1

Gate Assignment 1

Tanmay Goyal - AI20BTECH11021

Download all python codes from

https://github.com/tanmaygoyal258/EE3900-Linear -Systems-and-Signal-processing/blob/main/ GateAssignment1/code.py

Download all latex codes from

https://github.com/tanmaygoyal258/EE3900-Linear -Systems-and-Signal-processing/blob/main/ GateAssignment1/main.tex

1 Problem

(EC 2017- Q.7) The input x(t) and output y(t) of a continous time signal are related as:

$$y(t) = \int_{t-T}^{t} x(u) du$$
 (1.0.1)

The system is:

- 1) Linear and Time-variant
- 2) Linear and Time-invariant
- 3) Non-Linear and Time-variant
- 4) Non-Linear and Time-invariant

2 Solution

Definition 1. We say that a system is **linear** if and only if it follows the Principle of Superposition, i.e Law of Additivity and Law of Homogeneity.

Definition 2. A system is said to be **time invariant** if the output signal does not depend on the absolute time, i.e a time delay on the input signal directly equates to the delay in the output signal.

Lemma 2.1. The system relating the input signal x(t) and output signal y(t), given by

$$y(t) = \int_{t-T}^{t} x(u) du$$
 (2.0.1)

is linear and time invariant in nature.

Proof. From (1), we can say the system is linear if it follows both the laws of Additivity and Homogeneity.

Law of Additivity:

Let the two input signals be $x_1(t)$ and $x_2(t)$, and their corresponding output signals be $y_1(t)$ and $y_2(t)$, then:

$$y_1(t) = \int_{t}^{t} x_1(u) du$$
 (2.0.2)

$$y_2(t) = \int_{t-T}^t x_2(u) du$$
 (2.0.3)

$$y_1(t) + y_2(t) = \int_{t-T}^t [x_1(u) + x_2(u)] du$$
 (2.0.4)

Now, consider the input signal of $x_1(t) + x_2(t)$, then the corresponding output signal is given by y'(t):

$$y'(t) = \int_{t-T}^{t} [x_1(u) + x_2(u)] du$$
 (2.0.5)

Clearly, from (2.0.4) and (2.0.5):

$$y'(t) = y_1(t) + y_2(t)$$
 (2.0.6)

Thus, the Law of Additivity holds.

Law of Homogeneity:

Consider an input signal kx(t), where k is any constant. Let the corresponding output be given by y'(t), then:

$$y'(t) = \int_{t-T}^{t} kx(u) du$$
 (2.0.7)

$$= k \int_{t-T}^{t} x(u) \, du \tag{2.0.8}$$

$$= ky(t) \tag{2.0.9}$$

Clearly, from (2.0.9),

$$y'(t) = ky(t)$$
 (2.0.10)

Thus, the Law of Homogeneity holds.

Since both the Laws hold, the system satisfies the Principle of Superposition, and is thus, a **linear system**.

From (2), to check for time-invariance, we would introduce a delay of t_0 in the output and input

signals.

Delay in output signal:

$$y(t - t_0) = \int_{t - t_0 - T}^{t - t_0} x(u) \, du \tag{2.0.11}$$

Now, we consider an input signal with a delay of t_0 , given by $x(t - t_0)$, and let the corresponding output signal be given by y'(t), then:

$$y'(t) = \int_{t-T}^{t} x(u - t_0) du$$
 (2.0.12)

Substituting $a = u - t_0$:

$$y'(t) = \int_{t-t_0-T}^{t-t_0} x(a) \, da \tag{2.0.13}$$

Clearly, from (2.0.11) and (2.0.13):

$$y'(t) = y(t - t_0) (2.0.14)$$

Thus, the system is **time-invariant**. The correct option is **2**) **Linear and Time-invariant**

Fig. 4: $x_1(t) = \sin t \text{ and } x_2(t) = t$

Fig. 4: $y_1(t)$ and $y_2(t)$

Fig. 4: Law of Additivity

Fig. 4: Law of Homogeneity

Fig. 4: Time invariance