CLAIMS

What is Claimed is:

1	1.	A sys	ent for condoming access to digital services comprising.
2	(a)	a cont	rol center configured to coordinate and provide digital services;
3	(b)	an upl	ink center configured to receive the digital services from the control center
4	and transmit the digital services to a satellite;		
5	(c)	the sa	tellite configured to:
6		(i)	receive the digital services from the uplink center;
7		(ii)	process the digital services; and
8		(iii)	transmit the digital services to a subscriber receiver station;
9	(d)	the su	bscriber receiver station configured to:
10		(i)	receive the digital services from the satellite;
11		(ii)	control access to the digital services through an integrated
12	receiv	er/deco	der (IRD);
13	(e)	a con	ditional access module (CAM) communicatively coupled to the (IRD),
14	wherein the C	AM coi	mprises:
15		(i)	a system bus;
16		(ii)	a plurality of physically separate and independently controlled
17	nonvo	latile m	emory components, wherein access control to the digital services is
18	distrib	uted am	ong the nonvolatile memory components; and
19		(iii)	a microprocessor communicatively coupled to the nonvolatile memory
20	comp	onents,	wherein the microprocessor is configured to use state information in the
21	nonvo	olatile m	emory components to provide desired functionality and enforce one or
22	more	security	policies for accessing the digital services.
	_		
1	2.	The s	ystem of claim 1, wherein the conditional access module is a smart card.

requirement of each nonvolatile memory component.

1 3. The system of claim 2, wherein the smart card further comprises: 2 a volatile memory component; 3 a custom logic block; and 4 a system input/output module. 4. 1 The system of claim 1, wherein each nonvolatile memory component has 2 separate memory access control restrictions. 1 5. The system of claim 1, wherein each nonvolatile memory component implements 2 an entirely unique memory access control logic. 1 6. The system of claim 1, wherein the plurality of nonvolatile memory components 2 reside on a single chip. 1 7. The system of claim 6, wherein a charge pump is shared between the plurality of 2 nonvolatile memory components. 1 8. The system of claim 6, wherein programming control is shared between the 2 plurality of nonvolatile memory components. 1 9. The system of claim 1, wherein the plurality of nonvolatile memory components 2 employ separate and unique address ranges. 1 10. The system of claim 1, wherein the plurality of nonvolatile memory components 2 employ a single contiguous address range. 1 11. The system of claim 1, wherein separate access control units satisfy a functional

2

18.

components reside on a single chip.

1	12. A method of controlling unauthorized access to digital services comprising:			
2	distributing access to digital services among a plurality of physically separate and			
3	independently controlled nonvolatile memory components on a system bus; and			
4	communicatively coupling the plurality of nonvolatile memory components to a			
5	microprocessor, wherein the microprocessor is configured to use state information in the			
6	nonvolatile memory components to provide desired functionality and enforce one or more			
7	security policies for accessing the digital services.			
1	13. The method of claim 12, wherein the plurality of nonvolatile memory			
2	components are contained within a security component known as a smart card.			
1	14. The method of claim 13, wherein the smart card further comprises:			
2	a volatile memory component;			
3	a custom logic block; and			
4	a system input/output module.			
1	15. The method of claim 13, wherein the smart card is utilized in an integrated			
2	receiver/decoder (IRD).			
1	16. The method of claim 12, wherein each nonvolatile memory component has			
2	separate memory access control restrictions.			
1	17. The method of claim 12, wherein each nonvolatile memory component			
2	implements an entirely unique memory access control logic.			

The method of claim 12, wherein the plurality of nonvolatile memory

- 1 19. The method of claim 18, wherein a charge pump is shared between the plurality of nonvolatile memory components.
- 1 20. The method of claim 18, wherein programming control is shared between the 2 plurality of nonvolatile memory components.
- 1 21. The method of claim 12, wherein the plurality of nonvolatile memory components employ separate and unique address ranges.
- 1 22. The method of claim 12, wherein the plurality of nonvolatile memory components employ a single contiguous address range.
- 1 23. The method of claim 12, wherein separate access control units satisfy a 2 functional requirement of each nonvolatile memory component.
- 1 24. A method of accessing digital services comprising:
- 2 storing state information in a plurality of nonvolatile memory components, wherein the
- 3 plurality of nonvolatile memory components are physically separate and independently
- 4 controlled;
- 5 accessing digital services using the nonvolatile memory components wherein the state
- 6 information is used to provide desired functionality and enforce one or more security policies for
- 7 accessing the digital services.
- 1 25. The method of claim 24, wherein the plurality of nonvolatile memory
- 2 components are contained within a security component known as a smart card.
- 1 26. The method of claim 25, wherein the smart card is utilized in an integrated
- 2 receiver/decoder (IRD).

2

1

2

34.

35.

a system bus;

1	27.	The method of claim 24, wherein a single microprocessor controls the	
2	nonvolatile memory components.		
1	28.	The method of claim 24, wherein each nonvolatile memory component has	
2	separate memo	ory access control restrictions.	
	20		
1	29.	The method of claim 24, wherein each nonvolatile memory component	
2	implements an	entirely unique memory access control logic.	
1	30.	The method of claim 24, wherein the plurality of nonvolatile memory	
2	components re	side on a single chip.	
1	31.	The method of claim 30, wherein programming control is shared between the	
2	plurality of nonvolatile memory components.		
1	32.	The method of claim 24, wherein the plurality of nonvolatile memory	
2	components employ separate and unique address ranges.		
1	33.	The method of claim 24, wherein the plurality of nonvolatile memory	
2	components employ a single contiguous address range.		

The method of claim 24, wherein separate access control units satisfy a

functional requirement of each nonvolatile memory component.

A conditional access module (CAM), comprising:

2

41.

reside on a single chip.

3	a plurality of physically separate and independently controlled nonvolatile memory				
4	components, wherein access control to digital services is distributed among the nonvolatile				
5	memory components; and				
6	a microprocessor communicatively coupled to the nonvolatile memory components,				
7	wherein the microprocessor is configured to use state information in the nonvolatile memory				
8	components to provide desired functionality and enforce one or more security policies for				
9	accessing the digital services.				
1	36. The CAM of claim 35, wherein the conditional access module is a smart card.				
1	37. The CAM of claim 36, wherein the smart card further comprises:				
2	a volatile memory component;				
3	a custom logic block; and				
4	a system input/output module.				
1	38. The CAM of claim 36, wherein the smart card is utilized in an integrated				
2	receiver/decoder (IRD).				
1	39. The CAM of claim 35, wherein each nonvolatile memory component has				
2	separate memory access control restrictions.				
1	40. The CAM of claim 35, wherein each nonvolatile memory component				
2	implements an entirely unique memory access control logic.				

The CAM of claim 35, wherein the plurality of nonvolatile memory components

2

1	42.	The CAM of claim 41, wherein a charge pump is shared between the plurality
2 of nonvolatile memory components.		memory components.

- 1 43. The CAM of claim 41, wherein programming control is shared between the 2 plurality of nonvolatile memory components.
- 1 44. The CAM of claim 35, wherein the plurality of nonvolatile memory components 2 employ separate and unique address ranges.
- 1 45. The CAM of claim 35, wherein the plurality of nonvolatile memory components 2 employ a single contiguous address range.
- 46. The CAM of claim 35, wherein separate access control units satisfy a functional 2 requirement of each nonvolatile memory component.
- 1 47. An article of manufacture for preventing unauthorized access to digital services comprising: 3 means for distributing access control to digital services among a plurality of physically 4 separate and independently controlled nonvolatile memory components on a system bus; and
- 5 means for communicatively coupling the plurality of nonvolatile memory components to 6 a microprocessor, wherein the microprocessor is configured to use state information in the 7 nonvolatile memory components to provide desired functionality and enforce one or more 8 security policies for accessing the digital services.
- 1 48. The article of manufacture of claim 47, wherein the plurality of nonvolatile 2 memory components are contained within a security component known as a smart card.

1	49.	The article of manufacture of claim 48, wherein the smart card further			
2	comprises:				
3	a volatile memory component;				
4	a custom logic block; and				
5	a syste	m input/output module.			
1	50.	The article of manufacture of claim 48, wherein the smart card is utilized in an			
2	integrated receiver/decoder (IRD).				
1	51.	The article of manufacture of claim 47, wherein each nonvolatile memory			
2	component has	s separate memory access control restrictions.			
1	52.	The article of manufacture of claim 47, wherein each nonvolatile memory			
2	component imp	plements an entirely unique memory access control logic.			
1	53.	The article of manufacture of claim 47, wherein the plurality of nonvolatile			
2	memory comp	onents reside on a single chip.			
1	54.	The article of manufacture of claim 53, wherein a charge pump is shared			
2	between the pl	urality of nonvolatile memory components.			
1	55.	The article of manufacture of claim 53, further comprising means for sharing			
2	programming of	control between the plurality of nonvolatile memory components.			
1	56.	The article of manufacture of claim 47, wherein the plurality of nonvolatile			

memory components employ separate and unique address ranges.

- 1 57. The article of manufacture of claim 47, wherein the plurality of nonvolatile
- 2 memory components employ a single contiguous address range.
- 1 58. The article of manufacture of claim 47, wherein separate access control units
- 2 satisfy a functional requirement of each nonvolatile memory component.