Curso de Engenharia de Computação Sistemas Operacionais

Introdução

Slides da disciplina Sistemas Operacionais Curso de Engenharia de Computação Instituto Mauá de Tecnologia – Escola de Engenharia Mauá Prof. Marco Antonio Furlan de Souza

- Um computador moderno possui...
 - Um ou mais processadores;
 - Memória principal;
 - Discos;
 - Impressoras;
 - Vários dispositivos de entrada/saída.

Gerenciar todos esses componentes requer uma camada de software - o Sistema Operacional!

- Onde se situa o sistema operacional
 - O sistema operacional abrange softwares que podem operar de dois modos:
 - Modo kernel: acesso completo ao hardware;
 - Modo usuário: somente um subconjunto das instruções de máquina estão disponíveis.
 - Vantagens da separação em modos:
 - Programas do usuário devem seguir uma interface provida pelo sistema operacional para acessar corretamente o hardware, evitando erros (e travamentos...);
 - Não é necessário escrever código para acessar o hardware – ele já está pronto no kernel.

Camadas de abstração

- Sistema operacional como gerenciador de recursos
 - Permite que vários programas sejam executados simultaneamente;
 - Gerencia e protege a memória, dispositivos de E/S e outros recursos;
 - Inclui a multiplexação (compartilhamento) de recursos de duas formas:
 - No tempo: permite que programas ou usuários utilizem recursos alternadamente;
 - No espaço: permite o acesso simultâneo a "partes" de um mesmo recurso (por exemplo, a memória principal).

- Gerações de computadores
 - (1945–55) **Válvulas**
 - (1955–65) Transistores e sistemas em lote
 - (1965–1980) Circuitos integrados e multiprogramação
 - (1980-Hoje) Computadores pessoais

Válvulas

Manchester Mark I

Transistores e sistemas em lote

- a) Leve seus cartões ao 1401;
- b) O 1401 lê um lote de "jobs" (programas) e grava em uma fita magnética;
- c) O operador carrega a fita de entrada no 7094;
- d) O 7094 executa as computações;
- e) O operador carrega a fita de resultado no1401;
- f) O 1401 imprime a saída dos programas.

- Circuitos integrados e multiprogramação
 - Criação de **família** de **produtos escaláveis** e **compatíveis** IBM 360;
 - Sistema operacional OS/360 era grande, complexo e cheio de bugs;
 - Surgimento da técnica de multiprogramação: particionar a memória em várias partições, com um job diferente em cada partição;

Enquanto um job aguarda pelo término de uma operação de E/S,

outro job pode usar a CPU:

- Circuitos integrados e multiprogramação
 - Técnica de spooling: cartões poderiam ser lidos diretamente para fita, economizando uma etapa no processo;
 - Surgimento da técnica de timesharing (variação de multiprogramação): se 20 usuários estão logados e 17 deles não estão executando nada na CPU, esta pode ser alocada para executar os três jobs que precisam ser executados;
 - Minicomputadores: pequenos e mais baratos que mainframes; (o UNIX foi escrito em um minicomputador PDP-7).

Computadores pessoais

- Viabilizados pela tecnologia LSI (Large-Scale Integration);
- Microprocessadores Intel a partir do 8080 de 1974; Zilog Z-80;
- Sistema operacional CP/M (1974–1977);
- Sistema operacional DOS (pior que o CP/M!) desenvolvido pela Microsoft para o IBM PC no início de 1980 – a IBM não confiava no sucesso do PC, abriu a arquitetura e a Microsoft se tornou um gigante produtor de software;
- Interfaces gráficas GUI Apple Lisa e Macintosh (início 1980);
- Sistemas operacionais em rede;
- Leia no capítulo 1 do livro de Tanenbaum a evolução dos hardwares...

Tipos de sistemas operacionais

Tipos conhecidos

- Sistemas operacionais de mainframe (OS/390)
- Sistemas operacionais de servidor (Linux, Free BSD, Solaris, HP-UX, Windows Server)
- Sistemas operacionais multiprocessadores (Linux, Free BSD, Solaris, HP-UX, Windows)
- Sistemas operacionais para computadores pessoais (Linux, Free BSD, Windows, OS X)
- Sistemas operacionais para dispositivos móveis (Android, iOS, Windows)
- Sistemas operacionais embarcados (Linux, Windows, OpenWrt)
- Sistemas operacionais em tempo-real (Free RTOS, RT Linux)
- Sistemas operacionais para robótica (ROS)
- Etc...

- Conceitos que serão estudados na disciplina
 - Processos
 - Espaço de endereçamento
 - Arquivos
 - Entrada/Saída
 - Proteção
 - O shell de comandos.
 - Novas gerações de hardware/sistemas operacionais são evoluções de gerações passadas:
 - Grandes capacidades de memórias
 - Hardware de proteção
 - Discos
 - Memória virtual

Processos

- Um processo é um programa em execução;
- No Linux/UNIX existe um processo inicial que sempre é executado quando o computador reinicializa;

- Por meio de um comando denominado fork, novos processos

são criados a partir daí:

Uma árvore de processos: o processo A criou os processos B e C enquanto que o processo B criou os processos D, E e F

Arquivos

- Todo sistema operacional deve prover um sistema de gerenciamento de arquivos;
- No Linux, por exemplo, a organização das pastas e arquivos toma a forma de uma grande (e única) árvore:

Arquivos

- Se os arquivos no Linux estão dentro de uma única árvore, o que acontece quando se anexa um novo dispositivo de armazenamento externo?
- R: ele é montado na árvore e se torna parte dela (até ser desmontado, é claro).

Arquivos

 No Linux, arquivos especiais (pseudo arquivo) denominados pipes podem ser utilizados para conectar a saída de um processo à entrada de outro:

Chamada de sistema

- Em Linux, quando seu programa deseja ler dados de um arquivo, ele executa uma função da biblioteca padrão tal como read();
- Como o código do usuário é proibido de acessar o disco diretamente, esta função executa uma chamada de sistema uma sequência de execuções que pede ao kernel a execução de um código que efetivamente realiza a leitura do arquivo.

- Organização da memória em processos
 - No Linux, processos possuem três segmentos: text, data e stack.

Sistemas monolíticos

- O sistema operacional inteiro executa no modo kernel como um único programa principal;
- O sistema operacional é uma coleção de procedimentos de serviço;
- Esses procedimentos de serviço realizam as chamadas de sistema quando necessário;
- Um conjunto de procedimentos utilitários auxiliam esses procedimentos de serviço.

Sistemas monolíticos

- Sistemas em camadas
 - Exemplo: sistema operacional THE

Layer	Function
5	The operator
4	User programs
3	Input/output management
2	Operator-process communication
1	Memory and drum management
0	Processor allocation and multiprogramming

Microkernel

Estrutura do sistema operacional MINIX 3

- Modelo cliente-servidor de sistema operacional
 - Exemplo: sistema operacional cujos componentes estão distribuídos em uma rede de comunicação.

Máquinas virtuais

- No passado...
 - A estrutura do VM/370 (executava em >= IBM 360) com CMS (Conversational Monitor System):

Virtual Machines

- Mais recente...
 - Hypervisor. Dois tipos
 - Tipo 1: permite a execução de um ou mais sistemas operacionais simultaneamente no hardware:
 - Tipo 2: depende de um sistema operacional hospedeiro e então implementa um simulador de máquina que então executa um ou mais sistemas operacionais;

Referências bibliográficas

TANENBAUM, Andrew S. **Sistemas operacionais modernos**. 3. ed. São Paulo: Pearson, 2013. 653 p.