

THE UNIVERSITY OF TEXAS AT ARLINGTON, TEXAS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 5322 - 002 INTELLIGENT CONTROL SYSTEMS

HW # 5 ASSIGNMENT

by

SOUTRIK PRASAD MAITI 1001569883

Presented to

Dr. Frank Lewis

Nov 21, 2017

EE 5322 Intelligent Control

Fall 2017

Homework Pledge of Honor

On all homeworks in this class - YOU MUST WORK ALONE.
Any cheating or collusion will be severely punished.
It is very easy to compare your software code and determine if you worked together
It does not matter if you change the variable names.
Please sign this form and include it as the first page of all of your submitted homeworks.
Typed Name: <u>Soutrik Maiti</u>
Pledge of honor:
"On my honor I have neither given nor received aid on this homework."

e-Signature: Soutrik Maiti

a) MATLAB Code:

```
%State Matricies
a = [0,1;-0.89,1.8];
                                            %Matrix A
                                             %Matrix B
b = [0,1]';
k = [1:1:100]';
                                             %Time Index
u = ones(size(k));
                                             %Unit Step
x0 = [0,0]';
                                             %Initial Conditons
[ki x] = discrete time sys(a,b,x0,u);
plot(ki,x)
                                             %Plotting StateVariables
title('Response of state 1 and state 2')
xlabel('Time');
ylabel('Amplitude');
legend('x1','x2');
figure
plot(ki,x(:,1))
title('Response of state 1')
xlabel('Time');
ylabel('Amplitude');
legend('x1');
figure
plot(ki,x(:,2))
title('Response of state 2')
xlabel('Time');
ylabel('Amplitude');
legend('x2');
function[ki,x] = discrete time sys(a,b,x0,u)
   N = size(u);
                                         %N = 100s
   ki(1) = 1;
                                         %Time Index ki
   n = size(x0);
   x = zeros(N(1), n(1)); x(1,:) = x0'; %Initalizing State variable & x(0)
    for k = 1:N(1)-1
                                         %Loop for calculation of State variables
        ki(k+1) = k+1;
        x(k+1,:) = (a*x(k,:)'+b*u(k,:)')';
    end
    ki = ki';
```

end

Fig 1.1 Response of both the states

Period of the system – Fig1.2 shows the coordinates of the first and second peak. Hence the period is simply x2-x1+1 i.e. 32-12+1 which is 21.

The period is 21.

The period is same for the second state as inferred from Fig 1.3. As of the peak overshoot is considered, we know:-

$$\textit{Peak Overshoot} (\textit{State 1}) = \frac{\textit{V}_{\textit{Peak}} - \textit{V}_{\textit{Constant}}}{\textit{V}_{\textit{Constant}}} \times 100 = 54.88\%$$

For State 1: Vpeak = 17.27 Vconstant = 11.15 from Fig

Fig 1.2 Response of state 1

For State 2: Vpeak = 17.27 Vconstant = 11.15 from Fig

 $\textit{Peak Overshoot} (\textit{State 2}) = \frac{v_{\textit{Peak}} - v_{\textit{Constant}}}{v_{\textit{Constant}}} \times 100 = 54.74\%$

Fig 1.3 Response of state 2

b) MATLAB code for state response with noise

```
%state matricies
a = [0,1;-0.89,1.8];
                                                  %Matrix A
b = [0,1]';
                                                  %Matrix B
x0 = [0 \ 0]';
                                                  %Initial State x(0)
k = [1:1:100]';
                                                  %Time Index
u = ones(size(k));
                                                  %Unit Step input
[ki,x] = disc_time_sys_wnoise(a,b,x0,u);
plot(ki,x)
                                                  %Plotting State Variables
title('State response with process noise')
xlabel('Time');
ylabel('Amplitude');
function [ki,x] = disc time sys whoise(a,b,x0,u)
    N = size(u);
                                                      %N = 100
    n = size(x0);
    ki(1) = 1;
```


Fig 1.4 State response when there is process noise

Problem 2: MATLAB Code for Optimal Time Varying Kalman Filter

```
clear all
  clc
  close all
%System Matrices
A = [0,1;-0.89,1.8];
B = [0;1];
```

```
H = [1, 0];
Q = 0.1 * eye(2);
R = 0.1;
G = eye(2);
wk = sqrt(0.1) * randn(2,100);
                                         %Process noise
vk = sqrt(0.1) * randn(100,1);
                                         %Measurement Noise
                                       %Initial Error Covariance P
P = 35 * eye(2);
I = eye(2);
k = 100;
x0 = [0 \ 0];
                                       %Initial value of x
                                         %Unit Step
uk = ones(k, 1);
x = zeros(100, 2);
                                         %Initalizing states
xhat(2,1) = 0;
                                         %Initial x estimate values
x(1,:) = x0';
% State Calculations
for k = 1:100
    x(k+1,:) = (A*x(k,:)'+ B*uk(k,:)'+G*wk(:,k))';
    zk(k,:) = (H*x(k,:)'+vk(k,:))';
end
% Optimal Time Varying DT Kalman Filter
for k = 1:99
    Pm= A*P*A'+ G*Q*G';
    xhatn(:,k+1) = (A*xhat(:,k) + B*uk(k,:)');
    K = Pm*H'*inv(H*Pm*H'+R);
    P = (I-K*H)*Pm;
    xhat(:,k+1) = xhatn(:,k+1)+K*(zk(k+1,:)-H*xhatn(:,k+1));
end
%Plot for first state
figure(1)
O= plot(1:100, x(1:100, 1), '-r', 1:100, xhat(1,:)', '-b');
title('Optimal Time Varying DT Kalman Filter for state 1');
set(O(1), 'LineWidth', 1);
set(O(2), 'LineWidth', 1.7);
legend('x(1)', 'x(1) Hat(Estimate)')
%Plot for second state
```

```
figure(2)  U = \text{plot}(1:100, x(1:100, 2), '-r', 1:100, xhat(2,:)', '-b'); \\ \text{title('Optimal Time Varying DT Kalman Filter for state 2');} \\ \text{set}(U(1), 'LineWidth', 1); \\ \text{set}(U(2), 'LineWidth', 1.7); \\ \text{legend('x(2)', 'x(2)Hat(Estimate)')}
```


Fig 2.1 DT filter estimates for state 1

Fig 2.2 DT filter estimates for state 2

Problem 3:

MATLAB code for steady state Kalman filter

```
clear all;
clc;
close all;
%System Matrices
A = [0,1;-0.89,1.8];
B = [0;1];
H = [1,0];
Q = 0.1 * eye(2);
R = 0.1;
G = eye(2);
wk = sqrt(0.1) * randn(2,100);
                                        %Process noise
vk = sqrt(0.1) * randn(100,1);
                                         %Measurement Noise
P = 37* eye(2);
                                       % Initalizing Error covariance
I = eye(2);
k = 100;
x0 = [0 \ 0];
                                       %Initial value of x
uk = ones(k, 1);
                                         %Unit Step
x = zeros(100, 2);
                                         %Initalizing states
xhat = zeros(2,100);
xhatn = zeros(2,100);
xhat(1,:) = 0;
x(1,:) = x0';
%State Simulation
for k = 1:100
    x(k+1,:) = (A*x(k,:)'+ B*uk(k,1)'+ G*wk(:,k))';
    zk(k,:) = (H*x(k,:)'+vk(k,:)')';
end
% Steady State DT Kalman Filter
%Riccati Equation
for k1 = 1:99
     P = A*(P-P*H'*inv(H*P*H'+R)*H*P)*A'+G*Q*G';
```

```
end
Ks1 = P*H'*inv(H*P*H'+R) %steady state kalman gain from Riccati equation
%DLQE for the ARE
[M,P2,Z,E] = dlqe(A,G,H,Q,R);
    Ks2 = P2*H'*inv(H*P2*H'+R) %Steady state kalman gain
for k2=1:99
    xhatm(:, k2+1) = A*(I-Ks2*H)*x(k2,:)' + B*uk(k2,:)' + A*Ks2*zk(k2,:);
end
%optimal DT Kalman Filter
P = 37* eye(2);
                                      % Initalizing Error covariance
for k = 1:99
    Pm = A*P*A' + G*Q*G';
    xhatn(:,k+1) = (A*xhat(:,k) + B*uk(k,:)');
    Ko = Pm*H'*inv(H*Pm*H'+R);
    P = (I-Ko*H)*Pm;
    xhat(:,k+1) = xhatn(:,k+1)+Ko*(zk(k+1,:)-H*xhatn(:,k+1));
end
%Comparision of first state
figure(1)
O = plot(1:100, x(1:100, 1), '-r', 1:100, xhat(1,:)', '-b', 1:100, xhatm(1,:)', '-g');
title('Kalman Filters comparision for state 1');
set(O(1), 'LineWidth', 1);
set(O(2), 'LineWidth', 1.7);
set(O(3), 'Linewidth', 1.3);
legend('x(1)', 'x(1) Optimal', 'x(2) Steady-State')
%Comparision of second state
figure(2)
U = plot(1:100,x(1:100,2),'-r',1:100,xhat(2,:)','-b',1:100,xhatm(2,:)','-g');
title('Kalman Filters comparision for state 2');
set(U(1), 'LineWidth', 1);
set(U(2), 'LineWidth', 1.7);
set(U(3), 'LineWidth', 1.3);
legend('x(2)','x(2) Optimal','x(2) Steady-State')
```

```
Ks1 =

0.8607
1.1552

Ks2 =

0.8607
1.1552
```

Fig 3.1 Comparison of Kalman gains from two approaches

Fig 3.2 Comparison of estimates from two different Kalman filters for state 1

Fig 3.3 Comparison of estimates from two different Kalman filters for state 2