Adithyakrishna Venkatesh Hanasoge

<u>adikvn@seas.upenn.edu</u> +1 (4/0) 815-35/6 uu . Glaub
Education
University of Pennsylvania Philadelphia, PA
MS in Robotics 2023
Coursework: Machine Learning Computer Vision Advanced Perception Principles of Deep Learning
Learning in Robotics (State Estimation, Kalman Filter, SLAM, etc.) Advanced Robotics (Path Planning and Control)
PES University, Karnataka Bengaluru, India
Bachelor of Technology in Mechanical Engineering May 2018
Coursework: Mechatronics and Automation Laboratory Automotive Electronics Java C
Skills
• Application Software - Frameworks: ROS, ROS2, PyTorch, TensorFlow, OpenCV, Gazebo, Solidworks
• Programming Languages: Python, C++, C, Java, Data Structures and Algorithms, JIRA; Version Control : SVN, Git
Professional Experience
XITADEL CAE September 2018 - July 202
Software Engineer – Process Automation
• Developed proprietary software namely XpressPL and XIPA used by major Automotive manufacturers using Python
libraries, Python OOPs, Computational Geometry Algorithms, and 3D Geometry Algorithms
• Worked on automating CAE (Finite Element) mesh generation processes for automotive components for analyses in
NVH, crash safety and durability, thereby significantly reducing manual modeling time by at least 50%
Projects_
Object Detection and Image Segmentation
• SOLO (here)
• Implemented the network proposed in the paper <u>SOLO</u> : <u>Segmenting Objects by Locations</u> to predict instance
segmentation masks for 3 categories – vehicles, people, and animals on COCO Dataset
• Faster-RCNN (here)
• Built a 2-stage RCNN based object classifier including training the first stage Region Proposal Network and second
stage regressor, and classifier. Achieved a MAP of 0.66
• YOLO (here)
• Built YOLO-v1 from scratch for bounding box prediction and classification on 3 classes – (people, vehicles, and traffic
lights) MAP: 0.3
• Stereo-RCNN for 3D Object Detection (Present)
 Using a modified Faster – RCNN network with stereo images to perform 3D Object Detection on Kitti Dataset
ADAS Vision Based Driver Assistance System using Dashcam (here) 2022
• Lane Detection, Lane Centering using Edge Detection and Hough Transforms
Object tracking using DeepSORT, Speed estimation using Optical Flow
3D Reconstruction from Images and Projective Geometry Algorithms (here)2022
• 3D Scene Reconstruction, 3D Pose Estimation, P3P, Multi-view Geometry, Stereo Geometry, Canny Edge Detection,
Image Stitching Algorithm, Image Blending Algorithm and other Projective Geometry Algorithms
Estimation, Localization and Mapping (SLAM) (here)
• Built a 2-stage estimator to first estimate vehicle state and subsequently estimate road friction for an F1/10 th car
• Built an Extended Kalman Filter and Unscented Kalman Filter given IMU input and Vicon data
• Integrated orientation and odometry information from IMU and 2D LIDAR scans to build occupancy grid of the
environment while simultaneously performing particle-filter based localization.
• Fused IMU and stereo pair information to estimate 3D pose of a flying robot using Error State Kalman Filter (ESKF)
• Built an elevation map for UGV using Lidar range data in ROS
3D Path Planning (here)
• Built a trajectory generator for a CrazyFlie Quadrotor using Dijkstra's and A* algorithm avoiding obstacles in the path
• Built a Geometric Nonlinear controller using quadrotor dynamics to ensure quadrotor follows path
Pick and Place Knockout Challenge – 1st Place - Franka Panda Arm (here)
• Autonomously controlled Franka Panda (7DOF) Arm to pick and stack static and dynamic blocks
· · · · · · · · · · · · · · · · · · ·
• Developed RRT and A* in configuration space for Robot arm avoiding obstacles in the path
Machine Learning - Drowsiness Detection (here) 202
• Used KNN, Logistic Regression, LSTM, Random Forests, VGG16, Resnet50, and other neural network architectures
• Face Detection using Yolo; Eye and mouth face landmarks extracted using OpenCV

Honors and Awards

• 1st place in the Pick and Place Challenge (Franka Panda Robot Arm) at UPenn