1

Balancing Chemical Equations using Matrices

G V V Sharma*

CONTENTS

1 Examples

1

Abstract—This manual shows how to balance chemical equations using matrices. based on exercise from the NCERT textbooks from Class 6-12.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ ncert/computation/codes

1 EXAMPLES

1.1. Balance the following chemical equation.

$$HNO_3 + Ca(OH)_2 \to Ca(NO_3)_2 + H_2O$$
(1.1.1)

Solution: Let the balanced version of (1.1.1) be

$$x_1HNO_3 + x_2Ca(OH)_2$$

 $\rightarrow x_3Ca(NO_3)_2 + x_4H_2O$ (1.1.2)

which results in the following equations:

$$(x_1 + 2x_2 - 2x_4)H = 0 (1.1.3)$$

$$(x_1 - 2x_3)N = 0 (1.1.4)$$

$$(3x_1 + 2x_2 - 6x_3 - x_4)O = 0 (1.1.5)$$

$$(x_2 - x_3)Ca = 0 (1.1.6)$$

which can be expressed as

$$x_1 + 2x_2 + 0x_3 - 2x_4 = 0 (1.1.7)$$

$$x_1 + 0x_2 - 2x_3 + 0.x_4 = 0 (1.1.8)$$

$$3x_1 + 2x_2 - 6x_3 - x_4 = 0 (1.1.9)$$

$$0x_1 + x_2 - x_3 + 0.x_4 = 0 (1.1.10)$$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

resulting in the matrix equation

$$\begin{pmatrix} 1 & 2 & 0 & -2 \\ 1 & 0 & -2 & 0 \\ 3 & 2 & -6 & -1 \\ 0 & 1 & -1 & 0 \end{pmatrix} \mathbf{x} = \mathbf{0}$$
 (1.1.11)

where.

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \tag{1.1.12}$$

(1.1.11) can be reduced as follows

$$\begin{pmatrix}
1 & 2 & 0 & -2 \\
1 & 0 & -2 & 0 \\
3 & 2 & -6 & -1 \\
0 & 1 & -1 & 0
\end{pmatrix}$$
(1.1.13)

$$\stackrel{R_2 \leftarrow R_2 - R_1}{\underset{R_3 \leftarrow \frac{R_3}{3} - R_1}{\longleftrightarrow}} \begin{pmatrix}
1 & 2 & 0 & -2 \\
0 & -2 & -2 & 2 \\
0 & -\frac{4}{3} & -2 & \frac{5}{3} \\
0 & 1 & -1 & 0
\end{pmatrix} (1.1.14)$$

$$\stackrel{R_2 \leftarrow -\frac{R_2}{2}}{\longleftrightarrow} \begin{pmatrix} 1 & 2 & 0 & -2\\ 0 & 1 & 1 & -1\\ 0 & -\frac{4}{3} & -2 & \frac{5}{3}\\ 0 & 1 & -1 & 0 \end{pmatrix}$$
(1.1.15)

$$\xrightarrow{R_3 \leftarrow R_3 + \frac{4}{3}R_2} \begin{pmatrix}
1 & 2 & 0 & -2 \\
0 & 1 & 1 & -1 \\
0 & 0 & -\frac{2}{3} & \frac{1}{3} \\
0 & 0 & -2 & 1
\end{pmatrix}$$
(1.1.16)

$$\stackrel{R_1 \leftarrow R_1 - 2R_2}{\underset{R_3 \leftarrow -\frac{3}{2}R_3}{\longleftrightarrow}} \begin{pmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & -2 & 1
\end{pmatrix} (1.1.17)$$

$$\xrightarrow{R_4 \leftarrow R_4 + 2R_3} \begin{pmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0
\end{pmatrix} (1.1.18)$$

$$\begin{array}{c}
\stackrel{R_1 \leftarrow R_1 + 2R_3}{\longleftarrow} \begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0
\end{pmatrix} (1.1.19)$$

Thus,

$$x_1 = x_4, x_2 = \frac{1}{2}x_4, x_3 = \frac{1}{2}x_4$$
 (1.1.20)

$$\implies \mathbf{x} = x_4 \begin{pmatrix} 1\\\frac{1}{2}\\\frac{1}{2}\\1 \end{pmatrix} = \begin{pmatrix} 2\\1\\1\\2 \end{pmatrix} \qquad (1.1.21)$$

by substituting $x_4 = 2$

Hence, (1.1.2) finally becomes

$$2HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + 2H_2O$$
(1.1.22)

1.2. Balance the following chemical equation.

Zinc + Silver nitrate
$$\rightarrow$$
 Zinc nitrate + Silver (1.2.1)

Solution:

1.2.1 can be written as

$$Zn + AgNO_3 \rightarrow Ag + Zn(NO_3)_2$$
 (1.2.2)

Suppose the balanced form of the equation is

$$x_1Zn + x_2AgNO_3 \to x_3Ag + x_4Zn(NO_3)_2$$
(1.2.3)

which results in the following equations:

$$(x_1 - 2x_4)Zn = 0 (1.2.4)$$

$$(x_2 - x_3)Ag = 0 ag{1.2.5}$$

$$(x_3 - 2x_4)N = 0 ag{1.2.6}$$

$$(3x_3 - 6x_4)O = 0 (1.2.7)$$

which can be expressed as

$$x_1 + 0x_2 + 0x_3 - x_4 = 0 ag{1.2.8}$$

$$0x_1 + x_2 - x_3 + 0x_4 = 0 ag{1.2.9}$$

$$0x_1 + 0x_2 + x_3 - 2x_4 = 0 (1.2.10)$$

$$0x_1 + 0x_2 + 3x_3 - 6x_4 = 0 (1.2.11)$$

resulting in the matrix equation

$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 3 & -6 \end{pmatrix} \mathbf{x} = \mathbf{0}$$
 (1.2.12)

where,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \tag{1.2.13}$$

(1.2.12) can be reduced as

$$\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -2 \\
0 & 0 & 3 & -6
\end{pmatrix}$$

$$\xrightarrow{R_4 \leftarrow R_4 - 3R_3}
\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{pmatrix} (1.2.14)$$

Thus,

$$x_1 = x_4, x_2 = 2x_4, x_3 = 2x_4$$
 (1.2.15)

$$\implies \mathbf{x} = \begin{pmatrix} x_4 \\ 2x_4 \\ 2x_4 \\ x_4 \end{pmatrix} = x_4 \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix} \quad (1.2.16)$$

by substituting $x_4 = 1$, we get

$$\implies \mathbf{x} = \begin{pmatrix} 1\\2\\2\\1 \end{pmatrix} \tag{1.2.17}$$

Hence, (1.2.3) finally becomes

$$Zn + 2AgNO_3 \rightarrow 2Ag + Zn(NO_3)_2$$
 (1.2.18)

1.3. Write the balanced chemical equations for the following reaction :

$$BaCl_2 + K_2SO_4 \rightarrow BaSO_4 + KCl$$
 (1.3.1)

Solution: We know that the number of atoms of each element remains the same, before and after a chemical reaction.

Equation (1.3.1) can be written as

$$x_1BaCl_2 + x_2K_2SO_4 \rightarrow x_3BaSO_4 + x_4KCl$$
(1.3.2)

Element wise contribution in forming the respective chemical compound can be written in the form of equation as

$$Ba: x_1 + 0x_2 - x_3 - 0x_4 = 0$$
 (1.3.3)

$$Cl: 2x_1 + 0x_2 - 0x_3 - 1x_4 = 0$$
 (1.3.4)

$$K: 0x_1 + 2x_2 - 0x_3 - 1x_4 = 0$$
 (1.3.5)

$$S: 0x_1 + 1x_2 - 1x_3 - 0x_4 = 0$$
 (1.3.6)

$$O: 0x_1 + 4x_2 - 4x_3 - 0x_4 = 0 (1.3.7)$$

In matrix form this can be written as

$$A\mathbf{x} = 0 \tag{1.3.8}$$

$$\begin{pmatrix}
1 & 0 & -1 & 0 \\
2 & 0 & 0 & -1 \\
0 & 2 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 4 & -4 & 0
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}$$
(1.3.9)

Using Gaussian Elimination method

$$\stackrel{R_2 \leftrightarrow R_5}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & -1 & 0 & 0 \\
0 & 4 & -4 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 & 0 \\
2 & 0 & 0 & -1 & 0
\end{pmatrix} (1.3.10)$$

$$\stackrel{R_5 \leftarrow 2R_1 - R_5}{\rightleftharpoons} \begin{pmatrix}
1 & 0 & -1 & 0 & 0 \\
0 & 4 & -4 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & -2 & 1 & 0
\end{pmatrix} (1.3.11)$$

$$(1 & 0 & -1 & 0 & 0$$

$$\stackrel{R_5 \leftrightarrow R_5}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & -1 & 0 & 0 \\
0 & 4 & -4 & 0 & 0 \\
0 & 0 & 4 & -2 & 0 \\
0 & 0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix} (1.3.13)$$

$$\stackrel{R_4 \leftarrow 2R_4 - R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & -1 & 0 & 0 \\
0 & 4 & -4 & 0 & 0 \\
0 & 0 & 4 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix} (1.3.14)$$

Clearly the system is linearly dependent. Therefore by fixing the value of $x_4 = 2$, one of the possible vectors \mathbf{x} is

$$\mathbf{x} = \begin{pmatrix} 1\\1\\1\\2 \end{pmatrix} \tag{1.3.15}$$

Hence by putting the values of x_1, x_2, x_3, x_4 in equation (1.3.1) we get our balanced chemical equation as

$$BaCl_2 + K_2SO_4 \rightarrow BaSO_4 + 2KCl$$
 (1.3.16)

1.4. Balance the following chemical equation.

$$Fe + H_2O \rightarrow Fe_3O_4 + H_2$$
 (1.4.1)

Solution:

Let the balanced version of (1.4.1) be

$$x_1Fe + x_2H_2O \rightarrow x_3Fe_3O_4 + x_4H_2$$
 (1.4.2)

which results in the following equations

$$(x_1 - 3x_3) Fe = 0$$

 $(2x_2 - 2x_4) H = 0$ (1.4.3)
 $(x_2 - 4x_3) O = 0$

which can be expressed as

$$x_1 + 0.x_2 - 3x_3 + 0.x_4 = 0$$

$$0.x_1 + 2x_2 + 0.x_3 - 2x_4 = 0$$

$$0.x_1 + x_2 - 4x_3 + 0.x_4 = 0$$
(1.4.4)

resulting in the matrix equation

$$\begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 2 & 0 & -2 \\ 0 & 1 & -4 & 0 \end{pmatrix} \mathbf{x} = \mathbf{0}$$
 (1.4.5)

where

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \tag{1.4.6}$$

(1.4.5) can be row reduced as follows

$$\begin{pmatrix}
1 & 0 & -3 & 0 \\
0 & 2 & 0 & -2 \\
0 & 1 & -4 & 0
\end{pmatrix}
\xrightarrow{R_2 \leftarrow \frac{R_2}{2}}
\begin{pmatrix}
1 & 0 & -3 & 0 \\
0 & 1 & 0 & -1 \\
0 & 1 & -4 & 0
\end{pmatrix}$$

$$\xrightarrow{(1.4.7)}$$

$$\stackrel{R_3 \leftarrow R_3 - R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & -3 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & -4 & 1
\end{pmatrix}$$

$$\xrightarrow{(1.4.8)}$$

$$\xrightarrow{R_1 \leftarrow 4R_1 - 3R_3} \begin{pmatrix}
4 & 0 & 0 & -3 \\
0 & 1 & 0 & -1 \\
0 & 0 & -4 & 1
\end{pmatrix}$$

$$\xrightarrow{(1.4.9)}$$

$$\xrightarrow{R_1 \leftarrow \frac{1}{4}}
\xrightarrow{R_3 \leftarrow -\frac{1}{4}R_3}
\begin{pmatrix}
1 & 0 & 0 & -\frac{3}{4} \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -\frac{1}{4}
\end{pmatrix}$$

$$\xrightarrow{(1.4.10)}$$

Thus,

$$x_1 = \frac{3}{4}x_4, x_2 = x_4, x_3 = \frac{1}{4}x_4$$
 (1.4.11)
(1.4.12)

$$\implies \mathbf{x} = x_4 \begin{pmatrix} \frac{3}{4} \\ 1 \\ \frac{1}{4} \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 1 \\ 4 \end{pmatrix} \tag{1.4.13}$$

upon substituting $x_4 = 4$. (1.4.2) then becomes

$$3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$$
 (1.4.14)