

氯气的性质

日期:	时间:	姓名:
Date:	_ Time:	_ Name:

初露锋芒

许多家庭里都会备一些清洗液,在搞卫生的时候可以用来去除污垢,可为什么洁厕灵和84消毒液这两种 我们洗厕所常用到的东西,合二为一造成了绝命毒杀呢?

洁厕灵里是盐酸,84 消毒液是次氯酸钠,二者混合产生氯气,严重时可致命,并且只需一滴就可发生反应。

化学反应如下: 2HCI+NaCIO→NaCI+CI2↑+H2O

氯气是一种有毒气体,它主要通过呼吸道侵入人体并溶解在黏膜所含的水分里,生成次氯酸和盐酸,对上呼吸道黏膜造成损伤:次氯酸使组织受到强烈的氧化;盐酸刺激黏膜发生炎性肿胀,使呼吸道黏膜浮肿,大量分泌黏液,造成呼吸困难。

症状轻时,氯气中毒的明显症状是发生剧烈的咳嗽。由食道进入人体的氯气会使人恶心、呕吐、胸口疼痛和腹泻。

症状重时,会发生肺水肿,使循环作用困难而致死亡。1L空气中最多可允许含氯气 1mg,超过这个量就会引起人体中毒。

应对:万一不小心出现中毒症状,请立即做两件事。

开窗: 通风

湿毛巾: 捂住口鼻

	1. 了解氯气的性质和用途
	2. 知道新制氯水的性质
学习目标	3. 掌握氯气的制法(实验室制法和工业制法)
&	4. 学习漂白粉的工业制备原理和工作原理
重难点	1. 氯气的性质和制法
	2. 新制氯水的成分
	3. 漂粉精的成分和工作原理

根深蒂固

一、氯气的物理性质

- 1. 氯气是黄绿色、有毒、有刺激性气味的气体
- 2. 密度比空气大
- 3. 易液化 (液氯), 能溶于水 (氯水), 常温下 1 体积水可溶解 2 体积氯气

二、氯气的化学性质

氯原子最外层上有7个电子,在反应中易得到电子,氯气一般做强氧化剂,在化学反应中一般都表现出强氧化性,化学性质很活泼。

能与绝大多数的金属、许多的非金属直接化合,还能与许多化合物反应。

1. 与 H, 的反应:

工业上采用 H,包围 Cl,点燃,这样能够使有毒的价格高的 Cl,充分反应

2. 与金属的反应:

$$Cu + Cl$$
, $\xrightarrow{\Delta} CuCl$, (放热, 棕褐色烟)

氯气能与大多数的金属化合而生成金属氯化物。由于氯气具有强氧化性,一般金属在加热后放入氯气中反应,能使金属在氯气中燃烧。当它与变价金属直接化合时,一般能形成该金属的高价态氯化物。

3. 与非金属的反应: 氯气能与多种非金属直接化合(如 S、P等)而生成非金属氯化物:

$$2P + 3Cl_2 \xrightarrow{\underline{k}\underline{k}} 2PCl_3$$
(无色液体)
 $2P + 5Cl_3 \xrightarrow{\underline{k}\underline{k}} 2PCl_4$ (白色固体)

4. 与水反应: 氯气在水中可以部分地发生反应,但反应进行得很缓慢,生成盐酸和次氯酸

$$Cl$$
, + H,O \rightleftharpoons HCl + HClO

5. 与碱的反应:

$$Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$$

拓展:
$$3Cl_2 + 6KOH(浓)$$
 $\xrightarrow{\Delta} 5KCl + KClO_3 + 3H_2O$

6. 与其他卤化物的反应: 氯气可以把溴、碘从它们的卤化物溶液中置换出来:

$$Cl_2 + 2NaBr \rightarrow 2NaCl + Br_2$$
; $Cl_2 + 2HBr \rightarrow 2HCl + Br_2$

$$Cl_2 + 2NaI \rightarrow 2NaCl + I_2$$
; $Cl_2 + 2HI \rightarrow 2HCl + I_2$

置换出的Br, , I, 可以用CCl₄或苯等进行萃取富集, 颜色现象明显, 利于观察。

三、氯水的成分探究

$$Cl_2 + H_2O \rightleftharpoons HCl + HClO$$

1. 次氯酸: 生成物 HClO 是弱酸,不稳定,见光易分解,具有很强的氧化性(Cl)。

$$HClO \rightleftharpoons H^+ + ClO^-$$

次氯酸的强氧化性表现在:

- ①能氧化一些具有还原性的物质;
- ②能使有机色素分子(有色布条、石蕊、品红等)氧化而变成无色物质;
- ③具有杀菌消毒能力。常用于自来水的杀菌消毒。
- 2. 氯水成分:

三分	Cl ₂ 、H ₂ O、HClO
四离	H ⁺ 、Cl ⁻ 、ClO ⁻ 、OH ⁻

3. 氯水的化学性质

由于氯水中含有多种成分,它与不同物质反应时,所起作用物质的主要成分不同。

- (1) 氯水的颜色: 黄绿色【Cl₂】
- (2) 氯水中滴加石蕊溶液:溶液先变为红色【H+】,后变无色【HClO】
- (3) 氯水中滴加 AgNO3溶液:溶液中产生白色沉淀【Cl-】

4. 久置氯水

久置氯水中,因 HClO 见光分解,促进了 Cl_2 和 H_2O 的反应,所以久置氯水的主要成分为盐酸,存在的微粒有 H^+ 、 Cl^- 、 H_2O 及由水电离出的少量 OH^- 。如不特别说明,一般所讲的氯水是新制氯水。氯水通常随配随用,如需储存备用,宜放在棕色瓶中并置于冷暗处避光保存。

- 5. 注意事项:
- (1) 组成认识 分子: Cl_2 、 H_2O 、HClO 离子: H^+ 、 Cl^- 、 ClO^- 、 OH^-

「酸性:稀HCl性质

(3) 性质认识 〈漂白性: HClO性质

氧化性: Cl,和HClO性质

四、氯气的制法和用途

- 1. 实验室制法
- (1) 实验原理:实验室常用强氧化剂如 MnO,、KMnO₄、KClO₃等和浓盐酸来制 Cl,

4HCl
$$($$
 $%)$ + MnO₂ $\xrightarrow{\Delta}$ MnCl₂ + Cl₂ ↑ +2H₂O

$$2KMnO_4 + 16HCl(液) \rightarrow 2KCl + 2MnCl_2 + 5Cl_2 ↑ +8H_2O$$

$$KClO_3 + 6HCl(滚) \rightarrow KCl + 3Cl_2 ↑ +3H_2O$$

或用浓 H₂SO 与固体食盐代替浓 HCl与 MnO₂ 反应来制取 Cl₂:

$$2$$
NaCl + 3 H₂SO₄($?$ x) + MnO₂ $\xrightarrow{\Delta}$ MnSO₄ + 2 NaHSO₄ + Cl₂ ↑ +2H₂O

- (2) 除杂质: 盛饱和食盐水的洗气瓶除 HCl 杂质
- (3) 干燥: 盛浓硫酸的洗气瓶除去水蒸气
- (4) 检验: Cl2 可用湿润的淀粉碘化钾试纸在瓶口检验,如果试纸变蓝,即说明 Cl2 已收集满
- (5) 收集: 向上排空气法或排饱和食盐水法
- (6) 尾气处理:注意多余的 Cl₂ 不能随便排入空气中,应通入 NaOH 溶液中将其吸收

$$Cl_2 + 2NaOH \longrightarrow NaCl + NaClO + H_2O$$

2. 工业制法:

电解饱和食盐水: $2NaCl + 2H_2O \xrightarrow{\text{ide}} 2NaOH + Cl_2 \uparrow + H_2 \uparrow$

电解熔融的氯化钠: 2NaCl(熔融)—^{通电} $\rightarrow 2Na + Cl$, 个

3. 用途:制盐酸、漂白粉、农药、聚氯乙烯塑料、合成纤维、消毒、漂白等。

五、次氯酸和漂粉精

1. 次氯酸

次氯酸是一种不稳定的弱酸,容易分解放出氧气。当氯水受到日光照射时,次氯酸的分解速率加快。

2HClO
$$\xrightarrow{\text{HM}}$$
2HCl+O₂↑

思考: 新制的氯水与久置的氯水在成分上有何不同?

新制氯水 (三分四离) 久置氯水是稀盐酸

用途: 次氯酸是一种很强的氧化剂,具有很强的杀菌消毒能力,能杀死水里的病菌,所以自来水常用氯液(1m³ 水里约通入 2g 氯气)来杀菌消毒。

次氯酸的强氧化性还能使某些染料和有机色素褪色,可用作棉、麻和纸张等物品的漂白剂。

但次氯酸不稳定,难以保存,而次氯酸盐比次氯酸要稳定,容易存放,故工业上将其制成盐——漂粉精来使用。

2. 漂粉精

(1)制取:工业上通常将Cl₂通入石灰乳制造漂粉精

$$2Cl_2 + 2Ca(OH)_2 \xrightarrow{\Delta} CaCl_2 + Ca(ClO)_2 + 2H_2O$$

思考: 为什么工业上通常用石灰乳跟氯气反应制消毒剂,而不用烧碱跟氯气反应呢?

解析:既然是工业上用的,使用量肯定是非常的大,那就要选用成本较低的,安全性较好的,效果差一点没关系,关键是有效益和安全;再加上 NaOH 成本高,不安全,所以工业漂白粉用的通常是消石灰,而实验室制备经常会考虑 NaOH

(2)漂白粉是混合物,主要成分为 CaCl₂和 Ca(ClO)₂,有效成分为 Ca(ClO)₂,它是白色粉末,可溶于水,在酸性溶液中,生成具有杀菌消毒和漂白作用的次氯酸:

$$Ca(ClO)_2 + 2HCl \rightarrow 2HClO + CaCl_2$$

$$Ca(ClO)_2 + 2CO_2 + 2H_2O \rightarrow 2HClO + Ca(HCO_3)_2$$

工业上把氯气加工成漂粉精再消毒漂白,原因是:①稳定不易分解②有利于贮存、运输等。

枝繁叶茂

考点 1: 氯气的性质

例 1: 氯气是一种化学性质很活泼的非金属单质,它具有较强的氧化性,下列叙述中不正确的是

- A. 红热的铜丝在氯气里剧烈燃烧,生成棕黄色的烟
- B. 钠在氯气中燃烧, 生成白色的烟
- C. 纯净的 H₂ 在 Cl₂ 中安静地燃烧,发出苍白色火焰,集气瓶口呈现白色烟雾
- D. 氯气能与水反应生成次氯酸和盐酸, 久置氯水最终变成稀盐酸

【难度】★

【答案】C

变式 1: (多选)下列关于氯及其化合物的叙述中正确的是 ()

- A. 因为氯气有毒,有强氧化性,所以氯气可用于杀菌、消毒、漂白
- B. 常温下 1 体积水中能溶解 2 体积 Cl₂, 所以饱和氯水是浓溶液
- C. 氯气跟碱溶液的反应实质是 Cl₂和 H₂O 的反应
- D. 在使用漂白粉时,加入食醋可增强漂白作用

【难度】★

【答案】CD

例 2: 将潮湿的 Cl_2 通过甲装置后,再通过放有干燥红色布条的乙装置,红色布条不褪色。甲装置中所盛试剂 可能是 ()

①浓硫酸

②NaOH 溶液

③KI 溶液

④饱和食盐水

A. 112

B. 23

C. (1)(2)(3)

D. 1234

【难度】★★

【答案】C

考点 2: 氯水的成分探究

例 3: 在氯水中存在多种分子和离子,它们在不同的反应中表现各自的性质。下列实验现象和结论一致且正确的是 ()

- A. 向氯水中加入有色布条, 一会儿有色布条褪色, 说明溶液中有 Cl2 存在
- B. 溶液呈黄绿色,且有刺激性气味,说明有 Cl₂分子存在
- C. 先加入盐酸酸化,再加入 AgNO3 溶液产生白色沉淀,说明溶液中有 Cl-存在
- D. 加入 NaOH 溶液, 氯水黄绿色消失, 说明有 HCIO 分子存在

【难度】★

【答案】B

看有 Cl ₂ 分子	《的成分:从宏观上看有、 - 、、H ⁺ 、Cl ⁻ 、 包和氯水中所含主要粒子的实验操作和	、OH ⁻ 七种微粒。	四种物质,从微 操作和现象的标号:	
A	В	С	答案	
a. H ⁺ b. Cl ⁻ c. Cl ₂	①将氯水滴入品红溶液中 ②在氯水中滴加紫色石蕊溶液 ③在氯水中滴加 AgNO3 溶液 ④将湿润的淀粉 KI 试纸置于氯水试	I. 有白色沉淀生成 II. 试纸由白色变成蓝色 III. 品红由红色变成无色	a b c	
d. HClO	剂瓶口上方	IV. 滴入瞬间溶液显红色后褪色	4	

【难度】★★

【答案】氯气 盐酸 次氯酸 水

HClO 分子 H2O 分子 ClO-

a. ②IV b. ③I c. ④II d. ①III/d. ②IV

例 4:	用滴管将新制氯水慢慢滴入	含酚酞的 NaO	H 稀溶液中,	当滴到最后-	一滴时红色突然褪色。	试回答下列问
题:						

(2) 产生上述现象的原因可能有两种(简要文字说明):

①是由于	

②是由于

简述怎样用实验证明红色褪去的原因是①或者②:

【难度】★★

【答案】

- (1) 在阴凉处置于棕色试剂瓶中密封保存
- (2) ①氯水与 NaOH 反应生成两种盐,碱性减弱
 - ②氯水过量后 HCIO 的漂白性将红色溶液变为无色

向无色溶液中再滴加 NaOH 溶液, 若不再出现红色, 应为原因②; 若再出现红色, 应为原因①

【易错点拨】

这是一道逻辑推理题也是一道很好的思维训练题。红色存在的原因要满足两点:①溶液呈碱性②酚酞。对应的红色褪去有两种可能:①溶液中的 NaOH 因与 Cl₂ 反应而被消耗,碱性减弱;②溶液中的酚酞因与 HClO 发生氧化还原反应而被消耗,缺乏指示剂而褪色。想要证明红色褪去的原因很简单,简单的一种方法是,向红色刚褪去的无色溶液中再滴入几滴 NaOH 溶液,若溶液并未变红,说明溶液中没有了酚酞;反之,则说明原溶液中没有了 NaOH。

考点 3: 氯气的制备和性质实验

例 5: 用 MnO₂ 和浓盐酸制取纯净干燥的氯气,并让氯气与铜粉反应来制取纯净的无水 CuCl₂,装置如图所示:

请回答下列问题:

(1) 实验前检查整套装置的气密性的方法是		
(2) A 中反应的化学方程式是		o
(3) B 中选用的试剂是	,其作用是	;
C 中选用的试剂是	,其作用是	
(4) D 中反应的化学方程式是		
溶于少量水,得到色溶液。		
(5) E 中选用的试剂是	,其作用是	,写出 E 中发
生反应的化学方程式:		0

【难度】★★

【答案】

- (1)装置连接好后,将导管末端放入盛水的烧杯中,用酒精灯微热烧瓶,烧杯中的导管口有气泡冒出,停止加热,导管口部形成一段水柱,表明整套装置不漏气;
- (2) $MnO_2 + 4HCl$ (\cancel{R}) $\xrightarrow{\Delta} MnCl_2 + Cl_2 \uparrow + 2H_2O$
- (3) 饱和食盐水,除去 Cl2 中的 HCl 气体,浓硫酸,除去 Cl2 中的水蒸气
- (4) Cu + Cl, $\xrightarrow{\Delta} CuCl$, 绿
- (5) NaOH 溶液,尾气处理防止污染环境, 2NaOH + $Cl_2 \rightarrow$ NaCl + NaClO+ H_2 O

【易错解析】

装置气密性检查的方法:装置连接好后,将导管末端放入盛水的烧杯中,用酒精灯微热烧瓶,烧杯中的导管口有气泡冒出,停止加热,导管口部形成一段水柱,表明整套装置不漏气,

变式 1: 已知 $KMnO_4$ 与浓盐酸在常温下反应也能产生 Cl_2 。若用下图所示的实验装置来制备纯净、干燥的氯气,并试验它与金属的反应。每个虚线框表示一个单元装置,其中有错误的是(

- A. 只有①和②处
- C. 只有②和③处
- B. 只有②处
- D. 只有234处

【难度】★★

【答案】D

例 6: 实验室用下图所示装置制备氯气,并进行氯气性质实验,请回答下列问题:

(1) A 中加入	,B 中加入,		
烧瓶中发生的化学方程式为		0	
(2) C 中盛有紫色石蕊溶液,则	C 中的现象是		对这种现
象的解释是		o	
(3) D 中是 NaBr 溶液,发生的环	见象是		反应的化
学方程式为		o	
(4) E 中盛有 KI-淀粉的混合溶液	返,现象是	0	
(5) F 中是 AgNO ₃ 溶液,现象是	E	,	反应的化
学方程式是	,	o	
(6) G 中为湿润的红色布条, 3	观象是		_,原因是
		0	
(7) H 中一般应盛有	,其作用是	,	发生反应
的化学方程式为			

【难度】★★【答案】(1) 浓盐酸 $MnO_2 + 4HCl(浓)$ $\xrightarrow{\Delta} MnCl_2 + Cl_2 \uparrow + 2H_2O$

(2) 先变红后褪色 氯气溶于水产生盐酸和次氯酸,盐酸的酸性可以使石蕊溶液变红,次氯酸具有漂白性可以使石蕊褪色

- (3) 无色变成橙色 $Cl_2 + 2NaBr \longrightarrow Br_2 + 2NaCl$
- (4) 无色变成蓝色 (5) 白色沉淀 Cl₂+H₂O ⇌ HCl+HClO HCl+AgNO₃ → AgCl ↓+HNO₃
- (6) 有色布条褪色, 氯气溶于水产生具有漂白性的次氯酸将有色布条漂白褪色
- (7) NaOH, 处理尾气吸收多余的 Cl_2 , $2NaOH + Cl_2 \rightarrow NaCl + NaClO + H_2O$

变式 1: 已知常温下氯酸钾与浓盐酸反应放出氯气,现按图示进行卤素的性质实验。玻璃管内装有分别滴有不同溶液的白色棉球,反应一段时间后,对图中制定部位颜色的描述中,正确的是表中的哪一项 ()

选项	1)	2	3	4
A	黄绿色	橙色	蓝色	白色
В	无色	橙色	紫色	白色
С	黄绿色	橙色	蓝色	无色
D	黄绿色	无色	紫色	白色

【难度】★★【答案】A

考点 4: 氯气的相关计算

例 7: 实验室用 6.96g 二氧化锰跟 50g36.5%盐酸共热,问:

- (1) 在标准状况下可产生氯气多少升?
- (2) 如不考虑氯化氢挥发的损失,将反应后的溶液加水稀释到 250mL,取 25mL 跟足量的硝酸银溶液反应, 可得沉淀多少克?

【难度】★★

【答案】(1) 1.792L (2) 4.879g

变式 1: 小明用 25.665g 的 MnO₂ 和足量的浓盐酸共热制取 Cl₂,得到 Cl₂的质量为 mg。小红用 100mL36.5%的 浓盐酸 ($\rho = 1.18g/cm^3$) 和足量的 MnO_2 共热制取 Cl_2 ,得到 Cl_2 的质量为 ng。在不考虑反应物的损耗的前提下, m 与 n 的大小关系是 m n (填 ">" "<" 或 "="), 其理由是:

【难度】★★★

【答案】m>n

小明的方法中,生成的氯气的量取决于 MnO_2 , $n(MnO_2) = \frac{25.665}{87} = 0.295 mol$,根据化学方程式,生成的氯气 n(Cl₂)=0.295mol; 小红的方法中,生成氯气的量取决于浓盐酸,反应也会逐渐停止下列,故生成的氯气 $n(Cl_2) < \frac{1.18}{4} = 0.295 \text{mol}$,因此 m>n。

例 8: 实验室制 Cl_2 的反应为: $4HCl(浓) + MnO_2 \longrightarrow MnCl_2 + Cl_2 \uparrow + 2H_2O$ 下列说法中,错误的是(

- A. 还原剂是 HCl, 氧化剂是 MnO₂
- B. 每生成 1molCl₂,转移电子的物质的量为 2mol
- C. 每消耗 1molMnO₂, 起还原剂作用的 HCl 消耗 4mol
- D. 生成的 Cl₂中,除含有一些水蒸气外,还含有 HCl 杂质

【难度】★

【答案】C

变式 1:标准状况下 2.24L H,和 Cl,组成的混合气体,经光照后缓缓通入 100mL1mol/L NaOH 溶液中充分反应,

测得最终溶液中 NaClO 的浓度为 0.1 mol/L (假设溶液体积不变,且不考虑水解),则原混合气体中 Cl,的体积

分数为(

A. 55%

B. 60%

C. 65%

D. 70%

【难度】★★

【答案】B

例 9: 两种金属组成的合金 5.6g, 与氯气完全反应,消耗氯气 7.1g,则合金的组成可能是()

A. Cu和Zn B. Na和Mg C. Fe和Ca D. Cu和Fe

【难度】★★

【答案】D

变式 1: 两种金属组成的合金 6.4g,与盐酸完全反应,消耗 0.2mol HCl,则合金的组成可能是(

A. Cu和Zn

B. Na 和 Mg

C. Fe 和 Mg

D. Cu和Fe

【难度】★★

【答案】D

ᆂ.	上	_	海州特州名利安东	⊦⊯
考	Щ.	0:	漂粉精的制备和性	上/灾

考点 5: 漂粉精的制备和性质
例 10: 洪灾过后,饮用水的消毒杀菌成为抑制大规模传染病爆发的有效方法之一。漂白粉是常用的消毒剂。
(1) 工业上将氯气通入石灰乳制取漂白粉,化学方程式为。
(2)漂白粉的有效成分是(填化学式),它与次氯酸相比(稳定,不稳定)。
(3)漂白粉溶于水后,与空气中的 CO ₂ 作用,既产生有漂白、杀菌作用的次氯酸,化学方程式为:
(4)将漂白粉溶于适量水中,呈白色浊状物,静置沉降。取少量上层清夜,滴加几滴酚酞溶液,溶液先呈红色,但随后溶液迅速褪色,说明漂白粉呈性,并具有性。
【难度】★★
【答案】2C1 ₂ +2Ca(OH) ₂ →CaCl ₂ +Ca(C1O) ₂ +2H ₂ O Ca(C1O) ₂ 稳定 Ca(ClO) ₂ +2CO ₂ +2H ₂ O→Ca(HCO ₃ ₂ +2HClO 碱性 强氧化性
变式 1: 将 Cl₂制成漂粉精的主要目的是 (
A. 增强漂白和消毒作用
B. 使它转化为较稳定物质,便于保存和运输
C. 使它转化为较易溶于水的物质
D. 增加氯的质量分数,有利于漂白、消毒
【难度】★★
【答案】B
 变式 2: 在新配制的 Ca(ClO)₂ 溶液中加入品红试剂,溶液显红色。下列情况中,品红褪色最快的是() A. 将盛溶液的烧杯自然放置 B. 往溶液中滴加少量稀盐酸 C. 通过饮料吸管往溶液中吹气 D. 往溶液中滴加少量氢氧化钠溶液 【难度】★★ 【答案】B
变式 3: 市售"家用消毒液发生器"是以精盐和自来水为原料,通电时发生器内的电极板上产生大量气泡(同时位产生的气体充分与电解液接触),所制得的混合液具有强烈的杀菌能力,且不致对人体造成伤害,该发生器面制消毒液所涉及到的化学反应有 ()
①2NaCl+2H ₂ O $\xrightarrow{\text{@}\text{#}}$ 2NaOH+H ₂ ↑+Cl ₂ ↑
②Cl ₂ +2NaOH→NaCl+NaClO+H ₂ O
③ H_2+Cl_2 $\xrightarrow{\text{\ti}}}}}}}}} \end{endotes}}}} 2HCl}}} \} \} \} \} \} \} \} \} \} \} \} \} $
$\textcircled{4}Cl_2+H_2O \rightleftharpoons HCl+HClO \textcircled{5}2HClO \xrightarrow{\mathcal{H} \textcircled{M}} 2HCl+O_2 \uparrow$
A. ①④⑤ B. ①② C. ③④⑤ D. ②③④ 【难度】★★

【答案】B

【易错解析】区分漂粉精和84消毒液的区别

瓜熟蒂落

1. 下列物质中,属于	·纯净物的是 ()			
A. 漂粉精	B. 氯水	C. 盐酸	D. 液氯	
【难度】★【答案】I)			
2. 自来水厂常用氯气	【消毒,市场上有商贩用自来7	水充当纯净水。下列	试剂可辨别纯净水真伪的是(()
A. 酚酞溶液	B. 氯化钡溶液	C. 氢氧化钠溶	液 D. 硝酸银溶液	
【难度】★				
【答案】D				
3. 关于 Cl ₂ 和 Cl ⁻ 的说	总法正确的是 ()			
A. 都有毒	B. 7	加到 AgNO3 溶液中都	『能生成白色沉淀	
C. 都能跟金属邻	为反应 D.	都呈黄绿色		
【难度】★				
【答案】B				
4. 下列物质能使干燥	的蓝色石蕊试纸先变红后褪色	色的是 ()		
①氯气 ②液氯	③新制氯水 ④敞口放置的	人置氯水 ⑤盐酯	8 ⑥用盐酸酸化的漂白粉	
A. 123	B. 1236	C. 36	D. 346	
【难度】★★				
【答案】C				
5. 下列说法中,不正	确的是 ()			
A. 干燥的氯气7	下能漂白有色物质	B. 久置的	氯水没有漂白作用	
C. 漂粉精在工业	L上是用氯气和烧碱反应制备F	的 D. 自来水	生产中用氯进行消毒	
【难度】★				
【答案】C				
6. 当不慎有大量氯气	[逸出周围空间时,可以用浸在	有一定浓度的某种物	质的水溶液的毛巾捂住鼻子,	最适宜采
用的物质是()			
A. NaOH	B. NaCl	C. $NH_3 \cdot H_2O$	D. Na_2CO_3	
【难度】★				
【答案】D				
	试管壁上沾有 MnO2,除去时可)	
	B. KOH 溶液	C. 稀盐酸	D. 热的浓盐酸	
【难度】★				
【答案】D				
	「自由移动的氯离子的是 (
	②氯化氢溶液 ③次			
	B. 345	C. (2)(3)(4)	D. 123	
【难度】★★				
【答案】A				
9. 关于氯水的叙述,				
	マ含 Cl ₂ 和 HClO 分子			
B. 新制氯水可包				

- C. 光照氯水有气泡产生, 该气体为 Cl₂
- D. 氯水放置数天后, pH 值增大, 漂白能力将变弱

【难度】★★【答案】B

- 10. 实验室制氯气时有如下操作,操作顺序正确的是 ()
 - ①连接好装置,检查气密性
 - ②缓缓加热,加快反应使气体均匀逸出
 - ③在烧瓶中加入 MnO2 粉末
 - ④往分液漏斗中加入浓盐酸, 再缓缓滴入烧瓶中
 - ⑤用向上排空气法收集氯气
 - ⑥用氢氧化钠溶液吸收多余的氯气
 - A. (1)(2)(3)(4)(5)(6) B. (4)(3)(1)(2)(5)(6) C. (1)(3)(4)(2)(5)(6) D. (1)(4)(3)(2)(5)(6)

【难度】★★

【答案】C

- 11. 下列反应中,最能说明次氯酸是一种弱酸的是(
 - A. Cl₂+H₂O⇌HCl+HClO
 - B. $2HClO \xrightarrow{\text{HE}} 2HCl + O_{2} \uparrow$
 - C. Ca(ClO), $+2HCl \xrightarrow{\text{HE}} 2HClO + CaCl$,
 - D. $Ca(ClO)_2 + 2H_2O + 2CO_2 \xrightarrow{\text{MM}} 2HClO + Ca(HCO_3)_2$

【难度】★★

【答案】D

- 12. 今有盐酸、氯化钠、氢氧化钠和氯水 4 种溶液,可用来区分它们的一种试剂是 (
 - A. AgNO3溶液

B. 酚酞溶液

C. 湿润的蓝色石蕊试纸

D. 紫色石蕊试液

【难度】★★

【答案】D

- 13. 将一盛满 Cl₂ 的试管倒立在水槽中,当日光照射相当一段时间后,试管中最后剩余的气体体积约占试管容 积的 (
 - A. 2/3
- B. 1/2
- C. 1/3
- D. 1/4

【难度】★★

【答案】B

14. 某学生想制作一种家用环保型消毒液发生器,用石墨作电极电 溶液,通电时,为使 Cl2 被完全吸收,制得有较强杀菌能力的消毒 的装置,则对电源名称和消毒液的主要成分判断正确的是

解饱和氯化钠 液,设计了如图)

- A、a 为正极, b 为负极; NaClO 和 NaCl
- B、a 为负极, b 为正极; NaClO 和 NaCl
- C、a 为阳极, b 为阴极; HClO 和 NaCl
- D、a 为阴极, b 为阳极; HClO 和 NaCl

【难度】★★★

【答案】B

15. 有 0.5mol 某元素的单质直接与氯气反应后,质量增加 17.75g,则该元素为 (

- A. 铝
- B. 钠
- C. 铁
- D. 镁

【难度】★★

【答案】B

【易错点拨】单质与氯气反应后,增加的质量即是与它反应的氯气的质量。因此,只要根据它们的物质的量之 比就能知道金属在此氯化物中的化合价。

16. 将 0.2molMnO₂和 50mL12mol/L 盐酸混合后加热,反应完全后向留下的溶液中加入足量 AgNO₃溶液,生 成 AgCl 沉淀物质的量为(不考虑盐酸的挥发性)()

A. 等于 0.3mol

B. 小于 0.3

C. 大于 0.3mol, 小于 0.6mol

D. 等于 0.6mol

【难度】★★

【答案】C

【易错点拨】随着反应的进行,浓盐酸会逐渐变为稀盐酸,反应也会停止,所以盐酸并未完全反应,故生成 AgCl 沉淀物质的量肯定会大于 0.3mol, 小于 0.6mol。

17. 氢气和氯气的混合气体 aL (标准状况下),经光照反应后,所得气体恰好与 bmol 氢氧化钠完全反应,则 a、 b 的关系不可能是 (

A. $b > \frac{a}{22.4}$

B. $b = \frac{a}{22.4}$ C. $b < \frac{a}{22.4}$ D. $b \ge \frac{a}{11.2}$

【难度】★★★

【答案】C

18. 实验室用浓盐酸与二氧化锰反应制取氯气,下列有关说法中正确的是(气体体积在标准状况下测定)

- A. 若提供 0.4molHCl, MnO₂ 不足量,则可制得氯气 2.24L
- B. 若提供 0.4molHCl, MnO2过量,则可制得氯气 2.24L
- C. 若有 0.4molHCl 参与反应,则可制得氯气 2.24L
- D. 若有 0.4molHCl 被氧化,则可制得氯气 2.24L

【难度】★★★

【答案】C

19. 有一在空气中暴露过的 KOH 固体, 含 $H_2O2.8\%$ (质量分数,下同),含 $K_2CO_37.2\%$ 。取 1g 该样品投入到 25mL2mo/L 盐酸中,中和多余的盐酸又用去 1.07mol/L 的 KOH 溶液 30.8mL,蒸发中和后的溶液,所得的固体 质量为 ()

A. 3.73g

B. 4.00g

C. 4.50g D. 7.45g

【难度】★★★

【答案】A

20. 个用任何其他化学试剂,将氯水、碘化钾淀粉溶液、盐酸、硝酸银溶液鉴别出来的方

首先根据物理性质,_____的是氯水,然后_____,观察到溶液由_____色变为_ 色,则原溶液是_____溶液。观察到溶液析出_____的,则原溶液为____。如试管中__

现象的,则原溶液是

【答案】呈黄绿色且有刺激性气味 将氯水分别加入盛有3种未知液的试管中 无 蓝

碘化钾淀粉

白色沉淀

AgNO₃ 无

盐酸

- 21. 洪灾过后,饮用水的消毒杀菌成为抑制大规模传染性疾病爆发的有效方法之一。漂白粉是常用的消毒剂。
 - (1) 工业上将氯气通入石灰乳[Ca(OH)2]制取漂白粉,化学反应方程式为:

(2)漂白粉溶于水后,受空气中的 CO₂作用,即产生有漂白、杀菌作用的次氯酸,化学反应方程式为:

【难度】★

【答案】2Cl₂+2Ca(OH)₂→Ca(ClO)₂+CaCl₂+2H₂O

 $Ca(ClO)_2 + 2CO_2 + 2H_2O \rightarrow 2HClO + Ca(HCO_3)_2$

 $\textcircled{2} \ 2\text{Ca(OH)}_2 + 2\text{Cl}_2 \xrightarrow{\quad \Delta \quad} \text{CaCl}_2 + \text{Ca(ClO)}_2 + 2\text{H}_2\text{O}$

22. 请利用下列装置及试剂组装一套装置,其流程是: 先制取纯净干燥的 Cl_2 (不收集),后试验干燥的 Cl_2 和 潮湿的 Cl_2 有无漂白性。

(1)按气体从左向右流向将各装置依次连接起来(填接口标号):接,接,
接,接,最后接接
(2) 烧瓶中发生反应的化学方程式是
(3) D 装置的作用是, E 装置的作用是, F 装置的作用是
(4) C 瓶中的现象是, B 瓶中的现象是 以上事实说明起漂白作用的物质是
(5)制备装置中应安装分液漏斗而不能使用长颈漏斗,下列理由叙述错误的是 ()
A. 防止氯气扩散到空气中造成污染
B. 便于控制加入盐酸的量
C. 长颈漏斗不便于添加液体
D. 尽量避免 HCl 挥发到空气中
(6)以上是氯气的实验室制法和性质研究,请再写出工业上制取氯气、工业上制取漂粉精的化学方程式:①
;
【难度】★★
【答案】(1) $a \rightarrow i \rightarrow j \rightarrow g \rightarrow f \rightarrow e \rightarrow d \rightarrow b \rightarrow c \rightarrow h;$
(2) $MnO_2 + 4HCl(浓)$ $\xrightarrow{\Delta} MnCl_2 + Cl_2$ ↑ $+2H_2O$
(3) 吸收水蒸气,干燥 Cl ₂ ;吸收多余的氯气;除去 HCl 气体;
(4) 有色布条不褪色,有色布条褪色,次氯酸(HClO) (5) C
(6) ① 2 NaCl + 2 H ₂ O $\xrightarrow{\text{ide}}$ \rightarrow 2 NaOH + H ₂ ↑ +Cl ₂ ↑

23. 下图是一个制取氯气并以氯气为原料进行某个特定反应研究的装置。

- (1) 实验开始时,先点燃 A 处的酒精灯,打开 K, 使 Cl_2 充满整个装置,再点燃 D 处酒精灯,然后连接上 E 装置; E 处石蕊试液先变红然后渐变为无色,同时漏斗中的液面略有上升,则产生颜色变化的原因是(
 - a. 反应中产生 CO₂ 的缘故
- b. 反应中产生 HCl 的缘故
- c. 反应中产生 HCl 并有 Cl₂溶于水 d. 反应中同时有 CO₂、HCl 产生的缘故
- D 处反应的化学方程式为
- (2) 装置 C 的作用是
- (3) 若将 E 处中的液体改为澄清石灰水,反应过程中的现象为

 - a. 有白色沉淀产生 b. 先生成白色沉淀而后沉淀消失
 - c. 无明显现象
- d. 开始无沉淀, 然后产生白色沉淀
- (4) 当反应结束后关闭 K, 移去 A 处酒精灯,由于余热作用, A 处仍有 Cl₂产生,此时 B 中现象为 ,B 的作用是
- (5) E 装置无法确认 D 处反应中有 CO2产生,为了证明 CO2的存在,要对 E 装置进行改变,下列装置符合要 求的是。

(6) 本实验的目的是

【难度】★★★

【答案】(1) c $2Cl_2 + C + 2H_2O \xrightarrow{\Delta} CO_2 + 4HCl$ (2) 提供水蒸汽

- (3) c (4) B 中液体被压入长颈漏斗中;储存多余氯气,防止污染 (5) d
- (6) 探究潮湿的氯气与碳在加热条件下的反应(探究 Cl₂和 C、H₂O 特定反应及产物的实验)

24.	新制氯水中含有	多种粒子,	某校化学研究性	学习小组的同	同学为探究其性质,	做了如下实验,	请你帮助完成。
(1)HClO 不稳定,	见光易分	解生成 HCl 和 O ₂	。请设计实验	验证明有 O₂生成:		

(2) 氯气能使湿润的红色布条褪色。对于使红色布条褪色的物质,同学们的看法不一致,认为氯水中存在的几种粒子都有可能。请你设计实验,得出正确结论。

氯水中何种物质能使湿润的红色布条褪色	
①氯气有氧化性	
②氯气与冷水反应生成盐酸和次氯酸	
③次氯酸具有强氧化性	
①	
2	
3	
④H ₂ O 使红色布条褪色	
实验①把红色干布条放入充满氯气的集气瓶中,布条不褪色	
实验②	
实验③把红色布条放在水里,布条不褪色	
	①氯气有氧化性 ②氯气与冷水反应生成盐酸和次氯酸 ③次氯酸具有强氧化性 ① ② ③ ④H ₂ O 使红色布条褪色 实验①把红色干布条放入充满氯气的集气瓶中,布条不褪色

【难度】★★★

【答案】(1)将盛有氯水的圆底烧瓶倒放在水槽中,光照一段时间后,瓶底有无色气体生成。将烧瓶倒转过来,用带火星的木条在瓶口检验气体,若能复燃,证明 HCIO 见光易分解生成的气体为 O_2 。

- (2) 氯水中有 4 种物质 Cl_2 、HCl、HClO、 H_2O 。 分别提出 4 种假设: ① Cl_2 使红色布条褪色,②盐酸使红色布条褪色,③HClO 使红色布条褪色,④水使红色布条褪色。
- (3)实验①③已证明氯气和水不能使红色布条褪色,在实验②只要把红色布条放在稀盐酸里,布条不褪色,就可以证明是次氯酸使布条褪色的。
- (4) 次氯酸(HCIO) 是使红色布条褪色的物质

25.	Cl ₂ 在 70℃的 NaOH 溶液中,	能同时发生两个自身氧化还原反应, 反应的化学方程式为	:
	(1)产物中有 NaClO:		_;
	(2) 产物中有 NaClO ₃ :		<u>.</u> ;
	反应完全后测得溶液中 NaCl	O和 NaClO3的数目之比为 4: 1,则产物的溶液中 NaCl和 N	NaClO 的物质的量
之出	公为。		
【对	i度】★★★		

【答案】(1) 2NaOH+Cl₂→NaCl+NaClO+H₂O (2) 6NaOH+3Cl₂→5NaCl+NaClO₃+3H₂O 9:4