ECON8000: Quantitative Skills for Economics Lecture 9: Optimization 2

Shino Takayama

University of Queensland

March 2020

Stationary Case

We now consider the case $T = +\infty$.

A deterministic stationary discounted dynamic programming problem (henceforth, SDP) is specified by a tuple $\{S, A, \Phi, f, r, \delta\}$, where the following description holds.

- 1. S is the state space with generic element s. We assume that $S \subset \mathbb{R}^n$ for some n.
- 2. A is the action space with typical element a. We assume that $A \subset \mathbb{R}^k$ for some k.
 - 3. $\Phi: S \to P(A)$ is the feasible action correspondence that specifies for each $s \in S$ the set $\Phi(s) \subset A$ actions that are
- specifies for each s ∈ S the set Φ(s) ⊂ A actions that are available at s.
 4. f: S × A → S is the transition function for the state, that
- 4. $f: S \times A \to S$ is the transition function for the state, that specifies for each current state-action pair (s, a) the next-period state $f(s, a) \in S$.
- 5. $r_5 \times A \to \mathbb{R}$ is the (one period) reward function that specifies a reward r(s, a) when the action a is taken at the state s.
- state 5. 6. $\delta \in [0, 1)$ is the one-period discount factor.

The interpretation of this framework is similar to that of the finite-horizon model but now time is infinite and the problem is represented as:

$$egin{aligned} \max \sum_{t=0}^{\infty} \delta^t r(s_t, a_t) \ s.t: \ s_{t+1} &= f(s_t, a_t) \quad t = 0, 1, 2, \dots \ a_t &\in \Phi(s_t) \quad t = 0, 1, 2, \dots \end{aligned}$$

Histories, strategies and the Value Function

- ▶ A t-history $h_t = \{s_0, a_0, \dots, s_{t-1}, a_{t-1}, s_t\}$ for the SDP is a list of the state and action in each period up to t-1 and thhe period-t state. Let $H_0 = S$, and for $t = 1, 2, \dots$ let H_t denote the set of all possible t-histories. Denote by $s_t[h_t]$ the period-t state in the history h_t .
- A strategy σ is a sequence of functions $\{\sigma_t\}_{t=0}^{\infty}$ such that for each $t=0,1,\ldots,\sigma_t:H_t\to A$ satisfies the feasibility requirement that $\sigma_t(h_t)\in\Phi(s_t[h_t])$. Let Σ denote the space of all strategies.

Fix a strategy σ . From each given initial state $s \in S$, the strategy σ determines a unique sequence of states and actions $\{s_t(\sigma,s), a_t(\sigma,s)\}\$ as follows: $s_0(\sigma,s)=s$ and for $t=0,1,2\ldots$:

$$\{s_t(\sigma,s), a_t(\sigma,s)\}$$
 as follows: $s_0(\sigma,s) = s$ and for $t = 0, 1, 2 \dots$,
$$h_t(\sigma,s) = \{s_0(\sigma,s), a_0(\sigma,s), \dots, s_t(\sigma,s)\}$$

$$a_t(\sigma,s) = \sigma_t(h_t(\sigma,s))$$

Thus each strategy
$$\sigma$$
, induces form each initial state s , a

period-t reward $r_t(\sigma)(s)$ where:

 $s_{t+1}(\sigma,s) = f(s_t(\sigma,s), a_t(\sigma,s))$

$$r_t(\sigma)(s) = r[s_t(\sigma, s), a_t(\sigma, s)]$$

Let $W(\sigma)(s)$ denote the total discounted reward from s under strategy σ :

$$W(\sigma)(S) = \sum_{t=0}^{\infty} \delta^t r_t(\sigma)(s)$$

The value function $V: \mathcal{S} \to \mathbb{R}$ of the SDP is defined as:

$$V(s) = \sum W(\sigma)(s)$$

A strategy σ^* is said to be an optimal strategy for the SDP if:

$$W(\sigma^*)(s) = V(s) \quad , s \in S$$

The Bellman Equation

Simple examples show that several problems arise in the search for an optimal strategy unless we impose some restrictions on the structure of the SDP.

- 1. Two or more strategies may yield infinite total rewards from some initial states, yet may not appear equivalent from an intuitive stand point.
- 2. No optimal strategy may exist even if $\sum_{t=0}^{\infty} \delta^t r(s_t, a_t)$ converges for each feasible sequence $\{a_t\}$ from each initial state s.

The first problem can be overcome if we assume S and A to be compact sets and r to be continuous on $S \times A$. In this case, r is bounded on $S \times A$, so for any feasible action sequence, total reward is finite since $\delta < 1$. More generally, we may directly assume, as we shall, that r is bounded on $S \times A$.

Assumption 1. There is a real K such that $|r(s,a)| \leq K$ for all $(s,a) \in S \times A$.

Lemma. Under Assumption 1, the value function V is well defined as a function from S to \mathbb{R} , even if an optimal strategy does not exist. Moreover, given any $s \in S$ and any $\epsilon > 0$ it is

the case that there exists a strategy σ , depending possibly on ϵ

and s, such that $W(\sigma(s)) \geq V(s) - \epsilon$.

Lemma: The Bellman Equation

Lemma. The value function V satisfies the following equation (the "Bellman equation") at each $s \in S$:

$$V(s) = \sup_{a \in \Phi(s)} \{r(s,a) + \delta V[(f(s,a)]\}.$$

Contraction

Definition. Let (X, d) be a metric space and $T: X \to X$. The mapping T is a contraction if there is $\rho \in [0, 1)$ such that $d(T(x), T(y)) \leq \rho d(x, y)$ $x, y \in X$.

Theorem. Let (X, d) be a complete metric space and $T: X \to X$ a contraction. Then T has a unique fixed point.

Review from Lec 4: The Contraction Mapping Theorem

- ▶ Economic equilibria are typically fixed points.
- ► For this reason the result we describe now, which is also known as the Banach fixed point theorem, is especially significant for us.
- Let (X, d) be a metric space, and let $f: X \to X$ be a function.
- A point x is a fixed point of f if f(x) = x.
- ▶ We say that f is a contraction if there is a constant $\alpha \in (0,1)$, called the modulus of contraction, such that $d(f(x), f(y)) \leq \alpha d(x, y)$ for all $x, y \in X$.

Review: The Contraction Mapping Theorem

Theorem: If X is nonempty and complete and $f: X \to X$ is a contraction, then f has a unique fixed point.

Proof. Let α be the modulus of contraction. Uniqueness is easy: if x and x' are fixed points, then

$$d(x,x')=d(f(x),f(x'))\leq \alpha d(x,x'),$$

so d(x, x') = 0 and thus x = x'.

Proof: Existence

To prove existence, let x be any point in X, and define the sequence $x_0, x_1, x_2, ...$ be setting $x_0 = x$ and $x_i = f(x_{i-1})$ for $i \ge 1$. By induction $d(x_i, x_{i+1}) \le \alpha^i d(x_0, x_1)$, so when m < n we have

$$d(x_m,x_n) \leq \Big(\sum_{i=m}^{n-1} \alpha_i\Big) d(x_0,x_1) \leq \frac{\alpha^m}{1-\alpha} d(x_1,x_2).$$

Thus (x_i) is Cauchy, and has a limit x^* because X is complete. We have

$$d(f(x^*),x_{i+1}) \leq \alpha d(x^*,x_i) \to 0,$$

so $x_i \to f(x^*)$ and thus $f(x^*) = x^*$.

Blackwell's conditions

Let $S \subset \mathbb{R}^{\ell}$. Let B(S) denote the set of all bounded functions from S to \mathbb{R} .

Lemma. B(S) is a complete metric space when endowed with the sup norm: for each $v, w \in B(S)$, $d(v, w) = \sup_{v \in S} |v(y) - w(y)|$.

Lemma (Blackwell's conditions). Let $L: B(S) \to B(S)$ be any mapping that satisfies

- ▶ (1) Monotonicity: $w \ge v \to Lw \ge Lv$
- ▶ (2) Discounting: There is $\beta \in [0,1)$ such that $L(w+c) = Lw + \beta c$ for all $w \in B(S)$ and $c \in \mathbb{R}$.

Then L is a contraction.

These conditions are also known as *Blackwell's conditions*.

Proof: Blackwell's Conditions

- ▶ Let $v, w \in B(S)$.
- ► Then for any $s \in S$, $w(s) v(s) \le \sup_{y \in S} |w(y) v(y)| = ||w v||$.
- ► Hence $w(s) \le v(s) + ||w v||$.
- ▶ By applying monotonicity and discounting in order, we obtain

$$Lw(s) \le L(v + ||w - v||)(s) \le Lv(s) + \beta ||w - v||.$$

- Noverall, we obtain $Lw(s) Lv(s), Lv(s) Lw(s) \le \beta ||w v||$, so $|Lw(s) Lv(s)| \le \beta ||w v||$.
- ► Hence, $\sup_{s \in S} |Lw(s) Lv(s)| = ||Lw Lv|| \le \beta ||w v||$.

Stationary Equilibrium

Definition. A Markovian strategy σ for the SDP is defined to be a strategy where for each T, σ_t depends on h_t only through t and the period-t state under h_t , $s_t[h_t]$.

Definition. A stationary strategy is a Markovian strategy $\{\pi_t\}$ which satisfies the further condition that $\pi_t = \pi_\tau = \pi$ for all t and τ .

Thus, in a stationary strategy, the action taken in any period t depends only on the state at the beginning of that period, and not even on the value of t. It is usual to denote such a strategy by $\pi^{(\infty)}$, but for notational simplicity we denote it by function π .

Definition. A stationary optimal strategy is a stationary strategy that is also an optimal strategy.

Assumptions

We have already assumed that:

- 1. r is bounded on $S \times A$
- 2. r is continuous on $S \times A$.
- 3. f is continuous on $S \times A$.
- 4. Φ is a continuous, compact-value correspondence on S.

Theorem. Suppose the SDP $\{S, A, \Phi, f, r\delta\}$ satisfies

assumptions 1 to 4. Then there exists a stationary optimal policy π^* . Furthermore, the value function $V = W(\pi^*)$ is continuous on S, and is the unique bounded function that satisfies the Bellman equation at each $s \in S$:

policy
$$\pi^*$$
. Furthermore, the value function $V = W(\pi^*)$ is continuous on S , and is the unique bounded function that satisfies the Bellman equation at each $s \in S$:
$$W(\pi^*)(s) = \max_{a \in \Phi(s)} \{r(s, a) + \delta W(\pi^*)(f(s, a))\}$$

 $= r(s, \pi^*(s)) + \delta W(\pi^*)[f(s, \pi^*(s))]$

Optimal Growth Model

- 1. There is a single good which may be consumed or invested.
- 2. The conversion of investment to output takes one period and is achieved through a production function $f: \mathbb{R}_+ \to \mathbb{R}_+$.
- 3. x_t denotes period-t investment
- 4. y_{t+1} denote the output available on period-(t+1), given $f(x_t)$.
- 5. Agents beings with an initial endowment of $y = y_0 \in \mathbb{R}_{++}$.
- 6. In each period, agent observes available stock y_t and decides on the division of this stock between period-t consumption c_t and period-t investment x_t .
- 7. Consumption of c_t in period t gives utility $u(c_t)$: $u: \mathbb{R}_+ \to \mathbb{R}$.
- 8. Agent discounts future utility by discount factor $\delta \in [0, 1)$ and wishes to maximize total discounted utility from lifetime consumption.

Problem to Solve

Thus, the problem is to solve:

$$\max \sum_{t=0}^{\infty} \delta^{t} u(c_{t})$$
s.t $y_{0} = y$

$$y_{t+1} = f(x_{t}) \quad t = 0, 1, 2 \dots$$

$$c_{t} + x_{t} = y_{t} \quad t = 0, 1, 2 \dots$$

$$c_{t}, x_{t} \ge 0 \quad t = 0, 1, 2 \dots$$

Environment

- ▶ $S^* = \mathbb{R}_+$ is the state space.
- $ightharpoonup A^* = \mathbb{R}_+ \text{ action space.}$
- ▶ $\Phi(y) = [0, y]$ is the feasible action correspondence taking states $y \in S^*$ into the set of feasible action $[0, y] \subset A^*$ at y.
- r(y,c) = u(c), the reward from taking action $c \in \Phi(y)$ at the state $y \in S^*$.
- ▶ F(y,c) = f(y-c) is the transition function taking current state-action pairs (y,c) into future states F(y,c).
- The tuple $\{S^*, A^*, \Phi, r, F, \delta\}$ now defines a stationary discounted programming problem, which represents the optimal growth model.

Existence of Optimal Strategies

- Notice that u may be unbounded on \mathbb{R}_+ .
- ▶ Rather than imposing unboundedness, we consider more natural and plausible restriction which will ensure that we may restrict S^* and A^* to compact intervals in \mathbb{R}_+ , thereby obtaining boundedness of u from its continuity.

Suppose that production function f satisfies the following conditions:

- 1. f(0) = 0 (no free production)
- 2. f is continuous and nondecreasing on \mathbb{R}_+ (continuity and monotonicity)
- 3. There is $\bar{x} > 0$ such that $f(x) \le x \quad \forall x \ge \bar{x}$ (unproductivity at high investment levels)

- 1. $u: \mathbb{R}_+ \to \mathbb{R}$ is continuous on \mathbb{R}_+
- 2. The tuple $\{S, A, \Phi, r, F, \delta\}$ now meets the requisite compactness and continuity to guarantee the existence of an optimal strategy.

Theorem. There is a stationary optimal strategy $g: S \to A$ in the optimal growth problem under Assumptions 1 and 2. The value function V is continuous on S and satisfies the Bellman equation at each $y \in S$:

$$V(y) = \max_{c \in [0,y]} \{ u(c) + \delta V[f(y-c)] \}$$

= $u(g(y)) + \delta V[f(y-g(y))]$

Example

An economy is composed by a continuum of identical agents with preferences:

$$\mathbb{E}\left(\sum_{t=0}^{\infty}\beta^{t}u(c_{t})\right)$$

where c_t is the level of consumption in t, with $u_c > 0$ and $u_{cc} < 0$. The consumption good (also used as capital asset) is produced according to the function $F(K_t, N_t)$, where K_t is capital, which depreciates at a rate $\delta < 1$, N_t is total employment and F exhibits constant returns to scale (Cobb-Douglas). Each agent has an initial amount of capital K_0 and a unit of time to devote to work. Consumers are the owners of capital which lease it to the representative firm.

Example: Recursive Formulation

(a) Define the recursive problem of the central planner and derive the first order conditions.

Answer.
$$V(k) = \max_{0 \le y \le f(k)} u(f(k) - y) + \beta V(y).$$

The first order condition with respect to y is

$$u'(K(1-\delta)+F(K,N)-y)=\beta V'(y)$$

Example

Assume now that in the same economy a labour tax τ is imposed to provide liquidity to the investment I of a public good, g. This public good depreciates each period at a rate $\lambda < 1$ such that $g_t = g_t(1 - \lambda) + I$. Agents value this public good, so the utility function per period is $u(c_t; g_t)$.

- (b) Define the recursive problem of the central planer. The wage is given by \boldsymbol{w} . (Hint:
 - $I = \tau w = \tau F_2(K, N) = \tau \alpha F(K, N)$ if Cobb-Douglas $K^{1-\alpha} \cdot N^{\alpha}$ is assumed and N = 1).
- (c) What happen if $\lambda = 1$. Is g still a state variable?

Answer (b)

Normalizing with N = 1, we have:

$$I = \tau w \to \tau F_2(K,1) = \tau \cdot \alpha F(K,1) \text{(assuming Cobb-Douglas)}$$

Therefore, the recursive problem of the central planner is defined as:

$$\begin{split} V(K,g) &= \max_{K'} \left\{ u\left(K(1-\delta) + F\left(K,1\right) - K' - \tau \cdot \alpha F(K,1); g\right) \right. \\ &+ \beta V(K',g') \right\} \\ \text{s.t} \\ g' &= g(1-\lambda) + \tau \cdot \alpha F(K,1) \end{split}$$

Answer (c)

If $\lambda = 1$, then $g' = \tau \alpha F(K, 1)$ and we don't need g to project g'. However, g is still a state variable given that enters in the utility function and its value is determined by the level of capital in the last period.

Example 2 (Q2 in page 278 Sundaram)

Consider the problem of optimal harvesting of a natural resource. A firm (say, a fishery) begins with a given stock of y > 0 of a natural resource (fish). In each period $t = 1, 2, \dots, T$ of a finite horizon, the firm must decide how much of the resource to sell on the market that period. If the firm decides to sell x units of the resource, it receives a profit of $\pi(x)$ where $\pi: \mathbb{R} \to \mathbb{R}$. The amount (y-x) of the resource left unharvested grows to an available amount of f(x) at the beginning of the next period where $f: \mathbb{R} \to \mathbb{R}$. The firm wishes to choose a strategy that will maximize the sum of its profits over the model's *T*-period horizon.

Q & A (a)

Question. Set up firm's optimization problem as a finite-horizon dynamic programming problem, i.e., describe precisely the state space S, the action space A, the period-t reward function feasible action r_t , etc.

Answer. $S = [0, f_T(y)]$ and state is the stock of fish y that firm have. $A = [0, f_T(y)]$. $r_t(y, x) = \pi(x)$. $f_t(y, x) = f(y - x)$. $\Phi_t(y) = [0, y]$.

Q & A (b)

Question. Describe sufficient conditions on f and π under which an optimal strategy exists in this problem.

Answer. They need to satisfy:

- ▶ **A1**: π has to continuous on $[0, f_T(y)]$ + bounded on $S \times A$ (which is the case given that $S \times A$ is compact).
- ▶ **A2**: f has to be continuous on \mathbb{R} .
- ▶ **A3**: Φ_t is continuous, compact-value correspondence on S.

Question. Assuming $\pi(x) = \log x$ and $f(x) = x^{\alpha}$ ($0 < \alpha \le 1$), solve this problem for the firm's optimal strategy using backwards induction.

Answer. Start in T, where optimal is $g_T(y) = y$ (that is, consume all the remaining stock). Therefore, $V_T(y) = \ln(y)$. Then, at period T - 1,

$$\max_{x \in [0,y]} \ln x + \ln(y-x)^{\alpha}.$$

Answer (c) Continued

Given that problem consist in maximize a logarithm function, FOC are necessary and sufficient. Finding FOC we obtain:

$$g_{T-1}(y) = \frac{y}{1+\alpha}$$

which implies that

 $V_{T-1}(y) = (1+\alpha) \ln y - (1+\alpha) \ln (1+\alpha) = (1+\alpha) \ln y + \psi.$ Then, doing the same in T-2 gives:

$$g_{\mathcal{T}-2} = rac{y}{1+lpha+lpha^2}$$
 $V_{\mathcal{T}-2}(y) = (1+lpha+lpha^2) \ln y + \Omega(lpha,t)$

Answer (c) continued

So, a guess arises:

$$g_t(y) = \frac{y}{1 + \alpha + \ldots + \alpha^{T-t}}$$

$$V_t(y) = (1 + \alpha + \ldots + \alpha^{T-t}) \ln y + \Omega(\alpha, t)$$

We have to verify the guess:

$$\max_{x \in [0,y]} \ln x + (1 + \ldots + \alpha^{T-t-1}) \ln (y - x)^{\alpha}$$

with solution:

$$x = \frac{y}{1 + \alpha + \dots \alpha^{T - t}}$$

so guess of g is confirmed. Then, plugging $x = \frac{y}{1 + \alpha + \dots \alpha^{T-t}}$ confirms that our guess was indeed the Value Function.