Лабораторная работа 4 Классы вычетов

Цель работы: изучить свойства бинарных алгебраических операций в кольце классов вычетов и способы вычисления значения функции Эйлера.

Задания. 1. Постройте таблицы сложения и умножения элементов кольца классов вычетов.

2. Реализуйте методы для нахождения значения функции Эйлера по формулам i-iv.

Свойства функции Эйлера

- і) $\varphi(p) = p 1$ для каждого простого числа p.
- іі) $\varphi(p^n) = p^n p^{n-1}$ для каждого простого числа p и для произвольного натурального n.
 - ііі) если HOД(n,m) = 1, то

$$\varphi(nm) = \varphi(m) \varphi(m).$$

iv) если $n=p_1^{k_1}\cdot p_2^{k_2}\cdot ...\cdot p_t^{k_t}$ – каноническое разложение, то

$$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_t}\right).$$

3. Реализуйте два метода для вычисления обратных элементов. Метод «InverseClass» — нахождение обратного элемента непосредственным перебором всех элементов кольца классов вычетов, метод «InverseBezu» — нахождение обратного элемента посредством использования соотношения Безу. Оба метода должны вначале проверить, является ли заданный элемент обратимым.

Входные данные: <math>m – модуль кольца классов вычетов,

n — элемент кольца классов вычетов, к которому нужно найти обратный элемент.

Выходные данные: обратный элемент n^{-1} или ответ "n не обратим в кольце классов вычетов по модулю m".