Лабораторная работа №2.4.1

Определение теплоты испарения жидкости

Цель работы:

- Измерение давления насыщенного пара жидкости при разной температуре
- Вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клазиуса

Оборудование: термостат, герметический сосуд, заполненный исследуемой жидкостью, отсеченный микроскоп

1. Теория

Как известно, изотермы Ван-дер-Ваальса описываются уравнением:

$$(P + \frac{\alpha}{V^2})(V - b) = RT \tag{1}$$

Что соответствует графику (1).

График №1

Изотермы реальных газов из уравнения

Ван-дер-Ваальса

Проведем малый цикл Карно, совершив фазовый переход на верхней изотерме цикла. Тогда из теоремы Карно и формулы для работы:

> $\delta A = \delta Q_{+} \frac{dT}{T}$ (2)

$$\delta A = dP(\Delta V) \Rightarrow \frac{dP}{dT} = \frac{L}{T(V_{q_i} - V_{l_i})}$$
 (3)

Где V_l . и V_g . = V молярные объемы жидкости и газа. Соответственно, достаточно измерить $\frac{dP}{dT}$, температуру и найти молярный объем газа (объем жидкости должен вносить поправку к точности измерений ниже инструментальной)

Пренебрегая поправками Ван-дер-Ваальса выразим молярный объем и подставим в (3), откуда получим окончательные выражения, которыми удобно оперировать:

$$V = \frac{RT}{P} \Rightarrow L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\log P)}{d(1/T)}$$

$$L = -R \frac{d(\log P)}{d(1/T)}$$
(4)

2. Экспериментальная установка

Вид установки представлен в описании работы. Заполненная водой ёмкость подключена к термостату. В неё погружена запаянная ёмкость с исследуемой жидкостью; над жидкостью находится только её насыщенный пар, давление которого определяется по манометру при помощи отсчётного микроскопа. Таким образом можно исследовать зависимость давления насыщенного пара исследуемой жидкости от температуры P(T), а затем определить L с помощью (4).

Необходимо выдерживать скорость изменения температуры не слишком большой, поскольку в противном случае не будет успевать устанавливаться равновесие между теплообменной и исследуемой жидкостью, а также между исследуемой жидкостью и её парами. В целях контроля данные измерения производятся как при нагревании, так и при охлаждении жидкости. Рабочее тело - спирт. Табличное значение

$$L = 42.32 \frac{KJ}{mol}$$

Подогревание жидкости и пара происходит с помощью постоянного тока.

3. Ход работы

Расчет давления: Поскольку давление пара зависит от разности показаний манометра $\Delta x = x_1 - x_2$, и график для анализа работы будет построен в осях $\ln P(T^{-1})$, то важен будет только угол наклона. Поэтому расчет давления в СИ не требуется, т.к. это не изменит наклон:

$$P = \rho g \Delta x \Rightarrow \ln P = \ln x + const$$

Измерим уровни ртути в манометре, а так же температуру. Результаты представлены в таблице №1. Построим график $\ln \Delta x$ от T^{-1} .

Рис. 1: График зависимости $\ln \Delta x$ от T^{-1}

Из графика определим коэффициент наклона: $\frac{d(\ln \Delta x)}{d(T^{-1})} = -5151.6$ И получим среднее значение L по формуле (4): $L \simeq 42.81 \cdot 10^3 \frac{kJ}{mol}$

Оценка погрешностей: приборные погрешности термометра $\Delta t = 0.1^{\circ}C$, штангенциркуля $\Delta x = 0.1mm$. Случайная погрешность МНК вычислена по стандартным формулам и при нагревании и охлаждении равна соответственно: $\Delta_1 L = 0.6$ и $\Delta_2 L = 0.7$.

Итоговая погрешность равна случайной, т.к. приборы не вносят значительной погрешности ($\Delta x = \frac{\Delta x}{x} \simeq 10^{-3}, \, \Delta T^{-1} = \frac{\Delta T}{T} \simeq 10^{-4}$)

4. Результат

Убедившись, что приборы вносят малую погрешность в результат получим, наконец, значение L

$$L = 42.81 \pm 0.7 \frac{kJ}{mol} \tag{5}$$

t^o, C	x_1 , MM	x_2 , MM	Δx , mm	T^{-1}, K^{-1}	$\frac{1}{\ln x}$
24.8	32.0	81.0	49.0	3.356	3.892
25.6	31.0	81.0	50.0	3.347	3.912
26.4	29.0	83.0	54.0	3.338	3.989
26.8	28.0	83.0	55.0	3.333	4.007
27.2	28.0	84.0	56.0	3.329	4.025
27.8	27.0	86.0	59.0	3.322	4.078
28.2	26.0	87.0	61.0	3.318	4.111
30.6	22.0	89.0	67.0	3.292	4.205
31.0	22.0	90.0	68.0	3.287	4.220
31.6	20.0	92.0	72.0	3.281	4.277
32.0	20.0	93.0	73.0	3.277	4.290
32.6	18.0	94.0	76.0	3.270	4.331
33.0	17.0	95.0	78.0	3.266	4.357
33.6	16.0	96.0	80.0	3.259	4.382
34.0	15.0	98.0	83.0	3.255	4.419
34.6	14.0	99.0	85.0	3.249	4.443
35.0	13.0	99.0	86.0	3.245	4.454
35.6	11.0	102.0	91.0	3.238	4.511
36.0	10.0	102.0	92.0	3.234	4.522
36.6	8.0	104.0	96.0	3.228	4.564
37.0	8.0	105.0	97.0	3.224	4.575
37.6	7.0	105.0	98.0	3.218	4.585
38.0	6.0	108.0	102.0	3.213	4.625
38.6	4.0	109.0	105.0	3.207	4.654
39.0	3.0	109.0	106.0	3.203	4.663
39.6	0.0	111.0	111.0	3.197	4.710
39.6	1.0	110.0	109.0	3.197	4.691
39.0	2.0	108.0	106.0	3.203	4.663
38.6	3.0	108.0	105.0	3.207	4.654
38.0	4.0	107.0	103.0	3.213	4.635
37.6	7.0	106.0	99.0	3.218	4.595
37.0	8.0	106.0	98.0	3.224	4.585
36.6	8.0	104.0	96.0	3.228	4.564
36.0	10.0	101.0	91.0	3.234	4.511
35.6	11.0	100.0	89.0	3.238	4.489
35.0	13.0	93.0	80.0	3.245	4.382
34.0	14.0	97.0	83.0	3.255	4.419
33.6	15.0	96.0	81.0	3.259	4.394
33.0	17.0	95.0	78.0	3.266	4.357
32.6	18.0	93.0	75.0	3.270	4.317
32.0	20.0	92.0	72.0	3.277	4.277
27.2	28.0	84.0	56.0	3.329	4.025
26.4	29.0	82.0	53.0	3.338	3.970

Таблица №1