Documentation for the General QMC code

Martin Bercx

July 19, 2016

1 Using the code

Example simulation, tutorial: where to find and how to start

1.1 Parameter files

describe the input parameters, give sample values for the stabilization parameters

1.2 Analysis files

how the analysis of Monte Carlo data is done

2 List of files

all files that constitute the code, with a brief description

3 Module Hamiltonian

Detailed description of the module Hamiltonian since it will be modified by the users The module contains the following subroutines:

3.1 ham_set

It calls the subroutines

- ham_latt
- ham_hop
- ham_v

It reads in the file

parameters

It sets the variables ltrot,n_fl,n_sun. If compiled as a MPI-program, it broadcasts all variables that define the lattice, the model and the simulation process.

3.2 ham_latt

It sets the lattice, by calling the subroutine

• make_lattice(l1_p, l2_p, a1_p, a2_p, latt)

3.3 ham_hop

Setup of the hopping amplitudes between the vertices of the graph (lattice sites and unit cell orbitals). It calls the subroutines

- op_make(op_t(nc,n),ndim
- $op_set(op_t(nc,n))$

$3.4 \quad \text{ham_v}$

It calls the subroutines

- $op_make(op_v(i,nf),1)$
- $op_set(op_v(nc,nf))$

$3.5 \, s0(n,nt)$

It is defined as s0(n, nt) = 1.d0. Why? It is superfluous.

3.6 alloc_obs(ltau)

Allocation of equal time and time-resolved quantities.

3.7 init_obs(ltau)

Initializes equal time and time-resolved quantities with zero.

3.8 obser(gr,phase,ntau)

Includes the definition of all equal-time observables (scalars and correlation functions) that are built from the single-particle Green function based on Wick's theorem.

3.9 pr_obs(ltau)

Output (print) of the observables.

$3.10 \quad \text{obsert(nt,gt0,g0t,g00,gtt,phase)}$

Includes the definition of time-resolved observables that are built from the time-resolved single-particle Green function based on Wick's theorem.

4 Necessary background information

4.1 Definition of the physical Hamiltonian and its implementation

The physical Hamiltonians that we can simulate have the general form:

$$\mathcal{H} = \sum_{s=1}^{N_{fl}} \sum_{\boldsymbol{x}, \boldsymbol{y}} c_{\boldsymbol{x}s}^{\dagger} M_{\boldsymbol{x}\boldsymbol{y}} c_{\boldsymbol{y}s} - \sum_{k=1}^{M} U_k \left[\sum_{s=1}^{N_{fl}} \sum_{\boldsymbol{x}, \boldsymbol{y}} \left(c_{\boldsymbol{x}s}^{\dagger} T_{\boldsymbol{x}\boldsymbol{y}}^{(k)} c_{\boldsymbol{y}s} - \alpha_k \right) \right]^2 . \tag{1}$$

The indices x, y are multi-indices that label sites and spin states: $x = (i, \sigma)$, where $i = 1, \dots, N_{sites}$ and $\sigma = 1, \dots, N_{sun}$, so

$$\sum_{\boldsymbol{x},\boldsymbol{y}} \equiv \sum_{i=1,j=1}^{N_{sites}} \sum_{\sigma=1,\sigma'=1}^{N_{sun}} . \tag{2}$$

Note, that we introduced *two* different labels for the number of spin states (flavours): N_{fl} and N_{sun} . The number of correlated sites which is a subset of all sites, is labelled by M ($M \leq N_{sites}$).

I suggest to use a more intuitive notation and to label the hopping matrix by T and the interaction matrix by V:

$$\mathcal{H} = \sum_{s=1}^{N_{fl}} \sum_{\boldsymbol{x}, \boldsymbol{y}} c_{\boldsymbol{x}s}^{\dagger} T_{\boldsymbol{x}\boldsymbol{y}} c_{\boldsymbol{y}s} - \sum_{k=1}^{M} U_k \left[\sum_{s=1}^{N_{fl}} \sum_{\boldsymbol{x}, \boldsymbol{y}} \left(c_{\boldsymbol{x}s}^{\dagger} V_{\boldsymbol{x}\boldsymbol{y}}^{(k)} c_{\boldsymbol{y}s} - \alpha_k \right) \right]^2 , \tag{3}$$

4.2 Which information does the type operator contain?

5 Tutorial to set up the Hubbard model

The SU(2) symmetric Hubbard model is given by

$$\mathcal{H} = -t \sum_{\langle i,j \rangle, \sigma} \left(c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{H.c.} \right) + \frac{U}{2} \sum_{i} \left[\sum_{\sigma} (c_{i\sigma}^{\dagger} c_{i\sigma}) - 1 \right]^{2} . \tag{4}$$

To bring Eq. (4) in the general form (3), we define:

$$N_{fl} = 1$$

$$N_{sun} = 2$$

$$T_{xy} = -t\delta_{\langle i,j\rangle}\delta_{\sigma,\sigma'}$$

$$M = N_{sites}$$

$$U_k = -U/2$$

$$V_{xy}^{(k)} = \delta_{i,j}\delta_{i,k}\delta_{\sigma,\sigma'}$$

$$\alpha_k = 1/(N_{sites}N_{sun})^2.$$
(5)

6 Tutorial to set up a lattice

7 Installation

7.1 Dependencies

which software and libraries are needed and which version

- libraries: LAPACK, BLAS, EISPACK, NAG They are included in the package, but NAG is not public-domain (?)
- tools: cmake
- compiler: gfortran or ifort

7.2 Build the GQMC program from source code

configuration, compile and Installation In the top level directory, where the README file resides, do:

mkdir build cd build cmake .. make

8 Reference manual

9 License

Use of the GQMC code requires citation of the paper \dots The GQMC code is available for academic and non-commercial use under the terms of the license \dots For commercial licenses, please contact the GQMC development team.

10 ideas

FAQ, walkthroughs,