

TRIBHUWAN UNIVERSITY INSTITUTE OF ENGINEERING PASCHIMANCHAL CAMPUS

Performance Analysis on Placement and Sizing of D-STATCOM in Radial Distribution Network:

A Case study in Begnas Feeder, Lekhnath

BY

Shankar Singh Thakuri

PAS079MSDG016

PROPOSAL ON

SUBMITTED TO DEPARTMENT OF ELECTRICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE IN ELECTRICAL ENGINEERING IN DISTRIBUTED GENERATION

DEPARTMENT OF ELECTRICAL ENGINEERING LAMACHAUR, POKHARA, NEPAL

JUNE,2024

TABLE OF CONTENTS

LIST OF FIGURES	I
LIST OF TABLE	1
LIST OF ABBREVIATION	2
CHAPTER ONE: INTRODUCTION	3
1.1 BACKGROUND	3
1.2 PROBLEM STATEMENT	3
1.3 RATIONALE OF PROJECT	4
1.4 OBJECTIVES	5
1.5 LIMITATIONS	6
CHAPTER TWO: LITERATURE REVIEW	7
2.1 Overview of Distribution Network:	8
2.2 D-STATCOM Allocation Technique for Loss Reduction	8
2.3 Power flow/Load Flow:	9
2.3.1 Calculation of load current	9
2.3.2 Backward Forward Sweep Method:	10
CHAPTER THREE: METHODOLOGY	11
3.1 Collection of Data:	11
3.2 Optimal Location of D-STATCOM	12
3.2.1 Voltage Stability Index for finding optimal location of D-STATCOM	12

3.2.2 Optimal size calculation by variational technique	12
3.3 Flow Chart of Proposed Methodology	13
CHAPTER FOUR: EXPECTED OUTCOMES	15
CHAPTER FIVE: RESULT AND DISCUSSION	16
5.1 Load Flow Analysis of 33 Test Bus System	16
5.2 Load flow Analysis of Begnas Feeder	19
CHAPTER SIX : REMAINING WORKS	23
CHAPTER SEVEN: WORK SCHEDULE	24
REFERENCES	25
APPENDIX	26
LIST OF FIGURES	
Figure 1:Radial Distribution Network	8
Figure 2:Phasor Graph of D-STATCOM	9
Figure 3:Flowchart of Proposed System	14
Figure 4:Active Power Loss in 33 Test Bus System	15
Figure 5: Reactive Power Loss in 33 Test Bus System	17
Figure 6: Voltage Profile of 33 Test Bus Figure 7: Active Power Loss in Regnes Feeder	18 21
Figure 7: Active Power Loss in Begnas Feeder Figure 8: Reactive Power Loss of Begnas Feeder	21
Figure 9: Voltage Profile of Begnas Feedder	22
Darran	

LIST OF TABLE

Table 1: Voltage Profile and Power loss in 33 Test Bus System	15
Table 2:Voltage Profile and Power loss in Begnas Feeder	19
Table 3: Specification of ACSR Conductor	26
Table 4 : Line Data of 33 Test Bus System	27
Table 5:Load Data 33 Test Bus System	28
Table 6:Line Data of Begnas Feeder	29
Table 7:Load Data of Begnas Feeder	31

LIST OF ABBREVIATION

ABC AERIAL BUNDLED CONDUCTOR

AC ALTERNATING CURRENT

ACSR ALUMINUM CONDUCTOR STEEL REINFORCED

DC DIRECT CURRENT

DCS DISTRIBUTED CONTROL SYSTEM

DG DISTRIBUTED GENERATION

INPS INTEGRATED NEPAL POWER SYSTEM

HT HIGH TENSILE

NEA NEPAL ELECTRICITY AUTHORITY

VSI VOLTAGE STABILITY INDEX

CHAPTER ONE: INTRODUCTION

1.1 BACKGROUND

To enhance voltage profiles, lower losses, and conserve energy, distribution systems integrating distributed generation (DG), custom power devices (CPDs), and capacitors must conduct an optimal load flow assessment. Reactive power management, loss reduction, distribution system pricing, and reserve management during peak loads are among the challenges that are addressed by the proper placement of these components. Reactive power demands rise in distribution systems because most loads are reactive. This reactive power can be provided by capacitors, but they may oscillate and their output is dependent on the system voltage. Originally designed for transmission systems, FACTS devices are now utilized in distribution to compensate for reactive power, taking on the role of capacitors or inductors as required.

CPDs that regulate voltage, phase angle, and line impedance effectively and dependably include DVR, D-STATCOM, and UPQC. D-STATCOM is a particularly useful one among them, providing better bus voltage profiles and continuously changing reactive power compensation. A transformer, PWM control technique, inverter modules, ac filter, and dc capacitor are among its primary parts. In both steady-state and dynamic scenarios, D-STATCOM improves voltage control, balancing, and power losses. The effectiveness of D-STATCOM in enhancing voltage profiles and lowering losses in distribution networks has been demonstrated by a number of studies that have suggested methods for appropriate D-STATCOM placement and sizing.

With size estimations made using a variational strategy, this article analyzes D-STATCOM allocation strategies for radial distribution networks using the voltage stability index (VSI) and power loss index (PLI) approaches. This technique enhances voltage profiles while reducing line losses. The load flow method consists of three basic steps: figuring out the load current, creating the BIBC matrix, and sweeping the line forward. The bus with the greatest VSI and PLI values is chosen as the candidate bus after a load flow study is performed. We then apply the variational technique to determine the D-STATCOM size. Lastly, using MATLAB, the load flow is reevaluated at the candidate bus for IEEE 33-bus test systems with the D-STATCOM.

1.2 PROBLEM STATEMENT

The electrical power distribution system is an essential part of the infrastructure that ensures the efficient and reliable transport of electricity from generation sources to end consumers. However, maintaining the optimal voltage profile and minimizing losses in the distribution network remain formidable obstacles. These issues could lead to excessive power consumption, increased operational costs, and a deterioration in the reliability and quality of the services

Research paper's problem statement focuses on solving problems with reactive power management, improving voltage profiles, and lowering power losses in radial distribution systems. It draws attention to the drawbacks of employing capacitors for reactive power adjustment, including their propensity to cause oscillations and reliance on system voltage. As a substitute, the study suggests using D-STATCOM, a static compensator based on a shunt-connected voltage source converter. In order to improve the effectiveness and efficiency of radial distribution networks, the study intends to identify the ideal placement and size of D-STATCOM utilizing voltage stability index (VSI) and power loss index (PLI) methodologies, followed by size calculation through a variational technique.

1.3 RATIONALE OF PROJECT

Our everyday existence depends on the electrical power distribution system, which supplies energy to our residences, workplaces, and enterprises. On the other hand, preserving an ideal voltage profile and reducing distribution network losses are major obstacles that may affect the effectiveness, dependability, and affordability of power transmission.

The purpose of this research study is to discuss the necessity of loss reduction and efficient voltage profile management in radial distribution systems. This research investigates the best locations and sizes for Distribution Static Compensators (D-STATCOMs) by combining the Power Loss Index (PLI) and Voltage Stability Index (VSI) methodologies. The study's objectives are to improve voltage stability, lower power losses, and save energy overall by figuring out where and how big of D-STATCOMs to put. This is especially crucial since scattered generation sources and rising reactive loads need for sophisticated reactive power management techniques and effective system operation.

1.4 OBJECTIVES

The objectives of this research paper are:

- ✓ To compare the effectiveness of Voltage Stability Index (VSI) approach for the optimal allocation of D-STATCOM in a radial distribution network.
- ✓ To determine the corresponding sizes of D-STATCOM using a variational technique.
- ✓ To demonstrate the reduction of line losses and improvement in the voltage profile of the distribution network through the optimal placement and sizing of D-STATCOM.
- ✓ To conduct load flow analysis on a radial distribution system to identify candidate buses for D-STATCOM placement.
- ✓ To validate the proposed methodology using the IEEE 33-bus test system with MATLAB software and implement it in city feeder.
- ✓ To analysis the energy saving after placement of D-STATCOM

1.5 LIMITATIONS

- ✓ The paper assumes a constant load profile while calculating the optimal placement and size of D-STATCOM. In real-world scenarios, the load profile can vary significantly, which might affect the performance and effectiveness of the D-STATCOM installation.
- ✓ The study uses a simplified model of the distribution system, which may not capture all the complexities and interactions in an actual distribution network
- ✓ The study examines the placement of a single D-STATCOM device. In practical applications, multiple devices may be required, and their interactions could complicate the optimization process.

✓

CHAPTER TWO: LITERATURE REVIEW

The increasing use of capacitors, custom power devices, and distributed generation in distribution systems necessitates a thorough load flow study to determine their optimal placement for improved voltage profile management, loss reduction, and overall energy savings. Reactive power compensation is crucial due to the prevalence of reactive loads like motors and pumps [9]. While capacitors are traditionally used for this purpose, their dependency on system voltage and potential for oscillations pose challenges. FACTS devices, including D-STATCOM, offer a more flexible solution by dynamically adjusting reactive power compensation based on system needs. D-STATCOM, a shunt-connected device, excels in voltage profile improvement and loss reduction. Its advantages include low harmonic distortion, compact size, and continuous operation. This paper focuses on comparing D-STATCOM allocation methods using voltage stability and power loss indices, along with size calculation using a variational technique, to enhance distribution system performance.

Flexible AC Transmission System (FACTS) devices, such as DSTATCOM and UPQC, are increasingly used to address issues in power systems, including low voltage distribution, power quality improvement, and reliability for sensitive loads. These devices offer solutions for reactive power compensation and unbalanced loading under various system conditions. Optimal placement of these devices is crucial for their effectiveness. DSTATCOM, a shunt-connected device, is favored for its advantages like low harmonic distortion, compact size, and continuous operation. Previous research has explored various optimization algorithms for DSTATCOM placement, including immune algorithms, Particle Swarm Optimization (PSO), hybrid heuristic techniques, gravitational search algorithms, firefly algorithms, and modified bat algorithms.

Paper presents two methods for allocating D-STATCOM in radial distribution networks: voltage stability index (VSI) and power loss index (PLI). The optimal size of the D-STATCOM is determined using a variational technique. The load flow method used in this paper involves calculating load current, forming a BIBC matrix, and performing a forward sweep across the line [10]. Initially, a load flow analysis is conducted to calculate line losses and voltage profiles, and the bus with the highest VSI and PLI values is chosen as the candidate bus. Subsequently, the size of the D-STATCOM is determined using a variational technique. Finally, a load flow analysis is performed again, this time with the calculated D-STATCOM size at the candidate bus. This method effectively reduces line losses and improves voltage profiles.

2.1 Overview of Distribution Network:

Distribution systems serve as the conduit between the consumers and the distribution substation. This system provides a range of clients with the safe and dependable transportation of electric energy throughout the service area. generally beginning as a medium-voltage three-phase circuit (between 30 and 60 KV), a distribution system terminates at the customer's location, typically at the meter, at a lower secondary three-or single-phase voltage (generally less than 11 kV).

A simple model of radial distribution feeder is as shown in Figure 1.

2.2 D-STATCOM Allocation Technique for Loss Reduction

In essence, the D-STATCOM is a bespoke power device. All that is involved is the use of a STATCOM at the distribution level. A custom power device, the D-STATCOM is connected in series with the power supply and is based on an inverter that measures voltage or current. It is linked to the distribution systems in close proximity to the load. A power VSC that is built on high power electronics technologies is the essential part of the D-STATCOM. A VSC, a group of coupling reactors, and a controller make up the three primary components of the D-STATCOM system. A voltage source converter (VSC) coupled to a direct current capacitor (energy storage device) generates a programmable ac voltage source, which is the fundamental working principle of a D-STATCOM installed in a power system.

D-STATCOM is made up of an inverter, a control unit that produces PWM signals for the inverter switches, a coupling inductance L that is used for current filtering and reactive power exchange between D-STATCOM and the power system, and dc link capacitance C that supplies the inverter with dc voltage. Rdc and R stand for the coupling inductance's winding resistance and switching losses in the inverter, respectively. Reactive power exchange between the distribution system and D-STATCOM is accomplished by controlling the inverter output voltage Vi's amplitude. The phasor graphs in Figure 2 provide an illustration of the D-STATCOM operation.

2.3 Power flow/Load Flow:

The computations of load flow can be solved in a variety of ways. To be deemed acceptable, a load flow approach must meet a number of requirements, such as quick speed, low storage requirements, high dependability, and widely acknowledged simplicity and adaptability, power transmission through the grid system from generators to consumers. Load flow analysis is a crucial precondition for power system research. Regarding the radial feeder for load flow, the backward-forward sweep method is employed.

2.3.1 Calculation of load current

The load current at any bus is given as:

 $I_{Ln} = (P_n - jQ_n) / V_n$ Where n = 1, 2 N (1) where,

I_L= Load Current

N= total. No. of buses

 P_n = Active power

 Q_n = Reactive power

 $V_n = Bus Voltage$

2.3.2 Backward Forward Sweep Method:

The relation between load current and branch current can be found by using KCL equation. The matrix can Written as:

Forward sweep algorithm is used to calculate the voltage at each bus starting from branches from first layer to last layer. Backward Sweep algorithm is used to calculate the branch current starting from the last layer towards the branches connected to root node.

$$\begin{split} &V_{_{n}}\left(K\right) = V_{_{m}}(K)\text{-}IB(K)*Z_{_{m}}(K)\;......(3)\\ &Where,\\ &K=1,2,.....N_{_{b}}\\ &N_{_{b}} = total\;no.\;of.\;Branches = N\\ &V_{_{n}}\left(K\right) = receiving\;end\;Voltage\;V_{_{m}}\left(K\right) = sending\;end\;Voltage\\ \end{split}$$

The power flow is calculated using backward and forward propagation using iterations. The forward sweep will provide the voltage magnitudes whereas the backward propagation provides the power of each branch. The iterative method has fast convergence as compared to conventional methods. The results for IEEE 33 bus test system are calculated for this Project. It is concluded that the following load flow method is an efficient method for fast convergence tendency in radial distribution networks.

CHAPTER THREE: METHODOLOGY

This section discusses the methods and case studies used in this project to evaluate the system performance. The power flow along with the optimization technique applied throughout the project are programmed and simulated in MATLAB software.

3.1 Collection of Data:

The process involves choosing an IEEE bus test system that can accurately simulate a low-voltage distribution feeder and reviewing relevant literature to address the issue. For this effort, the IEEE 33 bus test system has been selected. Collection of real feeder data (Substation feeder data, voltage level, resistance and reactance of line, daily monthly and annual loading condition, load and its line configuration) of 11 kV Begnas feeder and finding the low voltage point, nodes and their values at different location from DTR installed, HT metering unit, TOD meter installed in substation and industries.

3.2 Optimal Location of D-STATCOM

3.2.1 Voltage Stability Index for finding optimal location of D-STATCOM

Optimal location of D-STATCOM is found by calculating the voltage stability index of all the buses. The VSI is calculated from the following equation:

$$VSI = 4R_{m}(P_{n}^{2}+Q_{n}^{2}) / (V_{m}^{2}P_{n}) \dots (2)$$

Where V_m and V_n are sending and receiving end voltages respectively; I_m is the branch current; $R_m \& X_m$ are branch resistance and reactance respectively.

Voltage stability index has been obtained and the bus with highest value of VSI is most unstable and is selected as candidate bus for D-STATCOM. The steps for calculating VSI are described as follows:

- Step 1: Read the radial distribution system line data and bus data.
- Step 2: Perform the load flow to calculate voltages for all the buses and power losses for all the branches.
- Step 3: Calculate VSI for all the buses using equation (2).
- Step 4: Select the candidate bus with highest value of stability index.
- Step 5: Stop.

3.2.2 Optimal size calculation by variational technique

The size of D-STATCOM is calculated using the variational technique. First the base case load flow is made for finding the losses. Then by following steps is used for finding the optimum size of D-STATCOM. Steps for calculating the optimum size of D-STATCOM by variational technique are as follows:

- Step 1: Read the line data and bus data and find the candidate bus for D-STATCOM placement by sensitivity method (VSI).
- Step 2: Place the D-STATCOM at candidate bus with size varying in steps of 50 KVAR
- Step 3: Find the losses after placement of D-STATCOM.
- Step 4: Select the size of D-STATCOM which gives minimum losses.
- Step 5: Stop.

3.3 Flow Chart of Proposed Methodology

Figure 3:Flowchart of Proposed System

CHAPTER FOUR: EXPECTED OUTCOMES

- Improve distribution system by reducing power losses and improving voltage profiles using D-STATCOM devices in the optimal locations and sizes as determined by this proposed method.
- Energy savings are anticipated due to the lesser size of D- STATCOM required along with the reduction of line losses will enhance the power transmission capability.

CHAPTER FIVE: RESULT AND DISCUSSION

5.1 Load Flow Analysis of 33 Test Bus System *Table 1:Voltage Profile and Power loss in 33 Test Bus System*

Bus No	Voltage (pu)	Branch No	Active Power Loss(KW)	Reactive Power Loss(KVAR)
1	1		0	0
2	0.997038547	1-2	12.19332189	15.36051758
3	0.982978213	2-3	51.5711351	48.29247661
4	0.975521707	3-4	19.79340576	21.65437072
5	0.968150394	4-5	18.59307931	21.03622619
6	0.949796508	5-6	38.02565427	74.06301088
7	0.94634273	6-7	1.913078362	52.05597305
8	0.941495231	7-8	4.834177391	17.24247674
9	0.935242526	8-9	4.177332944	38.60396591
10	0.929442973	9-10	3.557541344	36.72228607
11	0.928582046	10-11	0.553073448	3.060581379
12	0.927080926	11-12	0.880221606	1.337247846
13	0.920992127	12-13	2.663757376	3.38885528
14	0.918745444	13-14	0.728555663	1.622033486
15	0.917343326	14-15	0.356856434	0.623206166
16	0.915982221	15-16	0.281320134	0.452560561
17	0.913977769	16-17	0.251482745	0.899885446
18	0.913373718	17-18	0.053102918	0.172378172
19	0.996183863	2-19	0.25926263	3.940388191
20	0.992608821	19-20	0.832707742	18.27019756
21	0.991905277	20-21	0.10082228	5.592183727
22	0.991269024	21-22	0.043662262	9.181230293
23	0.979393336	3-23	3.181201344	2.4830946
24	0.97272481	23-24	5.143202368	4.699233982
25	0.969401695	24-25	1.287331231	1.317460163
26	0.947880076	6-26	2.594008193	0.08260666
27	0.945334416	26-27	3.321056189	0.074781348
28	0.933930866	27-28	11.27662095	0.276293464
29	0.925743161	28-29	7.817989336	0.0988582
30	0.92221882	29-30	3.888125789	1.988934441
31	0.918038551	30-31	1.592823445	1.58097857
32	0.917117945	31-32	0.213084662	0.249427438
33	0.916832579	32-33	0.013161647	0.020552165
			201.99	134.74

Figure 5: Reactive Power Loss in 33 Test Bus System

Figure 6: Voltage Profile of 33 Test Bus

Backward/Forward sweep algorithm is purposed in testing IEEE 33-bus radial distribution system using MATLAB coding. IEEE 33 bus radial distribution network consists of 33 nodes and 32 branches. The base voltage for this system is 12.66 kV and base MVA is 100. The Total Real power loss is 201.99KW and Total Reactive power loss is 134.74KVAR. The maximum voltage drop occurs in Bus no 18 which is of value 0.9133 pu and becomes 0.9168 pu at Bus no 33.

5.2 Load flow Analysis of Begnas Feeder *Table 2: Voltage Profile and Power loss in Begnas Feeder*

Bus No	Voltage (pu)	Branch No	Active Power Loss(KW)	Reactive Power Loss(KVAR)
1	1	1	0	0
2	0.99431314 8	1-2	25.98540153	29.81931323
3	0.98654341 4	2-3	35.12130338	40.30313502
4	0.98295088 7	3-4	16.16423758	18.54912509
5	0.98261788 5	4-5	0.035539319	0.021849279
6	0.98236187 5	5-6	0.018216972	0.011199643
7	0.97662329	4-7	27.15561829	31.16218492
8	0.97623388	7-8	0.121884953	0.139867979
9	0.97616306	8-9	0.013301777	0.015264334
10	0.97607788	9-10	0.005333521	0.006120434
11	0.97332520	7-11	4.31250971	2.651295197
12	0.97097112	11-12	2.739771982	1.684389088
13	0.96943533	12-13	1.676767618	1.030862823
14	0.96938613	13-14	0.003557572	0.002187166
15	0.96698592	13-15	2.497482506	1.535431528
16	0.96601248	15-16	0.851490205	0.523489115
17	0.96505824	16-17	0.138725945	0.08528756
18	0.96439776	17-18	0.048029566	0.029528178
19	0.96490576	16-19	0.706216649	0.810412548
20	0.96468429	19-20	0.008051787	0.004950172
21	0.96365153	19-21	0.681071554	0.781557521
22	0.96287695	21-22	0.371414576	0.426213448
23	0.96212918	22-23	0.382401834	0.235097475
24	0.96101721	23-24	0.32530236	0.199993192
25	0.96027280	24-25	0.163405398	0.100460283
26	0.95999463	25-26	0.010855688	0.004108394

27	0.95949459	25-27	0.121578347	0.046011989
28	0.95918261	27-28	0.036559866	0.013836281
29	0.95889740	28-29	0.011142728	0.004217026
30	0.95584674 4	29-30	8.710958792	9.99618222
31	0.95125237	30-31	12.84529369	14.74050096
32	0.94744650 4	31-32	10.41370752	11.95015617
33	0.94404248 6	32-33	9.106792226	10.45041731
34	0.94370906 7	33-34	0.06603901	0.07578247
35	0.94350606	34-35	0.020110158	0.023077231
36	0.94341839	35-36	0.002895373	0.00332256
37	0.94043687 5	33-37	8.948138897	10.26835611
38	0.93578520 5	37-38	10.94908656	12.56452556
39	0.92841832 9	38-39	16.89773465	19.39084304
40	0.92207218 8	39-40	14.39158268	16.51493095
41	0.92027303 6	40-41	1.893130829	2.172445214
42	0.91935711 8	41-42	0.90099725	1.033931271
43	0.91815534 4	42-43	1.141147237	1.309513222
44	0.91720379 6	43-44	0.09767931	0.036967268
45	0.91670608 5	44-45	0.030662629	0.011604439
46	0.91655850 4	45-46	0.003031051	0.001147118
47	0.91590263 8	43-47	1.944711275	2.23163589
48	0.91400652 5	47-48	1.572383353	1.804374339
49	0.91174654	48-49	1.79687188	2.061984125
50	0.91036705 1	49-50	0.611116283	0.701280981
51	0.90961212 4	50-51	0.174337775	0.200059742
52	0.90829491 3	51-52	0.246607544	0.093329972
53	0.90707222 3	52-53	0.178155637	0.067423974
54	0.90592480 4	53-54	0.119489368	0.045221404
55	0.90551888 4	54-55	0.016905176	0.006397856
56	0.90526275	54-56	0.04137339	0.015657985

57	0.90507205	56-57	0.003972961	0.001503589
58	0.91903213 7	40-58	3.711482937	4.25907878
59	0.91435697 7	58-59	5.993611825	3.684822832
60	0.90868170 4	59-60	6.393444671	3.930636749
61	0.90138657 6	60-61	7.937571636	4.879953199
62	0.90080434 7	61-62	0.04874443	0.018447596
63	0.90039954 1	62-63	0.016949278	0.006414547
64	0.89573851 1	61-64	5.252013787	3.22889451
65	0.89122954	64-65	4.105217855	2.523853884
66	0.88873810 5	65-66	2.068583638	1.271748061
67	0.88391351 9	66-67	3.812577377	2.343940945
68	0.88033677 1	67-68	2.536859384	1.559640106
69	0.87756060 1	68-69	1.856311186	1.141244719
70	0.87383114 6	69-70	2.41826034	1.486726398
71	0.87095399 3	70-71	1.628862987	1.001411453
72	0.86730399 3	71-72	1.916012357	1.177948504
			272.5285894	280.4847242

Figure 7: Active Power Loss in Begnas Feeder

Figure 8: Reactive Power Loss of Begnas Feeder

Figure 9 : Voltage Profile of Begnas Feedder

For the load flow in the 11 kv Begnas feeder, The base voltage for this system is 11 kV and base MVA is 100. The Total Real power loss is 272.528 KW and Total Reactive power loss is 280.484 KVAR. The maximum voltage drop occurs in Bus no 72 which is of value 0.8673 pu .

CHAPTER SIX: REMAINING WORKS

The remaining works in the project are:

- Calculation of VSI for all the buses and selection of candidate bus with the highest value of VSI for the optimal placement of D-STATCOM in Begnas Feeder .
- Calculation of Losses after placement of D-STATCOM in the candidate bus with the size varying in the steps of 50 kVAR and select the size of D-STATCOM which gives the minimum losses
- Compare Power loss and load flow in a bus before and after placement of D-STATCOM in Begnas Feeder.

CHAPTER SEVEN: WORK SCHEDULE

Tasks	June 14	June 21	Jun 30	July 10	July31	Aug 10	Aug20	Aug 25	Sep5
Project Selection &									
Proposal writing									
Proposal Defense									
Literature review									
Data Collection									
Load Flow Analysis of									
IEEE 33 Bus System Load Flow Analysis in									
the Real Feeder System									
Load Flow Analysis									
and Optimal Size / location selection in									
real feeder system after									
D-STATCOM									
penetration.									
Documentation and report writing									
report writing									

REFERENCES

- [1] Subbarami Reddy1, V Usha Reddy2, "Optimal Placement of D-STATCOM in Radial Distribution System using Fuzzy and Penguins Search Optimization Algorithm," *Innovative research in electrical, electronics, instrumentation and control engineering*, Vols. Vol. 3,, no. Issue 11, pp. 102-106, November 2015.
- [2.] Y. T. Gebreyes, "Studies on voltage control of distribution substations using static var compensators," *Addis Ababa institute of technology*, Addis Ababa, 2019.
- [3.] T.Taye,"Improvement of Distribution Feeder Loss and Voltage Profile (Case Study:Bella Substation Distribution Feeder)," *Addis Ababa university*, Addis Ababa, Ethiopia, October, 2019"
- [4.] S M Suhail Hussain, "An Analytical Approach for Optimal Location of D- STATCOM in Radial Distribution System," *in msubbaramiah, Mahboobnagar*, India., 22 December 2018.
- [5]. "Bonyadi, M. R.; Michalewicz, Z. (2017). "Particle swarm optimization for single objective continuous space problems: a review". Evolutionary Computation." (n.d.).
- [6]. "Optimal placement of DG and DSTATCOM for loss reduction and voltage profile improvement." (n.d.).
- [7]."Whale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems." (n.d.).
- [8]. "I. Y. Djilani Kobibi, S. Hadjeri, and M. A. Djehaf." "Study of UPFC Optimal Location Considering Loss Reduction and Improvement of Voltage Stability in Power System (n.d.). Leonardo Journal of Sciences. Issue.
- [9]. Gupta AR, Kumar A (2015) Energy savings using D-STATCOM placement in radial distribution system. Procedia Comput Sci70:558–564. https://doi.org/10.1016/j.procs.2015.10.100.
- [10] Gupta, A.R.; Jain, A.; Kumar, A. Optimal D-STATCOM placement in radial distribution system based on power loss index approach. In Proceedings of the 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, India, 12–13 June 2015; pp. 1–5.

APPENDIX

Table 3: Specification of ACSR Conductor

	Data for Aluminium Conductors Steel Reinforced (ACSR) As per IS 398 (Part-II): 1996																				
	Aluminiu (Sq.1		Total			Diameter		Overall Dia	W	eight Ma	iss	Resistance	Ultimate		ent Car Capacity						
Code Words	Sectional	Nominal	Sectional Area		ductor Al)		ductor teel)	(mm) Al		Total	at 20°C (ohm/ km)	Breaking	90°C	75°C	65°C						
	Area	Area	(Sq.mm)	No.	Dia (mm)	No.	Dia (mm)	(Appro ximate)	kg/ km	kg/ kg/ km km						_	(Max)	Load (N)	Amp	Amp	Amp
Kundah	404.1	400	425.2	42	1.96	7	1.96	26.88	1119	163	1282	0.07311	88790	-	705	566					
Zebra	428.9	420	484.5	54	3.18	7	3.18	28.62	1182	439	1621	0.06868	130320	-	737	590					
Moose	528.5	520	597	54	3.53	7	3.53	31.77	1463	535	1998	0.05595	159600	-	836	667					
Racoon	78.83	80	91.97	6	4.09	1	4.09	12.27	215	103	318	0.3712	26910	-	244	200					
Panther	212.1	200	261.5	30	3	7	3	21	588.5	387.5	976	0.139	89670	-	487	395					
Squirrel	20.98	20	24.48	6	2.11	1	2.11	6.33	58	27	85	1.394	7610	-	107	89					
Weasel	31.61	30	36.88	6	2.59	1	2.59	7.77	87	41	128	0.9289	11120	-	138	114					
Mole	10.6	10	12.37	6	1.5	1	1.5	4.5	29	14	43	2.78	3970	-	70	58					
Dog	105	100	118.5	6	4.72	7	1.57	14.15	288.3	105.7	394	0.2792	32410	-	291	239					
Rabbit	52.88	50	61.7	6	3.35	1	3.35	10.05	145	69	214	0.5524	18250	-	190	157					
Wolf	158.1	150	194.9	30	2.59	7	2.59	18.13	438	289	727	0.1871	67340	-	405	329					

ACSR Code Number	Type of ACSR	Calculated Resistance at 20°C (ohms/km) (Max)	Current Rating Max. (Amps)	Nominal Aluminium Area (sq. mm)	Inductive Reactance (ohm/km)	Weight (kg/km)
1	Squirrel	1.374	76	20	0.355	80
2	Gopher	1.098	85	25	0.349	106
3	Weasel	0.9116	95	30	0.345	128
4	Rabbit	0.5449	135	50	0.335	214
5	Otter	0.3434	185	80	0.328	339
6	Dog	0.2792	205	100	0.315	394

Table 4: Line Data of 33 Test Bus System

Branch No	From	То	R (ohm)	X (ohm)
1	1	2	0.0922	0.047
2	2	3	0.493	0.2511
3	3	4	0.366	0.1864
4	4	5	0.3811	0.1941
4	5	6	0.819	0.707
6	6	7	0.1872	0.6188
7	7	8	0.7114	0.2351
8	8	9	1.03	0.74
9	9	10	1.044	0.74
10	10	11	0.1966	0.065
11	11	12	0.3744	0.1238
12	12	13	1.468	1.155
13	13	14	0.5416	0.7129
14	14	15	0.591	0.526
15	15	16	0.7463	0.545
16	16	17	1.289	1.721
17	17	18	0.732	0.574
18	2	19	0.264	0.2565
19	19	20	1.5042	1.3554
20	20	21	0.4095	0.4784
21	21	22	0.7089	0.9373
22	3	23	0.4512	0.3083
23	23	24	0.898	0.7091
24	24	25	0.896	0.7011
25	6	26	0.203	0.1034
26	26	27	0.2842	0.1447
27	27	28	1.059	0.9337
28	28	29	0.8042	0.7006
29	29	30	0.5075	0.2585
30	30	31	0.9744	0.963
31	31	32	0.3105	0.3619
32	32	33	0.341	0.5302

Table 5:Load Data 33 Test Bus System

Branch No	P (KW)	Q (KVAR)
1	0	0
2	100	60
3	90	40
4	120	80
4	60	30
6	60	20
7	200	100
8	200	100
9	60	20
10	60	20
11	45	30
12	60	35
13	60	35
14	120	80
15	60	10
16	60	20
17	60	20
18	90	40
19	90	40
20	90	40
21	90	40
22	90	40
23	90	50
24	420	200
25	420	200
26	60	25
27	60	25
28	60	20
29	120	70
30	200	600
31	150	70
32	210	100
33	60	40

Table 6:Line Data of Begnas Feeder

Branch	From		Length(km		
Number	Bus	To Bus)	R(ohm)	X(ohm)
		1		, ,	, ,
	1	2		0.08893	
1	1		0.324	8	0.10206
	2	3		0.12352	
2			0.45	5	0.14175
	3	4		0.05764	
3			0.21	5	0.06615
	4	5		0.28825	0.17721
4			0.529	2	5
5	5	6	0.61	0.33238	0.20425
3	4	7	0.61	9 0.10705	0.20435
6	4	/	0.39	5	0.12285
	7	8			
7	8	9	0.32	0.08784 0.02662	0.1008 0.03055
8	8	9	0.097	7	5
0	9	10	0.077	0.09607	3
9		10	0.35	5	0.11025
-	7	11		0.23430	
10			0.43	7	0.14405
	11	12		0.18799	0.11557
11			0.345	1	5
	12	13		0.13077	
12	12	1.4	0.24	6	0.0804
13	13	14	0.116	0.06320	0.03886
13	13	15	0.110	0.22340	0.03880
14	13	13	0.41	9	0.13735
11	15	16	0.11	0.10353	0.13735
15			0.19	1	0.06365
	16	17		0.61028	
16			1.12	8	0.3752
	17	18		0.84459	
17	1.5	1.0	1.55	5	0.51925
10	16	19	0.45	0.12352	0.14175
18	19	20	0.45	5 0.56669	0.14175
19	19	20	1.04	6	0.3484
	19	21			
20			0.6	0.1647	0.189
21	21	22	0.42	0.11529	0.1323
22	22	23	0.25	0.13622	0.00275
22	22	24	0.25	5 0.35418	0.08375
23	23	24	0.65	0.35418	0.21775
23	24	25	0.03	0.31604	0.21//3
24		23	0.58	2	0.1943
	25	26	3.50	0.75662	0.1715
25			0.83	8	0.28635
	25	27		0.52872	
26			0.58	8	0.2001

	27	28	I	0.28259	
27	27	20	0.31	6	0.10695
28	28	29	0.85	0.77486	0.29325
	7	30	0.00	0.07960	0.23526
29	,		0.29	5	0.09135
	30	31	0.448	0.12297	
30				6	0.14112
	31	32	0.381	0.10458	0.12001
31	22	22	0.25	5	5
32	32	33	0.35	0.09607	0.11025
32	33	34	0.45	0.12352	0.11023
33		31	0.15	5	0.14175
	34	35	0.548	0.15042	
34				6	0.17262
	35	36	0.71	0.19489	
35	22	2.7	0.402	5	0.22365
36	33	37	0.402	0.11034	0.12663
30	37	38	0.55	0.15097	0.12003
37	37	36	0.55	5	0.17325
38	38	39	0.9	0.24705	0.2835
36	39	40	0.79	0.24703	0.2833
39		10	0.75	5	0.24885
	40	41	0.482	0.13230	
40				9	0.15183
	41	42	0.263	0.07219	0.08284
41			0.250	4	5
42	42	43	0.358	0.09827	0.11277
42	43	44	1.09	0.99364	0.11277
43	43	44	1.07	4	0.37605
44	44	45	0.95	0.86602	0.32775
	45	46	0.845	0.77030	0.29152
45	15			2	5
46	43	47	0.74	0.20313	0.2331
-	47	48	0.65	0.17842	
47				5	0.20475
	48	49	0.81	0.22234	
48	40	50	0.00	5	0.25515
49	49	50	0.89	0.24430	0.28035
47	50	51	0.936	0.25693	0.20033
50] 50	J 1	0.750	2	0.29484
	51	52	0.83	0.75662	
51				8	0.28635
	52	53	0.99	0.90248	0.244==
52	50	<i>7.1</i>	1.2	4	0.34155
53	53	54	1.3	1.18508	0.4485
54	54	55	1.15	1.04834	0.39675
55	54	56	1.25	1.1395	0.43125
	56	57	1.08	0.98452	
56				8	0.3726

	40	50	0.71	0.19489	1 1
57	40	58	0.71	0.19489	0.22365
57	70	50	0.65		0.22303
50	58	59	0.65	0.35418	0.21775
58	7 0		0.0	5	0.21775
59	59	60	0.9	0.49041	0.3015
60	60	61	1.2	0.65388	0.402
	61	62	0.82	0.74751	
61				2	0.2829
	62	63	1.14	1.03922	
62				4	0.3933
	61	64	1.09	0.59394	
63				1	0.36515
	64	65	0.89	0.48496	
64				1	0.29815
	65	66	0.54	0.29424	
65				6	0.1809
66	66	67	1.1	0.59939	0.3685
	67	68	0.91	0.49585	
67				9	0.30485
	68	69	0.75	0.40867	
68				5	0.25125
	69	70	1.04	0.56669	
69				6	0.3484
	70	71	0.92	0.50130	
70				8	0.3082
	71	72	1.26	0.68657	
71				4	0.4221

Table 7:Load Data of Begnas Feeder

Branch				
Number	From Bus	To Bus	PL (KW)	QL(KVAR)
		1	0	0
1	1	2	75.2	27.288
2	2	3	37.6	13.644
3	3	4	150.4	54.576
4	4	5	37.6	13.644
5	5	6	75.2	27.288
6	4	7	0	0
7	7	8	150.4	54.576
8	8	9	150.4	54.576
9	9	10	75.2	27.288
10	7	11	150.4	54.576
11	11	12	75.2	27.288
12	12	13	0	0
13	13	14	75.2	27.288
14	13	15	150.4	54.576
15	15	16	0	0
16	16	17	75.2	27.288
17	17	18	75.2	27.288
18	16	19	75.2	27.288
19	19	20	37.6	13.644
20	19	21	75.2	27.288
21	21	22	37.6	13.644
22	22	23	225.6	81.864
23	23	24	75.2	27.288
24	24	25	37.6	13.644
25	25	26	37.6	13.644
26	25	27	37.6	13.644
27	27	28	75.2	27.288
28	28	29	37.6	13.644
29	7	30	75.2	27.288
30	30	31	75.2	27.288
31	31	32	75.2	27.288
32	32	33	0	0
33	33	34	112.8	40.932
34	34	35	75.2	27.288
35	35	36	37.6	13.644
36	33	37	150.4	54.576
37	37	38	75.2	27.288
38	38	39	37.6	13.644

		.	+	+
39	39	40	0	0
40	40	41	75.2	27.288
41	41	42	37.6	13.644
42	42	43	0	0
43	43	44	37.6	13.644
44	44	45	37.6	13.644
45	45	46	18.8	6.822
46	43	47	37.6	13.644
47	47	48	37.6	13.644
48	48	49	376	136.44
49	49	50	225.6	81.864
50	50	51	75.2	27.288
51	51	52	37.6	13.644
52	52	53	37.6	13.644
53	53	54	0	0
54	54	55	37.6	13.644
55	54	56	37.6	13.644
56	56	57	18.8	6.822
57	40	58	75.2	27.288
58	58	59	150.4	54.576
59	59	60	37.6	13.644
60	60	61	75.2	27.288
61	61	62	37.6	13.644
62	62	63	37.6	13.644
63	61	64	18.8	6.822
64	64	65	75.2	27.288
65	65	66	37.6	13.644
66	66	67	75.2	27.288
67	67	68	37.6	13.644
68	68	69	18.8	6.822
69	69	70	75.2	27.288
70	70	71	37.6	13.644
71	71	72	473.76	171.9144