

Teorija informacij in sistemov, predavanje

U. Lotric

5.5 Sindror

Standardna tabela

5.7 Hammingovi kodi

5.8 Ciklični kodi

5.8.1 Zapis s polinomi

5.8.2 Generatorski

Teorija informacij in sistemov, predavanje $7\,$

Uroš Lotrič

Univerza v Ljubljani, Fakulteta za računalništvo in informatiko

Teorija informacij in sistemov, predavanje 7

U. Lotric

5.5 Sindrom

5.6 Standardna tabela

5.7 Ham mingovi kodi

5.8 Ciklični kodi

5.8.1 Zapis s polinomi 5.8.2 Gene-

5.8.2 Generatorski polinom ▶ Poglejmo, kaj se zgodi, če v kanalu pride do napake:

- ▶ $\mathbf{y}\mathbf{H}^{\mathbf{T}} = (\mathbf{x} + \mathbf{e})\mathbf{H}^{\mathbf{T}} = \mathbf{e}\mathbf{H}^{\mathbf{T}} = \mathbf{s}$ vektor \mathbf{s} velikosti $1 \times n k$ je odvisen samo od napake. Imenujemo ga **sindrom**.
- \blacktriangleright Napako pri prenosu preprosto ugotavljamo tako, da pogledamo, če je $\mathbf{s}=\mathbf{0}$
- ightharpoonup s = 0 ne garantira, da pri prenosu ni prišlo do napake!

5.5 Sindrom 2

Teorija informacij in sistemov, predavanje

U. Lotric

5.5 Sindrom

5.6 Standardna tabela

5.7 Hammingovi kodi

5.8 Ciklični kodi

5.8.1 Zapis s polinomi

5.8.2 Generatorski polinom ► Tabela enojnih napak in sindromov za trikotni kod:

e	\mathbf{S}	
000000	000	s = 111 - dobimo kadar v kanalu
000001	001	pride do dvojne ali trojne napake:
000010	010	(001100), (010001), (100010),
000100	100	(000111).
001000	011	Lahko jih zaznamo, ne moremo pa
010000	110	jih popraviti.
100000	101	

- ▶ primer: niz $\mathbf{z} = (110)$, napaka $\mathbf{e} = (001000)$, napako pravilno popravimo.
- ▶ primer: niz $\mathbf{z} = (110)$, napaka $\mathbf{e} = (000011)$, sprejemnik po popravljanju misli, da je bil poslan $\mathbf{z} = (111)$.

5.5 Sindrom 3

Teorija informacij in sistemov, predavanje

U. Lotric

5.5 Sindrom

- 5.6 Standardna tabela
- 5.7 Ham mingovi kodi
- 5.8 Ciklični kodi
- 5.8.1 Zapis s polinomi
- 5.8.2 Generatorski

- ► Kako in kdaj popravljati? Ne moremo izbirati. Rešuje nas verjetnost
- \blacktriangleright Ker je verjetnost za napako običajno p << 1, je niz s t napakami veliko verjetnejši od niza s t+1

5.6 Standardna tabela 1

Teorija informacij in sistemov, predavanje 7

U. Lotric

5.5 Sindron

5.6 Standardna tabela

mingovi kodi

5.8 Ciklični kodi 5.8.1 Zapis

s polinomi
5.8.2 Generatorski

Spomnimo se ponavljalne kode (0|00) in (1|11). Opišimo jo z mehanizmom matrik

$$\blacktriangleright \mathbf{G} = (1|11), \mathbf{H} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

- ▶ imamo 4 možne sindrome: (00), (01), (10), (11)
- \blacktriangleright na izhodu lahko dobimo $2^n=8$ različnih nizov

У	e
000	00
001	01
010	10
011	11
100	11
101	10

01

00

110

111

5.6 Standardna tabela 2

možne nize na izhodu in njihove sindrome običajno

razvrstimo	v standardno	tabelo
$\operatorname{sindrom}$	popravljalnik	
00	000	111
01	001	110
10	010	101
11	100	011
	'	

- v isti vrstici so nizi, ki dajo enak sindrom
- v prvi vrsti so vedno kodne zamenjave, ki imajo sindrom 0
- skrajno levo je vedno niz, ki ima najmanj enic, saj je najbolj verjeten. Imenujemo ga popravljalnik
- ostale nize dobimo tako, da popravljalnik prištevamo h kodnim zamenjavam v prvi vrsti
- ▶ Popravljanje je sedaj enostavno: izračunamo sindrom, popravljalnik odštejemo (prištejemo) od prejetega niza
- \blacktriangleright Ta postopek postane zelo kompleksen, če sta n in n-kvelika (velika matrika H in tabela

U. Lotric

Teorija informacij in sistemov, predavanje

- 5.6 Standardna tabela
- mingovi
- kodi
- 5.8 Ciklični

- 5.8.1 Zapis
- s polinomi
- 5.8.2 Gene-

- ► Hammingovi kodi so družina linearnih bločnih kodov, ki lahko popravijo eno napako
- najlažje jih predstavimo z matriko za preverjanje sodosti, v kateri so vsi stolpci neničelni vektorji
- ▶ kod z m varnostnimi biti ima kodne zamenjave dolžine $2^{m}-1$. Oznaka koda je $H(2^{m}-1,2^{m}-1-m)$
- če stolpce v matriki H interpretiramo kot števila v binarni obliki, nam oznaka stolpca določa položaj napake
- ightharpoonup če je sindrom $\mathbf{s}=(s_1,s_2,s_3)$, ga želimo interpretirati kot število, za m = 3: $S = 4s_1 + 2s_2 + s_3$.
- stolpci v Hammingovem kodu so lahko poljubno razmetani. Pomembno je le to, da nastopajo vsa števila od 1 do $2^{m} - 1$
 - ► Hamminov kod je lahko leksikografski (oznake stolcev si sledijo po vrsti, v splošnem ni sistematičen) sistematični (oznale stolpcev so pomešane)

U. Lotric

Teorija informacij

in sistemov, predavanje

- 5.7 Hammingovi
- kodi
- 5.8 Ciklični
- kodi
- 5.8.1 Zapis
- s polinomi
- 5.8.2 Gene-

Teorija informacij in sistemov, predavanje

U. Lotric

5.5 Sindron

5.6 Standardna tabela

5.7 Hammingovi kodi

5.8 Ciklični kodi

5.8.1 Zapis s polinomi

5.8.2 Generatorski polinom ► Napake in njihovi sindromi na leksikografskem kodu H(7,4)

$$\mathbf{H} = \left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right)$$

pokaži z različnimi vektorji e!!!

- ▶ V Hammingovem kodu se za varnostne bite običajno vzamejo tisti stolpci, ki imajo samo eno enico (1, 2, 4, 8, 16, ...).
- ▶ V nekaterih primerih lahko varnostne in podatkovne bite postavimo tudi drugače (Luenberger) vendar postopkov ne moremo posplošiti.

Teorija informacij in sistemov, predavanje 7

U. Lotric

5.5 Sindron

Standardn tabela

5.7 Hammingovi kodi

5.8 Ciklični kodi

5.8.1 Zapis s polinomi

5.8.2 Generatorski polinom Primer za H(7,4): če postavimo $\mathbf{x} = (x_1, x_2, z_1, x_4, z_2, z_3, z_4)$, dobimo iz matrike \mathbf{H} za vsak varnostni bit svojo enačbo:

$$x_4 + z_2 + z_3 + z_4 = 0 \rightarrow x_4 = z_2 + z_3 + z_4$$

 $x_2 + z_1 + z_3 + z_4 = 0 \rightarrow x_2 = z_1 + z_3 + z_4$
 $x_1 + z_1 + z_2 + z_4 = 0 \rightarrow x_1 = z_1 + z_2 + z_4$

▶ enačbe opisujejo stolpce varnostnih bitov v matriki **G**:

$$\mathbf{G} = \left(\begin{array}{ccccccc} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right)$$

- ▶ Če vir nima spomina, lahko stolpce v matrikah **H** in **G** sinhrono premečemo.
- ▶ Primer: matriki za sistematični ciklični kod H(7,4)

$$\mathbf{H} = \left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right) \rightarrow$$

$$\mathbf{H}' = \left(\begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow$$

$$\mathbf{G}' = \left(\begin{array}{cccccccccc} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{array}\right)$$

Če na matriki G' naredimo obratne premike kot na matriki H dobimo matriko G, ki smo jo določili iz enačb.

U. Lotric

Teorija informacij

in sistemov, predavanje

5.5 Sindron

tabela 5.7 Hammingovi

kodi 5.8 Ciklični kodi

5.8.1 Zapis s polinomi 5.8.2 Gene-

5.8.2 Generatorski polinom

Teorija informacij in sistemov, predavanje 7

- U. Lotric
- 5.5 Sindron
- Standardn tabela
- 5.7 Hammingovi kodi
- 5.8 Ciklični kodi
- 5.8.1 Zapis s polinomi
- 5.8.2 Generatorski polinom

- Dekodiranje leksikografskega Hammingovega koda je preprosto:
 - ightharpoonup Izračunamo sindrom $\mathbf{s} = \mathbf{y}\mathbf{H}^{\mathbf{T}}$
 - ightharpoonup Če je $\mathbf{s} = \mathbf{0}$, je $\mathbf{x}' = \mathbf{y}$
 - \blacktriangleright Če $\mathbf{s}\neq\mathbf{0},$ decimalno število S predstavlja mesto napake.
- Za kod, ki ni leksikografski rabimo tabelo povezav med indeksi sindromov in stolpci
- ▶ Hammingovi kodi spadajo med **popolne kode** sfere z radijem 1 okrog kodnih zamenjav ravno zapolnijo ves prostor z 2ⁿ točkami. Taki linearni kodi so še ponavljajoči kodi in Golayevi kodi.

5.8 Ciklični kodi

Teorija informacij in sistemov, predavanje 7

U. Lotric

5.5 Sindroi

5.6 Standardna tabela

5.7 Hammingovi kodi

5.8 Ciklični kodi

5.8.1 Zapis s polinomi

5.8.2 Generatorski polinom ightharpoonup Ciklični kod C(n,k) je linearni bločni kod, v katerem vsak krožni premik kodne zamenjave da drugo kodno zamenjavo.

Primer cikličnega koda sestavljenega iz 4 različnih ciklov kodnih zamenjav:
(000)

(001), (010), (100) (011), (110), (101) (111)

- Zapis cikličnih kodov s polinomi zelo poenostavi njihovo obravnavo
 - ▶ Polinome bomo zapisovali po padajočih potencah, seštevali pa bomo po mod 2, kot do sedaj
- $\mathbf{x} = (x_{n-1}, \dots, x_1, x_0) \Leftrightarrow x(p) = x_{n-1}p^{n-1} + \dots + x_1p + x_0$
- ► Primer: $\mathbf{x} = (110101) \Leftrightarrow x(p) = p^5 + p^4 + p^2 + 1$

5.8.1 Zapis s polinomi 1

Teorija informacij in sistemov, predavanje

U. Lotric

5.5 Sindro

Standardna tabela

5.7 Hammingovi kodi

5.8 Ciklični kodi

5.8.1 Zapis s polinomi

5.8.2 Generatorski polinom

- ► Zapis krožnega premika za eno mesto
 - Osnovni vektor: $\mathbf{x} = (x_{n-1}, x_{n-2}, \dots, x_0) \Leftrightarrow x(p) = x_{n-1}p^{n-1} + x_{n-2}p^{n-2} + \dots + x_0$
 - Pozor oznake indeksov tečejo kontra kot prej!!!
 - Premik za eno mesto: $\mathbf{x}' = (x_{n-2}, \dots, x_0, x_{n-1}) \Leftrightarrow x'(p) = x_{n-2}p^{n-2} + \dots + x_0p + x_{n-1}$
 - ightharpoonup Zveza: $x'(p) = px(p) x_{n-1}(p^n 1)$
 - Delamo v mod 2 aritmetiki (– je enakovreden +): $x'(p) = px(p) + x_{n-1}(p^n + 1)$
 - V aritmetiki mod $(p^n + 1)$ sledi: x'(p) = px(p) mod $(p^n + 1)$
 - Pozor: aritmetika po mod 2 na istih stopnjah polinoma (na bitih) in aritmetika po mod $(p^n + 1)$ na polinomu
- ightharpoonup Krožni premik za i mest:

$$x^{i}(p) = p^{i}x(p) \mod (p^{n} + 1)$$

5.8.2 Generatorski polinom 1

Teorija informacij in sistemov, predavanje 7

- U. Lotric
- 5.5 Sindron
- 5.6 Standardna tabela
- 5.7 Hammingovi kodi
- 5.8 Ciklični kodi
- 5.8.1 Zapis s polinomi
- 5.8.2 Generatorski polinom

- ▶ Vrstice generatorske matrike lahko razumemo kot kodne zamenjave
- ➤ Za ciklične kode velja splošno: **generatorski polinom** je stopnje m, kjer je m število varnostnih bitov, in ga označimo kot

$$g(p) = p^m + g_{m-1}p^{m-1} + \dots + g_1p + 1$$

Pokaži za poseben primer: sistematični kod $G = [I_k | A_{k,n-k}].$

5.8.2 Generatorski polinom 2

Teorija informacij in sistemov, predavanje 7

U. Lotric

5.5 Sindron

Standardna tabela

5.7 Ham mingovi kodi

5.8 Ciklični kodi

5.8.1 Zapis s polinomi

5.8.2 Generatorski polinom

- ► Kako dobimo generatorsko matriko?
- ▶ g(p) je kodna zamenjava, enako tudi $pg(p), \ldots, p^{k-1}g(p)$, vse mod $p^n + 1$
- ► Torej

$$\mathbf{G} = \begin{pmatrix} 1 & g_{m-1} & \dots & g_1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & g_{m-1} & \dots & g_1 & 1 & 0 & \dots & 0 \\ \vdots & & & & & & & \vdots \\ 0 & 0 & \dots & 0 & 1 & g_{m-1} & \dots & g_1 & 1 \end{pmatrix}$$

 Sistematični lahko dobimo z linearnimi operacijami nad vrsticami

5.8.2 Generatorski polinom 3

Teorija informacij in sistemov, predavanje

U. Lotric

5.5 Sindror

5.6 Standardna tabela

5.7 Ham mingovi kodi

5.8 Ciklični kodi

5.8.1 Zapis s polinomi

5.8.2 Generatorski polinom

- ▶ Polinom g(p) deli polinom $p^n + 1$. Dokaz.
- ► Velja torej

$$p^n + 1 = g(p)h(p)$$

- ightharpoonup Vsak polinom, ki polinom p^n+1 deli brez ostanka, je generatorski polinom.
- \triangleright Primer: generatorski polinomi za n=7:
 - Faktorji: $1, p + 1, p^3 + p + 1, p^3 + p^2 + 1, p^7 + 1$
 - Polinomi: 1, p + 1, $p^3 + p + 1$, $p^3 + p^2 + 1$, $(p+1)(p^3 + p + 1)$, $(p+1)(p^3 + p^2 + 1)$, $(p^3 + p + 1)(p^3 + p^2 + 1)$, $p^7 + 1$
- ▶ Primer: kakšna kodna zamenjava ustreza $\mathbf{z} = (0101)$, če je $g(p) = p^3 + p^2 + 1$? $\mathbf{x} = (0111001)$ z matriko in s polinomi!