Set-valued Ky Fan inequalities via scalarization

Ryota Iwamoto and Tamaki Tanaka

October 9, 2024

1 Introduction

In convex analysis and optimization theory, Ky Fan minimax inequality plays a key role. A quarter century ago, Georgiev and Tanaka [3, 4] extended Ky Fan minimax inequality for set-valued maps. After that, Kuwano, Tanaka, and Yamada [7] constructed the result of four types set-valued Ky Fan minimax inequality with set relations [6], which are binary relations depending on a given convex cone. However, this result is limited to the case of the specific scalarization functions. To obtain more practical results, we need to generalize the convexity properties for set-valued maps. In addition, Dechboon and Tanaka [1] proposed generalized continuity to inherit properties of cone continuity for set-valued maps. The aim of this paper is to generalize the convexity properties for set-valued maps and to apply them to the set-valued Ky Fan minimax inequality.

2 Mathematical Preliminaries

Basically, let X be a topological space, Y a real topological vector space, and θ_Y be a zero vector in Y. Define that $\mathcal{P}(Y)$ is the set of all nonempty subsets of Y. The sets of neighborhoods of $x \in X$ and $y \in Y$ is denoted by $\mathcal{N}_X(x)$ and $\mathcal{N}_Y(y)$, respectively.

2.1 Set relations and these scalarization functions

Definition 2.1. For $A, B \in \mathcal{P}(Y)$, we define two binary relations on $\mathcal{P}(Y)$:

$$A \preccurlyeq_1 B \stackrel{\mathrm{def}}{\Longleftrightarrow} A \cap B \neq \emptyset \quad \text{and} \quad A \preccurlyeq_2 \stackrel{\mathrm{def}}{\Longleftrightarrow} B \subset A.$$

2.2 Semicontinuity for set-valued maps

Definition 2.2 ([1]). Let $F: X \to \mathcal{P}(Y)$, $x_0 \in X$, \leq a binary relation on $\mathcal{P}(Y)$ and $C \subset Y$ a convex cone. We say that F is (\leq, C) -continuous at x_0 if

$$\forall W \subset Y, W \text{ open}, W \leq F(x_0), \exists V \in \mathcal{N}_X(x_0) \text{ s.t. } W + C \leq F(x), \forall x \in V.$$

Definition 2.3 ([1]). Let $\varphi \colon \mathcal{P}(Y) \to \mathbb{R} \cup \{\pm \infty\}$, $A_0 \in \mathcal{P}(Y)$, \leq a binary relation on $\mathcal{P}(Y)$, and C a convex cone in Y with $C \neq Y$. Then, we say that φ is (\leq, C) -lower semicontinuous at A_0 if

$$\forall r < \varphi(A_0), \exists W \in \mathcal{P}(Y), W \text{ open, s.t. } W \leq A_0 \text{ and } r > \varphi(A), \forall A \in U(W + C, \leq);$$

where
$$U(V, \leq) := \{A \in \mathcal{P}(Y) \mid V \leq A\}.$$

Theorem 2.4 ([1]). Let $F: X \to \mathcal{P}(Y)$, $\varphi: \mathcal{P}(Y) \to \mathbb{R} \cup \{\pm \infty\}$, $x_0 \in X$, \leqslant a binary relation on $\mathcal{P}(Y)$, and C a convex cone. If F is (\leqslant, C) -continuous at x_0 and φ is (\leqslant, C) -lower semicontinuous at $F(x_0)$, then $(\varphi \circ F)$ is lower semicontinuous at x_0 .

Definition 2.5. Let $A \subset \mathcal{P}(Y) \setminus \{\emptyset\}$. A is said to be convex if for each $A_1, A_2 \in A$ and $\lambda \in (0,1)$,

$$\lambda A_1 + (1 - \lambda) A_2 \in \mathcal{A}.$$

Definition 2.6. Let $\varphi \colon \mathcal{P}(Y) \to \mathbb{R} \cup \{\pm \infty\}$. Then,

- (1) φ is quasi convex if for any $\alpha \in \mathbb{R}$, lev $(\varphi, \leq, \alpha) := \{A \in \mathcal{P}(Y) \setminus \{\emptyset\} \mid \varphi(A) \leq \alpha\}$ is convex.
- (2) φ is quasi concave if for any $\alpha \in \mathbb{R}$, lev $(\varphi, \geq, \alpha) := \{A \in \mathcal{P}(Y) \setminus \{\emptyset\} \mid \varphi(A) \geq \alpha\}$ is convex.

2.3 Quasiconvexity properties for composite functions of set-valued map and scalarization function

Definition 2.7. Let X be a nonempty set, Y a real topological vector space, C a convex cone in Y, and $F: X \to 2^Y \setminus \{\emptyset\}$ a set-valued map.

(1) F is called (\leq)-convex if for each $x, y \in X$ and $\lambda \in (0, 1)$,

$$F(\lambda x + (1 - \lambda)y) \le \lambda F(x) + (1 - \lambda)F(y).$$

(2) F is called (\leq)-properly quasi convex if for each $x, y \in X$ and $\lambda \in (0, 1)$,

$$F(\lambda x + (1 - \lambda)y) \leq F(x)$$
 or $F(\lambda x + (1 - \lambda)y) \leq F(y)$

(3) F is called (\leq)-naturally quasi convex if for each $x, y \in X$ and $\lambda \in (0, 1)$, there exists $\mu \in [0, 1]$ such that

$$F(\lambda x + (1 - \lambda)y) \le \mu F(x) + (1 - \mu)F(y).$$

Definition 2.8. Let X be a nonempty set, Y a real topological vector space, C a convex cone in Y, and $F: X \to 2^Y \setminus \{\emptyset\}$ a set-valued map.

(1) F is called (\leq)-concave if for each $x, y \in X$ and $\lambda \in (0, 1)$,

$$\lambda F(x) + (1 - \lambda)F(y) \le F(\lambda x + (1 - \lambda)y).$$

(2) F is called (\leq)-properly quasi concave if for each $x, y \in X$ and $\lambda \in (0, 1)$,

$$F(x) \le F(\lambda x + (1 - \lambda)y)$$
 or $F(y) \le F(\lambda x + (1 - \lambda)y)$

(3) F is called (\leq)-naturally quasi concave if for each $x, y \in X$ and $\lambda \in (0, 1)$, there exists $\mu \in [0, 1]$ such that

$$\mu F(x) + (1 - \mu)F(y) \le F(\lambda x + (1 - \lambda)y).$$

Remark 2.9. Obviously, if F is (\leq) -properly quasi convex, then F is (\leq) -properly quasi convex.

Theorem 2.10. Let φ be (\leq) -monotone and (\leq) -quasi convex. If F is (\leq) -naturally quasi convex, then $(\varphi \circ F)$ is quasi convex.

Theorem 2.11. Let φ be (\leqslant) -monotone and (\leqslant) -quasi concave. If F is (\leqslant) -naturally quasi concave, then $(\varphi \circ F)$ is quasi concave.

3 Scalarization functions preserving well properties

To extend Ky Fan inequality for set-valued maps with a binary relation, consider assumptions of scalarization functions. To begin with, introduce four properties;

- (1) φ is (\leq, C) -lower semicontinuous,
- (2) φ is quasi concave,
- (3) φ is (\leq)-monotone,
- $(4) \varphi(\{\theta\}) = 0,$

and define the set of functions satisfying these properties as $\Phi(\leq, C)$. In addition, establish three vaital properties for Ky Fan inequality;

(A1)
$$\varphi(A) \le 0 \Rightarrow A \le \{\theta\},\$$

- (A2) there is an open neighborhood G of θ such that $\{\theta\} + G \leq A$, then $0 < \varphi(A)$,
- (A3) there is an open neighborhood G of θ such that $\{\theta\} \leq A + G$, then $0 < \varphi(A)$.

4 Applications for Ky-Fan Minimax Inequality

Recall original Ky Fan inequality and provide main results

Theorem 4.1 ([2]). Let X be a nonempty compact convex subset of a Hausdorff topological vector space and $f: X \times X \to \mathbb{R}$. If f satisfies the following conditions:

- (1) for each fixed $y \in X$, $f(\cdot, y)$ is lower semicontinuous,
- (2) for each fixed $x \in X, f(x, \cdot)$ is quasi concave,
- (3) $f(x,x) \leq 0$ for all $x \in X$,

then there exists $\bar{x} \in X$ such that $f(\bar{x}, y) \leq 0$ for all $y \in X$.

Theorem 4.2. Let X be a nonempty compact convex subset of a Hausdorff topological vector space, Y a real topological vector space, S a binary relation on $\mathcal{P}(Y)$, C a convex cone in Y, $\varphi \colon \mathcal{P}(Y) \to \mathbb{R} \cup \{\pm \infty\}$, and $F \colon X \times X \to \mathcal{P}(Y) \setminus \{\emptyset\}$ a set-valued map. For the scalarization function $\varphi \in \Phi(S, C)$ satisfying Assumption (A1), if F satisfies the following conditions:

- (1) $(\varphi \circ F)(x,y) \in \mathbb{R}$ for all $x,y \in X$,
- (2) for each fixed $y \in X$, $F(\cdot, y)$ is (\leq, C) -continuous,
- (3) for each fixed $x \in X$, $F(x, \cdot)$ is (\leq) -naturally quasi concave,
- (4) for all $x \in X$, $F(x, x) \leq \{\theta\}$,

then there exists $\bar{x} \in X$ such that $F(\bar{x}, y) \leq \{\theta\}$ for all $y \in X$.

Theorem 4.3. Let X be a nonempty compact convex subset of a Hausdorff topological vector space, Y a real topological vector space, S a binary relation on $\mathcal{P}(Y)$, C a convex cone in Y, $\varphi \colon \mathcal{P}(Y) \to \mathbb{R} \cup \{\pm \infty\}$, and $F \colon X \times X \to \mathcal{P}(Y) \setminus \{\emptyset\}$ a set-valued map. For the scalarization function $\varphi \in \Phi(S, C)$ satisfying Assumption (A2), if F satisfies the following conditions:

- (1) $(\varphi \circ F)(x,y) \in \mathbb{R}$ for all $x,y \in X$,
- (2) for each fixed $y \in X$, $F(\cdot, y)$ is (\leq, C) -continuous,
- (3) for each fixed $x \in X$, $F(x,\cdot)$ is (\leq) -naturally quasi concave,
- (4) for all $x \in X$, $F(x, x) \leq \{\theta\}$,

then for any open neighborhood G of θ there exists $\bar{x} \in X$ such that $\{\theta\} + G \nleq F(\bar{x}, y)$ for all $y \in X$.

Theorem 4.4. Let X be a nonempty compact convex subset of a Hausdorff topological vector space, Y a real topological vector space, S a binary relation on $\mathcal{P}(Y)$, C a convex cone in Y, $\varphi \colon \mathcal{P}(Y) \to \mathbb{R} \cup \{\pm \infty\}$, and $F \colon X \times X \to \mathcal{P}(Y) \setminus \{\emptyset\}$ a set-valued map. For the scalarization function $\varphi \in \Phi(S, C)$ satisfying Assumption (A3), if F satisfies the following conditions:

- (1) $(\varphi \circ F)(x,y) \in \mathbb{R}$ for all $x,y \in X$,
- (2) for each fixed $y \in X$, $F(\cdot, y)$ is (\leq, C) -continuous,
- (3) for each fixed $x \in X$, $F(x, \cdot)$ is (\leq) -naturally quasi concave,
- (4) for all $x \in X$, $F(x, x) \leq \{\theta\}$,

then for any open neighborhood G of θ there exists $\bar{x} \in X$ such that $\{\theta\} \not\leq F(\bar{x}, y) + G$ for all $y \in X$.

References

- [1] P. Dechboon and T. Tanaka, Inheritance Properties on Cone Continuity for Set-Valued Maps via Scalarization, Minimax Theory and its Applications. 9 (2024),
- [2] K. Fan, A minimax inequality and its applications, Inequalities III, O. Shisha (ed.), Academic Press, New York, (1972), 103–113.
- [3] P. G. Georgiev and T. Tanaka, Vector-valued set-valued variants of Ky Fan's inequality, J. Nonlinear and Convex Anal. 1 (2000), 245–254.
- [4] P. G. Georgiev and T. Tanaka, Fan's inequality for set-valued maps, Nonlinear Anal. 47 (2001), no.1, 607–618.
- [5] S. Kobayashi, Y. Saito, and T. Tanaka, Convexity for compositions of set-valued map and monotone scalarizing function, Yokohama Publishers, Yokohama, (2016), 43–54.
- [6] D. Kuroiwa, T. Tanaka, and T.X.D. Ha, On cone convexity of set-valued maps, Nonlinear Anal. 30 (1997), 1487–1496.
- [7] I. Kuwano, T. Tanaka, and S. Yamada, Unified scalarization for sets and set-valued Ky Fan minimax inequality, J. Nonlinear Convex Anal. 11 (2010), 513–525.
- [8] Y. Sonda, I. Kuwano, and T. Tanaka, Cone-semicontinuity of set-valued maps by analogy with real-valued semicontinuity, Nihonkai Mathematical Journal. 21 (2010), 91–103.