



# Resource-Adaptive Federated Learning with All-In-One Neural Composition Yiqun Mei, Pengfei Guo, Mo Zhou, Vishal M. Patel NeurIPS 2022

资源自适应的联邦学习 with 一体化神经网络组合

朱姚林 2024-11-12

#### 背景



# 什么是联邦学习

- 数据诞生在边缘:智能手机、工业传感器、......
- 去中心化数据:
  - 服务器不能收集客户端上的数据以保护隐私
  - 另外数据传输、存储也十分困难
- 联邦学习:
  - 设备在本地训练模型
  - 经过训练的模型被传输到中央服务器进行聚合











## 背景

# 怎么做联邦学习

- 1. 节点从服务器获取模型,并开始训练
- 2. 节点将训练后的模型发送给服务器
- 3. 服务器聚合所有的模型
- 4. 回到1





1. Nodes receive model from server and start training.



2. Nodes send partially trained models to server.



3. The server combines those models to make a federated model.



4. The federated model is sent to the nodes. Repeat as necessary.



# 联邦学习的异质性





数据异质性: 经设备训练后的模型偏差很大

系统异质性:设备的性能各不相同

#### 前置知识



# 低秩分解

• 基于假设:矩阵往往不是满秩的

• 后置分解:不需要重新训练

• 前置分解: 从网络结构上进行拆解







(a) Singular Values

通过低秩近似减少计算量 而不会明显损失精度

SVD分解,特征值分解, 梯度下降分解..... 将Linear拆成两个Linear, 将Conv拆成两个Conv



## FLANC的前置分解

- All-In-One Neural Composition:能否将参数拆成两个部分,一个部分由所有客户端共享知识 (共享基),另一个用于自适应客户端的资源能力(系数)?
- 将参数  $W_p$  拆成  $V_{share}$  和  $U_p$ 
  - $W_p$  是拥有特定处理容量为 p的客户端能够训练的最大网络。
  - 共享神经基 $V_{share}$ 是一个容量无关的张量,将 在所有的客户端上进行训练并实现知识的共享。
  - 系数  $U_p$  则对应所有拥有特定处理容量 p 的客户端,用于适应现实中散布的各种边 缘设备,它只在同组设备间实现知识共享。





## FLANC的前置分解

- 传统的分解不能用于资源异构场景
- All-In-One Neural Composition: FLANC 将维度为  $k^2 \times m_p \times n_p$  的  $W_p$  分解为维度为  $k^2 \times r_1 \times r_2$  的  $V_{share}$  和  $r_2 \times m_p/r_1 \times n_p$  的  $U_p$ 。
- 如 100 \* 50 的线性层, 拆分为 10\*5 + 5 \* 500 的线性层串联







## 正则化列向量以提高表示能力

•  $W_p = V_{share}U_p$ 

 $W_p$  的列向量可以看做是  $V_{share}$  的列向量的线性组合,或  $V_{share}$  张成的子空间。如果让  $V_{share}$  列向量线性无关,那么表达能力就更强。

• 引入正则化:  $\lambda \|VV^{\mathrm{T}} - I\|_{2}$ , 使得  $V_{share}$  的列向量尽可能正交

### 实验和可视化



# 正则化列向量以提高表示能力

• 引入正则化:  $\lambda \|VV^{\mathrm{T}} - I\|_{2}$ , 使得  $V_{share}$  的列向量尽可能正交



## 实验和可视化



# 实验和消融实验

- 实验:在四个数据集上与 HeteroFL, FjORD 进行 TOP-1 ACC 对比
- 消融实验:验证了 $r_1$ (基向量的维度)和 $r_2$ (基向量的个数)的影响