Universality of quantum circuit

Ryuhei Mori

Tokyo Institute of Technology

Universality of a quantum circuit

Theorem (Universality of finite gate set)

For any unitary matrix $U \in L(\mathbb{C}^{2^n})$ and $\epsilon > 0$, there is a quantum circuit with X, Y, Z, H, S, T, CNOT gates computing \widetilde{U} satisfying $D(U,\widetilde{U}) < \epsilon$.

- Any unitary matrix can be decomposed to a product of two-level unitary matrices. Done
- 2 Any two-level unitary matrix can be decomposed to a product of controlled-unitary gates. Done
- **3** Any controlled-untary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.
- **4** Any single-qubit gate can be approximated by X, Y, Z, H, S and T.

Special unitary group

- U(n) := the set of $n \times n$ unitary matrices.
- SU(n) := the set of $n \times n$ unitary matrices U with det(U) = 1.
- U(n) and SU(n) are groups.
- For $U \in SU(n)$ and $V \in U(n)$, $VUV^{\dagger} \in SU(n)$.
- For $V \in U(n)$ and $W \in U(n)$, $VWV^{\dagger}W^{\dagger} \in SU(n)$.
- For $U \in U(n)$, there exists $V \in SU(n)$ and $\theta \in \mathbb{R}$ such that $U = e^{i\theta}V$.

Controlled-unitary

Theorem

Any controlled-unitary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.

- 1 Controlled-U(2) with single controlled qubit.
- 2 Controlled-SU(2) with n controlled qubits.
- 3 Controlled-U(2) with n controlled qubits.

Decomposition of single qubit unitary

Lemma

Any single qubit unitary $U \in U(2)$, there is single qubit unitary matrices A, B, C such that ABC = I and $e^{i\alpha}AXBXC = U$.

From this lemma,

Decomposition of single qubit unitary

Lemma

Any single qubit unitary $U \in U(2)$, there is single qubit unitary matrices A, B, C and $\alpha \in \mathbb{R}$ such that ABC = I and $e^{i\alpha}AXBXC = U$.

Proof.

For any $U \in U(2)$, there exists $\alpha \in [0, 2\pi)$ and $V \in SU(2)$ such that $U = e^{i\alpha} V$.

For
$$R_Z(\theta) = \begin{bmatrix} e^{-i\frac{\theta}{2}} & 0\\ 0 & e^{i\frac{\theta}{2}} \end{bmatrix}$$
, $XR_Z(\theta)XR_Z(-\theta) = R_Z(-2\theta)$.

For any $V \in \overline{SU}(2)$, there exists $\theta \in [0, 2\pi)$ and $P \in SU(2)$ such that

$$V = PR_Z(-2\theta)P^{\dagger} = PXR_Z(\theta)XR_Z(-\theta)P^{\dagger}.$$

$$A=P$$
, $B=R_Z(\theta)$, $C=R_Z(-\theta)P^{\dagger}$ satisfy the conditions.

Controlled-unitary

Theorem

Any controlled-unitary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.

- 1 Controlled-U(2) with single controlled qubit. Done
- 2 Controlled-SU(2) with n controlled qubits.
- 3 Controlled-U(2) with n controlled qubits.

Group commutator and controlled-unitary

Theorem

For any $U \in SU(2)$, controlled-U gate with n controlled qubits can be realized by $O(n^2)$ CNOT and arbitrary single-qubit gates without ancillas (working qubits).

Proof.

Induction on n. For the group commutator decomposition $U = VWV^{\dagger}W^{\dagger}$ using $V = PiXP^{\dagger}$, $W = PR_Z(\theta)P^{\dagger} \in SU(2)$ for some $\theta \in [0, 2\pi)$ and $P \in SU(2)$.

$$S_n = 4S_{n/2} = 4^{\log n} S_1 = O(n^2).$$

Controlled-unitary

Theorem

Any controlled-unitary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.

- 1 Controlled-U(2) with single controlled qubit. Done
- 2 Controlled-SU(2) with n controlled qubits. Done
- 3 Controlled-U(2) with n controlled qubits.

Controlled-U(2) with n controlled qubits

For any $U \in U(2)$, there exists $V \in SU(2)$ and $\alpha \in \mathbb{R}$ such that $U = e^{i\alpha}V$.

$$A_n = S_n + A_{n-1} = O(n^3)$$

Controlled-unitary

Theorem

Any controlled-unitary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.

- 1 Controlled-U(2) with single controlled qubit. Done
- 2 Controlled-SU(2) with n controlled qubits. Done
- 3 Controlled-U(2) with n controlled qubits. Done

Universality of a quantum circuit

Theorem (Universality of finite gate set)

For any unitary matrix $U \in L(\mathbb{C}^{2^n})$ and $\epsilon > 0$, there is a quantum circuit with X, Y, Z, H, S, T, CNOT gates computing \widetilde{U} satisfying $D(U,\widetilde{U}) < \epsilon$.

- Any unitary matrix can be decomposed to a product of two-level unitary matrices. Done
- 2 Any two-level unitary matrix can be decomposed to a product of controlled-unitary gates. Done
- 3 Any controlled-untary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates. Done
- 4 Any single-qubit gate can be approximated by X, Y, Z, H, S and T.

Approximation of a single-qubit gate is sufficient

Theorem

For any $U \in U(2)$ and $\epsilon > 0$, there exists a single-qubit quantum circuit V consisting of X, Y, Z, H, S and T gates such that $D(U, V) \leq \epsilon$.

This theorem shows the universality of the gate set with CNOT. Assume $D(U_i, V_i) \le \epsilon$ for i = 1, ..., m.

$$\begin{split} &D(U_m U_{m-1} \cdots U_1, \, V_m V_{m-1} \cdots V_1) \\ &\leq \sum_{i=1}^m D\left(U_m \cdots U_i V_{i-1} \cdots V_1, \, U_m \cdots U_{i+1} V_i \cdots V_1\right) \quad \text{(triangle inequality)} \\ &= \sum_{i=1}^m D\left(U_i, \, V_i\right) \quad \text{(unitary invariance)} \\ &< m\epsilon. \end{split}$$

Universality of X, Y, Z, H, S, T

Universality of X, Y, Z, H, S, T

$$T \cong R_Z(\pi/4)$$
. $HTH \cong R_X(\pi/4)$.

$$R_{Z}(\pi/4)R_{X}(\pi/4) = \left[\cos\frac{\pi}{8}I - i\sin\frac{\pi}{8}Z\right] \left[\cos\frac{\pi}{8}I - i\sin\frac{\pi}{8}X\right]$$

$$= \cos^{2}\frac{\pi}{8}I - i\sin\frac{\pi}{8}\left[\cos\frac{\pi}{8}(X+Z) + \sin\frac{\pi}{8}Y\right]$$

$$=: \cos\frac{\eta}{2}I - i\sin\frac{\eta}{2}(n_{x}X + n_{Y}Y + n_{Z}Z)$$

$$= R_{\widehat{n}}(\eta)$$

where η satisfying $\cos(\eta/2) = \cos^2(\pi/8)$ and \widehat{n} is a unit vector along with $(\cos\frac{\pi}{8},\sin\frac{\pi}{8},\cos\frac{\pi}{8})$. Here, η is an irrational multiple of π . $HR_{\widehat{n}}(\eta)H = R_{\widehat{m}}(\eta)$ where \widehat{m} is a unit vector along with $(\cos\frac{\pi}{8}, -\sin\frac{\pi}{8},\cos\frac{\pi}{8})$.

Universality of two rotations 1/2

Universality of two rotations 2/2

Theorem

For any $U \in SU(2)$, there exists $n \in \mathbb{Z}_{\geq 0}$ and $\alpha_1, \dots, \alpha_n \in (0, 2\pi)$ such that $R_{\widehat{n}}(\alpha_1)R_{\widehat{m}}(\alpha_2)R_{\widehat{n}}(\alpha_3)\cdots R_{\widehat{n}}(\alpha_n)$ is equal to U or -U.

Proof.

Let $|\psi\rangle$ and $|\psi^{\perp}\rangle$ be the eigenvectors of $R_{\widehat{n}}(\theta)$.

Let
$$|\varphi\rangle := U |\psi\rangle, |\varphi^{\perp}\rangle := U |\psi^{\perp}\rangle.$$

There exists $n \in \mathbb{Z}_{\geq 0}$ and $\theta_0, \theta_1, \alpha_1, ..., \alpha_n \in (0, 2\pi)$ such that

$$\begin{aligned} |\varphi\rangle &= \mathbf{e}^{i\theta_{0}} R_{\widehat{n}}(\alpha_{1}) R_{\widehat{m}}(\alpha_{2}) R_{\widehat{n}}(\alpha_{3}) \cdots R_{\widehat{m}}(\alpha_{n-1}) |\psi\rangle \\ &= \mathbf{e}^{i(\theta_{0} + \frac{\alpha_{n}}{2})} R_{\widehat{n}}(\alpha_{1}) R_{\widehat{m}}(\alpha_{2}) R_{\widehat{n}}(\alpha_{3}) \cdots R_{\widehat{m}}(\alpha_{n-1}) R_{\widehat{n}}(\alpha_{n}) |\psi\rangle \\ |\varphi^{\perp}\rangle &= \mathbf{e}^{i\theta_{1}} R_{\widehat{n}}(\alpha_{1}) R_{\widehat{m}}(\alpha_{2}) R_{\widehat{n}}(\alpha_{3}) \cdots R_{\widehat{m}}(\alpha_{n-1}) |\psi^{\perp}\rangle \\ &= \mathbf{e}^{i(\theta_{1} - \frac{\alpha_{n}}{2})} R_{\widehat{n}}(\alpha_{1}) R_{\widehat{n}}(\alpha_{2}) R_{\widehat{n}}(\alpha_{3}) \cdots R_{\widehat{m}}(\alpha_{n-1}) R_{\widehat{n}}(\alpha_{n}) |\psi^{\perp}\rangle .\end{aligned}$$

By choosing $\alpha_n = \theta_1 - \theta_0$, then $\theta_0 + \frac{\alpha_n}{2} = \theta_1 - \frac{\alpha_n}{2}$. Hence, $R_{\widehat{n}}(\alpha_1) \cdots R_{\widehat{n}}(\alpha_n)$ maps $|\psi\rangle \mapsto e^{i\theta} |\varphi\rangle$, $|\psi^{\perp}\rangle \mapsto e^{i\theta} |\varphi^{\perp}\rangle$, implying $R_{\widehat{n}}(\alpha_1) \cdots R_{\widehat{n}}(\alpha_n) = e^{i\theta} U$. Since $U \in SU(2)$, θ must be 0 or π .

Matrix decomposition

Corollary

For any $U \in U(2)$, there exists $\alpha, \beta, \gamma, \delta \in [0, 2\pi)$ such that $U = e^{i\alpha}R_Z(\beta)R_Y(\gamma)R_Z(\delta)$.

Universality of a quantum circuit

Theorem (Universality of finite gate set)

For any unitary matrix $U \in L(\mathbb{C}^{2^n})$ and $\epsilon > 0$, there is a quantum circuit with X, Y, Z, H, S, T, CNOT gates computing \widetilde{U} satisfying $D(U,\widetilde{U}) < \epsilon$.

- Any unitary matrix can be decomposed to a product of two-level unitary matrices. Done
- 2 Any two-level unitary matrix can be decomposed to a product of controlled-unitary gates. Done
- 3 Any controlled-untary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates. Done
- 4 Any single-qubit gate can be approximated by X, Y, Z, H, S and T. Done

Solovay-Kitaev theorem

Theorem

Assume $\{U_1, ..., U_k\}$ generates a dense subset of SU(2). Then, any $U \in SU(2)$ can be approxmiated with error ϵ by $[\log(1/\epsilon)]^c$ multiplications of $\{U_1, ..., U_k\}$ for some constant c.

Assignments

- **1** Show a quantum circuit for controlled- $\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$ gate with two controlled qubits using the CNOT gates and arbitrary single-qubit gates.
- 2 [Advanced] Show a quantum circuit for controlled- $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ gate with two controlled qubits using six CNOT gates and seven T and T^{\dagger} gates.

Special unitary group and group commutator

Theorem

For any $U \in SU(2)$, there exist V, $W \in SU(2)$ such that $U = VWV^{\dagger}W^{\dagger}$ for some V, W satisfying $D(I,V) < c_{GC}\sqrt{D(I,U)}$ and $D(I,W) < c_{GC}\sqrt{D(I,U)}$ for some constant $c_{GC} > 1/\sqrt{2}$.

$$\begin{split} R_{Z}(\theta)R_{X}(\theta)R_{Z}(\theta)^{\dagger}R_{X}(\theta)^{\dagger} &= R_{Z}(\theta)R_{X}(\theta)R_{Z}(-\theta)R_{X}(-\theta) \\ &= R_{Z}(\theta)R_{X}(\theta)R_{Z}(-\theta)R_{X}(-\theta) \\ &= \left[\cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Z\right] \left[\cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}X\right] \left[\cos\frac{\theta}{2}I + i\sin\frac{\theta}{2}Z\right] \left[\cos\frac{\theta}{2}I + i\sin\frac{\theta}{2}X\right] \\ &= \left[\cos^{4}\frac{\theta}{2} + 2\cos^{2}\frac{\theta}{2}\sin^{2}\frac{\theta}{2} - \sin^{4}\frac{\theta}{2}\right]I + \cdots \\ &= \left[1 - 2\sin^{4}\frac{\theta}{2}\right]I + \cdots = R_{\widehat{n}_{\theta}}(\varphi) \end{split}$$

$$\cos \frac{\varphi}{2} = 1 - 2\sin^4 \frac{\theta}{2}$$
. For some $S \in U(2)$ and $\varphi \in \mathbb{R}$, $U = SR_{\widehat{n}_{\theta}}(\varphi)S^{\dagger}$. For $V := SR_Z(\theta)S^{\dagger}$ and $W := SR_X(\theta)S^{\dagger}$, $U = VWV^{\dagger}W^{\dagger}$.

Rotation matrix and distance

$$D(I,R_{\widehat{n}}(\theta)) = \left| \sin \frac{\theta}{2} \right|$$

For $U \in SU(2)$, V, $W \in SU(2)$ satisfying $U = VWV^{\dagger}W^{\dagger}$ in the construction

$$D(I, U) = \left|\sin\frac{\varphi}{2}\right| = \sqrt{1 - \cos^2\frac{\varphi}{2}} \approx 2\sin^2\frac{\theta}{2} = 2D(I, V)^2$$

With some constant $c_{GC} > 1/\sqrt{2}$, $D(I - V) \le c_{GC} \sqrt{D(I, U)}$.

Solovay-Kitaev algorithm

```
function Solovay-Kitaev(U, n)
    if n=0 then
        return Basic approximation to U
    end if
    U_{n-1} \leftarrow \text{Solovay-Kitaev}(U, n-1)
    V, W \leftarrow \text{GC-Decompose}(UU_{n-1}^{\dagger})
    V_{n-1} \leftarrow \text{SOLOVAY-KITAEV}(V, n-1)
    W_{n-1} \leftarrow \text{SOLOVAY-KITAEV}(W, n-1)
    return V_{n-1}W_{n-1}V_{n-1}^{\dagger}W_{n-1}^{\dagger}U_{n-1}.
end function
function GC–Decompose(\Delta)
    return (V, W) satisfying VWV^{\dagger}W^{\dagger} = \Delta and
D(I, V), D(I, W) < c_{GC} \sqrt{D(I, \Delta)}.
end function
```

Analysis

Theorem

If
$$D(I, V)$$
, $D(I, W) \leq \delta$, $D(V, \widetilde{V})$, $D(W, \widetilde{W}) \leq \Delta$

$$D(VWV^{\dagger}W^{\dagger}, \widetilde{V}\widetilde{W}\widetilde{V}^{\dagger}\widetilde{W}^{\dagger}) \leq c_{\mathsf{B}}\Delta(\delta + \Delta).$$

From this (surprising) theorem for $\Delta=\epsilon_{n-1}$, $\delta=c_{\rm GC}\sqrt{\epsilon_{n-1}}$, for $c_{\rm approx}\approx c_B c_{\rm GC}$.

$$\ell_n \le 5\ell_{n-1}$$
 $\epsilon_n \le c_{\text{approx}} \epsilon_{n-1}^{3/2}$

Then,

$$\ell_n \leq 5^n \ell_0$$

$$c_{\mathsf{approx}}^2 \epsilon_n \leq c_{\mathsf{approx}}^3 \epsilon_{n-1}^{3/2} = (c_{\mathsf{approx}}^2 \epsilon_{n-1})^{3/2}$$

$$\leq (c_{\mathsf{approx}}^2 \epsilon_0)^{(3/2)^n}$$

If
$$\epsilon_0 < 1/c_{\mathsf{approx}}^2$$
, $\ell_n = O\left(\left(\log(1/\epsilon)\right)^{\frac{\log 5}{\log(3/2)}}\right)$.

Proof 1/3

Theorem

If
$$D(I, V)$$
, $D(I, W) \leq \delta$, $D(V, \widetilde{V})$, $D(W, \widetilde{W}) \leq \Delta$

$$D(VWV^{\dagger}W^{\dagger}, \widetilde{V}\widetilde{W}\widetilde{V}^{\dagger}\widetilde{W}^{\dagger}) \leq 8\Delta^{2} + 8\Delta\delta + 4\Delta\delta^{2} + 4\Delta^{3} + \Delta^{4}.$$

For
$$A, B \in SU(2), D(A, B) = \sqrt{1 - Tr(A^{\dagger}B)^2/4}$$
.

$$\operatorname{Tr}\left(WVW^{\dagger}V^{\dagger}\widetilde{V}\widetilde{W}\widetilde{V}^{\dagger}\widetilde{W}^{\dagger}\right) = \operatorname{Tr}\left(W^{\dagger}(V^{\dagger}\widetilde{V})\widetilde{W}\widetilde{V}^{\dagger}(\widetilde{W}^{\dagger}W)V\right)$$
$$= \operatorname{Tr}\left(W^{\dagger}(V^{\dagger}\widetilde{V})W(W^{\dagger}\widetilde{W})(\widetilde{V}^{\dagger}V)V^{\dagger}(\widetilde{W}^{\dagger}W)V\right)$$

Proof.

Let

$$V^{\dagger}\widetilde{V} = \cos\frac{\theta_{V}}{2}I - i\sin\frac{\theta_{V}}{2}A$$

$$W^{\dagger}\widetilde{W} = \cos\frac{\theta_{W}}{2}I - i\sin\frac{\theta_{W}}{2}B$$

$$V = \cos\frac{\tau_{V}}{2}I - i\sin\frac{\tau_{V}}{2}C$$

$$W = \cos\frac{\tau_{W}}{2}I - i\sin\frac{\tau_{W}}{2}D$$

$$\begin{split} &\frac{1}{2} \mathrm{Tr} \left(W^{\dagger} (V^{\dagger} \widetilde{V}) W (W^{\dagger} \widetilde{W}) (\widetilde{V}^{\dagger} V) V^{\dagger} (\widetilde{W}^{\dagger} W) V \right) \\ &\geq \left(\cos^2 \frac{\tau_V}{2} \cos^2 \frac{\tau_W}{2} \right) \frac{1}{2} \mathrm{Tr} \left((V^{\dagger} \widetilde{V}) (W^{\dagger} \widetilde{W}) (\widetilde{V}^{\dagger} V) (\widetilde{W}^{\dagger} W) \right) \\ &+ \left(\cos^2 \frac{\theta_V}{2} \cos^2 \frac{\theta_W}{2} \right) - \left(\cos^2 \frac{\tau_V}{2} \cos^2 \frac{\tau_W}{2} \right) \left(\cos^2 \frac{\theta_V}{2} \cos^2 \frac{\theta_W}{2} \right) \\ &- \left(\binom{4}{1} \delta + \binom{4}{2} \delta^2 + \binom{4}{3} \delta^3 + \binom{4}{4} \delta^4 \right) \left(\binom{4}{1} \Delta + \binom{4}{2} \Delta^2 + \binom{4}{3} \Delta^3 + \binom{4}{4} \Delta^4 \right) \\ &\geq \frac{1}{2} \mathrm{Tr} \left((V^{\dagger} \widetilde{V}) (W^{\dagger} \widetilde{W}) (\widetilde{V}^{\dagger} V) (\widetilde{W}^{\dagger} W) \right) - (1 - (1 - \delta^2)^2) (1 - (1 - \Delta^2)^2) \\ &- ((1 + \delta)^4 - 1) ((1 + \Delta)^4 - 1) \end{split}$$

Proof 3/3

$$\begin{split} &\frac{1}{2} \mathrm{Tr} \left(W^{\dagger} (V^{\dagger} \widetilde{V}) W (W^{\dagger} \widetilde{W}) (\widetilde{V}^{\dagger} V) V^{\dagger} (\widetilde{W}^{\dagger} W) V \right) \\ &\geq \frac{1}{2} \mathrm{Tr} \left((V^{\dagger} \widetilde{V}) (W^{\dagger} \widetilde{W}) (\widetilde{V}^{\dagger} V) (\widetilde{W}^{\dagger} W) \right) - (1 - (1 - \delta^2)^2) (1 - (1 - \Delta^2)^2) \\ &- ((1 + \delta)^4 - 1) ((1 + \Delta)^4 - 1) \end{split}$$

$$&\frac{1}{2} \mathrm{Tr} \left((V^{\dagger} \widetilde{V}) (W^{\dagger} \widetilde{W}) (\widetilde{V}^{\dagger} V) (\widetilde{W}^{\dagger} W) \right) \\ &= \frac{1}{2} \mathrm{Tr} \left(\left[\cos \frac{\theta_V}{2} I - i \sin \frac{\theta_V}{2} A \right] \left[\cos \frac{\theta_W}{2} I - i \sin \frac{\theta_W}{2} B \right] \right) \\ &\cdot \left[\cos \frac{\theta_V}{2} I + i \sin \frac{\theta_V}{2} A \right] \left[\cos \frac{\theta_W}{2} I + i \sin \frac{\theta_W}{2} B \right] \right) \\ &= \cos^2 \frac{\theta_V}{2} \cos^2 \frac{\theta_W}{2} + \sin^2 \frac{\theta_V}{2} \cos^2 \frac{\theta_W}{2} + \cos^2 \frac{\theta_V}{2} \sin^2 \frac{\theta_W}{2} + \sin^2 \frac{\theta_V}{2} \sin^2 \frac{\theta_W}{2} \sin^2 \frac{\theta_W}{2} \right) \\ &\geq \cos^2 \frac{\theta_V}{2} \cos^2 \frac{\theta_W}{2} + \sin^2 \frac{\theta_V}{2} \cos^2 \frac{\theta_W}{2} + \cos^2 \frac{\theta_V}{2} \sin^2 \frac{\theta_W}{2} - \sin^2 \frac{\theta_V}{2} \sin^2 \frac{\theta_W}{2} \right) \\ &= 1 - 2 \sin^2 \frac{\theta_V}{2} \sin^2 \frac{\theta_W}{2} \geq 1 - 2 \Delta^4 \end{split}$$