Department of Mechanical & Aerospace Engineering *Multiscale Materials Group - solids.uccs.edu*

Basic Concepts in Machine Learning

Machine Learning Introduction Presentation

E. Ortiz Escoriza, Prof. Adham Atyabi

Overview meeting June 25th, 2020

• Machine Learning [1]

6/25/2020 M.L Introduction – E. Ortiz

Supervised Learning & Unsupervised Learning [2]

• Supervised Learning Vs Unsupervised Learning [3] [4]

		Supervised	Unsupervised
	Method	Input & Output variables will be given	Only input data will be given
	Goal	Determinate the function so well that when new input data set given, can predict the output	Model the hidden patterns or underlying structure in the given input data in order to learn about the data
	Input Data	Algorithms are trained using labeled data	Algorithms are used against data which is not labeled
	Uses	Often used for export system in image recognition, speech recognition, forecasting, financial analysis and training neural networks and decision trees	Often used to pre-process the data, during exploratory analysis or to pre-train supervised learning algorithms

9 <u>2</u>	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

Linear Discriminant Analysis (LDA) [5]

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

Summarizing the LDA approach in 5 steps:

- 1. Compute the **d**-dimensional mean vectors for the different classes from the dataset.
- 2. Compute the scatter matrices (in-between-class and within-class scatter matrix).
- 3. Compute the eigenvectors $(e_1, e_2, ..., e_d)$ and corresponding eigenvalues $(\lambda_1, \lambda_2, ..., \lambda_d)$ for the scatter matrices.
- 4. Sort the eigenvectors by decreasing eigenvalues and choose **k** eigenvectors with the largest eigenvalues to form a **d** x **k** dimensional matrix **W** (where every column represents an eigenvector).
- 5. Use this **d** x **k** eigenvector matrix to transform the samples onto the new subspace. This can be summarized by the matrix multiplication: **Y** = **X** x **W** (where **X** is a **n** x **d**-dimensional matrix representing the **n** samples, and **y** are the transformed **n** x **k**-dimensional samples in the new subspace).

6/25/2020

M.L Introduction

_

E. Ortiz

• <u>Linear Discriminant Analysis</u> (LDA) [6]

X 1

LD1

• Support Vector Machines (SVM) [7]

Tuning Parameters:

- Low and high regularization value

- High and low Gamma

- Good and bad Margin

UCCS ENGINEERING

Thank you for your attention

QUESTIONS?

