Number Systems

By P. K. Roy

What is the purpose?

- A set of values used to represent different quantities is known as *Number System*.
- Computer represents all kinds of data and information in terms of numbers (Low Level Language).
- Are of 2 types
 - 1. Non-positional number systems ancient technique *e.g. Roman number system*
 - 2. Positional number systems finite digits represented by base or radix.

e.g. Decimal, binary, etc.

Positional Number System

Can be classified into two categories -

- 1. High Level Numbers Decimal
- 2. Low Level Numbers Binary, Octal, Hexadecimal

Conversion:

High level to Low level => Division by Radix of
Low level number
Low level to High level => Multiplication Radix
of Low level number

(See The Board.....)

Binary Numbers

1. Signed –

MSB		LSB
Sign Bit 0 – positive 1 - negative	Magnitude (all bits except	sign bit)

e.g.
$$+15 => 0000 \ 1111$$
 (considering 8-bit representation) $-15 => 1000 \ 1111$

2. Unsigned – MSB LSB Magnitude (all bits including sign bit)

Cntd...

Two additional representations:

1. 1's complement:

2. 2's complement :

1111 0001 (2's complement)

Range of Binary Numbers

• Considering 4 bit numbers,

 $2^n = 16$ representations are possible

Where *n* is the no. of bits

For *unsigned* nos. 0 to 15

For *signed* nos. $0 \text{ to } 7 \Rightarrow (+) \text{ ve}$

-1 to -8 \rightarrow (-)ve 2's complement form

Hence the range of signed nos. can be represented by

$$-2^{n-1}$$
 to $+2^{n-1}-1$

Where *n* is the no. of bits

Binary Arithmetic

Addition

$$=> 1+1 = 0$$
 with carry 1; $1+0=1$; $0+1=1$; $0+0=0$

Subtraction

$$=> 1-1=0$$
; $1-0=1$; $0-0=0$; $10-1=1$ with borrow 1

Multiplication

$$=> 1 \times 1 = 1$$
; $1 \times 0 = 0$; $0 \times 1 = 0$; $0 \times 0 = 0$

Division

$$\Rightarrow$$
 1 ÷ 1 = 1 ; 1 ÷ 0 \Rightarrow not allowed ; 0 ÷ 0 \Rightarrow not allowed ; 0 ÷ 1= 0

(Self Review)

Overflow

• Overflow occurs when two numbers are added or subtracted and the correct result is a number that is outside of the range of allowable numbers(or beyond the capacity of storage registers).

Example:

- 254 + 10 = 264 (>255); overflow in unsigned 8-bit.
- -100 30 = -130(<-128); overflow in signed 8-bit.

Overflow detection

Addition:

Adding same sign numbers and the result with different sign => overflow.

No overflow in case if the two numbers have different sign.

e.g.
$$+120 => 0111 1000$$

 $+65 => 0100 0001$

As the sign bit is 1, i.e. negative => overflow

Cntd...

Subtraction:

Floating Point Number Representation

Are of 2 types-

- 1. IEEE 754 Single-precision (32 bits)
- 2. IEEE 754 Double-precision (64 bits)
- 1. Single precision: $\pm 1.Mx2^{(e'=e+127)}$

Sign bit	Exponent	Mantissa
Sign bit (31)	8 bit exponent in Excess -127 Representation (30 - 23)	Significand/Mantissa (22 - 0)

Cntd...

• **Double – Precision : ±1.Mx2**(e'=e +1023)

Sign	Exponent	Mantissa
Sign bit (63) 0 – positive 1 - Negative	11 bit Exponent in Excess – 1023 form (62 – 52)	52 bit Mantissa (51 - 0) or Significand

Normalized Floating – Point Number

• MSB of the mantissa is not '0'

e.g.
$$(11001)_2$$

• Non-normalized numbers can be converted into normalized form by removing the leading 0s of the mantissa.

e.g.
$$0.000110x2^{-6} => 0.110x2^{-9}$$

 $0.00345 \times 10^4 => 0.345 \times 10^2$

1.	For signed	l nos. which	bit represents th	e sign?
	a) LSB	b) MSB	c) Carry bit	d) None of these
2.	Binary ne	gative nos. ca	an be represente	ed by –
	a) Sign - I	Magnitude	b) 1's comple	ment
	c) 2's con	nplement	d) all of these	
3.	For 8-bit b	oinary unsign	ed no. system, t	total no. of representations
	a) 253	b) 254	c) 255	d) 256
4.	For 8-bit u	unsigned bina	ary no. system, t	the largest no. is –
	a) 253	b) 254	c) 255	d) 256
5.	For 8-bit u	unsigned bina	ary no. system,	the smallest no. is –
	a) 253	b) 254	c) 255	d) none of these
6. I	For 8-bit bir	nary signed n	o. system, total	no. of representations –
	a) 253	b) 254	c) 255	d) 256

7. For 8-bit signe	ed binary no.	system, the larg	gest positive no. is –
a) 125	b) 126	c) 127	d) none of these
8. For 8-bit signe	ed binary no.	system, the sm	allest negative no. is –
a) -125	b) -126	c) -127	d) -128
9. Overflow may	occur in add	ition when –	
a) the two nur	mbers have di	fferent sign	
b) the two num	mbers have sa	ıme sign	
c) none of the	ese		
d) both a & b			
10. Decimal nos	. are positiona	al	
a) True		b) False	

11. Binary nos. can	ary nos. can be considered as high level nos.			
a) True	b) False			
12. In sign magnitu	ide representation (1111) ₂ means –			
a) $+ 15$	b) -15	c) + 7	d) -7	
3. In 2's complement representation (1111) ₂ means –				
a) $+ 15$	b) -15	c) -1	d) + 1	
4. Today's computers only understand –				
a) binary nos. b) hexadecim		imal nos.		
c) decimal nos.		d) octal nos.		
15 9 is an octal n	umber			
a) True	b)) False		
16. In binary arithm	etic 1+1 =			
a) 0 0 b)	0.1	c) 1 0	d) 1 1	

17. In sign magnitude representation magnitude represents –
a) all bits b) MSB c) LSB d) none of these
18. A borrow is generated when -
a) 1 - 1 b) 1 - 0 c) 10 - 1 d) 0 - 0
19. $(1010)_2 + (1010)_2$ for 4 bit binary no. system generates overflow
a) True b) False
20. For a Hexadecimal no. system $(15)_{10} =$
a) A b) B c) C d) none of these
21. EAC should be added to the LSB of the result in –
a) 1' complement b) 2's complement
c) both d) none
22. A carry is generated when –
a) $0+0$ b) $0+1$ c) $1+0$ d) $1+1$

References

- Digital Circuits & Design Salivahanan
- Digital Logic & Computer Design Morris Mano

