TVM: AN AUTOMATED END-TO-END OPTIMIZING COMPILER FOR DEEP LEARNING

전기정보공학부 김희원

Papers read

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin, C., & Krishnamurthy, A. (2018). TVM: An automated end-to-end optimizing compiler for deep learning. In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI '18) (pp. 579–594). USENIX Association.

https://www.usenix.org/conference/osdi18/presentation/chen

Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L., Guestrin, C., & Krishnamurthy, A. (2018). Learning to optimize tensor programs. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 31, pp. 3393–3404). Curran Associates, Inc. https://doi.org/10.48550/arXiv.1805.08166

Overview

- End-to-end deep learning compiler stack
- Translates high-level models to low level optimized code
- Supports diverse backends: CPU, GPU, FPGA
- Graph-level optimization, operator-level optimization: auto-scheduling via AutoTVM

https://tvm.apache.org/docs/how_to/tutorials/e2e_opt_model.html

TVM Compiler Pipeline

1. Graph-Level Optimizations

Computational GraphNode = operation / Edge = dataflow dependency

- Graph-level optimization methods
 - Operator Fusion: combine multiple operators into a single kernel
 - Constant Folding: precompute statically determinable values at compile-time
 - Static Memory Planning: pre-allocate memory for each intermediate tensor
 - Data Layout Transformation: reorder data in back-end-friendly forms for memory efficiency

2. Operator-Level Optimizations

- Tensor expression language for $C = A^T \cdot B$:
- Doesn't specify execution details such as loop structure- separates scheduling from computation
- 1) Nested parallelism with cooperation: data parallel tasks are parallelized. "Shared-nothing nested parallelism": not shared between working thread siblings.

```
for thread_group (by, bx) in cross(64, 64):
                                               All threads cooperatively
  for thread_item (ty, tx) in cross(2, 2):
                                               load AS and BS in different
    local CL[8][8] = 0
                                               parallel patterns
    shared AS[2][8], BS[2][8]
    for k in range(1024):
      for i in range(4):
        AS[ty][i*4+tx] = A[k][by*64+ty*8+i*4+tx]
      for each i in 0..4:
        BS[tv][i*4+tx] = B[k][bx*64+ty*8+i*4+tx]
      memory_barrier_among_threads() _
                                                   Barrier inserted
      for yi in range(8):
                                                   automatically
        for xi in range(8):
                                                   by compiler
          CL[yi][xi] += AS[yi] * BS[xi]
      for yi in range(8):
        for xi in range(8):
          C[yo*8+yi][xo*8+xi] = CL[yi][xi]
```

AS, BS: shared arrays

2. Operator-Level Optimizations

- 2) Tensorization:
 - Computations → Tensor operations
 - TVM made tensorization <u>extensible by</u>
 <u>separating</u> the target hardware intrinsic
 (instructions) from the schedule.

```
w, x = t.placeholder((8, 8)), t.placeholder((8, 8))
                                                         declare behavior
k = t.reduce_axis((0, 8))
y = t.compute((8, 8), lambda i, j:
t.sum(w[i, k] * x[j, k], axis=k))
                                                lowering rule to generate
def gemm intrin lower(inputs, outputs):
                                                hardware intrinsics to carry
   ww ptr = inputs[0].access ptr("r")
   xx ptr = inputs[1].access ptr("r")
                                           out the computation
   zz_ptr = outputs[0].access_ptr("w")
   compute = t.hardware_intrin("gemm8x8", ww_ptr, xx_ptr, zz_ptr)
   reset = t.hardware_intrin("fill_zero", zz_ptr)
   update = t.hardware_intrin("fuse_gemm8x8_add", ww_ptr, xx_ptr, zz_ptr)
   return compute, reset, update
gemm8x8 = t.decl_tensor_intrin(y.op, gemm_intrin_lower)
```

- 3) Explicit Memory Latency Hiding: The process of overlapping memory operations with computation to maximize utilization of memory and compute resources.
 - CPU: simultaneous multithreading or hardware prefetching
 - *GPU*: rapid context switching of many warps of threads
 - TPU: decoupled access-execute (DAE) architecture

2. Operator-Level Optimizations-Auto Scheduling via AutoTVM

Motivation:

- Systems relied on manually optimized libraries (ex) cuDNN) → significant engineering cost was needed to deploy them to new hardware targets.
- Use <u>learning</u> to automatically optimize operators.

■ 1) Schedule Space Specification

- Considers as many configurations as possible (billions)
- <u>Developers</u> can declare knobs themselves,
 or, a <u>generic master template</u> for each hardware back-end is created beforehand

2. Operator-Level Optimizations-Auto Scheduling via AutoTVM

- 2) ML-Based Cost Model
 - <u>Statistical approach</u> instead of considering all factors affecting performance
 - The model is <u>updated experimentally</u> as we explore more configurations.

 The gradient tree boosting model (based on XGBoost) does prediction in 0.67ms (on average), which was the fastest among

different automation methods for a conv2d operator in ResNet-18 on TITAN X.

2. Operator-Level Optimizations-Auto Scheduling via AutoTVM

■ 3) Schedule Exploration

- Runs a <u>parallel Simulated Annealing (SA)</u> algorithm for large search spaces.
 - Randomly walks to a nearby configuration:
 - Accepts if cost decreases.
 - Rejects with some probability if cost increases.

4) Distributed Device Pool

Implements an RPC-based <u>distributed device pools</u> for optimization.

AutoTVM in detail

- 1) Statistical Cost Model $(\hat{f}(x) \approx f(x))$ for a low-level program x)
 - Extract features
 - Loop Structure Information: memory access count, data reuse ratio...
 - Generic Annotations: vectorization, unrolling, thread binding...
 - *i) XGBoost*: requires precise feature engineering + fast prediction
 - ii) TreeGRU: feature engineering not required + training speed is slow
 used with batching and GPU
- 2) Training Objective Function
 - Run time statistics data $D = \{e_i, s_i, c_i\}$
 - Rank loss function $\sum_{i,j} \log (1 + e^{-sign(c_i c_j)(\hat{f}(x_i) \hat{f}(x_j))})$. Used because <u>relative</u> order of program run time is important

AutoTVM in detail

■ 3) Exploration Module

- Select the top-performing batch of candidates to update \hat{f} .
- Simulated Annealing

4) Accelerating Optimization via Transfer Learning

- The cost model is shared using the <u>common transferable representation</u> (invariant to the source/target domains)
- Transferable representation:
 - GBT: Z: context feature matrix such that $Z_{ik} = i th$ feature of loop k Relation feature between features i, j: $R_t^{(ij)} = \max_{k \in \{k \mid Z_{kj} < \beta_t\}} Z_{ki}$
 - TreeGRU: $\hat{f}(x) = \hat{f}^{(global)}(x) + \hat{f}^{(local)}(x)$ $\hat{f}^{(global)}$ is traind on D' (= historical data from previously seen workloads)

Comparison to Other Systems

XLA:

- Focuses on graph-level optimizations: too high-level

Halide:

Introduced the idea of <u>separating computing and scheduling</u>
 TVM adopted this + focuses on new scheduling challenges of DL workloads

■ ATLAS, FFTW:

Autotuning (Single kernel, predefined parameters)

■ Tensor Comprehension:

Black-box auto-tuning + polyhedral optimizations via Genetic Algorithm

Evaluation

- Evaluated TVM on 4 types of platforms:
 - 1) server-class GPU, 2) embedded GPU, 3) embedded CPU, 4) FPGA SoC
- Benchmarks:
 - ResNet, MobileNet, LSTM Language Model, Deep Q Network(DQN), Deep Convolutional Generative Adversarial Networks(DCGAN)
- **■** Compared with:
 - Existing DL frameworks such as MxNet, TensorFlow

Evaluation

- 1) Server-class GPU (Nvidia Titan X):
 - End-to-end performance:
 TVM <u>outperforms</u>, <u>d</u>ue to joint graph optimization + Auto TVM
 - Operator-level optimization performance:
 TVM mostly outperforms, due to large schedule space + ML-based search
- 2) Embedded CPU (ARM Cortex A53, Quad Core):
 - End-to-end performance:TVM <u>outperforms</u>
 - Operator-level optimization performance:
 TVM <u>outperforms</u> hand-optimized versions

Figure 14: GPU end-to-end evaluation for TVM, MXNet, Tensorflow, and Tensorflow XLA. Tested on the NVIDIA Titan X.

Figure 15: Relative speedup of all conv2d operators in ResNet-18 and all depthwise conv2d operators in MobileNet. Tested on a TITAN X. See Table 2 for operator configurations. We also include a weight pretransformed Winograd [25] for 3x3 conv2d (TVM PT).

Figure 16: ARM A53 end-to-end evaluation of TVM and TFLite.

Figure 17: Relative speedup of all conv2d operators in ResNet-18 and all depthwise conv2d operators in mobilenet. Tested on ARM A53. See Table 2 for the configurations of these operators.

Evaluation

- 3) Embedded GPU (ARM Mali-T860MP4 GPU on Firefly-RK3399 board):
 - End-to-end performance: TVM <u>outperforms</u>

- 4) FPGA (Vanilla Deep Learning Accelerator-VDLA):
 - TVM <u>outperforms</u> by 40x speedup.
 - The overall performance wasn't estimated since some parts were executed using CPU (gray parts).

Conclusion

- TVM proposed an end-to-end compilation stack for DL across diverse HW backends.
- Graph-level optimization + Operator-level optimization (Auto TVM)
- TVM is evaluated to outperform existing benchmarks on diverse backend platforms.