

m :كتلة النوع الكيميائي (g) .

(g/moL) الكتلة الحجمية (M

(L) حجم الغاز V_E

Vm = 22,4 L/moL : الحجم المولى (L/moL) , ملاحظة في الشرطين النظاميين

 $C_m = MC$ ونستنتج أن $C_m = \frac{m}{V} (g/L)$ والتركيز المحلول (moL/L) والتركيز المحلول: C

V :حجم المحلول المائي (L)

N :عدد الأفراد الكيميائية (ذرات , جزيئات)

 $N_A = 6,023 \times 10^{23} \text{ moL}^{-1}$: acc i be in the second of the se

1 atm = 1,013 x $10^5 P_a$ حيث (P_a) حيث: P

V : حجم الغاز المثالي (m3)

R = 8,31 SI ثابت الغازات المثالية حيث: R

T (K) = θ (°c) +273 حيث T (K) الحرارة المطلقة (Σ)

الكتلة الحجمية (Kg/m³) حيث m كتلة النوع الكيميائي و V حجمه :

 $\mathbf{f}_{eau} = \mathbf{1Kg/L}$ الكتلة الحجمية للماء حيث: \mathbf{f}_{eau}

fair = 1,29 g/L الكتلة الحجمية للهواء حيث: fair

للمزيد:

التمديد (التخفيف) هو إضافة الماء المقطر لمحلول تركيزه المولي C_1 وحجمه V_1 فيصبح حجمه الجديد و تركيزه المولي . V_2 حيث يتحقق V_2 حيث V_3 مع العلم أن V_2 المجديد V_3 حيث يتحقق V_3 المقطر المضاف.

 V_1 و C_1 حيث X_1 = $\frac{c_1v_1}{v_1+v_2}$ ب في المزيج ب \mathbf{x} في المزيج ب \mathbf{x} عند مزج محلولين لنوعين كيميائيين \mathbf{x} و \mathbf{x} نحسب التركيز المولى و حجم النوع \mathbf{x} قبل المزج , وبالمثل نحسب التركيز المولى للنوع \mathbf{y} في المزيج.