ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ		
ЗАЩИЩЕН С ОЦЕНКОИ ПРЕПОДАВАТЕЛЬ		
Ассистент		А.Н.Долидзе
должность, уч.степень,звание	подпись, дата	инициалы,фамилия
ОТЧЕТ С	О ЛАБОРАТОРНОЙ РАБОТЕ №3	3
«Программная реализат операции для а	ция алгоритма выполно прхитектуры набора кол	
по курсу: О	рганизация ЭВМ и систе	ем.
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. <u>4143</u>		Е.Д.Тегай
	подпись, дата	инициалы,фамилия

1. Задание

Вариант №2

Вариант исходного алгоритма продемонстрирован на рисунке 1.

4	Умножение целых чисел со знаком в	С коррекцией результата

	5	дополнительном коде со сдвигом суммы	С предварительным
ļ		частичных произведений вправо,	изменением знака
	6	неподвижным множимым и анализом	С преобразованием множителя
		множителя, начиная с млалших разрядов.	

Рисунок 1 – Исходный алгоритм

На рисунке 2 продемонстрировано содержание индивидуального варианта.

Тип 1: перенос данных из памяти в регистры. Тип 2: сохранение результата в память

	Варианты																	
Операнд	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Тип1	6	7	8	9	7	8	6	6	7	7	8	9	8	6	6	7	6	8
Тип2	7	9	7	8	6	7	8	7	9	8	7	8	7	9	9	9	8	9

где 6 - косвенная регистровая (простая косвенная) адресация, 8 - автоинкрементная (простая косвенная с автоувеличением), 7 - автодекрементная (простая косвенная с автоуменьшением) и 9 - косвенная автоинкрементная адресация (двойная косвенная с автоувеличением).

Рисунок 2 – Содержимое задания

Промежуточные расчёты:

Адрес начала расположения исходных данных: 19 + 20 = 39.

Адрес начала расположения команд программы: 19 + 120 = 139.

Типы адресации: $1 + 19 \mod 18 = 2$.

Перевод исходных данных в шестнадцатеричную систему счисления

Перевод исходных данных продемонстрирован в таблице 1.

Таблица 1

Имя вх./вых.	Десятичное	Шестнадцатеричный	Адрес загрузки	
переменной	число	код		
A	-18	FFFFFEE	R0	
В	16	0000010	R1	
Х1 (сравнение	8	08	R7	
номера разряда)	O	08	K/	
Х2 (загрузка для				
определения	1	01	R6	
бита)				

Схема алгоритма программы

Исходная схема алгоритма программы показана на рисунке 3.

Рисунок 3 – Схема алгоритма

Пример использования автодекрементной адресации

Рассмотрим случай, когда необходимо занести исходное значение A в регистр R0. Для этого разместим исходное число в области памяти, это показано на рисунке 3.1.

Рисунок 3.1 – Исходное значение А

Напишем в области памяти для программы соответствующую команду. Причем укажем, например, адрес, по которому находится исходное число, в регистре R1. Это показано на рисунке 3.2

Рисунок 3.2 – Ситуация до работы команды На рисунке 3.3 продемонстрирован результат работы команды.

Рисунок 3.3 – Результат работы команды

Далее рассмотрим использование косвенной автоинкрементной адресации. Рассмотрим ситуацию, когда результат необходимо сохранить в памяти. Пусть результат хранится в регистре R4, а после работы команды он будет лежать в ячейке 0000000A. Исходное состояние показано на рисунке 3.4

Рисунок 3.4 — Состояние до работы команды На рисунке 3.5 показан результат.

Рисунок 3.5 - Результат

Текст программы в мнемонических кодах

MOVL #0xFFFFFEE, R0;Загружаем значение A в регистр R0 MOVL #0x00000010, R1;Загружаем значение B в регистр R1 ASHL #8, R0, R0;Сдвигаем на 8 бит влево значение в регистре R0 SUBL3 R0, R6, R5; Находим отр. A

MOVB #09, R7 ;Загружаем значение в регистр для дальнейшего сравнения CMPL R3, R7 ;Сравниваем значения в регистрах (флаг N станет 1, если разряд не 8, иначе – Z станет 0)

BNEQU; Переход, если Z не равно 0

BGEQ; Переход в зависимости от значения флагов N и V

MOVB #1, R6 ;Загрузка единицы в регистр для определения бита

ASHL R3, R6, R6; Соответствующий сдвиг в зависимости от итерации

BITL R1, R6; Логическое «И»

BEQL ;Переход, если Z = 1

MOVL R2, R4; Сохранение результата

ASHL #8, R2, R2; Сдвиг на байт влево

INCL R3; Инкремент счётчика цикла

BRB; Возвращение назад на проверку разряда

ADDL2 R0, R2 ;Сложение промежуточного результата и А

MOVL R2, R4; Сохранение результата

ASHL #8, R2, R2; Сдвиг на байт влево

INCL R3; Инкремент счётчика цикла

BRB; Возвращение назад на проверку разряда

MOVL R2, R4; Сохранение результата

CMPL R1, #0; Определение отрицательности или положительности В

BLSS; Переход, если В - отр

ADDL2 R4, R5; сложение с итоговым результатом отр. А

Текст программы в машинных кодах

D0 8F EE FF FF FF 50 D0 8F 10 00 00 00 51 78 8F 08 50 50 C3 50 56 55

D0 8F 08 00 00 00 57 D1 53 57 13 54

18 22 90 8F 01 56 78 53 56 56 D3 51 56 13 35

D0 52 54 78 8F FF 52 52 D6 53 31 A3 FF

C0 50 52 D0 52 54 78 8F FF 52 52 D6 53 31 D5 FF

D0 52 54 D1 8F 00 51 19

C0 54 55

Карта распределения памяти под команды и данные

Карта распределения памяти продемонстрирована на рисунке 4.

Рисунок 4 – Карта распределения памяти

Выполнение команды

На рисунке 5 показан скриншот в момент выполнения программы.

Рисунок 5 – Выполнение программы

Сравнение наборов команд ARM и VAX

Рассмотрим более подробно разницу команд. Это показано в таблице 2.

Таблица 2

ARM	VAX
MOV	MOVL
LSL	ASHL
SUB	SUBL3
CMP	CMPL
AND	BITL
ADD #1	INCL
ADD	ADDL2

Таблица трассировки

Искомая таблица продемонстрирована в таблице 3 для одной итерации цикла.

Таблица 3

Команда	Состояние памяти и регистров					
Команда	Было	Стало				
	R0 = 00000000	R0 = FFFFFEE				
D0 8F EE FF FF FF 50	RF = 00000139	RF = 00000140				
	N = 0	N = 1				
	R1 = 00000000	R1 = 00000010				
D0 8F 10 00 00 00 51	RF = 00000140	RF = 00000147				
	N = 1	N = 0				
	R0 = FFFFFEE	R0 = FFFFEE00				
78 8F 08 50 50	RF = 00000147	RF = 0000014C				
	N = 0	N = 1				

	V = 0	V = 1			
	R5 = 00000000	R5 = 00001200			
C3 50 56 55	RF = 0000014C	RF = 00000150			
	N = 1	N = 0			
	V = 1	V = 0			
	C = 0	C = 1			
D0 9E 09 00 00 00 57	R7 = 00000000	R7 = 00000008			
D0 8F 08 00 00 00 57	RF = 00000150	RF = 00000157			
D1 52 57	RF = 00000157	RF = 0000015A			
D1 53 57	N = 0	N = 1			
13 54	RF = 0000015A	RF = 0000015C			
18 22	RF = 0000015C	RF = 0000015E			
	R6 = 00000000	R6 = 00000001			
90 8F 01 56	RF = 0000015E	RF = 00000162			
	N = 1	N = 0			
78 53 56 56	RF = 00000162	RF = 00000166			
78 33 30 30	V = 0	V = 1			
	RF = 00000166	RF = 00000169			
D3 51 56	Z = 0	Z = 1			
	V = 1	V = 0			
13 35	RF = 00000169	RF = 000001A0			
D0 52 54	RF = 000001A0	RF = 000001A3			
78 8F FF 52 52	RF = 000001A3	RF = 000001A8			
	RF = 000001A8	RF = 000001AA			
D6 53	R3 = 00000000	R3 = 00000001			
	Z = 1	Z = 0			
31 A3 FF	RF = 000001AA	RF = 00000150			