Exercises

Example So Property **Translation** irst

Complex Variable,
Laplace & ZTransformation

Lecture 04

irst

Example Property **Translation**

Phis Court of This

1. Formula of Inverse Laplace Transformation.

- 2. Examples & Exercise of Inverse Laplace Transformation Using Direct Formula.
- 3. First Shifting Property of Inverse Laplace Transformation.
- 4. Examples & Exercises of Inverse Laplace Transformation Using First Shifting Property.

Learning Outcomes

Learning Outcomes

Property Shifting Using Exercises

First Shifting Property **Examples Using**

Translation Property & Example First

Direct Formula Exercise

Formula

Using

Examples

Formulae Important

$$1. \quad \mathcal{L}^{-1}\left\{\frac{1}{s}\right\} = 1,$$

$$2. \mathcal{L}^{-1} \left\{ \frac{1}{s^{n+1}} \right\} = \frac{t^n}{n!},$$

$$3. \mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} = e^{at},$$

$$4. \mathcal{L}^{-1}\left\{\frac{s}{s^2+a^2}\right\} = \cos at,$$

$$5. \mathcal{L}^{-1}\left\{\frac{a}{s^2+a^2}\right\} = \sin at,$$

$$6. \mathcal{L}^{-1}\left\{\frac{s}{s^2-a^2}\right\} = \cosh at,$$

$$7. \mathcal{L}^{-1}\left\{\frac{a}{s^2 - a^2}\right\} = \sinh at.$$

This Lecture Covers

Inverse Laplace Transformation

First Translation Property & Example

Using]

1. $\mathcal{L}^{-1}\left\{\frac{s^2+1}{s^3}\right\}$ $= \mathcal{L}^{-1} \left\{ \frac{1}{s} + \frac{1}{s^3} \right\}$ $= 1 + \frac{t^2}{2!} = 1 + \frac{t^2}{2}.$ 2. $\mathcal{L}^{-1}\left\{\frac{1}{2s-5}\right\}$ $= \mathcal{L}^{-1} \left\{ \frac{1}{2(s - \frac{5}{2})} \right\}$ $=\frac{1}{2}e^{\frac{5}{2}t}$ 3. $\mathcal{L}^{-1}\left\{\frac{2s}{s^2-9}\right\}$ $=2\mathcal{L}^{-1}\left\{\frac{S}{S^2-3^2}\right\}$ $= 2 \cosh 3t$ 4. $\mathcal{L}^{-1}\left\{\frac{5}{s} - \frac{3s}{s^2 + 16} + \frac{2}{s^2 + 4}\right\}$ $=5\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-3\mathcal{L}^{-1}\left\{\frac{s}{s^2+4^2}\right\}+\mathcal{L}^{-1}\left\{\frac{2}{s^2+2^2}\right\}$

 $= 5 - 3\cos 4t + \sin 2t.$

$$\mathcal{L}^{-1}\left\{\frac{1}{s^{n+1}}\right\} = \frac{t^n}{n!},$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} = e^{at}$$

$$\mathcal{L}^{-1}\left\{\frac{s}{s^2 - a^2}\right\} = \cosh at,$$

$$\mathcal{L}^{-1}\left\{\frac{s}{s^2 + a^2}\right\} = \cos at,$$

$$\mathcal{L}^{-1}\left\{\frac{a}{s^2 + a^2}\right\} = \sin at,$$

Using

Exercise

1.
$$F(s) = \frac{1}{s-5}$$
,

2.
$$F(s) = \frac{1}{s^5}$$
,

3.
$$F(s) = \frac{s^3 - 5s^2 + 6}{s^4}$$
,

$$4. F(s) = \frac{2+4s}{s^2+25} ,$$

$$5. F(s) = \frac{3}{s^2 + 4},$$

6.
$$F(s) = \frac{3}{s^2 - 4}$$
.

Using] Examples

Important Formulae

This Lecture Covers

Inverse Laplace Transformation

Example Translation Property & First

$$\mathcal{L}^{-1} \left\{ \frac{10}{(s+3)^4} \right\}$$

$$= 10 \mathcal{L}^{-1} \left\{ \frac{1}{(s-(-3))^4} \right\}$$

$$= 10 e^{-3t} \mathcal{L}^{-1} \left\{ \frac{1}{s^4} \right\}$$

$$= 10 e^{-3t} \frac{t^3}{3!} = \frac{10}{6} e^{-3t} t^3.$$

Example: 02

Example: 01

$$\mathcal{L}^{-1} \left\{ \frac{1}{(s-2)^2 + 1} \right\}$$

$$= e^{2t} \mathcal{L}^{-1} \left\{ \frac{1}{s^2 + 1} \right\}$$

$$= e^{2t} \sin t.$$

First translation property

If
$$\mathcal{L}^{-1}{F(s)} = f(t)$$
 then

$$\mathcal{L}^{-1}\{F(s-a)\}=e^{at}\mathcal{L}^{-1}\{F(s)\}.$$

$$\mathcal{L}^{-1}{F(s-a)} = e^{at}\mathcal{L}^{-1}{F(s)}$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s^{n+1}}\right\} = \frac{t^n}{n!}$$

$$=\frac{t^n}{n!}$$

$$\mathcal{L}^{-1}\left\{\frac{a}{s^2+a^2}\right\} = \sin at,$$

Using]

Examples 1

Example 3.

$$\mathcal{L}^{-1} \left\{ \frac{2s+1}{s^2+4s+13} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{2(s+2) - 3}{(s+2)^2 - 4 + 13} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{2(s+2) - 3}{(s+2)^2 + 9} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{2(s+2)}{(s+2)^2 + 3^2} - \frac{3}{(s+2)^2 + 3^2} \right\}$$
$$= 2e^{-2t} \mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 3^2} \right\} - e^{-2t} \mathcal{L}^{-1} \left\{ \frac{3}{s^2 + 3^2} \right\}$$

$$= 2e^{-2t}\cos 3t - e^{-2t}\sin 3t.$$

$\mathcal{L}^{-1}\left\{\frac{a}{s^2+a^2}\right\} = \sin at,$

$$\mathcal{L}^{-1}\left\{\frac{s}{s^2 + a^2}\right\}$$

$$= \cos at,$$

Exercise

Using]

Using

Exercises

Find Inverse Laplace of the following functions:

1.
$$F(s) = \frac{1}{(s-3)^4}$$

$$2. F(s) = \frac{3}{(s+2)^2 + 9}$$

3.
$$F(s) = \frac{s-2}{(s-2)^2-16}$$

$$4. F(s) = \frac{s}{s^2 + 4s - 9}$$

$$5. F(s) = \frac{5s-7}{s^2-6s+25}$$

6.
$$F(s) = \frac{s}{s^2 - 6s + 10}$$

Direct Formula Exercise First

Using Direct Formula

Important Formulae

Inverse Laplace Transformation

After completing this chapter you can easily

- evaluate the inverse Laplace transformation of function
 - using direct formula
 - also using property.

Examp

Formula Direct Exercise

Formula Direct Using Examples

Formulae

Important

Covers

This

THE END

Learning Outcomes

roperty irst sing Exercises

Property irst sing les

le Examp roperty tion nS St .1

Formula Direct Using Exercise

Formul Direct Using Examples

Important Formulae

This Lecture Covers

Transformation Laplace

Sample MCQ

$$1. \mathcal{L}^{-1} \left\{ \frac{s^2 + 1}{s^3} \right\} = ?$$

(a)
$$1 + \frac{t}{2}$$

b)
$$1 + \frac{t^2}{2}$$

(a)
$$1 + \frac{t}{2}$$
 (b) $1 + \frac{t^2}{2}$ (c) $1 - \frac{t^2}{2}$

(d)
$$\frac{t^2}{2}$$

2.
$$\mathcal{L}^{-1}\left\{\frac{4}{s-2} - \frac{s}{s^2-16} + \frac{4}{s^2-4}\right\} = ?$$

(a)
$$e^{2t} - \cosh 4t + 2 \sinh 2t$$

(b)
$$4e^{2t} + \cosh 4t + 2 \sinh 2t$$

(c)
$$4e^{2t} - \cosh 4t + 2 \sinh 2t$$

(d)
$$4e^{2t} - \cosh 4t$$

3.
$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+4s+13}\right\} = ?$$

(a)
$$e^{-2t}\cos 3t - \frac{2}{3}e^{-2t}\sin 3t$$

(b)
$$e^{-2t}\cos 3t - \frac{2}{3}e^{-2t}\sin 3t$$

(c)
$$e^{-2t}\cos 3t - \frac{2}{3}e^{-2t}\sin 3t$$

(d)
$$e^{-2t}\cos 3t - \frac{2}{3}e^{-2t}\sin 3t$$

4.
$$\mathcal{L}^{-1}\left\{\frac{s-2}{(s-2)^2-16}\right\}$$
 =?

(a)
$$\frac{e^{2t}}{2} + \frac{e^{6t}}{2}$$
 (b) $\frac{e^{-2t}}{2} + \frac{e^{-6t}}{2}$ (c) $\frac{e^{-2t}}{2} + \frac{e^{4t}}{2}$ (d) $\frac{e^{-2t}}{2} + \frac{e^{6t}}{2}$

(d)
$$\frac{e^{-2t}}{2} + \frac{e^{6t}}{2}$$