Code No: 134BC

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, April - 2018 FLUID MECHANICS AND HYDRAULIC MACHINES

	Т:	FLUID MECHANICS AND HYDRAULIC MACHINES (Common to ME, MSNT)	lana 75
	1 ime:	3 Hours Max. Marl	KS: /5
	Note:	This question paper contains two parts A and B.	
		Part A is compulsory which carries 25 marks. Answer all questions in Part A.	
		Part B consists of 5 Units. Answer any one full question from	each unit.
		Each question carries 10 marks and may have a, b, c as sub questions.	1
		JJ JJ PART-A JJ J	
			25 Marks)
	1.a)	Explain Newton's law of viscosity.	[2]
	b)	Define absolute, gauge and vacuum pressures.	[3]
	c)	What is meant by surface and body forces?	[2]
: :	d)	Explain rotational and irrotational flows with practical examples.	[3]
	e)	Define HGL and TEL.	[2]
1	f)	What is meant by pipes in series and pipes in parallel?	[3]_/
	g)	What is hydrodynamic force?	[2]
	h)	Differentiate impulse and reaction turbines.	[3]
	i)	List out the losses in pumps.	[2]
	j)	Explain what an indicator diagram is.	[3]
	2		(50 Marks)
	2.	Differentiate between:	
		a) Liquids and Gasesb) Cohesion and Adhesion	
		c) Real fluid and Ideal fluid	
		d) Compressible and Incompressible fluids.	[10]
: :		: : OR : : :	[10]
	3.a)	Enunciate Newton's law of viscosity. Explain the importance of viscosity in flu	uid motion.
1/	,	What is the effect of temperature on viscosity of water and that of air?	/
	b)	An oil of viscosity 5 poise is used for lubrication between a shaft and s	leeve. The
	,	diameter of shaft is 0.5 m and it rotates at 200 rpm. Calculate the power lost in	
		a sleeve length of 100 mm. The thickness of the oil film is 1.0 mm.	[5+5]
	4.a)	Explain the terms: (i) Path line (ii) Streak line (iii) Stream line and (iv) Stream	tube.
	b)	A 40 cm diameter pipe, conveying water, branches into two pipes of diameter	
<i>J.</i>	,	20 cm respectively. If the average velocity in the 40 cm diameter pipe is 3 m	
		discharge in this pipe. Also, determine the velocity in 20 cm pipe if the avera	ge velocity
		in 30 cm diameter pipe is 2m/sec.	[5+5]
		OR	

	5.a) b)	A 42 ⁰ reduce the bend be	eing bend is conreing 40 cm and 2 intensity of pressi	from Euler's equanected in a pipe 1 20 cm respective ure at inlet of ben	ine, the diamete ly. Find the force	ce exerted by wa	ater on the	
	6.a)	head.		lue to sudden exp			of velocity	
	b)	Describe the	e characteristics of	of laminar and tur OR	bulent boundary	layers.	[5+5]	
JJ	7.a) b)			ive an expression nt with a neat ske		e through a Vent	urimeter. [5+5]	
	8.a) b)		cific speed? State	e its significance i xplain the govern				
	9.a)	OR What do you mean by gross head, net head and efficiency of turbine. Explain the						
JJ	b)	different types of efficiencies of a turbine. A Pelton wheel has a mean bucket speed of 30 m/s with a jet of water flowing at the rate of 0.8 m ³ /s under a head of 250 m. The buckets deflect the jet through an angle of 160 ⁰ . Calculate the power delivered to the runner and the hydraulic efficiency of the turbine. Assume co-efficient of velocity as 0.85. [5+5]						
	10.a)		ou determine th	e possibility of	cavitation to occ	cur in the install	ation of a	
	b) 11.a) b)	Explain the	principle and wo al pump deliver	remedies? Explai OR orking of a Centrif s water against a	fugal pump with	4.5m and design	[5+5]	
		1000 rpm. I diameter is 3 manometric	300 mm and outle efficiency is 95%	let width 50 mm. %.	angle of 30° will Determine the d	ischarge of the p		
		1000 rpm. I diameter is 3 manometric	300 mm and outle efficiency is 95%	let width 50 mm.	angle of 30° will Determine the d	ischarge of the p	ump if the	
		1000 rpm. I diameter is 3 manometric	300 mm and outle efficiency is 95%	let width 50 mm. %ooOoo	angle of 30° with Determine the d	ischarge of the p	oump if the	
		1000 rpm. I diameter is 3 manometric	300 mm and outle efficiency is 95%	let width 50 mm. %.	angle of 30° with Determine the d	ischarge of the p	oump if the	