Sample Quiz 3, Math 1554

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

First Name	Last Name	
GTID Number:		
Student GT Email Address:	@gatech.edu	
Section Number (e.g. A4, QH3, etc.)	TA Name	

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- Any work done on scratch paper will not be collected and will not be graded.

You do not need to justify your reasoning for questions in this quiz.

- 1. (6 points) Fill in the blanks.

What is the eigenvalue associated with eigenvector \vec{v}_1 ?

- (b) For what values of k (if any) does $A = \begin{pmatrix} -2 & k \\ -1 & 0 \end{pmatrix}$ have exactly two distinct real eigenvalues?
- (c) For what values of k (if any) is $A = \begin{pmatrix} 2 & 0 \\ k & 2 \end{pmatrix}$ diagonalizable?
- (d) The characteristic polynomial of A is $(\lambda 1)^2(\lambda 3)\lambda^6$.
 - What is the algebraic multiplicity of the eigenvalue $\lambda = 1$?
 - What are the dimensions of matrix A?
 - What is the value of det(A)?
- 2. (4 points) Suppose A is an $n \times n$ matrix. Fill in the circles next to the **true** statements; leave the others empty.
 - \bigcirc If 2 is an eigenvalue of A, and A is invertible, $\frac{1}{2}$ is an eigenvalue of A^{-1} .
 - O An example of a regular stochastic matrix is $P = \frac{1}{10} \begin{pmatrix} 9 & 2 & 1 \\ 0 & 7 & 8 \\ 1 & 1 & 1 \end{pmatrix}$.
 - \bigcirc If v_1 and v_2 are linearly independent eigenvectors, they must correspond to distinct eigenvalues.
 - O If a stochastic matrix is not regular then it cannot have a steady state.

Answers

No justification needed for any questions in this quiz. Answers were only graded for completion, not accuracy.

- 1. Fill in the blanks.
 - (a) By multiplying $A\vec{v}_1$ we can determine the eigenvalue for \vec{v}_1 .

$$A\vec{v}_1 = \begin{pmatrix} 0\\ -2\\ 2\\ 0 \end{pmatrix} = -2\vec{v}_1$$

The eigenvalue for this eigenvector is -2.

(b) The characteristic equation is

$$0 = (-2 - \lambda)(0 - \lambda) - (k)(-1) = \lambda^2 + 2\lambda + k$$

The roots are given by

$$\lambda = -1 \pm \frac{1}{2}\sqrt{2^2 - 4k}$$

For there to be two distinct roots we need $2^2 - 4k > 0$, or k < 1.

- (c) If $k \neq 0$, we can only construct one linearly independent eigenvector. But if k is zero, there are exactly two linearly independent eigenvectors. Thus, we need k = 0 for the matrix to be diagonalizable.
- (d) Characteristic polynomial problem.
 - i. 2
 - ii. 2+1+6=9
 - iii. Zero is an eigenvalue of A, which implies that A is singular, and singular matrices have a determinant equal to zero.

2. True/False

- (a) True
- (b) True: if we were to calculate P^2 we would see that every element is positive
- (c) False. The $n \times n$ identity matrix has n linearly independent eigenvectors, all of which correspond to eigenvalue $\lambda = 1$.
- (d) False. The identity matrix is stochastic because the sum of the entries of each column is 1. But the matrix is not regular, because I^k will have zero entries for any k. But $I\vec{q} = \vec{q}$ for any \vec{q} .