Explaining Compressed Suffix Arrays Further.

From: Grossi, R., & Vitter, J. S. (2005). Compressed Suffix Arrays and Suffix Trees with Applications to Text Indexing and String Matching. SIAM Journal on Computing, 35(2), 378–407. https://doi.org/10.1137/S0097539702402354

The Suffix Array

Figure 1: Suffix tree built on text T= abbabbabbabbabbabbabbabbabbabba# of length n=32, where the last character is an end-of-string symbol #. The rightmost subtree (the triangle representing the suffixes of the form $bb\cdots \#$) is not expanded in the figure. The edge label $a\cdots \#$ or $b\cdots \#$ on the edge leading to the leaf with value ℓ denotes the remaining characters of the suffix $T[\ell,n]$ that have not already been traversed. For example, the first suffix in lexicographic format is the suffix T[15,n], namely, aaabababbabbabba#, and the last edge represents the 16-symbol substring that follows the prefix aa.

1	15	aaabababbabbabba#
2	16	aabababbabbabba#
3	31	a#
4	13	abaaabababbabbabba#
5	17	abababbabbabba#
6	19	ababbabbabba#
7	28	abba#
8	10	abbabaaabababbabbabba#
9	7	abbabbabaaabababbabbabba#
10	4	abbabbabbabaaabababbabbabba#
11	1	abbabbabbabbabaaabababbabbabba#
12	21	abbabbbabba#
13	24	abbbabba#
14	32	#
15	14	baaabababbabbabba#
16	30	ba#
17	12	babaaabababbabbabba#
18	18	bababbabbabba#
19	27	babba#
20	9	babbabaaabababbabbabba#
21	6	babbabbabaaabababbabbabba#
22	3	babbabbabbabaaabababbabbabba#
23	20	babbabbabba#
24	23	babbbabba#
32	25	bbbabba#

Figure 2: Suffix array for the text T shown in Figure 1, where $\mathtt{a} < \mathtt{\#} < \mathtt{b}$. Note that the array values correspond to the leaf values in the suffix tree in Figure 1 traversed in in-order.

Suffix Array Decomposition

aaaa#	aaab#	aaba#	aabb#	abaa#	abab#	abba#	abbb#
12345	12354	14253	12543	34152	13524	41532	15432
baaa#	baab#	baba#	babb#	bbaa#	bbab#	bbba#	bbbb#
23451	23514	42531	25143	34521	35241	45321	54321

We use the intuitive correspondence between suffix arrays of length n and binary strings of length n-1. According to the correspondence, given a suffix array SA, we can infer its associated binary string T and vice versa. To see how, let x be the entry in SA corresponding to the last suffix # in lexicographic order. Then T must have the symbol a in each of the positions pointed to by SA[1], SA[2], ..., SA[x-1], and it must have the symbol a in each of the positions pointed to by SA[x+1], SA[x+1], ..., SA[n]. For example, in the suffix array (45321) (the 15th of the 16 examples above), the suffix # corresponds to the second entry a. The preceding entry is a, and thus a in position a. The subsequent entries are a, a, a, and thus a must have be in positions a, a. 1. The resulting string a, therefore, must be behar.

2.1 Decomposition scheme

Our decomposition scheme is by a simple recursion mechanism. Let SA be the suffix array for binary string T. In the base case, we denote SA by SA_0 , and let $n_0 = n$ be the number of its entries. For simplicity in exposition, we assume that n is a power of 2.

In the inductive phase $k \ge 0$, we start with suffix array SA_k , which is available by induction. It has $n_k = n/2^k$ entries and stores a permutation of $\{1, 2, \dots, n_k\}$. (Intuitively, this permutation is that resulting from sorting the suffixes of T whose suffix pointers are multiple of 2^k .) We run four main steps to transform SA_k into an equivalent but more succinct representation:

Step 1. Produce a bit vector B_k of n_k bits, such that $B_k[i] = 1$ if $SA_k[i]$ is even and $B_k[i] = 0$ if $SA_k[i]$ is odd.

Step 2. Map each $\mathbf{0}$ in B_k onto its companion $\mathbf{1}$. (We say that a certain $\mathbf{0}$ is the *companion* of a certain $\mathbf{1}$ if the odd entry in SA associated with the $\mathbf{0}$ is 1 less than the even entry in SA associated with the $\mathbf{1}$.) We can denote this correspondence by a partial function Ψ_k , where $\Psi_k(i)=j$ if and only if $SA_k[i]$ is odd and $SA_k[j]=SA_k[i]+1$. When defined, $\Psi_k(i)=j$ implies that $B_k[i]=\mathbf{0}$ and $B_k[j]=1$. It is convenient to make Ψ_k a total function by setting $\Psi_k(i)=i$ when $SA_k[i]$ is even (i.e., when $B_k[i]=\mathbf{1}$). In summary, for $1\leq i\leq n_k$, we have

$$\Psi_k(i) = \begin{cases} j & \text{if } SA_k[i] \text{ is odd and } SA_k[j] = SA_k[i] + 1; \\ i & \text{otherwise.} \end{cases}$$

Step 3. Compute the number of 1s for each prefix of B_k . We use function $rank_k$ for this purpose; that is, $rank_k(j)$ counts how many 1s there are in the first j bits of B_k .

Step 4. Pack together the even values from SA_k and divide each of them by 2. The resulting values form a permutation of $\{1, 2, \ldots, n_{k+1}\}$, where $n_{k+1} = n_k/2 = n/2^{k+1}$. Store them into a new suffix array SA_{k+1} of n_{k+1} entries, and remove the old suffix array SA_k .

The following example illustrates the effect of a single application of Steps 1–4. Here, $\Psi_0(25)=16$ as $SA_0[25]=29$ and $SA_0[16]=30$. The new suffix array SA_1 explicitly stores the suffix pointers (divided by 2) for the suffixes that start at even positions in the original text T. For example, $SA_1[3]=5$ means that the third lexicographically smallest suffix that starts at an even position in T is the one starting at position $2\times 5=10$, namely, abbabaa...#.