## more exactly ...

- How many of the  $\lceil n/5 \rceil$  medians are smaller than x, how many larger?
- at least  $\lceil \frac{n}{10} \rceil 1$  each
- How many elements are at least in L (G)?
- $3\frac{n}{10}$
- Therefore we recurse—after split—on at most  $7\frac{n}{10}$  elements

### Running time of LinearSelect

$$T(n) \le an + T(\frac{n}{5}) + T(\frac{7n}{10})$$
 for not small  $n$ 

T(n) is constant for small n

We show that  $T(n) \leq cn$  and therefore  $T(n) \in O(n)$  for constant c, using induction.

### Running time of LinearSelect

$$T(n) \le an + T(\frac{n}{5}) + T(\frac{7n}{10})$$

$$= an + c\frac{n}{5} + 7c\frac{n}{10}$$

$$= an + 9c\frac{n}{10}$$

### Running time of LinearSelect

- We can show that  $an + 9c\frac{n}{10} \le cn$  for  $c \ge 10a$
- Therefore LinearSelect has indeed a linear time complexity!

### Remarks

- When picking the pivot, instead of dividing into short sequences of size 5, one can also choose short sequences of, e.g., size 7
  - size 3 does not work! (Assignment question)
- LinearSelect is also called Linear Median Algorithm
- In practice, QuickSelect is typically the better choice
- LinearSelect requires huge inputs to show linear running time in practice

# Graphs

- Minimum spanning trees
- Shortest Paths

# Minimum Spanning Tree Definition

- Input: A weighted connected graph G = (V, E) consisting of vertices (or nodes), V, and edges, E, with positive integer edge weights
- Output: A minimum spanning tree (MST)  $T = (V, E_T)$ , that is T is a connected subgraph of  $G(E_T \subseteq E)$  such that T is acyclic, and T is shortest

#### Definition

- Let G = (V, E) be an undirected connected graph with edge weights that are *positive* integers
- $T = (V, E_T)$  is a minimum spanning tree for G if
  - (1) T is a subgraph of G
  - (2) T is a tree
  - (3) *T* is the *lightest* graph satisfying (1) and (2),

spanning tree

i.e., 
$$\sum_{e \in E_T} w(e) = \min_{\substack{T' \text{ is spanning tree for } G}} \sum_{e \in E_{T'}} w(e)$$

### Problem: Laying Cable TV Wire



### Minimize Wiring



# Applications of Minimum Spanning Trees

- used in image processing (e.g., cancer research)
- clustering
- identifications of patterns in gene expressions
- routing in mobile networks

# Determining MST by Brute Force

- Create all spanning trees
- Pick the lightest
- Not feasible!!
  - A complete graph (every pair of vertices is connected by an edge) has  $|V|^{|V|-2}$  many spanning trees (Cayley's Theorem [1889])

# Minimum Spanning Tree algorithms

- 1926 Barůvka *O*(*m* log *n*)
- 1930 Prim-Jarník's
  - 1930 Jarník
  - 1957 Dijkstra
  - 1959 Prim
  - 1964 with Heaps  $O(m \log n)$
  - 1987 Fredman and Tarjan with Fibonacci Heaps  $O(m+n \log n)$
- 1956 Kruskal's algorithm
  - 1956 Kruskal
  - 1974 Aho, Hopcroft and Ullman with Union-Find Disjoint Set O(m log n)

- 1975 Yao *O*(*m* loglog *n*)
- 1976 Cheriton and Tarjan  $O(m \log \log n)$
- 1995 Karger, Klein and Tarjan Randomized MST based on Barůvka and Kruskal O(m)
- 2000 Chazelle  $O(m \alpha(m,n))$

n: number of verticesm: number of edges

## Prim's Algorithm Idea

- Initialize tree with single chosen vertex
- Grow tree by finding lightest edge not yet in tree and connect it to tree; repeat until all vertices are in the tree
- Example of greedy algorithm

### Reminder

#### Greedy Algorithm Design Technique

- Applied to optimization problems
  - an objective function is *minimized* or *maximized*
- Characterized by the *greedy-choice property:* 
  - a global optimal configuration can be reached by a series of locally optimal choices
  - starting from a well-defined configuration, optimal choices are choices that are best from among the possibilities available at the time

## Prim's Algorithm Idea

- Initialize tree with single chosen vertex
- Grow tree by finding lightest edge not yet in tree and connect it to tree; repeat until all vertices are in the tree
- Example of greedy algorithm





















## Prim's Algorithm Idea

- Initialize tree with single chosen vertex
- Grow tree by finding lightest edge not yet in tree and connect it to tree; repeat until all vertices are in the tree
- Example of greedy algorithm

## Kruskal's Algorithm Idea

- Initialize a forest consisting of all nodes
- Pick a (non-selected) minimum weight edge and, if it connects two different trees of the forest, select it, otherwise discard it; repeat
- Example of greedy algorithm















18

















#### Kruskal's Algorithm Idea

- Initialize a forest consisting of all nodes
- Pick a (non-selected) minimum weight edge and, if it connects two different trees of the forest, select it, otherwise discard it; repeat
- Example of greedy algorithm

#### Borůvka's Algorithm Idea

- Assume every edge has a unique weight.
- Initially, each vertex is considered a separate component.
- The algorithm merges disjoint components as follows; repeating the step until only one component exists.
- In each step, every component is merged with some other using the cheapest outgoing edge of the given component.











#### Borůvka's Algorithm Idea

- Assume every edge has a unique weight.
- Initially, each vertex is considered a separate component.
- The algorithm merges disjoint components as follows; repeating the step until only one component exists.
- In each step, every component is merged with some other using the cheapest outgoing edge of the given component.

#### To come

- Today: why do these algorithm ideas work (and produce correct MSTs)?
- Later: how do we implement these algorithms efficiently? What are good data structures?

# Two basic properties for minimum spanning trees

- Cycle property
- Cut property

- Let C be any cycle in graph G (that is a set of edges building a cycle). Let e be a heaviest edge in the cycle.
- Then there exists a minimum spanning tree for *G* that does not contain *e*.



- Let C be any cycle in graph G (that is a set of edges building a cycle). Let e be a heaviest edge in the cycle.
- Then there exists a minimum spanning tree for *G* that does not contain *e*.

# Proof. (Cycle property)

- For now, assume that all edges in the graph are of distinct weight
- We proof by contradiction: there is no MST T for G containing edge e
- Assume e does belong to MST T. Then deleting e from T disconnects T into two trees,  $T_1$  and  $T_2$ .
- Consider cycle C. C consists of some vertices that belong to  $T_1$  and the other vertices of C belong to  $T_2$ .
- There is an edge in C, say f, that connects a vertex from  $T_1$  to a vertex  $T_2$ .
- Merge  $T_1$  and  $T_2$  using f to spanning tree  $T^*$ . The new tree,  $T^*$ , is lighter than T. A contradiction.

### Cut Property

- Let V' be any subset of vertices in weighted graph G = (V, E), and let e be a lightest edge that has exactly one endpoint in V'
- Then there is a minimum spanning tree *T* for *G* that contains *e*.

## Cut Property



### Cut Property

- Let V' be any subset of vertices in weighted graph G = (V, E), and let e be a lightest edge that has exactly one endpoint in V'
- Then there is a minimum spanning tree *T* for *G* that contains *e*.

# Proof (Cut property)

- For now, assume that all edges in the graph are of distinct weight
- We proof by contradiction: MST T for G contains edge e
- Assume it does not
- Add e to T creating cycle C
- Consider edge f in C that has exactly one endpoint in V'
- Create spanning tree T\* by replacing e with f, but T\* is heavier than T. Contradiction.

# Prim's Algorithm Correctness of Idea

Initialize tree with single chosen vertex

Cut property

- Grow tree by finding lightest edge not yet in tree and expanding the tree, and connect it to tree; repeat until all vertices are in the tree
- Example of greedy algorithm

#### Kruskal's Algorithm Correctness of Idea

Cut property

- Initialize a forest consisting of all nodes
- Pick a (non-selected) minimum weight edge and, if it connects two different trees of the forest, select it, otherwise discard it; repeat

Example of greedy algorithm

#### Borůvka's Algorithm Correctness of Idea

- Assume every edge has a unique weight.
- Initially, each vertex is considered a separate component.
- The algorithm merges disjoint components as follows and repeating the step until only one component exists.
- In each step, every component is merged with some other using the cheapest outgoing edge of the given component.

# Pseudocode: Kruskal's Algorithm

- 1. Algorithm KruskalMSTNaive(G = (V,E))
  - 1. sort edges in E according to weight
  - 2. Initialize  $E_T$  as empty set
  - 3. pick lightest edge *e* in *E*; remove *e* from *E*
  - 4. If e does not build a cycle with edges in  $E_T$  then add e to  $E_T$ ; else, discard e
  - 5. Repeat from 3. until *E* is empty

#### Running time KruskalMSTNaive