TDWI WEBINAR SERIES

Predictive Analytics Meets IoT Harnessing the opportunity, overcoming the challenges

November 10, 2015

Fern Halper
TDWI Director of Research,
Advanced Analytics
@fhalper

Sponsors

Speakers

Fern Halper
Research Director for
Advanced Analytics,
TDWI

Chandran Saravana
Sr. Director of
Advanced Analytics,
SAP

A network of connected devices that can send and receive data over the Internet

Why now?

- Cost for computers, storage, and bandwidth
- High speed networks
- Low power semi-conductors
- Low cost devices
- Wifi and Internet access

Agenda

- IoT overview and status
- Opportunities Analytics and IoT
- Overcoming IoT challenges
- SAP offerings

Sensors, RFID, Smart meters, scanners, video, etc.

- Intermittent data
- Streaming data
- Structured/unstructured

Simple illustration

Analytics can occur at multiple points

Again: The value lies in analytics

Interest is growing

Does your organization analyze IoT data?

(source: TDWI BPR Emerging Technologies and Methods, 2015, n=303)

Example of IoT Analytics

Alerts/Push

An example- Retail

- Beacon technology
- Push coupons or personalized content
- Uses hyper local geospatial analytics too

Other "thing" alert examples

- Manufacturing
- Medical
- Automotive
- Agriculture

In stream

Analytics

window

Events can be aggregated to form an event window

As each window expires, it is closed and replaced by a new window

In-stream models

Examples - predictive maintenance

- Collects data from multiple sensors
- Can put data in cloud/on-premises
- Some use dashboards/intelligent monitoring
- Some use models built and then deployed

Real-time analysis inside the stream

- CEP
- Stream analytics
 - An evolving area
 - Analyzing data before it is stored
 - More sophisticated analytics

Automatic changes in behavior

▲ Radar, stereo camera and ultrasonic systems

More sensors - more protection

(Mercedes S550 radar coverage.)

Challenges

Top 3 challenges associated with IoT

(source TDWI quick survey, 161 respondents, 2015)

Security

- IoT is a system of systems; threat grid increased
- Organizations working to provide guidance and tooling (e.g. cloud security alliance, IoTSF, IIC, others)

Some recommendations

- Maintain the confidentiality and integrity of both business and personal data collected within the IoT through the provisioning of <u>encryption</u>, <u>authentication</u> and <u>integrity</u> protections throughout the IoT infrastructure
- Understand and address stakeholder privacy concerns prior to the implementation of the IoT capabilities by performing a <u>privacy impact</u> assessment
- Safeguard the infrastructure from attacks that target the IoT as a vector into an organization's assets, through the use of IoT device life cycle <u>controls</u> and a <u>layered security approach</u>
- Initiate a global approach to combat security threats by sharing threat information with security vendors, industry peers and Cloud Security Alliance

(source: Cloud Security Alliance, 2015)

Standards

- Fragmented standards; hard for things to talk to each other
- IEEE, IIC, OIC, and others working to develop interoperable standards

Wrap-up

- Excitement is growing around IoT
- Analytics are critical for IoT value
- IoT is a rapidly evolving area
 - Security
 - Standards
 - Etc.
- Start considering whether it is useful for your organization!

Poll Question

- Are you analyzing IoT data today in your company?
 - Yes we are collecting and analyzing IoT data
 - Yes we are collecting it, but not analyzing it
 - No, but we are planning to start a project in the next 6 months
 - No, and we have no plans to do so

IoT is connecting information, people, and things

IoT is connecting information, people, and things

reimagining business processes

IoT is about...

reimagining customer experience

reimaging human behavior

The Internet of Things - Value Chain Reference Model

How Analytics Need to Evolve

- End-to-end
- Easy adoption
- Fast implementation
- Business focused
- Enables storytelling

SAP Predictive Analytics

Make predictions simple, fast and accurate Automated predictive workflow

Act with confidence at the point of decision

Embedded predictive analytics in business processes and apps

SAP Predictive Analytics

Alliander: Rapidly Improving Asset Data Quality with Data Science Expertise from SAP

Company

Alliander N.V.

Headquarters

Arnhem, The Netherlands

Industry

Utilities

Products and Services

Private energy grids and installations

Employees

6.700

Web Site

www.alliander.com

Objectives

- Improve data quality in the asset register, a central repository for all assets – such as gas pipes and electrical cables – used across the grid
- Reduce maintenance costs and regulatory risks by completing missing technical data, such as material or construction year, for all assets with high accuracy
- Move away from purely rule-based solutions for managing the quality of asset data that are time-consuming, unable to detect unknown patterns, and require tremendous expert involvement

Why SAP

- Combination of internal business knowledge with unparalleled data mining expertise from SAP to rapidly improve data quality
- SAP's Data Science organization uses data mining and R
 programming techniques a language for statistical analysis to
 identify patterns, extract regularities from the data itself, and complete
 missing asset data automatically

Benefits

- Faster improvement in data quality
- Lower project costs as well as significantly less effort and fewer resources for data quality management
- · No penalties by satisfying regulatory requirements
- · Better, more efficient planning for asset investments

"Ever since we learned about the data mining approach to improve master-data quality proposed by SAP's Data Science organization, it has become a substantial component of all our data quality projects."

Rob Jansen, Manager of Grid Information, Alliander N.V.

Lower

Annual spend for asset maintenance by approximately 1% to 2%

Better

Planning of future workloads

Higher

Data quality for accurate and 100% complete technical data

Thank you

@chandransar

Audience Questions?

Contact Information

If you have further questions or comments:

Fern Halper, TDWI fhalper@tdwi.org @fhalper

Chandran Saravana, SAP chandran.saravana@sap.com @chandransar