#### Multiplexing

- Simultaneous transmission of multiple signals across a single data link
- As data & telecomm use increases, so does traffic
  - ✓ Add individual links each time a new channel is needed
  - ✓ Install higherbandwidth links and use each to carry multiple signals

# **Dividing a Link into Channels**



# Multiplexing

 Simultaneous transmission of multiple signals across a single data link

# **Categories of Multiplexing**



#### **Frequency-Division Multiplexing**

- An analog technique that can be applied when the bandwidth of a link (in hertz) is greater than the combined bandwidths of the signals to be transmitted
- Signals generated by each sending device modulate different carrier frequencies

# **Frequency-Division Multiplexing**

These modulated signals are then combined into a single composite signal that can be transported by the link

# **Frequency-Division multiplexing**



# **Frequency-Division Multiplexing**

 An analog technique that can be applied when the bandwidth of a link (in hertz) is greater than the combined bandwidths of the signals to be transmitted

# **FDM Multiplexing**



# **FDM De-Multiplexing**



#### **Example**

Assume that a voice channel occupies a bandwidth of 4 kHz. We need to combine three voice channels into a link with a bandwidth of 12 kHz, from 20 to 32 kHz. Show the configuration, using the frequency domain. Assume there are no guard bands.



#### Example

Five channels, each with a 100-kHz bandwidth, are to be multiplexed together. What is the minimum bandwidth of the link if there is a need for a guard band of 10 kHz between the channels to prevent interference?



#### **The Analog Carrier System**

- Telephone companies multiplex signals from lower-bandwidth lines on to higher-bandwidth lines
- For Analog, FDM is used

# **Analog Hierarchy**



### Wavelength-Division Multiplexing

- Designed to use the highdata-rate capability of fiber-optic cable
- Fiber data rate is higher than the data rate of metallic transmission cable
- Using a fiber-optic cable for a single line wastes the available bandwidth
- Multiplexing allows us to combine several lines into one

# Wavelength-Division Multiplexing (WDM)



# **Prisms in Wave-Length Division Multiplexing**



#### **Time-Division Multiplexing**

- Digital process that allows several connections to share the high bandwidth of a link
- Time is shared i.e.
   each connection
   occupies a portion of
   time in the link

# **TDM**



## **Synchronous Time-Division Multiplexing**





Each frame is 3 time slots. Each time slot duration is T/3 s.

#### **Time-Division Multiplexing**

- Digital process that allows several connections to share the high bandwidth of a link
- Time is shared i.e.
   each connection
   occupies a portion of
   time in the link

#### **Example**

In Figure the data rate for each input connection is 1 kbps. If 1 bit at a time is multiplexed (a unit is 1 bit), what is the duration of

- each input slot,
- each output slot, and
- each frame?



# Interleaving



#### **Time-Division Multiplexing**

- Digital process that allows several connections to share the high bandwidth of a link
- Time is shared i.e.
   each connection
   occupies a portion of
   time in the link

# Multilevel Multiplexing



## **Multiple-SLot Multiplexing**



## **Pulse Stuffing**



#### **Time-Division Multiplexing**

- Digital process that allows several connections to share the high bandwidth of a link
- Time is shared i.e.
   each connection
   occupies a portion of
   time in the link

# **Digital Hierarchy**



# **DS and T Line Rates**

| Service | Line | Rate (Mbps) | Voice Channels |
|---------|------|-------------|----------------|
| DS-1    | T-1  | 1.544       | 24             |
| DS-2    | T-2  | 6.312       | 96             |
| DS-3    | T-3  | 44.736      | 672            |
| DS-4    | T-4  | 274.176     | 4032           |

#### T-1 Line



# **E Line Rates**

| Line | Rate (Mbps) | Voice Channels |
|------|-------------|----------------|
| E-1  | 2.048       | 30             |
| E-2  | 8.448       | 120            |
| E-3  | 34.368      | 480            |
| E-4  | 139.264     | 1920           |

# **Time-Division Multiplexing**

- Synchronous TDM
  - Statistical TDM

# **Empty slots** MUX

#### **Statistical TDM**



#### **SPREAD SPECTRUM**

- In wireless applications, stations must be able to share the medium without interception by an eavesdropper and without being subject to jamming from a malicious intruder
- To achieve these goals, spread spectrum adds redundancy and spread original spectrum needed for each station

#### **SPREAD SPECTRUM - Principles**

- Bandwidth allocated to each station needs to be larger than what is needed to allow Redundancy
- Spreading process should be independent of the original signal

# **Spread Spectrum**



#### SPREAD SPECTRUM TECHNIQUES

- Frequency Hopping
  Spread Spectrum (FHSS)
- Direct Sequence Spread Spectrum (DSSS)

## **Frequency Hopping Spread Spectrum (FHSS)**

- 'M' different carrier frequencies that are modulated by the source signal
- At one moment, signal modulates one carrier frequency and at next moment, it modulates another

# Frequency Hopping Spread Spectrum (FHSS)



#### **Frequency Selection in FHSS**



# **FHSS Cycles**



# **Bandwidth Sharing**





#### **DSSS**

- DSSS also expands the bandwidth of the original signal, but the process is different
- We replace each data bit with 'n' bits using a spreading code
- Each bit is assigned a code of 'n' bits, called chips, where the chip rate is 'n' times that of the data bit

# DSSS

