Abaqus Handout: Natural frequency and Buckling

Created by: Srijan Neogi and Harkirat Singh November 15, 2022

1 Natural Frequency

Elastic modulus, E Moment of inertia, I Mass density, ρ Cross sectional area, A

Natural frequencies: $\omega^2 = \frac{k^2}{L^2} \sqrt{\frac{EI}{\rho A}}$

where k is the root of the transcendental equation $1 + \cos(k) \cosh(k) = 0$

- Part
 - Part \Rightarrow Create
 - Select 2D Planar, Deformable, Wire, and Approximate size of $5\,$
 - Sketch the part and click done
- Property
 - Material \Rightarrow Create
 - Mechanical \Rightarrow Elasticity \Rightarrow Elastic
 - Enter the material properties for steel
 - Go to General \Rightarrow density \Rightarrow enter mass density and click OK
 - Profile \Rightarrow Create Rectangular \Rightarrow Enter the cross sectional dimensions and click OK
 - Section \Rightarrow Create Select Beam \Rightarrow Beam \Rightarrow Continue
 - Assign \Rightarrow Section Select the entire part and click done
 - Assign \Rightarrow Beam section orientation Select the entire part and click done
 - Accept the default orientation and click OK
- Assembly
 - Create instance \Rightarrow OK
- Step
 - Step \Rightarrow Create \Rightarrow Static/Linear perturbation \Rightarrow Select Frequency and continue
 - Number of eigenvalues write 8 \Rightarrow OK

- Load
 - BC \Rightarrow Create \Rightarrow Mechanical \Rightarrow Displacement/Rotation \Rightarrow Continue \Rightarrow Select the ledt end and click done \Rightarrow Enter U1 = U2 = UR3 = 0 and click OK
- Mesh
 - Make sure Object is set to part
 - Mesh \Rightarrow Element Type \Rightarrow Select the entire part and click done \Rightarrow Family: Beam \Rightarrow Select Beam type: Cubic Formulation
 - Seed \Rightarrow Part \Rightarrow Approximate global size: $20 \Rightarrow$ Click OK
 - Mesh \Rightarrow Part \Rightarrow Yes
- Job
 - Job \Rightarrow Create \Rightarrow Continue/OK Job \Rightarrow Submit \Rightarrow Job-1 When the job successfully completes: Job \Rightarrow Results \Rightarrow Job-1
- Visualization
 - Open the odb file and visualize the mode shapes and frequencies

2 Buckling

Smallest P corresponding to first buckling mode is P_{cr}

2

- Part
 - Part \Rightarrow Create
 - Select 2D Planar, Deformable, Wire, and Approximate size of 5
 - Sketch the part and click done
- Property
 - Material \Rightarrow Create
 - Mechanical \Rightarrow Elasticity \Rightarrow Elastic

- Enter the material properties for steel and click OK
- Profile \Rightarrow Create Rectangular \Rightarrow Enter the cross sectional dimensions and click OK
- Section \Rightarrow Create Select Beam \Rightarrow Beam \Rightarrow Continue
- Assign \Rightarrow Section Select the entire part and click done
- Assign \Rightarrow Beam section orientation Select the entire part and click done
- Accept the default orientation and click OK

Assembly

- Create instance \Rightarrow OK

• Step

- Step \Rightarrow Create \Rightarrow Static/Linear perturbation \Rightarrow Select Buckle and continue
- Number of eigenvalues write 4

• Load (Pinned-Pinned)

- BC1 \Rightarrow Create \Rightarrow Mechanical \Rightarrow Displacement/Rotation \Rightarrow Continue \Rightarrow Select the bottom end and click done \Rightarrow Enter U1 = U2 = 0 and click OK
- BC2 \Rightarrow Give U1 = 0 at the top end
- Load \Rightarrow Mechanical \Rightarrow Select concentrated force \Rightarrow Enter CF2 = -1

• Mesh

- Make sure Object is set to part
- Mesh \Rightarrow Element Type \Rightarrow Select the entire part and click done \Rightarrow Family: Beam \Rightarrow Select Beam type: Cubic Formulation
- Seed \Rightarrow Edges \Rightarrow Select the entire part and click done \Rightarrow Method: By number \Rightarrow Number of elements: $20 \Rightarrow$ Click OK Mesh \Rightarrow Part \Rightarrow Yes

Joh

- Job \Rightarrow Create \Rightarrow Continue/OK - Job \Rightarrow Submit \Rightarrow Job-1 - When the job successfully completes: Job \Rightarrow Results \Rightarrow Job-1

• Visualization

- Open the odb file and visualize the mode shapes and corresponding eigenvalues