Interpretable Machine Learning

SHAP (SHapley Additive exPlanation) Values

Learning goals

- Get an intuition of additive feature attributions
- Understand the concept of Kernel SHAP
- Ability to interpret SHAP plots
- Global SHAP methods

Question: How much does a feature *j* contribute to the prediction of a single observation.

Idea: Use Shapley values from cooperative game theory

Question: How much does a feature *j* contribute to the prediction of a single observation.

Idea: Use Shapley values from cooperative game theory

Procedure:

- ullet Compare "reduced prediction function" of feature coalition S with $S \cup \{j\}$
- ullet Iterate over possible coalitions to calculate the marginal contribution of feature j to sample ${f x}$

$$\phi_j = \frac{1}{p!} \sum_{\tau \in \Pi} \hat{f}_{S_j^{\tau} \cup \{j\}}(\mathbf{x}_{S_j^{\tau} \cup \{j\}}) - \hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})$$
marginal contribution of feature j

Question: How much does a feature *j* contribute to the prediction of a single observation.

Idea: Use Shapley values from cooperative game theory

Procedure:

- Compare "reduced prediction function" of feature coalition S with $S \cup \{j\}$
- \bullet Iterate over possible coalitions to calculate the marginal contribution of feature j to sample \mathbf{x}

$$\phi_j = \frac{1}{\rho!} \sum_{\tau \in \Pi} \hat{f}_{S_j^\tau \cup \{j\}} (\mathbf{x}_{S_j^\tau \cup \{j\}}) - \hat{f}_{S_j^\tau} (\mathbf{x}_{S_j^\tau})$$
marginal contribution of feature j

Remember:

- \hat{f} is the prediction function, p denotes the number of features
- Non-existent features in a coalition are replaced by values of random feature values
- Recall S_j^{τ} defines the coalition as the set of players before player j in order $\tau = (\tau^{(1)}, \dots, \tau^{(p)})$ $\tau^{(1)} | \dots | \tau^{(|S|)} | \tau^{(|S|+1)} | \tau^{(|S|+2)} | \dots | \tau^{(p)}$

$$S_i^{\tau}$$
: Players before player j player j Players after player j

Example:

- Train a random forest on bike sharing data only using features humidity (hum), temperature (temp) and windspeed (ws)
- Calculate Shapley value for an observation **x** with $\hat{f}(\mathbf{x}) = 2573$
- Mean prediction is $\mathbb{E}(\hat{t}) = 4515$

Example:

- Train a random forest on bike sharing data only using features humidity (hum), temperature (temp) and windspeed (ws)
- Calculate Shapley value for an observation **x** with $\hat{f}(\mathbf{x}) = 2573$
- Mean prediction is $\mathbb{E}(\hat{t}) = 4515$

Exact Shapley calculation for humidity:

S	$\mathcal{S} \cup \{j\}$	$\hat{f}_{\mathcal{S}}$	$\hat{f}_{\mathcal{S} \cup \{j\}}$	weight
Ø	hum	4515	4635	2/6
temp	temp, hum	3087	3060	1/6
ws	ws, hum	4359	4450	1/6
temp, ws	hum, temp, ws	2623	2573	2/6

$$\phi_{\textit{hum}} = \frac{2}{6}(4635 - 4515) + \frac{1}{6}(3060 - 3087) + \frac{1}{6}(4450 - 4359) + \frac{2}{6}(2573 - 2623) = 34$$

FROM SHAPLEY TO SHAP

Example continued: Same calculation can be done for temperature and windspeed:

- $\phi_{temp} = ... = -1654$
- $\phi_{ws} = \ldots = -323$

Remember: Shapley values explain the difference between actual and average prediction:

$$2573 - 4515 = 34 - 1654 - 323 = -1942$$
 $\hat{f}(\mathbf{x}) - \mathbb{E}(\hat{f}) = \phi_{hum} + \phi_{temp} + \phi_{ws}$

$$\hat{f}(\mathbf{x}) = \underbrace{\mathbb{E}(\hat{f})}_{\phi_{tr}} + \phi_{hum} + \phi_{temp} + \phi_{ws}$$

SHAP DEFINITION Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation \mathbf{x} by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Definition

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}'^{(k)} = \{z_1'^{(k)}, \dots, z_p'^{(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Columns are referred to as \mathbf{z}_j with $j \in \{1, \dots, p\}$ being the index of the original feature

Example:

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws
Ø	$z'^{(1)}$	0	0	0
hum	$z'^{(2)}$	1	0	0
temp	$z'^{(3)}$ $z'^{(4)}$	0	1	0
ws	$z'^{(4)}$	0	0	1
hum, temp	z ′ ⁽⁵⁾	1	1	0
temp, ws	z ′ ⁽⁶⁾	0	1	1
hum, ws	$z'^{(7)}$ $z'^{(8)}$	1	0	1
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1

Aim: Find an additive combination that explains the prediction of an observation \mathbf{x} by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Definition

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}'^{(k)} = \{z_1'^{(k)}, \dots, z_p'^{(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Columns are referred to as z_j with $j \in \{1, ..., p\}$ being the index of the original feature

$$\mathbf{z}'^{(k)}$$
: Coalition simplified features $g\left(\mathbf{z}'^{(k)}\right) = \phi_0 + \sum_{i=1}^p \phi_i z_j'^{(k)}$

SHAP DEFINITION • Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation \mathbf{x} by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Definition

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}'^{(k)} = \{z_1'^{(k)}, \dots, z_p'^{(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Columns are referred to as z_j with $j \in \{1, ..., p\}$ being the index of the original feature

SHAP DEFINITION • Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation \mathbf{x} by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Definition

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}'^{(k)} = \{z_1'^{(k)}, \dots, z_p'^{(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Columns are referred to as \mathbf{z}_i with $j \in \{1, \dots, p\}$ being the index of the original feature

SHAP DEFINITION > Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation \mathbf{x} by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Problem

How do we estimate the Shapley values ϕ_j ?

Definition: A kernel-based, model-agnostic method to compute Shapley values via local surrogate models (e.g. linear model)

- Sample coalitions
- Transfer coalitions into feature space & get predictions by applying ML model
- Compute weights through kernel
- Fit a weighted linear model
- Return Shapley values

Step 1: Sample coalitions

• Sample K coalitions from the simplified feature space

$$\mathbf{z}^{\prime(k)} \in \{0,1\}^p, \quad k \in \{1,\ldots,K\}$$

• For our simple example, we have in total $2^p = 2^3 = 8$ coalitions (without sampling)

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws
Ø	z ′ ⁽¹⁾	0	0	0
hum	$z'^{(2)}$	1	0	0
temp	$z'^{(3)}$	0	1	0
ws	z ′(4)	0	0	1
hum, temp	$z'^{(5)}$	1	1	0
temp, ws	$z'^{(6)}$	0	1	1
hum, ws	$z'^{(7)}$	1	0	1
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1

Step 2: Transfer Coalitions into feature space & get predictions by applying ML model

- $\mathbf{z}^{\prime(k)}$ is 1 if features are part of the k-th coalition, 0 if they are absent
- To calculate predictions for these coalitions, we need to define a function which maps the binary feature space back to the original feature space

	_					
Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	x ^{coalition} hum temp ws	
Ø	$z'^{(1)}$	0	0	0	$\mathbf{x}^{\{\varnothing\}}$ Ø Ø Ø	_
hum	$z'^{(2)}$	1	0	0	x ^{hum} 51.6 ∅ ∅	
temp	$z'^{(3)}$	0	1	0	$\mathbf{x}^{\{temp\}}$ \varnothing 5.1 \varnothing	
ws	$z'^{(4)}$	0	0	1	$\mathbf{x}^{\{ws\}}$ \varnothing \varnothing 17.0	
hum, temp	$z'^{(5)}$	1	1	0	x ^{hum,temp} 51.6 5.1 ∅	
temp, ws	$z'^{(6)}$	0	1	1	$\mathbf{x}^{\{temp,ws\}}$ \varnothing 5.1 17.0	
hum, ws	$z'^{(7)}$	1	0	1	$\mathbf{x}^{\{hum,ws\}}$ 51.6 \varnothing 17.0	
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	x ^{hum,temp,ws} 51.6 5.1 17.0	

Step 2: Transfer Coalitions into feature space & get predictions by applying ML model

- Define $h_x(\mathbf{z}'^{(k)}) = \mathbf{z}^{(k)}$ where $h_x: \{0,1\}^p \to \mathbb{R}^p$ maps 1's to feature values of observation \mathbf{x} for features part of the k-th coalition and 0's to feature values of a randomly sampled observation for features absent in the k-th coalition (feature values are permuted multiple times)
- Predict with ML model on this dataset \hat{f} : $\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime\left(k\right)}\right)\right)$

	_				$h_{x}(\mathbf{z}^{\prime(k)})$			>	
Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	$\mathbf{z}^{(k)}$) hum	temp	ws	$\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime\left(k\right)}\right)\right)$
Ø	z ′ ⁽¹⁾	0	0	0	z (1	64.3	28.0	14.5	6211
hum	$z'^{(2)}$	1	0	0	z (2	51.6	28.0	14.5	5586
temp	$z'^{(3)}$	0	1	0	$\mathbf{z}^{(3}$	64.3	5.1	14.5	3295
ws	$z'^{(4)}$	0	0	1	$z^{(4}$	64.3	28.0	17.0	5762
hum, temp	z ′ ⁽⁵⁾	1	1	0	z (5	51.6	5.1	14.5	2616
temp, ws	z ′ ⁽⁶⁾	0	1	1	z (6	64.3	5.1	17.0	2900
hum, ws	z ′ ⁽⁷⁾	1	0	1	z ⁽⁷	51.6	28.0	17.0	5411
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	z (8	51.6	5.1	17.0	2573

Step 3: Compute weights through Kernel

Intuition: We learn most about individual features if we can study their effects in isolation or at maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest weights

Step 3: Compute weights through Kernel See Shapley_kernel_proof.pdf

Intuition: We learn most about individual features if we can study their effects in isolation or at maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest weights

Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate weights for each coalition which are the observations of the linear regression

$$\pi_{x}(\mathbf{z}') = \frac{(p-1)}{\binom{p}{|\mathbf{z}'|}|\mathbf{z}'|(p-|\mathbf{z}'|)} \rightsquigarrow \pi_{x}(\mathbf{z}' = (1,0,0)) = \frac{(3-1)}{\binom{3}{1}|1(3-1)} = \frac{1}{3}$$

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
ws	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate weights for each coalition which are the observations of the linear regression

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
ws	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

weights for empty and full set are infinity and not used as observations for the linear regression instead constraints are used such that properties (local accuracy and missingness) are satisfied

Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕ_i

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{i=1}^{p} \phi_i z_j^{\prime(k)}$$

and minimize by WLS using the weights π_{x} of step 3

$$L\left(\hat{f},g,\pi_{x}\right) = \sum_{k=1}^{K} \left[\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime(k)}\right)\right) - g\left(\mathbf{z}^{\prime(k)}\right)\right]^{2} \pi_{x}\left(\mathbf{z}^{\prime(k)}\right)$$

with $\phi_0 = \mathbb{E}(\hat{f})$ and $\phi_p = \hat{f}(x) - \sum_{j=0}^{p-1} \phi_j$ we receive a p-1 dimensional linear regression problem

Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕ_i

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{i=1}^{p} \phi_i z_i^{\prime(k)} \leadsto g\left(\mathbf{z}^{\prime(k)}\right) = 4515 + 34 \cdot z_1^{\prime(k)} - 1654 \cdot z_2^{\prime(k)} - 323 \cdot z_3^{\prime(k)}$$

$\mathbf{z}'^{(k)}$	hum	temp	ws	weight	Î
$z'^{(2)}$	1	0	0	0.33	4635
$\mathbf{z}'^{(3)}$	0	1	0	0.33	3087
$\mathbf{z}'^{(4)}$	0	0	1	0.33	4359
$z'^{(5)}$	1	1	0	0.33	3060
$z'^{(6)}$	0	1	1	0.33	2623
$z'^{(7)}$	1	0	1	0.33	4450
	_	input	_		output

Step 5: Return SHAP values

Intuition: Estimated Kernel SHAP values are equivalent to Shapley values

$$g(\mathbf{z}^{\prime(8)}) = \hat{f}(h_{x}(\mathbf{z}^{\prime(8)})) = 4515 + 34 \cdot 1 - 1654 \cdot 1 - 323 \cdot 1 = \underbrace{\mathbb{E}(\hat{f})}_{\text{hum}} + \phi_{\text{hum}} + \phi_{\text{temp}} + \phi_{\text{ws}} = \hat{f}(\mathbf{x}) = 2573$$

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

Intuition: If the coalition includes all features $(\mathbf{x}' \in \{1\}^p)$, the attributions ϕ_j and the null output ϕ_0 sum up to the original model output $f(\mathbf{x})$

Local accuracy corresponds to the **axiom of efficiency** in Shapley game theory

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^p \phi_j x_j'$$

Missingness

$$x'_j = 0 \Longrightarrow \phi_j = 0$$

Intution: A missing feature gets an attribution of zero

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^p \phi_j x_j'$$

Missingness

$$x_j' = 0 \Longrightarrow \phi_j = 0$$

Consistency

$$\hat{f}_{x}\left(\mathbf{z}^{\prime(k)}
ight)=\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime(k)}
ight)
ight)$$
 and $\mathbf{z}_{-i}^{\prime(k)}$ denote setting $z_{i}^{\prime(k)}=0$. For any two models \hat{f} and \hat{f}' , if

$$\hat{f}_{x}'\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}'\left(\mathbf{z}_{-j}^{\prime(k)}\right) \geq \hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}\left(\mathbf{z}_{-j}^{\prime(k)}\right)$$

for all inputs $\mathbf{z}^{\prime(k)} \in \{0,1\}^p$, then

$$\phi_{j}\left(\hat{f}',\mathbf{x}
ight)\geq\phi_{j}(\hat{f},\mathbf{x})$$

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

Missingness

$$x'_j = 0 \Longrightarrow \phi_j = 0$$

Consistency

$$\hat{f}_{x}'\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}'\left(\mathbf{z}_{-j}^{\prime(k)}\right) \geq \hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}\left(\mathbf{z}_{-j}^{\prime(k)}\right) \Longrightarrow \phi_{j}\left(\hat{f}', \mathbf{x}\right) \geq \phi_{j}(\hat{f}, \mathbf{x})$$

Intution: If a model changes so that the marginal contribution of a feature value increases or stays the same, the Shapley value also increases or stays the same

From consistency the Shapley axioms of additivity, dummy and symmetry follow

GLOBAL SHAP Lundberg et al. 2018

Idea:

- Run SHAP for every observation and thereby get a matrix of Shapley values
- The matrix has one row per data observation and one column per feature
- We can interpret the model globally by analyzing the Shapley values in this matrix

$$\Phi = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} & \dots & \phi_{1p} \\ \phi_{21} & \phi_{22} & \phi_{23} & \dots & \phi_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_{n1} & \phi_{n2} & \phi_{n3} & \dots & \phi_{np} \end{bmatrix}$$

FEATURE IMPORTANCE

Idea: Average the absolute Shapley values of each feature over all observations. This corresponds to calculating averages column by column in Φ

$$I_j = \frac{1}{n} \sum_{i=1}^n \left| \phi_j^{(i)} \right|$$

FEATURE IMPORTANCE

Interpretation:

- The features temperature and year have by far the highest influence on the model's prediction
- Compared to Shapley values, no effect direction is provided, but instead a feature ranking similar to PFI
- However, Shapley FI is based on the model's predictions only while PFI is based on the model's performance (loss)

SUMMARY PLOT

Combines feature importance with feature effects

- Each point is a Shapley value for a feature and an observation
- The color represents the value of the feature from low to high
- Overlapping points are jittered in y-axis direction

SUMMARY PLOT

Interpretation:

- Low temperatures have a negative impact while high temperatures lead to more bike rentals
- Year: two point clouds for 2011 and 2012 (other categorical features are gray)
- A high humidity has a huge, negative impact on the bike rental, while low humidity has a rather minor positive impact on bike rentals

DEPENDENCE PLOT

- Visualize the marginal contribution of a feature similar to the PDP
- Plot a point with the feature value on the x-axis and the corresponding Shapley value on the y-axis

DEPENDENCE PLOT

Interpretation:

- Increasing temperatures induce increasing bike rentals until 25°C
- If it gets too hot, the bike rentals decrease

DEPENDENCE PLOT

Interpretation:

- We can colour the observations by a second feature to detect interactions
- Visibly the temperatures interaction with the season is very strong

DISCUSSION

Advantages

- All the advantages of Shapley values
- Unify the field of interpretable machine learning in the class of additive feature attribution methods
- Has a fast implementation for tree-based models
- Various global interpretation methods

Disadvantages

- Disadvantages of Shapley values also apply to SHAP
- KernelSHAP is slow (TreeSHAP can be used as a faster alternative for tree-based models
 Lundberg et al 2018 and for an intuitive explanation → see Sukumar: TreeSHAP
- KernelSHAP ignores feature dependence