-1$$

EFFICIENT GMM

What are we looking for, in ideal world:

- S to be small (we want the sampling variation/noise of our moments to be as small as possible)
- *D* (the Jacobian of the moments) to be large. This means that small violations in moment conditions lead to large changes in the objective function.
- The problem is well identified when the objective function is steep around θ_0 .
- When the problem becomes flat, it becomes hard to distinguish one θ in favor of another.

EFFICIENT GMM

The problem is that $S = E[g(w_i, \theta_O)g(w_i, \theta_O)']$ is not something that we readily observe from our data. In fact, the asymptotic covariance evaluated at θ_O is infeasible. The best we can hope for is to use some sample analogue $W_N = \hat{S}^{-1}$ in its place. One way to compute that is the covariance of the moments estimated at some $\hat{\theta}$ for an initial guess of W:

$$\hat{W} = \hat{S}^{-1} = \left(\frac{1}{N} \sum_{i=1}^{N} (g(w_i, \hat{\theta}) - g_N(\hat{\theta})) (g(w_i, \hat{\theta}) - g_N(\hat{\theta}))'\right)^{-1}$$

Because $E[g(w_i, \theta_0)] = 0$ at θ_0 there is a tendency to use $\left(\frac{1}{N} \sum_{i=1}^{N} g(w_i, \hat{\theta}) g(w_i, \hat{\theta})'\right)^{-1}$ (without de-meaning the moments). In theory this would work fine, but in practice it is nearly always a bad idea.

GMM RECIPE

The overall procedure works as follows:

- 1. Pick some initial weighting matrix W_0 : often I_q or $(Z'Z)^{-1}$.
- 2. Solve $\hat{\theta} = \arg\min_{\theta} g_N(\theta)' W_O g_N(\theta)$.
- 3. Update $\hat{W} = \left(\frac{1}{N} \sum_{i=1}^{N} (g(w_i, \hat{\theta}) g_N(\hat{\theta})) (g(w_i, \hat{\theta}) g_N(\hat{\theta}))'\right)^{-1}$
- 4. Solve $\hat{\theta}_{GMM} = \arg\min_{\theta} g_N(\theta)' \hat{W} g_N(\theta)$.
- 5. Compute $D(\hat{\theta}_{GMM})$ and $S(\hat{\theta}_{GMM})$ and compute standard errors.

GMM: EXAMPLE

For the linear IV estimator when i is independent then $g(w_i, \theta) = z_i \epsilon_i$ and $E[z_i \epsilon_i] = 0$

$$\hat{S} = \frac{1}{N} \sum_{i=1}^{N} z_i z_i' \epsilon_i^2$$

- With homoskedastic variance $E[\epsilon_i^2|z_i] = \sigma^2$ and the covariance of the moments becomes $\frac{\sigma^2}{N} \sum_{i=1}^{N} z_i z_i'$.
- Because scaling weighting matrix by a constant has no effect on the maximum this is equivalent to the 2SLS weight matrix: $\sum_{i=1}^{N} z_i z_i'$ or Z'Z.
- Thus 2SLS is only the efficient estimator when homoskedasticity is a reasonable assumption.
- If all regressors are exogenous then *X* = *Z* and we are left with the GMM formula coincides with the covariance for heteroskedasticity robust standard errors.
- Similarly, when appropriate we can consider extensions such as clustered standard errors which are robust to weaker forms of independence.
- As a practical matter, we should always use the *sandwich* form when calculating the GMM standard errors, rather than the simpler *bread* version which is only correct at θ_0 under asymptotic optimality conditions.

SEMIPARAMETRIC EFFICIENCY

In a famous paper, Chamberlain (1987) showed that GMM obtained the semi-parametric efficiency bound asymptotically.

- as our sample gets large and without making additional parametric assumptions the efficient GMM provides the most efficient estimator.
- We get close to MLE benefits without distributional assumptions!

1ST ESTIMATES LOOK OK.. 2ND STAGE ESTIMATES LOOK LIKE GARBAGE

This means there is a problem with your weighting matrix!

- Make sure you are subtracting off the average $q_N(\theta)$ when computing the covariance.
- Another problem appears is when you take the inverse. There is a statistic known as the condition number which measures the ratio of the minimum and maximum eigenvalue of a matrix.
 - When these eigenvalues are close together then small errors in $A + \epsilon$ lead to small errors in $(A + \epsilon)^{-1}$.
 - Software sometimes reports either the condition number, or its inverse.
 - ▶ In an ideal world this would be \approx 1.
 - ► If the condition number is 10^{±13} it approaches the numerical precision of your computer.
 - ► Even tiny (sampling) errors can lead to nearly infinite weighting matrices.
- Usually this happens if the gradient of $Q_n(\theta)$ is not close to zero in a particular dimension or the average Jacobian $D(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial g(w_i, \theta)}{\partial \theta}$ is not close to zero in some dimension. You are not at the optimum of $Q_n(\theta)$!

POINT ESTIMATES GOOD, SE'S NOT SO MUCH...

- Assuming it is not one of the problems described above, you have probably dropped a $\frac{1}{N}$ or $\frac{1}{\sqrt{N}}$ somewhere.
- You can ignore the N's when obtaining point estimates because scaling $Q_n(\theta)$ or W_n does not affect the location of $\hat{\theta}$, but you need to be more careful in computing V_{θ} .

WHY NOT 3 OR 4 STEP GMM?

Can I get even smaller standard errors?

- Asymptotically the answer is no. Even with a sub-optimal choice of weighting matrix, your first stage $\hat{\theta} \stackrel{p}{\rightarrow} \theta_0$ as $N \rightarrow \infty$.
- This means that in the limit, you always recover the efficient choice of \hat{W} .
- In finite sample, anything can happen, but numerous studies have found little to no improvement from considering a *K*-step GMM estimator.

WHAT ABOUT INFINITE STEP GMM?

There isn't such a thing. But there is the Continuously Updating Estimator (CUE) of Hansen Heaton and Yaron (1996). In this case we let:

$$W(\theta) = \left(\frac{1}{N} \sum_{i=1}^{N} (g(w_i, \theta) - g_N(\theta))(g(w_i, \theta) - g_N(\theta))'\right)$$

$$Q_n(\theta)^{CUE} = g_N(\theta)' \left(\frac{1}{N} \sum_{i=1}^{N} (g(w_i, \theta) - g_N(\theta))(g(w_i, \theta) - g_N(\theta))'\right) g_N(\theta)$$

- **Because** the weighting matrix now changes with θ , even for linear models this becomes very difficult to estimate.
- The original GMM problem was a quadratic optimization problem.
- The CUE problem is no longer a convex optimization problem
- This means that even numerical Quasi-Newton approaches are no longer guaranteed to work

In practice, CUE is not very popular for this reason.

More on CUE

CUE has some additional advantages. We see this by examining the GMM FOC.

$$\hat{D}(\theta)W_n\hat{g}_N(\hat{\theta})=0$$

If we take an Edgeworth expansion we can see how the asymptotic bias term looks:

$$\frac{1}{N^2} \sum_{i=1}^{N} E[g(w_i, \theta) W_n g(w_i, \theta)]$$

- As long as the variance is finite we can see that this bias disappears as $N \to \infty$.
- it also tends to grow linearly with a the number of moment restrictions. This is often referred to as the too many moments or many instruments problem.
- When we estimate $\hat{q}(\hat{\theta})$ and $\hat{D}(\hat{\theta})$ we construct them so that they are mechanically correlated with one another.
- It turns out the CUE estimator fixes this in exactly the right way.
- How is beyond the scope of this note (and course). If you are really interested you should look at Newey and Smith (2004).

EXAMPLE: GRAVITY EQUATION

- An important set of models in international trade talk about Gravity Equations
- They are called gravity because trade declines with distance (or distance²).

$$T_{ij} = \alpha_0 Y_i^{\alpha_1} Y_j^{\alpha_2} D_{ij}^{\alpha_3} \eta_{ij}$$

Take Logs

$$\ln T_{ij} = \ln \alpha_0 + \alpha_1 \ln Y_i + \alpha_2 \ln Y_j + \alpha_3 \ln D_{ij} + \ln \eta_{ij}$$

- T_{ij} (Exports from i to j)
- \blacksquare (Y_i, Y_i) GDP of each country
- \blacksquare D_{ii} distance between two countries

EXAMPLE: GRAVITY EQUATION

If the moment condition holds then everything is good:

$$E[ln(\eta_{ij})|Y_i,Y_jD_{ij}]=0$$

Some problems

- Lots of Zeros in T_{ii} (so we can't take logs).
- If $(Y_i, Y_i D_{ii}, \eta_{ii})$ has heteroskedasticity then moment condition is violated.
- Why? Expectation is linear operator but $log(\cdot)$ not so much.

GRAVITY: PART 2

Rearrange things so that:

$$\begin{split} T_{ij} &= \exp\left(\beta_{0} + \alpha_{1}\log\left(Y_{i}\right) + \alpha_{2}\log\left(Y_{j}\right) + \alpha_{3}\log\left(D_{ij}\right)\right)\eta_{ij} \\ T_{ij} &= \exp\left(X_{i}\beta\right)\eta_{ij} \end{split}$$

This gives us our moment condition:

$$E[T_{ii} - \exp(x_i\beta) | x_i] = O$$

This works as long as we are okay with proportional variance