# UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Departament d'Estadística i Investigació Operativa

## PROVA DE TEORIA REAVALUACIÓ

Programació Lineal i Entera, curs 2015-16 2on curs Grau en Estadística UB-UPC

#### NOM ALUMNE:

|            | Temps estimat | Punts   |        | Puntuació |                                               |
|------------|---------------|---------|--------|-----------|-----------------------------------------------|
| Test       | 30 min        | 2.0 pts | C:     | I:        |                                               |
| Exercici 1 | 45 min        | 2.5 pts | a: 1pt | b: 1.5pt  | PROHIBIDA LA PRESÈNCIA<br>DE MÒBILS DURANT LA |
| Exercici 2 | 45 min        | 2.5 pts | a: 1pt | b: 1.5pt  | PROVA. PARTICIPAR EN UN CAS DE CÒPIA IMPLICA  |
| Exercici 3 | 30 min        | 3.0 pts | a: 2pt | b: 1pt    | SUSPENDRE LA PROVA<br>AMB NOTA NUMÈRICA       |
| Total      | 150min        | 10 pts  |        | ·         | ZERO.                                         |

#### TEST (2 punts / 30 min / sense apunts)

- Encercleu a cada possible resposta a), b) i c) si és vertadera (V) o falsa (F).
- Resposta correcta +1pt, incorrecta -0.4pts., en blanc 0.pts.
- **TEST 1.** Un políedre P és un conjunt de  $\mathbb{R}^n$  que pot ser expressat com a
- a) V / F intersecció de conjunts convexos qualssevol. (F)
- **b)** V / F intersecció de semiespais. (V)
- c) V / F solució d'un sistema d'inequacions. (V)
- **TEST 2.** Considereu el problema (*PL*) factible i una solució factible  $x \in P$  amb una direcció factible  $d \in \mathbb{R}^n$  tal que  $x + \theta d \in P$ ,  $\forall \theta > 0$ . Llavors:
- a) V / F Podem assegurar (PL) és il·limitat. (F)
- **b)** V / F La regió factible de (PL) és un polítop. (F)
- c) V / F La regió factible de (PL) no és fitada. (V)
- **TEST 3.** Sigui  $(PL) \min_{x \in R^n} \{c'x | x \in P\}$ , P políedre. Suposem que P conté algun punt extrem i que existeix una solució òptima. Llavors:
- a) V / F Tota solució òptima és un punt extrem de P. (F)
- **b) V** / **F** Tot punt extrem de *P* és solució òptima. (F)
- c) V / F Existeix una solució òptima que és un punt extrem de P. (V)
- **TEST 4.** Sigui  $(PL) \min_{x \in R^n} \{c'x | x \in P_e\}$  amd  $P_e$  políedre estàndard no buit amb  $A \in R^{m \times n}$  i rang(A) = k < m. Llavors
- a) V / F Si eliminem les constriccions redundants no es modificarà  $P_e$ . (V)
- b) V / F Si eliminem les constriccions redundants es modificarà  $P_e$  pero no  $x^*$ . (F)
- c) V / F Si eliminem les constriccions redundants no es modificarà  $P_e$  pero sí  $x^*$ . (F)
- **TEST 5.** La direcció bàsica factible  $d \in \mathbb{R}^n$  sobre la SBF  $x \in P_e$  associada a  $q \in \mathcal{N}$ :
- a) V / F Sempre té associada una longitud de pas  $\theta^* > 0$ . (F)
- b) V / F És una direcció de millora de la funció objectiu. (F)
- c) V / F Sempre té m + 1 component no nules. (F)
- **TEST 6.** Donat un problema  $(PL)_e$ , la longitud de pas màxima  $\theta^* = max\{\theta > 0 \mid x + \theta d \ge 0\}$  associada a una x SBF i d DBF:
- a) V / F Sempre existirà. (F)
- **b)** V / F Sempre existirà si  $(PL)_e$  és no degenerat. (V)
- c) V / F Pot existir si  $(PL)_{\rho}$  és degenerat. (V)



This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/">http://creativecommons.org/licenses/by-nc-nd/3.0/</a> or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Programació Lineal i Entera, curs 2015-16 2on curs Grau en Estadística UB-UPC

#### **NOM ALUMNE:**

- **TEST 7.** Sigui  $P_e$  políedre estàndard no buit no degenerat, x SBF de  $P_e$ . Llavors:
- a) V / F  $r \ge [0] \Rightarrow x$  òptima. (V)
- **b)** V / F  $x \text{ òptima} \Rightarrow r \geq [0]. (V)$
- c) V / F  $x \text{ òptima} \Leftrightarrow r \geq [0]. (V)$
- **TEST 8.** Si el problema lineal  $(PL)_e$  té alguna SBF degenerada, l'algorisme del símplex primal sense regla de Bland
- a) V / F Podem assegurar que no finalitzarà. (F)
- b) V / F Podem assegurar que finalitzarà, però sense haver trobar la solució òptima. (F)
- c) V / F Pot finalitzar trobant la solució òptima. (V)
- **TEST 9.** En els jocs finits de suma zero, la solució del problema maximin del jugador 1:
- a) V / F Maximitza l'esperança matemàtica del seu guany mínim. (V)
- b) V / F Minimitza l'esperança matemàtica del seu guany màxim. (F)
- c) V / F Minimitza l'esperança matemàtica de la pèrdua màxima del jugador 2. (V)
- **TEST 10.** El teorema d'equivalència dels duals en forma estàndar estableix que els problemes duals de (P) i la seva forma estandard  $(P)_e$  ((D) i  $(D)_e$  respectivament):
- a) V / F Són idèntics (mateixes variables i constriccions). (F)
- **b) V** / **F** Si (D) és infactible (D)<sub>e</sub> és il·limitat (i viceversa). (F)
- c) V / F Si (D) és infactible  $(D)_e$  també ho és. (V)
- **TEST 11.** Si dos vectors  $x \in \mathbb{R}^n$ ,  $\lambda \in \mathbb{R}^m$  satisfan les condicions de folga complementària  $\lambda_j(a_j'x b_j) = 0$  j = 1, 2, ..., m  $(c_i \lambda' A_i)x_i = 0$  i = 1, 2, ..., n
- a) V / F Llavors  $x \in \mathbb{R}^n$ ,  $\lambda \in \mathbb{R}^m$  són òptims (P) i (D) respectivament. (F)
- **b)** V / F Llavors  $x \in \mathbb{R}^n$ ,  $\lambda \in \mathbb{R}^m$  poden ser òptims (P) i (D) respectivament. (V)
- c) V / F Llavors  $x \in \mathbb{R}^n$ ,  $\lambda \in \mathbb{R}^m$  seran factibles (P) i (D) respectivament. (F)
- **TEST 12.** En el problema  $(PE) \min\{x_1 + x_2 | x_1 \in [0,1.5], x_2 \in [0,1.5]\}$
- a) V / F La constricció  $x_1 + x_2 \le 3$  és una tall. (F)
- **b)** V / F La constricció  $x_1 + x_2 \le 3$  és una designaltat vàlida. (V)
- c) V / F La constricció  $x_1 \le 1.5$  és una designaltat vàlida. (V)
- **TEST 13.** La formulació ideal d'un problema de (*PE*)
- a) V / F S'obté a l'ultima iteració d'un algorisme de plans de tall de Gomory. (F)
- b) V / F Satisfà que l'embolcall convex de la seva regió factible és no buit. (F)
- c) V / F Té regió factible que és un políedre. (F)
- **TEST 14.** Quan s'utilitza reoptimització amb el símplex dual per resoldre  $(RL_{j,0})$  amb  $(P_j) \stackrel{\text{def}}{=} (P_{j-1}) + x_i \le \lfloor x_i^* \rfloor$  a l'algorisme del B&C
- a) V / F  $x_i$  entrarà a la base a la primera iteració. (F)
- **b) V** / **F**  $x_i$  sortirà de la base a la primera iteració. (F)
- c) V / F  $x_i$  es conserva a la base a la primera iteració. (V)
- **TEST 15.** A l'algorisme del B&C
- a) V / F Es visitaran, en general, menys nodes que al B&B. (V)
- b) V / F A cada iteració es realitzaran, en general, menys iteracions del símplex. (V)
- c) V / F Identificarà, en general, menys solucions enteres que el B&B. (V)

Programació Lineal i Entera, curs 2015-16 20n curs Grau en Estadística UB-UPC

NOM ALUMNE:

Resposta:

## EXERCICI 1. (2.5 punts / 75min / apunts i calculadora / RESPONEU AL MATEIX FULL)

Considereu el següent problema de programació lineal:

$$(P) \begin{cases} \min & -\frac{1}{2}x_1 + x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 1 \\ & x_2 \ge 1 \\ & x_1, & x_2, & \ge 0 \end{cases}$$

És trivial comprovar gràficament que aquest problema és il·limitat. Volem però demostrar-ho rigorosament mitjançant la teoria estudiada a classe:

a) (1 punt) Calculeu totes les direccions bàsiques factibles existents i useu-les per demostrar que aquest problema és il·limitat.

| align Tight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                             |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |          |
| 55,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                             | .0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             | <b>3</b> |
| /8/10/ 1/2CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             | e        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             | 1        |
| 11000 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                             | Ø        |
| The House                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                             | <        |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                             |          |
| The state of the s |               |                                             | 50       |
| F. S. C. S.  |               |                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             | *        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. 14. 14. 1 | 4 : 20 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / | 8        |



Programació Lineal i Entera, curs 2015-16 2on curs Grau en Estadística UB-UPC

# NOM ALUMNE:

b) (1.5 punt) Demostreu, usant el l'algorisme del símplex, que el problema (P) és il·limitat.

| Resposta:                                    |   |  |     |                                       |
|----------------------------------------------|---|--|-----|---------------------------------------|
| 70, 70, 70, 70, 70, 70, 70, 70, 70, 70,      |   |  |     | 160.                                  |
| 7 X 10 10 10 10 10 10 10 10 10 10 10 10 10   |   |  |     |                                       |
|                                              |   |  |     |                                       |
| 20, 70, 70, 70, 70,                          |   |  |     |                                       |
| 2, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |   |  |     |                                       |
|                                              |   |  |     |                                       |
|                                              |   |  |     |                                       |
|                                              |   |  |     | 910.                                  |
|                                              |   |  |     |                                       |
|                                              |   |  |     |                                       |
| (C) 111000 Hop, 41-20                        |   |  |     |                                       |
|                                              |   |  |     | 90,                                   |
|                                              |   |  |     | . 10                                  |
|                                              |   |  |     |                                       |
|                                              |   |  |     |                                       |
| 9 38 (9) 30                                  |   |  |     |                                       |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )      |   |  |     |                                       |
|                                              |   |  |     |                                       |
|                                              |   |  |     | V 4:                                  |
|                                              |   |  |     |                                       |
|                                              |   |  |     | .00                                   |
|                                              |   |  |     | 1100, 10,                             |
|                                              |   |  |     | ,                                     |
|                                              |   |  |     |                                       |
| ON THOUSAND THE                              |   |  |     | 10                                    |
|                                              |   |  |     | (0)                                   |
| 20,100 11100 (1)                             |   |  |     |                                       |
| ( · ( ) / ( ) / ( ) / ( )                    |   |  |     |                                       |
|                                              |   |  |     | 6.                                    |
|                                              |   |  |     |                                       |
|                                              |   |  |     | 4.5                                   |
|                                              |   |  |     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
|                                              |   |  |     | 7.07                                  |
|                                              |   |  |     |                                       |
|                                              |   |  |     | 0)                                    |
|                                              |   |  |     |                                       |
|                                              |   |  |     |                                       |
|                                              |   |  |     |                                       |
| 3° 2° 20°                                    |   |  |     |                                       |
|                                              |   |  |     |                                       |
| 110                                          |   |  |     |                                       |
|                                              |   |  |     |                                       |
|                                              |   |  |     |                                       |
| 7.0                                          |   |  |     |                                       |
|                                              | > |  |     |                                       |
|                                              |   |  | o.* |                                       |
|                                              |   |  |     |                                       |

Programació Lineal i Entera, curs 2015-16 2on curs Grau en Estadística UB-UPC

NOM ALUMNE:

Resposta:

# EXERCICI 2. (2.5 punts / 45min / apunts i calculadora / RESPONEU AL MATEIX FULL)

Considereu el següent problema de programació lineal:

$$(P) \begin{cases} \min & x_1 \\ \text{s.a.:} & x_1 + x_2 \ge 1 \\ & x_1 & \ge \frac{1}{2} \\ & x_1 & x_2, & \ge 0 \end{cases}$$

a) (1 punt) Representeu gràficament el problema (P) i el seu dual (D), indicant les solucións optimes primal i dual.

|  |        |           | 4                |
|--|--------|-----------|------------------|
|  |        |           | 0                |
|  |        |           |                  |
|  |        |           |                  |
|  |        |           |                  |
|  |        |           | 4                |
|  |        |           |                  |
|  |        |           | 70               |
|  |        |           | 9)               |
|  |        |           |                  |
|  |        |           | edi <sup>o</sup> |
|  |        |           |                  |
|  |        |           | Ne               |
|  |        |           |                  |
|  |        |           |                  |
|  |        |           | 160              |
|  |        |           | 4                |
|  |        |           | 0                |
|  |        |           |                  |
|  |        |           |                  |
|  |        |           |                  |
|  |        |           |                  |
|  |        |           | 9.               |
|  |        |           |                  |
|  |        |           |                  |
|  | 75 411 | //\$// 45 |                  |
|  |        |           |                  |

# UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Departament d'Estadística i Investigació Operativa

# PROVA DE TEORIA DE REAVALUACIÓ

Programació Lineal i Entera, curs 2015-16 20n curs Grau en Estadística UB-UPC

## NOM ALUMNE:

b) (1.5 punt) A l'apartat anterior heu pogut comprovar que el problema primal (P) presenta òptims alternatius. Sigui  $\mathcal{X}^*$  el conjunt format per totes les solucions òptimes de (P). Useu el teorema de folga complementària per demostrar que qualsevol vector  $x^* \in \mathcal{X}^*$  és solució òptima de (P) (no us limiteu a fer el desenvolupament numèric, expliqueu la lògica del procediment que apliqueu).

| Resposta:              |                   |  |           |
|------------------------|-------------------|--|-----------|
|                        |                   |  |           |
| 90, 6.                 |                   |  |           |
| 3                      |                   |  |           |
|                        |                   |  | 116       |
|                        |                   |  | offi.     |
|                        |                   |  |           |
| 3                      |                   |  |           |
| (3)                    |                   |  | 60        |
|                        |                   |  |           |
| o                      |                   |  | 30        |
| 10                     |                   |  | 500.      |
| 10.                    |                   |  | 1,00      |
| 900                    |                   |  |           |
| 20                     |                   |  |           |
| 41                     |                   |  |           |
|                        |                   |  |           |
| 3 <sub>0</sub> , (40°) |                   |  | V         |
| 20,00                  |                   |  | 100       |
| AC."                   |                   |  |           |
|                        |                   |  | 1100      |
|                        |                   |  |           |
|                        |                   |  |           |
|                        |                   |  | 10        |
|                        |                   |  | 100       |
| 100                    |                   |  | 1100      |
| 4.7                    |                   |  | 600       |
| o 0,,                  |                   |  |           |
|                        |                   |  |           |
| 100                    |                   |  | 2.30      |
| 10, 10                 |                   |  |           |
|                        |                   |  | 116       |
|                        |                   |  |           |
| Spill Alle             |                   |  |           |
|                        |                   |  |           |
|                        |                   |  | .00       |
| 10,                    |                   |  | 11100     |
|                        |                   |  |           |
| S 4:                   |                   |  |           |
|                        |                   |  |           |
|                        |                   |  |           |
| eredia Indiana         |                   |  |           |
| 9                      |                   |  | 76,       |
| Noglo High             |                   |  |           |
|                        |                   |  | A. Juliet |
|                        | legio "lottinge." |  | 200       |
|                        |                   |  | 4.        |
|                        | X                 |  |           |

Programació Lineal i Entera, curs 2015-16 2on curs Grau en Estadística UB-UPC

## NOM ALUMNE:

Resposta:

# EXERCICI 3. (3 punts / 45min / apunts i calculadora / RESPONEU AL MATEIX FULL)

Resoleu el següent problema de (PE) amb l'algorisme de plans de tall de Gomory.:

$$(PE) \begin{cases} \min & -x_1 & -2x_2 \\ \text{s.a.:} & 2x_1 & +x_2 & \leq 3 \\ & x_1 & +3x_2 & \leq 2 \\ & x_1, & x_2 & \geq 0 \end{cases}, enteres$$

a) (2 punts) Resoleu el següent problema de (*PE*) amb l'algorisme de plans de tall de Gomory Resoleu les relaxacions lineals gràficament i seleccioneu com a variable de generació del tall la que tingui el menor índex.

|            |                                         |      |        | ,81°        |
|------------|-----------------------------------------|------|--------|-------------|
|            |                                         |      |        |             |
| 1815 Tales |                                         |      |        |             |
|            |                                         |      |        |             |
|            |                                         |      |        | 310         |
|            |                                         |      |        |             |
|            |                                         |      |        | 76.0        |
|            |                                         |      |        |             |
|            |                                         |      |        |             |
|            |                                         |      |        | 10          |
|            |                                         |      |        |             |
|            | 110, 110, 120, 120, 120, 120, 120, 120, | . de | 1:30 M | <u>,3</u> " |

# UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Departament d'Estadística i Investigació Operativa

# PROVA DE TEORIA DE REAVALUACIÓ

Programació Lineal i Entera, curs 2015-16 20n curs Grau en Estadística UB-UPC

## NOM ALUMNE:

- b) (1 punt) Un cop resolt el problema, comproveu:
  - i. Que les formulacions valides trobades a cada iteració són cada vegada més fortes.
  - ii. Que les fites de les relaxacions lineals  $(RL_{j,l})$ , l=0,1,... a cada iteració són cada vegada millors.
  - iii. Que la formulació obtinguda a l'última iteració és la formulació ideal.

| Resposta:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|------------------|
| Resposta:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  | 0.16             |
| -iiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | Tegg.            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  | (c)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | 810              |
| The state of the s |  |  | lei'e            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | 43               |
| 91111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  | X <sup>2</sup>   |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  | ,                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | o <sub>gy,</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | , chi            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | The state of     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | 41.16            |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  | loguring &       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | 810              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | ole la           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                  |
| Megin, Olivin,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | 1160.0           |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | 72/10/           |
| (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  | 4                |

Programació Lineal i Entera, curs 2015-16 20n curs Grau en Estadística UB-UPC

#### **NOM ALUMNE:**

## **SOLUCIÓ EXERCICI 1.**

#### Apartat a)

$$(P) \begin{cases} \min & -\frac{1}{2}x_1 + x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 1 \\ & x_2 \ge 1 \\ & x_1, & x_2, & \ge 0 \end{cases}$$

De la representació gràfica s'observa que hi ha un únic punt extrem amb tres SBF associades:

$$\begin{cases}
\mathcal{B}^{1} = \{1,2\} \\
\mathcal{B}^{2} = \{3,2\} \\
\mathcal{B}^{3} = \{4,2\}
\end{cases} \to x_{B}^{1,2,3} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$



Calculem totes les DBF existents sobre les tres SBF  $\mathcal{B}^1$ ,  $\mathcal{B}^2$  i  $\mathcal{B}^3$ :

1. 
$$\mathcal{B}^{1} = \{1,2\} \begin{cases} q = 3 : d_{B}^{1 \to 2} = -\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ge 0, \quad \nexists \theta^{*}, \quad c'd = -\frac{1}{2} < 0 \\ q = 4 : d_{B}^{1 \to 3} = -\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \not \ge 0, \quad \theta^{*} = 0 \end{cases}$$
2. 
$$\mathcal{B}^{2} = \{3,2\} \begin{cases} q = 1 : d_{B}^{2 \to 1} = -\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ge 0, \quad \nexists \theta^{*}, \quad c'd = -\frac{1}{2} < 0 \end{cases}$$

$$q = 4 : d_{B}^{2 \to 3} = -\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ge 0, \quad \nexists \theta^{*}, \quad c'd = 1 > 0 \end{cases}$$

2. 
$$\mathcal{B}^2 = \{3,2\} \begin{cases} q = 1: d_B^{2 \to 1} = -\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ge 0, \quad \nexists \theta^*, \quad c'd = -\frac{1}{2} < 0 \\ q = 4: d_B^{2 \to 3} = -\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ge 0, \quad \nexists \theta^*, \quad c'd = 1 > 0 \end{cases}$$

3. 
$$\mathcal{B}^{3} = \{4,2\} \begin{cases} q = 1: d_{B}^{3 \to 1} = -\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \geq 0, \quad \theta^{*} = 0 \\ q = 3: d_{B}^{3 \to 2} = -\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \geq 0, \quad \nexists \theta^{*}, \quad c'd = 1 > 0 \end{cases}$$

## Recapitulant:

- La DBF  $d^1 = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}'$ , que correspon a  $d_B^{1 \to 2}$  i  $d_B^{2 \to 1}$ , és una direcció il·limitada  $(d_B \ge 0)$  de descens (c'd < 0).
- La DBF  $d^2 = [0 \ 1 \ 1]'$ , que correspon a  $d_B^{2\to3}$  i  $d_B^{3\to2}$ , és una direcció il·limitada
- $(d_B \ge 0)$  d'ascens (c'd > 0). Les DBF  $d^3 = [-1 \ 1 \ 0 \ 1]' \ (d_B^{1 \to 3})$  i  $d^4 = [1 \ -1 \ 0 \ -1]' \ (d_B^{3 \to 2})$  són DBF infactibles ( $\theta^* = 0$ ).

Llavors, atés que  $d^1$  és una direcció factible il·limitada de descens, el problema (P) és il·limitat

#### Apartat b)

Per tal de demostrar amb l'algorisme del símplex que (P) és il·limitat fem una iteració de l'algorisme a partir de la SBF factible  $\mathcal{B}^1 = \{1,2\}$ :

#### Càlculs Previs:

$$\mathcal{B} = \{1,2\}, \mathcal{N} = \{3,4\}, B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, x_B = B^{-1}b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

$$z = c_B' x_B = \begin{bmatrix} -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1$$

## 1a iteració:

1. Identificació de SBF òptima i selecció de la VNB d'entrada q amb  $\mathcal{N} = \{3,4\}$ :

$$r' = c'_N - c'_B B^{-1} N = \begin{bmatrix} 0 \end{bmatrix} - \begin{bmatrix} -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \frac{3}{2} \end{bmatrix} \not\ge 0 \rightarrow q = 3$$
2. DBF i problema il·limitat :  $d_B = -B^{-1} A_3 = -\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ge 0 \Rightarrow (P)$  il·limitat.

## **SOLUCIÓ EXERCICI 2.**

## Apartat a)

$$(P) \begin{cases} \min & x_1 \\ \text{s.a.:} \\ (r1) & x_1 + x_2 \ge 1 \\ (r2) & x_1 & \ge \frac{1}{2} \\ & x_1, & x_2, & \ge 0 \end{cases}$$

$$(D) \begin{cases} \max & \lambda_1 & +\frac{1}{2}\lambda_2 \\ \text{s.a.:} & \\ (r1) & \lambda_1 & +\lambda_2 & \leq 1 \\ (r2) & \lambda_1 & & \leq 0 \\ & \lambda_1, & \lambda_2, & \geq 0 \end{cases}$$





### Apartat b)

Volem demostrar que qualsevol vector  $x^* \in \mathcal{X}^* = \left\{ x \in \mathbb{R}^2 \middle| x_1 = \frac{1}{2}, x_2 \ge \frac{1}{2} \right\}$  és solució òptima de (P)usant el teorema de flga complementària. Aquest teorema estableix que donades unes solucions x i  $\lambda$ factibles (P) i (D) respectivament, aquestes solucions seran òptimes sii es satisfan les Condicions de Folga Complementària:

$$(CFC) \begin{cases} \lambda_j \big( a_j' x - b_j \big) = 0 & j = 1, 2, \dots, m \\ (c_i - \lambda' A_i) x_i = 0 & i = 1, 2, \dots, n \end{cases}$$

Que pel nostre problema són:

$$(CFC) \begin{cases} \lambda_1(x_1 + x_2 - 1) &= 0 \quad (1) \\ \lambda_2\left(x_1 - \frac{1}{2}\right) &= 0 \quad (2) \\ (1 - \lambda_1 - \lambda_2)x_1 &= 0 \quad (3) \\ (-\lambda_1)x_2 &= 0 \quad (4) \end{cases}$$

Programació Lineal i Entera, curs 2015-16 20n curs Grau en Estadística UB-UPC

#### **NOM ALUMNE:**

Si  $x^* \in \mathcal{X}^*$  sabem que  $x_1^* = \frac{1}{2}$ ,  $x_2^* \ge \frac{1}{2}$ . Llavors de (3) i (4) tenim que  $\begin{cases} \lambda_1 + \lambda_2 = 1 \\ \lambda_1 = 0 \end{cases}$   $\therefore \lambda^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ . Com que  $\lambda_1^* = 0$ , (1) es satisfà trivialment, i de (2) s'obté  $x_1^* = \frac{1}{2}$ . Així doncs tenim  $x^* \in \mathcal{X}^*$ ,  $\lambda^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ satisfan les CFC. Podem comprovar que  $\lambda^*$  és factible dual

$$\begin{cases} \lambda_1^* + \lambda_2^* = 0 + 1 \le b_1 = 1 \\ \lambda_1^* = 1 \le b_2 = 0 \end{cases}$$

i  $x^*$  és factible primal per hipòtesi. Llavors, pel teorema de folga complementària podem assegurar que qualsevol  $x^* \in \mathcal{X}^*$  és òptim ■

## **SOLUCIÓ EXERCICI 3.**

#### Apartat a)

## 1a iteració Gomory:



- Solució òptima de la relaxació lineal de (*PE*1), trobada gràficament:  $x_{RL1}^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 7/5 \\ 1/5 \end{bmatrix}$
- $x_{RL1}^*$  no entera  $\Rightarrow$  tall de Gomory: es selecciona  $x_1^* = 7/5$

$$- \mathcal{B} = \{1,2\}; B = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}; B^{-1} = \begin{bmatrix} 3/5 & -1/5 \\ -1/5 & 2/5 \end{bmatrix}; x_B^* = \begin{bmatrix} 7/5 \\ 1/5 \end{bmatrix}$$

$$- \mathcal{N} = \{3,4\}; A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; V = B^{-1}A_N = \begin{bmatrix} 3/5 & -1/5 \\ -1/5 & 2/5 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

- 
$$\mathcal{N} = \{3,4\}; A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; V = B^{-1}A_N = \begin{bmatrix} 3/5 & -1/5 \\ -1/5 & 2/5 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

 $x_{B(1)}^* = x_1^*$  no entera: tall de Gomory associat a  $x_1 = 7/5$ 

$$\begin{aligned} x_1 + \lfloor v_{13} \rfloor x_3 + \lfloor v_{14} \rfloor x_4 &\leq \lfloor x_1^* \rfloor \; ; \; x_1 + \left\lfloor \frac{3}{5} \right\rfloor x_3 + \left\lfloor -\frac{1}{5} \right\rfloor x_4 \leq \left\lfloor \frac{7}{5} \right\rfloor \; ; \; x_1 - x_4 \\ &\leq 1 \xrightarrow{(r2): \, -x_4 = x_1 + 3x_2 - 2} \underbrace{2x_1 + 3x_2 \leq 3 \; (r3)} \end{aligned}$$

Programació Lineal i Entera, curs 2015-16 2on curs Grau en Estadística UB-UPC

#### **NOM ALUMNE:**

## 2a iteració Gomory:



- Solució òptima de la relaxació lineal de (PE2), trobada gràficament:  $x_{RL2}^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 1 \\ 1/3 \end{bmatrix}$
- $x_{RL2}^*$  no entera  $\Rightarrow$  tall de Gomory. Observem que la restricció (r1) és redundant, i no es tindrà en compte per calcular la SBF associada a  $x_{RL2}^*$

$$\begin{array}{ll} - & \mathcal{B} = \{1,2\} \, ; \, B = \begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix} \, ; \, B^{-1} = \begin{bmatrix} -1 & 1 \\ 2/3 & -1/3 \end{bmatrix} \, ; \, x_B^* = \begin{bmatrix} 1 \\ 1/3 \end{bmatrix} \\ - & \mathcal{N} = \{4,5\} \, ; \, A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \, ; \, V = B^{-1}A_N = \begin{bmatrix} -1 & 1 \\ 2/3 & -1/3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

 $x_{B(2)}^* = x_2^*$  no entera: tall de Gomory associat a  $x_2^* =$ 

$$\begin{split} x_2 + \lfloor v_{24} \rfloor x_4 + \lfloor v_{25} \rfloor x_5 &\leq \lfloor x_2^* \rfloor \; ; \; x_2 + \left\lfloor \frac{2}{3} \right\rfloor x_4 + \left\lfloor -\frac{1}{3} \right\rfloor x_5 \leq \left\lfloor \frac{2}{3} \right\rfloor \; ; \; x_2 - x_5 \\ &\leq 0 \xrightarrow{(r3): -x_5 = 2x_1 + 3x_2 - 3} \boxed{2x_1 + 4x_2 \leq 3 \; (r4)} \end{split}$$

## 3a iteració Gomory:



Solució òptima de la relaxació lineal de (*PE*3), trobada gràficament:  $x_{RL3}^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$  (també s'hauria pogut prendre  $x_{RL3}^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 3/2 \\ 0 \end{bmatrix}$ ).

Programació Lineal i Entera, curs 2015-16 2on curs Grau en Estadística UB-UPC

#### **NOM ALUMNE:**

 $x_{RL3}^*$  no entera  $\Rightarrow$  tall de Gomory. Observem que les restriccions (r1) i (r3) són redundants, i no es tindran en compte per calcular la SBF associada a  $x_{RL3}^*$ .

$$\begin{array}{ll} - & \mathcal{B} = \{1,2\} \, ; \; B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \, ; \; B^{-1} = \begin{bmatrix} -2 & 3/2 \\ 1 & -1/2 \end{bmatrix} \, ; \; x_B^* = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \\ - & \mathcal{N} = \{4,6\} \, ; \; A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \, ; \; V = B^{-1}A_N = \begin{bmatrix} -2 & 3/2 \\ 1 & -1/2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

- 
$$\mathcal{N} = \{4,6\}$$
;  $A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ;  $V = B^{-1}A_N = \begin{bmatrix} -2 & 3/2 \\ 1 & -1/2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ 

- 
$$x_{B(1)}^* = x_1^*$$
 no entera: tall de Gomory associat a  $x_1^* = 1/2$ 

$$\begin{split} x_1 + \lfloor v_{14} \rfloor x_4 + \lfloor v_{16} \rfloor x_6 &\leq \lfloor x_1^* \rfloor \; ; \; x_1 + \lfloor -2 \rfloor x_4 + \left\lfloor \frac{3}{2} \right\rfloor x_6 \leq \left\lfloor \frac{1}{2} \right\rfloor \; ; \; x_1 - 2x_4 + x_6 \\ &\leq 0 \xrightarrow{(r_4): \, x_6 = 3 - 2x_1 - 4x_2} \underbrace{ \left[ x_1 + 2x_2 \leq 1 \right] (r_5)} \end{split}$$

# 4a iteració Gomory:



Solució òptima de la relaxació lineal de (PE4), trobada gràficament:  $x_{RL4}^* = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in K_{PE4} \Rightarrow$ 

Programació Lineal i Entera, curs 2015-16 20n curs Grau en Estadística UB-UPC

#### NOM ALUMNE:

## Apartat b)

Comprovem:

i. Que les formulacions valides trobades a cada iteració són cada vegada més fortes.

Efectivament, de la gràfica adjunta s'observa que la regió factible de la relaxació linea a cada iteració està continguda en l'anterior:

$$K_{RL4} \subset K_{RL3} \subset K_{RL2} \subset K_{RL1}$$



ii. Que les fites de les relaxacions lineals  $(RL_{j,l})$ , l=0,1,... a cada iteració són cada vegada millors. Podem comprovar que els valors de la funció objectiu de les relaxacions lineals son cada vegada majors

$$z_{RL4}^* = z_{PE4}^* > z_{RL3}^* > z_{RI2}^* > z_{RL1}^*$$

es a dir, son fites inferiors del valor òptim  $z_{PE}^*$  cada vegada majors (millors).

iii. Que la formulació obtinguda a l'última iteració és la formulació ideal.

Aquesta afirmació no és certa, doncs veiem que el poliedre de l'última relaxació lineal,  $K_{RL4}$ , té un punt extrem de components no enteres,  $x = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}$ , és a dir,

$$K_{RL4} \neq CH(K_{PE}) = \left\{ x \in \mathbb{R}^2 \middle| \alpha \begin{bmatrix} 0 \\ 0 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} 1 \\ 0 \end{bmatrix}, 0 \le \alpha \le 1 \right\}$$