SPEAKER RECOGNITION SYSTEM

Akshay Gupta

Avinash Bansal

Department of Computer Science and Technology, Z.H.C.E.T, Aligarh Muslim University

SPEAKER RECOGNITION SYSTEM

 Identification of person who is speaking by characteristics of their voice biometrics.

 Recognition of speaker is divided into two parts identification and verification.

BASIC BLOCK DIAGRAM

VOICE ACTIVITY DETECTION

- Energy Based
 - Filter out the interval with relatively low energy
 - Work perfectly for high quality recording
 - Sensitive to noise

ME-FREQUENCY CEPSTRAL COEFFICIENTS

- Cepstral feature closely approximate human auditory system. Commonly used feature for speech/speaker recognition.
- A pure mathematical model.

• Windowing:

Windowing is the process of taking a small subset of a larger dataset, for processing and analysis

• Mel scale and Filter bank:

$$Mel(f) = 2595 log 10(1 + f/700)$$

Linear Predictive Coding/Coefficients:

- Assumption In a short period, the *n*th signal is a linear combination of previous *p* signals: $\mathbf{x}'(\mathbf{n}) = \sum_{i=0}^{p} a(i)x(n-i)$
- Minimize squared error E[x'(n)-x(n)] using Levinson-Durbin algorithm.
- Use al, a2....ap as features

Experiment with number of features:

SUPPORT VECTOR MACHINE

Support vector machines (SVMs) are a set of supervised learning methods used for <u>classification</u>, <u>regression</u> and <u>outliers detection</u>.

The advantages of support vector machines are:

- Effective in high dimensional spaces.
- Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.
- Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided, but it is also possible to specify custom kernels.

Mathematical formulation

A support vector machine constructs a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyper-plane that has the largest distance to the nearest training data points of any class (so-called functional margin), since in general the larger the margin the lower the generalization error of the classifier.

$$\min_{w,b,\zeta} \frac{1}{2} w^T w + C \sum_{i=1}^n \zeta_i$$

subject to $y_i(w^T \phi(x_i) + b) \ge 1 - \zeta_i$,
$$\zeta_i \ge 0, i = 1, ..., n$$

CONCLUSION:

- We managed to get voice sample of 36 speakers and from that we get around 80% training and test set accuracy
- Our model has good accuracy but upto now it is not considering noise.
- Our learning model is not over fitted.(i.e. training accuracy=test accuracy)

REFERENCES

• Book: Fundamentals of Speaker Recognition by Homayoon Beigi

• Wikipedia: MFCC

Scikit learn Machine Learning in Python:

www.scikit-learn.org/stable/index.html

Thanks

