Seminar on Moduli Theory Lecture 5

Neeraj Deshmukh

September 25, 2020

Last Week

- 4 "Affine Communication" for morphisms.
- Various kinds of morphisms.
- **3** Morphisms to \mathbb{P}^n .

A presheaf is a functor. Representable functors and Yoneda.

Three representable and one non-representable functors of Sch

Representable morphisms of functors. (Morphisms of representable functors are always representable!)

A useful lemma about the diagonal

Lemma

Let $\mathcal C$ be a category. Let $F:\mathcal C^{opp}\to Sets$ be a functor. Assume $\mathcal C$ has products of pairs of objects and fibre products. The following are equivalent:

- **1** the diagonal $\Delta : F \rightarrow F \times F$ is representable,
- ② for every U in C, and any $\xi \in F(U)$ the map $\xi : h_U \to F$ is representable,
- **③** for every pair U, V in C and any $\xi \in F(U)$, $\xi' \in F(V)$ the fibre product $h_U \times_{\xi,F,\xi'} h_V$ is representable.

We will now discuss some "sheafy jargon".

Definition

Let $\mathcal C$ be a category. A family of morphisms with fixed target in $\mathcal C$ is given by an object $U\in \mathsf{Ob}(\mathcal C)$, a set I and for each $i\in I$ a morphism $U_i\to U$ of $\mathcal C$ with target U. We use the notation $\{U_i\to U\}_{i\in I}$ to indicate this.

Definition

A site is given by a category $\mathcal C$ and a set $Cov(\mathcal C)$ of families of morphisms with fixed target $\{U_i \to U\}_{i \in I}$, called coverings of $\mathcal C$, satisfying the following axioms

- **1** If $V \to U$ is an isomorphism then $\{V \to U\} \in Cov(\mathcal{C})$.
- ② If $\{U_i \to U\}_{i \in I} \in \text{Cov}(\mathcal{C})$ and for each i we have $\{V_{ij} \to U_i\}_{i \in J_i} \in \text{Cov}(\mathcal{C})$, then $\{V_{ij} \to U\}_{i \in I, j \in J_i} \in \text{Cov}(\mathcal{C})$.
- ⑤ If $\{U_i \to U\}_{i \in I} \in Cov(\mathcal{C})$ and $V \to U$ is a morphism of \mathcal{C} then $U_i \times_U V$ exists for all i and $\{U_i \times_U V \to V\}_{i \in I} \in Cov(\mathcal{C})$.

The sheaf condition and the category of sheaves

Various topologies on Affine schemes.

Zariski:

Étale:

fppf:

fpqc:

Various toplogies on schemes

Zariski, étale and fppf are defined almost analogously for schemes.

Kleiman's trick for fpqc morphisms:

Lemma

We have the follow inclusion of topologies:

 $Zariski \subset \acute{E}tale \subset fppf \subset fpqc.$

Why bother with the affine site?

Separated Schemes

Schemes

Characterising fpqc sheaf property

Lemma

Let $F: Sch \rightarrow Sets$ be a presheaf. Then F satisfies the sheaf property for the fpqc topology if and only if it satisfies

- 1 the sheaf property for every Zariski covering, and
- 2 the sheaf property for $\{V \to U\}$ with V, U affine and $V \to U$ faithfully flat.

Characterising fpqc sheaf property

Theorem (Grothendieck)

Every representable functor satisfies the sheaf property in the fpqc topology.

Amitsur's Lemma

Let $f:A\to B$ be a faithfully flat ring map. Then, the following sequence of A-modules is exact:

$$0 \to A \overset{f}{\to} B \overset{e_1-e_2}{\to} B \otimes_A B$$

What happens at $B \otimes_A B$?

subcanonical sites and a non-canonical site