PNG 2023-1 Guía 05: Gráficos Básicos

La Tarea 05 consiste de los ejercicios 1, 16, y uno nuevo, que Ud. diseñe

Para todos los ejercicios, escriba un párrafo de cinco sentencias describiendo el gráfico y lo que se puede deducir de este. Estas sentencias pueden 1) hablar de lo información que se está presentando en el gráfico, 2) describir los rasgos más generales, 3) describir algún detalle, 4) explicar lo que se observa, 5) presentar alguna conclusión que se puede obtener del gráfico.

No olvide que todo gráfico debe tener un titulo, texto para cada eje con las unidades respectivas, y de ser útil alguna leyenda explicativa. Con sólo mirar el gráfico (con los textos mencionados anteriormente) debe ser posible deducir qué tema está siendo analizado. Use un mismo rango de valores en X e Y para facilitar la comparación entre las figuras, sobre todo cuando usa **subplot**.

Siga las instrucciones señaladas en el Syllabus para la entrega de tareas.

1. Genere una serie de datos con los siguientes comandos

```
x = linspace(0,4*pi,10);
y = sin(x);
```

Use **polyfit/polyval** para ajustar un polinomio de orden 7 a los datos. Grafíque los puntos, la curva ajustada, y la diferencia entre estas dos curvas (Fig. 1).

Figura 1: Ajuste de un polinomio de orden 7 a puntos extraídos de una función seno $\,$

Use los coeficientes extraídos del ajuste y grafíque la curva que se obtiene, pero para el rango $[0\ 10\pi]$

Comente lo que se observa. Use la función axis para hacer un zoom de ese gráfico en el rango anterior ($[0\ 4\pi]$). En total tiene que presentar 3 gráficos.

2. Genere vectores aleatorios y defina un gráfico equivalente al de la figura 2:

Figura 2: Histograma para 10000 números aleatorios gaussianos y uniformes, con 10 y 100 barras

- 3. Modifique la figura figura 2 para que sea usada en una presentación con proyector.
- 4. Baje el archivo http://mosa.dgeo.udec.cl/PNG/datos02t05.txt
 Haga el gráfico de la serie de tiempo de la columna 12, que representa
 la presión medida por una boya con el paso de un huracán. Antes de
 hacer el gráfico, elimine los valores 9999 (que representan un error en las
 mediciones, use find. Lea los datos considerando que las dos primeras
 líneas tienen texto, o elimine esas líneas antes de leer el archivo.
- 5. Modifique la figura del caso anterior para que sea usada en una presentación con proyector.
- 6. Del mismo archivo, lea las 4 primeras columnas, que contienen los campos año, mes, día, y hora. Genere dos vectores de igual largo, con valores cero, que representen los minutos y segundos. Use la función **datenum** para crear un solo vector tiempo. Grafíque presión vs tiempo usando la función **datetick** para el eje x.
- 7. Genere un set de datos creando un vector x entre 1 y 100, y un vector y que sea la ecuación de una recta, dependiente de x, con ruido gaussiano

proporcional a x. Ajuste los datos usando **polyfit/polyval** y construya un gráfico equivalente al de la figura 3:

Figura 3: Arriba: Gráfico de dispersión con ajuste lineal superpuesto. Abajo: Error del ajuste

8. Genere vectores con números aleatorios con distribución gaussiana o uniforme para construir un gráfico equivalente al de la figura 4:

Figura 4: Histograma para 100, 1000, y 10000 números aleatorios gaussianos y uniformes

- 9. Baje el archivo http://mosa.dgeo.udec.cl/PNG/datos01t05.txt . Genere un gráfico equivalente al de la figura 5:
- 10. Modifique la figura figura 5 para que sea usada en una presentación con proyector.
- 11. Agregue 2 líneas que marquen el promedio del eje x e y en la figura 5, como se muestra en la figura 6.

Figura 5: Gráfico de dispersión con ajuste lineal superpuesto

Figura 6: Gráfico 5 con líneas de valor promedio agregadas

- 12. Del archivo **iglobal_copernicus_sla.dat**, el cual muestra las variaciones de nivel del mar (en mm) en promedio a nivel global, desde el año 1993 hasta el 2019, a este archivo:
 - a) Los errores de medición cámbielos por 0 (valores -999.90) Definimos el el cero como error y no como que el nivel del mar llega a su nivel original. Este cambio de errores por ceros no se hace comúnmente, por la alteración de estadísticos, no afecta a la gráfica. Opcionalmente puede reemplazar esos valores por NaN.
 - b) Guarde el archivo como una matriz de datos (*importdata* o save ascii), ahora sabiendo que la primera columna es el año, y de la 2 a la 13 son los meses de enero a diciembre, haga un plot simple de:
 - 1) Los valores solo del mes de enero a lo largo de los años (fig. 7).
 - 2) Los valores solo del año 2019, y a esta curva ajuste un polinomio de grado 2 (fig. 8).
 - 3) Haga estos 2 gráficos presentables en un proyector.

Figura 8: SLA para el año 2019, con curva ajustada

Figura 7: SLA para el mes de enero, periodo 1993-2019

Convierta el archivo iglobal_copernicus_sla.dat al formato
 año mes anomalía

y grafíque la serie de tiempo para el periodo completo. Haga un ajuste lineal y un ajuste cuadrático de la serie y sobreponga esos ajustes. Calcule la diferencia entre los datos y los valores ajustados y también sobreponga lo obtenido (Fig. 9).

Figura 9: SLA para 1993 2019, con curvas ajustadas y residuos

14. Escriba un programa que lea el archivo puntajes_corte_UdeC_2015.txt. Agrupe los puntajes de ingreso en rangos de 30 puntos. Grafíque cuantas carreras hay en cada tramo (Fig. 10.

Figura 10: Número de carreras accesibles según el puntaje obtenido

15. Lea los datos del archivo *Lavapie_272.txt* y que después calcule los principales estadísticos descriptivos. Grafíque las tres series de tiempo (Fig. 11) en versión PPT (líneas gruesas y tamaño de font grande).

octave:13> Eval1_PNG_sol2			
Estadistico	Columna	1 Columna	2 Columna 3
Minimo	-14.51	466.18	0.15682
1er Q	-3.67	573.89	1.113
Mediana	5.9	695.84	1.7477
3er Q	8.97	817.59	5.6739
Maximo	20.1	1000.7	27.29
StDev	3.5821	701.35	3.8003
Skew	8.8163	145.84	4.874
Kurt	-0.40224	0.16987	2.3748

Figura 11: Series de tiempo para Punta Lavapie

Según el rango de valores observado, ¿cuáles variables están siendo graficadas?

16. Efectos de muestreo

Use un vector

$$x = 0:0,1:150;$$

y calcule

$$y = \sin(2 * \pi * x/8);$$

Ahora considere

$$x2 = 0:7:150;$$

y calcule

$$y2 = sin(2 * \pi * x/8);$$

Sobreponga en un gráfico (x,y) y (x2,y2). Comente lo que se observa en términos de cómo muestrear cuando uno sale a terreno a medir.