Παρουσίαση για χρήση με το σύγγραμμα, Αλγόριθμοι Σχεδίαση και Εφαρμογές, των Μ. Τ. Goodrich and R. Tamassia, Wiley, 2015 (στα ελληνικά από εκδόσεις Μ. Γκιούρδας)

Αναζήτηση πρώτα σε πλάτος

Αναζήτηση πρώτα σε πλάτος

- Η αναζήτηση πρώτα σε πλάτος (BFS) είναι μία γενική τεχνική διάσχισης γράφου
- Mia BFS διάσχιση ενός γράφου **G**:
 - Επισκέπτεται όλες τις κορυφές και τις ακμές του G
 - Διαπιστώνει αν ο G είναι συνεκτικός
 - Υπολογίζει τις συνεκτικές συνιστώσες του G
 - Υπολογίζει ένα παράγον δάσος του G

- ο O BFS σε γράφο με n κορυφές και m ακμές έχει O(n+m) χρονική πολυπλοκότητα
- Ο BFS μπορεί να επεκταθεί ώστε να λύνει κι άλλα προβλήματα γράφων:
 - Εύρεση διαδρομής με το ελάχιστο πλήθος ακμών μεταξύ δύο κορυφών.
 - Εύρεση ενός κύκλου εάν υπάρχει.

Αλγόριθμος BFS

 Ο αλγόριθμος χρησιμοποιεί «επίπεδα» L_i και έναν μηχανισμό για να θέτει και να ανακτά «σημάνσεις» κορυφών και ακμών.

```
Algorithm \mathsf{BFS}(G,s):
Input: A graph G and a vertex s of G
 Output: A labeling of the edges in the connected component of s as discovery
   edges and cross edges
 Create an empty list, L_0
 Mark s as explored and insert s into L_0
 i \leftarrow 0
 while L_i is not empty do
      create an empty list, L_{i+1}
      for each vertex, v, in L_i do
          for each edge, e = (v, w), incident on v in G do
               if edge e is unexplored then
                   if vertex w is unexplored then
                        Label e as a discovery edge
                        Mark w as explored and insert w into L_{i+1}
                   else
                        Label e as a cross edge
     i \leftarrow i + 1
```

Παράδειγμα

- Ανεξερεύνητη κορυφή
- Α Εξερευνημένη κορυφή
- Ανεξερεύνητη ακμή
- **Ακμή ανακάλυψης**
- - ► Ακμή διασταύρωσης

Παράδειγμα (συν.)

Παράδειγμα (συν.)

Ιδιότητες

Συμβολισμός

 G_s : συνεκτική συνιστώσα της s

Ιδιότητα 1

Ο BFS(G, s) επισκέπτεται όλες τις κορυφές και ακμές στον G_s

Ιδιότητα 2

Οι ακμές ανακάλυψης που σημειώνονται από τον BFS(G,s) σχηματίζουν ένα παράγον δέντρο T_s του G_s

Ιδιότητα 3

Για κάθε κορυφή \emph{v} στο $\emph{L}_\emph{i}$

Η διαδρομή T_s από την s στη v έχει i ακμές

Κάθε διαδρομή από την s στην v στην G_s έχει τουλάχιστον i ακμές

Ανάλυση

- Η σημείωση και η ανάκτηση μιας σημείωσης μίας κορυφής/ακμής απαιτεί χρόνο O(1)
- Κάθε κορυφή σημειώνεται δύο φορές
 - μια ως ανεξερεύνητη
 - μια ως εξερευνημένη
- Κάθε ακμή σημειώνεται δύο φορές
 - μια ως ανεξερεύνητη
 - μια ως ακμή ανακάλυψης ή ακμή διασταύρωσης
- Η μέθοδος incidentEdges καλείται μία φορά για κάθε κορυφή
- ο BFS εκτελείται σε χρόνο O(n+m) δεδομένου ότι ο γράφος αναπαριστάται με τη δομή λίστας γειτνίασης
 - Θυμηθείτε ότι $\sum_{v} \text{deg}(v) = 2m$

Εφαρμογές

- Μπορούμε να χρησιμοποιήσουμε τον αλγόριθμο διάσχισης BFS, σε έναν γράφο G, για να επιλύσουμε τα ακόλουθα προβλήματα σε χρόνο O(n + m)
 - Υπολογισμός των συνεκτικών συνιστωσών του *G*.
 - Υπολογισμός παράγοντος δάσους του G.
 - Εντοπισμός κύκλου στο G, ή αναφορά ότι ο G δεν έχει κύκλους.
 - Δεδομένων δύο κορυφών του G, εύρεση μίας διαδρομής του G μεταξύ τους με το ελάχιστο πλήθος ακμών ή αναφορά ότι δεν υπάρχει τέτοια διαδρομή.

DFS vs. BFS

Εφαρμογές	DFS	BFS
Παράγον δάσος, συνεκτικές συνιστώσες, διαδρομές, κύκλοι	1	1
Συντομότερες διαδρομές		1
Δισυνδεδεμένες συνιστώσες	1	

DFS vs. BFS (συν.)

Πίσω ακμή (ν, w)

 η w είναι πρόγονος της v στο δέντρο των ακμών ανακάλυψης

Ακμή διασταύρωσης (ν, ν)

 η w είναι στο ίδιο επίπεδο με την v ή στο επόμενο επίπεδο

