Metody Monte Carlo

Raport 2

Autor: Anna Bonikowska 8.04/2024

Spis treści

1	Problem 1 – Generowanie przy pomocy dystrybuanty odwrotnej (funkcji kwantylowej)	2
2	Problem 2 – Metoda Boxa-Müllera	5
3	Problem 3 – Generowanie metodą transformacji	9

1 Problem 1 – Generowanie przy pomocy dystrybuanty odwrotnej (funkcji kwantylowej)

- Zaimplementuj omówiony na wykładzie generator rozkładu wykładniczego, narysuj histogram dla 5000 realizacji i nałóż na niego krzywą gęstości.
- Wyznacz dystrybuantę odwrotną dla rozkładu Weibulla o funkcji gęstości

$$f(x) := (k/\lambda)(x/\lambda)^{k-1}e^{-(x/\lambda)^k}\mathbf{1}_{x>0}, \quad x \in \mathbb{R}$$

gdzie $k>0,\ \lambda>0,$ i napisz odpowiedni generator liczb losowych. Narysuj przykładowy histogram dla próby z tego rozkładu.

• Zaprojektuj metodę generowania z rozkładu Cauchy'ego przy pomocy rozkładu jednostajnego. $Wskaz \acute{o}wka$: arc tg' $(x)=1/(1+x^2)$.

Rozwiązanie:

• Gnerator rozkładu wykładniczego

```
gener_wykl <- function(lam, n){
    u<-runif(n)
    x<-c()
    for(i in 1:n){
        x<-c(x,-(1/lam)*log(x =1 - u[i]))
    }
    return(x[])
}</pre>
```


Rysunek 1: Histogram generatora rozkładu wykładniczego z nałożona krzywa gestości

• Rozkład Weibulla

Dystrybuanta odwrotna rozkładu Weibulla to: $F^{-1}(x) = \lambda * \sqrt[k]{-ln(1-x)}$

```
gener_Weibulla <- function(lam,k, n){
    u<-runif(n)
    x<-c()
    for(i in 1:n){
        #u[i]
        x<-c(x,lam*((-log(1-u[i]))**(1/k)))
    }
    return(x[])
}</pre>
```


Rysunek 2: Histogram generatora rozkładu weibulla .

• Generator Cauchyego

Najpierw trzeba wyznaczyć dystrybuante odwrotną i nastepne wykonuje sie takie same kroki jak w poprzednich przypadkach.

```
ener_cauchy <- function(gam,m, n){
  u<-runif(n)
  x<-c()</pre>
```

```
for(i in 1:n){
    #u[i]
    x<-c(x,gam*tan(pi*(u[i]-1/2))+m)
}
return(x[])
}</pre>
```

2 Problem 2 – Metoda Boxa-Müllera

Jak wiadomo, transformacja

$$x_1 := \sqrt{-2\ln(u_2)}\cos(2\pi u_1), \ x_2 := \sqrt{-2\ln(u_2)}\sin(2\pi u_1),$$

produkuje dwie niezależne zmienne normalne z dwóch niezależnych zmiennych jednostajnych.

- Narysuj histogram z nałożoną odpowiednią funkcją gęstości dla 5000 realizacji współrzędnej x_1 .
- Wygeneruj 1000 realizacji takich par i narysuj wykresy punktowe dla: (x_{1i}, x_{2i}) , $(x_{1i}, x_{1i} + x_{2i})$ oraz $(x_{1i} + x_{2i}, x_{1i} x_{2i})/\sqrt{2}$.
- W (trzech) powyższych sytuacjach oblicz korelację (tych dwóch) współrzędnych. Czy współrzędne są od siebie niezależne? Wytłumacz.

Rozwiązanie:

• generowanie rozkładu za pomocą metody boxa Mullera

```
box_muller1 <- function(u1,u2){</pre>
  d<-length(u1)
  x<-c()
  for(i in 1:d){
    #u[i]
    x<-c(x, sqrt(-2*log(u1[i]))*cos(2*pi*u2[i]))
  }
  return(x[])
}
box_muller2 <- function(u1,u2){</pre>
  d<-length(u1)
  x<-c()
  for(i in 1:d){
    #u[i]
    x<-c(x, sqrt(-2*log(u1[i]))*sin(2*pi*u2[i]))
  }
```

```
return(x[])
}
```

\bullet histogram

Rysunek 3: Histogram xi z nalożoną funkcją rozkładu normalnego .

Rysunek 4: rozkład punktowy dla $\left(x_{1i},x_{2i}\right)$.

Rysunek 5: rozkład punktowy dla $\left(x_{1i},x_{1i}+x_{2i}\right)$.

Rysunek 6: rozkład punktowy dla $(x_{1i}+x_{2i},x_{1i}-x_{2i})/\sqrt{2}$.

•

• korelacja (x_{1i}, x_{2i}) wynosi : 0.0003678898 (x_{1i}, x_{2i}) sa niezależne bo korelacja jest bardzo bliska 0 korelacja $(x_{1i}, x_{1i} + x_{2i})$ wynosi : 0.6874134 $(x_{1i}, x_{1i} + x_{2i})$ nie sa niezależne bo korelacja jest duża korelacja $(x_{1i} + x_{2i}, x_{1i} - x_{2i})/\sqrt{2}$ wynosi : -0.05531315

Trudno powiedziec czy jest to niezalezne czy nie.

Dla porównania korelacja (u_{1i}, u_{2i}) wynosi 0.007589293.

Gdzie u_{1i}, u_{2i} sa niezależnymi zmienymi rozkładu jednistajnego generowanego przez komputer

3 Problem 3 – Generowanie metodą transformacji

• Jaki rozkład ma sześcian liczby losowej z rozkładu jednostajnego na (0,1)? (Podaj gęstość i nazwę rozkładu.) Czy u^3 jest funkcją kwantylową?

- Jak generować rozkład o gęstości $f(x):=\mathbf{1}_{[0,\infty)}(x)\sqrt{2/\pi}e^{-x^2/2}$? Zaimplementuj i zilustruj.
- Jakie rozkład ma wyrażenie pod pierwiastkiem we wzorach Boxa-Müllera?

Rozwiązanie:

•

• Trzeba najpierw wygenerować rozkład normalny i nastepnie nałożyć na niego wartosć bezwględną.

```
n=10000
u1<-runif(n)
u2<-runif(n)
x1<-gener_nor1(u1,u2)
x1<-abs(x1)</pre>
```

• To wyrażenie ma rozkład wykładniczy z parametrem 1/2