PHYS 603 - Methods of Theoretical Physics III

Lie Algebras in Particle Physics by H. Georgi

Student: Ralph Razzouk

Homework 7

Problem 1

Decompose each of the following into a sum of tensors transforming as irreducible representations of SU(3):

- (a) The product in Problem 10.A of the textbook (u^i transforms as a 3). Problem 10.A: Decompose the product of tensor components $u^i v^{jk}$ where $v^{jk} = v^{kj}$ transforms like a 6 of SU(3).
- (b) $u^{ij}v_k$, where u^{ij} is a 6, and v_k is a $\overline{3}$.

Solution. (a) To decompose the product $u^i v^{jk}$ where u^i transforms as a 3 and $v^{jk} = v^{kj}$ transforms as a 6 of SU(3), I need to find the irreducible components of this tensor product.

First, I note that the tensor product 3 6 has 18 components total. To decompose this, I'll look for ways to construct tensors with definite transformation properties.

I can construct a completely symmetric tensor by symmetrizing over all three indices

$$S^{ijk} = \frac{1}{3}(u^i v^{jk} + u^j v^{ik} + u^k v^{ij}).$$

Since v^{jk} is already symmetric in j and k, this simplifies to

$$S^{ijk} = \frac{1}{3}(u^i v^{jk} + u^j v^{ik} + u^k v^{ij}).$$

The space of completely symmetric tensors with three indices in SU(3) transforms as the 10-dimensional representation. We can verify this using the dimension formula (10.43) from the textbook:

$$D(3,0) = \frac{(3+1)(0+1)(3+0+2)}{2} = \frac{4 \cdot 1 \cdot 5}{2} = 10.$$

Now, to find the remaining piece, we define

$$A^{ijk} = u^i v^{jk} - S^{ijk}.$$

This tensor A^{ijk} must transform as an 8-dimensional representation of SU(3), since the total dimension is 18 and we've already identified a 10-dimensional subspace.

We can verify this is orthogonal to S^{ijk} in the sense of irreducible subspaces. Additionally, we can construct an object with two indices that transforms as the adjoint representation (8) of SU(3) by contracting with the ϵ tensor:=

$$O_l^i = \epsilon_{ikl} A^{ijk}.$$

Therefore, the decomposition is

$$u^i v^{jk} = S^{ijk} + A^{ijk},$$

and the tensor product can be written as:

$$3 \otimes 6 = 10 \oplus 8$$
.

(b) For the tensor product $T_k^{ij} = u^{ij}v_k$, where u^{ij} is a 6 and v_k is a $\overline{3}$, Matt first notes that the total tensor has $6 \times 3 = 18$ components.

A natural decomposition approach is to contract an upstairs index with the downstairs index. Since u^{ij} is symmetric, there's essentially one independent contraction

$$w^i = u^{ij}v_i.$$

This w^i transforms as a 3, the fundamental representation of SU(3), accounting for 3 of the 18 components. The remaining 18-3=15 components must form an irreducible subspace. To isolate this piece, Matt defines a tensor R_k^{ij} that satisfies

$$R_k^{ij} = R_k^{ji},$$

$$R_i^{ij} = 0.$$

The most general form that satisfies these conditions is

$$R_k^{ij} = u^{ij}v_k - \alpha(\delta_k^i u^{jl}v_l + \delta_k^j u^{il}v_l).$$

The value of α is determined by imposing the tracelessness condition

$$R_i^{ij} = w^j - \alpha(3w^j + w^j) = 0,$$

 $w^j - 4\alpha w^j = 0.$

This gives $\alpha = \frac{1}{4}$, so:

$$R_k^{ij} = u^{ij}v_k - \frac{1}{4}(\delta_k^i u^{jl}v_l + \delta_k^j u^{il}v_l).$$

This 15-dimensional irreducible piece corresponds to the (2,1) representation of SU(3).

Therefore, the decomposition is

$$6 \otimes \overline{3} = 15 \oplus 3$$
.

Problem 10.B

Find the matrix elements $\langle u|T_a|v\rangle$ where T_a are the SU(3) generators and $|u\rangle$ and $|v\rangle$ are tensors in the adjoint representation of SU(3) with components u_j^i and v_j^i . Write the result in terms of the tensor components and the λ_a matrices of (7.4).

Solution. In this problem, we need to find the matrix elements of the SU(3) generators T_a between states in the adjoint representation. We know that $|u\rangle$ and $|v\rangle$ are tensors in the adjoint representation with components u_i^i and v_i^i .

First, recall that the action of the generators on a tensor operator is given by the commutator

$$[T_a, O] = T_a O - OT_a.$$

For a tensor in the adjoint representation, we have

$$\begin{split} \left[T_a, v_j^i \right] &= (T_a)_{ik} v_j^k - v_k^i (T_a)_{kj} \\ &= \frac{1}{2} [(\lambda_a)_{ik} v_j^k - v_k^i (\lambda_a)_{kj}], \end{split}$$

where we've used the relation $T_a = \frac{1}{2}\lambda_a$.

Now, the matrix element we're looking for can be written as

$$\langle u|T_a|v\rangle = \sum_{i,j} (u_j^i)^* \langle i,j|T_a|v\rangle$$
$$= \sum_{i,j} (u_j^i)^* [T_a v_j^i].$$

Since the action of T_a on the tensor components is given by the commutator, we have

$$\langle u|T_{a}|v\rangle = \sum_{i,j} (u_{j}^{i})^{*} \frac{1}{2} [(\lambda_{a})_{ik} v_{j}^{k} - v_{k}^{i} (\lambda_{a})_{kj}]$$

$$= \frac{1}{2} \sum_{i,j,k} (u_{j}^{i})^{*} (\lambda_{a})_{ik} v_{j}^{k} - \frac{1}{2} \sum_{i,j,k} (u_{j}^{i})^{*} v_{k}^{i} (\lambda_{a})_{kj}.$$

Using the properties of tensor transformations and the fact that u_j^i and v_j^i are traceless, we can rewrite this in terms of traces

$$\langle u|T_a|v\rangle = \frac{1}{2}\mathrm{Tr}(u^{\dagger}\lambda_a v) - \frac{1}{2}\mathrm{Tr}(u^{\dagger}v\lambda_a)$$
$$= \frac{1}{2}\left[\mathrm{Tr}(u^{\dagger}\lambda_a v) - \mathrm{Tr}(u^{\dagger}v\lambda_a)\right].$$

Therefore, the matrix elements are

$$\langle u|T_a|v\rangle = \frac{1}{2} \left[\text{Tr}(u^{\dagger}\lambda_a v) - \text{Tr}(u^{\dagger}v\lambda_a) \right].$$

We can also express this in terms of the tensor components

$$\langle u|T_a|v\rangle = \frac{1}{2} \sum_{i,j,k} \left[(u_j^i)^* (\lambda_a)_{ik} v_j^k - (u_j^i)^* v_k^i (\lambda_a)_{kj} \right].$$

This is the expression for the matrix elements of the SU(3) generators between adjoint representation states in terms of the tensor components and the λ_a matrices.