Chapter 1

線形代数

線形代数は、高次元に立ち向かうための強力な道具となる。

どれだけ高次元に話を広げたとしても、「関係」を語る言葉の複雑さが増すことはない。 この章では、そんな状況を実現するための理論を追いかけていく。

1.1 ベクトルの作り方

1.1.1 移動の表現としてのベクトル

平面上のある点の位置を表すのに、よく使われるのが**直交座標**である。 直交座標では、x 軸と y 軸を垂直に張り、

- 原点 O からの x 軸方向の移動量(x 座標)
- 原点 O からの v 軸方向の移動量(v 座標)

という2つの数の組で点の位置を表す。

座標とは、「x 軸方向の移動」と「y 軸方向の移動」という2回の移動を行った結果である。 右にどれくらい、上にどれくらい、という考え方は「位置」を特定するには便利だが、「移動」を 表したいだけなら、単に点から点へ向かう矢印で表すこともできる。

ある地点から別のある地点への「移動」を表すものをベクトルという。

ベクトルは、絶対的な位置を表すものではない。

ベクトルが示す、ある地点からこのように移動すれば、この地点にたどり着く…といった「移動」 の情報は、相対的な「位置関係」を表す上で役に立つ。

座標とベクトルの違い

座標は「位置」を表すものだが、ベクトルは「移動」を表すものにすぎない。

座標は「原点からの」移動量によって位置を表すが、ベクトルは始点の位置にはこだわらない。

たとえば、次の2つのベクトルは始点の位置は異なるが、同じ向きに同じだけ移動している矢印 なので、同じベクトルとみなせる。

このような「同じ向きに同じだけ移動している矢印」は、平面内では平行な関係にある。 つまり、平行移動して重なる矢印は、同じベクトルとみなすことができる。 1.1. ベクトルの作り方

1.1.2 ベクトルの多次元化:数ベクトル

多次元空間内の「移動」を表すには、「縦」と「横」の2方向だけでなく、もっと多くの数が必要になる。

また、4次元を超えてしまうと、矢印の描き方すら想像がつかなくなってしまう。それは、方向となる軸が多すぎて、どの方向に進むかを表すのが難しくなるためだ。

そこで、一旦「向き」の情報を取り除くことで、高次元に立ち向かえないかと考える。

移動を表す矢印は「どの方向に進むか」と「どれくらい進むか」という向きと大きさの情報を持っているが、その「どれくらい進むか」だけを取り出して並べよう。

こうして単に「数を並べたもの」もベクトルと呼ぶことにし、このように定義したベクトルを数 ベクトルという。

数を並べるとき、縦と横の2通りがある。それぞれ列ベクトル、行ベクトルとして定義する。

列ベク	トル	数を終	従に立	をべけ	きもの)を	列~	ヾク	トノ	レと	\ \	う。						
											_	1						
											a_1	1						
											a.	\perp						
						а	=	ſa	$\begin{bmatrix} i \end{bmatrix}$	=	a_2							
								-	-		:	+		_	_			
											a_n							
											-							

単に「ベクトル」と言った場合は、列ベクトルを指すことが多い。

行ベクトルは、列ベクトルを横倒しにしたもの(列ベクトルの転置)と捉えることもできる。

1.1.3 ベクトルの演算

ベクトルによって数をまとめて扱えるようにするために、ベクトルどうしの演算を定義したい。

ベクトルの和

ベクトルどうしの足し算は、同じ位置にある数どうしの足し算として定義する。

i番目の数がaとbの両方に存在していなければ、その位置の数どうしの足し算を考えることはできない。

そのため、ベクトルの和が定義できるのは、同じ次元を持つ(並べた数の個数が同じ)ベクトル どうしに限られる。

数ベクトルを「どれくらい進むか」を並べたものと捉えると、同じ位置にある数どうしを足し合わせるということは、同じ向きに進む量を足し合わせるということになる。

たとえば、x 軸方向に a_1 、y 軸方向に a_2 進んだ場所から、さらに x 軸方向に b_1 、y 軸方向に b_2 進む…というような「移動の合成」を表すのが、ベクトルの和である。

ベクトルのスカラー倍

「どれくらい進むか」を表す数たち全員に同じ数をかけることで、向きを変えずにベクトルを「引き伸ばす」ことができる。

2. 図

ここで位置ごとにかける数を変えてしまうと、いずれかの方向に多く進むことになり、ベクトル の向きが変わってしまう。そのため、「同じ」数をかけることに意味がある。

3. 図

そこで、ベクトルの定数倍(スカラー倍)を次のように定義する。

1.1.4 一次結合

ベクトルを「引き伸ばす」スカラー倍と、「つなぎ合わせる」足し算を組み合わせることで、ある ベクトルを他のベクトルを使って表すことができる。

4. 図

このように、スカラー倍と和のみを使った形を一次結合もしくは線形結合という。

1.1.5 基底

3次元までのベクトルは、矢印によって「ある点を指し示すもの」として定義できる。

しかし、4次元以上の世界に話を広げるため、ベクトルを単に「数を並べたもの」として再定義 した。

点を指し示すためのもう一つの概念として、座標がある。

座標も結局は矢印と同様に、x 軸方向にこのくらい進み、y 軸方向にこのくらい進む、というように、「進む方向」と「進む長さ」を持つ。

単なる数の並びを、向きと大きさを持つ量として復元するための道具が、基底である。

1.2. ベクトルの測り方

7

1.2 ベクトルの測り方

