厦门大学《微积分 I-2》课程期中试卷

试卷类型: (理工类 A 卷) 考试时间: 2023 年 4 月 16 日

一、选择题:(每小题 4 分,共 20 分)	符 次	
1. 欧拉方程 $x^3y''' + 3x^2y'' - 2xy' + 2y = x^2$ 的阶数是 () 。	评阅人	
(A) 1; (B) 2; (C) 3; (D) 4.		
2. 以点 $A(1,1,1)$ 、 $B(3,2,0)$ 、 $C(2,0,3)$ 、 $D(2,3,2)$ 为顶点的四面体 $ABCD$	D的体积为	() 。
(A) 2; (B) 4; (C) 6; (D) 12°		
3. $f(x,y) = \begin{cases} 1 & y \ge 0 \\ 0 & y < 0 \end{cases}$ 在点(0,0)处()。		
(A) 连续; (B) $f_x(0,0)$ 存在; (C) $f_y(0,0)$ 存在; (D)	可微。	
4. $z = f(x, y)$ 的偏导数 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$ 在点 (x, y) 存在且连续是 $f(x, y)$ 在该点	点可微的() 。
(A) 必要非充分条件; (B) 充分非必要条件; (C) 充要条件;	(D) 两者尹	记关。
E 工利亚基本 上版设备。2 2 1/2 E/4 2 2 4/2 E/4	 写目()
5. 下列平面中,与椭球面 $3x^2 + y^2 + z^2 = 16$ 在点 $(-1, -2, 3)$ 的切平面平	11 定(<i>)</i> •
5. 卜列平面中,与椭球面 $3x^2 + y^2 + z^2 = 16$ 在点 $(-1, -2, 3)$ 的切平面平 (A) $x-3y+z=1$; (B) $x+z=1$; (C) $3x-2y+3z=1$; (D)		
(A) $x-3y+z=1$; (B) $x+z=1$; (C) $3x-2y+3z=1$; (D) 二、填空题: (每小题 4 分,共 20 分)	3x+2y-3	
(A) $x-3y+z=1$; (B) $x+z=1$; (C) $3x-2y+3z=1$; (D) 二、填空题: (每小题 4 分,共 20 分)	3x+2y-3	
(A) $x-3y+z=1$; (B) $x+z=1$; (C) $3x-2y+3z=1$; (D) 二、填空题: (每小题 4 分,共 20 分)	3x+2y-3	
(A) $x-3y+z=1$; (B) $x+z=1$; (C) $3x-2y+3z=1$; (D)	3x+2y-3. 得 分 评阅人	z = 1 °
(A) $x-3y+z=1$; (B) $x+z=1$; (C) $3x-2y+3z=1$; (D) 二、填空题: (每小题 4 分,共 20 分) 1. 点(1,2,1) 到平面 $x+2y+2z=10$ 的距离为。 2. 设二元函数 $z=x^y$,则 d $z \mid_{(e,1)} =$ 。	3x+2y-3. 得 分 评阅人	z = 1 °
(A) $x-3y+z=1$; (B) $x+z=1$; (C) $3x-2y+3z=1$; (D) 二、填空题: (每小题 4 分,共 20 分) 1. 点(1,2,1) 到平面 $x+2y+2z=10$ 的距离为。 2. 设二元函数 $z=x^y$,则 d $z _{(e,1)}=$ 。 3. 已知 $y=x^k(x+1)e^{3x}$ 是微分方程 $y''-6y'+9y=(6x+2)e^{3x}$ 的一个特别	3x+2y-3 得 分 评阅人 解,其中 k	z=1。 为常数,则
(A) $x-3y+z=1$; (B) $x+z=1$; (C) $3x-2y+3z=1$; (D) 二、填空题: (每小题 4 分,共 20 分) 1. 点(1,2,1) 到平面 $x+2y+2z=10$ 的距离为。 2. 设二元函数 $z=x^y$,则 d $z \big _{(e,1)} =$ 。 3. 已知 $y=x^k(x+1) e^{3x}$ 是微分方程 $y''-6y'+9y=(6x+2)e^{3x}$ 的一个特别 $k=$ 。	3x+2y-3 得 分 评阅人 解,其中 k	z=1。 为常数,则
(A) $x-3y+z=1$; (B) $x+z=1$; (C) $3x-2y+3z=1$; (D) 二、填空题: (每小题 4 分,共 20 分) 1. 点 (1,2,1) 到平面 $x+2y+2z=10$ 的距离为。 2. 设二元函数 $z=x^y$,则 d $z _{(e,1)} =$ 。 3. 已知 $y=x^k(x+1)e^{3x}$ 是微分方程 $y''-6y'+9y=(6x+2)e^{3x}$ 的一个特别 $k=$ 。 4. 曲线 $\begin{cases} x^2+y^2=2x \\ z=\sqrt{4-x^2-y^2} \end{cases}$ 在点 $(1,1,\sqrt{2})$ 的切线的对称式方程为	3x+2y-3. 得 分 评阅人 解, 其中 k	z=1。 为常数,则

- 三、(每小题8分,共24分)求解下列微分方程:
- 1. 求微分方程 $(x^2 + y^2)dx xydy = 0$ 的通解;

得 分	
评阅人	

2. 求满足初始条件y(0) = y'(0) = 1的微分方程 $yy'' + y'^2 - 2yy' = 0$ 的特解;

3. 求微分方程 $y'' + 4y = 3\cos x$ 的通解。

四、(本题 9 分) 求过点(-1,0,6),且平行于平面 3x-2y+z=8,又与直线 $\frac{x+1}{1} = \frac{y-3}{1} = \frac{z}{2}$ 相交的直线的方程。

得 分	
评阅人	

五、(本题 9 分) 验证 $u(x,t) = \varphi(x+at) + \psi(x-at)$ 为一维波动方程

 $\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$ 的解, 其中 a 为常数, φ 和 ψ 具有连续的二阶导数。

得 分	
评阅人	

六、(本题 9 分) 设方程 $e^z - xyz = 0$ 确定了二元函数 z = z(x,y),试求二阶偏导数 $\frac{\partial^2 z}{\partial x^2}$ 在点 $(-1,\frac{1}{e})$ 处的值。

得 分	
评阅人	

得 分	
评阅人	