LISTING OF THE CLAIMS

- (currently amended) A gradient copolymer comprising at least two different monomer units,
 - a) the first (M₁), the homopolymer of which corresponding to a Tg₁ of less than 20°C, representing at least 50% by weight of the total weight of the copolymer,
 - b) the second (M₂), the homopolymer of which corresponding to a Tg₂ of greater than 20°C representing at most 50% by weight of the total weight of the copolymer, at least one of the monomers being hydrophilic and representing at least 5% by weight of the total weight of the copolymer, said gradient copolymer comprising at least one monomer M_i such that the probability of encountering M_i in any standardized position x situated on the polymer chain is nonzero; and wherein said gradient copolymer is soluble or dispersible in both water and in organic solvents, and wherein said copolymer has number average and-weight average masses of between 5000 g/mol and 1 000 000 g/mol and a polydispersity index of between 1.1 and 2.5, said copolymer further comprising nitroxide residue units.
- 2. (previously presented) The copolymer as claimed in claim 1, wherein Tg₁ is between -150 and 20°C.
- 3. (canceled)
- 4. (previously presented) The copolymer as claimed in claim 1, wherein the hydrophilic monomer represents at least 10% by weight of the total weight of the copolymer.
- 5. (previously presented) The copolymer as claimed in claim 1, wherein the hydrophilic monomer is selected from the group consisting of:
 - ethylenic carboxylic acids, acrylic acid, methacrylic acid, itaconic acid fumaric acid;

- acrylates and methacrylates of polyethylene glycol or of glycol which are or are not substituted on their end functional group by alkyl, phosphate, phosphonate or sulfonate groups;
- amides of unsaturated carboxylic acids, acrylamide, methacrylamide and their N-substituted derivatives;
- aminoalkyl acrylates, methacrylates, aminoalkylmethacrylamides;
- carboxylic anhydrides carrying a vinyl bond, maleic anhydride, fumaric anhydride;
- vinylamides, vinylpyrrolidone, vinylacetamide;
- vinylamines, such as vinylmorpholine, vinylamine; and
- vinylpyridine.
- 6. (previously presented) The copolymer as claimed in claim 1, wherein the monomerM₁ is selected from the group of monomers consisting of:
 - linear or branched C₁-C₁₂ alkyl acrylates,
 - polyethylene glycol acrylate, polyethylene glycol (meth)acrylate,
 - dienes, butadiene and isoprene.
- 7. (currently amended) A process for producing a gradient copolymer comprising polymerizing by solution or bulk controlled radical polymerization, at a temperature of between 10 and 160°C, in the presence of a radical polymerization initiator and of an agent for controlling the polymerization, a mixture of monomers comprising at least two monomers, the first (M₁), the homopolymer of which corresponding to a Tg₁ of less than 20°C, representing at least 50% by weight of the total weight of the mixture, the second (M₂), the homopolymer of which corresponding to a Tg₂ of greater than 20°C, representing at most 50% by weight of the total weight of the mixture, at least one of the monomers having to be hydrophilic and represent at least 5% by weight of the total weight of the mixture, wherein the agent for controlling the polymerization is a nitroxide of general formula:

- where R' and R, which are identical or different and which are optionally connected so as to form a ring, are alkyl groups having between 1 and 40 carbon atoms which are optionally substituted by hydroxyl, alkoxy or amino groups;
- and where R_L is a monovalent group with a molar mass of greater than 16 g/mol which can be a phosphorus group or an aromatic group.
- 8. (cancelled)
- 9. (previously presented) The process as claimed in claim 7, wherein the polymerization initiator and the control agent are replaced by a mixture composed of alkoxyamine corresponding to the following general formula (II) and of nitroxide corresponding to the general formula (I):

in which:

- n is an integer of less than or equal to 8 and preferably of between 1 and 3,
- Z is a carrying monovalent or polyvalent radical of styryl, acryloyl or methacryloyl type,
- where R' and R, which are identical or different and which are optionally

- connected so as to form a ring, are alkyl groups having between 1 and 40 carbon atoms which are optionally substituted by hydroxyl, alkoxy or amino groups;
- and where R_L is a monovalent group with a molar mass of greater than 16 g/mol which can be a phosphorus group or an aromatic group,

the nitroxide (I) representing from 0 to 20% by weight of the total weight of the mixture.

10. (currently amedned) The process as claimed in claim 8 claim 7 wherein, R_L is a phosphonate group of formula:

- where R" and R", which are identical or different and which are optionally connected so as to form a ring, are alkyl groups having between 1 and 40 carbon atoms which are optionally substituted by hydroxyl, alkoxy or amino groups; the nitroxide (I) representing from 0 to 20% by weight of the total weight of the mixture.
- 11. (previously presented) A process for the aqueous dissolution, of the gradient copolymer of claim 1 comprising:
 - 1) dissolving the copolymer in a ketone solution, at a level of solid of between 20 and 90%,
 - 2) neutralizing the solution obtained in 1, if necessary, by addition of a molar solution either of acid or of base, the acid or base choice being conditioned by the chemical nature of the hydrophilic monomer,
 - 3) adding water, with vigorous stirring, to the solution obtained in 1 or optionally in 2 in a proportion such that the level of solid obtained is between 1 and 80%; optionally, the water can be replaced by water/alcohol mixtures in proportions ranging from 99/1 to 50/50;

	4) evaporating the ketone until the desired level of solid is obtained.
12.	(canceled)
13.	(previously presented) A paint, adhesive, glue or cosmetic formulation comprising the gradient copolymer of claim 1.
14.	(canceled)
15.	(canceled)
16.	(canceled)
17.	(previously presented) The copolymer of claim 1 wherein the second monomer (M ₂), the homopolymer of which corresponding to a Tg ₂ of greater than 50°C.
18.	(previously presented) The copolymer as claimed in claim 2, wherein Tg_1 is between -120 and 15°C.
19.	(previously presented) The copolymer as claimed in claim 1, exhibiting a polydispersity index of between 1.1 and 2.
20.	(previously presented) The process of claim 7 wherein said controlled radical polymerization, occurs at a temperature of between 25 and 130°C.
21.	(previously presented) The paint, adhesive, glue or cosmetic formulation of claim 13, wherein said formulation is an aqueous-based formulation.