Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of the claims in the application:

Listing of claims:

1. (Currently Amended) A method of fabricating a semiconductor device comprising:

selecting a starting semiconductor substrate having a <u>first</u> defect density <u>and a first</u> doping level;

forming a semiconductor layer on said starting semiconductor substrate to have a second defect density that is equal to or less than the first defect density, the semiconductor layer being doped during formation to have a second doping level that is less than the first doping level at a first surface closest to the starting semiconductor substrate;

forming active components on <u>a second surface of said semiconductor layer, opposite to</u> the first surface; and

removing said starting semiconductor substrate.

- (Currently Amended) The method of claim 1 further comprising:
 controlling a doping level for said semiconductor layer <u>during formation</u>.
- 3. (Currently Amended) The method of claim 2 wherein the doping level is controlled to uniformly dope said doping level is uniform for the semiconductor layer at the second doping level.
- 4. (Original) The method of claim 1 wherein said starting semiconductor substrate and said semiconductor layer are made from GaAs.
- 5. (Currently Amended) The method of claim 1 wherein said starting semiconductor substrate is made from GaAs and said semiconductor layer is [[are]] made from epitaxial growth of a single crystal material.
- 6. (Original) The method of claim 5 wherein said semiconductor layer is made from AlGaAsP.

- Attorney Docket No. 11809/27 Application No. 10/735,695
- 7. (Original) The method of claim 1 wherein said starting semiconductor substrate has a low defect density.
- 8. (Currently Amended) The method of claim 7 further comprising: controlling a doping level for said semiconductor layer <u>during formation</u>.
- 9. (Currently Amended) The method of claim 8 wherein said doping level is uniform for the semiconductor layer is uniformly doped at the second doping level.
- 10. (Original) The method of claim 7 wherein said starting semiconductor substrate and said semiconductor layer are made from GaAs.
- 11. (Currently Amended) The method of claim 7 wherein said starting semiconductor substrate is made from GaAs and said semiconductor layer is [[are]] made from epitaxial growth of a single crystal material.
- 12. (Original) The method of claim 11 wherein said semiconductor layer is made from AlGaAsP.
- 13. (Withdrawn--Currently Amended) [[A]] The method of fabricating an optical device claim 1 wherein said forming active components includes comprising: selecting a starting semiconductor substrate having a defect density; forming a semiconductor layer on said starting semiconductor substrate while controlling a doping level for said semiconductor layer; forming an optical gain cavity on the second surface of said semiconductor layer, the optical gain cavity arranged to emit light through the semiconductor layer; and removing said starting semiconductor substrate.
- 14. (Withdrawn--Currently Amended) The method of claim 13 further comprising: controlling a doping level for said semiconductor layer <u>during formation</u>.
- 15. (Withdrawn--Currently Amended) The method of claim 14 wherein the doping level is controlled to uniformly dope said doping level is uniform for the semiconductor layer at the second doping level.

- 16. (Withdrawn) The method of claim 13 wherein said starting semiconductor substrate and said semiconductor layer are made from GaAs.
- 17. (Withdrawn--Currently Amended) The method of claim 13 wherein said starting semiconductor substrate is made from GaAs and said semiconductor layer is [[are]] made from epitaxial growth of a single crystal material.
- 18. (Withdrawn) The method of claim 17 wherein said semiconductor layer is made from AlGaAsP.
- 19. (Cancelled) The method of claim 13 wherein said starting semiconductor substrate has a low defect density.
- 20. (Cancelled) The method of claim 19 further comprising: controlling a doping level for said semiconductor layer.
- 21. (Cancelled) The method of claim 20 wherein said doping level is uniform for the semiconductor layer.
- 22. (Cancelled) The method of claim 19 wherein said starting semiconductor substrate and said semiconductor layer are made from GaAs.
- 23. (Cancelled) The method of claim 19 wherein said starting semiconductor substrate is made from GaAs and said semiconductor layer is are made from epitaxial growth of a single crystal material.
- 24. (Cancelled) The method of claim 23 wherein said semiconductor layer is made from AlGaAsP.
- 25. (Withdrawn--Currently Amended) [[A]] The method of claim 13, further fabricating an optical device comprising:

The text of the cancelled claims will be deleted before filing; the text appears here to simplify review.

Attorney Docket No. 11809/27 Application No. 10/735,695

semiconductor layer on said starting semiconductor substrate while controlling a doping level for said semiconductor layer; forming a gain cavity on said semiconductor layer; removing said starting semiconductor substrate; forming a first conductor on the gain cavity layer on a side of said semiconductor layer; forming a second conductor on an opposite side of said semiconductor layer; forming an optical aperture on the first surface of said semiconductor layer after removing said starting semiconductor substrate; and

disposing an external mirror/lens relative to <u>the first surface of</u> said semiconductor layer to create an extended <u>optical</u> cavity.

- 26. (Withdrawn--Currently Amended) The method of claim 25 further comprising: controlling a doping level for said semiconductor layer <u>during formation</u>.
- 27. (Withdrawn--Currently Amended) The method of claim 26 wherein said doping level is uniform for the semiconductor layer is uniformly doped at the second doping level.
- 28. (Withdrawn) The method of claim 25 wherein said starting semiconductor substrate and said semiconductor layer are made from GaAs.
- 29. (Withdrawn) The method of claim 25 wherein said starting semiconductor substrate is made from GaAs and said semiconductor layer is are made from epitaxial growth of a single crystal material.
- 30. (Withdrawn) The method of claim 29 wherein said semiconductor layer is made from AlGaAsP.
- 31. (Withdrawn--Currently Amended) The method of claim 27 wherein the <u>second</u> doping level is <u>selected</u> between 5 x 10^{16} cm⁻³ and 5 x 10^{17} cm⁻³.
- 32. (Withdrawn--Currently Amended) The method of claim 26 wherein the doping level is controlled to dope a majority of the thickness of said semiconductor layer is doped at a first the second doping level, and dope a remainder of the thickness a region of said semiconductor layer

adjacent to the second surface is doped at a second third, higher doping level adjacent to said gain cavity.

- 33. (Cancelled) The method of claim 25 wherein said starting semiconductor substrate has a low defect density.
- 34. (Cancelled) The method of claim 33 further comprising:

 controlling a doping level for said semiconductor layer.
- 35. (Cancelled) The method of claim 34 wherein said doping level is uniform for the semiconductor layer.
- 36. (Cancelled) The method of claim 33 wherein said starting semiconductor substrate and said semiconductor layer are made from GaAs.
- 37. (Cancelled) The method of claim 33 wherein said starting semiconductor substrate is made from GaAs and said semiconductor layer is are made from epitaxial growth of a single crystal material.
- 38. (Cancelled) The method of claim 37 wherein said semiconductor layer is made from AlGaAsP.
- 39. (New) The method of claim 1 further comprising:

forming an etch-stop layer on the starting semiconductor substrate prior to forming the semiconductor layer, wherein the etch-stop layer is composed of a different material than the starting semiconductor substrate and the semiconductor layer.

- 40. (New) The method of claim 39 further comprising:

 removing the etch-stop layer after removing the starting semiconductor substrate.
- 41. (New) The method of claim 1 further comprising:

 forming a first electrical contact over the active components; and

forming a second electrical contact to electrically contact the second surface of the semiconductor substrate, the first and second electrical contacts being formed on a same side of the semiconductor layer.

42. (New) The method of claim 41 further comprising:

controlling a doping level for said semiconductor layer during formation, the doping level being controlled to uniformly dope the semiconductor layer at the second doping level.

43. (New) The method of claim 41 further comprising:

controlling a doping level for said semiconductor layer during formation, the doping level being controlled to dope a majority of the thickness of said semiconductor layer at the second doping level and dope a region of said semiconductor layer adjacent to the second surface at a third, higher doping level.

- 44. (New) The method of claim 2 wherein the doping level is controlled to dope a majority of the thickness of said semiconductor layer at the second doping level and dope a region of said semiconductor layer adjacent to the second surface at a third, higher doping level.
- 45. (Withdrawn--New) The method of claim 13 wherein said forming active components further includes:

forming a first electrical contact on the optical gain cavity; and

forming a second electrical contact to electrically contact the second surface of the semiconductor substrate, the first and second electrical contacts being formed on a same side of the semiconductor layer.

46. (Withdrawn--New) The method of claim 45 further comprising:

controlling a doping level for said semiconductor layer during formation, the doping level being controlled to dope a majority of the thickness of said semiconductor layer at the second doping level and dope a region of said semiconductor layer adjacent to the second surface at a third, higher doping level.

47. (Withdrawn--New) The method of claim 13 further comprising:

controlling a doping level for said semiconductor layer during formation, the doping level being controlled to dope a majority of the thickness of said semiconductor layer at the second doping level and dope a region of said semiconductor layer adjacent to the second surface at a third, higher doping level.

48. (Withdrawn--New) The method of claim 25 further comprising:

forming an anti-reflecting layer on the first surface of said semiconductor layer after removing said starting semiconductor substrate, the optical aperture to be formed on the anti-reflecting layer.