Релация на Майхил-Нероуд

Иво Стратев

9 юни 2020 г.

1 Въведение

Нека L е език над Σ , тоест L $\subseteq \Sigma^*$. Релацията на Майхил-Нероуд за езика L бележим с \approx_L и тя е бинарна релация над Σ^* . По дефиниция

$$\alpha \approx_L \beta \iff (\forall \gamma \in \Sigma^*) (\alpha.\gamma \in L \iff \beta.\gamma \in L)$$

От лекции знаем, че релацията \approx_L е релация на еквивалетнст и ако индексът ѝ е краен, то L е регулярен, защото тогава имаме конструкция за КТДА, който е и минимален. Индексът на релацията \approx_L е мощността на множеството от класовете на еквивалетност на релацията.

Множеството Σ^* е изброимо безкрайно понеже Σ е крайно и непразно. Така, че индексът на \approx_L е или креан или изброимо безкраен. Значи ако покажем изброймо безкрайно подмножество на Σ^* , в което никой две думи не са в релация, то ще покажем и че L не е регулярен, защото тогава \approx_L няма креан индекс.

2 Пример 1

Нека $L = \{c^n.a^k.b^s \mid n \in \mathbb{N}_+ \& s \in \mathbb{N}_+ \& (\exists l \in \mathbb{N}_+)(k = ls)\}$. Ще докажем, че L не е регулярен като използваме следното наблюдение.

Нека $\alpha, \beta \in \{a, b, c\}^*$. Тогава ако съществува $\gamma \in \{a, b, c\}^*$, такава че $\alpha.\gamma \in L \& \beta.\gamma \notin L$, то α и β не са в релация спрямо \approx_L .

Удобно е да конструираме по унифициран начин думи на база тяхната дължина. За конкретният пример изображение $word: \mathbb{P} \to \{a, b, c\}^*$, такова че $word(p) = a^p.c^p$ ще ни свърши работа. То очевидно е инективно,

тоест по различен параметър, в случая просто число ни дава различна дума! Нека $\mathfrak p$ и $\mathfrak q$ са две различни прости числа. Ще покажем, че $word(\mathfrak p)$ и $word(\mathfrak q)$ не са в релация. Тоест $\neg c^{\mathfrak p}.\mathfrak a^{\mathfrak p} \approx_{\mathbb L} c^{\mathfrak q}.\mathfrak a^{\mathfrak q}$. За целта трябва да посочим дума $\gamma \in \{\mathfrak a,\mathfrak b,\mathfrak c\}^*$, такава че $\mathfrak c^{\mathfrak p}.\mathfrak a^{\mathfrak p}.\gamma \in \mathbb L$, но $\mathfrak c^{\mathfrak q}.\mathfrak a^{\mathfrak q}.\gamma \notin \mathbb L$. Очевидо $\mathfrak b^{\mathfrak p} \in \{\mathfrak a,\mathfrak b,\mathfrak c\}^*$ и $\mathfrak c^{\mathfrak p}\mathfrak a^{\mathfrak p}\mathfrak b^{\mathfrak p} \in \mathbb L$, защото $\mathfrak p = 1.\mathfrak p$ и $\mathfrak p \in \mathbb N_+$. Но $(\mathfrak c^{\mathfrak q}.\mathfrak a^{\mathfrak q}).\mathfrak b^{\mathfrak p} \notin \mathbb L$, защото уравнението $\mathfrak q = \mathfrak x\mathfrak p$ няма целочислено решение.

Една от теоремите, които Евклид е доказал гласи, че множеството на простите числа не е крайно. Но понеже $\mathbb{P} \subseteq \mathbb{N}$, то \mathbb{P} е изброимо безкрайно. Тогава изброимо безкрайно е и образа на \mathbb{P} под инективна функция. Така излиза, че Range(word) е изброимо безкрайно подмножество на $\{a,b,c\}^*$ от несравними спрямо \approx_L думи, защото

$$Range(word) = word[\mathbb{P}] = \{a^t.b^t \mid t \in \mathbb{P}\}\$$

Следователно \approx_L няма креан индекс. Следователно от теорамата на Майхил-Нероуд L не е регулярен.

3 Пример 2

Нека
$$L = \{a^i.b^j.c^k \mid i \in \mathbb{N} \& j \in \mathbb{N} \& k \in \mathbb{N} \& i = j \lor j = k\}.$$

Нека $n,k\in\mathbb{N}$ и $n\neq k$ ще покажем, че думите \mathfrak{a}^{n+1} и \mathfrak{a}^{k+1} не са в релация на Майхил-Нероуд за L.

Очевидно $b^{n+1}.c^0 \in \{a,b,c\}^*$ и $a^{n+1}.(b^{n+1}.c^0) \in L$. Но $a^{k+1}.(b^{n+1}.c^0) \notin L$, защото $k \neq n$ и значи $k+1 \neq n+1$ и $n+1 \neq 0$.

Очевидно множеството $\{a^{s+1} \mid s \in \mathbb{N}\}$ не е крайно. Следователно \approx_L няма креан индекс. Следователно от теорамата на Майхил-Нероуд L не е регулярен.

4 Пример 3

Нека
$$L = \{a^i.b^j.c^k \mid i \in \mathbb{N} \& j \in \mathbb{N} \& k \in \mathbb{N} \& i \neq j \lor j \neq k \lor i \neq k\}.$$

Нека $n,k\in\mathbb{N}$ и $n\neq k$ ще покажем, че думите \mathfrak{a}^n и \mathfrak{a}^k не са в релация

на Майхил-Нероуд за L.

Очевидно $b^k.c^k \in \{a,b,c\}^*$ и $\mathfrak{a}^n.(b^k.c^k) \in L$, но $\mathfrak{a}^k(b^k.c^k) \notin L$.

Очевидно множеството $\{\mathfrak{a}^s\mid s\in\mathbb{N}\}$ не е крайно. Следователно \approx_L няма креан индекс. Следователно от теорамата на Майхил-Нероуд L не е регулярен.