Unidad IV - Máquinas de Soporte Vectorial (SVM)

Germán Braun

Facultado de Informática - Universidad Nacional del Comahue

german.braun@fi.uncoma.edu.ar

26 de septiembre de 2025

Agenda

- 1 Intuición
- 2 Márgenes
- 3 Hiperplano óptimo
- 4 Función de Pérdida
- 5 Kernels
- 6 Usando a SVM

ML en la práctica

¡Recordatorio!

El aprendizaje automático es un proceso de prueba y error.

Análisis de Datos

machine learning

Figura 0.1: Proceso de Análisis de Datos

Intuición

Intuición I - Grado de Confianza

■ Analicemos la función de regresión logística ...

Intuición I - Grado de Confianza

Analicemos la función de regresión logística ...

■ $y = 1 \iff h(x) \ge 0.5$ o $z \ge 0$. Por lo tanto, mientras más grande sea z, más alto será el grado de confianza de que y = 1. Entonces y = 1 si $z \gg 0$

Intuición I - Grado de Confianza

Analicemos la función de regresión logística ...

- $y = 1 \iff h(x) \ge 0.5$ o $z \ge 0$. Por lo tanto, mientras más grande sea z, más alto será el grado de confianza de que y = 1. Entonces y = 1 si $z \gg 0$
- De manera similar, podemos decir y = 0 si $z \ll 0$

Intuición II - Grado de Confianza

El punto (a) está "lejos" del límite de decisión, entonces la predicción sobre ese valor tendrá un alto grado de confianza

Intuición II - Grado de Confianza

- El punto (a) está "lejos" del límite de decisión, entonces la predicción sobre ese valor tendrá un alto grado de confianza
- De manera opuesta, el punto (b) se encuentra "cerca" del límite de decisión. Por lo tanto, si bien la predicción es 1 (spam), ajustes en el límite podrían causar que la clasificación cambie a 0

Separables linealmente

lacktriangle Hiperplano ightarrow Frontera de Decisión

Separables linealmente

- Hiperplano → Frontera de Decisión
- La distancia entre la frontera y el punto más cercano es el margen

Separables linealmente

- Hiperplano → Frontera de Decisión
- La distancia entre la frontera y el punto más cercano es el margen
- El clasificador debe buscar que este margen sea "el mayor posible" → mayor grade de confianza en la predicción!

Separables linealmente

- Hiperplano → Frontera de Decisión
- La distancia entre la frontera y el punto más cercano es el margen
- El clasificador debe buscar que este margen sea "el mayor posible" → mayor grade de confianza en la predicción!
- Los puntos más cercanos al hiperplano de separación se denoninan vectores de soporte

Vectores de Soporte

(*) imagen de

Márgenes

Márgenes [Cortes,1995]

Márgenes [Cortes, 1995]

 \blacksquare El margen funcional representa "que tan bien clasificado" está un ejemplo de entrenamiento $y^{(i)}$

Márgenes [Cortes, 1995]

- \blacksquare El margen funcional representa "que tan bien clasificado" está un ejemplo de entrenamiento $\mathbf{v}^{(i)}$
- lacktriangle El margen geométrico es la distancia real de $y^{(i)}$ con respecto a la frontera de decisión

Márgenes [Cortes, 1995]

- \blacksquare El margen funcional representa "que tan bien clasificado" está un ejemplo de entrenamiento $\mathbf{v}^{(i)}$
- lacktriangle El margen geométrico es la distancia real de $y^{(i)}$ con respecto a la frontera de decisión
- El objetivo del SVM es encontrar una frontera de decisión que maximice el margen (geométrico)

- Los vectores de soporte son especiales debido a que son los ejemplos de entrenamiento que definen el margen máximo del hiperplano al set de datos.
- El hiperplano óptimo es la frontera de decisión con el máximo margen entre los vectores de las dos clases
- El clasificador de márgenes óptimo (Optimal margin classifier) es la solución al problema de optimización:

$$min \frac{1}{2} ||w||^2 \ tal \ que \ (y^{(i)} \theta^T x^{(i)} + b) \ge 1$$

Geometría del hiperplano separador (final)

Función de Pérdida

■ El eje x representa correctitud de la predicción

- El eje x representa correctitud de la predicción
- Si $y^{(i)}h(x^{(i)}) \ge 1$, la pérdida es 0

- El eje x representa correctitud de la predicción
- Si $y^{(i)}h(x^{(i)}) \ge 1$, la pérdida es 0
- Si $y^{(i)}h(x^{(i)}) < 1$, hay pérdida (o penalidad)

- El eje x representa correctitud de la predicción
- Si $y^{(i)}h(x^{(i)}) \ge 1$, la pérdida es 0
- Si $y^{(i)}h(x^{(i)}) < 1$, hay pérdida (o penalidad)

En la literatura, a esta función se la denomina Hinge-Loss

$$max(0, 1 - y^{(i)}h(x^{(i)}))$$

 La formalización del SVM (hasta ahora) asume que el dataset es separable linealmente

- La formalización del SVM (hasta ahora) asume que el dataset es separable linealmente
- Sin embargo, encontrar el margen óptimo puede ser sensible a *outlier*

- La formalización del SVM (hasta ahora) asume que el dataset es separable linealmente
- Sin embargo, encontrar el margen óptimo puede ser sensible a *outlier*

- La formalización del SVM (hasta ahora) asume que el dataset es separable linealmente
- Sin embargo, encontrar el margen óptimo puede ser sensible a *outlier*

- La formalización del SVM (hasta ahora) asume que el dataset es separable linealmente
- Sin embargo, encontrar el margen óptimo puede ser sensible a outlier

 $C \downarrow Se$ da más relevancia a la maximización de los márgenes (*hard-margin*)

- La formalización del SVM (hasta ahora) asume que el dataset es separable linealmente
- Sin embargo, encontrar el margen óptimo puede ser sensible a outlier

- $C \downarrow$ Se da más relevancia a la maximización de los márgenes (*hard-margin*)
- $C \uparrow Se$ da más relevancia a la clasificación > ajusta los datos (**soft-margin**)

Queremos encontrar el hiperplano que maximiza el margen y minimiza los errores de clasificación:

$$\min_{w,b,\xi} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

sujeto a:

$$y_i(w^{\top}x^{(i)} + b) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad i = 1, \dots, n$$

- ||w||² controla la anchura del margen
- \bullet ξ_i son las **variables de holgura** que permiten errores.
- Arr C > 0 es el parámetro de regularización:
 - C↑→ pocos errores, margen más pequeño. Penaliza mucho errores (riesgo de overfitting)
 - \blacksquare $C \downarrow \rightarrow$ margen más amplio, tolera errores (mejor generaliza)

Queremos encontrar el hiperplano que maximiza el margen y minimiza los errores de clasificación:

$$\min_{w,b,\xi} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

sujeto a:

$$y_i(w^{\top}x^{(i)} + b) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad i = 1, \dots, n$$

- ||w||² controla la anchura del margen
- \bullet ξ_i son las **variables de holgura** que permiten errores.
- Arr C > 0 es el parámetro de regularización:
 - C↑→ pocos errores, margen más pequeño. Penaliza mucho errores (riesgo de overfitting)
 - \blacksquare $C \downarrow \rightarrow$ margen más amplio, **tolera errores** (mejor generaliza)
- Intuitivamente, los márgenes (funcionales) pueden ser < 1

Queremos encontrar el hiperplano que maximiza el margen y minimiza los errores de clasificación:

$$\min_{w,b,\xi} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

sujeto a:

$$y_i(w^{\top}x^{(i)} + b) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad i = 1, \dots, n$$

- $\|w\|^2$ controla la anchura del margen
- \bullet ξ_i son las **variables de holgura** que permiten errores.
- Arr C > 0 es el parámetro de regularización:
 - $C \uparrow \rightarrow$ pocos errores, margen más pequeño. Penaliza mucho errores (riesgo de *overfitting*)
 - $C \downarrow \rightarrow$ margen más amplio, tolera errores (mejor generaliza)
- Intuitivamente, los márgenes (funcionales) pueden ser < 1
- C controla el peso relativo entre la meta de minimizar $\|w\|^2$ (haciendo márgenes grandes), y asegurar que muchos ejemplos tengan un margen funcional de (al menos) 1

- $\xi_i = 0$: punto correctamente clasificado y fuera del margen.
- $0 < \xi_i < 1$: dentro del margen, pero sigue del lado correcto.
- $\xi_i > 1$: mal clasificado (cruza el hiperplano).

Soft-margin SVM

 El problema de clasificador de márgenes óptimo es conocido como el problema primal del SVM

¹Dual of support vector machine

- El problema de clasificador de márgenes óptimo es conocido como el problema primal del SVM
 - involucra el peso de los atributos

¹Dual of support vector machine

- El problema de clasificador de márgenes óptimo es conocido como el problema primal del SVM
 - involucra el peso de los atributos
- Puede ser también reescrito como un problema de maximización, denominado problema dual¹ del SVM

¹Dual of support vector machine

- El problema de clasificador de márgenes óptimo es conocido como el problema primal del SVM
 - involucra el peso de los atributos
- Puede ser también reescrito como un problema de maximización, denominado problema dual¹ del SVM
 - el número de variables a optimizar es ahora independiente de la dimensionalidad
 - lacktriangle w puede representarse como combinación lineal los $x^{(i)}$

$$w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$$

¹Dual of support vector machine

- El problema de clasificador de márgenes óptimo es conocido como el problema primal del SVM
 - involucra el peso de los atributos
- Puede ser también reescrito como un problema de maximización, denominado problema dual¹ del SVM
 - el número de variables a optimizar es ahora independiente de la dimensionalidad
 - lacktriangle w puede representarse como combinación lineal los $x^{(i)}$

$$w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$$

- La nueva función dual depende solamente de los vectores de soporte y será maximizada para estos ejemplos de entrenamiento (no necesitamos aproximar pesos de w)
- Es la base para el uso de kernels en datasets no lineales, ya que calcula el grado de similitud entre vectores (producto punto, geométrico)

¹Dual of support vector machine

Función Objetivo (dual)

$$\max_{\alpha} \mathcal{L}_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{i=1}^n \alpha_i \alpha_i y^{(i)} y^{(j)} \mathbf{x}^{(i)} \mathbf{x}^{(j)}$$

Sujeto a:

$$0 \le \alpha_i \le C, \quad \forall i$$
$$\sum_{i=1}^n \alpha_i y_i = 0$$

- \blacksquare α_i son los multiplicadores de Lagrange.
- *C* controla el trade-off entre margen ancho y errores de clasificación.

Formulación dual (casos)

■ Dados los vectores $x^{(i)}$, $x^{(j)}$:

Formulación dual (casos)

■ Dados los vectores $x^{(i)}$, $x^{(j)}$:

- Si vectores **redundantes** (similares, misma clase), se descarta $x^{(i)}$ o $x^{(j)}$
- Si vectores similares y clase opuesta, se ajustan para mantener el margen

(*) Créditos de R. Berwick

Los α_i indican **cuánto contribuye** cada punto de entrenamiento para encontrar el hiperplano

- Los α_i indican **cuánto contribuye** cada punto de entrenamiento para encontrar el hiperplano
- $\alpha_i > 0$ indica que $x^{(i)}$ es un **vector soporte**

- Los α_i indican **cuánto contribuye** cada punto de entrenamiento para encontrar el hiperplano
- $\alpha_i > 0$ indica que $x^{(i)}$ es un **vector soporte**
- $\alpha_i = 0$ indica que el punto no afecta al hiperplano

- Los α_i indican **cuánto contribuye** cada punto de entrenamiento para encontrar el hiperplano
- $\alpha_i > 0$ indica que $x^{(i)}$ es un **vector soporte**
- $\alpha_i = 0$ indica que el punto no afecta al hiperplano
- el nuevo algoritmo depende solo de un subconjunto de puntos permitiendo trabajar con espacios de alta dimensión!

Kernels

Intuición

Clasificación no lineal

 Idea: mapear los datos desde un espacio original a otro de mayor dimensionalidad

Intuición

Clasificación no lineal

- Idea: mapear los datos desde un espacio original a otro de mayor dimensionalidad
- En el espacio ampliado esperamos que las clases sean separables linealmente

Intuición

Clasificación no lineal

- Idea: mapear los datos desde un espacio original a otro de mayor dimensionalidad
- En el espacio ampliado esperamos que las clases sean separables linealmente
- Si las transformaciones son no lineales, se traduce en una frontera de decisión no lineal en el espacio original

^(*) Créditos de la imagen: cheatsheet-supervised-learning

Intuición (cont'd)

Intuición (cont'd)

■ Un enfoque posible es mapear cada $x^{(i)}$ a otro espacio, usando algun transformación $\phi(x^{(i)})$ tal que:

$$k(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$$

■ Un enfoque posible es mapear cada $x^{(i)}$ a otro espacio, usando algun transformación $\phi(x^{(i)})$ tal que:

$$k(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$$

Suponiendo

$$\phi(x^{(i)}): \mathbb{R}^2 \to \mathbb{R}^n \ n >> 2$$

el computo sería muy costoso!

■ Un enfoque posible es mapear cada $x^{(i)}$ a otro espacio, usando algun transformación $\phi(x^{(i)})$ tal que:

$$k(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$$

Suponiendo

$$\phi(x^{(i)}): \mathbb{R}^2 \to \mathbb{R}^n \ n >> 2$$

el computo sería muy costoso!

 Una función de kernel es una funcion equivalente a un producto interno en algun espacio de caracteristicas

$$k(x^{(i)}, x^{(j)}) = \left(\phi(x^{(i)}), \phi(x^{(j)})\right)$$

■ Un enfoque posible es mapear cada $x^{(i)}$ a otro espacio, usando algun transformación $\phi(x^{(i)})$ tal que:

$$k(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$$

Suponiendo

$$\phi(x^{(i)}): \mathbb{R}^2 \to \mathbb{R}^n \ n >> 2$$

el computo sería muy costoso!

 Una función de kernel es una funcion equivalente a un producto interno en algun espacio de características

$$k(x^{(i)}, x^{(j)}) = \left(\phi(x^{(i)}), \phi(x^{(j)})\right)$$

■ Dicha función mapea implicitamente datos a un espacio de mayor dimension (sin necesidad de calcular cada $\phi(x^{(i)})$ explicitamente)

■ Un enfoque posible es mapear cada $x^{(i)}$ a otro espacio, usando algun transformación $\phi(x^{(i)})$ tal que:

$$k(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$$

Suponiendo

$$\phi(x^{(i)}): \mathbb{R}^2 \to \mathbb{R}^n \ n >> 2$$

el computo sería muy costoso!

 Una función de kernel es una funcion equivalente a un producto interno en algun espacio de caracteristicas

$$k(x^{(i)}, x^{(j)}) = \left(\phi(x^{(i)}), \phi(x^{(j)})\right)$$

■ Dicha función mapea implicitamente datos a un espacio de mayor dimension (sin necesidad de calcular cada $\phi(x^{(i)})$ explicitamente)

El **truco del kernel** es usar el SVM en espacios no lineales sin calcular explícitamente la transformación a un espacio de alta dimensión, reemplazando los productos punto por un *kernel* que devuelve el mismo resultado.

Kernel Gaussiano (Intuición)

- \blacksquare cada $l^{(i)}$ es un *landmark* (o punto de referencia)
- para cada $x, f_j^{(i)} = similarity(x^{(i)}, l^{(i)}) = \exp\left(-\frac{\|\mathbf{x}_i \mathbf{l}_j\|^2}{2\sigma^2}\right)$
- si $x^{(i)} \approx l^{(i)} \Rightarrow f^{(i)} = \exp\left(-\frac{0^2}{2\sigma^2}\right) \approx 1$ > vectores similares en espacio transformado

Kernel Gaussiano (RBF): efecto de σ

- σ grande: la similitud decrece lentamente → puntos lejanos todavía influyen → frontera más suave.
- σ pequeño: la similitud decrece rápido → solo vecinos muy cercanos influyen → frontera más ajustada y compleja → riesgo de overfitting.

Kernel Polinómico

 $^{(^{\}star})$ Créditos de la imagen: Parameter investigation of support vector machine classifier with kernel functions

Kernels más comunes en SVM

Kernel	Fórmula
Lineal	$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\top} \mathbf{x}_j$
Polinómico	$K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^{\top} \mathbf{x}_j + c)^d$
RBF / Gaussiano	$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\ \mathbf{x}_i - \mathbf{x}_j\ ^2}{2\sigma^2}\right)$
Sigmoidal	$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\kappa \mathbf{x}_i^{T} \mathbf{x}_j + c)$

- Lineal: Producto punto clásico; no transforma el espacio.
- Polinómico: Permite separar datos polinómicamente separables; d = grado del polinomio.
- RBF / Gaussiano: Mapea datos a un espacio de dimensión infinita; bueno para datos no lineales.
- Sigmoidal: Inspirado en redes neuronales; depende de los parámetros κ y c.

Usando a SVM

¿Cómo usar un SVM en la práctica?

- Usar una librería tal como sklearn.svm e importar SVC, NuSVC o LinearSVC
- Parámetros
 - C (regularización)
 - kernel (función de similaridad)
- Si no se define un kernel, el problema es el de predecir y=1 si $\theta^Tx\geq 0$ y usar LinearSVC
- Si kernel es Gaussiano (o RBF) ⇒

$$f_i = \exp\left(-\frac{\|\mathbf{x} - l^{(i)}\|^2}{2\sigma^2}\right)$$

dónde $l^{(i)}=x^{(i)}$, y el parámetro a especificar es σ^2 (o gamma - γ - el cual es $\frac{1}{\sigma^2}$)

- Nusvc vs. svc. Ambos son similares, Nusvc permite contralar el número de vectores de soporte
- Si multiclase y ∈ 1, 2, 3, ..., K, usar enfoques one-vs-rest (ovr) o one-vs-one (ovo)

ovr VS ovo

ovr

- * K, una clase vs todas
- Clase con mayor puntuación
- Escalable, rápido
- Datos desbalanceados, precisión

0770

- * $\frac{K(K-1)}{2}$, cada par de clases
- Voto mayoritario
- + Mejor precisión, balanceado
- Muchos modelos si K es grande

Próximas clases

- Redes Neuronales
- Aprendizaje no supervisado

¡Gracias!

Bibliografía y material de referencia

Alpaydin, Ethem. Introduction to machine learning. 3era Edición *MIT Press*, 2020.

Brett Lantz. Machine Learning with R. Packt Publishing, 1997.

Tom M. Mitchell. Machine Learning. WCB McGraw-Hill, 1997.

Witten I., Frank E., Hall, M., Pal C.. Data Mining: Practical Machine Learning Tools and Techniques. 4th Edition WMorgan Kaufmann. Elsevier, 2017.

Michael A. Nielsen. Neural Networks and Deep Learning. 4th Edition *Determination Press*, 2015.

http://neuralnetworksanddeeplearning.com

Bibliografía y material de referencia

Andrew Ng. Stanford CS229 - Machine Learning Course.

https://www.youtube.com/playlist?list=
PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU

Andrew Ng. Deep Learning Al. https://www.deeplearning.ai/resources/

Kilian Weinberger. Machine Learning for Intelligent Systems. https://www.cs.cornell.edu/courses/cs4780/2018fa/syllabus/

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning. Springer. 1995