- Claim: G contains on ind. set of size exactly k

 (=) the formula of is satisfiable
- proof: 1) suppose of is satisfiable, Pick any satisfying assignment. Each clause in has >, 1 TRUE litural. Thus we con choose or subsect S of K vertices in G that contains exactly one vertex per group such that the corresponding K liturals are all TRUE. The set S is an indestible and leave it does not contain both enopoints of any edge of a group, not of any edge that connects in consistent literals (as it is deived from a consistent truth assignment)
 - 2) suppose G contains an ind. set of size k.

 Each votex in S must be in a different
 group. Assign TRUE to each literal of S.

 Since inconsistent literals are connected
 by an edge, this assignment is consistent.

 Since S contains 1 Vertex pur group, each
 clause in f contains (at least) one TRUE

 literal = f is satisfiable

Exhcises: (lasy)
(Naximum) Clique: compute the largest complete subgraph other name I in a given graph for a complete graph
Show that Naximum Clique is NP-hard
Def.: a Veitex cover of a graph is a set of virtices that includes at least one endpoint of every edge of the grap
(<u>Ninimum</u>) Vertex Cover: compute the smallest vertex cover in a given graph
Show that Minimum Vertex Cover is NP-hand
$\int $ $ \Delta $ $ \Omega $ $ \Delta $ $ \Omega $

Approximation Algarithms

... for NP-hard problems. Assumption: P 7 NP

Optimization problems:

$$T: I \times S = S \text{ imputs}$$
 $C: S \longrightarrow \mathbb{R}^{+}$
 $\forall i \in I = S(i) = \{s \in S: iTs\}$

I feasible solutions

 $S^{*} \in S(i) \text{ and } C(S^{*}) = \min_{max} e(S(i))$

Approximation:

$$S \in S(i)$$

- 1) guarantee on the quality of s
- 2) quarantre on the complexity: polynomial-time objaithm

Definition: let T an optimization problem, and let A_{TT} an algorithm for TT that returns, $\forall i \in I$, $A_{TT}(i) \in S(i)$. We say that A_{TT} has an approximation factor of P(n) if $\forall i \in I$ s.t. |i| = n we have

$$min.: \frac{c\left(A_{\Pi}(i)\right)}{c\left(s^{*}(i)\right)} < \rho(n)$$

$$max.:$$

$$\frac{C\left(S^{*}(i)\right)}{C\left(A_{\pi}(i)\right)} \leqslant \int (n)$$

$$c: S \rightarrow \mathbb{R}^{+} \rightarrow \uparrow > 1$$

God:
$$p(n) = 1 + \varepsilon$$
 with ε as small as possible

We'll get
$$E = 1$$
 for vertex cover \longrightarrow "2-approximation" $E = \log n$ for set cover

I problems for which one can prove that
$$p(n) = \Omega(n^{\epsilon})$$

 $\forall \epsilon < 1 \quad (e.g., clique)$

Definition: an approximation scheme for
$$T$$
 is an algorithm with 2 inputs $A_{TT}(i, \varepsilon)$ that $\forall \varepsilon$ is a $(1+\varepsilon)$ -approximation

Definition: an approximation schene is plinomial (PTAS) if ATT (i, E) is polinomial in I'll te fixed.

Approximation algorithms for Vertex Cover

greedy approach; - relect the ventex with highest degue - "remove" touched edges - repect

unfortunately one can show that for this algorithm $f(n) = \int (\log n)$ (exercise!)

greedy approch:

- chose any edge - add its endpoints to the solution

- "remove" touched edges

- repect

Approx_Veriex_Cover (G)

$$V' = \phi$$
 $E' = E$

while $E' \neq \phi$ do

let (v, v) be an arbitrary edge of E'
 $V' = V' \cup \{v, v\}$
 $E' = E' \setminus \{(v, z), (v, w)\}$

return V'

Complexity:
$$O(n+m)$$

Analysis: $|V'|/|V^*| \leq 2$

A = set of selected edges A is a matching: $\forall e, e' \in A = \Rightarrow e \cap e' = \phi$ i.e. no vertices in Common

Appor Vitex_Cover selects a maximal matching Stedage y, AUy is not a matching $1) \quad | \lor^{*} | \quad \lors. \quad | A | \quad ?$ $\sqrt{V^*}$ \gg [A] A is a matching => In V+ there must be >, 1 vatex Vedge of A 2) VI vs. [A]? |V'| = 2|A| by construction $= \rangle |V'| \leqslant 2 \times \langle \langle Z|V^*|$ => Appra-Vitex-Covn is a 2-approximate algaithm for Victor Cover

Exercise: show that the approximation factor of Approx-Vitex-Cover is exactly 2