EXAMEN PROBABILITÉS - 1SN

Lundi 25 octobre 2021 (8h-9h30)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 : loi géométrique (5 points)

On considère une variable aléatoire X de loi géométrique de paramètre $p \in]0,1[$ définie dans $\mathbb{N}^* = \{n \in \mathbb{N}, n \geq 1\}$ par

$$P[X = i] = p(1 - p)^{i-1}, \quad i = 1, 2, \dots$$

Quelques propriétés de cette loi sont dans la table et on adoptera la notation classique $X \sim \mathcal{G}(p)$. On rappelle le résultat élémentaire $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ pour |x| < 1.

- 1. Montrer que $P[X > k] = q^k$, $\forall k \in \mathbb{N}$.
- 2. Montrer qu'une variable aléatoire Y à valeurs dans \mathbb{N}^* telle que $P[Y > k] = q^k$, $\forall k \in \mathbb{N}$ est une loi géométrique (on pourra exprimer P[Y = k] en fonction de P[Y > k] et de P[Y > k 1]).
- 3. Montrer qu'une variable aléatoire X de loi géométrique de paramètre p vérifie la propriété suivante (on dit que cette loi est "sans mémoire")

$$P[X > k + l | X > l] = P[X > k], \forall (k, l) \in \mathbb{N}^2.$$

4. Inversement, on considère une variable aléatoire Y de loi discrète à valeurs dans $\mathbb{N}^* = \{1, 2, ..., \}$ qui est sans mémoire, i.e., qui vérifie

$$P[Y > k + l | Y > l] = P[Y > k], \forall (k, l) \in \mathbb{N}^2.$$

On pose p = P[Y = 1]. Déterminer P[Y > 1], puis P[Y > 2] et en déduire que

$$P[Y > k] = q^k, \forall k \in \mathbb{N}.$$

Quelle est la loi de Y? Que peut-on en conclure?

Exercice 2: Couple de variables aléatoires uniformes corrélées (5 points)

On considère un couple de variables aléatoires (X, Y) de densité

$$p_a(x,y) = \left\{ \begin{array}{l} 1 - a(1-2x)(1-2y) \text{ si } (x,y) \in]0,1[\times]0,1[\\ 0 \text{ sinon} \end{array} \right.$$

avec |a| < 1.

- 1. Vérifier que p_a est une densité de probabilité pour toute valeur de $a \in]-1,+1[$. On admettra que $|(1-2x)(1-2y)| \le 1, \forall (x,y) \in]0,1[\times]0,1[$.
- 2. Déterminer les lois marginales de X et de Y.
- 3. Déterminer la covariance et le coefficient de corrélation du couple (X, Y).
- 4. En prenant soin de justifier votre réponse, déterminer la ou les valeur(s) de a pour lesquelles les variables aléatoires X et Y sont indépendantes.

Exercice 3: Changement de variables continues (5 points)

On considère un couple de variables aléatoires (X, Y) de densité

$$p_a(x,y) = \begin{cases} 1 - a(1-2x)(1-2y) \text{ si } (x,y) \in]0,1[\times]0,1[\\ 0 \text{ sinon} \end{cases}$$

avec |a| < 1.

- 1. Déterminer la loi du couple (T,U) lorsque $T=-\frac{1}{\lambda}\ln X$ et $U=-\frac{1}{\mu}\ln Y$ avec $\lambda>0$ et $\mu>0$.
- 2. Quelles sont les lois marginales de T et de U? Pour quelle valeur de a les variables T et U sont-elles indépendantes?

Exercice 4 : Méthode Delta (5 points)

On considère n variables aléatoires indépendantes X_i de lois exponentielles de densités

$$p(x_i) = \left\{ \begin{array}{l} \lambda \exp(-\lambda x_i) \text{ si } x_i > 0 \\ 0 \text{ sinon} \end{array} \right.$$

avec $\lambda > 0$.

- 1. Déterminer la moyenne et la variance de X_i .
- 2. Quelle est la loi approchée pour n "grand" de $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ issue de l'application du théorème de la limite centrale ? Quelle est la loi asymptotique de $U_n = \sqrt{n} \left(\bar{X}_n \frac{1}{\lambda} \right)$ lorsque $n \to \infty$.
- 3. On admet que pour toute fonction $g:\mathbb{R}\to\mathbb{R}$ dérivable, si $\sqrt{n}\left[\bar{X}_n-m\right]$ converge en loi vers une loi normale $\mathcal{N}(0,\sigma^2)$ et $g'(m)\neq 0$, alors $\sqrt{n}\left[g(\bar{X}_n)-g(m)\right]$ converge en loi vers une loi normale $\mathcal{N}(0,\sigma^2[g'(m)]^2)$. En déduire les lois approchées de $Y_n=\frac{n}{\sum_{i=1}^n X_i}$ et de $Z_n=\exp\left(\bar{X}_n\right)$ pour n "grand".

LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne σ^2 : variance **F. C.:** fonction caractéristique $p_k = P[X = k]$ $p_{1,...,m} = P[X_1 = k_1,...,X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.
Uniforme	$p_k = \frac{1}{n}$ $k \in \{1,, n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1]$ $q = 1 - p$	p	pq	$pe^{it} + q$
Binomiale $B(n,p)$	$p_k = C_n^k p^k q^{n-k}$ $p \in [0,1] q = 1 - p$ $k \in \{0,1,,n\}$	np	npq	$(pe^{it}+q)^n$
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}$	$n\frac{q}{p}$	$n\frac{q}{p^2}$	$\left(\frac{p}{1 - qe^{it}}\right)^n$
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1} p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance : np_jq_j Covariance : $-np_jp_k$	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$
Poisson $P(\lambda)$	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$ $p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$

LOIS DE PROBABILITÉ CONTINUES ${\bf m}$: moyenne ${\bf \sigma}^2$: variance ${\bf F.~C.}$: fonction caractéristique

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Gamma $\mathcal{G}\left(u, heta ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\operatorname{avec} \Gamma(n + 1) = n! \ \forall n \in \mathbb{N}$	$rac{ u}{ heta}$	$rac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\mathcal{IG}(u, heta)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu - 1} \operatorname{si} \nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f(x) = \frac{1}{2}e^{- x }, x \in \mathbb{R}$	0	2	$\frac{1}{1+t^2}$
Normale univariée $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in \mathbb{R}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Normale multivariée $\mathcal{N}_{p}\left(oldsymbol{m},oldsymbol{\Sigma} ight)$	$f(x) = Ke^{-\frac{1}{2}(x-m)^T \mathbf{\Sigma}^{-1}(x-m)}$ $K = \frac{1}{\sqrt{(2\pi)^p \det(\mathbf{\Sigma})}}$ $x \in \mathbb{R}^p$	m	Σ	$e^{ioldsymbol{u}^Toldsymbol{m}-rac{1}{2}oldsymbol{u}^Toldsymbol{\Sigma}oldsymbol{u}}$
Khi $_2$ χ^2_{ν} $\Gamma\left(\frac{1}{2},\frac{\nu}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i \alpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0$ $x \in]0,1[$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{\left(a+b\right)^2\left(a+b+1\right)}$	(*)