浙江大学04-05学年机械设计试卷及答案

- 一、判断题 (每题 1 分)
- 1、在相同温度下,牌号为 N46的润滑油粘度比牌号为 N100的润滑油粘度要低。(对或√)
- 2、机械零件的磨损过程可分为三个阶段: 跑合磨损阶段; 正常磨损阶段; 剧烈磨损阶段。(对)
- 3、弹簧的旋绕比 C值越小, 弹簧的刚度越大。 (对)
- 4、所有挠性联轴器都能补偿两轴间的不对中性,只是补偿的类型有所不同。(对)
- 5、推力球轴承的极限转速高于短圆柱滚子轴承。(错)
- 二、选择题 (每题 2 分)
- 1、 循环特性 r=-1的变应力是____应力。B A)脉动 B)对称 C)非对称循环
- 2、 当螺纹公称直径、牙型角、线数相同时,细牙螺纹的自锁性能比粗牙螺纹____。
 - A)高 B)低 C)一样 A

3、	采用螺纹联接时,若被联接件的厚度总厚度较大,且材料较软,强度较
	低,需经常装拆的情况下,一般多选用。B
	A)螺栓联接 B)双头螺柱联接 C)螺钉联接
4,	键的剖面尺寸根据选择。D
	A)轮毂的长度 B)传递转矩的大小 C)传递功率的大小 D)轴的直径
5、	导向平键(动联接)的主要失效形式是。D
	A)键受剪切破坏 B)轮毂受剪切破坏
	C)工作面受挤压破坏 D)工作面过度磨损
6,	V带传动时,带内弯曲应力最大的一段是。C
	A)V带的紧边 B)绕过大带轮的圆弧部分 C)绕过小带轮的圆弧部分
7、	V带传动在正常工作时,必有。A
	A)弹性滑动存在 B)打滑存在 C)弹性滑动和打滑存在同时存在
8,	工作条件和型号一定的 V带,其寿命随小带轮直径的增大而。B
	A)不变 B)增大 C)减少 D)不一定

- 15、闭式蜗杆传动中,蜗杆副的失效形式有__。D A) 齿面磨损 B) 齿面胶合 C) 蜗轮齿断裂 D) 以上都对
- 16、不完全液体润滑滑动轴承的摩擦形式一般为__。B A)流体摩擦 B)混合摩擦 C)干摩擦
- 17、经调质处理的 45 号钢制轴,验算刚度时发现不足,合理改进方法是_。 A)改用合金钢 B)改变热处理方法 C)加大直径 C
- 18、蜗杆传动中,蜗杆头数 z1选多一些,则___。D A)有利于蜗杆加工 B)有利于提高蜗杆刚度 C)有利于提高承载能力 D)有利于提高传动效率。
- 19、在蜗杆传动设计中,规定蜗杆直径取标准值,其目的是__。B A)限制加工蜗杆刀具的数量 B)限制加工蜗轮的刀具数量,并便于刀具 标准化 C)满足蜗轮、蜗杆正确啮合条件。
- 20、跨距较大, 受较大径向力, 轴的弯曲刚度较低时应选___。C A) 深沟球轴承 B) 圆柱滚子轴承 C) 调心球轴承

三. 简述题 (23分)

1、对于直径一定的闭式软齿面齿轮,为什么在弯曲强度足够时,常取较小模数和较大的齿数的设计方案?

答: (1) 有利于增大重合度、改善传动平稳性。

- (2) 由于减小了模数,降低了齿轮齿顶高,从而减少齿轮坯件的直径(齿顶圆直径)和金属切削量。
 - (3) 能降低齿面滑动,提高传动效率,减少磨损和胶合的可能。

2、简述螺栓联接防松的目的和方法。

答:防松的目的是:在冲击、振动和受变载荷作用以及温度变化较大的情况下,防止螺纹副拧紧后的反向相对运动。

方法: 附加摩擦力防松。直接锁住防松。破坏螺纹副关系防松。

3、为什么蜗杆传动常要求进行热平衡计算?

答:蜗杆传动的效率低,发热量大。对于闭式传动,如果散热不充分,温度升高,使润滑油粘度降低,减少润滑作用,导致齿面磨损加剧,甚至引发齿面胶合。

4、图 1示为一起重装置,试分析说明轴 I、轴Ⅱ、轴Ⅲ、轴Ⅳ的受载(弯矩、扭矩)情况。

答:

- (1) I为传动轴,只承受扭矩。
- (2) II为转轴,承受扭矩、弯矩。
- (3) III, IV为心轴, 只承受弯矩

5. 非液体摩擦滑动轴承应进行哪些条件性计算?

答:对于向心滑动轴承,要求:

- (1) 限制轴承平均压强P;
- (2) 限制轴承PV值;
- (3) 限制滑动速度V。

对于推力滑动轴承,则要求计算前两项。

四、计算题(16分)

图 2 所示为一单向运转轴系,已知斜齿轮和锥齿轮所受的轴向力分别为 3000N和~6000N。运动从锥齿轮下侧传入,斜齿轮下侧传出,如此时轴承 1的反力为 5000N,轴承 2的反力为 12000N, $S=0.7F_R$ 。 (书上为S=0.7R)

- 1) 试确定滚动轴承计算时所用的当量动载荷(两滚动轴承型号相同,且取 X=0.35, Y=0.57, $f_P=1$) 。 (书上为 $K_P=1$)
- 2) 此时轴的转向若何? 请标出在该转向下斜齿轮和锥齿轮所受的力。

1) 计算轴向外载荷:

锥齿轮轴向力Fa1=6000N,方向向左;斜齿轮轴向力Fa2=3000N, 方向向右,这样可抵消部分轴向力。轴向外载荷:

Fa=Fa1-Fa2=6000-3000=3000N, 方向向左

2) 计算两轴承轴向力:

两轴承"背-背"安装,派生轴向力S分别为:

 $R_1 = 5000N$, $S_1 = 0.7X5000 = 3500N$

 R_2 =12000N, S_2 =0.7X12000=8400N

Fa+S₁=3000+3500=6500N<S2

可见, 轴承1压紧, 轴承2放松, 得到轴向力A分别为:

 $A_2 = S_2 = 8400N$

 $A_1 = S_2 - Fa = 8400 - 3000 = 5400N$

3) 计算当量动载荷

轴承1: $P_1 = f_p(XR_1 + YA_1)$

 $= 0.35 \times 5000 + 0.57 \times 5400$

= 4828N

轴承2: $P_2 = f_p(XR_2 + YA_2)$

 $= 0.35 \times 12000 + 0.57 \times 8400$

= 8988N

4) 轴的转向、斜齿轮和锥齿轮所受的力见图。

五、结构题(16分)

图 3 为一轴系结构图(齿轮为斜齿轮),请用标号引出其中的 8处错误,并简要说明错误类型和改正方式。(每改 1 错得 2 分:标出错误 0.5分,类型说明 0.5 分,指出改进方式 1分。答案多于 8 个时按答错的数量扣分)。

参考答案:

- 1.两侧轴承端盖缺少垫片;
- 2.左侧轴承处的轴肩过高,轴承拆 卸困难;
- 3.齿轮安装平键应在中心线处,与 右侧键槽方向一致; -
- 4.齿轮安装部分轴的长度要小于齿 轮宽度;
- 5.轴套外径过大,已经与右侧轴承 外圈接触;
- 6.右侧轴承安装方向错误;
- 7.右端轴应有阶梯,方便轴承安装;
- 8.右侧轴承端盖内孔与轴之间应留有间隙,还缺少油封;
- 9.右侧键槽右端应是半圆弧,否则无法加工;
- 10.右侧输入轮安装轴应是阶梯轴,用于输入轮的轴向定位;
- 11.右侧轴端应有挡圈,用于输入轮的轴向固定。

