4 A student slid a small metal cube down a frictionless ramp. The cube collided with a fixed metal block at the bottom of the ramp.

The student released the cube from position X as shown in the diagram. After the collision, the cube rebounded to position Y.

The student measured heights h and r. He then repeated the experiment using several different starting positions.

(a) The student recorded his results in the table below.

<i>h</i> / m	<i>r</i> / m
0.20	0.11
0.25	0.137
0.30	0.16
0.35	0.19
0.40	0.217
0.45	0.24

(i) Cr	iticise	these	results.

(2)

(ii) Plot a graph of r on the y-axis and h on the x-axis.

(5)

(b) (i)	Show that the velocity u of the cube immediately before the collision is given by
	$a = \sqrt{2 a h}$

(2)

(ii) The coefficient of restitution e is given by the equation

$$e = \frac{v}{u}$$

where v is the velocity of the cube immediately after the collision.

Explain why the gradient of the graph is e^2 .

(3)

 	• • • •	 	 • • • •	 	 	 	 	• • • • •	 	 	 																

(c) The student researched the range of values for the coefficients of restitution e of different metals.

stainless steel

0.63 < e < 0.93

cast iron

0.3 < e < 0.6

Determine which of these metals the cube could be made from.

(3)

|
 |
|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | |
|
 |
| | | | | | | | | | |
|
 |
| | | | | | | | | | |
|
 |
| | | | | | | | | | |

value obtained for e.	between the C	cube and th	ie surface of	the ramp wou	ald affect the	
variae obtained for e.						(2)
						value obtained for e.