MLHEP 2017 day 4.1

Neural networks 101

Maxim Borisyak, Alexander Panin, Andrey Ustyuzhanin

Recap: logistic regression

Gradient descent

$$P(y|x) = \sigma(w \cdot x + b)$$

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Repeat until convergence

$$\theta_{j} := \theta_{j} - \alpha \cdot \frac{\partial L(y, y_{pred})}{\partial \theta_{j}}$$

$$\Theta \sim \{W,b\}$$

Nonlinear dependencies

How to get that?

Feature extraction

Loss, for example:

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Model:

Training:

$$\underset{\theta_{1}}{\operatorname{argmin}} L(y, P(y|x))$$

Features would tune to your problem automatically!

What do we want, exactly?

Loss, for example:

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Model:

Training:

 $\underset{\theta_{1}}{\operatorname{argmin}} L(y, P(y|x))$

What do we want, exactly?

Loss, for example:

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Gradients:
$$\underset{\theta_2}{\operatorname{argmin}} L(y, P(y|x))$$
 $\underset{\theta_1}{\operatorname{argmin}} L(y, P(y|x))$

Model:

Output:

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Is it any better than logistic regression?

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

$$w'_{i} = \sum_{j} w_{j}^{o} w_{ij}^{h}$$
 $b' = \sum_{j} w_{j}^{o} b_{j}^{h} + b^{o}$

$$P(y|x) = \sigma(\sum_{i} w'_{i}x_{i} + b')$$

Model:

Output:

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Is it any better than logistic regression?

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o} \sigma(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

•
$$f(a) = 1/(1+e^a)$$

•
$$f(a) = tanh(a)$$

•
$$f(a) = max(0,a)$$

•
$$f(a) = log(1+e^a)$$

Initialization, symmetry problem

- Initialize with zeros
 W ← 0
- What will the first step look like?

Initialization, symmetry problem

- Break the symmetry!
- Initialize with random numbers!

$$W \leftarrow N(0,0.01)?$$

 $W \leftarrow U(0,0.1)?$

 Can get a bit better for deep NNs

18

Biological inspiration

Biological inspiration

Connectionist phrasebook

- Layer a building block for NNs :
 - "Dense layer": f(x) = Wx+b
 - "Nonlinearity layer": $f(x) = \sigma(x)$
 - Input layer, output layer
 - A few more we gonna cover later
- Activation layer output
 - i.e. some intermediate signal in the NN
- Backpropagation a fancy word for "chain rule"

Connectionist phrasebook

"Train it via backprop!"

Connectionist phrasebook

How do we train it?

Discrete Choices

:

Layer 2 Features

Layer 1 Features

Original Data

Potential caveats?

Potential caveats?

Hardcore overfitting

No "golden standard" for architecture

Computationally heavy

Regularization

L1, L2, as usual

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Faster than gradient descent

Update:

$$\mathbf{w}_{i+1} \leftarrow \mathbf{w}_i - \alpha \frac{\partial L}{\partial \mathbf{w}}$$

- a learning rate a<<1
- L loss function

Can we do better?

Newton-Raphson

Parameter update

$$w_{i+1} \leftarrow w_i - \alpha H_L^{-1} \frac{\partial L}{\partial w}$$

Hessian:

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \, \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \, \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \, \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \, \partial x_1} & \frac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

Red: Newton-Raphson Green: gradient descent

Any drawbacks?

Newton-Raphson

Parameter update

$$w_{i+1} \leftarrow w_i - \alpha H_L^{-1} \frac{\partial L}{\partial w}$$

Hessian:

$$\mathbf{H} = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \, \partial x_n} \ rac{\partial^2 f}{\partial x_2 \, \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \, \partial x_n} \ dots & dots & dots & dots \ rac{\partial^2 f}{\partial x_n \, \partial x_1} & rac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_n^2} \ \end{bmatrix}.$$

Red: Newton-Raphson Green: gradient descent

LARGE hessian!

Stochastic gradient descent

Loss function is mean over all data samples.

Approximate with 1 or few random samples.

Update:

$$w_{i+1} \leftarrow w_i - \alpha E \frac{\partial L}{\partial w}$$

- E expectation
- Learning rate should decrease

SGD with momentum

Idea: move towards "overall gradient direction", Not just current gradient.

$$w_{0} \leftarrow 0; v_{0} \leftarrow 0$$

$$v_{i+1} \leftarrow \alpha \frac{\partial L}{\partial w} + \mu v_{i}$$

$$w_{i+1} \leftarrow w_{i} - v_{i+1}$$

Helps for noisy gradient / canyon problem

SGD with momentum

Idea: move towards "overall gradient direction", Not just current gradient.

$$w_0 \leftarrow 0$$
; $v_0 \leftarrow 0$

$$\mathbf{v}_{i+1} \leftarrow \alpha \frac{\partial L}{\partial w} + \mu \mathbf{v}_{i}$$

$$w_{i+1} \leftarrow w_i - v_{i+1}$$

AdaGrad

Idea: decrease learning rate individually for each parameter in proportion to sum of it's gradients so far.

$$G_t = \sum_{\tau=1}^t \left[\frac{\partial L}{\partial w} \right]^2$$

"Total update path length" (for each parameter)

$$w_{t+1} = w_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \frac{\partial L}{\partial w}$$

RMSProp

Idea: make sure all gradient steps have approximately same magnitude (by keeping moving average of magnitude)

$$ms_{t+1} = \gamma \cdot ms_t + (1 - \gamma) \left\| \frac{\partial L}{\partial w} \right\|^2$$

$$w_{t+1} = w_t - \frac{\eta}{\sqrt{ms + \epsilon}} \frac{\partial L}{\partial w}$$

Alltogether

Moar stuff

Without Hessian

- Adadelta ~ adagrad with window
 - Adam ~ rmsprop + momentum
 - Nesterov-momentum
 - Hessian-free (narrow)
 - Conjugate gradients

Estimate inverse Hessian

- BFGS
- L-BFGS
- ****-BFGS

Regularization (weight)

General idea:

$$L_{new} = L + reg$$

performance = how_i_fit_data + how_reasonable_i_am

L2 regularizer

$$L_{new} = L + \beta ||\theta||_2 = L + \beta \sum_i \theta_i^2$$

linear models: theta = $\{w,b\}$

- a.k.a. weight decay
- a.k.a. Tikhonov regularizer
- a.k.a. normal prior on params

Computation

Nuff

Let's code some neural networks!

