Mini Project - Introduction and VGA Interface

Maryam Hemmati

Department of Electrical, Computer, and Software Engineering University of Auckland

email: m.hemmati@auckland.ac.nz

COMPSYS 305-Digital Systems Design

1 April 2025

Maryam Hemmati (ECSE)

Nini Project - Introduction and VGA Interfa

1 April 2025

1 / 33

Maryam Hemmati (ECS

Mini Project - Introduction and VGA Inte

1 April 2025

.

Mini Project Objective

The goal of the mini project is to design a simple game console.

- The game is Flappy Bird.
- The game is implemented on DE0-CV board.
- The game is controlled and played using
 - ► A PS/2 mouse
 - ▶ DIP switches on the DE0-CV board
 - Push-buttons on the DE0-CV board
- The game is displayed on a VGA screen.
 - ▶ with a resolution of **640x480** pixels

Content

- Mini Project Objective
- DE0-CV Board
- VGA Interface
- Graphics Display on VGA Screen

Mini Project Objective

Game Description

- The bird can move up or down
 - ▶ It is controlled by a PS/2 mouse.
 - ▶ If the bird is not flapping, it will free-fall towards the ground.
 - ► The bird must not touch anything when flying, otherwise, it will lose life points.
- The game may consist of different types of obstacles and gifts
 - pipes
 - ▶ dollars, medicine boxes, special flying abilities
- The screen must be kept in motion from the right-hand side to the left-hand side.
 - ▶ The speed increases with the game level
- The level of difficulty can be controlled by other criteria
 - ► The types of obstacles

Mini Project Objective

Game Modes

- Training Mode
 - ▶ Allows the player to practice at the lowest game level.
 - Will continue for a specific time.
- Single-player Game Mode
 - ▶ The game will proceed to more advanced levels following certain criteria.
 - ▶ The time, distance, or the number of obstacles passed could be used as such criteria.

The game mode can be determined by using a DIP switch on the console or through a selection on the welcome screen.

1 April 2025

DF0-CV Board

DE0-CV board includes Altera Cyclone V 5CEBA4F23C7N FPGA device

- All the connections are made through the Cyclone V FPGA device.
 - ▶ Gives the flexibility to the user to configure the FPGA to implement any system design.
- The DE0-CV board includes 50 MHz clock signal.

DE0-CV Board

The hardware platform that you will use for implementing the game console is Terasic DE0-CV board.

1 April 2025

DF0-CV Board - Switches

- There are 10 slide switches (sliders) on the DE0-CV board.
- These switches are used as level-sensitive data inputs to a circuit.
 - ▶ When a switch is in the **DOWN** position it provides a **low logic level**.
 - ▶ When the switch is in the **UP** position it provides a **high logic level**.
- The FPGA pins connected to these switches (and any other I/O) should be defined in the project through pin assignment.

DE0-CV Board - Push-buttons

- The DE0-CV board provides four user-defined push-buttons and one FPGA reset button.
- KEY0, KEY1, KEY2, KEY3, and RESET_N are directly connected to the Cyclone V FPGA as an input.
 - ► Each button provides a **high** logic level when it is **not pressed**.
 - ▶ The button provides a **low** logic level when it is **pressed**.

Maryam Hemmati (ECSI

lini Project - Introduction and VGA Interfa

1 April 2025

9 / 33

DE0-CV Board - LEDs

- There are 10 user-controllable LEDs on the DE0-CV board.
- Each LED is driven directly by a pin on the Cyclone V FPGA.
 - ▶ Driving associated pin to a **high** logic level turns the LED **on**.
 - ▶ Driving the pin **low** turns it **off**.

DE0-CV Board - Push-buttons

 KEY0, KEY1, KEY2, KEY3, and RESET_N are debounced using a Schmitt Trigger circuit.

Maryam Hemmati (ECSE)

ni Project - Introduction and VGA Interf

1 April 2025

10 / 33

DE0-CV Board - Seven Segments

- The DE0-CV board has six 7-segment displays.
- They are connected to pins on the Cyclone V FPGA.
 - ▶ Applying a **low** logic level to a segment causes it to **light up**.
 - Applying a high logic level turns it off.
- Each segment in a display is identified by an index from 0 to 6.

DE0-CV Board - FPGA Configuration

There are two different modes for configuring the **Cyclone V FPGA** on DE0-CV board.

JTAG programming

- The configuration bit stream is downloaded directly into the Cyclone V FPGA.
- The FPGA will retain this configuration as long as power is applied to the board.
- ▶ The configuration is lost when the power is turned off.

Active Serial programming

- ► The configuration bit stream is downloaded into the Altera EPCS64 serial EEPROM chip.
- ▶ It provides non-volatile storage of the bit stream.
- ▶ When the board is turned on, the configuration data in the EPCS64 device is automatically loaded into the Cyclone V FPGA.

Configuration bit stream is downloaded into the board through the USB Blaster.

Maryam Hemmati (ECSE) Mini Pro

Mini Project - Introduction and VGA Interfa

1 April 2025

,

VGA Interface

Image on VGA screen is displayed by turning the pixels ON and OFF.

- Video signal must redraw the entire screen 60 times per sec (60Hz) to avoid flickers.
 - ▶ Human eyes detect flickers at refresh rate less than 30Hz.
- We will use the common VGA display standard at 25MHz pixel rate with 640x480 resolution.
 - ► Each pixel takes 40ns at 25MHz pixel rate.

VGA Interface

- VGA (Video Graphics Array) is a popular display standard developed by IBM and introduced in 1987.
- The resolution of the VGA screen can vary but a standard default size is **640x480 pixels**.
- The screen refreshes the display from left to right, top to bottom.

VGA Interface

VGA video standard contains 5 active signals:

- Horizontal and vertical synchronisation signals.
- Three analog signals for red, green and blue (RGB) colours formation.
 - ▶ By changing the analog voltage levels of the RGB signals, different colours can be produced.
 - ▶ Depending on the number of bits supported by the development board, different amount of colours can be represented.

Maryam Hemmati (ECSE) Mini Project - Introduction and VGA Interfa 1 April 2025 15 / 33 Maryam Hemmati (ECSE) Mini Project - Introduction and VGA Interfa 1 April 2025 16 /

VGA Interface - Horizontal Synchronisation

- Horizontal sync signifies the end of one row of data (i.e. 640 pixels) and the start of the next.
 - ► The data (RGB) inputs on the monitor must be off for a time period called the **back porch** (b) after the hsync pulse occurs.
 - ▶ During the data **display interval** (c) the **RGB** data drives each pixel in turn across the row being displayed.
 - When data display interval is finished, the beam returns from the right most position to left most. During the return process, no pixel data is displayed.
 - ► Front porch (d) is a time period where the RGB signals must again be off before the next hsync pulse can occur.

VGA Interface - Vertical Synchronisation

Vertical sync pulse signifies the end of one frame and the start of the next, and the data refers to the set of rows in the frame.

- Vertical sync (a) corresponds to 2 lines.
- Back porch (b) corresponds to 33 lines.
- Display interval (c) corresponds to 480 lines.
- Front porch (d) corresponds to 10 lines.

VGA Vertical Timing Specification									
VGA mode	Vertical Timing Spec								
Configuration	Resolution(HxV)	a(lines)	b(lines)	c(lines)	d(lines)	Pixel clock(MHz)			
VC A/COLL-V	C40400	2	22	400	40). OF			

VGA Interface - Horizontal Synchronisation

- Horizontal sync (a) corresponds to 96 pixels.
- Back porch (b) corresponds to 48 pixels.
- Display interval (c) corresponds to 640 pixels.
- Front porch (d) corresponds to 16 pixels.

VGA Horizontal Timing Specification

VGA mode		Horizontal Timing Spec						
Configuration	Resolution(HxV)	a(pixel clock cycle)	b(pixel clock cycle)	c(pixel clock cycle)	d(pixel clock cycle)	Pixel clock(MHz)		
VGA(60Hz)	640x480	96	48	640	16	25		

Maryam Hemmati (ECSE) Mini Project - Introduction and VGA Interfa 1 April 2025 18 / 33

VGA Interface - DE0-CV Board

Maryam Hemmati (ECSE) Mini Project - Introduction and VGA Interfe 1 April 2025 19 / 33 Maryam Hemmati (ECSE) Mini Project - Introduction and VGA Interfe 1 April 2025 20 / 33

VGA Interface - VGA_Sync Component

We need a component to drive the control signals to the display and provide pixel values at the right rate.

- In order to generate the VGA signal at 25 MHz, the clock signal provided by DE0-CV (50MHz) needs to be halved.
- 25 MHz clock signal can be used by counters to generate the horizontal and vertical sync signals.
- The counters also represent row and column address of a pixel, which can be used by other components to retrieve pixel information.

Maryam Hemmati (ECSI

lini Project - Introduction and VGA Interfa

1 April 2025

21 / 33

Maryam Hemmati (EC:

Ini Project - Introduction and VGA Inter

1 April 2025

22 / 33

VGA Interface - VGA_Sync Component

```
48 --V_count counts rows of pixels (480 + extra time for sync signals)
      -- V_count
        IF (v_count >= 524) AND (h_count >= 699) THEN
               _count <= "000000000
        ELSIF (h_count = 699) THEN
       - Generate Vertical Sync Signal using V count
        IF (v_count <= 494) AND (v_count >= 493) THEN
              vert_sync <= '0';
        ELSE
              vert_sync <= '1';</pre>
       -- Generate Video on Screen Signals for Pixel Data
        IF (h_count <= 639) THEN
    video_on_h <= '1';</pre>
        pixel_column <= h_count;</pre>
             video_on_h <= '0';</pre>
        IF (v count <= 479) THEN
             pixel row <= v count;
              video_on_v <= '0';</pre>
        - Put all video signals through DFFs to elminate any delays that cause a blurry image
              red out <= red AND video on:
              green_out <= green AND video_on;
              blue out <- blue AND video on
              horiz_sync_out <= horiz_sync;
              vert_sync_out <= vert_sync;</pre>
```

VGA Interface - VGA Sync Component

```
ENTITY VGA SYNC IS
          PORT( clock_25Mhz, red, green, blue
                                                   : IN STD_LOGIC;
                 13 ⊟ARCHITECTURE a OF VGA SYNC IS
          SIGNAL horiz_sync, vert_sync : STD_LOGIC;
         SIGNAL video on, video on v, video on h : STD LOGIC;
SIGNAL h count, v count :STD LOGIC VECTOR(9 DOWNTO 0);
      -- video_on is high only when RGB data is displayed
      video_on <= video_on_H AND video_on_V;</pre>
    PROCESS
26
27
28
     BEGIN
          WAIT UNTIL (clock_25Mhz'EVENT) AND (clock_25Mhz='1');
     --Generate Horizontal and Vertical Timing Signals for Video Signal
      -- H count counts pixels (640 + extra time for sync signals)
33
34
35
                                                                 755 799
             h_count <= "00000000000";
          ELSE
              h_count <= h_count + 1;
40
41
      --Generate Horizontal Sync Signal using H count
          IF (h_count <= 755) AND (h_count >= 659) THEN
43
44
45
             horiz_sync <= '0';
          ELSE
             horiz_sync <= 'l';
```

VGA Interface - Example

Try this simple example and see how you can change the background colour on your VGA screen by using three switches on the DE0-CV board:

Graphics Display on VGA Screen

- Red, Green, and Blue values for all the pixels on the screen should be generated.
- Each pixel is identified by its row and column values.
- These values are generated by VGA_Sync component.
- Horizontal and vertical sync signals are generated by VGA_Sync component.
 - ▶ 25MHz clock signal is required.

That means we can draw any object on the screen if we know the RGB values and pixel information of the object.

Draw a 4x4 blue square on the top right of the screen

For pixels within the $0 \le row \le 3$ and $636 \le column \le 639$, the Blue signal should be driven to '1'.

Maryam Hemmati (ECSE

Aini Project - Introduction and VGA Interfa

April 2025

ni Project - Introduction and VGA Interfa

1 April 2025

26 / 33

Graphics Display - Ball Example

Try this example to see the red square on white background. You may change the colour and position of the square in ball component.

Graphics Display - Ball Example

- (x,y) position of the square are set to some constant values.
- Background colour and ball colour are defined as white and red respectively.

```
| LIBRANY IEEE:
| USS IEEE.STD_LOGIC_MSIGNED.all;
| USS IEEE.STD_LOGIC_WSIGNED.all;
| USS IEEE.STD_LOGIC_WSIGNED.all;
| USS IEEE.STD_LOGIC_WSIGNED.all;
| SIGNAL pixel_row, pixel_column : IN std_logic;
| SIGNAL pixel_row, pixel_column : IN std_logic;
| SIGNAL pixel_row, pixel_column : OUT std_logic;
| SIGNAL ball;
| BACCHICTORY STD_LOGIC_WSIGNED.All;
| SIGNAL ball on : std_logic;
| SIGNAL ball on : std_logic;
| SIGNAL ball on : std_logic_vector(9 DOMNTO 0);
| SIGNAL ball on : std_logic_vector(9 DOMNT
```

Graphics Display - Bouncy Ball Example

The motion feature is added to our simple object to make it bounce off the edges.

- The new position of the ball should be updated once for each frame.
 - ▶ One update per each vertical sync.
- Ball position is calculated by adding its current Y position and its vertical motion.
- Screen boundaries are checked; ball speed is changed once it reaches the boundaries at row 0 and 479.
- Two pushbuttons are used to change the background and ball colour.

Maryam Hemmati (ECSE) Mini Project - Introduction and VGA Interfa 1 April 2025 27 / 33 Maryam Hemmati (ECSE) Mini Project - Introduction and VGA Interfa 1 April 2025 28 / 3

Graphics Display - Bouncy Ball Example

```
| STORAL pbil, pb2, clk, vert_sync : IN std_logic;
| STORAL pbil, pb2, clk, vert_sync : IN std_logic;
| STORAL pbil, pb2, clk, vert_sync : IN std_logic;
| STORAL pbil, pb2, clk, vert_sync : IN std_logic;
| STORAL pbil, pb2, clk, vert_sync : IN std_logic;
| STORAL ball_con : std_logic;
| STORAL ball_on : std_logic_vector(@ DOMPTO 0);
| STORAL ball_ypos : std_logic_vector(@
```

Maryam Hemmati (ECSE)

Nini Project - Introduction and VGA Interfa

1 April 2025

29 / 33

Graphics Display - Bouncy Ball Example

- When **no button** is pressed:
 - ▶ Pixels showing the ball has R='1', G='0', B='0': Red ball
 - ▶ Background pixels has R='1', G='0', B='1': Magenta background
- When only **pushbutton 1** is pressed:
 - ▶ Pixels showing the ball has R='0', G='0', B='0': **Black ball**
 - ▶ Background pixels has R='0', G='0', B='1': Blue background
- When only **pushbutton 2** is pressed:
 - ▶ Pixels showing the ball has R='1', G='0', B='0': Red ball
 - \blacktriangleright Background pixels has R='1', G='1', B='1': White background
- When both **pushbutton 1 and 2** are pressed:
 - ▶ Pixels showing the ball has R='0', G='0', B='0': **Black ball**
 - ▶ Background pixels has R='0', G='1', B='1': Cyan background

Graphics Display - Bouncy Ball Example

Try this example and see how you can change the colour of background and bouncy ball by using $\mathbf{KEY}\ \mathbf{0}$ and $\mathbf{KEY}\ \mathbf{1}$ on DE0-CV board:

ni Project - Introduction and VGA Interf

1 April 2025 30 / 33

Summary

- We discussed the mini project and its objective.
- We talked about DE0-CV board and its interfaces.
- We looked at VGA interface and discussed how to show graphics on the VGA screen through several examples.

Maryam Hemmati (ECSE) Mini Project - Introduction and VGA Interfa 1 April 2025 31 / 33 Maryam Hemmati (ECSE) Mini Project - Introduction and VGA Interfa 1 April 2025 32 /

Acknowledgment

- \bullet Some figures/notes are taken from or inspired by the
 - ▶ CS305 Lecture notes by Muhammad Nadeem, 2019

Maryam Hemmati (ECSE)

Mini Project - Introduction and VGA Interfa

1 April 2025 33 / 33