

Outline

- Objective Goals
- **02** Data Understanding and Data Cleaning
- **03** Exploratory Data Analysis
- **04** Data Preprocessing
- Machine Learning
 Modelling and Evaluation
- **O6** Conclusion and Action Recommendation

What is Diabetes?

Diabetes is a chronic disease that increases risk for stroke, kidney failure, renal complications, peripheral vascular disease, heart disease, and death (Xie, 2019)

The International Diabetes Federation(IDF) estimates that at the current growth, **693 million** people will have diabetes worldwide by 2045.

The Centers for Disease Control and Prevention(CDC) recorded that in 2012, **29.1 million** people in the United State were diagnosed diabetes. This condition put high financial burden for government because of medical cost and decreased productivity.

According to IDF data, in 2021, Indonesia is in the fifth position with **19.5 million** diabetes cases and estimated will increase to **28.6 million** in 2045.

In 1984 CDC initiated the Behavioral Risk Factor Surveillance System (BRFSS), an ongoing, state-based, random-digit—dialed telephone survey of noninstitutionalized US adults aged 18 years or older to identify the risk factors for a variety of human diseases.

Dataset Source:

https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset/data

- This dataset comes from survey Behavioral Risk Factor Surveillance System (BRFSS) in the US.
- It contains 22 columns and 70,692 rows
 15 columns with binary data (0,1)
 - 1 columns is continuous
 - 4 columns with ordinal
 - 2 columns with discrete

Description for each feature https://www.cdc.gov/pcd/issues/2019/19_0109.h tm

Data Cleaning

- No Missing Value
- There are 1635 duplicate rows

Overall, there are 49.18% respondents who have diabetes, and 50.82% don't have diabetes. It means that the dataset is quite balance

Are people who have high cholesterol and high blood pressure susceptible to diabetes?

Prevalence of diabetes for people who have high blood pressure and high cholesterol is 72.6%

Do healthy people's habits affect diabetes?

People who do physical activity outside of work tend not to be at risk of diabetes. However, there is no significant difference between people who consume fruits and vegetables

Are obese people at greater risk of diabetes?

Obese = BMI > 30

The plot shows that although there is some overlap between the two curves, the red curve is more spread out to the right suggests a tendency for individuals with diabetes to have a higher BMI than those without diabetes.

Data Pre-processing

- Drop rows if Cholcheck =0
 0 = no cholesterol check in 5 years, so the data in HighChol is not relevant
- 1. Drop Cholcheck because the data has been represent in column HighChol
- Check correlation between features using VIF score
 The VIF score is about 1, it means that no high correlation between independent features.

Feature	VIF Score		
HighBP	1.32661		
HighChol	1.161452		
BMI	1.170568		
Smoker	1.07622		
Stroke	1.091595		
HeartDisease orAttack	1.190057		
PhysActivity	1.159091		
Fruits	1.09534		
Veggies	1.098271		
HvyAlcoholC onsump	1.023087		
AnyHealthcar e	1.078701		

Feature	VIF Score	
NoDocbcCos t	1.130973	
GenHlth	1.850239	
MentHlth	1.262823	
PhysHlth	1.690836	
DiffWalk	1.579181	
Sex	1.090481	
Age	1.324524	
Education	1.316245	
Income	1.521131	

Data Pre-processing

- Feature selection based on correlation each feature to target The feature with correlation less than 0.05 will be dropped: Fruits, Sex, NoDocbcCost, AnyHealthcare
- 4. Feature Scalling using MinMax Scaler because the data has various range data
- 4. Split data into data train data test

 Data train = 80%

 Xtrain (53853, 16)

 ytrain (53853,)

Data test = 20% Xtest (13464, 16) ytest (13464,)

Feature	Correlation		
Diabetes_bin ary	1		
GenHlth	0.393242		
HighBP	0.36473		
ВМІ	0.283732		
HighChol	0.273975		
Age	0.266386		
DiffWalk	0.263705		
Income	0.214717		
PhysHlth	0.203523		
HeartDisease orAttack	0.202517		
Education	0.158577		

Feature	Correlation		
PhysActivity	0.150078		
Stroke	0.120452		
HvyAlcoholCo nsump	0.097422		
MentHlth	0.082333		
Smoker	0.076613		
Veggies	0.072748		
Fruits	0.046335		
Sex	0.044002		
NoDocbcCost	0.041968		
AnyHealthcar e	0.01789		
AnyHealthcar			

Model Evaluation

Model	recall	precision	f1-score	accuracy
Logistic regression	0.776321	0.741159	0.758333	0.742053
Random Forest Classifier	0.774327	0.716640	0.744368	0.742276
XGBoost Classifier	0.730844	0.800399	0.764042	0.737718

- f1-score difference between baseline model and machine learning modelling is not significant.
 It's only +-1% both before or after hyperparameter tuning
- f1-score of XGBoost Classifier is the highest, 0.764042. It means that the best model is XGBoost Classifier

Feature Importance Analysis

Permutation Feature Importance

General health, BMI, Age, High blood pressure, income, physical health, high cholesterol, mental health, education, and heart disease or heart attack have positive affect to diabetes. The higher this feature, the greater risk for someone to have diabetes.

Conclusion

XGBoost classifier is the best predictive model with f1-score 76.98%. There are 5 important features that affect diabetes positively, namely General health, BMI, Age, High blood pressure, difficulty walking, income, heart disease or attack, Mental health, and Heavy alcohol consumptions.

Actionable Recommendation

- Government promotes routine medical check up to diagnose a person's health, if diabetes is indicated then it can be indicated at an early stage
- Provide educational programs about maintaining a healthy lifestyle, including proper diet and regular exercise
- Enhance blood pressure control by recommending dietary modifications, such as reducing sodium intake and increasing potassium-rich foods

Link Notebook

https://github.com/nurullkhasanah/predict-diabetes-status/blob/main/diabetes_status_prediction/modelling.ipynb Link Kaggle :

https://www.kaggle.com/code/nurulk/diabetes-prediction-by-nurul/edit