JEE MAIN | IIT JEE

ERROR ANALYSIS

CONCEPT + PYQs

REVISION in 20 Min

Mohit Sir, IIT Kharagpur

TOPICS TO BE DISCUSSED

- 1. Absolute Error, Relative Error & Percentage Error
- 2. Combination of Errors
- 3. Questions on Errors

Chapter	Formulae_Concept VIDEO LINK	Electrostatics	https://youtu.be/3stXbGRM
Unit & Dimensions	https://youtu.be/wdd-wlZF4Hk	Capacitors	https://youtu.be/EXEiickNL
Error Analysis	https://youtu.be/AEMsHUUAo5s		V - 1 - 2 - 6 - 1 - 5 - 7 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Vernier Calliper	https://youtu.be/pVoN045dV8I	Current Electricity	https://youtu.be/gm8FUfjrX
Screw Gauge	https://youtu.be/gYd2PtmZ0mw	Moving Charges and Magnetic Effect of	https://youtu.be/ULD2Ok1C
Kinematics_Motion in 1d	https://youtu.be/U4NNxFaFliE	Current	
Kinematics_Motion in 2d	https://youtu.be/4_Zo5WhMf7w	Earth's Magnetism	https://youtu.be/a4CT5uVw/
Laws of Motion	https://youtu.be/7JIR8gNRQIs	Magnetic Properties	https://youtu.be/63cwdYXN
Friction	https://youtu.be/Rn1bLst7eGk	EMI	https://youtu.be/puVavm GF
Work Energy Power	https://youtu.be/kjrXoE-kDI8		
Circular Motion	https://youtu.be/KnFymKHlkT0	Alternating Current	https://youtu.be/74dTY-pzM
Centre of Mass	https://youtu.be/ads35RKD618	Ray Optics	https://youtu.be/BhnyTWzII
Cons of Momentum & Collision	https://youtu.be/3f0u4L-lyyw	Wave Optics Part 1_Interference	https://youtu.be/LG5nlE8X1
Rotational Motion – Part 1	https://youtu.be/O6j1mLp06XI	Wave Optics Part 2 _ Diffraction _ Polarization	https://youtu.be/ymMyyJGG
Rotational Motion – Part 2	https://youtu.be/OHni1DRdfAQ		
Rotational Motion_Part 3	https://youtu.be/quglqfYRCrk	Optical Instruments	https://youtu.be/OQssbDH0/
Gravitation	https://youtu.be/rAj2huLVaEk	Electromagnetic Waves	https://youtu.be/bcVXgEkyC
Properties of Solids	https://youtu.be/gSXxjk89l_c	Semiconductors Basics + Zener Diode	https://youtu.be/ A2JomQ7-
Fluids Statics (Part 1)	https://youtu.be/RFKx9B9yo3M	Semiconductors Transistors	https://youtu.be/psDwl84Nz
Fluid Dynamics (Part 2)	https://youtu.be/Y717vQpUEJQ		
Fluid Properties (Part 3)	https://youtu.be/V8xUWWK2oT0	Semiconductors_Logic Gates	https://youtu.be/pZdQAzLbF
Simple Harmonic Motion	https://youtu.be/RIb7ofNG09I	Communication Systems	https://youtu.be/8NgMqK9X
Thermal Properties Heat Transfer	https://youtu.be/OYjjyPlzddE	Modern Physics_Part 1_Atomic Physics	https://youtu.be/9VKUnE3mj
KTG	<pre>https://youtu.be/PyNboHgtYzM https://youtu.be/XO1tvFhla0l</pre>		https://youtu.be/24oTQp84
Thermodynamics	https://youtu.be/iz_kf1jRDRw	Modern Physics_Part 2_Photoelectric Effect	
	https://youtu.be/mZWNmH19wDQ	Modern Physics_Part 3_Dual Nature of Light	<u>https://youtu.be/0zoR_saMA</u>
String Waves (Part-1)		Modern Physics_Part 4_Radioactivity	https://youtu.be/AdX3YBhQy
String Waves (Part-2)	https://youtu.be/PDGq4d3xA6c	Modern Physics_Part 5_Nuclear Physics	https://youtu.be/VDWqVahG
Wave Motion - Organ Pipes and Resonance Tube	https://youtu.be/fB7pfJ77za8		
Wave Motion - Doppler's Effect	https://youtu.be/9-BxOaamnwg	Modern Physics_Part 6_X Rays	https://youtu.be/dSHXdzX7N

■ EDUNITI

1. Absolute Error, Relative Error & Percentage Error

(Error = True Value - Measured Value)

STEP 1:
$$R_{avg} = \frac{R_1 + R_2 + ... + R_n}{n}$$
 (we take R_{avg} as True Value)

STEP 2: Absolute Error
$$\Delta R_1 = R_1 - R_{avg}$$

$$\Delta R_2 = R_2 - R_{avg}$$

$$\triangle R\eta = R\eta - Ravg$$

$$\Delta R_{\text{avg}} = |\Delta R_1| + |\Delta R_2| + \cdots + |\Delta R_n|$$

... Continued

Example 2.7 We measure the period of oscillation of a simple pendulum. In successive measurements, the readings turn out to be 2.63 s, 2.56 s, 2.42 s, 2.71s and 2.80 s. Calculate the absolute errors, relative error or percentage error.

Answer The mean period of oscillation of the pendulum

$$T = \frac{(2.63 + 2.56 + 2.42 + 2.71 + 2.80)s}{5}$$

$$= \frac{13.12}{5} s$$

$$= 2.624 s$$

$$= 2.62 s$$

As the periods are measured to a resolution of 0.01 s, all times are to the second decimal; it is proper to put this mean period also to the second decimal.

The errors in the measurements are

$$2.63 \text{ s} - 2.62 \text{ s} = 0.01 \text{ s}$$

$$2.56 \text{ s} - 2.62 \text{ s} = -0.06 \text{ s}$$

$$2.42 \text{ s} - 2.62 \text{ s} = -0.20 \text{ s}$$

$$2.71 \text{ s} - 2.62 \text{ s} = 0.09 \text{ s}$$

$$2.80 \text{ s} - 2.62 \text{ s} = 0.18 \text{ s}$$

Note that the errors have the same units as the quantity to be measured.

The arithmetic mean of all the absolute errors (for arithmetic mean, we take only the magnitudes) is

$$\Delta T_{mean} = [(0.01+0.06+0.20+0.09+0.18)s]/5$$

= 0.54 s/5
= 0.11 s

That means, the period of oscillation of the simple pendulum is (2.62 ± 0.11) s i.e. it lies between (2.62 + 0.11) s and (2.62 - 0.11) s or between 2.73 s and 2.51 s.

2. Combination of Errors

L. error in measurement is very small

(a) Sum or difference

$$L = 4.1 \pm 0.1 \text{ cm}, b = 3.3 \pm 0.1 \text{ cm}$$

$$S = L + b = 7.4 \pm 0.2 \, \text{cm}$$

$$S = L - b$$

= 0.8 ± 0.2 cm

$$\Rightarrow \ln P = a \ln x + b \ln y - c \ln z + lnd$$

$$\Rightarrow \frac{dP}{P} = a \frac{dz}{z} + b \frac{dy}{y} - c \frac{dz}{z} + 0$$

in re

To find Max Error in P
$$\frac{\Delta P}{P} = \alpha \frac{\Delta x}{x} + b \frac{\Delta y}{y} + C \frac{\Delta z}{z}$$

$$\frac{\Delta z}{z} = \frac{15}{82}$$

$$\frac{\Delta z}{z} = \frac{15}{82}$$

3. Questions on Errors

The density of a solid metal sphere is determined by measuring its mass and its diameter. The maximum error in the density of the sphere is (x/100)%. If the relative errors in measuring the mass and the diameter are 6.0% and 1.5% respectively, the value of x is

3. Questions on Errors

The density of a solid metal sphere is determined by measuring its mass and its diameter. The maximum error in the density of the sphere is (x/100)%. If the relative errors in measuring the mass and the diameter are 6.0% and 1.5% respectively, the value of x is

$$\frac{\Delta d}{d} \times 100 = 6\%$$

··· Continued

The density of a material in the shape of a cube is determined by measuring three sides of the cube and its mass. If the relative errors in measuring the mass and length are respectively 1.5% and 1%, the maximum error in determining the density is

(2018 Main)

(a) 6%

(b) 2.5%

(c) 3.5%

(d) 4.5%

··· Continued

 $\varepsilon_{\times 2}$. The density of a material in the shape of a cube is s_0 determined by measuring three sides of the cube and its $\triangle m_{\chi/0} = 1.5\%$ mass. If the relative errors in measuring the mass and length are respectively 1.5% and 1%, the maximum error in $\triangle \angle \times 100 = 1$. (2018 Main) L determining the density is

(a) 6% (b) 2.5% (c) 3.5% /(d) 4.5%

$$So|^{n}$$
:
 $\Delta \frac{m}{m} \times 100 = 1.5\%$
 $\Delta \frac{L}{L} \times 100 = 1\%$

$$P = \frac{m}{L^3} \Rightarrow \frac{\Delta f}{P} = \frac{\Delta m}{m} + \frac{3\Delta L}{L}$$

$$\Rightarrow \frac{\Delta f}{P} \times 100 = 1.5 + 3 \times 1$$

$$= \frac{4.5 \cdot L}{L}$$

··· Continued

 $\mathcal{E} \times 3$. In a simple pendulum, experiment for determination of acceleration due to gravity (g), time taken for 20 oscillations is measured by using a watch of 1 second least count. The mean value of time taken comes out to be 30 s. The length of pendulum is measured by using a meter scale of least count 1 mm and the value obtained 55.0 cm. The percentage error in the determination of g is close to

(2019 Main, 8 April II)

(a) 0.7%

(b) 6.8%

(c) 3.5%

(d) 0.2%

··· Continued

son: Least Count is taken as Error.

$$T = 2\pi \sqrt{\frac{L}{g}} \Rightarrow 9 = 4\pi^2 L$$

 $\epsilon \times 3$. In a simple pendulum, experiment for determination of acceleration due to gravity (g), time taken for 20 oscillations is measured by using a watch of 1 second least count. The mean value of time taken comes out to be 30 s. The length of pendulum is measured by using a meter scale of least count 1 mm and the value obtained 55.0 cm. The percentage error in the determination of g is close to (2019 Main, 8 April II)

··· Continued

 $\epsilon \times 4$. A physical quantity z depends on four observables a, b, c

and d, as
$$z = \frac{a^2b^{2/3}}{\sqrt{c}d^3}$$
. The percentage of error in the mea-

surement of a, b, c and d are 2%, 1.5%, 4% and 2.5% respectively. The percentage of error in z is

(a) 12.25 %

(b) 14.5 %

(c) 16.5 %

(d) 13.5 %

JEE MAIN 2020

··· Continued

 $\epsilon \times 4$. A physical quantity z depends on four observables a, b, c

and d, as
$$z = \frac{a^2b^{2/3}}{\sqrt{c}d^3}$$
. The percentage of error in the mea-

surement of a, b, c and d are 2%, 1.5%, 4% and 2.5% respectively. The percentage of error in z is

(b) 14.5 %

(d) 13.5 %

JEE MAIN 2020

$$Z = \frac{a^2 b^{2/3}}{\sqrt{c} d^3}$$

$$\Rightarrow \frac{\Delta Z}{Z} = \frac{2\Delta a}{a} + \frac{2\Delta b}{3b} + \frac{1}{2} \frac{\Delta C}{c} + \frac{3\Delta d}{d}$$

$$\frac{\Delta Z}{Z} \times 100 = (2 \times 2) + (\frac{2}{3} \times 1.5) + (\frac{1}{2} \times 4) + (3 \times 2.5)$$

$$= 4 + 1 + 2 + 7.5$$

$$= 14.5 \%$$

··· Continued

The current voltage relation of diode is given by $I = (e^{1000V/T} - 1) \,\text{mA}$, where the applied voltage V is in volt and the temperature T is in kelvin. If a student makes an error measuring $\pm 0.01 \,\text{V}$ while measuring the current of 5 mA at 300 K, what will be the error in the value of current in mA? (2014 Main) (a) $0.2 \,\text{mA}$ (b) $0.02 \,\text{mA}$ (c) $0.5 \,\text{mA}$ (d) $0.05 \,\text{mA}$

··· Continued

Ex5. The current voltage relation of diode is given by $I = (e^{1000V/T} - 1)$ mA, where the applied voltage V is in volt and the temperature T is in kelvin. If a student makes an error measuring ±0.01 V while measuring the current of 5 mA at 300 K, what will be the error in the value of current in mA? (2014 Main)

(b) 0.02 mA (c) 0.5 mA (d) 0.05 mA (a) 0.2 mA

PYQS LINKS (JEE MAIN)

2021 Feb 2021 March 2021 July 2021 August

https://youtu.be/irjQwBIrEoM

https://youtu.be/7za14uUHkps

https://youtu.be/OFQ8bUdFafc

https://youtu.be/0SHRzwUopXo

https://youtu.be/ri69BwOlh3A

Revision Series Playlist Link

https://bit.ly/3eBbib9

JEE Main PYQs Link

https://bit.ly/2S54jzh

Chapter wise 2021, 2020, 2018

GoldMine Link

https://bit.ly/2VhOGFF

