CSC 261/461 Database Systems

Eustrat Zhupa

October 3, 2018

Database Design - Informal Guidelines

Issues

A bad database design may cause:

- Update anomalies
- ► Insertion anomalies
- ▶ Deletion anomalies

Example

EMPLOYEE

Ename	<u>Ssn</u>	Bdate	Address	Dnumber
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291Berry, Bellaire, TX	4
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn
Research	5	333445555
Administration	4	987654321
Headquarters	1	888665555

DEPT_LOCATIONS

<u>Dnumber</u>	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

Example

Redundancy EMP DEPT Ename Ssn Bdate Address Dnumber Dname Dmgr_ssn Smith, John B. 123456789 1965-01-09 731 Fondren, Houston, TX Research 333445555 Wong, Franklin T. 333445555 1955-12-08 638 Voss, Houston, TX 5 Research 333445555 Zelava, Alicia J. 999887777 1968-07-19 3321 Castle, Spring, TX 4 Administration 987654321 Wallace, Jennifer S. 987654321 1941-06-20 291 Berry, Bellaire, TX 4 Administration 987654321 Naravan, Ramesh K. 666884444 1962-09-15 975 FireOak, Humble, TX 5 Research 333445555 English, Joyce A. 453453453 1972-07-31 5631 Rice, Houston, TX 5 Research 333445555 Jabbar, Ahmad V. 987987987 1969-03-29 980 Dallas, Houston, TX 4 Administration 987654321 Borg, James E. 888665555 1937-11-10 450 Stone, Houston, TX Headquarters 888665555 1

Database Design - Informal Guidelines

Guideline 2

- Design a schema that does not suffer from the insertion, deletion and update anomalies.
- ▶ If there are any anomalies present, then note them so that applications can be made to take them into account.

FDs

- Used to specify formal measures of the "goodness" of relational designs
- ► Are constraints that are derived from the meaning and interrelationships of the data attributes
- ► A set of attributes X functionally determines a set of attributes Y if the value of X determines a unique value for Y

[2]

Definition

- X → Y holds if whenever two tuples have the same value for X, they <u>must</u> have the same value for Y.
- For any two tuples t_1 and t_2 in any relation instance r(R): If $t_1[X] = t_2[X]$, then $t_1[Y] = t_2[Y]$
- ➤ X → Y in R specifies a constraint on all relation instances r(R)
- ► FDs are derived from the real-world constraints on the attributes

[2]

Example 1

EMP_PROJ

Ssn Pnumber Hours Ename Pname Plocation

Example 1

- ► Ssn → Ename
- ► Pnumber → {Pname, Plocation}
- $ightharpoonup \{Ssn, Pnumber\}
 ightarrow Hours$

Example 2

TEACH

Teacher	Course	Text
Smith	Data Structures	Bartram
Smith	Data Management	Martin
Hall	Compilers	Hoffman
Brown	Data Structures	Horowitz

[3]

Functional Dependency

- ► An FD is a property of the attributes in the schema R
- ▶ The constraint must hold on every relation instance r(R)
- ► If K is a key of R, then K functionally determines all attributes in R
 - we never have two distinct tuples with $t_1[K] = t_2[K]$

- ▶ In order to define the FDs, we need to understand the meaning of the attributes involved and the relationship between them.
- ► An FD is a *property* of the attributes in the schema R
 - ► Given the instance of a relation, all we can conclude is that an FD *may* exist between certain attributes.
 - What we can definitely conclude is that certain FDs do not exist if there are tuples that violate the dependencies.

- ► A relation R(A, B, C, D) with its extension is shown below.
- ► Which FDs may exist in this relation?

A	В	С	D
al	b1	c1	d1
al	b2	c2	d2
a2	b2	c2	d3
a3	b3	c4	d3

[3]

Normalization

- ► Normalization: The process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations
- ▶ Normal form: Defines conditions to be satisfied by a relation schema, using keys and FDs of a relation.

Normal Form

The *normal form* of a relation refers to the <u>highest</u> normal form condition that it meets, and hence indicates the degree to which it has been normalized.

Good design criteria

Two additional properties:

- The nonadditive join or lossless join property, which guarantees that no spurious tuples are generated after decomposition
- 2. The *dependency preservation* property, which ensures that each functional dependency is preserved after decomposition

- ▶ A superkey of a relation schema $R = \{A1, A2, ..., An\}$ is a set of attributes $S \subseteq R$ with the property that no two tuples t1 and t2 in any legal relation state r of R will have t1[S] = t2[S]
- A key K is a superkey with the additional property that removal of any attribute from K will cause K not to be a superkey any more.

Keys

- If a relation schema has more than one key, each is called a candidate key.
 - ► One of the candidate keys is arbitrarily designated to be the primary key, and the others are called secondary keys.

Prime attribute

An attribute of relation schema R is called a *prime attribute* of R if it is a member of some candidate key of R.

Nonprime attribute

An attribute is called *nonprime* if it is not a prime attributethat is, if it is not a member of any candidate key.

First Normal Form

- Disallows attributes whose values for an individual tuple are non-atomic
 - composite attributes
 - multivalued attributes
 - nested relations
- Considered to be part of the definition of a relation
 - Most RDBMSs allow only those relations to be defined that are in 1NF

First Normal Form

(a)

DEPARTMENT

(b)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Diocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

(c)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

DEPT LOCATIONS

DEI 1_100A	110110
<u>Dnumber</u>	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

First Normal Form

Nested Relations

EMP_PROJ		Proj	s	
Ssn	Ename	Pnumber	Hours	

(b) EMP_PROJ

Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
L		2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
		22	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
		20	10.0
999887777	Zelaya, Alicia J.	30	30.0
		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S.	30	20.0
		20	15.0
888665555	Borg, James E.	20	NULL

(c)		
EMP_PROJ1		
Ssn	Ename	
EMP_PROJ2	!	
<u>Ssn</u>	Pnumber	Hours

Second Normal Form

- ► Uses the concepts of *FDs* and *primary key*
- ▶ Definitions
 - ▶ Prime attribute: An attribute that is member of the primary key *K*
 - ▶ Full functional dependency: a FD $Y \rightarrow Z$ where removal of any attribute from Y causes FD to not hold any more
 - ➤ X → Y is a partial dependency if some attribute can be removed from X and the dependency still holds

(a) EMP_DEPT Ename Ssn Bdate Address Dnumber Dname Dmgr_ssn (b) EMP_PROJ Ssn Pnumber Ename Pname Plocation Hours FD1 FD2 FD3

[6]

Second Normal Form

- ► Uses the concepts of *FDs* and *primary key*
- Definitions
 - ► Prime attribute: An attribute that is member of the primary key *K*
 - ▶ Full functional dependency: a FD $Y \rightarrow Z$ where removal of any attribute from Y causes FD to not hold any more
 - ➤ X → Y is a partial dependency if some attribute can be removed from X and the dependency still holds
- ► A relation schema R is in second normal form (2NF) if every non-prime attribute A in R is fully functionally dependent on the primary key

Seco	nd Nor	mal F	orm		
(a) EMP_P	ROJ				
<u>Ssn</u>	Pnumber	Hours	Ename	Pname	Plocation
FD1		A	A	A	A
FD2					
FD3					

