DERWENT-ACC- 1998-292391

NO:

DERWENT-

199941

WEEK:

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Cerium oxide abrasive agent for polishing a substrate - comprises slurry poshida etial

dispersing cerium oxide primary particles

PATENT-ASSIGNEE: HITACHI CHEM CO LTD[HITB]

PRIORITY-DATA: 1996JP-0258769 (September 30, 1996)

PATENT-FAMILY:

PUB-DATE LANGUAGE PAGES MAIN-IPC PUB-NO

JP 10102040 A April 21, 1998 N/A

004

C09K 003/14

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO APPL-DATE

JP 10102040A N/A

1996JP-0258769 September 30, 1996

INT-CL

C01F017/00, C08K003/22, C08L101/00, C09C001/68, C09K003/14.

(IPC):

H01L021/304

ABSTRACTED-PUB-NO: JP 10102040A

BASIC-ABSTRACT:

A cerium oxide abrasive comprises a slurry dispersing cerium oxide primary particles having an outline exhibiting an edge smaller than 120 degree on observation by a transmission electron microscope of at least 90 % in number of the total numbers of the primary particles in an medium. The slurry further contains a dispersing agent. The dispersing agent is at least one of a water soluble organic polymer, water soluble cationic surfactant, a water soluble nonionic surfactant, a water soluble amine. The medium is water. The slurry has a pH of 7-10. A method for polishing a substrate for electronic circuit comprising using the abrasive is also claimed, in which the substrate is a substrate forming SiO2 insulating layer.

10/4/05, EAST Version: 2.0.1.4

USE - The abrasive is used for polishing SiO2 insulating layer formed on a semiconductor substrate, glass-Si nitride film formed on a circuit board, optical members such as photomask, lens, prism etc. and optoelectronic members etc.

ADVANTAGE - The surface to be polished can be effectively polished at a high speed with the abrasive without scratching nor damaging.

CHOSEN-

Dwg.0/0

DRAWING:

TITLE-TERMS:

CERIUM OXIDE ABRASION AGENT POLISH SUBSTRATE COMPRISE

SLURRY DISPERSE CERIUM OXIDE PRIMARY PARTICLE

DERWENT-CLASS: A60 E33 G01 L03 U11

CPI-CODES: A12-A03; E34-E; G01-A; L02-F04; L04-B04;

EPI-CODES: U11-A10; U11-C06A1; U11-C06A1A; U11-C07C3;

CHEMICAL-CODES: Chemical Indexing M3 *01* Fragmentation Code A758 A940 C108 C550 C730 C801 C802 C803 C804 C805 C807 M411 M781 M903 M904 M910

Q333 Q454 Specfic Compounds 01506K 01506U Registry Numbers 1506U

UNLINKED-DERWENT-REGISTRY- : 1506U

NUMBERS:

ENHANCED-POLYMER-INDEXING: Polymer Index [1.1] 018; P0000

Polymer Index [1.2] 018; ND01; Q9999 Q6600; B9999

B3521*R B3510 B3372

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1

C1998-091097

Non-CPI Secondary Accession Numbers: N1998-229776

10/4/05, EAST Version: 2.0.1.4

PAT-NO:

JP410102040A

DOCUMENT-IDENTIFIER: JP 10102040 A

TITLE:

CERIUM OXIDE ABRASIVE AND GRINDING OF SUBSTRATE

PUBN-DATE:

April 21, 1998

INVENTOR-INFORMATION:

NAME

COUNTRY

YOSHIDA, MASATO MATSUZAWA, JUN

ASSIGNEE-INFORMATION:

NAME

COUNTRY

HITACHI CHEM CO LTD N/A

APPL-NO:

JP08258769

APPL-DATE: September 30, 1996

INT-CL

C09K003/14, C01F017/00, C08K003/22, C08L101/00, C09C001/68,

(IPC):

H01L021/304

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain the subject abrasive capable of grinding without scratching a surface to be ground such as of electric insulating film, comprising a slurry prepared by dispersing cerium oxide particles containing specific primary particles in a medium.

SOLUTION: This abrasive comprises a slurry prepared by dispersing in a medium such cerium oxide particles that the primary particles each having a profile with corner polymers, water-soluble anionic surfactants, water-soluble nonionic surfactants and water-soluble amines, and the final abrasive is set at pH7-10.

COPYRIGHT; (C)1998,JPO

9/20/05, EAST Version: 2.0.1.4

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-102040

(43)公開日 平成10年(1998) 4月21日

(51) Int.Cl. ⁶	談別記号	FI
C09K 3/14	5 5 0	C 0 9 K 3/14 5 5 0 D
C01F 17/00		C 0 1 F 17/00 A
C 0 8 K 3/22		C 0 8 K 3/22
C 0 8 L 101/00		C 0 8 L 101/00
C 0 9 C 1/68		C 0 9 C 1/68
		審査請求 未請求 請求項の数7 OL (全 4 頁) 最終頁に続く
(21)出願番号	特願平8-258769	(71) 出願人 000004455
		日立化成工業株式会社
(22)出顧日	平成8年(1996) 9月30日	東京都新宿区西新宿2丁目1番1号
		(72)発明者 吉田 誠人
		茨城県つくば市和台48 日立化成工業株式
		会社筑波開発研究所内
		(72)発明者 松沢 純
		茨城県つくば市和台48 日立化成工業株式
		会社筑波開発研究所内
		(74)代理人 弁理士 若林 邦彦
	·	

(54) 【発明の名称】 酸化セリウム研磨剤及び基板の研磨法

(57)【要約】

【課題】 SiO₂絶縁膜等の被研磨面を傷なく高速に 研磨する酸化セリウム研磨剤を提供する。

【解決手段】 TEOS-CVD法で作製したSiO₂ 絶縁膜を形成させたSiウエハを、透過型電子顕微鏡に よる観察で120℃より小さい角部を含む輪郭を示す1 次粒子が全数の90%以上である酸化セリウム粒子を媒 体に分散したスラリー研磨剤で研磨する。 1

【特許請求の範囲】

【請求項1】 透過型電子顕微鏡による観察で120℃より小さい角部を含む輪郭を示す1次粒子が全数の90%以上である酸化セリウム粒子を媒体に分散させたスラリーを含む酸化セリウム研磨剤。

【請求項2】 スラリーが分散剤を含む請求項1記載の 酸化セリウム研磨剤。

【請求項3】 媒体が水である請求項1又は2記載の酸化セリウム研磨剤。

【請求項4】 分散剤が水溶性有機高分子、水溶性陰イオン性界面活性剤、水溶性非イオン性界面活性剤及び水溶性アミンから選ばれる少なくとも1種である請求項2 記載の酸化セリウム研磨剤。

【請求項5】 スラリーのp Hが7以上10以下のスラリーである請求項1~4各項記載の酸化セリウム研磨剤。

【請求項6】 請求項1~5各項記載の酸化セリウム研磨剤で所定の基板を研磨することを特徴とする基板の研磨法。

【請求項7】 所定の基板がSiO₂絶縁膜が形成された基板である請求項6記載の基板の研磨法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、酸化セリウム研磨 剤及び基板の研磨法を提供するものである。

[0002]

【従来の技術】従来、半導体装置の製造工程において、プラズマーCVD、低圧-CVD等の方法で形成されるSiO2絶縁膜等無機絶縁膜層を平坦化するための化学機械研磨剤としてコロイダルシリカ系の研磨剤が一般的 30に検討されている。コロイダルシリカ系の研磨剤は、シリカ粒子を四塩化珪酸を熱分解する等の方法で粒成長させ、アンモニア等のアルカリ金属を含まないアルカリ溶液でpH調整を行って製造している。しかしながら、この様な研磨剤は無機絶縁膜の研磨速度が充分な速度を持たず、実用化には低研磨速度という技術課題がある。

【0003】一方、フォトマスク用ガラス表面研磨として、酸化セリウム研磨剤が用いられている。酸化セリウム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低く、したがって研磨表面に傷が入りにくいことから仕上げ鏡面研磨に有用である。また、酸化セリウムは強い酸化剤として知られるように化学的活性な性質を有している。この利点を活かし、絶縁膜用化学機械研磨剤への適用が有用である。しかしながら、フォトマスク用ガラス表面研磨用酸化セリウム研磨剤をそのまま無機絶縁膜研磨に適用すると、そのため絶縁膜表面に目視で観察できる研磨傷が入ってしまう。

[0004]

【発明が解決しようとする課題】本発明は、SiO₂絶 る。これらの分散剤の添加量は、スラリー中の粒子の分 縁膜等の被研磨面を傷なく高速に研磨することが可能な 50 散性及び沈降防止性などから酸化セリウム粒子100重

酸化セリウム研磨剤及び基板の研磨法を提供するものである。

[0005]

【課題を解決するための手段】本発明の酸化セリウム研磨剤は、透過型電子顕微鏡による観察で120℃より小さい角部を含む輪郭を示す1次粒子が全数の90%以上である酸化セリウム粒子を媒体に分散させたスラリーを含むものである。

【0006】本発明の基板の研磨法は、上記の酸化セリウム研磨剤で所定の基板を研磨することを特徴とするものである。

【0007】本発明は、透過型電子顕微鏡による観察で 120℃より小さい角部を含む輪郭を示す1次粒子が全 数の90%以上である酸化セリウム粒子を使用すること により、SiO2絶縁膜等の被研磨面に傷をつけること なくかつ、高速に研磨できることを見い出したことによ りなされたものである。

[0008]

【発明の実施の形態】一般に酸化セリウムは、炭酸塩、硫酸塩、蓚酸塩等のセリウム化合物を焼成することによって得られる。TEOS-CVD法等で形成されるSiO2絶縁膜は1次粒子径が大きく、かつ結晶歪が少ないほど、すなわち結晶性がよいほど高速研磨が可能であるが、研磨傷が入りやすい傾向がある。そこで、本発明で用いる酸化セリウム粒子は、あまり結晶性を上げないで作製される。また、半導体チップ研磨に使用することから、アルカリ金属およびハロゲン類の含有率は1ppm以下に抑えることが好ましい。

【0009】本発明において、酸化セリウム粒子を作製する方法として焼成法が使用できる。セリウム化合物の酸化温度が300℃であることから、焼成温度は700℃以上900℃以下が好ましい。

【0010】本発明における酸化セリウムスラリーは、上記の方法により製造された酸化セリウム粒子を含有する水溶液又はこの水溶液から回収した酸化セリウム粒子、水及び必要に応じて分散剤らなる組成物を分散させることによって得られる。ここで、酸化セリウム粒子の濃度には制限は無いが、懸濁液の取り扱い易さから0.5~10重量%の範囲が好ましい。また分散剤として

は、金属イオン類を含まないものとして、アクリル酸重合体及びそのアンモニウム塩、メタクリル酸重合体及びそのアンモニウム塩、ポリビニルアルコール等の水溶性有機高分子類、ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等の水溶性陰イオン性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリエチレングリコールモノステアレート等の水溶性非イオン性界面活性剤、モノエタノールアミン、ジエタノールアミン等の水溶性アミン類などが挙げられる。これらの分散剤の添加量は、スラリー中の粒子の分

量部に対して0.01重量部から5重量部の範囲が好ましく、その分散効果を高めるためには分散処理時に分散 機の中に粒子と同時に入れることが好ましい。

【0011】これらの酸化セリウム粒子を水中に分散させる方法としては、通常の撹拌機による分散処理の他に、ホモジナイザー、超音波分散機、ボールミルなどを用いることができる。特に酸化セリウム粒子を1μm以下の微粒子として分散させるためには、ボールミル、振動ボールミル、遊星ボールミル、媒体撹拌式ミルなどの湿式分散機を用いることが好ましい。また、スラリーのアルカリ性を高めたい場合には、分散処理時又は処理後にアンモニア水などの金属イオンを含まないアルカリ性物質を添加することができる。

【0012】本発明の酸化セリウム研磨剤は、上記スラリーをそのまま使用してもよいが、N, Nージエチルエタノールアミン、N, Nージメチルエタノールアミン、アミノエチルエタノールアミン等の添加剤を添加して研磨剤とすることができる。

【0013】本発明の酸化セリウム研磨剤が使用される 無機絶縁膜の作製方法として、定圧CVD法、プラズマ CVD法等が挙げられる。定圧CVD法によるSiO2 **絶縁膜形成は、Si源としてモノシラン:SiH4、酸** 素源として酸素:O₂を用いる。このSiH₄−O₂系酸 化反応を400℃程度以下の低温で行わせることにより 得られる。高温リフローによる表面平坦化を図るために リン: Pをドープするときには、SiH4-O2-PH3 系反応ガスを用いることが好ましい。 プラズマCVD法 は、通常の熱平衡下では高温を必要とする化学反応が低 温でできる利点を有する。プラズマ発生法には、容量結 合型と誘導結合型の2つが挙げられる。反応ガスとして は、Si源としてSiH4、酸素源としてN2Oを用いた SiH_4-N_2O 系ガスとテトラエトキシシラン (TEO S)をSi源に用いたTEOS-O2系ガス(TEOS ープラズマCVD法)が挙げられる。基板温度は250 ℃~400℃、反応圧力は67~400Paの範囲が好 ましい。このように、本発明のSiO2絶縁膜にはリ ン、ホウ素等の元素がドープされていても良い。

【0014】所定の基板として、半導体基板すなわち回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板 40 上にSiO2絶縁膜層が形成された基板が使用できる。このような半導体基板上に形成されたSiO2絶縁膜層を上記酸化セリウム研磨剤で研磨することによって、SiO2絶縁膜層表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。ここで、研磨する装置としては、半導体基板を保持するホルダーと研磨布(バッド)を貼り付けた(回転数が変更可能なモータ等を取り付けてある)定盤を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不緻布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。ま 50

た、研磨布にはスラリーが溜まる様な溝加工を施すことが好ましい。研磨条件には制限はないが、定盤の回転速度は半導体が飛び出さない様に100rpm以下の低回転が好ましく、半導体基板にかける圧力は研磨後に傷が発生しない様に1kg/cm²以下が好ましい。研磨し

ている間、研磨布にはスラリーをポンプ等で連続的に供給する。この供給量には制限はないが、研磨布の表面が常にスラリーで覆われていることが好ましい。

【0015】研磨終了後の半導体基板は、流水中で良く 洗浄後、スピンドライヤ等を用いて半導体基板上に付着 した水滴を払い落としてから乾燥させることが好まし い。このようにして平坦化されたSiQz絶縁膜層の上 に、第2層目のアルミニウム配線を形成し、その配線間 および配線上に再度上記方法によりSiQz絶縁膜を形 成後、上記酸化セリウム研磨剤を用いて研磨することに よって、絶縁膜表面の凹凸を解消し、半導体基板全面に 渡って平滑な面とする。この工程を所定数繰り返すこと により、所望の層数の半導体を製造する。

【0016】本発明の酸化セリウム研磨剤は、半導体基 板に形成されたSiO2絶縁膜だけでなく、所定の配線 を有する配線板に形成されたSiO2絶縁膜、ガラス、 窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プ リズムなどの光学ガラス、ITO等の無機導電膜、ガラ ス及び結晶質材料で構成される光集積回路・光スイッチ ング素子・光導波路、光ファイバーの端面、シンチレー タ等の光学用単結晶、固体レーザ単結晶、青色レーザ用 LEDサファイア基板、SiC、GaP、GaAS等の 半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド 等を研磨するために使用される。このように本発明にお いて所定の基板とは、SiO2絶縁膜が形成された半導 体基板、SiO2絶縁膜が形成された配線板、ガラス、 **窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プ** リズムなどの光学ガラス、ITO等の無機導電膜、ガラ ス及び結晶質材料で構成される光集積回路・光スイッチ ング素子・光導波路、光ファイバーの端面、シンチレー 夕等の光学用単結晶、固体レーザ単結晶、青色レーザ用 LEDサファイア基板、SiC、GaP、GaAS等の 半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド 等を含む。

[0017]

【実施例】

(酸化セリウム粒子の作製)炭酸セリウム水和物(99.9%)600gを白金製の容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。さらに透過型電子顕微鏡による観察で1次粒子が120℃より小さい角部を含む輪郭を示す1次粒子であることを確認した。また、透過電子顕微鏡による観察で1次粒子径が100nm以上300nm以下であることを確認した。

5

【0018】(酸化セリウムスラリーの作製)上記の酸化セリウム粉末80gを脱イオン水800g中に分散して、これにボリアクリル酸アンモニウム塩8gを添加後、遊星ボールミル(フリッチェ製、商品名P-5型)を用いて2300rpmで30分間分散処理を施すことにより、乳白色の酸化セリウムスラリーを得た。このスラリーpHは9.1であった。スラリーの粒度分布を調べたところ(Master Sizer製)、平均粒子径が270nmと小さく、その半値幅も300nmと比較的分布も狭いことがわかった。

分間洗浄した。洗浄後、ウエハをスピンドライヤーで水 滴を除去し、120℃の乾燥機で10分間乾燥させた。 光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を 測定した結果、この研磨により640nmの絶縁膜が削 られ、ウエハ全面に渡って均一の厚みになっていること がわかった。また、目視では絶縁膜表面には傷が見られ なかった。

【0020】比較例

実施例と同様にTEOS-CVD法で作製したSiO2 10 絶縁膜を形成させたSiウエハについて、市販シリカス ラリー(キャボット社製、商品名SS225)を用いて 研磨を行った。この市販スラリーのpHは10.3で、 SiO2粒子を12.5wt%含んでいるものである。 研磨条件は実施例と同一である。その結果、研磨による 傷は見られず、また均一に研磨がなされたが、3分間の 研磨により75nmの絶縁膜層しか削れなかった。 【0021】

【発明の効果】本発明の研磨剤により、SiO₂絶縁膜等の被研磨面を傷なく高速に研磨することが可能となる。

フロントページの続き

(51) Int. Cl. 6

識別記号

HO1L 21/304

321

FΙ

HO1L 21/304

321P