Unit: Network Security

B.Tech VIII

NETWORK AND SYSTEM SECURITY (CORE ELECTIVE - 5) (CS424)

Book:

Computer Security: Principles and Practice By William Stallings

Chapter 22: Internet Security Protocols and Standards
Chapter 23 Internet Authentication Applications
Chapter 24 Wireless Network Security

Contents

Chapter 22: Internet Security Protocols and Standards

- IPv4 and IPv6 Security
- IPSec Protocol,
- Internet Authentication Applications
- Kerberos, X.509

Several Application level security Protocols

- For mail(S/MIME), Client/Server (Kerberos), Web Access (SSL).
- Need some security at network level.
- Example: An enterprise can run a secure, private TCP/IP network by disallowing links to untrusted sites, encrypting packets that leave the premises, and authenticating packets that enter the premise.
- An organization can ensure secure networking by implementing security at the IP level.
- At Network layer, IP (Internet Protocol) is used.

- * IPv4 does not provide any mandatory security measures, and it depends on the application being used.
- ❖ Internet Architecture Board (IAB) included authentication and encryption as necessary security features in the next-generation IP, i.e. IPv6.
- * These security capabilities were designed to be usable both with the current IPv4 and the future IPv6.
- IP-level security encompasses three functional areas:
 - Authentication
 - Confidentiality
 - Key management

Authentication

- Assures that a received packet was transmitted by the party identified as the source in the packet header.
- Assures that the packet has not been altered in transit.

Confidentiality

Facility enables communicating nodes to encrypt messages to prevent eavesdropping by third parties.

Key management

- Concerned with the secure exchange of keys.
- The protocol which offers all these functionalities at IP layer is IPsec (IP Security)

- * The current version of IPsec i.e. **IPsecv3**, encompasses authentication and confidentiality.
- * Key management is provided by the Internet Key Exchange standard, **IKEv2**.

Applications of IPsec

IPsec provides the capability to secure communications across a LAN, across private and public WANs, and across the Internet.

Example:

- > Secure branch office connectivity over the Internet:
 - A company can build a secure virtual private network among its branch offices over the Internet or over a public WAN.
- Secure remote access over the Internet:
 - An end user whose system is equipped with IP security protocols can make a local call to an Internet service provider and gain secure access to a company network.
- Establishing extranet and intranet connectivity with partners:
 - IPsec can be used to secure communication with other organizations, ensuring authentication and confidentiality and providing a key exchange mechanism.

Applications of IPsec

❖ IPsec provides the capability to secure communications across a LAN, across private and public WANs, and across the Internet.

- **Enhancing electronic commerce security:**
 - Even though some Web and electronic commerce applications have built-in security protocols, the use of IPsec enhances that security.

Principle Feature of IPsec

- It can encrypt and/or authenticate all traffic at the IP level.
- Thus, all distributed applications, including remote logon, client/server, e-mail, file transfer, Web access, and so on, can be secured.

Benefits of IPsec

1. IPsec is implemented in a firewall or router

- Offers strong security to all traffic crossing the perimeter.
- Avoids the additional overhead for security processing to entire traffic.
- ➤ IPsec in a firewall is resistant to bypass if all traffic from the outside must use IP and the firewall is the only means of entrance from the Internet into the organization.

2. IPsec is transparent to applications

- IPsec is below the transport layer (TCP, UDP).
- No change in software at client/server is required if implemented in the firewall/router.
- If IPsec is implemented in end systems, upper-layer software, including applications, is not affected.

Benefits of IPsec(Cont..)

3. IPsec can be transparent to end users

No need to train users on security mechanisms, issue keying material on a per-user basis, or revoke keying material when users leave the organization.

4. IPsec can provide security for individual users

Useful for off-site workers and for setting up a secure virtual subnetwork within an organization for sensitive applications.

IPsec-In Detail

- It is an Internet Engineering Task Force (IETF) standard suite of protocols.
- Offers security between 2 communication points across the IP network.
- Provides data authentication, integrity, and confidentiality.
- Defines the encrypted, decrypted and authenticated packets.
- * The protocols needed for secure key exchange and key management are defined in IPsec.

IPsec- In Detail

- IPsec can be used to do the following things:
 - To encrypt application layer data.
 - To provide security for routers sending routing data across the public internet.
 - To provide authentication without encryption, like to authenticate the data originates from a known sender.
 - ➤ To protect network data by setting up circuits using IPsec tunneling in which all data is being sent between the two endpoints is encrypted, as with a **Virtual Private Network** (VPN) connection.

IPsec-In Detail

Components of IP Security

1. Encapsulating Security Payload (ESP) Protocol

- It provides data integrity, encryption, authentication and anti replay.
- It also provides authentication for payload.

2. Authentication Header (AH) Protocol

- ➤ It also provides data integrity, authentication and antireplay and it does not provide encryption.
- The anti replay protection, protects against unauthorized transmission of packets.
- It does not protect data's confidentiality.

IPsec-In Detail

Components of IP Security (Cont..)

3. Internet Key Exchange (IKE)

- ➤ It is used to dynamically exchange encryption keys over **Security Association (SA)** between 2 devices.
- An SA establishes shared security attributes between 2 network entities to support secure communication.
- The Key Management Protocol (ISAKMP) and Internet Security Association provide a framework for authentication and key exchange.
- ISAKMP tells how the set up of the Security Associations (SAs) and how direct connections between two hosts that are using IPsec.

IPsec – in Detail

IPsec Packet format

- An Security Association (SA) is a one-way relationship between a sender and a receiver that affords security services to the traffic carried on it.
- If a peer relationship is needed, for two-way secure exchange, then two SAs are required.
- Security services are afforded to an SA for the use of ESP.

- SA is uniquely identified by three parameters:
 - Security Parameter Index (SPI):
 - A bit string assigned to this SA and having local significance only.
 - The SPI is carried in an ESP header to enable the receiving system to select the SA under which a received packet will be processed.

> IP destination address:

• This is the address of the destination endpoint of the SA, which may be an end-user system or a network system such as a firewall or router.

Protocol identifier:

• This field in the outer IP header indicates whether the association is an AH or ESP security association.

- ❖ An IPsec implementation includes an **SA database** that defines the parameters associated with each SA.
- SA is characterized by the following parameters:
- **1. Sequence number counter**: A 32-bit value used to generate the Sequence Number field in AH or ESP headers.
- 2. Sequence counter overflow: A flag indicating whether overflow of the sequence number counter should generate an auditable event and prevent further transmission of packets on this SA.
- **3. Antireplay window**: Used to determine whether an inbound AH or ESP packet is a replay, by defining a sliding window within which the sequence number must fall.

- **4. AH information**: Authentication algorithm, keys, key lifetimes, and related parameters being used with AH.
- **5. ESP information:** Encryption and authentication algorithm, keys, initialization values, key lifetimes, and related parameters being used with ESP.
- 6. Lifetime of this security association: A time interval or byte count after which an SA must be replaced with a new SA (and new SPI) or terminated, plus an indication of which of these actions should occur.
- 7. **IPsec protocol mode:** Tunnel, transport, or wildcard (required for all implementations).
- 8. Path MTU: Any observed path maximum transmission unit (maximum size of a packet that can be transmitted without fragmentation).

- The Encapsulating Security Payload(ESP) provides confidentiality services for the message contents.
- As an optional feature, ESP can also provide an authentication service.

Figure 22.8 IPsec ESP Format

- ESP packet includes several fields:
- > Security Parameters Index(32 bits): Identifies a security association.
- > Sequence Number(32 bits): A monotonically increasing counter value.

Figure 22.8 IPsec ESP Format

- ESP packet includes several fields:
- * Payload Data (variable): This is a transport-level segment (transport mode) or IP packet (tunnel mode) that is protected by encryption.

Figure 22.8 IPsec ESP Format

- ESP packet includes several fields:
- **Padding (0–255 bytes)**: May be required if the encryption algorithm requires the plaintext to be a multiple of some number of octets.

Figure 22.8 IPsec ESP Format

- ESP packet includes several fields:
- * Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.

Figure 22.8 IPsec ESP Format

- ESP packet includes several fields:
- ❖ Next Header (8 bits): Identifies the type of data contained in the Payload Data field by identifying the first header in that payload (e.g., an extension header in IPv6, or an upper-layer protocol such as TCP).

Figure 22.8 IPsec ESP Format

- Both AH and ESP can operate in either
 - > Transport mode
 - > Tunnel mode

Transport mode

- Transport mode provides protection primarily for upper layer protocols.
- In transport mode, only the payload of the IP packet is usually encrypted and/or authenticated.
- The routing is intact, since the IP header is neither modified nor encrypted.

Tunnel mode

- > Tunnel mode provides protection to the entire IP packet.
- The entire IP packet is encrypted and/or authenticated.
- ➢ It is then encapsulated into a new IP packet with a new IP header.

Tunnel mode(Cont..)

- The entire original, inner, packet travels through a tunnel from one point of an IP network to another; no routers along the way are able to examine the inner IP header.
- Because the original packet is encapsulated, the new, larger packet may have totally different source and destination addresses, adding to the security.
- Tunnel mode is used to create VPNs for network-tonetwork communications (e.g., between routers to linksites), device-to-network communications (e.g., remote user access) and device-to-device communications (e.g., private chat).

Example: How tunnel mode IPsec operates?

- Host A on a network generates an IP packet with the destination address of host B on another network.
- This packet is routed from the originating host to a firewall or secure router at the boundary of A's network.
- The firewall filters all outgoing packets to determine the need for IPsec processing. If this packet from A to B requires IPsec, the firewall performs IPsec processing and encapsulates the packet with an outer IP header.
- The source IP address of this outer IP packet is the IP of Node where firewall is available, and the destination address may be a firewall that forms the boundary to B's local network.
- This packet is now routed to B's firewall, with intermediate routers examining only the outer IP header.
- At B's firewall, the outer IP header is stripped off, and the inner packet is delivered to B.