Analisi 2

Guglielmo Bartelloni

4 ottobre 2022

Indice

Lezione 1	2
Equazioni differenziali	2
Equazioni differenziali ordinarie	2
$I \ ordine \ (n{=}1) \dots $	3
Lezione 2	5
Facciamo vedere che il teorema precedente valeva anche per $n>1$	5
Torniamo al I ordine	5
Determinazione dell'integrale particolare	7
Osservazioni sulla formula	8
Esempi	8
Lezione 3	8
Il problema di Cauchy	9
Edo a variabili separabili	11

Lezione 1

Equazioni differenziali

Le equazioni differenziali sono equazioni in cui l'incognita è un equazione insieme a qualche sua derivata.

Equazioni differenziali ordinarie

Noi vedremo quelle del primo ordine lineari e di secondo ordine con coefficienti costanti Problema di Cauchy: problema con condizioni iniziali.

Definizione 1

Una equazione di ordine n è una equazione del tipo:

$$F(x, y(x), y'(x), ..., y^{(n-1)}(x), y^{(n)}(x)) = 0$$

$$x \in I \subseteq \mathbb{R}$$

dove l'incognita è la qualunque y(x). F è funzione di (n+2) variabili x, y(x), y'(x)....

L'ordine è dato dal massimo ordine di derivazione che compare.

Per esempio:

$$y''' + 2y'' + 5y = e^x$$

è di ordine 3

Definizione 2 Soluzione (curva) integrale

La soluzione di una EDO di ordine n sull'intervallo I

$$(*)F(x, y(x), y'(x), ...) = 0$$

$$x \in I \subseteq \mathbb{R}$$

 $\varphi(x)$ che sia definita (almeno) in I e ivi derivabile fino all'ordine n per cui valga (*), ovvero:

$$F(x, \varphi(x), \varphi'(x), ...) = 0$$

 $\forall x \in I$

Chiaramente cambia a seconda dell'intervallo

Definizione 3 Integrale Generale

Si chiama integrale generale di (*) in I l'insieme di tutte le soluzioni di (*) in I

E' possibile definire un espressione piu' esplicita

Definizione 4 Forma normale

Un edo di ordine n si dice in forma normale se è in forma

$$y^{(n)} = f(x, y(x), y'(x), ..., y^{(n-1)}), x \in I$$

Esempio:

$$y''' = -5y' + \sin x$$

Quella sopra è un EDO di III ordine normale.

Definizione 5 EDO di ordine n lineare

Una EDO di ordine n si dice lineare se è nella forma

$$a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)} + \dots + a_2(x)y''(x) + a_1(x)y'(x) + a_0y(x) = f(x), x \in I$$

Dove le funzioni

$$a_0(x), a_1(x), a_2(x), ..., a_n(x), f(x)$$

sono assegnate (continue) in I

Esempio:

$$xy'' + 5y = sinx$$

Quando f(x) = 0 allora l'equazione si dice l'omogenea associata

Nel nostro caso le equazioni di secondo ordine lineari saranno a **coefficienti costanti** Vediamo come si risolve il problema della determinazione delle soluzioni di EDO lineari

I ordine (n=1)

$$F(x, y(x), y'(x)) = 0$$

La considero in forma normale:

(1)
$$y'(x) + a(x)y(x) = f(x), x \in [a, b]$$

dove le funzioni a(x) e f(x) sono continue in [a,b]

Se f(x) = 0 si ottiene omogenea associata:

(2)
$$y'(x) + a(x)y(x) = 0$$

Come si determina l'integrale generale di (1)?

Il teorema che enunciamo vale per tutte le EDO lineari di ordine n

Teorema 1

L'integrale generale di (1) in [a, b] è dato dalla somma dell'integrale generale dell'omogenea associata (2) con un integrale particolare noto di (1)

$$\int gen(1) = \int gen(2) + \int particolare(1)$$

Dimostrazione. Sia y(x) una soluzione qualsiasi di (1) (y(x) appartiene all'integrale generale di (1)) e sia $\bar{y}(x)$ una soluzione particolare (nota) di (1). Voglio far vedere è che la loro differenza è una soluzione qualsiasi di (2)

Dunque per ipotesi n ha che:

$$y'(x) + a(x)y(x) = f(x), \forall x \in [a, b]$$

$$\bar{y}'(x) + a(x)\bar{y}(x) = f(x)$$

Entrambe soddisfano la (1)

Sottraggo membro a membro le due:

$$y'(x) - \bar{y}'(x) + a(x)y(x) - a(x)\bar{y}(x) = f(x) - f(x)$$

$$y'(x) - \bar{y}'(x) + a(x)[y(x) - \bar{y}(x)] = 0$$

Si può scrivere anche (le derivate raccolte):

$$[y(x) - \bar{y}(x)]' + a(x)[y(x) - \bar{y}(x)] = 0$$

E dunque la funzione $y(x) - \bar{y}(x) = z(x)$ è soluzione di (2) Quindi:

$$y(x) = \bar{y}(x) + z(x)$$

Viceversa se z(x) è una qualsiasi soluzione di (2) e $\bar{y}(x)$ è una soluzione particolare di (1) voglio mostrare che la loro somma è soluzione di (1)

Pongo:

$$y(x) = z(x) + \bar{y}(x)$$

Devo mostrare che y(x) verifica (1)

sapendo che:

$$z'(x) + a(x)z(x) = 0$$

$$\bar{y}'(x) + a(x)\bar{y}(x) = f(x)$$

$$y'(x) = (z(x) + \bar{y}(x))' = z'(x) + \bar{y}'(x) = -a(x)z(x) - a(x)\bar{y}(x) + f(x) = -a(x)[z(x) + \bar{y}(x)] + f(x)$$

E quindi ho dimostrato che:

$$y'(x) = -a(x)y(x) + f(x)$$

$$y'(x) + a(x)y(x) = f(x)$$

$$y(x) = z(x) + \bar{y}(x)$$

Lezione 2

Facciamo vedere che il teorema precedente valeva anche per n>1

Supponiamo che u e v siamo due soluzioni di (1), cioè che:

$$Lu = f$$
 e $Lv = f$ su I

La differenza di queste diventano soluzione su I=[a,b] dell'omogenea associata Usando la propietà della linearità:

$$L(\lambda u + \mu v) = \lambda L u + \mu L v$$

$$L(u-v) = Lu - Lv = f - f = 0$$

Se indichiamo con V_0 l'insieme di tutte le soluzioni dell'equazione omogenea associata (Lw=0 su I=[a,b] e V_0 è l'insieme delle $w\in\mathbb{C}^n(I)$) e con $\bar{u}(t)$ una soluzione nota di (1)

$$u(x) = \bar{u}(x) + w(x)$$

L'uguaglianza sopra, al variare di w(x) in V_0 ci da tutte le soluzioni del problema di partenza. (Il problema quindi, diventa solo di studiare il problema omogeneo)

Torniamo al I ordine

Adesso ritorniamo al problema di I ordine (in forma normale):

(1)
$$y'(x) + a(x)y(x) = f(x)$$

dove a() e f() sono continue su [a,b]

(2)
$$y'(x) + a(x)y(x) = 0$$

Secondo il teorema della prima lezione:

$$y(x) = z(x) + \bar{y}(x)$$

Come si determina l'insieme di tutte le soluzioni (integrale generale) di (2), cioè:

(2)
$$y'(x) + a(x)y(x) = 0, x \in [a, b]$$

Sia A(x) una **primitiva** di a(x):

$$A(x) = \int a(x) \, dx$$

Moltiplichiamo i due membri della (2) per $e^{A(x)}$:

$$e^{A(x)}y'(x) + e^{A(x)}a(x)y(x) = 0, x \in [a, b]$$

La posso scrivere anche (la derivata di $e^{A(x)}y(x)$):

$$(e^{A(x)}y(x))' = e^{A(x)}a(x)y(x) + e^{A(x)}y'(x)$$

quindi (sempre chiaramente nell'intervallo [a, b]):

$$(e^{A(x)}y(x))' = 0$$

Questo mi dice che:

$$e^{A(x)}y(x) = costante = c \in \mathbb{R}$$

porto dall'altra parte:

$$y(x) = ce^{-A(x)}$$

espandendo A(x):

$$y(x) = ce^{\int a(x) \, dx}$$

posso considerare le soluzioni come:

$$y(x) = cz_0$$

dove z_0 è una soluzione particolare di (2).

Infatti $e^{-A(x)}$ è soluzione di (2)

Dimostrazione.

$$e^{-A(x)} = -a(x)e^{-A(x)}$$

ovvero

$$(e^{-A(x)})' + a(x)e^{-A(x)} = 0$$

Determinazione dell'integrale particolare

Sappiamo:

(1)
$$y'(x) + a(x)y(x) = f(x)$$

(2)
$$y'(x) + a(x)y(x) = 0$$

Cerco l'integrale particolare ad occhio oppure uso il metodo della variazione della costante

Metodo della variazione della costante Cerco questa c(x) in questa forma:

$$\bar{y}(x) = c(x)e^{-A(x)}$$

Ovviamente la cerco dopo che so che $\bar{y}(x)$ è soluzione del problema.

Dimostrazione. Poichè $\bar{y}(x)$ è soluzione di (1) si ha che $\bar{y}'(x) + a(x)\bar{y}(x) = f(x)$ da cui sostituendo $\bar{y}(x) = c(x)e^{-A(x)}$:

$$(c(x)e^{-A(x)})' + a(x)c(x)e^{-A(x)} = f(x)$$

Deriviamo:

$$c'(x)e^{-A(x)} - c(x)a(x)e^{-A(x)} + a(x)c(x)e^{-A(x)} = f(x)$$

semplifico

$$c'(x)e^{-A(x)} = f(x)$$

$$c'(x) = f(x)e^{A(x)} \to c(x) = \int f(x)e^{A(x)} dx$$

e dunque:

$$\bar{y}(x) = e^{-A(x)} \int f(x)e^{A(x)} dx$$

Cioè l'integrale particolare

Se metto tutto insieme l'integrale generale diventa:

$$y(x) = ce^{-A(x)} + e^{-A(x)} \int f(x)e^{A(x)} dx$$

Osservazioni sulla formula

A(x) è una primitiva di a(x) scelta una volta per tutte.

Non occorre mettere una costante arbitraria (ovvero considerare come $A(x)+K, K \in \mathbb{R}$) poiche l'integrale generale non cambia

Non serve neanche nell'integrale perchè verrebbe buttato dentro c dell'integrale generale

Esempi

$$y'(x) = 5y(x) + e^x$$

in questo caso a(x) = -5

$$A(x) = -\int 5 \, dx = -5x$$

Quindi:

$$e^{-A(x)} = e^{5x}$$

$$y(x) = ce^{5x} + e^{5x} \int e^x e^{-5x} dx = ce^{5x} + e^{5x} \int e^{-4x} dx = ce^{5x} + e^{5x} (\frac{1}{4}e^{-4x}) = ce^{5x} - \frac{1}{4}e^x$$

Esercizio per casa:

$$u' + \frac{u}{t} = e^t$$

Lezione 3

Solitamente si suppongono delle condizioni iniziali nel risolvere le equazioni differenziali (problema di Cauchy).

$$\begin{cases} y'(x) + a(x)y(x) = f(x) \\ y(x_0) = y_0 \end{cases}$$
 (1)

Praticamente gli integrali della formula generale diventano definiti tra x_0 e x.

Quindi:

$$y(x) = ce^{-A(x)} + e^{-A(x)} \int e^{A(x)} f(x) dx = ce^{-\int_{x_0}^x a(t) dt} + e^{-\int_{x_0}^x a(t) dt} \int_{x_0}^x e^{\int_{x_0}^s a(t) dt} f(s) ds$$

$$y(x_0) = y_0 = c$$

Voglio trovare la soluzione generale in questo caso, parto dall'omogenea:

$$y' + x(x)y(x) = 0$$

$$e^{\int_{x_0}^x a(x) dt} = e^{A(x)}$$

Il problema di Cauchy

Quindi introduciamo il problema di Cauchy:

$$\begin{cases} y' + a(x)y = f(x) \\ y(x_0) = y_0 \end{cases}$$
 (2)

dove $x \in I = [a, b]$ e $x_0 \in I$

con le ipotesi fatte (a(x) e f(x) continue in I) ha una e una sola soluzione (SOLUZIONE UNICA) con l'espressione esplicita determinata.

Esempio 1

Determinare la soluzione del problema di Cauchy:

$$\begin{cases} y'(x) = 5y(x) + e^x \\ y(0) = 0 \end{cases}$$

$$A(x) = \int_0^x a(t) dt = -\int_0^x 5 dt = -5x$$

$$y(x) = 0e^{5x} + e^{5x} \int_0^x e^{-5t} e^t dt =$$

$$= e^{5x} \left[-\frac{1}{4}e^{-4t} \right]_0^x = e^{5x} \left(-\frac{1}{4}e^{-4x} + \frac{1}{4} \right) = -\frac{1}{4}e^x + \frac{1}{4}e^{5x}$$

$$(3)$$

Esempio 2

Determinare l'integrale generale delle EDO:

$$y' + \frac{1}{\sqrt{x}}y = 1$$

e trovare le eventuali soluzioni tali che:

$$\lim_{n \to \infty} y(x) = +\infty$$

Soluzione:

l'equazione è definita per ogni x > 0

$$a(x) = \frac{1}{\sqrt{x}}$$

$$A(x) = \int \frac{1}{\sqrt{x}} \, dx$$

L'integrale generale:

$$y(x) = ce^{-\int \frac{1}{\sqrt{x}} dx} + e^{-\int \frac{1}{\sqrt{x}} dx} \left(\int e^{\int \frac{1}{\sqrt{x}} dx + 1} dx \right) =$$
$$= e^{2\sqrt{x}} \left(e + \int e^{2\sqrt{x}} dx \right)$$

Risolvo l'integrale pongo $t=2\sqrt{x}$ quindi $dt=\frac{1}{\sqrt{x}}dx \to dx=\frac{t}{2}dt$:

$$\int e^{2\sqrt{x}} dx = \int e^t \frac{t}{2} dt = e^x \frac{t}{2} - \int e^t \frac{1}{2} dt =$$

$$= e^t \frac{t}{2} - \frac{1}{2e^t} =$$

Risostituisco:

$$= e^{2\sqrt{x}} \frac{2\sqrt{x}}{2} - \frac{1}{2}e^{2\sqrt{x}}$$

Ora riscrivo l'integrale generale:

$$y(x) = e^{-2\sqrt{x}}[c + e^{2\sqrt{x}}(\sqrt{x} - \frac{1}{2})] = ce^{-2\sqrt{x}} + \sqrt{x} - \frac{1}{2}$$

Adesso soddisfo la richiesta (quali sono le soluzioni che vanno all'infinito)

$$\lim_{n \to \infty} c^{-2\sqrt{x}} + \sqrt{x} - \frac{1}{2} = +\infty$$

questo vale per $\forall c \in \mathbb{R}$

Esempio 3

$$\begin{cases} y' + \frac{2y}{x} = \frac{1}{2} \\ y(-1) = 2 \end{cases}$$
 (4)

Considero l'intervallo dove sta il $x_0 = -1$ quindi $(-\infty, 0)$

$$A(x) = \int_{-1}^{x} \frac{1}{t} dt = \left[2\log|t|\right]_{-1}^{x} = 2\log|x| - 2\log|-1| = 2\log|x| = 2\log|x|$$

per via dell'intervallo il valore assoluto viene preso col meno:

$$=2log(-x)$$

quindi l'integrale generale:

$$y(x) = 2e^{-2log(-x)} + e^{-2log(-x)} \left(\int_{-1}^{x} e^{2log(-t)} \frac{1}{t^2} dt \right) =$$

uso la proprietà dei logaritmi:

$$=2e^{\log\frac{1}{x^2}}+e^{\log\frac{1}{x^2}}\int_{-1}^x e^{\log t^2}\ dt=\frac{2}{x^2}+\frac{1}{x^2}\int_{-1}^x 1\ dt=\frac{2}{x^2}+\frac{1}{x^2}\left[t\right]|_{-1}^x=\frac{2}{x^2}+\frac{1}{x^2}(x+1)$$

Edo a variabili separabili

Una edo si dice a variabili separabili se è della forma:

$$y(x) = f(x)g(y(x))$$

Parte che dipende da y viene moltiplicata a quella che dipende da x.

Dove le funzioni f e g sono continue nei loro domini di definizione

Determinare gli eventuali zeri(valori di \bar{y} tra cui $g(\bar{y})=0$) voglio dividere per g per separare le variabili

considerando $y \neq \bar{y}$ si separano le variabili dividendi per g(y)