

Turbulent Flow Simulation on HPC-Systems

Simulation of a Flow over a Backward Facing Step

Check-pointing and PETSc-Solvers

Group 3:

Mahyar Valizadeh, Jonas Buchmeier, Stefan Gavranovic, Ajay Karthik

Overview and Team Management

- Assigning the each member's task
 - Verification and physical background
 - Checkpointing
 - Examining petsc solvers
- Group meetings and discussion
- Final conclusion and presentation

Backward Facing Step – Why is it Important test case?

- Massively separated flow (defined separation point)
- Boundary Layer Flow
- Fully-detached mixing layer

→ A need for a appropriate model which can handle a non-parallel flow with separation

Verification

- Similarity
 - geometric
 - Kinematic
 - and Dynamic
- Dimensionless analysis
- Effective Dimensionless numbers

Verification (Velocity Profiles)

Velocity profile (Re=7580, X=400)

Verification (Continued)

Verification (Continued)

Conclusion on the Mixing length Model

- Questionable in separated flow
- Prescription of the mixing length becomes problematic in flows that are not approximately parallel, thin shear layers
- BFS: 2 shear layers at any x within the separated region. Detached mixing layer, bottom-wall boundary layer

Turbulent Flow Simulation on HPC-Systems

- MPI I/O -

GROUP 3

TU Munich

Common Way of Implementing I/O in Parallel Programs

- Sequential way illustrated:
 - All processes send data to one master process which writes it to the file.
 - Lack of parallelism limits scalability and performance

Figure: Master Process

Shared file

- Shared File
 - Each process performs I/O to a single file which is shared.
- Performance
 - Data layout within the shared file is very important.
 - At large process counts contention can build for file system resources.

Figure: Shared file

- MPI call for opening one single shared file.
- With Arguments for creating file if it is nor already created.
- Returns pointer to the created file.

```
\label{eq:mpl_comm} \begin{split} & \texttt{MPI\_File\_open(MPI\_COMM\_WORLD, "testfile",} \\ & \texttt{MPI\_MODE\_CREATE} \mid \texttt{MPI\_MODE\_WRONLY,} \\ & \texttt{MPI\_INFO\_NULL, \&thefile);} \end{split}
```

- MPI call for setting the offsets in the file.
- Assigns regions of the file to the processors with respect to the desired offset.

```
MPI_File_set_view( thefile , myrank * offset *
sizeof(int),
MPI_INT , MPI_INT , "native" ,
MPI_INFO_NULL);
```

- MPI call reading from the file.
- If call MPI_File_set_view precedes then every process is able to read from its own assigned part of the file.

```
MPI_File_read(fh, buffer, count, MPI_INT, &status);
```

- MPI call writing into the file.
- If call **MPI_File_set_view** precedes then every process is able to write into its own part of the file.

```
MPI_File_read(fh, buffer, count, MPI_INT, &status);
```

Petsc Introduction

- Petsc as a package, provides us with adapting our application with data structures, routines and also suitable scalable options.
- Features several linear solvers
 - Direct solvers: LU, Cholesky, QR...
 - Krylov methods: CG, BiCG, GMRES, BCGS...
 - Preconditioners: ILU, Jacobi, additive Schwarz, ...

Petsc Usage

- DataStructures : KSP Object, PC Object.
- Matrix structures, Preconditioner Matrix, re-using matrix structures.
- Best thing is to just use command line options and run time controls.

Current Application

Figure: Petsc Solver Parameters

Thank you for the attention Questions ?