第一題:吠市數列 (Fibonacci)

問題敘述

街上有很多隻流浪狗正在聚集。只要有一隻流浪狗開始吠叫,被影響到的流浪狗就會加入跟著一直吠叫。被影響到幾乎失眠的你,只好放棄數羊這件容易睡著的事情,改成數正在吠叫的流浪狗數量。經過了無數個失眠的夜晚,你觀察到兩個不可思議的現象:其一、如果有一隻流浪狗從第n分鐘開始吠叫,那麼只要這隻流浪狗還留在街上,接下來的每一分鐘都會持續吠叫。其二、如果你在第n分鐘觀察到恰好有 G_n 隻流浪狗正在吠叫,那麼從第n+2分鐘的起,就會額外多出 G_n+1 隻流浪狗一起加入吠叫的行列。

舉例來說,如果從第0分鐘開始有 $G_0=3$ 隻流浪狗在叫、而第1分鐘開始有 $G_1=4$ 隻流浪狗在叫,那麼上述觀察,我們可以得出 $G_2=4+(3+1)=8$ 。如果多計算一些,我們可以預測出以下的表格:

n	0	1	2	3	4	5	6	7	8
G_n	3	4	8	13	22	36	59	96	156

你有一位熱心的鄰居<u>小</u> P ,每天晚上只要吠叫的流浪狗數量至少有 P 隻,那麼在同一分鐘內<u>小</u> P 會找來大量環保局的車子,將這些流浪狗分批載走。每一台環保局的車總是恰好載 P 隻流浪狗離開現場,不多也不少。因此你觀察到的流浪狗數量總是 G_n 除以 P 的餘數。以上面的情境為例,如果 P=5 ,那麼你實際觀察到吠叫中的流浪狗數量,可以寫成以下表格:

n	0	1	2	3	4	5	6	7	8
$G_n \bmod P$	3	4	3	3	2	1	4	1	1

今天又是一個熱鬧的夜晚。數度失眠的你,閒來無事在第i分鐘和第j分鐘時,在紙上記錄下 $G_i \mod P$ 以及 $G_j \mod P$ 。現在你想要寫個程式來預測出第k分鐘的時候會記錄到多少流浪狗在叫。由於你是在失眠的狀態下紀錄這些數字的,如果不存在任何的 G_0 和 G_1 滿足你的觀察,那麼你的程式必須要能夠判斷出此情況並且輸出無解。

輸入格式

每筆測試資料的第一列有一個數字 $T(1 \le T \le 10)$,代表失眠的日子數。接下來的 T 列每一列有 6 個非負整數,依序為 $P \cdot i \cdot G_i \mod P \cdot j \cdot G_j \mod P \cdot k$ 。

輸出格式

對於每一個失眠的日子,如果你能夠唯一確定 $G_k \mod P$ 的值,請輸出該值於一列。若無解,請輸出 -1。若有超過一個可能的答案,請輸出 -2。

輸入範例	輸出範例
4	4
5 4 2 5 1 6	0
3 2 1 4 0 6	-2
5 9 0 4 1 6	-1
5 9 2 4 3 6	

評分說明

本題共有 5 個子任務,條件限制如下所示。每個子任務可能有一筆或多筆測試資料,該 子任務所有測試資料皆須答對才會獲得該子任務的分數。

子任務	分數	額外輸入限制
1	5	$2 \le P \le 2^{31}$; $i = 0$; $j = 1$; $2 \le k \le 20$ 。 P 是質數。
2	13	$2 \le P \le 100$; $i = 0$; $j = 1$; $2 \le k \le 2^{63}$ 。 P 是質數。
3	21	$2 \le P \le 2^{31}$; $i = 0$; $j = 1$; $2 \le k \le 2^{63}$ 。 P 是質數。
4	27	$2 \le P < 2^{31}$; $0 \le i, j, k < 2^{63}$ 。 P 是質數。 i, j, k 三者相異。 $(G_0 \mod P, G_1 \mod P)$ 有唯一解。
5	34	$2 \le P < 2^{31}$; $0 \le i, j, k < 2^{63} \circ P$ 是質數。 $i, j, k =$ 者相異。