Estatística Multivariada

Slides de apoio às aulas

Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa 2018/19

Aula 4

Inferência sobre um vetor médio

Inferência sobre μ (população normal univariada)

- ullet Considerem-se as hipóteses estatísticas $H_0: \mu = \mu_0$ vs. $H_1: \mu
 eq \mu_0$
- Sendo $x_1,...,x_n$ uma amostra aleatória de uma população normal univariada de valor médio μ e variância σ^2 (sendo σ desconhecido), sabe-se que, sob H_0

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \frown t_{n-1}$$

sendo H_0 rejeitada se $|t|>t_{(n-1);1-lpha/2}$

Nma amostra de 16 indivíduos com glaucoma de ângulo aberto registaram-se as idades dos pacientes:

```
62 62 68 48 51 60 51 57 57 41 62 50 53 34 62 61
```

Teste se existem evidências estatísticas de que a idade média da população a partir da qual a amostra foi retirada não difere significativamente de 60 anos ($\alpha=0.01$).

Código R:

```
> x<-c(62,62,68,48,51,60,51,57,57,41,62,50,53,34,62,61)
> m0<-60
> m<-mean(x)
> m

[1] 54.9375
> s<-sd(x)
> s

[1] 8.872946
> t<-(m-m0)/(s/sqrt(length(x)))
> t

[1] -2.282218
```

- Com o objetivo de encontrar um teste com boas propriedades é usual restringir a escolha a testes que controlem a probabilidade de erro tipo I, α , a um nível especificado, usualmente, $\alpha=0.01,0.05,0.10$
- Uma forma usual de apresentação do resultado de um teste de hipóteses baseia-se no valor-p (p-value), p
- p é uma estatística (ou seja, função da a.a.) tal que $p = p(x) \in [0,1], \forall x = (x_1,...,x_n)$.
- Seja $T(\mathbf{x})$ é uma estatística apropriada ao teste , então, sob H_0 (teste bilateral), para o ponto amostral fixo $\mathbf{x} = x$ $p = 2P(T(\mathbf{x}) > |t(x)| | H_0)$

$$p = 2P(T(\mathbf{x}) \ge |T(\mathbf{x})|)$$

- sendo t(x) o valor observado para $\mathcal{T}(\mathbf{x})$
- ullet Ao nível de significância lpha deve rejeitar-se ${\it H}_{0}$ sse ${\it p} \leq lpha$

Exemplo (continuação)

Código R:

```
> n<-length(x)
> pcum<-pt(abs(t),df=n-1)
> pvalue<-2*(1-pcum)
> pvalue
[1] 0.03748951
```

Inferência sobre μ (população normal multivariada)

• Numa população multivariada, consideram-se agora as hipóteses estatísticas

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0 = egin{bmatrix} \mu_{10} \\ \mu_{20} \\ \vdots \\ \mu_{p0} \end{bmatrix} ext{ vs. } H_1: \boldsymbol{\mu}
eq \boldsymbol{\mu}_0$$

• Note-se, numa população univariada normal (σ desconhecido), a rejeição de $H_0: \mu=\mu_0$ para valores elevados de |t| equivale à rejeição para valores elevados de t^2

$$t^2 = \frac{(\bar{x} - \mu)^2}{s^2/n} = n(\bar{x} - \mu)(s^2)^{-1}(\bar{x} - \mu)$$

sendo H_0 rejeitada se $t^2 > t_{(n-1);1-\alpha/2}^2$

• Sendo x um vetor aleatório, pode generalizar-se a expressão univariada de t^2 , obtendo-se (com x $\sim N_p(\mu, \Sigma)$ e Σ) desconhecida)

$$T^{2} = (\bar{\mathbf{x}} - \mu_{0})' \left(\frac{1}{n}\mathbf{S}\right)^{-1} (\bar{\mathbf{x}} - \mu_{0}) = n(\bar{\mathbf{x}} - \mu_{0})'(\mathbf{S})^{-1} (\bar{\mathbf{x}} - \mu_{0})$$

(Nota: Para que **S** seja invertível, n > p + 1. Caso contrário, **S** terá determinante nulo.)

Inferência sobre μ (população normal multivariada)

• A estatística T^2 tem distribuição T^2 de Hotelling, com n-1 graus de liberdade, i.e., sob H_0

$$n(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)'(\mathbf{S})^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0) \frown T_p^2(n-1)$$

sendo

$$T^2 \stackrel{d}{=} \frac{p(n-1)}{n-p} F_{(p,n-p)}$$

• Assim, H₀ será rejeitada quando

$$T^2 > \frac{p(n-1)}{n-p} F_{(p,n-p);1-\alpha}$$

onde $F_{(p,n-p);1-lpha}$ representa o quantil de probabilidade 1-lpha da distribuição $F_{(p,n-p)}$

Considere-se a amostra observada:

$$\mathbf{X} = \begin{bmatrix} 6 & 9 \\ 10 & 6 \\ 8 & 3 \end{bmatrix}$$

Iremos testar a hipótese

$$H_0: \mu=\mu_0=egin{bmatrix}11\3\end{bmatrix}$$
 vs. $H_1: \mu
eq\mu_0$

1) Estatísticas amostrais (vetor de médias e matriz de covariâncias):

$$ar{x} = egin{bmatrix} 8 \\ 6 \end{bmatrix}$$
 $S = egin{bmatrix} 4 & -3 \\ -3 & 9 \end{bmatrix}$ $S^{-1} = egin{bmatrix} 1/3 & 1/9 \\ 1/9 & 4/27 \end{bmatrix}$

- 2) Cálculo de $T^2 = n(\bar{x} \mu_0)'(S)^{-1}(\bar{x} \mu_0)$: $T_{\text{obs}}^2 = 7$
- 3) Distribuição de T^2 , sob H_0 :

$$T^2 \stackrel{d}{=} \frac{2(3-1)}{3-2} F_{(2,1)} = 4F_{(2,1)}$$

- 4) Quantil de probabilidade 0.95 de $4F_{(2,1)}$: Para $\alpha=0.05,\ F_{(2,1);0.95}=199.5$, logo $T_{\rm obs}^2<<4F_{(2,1);0.95}.$
- 5) Conclusão: Não se rejeita H_0 , concluindo-se que não existem evidências estatísticas contra H_0

Considere-se a seguinte amostra bivariada de dimensão n = 42 (radiações emitidas por microondas, ficheiro "data3.xlsx"):

Γ	v_1	0.15	0.09	0.18	0.10	0.05	0.12	0.08	0.05	0.08	0.1	0.07	0.02	0.01	0.1
		0.1	0.1	0.02	0.1	0.01	0.4	0.1	0.05	0.03	0.05	0.15	0.1	0.15	0.09
		0.08	0.18	0.10	0.2	0.11	0.3	0.02	0.2	0.2	0.3	0.3	0.4	0.3	0.05
Ī	V2	0.3	0.09	0.3	0.1	0.1	0.12	0.09	0.1	0.09	0.1	0.07	0.05	0.01	0.45
		0.12	0.2	0.04	0.1	0.01	0.6	0.12	0.1	0.05	0.05	0.15	0.3	0.15	0.09
		0.09	0.28	0.1	0.1	0.1	0.3	0.12	0.25	0.2	0.4	0.33	0.32	0.12	0.12

e as transformações $x_1 = v_1^{1/4}$ e $x_2 = v_2^{1/4}$, por forma a garantir o ajuste à distribuição normal bivariada. Teste as hipóteses

$$H_0: \mu = \mu_0 = \begin{bmatrix} 0.562 \\ 0.589 \end{bmatrix}$$
 vs. $H_1: \mu
eq \mu_0$

Código R:

- > dados3<-as.data.frame(readxl::read xlsx("./Datasets/data3.xlsx".col names = TRUE))</pre> > x1<-dados3\$v1^(1/4)
- > x2<-dados3\$v2^(1/4)
- > X<-matrix(c(x1,x2).42.2)
- > m<-colMeans(X)
- > S<-var(X)

Exemplo (continuação)

```
T_{\rm obs}^2 = 1.257
```

Código R:

```
> n<-nrow(X)

> mu0<-c(0.562,0.589)

> t2<-n*t(c(m[1]-mu0[1],m[2]-mu0[2]))%*%solve(S)%*%(c(m[1]-0.562,m[2]-0.589))

> t2

[,1]

[1,] 1.2573
```

Sob
$$H_0$$
, $T^2 \stackrel{d}{=} \frac{2(41)}{40} F_{(2,40)}$. Para $\alpha = 0.05$, $F_{(2,40);0.95} = 3.23$ e $2.05 F_{(2,40)} = 6.63$.

Código R:

```
> p<-ncol(X)
> F<-qf(p = 0.95,df1 = p,df2 = n-p)
> vc<-((p*(n-1))/((n-p)))*F
> vc
[11 6.62504
```

Logo $T_{
m obs}^2 < 6.63$. Não se rejeita H_0 , concluindo-se que não existem evidências estatísticas contra H_0

Regina Bispo Estatística Multivariada 2018/19

Região de confiança para μ (população normal multivariada)

ullet A região de confiança a (1-lpha) imes 100 para o vetor $oldsymbol{\mu}$ normal $oldsymbol{p}-$ variado é dada por

$$n(\bar{\mathbf{x}} - \boldsymbol{\mu})'(\mathbf{S})^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}) \le \frac{p(n-1)}{n-p} F_{(p,n-p);1-\alpha} \Leftrightarrow$$
$$\Leftrightarrow (\bar{\mathbf{x}} - \boldsymbol{\mu})'(\mathbf{S})^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}) \le \frac{p(n-1)}{n(n-p)} F_{(p,n-p);1-\alpha}$$

tal que

$$P\left[(\bar{\mathbf{x}} - \boldsymbol{\mu})'(\mathbf{S})^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}) \le \frac{p(n-1)}{n(n-p)} F_{(p,n-p);1-\alpha}\right] = 1 - \alpha$$

ullet Face a um conjunto de n observações multivariadas $x_1,...,x_n$ a região de confiança para μ é dada por

$$(\bar{x} - \mu)'(S)^{-1}(\bar{x} - \mu) \le \frac{p(n-1)}{n(n-p)} F_{(p,n-p);1-\alpha}$$

ullet A região de confiança elipsóide tem centro $ar{x}$ e eixos

$$\pm\sqrt{\ell_j}\sqrt{\frac{p(n-1)}{n(n-p)}}F_{(p,n-p);1-\alpha}\mathbf{e}_j$$

sendo ℓ_{j} (j=1,...,p) os valores próprios e \mathbf{e}_{j} (j=1,...,p) os vetores próprios de S.

Regina Bispo Estatística Multivariada 2018/19

Exemplo (continuação)

Considerando o exemplo anterior, defina a região de confiança a 95% para o vetor (μ_1, μ_2) (esboce graficamente a região de confiança).

A região de confiança a 95% corresponde a todos os pontos da superfície definida por

$$\begin{bmatrix} 0.564 - \mu_1, 0.603 - \mu_2 \end{bmatrix} \begin{bmatrix} 203.498 & -163.907 \\ -163.907 & 200.769 \end{bmatrix} \begin{bmatrix} 0.564 - \mu_1 \\ 0.603 - \mu_2 \end{bmatrix} \le \frac{2(41)}{42(40)} \times 3.23 \Leftrightarrow$$

$$\Leftrightarrow \begin{bmatrix} 0.564 - \mu_1, 0.603 - \mu_2 \end{bmatrix} \begin{bmatrix} 203.498 & -163.907 \\ -163.907 & 200.769 \end{bmatrix} \begin{bmatrix} 0.564 - \mu_1 \\ 0.603 - \mu_2 \end{bmatrix} \le 0.158$$

A região de confiança elíptica tem eixos definidos por

$$\begin{bmatrix} \bar{\mathbf{x}}_1 \\ \bar{\mathbf{x}}_2 \end{bmatrix} \pm \sqrt{\ell_1} \sqrt{\frac{\rho(n-1)}{n(n-\rho)}} F_{(\rho,n-\rho);1-\alpha} \mathbf{e}_1 = \sqrt{0.026} \sqrt{0.158} \begin{bmatrix} 0.704 \\ 0.710 \end{bmatrix} = \begin{bmatrix} 0.609 \\ 0.649 \end{bmatrix}, \begin{bmatrix} 0.519 \\ 0.557 \end{bmatrix}$$

$$\begin{bmatrix} \bar{\mathbf{x}}_1 \\ \bar{\mathbf{x}}_2 \end{bmatrix} \pm \sqrt{\ell_2} \sqrt{\frac{\rho(n-1)}{n(n-\rho)}} F_{(\rho,n-\rho);1-\alpha} \mathbf{e}_2 = \sqrt{0.00273} \sqrt{0.158} \begin{bmatrix} -0.710 \\ 0.704 \end{bmatrix} = \begin{bmatrix} 0.549 \\ 0.618 \end{bmatrix}, \begin{bmatrix} 0.578 \\ 0.588 \end{bmatrix}$$

Note-se que o ponto $\mu_0'=(0.562,0.589)$ está dentro da região definida pela elipse de confiança

O ficheiro	"data4.xlsx"	contem	medições	do	grau	de	rigidez	е	resistência	à	flexão	de	30	toros
de madeira	1													

a) Construa e desenhe a elipse de confiança a 99% para μ

b) Suponha que os valores 2000 (rigidez) e 10000 (resistência) são aceites como os valores médios característicos das variáveis em estudo. Teste se, com base na amostra obtida, é possível corroborar a afirmação (calcule o *p-value*).

c) Estudo o ajustamento à distribuição normal bivariada.

Exemplo (continuação)

Código R:

```
> dados4<-as.data.frame(readxl::read xlsx("./Datasets/data4.xlsx".col names = TRUE))</pre>
> m<-colMeans(dados4); S<-var(dados4); eigen<-eigen(S)
> p<-ncol(dados4); n<-nrow(dados4)
> alpha<-0.01
> #Maior eixo
> m+sart(eigen$values[1])*
    sqrt(((p*(n-1))/(n*(n-p)))*qf(1-alpha,df1 = p,df2 = n-p))*eigen$vectors[,1]
        ×1
                     x2
1982.322 9499.446
> m-sqrt(eigen$values[1])*
    \operatorname{sqrt}(((p*(n-1))/(n*(n-p)))*\operatorname{qf}(1-\operatorname{alpha},\operatorname{df}1 = p,\operatorname{df}2 = n-p))*\operatorname{eigen} \operatorname{vectors}[,1]
        ×1
1738,678 7208,220
> #Menor eixo
> m+sqrt(eigen$values[2])*
    \operatorname{sqrt}(((p*(n-1))/(n*(n-p)))*\operatorname{qf}(1-\operatorname{alpha},\operatorname{df}1 = p,\operatorname{df}2 = n-p))*\operatorname{eigen}vectors[,2]
        ×1
                     x2
1681.985.8372.816
> m-sqrt(eigen$values[2])*
    \operatorname{sqrt}(((p*(n-1))/(n*(n-p)))*\operatorname{qf}(1-\operatorname{alpha},\operatorname{df}1 = p,\operatorname{df}2 = n-p))*\operatorname{eigen}\operatorname{vectors}[,2]
        ×1
2039.015 8334.850
```

Código R:

```
> m0 < -c(2000, 10000)
> T2<-n*t(m-m0)%*%solve(S)%*%(m-m0)
> T2
         [,1]
[1,] 23.65452
> F < -qf(1-alpha,df1 = p,df2 = n-p)
> vc<-((p*(n-1))/(n-p))*F
> vc
[1] 11.29537
> ifelse(T2>vc, "Rejeita-se H0", "Não se rejeita H0")
     [,1]
[1,] "Rejeita-se HO"
> p<-1-pf(((n-p)/(p*(n-1)))*T2,df1=p,df2=n-p)
> p
              [,1]
[1,] 0.0002363051
```

Intervalos de confiança simultâneos

- Do ponto de vista prático, em regra, em estudos multivariados é necessário e útil a construção de IC para cada um dos valores médios do vetor μ .
- A determinação destes IC implica o entendimento de que estes se verificam simultaneamente para uma dada probabilidade de confiança ("simultânea")
- Seja $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ e considere-se a combinação linear

$$z = a_1x_1 + ... + a_px_p = \mathbf{a}'\mathbf{x}$$
 com $\mu_z = \mathbf{a}'\mu$ e $\sigma_z^2 = \mathbf{a}'\mathbf{\Sigma}\mathbf{a}$, i.e., $z \frown N(\mathbf{a}'\mu, \mathbf{a}'\mathbf{\Sigma}\mathbf{a})$

• Considerando a a.a. $x_1,...,x_n$, $\bar{z}=a'\bar{x}$ e $s_z^2=a'Sa$, e, simultaneamente para todos os valores de a, o intervalo

$$\left(\mathbf{a}'\bar{\mathbf{x}}-\sqrt{\frac{p(n-1)}{n(n-p)}}F_{(p,n-p);1-\alpha}\mathbf{a}'\mathbf{S}\mathbf{a};\mathbf{a}'\bar{\mathbf{x}}+\sqrt{\frac{p(n-1)}{n(n-p)}}F_{(p,n-p);1-\alpha}\mathbf{a}'\mathbf{S}\mathbf{a}\right)$$

contem $\mathbf{a}'\boldsymbol{\mu}$ com probabilidade $1-\alpha$.

• As sucessivas escolhas $\mathbf{a}' = (1, 0, ..., 0)$, $\mathbf{a}' = (0, 1, ..., 0)$,..., $\mathbf{a}' = (0, 0, ..., 1)$ permitem obter, respetivamente, os sucessivos intervalos para os p valores médios μ_1 , μ_2 ,..., μ_p

$$\left(\bar{x}_1-\sqrt{\frac{p(n-1)}{(n-\rho)}}F_{(\rho,n-\rho);1-\alpha}\times\frac{s_{11}}{n};\bar{x}_1+\sqrt{\frac{p(n-1)}{(n-\rho)}}F_{(\rho,n-\rho);1-\alpha}\times\frac{s_{11}}{n}\right)$$

$$\left(\bar{x}_{2} - \sqrt{\frac{p(n-1)}{(n-p)}}F_{(p,n-p);1-\alpha} \times \frac{s_{22}}{n}; \bar{x}_{2} + \sqrt{\frac{p(n-1)}{(n-p)}}F_{(p,n-p);1-\alpha} \times \frac{s_{22}}{n}\right)$$

..

$$\left(\bar{x}_{p}-\sqrt{\frac{p(n-1)}{(n-p)}}F_{(p,n-p);1-\alpha}\times\frac{s_{pp}}{n};\bar{x}_{p}+\sqrt{\frac{p(n-1)}{(n-p)}}F_{(p,n-p);1-\alpha}\times\frac{s_{pp}}{n}\right)$$

Estes intervalos são designados por intervalos de confiança simultâneos a $(1-\alpha) \times 100\%$ ou T^2- intervalos

 Estes intervalos correspondem às projeções ("sombras") da região de confiança elipsóide sobre os eixos.

Considerando os dados do exemplo anterior, defina os IC simultâneos a 95% para o vetor $\mu'=(\mu_1,\mu_2).$

$$\left(\bar{x}_{1} - \sqrt{\frac{2(41)}{40}}F_{(2,40);0.95} \times \frac{s_{11}}{n}; \bar{x}_{1} + \sqrt{\frac{2(41)}{40}}F_{(2,40);0.95} \times \frac{s_{11}}{n}\right) = (0.516, 0.612)$$

$$\left(\bar{x}_{2} - \sqrt{\frac{2(41)}{40}}F_{(2,40);0.95} \times \frac{s_{22}}{n}; \bar{x}_{2} + \sqrt{\frac{2(41)}{40}}F_{(2,40);0.95} \times \frac{s_{22}}{n}\right) = (0.555, 0.651)$$

One-at-a-time intervalos de confiança

• Uma abordagem alternativa consiste em considerar os p intervalos univariados para os valores médios $\mu_1, \, \mu_2, ..., \, \mu_p$

$$\begin{split} &\left(\bar{x}_{1}-t_{(n-1);1-\alpha/2}\sqrt{\times\frac{s_{11}}{n}};\bar{x}_{1}+t_{(n-1);1-\alpha/2}\sqrt{\frac{s_{11}}{n}}\right) \\ &\left(\bar{x}_{2}-t_{(n-1);1-\alpha/2}\sqrt{\frac{s_{22}}{n}};\bar{x}_{2}+t_{(n-1);1-\alpha/2}\sqrt{\frac{s_{22}}{n}}\right) \\ &\dots \end{split}$$

$$\left(\bar{x}_p - t_{(n-1);1-\alpha/2}\sqrt{\frac{s_{pp}}{n}}; \bar{x}_p + t_{(n-1);1-\alpha/2}\sqrt{\frac{s_{pp}}{n}}\right)$$

- Estes intervalos ignoram a estrutura de covariância das p covariáveis;
- ullet Por outro lado, a confiança (probabilidade conjunta) associada a todas as estimativas intervalares não é 1-lpha, mas sim

$$(1-\alpha)^p$$

• Para corrigir esta situação pode fazer-se a correção de Bonferroni que consiste em considerar uma probabilidade de erro α/p (confiança = $1 - \alpha/p$) em cada intervalo:

$$\bar{x}_i \pm t_{(n-1);(1-(\alpha/p)/2)} \sqrt{\frac{s_i^2}{n}} (i = 1, ..., p)$$

assegurando uma confiança global não inferior a 1-lpha

Inferência sobre μ (grandes amostras)

• Vimos anteriormente que para n suficientemente grande (n >> p)

$$n(\bar{\mathbf{x}} - \boldsymbol{\mu})' \mathbf{S}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}) \xrightarrow[n \to \infty]{d} \chi_p^2$$

• Com base neste resultado, ao nível de significância α , rejeita-se $H_0=\mu=\mu_0$ contra $H_0=\mu\neq\mu_0$ quando o valor observado para

$$n(\bar{\mathbf{x}} - \boldsymbol{\mu})' \mathbf{S}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}) > \chi^2_{p;(1-\alpha)}$$

Os IC simultâneos assintóticos são definidos por

$$\left(\mathbf{a}'\bar{\mathbf{x}} - \sqrt{\chi^2_{p;(1-\alpha)} \times \frac{\mathbf{a}'\mathsf{Sa}}{n}}; \mathbf{a}'\bar{\mathbf{x}} + \sqrt{\chi^2_{p;(1-\alpha)} \times \frac{\mathbf{a}'\mathsf{Sa}}{n}}\right)$$

sendo os sucessivos intervalos simultâneos assintóticos para $\mu_1,~\mu_2,...,~\mu_p$ a (1-lpha) imes 100%, respetivamente, dados por

$$\left(\bar{x}_1 - \sqrt{\chi^2_{p;(1-\alpha)} \times \frac{s_{11}}{n}}; \bar{x}_1 + \sqrt{\chi^2_{p;(1-\alpha)} \times \frac{s_{11}}{n}}\right)$$

$$\left(\bar{x}_p - \sqrt{\chi^2_{p;(1-\alpha)} \times \frac{s_{pp}}{n}}; \bar{x}_p + \sqrt{\chi^2_{p;(1-\alpha)} \times \frac{s_{pp}}{n}}\right)$$

Inferência sobre μ (grandes amostras)

• Também neste caso se podem obter os intervalos univariados por aproximação à distribuição normal

$$\left(\overline{x}_1 - z_{1-\alpha/2} \sqrt{\frac{s_{11}}{n}}; \overline{x}_1 + z_{1-\alpha/2} \sqrt{\frac{s_{11}}{n}}\right)$$
...

$$\left(\bar{x}_p - z_{1-\alpha/2}\sqrt{\frac{s_{pp}}{n}}; \bar{x}_p + z_{1-\alpha/2}\sqrt{\frac{s_{pp}}{n}}\right)$$

Com correcção de Bonferroni:

$$\left(\bar{x}_1 - z_{1-\alpha/(2p)}\sqrt{\frac{s_{11}}{n}}; \bar{x}_1 + z_{1-\alpha/(2p)}\sqrt{\frac{s_{11}}{n}}\right)$$

$$\left(\bar{x}_p - z_{1-\alpha/(2p)}\sqrt{\frac{s_{pp}}{n}}; \bar{x}_p + z_{1-\alpha/(2p)}\sqrt{\frac{s_{pp}}{n}}\right)$$

Inferência sobre dois vetores médios

Comparação de 2 valores médios (população normal univariada, amostras emparelhadas)

- Em muitos estudos é usual proceder-se à medição (repetida) das variáveis em análise nas mesmas unidades estatísticas, em diferentes tempos → amostras emparelhadas
- Considere-se o caso univariado para a situação de 2 amostras emparelhadas. Se x representa a variável em estudo (população normal univariada), então x_{i1} e x_{i2} (i=1,...,n) representam as amostras emparelhadas a partir das quais é possível calcular

$$d_i = x_{i1} - x_{i2} (i = 1, ..., n)$$

sendo d_i variáveis iid $N(\mu_d, \sigma_d^2)$.

• Neste caso, sob $H_0: \mu_d = 0$

$$t = \frac{\bar{d}}{s_d/\sqrt{n}} \frown t_{n-1}$$

- Assim, H_0 será rejeitada quando $|t|>t_{1-lpha/2;(n-1)}$
- Intervalo de confiança para μ a (1-lpha) imes 100%

$$\left(\bar{d} - t_{(n-1);1-\alpha/2} \times \frac{s_d}{\sqrt{n}}; \bar{d} + t_{(n-1);1-\alpha/2} \times \frac{s_d}{\sqrt{n}}\right)$$

Comparação de 2 vetores médios (população normal multivariada, amostras emparelhadas)

• Considerem-se agora as hipóteses estatísticas

$$H_0: \boldsymbol{\mu}_d = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 vs. $H_1: \boldsymbol{\mu}_d \neq \mathbf{0}$

• Sendo **d** um vetor aleatório tal que **d** $\sim N_p(\mu_d, \Sigma_d)$, pode generalizar-se a expressão univariada de t^2 , obtendo-se, sob H_0

$$T^2 = n(\bar{\mathbf{d}} - \mu_{d0})'(\mathbf{S}_d)^{-1}(\bar{\mathbf{d}} - \mu_{d0}) = n\bar{\mathbf{d}}'(\mathbf{S}_d)^{-1}\bar{\mathbf{d}} \frown T_p^2(n-1)$$

onde

$$T^2 \stackrel{d}{=} \frac{p(n-1)}{n-p} F_{(p,n-p)}$$

• Assim, H₀ será rejeitada quando

$$T^2 > \frac{p(n-1)}{n-p} F_{(p,n-p);1-\alpha}$$

onde $F_{(p,n-p);1-lpha}$ representa o quantil de probabilidade 1-lpha da distribuição $F_{(p,n-p)}$

Regina Bispo Estatística Multivariada 2018/19 28 / 37

Região de confiança para a diferença de 2 vetores médios (população normal multivariada, amostras emparelhadas)

$$(\bar{\mathbf{d}} - \boldsymbol{\mu}_d)' \mathbf{S}^{-1} (\bar{\mathbf{d}} - \boldsymbol{\mu}_d) \leq \frac{p(n-1)}{n(n-p)} F_{(p,n-p);1-\alpha}$$

ullet Os p IC simultâneos para μ_{d_j} (j=1,...,p) são dados por a (1-lpha) imes 100%

$$ar{d}_j \pm \sqrt{rac{p(n-1)}{n(n-p)}} F_{(p,n-p);1-lpha} \sqrt{rac{s_{d_j}^2}{n}}$$

sendo $ar{d}_j$ o j-ésimo elemento do vetor $ar{\mathbf{d}}$ e $s_{d_j}^2$ o i-ésimo elemento da diagonal da matriz \mathbf{S}_d

ullet Os p IC simultâneos de Bonferroni para μ_{d_i} (j=1,...,p) são dados por a (1-lpha) imes 100%

$$ar{d}_j \pm t_{(n-1);1-lpha/(2
ho)} \sqrt{rac{s_{d_j}^2}{n}}$$

A análise de 11 amostras de águas residuais em dois laboratórios distintos revelou as seguintes medições de duas componentes orgânicas x_1 e x_2 :

	La	b. 1	Lab	o. 2
	x_1	<i>x</i> ₂	x_1	<i>x</i> ₂
1	6	27	25	15
2	6	23	28	13
3	18	64	36	22
4	8	44	35	29
5	11	30	15	31
6	34	75	44	64
7	28	26	42	30
8	71	124	54	64
9	43	54	34	56
10	33	30	29	20
11	20	14	39	21

Serão os resultados médios laboratoriais significativamente diferentes? Calcule os IC simultâneos a 95% de confiança.

Código R:

> dx1

> dx2

Código R:

Estatísticas amostrais:

```
> d<-matrix(c(dx1,dx2),11,2)
> md<-colMeans(d)
> md

[1] -9.363636 13.272727
> Sd<-var(d)
> Sd

[,1] [,2]

[1,] 199.25455 88.30909

[2,] 88.30909 418.61818
```

Estatística do teste:

```
Código R:
```

Regina Bispo

Exemplo (continuação)

Valor crítico:

Código R:

```
> p<-ncol(d)
> vc<-(p*(n-1))/(n-p)*qf(0.95,p,n-p)
> vc
[1] 9.458877
```

Logo, rejeita-se H_0 existindo evidências de diferenças significativas entre os resultados médios dos dois laboratórios.

IC simultâneos:

Código R:

```
> md[1]-sqrt((p*(n-1))/(n*(n-p))*qf(0.95,p,n-p))*sqrt(Sd[1,1]/n)
[1] -13.31031
> md[1]+sqrt((p*(n-1))/(n*(n-p))*qf(0.95,p,n-p))*sqrt(Sd[1,1]/n)
[1] -5.416963
> md[2]-sqrt((p*(n-1))/(n*(n-p))*qf(0.95,p,n-p))*sqrt(Sd[2,2]/n)
[1] 7.552199
> md[2]+sqrt((p*(n-1))/(n*(n-p))*qf(0.95,p,n-p))*sqrt(Sd[2,2]/n)
[1] 18.99326
```

Regina Bispo Estatística Multivariada 2018/19 32 / 37

Comparação de 2 vetores médios (população normal multivariada, amostras independentes)

- Sejam
 - $(\mathbf{x}_{11},...,\mathbf{x}_{1n_1})$ a a.a. 1 de dimensão n_1 extraída de uma população $N_p(\mu_1,\mathbf{\Sigma}_1)$
 - $(\mathbf{x}_{21},...,\mathbf{x}_{2n_2})$ a a.a. 2 de dimensão n_2 extraída de uma população $N_p(\mu_2,\mathbf{\Sigma}_2)$ • $(\mathbf{x}_{11},...,\mathbf{x}_{1n_1})$ e $(\mathbf{x}_{21},...,\mathbf{x}_{2n_2})$ amostras independentes e $\mathbf{\Sigma}_1=\mathbf{\Sigma}_2$
- Considerem-se agora as hipóteses estatísticas

$$H_0: \mu_1 = \mu_2 \text{ vs. } H_1: \mu_1 \neq \mu_2 \Leftrightarrow H_0: \mu_1 - \mu_2 = \mathbf{0} \text{ vs. } H_1: \mu_1 - \mu_2 = \mathbf{0}$$

Sob *H*₀

$$T^{2} = \left[(\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2}) - (\mu_{1} - \mu_{2}) \right]' \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{S}_{pooled} \right]^{-1} \left[(\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2}) - (\mu_{1} - \mu_{2}) \right] \curvearrowright T_{p}^{2} (n_{1} + n_{2} - 2)$$

onde

$$S_{pooled} = \frac{n_1 - 1}{n_1 + n_2 - 2} S_1 + \frac{n_2 - 1}{n_1 + n_2 - 2} S_2$$

е

$$T^{2} \stackrel{d}{=} \frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{(p, n_{1} + n_{2} - p - 1)}$$

• Assim, H_0 será rejeitada quando $T^2 > \frac{(n_1+n_2-2)p}{n_1+n_2-p-1}F_{(p,n_1+n_2-p-1);1-\alpha}$ onde $F_{(p,n_1+n_2-p-1);1-\alpha}$ representa o quantil de probabilidade $1-\alpha$ da distribuição $F_{(p,n_1+n_2-p-1)}$

Região de confiança para a diferença de 2 vetores médios (população normal multivariada, amostras independentes)

• A região de confiança elíptica a $(1-\alpha) imes 100$ para a diferença $\mu_1 - \mu_2$ de uma população normal p-variada tem eixos

$$(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2) \pm c\sqrt{\ell_j \left(rac{1}{n_1} + rac{1}{n_2}
ight)} \, \mathbf{e}_j \, (j=1,...,p)$$

com

$$c^{2} = \frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{(p, n_{1} + n_{2} - p - 1); 1 - \alpha}$$

sendo ℓ_{j} e \mathbf{e}_{j} (j=1,...,p) os valores e vetores próprios de \mathbf{S}_{pooled} , respetivamente

Regina Bispo Estatística Multivariada 2018/19

Região de confiança para a diferença de 2 vetores médios (população normal multivariada, amostras independentes)

ullet Os IC simultâneos para $\mu_{1j}-\mu_{2j}$ (j=1,...,p) a (1-lpha) imes 100% são dados por

$$(ar{\mathtt{x}}_{1j} - ar{\mathtt{x}}_{2j}) \pm c \sqrt{\left(rac{1}{n_1} + rac{1}{n_2}
ight) s_{j, pooled}^2}$$

sendo $s_{j,pooled}^2=\frac{(n_1-1)s_{1j}^2+(n_2-1)s_{2j}^2}{n_1+n_2-2}$ o estimador ponderado da variância da j-ésima variável, com $c^2=\frac{(n_1+n_2-2)p}{n_1+n_2-p-1}F_{(p,n_1+n_2-p-1);1-\alpha}$

 Os IC simultâneos de Bonferroni para $\mu_{1j}-\mu_{2j}$ (j=1,...,p) a (1-lpha) imes 100% são dados por

$$(ar{\mathtt{x}}_{1j} - ar{\mathtt{x}}_{2j}) \pm t_{(n_1 + n_2 - 2); 1 - lpha/(2
ho)} \sqrt{\left(rac{1}{n_1} + rac{1}{n_2}
ight) s_{j,
m pooled}^2}$$

Considere as seguintes estatísticas amostrais de duas amostrais independentes extraídas de populações normais bivariadas:

Código R:

```
> p<-2
> n1<-50
> n2<-50
> m1<-c(8.3,4.1)
> m2<-c(10.2,3.9)
> S1<-matrix(c(2,1,1,6),2,2)
> S2<-matrix(c(2,1,1,4),2,2)
```

Defina a região de confiança elíptica a 95% para a diferença entre os vetores médios populacionais.

Código R:

```
> Spool<-(n1-1)/(n1+n2-2)*S1+(n2-1)/(n1+n2-2)*S2

> eval<-eigen(Spool)$values

> evec<-eigen(Spool)$vectors

> c<-sqrt((n1+n2-2)*p/(n1+n2-p-1)*qf(0.95,2,n1+n2-p-1))

> (m1-m2)-c*sqrt(eval[]]*(1/n1+1/n2))*evec[,1]

[1] -2.2334961 -0.9014628

> (m1-m2)+c*sqrt(eval[1]*(1/n1+1/n2))*evec[,1]

[1] -1.566504 1.301463
```

Regina Bispo Estatística Multivariada 2018/19 36 / 37

Exemplo (continuação)

Código R:

```
> (m1-m2)-c*sqrt(eval[2]*(1/n1+1/n2))*evec[,2]
[1] -1.27685682  0.01132743
> (m1-m2)+c*sqrt(eval[2]*(1/n1+1/n2))*evec[,2]
[1] -2.5231432  0.3886726
```