# Lemke Howson 算法

#### 背景知识

**双矩阵博弈**:有两个参与者 $\{1,2\}$ 的博弈,收益矩阵分别为 $A_{m\times n}, B_{m\times n}$ 

当参与者1,2分别采取纯策略i,j时,效用分别为 $A_{i,j},B_{i,j}$ 

**混合策略**: 纯策略的概率分布,为一向量。纯策略i可以看成混合策略 $e_i = [0_1, \dots 0_{i-1}, 1, \dots, 0]^\top$ . 设参与人1, 2的混合策略分别x, y, 其收益分别为 $x^\top Ay$ ,  $x^\top By$ .

混合策略的支撑集:混合策略x含有的系数非0的纯策略分量集合,即 $Supp(x):=\{i:x_i>0\}.$ 

**最优对策**: 设参与者1的策略为x, 参与者2的策略为y.

若 $x^{\top}By \geq x^{\top}By'(\forall y')$ ,则 $y \neq x$ 的最优对策。

若 $x^{\top}Ay \geq x'^{\top}Ay (\forall x')$ ,则x是y的最优对策。

**Nash均衡**: 若x, y互为最优对策,则(x, y)是博弈的Nash均衡。

**无差异条件**:  ${\rm H}(x,y)$ 是Nash均衡,则 ${\rm H}(x)$ 表撑集中纯策略都是 ${\rm H}(x)$ ,反之亦然。

**非退化的双矩阵博弈**:对参与者1的任意策略x,若y是其最优对策,则 $|Supp(y)| \leq |Supp(x)|$ . 反之亦然。

#### 算法思想

- 1. 将博弈双方的策略空间表达为两个超多面体。
- 2. 考虑两个超多面体顶点构成的图,确定Nash均衡点在其中的分布方式。
- 3. 按照Nash均衡点在其中的分布方式,在超多面体顶点图上沿边追踪求解。

### 策略空间的超多面体表示

设非退化的双矩阵博弈为 $(A_{m\times n},B_{m\times n})$ . (x,y)是Nash均衡, (v,u)为此均衡的效用。

由非退化条件: |Supp(x)| = |Supp(y)|.

由无差异条件, $orall i \in Supp(x), (Ay)_i = \max_k (Ay)_k$ , $orall j \in Supp(y), (x^ op B)_j = max_k (x^ op B)_k$ .

因此,可以分别构造m+1,n+1维超多面体P,Q,使得所有的Nash均衡及其效用都可表示为这两个多面体的顶点对。

$$egin{aligned} P &= \{(u,x): x_i \geq 0, \sum_i x_i = 1, x^ op B \leq u \mathbf{1}^ op \} \ Q &= \{(v,y): y_j \geq 0, \sum_j y_j = 1, Ay \leq v \mathbf{1} \} \end{aligned}$$

映射:  $(u,x)\mapsto \frac{1}{u}x,\;(v,y)\mapsto \frac{1}{v}y$  分别将P,Q变换为 $\bar{P},\bar{Q}$ ,即:

$$P = \{x: x_i \geq 0, x^{ op}B \leq \mathbf{1}\}; \; Q = \{y: Ay \leq \mathbf{1}, y_j \geq 0\}$$

对P, 为约束条件 $x_i \geq 0$ 赋予标号i, 为约束条件 $(x^T B)_i \leq 1$ 赋予标号m+j.

对Q, 为约束条件 $(Ay)_i \leq 1$ 赋予标号i, 为约束条件 $y_i \leq 0$ 赋予标号m+j.

(每个标号都代表其对应的超平面约束)

若x具有标号k,则x使得标号为k的约束等号成立。记x具有的标号集为L(x).

$$M := \{1, 2, \dots, m\}, N := \{m + 1, m + 1, \dots, m + n\}.$$

#### Nash均衡具有全部标号

**定理**: 若 $(x,y) \neq (0,0)$ ,则(x,y)是Nash均衡当且仅当 $L(x) \cup L(y) = M \cup N$ .

**证明**: 由非退化条件|L(x)| = m, |L(y)| = n.

 $\Rightarrow$ : 若 $i\in L(x)\cap M$ ,即 $x_i=0$ ,i不在x支撑集中,则不是y的最优对策,即 $(Ay)_i<1$ , $i
ot\in L(y)$ 

若 $i\in L(x)\cap N$ ,即 $(x^{\top}B)_{i-m}=1$ ,i-m是x的最优对策,故而在y支撑集中, $y_{i-m}>0,\ i\not\in L(y).$ 

对 $i \in L(y)$ 同理.

 $\Leftarrow$ : 满足 $L(x) \cup L(y) = M \cup N$ 时,使用无差异条件可得(x,y)为Nash均衡。 $\Box$ 

#### Nash均衡成对出现

设 $G_1, G_2$ 分别是 $\bar{P}, \bar{Q}$ 的顶点和边构成的图,  $G := G_1 \times G_2$ .

定义 $U_k := \{v \in V(G) : (M \cup N) - \{k\} \subseteq L(v)\}, \ k \in M \cup N.$ 

**定理**:  $U_k$ 包括所有Nash均衡点和(0,0), 并且在 $U_k$ 导出子图中

- 1.(0,0)和Nash均衡点的度数为1
- 2. ‡(0,0)或Nash均衡点的度数为2

**证明**: 1. Nash均衡(x,y)具有的标号满足 $L(x) \cup L(y) = M \cup N$ ,且x,y标号不重复。则  $k \in L(x), k \in L(y)$ 有且仅有一种情况成立。

不妨设 $k\in L(x)$ ,则在 $\bar{P}$ 中,仅有1条边在放弃k对应的超平面约束的同时保留其余约束。(非退化条件、简单超多面体)

2. 非Nash均衡(x,y)因在 $U_k$ 中,则二者标号不含k,且必有一重复 $l\in L(x)\cap L(y)$ . 则在 $U_k$ 导出子图中,有在 $\bar{P},\bar{Q}$ 中两种方式放弃l对应的超平面约束。 $\square$ 

奇数定理: 非退化双矩阵博弈的Nash均衡有奇数个。



#### 算法描述

```
procedure Lemke_Howson(A,B,k):
    x, y := 0, 0;
    initial_k := k;
    Construct Polytope P,Q with A,B;
    while
        In P, drop label k, Pick up label k1;
        update x;
        if k1 = initial_k:
            break;
        In Q, drop label k1, Pick up label k2;
        update y;
        if k2 = initial_k:
            break;
        k := k2;
    end while
    Print x/sum(x), y/sum(y);
```

## 计算示例

类似单纯形法,使用Minimum test保证在超多面体上。

实质上是交替决策,逐步达到均衡。

 $Ay + r = \mathbf{1}, B^{\top}x + s = \mathbf{1}, \text{ and } x, y, r, s \text{ are nonnegative.}$ 

| $p1 \ p2$ | 4   | 5   | 6   |
|-----------|-----|-----|-----|
| 1         | 1,2 | 3,1 | 0,0 |
| 2         | 0,1 | 0,3 | 2,1 |
| 3         | 2,0 | 1,0 | 1,3 |

The initial tableaux are r = 1 - Ay,

$$r_1 = 1$$
  $-y_4$   $-3y_5$  [A1]  
 $r_2 = 1$   $-2y_6$  [A2]  
 $r_3 = 1$   $-2y_4$   $-y_5$   $-y_6$  [A3]

and  $s = \mathbf{1} - B^{\top} x$ ,

$$s_4 = 1$$
  $-2x_1$   $-x_2$  [B1]  
 $s_5 = 1$   $-x_1$   $-3x_2$  [B2]  
 $s_6 = 1$   $-x_2$   $-3x_3$  [B3]

## 开源工具

```
> pip install nashpy
```

```
import nashpy
game = nashpy.Game([[1,2],[2,1]], [[0,3],[4,5]])
game.lemke_howson(initial_dropped_label=0)
```