

Rachael Alexandroff, Sofia Pignataro, Racquel Fygenson, Ruxin Shen Group 13

EU regulation 261/2004 requires

airlines to give you money

if your flight is

delayed > 3 hours!

What about in the US?

Are delayed flights a problem in the US?

What factors correlate with delay?

Distribution of Cause for Delay

Distribution of Cause for Delay

Top Cause for Delay, by Airport

Weather database: missing airports for important cities, e.g. Chicago (ORD) and Dallas (DFW)

Proportional Summary*

Let's <u>separate</u>
by variables we
think might be
relevant

Proportional Summary*

Let's <u>separate</u>
by variables we
think might be
relevant

and look at the proportion of flights that are delayed

Proportional Summary*

Variables we evaluated

- → Day of the week
- → Month of the year
- → Time of day (4 buckets)
- → Elapsed flight time
- → Distance of flight
- → Airlines
- → Season

Group 13

Proportional Summary*

Variables we evaluated

- → Day of the week
- → Month of the year
- → Time of day (4 buckets)
- → Elapsed flight time
- → Distance of flight
- → Airlines (2 buckets)
- → Season

Proportional Summary*

- Data Used --Flight Traffic

Data Not Used

Weather ←—
Outside → Fare
scope of question Event ←—

Retain
important
data points
that were
not
represented
in these
dataframes

- → Day of the week
- → Month of the year
- → Time of day (4 buckets)
- → Elapsed flight time
- → Distance of flight
- → Airlines (2 buckets)
- → Season

Hypothesis Testing

Budget Airlines

Non-Budget Airlines

Hypothesis Testing

	Budget	
Not Budget	S	

S Significant
NS Not Significant

 H_0 = Proportion of delayed flights are equal Proportion of delayed flights are not equal

"Budget" Airlines:

- → Spirit
- → JetBlue
- → ExpressJet
- → Frontier
- → SkyWest
- → Southwest
- → Virgin

"Non-Budget" Airlines:

- → American
- → Delta
- → Hawaiian Air
- → United
- → Alaska Air

Hypothesis Testing

Hypothesis Testing

	Morning	Afternoon	Evening
Afternoon	S		
Evening	S	S	
Night	S	S	S

H₀ = Proportion of delayed flights are equal

 H_a = Proportion of delayed flights are not equal

S Significant
NS Not Significant

Hypothesis Testing

Season

Hypothesis Testing

	Spring	Summer	Autumn
Summer	NS		
Autumn	S	S	
Winter	NS	NS	S

H₀ = Proportion of delayed flights are equal

 H_a = Proportion of delayed flights are not equal

S Significant
NS Not Significant

Hypothesis Testing

Hypothesis Testing

Day of the Week

	Sun	Mon	Tue	Wed	Thu	Fri
Mon	S					
Tue	NS	S				
Wed	NS	S	NS			
Thu	S	NS	S	S		
Fri	S	NS	S	S	S	
Sat	S	S	S	S	S	S

H₀ = Proportion of delayed flights are equal

H_a = Proportion of delayed flights are not equal

S Significant
NS Not Significant

Can we predict delay?

Machine Learning

Benchmark:
Logistic Regression

Modeling: Random Forest

Random Forest

Delay: Y/N?

Random Forest

Delay: Y/N?

Time of day is an important feature

Random Forest

Delay: Y/N?

Right now, our model has a lot of false positives

Overall Accuracy: 68%

Random Forest

Delay: Y/N?

Right now, our model has a lot of false positives

Overall Accuracy: 68%

Can we predict length of delay?

Random Forest

Length of Delay?

Flight duration, flight distance, day of week, and month are important features

Can we predict length of delay?

Can we predict length of delay?

(So What?)

Alert shoppers when a flight is at risk of being delayed.

(So What?)

Alert shoppers when a flight is at risk of being delayed.

Booking.com

Alert shoppers when a flight is at risk of being delayed.

(So What?)

Alert shoppers when a flight is at risk of being delayed.

(So What?)

Alert shoppers when a flight is at risk of being delayed.

(So What?)

Things we could do better

Bucket delays by type:

- → >3hrs ("Catastrophic")
- → <3hrs ("Not Catastrophic")</p>
- → Cancelled

Bucket delays by cause:

- → Airline
- → Weather
- → Air System
- → Aircraft
- → Security

Group 13

A quick overview...

Time of day and length of flight most affect whether a flight will be delayed.

Our model recall is 60% for delayed flights and 70% for non-delayed flights.

To improve we would use more data, optimize feature selection and investigate differences between types of delays.

... to open for questions :)