Neural-Network-on-MNIST

Figure 1 shows the plot of train and test set errors using batch learning with single layer neural network ($\eta = 10^{-5}$).

Fig. 1: Training and test errors vs. #iteration (single layer / batch)

The final training and test errors are shown below.

	Final training error	Final test error
Single layer / Batch	0.1016	0.1033

Figure 2 shows the plot of train and test set errors using batch learning with two layer neural network for the number of hidden neurons $H \in \{10, 20, 50\}$ ($\eta = 10^{-5}$).

Fig. 2: Training and test errors vs. #iteration (two layer / batch)

The final training and test errors are shown below.

	Final training error	Final test error
H = 10	0.1689	0.1627
H = 20	0.1171	0.1165
H = 50	0.0930	0.0951

The results suggest that with the increasing number of hidden neurons, the training / test errors converge faster and the network achieves better performance.

Figure 3 shows the plot of train and test set errors using batch learning with two layer neural network for the number of hidden neurons $H \in \{10, 20, 50\}$, sigmoid / ReLU non-linearities, and weight decay ($\lambda = 0.001, \eta = 2 \times 10^{-6}$).

Fig. 3: Training and test errors vs. #iteration (two layer / batch / regularization-1)

The final training and test errors are shown below.

	Final training error (sigmoid)	Final training error (ReLU)	Final test error (sigmoid)	Final test error (ReLU)
H = 10	0.1773	0.1047	0.1667	0.1032
H = 20	0.1309	0.0904	0.1227	0.0862
H = 50	0.1276	0.0832	0.1194	0.0813

The results suggest that ReLU non-linearity achieves better performance and faster network convergence than sigmoid in batch learning case.

Figure 4 shows the plot of train and test set errors using batch learning with two layer neural network for the number of hidden neurons $H \in \{10, 20, 50\}$, sigmoid / ReLU non-linearities, and weight decay ($\lambda = 0.0001$, $\eta = 2 \times 10^{-6}$).

Fig. 4: Training and test errors vs. #iteration (two layer / batch / regularization-2)

The final training and test errors are shown below.

	Final training error (sigmoid)	Final training error (ReLU)	Final test error (sigmoid)	Final test error (ReLU)
H = 10	0.2200	0.1972	0.2140	0.1923
H = 20	0.1940	0.1705	0.1922	0.1666
H = 50	0.1456	0.1098	0.1387	0.1096

The results suggest that when using smaller λ , the large weights did not get enough penalization for ReLU as we see in the above plots (bump up). The final errors are also higher than that using larger λ .

Figure 5 shows the plot of train and test set errors using stochastic gradient descent learning with single layer neural network ($\eta = 10^{-5}$).

Fig. 5: Training and test errors vs. #iteration (single layer / SGD)

The final training and test errors are shown below.

	Final training error	Final test error
Single layer / SGD	0.1214	0.1174

Stochastic gradient descent takes much more iterations to converge while running much faster than batch gradient descent, because every step it only learn a single sample. The error curves are attenuated wiggly for the same reason.

Figure 6 shows the plot of train and test set errors using batch learning with two layer neural network for the number of hidden neurons $H \in \{10, 20, 50\}$, sigmoid $(\eta = 10^{-2})$ / ReLU nonlinearities $(\eta = 2 \times 10^{-3})$.

Fig. 6: Training and test errors vs. #iteration (two layer / SGD)

The final training and test errors are shown below.

	Final training error (sigmoid)	Final training error (ReLU)	Final test error (sigmoid)	Final test error (ReLU)
H = 10	0.2680	0.5827	0.2547	0.5727
H = 20	0.1727	0.3080	0.1704	0.3088
H = 50	0.1469	0.1608	0.1465	0.1569

From the plots above, stochastic gradient descent works better on sigmoid non-linearity than ReLU, probably because we are using shallow networks. ReLU is known to be popular in deep neural networks.