Solutions to Math 51 Quiz 2

1. (10 points) Consider the plane \mathcal{P} given by x + y - z = 0 with an orthogonal basis $\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} \right\}$.

Let
$$\mathbf{v} = \begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix}$$
.

- (a) (3 points) Compute $\mathbf{Proj}_{\mathcal{P}}(\mathbf{v})$.
- (b) (7 points) Find a 3-vector \mathbf{w} for which $\mathbf{Proj}_{\mathcal{P}}(\mathbf{w}) = \mathbf{Proj}_{\mathcal{P}}(\mathbf{v})$ and the first component of \mathbf{w} is 51.

Labeling the orthogonal basis as $\{u_1, u_2\}$, we can compute

$$\mathbf{Proj}_{\mathcal{P}}(\mathbf{v}) = \mathbf{Proj}_{\mathbf{u}_1}(\mathbf{v}) + \mathbf{Proj}_{\mathbf{u}_2}(\mathbf{v}) = \frac{2}{2}\mathbf{u}_1 + \frac{-12}{6}\mathbf{u}_2 = \begin{bmatrix} -1\\4\\3 \end{bmatrix}.$$

Now, since $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{n}\}$, where $\mathbf{n} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ is a vector normal to \mathcal{P} , forms an orthogonal basis for \mathbb{R}^3 , we can write

$$\mathbf{w} = \alpha \mathbf{u}_1 + \beta \mathbf{u}_2 + \gamma \mathbf{n}$$

for any 3-vector \mathbf{w} . However, if we project \mathbf{w} onto \mathcal{P} with orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$, we can see that

$$\mathbf{Proj}_{\mathcal{P}}(\mathbf{w}) = \alpha \mathbf{u}_1 + \beta \mathbf{u}_2.$$

Since we want $\mathbf{Proj}_{\mathcal{P}}(\mathbf{w}) = \begin{bmatrix} -1\\4\\3 \end{bmatrix}$ (from part (a)), we can conclude that

$$\mathbf{w} = \begin{bmatrix} -1\\4\\3 \end{bmatrix} + \gamma \begin{bmatrix} 1\\1\\-1 \end{bmatrix} = \begin{bmatrix} \gamma - 1\\\gamma + 4\\-\gamma + 3 \end{bmatrix}.$$

Setting the first component equal to 51, we get that $\gamma = 52$, and the desired vector is $\mathbf{w} = \begin{bmatrix} 51 \\ 56 \\ -49 \end{bmatrix}$.

2. (2 points) True or False: Suppose V is a 21-dimensional linear subspace of \mathbb{R}^{51} . Then, for every $\mathbf{u} \in \mathbb{R}^{51}$,

$$\mathbf{Proj}_V(\mathbf{Proj}_V(\mathbf{u})) = \mathbf{Proj}_V(\mathbf{u}).$$

TRUE. Since $\mathbf{Proj}_V(\mathbf{u}) \in V$ for every 51-vector \mathbf{u} , it follows that

$$\mathbf{Proj}_V(\mathbf{Proj}_V(\mathbf{u})) = \mathbf{Proj}_V(\mathbf{u}).$$

3. (2 points) True or False: Let V be a linear subspace of \mathbb{R}^4 consisting of points (w, x, y, z) satisfying

 $-2w + 3x + 2y + 4z = 0, \text{ i.e. } V = \{(w, x, y, z) : -2w + 3x + 2y + 4z = 0\}. \text{ Let } \mathbf{v}_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ -2 \\ 3 \end{bmatrix},$

and suppose $\mathbf{v}_3 \in V$ is a non-zero vector that is orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 . Then, every vector $\mathbf{v} \in V$ can be written as a linear combination of $\mathbf{v}_1, \mathbf{v}_2,$ and $\mathbf{v}_3.$

TRUE. First, we note that $\mathbf{v}_1, \mathbf{v}_2 \in V$ (they both satisfy the equation for V). Now, since \mathbf{v}_3 is orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 , it follows that $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is an orthogonal set and since all three vectors are in V and V is 3-dimensional, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is actually an orthogonal basis for V. Therefore, every vector $\mathbf{v} \in V$ can be written as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 .

- 4. (3 points) Suppose \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^8 , with $\|\mathbf{v}\| = 2$, $\|\mathbf{w}\| = 4$, and $\mathbf{v} \cdot \mathbf{w} = -1$. Suppose $\mathbf{w}' = \mathbf{w} + \alpha \mathbf{v}$ for some number α . Which of the following values of α will make $\{\mathbf{v}, \mathbf{w}'\}$ an orthogonal basis for $\operatorname{span}(\mathbf{v}, \mathbf{w})$?
 - a) $-\frac{1}{2}$ b) 0 c) $\frac{1}{4}$ d) $-\frac{1}{2}$ e) 1

- f) There is no such α .

Since we want \mathbf{v} and \mathbf{w}' , we can look at the dot product:

$$\mathbf{v} \cdot \mathbf{w}' = \mathbf{v} \cdot (\mathbf{w} + \alpha \mathbf{v}) = \mathbf{v} \cdot \mathbf{w} + \alpha \mathbf{v} \cdot \mathbf{v} = -1 + 4\alpha.$$

Hence, if $\alpha = \frac{1}{4}$, $\{\mathbf{v}, \mathbf{w}\}$ is an orthogonal basis for span (\mathbf{v}, \mathbf{w}) .

5. (3 points) Consider a plane \mathcal{P} in \mathbb{R}^3 defined by the equation x + 12y + 123z = 0. Let \mathbf{v} be a fixed non-zero 3-vector in \mathcal{P} . Suppose $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{51}$ are 51 distinct 3-vectors for which

$$\mathbf{Proj}_{\mathcal{P}}(\mathbf{u}_i) = \mathbf{v}$$

for all i = 1, 2, ..., 51. What is the dimension of span $(\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_{51})$?

- a) 1
- b) 2
- c) 3
- d) 51
- e) Not enough info

Define $\mathbf{n} = \begin{bmatrix} 1 \\ 12 \\ 123 \end{bmatrix}$, a vector normal to \mathcal{P} . Then, we know that (via the reasoning in question 1 or

Practice Quiz A question 5) if $\mathbf{Proj}_{\mathcal{P}}(\mathbf{w}) = \mathbf{v}$ for some \mathbf{w} , then

$$\mathbf{w} = \mathbf{v} + t\mathbf{n}$$

for some scalar t. Hence, for all $i = 1, 2, \dots, 51$, there are distinct scalars $\alpha_1, \alpha_2, \dots, \alpha_{51}$ for which

$$\mathbf{u}_1 = \mathbf{v} + \alpha_1 \mathbf{n}, \quad \mathbf{u}_2 = \mathbf{v} + \alpha_2 \mathbf{n}, \quad \dots \quad \mathbf{u}_{51} = \mathbf{v} + \alpha_{51} \mathbf{n}.$$

Therefore, it follows that $\operatorname{span}(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{51}) = \operatorname{span}(\mathbf{v}, \mathbf{n})$ which is 2-dimensional.