# Case Study: TechRetail Solutions Architecture

Members: Madhur Agrawal, Arsalan Malik, Dhiraj Paudel

Room - 3

#### **Background**



 TechRetail, a mid-sized retail company, wants to create a data pipeline to collect retail data from various sources, process it using advanced analytics, and visualize the results in a dashboard. The goal is to gain insights into sales trends and improve decision-making. The company wants to leverage Azure Databricks for data processing and Microsoft Fabric for data integration and visualization.

Objectives:









Data Ingestion

Data Processing

Data Storage

Data visualization

#### Solutions Architecture for TechRetail



#### Data Source – CSV Stored in Azure Blob Storage

The data is provided in the CSV format which is can be stored in the Azure Blob Storage. The Blob storage is a perfect choice to store the data which can be ingested with several services like Azure Data Factory.

The Blob Storage also provides a scalable and reliable storage solution.

#### Data Ingestion – Azure Data Factory (ADF)

- Using ADF to automate the data ingestion process from the CSV file.
- ADF can pull data from various sources, including Azure Blob Storage (if the CSV file is stored there) or on other on-premises locations if needed.
- <u>Azure Blob Storage:</u> This will be the staging area where CSV files are initially stored before ingestion. Blob Storage provides high scalability and security for storing raw data files.

#### Data Exploration and Cleaning

- Using Azure Synapse Analytics for quick data exploration and switch to Spark pools within Synapse to explore further data using Python.
- As data has been directly loaded into Azure Blob, it can be directly accessed within Azure Synapse Studio.
- Utilization of various SQL queries or Spark Notebooks that can handle missing values, duplicate values, data type corrections and other preprocessing task.

# Data Processing – Azure Databricks & Azure Synapse Analytics

- Use Azure Databricks for advanced analytics and data processing.
   Databricks is ideal for handling large datasets, performing complex transformations, and running machine learning algorithms if required
- As an alternative to Databricks, Synapse offers integrated ETL capabilities with both Spark and SQL-based processing, seamlessly connecting with Azure Data Factory for transformation tasks.

# Data Storage in the Dedicated SQL Pool of Synapse Analytics

- It serves as the storage layer for processed data, offering optimized analytics capabilities and scalable, multi-tier storage options. Azure Data Lake Storage is suitable for large datasets and complex queries.
- It can also store processed data in a SQL Pool for fast querying, ideal for analytical workloads that require quick SQL-based data access. It also integrates well with visualization tools like Power

#### Data Visualization using Microsoft Fabric's Power BI

- Microsoft's Fabric Platform provide Power BI solution which can be used for the visualization of the data which is analysed and processed by DataBricks and Synapse Analytics.
- It can directly connect to Azure Synapse which can be used to create the dashboards for the insights from the processed data.
- It can be used to monitor retail insights and trends in the data.
- Scheduled Refresh option is also available to update the visualization based on the updates with data

#### Analysis Performed over the Processed Data

#### Trend Analysis

- How key things (sales, expenses, customer feedback) change over time
- Line charts to plot values over time and spot incline or decline pattern.

#### Top/Bottom Performers

- Identification of top performing and underperforming products
- Basic table visual to rank entities based on sales and revenue followed by sorting to spot the highest and lowest values.

#### Analysis Performed over the Processed Data

#### Growth Analysis

- Measurement of growth between two time periods (month month, year year)
- Simple calculations to show how sales have changed over specific period

#### Average Calculations

- Average of a metric ( average sales, average revenue , average ratings)
- Table to display the average of the metrics for further analysis

#### Analysis Performed over the Processed Data

#### Min / Max

- o Identification of smallest and largest values of the dataset
- Can be used to show max /mins like Maximum / Minimum Sales value.

#### Basic Proportion Analysis (Yes/No)

- Customer feedback or cases can be resolved or unresolved, can be used to visualize what percentage of cases have been resolved and what are still open
- Pie chart to display the percentage of each outcome for quick and easy understanding of distribution.

#### Informed Decision Making

- The visualized data can be used for the informed decision making by the stakeholders and the business owners.
- The various market trends can be analysed using the interactive dashboards of Power BI which can help in making decisions to help improve sales and grow the business of TechRetail.

# Implementation Details



```
12:01 PM (1s)
 # Convert `Age`, `Income`, and `Ratings` to numeric types
 df = df.withColumn("Age", col("Age").cast(IntegerType())) \
         .withColumn("Income", col("Income").cast(FloatType())) \
         .withColumn("Ratings", col("Ratings").cast(FloatType()))
 # Convert `Date` and `Time` columns to date and timestamp formats
 df = df.withColumn("Date", col("Date").cast(DateType())) \
         .withColumn("Time", col("Time").cast(TimestampType()))
 # Display updated schema
 df.printSchema()
▶ ■ df: pyspark.sql.dataframe.DataFrame = [Transaction_ID: integer, Customer_ID: integer ... 28 more fields]
|-- Age: integer (nullable = true)
|-- Gender: string (nullable = true)
|-- Income: float (nullable = true)
|-- Customer Segment: string (nullable = true)
|-- Date: date (nullable = true)
|-- Year: integer (nullable = true)
|-- Month: string (nullable = true)
|-- Time: timestamp (nullable = true)
|-- Total Purchases: integer (nullable = true)
|-- Amount: double (nullable = true)
|-- Total_Amount: double (nullable = true)
|-- Product Category: string (nullable = true)
|-- Product Brand: string (nullable = true)
|-- Product Type: string (nullable = true)
|-- Feedback: string (nullable = false)
```

```
12:02 PM (2s)
  # Ensure consistent capitalization for `Gender`, `Country`, `Order Status`, and other key columns
  df = df.withColumn("Gender", when(col("Gender").isin("male", "Male"), "Male")
                           .when(col("Gender").isin("female", "Female"), "Female")
                           .otherwise("Unknown"))
  # Standardize `Country` column values (example for 'USA', 'UK' variations)
  df = df.withColumn("Country", when(col("Country").isin("US", "USA", "United States"), "USA")
                            .when(col("Country").isin("UK", "United Kingdom"), "UK")
                           .otherwise(col("Country")))
  # Verify the transformations
  df.select("Gender", "Country", "Order_Status").distinct().show()
(2) Spark Jobs
 ▶ ■ df: pyspark.sql.dataframe.DataFrame = [Transaction_ID: integer, Customer_ID: integer ... 28 more fields]
| Male|Australia| Processing|
Female
                       Pending
 | Male| Germany|
                     Delivered
                       Shipped
 | Female|
| Female|
           Canada | Processing
                    Processing
   Male
          Germany
           Canada | Processing
   Male
   Male
               UK | Processing
   Male
                       Shipped
  Male
Female
               UK| Processing
                       Shipped
Unknown
 Male
                     Delivered
Female
                          NULL
Unknown
                     Delivered
| Female|Australia|
                      Pending
                       Pending
Unknown
 | Male| Germany|
                       Shipped
only showing ton 20 rows
```

```
12:01 PM (1s)
                                                                       3
  # Convert `Age`, `Income`, and `Ratings` to numeric types
  df = df.withColumn("Age", col("Age").cast(IntegerType())) \
         .withColumn("Income", col("Income").cast(FloatType())) \
         .withColumn("Ratings", col("Ratings").cast(FloatType()))
  # Convert `Date` and `Time` columns to date and timestamp formats
  df = df.withColumn("Date", col("Date").cast(DateType())) \
         .withColumn("Time", col("Time").cast(TimestampType()))
  # Display updated schema
  df.printSchema()
▶ ■ df: pyspark.sql.dataframe.DataFrame = [Transaction_ID: integer, Customer_ID: integer ... 28 more fields]
|-- Age: integer (nullable = true)
|-- Gender: string (nullable = true)
|-- Income: float (nullable = true)
|-- Customer_Segment: string (nullable = true)
|-- Date: date (nullable = true)
|-- Year: integer (nullable = true)
|-- Month: string (nullable = true)
|-- Time: timestamp (nullable = true)
|-- Total Purchases: integer (nullable = true)
|-- Amount: double (nullable = true)
|-- Total_Amount: double (nullable = true)
|-- Product_Category: string (nullable = true)
|-- Product_Brand: string (nullable = true)
|-- Product Type: string (nullable = true)
|-- Feedback: string (nullable = false)
```

```
12:02 PM (2s)
   # Create Age Bins for segmentation
   df = df.withColumn("Age Group", when(col("Age") < 18, "<18")</pre>
                                 .when((col("Age") >= 18) & (col("Age") \leq 25), "18-25")
                                 .when((col("Age") >= 26) & (col("Age") <= 35), "26-35")
                                .when((col("Age") >= 36) & (col("Age") <= 45), "36-45")
                                 .when((col("Age") >= 46) & (col("Age") <= 60), "46-60")
                                 .otherwise(">60"))
   # Extract additional time-based features from the Date column
   df = df.withColumn("Year", year(col("Date"))) \
          .withColumn("Month", month(col("Date"))) \
          .withColumn("Day_of_Week", dayofweek(col("Date")))
   # Extract hour from the Time column for hourly analysis
   df = df.withColumn("Hour", hour(col("Time")))
   # Show the new columns
   df.select("Age Group", "Year", "Month", "Day of Week", "Hour").show(5)
▶ (1) Spark Jobs
(1) Spark Jobs
▶ ■ df: pyspark.sql.dataframe.DataFrame = [Transaction_ID: integer, Customer_ID: integer ... 28 more fields]
-----
                  37249|Michelle Harrington| Ebony39@gmail.com|1414786801| 3959 Amanda Burgs| Dortmund|
                                                                                                                   Berlin | 77985 | Germa
nv| 21| Male| NULL| Regular|NULL|2023|September|2024-11-11 22:03:55|
                                                                                        3 | 108.0287567 | 324.08627 |
                                                                                                                          Clothing
Nike | Shorts | Excellent | Same-Day | Debit Card | Shipped | 5.0 | Cycling shorts |
       2174773 | 69749 | Kelsey Hill | Mark36@gmail.com | 6852899987 | 82072 Dawn Centers | Nottingham |
                                                                                                                  England | 99071|
UK | 19 | Female | NULL | Premium | NULL | 2023 | December | 2024-11-11 08:42:04 |
                                                                                     2 | 403.3539073 | 806.7078147 |
Samsung
           Tablet | Excellent | Standard | Credit Card | Processing | 4.0 | Lenovo Tab
       6679610 | 30192 | Scott Jensen | Shane85@gmail.com | 8362160449 | 4133 Young Canyon | Geelong | New South Wales | 75929 | Austral
                            Regular|NULL|2023| April|2024-11-11 04:06:29|
ia| 48| Male| NULL|
                                                                                        3 | 354.4775997 | 1063.432799 |
                                                                                                                            Books | Pengui
n Books | Children's | Average |
                                Same-Day | Credit Card | Processing | 2.0 | Sports equipment |
       7232460
                   62101
                                Joseph Miller | Mary34@gmail.com | 2776751724 | 8148 Thomas Creek... | Edmonton |
                                                                                                                  Ontario | 88420 | Cana
da| 56| Male| NULL|
                            Premium | NULL | 2023 | May | 2024-11-11 14:55:17 |
                                                                                        7|352.4077173| 2466.854021|
                                                                                                                        Home Decor| Hom
e Depot
             Tools | Excellent |
                               Standard
                                                PayPal Processing 4.0 Utility knife
       4983775
                               Debra Coleman Charles 30@gmail.com 9098267635 5813 Lori Ports S... Bristol
                                                                                                                  England | 48704|
UK | 22 | Male | NULL |
                            Premium NULL 2024 January 2024-11-11 16:54:07
                                                                                        2 | 124.2765245 | 248.5530491 |
                                                                                                                          Grocery
Nestle | Chocolate
                               Standard | Cash | Shipped | 1.0 | Chocolate cookies |
only showing top 5 rows
```

```
▶ ✓ ✓ 12:02 PM (1s)
                                                                                                    Python 💠 📋 :
  # Define thresholds for detecting outliers in numerical columns (e.g., Age, Income)
  age_upper_limit = 100
  income_upper_limit = 200000
  # Filter out or replace unrealistic values in Age and Income
  df = df.withColumn("Age", when((col("Age") < 0) | (col("Age") > age_upper_limit), None).otherwise(col("Age")))
   df = df.withColumn("Income", when((col("Income") < 0) \mid (col("Income") > income\_upper\_limit), None).otherwise(col("Income"))) 
  # Replace extreme values in `Ratings` (keeping it between 1-5)
  df = df.withColumn("Ratings", when(col("Ratings") > 5, 5).when(col("Ratings") < 1, 1).otherwise(col("Ratings")))</pre>
  # Show updated data after handling outliers
  df.show(5)
 ▶ ■ df: pyspark.sql.dataframe.DataFrame = [Transaction_ID: integer, Customer_ID: integer ... 31 more fields]
+----+
|Age Group|Year|Month|Day of Week|Hour|
+----+
     18-25 NULL NULL
                                NULL | 22
     18-25 | NULL | NULL |
     46-60 NULL NULL
     46-60 NULL NULL
                                NULL 14
     18-25 NULL NULL
                                NULL | 16
+----+
only showing top 5 rows
```

```
# Save the cleaned and transformed data back to Azure Blob or any designated storage
coutput_path = "/FileStore/tables/retail_data.csv" # Update with your DBFS path
df.write.mode("overwrite").parquet(output_path)
print("Data cleaning and transformation completed. File saved to:", output_path)
```

# Snapshot of the Visuals

