Title: Spatial Patterns of Gene Expression in Bacterial Genomes

Authors: Daniella F Lato and G Brian Golding

Journal: Journal of Molecular Evolution

Corresponding Author Information:

G. Brian Golding
McMaster University
Department of Biology
1280 Main St. West
Hamilton, ON
Canada
L8S 4K1

 $Tel.: \ +905\text{--}525\text{--}9140$

EMAIL: GOLDING@MCMASTER.CA

Supplementary Material

All supplemental information including interactive graphs of the expression data can be found on GitHub at https://github.com/dlato/Spatial_Patterns_of_Gene_Expression.git.

Interactive Graphs

The normalized gene expression data is available as a interactive graph for each bacterial replicon. The user can use their mouse to hover over gene expression points to determine the National Center for Biotechnology Information (NCBI) gene Id. This Id can be searched in the NCBI website (https://www.ncbi.nlm.nih.gov/) to obtain more information on that particular gene. These interactive graphs are listed on GitHub as files:

- E. coli: "ecoli gene exp interactive graph.html"
- B. subtilis: "bsubtilis gene exp interactive graph.html"
- $\bullet \ \ Streptomyces: "streptomyces_gene_exp_interactive_graph.html"$
- S. meliloti Chromosome: "smeliloti_chromosome_gene_exp_interactive graph.html"
- S. meliloti pSymA: "smeliloti pSymA gene exp interactive graph.html"
- S. meliloti pSymB "smeliloti pSymB gene exp interactive graph.html"

Gene Expression Data

Bacteria Strain/Species	GEO Accession Number	Date Accessed
E. coli K12 MG1655	GSE60522	December 20, 2017
$E.\ coli\ \mathrm{K}12\ \mathrm{M}\mathrm{G}1655$	GSE73673	December 19, 2017
$E.\ coli\ \mathrm{K}12\ \mathrm{M}\mathrm{G}1655$	GSE85914	December 19, 2017
$E.\ coli\ \mathrm{K}12\ \mathrm{D}H10\mathrm{B}$	GSE98890	December 19, 2017
B. subtilis 168	GSE104816	December 14, 2017
B. subtilis 168	GSE67058	December 16, 2017
$B.\ subtilis\ 168$	GSE93894	December 15, 2017
S. coelicolor A3	GSE57268	March 16, 2018
S. meliloti RM2010 Chromosome	GSE69880	December 12, 2017
S. meliloti RM2010 pSymA	GSE69880	December 12, 2017
S. meliloti RM2010 pSymB	GSE69880	December 12, 2017

Table S1: Strains and species used for each gene expression analysis. Gene Expression Omnibus accession numbers and date accessed are provided.

Origin and Terminus Locations

Bacteria	Origin of Replication	Terminus of Replication
E. coli	3925744	1678398
$B.\ subtilis$	1	1942542
Streptomyces	3419363	1 & 9054831
$S.\ meliloti$ Chromosome	1	1735626
$S.\ meliloti\ \mathrm{pSymA}$	1350001	672888
$S.\ meliloti\ \mathrm{pSymB}$	55090	896756

Table S2: Origin of replication and terminus of replication positions in replicons of *E. coli*, *B. subtilis*, *Streptomyces*, and *S. meliloti*. The linear nature of *Streptomyces* chromosome gives it two termini, one at each end of the chromosome.

Correlation of Gene Expression Over Datasets

To assess uniform expression over bacteria with multiple data sets we looked at the mean normalised expression values. Multiple replicates from a data set were combined by finding the median normalised CPM expression value for each gene. This was done for any data sets that had multiple replicates. For each gene (x_i) the mean normalised expression value was calculated across all data sets (\bar{x}_{ij}) . Then the normalised median expression value for each data set was subtracted from the mean across all expression values $(|x_{ij} - \bar{x}_{ij}|)$. The distribution of these $|x_{ij} - \bar{x}_{ij}|$ across all genes are found in Figures S1 and S2. All data sets are well mixed, implying that the expression levels are consistent across all data sets. Only *E. coli* and *B. subtilis* had multiple expression datasets available so they are the only ones that were analysed. Streptomyces and all replicons of *S. meliloti* had only one dataset each and therefore were not analysed.

Figure S1: Dot plot distribution of the median expression value for each *E. coli* data set minus the mean expression value for that gene across all data sets. Each gene is shown on the x-axis and the log base 10 values are on the y-axis. The values are coloured by GEO data set.

B.subtilis Chromosome

Figure S2: Dot plot distribution of the median expression value for each *B. subtilis* data set minus the mean expression value for that gene across all data sets. Each gene is shown on the x-axis and the log base 10 values are on the y-axis. The values are coloured by GEO data set.

Additional Linear Regression Tests

Multiple more detailed linear regressions are performed to determine if there is any correlation between gene expression per gene and distance from the origin of replication. A linear regression to determine how the median CPM expression values per gene changes with genomic position was performed. Additionally, a linear regression to determine how the median CPM expression value for each 10Kbp section of the genome changes with genomic position was performed. Finally, a linear regression to determine how the total added expression over each 10Kbp region of the genome changes with genomic position was performed. All linear regression results mirror the results from the linear regression on the median gene expression CPM value per gene. Most bacteria have a negative correlation, implying that gene expression tends to decrease with distance from the origin of replication.

We additionally performed a linear regression on a per gene basis. We found similar results as the linear regression of average expression values over 10Kbp regions: E. coli and B. subtilis had gene expression decrease with increasing distance from the origin of replication (Supplementary Table: S3). We were unable to detect a significant trend between gene expression and genomic position in the majority of the other bacterial replicons (Supplementary Table: S3). We performed a further linear regression tests on the median CPM gene expression value per 10Kbp region of the genome. This was calculated by determining the median CPM expression value across all genes in 10Kbp regions of the genome. We were able to detect similar results as the linear regression of average expression values over 10Kbp regions in E. coli, where median gene expression decreases with increasing distance from the origin of replication (Supplementary Table: S4). For all of the other bacterial replicons we were unable to determine a significant trend between median gene expression and genomic position (Supplementary Table: S4). Finally, we performed a linear regression test on the total additive CPM gene expression value per 10Kbp region of the genome. This was calculated by summing all gene CPM expression values across 10Kbp regions of the genome. We were able to detect similar results as the linear regression of average expression values over 10Kbp regions in most bacterial replicons where total gene expression decreases with increasing distance from the origin of replication (Supplementary Table: S5). For the two secondary replicons of S. meliloti, we were unable to detect a significant trend between total gene expression and genomic position (Supplementary Table: S5).

Bacteria and Replicon	Coefficient Estimate	Standard Error	P-value
E. coli Chromosome	-3.68×10^{-5}	9.30×10^{-6}	7.58×10^{-5}
B.subtilis Chromosome	-9.7×10^{-5}	2.0×10^{-5}	1.2×10^{-6}
Streptomyces Chromosome	-1.15×10^{-6}	8.12×10^{-8}	NS
$S.\ meliloti\ { m Chromosome}$	9.57×10^{-6}	4.04×10^{-5}	NS
$S.\ meliloti\ \mathrm{pSymA}$	1.39×10^{-3}	2.53×10^{-4}	4.9×10^{-8}
S. meliloti pSymB	1.55×10^{-4}	2.03×10^{-4}	NS

Table S3: Linear regression analysis of the median counts per million expression values per gene along the genome of the respective bacteria replicons. Linear regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectional replication. NS indicates Not Significant at $P \leq 0.05$. A grey row indicates a significant negative trend.

Bacteria and Replicon	Coefficient Estimate	Standard Error	P-value
E. coli Chromosome	-6.38×10^{-6}	3.22×10^{-6}	4.85×10^{-2}
B.subtilis Chromosome	-4.04×10^{-6}	2.82×10^{-6}	NS
Streptomyces Chromosome	-6.29×10^{-7}	3.27×10^{-8}	NS
$S.\ meliloti$ Chromosome	-6.84×10^{-6}	7.42×10^{-6}	NS
$S.\ meliloti\ \mathrm{pSymA}$	-1.02×10^{-4}	6.75×10^{-5}	NS
S. meliloti pSymB	2.50×10^{-5}	5.86×10^{-5}	NS

Table S4: Linear regression analysis of the median counts per million expression data for 10Kbp segments of the genome of the respective bacteria replicons. Linear regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectional replication. Statistical outliers were removed from this linear regression calculation. NS indicates Not Significant at $P \leq 0.05$. A grey row indicates a significant negative trend.

Bacteria and Replicon	Coefficient Estimate	Standard Error	P-value
E. coli Chromosome	-3.26×10^{-4}	1.77×10^{-4}	1.30×10^{-8}
B.subtilis Chromosome	-5.63×10^{-4}	1.79×10^{-4}	1.87×10^{-3}
Streptomyces Chromosome	-1.37×10^{-6}	4.59×10^{-7}	2.88×10^{-3}
$S. \ meliloti$ Chromosome	-5.39×10^{-4}	2.47×10^{-4}	3.02×10^{-2}
S. meliloti pSymA	3.88×10^{-3}	2.65×10^{-3}	NS
S. meliloti pSymB	-1.46×10^{-3}	1.95×10^{-3}	NS

Table S5: Linear regression analysis of total added expression and distance from the origin of replication. The total added expression values were calculated by suming the total counts per million expression value per 10Kbp section of the genome . Linear regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectional replication. NS indicates Not Significant at $P \leq 0.05$. A grey row indicates a significant negative trend.

High Gene Expression Distribution

Bacteria and Replicon	Bidirectional Genomic Position (bp)	Protein/Gene Examples
E. coli Chromosome	0 - 10000	DNA replication and repair
		ATP-proton motive force
		ATP biosynthesis
		transport
	470000 - 480000	DNA replication and repair
		tRNA synthesis
		Ribosomal proteins
		Putative transport
	610000 - 620000	Ribosomal protein
		Translation modification
		tRNA modification
		RNA synthesis

	1520000 - 1530000	Energy metabolism
	2330000 - 2340000	Energy metabolism
	2770000 - 2780000	Energy metabolism
	2870000 - 2880000	Putative transport
	20.0000 2000000	Transport
	3250000 - 3260000	Metabolism
	3230000 320000	Putative transport
B. subtilis Chromosome	0 - 10000	tRNA modification
		Ribosomal proteins
		DNA gyrase
		rRNA small subunit methylation
	130000 - 150000	Ribosomal proteins
		Elongation factor
	730000 - 740000	tRNA subunit
		Transcription regulation
		Glycolysis
S. meliloti Chromosome	30000 - 40000	Small molecule metabolism
		Macromolecule metabolism
		Hypothetical proteins
	1480000 - 1490000	Ribosomal proteins
		Structural elements
		Transmembrane proteins
	1550000 - 1560000	Small molecule metabolism
	1000000 1000000	Structural element
		Hypothetical proteins
	1930000 - 1940000	Hypothetical proteins
		Small molecule metabolism
S. meliloti pSymA	890000 - 900000	Cell processes
P 2 J 1		Hypothetical proteins
		Macromolecule metabolism
	910000 - 920000	Hypothetical proteins
	010000 020000	Unknown protein
	950000 - 960000	Miscellaneous proteins
		Small molecule metabolism
S. meliloti pSymB	210000 - 220000	Unknown proteins
b. Westers psy IIIb	210000 220000	Cell processes
		Hypothetical proteins
	290000 - 300000	Cell Division
	200000 - 000000	Small molecule metabolism
		Cell processes
	820000 - 830000	Small molecule metabolism
	020000 - 030000	
		Cell processes

Table S6: Table of high median CPM (Counts per Million) gene expression over 10kb genomic regions for each bacterial replicon and the associated proteins/gene functions found in that region. The genomic position begins at the origin of replication and continues in both directions until the terminus of replication (bidirectional replication).