

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA

TUTORÍA 8

BAIN 036

Álgebra Lineal para Ingeniería Noviembre 2013

- 1. En \mathbb{R}^3 se define el siguiente producto interno $\langle (x, y, z), (a, b, c) \rangle = ax + 2by + 3cz$. Sea $S = \{(1, 2-a, 3), (b-1, -1, 2), (3, 2, c+1)\}$ una base de \mathbb{R}^3 . Determine los valores de $a, b, c \in \mathbb{R}$ para que S sea una base ortogonal de \mathbb{R}^3 .
- 2. Dado el conjunto $W_1 = \left\{ -4, 6x, -\frac{1}{3}x^2 \right\}$:
 - (a) Compruebe que W_1 es un conjunto ortogonal.
 - (b) Determine un conjunto ortonormal a partir de W_1 .
- 3. Sea $F = \left\langle \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -7 \\ 1 & -1 \end{pmatrix} \right\rangle \subseteq M_2(\mathbb{R})$. A partir de F, determinar:
 - (a) B un conjunto generador de F^{\perp} .
 - (b) Si B es un conjunto ortogonal.
 - (c) Si es posible, descomponer el vector $v = \begin{pmatrix} -3 & 5 \\ 9 & 3 \end{pmatrix}$ como suma de un vector de F y otro de B.