[Name of Document] Abstract

[Abstract]

5

10

15

20

25

[Problem] It is to provide. The present invention relates to an optical component and the like having a structure that can increase the absolute value of the angular dispersion, and also can reduce the temperature dependence of the diffraction angle. [Solving Means] The prism 20 is composed of a material with a refractive index of n_1 , and a material around the diffraction grating element 10 and the prism 20 has a refractive index of In the case that light of wavelength λ is incident on the diffraction grating element at an incident angle of θ_0 , then taking the incident angle with respect to the first surface of the prism to be θ_2 , taking the emission angle of the light emitted from the second surface of the prism to be θ_5 , taking the temperature coefficient of the diffraction angle in the diffraction grating element to be F_{g} , taking the temperature coefficient of the emission angle $heta_5$ of the light emitted from the second surface of the prism, assuming that the incident angle θ_{2} of the light incident on the first surface of the prism is fixed regardless of the temperature, to be F_p , and taking the magnification rate of the angular dispersion caused by the prism to be M_p , the relationship " $n_1 > n_0$ AND $|\theta_5| > |\theta_2|$ " or " $n_1 < n_0$ " n_0 AND $|\theta_5| < |\theta_2|''$ is satisfied, whilst also satisfying the relationship "-2 M_pF_g < F_p < 0" or "-2 M_pF_g > F_p > 0".

[Selected Drawing] Fig. 1