

Module : Eléments de Recherche Opérationnelle

M. A. Janati Idrissi

janati@ensias.ma

1ère année ENSIAS

2009-2010

Qu'est ce que la R. O.?

- **Tentative de définition :** ensemble de techniques s'appuyant sur les mathématiques et l'Informatique pour la résolution de problèmes de gestion et de décision.
- Les 2 aspects fondamentaux de la R. O. :
 - Définition d'un modèle mathématique <u>reflétant au mieux</u> le problème à résoudre.
 - Résolution de ces problèmes mathématiques avec des algorithmes (méthodes exactes ou heuristiques).
- Taxinomie des modèles mathématiques: Programmation linéaire, programmation linéaire en nombres entiers, programmation non linéaire, théorie des graphes et optimisation dans les réseaux, programmation dynamique, processus aléatoires, techniques de simulation, techniques de prévision, choix multicritère,...

Exemples concrets

Programmation linéaire :

- Problème de production
- Problème de transport
- **>**

Théorie des graphes :

- Problème de l'arbre de poids minimum
- Problème du plus court chemin dans un réseau
- **>** ...

Problème de production

	A	В	
I	2	1	8
II	1	2	7
III	0	1	3
	4	5	

Problème de transport

	U1	U2	U3	
E1	8	10	12	50
E2	7	9	11	20
	15	20	35	

Problème de l'arbre de poids min ?

Problème de plus court chemin ?

Complexité d'un algorithme

- De manière informelle, la complexité d'un algorithme évalue un majorant du nombre d'opération élémentaires qu'on doit effectuer, dans le pire des cas, pour obtenir le résultat cherché;
- La complexité est exprimée en fonction de la taille des données n du problème à résoudre ;
- Les algorithmes dont la complexité est majorée par un polynôme en n sont dits polynomiaux ; les autres sont dits exponentiels

Evolution de la R. O.

Deux principales étapes sont à distinguer :

- 1946 1960 : Avènement de la Recherche Opérationnelle (Publication du SIMPLEXE en 1947 par G. Dantzig)
- Depuis 1960 : Le développement de la R. O. est dû essentiellement aux 2 raisons suivantes :
 - Les problèmes d'organisation de la vie en commun, de la gestion des entreprises sont devenus de plus en plus complexes;
 - Le développement de l'informatique (H + S) a permis la résolution de problèmes nouveaux et complexes.

Importance de la P. L.

- Le succès initial de la R. O. est largement dû au succès de la P. L.
- De nombreux problèmes dans pratiquement tous les secteurs de l'économie (industrie chimique, mines, énergie, transport, agriculture, bâtiment et travaux publics, telecom, ...) peuvent se formuler comme des P. L.: plans de production, problèmes de mélange, affectation de personnel, distribution et transport, problèmes de stock,...
- La méthode du SIMPLEXE (principal outil de résolution des P. L.) s'apprête parfaitement à un traitement sur ordinateur;

Importance de la T. des G.

- Les graphes se trouvent être des outils irremplaçables pour la modélisation des systèmes et réseaux;
- La T. des G. est née certes en 1736 comme une matière de maths (ponts de Koenigsberg) mais est utilisée aujourd'hui dans plusieurs disciplines (Maths, Informatique, Réseaux, I. A., Management, ...)
- L'algorithmique des graphes permet de résoudre des problèmes de base : arbre de poids minimum, problèmes de cheminement dans les réseaux, problèmes de flôts, ordonnancement de projets,...

Références bibliographiques

- M. Sakarovitch, optimisation combinatoire, graphes et programmation linéaire, Hermann, Paris, 1984
- I. Charon, A. Germa, O. Hudry, Méthodes d'optimisation combinatoire, Masson, Paris, 1996
- P. Lacomme, C. Prins, M. Sevaux, Algorithmes de graphes, Eyrolles, Paris, 1994,2003
- M. Gondran et M. Minoux, graphes et algorithmes, Eyrolles, Paris, 1990
- Roseaux, Exercices résolus de recherche opérationnelle, Masson, Paris, 1991