

Claims

1. (amended) An optical Fourier transform device comprising:

5 a parabolic optical pulse generator to generate a control optical pulse of a shape expressed by a quadratic function or a parabola;

a coupler to couple a signal optical pulse with the control optical pulse;

10 an optical Kerr medium to linearly chirp the signal optical pulse over an entire pulse or a wide time range by cross phase modulation between the signal optical pulse and the control optical pulse; and

15 a dispersive medium having a group-velocity dispersion, wherein

the launched signal optical pulse and the control optical pulse are coupled by the coupler and are introduced into the optical Kerr medium, the launched signal optical pulse is linearly chirped at a chirp rate K by the optical Kerr medium by the cross phase modulation between the signal optical pulse and the control optical pulse, the signal optical pulse emitted from the optical Kerr medium is made to pass through the dispersive medium whose dispersion amount D is $D=1/K$, to convert a temporal waveform of the launched signal optical pulse into a shape of a frequency spectrum thereof.

25

2. The optical Fourier transform device according to claim 1, wherein

the signal optical pulse having passed through the dispersive medium and the control optical pulse are again coupled and are 30 introduced into the optical Kerr medium, the signal optical pulse having passed through the dispersive medium is again linearly chirped by the optical Kerr medium by the cross phase modulation

between the signal optical pulse and the control optical pulse, to convert the temporal waveform of the launched signal optical pulse into the shape of the frequency spectrum thereof, and the shape of the frequency spectrum of the launched signal optical pulse
5 into the temporal waveform thereof.

3. The optical Fourier transform device according to claim 1 or 2, wherein

the signal optical pulse is made to pass through the optical
10 Kerr medium twice so that chirp is completely compensated, and a transform-limited waveform without chirp is obtained at output.

4. The optical Fourier transform device according to claim 2, further comprising:

15 an optical filter that separates the signal optical pulse having passed through the optical Kerr medium from the control optical pulse and introduces the separated signal optical pulse into the dispersive medium; and

20 a coupler that again couples the signal optical pulse having passed through the dispersive medium and the separated control optical pulse and introduces them into the optical Kerr medium.

5.(amended) An optical Fourier transform device comprising:

25 a parabolic optical pulse generator to generate a control optical pulse of a shape expressed by a quadratic function or a parabola;

a coupler to couple a signal optical pulse with the control optical pulse;

30 an optical Kerr medium to linearly chirp the signal optical pulse over an entire pulse or a wide time range by cross phase modulation between the signal optical pulse and the control optical

pulse; and

a dispersive medium having a group-velocity dispersion,
wherein

the parabolic optical pulse generator comprises:

5 a optical pulse transmitter to generate a optical
pulse; and

a dispersion-decreasing fiber in which an absolute
value of a normal dispersion is decreased in a longitudinal
direction,

10 the launched signal optical pulse is made to passes through
the dispersive medium, the signal optical pulse emitted from the
dispersive medium and the control optical pulse are coupled by the
coupler and are introduced into the optical Kerr medium, the signal
optical pulse emitted from the dispersive medium is linearly
15 chirped by the optical Kerr medium by the cross phase modulation
between the signal optical pulse and the control optical pulse,
to convert a shape of a frequency spectrum of the launched signal
optical pulse into a temporal waveform.

20 6. The optical Fourier transform device according to claim
5, wherein

25 the signal optical pulse linearly chirped by the optical Kerr
medium is again made to pass through the dispersive medium, to
convert the temporal waveform of the launched signal optical pulse
into the shape of the frequency spectrum thereof, and the shape
of the frequency spectrum of the launched signal optical pulse into
the temporal waveform thereof.

30 7. The optical Fourier transform device according to claim
5 or 6, wherein

the signal optical pulse is made to pass through the
dispersive medium twice so that chirp is completely compensated,

and a transform-limited waveform without chirp is obtained at output.

8.(amended) The optical Fourier transform device according
5 to claim 1, wherein

a chirp rate K of a frequency chirp applied to the signal optical pulse by the cross phase modulation between the signal optical pulse and the control optical pulse by the optical Kerr medium and a dispersion amount D of the dispersive medium satisfy
10 a relation of $D = 1/K$, and the chirp rate K can be adjusted by one of or plurality of a peak power of the control optical pulse, a length of the optical Kerr medium, and a nonlinear refractive index of the optical Kerr medium.

15 9.(amended) The optical Fourier transform device according to claim 1, wherein the parabolic optical pulse generator comprises:

an optical pulse transmitter to generate an optical pulse;
and
20 an optical fiber amplifier which has a normal dispersion and through which the optical pulse from the optical pulse transmitter is transmitted.

10.(amended) An optical Fourier transform device
25 comprising:

a parabolic optical pulse generator to generate a control optical pulse of a shape expressed by a quadratic function or a parabola;
a coupler to couple a signal optical pulse with the control optical pulse;
an optical Kerr medium to linearly chirp the signal optical pulse over an entire pulse or a wide time range by cross phase

modulation between the signal optical pulse and the control optical pulse; and

a dispersive medium having a group-velocity dispersion,
wherein

5 the parabolic optical pulse generator comprises:

 a optical pulse transmitter to generate a optical pulse; and

 a dispersion-decreasing fiber in which an absolute value of a normal dispersion is decreased in a longitudinal direction,

10 ~~direction,~~

the launched signal optical pulse and the control optical pulse are coupled by the coupler and are introduced into the optical Kerr medium, the launched signal optical pulse is linearly chirped by the optical Kerr medium by the cross phase modulation between the signal optical pulse and the control optical pulse, the signal optical pulse emitted from the optical Kerr medium is made to pass through the dispersive medium, to convert a temporal waveform of the launched signal optical pulse into a shape of a frequency spectrum thereof.

20

 11. The optical Fourier transform device according to claim 10, wherein

 the dispersion-decreasing fiber includes fibers in which a change in a dispersion value is discretely approximated in each section by cascading plural kinds of optical fibers in which a dispersion value is continuously changed, or a dispersion value is constant or is linearly changed in a longitudinal direction, or one fiber in which a dispersion value is continuously changed, and the change in the dispersion value is expressed by a following expression or is approximated by the following expression

$$D(z) = D_0 / (1 + D_0 \Gamma z)$$

(where $D(z)$: a function to express the change in the dispersion

value, z : a coordinate of the fiber in the longitudinal direction, D_0 : a function value at an incident end ($z = 0$), and Γ : a rate of decrease of magnitude of the normal dispersion).

5 12.(amended) The optical Fourier transform device according to claim 1, wherein the parabolic optical pulse generator comprises:

an optical pulse transmitter to generate an optical pulse;

an optical filter whose amplitude transmission

10 characteristic is expressed by a quadratic function or a parabola, and which changes a frequency spectrum of the optical pulse from the optical pulse transmitter into a quadratic function type or a parabola; and

15 an optical Fourier transform circuit to convert a temporal waveform of the optical pulse into a shape of a frequency spectrum waveform of the optical pulse having passed through the optical filter.

20 13.(amended) The optical Fourier transform device according to claim 1, wherein

in order to efficiently generate the high-speed cross phase modulation between the control light and the signal light, a low dispersion optical Kerr medium having a small dispersion value is used as the optical Kerr medium, or a wavelength of the signal light 25 and/or the control light is set so that wavelengths of the signal light light and the control light become wavelengths symmetrical to each other with respect to a zero-dispersion wavelength of the optical Kerr medium.

30 14.(amended) The optical Fourier transform device according to claim 1, further comprising:

a clock extraction circuit to extract a clock signal based

on the signal optical pulse, and

an optical delay element to give an optical delay to the control optical pulse,

wherein the parabolic optical pulse generator generates the
5 control optical pulse in accordance with the clock signal from the clock extraction circuit, and/or the optical delay element gives the optical delay to the control optical pulse so that timing is matched with the signal optical pulse.

10 15.(amended) An optical Fourier transform method wherein an launched signal optical pulse and a control optical pulse of a shape expressed by a quadratic function or a parabola are coupled and are introduced into an optical Kerr medium, the launched signal optical pulse is linearly chirped at a chirp rate K over
15 an entire pulse or a wide time range by the optical Kerr medium by the cross phase modulation between the signal optical pulse and the control optical pulse, the signal optical pulse emitted from the optical Kerr medium is made to pass through the dispersive medium having a group-velocity dispersion whose dispersion amount D is
20 D=1/K, to convert a temporal waveform of the launched signal optical pulse into a shape of a frequency spectrum thereof.

16. The optical Fourier transform method according to claim
15, wherein

25 the signal optical pulse having passed through the dispersive medium and the control optical pulse are again coupled and are introduced into the optical Kerr medium, the signal optical pulse having passed through the dispersive medium is again linearly chirped by the optical Kerr medium by the cross phase modulation
30 between the signal optical pulse and the control optical pulse, to convert the temporal waveform of the launched signal optical pulse into the shape of the frequency spectrum thereof, and the

**shape of the frequency spectrum of the launched signal optical pulse
into the temporal waveform thereof.**

17. (canceled)

5

18. (canceled)