Day84_Time_Series_Analysis_ARIMA_with_Python

September 17, 2025

1 Time Series Analysis with Python

In this notebook, we will apply **time series analysis** step by step using Python. We will use the famous **AirPassengers dataset** (monthly airline passengers from 1949 to 1960).

Workflow 1. Load & visualize data

- 2. Decompose time series (trend, seasonality, residuals)
- 3. Check stationarity (ADF test)
- 4. Make series stationary (differencing)
- 5. Build ARIMA model
- 6. Forecast future values
- 7. Evaluate the model

1.1 Import libraries

```
[1]: # Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.arima.model import ARIMA
from sklearn.metrics import mean_squared_error
```

1.2 Load the Data

We will use the AirPassengers dataset (monthly data from 1949–1960).

Passengers Month 1949-01-01 112 1949-02-01 118 1949-03-01 132 1949-04-01 129 1949-05-01 121


```
[3]: df.shape
```

[3]: (144, 1)

1.3 Decomposition (Trend, Seasonality, Residuals)

We break the series into trend, seasonality, and residuals to understand its str

```
[4]: # Decompose time series
  decomposition = seasonal_decompose(df['Passengers'], model='multiplicative')
  decomposition.plot()
  plt.show()
```


1.4 Check Stationarity (ADF Test)

A stationary series is required for ARIMA models.

We use the Augmented Dickey-Fuller (ADF) test.

```
[5]: # Augmented Dickey-Fuller Test
    result = adfuller(df['Passengers'])
    print("ADF Statistic:", result[0])
    print("p-value:", result[1])

    if result[1] <= 0.05:
        print(" Data is stationary")
    else:
        print(" Data is not stationary")</pre>
```

ADF Statistic: 0.8153688792060597

p-value: 0.9918802434376411 Data is not stationary

1.5 Make Series Stationary (Differencing)

If the series is not stationary, we use **differencing**.

```
[6]: # First-order differencing
df_diff = df['Passengers'].diff().dropna()

df_diff.plot(figsize=(10,5), title="Differenced Series")
plt.show()

# Recheck stationarity
result = adfuller(df_diff)
print("p-value after differencing:", result[1])
```


p-value after differencing: 0.0542132902838265

1.6 Build ARIMA Model

We fit an **ARIMA model** (p,d,q).

For now, we will use (2,1,2) as an example.

```
[7]: # Fit ARIMA model (p,d,q = 2,1,2 as an example)
model = ARIMA(df['Passengers'], order=(2,1,2))
model_fit = model.fit()

print(model_fit.summary())
```

C:\Users\Lenovo\anaconda3\Lib\site-

packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

self._init_dates(dates, freq)

C:\Users\Lenovo\anaconda3\Lib\site-

packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

self._init_dates(dates, freq)

C:\Users\Lenovo\anaconda3\Lib\site-

packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

self._init_dates(dates, freq)

SARIMAX Results

______ Dep. Variable: Passengers No. Observations: 144 Model: ARIMA(2, 1, 2) Log Likelihood -671.673 Date: Wed, 17 Sep 2025 AIC 1353.347 Time: 15:53:49 BIC 1368.161 01-01-1949 HQIC Sample: 1359.366

- 12-01-1960

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	1.6850	0.020	83.061	0.000	1.645	1.725
ar.L2	-0.9549	0.017	-55.420	0.000	-0.989	-0.921
ma.L1	-1.8432	0.124	-14.853	0.000	-2.086	-1.600
ma.L2	0.9953	0.134	7.402	0.000	0.732	1.259
sigma2	665.9668	113.852	5.849	0.000	442.822	889.112

===

Ljung-Box (L1) (Q): 0.30 Jarque-Bera (JB):

1.84

Prob(Q): 0.59 Prob(JB):

0.40

Heteroskedasticity (H): 7.38 Skew:

0.27

Prob(H) (two-sided): 0.00 Kurtosis:

3.14

===

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- C:\Users\Lenovo\anaconda3\Lib\site-packages\statsmodels\base\model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals

warnings.warn("Maximum Likelihood optimization failed to "

1.7 Forecasting

Now we forecast the next 24 months and compare with actual values.

C:\Users\Lenovo\AppData\Local\Temp\ipykernel_10324\1360405799.py:6: FutureWarning: 'M' is deprecated and will be removed in a future version, please use 'ME' instead.

```
plt.plot(pd.date_range(start=df.index[-1], periods=25, freq='M')[1:],
forecast, label="Forecast", color="red")
```


1.8 Model Evaluation

We split data into train (before last 12 months) and test (last 12 months), train the model, and calculate RMSE.

```
[9]: # Split into train and test train = df.iloc[:-12]
```

```
test = df.iloc[-12:]
# Train ARIMA
model = ARIMA(train['Passengers'], order=(2,1,2))
model_fit = model.fit()
# Forecast on test set
forecast = model_fit.forecast(steps=12)
# RMSF.
rmse = np.sqrt(mean squared error(test, forecast))
print("RMSE:", rmse)
plt.figure(figsize=(10,5))
plt.plot(train.index, train['Passengers'], label="Train")
plt.plot(test.index, test['Passengers'], label="Test")
plt.plot(test.index, forecast, label="Forecast", color="red")
plt.legend()
plt.show()
C:\Users\Lenovo\anaconda3\Lib\site-
packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency
information was provided, so inferred frequency MS will be used.
  self._init_dates(dates, freq)
C:\Users\Lenovo\anaconda3\Lib\site-
packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency
information was provided, so inferred frequency MS will be used.
  self._init_dates(dates, freq)
C:\Users\Lenovo\anaconda3\Lib\site-
packages\statsmodels\tsa\base\tsa model.py:473: ValueWarning: No frequency
information was provided, so inferred frequency MS will be used.
  self._init_dates(dates, freq)
RMSE: 55.22283878325298
```


2 Conclusion

In this notebook, we explored **Time Series Analysis** step by step:

- Loaded and visualized the dataset
- Decomposed the series into trend, seasonality, residuals
- Checked and ensured stationarity using the ADF test
- Applied ARIMA modeling for forecasting
- Evaluated the model performance using RMSE

3 Key Takeaways:

- Stationarity is crucial for time series forecasting models.
- ARIMA works well for data with trend + seasonality (after differencing).
- Model performance can be further improved using **SARIMA**, **Prophet**, **or LSTM models** for complex datasets.

4 Time Series Project Flow — Cheat Sheet

4.1 Data Collection

• Gather time series data (e.g., stock prices, sales, weather).

• Ensure data has a proper **DateTime index** and consistent frequency.

4.2 Preprocessing

- Handle missing values (drop, forward-fill, backward-fill).
- **Resample** to desired frequency (daily, monthly, etc.).
- Apply **transformations** if needed:
 - Log transform \rightarrow stabilize variance.
 - Differencing \rightarrow remove trend / make stationary.

4.3 Decomposition

- Break series into:
 - Trend
 - Seasonality
 - Residuals
- Use **STL** decomposition for robust results.

4.4 Stationarity Check

- Plot rolling mean & variance.
- Run statistical tests:
 - **ADF** test (null = non-stationary).
 - **KPSS** test (null = stationary).

4.5 Modeling

- Start with simple baselines:
 - Naive forecast
 - Moving Average
 - Exponential Smoothing (Holt-Winters)
- Move to advanced models:
 - ARIMA / SARIMA / SARIMAX
 - Auto-ARIMA (auto select p,d,q)
 - Prophet (for complex seasonality)
 - ML/DL (LSTM, GRU, Transformers) for advanced use cases.

4.6 Evaluation

- Split into **train/test** (last few periods for test).
- Use metrics:
 - MAE, RMSE, MAPE
- Perform time-series cross-validation (rolling window).
- Check **residual diagnostics** (should look like white noise).

4.7 Forecast & Communicate

- Forecast future values with **confidence intervals**.
- Plot actual vs forecast.
- Explain trend, seasonality, and uncertainty to stakeholders.

Quick Reminder:

Data \to Preprocessing \to Decomposition \to Stationarity \to Modeling \to Evaluation \to Forecasting