Homework 2

Sangwon Chung

2019 9 30

```
library(KernSmooth)
library(MVA)
library(dplyr)
library(ggplot2)
library(GGally)
library(ggpubr)
library(reshape)
```

```
Measure = read.delim("F:\\Dropbox\DATA SET\\newmeasuredata.txt",sep = " ")
```

Question1

```
panel.bxp <- function(x, ...)
{
    usr <- par("usr"); on.exit(par(usr))
    par(usr = c(0, 2, usr[3:4]))
    boxplot(x, add=TRUE)
}

pairs(Measure[,c("chest", "waist", "hips")],
    diag.panel = panel.bxp,
    panel = function(x,y){
        data = data.frame(cbind(x,y))
        par(new = TRUE)
        bv = bvbox(data)
})</pre>
```


Question2

Students = read.csv("F:\\Dropbox\Dropbox\\Dropbox\D

gender	race.ethnicity	parental.level.of.education	lunch	test.preparation.course	math.score	reading.score	writing.score
female	group B	bachelor's degree	standard	none	72	72	74
female	group C	some college	standard	completed	69	90	88
female	group B	master's degree	standard	none	90	95	93
male	group A	associate's degree	free/reduced	none	47	57	44
male	group C	some college	standard	none	76	78	75

Pairs


```
variable - Math - Writing - Reading
```

```
Students %>%

group_by(race.ethnicity,gender) %>%

summarise(Math = mean(math.score),

Writing = mean(writing.score),

Reading = mean(reading.score)) %>%

as.data.frame() %>%

melt(id.vars = c("race.ethnicity","gender")) %>%

ggplot() +

geom_boxplot(aes(x = race.ethnicity, y= value, fill = variable), alpha = 0.4) +

theme_bw() +

theme(legend.position = "bottom")
```


variable Hath Writing Reading

```
Students[,c("race.ethnicity", "gender", "math.score", "reading.score", "writing.score")] %>%
melt(id.vars = c("race.ethnicity", "gender")) %>%
ggplot() +
geom_boxplot(aes(x = race.ethnicity , y = value, fill = gender)) +
facet_wrap(~ variable) +
theme_bw() +
theme(axis.text.x = element_text(angle = 90))
```



```
# 수학점수
ggplot(Students) +
geom_boxplot(aes(x = race.ethnicity, y = math.score, fill = gender), alpha = 0.2) +
geom_jitter(aes(x = race.ethnicity, y = math.score, col = gender), alpha = 0.3) +
theme_bw()
```



```
plotA = ggplot(Students) +
  geom_density(aes(x = math.score, fill = lunch), alpha = 0.4) +
  theme_bw()

plotB = ggplot(Students) +
  geom_density(aes(x = reading.score, fill = lunch), alpha = 0.4) +
  theme_bw()

plotC = ggplot(Students) +
  geom_density(aes(x = writing.score, fill = lunch), alpha = 0.4) +
  theme_bw()

D = ggarrange(plotA, plotB,plotC, ncol = 1)

annotate_figure(D, top = text_grob("Score Group by lunch"))
```

